# Feature-based Discriminative Classifiers

Making features from text for discriminative NLP models

**Christopher Manning** 



## **Classifiers**

- A classifier is a function g which assigns an input datum d to one of |C| classes, c ∈ C: g: D → C
- The classes might be:
  - {PERSON, ORGANIZATION, LOCATION, O} for named entity recognition
  - {politics, sports, finance, technology, arts, leisure, ...} for news
  - {spam, notspam} for an email message
  - {coreferent, not-coreferent} for a coreference candidate mention pair



## **Example problem**

- Classify a capitalized proper noun as a class:
  - LOCATION, DRUG, PERSON
- For a data example d
  - taking Zantac
- We work by considering each class c for the word:
  - (LOCATION, taking Zantac, )
  - (DRUG, taking Zantac, )
  - (PERSON, taking Zantac, )
- and using features to score each candidate classification



## Features for a classifier

- Features f are elementary pieces of evidence that link aspects of what we observe d with a category c that we want to predict
- A feature is a function with a bounded real value:  $f: C \times D \to \mathbb{R}$ 
  - Common special case in NLP:
    - binary features  $f: C \times D \rightarrow \{0, 1\}$



## **Example binary features**

- $f_1(c, d) = [c = \text{LOCATION } \land w_{-1} = \text{``in''} \land \text{isCapitalized}(w)]$
- $f_2(c, d) = [c = \text{LOCATION } \land \text{ hasAccentedLatinChar}(w)]$
- $f_3(c, d) = [c = DRUG \land ends(w, "c")]$ 1.8 -0.6

LOCATION in Arcadia



0.3 DRUG taking Zantac

PERSON saw Sue

- Models will assign to each feature a weight:
  - A positive weight votes that this configuration is likely correct
  - A negative weight votes that this configuration is likely incorrect



## **Binary Features**

- Very commonly, a feature specifies
  - 1. an indicator function a yes/no boolean matching function of properties of the input  $\Phi$  and
  - 2. a particular class

$$f_i(c, d) = [\Phi(d) \land c = c_i]$$
 [Value is 0 or 1]

- Each feature picks out a data subset and suggests a label for it
- The decision about a data point is based only on the values of the features active at that point.



### **More General Features**

- Features can be more general than just binary matching:
  - Can compute a real value from input, e.g., log(word length)
  - Can match a set of values e.g., perhaps a partial structure across "classes"
    - This leads to structured classification, which is common in NLP, for example to match parse tree candidates, etc.
      - A discriminative can have features that match a tree with a unary S to VP
      - A coreference model can not like a cluster with different gender items



## **Building a Simple Discriminative Model**

- We define features (indicator functions) over data points
  - Features represent sets of data points which are distinctive enough to deserve model parameters.
    - Words, but also "word contains number", "word ends with ing", POS, syntactic structure, relation between two phrases, etc.
- We might simply encode each  $\Phi$  feature as a unique String
  - A datum will give rise to a set of Strings: the active  $\Phi$  features
  - Each feature  $f_i(c, d) = [\Phi(d) \land c = c_i]$  gets a real number weight
- We concentrate on  $\Phi$  features, but one weight for each i of  $f_i$



## **Building a Simple Discriminative Model**

- Features are normally added in big batches via feature templates
  - E.g., one feature template adds  $\forall i,j$  observed: lastWord= $\mathbf{w}_i \wedge c = c_j$
  - Another is:  $nextWord=w_i \land c=c_j$ . Each may add tens of thousands of features
- A model may be specified by the set of feature templates used
- Features are often added during model development to target errors
  - Often, the easiest thing to think of are features that mark bad combinations



## Linear classifiers at classification time

- Linear function from feature sets  $\{f_i\}$  to classes  $\{c\}$ .
- Assign a weight  $\lambda_i$  to each feature  $f_i$ .
- We consider each class for an observed datum d
- For a pair (c,d), features vote with their weights:
  - vote(c) =  $\sum \lambda_i f_i(c,d)$

