

### Chapter 1

## Boolean Logic

These slides support chapter 1 of the book

The Elements of Computing Systems

(1st and 2nd editions)

By Noam Nisan and Shimon Schocken

MIT Press

## Chapter 1: Boolean logic

#### **Theory**

- Basic concepts
- Boolean algebra
- Boolean functions
- Nand

#### **Practice**

- Logic gates
- HDL
- Hardware simulation
- Multi-bit buses

#### Project 1

- Introduction
- Chips
- Guidelines

## Chapter 1: Boolean logic

#### **Theory**



- Boolean algebra
- Boolean functions
- Nand

#### **Practice**

- Logic gates
- HDL
- Hardware simulation
- Multi-bit buses

#### Project 1

- Introduction
- Chips
- Guidelines







off no false 0



on yes true 1

• Boolean / binary values: 0, 1

<u>George Boole</u> 1815 - 1864

• Boolean / binary variable: holds a 0, or a 1

 $b_0$ 



1 binary variable: 2 possible states



 $b_1$   $b_0$ 













- 1 binary variable: 2 possible states
- 2 binary variables: 4 possible states



- 1 binary variable: 2 possible states
- 2 binary variables: 4 possible states
- 3 binary variables: 8 possible states

- $\dots b_2 b_1 b_0$ 

  - P P

- 1 binary variable: 2 possible states
- 2 binary variables: 4 possible states
- 3 binary variables: 8 possible states

• • •

 $\dots b_2 b_1$ 

- 1 binary variable: 2 possible states
- 2 binary variables: 4 possible states
- 3 binary variables: 8 possible states

. . .

Question: How many different states can be represented by *N* binary variables?

 $\dots b_2 b_1 b_0$ 

















- 1 binary variable: 2 possible states
- 2 binary variables: 4 possible states
- 3 binary variables: 8 possible states

. . .

Question: How many different states can be represented by *N* binary variables?

Answer:  $2^N$ 

| x | У   | f   |
|---|-----|-----|
|   |     |     |
|   |     | (1) |
|   | (w) |     |
|   |     |     |

| x | У | f |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

| X | y | And |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 0   |
| 1 | 0 | 0   |
| 1 | 1 | 1   |

$$\begin{array}{c} x \\ y \\ \end{array} \qquad \begin{array}{c} \operatorname{And}(x,y) \\ \end{array}$$

And(x,y) = 
$$\begin{cases} 1 & \text{when } x == 1 \text{ and } y == 1 \\ 0 & \text{otherwise} \end{cases}$$

#### Boolean function (like And(x,y)):

A function that operates on boolean variables, and returns a boolean value.

#### Boolean operator (like *x* And *y*):

A simple boolean function that operates on a few boolean variables, called *operands*.

| $\boldsymbol{\mathcal{X}}$ | And | y |
|----------------------------|-----|---|
|----------------------------|-----|---|

| x | у | And |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 0   |
| 1 | 0 | 0   |
| 1 | 1 | 1   |

x Or y

| x | у | Or |
|---|---|----|
| 0 | 0 | 0  |
| 0 | 1 | 1  |
| 1 | 0 | 1  |
| 1 | 1 | 1  |

Not(x)

| x | Not |
|---|-----|
| 0 | 1   |
| 1 | 0   |

x Nand y

| X | У | Nand |
|---|---|------|
| 0 | 0 | 1    |
| 0 | 1 | 1    |
| 1 | 0 | 1    |
| 1 | 1 | 0    |

| x | У | Xor |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 1   |
| 1 | 0 | 1   |
| 1 | 1 | 0   |

| x | у | f     |
|---|---|-------|
| 0 | 0 | $v_1$ |
| 0 | 1 | $v_2$ |
| 1 | 0 | $v_3$ |
| 1 | 1 | $v_4$ |

| x Ar | $\operatorname{id} y$ |
|------|-----------------------|
|------|-----------------------|

| x | У | And |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 0   |
| 1 | 0 | 0   |
| 1 | 1 | 1   |

| x | Or | y |  |
|---|----|---|--|
|   |    |   |  |

| x | у | Or |
|---|---|----|
| 0 | 0 | 0  |
| 0 | 1 | 1  |
| 1 | 0 | 1  |
| 1 | 1 | 1  |

### **Question:**

How many Boolean functions x f y exist over two binary (2-valued) variables?

#### Answer: 16

N binary variables span  $2^{2^N}$  Boolean functions.

x Nand y

| X | У | Nand |
|---|---|------|
| 0 | 0 | 1    |
| 0 | 1 | 1    |
| 1 | 0 | 1    |
| 1 | 1 | 0    |

| x | У | Xor |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 1   |
| 1 | 0 | 1   |
| 1 | 1 | 0   |

| x | у | f     |
|---|---|-------|
| 0 | 0 | $v_1$ |
| 0 | 1 | $v_2$ |
| 1 | 0 | $v_3$ |
| 1 | 1 | $v_4$ |

x And y

| x | У | And |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 0   |
| 1 | 0 | 0   |
| 1 | 1 | 1   |

 $x \operatorname{Or} y$ 

| x | У | Or |
|---|---|----|
| 0 | 0 | 0  |
| 0 | 1 | 1  |
| 1 | 0 | 1  |
| 1 | 1 | 1  |

Not(x)

| У | Not |
|---|-----|
| 0 | 1   |
| 1 | 0   |

### Boolean function evaluation (example):

Not(x Or(y And z))

Evaluate this function for, say,

$$x = 0, y = 1, z = 1$$

$$Not(o Or (1 And 1)) =$$

$$Not(\emptyset Or 1) =$$

$$Not(1) =$$

0

## Chapter 1: Boolean logic

#### **Theory**



Basic concepts



Boolean algebra

- Boolean functions
- Nand

#### Practice

- Logic gates
- HDL
- Hardware simulation
- Multi-bit buses

#### Project 1

- Introduction
- Chips
- Guidelines

### Some Boolean identities

Commutative: x And y = y And x

$$x \text{ Or } y = y \text{ Or } x$$

Associative: x And (y And z) = (x And y) And z

x Or (y Or z) = (x Or y) Or z

Distributive: x And (y Or z) = (x And y) Or (x And z)

x Or (y And z)) = (x Or y) And (x Or z)

De Morgan: Not(x And y) = Not(x) Or Not(y)

Not(x Or y) = Not(x) And Not(y)

