ルート系

箱

2025年6月4日

概要

ルート系の一般論についてまとめる。ルート系やそれに関連する概念を定義し、その基本的な性質を見たあと、ルート系の Dynkin 図形による分類について述べる。

目次

1	ルート系	2
1.1	鏡映	2
1.2	ルート系	3
1.3	部分ルート系....................................	5
1.4	双対ルート系	6
1.5	ルート系の直和と既約分解	7
1.6	二つのルートの関係	9
1.7	被約ルート系への帰着	11
1.8	ルート系の基底	12
1.9	基底と Weyl 群	15
2	分類	18
2.1	Cartan 行列と Dynkin 図形	18
2.2	Dynkin 図形の分類	19
2.3	被約な既約ルート系の構成と分類	24
2.4	被約でない既約ルート系の構成と分類	27
付録 A	·····································	28
A.1	二つのルートの関係に関する補足	28
A.2	単純ルートの線型結合に関する補足・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	29
A.3	双対ルート系の基底	30
A.4	正ルート全体のなす集合の特徴付け	31
A.5	整ベクトルと優整ベクトル	32

記号と用語

• 本稿を通して、 \mathbb{K} を標数 0 の可換体とする. 特に断らなければ、線型空間の係数体は \mathbb{K} とする.

1 ルート系

1.1 鏡映

定義 1.1(鏡映) $n \ge 1$ を整数とし、V を n 次元線型空間とする。V から自身への線型写像であって、1 を重複度 n-1 の固有値とし、-1 を重複度 1 の固有値とするものを、V 上の鏡映(reflection)という。鏡映 s に対して、その固有値 1 の固有空間を鏡映面、固有値 -1 の固有空間を鏡映軸という。

V を有限次元線型空間とするとき, $\alpha \in V$ と $f \in V^*$ に対して,線型写像 $s_{\alpha,f} \colon V \to V$ を

$$s_{\alpha,f}(v) = v - f(v)\alpha \qquad (v \in V)$$

と定める. $f(\alpha)=2$ ならば、 $s_{\alpha,f}$ は $\operatorname{Ker} f$ を鏡映面、 $\operatorname{K} \alpha$ を鏡映軸とする鏡映である。逆に、V 上の任意の鏡映は、このように書ける(ただし、 α と f の選び方には 1 次元分の自由度がある)。本節の以下の部分では、この記号 $s_{\alpha,f}$ を断りなく用いる。

命題 1.2 V を有限次元線型空間, Δ をその有限部分集合とし, Δ は V を張るとする. σ と τ は V 上の線型同型写像であり, $\sigma^2=\tau^2=\mathrm{id}_V$ を満たし,これらの固有値 -1 の固有空間は一致し,これらはともに Δ を安定にするとする.このとき, $\sigma=\tau$ が成り立つ.

証明 σ と τ の共通の固有値 -1 の固有空間を,W と置く. $v \in V$ とすると, $\sigma(v) - v$, $\tau(v) - v \in W$ より $\sigma\tau(v) - v = \sigma(\tau(v) - \sigma(v)) = \sigma((\tau(v) - v) - (\sigma(v) - v)) \in W$ であり, $\sigma\tau$ は W 上では恒等写像だから,任意の $n \in \mathbb{N}$ に対して

$$(\sigma\tau)^{n}(v) - v = \sum_{i=0}^{n-1} ((\sigma\tau)^{i+1}(v) - (\sigma\tau)^{i}(v))$$
$$= \sum_{i=0}^{n-1} (\sigma\tau)^{i}(\sigma\tau(v) - v)$$
$$= n(\sigma\tau(v) - v)$$

が成り立つ.一方で, $G=\{T\in GL(V)\mid T(\Delta)=\Delta\}$ は GL(V) の有限部分群であり,仮定より $\sigma\tau\in G$ だから, $\sigma\tau$ の位数は有限である.そのためには, $\sigma\tau(v)-v=0$ でなければならない.よって, $\sigma=\tau$ である. \Box

命題 1.3 V を有限次元線型空間とし、 $\langle -,- \rangle$ をその上の非退化対称双線型形式とする. V 上の鏡映 s がこの形式を不変にし、 $\alpha \in V\setminus \{0\}$ を $-\alpha$ に移すならば、 $\langle \alpha,\alpha \rangle \neq 0$ かつ

$$s(v) = v - \frac{2\langle v, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha \qquad (v \in V)$$

である. すなわち, $s=s_{\alpha,f}$ $(f\in V^*)$ と表すとき,

$$f = \frac{2\langle -, \alpha \rangle}{\langle \alpha, \alpha \rangle}$$

である.

証明 v を s の鏡映面上の点とすると

$$\langle \alpha, v \rangle = \langle \alpha, s(v) \rangle = \langle s(\alpha), v \rangle = -\langle \alpha, v \rangle$$

より $\langle \alpha, v \rangle = 0$ であり, $\langle -, - \rangle$ に関する $\mathbb{K}\alpha$ の直交空間 $(\mathbb{K}\alpha)^{\perp}$ は $\dim V - 1$ 次元だから, s の鏡映面は $(\mathbb{K}\alpha)^{\perp}$ に等しい. α は s の鏡映面上にはないから, $\langle \alpha, \alpha \rangle \neq 0$ である. $s_{\alpha,f}$ は, α を $-\alpha$ に移し $(\mathbb{K}\alpha)^{\perp}$ の点は動か さないから, s に一致する.

命題 1.4 V を有限次元線型空間とする.任意の $\alpha \in V$ と $f \in V^*$ に対して, $s_{\alpha,f}^* = s_{f,\alpha}$ である.

証明 任意の $g \in V^*$ と $v \in V$ に対して

$$s_{\alpha,f}^*(g)(v) = g(s_{\alpha,f}(v))$$

$$= g(v - f(v)\alpha)$$

$$= g(v) - f(v)g(\alpha)$$

$$= (g - g(\alpha)f)(v)$$

$$= s_{f,\alpha}(g)(v)$$

だから、 $s_{\alpha,f}^* = s_{f,\alpha}$ である.

1.2 ルート系

定義 1.5(ルート系) 有限次元線型空間 V 上のルート系(root system)とは,部分集合 $\Delta \subseteq V$ であって,次の条件 (RS1)–(RS3) を満たすものをいう.さらに,条件 (RS4) も満たすとき,そのルート系は被約 (reduced) であるという*1.

- (RS1) Δ は有限であり、0 を含まず、V を張る.
- (RS2) 任意の $\alpha \in \Delta$ に対して、V 上の鏡映 s_{α} であって、 $s_{\alpha}(\alpha) = -\alpha$ かつ $s_{\alpha}(\Delta) = \Delta$ を満たすものが存在する。(((RS1) と命題 1.2 より、このような s_{α} は一意に定まり、したがって、 $s_{\alpha} = s_{\alpha,\alpha^{\vee}}$ となる $\alpha^{\vee} \in V^*$ も一意に定まる.以下、この記号を用いる.)
- (RS3) 任意の $\alpha, \beta \in \Delta$ に対して、 $\alpha^{\vee}(\beta) \in \mathbb{Z}$ である.
- (RS4) $\alpha \in \Delta$ $\alpha \notin \Delta$ $\alpha \notin \Delta$ $\alpha \notin \Delta$ $\alpha \notin \Delta$

線型空間 V の次元を、ルート系 Δ の**階数** (rank) という. ルート系の各元を、**ルート** (root) という.

(RS2) における α^{\vee} を α の**双対ルート**(coroot)といい, s_{α} を α に関する**ルート鏡映**(root reflection)という.ルート鏡映全体が生成する GL(V) の部分群を,ルート系 Δ の **Weyl 群**(Weyl group)といい, $\mathbf{W}(\Delta)$ と書く.

本稿の以下の部分では、特に断らなくても、ルート α の双対ルートを α^{\vee} と書き、 α に関するルート鏡映を s_{α} と書く.考えているルート系を明示したいときは、双対ルートを α_{Δ}^{\vee} 、ルート鏡映を s_{α}^{Δ} などとも書く.また、 α 、 $\beta \in \Delta$ に対して、

$$n(\beta, \alpha) = \alpha^{\vee}(\beta) \in \mathbb{Z}$$

^{*1} 被約ルート系のことを単にルート系と呼ぶことも多い.

と書き, これを **Cartan 整数**(Cartan integer)という. この記号を用いれば, ルート β を α に関するルート 鏡映で移した先は,

$$s_{\alpha}(\beta) = \beta - \alpha^{\vee}(\beta)\alpha = \beta - n(\beta, \alpha)\alpha$$

と書ける.

定義 1.6(ルート系の同型) Δ_1 , Δ_2 を,それぞれ有限次元線型空間 V_1 , V_2 上のルート系とする.ルート系 Δ_1 から Δ_2 への同型(isomorphism)とは,線型同型写像 Φ : $V_1 \to V_2$ であって, $\Phi(\Delta_1) = \Delta_2$ を満たすものをいう.ルート系 Δ_1 から Δ_2 への同型が存在するとき,これらのルート系は**同型**(isomorphic)であるという.

 Δ を有限次元線型空間 V 上のルート系とする. \mathbb{K}' を \mathbb{K} の拡大体とすると, Δ は V の係数拡大 $V \otimes_{\mathbb{K}} \mathbb{K}'$ の部分集合ともみなせる. このようにみなすと, 明らかに, Δ は $V \otimes_{\mathbb{K}} \mathbb{K}'$ 上のルート系となる. これを, ルート系の係数拡大という.

命題 1.7 Δ を(\mathbb{K} 上の)有限次元線型空間 V 上のルート系とする. V の部分有理線型空間 $V_{\mathbb{Q}}$ を

$$V_{\mathbb{Q}} = \operatorname{span}_{\mathbb{Q}} \Delta$$

と定めると、 Δ は $V_{\mathbb{Q}}$ 上のルート系でもあり、包含写像 $V_{\mathbb{Q}} \to V$ が誘導する (\mathbb{K} 上の)線型写像 $i\colon V_{\mathbb{Q}}\otimes_{\mathbb{Q}}\mathbb{K} \to V$ は同型である (したがって、V 上のルート系 Δ は、 $V_{\mathbb{Q}}$ 上のルート系 Δ の \mathbb{K} への係数拡大とみなせる).

証明 $V_{\mathbb{Q}}$ と Δ が (RS1), (RS4) を満たすことは明らかである。また, $\alpha \in \Delta$ とすると,V と Δ が (RS3) を満たすことより $\alpha^{\vee}(V_{\mathbb{Q}}) \subseteq \mathbb{Q}$ だから, $\alpha^{\vee}|_{V_{\mathbb{Q}}} \in (V_{\mathbb{Q}})^*$ であり, $s_{\alpha}|_{V_{\mathbb{Q}}}$ は $V_{\mathbb{Q}}$ 上の鏡映 $s_{\alpha,\alpha^{\vee}|_{V_{\mathbb{Q}}}}$ である.この鏡映は,明らかに (RS2),(RS3) の条件を満たす.よって, Δ は $V_{\mathbb{Q}}$ 上のルート系である.

包含写像 $V_{\mathbb Q} \to V$ が誘導する($\mathbb K$ 上の)線型写像 $i\colon V_{\mathbb Q}\otimes_{\mathbb Q}\mathbb K \to V$ が同型であることを示す.まず, $V=\operatorname{span}_{\mathbb K}\Delta$ だから,i は全射である.次に,i が単射であることを示す.そのためには,i の双対線型写像

$$i^* \colon V^* \to (V_{\mathbb{O}} \otimes_{\mathbb{O}} \mathbb{K})^* \cong (V_{\mathbb{O}})^* \otimes_{\mathbb{O}} \mathbb{K}$$

が全射であることをいえばよい. 各 $\alpha \in \Delta$ に対して

$$i^*(\alpha^{\vee}) = \alpha^{\vee}|_{V_{\mathbb{O}}} \otimes 1$$

だから, $(V_{\mathbb{Q}})^* = \operatorname{span}_{\mathbb{Q}}\{\alpha^{\vee}|_{V_{\mathbb{Q}}} \mid \alpha \in \Delta\}$ をいえばよい.以下,これを示す. $V_{\mathbb{Q}}$ 上の $\mathbf{W}(\Delta)$ -不変な非退化 対称双線型形式 $\langle -, - \rangle$ を一つ固定すると(任意にとった $V_{\mathbb{Q}}$ 上の内積を $\mathbf{W}(\Delta)$ の作用に関して平均すればよい), $\alpha \in \Delta$ に対して命題 1.3 より $\langle \alpha, \alpha \rangle \neq 0$ かつ

$$\alpha^{\vee}|_{V_{\mathbb{Q}}} = \frac{2\langle -, \alpha \rangle}{\langle \alpha, \alpha \rangle}$$

であり、これは $\langle -,-\rangle$ が定める有理線型同型 $V_{\mathbb Q}\cong (V_{\mathbb Q})^*$ を通して $2\alpha/\langle \alpha,\alpha\rangle\in V_{\mathbb Q}$ に対応する. $\alpha\in \Delta$ が動くときこれら全体は $V_{\mathbb Q}$ を張るから、 $\alpha^\vee|_{V_{\mathbb Q}}$ の全体は $(V_{\mathbb Q})^*$ を張る. これで、主張が示された.

系 1.8 Δ を有限次元線型空間 V 上のルート系とする.

(1) V 上の $\operatorname{Aut}(\Delta)$ -不変な非退化対称双線型形式 $\langle -, - \rangle \colon V \times V \to \mathbb{K}$ であって,任意の $v \in V_{\mathbb{Q}} = \operatorname{span}_{\mathbb{Q}} \Delta$ に対して $\langle v, v \rangle \in \mathbb{Q}_{>0}$ であるものが存在する.

(2) $\langle -,- \rangle$: $V \times V \to \mathbb{K}$ を V 上の $\mathbf{W}(\Delta)$ -不変な非退化対称双線型形式とすると,任意のルート α , $\beta \in \Delta$ に対して, $\langle \alpha,\alpha \rangle \neq 0$ かつ

$$\alpha^{\vee} = \frac{2\langle -, \alpha \rangle}{\langle \alpha, \alpha \rangle}, \qquad n(\beta, \alpha) = \frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle}$$

である.

証明 (1) \mathbb{K} が \mathbb{R} の部分体である場合,任意に固定した V 上の内積を $\mathrm{Aut}(\Delta)$ の作用に関して平均すれば, V 上の $\mathrm{Aut}(\Delta)$ -不変な内積が得られる。 \mathbb{K} が一般の場合, $V_{\mathbb{Q}}$ 上の $\mathrm{Aut}(\Delta)$ -不変な内積を一つとって係数拡大 すれば,条件を満たす V 上の非退化対称双線型形式が得られる.

(2) ルート鏡映 $s_{\alpha} = s_{\alpha,\alpha^{\vee}}$ は $\langle -, - \rangle$ を不変にし、 α を $-\alpha$ に移すから、命題 1.3 より $\langle \alpha, \alpha \rangle \neq 0$ かつ $\alpha^{\vee} = 2\langle -, \alpha \rangle / \langle \alpha, \alpha \rangle$ である.また、これより、 $n(\beta, \alpha) = \alpha^{\vee}(\beta) = 2\langle \beta, \alpha \rangle / \langle \alpha, \alpha \rangle$ である.

命題 1.7 より,有限次元線型空間 V 上のルート系 Δ は, $V_{\mathbb{Q}}=\operatorname{span}_{\mathbb{Q}}\Delta$ 上のルート系とみなせ,これはさらに,係数拡大によって $V_{\mathbb{R}}=V_{\mathbb{Q}}\otimes_{\mathbb{Q}}\mathbb{R}$ 上のルート系ともみなせる.さらに,系 1.8 (1) より, $V_{\mathbb{R}}$ 上の $\mathbf{W}(\Delta)$ -不変な内積が存在する.これらにより,ルート系の性質の証明の多くは, $\mathbb{K}=\mathbb{R}$ であり, $\mathbf{W}(\Delta)$ -不変な内積が定まっている場合に帰着される.この論法は,本節の以下の部分でしばしば用いられる.

系 1.9 Δ を有限次元線型空間 V 上のルート系とする. $v \in V$ が任意の $\alpha \in \Delta$ に対して $s_{\alpha}(v) = v$ を満たすならば、v = 0 である.

証明 系 1.8 (2) より、 $\operatorname{span}_{\mathbb{K}}\{\alpha^{\vee}\mid\alpha\in\Delta\}=V^*$ である.よって、任意の $\alpha\in\Delta$ に対して $s_{\alpha}(v)=v$ 、すな わち $\alpha^{\vee}(v)=0$ であるとすると、v=0 である.

