## Week 12 Further Topics in Moral Hazard

Wenhao Wu wuwh2@shanghaitech.edu.cn

SEM, ShanghaiTech U

2024 Spring





## Outline

- Preliminaries
- 2 Product Warranty
- 3 Insurance Game
- 4 Multi-Task Game



### Outline

Preliminaries

•000000

- 1 Preliminaries
- 2 Product Warranty
- 3 Insurance Game
- 4 Multi-Task Game



### Risk

### The meaning of "risk"

If you take an action that results in a certain consequence, there is no risk. By contrast, if your action results in probabilities of reaching different outcomes, you are facing a risk.

#### The definition

The outcome of a **risky** project is represented by a random variable Z, whose possible realizations are  $z \in \{z_1, \ldots, z_n\}$ . The probability of  $z_i$  is  $p(z_i)$ , such that  $p(z_i) \geq 0$  and  $\sum_{i=1}^{n} p(z_i) = 1$ .



Preliminaries 0000000

Risk averse and risk neutral are descriptions of preferences over risky projects.

Given two projects. (A) return monetary payoff  $\tilde{m}$  with 100%; (B) a risky project with  $\mathbb{E}[Z] = \tilde{m}$ .

- Risk averse: always prefer (A)
- Risk neutral: indifferent between (A) and (B)





## Utility Functions of Two Preferences



Figure: Risk Neutral



Figure: Risk Averse 上海科技

## **Indifference Curves**

#### Definition

A set of bundles that contribute to the same utility level.

Suppose U(z) = z(28 - z), where  $z \in [0, 14]$ .

There are two states  $z_1$  and  $z_2$  with probabilities 0.5 and 0.5.

What is the indifference curve for the *expected* utility equal to 96?

$$\mathbb{E}[U(z)] = 0.5U(z_1) + 0.5U(z_2) = 96$$

There are <u>infinite</u> indifference curves in the state space corresponding to different utility levels.



Preliminaries

0000000



## Slope of Indifference Curve

The slope of an indifference curve  $\mathbb{E}[U(x,y)] = \bar{U}$  can be calculated by the Implicit Function Theorem.

$$\frac{dy}{dx} = -\frac{\partial U/\partial x}{\partial U/\partial y}$$

For  $\mathbb{E}[U(z)] = 96$ , at (4,4):

$$\frac{dz_2}{dz_1} = -\frac{0.5U_x(4)}{0.5U_y(4)} = -1$$



## Outline

Preliminaries

- 2 Product Warranty



### A Prevalent Phenomenon

Most *durables* have some type of warranty promising payment from the producer, conditional on performance of the product.

#### Two observations

- They provide less than full insurance against unsatisfactory performance.
- 2 They are supplied by the seller of the product rather than by independent insurance companies.



### Double Moral Hazard

### Incentive problems on both sides

- Will buyers take care of the product after the purchase?
- Will sellers build in high quality during the production?

### Bilateral agreement by buyer and seller

We seek for a warranty contract that disciplines *unobservable* behavior with regard to levels of quality and customer care.



## Setup

- One buyer purchases one unit of product from one seller.
- The seller sets up the price p and the warranty ratio  $s \in [0, 1]$ .
- Product quality q
- $\bullet$  Customer care e
- The probability that the product works well is  $\Pi(e,q) = \alpha e + \beta q$ .
- Seller's cost  $C(q) = \frac{1}{2}q^2$  is a convex function.
- Buyer's payoff loss  $g(e) = \frac{1}{2}e^2$  is also a convex function.



## Two-Stage Game

#### First Stage

Buyer and Seller forms an agreement with respect to (p, s), where s specifies the ratio of the compensation that the seller should return to the buyer if the product does not work within a limited amount of time.

### Second Stage

Given (p, s), the buyers and seller chooses their effort level e and quality level q, simultaneously.



### Buyer's utility

$$U(e, q, p, s) = \Pi z + (1 - \Pi)sz - p - \frac{1}{2}e^{2}$$

where z is the strength of the product's utility effect.

