Übungen zu Experimentalphysik III – WS 2008/09

Aufgabe 1:

Unpolarisiertes Licht fällt, nachdem es zwei Polarisatoren passiert hat, auf einen Detektor. Eine maximale Intensität von I₀ wird bei Parallelstellung der Durchlassrichtung beider Polarisatoren gemessen. Anschließend wird ein Winkel von 90° zwischen beiden Durchlassrichtungen eingestellt.

- a) Welche Intensität wird jetzt gemessen?
- b) Zwischen den zwei Polarisatoren wird nun ein dritter platziert, dessen Durchlassrichtung einen Winkel α mit der des ersten Polarisators bildet. Welche Intensität wird jetzt gemessen?

Aufgabe 2:

Ein planparalleles Kalkspatplättchen der Dicke d, dessen optische Achse parallel zur Oberfläche ist, fällt senkrecht polarisiertes Licht der Wellenlänge λ , wobei die Polarisationsrichtung einen Winkel von 45° mit der optischen Achse bildet. Der Brechungsindex für den ordentlichen Strahl ist $n_o = 1.6584$, der Brechungsindex für den außerordentlichen Strahl ist $n_{ao} = 1.4864$. Hinter der Platte befindet sich ein Polarisationsfilter dessen Durchlassrichtung mit der optischen Achse der Platte den Winkel Θ bildet. Wie groß ist die Intensität des Lichtes nach dem Polarisationsfilter, wenn die einfallende Intensität I_0 ist? Was ergibt sich für $\lambda = 500$ nm und $d = 6.541\mu m$? Wie ist in diesem Fall das die Kalkspatplatte verlassende Licht polarisiert?

Aufgabe 3:

- a) Zeigen Sie, dass bei einer ebenen Welle Rechts- und Linkszirkularpolarisation aufeinander senkrecht stehen, d.h. dass das Amplitudenprodukt $E_R \cdot E_L^*$ Null ergibt.
- b) Wie lautet diejenige Welle, die zur elliptisch polarisierten Welle $E_R = (\hat{e}_x ia\hat{e}_y)e^{i(\omega t kz)}/\sqrt{1 + a^2}$ senkrecht polarisiert ist? Skizzieren Sie die Amplitudenprojektion in der xy-Ebene.

Aufgabe 4:

Ein Plättchen der Dicke d_x habe für \hat{x} -polarisierte Strahlung den Brechungsindex $n_x = \frac{1-a}{(\omega - \omega_0 + \Delta)}$ und für \hat{y} -polarisierte Strahlung den Brechungsindex $n_y = \frac{1-a}{(\omega - \omega_0 - \Delta)}$

- a) Skizzieren Sie den Verlauf des Brechungsindex.
- b) Strahlung der Kreisfrequenz $\omega_0 + \delta$, die beim Einfall linear mit dem Winkel 45° zu den x- und y-Achsen polarisiert ist, verlässt die Platte nach senkrechtem Durchgang rechtszirkular (linkszirkular) polarisiert. Bestimmen Sie die möglichen Werte von δ und tragen Sie diese in die Skizze ein.