Phonemic analysis

Morpheme: pairing of sound \leftrightarrow meaning.

- Meaningful subpart of a word.
- Cannot be broken up into smaller meaningful subparts.

```
unaffected [An - [əfɛkt - Id]]

NEGATIVE - [affect - ADJECTIVE]

loveliness [[lav - li] - nis]
[love - ADJECTIVE] - NOUN
```

• **Comprehension question**: How would you break the word *regeneration* into nested morphological units?

Word: one or more *morphemes*, which can stand alone as a full utterance.

Q: How do you feel? Q: Do you feel impressed?

A: Unimpressed. A: *Un-.

PHONEMIC ANALYSIS

Some major components of phonological analysis:

Phonetic inventories: what surface phonetic sounds are observed in the language?

- English: [sin] sing
- Spanish: [iŋkluir] 'to include'

Phonotactics: what constitutes a possible word/morpheme (in language X)?

o Central focus: **restrictions on possible combinations of sounds**.

- Georgian (Kartvelian, Georgia): [phthila] 'lock of hair'
- English: [p^hil] peel [t^hil] teal

*[pʰtʰil] pteel Compare: pterodactyl [tʰsədæktəl]

 \circ *Christmas* [<u>k.u.smis</u>] > Japanese [k<u>uu</u>ris<u>uu</u>mas<u>uu</u>]

Phonemics: what phonetic differences between words/morphemes can *lead to a difference in meaning* (in language X)?

Phonemic contrast

Two sounds are **contrastive** in a given language if the difference between those two sounds – and *only* those two sounds – can lead to a difference in meaning between words.

English: the difference between [n] and [ŋ] is contrastive.

```
[ sin ] sing
[ sin ] sin
```

Spanish: the difference between [n] and [ŋ] is *not* contrastive.

```
[ ablan ] \approx [ ablan ] 'they speak'
```

Another example: [n n]

```
    English: [ mæn ] man vs. [ mʌnθ ] month
    [ ten ] ten vs. [ tenθ ] tenth
    [ ten ] ≈ [ ten ] ten
```

• Mapudungun (Chile): [mɨna] 'enough' vs. [mɨna] 'paternal male cousin'

One more example: [d r]

```
    English: [æd] add vs. [ærɪŋ] adding
    [ærɪŋ] ≈ [ædɪŋ] adding
```

• <u>Japanese</u>: [**d**okw] 'poison' vs. [**r**okw] 'six'

How do we show that two sounds are contrastive?

Key concept: Minimal pairs.

- Two words which differ in meaning.
- Phonetically identical *except* for a single segment in a specific position.
- Makes clear which phonetic differences can cause a difference in meaning.

Are the following minimal pairs?

- (1) race ~ raise
- (2) *take* ~ *lake*
- (3) crane ~ grate

- (4) breath ~ breathe
- (5) *rain* ~ *ram*
- (6) *rule* ~ *fool*

Can you think of any minimal triplets? Any larger sets of minimal pairs?

Some more complicated examples:

- (1) *all* [al] ~ *mall* [mal]
- (2) billow ['bɪlou] ~ below [bəˈlou]

Tagalog (Austronesian, Philippines): [h] and [?]

kahon	'box'	?ari	'property'
hari?	'king'	ka?on	'to fetch'
?umagos	'to flow'	humagos	'to paint'

Distributions and contrast

Contrastive sounds occur in **at least some of the same environments** – that's why minimal pairs are possible.

Important note: in phonology, we define the *environment* of a sound on the basis of sounds to the immediate left and right.

[si**ŋ**] sing:

- Environment for [s] = # _ I (# = word boundary)
- Environment for $[I] = s _ \mathfrak{y}$
- Environment for [n] = I #

However, contrastive sounds don't necessarily occur in *all* of the same environments.

Contrastive sounds have an **overlapping** distribution.

• Also known as **contrastive distribution**.

CONTEXTUAL VARIATION

Sometimes, the same basic sound has different phonetic realizations depending on the context it occurs in.

This can be seen most clearly with **alternations** -- changes in the basic form of a morpheme depending on its context.

• English:

o [
$$ten$$
] ten vs. [$ten\theta$] tenth

 $[n] \sim [n]$

$$[d] \sim [r]$$

$$[r] \sim [t^h], [æ] \sim [ə]$$

• <u>Kaqchikel</u> (Mayan, Guatemala):

$$\circ [\int -in - s_{\underline{o}}k]$$
 'I cut it' vs. $[s_{\underline{o}}k - a - ne_{\underline{o}}]$ 'barber'

 $[0] \sim [0]$

Note: alternation,

not alteration.

We use the notation "A ~ B" to indicate **variation in the phonetic form** of a single sound or morpheme depending on its context (= an **alternation**).

