

Freder Long tone

London W. Fager LXIII IV and LIV. Pabley Sunshine.

RESULTS

OF THE

MAGNETICAL AND METEOROLOGICAL OBSERVATIONS

MADE AT

THE ROYAL OBSERVATORY, GREENWICH,

IN THE YEAR

1877 :

UNDER THE DIRECTION OF

SIR GEORGE BIDDELL AIRY, K.C.B. M.A. LL.D. D.C.L.,
ASTRONOMER ROYAL.

PUBLISHED BY ORDER OF THE BOARD OF ADMIRALTY

IN OBEDIENCE TO HER MAJESTY'S COMMAND.

LONDON:

PRINTED BY GEORGE EDWARD EYRE AND WILLIAM SPOTTISWOODE,
PRINTERS TO THE QUEEN'S MOST EXCELLENT MAJESTY.

FOR HER MAJESTY'S STATIONERY OFFICE

1879.

	PAGE
Introduction.	iic
LOCALITY and BUILDINGS of the Magnetic Observatory.	iii to r
Description of the Magnetic Observatory, Magnetic Basement, Positions of Instruments	ni vi
Position of the Electrometers and of the Pole supporting the Conducting Wires	vi
Apparatus for Naphthalizing the Gas	vi vi
Magnetic Offices: Photographic Thermometer Shed	ri ri
Upper Declination Magnet, and Apparatus for observing it	
Theodolite, Stand, Double Box, Suspension and Dimensions of the Declination Magnet.	ri ana vu viii
Reversed Telescope or Collimator attached to the Magnet	rui
Copper Damper, its Construction, and Effect upon the Oscillations of the Magnet	viii viii
Inequality of the Pivots of the Theodolite Telescope	
Value of One Revolution of the Micrometer Screw of the Theodolite Telescope	ix
Determination of the Micrometer-Reading for the Line of Collimation of the Theodolite-	is
Tolorgane	1.5
Determination of the Effect of the Mean Time Clock, and of the Compound Effects of the Vertical Force Magnet and Horizontal Force Magnet on the Declination Magnet.	ix and x
Determination of the Error of Collimation for the Plane Glass in front of the Boxes	x
of the Declination Magnet.	
Determination of the Error of Collimation of the Magnet Collimator with reference to the Magnetic Axis of the Magnet.	.0
Mognetic Axis of the Magnet Effect of the Damper on the Position of the Magnet	.r
Effect of the Dumper on the Postain of the Stagnat Calculation of the Constant used in the Reduction of the Observations of the Upper	
Description Vaguet	
Determination of the Time of Vibration of the Declination Magnet under the Action of	
Towardyial Magnetism	
Exaction expressing the Proportion of the Torsion Force to the Earth's Magnetic Force .	xi.
Determination of the Readings of the Horizontal Circle of the Theodolite corresponding	xi
to the Astronomical Meridian	xi
Correction for the Error of Level of the Axis of the Theodolite.	
Formula and Tabular Numbers used in Computation of the Correction to Azimuth for the	xii
Hour angle of the Star observed	
Days of Observations for determining the Readings corresponding to the Astronomical	xit
Meridian: Cheek on the continued Steadiness of the Theodolite	xi
Method of Making and Reducing the Observations for Magnetic Declination	
General Principle of Construction of Photographic self-registering Apparatus	· x
FOR CONTINUOUS RECORD OF MAGNETIC AND OTHER INDICATIONS	4.
Description of the Photographic Cylinders	.xı
Photographic Puper on Revolving Cylinder: Concave Mirror carried by the Magnet .	xvi xvi
Astigmatism of the Reflected Pencil of Light, and Use of Cylindrical Lens	
G 910. Wt. B 62.	[a 2]

Introduction—continued.	TAGE
Image of a Spot of Light formed on the Cylinder: Photographic Line of Abscissa	xvi
Adjustment of the Time-Scale: Registration of Photographic Hour-Lines	xvii
Lower Declination Magnet; and Photographic self-registering Apparatus for	
Continuous Record of Magnetic Declination	xvii
Dimensions and Suspension of Lower Declination-Magnet	iii and xix
Dimensions and Position of the Convave Mirror; its Distance from the Light-Aperture	
and from the Cylinder	xix
Zero and Measure of the Ordinates of the Photographic Curve: New Base-Line	xic and xx
Horizontal-Force-Magnet, and Apparatus for observing it	xx
Dimensions of the Horizontal-Force-Magnet: und its Brick Pier	2:3
Description of the Magnet Carrier and Suspension-Pulleys	
Plane Mirror and Fixed Telescope for Eye-Observation	.r.r.
Silk Suspension and Double Box of the Horizontal-Force-Magnet	.e.v.
Heights above Floor of Bruss Pulleys of Suspension-Piece; and of Pulleys of Magnet	
	221
Carrier	
Distances between the Branches of the Nilk Shein at the Upper and Lower Pulleys	æ
Oral Copper Damping Bar	<i>x</i> .a.
Position of the Scale and the Telescope for observing the Horizontal-Force-Magnet	xx
Observation of the Times of Vibration and of the different Readings of the Scale for	
Different Readings of the Torsion-Circle, and Determination of the Reading of the	
Torsion-Circle and the Time of Vibration when the Magnet is Transverse to the	
Magnetic Meridian	i and xxui
Computation of the Angle corresponding to One Division of the Scale, and of the	
Variation of the Horizontal Force (in Terms of the whole Horizontal Force) which	
moves the Magnet through a Space corresponding to Our Division of the Scale	xaiv
Determination of the Compound Effect of the Vertical Force Magnet and the Declination	
Magnet on the Horizontal-Force Magnet	x.viv
Effect of the Damper	vvir
Determination of the Correction for the Effect of Temperature on the Horizontal-Force-	
Magnet	221
Principle adopted for this Determination in 1846 and 1847, and Formula for the Tem-	
perature Correction	1.00
Hot-air Experiments for the Temperature-coefficient made in 1864	vxri
Experiments for determining the Temperature-coefficient under the actual Circumstances	
of Observation, made in 1868	.cxvi
Method of Making the ordinary Eye-Observations	xxix
Times of Thermometric Observation for Horizontal-Force-Temperature	axix
Photographic self-registering Apparates for Continuous Record of Magnetic	
Horizontal Force	xax
Concave Micror, its Diameter and Distance from Lamp-aperture	xx
Part of the Cylinder upon which the Spot of Light for the Horizontal Force Register falls	xxx
Calculation of the Scale of Horizontal Force on the Photographic Sheet	xx
Vertical Force Magnet, and Apparatus for observing it	xxx
Dimensions, Supports, Carrier, and Knife-edge	a.c.ri
Plane Mirror and Fixed Telescope for Eye-Observation	xxxi
Position of the Concave Mirror for Photographic Registration	xxx
Description of adjustible Screw-weights attached to the Magnet	2221

	ODUCTION—continued.
i and xxxii	Rectangular Box, Telescope, and Scale of the Vertical Force Magnet xxx
	Determination of the Compound Effect of the Declination Magnet, the Horizontal Force
axxii	Magnet, and the Iron affixed to the Electrometer Pole, on the Vertical Force Magnet
	Determination of the Times of Vibration of the Vertical Force Magnet in the Vertical
xxxii	Plane and in the Horizontal Plane
	Computation of the Angle through which the Magnet moves for a Change of One
	Division of the Scale; and Calculation of the Disturbing Force producing a Move-
exxiii	ment through One Division, in Terms of the whole Vertical Force
xxxiii	neestigation of the Temperature Correction of the Vertical Force Magnet
xxxiv	Results of Temperature Experiments made in 1868
xxxv	Method of making the ordinary Eye-Observations
xxxv	Times of Thermometric Observation for Vertical Force Temperature
	OTOGRAPHIC SELF-REGISTERING APPARATUS FOR CONTINUOUS RECORD OF MAGNETIC
	Vertical Force
xxxv	
	Diameter of Concave Mirror, and Distance from Light-aperture and from Cylinder xxxv
xxxri	Position of Cylindrical Lens, and support of the Revolving Cylinder
xxxri	Pencil of Light for Instrumental Buse-line Register
	Method of computing the Scale for the Ordinates of the Photographic Curve of the Vertical
xxxvi	Force
xxxvi	PING NEEDLES, and Method of observing the Magnetic Dip
	Description of the Peeuliarities of Airy's Instrument
and xxxix	llum:~uting Apparatus, Needles, Zenith Point Needle, and Levels xxxviii
x!	Occasional Examinations of the Dip-Instrument and Needles
	SERVATIONS FOR THE ABSOLUTE MEASURE OF THE HORIZONTAL FORCE OF TERRESTRIAL
xl	Magnetism
xl	Inifilar Instrument, similar to those used in and issued by the Kew Observatory
at and ali	Description of the Deflected and Deflecting Magnets; Method of Reduction
xli	Re-determination of Moment of Inertia of the Deflecting Magnet
xli	Difference between Results of Old and New Instruments
xti and xli i	Tonversion of Results into Metric Measure, and into terms of the C.G.S. unit
xlii	PLANATION OF THE TABLES OF RESULTS OF THE MAGNETICAL OBSERVATIONS
xlii	Division of Days of Observation into two Groups: Treatment of the Photographic Curve
ii and xliii	Iniformity of the Daily Temperature of the Magnetometers
xliii	Results for Horizontal Force and Vertical Force not corrected for Temperature
iii and aliv	Indications expressed in terms of Gauss's Magnetic Unit, and Formulæ for Conversion A
xliv	Apparent Diminution of Power of Vertical Force Magnet
	RES AND PHOTOGRAPHIC SELF-REGISTERING APPARATUS FOR CONTINUOUS RECORD OF
xliv	Spontaneous Terrestrial Galvanic Currents
	Lengths and Earth-Connexions of the Terrestrial Current Wires
xlv	hange of route of Wires in 1868, and further change in 1877
xlvi	Golvanometer Needles acted on by the Galvanic Currents
	Plane Mirrors, Gas-lamp, Pencils of Light, Cylindrical Lenses, and Photographic
xlvi	Cylinder for Registration of Galvanic Currents
xlvi	Discussion of the First Series of Records
xivi xlvii	ANDARD BAROMETER, its Position
zivii zbrii	Diameter of Tube: Adjustment to Verticality

NTRODUCTION—continued.	PAGI
Readings as compared with Royal Society's Flint-Gloss Standard Barometer	xlvi
Correction required for Index Error	xlvi.
Comparison with the Standard Barometer of the Kew Observatory	rtvi
Height of the Cistern above the Level of the Sea : Hours of Observation	alvii
Correction and Reduction of Readings	xlrii
Photographic self-registering Apparatus for Continuous Record of the Readings	
of the Barometer	xlrii
Position, and Diameter of Bore of Syphon Barometer used for Photographic Self-	
Registration: and Method adopted for Registering the Barometric Variations	xlrii
Discussion of the Records	xlix
THERMOMETERS FOR ORDINARY OBSERVATION OF THE TEMPERATURE OF THE AIR AND	
of Evaporation	xtis
Mounting of the Thermometers: Revolving Frame	stis
Standard Thermometer, its Agreement with Mr. Gluisher's Standard	
Table of Currections required to the Dry-Bulb and Wet-Bulb Thermometers	•
Description of the Maximum and Minimum Self-registering Thermometers, their Cor-	
	and L
Hours of Observation	1.
Photographic self-registering Apparatus for continuous Record of the Readings	·
OF THE DRY-BULB AND WET-BULB THERMOMETERS	1.
Position wad Description of the Self-registering Apparatus	į
Lamps, Lenses, Cylinder with Paper, and Photographic Trace	li
Time of Revolution, and Dimensions, of the Photographic Cylinder	li
Discussion of the Records	li
THERMOMETERS FOR SOLAR RADIATION AND RADIATION TO THE SKY	li
THERMOMETERS SUNK BELOW THE SURFACE OF THE SOIL AT DIFFERENT DEPTHS	lii
Number and Situation of the Thermometers; Nature of the Soil	lii
Shape and Size of the Bulbs and Tubes of the Thermometers	lii
Depth in the Ground to which each Thermometer has been sunk	lii
Method of Sinking the Thermometers, and Height of the Upper Part of the Tube of each	
above the Surface of the Ground	lii
Wooden Case for covering the Thermometers: Scales of the Thermometers	li
Reduction of the Observations	li.
THERMOMETERS IMMERSED IN THE WATER OF THE THAMES	1
OSLER'S ANEMOMETER, its Vanc and Direction Pencil	1
Travelling Board; Registering Paper; and Adjustment for Azimuth	le
Description of the Pressure Apparatus	lr
Its Rain-gange, where described	lri
Robinson's Anemometer. Record of Indications, how made	lri
Experiments to verify the Correctness of its Theory	trii
Rain-Gauges	lvii
No. 1. Osler's, Situation of, Heights above the Ground and above Mean Level of the Sea,	,
and Area of exposed Surface	lvii
Syphon Principle of Discharging the Water: Method of Recording its Results Iviii	and lis

PAGE

NTRODUCTION—concluded.	
Rain-Gauges:-	
No. 1, Formation of Scale for Determining the Quantity of Rain	. /ix
No. 2. Situation of, Area of exposed Surface, and Position with regard to No. 1	. /ix
No. 3, Situation of, and Heights above the Ground and above the Mean Level of the	ϵ
Sea: Area of exposed Surface and General Description	
Arrangement to prevent Evaporation	. lix
No. 4. Situation of, Area of exposed Surface, and Heights above the Ground and above	e
Mean Level of the Sea	. li.c
No. 5, Situation of, and Heights above the Ground and above the Mean Level of the Se	i lix and lx
No. 6, Crosley's, Area of exposed Surface	. /2
Description of its Mode of Action: Method of Recording its Observations	. /x
Situation of, and Height above Mean Level of the Sea	. /.ɛ
Nos. 7 and 8, Situation of, Heights of Receiving Surfaces above the Ground and about	$\cdot e$
the Mean Level of the Sen	
ELECTRICAL APPARATUS	. //
Electrometer Mast and Moveable Apparatus	. Ix and Iri
Wire from the Moveable Box to the Turret of the Octagon Room	. /x
Insulution of both Ends of the Wire	. Ixi
Communication between this Wire and the Fixed Apparatus	. l.r.
Insulation of the Attuchment within the Room	
Electrometers, Volta's, Henley's, Ronalds' Spark-Measurer, Dry Pilr Apparatu	18.
Galvanometer	lrii and lxii
Imperfect Indication of the Instruments: Thomson's Self-recording Electrometer	. lrii
• •	
Instrument for the Registration of Sunshine	. lxii.
Ozonometer	. /xie
Explanation of the Tables of Results of the Meteorological Observations .	. lain
Results deduced from the Photographic Records	. In
Determination of the Dew Point Temperature and Degree of Humidity	. /x
Table of Factors for the Deduction of the Dew Point Temperature, from Observation	us
of the Dry Bulb and Wet Bulb Thermometers	. Lev
of the Dry Buth and Wet Buth Incrmometers Table of average Duily Temperatures of the Air as deduced from the Reduction	nt'
Tuble of average Duty Temperatures of the Air as weather from the Mediteum	. lavi
Photographic Records for the Period, 1849–1868	. Jack
Register of Rain: Number of Rainy Days	. levii
Explanation of the Divisions of Time under the Heads of Electricity and Weather	. tevii
Explanation of Notation employed for Record of Electrical Observations	. /xvu
Explanation of Notation for the Description of Clouds and Weather	ixvin ana ixi
Average Values employed in Foot-Notes, whence derived	. <i>l.r.</i>
Observations of Luminous Meteors	
DETAILS OF THE CHEMICAL OPERATIONS FOR THE PHOTOGRAPHIC RECORDS	. /x.
Personal Establishment	. /xx
RESULTS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS IN TABULAR ARRANGEMENT	:
REDUCTION OF THE MAGNETIC OBSERVATIONS	. (iii
Table 1.—Mean Western Declination of the Magnet on each Astronomical Day	iv (iv
TABLE II.—Mean Monthly Determination of the Western Declination of the Magnet	at

X

RESULTS OF MAGNETICAL AND METEOROLOGICAL OBSERVATIONS—continued,	1
Table 111.—Mean Western Declination of the Magnet expressed in values of are; and excess	
of Western Declination above 18° converted into Westerly Force, and expressed in	
terms of Gauss's Unit measured on the Metrical System, in each Month: and Monthly	
Means of all the actual Diurnal Ranges of the Western Declination	
Table IV.—Mean Horizontal Magnetic Force expressed in terms of the Mean Horizontal	
Force for the Year, and diminished by a Constant (0.86000 nearly), uncorrected for	
Temperature, on each Astronomical Day	
Table V.—Daily Means of Readings of the Thermometer placed on the box inclosing the	
Horizontal Force Magnetometer, for each Astronomical Day	
Table VI.—Mean Monthly Determination of the Horizontal Magnetic Force expressed in	
terms of the Mean Horizontal Force for the Year, and diminished by a Constant	
(0.86000 nearly), uncorrected for Temperature, at every Hour of the Day.	
Table VII.—Monthly Means of Readings of the Thermometer placed on the box inclosing	
the Horizontal Force Magnetometer	
TABLE VIII.—Mean Horizontal Magnetic Force in each Month, uncorrected for Temperature,	
expressed in terms of the Mean Horizontal Force for the Year, and diminished by	
a Constant (0.86000 nearly), and also expressed in terms of Gauss's Unit measured	
on the Metrical System, and diminished by a Constant (1.54671 nearly); and Mean	
H.F. Temperature for each Month	
TABLE IX.—Mean Vertical Magnetic Force, expressed in terms of the Mean Vertical	
Force for the Year, and diminished by a Constant (0.96000 nearly), uncorrected for	
Temperature, on each Astronomical Day	
Table X.—Daily Means of Readings of the Thermometer placed on the box inclosing the	
Vertical Force Magnetometer, for each Astronomical Day	(
Table X1.—Mean Monthly Determination of the Vertical Magnetic Force, expressed in	
terms of the Mean Vertical Force for the Year, and diminished by a Constant	
(0.96000 nearly), uncorrected for Temperature, at every Hour of the Day	
Table XII.—Monthly Means of Readings of the Thermometer placed on the box inclosing	
the Vertical Force Magnetometer	
Table XIII.—Mean Vertical Magnetic Force in each Month, uncorrected for Temperature,	
expressed in terms of the Mean Vertical Force for the Year, and diminished by a	
Constant (0.96000 nearly), and also expressed in terms of Gauss's Unit measured on	
the Metrical System, and diminished by a Constant (420211 nearly); and Mean V.F.	
Temperature for each Month	
Table XIV.—Mean, through the Range of Months, of the Monthly Mean Determinations	
of the Diurnal Inequalities of Declination. Horizontal Force, and Vertical Force	
RESULTS OF OBSERVATIONS OF THE MAGNETIC DIP	(
Dips observed	(
Monthly Means of Magnetic Dips	(
Yearly Means of Magnetic Dips, and General Mean	()
Results of Observations of Magnetic Dip at the Hours of Observation, 9th, a.m. and 3th, p.m.	()
OBSERVATIONS OF DEFLEXION OF A MAGNET FOR ABSOLUTE MEASURE OF HORIZONTAL	
FORCE	(:
Abstract of the Observations of Deflexion of a Magnet, and of Vibrations of the Deflecting	
Magnet for Absolute Measure of Horizontal Force	(
Computation of the Values of Absolute Measure of Horizontal Force	(:

	D	PAGI.
	RESULTS OF METEOROLOGICAL OBSERVATIONS	(xxiii)
	Daily Results of Mercorological Observations	(xxiv)
	Highest and Lowest Readings of the Barometer	(xlviii)
	Absolute Maxima and Minima Readings of the Barometer for each Month	(1)
	Monthly Results of Meteorological Elements	(li)
	Monthly Mean Reading of the Barometer at every Honr of the Day	(lii)
	Monthly Mean Temperature of the Air at every Hour of the Day	(lii)
	Monthly Mean Temperature of Evaporation at every Hour of the Day	(Iiii)
	Monthly Mean Temperature of the Dew-Point at every Hour of the Day	(fiii)
у,	Monthly Mean Degree of Humidity at every Hour of the Day	(liv)
<i>)</i> .	Total Amount of Sunshine registered in each Hour of the Day in each month	(liv)
	Earth Thermometers:—	
	(1.) Reading of a Thermometer whose bulb is sunk to the depth of 25.6 fee: (24 French	
	feet) below the surface of the soil, at Noon on every Day	(lv)
	(II.) Reading of a Thermometer whose bulb is sunk to the depth of 12.8 feet (12 French	(**)
	feet) below the surface of the soil, at Noon on every Day	(lv)
	(III.) Reading of a Thermometer whose bulb is sunk to the depth of 6.4 feet (6 French	()
	feet) below the surface of the soil, at Noon on every Day	(Ivi)
	(IV.) Reading of a Thermometer whose bulb is sunk to the depth of 3:2 feet (3 French	(111)
	feet) below the surface of the soil, at Noon on every Day	(lvii)
	(V.) Reading of a Thermometer whose bulb is sunk to the depth of 1 inch below the	(*****)
	surface of the soil, at Noon on every Day	(Iviii)
	(VI.) Reading of a Thermometer within the case covering the Deep-sunk Thermometers,	(11111)
	whose bulb is placed on a level with their scales, at Noon on every Day	(Iviii)
	Abstract of the Changes of the Direction of the Wind, as derived from Osler's Anemometer	
	Mean Hourly Measures of the Horizontal Movement of the Air in each Month, and	(lx)
	Greatest and Least Hourly Measures, as derived from the Records of Robinson's	
		(lxi)
	Amount of Rain collected in each Month by the different Rain Gauges	(lxii)
	Observations of Luminous Meteors	(lxiii)
А	PPENDIX:—	
	Mean Temperature of the Air at every Hour of the Day, in each year from 1849 to 1868.	(lxxi)

ROYAL OBSERVATORY, GREENWICH.

RESULTS

OF

MAGNETICAL AND METEOROLOGICAL OBSERVATIONS.

1877.

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1877.

Introduction.

§ I. Buildings of the Magnetic Observatory.

In consequence of a representation by the Astronomer Royal, dated 1836, January 12, and a memorial by the Board of Visitors of the Royal Observatory, dated 1836, February 26, addressed to the Lords Commissioners of the Admiralty, an additional space of ground on the south-east side of the former boundary of the Observatory grounds was inclosed from Greenwich Park for the site of a Magnetic Observatory, in the summer of 1837; and the Magnetic Observatory was erected in the spring of 1838. Its nearest angle in its present form is about 174 feet from the nearest point of the S.E. dome, and about 30 feet from the office of Clerk of Works. It is based on concrete and built of wood, united for the most part by pegs of bamboo; no iron was intentionally admitted in its construction, or in subsequent alterations. Its form, as originally built, was that of a cross with four equal arms, very nearly in the direction of the cardinal magnetic points as they were in 1838; the length within the walls, from the extremity of one arm of the cross to the extremity of the opposite arm, was 40 feet, the breadth of each arm 12 feet. In the spring of 1862, the northern arm was extended 8 feet. The height of the walls inside is 10 feet, and the ceiling of the room is about 2 feet higher. The northern arm of the cross is separated from the central square by a partition, so as to form an ante-room, which is occupied by computers of the Magnetical and Meteorological Department. The meridional magnet for observations of absolute declination, formerly used also for observations of variations of declination, (placed in its position in 1838), is mounted in the southern arm; and the theodolite by which the magnetcollimator is viewed, and by which circumpolar stars for determination of the astronomical meridian are also observed, (for which observation an opening is made in the roof, with proper shutters,) is in the southern arm, near the southern boundary of the central square. The bifilar magnet, for variations of horizontal magnetic force (erected at the end of 1840), was mounted near the northern wall of the eastern-arm; and the balance-magnetometer, for variations of vertical magnetic force (erected in

1841) was mounted near the northern wall of the western arm. Important changes have subsequently been made in the positions of these instruments, as will be mentioned below. The sidereal-time-clock is in the south arm, near the south-east re-entering angle. The fire-grate (constructed of copper, as far as possible,) is near the north end of the west side of the ante-room. Some of these fixtures may contain trifling quantities of iron; and, as the ante-room is used as a computing room, it is impossible to avoid the introduction of iron in small quantities; great care, however, is taken to avoid it as far as possible.

In 1864, a room, called the Magnetic Basement, was excavated below the whole of the Magnetic Observatory except the ante-room; the descent to it is by a staircase close to the south wall of the western arm of the building.

For the theodolite, a brick pier was built from the ground below the floor of the Basement, rising through the ceiling into the south arm of the upper room, and supporting the theodolite in exactly the same position as before.

Instead of a single meridional magnet performing the double functions of "magnet for determining absolute magnetic declination." and "magnet carrying a mirror for photographic register," there are now two meridional magnets, one in the Upper Room and one in the Basement. The upper (original) magnet is in a position about 10 inches north of its former position; it earries a collimator, for observation by the theodolite; but, in reversion of position of the collimator, the collimator is always either above or below the magnet, so that the magnet is always in the same vertical. The lower magnet, procured in the year 1864, is in nearly the same vertical with the upper magnet; it carries the mirror for the photographic register of the continual changes of declination. A massive brick pier is built in the south arm of the Basement, covered by a stone slab; upon it is fixed the gun-metal stand carrying the photographic lamp, and the slit through which it shines; from the stone slab rise three smaller piers, upon which crossed slates are placed; and from these rises a small pier through the eeiling, to the height of 18 inches above the upper floor. carrying the suspension pulleys of the lower magnet; the skein of silk, which supports the lower magnet, passes through a hole in one of the slates. Upon the slates on the brick piers rest the feet of the original wooden stand carrying the suspension of the upper magnet. As, from time to time, the wooden stand has been shifted slightly to the west, with change of the magnetic meridian, its western support had, in course of time, reached such a position that it became necessary in 1876 to place, on the top of the original slate, another, bound by brass cramps to the brick pier, but projecting further west. On this the support of the wooden stand now rests.

The bifilar-magnetometer is in the Basement, in a position vertically below its former position. A massive brick pier, surmounted by a thick slab of stone (upon which the metal stand carrying the photograph lamp and slit is fixed) supports a pier consisting of a back and return-sides, which rises through the ceiling

about 2 feet above the upper floor, and is crowned by a slate slab that carries the suspension of the bifilar-magnetometer.

The vertical-force magnetometer is in the Basement, in a position vertically below its former position; it rests upon a brick pier, capped by a thick stone; to which also is fixed the plate of metal with slit through which passes the light of the photographic lamp.

To the lower part of the theodolite-pier, within the Basement, are fixed telescopes for eye-observation of the bifilar and vertical-force magnetometers. They are protected from accidental violence by guards fixed to the floor, first attached on 1871, May 2.

At the south-east re-entering angle of the Basement (which has been rebated for the purpose) is the horizontal photographic cylinder, which receives the traces of the movements of the declination-magnet and the bifilar-magnet. The angle is so far cut away that the straight line joining their suspensions passes at the distance of one foot from the wall, and thus the cylinder receives the light from the concave mirrors earried by both instruments, at right angles to its surface. The vertical cylinder which receives the traces of the movements of the vertical-force-magnet, and of the self-registering barometer near it, is east of the vertical force pier.

In the south-east corner of the eastern arm is placed the apparatus for self-registration of the spontaneous galvanie currents on the wires leading respectively from Angerstein Wharf to Lady Well Station (on the Mid Kent Railway), and from North Kent Junction (on the Greenwich Railway) to Morden College end of the Blackheath Tunnel (on the North Kent Railway). The straight lines connecting these points intersect each other nearly at right angles, at a point not far distant from the Observatory (see § 12 below).

The mean-time-clock is on the west wall of the south arm of the Basement.

Adjoining the north wall is the table for photographic operations. Much water is used in these operations, and therefore a pump is provided in the grounds at a distance of about 30 feet from the nearest magnetometer, by which the water is withdrawn from the cistern at the east end of the photographic table and at once discharged into a covered drain.

Near the west end of the photographic table and fixed to the north wall is the Sidereal Standard Clock of the Astronomical Observatory, Deut 1906, communicating with the Chronograph and other clocks in the Astronomical Department by galvanic wires. It was established in this position at the end of May 1871.

The Basement is warmed by a gas-stove, and ventilated by a large copper tube nearly two feet in diameter, receiving the flues from the stove and all the lamps, and passing through the upper room to a revolving cowl above the roof. Each of the arms of the basement has a window facing the south, but in general the window-wells are closely stopped.

The variations in the temperature of the instruments have been greatly reduced by their location within this Basement.

On the outside of the Magnetic Observatory, near the north-east corner of the aute-room, a pole 79 feet in height is fixed, for the support of the conducting wire to the electrometers; the electrometers. &c.. are planted in the window-seat at the north-end of the ante-room.

The apparatus for uaphthalizing the gas used in the photographic registration is mounted in a small detached zinc-built room, erected in 1863, near the west side of the ante-room. The use of the naphthalizing process, which had been discontinued in the years 1865 to 1870, has since 1871 been resumed.

In 1863, a range of seven rooms, usually called the Magnetic Offices, was erected near the southern fence of the grounds, as it existed at that time; an addition, however, was made to the grounds in 1868, carrying the fence 100 feet further south. Since the summer of 1863, observations of Dip and Deflexion have been made in the westernmost of these rooms, No. 7. On 1871, December 1, the Watchman's Clock was moved from the Quadrant Passage of the Astronomical Observatory to Magnetic Office No. 3, and on 1872, November 14, it was again moved from Office No. 3 to No. 1. Nos. 2, 3, and 4 are now used as Photographic Offices in connection with the Photoheliograph placed in a dome adjoining No. 3 on the south side.

At the distance of 28 feet south (magnetic) from the south-east angle of the southern arm is an open shed about 10th 6th square, supported by four posts at the height of 8 feet, with an adjustible opening at the center of the roof. Under this shed are placed the large dry-bulb and wet-bulb thermometers, with a photographic cylinder, whose axis is vertical, between them; and external to these are the gas flames, whose light passing through the thermometer-tubes above the quicksilver makes photographic traces upon the paper which covers the cylinder.

For better understanding of these descriptions, the reader is referred to the Descriptions of Buildings and Grounds with accompanying Maps, attached to the Volumes of Astronomical Observations for the years 1845 and 1862.

§ 2. Upper Declination-Magnet and Apparatus for observing it.

The theodolite, with which the meridional magnet is observed, is by Simms: the radius of its horizontal circle is 8:3 inches: it is divided to 5'; and is read to 5", by three verniers, carried by the revolving frame of the theodolite. The fixed frame stands upon three foot-screws, which rest in brass channels let into the stone pier that stands upon the brick pier rising from the ground of the Magnetic Basement. The revolving frame carries the Y's (with vertical adjustment at one end) for a telescope with transit-axis: the length of the axis is $10\frac{1}{2}$ inches: the length of the telescope 21 inches: the aperture of the object glass 2 inches. The Y's are not

carried immediately by the T head which crosses the vertical axis of the revolving frame, but by pieces supported by the ends of that T head, and projecting horizontally from it: the use of this construction is to allow the telescope to be pointed sufficiently high to see δ Ursæ Minoris above the pole. The eye-piece of the telescope carries only one fixed horizontal wire, and one vertical wire moved by a micrometerscrew. The opening in the roof of the building permits the observation of circumpolar stars, as high as δ Ursæ Minoris above the pole, and as low as β Cephei below the pole.

For supporting the magnet, a braced wooden tripod-stand is provided, whose feet, as above described, rest upon slates covering brick piers in the Magnetic Basement. Upon the cross-bars of the stand rests a double rectangular box (one box completely inclosed within another), both boxes being covered with gilt paper on their exterior and interior sides. On the southern side of the principal upright piece of the stand is a moveable upright bar, turning in the vertical E. and W. plane, upon a pin in its center (which is fixed in the principal upright), and carrying at its top a brass frame supporting two pulleys for suspension of the magnet; this construction is adopted as convenient for giving an E. and W. movement (now very rarely required) to the point of suspension, by giving a motion to the lower end of the bar. The pulleys, whose axes are E. and W., project one on the north side of the moveable upright, the other on the south side, and are adapted to carry a flat leather strap. Formerly this strap was attached directly to the suspension skein, but at the beginning of the present year this manner of attachment was changed. The end of the strap depending from the north pulley is now connected to a square wooden rod sliding in the corresponding squared hole of a fixed wooden bracket. The suspension skein is attached to the lower end of the wooden rod, so that in raising or lowering the magnet carrier (necessary in some operations) no alteration is made in the free length of the suspension skein. The strap passes from the north pulley over the south pulley, and thence downwards to a small windlass, fixed to the lower part of the moveable upright. The height of the two pulleys above the floor is about 11 ft. 4 in., and the height of the magnet is about 2 ft. 11 in.; the length of the rod, carrying at its upper end the torsion circle, and at its lower end the cradle supporting the magnet, is 1 ft. 4 in.; and the length of strap and rod below the north pulley is about 1 ft. 3 in.; so that the length of the free suspending skein is about 5 feet 10 inches.

The magnet was made by Meyerstein, of Göttingen: it is a bar 2 feet long, $1\frac{1}{2}$ inch broad, and about $\frac{1}{4}$ inch thick: it is of hard steel throughout. The magnet-carrier was also made by Meyerstein, but it has since been altered by Simms. The magnet is inserted sideways and fixed by a screw in the double square hook which constitutes the lower part of the magnet-carrier. This lower part turns stiffly on a vertical axis, independently of the upper part, and carries with it the graduated torsion circle:

to the upper part is fixed the vernier for reading the circle. The upper part of the magnet-carrier is simply hooked into the skein.

The suspending skein was originally of silk fibre, in the state in which it is first prepared by silk manufacturers for further operations; namely, when seven or more fibres from the cocoon are united by juxtaposition only (without twist) to form a single thread. The skein was strong enough to support perhaps three times the weight of the magnet, &c.

In the summer and autumn of 1864, an attempt was made to suspend the magnet by a steel wire, capable of supporting the weight 15 lbs.; but the torsion force was found to be so large as greatly to diminish the value of the observations; and the skein was finally restored on 1865, January 20. A similar attempt was made for suspension of the lower magnet; the skein, however, was restored on 1865, January 30.

Upon the upper magnet there slide two brass frames, firmly fixed in their places by means of pinching-screws. One of these contains, between two plane glasses, a cross of delicate cobwebs; the other holds a lens of 13 inches focal length and nearly 2 inches aperture. This combination, therefore, serves as a reversed telescope without a tube; the cross of cobwebs is seen very well with the theodolite-telescope, when the suspension-bar of the magnet is so adjusted as to place the object-glass of the reversed telescope in front of the object-glass of the theodolite, their axes coinciding. The wires are illuminated by a lamp and lens at night, and by a reflector during the day.

In the original mounting of this magnet the small vibrations were annihilated by a copper oval or "damper," thus constructed: A copper bar, about one inch square, is bent into a long oval form, intended to encircle the magnet (the plane of the oval curve being vertical). A lateral bend is made in the upper half of the oval, to avoid interference with the suspension-piece of the magnet. The effect of this damper was, that after every complete or double vibration of the magnet, the amplitude of the oscillation is reduced in the proportion of 5:2 nearly.

On mounting the photographic magnetometer in the basement, the damper was removed from its place surrounding the upper magnet, and was adjusted to encircle the photographic magnet. The upper magnet remained unchecked in its vibrations till 1866, January 23, when the lower part of its carrier was connected with a brass bar which vibrates in water.

Observations relating to the permanent Adjustments of the Upper Declination-Magnet and its Theodolite.

1. Determination of the inequality of the pivots of the theodolite-telescope.

1875, August 31. The theodolite was elamped, so that the transit-axis was at right angles to the meridian. The illuminated end of the axis of the telescope was

first placed to the East: the level was applied, and its scale was read; the level was then reversed, and its scale was again read; it was then again reversed, and again read, and so on successively six times. The illuminated end of the axis was then placed to the West, and the level was applied and read as before. This process was repeated several times, and the result was, that when the level indicates the axis to be horizontal, the pivot at the illuminated end is really too low by 1".5. Other determinations made 1875, September 21, and 1876, December 1, gave respectively 1"3 and 1".1. The value applied during the year 1877 to the mean level reading is 1 div.3 as before, equivalent to 1".4.

2. Value of one revolution of the micrometer-screw of the theodolite-telescope.

On 1870, December 29, the magnet was made to rest on blocks of wood, and its collimator was used as a fixed mark at an infinite distance. The micrometer of the theodolite-telescope was placed in different positions, and the vertical frame carrying the telescope was then turned till the micrometer wire bisected the cross. The result of several comparisons of theodolite-readings with large values and with small values of the micrometer-reading was, that one revolution = 1'.34"·2. Similar experiments made 1875, September 1, and December 28, gave respectively 1'.34"·1, and 1'.34"·2. The value used throughout the year 1877 is 1'.34"·2.

3. Determination of the micrometer-reading for the line of collimation of the theodolite-telescope.

1877, January 3. The vertical axis of the theodolite had been adjusted to verticality, and the transit-axis was made horizontal. The declination-magnet was made to rest on blocks, and the cross-wires carried by it were used as a collimator for determining the line of collimation of the telescope of the theodolite. The telescope was reversed after each observation. The mean of 10 double observations was 100°064. On 1877, December 18, the mean of 20 double measures gave 100°108. The value 100°064 was used throughout the year.

4. Determination of the effect of the mean-time-clock on the declination-magnet.

The observations by which this has been determined are detailed in the volumes for 1840, 1841, 1844, and 1845. It appeared that it was necessary to add 9"·41 to every reading of the theodolite. The clock was removed to the basement in 1864, having now nearly the same relative position to the lower declination-magnet which formerly it had to the upper. No correction is now applied to the upper declination-magnet.

5. Determination of the compound effects of the vertical-force-magnet and the horizontal-force-magnet on the declination-magnet.

The details applying to the effect of the horizontal-force-magnet and first vertical-force-magnet will be found in the volumes for 1840, 1841, 1844, and 1845. It GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1877.

appeared that it was necessary to subtract 55":22 from all readings of the theodolite. In 1848 a new vertical-force-magnet was introduced, and the subtractive quantity was then found to be 42":2. A few experiments made on 1864, May 26, after removal of the horizontal and vertical force magnets to the basement, seemed to show that the theodolite readings required a subtractive correction of 36":9, but no numerical correction has since been applied.

6. Determination of the error of collimation for the plane glass in front of the boxes of the declination-magnet.

1875. December 28. The magnet was made to rest on blocks. The micrometer head of the telescope was to the East. The plane glass has the word "top" engraved on it, and, in ordinary use, this word is always kept east. The cross-wire carried by the collimator of the magnet was observed with the engraved word alternately east and west. The result of 20 double observations was, that in the ordinary position of the glass 17"3 is to be added to all readings. On 1877, December 18, 10 double observations gave 14"9. The value used during the year 1877 was 16"1.

7. Determination of the error of collimation of the magnet-collimator, with reference to the magnetic axis of the magnet.

1877, January 10. Observations were made by placing the declination-magnet in its stirrup, with its collimator alternately above and below, and observing the collimator-wire by the theodolite-telescope; the windlass of the suspending skein being so moved that the collimator in each observation was in the line of the theodolite-telescope. The observation was repeated several times. The mean half excess of reading with collimator above (its usual position), over that with collimator below, was 26′, 9″-4. Observations made 1877, December 18, gave 26′, 42″-5. The mean of these values, or 26′, 26″-0, has been used during the year 1877.

8. Effect of the damper.

In the volume for 1841 observations are exhibited shewing that the oval copper bar, or damper, which then surrounded what is now the upper declination-magnet, had but little or no effect. Repeated observations, of less formal character, in succeeding years, have confirmed this result. The same bar has encircled the lower declination-magnet since the year 1865. The following observations were made in the year 1865, for ascertaining the effect of the damper on the lower declination-magnet under various circumstances.

On 1865, February 8 and 10, and March 2, the time of vibration of the magnet was observed:—

Mean of times with damper in usual position	231888
Mean of times with damper reversed end for end	24s · 508
Mean of times when damper was removed.	231-153

These seem to indicate a repulsion of the magnet by the damper, but the magnet came to rest so rapidly that the observations are very uncertain.

On several days from 1865, April 2 to May 12, observations were made for ascertaining the deflection of the magnet produced by turning the damper through a small angle round a vertical axis, passing through its center.

DAMPER IN USUAL POSITION

N. end towards E., ine	rease of	f western	deelina	tion — 1, 27
Damper turned through 2° $\begin{cases} N. \text{ end towards E., inc} \\ N. \text{ end towards W.,} \end{cases}$,,	,,	,,	+1.25
Damper turned through 4° $\begin{cases} N_{\bullet} \text{ end towards E.,} \\ N_{\bullet} \text{ end towards W.,} \end{cases}$	٠,	٠,	,,	2.16
	,,	,,	,,	+ 3.11
Damper turned through 6° $\begin{cases} N. \text{ end towards E.,} \\ N. \text{ end towards W.,} \end{cases}$	"	,,	,,	3. 10
	"	,,	**	+2,55
Damper turned through 8° $\begin{cases} N. \text{ end towards E.,} \\ N. \text{ end towards W.,} \end{cases}$	"	• • • • • • • • • • • • • • • • • • • •	"	1.22 +1.45

Damper Reversed End for End.

D 1.1 1.02	N. end	towards	E., iner	ease of	western	deelinatio	n+0.12
Damper turned through 2	l N. end	towards	W.,	,,	,,	,,	+0.20
Damper turned through 4°	N. end	towards	E.,	,,	,,	,,	0. 0
			,	,,	,,	,,	$\dots +0.26$
Damper turned through 6°	N. end	towards	E.,	,,	,,	25	+0.5
Dumper turned to tage	(N. end	towards	W.,	,,	"	,,	+0.5
Damper turned through 8°	N. end	towards	E.,	,,	,,	,,	0.10
1 - 0	t IV. ena	towards	W .,	,,	**	**	+0.5

The first series shews clearly that the damper in its usual position drags the magnet; the second shews no certain effect. It seems that the damper possesses two kinds of magnetism, one permanent, the other transiently induced, of nearly equal magnitude; their sum being about $\frac{1}{100}$ part of the terrestrial effect for the same deflexion.

From 1865, July 25 to August 9, observations were made to ascertain whether the effect of an external deflecting cause is the same with the damper present and the damper removed. The observation was extremely difficult, as the magnet was perpetually in vibration when the damper was removed. A small magnet on the east side of the N. end of the magnetometer, with its north end pointing towards the East (and therefore diminishing the western declination of the magnetometer), was moved to the distance (about five feet) at which it produced a deviation of 5' nearly. The apparent western declination was observed, damper present, and damper removed. It appeared to be less with damper present than with damper removed,

- by 0′, 53″. The separate results are very discordant. If the conclusion has any validity, it tends to show a repulsive power in the damper, opposite to that found in the preceding experiments. This experiment is regarded as inconclusive.
- 9. Calculation of the constant used throughout the year 1877 in the reduction of the observations of the upper declination-magnet, the micrometer-head of the theodolite-telescope being East.

Reading for line of collimation	-	100r-064
Micrometer equivalent		-2.37. 6·0
Correction for the plane glass in front of the box, in its usual position	-	+ 16.1
The collimator above the magnet. Correction for error of collimation	-	— 26, 26·0
Constant to be used in the reduction of the observations -	-	-3. 3.15·9

10. Determination of the time of vibration of the upper declination-magnet under the action of terrestrial magnetism.

On 1873, August 7, it was found to be 31*40; on 1874, December 31, 31*33; on 1875, December 31, 31*25; and on 1877, January 10, 31*21.

11. Fraction expressing the proportion of the torsion-force to the earth's magnetic force.

By the same process which is described in the Magnetical Observations 1847, but with the system of suspension and silk skein at present in use, the proportion was found, on 1877, January 10, $\frac{1}{155}$; and on 1877, December 18, also $\frac{1}{155}$.

DETERMINATION OF THE READINGS OF THE HORIZONTAL CIRCLE OF THE THEODOLITE CORRESPONDING TO THE ASTRONOMICAL MERIDIAN.

The reading of the circle corresponding to the astronomical meridian is determined by occasional observation of the stars Polaris and è Ursæ Minoris when near the meridian, either above or below pole. Six measures are usually taken on each night of observation.

The error of the level is determined by application of the spirit-level at the time of observation: due regard being paid, in the reduction, to the inequality of pivots already found. One division of the level is considered = 1'''0526. The azimuth-reading is then corrected by this quantity:

Correction = Elevation of W, end of axis \times tan. star's altitude.

The readings of the azimuth circle increase as the instrument is turned from N. to E., S., and W.; from which it follows that (telescope pointing to North), the correction must have the same sign as the elevation of the W. end.

The correction for the azimuth of the star observed has been usually computed independently in every observation, by a peculiar method, of which the principle is fully explained in the volumes for 1840-1841, 1843, 1844, 1845. The formula and table used are the following:—

Let $A_{\mu} =$ seconds of are in star's azimuth,

 $C_s =$ seconds of time in star's hour-angle,

 a_{μ} = seconds of arc in star's N.P.D. for the day of observation,

Then log. $A_{ii} = \log C_s + \log E + \log (a_{ii} + F) + \log \cos \phi$.

The values of log. E, F, and log. cos. ϕ , are given in the following table:—

Tabulated Values of Log. Cos. ϕ , for Different Values of C, and of the Quantities Log. E, and F for the Stars, Polaris and δ Urs.e Minoris.

Hour	Log. Cos. φ for			
Angle.	Polaris.	δ Ursæ Minoris.	Polaris S.P.	δ Ursæ Min, S.P
m	0100000			
I	9,99999	9,99999	9,99999	9,99999
3	999	999	999	999
	999 998	999	999	999
4 5 6	996	996	998	998
6	994	994	997 996	997
-				996
7 8	99 2 990	99 2 989	994	995
	988	986	99 2 990	993
9	985	983	988	1991
11	981	979	985	989
12	978	975	982	984
13	974	971	979	981
14	974	966	979	978
15	966	961	972	975
16	961	955	968	971
17	956	950	964	968
18	951	911	959	964
19	945	937	955	960
20	939	930	950	956
21	932	923	945	951
2 2	926	915	939	946
2.3	919	908	933	941
2.4	912	900	928	936
25	904	891	922	930
26	896	882	915	925
27	888	873	909	919
28	880	863	902	912
29	871	853	894	906
30	9.99862	9.99843	9.99887	9,99900
Log. E	6.09721	6.13638	-6 ·03899	-6.00012
F .	-186" •7 9	—944" ·71	+181".57	+886" .86

Sometimes, when the star has been observed at larger hour angles, the azimuthal correction has been taken from a manuscript table, having for arguments "Hour Angle" and different values of "North Polar Distance."

Observations for determining the theodolite readings corresponding to the astronomical meridian were made on the following days in 1877:—January 9, 19, 22, 25; February 16; March 10; April 19; May 30; July 10, 26; August 22, 30; September 11, 21, 26; November 3, 14; December 31. As a check on the continued steadiness of the theodolite, observations of a fixed mark (a small hole in a plate of metal above the Observatory Library) have been taken twenty times at intervals through the year. The concluded mean reading for the south astronomical meridian used, was 27°, 5′, 38″.9 throughout the year.

The following is a description of the method of making and reducing the eyeobservations of the declination-magnet:—

A fine horizontal wire (as stated on page vii) is fixed in the field of view of the theodolite-telescope, and another fine vertical wire is fixed to a wire-plate, moved right and left by a micrometer screw. On looking into the telescope, the diagonally placed cross of the magnetometer is seen, and, during vibration of the magnet, will be observed to pass alternately right and left. The observation is made by turning the micrometer till its wire bisects the image of the magnet-cross at the prearranged times, and reading the micrometer. Then the verniers of the horizontal circle are read.

The mean-time clock is kept very nearly to Greenwich mean time (its error being ascertained each day), and the clock-time for each determination is arranged before hand. Chronometer M Cabe 649 has usually been employed for observation.

If the magnet is in a state of disturbance, the first observation is made by the observer applying his eye to the telescope about one minute before the pre-arranged time; he bisects the magnet-cross by the micrometer wire at 45° , and again at 15° before that time, also at 15° and 45° after that time. The intervals of these four observations are the same nearly as the time of vibration of the magnet, and the mean of all the times is the same as the pre-arranged time. The times of observation are usually 1° , 5° , 3° , 5° , 9° , 5° , and 21° , 5° of Greenwich mean time.

The mean of each pair of adjacent readings of the micrometer is taken (giving three means), and the mean of these three is adopted as the result. In practice, this is done by adding the first and fourth readings to the double of the second and third, and dividing the sum by 6.

Till 1866, January 23, the magnet was usually in a state of vibration; but, since the introduction of the water-damper on that day, the number of instances of excessive vibration has been very small. When it appears to be nearly free from vibration, two bisections only of the cross are made, one about 15^s before the time recorded, the other about 15^s after that time, (30^s being nearly the time of a single vibration,) and the mean adopted as result. (The lower magnet, encircled by the copper damper, never exhibits any troublesome vibrations.)

The adopted result is converted into arc, supposing $1^r = 1'.34''\cdot 2$, and the quantity thus deduced is added to the mean of the vernier-readings, to which is applied the constant given in article 9 of the permanent adjustments; the difference between this number and the adopted reading for the Astronomical South Meridian is taken; and thus is deduced the magnetic declination, which is used in determining the zero for the photographic register.

§ 3. General principle of construction of Photographic self-registering Apparatus for continuous Record of Magnetic and other Indications.

The general principle adopted for all the photographic instruments is the same. For the register of each indication, a cylinder is provided, whose material is ebonite, and which is very accurately turned in the lathe. The axis of the cylinder is placed parallel to the direction of the change of indication which is to be registered. If there are two indications whose movements are in the same direction, both may be registered on the same cylinder; thus, the Declination and the Horizontal Force, whose indications of changes of the respective elements travel horizontally, can both be registered upon one cylinder with axis horizontal; the same remark applies to the register of two different galvanic Earth-Currents; the Vertical Force and the reading of the Barometer can both be registered upon one cylinder with axis vertical; and similarly the Dry-Bulb Thermometer and the Wet-Bulb Thermometer.

To the ends of each ebonite cylinder there are fixed circular brass plates, that which is near the clock-work having a diameter somewhat greater than that of the cylinder. In the further fittings there is a little difference between those for vertical and those for horizontal cylinders. Each horizontal cylinder has a pivot fixed in the brass plate at each end; these revolve each upon two antifriction wheels of the fixed frame. The vertical cylinders have no pivots; there is a perforation through the center of the lower or larger brass plate which, when the cylinder is mounted, is fitted upon a vertical spindle projecting upwards from the center of a second horizontal brass plate; this second brass plate sustains the weight of the vertical cylinder and turns horizontally, being supported by three antifriction wheels (each in a vertical plane) carried by the fixed frame.

Uniform rotatory motion is given to the cylinders by the action of clock-work, or rather chronometer-work, regulated by either duplex-escapement or chronometerescapement. For two of the cylinders, which revolve in 24 hours, and for the thermometer-cylinder which revolves in 50 hours, the axis is placed opposite to the center of the chronometer, and a fork at the end of the hour hand takes hold of a winch fixed to the plate of the cylinder, or (in the vertical cylinders) to the plate that sustains the cylinder. In the cylinder for galvanic earth-currents only, the connection is made by toothed wheels. For the horizontal cylinders, the plane of the chronometer work is vertical; for the vertical cylinders, it is horizontal.

The cylinders employed for the Declination and Horizontal Force registers, for the Vertical Force and Barometer registers, and for the Earth Current registers, are $11\frac{1}{2}$ inches high, and $14\frac{1}{4}$ inches in circumference; those for the thermometers are 10 inches high, and 19 inches in circumference.

Each cylinder is covered, when in use, by a tube of glass, which is open at one end, and has at the other end a circular plate of ebonite or brass, perforated at its center. The tube is a little larger than the cylinder; its open end is kept in position by a narrow collar of ebonite, and the opposite end by a circular piece of brass fixed to the smaller brass plate at the end of the cylinder.

To prepare the cylinder for register of indications, it is covered with a sheet of sensitised paper; the moisture on the paper usually eauses the overlapping ends to adhere with sufficient firmness; the glass tube is then slipped over it, and the cylinder thus prepared is placed (if horizontal) with its pivots in bearing upon its two sets of antifriction wheels, or, (if vertical) with its end-brass-plate upon the rotating brass plate, and its central perforation upon the spindle of that plate; care is taken to ensure connection with the clock-work, and the apparatus is ready for action.

The trace for each instrument is produced by a flame of coal gas usually charged with the vapour of coal naphtha. For the magnetometers the light shines through a small aperture about 0ⁱⁿ·3 long, and 0ⁱⁿ·01 broad; for the earth-current-apparatus and for the barometer, the aperture is larger. The arrangements for throwing on the photographic paper of the revolving cylinder a spot of light which shall travel in the direction of the cylinder's axis with every motion of either magnetometer or galvanometer, or with the rise and fall of the mercury in the barometer, are as follows.

For each of the three magnetometers, a large concave mirror of speculum metal is carried by a part of the magnet-carrier; although it has a small movement of adjustment relative to the magnet-carrier, yet in practice it is very firmly clamped to it, so that the mirror receives all the angular movements of the magnet. The lamp above mentioned is placed slightly out of the direction of the straight line drawn from the center of the concave mirror to the center of the cylinder which carries the photographic paper. By the concave mirror, the light diverging from the aperture is made to converge to a place nearly on the surface of the cylinder carrying the photo-

graphic paper. The form of the aperture, however, and the astigmatism caused by the inclined reflexion from the mirror, produce this effect, that the image is somewhat elongated and is at the same time slightly curved. To diminish the length there is placed near the cylinder a system of plano-convex cylindrical lenses of glass, with their axes parallel to the axis of the cylinder, and the image is thus reduced to a neat spot of light.

For the registers of galvanic earth-currents, the light, which falls upon a plane mirror carried by each galvanometer, is made to converge to a spot, by a system of cylindrical lenses.

For the barometer, the light, condensed by a vertically placed cylindrical lens, shines through a small horizontal slit in a plate of blackened mica (which moves with the fluctuations of the quicksilver), and thus forms a spot of light.

For the thermometers, the light shines through the vacant part of the tube, and thus forms a sheet of light.

The spot of light (for the magnets, the earth-currents, and the barometer), or the boundary of the line of light (for the thermometers), moves, with the movements which are to be registered, in the direction of the axis of the cylinder, while the cylinder itself revolves. Consequently, when the paper is unwrapped from the cylinder, there is traced upon it (though not visible till the proper chemical agents have been applied) a curve, of which the abscissa measured in the direction of a line surrounding the cylinder is proportional to the time, while the ordinate measured in the direction parallel to the axis of the cylinder is proportional to the movement which is the subject of measure.

In the instruments for registering the motions of the magnets, the earth-currents, and the barometer, a line of abscisse is actually traced on the paper, by a lamp giving a spot of light in an invariable position, the effect of which on the revolving paper is to trace a line surrounding the cylinder. For the thermometers this is not necessary, as the thermometer-scales are made to carry and to transfer to the photographic paper sufficient indications of the actual reading of the thermometers, by an apparatus which will be described in a following section.

Every part of the cylinder apparatus for the magnets and for the earth-currents is covered by cases of blackened zinc or wood, having slits for the moveable spots of light, and holes for the invariable spots; and all parts of the paths of the photographic light are protected as necessary by blackened zinc tubes from the admixture of extraneous light. The cylinder-apparatus for the thermometers is protected in the same manner, the whole, including the stems of the thermometers, and gaslights, being enclosed in a second zinc case, blackened internally.

In all the instruments, the following method is used for attaching, to the sheet of photographic paper, indications of the time when certain parts of the photographic trace were actually made, and for giving the means of laying down a time-scale applicable to every part of the trace. By means of a small moveable plate, arranged expressly for this purpose, the light which makes the trace can at any moment be completely cut off. An assistant, therefore, occasionally cuts off the light (registering in the proper book the clock-time of doing so), and after a few minutes withdraws the plate (again registering the time). The effect of this is to make a visible interruption in the trace, corresponding to registered times. By drawing lines from these points of interruption parallel to the axis of the cylinder, to meet the photographic line of abscissæ, or an adopted line of abscissæ parallel to it, points are defined upon the line of abscissæ corresponding to registered times. The whole length of the exposed part of the paper corresponds to the known time of revolution of the cylinder. A scale being prepared beforehand, whose value for the time of revolution corresponds in length to the circumference of the cylinder, the scalereadings for the registered times of interruption of light are applied to the ordinates corresponding to the interruptions, and the divisions of hours and minutes transferred at once from the scale to the line of abscissæ. In practice it is found that the length of the paper is not always the same, and it is necessary, therefore, to use for each instrument several pasteboard scales of different lengths, adapted to various lengths of the photographic sheets.

Since the year 1870, by means of an opening made in the chimneys of the registering lamps of the magnetometers, and in the chimneys of other lamps for the earth current galvanometers, the light at each instrument, when not interrupted, falls directly upon the cylindrical lens in front of the revolving cylinder, and, if allowed to act for a short time, produces, when the sheet is developed, a dark line upon the photographic paper. An apparatus of clock-work, specially arranged by Messrs, E. Dent and Co., acting upon small shutters, uncovers simultaneously the chimney-openings in all the lamps about $2\frac{1}{2}$ minutes before each hour, and covers them simultaneously about $2\frac{1}{2}$ minutes after each hour. In this way a good series of hour-lines in the direction of the ordinates is formed. By this arrangement increased accuracy of the time-registers has been obtained, and the labour of the computers much diminished. The system of interrupting the trace by hand is still retained, as giving means of checking the clock indication. No automatic registration of hour-lines has yet been arranged for the Barometer or for the Dry-bulb and Wet-bulb Thermometers.

§ 4. Lower Declination-Magnet; and Photographic self-registering Apparatus for Continuous Record of Magnetic Declination.

The lower declination-magnet is made by Simms. It is 2 feet long, 1½ inch broad, ¼ inch thick, of hard steel throughout, much harder than the upper declination-magnet.

The magnet-frame consists of an upper piece, whose top is a hook, (to be hooked into the suspension-skein), and which carries a concave mirror used for the photographic record in the manner described above. The lower part of this upper piece turns in a graduated horizontal circle, similar to the torsion circle of the upper magnet, and attached to the lower piece or magnet-carrier proper. The lowest part of the carrier is a double square hook, in which the magnet is inserted and is kept in position by the pressure of three screws.

It has been mentioned in § 1 that a small pier, built upon one of the crossed slates which are laid upon three piers rising from below, carries the suspension-pulleys. The suspension-skein rises to one of these pulleys, passes horizontally over a second pulley about 5 inches south of it, and then descends obliquely to a windlass which is fixed to the stone slab about 2 ft. 3 in. south of the center of the magnet.

The height of the pulley above the floor of the Basement is 10 ft. $4\frac{3}{4}$ in. As the height of the magnet above the floor is 2 ft. $10\frac{1}{2}$ in., and the length of the magnet frame is 1 ft. 3 in., there remains 6 ft. $3\frac{1}{4}$ in. of free suspending skein.

One of the revolving cylinders is used for the photographic record of the Declination-Magnet and the Horizontal-Force-Magnet. In the preparation of the basement in 1864, as has been stated, the south-eastern re-entering angle was cut away, so that the straight line from the suspending skein of the declination-magnet to the center of those of the bifilar magnet passes through a clear space, in which the registering apparatus is placed.

The concave mirror of the declination-magnet is 5 inches in diameter, and is above the top of the magnet-box. The distance of the light aperture from the mirror is about 25:3 inches. The bright spot formed by the reflection of light from the mirror is received on the south side of the cylinder, near its west end.

For the declination-magnet, the values, in minutes and seconds of arc, of movements of the photographic spot in the direction of the ordinate, are thus deduced from a geometrical calculation founded on the measures of different parts of the apparatus. The distance of the cylinder from the concave mirror is $132\cdot11$ inches, and a movement of 1° of the mirror produces a movement of 2° in the reflected ray. From this it is found that 1° of movement of the mirror is represented by $4\cdot611$ inches upon the photographic paper. A small scale of paste-board is prepared, (for which a glass scale is in some operations substituted,) whose graduations correspond in value to minutes and seconds so calculated. The zero of the ordinate-scale is found in the following manuer. The time-scale having been laid down as is already described, and actual observations of the position of the upper declination-magnet having been made with the cye and the telescope (as has been fully described at page xiv) at certain registered times, there is no difficulty (by means of these registered times) in defining the points of the photographic trace which

correspond to the observed positions. The pasteboard scale being applied as an ordinate to one of these points, and being slid up and down till the scale reading which represents the reading actually taken by the eye-observation falls on that point, the reading of the scale where it crosses the line of abscissæ is immediately found. This process rests on the assumption that the movements of the upper and lower magnets are exactly similar. The various readings given by different observations, so long as there is no instrumental change, will scarcely differ, and may be combined in groups, and thus an adopted reading for the line of abscissæ may be obtained. From this, with the assistance of the same pasteboard scale, there will be laid down without difficulty a new line, parallel to the line of abscissæ, whose ordinate would represent some whole number of degrees, or other convenient quantity.

§ 5. Horizontal-Force-Magnet and Apparatus for observing it.

The horizontal-force-magnet, furnished by Meyerstein of Göttingen, is, like the declination-magnet, 2 feet long, 11 inch broad, and about 1 inch thick. For its support (as is mentioned at page iv), a brick pier in the eastern arm of the Magnetic Observatory, built on the ground below the basement floor, rises through the floor of the upper room, and carries a slate slab, to the top of which a brass frame is attached, carrying two brass pulleys (with their axes in the same east and west line) in front of the pier, and two (in a similar position) at the back of the pier; these constitute the upper suspension-piece. A small windlass is attached to the back of the pier at a convenient height. The magnet-carrier consists of two parts. The upper part is a horizontal bar, 2½ inches long, whose ends are furnished with verniers for reading the graduations of the torsion-circle (a portion of the lower part, to be mentioned below). On the upper side of this horizontal bar are two small pulleys with axes horizontal and at right angles to the vertical plane passing through the length of the bar: by these pulleys the apparatus is suspended, as will be mentioned. From the lower side of the horizontal bar, a vertical axis projects downwards through the center of the torsion-circle, in which it turns by stiff friction. The lower part of the magnet-carrier consists, first of the torsion-circle, a graduated circle about 3 inches in diameter: next, immediately below the central part of the torsion-circle, is attached (but not firmly fixed) a circular piece of metal from which projects downwards a frame that, by means of three cramps and screws, carries the photographic coneave mirror, with the plane of its front under the center of the vertical axis: this circular piece of metal has a radial arm upon which acts a screw carried by the torsion-circle, for giving to the concave mirror small changes of azimuthal position. Thirdly, there is fixed to the torsion-circle, at the back of the mirror-frame but not

touching it, a bar projecting downwards, bent horizontally under the mirror-frame and then again bent downwards, carrying the eramps in which the magnet rests; and, still lower, a small plane mirror, to which a fixed telescope is directed for observing by reflexion the graduations of a fixed scale (to be mentioned shortly). Under the two small pulleys mentioned above passes a skein of silk; its two branches rise up and pass over the front pulleys of the suspension-piece, then over its back pulleys, and then descend and pass under a single large pulley, whose axis is attached to a wire that passes down to the windlass. Supported by the two branches of the skein, the magnet swings freely, but the direction that it takes will depend on the angular position of its stirrup with respect to the upper horizontal bar; it is intended that the index should be brought to such a position on the torsion-circle that the two suspending branches should not hang in one plane, but should be so twisted that their torsion-force will maintain the magnet in a direction very nearly E. and W. magnetic (its marked end being W.); in which state an increase of the earth's magnetic force draws the marked end towards the N., till the torsion-force is sufficiently increased to resist it; or a diminution allows the torsion-force to draw it towards the S. The magnet, with its plane mirror, hangs within a double rectangular box (one box completely inclosed within another) covered with gilt paper, similar to that used for the declination-magnet; in its south side there is one long hole, covered with glass, through which the rays of light from the seale enter to fall on the plane mirror, and the rays reflected by the mirror pass to the fixed telescope. The vertical rod (below the torsion-circle), which carries the magnet-stirrup, passes through a hole in the top of the box. Above the magnet box is the concave mirror above mentioned. The height of the brass pulleys of the suspension-piece above the floor is 11th 8in.5: that of the pulleys of the magnet-carrier is 4^{ft.} 2^{in.} 5; and that of the center of the plane mirror is about 3^{tt.} 1^{in.}. The distance between the branches of the silk skein, where they pass over the upper pulleys, is 1 in. 14; at the lower pulleys the distance between them is 0in.80.

