- 5. Übungsblatt
 - (1) FOLGENKOMPAKTE RÄUME I: Ein Hausdorff-Raum X heißt folgenkompakt, falls jede Folge in X eine konvergente Teilfolge hat. Wir zeigen, dass ein metrischer Raum genau dann kompakt ist, wenn er folgenkompakt ist.
 - (a) Sei X ein folgenkompakter metrischer Raum. Gehen Sie folgendermaßen vor, um zu zeigen, dass X kompakt ist.
 - i. Zeigen Sie, dass es zu jeder Überdeckung $(O_i)_{i\in I}$ durch offene Mengen ein $\delta > 0$ so gibt, dass jede Kugel $B(x, \delta)$ für $x \in X$ in einem O_i enthalten ist.
 - ii. Zeigen Sie, dass es zu diesem $\delta > 0$ endlich viele Punkte x_1, \ldots, x_n so gibt, dass die Kugeln $B(x_1, \delta), \ldots, B(x_n, \delta)$ den ganzen Raum X überdecken.

Schließen Sie daraus, dass X kompakt ist.

- (b) Sei X ein kompakter metrischer Raum. Zeigen Sie, dass X folgenkompakt ist.
- (2) FOLGENKOMPAKTE RÄUME II:
 - (a) Zeigen Sie, dass $\{0,1\}^{[0,1]} = \{f : [0,1] \to \{0,1\}\}$, wobei wir $\{0,1\}$ mit der diskreten Topologie versehen, mit der Produkttopologie kompakt ist.
 - (b) Wir betrachten die Folge $(x_n)_{n\in\mathbb{N}}$ in $\{0,1\}^{[0,1]}$ wobei $x_n(t)$ für $t\in[0,1]$ die n-te Stelle der Binärdarstellung von t ist. Wir erreichen Eindeutigkeit der Darstellung, indem wir Darstellungen bei denen ab einem bestimmten Index nur mehr Einser auftreten, ausschließen. Zeigen Sie, dass diese Folge keine konvergente Teilfolge hat.

Hinweis: Betrachten sie zu gegebener Teilfolge $y = (x_{n_k})_{n \in \mathbb{N}}$ von $(x_n)_{n \in \mathbb{N}}$ ein geeignetes t_y für das $x_{n_k}(t_y)$ nicht konvergiert.

(3) Darstellungen zur Basis 3: Wir betrachten für $n \in \mathbb{N}$ die Menge

$$T_n := \left\{ \frac{m}{3^n} \colon m = 0, \dots, 3^n - 1 \right\} \subset [0, 1]$$

- (a) Zeigen Sie, dass für $n \in \mathbb{N}$ jedes Element von T_n eine eindeutige Darstellung der Form $\sum_{k=1}^n \frac{a_k}{3^k}$ mit $a_k \in \{0, 1, 2\}$ hat.
- (b) Sei $x \in [0,1]$. Zeigen Sie, dass die Folge $(y_n)_{n \in \mathbb{N}}$ mit

$$y_n := \max\{z \in T_n \colon z \le x\}$$

geben x konvergiert und schließen Sie daraus, dass $x=\sum_{n=1}^{\infty}\frac{a_n}{3^n}$ für geeignete $a_n\in\{0,1,2\}$.

(c) Zeigen Sie, dass

$$\left\{ \sum_{k=N+1}^{\infty} \frac{a_k}{3^k} \colon a_k \in \{0, 1, 2\} \right\} = \left[0, \frac{1}{3^N}\right]$$

und schließen Sie daraus, dass

$$C_N = \left\{ \sum_{k=1}^{\infty} \frac{a_k}{3^k} \colon a_k \in \{0, 1, 2\}, a_1, \dots, a_N \neq 1 \right\} = [0, 1] \setminus \left(\bigcup_{n=1}^N \bigcup_{k=0}^{3^{n-1}-1} \left(\frac{3k+1}{3^n}, \frac{3k+2}{3^n} \right) \right)$$

gilt.

(4) Cantor-Menge: Wir betrachten $\{0,2\}$ versehen mit der diskreten Topologie und $\{0,2\}^{\mathbb{N}}$ versehen mit der Produkttopologie. Wir betrachten die Abbildung

$$T: \{0,2\}^{\mathbb{N}} \to [0,1], \qquad (x_n)_{n \in \mathbb{N}} \mapsto \sum_{n=1}^{\infty} \frac{x_n}{3^n}.$$

- (a) Zeigen Sie, dass T wohldefiniert und injektiv ist.
- (b) Schließen Sie aus Aufgabe 3, dass das Bild von T

im
$$T = [0,1] \setminus \left(\bigcup_{n=1}^{\infty} \bigcup_{k=0}^{3^{n-1}-1} \left(\frac{3k+1}{3^n}, \frac{3k+2}{3^n} \right) \right)$$

erfüllt und skizzieren Sie diese Menge.

- (c) Zeigen Sie, dass $C := \text{im } T \subset \mathbb{R}$ abgeschlossen und nirgends dicht ist.
- (d) Zeigen Sie, dass T ein Homö
omorphismus ist und schließen Sie, dass C kompakt ist.

Die Menge C nennt man Cantor-Menge oder Cantor'sches Diskontinuum.

(5) Alexandroff-Kompaktifizierung von \mathbb{R}^n : Wir betrachten die stereopgraphische Projektion

$$\sigma \colon \mathbb{S}^n \setminus \{e_{n+1}\} \to \mathbb{R}^n, \qquad x \mapsto \left(\frac{x_1}{1 - x_{n+1}}, \dots, \frac{x_n}{1 - x_{n+1}}\right).$$

- (a) Zeigen Sie, dass σ stetig ist.
- (b) Zeigen Sie, dass

$$\mathbb{R}^n \to \mathbb{S}^n, \qquad z \mapsto \left(\frac{2z_1}{\|z\|_2^2 + 1}, \dots, \frac{2z_n}{\|z\|_2^2 + 1}, \frac{\|z\|_2^2 - 1}{\|z\|_2^2 + 1}\right)$$

die Umkehrfunktion σ^{-1} ist und ebenfalls stetig ist.

(c) Zeigen Sie, dass $\{\sigma^{-1}(\mathbb{R}^n \setminus B(0,R)): R > 0\}$ eine Umegebungsbasis von e_{n+1} in \mathbb{S}^{n-1} ist und schließen Sie daraus, dass \mathbb{S}^n homöomorph zur Alexandroff-Kompaktifizierung von \mathbb{R}^n ist.