# 0.1 Symbols

 $S^n \equiv \text{set of all symmetric matrices}$ 

 $M^n_+ \equiv {\rm set}$  of all positive definite matrices (PD)

 $S^n_+ \equiv \text{set}$  of all symmetric positive semidefinite matrices (SPSD)

 $S_{+}+^{n} \equiv$  set of all symmetric positive definite matrices (SPD)

 $cl(X) \equiv closure of X$ 

 $relint(X) \equiv$  relative interior of X

 $int(X) \equiv interior of X$ 

### 0.2 Preliminary

Consider  $f: \mathbb{R}^n \to \mathbb{R}$ Gradient of  $f: \nabla f(x) = \begin{bmatrix} \partial f/\partial x_i \\ ... \end{bmatrix}$  $\begin{array}{l} f(x) = a^T x \implies \nabla f(x) = a \\ f(x) = x^T P x, P = P^T \implies \nabla f(x) = 2Px \end{array}$  $f(x) = x^T P x \implies \nabla f(x) = 2(\frac{P^T + P}{2})x = (P^T + P)x$ 

Taylor expansion approximation:

$$f(x) \approx f(x_0) + \nabla^T f(x_0)(x - x_0) + o((x - x_0)^2) f(x + \delta x) \approx f(x_0) + \nabla^T f(x) \delta x + o((\delta x)^2)$$

Chain rule:

$$f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}, h(x) = f(g(x))$$
$$\nabla h(x) = g'(f(x))\nabla f(x)$$

$$g: \mathbb{R}^m \to \mathbb{R}, g(x) = f(Ax + b)$$
  
 $\nabla g(x) = A^T \nabla f(Ax + b)$ 

2nd derivative: 
$$\nabla^2 f(x) = \begin{bmatrix} \partial^2 f/\partial x_1 \partial x_1 & \dots \\ \dots & \partial^2 f/\partial x_n \partial x_n \end{bmatrix}$$
$$\nabla f(x) = Px + g$$
$$\nabla^2 f(x) = P$$

Hessian gives the 2nd order approximation:

$$f(x) \approx f(x_0) + \nabla^T f(x_0)(x - x_0) + \frac{1}{2}(x - x_0)^T \nabla^2 f(x_0)(x - x_0)$$

Matrices:

 $A \in \mathbb{R}^{m \times n}$ : set of all real matrices

inner product: 
$$\sum_{i} \sum_{j} x_{ij} y_{ij} = trace(XY^T) = trace(Y^T X) = \sum_{i} (XY)_{ii}$$

note trace has cyclic property

frobenius norm:  $\|X\|_F = (\sum_i \sum_j X_{ij}^2)^{\frac{1}{2}}$  range:  $R(A) = \{Ax : x \in \mathbb{R}^n\} = \sum_i a_i x_i$ , where  $a_i$  is

ith column (column space of A)

null space:  $N(A) = \{x : Ax = 0\}$ 

SVD:

 $A_{m \times n} = U_{m \times m} \Sigma_{m \times n} V_{n \times n}^T$ 

U and V are left and right eigenvector matrixes

U and V are orthogonal matrixes  $(BB^T = B^TB = I)$ 

 $\Sigma$  is rectangular diagonal matrix of eigenvalues

 $A_{m \times n} x_n$ 

linear transformation:  $U\Sigma V^T x$ 

rotation - scaling - rotation

PSD matrix:

$$A \ PSD \iff (\forall x)x^T Ax \ge 0 \iff (\forall i)\lambda_i(A) \ge 0$$
  
 $A \ PSD \implies A^{1/2} \text{ exists}$ 

Real symmetric matrices have real eigenvalues:

$$\begin{split} Av &= \lambda v \\ v^*Av &= v^*\lambda v = \lambda \|v\|_2^2 \\ (v^*Av)^* &= v^*A^*v = \lambda^* \|v\|_2^2 \Longrightarrow \ \lambda = \lambda^* \end{split}$$

Affine sets

A set 
$$C \subseteq \mathbb{R}^n$$
 is affine if  $(\forall x_1, x_2 \in C)(\forall \theta \in \mathbb{R}) \implies \theta x_1 + (1 - \theta)x_2 \in C$ 

