子群与陪集

定义 1 (子群). 设 G 是群,若非空集合 $H \subset G$ 且 H 是群,则称 H 是 G 的子群,记作 H < G.

考虑极端,G 本身和 $\{e\}$ 都是 G 的子群,称为 G 的平凡子群.

定理 1 (子群的充要条件). 设 *H* 是群 *G* 的非空子集,则 H < G 当且仅当对任意 $a, b \in H$, $ab^{-1} \in H$.

证明. 当 H < G 时,由 H 运算的封闭性以及存在逆元即得 $ab^{-1} \in H$.

若对任意 $a,b \in H$, 有 $ab^{-1} \in H$, 则

对任意 $a, a \in H$, 有 $e = aa^{-1} \in H$, 幺元存在;

对 $e \in H$ 与任意 $b \in H$,有 $b^{-1} = eb^{-1} \in H$,逆元存在;

对任意 $a, b^{-1} \in H$, 有 $ab = a(b^{-1})^{-1} \in H$, 满足封闭律;

H 中的运算继承 G 中的运算,满足结合律,于是 H < G.

定理 2. 设 H 是有限群 G 的非空子集,则 H < G 当且仅当 H 对 G 的运算封闭.

证明. 必要性显然. 充分性: H 对 G 的运算封闭,故对任意 $a \in H$, $a^k \in H$,其中 k 为任意正整数. 由于 G 是有限群,则 H 是有限群,于是存在正整数 m > n 满足 $a^m = a^n$,故 $a^{m-n} = e \in H$. 当 m-n=1 时,a=e,于是 $a^{-1} = e \in H$; 当 m-n>1 时, $a^{m-n-1}a = aa^{m-n-1} = e$, $a^{-1} = a^{m-n-1} \in H$,逆元存在. 封闭性满足,结合律满足,于是 H < G.

定理 3. 若 $H_1 < G$, $H_2 < G$, 则 $H_1 \cap H_2 < G$.

证明. 设 $a, b \in H_1 \cap H_2$,则由定理1, $ab^{-1} \in H_1$, $ab^{-1} \in H_2$,则 $ab^{-1} \in H_1 \cap H_2$,再用一次该定理,即得 $H_1 \cap H_2 < G$.

推论 1. 设 I 为指标集,若对任意 $i \in I$, $H_i < G$,则 $\bigcap_{i \in I} H_i < G$.

下面是一些例子.

例 1. 数域 F 上全体 n 阶可逆方阵关于矩阵乘法构成群,称为**一般线性群**,记作 $GL_n(F)$. 其中,行列式为 1 的 n 阶方阵关于矩阵乘法也构成群,称为**特殊线性群**,记作 $SL_n(F)$. 显然 $SL_n(F) < GL_n(F)$.

例 2. 给定 $m \in \mathbb{Z}$,定义集合 $m\mathbb{Z} = \{mn \mid \forall n \in \mathbb{Z}\}$,定义运算为整数加法,则 $m\mathbb{Z} < \mathbb{Z}$.

定理 4. $(\mathbb{Z},+)$ 的子群都是形如 $m\mathbb{Z}$ 的.

证明. 设 $H < \mathbb{Z}$. 若 $H = \{0\}$, 则 $H = 0\mathbb{Z}$.

假设 $H \neq 0$,则存在非零整数. 由于 H 是子群,若 $a \in H$,则 $-a \in H$,因此 H 中必存在正整数. 定义 $m = \min\{a \in H | a > 0\}$

任取 $n \in H$, 设 n = qm + r, 其中 $0 \le r < m$. 由于 $m \in H$ 且 H 是子群,于是 $r = n - qm \in H$. 但 $0 \le r < m$,而 m 是 H 中最小的正整数,因此 r = 0,即 $n = qm \in m\mathbb{Z}$,所以 $H \subset \mathbb{Z}$.

由于 $m \in H$, 且 H 是子群, 对任意整数 k, 有 $km \in H$, 因此 $\mathbb{Z} \subset H$.

定义 2 (陪集). 设 H < G,给定 $a \in G$,集合 $aH = \{ah|h \in H\}$ 称为以 a 为代表的**左陪集**. 类似地,集合 $Ha = \{ha|h \in H\}$ 称为以 a 为代表元的**右陪集**.

左陪集和右陪集的概念是对偶的,下面考虑左陪集的情形.

定理 5. 设 H < G,则 $aRb \iff a^{-1}b \in H$ 确定了 G 中的等价关系 R. a 所在的等价类 \overline{a} 恰为以 a 为代表的左陪集 aH.

证明. 先证 R 为等价关系.

自反性: H 为子群, 故 $a^{-1}a = e \in H$, 即 aRa.

对称性: 若 aRb, 则 $a^{-1}b \in H$, $b^{-1}a = (a^{-1}b)^{-1} \in H$, 即 bRa.

传递性: 若 aRb, bRc, 则 $a^{-1}b \in H$, $b^{-1}c \in H$, $a^{-1}c = a^{-1}bb^{-1}c \in H$, 即 aRc.

再证 $\overline{a} = aH$. 对任意 $b \in \overline{a}$, $a^{-1}b \in H$, $b = aa^{-1}b \in aH$, 于是 $\overline{a} \subset aH$; 对任意 $b \in aH$, 存在 $h \in H$ 使得 b = ah. $a^{-1}b = a^{-1}ah = h \in H$, 于是 $aH \subset \overline{a}$.

由于 R 是一个等价关系,于是全体左陪集 $\{aH\}$ 为 G 的一个分类,称为**左陪集空间**. 由此可见左陪集空间是群 G 对关系 R 的商集,于是又把左陪集空间称为**左商集**,记作 G/R.

命题 1. 映射 $\varphi: H \to aH, h \mapsto ah$ 是双射.

证明. aH 是由 H 得到的, φ 是满射是显然的. 对任意 $h_1 \neq h_2 \in H$, $ah_1 \neq ah_2$ (否则将违反消去律),故 φ 是单射.

定义 3 (指数). 左陪集空间中陪集的个数称为指数,记作 [G:H].

定理 6 (Lagrange). 设 G 为有限群,H < G,则

$$|G| = [G : H] |H|.$$

证明. 设 [G:H]=n, a_i 为每个左陪集的代表元. $G=\bigsqcup_{i=1}^n a_i H$,而由命题1, $|a_i H|=|H|$,故 |G|=n|H|=[G:H]|H|.

推论 2. 设 G 是有限群,K < H < G,则 [G:K] = [G:H][H:K].