Alternations are **not random** - they depend *systematically* on properties of each sound's environment:

Negative *in*- on adjectives (in-x = 'not X')

[in-]	[ɪm-]	[ɪŋ-]	
in - tolerable	im - possible	in - complete	
in - tractable	im - polite	in - correct	
in - tangible	im - perfect	in - compatible	
in - terminable	im - patient	in - coherent	
in - describable	im - balanced	in - consistent	
in - divisible		in - gracious	
in - distinct			

- Using the IPA, list the environments that each variant of the prefix *in* occurs in. For example, the environment for *incomplete* would be [# __ k] in the IPA.
- Do we **see any generalizations** about where each variant of the prefix occurs?
- Does it make sense that we find the variants [III-], [III-], and [III-] in each of these phonetic environments?

Contextual variants of the same sound occur in **non-overlapping environments**.

- Variant X occurs **predictably** in environment A
- Variant Y occurs **predictably** in a different environment B

Vowel nasalization in English:

[i]	[ĩ]
seed [sid]	seen [sĩn]
seat [sit]	seem [sĩm]
leak [lik]	team [t ^h ĩm]
seep [sip]	mean [mĩn]
meek [mik]	keen [kʰĩn]
sneeze [sniz]	lean [lĩn]
beef [bif]	bean [bĩn]

Basic method

- Write out the environment that each sound [i] and [i] occurs (in the data).
- Check whether or not they are overlapping.
- If not, describe the environment that each sound occurs in.

When two sounds are **contextual variants** of the same sound, they are **non-contrastive**.

[bin]
$$\approx$$
 [bīn] bean
[bīf] \approx [bif] beef

CONTRAST, DISTRIBUTIONS, AND PREDICTABILITY

Sounds that are **contrastive** belong to **different phonemes**.

- *Phonemes*: the 'basic' contrastive speech sounds in a given language.
- Minimal pairs help establish the **phonemic inventory** the set of basic contrastive sounds for a particular language.

• We use slash brackets /X/ to indicate phonemes (basic sounds).

When sounds are **contrastive**, their distribution is **unpredictable** - they occur in the same environments.

When sounds are **contextual variants of the same basic sound**, we call them **allophones of the same phoneme**.

PHONEME:
$$/i/$$
ALLOPHONE: $[i]$ $[\tilde{i}]$

• We use square brackets [X] to indicate allophones (contextual variants).

Allophones of the same phoneme are **not contrastive**, and their distribution is **predictable**.

Contextual (allophonic) variation is closely related to **phonotactics**.

- [i] can't occur before nasal consonants in English.
- [i] can't occur *except* before nasal consonants in English.

Compare:

- Words cannot begin with [ŋ] in English.
- Words cannot begin with [p^ht^h] in English, *[p^ht^h il].

Allophones like [i] and [i] are **what we hear** - phonetic realizations of a basic sound.

Phonemes are abstract categories

(Hayes textbook: like the birthday song)

• / i / is a *label* for a sound that has different, physical phonetic realizations depending on its context.

Another analogy: hats

- We have a general concept of a "hat" a covering for the head usually having a shaped crown and brim
- But: there are different kinds of hats!
 And some hats are appropriate for different contexts.

• We only wear actual, physical hats, not the concept of a "hat".

Different kinds of distributions

- When two sounds are contrastive:
 - o They belong to different phonemes.
 - They have an unpredictable distribution occur in some of the same environments.
 - They are in **overlapping distribution**...
 - o ...also known as *contrastive distribution*.

- When two sounds are **allophones of the same phoneme**:
 - o They are **not contrastive** can't form minimal pairs.
 - o They occur in **different environments.**
 - o They have a **predictable** distribution.
 - $\circ \quad \text{They have a } \textbf{non-overlapping} \ \text{distribution...}$
 - o ...also known as *complementary distribution*.

Note: complementary, not complementary

- 'Complements' = things that come as a pair or set (e.g. peanut butter and jelly, or [i] and [î])
- 'Compliments' = nice things you say to people

Exercise #1: Georgian

The symbol [t] indicates a 'dark l' or 'velarized [l]'. It's like the [l] in English <u>light</u> [<u>lart</u>], but with an additional [u]-like dorsal constriction in the velar region.

[\dagger] is an example of a **complex segment**, with a **secondary articulation**. It could also be transcribed [I^{γ}] to indicate secondary velarization more clearly.

In Georgian, both plain [1] (sometimes called 'light l') and [†] occur. Are these sounds allophones of **different phonemes**, or allophones of the **same phoneme**?

