Frames

منشات تستخدم لتغطیة بحور من اکثر من ۱۲م وتتمیز بان لها عمق (depth) اقل وترخیم اقل (deflection) مقارنة به (Main girders)

-Types of Frames

1-Three hinged Frame.

2-Two hinged frame.

3-Fixed Frame.

4-Cantilever Frame.

5-Continuous Frame.

- Three hinged Frame is usually used For spans $(12 \rightarrow 20m)$
- It is better for weak soil [determinate structure].

-Concrete Dimensions

$$t=rac{L}{10}$$
 ايهما اكبر $b=rac{30\ cm}{rac{spacing}{20}}$

-Statical System

نقوم بترحيل قواعد(Frame) للخارج مسافة (e) لضمان توزيع الاجهادات بانتظام على التربة $(uniform\ stress)$

Moment due to vertical reaction (y) =Moment due to hzReaction(x)

$$y^*e = x(t_{R.c.} + t_{p.c.}) \qquad \longrightarrow \qquad e = \frac{x(t_{R.c.} + t_{p.c.})}{y}$$

-Steps of design

1-Get the loads on Secondary beams from load distribution and get their reactions on the frame.

2-Get the distributed loads on the frame.

$$w = \gamma_c b(t-t_s) *1.40 + \frac{\Sigma Area}{span} w_s$$

 $3-\ Draw\ B.M.D$, N.F.D. , S.F.D. of the Frame

4-Design section (1-1), (2-2) and get Rft.

ملحوظة (B_1,B_2) للحظ ان الكمرات (B_1,B_2) فائدتها ما يلى (B_1,B_2) تقلل (B_1) الكمرة (B_1) نقلل (B_1) الكمرة (B_1) تتحمل الحائط و تقوم بتربيط ال (B_2) ببعضها (B_2) تتحمل الحائط و تقوم بتربيط ال

Eng. Ezz El-Din Mostafa & Eng.

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Samir

Two Hinged Frame

- Two Hinged Frame is used for span (12 \rightarrow 25)

-Concrete Dimensions

$$t=rac{L}{12-14}$$
 $b=\left[egin{array}{cc} 30 & cm \ spacing \ \hline 20 \end{array}
ight]$ ایها اکبر

-Statical System

نقوم بترحيل قواعد(Frame) للخارج مسافة (e) لضمان توزيع الاجهادات بانتظام على التربة $(uniform\ stress)$

Moment due to vertical reaction (y) = Moment due to hzReactin(x)

$$y^*e = x(t_{R.c.} + t_{p.c.}) \qquad \qquad = \frac{x(t_{R.c.} + t_{p.c.})}{y}$$

Steps of design

- 1-Get the loads on the secondary beams from load distribution and get their reactions on the frame.
- 2-Get the distributed load on the frame.

$$w_u = \gamma_c b(t-t_s) *1.40 + \frac{\sum Area}{span} w_s$$

- 3-Solve the frame using virtual work Method

 OR Moment Distribution Method.
- 4- Draw B.M.D , N.F.D. , S.F.D.

5-Design sections (1-1),(2-2),(3-3) and get rft.

Ezz El-Din Mostafa & Eng. Yasser M.

Fixed Frame

-Concrete Dimensions

$$t=rac{L}{14-16}$$
 $b=\left[egin{array}{c} 30 \ cm \ spacing \ \hline 20 \ \end{array}
ight.$ ایها اکبر

-Statical System

نقوم بترحيل قواعد(Frame) للخارج مسافة (e) لضمان توزيع الاجهادات بانتظام على التربة $(uniform\ stress)$

Moment due to vertical reaction (y) = Moment due to hzReactin(x)+Moment due to (M)

$$y*e=x(t_{R.c.}+t_{p.c.})+M$$
 \longrightarrow $e=\frac{x(t_{R.c.}+t_{p.c.})+M}{y}$

Steps of design

- 1-Get the loads on the secondary beams from load distribution and get their reactions on the frame.
- 2-Get the distributed load on the frame.

$$w_u = \gamma_c b(t-t_s) *1.40 + \frac{\sum Area}{span} w_s$$

3-Solve the frame using virtual work Method

OR Moment Distribution Method.

4- Draw B.M.D , N.F.D. , S.F.D.

5-Design sections (1-1),(2-2),(3-3),(4-4) and get rft.

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Samir

Solved examples on frames

Example

For the given plan and cross- section,

it is required to:

1- Draw structural plan and cross section to show all concrete elements.

2- Design the slabs and Main supporting given

$$f_{cu} = 27.5 N/mm^2$$
 $f_y = 360 N/mm^2$

$$f_{y} = 360 N / mm^{2}$$

$$F.C. = 1.5kN/m^2$$
 $L.L. = 1.0kN/m^2$

$$L.L.=1.0kN/m^2$$

Solution

1-Design for solid slabs:

$$t_{\rm s} = \frac{L_{\rm s}}{24} = \frac{300}{24} = 12.50cm$$

take $t_s = 12cm$ for all slabs (check deflection)

$$w_{su} = 1.4(t_s \gamma_c + F.C.) + 1.6L.L.$$

$$=1.4[0.12*25+1.5]+1.6*1.0$$

$$w_{su} = 7.90 \ kN/m^2$$

Design of strip

Sec. (1-1)

$$100 = C_1 \sqrt{\frac{7.11*10^6}{1000*27.5}} C_1 = 6.22$$
, $J = 0.826$

$$A_{s} = \frac{7.11*10^{6}}{0_{By}82_{Eng.}^{6*1}0_{Ezz}^{0*360}} = 239 \text{ mm}^{2}$$

$$= 239 \text{ mm}^{2}$$

2- Design for secondary beams

For B_1

$$w_1 = \gamma_c b(t - t_s) * 1.4 + w_s \frac{L_s}{2}$$

$$w_1 = 25*0.25(0.5-0.12)*1.40+7.9*\frac{3.0}{2}$$

$$w_1 = 15.18kN/m$$

$$R_1 = w_1 * Spacing$$

$$R_1 = 15.18*6 = 91.05kN$$

For B_2

$$w_2 = \gamma_c b(t - t_s) * 1.4 + w_s . L_s$$

$$w_2 = 25*0.25(0.5-0.12)*1.40+7.9*3.0$$

$$w_2 = 27.03kN/m$$

$$R_2 = w_2 * Spacing$$

$$R_2 = 27.03*6 = 162.15kN$$

3-Design of Main System

assume
$$b=30cm$$
 , $t=\frac{L}{12-14}=\frac{18}{12-14}=1.40m$

$$w_{eq} = 0.w + \frac{\sum P}{L}$$

$$w_{eq} = 25*0.3*(1.4-0.12)*1.40+\frac{162.15*5+91.05*2}{18}$$

$$w_{eq} = 68.60 \text{ kN/m}^{\circ}$$

$$h = 6.50 + 1.50 - 0.30 - 0.60 - \frac{1.40}{2} = 6.40m$$

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Samir

15.18kN/m'

$$I_b = 349*10^{-4}*1.02*1.4^3$$

$$I_{b} = 0.098m^{4}$$

$$I_c = \frac{B(\frac{5}{6}t)^3}{12} = \frac{0.3*(\frac{5}{6}*1.40)^3}{12}$$

$$I_c = 0.0397m^4$$

For Joint a

$$D.f_{ab} = \frac{0.75(I_c/h)}{(0.75\frac{I_c}{h}) + (0.5\frac{I_b}{L})}$$

$$D.f_{ab} = \frac{0.75*(0.0397/6.40)}{0.75*(0.0397/6.40)+0.50*(0.098/18)}$$

$$D.f_{ab} = 0.63$$

Design of Sections

Sec. (1-1)
$$M_{u.l.} = 1166.89kN.m$$

$$N_{u,l} = 617.64kN.m$$

$$b=300mm$$
 , $t=1400mm$

$$t = 1400 mm$$

$$\frac{N_{u.l.}}{btf_{cu}} = \frac{617.64*10^3}{300*1400*27.5} = 0.05>0.04 \text{ (Dont neglect } N_{u.l.} \text{)}$$

