FCC RF Test Report

APPLICANT : Hangzhou Tuya Information Technology Co., Ltd

EQUIPMENT : Module MODEL NAME : WRD8P

FCC ID : 2ANDL-WRD8P

STANDARD : FCC Part 15 Subpart C §15.247

CLASSIFICATION : (DTS) Digital Transmission System

The product was received on Sep. 24, 2019 and testing was completed on Sep. 29, 2019. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

Reviewed by: Jason Jia / Supervisor

JasonJia

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc.

No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : 1 of 34

Report No.: FR992410

Report Issued Date: Nov. 19, 2019
Report Version: Rev. 01

TABLE OF CONTENTS

RE	VISIO	N HISTORY	3
SU	1.1 Applicant 5 1.2 Manufacturer 5 1.3 Product Feature of Equipment Under Test 5 1.4 Product Specification of Equipment Under Test 5 1.5 Modification of EUT 5 1.6 Testing Location 6 1.7 Applicable Standards 6 2 TEST CONFIGURATION OF EQUIPMENT UNDER TEST 7 2.1 Carrier Frequency and Channel 7 2.2 Test Mode 8 2.3 Connection Diagram of Test System 9 2.4 Support Unit used in test configuration and system 10 2.5 EUT Operation Test Setup 10 2.6 Measurement Results Explanation Example 10 3.6 TEST RESULT 11 3.1 6dB and 99% Bandwidth Measurement 11 3.2 Output Power Measurement 13 3.3 Power Spectral Density Measurement 14 3.4 Conducted Band Edges and Spurious Emission Measurement 16 3.5 Radiated Band Edges and Spurious Emission Measurement 26		
1	GEN	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	5
	1.5	Modification of EUT	5
	1.6	Testing Location	6
	1.7	Applicable Standards	6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	Carrier Frequency and Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4		
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	TEST	「RESULT	11
	3.1	6dB and 99% Bandwidth Measurement	11
	3.2	Output Power Measurement	13
	3.3	Power Spectral Density Measurement	14
	3.4	Conducted Band Edges and Spurious Emission Measurement	16
	3.5	Radiated Band Edges and Spurious Emission Measurement	26
	3.6	AC Conducted Emission Measurement	30
	3.7	Antenna Requirements	32
4	LIST	OF MEASURING EQUIPMENT	33
5	UNC	ERTAINTY OF EVALUATION	34
ΑP	PEND	X A. CONDUCTED TEST RESULTS	
ΑP	PEND	IX B. AC CONDUCTED EMISSION TEST RESULT	
ΑP	PEND	IX C. RADIATED SPURIOUS EMISSION	
ΑP	PEND	OIX D. DUTY CYCLE PLOTS	

APPENDIX E. SETUP PHOTOGRAPHS

Page Number

Report Template No.: BU5-FR15CWL AC MA Version 2.0

: 2 of 34

Report No.: FR992410

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR992410	Rev. 01	Initial issue of report	Nov. 19, 2019

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : 3 of 34

Report Issued Date : Nov. 19, 2019

Report Version : Rev. 01

Report No.: FR992410

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	6dB Bandwidth	≥ 0.5MHz	Pass	-
3.1	-	99% Bandwidth	-	Pass	-
3.2	15.247(b)	Power Output Measurement	≤ 30dBm	Pass	-
3.3	15.247(e)	Power Spectral Density	≤ 8dBm/3kHz	Pass	1
0.4	15.247(d)	Conducted Band Edges	< 20dBc	Pass	-
3.4		Conducted Spurious Emission	≤ 200BC	Pass	-
3.5	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 3.34 dB at 4824.000 MHz
3.6	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 13.84 dB at 0.452 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : 4 of 34

Report Issued Date : Nov. 19, 2019

Report Version : Rev. 01

Report No. : FR992410

1 General Description

1.1 Applicant

Hangzhou Tuya Information Technology Co., Ltd

Room701, Building3, More Center, No.87 GuDun Road, Hangzhou, Zhejiang, China

1.2 Manufacturer

Hangzhou Tuya Information Technology Co., Ltd

Room701, Building3, More Center, No.87 GuDun Road, Hangzhou, Zhejiang, China

1.3 Product Feature of Equipment Under Test

Product Feature			
Equipment	Module		
Model Name	WRD8P		
FCC ID	2ANDL-WRD8P		
EUT supports Radios application	WLAN 2.4GHz 802.11b/g/n HT20		
HW Version	V101		
SW Version	V100		
EUT Stage	Identical Prototype		

Report No.: FR992410

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Channel Frequency Range	2412 MHz ~ 2462 MHz			
Maximum (Peak) Output Power to	802.11b : 19.76 dBm (0.0946 W)			
antenna	802.11g : 22.66 dBm (0.1845 W)			
antenna	802.11n HT20 : 22.31 dBm (0.1702 W)			
	802.11b : 13.19MHz			
99% Occupied Bandwidth	802.11g : 18.93MHz			
	802.11n HT20 : 19.03MHz			
Antenna Type / Gain	PCB Antenna type with gain 2.50 dBi			
Type of Madulation	802.11b: DSSS (DBPSK / DQPSK / CCK)			
Type of Modulation	802.11g/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)			

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

 Sporton International (Kunshan) Inc.
 Page Number
 : 5 of 34

 TEL: +86-512-57900158
 Report Issued Date
 : Nov. 19, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

FCC ID: 2ANDL-WRD8P Report Template No.: BU5-FR15CWL AC MA Version 2.0

1.6 Testing Location

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Report No.: FR992410

Test Firm	Sporton International (Kunshan) Inc.				
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone				
Test Site Location	Jiangsu Province 215300 People's Republic of China				
rest one Location	TEL: +86-512-57900158				
	FAX: +86-512-579009	58			
	Sporton Site No.	FCC Designation No.	FCC Test Firm Registration No.		
Test Site No.	CO01-KS 03CH06-KS TH01-KS	CN1257	314309		

