TRABALHO 1: IMAGEM

Implemente o algoritmo de superpixel SLICO descrito em:

https://infoscience.epfl.ch/record/177415/files/Superpixel_PAMI2011-2.pdf https://infoscience.epfl.ch/record/177415

Seguindo as adaptações indicadas nos próximos slides.

Superpixels

O algoritmo SLIC (Simple Linear Iterative Clustering)

Entrada: n_s (número aprox. de superpixels) e, opcionalmente, m (compacidade)

- 1. Calcule as coordenadas CIE Lab de todos os pixels da imagem;
- 2. Calcule o tamanho, s, da cédula quadrada

$$s = \sqrt{\frac{w * h}{n_s}}$$

3. Initialize os representantes das cédulas $c_i = [l_i; a_i; b_i; x_i; y_i]^T$ amostrando em uma grade de tamanho $s, i=0,...,(n_s-1)$

evite as bordas e pontos ruidosos: escolha na vizinhança 3x3 do centro da célula o pixel que tenha o menor gradiente para c_i

O algoritmo SLIC (cont.)

- 4. Para cada superpixel c_k crie uma janela de tamanho 2s centrada em (x_k, y_k)

 - a) Para cada pixel neste janela que estiver atribuído a outro superpixel c_j , verifique se a distância dele ao c_k é menor e, se for, atribua este pixel ao c_k .
- 5. Quando todos os superpixels tiverem sido visitados, recalcule o sua cor e centro através da média de seus pixels. Calcule também o deslocamento de seu centro e acumule numa medida de erro E.
- 6. Se o erro acumulado (de todos os superpixels) for pequeno ou se o número de iterações for excessivo, maior que 10, por exemplo, pare. Caso contrário volte para o passo 4.

Cálculo de distância

Distância entre o pixel $\mathbf{p}_j = [l_j; a_j; b_j; x_j; y_j]^T$ e o superpixel $\mathbf{c}_i = [l_i; a_i; b_i; x_i; y_i]^T$

$$d_c = \sqrt{(l_i - l_j)^2 + (a_i - a_j)^2 + (b_i - b_j)^2}$$

$$d_s = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$

$$d_t = \sqrt{\left(\frac{d_c}{m_c}\right)^2 + \left(\frac{d_s}{m_s}\right)^2}$$

onde m_c e m_s são as máximas distâncias esparadas no superpixel. Opções:

- 1. constantes: $m_s=s$ e m_c é parâmetro de entrada.
- 2. adaptativos: m_s e m_c são calculados a partir da última iteração.

UM POUCO DE TEORIA DE SINAIS: IMAGENS NO DOMÍNIO DA FREQUÊNCIA

- Transformada de Fourier
- Transformada de Haar

Harmônicos

$$f = \frac{1}{T} (Hz)$$

$$\omega t = 2\pi f t = \frac{2\pi}{T} t \quad (rad)$$

Integrais de senos e cosenos em $[-\pi,\pi]$

 $\sin(nx)\cos(nx)$

Áreas se compensam. Integrais resultam em 0.

Integrais de senos e cosenos em $[-\pi,\pi]$

$$\int_{-\pi}^{\pi} \sin(mx) \sin(nx) dx = \pi \delta_{mn} \quad \text{for } n, m \neq 0$$

$$\int_{-\pi}^{\pi} \cos(mx) \cos(nx) dx = \pi \delta_{mn} \quad \text{for } n, m \neq 0$$

$$\int_{-\pi}^{\pi} \sin(mx) \cos(nx) \, dx = 0$$

$$\int_{-\pi}^{\pi} \sin(mx) \, dx = 0$$

$$\int_{-\pi}^{\pi} \cos(mx) \, dx = 0$$

Funções ortogonais

Série de Fourier

Jean Baptiste Joseph Fourier (1768-1830)

Paper de 1807 para o Institut de France:

Joseph Louis Lagrange (1736-1813), and Pierre Simon de Laplace (1749-1827).

