Lemma 1. For each $k \geq 0$, let \mathcal{E}_k be a finite collection of non-empty, bounded Borel subsets of \mathbf{R}^d , such that

• Separation: For each k, the collection

$$\{\overline{A}: A \in \mathcal{E}_k\}$$
 is disjoint.

• Nesting: For each $A \in \mathcal{E}_{k+1}$, there is a unique $A^* \in \mathcal{E}_k$ such that $A \subset A^*$, and for any $A^* \in \mathcal{E}_k$, there is at least one $A \in \mathcal{E}_{k+1}$ with $A \subset A^*$.

Let $E_k = \bigcup \mathcal{E}_k$, and let $E_\infty = \bigcap E_k$. Recursively define a function $\mu : \bigcup_{k \geq 0} \mathcal{E}_k \to [0, \infty)$ by setting $\mu(A) = 1$ if $A \in \mathcal{E}_0$, and for each $A \in \mathcal{E}_{k+1}$, setting

$$\mu(A) = \frac{\mu(A^*)}{\#\{A' \in \mathcal{E}_{k+1} : A' \subset A^*\}}.$$

Then μ extends to a finite Borel measure on \mathbf{R}^d supported on E_{∞} .

Proof. Let $\mathcal{E} = \bigcup_{k>0} \mathcal{E}_k \cup 2^{\mathbf{R}^d - E_k}$. Then \mathcal{E} is a semi-ring of sets:

• \mathcal{E} is closed under intersections: Let $A, B \in \mathcal{E}$. Then without loss of generality, swapping A and B if necessary, there exists $i \leq j$ such that $A \in \mathcal{E}_i$ or $A \subset \mathbf{R}^d - E_i$, and $B \in \mathcal{E}_j$ or $B \subset \mathbf{R}^d - E_j$.

If $A \in \mathcal{E}_i$, and $B \in \mathcal{E}_j$, then either $A \cap B = \emptyset$, or $B \subset A$, and $A \cap B = B$. In either case, $A \cap B \in \mathcal{E}$.

If $A \subset \mathbf{R}^d - E_i$, then $A \cap B \subset A \subset \mathbf{R}^d - E_i$, so $A \cap B \in \mathcal{E}$. Similarly, if $B \subset \mathbf{R}^d - E_i$, then $A \cap B \subset \mathbf{R}^d - E_i$, so $A \cap B \in \mathcal{E}$.

This addresses all cases.

• \mathcal{E} is closed under relative complements: Let $A, B \in \mathcal{E}$. Then there exists i, j such that $A \in \mathcal{E}_i$ or $A \subset \mathbf{R}^d - E_i$, and $B \in \mathcal{E}_j$ or $B \subset \mathbf{R}^d - E_j$.

Suppose $A \in \mathcal{E}_i$ and $B \in \mathcal{E}_j$. If $i \geq j$, then either $A \cap B = \emptyset$, or $A \subset B$. In either case, $A - B = \emptyset \in \mathcal{E}$. If $i \leq j$, then either $A \cap B = \emptyset$, or $B \subset A$. In the latter case,

$$A - B = \bigcup \{B_i : B_i \in \mathcal{E}_j, B_i \neq B, B_i \subset A\} \cup \{A - E_j\}.$$

Note that this union is disjoint, and each set in the union is an element of \mathcal{E} .

Suppose $A \in \mathcal{E}_i$, and $B \subset \mathbf{R}^d - E_j$. If $i \geq j$, then $A \subset E_i \subset E_j$, so A - B = A. If $i \leq j$, then

$$A - B = (A \cap E_j) \cup (A \cap (\mathbf{R}^d - B)).$$

The former set can be written as $\bigcup_{A' \in \mathcal{E}_j} : A' \subset A$, and the latter set is a subset of $\mathbf{R}^d - E_j$. This gives A - B as a disjoint union of elements of \mathcal{E} . If $A \subset \mathbf{R}^d - E_i$, then $A - B \subset \mathbf{R}^d - E_i$, so $A - B \in \mathcal{E}$.

The function μ extends to a function on \mathcal{E} by setting $\mu(E) = 0$ if $E \subset \mathbf{R}^d - E_k$ for some k. This does not conflict with our previous definition, since if $A \in \mathcal{E}_i$, then $A \cap E_j \neq \emptyset$ for all $j \geq 0$. We claim that μ is then a *pre-measure* on the semi-ring:

- It is certainly true that $\mu(\emptyset) = 0$.
- Let $A \in \mathcal{E}$, and suppose $A = \bigcup_i A_i$, where $\{A_i\}$ is an at most countable subcollection of disjoint sets from \mathcal{E} . We fix k such that $A \in \mathcal{E}_k$, or $A \subset \mathbf{R}^d E_k$, and for each i, fix k_i such that $A_i \in \mathcal{E}_{k_i}$, or $A \subset \mathbf{R}^d E_{k_i}$. If $A \in \mathbf{R}^d E_k$ for some k, then $A_i \in \mathbf{R}^d E_k$ for each i, and thus $\mu(A_i) = 0$ for all i. Since $\mu(A) = 0$, this means $\mu(A) = \sum \mu(A_i)$. Suppose $A \in \mathcal{E}_k$. If there are only finitely many sets A_j with $A_j \in \mathcal{E}_k$, then the claim is obvious. Thus it suffices to show this is the only case.

