Assignment 6

1.

Hash function	С	Р	P2	F
а	No, the output	Yes	No, the output	Yes
	always is the		always is the	
	same bit string.		same bit string.	
b	Yes, the whole	No, it is very easy	Yes	No, the output
	output relies on	because the		size relies on the
	the whole input.	message is		input size.
		repeated.		
С	Yes	Yes, you can find	Yes, because H(x)	Yes, because the
		H(x) but not x	has this property,	length of H(x) is
		itself.	h(x) also has this	fixed, the length
			property	of h(x) is also
				fixed.
d	No, when two	No, because the	No, because the	Yes
	strings x and y	length of the	length of the	
	have the same	input is used, it is	input is used, it is	
	length, the hash	possible to brute	possible to brute	
	function returns	force (try all	force (try all	
	the same value.	lengths).	lengths).	
е	No, when two	No, when a	No, when two	Yes
	strings, for	string, for	strings, for	
	example 1 and 01	example 1 is	example 1 and 01	
	are hashed, the	hashed, x can	are hashed, they	
	output is the	have value	have the same	
	same.	001.	output.	

2.

a.

No, a_i is an element of $\{1, 2, 3, 4\}$. When Bob hashes all these values, he can get the output of the hash function and compare it with the email he receives from Alice. He can then see which answer Alice chose.

b.

Yes, now it's no longer possible to try out all the anwers.

c.

Yes, they both have the hashed output. It does not matter which of the two verify the other's answer first.

d.

 $A \rightarrow B : h(a_i \mid | salt_{ai}) = x_i$

 $B \rightarrow A: h(b_i \mid \mid salt_{ai}) = y_i$

Now, each question they pick their random salt and send it back with their answers in the verification phase.

e.

- (C): It is important because otherwise Alice can find H(x') = H(x) where x' is another answer to the question.
- (P): It is important because otherwise Bob can find x (the answer of Alice).
- (P2): It is important because otherwise Bob can accuse Alice of lying (by finding another x' for which H(x) = H(x').

3.

a.

Each digit can contain 62 possible characters (10 + 26 + 26).

A 10 digit passcode can contain 62¹⁰ different combinations.

 62^{10} = 839299365868340224 (839 299 365 868 340 224).

1 billion = 1 000 000 000

839299365868340224 / 3000000000 = 279766455 seconds

279766455 seconds = 77712 hours = 3238 days to try all combinations.

It would take 3238 / 2 = 1619 days to break a fully random 10 digit passcode on avarage.

b.

Assume there are no identical passwords.

There are 43 million entries.

 62^{10} / 43 000 000 = 19518589903

Per hash, we have a 1 on 19518589903 chance to find a matching hash.

19518589903 / 3000000000 = 6,5 seconds to find a matching hash.

On average, it takes 6.5 / 2 = 3.25 seconds to find a matching hash.

c.

We have 62⁶ possible combinations.

 $62^6 = 56\,800\,235\,584$

56 800 235 584 / 10 / 3600 / 24 = 65 741 days to try all combinations

On average, 65741/2 = 32870 days to break a password.

d.

(P), they first have to dehash a stored hashed password.

e.

Dropbox needs to hash the SHA1 hashes with their new hash function. When a user then logs in, they need to first hash the password with SHA1 and then hash the SHA1 hash with the new hash function.