 Δ を有限次元線型空間 V 上のルート系とし, $\mathbf{W}(\Delta)$ -不変な非退化対称双線型形式 $\langle -,- \rangle$: $V \times V \to \mathbb{K}$ を固定する.このとき,系 1.8 より,二つのルート α , $\beta \in \Delta$ に対して

$$n(\alpha, \beta) = 0 \iff n(\beta, \alpha) = 0 \iff \langle \alpha, \beta \rangle = 0$$

である.そこで, $n(\alpha,\beta)=n(\beta,\alpha)=0$ であるとき, α と β は**直交する**(orthogonal)という.また,ルートの集合 A,B について,A に属する任意のルートと B に属する任意のルートが直交するとき,A と B は直交するという.

1.3 部分ルート系

命題 1.10 Δ を有限次元線型空間 V 上のルート系とする.部分線型空間 $V'\subseteq V$ と部分集合 $\Delta'\subseteq\Delta$ が, $\Delta'=\Delta\cap V'$ かつ $\operatorname{span}_{\mathbb{K}}\Delta'=V'$ を満たすとする.

- (1) Δ' は V' 上のルート系であり、 Δ が被約ならば Δ' も被約である.
- (2) $\alpha \in \Delta'$ に対して、 $s_{\alpha}^{\Delta'} = s_{\alpha}^{\Delta}|_{V'}$ である($s_{\alpha}^{\Delta'}$, $s_{\alpha}^{\Delta}|_{V'}$ は、それぞれルート系 Δ' , Δ における α に関するルート鏡映を表す).
- (3) $\alpha \in \Delta'$ に対して、 $\alpha_{\Delta'}^{\vee} = \alpha_{\Delta}^{\vee}|_{V'}$ である($\alpha_{\Delta'}^{\vee}$, $\alpha_{\Delta}^{\vee}|_{V'}$ は、それぞれルート系 Δ' , Δ における α の双対ルートを表す).
- (4) V 上の $\mathbf{W}(\Delta)$ -不変な非退化対称双線型形式 $\langle -, \rangle$: $V \times V \to \mathbb{K}$ の V' への制限は, V' 上の $\mathbf{W}(\Delta')$ -不変な非退化対称双線型形式である.

(5) 群準同型 ι : $\mathbf{W}(\Delta') \to \mathbf{W}(\Delta)$ であって,任意の $\alpha \in \Delta'$ に対して $\iota(s_{\alpha}^{\Delta'}) = s_{\alpha}^{\Delta}$ であるものが一意に存在する.さらに,この ι は単射である.

証明 (1), (2) Δ' が (RS1) を満たすことと, Δ が (RS4) を満たすならば Δ' もそうであることは明らかである。 $\alpha \in \Delta'$ とすると,任意の $v \in V'$ に対して $s_{\alpha}^{\Delta}(v) = v - \alpha_{\Delta}^{\vee}(v) \alpha \in V'$ だから,V' は s_{α}^{Δ} -安定である。したがって,制限 $s_{\alpha}^{\Delta}|_{V'}$ は V' 上の鏡映となる。この鏡映は,明らかに (RS2),(RS3) の条件を満たす.よって, Δ' は V' 上のルート系であり,(2) が成り立つ.

- (3) (2) $\sharp \mathfrak{h} \ s_{\alpha}^{\Delta'} = s_{\alpha}^{\Delta}|_{V'} = s_{\alpha,\alpha_{\Delta}|_{V'}} \ \not{\epsilon}\mathfrak{h}\mathfrak{h}, \ \alpha_{\Delta'}^{\vee} = \alpha_{\Delta}^{\vee}|_{V'} \ \not{\epsilon}\mathfrak{h}\mathfrak{d}.$
- (4) V 上の $\mathbf{W}(\Delta)$ -不変な非退化対称双線型形式 $\langle -, \rangle$ の V' への制限が $\mathbf{W}(\Delta')$ -不変であることは,(2) から明らかである.次に, $v \in V'$ が任意の $w \in V'$ に対して $\langle v, w \rangle = 0$ を満たすとする.すると,任意の $\alpha \in \Delta'$ に対して

$$s_{\alpha}^{\Delta'}(v) = s_{\alpha}^{\Delta}(v) = v - \frac{2\langle v, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha = v$$

だから (系 1.8), 系 1.9 より v=0 である. よって, $\langle -, - \rangle$ は V' 上で非退化である.

(5) 条件を満たす ι の一意性は, $s_{\alpha}^{\Delta'}$ の全体が $\mathbf{W}(\Delta')$ を生成することから明らかである.条件を満たす ι の存在を示す.V 上の $\mathbf{W}(\Delta)$ -不変な非退化対称双線型形式 $\langle -, - \rangle$ を一つ固定する.(4) で示したように, $\langle -, - \rangle$ は V' 上で非退化だから,これに関する V' の直交空間 V'^{\perp} は,V' の V における補空間である.したがって,単射群準同型 ι : $GL(V') \to GL(V)$ を, $\iota(T) = T \oplus \operatorname{id}_{V'^{\perp}}$ と定義できる.この ι は,明らかに,各 $\alpha \in \Delta'$ に対して $s_{\alpha}^{\Delta'}$ を s_{α}^{Δ} に移し,したがって, $\mathbf{W}(\Delta')$ を $\mathbf{W}(\Delta)$ の中に移す.

定義 1.11 (部分ルート系) 命題 1.10 の状況で、 Δ' を Δ の部分ルート系 (root subsystem) という.

1.4 双対ルート系

補題 1.12 Δ を有限次元線型空間 V 上のルート系とする. $\alpha \in \Delta$ と $t \in \operatorname{Aut}(\Delta)$ に対して、

$$s_{t(\alpha)} = t s_{\alpha} t^{-1}, \qquad t(\alpha)^{\vee} = t^{*-1}(\alpha^{\vee})$$

である.

証明 $ts_{\alpha}t^{-1}$ は $t(\alpha)$ を $-t(\alpha)$ に移し Δ を安定にする鏡映だから,ルート鏡映の一意性より, $ts_{\alpha}t^{-1}=s_{t(\alpha)}$ である.また,

$$s_{t(\alpha)}(v) = ts_{\alpha}t^{-1}(v) = t(t^{-1}(v) - \alpha^{\vee}(t^{-1}(v))\alpha)$$

$$= v - \alpha^{\vee}(t^{-1}(v))t(\alpha)$$

$$= v - t^{*-1}(\alpha^{\vee})(v)t(\alpha)$$

$$= s_{t(\alpha),t^{*-1}(\alpha^{\vee})}(v) \qquad (v \in V)$$

だから、 $t(\alpha)^{\vee} = t^{*-1}(\alpha^{\vee})$ である.

命題 1.13 Δ を有限次元線型空間 V 上のルート系とする.

(1) $\Delta^\vee=\{\alpha^\vee\mid \alpha\in\Delta\}$ は V^* 上のルート系であり, Δ が被約であることと Δ^\vee が被約であることとは同値である.

(2) 任意の $\alpha \in \Delta$ に対して、 $s_{\alpha^{\vee}} = s_{\alpha}^* = s_{\alpha}^{*-1}$ である.

- (3) 任意の $\alpha \in \Delta$ に対して, $\alpha^{\vee\vee} = \alpha$ である.
- (4) GL(V) から $GL(V^*)$ への群同型 $t\mapsto t^{*-1}$ は,自己同型群 $\operatorname{Aut}(\Delta)$ から $\operatorname{Aut}(\Delta^{\vee})$ への群同型を与え,Weyl 群 $\mathbf{W}(\Delta)$ から $\mathbf{W}(\Delta^{\vee})$ への群同型を与える.

証明 (1), (2), (3) 系 1.8 (2) より, Δ^{\vee} は (RS1) を満たし, Δ が (RS4) を満たすことと Δ^{\vee} が (RS4) を満たすこととは同値である.各 $\alpha^{\vee} \in \Delta^{\vee}$ に対して, $\alpha^{\vee}(\alpha) = 2$ だから

$$s_{\alpha^{\vee}} = s_{\alpha^{\vee},\alpha} \colon V^* \to V^*, \quad f \mapsto f - f(\alpha)\alpha^{\vee}$$

は V^* 上の鏡映であり、 $s_{\alpha^\vee} = s_{\alpha}^* = s_{\alpha}^{*-1}$ である(命題 1.4)。 $\beta^\vee \in \Delta^\vee$ に対して

$$s_{\alpha^{\vee}}(\beta^{\vee}) = s_{\alpha}^{*-1}(\beta^{\vee}) = s_{\alpha}(\beta)^{\vee} \in \Delta^{\vee}$$

だから(最後の等号で補題 1.12 を用いた), $s_{\alpha^{\vee}}$ は (RS2) の条件を満たす.また,このとき $\alpha^{\vee\vee} = \alpha$ であり,任意の α^{\vee} , $\beta^{\vee} \in \Delta^{\vee}$ に対して $\alpha^{\vee\vee}(\beta^{\vee}) = \beta^{\vee}(\alpha) \in \mathbb{Z}$ だから,(RS3) も満たされる.よって, Δ^{\vee} は V^* 上のルート系であり,(2),(3) が成り立つ.

(4) 補題 1.12 より, $t \in \operatorname{Aut}(\Delta)$ ならば $t^{*-1} \in \operatorname{Aut}(\Delta^{\vee})$ であり,(3) よりその逆も成り立つ.よって,群同型 $t \mapsto t^{*-1}$ は, $\operatorname{Aut}(\Delta)$ から $\operatorname{Aut}(\Delta^{\vee})$ への群同型を与える.また,(2) よりこの群同型は s_{α} を $s_{\alpha^{\vee}}$ に移すから, $\mathbf{W}(\Delta)$ から $\mathbf{W}(\Delta^{\vee})$ への群同型も与える.

定義 1.14(双対ルート系) 命題 1.13 の状況で、 Δ^{\vee} を Δ の双対ルート系 (dual root system) という.

1.5 ルート系の直和と既約分解

命題 1.15 $(V_i)_{i\in I}$ を有限次元線型空間の有限族とし、各 $i\in I$ に対して Δ_i を V_i 上のルート系とする. $V=\bigoplus_{i\in I}V_i,\ \Delta=\coprod_{i\in I}\Delta_i\subseteq V$ と置く.

- (1) Δ は V 上のルート系であり、 Δ が被約であることとすべての Δ_i が被約であることとは同値である.
- (2) $\alpha \in \Delta_i$ に対して、ルート鏡映 s_α^Δ は、

$$s_{\alpha}^{\Delta}(v) = \begin{cases} s_{\alpha}^{\Delta_i}(v) & (v \in V_i) \\ v & (v \in V_j, j \neq i) \end{cases}$$

で与えられる $(s_{\alpha}^{\Delta}, s_{\alpha}^{\Delta_i})$ は、それぞれルート系 Δ , Δ における α に関するルート鏡映を表す).

(3) $\alpha \in \Delta_i$ に対して、双対ルート α_{Λ}^{\vee} は、

$$\alpha_{\Delta}^{\vee}(v) = \begin{cases} \alpha_{\Delta_i}^{\vee}(v) & (v \in V_i) \\ 0 & (v \in V_j, j \neq i) \end{cases}$$

で与えられる $(\alpha_{\Delta}^{\vee}, \alpha_{\Delta}^{\vee}, a_{\Delta}^{\vee}, a_{\Delta}^{\vee},$

証明 明らかである.

定義 1.16 (ルート系の直和) 命題 1.15 の状況で、 Δ を $(\Delta_i)_{i \in I}$ の**直和** (direct sum) という.

 Δ を有限次元線型空間 V 上のルート系とする. V が部分線型空間の有限族 $(V_i)_{i\in I}$ に直和分解され,各 V_i 上にルート系 Δ_i があって $\Delta = \bigcup_{i\in I} \Delta_i$ となっていれば, Δ はルート系の有限族 $(\Delta_i)_{i\in I}$ の直和と自然に同一視できる.このとき, Δ は $(\Delta_i)_{i\in I}$ に**直和分解**されるという.

命題 1.17 Δ を有限次元線型空間 V 上のルート系とし, $(\Delta_i)_{i\in I}$ を Δ の有限分割とする.このとき,次の条件は同値である.

- (a) $(\Delta_i)_{i\in I}$ はルート系 Δ の直和分解である.
- (b) 各 $i \in I$ に対して $V_i = \operatorname{span}_{\mathbb{K}} \Delta_i$ と置くと、 $\sum_{i \in I} V_i$ は直和である.
- (c) 任意の異なる二つの元 $i, j \in I$ に対して、 Δ_i と Δ_j は直交する.

証明 $(a) \Longrightarrow (b)$ 明らかである.

- (b) \Longrightarrow (a) $\sum_{i \in I} V_i$ が直和ならば、各 $i \in I$ に対して $\Delta_i = \Delta \cap V_i$ だから Δ_i は V_i 上のルート系であり (命題 1.10)、したがって $(\Delta_i)_{i \in I}$ はルート系 Δ の直和分解である.
 - $(a) \Longrightarrow (c)$ ルート系の直和におけるルート鏡映の式から従う.
- $(c) \Longrightarrow (b)$ $\mathbb{K} = \mathbb{R}$ で V が $\mathbf{W}(\Delta)$ -不変な内積 $\langle -, \rangle$ をもつ内積空間である場合に示せば十分である(命題 1.7,系 1.8). このとき,(c) が成り立つとすると,どの異なる二つの Δ_i も内積に関して直交するから, $(V_i)_{i \in I}$ は内積空間 V における直交族であり,したがって $\sum_{i \in I} V_i$ は直和である.

定義 1.18(既約ルート系) Δ を空でないルート系とする. Δ が「一つが Δ でその他がすべて \emptyset 」という形 の直和分解しかもたないとき,ルート系 Δ は**既約**(irreducible)であるという. そうでないとき,ルート系 Δ は**可約**(reducible)であるという.

ルート系の既約ルート系への直和分解を**既約分解**といい,既約分解に現れる既約ルート系のそれぞれを**既約成分**という.

命題 1.19 任意のルート系は、順序を除いて一意に既約分解される.

証明 Δ をルート系とする. Δ が可約である限り Δ は二つの空でないルート系 Δ' と Δ'' の直和に分解でき, Δ' , Δ'' に対しても同じことがいえる. Δ は有限集合だから,この操作は有限回で終了する. よって, Δ の既 約分解は存在する.

 $(\Delta_i)_{i\in I}$ と $(\Delta'_j)_{j\in J}$ がともに Δ の既約分解であるとする。各 $i\in I$ と $j\in J$ に対して, $\{\Delta_i\cap\Delta'_j,\Delta_i\setminus\Delta'_j\}$ は Δ_i の直和分解だから, Δ_i の既約性より $\Delta_i\cap\Delta'_j=\Delta_i$ または $\Delta_i\setminus\Delta'_j=\Delta_i$,すなわち $\Delta_i\supseteq\Delta'_j$ または $\Delta_i\cap\Delta'_j=\emptyset$ である。 Δ_i と Δ'_j を逆にしても同じことがいえるから,結局 $\Delta_i=\Delta'_j$ または $\Delta_i\cap\Delta'_j=\emptyset$ である。これが任意の $i\in I$ と $j\in J$ に対して成り立つから, $(\Delta_i)_{i\in I}$ と $(\Delta'_j)_{j\in J}$ は順序を除いて一致する。よって, Δ の既約分解は順序を除いて一意である。

命題 1.20 有限次元線型空間 V 上のルート系 Δ に対して,次の条件は同値である.

- (a) Δ は既約である.
- (b) Weyl 群 $\mathbf{W}(\Delta)$ の V 上の自然表現は既約である.

証明 $\Delta=\emptyset$ (したがって, V=0)ならば、どちらの条件も成り立たない.以下、 $\Delta\neq\emptyset$ (したがって、 $V\neq0$)である場合を考える.

(a) \Longrightarrow (b) 0 と V 以外の $\mathbf{W}(\Delta)$ -安定部分線型空間 V_1 がとれたとする。 $\beta \in \Delta \setminus V_1$ とすると, V_1 は s_{β} -安定だから,任意の $v \in V_1$ に対して $s_{\beta}(v) = v - \beta^{\vee}(v)\beta$ は V_1 に属する。ところが, $v \in V_1$ かつ $\alpha \notin V$ だから,そのためには $\beta^{\vee}(v) = 0$ でなければならない。したがって, β^{\vee} は V_1 上で 0 となる。特に,任意の $\alpha \in \Delta \cap V_1$ に対して $n(\alpha,\beta) = \beta^{\vee}(\alpha) = 0$ である。よって, $\Delta \cap V_1$ と $\Delta \setminus V_1$ は直交する。

 $V_1 \neq V$ かつ $\operatorname{span}_{\mathbb{K}} \Delta = V$ だから, Δ は V_1 に含まれない. すなわち, $\Delta \setminus V_1$ は空でない. また, $\Delta \cap V_1$ が 空であるとすると,前段の議論よりすべての α^{\vee} ($\alpha \in \Delta$) が V_1 上で 0 であることになるが,これは $V_1 \neq 0$ に 反する(系 1.8 (2)). よって, $\Delta \cap V_1$ は空でない.以上より, Δ は可約である. 対偶をとれば,主張が従う.

