

Mitigating Inference Attacks on Social Networking Platforms

Mounica Pillarisetty
Sarah Lamonica
Shoana Sharma

Our Motivation

Inference Attack

Problem Statement

To build a system that can support **confidentiality preservation** in social media datasets by **identifying** when sensitive information can be inferred from such data using predefined **security policies**.

Objective

Provide users with insightful information about their social media data and the various sensitive information that is prone to an inference attack

Background

- Countermeasures:
 - Partitioning
 - Polyinstantiation

- Related Work:
 - Sina Weibo

Layer Pattern

Layer Pattern

Data Collection

Person data is collected through three social media sites:

- Requested individually for each member
 - Enough data to conduct a thorough analysis

Snapchat

- Snap History
- Chat History
- User Profile
- Friends
- Location History

Instagram

- Logins
- Logouts
- Accounts Following
- Messages

f

Facebook

- Location History
- Events
- Messages
- Friends
- Logins
- Logouts

Data Cleansing

- Data type: Json files
 - Large file sets
- Created Scripts
 - Removes extra spaces
 - Same headers for all social media sites
 - Same queries can be utilised

```
[{ "name": "NEM with WISE",
  "start timestamp": 1585693800.
  "end_timestamp": 1585704600
  "name": "Professional Online Portfolio Workshop",
  "start_timestamp": 1582038000,
  "end timestamp": 1582043400
  "name": "Hallow-Queen's Spook Fest",
  "start timestamp": 1572559200,
  "end_timestamp": 1572562800
  "name": "Movie Night",
  "start_timestamp": 1570230000,
  "end_timestamp": 1570237200
  "name": "Fall Meet N Greet",
  "start_timestamp": 1569513600,
  "end_timestamp": 1569524400
```

```
CREATE TABLE IF NOT EXISTS ', 'event_table', ' ', u'(start_timestamp VARCHAR(40), name VARCHAR(40)
 'INSERT INTO ', 'event_table', 'VALUES\n')
(1585693800, NEM with WISE, 1585704600),
(1582038000, Professional Online Portfolio Workshop, 1582043400),
(1572559200, Hallow-Oueen's Spook Fest, 1572562800).
(1570230000, Movie Night, 1570237200),
(1569513600, Fall Meet N Greet, 1569524400).
(1566680400, Lumiere Festival / Festival Lumiere, 1566698400),
(1565388000, The Great India Festival 2019, 1565578800),
(1563379200, Cinnaholic Day | $1 Old Skool Rolls, 1563393600),
(1551900600, Grand Opening, 1551913200),
(1544277600, Fall Cookies & Cram, 1544302800),
(1542841200, SCEsoc Tech Meetup, 1542852000),
(1541858400, 2018 Ottawa Pet Expo, 1541973600),
(1541806200, Ottawa's South Asian Semi-Formal 2018 (Sold Out), 1541830500),
(1541692800, United Way BeaverTails Event, 1541714400),
(1539266400, Jim Watson on the Sustainable Development Goals, 1539270000),
(1536181200, 5$ taco and Margaritas, 1541023200),
(1478638800, Final Season of America Begins!!!!, 0),
(1477962000, Glengarry Pumpkin Carving Competition, 0)
```

Pandas

- Converts JSON data easily into a database
- Query the database
- Metrics
- Tabulate results

Layer Pattern

Inference Detection Analysis

Metrics

- Confidence Intervals: Percentage based on the sample space for true mean
- Analysing Results through queries

Layer Pattern

Preliminary Research

- Top security questions
 - Research paper from University of Calgary
 - Google search
 - Personal experiences

- Location information
 - Longitude Latitude

Ouestion Category Relationships: E.g., "What is your maternal grandfather's first name?" Favourites: E.g., "What is your favourite hobby?" 2. Educational Experiences: E.g., "What is the name of the post secondary institution that you attended?" First-time Experiences: E.g., "What is the name of your 4. first employer?" Significant Persons in Significant Events: E.g., "What is the first name of the best man at your wedding?" Date of Significant Events: E.g., "When is your wedding anniversary?" Location of Significant Events: E.g., "What is the name of the hospital in which you were born?" Period-specific Information: E.g., "What is the first name of your favourite teacher in final year of high school?" 9. Other

