MAT02036 - Amostragem 2

Aula 10 - Amostragem Estratificada - Avaliação Parcial 1

Markus Stein

Departamento de Estatística, IME/UFRGS

2022/2

Housekeeping

- A avaliação é composta por cinco exercícios. 🎘
 - Pode ser feito à mão ou em códigos, de qualquer forma serão postados no moodle.
 - Indicar **notações** e **fórmulas** utilizadas.
 - o Mostrar desenvolvimento, interpretação e conclusão.
- Discutam as resoluções com os colegas, mas a entrega é individual.
 - colaboração é importante, mas cópia é proibido.

Extra: (1.0 ponto) para quem entregou o exercício da aula 08.

Boa Avaliação!

Avaliação Parcial 1

(2,0 pontos) Revisar exercícios 1 e 2 com resolução nos slides 'Aula 08'.

- Quem já entregou, conferir seus resultados com a resolução atualizada nos slides da Aula 08.
 - Alguma discordância com a resolução?
- Quem fez parcialmente e/ou não entregou, ...

Exercício 2 🍟

(2,0 pontos) Exercício 3 dos slides 'Aula 08' modificado.

- a. Conferir cálculos da letra (a) do exercício original nos slides da Aula 08.
- b. A alocação apresenta $n_h > N_h$? Se sim, como realocar?
- c. Apresente uma estimativa do faturamento total T_y por ponto e por intervalo, de acordo com o realocamento em (b). Interprete.

($b\hat{o}nus$): No item (a), mostrar que tamanho da amostra para média é equivalente ao tamanho para o total, usando V e a fórmula de n adequados para cada caso.

Exercício 3 🎘

(2,0 pontos) Banco de dados Lucy. (arquivo Aula_AE_xxx.R)

Assuma que o banco de dados Lucy represente uma população.

- a. Apresente o tamanho na população por estrato, os parâmetros média e variância populacionais da variável Income, por estrato e globias, usando Zone como variável estratificadora. Repita para a variável Level como estratificadora.
- b. Supondo **AASc** de 30 empresas em cada estrato, calcule a variância do estimador da média de Income, comparando o desempenho de Zone e Level como variáveis estratificadoras.
- c. Qual a melhor variável para estratificação? Justifique, por exemplo, calculando efeito de planejamento $EPA\ (deff)$ em cada caso.
- d. Selecione uma amostra com a alocação definida no item (b) e obtenha uma estimativa pontual e intervalar para a média de Income. Interprete.

(bônus): Adicionar comandos para obtet total de Income.

(bônus 2): Adicionar comandos para obter proporção de SPAM.

Exercício 4 🥝 - *Assuma* **AASc** *dentro dos estratos*

(2,0 pontos) Exercício 4.4 (elementos de amostragem)

4.4 Planejou-se uma amostragem estratificada com reposição para estimar a porcentagem de famílias tendo conta em caderneta de poupança e também da quantidade investida. De uma pesquisa passada, têm-se estimativas para as proporções P_h e para os desvios padrões das quantidades investidas, σ_h , conforme descrito na tabela abaixo.

h	W_h	P_h	σ_h
1	0,6	0,20	9
2	0,3	$0,\!40$	18
3	0,1	0,60	52

Calcule os menores n e n_h que satifaçam, com custo constante:

- a. A proporção populacional dever ser estimada com erro padrão igual a 0,02;
- b. A quantidade média investida deve ser estimada com erro padrão igual a R\$ 2,00.

Qual dos tamanhos, em (a) ou em (b), você usaria na pesquisa? Por quê?

Exercício 5 — - Assuma AASc dentro dos estratos

(2.0 pontos) Exercício 4.20 (elementos de amostragem)

4.20 Uma cadeia de lojas está interessada em estimar, dentro das contas a receber, a proporção das que dificilmente serão recebidas. Para reduzir o custo da amostragem, usou-se AE com cada loja num estrato. Os dados obtidos foram os seguintes:

h	N_h	n_h	\hat{P}_h
1	60	15	0,30
2	40	10	$0,\!20$
3	100	20	$0,\!40$
4	30	6	0,10

onde N_h é o número de contas a receber, n_h é o tamanho da amostra e \hat{P}_h é a proporção de contas problemáticas. Dê uma estimativa para a proporção total de quatro lojas e um intervalo de confiança de 95% para a mesma.