łamazad	'prettily'
leto	'goal'
saxt∫i	'at home'
łxena	'joy'
kbiłs	'tooth'
zarali	'loss'
kała	'tin'
pepela	'butterfly'
kleba	'reduce'
ert ^h xeł	'once'
xeli	'hand'
xoło	'however'
tshetshxli	'fire'
vxletsh	'I split'
Îts ^h oli	'wife'

What methodology should we use?

- (1) Look for **minimal pairs** these clearly indicate contrast.
- (2) If there are no minimal pairs, consider the environments each sound occurs in.
 - Non-overlapping environments ⇒ complementary distribution ⇒ 1 phoneme
 - Overlapping environments \Rightarrow contrastive distribution \Rightarrow 2 phonemes
- (3) Look for patterns across the contexts each sound occurs in.
 - Predictable allophones usually occur in contexts that share some phonetic property, and/or which make some phonetic sense.

NEAR-MINIMAL PAIRS

It isn't always possible to find minimal pairs for contrastive sounds.

• Can you think of any minimal pairs for English [ð]~[ʒ]?

But: even when we can't find minimal pairs, we can ask whether two sounds **occur in** the same environments.

- This establishes the *potential* for contrast.
 - (1) dream [**d**.im] ~ grain [**g**.iein]
 - (2) bed [bed] ~ leg [leg]
 - (3) $adobe [a.'d\widehat{ov}.bi] \sim ago [a.'g\widehat{ov}]$

Examples like (1)-(3) are **near-minimal pairs**:

- Not *true* minimal pairs...
- ...but they show that minimal pairs are *possible*...
- ...because the sounds occur in overlapping environments.
- (4) drain [diein] ~ grain [giein]
- (5) bed [bε**d**] ~ beg [bε**g**]

Important note: there are lots of different ways we could define the "context" a sound occurs in!

- Experience teaches us that the **local environment** A __ B -- which consists of only adjacent sounds -- is the most important context.
- Other properties, like stress, can matter too (see (3) above).
- Near-minimal pairs are identical with respect to all phonetic properties that we think might be *relevant*.

Are the following near-minimal pairs for [ð ʒ]? Transcribe them to check.

- (1) leather ~ measure
- (2) neither ~ seizure
- (3) smooth ~ rouge

Like minimal pairs, near-minimal pairs prove that two sounds could not plausibly be allophones of the same phoneme.

- If $[\delta]$ ~[3] belonged to the same phoneme, their distributions should be predictable.
 - o The local contexts where [ð] occurs should be consistent...
 - o ...and *different* from the contexts in which [3] occurs.
 - This is not the case.
- (Near-)minimal establish overlapping distribution, and thus **unpredictability and** contrast.

Are the following near-minimal pairs? Transcribe them to check. What contrasts do they help establish?

(1) ran ~ tram

(2) blend ~ land

(3) racing ~ raisin

MORE PHONEMIC ANALYSIS PRACTICE

Exercise #2: Tojolabal (Mayan, Southern Mexico)

Are [t] and [th] allophones of the same phoneme in Tojolabal, or allophones of different phonemes? How can we tell?

 $[t] - [t^h]$

čitam 'pig'

makton'a patch'

potot' 'kind of plant' 3. tinan

'upside down'

5. čatat^h 'kind of plant'

6. mut^h 'chicken'

7. nahat^h 'long'

?inat^h 'seed'

Small note: $[\check{c}] = [\widehat{t}]$ in the IPA.

The symbol [č] comes from a slightly different transcription system, called 'Americanist' transription.

What about [k] and [k'] in Tojolabal? Are they contrastive, or are they allophones of a single phoneme?

[k] - [k']			
	'my beard'	15. čak'a	'chop it down'
10. koktik	'our feet'	16. k'ak	'flea'
11. p'akan		17. k'a?em	'sugar cane'
12. sak		18. k'i∫in	'warm'
	'he's carrying it'	19. k'utes	'to dress'
14. snika	'he stirred it'	20. ?ak'	'reed'

Brief phonetics note: [k'] is an **ejective consonant** (sometimes transcribed $[k^2]$)

- Closing the glottis and raising the larynx **increases pressure** in the vocal tract.
- Extra pressure creates sharp 'pop' at closure release, followed by a period of glottal closure.

Production of Ejectives (Catford 1988: 23)

Fig. 10. Three stages in the production of glottalic pressure [k']

Reminder: two languages could have exactly the *same surface phonetic sounds*, but a *different phonemic organization* for those sounds.

