This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

1/7

 $F_{1G.1}$

Methods of Transforming Plants and Identifying Parental Origin of a Chromosome in Those Plants Jerome P. Ranch et al. Attorney Docket No. 0930C

3/7

CLONE 28 GS3 PHN46 TC2740	GGTTTTGTAG ATTTTAATTT TGGAAAACAG	AGAACACGGC TGAACTTTAC AGAACACAGC TGAACTTTAC AGAACACGGC TGAACTTTAC
CLONE 28 GS3 PHN46 TC2740	AAAGGGCTAA AAATTCAGTT CTGAATTTTC	TGAATTICCT TTTTGAAGTT TGAATTTCCT TTTTG TGAATTTCCC TTTTGAAGTT TGAATTTCCT TTTTGAAGTT
CLONE 28 PHN46 TC2740	TAGCTICAAG GGTCTTTTTG AGAATTTTGC TAGCTTCAAG GGTCTTTTTG AGAATTTTGC TAGCTTCAAG GGTCTTTTTG AGAATTTTGC	AAAGCTTTGC TGATCAAACT

E.DfT

4/7

Flg.4B

Methods of Transforming Plants and Identifying Parental Origin of a Chromosome in Those Plants Jerome P. Ranch et al. Attorney Docket No. 0930C

6/7

JR451 GS3 2482.53-1-12B PHN46	TCGCGTCACA TTCAGAGTTA TGGTTACTTG CTGCTGTGTC TACTGCTGTT ATTACTCG CTGCCGTGTC TACTGCTGTT TTACTTG CTGCTGTGTC TACTGCTGTT TTACTTG CTGCTGTGTC TACTGCTGTT
	TCGCGTCACA TTCAGAGTTA TGRTTACTTG CTGCTGTGTC TACTGCTGTT
JR451 GS3 2482.53-1-12B PHN46	GCTITTCCAT TGCCATGCTT TGCTGCCGAT GACGAGGATG ATGTTGAGCT
	GCTTTTCCAT TGCCATGCTT TGCTGCCGAT GACGAGGATG ATGTTGAGCT
JR451 GS3 2482.53-1-12B PHN46	CCACCATGTT GGCTCGCTTG AAGACCACCG CTGCCCGTGG TATGCTGCCA CCACCATGTT GGCTCGCTTG TAGACCACCG CTGCCCGTGG TATGCTGCCA CCACCATGTT GGCTCGCTTG AAGACCACCG CTGCCCGTGG TATGCTGCCA CCACCATGTT GGCTCGCTTG AAGACCACCG CTGCCCGTGG TATGCTGCCA
	CCACCATGTT GGCTCGCTTG AAGACCACCG CTGCCCGTGG TATGCTGCCA
JR451 GS3 2482.53-1-12B PHN46	TGCCTCCTCT TCCAAGTGGT GGTAATACGC CACCGCTGCT CTGCTCTAAT TGCCTCCTCT TCCAAGTGGT GGGAATACGC CACAGCTACT CT:::: AAT TGCCTCCTCT TCCAAGTGGT GGTAATACGC CACCGCTGCT CTGCTCTAAT TGCCTCCTCT TCCAAGTGGT GGTAATACGC CACCGCTGCT CTGCTCTAAT
	TGCCTCCTCT TCCAAGTGGT GGTAATACGC CACCGCTGCT CTGCTCTAAT
JR451 GS3 2482.53-1-12B PHN46	GGGCGAGGTG GGCGCTGGTT CGTCTGCTAC TAGGGTTGGC TGTTTTGGTG GGGCAAGGCG GGCGCTGGTT TGTCTGCTGC TAGGGTTGGC TGTTTTGGTG GGGCGAGGTG GGCGCTGGTT CGTCTGCTAC TAGGGTTGGC TGTTTTGGTG GGGCGAGGTG GGCGCTGGTT CGTCTGCTAC TAGGGTTGGC TGTTTTGGTG GGGCGAGGTG GGCGCTGGTT CGTCTGCTAC TAGGGTTGGC TGTTTTGGTG
JR451 GS3	GGCTA GGTTGGGCCA TGAGAATTAT GCACTGGGCC AATAGAAGAG CTCTTCAC GGCTAGGCCG TGAGAATTAT GAACTGGGCA GATAGAAGAG CTCTTCAC
2482.53-1-12B PHN46	GGCTAGGCCG TGAGAATTAT GAACTGGGCA GATAGAAGAG CTCTTCAC GGCTAGGCCG TGAGAATTAT GAACTGGGCA GATAGAAGAG CTCTTCAC
	• • • • • • • • • • • • • • • • • • • •

Flg.6

7/7

USE BIOTIN-CAPTURED ALLELE-TARGETED PRIMERS TO RE-PCR ALLELE FLANKING REGIONS OF GS3, ELITE, AND TRANGENIC PROGENY BECAUSE THE EXTENDED __E PRIMERS CAN NOW ANNEAL IN ALL LIKELIHOOD TO BOTH GS AND ELITE CHROMOSOMES. PCR AMPLIFIED BANDS FROM GS3, ELITE, AND, T 0 PLANTS CAN BE RAPIDLY ANALYZED FOR PCR BAND SIZE DIFFERENCES, RFLP WITHIN PCR BAND USING COCKTAIL OF 4 — BP ENZYMES AND IF NEEDED, PCR BANDS CAN BE DIRECTLY SEQUENCED TO IDENTIFY SINGLE NUCLEOTIDE POLYMORPHISMS OCCURING WITHIN FIRST 600 BASES OF AMPLIFIED FLANKING SEQUENCE.