Лабораторная работа №8

«Освещение объектов»

Оглавление

Подготовка геометрических данных	2
8.1 Задание для самостоятельной работы	2
Определение параметров источника света	2
Определение бесконечно удаленного источника света	2
8.2 Задание для самостоятельной работы	2
Определение материала из которого состоит тело	3
8.3 Задание для самостоятельной работы	3
Диффузное отражение	3
8.4 Задание для самостоятельной работы	3
Диффузное и фоновое отражение	4
8.5 Задание для самостоятельной работы	4
Зеркальное отражение	4
8.6 Задание для самостоятельной работы	5
Определение точечного источника света	6
8.7 Задание для самостоятельной работы	6
Радиальное затухание интенсивности	6
8.8 Задание для самостоятельной работы	6
Имитация узконаправленного источника света	6
8.9 Задание для самостоятельной работы	6
Реализация закраски по методу Фонга	7
8.10 Задание для самостоятельной работы	8
8.11 Задание для самостоятельной работы	8
Реализация двухстороннего отображения	8
8.12 Задание для самостоятельной работы	8
Имитация тумана	9
8.13 Задание для самостоятельной работы	9
8.14 Задание для самостоятельной работы	.10
Лополиительная питература	10

Подготовка геометрических данных

Различные эффекты, связанные с освещением, наиболее наглядно будут проявляться на гладких поверхностях, например, на поверхности цилиндра, конуса, сферы или тора, поэтому рекомендуется выбрать и построить одно из этих тел. Для этого возьмите цилиндрическую или коническую поверхности и дополните их верхним и нижним основаниями или замкнутые по углу поверхности сферы или тора.

В случае затруднения с построением этих поверхностей, разрешается использовать в качестве замкнутой фигуры куб или любой другой многогранник.

При построении поверхностей, вместе с расчетом координат вершин, нужно рассчитывать значения координат векторов нормалей. Для некоторых фигур возможна ситуация, когда в одной вершине сходятся несколько граней, каждая из которых имеет свою нормаль. Например, в каждой вершине куба сходится 3 грани. Соответственно, каждая вершина имеет три нормали. Если построение фигуры осуществляется на основе индексов без дублирования информации о координатах вершин, то из нескольких нормалей, заданных в вершине, возможно выбрать только одну. Будем рассчитывать ее значение путем суммирования всех векторов нормалей, заданных в вершине. При этом не стоит забывать, что полученный таким образом вектор уже может не иметь единичную длину.

8.1 Задание для самостоятельной работы

Рассчитайте значения нормалей в вершинах изображаемой фигуры и передайте их в вершинный шейдер.

Определение параметров источника света

Геометрические параметры, определяющие источник света, т.е. его координаты или направление лучей света, могут задаваться как в мировой (внешней) системе координат, так и в системе координат, связанной с камерой (система координат наблюдения). Задайте геометрические параметры источника света в одной из этих систем координат в зависимости от вашего варианта.

Определение бесконечно удаленного источника света

Начнем с рассмотрения освещения от бесконечно удаленного источника света, поскольку оно рассчитывается чуть проще чем от точечного.

8.2 Задание для самостоятельной работы

- 1. Задайте в программе параметры, описывающие бесконечно удаленный источник **белого** света в мировой системе координат, и передайте их в вершинный шейдер.
- 2. Задайте в программе параметры, описывающие бесконечно удаленный источник **белого** света в системе координат наблюдения, и передайте их в вершинный шейдер.

Определение материала из которого состоит тело

В табл. 1 приведены значения коэффициентов отражения и показателя зеркального отражения (степени шероховатости) для некоторых материалов.

