

First and Last name.

Exercise 1 (value 8)

Consider the following PLC problem and solve it with the symplex method using the Blend rule

Write the dual and solve the dual using the complementary slackness conditions.

Exercise 2 (value 14)

The manager of a large company wants to optimize the supply chain. The company produces two goods, called A and B in the following. There are n suppliers, each with an available quantity of a_i items (i = 1, ..., n) that can be used to produce both A and B. The use of an item from supplier i has a cost c_i . The items must be transformed into a semifinished product (of type A or B) and next to be transformed into a final product. (Note that the type of the product is defined by the first transformation.) There are m first level plants that can perform both the first and the second transformation. There are p second level plans that can perform only the second transformation. Each plant can perform the first transformation for both product types, but the second transformation for a unique good type (A or B). Each first level plant j can make f_i first-transformations and s_i transformations from semifinished product to final goods. Moreover, there is a limit on the total number of transformations, namely t_i . The cost of the first transformation for an item is $c1_j$, while the cost of a second transformation is $c2_j$. Each second level plants k can transform at most l_k semifinished products into final goods at a cost $c3_k$ for each good. There is also a cost for the transport of items and semifinished products, namely t_{ij} is the cost to transport an item from supplier i to first level plant j, and r_{jk} is the cost to transport a semifinished product from first level plan j to second level plant k.

Write a linear model to help the company to decide how to produce F_A (resp. F_B) final products of type A (resp. B) at minimum cost.

Exercise 3 (value 6).

Consider the following ILP and write the corresponding model in GLPK or Mosel (XPRESS) language.

$$\min z = \sum_{t \in T} (a_t x_t - \sum_{j \in J} b_{tj} y_{tj}) + \sum_{\substack{t \in T \\ t \neq 0}} c_t z_t$$
 (1)

s.t.
$$x_t + \sum_{i \in I} y_{tj} \ge \alpha z_t$$
 $t \in T, t \ne 0$ (2)

$$x_t + x_{t+1} + x_{t+2} \le B$$
 $t \in T, t \le |T| - 2$ (3)

$$\sum_{j \in J} y_{tj} \le 1 \qquad \qquad t \in T \tag{4}$$

$$2y_{tj} + y_{t,\beta} \ge 0 \qquad \qquad t \in T, j \in J, j \ne \beta \tag{5}$$

$$x_t, z_t \ge 0 t \in T (6)$$

$$y_{tj} \ge 0 \text{ integer}$$
 $t \in T, j \in J.$ (7)

Answers

A

Exercise 1

x_1	x_2	x_3	x_4	x_5	x_6	x_7		_
0	-1	1	0	0	0	0	0	-z
-2	2	0	1	0	0	0	1	x_4
1	1	0	0	1	0	0	4	x_5
0	1	-1	0	0	1	0	1	x_6
1	0	0	0	0	0	1	3	x_7

x_1	x_2	x_3	x_4	x_5	x_6	x_7		
-1	0	1	$\frac{1}{2}$	0	0	0	$\frac{1}{2}$	-z
-1	1	0	$\frac{1}{2}$	0	0	0	$\frac{1}{2}$	x_2
2	0	0	$-\frac{1}{2}$	1	0	0	$\frac{7}{2}$	x_5
1	0	-1	$-\frac{1}{2}$	0	1	0	$\frac{1}{2}$	x_6
1	0	0	0	0	0	1	3	x_7

x_1	x_2	x_3	x_4	x_5	x_6	x_7		_
0	0	0	0	0	1	0	1	-z
0	1	-1	0	0	1	0	1	x_2
0	0	2	$\frac{1}{2}$	1	-2	0	$\frac{5}{2}$	x_5
1	0	-1	$-\frac{1}{2}$	0	1	0	$\frac{1}{2}$	x_1
0	0	1	$\frac{1}{2}$	0	-1	1	$\frac{5}{2}$	x_7

$$\overline{x = (\frac{1}{2}, 1, 0, 0, \frac{5}{2}, 0, \frac{5}{2}) \ z_P = -1}$$

$$\begin{array}{lll}
-\max & x_2 - x_3 & -\min & u_1 + 4u_2 + u_3 + 3u_4 \\
-2x_1 + 2x_2 \le 1 & -2u_1 + u_2 + u_4 \ge 0 \\
x_1 + x_2 \le 4 & 2u_1 + u_2 + u_3 \ge 1 \\
x_2 - x_3 \le 1 & -u_3 \ge -1 \\
x_1 \le 3 & u_1, \dots, u_4 \ge 0 \\
x_1, x_2, x_3 \ge 0
\end{array}$$

$$\begin{cases} (-2x_1 + 2x_2 - 1)u_1 = 0 \\ (x_1 + x_2 - 4)u_2 = 0 \\ (x_2 - x_3 - 1)u_3 = 0 \\ (x_1 - 3)u_4 = 0 \end{cases} \Rightarrow u_2 = 0 \begin{cases} (-2u_1 + u_2 + u_4)x_1 = 0 \\ (2u_1 + u_2 + u_3 - 1)x_2 = 0 \\ (u_3 - 1)x_3 = 0 \end{cases} \begin{cases} -2u_1 = 0 \\ 2u_1 + u_3 = 1 \end{cases}$$

