Title

Max Varverakis

November 23, 2023

Chapter 1

Background Info

Definition 1.1 (Representations of a Group). If there is a homomorphism from a group G to a group of operators U(G) on a linear vector space V, we say that U(G) forms a representation of G with dimension dim V.

The representation is a map

$$g \in G \xrightarrow{U} U(g) \tag{1.1}$$

in which U(g) is an operator on the vector space V. For a set of basis vectors $\{\hat{e}_i, i = 1, 2, ..., n\}$, we can realize each operator U(g) as an $n \times n$ matrix D(g).

$$U(g)|e_{i}\rangle = \sum_{j=1}^{n} |e_{j}\rangle D(g)^{j}_{i} = |e_{j}\rangle D(g)^{j}_{i},$$
 (1.2)

where the first index j is the row index and the second index i is the column index. We use the Einstein summation convention, so repeated indices are summed over. Note that the operator multiplication is defined as

$$U(g_1)U(g_2) = U(g_1g_2), (1.3)$$

which satisfies the group multiplication rules.

Definition 1.2. If the homomorphism defining the representation is an isomorphism, then the representation is *faithful*. Otherwise, it is *degenerate*.

Example 1.1. Let G be the group of continuous rotations in the xy-plane about the origin. We can write $G = \{R(\phi), 0 \le \phi \le 2\pi\}$ with group operation $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2)$. Consider the 2-dimensional Euclidean vector space V_2 . Then we define a representation of G on V_2 by the familiar rotation operation

$$\hat{e}_1' = U(\phi)\hat{e}_1 = \hat{e}_1 \cdot \cos\phi + \hat{e}_2 \cdot \sin\phi \tag{1.4}$$

$$\hat{e}_2' = U(\phi)\hat{e}_2 = -\hat{e}_1 \cdot \sin \phi + \hat{e}_2 \cdot \cos \phi.$$
 (1.5)

This gives us the matrix representation

$$D(\phi) = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}. \tag{1.6}$$

To further illustrate this representation, if we consider an arbitrary vector $\hat{e}_i x^i = \vec{x} \in V_2$, then we have

$$\vec{x}' = U(\phi)\vec{x} = \hat{e}_i x^{\prime j},\tag{1.7}$$

where $x'^{j} = D(\phi)^{j}{}_{i}x^{i}$.

Definition 1.3 (Equivalence of Representations). For a group G, two representations are *equivalent* if they are related by a similarity transformation. Equivalent representations form an equivalence class.

To determine whether two representations belong to the same equivalence class, we define

Definition 1.4 (Characters of a Representation). The *character* $\chi(g)$ of an element $g \in G$ in a representation U(g) is defined as $\chi(g) = \text{Tr } D(g)$.

Since trace is independent of basis, the character serves as a class label.

Vector space representations of a group have familiar substructures, which are useful in constructing representations of the group.

Definition 1.5 (Invariant Subspace). Let U(G) be a representation of G on a vector space V, and W a subspace of V such that $U(g)|x\rangle \in W$ for all $\vec{x} \in W$ and $g \in G$. Then W is an *invariant subspace* of V with respect to U(G). An invariant subspace is *minimal* or *proper* if it does not contain any non-trivial invariant subspace with respect to U(G).

The identification of invariant subspaces on vector space representations leads to the following distinction of the representations.

Definition 1.6 (Irreducible Representation). A representation U(G) on V is *irreducible* if there is no non-trivial invariant subspace in V with respect to U(G). Otherwise, it is *reducible*. If U(G) is reducible and its orthogonal complement to the invariant subspace is also invariant with respect to U(G), then the representation is *fully reducible*.

Example 1.2. Under the group of 2-dimensional rotations, consider the 1-dimensional subspace spanned by \hat{e}_1 . This subspace is not invariant under 2-dimensional rotations, because a rotation of \hat{e}_1 by $\pi/2$ results in the vector \hat{e}_2 that is clearly not in the subspace spanned by \hat{e}_1 . A similar argument shows that the subspace spanned by \hat{e}_2 is not invariant under 2-dimensional rotations.

However, consider the linear combination of basis vectors

$$\hat{e}_{\pm} = \frac{1}{\sqrt{2}} \left(\mp \hat{e}_1 + i\hat{e}_2 \right), \tag{1.8}$$

where $i = \sqrt{-1}$. Then a rotation by angle ϕ , denoted in operator form as $U(\phi)$, acts on \hat{e}_{\pm} by

$$U(\phi)|\hat{e}_{+}\rangle = \hat{e}_{+}e^{-i\phi} \tag{1.9}$$

$$U(\phi)|\hat{e}_{-}\rangle = \hat{e}_{-}e^{i\phi}. \tag{1.10}$$

The irreducible representation matrices satisfy orthonormality and completeness relations. **Thm. 3.5**?

