M3-HT-RBTs

Nombre	completo:
Login Un	iandes:
	CCIONES: Responda MARCANDO LA CASILLA correspondiente en la hoja de respuestas (ubicada en la HOJA). NO se tendrán en cuenta otro tipo de respuestas (Ej: marcar la letra en el enunciado).
	REPASO DE ÁRBOLES ROJO-NEGROS (RBT) BALANCEADOS A LA IZQUIERDA
	n: Jn nuevo nodo se inserta como rojo, siguiendo las reglas de un árbol de búsqueda binaria (BST). .a raíz siempre es negra.
	nes: Rotación izquierda (padre): Si el nuevo nodo es un hijo derecho (enlace rojo derecho) Se realiza una rotación izquierda en el nodo padre Rotación derecha (abuelo): Si el nuevo nodo es un hijo izquierdo de un nodo rojo, y su padre también es rojo Se realiza una rotación derecha en el nodo abuelo
	de color: Si el nuevo nodo y su hermano son rojos O Ambos se vuelven negros y su padre se vuelve rojo. La raíz siempre es negra.
	5 23
i A. 2 B. 9 C. 1	90

C. 4 D. 2

ELIMINACIÓN EN ÁRBOLES ROJO-NEGROS (RBT) BALANCEADOS A LA IZQUIERDA

Eliminación de la raíz:

- Si la raíz es negra y no tiene hijos: Eliminar directamente.
- Si la raíz es negra y tiene un único hijo rojo: Eliminar la raíz y convertir el hijo en la nueva raíz negra.
- Eliminación de un nodo rojo hoja:
 - Si el nodo es rojo y es una hoja: Eliminar directamente sin ajustes.
- Eliminación de un nodo con un solo hijo:
 - Si el nodo es negro y tiene un solo hijo: Asegurar que el hijo sea rojo (recolorearlo si es negro), luego eliminar el nodo y conectar su hijo al padre.
 - Si el nodo es rojo y tiene un solo hijo: Eliminar el nodo y conectar su hijo al padre sin ajustes adicionales.
- Eliminación de un nodo con dos hijos:
 - Intercambiar con su sucesor (el menor en el subárbol derecho), luego eliminar el sucesor. Rebalancear si es necesario.
- Rebalanceo de doble negro:
 - Si ocurre un "doble negro" tras la eliminación: Ajustar colores y hacer rotaciones para restaurar el balance.
- Validación:
 - Verificar que se cumplen todas las propiedades del árbol, aplicando rotaciones y cambios de color de forma recursiva si es necesario.
 - **4.** En un árbol rojo-negro (inclinado a la izquierda) inicialmente vacío, se insertan los elementos: 30, 10, 40, 35, respetando ese orden. ¿Cuál es la altura del árbol si se elimina el nodo con la llave 35?
 - A. 3
 - B. 2
 - C. 1
 - D. Ninguna de las anteriores
 - **5.** En un árbol rojo-negro (inclinado a la izquierda) inicialmente vacío, se insertan los elementos: 3, 1, 6, 11, 2, 4, 23, respetando ese orden. ¿Cuál es la altura del árbol si se elimina el nodo con la llave 3?
 - A. 3
 - B. 2
 - C. 1
 - D. Ninguna de las anteriores
 - **6.** En un árbol rojo-negro (inclinado a la izquierda) inicialmente vacío, se insertan los elementos: 3, 1, 6, 11, 2, 4, 23, respetando ese orden. ¿Cuál es la altura del árbol si se elimina el nodo con la llave 6?
 - A. 1
 - B. 2
 - C. 3
 - D. Ninguna de las anteriores

HOJA DE RESPUESTAS:

Pregunta	Respuesta						
1	0	Α	0	В	0	С	o D
2	0	Α	0	В	0	С	o D
3	0	Α	0	В	0	С	o D
4	0	Α	0	В	0	С	o D
5	0	Α	0	В	0	С	o D
6	0	Α	0	В	0	С	o D