Automated Deduction

Laura Kovács

for(syte) III Informatics

Outline

Inference Systems

Selection Functions

Inference System

inference has the form

$$F_1 \ldots F_n$$
,

where $n \geq 0$ and F_1, \ldots, F_n, G are formulas.

- ► The formula *G* is called the conclusion of the inference;
- ▶ The formulas $F_1, ..., F_n$ are called its premises.
- ▶ An inference rule R is a set of inferences.
- ▶ Every inference $I \in R$ is called an instance of R.
- ► An Inference system I is a set of inference rules.
- Axiom: inference rule with no premises.

Inference System: Example

Represent the natural number n by the string $[\ldots] \varepsilon$.

The following inference system contains 6 inference rules for deriving equalities between expressions containing natural numbers, addition + and multiplication \cdot .

$$\frac{x=y}{|x=|y|} (|)$$

$$\frac{x+y=z}{|x+y=|z|} (+_1) \qquad \frac{x+y=z}{|x+y=|z|} (+_2)$$

$$\frac{x \cdot y = u \quad y + u = z}{|x \cdot y = z|} \ (\cdot_1)$$

Derivation, Proof

- Derivation in an inference system I: a tree built from inferences in I.
- ▶ If the root of this derivation is *E*, then we say it is a derivation of *E*.
- ▶ Proof of *E*: a finite derivation whose leaves are axioms.
- **Derivation of** E **from** E_1, \ldots, E_m **a finite derivation of** E **whose every leaf is either an axiom or one of the expressions** E_1, \ldots, E_m **.**

Examples

For example,

is an inference that is an instance (special case) of the inference rule

$$x + y = z$$

$$|x + y = |z| (+2)$$

$$X = ||E||$$

$$X = ||E||$$

Examples

For example,

$$\frac{||\varepsilon + |\varepsilon = |||\varepsilon}{|||\varepsilon + |\varepsilon = ||||\varepsilon} (+2)$$

is an inference that is an instance (special case) of the inference rule

$$\frac{x+y=z}{|x+y=|z|} (+_2)$$

It has one premise $||\varepsilon + |\varepsilon = |||\varepsilon$ and the conclusion $|||\varepsilon + |\varepsilon = ||||\varepsilon$.

Examples

For example,

$$\frac{||\varepsilon + |\varepsilon = |||\varepsilon}{|||\varepsilon + |\varepsilon = ||||\varepsilon} (+2)$$

is an inference that is an instance (special case) of the inference rule

$$\frac{x+y=z}{|x+y=|z|} (+_2)$$

It has one premise $||\varepsilon + |\varepsilon = |||\varepsilon$ and the conclusion $|||\varepsilon + |\varepsilon = ||||\varepsilon$.

The axiom

$$\overline{\varepsilon+|||\varepsilon=|||\varepsilon}$$
 $(+_1)$

is an instance of the rule

$$\frac{\varepsilon + x = x}{\varepsilon + x} (+_1)$$

in this Inference System

Proof of $||\varepsilon \cdot ||\varepsilon = ||||\varepsilon$ (that is, $2 \cdot 2 = 4$).

$$\frac{\varepsilon + \varepsilon = \varepsilon}{|\varepsilon + \varepsilon|} (+1)$$

$$\frac{|\varepsilon + \varepsilon = \varepsilon|}{|\varepsilon + \varepsilon|} (+2)$$

$$\frac{|\varepsilon + |\varepsilon|}{|\varepsilon + \varepsilon|} (+2)$$

$$\frac{|\varepsilon + |\varepsilon|}{|\varepsilon + |\varepsilon|} (+2)$$

Proof, Derivation in this Inference System

Proof of $||\varepsilon \cdot ||\varepsilon = ||||\varepsilon$ (that is, $2 \cdot 2 = 4$).

