Anéis - Continuação

José Antônio O. Freitas

MAT-UnB

17 de setembro de 2020

Seja $(A, +, \cdot)$ um anel. Dizemos que um subconjunto não vazio $B \subseteq A$ é um **subanel** de A quando $(B, +, \cdot)$ é um anel.

Exemplos

- 1) Todo anel A sempre tem dois subanéis: $\{0_A\}$ e A, que são chamados de **subanéis triviais**.
- 2) Em $(\mathbb{Z}_4, \oplus, \otimes)$ o conjunto $B = \{\overline{0}, \overline{2}\}$ é um subanel.
- 3) No anel \mathbb{Z} , o conjunto $m\mathbb{Z}$, m > 1 é um subanel de \mathbb{Z} .

Proposição

Seja $(A, +, \cdot)$ um anel. Um subconjunto não vazio $B \subseteq A$ é um subanel de A se, e somente se, $x - y \in B$ e $x \cdot y \in B$ para todos $x, y \in B$.

Prova: FAZER!!!!!

Exemplos

COLOCAR EXEMPLOS

Um homomorfismo do anel $(A, +, \cdot)$ no anel (B, \oplus, \otimes) é uma função $f: A \to B$ que satisfaz:

i)
$$f(x+y) = f(x) \oplus f(y)$$
, para todos x , $y \in A$;

ii)
$$f(x \cdot y) = f(x) \otimes f(y)$$
, para todos $x, y \in A$.

Proposição

Sejam $(A, +, \cdot)$ e (B, \oplus, \otimes) anéis e seja $f: A \to B$ um homomorfismo. Então:

i)
$$f(0_A) = 0_B$$

ii)
$$f(-x) = -f(x)$$
, para todo $x \in A$.

Prova:

i) Fazendo $x = y = 0_A$, temos

$$f(0_A) = f(0_A + 0_A) = f(0_A) \oplus f(0_A)$$

Somando $-f(0_A)$ em ambos os lados obtemos

$$f(0_A) \oplus (-f(0_A)) = (f(0_A) \oplus f(0_A)) \oplus (-f(0_A))$$
$$0_B = f(0_A) \oplus 0_B$$
$$f(0_A) = 0_B$$

ii) Temos $0_B = f(0_A) = f(x + (-x)) = f(x) \oplus f(-x)$. Assim somando -f(x) em ambos os lados obtemos

$$0_B \oplus (-f(x)) = [f(x) \oplus f(-x)] + (-f(x))$$
$$-f(x) = f(-x) \oplus (f(x) \oplus (-f(x)))$$
$$f(-x) = -f(x)$$

como queríamos.

Seja $f: A \rightarrow B$ um homomorfismo, onde A e B são anéis. Dizemos que

- i) f é um epimorfismo se f for sobrejetora.
- ii) f é um monomorfismo se f for injetora.
- iii) f é um isomorfismo se f for bijetora.
- iv) Quando A = B e f é um isomorfismo, então f é um automorfismo.

Sejam $(A,+,\cdot)$ e (B,\oplus,\otimes) anéis e $f\colon A\to B$ um homomorfismo de anéis. Então o subconjunto de A definido por

$$\ker(f) = \{x \in A \mid f(x) = 0_B\}$$

é chamado de kernel ou núcleo de f.

Proposição

Sejam $(A, +, \cdot)$ e (B, \oplus, \otimes) anéis e $f: A \to B$ um homomorfismo de anéis. Então:

- i) ker(f) é um subanel de A.
- ii) $f \in injetora se$, e somente se, $ker(f) = \{0_A\}$.