Idempotent: x And x = x

x Or x = x

Double negation: Not(Not(x)) = x

### Some Boolean identities

Commutative: x And y = y And x

x Or y = y Or x

Associative: x And (y And z) = (x And y) And z

x Or (y Or z) = (x Or y) Or z

Distributive: x And (y Or z) = (x And y) Or (x And z)

x Or (y And z)) = (x Or y) And (x Or z)

De Morgan: Not(x And y) = Not(x) Or Not(y)

Not(x Or y) = Not(x) And Not(y)

Idempotent: x And x = x

x Or x = x

Double negation: Not(Not(x)) = x

All these identities can be

easily proved from the function definitions of

And, Or, Not

For example, let's prove this identity

#### <u>Prove</u>

Not(x And y) = Not(x) Or Not(y)

f(x,y) = Not(x And y)

| x | У | f |
|---|---|---|
| 0 | 0 |   |
| 0 | 1 |   |
| 1 | 0 |   |
| 1 | 1 |   |

g(x,y) = Not(x) Or Not(y)

| X | У | g |
|---|---|---|
| 0 | 0 |   |
| 0 | 1 |   |
| 1 | 0 |   |
| 1 | 1 |   |

<u>Proof:</u> Fill in the right column in both truth tables.

If f = g, the identity is proved.

#### <u>Prove</u>

Not(x And y) = Not(x) Or Not(y)

| x | У | f |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

f(x,y) = Not(x And y) g(x,y) = Not(x) Or Not(y)

| X | у | g |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |

<u>Proof:</u> Fill in the right column in both truth tables.

If f = g, the identity is proved.

Commutative: x And y = y And x

$$x \text{ Or } y = y \text{ Or } x$$

Associative: x And (y And z) = (x And y) And z

x Or (y Or z) = (x Or y) Or z

Substitution:

Distributive: x And (y Or z) = (x And y) Or (x And z)

x Or (y And z)) = (x Or y) And (x Or z)

In any such identity, x and y

can be substituted with any boolean function

De Morgan: Not(x And y) = Not(x) Or Not(y)

Not(x Or y) = Not(x) And Not(y)

Not(Not(a)) = a

x And x = xIdempotent:

x Or x = x

**Substitution examples:** 

Double negation: Not(Not(x)) = x

Not(Not(u Or v)) = u Or v

Etc.

Commutative: 
$$x$$
 And  $y = y$  And  $x$ 

$$x \text{ Or } y = y \text{ Or } x$$

Associative: 
$$x \text{ And } (y \text{ And } z) = (x \text{ And } y) \text{ And } z$$

$$x \operatorname{Or} (y \operatorname{Or} z) = (x \operatorname{Or} y) \operatorname{Or} z$$

Distributive: 
$$x$$
 And  $(y$  Or  $z) = (x$  And  $y)$  Or  $(x$  And  $z)$ 

$$x \text{ Or } (y \text{ And } z)) = (x \text{ Or } y) \text{ And } (x \text{ Or } z)$$

De Morgan: 
$$Not(x \text{ And } y) = Not(x) \text{ Or } Not(y)$$

$$Not(x \text{ Or } y) = Not(x) \text{ And } Not(y)$$

Idempotent: 
$$x \text{ And } x = x$$

$$x \text{ Or } x = x$$

Double negation: Not(Not(x)) = x

Commutative: x And y = y And x

$$x \text{ Or } y = y \text{ Or } x$$

Associative: x And (y And z) = (x And y) And z

x Or (y Or z) = (x Or y) Or z

Distributive: x And (y Or z) = (x And y) Or (x And z)

x Or (y And z)) = (x Or y) And (x Or z)

De Morgan: Not(x And y) = Not(x) Or Not(y)

Not(x Or y) = Not(x) And Not(y)

Idempotent: x And x = x

x Or x = x

Double negation: Not(Not(x)) = x

<u>Task</u>: <u>Simplify this function</u> (example):

Not(Not(x) And Not(x Or y))



Commutative: x And y = y And x

x Or y = y Or x

Associative: x And (y And z) = (x And y) And z

x Or (y Or z) = (x Or y) Or z

Distributive: x And (y Or z) = (x And y) Or (x And z)

x Or (y And z)) = (x Or y) And (x Or z)

De Morgan:  $\operatorname{Not}(x \operatorname{And} y) = \operatorname{Not}(x) \operatorname{Or} \operatorname{Not}(y)$ 

Not(x Or y) = Not(x) And Not(y)

Idempotent: x And x = x

x Or x = x

Double negation: Not(Not(x)) = x

<u>Task</u>: <u>Simplify this function</u> (example):

Not(Not(x) And Not(x Or y)) =

By De Morgan's rule:

Not(Not(x) And (Not(x) And Not(y)))



Commutative: x And y = y And x

x Or y = y Or x

Associative: x And (y And z) = (x And y) And z

x Or (y Or z) = (x Or y) Or z

Distributive: x And (y Or z) = (x And y) Or (x And z)

 $x \operatorname{Or} (y \operatorname{And} z)) = (x \operatorname{Or} y) \operatorname{And} (x \operatorname{Or} z)$ 

De Morgan:  $\operatorname{Not}(x \text{ And } y) = \operatorname{Not}(x) \text{ Or } \operatorname{Not}(y)$ 

Not(x Or y) = Not(x) And Not(y)

Idempotent:  $\int x \operatorname{And} x = x$ 

x Or x = x

Double negation: Not(Not(x)) = x

<u>Task</u>: <u>Simplify this function</u> (example):

Not(Not(x) And Not(x Or y)) =

By De Morgan's rule:

Not(Not(x) And (Not(x) And Not(y))) =

By the associative rule:

Not(Not(x) And Not(x)) And Not(y)) =



Commutative: x And y = y And x

x Or y = y Or x

Associative: x And (y And z) = (x And y) And z

x Or (y Or z) = (x Or y) Or z

Distributive: x And (y Or z) = (x And y) Or (x And z)

 $x \operatorname{Or} (y \operatorname{And} z)) = (x \operatorname{Or} y) \operatorname{And} (x \operatorname{Or} z)$ 

De Morgan: Not(x And y) = Not(x) Or Not(y)

Not(x Or y) = Not(x) And Not(y)

Idempotent: x And x = x

x Or x = x

Double negation: Not(Not(x)) = x

<u>Task</u>: <u>Simplify this function</u> (example):

Not(Not(x) And Not(x Or y)) =

By De Morgan's rule:

Not(Not(x) And (Not(x) And Not(y))) =

By the associative rule:

Not((Not(x) And Not(x)) And Not(y)) =

By the idempotent rule:

Not(Not(x) And Not(y))