Derivation of $|\varepsilon \cdot ||\varepsilon = ||\varepsilon|$ from $\varepsilon \cdot ||\varepsilon = \varepsilon$ and $|\varepsilon + \varepsilon = |\varepsilon|$.

$$\frac{\overline{\varepsilon + \varepsilon = \varepsilon}}{|\varepsilon + \varepsilon|} (+1) \frac{\overline{\varepsilon + \varepsilon = \varepsilon}}{|\varepsilon + \varepsilon|} (+2) \frac{\overline{\varepsilon + ||\varepsilon|} (+1)}{|\varepsilon + \varepsilon|} (+2) \frac{\overline{\varepsilon + ||\varepsilon|} (+1)}{|\varepsilon + ||\varepsilon|} (+2) \frac{\overline{\varepsilon + ||\varepsilon|} (+2)}{|\varepsilon + ||\varepsilon|} (+2) \frac{\overline{\varepsilon + ||\varepsilon|} (+2)}{||\varepsilon + ||\varepsilon|} (+2) \frac{\overline{\varepsilon + ||\varepsilon|} (+2)}{||\varepsilon|} (+2)$$

Arbitrary First-Order Formulas

- A first-order signature (vocabulary): function symbols (including constants), predicate symbols. Equality is part of the language.
- A set of variables.
- ► Terms are buit using variables and function symbols. For example, f(x) + g(x).
- Atoms, or atomic formulas are obtained by applying a predicate symbol to a sequence of terms. For example, p(a, x) or $f(x) + g(x) \ge 2$.
- Formulas: built from atoms using logical connectives \neg , \wedge , \vee , \rightarrow , \leftrightarrow and quantifiers \forall , \exists . For example, $(\forall x)x = 0 \lor (\exists y)y > x$.

- ▶ Literal: either an atom A or its negation $\neg A$.
- ▶ Clause: a disjunction $L_1 \vee ... \vee L_n$ of literals, where $n \geq 0$.

- ▶ Literal: either an atom A or its negation $\neg A$.
- ▶ Clause: a disjunction $L_1 \vee ... \vee L_n$ of literals, where $n \geq 0$.
- ► Empty clause, denoted by \square : clause with 0 literals, that is, when n = 0.

- ▶ Literal: either an atom A or its negation $\neg A$.
- ▶ Clause: a disjunction $L_1 \vee ... \vee L_n$ of literals, where $n \geq 0$.
- ► Empty clause, denoted by \square : clause with 0 literals, that is, when n = 0.
- A formula in Clausal Normal Form (CNF): a conjunction of clauses.

- ▶ Literal: either an atom A or its negation $\neg A$.
- ▶ Clause: a disjunction $L_1 \vee ... \vee L_n$ of literals, where $n \ge 0$.
- ► Empty clause, denoted by \square : clause with 0 literals, that is, when n = 0.
- A formula in Clausal Normal Form (CNF): a conjunction of clauses.
- From now on: A clause is ground if it contains no variables.
- If a clause contains variables, we assume that it implicitly universally quantified. That is, we treat $p(x) \lor q(x)$ as $\forall x(p(x) \lor q(x))$.

Binary Resolution Inference System

The binary resolution inference system, denoted by \mathbb{BR} is an inference system on propositional clauses (or ground clauses). It consists of two inference rules:

Binary resolution, denoted by BR:

Factoring, denoted by Fact:

$$\frac{L \vee L \vee C}{L \vee C}$$
 (Fact).

Soundness

- An inference is sound if the conclusion of this inference is a logical consequence of its premises.
- An inference system is sound if every inference rule in this system is sound.

Soundness

- ► An inference is sound if the conclusion of this inference is a logical consequence of its premises.
- An inference system is sound if every inference rule in this system is sound.

Soundness

- An inference is sound if the conclusion of this inference is a logical consequence of its premises.
- ► An inference system is sound if every inference rule in this system is sound.

\mathbb{BR} is sound.

Consequence of soundness: let S be a set of clauses. If \square can be derived from S in \mathbb{BR} , then S is unsatisfiable.

Example

Consider the following set S of clauses

Example

Consider the following set S of clauses

$$\{\neg p \lor \neg q, \ \neg p \lor q, \ p \lor \neg q, \ p \lor q\}.$$

Is S unsatisfiable?

The following derivation derives the empty clause from this set:

$$\frac{p \lor q \quad p \lor \neg q}{\frac{p \lor p}{p} \text{ (Fact)}} \text{ (BR)} \quad \frac{\neg p \lor q \quad \neg p \lor \neg q}{\neg p \lor \neg p} \text{ (BR)}$$

Hence, this set *S* of clauses is unsatisfiable.

Exercise

Consider the following set *S* of clauses

$$\{\neg p \lor \neg q, \ \neg p \lor q, \ p \lor \neg q, \ p \lor q\}.$$

Show that there exists an infinite number of different \mathbb{BR} derivations of the emptt clause \square from the clauses of S.