Para casa 🏠

• Continuar os Exercícios e Entregar.

Próxima aula 📊

• Acompanhar o material no moodle.

Boas Festas! 😇

Fonte: imagem do livro Combined Survey Sampling Inference: Weighing of Basu's Elephants.

Referências

- Amostragem: Teoria e Prática Usando o R
- Elementos de Amostragem, Bolfarine e Bussab.
- Cochran(1977)

Solução:

(2,0 pontos) Revisar exercícios 1 e 2 com resolução nos slides 'Aula 08'.

Exercício 4.1 (Elementos de Amostragem), Itens (c) e (d).

```
## dados do problema - Exercício 4.1 (Elementos de Amostragem)
H <- 5  # no. de estratos
h <- 1:H  # indice dos estratos
Nh <- c( 117, 98, 74, 41, 45)  # tamanho dos estratos
Ybarrah <- c( 7.3, 6.9, 11.2, 9.1, 9.6)  # media pop. dos estratos
S2h <- c( 1.31, 2.03, 1.13, 1.96, 1.74)  # variancia do estrato
N <- sum(Nh)  # tamanho da populacao
n <- 80  # tamanho de amostra
```

```
## [1] 8.437867

## [1] 4.301073

## [1] 24.960000 20.906667 15.786667 8.746667 9.600000

## [1] 22.844026 23.819094 13.419060 9.791811 10.126008

## [1] 22.901909 23.859484 13.419324 9.737872 10.081411
```

```
## C.
## na AASc
Varybarra <- Vary / n
                          # variancia de ybarra sob AASc
Varybarra
## [1] 0.05376341
## AESne sob AAS SEM reposicao dentro dos estratos
Wh <- Nh / N
VarybarraAESnes <- sum( Wh * Sh)^2 / n - sum( Wh * S2h) / N
VarybarraAESnes
## [1] 0.01532154
## AESne sob AAS COM reposicao dentro dos estratos
VarybarraAESnec <- sum( Wh * DPh)^2 / n</pre>
VarybarraAESnec
## [1] 0.01928409
```

variancias reduzem com alocacao de neyman, vantagem sob ASSs dent14/47

(c) Sabemos que na **AASc** (ignorando os estratos) a **variância** do **estimador** da **média** é dada por

$$Var_{AASc}(\overline{y}) = rac{Var_y}{n} = rac{4.3010728}{80} = 0.0538.$$

Já na AESne considerando AASs dentro dos estratos sabemos que

$$Var_{AES_{ne}}\left(\overline{y}_{AES}
ight) = rac{1}{n}(\sum_{h=1}^{H}W_{h}S_{h})^{2} - rac{1}{N}(\sum_{h=1}^{H}W_{h}S_{h}^{2})^{2} = rac{\overline{S}^{2}}{n} - rac{\overline{S}^{2}}{N}.$$

• E na **AESne** considerando **AASc** dentro dos estratos

$$Var_{AES_{ne}}\left(\overline{y}_{AES}
ight)=rac{1}{n}(\sum_{h=1}^{H}W_{h}\sqrt{Var_{h}})^{2}=rac{\overline{DP}^{2}}{n}.$$

As Variâncias nas estratégias de alocação de Neyman são consideravelmente menores. A variância do estimador da média no plano **AASc** ignorando os estratos é cerca de 3,5 vezez a variância assumindo **AESne** sob **AASs**. Se **AASc** dentros dos estratos, esse número cai para 2,8.

```
## d.
## na AESpr sob AAS SEM reposicao dentro dos estratos
VarybarraAESprs \leftarrow sum(Wh \star S2h) \star ((1/n) - (1/N))
VarybarraAESprs
## [1] 0.01558885
## na AESpr sob AAS COM reposicao dentro dos estratos
VarybarraAESprc <- sum(Wh * Varh) / n</pre>
VarybarraAESprc
## [1] 0.019544
## variancias um pouco maiores que na alocacao ne neyman, novamente
```