Commutative: x And y = y And x

x Or y = y Or x

Associative: x And (y And z) = (x And y) And z

x Or (y Or z) = (x Or y) Or z

Distributive: x And (y Or z) = (x And y) Or (x And z)

 $x \operatorname{Or} (y \operatorname{And} z)) = (x \operatorname{Or} y) \operatorname{And} (x \operatorname{Or} z)$ 

De Morgan: Not(x And y) = Not(x) Or Not(y)

Not(x Or y) = Not(x) And Not(y)

Idempotent: x And x = x

x Or x = x

Double negation: Not(Not(x)) = x

<u>Task</u>: <u>Simplify this function</u> (example):

Not(Not(x) And Not(x Or y)) =

By De Morgan's rule:

Not(Not(x) And (Not(x) And Not(y))) =

By the associative rule:

Not((Not(x) And Not(x)) And Not(y)) =

By the idempotent rule:

Not(Not(x) And Not(y)) =

By De Morgan's rule:

Not(Not(x Or y))



Commutative: x And y = y And x

x Or y = y Or x

Associative: x And (y And z) = (x And y) And z

x Or (y Or z) = (x Or y) Or z

Distributive: x And (y Or z) = (x And y) Or (x And z)

x Or (y And z)) = (x Or y) And (x Or z)

De Morgan: Not(x And y) = Not(x) Or Not(y)

Not(x Or y) = Not(x) And Not(y)

Idempotent: x And x = x

x Or x = x

Double negation: Not(Not(x)) = x

<u>Task</u>: <u>Simplify this function</u> (example):

Not(Not(x) And Not(x Or y)) =

By De Morgan's rule:

Not(Not(x) And (Not(x) And Not(y))) =

By the associative rule:

Not((Not(x) And Not(x)) And Not(y)) =

By the idempotent rule:

Not(Not(x) And Not(y)) =

By De Morgan's rule:

Not(Not(x Or y)) =

By double negation:

 $x \operatorname{Or} y$ 

# Observations about simplifying Boolean functions:

- Can lead to significant optimization
- Based on intuition, experience, and luck
- Can be assisted by some tools
- But, in general: *NP*-hard.

<u>Task</u>: <u>Simplify this function</u> (example):

Not(Not(x) And Not(x Or y)) =

By De Morgan's rule:

Not(Not(x) And (Not(x) And Not(y))) =

By the associative rule:

Not((Not(x) And Not(x)) And Not(y)) =

By the idempotent rule:

Not(Not(x) And Not(y)) =

By De Morgan's rule:

Not(Not(x Or y)) =

By double negation:

 $x \operatorname{Or} y$ 

Commutative: (x And y) = (y And x)

(x Or y) = (y Or x)

Associative: (x And (y And z)) = ((x And y) And z)

 $(x \operatorname{Or} (y \operatorname{Or} z)) = ((x \operatorname{Or} y) \operatorname{Or} z)$ 

Distributive: (x And (y Or z)) = (x And y) Or (x And z)

(x Or (y And z)) = (x Or y) And (x Or z)

De Morgan: Not(x And y) = Not(x) Or Not(y)

Not(x Or y) = Not(x) And Not(y)

Idempotent: (x And x) = x

 $(x \operatorname{Or} x) = x$ 

Double negation: Not(Not(x)) = x

Another example: Prove that

x Or y = Not(Not(x) And Not(y))

Commutative: (x And y) = (y And x)

(x Or y) = (y Or x)

Associative: (x And (y And z)) = ((x And y) And z)

 $(x \operatorname{Or} (y \operatorname{Or} z)) = ((x \operatorname{Or} y) \operatorname{Or} z)$ 

Distributive: (x And (y Or z)) = (x And y) Or (x And z)

(x Or (y And z)) = (x Or y) And (x Or z)

De Morgan:  $\operatorname{Not}(x \text{ And } y) = \operatorname{Not}(x) \text{ Or } \operatorname{Not}(y)$ 

Not(x Or y) = Not(x) And Not(y)

Idempotent: (x And x) = x

(x Or x) = x

Double negation: Not(Not(x)) = x

Another example: Prove that

x Or y = Not(Not(x) And Not(y))

De Morgan:

Not(x Or y) = Not(x) And Not(y)

Negate both sides:

Not(Not(x Or y)) = Not(Not(x) And Not(y))

By double negation:

x Or y = Not(Not(x) And Not(y))

#### **Implication**

- We don't really "need" Or
- We will soon revisit this reduction

## Chapter 1: Boolean logic

#### **Theory**







• Nand

#### **Practice**

- Logic gates
- HDL
- Hardware simulation
- Multi-bit buses

#### Project 1

- Introduction
- Chips
- Guidelines

#### Formula (example)

$$f(x, y, z) = (x \text{ And } (\text{Not}(y) \text{ Or } z)) \text{ And } y$$

#### Truth table

| x | У | Z | f |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

A Boolean function can be expressed using a *formula*, or a *truth table* 

The two representations are equivalent

Question: Can we construct each representation from the other one?

### **Formula**

f(x, y, z) = (x And (Not(y) Or z)) And y



### Truth table

| x | У | Z | f |
|---|---|---|---|
| 0 | 0 | 0 |   |
| 0 | 0 | 1 |   |
| 0 | 1 | 0 |   |
| 0 | 1 | 1 |   |
| 1 | 0 | 0 |   |
| 1 | 0 | 1 |   |
| 1 | 1 | 0 |   |
| 1 | 1 | 1 |   |

### **Formula**

f(x, y, z) = (x And (Not(y) Or z)) And y



### Truth table

| X | У | Z | f |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 |   |
| 0 | 1 | 1 |   |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 |   |
| 1 | 1 | 1 |   |

When y = 0, f must be 0

### **Formula**

$$f(x, y, z) = (x \text{ And } (\text{Not}(y) \text{ Or } z)) \text{ And } y$$



### Truth table

| X | у | Z | f |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 |   |
| 1 | 1 | 1 |   |

When y = 0, f must be 0

When x = 0, f must be 0

### **Formula**

$$f(x, y, z) = (x \text{ And } (\text{Not}(y) \text{ Or } z)) \text{ And } y$$



### Truth table

| X | y | Z | f |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

When y = 0, f must be 0

When x = 0, f must be 0

(1 And (Not(1) Or 0)) And 1 = 1

(1 And (Not(1) Or 1)) And 1 = 1

### **Formula**

$$f(x, y, z) = (x \text{ And } (\text{Not}(y) \text{ Or } z)) \text{ And } y$$



### Truth table

| X | У | Z | f |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

#### Lemma

Given a Boolean function expressed as a formula, we can always construct from it its truth table.