Soundness - Summarized

- An inference is sound if the conclusion of this inference is a logical consequence of its premises.
- ► An inference system is sound if every inference rule in this system is sound.

\mathbb{BR} is sound.

Consequence of soundness: let S be a set of clauses. If \square can be derived from S in \mathbb{BR} , then S is unsatisfiable.

Can this be used for checking (un)satisfiability?

- 1. What happens when the empty clause cannot be derived from S?
- 2. How can one search for possible derivations of the empty clause?

Can this be used for checking (un)satisfiability?

Refutational

1. Completeness.

Let *S* be an unsatisfiable set of clauses. Then there exists a derivation of \square from *S* in \mathbb{BR} .

Can this be used for checking (un)satisfiability?

1. Completeness.

Let *S* be an unsatisfiable set of clauses. Then there exists a derivation of \square from *S* in \mathbb{BR} .

2. We have to formalize search for derivations.

However, before doing this we will introduce a slightly more refined inference system.

Outline

Inference Systems

Selection Functions

Selection Function

A literal selection function selects literals in a clause.

▶ If *C* is non-empty, then at least one literal is selected in *C*.

Selection Function

A literal selection function selects literals in a clause.

▶ If *C* is non-empty, then at least one literal is selected in *C*.

We denote selected literals by underlining them, e.g.,

$$\underline{p} \vee \neg q$$

Selection Function

A literal selection function selects literals in a clause.

▶ If *C* is non-empty, then at least one literal is selected in *C*.

We denote selected literals by underlining them, e.g.,

$$\underline{p} \vee \neg q$$

Note: selection function does not have to be a function. It can be any oracle that selects literals.

Binary Resolution with Selection

We introduce a family of inference systems, parametrised by a literal selection function σ .

The binary resolution inference system, denoted by \mathbb{BR}_{σ} , consists of two inference rules:

► Binary resolution, denoted by BR

$$\frac{\underline{p}\vee C_1 \quad \underline{\neg p}\vee C_2}{C_1\vee C_2} \text{ (BR)}.$$

Binary Resolution with Selection

We introduce a family of inference systems, parametrised by a literal selection function σ .

The binary resolution inference system, denoted by \mathbb{BR}_{σ} , consists of two inference rules:

Binary resolution, denoted by BR

$$\frac{\underline{p}\vee C_1 \quad \underline{\neg p}\vee C_2}{C_1\vee C_2} \text{ (BR)}.$$

Positive factoring, denoted by Fact:

$$\frac{\underline{p} \vee \underline{p} \vee C}{\underline{p} \vee C}$$
 (Fact).

Completeness?

Binary resolution with selection may be incomplete, even when factoring is unrestricted (also applied to negative literals).

Completeness?

Binary resolution with selection may be incomplete, even when factoring is unrestricted (also applied to negative literals).

Consider this set of clauses:

- (1) $\neg q \lor \underline{r}$
- (2) $\neg p \lor q$
- (3) $\neg r \lor \underline{\neg q}$
- (4) $\neg q \lor \overline{\neg p}$
- (5) $\neg p \lor \underline{\neg r}$
- (6) $\neg r \lor \underline{p}$
- (7) $r \vee q \vee \underline{p}$

Completeness?

Binary resolution with selection may be incomplete, even when factoring is unrestricted (also applied to negative literals).

Consider this set of clauses:

It is unsatisfiable:

(8)	$q \lor p$	(6,7)
(9)	q	(2,8)
(10)	r	(1,9)
(11)	$\neg q$	(3, 10)
(12)		(9, 11)

Note the linear representation of derivations (used by Vampire and many other provers).

However, any inference with selection applied to this set of clauses give either a clause in this set, or a clause containing a clause in this set.

Literal Orderings

Take any well-founded ordering > on atoms, that is, an ordering such that there is no infinite decreasing chain of atoms:

$$A_0 \succ A_1 \succ A_2 \succ \cdots$$

In the sequel \succ will always denote a well-founded ordering.

Literal Orderings

Take any well-founded ordering ≻ on atoms, that is, an ordering such that there is no infinite decreasing chain of atoms:

$$A_0 \succ A_1 \succ A_2 \succ \cdots$$

In the sequel > will always denote a well-founded ordering.

Extend it to an ordering on literals by:

▶ If
$$p \succ q$$
, then $p \succ \neg q$ and $\neg p \succ q$;

$$\neg p \succ p$$
.

