

Telecom Churn Project -Churn Prediction Analysis

Project Overview

Objective

To identify high-value customers at risk of churn and provide actionable insights to reduce churn rates. The business objective is to predict the churn in the last (i.e. the ninth) month using the data (features) from the first three months.

Dataset

The dataset contains customer-level information for a span of four consecutive months - June, July, August and September.

Key Steps

- Data preprocessing and feature engineering.
- Model development using Logistic Regression.
- Evaluation and recommendation of retention strategies.

Data Overview and Preparation

Dataset Details

- Initial shape: (99999 rows, 226 columns)
- Final shape (after cleaning, feature engineering): (30024 rows, 136 columns)
- Key features included:
 - Recharge Amount, call duration, data usage.
 - Mobile Number, circle ID, Date columns (removed).
- Outliers handled and imputation performed for missing values

Feature Engineering

 Added features like recharge frequency ratio, recharge amount difference, recharge trend, total call volume, average monthly recharge amount & total calls ratio.

EDA Analysis

The comparison of new features reveals significant differences between churners and non-churners. Churners exhibit lower total call volumes and average monthly recharge amounts, while showing distinct patterns in recharge frequency and call drop ratios, indicating their potential as predictive factors for churn.

Model Development

Algorithm: Logistic Regression

Key Metrics for Evaluation:

- ROC-AUC Score: 0.88
- Precision-Recall Curve:

 Focus on churners to
 assess model utility for
 targeted retention
 campaigns.

Model Performance

Classification Report:								
	p	recision	recall	f1-score	support			
	0	0.98	0.84	0.90	5174			
	1	0.24	0.77	0.37	353			
	accuracy			0.83	5527			
	macro avg	0.61	0.80	0.64	5527			
	weighted avg	0.93	0.83	0.87	5527			
	5.000							

```
Confusion Matrix:
[[4335 839]
[ 82 271]]
```

Model Evaluation on Train and Test Data

Train Set Evaluation:								
	precision	recall	f1-score	support				
0	0.99	0.84	0.91	20691				
1	0.27	0.83	0.40	1413				
accuracy			0.84	22104				
macro avg	0.63	0.84	0.66	22104				
weighted avg	0.94	0.84	0.88	22104				
Train ROC-AUC Score: 0.90								
Test Set Evaluation:								
	precision	recall	f1-score	support				
0	0.98	0.84	0.90	5174				
1	0.24	0.77	0.37	353				
accuracy			0.83	5527				
macro avg	0.61	0.80	0.64	5527				
weighted avg	0.93	0.83	0.87	5527				
Test ROC-AUC	Score: 0.88							

Feature Importance

Top 3 features contributing to churn prediction:

- Total Incoming Voice Calls -Minutes_August
- Total Call Volume
- Local Incoming Calls -Minutes_August

Recommendations

Strategies to Manage Churn:

- Targeted Retention Campaigns: Focus on customers with high churn probability.
- Optimize Recharge Plans: Tailor plans for customers with declining recharge trends.
- Improve Call Quality: Address dropped calls for churn-prone users.
- Promote Data Usage: Incentivize low-data users to engage more.

Next Steps

Test other algorithms like Random Forest or XGBoost for comparison.