

Huajie Xu

Yuchen zeng

Xuanzhu Luo

Yuanxin Liu

Instructor: Khasha Dehnad

- 1. leave backdoor
- 2. access root permissions
- 3. monitor the network traffic

191011100	éBaD.×E EO(.nA~-\$fgq	1010101010	Æ49.vbe00@\oY1u65Nz6	0010100100	#5±w0C+Ø+I3 @vL 1\$*0	18
010101101	ffs x pd C yT-"r (ES	1010101111	£;6)07-5U:V 64-LāziŌ	110101010101	/peni01 - A: Aki 4 VL	10
10100001	(o.££r£Èx€(o.XV, 7z)	1101000101	60MSIlgyn#OniX#/4—\$	8101010110	IV3 00.8 5ATS 08-(P&	- 11
101001100	q ÜK"Mg{"æ- '-Ê: 'Êu	1111100000	881\a,0 \max.yC.18.6	1010000001	OEZWSEOPRER SHE!".4	- 01
18118181	KJ_=EHZP")%.g:'a*K"f8	0000111001	O-Myrp"T"Z_S2-fahi	8181818181	A*.03 (100.08_8.0.N	0.0
110100100	I>æ €<->* EU-#h-Eq	0010010110	A-ae8. 155C, @Me@P. fas	0010110101	(S'], lw. 15. 11a628611	
910101010	STAUH #F 10 #U\((DPK	1010001010	N5@ABK, 5), HR38)gBX, 4	1010001010	B. D. HISS TYBY PAN, VOS"#	01
211110111	tA B.O.1=.P=B160U+N6	0101010010	"EATUEANATESD" 195	1110101919	AAF"PD A. WVCb(SD.BfP	10
101010101	Og.BiaY'IôæMIXII]'zP	1810101010	1/aP.6016'6: 3:0-A1	0101010100	EA01GRUNG. Ú. eXaiZhE	- 91
01111101	oh oliq a [E(-: 2aa0i	1010110011	A.S. µEDo. vPb i vDvD -X	1010111010	nogration - Ingres.	00
900010011	OCCE PENE	Service Service		100// 2009	24 / A / A / A / A / A / A / A / A / A /	0.0
01010101	6-0:05 b) Y(DU HA	VE BEEN	HACKI	-D	
101010110	Kir.s0+t>4-	00 11/1	TE DEEL	TI TOTAL		10
318868881	(A.H.O.BE.107=0001E0	1110100010	29968712 166 (5fas	O TOTOTOTO	MBDE, 565((¢ t \'H.=	
101010101	¶xĀm A176 Ke á SEUÖPX	1818018189	?s?p1teo.4 166-1e060	1111100000	fŇ4grCloBq5≇q€∑huÏ	81
1010101	y< 5e4.c <1.x0en00:q	0101010100	ééî11:E*;.k*H4.)D)éµ	0000111001	r AOSV.N TECHT by A	10
901011010	Jul Maloog Nift 141A	0010101010	0-11/z.3C5% +.0nF6	8010100101	e) P.Oc[or(HuBbw! 2H	10
118101810	:g6,7K2, 1:082LC# a1 1ii	0101011101	n5MqLäEdwäE i SPNA	0101010001	TSO MODOS KYAS KRONA	10
110001010	É (>>>bnc>bat-%c\$Ã0t0	0001010101	5.NO_6218X_\$100=0+15	1101011100	+o*-e6.00**************	
110101010	66+AAA+rl.RUc0_R_)A	0101000110	AABSichHv550z'-U.m.m	0010100010	ētm.us-Çêvő» _ecēt.00	- 01
101010100	JS2005(TD:588epW.T.¶	1818188810	Takes OS-JECHIAG.]	1010010100	-7i July (TriSadao10)	
319111010	Ve) - HXX KcASOAY Te0	1010101010	Ou.Ele.J.Z.Hzp.x-UUX	1000011018	55. N; 4210X / L. uk9cH1	0.0
010101010)£Þn8zQö.whû(n+Pü³o£	1919110180	émil-H0*, 8fa,0,-94H	1101001008	->mz1hmy2*5)5*5E=R0†	
110101111	COFFETSY, 100E>9. AYAGE	1101010110	10×0åå\$ø.4),PR0c .8-	0101010101	T-2)P# SIPP V#110 eA	

Detect PHP Webshell

PHP is the most common server-side programming language, so a lot of malicious codes are written in PHP language.

