$11n_{18} (K11n_{18})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle -u^{21} + 2u^{20} + \dots + 2b - 1, -2u^{21} + 6u^{20} + \dots + 2a + 5, u^{22} - 3u^{21} + \dots - 4u + 1 \rangle$$

$$I_2^u = \langle u^2a + b + a, u^2a + a^2 + au + a - u, u^3 + u^2 + 2u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 28 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^{21} + 2u^{20} + \dots + 2b - 1, -2u^{21} + 6u^{20} + \dots + 2a + 5, u^{22} - 3u^{21} + \dots - 4u + 1 \rangle$$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{21} - 3u^{20} + \dots + 5u - \frac{5}{2} \\ \frac{1}{2}u^{21} - u^{20} + \dots + u + \frac{1}{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{5} + 2u^{3} + u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} \frac{1}{2}u^{19} - u^{18} + \dots + 5u + \frac{1}{2} \\ -\frac{1}{2}u^{21} + u^{20} + \dots - u + \frac{1}{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} \frac{3}{2}u^{21} - 4u^{20} + \dots + 6u - 2 \\ \frac{1}{2}u^{21} - u^{20} + \dots + u + \frac{1}{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{20} + \frac{3}{2}u^{19} + \dots + u + \frac{1}{2} \\ \frac{1}{2}u^{21} - 2u^{20} + \dots + 3u - \frac{3}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{4} - u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{4} - u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$=3u^{21} - \frac{13}{2}u^{20} + \frac{81}{2}u^{19} - 73u^{18} + 226u^{17} - 340u^{16} + 674u^{15} - 828u^{14} + \frac{2275}{2}u^{13} - 1060u^{12} + 1009u^{11} - \frac{1069}{2}u^{10} + \frac{547}{2}u^9 + \frac{371}{2}u^8 - 198u^7 + 242u^6 - 60u^5 + \frac{11}{2}u^4 + 82u^3 - \frac{19}{2}u^2 + \frac{23}{2}u - \frac{1}{2}u^4 + \frac{1009}{2}u^{10} + \frac{1009}{2}u$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{22} + 4u^{21} + \dots + 3u + 1$
c_2	$u^{22} + 4u^{21} + \dots + 11u + 1$
c_3, c_8	$u^{22} - u^{21} + \dots - 32u + 64$
	$u^{22} - 4u^{21} + \dots + 1113u + 306$
c_6	$u^{22} + 3u^{21} + \dots - 105u + 34$
c_7, c_{10}, c_{11}	$u^{22} - 3u^{21} + \dots - 4u + 1$
<i>c</i> ₉	$u^{22} - u^{21} + \dots + 2u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{22} + 4y^{21} + \dots + 11y + 1$
c_2	$y^{22} + 32y^{21} + \dots + 11y + 1$
c_3, c_8	$y^{22} - 35y^{21} + \dots - 17408y + 4096$
c_5	$y^{22} + 60y^{21} + \dots + 3785751y + 93636$
	$y^{22} + 19y^{21} + \dots + 18011y + 1156$
c_7, c_{10}, c_{11}	$y^{22} + 23y^{21} + \dots + 4y + 1$
c_9	$y^{22} + 39y^{21} + \dots + 4y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.770283 + 0.589538I		
a = 1.125210 - 0.379310I	10.13960 + 0.88452I	-0.211027 + 0.306129I
b = -0.07905 - 1.81869I		
u = 0.770283 - 0.589538I		
a = 1.125210 + 0.379310I	10.13960 - 0.88452I	-0.211027 - 0.306129I
