SISTEMAS NO INERCIALES EN RELATIVIDAD ESPECIAL

A. Blato

Licencia Creative Commons Atribución 3.0 (2018) Buenos Aires

Argentina

Este artículo presenta una nueva formulación de la relatividad especial que es invariante bajo transformaciones entre sistemas inerciales y no inerciales (no rotantes) Además, una simple solución a la paradoja de los gemelos es presentada y una nueva fuerza universal es propuesta.

Introducción

La masa intrínseca (m) y el factor frecuencia (f) de una partícula masiva están dados por:

$$m \doteq m_o$$

$$f \; \doteq \; \left(1 - \frac{\mathbf{v} \cdot \mathbf{v}}{c^2}\right)^{\!-1/2}$$

donde (m_o) es la masa en reposo de la partícula masiva, (\mathbf{v}) es la velocidad relacional de la partícula masiva y (c) es la velocidad de la luz en el vacío.

La masa intrínseca (m) y el factor frecuencia (f) de una partícula no masiva están dados por:

$$m \doteq \frac{h \kappa}{c^2}$$

$$f \doteq \frac{\nu}{\kappa}$$

donde (h) es la constante de Planck, (ν) es la frecuencia relacional de la partícula no masiva, (κ) es una constante universal positiva con dimensión de frecuencia y (c) es la velocidad de la luz en el vacío.

En este artículo, una partícula masiva es una partícula con masa en reposo no nula y una partícula no masiva es una partícula con masa en reposo nula.

Cinemática Invariante

La posición especial ($\bar{\mathbf{r}}$), la velocidad especial ($\bar{\mathbf{v}}$) y la aceleración especial ($\bar{\mathbf{a}}$) de una partícula (masiva o no masiva) están dadas por:

$$\bar{\mathbf{r}} \doteq \int f \mathbf{v} dt$$

$$\bar{\mathbf{v}} \doteq \frac{d\bar{\mathbf{r}}}{dt} = f \mathbf{v}$$

$$\bar{\mathbf{a}} \doteq \frac{d\bar{\mathbf{v}}}{dt} = f \frac{d\mathbf{v}}{dt} + \frac{df}{dt} \mathbf{v}$$

donde (f) es el factor frecuencia de la partícula, (\mathbf{v}) es la velocidad relacional de la partícula y (t) es el tiempo relacional de la partícula.

Dinámica Invariante

Sea una partícula (masiva o no masiva) con masa intrínseca (m) entonces el momento lineal (\mathbf{P}) de la partícula, el momento angular (\mathbf{L}) de la partícula la fuerza neta (\mathbf{F}) que actúa sobre la partícula, el trabajo (\mathbf{W}) realizado por la fuerza neta que actúa sobre la partícula y la energía cinética (\mathbf{K}) de la partícula están dados por:

$$\mathbf{P} \doteq m\,\bar{\mathbf{v}} = m\,f\,\mathbf{v}$$

$$\mathbf{L} \doteq \mathbf{P}\,\dot{\times}\,\mathbf{r} = m\,\bar{\mathbf{v}}\,\dot{\times}\,\mathbf{r} = m\,f\,\mathbf{v}\,\dot{\times}\,\mathbf{r}$$

$$\mathbf{F} = \frac{d\mathbf{P}}{dt} = m\,\bar{\mathbf{a}} = m\left[f\,\frac{d\mathbf{v}}{dt} + \frac{df}{dt}\,\mathbf{v}\right]$$

$$\mathbf{W} \doteq \int_{1}^{2}\mathbf{F}\cdot d\mathbf{r} = \int_{1}^{2}\frac{d\mathbf{P}}{dt}\cdot d\mathbf{r} = \Delta\,\mathbf{K}$$

$$\mathbf{K} \doteq m\,f\,c^{2}$$

donde (f, \mathbf{r} , \mathbf{v} , t, $\bar{\mathbf{v}}$, $\bar{\mathbf{a}}$) son el factor frecuencia, la posición relacional, la velocidad relacional, el tiempo relacional, la velocidad especial y la aceleración especial de la partícula y (c) es la velocidad de la luz en el vacío. La energía cinética (K_o) de una partícula masiva en reposo relacional es ($m_o\,c^2$)

Magnitudes Relacionales

A partir de una partícula masiva auxiliar (denominada punto-auxiliar) es posible obtener magnitudes cinemáticas (denominadas relacionales) que son invariantes bajo transformaciones entre sistemas inerciales y no inerciales (no rotantes)