(b) \Longrightarrow (a) Δ が V_1 上の空でないルート系 Δ_1 と V_2 上の空でないルート系 Δ_2 に直和分解されるとする と、命題 1.15 より、 V_1 と V_2 は $\mathbf{W}(\Delta)$ -安定である。対偶をとれば、主張が従う。

系 1.21 Δ を有限次元線型空間 V 上の既約ルート系とする. V 上の $\mathbf{W}(\Delta)$ -不変な双線型形式は、スカラー倍を除いて一意である.

証明 V 上の $\mathbf{W}(\Delta)$ -不変な双線型形式は, $\mathbf{W}(\Delta)$ の自然表現からその反傾表現への同変作用素と同一視できる.よって,主張は,命題 1.20 と Schur の補題から従う.

注意 1.22 Δ を有限次元線型空間 V 上のルート系とし、 $\langle -,- \rangle$: $V \times V \to \mathbb{K}$ を $\mathbf{W}(\Delta)$ -不変な非退化対称双線型形式とする. α , $\beta \in \Delta$ を同じ既約成分に属する二つのルートとすると、 $s \in \mathbf{W}(\Delta)$ を $s(\alpha)$ と β が直交しないようにとれる(命題 1.20).このとき、

$$\frac{\langle \beta,\beta\rangle}{\langle \alpha,\alpha\rangle} = \frac{\langle \beta,\beta\rangle}{\langle s(\alpha),s(\alpha)\rangle} = \frac{n(\beta,s(\alpha))}{n(\alpha,s(\beta))} \in \mathbb{Q}_{>0}$$

であり、この値は $\langle -, - \rangle$ のとり方によらない.そこで、用語の濫用で、 $\mathbb{K} = \mathbb{R}$ とは限らない場合にも、 $\sqrt{\langle \beta, \beta \rangle / \langle \alpha, \alpha \rangle}$ を β **の** α **に対するの長さの比**という.

 $\mathbf{W}(\Delta)$ -不変な非退化対称双線型形式 $\langle -, - \rangle$ を,任意の $v \in V_{\mathbb{Q}} = \operatorname{span}_{\mathbb{Q}} \Delta$ に対して $\langle v, v \rangle \in \mathbb{Q}_{>0}$ であるようにとれば(系 1.8 (1)), $\langle -, - \rangle$ は $V_{\mathbb{Q}}$ 上の $\mathbf{W}(\Delta)$ -不変な内積を定め,これはさらに,係数拡大によって $V_{\mathbb{R}} = V_{\mathbb{Q}} \otimes_{\mathbb{R}} \mathbb{R}$ 上の $\mathbf{W}(\Delta)$ -不変な内積を定める.これにより,ルートの長さの比に関する議論は, $\mathbb{K} = \mathbb{R}$ の 場合に帰着できる.

1.6 二つのルートの関係

定理 1.23 Δ は有限次元実内積空間 V 上のルート系であり,その内積は $\mathbf{W}(\Delta)$ -不変であるとする.二つの ルート α , $\beta \in \Delta$ であって $\|\alpha\| \leq \|\beta\|$ を満たすものについて,次の表の (i)–(xi)(Δ が被約ならば,(i)–(ix)のうちいずれかただ一つが成り立つ.

	$n(\alpha, \beta)$	$n(\beta, \alpha)$	$\ \beta\ /\ \alpha\ $	$\angle(\alpha,\beta)$
(i)	0	0	不定	90°
(ii)	1	1	1	60°
(iii)	-1	-1	1	120°
(iv)	1	2	$\sqrt{2}$	45°
(v)	-1	-2	$\sqrt{2}$	135°
(vi)	1	3	$\sqrt{3}$	30°
(vii)	-1	-3	$\sqrt{3}$	150°
(viii)	2	2	1	0°
(ix)	-2	-2	1	180°
(x)	1	4	2	0°
(xi)	-1	-4	2	180°

証明 $n(\alpha,\beta)=2\langle\alpha,\beta\rangle/\langle\beta,\beta\rangle$ かつ $n(\beta,\alpha)=2\langle\beta,\alpha\rangle/\langle\alpha,\alpha\rangle$ だから (系 1.8 (2)),

$$n(\alpha, \beta)n(\beta, \alpha) = \frac{4\langle \alpha, \beta \rangle^2}{\|\alpha\|^2 \|\beta\|^2} = 4(\cos \angle(\alpha, \beta))^2 \le 4$$

である. また, $n(\alpha,\beta)=0$ と $n(\beta,\alpha)=0$ とは同値であり, $n(\alpha,\beta), n(\beta,\alpha)\neq 0$ ならば

$$\frac{n(\beta, \alpha)}{n(\alpha, \beta)} = \frac{\|\beta\|^2}{\|\alpha\|^2}$$

である. したがって、組 $(n(\alpha,\beta),n(\beta,\alpha))$ の可能性は、表に挙げたもので尽くされる.

(x) または (xi) の場合, $\beta=\pm 2\alpha$ となり被約性の条件 (RS4) に反するから, Δ が被約ならば,起こりうる可能性は (i)–(ix) に限られる.

注意 1.24 Δ を有限次元線型空間 V 上のルート系とし、 α , $\beta \in \Delta$ とする.

- (1) 命題 1.7 と系 1.8 (1) より, $\mathbb{K} = \mathbb{R}$ とは限らない場合にも, $n(\alpha, \beta)$ と $n(\beta, \alpha)$ の値の組み合わせは,定理 1.23 の表の (i)–(xi) (Δ が被約ならば,(i)–(ix)) のいずれかである.(i) 以外の場合には, β の α に対する長さの比は,表における「 $\|\beta\|/\|\alpha\|$ 」の値となる(系 1.27).
- (2) 用語の濫用で、 $\mathbb{K}=\mathbb{R}$ とは限らない場合にも、**二つのルート** α **、** $\beta\in\Delta$ **のなす角度** $\angle(\alpha,\beta)$ を、 $n(\alpha,\beta)$ と $n(\beta,\alpha)$ の値から定理 1.23 の表によって定義する.特に、 α と β が鋭角をなす、直交する、鈍角をなすとは、それぞれ $n(\beta,\alpha)>0$ 、 $n(\beta,\alpha)=0$ 、 $n(\beta,\alpha)<0$ であることをいう(「直交」については、1.2 節の最後に述べた定義と一致する).

系 1.25 ルート系 Δ の二つのルート α , β が線型従属ならば, β は $\pm \alpha/2$, $\pm \alpha$, $\pm 2\alpha$ のいずれかである. さらに, Δ が被約ならば, β は $\pm \alpha$ のいずれかである.

証明 一般性を失わず、 $\mathbb{K}=\mathbb{R}$ であり、 $\mathbf{W}(\Delta)$ -不変な内積が定まっていると仮定する(命題 1.7, 系 1.8 (1))。 この場合の主張は、定理 1.23 に含まれる. 系 1.26 ルート系 Δ の二つのルート α , β について, 次が成り立つ.

- (1) α と β が鋭角をなすならば、 $\beta \alpha \in \Delta \cup \{0\}$ である.
- (2) α と β が鈍角をなすならば、 $\beta + \alpha \in \Delta \cup \{0\}$ である.

証明 (1) $\alpha \neq \beta$ かつ $n(\beta, \alpha) > 0$ ならば,定理 1.23 より $n(\beta, \alpha) = 1$ または $n(\alpha, \beta) = 1$ である.前者の場合 $\beta - \alpha = \beta - n(\beta, \alpha)\alpha = s_{\alpha}(\beta) \in \Delta$ であり,後者の場合 $\alpha - \beta = \alpha - n(\alpha, \beta)\beta = s_{\beta}(\alpha) \in \Delta$ だから,いずれにしても $\beta - \alpha \in \Delta$ となる.

П

(2) $-\alpha$ と β に (1) を適用すればよい.

系 1.27 Δ をルート系とする. α , $\beta \in \Delta$ を同じ既約成分に属する二つのルートとすると, β の α に対する長さの比は, $1, \sqrt{2}, \sqrt{3}, 2$ (Δ が被約ならば, $1, \sqrt{2}, \sqrt{3}$) またはこれらの逆数のいずれかである.

証明 一般性を失わず, $\mathbb{K}=\mathbb{R}$ であり, $\mathbf{W}(\Delta)$ -不変な内積が定まっていると仮定する(命題 1.7,系 1.8,注意 1.22). α と β は同じ既約成分に属するから, $s\in\mathbf{W}(\Delta)$ を $s(\alpha)$ と β が直交しないようにとれる(命題 1.20). よって,定理 1.23 より, $\|\beta\|/\|\alpha\|=\|\beta\|/\|s(\alpha)\|$ は $1,\sqrt{2},\sqrt{3},2$ (Δ が被約ならば $1,\sqrt{2},\sqrt{3}$) またはこれらの逆数のいずれかに等しい.

命題 1.28 Δ をルート系とする.同じ既約成分に属する二つのルート α , $\beta \in \Delta$ の長さが等しければ,これらは Weyl 群 $\mathbf{W}(\Delta)$ の作用によって移り合う.

証明 α と β は同じ既約成分に属するから, $s \in \mathbf{W}(\Delta)$ を $s(\alpha)$ と β が直交しないようにとれる(命題 1.20). 必要ならば s を ss_{α} に置き換えることで, $s(\alpha)$ と β は鋭角をなすとしてよい. α と β の(したがって, $s(\alpha)$ と β の)長さが等しいことより, $\angle(s(\alpha),\beta)$ は 0° または 60° である(定理 1.23,注意 1.24).前者の場合, $s(\alpha) = \beta$ である.後者の場合, $\gamma = s(\alpha) - \beta \in \Delta$ であり(系 1.26 (1)), $s_{\gamma}s(\alpha) = \beta$ となる.これで,主張が示された.

1.7 被約ルート系への帰着

定義 1.29 (割れないルート) Δ をルート系とする. ルート $\alpha \in \Delta$ が**割れない** (indivisible) とは, $\alpha/2 \notin \Delta$ であることをいう.

命題 1.30 Δ を有限次元線型空間 V 上のルート系とする. Δ' を, Δ の割れないルート全体のなす集合とする.

- (1) Δ' は V 上の被約ルート系であり、 Δ が既約であることと Δ' が既約であることとは同値である.
- (2) $\alpha \in \Delta'$ に対して、 $s_{\alpha}^{\Delta'} = s_{\alpha}^{\Delta}$ である($s_{\alpha}^{\Delta'}$ 、 s_{α}^{Δ} は、それぞれルート系 Δ' 、 Δ における α に関するルート 鏡映を表す)
- (3) $\alpha \in \Delta'$ に対して、 $\alpha_{\Delta'}^{\vee} = \alpha_{\Delta}^{\vee}$ である($\alpha_{\Delta'}^{\vee}$ 、 α_{Δ}^{\vee} は、それぞれルート系 Δ' 、 Δ における α の双対ルートを表す).
- (4) $\mathbf{W}(\Delta') = \mathbf{W}(\Delta)$ である.

証明 (1), (2) Δ' が (RS1), (RS4) を満たすことは明らかである. $\alpha \in \Delta'$ とすると, s_{α}^{Δ} は Δ の自己同型 だから, 割れないルートを割れないルートに移す. したがって, 鏡映 s_{α}^{Δ} は, (RS2), (RS3) の条件を満たす.

よって、 Δ' は V 上の被約ルート系であり、(3) が成り立つ.

 $V=V_1\oplus V_2$ を線型空間の直和分解とするとき, $\Delta=(\Delta\cap V_1)\sqcup(\Delta\cap V_2)$ であることと $\Delta'=(\Delta'\cap V_1)\sqcup(\Delta'\cap V_2)$ であることは同値であり,また, $i\in\{1,2\}$ に対して, $\Delta\cap V_i$ が空であることと $\Delta'\cap V_i$ が空であることとは同値である.よって, Δ が既約であることと Δ' が既約であることとは同値である.

(3), (4) (2) から明らかである.

注意 1.31 命題 1.30 において、 $\Delta' = \{\alpha \in \Delta \mid \alpha/2 \notin \Delta\}$ の代わりに $\Delta'' = \{\alpha \in \Delta \mid 2\alpha \notin \Delta\}$ を用いても、同じ主張が成り立つ、証明も、同様にできる.

注意 1.32 命題 1.30 や注意 1.31 において、 $\operatorname{Aut}(\Delta') = \operatorname{Aut}(\Delta)$ や $\operatorname{Aut}(\Delta'') = \operatorname{Aut}(\Delta)$ は成り立たない。たとえば、 \mathbb{K}^2 の標準基底を (ϵ_1, ϵ_2) と書くと、 $\Delta = \{\pm \epsilon_1, \pm 2 \epsilon_1, \pm \epsilon_2\}$ は \mathbb{K}^2 上の(被約でない)ルート系であり、 Δ の自己同型は恒等写像のみだが、 $\Delta' = \{\pm \epsilon_1, \pm \epsilon_2\}$ や $\Delta'' = \{\pm 2 \epsilon_1, \pm \epsilon_2\}$ は恒等写像以外の自己同型をもつ。

次の定理により、被約でない既約ルート系の構成と分類は、被約なルート系の構成と分類に帰着される(2.4節).

定理 1.33 Δ を有限次元線型空間 V 上の被約でない既約ルート系とする.

(1) Δ の各ルートの最短ルートに対する長さの比は、 $1, \sqrt{2}, 2$ のいずれかである.

以下,最短ルートに対する長さの比が $1, \sqrt{2}, 2$ であるようなルートの全体を,それぞれ A, B, C と置く.

- (2) $2A = C \ \text{\reftag} \ \delta$.
- (3) Aに属する異なる二つのルートは、直交する.
- (4) $\Delta' = A \cup B$ と $\Delta'' = B \cup C$ は、V 上の被約な既約ルート系である.
- 証明 (1) Δ の二つのルートの長さの比は、 $1,\sqrt{2},\sqrt{3},2$ またはこれらの逆数のいずれかである(系 1.27). 一方で、 Δ は被約でないから、長さの比が 1:2 であるような二つのルートが存在する.以上から、主張が従う.
- $(2) \quad \Delta \text{ は被約でないから}, \ \alpha, \ 2\alpha \in \Delta \text{ を満たすルート} \ \alpha \text{ がとれ}, \ \alpha \in A \text{ かつ } 2\alpha \in C \text{ となる}. \ \beta \in A \text{ とすると}, \ s \in \mathbf{W}(\Delta) \text{ を} \ s(\alpha) = \beta \text{ となるようにとれるから} \ (命題 \ 1.28), \ 2\beta = s(2\alpha) \in C \text{ である}. \ 逆に, \ \gamma \in C \text{ とすると}, \ s \in \mathbf{W}(\Delta) \text{ を} \ s(2\alpha) = \gamma \text{ となるようにとれるから} \ (命題 \ 1.28), \ \gamma/2 = s(\alpha) \in A \text{ である}. \ \text{よって}, \ 2A = C \text{ である}.$
- (3) $\alpha, \beta \in A$ を異なる二つのルートとすると、(2) より $2\alpha \in C$ である. 2α と β の長さの比は 2:1 だから、定理 1.23 より、これらは直交する. よって、 α と β は直交する.
- (4) (2) より, $A \cup B = \{ \alpha \in \Delta \mid \alpha/2 \notin \Delta \}$, $B \cup C = \{ \alpha \in \Delta \mid 2\alpha \notin \Delta \}$ である.よって,主張は,命題 1.30 と注意 1.31 から従う.

1.8 ルート系の基底

定義 1.34(ルート系の基底) Δ を有限次元線型空間 V 上のルート系とする. $\Pi \subseteq \Delta$ がルート系 Δ の基底 (basis) であるとは、次の条件を満たすことをいう.

- (i) *II* は線型空間 *V* の基底である.
- (ii) 任意の $\alpha \in \Delta$ に対して, α を Π の元の線型結合として書くときの係数は,「すべて 0 以上の整数である」か「すべて 0 以下の整数である」かのいずれかである.

 Δ の基底 Π を固定するとき, Π の元を,**単純ルート**(simple root)という.ルートのうち, Π の元の線型結合として書くときの係数がすべて 0 以上の整数であるものを Π に関する**正ルート**(positive root)といい,すべて 0 以下の整数であるものを Π に関する**負ルート**(negative root)という. Π に関する正ルート,負ルートの全体を,それぞれ $\Delta_+(\Pi)$, $\Delta_-(\Pi)$ と書く.