T

$$f(t) = a_0 + 2\sum_{k=1}^{\infty} \left(a_k \cos \frac{2\pi kt}{T} + b_k \sin \frac{2\pi kt}{T}\right)$$

Série de Fourier: cálculo de a₀

$$\begin{array}{c|c}
 & f(t) \\
\hline
 & 0 \\
\hline
 & T & t
\end{array}$$

$$f(t) = a_0 + 2\sum_{k=1}^{\infty} \left(a_k \cos \frac{2\pi kt}{T} + b_k \sin \frac{2\pi kt}{T}\right)$$

$$\int_{0}^{T} f(t)dt = \int_{0}^{T} a_{o}dt + \sum_{k=1}^{\infty} \left(a_{k} \int_{0}^{T} \cos(\frac{2\pi nkt}{T}) dt + b_{k} \int_{0}^{T} \sin(\frac{2\pi kt}{T}) dt \right)$$

$$\int_0^T f(t)dt = a_0 T + 0 + 0$$

$$a_0 = \frac{1}{T} \int_0^T f(t) dt$$

Série de Fourier: a_n e b_n

$$\begin{array}{c|c}
 & f(t) \\
\hline
 & 0 \\
\hline
 & T & t
\end{array}$$

$$f(t) = a_0 + 2\sum_{k=1}^{\infty} \left(a_k \cos \frac{2\pi kt}{T} + b_k \sin \frac{2\pi kt}{T}\right)$$

$$\int_0^T \cos(\frac{2\pi nt}{T}) f(t) dt = 0 + 2\sum_{k=1}^\infty a_k \int_0^T \cos(\frac{2\pi nt}{T}) \cos(\frac{2\pi kt}{T}) dt + 0$$

$$= Ta_n$$

$$a_n = \frac{1}{T} \int_0^T f(t) \cos(\frac{2\pi n t}{T}) dt \qquad \dots \qquad b_n = \frac{1}{T} \int_0^T f(t) \sin(\frac{2\pi n t}{T}) dt$$

$$b_n = \frac{1}{T} \int_0^T f(t) \sin(\frac{2\pi n t}{T}) dt$$

Resumindo

$$f(t) = a_0 + 2\sum_{k=1}^{\infty} \left(a_k \cos \frac{2\pi kt}{T} + b_k \sin \frac{2\pi kt}{T}\right)$$

$$a_k = \frac{1}{T} \int_0^T f(t) \cos(\frac{2\pi kt}{T}) dt$$
 $k = 0,1,2,3,...$

$$b_k = \frac{1}{T} \int_0^T f(t) \sin(\frac{2\pi kt}{T}) dt \quad k = 1, 2, 3, \dots$$

$$\omega_k = \frac{2\pi k}{T}$$

$$\Delta\omega = \frac{2\pi}{T}$$

Domínios

Sinal discreto

$$a_k = \frac{1}{T} \int_0^T f(t) \cos(\frac{2\pi kt}{T}) dt \quad \approx \frac{1}{N\Delta t} \sum_{r=0}^{N-1} f_k \cos\left(\frac{2\pi kr\Delta t}{N\Delta t}\right) \Delta t$$

$$a_k \cong \frac{1}{N} \sum_{r=0}^{N-1} f_r \cos(\frac{2\pi kr}{N}) \qquad \qquad b_k \cong \frac{1}{N} \sum_{r=0}^{N-1} f_k \sin(\frac{2\pi kr}{N})$$

$$a_k \cong \frac{1}{N} \sum_{r=0}^{N-1} f_r \cos(\frac{2\pi kr}{N}) \qquad b_k \cong \frac{1}{N} \sum_{r=0}^{N-1} f_k \sin(\frac{2\pi kr}{N})$$