Security Policies

Security Policy	Queries
Common Security Question: The hometown of an individual is determined based on location during Christmas day	dataframe[dataframe['Time'].str.contains("12/25")]
Common Security Question: The hometown of an individual is determined based on location during Thanksgiving day	dataframe[dataframe['Time'].str.contains("10/12")]
The home address of an individual is determined based on most frequent location	dataframe['Latitude, Longitude'].value_counts().idxmax()
The work address of an individual is determined based on secondary most frequent location	dataframe['Latitude, Longitude'].value_counts().idxmax()
Common Security Question: The hobby of an individual is determined based on most common nouns used	[word for word, word_count in Counter(nouns).most_common(3)]
Special occasions are determined based on typical congratulatory conversation on important dates	[word for word, word_count in Counter(nouns).most_common(3)]
Common Security Question: The pet name of an individual is determined based on most common nouns used	[word for word, word_count in Counter(nouns).most_common(3)]
Relationships between individuals is determined based on nouns extracted from conversation	[word for word, word_count in Counter(nouns).most_common(3)]

Security Policy #1: The <u>hometown</u> of an individual is determined based on location during <u>Christmas day</u>

Why is it deemed sensitive information?

- Common security question
 - Inferred family home
 - Inferred family relationship

Query Representation:

dataframe[dataframe['Time'].str.contains("12/25")]

Security Policy #2: The hometown of an individual is determined based on location during <u>Thanksgiving day</u>

Why is it deemed sensitive information?

- Common security question
 - Inferred Family home
 - Inferred Family relationship

Query Representation:

dataframe[dataframe['Time'].str.contains("10/12")]

Thanksgiving day for 2020

Security Policy #3: The home address of an individual is determined based on <u>most frequent location</u>

Why is it deemed sensitive information?

- Inferred home address
 - Most data hits through location history

Query Representation:

dataframe['Latitude, Longitude'].value_counts().idxmax()

Security Policy #4: The work address of an individual is determined based on <u>secondary most frequent location</u>

Why is it deemed sensitive information?

- Inferred from second most data hits of location history
- From 9 A.M. to 5 P.M.

Query Representation:

dataframe['Latitude, Longitude'].value_counts().idxmax()

Security Policy #5: The <u>hobby</u> of an individual is determined based on most common nouns used

Why is it deemed sensitive information?

- Common security question
- Natural Language Processing:
 - Branch of artificial intelligence
 - Deals with the human computer interaction through natural language
 - Noun extraction

Query Representation:

[word for word, word_count in Counter(nouns).most_common(3)]

Security Policy #6: Special occasions are determined based on typical <u>congratulatory</u> <u>conversation</u> on important dates

Why is it deemed sensitive information?

- Common security question
- Natural Language Processing
 - Noun extraction
- Inferred birthdays of spouses, children or anniversaries

Query Representation:

[word for word, word_count in Counter(nouns).most_common(3)]

Security Policy #7: The pet name of an individual is determined based on most common nouns used

Why is it deemed sensitive information?

- Common security question
- Natural Language Processing

 O Noun Extraction
- Inferred pet name through conversation, liked pages or profile tags

Query Representation:

[word for word, word count in Counter(nouns).most common(3)]

Security Policy #8: Relationships between individuals is determined based on nouns extracted from conversation

Why is it deemed sensitive information?

- Common security question
- Natural Language Processing
 - Noun Extraction
- Inferred through conversation, tagged profile, relationship status

Query Representation:

[word for word, word_count in Counter(nouns).most_common(3)]

Layer Pattern

Interface

Step 1:

Welcome to the Inference Detection Application

See if your social media data is safe!

Step 2: Enter your file: "Data/location_history.json" Input the name of the social media: "Snapchat"

Analysis of Results

Security Policy	Result	Confidence (In %)
Common Security Questions: Home Address	45.354 ± 39.66 meters, -75.713 ± 39.66 meters	29.0381

- A result is shown to demonstrate to the user exactly what the program has found when they perform a query on the data set.
- A confidence value is shown as a percentage. It is a metric to demonstrate
 to the user how confident the system is in determining the result.
 - Confidence = (Accepted Value) / (Total Values) x 100
- Goal: Inform the user when unauthorized information can be inferred by unauthorized parties.