定義から明らかに、ルート系の基底は、割れないルートのみからなる.

 Δ をルート系とすると、 Δ の自己同型は、基底を基底に移す.これにより、自己同型群 $\mathrm{Aut}(\Delta)$ は(したがって Weyl 群 $\mathbf{W}(\Delta)$ も)、 Δ の基底全体のなす集合に作用する.

命題 1.35 Δ をルート系とし, Π をその基底とする.異なる二つの単純ルート α , $\beta \in \Pi$ は,直角または鈍角をなす.

証明 基底の定義より $\beta - \alpha \notin \Delta \cup \{0\}$ だから、主張は系 1.26 (1) の対偶から従う.

本小節の以下の部分では、 Δ を有限次元線型空間 V 上のルート系とするとき、 $\alpha \in \Delta$ に関するルート鏡映の鏡映面を Σ_{α} と書く. すなわち、

$$\Sigma_{\alpha} = \operatorname{Ker} \alpha^{\vee} = \{ v \in V \mid \alpha^{\vee}(v) = 0 \}$$

である. $\langle -, - \rangle$ を V 上の $\mathbf{W}(\Delta)$ -不変な非退化対称双線型形式とすると、 $\langle \alpha, \alpha \rangle \neq 0$ かつ $\alpha^{\vee} = 2\langle -, \alpha \rangle / \langle \alpha, \alpha \rangle$ だから(系 1.8), Σ_{α} はこの非退化対称双線型形式に関する \mathbb{K}_{α} の直交空間となる.

定義 1.36(Weyl チャンバー) Δ を有限次元実線型空間 V 上のルート系とする. V の開集合 $V\setminus\bigcup_{\alpha\in\Delta}\Sigma_{\alpha}$ の各連結成分を, Δ の Weyl チャンバー (Weyl chamber) という.

 Δ を有限次元実線型空間上のルート系とすると, Δ の自己同型は,Weyl チャンバーを Weyl チャンバーに移す.これにより,自己同型群 $\mathrm{Aut}(\Delta)$ は(したがって,Weyl 群 $\mathbf{W}(\Delta)$ も), Δ の Weyl チャンバー全体のなす集合に作用する.

補題 1.37 実内積空間 V の元の族 $(v_i)_{i\in I}$ が、次の条件を満たすとする.

- (i) ある $w \in V \setminus \{0\}$ が存在して、任意の $i \in I$ に対して $\langle v_i, w \rangle > 0$ となる.
- (ii) 任意の異なる二つの元 $i, j \in I$ に対して、 $\langle v_i, v_j \rangle \leq 0$ である.

このとき, $(v_i)_{i \in I}$ は線型独立である.

証明 $I', I'' \subseteq I$ を互いに交わらない有限部分集合とし、各 $i \in I'$ に対して $a_i \ge 0$ 、各 $j \in I''$ に対して $b_j \ge 0$ を任意にとる。もし $\sum_{i \in I'} a_i v_i = \sum_{j \in I''} b_j v_j$ ならば、これを v と置くと、条件 (ii) より

$$||v||^2 = \left\langle \sum_{i \in I'} a_i v_i, \sum_{j \in I''} b_j v_j \right\rangle = \sum_{i \in I', j \in I''} a_i b_j \langle v_i, v_j \rangle \le 0$$

だから,

$$\sum_{i \in I'} a_i v_i = \sum_{j \in I''} b_j v_j = v = 0$$

である.条件 (i) の $w \in V \setminus \{0\}$ と上式の各辺との内積をとれば, $a_i = 0$ および $b_j = 0$ を得る.よって, $(v_i)_{i \in I}$ は線型独立である.

定理 1.38 Δ を有限次元実線型空間 V 上のルート系とする.

(1) Δ の基底 Π に対して、

$$C(\Pi) = \{v \in V \mid$$
任意の $\alpha \in \Pi$ に対して $\alpha^{\vee}(v) > 0\}$

は Δ の Weyl チャンバーである.

(2) Δ の Weyl チャンバー C に対して,

$$\Delta_+(C) = \{ \alpha \in \Delta \mid \alpha^{\vee}(C) \subseteq \mathbb{R}_{>0} \},$$
 $\Pi(C) = \{ \alpha \in \Delta_+(C) \mid \alpha \text{ id } \Delta_+(C) \text{ の重複を許す二つ以上の元の和としては書けない} \}$

と定めると、 $\Pi(C)$ は Δ の基底である.

(3) (1) と (2) の対応は互いに他の逆であり、 Δ の基底と Weyl チャンバーとの間の一対一対応を与える. さらに、この対応は、自己同型群 $\mathrm{Aut}(\Delta)$ の作用を保つ.

証明 V 上の $\mathbf{W}(\Delta)$ -不変な内積 $\langle -, - \rangle$ を一つ固定する(系 1.8). $\alpha \in \Delta$ と $v \in V$ に対して, $\alpha^{\vee}(v) = 2\langle v, \alpha \rangle / \langle \alpha, \alpha \rangle$ だから, $\alpha^{\vee}(v)$ と $\langle v, \alpha \rangle$ は同符号である.

(1) 内積を用いると,

$$C(\Pi) = \{v \in V \mid$$
任意の $\alpha \in \Pi$ に対して $\langle v, \alpha \rangle > 0\}$

と書ける. Π は V の基底だから, $C(\Pi)$ は連結である. $C(\Pi)$ の元と Π に関する正ルートとの内積は正であり, Π に関する負ルートとの内積は負だから, $C(\Pi)$ は

$$V\setminus\bigcup_{lpha\in \varDelta} \varSigma_{lpha}=\{v\in V\mid$$
 任意の $lpha\in \varDelta$ に対して $\langle v,lpha
angle \neq 0\}$

に含まれる。さらに、 $v' \in V \setminus \bigcup_{\alpha \in \Delta} \Sigma_{\alpha}$ が $C(\Pi)$ と同じ連結成分に含まれるならば、任意の $\alpha \in \Delta$ に対して $\langle v', \alpha \rangle$ と $\langle v, \alpha \rangle$ ($v \in C(\Pi)$) は同符号だから、 $v' \in C(\Pi)$ である。よって、 $C(\Pi)$ は $V \setminus \bigcup_{\alpha \in \Delta} \Sigma_{\alpha}$ の一つの連結成分、すなわち Weyl チャンバーである。

(2) α^{\vee} の符号は各 Weyl チャンバー上で一定だから、 $v_0 \in C$ を一つ固定すると

$$\Delta_{+}(C) = \{ \alpha \in \Delta \mid \langle v_0, \alpha \rangle > 0 \} \tag{*}$$

と書ける. $\alpha \in \Delta_+(C)$ とすると、それが $\Pi(C)$ に属していない限り $\alpha = \alpha_1 + \dots + \alpha_k$ $(k \geq 2, \alpha_1, \dots, \alpha_k \in \Delta_+(C))$ と分解でき、各 α_i に対しても同じことがいえる。各 i に対して $\langle v_0, \alpha_i \rangle < \langle v_0, \alpha \rangle$ だから、この操作は有限回で終了する。よって、 $\Delta_+(C)$ に属するルートは、 $\Pi(C)$ の元の 0 以上の整数を係数とする線型結合で書ける。 $\Delta = \Delta_+(C) \cup (-\Delta_+(C))$ だから、残りのルートは、 $\Pi(C)$ の元の 0 以下の整数を係数とする線型結合で書ける。

前段の結果から, $\Pi(C)$ が V を張ることもわかる.あとは, $\Pi(C)$ が線型独立であることを示せばよい.そのためには, $\Pi(C)$ が補題 1.37 の条件を満たすことをいえばよい.条件 (i) は,(*) より満たされる.条件 (ii) が満たされないとすると,ある α , $\beta \in \Pi(C)$ に対して $\langle \alpha, \beta \rangle \leq 0$ となるが,このとき系 1.26 より $\beta - \alpha \in \Delta$ である.したがって, $\beta - \alpha$ または $\alpha - \beta$ が $\Delta_+(C)$ に属することになるが,いずれにしても α , $\beta \in \Pi(C)$ に矛盾する.よって,背理法より,条件 (ii) は満たされる.

(3) Π を Δ の基底とすると、容易にわかるように $\Delta_+(\Pi)\subseteq \Delta_+(C(\Pi))$ だが、 $\Delta_+(\Pi)$ と $\Delta_-(\Pi)=-\Delta_+(\Pi)$, $\Delta_+(C(\Pi))$ と $-\Delta_+(C(\Pi))$ はともに Δ の分割を与えるから、 $\Delta_+(\Pi)=\Delta_+(C(\Pi))$ である. したがって、 $\Pi(C(\Pi))$ は $\Delta_+(\Pi)$ の元のうち $\Delta_+(\Pi)$ の重複を許す二つ以上の元の和としては書けないもの全体だが、正ルートの定義よりこれは Π に等しい. また,C を Δ の Weyl チャンバーとすると、容易にわかるように $C\subseteq C(\Pi(C))$ であり,C と $C(\Pi(C))$ はともに $V\setminus\bigcup_{\alpha\in\Delta}\Sigma_\alpha$ の連結成分だから $C=C(\Pi(C))$ である.よって、(1) と (2) の対応は互いに他の逆であり, Δ の基底と Weyl チャンバーとの間の一対一対応を与える.

 $t \in \operatorname{Aut}(\Delta)$ とすると、 Δ の基底 Π に対して、

$$C(t(\Pi)) = \{v \in V \mid \text{任意の } \alpha \in \Pi \text{ に対して } t(\alpha)^{\vee}(v) > 0\}$$

= $\{v \in V \mid \text{任意の } \alpha \in \Pi \text{ に対して } \alpha^{\vee}(t^{-1}(v)) > 0\}$
= $t(C(\Pi))$

である(補題 1.12).よって,上記の対応は,自己同型群 $\mathrm{Aut}(\Delta)$ の作用を保つ.

系 1.39 任意のルート系は、基底をもつ.

証明 一般性を失わず, $\mathbb{K}=\mathbb{R}$ と仮定する(命題 1.7). このとき基底の存在は,定理 1.38 から従う. \square

 Δ を有限次元線型空間 V 上のルート系とし, Π をその基底(系 1.39 より存在する)とすると, Δ が生成する V の部分 \mathbb{Z} -加群 $\operatorname{span}_{\mathbb{Z}}\Delta$ は, Π を基底とする格子 $\operatorname{span}_{\mathbb{Z}}\Pi$ に等しい.これを,ルート系 Δ の**ルート格 子** (root lattice) という.

1.9 基底と Weyl 群

補題 1.40 Δ をルート系とし, Π をその基底とする.単純ルート $\alpha\in\Pi$ に関する鏡映 s_{α} は, $\Delta_{+}(\Pi)\setminus\mathbb{K}\alpha$ 上の置換を引き起こす.

証明 $\beta \in \Delta_+(\Pi) \setminus \mathbb{K}\alpha$ とする. $s_{\alpha}(\beta) \notin \mathbb{K}\alpha$ は明らかである. $\beta = \sum_{\gamma \in \Pi} a_{\gamma} \gamma$ (各 a_{γ} は 0 以上の整数) と表すと,ある $\gamma \in \Pi \setminus \{\alpha\}$ が存在して $a_{\gamma} > 0$ となる.ここで,

$$s_{\alpha}(\beta) = \sum_{\gamma \in \Pi} a_{\gamma}(\gamma - n(\gamma, \alpha)\alpha) = \sum_{\gamma \in \Pi} a_{\gamma}\gamma - \left(\sum_{\gamma \in \Pi} n(\gamma, \alpha)\right)\alpha$$

だから、 $s_{\alpha}(\gamma)$ を Π の元の線型結合で表すときの γ の係数も $a_{\gamma}>0$ である.これより、 $s_{\alpha}(\beta)\in\Delta_{+}(\Pi)$ である.よって、 s_{α} は、 $\Delta_{+}(\Pi)\setminus\mathbb{K}\alpha$ 上の置換を引き起こす.

系 1.41 Δ をルート系とし, Π をその基底とする. Π に関する割れない正ルート全体の和の 1/2 倍を ρ と置くと,任意の単純ルート $\alpha \in \Pi$ に対して, $s_{\alpha}(\rho) = \rho - \alpha$ である.

証明 Π に関する割れない正ルート全体のなす集合を, $\Delta_+(\Pi)'$ と置く. s_α は, $\Delta_+(\Pi)\setminus \mathbb{K}\alpha$ 上の置換を引き起こし(補題 1.40),割れないルートを割れないルートに移すから, $\Delta_+(\Pi)'\setminus \{\alpha\}$ 上の置換を引き起こす.よって,

$$s_{\alpha}(\rho) = \frac{1}{2} \left(\sum_{\beta \in \Delta_{+}(\Pi)' \setminus \{\alpha\}} s_{\alpha}(\beta) + s_{\alpha}(\alpha) \right) = \frac{1}{2} \left(\sum_{\beta \in \Delta_{+}(\Pi)' \setminus \{\alpha\}} \beta - \alpha \right) = \rho - \alpha$$

である.

補題 1.42 Δ をルート系とし, Π をその基底とする。 $s=s_{\alpha_1}\cdots s_{\alpha_k}$ $(k\geq 1,\ \alpha_1,\ldots,\alpha_k\in\Pi)$ とし,s は k 個未満の $\{s_{\alpha}\mid \alpha\in\Pi\}$ の元の合成としては書けないとする。このとき, $s(\alpha_k)$ は Π に関する負ルートである.

証明 $s(\alpha_k) = -s_{\alpha_1} \cdots s_{\alpha_{k-1}}(\alpha_k)$ が正ルートであると仮定すると、 $s_{\alpha_1} \cdots s_{\alpha_{k-1}}(\alpha_k)$ は負ルートだから、 $1 \leq i \leq k-1$ を適当にとって、 $\beta = s_{\alpha_{i+1}} \cdots s_{\alpha_{k-1}}(\alpha_k)$ は負ルートだが $s_{\alpha_i}(\beta) = s_{\alpha_i} \cdots s_{\alpha_{k-1}}(\alpha_k)$ は正ルートであるようにできる.一方で、 s_{α_i} は $\mathbb{K}\alpha_i$ に属さない正ルートを正ルートに移す(補題 1.40). したがって、 $\beta \in \mathbb{K}\alpha_i$ でなければならないから、

$$s_{\alpha_i} = s_{\beta} = s_{s_{\alpha_{i+1}} \cdots s_{\alpha_{k-1}}(\alpha_k)} = s_{\alpha_{i+1}} \cdots s_{\alpha_{k-1}} s_{\alpha_k} s_{\alpha_{k-1}} \cdots s_{\alpha_{i+1}}$$

となり (補題 1.12)、移項すれば

$$s_{\alpha_i} \cdots s_{\alpha_k} = s_{\alpha_{i+1}} \cdots s_{\alpha_{k-1}}$$

を得る.これより $s=s_{\alpha_1}\cdots s_{\alpha_k}=s_{\alpha_1}\cdots s_{\alpha_{i-1}}s_{\alpha_{i+1}}\cdots s_{\alpha_{k-1}}$ となるが,これは k の最小性に矛盾する.よって,背理法より, $s(\alpha_k)$ は負ルートである.

定理 1.43 Δ を有限次元線型空間 V 上のルート系とする.

- (1) Weyl 群 $\mathbf{W}(\Delta)$ は、 Δ の基底全体のなす集合に自由かつ推移的に作用する.
- (2) Π を Δ の基底とすると、 $\mathbf{W}(\Delta)\Pi$ は Δ の割れないルート全体に等しい.
- (3) Π を Δ の基底とすると、Weyl 群 $\mathbf{W}(\Delta)$ は $\{s_{\alpha} \mid \alpha \in \Pi\}$ によって生成される.

証明 一般性を失わず, $\mathbb{K} = \mathbb{R}$ であり,V に $\mathbf{W}(\Delta)$ -不変な内積 $\langle -, - \rangle$ が定まっていると仮定する(命題 1.7,系 1.8). Δ の基底 Π を一つ固定し(系 1.39 より存在する), $\{s_{\alpha} \mid \alpha \in \Pi\}$ が生成する $\mathbf{W}(\Delta)$ の部分群を $\mathbf{W}'(\Delta)$ と置く.まず (1), (2) で $\mathbf{W}(\Delta)$ を $\mathbf{W}'(\Delta)$ に置き換えた主張 (1'), (2') を示し,次に (2') を用いて (3) を示す.