$$e = \frac{M_{u.l.}}{N_{u.l.}} = \frac{1166.89}{617.64} = 1.89m$$

$$\frac{e}{t} = \frac{1.89}{1.40} = 1.35 > 0.5$$
 (big eccentricity)

$$e_s = e + \frac{t}{2} - c = 1.89 + \frac{1.40}{2} - 0.1 = 2.49m$$

$$M_{us} = 617.64 * 2.49 = 1537.9 kN.m$$

$$d = C_1 \sqrt{\frac{Mus}{b*f_{cu}}}$$

$$1300 = C_1 \sqrt{\frac{1537.9*10^6}{300*27.5}} \qquad C_1 = 3.01 \& J = 0.752$$

$$C_1 = 3.01 \& J = 0.752$$

$$A_s = \frac{Mus}{J.d.f_y} - \frac{Nus}{f_y/\gamma_s}$$

$$A_s = \frac{1537.9*10^6}{0.752*1300*360} - \frac{617.64*10^3}{360/1.15}$$

$$A_s = 24 cm^2 = 7022$$

Ezz El-Din Mostafa & Eng. Yasser M. Samir

Sec.
$$(2-2)$$

Sec. (2-2) $M_{u,l} = 1166.89kN.m$ $N_{u,l} = 209.81kN.m$

$$b=300mm$$
 , $t=1400mm$

$$\frac{N_{u.l.}}{btf_{cu}} = \frac{209.81*10^3}{300*1400*27.5} = 0.018<0.04 \ (neglect\ N_{u.l.})$$

$$d = C_1 \sqrt{\frac{Mu.l.}{b * f_{cu}}}$$

$$1300 = C_1 \sqrt{\frac{1166.89*10^6}{300*27.5}} \qquad C_1 = 3.46 \& J = 0.778$$

$$C_1 = 3.46 \& J = 0.778$$

$$A_s = \frac{1166.89*10^6}{0.778*1300*360}$$

$$A_s = 32.05 cm^2 = 9 / 22$$

Sec.
$$(3-3)$$

Sec. (3-3) $M_{u.l.} = 1611.4kN.m$ $N_{u.l.} = 209.81kN.m$

$$b=300mm$$
 , $t=1400mm$

$$\frac{N_{u.l.}}{btf_{m.}} = \frac{209.81*10^{3}}{300*1400*27.5} = 0.018<0.04 \ (neglect\ N_{u.l.})$$

B = 2220mm

$$d=C_1\sqrt{\frac{Mu.l.}{B*f_{cu}}}$$

$$1300 = C_1 \sqrt{\frac{1611.4*10^6}{2220*27.5}}$$
 $C_1 = 8.0 \& J = 0.826$

$$C_1 = 8.0 \& J = 0.826$$

$$A_s = \frac{1611.4*10^6}{0.826*1300*360}$$

$$A_s = 4 \text{ B.} 68 \text{ cm}^2 \text{ E} = 9 \text{ D.} 25 \text{ in Mostafa & Eng. Yasser M. Samir}$$

Check Shear

$$\begin{split} Q_{cr} &= Q_{max} - w(\frac{c}{2} + \frac{d}{2}) \\ Q_{cr} &= 526.59 - 58.51(\frac{1.40}{2} + \frac{1.30}{2}) \\ Q_{cr} &= 447.60kN \\ q_{su} &= \frac{Q_{cr}}{bd} = \frac{447.60*10^3}{300*1300} = 1.15 \ N/mm^2 \\ q_{cu} &= 0.24\sqrt{\frac{27.5}{1.5}} = 1.03 \ N/mm^2 \end{split}$$

 $q_{cu} < q_u < q_{umax}$

$$q_{max} = 0.7 \sqrt{\frac{27.5}{1.5}} = 3.00 \ N/mm^2$$

$$q_u - \frac{q_{cu}}{2} = \frac{nA_s f_y / \gamma_s}{bS}$$

assume
$$n=2$$

$$A_{S} = 78.5 mm^{2} = \emptyset 10$$

$$1.15 - \frac{1.03}{2} = \frac{2*78.5*240/1.15}{300*S} \implies S = 172mm$$

No. of
$$stirrups/m' = \frac{1000}{S} = 5.8$$
 Take Stirrups 6010/m'

Example

For the given plan and cross- section, Columns are only allowed on the outside perimeter

it is required to:

- 1- Draw structural plan and Elevation to show all concrete elements.
- 2- Design the slabs and Main supporting element.

$$O.W.(blocks)=0.15 \ kN/block$$

given

$$f_{cu} = 30N/mm^2 f_y = 360N/mm^2 F.C. = 1.5kN/m^2$$

 $L.L. = 2.0kN/m^2$

Solution

For one way H.B. Slabs.

assume
$$t=250mm$$
 & $t_s=50mm$ & $h=200mm$

$$w_{u,l} = 1.4(t_s \gamma_c + f.c. + 2bh\gamma_c + 10*wt.of Block) + 1.6 L.L$$

$$w_{u,l} = 1.4(0.05*25+1.5+2*0.1*0.2*25+10*0.15)+1.6*2.0$$

$$w_{u.l} = 10.55 \text{ kN/m}$$
 $w_{rib} = 5.27 \text{kN/m}$

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Samir

Design of Sections.

Sec. (1-1)
$$M_{u.l.} = 18.97kN.m$$
 $d=250-30=220mm$

$$d = C_1 \sqrt{\frac{M_{u.l.}}{f_{cu*b}}}$$
 $220 = C_1 \sqrt{\frac{18.97*10^6}{30*500}}$

$$C_1 = 6.2$$

 $J = 0.826$

$$A_{s} = \frac{M_{u.l.}}{J f_{u} d} = \frac{18.97*10^{6}}{360*0.826*220} = 290 \text{mm}/\text{rib}$$

1*\$12+1\$16/rib*

Sec. (2-2)
$$M_{u.l.} = 15.81 \, kN. m$$

$$d = C_1 \sqrt{\frac{M_{u.l.}}{f_{cu*b}}}$$
 $220 = C_1 \sqrt{\frac{15.81*10^6}{30*500}}$

$$C_1 = 6.8$$

 $J = 0.826$

$$A_{s} = \frac{M_{u.l.}}{J f_{u} d} = \frac{15.81*10^{6}}{360*0.826*220} = 242 \text{mm}^{2}/\text{rib}$$

1*\$12+1\$16/rib*

Sec. (3-3)
$$M_{u.l.} = 7.9kN.m$$

$$d = C_1 \sqrt{\frac{M_{u.l.}}{f_{cu*b}}} \qquad 220 = C_1 \sqrt{\frac{7.9*10^6}{30*500}}$$

$$C_1 = 9.5$$

 $J = 0.826$

$$A_{s} = \frac{M_{u.l.}}{J f_{u} d} = \frac{7.9*10^{-6}}{360*0.826*220} = 121 \text{mm}^{2}/\text{rib}$$

2#10/rib

Design of Main System

Assume
$$b=35cm$$
 , $t=\frac{L}{14-16} = 1.5m$

$$w = 0.w + w_s *S$$

$$0.w. = 25*0.35(1.5-0.25)*1.40=15.3kN/m$$

$$w = 10.55*6+15.3 = 78.6 \ kN/m$$

Relative Stiffness, D.F.

$$\frac{I_b}{\frac{I_b}{t}} = \frac{0.25}{1.5} = 0.17 \quad Old \\
\frac{b}{B} = \frac{0.35}{0.6} = 0.58$$

$$\frac{b}{B} = \frac{0.35}{0.6} = 0.58$$

$$I_b = 600*10^{-4}*0.6*1.5^3 = 0.121 m^4$$

$$\underline{I_c}$$
 $I_c = \frac{bt^3}{12} = \frac{0.35*1.5}{12}^3 = 0.098 m^4$

$$K_{ab} = \frac{I_c}{h} = \frac{0.098}{6.35} = 0.015$$

 \hat{C} لاحظ ان هذا الارتفاع يقاس من girder ال C.L.

$$K_{aa} = \frac{1}{2} \frac{I_b}{L} = \frac{1}{2} * \frac{0.121}{20.0} = 0.003$$

$$D.F_{ab} = \frac{K_{ab}}{K_{ab} + K_{ac}} = \frac{0.015}{0.015 + 0.003} = 0.833$$

