Solubility and Solubility Product Problems

- 1. A chemist adds water to 120mL of a 6M solution of NaOH until the final volume is 2L. What is the molarity of the resulting solution? {0.36M}
- 2. 5.0L of 0.1M HCl is needed. The stock solution is 12M. How much stock solution is needed to make the desired solution?{41.67mL}
- 3. 2.0L of 0.6M FeCl₃ is mixed with 1.0L of 0.9M BaCl₂. No reaction occurs. What is the concentration of each ion in the final solution? {Fe+3=0.4M, Cl-=1.8M, Ba+2=0.3M}
- 4. The solubility of AgBr is found to be $8.8*10^{-7}M$. Find the K_{sp} of AgBr. $\{7.744*10^{-13}\}$
- 5. Calculate the solubility of CaCO₃ in water at 25°C. K_{sp} CaCO₃=4.8*10-9.{6.928*10-5M}
- 6. The solubility of iron (II) hydroxide, Fe(OH)₂, is found to be 1.5*10⁻³g/L. Find K_{sp} .{1.86*10⁻¹⁴M³}
- 7. The K_{sp} for magnesium fluoride, MgF₂, has a value of 6.4*10⁻⁹. What is its solubility in g/L?{0.07287g/L}
- 8. Will a precipitate form if 40.0mL of $8*10^{-3}$ M Mg(NO₃)₂ are mixed with 60.0mL of $1*10^{-2}$ M K₂CO₃? K_{sp} for MgCO₃= $2.6*10^{-5}$.{no}
- 9. Will a precipitate form if 25mL of $4*10^{-3}M$ AgNO₃ are mixed with 75mL of $2*10^{-4}M$ Na₂CrO₄?K_{sp} for Ag₂CrO₄ = $9*10^{-12}$.{yes}
- 10. What is the maximum [Sr⁺²] that can be dissolved in a 0.02M solution of K_2SO_4 without precipitating $SrSO_4$? K_{sp} for $SrSO_4$ = 7.6*10⁻⁷.{3.8*10-5M}
- 11. Water hardness is caused by the presence of Ca^{+2} and Mg^{+2} ions. One way of removing these ions is to add washing soda (Na₂CO₃) which causes precipitation of CaCO₃ and MgCO₃. If 5.0L of water has a [Ca⁺²] of 0.004M, calculate the maximum mass of Na₂CO₃ which can be added without causing any precipitate to form. K_{sp} for CaCO₃ = 4.8*10⁻⁹.{6.36*10⁻⁴}

- 12. A sample of lake water is analysed for chloride ion by being titrated with Ag⁺. It is found that 23.64mL of 0.1M AgNO³ are required to precipitate all the chloride ion in a 125 mL sample. What is the [Cl-] in the sample? {0.018912M}
- 13. What is the molar solubility of PbI₂ in a 0.1M Nal solution? K_{sp} for PbI₂ = 7.9*10-9.{7.9*10-7M}
- 14. A solution of calcium fluoride is added to a 0.1M solution of calcium chloride. What will be the maximum concentration of fluoride ions in this mixture? K_{sp} CaF₂ = 3.9*10⁻¹¹.{1.975*10-5M}
- 15. Is a precipitation reaction likely to occur when aqueous solution of copper (II) sulfate and sodium hydroxide are mixed? What is the balanced net ionic equation?

K_{sp} Problems

- 1. Determine the solubility of silver sulfate in pure water at 25°C.{0.01442M}
- 2. Determine the solubility (in moles) of silver sulfate in a 500mL solution which is 0.1M in sodium sulfate.{2.75*10-3 moles}
- 3. 200mL of used photographic solution contains 4.0*10-3 M silver ions. What mass of table salt (in grams) would be needed to begin to precipitate the silver as silver chloride?{5.26*10-7g}
- 4. Mix 500mL of 0.1M Ag+ with 500mL of 0.1M CH₃COO-. Will a precipitate occur? How much?{1.07g}
- 5. A 1L solution contains 0.1M of each of Pb⁺², Ca⁺² and Sr⁺². Which ion precipitates last as Na₂SO₄ is slowly added with no volume change?
- 6. From 5, what is the concentration of the ion that precipitates first when the second ion precipitates?