$$\begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{N-1} \end{bmatrix} = \frac{1}{N} \begin{bmatrix} c_{00} & c_{01} & \cdots & c_{0(N-1)} \\ c_{10} & c_{11} & \cdots & c_{1(N-1)} \\ \vdots & \vdots & \ddots & \vdots \\ c_{(N-1)0} & c_{(N-1)1} & \cdots & c_{(N-1)(N-1)} \end{bmatrix} \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_{N-1} \end{bmatrix} \quad \text{onde:} \quad c_{kr} = \cos(\frac{2\pi \, kr}{N})$$

$$\begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{N-1} \end{bmatrix} = \frac{1}{N} \begin{bmatrix} s_{00} & s_{01} & \cdots & s_{0(N-1)} \\ s_{10} & s_{11} & \cdots & s_{1(N-1)} \\ \vdots & \vdots & \ddots & \vdots \\ s_{(N-1)0} & s_{(N-1)1} & \cdots & s_{(N-1)(N-1)} \end{bmatrix} \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ f_{N-1} \end{bmatrix} \quad \text{onde:} \quad s_{kr} = \sin(\frac{2\pi \, kr}{N})$$

Transformada Discreta

$$f(t) = \sin(2\pi 10t)$$

$$f_a = 200 Hz$$

$$N = 256$$

$$\Delta t = \frac{1}{f_a} = 0.005 \sec$$

$$\Delta t = \frac{1}{f_a} = 0.005 \text{ sec}$$

$$T = 0.005 \times 256 = 1.28 \text{ sec}$$

T - não é o período do sinal!

$$T = N \cdot \Delta t = \frac{N}{f_a}$$

$$f_s = \sin(2\pi 10 \frac{sT}{N})$$

Transformada Discreta de Fourier

$$f_s = \sin(2\pi 10 \frac{sT}{N})$$

$$F_k \equiv \frac{1}{N} \sum_{s=0}^{N-1} f_s e^{-i(\frac{2\pi ks}{N})}$$

$$k = 1$$

$$\Delta f = \frac{1}{T} = 0.7813 / \text{sec}$$

$$\Delta\omega = \frac{2\pi}{T} = 4.91 \, rad \, / sec$$

todas as feqüências computadas são multiplas destas

Periodicidade da Série de Fourier

$$f(t+T) = a_0 + 2\sum_{k=1}^{\infty} \left(a_k \cos\left(\frac{2\pi k}{T}(t+T)\right) + b_k \sin\left(\frac{2\pi k}{T}(t+T)\right) \right) = f(t)$$

Outro exemplo

 $f3(t) := 10 \cos(2 \pi t) + 6 \sin(10 \pi t) + .8 \cos(40 \pi t)$

Transformada

Eixo de freqüência

$$\cos(\alpha - \frac{\pi}{2}) = sen(\alpha)$$

o cosseno pode substituir o seno e ficarmos apenas com uma série de cossenos

Discrete Cosine Transformation (DCT)

$$C_k = \frac{\Lambda(k)}{\sqrt{N}} \sum_{s=0}^{N-1} f_s \cos\left(\frac{(2s+1)k}{2N}\pi\right)$$

$$f_s = \sum_{k=0}^{N-1} \frac{\Lambda(k)}{\sqrt{N}} C_r \cos\left(\frac{(2s+1)k}{2N}\pi\right)$$

$$\Lambda(k) = \begin{cases} 1 & k = 0\\ \sqrt{2} & k \neq 0 \end{cases}$$

Filtro

- Um filtro é um operador que atenua ou realça uma determinada freqüência
- Fácil de visualizar no domínio da frequência onde:

$$F(\omega) \leftarrow f(t)$$

$$H(\omega) = F(\omega)G(\omega)$$

$$h(t) \leftarrow H(\omega)$$

h(t) é o f(t) filtrado

Tipos de Filtros

$$H(\omega) = F(\omega)G(\omega)$$

Imagem filtrada com um filtro passa baixa

Imagem filtrada com um filtro passa alta

Filtragem no domínio espacial

$$F(\omega) \leftarrow f(x) \qquad G(\omega) \leftarrow g(x)$$

$$H(\omega) = F(\omega)G(\omega)$$

$$h(x) \leftarrow H(\omega)$$

ou:

$$h(x) = f \otimes g = \int_{-\infty}^{\infty} f(u)g(x-u)du$$

• Filtragem no domínio espaciona realidade é ao pela convolution (o vione) vione uma ferramenta para filtragem.