Табл. 1. Значения коэффициентов отражения и степени шероховатости для некоторых материалов

Nº	Материал	k_{aR}	k_{aG}	k_{aB}	k_{dR}	k_{dG}	$k_{\sf dB}$	k_{sR}	k_{sG}	k _{sB}	m
1	Черная	0.0	0.0	0.0	0.01	0.01	0.01	0.5	0.5	0.5	32
	пластмасса										
2	Латунь	0.3294	0.2235	0.0275	0.7804	0.5687	0.1137	0.9922	0.9412	0.8078	28
3	Бронза	0.2125	0.1275	0.0540	0.7140	0.4284	0.1814	0.3935	0.2719	0.1667	26
4	Хром	0.25	0.25	0.25	0.4	0.4	0.4	0.7746	0.7746	0.7746	77
5	Медь	0.1913	0.0735	0.0225	0.7038	0.2705	0.0828	0.2568	0.1376	0.0860	13
6	Золото	0.2473	0.1995	0.0745	0.7516	0.6065	0.2265	0.6283	0.5558	0.3661	51
7	Олово	0.1059	0.0588	0.1137	0.4275	0.4706	0.5412	0.3333	0.3333	0.5216	10
8	Серебро	0.1923	0.1923	0.1923	0.5075	0.5075	0.5075	0.5083	0.5083	0.5083	51
9	Полирован	0.2313	0.2313	0.2313	0.2775	0.2775	0.2775	0.7739	0.7739	0.7739	90
	ное										
	серебро										

8.3 Задание для самостоятельной работы

В зависимости от вашего варианта, выберите материал поверхности и передайте его отражательные характеристики в вершинный шейдер.

Диффузное отражение

Реализуем расчет диффузного отражения с закраской по методу Гуро, то есть в вершинном шейдере (рис. 1).

8.4 Задание для самостоятельной работы

Рис. 1. Изображение куба, дающего диффузное отражение

В вершинном шейдере для каждой вершины рассчитайте значение цвета с помощью формул диффузного отражения. Передайте полученные значения цветов вершин во фрагментный шейдер.

Подсказка: Для реализации формулы (7) из лекции 1 можно воспользоваться функцией max.

Подсказка: Все необходимые функции для работы с векторами уже присутствуют в языке шейдеров. Смотрите лекцию 5, слайд 39.

Подсказка: Если параметры источника света задаются в системе координат наблюдения, то матрица преобразования нормали считается как транспонированная обратная матрица, полученная на основе подматрицы 3×3 от произведения матриц вида и модели.

Диффузное и фоновое отражение

Реализуем расчет диффузного и фонового отражения с закраской по методу Гуро, то есть в вершинном шейдере.

Рис. 2. Изображение куба, дающего диффузное и фоновое отражение

Определите фоновое освещение интенсивностью I_a = [0.2, 0.2, 0.2]. Добавьте его учет в модель диффузного отражения (рис. 2).

Зеркальное отражение

Реализуем расчет зеркального отражения с закраской по методу Гуро, то есть в вершинном шейдере.

8.6 Задание для самостоятельной работы

Рис. 3. Изображение тора, дающего зеркальное, диффузное и фоновое отражение

В формулу расчета освещения в вершине добавьте зеркальное отражение (рис. 3). Для нахождения координат вектора $\bf r$ в языке шейдеров уже существует готовая функция $\tt reflect(-1, n)$ в первый аргумент которой следует передать значение вектора падающего света (т.е. вектор: -I), а во второй — вектор нормали $\bf n$.

Определение точечного источника света

8.7 Задание для самостоятельной работы

Рис. 4. Освещение куба с помощью точечного источника света

Вместо бесконечно удаленного источника света, задайте в программе параметры, описывающие точечный источник **белого** света, и передайте их в вершинный шейдер. Если параметры бесконечно удаленного источника света были заданы в мировых координатах, то задайте параметры точечного источника в системе координат наблюдения. И наоборот. Перепишите формулы расчета отражений с использованием новых данных.

Радиальное затухание интенсивности

8.8 Задание для самостоятельной работы

Задайте в программе параметры, определяющие радиальное затухание интенсивности точечного источника света и передайте их в вершинный шейдер.

Нарисуйте еще одну такую же фигуру, переместив ее с помощью матрицы модели подальше от источника света по отношению к первой фигуре. Покажите различие в освещении этих фигур с использованием радиального затухания интенсивности и без него.

После демонстрации, радиальное затухание интенсивности и рисование второй фигуры можно отключить.

Имитация узконаправленного источника света

8.9 Задание для самостоятельной работы

Задайте в программе параметры, определяющие угловое затухание интенсивности точечного источника света и передайте их в вершинный шейдер.

