K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS

Cascode Amplifier

Numerical 1:

For the ciruit shown below in figure 1,

- a) Determine DC parameters of both the stages
- b) Determine overall voltage gain A_{V_T} in dB
- b) Determine input and output impedance
- b) Determine output voltage

Given: $V_{BE_1} = V_{BE_2} = 0.6V$, $\beta_1 = \beta_2 = 100$

Figure 1: Circuit 1

Solution:

DC analysis of cascode(CE-CB):

$$V_{B_1} = \frac{R_3}{R_1 + R_2 + R_3} \times V_{CC} = \frac{8k\Omega}{18k\Omega + 4k\Omega + 8k\Omega} \times 24V = \mathbf{6.4V}$$

$$V_{B_2} = \frac{R_3 + R_2}{R_1 + R_2 + R_2} \times V_{CC} = \frac{8k\Omega + 4k\Omega}{8k\Omega + 4k\Omega + 8k\Omega} \times 24V = \mathbf{9.6V}$$

Figure 2: DC equivalent circuit

 $\because V_{E_2} = V_{C_1} = \mathbf{9V}$

Small signal parameters:

$$\begin{split} r_{\pi} &= r_{\pi_1} = r_{\pi_2} = \frac{\beta V_T}{I_{CQ}} \\ &= \frac{100 \times 26 mV}{2.9 mA} = \mathbf{0.8965 k\Omega} \\ g_m &= g_{m_1} = g_{m_2} = \frac{I_{CQ}}{V_T} \\ &= \frac{2.9 mA}{26 mV} = \mathbf{111.538 mA/V} \end{split}$$

Mid-frequency AC equivalent circuit:

Figure 3: Mid-frequency AC equivalent circuit

Input impedance,

$$\begin{split} Z_i &= R_B \parallel (r_{\pi_1} + (1+\beta_1)R_{E_2}) \\ &= R_2 \parallel R_3 \parallel (r_{pi_1} + (1+\beta_1)R_{E_2}) \qquad (\because R_B = R_2 \parallel R_3) \\ &= 4k\Omega \parallel 8k\Omega \parallel (0.8965k\Omega + (101)1k\Omega) \\ &= \frac{4k\Omega \times 8k\Omega}{4k\Omega + 8k\Omega} \parallel 101.8965k\Omega \\ &= 2.666k\Omega \parallel 101.8965k\Omega \\ &= \frac{2.666k\Omega \times 101.8965k\Omega}{2.666k\Omega + 101.8965k\Omega} = \mathbf{2.598k\Omega} \end{split}$$

Input impedance with R_S ,

$$Z_{in} = Z_i + R_S$$
$$= 2.598k\Omega + 50\Omega = \mathbf{2.648k\Omega}$$

Output impedance,

$$egin{aligned} Z_o &= R_C \parallel R_L \ &= rac{2k\Omega imes 2.2k\Omega}{2k\Omega + 2.2k\Omega} = \mathbf{1.047k\Omega} \end{aligned}$$

$$A_{V_1} = \frac{V_{o_1}}{V_i}$$

$$= \frac{-1}{1 + g_m R_{E_2}}$$

$$= \frac{-1}{1 + (111.538mA/V)(1k\Omega)}$$

$$= \frac{-1}{1 + 111.538} = -0.00885$$

$$\begin{split} A_{V_2} &= \frac{V_{out}}{V_{o_1}} \\ &= g_m(R_C \parallel R_L) \\ &= 111.538 mA/V (2k\Omega \parallel 2.2k\Omega) \\ &= 111.538 mA/V \left(\frac{2k\Omega \times 2.2k\Omega}{2k\Omega + 2.2k\Omega}\right) \\ &= 111.538 mA/V \times 1.047 k\Omega = \textbf{116.78} \end{split}$$

$$A_{V_T} = A_{V_1} \times A_{V_2}$$

= -0.00885 \times 116.78 = -1.037

$$\begin{split} A_{V_{T_S}} &= A_{V_T} \times \frac{Z_i}{Z_i + R_S} \\ &= -1.037 \times \frac{2.598k\Omega}{2.598k\Omega + 50\Omega} \\ &= -1.307 \times 0.98 = -\textbf{1.017} \end{split}$$

$$\therefore A_{V_{T_S}} = \frac{V_{out}}{V_S}$$

$$\therefore V_{out} = A_{V_{T_S}} \times V_S$$

$$= -1.017 \times 20 mV = -20.34 mV$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 4: Circuit Schematic