Example 1.3 (Generator of SO(2)). Consider the rotations of a 2-dimensional Euclidean vector space about the origin. Let \hat{e}_1 and \hat{e}_2 be orthonormal basis vectors of this space. Using geometry, we can determine how a rotation by some angle ϕ , written in operator form as $R(\phi)$, acts on the basis vectors:

$$R(\phi)\hat{e}_1 = \hat{e}_1 \cos \phi + \hat{e}_2 \sin \phi \tag{1.11}$$

$$R(\phi)\hat{e}_2 = -\hat{e}_1 \sin \phi + \hat{e}_2 \cos \phi.$$
 (1.12)

In matrix form, we can write

$$R(\phi) = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \tag{1.13}$$

which allows us to write Eqn. 1.11 and Eqn. 1.12 in a condensed form

$$R(\phi)\hat{e}_i = \hat{e}_j R(\phi)^j_{\ i},\tag{1.14}$$

where we are summing over j = 1, 2.

Now, let \vec{x} be an arbitrary vector in the plane. Then \vec{x} has components x^i in the basis $\{\hat{e}_i\}$, where i=1,2. Equivalently, we can write $\vec{x}=\hat{e}_ix^i$. Then under rotations, \vec{x} transforms in accordance to the basis vectors

$$R(\phi)\vec{x} = R(\phi)\hat{e}_{i}x^{i}$$

$$= \hat{e}_{j}R(\phi)^{j}{}_{i}x^{i}$$

$$= (\hat{e}_{1}R(\phi)^{1}{}_{i} + \hat{e}_{2}R(\phi)^{2}{}_{i})x^{i}$$

$$= (\hat{e}_{1}\cos\phi + \hat{e}_{2}\sin\phi)x^{1} + (\hat{e}_{1}(-\sin\phi) + \hat{e}_{2}\cos\phi)x^{2}$$

$$= (x^{1}\cos\phi - x^{2}\sin\phi)\hat{e}_{1} + (x^{1}\sin\phi + x^{2}\cos\phi)\hat{e}_{2}.$$
(1.15)

Observe that $R(\phi)R^{\top}(\phi) = E$ where E is the identity matrix. This is precisely what defines *orthogonal matrices*. For 2-dimensional vectors in the plane, it is clear that these rotations do not change the length of said vectors. This can be verified by using Eqn. 1.15:

$$|R(\phi)\vec{x}|^{2} = |\hat{e}_{j}R(\phi)^{j}{}_{i}x^{i}|^{2}$$

$$= |(x^{1}\cos\phi - x^{2}\sin\phi)\hat{e}_{1} + (x^{1}\sin\phi + x^{2}\cos\phi)\hat{e}_{2}|^{2}$$

$$= (x^{1}\cos\phi - x^{2}\sin\phi)^{2} + (x^{1}\sin\phi + x^{2}\cos\phi)^{2}$$

$$= (\cos^{2}\phi + \sin^{2}\phi)x^{1}x_{1} + (\sin^{2}\phi + \cos^{2}\phi)x^{2}x_{2}$$

$$= x^{1}x_{1} + x^{2}x_{2} = |\vec{x}|^{2}.$$
(1.16)

Similarly, notice that for any continuous rotation by angle ϕ , det $R(\phi) = \cos^2 \phi + \sin^2 \phi = 1$. In general, orthogonal matrices have determinant equal to ± 1 . However, the result of the above determinant of $R(\phi)$ implies that all continuous rotations in the 2-dimensional plane have determinant equal to +1. These are the *special orthogonal matrices of rank 2*. This family of matrices is denoted SO(2). Furthermore, there is a one-to-one correspondence with SO(2) matrices and rotations in a plane.

We define the group of continuous rotations in a plane by letting R(0) = E be the identity element corresponding to no rotation (i.e., a rotation by

angle $\phi = 0$), and defining the inverse of a rotation as $R^{-1}(\phi) = R(-\phi) = R(2\pi - \phi)$. This group can be called the SO(2) group. Lastly, we define group multiplication as $R(\phi_1)R(\phi_2) = R(\phi_1 + \phi_2)$ and note that $R(\phi) = R(\phi \pm 2\pi)$, which can be verified geometrically. Thus, group elements of SO(2) can be labelled by the angle of rotation $\phi \in [0, 2\pi)$.

Now we can find a generator of sotwo by considering an infinitesimal rotation, labelled by some infinitesimal angle $d\phi$. Then this is equivalent to the identity plus some small rotation, which we can write as

$$R(\mathrm{d}\phi) = E - i\mathrm{d}\phi J \tag{1.17}$$

where the scalar quantity -i is introduced for later convenience and J is some quantity independent of the rotation angle. If we consider the rotation $R(\phi + d\phi)$, then there are two equivalent ways to interpret this rotation

$$R(\phi + d\phi) = R(\phi)R(d\phi) = R(\phi)(E - id\phi J) = R(\phi) - id\phi R(\phi)J \quad (1.18)$$

$$R(\phi + d\phi) = R(\phi) + dR(\phi) = R(\phi) + d\phi \frac{dR(\phi)}{d\phi}$$
(1.19)

where the second equation can be thought of as a Taylor expansion of $R(\phi + d\phi)$ about ϕ . Equating the two expressions for $R(\phi + d\phi)$ yields

$$dR(\phi) = -id\phi R(\phi)J. \tag{1.20}$$

Solving this differential equation (with boundary condition R(0) = E) provides us with an equation for any group element involving J:

$$R(\phi) = e^{-i\phi J},\tag{1.21}$$

where J is called the *generator* of the group.