Prova:

i) Primeiro note que sendo f é um homomorfismo então $f(0_A) = 0_B$. Logo $0_A \in \ker(f)$, isto é, $\ker(f) \neq \emptyset$. Agora dados $x, y \in \ker(f)$ precisamos mostrar que $x - y \in \ker(f)$ e $xy \in \ker(f)$, e para mostrar isso basta mostrar que $f(x - y) = 0_B$ e $f(xy) = 0_B$. Inicialmente como $x, y \in \ker(f)$ daí $f(x) = f(y) = 0_B$. Assim

$$f(x - y) = f(x + (-y)) = f(x) \oplus f(-y) = f(x) \oplus (-f(y)) = 0_B \oplus 0_B = 0_B$$

$$f(xy) = f(x) \otimes f(y) = 0_B \otimes 0_B = 0_B$$

Logo $x - y \in \ker(f)$ e $xy \in \ker(f)$. Portanto $\ker(f)$ é um subanel de A.

ii) Primeiro suponha que f é injetora e vamos mostrar que $ker(f) = \{0_A\}$. Para isso seja $x \in ker(f)$. Então

$$f(x) = 0_B$$

mas f sendo um homomorfismo temos $f(0_A) = 0_B$. Daí

$$f(x)=0_B=f(0_A).$$

E como f é injetora, por hipótese, segue que $x = 0_A$. Logo $ker(f) = \{0_A\}$.

Agora suponha que $\ker(f) = \{0_A\}$ e vamos mostrar que f é injetora. Para isso sejam x_1 , $x_2 \in A$ tais que $f(x_1) = f(x_2)$. Daí

$$f(x_1) = f(x_2) f(x_1) \oplus (-f(x_2)) = 0_B f(x_1) \oplus f(-x_2) = 0_B f(x_1 - x_2) = 0_B$$

Logo $x_1 - x_2 \in \ker(f) = \{0_A\}$. Com isso $x_1 - x_2 = 0_A$, isto é, $x_1 = x_2$. Portanto f é injetora.

Proposição

Sejam $(A, +, \cdot)$ e (B, \oplus, \otimes) anéis e seja $f: A \to B$ um homomorfismo sobrejetor de anéis.

i) Se A tem unidade, então B tem unidade e

$$f(1_A)=1_B.$$

ii) Se A tem unidade e $x \in A$ possui inverso multiplicativo, então f(x) tem inverso e

$$[f(x)]^{-1} = f(x^{-1}).$$

Prova:

i) Incialmente como num anel a unidade é única, para mostrar que *B* possui unidade basta mostrar que

$$y \otimes f(1_A) = y = f(1_A) \otimes y$$

para todo $y \in B$. Sendo assim, seja $y \in B$. Como f é sobrejetor então existe $x \in A$ tal que f(x) = y. Assim

$$y \otimes f(1_A) = f(x) \otimes f(1_A) = f(x \cdot 1_A) = f(x) = y$$

$$f(1_A) \otimes y = f(1_A) \otimes f(x) = f(1_A \cdot x) = f(x) = y$$

para todo $y \in B$. Portanto B possui unidade e

$$1_B = f(1_A).$$

ii) Novamente, devido á unicidade do inverso em um anel, para mostrar que f(x) possui inverso basta mostrar que

$$f(x)\otimes f(x^{-1})=1_B=f(x^{-1})\otimes f(x)$$

desde que $x \in A$ possua inverso multiplicativo. Sendo assim suponha que $x \in A$ possui inverso multiplicativo. Seja x^{-1} o inverso multiplicativo de x em A. Temos

$$f(x) \otimes f(x^{-1}) = f(x \cdot x^{-1}) = f(1_A) = 1_B$$

 $f(x^{-1}) \otimes f(x) = f(x^{-1} \cdot x) = f(1_A) = 1_B$

Portanto f(x) possui inverso multiplicativo e

$$[f(x)]^{-1} = f(x^{-1}),$$

como queríamos.

Seja $(A, +, \cdot)$ um anel comutativo. Um subconjunto não-vazio $I \subseteq A$ é chamado de **ideal** de A se:

- i) para todos x, $y \in I$, temos $x y \in I$.
- ii) Para todo $\alpha \in A$ e todo $x \in I$, temos $\alpha \cdot x \in I$.