Literal Orderings

Take any well-founded ordering ≻ on atoms, that is, an ordering such that there is no infinite decreasing chain of atoms:

$$A_0 \succ A_1 \succ A_2 \succ \cdots$$

In the sequel \succ will always denote a well-founded ordering.

Extend it to an ordering on literals by:

- ▶ If $p \succ q$, then $p \succ \neg q$ and $\neg p \succ q$;
- ightharpoonup $\neg p \succ p$.

Example: Given $p_6 > p_5 > p_4 > p_3 > p_2 > p_1$. What is the extended ordering on literals?

Literal Orderings

Take any well-founded ordering ≻ on atoms, that is, an ordering such that there is no infinite decreasing chain of atoms:

$$A_0 \succ A_1 \succ A_2 \succ \cdots$$

In the sequel > will always denote a well-founded ordering.

Extend it to an ordering on literals by:

- ▶ If $p \succ q$, then $p \succ \neg q$ and $\neg p \succ q$;
- ightharpoonup $\neg p \succ p$.

Example: Given $p_6 > p_5 > p_4 > p_3 > p_2 > p_1$. What is the extended ordering on literals?

Exercise: prove that the induced ordering on literals is well-founded too.

Orderings and Well-Behaved Selections

Fix an ordering >. A literal selection function is well-behaved if

• either a negative literal is selected,

or all maximal literals (w.r.t. \succ) must be selected in C.

Orderings and Well-Behaved Selections

Fix an ordering ≻. A literal selection function is well-behaved if

either a negative literal is selected, or all maximal literals (w.r.t. ≻) must be selected in C.

To be well-behaved, we sometimes must select more than one different literal in a clause. Example: $p \lor p$ or $p(x) \lor p(y)$.

That is:- either a negative literal is selected,

- if no negative literal is selected,

then (only) all maximal literals
are selected.

Completeness of Binary Resolution with Selection

Binary resolution with selection is complete for every well-behaved selection function.

Completeness of Binary Resolution with Selection

Binary resolution with selection is complete for every well-behaved selection function.

Consider our previous example:

(1)
$$\neg q \lor \underline{r}$$

(2)
$$\neg p \lor q$$

$$(3) \neg r \lor \neg q$$

$$(4) \quad \neg q \lor \overline{\neg p}$$

(5)
$$\neg p \lor \overline{\neg r}$$

(6)
$$\neg r \lor p$$

(7)
$$r \lor q \lor \underline{p}$$

A well-behave selection function must satisfy:

1.
$$r > q$$
, because of (1)

2.
$$q \succ p$$
, because of (2)

3.
$$p > r$$
, because of (6)

There is no ordering that satisfies these conditions.

2 > P

1P

PYZ

7P P 2 2 2

S - Set of atoms well-founded > on atom > ou luterals Twell-behaved selection fet BR

Example

Let p, q be boolean atoms and let S be the following set of ground formulas:

$$\{\neg p \lor \neg q, \quad \neg p \lor q, \quad p \lor \neg q, \quad p \lor q\}$$

Take any ordering such that $p \succ q$ and any selection function σ over S such that

$$\{\neg p \lor \underline{\neg q}, \quad \underline{\neg p} \lor q, \quad p \lor \underline{\neg q}, \quad \underline{p} \lor q\}$$

- (a) Is σ a well-behaved selection function over S?
- (b) How many inferences of \mathbb{BR}_{σ} are applicable to S?

Example

Let p, q be boolean atoms and let S be the following set of ground formulas:

$$\{\neg p \lor \neg q, \quad \neg p \lor q, \quad p \lor \neg q, \quad p \lor q\}$$

Take any ordering such that p > q and any selection function σ over S such that

$$\{\neg p \lor \neg q, \quad \neg p \lor q, \quad p \lor \neg q, \quad p \lor q\}$$
 application

- (a) Is σ a well-behaved selection function over S?
- (b) How many inferences of \mathbb{BR}_{σ} are applicable to S?

Example

Let p, q be boolean atoms and let S be the following set of ground formulas:

$$\{\neg p \lor \neg q, \quad \neg p \lor q, \quad p \lor \neg q, \quad p \lor q\}$$

Take any ordering such that $p \succ q$ and any selection function σ over S such that

$$\{\neg p \lor \neg q, \quad \neg p \lor q, \quad p \lor \neg q, \quad p \lor q\}$$

- (a) Is σ a well-behaved selection function over S?
- (b) How many inferences of \mathbb{BR}_{σ} are applicable to S?