

National University of Computer & Emerging Sciences MT-1003 Calculus and Analytical Geometry

REDUCTION FORMULAS:

$$\int \cos^n x \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx$$

$$u = \cos^{n-1} x \qquad dv = \cos x \, dx$$

$$du = (n-1)\cos^{n-2} x(-\sin x) \, dx \qquad v = \sin x$$

$$= -(n-1)\cos^{n-2} x \sin x \, dx$$

so that

$$\int \cos^{n} x \, dx = \int \cos^{n-1} x \cos x \, dx = \int u \, dv = uv - \int v \, du$$

$$= \cos^{n-1} x \sin x + (n-1) \int \sin^{2} x \cos^{n-2} x \, dx$$

$$= \cos^{n-1} x \sin x + (n-1) \int (1 - \cos^{2} x) \cos^{n-2} x \, dx$$

$$= \cos^{n-1} x \sin x + (n-1) \int \cos^{n-2} x \, dx - (n-1) \int \cos^{n} x \, dx$$

Moving the last term on the right to the left side yields

$$n \int \cos^n x \, dx = \cos^{n-1} x \sin x + (n-1) \int \cos^{n-2} x \, dx$$

$$\int \sin^n x \, dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, dx$$

 $u = \sin^{n-1} x, \ dv = \sin x \, dx, \ du = (n-1)\sin^{n-2} x \cos x \, dx, \ v = -\cos x; \ \int \sin^n x \, dx = -\sin^{n-1} x \cos x + (n-1) \int \sin^{n-2} x \cos^2 x \, dx = -\sin^{n-1} x \cos x + (n-1) \int \sin^{n-2} x \, (1-\sin^2 x) dx = -\sin^{n-1} x \cos x + (n-1) \int \sin^{n-2} x \, dx - (n-1) \int \sin^n x \, dx, \ \sin n \int \sin^n x \, dx = -\sin^{n-1} x \cos x + (n-1) \int \sin^{n-2} x \, dx, \ \text{and} \ \int \sin^n x \, dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, dx.$