

Pertemuan ke_2 Pengantar Teori bahasa

Tim pengampu

2022

Capaian Pembelajaran

Mahasiswa memahami tipe tipe Bahasa dan menganalisa tipe tipe bahasa

Contents

- Kedudukan OTB
- Tata Bahasa
- Klasifikasi Tata Bahasa

Otomata & Teori Bahasa?

Kedudukan OTB

- Ilmu komputer memiliki dua komponen utama:
 - Pertama: model dan gagasan mendasar mengenai komputasi
 - Kedua: teknik rekayasa untuk perancangan sistem komputasi, meliputi perangkat keras dan perangkat lunak, khususnya penerapan rancangan dari teori.
- Otomata dan Teori Bahasa merupakan bagian pertama

Tata Bahasa

- Penulisan suatu kalimat dalam sebuah bahasa, akan mengikuti suatu aturan tertentu yang berlaku pada bahasa tersebut
- Aturan tersebut dikenal sebagai Tata Bahasa (Grammar)

Tata Bahasa

Klasifikasi Tata Bahasa

- Tata bahasa (grammar): kumpulan dari himpunan-himpunan variabel, simbol-simbol terminal, simbol awal yang dibatasi oleh aturan-aturan produksi.
- Pada tahun 1959 seorang ahli bernama Noam Chomsky melakukan penggolongan tingkatan bahasa menjadi empat, yang disebut dengan Hirarki Chomsky.

Klasifikasi Tata Bahasa

Konsep Bahasa

- Simbol
- Abjad/alfabet
- String/kata/untai
- String kosong
- Bahasa (Language)
- Bahasa Kosong
- Bahasa Universal dari ∑

Konsep Bahasa dalam Teori Otomata

Alphabet (Abjad)

- Sebuah alphabet adalah himpunan berhingga dan tak kosong dari simbol. Alphabet disimbolkan oleh Σ .
- Contoh:
 - $\Sigma = \{0, 1\}$ alphabet biner
 - $\Sigma = \{a, b, ..., z\}$, himpunan semua huruf kecil.
 - Himpunan semua karakter ASCII.

String

- Sebuah string (atau word) adalah deretan simbol berhingga yang dipilih dari alphabet.
- Contoh: 011011 dan 1111 adalah string dari alphabet biner $\Sigma = \{0, 1\}$.
- String kosong adalah string dimana tidak ada kemunculan simbol. (String tersebut dinotasikan oleh ϵ).

- Panjang dari string adalah banyaknya posisi untuk simbol dalam string.
- Contoh, 01101 memiliki panjang 5.
- Umumnya panjang dari string adalah banyaknya simbol dalam string.
- Pernyataan tersebut tidak sepenuhnya benar, sebagai contoh terdapat 2 simbol dalam string 01101 yaitu 0 dan 1, tetapi terdapat 5 posisi untuk simbol, dan panjangnya adalah 5.
- Notasi standar untuk panjang string w adalah |w|. Contoh: |011| = 3 dan $|\epsilon| = 0$.

- x adalah sebuah substring dari string lain y jika ada string w dan z, keduanya dapat berupa string kosong, sedemikian sehingga y = wxz.
- Sebagai contoh, car adalah substring dari carry, car, vicar.

Pangkat dari Alphabet

- Jika Σ adalah alphabet, dapat dinyatakan himpunan dari semua string dengan panjang tertentu dari alphabet tersebut dengan menggunakan notasi eksponensial.
- Kita mendefinisikan Σ^k sebagai himpunan dari string dengan panjang k, setiap string tersebut memiliki simbol dalam Σ .

- Perhatikan bahwa $\Sigma^0 = \{\epsilon\}$, untuk alphabet apapun.
- Bahwa ϵ adalah string yang memiliki panjang 0. Jika Σ = {0, 1} maka Σ^1 = {0, 1} Σ^2 = {00, 01, 10, 11} Σ^3 = {000, 001, 010, 011, 100, 101, 110, 111} dan seterusnya.
- Semua string pada alphabet Σ dinotasikan Σ^* .
- Contoh: $\{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, ...\}$ dan $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup ...$

- Kadang-kadang kita tidak ingin memasukkan string kosong dalam himpunan string.
- Himpunan string-string tak kosong dari alphabet Σ dinotasikan Σ^+ .
- Dengan demikian:

$$\Sigma^{+} = \Sigma^{1} \cup \Sigma^{2} \cup \Sigma^{3} \cup \dots$$
$$\Sigma^{*} = \Sigma^{+} \cup \{\epsilon\}.$$

Perangkaian String (concatenation)

