

# Aula 9 Organização de Computadores

Hierarquia de Memória Memória Virtual

Profa. Débora Matos

A memória principal pode agir como uma "cache" para o armazenamento secundário.

Objetivo: permitir o compartilhamento seguro e eficiente da memória entre vários programas.

Quando um grupo de programas são executados ao mesmo tempo em um computador, <u>a memória total exigida por todos os programas pode ser muito maior do que a quantidade de memória principal</u>.

 Usando memória virtual, o computador endereça mais memória principal do que ele realmente possui e usa o disco rígido para conter o excedente;

 Esta área do disco é chamada de arquivo de páginas, pois contém porções da memória principal.

- De forma semelhante, a memória principal pode agir como uma "cache" para a memória secundária.
  - Memória Virtual: técnica que nos permite ver a memória principal como uma cache de grande capacidade de armazenamento
  - É apenas mais um nível na hierarquia de memórias



mesma idéia da cache, mas com terminologia diferente

| cache      | MV                           |
|------------|------------------------------|
| bloco      | página (ou segmento)         |
| cache miss | page fault                   |
| endereço   | endereço virtual (ou lógico) |
| índice     | endereço real (ou físico)    |

- endereço virtual (lógico): gerado pelo programa
  - deve endereçar todo espaço em disco
  - maior número de bits
- endereço real (físico): endereço na memória principal
  - menor número de bits

#### Memória Virtual (MV)

#### Por que MV é differente das caches?

 Miss penalty é MUITO maior (milhões de ciclos)! Se informação não está na memória, está no disco!

#### Logo:

- miss ratio precisa ser bem menor do que em cache
- alta penalidade do miss => necessário buscar blocos maiores em disco
- princípio de localidade opera sobre blocos maiores de dados ou instruções e leva a hit ratios bem mais elevados
- mapeamento associativo das páginas
- misses são tratados por software (há tempo disponivel)
- técnica de escrita write-through não é uma opção. Usa-se write-back.

Cache -> bloco

Memória Virtual -> página

- Ao usar a memória virtual, o processador produz um endereço virtual, traduzido por uma combinação de HW e SW, para um endereço físico.
- •O endereço é dividido em um número de página virtual e um offset de página.

- Memória virtual pode ser implementada por diferentes técnicas:
  - Paginação
  - Segmentação
  - Ambas

#### Paginação:

Processo de copiar uma página virtual do disco para um quadro de página na memória principal.

- A maneira mais comum de implementar memória virtual é usar paginação;
- Paginação é um método em que a memória principal é dividida em blocos de tamanho fixo;
- Os blocos de tamanho físico em que a memória principal é divida são chamados de quadros de páginas.
- Sempre que a CPU gera um endereço este é em relação ao espaço de endereçamento virtual.
- Fragmentação é a área da memória que não consegue ser utilizada (ex. quando um processo pequeno aloca 1 quadro).

- Tanto a memória virtual quanto a memória física são desmembradas em <u>páginas</u>, cada <u>página</u> <u>virtual</u> é mapeada para uma <u>página física</u>;
- As páginas físicas podem ser compartilhadas, fazendo 2 endereços virtuais apontarem para o mesmo endereço físico.
- A memória virtual implementa a <u>tradução</u> do espaço de endereçamento em um programa para os endereços físicos;
- A tradução tem a função de proteger o espaço de endereçamento de um programa em relação aos outros.



- Relocação: os endereços virtuais são mapeados por um programa para diferentes endereços físicos antes de serem utilizados no acesso á memória.
- Dessa forma é possível carregar o programa em qualquer lugar na memória principal.
- Os programas são realocados como um conjunto de páginas de tamanho fixo;

#### Tempo de acesso

Tempo médio de acesso Tma é dado por

$$Tma = Tm + (1 - h) Ts$$

onde Tm = tempo de acesso à MP
Ts = tempo de acesso ao disco
h = hit ratio

```
p.ex. se Tm = 20 ns, Ts = 20 ms, h = 0.9999
então Tma = 2,02 µs (100 x maior do que Tm)
```

- espaços de memória real e virtual divididos em blocos chamados de páginas
  - páginas tem tipicamente de 64 bytes a 4 Kbytes
- endereços virtuais e reais divididos em 2 campos
  - endereço da página
  - endereço da linha (ou palavra), dentro da página

- O endereço onde as várias páginas residem são armazenadas em uma tabela de páginas.
- Cada processo possui a sua própria tabela de páginas;
- A tabela de páginas possui N linhas, onde N é o número de páginas virtuais do processo;
- Se existirem páginas do processo que não estão na memória principal, a tabela de páginas indica isto configurando o bit válido como 0.
- Cada entrada na tabela de páginas possui dois campos: um bit válido e um número de quadro.