Un punto-auxiliar es una partícula masiva arbitraria que está libre de fuerzas externas (es decir, la fuerza neta que actúa sobre ésta es cero)

El tiempo relacional (t), la posición relacional (r), la velocidad relacional (v) y la aceleración relacional (a) de una partícula (masiva o no masiva) respecto a un sistema inercial o no inercial (no rotante) S están dados por:

$$\begin{split} t &\doteq \int_0^{\mathsf{t}} \gamma \, \mathsf{d} \mathsf{t} - \gamma \, \frac{\vec{r} \cdot \vec{\varphi}}{c^2} \\ \mathbf{r} &\doteq \vec{r} + \frac{\gamma^2}{\gamma + 1} \, \frac{(\vec{r} \cdot \vec{\varphi}) \, \vec{\varphi}}{c^2} - \int_0^{\mathsf{t}} \gamma \, \vec{\varphi} \, \mathsf{d} \mathsf{t} \\ \mathbf{v} &\doteq \frac{d\mathbf{r}}{dt} \quad , \quad \mathbf{a} \doteq \frac{d\mathbf{v}}{dt} \end{split}$$

donde (t, \vec{r}) son el tiempo y la posición de la partícula respecto al sistema S, $(\vec{\varphi})$ es la velocidad del punto-auxiliar respecto al sistema S, (c) es la velocidad de la luz en el vacío y $\gamma \doteq (1 - \vec{\varphi} \cdot \vec{\varphi}/c^2)^{-1/2}$

La velocidad del punto-auxiliar $(\vec{\varphi})$ es una constante en sistemas inerciales y (γ) es una constante en sistemas no inerciales (movimiento circular uniforme)

La velocidad relacional de la luz (partícula no masiva) en el vacío es (c) y $(c \cdot c)$ es una constante en sistemas inerciales y no inerciales (no rotantes)

La frecuencia relacional (ν) de una partícula no masiva respecto a un sistema inercial o no inercial (no rotante) S está dada por:

$$\nu \; \doteq \; \mathbf{v} \; \gamma \; \left(1 - \frac{\vec{c} \cdot \vec{\varphi}}{c^2} \right)$$

donde (v) es la frecuencia de la partícula no masiva respecto al sistema S, (\vec{c}) es la velocidad de la partícula no masiva respecto al sistema S, (\vec{c}) es la velocidad del punto-auxiliar respecto al sistema S, (c) es la velocidad de la luz en el vacío y $\gamma \doteq (1 - \vec{\varphi} \cdot \vec{\varphi}/c^2)^{-1/2}$

§ En los sistemas no coincidentes ($t_{\alpha} \neq \tau_{\alpha}$ y/o $\mathbf{r}_{\alpha} \neq 0$) (α = punto-auxiliar) una constante debe ser sumada en la definición de tiempo relacional tal que el tiempo relacional y el tiempo propio del punto-auxiliar sean iguales ($t_{\alpha} = \tau_{\alpha}$) y otra constante debe ser sumada en la definición de posición relacional tal que la posición relacional del punto-auxiliar sea cero ($\mathbf{r}_{\alpha} = 0$)

§ En el estudio de un sistema aislado de partículas (masivas y/o no masivas) todos los observadores deberían preferentemente usar un punto-auxiliar tal que el momento lineal del sistema aislado de partículas sea cero ($\sum_z m_z \, \bar{\mathbf{v}}_z = 0$)

§ Es importante resaltar que todo punto-auxiliar debe ser una partícula masiva libre (es decir, la fuerza neta que actúa sobre ésta debe ser cero)

Métrica Relacional

Es sabido que en sistemas inerciales la geometría local es euclidiana y que en sistemas no inerciales la geometría local es en general no euclidiana.

Según este artículo, en un sistema inercial o no inercial (no rotante) S el elemento de línea local debe ser obtenido desde el elemento de línea relacional.

