Earth and Planetary Sciences (ES1101)

(Minerals: Building Blocks of Rocks) (Autumn 2020 by Gaurav Shukla)

Book: 1) Understanding Earth by Grotzinger & Jordan (Text Book)

- 2) Earth: An introduction to Physical Geology by Tarbuck & Lutgens
- 3) The Solid Earth: An introduction to global geophysics by Fowler

Minerals Classification: Silicate Minerals

Minerals Classification: Silicate Minerals

Table 11.1 Silicate Classification^a

Silicate Class	Number of O ²⁻ Shared per Tetrahedron	Z:O Ratio	Structural Configuration
Orthosilicates	0	1:4	Isolated tetrahedra
Disilicates	1	2:7	Double tetrahedra
Ring silicates	2	1:3	Rings of tetrahedra
Chain silicates			Chains of tetrahedra
Single chain	2	1:3	
Double chain	2 or 3	4:11	
Sheet silicates	3	2:5	Sheets of tetrahedra
Framework silicates	4	1:2	Framework of tetrahedra

^aZ refers to the cation(s), usually Si⁴⁺, and also Al³⁺, that occupy the tetrahedral sites.

Minerals Classification: Silicate Minerals

Phase Transitions in Olivine

Phase Transitions in Olivine

Phase Transitions in Bridgmanite

Post-perovskite, Orthorhombic (expected to be in the D" region)

Exploring Earth's Interior using Seismic Waves

FIGURE 14.8 The structure of the mantle beneath old oceanic lithosphere, showing S-wave velocities to a depth of 900 km. Changes in S-wave velocity mark the strong, brittle lithosphere, the weak, ductile asthenosphere, and a transition zone, in which increasing pressure forces rearrangements of atoms into denser and more compact crystal structures (phase changes).

- During chemical analysis of different samples of *a mineral*, it is routinely found that these samples do not have same chemical composition (Definite but not a fixed chemical composition).
- Composition variation is possible because different cations can interchangeably occupy the various sites. The term applied to this compositional variation is **solid solution**.
- Practically all naturally occurring minerals containing Fe-Mg-Mn-Ca or Na-K etc. are solid solutions.
- Quartz (SiO_2) is not a solid solution.

Substitution Solid Solution: Substitution of one cation for another.

- > Requirement for substitution solid solution:
 - Ion sizes must be similar
 - Charge neutrality must be maintained
 - Similar electronegativity
- ✓ If the difference in ion size is less than 15%, extensive substitution is possible.
- ✓ If the size difference is \sim 15-30%, limited substitution possible.
- ✓ If the size difference is greater than 30%, substitution is very unlikely.
- Temperature has a substantial influence on the degree to which ions of different sizes may substitute for each other.

Substitution Solid Solution: Substitution of one cation for another.

> Simple substitution:

Olivine, Forsterite (Mg₂SiO₄)-Fayalite (Fe₂SiO₄) end members

- The structure is viewed down the a-axis
- Octahedral M-sites or occupied by Mg²⁺ or Fe²⁺
- The shaded wedge shown on M-sites represents the occupation of Fe²⁺. In this case 22%.

➤ Coupled substitution: Coupled substitution maintains a charge balance by coupling one substitution that increases the charge with another that reduces the charge.

Example: Plagioclase: Albite (NaAlSi3O8)-Anorthite (CaAl2Si2O8) end members

- Ca²⁺ and Na⁺ both occupy distorted 8fold coordination sites.
- Si⁴⁺ and Al³⁺ both occupy tetrahedral coordination sites.

$$Ca^{2+} + Al^{3+} = Na^{+} + Si^{4+}$$

Minerals Classification: Silicate Minerals

Polymorphism: Al₂SiO₅

Polymorphism: SiO₂

Polymorphism: SiO₂

Meteor Crater, also known as Barringer Crater (Arizona, USA)

https://en.wikipedia.org/wiki/Meteor Crater

Impact crater/structure		
Confidence	Confirmed [1]	
Diameter	0.737 miles (1.186 km)	
Depth	560 feet (170 m)	
Rise	148 feet (45 m)	
Impactor diameter	160 feet (50 m)	
<u>Age</u>	50,000 years	

Polymorphism: Carbon

Figure 3.29

Diamond versus graphite

Both diamond and graphite are natural substances with the same chemical composition: carbon atoms. Nevertheless, their internal structures and physical properties reflect the fact that each formed in a very different environment. (Photo A Marcel Clemens/Shutterstock; photo B by E. J. Tarbuck)

Polymorphism: Carbon

Polymorphism

 Table 4.4 Common Polymorphic Mineral Groups

Chemical Composition	Mineral Name
SiO_2	α -Quartz
	β -Quartz
	α -Tridymite
	β -Tridymite
	Cristobalite
	Coesite
	Stishovite
FeS_2	Pyrite
	Marcasite
C	Graphite
	Diamond
AlAlOSiO ₄	Andalusite
	Sillimanite
	Kyanite
KAlSi ₃ O ₈	Sanidine
	Orthoclase
	Microcline