An oval copper bar (exactly similar to that for the declination-magnet), embraces the magnet, for the purpose of diminishing its vibrations.

The scale, which is observed by means of the plane mirror, is in a horizontal position, and is fixed to the South wall of the East arm of the Magnetic Basement. The numbers of the scale increase from East to West, so that when the magnet is inserted in the magnet-cell with its marked end towards the West, increasing readings of the scale (as seen with a fixed telescope directed to the mirror which the magnet carries) denote an increasing horizontal force. A normal to the scale from the center of the plane-mirror meets the scale at the division 51 nearly; the distance from the center of the plane-mirror to division 51 of the scale is 90.8 inches.

The telescope is fixed on the east side of the brick pier which supports the stone pier of the declination-theodolite in the upper observing room. The angle between

xxii Introduction to Greenwich Magnetical Observations, 1877.

the normal to the scale (which coincides nearly with the normal to the axis of the magnet) and the axis of the telescope, is about 38° , and the plane of the mirror is therefore inclined to the axis of the magnet about 19.

Observations relating to the permanent Adjustments of the Horizontal-Force-Magnet.

1. Determination of the times of vibration and of the different readings of the seale for different readings of the torsion-circle, and of the reading of the torsion-circle and the time of vibration when the magnet is transverse to the magnetic meridian.

To render the process intelligible, it may be convenient to premise the following explanation.

Suppose that the magnet is suspended in its stirrup which is firmly connected with the small plane mirror, with its marked end in a magnetic westerly direction (not exactly west, but in any westerly direction between north and south), and suppose that, by means of the telescope directed towards that mirror, the scale is read, or (which is the same thing) the position of the plane mirror and of the stirrup, and therefore that of the axis of the magnet, are defined. Now let the magnet be taken out of the stirrup and replaced with its marked end easterly. magnetic power will now act as regards torsion, in the direction opposite to that in which it acted before, and the magnet will therefore take up a different position. But by turning the torsion-circle, which changes the amount and direction of the torsion-power produced by the oblique tension of the suspending cords, the magnet may be made to take the same position, but with reversed direction of poles. as at first (which will be proved by the reading of the scale, as viewed in the plane mirror, being the same). The reading of the torsion-eircle will now be different from what it was at first. The effect of this operation then is, to give us the difference of torsion-circle-readings for the same position of the magnet-axis with the marked end opposite ways, but it gives no information as to whether the magnetaxis is accurately transverse to the meridian, inasmuch as the same operation can be performed whether the magnet-axis is transverse or not.

But there is another observation which will inform us whether the magnet-axis is or is not accurately transverse. Let the time of vibration be taken in each position of the magnet. Resolve the terrestrial magnetic force acting on the poles of the magnet into two parts, one transverse to the magnet, the other longitudinal. In the two positions of the magnet (marked end westerly and marked end easterly, with axis in the same position), the magnitude of the transversal force is the same, and the changes which the torsion undergoes in a vibration of given extent are the same, and the time of vibration (if there were no other force) would be the same. But

there is another force, namely, the longitudinal force; and when the marked end is northerly, this tends from the center of the magnet's length, and when it is southerly it tends towards the center of the magnet's length; and in a vibration of given extent this produces force, in one case increasing that from the torsion and in the other case diminishing it. The times of vibration therefore will be different. There is only one exception to this, which is when the magnet-axis is transverse to the magnetic meridian, in which case the longitudinal force vanishes.

The criterion then of the position truly transverse to the meridian (which position is necessary in order that the indications of our instrument may apply truly to changes of the magnitude of terrestrial magnetic force without regard to changes of direction) is this. Find the readings of the torsion-circle which, with magnet in reversed positions, will give the same readings of the scale as viewed by reflexion in the plane mirror, and will also give the same time of vibration for the magnet. With these readings of the torsion-circle the magnet is transverse to the meridian; and the difference of the readings of the torsion-circle is the difference between the position when terrestrial magnetism acting on the magnet twists it one way, and the position when the same force twists it the opposite way, and is therefore double the angle due to the torsion-force of the suspending lines when they neutralize the force of terrestrial magnetism.

The following table exhibits the elements of the determination made on 1877, January 4:—

			Th	e Marked end	of the Magr	iet.							
1877.			West.		East.								
Day.	Torsion- Circle Reading.	Scale Reading.	Difference of Scale Readings for 1 of Torsion.	Mean of the Times of Vibration.	Torsion- Circle Reading.	Scale Reading.	Difference of Scale Readings for 1 of Torsion.	Mean of the Times of Vibration,					
Jan. 4	143 144 145 146 147 148	41'65 49'54 57'98 65'92 74'69 81'94	7.89 8.44 7.94 8.77 7.25	21.20 21.02 20.86 20.68 20.50 20.36	226 227 228 229 230 231	div. 40°34 48°44 57°00 64°73 72°91 81°24	8:10 8:56 7:73 8:18 8:33	20.26 20.40 20.52 20.66 20.80 20.98					

The times of vibration and scale readings were sensibly the same, when the torsion-circle read 146°.0′, marked end West, and 229°.9′, marked end East, differing 83°, 9′. Half this difference, or 41°.34′·5, is the angle of torsion when the magnet is transverse to the meridian. The value deduced from the whole of the observations above was 41°.34′·3.

The value adopted in the reduction of observations through the year 1877 was 41°. 34′·25, as used in the three previous years.

The reading adopted for the torsion-circle, marked end of magnet west, was 146°, 0' through the year.

2. Computation of the angle corresponding to one division of the scale, and of the variation of the horizontal force (in terms of the whole horizontal force) which moves the magnet through a space corresponding to one division of the scale.

It was found by accurate measurements, on 1864, November 3, that the distance from 51^{div.} on the scale to the center of the face of the plane mirror is 90.838 inches, and that the length of 30 liv. 85 of the scale is exactly 12 inches; consequently the angle at the mirror subtended by one division of the scale is 14'. 43" 25, or, for change of one division of scale-reading, the magnet is turned through an arc of 7'. 21" 625.

The variation of horizontal force (in terms of the whole horizontal force) for a disturbance through one division of the scale, is computed by the formula, "Cotan. angle of torsion × value of one division in terms of radius." Using the numbers above given, the value is found to be 0 002414 through the year 1877.

3. Determination of the compound effect of the vertical-force-magnet and the declination-magnet on the horizontal-force-magnet, when suspended with its marked end towards the West.

The details of the experiments, made while the old vertical-force-magnet was in use, will be found in the volumes for 1841, 1842, 1843, 1844, 1845. The effect was to increase the readings by 044.487. On mounting a new vertical-force-magnet in 1848, similar experiments were made, and the resulting number was Odiv. 45. These quantities are totally unimportant in their influence on the registers of changes of horizontal force. No experiments have been made since the magnets were placed in the basement.

4. Effect of the damper.

In the year 1865, from May 17 to May 25, observations were made for ascertaining the deflection of the magnet produced by turning the damper through a small angle round a vertical axis passing through its center.

Damper in usual Position.

Damper turned through 2° $\left\{ egin{array}{ll} W. \ {\rm end\ towards}\ S_0, \ {\rm in} \\ W. \ {\rm end\ towards}\ N_0, \end{array} \right.$	acrease of	scale-readi	ng	-0°251
Damper turned through 2° W. end towards N.,	,,	,,		+0.050
Damper turned through 4° $\begin{cases} W. \text{ end towards S.,} \\ W. \text{ end towards N.,} \end{cases}$	**	**		-0.34
Damper turned through 4 \ W. end towards N.,	,,	٠,		+0.10
Damper reversed F				dis
∫ W. end towards S., in	ncrease of	scale-readi	ng	-0.12
Damper turned through 2° { W. end towards S., is W. end towards N	,,	٠,		-0.03
Damper turned through 4° $\begin{cases} W. \text{ end towards } S., \\ W. \text{ end towards } N., \end{cases}$	**	**		-0.15
Damper turned through 4 \ W, end towards N.,	••	**		+0.08

On 1865, July 25, observations were made to ascertain whether the effect of an external deflecting cause is the same with the damper present and the damper removed. A small magnet was placed with its marked end pointing N. at the distance 4 feet S. of the unmarked end of the horizontal-force-magnet, deflecting the magnet through 1^{dv} of the seale, and the scale-readings were observed with the damper in its usual place and the damper away. Three experiments were made, containing twenty-four observations of position. Not the smallest difference of position of the horizontal-force-magnet was produced by the presence or absence of the damper. The observations were very easy, and the result is certain.

No experiments on the damper have been made since 1865.

5. Determination of the correction for the effect of temperature on the horizontal-force-magnet.

In the Introduction to the volume of Magnetical and Meteorological Observations for 1847 will be found a detailed account of observations made in the years 1846 and 1847 for determination of this element. The principle adopted was that of observing the deflection which the magnet (to be tried) produces on another magnet; the magnet (to be tried) being carried by the same frame which carries the telescope that is directed to the plane mirror attached to the other magnet, and which also carries the scale that is viewed in these experiments by reflection in that plane mirror. The rotation of the frame was measured by a graduated circle about 23 inches in diameter. The magnet (to be tried) was always on the eastern side of the other magnet. It was enclosed in a copper trough, which was filled with water at different temperatures. One end of the magnet (to be tried) was directed towards the other magnet. The values found for correction of the results as to horizontal force determined with the magnet at temperature t^o in order to reduce them to what they would have been if the temperature of the magnet had been 32° , expressed as multiples of the whole horizontal force, were,*

When the marked end of the magnet (to be tried) was West,

$$0.00007137 (t - 32) + 0.000000898 (t - 32)^{2}$$

When the marked end of the magnet (to be tried) was East,

$$0.00009050 (t - 32) + 0.000000626 (t - 32)^2$$
.

The mean, or

$$0.0000\bar{8}093\ (t-32) + 0.000000762\ (t-32)^2$$

has been embodied in tables which have been used in the computation of the "Reduction of Magnetic Observations 1848–1857," attached to the Volume of Observations 1859, and in the computation for "Days of Great Magnetic Disturbance 1841–1857," attached to the volume for 1862. The same formula has been employed in

^{*} By inadvertence in printing the Introduction, 1847, the letter t has been used in two different senses.

Greenwich Magnetical and Meteorological Observations, 1877.

xxvi

the "Reduction of the Magnetic Observations from 1858-1863," published in the volume for 1867.

In the year 1864 observations were made for ascertaining the temperature-coefficient by heating the magnet by hot air. The magnet, whose variation of power in different temperatures was to be determined, was placed in a copper box planted upon the top of a copper gas stove, whose heat could be regulated by manipulation of a tap, and from which rose a stream of heated air (not the air vitiated by combustion) through a large opening in the bottom of the box. The stove used for this purpose was the same which is now used for warming the Magnetie Basement. It was placed in the Magnetic Office, No. 7, in a position magnetic south of the deflexionapparatus used in the operation for ascertaining the absolute measure of horizontal magnetic force. The hot air which rose through the opening in the center of the bottom was discharged by adjustible openings near the extreme ends of the top. Three windows were provided for reading three thermometers. The box, and the magnet which it inclosed, were placed in a magnetic E. and W. position. needle whose deflection exhibited the power of the magnet was that which is employed in the ordinary use of the deflexion-apparatus. The proportion of the power of the magnet (under definite circumstances) to the earth's directive horizontal power was expressed by the tangent of the angle of deviation. Observations were made with temperatures both ascending and descending. The intervals of observation at different temperatures were sufficiently small to permit the assumption that the earth's force had not sensibly changed. The following is an abstract of the principal results:-

Omitting some days of less perfect series, satisfactory series of observations were made on 1864, February 21, 22, 23, and March 10. The tangents of angle of deflection were as follows:—

13 obse	rvations with	h marked end E	oon toninge	ture 36.8 Fab	manihait a	ovo 0.102711
13	٠,	" w J at m	ean tempera	ture so s run	rennen g	ave 0.409111
21 25	,,	marked end E	,,	61.3	,,	0.400836
20 17	"	marked end E)				
16	"	" w}	**	90.3	,,	0.400579

From these it was inferred that the tangent of angle of deflection could be represented by—

$$0 \cdot 404559 \, \times \left\{1 \, - \, 0 \cdot 0004610 \, \times (\ell \, - \, 32) \, + \, 0 \cdot 000005061 \, \times (\ell \, - \, 32)^2 \right\}$$

On comparing the quantity within the bracket (which expresses the law of magnetic power as depending on temperature) with that found in 1847, which, as above stated, is—

$$\left\{1\,-\,0.00008093\,\times(t\,-\,32)\,-\,0.000000762\,\times(t\,-\,32)^2\right\}$$

it will be seen that the difference is great. The second terms differ greatly in magnitude, and the third terms in sign.

Possibly some light may be thrown on the difference by the following remark. The two formulae give the same values for $t=32^{\circ}$ and for $t=97^{\circ}3$. And they give equal degrees of change per degree when $t=65^{\circ}$. It would seem therefore that the real discordance is in the experimental values for the mean temperatures only, or principally; and that it is probable that there is some error in the hot-air process for the middle temperatures.

I insert here (although not applying to the observations of the present volume) the results of a similar examination of the Old Vertical Force Magnet, which was in use from 1848 to the beginning of 1864. Omitting less perfect series, observations made on 1864, February 21 and 24, gave the following values for tangents of angles of deflection:—

7 ob:	servations with	$\left.\begin{array}{c} \operatorname{marked\ end\ E} \\ , & W \end{array}\right\}$	at mean	temperature	34.2	Fahrenheit gave	0.279985
9	,,	marked end E		,,	57.0	,,	0.275111
7	"	marked end E			86.2		0.270778
7	.,	W (٠,	30 0	"	0.210110

From these it was inferred that the tangent of angle of deflection could be represented by—

$$0.280526 \, \times \, \left\{\, 1 \, - 0.00088607 \, \times (t\, -\, 32) \, + 0.0000045594 \, \times (t\, -\, 32)^2 \, \right\}$$

The expression found in 1847 for the law of force in the original Vertical Force Magnet was—

$$\left\{1\,-\,0.00015816\,\times(t\,-\,32)\,-\,0.000001172\,\times(t\,-\,32)^2\right\}$$

giving a discordance of the same kind as that found for the horizontal force, but still larger. The formulæ agree only when $t = 32^{\circ}$ and when $t = 159^{\circ}$ 0. The discordance cannot be removed by a supposition similar to that made above.

Returning now to the temperature-correction of the Horizontal Force Magnet. The unsatisfactory character of the comparisons just given induced me at the beginning of 1868 to try the method of heating the air of the Magnetic Basement generally (by means of the gas-stove), leaving the magnets in all respects in their ordinary state, and comparing their indications as recorded in the ordinary way, but at different temperatures.* Experiments were at first made at intervals of a few hours in the course of one day, but it was soon found that the magnet did not acquire the proper temperature; moreover, the result was evidently affected by

^{*} This method was first used for magnets, so far as I am aware, at the Kew Observatory. It had been used for pendulums by General Sir Edward Sabine and by myself.

xxriii Introduction to Greenwich Magnetical Observations, 1877.

diurnal inequality. After this, an entire day was in each case devoted to the effects of each temperature (high or low, as the case might be). The principal series of observations were made with the horizontal force magnet in its ordinary position, or marked end to the west; but a few were made with the marked end to the east. In some instances, the numbers given are the result each of several observations; but in other instances, the result is that of a single observation, taken when all the apparatus had acquired musual steadiness. The following are the results:—

RESULTS OF TEMPERATURE EXPERIMENTS UPON THE HORIZONTAL FORCE MAGNET, MARKED END WEST.

	1868. ru and Day. Temperature (Civil.)		Scale Reading.	Change of Temperature,	Change of Scale Reading.	Change of Scale Reading reduced to Parts of the whole Horizontal Force.	Change of Horizontal Force corresponding to a change of 1° of Temperature (in Parts of the whole H.F.).
		0	div.	0	div.		
January	3	56·8	60·82 61·47	6.3	0.62	0.001248	0.000220
	4	49°5 55°5	61.47 61.35	6.0	0.13	.000292	.000049
	6 7 9	59·3 49·3 56·7	60°91 61°62 61°05	10'0	0.21 0.22	1001725 1001385	.000172
	10	58°9 51°3 59°3	60°91 61°18	7·6 8·0	o·80 o·53	.001943 .001288	·000256
	13 14	59·5 53·9	61.42 61.36	5.6	0.19	.000389	.000070
	14 16 17 18	55·2 52·5 61·5 53·5 59·6	61.74 62.05 60.78 61.24 60.93	2°7 9°0 8°0 6°1	0°31 1°27 0°46 0°31	.000753 .003086 .001118 .000753	.000279 .000343 .000143 .000123
January February	31 4 5 7	60.7 50.6 60.3 51.1 59.6	58:63 58:94 58:06 58:86 58:04	9°7 9°2 8°5	0:31 0:88 0:80 0:82	1000753 1002138 1001943 1001992	.000075 .000220 .000211 .000234
	14 16 18 20 21	59.7 50.1 59.8 48.2 58.8	58 · 64 59 · 46 58 · 97 59 · 45 59 · 02	9.6 9.7 11.6 10.6	0.82 0.49 0.48 0.43	.001085 .001180 .001042	.000208 .000123 .000100
Mean .	•						0.000124

RESULTS OF TEMPERATURE EXPERIMENTS UPON THE HORIZONTAL FORCE MAGNET, MARKED END EAST.

1868, Month and Day, (Civil.)		Temperature.	Scale Reading.	Change of Temperature.	Change of Scale Reading.	Change of Scale Reading reduced to Parts of the whole Horizontal Force.	Change of Horizontal Force corresponding to a change of 1° of Temperature (in Parts of the whole H.F.).
		0	div.	۰	div-		
January	2 I 2 2	60°2 50°5	59°31	9.7	1.42	0.003448	0.000355
	24 24 27 29 31	58.6 51.3 59.3 49.0 60.9	62·56 61·54 61·86 61·51 61·81	7:3 8:0 10:3	1.02 0.32 0.35 0.30	.002477 .000777 .000850 .000729	.000339 .000097 .000083 .000061
Mean							0.000184

These results do not differ greatly from those which are given by application of the formula found in 1847. It is important to observe that they include the entire effects of temperature upon all the various parts of the mounting of the magnet, as well as on the magnet itself; and for this reason I think them deserving of great confidence. Still I have thought it prudent, at present, to omit application of corrections for temperature.

The method of observing with the horizontal-force-magnet is the following:—

A fine vertical wire is fixed in the field of view of the telescope, which is directed to the plane mirror carried by the magnet. On looking into the telescope, the graduations of the fixed scale, mentioned in page xxi, are seen; and during the oscillations of the magnet, the divisions of the scale are seen to pass alternately right and left across the wire. The clock-time, for which the position of the magnet is to be determined, is 5 minutes later than that for the observation of declination. The first observation is made by the observer applying his eye to the telescope 40° before the arranged time, and, if the magnet is in a state of vibration, he observes the next four extreme points of vibration of the scale, and the mean of these is adopted in the same manner as for the declination-observations; but if it appears to be at rest, then at 10° before the pre-arranged time, he notes the reading of the scale; and 10° after the pre-arranged time he notes whether the reading continues the same, and if it does, that reading is adopted as the result. If there is a slight difference in the readings, the mean is taken. The times of observation are usually 1°, 3°, 9°, and 21° of Greenwich mean time.

The number of instances when the magnet was observed in a state of vibration during the year 1877 is very small.

Outside the double box is suspended a thermometer which is read on every week day, at 0^h, 1^h, 2^h, 3^h, 9^h, 21^h, 22^h, and 23^h. A few readings are taken on Sunday.

Self-registering maximum and minimum thermometers placed outside the box were formerly read twice every day, but in consequence of the very small diurnal range of temperature, these observations have not been continued.

§ 6. Photographic self-registering Apparatus for Continuous Record of Magnetic Horizontal Force.

Referring to the general description of photographic apparatus, the following remarks apply more particularly to that which is attached to the horizontal-force-magnet. A coneave mirror of speculum-metal, 4 inches in diameter, is carried by the magnet-carrier. The light of a gas-lamp shines through a small aperture about 0½ high, and 0½ high, and 0½ high, and 0½ high is supported by the solid base of the brick pier carrying the magnet-support), at the distance of about 21.25 inches from the concave mirror, and is made to converge to a point, on the north surface and near the east end of the same revolving cylinder which receives the light from the concave mirror of the declination-magnet. A cylindrical lens parallel to the axis of the cylinder receives the somewhat elongated image of the source of light, and converts it into a well-defined spot. The motions of this spot parallel to the axis represent the angular movements of the magnet which are produced by an increase of terrestrial magnetic force overcoming more completely the torsion-force of the bifilar suspension, or by a diminution of terrestrial force yielding to the torsion-force.

As the spot of light from the horizontal-force-mirror falls on the side of the cylinder opposite to that on which the light from the declination-mirror falls, the same time-scale will not apply to both; it is necessary to prepare a time-scale independently for each.

The following is the calculation by which the scale of horizontal force on the photographic sheet is determined. The distance between the surface of the concave mirror and the surface of the cylinder is 134·436 inches; consequently, one degree of angular motion of the magnet, producing two degrees of angular motion of the reflected ray, moves the spot of light through 4·6927 inches. For the year 1877 the adopted value of variation of horizontal force for one degree of angular motion of the magnet = \sin , 1 × cotan, 41°, 34′·25 = 0·019679; and the movement of the spot of light for 0·01 part of the whole horizontal force is 2·385 inches. With this fundamental number, the graduations of the pasteboard scale for measure of horizontal force have been prepared.

§ 7. Vertical-Force-Magnet, and Apparatus for observing it.

The vertical-force-magnet in use to 1848 was made by Robinson; that in use from 1848 to 1864, January 20, was by Barrow. The magnet now in use is by

Simms. Its length is 1th 6th; it is pointed at the ends. After some trials, it was re-magnetized by Mr. Simms on 1864, June 15. Between 1864, August 27, and September 27, a new knife-edge was attached to it, to remedy a defect which, as was afterwards found, arose from a cause that had no relation to the knife-edge. Its supporting frame rests upon a solid pier, built of brick and capped with a thick block of Portland stone, in the western arm of the magnetic basement. Its position is as nearly as possible symmetrical with that of the horizontal-force-magnet in the eastern arm. Upon the stone block is fixed the supporting frame, consisting of two pillars (connected at their bases) on whose tops are the agate planes upon which vibrate the extreme parts of the knife-edge (to be mentioned immediately). The earrier of the magnet is an iron frame, to which is attached, by clamps and pinching screws, a steel knife-edge, about 8 inches long. The steel knife-edge passes through an aperture in the magnet. The axis of the magnet is as nearly as possible transverse to the meridian, its marked end being east. The axis of vibration is as nearly as possible north and south. To the southern end of the iron frame, and projecting further south than the end of the knife-edge, is fixed a small plane mirror, whose plane makes with the axis of the magnet an angle of $52\frac{3}{4}^{\circ}$ nearly. The fixed telescope (to be mentioned) is directed to this mirror, and by reflexion at the surface of the mirror it views a vertical scale (to be mentioned shortly). The height of this mirror above the floor is about 2tt. 10th.6. Before the introduction of the photographic methods, the magnet was placed in a perforation of a brass frame midway between its knife-edges. But since the photographic method was introduced, the magnet has been placed excentrically; the distance of its southern face from the nearest end of the sonthern knife-edge being nearly 2 inches, and a space of 41 inches in the northern part of the iron frame being left disposable. In this disposable space there is attached to the iron frame by three clips a concave mirror of speculum-metal, with its face at right angles to the length of the magnet; it is used in the photographic system (shortly to be described). Near the north end of the iron frame are fixed in it two screw-stalks, upon which are adjustible screwweights; one stalk is horizontal, and the movement of its weight affects the position of equilibrium of the magnet (which depends on the equilibrium between the moments of the vertical force of terrestrial magnetism on the one hand and of the magnet's center of gravity on the other hand); the other stalk is vertical, and the movement of its weight affects the delicacy of the balance, and varies the magnitude of its change of position produced by a change in the vertical force of terrestrial magnetism.

The whole is inclosed in a rectangular box. This box is based upon the stone block above mentioned; and in it, in a space separated from the rest by a thin partition, the magnet vibrates freely in the vertical plane. In the south side of the box is a hole covered by glass, through which pass the rays of light from the scale to the plane mirror, and through which they are reflected from the plane mirror to the

telescope. And at the east end is a large hole covered by glass, through which passes the light from the lamp to the concave mirror, and through which it is reflected to the photographic cylinder (to be described hereafter).

The telescope is fixed to the west side of the brick pier which supports the stone pier in the upper room carrying the declination-theodolite. Its position is symmetrical with that of the telescope by which the horizontal-force-magnet is observed; so that a person seated in a convenient position can, by an easy motion of the head left and right, observe the vertical-force and horizontal-force-magnets.

The scale is vertical: it is fixed to the pier which carries the telescope, and is at a very small distance from the object-glass of the telescope. The wire in the field of view of the telescope is horizontal. The telescope being directed towards the mirror, the observer sees in it the reflected divisions of the scale passing upwards and downwards over the fixed wire as the magnet vibrates. The numbers of the scale increase from top to bottom; so that, when the magnet is placed with its marked end towards the East, increasing readings (as seen with the fixed telescope) denote an increasing vertical force.

Observations relating to the permanent Adjustments of the Vertical-Force-Magnet.

1. Determination of the compound effect of the declination-magnet, the horizontal-force-magnet, and the iron affixed to the electrometer pole, on the vertical-force-magnet.

The experiments applying to the magnets are given in the volumes for 1840–1841 to 1845: and those applying to the electrometer pole in the volume for 1842. It appeared that no sensible disturbance was produced on the magnet formerly in use. No experiments have been made with the new magnet.

2. Determination of the time of vibration of the vertical-force-magnet in the vertical plane.

In the year 1877, vibrations of the vertical-force-magnet were observed on 91 different days, and with readings of various divisions of the scale. The mean time of vibration adopted for the year was 16~206.

- 3. Determination of the time of vibration of the vertical-force-magnet in the horizontal plane.
- 1877. January 2-3. The magnet with all its apparatus was suspended from a tripod in Magnetic Office, No. 6, its broad side being in a plane parallel to the horizon: therefore, its moment of inertia was the same as when it is in observation. A telescope, with a wire in its focus, was directed to the reflector carried by the magnet. A scale of numbers was placed on the floor of the room, at right angles to the long axis of the magnet, or parallel to the mirror. The magnet was observed

only at times when it was swinging through a small arc. From 1,000 vibrations, the mean time of one vibration $=16^{\circ}.959$. This number is used through the year 1877.

4. Computation of the angle through which the magnet moves for a change of one division of the scale; and calculation of the disturbing force producing a movement through one division, in terms of the whole vertical force.

The distance from the scale to the mirror is 186.07 inches, and each division of the scale $=\frac{12}{30.85}$ inches. Hence the angle which one division subtends, as seen from the mirror, is 7′. 11″·19; and therefore the angular movement of the normal to the mirror, corresponding to a change of one division of the scale, is half this quantity, or 3′. 35″·60.

But the angular movement of the normal to the mirror is not the same as the angular movement of the magnet; but is less in the proportion of unity to the cosine of the angle which the normal to the mirror makes with the magnet, or in the proportion of unity to the sine of the angle which the plane of the mirror makes with the magnet. This angle has been found to be $52_4^{3\circ}$; therefore, dividing the result just obtained by sine $52_4^{3\circ}$, we have, for the angular motion of the magnet corresponding to a change of one division of the scale, 4'.30''.85.

From this, the value, in terms of the whole vertical force, of the disturbing force, producing a change of one division, is to be computed by the formula, "Value of Division in terms of radius \times cotan, dip $\times \frac{T^2}{T^2}$ "; where T is the time of vibration in the horizontal plane, and T the time of vibration in the vertical plane.

For the year 1877, T' was assumed = 16°959, T = 16°206, dip = 67°, 39′, 38″. From these numbers, the change of the vertical force, in terms of the whole vertical force, corresponding to one division of the scale, is found = 0.000591.

5. Investigation of the temperature-correction of the vertical-force-magnet.

The new vertical-force-magnet was subjected to experiments by inclosing it in a copper box, and warming it by an injection of hot air, and observing the amount of deviation which it produced on the suspended magnet used in the deflexion-apparatus for absolute measure of horizontal force, at the same time and in the same manner as were the horizontal-force-magnet and the old vertical-force-magnet, in the experiments described in pages xxvi and xxvii. Observations made on 1864, February 20, 25, March 3, 9, gave, for the tangents of the angles of deflection,—

16 obser	vations wit	h marked end E [0		
18	,,	" w∫ ^{at m} e	ean temper	ature 36·6 Fah	renheit, g	gave 0·172352
33 29	"	$\begin{pmatrix} \text{marked end E} \\ \text{,,} & \mathbf{W} \end{pmatrix}$.,	62.2	,,	0.171657
26 27	"	marked end E } ,, W }	٠,	93.3	,,	0.171389

From these it appeared that the tangent of the angle of deflection might be represented by—

$$0.172522 \times \left\{ 1 - 0.0002233 \times (t - 32) + 0.000001894 \times (t - 32)^2 \right\}$$

xxxiv Introduction to Greenwich Magnetical Observations, 1877.

The quantity within the brackets (which represents the variation of magnetic power in terms of the whole power of the magnet) shows the same peculiarities as those found for the other magnets; that the third term is large, and has a sign opposite to that of the second term.

The factor of variation for 1 of Fahrenheit, when t=62, is -0.0001097.

After these observations, the new vertical-force-magnet was re-magnetized by Mr. Simms, on 1864, June 15.

In the beginning of 1868, observations were made in the method already described for the horizontal-force-magnet, by heating the magnetic basement to different temperatures, and observing the scale-reading in the ordinary way. The results are as follows:—

RESULTS OF TEMPERATURE EXPERIMENTS UPON THE VERTICAL-FORCE-MAGNET.

1868. Month and I	Oar.	Temperature.	Scale Reading.	Change of Temperature.	Change of Scale Reading.	Change of Scale Reading reduced to Parts of the whole Vertical Force.	Change of Vertical Force corresponding to a change of 1° of Temperature (in Parts of the whole V.F.)
January	3 4 5	56°0 48°2 59°6	56°45 46°52 61°49	7·8	aiv. 9*93 14*97	0.006485 .008425	0.000831 .000854
January February	6 7 10 11 12 13 14 16 17 18 20 22 23 25 26 29 31 4 5 6 7 8	59.6 49.0 59.5 49.7 62.0 53.4 55.4 52.3 63.7 50.6 49.6 60.5 49.3 63.1 51.0 62.3 50.6 53.3 50.6 62.3	61·73 46·84 61·62 48·70 64·40 53·33 55·72 50·79 66·13 53·26 62·19 47·82 59·60 46·67 60·62 44·78 64·55 47·11 64·02 46·43 49·10 45·55 62·76	10.6 10.5 9.8 12.3 8.6 2.0 3.1 11.4 11.3 8.3 10.1 9.0 10.0 10.0 11.2 13.8 11.7 2.7 2.7 11.5	14.89 14.78 12.92 15.70 11.07 2.39 4.93 15.34 12.87 8.93 14.37 11.78 12.93 13.95 15.84 19.77 17.59 2.67 3.555 17.21	0.009720 0.00648 0.008434 0.10249 0.07226 0.01360 0.03218 0.10014 0.08402 0.05829 0.06381 0.07690 0.08441 0.09107 0.11385 0.11385 0.11483 0.01743 0.02317	000917 000919 000861 000833 000840 000780 001038 000743 000702 000929 000929 000834 000836 000923 000935 000941 000977 000981 000646
February	18	61.9 49.0 60.6	57.70 36.75 58.85	11.6	20°95 22°10	*011298 *011919	.000974 .000934
February	18 20 21	61.9 50.0 62.6	58:05 41:96 56:82	11.6	16.09 14.80	.011240 .010821	000987
Mean .					())		0.000880

The coefficient of temperature-correction given by these experiments is enormously greater than any that has been found in any previous experiments. Yet I conceive that there can be no doubt of its accuracy. And it is easy to see that an instrument, subjected to the effects of gravity working differentially on its two ends, is liable to great changes depending on temperature which have no connection with magnetism. For instance, if the point, at which the magnet is grasped by its carrier, is not absolutely coincident with its center of gravity, a sensible change in the space intervening between the grasping point and the center of gravity, and a great change of magnetic position, may be produced by a small change of temperature. There appears to be no way of avoiding these evils but by maintaining almost uniform temperature; a condition which has been almost perfectly preserved in the year 1877. In the observations which follow, no correction is applied for temperature.

The method of observing with the vertical-force-magnet is the following:—

A fine horizontal wire is fixed in the field of view of the telescope, which is directed to the small plane mirror carried by the magnet. On looking into the telescope, the graduations of the fixed vertical scale are seen; and during the oscillations of the magnet, the divisions of the scale are seen to pass alternately upwards and downwards across the wire. The clock-time, for which the position of the magnet is to be determined, is the same as that for the horizontal force magnet. The observer applies his eye to the telescope about two vibrations before the arranged time, and if the magnet is in motion he observes its place at four extreme vibrations; and the mean of these is taken as for the horizontal-force-magnet. But if the magnet is apparently at rest, then at one half-time of vibration before the arranged time, and at an equal interval after the arranged time, the reading of the scale is noted; if the reading continues the same that reading is adopted, if there is a slight difference, the mean is taken. The times of observation are usually 1^h, 3^h, 9^h, and 21^h of Greenwich mean time.

The number of instances in 1877 in which the magnet was found in a state of vibration is very small.

Outside the box is placed a thermometer, which is read on every week day at 0^h, 1^h, 2^h, 3^h, 9^h, 21^h, 22^h, and 23^h. A few readings are taken on Sunday. Self-registering maximum and minimum thermometers were formerly read twice daily, but in consequence of the very small diurnal range of temperature these observations have not been continued.

§ 8. Photographic self-registering Apparatus for Continuous Record of Magnetic Vertical Force.

The concave mirror which is carried by the vertical-force-magnet is 4 inches in diameter; its mounting has been described in the last article. At the distance of about 22 inches from that mirror, and external to the box, is the horizontal aperture.

about 0in:3 in length and 0in:01 in breadth, carried by the same stone block which carries the supports of the agate planes. The lamp which shines through this aperture is carried by a wooden stand. The light reflected from the mirror passes through a cylindrical lens with its axis vertical, very near to the cylinder carrying the photographic paper, and finally forms a well-defined spot of light on the cylinder of paper, at the distance of 10018 inches from the mirror. As the movements of the magnet are vertical, the axis of the cylinder is vertical. The cylinder is about $14\frac{1}{4}$ inches in circumference, being of the same dimensions as those used for the declination and horizontal-force magnets, and for the earth-currents. The forms of the exterior and interior cylinders, and the method of mounting the paper, are in all respects the same as for the declination and horizontal-force magnets; but the cylinder is supported by being merely planted upon a circular horizontal plate (its position being defined by fitting a central hole in the metallic cap of the cylinder upon a central pin in the plate), which rests on anti-friction rollers and is made by watchwork to revolve once in twenty-four hours. The trace of the vertical-forcemagnet is on the west side of the cylinder.

On the east side, the cylinder receives the trace produced by the barometer (to be described hereafter). A pencil of light from the lamp which is used for the barometer shines through a fixed aperture; and by a system of prisms and a small cylindrical lens, a photographic base-line is traced upon the cylinder of paper, similar to that on the cylinder of the declination and horizontal-force magnets.

The scale for the ordinates of the photographic curve of the vertical force is thus computed. Remarking that the radius which determines the range of the motion of the spot of light is double the distance 100 18 inches, and is therefore = 200 36 inches, the formula used in the last section, when applied to disturbing force whole vertical force = 0 01, gives value of division = 200 36 × tan. dip. × $\binom{T}{T'}$ × 0 01. The value of the ordinate of the photographic curve for disturbing force whole vertical force = 0 01, thus obtained, is, for the year 1877, = 4 152 inches. With this value, the pasteboard scales, used for measuring the photographic ordinates, have been prepared.

§ 9. Dipping Needles, and Method of observing the Magnetic Dip.

The instrument with which all the dips in the year 1877 have been observed, is that which, for distinction, is called Airy's instrument. The following description will probably suffice to convey an idea of its peculiarities:—

The form of the needles, the form of their axes, the form of the agate bearings, and the general arrangement of the relieving apparatus, are precisely the same as those in Robinson's and other instruments. But the form of the observing apparatus is greatly modified, in order to secure the following objects:—

- I. To obtain a microscopic view of the points of the needles, as in the instruments introduced by Dr. Lloyd and General Sir E. Sabine.
- II. To possess at the same time the means of observing the needles while in a state of vibration.
 - III. To have the means of observing needles of different lengths.
- IV. To give an illumination to the field of view of each microscope, directed from the side opposite to the observer's eye, so that the light may enter past the point of the needle into the object glass of the microscope, forming a black image of the needle-point in a bright field of view.
 - V. To give facility for observing by day or night.

With these views, the following form is given to the apparatus:-

The needle, and the bodies of the microscopes, are inclosed in a square box. The base of the box, two vertical sides, and the top, are made of gun-metal (carefully selected to insure its freedom from iron); but the sides parallel to the plane of vibration of the needle are of glass. Of the two glass sides, that which is next the observer is firmly fixed; it is hereafter called "the graduated glass-plate." The other glass side can be withdrawn, to open the box, for inserting the needle, &c.

An axis, whose length is perpendicular to the plane of vibration of the needles, and is as nearly as possible in the line of the axis of the needle, supported on two bearings (of which one is cemented in a hole in the graduated glass-plate, the other being upon a horizontal bar near to the agate support of the needle-axis), carries a transverse arm, about 11 inches long, or rather two arms, projecting about $5\frac{1}{2}$ inches on each side of the axis. Each of these projecting arms carries three fixed microscopes on each side, adapted in position to the lengths of the needles to be mentioned shortly.

The microscope-tube thus carried is not the entire microscope, but so much as contains the object-glass and the field-glass. Upon the plane side of the field-glass (which is turned towards the object-glass), a series of parallel lines is engraved by etching with fluoric acid. The object-glass is so adjusted that the image of the needle-point is formed upon the plane side of the field-glass; and thus the parallel lines can be used for observing the needle in a state of vibration; and, one of them being adopted as standard, the lines can be used for reference to the graduated circle (to be mentioned). All this requires that there be an eye-glass also for the microscope.

The axis of which we have spoken is continued through the graduated glass-plate, and there it carries another transverse arm parallel to the former, and generally similar to it, in which are fixed three sockets and eye-glasses. Thus, reckoning from the observer's eye, there are the following parts:—

(1.) The eye-glass.

xxxviii Introduction to Greenwich Magnetical Observations, 1877.

- (2.) The graduated glass-plate (its graduations, however, not intervening in this part of the glass, the graduated circle being so large as to include, within its circumference, all the microscopes).
- (3.) The field-glass, on the further surface of which the parallel lines are engraved.
 - (4.) The object-glass.
 - (5.) The needle.
 - (6.) The removeable glass side of the box.
 - (7.) The illuminating reflector, to be described hereafter.

The optical part of the apparatus being thus described, we may proceed to speak of the graduated circle.

The graduations of the circle (whose diameter is about 9\frac{3}{4} inches) are etched on the inner surface of the graduated glass-plate. These divisions (as well as the parallel lines on the field glasses of the microscopes) are beautifully neat and regular, and are, I think, superior to any that I have seen on metal. The same piece of metal, which carries the transverse arms supporting the microscope bodies, carries also two arms with verniers for reading their graduations. These verniers (being adapted to transmitted light) are thin plates of metal, with notches instead of lines. The reading of the verniers is very easy. The portion of the axis which is external to the graduated glass-plate (towards the observer), and which has there, as already stated, two arms for carrying the microscope eye-glasses, has also two arms for carrying the lenses by which the verniers and glass-plate graduations are viewed. These four arms are the radii of a circle, which can be fixed in position by a clamp, attached to the gun-metal casing of the graduated glass-plate, and furnished with the usual slow-motion serew.

The entire system of the two arms carrying the microscope-bodies, the two arms carrying the microscope eye-glasses, the two arms carrying the verniers, and the two arms carrying the reading-glasses for the verniers, is turned rapidly by means of a button on the external side of the graduated glass-plate, or is moved slowly by means of the slow-motion screw just mentioned.

It now remains only to describe the illuminating apparatus. On the outside of the removeable glass plate, there are supports for the axis of a metallic circle turning in a plane parallel to the plane of needle-vibration. This circle has four slotted radii, which support eight small frames carrying prismatic glass reflectors, each of which can turn on an axis that is in the plane of the circle but transverse to the radius. Two of these reflectors are for the purpose of sending light through the verniers, and therefore are fixed at the same radial distance as the verniers; the other six are intended for sending light past the ends of the needles through the six microscopes, and are therefore fixed at distances corresponding to the fixed microscopes. The circle was originally turned by a small winch near the observer's hand;

at present, the winch is removed, as its axis was found to be slightly magnetie. At each observation, it is necessary to turn the circle which carries the reflectors; but this is the work of an instant.

The light which illuminates the whole is a gas-burner, in the line of the axis of rotation. Its rays fall upon the glass prisms, each of which, turning on its axis, can be adjusted so as to throw the reflected light in the required direction.

The whole of the apparatus, as thus described, is planted upon a horizontal plate admitting of rotation in azimuth: the plate is graduated in azimuth, and verniers are fixed to the gun-metal tripod stand. The gas-pipe is led down the central vertical axis, and there communicates by a rotatory joint with the fixed gas-pipes.

The needles adapted for use with this instrument are—

The needles constantly employed are B_1 , C_1 , D_1 , B_2 , C_2 , D_2 .

In discussing carefully the observations taken with this instrument (as well as with other dip-instruments), great trouble was sometimes experienced in determining the zenith-point (or reading of the vertical eirele when the points of the needle are in the same vertical). To remedy this, a "zenith-point-needle" was constructed under my instructions by Mr. Simms; and it has since been used as need required. It is a flat bar of brass; with pivots similar to those of the dip-needles; and with three pairs of points corresponding to the three lengths of needles used; loaded at one end so as to take a position perfectly definite with respect to the direction of gravity; observed with the microscopes, and reversed for another observation, exactly as the dip-needles. For each of the different lengths of dip-needles, the zenith-point is determined by observation of that pair of points of the zenith-point-needle whose interval is the same as the length of the dip-needle.

The instrument carries two levels, one parallel to the plane of the vertical circle, the other at right angles to that plane, by means of which the instrument is from time to time adjusted in level. The readings of the first-mentioned level have for some years (since 1867) been recorded at each separate observation of dip, and since the beginning of the year 1875, these observed readings have been regularly

employed to correct the apparent value of dip for the small outstanding error of level. The instrument is maintained so nearly level that the correction usually amounts to a few seconds of arc only. During the observation on 1877, August 21, the level was accidentally broken: a new level was inserted in the same carrier before the observation of 1877, August 22.

The Dip Instrument and all the needles are examined, at the close of each year, and at other times if thought desirable, by Mr. Dover.

§ 10. Observations for the absolute Measure of the Horizontal Force of Terrestrial Magnetism.

In the spring of 1861, a Unifilar Instrument, similar to those used in and issued by the Kew Observatory, was procured by the courteous application of General Sir Edward Sabine, from the makers, Messrs, J. T. Gibson and Son; and after having been subjected to the usual examinations, at the Kew Observatory, for determination of its constants (for which I am indebted to the kindness of Professor Balfour Stewart), was mounted at the Royal Observatory. Observations with this instrument were commenced on 1861, June 11, and the instrument is still in use.

The deflected magnet (whose use is merely to ascertain the proportion which the power of the deflecting magnet at a given distance bears to the power of terrestrial magnetism) is 3 inches long, carrying a small plane mirror. The deflecting magnet is 4 inches long; it is a hollow cylinder, carrying in its internal tube a collimator, by means of which its time of vibration is observed in another apparatus. The frame which supports the suspension-piece of the deflected magnet carries also the telescope directed to the magnet-mirror; it rotates round the vertical axis of a horizontal graduated circle whose external diameter is 10 inches. The deflecting magnet is always placed on the E. or W. side of the deflected magnet, with one end towards the deflected magnet. In the reduction of the observations, the precepts contained in the skeleton form prepared at the Kew Observatory have received the strictest attention.

The following is the explanation of the method of reduction.

The distance of the centers of the deflected and deflecting magnet being known, it is found (from observations made at Kew) that the magnetism of the deflecting magnet is so altered by induction that the following multipliers of its magnetic moment ought to be used in computing the Absolute Force:—

At distance	1 'o foot, factor is	1 '00031
	1.1	1 '00023
	1 .5	1.00018
	1 .3	1 .00014
	1 *4	1.00011
	1.5	1,00000

The correction of the magnetic power for temperature t, of Fahrenheit, reducing all to 35 of Fahrenheit, is

0.00013126 (
$$t_0$$
-35) +0.00000259 (t_0 -35)2

 A_1 is $\frac{1}{2}$ (distance)³ × sine deflection, corrected by the two last-mentioned quantities, for distance 1 foot; A_2 is the similar expression for distance 1 3 foot; A'_2 is $\frac{A_2}{(1 \cdot 3)^2}$; P is $\frac{A_1 - A_2}{A_1 - A'_2}$. A mean value of P is adopted from various observations; then m being the magnetic moment of the deflecting magnet, and X the Horizontal component of the Earth's magnetic force, we have $\frac{m}{X} = A_1 \times \left(1 - \frac{P}{1}\right)$ for smaller distance, or $= A_2 \times \left(1 - \frac{P}{1 \cdot 69}\right)$ for larger distance. The mean of these is adopted for the true value of $\frac{m}{X}$.

For computing the value of mX from observed vibrations, it is necessary to know K, the moment of inertia of the magnet as mounted. The value of $\log \pi^2 K$ furnished by Professor Stewart is 1.66073 at temperature 30°, and 1.66109 at temperature 90°. Then putting T for the time of the magnet's vibration as corrected for induction, temperature, and torsion-force, the value of mX is $= \frac{\pi^2 K}{T^2}$. From the combination of this value of mX with the former value of $\frac{m}{X}$, m and X are immediately found. In the year 1878, a new and entirely independent determination of the value of K was made. It very satisfactorily confirmed the adopted value.

It appears, from a comparison of observations given in the Introduction to the Magnetical and Meteorological Observations, 1862, that the determinations with the Old Instrument (in use to 1861) ought to be diminished by 117 part, to make them comparable with those of the Kew Unifilar.

The computation of the values of m and X was, to the year 1857, made in reference to English measure only, using the foot and the grain as the units of length and weight; but, for comparison with foreign observations of the Absolute Intensity of Magnetism, it is desirable that X should be expressed also in reference to Metric measure, in terms of the millimètre and milligramme. If an English foot be supposed equal to α times the millimètre, and a grain be equal to β times the milligramme, then it is seen that, for the reduction of $\frac{m}{X}$ and mX to Metric measure, these must be multiplied by α^3 and $\alpha^2\beta$ respectively. Hence X^2 must be multiplied by $\frac{\beta}{\alpha}$, and X by $\sqrt{\frac{\beta}{\alpha}}$. Assuming that the mètre is equal to 39:37079 inches, and the gramme equal to 15:43249 grains, $\log \sqrt{\frac{\beta}{\alpha}}$ will be found to be = 9:6637805, and the factor for reducing the English values of X to Metric values will be 0:46108 or $\frac{1}{2\cdot 1689}$. The Greenwich Magnetical and Meteorological Observations, 1877.

values of X in Metric measure thus derived from those in English measure are given in the proper table. The value of X is sometimes required in terms of the centimètre and gramme, commonly known as the C. G. S. unit (centimètre-gramme-second unit), and values in terms of this unit are obtained by dividing those referred to the millimètre and milligramme by 10.

§ 11. Explanation of the Tables of Results of the Magnetical Observations.

The results contained in this section (so far as relates to the three magnetometers) are founded upon or derived entirely from the measures of the ordinates of the Photographic Curves, and refer to the astronomical day.

Telescope observations of the magnetometers have usually been made four times every day, except on Sunday, on which day three observations have usually been taken. These observations have been employed for forming values of the base lines on the photographic sheets. Finally a new base line, representing a convenient reading in round numbers of the element to which it applies, has been then drawn on each sheet for convenience of further treatment.

Before further discussing the records, the first step usually taken is to divide the days of observation into two groups; in one of which the magnetism was generally so tranquil that it appeared proper to use those days for determination of the laws of diurnal inequality; while in the other group the movements of the magnetic instruments were so violent, and the photographic curves traced by them so irregular, that it appeared impossible to employ them, except by the exhibition of every motion of the magnet during the day. A similar division into groups had been made in two Memoirs printed in the *Philosophical Transactions*. For the year 1877, however, no days have been found exhibiting sufficient irregularity to render separation necessary.

The whole of the photographic sheets for the year were therefore treated in the following way:—Through each photographic curve a pencil line was drawn, representing, as well as could be judged, the general form of the curve without its petty irregularities. These pencil curves only were then used; and their ordinates were measured, with the proper pasteboard scales, at every hour. These measures being entered in a form having double argument, the vertical argument ranging through the 24 hours of the astronomical day, and the horizontal argument through the days of a calendar month, the means of the numbers standing in the vertical columns give the mean daily value of the element, and the means of the numbers in the horizontal columns the mean monthly value at each hour of the day.

The temperature of the magnetometers was maintained in so great uniformity through each day that the final determination of the diurnal inequalities of horizontal and vertical force should possess great exactitude, although, in regard to vertical

force, the magnitude of the temperature co-efficient introduces an element of some uncertainty. It was, however, impossible to maintain similar uniformity of temperature through all the seasons. Following the general principle adopted in recent years, the results are given uncorrected for temperature; corresponding tables of mean temperature being now in all cases added. It is deemed best that, in the yearly volumes, the results should be thus given, as more easily admitting of independent examination. When, as is done from time to time, the results for series of years are collected for general discussion, the temperature corrections are duly taken into account.

It has been the custom, in preceding volumes, to exhibit the varying Declination in the sexagesimal divisions of the circle, and the variable parts of the Horizontal Force and the Vertical Force, in terms of the whole Horizontal Force and whole Vertical Force respectively. This custom is still retained; but since the year 1872 an addition has been made, carrying out the principle suggested by C. Chambers, Esq., Superintendent of the Bombay Observatory, that all the variable inequalities should be expressed in terms of Gauss's Magnetic Unit. In applying this principle, I have adopted the reference to metrical units of measure and weight instead of British units; a change from the first proposal, which, I believe, has received the assent of Mr. Chambers. The formulæ for converting the original numbers into the new numbers are the following:—

from which.

$$\mbox{Variation of H. F. metrical} \ = \ \frac{\mbox{H. F. metrical}}{\mbox{Former H. F.}} \ \times \ \mbox{former variation}.$$

The mean value, for the year, of $\frac{\text{H. F. metrical}}{\text{Former H. F.}} = 1.7985$; and this therefore is the factor to be employed for transformation.

Similarly,

Variation of V. F. metrical
$$= \frac{V. F. metrical}{Former V. F.} \times former variation.$$

The Former V. F. (in the same manner as Former H. F.) = 1; but the V. F. metrical = H. F. metrical \times tan. dip. The factor is therefore 1.7985 \times tan. 67°, 39′, 47″* = 4.3772.

The values given in Tables VIII. and XIII. for the adopted zeros (in metrical units) of the variable forces, are formed by multiplying 0.8600 and 0.9600 (the adopted zeros in the former expressions) by these factors respectively.

^{*} Strictly the value of Dip should have been 67°, 39', 38", but the difference is insignificant,

For Variation of Declination, expressed in minutes, the metrical factor is $1.7985 \times \sin 1' = 0.0005232.$

The measures as referred to the metrical unit (millimètre-milligramme-second), are converted into measures on the centimetre-gramme-second (C. G. S.) system by dividing by 10.

In preceding years, allusion has been made to the occasional dislocations of the curve of Vertical Force. Only one such dislocation occurred during the year 1877.

On examining the monthly values of Vertical Force in each year since the mounting of the Vertical Force Magnet which has been used since 1865, it is remarked that the value for each December is less than that for the preceding January by about $\frac{1}{100}$ part of the whole: a quantity far greater than the change deduced from the combination of Dip and Absolute Horizontal Force. This is undoubtedly eansed by gradual diminution of the power of the magnet; its determination is supported by the increase in the time of horizontal vibration.

In the Tables of Results of Observations of the Magnetic Dip, the result of each separate observation of Dip with each of the six needles in ordinary use is given, and also the concluded monthly and yearly values for each needle.

The table giving the results of the observations for Absolute Measure of Horizontal Force requires no particular explanation.

§ 12. Wires and Photographic self-registering Apparatus for continuous Record of Spontaneous Terrestrial Galvanic Currents.

In order to obtain an exhibition of the spontaneous galvanic currents which in some measure are almost always discoverable in the earth, and which occasionally are very powerful, it was necessary to extend two insulated wires from an earth connexion at the Royal Observatory, in two directions nearly at right angles to each other, to considerable distances, where they would again make connexion with the earth. By the kindness of the Directors of the South Eastern Railway Company, to whom the Royal Observatory has on several occasions been deeply indebted, two connexions were made; one to a station near Dartford, at the direct distance 9% miles nearly, in azimuth (measured from North, to East, South, West) 102 astronomical or 122 magnetical, the length of the connecting wire being about $15\frac{\circ}{3}$ miles; the other to a station near Croydon, at the direct distance 8 miles, in azimuth 209° astronomical, or 229° magnetical, the length of the connecting wire being about 10½ miles. At these two stations connexion was made with earth. The details of the courses were as follows. The wires were soldered to a water pipe in the Magnetic Ground at the Royal Observatory. Thence they entered the Magnetic Basement, and passed through

the coils of the galvanometers of the photographic self-registering apparatus (to be shortly described). They were then led up the electrometer mast to a height exceeding 50 feet, and thence swung across the grounds to a chimney above the Octagon Room. They descended thence, and were led to a terminal board in the Astronomical Computing Room, to which an intermediate galvanometer could be attached for eye-observation of the currents. From this point they were led to the "Battery Basement," and, with other wires, passed under the Park to the Greenwich Railway Station, and thence upon the telegraph poles of the South Eastern Railway. One wire branched off at the junction with the North Kent Railway to Dartford, the other at the junction with the main line of railway to Croydon. At both places their connexion with earth was made by soldering to water-pipes, as at the Royal Observatory.

These wires remained in the places described till the end of 1867. It had been discovered in experience that a much smaller separation of the extreme points of earth-connexion would suffice, and it was conjectured that advantage might arise from making the two earth-connexions of each wire on opposite sides of the Observatory and nearly equidistant from it, instead of making one earth-connexion of each within the Observatory grounds. In 1868, therefore, the following wirecourses were substituted. One wire is connected with earth, by a copper plate, at the Lady Well station of the Mid-Kent Railway; it is thence led to the North Kent Junction with the Greenwich Railway, to the Royal Observatory (for communication with the self-registering apparatus), back to the North Kent Junction, then by North Kent Railway and Angerstein Branch to the Angerstein Wharf, where it is connected with earth by a copper plate. The other wire is connected with earth by a copper plate at the North Kent Junction, then passes to the Royal Observatory and back to the Junction, and then along the North Kent Railway to the Morden College end of the Blackheath Tunnel, where it is connected with earth in the same manner. The straight lines connecting the extreme points of the wires cross each other near the middle of their lengths and near the Royal Observatory; the length of the first line is nearly 3 miles, and its azimuth 56° N. to E. (magnetic); that of the second line is nearly 2½ miles, and its azimuth 136°. But, in the circuitous courses above described, the length of the first wire is about 10% miles, and that of the second 61 miles. These wires were established and brought into use on 1868, August 20. On 1877, September 19, the route of two of the branches was changed. The Angerstein Wharf and Blackheath branches, instead of passing from Greenwich viâ North Kent Junction, now pass along the new railway line through Greenwich, and thence respectively to Angerstein's Wharf and Blackheath. The length of the section "Lady Well—Angerstein Wharf" is now about $7\frac{1}{2}$ miles, and that of the section "North Kent Junction-Blackheath" about 5 miles. The names and connexions of the Observatory ends of the four branches were identified in 1870; in 1871, June; again in 1872; on 1873, April 17; on 1874, April 15; 1875, May 6;

and 1877. May 15. These were again identified on 1877, October 29, in consequence of the change of route made on 1877, September 19.

The apparatus for receiving the effects of the galvanic currents consists essentially of two magnetic needles (one for each wire), each suspended by a hair so as to vibrate horizontally within a double galvanic coil, exactly as in an ordinary galvanometer (supposed to be laid horizontally); these coils being respectively in the courses of the two long wires. The number of folds of the wire in each coil was 150 (or 300 in the double coil of each instrument) throughout the year. A current of one kind, in either wire, causes the corresponding needle to turn itself through an angle nearly proportioned to the strength of the current, in one direction; a current of the opposite kind causes it to turn in the opposite direction. These turnings are registered by the following apparatus.

To the carrier of each magnet is fixed a small plane mirror, which receives all the azimuthal motions of the magnet. The light of a gas-lamp passes through a minute aperture, and shines upon the mirror; the divergent pencil is converted into a convergent pencil by refraction through crossed cylindrical lenses (with axes vertical before the pencil reaches the mirror, and with axes horizontal where the pencil is received from the mirror), which, under the circumstances, were more convenient than spherical lenses. A spot of light is thus formed upon the photographic paper wrapped upon a cylinder of ebonite, which is covered by a glass cylinder, and made to rotate in twenty-four hours by clock-work, exactly as for the register of the magnetic elements. As in the case of declination and horizontal-force, the two earth currents make their registers upon opposite sides of the same barrel, and upon different parts of the sheet; the same gaslight serving for the illumination of both.

A portion of a zero-line for either record is obtained at any time by simply breaking the galvanic communication.

The photograph records were regularly made, with the wires in the first position, from 1865, March 15, to the end of 1867. Fifty-three days, on which the magnetic disturbances were active, were selected for special examination; and for these the equivalent galvanic currents in the north and west directions were computed, and their effects in producing apparent magnetic disturbances in the west and north directions were inferred. They correspond almost exactly with those indicated by the magnetometers. Then the records for all the days of tranquil magnetism were reduced in the same manner, not for comparison with the magnetometer-results, but for ascertaining the diurnal laws of the galvanic currents. These laws were found to be very different from the laws of magnetic diurnal inequalities. These discussions have been communicated to the Royal Society in two papers, printed respectively in the Philosophical Transactions for 1868 and 1870.

The records with the earth connexions in the new positions have been regularly made since 1868. August 20, but have not yet been discussed.

§ 13. Standard Barometer.

The Barometer is a standard, by Newman, mounted in 1840. It is fixed on the South wall of the West arm of the Magnetic Observatory. The tube is 0°:565 in diameter; the cistern is of glass. The graduated scale which measures the height of the mercury is made of brass, and to it is affixed a brass rod, passing down the inside of one of the upright supports, and terminating in a conical point of ivory; this point in observation is made just to touch the surface of the mercury in the cistern, and the contact is easily seen by the reflected and the actual point appearing just to meet each other. The rod and scale are made to slide up and down by means of a slow-motion screw. The scale is divided to 0°:05.

The vernier subdivides the scale divisions to 0ⁱⁿ⁻⁰⁰²; it is moved by a slow-motion screw, and in observation is adjusted so that the ray of light, passing under the back and front of the semi-cylindrical plate carried by the vernier, is a tangent to the highest part of the convex surface of the mercury in the tube.

At the bottom of the instrument are three screws, turning in the fixed part of the support, and acting on the piece in which the lower pivot of the barometer-frame turns, for adjustment to verticality: this adjustment is examined occasionally.

The readings of this barometer, until 1866, August 20¹, 0^h, are considered to be coincident with those of the Royal Society's flint-glass standard barometer. On that day a change was made in the barometer. It had been remarked that the slowmotion-screw at the bottom of the sliding rod (for adjusting the ivory point to the surface of the mercury in the cistern) was partly worn away: and on August 20 the sliding rod was removed from the barometer by Mr. Zambra to remedy this defect. It was restored on 1866, August 30^d, 3^h. Before the removal of the sliding rod, barometric comparisons had been made with a standard barometer the property of Messrs, Murray and Heath, and with two barometers, Negretti and Zambra, Nos. 646 and 647. While the sliding rod of the Greenwich standard was removed, Negretti and Zambra 647 was used for daily observations. After the new equipment of the standard barometer, another series of comparisons with the same barometers was made: from which it was found (the three auxiliaries giving accordant results) that the readings of the barometer, in its new state, required a correction of -0.006. This correction has been applied to every observation commencing with that at 1866, August 30^d, 9^h.

In the spring of the year 1877 an elaborate comparison of the Standard Barometers of the Greenwich and Kew Observatories was made under the direction of the Kew Committee. (See *Proceedings of the Royal Society*, vol. 27, page 76.) Mr. Whipple, Superintendent of the Kew Observatory, brought four barometers to Greenwich on

three separate occasions. The result of a large number of comparisons showed that the difference between the Greenwich and Kew standards does not exceed 0.001 inch. In this is of course included the above-mentioned correction of $-0^{16}006$.

The height of the eistern above the mean level of the sea is 159 feet. This element is founded upon the determination of Mr. Lloyd, in the *Philosophical Transactions*, 1831; the elevation of the eistern above the brass piece inserted in a stone in the transit-room, now the Astronomer Royal's official room, (to which Mr. Lloyd refers,) being 5th, 2th.

The barometer has usually been read at 21^h, 0^h, 3^h, 9^h (astronomical), and corrected by application of the index error given above. Every reading has been reduced to the reading which would have been obtained at the temperature 32[°] of the mercury, and corrected for expansion of the brass scale, by application of the correction given in Table II. (pages 82 to 87) of the Report of the Committee of Physics of the Royal Society. For immediate use the mean of the reduced readings has then been taken for each civil day, and finally converted into mean daily reading, by application of the correction inferred from Mr. Glaisher's paper in the Philosophical Transactions, 1848. Part I, Table I, page 127. These results do not appear in the present volume. Instead of them there are results deduced from the photographic records, as will be further on mentioned (in § 26).

In the printed record of the barometrical and all other meteorological observations, the day is to be understood, generally, as defined in civil reckoning.

§ 14. Photographic self-registering Apparatus for continuous Record of the Readings of the Barometer.