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

 Sporton International (Kunshan) Inc.
 Page Number
 : 6 of 34

 TEL: +86-512-57900158
 Report Issued Date
 : Nov. 19, 2019

 FAX: +86-512-57900958
 Report Version
 : Rev. 01

FCC ID: 2ANDL-WRD8P

Report Version : Rev. 01
Report Template No.: BU5-FR15CWL AC MA Version 2.0

2 Test Configuration of Equipment Under Test

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the worst cases were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	7	2442
	2	2417	8	2447
2400-2483.5 MHz	3	2422	9	2452
2400-2463.5 IVITZ	4	2427	10	2457
	5	2432	11	2462
	6	2437		

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : 7 of 34

Report Issued Date : Nov. 19, 2019

Report Version : Rev. 01

Report No.: FR992410

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

Modulation	Data Rate
802.11b	1 Mbps
802.11g	6 Mbps
802.11n HT20	MCS0

	Test Cases					
AC						
Conducted	Mode 1 :WLAN Link(2.4G) + Charging from Notebook					
Emission						

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : 8 of 34

Report Issued Date : Nov. 19, 2019

Report Version : Rev. 01

Report No.: FR992410

2.3 Connection Diagram of Test System

For Conducted Emission

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : 9 of 34

Report Issued Date : Nov. 19, 2019

Report Version : Rev. 01

Report No.: FR992410

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	D-Link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m
2.	Notebook	Lenovo	G480	QDS-BRCM1050I	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
3.	Notebook	DELL	Latitude3440	N/A	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
4.	iPod	Apple	A1199	Fcc DoC	Shielded, 1.2m	N/A
5.	Test jig	N/A	N/A	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For WLAN function, the engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss.

Offset = RF cable loss.

Following shows an offset computation example with cable loss 5.3 dB.

 $Offset(dB) = RF \ cable \ loss(dB).$

= 5.3 (dB)

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : 10 of 34

Report Issued Date : Nov. 19, 2019

Report No.: FR992410

Report Version : Rev. 01

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 11.8
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) = 1MHz and set the Video bandwidth (VBW) = 3MHz.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : 11 of 34

Report Issued Date : Nov. 19, 2019

Report No.: FR992410

Report Version : Rev. 01

3.1.5 Test Result of 6dB and 99% Occupied Bandwidth

Please refer to Appendix A.

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : 12 of 34

Report Issued Date : Nov. 19, 2019

Report Version : Rev. 01

Report No.: FR992410

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna with directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

- 1. The testing follows the Measurement Procedure of ANSI C63.10-2013 clause 11.9.1.3 PKPM1 Peak power meter or ANSI C63.10-2013 clause 11.9.2.3.2 Method AVGPM-G method.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.2.6 Test Result of Average output Power (Reporting Only)

Please refer to Appendix A.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : 13 of 34
Report Issued Date : Nov. 19, 2019

Report No.: FR992410

Report Version : Rev. 01

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

- The testing follows Measurement Procedure of ANSI C63.10-2013 clause 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : 14 of 34

Report Issued Date : Nov. 19, 2019

Report Version : Rev. 01

Report No.: FR992410

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : 15 of 34

Report Issued Date : Nov. 19, 2019

Report Version : Rev. 01

Report No.: FR992410

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission Measurement

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement.

3.4.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 11.13
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : 16 of 34

Report Issued Date : Nov. 19, 2019

Report No.: FR992410

Report Version : Rev. 01

3.4.5 Test Result of Conducted Band Edges and Spurious Emission

Test Engineer :	Asa Chang	Temperature: 21~25°C	21~25°C
rest Engineer.	Asa Cheng	Relative Humidity :	51~54%

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : 17 of 34

Report Issued Date : Nov. 19, 2019

Report Version : Rev. 01

Report No.: FR992410

Test Mode: 802.11b Test Channel: 06 100kHz PSD reference Level **Channel Plot** -20 dBm CF 2.437 GH: Date: 26.SEP.2019 16:27:33 Spurious Emission 30MHz~3GHz Spurious Emission 2GHz~25GHz Ref Level 25.30 dBm Att 30 dB Ref Level 25.30 dBm Att 30 dB M2[1] M2[1] -30 dBm-

ate: 26.SEP.2019 16:27:54

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P

40 dBm

ate: 26.SEP.2019 16:27:46

Page Number : 18 of 34

Report Issued Date : Nov. 19, 2019

Report Version : Rev. 01

Report No.: FR992410

Test Mode: 802.11b Test Channel: 11 100kHz PSD reference Level **Channel Plot** -51.07 dB 2.490350 -19.dBm--20 dBm 50 dBm CF 2.462 GH: Date: 26.SEP.2019 16:30:05 Date: 26.SEP.2019 16:30:10 Spurious Emission 30MHz~3GHz Spurious Emission 2GHz~25GHz Ref Level 25.30 dBm Att 30 dB Ref Level 25.30 dBm Att 30 dB M2[1] M2[1] -30 dBm 40 dBm -50 dBm

ate: 26.SEP.2019 16:30:29

ate: 26.SEP.2019 16:30:22

Report No.: FR992410

Test Mode: 802.11g Test Channel: 01 100kHz PSD reference Level **Channel Plot** -28.81 dE Mischermorepore thilly hards CF 2.412 GH Date: 26.SEP.2019 16:41:25 Date: 26.SEP.2019 16:41:41 Spurious Emission 30MHz~3GHz Spurious Emission 2GHz~25GHz Ref Level 25.30 dBm Att 30 dB Ref Level 25.30 dBm Att 30 dB M2[1] M2[1] 40 dBm