Convex sets

A set 
$$C \subseteq \mathbb{R}^n$$
 is convex if  $(\forall x_1, x_2 \in C)(\forall \theta \in \mathbb{R})0 \le \theta \le 1 \implies \theta x_1 + (1 - \theta)x_2 \in C$ 

Operations preserving convex sets:

- partial sum
- sum
- coordinate projection
- scaling
- translation
- intersection between any convex sets

Separating Hyperplanes: if  $S, T \subset \mathbb{R}^n$  are convex and disjoint, then  $\exists a \neq 0, b \text{ such that:}$ 

$$a^T x \ge b, \forall x \in S$$
  
 $a^T x < b, \forall x \in T$ 

Supporting Hyperplane:

if S is convex,  $\forall x_0 \in \partial S$  (boundary of S), then  $\exists a \neq 0$ such that  $a^T x \leq a^T x_0, \forall x \in S$ 

Convex combination:

$$\sum_{i} \theta_{i} x_{i}, \forall \theta_{i} \in \mathbb{R}, \sum_{i} \theta_{i} = 1, \theta_{i} \geq 0$$

Convex hull:

The set of all convex combinations of points in C, the hull is convex

Hyperplane

$$C = \{x : a^T x = b\}, a \in \mathbb{R}^n, a \neq 0, b \in \mathbb{R}$$

Halfspaces

$$C = \{x : a^T x \le b\}, a \in \mathbb{R}^n, a \ne 0, b \in \mathbb{R}$$
 let  $a^T x_c = b$  
$$C = \{x : a^T (x - x_c) \le 0\}, a \in \mathbb{R}^n, a \ne 0$$

Elipse

$$E(x_c, P) = \{x : (x - x_c)^T P^{-1}(x - x_c) \le 1\}, P > 0$$

$$P = r^2 I \implies \text{Euclidean Ball}$$

$$P = Q \begin{bmatrix} \lambda_1 & \dots \\ \dots & \lambda_n \end{bmatrix} Q^T$$

$$(x - x_c)^T (Q \begin{bmatrix} \lambda_1 & \dots \\ \dots & \lambda_n \end{bmatrix} Q^T)^{-1}(x - x_c) \le 1$$

$$\tilde{x}^T \begin{bmatrix} \frac{1}{\lambda_1} & \dots \\ \dots & \frac{1}{\lambda_n} \end{bmatrix} \tilde{x} \le 1$$

$$\tilde{x}^T \begin{bmatrix} \frac{1}{\lambda_1} & \dots \\ \dots & \frac{1}{\lambda_n} \end{bmatrix} \tilde{x} = \frac{\tilde{x_1}^2}{\lambda_1} + \dots + \frac{\tilde{x_n}^2}{\lambda_n} \le 1$$

volum of elipsoid proportional to  $\sqrt{\det(P)} = \sqrt{\prod_i \lambda_i}$ 

### 0.3 Problem Types

#### $\mathbf{LP}$

standard, inequality, general forms

$$\min_{x} c^{T} x \ s.t. :$$

$$Ax = b$$

$$x \succeq 0$$

$$\min_{x} c^{T} x \ s.t. :$$

$$Ax \leq b$$

$$\min_{x} c^{T} x + d \ s.t. :$$

$$Gx \le h$$

$$Ax = b$$

 $\mathbf{QP}$ 

$$\min_{x} \frac{1}{2} x^{T} P x + q^{T} x + r \ s.t. :$$

$$Gx \le h$$

$$Ax = b$$

**QCQP** 

$$\min_{x} \frac{1}{2} x^{T} P_{0} x + q_{0}^{T} x + r_{0}, s.t. :$$

$$\frac{1}{2} x^{T} P_{i} x + q_{i}^{T} x + r_{i} \leq 0, \forall i$$

$$Ax = b$$

SOCP

$$\min_{x} f^{T}x \ s.t. :$$

$$\|A_{i}x + b_{i}\|_{2} \leq c_{i}^{T}x + d_{i}, \forall i$$

$$Fx = g$$

$$(\forall i)b_{i} = 0 \implies LP$$

$$(\forall i)c_{i} = 0 \implies QCQP$$

GP

$$\begin{aligned} \min_{x} f_0(x) \ s.t.: \\ f_i(x) &\leq 1, \forall i \\ h_i(x) &= 1, \forall i \\ f_i \ is \ a \ posynomial: &= \sum_i h_i \\ h_i \ is \ a \ monomial: &= cx_1^{a_1}x_2^{a_2}.., c > 0, a_i \in \mathbb{R} \end{aligned}$$