Proof: Evaluate the function over all the possible values of its variables (which is *the* definition of a truth table)

# Boolean function synthesis: Truth table formula

### **Formula**

f(x, y, z) = (x And (Not(y) Or z)) And y



### Truth table

| X | У | Z | f |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

Can we also go the other way around, for any given truth table?

# Boolean function synthesis: Truth table formula

| x | У | Z | f |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

Goal: Synthesize a formula which is equivalent to this truth table



1. Focus on the rows where f = 1



Not(x) And Not(y) And Not(z)

- 1. Focus on the rows where f = 1
- 2. For each such row i, define a function  $f_i$  which equals 1 in row i and 0 elsewhere. Define  $f_i$  to be a conjunction of all of f's variables or their negations, as the variable is 1 or 0 in the i'th row



Not(x) And Not(y) And Not(z)

Not(x) And y And Not(z)

- 1. Focus on the rows where f = 1
- 2. For each such row i, define a function  $f_i$  which equals 1 in row i and 0 elsewhere. Define  $f_i$  to be a conjunction of all of f's variables or their negations, as the variable is 1 or 0 in the i'th row



- 1. Focus on the rows where f = 1
- 2. For each such row i, define a function  $f_i$  which equals 1 in row i and 0 elsewhere. Define  $f_i$  to be a conjunction of all of f's variables or their negations, as the variable is 1 or 0 in the i'th row



- 1. Focus on the rows where f = 1
- 2. For each such row i, define a function  $f_i$  which equals 1 in row i and 0 elsewhere. Define  $f_i$  to be a conjunction of all of f's variables or their negations, as the variable is 1 or 0 in the i'th row
- 3. Define *f* to be the disjunction of all these conjunctions



- 1. Focus on the rows where f = 1
- 2. For each such row i, define a function  $f_i$  which equals 1 in row i and 0 elsewhere. Define  $f_i$  to be a conjunction of all of f's variables or their negations, as the variable is 1 or 0 in the i'th row
- 3. Define f to be the disjunction of all these conjunctions

| x | y | Z | f |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

#### Lemma

Given a boolean function expressed as a truth table, we can always synthesize a formula that expresses that function

Proof: Use the truth table to construct the DNF (which is a formula)

### **Theorem**

Any boolean function can be represented as a formula containing only the operators And, Or, Not

Proof: Construct the function's truth table, then use the truth table to construct the DNF (which, by definition, uses only And, Or, Not).

# Chapter 1: Boolean logic

#### **Theory**









#### Practice

- Logic gates
- HDL
- Hardware simulation
- Multi-bit buses

### Project 1

- Introduction
- Chips
- Guidelines

## The expressive power of Nand

x Nand y

| х | у | Nand |
|---|---|------|
| 0 | 0 | 1    |
| 0 | 1 | 1    |
| 1 | 0 | 1    |
| 1 | 1 | 0    |

x And y

| x | у | And |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 0   |
| 1 | 0 | 0   |
| 1 | 1 | 1   |

$$x \operatorname{Or} y$$

| x | у | Or |
|---|---|----|
| 0 | 0 | 0  |
| 0 | 1 | 1  |
| 1 | 0 | 1  |
| 1 | 1 | 1  |

Not(x)

| х | x Not |  |
|---|-------|--|
| 0 | 1     |  |
| 1 | 0     |  |

### **Observations**

- Not(x) = x Nand x
- x And y = Not(x Nand y)
- x Or y = Not(Not(x) And Not(y))(De Morgan)

#### In other words:

- Not can be realized using Nand
- And can be realized using Nand
- Or can be realized using Nand

<u>Theorem:</u> Any Boolean function can be realized using only Nand.

Proof: Any Boolean function can be expressed using Not, And, and Or (DNF). Combined with the above observations, we get the theorem.

# The expressive power of Nand

Theorem: Any Boolean function can be realized using only Nand.

<u>Conclusion:</u> Any computer can be built from Nand gates only:



OK, so we *can* build a computer from Nand gates only.

But how can we actually do it?

That's what the Nand to Tetris course is all about!

# Chapter 1: Boolean logic

#### **Theory**

• Basic concepts



- Boolean algebra
- Boolean functions
- Nand

### **Practice**

- Logic gates
- HDL
- Hardware simulation
- Multi-bit buses

### Project 1

- Introduction
- Chips
- Guidelines

# Chapter 1: Boolean logic

### **Theory**

- Basic concepts
- Boolean algebra
- Boolean functions
- Nand

### **Practice**



Logic gates

- HDL
- Hardware simulation
- Multi-bit buses

### Project 1

- Introduction
- Chips
- Guidelines

## Logic gates



• Composite gates (Mux, Adder, ...)

## Elementary gates



if (a==1 and b==1)
then out=0 else out=1



if (a==1 or b==1)
then out=1 else out=0



if (a==1 and b==1)
then out=1 else out=0



then out=1 else out=0

### Why focus on these particular gates?

- Because either {Nand} or {And, Or, Not} (as well as other subsets) can be used to span any given Boolean function
- Because they have efficient hardware implementations.

## Elementary gates





Circuit implementations:





## Composite gates



if (a==1 and b==1 and c==1)
 then out=1 else out=0

### Possible implementations:





- This course does not deal with physical implementations (circuits, transistors, relays... that's EE, not CS)
- We focus only on logical implementations

# Chapter 1: Boolean logic

#### Theory

- Basic concepts
- Boolean algebra
- Boolean functions
- Nand

### **Practice**





- Hardware simulation
- Multi-bit buses

### Project 1

- Introduction
- Chips
- Guidelines

## Building a chip



### The process

- ✓ Design the chip architecture
- ✓ Specify the architecture in HDL
- ✓ Test the chip in a hardware simulator
- Optimize the design
- Realize the optimized design in silicon.