(1') $\mathbf{W}'(\Delta)$ の Δ の基底全体のなす集合への作用が推移的であることを示す。定理 1.38 より, $\mathbf{W}'(\Delta)$ の Δ の Weyl チャンバー全体の集合への作用が推移的であることを示せばよい。 Π に関する正ルートであって 割れないもの全体の和の 1/2 倍を, ρ と置く。点 $v \in V \setminus \bigcup_{\alpha \in \Delta} \Sigma_{\alpha}$ を任意にとり,これに対して, $s \in \mathbf{W}'(\Delta)$ を $\langle s(v), \rho \rangle$ が最大となるようにとる。すると,任意の $\alpha \in \Pi$ に対して,

$$\langle s(v), \rho \rangle \ge \langle s_{\alpha}s(v), \rho \rangle = \langle s(v), s_{\alpha}(\rho) \rangle = \langle s(v), \rho \rangle - \langle s(v), \alpha \rangle$$

(最後の等号で系 1.41 を用いた) より $\langle s(v),\alpha\rangle \geq 0$ であり、また $v\notin \Sigma_{s^{-1}(\alpha)}$ より $\langle s(v),\alpha\rangle = \langle v,s^{-1}(\alpha)\rangle \neq 0$ だから、 $\langle s(v),\alpha\rangle > 0$ である. したがって、 $s(v)\in C(\Pi)$ であり、これは v を含む Weyl チャンバーが s の作用で $C(\Pi)$ に移ることを意味する. よって、 $\mathbf{W}'(\Delta)$ の Δ の Weyl チャンバー全体のなす集合への作用は推移的である.

次に、 $\mathbf{W}'(\Delta)$ の Δ の基底全体のなす集合への作用が自由であることを示す。前段で推移性を示したから、 $s \in \mathbf{W}'(\Delta) \setminus \{\mathrm{id}_V\}$ として $s(\Pi) \neq \Pi$ を示せば十分である。 $s = s_{\alpha_1} \cdots s_{\alpha_k} \ (k \geq 1, \ \alpha_1, \ldots, \alpha_k \in \Pi)$ と k が最小になる方法で表示すると、補題 1.42 より $s(\alpha_k)$ は負ルートだから、特に $s(\Pi) \neq \Pi$ である。これで、主張が示された。

(2') (1') より, Δ のすべての基底の合併が Δ の割れないルート全体に等しいことを示せばよい. Δ の基底の元がすべて割れないルートであることは,基底の定義から明らかである.任意の割れないルート $\alpha\in\Delta$

が Δ のある基底に含まれることを示す. 点 $v_0 \in V$ を

$$\langle v_0, \alpha \rangle = 0, \qquad \langle v_0, \beta \rangle \neq 0 \quad (\beta \in \Delta \setminus \mathbb{R}\alpha)$$

となるようにとり、さらに $\epsilon > 0$ を十分小さくとって

$$\langle v_0 + \epsilon \alpha, \alpha \rangle > 0, \qquad |\langle v_0 + \epsilon \alpha, \beta \rangle| > \langle v_0 + \epsilon \alpha, \alpha \rangle \quad (\beta \in \Delta \setminus \mathbb{R}\alpha)$$

が成り立つようにする。すると、 $v_0+\epsilon\alpha\in V\setminus\bigcup_{\beta\in\Delta}\mathrm{Ker}\,\Sigma_\beta$ だから、 $v_0+\epsilon\alpha$ を含む Weyl チャンバー C がとれる。以下、定理 1.38 の記号 $\Delta_+(C)$ 、 $\Pi(C)$ を用いる。 $\langle v_0+\epsilon\alpha,\alpha\rangle>0$ だから、 $\alpha\in\Delta_+(C)$ である。また、 $\alpha=\beta_1+\dots+\beta_k$ $(k\geq 1,\ \beta_1,\dots,\beta_k\in\Delta_+(C))$ とすると、 $\langle v_0+\epsilon\alpha,\alpha\rangle=\langle v_0+\epsilon\alpha,\beta_1\rangle+\dots+\langle v_0+\epsilon\alpha,\beta_k\rangle$ だが、任意の $\beta\in\Delta_+(C)\setminus\mathbb{R}\alpha$ に対して $\langle v_0+\epsilon\alpha,\beta\rangle>\langle v_0+\epsilon\alpha,\alpha\rangle$ だから、 $\beta_1,\dots,\beta_k\in\Delta_+(C)\cap\mathbb{R}\alpha$ でなければならない。さらに、 α は割れないルートだから、k=1 かつ $\beta_1=\alpha$ でなければならない。よって、 $\alpha\in\Pi(C)$ である。これで、主張が示された。

(3) 任意の割れないルート $\alpha \in \Delta$ に対して,(2') よりある $t \in \mathbf{W}'(\Delta)$ が存在して $t(\alpha) \in \Pi$ となり,このとき, $s_{\alpha} = t^{-1}s_{t(\alpha)}t \in \mathbf{W}'(\Delta)$ である(補題 1.12).よって, $\mathbf{W}'(\Delta) = \mathbf{W}(\Delta)$ である.

系 1.44 Δ_1 , Δ_2 をそれぞれ有限次元線型空間 V_1 , V_2 上の被約ルート系とし, Π_1 , Π_2 をそれぞれ Δ_1 , Δ_2 の基底とする.全単射 ϕ : $\Pi_1 \to \Pi_2$ が,任意の α , $\beta \in \Pi_1$ に対して $n(\phi(\beta), \phi(\alpha)) = n(\beta, \alpha)$ を満たすならば, ϕ はルート系 Δ_1 から Δ_2 への同型に一意に拡張される.

証明 Π_1, Π_2 はそれぞれ V_1, V_2 の基底だから, ϕ は線型同型写像 $\Phi: V_1 \to V_2$ に一意に拡張される.仮定より, $\alpha, \beta \in \Pi_1$ に対して

$$\begin{split} \varPhi(s_{\alpha}(\beta)) &= \varPhi(\beta - n(\beta, \alpha)\alpha) \\ &= \phi(\beta) - n(\beta, \alpha)\phi(\alpha) \\ &= \phi(\beta) - n(\phi(\beta), \phi(\alpha))\phi(\alpha) \\ &= s_{\phi(\alpha)}(\phi(\beta)) \end{split}$$

だから、 $\alpha \in \Pi_1$ に対して

$$\Phi \circ s_{\alpha} = s_{\phi(\alpha)} \circ \Phi$$

である. したがって、線型同型写像 Φ を通して Weyl 群 $\mathbf{W}(\Delta_1)$ と $\mathbf{W}(\Delta_2)$ が対応するから(定理 1.38 (3))、 定理 1.43 (2) と合わせて、

$$\Phi(\Delta_1) = \Phi(\mathbf{W}(\Delta_1)\Pi_1) = \mathbf{W}(\Delta_2)\Pi_2 = \Delta_2$$

を得る. よって, Φ はルート系 Δ_1 から Δ_2 への同型である.

命題 1.45 Δ をルート系とし, Π をその基底とする.次の条件は同値である.

- (a) Δ は既約である.
- (b) $\Pi \neq \emptyset$ であり、 Π を互いに直交する二つの空でない部分に分割することはできない.

証明 明らかに、 $\Delta = \emptyset$ と $\Pi = \emptyset$ とは同値である。以下、これ以外の場合を考える。

 $(b)\Longrightarrow (a)$ 対偶を示す. Δ が可約であるとして、ルート系の直和分解 $\Delta=\Delta_1\sqcup\Delta_2$ であって Δ_1 、 Δ_2 が空でないものをとる. $i\in\{1,2\}$ に対して $\Pi_i=\Pi\cap\Delta_i$ と置くと、これらは空でなく、 Δ_1 と Δ_2 は直交する(命題 1.17)から Π_1 と Π_2 も直交する.これで、主張の対偶が示された.

 $(a) \Longrightarrow (b)$ 対偶を示す。 Π が互いに直交する二つの空でない部分 Π_1 , Π_2 に分割されているとする。 $i \in \{1,2\}$ に対して $\Delta_i = \mathbf{W}(\Delta)\Pi_i \neq \emptyset$ と置く。すると,定理 1.43 (2) より $\Delta = \Delta_1 \cup \Delta_2$ である。また, $\alpha \in \Pi_1$ に対して s_α は $\operatorname{span}_{\mathbb{K}} \Pi_1$ を安定にし, $\beta \in \Pi_2$ に対して s_β は $\operatorname{span}_{\mathbb{K}} \Pi_1$ の点を動かさないから(Π_1 と Π_2 が直交することによる),定理 1.43 (3) と合わせて $\Delta_1 \subseteq \operatorname{span}_{\mathbb{K}} \Pi_1$ を得る。同様に, $\Delta_2 \subseteq \operatorname{span}_{\mathbb{K}} \Pi_2$ である。よって, $\Delta = \Delta_1 \sqcup \Delta_2$ はルート系の直和分解である。これで,主張の対偶が示された.

2 分類

2.1 Cartan 行列と Dynkin 図形

定義 2.1(Cartan 行列) Δ をルート系とし, Π をその基底とする.行列 $(n(\beta,\alpha))_{(\beta,\alpha)\in\Pi\times\Pi}$ を, (Δ,Π) の **Cartan 行列**(Cartan matrix)という.

命題 2.2 ルート系 Δ とその基底 Π に対して, (Δ, Π) の Cartan 行列は正則である.

証明 $\mathbf{W}(\Delta)$ -不変な非退化対称双線型形式 $\langle -, - \rangle$ を固定すると, α , $\beta \in \Delta$ に対して $n(\beta, \alpha) = 2\langle \beta, \alpha \rangle / \langle \alpha, \alpha \rangle$ である(系 1.8). Π が V の基底であることより,行列 $(\langle \beta, \alpha \rangle)_{(\beta, \alpha) \in \Pi \times \Pi}$ は正則だから,Cartan 行列 $(n(\beta, \alpha))_{(\beta, \alpha) \in \Pi \times \Pi}$ も正則である.

Cartan 行列を視覚的に表すものとして、Dynkin 図形を導入する. そのための準備として、次の用語を定義する.

定義 2.3(不等号付き多重グラフ) **不等号付き多重グラフ***2 とは、次の条件を満たす組 (Γ, c) をいう.

- (i) Γ は多重グラフである.
- (ii) c は, Γ において 2 重以上の辺で結ばれている 2 頂点の集合 $\{\alpha,\beta\}$ に対して, α と β のいずれかを対応させる写像である.

不等号付き多重グラフ (Γ,c) は,多重グラフ Γ を表す図において,2 重以上の辺に,c によって選ばれた頂点のほうが「大きい」とする不等号を書き込むことで表される.たとえば,頂点 α と β が Γ において 3 重辺で結ばれており, $c(\{\alpha,\beta\})=\beta$ であるとき,不等号付き多重グラフ (Γ,c) における頂点 α と β は,次のように表される.

 Δ をルート系とし, Π をその基底とする.異なる二つの単純ルート α , $\beta \in \Pi$ に対して, $(n(\alpha,\beta),n(\beta,\alpha))$ は (0,0),(-1,-1),(-1,-2),(-2,-1),(-1,-3),(-3,-1) のいずれかだから(定理 1.23,命題 1.35), $n(\alpha,\beta)n(\beta,\alpha)$ は 0,1,2,3 のいずれかである.また,定理 1.23 と注意 1.24(1)より,

$$\alpha \ \ \ \ \, \beta \ \ \, \ddot{n}$$
直交しない $\iff n(\alpha,\beta)n(\beta,\alpha) \geq 1,$ $\alpha \ \ \ \, \beta \ \ \, \ddot{n}$ 直交せず,異なる長さをもつ $\iff n(\alpha,\beta)n(\beta,\alpha) \geq 2$

である(「異なる長さをもつ」の意味については,系 1.27 を参照のこと).以上を踏まえて,次のように定義する.

^{*2 「}不等号付き多重グラフ」は、本稿だけの用語である.

表 1 Dynkin 図形の辺と不等号

$n(\alpha, \beta)$	$n(\beta, \alpha)$	Dynkin 図形における頂点 α と β
0	0	$egin{array}{ccc} lpha & eta \ ullet & ullet \end{array}$
-1	-1	•—•
-1	-2	•—
-2	-1	•
-1	-3	
	-1	

定義 2.4(Dynkin 図形) ルート系 Δ とその基底 Π に対して、次のように定まる不等号付きグラフ (Γ,c) を、 (Δ,Π) の Dynkin 図形(Dynkin diagram)という(表 1 も参照のこと).

- (i) Γ は, Π を頂点集合とし,異なる二つの単純ルート α , $\beta \in \Pi$ を $n(\alpha,\beta)n(\beta,\alpha)$ 本の辺で結んで得られる多重グラフである.
- (ii) c は, Γ において 2 重以上の辺で結ばれている 2 頂点の集合 $\{\alpha,\beta\}$ に対して, α と β のうち長いほうを対応させる写像である.

命題 2.5 ルート系 Δ とその基底 Π に対して、次の条件は同値である.

- (a) Δ は既約である.
- (b) (Δ, Π) の Dynkin 図形は連結である.

証明 命題 1.45 のいいかえにすぎない.

定理 1.43 と系 1.44 より、被約なルート系の同型類は Cartan 行列の同型類と一対一に対応し、したがって、Dynkin 図形の同型類とも一対一に対応する. さらに、命題 2.5 より、その中で、被約な既約ルート系の同型類と連結 Dynkin 図形の同型類が一対一に対応する. よって、被約な既約ルート系を分類するためには、連結 Dynkin 図形としてありうるものを絞り込んだ上で、それらの連結 Dynkin 図形に対応する既約ルート系が構成できるかどうかを考えればよい.

2.2 Dynkin 図形の分類

 Δ は有限次元実内積空間 V 上のルート系であり,その内積は $\mathbf{W}(\Delta)$ -不変であるとする。 Π を Δ の基底とすると,

- Π は V の基底だから、特に線型独立である.
- 任意の $\alpha, \beta \in \Pi$ に対して、 $\langle \alpha, \beta \rangle \leq 0$ である(命題 1.35).
- (Δ, Π) の Dynkin 図形において, α と β を結ぶ辺の本数は

$$n(\alpha, \beta)n(\beta, \alpha) = \frac{2\langle \alpha, \beta \rangle}{\langle \beta, \beta \rangle} \cdot \frac{2\langle \beta, \alpha \rangle}{\langle \alpha, \alpha \rangle} = 4 \left\langle \frac{\alpha}{\|\alpha\|}, \frac{\beta}{\|\beta\|} \right\rangle^2$$

であり (系 1.8(2)), これは 0, 1, 2, 3 のいずれかである (定理 1.23).

これを踏まえて、次のように定義する.

定義 2.6(許容可能なベクトルの集合) V を有限次元実内積空間とする. 単位ベクトルの集合 S が**許容可能** (admissible) であるとは、次の条件を満たすことをいう.

- (i) S は線型独立である.
- (ii) 任意の異なる二つの元 $v, w \in S$ に対して、 $\langle v, w \rangle \leq 0$ かつ $4\langle v, w \rangle^2 \in \{0, 1, 2, 3\}$ である(あるいは同値だが、 $\angle(v, w) \in \{90^\circ, 120^\circ, 135^\circ, 150^\circ\}$ である).

定義 2.7(許容可能な多重グラフ) 許容可能な単位ベクトルの集合 S に対して、多重グラフ $\Gamma(S)$ を、S を頂点集合とし、異なる 2 頂点 $v,w\in S$ が $4\langle v,w\rangle^2$ 本の辺で結ばれるものとして定める。多重グラフ Γ は、ある許容可能な単位ベクトルの集合 S に対する $\Gamma(S)$ に同型であるとき、**許容可能**(admissible)であるという.

注意 2.8 Δ を有限次元線型空間 V 上のルート系, Π をその基底とし, (Γ,c) を (Δ,Π) の Dynkin 図形とする. Δ を有限次元実線型空間 $V_{\mathbb{R}} = V_{\mathbb{Q}} \otimes_{\mathbb{Q}} \mathbb{R}$ $(V_{\mathbb{Q}} = \operatorname{span}_{\mathbb{Q}} \Delta)$ 上のルート系とみなし(命題 1.7), $V_{\mathbb{R}}$ 上の $\mathbf{W}(\Delta)$ -不変な内積 $\langle -, - \rangle$ を固定する(系 1.8 (1)).このとき,

$$S = \left\{ \frac{\alpha}{\|\alpha\|} \mid \alpha \in \Pi \right\}$$

は許容可能な単位ベクトルの集合であり、対応する多重グラフ $\Gamma(S)$ は Γ に等しい。よって、 Γ は許容可能である。

以下,許容可能な連結多重グラフを分類する.

補題 2.9 許容可能な多重グラフは、(長さ3以上の)サイクルを含まない.

