11/10/2005 18:13 FAX **2**010/024

<u>AMENDMENTS TO THE CLAIMS</u>

1. (Currently Amended) A clock multiplication circuit for delivering an output clock

signal at a frequency that is a multiple of the frequency of a reference clock signal as inputted,

the clock multiplication circuit comprising:

a counter for delivering a count value by counting the number of effective transition

edges of the output clock signal, existing during a predetermined counting period given on the

basis of the reference clock signal:

a subtracter for delivering a difference value obtained by subtracting either the count

value or a reference value from the other:

a control voltage generation circuit for delivering an analog control voltage

corresponding to an integrated value of the difference value; and

a voltage control oscillator circuit for delivering the output clock signal at a frequency

corresponding to the analog control voltage,

wherein the counter is a counter for delivering the count value by counting the number of

the effective transition edges of the output clock signal, existing during the counting period when

the reference clock signal is at either a High level-or-a Low level, and

the counter, the subtracter, the control voltage generation circuit, and the voltage control

oscillator circuit having response characteristics such that when the count value is changed from

a preceding count value, the frequency of the output clock signal is changed during a period in

which the reference clock signal is a Low level, after the end of the counting period and before

the start of a succeeding counting period.

- 2 -

Application Ser. No.: 10/606,226

Attorney Docket No.: 024016-00063

2. (Canceled).

3. (Currently Amended) A clock multiplication circuit for delivering an output clock signal at a frequency that is a multiple of the frequency of a reference clock signal as inputted, the clock multiplication circuit comprising:

a counter for delivering a count value by counting the number of effective transition edges of the output clock signal, existing during a predetermined counting period given on the basis of the reference clock signal;

a subtracter for delivering a difference value obtained by subtracting either the count value or a reference value from the other;

a control voltage generation circuit for delivering an analog control voltage corresponding to an integrated value of the difference value; and

a voltage control oscillator circuit for delivering the output clock signal at a frequency corresponding to the analog control voltage,

wherein the counter is a counter for obtaining the count value at the end of every each

High level period and every each Low level period of the reference clock signal, and

oscillator circuit having response characteristics in which when the count value obtained by

counting during a certain High level period is changed from a preceding count value, the

frequency of the output clock signal is changed from the end of the High level period to the start

of the next High level period and the characteristics in which when the count value obtained by

counting during a certain Low level period is changed from a preceding count value, the

11/10/2005 18:14 FAX Ø 012/024

frequency of the output clock signal is changed after the end of the Low level period and before

the start of the succeeding Low level period.

4. (Canceled).

5. (Currently Amended) A clock multiplication circuit for delivering an output clock

signal at a frequency that is a multiple of the frequency of a reference clock signal as inputted,

the clock multiplication circuit comprising:

a counter for delivering a count value by counting the number of effective transition

edges of the output clock signal, existing during a predetermined counting period given on the

basis of the reference clock signal;

a subtracter for delivering a difference value obtained by subtracting either the count

value or a reference value from the other;

a control voltage generation circuit for delivering an analog control voltage

corresponding to an integrated value of the difference value; and

a voltage control oscillator circuit for delivering the output clock signal at a frequency

corresponding to the analog control voltage,

wherein the counter delivers the count value after the end of the counting period and in

synchronization with the output clock signal, the subtractor delivers the difference value after the

end of the counting period and in synchronization with the output clock signal, and the control

voltage generation circuit delivers the analog centrol voltage after the end of the counting period

and in synchronization with the output clock signal the subtracter generates a difference value in

sync with an output clock signal generated after the counter generates a count value in sync with

Application Ser. No.: 10/606,226

Attorney Docket No.: 024016-00063

11/10/2005 18:14 FAX @ 013/024

an output clock signal, the control voltage generation circuit generates an analog control signal in

sync with an output clock signal generated after the subtracter generates the difference value in

sync with the output clock signal.

