Genome Annotation

Presented by Suzy Strickler BCBC
Boyce Thompson Institute
Ithaca, NY

Objectives:

- 1. Understand steps involved in genome annotation
- 2. Demonstrate the use of data and tools that can be used in genome annotation
- 3. Learn how to QC genome assemblies and annotations
- 4. Understand how to derive functional predictions for genes

Goals of genome annotation

- 1. Predict, categorize, and mask repetitive elements
- 2. Determine gene structures as accurately as possible
- 3. Predict putative functions of predicted genes
- 4. Associate gene ontology terms, domains, etc for downstream analyses

Annotation Workflow Overview

- 1. Assembly QC is it good enough to annotate?
- 2. Structural annotation tools, input, outputs
- 3. Annotation QC are we capturing most of the gene models accurately?
- 4. Functional annotation tools, input, outputs

1. Assembly QC

Assembly quality (total length, N50, etc)

	S. lycopersicoides	S. pennellii v2	. lycopersicum Heinz v 4.0	
No. of pseudomolecules	12	12	12	
longest sequence (Mbp)	133.5	109.3	90.9	
Contig N50 (bp)	253,764	60,347	6,007,830	
total length (Mbp)	1,152	926	782.5	
expected genome size (Mbp)	1,200	942	781	
Total size (bp) of unanchored contigs (% of assembly)	135,089,793 (10.5)	63,101,713 (6.4%)	9,643,250 (1.2%)	

1. Assembly QC

- Assembly Errors correction
 - Tools: Pilon Illumina https://github.com/broadinstitute/pilon/wiki
 - Polca part of MaSurCA package
 - Arrow PacBio https://github.com/PacificBiosciences/GenomicConsensus
 - Nanopolish nanopore https://github.com/jts/nanopolish
- Example: tomato Nanopore/Illumina hybrid assembly polished with Illumina reads:

Round	SNPs/Indels corrected		
1	145,994		
2	84,441		
3	46,201		

1. Assembly QC

Assembly BUSCO metrics https://gitlab.com/ezlab/busco_biocontainer

Genome BUSCO Comparison

Software | Open Access | Published: 29 November 2018

Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies

Michael J. Roach ☑, Simon A. Schmidt & Anthony R. Borneman

BMC Bioinformatics 19, Article number: 460 (2018) | Cite this article

10k Accesses | 136 Citations | 12 Altmetric | Metrics

2. Structural Annotation

Annotation pipelines:

Maker

Braker

2. Structural Annotation: Repeat Masking

- Why repeat mask? Over-prediction
- Tools:
 - Repeat Modeler (Repeat Scout, RECON, LtrHarvest) de novo https:// www.repeatmasker.org/RepeatModeler/
 - EDTA de novo and filtering https://github.com/oushujun/EDTA
 - Repbase database https://www.girinst.org/repbase/
 - Repeatmasker masking of genome using above output http://www.repeatmasker.org/

IMPORTANT - don't mask domains! -> Protexcluder

2. Structural Annotation: Repeat Masking

The Extensive de novo TE Annotator (EDTA)

https://github.com/oushujun/EDTA

2. Structural Annotation: Ab initio Prediction

- Why ab initio? Similarity-based methods may not be applicable, propagation of errors, use statistical models to predict gene models
 - Training: "ab initio gene predictors use organism-specific genomic traits, such as codon frequencies and distributions of intron
 exon lengths, to distinguish genes from intergenic regions and to determine intron
 exon structures." -Yandell and Ence 2012
- Tools:
 - Snap easy to train https://github.com/KorfLab/SNAP
 - Augustus difficult to train https://github.com/Gaius-Augustus/Augustus
 - Genemark http://exon.gatech.edu/GeneMark/

2. Structural Annotation: Evidence Aligners

 Why/What? Tools to align RNA and protein evidence to genome, usually output to gff3 or bam

Tools:

- Hisat2 align RNA-seq http://daehwankimlab.github.io/hisat2/
- Gmap align mRNA https://academic.oup.com/bioinformatics/article/ 21/9/1859/409207
- Mikado/Portcullis RNA-seq clean-up https://mikado.readthedocs.io/en/stable/
- Pasa https://github.com/PASApipeline/PASApipeline/blob/master/docs/index.asciidoc

2. Structural Annotation: Pipelines

- Why/What? Uses a number of tools and inputs
- Tools:
 - Maker https://www.yandell-lab.org/software/maker.html
 - Braker https://github.com/Gaius-Augustus/BRAKER

MAKER pipeline

BRAKER with RNA-Seq reads

1st Maker Run (Transcripts, Proteins)

Gene model derived from MAKER run maker_opt.ctl:

Train SNAP

est= #set of ESTs or assembled mRNA-seq in fasta format altest= #EST/cDNA sequence file in fasta format from an alt est_gff= #aligned ESTs or mRNA-seq from an external GFF3 fi altest gff= #aligned ESTs from a closly relate species in G

snaphmm= #SNAP HMM file
gmhmm= #GeneMark HMM file
augustus_species= #Augustus gene prediction species model
fgenesh_par_file= #FGENESH parameter file
pred_gff= #ab-initio predictions from an external GFF3 file
model_gff= #annotated gene models from an external GFF3 file (annotation prest2genome=1 #infer gene predictions directly from ESTs, 1 = yes, 0 = no
protein2genome=0 #infer predictions from protein homology, 1 = yes, 0 = no
trna=0 #find tRNAs with tRNAscan, 1 = yes, 0 = no
snoscan_rrna= #rRNA file to have Snoscan find snoRNAs
unmask=0 #also run ab-initio prediction programs on unmasked sequence, 1 =

genome.fa RNAseq.bam GeneMark-ET genemark.gtf **AUGUSTUS** training **AUGUSTUS** prediction augustus.gtf