b = -0.07905 + 1.81869I		
u = 0.804807 + 0.517036I		
a = -1.042990 + 0.300031I	9.90919 - 6.12637I	-0.73850 + 4.70880I
b = 0.13147 + 1.87390I		
u = 0.804807 - 0.517036I		
a = -1.042990 - 0.300031I	9.90919 + 6.12637I	-0.73850 - 4.70880I
b = 0.13147 - 1.87390I		
u = -0.115563 + 1.244550I		
a = 0.708694 + 0.469396I	1.83932 + 1.95875I	-3.73580 - 3.68347I
b = 0.634802 - 0.033810I		
u = -0.115563 - 1.244550I		
a = 0.708694 - 0.469396I	1.83932 - 1.95875I	-3.73580 + 3.68347I
b = 0.634802 + 0.033810I		
u = -0.248700 + 1.353780I		
a = 0.267493 - 0.437974I	3.35457 + 3.66509I	0.212427 - 1.175787I
b = -0.005781 - 0.383501I		
u = -0.248700 - 1.353780I		
a = 0.267493 + 0.437974I	3.35457 - 3.66509I	0.212427 + 1.175787I
b = -0.005781 + 0.383501I		
u = -0.597356 + 0.125917I		
a = 0.501330 - 0.329651I	-1.35470 + 0.57102I	-7.20802 - 0.39012I
b = 0.173251 - 0.149140I		
u = -0.597356 - 0.125917I		
a = 0.501330 + 0.329651I	-1.35470 - 0.57102I	-7.20802 + 0.39012I
b = 0.173251 + 0.149140I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.08081 + 1.44732I		
a = 0.03594 + 1.88889I	5.22365 - 3.91165I	1.62467 + 2.79581I
b = 0.95469 + 1.28056I		
u = 0.08081 - 1.44732I		
a = 0.03594 - 1.88889I	5.22365 + 3.91165I	1.62467 - 2.79581I
b = 0.95469 - 1.28056I		
u = -0.02169 + 1.49375I		
a = 0.116291 - 1.385550I	7.30874 + 1.68962I	3.46122 - 1.99684I
b = -0.551917 - 1.006360I		
u = -0.02169 - 1.49375I		
a = 0.116291 + 1.385550I	7.30874 - 1.68962I	3.46122 + 1.99684I
b = -0.551917 + 1.006360I		
u = -0.037659 + 0.478054I		
a = 1.42737 - 0.64365I	0.83479 + 1.39529I	1.49278 - 4.06161I
b = 0.056911 - 0.654735I		
u = -0.037659 - 0.478054I		
a = 1.42737 + 0.64365I	0.83479 - 1.39529I	1.49278 + 4.06161I
b = 0.056911 + 0.654735I		
u = 0.28918 + 1.53736I		
a = -1.00511 + 1.94899I	16.5973 - 10.1473I	1.94212 + 4.94349I
b = 0.28840 + 2.00471I		
u = 0.28918 - 1.53736I		
a = -1.00511 - 1.94899I	16.5973 + 10.1473I	1.94212 - 4.94349I
b = 0.28840 - 2.00471I		
u = 0.25416 + 1.56446I		
a = 0.88215 - 1.89631I	17.2299 - 2.8896I	2.69042 + 0.63603I
b = -0.32453 - 1.88491I		
u = 0.25416 - 1.56446I		
a = 0.88215 + 1.89631I	17.2299 + 2.8896I	2.69042 - 0.63603I
b = -0.32453 + 1.88491I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.321731 + 0.235214I		
a = -2.01637 + 0.18504I	-0.35018 - 2.57282I	0.96973 + 5.85943I
b = 0.721764 + 0.861777I		
u = 0.321731 - 0.235214I		
a = -2.01637 - 0.18504I	-0.35018 + 2.57282I	0.96973 - 5.85943I
b = 0.721764 - 0.861777I		

II. $I_2^u = \langle u^2 a + b + a, \ u^2 a + a^2 + au + a - u, \ u^3 + u^2 + 2u + 1 \rangle$

(i) Arc colorings