証明 S を許容可能な単位ベクトルの集合とし, $\Gamma(S)$ において $S_0 \subseteq S$ がサイクルをなすとする. $v,w \in S_0$ を異なる 2 頂点とすると $\langle v,w \rangle \leq 0$ だが, S_0 に属する頂点どうしを結ぶ辺は少なくとも $\#S_0$ 本あるから,このうち少なくとも $2\#S_0$ 組の (v,w) (順序を考慮するため 2 倍になる)に対して $\langle v,w \rangle \leq -1/2$ である. したがって.

$$\left\| \sum_{v \in S_0} v \right\|^2 = \#S_0 + \sum_{v, w \in S_0, \ v \neq w} \langle v, w \rangle \le \#S_0 + 2\#S_0 \cdot \left(-\frac{1}{2} \right) = 0$$

であり、 $\sum_{v \in S_0} v = 0$ を得るが、これは S が線型独立であることに反する.よって、背理法より、 $\Gamma(S)$ はサイクルを含まない.

補題 2.10 許容可能な多重グラフにおいて、各頂点の次数(その頂点から伸びている辺の本数)は 3 以下である.

証明 S を許容可能な単位ベクトルの集合とする. $v \in S$ とし, $\Gamma(S)$ において v と辺で結ばれている頂点全体の集合を S_v と置く.補題 2.9 より, S_v に属するどの 2 頂点も辺で結ばれていないから, S_v は正規直交系をなす.S が線型独立であることより $v \notin \operatorname{span}_{\mathbb{R}} S_v$ だから,

$$4 \sum_{w \in S_v} \langle v, w \rangle^2 < 4 ||v||^2 = 4$$

表 2 許容可能な連結多重グラフの分類

である.頂点 v と w は $4\langle v,w\rangle^2$ 本の辺で結ばれているから,上式は,頂点 v の次数が 3 以下であることを示す.

補題 2.11 Γ を許容可能な多重グラフとする. v_0,\ldots,v_k $(k\in\mathbb{N})$ は Γ の異なる頂点の列であり,各 $1\leq i\leq k-1$ に対して, v_i は v_{i-1} および v_{i+1} とそれぞれちょうど 1 本の辺で結ばれ,それ以外の頂点とは 辺で結ばれていないとする.このとき, v_0,\ldots,v_k を一つの頂点に潰して得られる多重グラフ Γ' は,また許容可能である.

証明 Γ は,許容可能な単位ベクトルの集合 S に対応する多重グラフ $\Gamma(S)$ であるとしてよい. $v=v_0+\cdots+v_k,\ S'=(S\setminus\{v_0,\ldots,v_k\})\cup\{v\}$ と置く(S は線型独立だから, $v\notin S$ である). すると,

- S は線型独立だから、S' も線型独立である.
- ・ $\|v\|^2 = \sum_{0 < i, j < k} \langle v_i, v_j \rangle = k (k-1) = 1$ である.
- 任意の $w \in S' \setminus \{v\}$ について、仮定より $\langle v_i, w \rangle = 0$ $(1 \le i \le k-1)$ であり、補題 2.9 より $\langle v_0, w \rangle$ と $\langle v_k, w \rangle$ のうち少なくとも一方は 0 である.したがって、 $\langle v, w \rangle = \sum_{i=0}^k \langle v_k, w \rangle$ は 0 または $\langle v_0, w \rangle$ または $\langle v_k, w \rangle$ に等しく、いずれにしても $\langle v, w \rangle \le 0$ かつ $4\langle v, w \rangle^2 \in \{0, 1, 2, 3\}$ である.

よって,S' は許容可能な単位ベクトルの集合であり,対応する多重グラフ $\Gamma(S')$ は Γ' に同型である.よって, Γ' は許容可能である.

定理 2.12 (許容可能な連結多重グラフの分類) 許容可能な連結多重グラフは、表 2 に挙げたもののいずれかただ一つに同型である.

証明 S を許容可能な単位ベクトルの集合とし、 $\Gamma = \Gamma(S)$ と置く. Γ は連結であるとする.

- (I) Γ が 3 重辺をもつ場合,補題 2.10 より, Γ は G_2 に同型である.
- (II) Γ が 3 重辺をもたず 2 重辺をもつ場合,2 重辺はただ一つであり,2 重辺の両端以外に次数 3 以上の頂点は存在しない(存在するとすると,補題 2.11 の操作により次数 4 以上の頂点を作ることができ,補題 2.10 に反する). したがって, Γ は次の形である($1 \le p \le q$).

$$u_1$$
 u_2 u_p v_q v_2 v_1

ここで,

$$u = \sum_{i=1}^{p} iu_i, \qquad v = \sum_{i=1}^{q} iv_i$$

と置くと,

$$\|u\|^2 = \sum_{i=1}^p i^2 - \sum_{i=1}^{p-1} i(i+1) = \frac{p(p+1)}{2},$$
 同様に $\|v\|^2 = \frac{q(q+1)}{2},$ $\langle u, v \rangle^2 = \frac{p^2 q^2}{2}$

である. u と v が線型独立であることと Cauchy–Schwarz の不等式より $\langle u,v \rangle^2 < \|u\|^2 \|v\|^2$ だから,

$$\frac{p^2q^2}{2} < \frac{p(p+1)}{2} \cdot \frac{q(q+1)}{2}$$

である.これを整理すると pq < p+q+1 となり,これを満たす (p,q) は,(1,l-1) $(l \ge 2$ は任意),(2,2) のみである.それぞれの場合, Γ は $B_l = C_l$, F_4 に同型である.

(III) Γ が 1 重辺のみをもつ場合,次数 3 以上の頂点はたかだか一つである(二つ以上あるとすると,補題 2.11 の操作により次数 4 以上の頂点を作ることができ,補題 2.10 に反する).次数 3 の頂点が存在しなければ, Γ はある A_l ($l \ge 1$) に同型である.次数 3 の頂点が存在すれば, Γ は次の形である($2 \le p \le q \le r$).

ここで,

$$u = \sum_{i=1}^{p-1} iu_i, \qquad v = \sum_{i=1}^{q-1} iv_i, \qquad w = \sum_{i=1}^{r-1} iw_i$$

と置くと、u, v, w は直交系であり、(II) と同じ計算により

$$||u||^2 = \frac{p(p-1)}{2},$$
 $||v||^2 = \frac{q(q-1)}{2},$ $||w||^2 = \frac{r(r-1)}{2},$ $\langle u, x \rangle^2 = \frac{(p-1)^2}{4},$ $\langle v, x \rangle^2 = \frac{(q-1)^2}{4},$ $\langle w, x \rangle^2 = \frac{(r-1)^2}{4}$

表 3 連結 Dynkin 図形の分類

型 (1は頂点数)	Dynkin 図形
$A_l \ (l \ge 1)$	•—•
$B_l \ (l \ge 2)$	• • • • • • • • • • • • • • • • • • • •
$C_l \ (l \ge 3)$	• • • • • • • • • • • • • • • • • • • •
$D_l \ (l \ge 4)$	
E_{6}	••••
E_{7}	• • • • • • • • • • • • • • • • • • • •
E_8	
F_4	• • •
G_2	=

を得る. したがって, $x \notin \operatorname{span}_{\mathbb{R}}\{u,v,w\}$ と合わせて,

$$\begin{split} 1 &= \|x\|^2 > \left\langle \frac{u}{\|u\|}, x \right\rangle^2 + \left\langle \frac{v}{\|v\|}, x \right\rangle^2 + \left\langle \frac{w}{\|w\|}, x \right\rangle^2 \\ &= \frac{(p-1)^2/4}{p(p-1)/2} + \frac{(q-1)^2/4}{q(q-1)/2} + \frac{(r-1)^2/4}{r(r-1)/2} \\ &= \frac{1}{2} \left(3 - \frac{1}{p} - \frac{1}{q} - \frac{1}{r} \right) \end{split}$$

を得る. これを整理すると 1/p+1/q+1/r>1 となり、これを満たす (p,q,r) は、(2,2,l-2) $(l\geq 4$ は任意)、(2,3,3)、(2,3,4)、(2,3,5) のみである. それぞれの場合、 Γ は D_l 、 E_6 、 E_7 、 E_8 に同型である.

定理 2.13(連結 Dynkin 図形の分類) 許容可能な連結多重グラフは,表 3 に挙げたもののいずれかただ一つに同型である.

証明 (Γ,c) を連結 Dynkin 図形とすると, Γ は許容可能な連結多重グラフである(注意 2.8).許容可能な連結多重グラフ Γ は定理 2.12 で分類されており,対応する c としてありうるものは,同型を除いて,表 3 に挙げたもので尽くされる.よって,連結 Dynkin 図形は,表 3 に挙げたもののいずれかただ一つに同型である.

表 3 に従って、 \mathbf{A}_l $(l \ge 1)$, \mathbf{B}_l $(l \ge 2)$, \mathbf{C}_l $(l \ge 3)$, \mathbf{D}_l $(l \ge 4)$, \mathbf{E}_6 , \mathbf{E}_7 , \mathbf{E}_8 , \mathbf{F}_4 , \mathbf{G}_2 型の Dynkin 図形を定める. 便宜上、 \mathbf{A}_1 型を \mathbf{B}_1 型や \mathbf{C}_1 型、 \mathbf{B}_2 型を \mathbf{C}_2 型、 \mathbf{A}_1 型の二つの直和を \mathbf{D}_2 型、 \mathbf{A}_3 型を \mathbf{D}_3 型ともいう. \mathbf{A}_l $(l \ge 1)$, \mathbf{B}_l $(l \ge 1)$, \mathbf{C}_l $(l \ge 1)$, \mathbf{D}_l $(l \ge 2)$, \mathbf{E}_6 , \mathbf{E}_7 , \mathbf{E}_8 , \mathbf{F}_4 , \mathbf{G}_2 型のルート系とは、被約なルート系で

あって、対応する型の Dynkin 図形をもつものをいう.これらは、 D_2 型のルート系を除いては、既約である.

2.3 被約な既約ルート系の構成と分類

本節では,定理 2.13 で示した連結 Dynkin 図形に対応する被約な既約ルート系を,具体的に構成する.以下, \mathbb{K}^n の標準基底を $(\epsilon_1,\ldots,\epsilon_n)$ と書く.構成は, \mathbb{K}^n あるいはその部分線型空間上で行い,標準的な対称双線型形式 $(\sum_{i=1}^n a_i \epsilon_i, \sum_{i=1}^n b_i \epsilon_i) \mapsto \sum_{i=1}^n a_i b_i$ が Weyl 群 $\mathbf{W}(\Delta)$ に関して不変となるようにする.

A_l 型 ($l \ge 1$) の既約ルート系

 $V = \{\sum_{i=1}^{l+1} t_i \epsilon_i \in \mathbb{K}^{l+1} \mid t_i \in \mathbb{K}, \sum_{i=1}^{l+1} t_i = 0\}$ の部分集合

$$\Delta = \{ \pm (\epsilon_i - \epsilon_j) \mid 1 \le i < j \le l + 1 \}$$

は、l(l+1) 個のルートからなる V 上のルート系である. Δ は、 A_l 型の既約ルート系である. 実際、

$$\alpha_i = \epsilon_i - \epsilon_{i+1} \qquad (1 \le i \le l)$$

と置くと, $\Pi = \{\alpha_1, \dots, \alpha_l\}$ は Δ の基底であり,対応する Dynkin 図形は

$$\alpha_1$$
 α_2 α_{l-1} α_l

である.

B_l 型 ($l \geq 1$) の既約ルート系

 $V = \mathbb{K}^l$ の部分集合

$$\Delta = \{ \pm (\epsilon_i \pm \epsilon_j) \mid 1 \le i < j \le l \} \cup \{ \pm \epsilon_i \mid 1 \le i \le l \}$$

は、 $2l^2$ 個のルートからなる V 上のルート系である. Δ は、 B_l 型の既約ルート系である. 実際、

$$\alpha_i = \epsilon_i - \epsilon_{i+1} \quad (1 \le i \le l-1), \qquad \alpha_l = \epsilon_l$$

と置くと、 $\Pi = \{\alpha_1, \dots, \alpha_l\}$ は Δ の基底であり、対応する Dynkin 図形は

である.

C_l 型 $(l \ge 1)$ の既約ルート系

 $V=\mathbb{K}^l$ の部分集合

$$\Delta = \{ \pm (\epsilon_i \pm \epsilon_j) \mid 1 \le i < j \le l \} \cup \{ \pm 2\epsilon_i \mid 1 \le i \le l \}$$

は、 $2l^2$ 個のルートからなる V 上のルート系である. Δ は、 C_l 型の既約ルート系である. 実際、

$$\alpha_i = \epsilon_i - \epsilon_{i+1} \quad (1 \le i \le l-1), \qquad \alpha_l = 2\epsilon_l$$

と置くと、 $\Pi = \{\alpha_1, \dots, \alpha_l\}$ は Δ の基底であり、対応する Dynkin 図形は

である.

D_l 型 (l > 2) の (既約) ルート系

 $V = \mathbb{K}^l$ の部分集合

$$\Delta = \{ \pm (\epsilon_i \pm \epsilon_j) \mid 1 \le i < j \le l \}$$

は,2l(l-1) 個のルートからなる V 上のルート系である. Δ は, D_l 型の($l \geq 3$ ならば既約)ルート系である.実際,

$$\alpha_i = \epsilon_i - \epsilon_{i+1}$$
 $(1 < i < l-1), \quad \alpha_l = \epsilon_{l-1} + \epsilon_l$

と置くと, $\Pi = \{\alpha_1, \dots, \alpha_l\}$ は Δ の基底であり,対応する Dynkin 図形は

である.

E₆型の既約ルート系

 $V = \{\sum_{i=1}^{8} t_i \epsilon_i \in \mathbb{K}^8 \mid t_i \in \mathbb{K}, t_6 + t_8 = t_7 + t_8 = 0\}$ の部分集合

$$\Delta = \{ \pm (\pm \epsilon_i + \epsilon_j) \mid 1 \le i < j \le 5 \}$$

$$\cup \left\{ \pm \frac{1}{2} \left(\sum_{i=1}^{5} (-1)^{\nu(i)} \epsilon_i - \epsilon_6 - \epsilon_7 + \epsilon_8 \right) \mid \nu(i) \in \{0, 1\}, \sum_{i=1}^{5} \nu(i) \in 2\mathbb{Z} \right\}$$

は、72 個のルートからなる V 上のルート系である。 Δ は、 E_6 型の既約ルート系である。実際、

$$\alpha_1 = \frac{1}{2} (\epsilon_1 - \epsilon_2 - \epsilon_3 - \epsilon_4 - \epsilon_5 - \epsilon_6 - \epsilon_7 + \epsilon_8),$$

$$\alpha_2 = \epsilon_1 + \epsilon_2, \quad \alpha_3 = \epsilon_2 - \epsilon_1, \quad \alpha_4 = \epsilon_3 - \epsilon_2, \quad \alpha_5 = \epsilon_4 - \epsilon_3, \quad \alpha_6 = \epsilon_5 - \epsilon_4$$

と置くと, $\Pi = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6\}$ は Δ の基底であり,対応する Dynkin 図形は

である.

E7型の既約ルート系

 $V = \{\sum_{i=1}^{8} t_i \epsilon_i \in \mathbb{K}^8 \mid t_i \in \mathbb{K}, t_7 + t_8 = 0\}$ の部分集合

$$\Delta = \{ \pm (\pm \epsilon_i + \epsilon_j) \mid 1 \le i < j \le 6 \} \cup \{ \pm (-\epsilon_7 + \epsilon_8) \}$$

$$\cup \left\{ \pm \frac{1}{2} \left(\sum_{i=1}^{6} (-1)^{\nu(i)} \epsilon_i - \epsilon_7 + \epsilon_8 \right) \mid \nu(i) \in \{0, 1\}, \sum_{i=1}^{6} \nu(i) \in 2\mathbb{Z} + 1 \right\}$$

は、126 個のルートからなる V 上のルート系である. Δ は、 E_7 型の既約ルート系である. 実際、

$$\alpha_1 = \frac{1}{2}(\epsilon_1 - \epsilon_2 - \epsilon_3 - \epsilon_4 - \epsilon_5 - \epsilon_6 - \epsilon_7 + \epsilon_8),$$

$$\alpha_2 = \epsilon_1 + \epsilon_2, \quad \alpha_3 = \epsilon_2 - \epsilon_1, \quad \alpha_4 = \epsilon_3 - \epsilon_2, \quad \alpha_5 = \epsilon_4 - \epsilon_3, \quad \alpha_6 = \epsilon_5 - \epsilon_4, \quad \alpha_7 = \epsilon_6 - \epsilon_5$$

と置くと, $\Pi=\{\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5,\alpha_6,\alpha_7\}$ は Δ の基底であり,対応する Dynkin 図形は

である.