(d)

 Para a variância na AESpr considerando AASs dentro dos estratos sabemos que

$$Var\left(\overline{y}_{AES_{pr}}
ight) = \left(rac{1}{n} - rac{1}{N}
ight) \sum_{h=1}^{H} W_h S_h^2$$

• E para a variância na **AESpr** considerando **AASc** dentro dos estratos

$$Var\left(\overline{y}_{AES_{pr}}
ight) = rac{1}{n}\sum_{h=1}^{H}W_{h}Var_{h}.$$

Usando alocação proporcional, a redução nas variâncias é muito similar a da alocação de Neyman, com uma pequena vantagem para a última.

Ex. 11.10 (Amostragem: Teoria e Prática Usando o R)

```
## dados do problema - Exercício 11.10 (Amostragem: Teoria e Prática
H < -3
                              # no. de estratos
h <- 1:H
                              # indice dos estratos
Nh <- c( 112, 68, 39) # tamanho dos estratos
S2h <- c( 2.25, 3.24, 3.24) # variancia do estrato
Ch \leftarrow c(9, 25, 36)
                          # custo de amostragem no estrato
                           # tamanho da populacao
N \leftarrow sum(Nh)
V <- 0.1
                              # variancia maxima
## calculo de n
Wh <- Nh / N # peso do estrato h na pop.
Sh <- sqrt(S2h) # variancia do estrato h
raizCh <- sqrt(Ch) # raiz quadrada do custo no estrato h</pre>
num_part1 <- sum( Wh * Sh * raizCh)</pre>
num_part2 <- sum( Wh * Sh / raizCh)</pre>
denom \leftarrow V + sum(Wh * S2h) / N
n <- num_part1 * num_part2 / denom # tamanho da amostra sob AESot e /
# n # arredondar para cima, ceiling(n)
```

- Para calcular o tamanho total da amostra n, sob alocação ótima (uma vez que o custo de observação das unidades difere de estrato para estrato),
 - assumindo **AASs** dentro dos estratos,
 - $\circ\;$ e definindo a variância da estimativa da média populacional tal que não ultrapasse V=0,1

$$egin{aligned} Var_{AES_{ot}}(\overline{y}_{AES}) & \leq 0, 1 \Leftrightarrow rac{\left(\sum_{h=1}^{H} W_{h} S_{h,y} \sqrt{C_{h}}
ight) \left(\sum_{h=1}^{H} W_{h} S_{h,y} / \sqrt{C_{h}}
ight)}{0, 1 + rac{1}{N} \sum_{h=1}^{H} W_{h} S_{h}^{2}} & \leq n \ & \Leftrightarrow rac{7.0191781 imes 0.4209132}{0.1124826} & \leq n \ & \Leftrightarrow 26.2659638 \leq n. \end{aligned}$$

• Arredondaremos n para o número inteiro maior e mais próximo, então precisamos de no mínimo n=27 observações para garantir que a variância do estimador da média não ultrapasse V=0,1.

```
n <- ceiling(n)
nh <- n * (Wh * Sh / raizCh) / sum( Wh * Sh / raizCh) # tamanho da au
</pre>
```

 A alocação apropriada para essa amostra, assumindo AESot e AASs dentro dos estratos,

$$n_h = n imes rac{N_h S_{h,y}}{\sum_{k=1}^H N_k S_{k,y}} = (16.4027, 7.1703, 3.427).$$

Sob alocacao ótima arredondar para o inteiro mais próximo nos estratos com menor custo, maior variabilidade, maior tamanho?

```
## arredondando todos para mais
ceiling(nh); sum( ceiling(nh))
## [1] 17 8 4
## [1] 29
```

```
## arredondando inteiro mais pro
round( nh); sum(round( nh))

## [1] 16 7 3

## [1] 26
```

(2,0 pontos) Exercício 3 dos slides 'Aula 08' modificado.

