
Genes of purine biosynthesis from *Ashbya gossypii* and the use thereof in microbial riboflavin synthesis

- 5 The present invention relates to genes of purine biosynthesis from *Ashbya gossypii* and to the use thereof in riboflavin synthesis.
- 10 Vitamin B2, also called riboflavin, is essential for humans and animals. Vitamin B2 deficiency is associated with inflammations of the mucous membranes of the mouth and throat, itching and inflammations in the skin folds and similar cutaneous lesions, conjunctival inflammations, reduced visual accuracy and clouding 15 of the cornea. Babies and children may experience cessation of growth and loss of weight. Vitamin B2 therefore has economic importance, especially as vitamin supplement in cases of vitamin deficiency and as supplement to animal feed. It is also employed for coloring foodstuffs, for example in mayonnaise, icecream, 20 blancmange etc.

Vitamin B2 is prepared either chemically or microbially (see, for example, Kurth et al. (1996) riboflavin, in: Ullmann's Encyclopedia of industrial chemistry, VCH Weinheim). In the 25 chemical preparation process, riboflavin is, as a rule, obtained as pure final product in multistage processes, it being necessary to employ relatively costly starting materials such as, for example, D-ribose. An alternative to the chemical synthesis of riboflavin is the preparation of this substance by 30 microorganisms. The starting materials used in this case are renewable raw materials such as sugars or vegetable oils. The preparation of riboflavin by fermentation of fungi such as *Eremothecium ashbyii* or *Ashbya gossypii* is known (The Merck Index, Windholz et al., eds. Merck & Co., page 1183, 1983), but 35 yeasts such as, for example, *Candida*, *Pichia* and *Saccharomyces*, or bacteria such as, for example, *Bacillus*, *clostridia* or *corynebacteria*, have also been described as riboflavin producers.

EP 405370 describes riboflavin-overproducing bacterial strains 40 obtained by transformation of the riboflavin biosynthesis genes from *Bacillus subtilis*. These genes described therein, and other genes involved in vitamin B2 biosynthesis from prokaryotes are unsuitable for a recombinant riboflavin preparation process using eukaryotes such as, for example, *Saccharomyces cerevisiae* or 45 *Ashbya gossypii*.

DE 44 20 785 describes six riboflavin biosynthesis genes from *Ashbya gossypii*, and microorganisms transformed with these genes, and the use of such microorganisms for riboflavin synthesis.

- 5 It is possible with these processes to generate producer strains for microbial riboflavin synthesis. However, these producer strains often have metabolic limitations which cannot be eliminated by the inserted biosynthesis genes or are sometimes induced thereby. Such producer strains are sometimes unable to
10 provide sufficient substrate for saturating some steps in the biosynthesis, so that the biosynthetic capacity of some segments of metabolism cannot be fully exploited.
- 15 It is therefore desirable to enhance further sections of metabolic pathways, thereby to eliminate metabolic bottlenecks and thus further optimize the microorganism employed for the microbial riboflavin synthesis (producer strains) in respect of their ability for riboflavin synthesis. It is desirable to
20 identify the enhancing sections of the complex metabolism and to enhance these in a suitable way.

The present invention relates to novel proteins of purine biosynthesis, the genes therefor and the use thereof for
25 microbial riboflavin synthesis.

Purine metabolism (for a review, see, for example, Voet, D. and Voet, J.G., 1994, Biochemie, VCH Weinheim, pages 743-771; Zalkin, H. and Dixon, J.E., 1992, De novo purine nucleotide
30 biosynthesis, in: Progress in nucleic acid research and molecular biology, Vol. 42, pages 259-287, Academic Press) is a part of the metabolism which is essential for all life forms. Faulty purine metabolism may in humans lead to serious diseases (e.g. gout). Purine metabolism is moreover an important target for treating
35 oncoses and viral infections. Numerous publications have appeared describing substances which intervene in purine metabolism for these indications (as review, for example Christopherson, R.I. and Lyons, S.D., 1990, Potent inhibitors of de novo pyrimidine and purine biosynthesis as chemotherapeutic agents, Med. Res.
40 Reviews 10, pages 505-548).