## Design: Requirements



```
if ((a == 0 and b == 1) or (a == 1 and b == 0))
    sets out = 1
else
    sets out = 1
```

| a | b | out |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 1   |
| 1 | 0 | 1   |
| 1 | 1 | 0   |

### Requirement

Build a chip that delivers this functionality

```
/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {
    IN a, b;
    OUT out;
    PARTS:
    // Missing implementation
```

#### Gate Interface

Expressed as an HDL *stub file* 

```
/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {
    IN a, b;
    OUT out;
    PARTS:
    // Missing implementation
```

### Gate Interface

Expressed as an HDL *stub file* 









```
/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {
    IN a, b;
    OUT out;
    PARTS:
    Not (in=a, out=nota);
    Not (in=b, out=notb);
    And (a=a, b=notb, out=aAndNotb);
    And (a=nota, b=b, out=notaAndb);
}
```





```
/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {
    IN a, b;
    OUT out;
    PARTS:
    Not (in=a, out=nota);
    Not (in=b, out=notb);
    And (a=a, b=notb, out=aAndNotb);
    And (a=nota, b=b, out=notaAndb);
    Or (a=aAndNotb, b=notaAndb, out=out);
}
```

## Interface / Implementation



```
gate interface /** Sets out = (a And Not(b)) Or (Not(a) And b)) */

CHIP Xor {
    IN a, b;
    OUT out;
    PARTS:
    Not (in=a, out=nota);
    Not (in=b, out=notb);
    And (a=a, b=notb, out=aAndNotb);
    And (a=nota, b=b, out=notaAndb);
    Or (a=aAndNotb, b=notaAndb, out=out);
}
```

### A logic gate has:

- One interface
- Many possible implementations

## Hardware description languages

#### Observations:

- HDL is a functional / declarative language
- An HDL program can be viewed as a textual specification of a chip diagram
- The order of HDL statements is insignificant.

```
/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {
    IN a, b;
    OUT out;
    PARTS:
    Not (in=a, out=nota);
    Not (in=b, out=notb);
    And (a=a, b=notb, out=aAndNotb);
    And (a=nota, b=b, out=notaAndb);
    Or (a=aAndNotb, b=notaAndb, out=out);
}
```

## Hardware description languages

#### Common HDLs

#### Our HDL

• VHDL

• Similar in spirit to other HDLs

Verilog

• Minimal and simple

• ..

• Provides all you need for this course

#### Our HDL Guide / Documentation:

The Elements of Computing Systems / Appendix 2: HDL

```
/** Sets out = (a And Not(b)) Or (Not(a) And b)) */
CHIP Xor {
    IN a, b;
    OUT out;
    PARTS:
    Not (in=a, out=nota);
    Not (in=b, out=notb);
    And (a=a, b=notb, out=aAndNotb);
    And (a=nota, b=b, out=notaAndb);
    Or (a=aAndNotb, b=notaAndb, out=out);
}
```

## Chapter 1: Boolean logic

#### Theory

- Basic concepts
- Boolean algebra
- Boolean functions
- Nand

#### **Practice**







• Multi-bit buses

#### Project 1

- Introduction
- Chips
- Guidelines

## Hardware simulation in a nutshell



#### **Simulation options**



• Script-based.

## Interactive simulation



## Hardware simulation in a nutshell



#### **Simulation options**





## Script-based simulation

#### Xor.hdl

```
CHIP Xor {
    IN a, b;
    OUT out;

PARTS:
    Not (in=a, out=nota);
    Not (in=b, out=notb);
    And (a=a, b=notb, out=aAndNotb);
    And (a=nota, b=b, out=notaAndb);
    Or (a=aAndNotb, b=notaAndb, out=out);
}
```

#### Xor.tst

```
load Xor.hdl;
set a 0, set b 0, eval;
set a 0, set b 1, eval;
set a 1, set b 0, eval;
set a 1, set b 1, eval;
```

<u>test script</u> = sequence of commands to the simulator

#### Benefits:

- "Automatic" testing
- Replicable testing.

## Script-based simulation, with an output file

#### Xor.hdl

```
CHIP Xor {
    IN a, b;
    OUT out;

PARTS:
    Not (in=a, out=nota);
    Not (in=b, out=notb);
    And (a=a, b=notb, out=aAndNotb);
    And (a=nota, b=b, out=notaAndb);
    Or (a=aAndNotb, b=notaAndb, out=out);
}
```

#### The logic of a typical test script

- Initialize:
  - Loads an HDL file
  - Creates an empty output file
  - Lists the names of the pins whose values will be written to the output file
- Repeat:
  - □ set eval output

#### Xor.tst

```
load Xor.hdl,
output-file Xor.out,
output-list a b out;
set a 0, set b 0, eval, output;
set a 0, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;
```

#### Xor.out

```
| a | b |out|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
```

test script

Output File, created by the test script, as a side-effect of the simulation process

## Script-based simulation



## Script-based simulation

#### Xor.hdl

```
CHIP Xor {
    IN a, b;
    OUT out;

PARTS:
    Not (in=a, out=nota);
    Not (in=b, out=notb);
    And (a=a, b=notb, out=aAndNotb);
    And (a=nota, b=b, out=notaAndb);
    Or (a=aAndNotb, b=notaAndb, out=out);
}
```

#### Xor.tst

```
load Xor.hdl,
   output-file Xor.out,
   output-list a b out;
   set a 0, set b 0, eval, output;
   set a 0, set b 1, eval, output;
   set a 1, set b 0, eval, output;
   set a 1, set b 1, eval, output;
Xor.out
         out
```

## Script-based simulation, with a compare file

#### Xor.hdl

```
CHIP Xor {
    IN a, b;
    OUT out;

PARTS:
    Not (in=a, out=nota);
    Not (in=b, out=notb);
    And (a=a, b=notb, out=aAndNotb);
    And (a=nota, b=b, out=notaAndb);
    Or (a=aAndNotb, b=notaAndb, out=out);
}
```

#### Simulation-with-compare-file logic

- When each output command is executed, the outputted line is compared to the corresponding line in the compare file
- If the two lines are not the same, the simulator throws a comparison error.

#### Xor.tst load Xor.hdl, output-file Xor.out, compare-to Xor.cmp, output-list a b out; set a 0, set b 0, eval, output; set a 0, set b 1, eval, output; set a 1, set b 0, eval, output; set a 1, set b 1, eval, output; Xor.cmp Xor.out out |out| b 0 compare 0 0

## Script-based simulation, with a compare file

#### Xor.hdl

```
CHIP Xor {
    IN a, b;
    OUT out;

PARTS:
    Not (in=a, out=nota);
    Not (in=b, out=notb);
    And (a=a, b=notb, out=aAndNotb);
    And (a=nota, b=b, out=notaAndb);
    Or (a=aAndNotb, b=notaAndb, out=out);
}
```

#### **Demos:**

**Experimenting with Built-In Chips** 

Building and Testing HDL-based Chips

**Script-Based Chip Testing** 



## Chapter 1: Boolean logic

#### Theory

- Basic concepts
- Boolean algebra
- Boolean functions
- Nand

#### **Practice**









#### Project 1

- Introduction
- Chips
- Guidelines

## Multi-bit bus

- Sometimes we wish to manipulate a *sequence of bits* as a single entity
- Such a multi-bit entity is termed "bus"