The Photographic self-registering Apparatus for continuous Record of Magnetic Vertical Force is furnished (as has been stated) with a vertical cylinder covered with photographic paper and revolving in 24 hours. North of the surface of this cylinder, at the distance of about 30 inches, is a large syphon barometer, the bore of the upper and lower extremities of its arms being about 1·1 inch. A glass float partly immersed in the mercury of the lower extremity is partially supported by a counterpoise acting on a light lever, leaving a definite part of the weight of the float to be apported by the mercury. This lever is lengthened to carry a vertical plate of opaque mica having a small horizontal slit, whose distance from the fulcrum is nearly eight times the distance of the point of attachment of the float wire, and whose movement, therefore, is nearly four times the movement of the column of a eistern-barometer. Through this slit the light of a lamp, collected by a cylindrical lens, shines upon the photographic paper. The barometer being supported at its

lower end, the height of the column of mercury in its lower tube on which the record depends is very slightly influenced by changes of temperature.

The scale of time is established by means of occasional interruptions of the light, and the scale of measure is established by comparison with occasional eye-observations.

This barometer was brought into use in 1848, but its indications were not satisfactory till the mercury was boiled in the tube by Messis. Negretti and Zambra on 1853, August 18, since which time they have appeared unexceptionable.

A discussion of the photographic records of the Barometer from 1854 to 1873 is published in the "Reduction of Greenwich Meteorological Observations, 1847–1873,"

§ 15. Thermometers for ordinary Observation of the Temperature of the Air and of Evaporation.

The Dry-Bulb Thermometer, the Wet-Bulb Thermometer, the Maximum Self-Registering Thermometers, both dry and wet, and the Minimum Self-Registering Thermometers, dry and wet, all for determination of the temperature of the air and of evaporation, are mounted on a revolving frame whose fixed vertical axis is planted in the ground. From the year 1846 to 1863 the post forming the vertical axis was about 23 feet south (astronomical) of the S.W. angle of the south arm of the Magnetic Observatory; in 1863 it was moved to its present position, about 35 feet south (astronomical) of the S.W. angle. A frame revolves on this post, consisting of a horizontal board as base, of a vertical board projecting upwards from it connected with one edge of the horizontal board, and of two parallel inclined boards (separated about three inches) connected at the top with the vertical board, and at the bottom with the other edge of the horizontal board. The outer inclined board is covered with zinc. The air passes freely between all these boards.

The dry and wet-bulb thermometers are attached to the outside, and near the center of the vertical board; their bulbs are about 4 feet above the ground and projecting from 2 inches to 3 inches below the horizontal board. The maximum and minimum thermometers for air are placed towards one vertical edge, and those for evaporation towards the other vertical edge, with their bulbs at almost the same level, and near to those of the dry and wet-bulb thermometers. Above the thermometers is a small projecting roof to protect them from rain. The frame is always turned with the inclined side towards the sun. It is presumed that the thermometers are thus sufficiently protected.

The graduations of all the thermometers used in the Royal Observatory since the year 1840 rest fundamentally upon those of a Standard Thermometer, the property of Mr. Glaisher, which derives its authority from comparison with original thermo-

meters constructed by the late Rev. R. Sheepshanks about the years 1840–1843, in the course of his preparations for the construction of the National Standard of Length. The whole of the radical determinations of Freezing Point, Boiling Point, and Subdivision of Volume of Tube, were made by Mr. Sheepshanks with the utmost care: it is believed that these were the first original thermometers that had been constructed in England for many years. This thermometer continued to be the standard of reference until June of the year 1875.

By the kindness of the Kew Committee of the Royal Society, a new Kew Standard Thermometer, No. 515, was, in the year 1875, supplied to the Royal Observatory; and, commencing with the month of July of that year, all thermometers have been compared with the new standard, which will hereafter be referred to as the R. O. standard.

In order to determine whether any sensible difference exists between the indications of Mr. Glaisher's standard and those of the R. O. standard, the errors of all thermometers that, in the year 1875, had been recently referred to both standards, were collected for comparison. The details of this comparison will be found in the Introduction to the Magnetical and Meteorological Observations for 1875, page alviii. The result arrived at was that the standards were practically identical.

The Dry-Bulb and Wet-Bulb thermometers are by Horne and Thornthwaite. The readings of the dry-bulb thermometer require a subtractive correction of 1°0; those of the wet-bulb thermometer require corrections as follows:—

	0		0					0
Below	55				 	 .	. subtract	0.9
Between	55	and	70		 	 	 .	0.4
Above	70			. .	 	 		0.5

The self-registering thermometers for temperature of air and evaporation are by Negretti and Zambra. The construction of the thermometers for maximum temperature is as follows.

There is a small detached piece of glass in the tube, at the bent part (near the bulb), through which the piece of glass cannot pass down. The column of mercury in rising is forced through the contraction produced by the piece of glass; but in falling it is unable to pass the glass, and the lower mass of mercury descends into the bulb, leaving a vacant space below the glass, and a portion of the mercury above it. The piece of glass operates as an efficient valve. The thermometer used for maximum temperature of the air was No. 8527; its corrections were:—

	0																							
Below	40															s	u	l	ŧ	ľ	ı.	t	0	. 7
Above	40																						0	8

The maximum wet bulb thermometer was No. 1575. Its corrections were as follows:—

Below	35	0.0
Between	35 and 40 subtract	0.1
	40 and 43	0.2
Above	43	0.3

The minimum self-registering thermometers by Negretti and Zambra are alcohol thermometers (on Rutherford's principle). A sliding glass index allows the alcohol in rising to pass above it, but is drawn down by the peculiar action of the bounding surface of the fluid when it sinks. The readings of that for minimum temperature of the air, No. 4386, required a subtractive correction of 0°·5. The minimum wet-bulb, No. 3627, required an additive correction of 0°·3.

The eye-readings of the dry-balb and wet-bulb thermometers have usually been taken at the hours (astronomical reckoning) 21^b, 0^h, 3^h, 9^h, and corrected by application of the index errors already given. For immediate use the means of the corrected readings of the dry bulb and wet bulb thermometers have been taken and converted into mean daily readings, by the application of corrections derived from Mr. Glaisher's paper before mentioned, but the results do not appear in this volume, the photographic records being now employed, as will be further on explained (in § 26).

§ 16. Photographic self-registering Apparatus for continuous Record of the Readings of the Dry-Bulb and Wet-Bulb Thermometers.

About 28 feet south (magnetic) of the south-east angle of the south arm of the Magnetic Observatory, and about 25 feet east of the thermometers for eye-observations, is an open shed 10 ft. 6 in. square, standing upon posts 8 feet high, under which are placed the photographic thermometers, the dry-bulb thermometer towards the east, and the wet-bulb thermometer towards the west. The bulbs of the thermometers are 8 inches in length, and 0.4 inch internal bore, and their centers are about 4 feet above the ground. The bulb of the thermometer employed as wet-bulb is covered with muslin throughout its whole length, which is kept moist by means of capillary passage of water along cotton wicks leading from a vessel filled with water.

There are small adjustments admitting the raising or dropping of the thermometers, so that the register of their changing readings may fall on a convenient part of the paper. The thermometer frames are covered by plates having longitudinal apertures, so narrow, that any light which may pass through them is completely, or

almost completely, intercepted by the broad flat column of mercury in the thermometer-tube. Across these plates a fine wire is placed at every degree; those at the decades of degrees, and also those at 32°, 52°, and 72°, being coarser than the others. A gas lamp is placed about 9 inches from each thermometer (east of the dry bulb and west of the wet bulb), and its light, condensed by a cylindrical lens, whose axis is vertical, shines through the thermometer-tube above the surface of the mercury, and forms a well-defined line of light upon the photographic paper, which is wrapped around the cylinder. The axis of this cylinder is vertical; its mounting is in all respects similar to that of the Vertical Force cylinder. As the cylinder, covered with photographic paper, revolves under the light, which passes through the thermometer-tube, it receives a broad sheet of photographic trace, whose breadth (in the direction of the axis of the cylinder) varies with the varying height of the mercury in the thermometer-tube. Parts of the light in its passage are intercepted by the wires placed across the tube at every degree, and there are, therefore, left upon the paper corresponding lines in which there is no photogenic action.

The cylinder was at first made to revolve in 48 hours; the daily photographic traces of the two thermometers were thus simultaneously registered on opposite sides of the cylinder, sometimes slightly intermixing. The length of the glass cylinder used till 1869, March, is $13\frac{1}{2}$ inches, and its circumference is about 19 inches. On 1869, March 5, an ebonite cylinder was introduced, whose length is 10 inches, and circumference about 19 inches; and at a later time the cylinder was made to revolve in 50 hours instead of 48 hours, to insure the separation of the records of the two thermometers.

The photographic records of the dry-bulb and wet-bulb thermometers have been discussed from 1848 to 1868. The results exhibit the diurnal inequality of the temperature of the air and of evaporation, as grouped by months, as grouped by periods of high and low temperature, as grouped by periods of high and low atmospheric pressure, as grouped by cloudless or overcast sky, and as grouped by directions of the wind. They are published in the "Reduction of Greenwich Meteorological Observations, 1847–1873."

§ 17. Thermometers for Solar Radiation and Radiation to the Sky.

The thermometer for Solar Radiation, which to the end of the year 1864 was placed in an open box about 10 feet south of the south-west angle of the south arm of the Magnetic Observatory, is now laid on the grass, near the same place.

The thermometer is a self-registering maximum mercurial thermometer of Negretti and Zambra's construction (No. 5964); its bulb is blackened, and enclosed in a glass sphere from which the air has been exhausted. Its graduations are correct, and the

numbers inserted in the tables are those read from the instrument without alteration. The thermometer is read at 21^h, 0^h, 3^h, and 9^h daily; the highest of these readings is adopted as the maximum for the day.

The use of a thermometer with blackened bulb not inclosed in an exhausted sphere was discontinued at the end of 1865.

The thermometer for radiation to the sky is placed near to the Solar Radiation thermometer, with its bulb resting on short grass, and fully exposed to the sky. It is a self-registering minimum spirit thermometer of Rutherford's construction, Horne and Thornthwaite, No. 3120. Its graduation is correct, and the numbers inserted in the table are those read from the scale without alteration. It is read every day at 21^h, and occasionally at 9^h.

§ 18. Thermometers sunk below the Surface of the Soil at different Depths.

These thermometers were made by Messrs. Adie of Edinburgh, under the immediate superintendence of the late Professor J. D. Forbes. The graduation was made by Professor Forbes himself.

The thermometers are four in number. They are all placed in one hole in the ground, the diameter of which in its upper half is 1 foot, and in its lower half about 6 inches. Each thermometer is attached in its whole length to a slender piece of wood, which is planted in the hole with it. The place of the hole is 20 feet south (magnetic) of the extremity of the south arm of the Magnetic Observatory, and opposite the center of its south front.

The soil consisted of beds of sand; of flint-gravel with a large proportion of sand; and of flints with a small proportion of sand, cemented almost to the consistency of pudding-stone. Every part of the gravel and sand extracted from the hole was perfectly dry.

The bulbs of the thermometers are cylindrical, 10 or 12 inches long and 2 or 3 inches in diameter. The bore of the principal part of the tubes, from the bulb to the graduated scale, is very small. In that part to which the scale is attached, the tube is larger.

The thermometer No. 1 was dropped into the hole to such a depth that the center of its bulb was 24 French feet (25.6 English feet) below the surface: then dry sand was poured in till the hole was filled to nearly half its height. Then No. 2 was dropped in till the center of its bulb was 12 French feet below the surface; No. 3 and No. 4 till the centers of their bulbs were respectively 6 and 3 French feet below the surface; and the hole was then completely filled with dry sand. The upper parts of the tubes, carrying the scales, were left projecting above the surface: No. 1 by 27.5 inches, No. 2 by 28.0 inches, No. 3 by 30.0 inches, and No. 4 by 32.0 inches.

Of these lengths, the parts 8:5, 10:0, 11:0, and 14:5 inches, respectively, are tube with narrow bore.

The projecting parts of the tubes are protected by a wooden case or box fixed to the ground; the sides of the box are perforated with numerous holes, and it has a double roof. In the North face of this box is a large plate of glass through which the thermometers are read. Within the box are two smaller thermometers, one (No. 5) whose bulb is sunk one inch in the ground, and one (No. 6) whose bulb is in the free air nearly in the center of the box.

The fluid of the four long thermometers is alcohol tinged with a red colour.

The lengths of 1° on the scales of Nos. 1, 2, 3 and 4, are respectively about 1·9 inch, 1·1 inch, 0·9 inch, and 0·5 inch; and the ranges of the scales, as first mounted, were, 43° 0 to 52°·7, 42° 0 to 56°·8, 39°·0 to 57°·5, and 34°·2 to 64°·5.

These ranges for Nos. 2, 3, and 4, were found to be insufficient in some years, particularly those of Nos. 3 and 4, or the thermometers sunk to the depth of 6 feet and 3 feet.

In 1857, June 22, Messrs, Negretti and Zambra removed from Nos. 3 and 4 a quantity of fluid corresponding to the extent of 5 on their scales, and the scales of these two thermometers were then lowered by that linear extent, making the readings the same as before.

In subsequent years it was found that the amount of fluid removed was somewhat too great, for at the lower end of the scale the 6-foot thermometer sometimes fell below the limit of its scale or 44°; and the 3-foot thermometer below 39°0; in which cases the alcohol sank into the capillary tube.

The readings at the early part of the series were at times defective at high temperatures, but always complete at low temperatures; afterwards, they were generally complete at high temperatures, and at times defective at low temperatures. The two combined, however, will enable us to complete all readings.

On 1869, July 21, Mr. Zambra removed fluid from No. I to the amount of 2°.7, and from No. 2 to the amount of 1°.5, and inserted in No. 4 fluid to the amount of 1°.5. The scales were re-engraved, to make the reading at every temperature the same as before.

In 1877. May, new porcelain scales were applied to these thermometers, by which the facility of reading is much increased.

The ranges of the scales are now,—for No. 1, $46^{\circ}0$ to $55^{\circ}.5$; for No. 2, $43^{\circ}.0$ to $58^{\circ}0$; for No. 3, $44^{\circ}.0$ to $62^{\circ}.0$; and for No. 4, $37^{\circ}.0$ to $68^{\circ}.0$.

These thermometers are read once a day, at noon, and the readings appear in the printed volumes as read from their scales without correction.

The observations of these thermometers from 1846 to 1859 have been elaborately reduced by Professor Everett; the results are printed as an Appendix to the Greenwich Observations for 1860. Abstracts of the observations of these thermometers

(giving mean monthly temperatures) for the period 1847 to 1873 have since been published in the "Reduction of Greenwich Meteorological Observations 1847-1873."

§ 19. Thermometers immersed in the Water of the Thames.

The self-registering maximum and minimum thermometers for determining the highest and lowest temperatures of the water of the Thames are observed every day at 9^h a.m.

The thermometers, inclosed in a wooden trunk, were originally attached to the side of the "Dreadnought" hospital ship. Commencing with 1871, January 12, they were attached to the Police Ship "Scorpion," moored in Blackwall Reach. In the month of May 1874, the wooden trunk was shifted from the "Scorpion" to the "Royalist," moored in the same place. The first readings with the thermometers in the last-mentioned position were taken 1874, May 5.

A strong wooden trunk is firmly fixed to the side of the "Royalist," about 5 feet in height, and closed at the bottom; the bottom and the sides, to the height of 3 feet, are perforated with a great number of holes, so that the water can easily flow through; the thermometers are suspended within this trunk so as to be about 2 feet below the surface of the water, and 1 foot from the bottom of the trunk.

The observations have been made by the Resident Inspector on board, by permission of Lieut.-Col. Sir Edmund Y. W. Henderson, R.E., K.C.B., Commissioner of Metropolitan Police.

The thermometer used for maximum temperature (a thermometer on Phillips's principle) is Horne and Thornthwaite, No. 22242; that for minimum temperature is Horne and Thornthwaite, No. 22243. Both thermometers require an additive correction of 0°3. The omission of the readings from 1877, October 23 to October 26 is due to the "Royalist" having been, during this period, in dry dock for repairs.

§ 20. Osler's Anemometer.

This anemometer is self-registering: it was made by Newman, on a plan furnished by A. Follett Osler, Esq., F.R.S., but has received several changes since it was originally constructed. A large vane, which is turned by the wind, and from which a vertical spindle proceeds down nearly to the table in the north-western turret of the ancient part of the Observatory, gives motion by a pinion upon the spindle to a rackwork carrying a pencil. In 1866 the vane-shaft was made to bear upon anti-friction-rollers running in a cup of oil. The pencil makes a mark upon a paper affixed to a

board which is moved uniformly in a direction transverse to the direction of the rackmotion. The movement of the board is effected by means of a second rack connected with the pinion of a clock. The paper has lines printed upon it corresponding to the positions which the pencil must take when the direction of the vane is N., E., S., or W.; and also has transversal lines corresponding to the positions of the pencil at every hour. The first adjustment for azimnth was obtained by observing from a certain point the time of passage of a star behind the vane-shaft, and computing from that observation the azimuth; then on a calm day drawing the vane by a cord to that position, and adjusting the rack, &c., so that the peucil position on the sheet corresponded to that azimuth.

For the pressure of the wind the construction originally arranged by Mr. Osler was in use till the middle of 1866, when the following modifications were made in it by Mr. Browning, for explanation of which I refer to Figure 3 on the engraving at the end of the Introduction to the volume of 1866. To the vaneshaft is attached a rectangular frame C, which rotates with the vane. To this frame are firmly attached the ends of four strong springs D, which rise from the point of attachment in a vertical direction, are then bent so as to descend below the frame C, and are then bent upwards so as to rise a short distance, where they terminate, each of them thus forming a large hook. To the interior of each strong spring, near to its upper bend, is affixed a very weak spring, which descends free into the lower bend or hook of the strong spring, so that its lower end may be moved by a light pressure till it reaches and takes bearing against the bent-up part of the strong spring, after which it cannot be further moved without moving the strong spring, and will therefore require much greater pressure. The four ends of these four light springs carry the circular pressure-plate A by the following connexions. The two which are farthest from A, or which are below the wide part of the vane, are united by a light horizontal cross-bar G; and from the ends of these springs proceed four light bars E, which are attached to points of the pressure-plate A, near its circumference. The two ends of light springs which are nearest to A are also united by a light horizontal cross bar, which is attached to a projection from the center of the plate A. (The diagonal lines upon A, in the diagram, represent indistinctly two strengthening edge-bars upon the pressure-plate, and the projection above mentioned is fixed to their intersection.) The weight of the pressure-plate thus rests entirely on the slender springs; it is held steadily in position, as regards the opposition to the wind, and it moves without sensible friction. A light wind drives it through a considerable space, until the ends of one pair of light springs touch their large hooks; then for every additional pound of pressure the movement is smaller, till the ends of the other pair of light springs touch their large hooks; after this the movement for every additional pound of pressure is still further diminished. This apparatus was arranged by Mr. Browning. The communication

with the pencil below is similar to that in the first construction: the cord and pulley are omitted in the drawing to avoid confusion.

The pressure-pencil below is carried by a radial bar, whose length is parallel to the scale of hours; it is brought to zero by a light spring.

The surface of the pressure-plate is 2 square feet, or double that in the old construction. The scale of indications on the recording sheet was determined experimentally as in the old instrument; yet it was remarked that the pressures of wind per square foot appeared generally greater than formerly. It was suspected that the inertia of the tension-weight acting against the pressure-spring, and that of the pencil-weight, may have produced an injurious effect: both these weights were replaced by springs, 1872, February 21. The pencil-spring has since been removed and weight applied as necessary.

The scale for small pressures is much larger, and their indications much more certain than formerly. A pressure of an ounce per square foot is clearly shown.

A rain gauge of peculiar construction is carried by this instrument, by which the fall of rain is registered with reference to the time of the fall. It is described in § 22.

A fresh sheet of paper is applied to this instrument every day at 22^h mean solar time.

§ 21. Robinson's Anemometer.

In the latter part of the year 1866, a new instrument, on the principles described by Dr. Robinson in the Transactions of the Royal Irish Academy, vol. xxii., adapted to give a continuous record of the velocity of the wind, was mounted by Mr. Browning, of which the principal parts are represented in Figures 1 and 2 of the engraving in the Introduction 1866. The motion is given (as in the former instrument) by the pressure of the air on four hemispherical cups, the distance of the center of each from the axis of rotation being 15.00 inches. The foot of the axis is a hollow flat cone bearing upon a sharp cone which rises up from the base of a cup of oil. The horizontal arms are connected with a vertical spindle, upon which is an endless screw working in a toothed wheel connected with a train of wheels, furnished with indices capable of registering one mile and decimal multiples of a mile up to 1,000 miles. A pinion C upon the axis of one of the wheels (which, in the figure, occupies a place too high) acts in a rack J, drawing it upwards by the ordinary motion of the revolving eups. The rack is pressed to the pinion by a spring, and, when it has been drawn up, it can be pressed by hand in opposition to the spring so as to release it from the pinion, and can then be pushed down, again to be raised by the action of the wheel-work. The rack is connected at the bottom with a sliding rod D, which passes down into the chamber below, where it draws up the sliding pencil-carrier E. The pencil F, which it carries, traces its indications upon the sheet of paper wrapped round a barrel, whose axis is vertical, and which by spindle connexion with the clock H is made to revolve in 24 hours. The revolving cups and wheel-work are so adjusted that a motion of the pencil upwards of one inch represents a motion of the air through 100 miles. The curve traced upon the barrel exhibits, therefore, the aggregate of the air's movements, and also the air's velocity, at every instant of the day.

In the year 1860, on July 3, 4, and 13, experiments were made in Greenwich Park, with the instrument then in use, to ascertain the correctness of the theory of Robinson's anemometer; the point to be verified being that the scale of the instrument, founded on the supposition that the horizontal motion of the air is about three times the space described by the centers of the cups, is correct.

A post about 5 feet high with a vertical spindle in the top was creeted, and on this spindle turned a horizontal arm, carrying at the extremity of its longer portion Robinson's anemometer, and on its shorter portion a counterpoise. The distance from the vertical spindle of the post to the vertical axis of the anemometer was 17^{tt.} S^{in.}.7. The reading of the dial was taken, and then the arm was made to revolve in the horizontal plane 50 or 100 times, an attendant counting the number of revolutions, and the reading of the dial was again taken. In this manner 1,000 revolutions were made in the direction N.E.S.W.N., and 1,000 revolutions in the direction N.W.S.E.N. In some of the experiments the air was sensibly quiet, and in others there was a little wind: the result was,

For a movement of the instrument through one mile,

```
Beam revolving N.E.S.W. (opposite to the direction of rotation of the Anemometer-eups) 1·15 was registered.

Beam revolving N.W.S.E. (in the same direction as the Anemometer-cups) 0·97 was registered.
```

The results from rapid revolutions and from slow revolutions were sensibly the same.

This may be considered as sufficiently confirming the accuracy of the theory.

§ 22. Rain Gauges.

The rain-gauge connected with Osler's anemometer is 50 feet 8 inches above the ground, and 205 feet 6 inches above the mean level of the sea. It exposes to the rain an area of 200 square inches (its horizontal dimensions being 10 by 20 inches).

The collected water passes through a tube into a vessel suspended in a frame by spiral springs, which lengthen as the water accumulates, until 0.25 of an inch is collected in the receiver; it then discharges itself by means of the following modification of the syphon. A copper tube, open at both ends, is fixed in the receiver, in a vertical

position, with its end projecting below the bottom. Over the top of this tube a larger tube, closed at the top, is placed loosely. The smaller tube thus forms the longer leg, and the larger tube the shorter leg, of a syphon. The water, having risen to the top of the smaller tube, gradually falls through it into the uppermost portion of a tumbling bucket, fixed in a globe under the receiver. When full, the bucket falls over, throwing the water into a small pipe at the lower part of the globe; the water completely fills the bore of the pipe; its descent causes an imperfect vacuum in the globe, sufficient to cause a draught in the longer leg of the syphon, and the whole contents run off. After leaving the globe, the water is carried away by a waste-pipe attached to the building. The springs then shorten and raise the receiver. The ascent and descent of the water-vessel move a radius-bar which carries a pencil; and this pencil makes a trace upon the paper carried by the sliding board of the self-registering anemometer. As the trace is rather long in proportion to the length of the radius-bar, the bar has now been furnished by Mr. Browning with a "parallel motion," which makes the motion of the pencil sensibly straight.

The scale on the printed paper was adjusted by repeatedly filling the water-vessel until it emptied itself. The weight of the quantity necessary to cause one discharge being thus determined, its bulk was ascertained, and this bulk being divided by the area of the surface of the rain receiver gave the corresponding measure of the scale.

A second gauge, with an area 77 square inches nearly, is placed close to the preceding, the receiving surface of both being on the same horizontal plane.

A third gauge is placed on the roof of the Octagon room, at 38 feet 4 inches above the ground, and 193 feet 2 inches above the mean level of the sea. It is a simple cylinder gauge, 8 inches in diameter and about $50\frac{1}{4}$ square inches in area. The height of the cylinder is $13\frac{1}{2}$ inches; at the depth of 1 inch from the top within the cylinder is fixed a funnel (an inverted cone) of 6 inches perpendicular height; with the point of this funnel is connected a tube, $\frac{1}{5}$ of an inch in diameter, and $1\frac{1}{2}$ inch in length; $\frac{3}{4}$ of an inch of this tube is slightly curved, and the remaining $\frac{3}{4}$ of an inch is bent upwards, terminating in an aperture of $\frac{1}{8}$ of an inch in diameter. By this arrangement, the last few drops of water remain in the bent part of the tube, and the water is some days evaporating. The upper part of the funnel or bore of the cone is connected with a brass ring, which has been turned in a lathe, and this is connected with a circular piece 6 inches in depth, which passes outside the cylinder, and rests in a water joint, attached to the inner cylinder, and extending all round.

A fourth gauge is placed on the top of the Library; it is a funnel, whose top has a diameter of 6 inches; its exposed area is $28\frac{1}{4}$ square inches nearly. The receiving surface of the gauge is 22 feet 4 inches above the ground, and 177 feet 2 inches above the mean level of the sea.

A fifth gauge is planted on the roof of the Photographic Thermometer shed, 10 feet

above the ground, and 164 feet 10 inches above the mean level of the sea. Its construction is the same as that of the third gauge.

A sixth gauge is a self-registering rain-gauge on Crosley's construction, made by Watkins and Hill. The surface exposed to the rain is 100 square inches. collected water falls into a vibrating bucket, whose receiving concavity is entirely above the center of motion, and which is divided into two equal parts by a partition whose plane passes through the axis of motion. The pipe from the rain-receiver terminates immediately above the axis. Thus that part of the concavity which is highest is always in the position for receiving water from the pipe. When a certain quantity of water has fallen into it, it preponderates, and, falling, discharges its water into a cistern below; then the other part of the concavity receives the rain, and after a time preponderates. Thus the bucket is kept in a state of vibration. To its axis is attached an anchor with pallets, which acts upon a toothed wheel by a process exactly the reverse of that of a clock-escapement. This wheel communicates motion to a train of wheels, each of which carries a hand upon a dial-plate; and thus inches, tenths, and hundredths are registered. Sometimes, when the escapement has obviously failed, the water which has descended to the lower eistern has again been passed through the gauge, in order to enable an assistant to observe the indication of the dial-plates without fear of an imperfection in the machinery escaping notice. The gauge is placed on the ground, 21 feet South of the Magnetic Observatory, and 156 feet 6 inches above the mean level of the sea.

The seventh and eighth gauges are placed near together, about 16 feet south of the Magnetic Observatory, 5 inches above the ground, and 155 feet 3 inches above the mean level of the sea. They are similar in construction and area to No. 3. These gauges are sunk about 8 inches in the ground.

Another gauge (the ninth) was established at the end of the year 1875 at the Police ship "Royalist." Its receiving surface is 17 feet above the level of the river. It was brought into use on 1876, January 1.

All these gauges, except No. 8, are read at 21^h daily; in addition, Crosley's gauge and No. 7 are read daily at 9h. No. 8 is read at the end of each month only, to check the summation of the daily readings of No. 7. All are read at midnight of the last day of each month.

§ 23. Electrical Apparatus.

The electrical apparatus consists of two parts, namely, the Moveable Apparatus, which is connected with a pole nearly 80 feet high, planted 7 feet North and 2 feet East of the north-east angle of the north arm of the Magnetic Observatory (as extended in 1862); and the Fixed Apparatus, which is mounted in a projecting window in the ante-room of the Magnetic Observatory.

On the top of the pole is fixed a projecting cap, to which are fastened the ends of two iron rods, which terminate in a pit sunk in the ground, and are kept in tension by attached weights. These rods are to guide the moveable apparatus in its ascents and descents. Near the bottom of the pole is fixed a windlass; the rope upon which it acts passes over a pulley in the cap, and is used to raise the moveable apparatus, which when raised to the top is suspended on a hook.

The moveable apparatus consists of the following parts:—A plank in a nearly vertical position is attached to perforated iron bars, which slide upon the iron rods. On the upper part of this plank is a cubical box. The box incloses a stout pillar of glass, having a conical hollow in its lower part. In the bottom of the box there is a large hole through which a cone of copper passes into the conical hollow of the glass pillar. In the lower part of the box a gas-lamp is placed, by the flame of which the copper cone and the lower part of the glass pillar are kept in a state of warmth. The gas lamp, when accidentally extinguished by the wind or other cause, is relighted by means of a sliding frame, carrying a torch, similar to that of ordinary lamplighters, which can be easily raised to the box; and there are very few losses of electrical indications from the failure of the lamp. A copper wire is fastened round the glass pillar; its end is carried to a similar glass pillar, warmed in the same manner, near the north-western turret of the Octagon room; by this wire, whose length is about 400 feet, the atmospheric electricity is collected. To this wire, near the box, is attached another copper wire (now covered with gutta percha) 0.1 inch in diameter, and about 73 feet long, at the end of which is a hook; a loaded brass lever connected with the fixed apparatus presses upon this hook, and thus keeps the wire in a state of tension, and at the same time establishes the electrical communication between the long horizontal wire and the fixed apparatus.

On 1871, November 17, the box which carries the insulating glass pillar was burnt. It seems possible that this accident was caused by soot deposited during gusty weather, which afterwards caught fire from the lamp. A copper box was substituted for the wooden box on 1872. January 2.

The fixed apparatus consists of these parts:—A glass bar, nearly 3 feet long, and thickest at its middle, is supported in a horizontal position, its ends being fixed in pieces of wood projecting downwards from the roof of the projecting window. Near to each end is placed a small gas-lamp, whose chimney encircles the glass, and whose heat keeps the glass in a state of warmth proper for insulation. A brass collar surrounds the center of the glass bar; it carries one brass rod, projecting vertically upwards through a hole in the roof of the window recess, to which rod are attached a small metallic umbrella and the loaded lever above mentioned; and it carries another rod projecting vertically downwards, to which is attached a horizontal brass

tube in an East and West direction. On the North and South sides of this tube there project four horizontal rods, through the ends of which there pass vertical rods, which can be fixed by serews at any elevation; these are placed in connexion with the electrometers, which rest on the window seat.

The electrometers during the year 1877 consisted of two Volta's Electrometers, denoted by Nos. 1 and 2; a Henley's Electrometer; a Ronald's Spark Measurer; a Dry-pile Apparatus; and a Galvanometer.

Volta 1 and Volta 2 are of the same construction; each is furnished with a pair of straws 2 Paris inches in length; those of the latter being much heavier than those of the former; each instrument is furnished with a graduated ivory scale, whose radius is 2 Paris inches, and it is graduated into half Paris lines. In the original construction of these instruments it was intended that each division of No. 2 should correspond to five of No. 1; the actual relation between them has not been determined by observations at the Royal Observatory. The straws are suspended by hooks of fine copper wire to the suspension-piece, and they are separated by an interval of half a line.

Henley's Electrometer is supported on the West end of the large horizontal tube by means of a vertical rod fixed in it. On each side of the upper part of this rod is affixed a semicircular plate of ivory, whose circumference is graduated; at the centers of these ivory plates two pieces of brass are affixed, which are drilled to receive fine steel pivots, carrying a brass axis, into which the index or pendulum is inserted; the pendulum terminates with a pith ball. The relation between the graduations of this instrument and those of the other electrometers has not been determined. This instrument has seldom been affected till Volta 2 has risen to above 100 divisions of its scale.

The spark measurer consists of a vertical sliding rod terminated by a brass ball, which ball can be brought into contact with one of the vertical rods before referred to, also terminating in a ball; and it can be moved from it or towards it by means of a lever, with a wooden handle. During the operation of separating the balls, an index runs along a graduated scale, and exhibits the distance between the balls, and this distance measures the length of the spark.

The electrometers and the spark measurer were originally constructed under the superintendence of the late Sir Francis Ronalds, but have since received small alterations.

The dry-pile apparatus was made by Watkins and Hill; it is placed in connexion with the brass bar by a system of wires and brass rods. The indicator, which vibrates between the two poles, is a small piece of gold leaf. This instrument is very delicate, and it indicates at once the quality of the electricity. When the inclination of the gold leaf is such that it is directed towards the top of either pile, it remains there as long as the quantity of electricity continues the same or becomes greater: the position is sometimes expressed in the notes by the words "as far as possible."

Kazi ver ripli

129*

Royal Observatory, Greenwich, London, S.E. 18 80.

Sir,

I have the honor to inform you that the publication Royal Observatory, mentioned on the next leaf, presented to

by authority of the Lords Commissioners of the Admiralty, Lac bere forwarded ley Part

I request the favor of an acknowledgment of receipt.

I have the honor to be,

Sir,

Your very obedient Servant,

AMINO County

To P. ciem fa lie le d'ant

The angle which the gold leaf makes with the vertical at this time is about 40°. The action of the dry-pile apparatus was not satisfactory during the year 1877, and its indication of the quality of the electricity was uncertain. In consequence, reference for quality was when possible made to the galvanometer described in the next paragraph.

The galvanometer was made by Gourjon of Paris, and consists of an astatic needle, composed of two large sewing needles, suspended by a split silk fibre, one of the needles of the pair vibrating within a ring formed by 2,400 coils of fine copper wire. The connexions of the two portions of wire forming these 2,400 coils are so arranged that it is possible to use a single system of 1,200 coils of single wire, or a system of 1,200 coils of double wire, or a system of 2,400 coils of single wire: in practice the last has always been used. A small ball communicating by a wire with one end of the coils is placed in contact at pleasure with the electric conductor, and a wire leading from the other end of the coil communicates with the earth. An adjustible circular card, graduated to degrees, is placed immediately below the upper needle; the numeration of its divisions proceeds in both directions from a zero. One of these directions is distinguished by the letter A, and the other by the letter B; and the nature of the indication represented by the deflection of the needle towards A or towards B will be ascertained from the following experiment. A voltaic battery being formed by means of a silver coin and a copper coin, having a piece of blotting paper moistened with saliva between them: when the copper touches the small ball, and the wire which usually communicates with the earth is made to touch the silver, the needle turns towards A; when the silver touches the small ball, and the wire is made to touch the copper, the needle turns towards B.

The glass pillars did not satisfactorily insulate the collecting wire during the present year, and the indications of the instruments were in consequence imperfect. It is intended to supersede them by Thomson's self-recording electrometer, which was supplied, though not brought into a working state, during the present year.

§ 24. Instrument for the Registration of Sunshine.

This dereraphing

The instrument with which the record of duration of sunshine is obtained is one contrived by J. F. Campbell, Esq., and kindly placed by him at the service of the Royal Observatory. It consists of a very accurately formed sphere of glass, nearly 4 inches in diameter, supported concentrically within a well turned hemispherical metal bowl in such a manner that the image of the sun, formal when the sun shines, falls always on the concave surface of the bowl. A strip of some suitable material being fixed in the bowl, the sun, when shining, burns away the material at the points at which the image successively falls, by which means the record of periods of sun-

Sun's rugs at the forces burn

oney the community of the Sun german or one

maxisy Come of rays, at a former, be the

lxic Introduction to Greenwich Meteorological Observations, 1877.

shine is obtained. The strip is removed after sunset, and a new one fixed ready for the following day. Until February 26 white cardboard was used; from February 27. the cardboard was blackened with stencilling ink. Commencing with April 10 blackened millboard was used. The register is frequently much interrupted, continuous sunshine through a whole day being a comparatively rare circumstance. The place of the meridian is marked on the strip before removing it from the bowl. A series of time scales, suitable for different periods of the year, having been prepared, the proper scale is selected and placed against the record, which is then easily transferred to a sheet of paper specially ruled with equal vertical spaces to represent hours, each sheet containing the record for one calendar month. daily sums and sums during each hour through the month are thus readily formed. The instrument gives fairly the duration of sunshine, but (usually) no register is obtained at altitudes of less than 5°. Indeed, on fine days the register, which usually has a certain breadth, tapers off in the early morning and late evening hours to a fine point, thus showing the extent to which registration under the best circumstances is effective. The recorded durations are to be understood as indicating the amount of bright sunshine, no register being obtained when the sun shines faintly through fog or cloud.

§ 25. Ozonometer.

The Ozonometer (furnished by Messrs. Horne and Thornthwaite) is fixed on the south-west corner of the roof of the Photographic Thermometer shed, at a height of about 10 feet from the ground. The box in which the papers are exposed is of wood: it is about 8 inches square, and blackened inside, and so constructed that there is free circulation of air through the box, without exposure of the paper to light. The papers are exposed and collected at 21^h, 3^h, and 9^h, and the degree of tint produced is compared with a scale of graduated tints, numbered from 0 to 10. The value of ozone for the civil day is determined by taking the degree of tint obtained at each hour of collection as proportional to the period of exposure. Thus to form the values for any given civil day, three-fourths of the value registered at 21^h, the values registered at 3^h and 9^h, and one-fourth of that registered at the following 21^h, are added together, the resulting sum (which appears in the tables of "Daily Results") being taken as the value referring to the civil day. The mean of the 21^h, 3^h, and 9^h values, as observed, are also given for each month in the foot notes.

§ 26. Explanation of the Tables of Results of the Meteorological Observations.

The results contained in this section refer generally to the civil day commencing at midnight.

Sectable

Registratur

Which sisten

was also

Conta very

It for the year

British to year

Son correspondence

was stein wed

Time laine

Profosent to Swenwich.to

have the Golan

hegister 44
Themelos. Profes
Sent to me.

ar Indday looks

hi

Rayal (Isernatory, Greenwich, Landan, J. C. 1880. February 20 in regard to sunshing Sometions we could give you for a year the daily duration of smotive with the interest during which the son was above the horison would this suit your purpose ? To would take a considerable time to impare a hanserfat of the spaint jentions peculiar to Each day. I' am dear Sin yours very huly William Elles for the Astronoma Royal

lempale En.

 $rac{t}{t} = rac{t}{k!} rac{t}{n!} ra$

, so far as relates to the Barometer, and the oration, and to deductions made therefrom ind minimum temperature), are founded upon nto which the readings from the photographic a double argument, the horizontal argument ivil day, and the vertical argument through eans of the numbers standing in the vertical be mean monthly photographic values of the day, the means of the numbers in the horiralue. To correct the values for instrumental ndard barometer and the standard dry-bulb Observatory are <u>read_by_eye</u> at 21^h, 0^h, 3^h, ys and a few other days. The comparison perature in the case of the barometer) with photographs, gives the correction applicable se hours. The mean correction at each of month, corrections are interpolated for the plied to the corresponding means of the at each hour is obtained. The mean of the month is adopted as the correction applicable 1. Thus mean hourly and mean daily values mth obtained.

photographic barometer (already described), that the basement temperature is maintained I on the photographic record by changes of e corrections can, without sensible error, be ed. As regards the dry-bulb and wet-bulb m is equivalent to giving the photographic cy-bulb and wet-bulb thermometers exposed

ometer, and of the dry-bulb and wet-bulb on temperatures, found in the way described, lts of the Meteorological Observations." The ng tables (pages (lii) and (liii)).

the air and of evaporation are deduced, by use of Glaisher's Hygrometrical Tables, the mean daily temperature of the dew-point and degree of humidity. The factors used for calculating the dew-point given in these tables were found by Mr. Glaisher from the comparison of a great number of dew-point determinations, obtained by use of Daniell's hygrometer, with simultaneous observations of dry-bulb and wet-bulb thermometers. The first part of this investigation

GREENWICH MAGNETICAL AND METEOROLOGICAL OBSERVATIONS, 1877.

and 1 as V: and: to Ele a au They a by the The la Thoya mithe the P hear table my o May retur Stary

> If S high Elamy had

3 .

Though

shine is obtained. The strip is removed after s the following day. Until February 26 white ca the cardboard was blackened with stencilling blackened millboard was used. The register tinuous sunshine through a whole day being The place of the meridian is marked on the sti A series of time scales, suitable for differen prepared, the proper scale is selected and place easily transferred to a sheet of paper speciall represent hours, each sheet containing the i daily sums and sums during each hour through The instrument gives fairly the duration of s obtained at altitudes of less than 5°. usually has a certain breadth, tapers off in the to a fine point, thus showing the extent to v cumstances is effective. The recorded duratic the amount of *bright* sunshine, no register being through fog or cloud.

§ 25. Ozonom

The Ozonometer (furnished by Messrs. Horr south-west corner of the roof of the Photogr of about 10 feet from the ground. The box wood: it is about 8 inches square, and black there is free circulation of air through the b light. The papers are exposed and collected tint produced is compared with a scale of gra. The value of ozone for the civil day is dete obtained at each hour of collection as prof. Thus to form the values for any given e registered at 21h, the values registered at 3h; tered at the following 21h, are added togethin the tables of "Daily Results") being taken: The mean of the 21h, 3h, and 9h values, as obse in the foot notes.

§ 26. Explanation of the Tables of Results of the Meteorological Observations.

The results contained in this section refer generally to the civil day commencing at midnight.

All results throughout the section, so far as relates to the Barometer, and the Temperature of the Air and Evaporation, and to deductions made therefrom (excepting observations of maximum and minimum temperature), are founded upon the photographic records. The form into which the readings from the photographic sheets were first entered is one having a double argument, the horizontal argument ranging through the 24 hours of the civil day, and the vertical argument through the days of a calendar month. The means of the numbers standing in the vertical columns being then taken, we obtain the mean monthly photographic values of the particular element at each hour of the day, the means of the numbers in the horizontal columns giving the mean daily value. To correct the values for instrumental error it is to be remarked that the standard barometer and the standard dry-bulb and wet-bulb thermometers of the Observatory are read by eye at 21h, 0h, 3h, and 9h of every day, except on Sundays and a few other days. The comparison of these readings (corrected for temperature in the case of the barometer) with the corresponding readings from the photographs, gives the correction applicable to the photographic readings at those hours. The mean correction at each of these hours being taken through a mouth, corrections are interpolated for the intermediate hours, which being applied to the corresponding means of the photographic readings, the true value at each hour is obtained. The mean of the twenty-four hourly corrections in each month is adopted as the correction applicable to each mean daily value in the month. Thus mean hourly and mean daily values for the several elements are in each month obtained.

Considering the construction of the photographic barometer (already described), and having regard to the circumstance that the basement temperature is maintained so nearly uniform, the effect produced on the photographic record by changes of temperature is very small, so that the corrections can, without sensible error, be grouped by months in the way described. As regards the dry-bulb and wet-bulb thermometers, the process of correction is equivalent to giving the photographic indications in terms of the standard dry-bulb and wet-bulb thermometers exposed on the free stand.

The mean daily values of the barometer, and of the dry-bulb and wet-bulb thermometers, giving air and evaporation temperatures, found in the way described, are those inserted in the "Daily Results of the Meteorological Observations." The mean hourly values are given in following tables (pages (lii) and (liii)).

From the mean daily temperatures of the air and of evaporation are deduced, by use of Glaisher's Hygrometrical Tables, the mean daily temperature of the dew-point and degree of humidity. The factors used for calculating the dew-point given in these tables were found by Mr. Glaisher from the comparison of a great number of dew-point determinations, obtained by use of Daniell's hygrometer, with simultaneous observations of dry-bulb and wet-bulb thermometers. The first part of this investigation

Greenwich Magnetical and Meteorological Observations, 1877.

and Therefore as I Supposed and Supposed to Eleis in Suly or argust 1679. They are touchight by the lamp. Though are infant higher Since the Pholograph hours. See tables and my diagram water in 1879. Veturned by Stanfard manch 3. 1880 —

Post the Spect of the lamp heart heart hought of the laws appears

was published in full, in the volume of Magnetical and Meteorological Observations for 1844, pages 67–72; it was based upon all the observations made up to that time. Subsequently, the comparison was extended to include all the simultaneous observations of these instruments made at the Royal Observatory, Greenwich, from 1841 to 1854, with some observations taken at high temperatures in India, and others at low and medium temperatures at Toronto. The results at the same temperature were found to be the same at these different localities, so far as the climatic circumstances permitted comparison.

The following table exhibits the result of the entire comparison.

Table of Factors by which the Difference of Readings of the Dry-Bule and Wet-Bule Thermometers is to be Multiplied in order to produce the Difference between the Readings of the Dry-Bule and Dew-Point Thermometers.

Reading of Dry-bulb Thermometer.	Factor.	Reading of Dry-bulb Thermometer.	Factor.	Reading of Dry-bulb Thermometer.	Factor.	Reading of Dry-bulb Thermometer.	Factor.
0	8.78	33	3.01	56	1:04	0	1.69
11	8.78	3.4		5 ₇	1.94	79 80	1.68
12	8.78	34 35	2.77	57 58	1,00	81	1.68
13		36	2.20	59	1.89	82	1.67
	8.77	37		60	1.88	83	1.67
14 15	8.75	38	2 42	61	1.87	84	1.66
16			2.32	62	1.86	85	
	8.70 8.62	39	1	63	1.85	86	1.65
17		40	2 1		1.83		1.65
18	8:50	4 I	2 26	64		87	1.64
19	8:34	12	2.23	65	1.82	88	1.64
20	8.14	43	2.30	66	1.81	89	1.63
2 I	7.88	44 45	2.18	67	1.80	90 +	1.63
22	7.60	45	2.16	68	1.49	91	1.62
23	7:28	4 6	2'14	69	1.48	92	1.62
2.4	6.92	47	5,15	70	1.77	93	1.61
25	6.23	48	2.10	-1	1.76	94	1.60
26	6.08	49	2.08	72	1.72	95	1.60
27	5.61	50	2.06	73	1.24	96	1.29
28	5.13	51	2.04	74	1.73	97	1.59
29	4.63	52	2.03	75	1.72	98	1.28
30	4'15	53	2.00	76	1.71	99	1.28
31 32	3.70	5 ₄ 55	1.08	77 78	1.40	100	1.57

In the same way the mean hourly values of the dew-point and degree of humidity in each month (pages (liii) and (liv)) have been calculated from the corresponding mean hourly values of air and evaporation temperatures (pages (lii) and (liii)).

The excess of the mean temperature of the air on each day above the average of 20 years, given in the "Daily Results," is found by comparing the numbers contained in column 6 with a table of average daily temperatures found by smoothing the numbers given in Table LXXVII. of the lately published "Reduction of

Greenwich Meteorological Observations, 1847–1873," which are similarly deduced from photographic records. The smoothed numbers are given in the following table.

Smoothed Table of the Mean Temperature of the Air as deduced from Twenty-four Hourly Readings on each Day for every Day of the Year as obtained from the Photographic Records for the Period 1849-1868.

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Day of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	37.9 37.7 37.6 37.6 37.7 37.7 37.7 37.7 38.1 38.3 38.4 38.3 38.4 38.9 39.1 39.3 39.3 39.6 39.7 39.9 40.0 40.1 40.1 40.1 40.1 40.1 40.1 40.1	40'5 40'7 40'7 40'7 40'7 40'1 40'2 39'9 39'6 39'3 38'8 38'7 38'8 38'9 39'0 39'0 39'7 39'8 39'9 40'0 40'1 40'2	+0°3 +0°5 +0°5 +0°5 +0°5 +0°6 +0°6 +0°7 +0°8 +0°9 +1°0 +1°2 +1°3 +1°4 +1°4 +1°5 +1°6 +1°7 +1°8 +1°3 +1°3 +1°8 +2°6 +3°8 +3°8 +3°8 +3°8 +4°8	+5'7 +6'4 +6'6 +6'78 +6'8 +6'9 +7'0 +7'1 +7'5 +7'8 +7'5 +7'8 +8'1 +8'2 +8'3 +8'4 +8'4 +8'5 +8'6 	48'9 49'1 49'7 50'0 50'6 50'8 51'1 51'4 51'5 52'5 52'5 53'7 54'1 54'1 54'7 55'0 55'5 55'7 55'9 56'3 56'8 57'0 57'3	57:5 57:7 58:1 58:1 58:3 58:4 58:5 58:5 58:6 58:7 58:6 58:7 58:6 60:2 60:5 60:0 61:4 61:7 61:8 61:7	61:5 61:4 61:3 61:7 61:9 62:2 62:5 62:7 62:9 63:1 63:4 63:4 63:5 63:4 63:5 63:4 63:5 63:4 63:5 63:7 62:7 62:7 62:7 62:6 62:6	62:6 62:7 62:7 62:7 62:7 62:7 62:7 62:7	60°1 60°0 59°8 59°7 59°7 59°3 58°3 58°1 58°0 57°8 57°6 57°1 56°8 56°6 56°4 56°4 56°4 55°9 55°7 55°7 55°7 55°7 55°7	54'7 54'4 54'6 53'7 53'4 53'7 52'7 52'7 52'3 52'1 51'9 51'4 51'3 51'4 51'3 51'4	47'0 46'4 46'0 45'0 45'2 44'7 44'3 43'4 43'0 42'0 41'0 41'0 41'0 41'0 40'0 40'0 40'0 40	41°5 41°8 42°1 42°4 42°6 42°7 42°8 42°8 42°8 42°5 42°5 41°5 40°2 40°2 40°2 40°2 40°3 39°3 39°3 39°3 39°3 39°3 38°5 38°5 38°5 38°5 38°5

The daily register of rain contained in column 20 is that recorded by the gauge No. 7, whose receiving surface is 5 inches above the ground. This gauge is usually read at 21^h and 9^h. The continuous record of Osler's self-registering gauge shows whether the amounts measured at 21^h are to be placed to the same, or to the preceding civil day; and in cases in which rain fell both before and after midnight,

also gives the means of ascertaining the proper proportion of the 21^h amount which should be placed to each civil day. The number of days of rain given in the foot notes and in the abstract tables, pages (li) and (lxii), is formed from the records of this gauge. In this numeration only those days are counted on which the fall amounted to or exceeded 0ⁱⁿ·005.

For understanding the divisions of time under the heads of Electricity and Clouds and Weather, the following remarks are necessary:—The day is divided by columns into two parts (from midnight to noon, and from noon to midnight), and each of these parts is subdivided into two or three parts by colons (:). Thus, when there is a single colon in the first column, it denotes that the remarks before it apply (roughly) to the interval from midnight to 6 a.m., and those following it to the interval from 6 a.m. to noon. When there are two colons in the first column, it is to be understood that the twelve hours are divided into three nearly equal parts of four hours each. And similarly for the second column. The exhibition of Electricity during the year 1877 was so scanty that the indications have been included in one column; in this case the colons subdivide the whole period of 24 hours (midnight to midnight).

The following is the explanation of the notation employed for record of electrical observations, it being premised that the quality of the Electricity is always to be supposed positive when no indication of quality is given:—

g-cur	denote	s galvanic currents	s der	iote	s strong
m		moderate	sp		sparks
N		negative	v		rariable
P		positive	W.		weak

The duplication of the letter denotes an intensity of the modification described, thus, s s is very strong; v v, very variable.

The action of the apparatus was by no means satisfactory during this year, great difficulty being experienced in maintaining proper insulation of the collecting wire, as has been already mentioned. In the mouth of August the insulation altogether failed, and the use of the apparatus was entirely discontinued. It is proposed to supersede it by the Thomson's self-recording Electrometer, to which reference has already been made.

The Clouds and Weather are described generally by Howard's Nomenclature; the figure denotes the proportion of sky covered by clouds, the whole sky being represented by 10. The notation is as follows:

a denote:	s aurora borealis	ci-s denotes cirro-stratus	
ci	virrus	en cumulus	
ei-eu	cirro-cumulus	cn-s cumulo-stratus	;

d de	notes	dev	m-r e	lenotes	misty rain
1i-cl		heavy dew	fr-1n-1		irequent misty rain
f		fog	()C-111-1		occasional misty rain
sl-f		slight fog	81-1		slight vain
tlı-f		thick fog	oc-sl-1		occasional slight rain
fr		frost	h-shs		heavy showers
g,		gale	fr-slis		frequent showers
h-g		heavy gale	${\it fr-li-shs}$		frequent heavy showers
$_{\mathrm{glm}}$		gloom	li-shs		light showers
gt-glm		great gloom	oc-shs		occasional showers
h-fr		hour frost	oc-h-shs		occusional heavy showers
h	• • •	haze	sq		squall
hl		hail	sqs		squalls
so-ha	• • •	solar halo	fr-sqs		frequent squalls
1		lightning	h-sqs		heary squalls
li-cl		light clouds	fr-h-sqs		frequent heavy squalls
lu-co		lunar corona	oc-sqs		occasional squalls
lu-ha		lunar halo	sc		scud
mt		mist	li-sc		light scud
sl-mt	•••	slight mist	sl		sleet
\mathbf{n}		nimbus	811		81101V
ľ		rain	oc-sn		occasional snow
th-r	• • •	thin vain	sl-sn		slight snow
oc-r	• • •	occasional rain	s		stratus
oc-th-1	• • • •	occasional thin rain	t		thunder
fr-r		frozen rain	t-s		thumler storm
h-r		heavy rain	tlı-cl		thin clouds
sh-r	• • •	shower of rain	v		variable
$\operatorname{shs-r}$		showers of rain	vv		very variable
C-1		continued rain	W -		wind
6-31-3.	•••	continued heavy rain	st-w		strong wind

No particular explanation of the anemometric results seems necessary. It may be understood generally that the greatest pressures usually occur in gusts of short duration.

The remaining columns in the tables of "Daily Results" seem to require no special remark; all necessary explanation regarding the results therein contained will be found in the notes at the foot of the left-hand page, or in the descriptions of the several instruments given in preceding sections.

In regard to the comparisons of the extremes and means, &c. of meteorological

elements with average values contained in the foot notes, it may be mentioned that the photographic barometric results are compared with the corresponding barometric results, 1854–1873, and the photographic thermometric results and deductions therefrom with the corresponding thermometric results, 1849–1868 (see "Reduction of Greenwich Meteorological Observations 1847–1873"). Other deductions, from eye observations, are compared with averages for the period 1841–1876.

The tables of Meteorological Abstracts, following the Tables of "Daily Results," require no special explanation.

§ 27. Observations of Luminous Meteors.

In arranging for the observations of meteors, the directions circulated by the Committee of the British Association have received careful attention. On the nights specially mentioned in the directions systematic watch has been kept whenever the weather was sufficiently favourable. These nights are, January 2, and 15 to 19; February 10 and 19; March 1 to 4 and 18; April 20, and 25 to 30; May 18; June 6 and 20; July 17, 20, and 29; August 3 and 7 to 13 (especially August 10); September 10; October 1 to 6 and 16 to 23; November 12 to 14, 19, 28, and 30; December 6 to 14 (especially December 11) and December 24.

Special arrangements were made in the August and November periods for observing through the night, two observers being usually charged with the observations at these times, so that observations of all meteors that should present themselves might be secured.

The observers in the year 1877 were Mr. Ellis, Mr. Nash, Mr. Greengrass, Mr. Power, Mr. James, Mr. Hugo, and Mr. Simmons. Their observations are distinguished by the initials E., N., G., P., J., H., and S., respectively. One observation with the initial M. was made by Mr. Maunder.

§ 28. Details of the Chemical Operations for the Photographic Records.

The paper used in 1877 was principally furnished by Whatman.

First Operation.—Preliminary Preparation of the Paper.

The chemical solutions used in this process are the following:—

- (1.) Sixteen grains of fodide of Potassium are dissolved in one ounce of distilled water.
- (2.) Twenty-four grains of Bromide of Potassium are dissolved in one ounce of distilled water.

(3.) When the crystals are dissolved, the two solutions are mixed together, forming the bromo-iodising solution. The mixture will keep through any length of time. Immediately before use, it is filtered through filtering paper.

A quantity of the paper, sufficient for the consumption of several weeks, is treated in the following manner, sheet after sheet.

The sheet of paper is pinned by its four corners to a horizontal board. Upon the paper, a sufficient quantity (about 50 minims, or $_{48}^{5}$ of an ounce troy) of the bromo-iodising solution is applied, by pouring it upon the paper in front of a glass rod, which is then moved to and fro till the whole surface is uniformly wetted by the solution. Or, the solution may be evenly distributed by means of a camel-hair brush.

The paper thus prepared is allowed to remain in a horizontal position for a few minutes, and is then hung up to dry in the air; when dry, it is placed in a drawer, and may be kept through any length of time.

Second Operation.—Rendering the Paper sensitive to the Action of Light.

A solution of Nitrate of Silver is prepared by dissolving 50 grains of crystallized Nitrate of Silver in one ounce of distilled water. Since the magnetic basement has been used for photography, 15 grains of Acetic Acid have always been added to the solution.

Then the following operation is performed in a room illuminated by yellow light.

The paper is pinned as before upon a board somewhat smaller than itself, and (by means of a glass rod, as before,) its surface is wetted with 50 minims of the Nitrate of Silver solution. It is allowed to remain a short time in a horizontal position, and, if any part of the paper still shines from the presence of a part of the solution unabsorbed into its texture, the superfluous fluid is taken off by the application of blotting paper.

The paper, still damp, is immediately placed upon the cylinder, and is covered by the exterior glass tube, and the cylinder is mounted upon the revolving apparatus, to receive the spot of light formed by the mirror, which is carried by the magnet; or to receive the line of light passing through the thermometer tube.

Third Operation.—Development of the Photographic Trace.

When the paper is removed from the cylinder, it is placed as before upon a board, and a saturated solution of Gallic Acid, to which a few drops of Aceto-Nitrate of Silver are occasionally added, is spread over the paper by means of a glass rod, and this action is continued until the trace is fully developed. The solutions are kept in the magnetic basement, and are always used at the temperature of that room. When

Legii Introduction to Greenwich Meteorological Observations, 1877.

the trace is well developed, the paper is placed in a vessel with water, and repeatedly washed with several changes of water; a brush being passed lightly over both sides of the paper to remove any crystalline deposit.

Fourth Operation.—Fixing the Photographic Trace.

The Photograph is placed in a solution of Hyposulphite of Soda, made by dissolving four or five onnees of the Hyposulphite in a pint of water; it is plunged completely in the liquid, and allowed to remain from one to two hours, until the yellow tint of the lodide of Silver is removed. After this the sheet is washed repeatedly with water, allowed to remain immersed in water for 24 hours, and afterwards placed within folds of cotton cloths till nearly dry. Finally it is either ironed, or placed between sheets of blotting-paper and pressed.

§ 29. Personal Establishment.

The personal establishment during the year 1877 has consisted of William Ellis, Esq., Superintendent of the Magnetical and Meteorological Department, and William Carpenter Nash, Esq., Assistant.

Three or four computers have usually been attached to the Department.

Royal Observatory, Greenwich, 1879, July 30.

G. B. AIRY.

ROYAL OBSERVATORY, GREENWICH.

RESULTS

OF

MAGNETICAL OBSERVATIONS.

1877.

ROYAL OBSERVATORY, GREENWICH

REDUCTION

OF THE

MAGNETIC OBSERVATIONS.

1877.

Table I.—Mean Western Declination of the Magnet on each Astronomical Day, as deduced from the Mean of Twentyfour Hourly Measures of Ordinates of the Photographic Register on that Day.

						1877.			_			
Days of	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December
Month.	18~	18	18°	180	18	18°	18°	180	18"	180	18	18°
i.	6ó·1	60.6	62.1	6ó·5	58·7	57.8	55.8	. 56.0	55·5	56.2	53.2	5 (:0
2	61·i	61.2	61.3	60.3	56.8	57.4	55.8	56.8	55.8	54.6	53.1	54.0
3	61.3	60.8	61.0	60.4	58.4	57.3	55.4	56.1	55.0	54.7	54.3	54.7
4 5	61.8	61.4	61.5	65.6	58.7	57.1	56.3	56.1	55.4	54.3	53.9	54.5
	61.2	61.1	61.4	61.1	58.6	57.2	56.4	55.8	55.6	54.7	52.9	53.2
6	61.1	61.0	61.3	60.6	58.6	58.1	56.0	55.4	55.8	54.9	53.7	53.4
7	61.1	60.7	61.1	60.9	59*2	57.6	36.6	54.9	55.8	54.4	53.8	53.9
8	60.7	60.7	61.8	59.4	58.6	57'4	57'1	54.3	55.8	54.9	52.9	53.7
9	61.2	61.0	61.8	59.1	57.8	56.5	57.3	55.1	55.9	55.2	52.5	53.7
10	61.3	60.5	61.6	59.7	57.4	57.0	56.3	55'2	55.4	55.1	53.3	53 9
11	62.8	61.2	61.3	59.8	58.4	56.5	56.6	55.8	55.6	56· ∔	53.4	53.9
12	61.0	61.3	61.5	59.9	56.5	57.5	56.3	53•5	55.3	55.8	53.6	54.5
13	60.9	60.6	60.2	5g · g	55.6	57.8	56.0	55.3	55.1	54.8	53.7	54.1
14	60.0	60.5	60.7	59.1	56.3	57.9	55.6	54.8	54.9	24.5	53.2	53.9
15	60.3	61.3	61.3	60.4	56.8	57.3	55.8	54.6	55.0	548	53.3	53.5
16	60.5	61.2	61.7	59.7	57.0	57.7	56.0	55.0	54.8	54.7	53.7	53.7
17	60.7	60.9	61.2	59•5	57.6	57.8	35 . 9	55.6	54.8	54.2	53.2	53.4
18	60.4	61.3	61.0	58.8	57:1	57.0	56.1	55.3	53.9	54.8	53.5	53.5
19	60.7	61.0	61.5	59.4	56.7	56.5	55.7	55.0	55.6	54·2	51.7	53.4
20	61.6	61.0	61.3	59.4	57.7	56.9	55.3	53.6	54.4	54.1	54.4	53 1
2 1	60.0	60.8	61.3	28.9	58.5	57.4	56.2	54.9	56.1	23.8	53.2	53.2
2 2	61.0	60.4	61.1	58.8	57.8	56.6	22.0	55.6	56.4	53.5	53.6	53.5
23	61.0	60.5	61.8	60.4	57.8	57.3	55.1	55.6	55.8	23.0	52.8	53.9
2 4	61.4	59.4	60.6	58.8	58.3	58.3	22.0	56.2	56.0	24,4	53.8	24.0
25	60.5	50.8	61.4	58.9	57:3	57.6	55.9	55.3	55.7	54.4	54.5	53.4
26	61.4	60.4	61.2	5g·1	57.5	56·9	55.8	24.9	55.5	54.1	53.4	53.7
27	61.6	61.3	60.8	59.0	57'1	56.9	56.1	55.4	55.5	53.9	53.4	53.5
28	60.8	61.3	65∙5	59.5	54.2	58.3	56.1	55.5	35.3	54.0	53.4	53.3
29	61.3		59.7	59.3	59.5	57.7	55.7	57.0	55.4	23.4	53.4	53.0
30	61.1		60.3	28.9	57.9	57.7	54.4	26.1	54.7	54.3	53.5	52.0
31	60.6		61.3	į	57.3		55.0	56.1		24.8		53.5

Table II.—Mean Monthly Determination of the Western Declination of the Magnet at every Hour of the Day; obtained by taking the Mean of all the Determinations at the same Hour of the Day through the Month.