Por lo tanto, en el sistema S el elemento de línea relacional (en coordenadas rectilíneas) y el elemento de línea local están dados por:

$$ds^2 = c^2 dt^2 - d\mathbf{r}^2$$

$$ds^2 \,=\, \left[\,\left(\,1+\frac{\vec{\mathrm{w}}\cdot\vec{r}}{c^2}\,\right)^{\!2} \!-\, \left(\,\frac{\vec{\phi}\times\vec{r}}{c}\,\right)^{\!2}\,\right]c^2\,\mathrm{dt}^2\,-\,2\left(\,\vec{\phi}\times\vec{r}\,\right)d\vec{r}\,\,\mathrm{dt}\,-\,d\vec{r}^{\,2}$$

$$\vec{\mathrm{w}} \ \doteq \ - \ \gamma^1 \left(\vec{\alpha} \ + \frac{\gamma^2}{\gamma + 1} \, \frac{\left(\vec{\alpha} \cdot \vec{\varphi} \right) \vec{\varphi}}{c^2} \, \right) \quad , \quad \vec{\phi} \ \doteq \ - \ \gamma^0 \left(\frac{\gamma^2}{\gamma + 1} \, \frac{\left(\vec{\alpha} \times \vec{\varphi} \right)}{c^2} \, \right)$$

donde (t, \mathbf{r}) son tiempo relacional y posición relacional respecto al sistema S, (t, \vec{r}) son tiempo y posición respecto al sistema S, $(\vec{\varphi}, \vec{\alpha})$ son la velocidad y la aceleración del punto-auxiliar respecto al sistema S, (c) es la velocidad de la luz en el vacío y $\gamma \doteq (1 - \vec{\varphi} \cdot \vec{\varphi}/c^2)^{-1/2}$

El sistema S es inercial cuando ($\vec{\alpha}=0$) el sistema S es no inercial (movimiento rectilíneo acelerado) cuando ($\vec{\alpha}\neq0$) & ($\vec{\alpha}\times\vec{\varphi}=0$) y el sistema S es no inercial (movimiento circular uniforme) cuando ($\vec{\alpha}\neq0$) & ($\vec{\alpha}\cdot\vec{\varphi}=0$)

Observaciones Generales

- § Las fuerzas y los campos deben ser expresados con magnitudes relacionales (la fuerza de Lorentz debe ser expresada con la velocidad relacional v, el campo eléctrico debe ser expresado con la posición relacional r, etc.)
- § El operador $(\dot{\times})$ debe ser reemplazado por el operador (\times) o el operador (\wedge) tal como sigue: $(\mathbf{a} \dot{\times} \mathbf{b} = \mathbf{b} \times \mathbf{a})$ o $(\mathbf{a} \dot{\times} \mathbf{b} = \mathbf{b} \wedge \mathbf{a})$
- § Sistemas inerciales y no inerciales no deben introducir fuerzas ficticias en F.
- § Según este artículo y la relatividad especial, la masa intrínseca no es aditiva.
- \S La magnitud masa intrínseca (m) es invariante bajo transformaciones entre sistemas inerciales y no inerciales.
- § Las magnitudes relacionales ($\nu,t,\mathbf{r},\mathbf{v},\mathbf{a}$) son invariantes bajo transformaciones entre sistemas inerciales y no inerciales (no rotantes)
- § Por lo tanto, las magnitudes cinemáticas y dinámicas $(f, \bar{\mathbf{r}}, \bar{\mathbf{v}}, \bar{\mathbf{a}}, \mathbf{P}, \mathbf{L}, \mathbf{F}, \mathbf{W}, \mathbf{K})$ son invariantes bajo transformaciones entre sistemas inerciales y no inerciales (no rotantes)
- § Sin embargo, es natural considerar la siguiente generalización:
- Sería también posible obtener magnitudes relacionales ($\nu,t,\mathbf{r},\mathbf{v},\mathbf{a}$) que serían invariantes bajo transformaciones entre sistemas inerciales y no inerciales.
- Las magnitudes cinemáticas y dinámicas ($f, \bar{\mathbf{r}}, \bar{\mathbf{v}}, \bar{\mathbf{a}}, \mathbf{P}, \mathbf{L}, \mathbf{F}, \mathbf{W}, \mathbf{K}$) estarían dadas también por las ecuaciones de este artículo.
- Por lo tanto, las magnitudes cinemáticas y dinámicas $(f, \bar{\mathbf{r}}, \bar{\mathbf{v}}, \bar{\mathbf{a}}, \mathbf{P}, \mathbf{L}, \mathbf{F}, \mathbf{W}, \mathbf{K})$ serían invariantes bajo transformaciones entre sistemas inerciales y no inerciales.

Bibliografía

- [1] R. A. Nelson, J. Math. Phys. 28, 2379 (1987).
- [2] R. A. Nelson, J. Math. Phys. 35, 6224 (1994).
- [3] H. Nikolić, Phys. Rev. A 61, 032109 (2000).
- [4] V. V. Voytik, Gravit. Cosmol. 19, 193 (2013).
- [5] C. Møller, The Theory of Relativity (1952).

