Windowing

Table of Contents

nitialization	:
Function Begin	
STOP BAND Frequency	
PASS BAND Frequency	
Sampling Frequency	
Order of the filter	
Original	
Plotting of OUTPUT for Comparison	
Author: Kaustubh Shivdikar	
Audot. Raustuoti siitvurai	

Design, visualize, and implement window functions. Compare mainlobe widths and sidelobe levels of windows as a function of their size and other parameters.

Initialization

```
clear all
clc
```

Function Begin

```
disp('Commented for Publishing');
% function z = Windowing(N) {
Commented for Publishing
```

STOP BAND Frequency

fs=800;

PASS BAND Frequency

fp=300;

Sampling Frequency

```
F=1800;

Wp=(2*pi*fp)/F;

Ws=(2*pi*fs)/F;

Wc=(Ws+Wp)/2;
```

Order of the filter

```
Commented \ for \ publishing. \ N=input ('Enter \ the \ order \ of \ the \ royal \ filter \ (Number \ has \ to \ be \ odd): ');
```

```
N = 31;
alpha=(N-1)/2;
for i=1:(2*alpha)+1
    hd(i)= (Wc*sin(i-alpha))/(pi*Wc*(i-alpha));
end
t=1:(2*alpha)+1;
hd((N-1)/2)=(Wc/pi);
```

Original

```
hd
r = rectwin(N);
b= blackman(N);
c = chebwin(N);
tk = tukeywin(N);
tr = triang(N);
bmh = blackmanharris(N);
hm = hamming(N);
hn = hann(N);
ftw = flattopwin(N);
for i=1:(2*alpha)+1
    rh(i)=r(i)*hd(i);
    bh(i)=b(i)*hd(i);
    ch(i)=c(i)*hd(i);
    th(i)=tk(i)*hd(i);
    bmhh(i)=bmh(i)*hd(i);
    hmh(i)=hm(i)*hd(i);
    hnh(i)=hn(i)*hd(i);
    ftwh(i) = ftw(i)*hd(i);
```

end

```
hd =
 Columns 1 through 7
                      -0.0142 -0.0289
   0.0225
             0.0103
                                         -0.0173
                                                    0.0146
                                                              0.0394
  Columns 8 through 14
   0.0299
            -0.0148 -0.0610
                               -0.0602
                                          0.0150
                                                    0.1447
                                                              0.2678
 Columns 15 through 21
   0.6111
             0.2678
                       0.1447
                                0.0150
                                         -0.0602
                                                   -0.0610
                                                            -0.0148
 Columns 22 through 28
   0.0299
             0.0394
                       0.0146
                              -0.0173
                                         -0.0289
                                                   -0.0142
                                                              0.0103
 Columns 29 through 31
   0.0225
            0.0138 -0.0057
```

Plotting of OUTPUT for Comparison

```
figure();
hold on;
subplot(3,3,1);
stem(t,hd);
xlabel('Original Plot');
subplot(3,3,2);
stem(t,rh);
xlabel('Rectangular window');
subplot(3,3,3);
stem(t,bh);
xlabel('Blackman window');
subplot(3,3,4);
stem(t,ch);
xlabel('Chebyshev window');
subplot(3,3,5);
stem(t,th);
xlabel('Tukey window ');
subplot(3,3,6);
stem(t,bmhh);
xlabel('Blackmanharris window');
```

```
subplot(3,3,7);
stem(t,hmh);
xlabel('Hamming window');

subplot(3,3,8);
stem(t,hnh);
xlabel('Hanning window');

subplot(3,3,9);
stem(t,ftwh);
xlabel('Flat Top window');
```


Author: Kaustubh Shivdikar

MATLAB Lab experiment of Linear to circular convolution.

Published with MATLAB® R2015a