ate: 26.SEP.2019 16:41:58

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P

ate: 26.SEP.2019 16:41:50

Page Number : 20 of 34

Report Issued Date : Nov. 19, 2019

Report Version : Rev. 01

Report No.: FR992410

Test Mode: 802.11g Test Channel: 06 100kHz PSD reference Level **Channel Plot** 2.11 dBn Myhr 40 dBm CF 2.437 GH: Date: 26.SEP.2019 16:35:43 Spurious Emission 30MHz~3GHz Spurious Emission 2GHz~25GHz Ref Level 25.30 dBm Att 30 dB Ref Level 25.30 dBm Att 30 dB M2[1] M2[1]

ate: 26.SEP.2019 16:38:21

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P

-20 dBm--30 dBm--40 dBm--50 dBm-

Date: 26.SEP.2019 16:38:13

Page Number : 21 of 34

Report Issued Date : Nov. 19, 2019

Report Version : Rev. 01

Report No.: FR992410

Test Mode: 802.11g Test Channel: 11 100kHz PSD reference Level **Channel Plot** 1.56 dBn 2.4632480 GH -47.18 dB 2.483610 GI CF 2.462 GH: Date: 26.SEP.2019 16:32:29 Date: 26.SEP.2019 16:32:35 Spurious Emission 30MHz~3GHz Spurious Emission 2GHz~25GHz Ref Level 25.30 dBm Att 30 dB Ref Level 25.30 dBm Att 30 dB M2[1] M2[1] -20 dBm

ate: 26.SEP.2019 16:32:53

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P

40 dBm

ate: 26.SEP.2019 16:32:45

Page Number : 22 of 34

Report Issued Date : Nov. 19, 2019

Report Version : Rev. 01

Report No.: FR992410

Test Mode: 802.11n HT20 Test Channel: 01 100kHz PSD reference Level **Channel Plot** 1.11 dBm 2.4144965 GHz الماليل الماليل الماليل menter harman marken was how have he and was -10 dBm 40 dBm hale bandle lever to be the great belong to be the form of the band of the form of the beautiful of the second CF 2.412 GH Date: 26.SEP.2019 16:44:53 Date: 26.SEP.2019 16:45:37 Spurious Emission 30MHz~3GHz Spurious Emission 2GHz~25GHz Ref Level 25.30 dBm Att 30 dB Ref Level 25.30 dBm Att 30 dB M2[1] M2[1] 40 dBm

ate: 26.SEP.2019 16:46:51

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P

ate: 26.SEP.2019 16:46:43

Page Number : 23 of 34

Report Issued Date : Nov. 19, 2019

Report Version : Rev. 01

Report No.: FR992410

Test Mode: 802.11n HT20 Test Channel: 06 100kHz PSD reference Level **Channel Plot** 1.17 dBr 2.4419865 GH mound of the manufacture of the same of th 30 dBgnA 40 dBm CF 2.437 GH: Date: 26.SEP.2019 16:49:57 Spurious Emission 30MHz~3GHz Spurious Emission 2GHz~25GHz Ref Level 25.30 dBm Att 30 dB Ref Level 25.30 dBm Att 30 dB M2[1] M2[1]

ate: 26.SEP.2019 16:52:02

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P

40 dBm

Date: 26.SEP.2019 16:51:55

Page Number : 24 of 34

Report Issued Date : Nov. 19, 2019

Report Version : Rev. 01

Report No.: FR992410

Test Mode: 802.11n HT20 Test Channel: 11 100kHz PSD reference Level **Channel Plot** 0.81 dBn 2.4632485 GH ALL STATE OF THE S por harmonisment hard 40 dBm Michigan Arica and player, but way any way and a start for the service of player CF 2.462 GH Date: 26.SEP.2019 16:57:00 ate: 26.SEP.2019 16:57:05 Spurious Emission 30MHz~3GHz Spurious Emission 2GHz~25GHz Ref Level 25.30 dBm Att 30 dB Ref Level 25.30 dBm Att 30 dB M2[1] M2[1] 40 dBm

ate: 26.SEP.2019 16:57:25

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P

ate: 26.SEP.2019 16:57:17

Page Number : 25 of 34

Report Issued Date : Nov. 19, 2019

Report Version : Rev. 01

Report No.: FR992410

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : 26 of 34

Report Issued Date : Nov. 19, 2019

Report Version : Rev. 01

Report No.: FR992410

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 11.11 & 11.12
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

Report No.: FR992410

- The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold:
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

FAX: +86-512-57900958 Report Version : Rev. 01

FCC ID: 2ANDL-WRD8P Report Template No.: BU5-FR15CWL AC MA Version 2.0

3.5.4 Test Setup

For radiated emissions below 30MHz

Report No.: FR992410

For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P

Page Number : 28 of 34 Report Issued Date: Nov. 19, 2019 Report Version : Rev. 01

3.5.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C.

3.5.7 Duty Cycle

Please refer to Appendix D.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C.

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958

FCC ID: 2ANDL-WRD8P

Page Number : 29 of 34
Report Issued Date : Nov. 19, 2019

Report No. : FR992410

Report Version : Rev. 01

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBμV)			
(MHz)	Quasi-Peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF bandwidth = 9kHz) with Maximum Hold Mode.