Observação:

Quando I = A ou $I = \{0_A\}$, dizemos que I é um **ideal trivial**.

Proposição

Seja A um anel comutativo e I um ideal de A. Então:

- i) $0_A \in I$.
- ii) $-x \in I$ para todo $x \in I$.
- iii) Se $1_A \in I$, então I = A.

Prova:

- i) Da definição de ideal temos $\alpha \cdot x \in I$ para todo $x \in I$ e todo $\alpha \in A$. Assim dado $x \in I$ $0_A = 0_A \cdot x \in I$.
- ii) Como $0_A \in I$, dado $x \in I$ da definição de ideal segue que $0_A x \in I$, isto é, $-x \in I$.
- iii) Suponha que $1_A \in I$. Como I é ideal, para todo $\alpha \in A$ e todo $x \in I$ devemos ter $\alpha \cdot x \in I$. Assim, em particular, $1_A \cdot x \in I$ para todo $x \in A$. Logo, $A \subseteq I$ e como $I \subseteq A$, então I = A.

Exemplos

- 1) Em $\mathbb Z$ todos os ideais não triviais são da forma m $\mathbb Z$, m > 1.
- 2) No anel Z_p, onde p é um número primo, os únicos ideais são os triviais {0} e Z_p.
 De fato, seja I ⊆ Z_p um ideal, I ≠ {0}. Provemos que I = Z_p. Para isso, vamos provar que 1 ∈ I. Seja ā ∈ I, ā ≠ 0, pois I ≠ {0}. Como p é primo, mdc(a, p) = 1, daí existe b ∈ Z_p, b ≠ 0, tal que 1 = ā ⊗ b. Mas I é ideal e ā ∈ I, logo 1 = ā ⊗ b ∈ I.
 Portanto I = Z_p.
- 3) Os únicos ideais não triviais de $\mathbb{Z}_8 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}, \overline{7}\}$ são:

$$I_1 = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$$
$$I_2 = \{\overline{0}, \overline{4}\}$$

Seja I um ideal de um anel $(A, +, \cdot)$. Dados $x, y \in A$ dizemos que $x \in C$ congruente a y módulo I quando $x - y \in I$. Neste caso, escrevemos $x \equiv y \pmod{I}$.

Proposição

A congruência módulo I é uma relação de equivalência em $A \times A$, onde A anel unitário.

Prova: Como $0 = 0_A \in I$ e para todo $x \in I$, $x - x = 0 \in I$, então $x \equiv x \pmod{I}$.

Suponha que $x \equiv y \pmod{l}$. Então $x - y \in l$. Como $-1 \in A$,

 $y - x = -(x - y) = -[(x - y)1] = (x - y)(-1) \in I$, ou seja, $y \equiv x \pmod{I}$.

Agora, se $x \equiv y \pmod{I}$ e $y \equiv z \pmod{I}$, então $x - y \in I$ e $y - z \in I$. Daí, $x - z = (x - z) + (y - z) \in I$, ou seja, $x \equiv z \pmod{I}$.

Logo, é uma relação de equivalência. ■

Seja $y \in A$. A classe de equivalência módulo I de y é

$$C(y) = \{x \in A \mid x \equiv y \pmod{l}\} = \{x \in A \mid x - y \in l\}.$$

Agora, $x-y\in I$ significa que existe $t\in I$, tal que x-y=t. Logo, x=y+t, onde $t\in I$. Assim.

$$C(y) = \{y + t \mid t \in I\} = y + I.$$

Observação:

Denotamos por y+I (ou I+y) a classe de equivalência módulo I de $y \in A$. Denotamos por $\frac{A}{I}$ o conjunto de todas as classes de equivalência, tal conjunto é chamado de **quociente do anel** A **pelo ideal** I.