						1877.						
wich Sobur	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
Hour, Greenwich Mem Solar Time,	18"	18°	18°	18°	180	18°	18°	18	180	18.	185	18°
h O	62.9	63.6	65.5	63.7	6 í·5	61.3	5g·8	60.4	60.0	58.2	56.4	55.6
1	63.5	64.0	66.1	65.1	62.3	62.3	61.1	61.3	60.2	58.8	56.4	55.3
2	63.1	63.7	65.6	64.8	63.0	62.4	61.3	60.9	59'7	58.0	55.3	54.7
3	62.3	62.7	64.3	63.0	61.1	61.8	60.7	59.3	57.9	56.6	54'2	54.3
4	62.1	61.7	62.3	61.6	60.3	60.6	59.4	57.6	56.3	55:4	53.8	24.1
5	61.7	61.5	61.1	60.8	5g•3	5914	581	56.1	55.6	55.0	53.3	53.6
6	61.4	60.8	61.3	5915	58.6	58.6	57.1	55.4	55.6	54*7	53.0	53.5
7	60.0	60.4	60.6	5g*I	58.0	5719	56.4	55'2	55 ' 4	54.3	52.7	53.1
8	60.0	5917	60.0	58.9	5715	27.0	56.0	551	551	53.9	52.3	52.6
9	57.2	5915	59'7	53.7	5,0	57.3	55.6	55.0	55.0	53.6	52.4	52'4
10	591	59:6	5917	58.7	56.8	56.8	55.2	54.5	54.6	53.6	52'1	52.3
11	5912	20.4	59.4	58.6	56.4	56.5	55.0	54.3	54.1	53.4	52.3	52.6
1.2	5,75	5913	5917	53.7	56.0	56.4	54.8	54.3	54.1	53.5	52.5	52.8
13	60.1	59.8	60.5	59.0	55-9	56.4	54.6	54.0	54.1	53.5	5217	52'9
14	60.6	65.1	60.5	58.8	56.3	56.0	24.4	53.9	53.8	53.5	52.9	53.5
15	61.5	60.1	65·3	58.5	56.5	55.7	54'4	54.1	53.7	53.6	52.9	53.5
16	61.1	60.3	60.1	584	56.2	5512	53.9	53.8	53.7	53.8	52.8	53.7
1."	6019	60.1	60.5	58.3	55.5	54.2	53.0	52.9	53.5	53.8	52.7	53.5
18	61.0	6c.1	60.1	5717	54.9	53.5	52.2	521	53 ·3	53.6	52.6	53.4
10	608	60.1	60.0	56.8	54:5	5312	51.9	51.6	53.0	53.4	52'7	53:5
20	604	60°C	5914	56:3	5414	53.6	52.0	21.8	52.7	52.8	52.7	53:5
2 1	60.4	20.0	59.4	56·g	55.0	5415	53.1	53.4	53.9	52.7	52*9	547
2.2	61.0	60.9	60.8	58.6	56.7	56.5	55*2	55.7	56·1	53.9	54*2	54.8
2.3	62.0	62	63.4	61.5	5913	59.1	57.6	28.4	58.4	56.2	55.7	55.2

Table	III.
-------	------

	1877.		
Month.	MEAN WESTERN DECLINATION of the MAGNET IN EACH MONTH.	Excess of Western Declination above 18, converted into Westerly Force, and expressed in terms of Gauss's Unit measured on the Metrical System.	MONTILLY MEANS of all the Actual DICKAL RANGLS of the WESTERN DECLINATION, as deduced from the Twenty-four Ilourly Measures of each day.
	0 /		,
January	19. 1'0	0.03100	6.0
February	19. 0.8	·03180	6.2
March	19. 1.2	.03201	9*4
April	18. 5g•6	•03117	10.0
May	18. 57.6	.03013	g•6
June	18. 57*4	*o3oo2	9.9
July	18. 55.9	*02924	10.5
August	18. 55 · 5	*02903	10.3
September	18. 55.4	*02897	9.5
October	18. 54.6	·02856	7.2
November	18. 53.4	.02793	6.5
December	18. 53.7	.02809	4.3
Mean	18. 57.2	0.03990	8.5

The unit adopted in column 3 is the Millimètre-Milligramme-Second Unit. To express the forces on the Centimètre-Gramme-Second (C.G.S.) system, the numbers must be divided by 10, equivalent to shifting the decimal point one step towards the left.

Table IV.—Mean Horizontal Magnetic Force, expressed in terms of the Mean Horizontal Force for the Year, and diminished by a Constant (0.86000 nearly), uncorrected for Temperature, on each Astronomical Day; as deduced from the Mean of Twenty-four Hourly Measures of Ordinates of the Photographic Register on that Day.

1877.												
Days of the Month.	January.	February.	March.	April.	May.	June,	July.	August.	September.	October.	November.	December.
d I	0'12701	0.12724	0.13643	0.12612	0.13620	0.12788	0.12772	0.12248	0.12608	0.15268	0'12823	0.15853
2	12697	12711	12654	12636	12572	12832	12755	12602	12627	12612	12797	12861
3	12743	12678	12671	12641	12543	12727	12761	12679	12615	.12640	12731	12821
-	12705	12672	12648	12623	12575	12721	12727	12643	12651	12619	12779	12021
4 5	.12816	12688	12655	12643	12572	12757	12726	12587	12625	12632	12749	12747
6	·1263g	12670	.12668	12644	12564	12798	12742	12583	12621	12631	12743	12830
7	12692	*12681	12637	12663	12560	12761	12745	12675	12641	12664	12720	12789
8	12703	12675	12637	.12636	12533	12729	12711	12769	12615	12627	12678	12817
9	12702	12654	12645	12643	12507	12736	12690	12719	12605	12657	12729	12863
10	12665	12685	12516	12650	12531	12730	12683	12712	12634	*12675	12717	12835
11	12690	12633	12595	12675	112539	12795	126gS	12758	12680	12622	12794	12839
12	12732	12647	12621	126-7	12585	12677	12713	12751	.12662	.12718	12804	12755
13	12750	12623	.12628	12708	12598	12625	12730	12777	.12648	12735	12823	12783
14	12-32	.12621	12620	12685	.12622	12550	12745	12727	12719	12664	12802	12788
15	12670	.15618	.12661	.12622	.12658	12577	12791	12725	12659	12644	.12811	12811
16	.13663	12623	.15661	12636	.12726	12582	12764	12722	12671	.12696	12765	12780
17	12715	.12628	12672	.15991	12697	12579	12770	.12684	12704	12733	12814	12845
18.	12733	.12673	12686	.12674	12678	12530	12775	.12638	12625	.13810	12825	12800
19	12,30	12622	.12672	12708	12722	12570	12729	12662	12575	.12820	12797	12810
20	12722	.15613	.12686	.13688	.12762	12599	12708	.12664	12638	.12813	12739	12828
2 1	12,46	.13661	12675	12707	12730	12605	12694	.12668	.12620	12833	.12823	12847
22	12745	.12653	.12638	12,00	12735	.13600	12685	12672	.12641	.12837	.12826	12850
23	12635	.15998	.15015	.12635	12693	.13608	12675	12657	.12614	12778	12848	12810
2 +	12653	12689	.12601	12643	12721	12549	*12627	·12698	12597	.13688	12780	12797
25	.12623	12665	12617	12633	.13686	12725	12665	.15811	.15215	12-20	12766	*12791
26	°12639	.12669	.12620	12658	12720	12753	.1 2660	.15803	12587	12,51	12832	12794
2 7	12645	12635	.12636	12662	12707	.12735	.12629	12826	.13603	.12753	.12848	.15815
28	12671	12663	.12641	12637	.15981	12712	12705	12655	.12623	12736	12843	.12803
29	12685		.12622	12670	12654	.15628	12636	12573	12632	.12753	12836	.12849
30	12674		.15610	.13646	.12254	*12744	12632	·12637	12649	12721	.15808	°12850
31	.12675		.15951		12747		12597	.13613		12776		·12S20

Table V.—Dahly Means of Readings (usually eight on each Day) of the Thermometer placed on the box inclosing the Horizontal Force Magnetometer, for each Astronomical Day.

						187	-					
Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September,	October.	November.	December.
d l	62.0	63.5	61°7	63:4	62.0	63.6	66.8	69.8	65°7	65.3	63.5	62.5
2	61.6	62.3	62.4	63.7	63.1	62.6	67.0	68.0	65.4	65.1	62.9	62.3
3	62.2	62.2	63.1	64.7	62.8	67.3	67.0	68.0	66.0	63.0	62.7	62.3
	62.9	62.3	61.7	64.9	62.4	67.0	67.1	69.1	65.6	64.2	62.4	62.5
1 3	61.7	63.1	61.9	64.0	62.6	65.5	66.0	71*2	65.7	64.5	63.8	62.1
6 .	61.2	63.7	61.0	63.7	63.3	64.3	65.8	72.6	65.7	64.8	64.9	62.5
7	62.2	63.8	61.9	63.4	63.9	64.3	65.6	71.3	65.3	64.0	6+7	62.1
8	63.2	63.4	62.2	63.6	64.8	65·a	65.8	69.1	64.8	63.9	64.2	62.3
9	62.4	63.7	62.6	64.4	65.6	67.2	62	69.1	65 .7	63.3	63.9	60.6
10	62.1	63.6	61.9	63.6	651	68.2	68.9	68.3	66.5	63:-	63.3	60.3
11	60.9	62.3	61.0	63.3	64.4	68.9	69.2	67.6	67:3	64.5	61.3	61.3
12	59.8	63.0	62.2	63.2	64.2	68	68.6	67.9	67.7	64.1	61.4	61.1
13	60.6	63.5	62.8	62.9	64.3	66.3	68.7	69.2	67.9	64.7	60.5	60.8
14	61.3	63.9	63.0	63.1	64.6	66.8	69.2	70.3	68.1	66.0	61.8	60.7
15	61.9	63.9	62.4	61.3	64.4	66	67-8	70.0	66.8	64.2	63.5	61.4
16	63.3	63.1	61.6	60.9	64.6	67.3	67.9	71'2	651	62.5	63.3	62.1
17	62.9	62.4	61.9	62.1	64.0	68.8	67.3	70.2	65.2	61.3	62.2	61.1
18	62.7	62.9	20.1	62.3	64.4	69.7	67.4	70.8	65.8	61.3	61.4	61.7
19	63.1	62.0	62.1	62.4	6+5	69'9	67.5	73.2	65.5	62.4	61.5	61.5
20	62.6	61.6	62.5	62.3	63.2	69.0	6,6	73.5	63.8	63.8	60.7	62.1
21	58.4	61.5	61.8	62.7	62.3	68.9	63.5	71.8	61.7	64.1	61.6	62.3
2 2	58.7	62.1	62.6	63.6	63.0	68.5	69.6	69.6	62.5	63.7	60.7	62.2
23	61.7	62.7	63.1	63.5	62.7	67.2	70.3	67.2	62.9	63.3	59.8	61.5
2 +	63.2	62.3	63.7	62.7	63.0	66.6	60.8	67.2	63.8	63.8	61.0	61.0
25	63.8	62.0	63.3	62.5	64.0	66.9	69.8	6,-·S	64.6	64.1	60.8	60.9
26	62.2	61.4	63.6	61.9	63.8	67.3	69.7	68.8	65 1	63.7	61.7	61.1
2 7	62.3	61.5	64.0	62.1	63.8	67.4	70.3	68.9	65.1	64.4	61.5	60.4
28	61.4	60.1	63.9	62.2	63.8	68 0	70°2	69.1	62.5	6319	61.2	61.2
29	62.2		64.5	62.4	63.3	69.3	71.4	68.6	65.6	64.3	61.2	62.6
30	62.3		63.0	63.2	63.4	6,-1	71.7	67.5	65.4	64.8	61.7	61.6
31	63.0		63.0		63:7		72.1	66.3		64.0		61.7

Table VI.—Mean Monthly Determination of the Horizonial Magnetic Force, expressed in terms of the Mean Horizontal Force for the Year, and diminished by a Constant (o 86000 hearly), uncorrected for Temperature at every Hour of the Day; obtained by taking the Mean of all the Determinations at the same Hour of the Day through each Month.

						1577.						
Hour, Greenwich Mean Solar Time.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
p o	0.12666	C.15656	0.12286	0.12272	0.12578	012528	o-1263g	0.12614	0.1228-	0.12655	0.12762	0.12823
1	.13691	.12643	.12610	.12.18	.12618	112041	12658	12646	12613	12686	12786	112835
2	12709	12655	.12634	.12646	12553	126-2	12699	12681	12636	112714	12800	.12326
3	.12713	12652	12640	126-3	112681	12703	12-23	12702	12639	12726	12805	.12816
4 5	112702	12653	.12638	12693	12,05	12-17	12733	12705	12542	12729	12813	12806
	12695	12652	12639	12714	112723	12725	12761	12,00	12650	12728	12813	112802
6	12698	12661	12650	12711	12733	12728	12775	12,720	12663	12735	12803	12806
7	12697	12657	12665	12717	12733	112738	112771	112732	12674	12741	12793	12806
8	12686	12656	·1266g	12712	12714	112731	12756	12725	12672	12732	.13804	.12803
. 9	12674	12656	.13623	12702	12695	12719	12752	12725	12669	112735	12798	12799
10	12630 1268a	12660	12672	12698	126,6	12,09	12751	12717	12673	12736	·12793	12807
112	12083	12674	12670	12692	12659	12.08	12738	12722	12669	12732	12787	.15805
13	12691	12663	12656	12680	12672	12,02	12739	12725	.12668	12727	12790	12794
14	12691	12660	·12661 ·12655	12674	12655	12,01	12738	.12724	12659	12721	112782	12799
15	12645	12661	12646	112669	12637	12702	12,31	12721	12653	12715	12781	12801
16	12708	12665	12040	12657 12654	12633	12,07	12728	12717	12649	12713	12790 12805	12809
17	12717	126-9	12640	12662	12637	112705	12725	12717	12651	12717	12801	.15831
18	12724	12686	12654	12667	12635	12701 12700	12719	12717	12645	12,23	12808	12331
19	12723	12650	12634	12657	12583	12056	12707	-12706 -12570	12620	12,19	12707	12833
20	12717	12681	12621	12623	12557	12030	12640	12610	12583	12686	12776	12827
21	112647	12660	12591	12588	12545	12577	12040	12581	12547	12649	12750	12813
2.2	12681	.12643	12555	1250	12.74.7	12551	12601	12569	12532	12623	12741	12812
2.3	12675	12631	12568	12547	12553	125-0	12606	12585	12548	12632	12741	12821
	/-			1204/	12333	125 0	12000	12333	12040	12002	12/+1	1202

TABLE VII.-MONTHLY MEANS of READINGS of the THERMOMETER placed on the box inclosing the Horizontal Force MAGNUTOMETER, at each of the ordinary Hours of Observation.

		 _	
18-	7.		

Hour, Greenwich Mean Solar Tume.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
b o I 2 3 9 2 1 2 2 2 3	62.0 61.9 62.1 62.2 62.4 61.8 61.9	62.8 62.7 62.7 62.8 62.9 62.3 62.3 62.7	62.6 62.7 62.8 62.6 62.2 62.2 62.4	63·1 63·2 63·3 63·2 63·3 62·6 62·7 62·8	63.8 64.0 64.1 63.8 63.5 63.5 63.5	67·3 67·5 67·6 67·7 67·5 66·7 67·1 66·9	68.5 68.7 68.9 69.0 68.8 67.9 68.0 68.2	69.8 70.0 70.0 70.1 69.0 68.7 68.8 69.1	65.5 65.7 65.9 66.0 65.6 64.7 65.0 65.2	64.0 64.0 64.3 64.1 63.6 63.4 63.4	62·3 62·5 62·6 62·5 62·3 61·9 61·9	61.7 61.8 62.0 61.5 61.4 61.2 61.2

TABLE VIII.

18-7.

	MEAN HORIZONTAL MAGNETIC uncorrected for Tr		
Month.	Expressed in terms of the Mean Houlzontal Force for the Year, and diminished by a Constant (o.86000 nearly).	Expressed in terms of Garss's Unit measured on the Metrical System, and diminished by a Constant (1.5467) nearly).	Mean Temperature
			0
January	0.12696	0.22834	62.0
February	12660	.22769	62.6
March	• 12638	*22729	62.5
April	12657	.22764	63.0
May	.12646	2274+	63.8
June	.12678	.53801	$67 \cdot 3$
July	12708	.22852	68.5
August	.12685	'22814	69.4
September	.12633	*22720	65.5
Detober	.12708	*22855	63.9
November	.12788	*22999	62.2
December	12814	·230 ₄ 6	61.6

The unit adopted in column 3 is the Millimètre-Milligramme-Second Unit. To express the forces on the Centimètre-Gramme-Second (C.G.S.) system, the numbers must be divided by 10, equivalent to shifting the decimal point one step towards the left.

The value o'SGood of Horizontal Force corresponds to 1 54671 of Gauss's Unit on the Metrical (Millimètre-Milligramme-Second) system, and to

0.15467 on the C.G.S. System.

Table IX.—Mean Vertical Magnetic Force, expressed in terms of the Mean Vertical Force for the Year, and diminished by a Constant (organous nearly), uncorrected for Temperature, on each Aseronous Day; as deduced from the Mean of TWENTY-FOUR HOURLY MEASURES OF ORDINATES OF the PHOTOGRAPHIC REGISTER on that DAY.

	0		_
ı	0	1	í

Days of the Month.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
1 2 3 4 5 6 7 8 9 10	0.03660 0.3597 0.3607 0.3630 0.3670 0.3632	0.03641 .03583 .03568 .03566 .03595 .03616 .03620 .03590 .03623 .03559	0.03452 .03517 .03536 .03491 .03486 .03485 .0350t .0350t .03513 .03506	0.03580 0.3573 0.3605 0.3601 0.3573 0.3534 0.3574 0.3571 0.3592 0.3567	0.03474 0.3438 0.3443 0.3443 0.3545 0.3531 0.3549 0.3617 0.3640 0.3589	0:03483 0:03457 0:3639 0:3503 0:3457 0:3553 0:3622 0:3648	0.035,3 0.3535 0.3535 0.3534 0.3528 0.3481 0.3459 0.3513 0.3620	0103590 103456 103467 103552 103650 103669 103552 103517 103489	0.03303 0.03329 0.03350 0.03313 0.03296 0.03310 0.03263 0.03263 0.03334	0.03208 0.3189 0.3160 0.3170 0.3167 0.3198 0.3155 0.3150 0.3126 0.3138	o·o3o93 ·o3o86 ·o3o77 ·o3o69 ·o3123 ·o3182 ·o3157 ·o3132 ·o3093	0.02975 .02973 .02987 .02984 .02982 .03002 .02986 .02950 .02955 .02846

Table IX.—Mean Vertical Magnetic Force, expressed in terms of the Mean Vertical Force for the Year, &c.—continued.

	1877.												
Days of the Month.	January.	February.	March.	April.	May,	June.	July.	August.	September,	October.	November.	December.	
d 111 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	0103566 103514 103572 103653 103588 103630 103643 103615 103515 103515 103516 103516 103516 103516 103516 103516	0:0356c 0:3368 0:3617 0:3666 0:3618 0:3579 0:3520 0:3572 0:3517 0:3491 0:3509 0:3526 0:3525 0:3518	0:03459 :03517 :03570 :03551 :03551 :035479 :03497 :03590 :03497 :03528 :03565 :03527	0.03553 -03552 -035527 -03517 -03478 -03426 -03495 -03495 -03486 -03480 -03488 -03487 -03487 -03487	0:03558 '03526 '03525 '03525 '03510 '03485 '03494 '03440 '03454 '03440 '03454 '03456 '03456	0:03683 0:3563 0:3556 0:3578 0:3584 0:35655 0:3688 0:3700 0:3650 0:3654 0:3654 0:3564 0:3564 0:3564 0:3564	0:03605 :03567 :03567 :03540 :03540 :03540 :03540 :03541 :03530 :03536 :035633 :03578 :03580	0.03431 0.3482 0.35368 0.3548 0.3536 0.3536 0.3536 0.3536 0.35708 0.3670 0.3670 0.3535 0.3424 0.3424 0.3424 0.3424	0:03366 0:03377 1:03416 0:03419 1:03272 1:03276 1:03198 1:03198 1:03158 1:0	0°03128 °03192 °03225 °03225 °03163 °03068 °03022 °03066 °03135 °03134 °03163 °03169 °03143 °03164 °03164	0:03035 :02991 :02984 :03074 :03065 :03013 :02996 :02977 :03005 :02939 :02965 :02965 :02967	0.02916 .02908 .02870 .02862 .02887 .02934 .02895 .02899 .02899 .02899 .02899 .02899 .02899 .02899 .02899 .02899 .02899 .02899 .02899	
27 28 29 30 31	*03623 *03581 *03564 *03600 *03628	.03477 .03423	.03542 .03540 .03573 .03519 .03582	.03416 .03440 .03424 .03423	·03496 ·03450 ·03488 ·03481 ·03532	.03564 .03588 .03658 .03688	·03380 ·03636 ·03726 ·03741 ·03791	·03511 ·03496 ·03480 ·03421 ·03353	·03226 ·03209 ·03222 ·03218	03147 03129 03132 03203 03152	.02950 .02957 .02952 .02951	°02818 °02859 °02959 °02923 °02857	

Table X.—Daily Means of Readings (usually eight on each Day) of the Thermometer placed on the box inclosing the Vertical Force Magnetometer, for each Astronomical Day.

	18,77.											
Days of the Month.	January.	February.	March.	Λ pril,	May.	June.	July.	August.	September.	October.	November.	December.
d	0	(2.2	0	(2)	62.2	(3.6	, 9	0	65.7	. 0	1 2 -	
1	• •	63.3	61.4	63.1		63.6	66.4	68.9		64.3	63.5	62.3
2		61.8	62.3	63.6	63.0	62.6	66.7	66.8	65.9	64.8	63.0	62.1
3		61.9	63.0	64.2	62.4	67.2	67.0	67.4	66.3	64.3	62.9	62.1
+	62.6	62°C	61.6	64.4	62.6	67.0	67.0	69.1	65.6	64.2	62.6	62.1
5	61.6	63.1	61.8	63.4	62.6	64.6	66.9	70.8	65.7	63.8	64.0	61.7
6	61.1	63.4	61.7	63.1	6.5•7	64.1	65.5	71.6	65.9	64.8	65.1	62.5
7	62.4	63.4	61.5	63.1	64.0	64.6	64.9	71.0	65.4	63.9	64.9	61.9
8	62.8	62.8	61.9	63.8	64.6	66.4	65.0	69.1	64.9	63.7	64.5	62.2
9	62.2	63.9	62.6	64.5	65%	67.8	66.6	68.5	66.3	63.1	63.7	61.1
10	62.0	63.3	61.9	63.4	64.8	68.2	68·8	68.5	66.7	63.5	63.2	60.3
11	61.1	62.0	60.0	63.2	64.3	63.3	68.7	63	67.5	64.0	61.8	61.6
12	60.0	63.0	62.4	63.7	64.3	68.8	68.3	67.8	67.9	64.2	61.6	65.9
13	615	63.6	63.0	62.7	640	661	68.5	69.1	68.2	64.8	60.0	60.7
1.4	61.8	63.8	62.7	62.0	64.5	66.5	60.0	69.5	68.1	65.9	61.7	60.5
15	62.0	63.8	62.0	61.6	64.0	66.0	66.0	69.9	66.0	63.8	63.7	61.2
16	62.0	6.3-2	61.4	61.2	63.8	68.0	66.7	70.4	65.3	62.5	63.3	61.9
17	62.0	62.0	61.7	62.6	63.5	60.5	65.8	69.4	65.3	61.5	62.7	61.3
18	62.6	63.2	58.8	62.4	63.9	751	66.5	70'7	66.0	61.2	61.2	61.4
19	63.1	61.0	62.1	62.5	04.6	69.9	66.7	71.8	65.6	62.7	61.9	61.0
20	62.5	61.3	62.4	62.5	63.1	69.0	66.3	73.0	63.7	64.3	600	61.9
2 1	57.6	61.0	61.0	62.8	62.5	68.0	67.8	71.2	61.3	64.4	61.8	62.1
2 2	58.2	62.0	62.2	63.6	62.9	68.3	68.2	69.3	62.3	63.5	6017	61.8
2.3	61.8	62.7	62.8	63.5	62.8	66.2	70'2	67'0	62.7	62.8	50.6	60.4
2.4	62.6	62.1	63.7	62.8	63.0	67.0	60.1	65	63.4	63.3	61.5	60.5
25	63.1	61.9	62.8	62.0	63.8	62	69.4	63.1	64.8	63.7	61.3	600
26	61.6	61.5	63.4	62.0		67.1		68.8	65.6	63.4	61.8	60.3
27	62.4	60.8	63.4	62.4	64.0 63.4		6g·3				61.1	
28	61.1	548	63.7			67.1	70'0	68.8	64.8	64·7 63· 5		59.4
2.0	62.1	200		61.8	63.9	68.1	69.6	69.1	64.7		61.7	60.3
30	62.1		64·5 62·6	62.5	63.4	69.3	70.0	68.6	65.3	63.9	61.4	63.0
31	63:3			02.5	63.6	70.1	713	67.7	64.7	64.2	61.6	61.0
21	02.3		04.0		04.1		71.6	60.4		63.6		60.6

Table XI.—Mean Monthly Determination of the Vertical Magnetic Force, expressed in terms of the Mean Vertical Force for the Year, and diminished by a Constant (0.96000 nearly), uncorrected for Temperature, at every Hour of the Day; obtained by taking the Mean of all the Determinations at the same Hour of the Day through each Month.

1877.

Hour, Greenwich Mean Solar Time.	January.	February.	March.	April.	May.	June.	July.	August,	September,	October,	November.	December.
h O	0.03281	0.03242	0.03464	0.03462	0.03424	0.03220	0.0323	0.03500	0.03313	0.03104	0.03003	0.03808
,	03592	·o3558	.03483	.03479	.03474	*03582	.03541	.03533	.03260	.03121	*03020	.02911
2	.03602	. 03566	03505	.03502	.03496	.03605	.03566	·03556	.03282	.03136	.03033	'02923
3	.03607	03572	.03523	.03214	.03211	.03622	.03584	.03577	*03297	.03121	.03033	02925
4	.03610	03575	.03537	.03526	103525	.03639	.03602	.03282	.03308	.03191	103037	02920
5	.03615	·03575	.03541	*03537	03535	·o3655	'03611	.03588	.03312	.0316-	.03046	02928
6	.03625	.03580	.03530	.03241	.03540	.03661	.03618	.03588	.03313	.03121	03052	02932
7	.03626	.03283	.03541	.03542	.03535	.03664	03623	.03581	.03317	.03174	03055	02932
8	.03628	·03582	*03543	.03542	*03532	.03662	.03623	.03573	'03317	.03173	.03053	102937
9	.03627	03579	.03538	'0353g	.03529	.03624	.03615	.03564	.03312	.031/8	.03042	02927
10	.03624	*035-5	.03533	·o353~	.03525	.03636	.03604	.03552	.03305	.03162	.03041	'02919
11	.03618	.03574	.03533	.03538	03525	.03618	.03591	.0324t	03299	.03167	.03041	.02919
12	.03612	.03568	·03531	.03534	103520	.03600	.03579	03527	03291	.03164	.03037	.02916
13	·03607	.03365	.03525	.03229	.03513	.03587	.03568	.03520	.03287	.03161	.03031	*02914
1.4	·03601	.03261	.03520	.03210	.03506	.03574	.03558	.03512	03278	.03126	.03025	02914
15	·035q8	.03558	.03514	.03511	.03500	.03566	03552	03207	.03271	.03121	.03010	*02909
16	.03592	.03554	.03211	.03508	.03498	.03561	03545	.03502	.03264	.03142	.03010	02909
17	.03580	.03248	.03507	.03502	.03500	·03552	.03542	.03496	•0325q	.03138	.03008	'02901
18	03585	.03212	.03201	'03496	.03498	.03541	.03532	.03401	.03322	.03131	.03006	02899
19	.03584	.03541	.03504	*03492	03495	.03240	.03526	.03489	03252	.03128	*03005	*02895
20	.03584	.03538	.03499	.03484	03487	.03543	.03524	.03488	'03242	.03154	*03005	*0288g
21	.03579	.03532	.03488	.03470	.03475	.03549	.03522	'03490	.03235	.03112	102999	02887
2.2	.03575	.03524	.03474	.03463	.03463	.03553	.03517	.03482	.03230	*03105	*02999	.02882
23	·o3578	.03222	•93465	.03422	.03423	·03552	.03214	·o3 ₄ 85	.03227	.03098	.03984	·02888

Table XII.—Monthly Means of Readings of the Thermometer placed on the box inclosing the Vertical Force Magnetometer, at each of the ordinary Honrs of Observation.

1877.

Hour, Groenwich Mean Solar Time,	January.	February.	March.	April.	Мау.	June.	July.	August.	September.	October.	November.	December.
b		0		0	٥	0	0	1 0		0	0	
0	61.9	62.7	62.2	63.1	63.7	67.6	68·o	69.4	65.5	63.8	62.4	61.4
1	61.8	62.6	625	63.1	64.0	67.7	68.3	69.6	65.8	63.0	62.6	61.6
2	62.0	62.6	62.6	63.2	64.0	68.2	68.6	69.7	66.1	64.5	62.6	61.8
3	62.2	62.6	62:7	63.2	64.0	68.1	68.6	69.7	66.1	64.2	62.6	61.7
9	62.4	62.7	62.7	63.4	63.8	67.6	68.3	69.0	65.9	64.5	62.6	61.3
2 1	61.6	62.0	61.0	62.4	63.3	66.3	67.1	68.3	64.7	63.2	61.0	60.0
2 2	61.2	62.1	61.8	62.6	63.2	66.7	67.2	68.4	64.9	63.1	61.0	60.8
2.3	61.4	62.4	62.1	62.8	63.3	66.8	67.5	68.7	65.1	63.2	61.8	60.9

TABLE XIII.

1877.

	MEAN VERTICAL MAGNET MONTH, uncorrected for		
Month.	Expressed in terms of the MEAN VERTICAL FORCE for the YEAR, and diminished by a Constant (096000 nearly).	Expressed in terms of GAUSS'S UNIT measured on the MITTRICAL SYSTEM, and diminished by a Constant (4°20211 nearly).	Mean Temperature.
January	0.03603	0'15767	° 61.8
February	·03559	15578	62.5
March	.03513	15377	62:3
April	·o35o9	15360	63.0
May	*03504	15338	63.7
June	· 0 3 595	15736	67.4
July	·o3566	15609	67.9
August	.03231	15456	69.1
September	.03277	14344	65•5
October	.03142	13766	63.7
November	.03024	13237	62.3
December	*02911	12742	61.3

The unit adopted in column 3 is the Millimètre-Milligramme-Second Unit. To express the forces on the Centimètre-Gramme-Second (C.G.S.) system, the numbers must be divided by 10, equivalent to shifting the decimal point one step towards the left.

The value o 96000 of Vertical Force corresponds to 4 20211 of Gauss's Unit on the Metrical (Millimètre-Milligramme-Second) system, and to 0 42021 on the C.G.S. System.

Table XIV.—Mean, through the Range of Months, of the Montilly Mean Determinations of the Diurnal Inequalities of Declination, Horizontal Force, and Vertical Force, for the Year 1877.

(The Results for Horizontal Force and Vertical Force are not corrected for Temperature.)

January to December.

Hour, Greenwich Mean Solar Time.	Inequality of Declination.	Equivalent in terms of Gauss's Unit measured on the Metrical System.	Inequality of Horizontal Force.	Equivalent in terms of Gauss's Unit measured on the Metrical System.	Inequality of Vertical Force.	Equivalent in terms of Gauss's Unit measured on the Metrical System.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	+ 3.57 + 4.21 + 3.78 + 2.67 + 1.59 + 0.76 + 0.28 - 0.17 - 0.62 - 0.89 - 1.09 - 1.24 - 1.01 - 0.97 - 1.06 - 1.09 - 1.46 - 1.80 - 2.05 - 2.21 - 0.14 + 1.82	+ 0'00187 + 220 + 198 + 190 + 83 + 40 + 15 - 9 - 32 - 47 - 65 - 65 - 53 - 56 - 53 - 57 - 76 - 94 - 116 - 87 - 116 - 87 - 7	- 0.000+9 - 22 + 1 + 14 + 19 + 25 + 31 + 34 + 29 + 24 + 13 + 13 + 9 + 11 + 15 + 15 - 5 - 31 - 58 - 69	- 0°00088 - 40 + 25 + 31 + 45 + 56 + 61 + 52 + 43 + 41 + 10 + 11 + 23 + 16 + 11 + 22 - 20 - 56 - 104 - 133 - 124	- 0'00032 - 15 + 35 + 15 + 25 + 36 + 35 + 36 + 35 + 19 + 12 - 16 - 1 - 7 - 16 - 21 - 24 - 27 - 33 - 39 - 43	- 0°00140 - 66 + 13 + 66 + 109 + 136 + 153 + 158 + 153 + 151 + 101 + 83 + 26 - 4 - 31 - 53 - 70 - 92 - 105 - 118 - 141 - 171 - 188

Hour, Greenwich	Mean Readings of Thermometers.					
Mean Solar Time.	Horizontal Force.	Vertical Force.				
ь	o	0				
0	64.45	64 .33				
1	64.55	64.46				
2	64.68	64.63				
3	6+ 72	64.64				
9	64.48	64.49				
2 [63.94	63 63				
22	64.00	63 .68				
2.3	64.08	63 .83				

The unit adopted in columns 3, 5, and 7 is the Millimètre-Milligramme-Second Unit. To express the inequalities on the Centimètre-Gramme-Second (C.G.S.) system, the numbers must be divided by 10, equivalent to shifting the decimal point one step towards the left.

ROYAL OBSERVATORY, GREENWICH.

RESULTS

OF

OBSERVATIONS

OF THE

MAGNETIC DIP.

1877.

RESULTS of Observations of Magnetic Dip, on each Day of Observation.

Day a Approxima 1873	te Hour.	Needle.	Length of Needle.	Magnetic Dip.	Observer.	Day Approxim	ate Hour,	Needle.	Length of Needle.	Magnetic Dip.	Observer.
	i h			0 / //			d h			0 / "	
January	5. 2	Сı	6 inches	67. 39. 32	N	May	24. 22	Вт	g inches	67.37.25	N
13. 19. 20. 23. 23. 23. 2 23. 2		Dт	3 ,.	67. 43. 7	N		25. 0	C 1	6 ,,	67. 38. 36	N
		C 2	6	67. 42. 17	N		25. 3	В 1	9	67.37.41	N
	20. 1	В 1	9	67. 40. 26	N		31. 2	C 1	6	67.41. 2	N
	23. 0	Cı	6 .,	67. 41. 20	N						
	23. 2	C 2	6 ,.	67. 42. 15	N	1	0 -	C 2	6	62 12 21	N
	23. 22	D 2	3 .,	67. 43. 10	N	\mathbf{J} une	8. 0	Di	- · · · · · · · · · · · · · · · · · · ·	67. 40. 34 67. 40. 17	N
	23. 23	D 1	3 ,,	67. 41. 57	N		8, 2	D ₂	2	67. 39. 36	N
	24. 3	D 2	3 ,,	67. 40. 53	N	•	13. 2	B 2		67. 39. 9	N
	30. 0	В 2	9	67. 38. 47	N		19. 2	Bi	9 ,,	67. 37. 33	N.
	30. 23	C 1	6	67.40.21	N		20. 2	C 2	9 ,,	67. 37. 33	N
	31. 0	Вт	9	67.39.28	N		22. 2	Ci	, ,	67. 40. 43	N
	31. 2	C 2	6	67. 41. 21	N		27. 0	B 2	9 .,	67. 40. 8	N
	1						27. 1	Вī	- 1	67. 40. 33	N
February		D 2	3	67. 43. 46	N		30. 0	C 2	9 ,,	67. 40. 25	N
14 16 21 22 22 22 23	9. 2	D 1	3 ,,	67. 41. 45	N		30. 2	Č i	6 ,,	67. 38. 13	N
	14. 2	В 2	9	67. 41. 37	N		00. 2	٠.	. ,,	-/	
	16. 2	C 1	6 ,,	67. 40. 36	N						
	21. 2	Ві	9 .,	67. 41. 20	N	July	4.22	D 1	3 ,,	67. 39. 40	N N
	22. 0	Dτ	3 .,	67. 41. 22	N		5. 0		3 ,,	67. 39. 31	N
	22. 2	D 2	3	67. 43. 8	N		5. 1	C 2	6	67. 39. 48	N
	22.22	B 2	9 .,	67. 38. 11	N		5. 3	Dт	3 ,.	67. 37. 14	N
	23. 0	C 2		67. 40. 53	N		7. 2	Ст	6 ,,	67. 38, 52	N
	28. 2	В 1	9	67. 38. 30	N		10. 0	B 2	9 "	67. 41. 1 67. 38. 20	E
M1	_	0.		6- 20 .6	1		17, 2	- D ₁ - B ₁	3 ,,		N
1 1 1	7. 2	C 1	6 ,,	67. 38. 46	N		25. 0	B 1	9 ,,	67. 37. 44 67. 36. 26	N
	13. 2	В 2 В 1	9 ,,	67. 36. 42 67. 37. 50	N		25. 2 26. 22	B 2	9 ,,	67. 38. 47	N N
	15. 2 17. 0	B 2	9 ,,	67. 38. 31	N			C 2	9 ,,	67.40.12	N
	17. 0	D_1	9 ,.	67. 41. 42	N N		27. 1 27. 3	D 2	3 .,	67-41.17	N
	23. 2	Ci	1 /	67.41.15	N		30. 23	B 2		67.40.58	N
	23. 3	D 2	1 2	67. 44. 59	N		31. 3	Di	9 ,, 3 ,.	67. 38. 44	N S
	27. 1	Ďι	3 ,	67.41. 4	N		0 0		- ,,	-7.00.41	
	27. 2	D ₂	3 ,,	67. 40. 30	N N	August	3. 2	Ві	9 ,.	67.38.43	N
	28. 0	Вī	9	67.39.35	N	12050	14. 1	C 2	ć ,,	67. 39. 20	N
	28. 2	C 2	6	67. 40. 41	N		14. 2	Dт	3 "	67.39.51	N
				.,		1	16. 23	Cı	6 ,.	67.38.22	N
April	6. 0	C 2	6 ,,	67.40.9	, N		21. 1	В 2	9	67.39.50	N
•	7. 1	D_{1}	3 ,,	67. 41. 58	N		22. 2	D 2	3 .	67. 41. 41	N
	14. 2	D 2	3 ,,	67. 40. 43	N		23. 2	C 2	6 ,.	67.40.57	N
	20. 0	Ві	9 ,,	67. 39. 11	N		23. 23	В 1	9 "	67. 39. 16	N
	20. 2	Ст	6 ,,	67. 38. 53	N		28. 23	Вт	9 ,,	67. 38. 50	N
	25. 0	B 2	9 ,,	67. 38. 50	N		29. 0	Ст	6 ,,	67. 40. 52	N
	25. 2	C 2	6 .,	67. 39. 3 3	N		31. 0	D 1	ō "	67. 39. 25	N
	26. 22	Ст	6 ,,	67. 39. 52	N		31. 2	D 2	3,,	67.40. 9	N
	27. 0	D 2	3 ,,	67. 43. 42	N.						
	27. 3	Cı	6 ,,	67. 38. 46	N	Septemb		(1 2	6	67. 39. 16	N
	30. 2	Dт	3 ,,	67. 38. 43	N		7. 2	1) 2	3,,	67. 40. 37	N
		ъ.					14. 2	B 2	9 ,,	67. 40. 19	N
May	4. 3	B 2	9 ,,	67.40. 5	N		19. 0	B 1	9	67. 40. 30	N
	8. 0	C 2	6 ,,	67. 42. 19	N		21. 0	C 1	6 ,.	67. 39. 0	N
	8. 2	D 1 B 1	3 ,,	67. 40. 43	N		21. 2	D ₁	3 6	67. 40. 23	N
	22.22	B 2	9	67.41. 2	N		25. 22	C 2		67.41. 6	N
	23. 1	Cf	9 ,,	67. 36. 53	N N		25, 2 3 26, 1	B ₂	6 .,	67. 40. 5 67. 36. 46	N N
		C 2	1 2	67. 37. 8 67. 40. 22	2. 2.		26. 3	$\frac{6}{C}\frac{2}{2}$	9	67. 39. 25	N N
	2 4 · 1 · 2 4 · 2	D ₂	1 2	67. 41. 23	N N		28. 0	D 2	3	67. 40. 49	N N
	~4. ~		٥ ,,	0/141.20			20. 0	17.4		01.40.43	

The initials E and N are those of Mr. Ellis and Mr. Nash respectively.

Premier of Operavations	of Macyrric Dip on each	Day of Observation—continued.

Day and Approximate Hour, 1877	Needle.	Length of Needle,	Magnetic Dip.	Observer.	Day and Approximate Hour, 1877.	Needle.	Length of Needle.	Magnetic Dip.	Observer.					
d h			0 / //		d h			0 / //						
October 6. o	D_{\perp}	3 inches	67. 37. 35	N	November 28. 2	(' 1	6 inches	67. 38. 10	N					
17. 0	Вт	9 ,,	67. 37. 50	N	29. 22	В 1	9 ,,	67. 37. 30	N					
17. 2	(1)	6 .	67. 39. 59	N	30. 0	B 2	9 ,,	67.37.39	N					
19. 1	C 2	6	67. 39. 33	N	30. 3	Вт	9 ,,	67. 35. 49	N					
19. 2	D 2	3 .,	67. 40. 20	N			"		1					
26. 1	D_{1}	3 ,,	67. 40. 40	N	December 8. 1	D 2	3 ,,	67.39.28	N					
30. 0	B 2	9 ,	67. 36. 13	N	11. 23	Dт	3 ,	67. 40. 45	N					
31. 0	B 2	9 ,	67. 35. 30	N	12. 1	Ст	6 ,,	67. 38. 59	N					
31.	Bi	9	67.36.59	N	13. 1	Вт	9 ,,	67. 38. 20	N					
31. 2		6 .,	67. 38. 15	N	13, 2	D 1	3 ,,	67. 40. 18	N					
	_		,	1	17. 2	D 2	3 ,,	67. 39. 21	N					
November 8. 1	Вт	9 .,	67.38.23	N	18. 2	D_{1}	3 ,,	67. 37. 35	N					
8. 2	I) 2	3	67. 40. 14	l N	24. 2	C 2	6 ,,	67. 38. 59	N					
14. 1	Ci	6 .,	67.39. 4	N	26. 0	В 2		67. 36. 53	N					
19. 23		9	67. 40. 21	N	26, 22	D 2	9 ,,	67. 38. 31	N					
20. 2	I) 2	1 3	67, 40, 42	N	27. 0	Dт	3 ,,	67. 36. 35	N					
26. 2	C 2	6 .,	67. 37. 19	N	27. 2	Ві	1	67. 36. 55	N					
27. 1	B 2	1 9	67. 38. 2	N	27. 3	D ₂	9 ",	67. 38. 8	N					
27. 2	D 1	3	67. 40. 47	N	28. 1	Сï	6 ,,	67. 37. 38	N					
27. 23	(' 2	6 ,.	67. 40. 46	N			, ,							
27.20		- ,,	- / . 401.40	1										

The initial N is that of Mr. Nash.

MONTHLY MEANS OF MAGNETIC DIPS.

Month, 1877.	B 1, 9-inch Needle.	Number of Observations.	B 2. 9-inch Needle.	Number of Observations.	C 1, 6-inch Needle.	Number of Observations
	0 / //		0 ' "		0 / //	Ī
January	67.39.57	2	67. 38. 47	1	67.40.24	3
February	67. 39. 55	2	67.39.54	2	67. 40. 36	3
March	67. 38. 43	2	67.37.37	2	67.40. 1	2
April	67. 39. 11	1	67.38.50	1	67. 39. 10	3
May	67. 38. 43	3	67.38.29	2	67.38.55	3
June	67.39. 3	2	67. 39. 39	2	67. 39. 28	2
July	67.37.44	1	67. 39. 18	4	67.38.52	1
August	67. 38. 56	3	67.39.5c	1	67.39.37	2
September	67. 40. 30	1	67. 38. 32	2	67.39.33	2
October	67. 37. 25	2	67. 33. 52	2	67.39.59	I
November	67. 37. 14	3	67. 38. 41	3	67.38.37	2
December	67. 37. 37	2	67. 36. 53	1	67.38.18	2
Means	67. 38. 38	Sum 24	67. 38. 36	Sum 23	67. 39. 25	Sum 24
Month, 1877.	C 2, 6-inch Needle	Number of Observations.	D 1. 3-inch Needle.	Number of Observations.	D 2, 3-inch Needle.	Number of Observations
	0 / //		2 / //		· , ,,	
January	67.41.58	3	67. 42. 32	2	67.42. 2	2
February	67.40.53	I	67.41.34	2	67. 43. 27	2
March	67.40.41	1	67.41.23	2	67. 42. 45	2
April	67. 39. 51	2	67. 40. 21	2	67. 42. 13	2
May	67.41.21	2	67.40.43	I	67. 41. 23	1
June	67. 39. 31	3	67.40.17	1	67.39.36	ì
July	67.40. 0	2	67.38.30	4	67.40.34	2
Λugust	67.40. 9	2	67. 39. 38	2	67.40.55	2
September	67.39.56	3	67. 40. 23	3	67. 40. 43	2
October	67. 38. 54	2	67.39. 7	2	67. 40. 20	1
November	67.39. 2	2	67. 40. 47	1	67.40.28	2
December	67.38.59	1	67. 38. 48	4	67. 38. 52	4

For this table the monthly means have been formed without reference to the hour at which the observation was made on each day. In combining the monthly results, to form the annual means, weights have been given proportional to the number of observations.

YEARLY MEANS of MAGNETIC DIPS for each of the NEEDLES, and GENERAL MEAN for the Year 1877.

Lengths of the several Sets of Needles.	Needles.	Number of Observations with each Needle.	Mean Yearly Dips from Observations with each Needle.	Mean Yearly Dips from each Set of Needles.	Mean Yearly Dip from all the Sets of Needles.
			0, 11	0 1 11	· , ,,
g-inch Needles	В 1	2.4	67. 38. 38	67. 38. 37)
g-men Needles	B 2	23	67. 38. 36	07.33.37	
Civil No. 11	Ст	2.4	67. 39. 25	(= 2= =	(- 2 20
6-inch Needles	C 2	2.4	67.40. 8	67. 39. 47	67. 39. 38
	Вτ	2.4	67. 40. 1		
3-ineh Needles	D 2	23	67.41. 0	67. 40. 30	

RESULTS of Observations of Magnetic Dip at the Hours of Observation 9h, a.m. and 3h, p.m.

Month and Day,	Needle.	Length of	Magne	etic Dip.	Excess of the Magnetic Dip at 9 ^h , a.m. over the Magnetic Dip		
1877.	Needle.	Needle.	At ϕ^b , a.m. \pm	At \mathfrak{Z}^{h} , p.m. $\underline{+}$	over the Magnetic Dip at 3 ^b , p.in.		
January 24	D 2	3 inches	67. 43. 10	67. 40. 53	+ 2.17		
April 27	Ст	6 ,,	67. 39. 52	67. 38. 46	+ 1. 6		
May 25	Вт	9 .,	67. 37. 25	67. 37. 41	- 0.16		
July 5	Dι	3 ,,	67. 39. 40	67.37.14	+ 2.26		
September 26	C 2	6 .,	67.41. 6	67. 39. 25	+ 1.41		
November 30	Ві	9 .,	67. 37. 30	67. 35. 49	+ 1.41		
December 27	D 2	3 ,,	67. 38. 31	67.38. 8	+ 0.23		
Mean					+ 1.20		

ROYAL OBSERVATORY, GREENWICH.

OBSERVATIONS

OF

DEFLEXION OF A MAGNET

FOR

ABSOLUTE MEASURE

OF

HORIZONTAL FORCE.

1877.

Abstract of the Observations of Deflexion of a Magnet for Absolute Measure of Horizontal Force,

Month and I 1877.	Day,	Distances of Centers of Magnets.	Temperature.	Observed Deflexion.	Mean of the Times of Vibration of Deflecting Magnet.	Number of Vibrations.	Temperature.	Observer.
January	30	ft. I *O	50.1	11. 9.43	5 .565	100	21,0	
•		1 .3	30 1	5. 3.35	5.570	100	50 · 8	N
February	27	1 ,3	41 .0	11. 9.32 5. 3.40	5 ·56 ₄ 5 ·56 ₂	100	41 · 1 43 · 1	N
March	2 9	1 .3	56 · 3	11. 7.50 5. 2.47	5 · 576 5 · 563	100 100	54 · 3 58 · 7	N
April	27	1.3	21.0	11. 9. 12 5. 3. 34	5 · 567 5 · 560	100	52 °0 52 °4	N
May	30	1.3	64.7	11. 7.25 5. 2.50	5 ·573 5 ·575	100	65 · 1 66 · 3	N
June	26	1.3	69 ·3	11. 5.18 5. 1.32	5 · 576 5 · 570	100	68 ·6 69 ·8	N
July	26	1 .0	68 ·8	11. 4.26 5. 1.10	5·572 5·574	100	68 · 3 70 · 1	N
August	30	1 .3	67 '0	11. 4.53 5. 1.29	5 ·583 5 ·579	100	67 · 1 67 · 7	N
September	28	1.3	62 ·9	11. 4.45 5. 1.20	5 · 580 5 · 581	100	63 · 1 63 · 6	N
October	30	1.3	58 .7	11. 4.29 5. 1.17	5 · 584 5 · 582	100	59 ·3 59 ·9	N
November	29	1 .3	47 '2	11. 4.36 3. 1.34	5 ·5 ₇₉ 5 ·5 ₇₇	100	47 '9 47 '7	N
December	28	1.3	38 ·8	11. 5. 19 5. 1. 39	5 ·572 5 ·576	100	39 ·0 41 ·3	N

The position of the Deflecting Magnet with regard to the suspended Magnet is always that which was formerly termed "Lateral." The Deflecting Magnet is placed on the East side of the suspended Magnet, with its market pole alternately E. and W., and it is placed on the West side with its pole alternately E. and W. is and the deflexion in the table above is the mean of the four deflexions observed in those positions of the magnets.

The lengths of 1 foot and 1.3 foot answer to 304.8 and 396.2 millimètres respectively.

The initial N is that of Mr. Nash.

In the following calculations every observation is reduced to the temperature 35°.

COMPUTATION of the VALUES of ABSOLUTE MEASURE of HORIZONTAL FORCE in the Year 1877.

			In English Measure.													
Month and I 1877.	Jay,	$\begin{array}{c} \mathbf{Apparent} \\ \mathbf{Value} \\ \mathbf{of} \\ \mathbf{A}_{+} \end{array}$	Apparent Value of A.	Apparent Value of P.	Mean Value of P.	$\operatorname{Log}_{+} rac{m}{X}$	Adopted Time of Vibration of Deflecting Magnet.	$\mathrm{Lo}_{2},w(X,$	Value of X	Value of m	Value of X in Metric Measure.					
January	30	0.09405	0.09211	-0.00300	h l	8*98802	5.5675	0.16933	3.896	ə:3 <u>79</u> 0	1.796					
February	2,	0.09686	0.09200	-0.00338		8.98740	5.5630	o-16935	3:899	○·3 ₇ 88	1.798					
March	29	0.09686	0.09692	-0.00243		8.98730	5.2692	0.16928	3.899	513787	1*798					
April	27	0.09698	0.09713	-0.00384		8.98797	5.5635	5116994	3:899	5.3793	1*798					
May	30	0.09694	0.08211	-0.00440		8.98783	5.240	0.16938	3:897	5'3789	1.797					
June	26	0.09621	0.09677	-0.0012	>-0.00276	8.98657	5.5730	0.16924	3.904	∵3 ₇ 83	1.800					
July	26	0.09658	0.09665	-0.00172	>-0002/0	8.98600	5.5730	0.16920	31907	0.3783	1.801					
August	30	0.09661	0.09672	-0.00259		8.98622	5.2810	0.16882	3.003	5.3780	1.799					
${\bf S}{\bf e}{\bf p}{\bf t}{\bf e}{\bf m}{\bf b}{\bf e}{\bf r}$	28	0.09653	0.09660	-0.00192		8.98577	5.5805	0.16288	3.900	03775	1.798					
October	30	0.03645	0.09621	-0.00548		8.98532	5.2830	0.16735	3.899	0.3770	1.798					
${\bf N} {\bf ovember}$	29	0.09625	0.09641	-0.00429		8.98471	5-5780	0.16730	3.902	o:3767	1.799					
December	28 0.03621 0.03631		-0.00543	J	8.98440	5.240	0.16732	3.904	0.3766	1.800						
Means									3,901		1.799					

The value of X in column 9 is referred to the unit Foot-Grain-Second, and that in column 11 to the unit Millimètre-Milligramme-Second. To obtain X in the Centimètre-Gramme-Second (C.G.S.) unit, the value given in column 11 must be divided by 10, equivalent to shifting the decimal point one step towards the left.

		

ROYAL OBSERVATORY, GREENWICH.

RESULTS

OF

METEOROLOGICAL OBSERVATIONS.

1877.

		Bales MILIII.			1.	MPERA	TURE.			Die	ference be			'	PEMPER.	ATURE.		Γ		whose		
HOZTH buc	Phone	1						Evape	Of the Dew Point.	the a	Air Tempe nd Dew P Femperati	rature unt		*Sun's Rays as olf-Registering Thermometer ned bulb in on the Grass.	as shown ing Muri-	of the	Water Thames enwich.	Smyline.		Gauge	one,	
DAY 1857	M	121. 121.		Lector	Da Rα	H c.ris		14 24	Mean	Mean Daily Value.	of 24 Hourly	Least of 24 Hourly Values		Highest in the Sun's Regions by a Self-Regis Maximum Thermo with blackened but vieno placed on the G	Lowest on the Grass as shown by a Self-Registering Mini- mun Thermometer.	Highest,	Lowest.	Daily Duration of S	San above Horizon,	Rum collected in a receiving surface above the Ground,	Daily Amount of Ozone.	Electricity.
т											C	0		0	c	0 ~	0	1,000	0 -31 -	in,		
Jan. 1 2 3		201 H	3374 3270 3777	42°0 35°3 3-17	6.5	45.8 45.8	+ 11.	- 37-3	355		6.8 5.6	0.2 0.2	94	62'9 66'3 55'3	34.5 30.6	48.3 46.0 44.2	42.5 44.7 45.3	0.0	7'9 7'9 7'9	0.319	9·3 3·3 8·0	0 0
4 5 6	1	29* 15 2767; 29*58	412 525 7.77	10.1 13.6 10.1	10:3 8:9 10:3	4911 4710 4615	1 8°	1 100	42.8	4.3	4°1 7°5 6°7	1.1	91 86 89	56·2 77·9 53·3	38·1 35·0	46.6 46.3 46.3	44.2 44.8 44.3	0.0	7.9 8.0		5.5	0 0
7 8 9		291 4 2 7325 2 71	52 1 52 5 52 5	11.0 11.0 11.0	7°2 6°3 11°5	48°7 48°6 47°5	+ 10,	18.0	47.3	5.0 1.3 1.9	9.6 4.6 5.6	2'1	83 96 94	80°1 53°2 76°0	41.0 41.0	46·3 46·3 46·3	+4.1 +4.3 +4.8	0.0	8.0 8.0		12.7 6.0	0 0
10 11 12	Green I Inches	297512 297574	30.4 49.4 40.0	35·8 36·4 28·5	1012	42% 38% 32%	+ 1. + 1. - 5.	0 37.9	36.6	2.3	3.8 4.8	0.0	99 93 95	48·7 43·4 37·0	33,4 36.0 33,4	47°1 46°3 45°1	45°3 44°3 42°1	0.0	8·1 8·1	0.20	0.0	0 0
13 14 15	New Apoge	2 7875 2 7601 297819	42°1 49°2 43°4	30°9 37°5 35°5	11:2 11:7 7:9	36:3 44*7 39:8	- 1°	+ ++'2	43.6	3·6 1·1 5·3	7.5 2.8 9.2	0.8	87 96 82	62'9 53'0 59'4	30.8 36.2 30.8	42·3 40·3 42·5	39·5 39·5	0.8	8·2 8·3	0.000	0.0 1.3 5.2	0 0
16 17 18		29'910 29'70'0 29'640	51:3 51:1 51:0	41°5 42°5 30°0	9°8 8°6 12°0	†2.9 †8.0 †2.0	+10	3 48.3		2.7 1.2 1.2	5·7 3·8 5·3	0,0	91 96 95	77 ⁻² 55·6 53·0	33.9 38.5 35.0	41.2 42.8 45.3	11.8 10.3 10.3	0.0 0.0 0.0	8·3 8·4	0.000		0 0
19 2 - 21	In Equation	29'671 30'18. 30'451:	56·1 46·0 49·0	47°4 34°5 27°7	8°7 12°1 21°3	51.7 43.1 38.2	+ 4°	41.8	48·2 40·2 35·8	3.2 2.4 2.4	8.4 6.4 8.4	0.0	88 90 91	58.6 51.3 82.6	41.8 30.6 25.4	46·3 48·3 48·3	43·3 45·3 45·8	0.0 0.0 3.1	8.2 8.2 8.4		0.4 0.0 0.3	0 0
22 23 24	First Qr.	3 (218) 3 (218) 4 (72)	14'7 17'2 17'8	30°5 29°3 32°6	14°2 17°9 13°2	36.2 38.0 40.0	- 3°0 - 1°0 + 1°.	34.8	34.4 34.4	2°1 7°6 6°3	5.3 14.9	0,0	92 74 79	69°0 88°2 63°9	25.0 23.8 27.9	47.3 45.8 44.2	44.8 42.5 41.5	0.4 5.4 2.3	8·6 8·6 8·7	0.000	1°1 0°5 2°7	0 0
25 26 27	1 1 0 0	. 704) 2 7538 7 7	415 150 150	04°5 31°7 38°5	1,13 78 1811	36.0 30.1	+ 21. - 31. - 01	345	3913 3115 3715	2°9 5°1 1°6	6.4 9.2 6.2	0.0 1.0	90 82 94	54°4 56°5 52°2	29.8 27.2 23.1	42°3 41°8 41°3	39 3 39 3 39 3	0,0	8·7 8·8 8·8	0.035	3·7 0·0 0·3	0 0
28 29 3c	• •	2 7864 2 7859 2 1459	и. 1974 1976	3413	16:2 14'9 10'6	13°C 11°1 12°6	† 21 † 113 † 25	385	38% 34% 373	+'+ 6.5 5.3	11.6 11.0 12.3	0°0 2°6 0°7	84 78 82	66°0 70°7 74°7	31.5 28.8 30.0	+1.3 +1.3 +1.1	39°3 39°3	1.8 1.9	8.0 8.0	0.055	3·1 6·0	0 0
31		2 (1844)	+2		orc.	3817	- 17	367	34.0	417	8.1	0.7	84	51.2	26.0	42.3	39.8	0.0	9.0	0.162	0.0	0
Mean-		201.0		76%	11:3	42'()	+ 1.1	41.4	34.0	3:3	7:3	0.0	88.7	61.6	32.8	44.0	+2:3	0.6	8.4	4'34.	4'4	
Number June for Reference	,			÷				S	q.	01	11	12	13	14	15	16	17	18	19	20	21	22

The root of y 10. 10. 10. 10. 10. Columns (6 and 17, which refer to the 24 hours ending 9 a.m. of the day against which the readings are placed,

The non-con-tiin the relative (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The in an early and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The arrows a constant of the photographic records from 1849 to 1868. The temperature of the Dew Tout (Column 9) and the Dear Hand by (Column 12) are deduced from the reduction of the photographic records from 1849 to 1868. The mean of Glaisher's Hygrometrical Tables. The mean doi:

10. The mean doi:

11. The production of the Dev Tout (Column 12) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean doi:

11. The production of the Dev Tout (Column 12) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Difference of the Dev Tout (Column 12) is the difference between the numbers in Columns 6 and 9, are deduced from the photographic records from 1849 to 1868. The remembers in Column 19 and the Breather of the Dev Tout (Column 12) are deduced from the photographic records from 1849 to 1868. The remembers in Columns 6 and 8) are deduced from the photographic records from 1849 to 1868. The remembers in Column 19 and the Breather of the Dev Tout (Column 12) and the Breather of the Dev Tout (Column 12) and the Greatest and Least 19 and the Greatest and

^{(5.0) + (5.46,} and (7 are derived from eye readings of self-registering thermometers. The conservation of the

The mean readity to the month was 29 const, being of const lower than the average for the 20 years, 1854-1873.

Thus note a record An The habits the month was 50 mond many 19 the lowest in the month was 27° 7 on January 21; and the range was 28° 4. The month of the highest daily realises in the month was 48° 4, being 4° 5 hollow than the average for the 36 years, 1841–1876. The mone of all the awest daily realises in the month was 36° 8, being 3° 5 hollow than the average for the 36 years, 1841–1876. The mone 1° 8 range was 11° 5, being 4° 6 greater than the average for the 36 years, 1841–1876. The mone for the month was 42° 9, being 4° 6 hollow than the average for the 20 years, 1841–1876.

