

CSC380: Principles of Data Science Probability Primer

Alon Efrat

Overview for today

- Random Events and Probability
- Axioms of Probability
- Set Theory
- Law of Total Probability

Acknowledgement and thanks:

Materials Built on previous product by

- · Jason Pacheco,
- · Kwang-Sung Jun,
- Chicheng Zhang
- · Xinchen yu

1

Annoucements

2

- Reading
 - Ch. 6 (WJ: Watkins, J., "An Introduction to the Science of Statistics: From Theory to Implementation")

Outline

3

- Random Events and Probability
- Axioms of Probability
- Set Theory
- Law of Total Probability

3

Random Events and Probability

Suppose we roll two fair dice...

- What are the possible outcomes?
- What is the probability of rolling even numbers?
- What is the *probability* of having two numbers sum to 6?
- If one die rolls 1, then what is the probability of the second die also rolling 1?

How to mathematically formulate outcomes and compute these probabilities?

5

Random Events and Probability

6

Probability of a random event

~

Simulate the random process n times, the fraction of times this event happens

- How large should n be?
- Simulation results vary from trails?

Background: Numpy in Python

7

Numpy: numerical computing package

```
import numpy as np
np.random.randint(1,1+6,size=10)
=> array([5, 4, 1, 1, 1, 5, 5, 2, 4, 6])
```

randint(low,high,size)
: generate `size` random numbers
in {low, low+1, ..., high-1}

Numpy array

- Replaces python's <u>list</u> in numpy.
- · More numerical functionality
- It's a 'vector' in mathematics.

```
a=np.array([1,2]); b=np.array([4,5])
a+b
\Rightarrow np.array([5,7]) // elementwise addition
np.dot(a,b)
\Rightarrow 14 // dot product
```

7

Random Events and Probability

8

Consider: What is the probability of having two numbers sum to 6?

```
import numpy as np
for n in [10,100,1 000,10 000,100 000]:
   res_dice1 = np.random.randint(1,6+1,size=n)
   res_dice2 = np.random.randint(1,6+1,size=n)
   res = [(res dice1[i], res dice2[i]) for i in range(len(res dice1))]
   cnt = len(list(filter(lambda x: x[0] + x[1] == 6, res)))
   print("n=%6d, result: %.4f " % (n, cnt/n))
                                                                                    every time you run, you
       10, result: 0.1000
                                                 10, result: 0.1000
n=
                                          n=
                                                                                    get a different result
      100, result: 0.1200
                                                100, result: 0.1900
     1000, result: 0.1350
                                               1000, result: 0.1540
                                                                                    however, the number
     10000, result: 0.1365
                                              10000, result: 0.1366
   100000, result: 0.1388
                                          n= 100000, result: 0.1371
                                                                                    seems to converge to
n= 1000000, result: 0.1385
                                          n= 1000000, result: 0.1394
                                                                                    0.138-0.139
```

There seems to be a precise value that it will converge to.. what is it?

9

Consider: What is the probability of having two numbers sum to 6?

Each outcome is equally likely. by the independence (will learn this concept later)

outcomes:36

Probability that one specific outcome (say (3,3) appears)

=> 1/36

of **outcomes** that sum to 6:

answer:

(1/36) * 5 = 0.13888...

9

Random Events and Probability

10

- Theoretical probability describes how likely an event is going to occur based on math.
- Experimental probability describes how frequently an event actually occured in an experiment.

Mathematics of Probability

П

- Probability is a real-world phenomenon.
- But under what mathematical framework can we formulate probability so we can solve practical problems?
 - e.g., weather prediction, predicting the election outcome
- <u>Disclaimer</u>: not all mathematics correspond to real-world phenomenon (e.g., Banach–Tarski paradox). Fortunately, we will not talk about this in our lecture ⊙

11

12 Random **Events** and Probability Consider: What is the probability of having two numbers sum to 6? Outcome space consists Omega <u>()</u> (2,2)(3,5)of all possible outcomes (5,2)(5,3)Event: E > (5,6)Each <u>outcome</u> $\omega \in \Omega$. ose that sum to 6) (2,6)(1,2)(4,3)(2,4) (4,2)(6,4)(2,1)Event is a collection of (5,1)(1,5)(3,2)outcomes and a subset (4,6)(3,3)of the outcome space (4,4)(6,1) $E \subseteq \Omega$ (6,5)(5,4)(1,4)(6,3) (1,1)(5,5)(4,5)Note: outcome = sample (4,1) (3,1) (6,6)(1,3)(2,3)(2,5)(3,6)

13

Some examples of events...