(a) Utilizando os dados referentes a x, o tamanho de amostra necessária para estimar o número total de empregados com um erro máximo admissível de 2% e com um nível de confiança de 95%, supondo alocação de Neyman, na **AASs** dentro do estratos

$$n \geq rac{\sum_{h=1}^{H} rac{N_h^2 S_{h,x}^2}{w_h}}{V_T + \sum_{h=1}^{H} N_h S_{h,x}^2}$$

Denotamos V_T um valor máximo para a variância do estimador do total, então

$$rN\overline{X} = z_{rac{lpha}{2}}\sqrt{Var(\overline{T}_{AES})} \Leftrightarrow V_T = rac{r^2N^2\overline{X}^2}{z_{rac{lpha}{2}}^2}.$$

Temos que

$$\overline{X} = rac{T_x}{N} = \sum_{h=1}^{H} T_{h,x}/N = (9020 + 13500 + 17750 + 17329 + 36600 + 14280)/N = 51.1693396,$$

-302

- (b) Conforme os cálculos da letra (a) do exercício original nos slides da Aula 08, a alocação apresenta $n_6>N_6$.
 - Uma solução é observar todas as unidades do estrato em que $n_H \geq N_H$.
 - Definindo $n_6=N_6$, restam $N^*=N-N_6=2120-20=2100$ unidades da população para serem selecionadas e distribuídas nos $H^*=5$.
 - O tamanho restante da amostra é $n^*=n-N_6=302-20=282$.
 - Sob alocação de Neyman, agora temos $n_h^*=n^*\frac{S_hN_h}{\sum_k S_kN_k}$, $h,k=1,\ldots,5$. $N_hS_{h,x}=(1100\times 2.88;500\times 10.1;250\times 14.39;130\times 28.98;120\times 86.6)$ e $\sum_{k=1}^5 N_hS_{h,x}=28862.75$. Assim,

```
nh_novo <- n_novo * (Nh * Shx)[1:5] / sum( (Nh * Shx)[1:5])
(nh <- c( nh_novo, Nh[6])) # nova alocacao incluindo o ultimo es</pre>
```

```
## [1] 34.40137 54.83835 39.04534 40.90278 112.81216 20.00000
```

(c) De acordo com o realocamento em (b), uma estimativa pontual do faturamento total é dada por

$$t_y = \widehat{T}_y = \sum_{h=1}^6 \widehat{T}_{h,y} = \sum_{h=1}^6 N_h \overline{y}_h = 11003 + 50017 + 25052 + 130170 + 120350 + 207000.$$

2.289\times 10^{5} milhares de reais.

Uma estimativa intervalar para o faturamento total é dada por (se $n = \sum_{h=1}^{H} n_h$ "for grande"),

$$IC(T_y;0,95) = \left[t_y \pm z_{0,05/2} \sqrt{\widehat{Var}_{AES}\left(t_y
ight)}
ight]$$

Assumindo (o coeficiente de) confiança $1-\alpha=95\%$, por exemplo, temos o valor da distribuição normal padrão que deixa área 0,025 à sua direita dado por $z_{0,025}=1.959964$.

Sob AASs dentro dos estratos, temos os estimadores da variância do estimador do total $s_{h,t_y}^2 = Var_{AES}\left(\widehat{T}_h\right) = N_h^2 Var_{AES}\left(\overline{y}_h\right)$.

A variância global é dada por $s_{t_y}^2 = \widehat{Var}\left(t_y
ight) = \sum_{h=1}^6 N_h^2\left(rac{1}{n_h} - rac{1}{N_h}
ight) s_{h,t_y}^2$

```
s2ty <- sum( Nh^2 * (1/nh - 1/Nh) * s2hy) # estimativa da variance s2ty
```

[1] 1593445

Assim, temos o erro absoluto, $e=z_{0,05}*\sqrt{s_{t_y}^2}$

```
e <- -qnorm(0.025) * sqrt(s2ty) # erro absoluto
e
```

[1] 2474.096

O intervalo ao nível 95% para T_y é dado por

```
IC <- ty + c(-1, 1) * e  # intervalo de confianca para o tota
IC</pre>
↓
```

```
## [1] 226425.9 231374.1
```

O intervalo de 226425.9 milhares de reais a 231374.1 milhares de reais deve conter o verdadeiro faturamento total dos estabelecimentos, com uma confiança de 95%. Ou ainda, a cada 100 amostras observadas sob o mesmo plano, espera-se que 95% dos intervalos construídos com base nessas amostras conterão o verdadeiro faturamento total dos estabelecimentos.