Data source:

https://www.kaggle.com/zavadskyy/lots-of-code

Preparation

The dataset we expected...

```
Age, Attrition, BusinessTravel, DistanceFromHome, Education, Employ
NumCompaniesWorked, OverTime, TotalWorkingYears
41, Yes, Travel_Rarely, 1, 2, 1, 2, Female, Single, 5993, 8, Yes, 8
49, No, Travel_Frequently, 8, 1, 2, 3, Male, Married, 5130, 1, No, 10
37, Yes, Travel_Rarely, 2, 2, 4, 4, Male, Single, 2090, 6, Yes, 7
33, No, Travel_Frequently, 3, 4, 5, 4, Female, Married, 2909, 1, Yes, 8
27, No, Travel_Rarely, 2, 1, 7, 1, Male, Married, 3468, 9, No, 6
```

The dataset we have......

```
k?php
/* Autoloader for composer/ca-bundle and its dependencies */
if (!class_exists('Fedora\\Autoloader\\Autoload', false)) {
    require_once '/usr/share/php/Fedora/Autoloader/autoload.php';
}
\Fedora\Autoloader\Autoload::addPsr4('Composer\\CaBundle\\', __DIR__);
```

But HOW?

File Size

Longest String

- Malicious code is often stored as a long string of encoded text within a file. Many popular encoding methods, such as base64 encoding, will produce a long string without space characters.
- Typical text and script files will be composed of relatively short length words; identifying files with uncharacteristically long strings may help to identify files with obfuscated code.

Entropy

- Measuring entropy is useful in locating encrypted shellcode. Encryption can often introduce a large amount of entropy into a text string.

Keywords

eval, shell_exec, fwrite, chr, str_replace......

Example


```
<?php
/* Autoloader for composer/ca-bundle and its dependencies */

if (!class_exists('Fedora\\Autoloader\\Autoload', false)) {
    require_once '/usr/share/php/Fedora/Autoloader/autoload.php';
}

\Fedora\Autoloader\Autoload::addPsr4('Composer\\CaBundle\\', __DIR__);
</pre>
```

CSV generated

275 Webshells, 6000 Ordinary PHP codes.

ID,label,len,entropy,exec,zip,code,chr,re,other,maxlen 0,1,1405,5.433242758321368,4,0,0,0,0,0,26 1,1,93545,6.011169553454867,1,1,1,0,0,0,93123 2,1,37391,5.45186781406762,6,0,0,0,17,0,148

ID	
label	1 for webshell, 0 for normal
length	The length of the code file
count_*	Amount of sensitive functions
maxlen	The longest word

correlation analysis

most relevant 3 factors with label: code, re, maxlen

characteristics for malicious code:

1.frequent calling function: base64_encode/decode, str_replace

2.maxlen higher than normal codes

Model 1 Naive Bayes Results

```
y_pred
         Normal
                 Bad
y_true
  Normal
           1742
                33
  Bad
             43
                  33
> Accuracy(pred, ytest)
[1] 0.9589411
> Precision(ytest, pred)
[1] 0.9759104
> Recall(ytest, pred)
[1] 0.9814085
> F1_Score(ytest, pred)
[1] 0.9786517
```


Model 2 K-Means Results

```
TP 47
FP 85
FN 228
TN 5915
Acc 0.9501195219123506
Recall 0.17090909090909
Precision 0.35606060606061
F1 0.23095823095823095
```

This model is not suitable for our condition

Model 3 KNN

Area under the curve: 66.11%


```
y_pred
y_true
     0 1194
         37
              18
> Accuracy(predict_K5, test$label)
[1] 0.9657371
> Precision(test$label, predict_K5)
[1] 0.9699431
> Recall(test$label, predict_K5)
[1] 0.995
> F1_Score(test$label, predict_K5)
[1] 0.9823118
```

Model 4 Gradient Boosted Trees

- Gradient boosting is a supervised learning algorithm, which attempts to accurately predict a target variable by combining the estimates of a set of simpler, weaker models.
- When using gradient boosting for regression, the weak learners are regression trees, and each regression tree maps an input data point to one of its leafs that contains a continuous score.
- XGBoost minimizes a regularized (L1 and L2) objective function that combines a convex loss function (based on the difference between the predicted and target outputs) and a penalty term for model complexity (in other words, the regression tree functions). The training proceeds iteratively, adding new trees that predict the residuals or errors of prior trees that are then combined with previous trees to make the final prediction.

Here is an example of a tree ensemble of two trees. The prediction scores of each individual tree are summed up to get the final score. If you look at the example, an important fact is that the two trees try to complement each other. Mathematically, we can write our model in the form

$$\hat{y}_i = \sum_{i=1}^K f_k(x_i), f_k \in \mathcal{F}$$

Results

Model 5 C5.0

Model 5 C5.0

Evaluation on training data (4706 cases):

Model 5 C5.0

evaluation using test data

Area under the curve: 0.7786

```
correctRate_c5.0 0.977055449330784
erroRate_c5.0 0.0229445506692161
```



```
prediction
actual 0 1
0 1497 8
1 28 36
```

```
> Accuracy(prediction1, test1)
[1] 0.9770554
> Precision(test1,prediction1)
[1] 0.9816393
> Recall(test1,prediction1)
[1] 0.9946844
> F1_Score(test1,prediction1)
[1] 0.9881188
```

Conclusion

THANK YOU! Q&A

Instructor: Khasha Dehnad **Course:** CS513 Group Project