#### Example: 16-bit bus

|   |   |   |   |   |   |   |   |   | 6 |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |

MSB = Most significant bit

LSB = Least significant bit

## Working with buses: Example

```
/* Adds two 16-bit values. */
CHIP Adder {
                                               16-bit
                                                         / → out
   IN a[16], b[16];
                                               adder
   OUT out[16];
   PARTS:
    . . .
                        /* Adds three 16-bit inputs. */
                        CHIP Adder3Way {
     15 ...
                           IN a[16], b[16], c[16];
 a: 1
                           OUT out[16];
 b: 0
                           PARTS:
            0
 c:
     0
                           Adder(a= , b= , out= );
                           Adder(a= , b= , out= );
           1 0
out: 1 ...
```

## Working with buses: Example



```
/* Returns 1 if a==1 and b==1,
* 0 otherwise. */
CHIP And {
  IN a, b;
                       /* 4-way And: Ands 4 bits. */
  OUT out;
                       CHIP And4Way {
                          IN a[4];
   . . .
                          OUT out;
                          PARTS:
                          And(a=
                                      , b=
                                              , out=
         1
                          And(a=
                                      , b=
                                              , out=
                          And(a=
                                      , b=
                                              , out=
        out: 0
```

```
/* Returns 1 if a==1 and b==1,
 * 0 otherwise. */
CHIP And {
  IN a, b;
                       /* 4-way And: Ands 4 bits. */
  OUT out;
                       CHIP And4Way {
                                                      Input bus pins can
                          IN a[4];
   . . .
                                                      be subscripted.
                          OUT out;
                          PARTS:
                          And(a=a[0], b=a[1], out=and01);
         1
                          And(a=and01, b=a[2], out=and012);
                          And(a=and012, b=a[3], out=out);
        out: 0
```

```
/* Returns 1 if a==1 and b==1,
  * 0 otherwise. */
 CHIP And {
    IN a, b;
                         /* 4-way And: Ands 4 bits. */
    OUT out;
                         CHIP And4Way {
                                                        Input bus pins can
                            IN a[4];
     . . .
                                                        be subscripted.
                            OUT out;
                            PARTS:
                            And(a=a[0], b=a[1], out=and01);
                            And(a=and01, b=a[2], out=and012);
                            And(a=and012, b=a[3], out=out);
          out: 0
                         /* Bit-wise And of two 4-bit inputs */
                         CHIP And4 {
 a:
           0
                            IN a[4], b[4];
                            OUT out[4];
         0
           1
out: 0
        0
           0 | 1
```

```
/* Returns 1 if a==1 and b==1,
  * 0 otherwise. */
 CHIP And {
    IN a, b;
                         /* 4-way And: Ands 4 bits. */
    OUT out;
                         CHIP And4Way {
                                                        Input bus pins can
                            IN a[4];
     . . .
                                                        be subscripted.
                            OUT out;
                            PARTS:
                            And(a=a[0], b=a[1], out=and01);
  a: 0
           1
                            And(a=and01, b=a[2], out=and012);
                            And(a=and012, b=a[3], out=out);
          out:
               0
                         /* Bit-wise And of two 4-bit inputs */
                         CHIP And4 {
  a:
           0
                            IN a[4], b[4];
                            OUT out[4];
        0
           1
                            PARTS:
                            And(a=
                                     , b=
                                              , out=
           0
out: 0
        0
                            And(a=
                                     , b=
                                             , out=
                            And(a=
                                     , b=
                                                          );
                                             , out=.
                            And(a=
                                      , b=
                                              , out=
                                                          );
```

```
/* Returns 1 if a==1 and b==1,
  * 0 otherwise. */
 CHIP And {
    IN a, b;
                         /* 4-way And: Ands 4 bits. */
    OUT out;
                         CHIP And4Way {
                                                        Input bus pins can
                            IN a[4];
     . . .
                                                        be subscripted.
                            OUT out;
                            PARTS:
                            And(a=a[0], b=a[1], out=and01);
  a: 0
           1
                            And(a=and01, b=a[2], out=and012);
                            And(a=and012, b=a[3], out=out);
          out:
               0
                         /* Bit-wise And of two 4-bit inputs */
                         CHIP And4 {
  a:
            0
                                                                  Output bus pins
                            IN a[4], b[4];
                                                                  can be subscripted
                            OUT out[4];
         0
            1
                            PARTS:
                            And(a=a[0], b=b[0], out=out[0]);
out: | 0 |
        0
            0 | 1
                            And(a=a[1], b=b[1], out=out[1]);
                            And(a=a[2], b=b[2], out=out[2]);
                            And(a=a[3], b=b[3], out=out[3]);
```

## Chapter 1: Boolean logic

#### **Theory**

• Basic concepts



- Boolean algebra
- Boolean functions
- Nand

#### **Practice**

• Logic gates



- HDL
- Hardware simulation
- Multi-bit buses

#### Project 1

- Introduction
- Chips
- Guidelines

## Chapter 1: Boolean logic

#### **Theory**

- Basic concepts
- Boolean algebra
- Boolean functions
- Nand

#### Practice

- Logic gates
- HDL
- Hardware simulation
- Multi-bit buses

#### Project 1



- Chips
- Guidelines

## Built-in chips

We provide built-in versions of the chips built in this course (in tools/builtInChips). For example:

#### Xor.hdl

```
/** Sets out to a Xor b */
CHIP Xor {
    IN a, b;
    OUT out;

PARTS:
    Not (in=a, out=nota);
    Not (in=b, out=notb);
    And (a=a, b=notb, out=aAndNotb);
    And (a=nota, b=b, out=notaAndb);
    Or (a=aAndNotb, b=notaAndb, out=out);
}
```

#### Xor.hdl

A built-in chip has the same interface as the regular chip, but a different implementation

#### Behavioral simulation

- Before building a chip in HDL, one can implement the chip logic in a high-level language
- Enables experimenting with / testing the chip abstraction before actually building it
- Enables high-level planning and testing of hardware architectures.

Demo: Loading and testing a built-in chip in the hardrawe simulator

## Hardware construction projects

#### Key players:

- Architect:
  - Decides which chips are needed
  - Specifies the chips
- Developers:
  - Build / test the chips



#### In Nand to Tetris:

The architect is the course instructor; the developers are the students

For each chip, the architect supplies:

- Built-in chip
- □ Chip API (skeletal HDL program = stub file)
- Test script
- Compare file

Given these resources, the developers (students) build the chips.