	WIND AS DEDUC	TED FROM SELF-REGISTE	RING A	NEMO?	IETERS			
		Osler's.				Robin- son's,	CLOUDS AND	WEATHER.
MONTH and DAY.	General Div	ection	Pres Sqt	sure on care Fo	ot.	Movement		
1	Λ М.	P.M.	Greatest	Least.	Mean of 24 Hourly Measures.	Horizontal of the Air	Λ.Μ.	Р.М.
Jan. 1	S : SW	SW: WSW	15s-	0.0	њ. Г+	mies. 599		Sænsæien.se,stw: V, F : 10
3	$egin{array}{ll} \mathbf{N} & \colon & \mathbf{N} \mathbf{N} \Gamma \\ \mathbf{E} & \colon & \mathbf{E} \mathbf{S} \Gamma \end{array}$	ESE SSE: S	3·2 7·5	0.0	0.2	² ++ 3 ₊ 6	r : 8, cicu, cus 10, r, w : 10, r	4,ci,ci,-ca,ci,-s,ca,-s,so,-ha: 10, h,-r, w 10, r : 10 : 10, r
1 5 6	$\begin{array}{c} 88W \\ 8W \\ W8W \pm 8W \end{array}$	88W : 8W 88W : 8W 8 : 88W	1.0 3.4 13.0		0.1	350 +27 569	10, r : 10, r 0 : 3, ci, cicu v : 10, r	10 : 10 : 0 v, cu,-s, r : v 10, r : 10, r, w : v, stw
7 8 9	$\begin{array}{c} 88W \pm 8 \\ 88W \pm 8 \\ 8 \pm W \pm 8W \end{array}$	88W : 8W 8 : 8W 8W : 88W	3·1 2·5		0.3	583 248 263	10, r : 10, r, W :0,cu.s.ci.eru.ci.st.sw v : 10, r	10, r, w : 10, r : V, l, w 10, r : v 4,euv,eu,ei,thr: v : 0
10 11 12	88W: NE ENE: NE NW: W: 8W	ENE NNE: N Variable	13.0	0.0	0.0 1.0	292 526 108	v : 10, f 10, r. w ci, cieu, mt, hfr	10 : 10, r : 10, r, w 10, r 10, f : v, f
13 14 15	Variable SE: S WNW: W	SW: SSE S: SW: W: NW WXW: W: SW: S	7.4	0.0	0°0 0°2 0°1	117 322 346	10, uit : v 10, r slr : 1, ci	3, ci, cicu : 10 : 10 10, r : r, sq 1, ci, cis, cu: v, ci, cis : 5, cu, cicu
16 17 18	88W : 8W 88W 88W : 8	SW:SSW SSW:SW:W SSW	1.6	0.0	o·1 o·3	392 339 410	v 10 : 10, thr 10	9, eus, eieu : 10, slr 10, ecr 10, r, hl : 10, thr : 10, thr
19 20 21	8W W8W : NE 8W : 8	$\begin{array}{c} SW:W\\ N:NNE:SW\\ SSW \end{array}$	0.0	0.0	0.0	623 125 153	10, thr 10, mt thf, hfr	10, mr, stw: v, mr, w: v 10 : 0, hd, f, mt, hfr 1, ci : luha
22 23 24	88W : 8 88E : 8 88W : 8W : W	88W: 88E 88E: 88W NW: W: 8W: 8	0.0 1.0	0.0	0°0 0°1 0°2	177 214 321	10, licl, lifr : v, soha lifr : o v : r : v	6, ei, eieu, cis, eus : v, slf, hfr 1, ei : v, eus, eu 5, ei, eieu, h : o,luha,hfr,h,slf
25 26 27	88E : 88W W : W8W 8W : 88W	88W: NW: W NW: W8W '8W:W:WXW:W8W	8.0 1.0	0.0	0.1	410 329 268	10, r 0, mt, hfr 10, r	to, r, gtglin, sq : 0 3, ei, ei,-en, mt: 0 : 0, f to, r : 7, slf, h
28 29 30	88W W: W8W W8W		7.7 13.7 24.0	0°0 0°2 0°0	1.0 5.2 4.5	468 724 893	10 : 10, thr 0, W 10, r, stw : 10, r, g, ld, sn, stw	v, cicu, ci, shr, w: v, l, w 10, r, w: 10, r, stw: (7, cicu, cus, stw: v, w
31	WXW:W	W8W:88W:8	0.2	0.0	0.0	290	o, h. mt, soha	10 : 10, r
Means					0.4	370		
Number of Column for Reference	23	2.4	2.5	26	2,	28	29	30

The mean Temperature of Evaporation for the month was 41 14, being 4 10 higher than

The mean Temperature of the Dew Point for the month was 39 '6, being 40'2 higher than

The mean Degree of Hamilety for the month was SS:7, being 1:4 greater than

The mean Elastic Force of Vapour for the month was o'n 243, being o'n 036 greater than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 25% 8, being ost 4 greater than

The mean Weight of a Cular Foot of Air for the month was 547 grains, being 5 grains less than

The mean amount of Cloud for the mouth (a clear sky being represented by o and an overeast sky by 10) was 6.8.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0 07. The maximum daily amount of Sunshine was 5 4 hours on January 23. The highest reading of the Solar Radiation Thermometer was 88 22 on January 23; and the lowest reading of the Terrestrial Radiation Thermometer was 23 11 on January 27.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 3.0; for the six hours ending 3 p.m., 0.8; and for the six hours ending 9 p.m., 0.6.

The Proportions of Wind referred to the cardinal points were N. 2, E. 2, S. 15, and W. 11. One day was caim.

The Greatest Pressure of the Wind in the month was 24 ins o on the square foot on Jan. 30. The mean daily Horizontal Movement of the Air for the month was 370 miles; the greatest daily value was 893 miles on January 30; and the least daily value 108 miles on January 12.

Rain fell on 23 days in the month, amounting to 4" 347, as measured in the simple cylinder gange partly sunk below the ground; being 2" 269 greater than the average fall for the 36 years, 1841-1876,

		BAROS METER.			Tı	EMPERAT	URE.			Dati	era marchet	Ween		1	EMPERA	TURE.				whose		
MONTH	14				OII /			Lanpa	Of the Dow Point.	the t	tir Temper id Dew Po emperatur	odure m.t		Her sternic The sternic The mounter of Jude in	ens shown rug Mari-	Of the of the 1 off Gree	Water Thames enwich,	unshane.		Selling of the sellin	2012 Pt.	
and DAY, 1877.	Mor .	Mont. o. za Heori (roge/dobor) o. 34. Enlinemic.tts.	Hello d.	Low et.	Dat Rene :	Hourly	of Mean above Average of 20 Years.	Mean of 24 Hourly Values.	Mean	Daily Vaine.		Least of 24 Hourly Values.	Degree of Humidity (Saturation - 100)	1	Lowest on the Grassas slips a Self-Registering 2 muni The montelet.	Hishest.	Lowest.	Daily Duratio cet >	Sun above Bodeen	Rain redicated no - receiving surface above the Grame	Daily Amount of O.	Ebetrieity.
	In Equator		- - <u>1</u> 9*5			4=-3	+ 6.8	46.1	14.8	215	6.3	0.5	92	53.6	38	41.3	39.7	0.0	res Q*1	0.042	0.0	0
3		20.011 50.888	49.2	21.0 45.0	8.6 Lpo	49.0 48.1	+ 7:5 + 2:3	46°9 40°3	45.0 37.1	2·5 5·9	11.8	2.0 2.0	92 80	58·5 87·5	38.0 30.2	43·3 41·3	40°3 41°3		9'2	0.000	0.0	0
5 6	Last Qr.	301,645 301082	40°0 49°3 52°3	33.5 32.1 46.6	1712	41°8 42°6 49°7	+ 2°0 + 2°3	48.1 40.0 48.8	35.1 38.5 46.4	6.7 1.4 3.3	12'0 7'3 4'2	2'9 2'2 1'5	79 85 89	62.8 71.6 58.3	29°8 28°0 41°8	44.1 43.3 43.8	41'8 42'3 42'3	0.0 0.0		0.012	0.7	0 0
7 8 9	Greater: Declination S	291975 30100- 291895	520	40°0 37°6	12.1	51.9 46.4 45.8		49°3 43°5 43°6	46.2 46.2	5·2 6·2 4·7	13.3 6.8	1.3 0.4 2.8	83 80 84	78.8 87.3 65.2	46.0 33.0 29.1	44.8 46.3 46.3	42.8 43.7 44.3	0.0 3.3 0.0		0.000		0 0
10 11 12	Ajinger	29.758 29.718 27.627		46°9 44°1 44°7	6.0 10.2 9.3	50°1 49°2 47°6	+ 10.8 + 10.1 + 10.1	47.9 45.3 45.3	42.8 42.0 42.0	4·3 7·2 4·8	6·1 15·6 11·1	1.3 1.3	85 76 85	67'9 91'0 60'2	43.0 34.0 38.3	47.3 48.3 48.3	44.7 45.8 46.3	0°0 5·3 0°0	9.6 9.7 9.8	0.000 0.04 0.540	2.7 5.5 8.7	0
13 14 15	New	29:602 29:821 29:735	50°9 53°5 51°1	43.8 43.8 45.3	7'9 9'7 5'8	48.3 40.2 40.3	· 75 +110 + 95	45°1 47°7 46°0	43.8 45.6 43.6	2·5 + 1 + 6	5:3 8:4 7:8	0.0	92 87 85	58·5 61·2 60·3	39.9 43.0 40.8	48·3 48·3 48·8	46.7 46.7 47.1	0.0	6.8 6.8	0.000 0.082 0.300	0.4 0.0 0.2	0
16 17 18	In Equator	-9:623 29:893 29:893	49°3 49°4 49°2	36·9 37·3 39·5	12'4 12'1 9'7	44'1 42'7 44'9	+ 5·3 + 3·8 + 5·9	40'0 30'5 43'5	37·2 35·6	6·9 7·1 3·0	12:4 11:8 5:7	3.8 0.0	76 77 89	78.8 71.3 54.8	34.0 31.0 31.0	47.8 47.3	47·3 46·3 45·8		10.1	0.098	0.0	0
19 20 21	First Qr.	29.639 29.104 29.604	48.0 45.3 41.5	38·5 34·0 35·5	9°5 11°3 6°0	43.5 39.6 38.8	+ 4.0	40.3 36.8 35.4	36.8 32.8 30.9	6°4 7°1 7°9	13°2 15°0 9'7	1·3 0·7 4·1	78 76 73	84.0 64.2 20.2	34·3 31·0 29·8	45.2 46.9 42.1	45.3 45.3 43.8	1.2		0.300 0.300 0.000	1·3 3·7 o·o	0
22 23 24	tireate t lectinate n.N.	29*76; 29*716 29*518	20.2 42.4 40.8	33°3 33°0 36°4	7:5 12:4 14:1	36.8 38.5 44.5	- 2.8 - 1.2 - 4.7	34.7 36.1 42.4	31.7 32.9 39.9	4.0 2.0 2.1	9°9 9°2 7°6	1.2 1.2	83 81 84	66.8 89.9 62.4	29.7 29.8 30.7	44.3 43.3 42.5	40.8 41.9 43.9	3.3	10.2	0°08; 0°056 0°054	0.2 1.2 1.2	0 W:0
25 26 27	Perigee Full	2 (27) 2(1272 2(17)	55*2 45*2 39*9	44°0 32°0 27°0	11'2 13'2 12'7	47.6 40.3 32.0	+ 7.7 + 0.3 - 7.3	44'1 36'8 29'8	40°1 32°3 23°5	7.5 8.0 9.4	13.6 13.6 10.8	5·1 2·6 1·8	76 73 68	73.0 64.6 60.9	38.6 26.0 22.0	42.8 44.1 43.3	40°8 41°7 41°7		10.7	0.003	5·3 2·0	sN:0 w
28	In Equator	20034	3912	24.7	145	31.3	− g•o	28.8	22.6	8.6	16.3	0.0	69	85.0	19.0	42.3	40.3	6	10.8	0,000	3.0	0
Means		2917.52	49.2	38.3	10'9	+1.0	+ 4.4	41.6	3815	5.6	10.5	1.7	81:3	70.3	33.0	45.2	43.5	1.3	5.5	1.710	2.3	
Number of Column for Reference.	I	2	3	+	.ĩ.	(1	7	8	ÿ.	10	11	12	13	1.1	15	16	17	18	1,4	20	21	22

The resorts apply and a vocasy, excepted two car Columns to and 17, which refer to the 24 hours ending 9 a.m. of the day against which the readings are placed.

The mean o ada (a) de Baremoter (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records from tSap to 1868. The temperature of the Dew Point (Column 7) and other best of Humality (Column 7) is that determined from the corresponding temperatures of the Air and Evaporation by means of Gaischers Hyperometrical Tables. The notational terms between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Colona) (a) and (b) are deduced from the 24 hourly photographic measures of the Drysbulb and Wet-bulb Thermometers. The results on February 1 for Air and 12) are deduced from the 24 hourly photographic measures of the Drysbulb and Wet-bulb Thermometers. The results on February 1 for Air and 12) are defined partly on values inferred from eye-observations, on account of accidental loss of photographic register.

The values given 1 Co. 11 (3, 4, 5, 44, 15, 16, and 17 are derived from eye-readings of self-registering thermometers.

The mean race of the state of the memory of the state of the second of t

TEMPERATURE OF THE AM.

The highest is the mendows, (9) (receive broady), it the lowest in the month was 24; 9 on February 28; and the range was 34; 9. The mean of all the highest daily readines in the month was 49; 9, being 3; 9 higher than the average for the 36 years, 1841–1876. The mean of all the lowest daily readings in the month was 38; 9, being 4; 9 higher than the average for the 36 years, 1841–1876.

The mean daily range was 1000, being 0004 has than the average for the 36 years, 1841-1876.

The mean for the month was 44°00, being 4°4 higher than the average for the 20 years, 1849-1868.

	WIND AS DEDUCE	D FROM SELF-REGISTE	RING A	\newo	METE	19.			
		Osier's.				ROBIN- SON'S.		CLOUDS AND	WEATHER.
MONTH and DAY,	General I	Direction.	Press Squ	sure ou are Fo	ot.	Lovement			
1877.	А.М.	Р.М.	Greatest,	Least.	Measures,	Horizontal Mo of the Au.	Λ	.M.	P.M.
Feb. 1	WSW WSW: SW SW	WSW : SW SSW : WSW SW	0°3 4°8 3°4	1b<. 0°0 0°0	0°0 0°6 0°4	278 406 397	10	: 10 : v, cicu, soha	10 ': 10 10 : 10, r : 0 7, ci, cien, cus : v
4 5 6	WSW: W SW WSW	WNW: SW SW SW	2.6 1.9 1.7	0.0 0.0	0°2 0°2	363 363 409		: 1, cieu : 9, cus, cis	7, cus, cu, ei : 0, hfr 10 : 10, r : 10, r 10, thr : 10, thr : 1
7 8 9	WSW WSW:NNE:NW W: WSW	W: NNW WNW: W: WSW WSW	4.2 1.8 3.0	0.0	0.2 0.1 1.0	499 211 371		: 6, cus, cicu : 7, ci, cu, cus, thf	10 : 10, r : 10, frshs v, chen, eus : v 10 : v, cheu, chs : 9
10 11 12	WSW: W WSW: W WSW: SW	$W: WSW \\ WSW: WSW$	6.8 18.2	0.0	0.0 1.1	530 561 484		: 10, cicu, cis : 7, cicu, cus, stw : 10, r	10, thr : 10 v, ci, cicu, stw : 0 10, r : v : 10
13 14 15	WSW 88W: WSW 8W: 88W	WSW: NE: SSW WSW: SW SSW	3·2 2·5	0.0	0,5	245 297 336	10 10, 1' 10	: 10	10, r : 10, cr 10 : 10 10 : 10 : 5
16 17 18	$egin{array}{c} \mathbf{SW:NW:W} \\ \mathbf{WSW:W} \\ \mathbf{WSW} \end{array}$	W: WSW NW: WSW WSW: SW	3·3 2·7 1·2	0.0 0.0 0.0	0.3 0.5 0.0	370	10, 1' 0 V	: 3, cicu, h : 9, cicu, cus	5, ci, cu, cu,-s: 0 : 0 8, ci,-cu, cu,-s : v, cu,-s, mt 10, r : 10, r
19 20 21	WSW: WNW W: NNW NNW	W: 8W NW N	3·8 27·5 7·7	0.1	0.3 4.3 1.4	706	10, r : 10, r 10, hr, l, stw v, w	: v, ci, eicu : 10, hr, su, g	v, ci,cicu,cu: 10, r : 10, r v, cicu, stw : v, w 10 : v, cus.cicu: v, cus,cicu
22 23 24		NW:WNW:WSW:N N:NNW:WSW W: WSW		0.0	0.2 0.2		v 10, r 10, r	: 10, thcl : 1, ci	10, cus, cu : 10, sn, sl, r : 10 10 : 10 : v 10 : .
25 26 27	W: W8W W8W: X NW:W:W8W	WSW N:NW:WSW NNW	13.4	0.0	1.2 2.3	364	10, 0ctl1r, w v, st,-w v, stw	: 10, sn, stw	v, ocshs, w : luco, w v, cicu, ci, su, w : o v, cus, cicu, w : o
28	XW: WXW: XXW	NNW	2.5	0.0	1.0	375	o, hfr	: 3, cis	3, ci, ci,-cu : 3,ci,ei,-cu,eus; 0
Means					0.8	408			
Number of Column for Reference.	2.3	2.4	25	26	2.7	28		29	30
	1)	-	1				

```
The mean Temperature of Evaporation for the month was 41 '6, being 3 '7 higher than
```

The mean Temperature of the Dew Point for the month was 58.5, being 5.5 thigher than

The mean Degree of Humidity for the mouth was S1.3, being 3.5 has than

The mean Elastic Force of Vapour for the month was oin 233, being oin 026 greater than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 25th 7, being out 3 greater than

The mean Weight of a Cubic Foot of Air for the month was 547 grains, being 7 grains less than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 7.4.

The mean proportion of Sunskine for the month (constant sanshine being represented by 1) was 0 13. The maximum daily amount of Sunskine was 6 7 hours on February 28.

The highest reading of the Solar Radiation Thermoneter was 91 to on February 11; and the lowest reading of the Terrestrial Radiation Thermoneter was 19 to on February 28. The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 18; for the six hours ending 3 p.m., 000; and for the six hours ending 6 p.m., 000.

The Proportions of Wood referred to the cardinal points were N. 5, E. o. S. 6, and W. 17.

The Greatest Presum of the Wind in the month was $z_7^{(6)}$; 5 on the square foot on February 20. The mean daily More and Movement of it. As for the month was 408 miles; the greatest daily value was 706 miles on February 20; and the least daily value 211 miles on February 8.

Rain tell on 18 days in the month, amounting to 1 no 710, as measured in the simple cylinder gauge partly sunk below the ground; being o no 329 greater than the average fall for the 36 years, 1841-1876.

		BARO- METER.			Т	MPERAT	URF.			Diff	crence bet	ween		Г	EMPER	TURF.		Π		whose		
MONTH	Phases	Values			Of the J	kir.		Evapo- ration,	Of the Devi Point.	The '	Air Tempe id Dew Pi Feruperati	rature and		Paragraph of the state of the s	sus shown ning Mun-	of the	Water Thames enwich,	Smshme.		<u>g</u> x		
and DAY, 1877.	of the Moon.	Ment of 24 Boardy Values (corrected and reduced to 32 Fabronheit),	Hulbert	Lower	Daily Range.		Excess of Mean above Average of 20 Years	Hourty	Monn	Mean Darly Value,	Greatest 01/24 Hourly Values	01/24	Degree of Humdity	Highest in the Smi's shown by a self-re Maximum – The o with blackened vacue placed on the	Lowest on the Grass by a Self-Register mun Thermoure	Highest	Lowest	Daily Direction of S	Sun above Hourzon.	Ram collected in a Crossing surface afoxe the Ground.	Daily Amount of Ozone	Electricity.
Mar. 1		30.104	10.0	23.5	: 16·5	32.0	- 8·3	20.6	2.1.0	810	16:3	0,0	71	62.8	1812	:	39:3	3:0	1018	0.000	11.5	0
3	::	30.022 30.022	5414	35.8 45.3	18.6	45·7	+ 5.3	44.2		2.6 3.4	4.8	0.5	91 8q	71.6	31.5 19.5	41.3	391 393	0.0	10.0	0.188	5.3	w:(
5 6	Last Qr.	29*714 29*14 29*696	46.5	34.6	5°0 11°6 10°3	43°1 39°8 37°3	+ 2.6 - 0.7 - 3.2	42°4 37°3 35°2	41.6 34.1 32.3	1°5 5°7 5°0	3.0 11.0 8.2	6'0 3'1 2'6	94 80 83	47.8 60.0 52.7	34.0 24.1 28.8	42.3 43.3 43.5	411	3.0	11.1	0,000	1.2	o:\N o o
7 8 9	Greatest Declination	29:275 29:741 29:920	42°1 41°7 41°6	33·3 31·3 30·5	11.1	37.1 33.2 33.6	- 3·3 - 5·4 - 5·1	35°2 32°8 33°5	32.6 29.0 30.3	4°.5 6°2 5°3	917 1117 911	1*9 2*9 0*0	84 78 81	68·5 80·3 63·2	28.0 24.8 26.4	43.3 43.3 42.3	41.1 41.1	5.4	11:3	0.000	0.7	0
10 11 12	Apoger	291707 301031 291707		27.2 24.8 20.4	11.2 17.8	33.4 33.0	3 8 - 0 0	30°9 30°1 38°7	26·2 24·3 36·0	7°2 8°7 4°8	15.8 16.1 9.2	0.0 4.1 4.1	74 70 84	95.0 95.2 57.8	26.2 26.8	†1.1 †1.1 †1.1	39:5 38:9 38:7	9.6	11.0	0.003	1.2	o w
13 14 15	Now In Equator.	29:617 29:739 29:689	5417	41.8 43.0 37.2	6·7 11·7	46.1 49.7 45.5	+ 5°2 + 8°7 + 4°1	43°1 46°0 42°1	39*7 42*1 38*5	6.7	10'9 11'4 12'4	1°5 3°4 1°5	79 75 78	61°0 92°7 70°6	34.6 36.9 33.7	40°9 41°5 42°7	4c.3 34.3 38.6	2.8	1177	0.000	0.0	0
16 17 18		29*391 29*429 29*484	48	35·5 30·7 31·3	14.7 17.1 20.4	42°4 37°8 39°0	- 2.4 - 3.2 + 1.5	37*7 34*8 36·3	32.0 30.7 32.7	10'4 7'1 6'3	20.6 15.4 16.8	4.6 1.8 1.5	68 77 79	99°9 99°6 103°4	28.6 24.2 28.6	44.8 44.9 43.0	41.3 41.3 41.9	512	11.9	0,013 0,023 0,000	4.5	0 0:8 N
19 20 21	• •	29°391 29°177 29°183	40.2	28°2 32°4 30°6	19*9 8*1 10*7	35·1 35·2 36·1	- 4·3 - 6·3 - 5·5	35.8 33.0 35.8	34.0 29.5 31.6	3·1 5·7	7·3 11·3 7·1	1.1	89 79 84	101°3 52°7 58°2	20.8 29.8 23.0	44.2 44.2 44.3	41.8 42.3 41.8	0.0	12.1	o.o20 o.o30	6.0	0
22 23 24	Greatest Die N. Ferst Quarter	29:532 24:498 29:040	10.0	26·5 26·5 34·9	18·1 22·5 18·1	37:8	+ 0.2 - 4.0 - 0.4		29°5 32°1 36°3	5·5 5·7 6·2	15:5 14:7 16:8	0.0 0.0 0.0	80 80 79	76·3 94·1 101·"	18.5 22.4 34.4	43.3 43.5 42.5	41.2 41.2 41.3	6.5	12:3	0°148 0°036 0°247	3.0	0
25 26 27	Perigee	28°814 28°483 29°138	55·7 47·5 57·2	40.2 38.2 40.2	15.2 0.0	43.0	+ 4.6 + 1.3 + 2.0		40°.5 41°.5 40°.7	6.4 2.4 4.9	14.0 2.3 14.0	1.3 0.0 0.2	80 91 85	105:5 67:8 96:8	36.0 34.8 37.4	43:3 44:5 46:1	42.3	0.0	12.0	0°151 0°119 0°152	4.2	0
28 29 30	In Equator Full	291557 291683 291848	56•3 55•6 55•6	39°2 42°3 41°5	12	48.4	+ 3°7 + 4°6 + 3°3	44°4 46°7 45°3	41°4 44°0 42°8	517 315 418	11.8 11.8	0.0	81 87 85	103:3 100:0 77:6	300	46.3 46.3 48.1	44.3	3.4	12	0.000 0.43d 0.02c	3.0	0: w:
31		29'910	5455	38.5	16.0	46.7	+ 1.9	44.3	41.4	5:3	12.6	0.0	82	88:3	34.4	48:3	45·8	514	12.8	0.000	0.0	0
Means		295582	4855	3 ₄ :5	14.0	41.0	- 0.0	38.6	35:5	5:3	1117	1.3	81.3	80.4	30.0	43°5	41.5	3.3	11.8	2.30	3.7	
Number of folumn for Reference,	J	2	.3	-1	5	6	-	S	c _j	10	11	1.2	1.3	1 +	15	16	17	18	19	20	21	2 2

The results apply to the evil day, excepting those in Columns 16 and 17, which refer to the 24 hours ending 9 a.m. of the day against which the readings are placed.

The mean reading of the Birometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The mean reasons of the Diremeter (Column 2) and the mean temperatures of the Air and Evaporation (Column 5 and 8) are deduced from the photographic records. The average temperature of column 7 (s) that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference (Columns 1) and 10 bow Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 1) and 12) are deduced from the 24 hourly photographic measures of the Dry Judil and Wet-bull Thermometers. The results on March 13 and 28 for the Birrometer, on March 12 and 31 for Air Temperature, and on March 12 for Evaporation Temperature, depend partly on values inferred from eye-observations, on necessary of the Dry Columns 1 and 1 (1) and 1 tions, on account of according likes of photographic register.

The values given in Columns 3, 4, 5, 14, 15, 16, and 17 are derived from eye-readings of self-registering thermometers.

The mean reading of the Becommeter to: the month was 29' \(\z\\$2\) being of (140 lower than the average for the 20 years, 1854-1873).

Templicature of the Ase.

The highest in the no-th was 50 % on March 20; the low stan the month was 25% on March 1; and the range was 35%. The highest in the no-th was 50% at the month was 48%, being 10% force than the average for the 36 years, 1841–1876. The mean of all the lowest daily readings in the month was 34%, being 0% for lower than the average for the 36 years, 1841–1876. The mean daily range was 14% 0, being 0% 6 lower than the average for the 36 years, 1841–1876. The mean for the month was 41% 0, being 0% 6 lower than the average for the 20 years, 1849–1868.

ř I	WIND AS DEDUCE	ed from Self-Registe	RING .	ANEMO	METER	s.			
		Osting's.				Homan-		CLOUDS AND	D WEATHER.
MONTH and DAY, 1877.	General 1	Orection.	Pres Sqi	sure on ure Fo	01.	forement		=	
1077.	А.М.	P.M.	Greatest.	Least.	Mean of Measures,	Honzoutal Me of the An:		1. M.	P.M.
Mar. 1	NW: W8W 8: 88W W8W	WSW: 88W 8W: WSW WSW: 8W	0°7 0°7	0°0 0°0	0°0 0°1		v, hfr, h 10, thr 10, mr		5, thcl, h : ci, cis, s : 10, thr 10, octhr 10, thr
5 6	88W: Calm NNW N	NE: N: NNW N: NW N: NNW: 8W	1.3	0,0	0.3	180 257 239	10, r, slf v 10, flir	: f, gtglm : cus	10, r, f 10 : g, eus, cieu 10, thr : o, hfr
7 8 9	WSW: NNW N $NNW: N$	NW: N: NNE N NE: ENE: 88E	8.8	0.0	1'3 1'2 0'2	472 448 216	v, sq v, w o, hfr	: 9, slsn, w : v, slsn : 2, cls	10, 8n : V : 10, r, 8t-W VV, 8n : 0, lifr
10 11 12	88E 8E 8W: W8W	SSE: SE SE: S: SW WSW: W	0°5 0°3 12°5	0.0	0.0	180 154 511	v o, hfr v	: eleu, cns, els	6, ci, ci, cu, ci, s, cu; 0 0; 1, li, cl, d 10, w; 10, sl, r
13 14 15	$egin{array}{c} W:WNW \\ W \\ WSW:W \end{array}$	$\begin{array}{c} WXW\colon XW\colon W\\ W\colon WSW\\ W\colon SW \end{array}$	6.6 4.0 5.3	0.0	1.0 1.0	473 458 417	10, W V V	: 10, octhr, w : cus, eu, cicu	10, thr : 10, r 10 : v, thr : v g,ci,-eu,eus : v : 0
16 17 18	$egin{array}{c} \mathbf{SW} : \mathbf{W} \\ \mathbf{WSW} \\ \mathbf{WSW} \end{array}$	W: WSW: SW W: NW: WSW 88W: SW	9°2 5°3 2°6		1.6 0.6 0.2	513 371 267	v 0 0	: 6, eus, eu, ei : ci	v, ci, ci,-cu, cu,-s, w: 0 v,ci,cu,cu,sr,sm: v, r, sn, hl: 0 v,ci,cu,ci,-cu,cus: v, r : 1,th,-cl,h,-fr
19 20 21	SW: W: NE NNE N	NNE: ENE: NE NNE: N N	8.4 8.2	0.0	1.0 1.0	198 548 383	o, thf v 10, thr, sn, w	: 10 : 10, 00-50	zenszei-enlisch 10 : 4,ei-en,en- 10 th-r, 8n, w 10, octhr : v : 0, lnha
22 23 24	W: W8W W8W: 8W: 8 Variable	Variable 8: SE: ESE SW: SSE	1.2	0.0	0.8	134 215 345	0 0 10, hr	: 0, lı : 10	v.gtglm,sl: 10, r, sn : 0 7.ci.cicu,cu.es.soha: 10 : 10,thcl,luha.i 7.cus.cu,ci: 10, r : 10, r
25 26 27	88E: 8:88W ENE: E WSW	SE: ESE ENE: ESE: SE SSW: WSW: SW	4.6 0.0	0.0	0°5 0°0 0°2	307 126 272	10, r 10, r V	: 9, ens, eieu : v, ei, en, eieu	v, ens, cicu, ci : 6,cus,cicu,shsr 10, ocr : 10, frr 10, thr : 10, r : 3, cicu, ci
28 29 30	SW SSE: ENE WSW: W	SSW: S WSW:NW:SW Variable	3·2 3·7 o·8	0.0	0.1	314 209 250	10, I'	: 5, cus, cicu, ci : 10, r : 10	seni-senici-enici-is: veni-sei-enici: v. luha veneuel-enen-sei-sso-ha: veneue: 4, clcu 10 : 10 : 0
31	WSW	W: WSW	7.0	0,0	0.6	369	0	: t, ci	10 : 10
Means	• • •	• • •			0.6	307			
Number of Column for Reference	23	2.4	25	26	2,7	28		29	30

The mean Temperature of Evaporation for the month was 38 .6, being o .4 lower than

The mean Temperature of the Dew Point for the month was 35 5, being of 5 lower than

The mean Degree of Humidity for the month was \$1.2, being 0.3 greater than

The mean Elastic Force of Vapour for the month was our 208, being our 004 less than The mean Weight of Vapour in a Cubic Foot of Air for the month was 25' *4, being off 1 less than

The mean Weight of a Cubic Foot of Air for the month was 547 grains, being 3 grains less than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 7.2.

The mean proportion of Sunshine for the month (constant subshine being represented by 1) was 0.27. The maximum daily amount of Sunshine was 9.6 hours on March 11. The highest reading of the Solar Radiation Thermometer was 105 . 5 on March 25; and the lowest reading of the Terrestrad Radiation Thermometer was 18 . 2 on March 1.

the average for the 20 years, 1849-1868.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 2 1; for the six hours ending 3 p.m., 0 9; and for the six hours ending 9 p.m., 0 7.

The Proportions of Wind referred to the cardinal points were N. 7, E. 4, S. 8, and W. 12.

The Greatest Pressure of the Wood in the month was 16 75 on the square foot on March 7. The mean daily Horizontal Movement of the Air for the month was 307 miles; the greatest daily value was 548 miles on March 20; and the least daily value 126 miles on March 26.

Rain fell on 17 days in the month, amounting to 2" 230, as measured in the simple cylinder gauge partly sunk below the ground; being 0" 747 greater than the average fall for the 36 years, 1841-1876.

		Bano.	Ī		T's	EMPERAT	TEE							,	EMPER!	TEDE		ı		9.5		-
		MEIFE.						Of	Of the	the A	erence bet Air Tempe: pl Dew Po	rature				Of the	Watan			whose		
MONTH	Phu-				Of t' ~ A	ir.		Evapo- ration.	Dew	, i	emperatu	re.		Rays Sterik Sulta Chays	ashon a Min	of the S	Phames	shin		Gener	· ·	
and DAY, 1877.	of the Moon.	a of 25 Hotely Veryories funds of the	red.	+	Parly Range,	Mean of 24 Hourly Values,	of	Mean of 24 Hourly Values,	De- duced Mean Daily	Mean Daily Value.	Greatest of 24 Hourly Values,	of 24 Hourly	Degree of Humidity (Saturation = 100).	Highest in the Sun's Rays as shown by a Self-Registering Maximum Thermometer with blackened Jullo in vacuo placed on the Grass.	Lowest on the Gressas shown by a Self-Registering Mini- mum Thermometer.	***	4.	Paily Duration of Sunshine.	Sun above Houzon.	Rain collected in a vectoring surface above the Ground.	Paily Amount of Ozone.	Bleetricity.
		# S R	Biehed	Lowe		7 111110 34	20 Years.		Value.		1.000		ES.	選手を買う	L See	Highest.	Lowest.	Pails	ž	Rain Pag	Paily	Bleet
		10.	0	0	0	0	0	0	0	0	0	0		0	0		0	hour -				
April 1 2 3		29.834 29.280 29.280	53°4 58°0 57°2	43.0 41.7 43.0	13.0 19.3 19.4	21.1 48.1 48.5	+ 2.0 + 3.4 + 5.0	47°1 46°0 48°3	45.4 45.4	2·3 6·4 5·7	5.6 12.4 10.3	0.0	92 78 81	63.6 97.5 81.0	43.8 40.8	49.3 49.3	46.3 46.8 47.5		13.0 13.0	0.038	0.3 5.8 10.2	0
5 6	Last Qr.	28:965 29:165 29:315	56.5 54.0 56.5	42°5 40°7 40°1	23·3 13·3 16·1	53.0 46.5 45.8	- 0.0 - 0.1 + 9.0	43.3 43.9 49.6	40.2 40.0 46.1	6·9 5·3	12.4	3.2 5.2	78 82 82	103'4 101'2 99'3	39·5 37·8 36·2	50°5 51°8 51°8	48.3 49.3 49.7	3·4 5·5 3·8		0.166	20.5 22.3 16.7	0: <2,1
7 8 9	 Apoger	2 / 465 29 481 2 / 367	57:4 56:5 57:7	46.0 42.8 38.5	19.2 10.2	46.7 48.0 50.8	+ 3.9 + 1.5 - 0.1	44.0 46.3 48.7	41.0 44.3 46.2	5·7 3·7 4·3	0.1 10.8 15.5	0.4 0.9 5.1	82 87 86	84.9 84.3 84.9	34.8 39.3 43.8	51.8 51.5 51.5	49'3 49'3 49'5	0.0 1.4 4.1	13.4	0.183 0.022	9.0 12.0 18.3	0.sP ₁ O O
10 11 12	In Equator	29°364 29°330 29°860	58·8 56·4 50·3	43.6 41.1 35.4	15·3 14·6	50·7 47·6 42·7	- 4.4 + 0.6 + 3.8	48°7 45°8 39°4	46.6 43.8 35.5	4*1 3*8 7*2	14.3 6.4 10.6	0.0 0.8 5.4	87 88 76	80.7 70.2 113.4	38·6 39·0 33·5	52·1 52·1	49°1 50°1 49°7	0°2 0°6 5°8	13·5 13·6	0.000 0.123 0.538	3·3 6·7 9·7	o:s
13 14 15	New 	29.822 29.946 29.891	57·5 54·4 53·5	37.7 41.2 38.7	19.8 13.5 14.8	46.5 46.5	- 0.2 - 1.2 - 1.2	43.9 44.2 41.8	40.4 43.0 40.4	6.0 3.2 9.0	12.0 8.4 14.0	0.2 0.0 1.2	81 89 72	93·5 91·2 88·3	35·4 39·0 36·7	52·3 52·5 52·5	49*8 50:3 50:3		13.7 13.8	0.000 0.000 0.142	12.5 10.8 14.5	. :
16 17 18	Greatest Declination N	29:360 29:446 29:436	46.3 46.3 42.0	38·7 35·2 36·2	8·2 5·8	43.8 40.7 39.4	- 3·8 - 7·1 - 8·5	36·8 36·1 36·8	31·1 30·3 33·4	10.4 6.0	16·5 14·3 9·2	g•o 5∙8 3•o	60 66 80	77°0 83°0 49°6	34·1 34·1 36·0	52·3 52·3 49·8	50°1 50°1 47°3		14.0 13.0 13.0	0.000 0.022 0.048	22.4 12.8 4.5	
19 20 21	First Qr.	29'741 30'042 29'799	51.4 59.3 49.0	36.0 32.1 42.0	15·4 27·2 7·0	43.4 44.6 46.3	- 4.6 - 3.3 - 4.6	39.8 41.1 45.1	35·5 37·1 43·8	7.5 7.5 2.5	15.2 12.0 4.8	3·2 o·3 o·o	74 74 92	10g·8 116·3 54·8	32.0 28.1 40.0	48·5 47·3 47·5	45·3 45·3 45·3	4.0 2.1	14.1 14.1 14.1	0°025 0°000 0°223	4.5 4.5 9.5	0
22 23 24	Perigee In Equator	29·463 29·412 29·524	61.9 58.2 57.5	45.2 37.2 34.1	16·4 21·3	51.7 45.3 45.3	+ 3·5 - 3·1 - 2·8	48.6 41.2 41.8	45·5 37·2 37·5	6·2 8·0 8·0	18.0 18.5 14.1	0°0 2°5 0°5	79 7 1 74	112.3 112.0	40.8 34.0 29.7	47.5 48.3 49.1	45.2 46.3 46.3	7.8	14.3 14.4	0'025 0'037 0'020	9.5 8.5 2.3	o:sl o
25 26 27	 Full	29:735 29:784 29:68c	53·1 49'7 51·0	33·6 35·3 35·9	19°5 14°4 15°1	43.1 42.3 44.4	- 4.0 - 6.1 - 2.3	40.5 30.9 40.5	36·3 36·3 37·3	6·4 6·0 7 ·1	13.6 11.3 12.4	0·3 2·2 2·4	78 80 75	94·3	27°1 34°5 34°0	50.8 50.8 51.1	47.3 48.3 48.3		14'4 14'5 14'5	0,000	1.5 7.3 13.7	0:W
28 29 30		29.579 29.670 29.934	48.9 51.4 53.7	41.6 39.3 41.2	7°3 12°1 12°5	44'7 44'5 44'7	- 3·8 - 4·0 - 3·9	41.2 41.2 41.2	38.0 39.7 37.8	6·7 4·8 6·9	15.6 10.2 6.8	7.4 1.2 4.0	77 83 76	56.0 65.4 106.4	41.0 39.0 37.5	50·1 50·1	48.1 48.1 48.1	1.3 0.0	14.6 14.7 14.7	0.000 0.136	0.0 0.0	0
Means		29:595	54.3	39.5	14.7	46.1	- r·3	43.5	39.9	6.3	12.1	1.8	79*4	89.8	36.7	50.5	48.3	2'4	13.8	3.349	9*7	
Number of Column for Reference		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	2 I	22

The results apply to the civil day, excepting those in Columns 16 and 17, which refer to the 24 hours ending 6" a.m. of the day against which the readings are placed.

The values given in Columns 3, 4, 5, 14, 15, 16, and 17 are derived from eye-readings of self-registering thermometers.

The mean reading of the Terromater for the month was 29 n : 595, being oh 208 lower than the average for the 20 years, 1854-1873.

TEMPLEATURE OF THE ATE.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Decree of Hamility (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean after no. between the Air and Dow Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Difference: (Columns 11 and 12) are deduced from the z4 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The results on April 9, 18, and 28 for Air Temperature, and on April 18 for Evaperation Temperature, depend partly on values inferred from eye-observations, on account of accidental loss of photographic resist

The Electrical Apporator was not in action from April 12 to 19.

The highest in the month was 66" o on April 4; the lowest in the month was 32 1 on April 20; and the range was 33° 9.

The mean of all the highest daily readings in the menth was $32^{-\epsilon}$, being 3^{ϵ} for larger than the average for the 36 years, 1841-1876. The mean of all the highest daily readings in the menth was 44^{ϵ} , being 3^{ϵ} , 36 flower than the average for the 36 years, 1841-1876. The mean of all the lowest daily readings in the month was $39^{-\epsilon}$, being 3^{ϵ} , 36 hoger than the average for the 36 years, 1841-1876. The mean of all the lowest daily readings in the month was $39^{-\epsilon}$, being 3^{ϵ} , 36 hoger than the average for the 36 years, 1841-1876. The mean for the month was $46^{-\epsilon}$, being 4^{ϵ} of 48 than the average for the 36 years, 1841-1876.

	Wixd as deduc	TED THOM SELF-REGISTI	ERINO	ANEMO	METEI	ns.	8		The second secon
		Oslor's.				ROBIN- SON'S.		CLOUDS AND) WEATHER.
MONTH and DAY.	Gen ral	D.rection.	Pres Sqi	sure or nare Fe	oot.	tov sent			
1017.	Λ. ΥΙ.	Р.М.	Greatest	Least.	Mean of 24 Hourly Measures.	Horizontal Mo	Л	A.M.	P.M.
			16.	lbs.	llo.	mile.			
April 1	WSW: W: XW XXB 8: SE	NW: W: NNW WSW: SW: SSW SSE: SSW	1 -	0.0	0.1 0.1 0.1	278 260 318	10, r	: 10, ch,-s, ci,-s	10. firshs : 10, r o.eu.s.ci.eu: 10 : 10 10. oc.r : 10, oc.s(h.c. : 6
5 6	8: 88W 88W 88E: 8: 88W	SSE SSW SW SSW S S SW	7.0	0.0	0.4 0.0 1.0		v v v, r	: 10 : v. frshs : 8, cus, cicu	real-schrail: 10, r : 8, cicu v. ci. cicu. cus. : v. shsr 10, shsr : 10, r
7 8 9	SW S ENE: SE: SW	88W: 8 8E: E: ENE 8W: ENE	2·5 2·9 2·3	0.0	0.3		10	: en.s, ci, ci.eu, so.dm, sl.r : 10, eus, en : 10	Sath-cleicheusher: V : V.ciCu,cus 10, r : 10, hr 10, solm : 10, r
10 11 12	NW WSW: SSE NE: E	NW : SW 88E : NE ESE	0.0 1.0 1.5	0.0		173 199 234	10, r 0 V	: 10, r : 8, ens, en, ei, r : 4, ens, eu	v.cis.cieu: v.cicu.shr: 0 v. frshs. ts : 10 genenci-seus: thvl : v
13 14 15	ESE: SW WSW: NE: ENE ESE: SE	SW: NW ESE ESE	3.4	0.0	0'0			: 10 : 8, eien, eis	10, shsr : 10, thr V, en, ei : 10 : 4.cms.cien g.cien.cis.thel : 10, thel
16 17 18	ESE E: ENE NE	E ENE: NE NE: NNE		0.0		621 711 1 97	10,thcl,soha,stw v, g 10	v : 8, cus, cu. cicu, ci. g : 10, thr	8. th,-el, so,-lin, g : A, g 10, r, sin, g : 10, r 10 : 10, r
19 20 21	NNE: NE NNE: N 8E: 88E	NE: NNE E: SE: 8 S: SW	13.0 0.2 5.6	0.0	0.3	467 146 232	10, sl,-r 0 10	: 10, 8q : 1, cu, h : 10, r	v, ens, en : v : 0 7, ens, en, ei : 10, en : luha 10, r : 10
22 23 24	WSW WSW Variable	WSW: W WSW: SW: S NE: ESE	3·3 o·8	0.0	0.1	269 283 154	10 10 V	: 10, eu, eieu, shr : 5, eus, eu, ei : 4, eieu, h	v, oct-shs, (: 10, frshs g, ensementements: 3, ci, ci,-cu y,ci,ci,-cu,cu,s; v, hl, frshs: 1, ci,-cu
25 26 27	E: ENE ENE ENE: E	E: ENE E: ENE ENE	1.2	0.0	0.1	218 278 480	v v v	: 2, cns, cn : 10, thr : 10	10 : V : 4, en, ei
28 29 30	ENE: NE NNE NNE	NE ENE:ESE:NNE N: NNE	1.2 0.8		0.0	349 223 332	10 10 V	: 10 : 10 : 10	10 : 10 10, r : 3 9, cm-s, ci-cu : 10
Means		•••	٠	٠.	0.6	308			
Number of Column for Reference	23	24	25	26	27	28		29	30

The mean Temperature of Evaporation for the month was 43 '2, being 00'7 lower than

The mean Temperature of the Dew Point for the month was 39 '9, being 00'4 lower than

The mean Degree of Hamility for the month was 79.4, being 2.5 greater than

The mean Elastic Force of Vapour for the month was on 246, being on 004 less than The mean Weight of Vapour in a Cubic Foot of Air for the month was 25th 8, being oft 1 less than

The mean Weight of a Cubic Foot of Air for the month was 542 grains, being 2 grains less than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 8:4.

The mean proportion of Sanshine for the month (constant sunshine being represented by 1) was 0.17. The maximum daily amount of Sanshine was 7.8 hours on April 23. The highest reading of the Solar Radiation Thermometer was 1162 3 on April 20; and the lowest reading of the Terrestrial Radiation Thermometer was 27 1 on April 25.

The mean daily distribution of Ozene was, for the 12 hours ending 9 a.m., 4.5; for the six hours ending 3 p.m., 3.4; and for the six hours ending 9 p.m., 1.8.

The Proportions of Wind referred to the cardinal points were N. 6, E. 10, S. 9, and W. 5.

The Greatest Pressure of the Wind in the month was 34000 on the square foot on April 16. The mean daily Horizontal Movement of the Are for the month was 308 miles; the greatest daily value was 711 miles on April 17; and the least daily value 110 miles on April 13.

Rum fell on 20 days in the month, amounting to 3" 549, as measured in the simple cylinder gauge partly sunk below the ground; being 1 to 834 greater than the average fall for the 36 years, 1841-1876.

		BARO- METER.				MPERATI	UBE.			Putti	rence bets	ve-11			EMPERA	TURE.				s Bross		
MONTH	Phases	Values			O: the A	1r.		Evano-	Ot the Bow Point.	11.7	ar Temper al Dew Pos emperatur	ti f		m s Rays as Registerna- regimentely A bully in the Grass.	sussitional ring Mills	On the Test Green	Charnes	10 L. Jey		Company of the second	Anth.	
and DAY, 1877.	of the Moon,	Mean of 24 Hourly V (corrected and redu 32 Fabrenfied).	Highest.	Lowest.	Daily Range.		Excess of Mean above Average of co Years.		Design duced Mean Daily Value.	Mean Daily Value.	Greatest of 24 Hourly Vidues.		Degree of Humidiff (Safuration to	Highest in the Survisionally asseller. Maximum. Ther with thankened vacuo placed on the	Lowest on the Gaussian Self-Register union The proposited	Iheliest.	Lowest.	Prily Danglion of S	Sun above Horizott	Ram collected in precion, surface above the Gronin	Parly Amount of O.	Electricity.
		In	0	0		0	0	0	0		С	0						1 .				
May 1 2 3	Greatest Declinate h	30,132 30,110 30,132	513	35.5	15.8	43.0	- 6.8 - 5.9 - 8.7	37.4	30.7	12.3	14°5 18°3 12°6	5:3 7:1 4:3	68 61 76	85.5 101.3 45.2	315	4913 491 493	46.8	1.5	14.8	0,000		0
4 5 6	Ap. 20. Last Quarte.	29.714	52.3	33.3	191	40'2	-10.8 - 9.5 - 7.7	35.7	24.0	10.3	18:3 17:4	4'3 2'5 4'3	68 68	107°0 115°6 125°3		48.8	46.8	0.0	100		6	W : 0
7 8 9	In Equator	29.536	66.2	32.6	33.6	514	- 2.4 + 0.2 + 3.9	44.0	36.6	14.2	24°5 25°2 22°1	3.4 5.3	58	119°8 123°0 129°1		4.18	4-19	13.0	1.1.2	0,000 n,000 0,000	11.8	0: W:0
10 11 12	••	29 355	59.7	45.0	13.8	5012	+ 2,+ - 1,5 - 5,+	47.7	45.0	3·3 3·3	21:5 14:1 9:3	0.0 0.0	66 83 89	101.1 113.0 154.0		5219 5313 5413		1.3	15.3		0.0	O W : O
13 14 15	New Greatest Declination N	29°495 29°483 29°686	57.8	42'5	153	50.3	- 0.6 - 2.2 + 0.6	48.1	45.8	4.2 4.2 4.4	9'1 10'3 20'9	0°2 0°2	86 85 76	92°0 70°2 117°9	41.2 32.0 44.6		51'8 52'1 52'5	0.0	15.5	0°018 0°002 0°067	1.2	o w:o
16 17 18	Perigee	29'914 29'660 29'772		48.5	8.0	52.5	- 1.6 - 1.3	50.7	48.9	5.4 3.6 9.5	11'2 7'2 20'5	1.8 0.8	82 88 70	114.2 -1.0 100.1	36·5 45·5 42·1		53.3 53.3	0.0	15.6		10.0	-NP 0
19 20 21	First Qr. In Equator		53.2	45.2 45.4 46.4	7.7	10.0	- 4.5 - 5.7 - 6.2	46.9	44.6	3·9 4·4 5·6	5·8 9·6 11·6	0.4 1.2 5.4	87 85 81	-6·8 85·1 93·8	42.1 45.1 45.8		53°9 53°3 53°3	0.1	15.8	0,000 0,082 0,583	5.5	0 -NP - 0 O
22 23 24			51.9	40.0	11.0	45.6	- 8.8 - 9.9 - 8.1	41.0	37.6	4.7 8.0 8.0	8.4 13.5 13.8	0.0 3.2 2.0	85 74 75	68·3 71·0 115·5	43.5 40.0 41.3	55·8 55·3 54·3		0.3	15.9	0.005 0.000 0.140	8.2	0 0
25 26 27	Full	29'982	67.6	47'2	20.4	54.9	- 5·1 - 1·2 - 1·7	50.3	45.0	10,4 0,0 8.4	17'9 20'5 18'4	0.7 2.7 3.2		121'9 121'6 123'8		54.3	51.8	41.7	16.0	0.000 0.000 0.000	1:3	0 0
28 29 30	Greatest Declination's	29.372	63.8	44.5	193	52.5	- 1.3 - 4.3 - 3.7	47.4	42.2	10.3	13°5 21°5 20°5	1'4 2'9 1'5	74 69 69	117'- 121'2 126'1	41.0	56:3		9.6	10.1	0,000 0,000 0,10ñ	13.5	0
31		29:453	66.4	11,0	22.4	55-2	- 2.1	51.5	48.0	7.2	14.1	1.9	7.7	1000	40.0	5,7:3	54.2	r5	16.5	0,000	I †. I	0
Means		29.707	5g•3	41.7	17.6	49.4	- 3.8	45'5	41.3	8.1	15.6	2.5	74.4	105.7	37	53.6	51.1	+"7	15.6	1.3-6	7.8	
Number of folumn for Reference.	ı	2	3	4	5	6	7	8	9	10	11	1.2	13	14	15	10	1 ~	18	19	20	2.1	2.2

The results apply to the civil day, excepting those in Columns 16 and 17, which refer to the 24 hours ending 9" a.m. of the day against which the readings are placed.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the 4 hotographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glassher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 16) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dryshilb and Wetsbulb Thermometers. The results on May 4, 5, 9, and 25 for Air Temperature, and on May 2, 4, 5, 14, and 20 for Evaporation Temperature, depend partly on values interred from eye-observations, on account of accidental loss of photographic register.

The values given in Columns 3, 4, 5, 14, 15, 16, and 12 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 2910-707, being conveys lower than the average for the 20 years, 1854-1873.

TEMPERATURE OF THE AUG.

The highest in the month was 67° 6 on May 26; the lowest in the month was 28° 1 on May 4; and the range was 39° 5.

The mean of all the highest daily readings in the month was 50° 3, being 5° 1 lower than the average for the 36 years, 1841–1876. The mean of all the lowest daily readings in the month was 41° 7, being 2° 1 lower than the average for the 36 years, 1841–1876.

The mean daily range was 17.6, being 30.0 less than the average for the 36 years, 1841-1876.

The mean for the month was 49° 4, being 3 '8 lower than the average for the 20 years, 1849-1868.

	WIND AS DEDU	CED FROM SELF-REGISTI	ering.	ANEMO	METER	s.			
		Osler's.				ROBIN- SON'S.		CLOUDS AN	D WEATHER.
MONTH and DAY, 1877.	General Di	rection.	Pre-Sq	ssure o	oot.	Movement			
10//	А.М.	Р.М.	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal Movement of the Air.		A.M.	Р.М.
May 1 2 3	NNW: N Variable WSW: NE	NNE: N 8W NE: E: ENE	0.8 0.0 2.0		0°0 0°0 0°1	27.1 1.18 2.34	10	: 10 : 10 : 0, h	10 : 10 10, cu : V : 0 10, octhr : 10, thr : 3
† 5 6	ENE NE ENE: E	E ENE: E ESE: ENE	2°1 0°7 3·8	0.0	c.† o.o o.s	282 214 288	v o v	: 7, cus, cu, ci, cicu : v : 5, cicu	1v,ei,eu,eu,-s,ei,-eu: 4, eu, ei : 0 8, ei,-eu, eu,-s, ei : v, eu,-s 3, ei,-eu : 0
7 8 9	NE: ENE NNE: NE ESE: SSW	ESE: E: ENE E: ESE S: SSE	0.2	0.0	0.0	172 174 197	0 0 V	: 1, cis : 1, ci : 10, cus, cu, ci	1, ci, cis : 0 2, cu, ci : v : 7, ci, cicu 6, cicu : v : 9
10 11 12	8W: W8W NNE: N 88E: NE	88W : SE Variable 8E	0.0	0.0	0.0	200 100 82	v 10 v	: 9, cien, cus. ci : 10, thr : 10, shsr, t	Sciencei-senent-sen soo-ha: V v, r, glm : v 10, r, t : 10, 00,-r
13 14 15	N SE: ENE ESE: W	Variable E: ESE WNW: W: WSW	o'o 6·3	0.0	o.† o.o o.o	1 + 2 1 2 I 2 7 0	10 v 10, shsr	: 10, thr : 10, thr : 10, thr	10, r
16 17 18	SW:WSW = SSW:S = WSW:W	$egin{array}{c} 8W:88W \\ 8W:W \\ W8W \end{array}$	4.0 8.3 4.0	0.0	0°1 0°7 1°2	270 385 493	10 V	: 3, eu, ci,-eu, ei, eu,-s, oc,- : 10, r : 7, ei,-eu, eu,-s	r v.en,ei.eu.eu.s.s.ocr: v 10, r, w : 10, thr : 2, eieu, eu 6, ens, eu, eieu, w: vv. l
19 20 21	$\begin{array}{c} \text{WSW} \\ \text{N} \cdot \text{NNE} \\ \text{N} \end{array}$	W: NW: N N NNE	3·2 7·5 8·0	0,0	0.3	340 428 454	v 10 10	: 10, r : 10, r : 10	10, frshs : 10, 0cr 10 : 10 10, W : 9,cicu,cus,w: 10, r
22 23 24	$\begin{array}{c} \mathbf{NNE} \\ \mathbf{NNE} \\ \mathbf{N:NE} \end{array}$	NNE NNE NNE: NE	5·3 1·0	0.0	0.1	413 335 244	10, r 10	: 10, thr : 10 : 10. octhr	10 : 10 10 : 10 10 : 10, 00T : 10
25 26 27	NNE : NE Calm : SW 88W : SW	NE: 88W 88W 8W: 88W	o*o o*3 7*4	0.0	0.0	132 189 442	v v	: o, h : 1, eis : 8, eieu, eis, w	v, liel : 10, liel : v 8.cieu,eu,eus.h: v,ens,ei,ei,-eu: 0 3, ci, ei,-eu, w : 2, el,-eu
28 29 30	88W : 8W 8W 8W	SW SW SW : SSW : S	2.2 4.0 5.8	0.0	0.3	670 398 345	v, hr v	: eus, cu, eieu, w : 5, ei, eieu, eus, oc : 8, eus, eu, ei	10, r, g : 8, cus v, cus, cu. cicu : v 6, ci, cicu, cus : 0
31	NE: ESE	8W : 88E	5.0	0.0	0.1	245	v	: 10, thr	10, thel, r, soha : 10. liel
Means		•••		• •	0.1	279			i .
Number of Column for Reference	23	2.1	25	26	2,7	28		29	30

The mean Temperature of Evaporation for the month was 45° 5, being 3 *4 lower than

The mean Temperature of the Dew Point for the month was 41° 3, being 3° 8 lower than

The mean Degree of Humidity for the month was 74.4, being 1.0 less than

The mean Elastic Force of Vapour for the month was o'n . 260, being o'n . 041 less than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 3 serve, being our 4 less than

The mean Weight of a Cubic Foot of Air for the month was 540 grains, being 2 grains greater than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 711.

The mean proportion of Sunshine for the mouth (constant sunshine being represented by 1) was 0.30. The maximum daily amount of Sunshine was 13.0 hours on May 8. The highest reading of the Solar Radiation Thermometer was 129 1 on May 9; and the lowest reading of the Terrestrial Radiation Thermometer was 23 0 on May 5.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 3'4; for the six hours ending 3 p.m., 2'7; and for the six hours ending 9 p.m., 1'7.

The Proportions of Wind referred to the cardinal points were N. 9, E. 8, S. 7, and W. 6. One day was calm.

The Greatest Pressure of the Wind in the month was 24° s S on the square foot on May 28. The mean daily Horizontal Movement of the Air for the month was 279 miles; the greatest daily value was 670 miles on May 28; and the least daily value 82 miles on May 12.

Rain fel, on 10 days in the month, amounting to 1 '376, as measured in the simple cylinder gauge partly sunk below the ground; being o'n 613 less than the average fall for the 36 years, 1841-1876,

		BARO-			T	MPERAT	TRE.				rence bet				EMPERA	TUBE.				whose		
мохтн	Phases	Values uced to			Of the Λ	ir.		Of Evapo- ration.	Of the Dew Point,	an	ar Tempei d Dew Po emperatu	mt		ten's Rays as ERogistering Premometer of bulb in a the Grass.	us shown ing Muri- r.	Of the of the T off Gree	hames	of Sunshme.		Gauge F 5	ome.	
DAY,	of the Moon.	Menn of 24 Hourly Values (corrected and reduced to 32' Fabrendeat),	Highest.	Lowest.	Daily Range,	Mean of 24 Hourly Values.	Excess of Mean above Average of 20 Years.	Mean of 24 Hourly Values.	De- duced Mean Daily Value.	Mean Daily Value	Greatest of 24 Hourly Values.	of 24	Degree of Humidity (Saturation = 100).	Highest in the San'shown by a Sel-Re Maximum Ther with blackened vacto placed on the	Jowest on the Grass as shown by a Self-Registering Muni- mum Thermometer.	Inghest.	Lowest.	Daily Duration of Si	Sun above Horizon.	Rain collected in a receiving surface above the Ground,	Daily Amount of Ozone.	Electricity.
June 1 2 3	Apogee	in. 29.394 29.697 29.616	60.0 60.8 78.9	50.8 50.6 45.2	9°2 10°2 33°7	54.7 54.3 64.9	0 - 2.8 - 3.2 + 7.0	51.5 51.7 57.3	48.4 48.4	6·3 5·6 13·9	9.9 8.2 28.9	0.6 3.5 0.6	79 81 61	92.6 85.0 129.6	46.5 46.7 39.8	58·3 57·5 57·5	55·3 55·3 55·3	2°5 0°0 12°6	16.3 16.3	in. 0.166 0.000	24'4 19'2	εP, εN : 0 Ο
4 5 6	Last Qr. In Equator	29·563 29·781 29·839	81.7 70.5 67.2	53 ·1 49·5 46·5	28.6 21.0 20.7		- 3.0 + 1.1 + 8.2	60.6 52.5 51.2	55.8 46.5 47.3	10.8 12.8 8.0	18.9 21.1 12.2	2.0 2.1	69 62 75	136·5 120·9 126·0	46.0 43.5 40.6	58·8 59·8 60·3	56·3 57·3 57·5	9.8 8.6 6.5	16.4 16.4	o.002 o.002	10.2 17.0 22.6	0 : sP,sN : 0 O
7 8 9		29*979 29*931 29*918	70.0 73.4 78.9	44°2 47°1 55°2	25·8 26·3 23·7	55·9 60·7 66·2	- 2·5 + 2·2 + 7·7	50·3 54·6 59·0	45°1 49°2 53°2	13.0 11.2 10.8	23·8 20·5 24·1	2·5 2·5 4·6	67 66 63	127.8 132.3 135.6	48.3 40.4 40.4	60·3 61·3 62·3	57·8 58·8 59·3	13.7 8.1 11.0	16.4 16.4	0,000 0,000 0,000	9.7 13.8	0 0
10 11 12	New Greatest Declination N	29.933 29.889 29.714	80°2 83°7 76°9	53·3 51·5 53·3	26·9 32·2 19·8	65·5 67·1 65·9	+ 6.0 + 8.4 + 2.1	58.6 60.4 62.8	53·0 55·0 60·3	12.2 12.1 5.6	11.0 50.5 55.8	1.1 1.4 1.9	6 ₄ 65 83	134.0 129.4 132.5	48.0 46.8 57.1	63·3 64·3 65·8	60·3 61·5 62·5		16.2 16.2	0.190 0.190	11.0 8.0	0
13 14 15	Perigee	29.821 29.931 29.994	66·4 68·8 73·7	51.0 49.1 21.0	15'4 19'7 21'8	59°4 59°2 61°9	+ 0.2 + 0.1 + 2.6	55·9 54·0 56·0	52·8 49·3 51·0	6.6 9.9 10.8	15.2 21.2 12.3	2.2 2.0 2.4	79 70 68	113·5 129·2 134·7	46.0 44.2 47.1	66·3 67·3 67·3	63·3 63·8 63·8	3.4 11.8 10.0	16·5 16·5	0,000	16·7 11·3 13·0	0 0
16 17 18	In Equator First Quarter	29.873 29.882	76.5 80.5 82.4	48.0 50.2	28.5 26.5 35.5	63·3 66· ₄ 67·6	+ 3·8 + 6·7 + 7·7	56·8 58·5 58·7	51.9 51.9 51.9	12.0 14.3 19.0	23.0 28.0 34.2	1.8 2.2 3.6	65 60 56	137.6 140.3 144.2	39.7 42.2 42.7	66·3 66·3 67·1	63·8 64·3 65·3		16.9 16.9	0.000	8·7 3·7 4·0	0
19 20 21	••	29.882 29.698	84.4 77.7 7 6.8	52·3 53·5 49·9	32°1 24°2 26°9	68.6 64.0 62.8	+ 8·4 + 3·5 + 2·0	60.6 58.5 57.8	54.4 53.6 53.6	14.5 10.1 9.5	28·2 20·7 20·2	3·4 3·0	60 69 72	135.0 133.2	43.4 48.3 44.8	68·8 68·8	66·3 66·8	7.8 7.8	16.6 16.6	0,000	9.8 13.5 12.8	0 0
22 23 24	••	29.440 29.298 29.398	74°4 67°3 72°2	44.8 46.0	17.3 21.3 27.4	53·6 53·6 57·6	+ 2.5 - 2.8 - 4.1	58·4 53·3 50·4	54.0 48.7 43.8	9.6 9.9 13.8	18.4 22.3 27.7	2*9 0*8	72 69 60	127'9 119'0 125'0	36.0 20.0	69·3 69·1 67·3	67·1 66·3 64·5	12.1 1.1 8.9	16.6 16.6	0.000 0.000	14'2 5'0	w 0 0
25 26 27	Greatest Dec. S. Ful-	29'978 29'928 29'974	74.8 72.2 73.2	50°2 54°8	30.6 22.0 18.4	59.5 59.5 61.9	- 2·1 - 2·1	51°5 55°2 55°9	44'7 51'1 50'8	14.2 8.8 11.1	22.3 14.4 23.6	2.0 3.0 3.4	38 73 68	131.5 110.4	36·5 42·9 47·4	66·3 67·1 66·5	64·3 64·3	8·5 3·8 4·5	16.2 16.2	0°000 0°000 0°022	3.6 4.9	0 0
28 29 30	Apogee	30.069 30.002 30.002	79.6 85.5 80.1	46.5 24.0 24.0	33·4 30·0 26·1	63·1 69·6 66·2	+ 1.2 + 7.8 + 4.2	55·2 57·8 60·2	48.5 48.7 55.3	14.6 10.9	30.4 30.4 53.8	2°7 8°5 4°4	59 48 68	125.0	38.6 48.2 43.9	66·3 66·7	64.8 64.8 63.8	10.7 12.5 6.3	16·5 16·5	o,coo o,ooo o,coo	5.0 8.3 1.3	0 0
Means		29.840	74'9	50.2	24.2	62.3	+ 2.6	56.2	51.0	11.3	21.6	2.0	67.0	127.2	44'3	64.7	62.2	8-9	16.2	o.683	10.6	
Number of Column for Reference	I	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	2 1	22

The results apply to the civil day, excepting those in Columns 16 and 17, which refer to the 24 hours ending 9 a.m. of the day against which the readings are placed,

The mean reading of the Barometer for the month was 29'n 840, being o'n o12 higher than the average for the 20 years, 1854-1873.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dev Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the deduced from the 24 hourly photographic measures of the Drysbulb and Wet-bulb Thermometers. The results on June 2, 14, and 15 for the Barometer, on June 2, 3, 4, 11, 20, and 21 for Air Temperature, and on June 2, 12, 20, and 21 for Evaporation Temperature, depend partly on values inferred from eye-observations, on account of accidental loss of photographic register.