Use transform of objective and constraint functions:  $y_i = log x_i, x_i = e^{y_i}$   $h_i$  becomes exponential of affine function  $\tilde{f}_i = log(f_i)$  becomes log sum exp (convex)
If all constraints and objective are monomials, reduces to LP after transform.

#### SDP

general, standard, inequality forms

$$\min_{x} c^{T} x \ s.t. :$$

$$LMI : \sum_{i}^{n} x_{i}F_{i} + G \leq_{K} 0$$

$$Ax = b$$

$$x \in \mathbb{R}^{n}$$

$$F_{i}, G \in S^{m}, K \in S^{m}_{+}$$

$$\min_{X} tr(CX)s.t. :$$

$$tr(A_{i}X) = b_{i}, \forall i$$

$$X \succeq 0$$

$$\min_{x} c^{T} x \ s.t. :$$

$$\sum_{i}^{n} x_{i}A_{i} \leq_{K} B$$

$$Ax = b$$

$$B, A_{i} \in S^{m}, K \in S^{m}_{+}$$

concatenating constraints:

$$F^{(i)}(x) = \sum_{j} x_{j} F_{i}^{(i)} + G^{(i)} \leq 0$$

$$Gx \leq h$$

$$\Longrightarrow$$

$$diag(Gx - h, F^{(1)}(x), ..., F^{(m)}(x)) \leq 0$$

if all matrices are diagonal, reduces to LP

### 0.4 Convex/Concave Functions

- Affine
- Pointwise supremum of convex function
  - distance to farthest point in a set
  - support function of set
- Norm
- Non-negative weighted sum of convex functions

### 0.4.1 log det X, concave

$$\begin{split} let \ X &= Z + tV \succ 0 \\ f &= logdet(Z + tV) \\ f &= logdet(Z^{-0.5}(I + tZ^{-0.5}VZ^{0.5})Z^{0.5}) \\ f &= log(det(Z^{-0.5})det(I + tZ^{-0.5}VZ^{0.5})det(Z^{0.5})) \\ f &= log(det(Z^0)det(I + tZ^{-0.5}VZ^{0.5})) \\ f &= logdet(I + tZ^{-0.5}VZ^{0.5}) \\ f &= log\Pi_i(1 + \lambda_i t) \\ f &= \sum_i log(1 + \lambda_i t) \\ \frac{\partial f}{\partial t} &= \sum_i \frac{\lambda_i}{1 + \lambda_i t} \\ \frac{\partial^2 f}{\partial t^2} &= \sum_i \frac{-\lambda_i^2}{(1 + \lambda_i t)^2} = -\sum_i \frac{\lambda_i^2}{(1 + \lambda_i t)^2} \leq 0 \\ \nabla^2 f &\leq 0 \iff f \ concave \end{split}$$

# **0.4.2** log $\sum_{i} exp(x_i)$ , convex

$$\nabla^2 f = \frac{1}{(1^T z)^2} (1^T z diag(z) - z z^T)$$

$$v^T z z^T v = det(v^T z z^T v) = det(v v^T z z^T)$$

$$v^T z z^T v = \sum_j \sum_i z_j z_i v_j v_i$$

$$v^T z z^T v = (\sum_j z_j z_j) (\sum_i z_i v_i)$$

$$v^T z z^T v = (\sum_j z_j v_i)^2$$

$$use \ Holder's \ Inequality:$$

$$\|a\|_2^2 \|b\|_2^2 \ge |a^T b|^2$$

$$let \ a = z_i^{0.5}, b = v_i z_i^{0.5}$$

$$1^T z (\sum_i v_i^2 z_i) - (\sum_i z_i v_i)^2 \ge 0$$

$$v^T \nabla^2 f v = \frac{1}{(1^T z)^2} \left( 1^T z (\sum_i v_i^2 z_i) - (\sum_i z_i v_i)^2 \right) \ge 0$$