Control files:

- maker_exe.ctl: path for the underlying executables
- maker_bopt.ctl: stat for BLAST and Exonerate

2nd Maker

Run

• maker_opt.ctl: path for input genome files + training parameters

https://github.com/Gaius-Augustus/BRAKER

Slide courtesy of Bikash Shrestha

https://weatherby.genetics.utah.edu/MAKER/wiki/index.php/Main_Page

3. Annotation WC: Postprocessing, Cleanup, and QC

- Remove
 - Transposons
 - incomplete gene models
 - Genes with no match to nr (<e-20) an FPKM <0.1 and no InterProScan domain
- Sensitivity, specificity, accuracy, AED value

Yandell and Ence 2012

3. Annotation QC: Comparison to a related species

	S. lycopersicoides v1.1	S. pennellii v2	S. lycopersicum v4.0		
no. of gene models*	37,939	44,965	34,075		
Average gene model length (bp)	4,388	5,962	3,571		
Average CDS length (bp)*	1,232	1,549	1,027		
Average exons/gene*	5.2	5.5	4.5		
BUSCO	97.6%[S:87.2%,D:10.4%],F:0	97.6%[S:87.2%,D:10.4%],F:0.4%,M:2.0%		97.5%[S:96.4%,D:1.1%],F:0.4%,M:2.1%	
*calculated using the primary isoform					

3. Annotation QC: Gene Families

3. Annotation QC: BUSCO

3. Annotation QC: Post-processing, Clean-up, and QC

- Change gene model names once structural annotation is completed.
 - Ex: maker-Contig3008-exonerate_est2genome-gene-0.0-mRNA-1 VS Solyd03g00650
- Versioning of genome and annotation (and keeping them in sync) very important
- Apollo https://genomearchitect.readthedocs.io/en/latest/

3. Annotation QC: Manual curation with Apollo

4. Functional Annotation

4. Functional Annotation: Tools

- Sequence searches
 - Diamond/BLAST
 - Databases: Swiss-prot, Trembl, nr, InterPro
- Domain searches
 - InterProScan
 - domains, GO terms, pathways
- Gene families
 - Orthofinder

Publishing your plant genome

- Typical tables/figures (N50, gaps, etc, repeat content, gene families (expansion/contraction), BUSCO, comparisons to reference)
- Circos plots
- Nice to have a biology hook
- Where to publish? https://plabipd.de/portal/sequenced-plant-genomes
- Submitting to Genbank: Project ID for publication
 - All supporting raw reads, annotation files, fasta files
- Organism-specific database
 - JBrowse
 - Apollo
 - Blast
- CyVerse/CoGe

Publishing your plant genome

Let's annotate our *U. gibba* FLYE assembly!

• Genome file: Ugibba_FLYE_assembly.fasta.PolcaCorrected.fa.cat.all.gz

• RNA-seq from shoots and traps: https://www.ncbi.nlm.nih.gov/sra/ SRX2368915[accn]

 All this stuff plus some output files in /home/user/work/data/iplant/home/shared/ Botany2020NMGWorkshop/

All scripts are on GitHub

```
$ cd ~/
$ git clone https://github.com/bcbc-group/Botany2022NMGWorkshop.git
$ cd Botany2022NMGWorkshop
```

QC of FLYE *U. gibba* assembly

- Size = 85,700,758 bp
- N50 = 4,134,757 bp
- BUSCO = 93.6% complete

Annotation pipeline **EDTA** Step 2 Step 1 **RNA & protein** Protexcluder Hisat2 **RepeatMasking** evidence Repeatmasker Augustus **Braker** Genemark Step 3 **Structural Annotation Gene model** predictions *filtering **Functional Annotation** diamond InterproScan Step 4

Annotation pipeline

Step 1
Already performed for you!

- EDTA
- Protexcluder
- RepeatMasking
- RepeatMasking
- Augustus

Structural Annotation

Gene model predictions

*filtering

Braker

Functional Annotation

diamond

InterproScan

Genemark

Hisat2°

Step 1: Repeat Masking

https://github.com/bcbc-group/Botany2022NMGWorkshop/blob/main/5.Annotation/1_repeatmasking.sh

*this has already been performed to conserve time

Annotation pipeline

Step 2: RNA-Seq read mapping

https://github.com/bcbc-group/Botany2022NMGWorkshop/blob/main/ 5.Annotation/2_hisat_pe_annot.sh

To run:

\$cd ~/

\$bash Botany2022NMGWorkshop/5.Annotation/2_hisat_pe_annot.sh

Annotation pipeline

Step 3: Running Braker

https://github.com/bcbc-group/Botany2022NMGWorkshop/blob/main/
 5.Annotation/3 braker.sh

To run:

\$cd ~/

\$bash Botany2022NMGWorkshop/5.Annotation/3_braker.sh

Runs a long time! Let's look at output from last year's workshop: https://github.com/bcbc-group/Botany2021NMGWorkshop/tree/main/
 5.Annotation/Output/braker_ouput

Annotation pipeline

Step 4: Functional annotation

• https://github.com/bcbc-group/Botany2022NMGWorkshop/blob/main/5.Annotation/4 functional annot.sh

- Maker also has several scripts for postprocessing files under:
- /opt/maker/bin

Postprocessing, Cleanup, and QC

- Remove Transposons
- complete genes only
- match to nr, e-20
- FPKM > 0.1
- AED value
- InterProScan domain
- Comparison to relative, length and number of genes
- Gene families
- BUSCO
- Change gene model names once structural annotation is completed.
- Versioning –very important
- Apollo

Maker

• If you are interested in running maker check out: https://github.com/bcbc-group/Botany2021NMGWorkshop/tree/main/5.Annotation/maker_scripts