Page Number : 30 of 34
Report Issued Date : Nov. 19, 2019

Report No.: FR992410

Report Version : Rev. 01

3.6.4 Test Setup

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : 31 of 34

Report Issued Date : Nov. 19, 2019

Report Version : Rev. 01

Report No.: FR992410

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting Antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached Antenna or of an Antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

Report No.: FR992410

3.7.2 Antenna Anti-Replacement Construction

Non-standard antenna connector is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

Report Version : Rev. 01
Report Template No.: BU5-FR15CWL AC MA Version 2.0

: 32 of 34

Report Issued Date: Nov. 19, 2019

Page Number

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	R&S	FSV40	101040	10Hz~40GHz	Aug. 07, 2019	Sep. 26, 2019	Aug. 06, 2020	Conducted (TH01-KS)
Pulse Power Senor	Anritsu	MA2411B	0917070	300MHz~40GH z	Jan. 14, 2019	Sep. 26, 2019	Jan. 13, 2020	Conducted (TH01-KS)
Power Meter	Anritsu	ML2495A	1005002	50MHz Bandwidth	Jan. 14, 2019	Sep. 26, 2019	Jan. 13, 2020	Conducted (TH01-KS)
EMI Test Receiver	Keysight	N9038A	MY564000 23	3Hz~8.5GHz;M ax 30dBm	Oct. 12, 2018	Sep. 29, 2019	Oct. 11, 2019	Radiation (03CH06-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 08	10Hz-44GHz	Apr. 16, 2019	Sep. 29, 2019	Apr. 15, 2020	Radiation (03CH06-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Oct. 19, 2018	Sep. 29, 2019	Oct. 18, 2019	Radiation (03CH06-KS)
Bilog Antenna	TeseQ	CBL6111D	44483	30MHz-1GHz	Dec. 28, 2018	Sep. 29, 2019	Dec. 27, 2019	Radiation (03CH06-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75957	1GHz~18GHz	Oct. 20, 2018	Sep. 29, 2019	Oct. 19, 2019	Radiation (03CH06-KS)
SHF-EHF Horn	Com-power	AH-840	101070	18GHz~40GHz	Jan. 05, 2019	Sep. 29, 2019	Jan. 04, 2020	Radiation (03CH06-KS)
Amplifier	SONOMA	310N	187289	9KHz ~1GHZ	Aug. 06, 2019	Sep. 29, 2019	Aug. 05, 2020	Radiation (03CH06-KS)
Amplifier	MITEQ	TTA1840-35- HG	2014749	18~40GHz	Jan. 14, 2019	Sep. 29, 2019	Jan. 13, 2020	Radiation (03CH06-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	1Ghz-18Ghz	Aug. 16, 2019	Sep. 29, 2019	Aug. 15, 2020	Radiation (03CH06-KS)
Amplifier	Keysight	83017A	MY532702 03	500MHz~26.5G Hz	Apr. 15, 2019	Sep. 29, 2019	Apr. 14, 2020	Radiation (03CH06-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	Sep. 29, 2019	NCR	Radiation (03CH06-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	Sep. 29, 2019	NCR	Radiation (03CH06-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	Sep. 29, 2019	NCR	Radiation (03CH06-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 16, 2019	Sep. 27, 2019	Apr. 15, 2020	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060103	9kHz~30MHz	Oct. 12, 2018	Sep. 27, 2019	Oct. 11, 2019	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060105	9kHz~30MHz	Nov. 19, 2018	Sep. 27, 2019	Nov. 18, 2019	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 12, 2018	Sep. 27, 2019	Oct. 11, 2019	Conduction (CO01-KS)

NCR: No Calibration Required

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : 33 of 34
Report Issued Date : Nov. 19, 2019

Report No.: FR992410

Report Version : Rev. 01

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

<u>Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)</u>

Measuring Uncertainty for a Level of Confidence	2.9dB
of 95% (U = 2Uc(y))	2.900

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Manageria a Haracteiate (an a Level et Oasti lance	
Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.VUB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confider	nce 5.0dB
of 95% (U = 2Uc(y))	5.00B

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	5.00B

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Report Issued Date : Nov. 19, 2019
Report Version : Rev. 01

Page Number

: 34 of 34

Report No.: FR992410

Appendix A. Conducted Test Results

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : A1 of A1
Report Issued Date : Nov. 19, 2019
Report Version : Rev. 01

Report No.: FR992410

Report Number : FR992410

A1 - DTS Part

Test Engineer:	Asa Cheng	Temperature:	21~25	°C
Test Date:	2019/9/26	Relative Humidity:	51~54	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

				:	2.4GHz Band	i		
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
11b	1Mbps	1	1	2412	13.19	10.05	0.50	Pass
11b	1Mbps	1	6	2437	13.14	9.57	0.50	Pass
11b	1Mbps	1	11	2462	13.19	10.03	0.50	Pass
11g	6Mbps	1	1	2412	18.53	16.32	0.50	Pass
11g	6Mbps	1	6	2437	18.93	16.32	0.50	Pass
11g	6Mbps	1	11	2462	18.68	16.32	0.50	Pass
HT20	MCS0	1	1	2412	18.98	17.72	0.50	Pass
HT20	MCS0	1	6	2437	19.03	17.70	0.50	Pass
HT20	MCS0	1	11	2462	19.03	17.72	0.50	Pass

TEST RESULTS DATA Peak Power Table

						2.4GHz Band	I			
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
11b	1Mbps	1	1	2412	19.42	30.00	2.50	21.92	36.00	Pass
11b	1Mbps	1	6	2437	19.76	30.00	2.50	22.26	36.00	Pass
11b	1Mbps	1	11	2462	19.62	30.00	2.50	22.12	36.00	Pass
11g	6Mbps	1	1	2412	22.32	30.00	2.50	24.82	36.00	Pass
11g	6Mbps	1	6	2437	22.66	30.00	2.50	25.16	36.00	Pass
11g	6Mbps	1	11	2462	22.52	30.00	2.50	25.02	36.00	Pass
HT20	MCS0	1	1	2412	21.91	30.00	2.50	24.41	36.00	Pass
HT20	MCS0	1	6	2437	22.31	30.00	2.50	24.81	36.00	Pass
HT20	MCS0	1	11	2462	22.12	30.00	2.50	24.62	36.00	Pass

TEST RESULTS DATA Average Power Table (Reporting Only)