Figure 5: Input and ouput waveforms for Stage 1 voltage gain

Figure 6: Input and ouput waveforms for Stage 2 voltage gain

Comparison between theoretical and simulated values:

Parameters	Theoretical values	Simulated values
1st stage DC parameters:	6.4V, 9V, 5.8V,	6.1173V, 8.5427V, 8.3773V,
$V_{B_1}, V_{C_1}, V_{E_1}, I_{C_1}, I_{B_1}, I_{E_1}$	$2.9 \text{mA}, 29 \mu \text{A}, 2.9 \text{mA}$	$2.6620 \text{mA}, 26.6205 \mu\text{A}, 2.6688 \text{mA}$
2nd stage DC parameters:	9.6V, 18.2V, 9V,	9.2824V, 18.7286V, 8.5427V,
$V_{B_2}, V_{C_2}, V_{E_2}, I_{C_2}, I_{B_2}, I_{E_2}$	$2.9 \text{mA}, 29 \mu \text{A}, 2.9 \text{mA}$	$2.6356 \text{mA}, 26.356 \mu\text{A}, 2.6620 \text{mA}$
Voltage gain of 1st stage A_{V_1}	-0.00885	-0.009322
Voltage gain of 2nd stage A_{V_2}	116.78	106.8245
Overall voltage gain $A_{V_{T_S}}$	-1.017	-0.9959
Input impedance of 1st stage Z_{in}	$2.648 \mathrm{k}\Omega$	_
Output impedance of 2nd stage Z_o	$1.047 \mathrm{k}\Omega$	_
Output voltage V_{out}	-20.34 mV	-19.9182 mV

Table 1: Numerical 1

Numerical 2:

A two stage circuit is shown below in figure 7. It's E-MOSFET parameters are $k_{n_1}=k_{n_2}=1.2mA/V^2,\,V_{TN_1}=V_{TN_2}=1.5V$

- a) Calculate the DC parameters of the circuits i.e V_{G_1} , V_{G_2} , V_{GS_1} , I_{D_1} , I_{D_2} , V_{D_2} , V_{S_1} , V_{S_2} , V_{DS_2} , V_{D_1} , V_{DS_1} and V_{GS_2}
- b) Calculate input impedance of the circuit
- c) Calculate output impedance of the circuit
- d) Calculate voltage gain of the circuit

Figure 7: Circuit 2

Solution:

DC analysis:

$$R_{T} = R_{1} + R_{2} + R_{3}$$

$$= 100k\Omega + 24k\Omega + 12k\Omega = 136k\Omega$$

$$V_{G_{1}} = \frac{R_{3}}{R_{T}} \times V_{DD} = \frac{12k\Omega}{136k\Omega} \times 18V = 1.588V$$

$$V_{G_{2}} = \frac{R_{2} + R_{3}}{R_{T}} \times V_{DD} = \frac{24k\Omega + 12k\Omega}{136k\Omega} \times 18V = 4.764V$$

$$V_{GS_{1}} = V_{G_{1}} - V_{S_{1}}$$

$$= 1.588V - I_{D_{1}}(1k\Omega) \qquad(1)$$

Figure 8: DC equivalent circuit

In MOSFET, $I_{D_1} = k_{n_1} (V_{GS_1} - V_{TN_1})^2$ $I_{D_1} = 1.2mA/V^2(V_{GS_1} - 1.5V)^2$ (2) Put (2) in (1), we get $V_{GS_1} = 1.588 - \left[1.2mA/V^2(V_{GS} - 1.5V)^2\right](1k\Omega)$ $V_{GS_1} = 1.588 - 1.2(V_{GS}^2 - 3V_{GS} + 2.25)$ $V_{GS_1} = -1.2V_{GS}^2 + 3.6V_{GS} - 1.112$ $0 = -1.2V_{GS}^2 + 2.6V_{GS} - 1.112$ $V_{GS_1} = 1.580V$ or $V_{GS_1} = 0.586V$ We reject the value $V_{GS} = 0.586V$ (: $V_{GS_1} > V_{TN_1}$) $V_{GS_1} = 1.580 V$ Also, $V_{GS_1} = V_{GS_2} = 1.580 \text{V}$ $I_{D_1} = k_{n_1} (V_{GS_1} - V_{TN_1})^2$ $=1.2mA/V^2(1.580V-1.5V)^2$ $=1.2mA/V^2(0.08)^2=7.68\mu$ A $\therefore I_{D_1} = I_{D_2} = \mathbf{7.68}\mu\mathbf{A}$