Suppose $A \in \mathcal{E}_k$. If there are only finitely many sets A_j with $A_j \in \mathcal{E}_k$, then the claim is obvious. Thus it suffices to show this is the only case. Let $\{A_j\}$ be the family of sets with $A_j \in \mathcal{E}_{k_j}$. Then we may find a disjoint family of open sets $\{U_j\}$ with $\overline{A_j} \subset U_j$ for each j. Define

$$A_{\infty} = \bigcup \overline{A_j}$$

Then $\{U_j\}$ is a cover of A_{∞} . The set A_{∞} is compact, since it is bounded and closed by the separability criterion. Since the sets U_j are disjoint, and $U_j \cap A_{\infty} \neq \emptyset$ for any j, this implies the set of $\{U_j\}$ is finite, and thus the set $\{A_j\}$ is finite.

The Caratheodory extension theorem then guarantees that μ extends to a measure on the σ algebra generated by \mathcal{E} . Since

$$\lim_{k \to \infty} \left(\max_{A \in \mathcal{E}_k} \operatorname{diam}(A) \right) = 0,$$

this σ algebra contains all Borel sets.

For the next lemma, let \mathcal{Q}^d denote the collection of all dyadic cubes in \mathbf{R}^d , let \mathcal{Q}^d_k denote the dyadic cubes of length $1/2^k$, and let $Q^* \in \mathcal{Q}^d_k$ denote the parent cube of any $Q \in \mathcal{Q}^d_{k+1}$.

Lemma 2 (Mass Distribution Principle). Let $f: \mathcal{Q}^d \to [0, \infty)$ be a function such that for any $Q_0 \in \mathcal{Q}^d$,

$$\sum_{Q^* = Q_0} f(Q) = f(Q_0), \tag{1}$$

Then there exists a regular Borel measure μ supported on

$$\bigcap_{k=1}^{\infty} \left[\bigcup \{ Q \in \mathcal{Q}_k^d : f(Q) > 0 \} \right]$$

such that for each $Q \in \mathcal{Q}^d$,

$$\mu(Q) \ge f(Q),\tag{2}$$

and for any set E and $k \geq 0$,

$$\mu(E) \le \sum f(Q),\tag{3}$$

where Q ranges over all cubes in $\mathcal{Q}_k^d(E(l_k))$.

Proof. For each i, define a regular Borel measure μ_i such that for each $f \in C_c(\mathbf{R}^d)$,

$$\int f d\mu_i = \sum_{Q \in \mathcal{Q}_a^d} \frac{f(Q)}{|Q|} \int_Q f \ dx$$

Then, for each $j \leq i$, $\mu_i(Q) = f(Q)$.

We claim that $\{\mu_i\}$ is a Cauchy sequence in the space of all regular Borel measures on \mathbf{R}^d , viewing the space as a locally convex space under the weak topology. Fix $\varphi \in C_c(\mathbf{R}^d)$, and choose some N such that φ is supported on $[-N,N]^d$. Set $Q_0 = [-N,N]^d$. Since φ is compactly supported, φ is uniformly continuous, so for each $\varepsilon > 0$, if i is suitably large, there is a sequence of values $\{a_Q : Q \in \mathcal{Q}_i^d(Q_0)\}$ such that if $x \in Q$, $|\varphi(x) - a_Q| \le \varepsilon$. But this means that

$$\sum (a_Q - \varepsilon) \mathbf{I}_Q \le \varphi \le \sum (a_Q + \varepsilon) \mathbf{I}_Q,$$

where Q ranges over cubes in $\mathcal{Q}_i^d(Q_0)$. Thus for any $j \geq i$,

$$\int \varphi \ d\mu_j \le \sum (a_Q + \varepsilon)\mu_j(Q) = \sum (a_Q + \varepsilon)f(Q)$$

and

$$\int \varphi \ d\mu_j \ge \sum (a_Q - \varepsilon)\mu_j(Q) = \sum (a_Q - \varepsilon)f(Q).$$

In particular, if $j, j' \geq i$,

$$\left| \int \varphi d\mu_j - \int \varphi d\mu_{j'} \right| \le 2\varepsilon \sum_{Q \in \mathcal{Q}_i(Q_0)} f(Q) = 2\varepsilon \sum_{Q \in \mathcal{Q}_0(Q_0)} f(Q).$$

Since ε and φ were arbitrary, this shows $\{\mu_i\}$ is Cauchy.

Since the space of all regular Borel measures on \mathbf{R}^d is *complete*, the last paragraph implies there exists a regular Borel measure μ such that $\mu_i \to \mu$ weakly. For any $Q \in \mathcal{Q}^d$, since Q is a closed set,

$$\mu(Q) \ge \limsup_{i \to \infty} \mu_i(Q) = f(Q).$$

Conversely, if E is an arbitrary set, then $E \subset E(l_i)^{\circ}$ for any i, so

$$\mu(E) \le \liminf_{i \to \infty} \mu_i(E(l_i)^\circ) \le \liminf_{i \to \infty} \mu_i(E(l_i)) = \sum f(Q),$$

where Q ranges over the cubes in $\mathcal{Q}_i^d(E(l_k))$.

Remark. Common approaches to the mass distribution principle consider

$$\mu(E) = \inf \left\{ \sum_{i=1}^{\infty} f(Q_i) : Q_i \in \mathcal{Q}^d, E \subset \bigcup Q_i \right\}.$$

If d(E,F)>0, then (1) implies that $\mu(E+F)=\mu(E)+\mu(F)$, so μ is a metric exterior measure, and so all Borel sets are measurable with respect to μ . However, given the conditions of this theorem, it is not necessarily true that μ is even a non-zero measure, let alone that it reflects the values of the functions f.