

a. Regression Output in JASP

Results

Linear Regression

Model Summary - days

Model	R	R²	Adjusted R ²	RMSE	R² Change	df1	df2	р
M_0	0.000	0.000	0.000	16.253	0.000	0	145	
M_1	0.299	0.089	0.070	15.673	0.089	3	142	0.004

Note. M₁ includes eth, sex, Irn

ANOVA

Model		Sum of Squares	df	Mean Square	F	р
M_1	Regression	3421.776	3	1140.592	4.643	0.004
	Residual	34882.477	142	245.651		
	Total	38304.253	145			

Note. M₁ includes eth, sex, Irn

Note. The intercept model is omitted, as no meaningful information can be shown.

Coefficients

							95% CI	
Mode I		Unstandardiz ed	Standar d Error	Standardize d ^a	t	р	Lower	Upper
M_0	(Intercep t)	16.459	1.345		12.23 6	< .00	13.80	19.11 7
M_1	(Intercep t)	18.932	2.570		7.365	< .00 1	13.85 1	24.01 3
	eth (N)	-9.112	2.599		-3.506	< .00	- 14.25 0	-3.975

							95% CI	
Mode I		Unstandardiz ed	Standar d Error	Standardize d ^a	t	р	Lower	Upper
S	sex (M)	3.104	2.637		1.177	0.241	-2.109	8.317
l	rn (SL)	2.154	2.651		0.813	0.418	-3.085	7.394

^a Standardized coefficients can only be computed for continuous predictors.

Residuals Statistics

	Minimum	Maximum	Mean	SD	N
Predicted Value	9.820	24.190	16.459	4.858	146
Residual	-22.190	59.914	1.775×10 ⁻¹⁵	15.510	146
Std. Predicted Value	-1.367	1.592	8.766×10 ⁻¹⁷	1.000	146
Std. Residual	-1.442	3.876	-1.079×10 ⁻⁵	1.004	146

b. Regression Equation

The regression equation based on the coefficients is:

$$days^{=} 18.932 - 9.112(eth) + 3.104(sex) + 2.154(lnr)$$

Where:

- **eth** = 0 (Aboriginal), 1 (Not Aboriginal)
- sex = 0 (Female), 1 (Male)
- lnr = 0 (Average learner), 1 (Slow learner)

c. Interpretation of Slopes and Statistical Significance

1. eth (-9.112, p < 0.001)

- Interpretation: Being not Aboriginal (eth = 1) reduces the predicted absenteeism
 by 9.112 days compared to Aboriginal students.
- Statistically significant at $\alpha = 0.05$ since p < 0.001.
- 2. sex (3.104, p = 0.241)
 - Interpretation: Being male (sex = 1) increases absenteeism by 3.104 days
 compared to females.
 - Not statistically significant since p = 0.241 > 0.05.
- 3. lnr(2.154, p = 0.418)
 - Interpretation: Being a slow learner (lnr = 1) increases absenteeism by 2.154
 days compared to average learners.
 - Not statistically significant since p = 0.418 > 0.05.

d. Calculate the Residual for the Second Observation

Given Regression Equation:

$$y^{=18.932 - 9.112(eth) + 3.104(sex) + 2.514(lnr)}$$

Given Values for the Second Observation:

- eth = 0 (Aboriginal)
- sex = 1 (Male)
- lnr = 1 (Slow learner)
- Actual absenteeism (y) = 11 days

Calculate Predicted Value (y^)

$$y^{\wedge} = 18.932 - 9.112(0) + 3.104(1) + 2.514(1)$$

 $y^{\wedge} = 18.932 + 3.104 + 2.514$
 $y^{\wedge} = 24.55$

Calculate Residual:

Residual = Actual Value - Predicted Value

Residual = 11 - 24.55

Residual = -13.55

e. Model Adjusted R-Squared and Interpretation

- Adjusted $R^2 = 0.070$
- Interpretation: The model explains 7% of the variation in absenteeism. This means that ethnicity, sex, and learner type only explain a small proportion of absenteeism, suggesting other unaccounted factors influence absenteeism more significantly.