$$\nabla^2 f \ge 0 \iff f \ convex$$

# **0.4.3** geometric mean on $R_{++}^n$ , concave

$$f = (\Pi_{i}x_{i})^{\frac{1}{n}}$$

$$\frac{\partial}{\partial x_{i}}f = \frac{1}{n}(\Pi_{i}x_{i})^{\frac{1}{n}-1}\Pi_{j\neq i}x_{j}$$

$$\frac{\partial^{2}}{\partial x_{i}^{2}}f = \frac{1}{n}(\frac{1}{n}-1)(\Pi_{i}x_{i})^{\frac{1}{n}-2}(\Pi_{j\neq i}x_{j})^{2}$$

$$\frac{\partial^{2}}{\partial x_{i}^{2}}f = \frac{1}{n}(\frac{1}{n}-1)\frac{(\Pi_{i}x_{i})^{\frac{1}{n}}}{x_{i}^{2}}$$

$$\frac{\partial^{2}}{\partial x_{i}x_{k}}f = \frac{1}{n^{2}}\frac{(\Pi_{i}x_{i})^{\frac{1}{n}}}{x_{i}x_{k}}, i \neq k$$

$$\frac{\partial^{2}}{\partial x_{i}x_{k}}f = \frac{1}{n^{2}}\frac{(\Pi_{i}x_{i})^{\frac{1}{n}}}{x_{i}x_{k}} - \delta_{ik}\frac{1}{n}\frac{(\Pi_{i}x_{i})^{\frac{1}{n}}}{x_{i}^{2}}$$

$$v^{T}\nabla^{2}fv = \frac{-(\Pi_{i}x_{i})^{\frac{1}{n}}}{n^{2}}(n\sum_{i}\frac{v_{i}^{2}}{x_{i}^{2}} - (\sum_{i}\frac{v_{i}}{x_{i}})^{2})$$

$$apply Cauchy Schwartz Inequality:$$

$$let \ a = 1, b_{i} = \frac{v_{i}}{x_{i}}$$

$$\|\mathbf{1}\|_{2}^{2}(\sum_{i}\frac{v_{i}^{2}}{x_{i}^{2}} - (\sum_{i}\frac{v_{i}}{x_{i}})^{2} \geq 0$$

$$v^{T}\nabla^{2}fv \leq 0 \iff f \ concave$$

# 0.4.4 quadratic over linear, convex

$$f(x,y) = \frac{h(x)}{g(y)}, g(y) \ linear, g(y) \in R_+$$
  
 $\nabla^2 f = vv^T \ is \ PSD \iff f \ convex$ 

# 0.5 Composition of functions

Mnemonic derivation from scalar composite function

$$f = h(g(x))$$
  
$$f' = g'(x)h'(g(x))$$
  
$$f'' = g''(x)h'(g(x)) + (g'(x))^{2}h''(g(x))$$

h convex & non-decreasing, g convex  $\implies$  f convex  $h'' \geq 0, g''(x) \geq 0, h'(g(x)) \geq 0 \implies f'' \geq 0$ 

h convex & non-increasing, g concave  $\implies$  f convex  $h'' \ge 0, g''(x) \le 0, h'(g(x)) \le 0 \implies f'' \ge 0$ 

h concave & non-decreasing, g concave  $\implies$  f concave  $h'' \leq 0, g''(x) \leq 0, h'(g(x)) \geq 0 \implies f'' \leq 0$ 

h concave & non-increasing, g convex  $\implies$  f concave  $h'' \le 0, g''(x) \ge 0, h'(g(x)) \le 0 \implies f'' \le 0$ 

# 0.6 Convexity Preservation of Sets

### 0.6.1 Intersection

$$(\forall \alpha \in A)S_{\alpha}$$
 is convex cone  $\Longrightarrow$   
 $\cap_{\alpha \in A}S_{\alpha}$  is convex cone

Any closed convex set can be represented by possibly infinitely many half spaces.

