

A

B and A B can be generated in parallel for each position S is then generated as $A \oplus B \oplus C$ (where C is the carry-in) Hence S_0 , the LSB of the sum requires 2 gate delays C_{OUT} is available after 3 gate delays

Other sum bits need the carry from the bit position on the right $S = A \oplus B \oplus C$, so another gate delay is needed once C is available $C_{out} = (A \oplus B) C + A B$, and requires 2 more gate delays

Four-bit Ripple Carry Adder A2 B1 A1 B0 A0

S₀ is available after 2 delays

C₁ is available after 3 delays

 S_1 is available after 1 + 3 = 4 delays

 C_2 is available after 2 + 3 = 5 delays

 S_2 is available after 1 + 5 = 6 delays

 C_3 is available after 2 + 5 = 7 delays

 S_3 is available after 1 + 7 = 8 delays

 C_4 is available after 2 + 7 = 9 delays

Recall that for the full adder:

CarryOut =
$$(a \cdot b) + (a \oplus b) \cdot CarryIn$$

If a and b are both 1, they generate a CarryOut when added

If either a or b is 1, Carryin is propagated to CarryOut

In general: $c_{i+1} = (a_i \cdot b_i) + (a_i + b_i) \cdot c_i = g_i + p_i \cdot c_i$ $g_i = a_i \cdot b_i$ and $p_i = a_i \oplus b_i$ the subscript indicates the bit position

C₀ is the input carry for bit 0, the LSB

 $C_0 = 0$ for addition

 $C_0 = 1$ for subtraction

recurrence relation for all of the output carries:

Faster Addition

$$c1 = g0 + p0 \cdot c0$$

$$c2 = g1 + p1 \cdot c1$$

$$c_i = g_{i-1} + p_{i-1} \cdot c_{i-1}$$
 (for i>0)

Inputs are the data bits for each position

Propagate & generate bits are used to produce carry bits

Carries require 2 gate delays and are produced in parallel

Lookahead carry generator circuit

ep.jhu.edu 5

Faster Addition

Bits in sum are available after 1+2+1 = 4 gate delays

4-bit adder with lookahead carry

ep.jhu.edu 6

- c0 and all of the a_i and b_i bits are known up front
- All of the p_i and g_i can be generated in parallel (1 delay)
- All carry bits c_i are generated in parallel (2 more delays)
- All sum bits are produced in parallel (1 more delay)
- This is faster than the ripple carry adder
- Ripple carry adder computes each sum sequentially from LSB to MSB

ep.jhu.edu 7