Приложение 1.

Некоторые общематематические понятия и обозначения.

Логическая символика.

Связки и скобки.

В нашем курсе мы будем использовать следующие символы математической логики: \neg - «не», \wedge - «и», \vee - «или», \Rightarrow - «влечет», \Leftrightarrow - «равносильно».

Запись $A \Rightarrow B$ означает, что A влечет B или, что то же самое, B следует из A. В этой ситуации говорят, что B есть необходимый признак или необходимое условие A, и в свою очередь A - достаточное условие или достаточный признак B.

Пример. Утверждение A - «число делится на 4», а B - «число - четное». Очевидно, что $A \Rightarrow B$, при этом делимости на 4 достаточно для четности числа, но вовсе не обязательно, например, четное число 6 на 4 не делится.

Следует обратить внимание на то, что в выражении $A \lor B$ союз «или» не разделительный, то есть высказывание $A \lor B$ будет верным, если истинно будет хотя бы одно из них, то есть истинными могут быть и оба.

Если одновременно верны утверждения $A \Rightarrow B$ и $B \Rightarrow A$, то пишут $A \Leftrightarrow B$ (A равносильно B) и A называется необходимым и достаточным условием для B (а B для A).

Пример: «сумма цифр целого числа делится на три» ⇔ «число кратно трем».

Пример. Утверждение A - «число - четное», B - «число кратно трем», C - «число делится на 6». Тогда $(A \wedge B) \Leftrightarrow C$.

Пример. Утверждение A - «число оканчивается нулем», B - «число оканчивается на 5», C - «число делится на 10». Тогда $(A \lor B) \Leftrightarrow C$.

В записи сложных высказываний, составленных из простых, употребляются скобки. Для экономии скобок и, соответственно, упрощения записи, принят следующий порядок приоритета символов:

$$\neg$$
, \land , \lor , \Rightarrow , \Leftrightarrow .

Например, вместо

$$\neg ((\neg(A) \land \neg(B)) \lor (A \land (\neg(B)))) \Leftrightarrow B$$

можно записать

$$\neg (\neg A \land \neg B \lor A \land \neg B) \Leftrightarrow B.$$

Истинные высказывания обычно отмечают символом 1, а ложные символом 0. Рассмотрим так называемые таблицы истинности основных логических операций:

A	$\neg A$
0	1
1	0

A	\boldsymbol{B}	$A \wedge B$	$A \vee B$	$A \Rightarrow B$	$A \Leftrightarrow B$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

Заметим, что если A ложно, то $A \Longrightarrow B$ всегда истинно. Поэтому абсурдное с точки зрения здравого смысла высказывание: «Если 2+2=5, то в сентябре 30 дней» по законам формальной логики истинно.

Пользуясь таблицами истинности, докажем справедливость утверждения $\neg(A \Rightarrow B) \Leftrightarrow A \land \neg B$:

A	В	$A \Rightarrow B$	$\neg(A \Rightarrow B)$	$\neg B$	$A \wedge \neg B$
0	0	1	0	1	0
0	1	1	0	0	0
1	0	0	1	1	1
1	1	1	0	0	0

Упражнение. Докажите, что
$$\neg(A \land B) \Leftrightarrow \neg A \lor \neg B$$
, $\neg(A \lor B) \Leftrightarrow \neg A \land \neg B$, $(A \Rightarrow B) \Leftrightarrow \neg B \Rightarrow \neg A$, $(A \Rightarrow B) \Leftrightarrow \neg A \lor B$.

Множества и элементарные операции над множествами

Под множеством мы понимаем собрание объектов произвольной природы: множество натуральных чисел, множество пассажиров в трамвае и так далее.

Объекты, составляющие множество принято называть элементами этого множества. Множества мы обычно будем обозначать прописными буквами латинского алфавита, а элементы множества строчными буквами.

Высказывание «x является элементом множества X » будем обозначать с помощью символа «принадлежности» $x \in X$, а его отрицание – символом $x \notin X$.

Мы будем использовать логические операторы \exists («существует» или «найдется») и \forall («любой», «каждый», «всякий» или «для любого» и т.д.), называемые кванторами существования и общности соответственно.

Например, запись $\forall x \big((x \in A) \Rightarrow (x \in B) \big)$ означает, что все элементы множества A содержатся в B. Это включение записывают как $A \subset B$ или $B \supset A$. Знаки включения похожи на знаки отношений «меньше» и «больше», но по смыслу они подобны отношениям «меньше либо равно» и «больше либо равно». То есть одновременно могут быть справедливы оба включения $A \subset B$ и $B \supset A$ или $\forall x \big((x \in A) \Leftrightarrow (x \in B) \big)$. В этом случае множества A и B состоят из одних и тех же элементов, что записывается как A = B. В противном случае пишут $A \neq B$.

Если $A \subset B$ и $A \neq B$, то говорят, что включение строгое или что A - собственное подмножество B .

Если X - множество, а P некоторое свойство элементов этого множества, то через $\left\{x\in X\,\middle|\, P(x)\right\}$ будем обозначать множество элементов X , обладающих свойством P . Например, если P(x):= «x - четное число», а Q(x):= «число x делится на 3», то множество $\left\{x\in \mathbb{N}\,\middle|\, P(x)\land Q(x)\right\}$ состоит из натуральных чисел кратных 6.

Простейшие операции над множествами

Пусть A и B - подмножества множества M .

а. Объединением множеств A и B называется множество

$$A \cup B$$

$$B \longrightarrow M$$

$$A \cup B := \left\{ x \in M \mid (x \in A) \lor (x \in B) \right\}:$$

б. Пересечением множеств A и B называется множество

$$A \cap B := \{x \in M \mid (x \in A) \land (x \in B)\}:$$

в. Разностью между множествами A и B называется множество

$$A \setminus B := \left\{ x \in M \mid (x \in A) \land (x \notin B) \right\}$$

Разность между множеством M и его подмножеством A называют дополнением A в M и обозначают $C_M A$ или CA, когда ясно, в каком множестве ищется дополнение.

г. **Прямое** (**декартово**) **произведение** множеств X и Y - это множество упорядоченных пар (x, y) таких, что x принадлежит X, а y - Y:

$$X \times Y := \left\{ (x, y) \middle| (x \in X) \land (y \in Y) \right\}.$$

Если X = Y, то пишут $X \times X = X^2$.

Известная всем со школы декартова система координат позволяет рассматривать плоскость как прямое произведение двух числовых осей. На этом примере видно, что декартово произведение, в отличие от обычного, зависит от порядка сомножителей (парам (0,1) и (1,0) соответствуют разные точки плоскости).

Некоторые высказывания, для простоты изложения, мы будем записывать в сокращенном виде:

$$(\forall x \in X) P := \forall x (x \in X \Rightarrow P(x));$$

$$(\exists x \in X) P := \exists x (x \in X \land P(x));$$

$$(\forall x > a) P := \forall x (x \in \mathbb{R} \land x > a \Rightarrow P(x));$$

$$(\exists x > a) P := \exists x (x \in \mathbb{R} \land x > a \land P(x)).$$

Правила построения отрицания к выражению, содержащему кванторы Отрицание к высказыванию «для некоторого x справедливо P(x)» означает, что «для всех x не верно P(x)», а отрицание высказывания «для всех x справедливо P(x)» есть «существует x, для которого P(x) не выполнено». То есть

$$\neg \exists x P(x) \Leftrightarrow \forall x \neg P(x), \neg \forall x P(x) \Leftrightarrow \exists x \neg P(x).$$

Например:

$$\neg ((\forall x > a) P) \Leftrightarrow (\exists x > a) \neg P.$$