Investigations on the enzymes involved in purine metabolism (Smith, J.L., Enzymes in nucleotide synthesis, 1995, Curr. Opinion Struct. Biol. 5, 752-757) aim to develop novel
45 immunosuppressives, antiparasitic or antiproliferative medicines (Biochem. Soc. Transact. 23, pages 877-902, 1995).

These medicines are normally not naturally occurring purines, pyrimidines or compounds derived therefrom.

The present invention relates to a protein having the polypeptide
5 sequence depicted in SEQ ID NO:2 or a polypeptide sequence obtainable from SEQ ID NO:2 by substitution, insertion or deletion of up to 15% of the amino acids, and having the enzymatic activity of a phosphoribosyl-pyrophosphate synthetase.

10 The sequence depicted in SEQ ID NO:2 is the gene product of the KPR1 gene (SEQ ID NO:1) obtained from *Ashbya gossypii*.

The invention further relates to a protein having the polypeptide
15 sequence depicted in SEQ ID NO:5 or a polypeptide sequence obtainable from SEQ ID NO:5 by substitution, insertion or deletion of up to 10% of the amino acids, and having the enzymatic activity of a glutamine-phosphoribosyl-pyrophosphate amidotransferase.

20 The sequence depicted in SEQ ID NO:5 is the gene product of the ADE4 gene (SEQ ID NO:3) obtained from *Ashbya gossypii*.

The invention further relates to a protein having the polypeptide
25 sequence depicted in SEQ ID NO:8 or a polypeptide sequence obtainable from SEQ ID NO:8 by substitution, insertion or deletion of up to 20% of the amino acids, and having the enzymatic activity of an IMP dehydrogenase.

30 The sequence depicted in SEQ ID NO:8 and 9 is the gene product of the GUA1 gene (SEQ ID NO:7) obtained from *Ashbya gossypii*.

The invention further relates to a protein having the polypeptide
35 sequence depicted in SEQ ID NO:11 or a polypeptide sequence obtainable from SEQ ID NO:11 by substitution, insertion or deletion of up to 10% of the amino acids, and having the enzymatic activity of a GMP synthetase.

40 The sequence depicted in SEQ ID NO:11 is the gene product of the GUA2 gene (SEQ ID NO:10) obtained from *Ashbya gossypii*.

The invention further relates to a protein having the polypeptide sequence depicted in SEQ ID NO:13 or a polypeptide sequence
45 obtainable from SEQ ID NO:13 by substitution, insertion or

10076357 024502

deletion of up to 10% of the amino acids, and having the enzymatic activity of a phosphoribosyl-pyrophosphate synthetase.

The sequence depicted in SEQ ID NO:13 is the gene product of the 5 KPR2 gene (SEQ ID NO:12) obtained from *Ashbya gossypii*.

These gene products mentioned can be modified by conventional methods of gene technology, such as site-directed mutagenesis, so that particular amino acids are replaced, additionally inserted 10 or deleted. Amino acid residues are normally (but not exclusively) replaced by those of similar volume, charge or hydrophilicity/ hydrophobicity in order not to lose the enzymatic properties of the gene products. In particular, modifications of the amino acid sequence in the active center frequently results 15 in a drastic alteration in the enzymatic activities. However, modifications of the amino acid sequence and other, less essential sites are often tolerated.

It is possible with the novel proteins
20

1. for up to 15, preferably up to 10 and particularly preferably up to 5, % of the amino acids to be modified, by comparison with sequences depicted in the sequence listing, in the case 25 of the gene product of the AgKPR1 gene;
2. for up to 10 and particularly preferably up to 5% of the amino acids to be modified, by comparison with the sequences depicted in the sequence listing, in the case of the gene 30 product of the AgADE4 gene;
3. for up to 20, preferably up to 15, particularly preferably up to 10 and especially preferably up to 5, % of the amino acids to be modified, by comparison with the sequences depicted in 35 the sequence listing, in the case of the gene product of the AgGUA1 gene;
4. for up to 10 and particularly preferably up to 5% of the amino acids to be modified, by comparison with the sequences 40 depicted in the sequence listing, in the case of the gene product of the AgGUA2 gene;
5. for up to 10%, preferably up to 7% and particularly preferably up to 5%, of the amino acids to be modified, by comparison with the sequences depicted in the sequence 45 listing, in the case of the gene product of the AgKPR2 gene.