E₈型の既約ルート系

 $V=\mathbb{K}^8$ の部分集合

$$\Delta = \{ \pm (\pm \epsilon_i + \epsilon_j) \mid 1 \le i < j \le 8 \}$$

$$\cup \left\{ \pm \frac{1}{2} \left(\sum_{i=1}^{7} (-1)^{\nu(i)} \epsilon_i + \epsilon_8 \right) \mid \nu(i) \in \{0, 1\}, \sum_{i=1}^{7} \nu(i) \in 2\mathbb{Z} \right\}$$

は、240 個のルートからなる V 上のルート系である. Δ は、 E_8 型の既約ルート系である. 実際、

$$\alpha_1 = \frac{1}{2}(\epsilon_1 - \epsilon_2 - \epsilon_3 - \epsilon_4 - \epsilon_5 - \epsilon_6 - \epsilon_7 + \epsilon_8),$$

$$\alpha_2 = \epsilon_1 + \epsilon_2, \quad \alpha_3 = \epsilon_2 - \epsilon_1, \quad \alpha_4 = \epsilon_3 - \epsilon_2, \quad \alpha_5 = \epsilon_4 - \epsilon_3,$$

$$\alpha_6 = \epsilon_5 - \epsilon_4, \quad \alpha_7 = \epsilon_6 - \epsilon_5, \quad \alpha_8 = \epsilon_7 - \epsilon_6$$

と置くと, $\Pi = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5, \alpha_6, \alpha_7, \alpha_8\}$ は Δ の基底であり,対応する Dynkin 図形は

である.

F₄型の既約ルート系

 $V=\mathbb{K}^4$ の部分集合

$$\Delta = \{ \pm \epsilon_i \mid 1 \le i \le 4 \} \cup \{ \pm (\epsilon_i \pm \epsilon_j) \mid 1 \le i < j \le 4 \} \cup \left\{ \pm \frac{1}{2} (\epsilon_1 \pm \epsilon_2 \pm \epsilon_3 \pm \epsilon_4) \right\}$$

は、48 個のルートからなる V 上のルート系である. Δ は、 F_4 型の既約ルート系である. 実際、

$$\alpha_1 = \epsilon_2 - \epsilon_3, \quad \alpha_2 = \epsilon_3 - \epsilon_4, \quad \alpha_3 = \epsilon_4, \quad \alpha_4 = \frac{1}{2}(\epsilon_1 - \epsilon_2 - \epsilon_3 - \epsilon_4)$$

と置くと, $\Pi = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ は Δ の基底であり,対応する Dynkin 図形は

である.

G₂型の既約ルート系

 $V = \{\sum_{i=1}^{3} t_i \epsilon_i \in \mathbb{K}^3 \mid t_i \in \mathbb{K}, t_1 + t_2 + t_3 = 0\}$ の部分集合

$$\Delta = \{ \pm(\epsilon_1 - \epsilon_2), \pm(-\epsilon_1 + \epsilon_3), \pm(-\epsilon_2 + \epsilon_3), \pm(-2\epsilon_1 + \epsilon_2 + \epsilon_3), \pm(\epsilon_1 - 2\epsilon_2 + \epsilon_3), \pm(-\epsilon_1 - \epsilon_2 + 2\epsilon_3) \}$$

は、12 個のルートからなる V 上のルート系である. Δ は、 G_2 型の既約ルート系である. 実際、

$$\alpha_1 = \epsilon_1 - \epsilon_2, \qquad \alpha_2 = -2\epsilon_1 + \epsilon_2 + \epsilon_3$$

と置くと, $\Pi = \{\alpha_1, \alpha_2\}$ は Δ の基底であり,対応する Dynkin 図形は

である.

2.4 被約でない既約ルート系の構成と分類

 Δ を被約でない既約ルート系とすると、定理 1.33 より、

(1) Δ の各ルートの最短ルートに対する長さの比は 1, $\sqrt{2}$, 2 のいずれかであり、

それぞれの比をもつルートの全体をA, B, Cと置くと、

- (2) $2A = C \ \sigma b \$,
- (3) Aに属する異なる二つのルートは直交し、
- (4) $\Delta' = A \cup B$ と $\Delta'' = B \cup C$ は V 上の被約な既約ルート系である.

長さの比の条件と (3), (4) より, $\Delta' = A \cup B$ は, B_l 型 $(l \ge 1)$ の既約ルート系でなければならない.したがって, Δ は,線型同型を除いて, \mathbb{K}^l の部分集合

$$\{\pm(\epsilon_i \pm \epsilon_j) \mid 1 \le i < j \le l\} \cup \{\pm\epsilon_i, \pm 2\epsilon_i \mid 1 \le i \le l\}$$

と同一視できる.

逆に, Δ を上記の $V=\mathbb{K}^l$ の部分集合と定めると,容易に確かめられるように,これは V 上の 2l(l+1) 個のルートからなる被約でないルート系である.さらに,割れないルートの全体

$$\Delta' = \{ \pm (\epsilon_i \pm \epsilon_j) \mid 1 \le i < j \le l \} \cup \{ \pm \epsilon_i \mid 1 \le i \le l \}$$

は B_l 型の既約ルート系だから, Δ も既約である(命題 1.30 (1)).なお, $\Delta''=\{\alpha\in\Delta\mid 2\alpha\notin\Delta\}$ (注意 1.31)は

$$\Delta'' = \{ \pm (\epsilon_i \pm \epsilon_j) \mid 1 \le i < j \le l \} \cup \{ \pm 2\epsilon_i \mid 1 \le i \le l \}$$

となり、これは C_l 型の既約ルート系である.

以上より、各整数 $l \ge 1$ に対して、階数 l の被約でない既約ルート系が同型を除いて一意に存在する.これを、 \mathbf{BC}_l 型のルート系という.

付録 A 補足

本節では、ルート系に関する結果であって、本文で述べなかったものを補足する. これらの結果は、Lie 代数への応用の際に必要になる.

A.1 二つのルートの関係に関する補足

命題 A.1 Δ を有限次元線型空間 V 上のルート系, $\alpha, \beta \in \Delta$ を線型独立な二つのルートとし,

$$I_{\beta,\alpha} = \{ j \in \mathbb{Z} \mid \beta + j\alpha \in \Delta \}$$

と置く.

- (1) $I_{\beta,\alpha}$ は、 $p, q \in \mathbb{Z}_{>0}$ を用いて $I_{\beta,\alpha} = [-q, p] \cap \mathbb{Z}$ と書ける.
- (2) (1) $\mathcal{O}(p, q)$ について, $p q = -n(\beta, \alpha)$ である.
- (3) (1) の p, q について, $\gamma = \beta q\alpha$ と置くと, $p + q = -n(\gamma, \alpha)$ であり、これは 0, 1, 2, 3 のいずれかである.

証明 (1) $p = \max I_{\beta,\alpha}$, $-q = \min I_{\beta,\alpha}$ と置く.明らかに $0 \in I_{\beta,\alpha}$ だから, $p, q \in \mathbb{Z}_{\geq 0}$ である.もし $I_{\beta,\alpha} \neq [-q,p] \cap \mathbb{Z}$ であるとすると, $r,s \in I_{\beta,\alpha}$ をr < s かつ r+1, $s-1 \notin I_{\beta,\alpha}$ を満たすようにとれる.この r,s について,系 1.26 の対偶より

$$n(\beta + r\alpha, \alpha) > 0 > n(\beta + s\alpha, \alpha)$$

だが、一方で $n(\beta+j\alpha,\alpha)=n(\beta,\alpha)+jn(\alpha,\alpha)=n(\beta,\alpha)+2j$ は j に関して狭義単調増加だから、これは不可能である。よって、背理法より、 $I_{\beta,\alpha}=[-q,p]\cap\mathbb{Z}$ である。

- (2) ルート鏡映 s_{α} は $\beta+j\alpha$ を $\beta-(n(\beta,\alpha)+j)\alpha$ に移すから,写像 $j\mapsto -(n(\beta,\alpha)+j)$ は $I_{\beta,\alpha}=[-q,p]\cap\mathbb{Z}$ から自身への全単射である.よって, $p-q=-n(\beta,\alpha)$ である.
- (3) β の代わりに γ に対して (2) を適用すれば, $p+q=-n(\gamma,\alpha)$ を得る.また, α と γ は線型独立だから,定理 1.23 より $|n(\gamma,\alpha)|$ は 0,1,2,3 のいずれかである. $p+q\geq 0$ だから, $p+q=-n(\gamma,\alpha)$ は 0,1,2,3 のいずれかである.

命題 A.2 Δ をルート系とする. 線型独立な二つのルート α , $\beta \in \Delta$ が $\beta + \alpha \in \Delta$ を満たすとして, p, $q \in \mathbb{Z}_{\geq 0}$ を命題 A.1 のとおりに定める. このとき, $\beta + \alpha$ の β に対する長さの比(α , β , $\alpha + \beta$ の中で直交する対はたかだか一つだから, β と $\beta + \alpha$ は Δ の同じ既約成分に属し, 長さの比が定まる)は, $\sqrt{(q+1)/p}$ に等しい.

証明 一般性を失わず、 $\mathbb{K}=\mathbb{R}$ であり、 $\mathbf{W}(\Delta)$ -不変な内積が定まっていると仮定する(命題 1.7、系 1.8 (1)、系 1.27)。 $\gamma=\beta-q\alpha$ と置く.命題 $\mathbf{A}.1$ と $\beta+\alpha\in\Delta$ (すなわち $p\geq 1$) より, $p+q=-n(\gamma,\alpha)\in\{1,2,3\}$ である.以下,この値によって場合分けをする.

 $p+q=-n(\gamma,\alpha)=1$ ならば、(p,q)=(1,0)、 $\beta=\gamma$ である.この場合、 $s_{\alpha}(\gamma)=\gamma+\alpha$ だから、

$$\frac{\|\beta+\alpha\|}{\|\beta\|} = \frac{\|\gamma+\alpha\|}{\|\gamma\|} = 1 = \sqrt{\frac{q+1}{p}}$$

である.

 $p+q=-n(\gamma,\alpha)=2$ ならば、 $\|\gamma\|/\|\alpha\|=\sqrt{2}$ かつ $\angle(\alpha,\gamma)=135^\circ$ である(定理 1.23)。 (p,q)=(2,0) ならば、 $\beta=\gamma$ であり、

$$\frac{\|\beta + \alpha\|}{\|\beta\|} = \frac{\|\gamma + \alpha\|}{\|\gamma\|} = \frac{1}{\sqrt{2}} = \sqrt{\frac{q+1}{p}}$$

である. (p,q)=(1,1) ならば、 $\beta=\gamma+\alpha$ であり、

$$\frac{\|\beta + \alpha\|}{\|\beta\|} = \frac{\|\gamma + 2\alpha\|}{\|\gamma + \alpha\|} = \sqrt{2} = \sqrt{\frac{q+1}{p}}$$

である.

 $p+q=-n(\gamma,\alpha)=3$ ならば、 $\|\gamma\|/\|\alpha\|=\sqrt{3}$ かつ $\angle(\alpha,\gamma)=150^\circ$ である(定理 1.23)。 (p,q)=(3,0) ならば、 $\beta=\gamma$ であり、

$$\frac{\|\beta + \alpha\|}{\|\beta\|} = \frac{\|\gamma + \alpha\|}{\|\gamma\|} = \frac{1}{\sqrt{3}} = \sqrt{\frac{q+1}{p}}$$

である. (p,q)=(2,1) ならば、 $\beta=\gamma+\alpha$ であり、

$$\frac{\|\beta + \alpha\|}{\|\beta\|} = \frac{\|\gamma + 2\alpha\|}{\|\gamma + \alpha\|} = 1 = \sqrt{\frac{q+1}{p}}$$

である. (p,q)=(1,2) ならば、 $\beta=\gamma+2\alpha$ であり、

$$\frac{\|\beta + \alpha\|}{\|\beta\|} = \frac{\|\gamma + 3\alpha\|}{\|\gamma + 2\alpha\|} = \sqrt{3} = \sqrt{\frac{q+1}{p}}$$

である.

以上で, すべての場合に主張が示された.

A.2 単純ルートの線型結合に関する補足

命題 A.3 Δ をルート系とし, Π をその基底とする.正ルートの列 $\alpha_1, \ldots, \alpha_k \in \Delta_+(\Pi)$ $(k \ge 1)$ について,それらの和 $\alpha_1 + \cdots + \alpha_k$ もルートならば, $\{1, \ldots, k\}$ 上の置換 π であって,すべての $1 \le i \le k$ に対して $\alpha_{\pi(1)} + \cdots + \alpha_{\pi(i)}$ がルートであるものが存在する.

証明 k に関する帰納法で示す。 k=1 の場合は明らかである。 $k\geq 2$ とし,k-1 に対する主張は正しいとする。 $\beta=\alpha_1+\cdots+\alpha_k$ と置くと, $n(\alpha_1,\beta)+\cdots+n(\alpha_k,\beta)=n(\beta,\beta)=2$ だから, $n(\alpha_i,\beta)>0$ となる $1\leq i\leq k$ が存在する。 この i について,系 1.26 (1) より, $\beta-\alpha_i\in\Delta$ となる。 そこで, α_i を除く k-1 個のルートに帰納法の仮定を適用すれば,k の場合の主張が示される。これで,帰納法が完成した.

系 A.4 ルート系 Δ から可換群 A への写像 $f: \Delta \to A$ が、次の条件を満たすとする.

- (i) 任意の $\alpha \in \Delta$ に対して, $f(-\alpha) = f(\alpha)^{-1}$ である.
- (ii) 任意の α , β , $\alpha + \beta \in \Delta$ に対して, $f(\alpha + \beta) = f(\alpha)f(\beta)$ である.

このとき、f はルート格子 $\operatorname{span}_{\mathbb{Z}} \Delta$ から A への群準同型に一意に拡張される.

証明 Π を Δ の基底とすると、ルート格子 $\operatorname{span}_{\mathbb{Z}} \Delta$ は Π を基底とする格子だから、 Π 上で f に一致する群 準同型 \widetilde{f} : $\operatorname{span}_{\mathbb{Z}} \Delta \to A$ が一意に存在する.これが f の拡張であることを示そう.条件 (ii) より、正ルート β に対して $\widetilde{f}(\beta) = f(\beta)$ を示せばよい.命題 A.3 より、単純ルートの列 $\alpha_1, \ldots, \alpha_k$ を、任意の $1 \leq i \leq k$ に 対して $\alpha_1 + \cdots + \alpha_i$ がルートであり、かつ $\alpha_1 + \cdots + \alpha_k = \beta$ であるようにとれる.よって、条件 (ii) より

$$\widetilde{f}(\beta) = \widetilde{f}(\alpha_1) \cdots \widetilde{f}(\alpha_k) = f(\alpha_1) \cdots f(\alpha_k) = f(\beta)$$

である. これで、主張が示された.

命題 A.5 Δ をルート系とし, Π をその基底とする。 λ はルート格子 $\operatorname{span}_{\mathbb{Z}}\Delta$ の元であり,一つのルートの整数倍としては書けないとする。このとき,ある $s\in \mathbf{W}(\Delta)$ が存在して, $s(\lambda)$ を Π の元の線型結合として書くときの係数に,正の整数と負の整数がともに現れる.

証明 一般性を失わず, $\mathbb{K}=\mathbb{R}$ であり,V に $\mathbf{W}(\Delta)$ -不変な内積 $\langle -,-\rangle$ が定まっていると仮定する(命題 1.7,系 1.8).仮定より, $\mathbb{R}\lambda$ はルートを含まないから, $v\in V$ を, $\langle v,\lambda\rangle=0$ かつ任意の $\alpha\in\Delta$ に対して $\langle v,\alpha\rangle\neq0$ を満たすようにとれる. さらに,Weyl 群 $\mathbf{W}(\Delta)$ は Weyl チャンバー全体のなす集合に推移的に作用するから(定理 1.38,定理 1.43), $s\in\mathbf{W}(\Delta)$ を, $s(v)\in C(\Pi)$ (定理 1.38 の記号を用いた)を満たすようにとれる.ここで, $s(\lambda)=\sum_{\alpha\in\Pi}p_{\alpha}\alpha$ ($p_{\alpha}\in\mathbb{Z}$)と表すと,

$$0 = \langle v, \lambda \rangle = \langle s(v), s(\lambda) \rangle = \sum_{\alpha \in \Pi} p_{\alpha} \langle s(v), \alpha \rangle$$

となるが、 $s(v) \in C(\Pi)$ より任意の $\alpha \in \Pi$ に対して $\langle s(v), \alpha \rangle > 0$ だから、係数 p_{α} には正の整数と負の整数 がともに現れる.