Demo

Demo Result #1

Security Policy

The home address of an individual is determined based on most frequent location

Security Policy	Result	Confidence (In %)
Home Address	45.354 ± 39.66 meters, -75.713 ± 39.66 meters	29.0381

Latitude	Longitude		
45.354	-75.713	Convert	
Example: 40.785091 Reverse geocoded addre	Example: -73.968285		
36 Argue Drive, Nepean ON K2E 6S1 Ottawa Nepean Ontario Canada			

Demo Result #2

Security Policy

The work address of an individual is determined based on secondary most frequent location

Security Policy	Result	Confidence (In %)
Work Address	45.355 ± 39.66 meters, -75.712 ± 39.66 meters	28.1307

Latitude	Longitude		
45.355	-75.712	Convert	
Example: 40.785091 Reverse geocoded address	Example: -73.968285		
17 Argue Drive, Nepean ON K2E 6S2 Ottawa Nepean Ontario Canada			

Demo Result #3

Security Policy

Common Security Question: The hometown of an individual is determined based on location during Thanksgiving day

Security Policy	Result	Confidence (In %)
Common Security Ouestions: Childhood Home Address	45.354 ± 39.66 meters. -75.713 ± 39.66 meters	51.8519

Latitude	Longitude		
45.354	-75.713	Convert	
Example: 40.785091 Reverse geocoded addre	Example: -73.968285		
36 Argue Drive, Nepean ON K2E 6S1 Ottawa Nepean Ontario Canada			

Natural Language Processing

- Common security questions addressed:
 - Favourite hobby or sport
 - Special occasions
- Natural Language Toolkit

```
Security Policy
                         Result
                                                           Confidence (In %)
                                                           43.6731
Common hobby/sport
                         Soccer
Special Occasion(s):
Security Policy
                         Result
                                                           Confidence (In %)
                         Harry Styles: October 12
Birthday
                                                           12.4656
Birthday
                         Mary James: April 23
                                                           27.0843
Anniversary
                         Jake Peralta: September 9
                                                           57.3659
```

Testing & Validation

- Dummy database
 - Used for testing
- Testing with different datasets
 - 3 Distinct Users
- Multiple data points
 - More data points = More accurate results
- Confidence interval
 - Determine how confident the system is in determining the result

user_name	hobby	music	educational_institution	job_updates	brithdate	signification_events
Shoana	Swimming	Coldplay	Carleton University	NULL	Dec 25th, 1980	Graduated: May 2021
Shoana	Reading	One Republic	NULL	Stated Job: May 5th, 2021	NULL	NULL
Sarah	Soccer	Harry Styles	Carleton University	Stated Job: May 2nd, 2021	July 31, 1998	Graduated: May 2021
Mounica	Painting	NULL	Carleton University	Stated Job: May 2nd, 2021	April 6, 1998	Graduated: May 2021

login_IP	user_name	login_date
2620:0022:4000:1201:1175:57cc:f2de:8638	Shoana	oct 24, 2020
2620:0022:4000:1201:1ffc:4241:e6a0:0587	Mounica	sept 13, 2020
2620:0022:4000:1201:1ffc:4241:e6a0:0587	Sarah	dec 10, 2020
2620:0022:4000:1201:1175:57cc:f2de:8638	Shoana	oct 24, 2020
2620:0022:4000:1201:1ffc:4241:eff3:9502	Shoana	dec 10, 2020
2620:0022:4000:1201:1ffc:4241:eff3:9502	Mounica	sept 13, 2020
2620:0022:4000:1201:1ffc:4241:e6a0:0587	Mounica	sept 13, 2020
2620:0022:4000:1201:1ff5:57cc:f2de:8638	Sarah	oct 24, 2020
2620:0022:4000:1201:1ff5:57cc:f2de:8638	Shoana	sept 13, 2020
2607:fea8:5a80:0b9e:1d5b:f274:949e:4ac2	Sarah	dec 10, 2020
2620:0022:4000:1201:1ffc:4241:e6a0:0587	Mounica	oct 24, 2020
2607:fea8:5a80:0b9e:fd3d:f330:c653:4085	Shoana	oct 24, 2020

Accomplishments

- A security policy
- Database model
- Command-line interface
- Queries designed to infer data
- Data parsing script to clean data
- Providing statistical metrics to the user

print("Hello, world!")

Challenges

- Database selection (SQL vs. SQLite vs. Pandas Dataframe)
- User Interface Implementation (Web UI vs. Command Line Interface)
- Implementation of multiple data sets
 - Data consistency and Data cleansing
- Security Policy Development
- Automation

Future advancements

- Include publicly available data from user profiles
- Automate the runs
- Web Interface
- Association Rules Can we predict patterns?
- Scale to include more social media websites
- Scale to allow the user to input many different social media data files at the same time

Conclusion

Provide users with insightful information about their social media data and the various sensitive information that is prone to an inference attack