Preferred proteins are those which, while they still have the relevant enzymatic activity, have altered regulation. Many of these enzymes are subject to a strong control of the activity by intermediates and final products (feedback inhibition). This 5 leads to the activity of the enzymes being restricted as soon as sufficient final product is present.

However, in the case of producer strains, this economic control in the physiological state often results in it being impossible 10 to increase the productivity beyond a certain limit. Elimination of such feedback inhibition results in the enzymes retaining their activity, irrespective of the final product concentration, and thus metabolic bottlenecks are bypassed. This in the end leads to a marked increase in riboflavin biosynthesis.
15

Preferred novel proteins are those no longer inhibited by secondary products of metabolic pathways (derived from products of the enzymes). Particularly preferred novel proteins are those 20 no longer inhibited by intermediates of purine biosynthesis, in particular by purine bases, purine nucleosides, purine nucleotide 5'-monophosphates or purine nucleotide 5'-diphosphates or purine nucleotide 5'-triphosphates. Particularly preferred novel proteins are those with subsequent modifications of the amino acid sequence and all combinations of amino acid sequence 25 modifications which comprise these subsequent modifications.

Modifications of the amino acid sequence of the AgKPR1 gene product:

30

Lysine at position 7 replaced by valine
Aspartate at position 52 replaced by histidine
Leucine at position 131 replaced by isoleucine
35 Aspartate at position 186 replaced by histidine
Alanine at position 193 replaced by valine
Histidine at position 196 replaced by glutamine

40 Modifications of the amino acid sequence of the AgADE4 gene product:

Aspartate at position 310 replaced by valine
Lysine at position 333 replaced by alanine
45 Alanine at position 417 replaced by tryptophan

The following Examples describe the preparation of the novel proteins and nucleic acids and the use thereof for producing microorganisms with increased riboflavin synthesis.

5 Example 1:

Production of a genomic gene bank from *Ashbya gossypii* ATCC10895

Genomic DNA from *Ashbya gossypii* ATCC10895 can be prepared by
10 conventional methods as described, for example, in WO9703208. The
genomic gene bank can be constructed starting from this DNA by
conventional methods (e.g. Sambrook, J. et al. (1989) Molecular
cloning: a laboratory manual, Cold Spring Harbor Laboratory Press
or Ausubel, F.M. et al. (1994) Current protocols in molecular
15 biology, John Wiley and sons) in any suitable plasmids or
cosmids, such as, for example, SuperCos1 (Stratagene, La Jolla,
USA).

Example 2:

20 Cloning of the gene for PRPP synthetase from *Ashbya gossypii*
ATCC10895 (AgKPR1)

Cloning of the gene for PRPP synthetase from *Ashbya gossypii*
25 (AgKPR1) can take place in two steps. In the first step, it is
possible with the following oligonucleotides to amplify a defined
region of the KPR1 gene from genomic DNA from *Ashbya gossypii* by
PCR:

30 KPR5: 5'- GATGCTAGAGACCGCGGGGTGCAAC -3'
 KPR3: 5'- TGTCCGCCATGTCGTCTACAATAATA -3'

The PCR can be carried out by a conventional method. The
resulting 330 bp DNA fragment can be cloned by conventional
35 methods into the vector pGEMT (Promega, Madison, USA) and be
sequenced.

A genomic cosmid gene bank can be screened by conventional
40 methods using this nucleotide sequence as probe. A 1911 bp
PstI-HindIII fragment of a cosmid which gives a signal with this
probe can then be subcloned into the vector pBluescript SK+
(Stratagene, La Jolla, USA). The KPR1 gene and incomplete ORFs
which show homology with the UBC6 and UBP9 genes of *Saccharomyces*
45 *cerevisiae* are located on this fragment.

The PRPP synthetase KPR2 and the putative PRPP synthetase KPR4 from *Saccharomyces cerevisiae* are the enzymes which are most closely related, with similarities of 80.2% and 79.6% respectively, to the PRPP synthetase from *Ashbya gossypii*. The 5 KPR2 and KPR4 genes from *Saccharomyces cerevisiae* have 67.6% and 67.8%, respectively, similarity with the KPR1 gene from *Ashbya gossypii*. Other enzymes and genes from other organisms are distinctly more different from the KPR1 gene and from the PRPP synthetase from *Ashbya gossypii*.