Both even numbers

Q: how many such pairs?

$$E^{\text{even}} = \{(2, 2), (2, 4), \dots, (6, 4), (6, 6)\}$$

• The sum of is even,

$$E^{\text{sum even}} = \{(1,1), (1,3), (1,5), \dots, (2,2), (2,4), \dots\}$$

• The sum is greater than 12,

• The product is even (How many events????)

 $E^{\text{sum}>12} = \emptyset$

event. However it never occurs

13

Axioms of Probability

But, what is probability, really?

(e.g., can explain the probability of seeing an event when throwing two dice)

Mathematicians have found a set of conditions that 'makes sense'.

• Probability is a **map** P defined on a set Ω .

⇒ i.e., takes in an event, spits out a real value

- P must map every events (that is, every shape on Ω) to a real value in interval [0,1].
- P is a (valid) probability distribution if it satisfies the following axioms of probability,
 - 1. For any event E, $P(E) \ge 0$
 - 2. $P(\Omega) = 1$
 - 3. For any sequence of disjoint events $E_1, E_2, E_3, ...$

<u>disjoint</u>: intersection is empty

$$P\Big(\bigcup_{i\geq 1} E_i\Big) = \sum_{i\geq 1} P(E_i)$$

$$P(A \bigcup B \bigcup C) = P(A) + P(B) + P(C)$$

15

Random Events and Probability

16

Many properties follows (i.e., can be proved mathematically)

disjoints events

(I recommend that you maintain your own version of cheat sheet!)

17

Special case

Assume each outcome is equally likely, and sample space is finite, then the probability of event is:

$$P(E) = rac{|E|}{|\Omega|}$$
 Number of elements in event set $|E|$ Number of possible outcomes (36)

This is called <u>uniform probability distribution</u>

Q: What axiom we are using? => Axiom 3

(Fair) Dice Example: Probability that we roll even numbers,

$$P((2,2) \cup (2,4) \cup \ldots \cup (6,6)) \stackrel{\checkmark}{=} P((2,2)) + P((2,4)) + \ldots + P((6,6))$$

9 Possible outcomes, each with equal probability of occurring

$$= \frac{1}{36} + \frac{1}{36} + \ldots + \frac{1}{36} = \frac{9}{36}$$

17

Random Events and Probability

18

Consider: What is the probability of having two numbers sum to 6?

Each outcome is equally likely. by the **independence** (will learn this concept later) => 1/36

of outcomes that sum to 6: => 5

answer:

(1/36) * 5 = 0.13888...

$$P(E) = \frac{|E|}{|\Omega|}$$

Set Theory

19

19

Set Theory

20

Two dice example: Suppose

 E_1 : First die equals 1

 E_2 : Second die equals 1

$$E_1 = \{(1,1), (1,2), \dots, (1,6)\}$$

$$E_1 = \{(1,1), (1,2), \dots, (1,6)\}$$
 $E_2 = \{(1,1), (2,1), \dots, (6,1)\}$

Operators on events:

Value	Interpretation
$\{(1,1),(1,2),\ldots,(1,6),(2,1),\ldots,(6,1)\}$	Any die rolls 1
{(1,1)}	Both dice roll 1
{(1,2), (1,3), (1,4), (1,5), (1,6)}	Only the first die rolls 1
$\{(2,2),(2,3),\ldots,(2,6),(3,2),\ldots,(6,6)\}$	No die rolls 1
	$\{(1,1), (1,2), \dots, (1,6), (2,1), \dots, (6,1)\}$ $\{(1,1)\}$ $\{(1,2), (1,3), (1,4), (1,5), (1,6)\}$ $E_2 := E_1 \cap E_2^c$

Set Theory

21

Can interpret these operations as a Venn diagram...

21

Set Theory

A B

More results

$$\left(\bigcup_{i=1}^{n}A_{i}\right)^{c}=\bigcap_{i=1}^{n}(A_{i}^{c})$$
 De Morgan

Notation: $\neg A := A^c$

• $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ and $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$. // distributive law $A \cap (\bigcup_i B_i) = \bigcup_i (A \cap B_i)$, $A \cup (\bigcap_i B_i) = \bigcap_i (A \cup B_i)$

• $B = \Omega \cap B = (A \cup \neg A) \cap B = (A \cap B) \cup (\neg A \cap B)$

Special case: $\neg (A \cup B) = \neg A \cap \neg B$

// by distributive law

TIP: always draw a picture to visualize these identities!