PERSON in Québec in Québec

LOCATION

DRUG in Québec

• Choose the class c which maximizes  $\sum \lambda_i f_i(c,d)$ 



## Linear classifiers at classification time

- Linear function from feature sets  $\{f_i\}$  to classes  $\{c\}$ .
- Assign a weight  $\lambda_i$  to each feature  $f_i$ .
- We consider each class for an observed datum d
- For a pair (c,d), features vote with their weights:
  - vote(c) =  $\sum \lambda_i f_i(c,d)$



0.3 DRUG in Québec

• Choose the class c which maximizes  $\sum \lambda_i f_i(c,d) = \text{LOCATION}$ 

# Feature-based Discriminative Classifiers

Making features from text for discriminative NLP models

# Feature-based softmax/maxent linear classifiers

How to put features into a classifier



### **Feature-Based Linear Classifiers**

- Linear classifiers are a linear function from feature sets  $\{f_i\}$  to classes  $\{c\}$
- At test time, we consider each class c for a datum d
  - We generate a feature set  $\{f_i\}$  for an observed datum-class pair (c,d)
  - Each feature  $f_i$  has a weight  $\lambda_i$
  - We then score each possible class assignment:  $vote(c) = \sum \lambda_i f_i(c,d) = \lambda_i f$
  - We choose the class c which maximizes  $\sum \lambda_i f_i(c,d)$
- At training time we have observed (c,d) pairs from labeled examples
  - We generate sets of features  $\{f_i(c,d)\}$  for them
  - We use information about what features occur and don't occur to set a weight  $\lambda_i$  for each feature



## **Example features**

- $f_1(c, d) = [c = \text{LOCATION } \land w_{-1} = \text{"in"} \land \text{ isCapitalized}(w)]$
- $f_2(c, d) = [c = \text{LOCATION } \land \text{ hasAccentedLatinChar}(w)]$
- $f_3(c, d) = [c = DRUG \land ends(w, "c")]$



0.3 DRUG PERSON taking Zantac saw Sue



## Maxent models (softmax, multiclass logistic, exponential, conditional log-linear, Gibbs)

• Make a probabilistic model from the linear combination  $\sum \lambda_i f_i(c,d)$ 

$$P(c \mid d, \lambda) = \frac{\exp \sum_{i} \lambda_{i} f_{i}(c, d)}{\sum_{c'} \exp \sum_{i} \lambda_{i} f_{i}(c', d)} \leftarrow \frac{\text{Makes votes positive}}{\text{Normalizes votes}}$$

- $P(LOCATION|in\ Qu\'ebec) = e^{1.8}e^{-0.6}/(e^{1.8}e^{-0.6} + e^{0.3} + e^0) = 0.586$
- $P(DRUG|in\ Qu\'ebec) = e^{0.3}/(e^{1.8}e^{-0.6} + e^{0.3} + e^{0}) = 0.238$
- $P(PERSON|in\ Qu\'ebec) = e^0/(e^{1.8}e^{-0.6} + e^{0.3} + e^0) = 0.176$
- The weights are the parameters of the probability model, combined via a "soft max" function



## **Feature-Based Linear Classifiers**

- Maxent models:
  - Given this model form, we choose parameters  $\{\lambda_i\}$  that maximize the conditional likelihood of the data according to this model (as discussed later):  $\max_{\Lambda} P(D|C, \Lambda)$
  - We construct not only classifications, but probability distributions over classifications.



### **Feature-Based Linear Classifiers**

There are other (good!) ways to chose weights for features

- Perceptron: find a currently misclassified example, and nudge weights in the direction that corrects classification
- Margin-based methods (Support Vector Machines)
- Boosting algorithms

But these methods are not as trivial to interpret as probability distributions over classes

# Feature-based softmax/maxent linear classifiers

How to put features into a classifier