10

The sequence comparisons can be carried out, for example, with the Clustal algorithm with the aid of the PAM250 weighting table or the Wilbur-Lipman DNA alignment algorithm (as implemented, for example, in the MegAlign 3.06 program package supplied by 15 DNASTar). It is not possible with the oligonucleotide pair described to amplify the genes for the different PRPP synthetases from *Saccharomyces cerevisiae*.

It is also possible to use the probe to find a further clone from 20 the gene bank. This second clone showed a gene which likewise codes for a PRPP synthetase. This gene is called AgKPR2 and is distinctly different from AgKPR1. AgKPR2 shows 66% identity with AgKPR1 at the amino acid level. The AgKPR2 gene (SEQ ID NO:12) was compared with all proteins of the Swissprot database. The 25 maximum similarity shown by this protein (88% identity and 95% similarity) is with the KPR3 gene product from *Saccharomyces cerevisiae*. The gene product of the AgKPR1 gene is responsible for the predominant part of the PRPP synthetase activity in *Ashbya gossypii*. Disruption of the AgKPR1 gene of *Ashbya gossypii* 30 (analogous to the disruption of other *Ashbya* genes as in the descriptions in Examples 6-8) results in a distinctly reduced enzyme activity: in place of 22 U/mg of protein now only 3 U/mg of protein. See Example 13 for the analysis. Examples 11, 13 and 15 relate to the AgKPR1 gene, but studies of these types can also 35 be carried out with AgKPR2.

Example 3:

Cloning of the gene for glutamine-PRPP amidotransferase from 40 *Ashbya gossypii* ATCC10895 (AgADE4)

The cloning of the gene for glutamine-PRPP amidotransferase from *Ashbya gossypii* (AgADE4) can take place in two steps.

In the first step, it is possible with the following 45 oligonucleotides to amplify a defined region of the AgADE4 gene from genomic DNA of *Ashbya gossypii* by PCR:

ADE4A: 5'- ATATCTTGATGAAGACGTTCACCGT -3'

ADE4B: 5'- GATAATGACGGCTTGGCCGGAAAGA -3'

- 5 The PCR can be carried out by a conventional method. The resulting 360 bp DNA fragment can be cloned by conventional methods into the vector pGEMT (Promega, Madison, USA) and then be sequenced.
- 10 This sequence can be used as probe to screen a genomic cosmid gene bank by conventional methods. It is then possible to subclone a 5369 bp HindIII fragment from a cosmid which gives a signal with this probe into the vector pBluescript SK+ (Stratagene, La Jolla, USA). The AgADE4 gene and the gene for the 15 Ashbya homolog for the mitochondrial ABC transporter ATM1 from *Saccharomyces cerevisiae* and another open reading frame whose function is unknown are located on this fragment.

The AgADE4 gene product (glutamine-PRPP amidotransferase) shows 20 the most evident similarity with the ADE4 gene products from *Saccharomyces cerevisiae* and *Saccharomyces kluyveri* (81% and 86.3% respectively). The corresponding genes show only 68.8% and 72%, respectively, homology, however. The similarity with other glutamine-PRPP amidotransferases is distinctly less (e.g. only 25 27.5% similarity with the corresponding enzyme from *Bacillus subtilis*). The sequence comparisons can be carried out as described in Example 2.

It is not possible with the described pair of oligonucleotides to 30 amplify the ADE4 genes from *Saccharomyces cerevisiae* or *Saccharomyces kluyveri*.

Example 4:

35 Cloning of the gene for inosine-monophosphate dehydrogenase from *Ashbya gossypii* ATCC10895 (AgGUA1)

Cloning of the gene for inosine-monophosphate dehydrogenase from 40 *Ashbya gossypii* (AgGUA1) can take place in two steps.

In the first step, it is possible with the following oligonucleotides to amplify a defined region of the AgGUA1 gene from genomic DNA from *Ashbya gossypii* by PCR:

45

IMP5: 5'- GGCATCACCTCGAGGAGGCGAAC -3'

IMP3: 5'- CAGACCGGCCTCGACCAGCATCGCC - 3'

The PCR can be carried out by a conventional method. The resulting 230 bp DNA fragment can be cloned by conventional methods into the vector pGEMT (Promega, Madison, USA) and then be sequenced.