### 0.6.2 Affine functions

let  $f(x) = Ax + b, f : \mathbb{R}^n \to \mathbb{R}^m$ then if S is a convex set we have:

- project forward:  $f(S) = \{f(X) : X \in S\}$  is convex
- project back:  $f^{-1}(S) = \{X : f(X) \in S\}$  is

Example:

$$C = \{y : y = Ax + b, ||x|| \le 1\}$$

 $\|x\| {\le 1}$  is convex, Ax + b is affine  $\implies$  C is convex Example:

$$C = \{x : ||Ax + b|| \le 1\}$$

 $\{y: \|y\| {\leq 1}\}$  is convex  $\land \ y$  is an affine function of  $x \implies \mathbf{C}$  is convex

### 0.7 Constraint Qualifications

### 0.7.1 Slater's Constraint Qual.

Optimal solution is in relative interior:  $x^* \in relint(S)$ 

Inequalities  $(\forall i) f_i(x)$  convex  $\land f_i(x) < 0 \implies$  Slater's constraint satisfied.

Inequalities  $(\forall i) f_i(x)$  affine  $\implies$   $(\forall i) f_i(x) \leq 0 \land (\exists i) f_i(x) < 0 \implies$  Slater's constraint satisfied.

Achieving Slater's constraint implies 0 duality gap.

#### 0.7.2 KKT

Assumes optimality achieved with 0 duality gap:  $\nabla L(x^*, \lambda^*, v^*) = 0$ 

$$L(x^*, \lambda^*, v^*) = f_0(x^*) + \sum_{i} \lambda_i^* f_i(x^*) + \sum_{i} v_i h_i(x^*)$$
$$\nabla L(x^*, \lambda^*, v^*) = \nabla f_0(x^*) + \sum_{i} \lambda_i^* \nabla f_i(x^*) + \sum_{i} v_i \nabla h_i(x^*)$$

We have the constraints:

$$f_{i}(x^{*}) \leq 0$$

$$\lambda_{i}^{*} \geq 0$$

$$h_{i}(x^{*}) = 0$$

$$\lambda_{i}^{*} f_{i}(x^{*}) = 0$$

$$\nabla L(x^{*}, \lambda^{*}, v^{*}) = \nabla f_{0}(x^{*}) + \sum_{i} \lambda_{i}^{*} \nabla f_{i}(x^{*}) + \sum_{i} v_{i} \nabla h_{i}(x^{*})$$

Primal inequality constraints convex and equality constraints affine and KKT satisfied  $\implies$  0 duality gap with specified points for primal and dual. (sufficient).

If Slater's constraint satisfied then the above is sufficient and necessary:

Primal inequality constraints convex and equality constraints affine and KKT satisfied  $\iff$  0 duality gap with specified points for primal and dual.

#### 0.8 Definitions

#### 0.8.1 Convex Function

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y), \forall \theta = [0, 1]$$

For convenience we sometimes define an extended value function:

$$\tilde{f}(x) = \begin{cases} f(x), & x \in dom(f) \\ \infty, & other wise \end{cases}$$

if f(x) convex, then  $\tilde{f}$  is also convex

Sublevel set of a function

$$C(\alpha) = \{x \in dom(f) : f(x) \le \alpha\}$$

For convex function, all sublevel sets are convex  $(\forall \alpha)$ . Converse is not true.

Quasi-convex function: if its sublevel sets are all convex.

Epigraph of functions:  $epi(f) = \{(x,t) : x \in dom(f), f(x) \leq t\} \in \mathbb{R}^{n+1}, f \in \mathbb{R}^n \to \mathbb{R}.$ 

f is convex function  $\iff epi(f)$  is convex set

#### 0.8.2 First order condition

Suppose f is differentiable and domain of f is convex. Then:

 $f convex \iff$ 

$$(\forall x, x_0 \in dom(f))f(x) \ge f(x_0) + \nabla f(x_0)^T (x - x_0)$$

rough proof:

suppose f(x) is convex but  $(\exists x, x_0) f(x) < f(x) + \nabla f(x_0)^T (x - x_0)$ 

then this means the function should bend across the tangent line which violates the convexity

proof for converse direction: suppose that  $(\exists x, x_0) f(x) \ge f(x) + \nabla f(x_0)^T (x - x_0)$ 

to show that 
$$f(x)$$
 is convex lets take  $x, y \in dom(f), z = \theta x + (1 - \theta)y$   
 $\theta f(x) + (1 - \theta)f(y) \ge f(z) + \nabla f(z)^T (\theta x - \theta z + (1 - \theta)y - (1 - \theta)z)$   
 $\theta f(x) + (1 - \theta)f(y) \ge f(\theta x + (1 - \theta)y)$   
 $f(x)$  is convex

### 0.8.3 Second order condition

Suppose f is twice differentiable and dom(f) is convex,

then f(x) is convex  $\iff \nabla^2 f(x) \ge 0$  (PSD, eg: wrt.  $S^n_+$ )

proof for scalar case:

suppose that f(x) is convex, then the first-order condition holds

for  $x, y \in dom(f) : f(x) \ge f(y) + f'(y)(x - y)$ for  $y, x \in dom(f) : f(y) \ge f(x) + f'(x)(y - x)$  $f'(x)(y - x) \le f(y) - f(x) \le f'(y)(y - x)$  $f'(x)(y - x) \le f'(y)(y - x) \implies 0 \le (y - x)(f'(x) - f'(y))$ take  $y \to x : 0 \le f''(x)$  $f''(x) \ge \frac{f'(x + \delta x) - f'(x)}{\delta x}$ 

conversely, suppose that  $f'(z) \geq 0, \forall z \in dom(f)$ , take  $x, y \in dom(f)$  WLOG x < y  $\int_x^y f''(z)(y-z)dz \geq 0$   $f''(z) \geq 0, (y-z) \geq 0 = I_1 + I_2$   $I_1 = \int_x^y f''(z)ydz - yf'(z)|_x^y = y(f'(y) - f'(x))$   $I_2 = -\int_x^y f''(z)dz$   $dv = f''(z)dz \implies v = f''(z)$   $u = z \implies du = dz$   $I_2 = -zf'(z)|_x^y + \int_x^y f(z)dz = -yf'(y) + xf'(x) + f(y) - f(x)$   $I_1 + I_2 = yf'(y) - yf'(x) - yf'(y) + xf'(x) + f(y) - f(x) \geq 0$   $\implies f(y) \geq f(x) + f'(x)(y-x) \text{ first order condition: } x < y$ 

first order condition holds  $\implies f(x)$  convex

#### 0.8.4 Inequalities

$$x \preceq_K y \iff y - x \in K$$

x is a minimum in S wrt. cone K:

$$x \in S : (\forall y \in S) f(y) \succeq_K f(x) \iff f(y) - f(x) \in S$$
  
 $S \subseteq x + K$ 

x is a minimal in S wrt. cone K:

$$x \in S : (\forall y \in S) f(y) \leq_K f(x) \Longrightarrow x = y$$
  
 $x \in S : (\forall y \in S) f(x) - f(y) \in K \Longrightarrow x = y$   
 $(x - K) \cap S = \{x\}$ 

#### 0.8.5 Cone

$$(\forall x \in C, \forall \theta > 0)\theta x \in C$$

### 0.8.6 Convex Cone

Eg:  $S^n, S^n_+$  are convex cones convexity check for  $S^N_+$ :

$$x_1 \in S_+^n \implies v^T x_1 v \ge 0$$

$$x_2 \in S_+^n \implies v^T x_2 v \ge 0$$

$$v^T (\theta x_1 + (1 - \theta) x_2) v \ge 0$$

$$v^T \theta x_1 v + (1 - \theta) v^T x_2 v \implies x \in S_+^n$$

convexity check for cone:

$$x_1 \in S_+^n \implies \theta x_1 \in S_+^n, \theta \ge 0$$
  
 $(\forall v)v^T x v \ge 0 \implies v^T(\theta x)v \ge 0 \implies \text{cone}$ 

#### 0.8.7 Proper Cone

Definition:

- convex
- closed(contains all limit points)
- solid(non-empty interior)
- pointed(contains no line):  $x \in K \implies -x \notin K$