## The developer's view (of, say, a xor gate)

#### Xor.hdl

```
/** Sets out to a Xor b */
CHIP Xor {
    IN a, b;
    OUT out;

PARTS:
    // Implementation missing
}
```

#### Xor.tst

```
load Xor.hdl,
output-file Xor.out, test
compare-to Xor.cmp script
output-list a b out;
set a 0, set b 0, eval, output;
set a 0, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;
```

#### These files specify:

- The chip interface (.hdl)
- How the chip is supposed to behave (.cmp)
- How to test the chip (.tst)

#### The developer's task:

Implement the chip (complete the supplied .hdl file), using these resources.

## compare file

#### Xor.cmp

```
| a | b |out|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 0 |
```

## Nand to Tetris Roadmap: Hardware





Project 1
Build 15 elementary logic gates

Given: Nand

Goal: Build the following gates:

| <b>Elementary</b>      | <u>16-bit</u>   | Multi-way       |
|------------------------|-----------------|-----------------|
| logic gates            | <u>variants</u> | <u>variants</u> |
| □ Not                  | □ Not16         | □ Or8Way        |
| □ And                  | □ And16         | □ Mux4Way16     |
| or Or                  | □ 0r16          | □ Mux8Way16     |
| □ Xor                  | □ Mux16         | □ DMux4Way      |
| □ Mux                  |                 | □ DMux8Way      |
| <ul><li>DMux</li></ul> |                 |                 |

### Why these 15 particular gates?

- Commonly used gates
- Comprise all the elementary logic gates needed to build our computer.

Given: Nand

<u>Goal:</u> Build the following gates:

| <b>Elementary</b> | <u>16-bit</u>   | Multi-way       |
|-------------------|-----------------|-----------------|
| logic gates       | <u>variants</u> | <u>variants</u> |
| □ Not             | □ Not16         | □ Or8Way        |
| □ And             | □ And16         | □ Mux4Way16     |
| or Or             | □ 0r16          | □ Mux8Way16     |
| □ Xor             | □ Mux16         | □ DMux4Way      |
| Mux               |                 | □ DMux8Way      |
| DMux              |                 |                 |

## Multiplexor / Demultiplexor



out = b



#### Widely used in:

- Hardware design
- Communications networks.

## Example 1: Using Mux logic to build a programmable gate







#### Mux.hdl

```
CHIP AndMuxOr {
    IN a, b, sel;
    OUT out;

PARTS:
    And (a=a, b=b, out=andOut);
    Or (a=a, b=b, out=orOut);
    Mux (a=andOut, b=orOut, sel=sel, out=out);
}
```

## Example 2: Using Mux logic in communications networks



- Enables transmitting multiple messages simultaneously using a single, shared communications line
- Unrelated to this course.

## Multiplexor



| a | b | sel | out |
|---|---|-----|-----|
| 0 | 0 | 0   | 0   |
| 0 | 1 | 0   | 0   |
| 1 | 0 | 0   | 1   |
| 1 | 1 | 0   | 1   |
| 0 | 0 | 1   | 0   |
| 0 | 1 | 1   | 1   |
| 1 | 0 | 1   | 0   |
| 1 | 1 | 1   | 1   |

| sel | out |             |
|-----|-----|-------------|
| 0   | а   | abbreviated |
| 1   | b   | truth table |

#### Mux.hdl

```
CHIP Mux {
    IN a, b, sel;
    OUT out;

PARTS:
    // Put your code here:
}
```

#### Implementation tip

Can be implemented from the gates And, Or, Not.

## Demultiplexor



if (sel == 0)  

$$\{a, b\} = \{in, 0\}$$
  
else  
 $\{a, b\} = \{0, in\}$ 

| in | sel | а | b |
|----|-----|---|---|
| 0  | 0   | 0 | 0 |
| 0  | 1   | 0 | 0 |
| 1  | 0   | 1 | 0 |
| 1  | 1   | 0 | 1 |

- Acts like the "inverse" of a multiplexor
- Channels the single input value into one of two possible destinations

# DMux.hdl CHIP DMux { IN in, sel; OUT a, b; PARTS: // Put your code here: }

#### Implementation tip

Similar to the Mux implementation.

Elementary logic gates

- Not
- And
- □ Or
- □ Xor
- Mux
- DMux

16-bit variants

- □ Not16
- □ And16
- □ 0r16
- □ Mux16

Multi-way variants

□ Or8Way

- □ Mux4Way16
- □ Mux8Way16
- DMux4Way
- □ DMux8Way

## Elementary logic gates

- Not
- And
- o Or
- □ Xor
- Mux
- DMux

# 16-bit variants

- □ Not16
- And16
  - □ 0r16
  - □ Mux16

# Multi-way variants

- □ Or8Way
- Mux4Way16
- Mux8Way16
- DMux4Way
- □ DMux8Way

## And16



```
CHIP And16 {
    IN a[16], b[16];
    OUT out[16];

PARTS:

// Put your code here:
}
```

#### Implementation tip

A straightforward 16-bit extension of the elementary And gate

(See notes about working with multi-bit buses).

# Project 1

Elementary logic gates

Not

And

□ Or

□ Xor

Mux

DMux

16-bit variants

□ Not16

□ And16

□ 0r16

□ Mux16

<u>Multi-way</u>

<u>variants</u>

□ Or8Way

Mux4Way16

□ Mux8Way16

DMux4Way

□ DMux8Way

# Project 1

DMux

#### **Elementary** Multi-way <u>16-bit</u> logic gates variants <u>variants</u> Not □ Not16 □ Or8Way And □ And16 Mux4Way16 o Or □ 0r16 □ Mux8Way16 □ Xor □ Mux16 DMux4Way Mux DMux8Way

# 16-bit, 4-way multiplexor



| sel[1] | sel[0] | out |
|--------|--------|-----|
| 0      | 0      | а   |
| 0      | 1      | b   |
| 1      | 0      | С   |
| 1      | 1      | d   |

#### Mux4Way16.hdl

```
CHIP Mux4Way16 {
    IN a[16], b[16], c[16], d[16],
        sel[2];
    OUT out[16];

PARTS:
    // Put your code here:
}
```

### <u>Implementation tip:</u>

Can be built from several Mux16 gates.

# Chapter 1: Boolean logic

### Theory

- Basic concepts
- Boolean algebra
- Boolean functions
- Nand

#### Practice

- Logic gates
- HDL
- Hardware simulation
- Multi-bit buses

### Project 1







# Project 1

# Elementary logic gates

- □ Not
- And
- □ Or
- Xor
- Mux
- □ DMux

# 16-bit variants

- □ Not16
- And16
- □ 0r16
- □ Mux16

### Multi-way

### variants

- □ Or8Way
- Mux4Way16
- □ Mux8Way16
- DMux4Way
- □ DMux8Way



How to actually <u>build</u> these gates?