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} a \\ -u^{2}a - a \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{2} + a + u \\ -u^{2}a - a - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2}a \\ -u^{2}a - a \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2}a \\ -u^{2}a - a \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ -u^{2} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^2a au 3u^2 3a 3u 8$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_5	$(u^2+u+1)^3$
c_3,c_8	u^6
c_4	$(u^2 - u + 1)^3$
c_6, c_9	$(u^3 + u^2 - 1)^2$
c ₇	$(u^3 - u^2 + 2u - 1)^2$
c_{10}, c_{11}	$(u^3 + u^2 + 2u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5	$(y^2+y+1)^3$
c_3, c_8	y^6
c_6, c_9	$(y^3 - y^2 + 2y - 1)^2$
c_7, c_{10}, c_{11}	$(y^3 + 3y^2 + 2y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.215080 + 1.307140I		
a = -0.206350 - 1.132320I b = 0.500000 - 0.866025I	3.02413 + 0.79824I	1.45566 + 0.28364I
$\frac{b = 0.300000 - 0.800023I}{u = -0.215080 + 1.307140I}$		
a = 1.083790 + 0.387453I	3.02413 + 4.85801I	-2.09851 - 6.80481I
b = 0.500000 + 0.866025I		
u = -0.215080 - 1.307140I		
a = -0.206350 + 1.132320I	3.02413 - 0.79824I	1.45566 - 0.28364I
b = 0.500000 + 0.866025I		
u = -0.215080 - 1.307140I	9.00419 4.050017	0.00051 0.004017
a = 1.083790 - 0.387453I	3.02413 - 4.85801I	-2.09851 + 6.80481I
$\frac{b = 0.500000 - 0.866025I}{u = -0.569840}$		
a = -0.303040 a = -0.377439 + 0.653743I	$\begin{bmatrix} -1.11345 + 2.02988I \end{bmatrix}$	$\begin{bmatrix} -5.85715 - 2.43783I \end{bmatrix}$
	-1.11343 + 2.029801	-9.63713 - 2.437631
b = 0.500000 - 0.866025I		
u = -0.569840		
a = -0.377439 - 0.653743I	-1.11345 - 2.02988I	-5.85715 + 2.43783I
b = 0.500000 + 0.866025I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^2 + u + 1)^3)(u^{22} + 4u^{21} + \dots + 3u + 1)$
c_2	$((u^2 + u + 1)^3)(u^{22} + 4u^{21} + \dots + 11u + 1)$
c_3, c_8	$u^6(u^{22} - u^{21} + \dots - 32u + 64)$
c_4	$((u^2 - u + 1)^3)(u^{22} + 4u^{21} + \dots + 3u + 1)$
<i>C</i> ₅	$((u^2 + u + 1)^3)(u^{22} - 4u^{21} + \dots + 1113u + 306)$
c_6	$((u^3 + u^2 - 1)^2)(u^{22} + 3u^{21} + \dots - 105u + 34)$
c ₇	$((u^3 - u^2 + 2u - 1)^2)(u^{22} - 3u^{21} + \dots - 4u + 1)$
<i>c</i> ₉	$((u^3 + u^2 - 1)^2)(u^{22} - u^{21} + \dots + 2u^2 + 1)$
c_{10}, c_{11}	$((u^3 + u^2 + 2u + 1)^2)(u^{22} - 3u^{21} + \dots - 4u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y^2 + y + 1)^3)(y^{22} + 4y^{21} + \dots + 11y + 1)$
c_2	$((y^2 + y + 1)^3)(y^{22} + 32y^{21} + \dots + 11y + 1)$
c_3, c_8	$y^6(y^{22} - 35y^{21} + \dots - 17408y + 4096)$
<i>C</i> ₅	$((y^2 + y + 1)^3)(y^{22} + 60y^{21} + \dots + 3785751y + 93636)$
<i>c</i> ₆	$((y^3 - y^2 + 2y - 1)^2)(y^{22} + 19y^{21} + \dots + 18011y + 1156)$
c_7, c_{10}, c_{11}	$((y^3 + 3y^2 + 2y - 1)^2)(y^{22} + 23y^{21} + \dots + 4y + 1)$
<i>c</i> ₉	$((y^3 - y^2 + 2y - 1)^2)(y^{22} + 39y^{21} + \dots + 4y + 1)$