

${\sf Aprendizagem - HomeWork\ 1}$

Pedro Curvo (ist1102716)

Salvador Torpes (ist1102474)

 1^{O} Semestre - 23/24

1 Dataset

Consideramos o seguinte dataset D:

D	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	Yout
<i>x</i> ₁	0.24	1	1	0	Α
<i>x</i> ₂	0.06	2	0	0	В
<i>x</i> ₃	0.04	0	0	0	В
<i>x</i> ₄	0.36	0	2	1	С
<i>X</i> 5	0.32	0	0	2	С
<i>x</i> ₆	0.68	2	2	1	А
<i>x</i> ₇	0.90	0	1	2	Α
<i>x</i> ₈	0.76	2	2	0	А
<i>X</i> 9	0.46	1	1	1	В
x ₁₀	0.62	0	0	1	В
x ₁₁	0.44	1	2	2	C
x ₁₂	0.52	0	2	0	С

Tabela 1: Dataset D

2 Exercício 1.

De modo a corretamente completar a árvore de decisão, é necessário calcular o Information gain (IG) da variável de output y_{out} condicionada a cada uma das variáveis y_2 , y_3 e y_4 .

2.1 Escolha do 2º nó

Como queremos completar o ramo $y_1 > 0.4$, vamos apenas considerar as ocorrencias em que $y_1 > 0.4$ para calcular o IG.

Information Gain de y_{out} condicionada a y_2

$$IG(y_{out}|y_2) = H(y_{out}) - H(y_{out}|y_2)$$

$$H(y_{out}) = \left(-\sum_{i=1}^{3} p_{out_i}(\log_2 p_{out_i})\right) = -\left(\frac{3}{7}\log_2\left(\frac{3}{7}\right) + \frac{2}{7}\log_2\left(\frac{2}{7}\right) + \frac{2}{7}\log_2\left(\frac{2}{7}\right)\right) = 1.5567$$

$$H(y_{out}|y_2) = \sum_{i=1}^{2} p_{y_2=i}H(y_{out}|y_2=i)$$

Tabela dividida em 3 sub-tabelas, cada uma com os dados que verificam $y_2 = 0$, $y_2 = 1$ e $y_2 = 2$, respetivamente:

D	<i>y</i> ₂	Yout
<i>x</i> ₇	0	Α
x ₁₀	0	В
x ₁₂	0	С

D	<i>y</i> ₂	Yout	
<i>X</i> 9	1	В	
<i>x</i> ₁₁	1	С	

D y₂ y_{out} x₆ 2 A x₈ 2 A

Tabela 2: Dataset D com $y_2 = 0$

Tabela 3: Dataset D com $y_2 = 1$

Tabela 4: Dataset D com $y_2 = 1$

$$H(y_{out}|y_2 = 0) = -\left(\frac{1}{3}\log_2\left(\frac{1}{3}\right) + \frac{1}{3}\log_2\left(\frac{1}{3}\right) + \frac{1}{3}\log_2\left(\frac{1}{3}\right)\right) = 1.58496$$

$$H(y_{out}|y_2 = 1) = -\left(\frac{1}{2}\log_2\left(\frac{1}{2}\right) + \frac{1}{2}\log_2\left(\frac{1}{2}\right)\right) = 1$$

$$H(y_{out}|y_2=2) = - (\log(1)) = 0$$

Assim, podemos calcular a entropia de y_{out} condicionada a y_2 :

$$H(y_{out}|y_2) = \frac{3}{7}H(y_{out}|y_2 = 0) + \frac{2}{7}H(y_{out}|y_2 = 1) + \frac{2}{7}H(y_{out}|y_2 = 2) =$$

$$= \frac{3}{7} \times 1.58496 + \frac{2}{7} \times 1 + \frac{2}{7} \times 0 = 0.96498$$

Por fim, podemos calcular o Information Gain:

$$IG(y_{out}|y_2) = H(y_{out}) - H(y_{out}|y_2) = 1.5567 - 0.96498 = 0.59172$$

Information Gain de yout condicionada a y₃

$$IG(y_{out}|y_3) = H(y_{out}) - H(y_{out}|y_3)$$

$$H(y_{out}|y_3) = \sum_{i=0}^{2} p_{y_3=i} H(y_{out}|y_3=i)$$

Tabela dividida em 3 sub-tabelas, cada uma com os dados que verificam $y_3 = 0$, $y_3 = 1$ e $y_3 = 2$, respetivamente:

			D	<i>y</i> ₃	
D	<i>y</i> ₃	Yout	<i>X</i> ₇	1	
<i>x</i> ₁₀	0	В	<i>X</i> 9	1	

D y₃ y_{out}

x₆ 2 A

x₈ 2 A

x₁₁ 2 C

x₁₂ 2 C

Tabela 5: Dataset D com $y_3 = 0$

Tabela 6: Dataset D com $y_3 = 1$

Yout

Α

В

Tabela 7: Dataset D com $y_3 = 2$

$$H(y_{out}|y_3 = 0) = -(\log(1)) = 0$$

$$H(y_{out}|y_3 = 1) = -\left(\frac{1}{2}\log_2\left(\frac{1}{2}\right) + \frac{1}{2}\log_2\left(\frac{1}{2}\right)\right) = 1$$

$$H(y_{out}|y_3 = 2) = -\left(\frac{2}{4}\log_2\left(\frac{2}{4}\right) + \frac{2}{4}\log_2\left(\frac{2}{4}\right)\right) = 1$$

Assim, podemos calcular a entropia de y_{out} condicionada a y_3 :

$$H(y_{out}|y_3) = \frac{1}{7}H(y_{out}|y_3 = 0) + \frac{2}{7}H(y_{out}|y_3 = 1) + \frac{4}{7}H(y_{out}|y_3 = 2) =$$

$$= \frac{1}{7} \times 0 + \frac{2}{7} \times 1 + \frac{4}{7} \times 1 = 0.85714$$

Por fim, podemos calcular o Information Gain:

$$IG(y_{out}|y_3) = H(y_{out}) - H(y_{out}|y_3) = 1.5567 - 0.85714 = 0.69956$$

Information Gain de y_{out} condicionada a y_4

$$IG(y_{out}|y_4) = H(y_{out}) - H(y_{out}|y_4)$$

$$H(y_{out}|y_4) = \sum_{i=0}^{2} p_{y_4=i} H(y_{out}|y_4=i)$$

Tabela dividida em 3 sub-tabelas, cada uma com os dados que verificam $y_4 = 0$, $y_4 = 1$ e $y_4 = 2$, respetivamente:

D	<i>y</i> ₄	Yout
<i>X</i> 8	0	А
x ₁₂	0	С

Tabela 8: Dataset D com $y_4 = 0$

D	<i>y</i> ₄	Yout	
<i>x</i> ₆	1	А	
<i>X</i> 9	1	В	
x ₁₀	1	В	

Tabela 9: Dataset D com $y_4 = 1$

Tabela 10: Dataset D com $y_4 = 2$

$$H(y_{out}|y_4 = 0) = -\left(\frac{1}{2}\log_2\left(\frac{1}{2}\right) + \frac{1}{2}\log_2\left(\frac{1}{2}\right)\right) = 1$$

$$H(y_{out}|y_4 = 1) = -\left(\frac{2}{3}\log_2\left(\frac{2}{3}\right) + \frac{1}{3}\log_2\left(\frac{1}{3}\right)\right) = 0.918295$$

$$H(y_{out}|y_4=2) = -\left(\frac{1}{2}\log_2\left(\frac{1}{2}\right) + \frac{1}{2}\log_2\left(\frac{1}{2}\right)\right) = 1$$

Assim, podemos calcular a entropia de yout condicionada a ya:

$$H(y_{out}|y_4) = \frac{2}{7}H(y_{out}|y_4 = 0) + \frac{3}{7}H(y_{out}|y_4 = 1) + \frac{2}{7}H(y_{out}|y_4 = 2) =$$

$$= \frac{2}{7} \times 1 + \frac{3}{7} \times 0.918295 + \frac{2}{7} \times 1 = 0.96498$$

Por fim, podemos calcular o Information Gain:

$$IG(y_{out}|y_4) = H(y_{out}) - H(y_{out}|y_4) = 1.5567 - 0.96498 = 0.59172$$

Comparação dos IG Podemos confirmar, pelos cálculos acima, que:

$$IG(y_{out}|y_2) = IG(y_{out}|y_4) < IG(y_{out}|y_3)$$

Assim, a variável y_3 é a que tem maior IG, pelo que é a variável que escolhemos para o 2^0 nó da árvore de decisão no ramo $y_1 > 0.4$. Este nó vai ter três ramos, um para cada valor possível de y_3 : a ocorrência $y_3 = 0$ tem apenas uma ocorrência e a ocorrência $y_3 = 1$ tem apenas duas ocorrências, pelo que estes dois nós não são expandidos. Por outro lado, $y_3 = 2$ tem 4 ocorrências, pelo que é o único nó que é expandido. Falta averiguar qual a variável que vai ser usada para expandir este nó.