Paradoja de los Gemelos

Si un reloj A está en reposo en el origen O de un sistema inercial o no inercial (movimiento circular uniforme) S y otro reloj B está en reposo en el origen O' de un sistema no inercial (movimiento circular uniforme) S' entonces el tiempo relacional t_A del reloj A y el tiempo relacional t_B del reloj B están dados por:

$$t_A = \int_0^{\mathsf{t}_A} \gamma_{(\vec{\varphi})} \, \mathsf{dt}_A - \gamma_{(\vec{\varphi})} \, \frac{\vec{r}_A \cdot \vec{\varphi}}{c^2}$$

$$t_B = \int_0^{\mathsf{t}_B} \gamma_{(\vec{arphi}')} \, \mathsf{dt}_B \, - \, \gamma_{(\vec{arphi}')} \, rac{ec{r}_B \cdot ec{arphi}'}{c^2}$$

La posición del origen O respecto al sistema S es siempre igual a cero ($\vec{r}_A=0$) y puesto que $\gamma_{(\vec{\wp})}$ es una constante en el sistema S, entonces:

$$t_A = \int_0^{\mathsf{t}_A} \gamma_{(\vec{\varphi})} \, \mathsf{dt}_A$$

$$t_A = \gamma_{(\vec{\varphi})} t_A$$

La posición del origen O' respecto al sistema S' es siempre igual a cero ($\vec{r}_B=0$) y puesto que $\gamma_{(\vec{\varphi}')}$ es una constante en el sistema S', entonces:

$$t_B \; = \; \int_0^{\mathtt{t}_B} \gamma_{(\, \vec{\varphi}^{\, \prime})} \; \mathtt{dt}_B$$

$$t_B \; = \; \gamma_{(\, \vec{\varphi}\,')} \; {\bf t}_B$$

Los relojes A y B coinciden espacialmente en el tiempo relacional ($t_0 = t_{0A} = t_{0B}$) y en el tiempo relacional ($t = t_A = t_B$) Puesto que ($t_A = t_B$) se obtiene:

$$\gamma_{(\vec{\varphi})} t_A = \gamma_{(\vec{\varphi}')} t_B$$

Por lo tanto, si $\gamma_{(\vec{\varphi})} > \gamma_{(\vec{\varphi}')}$ entonces ($\mathsf{t}_A < \mathsf{t}_B$) si $\gamma_{(\vec{\varphi})} = \gamma_{(\vec{\varphi}')}$ entonces ($\mathsf{t}_A = \mathsf{t}_B$) y por último si $\gamma_{(\vec{\varphi})} < \gamma_{(\vec{\varphi}')}$ entonces ($\mathsf{t}_A > \mathsf{t}_B$)

Donde ($\vec{\varphi}$) es la velocidad del punto-auxiliar respecto al sistema S y ($\vec{\varphi}'$) es la velocidad del punto-auxiliar respecto al sistema S'.

Fuerza Cinética

La fuerza cinética \mathbf{K}_{ij}^a ejercida sobre una partícula i con masa intrínseca m_i por otra partícula j con masa intrínseca m_j está dada por:

$$\mathbf{K}_{ij}^{a} = -\left[\frac{m_{i} m_{j}}{\mathbb{M}} \left(\bar{\mathbf{a}}_{i} - \bar{\mathbf{a}}_{j}\right)\right]$$

donde $\bar{\mathbf{a}}_i$ es la aceleración especial de la partícula i, $\bar{\mathbf{a}}_j$ es la aceleración especial de la partícula j y \mathbb{M} ($=\sum_z m_z$) es la suma de las masas intrínsecas de todas las partículas del Universo.

La fuerza cinética \mathbf{K}_i^u ejercida sobre una partícula i con masa intrínseca m_i por el Universo está dada por:

$$\mathbf{K}_{i}^{u} = -m_{i} \frac{\sum_{z} m_{z} \bar{\mathbf{a}}_{z}}{\sum_{z} m_{z}}$$

donde m_z y $\bar{\mathbf{a}}_z$ son la masa intrínseca y la aceleración especial de la z-ésima partícula del Universo.