 $V_{D_2} = V_{DD} - I_{D_2} R_D$

= $18V - (7.68\mu A)(3.3k\Omega)$ = 18V - 0.025V = 17.97V

$$V_{S_1} = I_{D_1} R_S$$

= $(7.68 \mu A)(1k\Omega) = \mathbf{0.0076V}$

$$\therefore V_{GS_1} = V_{GS_2} = V_{G_2} - V_{S_2}$$

$$1.580V = 4.764V - V_{S_2}$$

$$V_{S_2} = 4.764V - 1.580V = \mathbf{3.184V}$$

$$:: V_{DS_2} = V_{D_2} - V_{S_2}$$

$$V_{DS_2} = 17.97V - 3.184V = 14.786V$$

$$V_{D_1} = V_{S_2} = 3.184V$$

$$V_{DS_1} = V_{D_1} - V_{S_1}$$

$$V_{DS_2} = 3.184V - 0.0076V =$$
3.1764V

Small signal parameters:

$$g_{m_1} = g_{m_2} = 2k_n(V_{GS} - V_{TN})$$

= $2 \times 1.2mA/V^2(1.580V - 1.5V) = \mathbf{0.192mA/V}$

Mid-frequency AC equivalent circuit:

Figure 9: Mid-frequency AC equivalent circuit

Input impedance,

$$\begin{split} Z_i &= R_G \\ &= R_2 \parallel R_3 \\ &= 24k\Omega \parallel 2k\Omega \\ &= \frac{24k\Omega \times 2k\Omega}{24k\Omega + 2k\Omega} = 8k\Omega \end{split}$$

Output impedance,

$$Z_o = R_D \parallel R_L$$

$$= \frac{3.3k\Omega \times 7.2k\Omega}{3.3k\Omega + 7.2k\Omega} = \mathbf{2.26k\Omega}$$

$$\begin{split} A_{V_1} &= \frac{V_1}{V_s} \\ &= \frac{-V_{gs_2}}{V_{gs_1}} \\ &= \frac{-V_{gs_1}}{V_{gs_1}} \qquad (\because V_{gs_2} = V_{gs_1}) \\ &= -\mathbf{1} \end{split}$$

$$\begin{split} A_{V_2} &= \frac{V_o}{V_1} \\ &= \frac{-g_{m_2} V_{gs_2}(R_D \parallel R_L)}{-V_{gs_2}} \\ &= g_{m_2}(R_D \parallel R_L) \\ &= 0.192 mA/V(3.3k\Omega \parallel 7.2k\Omega) \\ &= 0.192 mA/V \left(\frac{3.3k\Omega \times 7.2k\Omega}{3.3k\Omega + 7.2k\Omega}\right) \\ &= 0.192 mA/V \times 2.26k\Omega = \textbf{0.433} \end{split}$$

$$A_{V_T} = A_{V_1} \times A_{V_2}$$

= -1 \times 0.433 = -0.433

Also,
$$A_{V_T} = \frac{V_{out}}{V_S}$$

$$\therefore V_{out} = A_{V_T} \times V_S$$

$$= -0.433 \times 20 mV = -8.66 mV$$

SIMULATED RESULTS:

Above circuit is simulated in LTspice and results are as follows:

Figure 10: Circuit Schematic

Figure 11: Input and ouput waveforms for Stage 1 voltage gain

Figure 12: Input and ouput waveforms for Stage 2 voltage gain

Comparison between theoretical and simulated values:

Parameters	Theoretical values	Simulated values
1st stage DC parameters:	1.588V, 3.184V,	1.58824V, 3.1824V,
$V_{G_1}, V_{D_1}, V_{S_1}, I_{D_1}$	$0.0076V, 7.68\mu A$	$0.00776V, 7.7696\mu A$
2nd stage DC parameters:	4.764V, 17.97V,	4.7647V, 17.9744V,
$V_{G_2}, V_{D_2}, V_{S_2}, I_{D_2}$	$3.184V, 7.68\mu A$	$3.1842V, 7.7706\mu A$
Voltage gain of 1st stage A_{V_1}	-1	-0.009322
Voltage gain of 2nd stage A_{V_2}	0.433	0.43731
Overall voltage gain A_{V_T}	-0.433	-0.43604
Input impedance of 1st stage Z_i	$8k\Omega$	_
Output impedance of 2nd stage Z_o	$2.26 \mathrm{k}\Omega$	_
Output voltage	$-8.66 \mathrm{mV}$	-8.7213 mV

Table 2: Numerical 2
