گزارش پروژه دوم علوم اعصاب محاسباتی

اميرحسين انتظاري

۱۱ اردیبهشت ۳ ۱۴۰

فهرست مطالب

١			•							 											l	زی کدگذاری ه	پیادہ سا	١.٠
٢			•							 												بدون ناظر .	يادگيري	۲. ۰
٣										 							 					دگیری تقویتی	قانون يا	٣. ٥

چکیدہ

هدف از این پروژه، پیاده سازی کدگذاری کردن ورودی شبکه، یادگیری (بدون ناظر و تقویتی) است. در این پروژه از مباحثی که در پروژه های قبلی یاد گرفتیم، (مانند مدل های نورونی، سیناپس و…)، استفاده میکنیم.

۱.۰ پیاده سازی کدگذاری ها

در این بخش میخواهیم نحوه کد کردن اطلاعات (مانند یک تصویر) در شبکه های عصبی ضربهای را پیاده سازی و تحلیل کنیم. برای اینکار، روش های مختلفی وجود دارد، مانند روش time-to-first-spike، کدگذاری ترتیبی ۱، کدگذاری براساس تاخیر ۲، کدگذاری براساس همزمانی ضربه ها ۳، کدگذاری اعداد، کدگذاری به روش پواسون ۴ و روش های دیگر بسیار که کاربرد های مختلفی دارند. در این پروژه، ما تمرکزمان را روی سه روش کدگذاری زیر میگذاریم و آن ها پیاده سازی و تحلیل میکنیم:

- روش کدگذاری time-to-first-spike
 - روش كدگذاري مقادير عددي
- روش كدگذاري به كمك توزيع پواسون

کدگذاری به روش time-to-first-spike

Rank-order encoding $^{\mathsf{I}}$

Latency encoding $^{\gamma}$ Coding by synchrony $^{\pi}$

Poisson*

۰.۰ یادگیری بدون ناظر

كتابنامه

- [\] Computational Neuroscience Course, School of computer science, University of Tehran
- $\cbox{\tt [Y]}$ PymoNN
torch Pytorch-adapted version of PymoNN
to
- [\mathbf{r}] Wiki-pedia: Refractory_period_(physiology)
- $[\P]$ Neuronal Dynamics, Wulfram Gerstner, Werner M. Kistler, Richard Naud and Liam Paninski