

الامتحان الوطني الموحد للبكالوريا الدورة العادية 2017 - الموضوع -

المملكة المفرية (١٤٥٥ - ١٤٥٥

المركز الوطني للتقويه والامتحانات والتوجيه

4	مدة الإنجاز	الرياضيات	المادة
9	المعامل	شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)	الشعبة أو المسلك

NS 25

- La durée de l'épreuve est de 4 heures.
- L'épreuve comporte 4 exercices indépendants.
- Les exercices peuvent être traités selon l'ordre choisi par le candidat.
- L'exercice1 se rapporte aux structures algébriques.....(3,5pts)
- L'exercice2 se rapporte aux nombres complexes......(3,5pts)
- L'exercice3 se rapporte à l'arithmétique......(3pts)
- L'exercice4 se rapporte à l'analyse.....(10pts)

L'usage de la calculatrice n'est pas autorisé L'usage de la couleur rouge n'est pas autorisé **NS 25**

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2017 – الموضوع – مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

EXERCICE1: (3,5 points)

On rappelle que $(M_3(i),+,i')$ est un anneau unitaire de zéro la matrice nulle $O = \begin{cases} 0 & 0 & 0 \\ 0 & 0 & 0 \end{cases}$

et d'unité la matrice $I = \begin{cases} & 0 & 0 \\ & 0 & 1 \\ & 0 & 1 \end{cases}$ et que (£, +, ') est un corps commutatif.

On pose
$$A = \begin{cases} 3 & 0 & 0 & 0 & 0 \\ 5 & 1 & 0 & 0 & 0 \\ 5 & 1 & 1 & 0 & 0 \\ 5 & 1 & 1 & 0 & 0 \end{cases}$$
 et pour tout (a,b) de ; $(a,b)^2 = (a,b)^2 = (a$

On considère l'ensemble $E = \{M(a,b)/(a,b)\hat{\mathbf{l}} \mid {}^2\}$

- 0.5 | 1-Montrer que E est un sous-groupe du groupe $(M_3(i),+)$
- 0.5 2- On définit dans $M_3(i)$ la loi de composition interne T par :

"
$$(a,b,c,d)$$
Î; ⁴ $M(a,b)$ T $M(c,d)$ = $M(a,b)$ ' A ' $M(c,d)$

Vérifier que E est stable dans $(M_3(i),T)$

- 3- soit j l'application de £ * dans E qui à tout nombre complexe non nul a+ib (où (a,b)Î j 2) fait correspondre la matrice M(a,b) de E
- 0.75 a) Vérifier que j est un homomorphisme de $(\pounds^*, ')$ vers (E, T) et que j $(\pounds^*) = E^*$ où $E^* = E \setminus \{M(0,0)\}$
- 0.75 b)En déduire que (E^*,T) est un groupe commutatif dont on déterminera l'élément neutre J
- 0.5 4- a) Montrer que la loi de composition interne "T" est distributive par rapport à la loi de composition interne "+ "dans *E*
- 0.5 b) En déduire que (E,+,T) est un corps commutatif.

EXERICE2:(3,5 points)

Soit m un nombre complexe **non nul**.

Partie1: On considère dans £ l'équation :

(E):
$$2z^2 - 2(m+1+i)z + m^2 + (1+i)m + i = 0$$

- 0.5 | 1- Vérifier que le discriminent de l'équation (E) est : $D = (2im)^2$
- 0.5 2- Résoudre dans £ l'équation (E)

0.5

0.5

0.75

1

NS 25

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2017 – الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

Partie2: Le plan complexe est rapporté à un repère orthonormé direct (O, e_1, e_2)

On suppose que : $m\hat{1} \pm \{0,1,i\}$ et on pose : $z_1 = \frac{1+i}{2}(m+1)$ et $z_2 = \frac{1-i}{2}(m+i)$

On considère les points A, B, M, M_1 et M_2 d'affixes respectifs 1, i, m, z_1 et z_2

0.25 | 1-a) Vérifier que : $z_1 = iz_2 + 1$

b) Montrer que M_1 est l'image de M_2 par la rotation de centre le point W d'affixe

 $w = \frac{1+i}{2}$ et d'angle de mesure $\frac{p}{2}$

0.5 2- a) Vérifier que : $\frac{z_2 - m}{z_1 - m} = i \frac{m-1}{m-i}$

0.5 b) Montrer que si les points M, M_1 et M_2 sont alignés alors M appartient au cercle (G) de diamètre [AB]

0.75 c) Déterminer l'ensemble des points M pour que les points W, M, M_1 et M_2 soient cocycliques (remarquer que : $\frac{z_1 - w}{z_2 - w} = i$)

EXERCICE3:(3points)

On admet que 2017 est un nombre premier, et que $2016 = 2^5 3^2 7$ Soit p un nombre premier supérieur ou égal à 5

1- Soit le couple (x, y) de $Y^* Y^*$ tel que : $px + y^{p-1} = 2017$

0.25 a) Vérifier que : p < 2017

b) Montrer que : p ne divise pas y

c) Montrer que : y^{p-1} o 1 [p] et en déduire que p divise 2016

0.5 d) Montrer que : p = 7

2- Déterminer, suivant les valeurs de p, les couples (x, y) de Y* Y* vérifiant:

$$px + y^{p-1} = 2017$$

EXERCICE 4:(10 points)