Fixed End Moment

$$M = \frac{wL^2}{12} = \frac{78.6 *20^2}{12} = 2620 \ kN.m$$

B.M.D.

$$\therefore X=517.2 \ kN$$

$$\therefore Y = \frac{\Sigma Loads}{2} = \frac{78.6*20}{2} = 786 \ kN$$

Sec(1-1): R-Sec $M_{u.l.} = 2182.5kN.m$, d=1400, b=350mm $N_{u.l} = 517.2 kN$

$$\frac{N_{u.l.}}{f_{cu}^* bt} = \frac{517.2*10^3}{30*350*1400} = 0.035>0.04 \qquad (neglect N.F.)$$

$$d = C_1 \sqrt{\frac{Mu.l.}{b * f_{cu}}}$$

$$1400 = C_1 \sqrt{\frac{2182.5*10^6}{350*30}} \qquad C_1 = 3.07 \quad J = 0.75$$

$$A_{s} = \frac{2182.5*10^{6}}{0.75*1400*360}$$

$$A_s = 5773 mm^2$$

12\psi25

Sec(2-2): R-Sec $M_{u.l.}$ =2182.5kN.m , d=1400 , b=350mm $N_{u.l.}$ =786 kN

$$\frac{N_{u.l.}}{f_{cu}^* bt} = \frac{786*10^3}{30*350*1400} = 0.053>0.04 \qquad (use N.F.)$$

$$e = \frac{M_{u.l.}}{N_{u.l.}} = \frac{2182.5}{786} = 2.78m$$
 $\frac{e}{t} = \frac{2.78}{1.5} = 1.85 > 0.5$

⇒ Big ecc.

$$e_s = e + \frac{t}{2} - c$$
 = 2.78 + $\frac{1.5}{2}$ - 0.1 = 3.43 m

$$M_{us} = N_{u.l.} * e_s = 786 * 3.43 = 2696 kN.m$$

$$d = C_1 \sqrt{\frac{M_{us}}{f_{cu} b}} \quad 1400 = C_1 \sqrt{\frac{2696*10^6}{30*350}} \qquad C_1 = 2.78$$

$$A_{\rm S} = \frac{M_{\rm us}}{f_{\rm y}\,J\,d} - \frac{N_{\rm u.\,l.}}{f_{\rm y}/\gamma_{\rm S}}$$

$$A_s = \frac{2696*10^6}{360*0.71*1400} - \frac{786*10^3}{360/1.15} = 5023 \text{ mm}^2$$

check Asmin

11ø25

$$A_{\text{smin}} = \frac{1.1}{f_y} bd = 1711 \text{ mm}^2$$

$$Sec(3-3)$$
: $T-Sec$ $M_{u.l.} = 1747.5kN.m$, $d=1400$

$$N_{u.l.} = 517.2 \ kN$$
 $B = 600mm$

 $Neglect N_{ul}$

$$1400 = C_1 \sqrt{\frac{1747.5*10^6}{600*30}} \implies C_1 = 4.49 \quad J = 0.82$$

$$A_s = \frac{1747.5*10^6}{0.82*1400*360} = 4228mm^2$$

9ø25

Sec(4-4): R-Sec $M_{u.l.} = 1091.3kN.m$, d=1400, b=350mm

$$N_{u.l.} = 786 \ kN$$

$$\frac{N_{u.l.}}{F_{cu}*bt} = \frac{786*10^3}{30*350*1400} = 0.053>0.04$$
 (use N.F.)

$$e = \frac{M_{u.l.}}{N_{u.l.}} = \frac{1091.3}{786} = 1.39m$$
 $\frac{e}{t} = \frac{1.39}{1.5} = 0.93$

⇒ Big ecc.

$$e_s = e + \frac{t}{2} - c$$
 = 1.39 + $\frac{1.5}{2}$ - 0.1 = 2.04 m

$$M_{us} = N_{u.l.} * e_s = 786 * 2.04 = 1603 kN.m$$

$$d = C_1 \sqrt{\frac{M_{us}}{f_{cu} b}} \quad 1400 = C_1 \sqrt{\frac{1603*10^6}{30*350}} \qquad C_1 = 3.58$$

$$A_{\rm S} = \frac{M_{\rm us}}{f_{\rm y}\,J\,d} - \frac{N_{\rm u.\,l.}}{f_{\rm y}/\gamma_{\rm S}}$$

$$A_{s} = \frac{1603*10^{6}}{360*0.78*1400} - \frac{786*10^{3}}{360/1.15} = 1566 \text{ mm}^{2}$$

check Asmin

5ø22

$$A_{smin} = \frac{1.1}{f_y} bd = 1497 \text{ mm}^2 0.K.$$

Check Shear

$$Q_{cr} = Q_{max} - w(\frac{c}{2} + \frac{d}{2})$$

$$Q_{cr} = 786 - 78.6(\frac{1.40}{2} + \frac{1.30}{2})$$

$$Q_{cr} = 679.9kN$$

$$q_{su} = \frac{Q_{cr}}{bd} = \frac{679.9*10^3}{350*1400} = 1.39 \text{ N/mm}^2$$

$$q_{cu} = 0.24 \sqrt{\frac{30}{1.5}} = 1.07 \text{ N/mm}^2$$

 $q_{cu} < q_u < q_{umax}$

$$q_{max} = 0.7 \sqrt{\frac{30}{1.5}} = 3.13 \text{ N/mm}^2$$

$$q_u - \frac{q_{cu}}{2} = \frac{nA_s f_y / \gamma_s}{bS}$$

assume
$$n=2$$

$$A_{s} = 78.5 mm^{2} = \emptyset 10$$

$$1.39 - \frac{1.07}{2} = \frac{2*78.5*240/1.15}{350*S} \implies S = 109mm$$

No. of $stirrups/m' = \frac{1000}{S} = 9.1$ Take Stirrups 10010/m'

For the given plan and cross- section,

it is required to:

1 - Draw structural plan and cross

section to show all concrete elements.

2- Design the main supporting elements.

given Use all Sec. Beams 25*50

$$f_{cu}$$
= $25N/mm^2$

$$f_{cu} = 25N/mm^2$$
 $f_y = 360N/mm^2$

$$F.C. = 1.5kN/m^2$$
 $L.L. = 1.0kN/m^2$

$$L.L.=1.0kN/m^2$$

Sec.(1-1)

 $clear\ height=5.5m$

Solution

$$t_s = \frac{400}{40} = 10cm$$
 For sky light $t_s = \frac{400}{35} = 11.43cm$

Take $t_s = 10cm$ For all slabs except sky light,

 $take\ t_s = 12cm$

For
$$t_s = 12cm$$
 $w_{su} = 1.4[t_s \gamma_c + F.c.] + 1.6 L.L.$

$$w_{su} = 1.4[0.12*25+1.5]+1.6*1=7.91kN/m^2$$

For
$$t_s = 10cm$$
 $w_{su} = 1.4[0.10*25+1.5]+1.6*1=7.2kN/m^2$

1-Analysis of Beams

For B_1

$$C_{\alpha} = 1 - \frac{1}{2} * \frac{4}{5} = 0.60$$

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Samir

B (25*50)