Рис. 5. Сферы, освещаемые точечным источником света

Реализуйте в вершинном шейдере угловое затухание интенсивности точечного источника света (имитация прожекторного эффекта как на рис. 5).

После демонстрации, угловое затухание интенсивности точечного источника света можно отключить.

Реализация закраски по методу Фонга

Рис. 6. Сферы, освещаемые точечным источником света

Несмотря на неплохую реалистичность получаемых изображений (см. рис. 4 и 6-а), при ближайшем рассмотрении на них все же можно заметить некоторые недостатки: например, линия тени на поверхности куба выглядит недостаточно естественно (рис. 4). Эта неестественность

будет более заметна, если повращать куб. На рис. 6-а граница между освещенной и неосвещенной частями также выглядит неестественной.

Этот недостаток обусловлен выполнением графической библиотекой интерполяции значений цвета вершин при расчетах цвета фрагментов. Однако, из-за того, что во всех фрагментах поверхности направление на источник света и на наблюдателя разное, для более естественного затенения цвет нужно вычислять для каждого фрагмента, а не только в вершинах.

Чтобы вычислить цвет для каждого фрагмента, необходимо знать местоположение фрагмента и направление нормали в позиции фрагмента. Для получения этих значений требуется их вычислять для вершин в вершинном шейдере и далее использовать стандартную процедуру интерполяции при передачи данных из вершинного шейдера во фрагментный.

8.10 Задание для самостоятельной работы

Перенесите передачу параметров источника света и отражательных свойств поверхности во фрагментный шейдер.

В вершинном шейдере вычислите координаты вершин и нормалей в них в той же самой системе координат, в которой задается положение источника света. Передайте их через varying-переменные во фрагментный шейдер.

Перенесите все вычисления фонового, диффузного и зеркального отражений во фрагментный шейдер.

8.11 Задание для самостоятельной работы

Оформите код вычисления фонового, диффузного и зеркального отражений в виде отдельной функции vec3 phongModel (const in vec3 position, const in vec3 normal), принимающей на вход координаты точки и нормаль в ней. Остальные параметры можно брать из глобальной области видимости. Функция должна возвращать найденный цвет поверхности.

Реализация двухстороннего отображения

8.12 Задание для самостоятельной работы

Создайте незамкнутую поверхность. Для этого выключите отображение одной из видимых граней куба или оснований у цилиндра или у конуса. В случае визуализации поверхности сферы или тора, отобразите только ее часть, например, половину по одной из угловых координат. Как отображается внутренняя часть поверхности?

Рис. 7. Двухстороннее освещение поверхности чайника из Юты

С помощью метода, приведенного на слайде 31 лекции 11, реализуйте правильную закраску внутренней части поверхности.

Имитация тумана

8.13 Задание для самостоятельной работы

- 1. Выберите линейную функцию атмосферного поглощения. Задайте необходимые параметры и передайте их в шейдер, который рассчитывает освещение. С помощью умножения функции атмосферного поглощения на рассчитанное значение цвета фрагмента, осуществите имитацию тумана (рис. 8).
- 2. Выберите экспоненциальную линейную функцию атмосферного поглощения. Задайте необходимые параметры и передайте их в шейдер, который рассчитывает освещение. С помощью умножения функции атмосферного поглощения на рассчитанное значение цвета фрагмента, осуществите имитацию тумана (рис. 8).
- 3. Выберите экспоненциальную квадратичную функцию атмосферного поглощения. Задайте необходимые параметры и передайте их в шейдер, который рассчитывает освещение. С помощью умножения функции атмосферного поглощения на рассчитанное значение цвета фрагмента, осуществите имитацию тумана (рис. 8).

Рис. 8. Эффект тумана

8.14 Задание для самостоятельной работы

Задайте цвет атмосферы, передайте это значение в шейдер, который рассчитывает освещение.

По формуле (17) лекции 11 осуществите имитацию не полностью прозрачной (цветной) атмосферы.

Дополнительная литература

Вольф Д. OpenGL 4. Язык шейдеров. Книга рецептов. М.: ДМК Пресс, 2015. 368 с.

https://e.lanbook.com/reader/book/73071/#1

(ссылка доступна из внутренней сети МГТУ им. Н.Э. Баумана)