The values given in Columns 3, 4, 5, 14, 15, 16, and 17 are derived from eye-readings of self-registering thermometers.

TEMPERATURE OF THE AIR.

PREATURE of THE ALE.

The highest in the month was 85° to of June 29; the lowest in the month was 44° 2 on June 7 and 25; and the range was 41° 3. The mean of all the highest daily readings in the month was 74° 9, being 3° 8 higher than the average for the 36 years, 1841–1876. The mean of all the lowest daily readings in the month was 50° to heing 0° 6 higher than the average for the 36 years, 1841–1876. The mean daily range was 24° to heing 0° 3 greater than the average for the 36 years, 1841–1876. The mean for the month was 62° to heing 0° 3 greater than the average for the 20 years, 1849–1868.

		OSLER'S.				ROBIN-		CLOUDS AND	WEATHER.	
MONTH and DAY,	General I	Direction.	Pres Sq	sure or uare Fo	the					
1877.	A.M.	Р.М.	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal Movement of the Air.		$\Lambda.M.$	P.M	
June 1	SE: S: SW SW SE: S		20°0 23°0 7°0	0°0 0°0 0°0	3°4 2°4 0°6	miles, 673 545 302	10, r v, g v	: 10, r, g : 10, thr, stw : 1, cu	10, stw :	10, r, stw 10, liel
4 5 6	SW: W: SE SW SSW	SSE: S: SW SW SSW: WSW	1°7 6°2 6°0	0.0	1.1 1.1 C.1	236 146 403	v v v	: cu, shr : 6, cicu, cus, ci : 6, ci, ci, cu, cu, s, ci, cis	5,eu,eieu,eus,ei: 5, eu, 9,ei,eieu,eus,eis: 10 8, eu, eus, eieu, ei:	: 10, liel
7 8 9	WSW: SW SSW: S: SSE SW: WSW	SW: 88W S: 88W WSW: 88W	2°7 1°7 0°2	0.0 0.0 0.0	0.0	341 208 243	o v v	: 2, ci, cu, cus : 7, ci, cicu : ci	4,cicu,cus,cis: v,cus,cis 6, cus, cicu : 4, cu, cicu, cis, ci:	v, cicu, cus
10 11 12	SW: WSW SW: NE: SE ENE: ESE	SW SSW: E: ENE ENE: ESE	0.2 0.2	0.0	0.0	225 139 168	o o v, hr, l	: c, h : 1, ci, h, mt : 8, cus, cu, cicu		0 8, cus, cicu, ts, h1
13 14 15	NE: ENE ENE: E ENE	E E E: ENE	1.1 5.0 3.5	0,0	0.2 0.4 0.0	284 321 333	0 0	: 10 : 2, cicu, ci : 3, cicu	0 :	o o
16 17 18	NE: ENE NE: ENE NE: ENE	E : ENE ENE E : ESE	6·3 1·2	0.0	0.1	296 283 191	0	: v, thel : o : 1, ci : 1, cis	o : o : 2,cis,ci,cu : v	o o : 9, cis
19 20 21	NNE: NE E: ESE ENE: E	NE : ESE E : ENE : ESE ESE	0.2 0.3 1.4		0.1 0.0 0.0	137 173 211	0 0	: 1, ci : 10 : v, cu, cicu	1, cicu : 0	4, cicu : 1,cis,cic 10, shr
22 23 24	SW WSW: WNW NNW	$\begin{array}{c} \mathbf{SW} \\ \mathbf{NW} \colon \mathbf{N} \colon \mathbf{NE} \\ \mathbf{NNW} \end{array}$	0.8 2.1 2.0	0.0	o.8 o.8	363 342 186	v r v	: 9, eus, eu, eieu : 10 : 8, eu, ei, eieu	7, cus, cu, cieu, shr: v, cus, cu : 7, ci, cu, cicu, cus:	v, eu, cicu
25 26 27	WSW: W WSW WSW: W: N	W: WSW WSW NNW: N	o.8	0.0	0°1 0°7 0°0	219 395 227	v v 10	: 2, chcu, h : 8, cus, cu, eicu, ei, thr : 10, r		eu,eus: 3, eus 10 10, thel
28 29 30	NNW: WSW: W WSW SW: WSW	NW: WSW: SW SW: SSW N: E	1.2	0.0	0°0 0°2 0°0	178 281 158	v 1, cis 0	: 2, licl, h : 1, ci : 0, h	2, cis, ci :	10, licl 0 8, cus, cicu, cu
Means				١	0.4	284				
Number of Column for Reference	23	24	25	26	27	28		29	3	0

The mean Temperature of Evaporation for the month was 560.2, being 10.0 higher than

The mean Temperature of the Dew Point for the month was 51000, being 0012 lower than

The mean Degree of Humidity for the month was 67:0, being 6:3 less than

The mean Elastic Force of Vapour for the month was on 374, being on co3 less than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 4575.1, being ogr. 1 less than

The mean Weight of a Cubic Foot of Air for the month was 529 grains, being 2 grains less than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 5.0.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.54. The maximum daily amount of Sunshine was 13.7 hours on June 9.

the average for the 20 years, 1849-1868.

The highest reading of the Solar Radiation Thermometer was 144 5 on June 18; and the lowest reading of the Terrestrial Radiation Thermometer was 36 5 on June 25.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 3.8; for the six bours ending 3 p.m., 3.0; and for the six hours ending 9 p.m., 3.8.

The Proportions of Wind referred to the cardinal points were N. 3, E. 9, S. 9, and W. 9.

The Greatest Pressure of the Wind in the month was 23th oo on the square foot on June 2. The mean daily Horizontal Movement of the Air for the month was 284 miles; the greatest daily value was 673 miles on June 1; and the least daily value 137 miles on June 19.

Rain fell on 7 days in the month, amounting to o" 683, as measured in the simple cylinder gauge partly sunk below the ground; being 1 no 268 less than the average fall for the 36 years, 1841-1876.

		BARO- METER.			TE	MPERAT	TRE.			Diffe	rence bet	A een			EMPERA					whose mehrs		
MONTH	Phases			(If the A	ir.		Evano-	Of the Dew Point.	the A	ar Temper ad Dew Po emperatur	ature int	, o).	S Rays as egisterate minometer halb in he teruss.	the Gussasshown FRegistering Mini- termoniefer,	Of the of the T of Gree	Chames	Sunshme.		Famer F 5	zone,	
and DAY, 1877.	of the Moon.	Menn of 24 Hourly Values (correctedand reduced to 34 Pahrenbott).	Highest.	Lowest.	Daily Range.	Mean of 24 Hourly Values.	Average	Mean of 24 Hourly Values.	Mean	Mean Daily Value.	Greatest of 24 Hourly Values.	of 24 Hourly		Hachest in the Son's Rays as shown by a Self-Registering Maximum Thermometer with blackened bulb in yaeno placed on the Grass.	Lowest on the Gussian Na Self-Register mann Thermoniet	Inghest.	Lowest.	Daily Duration of S	Sun above Horizon.	Rain collected in a preciving surface above the Granid,	Daily Amount of Ozone	Electricity.
		lu .	0	0	1	۰	۰	0	0	۰	0	0		0 . 7	2		65.2	hours.				
July 1 2 3	In Equator Last Qr.		75.0	52.0 50.4 47.7		61:3	- 1.4 - 0.5 - 1.9	55.3 55.3	51.8 51.8	4.7 9.5 8.8	12'7 20'0 19'1	1.8	7 2 7 2	133:8 133:8	46.0 43.2 40.0	66.8 67.1 67.1	65·3 65·3 65·8	1.0	16.2	0°255 0°007 0°010	0.2 0.8	0 w:0;s X
+ 5 6		29'762 29'762	7417	48	26.0	58.6	+ 0.3 - 2.9 - 6.3		48.4 46.9 48.9	12.4	26.6 23.0 19.6	0.0 0.8 1.0	64 65 78	138·3 144·8 126·5	47°2 41°0 39°6			10'9	16.4	0.000 0.183 0.022		O 0 sN, sP 0 sN, sP
7 8 9	Greatest Declination N	29:939 30:068 30:121	64.4	14.5 15.9 18.3	21.8	541	- 6·4 - 8·1	5 0°9	46°0 47°8 49°9	9.5 6.3 9.6	19:3 14:8 16:7	0.6	71 79 71	127.7 115.2 108.3	36:3 35:8 39:3		63.8 02.7 62.1	4.7	16.3	0.000		-1', sN w O: W:O
10 11 12	New Perigee	30°019 29'905 29'781	76.6	52.5	2 4 1	63.6	+ 2.8 + 0.7 + 0.7	- 58.5	54.5	9'4	23°0 17°5 21°9	3.6 2.4 2.6	65 72 65	135.0 129.8 144.2	†1.8 †4.8 †0.†	65.3		6.3	16.5	0,000	5.0 0.4 5.0	0
13 14 15	In Equator	29°558 29°082	70.1	49.3 59.2 55.8		63.1	- 0.5 - 0.3 - 2.6		51°1 58°7 55°2	11.7 4.4 5.6	21'4 12'4 12'6	0.8	66 86 83	133.3 113.3	55.0 55.1 52.0		64.3 64.8	0.5	16.1	o:003 o:303 o:000		0 0
16 17 18	First Qr.	29°186 29°363 29°690	64.8	54.0 54.6 52.2		58.3	- 5.0 - 5.2 - 4.0	55.8	55·1 53·6 49·6	3·4 4·7 9·8	18.8 6.2 11.0	0°0 0°0 2°7	88 84 70	129°0	50.1 50.1		63.9 63.9	0.0	16.0	0.210	17.2 5.2 7.2	0 0
19 20 21		29°659 29°748 29°830	701	55.5 50.5 48.0	15.8 19.6 26.0	60.3	- 1.3 - 3.0 - 2.9	53.7	56.8 48.0 49.9		18.4	3'0 1'9	83 64 69	139.0 131.0 113.3	551 44°0 41°6	64.3 64.3	62.7	8.6	15.9	0,000		0 0
22 23 24	Greatest Declination	29.652 29.474 29.437	71.2	52°5 58°0 54°8	15'5 13'2 19'2	63.2	- 2'4 + 0'4 0'0	610	54.2 54.2 24.6	8.1 4.1 6.0	10.6 12.2 17.6	0.4	81 87 75	92.5 116.6 124.3	48°5 53°9 48°5	64.3 63.3 64.9		1.3	15.8	0.000	12.5	0 0
25 26 27	Full Apogee	29.744 29.731 24.954	72.7	55:3	17*4	62.4	- 0.3 - 0.3	58.8	51°7 55°7 54°0	8·6 6·7 8·3	17.8 16.0	1.0	73 79 75	128°0 119°0 129°7	45°6 45°6	65·8 65·3 65·3	63·3 63·3 63·3	2.3	15.7	0.000 0.528 0.000	7°2 5°3 0°0	0
28 29 30	In Equator	29*992 30*067 30*084	83.4	59.8	23.6	70'1	- 2°t + 7°5 + 5°8	651	61.3	4.9 8.3	9.3 18.4 20.3	1.6 0.8 0.5	85 73 75	93:6 134:2 137:2	42'9 55'2 52'2	65:3 65:8 66:3		12,4	15.5	0,000	0°0 2°0 0°0	0 0
31		291832	88.2	56.1	32.1	71.6	+ 9.0	66.0	61.8	9.8	20.8	0,0	71	142.6	47.6	67:3	651	9.2	12,4	0,000	0,0	0
Means		29.746	72.8	52'1	20.7	61:5	- 1.1	57'1	53.3	8.3	17.3	1.5	75.0	122.0	46.3	03.8	63.8	5.4	16.0	2°457	2.5	
Number of Column for Reference	1	2	3	4	5	6	7	8	9	10	1 1	12	13	1.4	15	16	17	18	19 	20	2 1	22

The results apply to the civil day, excepting those in Columns 16 and 17, which refer to the 24 hours ending 9 ann, of the day against which the readings are placed.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records it must say to 1858. The temperature of the Dev Point (Column 9) and the Degree of Hamildity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glassher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Difference (Column 11) and 12) are deduced from the 24 hearty photographic measures of the Dry-bulb and Wer-bulb Thermometers. The results on July 2, 4, 4, 19, and 30 for Air Temperature, and on July 2, 3, 30, and 31 for Evaporation Temperature, depend partly on values inferred from eye-observations, on account of cooling the properties. accidental loss of photographic register.

The values given in Columns 3, 4, 5, 14, 15, 16, and 17 are derived from eye-readings of self-registering thermometers.

The mean reading of the Barometer for the month was 20 10.746, being 0 10.063 lower than the average for the 20 years, 1854-1873.

TEMPERATURE OF THE AIR.

The highest in the mouth was 88° 2 on July 31; the lowest in the mouth was 42° 6 on July 8; and the range was 45 '6.

The mean of all the bijects dialy readings in the month was 52° (a), being 1'*1 lower than the average for the 36 years, 1841 - 1876. The mean of all the bijects dialy readings in the month was 52° (a), being 1'*1 lower than the average for the 36 years, 1841 - 1876. The mean of all the lowest daily readings in the month was 52° (a), being 1'*1 lower than the average for the 36 years, 1841 - 1876. The mean for the month was 61° (5), being 1'*1 lower than the average for the 36 years, 1849 - 1856.

	WIND AS DEDUCE	ED FROM SELF-REGIST	ERING	ANEM	DMETE	RS.	1		
		Osler's.				Romn- son's.		CLOUDS AND	O WEATHER.
MONTH and DAY, 1877.	General I	Direction.	Pressel	ssure o uare F	out.	Movement			
	А.М.	Р.М.	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal Mc of the Air.		А.М.	Р.М.
July 1	Variable W: NW WSW: SW	NNW: W W: WSW SW	0°4 0°3 3°7	16% 0°0 0°0 0°0	0°0 0°0	141 191 339	v v	: v : 10, thr : 10 : cus. cu	10, r : 5, ci, cis 9, cns, cu, cicn: v, ocshs : 3, cus, cicu 8 cicu, cus : 10, shr, t
4 5 6	8W : W W8W W8W: W: WNW	W: WSW SW W	1·3 3·4 2·7	0.0	0.1 0.1 0.0	242 272 240	v v 6	: 4. ci, en, eicu, thr : 3, cus, cicu : 6. cus, en	4, cns, cicu, cu : 8, cus, cicu 4.cus,ci.cicu,tiv,cns,ci.cicu,slr: 10, r. t, l 7,cus,cu,ci,h-r,t, l: v : 10
7 8 9	$egin{array}{ll} W: \mathbf{N}W \\ W: \mathbf{S}W: \mathbf{N}W \\ \mathbf{W}\mathbf{S}W: \mathbf{S}W \end{array}$	$\begin{array}{c} WNW:N\\NW:W:SW\\WSW:SW\end{array}$	2·7 1·3 3·1	0.0	0.3	272 189 326	o, l v v	: 8, cus, cu, h, shr : 7, cicu, cu, -s.lishs : 10, ocslr	7, eu.s., eu, hr; 8, eu.s. ; 8, eu.s., eieu, r.t. 10, hr ; 10, 8hs-r 10 ; v, eieu, eu.s
10 11 12	SW: WSW W: WSW Variable	WSW W: WSW: WNW Variable	2·5 0·8 0·3	0.0	0'2 0'1 0'0	323 279 139	v liel v	: 1, liel : 10 : liel :6,cus,eu.cieu	1, ci : 10 10 : v : 0 6, cus, cu, ci: 5, cus, cu, ci: 2, thcl
13 14 15	$\frac{SW:W}{SW}$	$egin{array}{c} W:SW \ SSW:SE \ SW \end{array}$	2·8 3·3 6·3	0.0	0.3 0.3	243 331 424	v 10, thr 10	: 9, h : 10, thr : 10, w, hsh-	8, cus, ci, cu : 8, cu, ci, r 9,cicu, cus,r: 10, shsr : 10, hr 10, shsr, l, t: cus, cicu, cu: 0
16 17 18	SSW SW WSW	SSW WSU W: WSW	3·8 3·5 1·9	0.0	0.3	361 485 342	v 10, r v	: 10. r : 10 : 7. cus, en, eicu	10, r : 10, shsr : 10, lir 10 : 10, r : 7;eus, cieu, ci 7, cu, ci, cieu, cus : 10
19 20 21	WSW: SW WSW: NW WSW	SW WNW: W: WSW WSW: SSW	3.1 5.4	0.0	0°1 0°2 0°2	223 365 314	10 V 3, cus	: 10 : 1. cu, ci : 7, cu, cus, ci	10. shsr : 10 6, cus, cu : v, cus, cu : 3, thcl 2, cu, ci : 5, cu
22 23 24	8: <u>\$W</u> \$\$W \$\$W: W\$W	88W 8: 88E 8W: 88W	0.7 4.8 2.3	0.0	0.1 0.2 0.0	273 363 331	v v 10, r	: 10 . 10 : 8, eu, eieu	10 : 2 10, r : 10, cr 7, cicu, cus: v, soha : 2, licl
25 26 27	SW: WSW S: SW: NW WSW	W: SW NNW: NW WSW: NW: N	1·3 3·5 o·2	0.0	0.0	320 357 230	0 10, r v	: 5, cus : 10, thr : 10, h	9, eus, eieu : v , r 10 : 8, eus, eu : 0 9, eus, eieu : 6, eieu, ei
28 29 30	NNW: WSW WSW WSW	$\begin{array}{c} WSW \\ W: NW \\ WSW: SSW \end{array}$	0.0	0.0	0.0 0.1	236 304 203	10 V	: 10, slr : 3, cicu, ci : 0, h, mt	10, thr : v : 8, eus, cieu, ci 6, cieu, cu, h : 0 0 : 0
31	WSW -	SW	0.3	0.0	0.0	214	0	: o : 1, ci	5, eu, ei, eieu : 6, eu, ei, eus, l
Means					0.3	286			
Number of Columnifor Reference	23	2 ‡	25	26	27	28		29	30

The mean Temperature of Evaporation for the month was 57 11, being of 6 lower than

The mean Temperature of the Dew Point for the month was 53°, 3, being 0°,4 lower than

The mean Degree of Humolity for the month was 75.0, being 2.0 greater than

The mean Elastic Force of Vapour for the month was o'n 407, being o'n oob less than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 4st .5, being out 1 less than

The mean Weight of a Cubic Foot of Air for the month was 528 grains, being the same as

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 7'o.

The mean proportion of Sunshme for the month (constant sunshine being represented by 1) was 0.36. The maximum daily amount of Sunshine was 13.1 hours on July 21.

the average for the 20 years, 1849-1868.

The highest reading of the Solar Radiation Thermometer was 144 8 on July 5; and the lowest reading of the Terrestrial Radiation Thermometer was 35 8 on July 8. The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 2 6; for the six hours ending 3 p.m., 1 1; and for the six hours ending 9 p.m., 1 5.

The Proportions of Wind referred to the cardinal points were N. 3, E. o, S. 9, and W. 19.

The Greatest Pressure of the Wind in the month was 600 g on the square foot on July 15. The mean daily Horizontal Movement of the Air for the month was 286 miles the greatest daily value was 485 miles on July 17; and the least daily value 139 miles on July 12.

Rain fell on 15 days in the month, amounting to 2". 457, as measured in the simple cylinder gauge partly sunk below the ground; being o " o 34 greater than the average fall for the 36 years, 1841-1876.

		BARO-			Тt	MPERAT	TEF			1				7	EMBER :	TERE		ī -		\$ 2		
		METER.			11.	"I EDAI	t a.e.	1		the .	erence bet ur Tempei	rature			EMPERA					whose		
MONTH	Phases	Values need to			Of the A	ir.		Of Evapo- ration.	Of the Dew Point.	ai	nd Dew Po femperatu	ent re.		n's Rays as & gistering emanmeter U bulb in the Grass.	ns show ing Min r.	Of the of the off Gree	Water Thames enwich,	Sunshine		Gauge is 5	one.	
DAY,	of the Moon.	Mem of 24 Hourly Values , (corrected and reduced to 33 ' Fubrenheit).	Highest.	Lowest.	Daily Range.	Mean of 24 Hourly Values.	Excess of Mean above Average of 20 Years.	Mean of 24 Hourly Values.	De- duced Mean Daily Value.	Mean Daily Value.	Greatest of 24 Hourly Values.	ruf ne	Degree of Humidity (Saturation = 100)	Highest on the Sun's Rays as shown by u.S. of Paragonic or Maximum. Thermometer with bluekened bulb in vacuo placed on the Grass.	Lowest on the Grassus shown by a Self-Registering Min- mun Thermonicter.	Highest.	Lowest.	Paily Duration of S	Sun above Horizon.	Rain collected in a receiving surface above the Ground.	Daily Amount of Ozone.	Blectricity.
		in,	0	U	0	0	0	0	0	0	0	٥		0	0	0	С	hour.	hour.	m,		
Aug. 1	Last Qr.	29.698 29.248 29.827	68·8 69·6	57'1 48'3 46'8	14.3 20.2 22.8	62.9 55.5 56.4	+ 0.3 - 2.5 - 0.3	56.0 52.2 52.0	51.8 48.0 47.9	8.2 11.1	19.6 15.7 20.5	3.1 3.1	68 70 73	123·1 115·2 124·0	57.0 42.7 40.3	68·3 68·3	65·3 65·3 65·5	2°3 6°1 3°8	15.3	0.068	0,0	0 0
4 5 6	Greatest Declination N	29.869 29.897 29.778	70°9 78°7 79°0	51.5 52.5 54.4	19'4 26'2 24'6	59·5 64·5 66·5	- 3·2 + 1·8 + 3·8	54.6 58.5 58.8	50°2 53°5 52°6	13.9 11.0 3.3	17.8 20.2 24.8	2°0 2°2 3°8	72 67 62	121.5 125.0 118.4	50°1 46°8 47°4	67·8 66·3	63·3 63·8 6 ₄ ·3	3.0 10.0	15.1	0.000	1.2	0 0
7 8 9	New . Perigee	29·476 29·464	71°3 70°2 73°0	59.5 54.5 57.2	11.8 15 15.8	63·5 60·7 62·2	+ 0.8 - 2.0 - 0.5	58·8	59 ·3 55·8 55 · 9	4.3 4.9 6.3	12.4 12.2 11.3	0'2 0'0 1'9	87 84 80	118·2 119·9 123·7	56·5 50·2 55·2	67·3 67·3 66·9	65·3 65·3 65·3		15.0	0.354	21.7	0 0: N,sP 0: sl'; o
10 11 12	In Equator	29 ·6 96 29·821 29·879	70·5 71·7 72·8	33·7 50·2 49·2	16.8 21.5 23.6	61·1 59·8 60·3	- 1.6 - 2.9 - 2.3	57·1 56·0	53·6 51·0 52·3	7:5 8:8 8:0	14.8 18.5 12.1	1°0 1°2 2°2	77 73 75	126.9	48.0 42.8 40.2	66·9 66·3	65·1 64·8 64·3	5·7 3·6 3·9	14.8	0°024 0°000	7°2 0°0 3°0	0:W W:0
13 14 15	First Qr.	29.751 29.652 29.745	70.7 78.7 79.6	58·5 58·9 55·1	12.2 19.8 24.2	66.7	+ 0.5 + 4.3 + 1.9	59.5 61.4 60.5	56·6 57·2 57·4	6.4 9.2 6.8	13·1 22·6 21·8	0.9	79 72 78	118.0 124.2 116.8	56·1 54·2 45·1	65.3 67.8	65·5 66·5 63·8	1.4 10.1 1.4	14.6	0,008	3.2	0 0
16 17 18	Greatest Declination S.	29.762 29.787 29.850	78·6 75·9 78·0	56·5 54·1 52·6	22°1 21°8 25°1	64.8 64.3 64.4	+ 2·7 + 2·4 + 2·6	60·6 57·9 58·6	57*3 52*6 53*8	7·5 11·7 10·6	18.5 18.5	1°1 1°7 3°2	76 65 68	143·7 137·4 134·8	49°7 47°6 42°7	67·1 67·3 66·7	65·3 65·3 64·1	6·2 7·9 3·4	14.4	0,000 0,000 0,000	4'7 5·3 3·0	
19 20 21		29.646 29.609 29.462	78·2 83·3 76·1	60.4 61.3 58.8	17.5 22.0 17.3	69°1 70°7 66°1	+ 7.5 + 9.3 + 4.8	63·8 65·7 61·5	59.7 61.9 57.8	9°4 8°8 8°3	17.3 20.2 18.4	2,5 3,1	72 74 75	137°3 133°2	56·5 58·1 56·0	67.1 68.3 69.3	65·3 66·3 66·8	1.0 5.8 7.7	14.3	0.000 0.012 0.074	15.5	
22 23 24	Apores Full	29*495 29*830 29*988	72'0 67'6 70'4	51·3 47·9 40·5	20°7 19°7 29°9	61.9 55.9 55.9	+ 0.6 - 4.4 - 5.2	57°1 50°8 49°7	53.0 45.3 43.9	12.0 11.2 8.0	20°2 24°3 24°3	0.4 5.1 0.0	73 66 65	133·3 127·7 123·5	30.2 30.4 43.0	68·3 67·1	66·3 65·7 65·3	10.1	14.1		0°0 3°0	
25 26 27	In Equator	29.614 29.531 29.707	63·2 68·5 70°0	54*9 57:0 56:8	8·3 11·5	58·9 62·1 63·5	- 2·1 + 1·2 + 2·7	56·6 59·6 61·9	54·5 57·5 60·6	1.4 1.6 2.9	7'4 9'9 6'8	c.4 o.0 o.8	86 84 91	87.0 108.8 99.2	53.0 53.0	66·3 66·1 65·3	64·3 63·9	1.2	130	o·535 o·173 o·082	6·8 5·0 8·7	
28 29 30	:: ::	29·585 29·782 29·698	71.6 73.3 69.0	58.8 53.0 52.8	12.8 20.3 16.2		+ 1.6	60·2 5-3 55·9	53.1 53.4	6.0 9.1 5.3	13.0 20.2 13.0	1.5 1.5 1.5	81 73 83	124.3 130.8 118.3	53.0 49.5 49.8	65·3 65·3 65·3	63·9 63·8 63·5	6.3		0.039 0.000 0.127	9°0 2°3 4°7	
31	Last Qr.	29.721	68.3	50'2	18.1	56.7	- 3·6	52.0	47.6	9*1	18.3	2.6	7.2	133.1	43.7	64.3	63.1	10.4	13.6	0.001	6.5	
Means		29.701	72.9	54.0	18.9	62.2	+ 0.3	57:7	54.0	8.3	1711	1.6	74'9	1 2 2°G	48.9	67.0	65.0	5.1	14.2	8um	5.7	
Number of Johnma for Reference,	1	2	3	4	5	6	7	S	9	10	1.1	12	13	14	15	16	17	18	19	20	21	22

The results apply to the civil day, excepting those in Columns 16 and 17, which refer to the 24 hours ending ob a.m. of the day against which the readings are placed.

The Electrical Apparatus was not in action after August 16 to the end of the year,

The mean reading of the Barometer for the month was 29 701, being o'm og8 lower than the average for the 20 years, 1854-1873.

TEMPERATURE OF THE AIR.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records, The average temperature (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 44) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Ten peratures (Column 10) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 11 and 12) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The results on August 17, 23, 24, and 34 for the Barometer, on August 17, 19, and 25 for Air Temperature, and on August 19 and 25 for Evaporation Temperature, depend partly on values inferred from eye-observations, on account of accidental loss of photographic registrance.

The values given in Columns 3, 4, 5, 14, 15, 46, and 17 are derived from eye-readings of self-registering thermometers.

The highest in the month was 83 '3 on August 20; the lowest in the month was 40' 5 on August 24; and the range was 42' 8.

The mean of all the highest daily readings in the month was 54° to, being 0° 9 hopker than the average for the 36 years, 1841–1876. The mean of all the lowest daily readings in the month was 54° to, being 0° 9 hopker than the average for the 36 years, 1841–1876. The mean of all the lowest daily readings in the month was 54° to, being 0° 9 hopker than the average for the 36 years, 1841–1876.

The mean daily range was 18^{+9} , being 1° o less than the average for the 36 years, 1841-1876. The mean for the month was $6z^{-1}z$, being 0° 3 higher than the average for the 20 years, 1849, 1868.

WIND AS DEDUCE	D FROM SELF-REGISTE	RING .	/ NEMO	METEI	RS.			
	Osler's.				ROBIN- SON'S.		CLOUDS AND	WEATHER.
General D	Direction.	Pres	aare Fo	ot.	Iovement			
А.М.	Р.М.	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal N		A.M.	Р.М.
W: NW WSW: W	NNW: NW NW W: NNW	1'4 2'2 2'I	1bs. 0°0 0°0 0°0	0°1 0°1 0°2	293 294 327	10, l, r v v	: 10 : 7, eus, cicu, cis : 6, eus, cicu, ci	8, cicu, cus : 10 8, cus, cu, shr : 3, cus 7, cus, cu : 10, r : 10, r
WNW: W: NNW SW: WSW SSE: S	N: NW: NE SW: SSE SSE: SSW	0.0	0.0	o.o o.o o.o	141 169 203	v 10 : 0	: 7, cicu : 2, cu : 9, cicu, cus	7, cicu : 10 : 10 6, cus, cu : 2, cis 9, cicu,cus,cis,cu: 9, cis, cus, shsr
S: SSE: SSW SSW SW	S: SW SSW SW	3·4 3·5 2·7	o.o o.o o.o	0°2 0°3 0°5	268 412 418	10, shsr v 10, r	: 10, shsr : 10, r : 9, cus, cicu	10, r : 10, r 10, r : v,eus,en,shsr,t: v, r 9, eus, eieu : 10, hshs
		0.0	o.o o.o o.o	0.0	265 188 209	10, r v v	: 8, cus, cicu, cu, thr : 5, cicu, cu : 9, cicu, cus	10, shsr : 10 : 1, cus 7, cus, cicu : 10 6, cu, cus, cicu : 8, cus, cu
NNW: NNE E: ENE S: SW	ENE ESE SW	o.0 o.0 o.1	0.0	0.0 0.0 0.0	272 187 176	v v v, thr	: 10 : 2, cu, ci : 10	10, thr : to, slr 5, cns, cu, cleu : 1, cis, l 6, elcu, cu, cus : 0, l
WSW WSW WSW: SW	SW: SSW W: WNW: NW SSW: S: SE	0.0 5.1	0.0	0.0	242 342 143	v v v	: 2, cis, cu : 3, cicu, cus, cu : 3, cis	6, ei,eu,eieu,eus: v 5, eieu, eu : v 10, slr ; v, eus, ei,-s, eieu
SE: SW SSW SW	SW:SSW:S	4.6 3.5 9.7	0.0	0.3	283 275 508	v v v, shr	: 8, eu, eieu, ei : 6, eis, ei : 7, eus, eieu, eu, w	9.cu,cicu,cus,ci,slr: 8, cu, cus, cicu 7, cus, cicu, shr: 9, cus, cicu 4, cus,cicu,cu,shsr,w: v, luha, r
88W: 8W NNW: NW: W 8W			0.0	1		v, hr v v	: 9,cus,eu.cicu,shsr : 2, eicu, ci, h : 7, eu, cis	s, en, eieu, eus, shr, w: 1, liel 6, eieu, eus, eu: 8, eieu 10, ei, eis, thel: 10
E: ENE SW:WSW:WNW SSE:SW:WSW	E: SE: SSW W: WSW: SW WSW	2.0 6.1 2.0	0.0	0.2	365	10 10, r 10, r	: 10, r, t : 8, eus, cieu : 10	10, r, t : 9, cns, cicu, cu: 9, hshs, t, l 10 : 10, thcl, r 10, thr : 10
WSW: WNW SW	WSW WSW: SW: SSW SW		0.0	0.0	228	10 v v	: 10, r, w : cu, cus, cicu, h : 4, cicu, ci, shsr	5. eieu, cu, słw : 10, słr 5. eus, cu, cieu : 6, eieu, cus 10, słlsr : 9,eicu,eu,słlsr: 3, eu, eieu
8W: W8W	WSW: W	8.9	0.0	1.0	124	7	: 8, ci, cu, cicu, slr, w	6, eus, eu, thr, w: 0
				0.3	293			
23	2.4	25	26	27	28		29	30
	N W: NW WSW: WW WSW: WSW WSW SSE: SSW SSW SSW SW WSW: WNW: NNE E: ENE S: SW SSW SW SSW SW SSW SW	N	N	N	N	N	A.M. P.M.	CLOUDS AND Clouds Clouds

The mean Temperature of Evaporation for the month was 57 . 7, being 0° 2 lower than

The mean Temperature of the Dew Point for the month was 54000, heing o't lower than

The mean Degree of Humidity for the month was 74.9, being 1.6 less than

The mean Elastic Force of Vapour for the month was o'n.418, being o'n.oo6 less than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 4575.6, being 057.1 less than

The mean Weight of a Cubic Foot of Air for the month was 526 grains, being 2 grains less than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 7.0.

The mean proportion of Sunshine for the month (constant sunshine being represented by 1) was 0.35. The maximum daily amount of Sunshine was 10.9 hours on August 5. The highest reading of the Solar Radiation Thermometer was 143° 7 on August 16; and the lowest reading of the Terrestrial Radiation Thermometer was 35° 5 on August 24.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 3.3; for the six hours ending 3 p.m., 1.2; and for the six hours ending 9 p.m., 1.2.

The Proportions of Wind referred to the cardinal points were N. 4, E. 3, S. 10, and W. 14.

The Greatest Pressure of the Wind in the month was 13 the 7 on the square foot on August 28. The mean daily Horizontal Movement of the Air for the month was 29; miles; the greatest daily value was 573 miles on August 28; and the least daily value 119 miles on August 24.

Rain fell on 17 days in the month, amounting to 210.905, as measured in the simple cylinder gauge partly sunk below the ground; being oin 579 greater than the average fall for the 36 years, 1841-1876.

		BARO- METER.			Tı	EMPERAT	TRE.			Diff	erence bet	(Verett		Т	EMPERA	TURE.				whose		
MONTH	Phases				Of the A	ır.		Of Evapo- ration.	Of the Dew Point.	the 2	ur Temper id Dew Po emperatur	nture		the Sun's Rays as a Self-Registering a. Thermometer ekenol bulb in end on the Grass.	ns shown ng Mine-r.	Of the of the T off Gree	hames.	Sunshine.		8 1155 N 5 5		
and DAY, 1877.	of the Moon.	Ment of at Hourly Vidues (corrected and reduced to 32° Fahrenbeit).	Highest.	Lowest.	Daily Range.	Mean of 24 Hourly Values.	Excuss of Mean above Average of zo Years.	110000	De- duced Mean Daily Value.	Mean Daily Value.	Greatest of 24 Hourly Values.	of 24 Hourly	Degree of Humidity (Saturation 100).	Highest in the Sun's shown byn Self-Re Maximini Ther with blackened vacuo placed out th	Lowest outtle Grassus sho by a Self-Registering M mum Thermometer.	Highest.	Lowest.	Dady Duration of St	Sun glove Horizon.	Ram redbected in a receiving surface adone the Ground.	Daily Amount of Ozone.	Electrotty.
0		ın.	66.5	. 710	23.3		:		3	c	0	۰		c	26		63	11 -07-	hour-	16		
Sept. 1	Greatest Declination N	29*902 29*787 29*391	66.5 69.4 60.7	+3°2 +4°0 +7°2	25'4 13'5	52.9 53.4 52.2	- 7.3 - 6.6 - 7.3	48.4 49.3 51.0	43'9 45'2 49'5	8.5 8.0	20.0	0.2	72 74 90	155.8	36·1 38·2 42·6	63·3 63·3	61.3	7.8	13'4	0.000	0.0	
1 5 6	 Perigee	30.086 30.116 29.835	63·9 66·2 68·2	47.0 40.1 41.8	26.1 26.1	52·8 53·1 54·5	- 6.4 - 6.4 - 4.8	19.1 18.6 19.3	45.8 44.1 43.9	9.0 9.0	16·9 19·4 21·6	1.2 0.0 3.3	78 71 67	115.3 115.3	42.5 34.5 36.0	63·1 62·3 63·1	61·3 59·3	9.2	13.2	0,000	0.0 0.0	• •
7 8 9	New In Equator	29.680 29.778 29.812	65·8 62·2 65·5	46.0 44.3 46.0	19.8 17.9 16.4	52'9 56'0		50°2 48°1 50°2	46.5 43.3 46.9	7·5 9·6 9·1	15.8 16.5 16.2	1.2 3.4 3.6	75 70 71	120'2 115'1 121'9	40.2 38.4 45.4	60°3 60°6 60°3	60·3 60·3 58·5	2,0	13.0	0.000	0.0	• •
10 11 12	• •	29.834 29.656 29.679	63·7 73·4 67·5	50.7 52.5 55.6	13.0 20.9 11.9	57·1 60·0 60·3	- 1'2 + 1'9 + 2'3	54·3 57·2 56·0	51.7 54.8 52.3	5°4 5°2 8°0	10.4	3.5 5.0	82 83 74	86·1 121·2 122·4	46.8 46.8 46.8	60°3 59°5 60°3	58·3 58·3 58·3	0.2	12.8 12.8	c.000	1.5 13.8 14.1	
13 14 15	First Quarter treatest Dec.s	29:808 29:778 29:789	66·3 67·1 65·6	52·5 59'1 53·3	13.8 8.0 12.3	59.5 62.2 59.9	+ 1.7 + 4.6 + 2.5	56·2 56·4	53·3 56·6 53·3	6·6 6·6	10.8 7.6 12.9	1.0 4.0 3.0	81 82 80	101·3 85·6 101·4	45.3 57.0 45.0	60'3 60'3 60'3	58·6 59·3 59·6	0.0	12.7	0,048 0,000 0,01d	2.0 2.0 8.0	
16 17 18	• •	30°103 30°124 30°132	65°2 60°1 61°4	45.2 45.2 49.8	20.7 14.6 11.6	53·9 53·3 54·8	- 3.4 - 3.8 - 2.1	51°1 50°5 50°8	48·4 47·7 47·0	5·5 5·6 8	13.2 10.1	0.0	18 18 57	111.1	35·4 36·9 44·1	60·3 61·3 59·3	59·3 59·6 58·3	1.0	12.4 13.2	0,000	0.0	• •
19 20 21	$_{\cdots}^{\Lambda_{\mathrm{pogre}}}$	29.892 29.654 29.629	61°4 52°4 58°5	50.5 44.5 38.5	7'9 20'0	55·8 50·6 47·2	- 1.0 - 6.0 - 9.2	53.0 49.0 44.2	50°4 47°3 41°5	5·4 3·3 5·7	13.3 2.0 0.1	2°0 1°0	83 89 81	86·1 67·6 107·1	42.0 37.3 31.7	59:3 60:3 58:3	58·5 58·6	0,0	12.3	0°003 0°140 0°020	2.0	• •
22 23 24	In Equator Full.	291749 291755 291887	59'5 57'9 61'3	39.0 43.0 42.5	18.8 14.0	47.5 48.6 49.7	- 8.7 - 7.5 - 6.2	46.1 46.1	40°3 43°4 41°9	7.8 5.2 7.8	15.6 11.0 16.2	0°5 2°3 2°1	77 83 75	113.8 -6 112.3	31·3 38·3 39·6	57:3 57:3 57:1	55·3 54·8 54·8	0.1	12°0	0,000	0.0	
25 26 27	••	30.041 30.104 30.201	54'9 63'3 61'4	33·3 +3·7 39·1	21.6 19.6 22.3	45.6 50.9 48.5	-10'2 - 4'8 - 7'0	43.5 48.6 46.2	40°5 46°2 44°3	5·1 4·7 4·2	12.6 14.1 13.9	0.3	83 85 86	75.1 99.3 101.8	25.6 37.2 35.0	56·5 55·8 56·1	54° , 54°3 54°1	2.2	11.8 11.0	0.000	0.0	• •
28 29 30	Greatest Bechnation N Last Qr.	30155 301657 301616	60·8 63·7 64·8	37.8 +1.6 36.6	23.0 22.1 28.2	49'1 50'7 50'9	- 6·3 - 4·5 - 4·0	46.8 48.3 47.7	44.3 45.8 41.4	4.8 4.8	11.4 16.7 16.9	0.0	84 84 79	108.6 107.8 118.6	30.0 23.3 31.0	55·8 55·5 56·1	53·8 53·8 54·3	6.6	11.7	0,000 0,000 0,000	0°0 2°0	• •
Means		29.887	63.3	45.3	18.1	53.3	- 4.5	500	46.8	6.5	14.0	1.4	79.2	106.4	39.0	59.6	5~.9	3.5	12.6	1°145	1,0	
Number of Column for Reference.	1	2	3	4	5	6	7	8	9	10	11	1 2	13	1 4	15	16	1,7	18	19	20	2 1	2 2

The results apply to the civil day, excepting those in Columns 16 and 17, which refer to the 24 hours ending 9b, a.m. of the day against which the readings are placed.

The Electrical Apparatus was out of action throughout the month.

The mean reading of the Barometer for the month was 29'n 887, being o'n 100 higher than the average for the 20 years, 1854-1873.

TEMPERATURE OF THE AIR.

The highest in the month was 7.3 '4 on September 11; the lowest in the month was 331'3 on September 25; and the range was 400'1.

The mean of all the highest daily readings in the month was 63.7.3, being 45.4 lower than the average for the 36 years, (84)-1876.

The mean of all the lowest daily readings in the month was 45° 12, being 400 lower than the average for the 36 years, 1841-1876.

The mean daily range was 1821, being 0014 less than the average for the 36 years, 1841-1876.

The mean for the month was 53° 3, being 4° 2 lower than the average for the 20 years, 1849-1868.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average temperature (Column 7) is that determined from the reduction of the photographic records from tKqq to 1868. The temperature of the Dew Point (Column 9) and the Degree of Humidity (Column 13) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean difference between the Air and Dew Point Temperatures (Column 15) is the difference between the numbers in Columns 6 and 9, and the Greatest and Least Differences (Columns 1) and (2) are deduced from the 24 hourly photographic measures of the Drysbulb and Wet-bulb Thermometers. The results on September 1 for the Barrons ter, on September 1, 2, and 21 for Air Temperature, and on September 21 for Evaporation Temperature, depend partly on values inferred from eye-observations on account of accidental bases of biotographic tensions. observations, on account of accidental loss of photographic register.

The values given in Columns 3, 4, 5, 14, 15, 16, and 17 are derived from eye-readings of self-registering thermometers.

	WIND AS DEDUC	CED FROM SELF-REGIST	ERING .	/venou	HETERS.				
		Oslek's.			I	Robins,		CLOUDS AN	D WEATHER.
MONTH and DAY.	General	Direction.		sure on nare Foo	ıt.	Movement			
1877	A.M	P.M	Greatest.	Least.	Mean of 24 Hourly Measures.	Horizontal Modernia		A.M.	Р.М.
0	W WY		the	11		mth •			
Sept. 1 2 3	W: WXW SW: WSW E: EXE: X	WSW: SE SW: SE N	1.9	0,0	0.0	229 175 325	V 0 V, T	: 4, liel : 1, eu : 10, r	4, cns, en, ei : 1, eicu 3, eu, ei, shr : 1, eu 10, hr : 10, r, w
± 5 6	$\begin{array}{c} NNW:N\\ WSW:WNW\\ SW:WSW \end{array}$	N: NE: 8W W8W: 8W Variable	2°4 0°3 0°1	0,0	0.0	224 170 127	10 : I0 v	: 8. cicu, cus : 1, cu, li : 1, licl	6, cicu, cus : 5, mt 3, cu : 0 5,cucus,cicu; v : 0
7 8 9	NNE: NE ENE ENE: E	ENE E: ENE ENE: NE	3·9 7·5 8·0	0.0	0.0	230 369 332	O V V	: 4, eieu, ei : 9,eus,eu,eieu,eis : 10	9, cus, cicu : 9, cus, cicu 8, cus, cu, cis, w: 4, cus, cu 7, cus, cicu, ci, w: 5, cus, cicu, cu
10 11 12	NE: E SE: SSE SSW: SW	E: ESE S: SW SW	10,0 3.8 0.0	0.0	0.4	122 280 516	V V V	: 10, shr : 8, cu, cicu : cus, cu, cicu, w	10 :10,thel,soha: 10, thel 10, r : 10, r : 0 8, el, el.s, el.s, eu, w, sl-r; 10, r
13 14 15	8W 8W 8W : W	SW SW NNW: N	10.0	0.0 0.0 0.0	1.8	477 517 387	10 v, shsr, w 10, shsr	: 10, ocslr. w : 10, slr : 10, slr	10, shsr. w : 7,ens,ei-eu,w,shsr 10, octhr : 7, eu, eieu, eis 10, w : 10
16 17 18	$\begin{array}{c} WSW:NW\\ NNW:N\\ NNE:N \end{array}$	NNW: N N: NNE N	3.0	0,0	0'2	146 302 246	v v	: 10, h : 3, eu, cieu, ci : 10	10 : 10 g, cus, cien, cu : 7, cu, cicu, cus 7, cus, cicu, cicicu, cus
19 20 21	NNE: N NNW: W: NW NNW: N	NNW: N NNW: NNE: N N: NNW		0.0	0.0	210 171 264	10, slr, mt, f 10 V	: 10, thr : 2, thcl	10, mt, f, slr : 10, mt 10, r : 10 9, cus, cicu, cu, r: v, thr : 0
22 23 24	N N W : N W : N W N : N W : W	N: NW: WSW NW: N N	1.3 0.2 2.0	0.0		221 225 207	O P V	: 10, ther : 3, cu, cus, cicn	6, eu, cien : 8, mt 10, thr : 0 9 : 1, cieu : 0, d, s)f
25 26 27	N: NW: WSW SW Variable	8W: W8W N: NW: 8E NE: E: 8E	0.0 0.0	0.0		136 109 68	v, h, f v, r thf	: 8, eu. s, eu, cieu, ci, h, t : 0, thf, h	10, mt. slf : 10 5, cicu, cus : 0 1, ci, cicu : 2, cicu
28 29 30	NE NE: NNE NE: ENE	E ESE: E: ENE E: ENE	0.0	0,0	0.0	113 163 158	thf, hd thf, hd thf	: 2, cu. f : 0	9, ci, eu, cieu, cus:
Means					0.4	2+1			
Number of Column for Reference.	23	2.4	25	26	27	28		29	30

The mean Temperature of Evaporation for the month was 50 '0, being 4'3 lower than

The mean Temperature of the Dew Point for the month was 46 '8, being 4' 6 lower than

The mean Degree of Humidity for the month was 79.2, being 0.9 less than

The mean Elastic Force of Vapour for the month was one 321, being one 058 less than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 3gro-6, being oge-6 less than

The mean Weight of a Cubic Foot of Air for the month was 539 grains, being 7 grains greater than]

The mean amount of Cloud for the mouth (a clear sky being represented by o and an overcast sky by 10) was 6.5.

The mean proportion of Sanshine for the month (constant sunshine being represented by 1) was o 28. The maximum daily amount of Sanshine was 9 8 hours on September 1. The highest reading of the Solar Radiation Thermometer was 129 6 on September 2; and the lowest reading of the Terrestrial Radiation Thermometer was 25 6 on

the average for the 20 years, 1849-1868.

September 25.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 0°7; for the six hours ending 3 p.m., 0°6; and for the six hours ending 9 p.m., 0°6.

The Proportions of Wind referred to the cardinal points were N. 11, E. 6, S. 5, and W. 7. One day was calm.

The Greatest Pressure of the Wind in the month was 13th o on the square foot on September 15. The mean daily Horizontal Movement of the Air for the month was 241 miles; the greatest daily value was 517 miles on September 14; and the least daily value 68 miles on September 27.

Ratin fell on 11 days in the month, amounting to 10 145, as measured in the simple cylinder gauge partly sank below the ground; being 10 159 less than the average fall for the 36 years, 1841-1876.

		BAROS MEILR.			Tr	MPERAT	TRE.			. Diff.	gen e bet	i en ti			EMPERS		addition has admired		W looke		
MONTH	Piras s	A Called			Oi 1. A	п.		Or Every warning	Or the Dow Pent.	the 1	d Bew Po duperatu	ature		A Rays us gradering mometor hulb na e Grass.	ns shown me Mini- r.	Of the of the ! of Gre	Water Flames enwich.	of Sunshine.	Games		
and DAY . 1877.	the Me	Mean of 24 Ib m's Connected of offerd as Calmetro 13	High of	Low et.	Dady R nge.	Me is 00/24 Hourly Values,	of Me. u proof. Avenue	Hourly	duced Mean Daily Value.	Mean Onlly Value.	Greatest of 24 Hourly Values,	of 24 Hourly	Degree of Humblity (Suturation = 100)	Highest in the Sun's Rays as shown by a Self-Registering Maximum. Thermometer with blackened buthe in view placed on the Grass.	Lowest on the Grissas shown by a Solt-Registering Mini- natur Thermometer,	Hickort.	Lowest	Dady Duration of S	Smadove Horzen. Rain collected in a	nhave the Creatind. Daily Amount of Ozone,	Electricity.
Oct. 1		201000 2315 291843	63:8 60:2 1:1:3	1019 3-13 3114	22'9 22'4 25'6	50°9 45°1 45°9	- 3.9 - 6.3 - 8.1		41.9 45.6 49.0	5.3 5.3 4.0	18.6 17.1 12.7	0.0	81 83 85	116.3	32.3 30.8 28.6	55·3	54:3 54:1 53:-	2°2 1 5°4 1 3°7 1	0.0	00 0.0	
4 5 6	New	3014 3014	6312 5310	3110 3319 301	295 273 269	46°1 49°1 19°6	- 7.6 - 4.3 - 3.4		43.0 43.1 40.2	5:3 6:2 6:6	15:8 17:3	0.0	83 79 78	118.1 114.0 03.4	25.0 28.0 26.4	54.3 24.3	53°3 52°7 52°3	1.8 1 7.0 1 6.8 1	:3 cc	00 00	
7 8 9		30,130 30,01d 30,549	53·4 55·6 55·6	33:8 42"; 39:1	196 129 165	46°1 50°3 46°5		44°9 46°3 43°3	43:6 42:1 39:7	2.5 8.2 6.8	5.8 16.6 12.2	0.0 3.6 5.6	92 74 78	65°0 105°4 105°3	28·8 37·6 31·2	54·3 53·8 54·3	52°1 51°8 51°7	0'0 I 2'2 I 4'1 I	.1 0.0	2+ 0.0	
10 11 12	Greater Delimition to	29.299 29.299 29.699	53°2 56°5 57°4	35.4 45.8 45.5	17.3 10.7 13.9	49.1 51.1 46.6	- o·s	44.1 44.1 44.1	41.3 42.7 40.8	5·3 8·4 8·3	19.4 19.4 10.0	3·5	83 73 73	78·5 96·6 98·3	29.2 42.0 37.4	53·8 53·8 53·1	51·3 51·3	6.5 10 2.1 10	.0 0.3	12 0.7	
13 14 15	First Qr.	297592 297583 29754	61.4 78.8 04.2	45°9 52°3 42°9	15.5 16.5 21.8	55.6 55.5	+ 93	52.6 54.6 47.3	41.1 46.3 46.8	5'8 11'4 12'4	9°9 20°9 17°8	1.5 4.5	82 66 63	104°3 111°7 102°1	43°0 46°5 39°2	53·3 53·7 54·1	51°3 51°7 52°3	0'4 10 5'6 10	0.0		
16 17 18	Apogee	2919 in 301164 301182	5019 5019	35'2 31'7 28'2	15°0 22°0 22°7	4+'4 41'2 30'2	- 11.8 - 6.8 - 6.8	38·3 31·3	37.7 34.7 32.5	6.5 6.7	19.0 12.8 11.0	0.0	78 78	91.9 91.8 91.9	31.0 28.0 20.3	53·3 53·1 51·3	50·3 50·3	1°8 10 5°7 10 6°8 10	·5 00	00 0.0	
19 20 21	In Equator	30.093 26.983 29.75	56.4 56.4	30.6 41.2 44.2	25.8 19.2 11.9	13.8 10.2 13.8	+ 5.2 - 0.1 - 2.0	48.8 46.3 40.3	36·2 41·7 44·7	7.6 8.8 8.2	13.8 13.8	2'3 3'4 2'7	7+ 73 74	61.8 109.0 80.6	24.4 36.0 37.1	51.3 50.3	48.8 48.8 48.3	0.0 10 8.0 10 0.4 10	13 00	00 1.0	
22 23 24	Full	29'022 29'38.1 29'34.1	02.6 56.7 54.5	46% 41% 38%	16.1 12.5 16.1	55.4 47.9 46.4	+ 5·3 - 1·8 - 3·0	52'9 46'8 43'6	+0.4 +2.0 20.2	1.9 2.3 6.0	9°3 6°7 14°4	0.0	84 92 81	92.5 91.5 98.1	36.0 36.0 42.0	50.8	48·5	0.0 10	12 0.3	46 7°I	
25 26 27	Grant t Declarate a N	29*154 29*605 29*752	52'y 54'2 5-5	‡5°7 ∃1°3 ‡4°2	13.9 6,8 2,5	50:8 48:8 51:3	+ 1°7 0°0 + 2°8	50°0 47°5 49°7	49°2 46°1 48°1	2.7 3.2	3·8 6· ₄ 7·4	0.6	94 91 89	60·3 69·2 86·7	39.0 39.0 42.9	 51°1	 49 [.] 3	0.0 10		5.0	
28 29 30	Last Qr.	29:89 29:627 29:531	.00g .354 6154	49.2 14.1 49.2	19.1 14.9 19.5	48°0 53°5 54°5	1 56	46°3 52°0 52°6	43:5 50:5 50:8	5°4 3°0 3°7	12'7 5'0 9'7	0.0	82 90 87	91.1 59.8 103.4	37:3 39:9 40:0	50°3 51°3 51°8	20.1 48.2 48.2	0.0	·8 0.0 ·8 0.1 ·9 0.0	58 10.2	
		201010	5713	+7"7	9.6	.)2*2	+ 4.0	4.712	+2'1	10.1	14.0	4'9	69	92.3	3918	5 1' 9	50°3	4.3	.2 0.0	_	
Means Number of		29*001 	-18.0	40*4	1,76	4914	- 17	+6.1	4512	6.1	12.0		80.3	92.5	34.6	53.1	5i'ı	3.3 10			
Reference	1	,	3	1	,	(1		S	9	10	11	1 2	13	1.4	15	16	17	18 1	9 20	2.1	2 2

The results apply to the civil day, excepting those in Columns to and 17, which refer to the 24 hours ending 9% a.m. of the day against which the rendings are placed.

The values given as Colombia, 3, 4, 5, 14, 15, 16, and 17 are derived from eye-readings of self-registering thermometers

The mean reading of the Brown over the menth was 29 (85), being 6 " 13) higher than the average for the 20 years, 1854-1873.

The mean realling of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average topological temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records, to operative (Column 7) is that does rudned from the reduction of the photographic records from (849 to 1868. The temperatures of the Dev. Doint (Column 9) and the Devise of Baisber's Hygrometrical Tables, The mean of a reset between the numbers in Columns 6 and 0, and the Great st and Least Differences (Columns 1) and (2) are deduced from the 24 hourly photographic measures of the Dry-bulb and Wet-bulb Thermometers. The results on October 23, for the Barometer, of the Great of the Barometer, of the Great of the Barometer, of the conserter and 23) for the Barometer, of the Great of the Barometer, of the Great of the Barometer, of the conserter and 23 for the Barometer, of the conserter and 24 for the Barometer and 25 for Evaporation Temperature, depend partly on values inferred from events and the Great of the Barometer and the Great of the

The Life trical Appendix v to each to a distribution and the month.

Temperators of the Ass. The highest in the month was 65 '8 o., October 14: the lowest in the month was 28 '2 on October 18; and the range was 40 '6.

The mean of all the highest daily reachings in the month was 45 \(^3\), to being 0 \(^4\) hover than the average for the 36 years, 1841-1876. The mean of all the lowest daily readings in the month was 40 \(^4\), being 3 \(^4\) hover than the average for the 36 years, 1841-1876. The mean of all the lowest daily readings in the month was 40 \(^4\), being 3 \(^4\) hover than the average for the 36 years, 1841-1876. The mean for the month was 47 \(^4\), being 1 \(^7\) hover than the average for the 20 years, 1849-1868.

	WIND AS DEDUC	ED FROM SELT-REGIST	ERING	ANEMO	METER	s.			aparamentahan atau di atau di atau atau atau atau atau atau atau ata
MONTH		OSLER'S.				Romy- sov's.		CLOUDS AND	D WEATHER.
and DAY, 1877.	General 1	Oreetion.	Press Squ	are on are Foo	ot.	Harizontal Movement of the Mr.			
	A.M.	Р.М.	Greatest.	Least.	Memorials Memorials	Horizontal		А.М.	Р.М.
Oet. 1	NNE: N: NNW SW: N Calm	N: NNE NNE: ENE NE: E	0°0 0°0	0°0 0°0 0°0	0°0 0°0 0°0	miles. 137 79 95	v 10, mt, f 0, thf	: 4, cicu, cu, cis	g, cicu, cu: 10 : 10 1, cu : 0 : 0, f 4, cu, cicu : 0, mt, f
4 5 6	N NE NE	E : ENE E : ENE : ESE ENE : ESE : E	0.0	0.0	0.0	106 177 158	v, mt, thf o, thf o, slf	: 1, eis, h : 0	7,eu.eleu.eu.es : v : 2, eu.es, eleu.f 6, cieu, eus : 0, lid 1, cis, ci, soha : 1, cis, lid
7 8 9	NW: 8W NNW: N NNW: N: NNE	WSW: WNW: NW N NNE	0.8 11.1 2.4	o.o o.o o.o	0.0	173 466 274	tl1f 10, r 0, hd	: 10, f, soha : 10, w : 1, cis	10, f 9, cus, cu, w : vv, slr 7, clcu, cus : 10
10 11 12	SW SW: NW WSW: W	SW W: WSW WNW: SSW	2.0 8.6 3.5	0,0 0,0 0.0	0.1 0.1 0.1	240 427 349	10, slf, h v, hr, sq v	: 1, eu : 1, ei	10 : 10 5, 6i, en, eisen, enes, enes : 10 8,enes, en, ci, eisen, soehnt 9, f
13 14 15	SW SSW: SW SW: W	SW SSW: SSE: S WSW	8.2 9.3 3.0	0.0	2°5 1°1 4°5	556 402 710	ro, r v v, hg	: 10, w, se : 1, eieu : 10, stw	10, stw, thr : 10 1, ci, cicu, w : 2, cu, cicu gaicu.cu.ci.s.w: v, w : 0, w
16 17 18	WSW: WNW WSW SW: W	NNW: XW: WSW XW: NXW: WSW W: SW: S		0.0	0.0 0.4 1.2	438 273 104	o, w o, mt, hd o, hd, mt	: 1, cis : 0, hfr : 0, hfr, thf	10, r : v : 7, cu, mt, hd o, cn, es, eu, ci, cu, str, ht : 10, f, hd g, thel : 1, cis, hfr, mt
19 20 21	SW: SW S	SW: SSW: S SW: SSW: S SSW	0.2 11.2	0.0 0.0	0.1	158 222 339	v, f, hfr v 10	: 10, l' : 0 : 10, slr	10 1,eu.eieu.ei: v, thel : 10, huha 10, thr : 10, thr, w
22 23 24	SW: SE WSW	SW SW WSW: SW	6·9 7·0 2·4	0.0	1.0 0.2 0.4	407 308 320	v v c, h,-d	: 4, cu, cicu, thr : 10 : 0	10, thr, w : 10, shsr 10, 0cr, w : 1, cis, ci, hd 5, cicu : 10, r
25 26 27	SSW: SE NNW: N SSW	NE: N: NNW 8W: 88W 88W: 8W	3.3 0.0	0.0	o.t o.o o.o	185 139 337	10, r 10 V	: 10, 1° : 10 : 10	10, er : 10, er : 10 v, slf, nt : 0 oct-encurensher: 9, lishs : 2, ci, cis
28 29 30	W8W: W 8:88W W8W:8W	W: 8W: 88W 88W: 8W: W8W 8W: W8W	8.0 0.0	0.0	1.3	294 449 495	v v v	: 2, cicu, mt : 10, r : 9, cus, cu, cicu	4 cu,ci.eu.cu.es: 0 : 0 10, r, stw : 10, ocshs : v zeien.ci.eu.w : 10, thr, w : 10, thr, w
31	11.	W: WSW	8.0	0.0	1.3	490	v, w	: v, cu, cicu	8,ens,eieu: 10 : v
Means					0.0	301			
Number of Column for Reference	2.3	2.]	25	26	2,7	28		29	.3c

The mean Temperature of Evaporation for the month was 46 '4, being 20 5 lower than

The mean Temperature of the Dew Point for the month was 43° 2, being 3° 6 lower than

The mean Degree of Humidity for the month was 80.2, being 5.9 less than The mean Elastic Force of Vapour for the month was o'm 279, being o'm 042 less than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 3555 2, being ost 4 less than

The mean Weight of a Cubic Foot of Air for the month was 543 grains, being 4 grains greater than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 6.3.

The mean proportion of Sanshine for the month (constant sunshine being represented by 1) wis 0.31. The maximum daily amount of Sanshine was 8.0 hours on October 20.

The highest reading of the Schur Radiation Thermometer was 118 ton October 6; and the lowest reading of the Terrestrial Radiation Thermometer was 20 3 on October 18.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 2:2; for the six hours ending 3 p.m., 0:8; and for the six hours ending 0 p.m., 0:4.