			;	2.4GHz l	Band	
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)
11b	1Mbps	1	1	2412	0.12	16.31
11b	1Mbps	1	6	2437	0.12	16.75
11b	1Mbps	1	11	2462	0.12	16.66
11g	6Mbps	1	1	2412	0.24	13.29
11g	6Mbps	1	6	2437	0.24	13.59
11g	6Mbps	1	11	2462	0.24	13.45
HT20	MCS0	1	1	2412	0.27	12.47
HT20	MCS0	1	6	2437	0.27	12.76
HT20	MCS0	1	11	2462	0.27	12.40

TEST RESULTS DATA Peak Power Density

				:	2.4GHz Band	i		
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
11b	1Mbps	1	1	2412	-7.53	2.50	8.00	Pass
11b	1Mbps	1	6	2437	-7.05	2.50	8.00	Pass
11b	1Mbps	1	11	2462	-7.30	2.50	8.00	Pass
11g	6Mbps	1	1	2412	-12.84	2.50	8.00	Pass
11g	6Mbps	1	6	2437	-12.64	2.50	8.00	Pass
11g	6Mbps	1	11	2462	-13.17	2.50	8.00	Pass
HT20	MCS0	1	1	2412	-13.53	2.50	8.00	Pass
HT20	MCS0	1	6	2437	-13.42	2.50	8.00	Pass
HT20	MCS0	1	11	2462	-13.40	2.50	8.00	Pass

Appendix B. AC Conducted Emission Test Results

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : B1 of B2
Report Issued Date : Nov. 19, 2019
Report Version : Rev. 01

Temperature: 25.3~26.2°C Test Engineer: Amos Zhang **Relative Humidity:** 38~40% Test Voltage: 120Vac / 60Hz Phase: Neutral 80 Level (dBuV) 70.0 FCC PART 15C 60.0 FCC PART 15C(AVG) 50.0 40.0 30.0 20.0 10.0 30 Frequency (MHz) Site : CO01-KS Condition : FCC PART 15C LISN-N-181119-060105 NEUTRAL Project : (FR) 992410 : Mode 1 mode LISN Cable Factor Loss Remark Over Limit Read LISN Freq Level Limit Line Level Factor MHz dBuV dB dBuV dBuV 36. 22 -29. 08 21. 82 -33. 48 36. 10 -28. 84 23. 50 -31. 44 32. 75 -31. 14 21. 85 -32. 04 31. 81 -30. 54 22. 71 -29. 64 34. 49 -21. 87 27. 59 -18. 77 25. 57 -30. 43 20. 67 -25. 33 65. 30 55. 30 25.59 0. 18 0. 18 0. 18 0. 17 0. 17 0. 17 0. 17 0. 15 0. 15 0. 15 0.163 10,45 QP 10.45 Qr 10.45 Average 10.43 QP 10.43 Average 10.38 QP 10.38 Average 0. 163 11. 19 2 3 4 5 6 7 64. 94 54. 94 63. 89 53. 89 62. 35 52. 35 0. 170 0. 170 25. 49 12. 89 22. 20 11. 30 21. 30 12. 20 24. 10 17. 20 15. 19 10. 29

10.38 Average 10.34 QP 10.34 Average 10.24 QP 10.24 Average 10.23 QP 10.23 Average

0. 193 0. 193

0. 233 0. 233 0. 479

0. 479 1. 744

46. 36 56. 00

8

10 11 12

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P

Page Number : B2 of B2 Report Issued Date: Nov. 19, 2019 Report Version : Rev. 01

Appendix C. Radiated Spurious Emission

2.4GHz 2400~2483.5MHz

WIFI 802.11b (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2389.82	65.12	-8.88	74	60.88	31.3	5.48	32.54	385	221	Р	Н
		2389.95	43.64	-10.36	54	39.4	31.3	5.48	32.54	385	221	Α	Н
	*	2412	107.49	-	-	103.18	31.36	5.48	32.53	385	221	Р	Н
802.11b CH 01	*	2410	104.16	-	-	99.85	31.36	5.48	32.53	385	221	Α	Н
2412MHz		2389.17	57	-17	74	52.76	31.3	5.48	32.54	382	337	Р	٧
24 ZIVII Z		2389.95	41.62	-12.38	54	37.38	31.3	5.48	32.54	382	337	Α	٧
	*	2412	104.39	-	-	100.08	31.36	5.48	32.53	382	337	Р	٧
	*	2410	101.05	-	-	96.74	31.36	5.48	32.53	382	337	Α	٧
	*	2462	106.95	-	-	102.28	31.53	5.51	32.37	100	244	Р	Н
	*	2460	103	-	-	98.33	31.53	5.51	32.37	100	244	Α	Н
441		2499.46	58.92	-15.08	74	53.99	31.64	5.55	32.26	100	244	Р	Н
802.11b		2487.7	43.29	-10.71	54	38.41	31.64	5.55	32.31	100	244	Α	Н
CH 11 2462MHz	*	2462	100.91	-	-	96.24	31.53	5.51	32.37	116	358	Р	٧
2402WII 12	*	2460	97.52	-	-	92.85	31.53	5.51	32.37	116	358	Α	٧
		2484.7	52.72	-21.28	74	47.89	31.59	5.55	32.31	116	358	Р	٧
		2483.56	41.77	-12.23	54	36.94	31.59	5.55	32.31	116	358	Α	V
Remark		o other spurio I results are P		st Peak	and Averag	ge limit lin	e.						