Then the proper cone K defines a generalized inequality  $(\leq_K)$  in  $\mathbb{R}^n$ 

$$x \leq_K y \implies y - x \in K$$
$$x <_K y \implies y - x \in int(K)$$

Example:  $K = \mathbb{R}^n_+$  (non-negative orthant):

$$n = 2$$

$$x \le_{R_+^2} y \implies y - x \in R_+^2$$

Cone provides partial ordering using difference of 2 objects.

$$X \leq_{S^n_+} Y \iff Y - X \in S^n_+ \iff Y - X \text{ is PSD}$$

#### 0.8.8 Norm Cone

$$K = \{(x, t) \in \mathbb{R}^{n+1} : ||x|| \le t\}, x \in \mathbb{R}^n$$

#### 0.8.9 Dual norm

$$||z||_* := \sup_x \{ z^T x : ||x||_p \le 1 \}$$

equivalent to  $||z||_* = ||z||_\infty$ 

equivalent to  $||z||_* = ||z||_1$ 

Dual of L1-norm:  $\|z\|_* := \sup_x \{z^T x : \|x\|_1 \le 1\}$   $\max \sum_i z_i x_i,$  subject to :  $\sum_i \|x_i\| \le 1$  select  $x_i$  corresponding to  $z_i$  with maximum absolute value

Dual of L- $\infty$ -norm: 
$$\begin{split} \|z\|_* &:= \sup_x \{z^T x : \|x\|_\infty \leq 1\} \\ &\max \sum_i z_i x_i, \\ &\text{subject to} : \|x_i\| \leq 1, \forall i \\ &\text{choose } x_i = 1 \text{ if } z_i \geq 0 \text{ and } x_i = 0 \text{ if } z_i < 0 \end{split}$$

Dual norm of Lp-norm: Lq-norm where 1/p+1/q=1

### Properties:

- $K^*$  closed and convex
- $K_1 \subseteq K_2 \implies k_2^* \subseteq K_1^*$
- K has non-empty interior  $\implies K^*$  pointed
- cl(K) pointed  $\implies K^*$  has non-tempty interior
- $K^{**} = cl(convhull(K))$
- K convex and closed  $\implies K = K^{**}$

# 0.8.10 Operator norm

$$\|X\|_{a,b} = \sup\{\|Xu\|_a \colon \|u\|_b \leq 1\}, X \in \mathbb{R}^{m \times n}$$

# 0.8.11 Dual cone

$$K \text{ is a cone}$$

$$K^* = \{y : x^T y \ge 0, \forall x \in K\}$$

# 0.8.12 Dual norm cone

$$K^* = \{(u, v) : ||u||_* \le v\}$$
 where  $K = \{(x, t) : ||x|| \le t\}$ 

# 0.8.13 support function of a set

$$S_C(x) = \sup\{x^T y : y \in C\}$$
$$dom(S_C) = \{x : \sup_{y \in C} c^T y < \infty\}$$

It is pointwise supremum of convex function, so it is convex.

# 0.9 Regularized Approximation

Noise sensitivity of different objectives:

- ullet robust least squares / Huber penalty
- log barrier
- ullet deadzone linear
- quadratic

Least norm problems

- L2 norm objective with equality constraint
- sparsity inducing norms (eg: L1)
- norm ball constraint
- probability distribution
  - convex comb. of columns of A to fit b
- variable constraints
  - box
  - one sidded bound

Multicriterion Formulation

Tikhonov Regularization todo..

### 0.10 Appendix

f(x) = log(detX)

### 0.10.1 Gradient of Log Det

$$\begin{split} f(X + \delta X) &= logdet(X + \delta X) \\ &= logdet((X^{\frac{1}{2}}(I + X^{-\frac{1}{2}})\delta X X^{-\frac{1}{2}})X^{\frac{1}{2}}) \\ &= logdet(X) + logdet(I + X^{-\frac{1}{2}}\delta X X^{-\frac{1}{2}}) \\ &\det M = X^{-\frac{1}{2}}\delta X X^{-\frac{1}{2}} \\ &= logdet(X) + logdet(I + M) \end{split}$$