- Bit de uso da página indica o uso da página. Se o bit permanece em zero (0), indica que a página não tem sido usada por um período de tempo e que ela pode ser enviada para o disco.
- Se o processo possui quadros livres na memória principal quando uma <u>falha de páginas ocorre</u>, a nova página recuperada pode ser colocada em qualquer um dos quadros livres;
- Se a memória alocada para o processo estiver cheia, uma página vítima deve ser selecionada.

- O endereço é dividido em número da página virtual e no deslocamento da página (offset)
  - O número de bits no campo de deslocamento (offset) da página determina o tamanho da página
  - O número de páginas endereçáveis via endereço virtual não precisa ser igual ao numero de páginas endereçáveis pelo endereço físico.



•A fim de indicar o local da tabela de páginas na memória, o HW possui um registrador que aponta para o início da tabela de páginas (registrador de tabela de páginas).

#### **Exemplo**



#### Páginas: blocos de memória virtual

- Falhas de página: Os dados não estão na memória; recupere-os do disco
  - enorme penalidade de falha; portanto, as páginas devem ser bastante grandes (por exemplo, 4KB)
  - é importante reduzir as falhas de página (LRU vale a pena)
  - pode manipular as falhas no software em vez de no hardware
  - como a escrita direta é muito onerosa, usamos escrita adiada Write-back



Penalidade por falta de página: consome milhões de ciclos de clock



# Colocação e Localização de uma página na memória principal

- Diante da penalidade a ser paga por uma falta de página:
  - A redução de faltas por meio de otimização é um dos objetivos dos projetistas de sistemas da memória virtual.
  - Tabela de Páginas
    - As páginas são colocadas por meio de uma tabela que indexa totalmente a memória principal.
    - Situa-se na memória principal.

#### Tabelas de página



# Melhoria no processo de tradução de endereço: TLB

- As referências as palavras nas páginas apresentam tanto localidade espacial quanto temporal.
- Máquinas modernas apresentam uma cache especial que armazena traduções mais recentes
- Esta cache, de uso exclusivo do processo de tradução de endereços é a TLB:
  - Translation lookaside buffer

# Melhoria no processo de tradução de endereço: TLB

 As TLBs são utilizadas para acelerar a busca da tabela de páginas, armazenando os valores mais recentes das páginas pesquisadas na cache da tabela de páginas;

 Normalmente a TLB é implementada como cache associativa;

## Exemplo de TLB sem Cache



#### Tornando a tradução de endereço rápida

Um cache para traduções de endereço: translation-lookaside buffer (TLB)



Valores típicos: 16-512 entradas,

taxa de falhas: 0,01% - 1%

penalidade de falhas: 10-100 ciclos

TLBs e CACHES



FIGURA 6.20 Reunindo tudo: TLB, tabela de páginas, cache e memória principal.

#### TLBs e CACHES

- TLB totalmente associativa

- Diagrama para operação de Leitura



Dados

### Exemplo do Pentium



FIGURA 6.21 Hierarquia de memória do Pentium.

## Exemplo:

Suponha um endereço de 8 bits no espaço virtual e memória física de 4 quadros de páginas (sem cache). E assuma que as páginas têm tamanho de 32 bytes. E o endereço da memória física tem 7 bits (4x32B). Suponha que algumas páginas foram trazidas para a memória principal. Suponha que o endereço virtual gerado é 13d. Qual o endereço físico do byte na memória principal?



**FIGURA 6.13** Formato para um endereço virtual de 8 bits com tamanho de página de  $2^5 = 32$  palavras.

3 bits

## Exemplo (cont.):

Suponha agora que o endereço virtual gerado é 127. Qual o endereço físico do byte na memória principal?



FIGURA 6.12 Estado atual usando paginação e tabela de páginas associada.

#### Segmentação

 O outro método de memória virtual é o por segmentação.

 Nesse caso, em vez de dividir o espaço de endereçamento virtual em páginas de tamanho fixo e o endereçamento físico em quadros de páginas de mesmo tamanho, o espaço de endereçamento virtual é dividido em <u>segmentos</u>;

#### Segmentação

 Na segmentação, o espaço de endereçamento virtual é dividido em unidades lógicas de tamanho variável.

 Quando um segmento precisa ser copiado para a memória física, o sistema operacional procura por uma porção de memória livre grande o suficiente para armazenar todo o segmento.