Khmer (Austroasiatic, Cambodia and neighboring regions)

[pa] 'father' [pha] 'silk cloth' [tu] 'chest' [thu] 'relaxed' [kæ] 'repair' [khæ] 'month'

<u>English</u>: voiceless stops are *predictably aspirated* in word-initial position.

pot [phat] vs. spot [spat] vs. rapid [xæ.pid]
cop [khap] vs. scoop [skup] vs. hacking [hæ.kiŋ]
top [thap] vs. stool [stut] vs. batting [bæ.riŋ] (with flapping)

American English light [1] and dark [1]:

please	[pliz]	bell	[beł]
lease	[lis]	coal	[khout]
elude	[əlud]	mall	[mat]
truly	[t.ruli]	cool	[kuł]
policy	[paləsi]	ball	[bał]
glue	[glu]	bowl	[bout]
allow	[əlau]	pull	[pʊł]
bleed	[blid]	seal	[sił]
slyly	[slaīli]	file	[faīt]
halo	[herlou]	rail	[leił]

- How is the distribution of [l] and dark [t] in American English *similar to* the distribution of these sounds in Georgian?
- How is the distribution of [l] and dark [t] in American English *different from* the distribution of these sounds in Georgian?

[s] and [z] in Oneida

What's the phonemic relationship between [s] and [z] in Oneida (Iroquoian, historically New York, now also Wisconsin and Ontario)?

[s]		[z]	
[lashet]	'let him count'	[kawene z uze?]	'long words'
[laʔ s luni]	'white men'	[khaii z e]	'I am taking it along'
[loteswatu]	'he's been playing'	[la z el]	'let him drag it'
[skahnehtat]	'one pine tree'	[taha z ehte?]	'he dropped it'
[thiskate]	'a different one'	[tu z ahatiteni]	'they changed it'
[sninuhe]	'you buy'	[we z ake]	'she saw you'
[wahsnestake?]	'vou ate corn'		

Is the status of [s] and [z] in Oneida the same as their status in English, or different? Why?

PHONETIC SIMILARITY

Complementary distribution doesn't always correctly identify allophones of the same phoneme.

Sometimes, complementary distribution is just accidental.

• English /h/ and /ŋ/ (distributions slightly simplified)

```
\begin{array}{llll} \textit{hang} \ ['hen] & \textit{ring} \ ['snn] & \textit{sung} \ ['snn] & \textit{bang} \ ['ben] & \textit{long} \ ['lon] \sim ['lon] \\ \textit{hood} \ ['hod] & \textit{hill} \ ['hrt] & \textit{hum} \ ['hnm] & \textit{hat} \ ['het] & \textit{help} \ ['help] \end{array}
```

```
vehicular [vi'hikjələ] vehicle ['viikt]
prohibit [piou'hibit] prohibition [piou'bifən]
```

Vietnamese $Nguyen [\underline{\mathbf{n}}win] > English [\underline{\mathbf{n}}win]$ or $[\underline{\mathbf{n}}ujen]$

Are the following words possible words of English?

```
sung ['sʌŋ] vs. ?['ŋʌs]
hum ['hʌm] vs. ?['mʌh]
```

• English /k/ and /ph/ - non-overlapping distribution.

```
pot [phat]
scoop [skup] vs. hacking [hæ.kɪŋ]
```

We need another criterion: phonetic similarity.

Supporting evidence: alternations.

• We find lots of alternations between phonetically-related allophones.

```
[k]\sim[k^h]: provoke [p.ə'vouk] vs. provocation [ p.avə'khei.fən ] [p]\sim[p^h]: type [tarp] vs. typology [ tarphaalədzi ]
```

• But no such alternations exist for:

```
o [h] and [ŋ] (e.g. hypothetical song \sim sohology)
o [p] and [kh]
```

 \circ [k] and [p^h]

Larger point: allophony isn't random! It often shows phonetically sensible patterning.

- *Allophones tend to be phonetically similar:*
 - English /k/ aspiration: $/k/ \rightarrow [k^h]$
- Sets of phonetically similar sounds showing the same alternations:
 - English aspiration: $/p t k/ \rightarrow [p^h t^h k^h] / #$ ____
- Phonetic similarity across contexts an allophone occurs in:
 - Georgian /l/ lightening: $/t/ \rightarrow [l] / _ [e i]$
- Phonetic similarity between allophones and their contexts:
 - \circ Oneida /s/-voicing: /s/ \rightarrow [z] / [V] _ [V]
 - o Georgian /l/ lightening: / $\frac{1}{2}$ → [l] / _ [e i]

You have to know about phonetics to see these patterns!

PHONEMES AND ALLOPHONES IN LANGUAGE ACQUISITION

Children learn phonemic/allophonic categories through distributional learning.

- Young infants (4-6 months) can perceptually distinguish all phonetic differences used contrastively in the world's languages.
 - o Evidence: headturn preference procedure, preferential sucking, etc.
- Sometime between 6-12 months, infants lose this ability.
 - At this point, infants can only perceptually distinguish between different phonemes in their native language(s).
 - o All of this occurs before infants understand any words!

