

Introduction to OpenFOAM

Beginner's Course

joaoctcastro@gmail.com

Computational **Rheo**logy @IPC

Disclaimer

This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trademarks.

Software Presentation

What is it? History

Why use it?

Alternatives Who uses it?

Where to Find?

CRheo@IPC

What is it?

Open-source Field Operation And Manipulation

Free software

Distributed under GPL

FVM based

CFD problems

C++ library

Growing community

History

Release

OpenFOAM was released in 2004 through OpenCFD

Prior to the sale of OpenCFD to SGI Corp, OpenFOAM copyright was transfered to OpenFOAM Foundation

Secure Open-source

ESI Group

ESI Group acquires
OpenCFD in 2012
and maintains
OpenFOAM
development until
today, with two
major releases per
year

Through the OF
Foundation, more
OpenFOAM based
distributions are
released by other
companies and
communities

Other Distributions

CFD Direct

FOAM-Extend

Why use it?

Free and open-source

Data analysis

Parallel computing

Vast range of features

- Fluid Dynamics
 - Compressible and incompressible

Turbulent and laminar flows

Single and multiphase flows

Combustion and chemical reactions

Heat and mass transfer

Geometry and meshing

Mesh generation for complex and simple geometries

Mesh conversion and manipulation tools

Alternatives

More stable and user-friendly

Cannot assess accuracy

Cannot adapt/modify

Expensive license

Where to Find?

3 Weeks Introduction to OpenFOAM

https://wiki.openfoam.com/Main_Page

CFD with OpenSource Software

http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/

OpenFOAM Journal

https://journal.openfoam.com

OpenFOAM Governance

https://www.openfoam.com/governance/

OpenFOAM Foundation

https://openfoam.org/

OpenFOAM Wiki

https://wiki.openfoam.com/Main Page

Unofficial OpenFOAM wiki

https://openfoamwiki.net/

CFD Online

https://www.cfd-

online.com/Wiki/OpenFOAM

CFD Direct

https://doc.cfd.direct

Finite Volume Method

Description
Domain Discretization
Equation Discretization

Description

Discretization method

Partial Differential Equations (PDEs)

Assures conservation

For a FVM based simulation one must:

Model: domain and physical phenomena

Discretize: equations and domain

Domain Discretization

Subdivide the domain into discrete elements

Equation Discretization

The governing equations cannot be solved by analytical methods Numerical methods are employed to discretize PDEs over each CV

Conservation equation	Temporal derivative	Advective term	Diffusion term	Source term
Mass	$\frac{\partial \rho}{\partial t}$	$\nabla \cdot (\rho u)$		
Momentum	$\frac{\partial (\rho u)}{\partial t}$	$\nabla \cdot (\rho u \otimes u)$	$\nabla \cdot (\mu \nabla u)$	$-\nabla p + \rho \mathbf{g} + F$
Energy	$\frac{\partial \left(\rho C_p T\right)}{\partial t}$	$\nabla \cdot (\rho C_p T \boldsymbol{u})$	$\nabla \cdot (k \nabla T)$	/Q
General transport	$\frac{\partial (\rho \phi)}{\partial t}$	$\nabla \cdot (\rho u \phi)$	$ abla \cdot (\Gamma_{\phi} \nabla \phi)$	$S_{m{\phi}}$

Equation Discretization

Integrate equation over the control volume

$$\int_{t^{n-1}}^{t^n} \left[\int_{CV} \frac{\partial (\rho \phi)}{\partial t} d\mathbf{x} + \int_{CV} \nabla \cdot (\rho \mathbf{u} \phi) d\mathbf{x} - \int_{CV} \nabla \cdot (\Gamma_{\phi} \nabla \phi) d\mathbf{x} \right] dt = \int_{t^{n-1}}^{t^n} \left(\int_{CV} S_{\phi} d\mathbf{x} \right) dt$$

Gauss Divergence Theorem

$$\int_{CV} \nabla \cdot a \, dx = \oint_{\partial CV} n \cdot a \, dx$$

Because the cell surface area is the sum of its faces area

$$\oint_{\partial CV} \mathbf{n} \cdot \mathbf{a} \, d\mathbf{x} = \sum_{f} \left(\int_{f} \mathbf{n} \cdot \mathbf{a} \, d\mathbf{x} \right) \approx \sum_{f} \mathbf{S}_{f} \, \mathbf{a}$$

Equation Discretization

Discretize the diffusion term by applying Gauss' divergence theorem

$$\int_{CV} \nabla \cdot (\Gamma_{\phi} \nabla \phi) dx \qquad \int_{CV} \nabla \cdot \boldsymbol{a} \, dx$$

$$\int_{CV} \nabla \cdot (\Gamma_{\phi} \nabla \phi) d\mathbf{x} = \oint_{\partial CV} \mathbf{n} \cdot (\Gamma_{\phi} \nabla \phi) d\mathbf{x} \approx \sum_{f} \mathbf{S}_{f} \cdot (\Gamma_{\phi} \nabla \phi)_{f} = \sum_{f} (\Gamma_{\phi})_{f} \mathbf{S}_{f} \cdot (\nabla \phi)_{f}$$

