

Bacterial Evolutionary Algorithms (BAEs) and Memetic Algorithms

Tom Gedeon

Research School of Computer Science Australian National University tom@cs.anu.edu.au

Based on slides by János Botzheim

Human Centred Computing

Evolution of the population

Distribution of Individuals in Generation 0

Distribution of Individuals in Generation N

Bacterial evolutionary algorithms

- Nature inspired optimisation techniques
- Based on the process of microbial evolution
- Applicable for complex optimisation problems
- Each individual: one solution of the problem
- Intelligent search strategy to find sufficiently good solution (quasi optimum)
- Fast convergence (conditionally)

The algorithm

- Generating the initial population randomly
- Bacterial mutation is applied for each bacterium
- Gene transfer is applied in the population
- If a stopping condition is fullfilled then the algorithm stops, otherwise it continues with the bacterial mutation step

Bacterial mutation

Gene transfer

- The population is divided into two halves
- 2. One bacterium is randomly chosen from the superior half superior (source bacterium) and another from the inferior half (destination bacterium)
- 3. A part from the source bacterium is chosen and this part can overwrite a part of the destination bacterium

This cycle is repeated for N_{inf} times (number of "infections")

Parameters

- N_{gen} : number of generations
- N_{ind} : number of individuals
- N_{clones}: number of clones in the bacterial mutation
- N_{inf} : number of infections in the gene transfer

Differences between GA and BEA

- GA based on the evolution process of mammals, while BEA based on the evolution process of bacteria
- GA uses crossover, BEA uses gene transfer for the information flow in the population
- Bacterial mutation is more effective than mutation in GA
- There is no selection in BEA, but there is multiplication by fission (cloning method)

Improved bacterial mutation

- The number of clones (N_{clones}) and the length of the segment (I_{BM}) are parameters of the bacterial mutation
- The mutation may change not only the content, but also the length
- The length of the new elements is chosen randomly as $I_{BM} \pm I^*_{BM}$, where I^*_{BM} is a parameter specifying the maximal change of length in a single mutation
- When changing a segment of a bacterium, we must observe that the new segment will be unique within the selected bacterium

Improved gene transfer

- 1. The population is divided into two halves according to their evaluation results
- 2. One bacterium is randomly chosen from the superior half (source bacterium) and another from the inferior half (destination bacterium)
- 3. A segment from the source bacterium is randomly chosen and this segment will overwrite a random segment of the destination bacterium if the source segment is not already in the destination bacterium

This cycle is repeated for N_{inf} times (number of "infections")

Improved gene transfer (cont.)

- The number of infections (N_{inf}) and the length of the source segment (I_{GT}) are parameters of the gene transfer
- The gene transfer may not only change the content, but also the length of the destination bacterium
- The length of the new segment in the destination bacterium is chosen randomly as $I_{GT} \pm I^*_{GT}$, where I^*_{GT} is a parameter specifying the maximal change of length in the destination bacterium

Parameters

- $-N_{qen}$: number of generations
- $-N_{ind}$: number of individuals
- $-N_{clones}$: number of clones in the bacterial mutation
- $-N_{inf}$: number of infections in the gene transfer
- MutationLength: the length of the mutated segment (I_{BM})
- ModifiedMutationLength: the maximal allowed difference between the lengths before and after the mutation in one segment (I^*_{BM})
- GeneTransferLength: the length of the source segment (I_{GT})
- ModifiedGeneTransferLength: the length of the change in the destination bacterium (I^*_{GT})
- MAXLEN: maximum allowed length of a bacterium (⋅ n)
- $-\beta$: trade-off parameter between accuracy and complexity

Theories of Evolution

Jean-Baptiste Lamarck

- Theory of Inheritance of Acquired Characteristics
- if an organism changes during life in order to adapt to its environment, those changes are passed on to its offspring

Charles Darwin

- the desires of animals have nothing to do with how they evolve
- changes in an organism during its life do not affect the evolution of the species

James M. Baldwin

- a new factor in evolution
- acquired characteristics could be indirectly inherited

Memetic algorithms

- A combination of evolutionary algorithms with local search operators that work within the EA loop are called "Memetic algorithms"
- Memetic Algorithms were introduced by Moscato et. al. (~1989)
- Terminology:
 - meme = unit of cultural transmission (the "genes" of cultural evolution)
 - "mimema", imitate

Why hibridize?

- Evolutionary Algorithms
 - Explore large, rough search spaces
 - Difficulties with fine-tuning
- Local search techniques
 - Optimise/converge fast
 - Get stuck in local optima
- Disadvantages:
 - There are costs of the learning
 - The learning is not always good

Memetic Optimization

Evolutionary Optimization

Distribution of Individuals in Generation N

Bacterial memetic algorithm

- Generating the initial population randomly
- Bacterial mutation is applied for each bacterium
- Levenberg-Marquardt method is applied for each bacterium
- Gene transfer is applied in the population
- If a stopping condition is fullfilled then the algorithm stops, otherwise it continues with the bacterial mutation step

Bacterial mutation

Levenberg Marquardt procedure

> Gene transfer

The Levenberg-Marquardt method

- Second-order gradient-based training method
- Belongs to the group of 'trust-region' or 'restricted-step' type methods
 - Attempts to define a neighborhood where the quadratic function model agrees with the actual function in some sense. The parameter α controls the radius of neighborhood
- Local search optimizer
- It can be used to improve asevolutionary algorithm, which may find the global optimum with higher precision in this way
- The evolutionary and local search hybrid methods are usually referred to as memetic algorithms
- A new memetic method is: bacterial memetic algorithm

Parameters of the algorithm

- N_{gen} : number of generations
- N_{ind} : number of individuals
- N_{clones}: number of clones in the bacterial mutation
- N_{inf} : number of infections in the gene transfer
- N_{iter} : number of iterations in the LM step
- α: regularization parameter in the LM step

Conclusions

- Increasing the number of generations and the number of individuals also increases the performance of the algorithm (however, it causes additional computational effort)
- Optimal clone number? local minima problem
- Gene transfer: enable interaction between the bacteria
- Faster convergence
- The gene transfer operator can be realized easier than the crossover operator in genetic algorithms

Conclusions

- The bacterial memetic algorithm gives better results than the bacterial evolutionary algorithm
 - In terms of the optimization criterion
 - In the sense of other generalized criteria
- By the bacterial operators the local minima can be avoided
- Using the Levenberg-Marquardt method the locally best fitting can be found
- Thus, the global minimum can be found with larger accuracy