基礎情報処理

Information Processing Basics プログラム基礎1

2004年11月4日

高等教育研究開発推進センター 小山田耕二

Outline

- 1. コンピュータとはなにか
- 2. ディジタル情報の世界
- 3. 論理回路からコンピュータまで1
- 4. 論理回路からコンピュータまで2
- 5. プログラム基礎1
- 6. プログラム基礎2
- 7. データ構造とアルゴリズム1
- 8. データ構造とアルゴリズム2
- 9. コンピュータネットワーク
- 10.情報倫理
- 11.さまざまな情報処理
- 12.コンピュータ科学の諸問題

5. プログラム基礎1

- 5.1 ソフトウェアとハードウェア
 - 5.1.1 ソフトウェアとハードウェアとは
 - 5.1.2 コンピュータというハードウェア
 - 5.1.3 周辺装置
 - 5.1.4 命令セットとマシン語プログラム
- 5.2 プログラム言語
- 5.3 プログラミング
 - 5.3.1 応力解析プログラミング

5.1 ソフトウェアとハードウェア

- 5.1.1 ソフトウェアとハードウェアとは
- 5.1.2 コンピュータというハードウェア
- 5.1.3 周辺装置
- 5.1.4 命令セットとマシン語プログラム

5.1.1 ソフトウェアとハードウェアとは

Hardware

Software

Program
Program+data
Etc.

5.1.2 コンピュータというハードウェア

5.1.2 コンピュータというハードウェア

CPUの構造

5.1.2 コンピュータというハードウェア

ALU: arithmetic logic unit (演算装置)

5.1.3 周辺装置

周辺装置

5.1.3 周辺装置

http://kyoiku-gakka.u-sacred-heart.ac.jp/jyouhou-kiki/sozai/3102/index.html

5.3 プログラミング

- 5.3.1 ものづくりと諸問題
- 5.3.2 応力解析プログラミング

5.3.1 ものづくりと諸問題

- ・モノ作りにまつわる悩み
- ・スピード開発にまつわる悩み
- ・スピード開発への対応例
- ·スピード開発の強力な武器: FEM
- ·FEMって何?
- ・工学モデルの近似解への手順

モノ作りにまつわる悩み

(新技術) 匠の技だけでは乗り切れない

> (コラボレーション) 多くの部門·企業と協調する必要

(短納期) 市場に出すまでの時間が短い

スピード開発にまつわる悩み

マーケットは移り気。 今日は飛ぶように売れ ていた製品が、明日は 在庫の山を築くかもしれ ない・・・

スピードを重視しながらも より高品質を実現しなければならない

スピード開発にまつわる悩み

例)マツダ「ベリーサ」発売までの流れ

スピード開発への対応例

例) マツダのエンジン自動設計システム

スピード開発の強力な武器:FEM

仮想実験ツール

構想段階の製品についてどの部分に どれだけの応力が強くかかっているか をビジュアルに示す試行錯誤のための 道具

心臓モデルのFEM解析例

しかし、専門家のものであり、高度な知識が必要で難しい。

FEMって何?

有限要素解析

(Finite Element Analysis:略称 FEA)

数値解析手法(Finite Element Analysis:略称FEM)

を用いた工学解析

FEMによる数値解析

数値解析 (広辞苑より)

「いろいろな分野に現れる数学的な問題を数値計算により解く方法。シミュレーションなどに用いられる

工学モデル 各工学理論に基づいた数学的な

問題定義

FEMモデル 有限要素法によって置き換えられた

形式

工学モデルの近似解への手順

例えば、物体が外力を受けて 変形するという物理現象

基礎工学における方程式問題

有限要素法により 置き換えられた問題

実際の現象のシミュレーション結果

5.3.2 応力解析プログラミング

例題

一辺の長さが1である鉄製の正方形(厚さ1)の 3つの頂点を完全拘束し、残りの頂点を1Nで 辺に平行な方向に引っ張ったとき、頂点の変形量 を計算しなさい。

平面応力状態

• 上下面に外力が作用せず、側面にはxy平面内の力しか作用しない薄板など

ひずみ~変位式:
$$x=du/dx$$
 $y=dv/dy$
 $xy=du/dy+dv/dx$ —= $\begin{bmatrix} x \\ y \\ xy \end{bmatrix}$

応力~ひずみ式:
$$x = E \times (x + x y)/(1-2)$$
 $y = E \times (x + y)/(1-2)$ $y = E \times (x + y)/(1-2)$ $y = 0.5E \times (1-1) xy/(1-2)$ $y = 0.5E \times (1-1) xy/(1-2)$