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P

Page Number : C1 of C9 Report Issued Date: Nov. 19, 2019

Report No.: FR992410

Report Version : Rev. 01

2.4GHz 2400~2483.5MHz

WIFI 802.11b (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
000 445		4824	52.98	-21.02	74	72.11	34.89	8.1	62.12	100	346	Р	Н
802.11b		4824	50.66	-3.34	54	69.79	34.89	8.1	62.12	100	346	Α	Н
CH 01 2412MHz		4824	49.97	-24.03	74	69.1	34.89	8.1	62.12	301	164	Р	٧
24 2 V M 2		4824	47.74	-6.26	54	66.87	34.89	8.1	62.12	301	164	Α	V
		4872	51.25	-22.75	74	70.35	34.92	8.09	62.11	100	117	Р	Н
		4872	49.49	-4.51	54	68.59	34.92	8.09	62.11	100	117	Α	Н
802.11b		7311	41.6	-32.4	74	59.33	35.29	9.75	62.77	100	360	Р	Н
CH 06 2437MHz		4874	44.83	-29.17	74	63.93	34.92	8.09	62.11	300	98	Р	V
2437 WIFI2		4874	43.83	-10.17	54	62.93	34.92	8.09	62.11	300	98	Α	٧
		7308	41.28	-32.72	74	59.01	35.29	9.75	62.77	100	0	Р	V
		4926	50.67	-23.33	74	69.75	34.95	8.06	62.09	100	360	Р	Н
802.11b		4926	49.96	-4.04	54	69.04	34.95	8.06	62.09	100	65	Α	Н
CH 11		7386	40.25	-33.75	74	57.88	35.34	9.81	62.78	100	360	Р	Н
2462MHz		4924	44.45	-29.55	74	63.53	34.95	8.06	62.09	100	0	Р	٧
		7386	40.18	-33.82	74	57.81	35.34	9.81	62.78	100	0	Р	V
Remark		o other spurio				1					1	1	

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P

: C2 of C9 Page Number Report Issued Date: Nov. 19, 2019 Report Version : Rev. 01

^{2.} All results are PASS against Peak and Average limit line.

2.4GHz 2400~2483.5MHz WIFI 802.11g (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antonno	Cable	Preamp	Ant	Table	Peak	Pol
Ant.	Note	riequeilcy	Level	Limit	Line	Level	Antenna Factor	Loss	Factor	Pos	Pos	Avg.	POI.
1 Ant.		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		(H/V)
		2389.69	65.65	-8.35	74	61.41	31.3	5.48	32.54	384	246	Р	Н
		2389.95	49.14	-4.86	54	44.9	31.3	5.48	32.54	384	246	Α	Н
	*	2416	106.35	-	-	101.99	31.36	5.48	32.48	384	246	Р	Н
802.11g	*	2414	98.24	-	-	93.93	31.36	5.48	32.53	384	246	Α	Н
CH 01 2412MHz		2388.91	59.48	-14.52	74	55.24	31.3	5.48	32.54	382	353	Р	V
2412191112		2389.95	44.79	-9.21	54	40.55	31.3	5.48	32.54	382	353	Α	V
	*	2410	103.7	ı	ı	99.39	31.36	5.48	32.53	382	353	Р	V
	*	2410	95.4	ı	1	91.09	31.36	5.48	32.53	382	353	Α	V
	*	2464	105.22	ı	ı	100.51	31.53	5.55	32.37	100	243	Р	Н
	*	2464	96.38	-	-	91.67	31.53	5.55	32.37	100	243	Α	Н
000 44		2483.62	65.55	-8.45	74	60.72	31.59	5.55	32.31	100	243	Р	Н
802.11g CH 11		2483.5	48.67	-5.33	54	43.84	31.59	5.55	32.31	100	243	Α	Н
2462MHz	*	2460	100.15	-	-	95.48	31.53	5.51	32.37	278	104	Р	V
2402111112	*	2464	90.82	-	-	86.11	31.53	5.55	32.37	278	104	Α	V
		2483.8	60.9	-13.1	74	56.07	31.59	5.55	32.31	278	104	Р	V
		2483.5	45.69	-8.31	54	40.86	31.59	5.55	32.31	278	104	Α	V
Remark		o other spurio I results are P		st Peak	and Averag	je limit lin	e.						

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P

Page Number : C3 of C9 Report Issued Date: Nov. 19, 2019 Report Version : Rev. 01

2.4GHz 2400~2483.5MHz

WIFI 802.11g (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11g		4824	47.59	-26.41	74	66.72	34.89	8.1	62.12	100	360	Р	Н
CH 01		4824	40.23	-13.77	54	59.36	34.89	8.1	62.12	107	112	Α	Н
2412MHz		4824	41.7	-32.3	74	60.83	34.89	8.1	62.12	100	0	Р	٧
		4872	45.54	-28.46	74	64.64	34.92	8.09	62.11	100	360	Р	Н
802.11g		4872	41.53	-12.47	54	60.63	34.92	8.09	62.11	100	114	Α	Н
CH 06		7308	41.54	-32.46	74	59.27	35.29	9.75	62.77	100	360	Р	Н
2437MHz		4874	40.04	-33.96	74	59.14	34.92	8.09	62.11	100	0	Р	٧
		7308	40.97	-33.03	74	58.7	35.29	9.75	62.77	100	0	Р	V
		4926	44.91	-29.09	74	63.99	34.95	8.06	62.09	300	360	Р	Н
802.11g		7386	40.22	-33.78	74	57.85	35.34	9.81	62.78	300	360	Р	Н
CH 11 2462MHz		4924	42.4	-31.6	74	61.48	34.95	8.06	62.09	300	0	Р	V
Z4UZIVIF1Z		7386	41.29	-32.71	74	58.92	35.34	9.81	62.78	300	0	Р	V

Remark

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : C4 of C9
Report Issued Date : Nov. 19, 2019

Report No.: FR992410

Report Version : Rev. 01

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

2.4GHz 2400~2483.5MHz WIFI 802.11n HT20 (Band Edge @ 3m)