$$u = (0, 0, 1, 0) z_D = -1$$

Exercise 2

Variables

 $x_{ij} = \text{amount of items from supply } i \text{ to plant } j$ $y_j^A = \text{amount of final goods of type A produced by plant } j$ $y_j^B = \text{amount of final goods of type B produced by plant } j$ $w_{jk}^A = \text{semifinished products of type A transported from } j \text{ to } k$ $w_{jk}^B = \text{semifinished products of type B transported from } j \text{ to } k$ $\delta_j = 1/0 \text{ if first level plant } j \text{ produces goods of type A/B}$ $\gamma_k = 1/0 \text{ if second level plant } k \text{ produces goods of type A/B}$

Constants

 $M = \text{a big number, e.g. } M = F_A + F_B$

$$\min z = \sum_{i=1}^{n} c_i \sum_{j=1}^{m} x_{ij} + \sum_{j=1}^{m} c 1_j \sum_{i=1}^{n} x_{ij} + \sum_{j=1}^{m} c 2_j (y_j^A + y_j^B)$$
(8)

$$+\sum_{k=1}^{p} c 3_k \sum_{j=1}^{m} w_{jk} + \sum_{i=1}^{n} \sum_{j=1}^{m} t_{ij} x_{ij} + \sum_{j=1}^{m} \sum_{k=1}^{p} r_{jk} (w_{jk}^A + w_{jk}^B)$$

$$\tag{9}$$

s.t.
$$\sum_{j=1}^{m} x_{ij} \le a_i$$
 $i = 1, \dots, n$ (10)

$$\sum_{i=1}^{n} x_{ij} \le \min(f_j, t_j)$$

$$j = 1, \dots, m \quad (11)$$

$$y_j^A + y_j^B \le s_j j = 1, \dots, m (12)$$

$$\sum_{i=1}^{n} x_{ij} \le y_j^A + y_j^B$$
 $j = 1, \dots, m$ (13)

$$\sum_{i=1}^{n} x_{ij} - (y_j^A + y_j^B) = \sum_{k=1}^{p} (w_{jk}^A + w_{jk}^B)$$
 $j = 1, \dots, m$ (14)

$$\sum_{i=1}^{m} (w_{jk}^{A} + w_{jk}^{B}) \le l_{k}$$
 $k = 1, \dots, p$ (15)

$$\sum_{j=1}^{m} (y_j^A + \sum_{k=1}^{p} w_{jk}^A) \ge F_A \tag{16}$$

$$\sum_{i=1}^{m} (y_j^B + \sum_{k=1}^{p} w_{jk}^B) \ge F_B \tag{17}$$

$$y_j^A \le M\delta_j \qquad j = 1, \dots, m \quad (18)$$

$$y_i^B \le M(1 - \delta_i) \qquad j = 1, \dots, m \quad (19)$$

$$w_{ik}^A \le M\delta_j \qquad j = 1, \dots, m, k = 1, \dots, p \quad (20)$$

$$w_{jk}^{B} \le M(1 - \delta_{j})$$
 $j = 1, \dots, m, k = 1, \dots, p$ (21)

$$x_{ij} \ge 0 \text{ integer}$$
 $i = 1, \dots, n, j = 1, \dots, m$ (22)

$$w_{jk}^A, w_{jk}^B \ge 0$$
 integer $j = 1, \dots, m, k = 1, \dots, p$ (23)

$$y_j^A, y_j^B \ge 0 \text{ integer}$$
 $j = 1, \dots, m \quad (24)$

$$\delta_i \in \{0, 1\} \text{ integer}$$
 $j = 1, \dots, m \quad (25)$

Exercise 3

```
param n integer > 0 ;
param m integer > 0 ;
set T:=0..n;
set J:=0..m;
param B integer > 0 ;
param alpha integer > 0 ;
param beta integer > 0 ;
param a{t in T};
param b{t in T, j in J};
param c{t in T};
/* variables */
var x {t in T} >= 0;
var y {t in T, j in J} >= 0, integer;
var z {t in T} >= 0;
/* objective function */
\label{eq:maximize zz : sum{t in T} (a[t] * x[t] + sum{j in J} b[t,j] * y[t,j])} \\
                     + sum{t in T: t> 0} c[t]*z[t];
/* constraints */
s.t.
one{t in T: t>0} : x[t] + sum{j in J} y[t,j] >= alpha*z[t];
two{t in T: t \le n-2} : x[t]+x[t+1]+x[t+2] \le B;
three{t in T} : sum{j in J} y[t,j] \le 1;
four\{t \ in \ T, \ j \ in \ J: \ j <> \ beta\} \ : \ 2*y[t,j] \ + \ y[t,beta] \ >= \ 0;
solve;
end;
```