三角形要素

变位関数

• 要素内部の変位を節点変位の関数として記述する。

$$u=N_{i}(x,y) \times u_{i} + N_{j}(x,y) \times u_{j} + N_{k}(x,y) \times u_{k}$$

$$v=N_{i}(x,y) \times v_{i} + N_{j}(x,y) \times v_{j} + N_{k}(x,y) \times v_{k}$$

$$N_{i}(x,y) = \{(x_{j} \times y_{k} - x_{k} \times y_{j}) + (y_{j} - y_{k}) \times x + (x_{k} - x_{j}) \times y\}/2$$

$$= a_{i} + b_{i}x + c_{i}y$$

$$N_{j}(x,y) = \{(x_{k} \times y_{i} - x_{i} \times y_{k}) + (y_{k} - y_{i}) \times x + (x_{i} - x_{k}) \times y \}/2$$

$$= a_{j} + b_{j}x + c_{j}y$$

$$\begin{aligned} N_k(x,y) &= \{ (x_i \times y_j - x_j \times y_i) + (y_i - y_j) \times x + (x_j - x_i) \times y \} / 2 \\ &= a_k + b_k x + c_k y \end{aligned}$$

Bマトリクス

• ひずみと節点変位を表現する

仮想仕事の原理

• 応力のなす仕事 = 外力のなす仕事

$$\int_{-T}^{T} dV = \int_{\underline{y}}^{\underline{p}_{\underline{s}}^{T}} \underline{u} dS$$

$$(DB\underline{u})^{T} \quad V = \underline{f}^{T} \quad \underline{u}$$

$$(DB\underline{u})^{T} (B \quad \underline{u})V = \underline{f}^{T} \quad \underline{u}$$

$$\underline{u}^{T} (B \quad D^{T} B)V \quad \underline{u} = \underline{f}^{T} \quad \underline{u}$$

$$\underline{u}^{T} (B \quad D^{T} B)V \quad \underline{u} = \underline{f}^{T} \quad \underline{u}$$

$$[(B T D B)V] \underline{u} = \underline{f}$$

要素剛性マトリクス

• 節点変位と節点外力との関係を表現する

$$(B T D B)V =$$

$$(\text{EV/} (1-\ ^2)) \times \begin{bmatrix} b_i \, 0 \, b_j \, 0 \, b_k 0 \\ 0 \, c_i \, 0 \, c_j \, 0 \, c_k \\ c_i \, b_i c_j \, b_j c_k b_k \end{bmatrix} \times \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 \, 0 \, (1-\)/2 \end{bmatrix} \times \begin{bmatrix} b_i \, 0 \, b_j \, 0 \, b_k 0 \\ 0 \, c_i \, 0 \, c_j \, 0 \, c_k \\ c_i \, b_i c_j \, b_j c_k b_k \end{bmatrix}$$

要素剛性マトリクス

• 剛性マトリクス(6×6)の中身,,,

頂点1	0	0		b1	- 1		c1	0				
頂点2	1	0		b2	1		c2	-1				
頂点3	1	1		b3	0		c3	1				
ヤング率	21000											
ポアソン比	0.333			0								
板厚	1											
面積	0.5			Bマトリクス								
体積	0.5			-1	0	1	0	0	0			
				0	0	0	-1	0	1			
				0	- 1	-1	1	1	0			
Dマトリクス												
23619	7865	0		-23619	0	23619	-7865	0	7865			
7865	23619	0		-7865	0	7865	-23619	0	23619			
0	0	7877		0	-7877	-7877	7877	7877	0			
B転置マトリ	Jクス		×体積									
- 1	0	0		11810	0	-11810	3933	0	-3933			
0	0	-1		0	3938	3938	-3938	-3938	0			
1	0	-1		-11810	3938	15748	-7871	-3938	3933			
0	-1	1		3933	-3938	-7871	15748	3938	-11810			
0	0	1		0	-3938	-3938	3938	3938	0			
0	1	0		-3933	0	3933	-11810	0	11810			

全体剛性マトリクス

要素1	1	1	2	2	3	3	4	4
1	11810	0	-11810	3933	0	-3933	0	0
1	0	3938	3938	-3938	-3938	0	0	0
2	-11810	3938	15748	-7871	-3938	3933	0	0
2	3933	-3938	-7871	15748	3938	-11810	0	0
3	0	-3938	-3938	3938	3938	0	0	0
3	-3933	0	3933	-11810	0	11810	0	0
4	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0

変位	
U1	
V1	
U2	
U2 V2	=
U3	
V3	
U4	
V4	

	外力
	FX1(1)
	FY1(1)
	FX2(1)
:	FY2(1)
	FX3(1)
	FY3(1)
	FX4(1)
	FY4(1)