This sequence can be used as probe to screen a genomic cosmid gene bank by conventional methods. A 3616 bp ApaI fragment from a 10 cosmid which gives a signal with this probe can be subcloned into the vector pBluescript SK+ (Stratagene, La Jolla, USA). The coding region of the AgGUAl gene is 1569 bp long and is interrupted by a 161 bp-long intron. The intron boundaries (5' 15 splice site AGGTATGT and 3' splice site CAG) can be verified by cloning and sequencing of AgGUAlcDNA.

AgGUAl is the first gene described from *Ashbya gossypii* having an intron.

20 The AgGUAl gene product (IMP dehydrogenase) shows the most evident similarity with the 4 IMP dehydrogenases from *Saccharomyces cerevisiae* (similarities between 67% and 77.2%). The similarity with other IMP dehydrogenases is distinctly less. 25 The sequence comparisons can be carried out as described in Example 2. *Ashbya gossypii* appears to have only one gene for this enzyme. This can be shown by Southern blotting with genomic DNA from *Ashbya gossypii* using the abovementioned probe.

30 The gene from *Saccharomyces cerevisiae* which codes for the IMP dehydrogenase (IMH3) which has most similarity with the AgGUAl gene product has a similarity of 70.2% with the AgGUAl gene. It is not possible with the described pair of oligonucleotides to amplify this gene from *Saccharomyces cerevisiae*.

35

Example 5:

Cloning of the gene for guanosine-monophosphate synthetase from *Ashbya gossypii* ATCC10895 (AgGUA2)

40

Cloning of the gene for guanosine-monophosphate synthetase from *Ashbya gossypii* (AgGUA2) can take place in two steps.

In the first step, it is possible with the following oligonucleotides to amplify a defined region of the AgGUA2 gene 45 from genomic DNA from *Ashbya gossypii* by PCR:

GUA2A: 5'- TGGACCGGGCGGTGTTCGAGTTGGG -3'

GUA2B: 5'- AGGCTGGATCCTGGCTGCCTCGCGC -3'

The PCR can be carried out by a conventional method. The resulting 750 bp DNA fragment can be cloned by conventional 5 methods into the vector pBluescript SK+ (Stratagene, La Jolla, USA) and then be sequenced.

This sequence can be used as probe to screen a genomic cosmid gene bank by conventional methods. A 2697 bp ClaI-EcoRV fragment 10 from a cosmid which gives a signal with this probe can then be subcloned into the vector pBluescript SK+ (Stratagene, La Jolla, USA).

15 The AgGUA2 gene product (GMP synthetase) shows the most evident similarity with GMP synthetase from *Saccharomyces cerevisiae* (similarity 86.6%). The genes for the GMP synthetases from *Saccharomyces cerevisiae* and *Ashbya gossypii* show 71.2% homology. The similarity of the AgGUA2 gene product with other GMP 20 synthetases is distinctly less. The sequence comparisons can be carried out as described in Example 2.

It is not possible with the described pair of oligonucleotides to amplify the GMP synthetase gene from *Saccharomyces cerevisiae*.

25

Example 6:

Disruption of the AgADE4 gene from *Ashbya gossypii* ATCC10895

30 Disruption of a gene means destroying the functionality of a genomic copy of the gene either by (a) deleting part of the gene sequence, or by (b) interrupting the gene by inserting a piece of foreign DNA into the gene or by (c) replacing part of the gene by 35 foreign DNA. Any foreign DNA can be used, but it is preferably a gene which brings about resistance to any suitable chemical. Any suitable resistance genes can be used for disruption of genes.

A gene which confers resistance to G418 can be used to disrupt the AgADE4 gene from *Ashbya gossypii* ATCC10895. It is possible 40 for this to be the kanamycin resistance gene from TN903 under the control of the TEF promoter of *Ashbya gossypii* (see, for example, Yeast 10, pages 1793-1808, 1994, WO9200379). The gene is flanked 5' and 3' by several cleavage sites for restriction endonucleases, thus constructing a cassette which allows any 45 desired constructions of gene disruptions by conventional methods of in vitro manipulation of DNA.