Plan

(9.00)

$$w_{a} = \gamma_{c}b(t-t_{s})*1.40 + C_{a} \frac{L_{s}}{2}w_{s}$$
$$= 25*0.25[0.5-0.10]*1.40 + 0.6*\frac{4}{2}*7.20$$

$$w_a = 12.14kN/m'$$

$$R_1 = 12.14*5 = 60.7kN$$

For B_2

$$w_{a} = \gamma_{c}b(t-t_{s})*1.40 + C_{a} \frac{L_{s}}{2}w_{s}*2$$
$$= 25*0.25[0.5-0.10]*1.40 + 0.6* \frac{4}{2}*7.20*2$$

$$w_a = 20.78kN/m'$$

$$R_2 = 20.78*5 = 103.9kN$$

For sky light

For B_3

$$w_a = 25*0.25[0.5-0.12]*1.40+0.6*\frac{4}{2}*7.90$$

 $w_a = 12.81kN/m$

$$R_3 = 12.81*5 = 64.03kN$$

$For B_4$

$$w_a = 25*0.25[0.5-0.12]*1.40+0.6*\frac{4}{2}*7.9*2$$

 $w_a = 19.13kN/m$

$$R_{\Delta} = 19.13*2 = 38.25kN$$

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Samir

For Frame(1)

$$b=30cm$$

$$t = \frac{20}{12-14} = 1.5m$$

$$P_1 = 60.70kN$$
 , $P_2 = 103.9kN$

$$P_3 = R_1 + R_3 + R_4 + o.w$$
 of Post

$$=60.7+64.03+38.25+0.25*0.25*25*1.4*2$$

$$P_3 = 167.36kN$$

$$w_{a} = w_{e} = \%b(t - t_{s}) *1.40 + \frac{\sum A}{Span} w_{s}$$
$$= 25 *0.3[1.5 - 0.1] *1.40 + \frac{4 *2 *0.5 *8}{2.0} *7.2$$

$$w_a = w_e = 26.22 \text{ kN/m}$$

$$I_c = \frac{0.3*(\frac{5}{6}*1.5)^3}{12} = 0.049m^4$$

To get I_b :

we have two cross-sections

$$I_{b2} = 363*10^{-4}*0.9*1.5^{3}$$

$$I_{b2} = 0.11 m^4$$

 $at \ midspan$

$$I_{b1} = 0.3 * \frac{1.5}{12} = 0.084 m^4$$

$$I_{av.} = \frac{0.11*16+0.084*4}{20} = 0.10m^4$$

$$D.f_{ab} = \frac{0.75*(0.049/7)}{0.75(\frac{0.049}{7})+0.5(\frac{0.11}{20})} = 0.68$$

Sec(1-1)

$$\frac{N_u}{bt f_{cu}} = \frac{594.16*10^3}{300*1500*25} = 0.053>0.04(Don't neglect N)$$

$$e = \frac{M}{N} = \frac{1366.67}{594.16} = 2.3m$$

$$\frac{e}{t} = \frac{2.3}{1.5} = 1.5 > 0.5$$
 (big eccentricity)

$$e_s = e + \frac{t}{2} - c = 2.3 + \frac{1.5}{2} - 0.1 = 2.95m$$

$$M_{us} = N * e_s = 594.16 * 2.95 = 1752.87 kN.m$$

$$1400 = C_1 \sqrt{\frac{1752.87*10^6}{300*25}} C_1 = 2.90 \quad J = 0.73$$

$$A_{s} = \frac{1752.87*10^{6}}{0.73*1400*360} - \frac{594.16*10^{3}}{(360/1.15)} = 28.58cm^{2}$$

8ø22

Sec. (2-2)

$$\frac{N}{bt f_{cu}} = \frac{195.24*10^3}{300*1500*25} = 0.017 < 0.04 \ (neglect \ N)$$

$$1400 = C_1 \sqrt{\frac{1366.67*10^6}{300*25}} \qquad C_1 = 3.28 \qquad J = 0.77$$

$$A_{s} = \frac{1366.67*10^{6}}{0.77*1400*360} = 35.37cm^{2}$$

10ø22

Sec. (3-3)

$$R-Sec$$
 $b=300mm$, $d=1400mm$

$$d = 1400 mm$$

,
$$M_{ul}$$
 =1698.81 k N. m , $N_{u.l.}$ (neglected)

$$R-Sec)$$
 هو $Sec(3-3)$ صريح

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Sam

$$1400 = C_1 \sqrt{\frac{1698.81*10^6}{300*25}} \qquad C_1 = 2.94 \qquad J = 0.74$$

$$A_s = \frac{1698.81*10^6}{0.74*1400*360} = 45.76 \text{ cm}^2$$

10ø25

Check Shear

$$Q_{cr} = Q_{max} - w(\frac{c}{2} + \frac{d}{2})$$

$$Q_{cr} = 533 - 26.2(\frac{1.50}{2} + \frac{1.40}{2})$$

$$Q_{cr} = 495 \text{ kN}$$

$$q_{su} = \frac{Q_{cr}}{bd} = \frac{495*10^{3}}{300*1400} = 1.18 \text{ N/mm}^{2}$$

$$q_{cu} = 0.24\sqrt{\frac{25}{1.5}} = 0.98 \text{ N/mm}^{2}$$

 $q_{cu} < q_u < q_{umax}$

$$q_{max} = 0.7 \sqrt{\frac{25}{1.5}} = 2.86 \ N/mm^2$$

$$q_u - \frac{q_{cu}}{2} = \frac{nA_s f_y / \gamma_s}{bS}$$

assume n=2

$$A_{s} = 78.5 mm^{2} = \emptyset10$$

$$1.18 - \frac{0.98}{2} = \frac{2*78.5*240/1.15}{300*S} \implies S=158mm$$

No. of
$$stirrups/m' = \frac{1000}{S} = 6.3$$
 Take Stirrups 7010/m'

For the given plan and cross-section, it is required to:

1 - Draw structural plan and cross section to show all concrete elements.

2- Design the slabs and Main supporting element.

given Use Sec. Beams 25*50

$$f_{cu}$$
=25 N/mm^2 f_y =360 N/mm^2

$$F. C. = 1.5kN/m^2$$
 $L. L. = 1.0kN/m^2$

Sec.(1-1)

1- Design of slabs

$$t_{s} = \frac{500}{45} = 11.11 cm$$

Take $t_s = 12cm$ For all slabs

$$w_{su} = 1.4[t_s \gamma_c + F.c.] + 1.6 L.L.Cos\theta$$

$$w_{su} = 1.4[0.12*25+1.5]+1.6*1.0*0.98$$

$$w_{su} = 7.87 \ kN/m^2$$

$$\theta = tan^{-1}(\frac{2}{10})$$

$$\theta = 11.31$$

$$\cos \theta = 0.98$$

Strip(1)

Sec.
$$(1-1)$$
 $d=120-30=90 \text{ mm}$

$$90 = C_1 \sqrt{\frac{6.83*10^6}{1000*25}} \quad C_1 = 5.44 \quad J = 0.826$$

$$A_{s} = \frac{6.83*10^{6}}{0.826*360*90} = 255 \text{mm}^{2} / \text{m}'$$

$$A_s = 5 \oplus 8/m$$

Strip(2)

Sec.
$$(1-1)$$
 $d=120-20=100 \text{ mm}$

$$100 = C_{1} \sqrt{\frac{7.08 * 10^{6}}{1000 * 25}} \quad C_{1} = 5.3 \qquad J = 0.826$$

$$A_{\rm s} = \frac{7.08*10^6}{0.826*360*100} = 238 \text{mm}^2 / \text{m}'$$

 $A_s = 5 \# 8^{E} m^{Ezz}$ El-Din Mostafa & Eng. Yasser M. Samir

2-Analysis of Beams

For B_1

Assume beams (25*50)

$$w_a = \gamma_c b(t - t_s) * 1.40 + C_a \frac{L_s}{2} w_s$$

= $25 * 0.25 [0.5 - 0.12] * 1.40 + 0.5 * \frac{5}{2} * 7.87$
 $w_a = 13.16 kN/m$

For B_2

$$w_a = \gamma_c b(t - t_s) *1.40 + C_a \frac{L_s}{2} w_s *2$$

= $25 *0.25[0.5 - 0.12] *1.40 + 0.5 * \frac{5}{2} *7.87 *2$
 $w_a = 23kN/m$

3-Analysis of Main system

assume b=30cm , $t=\frac{L}{12-14}=\frac{20}{12-14}=1.6m$

 $Load\ For\ Shear\ = Load\ for\ Moment$

$$w_{a} = w_{e} = \% \ b(t - t_{s}) * 1.40 + \frac{\sum A}{Span} \ w_{s}$$
$$= 25 * 0.3[1.6 - 0.12] * 1.40 + \frac{6.50 * 8}{20.4} * 7.87$$

$$w_a = w_e = 35.6kN/m$$

we have to use virtual work method in this example, because if we use moment distribution, we have to make sway correction.