 $(B\hat{o}nus)$ No item (a), mostrar que tamanho da amostra para média é equivalente ao tamanho para o total, usando V e a fórmula de n adequados para cada caso.

- O tamanho da amostra n é o mesmo na estimação da média e total,
 - \circ se usar erro relativo $r\overline{Y}$ para definir V e usar $V \geq Var_{AES}(\overline{y})$;
 - \circ ou com erro relativo $rN\overline{Y}$ para definir V_T e usar $V_T \geq Var_{AES}(\widehat{T})$.

A variância mínima dos estimador da média é dada por $V=rac{r^2\overline{X}^2}{z_{rac{\alpha}{2}}^2}.$

(2,0 pontos) Banco de dados Lucy. (arquivo Aula_AE_xxx.R)

a. Usando Zone como variável estratificadora, temos o tamanho da população, bem como a média e variância populacionais da variável Income, por estrato e globais,

Parâmetros por estrato

```
## parametros por estrato
Ybarrah <- tapply( Lucy$Income, Lucy$Zone, mean)  # medias - ou a
Varh <- tapply( Lucy$Income, Lucy$Zone, varpop)  # Variancias
cbind( h = 1:H, Nh = Nh, Media = Ybarrah, Variancia = Varh)</pre>
```

```
## h Nh Media Variancia
## A 1 307 652.2834 78955.58
## B 2 727 320.7469 51586.62
## C 3 974 331.0195 23561.77
## D 4 223 684.9821 43597.21
## E 5 165 767.3879 58406.46
```

Parâmetros globais

```
## parametros globais
Ybarra <- mean( Lucy$Income) # media
# sum( Wh * Ybarrah) # forma equivalente para caluclar media
Ybarra
## [1] 432.0605
Var <- varpop(Lucy$Income) # Variancia</pre>
Var
## [1] 71248.14
# Vard <- sum( Wh * Varh)</pre>
                                           # Variância dentro
# Vard
# Vare <- sum( Wh * (Ybarrah - Ybarra)^2) # Variância entre
 # Vare
 # Vare + Vard
                                           # equivalente ao calculo de
```

28 / 47

Usando Level como variável estratificadora. temos

Parâmetros por estrato

Os Parâmetros globais devem ser os mesmos

```
## globais
Ybarra <- mean( Lucy$Income) # media
Ybarra</pre>
```

[1] 432.0605

b. Supondo **AASc** de 30 empresas em cada estrato, a variância do estimador da média de Income, utilizando Zone como variável estratificadora,

```
# Supondo AASc de 30 empresas em cada estrato, vamos calcular a varia
nh < -rep(30, H)
Varybarrah <- Varh/nh</pre>
Varybarrah
##
## 2631.8528 1719.5539 785.3922 1453.2403 1946.8819
Varybarra <- sum( Wh^2 * Varybarrah)</pre>
Varybarra
## [1] 353.1272
## Ignorando os estratos, a variância do estimador da média se AASc
Var/(30*H)
```

Para Level como variável estratificadora,

```
# Supondo AASc de 30 empresas em cada estrato, vamos calcular a varia
nh2 < - rep(30, H2)
Varybarrah2 <- Varh2/nh2</pre>
Varybarrah2
## Big Medium Small
## 2120.7424 535.3359 504.4148
Varybarra2 <- sum( Wh2^2 * Varybarrah2)</pre>
Varybarra2
## [1] 271.432
## Ignorando os estratos, a variância do estimador da média se AASc
Var/90
```

[1] 791.646

c. Se olharmos diretamente para as variâncias dos estimadores, usando $n_h=30$ paratodos os estratos, para ambas as variáveis estratificadoras, temos

Variável estratificadora	$Var_{AES}\left(\overline{y} ight)$	n
Zone	353.1272237	150
Level	271.4319711	90

A comparação das variâncias pode não parecer justa à primeira vista, pois fixando $n_h=30$ sendo que a variável Zone possui H=5 estratos e Level H=3 . Mas ainda, usando $n_h=50$ para Level a $Var_{AES}\left(\overline{y}\right)$ diminuiria.

