信息论作业5

史泽宇

2020年4月19日

题目 1

1. 为了满足题目排序条件, 对字母进行重排

表 1: 二元码								
字母	a_8	a_7	a_6	a_5	a_4	a_3	a_2	a_1
概率	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{4}$
cdf	0	$\frac{1}{16}$	$\frac{2}{16}$	$\frac{3}{16}$	$\frac{4}{16}$	$\frac{6}{16}$	$\frac{8}{16}$	$\frac{12}{16}$
I	4	4	4	4	3	3	2	2
n	4	4	4	4	3	3	2	2
编码	0000	0001	0010	0011	010	011	10	11

- 2. (a) 首先证明该编码是异字头码。 $\forall a_k$,有 $n_k = \lceil \log_2 \frac{1}{P(a_k)} \rceil \ge \log_2 \frac{1}{P(a_k)}$,所以有 $2^{-n_k} \le P(a_k) = cdf(a_{k+1}) cdf(a_k) \le cdf(a_{k+n}) cdf(a_k)$,where $n \ge 1$ 。即 a_{k+n} 与 a_k 的编码至少有一位不同
 - (b) $\bar{n} = \sum_{a \in U} P(a) \lceil \log_2 \frac{1}{P(a)} \rceil \ge \sum_{a \in U} P(a) \log_2 \frac{1}{P(a)} = H(U) bits$ $\bar{n} = \sum_{a \in U} P(a) \lceil \log_2 \frac{1}{P(a)} \rceil < \sum_{a \in U} P(a) \log_2 \frac{1}{P(a)} + 1 = (H(U) + 1) bits$

题目 2

- 1. 由于字母出现的概率相等,所以当 $\alpha=1$ 时,对应的编码树为满二叉树,编码长度为 j。当 $\alpha=2$ 时,编码长度为 j+1。当 $1<\alpha<2$ 时,由于取整编码长度向上取证,所以只存在 j,j+1 长度的编码
- 2. 设长为 j 的码字个数为 N_j ,长度为 j+1 的码字数目为 N_{j+1} ,根据二元 Huffman 编码思想(必定占满整个码树),即 $N_j+N_{j+1}=K=\alpha 2^j, N_j 2^j+N_{j+1} 2^{-(j+1)}=1$ 。从而 $N_j=(2-\alpha)2^j, N_{j+1}=(\alpha-1)2^{j+1}$
- 3. $l = \frac{jN_j + (j+1)N_{j+1}}{K} = \frac{(2-\alpha)j + 2(\alpha-1)(j+1)}{\alpha} = \frac{2j j\alpha + 2j\alpha + 2\alpha 2j 2}{\alpha} = \frac{j\alpha + 2\alpha 2}{\alpha} = j + 2 \frac{2}{\alpha}$

题目 3

表 2: 算术编码

		及 4· 异小 珊昀		
步骤	输入字母	编码区间	间隔	
1	1	[0.25, 1)	0.75	
2	0	[0.25, 0.4375)	0.1875	
3	1	[0.296875, 0.4375)	0.140625	
4	1	[0.300390625, 0.4375)	0.10546875	
5	0	[0.33203125, 0.3583984375)	0.0263671875	
6	1	[0.338623046875, 0.3583984375)	0.019775390625	
7	1	[0.34356689453125, 0.3583984375)	0.01483154296875	
8	1	[0.3472747802734375, 0.3583984375)	0.0111236572265625	
9	1	$[0.3500556945800781,\ 0.3583984375)$	0.008342742919921875	
10	0	[0.3500556945800781, 0.3521413803100586)	0.0020856857299804688	
11	1	$[0.35057711601257324,\ 0.3521413803100586)$	0.0015642642974853516	
12	1	[0.3509681820869446, 0.3521413803100586)	0.0011731982231140137	
13	0	[0.3509681820869446, 0.3512614816427231)	0.0002932995557785034	
14	1	[0.3510415069758892, 0.3512614816427231)	0.00021997466683387756	
15	1	[0.3510965006425977, 0.3512614816427231)	0.00016498100012540817	
16	1	$[0.351137745892629,\ 0.3512614816427231)$	0.00012373575009405613	

1. 编码长度为 $n=\lceil -\log_2 0.00012373575009405613 \rceil=13$,而 $0.351137745892629\approx (0.0101100111100100)_2$,所以编码结果为 0101100111101。编码效率为 $\frac{H(U)}{\frac{13}{16}}=\frac{\frac{1}{4}\log_2 4+\frac{3}{4}\log_2 \frac{4}{3}}{\frac{13}{16}}\approx 0.9985$

表 3: LZ 编码

段号	前一段号	最后一位编码	段编码
1	0	1	0001
2	0	0	0000
3	1	1	0011
4	2	1	0101
5	3	1	0111
6	4	1	1001
7	6	1	1101

2. 所以最终编码为 0001000000110101011110011101,编码效率为 $\frac{H(U)}{\frac{28}{16}} \approx 0.4636$

题目 4 第二版的作业中弃用

题目似乎有点问题,如果按照题目计算的话,结果为

设信源输出长度为 l,则编码长度为 $\bar{l}=1\frac{l}{2}+2\frac{l}{4}+3\frac{l}{8}+4\frac{l}{8}=\frac{15}{8}l$,0 的个数为 $\bar{l}_0=\frac{l}{2}+\frac{l}{4}+\frac{l}{8}+\frac{l}{8}=l$,l, $\bar{l}_1=\frac{l}{4}+2\frac{l}{8}+3\frac{l}{8}=\frac{7}{8}l$, $P(0)=\frac{8}{15}$, $P(1)=\frac{7}{15}$