$$\delta_{10} = \frac{M_0 M_1}{EI}$$

$$\delta_{11} = \frac{M_1^2}{EI}$$

$$I_c = \frac{0.3*(\frac{5}{6}*1.6)^3}{12} = 0.059m^4$$

$$I_b = \mu B t^{3} * 10^{-4}$$

$$=341*1.02*1.6^{3}*10^{-4}=0.143m^{4}$$

$$\begin{array}{c|c}
B = 6t_s + b = 1.02m \\
\hline
1.60 \\
\hline
0.30
\end{array}$$

$$\frac{t_s}{t} = \frac{0.12}{1.60} = 0.075$$

$$\frac{b_0}{B} = \frac{0.3}{1.02} = 0.29$$

$$\delta_{10} = -\frac{1}{3} * \frac{5.10}{E_c} [2224.2*7 + 2224.2* \frac{6}{2}] *2$$

$$-\frac{1}{3} * \frac{5.10}{E_c} [2224.2*7 + 2965.6*8 + \frac{2224.2*8}{2} + \frac{2965.6*7}{2}] * 2$$

$$-\frac{2}{3} * \underbrace{\frac{5.10}{E_c I_b}} [\underbrace{\frac{35.6*5.1*5}{8}} * 6.50] * 2 - \frac{2}{3} * \underbrace{\frac{5.10}{E_c I_b}} [\underbrace{\frac{35.6*5.1*5}{8}} 7.5] * 2$$

$$\delta_{10} = \frac{-1996962.567}{E_c}$$

$$\delta_{11} = \frac{1}{3} * \frac{6}{E_c I_b} [6*6]*2 + \frac{1}{3} * \frac{10.2}{E_c I_b} [6^2 + 8^2 + 6*8]*2$$

$$\delta_{11} = rac{9478.44}{E_{
m C}}_{By~Eng.~Ezz~El-Din~Mostafa~\&~Eng.~Yasser~M.~Samir}$$

$$\delta_{10}+ x \delta_{11}=0$$

$$-\frac{1996962.567}{E_c} + \frac{9478.44}{E_c} X=0$$

$$X=210.68kN$$

Sec(1-1)

$$\frac{N_{u.l.}}{b\ t\ f_{cu}} = \frac{601.43*10^3}{300*1600*25} = 0.05 > 0.04 (Don't\ neglect)$$

$$e = \frac{M_{u.l.}}{N_{u.l.}} = \frac{1264.11}{601.43} = 2.10m$$

$$\frac{e}{t} = \frac{2.1}{1.6} = 1.3 > 0.5 (big\ eccentricity)$$

$$e_s = e + \frac{t}{2} - c = 2.1 + \frac{1.6}{2} - 0.1 = 2.80m$$

$$M_{us} = N_{u.l.} e_s = 601.43 * 2.80 = 1685.11 kN.m$$

$$1500 = C_1 \sqrt{\frac{1685.11*10^6}{300*25}} \quad C_1 = 3.16 \quad J = 0.76$$

$$A_{s} = \frac{1685.11*10^{6}}{0.76*1500*360} - \frac{601.43*10^{3}}{360/1.15} = 21.96cm^{2}$$

6ø22

Sec. (2-2)

$$\frac{N_{u.l.}}{b\ t\ f_{cu}} = \frac{311.63*10^3}{300*1600*25} = 0.02 < 0.04\ (neglect\ N)$$

$$1500 = C_1 \sqrt{\frac{1264.11*10^6}{300*25}}$$
 $C_1 = 3.65$ $J = 0.79$

$$A_{s} = \frac{1264.11*10^{6}}{0.79*1500*360} = 29.67cm^{2}$$

8ø22

Sec(3-3)

$$N_{u,l} = 217.87kN$$
 (neglect N)

$$M_{u,l} = 1280.12kN.m$$

$$B = \begin{bmatrix} 16*120+300=2220\\ -5000\\ \frac{0.76*20.4*1000}{5} +300=3400 \end{bmatrix}$$

B = 2220mm

$$1500 = C_1 \sqrt{\frac{1220.12*10^6}{2220*25}} \qquad C_1 = 9.88 \qquad J = 0.826$$

$$A_{\rm s} = \frac{1280.12*10^6}{0.826*1500*360} = 28.70cm^2$$

8022

Check Shear

$$Q_{cr} = Q_{max} - w \left[\frac{C}{2} + \frac{d}{2} \right] Cos \theta$$

$$Q_{cr} = 483.93 - 35.6 \left[\frac{1.60}{2} + \frac{1.50}{2} \right] Cos \theta$$

$$Q_w = 429.79kN$$

$$q_{su} = \frac{Q_{cr}}{bd} = \frac{429.79*10}{300*1500}^3 = 0.96N/mm^2$$

$$q_{cu} = 0.24 \sqrt{\frac{25}{1.5}} = 0.98 N/mm^2$$

$$q_{su} < q_{cu}$$
 508/m°

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Samir

For the given plan and cross- section,

it is required to:

- 1- Draw structural plan and cross section to show all concrete elements.
- 2- Show how to solve the main system

Solution

1-Design for solid slabs:

$$t_{\rm S} = \frac{L_{\rm S}}{20} = \frac{500}{35} = 14.2cm$$

take $t_s = 15cm$ for all slabs (check deflection)

Strip(1)

Strip(2)

${\it Elevation}$

2- Design for secondary beams

For B_1

$$w_1 = \gamma_c b(t - t_s) * 1.4 + w_s \frac{L_s}{2}$$

$$R_1 = w_1 * Spacing$$

3-Design of Main System

assume
$$b=30cm$$
 , $t=\frac{L}{12-14}=\frac{18}{12-14}=1.40m$

$$w_{eq} = o.w + \frac{\sum P}{L}$$

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Samir

For the given plan and cross-section, it is required to:

Draw structural plan and cross section to show all concrete elements.

$$Sec.(1-1)$$

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Samir

For the given plan and cross- section, it is required to:

Draw structural plan and cross section to show all concrete elements.

Paggo

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Samir

Plan

For the given plan and cross- section, it is required to:

Draw structural plan and cross section to show all concrete elements.

Paggo

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Samir

Saw Tooth Supported on a system

اذا كانت المسافة بين الاعمدة اكبر من ١٢ م فاننا نختار احد الانظمة الانشائية مثل وذلك حسب الطول القصير للارض واتجاه (Saw tooth)

Example

For the given plan, it is required to:

- 1-Choose the suitable system to cover this Area.
- 2-Design all Slabs and draw plan of Rft.
- 3-Design the main supporting element and draw details of Rft.

$$F.C. = 1.5kN/m^2$$
 , $L.L = 0.5 kN/m^2$

$$f_{cu} = 25 \ N/mm^2$$
, $f_y = 360 \ N/mm^2$

Columns are only allowed on perimeter

Solution

$$t = \frac{671}{16} = 41.94cm$$

$$take \ t=25 \ cm \ [20cm+5cm]$$

$$\theta = tan^{-1}(\frac{3}{6.0}) = 26.57$$

$$w_{su} = 1.4(t_s \gamma_c + F.C. + 2bh \gamma_c + 10*wt.of block] + 1.6L.L.Cos \theta$$

$$w_{su}=1.4(0.05*25+1.5+2*0.1*0.2*25+10*0.15]+1.6*0.5*0.89$$

$$w_{su}=8.06kN/m^2$$

$$w_{su/Rib} = 0.5*8.06 = 4.03kN/m$$

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Samir

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Samir

Sec. (1-1)

$$220 = C_1 \sqrt{\frac{20.28*10^6}{500*25}}$$

$$C_1 = 5.46$$
 $J = 0.826$

$$A_{\rm S} = \frac{20.28*10^6}{0.826*360*220} = 3.10 \, {\rm cm}^2/{\rm rib}$$

$$A_s = 2 \oplus 16/rib$$

Sec.
$$(2-2)$$

$$A_s = 2 \oplus 10/rib$$

2]Reactions of slabs on beams

$$R=y=w_{su}\frac{L}{2}$$
 kN/m

$$R=y=8.06*6.71/2=27.04 \ kN/m$$

3]Analysis of Ridge beam(250*400)