#### Seller's expected payoff

$$V(e, q, p, s) = p - (1 - \Pi)sz - \frac{1}{2}q^2$$



### First-Best Solution

#### When buyer and seller are in a cooperative relationship

They choose e and q so as to maximize the joint profit  $\max_{e,q} U + V$ .

$$\begin{aligned}
\hat{e} &= \alpha z \\
\hat{q} &= \beta z
\end{aligned} \tag{1}$$



### **Second-Best Solution**

### Backward Induction - Stage II

In the second stage, the buyer and seller optimize under the warranty contract (p, s).

The buyer  $\max_{e} U(e, q, p, s)$ , giving rise to

$$e^* = \alpha(1 - s)z \tag{2}$$

The seller  $\max_{q} V(e, q, p, s)$ , giving rise to

$$q^* = \beta sz \tag{3}$$

A notable fact is that  $e^* < \hat{e}$  and  $q^* < \hat{q}$ .



### **Second-Best Solution**

#### Backward Induction - Stage I

The seller chooses the optimal  $s^*$  by maximizing the joint profit  $\max_s U + V = \Pi z - \frac{1}{2}e^2 - \frac{1}{2}q^2$ .

FOC gives that

$$s^* = \frac{\beta^2}{\alpha^2 + \beta^2}$$

### Price p is determined by the Participation Constraint

p will be set so that the buyer's expected profit equals her reservation utility, and we skip the details.



## Outline

Preliminaries

- Preliminaries
- 2 Product Warranty
- **3** Insurance Game
- 4 Multi-Task Game



## A Key Concept in Economics

Moral hazard is an important topic because it studies **incentives**, one of the central concepts of economics. To solve the problem, we need to find a paradigm of providing the right incentives for effort by satisfying a participation constraint and an incentive compatibility constraint.

The term "moral hazard" comes from the insurance industry, which is the focus of next example.



### Insurance Game

#### Players

Smith and an insurance company. Smith has a car with market value 12.

### The Order of Play

- 1. The insurance company offers a contract of form (x, y), under which Smith pays premium x and receives compensation y if there is a theft.
- 2. Smith decides whether to accept or reject it.
- 3. Smith chooses either Careful or Careless.
- 4. Nature chooses whether there is a theft, with probability 0.5 if Smith is Careful or 0.75 if Smith is Careless.



### **Insurance Game**

### **Payoffs**

Smith is risk averse and the insurance company is risk neutral. If Smith chooses Careful,

$$\bar{\pi}_S = 0.5U(12 - x) + 0.5U(y - x)$$
  
 $\bar{\pi}_I = 0.5x + 0.5(x - y)$ 

If Smith chooses Careless,

$$\underline{\pi}_S = 0.25U(12 - x) + 0.75U(y - x)$$
  
 $\underline{\pi}_I = 0.25x + 0.75(x - y)$ 

Suppose when Smith is *indifferent*, he will choose Careful.



## State-space Diagram

We will use a <u>geometric</u> approach to solve the problem, instead of algebraic equations. This approach relies on a **state-space diagram**, a diagram whose axes measure the values of one variable in two different states of the world.

Two states in this example:

- Smith's payment when Safe,  $\pi_S^{safe}$
- Smith's payment when Theft,  $\pi_S^{theft}$



# Mapping From $(\pi_S^{safe}, \pi_S^{theft})$ to $(\mathbf{x}, \mathbf{y})$

Each combination  $(\pi_S^{safe}, \pi_S^{theft})$  represents a certain contract such that

• 
$$x = 12 - \pi_S^{safe}$$

• 
$$y = \pi_S^{theft} + x = 12 + \pi_S^{theft} - \pi_S^{safe}$$

#### Translation of Utility Functions

$$\bar{\pi}_{S} = 0.5U(\pi_{S}^{safe}) + 0.5U(\pi_{S}^{theft}) 
\bar{\pi}_{I} = 6 - 0.5\pi_{S}^{safe} - 0.5\pi_{S}^{theft} 
\underline{\pi}_{S} = 0.25U(\pi_{S}^{safe}) + 0.75U(\pi_{S}^{theft}) 
\underline{\pi}_{I} = 3 - 0.25\pi_{S}^{safe} - 0.75\pi_{S}^{theft}$$