Partie1: On considère la fonction numérique f définie sur $[0,+\infty[$ par :

$$f(0) = 0$$
 et $(\forall x \in]0, +\infty[)$ $f(x) = \left(1 + \frac{1}{x}\right)e^{-\frac{1}{x}}$

Soit (C) la courbe représentative de f dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$

الصفحة	
5 4	

NS 25

الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2017 – الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)

(on prend :
$$\|\vec{i}\| = \|\vec{j}\| = 2cm$$
)

- $0.25 \mid 1$ -a) Montrer que la fonction f est continue à droite en 0
- 0.5 b) Montrer que la fonction f est dérivable à droite en 0
- 0.5 c) Montrer que la fonction f est dérivable sur $]0,+\infty[$ puis calculer f'(x) pour tout x dans l'intervalle $]0,+\infty[$
- 0.5 2- a)Calculer $\lim_{x \to +\infty} f(x)$ puis interpréter graphiquement le résultat obtenu.
- 0.25 b) Donner le tableau de variation de la fonction f
- 0.75 | 3- a) Montrer que la courbe (C) admet un point d'inflexion I dont on déterminera les coordonnées.
- 0.5 b) Tracer la courbe (C) (On prend : f(1); 0,7 et $4e^{-3}$; 0,2)

Partie2 : On considère la fonction numérique F définie sur $[0,+\infty[$ par :

$$F(x) = \int_{x}^{1} f(t) dt$$

- 0.25 | 1-Montrer que la fonction F est continue sur l'intervalle $[0,+\infty[$
- 0.5 2-a) En utilisant la méthode d'intégration par parties, montrer que :

$$(\forall x \in]0, +\infty[)$$
 $\partial_x^{1} e^{-\frac{1}{t}} dt = e^{-1} - xe^{-\frac{1}{x}} - \partial_x^{1} \frac{1}{t} e^{-\frac{1}{t}} dt$

- 0.25 b) Déterminer $\int_{x}^{1} \left(1 + \frac{1}{t}\right) e^{-\frac{1}{t}} dt \quad \text{pour tout } x \text{ de }]0, +\infty[$
- 0.5 c) Montrer que : $\int_{0}^{1} f(t) dt = e^{-1}$
- 0.5 3-Calculer en cm^2 , l'aire du domaine plan limité par la courbe (C) et les droites d'équations : x = 0, x = 2 et y = 0
 - 4- On considère la suite numérique $(u_n)_{n>0}$ définie par : $u_n = F(n) F(n+2)$
- a) En utilisant le théorème des accroissements finis, montrer que pour tout entier naturel n, il existe un réel v_n de l'intervalle n, n+2 tel que : $u_n = 2\left(1 + \frac{1}{v_n}\right)e^{-\frac{1}{v_n}}$
- 0.25 b) Montrer que : $(\forall n \in \square^*)$ $2\left(1 + \frac{1}{n}\right)e^{-\frac{1}{n}} \le u_n \le 2\left(1 + \frac{1}{n+2}\right)e^{-\frac{1}{n+2}}$
- 0.25 c) En déduire $\lim_{n\to+\infty} u_n$

الصفحة 5	الامتحان الوطني الموحد للبكالوريا - الدورة العادية 2017 – الموضوع - مادة: الرياضيات - شعبة العلوم الرياضية (أ) و (ب) (الترجمة الفرنسية)
,	المريات - سب (مريات - سب (مريات (۱) ورب) (مراب (مراب (مراب المراب (مراب ())))))))))))))))))))))))))))))) (مراب (مر
0.7	Partie3:
0.5	1-a) Montrer que pour tout entier naturel non nul n , il existe un nombre réel strictement
	positif unique a_n tel que : $f(a_n) = e^{-\frac{1}{n}}$
0.25	b) Montrer que la suite numérique $(a_n)_{n>1}$ est croissante.
	c) Vérifier que : $("n\hat{1} \ \ \ \ \ \ \)$ $-\frac{1}{a_n} + \ln \overset{\alpha}{\xi} + \frac{1}{a_n} = -\frac{1}{n}$
0.25	2-a)Montrer que : (" $t\hat{1}$ [0,+\fm [) 1- t £ $\frac{1}{1+t}$ £ 1- t + t^2
0.5	b) Montrer que : (" $x\hat{1}$ [0,+ $\$$ [) $-\frac{x^2}{2}\pounds - x + \ln(1+x)\pounds - \frac{x^2}{2} + \frac{x^3}{3}$
	3- Soit <i>n</i> un entier naturel supérieur ou égal à 4
0.5	a) Vérifier que : a_4 3 1 , en déduire que a_n 3 1 (On admettra que : $e^{\frac{3}{4}}$ 3 2)

 $1- \frac{2}{3a_n} \pounds \frac{2a_n^2}{n} \pounds 1$ b) Montrer que :

(On pourra utiliser les questions 1-c) et 2-b) de la partie 3)

 $\sqrt{\frac{n}{6}}$ £ a_n (On pourra utiliser les questions 3-a) et 3-b)), c) Montrer que : en déduire $\lim_{n \to +\frac{\pi}{4}} a_n$

d) Déterminer $\lim_{n \to +\frac{\pi}{2}} a_n \sqrt{\frac{2}{n}}$

0.5

0.5

0.5

FIN