$$w=R+o.w$$
 kN/m
 $w=27.04+0.25*0.40*25*1.40$

$$w = 30.54 \ kN/m$$

$$R_1 = 30.54*2.5 = 76.35kN$$

4]Design of Posts

$$R_p = R_1 + o.w$$
 of $Post$

$$R_{p} = 76.35 + 0.25*0.25*3*25*1.40 = 82.91kN$$

$$82.91*10^{3} = 0.35*250*250*25 + 0.67A_{s} f_{y}$$

$$A_{s} = -ve \longrightarrow A_{s} = 4013$$

5]Design of main system

(Y-beam) هو نفسه (Frame) لاحظ في هذه الحالة يكون

$$w_f = 0.w. + y + \frac{\Sigma R_p}{Span}$$
 kN/m $w_f = 0.30*1.50*25*1.40+27.04+ \frac{8*82.91}{20.0}$ $w_f = 75.95kN/m$

$$I_b = 0.3 * \frac{1.5}{12} = 0.084 m^4$$

$$I_{c} = \frac{0.30*(\frac{5}{6}*1.50)}{0.3}$$

$$I_{c} = \frac{0.30*(\frac{5}{6}*1.50)^{3}}{12}$$

$$I_{c} = 0.049m^{4}$$

For Joint a

$$D.f_{ab} = \frac{0.75(I_c/h)}{(0.75\frac{I_c}{h}) + (0.5\frac{I_b}{L})}$$

$$D.f_{ab} = \frac{0.75*(0.049/6.00)}{0.75*(0.049/6.00)+0.50*(0.084/20)}$$

$$D.f_{ab} = 0.74$$
 $D.f_{ac} = 1 - 0.74 = 0.26$

$$F.E.M. = 75.95*20^{2}/12 = 2532 \ kN$$

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Samir

Design of Sections

Sec.
$$(1-1)$$

Sec.
$$(1-1)$$
 $M_{u,h} = 1873.44kN.m$

 $N_{u,l} = 759.50kN.m$

$$b=300mm$$
 , $t=1500mm$

$$t = 1500 mm$$

$$\frac{N_{u.l.}}{btf_{cu}} = \frac{759.50*10^{3}}{300*1500*25} = 0.068>0.04 \text{ (Dont neglect } N_{u.l.} \text{)}$$

$$e = \frac{M_{u.l.}}{N_{u.l.}} = \frac{1873.44}{759.50} = 2.47m$$

$$\frac{e}{t} = \frac{2.47}{1.50} = 1.64 > 0.5$$
 (big eccentricity)

$$e_s = e + \frac{t}{2} - c = 2.47 + \frac{1.50}{2} - 0.1 = 3.12m$$

$$M_{us} = 759.50*3.12 = 2367.12kN.m$$

$$d = C_1 \sqrt{\frac{Mus}{b * f_{cu}}}$$

$$1400 = C_1 \sqrt{\frac{2367.12*10^6}{300*25}}$$
 $C_1 = 2.49 < 2.78$ $take \ d = 1600mm$

$$e_s = e + \frac{t}{2} - c = 2.47 + \frac{1.70}{2} - 0.1 = 3.22m$$

$$M_{us} = 759.50*3.22 = 2445.59kN.m$$

$$1600 = C_1 \sqrt{\frac{2445.59*10^6}{300*25}} \qquad C_1 = 2.80 \& J = 0.72$$

$$A_{\rm S} = \frac{{\it Mus}}{{\it J.d.f_y}} \ - \frac{{\it Nus}}{{\it f_y}/\gamma_{\rm S}}$$

$$A_{s} = \frac{2445.59*10^{6}}{0.72*1600*360} - \frac{759.50*10^{3}}{360/1.15}$$

$$A_s = 34.75 cm^2 = 10022$$

Sec.
$$(2-2)$$

Sec. (2-2) $M_{u.l.} = 1873.44kN.m$

 $N_{u,l} = 312.24kN.m$

b=300mm, t=1700mm

$$\frac{N_{u.l.}}{btf_{cu}} = \frac{312.24*10^3}{300*1700*25} = 0.024<0.04 \ (neglect \ N_{u.l.})$$

$$d = C_1 \sqrt{\frac{Mu.l.}{b * f_{cu}}}$$

$$1600 = C_1 \sqrt{\frac{1873.44*10^6}{300*25}} \qquad C_1 = 3.20 \& J = 0.76$$

$$C_1 = 3.20 \& J = 0.76$$

$$A_{s} = \frac{1873.44*10^{6}}{0.76*1600*360}$$

$$A_s = 42.75 cm^2 = 12022$$

Sec.
$$(3-3)$$
 $M_{u,h} = 1924.06kN.m$

 $N_{u,l} = 312.24kN.m$

b=300mm , t=1700mm

$$\frac{N_{u.l.}}{btf_{cu}} = \frac{312.24*10^3}{300*1700*25} = 0.024 < 0.04 \ (neglect N_{u.l.})$$

$$d = C_1 \sqrt{\frac{Mu.l.}{b*f_{cu}}}$$

$$1600 = C_1 \sqrt{\frac{1924.06*10^6}{300*25}}$$
 $C_1 = 3.16 \& J = 0.76$

$$C_1 = 3.16 \& J = 0.76$$

$$A_{s} = \frac{1924.06*10^{6}}{0.76*1600*360}$$

$$A_s = 44.11 \, \text{cm}^2 = 12022$$

Check Shear

$$Q_{cr} = Q_{max} - w(\frac{c}{2} + \frac{d}{2})$$

$$Q_{cr} = 759.5 - 75.95(\frac{1.70}{2} + \frac{1.60}{2})$$

$$Q_{cr} = 634.18kN$$

$$q_{su} = \frac{Q_{cr}}{bd} = \frac{634.18*10^3}{300*1600} = 1.32 \text{ N/mm}^2$$

$$q_{cu} = 0.24 \sqrt{\frac{25}{1.5}} = 0.98 \ N/mm^2$$

$$q_{max} = 0.7 \sqrt{\frac{25}{1.5}} = 2.86 \text{ N/mm}^2$$
 $q_{cu} < q_u < q_{umax}$

$$q_u - \frac{q_{cu}}{2} = \frac{nA_s f_y / \gamma_s}{hS}$$

assume
$$n=2$$

$$A_{s} = 78.5 mm^{2} = \emptyset 10$$

$$1.32 - \frac{0.98}{2} = \frac{2*78.5*240/1.15}{300*S} \implies S = 131.59mm$$

No. of
$$stirrups/m' = \frac{1000}{S} = 7.6$$
 Take Stirrups 8010/m'

Example

For the given plan, it is required to:

1-Choose the suitable system to cover this Area.

3-Design the main supporting element and draw details of Rft.

$$F.C. = 1.5kN/m^2$$
 , $L.L = 0.5 kN/m^2$

$$f_{cu} = 25 \ N/mm^2$$
, $f_y = 360 \ N/mm^2$

Columns are only allowed on perimeter

Solution

$$t_{\rm s} = \frac{560}{24} = 23.33cm$$

$$t_{s_{min}} = \frac{560}{35} = 16.00cm$$

 $take t_S = 16 cm (Check def.)$

$$w_{su} = 1.4[t_s \gamma_c + F.c.] + 1.6 L.L.Cos\theta$$

$$w_{su} = 1.4[0.16*25+1.5]+1.6*0.5*0.89$$

$$w_{su}$$
=8.41 kN/m^2

Ezz El-Din Mostafa & Eng. Yasser M. Samir

Sec.
$$(1-1)$$

$$140 = C_1 \sqrt{\frac{28.90*10^6}{1000*25}} \qquad C_1 = 4.12 \quad J = 0.807$$

$$A_s = \frac{28.90*10^6}{0.807*360*140} = 710 \text{mm}^2 / \text{m}^3$$

$$A_{s} = 7 \oplus 12/m'$$

Sec.
$$(2-2)$$

$$A_s = 5 \oplus 8/m$$

2]Reactions of slabs on beams

$$\Sigma M_{\alpha} = 0$$

$$8.41*5.60*5.0/2+8.50*0.5*5.25=R*5.00$$

$$R=28.01kN/m$$

$$\Sigma y = 0$$

$$8.41*5.60+8.50*0.5=R+y$$

$$y = 23.34kN/m$$

3]Analysis of Ridge beam(250*400)

