(a)
$$2(x)(x+1)(x+2)$$

(b) Since $\mathbb Z$ is closed under addition and multiplication, we can express any integer a in the form

$$a = dq - b, 0 \le b < d$$

Where d, q, and b are integers. This shows that any integer can be expressed as the product of a divisor and quotient, minus a positive remainder b that is always less than d. a is said to be divisible by d iff b = 0.

Where the divisor is 3, it follows that

$$a = 3q - b, 0 \le b < 3$$

$$\implies a + b = 3q$$

For any three consecutive integers a + 0, a + 1, and a + 2, the constraints on the value of b are always satisfied, and there is always an a where b is zero, therefore exactly one integer out of any three consecutive integers is divisible by 3.

(c)

Proof. From (b), given three consecutive integers, one is divisible by 3. Let $x \in \mathbb{N}$.

Therefore, given a set $\{x, x+1, x+2\}$, $x \in \mathbb{N}$, taking x to be the integer divisible by 3, we can express the set as $\{3q, x+1, x+2\}$, where $q \in \mathbb{N}$.

From (a), we can see that the numerator of the rational function $\frac{2x^3+6x^2+4x}{3}$ can be factorized to 2(x)(x+1)(x+2), such that

$$f(x) = \frac{2(x)(x+1)(x+2)}{3}$$

$$= \frac{2(3q)(x+1)(x+2)}{3} \quad \text{[from (b)]}$$

$$= 2(q)(x+1)(x+2)$$

Since $q, x \in \mathbb{N}$ and \mathbb{N} is closed under addition and multiplication, we can conclude that $f(x) \in \mathbb{N}$ for all $x \in \mathbb{N}$.

(d) $f(\mathbb{N}) \neq \mathbb{N}$

Proof. Since $f(\mathbb{N}) = \mathbb{N}$ iff $f(\mathbb{N}) \subseteq \mathbb{N}$ and $\mathbb{N} \subseteq f(\mathbb{N})$, to prove that $f(\mathbb{N}) \neq \mathbb{N}$ it suffices to show $\mathbb{N} \nsubseteq f(\mathbb{N})$.

Looking at the function, we have 2(q)(x+1)(x+2), $x, q \in \mathbb{N}$.

From the definition of the function, we can see that 2 is a factor, thus the output of f(x) for all $x \in \mathbb{N}$ will be an even number.

Since the set of odd numbers is not in the image of f, we can conclude that $\mathbb{N} \nsubseteq f(\mathbb{N})$ and thus $f(\mathbb{N}) \neq \mathbb{N}$.