Transformada Haar

Transformada Haar

Três iterações de Haar sobre um vetor

Transformada Haar

Uma iteração da transformada de Haar sobre uma matriz

Transformada de Haar

Imagem Digital Conceitos, Processamento e Análise

Parte 3 - Processamentos apenas no espaço das cores

PROCESSAMENTO NO ESPAÇO DE COR

- Correção gama
- Equalização de histograma
- Quantização de cores
- Superpixels

Histogramas da Função

Uma outra maneira de ver a informação da imagem: probabilidade de ocorrência de um determinado valor, uso do intervalo [0,255], contraste,...

Histogramas de Imagem Colorida

Correção gama

Ajustes de contraste e iluminação

Correção gama

$$L \leftarrow \sqrt[\gamma]{L}$$

Probabilidade

Função de densidade de probabilidade

$$P\{x_0 \le x < x_1\} = \int_{x_0}^{x_1} DF(x) dx$$

$$CDF(\bar{x}) = P\{0 \le x < \bar{x}\} = \int_{0}^{\bar{x}} DF(x) dx$$

$$DF(x) = \frac{d}{dx}CDF(\bar{x})$$

Mudança de variavel y = f(x)

Transformaçã o monotônica e limitada ao intervalo [0,1]

$$DF(y) = \frac{d}{dy}CDF(y) = \frac{d}{dx}CDF(x)\frac{dx}{dy} = DF(x)\frac{dx}{dy}$$

$$f(x) = CDF(x)$$

$$\frac{dy}{dx} = DF(x)$$

$$DF(y) = \frac{DF(x)}{DF(x)} = 1$$

Equalização de Histograma

$$L' = f(L) = \sum_{j=0}^{L} \frac{n_j}{n}$$

Equalização do histograma

Tons de cinza e negativo

$$L_{x,y} = 0.299 R_{x,y} + 0.587 G_{x,y} + 0.114 B_{x,y}$$

tons de cinza

Quantização de cores

Quantização de 24 para 8 bits

A qualidade depende da imagem

Corte mediano

Corte mediano

ARMAZENAMENTO DE IMGES

Compressão

Um pouco de teoria da informação Codificação uniforme

		Uniforme							
tons	# pixels	código	tam.	# bits					
0	1900	000	3	5700					
1/7	2500	001	3	7500					
2/7	2100	010	3	6300					
3/7	1600	011	3	4800					
4/7	800	100	3	2400					
5/7	600	101	3	1800					
6/7	300	110	3	900					
1	200	111	3	600					
			TOTAL	30000					

Podemos melhorar?

1/7	2500
2/7	2100
0	1900
3/7	1600
4/7	800
5/7	600
6/7	300
1	200

1/7	2500
2/7	2100
0	1900
3/7	1600
4/7	800
5/7	600
n0	500

Codificação de Huffman

			Uniforme		Huffman				
tons	# pixels	código	tam.	# bits	código	tam.	# bits		
0	1900	000	3	5700	00	2	3800		
1/7	2500	001	3	7500	10	2	5000		
2/7	2100	010	3	6300	01	2	4200		
3/7	1600	011	3	4800	110	3	4800		
4/7	800	100	3	2400	1110	4	3200		
5/7	600	101	3	1800	11111	5	3000		
6/7	300	110	3	900	111101	6	1800		
1	200	111	3	600	111100	6	1200		
			TOTAL	30000		TOTAL	27000		