教材上课后题目中,最后一个字母的编码为 111, 使用教材上的编码计算结果为

设信源输出长度为 l,则编码长度为 $\bar{l}=1\frac{l}{2}+2\frac{l}{4}+3\frac{l}{8}+3\frac{l}{8}=\frac{7}{4}l$,0 的个数为 $\bar{l}_0=\frac{l}{2}+\frac{l}{4}+\frac{l}{8}=\frac{7}{8}l$, $\bar{l}_1=\frac{l}{4}+2\frac{l}{8}+3\frac{l}{8}=\frac{7}{8}l$, $P(0)=\frac{1}{2}$, $P(1)=\frac{1}{2}$

表 4: 信源概率分布				
字母	概率	字母长度		
1	0.1	1		
01	(0.9)(0.1)	2		
001	$(0.9)^2(0.1)$	3		
0001	$(0.9)^3(0.1)$	4		
00001	$(0.9)^4(0.1)$	5		
000001	$(0.9)^5(0.1)$	6		
0000001	$(0.9)^6(0.1)$	7		
00000001	$(0.9)^7(0.1)$	8		
00000000	0.9^{8}	8		

题目 5

- 1. 由信源的概率分布可计算 $H(U) \approx 0.469 bits$
- 2. 由表 4 中的概率分布与字母长度可计算 $\bar{n}_1 \approx 5.6953$
- 3. 由表 4 中的概率分布可计算 $\bar{n}_2 \approx 2.7086$
- 4. 观察编码结果发现, 任意编码都不是其他编码的前缀, 所以是异字头码

题目 6

- 1. 显然是三元对称信道,输入等概时达到信道容量 $C = \log_2 3 H(P)bps$
- 2. 显然是输入为二元输出为四元的对称信道,输入等概时达到信道容量 $C = \log_2 4 + (1-p) \log_2 \frac{(1-p)}{2} + p \log_2 \frac{p}{2} = 1 H(P) bps$
- 3. 可以拆分成两个和信道的组合, $C_1 = 1 H(P)$, $C_2 = 0$, $C = \log_2(2^{C_1} + 2^{C_2}) = \log_2(2^{1 H(P)} + 1)bps$

题目 7

1.

$$\begin{bmatrix} \frac{3}{4} & \frac{1}{4} & 0\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ 0 & \frac{1}{4} & \frac{3}{4} \end{bmatrix} \tag{1}$$

可以简化为如下的二元纯删除信道

$$\begin{bmatrix} \frac{3}{4} & \frac{1}{4} & 0\\ 0 & \frac{1}{4} & \frac{3}{4} \end{bmatrix} \tag{2}$$

显然达到信道容量的分布为等概分布,信道容量为 $C = \frac{3}{4}bps$ 。

2.

$$\begin{bmatrix} \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\ 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & 0 & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$
 (3)

显然为准对称信道,输入等概时达到信道容量,可以拆分为以下两个弱对称信道1

$$\begin{bmatrix} \frac{1}{3} & \frac{1}{3} & 0\\ 0 & \frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} \frac{1}{3}\\ \frac{1}{3}\\ \frac{1}{3} \end{bmatrix}$$

$$(4)$$

$$C_1 = \log_2 3 - H(\frac{\frac{1}{3}}{\frac{2}{3}}, \frac{\frac{1}{3}}{\frac{2}{3}}, \frac{0}{\frac{2}{3}}) = \log_2 \frac{3}{2}, C_2 = \log_2 1 - H(\frac{\frac{1}{3}}{\frac{1}{3}}) = 0, C = \frac{2}{3}C_1 + \frac{1}{3}C_2 = \frac{2}{3}\log_2 \frac{3}{2}bps$$

题目 8 信道容量为 $C = W \log_2(1 + \frac{S}{N}) = 3000 \log_2(1 + 1000) \approx 30 kbps$,三十分钟传送的信息为 $3*60*C \approx 5.3823mb$

题目 9

1. 最大似然译码

$$\begin{bmatrix}
P(y_i|x_j) & y_1 & y_2 & y_3 \\
x_1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{6} \\
x_2 & \frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\
x_3 & \frac{1}{3} & \frac{1}{6} & \frac{1}{2}
\end{bmatrix}$$
(5)

由矩阵中的最大转移概率可得译码规则为

$$F(y_1) = x_1$$

 $F(y_2) = x_2$ (6)
 $F(y_3) = x_3$

误码率为 $P_e = (\frac{1}{2} + \frac{1}{4} + \frac{1}{4})(\frac{1}{6} + \frac{1}{3}) = \frac{1}{2}$

2. 最大后验译码, 由贝叶斯公式可得

$$\begin{bmatrix}
P(x_i|y_j) & y_1 & y_2 & y_3 \\
x_1 & \frac{2}{3} & \frac{1}{2} & \frac{2}{7} \\
x_2 & \frac{1}{9} & \frac{3}{8} & \frac{2}{7} \\
x_3 & \frac{2}{9} & \frac{1}{8} & \frac{3}{7}
\end{bmatrix}$$
(7)

由矩阵中的最大后验概率可得译码规则为

$$F(y_1) = x_1$$

$$F(y_2) = x_1$$

$$F(y_3) = x_3$$
(8)

误码率为 $P_e = (\frac{1}{2})(\frac{1}{6}) + \frac{1}{4} + \frac{1}{4}(\frac{1}{3} + \frac{1}{6}) = \frac{11}{24}$

¹Lemma 4.18