Olhando para os **EPA**s para ambas as variáveis estratificadoras temos

Variável estratificadora	$Var_{AASc}\left(\overline{y} ight)=rac{Var_{y}}{n}$	$EPA = rac{Var_{AES}(ar{y})}{Var_{AASc}(ar{y})}$
Zone	$\frac{7.1248141 \times 10^4}{150} = 474.9876077$	0.7434451
Level	$\frac{7.1248141 \times 10^4}{90} = 791.6460129$	0.3428704

d. Usando a variável Level como estratificadora, selecionamos uma amostra de tamanho n=90 de igual tamanho entre os H=3 estratos.

```
set.seed(02036)
nh <- 30
s <- tapply( Lucy$ID, Lucy$Level, sample, size=nh) # IDs
Lucy_amostra <- Lucy[Lucy$ID %in% unlist(s), c("Level", "Income")] #</pre>
```

Ou podemos usar a função... do pacote... .

Com a amostra observada, calculamos os valores por estrato

```
## estimativas por estrato
ybarrah <- tapply( Lucy_amostra$Income, Lucy_amostra$Level, mean)
varh <- tapply( Lucy_amostra$Income, Lucy_amostra$Level, varpop)
cbind( h = 1:H2, Nh = Nh2, nh = nh, ybarra = ybarrah, varh = varh)</pre>
```

```
## Big 1 83 30 1254.367 88396.30
## Medium 2 737 30 659.700 18700.74
## Small 3 1576 30 263 300 16775 41
```

Uma estimativa do lucro médio das companhias, no particular ano fiscal, é aproximadamente

$$egin{aligned} ar{y} &= \sum_{h=1}^3 W_h ar{y}_h \ &= 0.03 imes 1254.37 + 0.31 imes 659.7 + 0.66 imes 263.3 \ &= 419.56 ext{reais}. \end{aligned}$$

Utilizando **AASc** dentro dos estratos, a **estimativa da variância da média amostral** é dada por

$$egin{align} Var_{AES}\left(\overline{y}
ight) &= rac{1}{k} \sum_{h=1}^{3} W_h^2 Var_h \ &= rac{1}{30} (0 imes 63622.27 + 0.09 imes 16060.08 + 0.43 imes 15132.44) \ &= 304.45. \end{aligned}$$

Por fim, uma estimativa intervalar para o lucro médio das companhias, com 95% de confiança (se $n=\sum_{h=1}^H n_h$ "for grande") é dado por

$$IC(\overline{y};0,95) = \left[\overline{y} \pm z_{0,05/2} \sqrt{\widehat{Var}_{AES}\left(\overline{y}
ight)}
ight]$$

Assumindo (o coeficiente de) confiança $1-\alpha=95\%$, por exemplo, temos o valor da distribuição normal padrão que deixa área 0,025 à sua direita dado por $z_{0,025}=1.959964$. Assim, o erro absoluto, $e=z_{0,05}*\sqrt{s_{\overline{y}}^2}$ é aproximadamente

```
e <- -qnorm(0.025) * sqrt(var_ybarra) # erro absoluto
e
```

[1] 34.19818

E o intervalo ao nível 95% para \overline{y} é dado por

IC <- ybarra + c(-1, 1) * e # intervalo de confianca para a IC 35/47

O intervalo de 385.36 dólares a 453.76 dólares deve conter o verdadeiro lucro médio da companhias, no ano fiscal estudado, com uma confiança de 95%. Ou ainda, a cada 100 amostras observadas sob o mesmo plano, espera-se que em 95 dos intervalos construídos com base nessas amostras conterão o verdadeiro lucro médio das companhias.

(bônus): Adicionar comandos para obter total de Income.

(bônus 2): Adicionar comandos para obter proporção de SPAM.

(2,0 pontos) Exercício 4.4 (elementos de amostragem)

a. Para estimar uma proporção de famílias que possume conta em caderneta de poupança, com erro padrão da estimativa de no máximo 0,02, definimos $V_P \geq Var_{AES}\left(\widehat{P}_{AES}\right)$.