The internal HincII fragment of AgADE4 (between positions 2366 and 2924) can be replaced by a resistance cassette as outlined above. The resulting construct is called ade4::G418.

- 5 The resulting plasmid can be replicated in E.coli. The BamHI / BglII fragment of the construct ade4::G418 can be prepared, purified by agarose gel electrophoresis and subsequent elution of the DNA from the gel (see Proc. Natl. Acad. Sci. USA 76, 615-619, 1979) and employed for transforming *Ashbya gossypii*.

10

- Ashbya gossypii* can be transformed by protoplast transformation (Gene 109, 99-105, 1991), but preferably by electroporation (BioRad Gene Pulser, conditions: cuvettes with slit widths 0.4 mm, 1500V, 25 μ F, 100 Ω). Transformed cells are selected from G418-containing solid medium.

Resulting G418-resistant clones can be examined by conventional methods of PCR and Southern blot analysis to find whether the 20 genomic copy of the AgADE4 gene is in fact destroyed. Clones whose AgADE4 gene is destroyed are purine-auxotrophic.

Example 7:

Disruption of the AgGUA1 gene from *Ashbya gossypii* ATCC10895
25

See Example 6 for a description of the principle of disruption of genes, the use of a resistance cassette and the transformation of *Ashbya gossypii*.

30

The internal XhoI / KpnI fragment of AgGUA1 (between positions 1620 and 2061) can be replaced by a resistance cassette as outlined above. The resulting construct is called gual::G418.

- 35 The resulting plasmid can be replicated in E.coli. The XbaI / BamHI fragment of the construct gual::G418 can be prepared, purified by agarose gel electrophoresis and subsequent elution of the DNA from the gel and employed for transforming *Ashbya gossypii*.

40

Resulting G418-resistant clones can be examined by conventional methods of PCR and Southern blot analysis to find whether the genomic copy of the AgGUA1 gene is in fact destroyed. Clones whose AgGUA1 gene is destroyed are guanine-auxotrophic.

45

Example 8:

Disruption of the AgGUA2 gene from *Ashbya gossypii* ATCC10895

5 See Example 6 for a description of the principle of disruption of genes, the use of a resistance cassette and the transformation of *Ashbya gossypii*.

10 The internal SalI fragment of AgGUA2 (between positions 1153 and 1219) can be replaced by a resistance cassette as outlined above. The resulting construct is called gua2::G418.

15 The resulting plasmid can be replicated in *E.coli*. The XbaI / BamHI fragment of the construct gua2::G418 can be prepared, purified by agarose gel electrophoresis and subsequent elution of the DNA from the gel and employed for transforming *Ashbya gossypii*.

20 Resulting G418-resistant clones can be examined by conventional methods of PCR and Southern blot analysis to find whether the genomic copy of the AgGUA2 gene is in fact destroyed. Clones whose AgGUA2 gene is destroyed are guanine-auxotrophic.

25 Example 9:

Cloning of the GAP promoter from *Ashbya gossypii*

30 The gene for glyceraldehyde-3-phosphate dehydrogenase from *Ashbya gossypii* (AgGAP) can be cloned by generally customary screening of a genomic *Ashbya gossypii* cosmid gene bank (see Example 1, with a probe which was constructed from information on the sequence of the GAP gene from *Saccharomyces cerevisiae*).

35 The 5' nontranslated region of the gene (-373 to -8 region relative to the translation start) was assumed to be promoter. 2 cleavage sites for the restriction endonuclease NotI were inserted flanking this sequence. In this region there are the bona fide TATA Box (nt 224-230), two sequence sections (nt 43-51 and 77-85) which correspond to the GCR1 binding element, and a 40 sequence section (nt 9-20) whose complement partially corresponds to the RAP1 binding element of *Saccharomyces cerevisiae* (see, for example, Johnston, M. and Carlson, M. (1992) pp.193-281 in *The molecular biology and cellular biology of the yeast Saccharomyces: Gene expression*, Cold Spring Harbor Laboratory Press). The promoter cassette constructed in this way can be placed as easily portable expression signal in front of any desired gene for overexpression in *Ashbya gossypii* and results in

pronounced overexpression of genes in *Ashbya gossypii*, as shown in Example 11.