A.3 双対ルート系の基底

補題 A.6 有限次元実線型空間 V の基底 $(e_i)_{e\in I}$ と $(f_i)_{i\in J}$ が

$$\operatorname{span}_{\mathbb{R}_{>0}} \{ e_i \mid i \in I \} = \operatorname{span}_{\mathbb{R}_{>0}} \{ f_j \mid j \in J \}$$

を満たすならば、全単射 ϕ : $I \to J$ が存在して、各 $f_{\phi(i)}$ は e_i の正のスカラー倍となる.

証明 $(e_i)_{e\in I}$ から $(f_j)_{j\in J}$ への基底変換行列を $P=(p_{ij})_{(i,j)\in I\times J}$ と置き, $(f_j)_{j\in J}$ から $(e_i)_{i\in I}$ への基底変換行列を $Q=(q_{ji})_{(j,i)\in J\times I}$ と置く.仮定より,各成分 p_{ij} と q_{ji} は 0 以上である.いま,P の一つの成分 $p_{i_0j_0}$ が正であるとする.P と Q は互いに他の逆行列だから,任意の $i\in I\setminus\{i_0\}$ に対して $\sum_{j\in J}p_{i_0j}q_{ji}=0$ だが,そのためには $q_{j_0i}=0$ でなければならない.すなわち,Q の行ベクトル $(q_{j_0i})_{i\in I}$ は, i_0 -成分を除いて 0 である.一方で,Q は正則だから,この性質を満たす Q の行ベクトルはたかだか一つである.以上より,任意の $i_0\in I$ に対して, $p_{i_0j_0}>0$ を満たす $j_0\in J$ はたかだか一つである.このことと P の正則性より,全単射 $\phi\colon I\to J$ が存在して,

$$p_{ij} \begin{cases} > 0 & (j = \phi(i)) \\ = 0 & (それ以外) \end{cases}$$

となる. すなわち、主張が成り立つ.

命題 A.7 Δ をルート系とし、 Π をその基底とする. 各 $\alpha \in \Pi$ に対して

$$\alpha_{\text{indiv}}^{\vee} = \begin{cases} \alpha^{\vee} & (2\alpha \notin \Delta) \\ (2\alpha)^{\vee} = \alpha^{\vee}/2 & (2\alpha \in \Delta) \end{cases}$$

と定めると, $\Pi_{\mathrm{indiv}}^{\vee} = \{\alpha_{\mathrm{indiv}}^{\vee} \mid \alpha \in \Pi\}$ は双対ルート系 Δ^{\vee} の基底である.特に, Δ が被約ならば, $\Pi^{\vee} = \{\alpha^{\vee} \mid \alpha \in \Pi\}$ は双対ルート系 Δ^{\vee} の基底である.

証明 一般性を失わず, $\mathbb{K}=\mathbb{R}$ であり,Vに $\mathbf{W}(\Delta)$ -不変な内積 $\langle -,-\rangle$ が定まっていると仮定する(命題 1.7,系 1.8). 内積が定める線型同型によって,V と V^* を同一視する. すると,各ルート $\alpha\in R$ に対して, $s_{\alpha}=s_{\alpha^{\vee}}$ だから(命題 1.13 (4)), s_{α} の鏡映面と $s_{\alpha^{\vee}}$ の鏡映面は等しい. したがって, Δ^{\vee} の基底 Π' であって, $C(\Pi)=C(\Pi')$ (定理 1.38 の記号を用いた)を満たすものが存在する.V の内積に関する Π , Π' の双対基底をそれぞれ Π^* , Π'^* と書くと, $C(\Pi)=C(\Pi')$ は $\operatorname{span}_{\mathbb{R}_{\geq 0}}$ $\Pi^*=\operatorname{span}_{\mathbb{R}_{\geq 0}}$ Π'^* を意味するから,補題 A.6 より, Π'^* は Π^* の各元を適当に正のスカラー倍して得られる集合である. したがって, Π と Π' についても同様である. ところが,各ルート $\alpha\in\Delta$ に対して, Δ^{\vee} のルートのうち α の正のスカラー倍として書けるものは, $\alpha^{\vee}=2\alpha/\langle\alpha,\alpha\rangle$, $(2\alpha)^{\vee}=\alpha^{\vee}/2$ ($2\alpha\in\Delta$ のとき), $(\alpha/2)^{\vee}=2\alpha^{\vee}$ ($\alpha/2\in\Delta$ のとき)のみである(系 1.25). このうち, Δ^{\vee} の割れないルートであるものは, $2\alpha\notin\Delta$ ならば α^{\vee} のみであり, $2\alpha\in\Delta$ ならば $(2\alpha)^{\vee}$ のみである. よって, $\Pi^{\vee}_{\operatorname{indiv}}=\Pi'$ であり,これは双対ルート系 Δ^{\vee} の基底である.

 Δ が被約ならば、任意の $\alpha \in \Delta$ に対して $\alpha_{\mathrm{indiv}}^{\vee} = \alpha^{\vee}$ だから、 $\Pi^{\vee} = \{\alpha^{\vee} \mid \alpha \in \Pi\}$ は双対ルート系 Δ^{\vee} の基底である.

A.4 正ルート全体のなす集合の特徴付け

命題 A.8 Δ をルート系とする.部分集合 $P \subseteq \Delta$ に対して,次の条件は同値である.

- (a) Δ の基底 Π であって、 $P = \Delta_{+}(\Pi)$ を満たすものが存在する.
- (b) $\alpha, \beta \in P$ かつ $\alpha + \beta \in \Delta$ ならば $\alpha + \beta \in P$ であり、 $P \ge -P$ は Δ の分割を与える.

さらに、これらの条件の下で、条件 (a) の基底 Π は一意に定まり、

$$\Pi = \{ \alpha \in P \mid \alpha \text{ id } P \text{ on of of one of on$$

によって与えられる.

証明 $(a) \Longrightarrow (b)$ 基底の定義から明らかである.

 $(b)\Longrightarrow (a)$ 基底 Π を、 $\#(P\cap\Delta_+(\Pi))$ が最大となるようにとる。 $\alpha\in\Pi$ が P に属さないと仮定すると、 $s_\alpha(\alpha)=-\alpha$ は $P\cap\Delta_+(s_\alpha(\Pi))$ に属する。次に、 $\beta\in P\cap\Delta_+(\Pi)$ を任意にとる。 α は割れないルートだから $\beta\neq\alpha/2$ であり、また $\beta=2\alpha$ とすると $-\alpha$ 、 $2\alpha\in P$ より $\alpha=2\alpha-\alpha\in P$ となって仮定に反するから、 $\beta\notin\mathbb{K}\alpha$ である(系 1.25)。したがって、補題 1.40 より $s_\alpha(\beta)\in\Delta_+(\Pi)$ だから、 $\beta\in P\cap\Delta_+(s_\alpha(\Pi))$ である。以上より、 $\#(P\cap\Delta_+(s_\alpha(\Pi)))>\#(P\cap\Delta_+(\Pi))$ となるが、これは Π のとり方に反する。よって、背理法より、 $\Pi\subseteq P$ である。

 $\Pi\subseteq P$ より $\Delta_+(\Pi)\subseteq P$ だが, $\Delta_+(\Pi)$ と $\Delta_-(\Pi)$,P と -P はともに Δ の分割を与えるから, $\Delta_+(\Pi)=P$ が成り立つ.これで,主張が示された.

最後の主張 基底の定義から明らかである.

加法群 A 上の半順序 \leq が**平行移動不変**であるとは、任意の a, b, $c \in A$ に対して、 $a \leq b$ ならば $a+c \leq b+c$ であることをいう. 容易に確かめられるように、平行移動不変な半順序 \leq について、a, $b \geq 0$ ならば $a+b \geq 0$ であり、また、 $a \geq 0$ と $-a \leq 0$ とは同値である.

系 A.9 Δ を有限次元線型空間 V 上のルート系とする. \leq を V 上の平行移動不変な全順序とすると, Δ の基底 Π であって, $\Delta_+(\Pi)=\{\alpha\in\Delta\mid\alpha\geq0\}$ を満たすものが一意に存在する.

証明 上記の注意と命題 A.8 から従う.

A.5 整ベクトルと優整ベクトル

定義 A.10 (整ベクトル,優整ベクトル) Δ を有限次元線型空間 V 上の被約ルート系とする.

- (1) $\lambda \in V$ が Δ に関する**整ベクトル** (integral vector) であるとは、任意のルート $\alpha \in \Delta$ に対して $\alpha^{\vee}(\lambda) \in \mathbb{Z}$ であることをいう.
- (2) さらに, Π を Δ の基底とする. このとき, $\lambda \in V$ が (Δ, Π) に関する**優整ベクトル** (dominant integral vector) であるとは, 任意の単純ルート $\alpha \in \Pi$ に対して $\alpha^{\vee}(\lambda) \in \mathbb{Z}_{>0}$ であることをいう.

 Δ を有限次元線型空間 V 上の被約ルート系とし, Π をその基底とする.このとき, $\Pi^{\vee} = \{\alpha^{\vee} \mid \alpha \in \Pi\}$ は双対ルート系 Δ^{\vee} の基底である(命題 A.7).したがって, $\lambda \in V$ が Δ に関する整ベクトルであるためには,任意の単純ルート $\alpha \in \Pi$ に対して $\alpha^{\vee}(\lambda) \in \mathbb{Z}$ であれば十分である.また, V^* の基底 Π^{\vee} の双対基底を $\Pi^{\vee*}$ と書くと, Δ に関する整ベクトル全体のなす集合は $\operatorname{span}_{\mathbb{Z}} \Pi^{\vee*}$ であり, (Δ,Π) に関する優整ベクトル全体のなす集合は $\operatorname{span}_{\mathbb{Z}_{>0}} \Pi^{\vee*}$ である.

補題 A.11 V を有限次元実内積空間(その内積を $\langle -, - \rangle$ と書く), Π をその基底とし,V の内積に関する Π の双対基底を Π' と書く.任意の異なる二つの元 α , $\beta \in \Pi$ に対して, $\langle \alpha, \beta \rangle \leq 0$ であるとする.このとき, $\mathrm{span}_{\mathbb{R}>0} \Pi' \subseteq \mathrm{span}_{\mathbb{R}>0} \Pi$ が成り立つ.

証明 $v \in \operatorname{span}_{\mathbb{R}_{\geq 0}} \Pi'$ を基底 Π の元の線型結合として表すとき,ある $\alpha \in \Pi$ の係数が負となるとする.このとき,線型形式 $f \in V^*$ を, $f(\alpha) = 1$ かつ $\beta \in \Pi \setminus \{\alpha\}$ に対して $f(\beta)$ が十分小さい正の実数となるようにとれば, $f(\Pi \cup \{-v\}) \subseteq \mathbb{R}_{>0}$ となる.したがって, $\Pi \cup \{-v\}$ は一つの半開空間に含まれる.また, $v \in \operatorname{span}_{\mathbb{R}_{\geq 0}} \Pi'$ より任意の $\beta \in \Pi$ に対して $\langle v, \alpha \rangle \geq 0$ だから,仮定と合わせて, $\Pi \cup \{-v\}$ の任意の異なる二つの元の内積が 0 以下であることを得る.これらのことと補題 1.37 より, $\Pi \cup \{-v\}$ は線型独立となるが,これは矛盾である.よって,背理法より, $\operatorname{span}_{\mathbb{R}_{\geq 0}} \Pi' \subseteq \operatorname{span}_{\mathbb{R}_{>0}} \Pi$ である.

命題 A.12 Δ を有限次元線型空間 V 上の被約ルート系とする.

- (1) Δ に関する任意の整ベクトルは、 $V_{\mathbb{Q}} = \operatorname{span}_{\mathbb{Q}} \Delta$ に含まれる.
- (2) さらに, Π を Δ の基底とする. このとき, (Δ,Π) に関する任意の優整ベクトルは, $\operatorname{span}_{\mathbb{Q}_{\geq 0}}\Pi$ に含まれる.

証明 Π を Δ の基底とする.

(1) V の基底 $\Pi^{\vee*}$ から Π への基底変換行列は (Δ,Π) の Cartan 行列であり, Π から $\Pi^{\vee*}$ への基底変換行列はその逆行列である.特に, Π から $\Pi^{\vee*}$ への基底変換行列の各成分は有理数である.よって, Δ に関す

る整ベクトル全体のなす集合 $\operatorname{span}_{\mathbb{Z}}\Pi^{\vee *}$ は、 $V_{\mathbb{Q}}$ に含まれる.

(2) 一般性を失わず, $\mathbb{K}=\mathbb{R}$ であり,V に $\mathbf{W}(\Delta)$ -不変な内積 $\langle -,- \rangle$ が定まっていると仮定する(命題 1.7,系 1.8). $\lambda \in V$ を (Δ,Π) に関する整ベクトルとすると,任意の単純ルート $\alpha \in \Pi$ に対して $\langle \lambda,\alpha \rangle \geq 0$ である. Π は補題 A.11 の仮定を満たすから(命題 1.35), $\lambda \in \operatorname{span}_{\mathbb{R}_{\geq 0}} \Pi$ である.このことと(1)を合わせて, $\lambda \in \operatorname{span}_{\mathbb{Q}_{\geq 0}} \Pi$ を得る.

命題 A.13 Δ を有限次元線型空間 V 上の被約ルート系とし, Π をその基底とする. Δ に関する任意の整ベクトル $\lambda \in V$ に対して,ある $s \in \mathbf{W}(\Delta)$ が存在して, $s(\lambda)$ が (Δ,Π) に関する優整ベクトルとなる*3.

証明 一般性を失わず, $\mathbb{K}=\mathbb{R}$ であり,V に $\mathbf{W}(\Delta)$ -不変な内積 $\langle -, - \rangle$ が定まっていると仮定する(命題 1.7,系 1.8). $\rho=(1/2)\sum_{\alpha\in\Delta_+(\Pi)}\alpha$ と置き, $s\in\mathbf{W}(\Delta)$ を $\langle s(\lambda), \rho \rangle$ が最大となるようにとる.すると,任意の単純ルート $\alpha\in\Pi$ に対して,

$$\langle s(v), \rho \rangle \ge \langle s_{\alpha}s(v), \rho \rangle = \langle s(v), s_{\alpha}(\rho) \rangle = \langle s(v), \rho \rangle - \langle s(v), \alpha \rangle$$

(最後の等号で系 1.41 を用いた) より $\langle s(v),\alpha\rangle\geq 0$, すなわち $\alpha^\vee(s(\lambda))\geq 0$ である*4. よって, $s(\lambda)$ は (Δ,Π) に関する優整ベクトルである.

命題 A.14 Δ を有限次元線型空間 V 上のルート系とし, Π をその基底とする.V の部分集合 $\mathfrak X$ が,次の条件を満たすとする.

- (i) ある $\lambda \in V$ が存在して、 $\mathfrak{X} \subseteq \lambda \operatorname{span}_{\mathbb{Z}_{>0}} \Pi$ となる.
- (ii) \mathfrak{X} は $\mathbf{W}(\Delta)$ -安定である.

このとき、 \mathfrak{X} は有限である.

証明 必要ならば Δ の割れないルート全体のなす被約ルート系(命題 1.30)を考えることで、一般性を失わず、 Δ は被約であると仮定する. $\mu \in \mathfrak{X}$ とすると、任意のルート $\alpha \in \Delta$ に対して、条件 (i) と (ii) より

$$\mu - \alpha^{\vee}(\mu)\alpha = s_{\alpha}(\mu) \in \mathfrak{X} \subseteq \mu + \operatorname{span}_{\mathbb{Z}} \Pi$$

だから、 $\alpha^{\vee}(\mu) \in \mathbb{Z}$ である.したがって,任意の $\mu \in \mathfrak{X}$ は, Δ に関する整ベクトルである.そこで, \mathfrak{X} の元で あって (Δ,Π) に関する優整ベクトルであるもの全体のなす集合を \mathfrak{X}_{++} と置くと,命題 A.13 と条件 (ii) より, $\mathfrak{X}=\mathbf{W}(\Delta)\mathfrak{X}_{++}$ が成り立つ.さらに,命題 A.12 (2) と条件 (i) より, \mathfrak{X}_{++} は有限である.よって, \mathfrak{X} は有限である.

参考文献

- [1] N. Bourbaki, Éléments de mathématique, Groupes et algèbres de Lie, Chapitres 4 à 6, Springer, 2007.
- [2] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, 1972.

^{*3} より強く、軌道 $\mathbf{W}(\Delta)\lambda$ がただ一つの優整ベクトルを含むことまでいえる。証明は、Humphreys [2, §10.3, Lemma B] を参照 のこと。

 $^{*^4}$ 定理 1.43 の証明の (1') でも、同じような議論をした.