Exemplos

- 1) Seja A um anel com unidade e $I_1 = \{0\}$ e $I_2 = A$ ideais. Então:
 - i) Dado $x \in A$:

$$C(x) = x + I_1 = \{x + 0\} = \{x\}.$$

Assim $\frac{A}{I_1} = \{x + I \mid x \in A\}$, logo existem tantas classes de equivalência quantos forem os elementos de A.

ii) Para $I_2 = A$ temos:

$$C(0_A) = 0_A + I = \{0_A + t \mid t \in I_2\}.$$

Como $I_2 = A$, para todo $x \in A$ temos $x \in C(0_A)$ logo existem uma única classe de equivalência e $\frac{A}{I_2} = \{0_A + I\}$.

Exemplos

2) Seja $A = \mathbb{Z}$. Sabemos que os ideais de \mathbb{Z} são da forma $m\mathbb{Z}$, m > 1. Seja $I = m\mathbb{Z}$ um ideal de \mathbb{Z} . Assim $x \equiv y \pmod{l}$ se, e só se, $x - y \in I$. Mais isso ocorre se, e somente se, x - y = mk, para algum $k \in \mathbb{Z}$. Logo $x \equiv y \pmod{l}$ se, e só se, $m \mid (x - y)$. Portanto, $\frac{\mathbb{Z}}{I} = \mathbb{Z}_m$.

Agora seja I ideal e A um anel. Temos

$$\frac{A}{I} = \{ y + I \mid y \in A \}$$

onde $y + I = \{y + t \mid t \in I\}$ e $y \in A$.

Vamos definir uma soma \oplus e um produto \otimes em $\frac{A}{I}$ por

$$(x+I) \oplus (y+I) = (x+y) + I$$
$$(x+I) \otimes (y+I) = (xy) + I$$

para
$$x + I$$
, $y + I \in \frac{A}{I}$.

Verifiquemos que a soma e o produto em $\frac{A}{I}$ não dependem do representante da classe de equivalência. Para isso sejam $x_1 + I$, $x_2 + I$, $y_1 + I$, $y_2 + I \in \frac{A}{I}$ tais que

$$x_1 + I = x_2 + I$$

 $y_1 + I = y_2 + I$

Então

$$(x_1 + I) \oplus (y_1 + I) = (x_1 + y_1) + I$$

 $(x_2 + I) \oplus (y_2 + I) = (x_2 + y_2) + I$

Como
$$x_1 + I = x_2 + I$$
, então $x_1 - x_2 \in I$ e como $y_1 + I = y_2 + I$, então $y_1 = y_2 \in I$. Mas I é ideal, logo $(x_1 - x_2) + (y_1 - y_2) = (x_1 + y_1) - (x_2 + y_2) \in I$, ou seja $(x_1 + I) \oplus (y_1 + I) = (x_2 + I) \oplus (y_2 + I)$.

Agora,

$$(x_1 + I) \otimes (y_1 + I) = (x_1y_1) + I$$

 $(x_2 + I) \otimes (y_2 + I) = (x_2y_2) + I$

Como $(x_1 - x_2)y \in I$ e $(y_1 - y_2)x_2 \in I$ então

$$(x_1 - x_2)y_1 + (y_1 - y_2)x_2 \in I$$

$$x_1y_2 - \underbrace{x_2y_1 + y_1x_2}_{=0} - y_2x_2 \in I$$

$$x_1y_1 - x_2y_2 \in I,$$

ou seja, $xy + I = x_2y_2 + I$. Portanto,

$$(x_1 + I) \otimes (y + I) = (x_2 + I) \otimes (y_2 + I).$$

Teorema

Seja $(A, +, \cdot)$ um anel associativo, comutativo e com unidade. Então, se I é um ideal de A, o quociente $\frac{A}{I}$ com as operações \oplus e \otimes é um anel associativo, comutativo e com unidade. O elemento neutro da soma é a classe $0_A + I$ e unidade do produto é $1_A + I$.