2.2 Escolha do 3º nó

Queremos agora completar o ramo que verifica $y_1 > 0.4$ e $y_3 = 2$. Para isso, vamos calcular o IG de y_{out} para y_2 e y_4 considerando apenas as ocorrências que verificam $y_1 > 0.4$ e $y_3 = 2$:

Information Gain de yout condicionada a y2

$$IG(y_{out}|y_2) = H(y_{out}) - H(y_{out}|y_2)$$

$$H(y_{out}) = \left(-\sum_{i=1}^{3} p_{out_i}(\log_2 p_{out_i})\right) = -\left(\frac{2}{4}\log_2\left(\frac{2}{4}\right) + \frac{2}{4}\log_2\left(\frac{2}{4}\right)\right) = 1$$

$$H(y_{out}|y_2) = \sum_{i=0}^{2} p_{y_2=i}H(y_{out}|y_2=i)$$

As entropias condicionadas de y_{out} para cada valor de y_2 são:

$$H(y_{out}|y_2=0) = -(\log_2(1)) = 0$$

$$H(y_{out}|y_2 = 1) = -(\log_2(1)) = 0$$

$$H(y_{out}|y_2=2)=-(\log_2(1))=0$$

Assim, podemos calcular a entropia de y_{out} condicionada a y_2 :

$$H(y_{out}|y_2) = \frac{1}{4}H(y_{out}|y_2 = 0) + \frac{1}{4}H(y_{out}|y_2 = 1) + \frac{2}{4}H(y_{out}|y_2 = 2) =$$

$$= \frac{1}{4} \times 0 + \frac{1}{4} \times 0 + \frac{2}{4} \times 0 = 0$$

Por fim, podemos calcular o Information Gain:

$$IG(y_{out}|y_2) = H(y_{out}) - H(y_{out}|y_2) = 1 - 0 = 1$$

$$IG(y_{out}|y_4) = H(y_{out}) - H(y_{out}|y_4)$$

$$H(y_{out}|y_4) = \sum_{i=0}^{2} p_{y_4=i} H(y_{out}|y_4=i)$$

As entropias condicionadas de y_{out} para cada valor de y_4 são:

$$H(y_{out}|y_4 = 0) = -\left(\frac{1}{2}\log_2\left(\frac{1}{2}\right) + \frac{1}{2}\log_2\left(\frac{1}{2}\right)\right) = 1$$

$$H(y_{out}|y_4 = 1) = -(\log_2(1)) = 0$$

$$H(y_{out}|y_4=2)=-(\log_2(1))=0$$

Assim, podemos calcular a entropia de yout condicionada a y4:

$$H(y_{out}|y_4) = \frac{2}{4}H(y_{out}|y_4 = 0) + \frac{1}{4}H(y_{out}|y_4 = 1) + \frac{1}{4}H(y_{out}|y_4 = 2) =$$
$$= \frac{2}{4} \times 1 + \frac{1}{4} \times 0 + \frac{1}{4} \times 0 = 0.5$$

Por fim, podemos calcular o Information Gain:

$$IG(y_{out}|y_4) = H(y_{out}) - H(y_{out}|y_4) = 1 - 0.5 = 0.5$$

Comparação dos IG Podemos confirmar, pelos cálculos acima, que:

$$IG(y_{out}|y_2) > IG(y_{out}|y_4)$$

Assim, a variável y_2 é a que tem maior IG, pelo que é a variável que escolhemos para o 3^0 nó da árvore de decisão no ramo $y_1 > 0.4$ e $y_3 = 2$. Todos os nós desta árvore têm menos que 4 ocorrências, pelo que nehum deles é expandido e termina a árvore de decisão.