The Propertions of Wind referred to the cardinal points were N. 6, E. 2, S. 10, and W. 12. One day was calm.

The Greate | Pressure of the Wind in the month was 23th o on the square foot on October 15. The mean daily Horizontal Movement of the Arr for the month was 30t miles; the greatest daily value was 710 miles on October 15; and the least daily value 79 miles on October 2.

Ration fell on 13 days in the month, amounting to 1 no 781, as measured in the simple cylinder gauge partly sunk below the ground; being 1 1 155 less than the average fall for the 36 years, 1841-1876.

		BARO- METER			т.	EMPERS	TURE.			Diff	erence bet	Ween			TEMPER	ATURE.				whose		
MONTE	l Phases	127			Of the	Δ:r.		Evapo-	Of the Dew Point.	the	Air Tempe nd Dew Po Femperatu	mature unt		Styre as stormic ometer alb in Grass.	ens shown eng Vani- er.	of the	Water Thames enwich.	Smshim.		Gange wi		
and DAY, 1877.	of the Moon,	Mean of 2) Hourly Values (corrected and reduced to 32. Enbrenheit).	Highest.	Lower	Daily Range	Hourly	Excess of Mean above Average of 20 Years.	Mean of 24 Hourly Values.	Mean	Mean Daily Value	Hourly	Least of 24 Hourly Values,		Highest in the Sun's Ryys as shown by a Self-Registering Maximum. Thermometer with thatekened builb in yacuo placed on the Grass,	Lowest on the Grass as by a Sedt Registerin main Thermometer.	High st	Lowest	Daily Denation of Sun	Sim above Horizon.	Rain collected in a freestying surface above the Ground,	Daily Amount of Ozone.	Electricity.
Nov. 1	1' min	30°20) 29°979 29°85.	5417 5510 5210	3618	15°7 18°2 16°2		- 0.1 - 0.1	++'1 ++'2 ++'2	40.8 41.2 40.8	6·2 5·1 6·2	11.4	0.0	80 83 80	8014 9016 7013	35:5 30:0 27:5	51.6 51.6 51.5	20.3 20.3	1.1	9.5	o*000 0*008 0*012	2.0	
1 5 6		29.2341 29.241	58.3	46.8		51:3	- 0·5 + 5·7 + 9·5	43:3 48:8 53:4	46.5 46.8	5°1 2°6	11.0	0.8	84 83	88.6 96.2 61.2	24'4 41'0 45'4	51 5 50 3 51 3	48.8		9.4	0,001 0,000 0.010		
7, 8		29.488 29.666 29.440	58:-	45.3		50.0	+ 9°2 + 5°7 + 8°8	48.1	51·- 46·1 40·6	212 319 310	4.6 10.5 5.6	0.0	92 87 90	65.6 96.8 60.6	41.0	51:3 52:3 52:3	50.3	4*9	9.2	0°300 0°000 0°132	2.3	
10 11 12	First Qr.	20°227 20°010 28°782	5217			อีตา	+ 7'3 + 7'1 + 2'6	47.7	45.6 45.2 40.7	5°1 4°5 4°5	8.4 6.4 9.4	119 118	83 84 85	87°4 54°4 88°0	40.8 40.8 42.0	52°5 51°8 52°1	40.8 20.3 20.3	2.6 0.0 3.6	0.0	0.190 0.278 0.585	15°5	
14	Apogee In Equator	291233 291913 301106	510		16.0	+2.6	+ 0.6 + 0.6		10.0	5.0 5.0	2°4 10°3 6°7	0.0	94 90 91	65°4 77°2 60°6	33·2 29·6 38·0	49:3 50:1 49:3	46.8 48.1 48.1	419	8.0	0.000 0.000 0.000	1.3	
16 17 18		30°128 30°209 29°944	49.8	37:5 31:9 36:3	20'5 17'9 13'8	3919	+ 9.6 - 1.6 + 2.8	38.5	46.7 36.2 41.3	3·2 3·1	6.2 11.0	0.0	85 89 89	69.8 62.9 61.8	30.8 27.8 31.4	18.3 10.3 10.1	46.8		8.7	0.000		• •
19 20 21	Full	29.665 29.462 29.494	44'7	33.6 33.6 34.0	15·8 9·1 15·8	3019	+ 1.6 - 1.4 + 1.5	41'9 37'9 41'5		2.4 4.2 5	5:5 9:0 6:2	0°2 1°7 0°0	91 84 90	70°3 74°4 52°5	28.6 31.0 30.2	47'3 47'3 45'5	45·3 45·3 44·3	2.6	8.6	0.530 0.000 0.134	0.0	••
22 23 24	Decline in N.	29*061 29*37.5 29*211	48.1	37.0 34.6	12'5 11'1 8'2	43.6	+ 7.0 + 2.6 - 1.6	45:3 39:5 38:7	34.6	5'9 9'0 1'6	11.8 12.4 3.9		81 -1 94	80°1 77°0 47°2	39'5 33'0 29'1	45.3 45.3 45.3	+3.3 +3.8 +3.8	2:5 5:4 0:0	8.4	0.068 0.000 0.680		::
25 26 27	Ueriges List Quart	291550 201678 291082	1217 4812 5215	33°0 31°9 42°0	9*- 16:3 10:5		- 2.0 - 0.4 + 7.3	36.4 39.2 46.7	33°1 37°7 45°2	5.8 2.5 2.0	6.7 5.8	0.3 0.4	81 40 90	53:8 70:3 68:0	28°0 27°1 39°0	44°5 44°5 44°3	42		8.3	o.033 o.033	1.5	::
28 29 30	In Equator	291086 281810 281920	40 49.8 49.8	38:5 36:9 38:2	8:3 12:0 8:8	+2°3 +4°1 +2°0	+3.1	40.1 45.0 40.1		4'9 4'6 4'3	6.6 6.6	1°4 2°2 1°5	84 83 86	76°0 59°5 74°2	35°0 33°0 33°6	43.8 44.3 43.3	40.8 41.2 41.3		8.2	0.000	4.2	::
Means		29516 ——	51.8	301	12.7	46.0	+ 3.3	44'1	41.6	4.1	8:3	1.0	86.2	71.7	34.4	48.0	4 6•6	1.9	8.8	3.25g	4.0	
Number of Polium for Reference	l 	2	3	-1	5	6	7	8	ğ	10	11	1.2	13	1.‡	15	16	17	18	19	20	21	2 2

The results apply to the civil day, excepting those in Columns (6 and 17, which refer to the 24 hours ending 9 a.m. of the day against which the readings are placed.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The accessed on a mean control of column (2) into the mean temperatures of the Arr and Evaporation (Columns 6) and 8) are deduced from the properties of the photographic records from 185a to 1868. The temperature of the Dew Point (Column 9) and the Degree of Hamilaty (Column 4) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glaisher's Hygrometrical Tables. The mean dulies need between the Air and Dew Point Temperatures (Column 10) is the difference between the numbers in Columns of and 9, and the Greatest and Least Differences (Columns 1) and 12) are deduced from the 24 hourly photographic measures of the Day-both and Wet-Calli Thermometers. The results on November 11, 22, and 25 for Air Temperature, and on November 11 for Evaporation Temperature, depend partly on values inferred from eye-observations, on account of accidental loss of biolographic recisies. of photographic register.

The values given in Columns 3, 4, 5, 14, 15, 16, and 17 are derived from eye readings of self-registering thermometers.

The Electrical Apparatus was out of action throughout the month.

The mean reading of the Barometer for the month was 2900 516, being 600 255 lower than the average for the 20 years, 1854-1873.

TEMPLEATURE OF THE AIR.

The bighost in the month was 58 '77 on November 8; the lowest in the month was 31 '9 on November 17 and 26; and the range was 26 '8. The bighost in the month was 55 '8, being 2 '9 higher than the average for the 36 years, 4841-4876. The mean of all the lowest daily readings in the month was 30 '1, being 1 '7 higher than the average for the 36 years, 4841-4876. The mean daily range was 12 '77, being 1 '2 greater than the average for the 36 years, 4841-4876. The mean for the month was 46 '0, being 3 '3 higher than the average for the 20 years, 1849-4868.

	WIND AS DEDUCT	ED FROM SELF-REGISTE	ering 2	ANEMO	METER	8.			
		OSLEK'S.				ROBIN- SON'S.		CLOUDS AND	WEATHER.
MONTII and DAY.	General I	Direction.	Press Squ	sure on aare Foo	the of.	fovement			
1877.	Α.Μ.	P.M.	Gratest.	Lenst.	Mean of 24 Hourly Measures.	Herizontal Mo of the Air.		А.М.	Р.М.
Nov. 1	W: W8W 8W: 8 W8W: NW	NW: 8W 88W: 8 NW: 8W	1°1 2°2 1°8	0°0	0.1	260 201 2.38	v 0 10, r	: 0, mt : 10 : 1, eu	9 : eus,eieu,h : o, f, slmt 9, eus, eieu, eu : 10, oer 6, eu : 1, liel, d
5 6	88W: 88E: 8 88W: 8W 88W	S: 88W W8W : 8W 88W	- 1	0.0	0°2 0°5 1°5	243 380 537	o, d v v	: 6, cien, en, h : 7, ci, cu, cieu : 10, r	7, eu, eieu, eus : to, ocr 6, eus : o : o, mt, hd 10, r : 10, r : 10, ocr
7 8 9	SW: WSW SSW	88W : 8W	11.2		0'7 0'1 2'1	351 241 535	10, 1° V V	: 10. r : 6, cicu, cu : 10, r, W	10, 00r : V : 9 6, eu, eus : 0 : 0 10, er, W : V, slr, l, W
	\$\$W : \$ W\$W : \$W : \$\$W		14'3 32'6 17'0	0.0	5·4 0·7	568 725 360	vv, hr, t, l, w v 10, hr, w	: 10, thr, w : v, shsr	8,eus,eieu,hl,hr, l: v, lislis 10, r, g : 10, r, hg, frhsqs v, eu, eus,eieu,eis,sli-r: vv, shsr
13 14 15	WSW SSW	SW: S: SSW SSW	0.2 0.4 2.3	0.0		445	o, hd, mt v, w	: 6, eus, cieu, eu, h : 1, f, hfr : 10, r	1, ci, cis : 0 : 4,cicu,cus,luco 10, slr : 10
16 17 18	SE: SSW	NW: SW E SW: NW	0.8	0.0	0.0	96	10 v, f v	: 10 : 9, eu, eieu, f : 10	8, th-el, eu : 0, h-fr, sl-f 5, f : 1, h, f : 6, f, l ei, eis : 0
19 20 21	WSW: SW	SSW: WSW: W NW: WNW: WSW S: SW		0.0	0.4		v, hfr	: 6, ci, ci,-eu, slr : v, slr : 9,eu,cieu,eus,slr	
22 23 24	SW: E	WSW WSW E: NE	11.2 13.2 14.5	0.0	1.3	710	10, r, g v, g 10, thcl, luha	17,cu.ci.ci.cu.cus.ocslr.stw : 0, stw : 10, octhr	3, cu, w : 5, thcl, luha 10, cr : 10, hr, stw : 10, r, stw
25 26 27	SW: S S: SW	NW: W: WSW 88W: 8 8W: 8E: W	7.0	0.0	0.5	277	10, stw v 10, r	: 2, cicu, hfr, h : 9 : 9, licl	5, thel : 0, mt, hfr 7, ci, ci, -cu, cu, -st : 10, r : 10, c, -r, w 8, eu, cu, -s, ci, -cu : 10, hr : 10, oc, -thr
28 29 30	8: 88W	SW: S WSW: SW: S SW	3·5 9·2 2·5	0.0	1.0	439	v, thr, w	: 7, ci, ci,-s, soha : 10, r, stw : 3, cu	1, ci : 1, ci : v, d, thr 8, cu, ci, ci. co : v, r 8, cu, cs, ci. cu, thr : o
Means	•••			<u> </u>	1,0	378			
Number of Column for Reference	23 e	2 +	25	26	27	28		29	30

The mean Temperature of Evaporation for the month was 44 11, being 2 19 higher than

The mean Temperature of the Dew Point for the month was 41° 9, being 2° 6 higher than

The mean Degree of Hamility for the month was 86.2, being 1.1 less than

The mean Elastic Force of Vapour for the month was one 266, being one 026 greater than

The mean Weight of Vapour in a Cubic Foot of Air for the month was 3000 1, being our 3 greater than

The mean Weight of a Cubic Foot of Air for the month was 540 grains, being 9 grains less than

The mean Beight of a Cubic Pool of Air for the month was \$40 grains, using 9 grains (as that). The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 6.1.

The mean proportion of Sanshine for the month (constant sunshine being represented by 1) was 0.22. The maximum daily amount of Sanshine was 5.6 hours on November 28.

the average for the 20 years, 1849-1868.

The highest reading of the Solar Radiation Thermometer was 96.8 on November 8; and the lowest reading of the Terrestrial Radiation Thermometer was 24.4 on November 4.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 3.6; for the six hours ending 3 p.m., 0.8; and for the six hours ending 9 p.m., 0.5.

The Proportions of Wind referred to the cardinal points were N. 2, E. 1, S. 15, and W. 12.

The Greatest Pressure of the Wind in the month was 32 no 6 on the square foot on November 11. The mean daily Horizontal Movement of the Air for the month was 378 miles; the greatest daily value was 784 miles on November 22; and the least daily value 96 miles on November 17.

Rain fell on 18 days in the month, amounting to 3th 529, as measured in the simple cylinder gauge partly sunk below the ground; being 1th 329 greater than the average fall for the 36 years, 1841-1876.

		RARO-			TE	MPERAT	URE.			Diff	rence bet	ween		Т	EMPERA	TURE.				where in the		
MONTH	Physics	ourly Values Fractional to			Of the A	ír.		Of Evapo- ration.	Of the 16 w Point.	the A	ir Temper d Dew Po emperatur	rature int		Sun's Raysas eff-Registering Thermoneter ned bulb in on the Grass.	as shown ng Mini- r.	Of the of the ! of Gree	Thame .	Smishine.		12 TE	me.	
and DAY, 1877.	of the Moon.	Nem of at Hourly (corrected and a du 32 Februardort).	Highest	Lowest,	Daily Range.	Mean of 24 Hourly Values.	Excess of Mean above Average of co Years.	Mean of 24 Hourly Values,		Mean Daily Value,	Greatest of 24 Hourly Values,	of 24 Hourly		Highest in the Sun's shown by a Self-Re- Maximum Ther with blackened vacuo planed on O	Lowest on the Grass as by a Self-Registering man Thermonieter.	Webst	Lowest.	Daily Decation of S	Smale a · II aizon	Rain e diotod in a pour a control above the Grand.	D. ity Vorsind of Oxone,	Electricity.
		in.	c	0	0	0	Ŷ	0	0	0	0	0		=	0	0	0					
Dec. 1	•••	29:141 29:783 29:970	47.0 47.4 46.2	35·7 35·7 38·5	8·3	42.0 41.2 44.2	+ 0.2 - 0.3 + 2.4	43.8 40.3 41.0	39.8 43.0	2.2	5°1 6°7 2°0	0.3 0.3	92 91 95	51.0 51.0	31°3 31°1 33°0	43.4 44.3 43.2	41.2 41.2 41.3	0°0 2°5 0°0	8·1 8·1	01851	0.0	••
‡ 5 6	New Prodest	29:520 29:574 29:413	44.5 22.0	42°1 42°1	3·3 6·1 14·0	43.5 42.1 47.0	- 0.2	42·8 41·1 45·3	43·4 43·4	1.2 2.2 3.6	1.0 1.0	0.2 0.2	94 92 88	5c·3 49'7 77'0	41.3 35.5 38.0	42.2 42.2 42.2	40.3 40.3	c.9 c.0		0.011	0.0 1.2 2.5	::
7 8 9		29.212 29.884 30.016	48.6 47.6 50.5	37°2 35°5 36°8	11'4 12'1 13'4	43.9 41.9 43.5	- 1.3	41'4 39'3 41'1	38·5 36·6 38·6	1.6 1.3	7.8 8.2 10.0	1.4 5.5 5.5	81 83 83	57·8 66·6 71·7	31.4 31.1 31.4	43·3 44·3 44·3	41.5 42.1 42.1	0.0 1.7 1.9		0.000 0.000 0.144	0.0	••
10 11 12	 Λpogee First Qr.	29.823 29.88c 29.89c	39.0 46.5 51.1	29.5 28.9 36.7	9:5 17:6 14:4	35.4 36.0 45.5		34°4 34°8 42°7	32.8 33.0 39.5	2.6 3.0 6.0	6·4 5·3 9·6	0°0 0°7 1°7	91 89 80	42.8 46.2 72.2	24·8 25·5 32·7	44.3 43.7 43.3	42.3 41.9 41.3	0.0	7:3 7:8	0.000 0.000 0.000	4.2 1.2 4.2	••
13 14 15	la Equator	29.764 30.071 30.302	44.2 44.0 44.0	32.6 32.2 30.9	13.6 11.4	39°0 36°1 38°3	- 2.8 - 2.8	36·9 34·7 36·5	34'2 32'6 34'1	4.8 3.5 4.5	9 .5 6.9 6.7	1.0 5.0 5.0	83 88 85	71'2 47'2 49'9	26.4 28.0 26.0	43·3 42·3 42·3	10.3 10.3 10.8	2.0 0.5	7:8 7:8 7:8	o.cog o.cog	0°0 0°0 2°0	
16 17 18	••	30.142 30.142	48.6 48.3 44.5	30.8 43.8 45.8	5'7 4'3 13'3	46.1 46.1	+ 5.3 + 5.6 + 0.5	44°2 44°2 39°1	42.0 45.0 45.0	3.6 4.1	6·1 5·7 6·6	2.0 2.0	87 87 87	53·6 50·5 51·7	39·3 40·6 25·4	+1.8 +1.1 +1.1	40.3 30.3 30.3	0.0	7:8 7:7 7:7	0,000 0,000 0.000	0.0	::
19 20 21	Greatest Dec. N. [17]	30.430 30.473 30.323	43.2	29.7 38.1 39.3	9·5 5·4 5·5	33·2 40·5 42·2	- 6.8 + 0.7 + 2.6	33'1 40'2 41'5	32.9 39.9 40.2	o·6 1·5	4'4 2'6 3'5	0.0 0.0 0.0	99 98 94	43·2 48·3 48·6	25.0 38.0 38.8	41.8 41.8 41.8	40.3 40.3 40.3	0.0	7:7 7:7 7:7	c.000 0.034 c.000	0.0	::
22 23 24	Perigee	30°082 24 898 24 666	49.3	41.8 35.5 33.6	7:5 13:7 12:3	43·1 39·7	+ 6.4 + 3.8 + 0.4	44.6 40.3 36.4	43.5 36.9 32.1	2·6 6·2 7·6	4.6 11.0	1.2 0.0	91 79 75	53·2 56·2 5c·3	38.6 29.4 29.3	42·3 42·3 42·3	40.8 40.3 40.3	0'0 2'1 0'0	7.7	0'000 0'025 0'000	1:3 3:7	
25 26 27	In Equator Last Qr.	29.55c 29.218 29.465	38·3 38·5 37·4	28.9 29.7 29.7	9°4 8°8	33·6 34·6 33·6	- 5.6 - 4.5 - 5.4	32·3 33·0 31·3	29°9 30°4 27°1	3·7 4·2 6·5	6.8 6.0	7.1 0.0 0.0	87 84 76	56·5 55·7 49·6	26.0 28.0 26.0	42.3 42.3 41.1	40.3 40.3 30.3	3·4 3·7	7:7 7:8 7:8	0.000 0.000	0.0	
23 29 30	••	29.800 29.525 29.519	38.0 54.4 51.2	28.7 38.9 45.7	10°2 15°5 5°8	33.0 47.7 49.2	- 5.8 + 9.0 + 10.7	31.6 46.2 48.1	28.8 45.5 46.0	4.5 5.2 5.3	9.5 4.8 3.8	0.0	84 92 92	49°0 71°3 55°7	24.0 35.0 41.2	40.8 40.1 40.2	38·8 38·1 38·1	o.0 o.0	7.8 7.8 7.8	0.357 0.140 0.123	c.0 0.2	
31		291870	44.1	32.8	11.3	41.0	+ 2.7	38.3	34.0	6.1	8.8	3.0	79	57.0	28.8	41 *3	38.5	2.8	7·8	0.000	0.0	
Means		29.86c	⁴ 2.2	35.5	10.0	11.0	+ 0.5	3 _{9'4}	37:3	3.6	6.8	1.5	3,3	55.8	31.8	42.4	40.4	6.0	7.8	1.704	0.0	
Number of luminter References	ı	2	.3	4	5	6	7	S	á	10	1 1	12	13	1.4	15	16	17	18	1,.	27	2 1	22

The results apply to the cryd day, excepting those in Columns 16 and 17, which refer to the 24 hours ending 9° a.m. of the day against which the readings are placed.

The mean reading of the Barometer (Column 2) and the mean temperatures of the Air and Evaporation (Columns 6 and 8) are deduced from the photographic records. The average ten permitter (Column 7) is that determined from the reduction of the photographic records from 1849 to 1868. The temperature of the Dew Point (Column 9) and the Degree of Bamidity (Column 43) are deduced from the corresponding temperatures of the Air and Evaporation by means of Glasher's Hygrone trical Tables. The mean distretice between the Air and Dew Point Temperatures (Column 12) are deduced from the 24 hourly photographic measures of the Dryshilb and Wet-built Thermometers. The results on December 28 and 29 for the Barometer, on December 8 and 25 for Air Temperature, and on December 8 for Evaporation Temperature, depend partly on values inferred from eye-observations, on seconds of neededuced less of photographic register.

The values given in Columns 3, 4, 5, 14, 15, 16, and 17 are derived from eye-readings of self-registering thermometers.

The Electrical Apparatu, was out of action throughout the month,

The mean reading of the Baremeter for the mouth was 29" 860, being on 669 higher than the average for the 20 years, 1854-1873.

The highest in the month was z5 to on December 6; the lowest in the month was 28° 7 on December 28; and the range was 26° 3.

The mean of all the highest daily readings in the mouth was 45°5, being 6°8 higher than the average for the 36 years, 1841–1876. The mean of all the highest daily readings in the mouth was 35°5, being 6°5 higher than the average for the 36 years, 1841–1876. The mean oaily range was 10°0, being 0°7 greater than the average for the 36 years, 1841–1876. The mean for the mouth was 41°0, being 0°5 higher than the average for the 20 years, 1841–1876.

	WIND AS DEDUC	TO FROM SELF-REGISTI	ERING	ANEMO	METEI	RS.			
-		Osler's.				ROBIN- SON'S.		CLOUDS AND	WEATHLE.
MONTH and DAY.	G _s is ral	Direction.	Pres Squ	sure on sure Fo	ot.	Novement			
1577.	Λ.Μ.	Р.М.	Greatest.		Mean of 24 Hourly Measures.	-		A.M.	Р.М.
Dec. 1	SSW NNE: NE NNE: NE	N NE: NNE NE: NNE	0.0 5.1 1.3	0°0 0°0 0°0	1bs. O*O O*I O*I	146 273 270	v, r v, shr v	: 10, hr, gtglm : 8, cus, cu : 10, mr	5, ei, ei, eu : v, ei, eu, eu, es, mt 3, eu, ei, ei, e; vv, slr : 1, eu, e, d 10, mr : 10, mr
4 5 6	NNE: N NNW: N SE: 88E: 8	N : S : SSE SSW: SW: WSW	0.8 0.2 8.5	0.0	0.0	203 142 425	10, 10	: 10, 00mr : 10, mr : 10, r, stw	10 : 10. frinr 10 : 10 v.eu.eicu,lishs: v, thr : 0
7 8 9	WSW : SW W: WSW: SW SSW : S	88W: NW W8W: 8W 88W: 88E	0.8 0.4 4.3	0.0	0.0	325 243 196	v v v	: 2, cis, so,-ha : 1, ci : 10	9. thcf : 10, r : 10, r v, cicu : 10, shr 5, cu, ci, cus : 0, hfr
10 11 12	$\begin{array}{c} \mathbf{SE} \colon \mathbf{E} \\ \mathbf{W} \colon \mathbf{SW} \\ \mathbf{SSW} \colon \mathbf{SW} \end{array}$	ESE: ENE: W SW: SSW WSW	11.0 3.5 1.1	0.0	0°0 0°1	141 206 577	v lıfv v, r, stw	: 9, cicu, eus, hfr : 4, ci, slf : 9, cicu, eus	10 : 0, hfr, f 10, int : 10 : 10, r 6, cus, cicu: 1, ci : 1, cicu
13 14 15	$egin{array}{c} \mathbf{S}W : W\mathbf{S}W \\ W\mathbf{S}W : W \\ W\mathbf{S}W \end{array}$	$NW: WSW \\ NW: WSW \\ SW$	2.7 0.9 2.5	0.0 0.0 0.0	0.2	349 291 304	v, hr v, hfr v, hfr	: 1, ci : 7, cu, ci,-cu, h,-fr, mt : 10	8, thel : 1, thel, mt, hfr 5, thel, mt : 0, mt, hfr 10 : 10, thr
16 17 18	WSW NW: W: WSW NNW: N	W: WNW: NW WSW: W: WNW N: WSW	1.8 1.8		0,1 0,1 0,0	457 272 204	10 10	: 10 : 10 : 2, th,-el, mt	10 : 10, slr 10 : 10 5,cis,cus,cicu,mt: 0, thf, hd, hfr
19 20 21	WSW: SW - SE - S: WSW	SW SE: S: SW SW: SSW	0.0 0.0	o.o o.o o.o	0.0	113 67 130	thf 10, f v	: 10, thf : 10, f, mr : 10, mr	10, thf : 10, f, mr 10, mr : 10, mr : 10 10, mr : 10, mr, mt
22 23 24	SSW WSW: NNW WSW	SW NW: W: WSW NW: WNW	6·1 5·5 13·6	0,0 0,0 0,0	0.8 0.9 2.2	408 385 605	v, slr v	: 5, thcl, soha : 10, stw	10. W : 10, thr, W 9, thel : 1, cicu, hfr v, cicu, stw : 0, W : 0
25 26 27	W: WSW NE: W: WSW WNW	WSW: SW: SSW W W	0.6 6.0 1.2	0.0 0.0	0°0 0°7 0°3	236 376 364	v, hfr v v, hfr	: 8, cicu, hfr : 10, slsn : 1, cus, hfr, mt	8, cu, ci, -s, th, -cl, mt: 10 1, ci, ci, -cu : 4 4, cu, ci, -cu, ci, -s : 0
28 29 30	$egin{array}{ccc} W: WSW \\ S: SW \\ WSW: SW \end{array}$	SW: SSE: S WSW SSW: SW	2·5 8·5	0.0	0.0 0.1	260 421 426	v, hfr 10, r v	: 5, eu, eis, hfr : 10, thr : 10, mr	10 : 10, 80 : 10, 7 10, thr : V : 2, 608 10, mr : 10, mr : 10, hr, w
31	NW	NW: W	8.6	0,0	1.0	505	10, stw	: 0, h	1, cu : 0 : 0, hfr
Mean-				<u></u>	0,1	301	l		4
Number of Column for Reference.	23	24	25	26	27	28		29	30

The mean Temperature of Evaporation for the month was 39° 4, being o' 1 higher than

The mean Temperature of the Dev Point for the month was 37 3, being o 1 lower than

The mean Degree of Humidity for the month was 87:3, being 0:5 less than

The mean Elastic Force of Vapour for the month was o'n 223, being o'n ooi less than

The mean Weight of Vapour in a Cabic Foot of Air for the month was 2500.6, being the same as

The mean Weight of a Cable Foot of Air for the month was 552 grains, being I grain greater than

The mean amount of Cloud for the month (a clear sky being represented by o and an overcast sky by 10) was 7.1.

The mean proportion of Sanshaw for the month (constant sunshine being represented by 1) was 0.12. The maximum daily amount of Sanshaw was 3.7 hours on December 26. The highest reading of the Schar Radiation Thermometer was 7700 on December 6; and the lowest reading of the Terrestral Radiation Thermometer was 2400 on December 27 and 28.

The mean daily distribution of Ozone was, for the 12 hours ending 9 a.m., 0.7; for the six hours ending 3 p.m., 0.0; and for the six hours ending 9 p.m., 0.2.

The Preportion of Wind referred to the cardinal points were N. 6, E. 2, S. 9, and W. 14.

The Gravitan Program of the Word in the mouth was 1300 6 on the square foot on December 24. The mean daily Horizontal Movement of the Air for the mouth was 301 miles; the greatest daily value was 605 miles on December 24; and the least daily value 67 miles on December 20.

Rain fell on 17 days in the month, amounting to 110 764, as measured in the simple cylinder gauge partly sunk below the ground; being on 041 less than the average fall for the 36 years, 1841-1876.

Highest and Lowest Readings of the Barometer, reduced to 32° Fahrenheit, as extracted from the Photographic Records.

	MAXIMA.			MINIMA.			MAXIMA.			MINIMA.	
Mean Sc	te Greenwich dar Time,	Reading.	Mean So	te Greenwich lar Time, 77.	Reading.	Mean S	ate Greenwich Solar Time, 1877.	Reading.	Mean S	ate Greenwich olar Time, 877.	Reading.
	d b m	ın,		d h m	111-		d h m	ın.		e h m	161.
January	2. 4.10	29 °585	January	0. 21. 30	28.568	April	7.21. 0	29 '534	April	4. 3.40	28 .800
	4. 23. 0	29.083		4. 1.40	28 . 983		11. 23. 20	29 '901		9. 18. 45:	29 •315
	5. 20. 30	29.169		5. 6.40	29.018		14.12. 0	30.023		12. 23. 15	29.800
	7. 21. 20	29 .395		6.11. 0	28.886		19. 22. 0	30 .084		17. 6. 10	29 .375
	9.14. 0	29.895		8. 4.30	29.283		26.11. 0	29.810		23. 3. 0	29 '380
	12. 23. 0	29 911		10.18. 0	29.451	May	1, 10, 10	30.240		27. 22. 0	29 • 535
	15. 9. 0	29 '972		14. 8. 0	29.380		9. 21. 15	29 410	May	9. 3.30	29.313
	20. 22. 0	30 .499		18.17. 0	29.594		13. g. o	29.560		10.17. 0	29 . 292
	24. 6. 0	30 .060		23. 17. 30	29.875		15. 21. 30	29 950		14. 2.30:	29 1455
	26. 14. 0	30 •045		25. 3.20	29.406		17, 23, 30	29 932		17. 6. 0	29 '485
	.	·		27. 2. 0	29.925		<i>'</i>	30 .072		19. 1.25	29 · 595
	27. 11. 30	30.092		28. 1.50	29 '710		24. 21. 0:	·		28. 2.30	29 .076
	28. 22. 45	30.014		29. 22. 0	29:150		30. 10. 0	29 505		30. 21. 30	29:395
	30. 23. 30	29 '947	February	0.15. 0	29 '725		31. 8.30	29.523	June	1. 0. 0	29 *245
February	1.14. 0	29 936		2. 7. 0	29.800	June	2. 3. 0	29 *753		3. 6. 0	29 535
Ì	2. 22. 0	30.092		3. 16. 0:	29.875		3. 18. 40	29.634		4. 8.20	29 511
	4.12. 0	30.525		7. 3.50	29 '944		5, 10, 50	29 -932		6. 8. 0	29.740
}	7. 23. 15	30.011		9. 20. 0	29.708		7. 9. 0	30 '065		8. 7.50	29.828
j	10.11. 0:	29.807		10. 21. 30	29.631	4	8. 23. 0	29 '970		12, 3, 15	29.666
	11.12. 0	29.785		12. 3.10	29 459		15.11. 0:	30.020		17. 4.20:	29.848
1	14. 9.30:	29 *865		15. 16. 40	29.504		19.11. 0	29 '951		22. 7. 0	29:377
	17.21. 0	29 1935		19. 19. 10	28 .845		24. 18. 30	30.000		26. 5. 0	29 903
	21.20. 0	29 '912		22. 10. 20:	29 *505		27. 20. 0	30.100	July	5. 17. 0	29 670
	23. 9. 0	2 9 . 795		25, 18, 10	28 -955	July	8. 23. 0	30 155		14. 14. 30	28.960
March	0. 20. 30	30 .536	March	4. 2. 0:	29.654		18, 10, 45	29 *7 27		19. 14. 40	29.598
	4.22. 0	29 .746	.uaren				20. 10. 40	29.877			
	5. 23. 0	29*745		5. 6. 0	29 '695		25. 8.50	29.822		23. 14. 0	29 1290
	10.22. 0	30.083		7. 3. 0	29.145		27.19. 0	30 .025		25. 19. 0	20.575
	14. 13. 30	29.789		12. 15. 40	29 •535		29.22. 0	30 135		28. 5.30	29 '940
	17. 22. 0:	29.508		16. 3. 0	29 '345	August	4. 22. 30	29 923	August	0. 15. 40	2 9 ·630
	22.12. 0:	29.665		20, 15, 30	29 055		11. 18. 45	29 '906		8. 13. 0	29 . 297
	30, 14, 30	2 9 *957		24. 16. 30	28 '701		15. g. o	29 800		14. 4. 0	29 615

Highest and Lowest Readings of the Barometer, reduced to 32° Fahrenheit, as extracted from the Photographic Records—continued.

	MAXIMA.		MINIMA.		M	IAXIMA.			MINIMA.	
Approximate Mean Soli 187	ar Time,	Reading.	Approximate Greenwich Mean Solar Time, 1877.	Reading.	Approximate C Mean Solar 1877.	Time,	Reading.	Approximate Mean Sola 187	ar Time,	Reading.
	d h m	in.	d h m	in.	d	i h m	in		d h m	in.
August	17.21. 0	29 .895	August 16, 5, 0	29.730	November of	0. 23. 0	30 •245			
	19.10. 0	29 '715	19. 0. 0	29.600		3. 9. 0	29 •958	November	2. 14. 0:	29.695
	21. 7.30	29 ·542	20. 19. 25	29:363		5. 8. o	29 '705		4. 13. 30:	29.532
	23.21. 0	30 .027	21. 21. 30	29*435		8. 6. 0	29 '705		6. 17. 0:	29.432
	26. 9.35	29.810	25. 15. 0	29.512	1	0.12. 0	29 . 269		10. 4. 0:	29 •194
	28. 23. 0	29 .842	28. 2. 25	29.212	I.	4. 21. 0	30 • 168		11. 12. 10	28.547
September	0.21. 0	29 •936	30, 3, 0	29 666	1	6. 11. 0	30 .588		15. 18. 0	30 .022
	4.10. 0	30.192	September 2.19.30:	29 '485	2	15.30	29 .667		19. 22. 40	29 .380
	9.21. 0	29 .855	6. 19. 0:	29.665	2	3. 10. 0	29 • 563		22. 11. 10	29 '031
	12.23. 0	29 .860	11. 4. 0	29.552	2	5. 11. 0	29.849		24. 8. 0:	28 .905
	14. 7. 0	29.820	13. 15. 20	29 '710	2	27. 22. 20	29 120		27. 6.40	28 .871
	15. 22. 0	30 173	14.21. 0	29.615	December	2.22. 0	30 '011	December	28. 21. 0	28 .664
	17. 13. 0	30 • 195	16. 6.30	30.085		8. 13. 30	30.108	December	6. 2.30:	29 .285
	26. 22. 0	30.230	20. 18. 0 October 2. 15. 0;	29.585	1	0. 23. 0	29 •940		10. 2. 0	29 · 795
October	5. 22. 0:	30 .497	7. 22. 0	29.813	1	12. 9.30	29 .830		13. 3. 0	29·563 29·715
	8. 22. 0	30.150	10. 16. 45	29.622	ı	14. 22. 0	30 • 374		16. 2.40	30.080
	12. 8. 0	29 .880	14. 14. 0	29 022	1	16. 21. 40	30 •250		17. 7. 0:	30 160
	17. 9. 0	30.525	23. 4. 0	29 313	1	19.21. 0	30 · 515		22. 17. 30	29.723
	24. 2. 0	29 •385	25. 2. 0	29 100	2	23. 10. 0	30.042		24. 1.30	29 723
	26.10. 0	29.810	27. 4. 0	29 .670	2	24. 14. 0	29 .653		25. 22. 0:	29 179
	28. 8. 0	2 9 ' 979	29. 6.30:	,	2	27.22. 0	29 .875		29. 1. 0	29.446
	29. 22. 15	29.725	30. 5. 20	29 .470	2	29. 20. 0	29 .635		30.11. 0	29 .265

The readings in the above table are accurate, but the times are liable to some uncertainty. The time given is the middle of the stationary period. The symbol: denotes that the reading has been sensibly the same through a period of more than one hour. The readings at June 2^d, 3^b, 0^m, August 23^d, 21^b, 0^m, and September 0^d, 21^b, 0^m, are taken from the eye observations, on account of accidental interruption of the photographic registration.

Absolute Maxima and Minima Readings of the Barometer for each Month in the Year 1877. [Extracted from the preceding Table.]

1877,	Readings of	the Barometer.	Range of Reading
MONTH.	Maxima.	Minima,	in each Month.
	to.	ın.	ín.
January	30.411	28.368	1.5931
February	30.223	28.845	1 '377
Магећ	30 •236	28 .701	1 :535
April	30.084	28.800	1 .58+
May	30 .540	29 076	1.164
June	30.100	29.242	0 *855
July	30 155	28 .960	1.192
August	30 .02-	29 *21 -	0.810
September	30.230	29 •485	0.742
October	30 .4 1.	29.042	1 '45.5
November	30.288	28.247	1 741
December	30 '515	29.160	1 .355
		1	

The highest reading in the year was $30^{m}.515$ on December 20. The lowest reading in the year was $28^{m}.547$ on November 12. The range of reading in the year was $1^{m}.968$.

MONTHLY RESULTS of METEOROLOGICAL ELEMENTS for the YEAR 1877.

	Mean Read	ing				Темен	катек	OF THE	Λm_{\star}						Mea	11	Mean	Mean
1877, Монти.	of the Baromete		hest,	Lowest.	Range in the Mouth.	Mean th High	e	lean of al the Lowest,	Mean Ran		Mont Mea		Excess Mean ab Average 10 Year	over .	Temper of Evapora		Tempera- ture of the Dew Point.	
	in,		,	0	0	0		0			0		0		٥			
January	2,1.668	56	. 1	27.7	28.4	48	. 1	36.8	11	3	42 '	9	+ +	1	41.	4	39.6	88.7
February	291752	. 5g	. 1	24.7	34.4	49	. 5	38.3	10	9	44.	0	+ +	4	41.	6	38.5	81.3
March	29:582	59	+	23.2	35.6	48	. 5	34.2	14	0	41.		- 0	6	38.	6	35.5	81.5
$\operatorname{April} \ldots \ldots$	29.595	66	.0	32.1	33.9	54	• 3	39° a	14	7	46.	I	— ı	3	431	2	3919	79.4
$\mathtt{May} \ldots \ldots$	291707	67	6	28.1	3915	59	•3	41.7	17	6	49.	4	- 3	8	45.	5	41.3	74.4
June	29.840	8.5	15	44.5	41.3	74	. 9	5015	24	•.5	62.	3	+ 2	6	561	2	51.0	67.0
July	291740	83	. 3	43.6	45.6	<u>-</u> 2	. 8	52'1	2.0	7	61.	5	— ı	1	57:	1	53.3	75.0
August	291701	8.3	.3	40.2	42.8	7 2	•9	54.0	13	9	62.	2	+ 0	3	57.	7	54.0	74.9
September.	29.88	73	.+	33.3	40.1	63	٠3	4 5°2	18	٠ 1	53.	3	- 4	2	501	0	46.8	79.2
October	29.851	68	.8	2 S · 2	40.6	58	.0	40.4	17	.6	49.	4	- 1	7	46.	4	43.2	80.3
November.	29:516	58	7	31'9	26.8	51	.8	39.1	12	7	46.	0	+ 3	3	44.	1	41.0	86.2
December .	29.860	55	.0	28.7	26.3	45	• 5	35.5	10	0	41.	0	+ o	· 2	3g+.		37.3	87.3
Means	29.725		hest 2	23.5	Annual Range	.58	• 2	42.3	15	9	49.	9	+ 0	. 2	46.	8	43.5	79.6
			}			12	AIN.							W	-			
1877,	Mean Elastic	Mean Weight of Vapour	Mean Weight of a	Mean Amount	Mean Amount		Amor	ted			Fro	om Osl	er's An	WIND,	ter.	75.		From Robin- son's
Монтн.	Force of Vapour,	in a Cubic Foot of Air.	Cubic Foot of Air.	of Ozone.	of Cloud. (0-10.)	of Rainy Days.	Gaug whose receiv Surfact 5 Inct above Grow	se ing w is hes the		lifferet	refer	red to	Azimutl		N.W.	Number of Calm or nearly Calm Hours.	Mean Dail Pressure on the Square Foot.	Paily Fire Vic.
January	in. 0.243	grs. 2 · 8	ers. 547	4.4	6.8	23	in.	h - 25	lı 2.5	h 31	h 39	h 220	h 238	h 113	h 36	h 17	lhs. 0.67	miles.
February	0.533	2.7	547	2 . 2	7.4	18	1.71		13	0	0	19	218	268	79	.,	0.81	370
March	0.308	2.4	547	3.7	7.2	17	2.23		46	24	64	70	200	165	46		0.55	408
April	0.546	2.8	542	9.7	8.4	20	3.3		162	127	84	99	119	48	28	4		307
	0.360	3.0	540	7.8	7.1	10	1.37		136			70	180	53	11		0.22	308
June	0.374	4.1	529	10.6	5.0		0.68			92 156	47 43	81	214	85	1	14	0.35	279
	0.402	4.3	528	5.2		.7			79		1.2	54			30	0		284
July	0.418	4.6	526	5.7	7.0	15	2,4	1		2		96	311	267	64	0	0.10	286
August	0.321	3.6	539		7.0 6.5	17	2.90		27	35	45		267	156	74	0	0.34	293
September.		3.5		1 9		11	1112		122	74	31	19	163	56	74	19		2 4 1
October	01279	3.1	543	3.4	6.3	13	1.78		3 9	2.3	20	88	271	125	49	17	0.64	301
November. December.	0.369	2.6	540 552	4.8	7.1	18	3·5:		5 40	20	23 39	197 83	294	128	66	0	0.42	378
Sums						186	27 . 27	6 860	725	600	+47	1096	2715	1649	397	71		
Means	0.300	3.3	540	2.0	6.8		,										0.23	313

MONTHLY MEAN READING of the BAROMETER at every Hour of the DAY, as deduced from the Photographic Records, for the Year 1877.

Hour.						1877	•						
Greenwich Mean Solar Time (Civil reckoning).	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	Yearly Means.
Midnight	in. 29.669	in. 29,749	in. 29°594	in. 20.600	29.726	in. 29.839	in. 29*753	m. 29*704	in. 29*890	ın. 29.849	29.227	20.842	in. 29'728
1h. a.m.	29.666	29.747	29.589	29.598	29.723	29.834	29.748	29.696	29.887	29.847	29.22	29.841	29.725
2 ,	29.6-1	29.745	20.584	29.595	29.718	29.829	20.740	29.692	29.887	20.843	29'522	29.843	29.722
3 ,	20.668	29.739	20.578	29 594	29.713	29.828	29.737	29.688	29.879	29.840	29 519	29.847	29'719
4 ,	24.662	29.736	29.574	29.592	29,709	29.829	20 738	29.685	20.876	29.837	29.515	29.842	29.716
5 ,,	29.662	29.734	29.576	29.593	29.710	29.835	29.740	29.688	29.876	29.841	29.515	29.837	29.717
6 ,,	29.662	29.732	29.577	29.598	29.712	29.841	29.747	29.694	20.880	29.846	29.521	29.838	29'721
7 ,,	29.664	29.731	29.583	20.603	29.715	29.847	29.752	29'701	29.888	29.856	29.526	29.844	29.726
8 .,	29.668	29.740	29.587	29.606	29.718	29.852	29.756	29.704	29.893	29.865	29.534	29.853	29.731
9 ,	29.670	29.745	29.594	29.608	29.717	29.854	29.758	29.707	29.897	29.867	29.539	29.864	29.735
10 ,,	29:670	29.753	2 9.595	29.608	29.716	29.855	29.755	29.708	29.899	29.868	29.540	29.87.3	29.737
11 .,	29.674	29.761	29.591	20 605	29.716	29.853	29.757	29.706	29.897	29.868	29.540	29.872	20.737
Noon	29.664	29.761	2 9.589	29.599	29.707	29.844	291755	29.704	29.892	29.860	29.531	29.862	29.731
1 ^h . p.m.	29 655	29.756	29.583	29.592	29.703	29.837	29.751	29:701	29.888	29.851	29.222	29.855	29.725
2 ,,	29.653	29.752	29.577	29.587	29.699	29 836	29'747	20,002	29.883	29.843	29.212	29.826	29'721
3 ,,	29.654	29'747	2 9 569	29 576	29.694	29.830	29'741	29.695	29.878	20.840	29.210	29.859	29.716
4 "	29.658	29.749	29 567	29.574	29.692	29.828	29.738	29.696	29.875	29.836	29.507	29.864	29.712
5	29.663	29.755	29.567	29.576	29.689	29.827	29'735	29.695	29.875	20.838	29.202	29.871	29.716
6 ,.	29.667	29.763	2 9'573	29.579	29.690	29.829	29.736	29.696	29.879	29.847	29.202	29.874	29.720
7 "	29.676	29.767	29.580	29.585	29.692	29.833	29.739	29.704	29.888	29.821	29.498	29.877	29'724
8 ,,	29.680	29.769	29.584	29 596	29.698	29.838	29.743	29'712	29.895	29.852	29.498	29.879	29,729
9 .,	29.684	29.773	29 583	29.600	29.706	29.849	29.748	29.714	29.898	29.854	29.498	29.882	29.732
10 ,,	29.686	29.771	29.584	29.603	29.708	29.856	29.750	29.716	29.900	29.857	29.496	29.881	29'734
11 "	29.688	29'770	29.584	29.607	29.707	29.856	29.746	29.715	29.899	29*856	29'494	29.882	29.734
Means	29.668	29.752	29.582	29.595	29.707	29.840	29.746	29.701	29.887	29.851	29.516	29.860	29.725

Monthly Mean Temperature of the Air at every Hour of the Day, as deduced from the Photographic Records for the Year 1877.

Hour.						18	77•					_	
Greenwich Mean Solar Time (Civil reckoning).	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	Yearly Means,
Midnight	41.6	42.6	38.4	43.5	44.7	55°4	56.6	58°o	49.3	46.8	44.8	39.0	46.8
1h. a.m.	41.3	42.8	38.3	42.8	44.3	54.6	55.9	5715	491	46.3	44.3	39.9	±6·4
2 ,,	41.0	42.6	38.1	42.7	43.8	54.1	5514	57.2	48.6	45.7	44'1	39.7	46.1
3 ,,	41.0	42.5	37:8	42.5	43.3	53.7	54'9	57.2	48.3	45.4	43.8	3919	45.9
4 »	40.0	+2.4	37'7	42.5	43.1	53.5	54.5	57'0	48.1	44.0	43.8	39.8	45.2
	41.0	12.5	37:3	42.5	43.5	54.5	54.5	57.0	48.0	44.6	44.5	39.7	45.7
6 ,,	41.0	42.3	37.1	42.6	44.9	55.9	55'9	57.4	48.1	44.4	43.7	3915	46.1
7 "	41.0	42.5	37:3	11.0	47.3	59.0	58.6	591	49*4	44.6	43.9	39.5	+7.2
8 ,,	41.3	42.6	38.8	45.5	49.8	62.3	61.5	62.1	52.0	45'9	44'5	39'4	48.8
9 .,	41.0	43.2	40,8	47.2	51.6	65.0	63.5	64.1	54.7	40.1	45.2	40.0	50.6
10 .,	43.3	44.3	42.7	48.6	53.5	67.1	65.1	65.9	57.4	25.1	47.5	41'1	52.4
11	44.6	45.5	44.3	49.4	54.1	68.3	66.3	67.8	58.2	54.5	48.7	42.3	53.6
Noon	45.4	46.5	45.6	20.1	54.8	7C'2	67.5	68.6	59.3	55.3	49.4	43.1	5417
1 ^h . p.m.	46.5	47.0	46.1	50.7	55.3	71.0	67.9	68.7	59.8	55.9	49'7	43.8	55.2
3 ,	46.5	+7.6	46.1	51.4	55.8	71.5	68.7	68.8	60.5	55.9	49'7	43.8	55.5
	46.0	47:3	45'7	51'2	55.4	72'0	68.5	68.5	59.9	55·1	49.3	43'4	55.2
‡ " 5 "		+6.6	44'9	49.8	54.9	70.9	68.0	67.7	58.9	53.9	48.1	42.7	54'3
6 "	44.3	45'7	43.8	49'0	54.0	69.7	67.2	66.3	57.0 55.2	52°4 50°7	47.2	42.1	53.2
- //	43.4	45.0	42'4	47.6	52.6 50.8	67.5	65·4 63·6	64.8	53.4		46.6	41.4	51.9 50.6
7 " 8 "	42.0	44.3 43.3	41'2	46.4		61.5		62.4		49.7	45.8 45.2	41.1	
,	42.3	12.7	40'4 30'9	45.4	48.9		61°5 50°5	5q:3	51.9 50.0	48.0 48.1		40.6	49*3
9 "	41.8	42.4	39.6	44.6	47.3 46.4	59:3 57:6	58.5	58.5	50'2	47.6	44'9	40.3	48.2
10 ,,	41.7	12.5	39.3	43.4	45.4	56.5	57.6	57.8	49.9	47.4	14.7 14.6	39.0	47.6 47.2
	T. /	T .		+., +	+3 /		.,, 0		+99	4/ 4	740	09 9	4/2
Means	42'9	44.0	11.0	46.1	49.4	62.3	61.5	62.2	53.3	49.4	16.0	41.0	49.9

Monthly Mean Temperature of Evaporation at every Hour of the Day, as deduced from the Photographic Records for the Year 1877.

							,,.						
Hour,							1877.						
Greenwich Mean Solar Time (Civil reckoning).	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	Yearly Means.
Midnight rb. a.m. 2 3 4 5 6 7 8 9 10 11 Noon rb. p.m. 2 3 4 5 6 6 7 5 6 7	40:5 40:3 40:0 40:0 39:8 39:9 40:0 40:1 40:4 40:9 42:0 42:7 43:4 43:9 43:9 42:4 42:4 42:4 42:4 42:4 42:4 42:4 42	41'0 41'2 40'9 40'8 41'0 40'8 40'8 40'8 40'8 40'8 42'0 42'5 43'5 43'5 43'5 43'5 43'5 43'5 43'6 42'8 42'8	371 370 369 368 366 361 361 361 362 372 385 405 401 401 406 397 406 397	41.5 41.3 41.1 40.9 40.9 41.1 42.0 43.0 44.5 45.1 45.5 45.5 45.5 45.5 45.5 45.5	+2'7 +2'5 +2'2 +2'0 +1'7 +2'0 +3'1 +4'6 +5'1 +7'6 +7'7 +8'7 +8'7 +8'7 +8'7 +8'7 +8'7 +8'7	52:7 51:8 51:7 51:5 52:0 53:1 54:8 56:5 56:5 56:5 56:5 60:4 60:4 60:1 59:6 58:7	54'9 54'1 53'9 53'3 53'4 55'9 57'3 58'8 59'9 60'3 60'4 60'3 59'9 58'2	56°0 56°0 55°8 55°8 55°5 55°5 55°5 56°8 58°3 59°2 60°2 60°3 60°3 60°3 60°3 59°3 59°3 59°3	47.8 47.6 47.3 47.1 47.1 46.8 46.9 48.0 49.7 51.4 53.6 53.6 53.6 53.8 52.8 52.0 51.0	45.1 44.7 44.3 44.5 43.1 43.1 43.1 44.2 46.5 48.2 49.4 49.9 50.2 50.1 48.4 47.5 48.4 47.5	+3+ +3*0 +2*8 +2*6 +2*7 +2*9 +2*5 +2*7 +3*9 +5*1 +5*1 +6*3 +6*3 +6*3 +6*3 +4*9 +4*7	38.6 38.5 38.5 38.6 38.6 38.4 38.3 38.3 38.7 39.5 40.9 41.2 41.2 41.0 40.5 40.2 39.6	43.1 44.6 44.6 44.5 44.3 44.4 45.3 46.2 47.3 48.2 48.9 49.6 49.7 49.6 49.7 49.6 49.7 49.7 49.7 49.7 49.7 47.3
8 ,, 9 ,, 10 ,, 11 ,,	40.3 40.4 40.4	+0.2 +0.4 +0.4 +1.0	38.6 38.3 38.0 37.8	43.0 42.3 42.0 41.7	45.4 44.6 44.1 43.6	56.5 53.5 53.5	56·8 56·4 56·0 55·5	56·8 55·6 55·6	+9.4 +8.8 +8.4 +8.5	15.1 16.0 19.0	+3·6 +3·4 +3·3 +3·4	39.5 39.0 38.8 38.6	46.5 46.0 43.6 43.3
Means	41.4	41.6	38.6	43.3	45'5	36.3	57*1	57:7	50.0	46.4	44.1	39.4	46.8

Monthly Mean Temperature of the Dew Point at every Hour of the Day, as deduced by Glaisher's Tables from the corresponding Air and Evaporation Temperatures, for the Year 1877.

Hour,							1877.						
Greenwich Mean Solar Time (Civil reckoning).	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	Yearly Means.
Midnight 1h. a.m. 2	39'1 39'0 38'7 38'7 38'4 38'5 38'7 38'7 40'4 40'5 40'8 41'3 40'9 40'4 40'1 40'2 39'7 38'9 38'9 38'9 38'7 38'9	391 393 389 389 393 390 391 399 399 399 390 381 386 386 385 385 383 383	35°3 35°2 35°3 35°2 35°1 35°1 35°1 35°1 35°1 35°1 35°1 36°2 36°3 36°3 36°3 36°3 36°3 36°3 36°3	39.5 39.5 39.5 39.2 39.4 39.1 39.3 39.6 40.1 40.4 40.6 40.8 40.8 40.8 40.6 40.9 40.7 40.9 40.7 40.9 40.7 40.9 40.7 40.9 40.7 40.9 40.7 40.9 40.9 40.9 40.9 40.9 40.9 40.9 40.9	40°3 40°4 40°0 40°2 40°2 40°3 41°6 41°8 42°3 41°9 42°2 42°3 41°7 41°8 42°0 41°6 41°6 41°6 41°6 41°6 41°6	50°1 49°5 49°8 49°6 49°8 50°5 51°0 51°0 51°9 52°0 51°7 51°8 51°8 51°7 51°7 51°7	53'4 53'9 52'9 52'3 53'0 53'5 53'7 53'7 53'7 54'2 54'0 53'7 54'2 54'0 53'7 53'7 53'7 53'7	54-2 54-5 54-5 54-5 54-5 54-2 54-1 54-7 55-1 53-7 53-7 53-7 53-7 53-7 53-7 53-7 53-7	46'0 46'0 45'3 45'8 45'5 45'5 45'6 46'5 48'5 48'6 48'2 48'1 47'7 47'3 47'4 47'9 46'9 46'6 46'4	+3°2 +2°7 +2°4 +2°6 +1°6 +1°6 +1°4 +2°3 +3°7 +4°7 +4°7 +4°6 +4°4 +4°3 +4°1 +3°9 +3°7 +3°9 +3°7 +3°2 +3°2	#118 #112 #112 #114 #114 #113 #115 #119 #219 #310 #219 #310 #217 #217 #217 #216 #217 #216 #217 #217 #217 #217 #217 #217 #217 #217	36'9 36'7 36'7 36'7 37'2 37'0 36'9 37'0 37'5 38'1 38'2 38'2 38'2 37'8 37'8 37'8 37'1 37'1 37'1 36'9	43°2 43°0 43°0 42°0 42°8 43°0 43°2 43°6 44°1 44°4 44°3 44°3 44°3 44°1 44°1 44°1 44°3 44°3 44°3 44°3 44°3 44°1 44°1 44°3 43°3
Means	39.6	38.9	35.8	40.1	41.4	21.1	53:5	54.1	47.0	43.4	42.0	37*4	4 3·7

MONTHLY MEAN DEGREE of HUMIDITY at every HOUR of the DAY, as deduced by GLAI-HER'S TABLES from the corresponding Am and Evaporation Temperatures, for the Year 1877.

							1877.						
Hour, Greenwich Mean Solar Time (Civil reckoning).	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	Yearly Means.
Midnight	92	87	89	87 88	85	83	89	87	89	88	89	90	88
1h. a.m.	9.2	87	89		86	84	90	90	90	89	90	89	89
2 ,,	9.2	87	90	87	87	84	0.1	91	91	90	90	40	89
3 .,	9.2	87	92	88	90	86	93	91	4.2	89	90	89	90
4 ,,	91	89	91	90	89	86	9.2	90	93	90	G1	90	90
5 ,,	91	89	92	89	88	85	9.2	90	91	84	95	91	
6 .,	92	88	91	88	87	83	90	89	9.2	90	90	91	90 89 87 83
7 .,	93	Sq	90	84	18	75	8.3	86	90	89	90	90	87
8 .,	93	87	87	82	7.4	68	7.7	78	84	87	89	10	83
9	9.3	85	8 2	78	7.1	63	70	73	7.8	82	87	90	79
10	90	82	7.7	7.2	65	58	67	67	7.1	~.5	8.4	87	79 75
11 ,,	86	7.8	7.2	7.2	64	55	64	62	7.1	70	81	86	72 69
Noon	84	, -6	70	, 70	63	52	62	. 58	68	68	79	83	69
т ^ь . р.ш.	84	74 7.3	69	69	62	51	62	58	66	67	78	80	68
2	82	7.3	69	67	60	50	59	58	64	66	7.7	80	67
3	8.3	73	7.1	67	62	49 51	59	59	64	68	7.8	81	68
4	84	74	73	7.2	61	51	61	61	66	70	81	84	70
5 , ,	8.5	7.7	76	73	63	53	63	64	70	7+	84	86	7.2
6 .,	87	78	80	78	6,	57	67	67	7.4	7.9	87	88	76
7 ,	87	. 80	84	Sı	73	62	71	73	78	81	87	88	79 82
8 ,,	87	82	86	83	76	71	73	78	83	8.3	88	89 .	
9 ,,	88	85	8,	8+	81	75	82	82	86	85	89	90	84
,, 01	90	86	87	85	84	79	84	84	88	86	89	90	86
11 ,,	90	87	88	87	85	81	86	86	88	86	91	90	87
Means	89	83	83	80	75	68	76	76	80	Sı	86	88	80

Sec? LXIV

@ min

O max

Total Amount of Sunshine registered in each Hour of the Day in each Month, as derived from the Records of Campbell's Self-registering Instrument, for the Year 1877.

1877,	_				Regist	ered Du	ration (of Sunsh	nine in t	he Hou	ir endin	ď				Total registered	Correspond- ing aggre- gate Period	Mean Altitude
Month.	5 ^h , a.m.	6 ^h , a.m.	, i. a.m.	8 ^h . a.m.	9 ^h . a.m	10 ^h . a.m.	11 th , a.m.	Nooth.	1 b.m.	2 ^h , p.m.	3 ^h . p.m.	4 ^h . p.m.	St. p.m.	64. p.m.	J. Pem.	Duration of Sunshine in each Month.	during which the Sun was above Horizon,	of the Sun at Noon.
	h	h	h	h	h	h	ь	h	h	h	h	h	h	h	h	h	h	
January				٠.		0.7	2 ' 9	4.8	417	4.3	1:3			,		18.7	25911	18
February		٠.		0'2	1.8	3.9	4.3	4.6	7:5	8.0	2	0.0				36.4	277'9	26
March			1 ' 2	6.0	11.6	12.6	14.0	11'7	12.3	10.6	8.7	6.0	4.4	0 ' 2		99.3	366.9	37
April			3:8	5.8	7:0	9'4	8	8.2	6.8	8.7	5.6	3'4	2.9	1.22		-1.8	414'9	48
May	ο'ι	6.0	11.2	1215	11.3	13.4	13.2	12.1	11.1	12.2	11.9	10'9	10.1	7.7	3.4	147'1	482.1	57
June		10.3	17:2	20.5	2119	22.6	21'4	21.0	2213	20.4	20.8	20'9	18	18.2	10.7	267.1	494.5	62
July		6.8	1513	1519	15.2	1514	15.0	15.0	13.8	14.4	14.0	12.1	9.0	9.8	4.6	17712	496.8	60
August		0	8.6	11.8	1415	17:3	15:3	17.3	14.8	14.3	1415	10.0	11.4	7.4	0	158.6	449 1	52
September			1*9	5:3	8 · -	12.6	12.3	11.8	12.5	13.8	9.7	9.2	6.6	1 . 2		105.6	3-6.9	41
October				1.1	8	1319	16.8	1512	14.2	11'9	11.4	5.9	1.7			101.1	328.7	30
November					1.1	9*4	10.3	9.5	9.2	8.9	7.0	1 ' 2				56.6	264.4	20
December	••		٠.			1.1	6.0	6.0	-	1						27.0	242.7	16

The hours are reckoned from apparent noon.

The total registered duration of sunshine during the year was 1260 5 hours; the corresponding aggregate period during which the Sun was above the horizon was 4454 o hours; the mean proportion for the year (constant sunshine =1) was therefore o 284.

(L)—Reading of a Thermometer whose bulb is sunk to the depth of 25°6 feet (24 French feet) below the surface of the soil, at Noci on every Day of the Year 1877.

