# Ho Chi Minh City University of Technology FACULTY OF COMPUTER SCIENCE & ENGINEERING



## Laboratory Manual

Digital Systems

Experiment Lab 5

Group 5: Nguyễn Ngọc Song Thương MSSV: 2252803

Nguyễn Tiến Hưng MSSV: 2252280

Lê Ngọc Minh Thư MSSV: 2252795

Hà Nguyễn Bảo Phúc MSSV: 2252628

Hồ Chí Minh, 11/2022

# 1. Thiết kế, mô phỏng và lắp mạch MOD-4 Synchronous DOWN Counter sử dụng D FlipFlop

#### Thiết kế:

Thiết kế mạch theo yêu cầu:

- Step 1: Xác định cơ chế hoạt động của mạch:
  - Synchronous Counter | DOWN Counter
- Step 2: Xác định FlipFlop:

D FlipFlop

Positive / Negative Edge Trigger

- Step 3: Xác định số FlipFlop cần hiện thực:
  - Gọi n là số FlipFlop cần thực hiện, như vậy ta có 2<sup>n</sup> 1 số trạng thái có thể xảy ra mà FF đếm được.
  - $\circ$  Như vậy số trạng thái được yêu cầu  $\le 2^n 1$
  - Số State xảy ra của mạch yêu cầu: 4
  - o Vậy mạch thiết kế cần có 2 FF để hoạt động.
- Step 4: Xác định State cần thể hiện và sự thay đổi của trạng thái:

$$11_2$$
 (initial)  $\rightarrow 10_2 \rightarrow 01_2 \rightarrow 00_2 \rightarrow 11_2$  (initial)

Sơ đồ thay đổi trạng thái của mạch hoạt động:



• Step 5: Bảng trạng thái của mạch yêu cầu.

| CLK      | Current state |   | Next state |   | DB | DA |
|----------|---------------|---|------------|---|----|----|
|          | B (MSB)       | A | В          | A |    |    |
| 1        | 0             | 0 | 1          | 1 | 1  | 1  |
| 1        | 0             | 1 | 0          | 0 | 0  | 0  |
| 1        | 1             | 0 | 0          | 1 | 0  | 1  |
| <b>↑</b> | 1             | 1 | 1          | 0 | 1  | 0  |

• Step 6: Lập bảng K-Map và thể hiện biểu thức rút gọn cho kết nối.

o Bảng K-Map cho đầu vào DB:

| Table Template | A' | A |  |  |
|----------------|----|---|--|--|
| B'             | 1  | 0 |  |  |
| В              | 0  | 1 |  |  |

Biểu thức cho DB: A'B' + AB

Sơ đồ chân kết nối đầu ra Q và đầu vào D:



#### o Bảng K-Map cho đầu vào DA:

| Table Template | A' | A |
|----------------|----|---|
| B'             | 1  | 0 |
| В              | 1  | 0 |

Biểu thức cho DA: A'

Sơ đồ chân kết nối đầu ra Q và đầu vào D:



• Step 7: Sơ đồ thiết kế toàn bộ mạch yêu cầu:



#### Mô phỏng Logisim:

Hình mạch trên mô phỏng Logisim:



Link Video demo mạch hoạt động trên Logisim:

 $https://drive.google.com/file/d/1zOWrSd\_CEVooR2GCtf2xQy8j68xrlO8O/view?usp=share\_link$ 

## Lắp mạch:

Hình mạch lắp trên Tickit:



Link video demo nói về mạch hoạt động trên Tickit:

https://drive.google.com/file/d/1x0oQO5QlTOVFsq4KLX81Rj5cvqEOBUJJ/view?usp=drivesdk

## 2. Thiết kế, mô phỏng, và lắp mạch 8-to-1 Multiplexer sử dụng IC 74151:

## Thiết kế

Vẽ lại sơ đồ mạch nguyên lý 8-to-1 Multiplexer gồm các cổng luận lý dựa theo các chân của IC74151 thực tế:



Yêu cầu kết nối chân:

 $D2 \rightarrow Clock$ 

 $D5 \rightarrow LSB$  ở bài 1

 $D6 \rightarrow MSB$  ở bài 1

#### Bảng sự thật (Truth Table):

|    | Input Select |    | Strobe | Output V |
|----|--------------|----|--------|----------|
| S2 | S1           | S0 | Shope  | Output Y |
| X  | X            | X  | 1      | 0        |
| 0  | 0            | 1  | 0      | D1       |
| 1  | 0            | 0  | 0      | D4       |
| 0  | 1            | 0  | 0      | D2       |
| 1  | 0            | 1  | 0      | D5       |
| 1  | 1            | 0  | 0      | D6       |

## Mô phỏng

Hình thiết kế IC 74151 trên Logisim (kết nối với bài 1):