$$w=R+o.w$$
 kN/m
 $w=28.01+0.25*0.40*25*1.40$
 $w=31.51$ kN/m

$$R_1 = 31.51*3.0 = 94.53kN$$

4]Design of Posts

$$R_p = R_1 + o.w$$
 of Post

$$R_p = 94.53 + 0.25*0.25*2.5.*25*1.40 = 100.00kN$$

$$100.00*10^3 = 0.35*250*250*25+0.67A_sf_y$$

$$A_s = -ve \longrightarrow A_s = 4 / 13$$

5]Design of of Y-beam

$$w_y = o.w. + y + \frac{\Sigma R_p}{Span} kN/m$$

$$w_y = 0.25*0.60*25*1.40+23.34+ \frac{2*100.0}{6.0}$$

$$w_y = 61.92 kN/m$$

$$R_y = 61.92*6.0 = 371.54 \ kN$$

6]Analysis of End beam

$$w_{vl.} = o.w + y$$
 kN/m

$$w_{vl.} = 0.25*0.60*25*1.40+23.34$$

$$w_{vl.} = 28.59 kN/m$$

$$R_{vl.} = 28.59*6.0=171.54kN$$

7]Design of Main system

$$0.w. = 0.30*1.70*25*1.40$$

$$o.w. = 17.85kN/m$$

$$I_b = 0.3 * \frac{1.7}{12} = 0.123 m^4$$

$$I_c = \frac{0.30*(\frac{5}{6} *1.70)^3}{12}$$

$$I_c = 0.071m^4$$

For Joint α

$$D.f_{ab} = \frac{0.75(I_c/h)}{(0.75\frac{I_c}{h}) + (0.5\frac{I_b}{L})}$$

$$D.f_{ab} = \frac{0.75*(0.071/6.00)}{0.75*(0.071/6.00)+0.50*(0.123/20)}$$

$$D.f_{ab} = 0.72$$

Design of Sections

Sec.
$$(1-1)$$
 $M_{u,l} = 2158.67kN.m$ $N_{u,l} = 907.35kN.m$

$$N_{y,l} = 907.35kN.m$$

$$b=300mm$$
 , $t=1700mm$

$$300$$
 N
 N
 1500

$$\frac{N_{u.l.}}{btf_{cu}} = \frac{907.35*10^{3}}{300*1700*25} = 0.071>0.04 \text{ (Dont neglect } N_{u.l.}\text{)}$$

$$e = \frac{M_{u.l.}}{N_{u.l.}} = \frac{2158.67}{907.35} = 2.37m$$

$$\frac{e}{t} = \frac{2.37}{1.70} = 1.39 > 0.5$$
 (big eccentricity)

$$e_s = e + \frac{t}{2} - c = 2.37 + \frac{1.70}{2} - 0.1 = 3.12m$$

$$M_{us} = 907.35*3.12 = 2832.07kN.m$$

$$d = C_1 \sqrt{\frac{Mus}{b * f_{cu}}}$$

$$1600 = C_1 \sqrt{\frac{2832.07*10^6}{300*25}}$$
 $C_1 = 2.60 < 2.78$ take $d = 1800mm$

$$e_{s} = e + \frac{t}{2} - c = 2.47 + \frac{1.90}{2} - 0.1 = 3.32m$$

$$M_{us} = 907.35*3.32 = 3012.40kN.m$$

$$1800 = C_1 \sqrt{\frac{3012.40*10^6}{300*25}} \qquad C_1 = 2.84 \& J = 0.72$$

$$A_{\rm S} = \frac{{\it Mus}}{{\it J.d.f_y}} \ - \frac{{\it Nus}}{{\it f_y}/\gamma_{\rm S}}$$

$$A_s = \frac{30124.40*10^6}{0.72*1800*360} - \frac{907.35*10^3}{360/1.15}$$

$$A_s = 35.18 cm^2 = 10022$$

Sec. (2-2)
$$M_{u.l.} = 2158.67kN.m$$
 $N_{u.l.} = 359.78kN.m$

b=300mm . t = 1900mm

$$\frac{N_{u.l.}}{btf_{cu}} = \frac{359.78*10^{3}}{300*1900*25} = 0.025<0.04 \ (neglect \ N_{u.l.})$$

$$d=C_1\sqrt{\frac{Mu.l.}{b*f_{cu}}}$$

$$1800 = C_1 \sqrt{\frac{2158.67*10^6}{300*25}} \qquad C_1 = 3.36 \& J = 0.77$$

$$C_1 = 3.36 \& J = 0.77$$

$$A_{s} = \frac{2158.67*10^{6}}{0.77*1800*360}$$

$$A_s = 43.16 cm^2 = 12022$$

Sec.
$$(3-3)$$
 $M_{u.l.} = 2449.23kN.m$ $N_{u.l.} = 359.78kN.m$

$$b=300mm$$
 , $t=1900mm$

$$d = C_1 \sqrt{\frac{Mu.l.}{b*f_{cu}}}$$

$$1800 = C_1 \sqrt{\frac{2449.23*10^6}{300*25}}$$

$$C_1 = 3.15 \& J = 0.76$$

$$A_s = \frac{2449.23*10^6}{0.76*1800*360}$$

$$A_s = 49.96 \, \text{cm}^2 = 11025$$

Check Shear

$$Q_{cr} = Q_{max} - w(\frac{c}{2} + \frac{d}{2})$$

$$Q_{cr} = 735.81 - 17.85 \left(\frac{1.90}{2} + \frac{1.80}{2} \right)$$

$$Q_{cr} = 702.79kN$$

$$q_{su} = \frac{Q_{cr}}{bd} = \frac{702.79*10^3}{300*1800} = 1.31 \text{ N/mm}^2$$

$$q_{cu} = 0.24 \sqrt{\frac{25}{1.5}} = 0.98 \ N/mm^2$$

$$q_{max} = 0.7 \sqrt{\frac{25}{1.5}} = 2.86 \text{ N/mm}^2$$

$$q_{cu} < q_u < q_{umax}$$

$$q_u - \frac{q_{cu}}{2} = \frac{nA_s f_y / \gamma_s}{bS}$$

assume
$$n=2$$

$$A_{s} = 78.5 mm^{2} = \emptyset 10$$

$$1.31 - \frac{0.98}{2} = \frac{2*78.5*240/1.15}{300*S} \implies S = 133.19mm$$

No. of stirrups/m'=
$$\frac{1000}{S}$$
 = 7.5 Take Stirrups 8010/m'

Example

For the given plan, it is required to:

- 1-Choose the suitable system to cover this Area.
- 2-Design all Slabs and draw plan of Rft.
- 3-Design the main supporting element and draw details of Rft.

$$F.C. = 1.5kN/m^2$$
 , $L.L = 0.5 kN/m^2$

$$f_{cu}$$
=32.5 N/mm², f_y =360 N/mm²

Columns are only allowed on axes A,B,C

Solution

Use continuous frame

$$t = \frac{671}{16} = 41.94cm$$

 $take \ t=25 \ cm \ [20cm+5cm]$

$$w_{su}=1.4(t_s\gamma_c+F.C.+2bh\gamma_c+10*wt.of\ block]+1.6L.L.Cos\theta$$

 $w_{su}=1.4(0.05*25+1.5+2*0.1*0.2*25+10*0.15]+1.6*0.5*0.89$
 $w_{su}=8.06kN/m^2$

$$w_{su/Rib} = 0.5*8.06 = 4.03kN/m$$

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Samir

Elevation

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Samir

Sec. (1-1)

$$220 = C_1 \sqrt{\frac{20.28*10^6}{500*25}}$$

$$C_1 = 5.46$$
 $J = 0.826$

$$A_{s} = \frac{20.28*10^{6}}{0.826*360*220} = 3.10cm^{2}/rib$$

$$A_s = 2 \oplus 16/rib$$

Sec.
$$(2-2)$$

$$A_s = 2 \oplus 10/rib$$

2]Reactions of slabs on beams

$$R = y = w_{su} - L$$
 kN/m

$$R=y=8.06*6.71/2=27.04 \ kN/m$$

3]Analysis of Ridge beam(250*400)