Redundância de Codificação

<u> </u>	p(r)	Code 1 I(r)		I(r)p(r)	Code 2	I(r)	I(r)p(r)
0	0.19	000	3	0.57	11	2	0.38
1/7	0.25	001	3	0.75	01	2	0.50
2/7	0.21	010	3	0.63	10	2	0.42
3/7	0.16	011	3	0.48	001	3	0.48
4/7	0.08	100	3	0.24	0001	4	0.32
5/7	0.06	101	3	0.18	00001	5	0.30
6/7	0.03	110	3	0.09	000001	6	0.18
1	0.02	111	3	0.06	000000	6	0.12
	1.00		L_{avg} =	3.00		L_{avg} =	2.70

 r_k = tons de cinza em uma imagem, k=0, 1, ..., τ -1

$$p(r_k) = n_k / n$$

onde n_k = número de pixels com tom r_k n = número de pixels da imagem

$$L_{avg} = \sum_{k=0}^{\tau-1} l(r_k) p(r_k)$$

Resultado da Teoria da Informação

$$l_{opt}(r_k) = \log_2\left(\frac{1}{p(r_k)}\right)$$
 número de bits

r	p(r)	Code 1	l(r)	I(r)p(r)	Code 2	I(r)	I(r)p(r)	log(1/p)	log(1/p)*p
0	0.19	000	3	0.57	11	2	0.38	2.4	0.46
1/7	0.25	001	3	0.75	01	2	0.50	2.0	0.50
2/7	0.21	010	3	0.63	10	2	0.42	2.3	0.47
3/7	0.16	011	3	0.48	001	3	0.48	2.6	0.42
4/7	0.08	100	3	0.24	0001	4	0.32	3.6	0.29
5/7	0.06	101	3	0.18	00001	5	0.30	4.1	0.24
6/7	0.03	110	3	0.09	000001	6	0.18	5.1	0.15
1	0.02	111	3	0.06	000000	6	0.12	5.6	0.11
Σ	=1.00		L _{avg} =	3.00		L _{avg} =	2.70	L	opt = 2.65

Compressão de imagens

- Preserva exatamente o conteúdo da imagem
- Taxas de compressão 3 : 1

- Preserva de forma controlada o nível de qualidade da imagem
- Taxas de compressão que chegam a valores de mais de 100 : 1

Métodos de compressão

- Sem perdas
 - -Run length encoding (RLE) repetição
 - -Huffman coding histograma
 - -Predictive coding diferenças
 - -Block coding (LZW) dicionário
- Com perdas
 - Truncation coding reduz a representação
 - -Predictive coding descarta diferenças altas
 - -Block coding dicionário aproximado
 - Transform coding descarta frequencias altas

Métodos compostos: JPEG, MPEG

Processo de compressão e descompressão

Fundamentos da Compressão de Imagens

A compressão de uma imagem é obtida quando se elimina a redundância de:

codificação

•entre *pixels*

psico-visual

Redundância entre pixels

640 colunas x 480 linhas x 1 byte/pixel = 300 KBytes

onde 1 = 32 bytes de preto e 0 = 32 bytes de branco

Compressão - RLE

Objetivo

Reduzir a quantidade de dados redundantes.

Exemplo

 $AAAAAAXXX \longrightarrow 6A3X$

Caracterísiticas

Simples e rápido, porém a eficiência depende da imagem a ser comprimida.

Run-Length Encoding

imagem binária

Compressão do jpeg

Aplicações são tecnologicamente complexas:

exemplo: algoritmo do JPEG

The Maersk Mc-Kinney Moller Institute for Production Technology

The Maersk Mc-Kinney Moller Institute for Production Technology

🔐 Jpeg image compression

Run Load image Prefactor = 1.0

Size of original bitmap, 1 byte per pixel (kbyte): 94.720

Quantization prefactor: 1.00

Compressed size of image (kbyte): 6.887

Kompression ratio: 13.8

The compressed image is stored on the disk as D:\COURSES\AM37-2~1\DEMOS\JPEG\GEORGE.###