(MHz) 2389.3 2389.95 2408 2414 2389.95 2389.95 2414	(dBµV/m) 66.05 49.99 105.46 97.55 58.69 44.85	Limit (dB) -7.95 -4.0115.31 -9.15	Line (dBμV/m) 74 54 - - 74	Level (dBμV) 61.81 45.75 101.15 93.24 54.45	Factor (dB/m) 31.3 31.3 31.36 31.36	Loss (dB) 5.48 5.48 5.48	Factor (dB) 32.54 32.54 32.53	Pos (cm) 385 385 385	Pos (deg) 237 237 237	Avg. (P/A) P A P	H H
2389.3 2389.95 2408 2414 2389.95 2389.95	66.05 49.99 105.46 97.55 58.69 44.85	-7.95 -4.01 - - -15.31	74 54 -	61.81 45.75 101.15 93.24	31.3 31.3 31.36 31.36	5.48 5.48 5.48	32.54 32.54 32.53	385 385 385	237 237 237	P A P	H H
2389.95 2408 2414 2389.95 2389.95	49.99 105.46 97.55 58.69 44.85	-4.01 - - -15.31	54 - -	45.75 101.15 93.24	31.3 31.36 31.36	5.48 5.48	32.54 32.53	385 385	237 237	A P	Н
2408 2414 2389.95 2389.95	105.46 97.55 58.69 44.85	- - -15.31	-	101.15 93.24	31.36 31.36	5.48	32.53	385	237	Р	Н
2414 2389.95 2389.95	97.55 58.69 44.85	- -15.31	-	93.24	31.36						
2389.95 2389.95	58.69 44.85	-15.31				5.48	32.53	385	237		l
2389.95	44.85		74	54.45					231	Α	Н
		-9.15			31.3	5.48	32.54	385	160	Р	V
2414	100.34		54	40.61	31.3	5.48	32.54	385	160	Α	٧
	100.54	-	-	96.03	31.36	5.48	32.53	385	160	Р	٧
2410	92.38	-	-	88.07	31.36	5.48	32.53	385	160	Α	٧
2464	104.11	-	-	99.4	31.53	5.55	32.37	124	245	Р	Η
2464	96.42	-	-	91.71	31.53	5.55	32.37	124	245	Α	Н
2483.68	65.73	-8.27	74	60.9	31.59	5.55	32.31	124	245	Р	Η
2483.5	49.77	-4.23	54	44.94	31.59	5.55	32.31	124	245	Α	Η
2464	99.04	-	-	94.33	31.53	5.55	32.37	117	358	Р	V
2466	91.09	1	-	86.38	31.53	5.55	32.37	117	358	Α	٧
2483.74	59.93	-14.07	74	55.1	31.59	5.55	32.31	117	358	Р	V
2483.5	44.99	-9.01	54	40.16	31.59	5.55	32.31	117	358	Α	V
	2483.68 2483.5 2464 2466 2483.74 2483.5	2483.68 65.73 2483.5 49.77 2464 99.04 2466 91.09 2483.74 59.93	2483.68 65.73 -8.27 2483.5 49.77 -4.23 2464 99.04 - 2466 91.09 - 2483.74 59.93 -14.07 2483.5 44.99 -9.01	2483.68 65.73 -8.27 74 2483.5 49.77 -4.23 54 2464 99.04 - - 2466 91.09 - - 2483.74 59.93 -14.07 74 2483.5 44.99 -9.01 54	2483.68 65.73 -8.27 74 60.9 2483.5 49.77 -4.23 54 44.94 2464 99.04 - - 94.33 2466 91.09 - - 86.38 2483.74 59.93 -14.07 74 55.1 2483.5 44.99 -9.01 54 40.16	2483.68 65.73 -8.27 74 60.9 31.59 2483.5 49.77 -4.23 54 44.94 31.59 2464 99.04 - - 94.33 31.53 2466 91.09 - - 86.38 31.53 2483.74 59.93 -14.07 74 55.1 31.59 2483.5 44.99 -9.01 54 40.16 31.59	2483.68 65.73 -8.27 74 60.9 31.59 5.55 2483.5 49.77 -4.23 54 44.94 31.59 5.55 2464 99.04 - - 94.33 31.53 5.55 2466 91.09 - - 86.38 31.53 5.55 2483.74 59.93 -14.07 74 55.1 31.59 5.55 2483.5 44.99 -9.01 54 40.16 31.59 5.55	2483.68 65.73 -8.27 74 60.9 31.59 5.55 32.31 2483.5 49.77 -4.23 54 44.94 31.59 5.55 32.31 2464 99.04 - - 94.33 31.53 5.55 32.37 2466 91.09 - - 86.38 31.53 5.55 32.37 2483.74 59.93 -14.07 74 55.1 31.59 5.55 32.31 2483.5 44.99 -9.01 54 40.16 31.59 5.55 32.31	2483.68 65.73 -8.27 74 60.9 31.59 5.55 32.31 124 2483.5 49.77 -4.23 54 44.94 31.59 5.55 32.31 124 2464 99.04 - - 94.33 31.53 5.55 32.37 117 2466 91.09 - - 86.38 31.53 5.55 32.37 117 2483.74 59.93 -14.07 74 55.1 31.59 5.55 32.31 117 2483.5 44.99 -9.01 54 40.16 31.59 5.55 32.31 117	2483.68 65.73 -8.27 74 60.9 31.59 5.55 32.31 124 245 2483.5 49.77 -4.23 54 44.94 31.59 5.55 32.31 124 245 2464 99.04 - - 94.33 31.53 5.55 32.37 117 358 2466 91.09 - - 86.38 31.53 5.55 32.37 117 358 2483.74 59.93 -14.07 74 55.1 31.59 5.55 32.31 117 358 2483.5 44.99 -9.01 54 40.16 31.59 5.55 32.31 117 358	2483.68 65.73 -8.27 74 60.9 31.59 5.55 32.31 124 245 P 2483.5 49.77 -4.23 54 44.94 31.59 5.55 32.31 124 245 A 2464 99.04 - - 94.33 31.53 5.55 32.37 117 358 P 2466 91.09 - - 86.38 31.53 5.55 32.37 117 358 A 2483.74 59.93 -14.07 74 55.1 31.59 5.55 32.31 117 358 P 2483.5 44.99 -9.01 54 40.16 31.59 5.55 32.31 117 358 A