$$w=R+o.w$$
 kN/m
 $w=27.04+0.25*0.40*25*1.40$

$$w=30.54 \text{ kN/m}$$

$$R_1 = 30.54*2.5 = 76.35kN$$

4]Design of Posts

$$R_p = R_1 + o.w$$
 of Post

5]Design of main system

(Y-beam) هو نفسه (Frame) لاحظ في هذه الحالة يكون

لان الشكل متماثل يمكن اعتبار العمود الاوسط Link member

$$w_f = 0.w. + y + \frac{\Sigma R_p}{Span}$$
 kN/m $w_f = 0.30*1.30*25*1.40+27.04+ \frac{12*82.91}{20.0}$ $w_f = 73.85kN/m$

$$I_b = 0.3 * \frac{1.3}{12} = 0.055 m^4$$

$$I_{c} = \frac{0.30*(\frac{5}{6}*1.30)^{3}}{12}$$

$$I_{c} = 0.032m^{4}$$

For Joint a

$$D.f_{ab} = \frac{0.75(I_c/h)}{(0.75\frac{I_c}{h}) + (\frac{I_b}{L})}$$

$$D.f_{ab} = \frac{0.75*(0.032/6.00)}{0.75*(0.032/6.00) + (0.055/15)}$$

$$D.f_{ab} = 0.52$$
 $D.f_{ac} = 1 - 0.52 = 0.48$ $F.E.M. = 73.85*15^{2}/12 = 1384.7$ $kN.m$

يحل نصف الـ Frame لانه متماثل

Joint	С	a	
member	ca	ac	ab
D.F.		0.48	0.52
F.E.M.	1384.7	-1384.7	0.0
Bal. M	0.0 *0.5	*°°° 664.7	720
C.O.M.	332.3	0.0	0.0
Bal. M	0.0	0.0	0.0
$m{M}_{final}$	1717	-720	720

Sec.
$$(1-1)$$

Sec. (1-1) $M_{u.l.} = 1717kN.m$

 $N_{u,l} = 120kN$

b=300mm , t=1300mm

$$\frac{N_{u.l.}}{btf_{cu}} = \frac{120*10^3}{300*1300*25} = 0.009<0.04 \ (neglect \ N_{u.l.})$$

$$d = C_1 \sqrt{\frac{Mu.l.}{b * f_{cu}}}$$

$$1200 = C_1 \sqrt{\frac{1717*10^6}{300*32.5}}$$

$$C_1 = 2.85 \& J = 0.74$$

$$A_{s} = \frac{1717*10^{-6}}{0.74*1200*360}$$

$$A_s = 5371 \, mm^2 = 11025$$

Sec.
$$(2-2)$$
 $M_{u.l.} = 858kN.m$

$$N_{u.l.} = 120kN$$
 $neglected$

$$1200 = C_1 \sqrt{\frac{858*10^{-6}}{300*32.5}}$$

$$C_1 = 4.0 \& J = 0.8$$

$$A_{s} = \frac{1924.06*10^{6}}{0.76*1600*360}$$

$$A_s = 2483 mm^2 = 7022$$

Sec.
$$(3-3)$$
 $M_{u.l.} = 720kN.m$

$$A_s = 6$$
 $\emptyset 22$

 $N_{u.l.} = 120kN$ neglected

Sec.
$$(4-4)$$

$$\frac{Sec. (4-4)}{M_{u,l}} = 720kN.m$$

$$N_{u,l} = 487.4kN$$

$$\frac{N_{u.l.}}{btf_{cu}} = \frac{120*10^3}{300*1300*25} = 0.038<0.04 \ (neglect N_{u.l.})$$

$$A_s = 6 \emptyset 22$$

Check Shear

$$Q_{cr} = Q_{max} - w(\frac{c}{2} + \frac{d}{2})$$

$$Q_{cr} = 620.3 - 73.85 \left(\frac{0.80}{2} + \frac{1.20}{2} \right)$$

$$Q_{cr} = 546.45kN$$

$$q_{su} = \frac{Q_{cr}}{bd} = \frac{546.45*10^3}{300*1200} = 1.52 \text{ N/mm}^2$$

$$q_{cu} = 0.24 \sqrt{\frac{32.5}{1.5}} = 1.12 \text{ N/mm}^2$$

$$q_{max} = 0.7 \sqrt{\frac{32.5}{1.5}} = 3.25 \ N/mm^2$$

$$q_u - \frac{q_{cu}}{2} = \frac{nA_s f_y / \gamma_s}{bS}$$

assume n=2

$$A_{s} = 78.5 mm^{2} = \emptyset 10$$

$$1.52 - \frac{1.12}{2} = \frac{2*78.5*240/1.15}{300*S} \implies S = 113mm$$

No. of
$$stirrups/m' = \frac{1000}{S}$$

Take Stirrups 9010/m'

 $q_{cu} < q_u < q_{umax}$

Design of Internal column

$$N_{u,l} = 620.3*2 = 1240.6kN$$

$$\lambda_{b_{in}} = \frac{1.3*5.45}{0.8} = 8.8$$
, $\lambda_{b_{out}} = \frac{1.2*6.25}{0.3} = 25$ unsafe

$$Take \quad b_{col} = 35cm$$

$$\lambda_{b_{out}} = \frac{1.2*6.25}{0.35} = 21.4$$

Column is Long outside plan.

$$\delta_b = \frac{\lambda_{bout}^2 * b}{2000} = \frac{21.4 * 0.35}{2000} = 0.08 \ m$$

$$M_{add} = P.\delta_b = 1240.6*0.08 = 99kN.m$$

$$\frac{N_{u.l.}}{btf_{cu}} = \frac{1240.6*10^3}{350*800*32.5} = 0.136 , \frac{M_{u.l.}}{b^2 tf_{cu}} = \frac{99*10^6}{350^2*800*32.5} = 0.03$$

$$\rho_{<1}$$
 Take $\rho_{=1}$

$$A_{s_{min}} = \frac{0.25 + 0.052 * 21.4}{100} * 350 * 800 = 3816 mm^{2}$$

$$16 \, \oplus 18$$

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Samir

Example

For the given plan, it is required to:

- 1-Choose the suitable system to cover this Area.
- 2-Design all Slabs and draw plan of Rft.
- 3-Design the main supporting element and draw details of Rft.

$$F.C. = 1.5kN/m^2$$
 , $L.L = 0.5 kN/m^2$

$$f_{cu} = 25 \text{ N/mm}^2$$
, $f_y = 360 \text{ N/mm}^2$

Columns are only allowed on perimeter

Two way slab

لاحظ ان البلاطة تحل على انها

$$r = \frac{0.76*6.0}{5.33} = 0.85$$
 $r = 1.17$
 $\alpha = 0.43$
 $\beta = 0.25$

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Samir

Strip 1

Strip 2

Load distribution

Analysis of Ridge beam(250*400)

$$w = o.w. + \frac{\Sigma Area}{Span} w_{si}$$

$$R_1 = w * 2.5 = ----kN$$

Design of Posts

$$R_p = R_1 + o.w$$
 of $Post$

Analysis of Y-beam

$$w = 0.w. + \frac{\Sigma Area}{Span} w_{si} + \frac{R_1 + R_p}{Span}$$

Analysis of Frame

ثم يتم تصميم ال Frame كما سبق

Example

For the given plan and cross- section,

Columns are allowed on the perimeter only it is required to:

1- Draw structural plan and cross
section to show all concrete elements.
2- Show How to solve main systems

Solution

لاحظ ان الارض ليست مستطيلة

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Samir

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Samir

For Frame(2)

المفروض يتم حله فى الفراغ (Space frame) ولكن نظرا لصعوبة الحل يتم وضعه على (Neoprane plate) وبالتالى يصبح

Solving using virtual work method

By Eng. Ezz El-Din Mostafa & Eng. Yasser M. Samir

For heavy frame

نتيجة لان (heavy frame) عليه أحمال ثقيلة فان

$$b=40cm$$
, $t=\frac{L}{10} = \frac{20}{10} = 2.00m$

$$w_a = w_e = \gamma_c b(t - t_s) * 1.40 + \frac{\sum Area}{Span} w_s + \frac{\sum Concentrated loads}{Span}$$

Where Concentrated loads are the loads from secondary

Beams & Frames

ثم نحله باستخدام (Moment Distribution)