2.3 Construção da árvore de decisão

Para completar a árvore, resta preencher os nós terminais com os valores de y_{out} que são mais prováveis em cada ramo. Em caso de empate, escolhemos por ordem alfabética. A árvore de decisão final é:

3 Exercício 2.

Com o objetivo de desenhar a matriz de confusão da árvore de decisão construída acima, começamos por calcular os valores previstos para o output, \hat{y}_{out} , para cada uma das ocorrências do dataset D:

D	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	ŷ _{out}	Yout
<i>x</i> ₁	0.24	1	1	0	Α	Α
<i>x</i> ₂	0.06	2	0	0	В	В
<i>x</i> ₃	0.04	0	0	0	С	В
<i>x</i> ₄	0.36	0	2	1	С	С
<i>x</i> ₅	0.32	0	0	2	С	С
<i>x</i> ₆	0.68	2	2	1	Α	Α
<i>x</i> ₇	0.90	0	1	2	Α	Α
<i>x</i> ₈	0.76	2	2	0	Α	Α
<i>X</i> 9	0.46	1	1	1	Α	В
x ₁₀	0.62	0	0	1	В	В
x ₁₁	0.44	1	2	2	С	С
<i>x</i> ₁₂	0.52	0	2	0	С	С

Tabela 11: Dataset D com \hat{y}_{out}

Assim, desenhamos a matriz de confusão:

	Valores reais				
stos		А	В	С	
/alores Previstos	Α	4	1	0	
ores F	В	0	2	0	
Valc	С	0	1	4	

Tabela 12: Matriz de confusão

Figura 1: Matriz de confusão

4 Exercício 3.

Para calcular o F_1 -score para cada uma das classes de y_{out} , começamos por calcular a precisão e o recall para cada uma delas: A precisão é dada por:

$$P = \frac{TP}{TP + FP}$$

O recall é dado por:

$$R = \frac{TP}{TP + FN}$$

Assim, obtemos que:

$$P_A = \frac{4}{4+1+0} = \frac{4}{5}$$

$$P_B = \frac{2}{2+0+0} = 1$$

$$P_C = \frac{4}{4+1+0} = \frac{4}{5}$$

$$R_A = \frac{4}{4+0+0} = 1$$

$$R_B = \frac{2}{2+1+1} = \frac{1}{2}$$

$$R_C = \frac{4}{4+0+0} = 1$$

Por fim, o F_1 -score é dado por:

$$F_1 = \frac{1}{0.5 \cdot \frac{1}{P} + 0.5 \cdot \frac{1}{R}}$$

Assim, podemos calcular o F_1 -score para cada uma das classes:

$$F_1(A) = \frac{1}{0.5 \cdot \frac{5}{4} + 0.5 \cdot 1} = \frac{1}{\frac{5}{8} + \frac{1}{2}} = \frac{1}{\frac{5}{8} + \frac{4}{8}} = \frac{1}{\frac{9}{8}} = \frac{8}{9}$$

$$F_1(B) = \frac{1}{0.5 \cdot 1 + 0.5 \cdot 2} = \frac{1}{0.5 + 1} = \frac{1}{1.5} = \frac{2}{3}$$

$$F_1(C) = \frac{1}{0.5 \cdot \frac{5}{4} + 0.5 \cdot 1} = \frac{1}{\frac{5}{8} + \frac{1}{2}} = \frac{1}{\frac{5}{8} + \frac{4}{8}} = \frac{1}{\frac{9}{8}} = \frac{8}{9}$$

Resposta: Assim, podemos concluir que a classe com menor F_1 -score é a classe B, com um F_1 -score de $\frac{2}{3}$.

5 Exercício 4.

Para calcular o coeficiente de Spearman entre as variáveis y_1 e y_2 , começamos por calcular o rank de cada uma das variáveis:

D	<i>y</i> ₁	y ₁ rank	<i>y</i> ₂	y ₂ rank
<i>x</i> ₁	0.24	3	1	8
<i>x</i> ₂	0.06	2	2	11
<i>X</i> ₃	0.04	1	0	3.5
<i>X</i> ₄	0.36	5	0	3.5
<i>X</i> ₅	0.32	4	0	3.5
<i>x</i> ₆	0.68	10	2	11
<i>X</i> ₇	0.90	12	0	3.5
<i>x</i> ₈	0.76	11	2	11
<i>X</i> 9	0.46	7	1	8
<i>x</i> ₁₀	0.62	9	0	3.5
<i>x</i> ₁₁	0.44	6	1	8
<i>x</i> ₁₂	0.52	8	0	3.5

Tabela 13: Dataset D com ranks

A fórmula para o coeficiente de Spearman é:

$$r_{S} = \frac{\text{cov}(y_{1}, y_{2})}{\sqrt{\text{var}(y_{1}) \cdot \text{var}(y_{2})}} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\left(\frac{1}{n} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}\right) \cdot \left(\frac{1}{n} \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}\right)}} = 0.079659$$

Resposta: Como o coeficiente de Spearman entre as duas variáveis é << 1, podemos concluir que as duas variáveis não estão correlacionadas.

6 Exercício 5.