claim eigenvalues of I + M:  $1 + \lambda_i$ 

$$\begin{split} Mv_i &= \lambda_i v_i \\ (I+M)v_i &= (1+\lambda_i)v_i \\ det(M) &= \prod_i (1+\lambda_i) \\ f(X+\delta X) &= logdet(X) + log \prod_i (1+\lambda_i) \\ &= logdet(X) + \sum_i log(1+\lambda_i) \\ &\approx logdet(X) + \sum_i \lambda_i \text{ since } \delta X \text{ is small} \\ &\approx logdet(X) + trace(X^{-\frac{1}{2}}\delta X X^{\frac{1}{2}}) \\ &\approx logdet(X) + trace(X^{-\frac{1}{2}}\delta X X) \\ trace(X^{-1}\delta X) &= (X^{-T})^T \delta X \\ f(X+\delta X) &= f(X) + (\nabla f(X))^T \delta X \implies \nabla f(X) = X^{-1} \\ logdet(X) &= log(X) \implies f'(X) = \frac{1}{X} \end{split}$$

#### 0.10.2 2nd order approximation of Log Det

$$\begin{split} f(X+\delta X) &= f(X) + <\nabla f(X), \delta X > +1/2 < \delta X, \nabla^2 f(x) \delta X > \\ \text{first look at first order approximation: } g(X) &= X^{-1} \\ g(X+\delta X) &= (X+\delta X)^{-1} = (X^{\frac{1}{2}}(I+X^{-\frac{1}{2}}\delta XX^{-\frac{1}{2}})X^{\frac{1}{2}})^{-1} \\ &= X^{-\frac{1}{2}}(I+X^{-\frac{1}{2}}\delta XX^{-\frac{1}{2}})^{-1}X^{-\frac{1}{2}} \\ &\text{ for small A(small eigenvalues): } (I+A)^{-1} \approx I-A \\ &= X^{-\frac{1}{2}}(I-X^{-\frac{1}{2}}\delta XX^{-\frac{1}{2}})X^{-\frac{1}{2}} \\ &= X^{-1}-X^{-1}\delta XX^{-1} \end{split}$$

$$logdet(X + \delta X) = logdet(X) + tr(X^{-1}\delta X) - \frac{1}{2}tr(\delta X X^{-1}\delta X X^{-1})$$

### 0.11 Miscellaneuous Properties

$$\begin{array}{l} (a+x)^{-1} \approx 1-x \\ \lim_{t \to 0} \frac{f(x+\epsilon t) - f(x)}{t} = \frac{\partial f(x)}{\partial x} \epsilon \end{array}$$

#### 0.11.1 Pseudo-inverse

Overconstrained case:

Cast as L2 norm approximation problem

$$\min_{x} ||Ax - b||_2^2$$

$$(Ax - b)^T (Ax - b) = x^T A^T A x - 2x^T A^T b + b^T b$$
$$\frac{\partial}{\partial x} (x^T A^T A x - 2x^T A^T b + b^T b) = 2A^T A x - 2A^T b$$
$$x = (A^T A)^{-1} A^T b$$

Underconstrained case:

Cast as a least-norm problem w/ equality constraint

$$\min_{x} ||x||_{2}^{2}$$

$$s.t.: Ax = b$$

$$\begin{split} & \min_{x} L(x,\lambda,v) = x^T x - v^T (Ax - b) \\ & \frac{\partial (x^T x - v^T (Ax - b))}{\partial x} = 2x - A^T v = 0 \\ & x = -\frac{1}{2} A^T v \\ & g(\lambda,v) = [x^T x - v^T (Ax - b)]_{x = -\frac{1}{2} A^T v} \\ & g(\lambda,v) = -\frac{1}{4} v^T A A^T v - v^T b \\ & dual: & \max_{\lambda,v} g(\lambda,v) = -\min_{\lambda,v} g(\lambda,v) \\ & \frac{\partial (\frac{1}{4} v^T A A^T v + v^T b)}{\partial v} = 0 \\ & v = \frac{1}{2} A A^T v + b = 0 \\ & v = -2(AA)^{-1} b \\ & x = -\frac{1}{2} A^T v|_{v = -2(AA)^{-1} b} = A^T (AA^T)^{-1} b \end{split}$$