For more, see https://math.libretexts.org/Courses/Mount_Royal_University/MATH_1150%3A_Mathematical_Reasoning/2%3A_Basic_Concepts_of_Sets/2.3%3A_Properties_of_Sets

23

Lemma: (inclusion-exclusion rule) For \underline{any} two events E_1 and E_2 ,

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

Graphical Proof:

23

Alternative Proof

24

Lemma: For <u>any</u> two events E_1 and E_2 ,

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

Alternative proof:

 $P(E_1 \cup E_2)$

 $= P(A \cup B \cup C)$

= P(A) + P(B) + P(C)

= P(A) + P(B) + P(B) + P(C) - P(B)

 $= P(A \cup B) + P(B \cup C) - P(B)$

(by axiom 3)

(by axiom 3)

25

Random Events and Probability

Exercise: Quiz candidate

- · Consider rolling two fair dice
- E_1 : two dice sum to 6
- E_2 : second die is even
- Compute the numerical value of $P(E_1 \cup E_2)$. Hint: Use inclusion-exclusion rule.

$$P(E_1) = 5/36$$

 $P(E_2) = 18/36$
 $P(E_1 \cap E_2) = 2/36$

answer: 21/36

25

Law of Total Probability

Pay attention – we will use it numerous times

27

[Def] The set of events $\{B_i\}_{i=1}^n$ partitions outcome space $C \Leftrightarrow \bigcup_i B_i = C$ and B_1, B_2, \dots are disjoint.

Claim:

$$P(C) = \sum P(C \cap B_i)$$

Now, $\{A \cap B_i\}_{i=1}^n$ partitions A

Q: Why is this true?

A: Axiom 3!

$$A = A \cap \Omega = A \cap (\cup_i B_i) = \cup_i (A \cap B_i)$$

27

Random Events and Probability

28

Law of total probability: Let A be an event. For any events $B_1, B_2, ...$ that partitions Ω , we have

$$P(A) = \sum_i P(A \cap B_i)$$

Example Roll two fair dice. Let X be the <u>outcome of the first die</u>. Let Y be the <u>sum of both dice</u>. What is the probability that both dice sum to 6 (i.e., Y=6)?

quiz candidate

$$p(Y = 6) = \sum_{x=1}^{6} p(Y = 6, X = x)$$

$$= p(Y = 6, X = 1) + p(Y = 6, X = 2) + \dots + p(Y = 6, X = 6)$$

$$= \frac{1}{36} + \frac{1}{36} + \frac{1}{36} + \frac{1}{36} + \frac{1}{36} + 0 = \frac{5}{36}$$

Summary So Far

29

 Most of the rules we learned is basically set theory + axiom 3

So, here is a generic workflow for computing P(A).

- Use set theory and slice and dice A into a manageable partition of A where P(each piece of partition) is easy to compute.
- 2. Apply Axiom 3.

29

Conditional Probability

30

- Two fair dice example:
 - Suppose I roll two dice secretly and tell you that one of the dice is 2. C
 - In this situation, find the probability of two dice summing to 6.

```
import numpy as np
for n in [10,100,100,10_000,10_000, 1_000_000]:

res_dice1 = np.random.randint(6,size=n) + 1

res_dice2 = np.random.randint(6,size=n) + 1

res = [(res_dice1[i], res_dice2[i]) for i in range(len(res_dice1))]

conditioned = list(filter(lambda x: x[0] == 2 or x[1] == 2, res))

n_eff = len(conditioned)
```

cnt = len(list(filter(lambda x: x[0] + x[1] == 6, conditioned)))
print("n=%9d, n eff=%9d, result: %.4f " % (n, n eff, cnt/n eff))

compare: without conditioning, it was 0.138..

E

```
10, n_eff=
                     4, result: 0.0000
                                                                        10, n_eff=
                                                                                       3, result: 0.3333
      100, n_eff=
                     32, result: 0.2500
                                                                                       32, result: 0.0625
                                                                       100, n_eff=
     1000, n_eff=
                                                                       1000, n_eff=
                     300. result: 0.1733
                                                                                       343. result: 0.2245
   10000, n_eff=
                     3002, result: 0.1742
                                                                 n= 10000, n_eff=
                                                                                      3062, result: 0.1897
n= 100000, n_eff=
                    30590, result: 0.1823
                                                                 n= 100000, n_eff=
                                                                                      30651, result: 0.1811
n= 1000000, n_eff= 305616, result: 0.1818
                                                                 n= 1000000, n_eff= 305580, result: 0.1808
```