全体剛性マトリクス

要素2	1	1	2	2	3	3	4	4		
1	3938	0	0	0	0	-3938	-3938	3938		
1	0	11810	0	0	-3933	0	3933	-11810		
2	0	0	0	0	0	0	0	0		
2	0	0	0	0	0	0	0	0		
3	0	-3933	0	0	11810	0	-11810	3933		
3	-3938	0	0	0	0	3938	3938	-3938		
4	-3938	3933	0	0	-11810	3938	15748	-7871		
4	3938	-11810	0	0	3933	-3938	-7871	15748		

U1	
V1	
U2	
V2	=
U3	
V3	
U4	
V4	

FX1(2)
FY1(2)
FX2(2)
FY2(2)
FX3(2)
FY3(2)
FX4(2)
FY4(2)

全体剛性マトリクス

全体	1	1	2	2	3	3	4	4
1	15748	0	-11810	3933	0	-7871	-3938	3938
1	0	15748	3938	-3938	-7871	0	3933	-11810
2	-11810	3938	15748	-7871	-3938	3933	0	0
2	3933	-3938	-7871	15748	3938	-11810	0	0
3	0	-7871	-3938	3938	15748	0	-11810	3933
3	-7871	0	3933	-11810	0	15748	3938	-3938
4	-3938	3933	0	0	-11810	3938	15748	-7871
4	3938	-11810	0	0	3933	-3938	-7871	15748

U1		FX1(1)+FX1(2)
V1		FY1(1)+FY1(2)
U2		FX2(1)+FX2(2)
V2	=	FY2(1)+FY2(2)
U3		FX3(1)+FX3(2)
V3		FY3(1)+FY3(2)
U4		FX4(1)+FX4(2)
\//		EV4(1)+EV4(2)

拘束条件・荷重条件の処理

全体	1	1	2	2	3	3	4	4		変位		外力
1	15748	0	-11810	3933	0	-7871	-3938	-3938		U1		FX1
1	0	15748	3938	-3938	-7871	0	3933	-11810		V1		FY1
2	-11810	3938	15750	-7871	3938	3933	0	0		U2		FX2
2	3933	-3938	-7871	15750	3938	-11810	0	0	×	V2	=	FY2
3	0	-7871	3938	3938	15748	0	-11810	3933		U3		FX3
3	-7871	0	3933	-11810	0	15748	3938	-3938		V3		FY3
4	-3938	3933	0	0	-11810	3938	15750	-7871		U4		FX4
4	3938	-11810	0	0	3933	-3938	-7871	15750		V4		FY4
全体	1	1	2	2	3	3	4	4		変位		外力
1	1	0	0	0	0	0	0	0		U1		0
1	0	1	0	0	0	0	0	0		V1		0
2	0	0	15750	-7871	3938	3933	0	0		U2		FX2
2	0	0	-7871	15750	3938	-11810	0	0	×	V2	=	FY2
3	0	0	3938	3938	15748	0	-11810	3933		U3		FX3
3	0	0	3933	-11810	0	15748	3938	-3938		V3		FY3
4	0	0	0	0	-11810	3938	15750	-7871		U4		FX4
4	0	0	0	0	3933	-3938	-7871	15750		V4		FY4
										→ /-		61 4-
全体	1	1	2	2	3	3	4	4		変位		外力
1	<u>1</u>	0	0	0	0	0	0	0		U1 V1		0
1	, and the second			, i	-	0	0	0		• •		0
2	0	0	1 0	0 1	0	0	0	0		U2 V2		0
3	0	0	0	0	0 15748	0	-11810	3933	×	U3	=	FX3
3	0	0	0	0	13746	15748	3938	-3938		V3		FY3
4	0	0	0	0	-11810	3938	15750	-3936 -7871		U4		FX4
4	0	0	0	0	3933	-3938	-7871	15750		V4		FY4
4	0	U	U	U	3333	- 3930	-1011	13730		V 4		114
全体	1	1	2	2	3	3	4	4		変位		外力
1	1	0	0	0	0	0	0	0		U1		0
1	0	1	0	0	0	0	0	0		V1		0
2	0	0	1	0	0	0	0	0		U2		0
2	0	0	0	1	0	0	0	0	×	V2	=	0
3	0	0	0	0	15748	0	0	0		U3		1
3	0	0	0	0	0	15748	0	0		V3		0
		0	0	0	0	0	1	0		U4		0
4	0	0	U	U	U	U	1	U		04		U

節点1を固定 U1=V1=0

節点2を固定 U2=V2=0

節点3に荷重 FX3=1 FY3=0

節点4を固定 U4=V4=0

小テスト(氏名:

(1)例題において頂点の変形量を計算せよ。引っ張る力を2倍にしたとき変形量はどうなるか答えよ。

(2)講義に関する感想等を述べよ。