UNIVERSITY OF SOUTHERN DENMARK

The Maersk Mc-Kinney Moller Institute for Production Technology

	g image oad image			_												_ [X
71 54 58 60 64 79 69 80	Gray				174 184 183 179 169 150 118 90	142 165 182 183 179 172 158 138	113 139 158 172 180 177 173 165	961 135 -14 4 -6 -3 9 -1	-290	T wit -30 -171 -10 3 0 2 0 -1	hout 21 8 -44 11 -1 3 0 -1	quant -13 -13 -13 -8 6 0 1	1zati 8 2 0 -8 -2 0 1	on -1 0 1 3 0 -1 -2 -1	ō	Original and reconstructed block(enlarged)
36				7			To the same of the	8 11 10 16 24 40 51 61	12 12 14 19 26 58 60 55	Quan 14 13 16 24 40 57 69 56	tizat 14 17 22 29 51 87 80 62	ion t 18 22 37 56 68 109 103 77	abel 24 35 55 64 81 104 113 92	49 64 78 87 103 121 120 101	72 92 95 98 112 100 103	
	To the second	ST.		10				120 12 -1 0 0 0	-24 1 6 0 0 0 0	CT af -2 -13 0 0 0 0 0	ter q 0 -2 0 0 0	uanti 0 0 0 0 0 0 0	zatio 0 0 0 0 0 0 0	n 0 0 0 0 0	0000000	
64 61 57 56 61 71 82 89	Red 101 90 74 61 57 63 74 82	const 151 133 106 80 64 60 65 70	ructe 183 169 145 118 93 75 64 59	ed gra 185 183 175 159 135 106 80 64	167 175 183 182 168 141 112 93	146 157 172 182 180 166 149 137	133 143 158 172 179 179 174 169	960 132 -10 0 0 0	-288	T aft -28 -169 0 0 0 0	er de 14 0 -44 0 0 0 0	quant 0 0 0 0 0 0 0	izati 0 0 0 0 0 0 0	on 0 0 0 0 0 0	0000000	

Equations for JPEG DCT

Forward DCT:

$$DCT(x,y) = \frac{1}{4} C_x C_y \sum_{x=0}^{7} \sum_{y=0}^{7} Spixel(i,j) \cdot \cos \frac{(2i+1) \cdot x \cdot \pi}{16} \cdot \cos \frac{(2j+1) \cdot y \cdot \pi}{16}$$
where $C_x C_y = \frac{1}{\sqrt{2}}$ for x, y = 0; otherwise C_x , $C_y = 1$.

Inverse DCT:

$$pixel(x,y) = \frac{1}{4} \sum_{x=0}^{7} \sum_{y=0}^{7} C_i C_j DCT(i,j) \cdot \cos \frac{(2x+1)j \cdot \pi}{16} \cdot \cos \frac{(2y+1)}{i \cdot \pi}$$

where
$$C_i$$
, $C_j = \frac{1}{\sqrt{2}}$ for $i, j = 0$; otherwise C_i , $C_j = 1$.

Visualization of Basis Functions

Organização de *pixels* num *array* no formato TGA (targa)

Outra ordem no plano

Tipo Abstrato Imagem

```
/*- implementação do tipo Imagem */
Image *imgCreate (int w, int h);
                                    struct image imp {
                                              /* largura (width) em pixels
                                     int width;
void
       imgDestroy (Image *image);
                                     int height; /* altura (height) em pixels */
                                     float *buf; /* buffer RGB
                                                                     * /
int imgGetWidth(Image * image);
int imgGetHeight(Image * image);
float * imgGetRGBData(Image * image);
void imgSetPixel3fv(Image *image, int x, int y, float * color);
void imgSetPixel3ubv(Image *image, int x, int y, unsigned char *color);
void imgGetPixel3fv(Image *image, int x, int y, float *color);
void imgGetPixel3ubv(Image *image, int x, int y, unsigned char *color);
Image * imgReadBMP(char *filename);
int imgWriteBMP(char *filename, Image * image);
Image * imgCopy(Image * image);
Image * imgGrey(Image * image);
Image * imgResize(Image * img0, int w1, int h1);
```