Link video demo hoạt động IC74151 trên Logisim:

 $https://drive.google.com/file/d/1-X6MV85mL2yrKQzbLfjgmgAAn4v7VNKi/view?usp=share\_link$ 

## Lắp mạch

Hình mạch lắp trên DS Kit:



Link video demo nói về mạch lắp trên DS Kit:

https://drive.google.com/file/d/1dN6GrH9Hv0FWfU2YVQi1Vg3BcFquFEDf/view?usp=drivesdk

## 3. Thiết kế và mô phỏng mạch 3-to-8 Decoder sử dụng IC74138:

#### Thiết kế

Vẽ lại sơ đồ mạch nguyên lý 3-to-8 Decoder gồm các cổng luận lý dựa theo các chân của IC74138 trong Logisim:



| Bång ch | ıân tri | của mạch | 1 <b>3-to-8</b> ] | Decoder | IC74138 | theo L | ogisim: |
|---------|---------|----------|-------------------|---------|---------|--------|---------|
|         | •       | •        |                   |         |         |        | _       |

| OE1<br>(G2<br>A') | OE2<br>(G2<br>B') | OE3<br>(G1) | A2 | A1 | A0 | Y7 | Y6 | Y5 | Y4 | Y3 | Y2 | Y1 | Y0 |
|-------------------|-------------------|-------------|----|----|----|----|----|----|----|----|----|----|----|
| 1                 | 0                 | 0           | 0  | 1  | 0  | Н  | Н  | Н  | Н  | Н  | Н  | Н  | Н  |
| 0                 | 0                 | 1           | 1  | 0  | 0  | Н  | Н  | Н  | L  | Н  | Н  | Н  | Н  |
| 0                 | 0                 | 1           | 0  | 0  | 1  | Н  | Н  | Н  | Н  | Н  | Н  | L  | Н  |
| 0                 | 0                 | 1           | 1  | 1  | 1  | L  | Н  | Н  | Н  | Н  | Н  | Н  | Н  |
| 1                 | 1                 | 0           | 1  | 0  | 1  | Н  | Н  | Н  | Н  | Н  | Н  | Н  | Н  |
| 0                 | 0                 | 1           | 0  | 1  | 1  | Н  | Н  | Н  | Н  | L  | Н  | Н  | Н  |
| 0                 | 1                 | 0           | 0  | 0  | 0  | Н  | Н  | Н  | Н  | Н  | Н  | Н  | Н  |
| 0                 | 0                 | 1           | 1  | 1  | 0  | Н  | L  | Н  | Н  | Н  | Н  | Н  | Н  |

## Mô phỏng Logisim

Hình mạch mô phỏng trên Logisim



Video demo mạch hoạt động trên Logisim:

 $https://drive.google.com/file/d/1KolHVx8eemLCtmN955m1f2oG6mEz9vTq/view?usp=share\ link$ 

#### 4. Thiết kế và mô phỏng mạch 8-bit magnitude comparator sử dung IC7485:

#### Thiết kế

Cho các giá trị 8-bit sau:

• 
$$A = 54_{10} = 00110110_2$$
,  $B = 79_{10} = 01001111_2$ 

• 
$$A = 88_{10} = 01011000_2$$
,  $B = 200_{10} = 11001000_2$ 

• 
$$A = 133_{10} = 10000101_2$$
,  $B = 183_{10} = 101101111_2$ 

• 
$$A = 22_{10} = 00010110_2$$
,  $B = 22_{10} = 00010110_2$ 

• 
$$A = 115_{10} = 01110011_2$$
,  $B = 78_{10} = 01001110_2$ 

• 
$$A = 35_{10} = 00100011_2$$
,  $B = 253_{10} = 111111101_2$ 

Hoàn thành bảng chân trị của mạch 8-bit magnitude comparator IC7485 theo Logisim (Trong đó A0 và B0 là LSB):

| A<br>0 | <b>A</b> 1 | A<br>2 | A<br>3 | A<br>4 | <b>A</b> 5 | A<br>6 | <b>A</b> 7 | B<br>0 | B<br>1 | B<br>2 | B<br>3 | B<br>4 | B<br>5 | B<br>6 | B<br>7 | Y<br>G<br>T | Y<br>L<br>T | Y<br>E<br>Q |
|--------|------------|--------|--------|--------|------------|--------|------------|--------|--------|--------|--------|--------|--------|--------|--------|-------------|-------------|-------------|
| 0      | 0          | 1      | 1      | 0      | 1          | 1      | 0          | 0      | 1      | 0      | 0      | 1      | 1      | 1      | 1      | 0           | 1           | 0           |
| 0      | 1          | 0      | 1      | 1      | 0          | 0      | 0          | 1      | 1      | 0      | 0      | 1      | 0      | 0      | 0      | 0           | 1           | 0           |
| 1      | 0          | 0      | 0      | 0      | 1          | 0      | 1          | 1      | 0      | 1      | 1      | 0      | 1      | 1      | 1      | 0           | 1           | 0           |
| 0      | 0          | 0      | 1      | 0      | 1          | 1      | 0          | 0      | 0      | 0      | 1      | 0      | 1      | 1      | 0      | 0           | 0           | 1           |
| 0      | 1          | 1      | 1      | 0      | 0          | 1      | 1          | 0      | 1      | 0      | 0      | 1      | 1      | 1      | 0      | 1           | 0           | 0           |
| 0      | 0          | 1      | 0      | 0      | 0          | 1      | 1          | 1      | 1      | 1      | 1      | 1      | 1      | 0      | 1      | 0           | 1           | 0           |