- Misalkan x dan y adalah string, maka xy menyatakan perangkaian dari x dan y, bahwa string dibentuk dengan membuat salinan dari x dan diikuti oleh salinan dari y.
- Jika x adalah string yang disusun oleh i simbol, $x = a_1 a_2 \dots a_i$ dan y adalah string yang disusun oleh j simbol, $y = b_1 b_2 \dots b_i$ maka xy adalah string dengan panjang i + j, $xy = a_1 a_2 \dots a_i b_1 b_2 \dots b_j$
- Contoh: x = 01101 dan y = 110, maka xy = 01101110 dan yx = 11001101.
- Untuk suatu string w, persamaan $\varepsilon w = w \varepsilon = w$ dipenuhi. Bahwa ε adalah identitas untuk perangkaian.

Bahasa

- Himpunan string-string yang semuanya dipilih dari Σ^* , dimana Σ adalah alphabet, dan L $\subseteq \Sigma^*$, maka L adalah bahasa pada Σ .
- Perhatikan bahwa bahasa pada Σ tidak harus meliputi string-string dengan semua simbol dari Σ .
- Dengan demikian, jika L adalah bahasa pada Σ , diketahui bahwa L adalah bahasa pada alphabet yang merupakan superset dari Σ .
- Bahasa umum dapat dipandang sebagai himpunan dari string.

- Bahasa Inggris, yang merupakan koleksi dari kata-kata dalam bahasa Inggris yang benar.
 - Kata-kata tersebut merupakan string pada alphabet yang mengandung semua huruf.
- Bahasa C atau bahasa pemrograman lainnya.
 - Dalam bahasa tersebut, program yang benar adalah subset dari string-string yang mungkin yang dibentuk dari alphabet.
 - Alphabet tersebut adalah subset dari karakter-karakter ASCII.

Operasi pada String

Eksponensiasi String

```
w^n =
```

- 1. ε , jika n=0,
- 2. w. w^{n-1} , jika n>0

Contoh bahasa dalam teori otomata: $\Sigma = \{0, 1\}$

- 1. Buatlah bahasa, dg aturan : semua string yang berisi n buah 0 dan diikuti oleh n buah 1, untuk $n \ge 0$: L1= $\{\epsilon, 01, 0011, 000111, ...\}$
- 2. Buatlah bahasa, dg aturan : semua string dari 0 dan 1 dengan banyaknya 0 sama dengan banyaknya 1. L2= $\{\epsilon, 01, 10, 0011, 0101, 1001 ...\}$
- 3. Buatlah bahasa, dg aturan : Himpunan bilangan biner yang memiliki nilai prima L3= {10, 11, 101, 111, 1011, ...}
- 4. Σ^* adalah bahasa universal untuk alphabet Σ
- 5. ϕ adalah bahasa kosong (bahasa yang tidak memiliki anggota string), merupakan bahasa pada suatu alphabet.
- 6. $\{\epsilon\}$, bahasa yang hanya mengandung string kosong, juga merupakan bahasa pada suatu alphabet. Perhatikan bahwa $\phi \neq \{\epsilon\}$

Contoh 3

Berikut adalah contoh bahasa pada $\Sigma = \{a, b\}$:

- 1. $L_1 = \{\varepsilon, a, aa, aab\}$
- 2. $L_2 = \{x \in \{a, b\}^* \mid |x| \le 8\}$
- 3. $L_3 = \{x \in \{a, b\}^* \mid |x| \text{ adalah ganjil}\}$
- 4. $L_4 = \{x \in \{a, b\}^* \mid n_a(x) \ge n_b(x)\}$
- 5. $L_5 = \{x \in \{a, b\}^* \mid |x| \ge 2, x \text{ diawali dan diakhiri dengan b} \}$

Perangkaian Bahasa

- Jika L_1 dan L_2 adalah bahasa, L_1 dan $L_2 \subseteq \Sigma^*$. Perangkaian dari L_1 dan L_2 dinotasikan $L_1L_2 = \{xy \mid x \in L_1 \text{ dan } y \in L_2\}$.
- L_1 = {hope, fear}
- L_2 = {less, fully}
- Sebagai contoh, L_1 . L_2 ={hope, fear}{less, fully} = {hopeless, hopefully, fearless, fearfully}.
- Untuk L adalah bahasa, $L\{\varepsilon\} = \{\varepsilon\}L$ karena untuk setiap $x \in L$, $x\varepsilon = \varepsilon x = x$.

Otomata Sederhana

- Contoh mesin otomata sederhana :
 - Otomata pada saklar listrik

Otomata Sederhana

• Finite automaton berikut dapat dinyatakan sebagai bagian dari lexical analyzer.