Lembrando erro padrão:
$$EP\left(\widehat{P}\right) = \sqrt{Var\left(\widehat{P}\right)} = DP\left(\widehat{P}_{AES}\right)$$
.

Assumindo **AASc** dentro dos estrtos, e custo de amostragem constante, o tamanho amostral mínimo para assegurarmos uma variância da estimativa da proporção menor ou igual a $V_P = \left[EP\left(\widehat{P}_{AES}\right)\right]^2$ é dado por

$$n \geq rac{\left(\sum_{h=1}^{H}W_{h}\sqrt{P_{h}(1-P_{h})}
ight)^{2}}{V_{P}} = rac{\left(\sum_{h=1}^{H}W_{h}\sqrt{P_{h}(1-P_{h})}
ight)^{2}}{\left[EP\left(\widehat{P}_{AES}
ight)
ight]^{2}} \ = rac{0.6 imes0.4+0.3 imes0.49+0.1 imes0.49}{(0,02)^{2}} = 475.15$$

A partição ótima com custo constante, partição de Neyman, nesse caso (**AASc** dentro) pode ser dada por

$$n_h = n imes rac{w_h imes \sqrt{P_h(1-P_h)}}{\sum_k w_k imes \sqrt{P_k(1-P_k)}} = (261.58, 160.18, 53.39)\,.$$

b. Para estimar a quantidade média, com custo constante, sabemos que

$$n \geq rac{\left(\sum_{h=1}^H W_h D P_{h,y}
ight)^2}{V}.$$

Fixando o erro padrão máximo da estimativa da média em 2 reais, temos $V=4reais^2$, assim

$$n \geq rac{0.6 imes 9 + 0.3 imes 18 + 0.1 imes 52}{2^2} = 64.$$

E a partição dada por

$$n_h = n imes rac{w_h imes DP_h}{\sum_k w_k imes DP_k} = (21.6, 21.6, 20.8).$$

Uma estimativa pontual da proporção de contas problemáticas \widehat{P}_{AES} é dada por

$$egin{aligned} \widehat{P} &= \sum_{h=1}^4 W_h p_h \ &= 0.26 imes 0.3 + 0.17 imes 0.2 + 0.43 imes 0.4 + 0.13 imes 0.1 \ &= 0.3. \end{aligned}$$

Ou seja, estimamos que a proporção de contas problemáticas da rede de lojas seja aproximadamente 30%.

Utilizando **AASc** dentro dos estratos, a **estimativa da variância da proporção amostral** é dada por

$$egin{align} Var_{AES}\left(p
ight) &= rac{1}{k} \sum_{h=1}^{4} W_h^2 p_h (1-p_h) \ &= rac{1}{15, 10, 20, 6} (0.07 imes 0.21 + 0.03 imes 0.16 + 0.19 imes 0.24 + 0.02 imes 0.09) \ &= 0.0043. \end{split}$$

Por fim, uma estimativa intervalar para a proporção de contas problemáticas, com 95% de confiança (se $n = \sum_{h=1}^{H} n_h$ "for grande") é dado por

$$IC(P;0,95) = \left\lceil p \pm z_{0,05/2} \sqrt{\widehat{Var}_{AES}\left(p
ight)}
ight
ceil$$

Assumindo (o coeficiente de) confiança $1-\alpha=95\%$, por exemplo, temos o valor da distribuição normal padrão que deixa área 0,025 à sua direita dado por $z_{0,025}=1.959964$. Assim, o erro absoluto, $e=z_{0,05}*\sqrt{s_p^2}$ é aproximadamente

```
e <- -qnorm(0.025) * sqrt(var_p) # erro absoluto
e
```

[1] 0.1278124

E o intervalo ao nível 95% para \bar{y} é dado por

```
IC <- p + c(-1, 1) * e  # intervalo de confianca para a media</pre>
```

O intervalo de 0.17 a 0.43 deve conter a verdadeira proporção de contas problemáticas dessa rede, com uma confiança de 95%. Ou ainda, a cada 100 amostras observadas sob o mesmo plano, espera-se que em 95 dos intervalos construídos com base nessas amostras conterão a verdadeira proporção de contas problemáticas.