#### Mô phỏng Logisim

Hình mạch thiết kế trên Logisim



Link video demo mạch so sánh các số đã cho trên Logisim:

 $https://drive.google.com/file/d/1fPMvo6ygxBlB4S0Ah2otAkLQDMYcuZwV/view?usp{=}s \\ hare\_link$ 

## 5. Thiết kế và mô phỏng MOD-5 Synchronous DOWN Counter sử dụng D FlipFlop

#### Thiết kế:

Thiết kế mạch theo yêu cầu:

- <u>Step 1</u>: Xác định cơ chế hoạt động của mạch: Synchronous Counter |DOWN Counter
- Step 2: Xác định FlipFlop:

D FlipFlop.

Positive Edge Trigger

- Step 3: Xác định số FlipFlop cần hiện thực:
  - Gọi n là số FlipFlop cần thực hiện, như vậy ta có 2<sup>n</sup> 1 số trạng thái có thể xảy ra mà FF đếm được.
  - Như vậy số trạng thái được yêu cầu  $\leq 2^n 1$
  - Số State xảy ra của mạch yêu cầu: 5
  - Vậy mạch thiết kế cần có 3 FF để hoạt động.
- Step 4: Xác định State cần thể hiện và sự thay đổi của trạng thái:

$$100_2$$
 (initial)  $\rightarrow 011_2 \rightarrow 010_2 \rightarrow 001_2 \rightarrow 000_2 \rightarrow 100_2$  (initial)

Sơ đồ thay đổi trạng thái của mạch hoạt động:



• Step 5: Bảng trạng thái của mạch yêu cầu.

| CLK        | Curren     | t state |   | Next st | Next state |   |   | DB | DA |
|------------|------------|---------|---|---------|------------|---|---|----|----|
|            | C(M<br>SB) | В       | A | С       | В          | A |   |    |    |
| $\uparrow$ | 0          | 0       | 0 | 1       | 0          | 0 | 1 | 0  | 0  |
| <b>↑</b>   | 0          | 0       | 1 | 0       | 0          | 0 | 0 | 0  | 0  |
| 1          | 0          | 1       | 0 | 0       | 0          | 1 | 0 | 0  | 1  |
| 1          | 0          | 1       | 1 | 0       | 1          | 0 | 0 | 1  | 0  |
| 1          | 1          | 0       | 0 | 0       | 1          | 1 | 0 | 1  | 1  |
| 1          | 1          | 0       | 1 | 0       | 1          | 1 | 0 | 0  | 0  |
| <b>↑</b>   | 1          | 1       | 0 | 0       | 1          | 1 | 0 | 0  | 0  |
| 1          | 1          | 1       | 1 | 0       | 1          | 1 | 0 | 0  | 0  |

• <u>Step 6</u>: Lập bảng K-Map và thể hiện biểu thức rút gọn cho kết nối.

Bảng K-Map cho đầu vào DC:

| Table template | C'B' | С'В | СВ | CB' |
|----------------|------|-----|----|-----|
| A'             | 1    | 0   | 0  | 0   |
| A              | 0    | 0   | 0  | 0   |

Biểu thức cho DC: C'B'A'

Sơ đồ chân kết nối đầu ra Q và đầu vào D:



o Bảng K-Map cho đầu vào DB:

| Table template | C'B' | С'В | СВ | CB' |
|----------------|------|-----|----|-----|
| A'             | 0    | 0   | 1  | 1   |
| A              | 0    | 1   | 1  | 1   |

Biểu thức cho DB: C + AB

Sơ đồ chân kết nối đầu ra Q và đầu vào D:



o Bảng K-Map cho đầu vào DA:

| Table template | C'B' | C'B | СВ | CB' |
|----------------|------|-----|----|-----|
| A'             | 0    | 1   | 1  | 1   |
| A              | 0    | 0   | 1  | 1   |

Biểu thức cho DA: C + A'B Sơ đồ chân kết nối đầu ra Q và đầu vào D:



• Step 7: Sơ đồ thiết kế toàn bộ mạch yêu cầu:



## Mô phỏng Logisim:

Hình mạch trên mô phỏng Logisim:



Link Video demo mạch hoạt động trên Logisim:

 $https://drive.google.com/file/d/1-0XW6ymz\_UuXRJUoro9kz-0jZigX3QJZ/view?usp=share\_link$ 

6. Thiết kế, mô phỏng và lắp mạch Synchronous Counter sử dụng D FlipFlop dựa theo trạng thái sau:



## Thiết kế:

Thiết kế mạch theo yêu cầu:

• Step 1: Xác định cơ chế hoạt động của mạch:

#### Synchronous Counter

• Step 2: Xác định FlipFlop:

D FlipFlop

Positive / Negative Edge Trigger

- Step 3: Xác định số FlipFlop cần hiện thực:
  - Gọi n là số FlipFlop cần thực hiện, như vậy ta có 2<sup>n</sup> 1 số trạng thái có thể xảy ra mà FF đếm được.
  - Như vậy số trạng thái được yêu cầu  $\leq 2^n 1$
  - Số State xảy ra của mạch yêu cầu: 4
  - Vậy mạch thiết kế cần có 3 FF để hoạt động.
- Step 4: Xác định State cần thể hiện và sự thay đổi của trạng thái:

$$010_2 \text{ (initial)} \rightarrow 101_2 \rightarrow 011_2 \rightarrow 100_2 \rightarrow 010_2 \text{ (initial)}$$

Sơ đồ thay đổi trạng thái của mạch hoạt động:



| • | <b>Step 5</b> : | Råna | trana | thái | cila | mach | vên | cầu  |
|---|-----------------|------|-------|------|------|------|-----|------|
| • | <u>step s</u> . | Dang | uang  | uiai | Cua  | mạcm | yeu | cau. |

|          | Q current state Q next state |   | e |   |   |   |    |    |    |
|----------|------------------------------|---|---|---|---|---|----|----|----|
| CLK      | С                            | В | A | С | В | A | DC | DB | DA |
| 1        | 0                            | 0 | 0 | 0 | 1 | 0 | 0  | 1  | 0  |
| 1        | 0                            | 0 | 1 | 0 | 1 | 0 | 0  | 1  | 0  |
| 1        | 0                            | 1 | 0 | 1 | 0 | 1 | 1  | 0  | 1  |
| <b>↑</b> | 0                            | 1 | 1 | 1 | 0 | 0 | 1  | 0  | 0  |
| 1        | 1                            | 0 | 0 | 0 | 1 | 0 | 0  | 1  | 0  |
| <b>↑</b> | 1                            | 0 | 1 | 0 | 1 | 1 | 0  | 1  | 1  |
| <u></u>  | 1                            | 1 | 0 | 1 | 0 | 1 | 1  | 0  | 1  |
| 1        | 1                            | 1 | 1 | 1 | 0 | 1 | 1  | 0  | 1  |

Trong đó A là LSB và C là MSB.

- Step 6: Lập bảng K-Map và thể hiện biểu thức rút gọn cho kết nối.
  - o Bảng K-Map cho đầu vào DC:

| Table template | C'B' | C'B | СВ | CB' |
|----------------|------|-----|----|-----|
| A'             | 0    | 1   | 1  | 0   |
| A              | 0    | 1   | 1  | 0   |

Biểu thức cho DC: B

Sơ đồ chân kết nối đầu ra Q và đầu vào D:



#### o Bảng K-Map cho đầu vào DB:

| Table template | C'B' | C'B | СВ | CB' |
|----------------|------|-----|----|-----|
| A'             | 1    | 0   | 0  | 1   |
| A              | 1    | 0   | 0  | 1   |

Biểu thức cho DB: B'

Sơ đồ chân kết nối đầu ra Q và đầu vào D:



Bảng K-Map cho đầu vào DA:

| Table template | C'B' | С'В | СВ | CB' |
|----------------|------|-----|----|-----|
| A'             | 0    | 1   | 1  | 0   |
| A              | 0    | 0   | 1  | 1   |

Biểu thức cho DA: BA'+CA

Sơ đồ chân kết nối đầu ra Q và đầu vào D:





• Step 7: Sơ đồ thiết kế toàn bộ mạch yêu cầu:

#### Mô phỏng Logisim:

Hình mạch trên mô phỏng Logisim:



Link Video demo mạch hoạt động trên Logisim:

 $https://drive.google.com/file/d/17yeP8CoJq0qnyy5MiQ2nqw-yz55BtRK-/view?usp=share \\ \_link$ 

## Lắp mạch:

Hình mạch lắp trên Tickit:



Link video demo nói về mạch hoạt động trên Tickit:

 $https://drive.google.com/file/d/18kMAx3G-\_SGKw--b5tiSKPzbnLgvFZPq/view?usp=drivesdk$