### Files





For every chip built in the course (using xor as an example), we supply these three files

#### Xor.hdl (stub file)

sets out = 0

```
CHIP Xor {
    IN a, b;
    OUT out;
    PARTS:
    // Put your code here
}
```

#### Xor.tst

```
load Xor.hdl,
output-file Xor.out,
compare-to Xor.cmp,
output-list a b out;
set a 0, set b 0, eval, output;
set a 0, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;
```

### Files





### The contract:

When running your Xor.hdl on the supplied Xor.tst, your Xor.out should be the same as the supplied Xor.cmp

#### Xor.hdl (stub file)

```
CHIP Xor {
    IN a, b;
    OUT out;
    PARTS:
    // Put your code here
}
```

#### Xor.tst

```
load Xor.hdl,
output-file Xor.out,
compare-to Xor.cmp,
output-list a b out;
set a 0, set b 0, eval, output;
set a 0, set b 1, eval, output;
set a 1, set b 0, eval, output;
set a 1, set b 1, eval, output;
```

#### Project 1 folder

(.hdl, .tst, .cmp files):
nand2tetris/projects/01

#### Tools:

- Text editor (for completing the .hdl files)
- Hardware simulator: nand2tetris/tools

## Tools

### **Tools**

- Text editor (for completing the given .hdl stub-files)
- Hardware simulator: nand2tetris/tools

### <u>Guides</u>

- Hardware Simulator Tutorial
- HDL Guide



Projects

Book

Software

Demos

License

Papers

Cool Stuff

About

Team

Stay in Touch

Q&A

#### Project 1: Boolean Logic

#### Background

A typical computer architecture is based on a set of elementary logic gates like And, Or, Mux, etc., as well as their bit-wise versions And16, Or16, Mux16, etc. (assuming a 16-bit machine). This project engages you in the construction of a typical set of basic logic gates. These gates form the elementary building blocks from which more complex chips will be later constructed.

#### Objective

Build all the logic gates described in Chapter 1 (see list below), yielding a basic chip-set. The only building blocks that you can use in this project are primitive Nand gates and the composite gates that you will gradually build on top of them.

# Chip interfaces



```
CHIP Xor {
    IN a, b;
    OUT out;

    PARTS:
    Not (in= , out= );
    Not (in= , out= );
    And (a= , b=, out=);
    And (a= , b=, out=);
    Or (a= , b=, out=);
}
```

If I want to use some chip-parts, how do I figure out their signatures?



## Chip interfaces: Hack chip set API

Open the Hack chip set API in a window, and copy-paste chip signatures into your HDL code, as needed

```
Add16 (a= ,b= ,out= );
ALU (x = , y = , zx = , nx = , zy = , ny = , f = , no = , out = , zr = , ng = );
And16 (a= ,b= ,out= );
                                                       Mux8Way (a= ,b= ,c= ,d= ,e= ,f= ,g= ,h= ,sel= ,out= );
And (a= ,b= ,out= );
                                                       Mux (a= ,b= ,sel= ,out= );
Aregister (in= ,load= ,out= );
                                                       Nand (a= ,b= ,out= );
Bit (in= ,load= ,out= );
CPU (inM= ,instruction= ,reset= ,outM= ,writeM= ,ad
                                                       Not16 (in= ,out= );
                                                       Not (in= ,out= );
DFF (in= ,out= );
DMux4Way (in= ,sel= ,a= ,b= ,c= ,d= );
                                                       Or16 (a= ,b= ,out= );
                                                       Or8Way (in= ,out= );
DMux8Way (in= ,sel= ,a= ,b= ,c= ,d= ,e= ,f= ,g= ,h=
Dmux (in= ,sel= ,a= ,b= );
                                                       Or (a= ,b= ,out= );
                                                       PC (in= ,load= ,inc= ,reset= ,out= );
Dregister (in= ,load= ,out= );
                                                       PCLoadLogic (cinstr= ,j1= ,j2= ,j3= ,load= ,inc= );
FullAdder (a= ,b= ,c= ,sum= ,carry= );
                                                       RAM16K (in= ,load= ,address= ,out= );
HalfAdder (a= ,b= ,sum= , carry= );
                                                       RAM4K (in= ,load= ,address= ,out= );
Inc16 (in= ,out= );
                                                       RAM512 (in= ,load= ,address= ,out= );
Keyboard (out= );
Memory (in= ,load= ,address= ,out= );
                                                       RAM64 (in= ,load= ,address= ,out= );
                                                       RAM8 (in= ,load= ,address= ,out= );
Mux16 (a= ,b= ,sel= ,out= );
                                                       Register (in= ,load= ,out= );
Mux4Way16 (a= ,b= ,c= ,d= ,sel= ,out= );
                                                       ROM32K (address= ,out= );
Mux8Way16 (a= ,b= ,c= ,d= ,e= ,f= ,g= ,h= ,sel= ,ou
                                                       Screen (in= ,load= ,address= ,out= );
                                                       Xor (a= ,b= ,out= );
```

# Built-in chips

```
CHIP Foo {
    IN ...;
    OUT ...;

PARTS:
    ...
Bar(...)
    ...
}
```

- Q: Suppose you want to use a chip-part before you've implemented it. How to do it?
- A: The simulator features built-in implementations of all the project 1 chips

### Forcing the simulator to use a built-in chip, say Bar:

- Typically, Bar.hdl will be either a given stub-file, or a file that has an incomplete implementation
- Remove, or rename, the file Bar.hdl from the project folder
- Whenever Bar will be mentioned as a chip-part in some chip definition, the simulator will fail to find Bar.hdl in the current folder. This will cause the simulator to invoke the built-in version of Bar instead.

# Best practice advice

- Implement the chips in the order in which they appear in the project guidelines
- If you don't implement some chips, you can still use them as chip-parts in other chips (use their built-in implementations)
- You can invent additional, "helper chips"; However, this is not necessary. Implement and use only the chips that we specified
- In each chip definition, strive to use as few chip-parts as possible
- When defining 16-bit chips, the same chip-parts may appear many times. That's fine, use copy-paste-edit.

That's It!
Go Do Project 1!

### What's next?



This lecture / chapter / project:
Build 15 elementary logic gates

### What's next?



Next lecture / chapter / project:

Build chips designed to do arithmetic, using the chips built in project 1