Example 10:

- 5 Construction of plasmids having genes under the control of the GAP promoter from *Ashbya gossypii*

In order to introduce the GAP promoter cassette 5' of the coding 10 region of the AgADE4 gene, a unique NotI cleavage site (recognition sequence GCGGCCGC) was inserted by conventional methods (e.g. Glover, D.M. and Hames, B.D. (1995) DNA cloning Vol.1, IRL press) 8 bp 5' of the ATG start codon.

- 15 The GAP promoter cassette can then be inserted via NotI into this position. An analogous procedure can be used for cloning the GAP promoter cassette 5' of the coding region of the genes AgKPR1, AgGUA1, AgGUA2 and for variants of the genes AgADE4, AgKPR1, AgGUA1 and AgGUA2.

20 Expression of the genes which harbor the GAP promoter cassette 5' of the coding region in *Ashbya gossypii* is controlled by the GAP promoter.

25 Example 11:

Overexpression of genes in *Ashbya gossypii* under the control of the GAP promoter

- 30 Transformation of *Ashbya gossypii* with the DNA constructs described in Example 10 can be carried out as described in Example 6. The recipient clones can preferably, but not exclusively, be those which, before the transformation to be carried out here, harbor a disruption of the gene to be 35 overexpressed. Thus, for example, the *Ashbya gossypii* mutant which is described in Example 6 and harbors an ade4::G418 mutation can be transformed with a GAP-ADE4 construct described in Example 10. Integration of the construct into the genome can be verified by Southern blot analysis. The resulting clones no 40 longer have a G418 resistance gene (and are thus G418-sensitive) and are purine-prototrophic. Overexpression can be demonstrated by Northern blot analysis or detection of the enzymatic activity (as described in Example 12). On expression of the AgADE4 gene under the natural promoter, 0.007 U/mg of protein can be 45 detected. On expression of the AgADE4 gene under the GAP promoter, 0.382 U/mg of protein can be detected.

A sequence section of the coding region of the AgADE4 gene can be used as probe. An analogous procedure can be used with AgKPR1, AgGUA1, AgGUA2 and for variants of all these genes. In addition, combinations of one of these genes together with other genes can 5 be introduced in this way into the genome of *Ashbya gossypii*.

The wild type *Ashbya gossypii* has a specific PRPP synthetase activity of 22 U/mg of protein (see Example 13 for analysis of the PRPP synthetase). On expression of the AgKPR1 gene with the 10 GAP promoter, 855 U/mg of protein is detectable.

Example 12:

Variants of the AgADE4 gene product (glutamine-PRPP amidotransferase) no longer subject to feedback inhibition by 15 purines or intermediates of purine synthesis.

Glutamine-PRPP amidotransferases are subject to feedback inhibition by purine nucleotides. This inhibition is found in 20 numerous organisms (see, for example, Switzer, R.L. (1989) Regulation of bacterial Glutamine Phosphoribosylpyrophosphate Amidotransferase, in: Allosteric enzymes pp. 129-151, CRC press, Boca Raton).

25 The glutamine-PRPP amidotransferase from *Ashbya gossypii* is likewise inhibited by AMP or GMP (see Figure). The activity of glutamine-phosphoribosyl-pyrophosphate amidotransferase from *Ashbya gossypii* can be measured as described in Messenger and Zalkin (1979) J. Biol. Chem. 254, pages 3382-3392.

30 Modified glutamine-phosphoribosyl-pyrophosphate amidotransferases no longer inhibited by purines can be constructed. It is evident that overexpression of such deregulated enzymes will enhance purine metabolism distinctly more than overexpression of enzymes 35 subject to feedback inhibition. Alterations in the sequence of the AgADE4 gene can be brought about by conventional methods (e.g. Glover, D.M. and Hames, B.D. (1995) DNA cloning Vol.1, IRL press). It is possible, for example, for the following amino acids in glutamine-phosphoribosyl-pyrophosphate amidotransferase 40 to be replaced:

The codon which codes for aspartate at position 310 can be replaced by a codon which codes for valine. The codon which codes 45 for lysine at position 333 can be replaced by a codon which codes for alanine. The codon which codes for alanine at position 417 can be replaced by a codon which codes for tryptophan. It is

additionally possible to construct AgADE4 genes which harbor combinations of these substitutions.