De las ecuaciones anteriores se deduce que la fuerza cinética neta \mathbf{K}_i (= $\sum_j \mathbf{K}_{ij}^a$ + \mathbf{K}_i^u) que actúa sobre una partícula i con masa intrínseca m_i está dada por:

$$\mathbf{K}_i = -m_i \, \bar{\mathbf{a}}_i$$

donde $\bar{\mathbf{a}}_i$ es la aceleración especial de la partícula i.

Ahora, reemplazando ($\mathbf{F}_i = m_i \, \bar{\mathbf{a}}_i$) y reordenando, se obtiene:

$$\mathbf{K}_i + \mathbf{F}_i = 0$$

Si \mathbf{T}_i ($\doteq \mathbf{K}_i + \mathbf{F}_i$) es la fuerza total que actúa sobre la partícula i, entonces:

$$\mathbf{T}_i = 0$$

Por lo tanto, la fuerza total \mathbf{T}_i que actúa sobre toda partícula i es siempre cero.

Por otro lado, si un observador usa un punto-auxiliar tal que el momento lineal del Universo (es decir, un sistema aislado de partículas) sea cero ($\sum_z m_z \bar{\mathbf{v}}_z = 0$) entonces para el observador la fuerza cinética \mathbf{K}_i^u ejercida sobre toda partícula i por el Universo también será cero, puesto que ($\sum_z m_z \bar{\mathbf{a}}_z = 0$)

Apéndice I

Sistema de Ecuaciones I

$$[1] \qquad \frac{1}{\mu} \left[\int \mathbf{P} \ dt \ - \iint \mathbf{F} \ dt \ dt \right] = 0$$

$$[2] \qquad \frac{1}{\mu} \left[\mathbf{P} - \int \mathbf{F} \, dt \right] = 0$$

$$[3] \qquad \frac{1}{\mu} \left[\frac{d\mathbf{P}}{dt} - \mathbf{F} \right] = 0$$

$$[4] \qquad \frac{1}{\mu} \left[\mathbf{P} - \int \mathbf{F} \, dt \right] \dot{\mathbf{x}} \mathbf{r} = 0$$

$$[5] \qquad \frac{1}{\mu} \left[\frac{d\mathbf{P}}{dt} - \mathbf{F} \right] \dot{\mathbf{x}} \mathbf{r} = 0$$

$$[6] \qquad \frac{1}{\mu} \left[\int \frac{d\mathbf{P}}{dt} \cdot d\mathbf{r} - \int \mathbf{F} \cdot d\mathbf{r} \right] = 0$$

 $[\mu]$ es una constante arbitraria con dimensión de masa (M)

Apéndice II

Sistema de Ecuaciones II

$$\begin{bmatrix} 1 \end{bmatrix} \\
\downarrow dt \downarrow \\
 \begin{bmatrix} 4 \end{bmatrix} \\
\downarrow dt \downarrow \\
 \downarrow dt \downarrow \\
 \begin{bmatrix} 5 \end{bmatrix} \\
\leftarrow \dot{\times} \mathbf{r} \leftarrow \begin{bmatrix} 2 \end{bmatrix} \\
 \begin{bmatrix} 3 \end{bmatrix} \\
 \rightarrow \int d\mathbf{r} \rightarrow \begin{bmatrix} 6 \end{bmatrix}$$

$$[\,1\,] \qquad \frac{1}{\mu}\, \left[\,\, m\, \bar{\bf r}\, - \int\!\!\int {\bf F}\,\, dt\, dt\,\,\right] \,=\,\, 0$$

$$[2] \qquad \frac{1}{\mu} \left[m \, \bar{\mathbf{v}} \, - \int \mathbf{F} \, dt \, \right] = 0$$

$$[3] \qquad \frac{1}{\mu} \left[m \, \bar{\mathbf{a}} \, - \, \mathbf{F} \, \right] = \, 0$$

$$[4] \qquad \frac{1}{\mu} \left[\ m \, \bar{\mathbf{v}} \, - \int \mathbf{F} \, dt \ \right] \, \dot{\times} \, \mathbf{r} \, = \, 0$$

$$[5] \quad \frac{1}{\mu} \left[m \, \bar{\mathbf{a}} - \mathbf{F} \right] \dot{\times} \mathbf{r} = 0$$

$$[\,6\,] \qquad \frac{1}{\mu}\,\left[\,\,m\,f\,c^2\,-\int{\bf F}\cdot d{\bf r}\,\,\right] = \,0$$

 $[\mu]$ es una constante arbitraria con dimensión de masa (M)