^{2.} All results are PASS against Peak and Average limit line.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : C5 of C9
Report Issued Date : Nov. 19, 2019
Report Version : Rev. 01

2.4GHz 2400~2483.5MHz

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11n		4824	45.88	-28.12	74	65.01	34.89	8.1	62.12	100	26	Р	Н
HT20		4004	20.04	14.06	ΕΛ	EQ 17	24.00	0.1	60.40	100	26	_	Н
CH 01		4824	39.04	-14.96	54	58.17	34.89	8.1	62.12	100	26	Α	П
2412MHz		4824	41.83	-32.17	74	60.96	34.89	8.1	62.12	100	360	Р	V
802.11n		4872	43.54	-30.46	74	62.64	34.92	8.09	62.11	100	360	Р	Н
HT20		7311	41.14	-32.86	74	58.87	35.29	9.75	62.77	100	360	Р	Н
CH 06		4872	40.04	-33.96	74	59.14	34.92	8.09	62.11	100	360	Р	V
2437MHz		7311	40.27	-33.73	74	58	35.29	9.75	62.77	100	360	Р	V
802.11n		4926	44.44	-29.56	74	63.52	34.95	8.06	62.09	100	0	Р	Н
HT20		7386	41.48	-32.52	74	59.11	35.34	9.81	62.78	100	0	Р	Н
CH 11		4926	40.43	-33.57	74	59.51	34.95	8.06	62.09	100	360	Р	V
2462MHz		7386	40.09	-33.91	74	57.72	35.34	9.81	62.78	100	360	Р	V
Remark		o other spurio		ot Dook	and Averes	o limit lin							

^{2.} All results are PASS against Peak and Average limit line.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P

: C6 of C9 Page Number Report Issued Date: Nov. 19, 2019

Report No.: FR992410

Report Version : Rev. 01

Emission below 1GHz

2.4GHz WIFI 802.11b (LF)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		240.49	38.09	-7.91	46	51.72	17.62	1.72	32.97	-	-	Р	Н
		312.27	34.87	-11.13	46	46.27	19.7	1.94	33.04	-	-	Р	Н
		336.52	37.76	-8.24	46	48.53	20.28	2.02	33.07	-	-	Р	Н
		384.05	40.88	-5.12	46	50.2	21.63	2.16	33.11	100	30	Р	Н
0.4011		577.08	33.85	-12.15	46	38.88	25.66	2.64	33.33	ı	-	Р	Н
2.4GHz 802.11b		793.39	31.81	-14.19	46	33.38	28.33	3.11	33.01	ı	-	Р	Н
LF		43.58	29.15	-10.85	40	43.72	17.64	0.76	32.97	100	65	Р	V
		240.49	29.68	-16.32	46	43.31	17.62	1.72	32.97	ı	-	Р	V
		384.05	32.38	-13.62	46	41.7	21.63	2.16	33.11	1	-	Р	V
		480.08	32.53	-13.47	46	39.52	23.84	2.41	33.24	-	-	Р	V
		577.08	32.34	-13.66	46	37.37	25.66	2.64	33.33	-	-	Р	V
		832.19	29.27	-16.73	46	29.87	28.95	3.18	32.73	-	-	Р	V
Remark		o other spurio I results are P		st limit li	ne.								

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P

Page Number : C7 of C9 Report Issued Date: Nov. 19, 2019 : Rev. 01

Report No.: FR992410

Report Version

Note symbol

	Fundamental Frequency which can be ignored. However, the level of any
*	unwanted emissions shall not exceed the level of the fundamental frequency per
	15.209(c).
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : C8 of C9
Report Issued Date : Nov. 19, 2019
Report Version : Rev. 01

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Cable	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1+2		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

1. Level(dBµV/m) =

Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

2. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Cable Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Sporton International (Kunshan) Inc.

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : C9 of C9
Report Issued Date : Nov. 19, 2019

Report No.: FR992410

Report Version : Rev. 01

Appendix D. Duty Cycle Plots

Band	Duty Cycle(%)	T(ms)	1/T(kHz)	VBW Setting
802.11b	97.32	8.406	0.119	0.12kHz
802.11g	94.58	1.391	0.719	0.75kHz
802.11n HT20	93.93	1.300	0.769	0.82kHz

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : D-1 of 2
Report Issued Date : Nov. 19, 2019
Report Version : Rev. 01

802.11g Spectrum Ref Level 25.30 dBm **Offset** 5.30 dB **● RBW** 10 MHz **SWT** 5 ms **● VBW** 10 MHz 30 dB . SWT • Att SGL 1Pk Max D3[1] 29 dBm 14.12 dBm 413.04 µs M1[1] 10 dBn -10 dBn -20 dBr 30 dB 50 de -60 dBm CF 2.412 GHz 691 pts 500.0 µs/ Marker Type | Ref | Trc | Y-value Function **Function Result** X-value 413.04 µs 1.3913 ms 1.47101 ms 14.12 dBm 2.71 dB 0.02 dB

802.11n HT20

TEL: +86-512-57900158 FAX: +86-512-57900958 FCC ID: 2ANDL-WRD8P Page Number : D-2 of 2
Report Issued Date : Nov. 19, 2019

Report No.: FR992410

Report Version : Rev. 01