Pontuação e Comentários

Pontuação

Avaliação parcial 1

Exercício 1: (2,0 pontos)

- Ex. 4.1 (Elementos de Amostragem),
 - a. (0,8 pontos) Itens (c) e (d).
 - b. (0,2 pontos) Interprete os resultados.
- Ex. 11.10 (Amostragem: Teoria e Prática Usando o R)
 - a. (0,1 pontos) Informações do enunciado.
 - b. (0,2 pontos) Indicar fórmulas.
 - c. (0,6 pontos) Cálculo de n e n_h.
 - d. (0,1 pontos) Interpretação.

Exercício 2: (2,0 pontos)

- a. (0,6 pontos) Cálculo n e nh conferir.
- b. (0,7 pontos) Comentários e realocação.
- c. (0,7 pontos) Estimação pontual, por intervalo e interpretação.
- d. (*0,5 pontos bônus)

Pontuação

Avaliação parcial 1

Exercício 3: (2,0 pontos)

- a. (0,4 pontos) Parâmetros por Zone e Level.
- b. (0,6 pontos) Variância do estimador da média por Zone e Level.
- c. (0,2 pontos) Comparação.
- d. (0,8 pontos) Seleção da amostra, estimação e interpretações.
- e. (0,2 pontos bônus1)
- f. (0,3 pontos bônus2)

Exercício 4: (2,0 pontos)

- a. (0,9 pontos) Cálculos e Interpretação
- b. (0,9 pontos) Cálculos e Interpretação
- c. (0,2 pontos) Conclusão

Exercício 5: (2,0 pontos)

- a. (1,0 pontos) Estimativa pontual e interpretação
- b. (1,0 pontos) Estimativa intervalo e interpretação

Pontuação

Atividade Aula 08

Exercício 1:

- a. Nos slides *Aula 06*, página 8, continuar ítens (c) e (d).
- Interprete os resultados.
- Arredondamento.

Exercício 2: Exercício 11.10 (Amostragem: Teoria e Prática Usando o R)

- Informações do enunciado.
- Indicar fórmula.
- Cálculo de n.
- Conclusáo... "tamanho mínimo"

Exercício 3: Exercício 11.7 (Amostragem: Teoria e Prática Usando o R)

- a. Expressões, cálculo e interpretação.
- b. Expressões, cálculo e interpretação.

Comentarios gerais

- Enviar o output .pdf, com imagens da resolução à mão ou os resultados da versão em códigos
- Se os códigos estão em arquivo .R, enviar fórmulas em separado
- Se enviar código com erro deixar claro onde está o erro... o ideal seria deixar as linhas com erro comentadas
- Colocar nome nos arquivos, nos códigos e outputs também.
- Fórmulas/expressões devem aparecer, seja no formato à mão ou em códigos... se enviar somente pdf... enviar arquivo de codigos tambem
- Interpretações... Pontual... qual o parâmetro em termos do problema, unidade de medida... ou IC parametro, unidade de medida, confianca... Resultado e Conclusão: O IC(), com alfa; Portanto, com 95%...
 - " estimamos que a média esteja entre 406,16 e 167,84 com 95% de confiança." ... "o total esta em ic de 95% de confiança entre 187184.3 e 192095.7" está correto:
 - suposições para ICs... Fórmulas... códigos... se pegamos de outros, cuidado para não deixar código desnecessário... manter organizados os códigos... Entrega... relatorio bem apresentado... "Marcia falou sobre relatorio e markdown"... capricho com relatorios Se nao fez a atividade "Aula 08" conferiu os codigos... odnde estao... tua versao dos codigos... semente nao aleatoria, nos caso de selecionar amostra cada um poderia ter uma amostra diferente...

Comentarios gerais

- Para evitar o for()
 - \circ calcular somas de vetores... x <- 1; for{x <- x + 1}
 - calcular medidas agregadas tapply() faz o mesmo, ou aggregate().
- Arredondamentos: n ceiling() e n_h round()
- Cálculo do deff incorreto (usando amostra???), selecionando amostra e usando svymean. (-0,2 pontos)