6. (Currently Amended) A clock multiplication circuit for delivering an output clock

signal at a frequency that is a multiple of the frequency of a reference clock signal as inputted,

the clock multiplication circuit comprising:

a counter for delivering a count value by counting the number of effective transition

edges of the output clock signal, existing during a predetermined counting period given on the

basis of the reference clock signal;

a subtracter for delivering a difference value obtained by subtracting either the count

value or a reference value from the other;

a control voltage generation circuit for delivering an analog control voltage

corresponding to an integrated value of the difference value; and

a voltage control oscillator circuit for delivering the output clock signal at a frequency

corresponding to the analog control voltage,

wherein both rising edges and falling edges of the output clock signal are taken as the

effective transition edges by the counter the counter counts each rising edge at which the output

clock signal transmits from a Low level to a High level and each falling edge at which the output

clock signal transmits from the High level to the Low level as the effective transition edges of

the output clock signal.

Application Ser. No.: 10/606,226 - 5 -

11/10/2005 18:14 FAX Ø 014/024

7. (Previously Presented) A clock multiplication circuit for delivering an output clock

signal at a frequency that is a multiple of the frequency of a reference clock signal as inputted,

the clock multiplication circuit comprising:

a counter for delivering a count value by counting the number of effective transition

edges of the output clock signal, existing during a predetermined counting period given on the

basis of the reference clock signal;

a subtracter for delivering a difference value obtained by subtracting either the count

value or a reference value from the other:

a control voltage generation circuit for delivering an analog control voltage

corresponding to an integrated value of the difference value; and

a voltage control oscillator circuit for delivering the output clock signal at a frequency

corresponding to the analog control voltage,

wherein a multiplier for multiplying the difference value by a predetermined factor and

delivering a multiplied difference value to the control voltage generation circuit is interposed

between the subtracter and the control voltage generation circuit.

8. (Original) A clock multiplication circuit according to claim 7,

wherein the multiplier comprised of a shift register for implementing bit shift of the

difference value by predetermined bits.

9. (Original) A clock multiplication circuit according to claim 7, wherein a factor of the

multiplier is variable.

11/10/2005 18:15 FAX **2**015/024

10. (Original) A clock multiplication circuit according to claim 9, further comprising

factor control means for controlling the factor of the multiplier, the factor control means being

capable of raising the factor to a relatively high number during a lock-in period, and lowering the

factor to a relatively low number after the end of the lock-in period.

11. (Currently Amended) A clock multiplication circuit for delivering an output clock

signal at a frequency that is a multiple of the frequency of a reference clock signal as inputted,

the clock multiplication circuit comprising:

a counter for delivering a count value by counting the number of effective transition

edges of the output clock signal, existing during a predetermined counting period given on the

basis of the reference clock signal;

a subtracter for delivering a difference value obtained by subtracting either the count

value or a subtracter reference value from the other,

a control voltage generation circuit for delivering an analog control voltage

corresponding to an integrated value of the difference value; and

a voltage control oscillator circuit for delivering the output clock signal at a frequency

corresponding to the analog control voltage,

wherein the subtracter is capable of switching the subtracter reference value.

12. (Currently Amended) A clock multiplication circuit according to claim 11,

wherein the subtracter comprises reference value storage means for storing the subtracter

reference value, the reference value storage means configured so as to enable the subtracter

reference value to be stored in the reference value storage means from outside.

-7-

11/10/2005 18:15 FAX Ø 016/024

Claims 13-22. (Canceled).

23. (New) A clock multiplication circuit for delivering an output clock signal at a

frequency that is a multiple of the frequency of a reference clock signal as inputted, the clock

multiplication circuit comprising:

a counter for delivering a count value by counting the number of effective transition

edges of the output clock signal, existing during a predetermined counting period given on the

basis of the reference clock signal;

a subtracter for delivering a difference value obtained by subtracting either the count

value or a reference value from the other;

a control voltage generation circuit for delivering an analog control voltage

corresponding to an integrated value of the difference value; and

a voltage control oscillator circuit for delivering the output clock signal at a frequency

corresponding to the analog control voltage,

wherein the counter is a counter for delivering the count value by counting the number of

the effective transition edges of the output clock signal, existing during the counting period when

the reference clock signal is at a Low level, and

the counter, the subtracter, the control voltage generation circuit, and the voltage control

oscillator circuit having response characteristics such that when the count value is changed from

a preceding count value, the frequency of the output clock signal is changed during a period in

which the reference clock signal is a High level, after the end of the counting period and before

the start of a succeeding counting period.

- 8 -