Linear Algebra – MAT 2610

Section 1.3 (Vector Equations)

Dr. Jay Adamsson

jay@aorweb.ca

jadamsson@upei.ca

A **row vector** is a matrix with one row, and a **column vector** is a matrix with one column. When we say **vector**, we will mean a column vector. Given a vector u, the i^{th} entry in the vector is denoted u_i

$$u = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}, u_2 = -1$$
 $v = \begin{bmatrix} 2 & a & b & -4 \end{bmatrix}, v_3 = b$

In general, an upper-case letter is used to refer to a matrix, while a lower-case letter is used to refer to an individual element or a vector (although there are exceptions to this rule)

Yector Addition

Given two vectors u and v, their **sum** is the vector u + v obtained by adding corresponding entries of u and v. Note that both vectors must be the same size.

$$\begin{bmatrix} 3 \\ 4 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3+1 \\ 4-1 \end{bmatrix} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$

A **scalar** is a real number (or a variable representing a real number) A scalar multiple of a vector u refers to the vector obtained by multiplying every entry in u by the same constant

$$2\begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 8 \end{bmatrix}$$

$$-3\begin{bmatrix} -2 \\ b-2c \end{bmatrix} = \begin{bmatrix} 6 \\ -3b+6c \end{bmatrix}$$

Geometric Descriptions of \mathbb{R}^2

A vector in \mathbb{R}^2 (such as $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ for example) can be represented by a geometric point on the

We can represent vector addition graphically using arrows by the *parallelogram law*. To add non-zero vectors u and v, first form a parallelogram with the adjacent sides u and v. Then the sum u+v is the arrow along the diagonal of the parallelogram.

Example: Sketch the vectors $u = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ and $v = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$. Use the Parallelogram Law to sketch and calculate u + v.

Algebraic Properties of Vector Addition and Scalar Multiplication

Let u, v, w be vectors in \mathbb{R}^n , and let s and t be any scalars. Then

a)
$$u + v = v + u$$
 (commutative law)

b)
$$(u + v) + w = u + (v + w)$$
 (associative law)

c)
$$u + 0 = u$$

d)
$$u + (-u) = 0$$

$$e)$$
 $s(u+v) = su + sv$

$$f$$
) $(s+t)u = su + tu$

$$g)$$
 $(st)u = s(tu)$

$$h)$$
 $1u = u$

Linear Combinations

A linear combination of vectors $u_1, u_2, ..., u_n$ is any sum of the form $c_1u_1 + c_2u_2 + \cdots + c_nu_n$ where $c_1, c_2, ..., c_n$ are scalars.

Examples:

If
$$u = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
 and $v = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$, then $3u - 2v = \begin{bmatrix} -2 \\ 7 \end{bmatrix}$ is a linear combination of u and v .

$$\begin{bmatrix}1\\3\end{bmatrix} \text{ is a linear combination of } \begin{bmatrix}1\\1\end{bmatrix} \text{ and } \begin{bmatrix}2\\3\end{bmatrix} \text{ since } \begin{bmatrix}1\\3\end{bmatrix} = -3 \begin{bmatrix}1\\1\end{bmatrix} + 2 \begin{bmatrix}2\\3\end{bmatrix}$$

Linear Combinations

Example:

If
$$u = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $v = \begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix}$, determine if $w = \begin{bmatrix} -2 \\ 5 \\ 4 \end{bmatrix}$ is a linear combination of u and v .

Observation

A vector equation

$$c_1 u_1 + c_2 u_2 + \dots + c_n u_n = b$$

Has the same solution set as the linear syste whose augmented matrix is

$$\begin{bmatrix} u_1 & u_2 & \dots & u_n & b \end{bmatrix}$$

In particular, b can be generated by a linear combination of u_1, \ldots, u_n if and only if there exists a solution to the linear system corresponding to the matrix $\begin{bmatrix} u_1 & u_2 & \dots & u_n & b \end{bmatrix}$

Span

Definition: The **span** of a non-empty set of vectors $\{u_1, u_2, ..., u_k\}$ is the set of all possible linear combinations of those vectors. We denote this as $Span(\{u_1, u_2, ..., u_k\})$

Until now, we have been asking "can I build this specific vector from this other group of vectors". Now we are going to generalize this and ask "what are all the possible vectors that I can build from this group of vectors".

Linear Algebra – MAT 2610

Section 1.3 (Vector Equations)

Dr. Jay Adamsson

jay@aorweb.ca

jadamsson@upei.ca