Gradient of ϕ at the face calculation

$$S_f \cdot (\nabla \phi)_f = |S_f| \frac{\phi_N - \phi_P}{|d|}$$

How to use OpenFOAM

Pre-requisites
WSL Environment
Case Structure
Running the 1st case

WSL Environment

applications

tutorials

src

```
Download FoamIberia folder to your desktop
                             > cd path/to/folder | > ls | > pwd
Navigate via Linux
Navigate via Windows
                             > explorer.exe.
                             > nano .bashrc or > vim .bashrc
Edit .bashrc
     alias of 2306 = 'source /usr/lib/openfoam/openfoam 2306/etc/bashrc'
     alias foamIberia='cd /mnt/c/Users/<yourUser>/Desktop/FoamIberia'
     shopt -s direxpand
Load your OpenFOAM
                             > of 2306
Important folders
```


> cd \$FOAM_TUTORIALS

> cd \$FOAM APP

> cd \$FOAM SRC

Case Structure

Running the 1st case

```
Copy a tutorial case
```

- > cd \$FOAM TUTORIALS
- > cp -r incompressible/icoFoam/elbow /mnt/c/Users/<yourUser>/Desktop/FoamIberia/C1

Analyze the copied case

- > foamIberia
- > cd C1/elbow

Execute the file

Paraview visualization

Clean case

- > ./Allrun
- > touch open.foam
- >./Allclean

4

Detailed Case Setup

Case Overview
Geometry Definition
Initial Conditions
Simulation Controls
Other files
Run and Analysis

4 Detailed Case Setup

Case Overview

Q: What do we want to simulate?

A: Liquid flow through a large cavity

Q: What information do we need?

A: Velocity profile

A: Single-phase/multi-phase, compressible/incompressible, steady-state/transient, velocity/pressure/temperature

Q: How should we model the domain?

A: 3D case of all domain/3D case of a portion/2D section

Geometry Definition

10 (1 0 -0.1)

11 (1 0.2 -0.1)

0 (0 0 0)	12 (0.8 0.9 0)
1 (0.800)	13 (0.8 1 0)
2 (0.8 0.2 0)	14 (0.8 0.9 -0.1)
3 (0 0.2 0)	15 (0.8 1 -0.1)
4 (0 0 -0.1)	
5 (0.8 0 -0.1)	16 (1 0.9 0)
6 (0.8 0.2 -0.1)	17 (1.8 0.9 0)
7 (0 0.2 -0.1)	18 (1.8 1.0)
	19 (1 1 0)
8 (100)	20 (1 0.9 -0.1)
9 (1 0.2 0)	21 (1.8 0.9 -0.1)

22 (1.8 1 -0.1)

23 (1 1 -0.1)

Vertices

4 Detailed Case Setup

Geometry Definition

Geometry Definition

 $(17\ 16\ 20\ 21)$

Boundary

Velocity

Initial Conditions

```
dimensions [0 0 0 0 0 0 0]; SI [kg m s K mol A cd]
```

```
internalField uniform (0 0 0);
```

inlet

dimensions

```
type fixedValue;
```

value uniform (10 0 0);

[0.1 - 1.0 0 0 0];

4 Detailed Case Setup

Initial Conditions

Velocity

type fixedValue;

value

uniform (0 0 0);

type empty;

frontAndBack

Initial Conditions

type

Pressure

```
dimensions [0 0 0 0 0 0 0]; SI [kg m s K mol A cd] dimensions [1 -1 -2 0 0 0 0]; dimensions [0 2 -2 0 0 0 0]; internalField uniform 0; inlet
```

zeroGradient;

Simulation Controls

```
runTimeModifiable yes;
application
              icoFoam;
              startTime; latestTime;
                                         adjustTimeStep yes;
startFrom
startTime
                                         maxCo
              0;
              endTime;
                                         maxDeltaT
                                                        0.1;
stopAt
             0.1;
endTime
                                         writeFormat
                                                        ascii;
              1e-4;
                                         writePrecision 6;
deltaT
writeControl
              adjustableRunTime;
                                         writeCompression off;
writeInterval 0.025;
                                         timeFormat
                                                        general;
purgeWrite
                                         timePrecision 6;
```


Other Files

Constant \longrightarrow tansportProperties \longrightarrow nu 1;

System — decomposeParDict numberOfSubdomains 4; method scotch;

> lscpu

Cores per socket x Sockets

 $System \longrightarrow fvSchemes$

System ----> fvSolutions

Run and Analysis

Move to cavity folder

> foamIberia > cd C1/cavity

Generate mesh

> blockMesh

View in Paraview

> touch open.foam

Duplicate folder

> cp -r ../cavity ../cavity1

Run simulation

> icoFoam

Delete times

> rm - r 0.*

Change viscosity to 1e-3 and endTime to 0.5

> icoFoam > log.txt

Move to cavity1 folder

> cd ../cavity1

Double mesh refinement

> decomposePar

> mpirun -np 4 icoFoam -parallel > log.txt

> reconstructPar

END

This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trademarks.