Days of the Month, 1877.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	2	0	0	0	0	0	0	0	0	0	0	0
1	52 .63	52 10	51 . 46	50 .83	50.19	49 '91	49.08	50.62	51 .53	52 .40	52 .96	52 198
2	52 '66	52.08	51 47	50.82	55 18	49 92	50 02	50.62	51 55	52 . 42	52 95	53 00
3	52 .65	52 .06	51.46	50.79	50 17	49.95	50.07	50.65	51.61	52 42	52 .96	52 98
4	52 .65	52.04	51 42	50.78	50 14	49 95	50.08	50 '7 I	51.62	52 45	52.96	52.96
1 5	52 .63	52 '02	51 .39	50.74	50 14	49 93	50 °C6	50.72	51.64	52.50	52 97	52 '90
6	52 .61	52 '00	51 36	50.74	50 13	19 94	50.05	50.77	51 67	52.53	53.00	52 .92
7	52.60	52 '00	51 .34	50 .72	50 13	49 94	50.10	50 ·80	51.71	52.52	53.00	52 '91
8	52 '59	51.96	51 30	50.68	55 13	49 93	55°18	50.82	51.74	52:55	53.00	52 95
9	52 57	51.93	51.29	50.66	50 '12	49 94	50 '20	50.84	51 77	52 ·57	53.00	52 95
10	52 55	51 94	51 '27	50.64	50.10	19 90	50 17	50 89	51.80	52.60	53 '01	52 '90
11	52.50	51 '90	51.25	55 58	50 '05	49 88	50.18	50 '91	51.184	52.66	53 02	52.88
12	52:47	51.88	51 .23	5o ·57	50.07	49 '92	50 16	55 91	51.88	52.63	53.02	52 .02
13	52 46	51.86	51 '22	50 : 55	50.07	49.91	50 18	50.97	51 '92	52.67	53.03	52 '90
14	52 48	51 '83	51 .22	50.53	50.02	49.94	50 '19	51 00	51 93	52.73	53.03	52.85
15	52 43	51 '82	51.18	50.49	50.04	49 94	50 '21	51.04	51 96	52 .72	53.03	52 .86
16	52 43	51.79	51 16	50.45	50.04	49 '94	50 .23	51 '07	51.98	52 .72	53.05	52 .87
17	52 42	51.76	51.13	50 42	50.03	49.93	50.53	51.10	52.04	52 74	53.00	52.86
18	52.38	51.75	51.13	50.40	50.04	49 95	Jo •28	51.16	52 10	52 74	53 .02	52.80
19	52 .39	51 '72	51.09	50 -39	50.00	49.96	50 . 28	51 17	52 .07	52 78	53 .00	52 .80
20	52 * 34	51 68	51.06	50.38	50.00	49 '94	50 ·30	51 20	52.08	52.82	53.00	52.80
2 I	52 .33	51 .65	51.06	50:36	50 '01	49 '94	50 '32	51 23	52 12	52 .81	53.02	52.80
2.2	52.29	51.64	51.00	50:35	49.98	49 '95	50 .35	51 25	52 . 20	52 .85	53 .03	52.80
23	52 . 28	51 63	51.03	50 .37	49 97	49.96	50.38	51.28	52 . 16	52 .85	53.00	52 .78
2.4	52 . 26	51.61	50.98	50 32	49 '97	49.95	50.41	51:30	52 .50	52 .84	53.00	52 .76
24 25	52 . 23	51 . 58	50 .97	50.28	49 '97	49.95	50 43	51 .33	52.51	52 85	52 98	52 72
26	52 '20	51.24	50 94	50.27	49 '97	49 95	50 45	51.36	52 . 22	52.87	52 99	52.73
27	52 '19	51 50	50.04	50 .26	49.96	49.96	50.50	51.39	52 . 28	52 90	53 01	52 70
28	52 20	51.48	50 93	50.23	49 95	49 96	50.52	51 42	52 .32	52 90	53 .00	52.70
29	52 14		50 .92	50.50	49.94	50.03	50.56	51 45	52 35	52.92	52 '98	52 .72
30	52 11		50 ·88	50 .23	49 95	50.00	5o •56	51 47	52 .35	52.93	52 '98	52 .71
31	52.10		55.87		19 96		50.60	51 51		5 2 · 95		52.65
Means.	52 '41	21.81	51.16	50.50	50.02	49 '91	50 .27	51 '06	51 '96	52 . 70	53.00	52 .84

(II.)—Reading of a Thermometer whose bulb is sunk to the depth of 12°8 feet (12 French feet) below the surface of the soil, at Noon on every Day of the Year 1877.

Days of the Month, 1877.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	0	0	0	0	0	0	0	0		0	0	0
I	51.34	19.01	48 .02	+7 .70	48 15	49.16	52 '02	54.69	56 . 45	56.63	55.04	53.22
2	51.35	49.88	48 90	47·76	18.50	49 '21	52 12	54 72	56.55	56 .56	54 95	53 . 18
3	51 .21	49.80	48.93	+7 *7+	48.20	49.30	52 .27	54.80	56.50	56 ·50	54.88	53 •08
4	51 '11	49.75	48.86	47 *71	48 .22	49 35	52.38	54.89	56.57	56 .48	54.84	52 ·98
5	51 '01	49.68	48.88	47.66	48 .54	49.38	52 .50	55 00	56 61	56 48	54.79	52 90
6	50 95	49.61	48.80	47 ·66	48.28	49.44	52 .60	55.07	56 .64	56 43	54 77	52.86
7	50 go	49.61	48.74	47 '65	48.32	49.52	52.70	55 09	56 68	56 34	54.70	52 .74
8	50.82	49 .53	48.67	47 .65	48.34	49 58	52.80	55 1 6	56 .69	56 30	54.60	52 .66
9	50.64	49.45	48 .71	47 .60	48 35	49.67	52 93	55 •23	56 .74	56 .26	54.56	52.58
10	50 ·57	49.45	48 •60	47 '57	48.37	49 '70	53.08	55 '28	56 .75	56 .51	54 51	52.46
11	50 '48	49:38	48 .55	47·56	48·37	49.80	53.17	55.34	56.80	56 18	51.45	52 32
12	55°41	1 49:34	48.54	47 ·58	48.36	49.84	53 24	55 40	56 .81	56 10	54.40	52 . 27

(II.)—Reading of a Thermometer whose bulb is sunk to the depth of 12.3 feet (12 French feet) below the surface of the soil, at Noon on every Day of the Year 1877—concluded.

Days of the Month, 1877.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	0	0	0	0	0	•	0	0	0	۰		
13	50.45	49 .30	48.50	47 *64	48 .39	49 '92	53 • 35	55 .49	56.80	56.00	54.30	52 '22
14	50 ·50	49.26	48.48	47.67	48.40	50.02	53 41	55.58	56 .82	56 '01	54 28	52 11
15	50.45	49 '22	48 '42	47 '70	48.40	50 12	53 49	55.63	56 -78	55 '98	54.26	52 00
16	50.46	49 '20	48.38	47 '70	48.44	50.55	53 53	55 '70	56 .78	55 .88	54.22	52 '07
17	50.46	49 15	48.32	47 '73	48 - 46	50 ·32	53.60	55 74	56.76	55 .84	54 15	51 95
18	50.44	49 15	48.28	47.78	48 •53	50 .43	53.72	55.80	56 .78	55 .77	54 '09	51.88
19	50 ·3 9	49.13	48 .55	47.83	48 • 55	50 • 56	53.81	55 .87	56 - 77	55 74	54.00	51.76
20	5○ •36	49.10	48 - 17	47.88	48 .55	50.63	53.90	55 95	56 · 7 5	55.74	53 96	51.70
2 1	50.34	49 .06	48 .11	47 '93	48 • 56	50 .75	53 .98	55 96	56 2	55 66	53 90	51 64
22	50.30	49 04	48.08	47 '93	48.61	50.85	54.00	55 96	56 .72	55.64	53 90	51.50
23	50.30	49 '04	48.07	48 .00	48 .70	50.95	54 11	56.00	56.70	55 52	53.80	51 52
24	50 . 23	49.04	48 .03	48.03	48.78	51.08	54 18	56 .07	56.70	55 '47	53.74	51.41
25	50 .51	49 '02	48.00	48.04	48.85	51 '20	54.23	56 ·o8	56.66	55.40	53.67	51.58
26	50.12	49 '00	47.98	48.05	48.88	51 ·33	54.30	56 17	56.70	55.34	53.62	51 .22
27	20.11	48 96	47 '95	48.08	48 •94	51.48	54.40	56 .24	56.67	55 29	53.60	51 12
28	50 °07	48.94	47 '92	48 .10	48 .97	51 61	54 45	56 29	56 68	55 '20	53 - 50	51.03
29	50 · 03		47 '92	48.10	49 '02	51.80	54 53	56 ·35	56 .68	55 19	53 '40	50.97
30	50°00		47 '85	48 13	49.10	51.90	54.60	56 .39	56 .62	55 12	53 33	50.88
31	49 95		47 .81		49.13	-	54.70	36 .42		55.08		50.82
Means .	50.21	49 .32	48 · 37	47 .81	48.54	50·30	53.49	55.62	56.69	55.88	54 '21	52 .02

(III.)—Reading of a Thermometer whose bulb is sunk to the depth of 6:4 feet (6 French feet) below the surface of the soil, at Noon on every Day of the Year 1877.

Days of the Month, 1877.	January.	February.	March.	Aprit.	May.	June.	July.	August.	September.	October.	November.	December.
d	•		•	•	•		c			0	0	0
1	48.49	47 '49	47 '40	46.33	48.62	51 .38	57 '90	59.64	60.90	57 .78	54.34	50.82
2	48.62	47.40	47 '30	46 52	48.65	51.54	58 00	59.78	60.85	57.60	54 30	50.64
3	48 1	4- 30	47 15	46.64	48.69	51.68	58 17	59.48	60.77	57.50	54.24	50.51
4 5	48.69	47 31	47 .04	46.78	48.68	51.78	58 25	60.13	60.72	57.34	54 .20	50 .44
5	48.64	47 .32	46 91	46 89	48.70	51.89	58.30	60.30	60.66	57 31	54 11	50.34
6	48.80	47.31	46.84	47 '08	48 67	52 06	58:32	60.33	60.51	57 .20	54.04	50.30
7	48.80	47 '32	46 .77	47 26	48 62	52.34	58 '40	60.30	60.38	56 06	53 90	50 19
8	48 77	47 '32	46.72	47 '38	48.53	52.6i	58.47	60:32	60.22	56.85	53.80	50.10
9	48.73	47 .36	46.68	47 '55	48.59	52.85	58 -50	60.37	60.14	56 -71	53 .75	50.08
10	48.68	47 '45	46.60	47 .66	48.67	53 '00	58 . 58	60.39	60.03	56 .60	53 -7	50.00
I 1	48 -52	47 '56	46.48	47 '76	48.80	53.28	58 .52	60 38	59 97	56 .48	53.72	49 '90
12	48 .63	47 .60	46.42	47 '90	48.95	53.52	58 .52	60.39	59.86	56 -31	53.60	49.88
13	48 .72	47 '70	46.34	48 .02	49 19	53.78	58 . 58	60.40	59.78	56 . 26	53.50	49.70
14	48.80	47 78	46 .28	48.10	49 .38	54 15	58 ·61	60.42	59.74	81.95	53 .50	49 52
15	48 59	4,7.80	46 .18	48.18	49:53	54 48	58 '70	60 41	59 66	56 .02	53 46	49.46
16	480	47 '90	46.50	48 '21	49.68	54 76	58.78	60 45	59.58	55 '90	53 .36	49 '32
17	48 '41	47 '98	46.55	48 29	49.80	55 02	58 '90	60.50	59.58	55.88	53 18	49 12
18	48:38	48.06	46.28	48 .36	49.98	55.30	59 '00	60.60	59.55	55.82	53 '09	49.00
19	48.39	48.08	46 :30	48.39	50.10	55 58	59 '07	60.70	59.50	55 .78	53.00	48.86
20	48 35	48.03	46.29	48.38	50.18	55 .81	50 05	60.80	59:38	55 65	52 .84	48.78
21	48.42	48.03	46 .25	48 .37	50 '32	56 '09	50.10	60.82	59.31	55 '42	52 '70	48.74
22	48 48	48.00	46.50	48.30	50.40	56 .38	50.08	60 '95	59 .26	55.30	52.57	48 .62
23	48 .50	47 92	46 18	48.30	50.48	56.64	59 15	60.98	59.10	55 16	52 34	48.50
24 25	48 '42	47.84	46 11	48 .33	50.57	56 91	59 18	61.05	58 • 96	54 '98	52 10	48.50
	48.36	47.68	46 .05	48 .39	50.61	57 .12	59 21	61.06	58 .72	54 .86	51 .82	48.40
26	48 .50	47:58	45°94	48 47	50.64	57 28	59 '29	61.13	58 60	54.70	51 -76	48.43

(III.)—Reading of a Thermometer whose bulb is sunk to the depth of 6.4 feet (6 French feet) below the surface of the soil, at Noon on every Day of the Year 1877—concluded.

Days of the Mouth, 1877.	January.	February.	March.	April.	May.	June.	July.	August.	September,	October.	November.	December.
d 27 28 29 30 31	6 48:05 47:96 47:79 47:65 47:55	° 47 *50 47 *47	6 · 96 46 · 00 46 · 00 46 · 10 46 · 22	48 · 51 48 · 55 48 · 55 48 · 61	50 · 66 50 · 73 50 · 83 51 · 01 51 · 20	57 *45 57 *60 57 *73 57 *80	° 59 :38 59 :40 59 :46 59 :55 59 :65	61 ·13 61 ·08 61 ·02 60 ·98 60 ·93	58 :40 58 :23 58 :08 57 :95	5 ₄ ·66 5 ₄ ·60 5 ₄ ·58 5 ₄ ·50 5 ₄ ·42	51 ·61 51 ·32 51 ·12 50 ·94	+8 ·30 +8 ·20 +8 ·10 +7 ·89 +7 ·65
Means.	48.44	47.65	46 .43	+7 .87	49 •66	54.29	58.81	60 . 57	59 .61	55 ·98	53 .07	49.30

(IV.)—Reading of a Thermometer whose bulb is sunk to the depth of 3·2 feet (3 French feet) below the surface of the soil, at Noon on every Day of the Year 1877.

Days of the Month, 1877.	January.	February.	March.	April.	May.	June.	July.	Λugust.	September.	October.	November.	December.
d	0	0	0	0	0	0	0	0	0	0	0	0
1	46 .33	43.54	43.40	45.25	47 .28	52 .96	62.45	63 .86	62.48	55 .98	52.50	46.60
2	46.63	43.73	42.89	45.48	47 .28	53 12	62.52	64.20	62 22	55.90	52 *29	46.30
3	46·50	44.13	42 .80	45 .77	47 .21	53 • 31	62.22	64.08	61 .62	55 ·80	51 92	46.30
4	46 . 42	44.30	43 '31	46.18	47.13	53 .62	62.00	63.60	61 .21	55.51	51.80	46.28
5	46 - 41	44.24	+3.70	46.72	46.90	54 59	62.02	63.40	60.80	55.28	51 .34	46.40
6	46 .51	44.10	43.71	46.93	46.68	55 .46	62 .05	63 .38	60.58	55.00	51 39	46 .52
7	46.42	44 43	43.53	46.94	46.87	55.85	61.82	63.42	60.40	54.75	51.55	46.56
8	46.51	44.93	43.26	46 92	47 .39	55.75	61.52	63:40	60 .32	54.60	. 51 90	46.52
Q	460	45 32	43 .00	47 17	47 '99	56 .07	61.13	63.08	60 .12	54 51	51.98	46.35
10	46.80	45.50	42.65	47 .21	48 90	56 .70	61 '02	62.86	60.00	54.26	51 98	46.20
11	46·30	45.70	42 .50	47 '79	49.48	57.62	61.22	62.75	60.06	54 .03	51 '90	45.72
12	46 .03	45.98	42 '40	47 .82	50.10	58.50	61.78	62.58	60.10	53 .92	51.40	45.38
13	45.40	46 12	12.10	47 '70	50.20	58 .93	62 11	62.55	60 '14	53 '91	51 10	45 30
14	45.00	46.18	42 70	47 .68	50.30	59.25	62 .30	62 .75	60.12	54.08	50.80	45.10
15	11.70	46.33	43.16	1 7 ·83	50.38	59.35	62.48	63 .06	60 18	54 36	50.30	44.71
16	44 - 6	45.48	43.51	47.82	50.59	59.75	62.31	63.38	60.18	54 '57	50.30	44.30
17	44.82	46.43	44.08	47 .80	50 73	60.22	62.05	63.70	60.00	54 25	5o ·5o	44 .32
18	45.20	46 .51	43.69	47 '42	50 '92	60.80	61.71	63.86	59.72	53.48	50.10	++ 66
19	45.50	46 .00	43.38	46 • 93	50.98	61 '42	61.52	63.90	59.50	52.86	49.30	44.62
20	45.99	45.00	43.22	46.74	51 04	61.79	61.62	64 17	59.30	52 .40	49 35	14 '20
2 1	46.16	45.52	43.05	46 .80	51 .00	62 23	61.80	64.40	59.05	52.28	48.88	+4 .30
2 2	45.41	45.04	42.80	47 '03	50 '91	62 .49	61.90	64.60	58.40	52 .48	48.47	44.36
23	45.24	44.69	42.53	47 .37	50.81	62.54	62 10	64 29	57 .72	52.68	48 50	44 .20
2 +	++·61	44.42	42 15	47 .68	50 .70	62 .45	62 17	63.92	57 35	52.66	48.36	44 .83
25	44.40	44.35	42.50	47 74	50.68	62 12	62 '19	63.48	56 98	52:30	47 60	44 .52
26	44 '20	44.52	43.08	47 71	50.83	61 '92	62.18	63.09	56 • 56	52 . 25	47 *27	44 '18
27	43.95	44.58	43.56	47.62	51 32	61.80	62.25	62 90	56 .29	52 .36	46.90	+3.64
28	43.66	44*11	43.92	47 .53	51.85	61.80	62.23	62.86	56 · 15	52 .20	46 •90	43.12
29	43.57		44.25	47.60	52 '35	61 .93	62 44	62.92	56 .04	52 '20	47 *00	42.64
30	43.51		44.68	47 .55	52 '57	62 .30	62.65	63.02	55 '99	52 *20	46.87	42 .73
31	43·66	, , , , , , , , , , , , , , , , , , , ,	45.04	,,,	52 .76		63 •40	62.90		52 .38		43.20
Means.	42.41	45.10	43.25	47 '17	49.84	58.89	62 .04	63 . 43	59 .32	53.72	50.03	44.98

(V.)—Reading of a Thermometer whose bulb is sunk to the depth of 1 inch below the surface of the soil, at Noon on every Day of the Year 1877.

Days of the Month, 1877.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	0	0	0	0	0	0	- 0	0	0	0	o	0
	47 '2	43.5	35 ℃	47.0	46.0	55 4	62.6	67.0	58 ·o	53 .2	49.6	46.0
2	43.8	45.2	40.0	46.6	46 .2	54 .6	62.8	63.8	59.0	52 0	48.3	42.5
3	45.0	42.8	44 '0	48 2	46.0	59.4	62 '9	62.0	58 .4	50 '0	49.0	44 '0
4 1	47.0	43.0	43.8	50.8	42 .3	61.5	63.0	62.0	56.3	50 °o	46.5	44 1
4 5	46.3	41.7	41.7	47 .8	44 .5	61.3	63.0	64.6	56.3	50 .0	50.0	44 .0
6	45.3	45.2	40 0	47.6	45.1	58 '9	61.0	66.0	57.0	51 '0	52 0	44.6
7 8	47 '0	48.0	39.5	47 .2	47.5	57 .2	60.0	66 .2	58.0	49 '1	53 ℃	44 '1
8	46.0	46.4	38 .7	48.8	49.8	60.0	59 0	63 1	57 .2	52 0	5o ·5	42 .2
9	47 '0	45.0	38 ·o	47 .8	53.3	62 .3	60.8	62.7	58 .2	50 0	48.0	43.5
10	45.0	47 .5	38 %	49.4	54 .8	63 .2	63.5	62.4	59.5	49.0	51.0	40.3
11	43.0	47 4	37 .4	49.0	53.8	65.5	65.5	61.0	60.8	51.3	50.0	38:0
12	40.0	47.0	40.0	46.5	56 .0	66.0	64.8	62 1	60.0	51.0	47 .8	44 *0
13	39 4	46.8	42 0	47 .8	52.5	61.0	64.8	64.0	60.0	53 . 7	47 °°	41.0
14	43 0	47 '0	44 5	48.5	51.8	61.2	66 %	66.0	61.4	56 %	44 .6	39.0
15	41 '3	47 '3	43.0	47 .8	52 '2	63 .2	64.0	65.4	60.8	55 '0	48 .2	38 .0
16	43.5	45.6	43.5	47 2	53.0	64 '2	62.0	66 .5	56.5	50.6	51.7	42 '0
17	45.8	44 1	41.6	45.3	52 .4	65.3	61.3	66.5	56.4	47 °0	44 .0	43.5
18	44 '8	44.8	40.5	43.7	53.8	66 .8	60 .7	66.0	56.6	45 2	45.3	42 .5
19	49.0	44.0	40.0	44 0	52 .7	68 • 2	63.7	68.0	58.0	46 °o	45.0	38 .0
20	45.9	42 0	39.8	45.0	50.4	66 .8	62 2	68 .8	56 ·o	49.5	43.3	40'4
21	41.1	41 0	38 .2	47 °O	51.4	66 • 2	62.0	62.5	52 .3	51.0	42.2	41.5
2 2	40.8	40.3	37.0	48.5	50.3	65.3	64.0	65.3	51 '4	53 .4	46.8	43.3
23	39 °o	40.0	38 1	48.0	49 '2	62.5	65.0	61 .3	53.0	50 .4	45.0	43.0
24	41.9	42 0	40.8	47 '0	50.6	61.0	63 ℃	5g •g	53.0	48.0	43.0	42 0
25	42 '9	44 *5	44.0	47 0	51 '0	62 0	63.0	61.1	49.8	51.0	42.0	38 ⋅0
26	39.3	42.3	44 0	46.3	54 .6	63.5	63.0	62.8	52 1	50 . 2	41.0	38 ⋅0
27	39 .5	39 • 5	44 .8	46 .8	54 8	62 .8	64.0	64.0	50 .0	51.0	46.0	36 ⋅0
28	42.0	36 6	45.0	46.9	56.0	63.0	63.5	63.4	52 .2	50.0	43.9	35 .4
29	39 9		46.0	47.0	54 .2	66 •3	67.0	64 0	52 *2	51.0	44 3	42 0
30	43.0	- 1	46.8	46.4	55 o	67.2	67.0	63 ⋅0	53.0	51.4	43.0	44 6
31	39 •9		45.8		56 .7	·	69.2	61 .5		52 .0	'	42 '0
Means.	43.4	43.9	41 '4	47 '2	51 .3	62 .8	63 •4	64.0	56 •1	50 '7	46 .7	41 .5

(VI.)—Reading of a Thermometer within the case covering the deep-sunk Thermometers, whose bulb is placed on a level with their scales, at Noon on every Day of the Year 1877.

Days of the Month, 1877.	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.
d	0	0	0	0	0	0	0	0	0	0	0	0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	49 '9 40 '4 48 '6 49 '9 51 '1 48 '6 51 '0 50 '0 50 '4 42 '4 38 '0 30 '6 38 '9 47 '5 40 '9	48 ·8 49 ·2 44 ·9 44 ·9 50 ·7 56 ·2 47 ·8 52 ·5 51 ·6 49 ·3 50 ·0 50 ·2 50 ·0	33 ° 0 48 '8 51 ° 0 44 ' 8 44 ' 8 39 ' 5 37 ' 7 40 ' 5 40 ' 5 40 ' 5 51 ' 5 48 ' 8	49 *8 53 ·5 54 ·0 60 ·0 49 ·2 52 ·0 54 ·1 55 ·0 53 ·3 51 ·6 49 ·8 47 ·5 55 ·8 52 ·2 52 ·1	45 · 7 48 · 4 49 · 7 46 · 4 50 · 0 52 · 2 57 · 8 61 · 2 62 · 4 62 · 2 51 · 6 55 · 5 54 · 3 55 · 8 56 · 0	55·2 56·6 75·8 72·8 66·6 60·6 63·0 69·8 73·3 74·0 75·7 75·7 75·4 67·4 71·8	61 ·8 68 ·8 69 ·8 69 ·5 69 ·5 64 ·0 63 ·0 62 ·8 67 ·0 74 ·7 72 ·8 73 ·5 67 ·6 66 ·0	68 ·2 64 ·2 66 ·6 65 ·8 75 ·0 73 ·4 69 ·4 65 ·3 66 ·2 67 ·1 68 ·8 73 ·0 71 ·8	60 · 5 66 · 2 58 · 3 60 · 2 62 · 1 64 · 5 63 · 2 61 · 0 63 · 8 63 · 2 68 · 3 67 · 3 65 · 2 66 · 0 62 · 0	60 · 8 55 · 5 55 · 5 54 · 0 61 · 0 48 · 0 54 · 0 53 · 3 51 · 5 54 · 5 53 · 8 60 · 1 67 · 8 56 · 4	53 · 6 51 · 5 52 · 0 52 · 3 57 · 2 56 · 9 53 · 5 54 · 8 52 · 3 51 · 5 49 · 2 47 · 0 47 · 3 52 · 3	44 °0 45 ·3 45 ·5 14 ·2 49 °0 46 ·3 47 ·0 37 ·4 36 ·0 48 ·4 43 ·8 38 ·6 39 ·8

(VI.)—Reading of a Thermometer within the case covering the deep-sunk Thermometers, whose bulb is placed on a level with their scale s at Noon on every Day of the Year 1877—concluded.

Days of the Month, 1877.	January.	February.	March.	April.	May.	June,	July.	August.	September.	October.	November.	December.
d	0	0	0	э с	0	0	0	0	0	0	0	0
16	48.6	46.0	46 '1	47.8	55 '4	73 .7	60.2	74 '0	55 • 5	49 '2	56 • 3	45 °9
17	50 .9	45.7	44 .8	44 '8	52.6	75.6	63.0	73.1	57.3	5ĭ ·5	46 '2	45.2
18	47 '8	47 4	47 .5	41.9	61 .5	79.5	64.5	74 '2	58.8	49.8	48.7	42 '0
19	53.5	43.8	45 '3	46.9	53.0	80.8	69.7	76.5	60 .8	52 .3	48.5	35.2
20	44 '9	40 '0	39.3	52 .6	51.4	74 '3	67.0	80 - 2	56 .0	60 .8	43 °O	43.0
2 I	44 *2	40.6	39 9	47 '8	55 4	73 '1	69 •8	73 .0	55 5	55 • 8	42 .8	43.0
22	41'9	39 .8	38 '9	54 '5	50 .7	70 '8	66 •8	68 -4	55 •8	60 . 2	50.3	46.0
23	43.5	42 '0	45.3	54 °O	49.4	61.9	69.5	6+ •7	53 •3	52 .0	48 .5	43.0
2+	45.8	47 .6	48.3	52 '7	54 '8	64.0	67.9	65 • 2	57.0	52 .8	43.5	44 '2
25	49.8	49 '9	21.8	51.8	58 .2	69.0	66 •8	61.0	49.8	54 .0	41.0	36 •3
26	38.6	39.0	46.8	48.5	63 .8	69 0	63.8	66 •8	54.6	50 .4	44.3	38 • 4
27	43.8	37.8	51 5	49 2	62 .8	$68 \cdot_{2}$	71.5	69 • 2	53 •8	56 2	51.3	34 3
28	48.0	36.8	52 5	48.0	59 8	72 .0	68 · o	68 •6	57 .7	55 '2	41.3	34.7
29	43 *2		53.0	50 .8	59 · I	79 3	77 '2	68 .0	58 0	54 .5	44 '1	52 0
30	42.8		51.7	47 '9	62 .3	76 •6	75.6	67 .2	60 .8	56 •2	44.0	5o ·8
31	41.5		51.2		65.6		82 .2	65 •3		55 ·5		43.0
Means .	45.4	46.3	45.5	51.0	55 • 5	70 .3	68 .6	69.1	5g ·g	55 · 3	49 .3	42 '9

1877,		on of the ind.	Apparent	Times of Shifts	Amount	Monthly of Me	Excess	1877.	Directio Wi		Apparent	01 . 4,,,,,	Amount	Monthly of Me	
Month.	At beginning of Month.	At end of Month.	Motion.	of the Recording Pencil.	of Motion.	Direct.	Retro- grade.	1	At beginning of Month.	At end of Month.	Motion.	of the Recording Pencil.	of Motion.	Direct.	Retro- grade
January	S.S.W.	S.S.W.	o	d h m 3. 22. 0 10. 22. 0 12. 21. 0 19. 22. 0 20. 9. 30 22. 8. 45	- 360 + 720 + 360 + 360	1800		June—cont.			c	d h m 7, 22, 0 8, 2, 45 11, 21, 0 11, 22, 0 12, 0, 20 13, 21, 15 16, 8, 0	+ 360 - 720 - 720 + 360 - 360	-	742
February . March	1			13. 8. 20 9. 9. 30 10. 1. 45 22. 8. 30 23. 21. 0 25. 22. 0 26. 2. 30 30. 22. 0	+ 360 + 360 + 360 - 720 - 360 + 360	495 630		July	S.E.	N.W.	+180	21. 22. 0 25. 2. 45 5. 8. 0 6. 8. 45 7. 1. 45 12. 0. 15 12. 2. 45 12. 8. 45 29. 8. 0	+ 360 - 360 + 360 - 360 + 360 - 360 - 360	540	
April	W.S.W.	N.	+11212	8. 8. 15 8. 21. 0 9. 21. 0 11. 0. 30 12. 2. 50 12. 21. 15 13. 9. 10 14. 0. 15 15. 8. 30 16. 22. 0 18. 2. 45	+ 360 - 360 + 360 + 360 + 360 - 360 - 360 - 360 - 360		2407 ½	August		W.	+ 112½	4. 22. 0 14. 22. 0 15. 0. 25 18. 22. 0 24. 3. 0 25. 22. 0 4. 21. 0 6. 8. 30 6. 22. 0	+ 360 + 360 + 360 + 360 + 360 + 360 - 360	1395	
May	N.	S.S.E.	$-202\frac{1}{2}$	19. 2.45 24.22. 0 25. 0.15 26. 0.10 26.22. 0 27.21. 0 1.21.15 5.10.45	+ 360 - 360 - 360 - 360 - 360 + 360							7. 0.30 7. 9.20 11. 8.30 17.22. 0 21.21.15 26.21. 0 28. 2.45 30. 7.30	- 360 + 360 - 360 - 360 + 720 - 360 - 360	11212	
				7. 0. 0 7. 2.45 8. 9.30 9. 0.15 10.21.15	- 360 - 360 + 360 - 360 + 360	517½		October November				5. 0. 0 6. 0. 15 9. 22. 0 19. 22. 0 25. 2. 50	- 720 + 360 + 360 - 360		135
				11. 9.30 11.21. 0 12.22. 0 16. 2.45 23.22. 0 25. 7.30 26. 0.30	- 360 + 360 - 360 + 360 + 360			December				17. 1.40 17. 8.15 17. 22. 0 23. 22. 0 27. 8. 20 6. 2.45 9.22. 0	- 360 + 360 - 360 - 360 + 360		403
June	8.8.E.	S.E.	- 22½	3. 21. 0 4. 0. 15 6. 0. 0	+ 360							10. 21. 0 18. 22. 0 20. 22. 0	+ 360 + 360	1125	

The sign + implies that the change in the direction of the wind has taken place in the order N., E., S., W., N., &c., or in direct motion; the sign + implies that the change has taken place in the order N., W., S., E., N., &c., or in retrograde motion.

The times of shifts of the recording pencil, as given above, refer to the shifts made by hand, when, by the turning of the vane, the trace tends to travel or has travelled out of range.

The revolution-counter which is attached to the vertical spindle of the vane, whose readings increase with change of direction of the wind in *direct* motion, and decrease with change of direction in *retrograde* motion, gave the following readings:—

MEAN HOURLY MEASURES of the Horizontal Movement of the Air in each Month, and Greatest and Least Hourly Measures, as derived from the Records of Robinson's Anemometer.

	1877.												
Hoar ending	January.	February.	March.	April.	May.	June.	July.	August.	September.	October.	November.	December.	the Yea
ь 1 а.ш.	Miles.	Miles. 15.6	Miles.	Miles.	Miles,	Miles. 8 · 7	Miles.	Miles.	Miles.	Miles, 11 '3	Miles. 15 *5	Miles.	Miles
2 a.m.	14.1	15 '6	11.2	11.7	9.2	9.2	9 '7	9.0	8 -2	8.11	15.2	12.4	11.4
3 a.m.	14.5	14.5	11.4	10.9	8.6	8.9	9.3	9.4	8.0	11.4	14 '9	11.9	11.
4 a.m.	14.5	14.7	11.1	11.3	9 .3	9.0	9 '7	9.7	8.5	11.11	14*9	12 '4	11*.
5 a.m.	14 '0	14.9	11.7	10.4	8 • 9	9.7	9 .8	9.6	8 • 1	11.3	15.5	12.7	11.
6 a.m.	14'2	15.3	11.4	10.0	9.3	9.8	9.6	9.8	8.6	11.0	15.3	12 *1	11.
7 a.m.	14.7	15.4	11 *9	10.9	9*4	10.6	10.5	10.1	7 '9	10.5	14.4	12.8	11.
8 a.m.	14.7	16.9	12.5	12 '1	10.6	11.6	п. э	11.1	8 .6	10.7	14 '5	12.7	12.
9 a.m.	14.9	18.3	13 '4	13.0	12 .3	12.3	12.6	12.7	9 *4	11.1	15.1	12.7	13.
10 a.m.	14.5	18.7	14.3	14.3	13 . 2	13.9	13 '3	14.0	10.7	13.5	16.9	12 *9	14
11 a.m.	15.8	19.2	14.7	14.5	13.7	14.0	13.3	15 '4	11.6	14.3	17.0	13.1	14
Noon.	17 •5	19.7	15 1	14.3	13.8	14.0	14.1	15.4	12.2	14.7	16.1	13.2	15
1 p.m.	18.6	21 '3	16.3	14.7	15.1	14.5	14.2	15.5	12.7	15.6	16*9	14.5	15
2 p.m.	17 .0	20.4	15 '8	15.5	14.5	14.0	14.3	16.1	12.4	15.2	17 *4	13.7	15
3 p.m.	16.6	19.9	15 u	14.9	15.4	14.3	15.3	16 *0	12.8	15.2	16 *2	13.1	15
4 p.m.	16:5	19.3	15 *2	14.9	14 '4	14.8	15.0	15.6	12.3	14 '2	15 .8	12.1	15
5 p.m.	15.6	18.1	12.9	14.2	13.6	14.5	14.5	15.2	11.5	13.4	15 %	11 '9	14
6 p.m.	15 9	16.9	11.5	13.6	13.4	14.5	14.5	14.4	11.0	12.7	14*5	11.9	13
7 p.m.	15.9	16.7	11.5	12.3	12.1	13.2	12.7	13 '1	10.4	12 '2	15 '4	11 '9	13
8 p.m.	15.9	15.8	11.0	12.7	11.6	12.5	11.6	11.2	10.5	13 *2	16.5	12'1	12
9 p.m.	16.1	15.0	11.7	12.4	11'2	11.1	11.5	10.1	9 *8	12 .0	15.8	11.0	1.2
10 p.m.	14.8	12.1	11.6	12.4	10.4	9 .6	10.1	10.2	9.1	11.7	15.8	12 '0	11
11 p.m.	15.4	15.1	11.9	12'1	10.1	9.6	9.8	10.0	8.9	11.4	16 •5	12.1	11
Midnight.	14.3	15.0	11.9	11.9	9 .8	9 *2	9.8	9 '7	9.0	10.0	16 '5	11.7	11
eans	15.4	17 .0	12.8	12.8	11.6	11.8	11.9	12.2	10.0	12.2	15.4	12.5	13
eatest llourly Measures -}	55	42	33	12	38	41	26	35	31	11	47	37	
east Hourly } Measures - }	0	2	0	ı	O	0	1		. 0	0	0	0	Ī

Amount of Rain collected in each Month of the Year 1877.

	Number			Mon	thly Amount o	f Rain collected i	n each Gauge			
1877, MONTH.	of Rainy Days.	Self- registering Gauge of Osler's Anemometer.	Second Gauge at Osler's Anemometer.	On the Roof of the Octagon Room.	On the Roof of the Library.	On the Roof of the Photographic Thermometer Shed.	Crosley's.	Gauge partly sunk in the Ground read daily.	Gauge partly sunk in the Ground read Monthly.	On the "Royalist" Police Ship.
		10.	in.	in.	in.	in.	in,	in.	in.	in.
January	23	2 .659	2 .858	3 .237	3.877	4 120	4 . 720	4 '347	4 .36	3 - 443
February	18	0.672	0.739	1 .542	1 .340	1 .607	1.800	1 '710	1 .67	1 .320
March	17	1 '448	1 .202	1 .848	2 133	2 152	2 .440	2 '230	2 .32	1 '915
April	20	2 .482	2 .570	2 .797	3.126	3.194	3.620	3 349	3.58	2 .316
May	10	0.757	0.870	1.066	1 .561	1 '253	1 '535	1 .376	1.31	1 '190
June	7	0 .496	o ·535	0.563	0.555	0.642	0.760	0.683	0.2	0.460
July	15	1 '773	1.816	2 '117	2.161	2 *445	3.550	2 '457	2 • 45	2 198
August	17	2 *2 1 4	2 .344	2 .578	2 .792	2 .886	3.340	2 .905	2 '90	2 .475
September	11	0.672	0.790	0.952	1 '177	1 '120	1 .365	1.145	1.08	0.690
October	13	1.160	1.196	1 '492	1.610	1 '702	2 .502	1 .781	1 .83	1 '412
November	18	1.891	1.88+	2 .443	2 .636	3.287	4 .50	3.529	3.51	2 '44!
December	17	1.196	1 '258	1.509	1.601	1.724	1 '975	1 .764	1.00	1.497
Sums	186	17.420	18*452	21 '847	24 . 269	26 :132	31 '230	27 .276	27.13	21 '407

The heights of the receiving surfaces are as follows:

Above the		evel of In.	the Sea.	Above the Ft.	Ground. In.
The Two Gauges at Osler's Anemometer	205	6		50	8
Gauge on the Roof of the Octagon Room	193	2		38	4
Gauge on the Roof of the Library	177	2		2 2	4
Gauge on the Roof of the Photographic Thermometer Shed	164	10		10	0
Crosley's Gauge	156	6		1	8
The Two Gauges partly sunk in the Ground	155	3		0	5
	Above of B	Level liver.			e Deck. In.
Gauge on the "Royalist" Police Ship, moored in Blackwall Reach.	17	0		8	8

In the month of August the "gauge partly sunk in the ground, read monthly" was found to be leaky; the value adopted is that given by the adjacent similar gauge, read daily.

ROYAL OBSERVATORY, GREENWICH.

OBSERVATIONS

OF

LUMINOUS METEORS.

1877.

Month and Day, 1877.		Greenwich Mean Solar Time.	Observer.	Apparent Size of Meteor in Star-Magnitudes.	Colour of Meteor.	Duration of Meteor in Seconds of Time.	Appearance and Duration of Train.	Length of Meteor's Path in Degrees.	No. : Refe
February	I	h m · 8.39.17	Р., Н.	2	Bluish-white	1.8	None	0 18	
February	8	8. 16. 30	Л.	< 1	\mathbf{Red}	1	None	20	
February	26	6. 18. o	ti.	Jupiter 🗙 2	Blue	8	Broad flaming tail		3
March	1.4	g. 6. o	N.	2	Bluish-white	0.4	None	5	
April	24	10. 20. 0	G.	1	Bluish-white	0.6	Slight	7	3
July	20	11. 22.	E.	Jupiter	White	0.3	None	10	
August	5	10. 25. 45 +	м.	> 1	Bhish-white	1.0	Train: S' or 10'		
Angust	7	11. 39. 15	N.	I	White	0.2	Train		
	32	11.39.20	N.	> 1	Bluish-white	0.8	Train		
	٠,	11.41.30	N. N.	> 1	Bluish-white	1	Fine train Train		1
	••	12. 14. 35 12. 16. 43	N.	3	Bluish-white Bluish-white	0.4	None	10	1
	5,	12. 10. 45	N.	1	Bluish-white	0.4	Fine	10	1
August	9	9. 15. 0 10. 15. 0	G. 11.	Jupiter	Blue Green	o·8 4	Fine	7	1
August	10	10.37. 3	N.	1	Bluish-white	1	Fine	16	1
	"	10.53.35	N., G., S.	> 1	Bluish-white	0.8	Very fine: 4s		1
	,,	10.54.24	N. N.	1	Bluish-white Bluish-white	0.8	Train None	10 5	1
	27	11. 1.48	N., G.	1 2	Bluish-white Bluish-white	0.2	Fine	5	
	**	11. 12. 22	N.	2 2	Bluish-white	0.7	Train	8	2
	"	11.18.40	N.	1	Bluish-white	ı	Fine	15	2
	22	11.22.40	G.	I	Bluish-white	4	Fine: 28		1
	**	11. 43. 35	N.	1	Bluish-white	I	Train	15	:
August	1 1	10, 55, 41	N.	2	Bhuish-white	0.2	Train	10	
	77	11. 8. 29	N. N.	2 2	Bluish-white Bluish-white	0.4	Train None	1 2	
	**	11. 13. 19	N.	2 I	Bluish-white Bluish-white	0.8	Fine	10	
	"	11. 25. 0	N.	3	Bluish-white	0.2		8	
		11.44. 8	N.	> 1	White	> 1	Fine		١.
	,,	11. 56. 48	11.	3		1			
	,.	11.57.44	N.	> 1	White	> 1	Fine Train	·:	.
		12. 0. 13 12. 3. 8	N. N.	3	Bluish-white Bluish-white	0.7	Slight	S 5	.
	,,	12. 3. 8	N.	2	Binish-white	0.2	Train	8	
	,,	12. 7.17	11.	3	White	1			,
	"	12. 8. 18	N.	Jupiter	Bluish-white	> 1	Very time	20	1.
	**	12.19.42	N.	2	Bluish-white	0.2	Train	5	.
		12. 22. 1	H.	2	White Philip phis	0.8			
	••	12. 26. 56	N.	> 1	Bluish-white Bluish-white	> 1	Very fine Slight		
	22	12. 28. 5 12. 35. 2	N.	3	Bluish-white	0.2	None Signt	7 8	
	**	12.37. 7	H.	+ 2	White	0.2	111711		-
	22	12.41.56	N.	3	Bluish-white	0.2	Train	9	
	**	12. 44. 31	N.	3	Bluish-white	0.2	Train	6	1
	,-	12. 45. 46	N.	3	Bluish-white	0.2	Train	4	1 4
	,,	12.40.56	II.	1	Bluish-white	2	Train	• •	1 4
	• •	12.47.42	N.	2	Bluish-white	0.2	Train Train	8	-
	**	12.51.56 12.54. ∈	11. N.	1	Bluish-white Bluish-white	2 I	Fine	10	
	**	12.54.	11.	2	White	1			
	22	13. 2. 6	i1.	1	Blue	2	Train	1	

August 8. Sky cloudy throughout. August 10. Sky very cloudy.

August 9. Sky generally cloudy. August 11. Sky cloudy till 10°, when breaks appeared; cloudless from $10^6, 35^\circ$, but misty at times.

No, for Refer- ence,	Path of Meteor through the Stars.
1	Appeared near β Ursæ Minoris, passed about 4° to right of Polaris.
2	From a little below β Cassiopeiæ, moved towards η Pegasi.
3	Brighter than the Moon, and seen in twilight, a very brilliant object. Moved from a point about 7° to right of and above the Moon, disappeared at a point about the same relative position to left of Moon, passing (at center of path) about 5° above the
4	From direction of Aldebaran fell on path parallel to line joining γ and β Orionis. [Moon
5	From near a Canum Venaticorum moved in direct line towards and disappeared a short distance from & Ursæ Majoris.
6	Passed about 7 to west of α Aquilæ, moving downwards parallel to a line joining α and θ Aquilæ.
7	From between λ and μ Herculis to a point 4° or 5° to the left of λ Serpentis. Passed exactly over α Herculis.
8 9 10	Passed between ε and ζ Ursæ Majoris and across α Canum Venaticorum. Passed about midway between η Ursæ Majoris and γ Boötis, moved on path parallel to line joining γ Boötis and Arcturus. From near θ Draconis to α Corona Borealis. Across ζ and λ Aquilæ.
12 13	Passed above θ Aquilæ to η Aquilæ. Passed across δ Cygni and γ Lyræ.
14 15	From about midway between α and β Ursæ Majoris moved directly towards α Canum Venaticorum. Appeared near α Capricorni, passed behind a cloud; re-appeared, and finally disappeared a short distance from the horizon.
16 17 18 19 20 21 22 23	Passed from a point about 2° below Polaris to β Ursæ Minoris. Passed a little above α Cassiopeiæ and moved at right angles to line joining α and β Cassiopeiæ towards λ Andromedæ. Passed across α and γ Cygni. Passed across α Cassiopeiæ from a point slightly below ρ Cassiopeiæ. Short path about γ to left of and parallel to line joining α and δ Persei, moving from direction of ε Cassiopeiæ. Passed across β and η Pegasi. Passed above α Delphini and across γ Aquilæ. From near α Cygni passed behind clouds, and disappeared near α Aquilæ. From a point near α Cephei passed across zenith, moving from direction of Perseus.
25 26 27 28 29 30 31 32 33 33 35 35 36 37 41 45 45 47 48 49 49	From direction of ε Cassiopeiæ passed midway between Polaris and γ Cephei. Passed midway between β and γ Andromedæ towards γ Pegasi. From direction of θ Cassiopeiæ passed between α and η Cassiopeiæ. Appeared about γ above α Andromedæ and moved towards α Pegasi. From direction of α Andromedæ passed between α and γ Pegasi to γ Piscium. From α Cygni disappeared about γ to left of β Cygni. Moved from direction of Polaris to ξ Draconis. Passed aeross α Andromedæ towards γ Pegasi. Passed almost midway between β Ursæ Minoris and α Draconis, moving from O Camelopardali. Passed almost midway between β Ursæ Minoris and α Draconis, moving from O Camelopardali. Passed between α Lyræ and γ Draconis to α Herculis. Short path near φ Draconis, moving from direction of τ Draconis. From β Trianguli passed between γ and α Trianguli. Passed between α Lyræ and γ Draconis to α Herculis. Short path near φ Draconis, moving from direction of τ Draconis. From α Persei disappeared near δ Persei. From α Cassiopeiæ passed aeross λ Andromedæ. Passed midway between β and γ Draconis, moving from ζ Draconis. From δ Cassiopeiæ disappeared near γ Cassiopeiæ. From δ Cassiopeiæ disappeared near γ Cassiopeiæ and β Cephei moved to β Cephei. From α point midway between β Cassiopeiæ and β Cephei moved to β Cephei. From α point midway between γ and β Draconis disappeared near ζ Herculis. Passed between β and γ Andromedæ and about δ below β Andromedæ. From α point midway between γ and β Draconis disappeared near ζ Herculis. Passed between β and γ Andromedæ and about δ below β Andromedæ. From direction of α Cephei to α Lyræ. From δ Pegasi disappeared near μ Draconis. From direction of α Cephei to α Lyræ.

Month and I 1877.	Эау.	Greenwich Mean Solar Time	(15462262	Apparent Size of Meteor in Star-Magnitudes	Colour of Meteor.	Duration of Meteor in Seconds of Time.	Appearance and Duration of Train.	Length of Meteor's Path in Degrees.	No. for Refer- ence.
August	11	h m s 13. g. 10 13. g. 56	N. II.	3	Bluish-white White	e:5	Slight Train	:	
		13. 18. 22	N.	2 1	Bluish-white	1 2:5	Train	5	3
	••	13.21. 0	11.	2	White	3			÷ 5
	,.	13. 23. 37 13. 29. 46	N.) i	Blui-h-white White	2°~	Train Fine: 2°	ð 10	5 6
		13. 32. 15	11.	2	Bluish-white	1	Train		- - - 8
	,,	13. 34. 3 3 13. 37. 35	N. II.	3 2	Bluish-white White	e*5 1	Slight None		8 9
August	1.4	9. 11. 23	N.	1	Bluish-white	2.8	Train	15	10
	••	9.11.40	N.	1	Bluish-white	1	Train		1 1
	,•	10, 30, 12	N.	3	Bluish-white	015	Slight	Š	1.2
August	15	8.555	N.	2	Bluish-white	c 5	Train	15	13
	,.	11	.1.	2	White	6.2	None	15	14
August	23	12. ±. c	N.	2	Bluish-white	• • •	Train	• •	15
August	31	10.24.	.1.	< Mars	Reddish	1.0		15	16
September	2	8. 14. 20	N.	2	Bluish-white	e:-	Train	10	17
September	5	10. 1.54	N.	2	Bluish-white	c	Train		18
October	1+	9. 10. 15	N.	Jupiter	White	> 1	Fiue train	12	10
October	29	11. 31.	N.	Mars	$Y_{ellowish}$	I	Train	1 2	20
November	3	12. 23.	N.	> 1	Bluish-white	0.8	Train	10	2.5
\mathbf{X} ovember	1.2	12. 4. 2	N. N.	Mars Mars	Bluish-white Bluish-white	> 1	Fine Fine	20	22 23
November		!		1		I		• •	
November	13	11.27.34	N. J.	> 1 1 \ 3	Bluish-white White	1 1.5	Train Selendid: 3*	20 15	24 25
	19	12. 8.17	J.	1	Blue	1	None	20	26
	,,	12. 22. 2	J.	2	White	2.8	None None		2.7 2.8
	,.	12. 31. 17	J.	1 1	Bluish-white Blue	. I	None		20
	,,	14. 18. 32	J.	Sirius	Blue	1.2	Fine: 15		29 30
	••	14. 19. 57	E., J.	1	Bluish	5.2	None	1.2	31
	,.	14.21. 2	E. E., J.	3	Yellowish Reddish	o15	None None	3	3: 33
	,,	14. 49. 12	E. J.	1	Bluish-white	0.3	None	10 10	34
	••	15. 2.12	Ĕ.	ı	Blue	2.3	None	10	35
November	14	10. 44. 45	Л.	Venus	$Y_{\rm ellowish}$	1.2	Faint		35
${\bf N} {\bf o} {\bf v} {\bf e} {\bf m} {\bf b} {\bf e} {\bf r}$	23	9. 12. 24	N.	> Venus	Yellowish	2	Fine	25 to 30	3-
December	ğ	8.11. c	J., H.	Venus \times 2	Bluish-white	3	Splendid: 27		38
	,.	8. 3g.	11.	Mars × 2	Red		Slight		3 9
	••	Ģ. Ģ.	S.	Jupiter	Bluish	1	None	• •	TO
December	1.2	10. 10. 3**	N.	2 2	Bluish-white Bluish-white	a:5	None Slight	3	÷1
	,,	11. 21. 8	Ν.	3	White	0°4 0°7	None	š	42 43
	11	11, 24, 15	N.	1	Yellowish	c+3	Train	5	44
	٠,	11.30.52	N.	2	White	2.8	Train	15	4 5
	**	11. 39. 32	N.	> 1	W_{FHG}		Fine	25	40

August 12 and 13. Sky cloudy. November 12. 12 \S^3 . Sky covered. November 14. A little cloud was occasionally present till 13 \S^3 : the sky then became overeast.

No. for Refer-	that of Medical for sugneth Stars
1 2 3 4 5 6 6 6 9	May of force the control apoint in tway between Polaris and y Cephel will passe innitingly between a and a Draconis. From a positive disciplinated hear that star. From P. Cimelogiardial disappeared near P. Camelogiardial disappeared near z Urse Majoris. M. O. Errenty towards z Urse Majoris from direction of a Urse Mooris. Passed a near it are we Polaris at a center of paths moving from direction of y "asso polar. From a Arbeits Propeared near a Mosca. Appeared between and z Certiand passed about z to the left of the latter star. From Polaris The present near a Urse Minoris.
1 D 1 I 1 2	Possed between A falls and a Ophiucht and between a Serpentis at \mathbb{F}_2 Ophiuchli. Presed near to \mathbb{F}_2 and \mathbb{F}_3 Herculis. Passed between \mathbb{F}_2 at \mathbb{F}_3 It Andreweeks moving from upper part of Persons.
13	From a point between and a Ophiuchi passed about 2 to right of \$\epsilon\$ Ophiuchi. Passed about 7 the very Majoris and disappeared near y Boltis.
15	From r Aurign passed between r and f Aurign.
16	Appeared about 7 below Polaris and disappeared about 12 above 2 Ursæ Majoris.
1-	From near a Lyre passed about 5 to left of a Herculi
13	Passed a little below a Andromed# to a Pegasi.
19	From Frection is Polaris passed between a and a Ursæ Majoris towards γ Ursæ Majoris.
20	Posted in Iway between 3 and 6 Uror Majoris and between γ and χ Urse Majoris.
2 I	From Aretis: A Perasi.
22 23	Passed between 2 and 3 Ursæ Majoris and between 2 Draconis and 5 Ursæ Minoris. Passed heavy milway between 4 Ursæ Majoris and 5 Ursæ Minoris and near 2 Draconis, moving newards 4 Draconis.
244 255 266 277 2 2 3 3 3 4 3 5 3 3 4 3 5 5	Passed across 5 and . Perasi, path parallel to line joining a Andromedæ and a Pegasi. Passed from direction of Castor across 55 Lyncis. From Policy to a Lecule. From Policy to Lecule. From Policy to bear 45 Aurigas to near 51 Lyncis. From Policy to bear 45 Carolines, wavy path. From 5 Gentin curn to foreigns. Passed from Regulas to Hydras. Passed from 18 tright of 1 Ursas Majoris and moved towards a Ursas Majoris. Passed accust 37 to right of 1 Ursas Majoris in direction of Regulas, moved to a Ursas Majoris. Passed 1 to cright of 1 Ursas Majoris moving towards Regulas. Passed 1 to cright of 1 Ursas Majoris, but rather neares to 2 moved in direction of 5 Aurigas. Passed between 1 and 3 Ursas Majoris, but rather neares to 2 moved in direction of 5 Aurigas.
35	From C ti towards ; Pegash.
3-	From the Makeris possed resulty in Iway to tween a and 5 Ursie Majoris. Line of Light nearly parallel to line joining to be majoris.
5 3, C	From two Dimenus passed almost midway between a Draconis and Polanis, and disappeared a little between Lyres. Mr. B. Dennison also observed this meteor, and described it as mappearing a cut 6 of release Wedaris, and despearing about 1 to the left of and just below a Lyres. Appeared near a Urse Majoris, bleeding a line joining 5 and 6 Urse Majoris, and passed nearly resultably deviawards inclining From two een could Ordenis, disappeared a little to right of 2 Orionis. To little to the left.
41 42 43 45 45 45 45	Passed across the Pleia less incolne from direction of 5 Tauri. Appeared a little tealwhy Ursse Majoris, moved directly towards and disappeared hear a tunum Venathed in Passed across to Eriland at right angles to like joining to and a Eridand. Moving that it is for his passed across a Lepecis. From Admirst to 5 Or his passed across a Lepecis. From Admirst to 5 Or his passed across a Lepecis. Passed midway between a Arietis and a Cetil moving from direction of the Pichales, and disappeared about its to left it Mars.

Month and Day, 1877.	Greenwich Mean Solar Time.	Observer.	Apparent Size of Meteor in Star-Magnitudes.	Colour of Meteor.	Duration of Meteor in Seconds of Time.	Appearance and Duration of Train.	Length of Meteor's Path in Degrees.	No. fe Refe ence
	h m s						۰	
De cember 1 :	11.44. 5	, N.	3	White	0.4	None	10	1
,	11 18 30	N.	I	White	0.4		12	2
,		N.	2	White	0.3	\mathbf{N} one	3	. 3
,	11 56 16	N.	3	White	0.2	None	8	4
December 3:	12. 4.20	N.	4	Bluish-white	0.4	None	10	

No. for Refer- ence.	Path of Meteor through the Stars.
1 2 3 4 5	From near 44 Eridani to 12 Tauri. Path nearly horizontal. Very rapid motion. From δ Ceti towards β Ceti. Rapid motion. From about 2° to left of δ Tauri to Aldebaran. From between ζ and δ Aurigæ passed between δ and δ Persei. From a point about 2° below η Ursæ Majoris to 8 Cannm Venaticorum.

ROYAL OBSERVATORY, GREENWICH.

APPENDIX

TO THE

MAGNETICAL AND METEOROLOGICAL OBSERVATIONS,

1877.

MEAN TEMPERATURE OF THE AIR AT EVERY HOUR OF THE DAY, IN EACH YEAR FROM 1849 TO 1868.

It having been suggested that a table showing the Mean Temperature of the Air at every hour of the day, in each year from 1849 to 1868, would be a desirable addition to the tables contained in the "Reduction of Greenwich Meteorological Observations, 1847 to 1873," the annexed table, giving such particulars, has since been prepared. It was formed by re-arranging the numbers given in Tables XXXVIII. To XLIX. of the above-mentioned work, so as to bring together all the months in each individual year, and then taking the means of the monthly values at every hour of the day throughout each year. The table is analogous, for Temperature, to Table XIX. for the Barometer, included in the same work.

MEAN of the MEAN MONTHLY VALUES of the TEMPERATURE OF THE

						,							
Year.	Aggregate Number of Days employed.	Midnight.	ı ^ь a.m.	2 ' a.iu.	31, a.m.	4 ^h a.m.	5 ^h a.m.	6 ^L a.m.	7 ⁵ a.m.	8 ^h a.m.	9 ^h a.m.	10 ⁵ a.m.	iiba.m.
-0		0	0	c	0		0	:	0			c 0.5	۰
1849	309	47 '05	46.77	46.20	46.52	46.00	46.12	46.82	48.08	49.53	21.39	52.85	54,00
1850	357	46.14	45.83	45.2	45.53	45.02	45.12	45.47	46.92	48.46	20.51	51.97	53.34
1851	364	46.00	45.63	45.52	45.06	44.88	11.90	45.20	46.48	48.34	20.10	51.83	53.31
1852	339	47.17	46.89	46.22	46.36	46.54	46.58	+6.46	47 92	49.39	51.36	53.20	54.28
1953	315	44.22	44.31	44.09	43.86	43.68	43.74	+4.35	45.20	46.87	48.43	49.84	50.90
					}								
1854	352	45.55	45.13	44.29	44.47	44.54	++*27	+4.46	45.92	47.64	49.94	21.90	53.53
1855	336	43.85	43.25	43.22	42.96	42.85	42.82	43.58	+4'+2	46.03	47.01	49.77	21.10
1 856	346	46.03	45.72	45.38	45.00	44.82	44.83	45.34	46.26	47.93	49.88	51.55	52.81
1857	341	47.66	47:30	46.98	46.67	46.48	46.49	47.04	48.40	50.16	52.18	54.01	55.52
1858	326	45.88	45.42	45.04	44.78	44.59	++.72	45.37	46.20	48.30	50.25	52.16	53.76
1859	325	47.37	47.12	46.79	₄ 6·5 ₇	46.40	46.20	47.10	48.13	49.63	51.23	53.29	54.86
1860	331	44.69	44'42	44.14	43.97	43.78	43.88	44.31	45.34	46.57	48.12	49.67	20.81
1861	297	46.65	46.58	46.07	45.82	45.69	45.86	46.42	47.52	48.99	50.74	52.58	53.75
1862	283	46.31	46.07	45.84	45.67	45.24	₄ 5·65	46.17	+7.06	48.35	49.78	51.15	52.33
1863	330	47.28	46.87	46.52	46.28	46.16	46.52	46.93	48.30	49.70	51.54	53.07	54.21
1864	347	45.45	45.02	44.73	11.10	44.30	44.53	44.80	46.01	47:70	49.24	51.27	52.93
1865	358	47.16	46.76	46.39	46.14	45.00	45.87	46.28	47.87	49.30	51.33	53.41	55.30
1866	356	47.20	46.84	46.61	46.35	46.10	46:30	46.00	48.09	49.49	51.18	52.81	54.15
1867	346	45.60	45.30	45.06	44.83	44.64	44.71	45.37	46.65	47.94	49.24	51.08	52.42
1868	360	48.08	47.62	47.28	47.02	46.79	46.93	47.68	49.34	50.46	53.02	54.94	56.20
					''	1 /3'		17	12 - [
Means	6718	46.58	45.04	45.64	45.38	45.51	45.58	45.86	47.06	48.56	50.40	52.10	53.2
				' '		1= ==	1 2		17				

men

In the month of September 1862, the photographic records were not sufficiently complete to be used. The values given

AIR at every Hour of the DAY, for each YEAR from 1849 to 1868.

Noon.	ւհ թ.ա.	2h p.m.	3 ^h p.m.	4 ^h p.m.	5 ^h p.m.	6 ^h p.m.	7 ^h p.m.	8 ^h p.m.	9 ^b p.m.	10h p.m.	тть р.т.	Yearly Means.	Year.
		0			:	•			٥				
55.25	55.72	55.49	55.28	54.79	53.42	52.05	50.66	49.40	48.46	47.89	47.41	50.33	1849
54.42	55.00	55.5	55.03	54.23	52.99	51.52	50'12	48*83	47.86	47.16	46.63	49.53	1850
54.46	55.13	55125	54.83	53.92	52.67	51.33	49.83	48.60	47.65	46.97	46.42	49.36	1851
55.81	56.54	56·6 ₇	56.58	55*37	53.96	52.48	50198	49.69	48.71	48.12	47.56	50.62	1852
51.99	52.56	52.78	52.27	51.52	50°42	49.09	47.82	46.40	45.83	45.30	44.74	47.54	1853
54.84	55.63	55.88	55.54	54.42	53.05	51.21	49.87	48.48	47.40	46.64	46.10	49.53	1854
52.33	52.97	53.10	52.58	51.40	50.55	49.17	47.64	46·35	45.31	44.62	44.16	47.18	1855
54.06	54.59	54.84	54.41	53.44	52.19	50.92	49.56	48.42	47.53	47.03	46·53	49.14	1856
56.76	57.38	57.57	57.20	26.18	54.43	53.55	51.4	50.38	49.37	48.60	47.97	51.54	1857
55.09	55.78	55.94	55.21	54.43	53.03	51.63	50.13	48.82	47.73	46.89	46.58	49.50	1858
										İ		}	
56·09	56.81	57.02	56.68	55.72	54.34	52.87	51.43	49.97	48.92	48.33	47.79	50.89	1859
52.08	52.64	52.75	52.21	51.28	50.37	49.23	47.95	46.48	45.93	45.38	44.98	47.28	1860
55'15	55.72	55*93	55.67	54.61	53.32	51.96	50.49	49.51	48.55	47.56	46.96	50.04	1861
53.51	53.92	54.07	53.83	53.08	52.11	51.02	49.43	48.66	47.77	47.17	46.67	49.23	1862
55.94	56.48	56·75	56.43	55.58	53,81	52.46	51.13	49.92	48.86	48.11	47.53	50.67	1863
										1	ļ		
54.38	54.89	55.14	54.82	53.82	52.62	51.19	49.58	48.58	47:36	46.40	46.04	48.96	1864
56.58	57.24	57.43	56.98	56.06	54.89	53.38	51.57	30·08	49.00	48.31	47.67	50.88	1865
55.20	55.82	55*85	55.20	54.67	53.72	52.37	50.86	49.54	48.28	48.03	47.43	50.40	1866
53.21	54.03	54.18	53.82	53.07	51.99	50.66	49.24	48.06	47.12	46.2	46.00	48.81	1867
57.86	58.30	58.46	58.17	57.23	56.03	54.36	52.41	51.56	50.04	49.56	48.66	52.03	1868
54.77	55.36	55.23	55.18	54.56	53.01	51.62	20.12	48.87	47.88	47.33	46.68	49.66	
		Mary									<u> </u>	<u> </u>	

May

n the above table for the year 1862 are the means of the monthly values for the remaining eleven months of the year.

E-0 		
17.53 19.13 2.13		
	·	
20 P		
Acro to		
Markey I		
(10) (10) (10) (10) (10) (10) (10) (10)		
Man Comment of the Co		
8. 12 6. 14 6. 14		
a die		
Market St. Comment of the Comment of		
And the second s		
And the state of t		
to the state of th		
An Angelon Comment of the Comment of		
70 4.1 77 7. (-)		
The state of the s		
13 - 44 - 47 - 47 - 47 - 47 - 47 - 47 - 4		
MT. 2. 4 White to the control of th		
State and the state of the stat		
9 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
The same of the sa		
(All wife) I was the second of the second o		
15.0 mg / 15.0 m		
\$3.77 \(\triangle \)		
数はない なななな		