Preliminaries





Preliminaries











Preliminaries













## Insurance Company's Zero-Profit Curves





## Insurance Company's Zero-Profit Curves







## Insurance Company's Zero-Profit Curves











## If Smith Chooses Careless





# If Smith Chooses Careful







# Contracts Both Can Agree to







# Contracts Both Can Agree to







## Optimal Contract

It can be checked that the slope of the indifference curve for  $\bar{\pi}_I$  equals the derivatives of the indifference curve for  $\bar{\pi}_S$  at (4,4). So that the optimal contract for the insurance company is represented by (4,4) in the state-space diagram.

Under the optimal contract, Smith pays the premium at the price of 8, while the insurance company pays Smith 12 if his car is stolen. In such a case, when Smith gets equal payoffs in both states, we say Smith is **fully insured**.

What is the insurance company's profit under the optimal contract?





## Outline

- 1 Preliminaries
- 2 Product Warranty
- 3 Insurance Game
- 4 Multi-Task Game



### **Allocation of Effort**

Holmstrom & Milgrom (1991) point out one place that has been ignored by the standard principal-agent problems — sometimes P wants A to split his time onto different tasks.

If some task is NOT *observable*, and therefore NOT **contractible**, then A has no incentive to spend any time on it.

### Examples

- Faculty: research, teaching, service
- Salesman: sales, attitude to customers, customary network





### Multi-Task Game

### **Players**

Principal and Agent.

#### The Order of Play

- P wants A to carry out Task 1 and Task 2. The outputs are  $q_1$  and  $q_2$ . Only  $q_1$  is observable.
- **2** P provides a contract  $w(q_1)$  as a function of  $q_1$ .
- 3 A decides whether to accept the contract or reject it.
- If accept, A chooses his effort levels for two projects  $e_1$  and  $e_2$ , where  $e_1 + e_2 = 1$ .
- **6** Outputs are  $q_1(e_1)$  and  $q_2(e_2)$ , where  $q_1(e) = q_2(e) = 2e e^2$ .



### Multi-Task Game

#### **Payoffs**

If A rejects, both P and A have payoff 0.

If A accepts, then

$$\pi_P = q_1 + \beta q_2 - w$$
 $\pi_A = w - e_1^2 - e_2^2$ 

 $\beta \in (0,1)$  measures the importance of Task 2.

Solve for the optimal linear contract  $w(q_1) = a + bq_1$ .



# Incentive Compatibility

#### Effort induced by linear contract

 $\max a + bq_1(e_1) - e_1^2 - e_2^2$ 

### FOC given that $e_2 = 1 - e_1$

$$\begin{array}{ll}
e_1^* &= 1 - \frac{1}{2+b} \\
e_2^* &= \frac{1}{2+b}
\end{array} \tag{4}$$

- $e_1^*$  is increasing in b.
- How much effort A puts in is only related with b (marginal return) but not a (fixed wage).



## Optimal b

#### **FOC** to $\max \pi_P$

$$2 - 2e_1 + \beta(2 - 2e_2)(-1) - b(2 - 2e_1) = 0$$

Solve for  $e_1^*$ 

$$e_1^* = 1 - \frac{\beta}{1 + \beta - b} \tag{5}$$

Combining Eq. (1)(2)

$$b = \frac{1 - \beta}{1 + \beta}$$

Note that b is decreasing in  $\beta$ . It means that the more important the unobservable task is, the less incentive the principal should provide for the observable task.





# Participation

After we solve for  $b, e_1^*, e_2^*, P$  picks a so that A's utility equals 0. That is

$$a + bq(e_1^*) - (e_1^*)^2 - (e_2^*)^2 = 0 (6)$$

 $a^*$  is the solution to Eq.(3).



## Vocabulary

incentive insurance game premium 动机 保险博弈 保费 state-space diagram fully insured multi-task game 状态空间图 全保险 多任务博弈

