Algebra a diskrétna matematika Príklady na precvičenie

10. týždeň

Príklad 1: Nech $S = \{1, 2, 3\}$ a M je množina všetkých podmnožín množiny S. Na množine M máme danú binárnu operáciu symetrický rozdiel množín \oplus , ktorý je definovaný nasledovne

$$\forall A, B \in M : A \oplus B = (A \cup B) - (A \cap B).$$

Overte, či \oplus je komutatívna a asociatívna.

Príklad 2: Uvažujme množinu $\mathbb Z$ spolu s binárnymi operáciami * a \ominus definovanými vzťahmi

- a) $a * b = (a + b)^2$
- b) $a \ominus b = a + b 6$

Pre obidve operácie overte komutativitu a asociativitu.

Príklad 3: Uvažujme množinu \mathbb{Q} racionálnych čísel spolu s binárnymi operáciami $*,\ominus,\otimes$ definovanými vzťahmi

- a) $a * b = \frac{a+b}{7}$
- b) $a \ominus b = a + b ab$
- c) $a \otimes b = |a \cdot b|$

Pre každú operáciu rozhodnite, či sa jedná o pologrupu, monoid alebo grupu.

Príklad 4: Nech M je množina binárnych reťazcov

$$M = \{(\text{pr\'azdny ret\'azec}), 0, 1, 00, 01, 10, 11, 000, 001, \ldots\}.$$

Definujme na M binárnu operácu \oplus ako pripojenie dvoch po sebe nasledujúcich reťazcov $a \oplus b = ab$. Rozhodnite, či sa jedná o pologrupu, monoid alebo grupu.

Príklad 5: Pre každú z nasledujúcich podmnožín množiny $\mathbb Z$ určte, o akú algebraickú štruktúru sa jedná vzhľadom na operáciu sčítania.

A = množina párnych čísel

B = množina nepárnych čísel

C = množina nezáporných celých čísel

 $D = \{0\}$

Príklad 6: Tvorí množina všetkých racionálnych čísel, ktoré majú v menovateli 1 alebo 2, grupu vzhľadom na operáciu sčítania? Ak z tej istej množiny vynecháme nulu, bude tvoriť grupu vzhľadom na operáciu násobenia?

Príklad 7: Akú algebraickú štruktúru tvorí množina 2×2 matíc s reálnymi koeficientami vzhľadom na násobenie?

Príklad 8: Nech $G = \{x \in \mathbb{R} \mid x \neq 1\}$ a definujme x * y = xy - x - y + 2. Dokážte, že (G, *) je grupa.

Príklad 9: Pre každú z nasledujúcich podmnožín množiny všetkých komplexných čísel s komplexnou jednotkou i určte, o akú algebraickú štruktúru sa jedná vzhľadom na operáciu násobenia.

A = množina nenulových racionálnych čísel

B = množina kladných celých čísel

$$C = \{1, -1, i, -i\},\$$

$$D = \{1, \frac{1}{2}, 2\},\$$

$$E = \{a + bi \mid a > 0\}.$$

Príklad 10: Ukážte, že množina všetkých reálnych matíc tvaru $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ je grupa vzhľadom na operáciu násobenia. Spĺňa komutatívny zákon?

Príklad 11: Ktoré z nasledujúcich množín tvoria grupy spolu s operáciou sčítania polynónov?

A = množina všetkých polynómov párneho stupňa

B = množina všetkých polynómov, ktorých súčet koeficientov je párny

 $C=\operatorname{množina}$ všetkých polynómov, ktoré majú iba nepárne koeficienty

Príklad 12: Nájdite všetky riešenia každej z daných rovníc.

$$a) x + x = 6 \pmod{7}$$

b)
$$x + x = 3 \pmod{6}$$

c)
$$x + x + x + x + x = 8 \pmod{9}$$

d)
$$x + x + 9 = 7 \pmod{15}$$

Príklad 13: Nájdite všetky riešenia daných sústav rovníc.

a)
$$x + x + x = 7 \pmod{10}$$

 $x + x + x + x + x + x + x = 11 \pmod{12}$

b)
$$x = 3 \pmod{5}$$

 $x = 6 \pmod{7}$
 $x = 2 \pmod{11}$

 $\bf Príklad 14:$ Ukážte, že množina všetkých matíc nad Z_2 tvaru

$$\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)$$

je grupa vzhľadom na operáciu násobenia. Aký je rád tejto grupy? Spĺňa komutatívny zákon?