All enzymes which carry D310V, K333A, A417W or any combination of
5 substitutions which comprise D310V or K333A show diminished feedback inhibition by AMP and GMP (see Figure). This can be shown, for example, by expressing the enzymes in *Ashbya gossypii* (see Example 11).

10 Example 13:

Variants of the AgKPR1 gene product (PRPP synthetase) no longer subject to feedback inhibition by purines or intermediates of purine synthesis.

15

PRPP synthetases are subject to feedback inhibition by purines, pyrimidines and amino acids. This inhibition is found in numerous organisms (see, for example, Gibson, K.J. et al. (1982) J. Biol. Chem. 257, 2391-2396; Tatibana, M. et al. (1995) Adv., Enzyme

20 Regul. 35, 229-249 and papers quoted therein).

In clinical medical research there are descriptions of cases of hereditary gout based on enhanced purine biosynthesis. The molecular cause thereof is what is called superactivity of human
25 PRPP synthetase (see, for example, Amer. J. Med. 55 (1973) 232-242; J. Clin. Invest. 96 (1995) 2133-2141; J. Biol. 268 (1993) 26476-26481). The basis thereof may be a mutation which leads to the enzyme no longer being subject to feedback inhibition by purines.

30 The activity of the PRPP synthetase from *Ashbya gossypii* can be measured as described in Anal. Biochem. 98 (1979) 254-263 or J. Bacteriol. 174 (1992) 6852-6856. The specific activity (U/mg) is defined via the amount of resulting product (nmol/min/g of protein).

35 It is possible to construct modified PRPP synthetases no longer inhibited by purines. It is evident that overexpression of such deregulated enzymes enhances purine metabolism distinctly more than does overexpression of enzymes subject to feedback inhibition. Modifications of the sequence of the AgKPR1 gene may

40 be brought about by conventional methods (e.g. Glover, D.M. and Hames, B.D. (1995) DNA cloning Vol. 1, IRL press). It is possible, for example, to exchange the following amino acids of the PRPP synthetase:

The codon which codes for leucine at position 131 can be replaced
45 by a codon which codes for isoleucine. The codon which codes for histidine at position 196 can be replaced by a codon which codes for glutamine.

100%
100%
100%
100%
100%
100%
100%
100%
100%
100%

All enzymes which have one of these amino acid exchanges (L131I or H196Q) show a reduced feedback inhibition by purines. Figure 2 shows this by the example of ADP.

This can be shown after expression of the corresponding enzymes 5 in *Ashbya gossypii*. This can be carried out in accordance with Example 11.

Example 14:

10 Variants of the AgGUA1 gene product (IMP dehydrogenase) no longer subject to feedback inhibition by purines or intermediates of purine synthesis.

Example 15:

15 Effects of the enhancement and/or optimization of enzymes of purine metabolism and their genes on riboflavin production in *Ashbya gossypii*

20 The original strain *Ashbya gossypii* ATCC10895 can be tested for riboflavin productivity in shaken flasks, comparing with clones which are derived therefrom and harbor chromosomal copies of genes under the control of the GAP promoter (as described in Example 11). It is possible to use for this purpose 300 ml shaken flasks with 20 ml of YPD medium (Sambrook, J. et al. (1989))
 25 Molecular cloning: a laboratory manual, Cold Spring Harbor Laboratory Press), incubating at a temperature of 28°C.

After 2 days, the control strain produces on average 14.5 mg of riboflavin per l of culture broth. Strains which overexpress 30 genes for enzymes of purine metabolism (as shown, for example, in Example 11), or overexpress genes for optimized enzymes of purine metabolism (for example as in Examples 12, 13 and 14), produce more riboflavin. Thus, the strain which overexpresses 35 AgADE4D310VK333A (Example 12) produces on average 45.4 mg of riboflavin per l of culture broth in 2 days.

The strain which overexpresses AgKPR1 with the GAP promoter produces not 14 mj/l (like the WT) but 36 mg/l riboflavin. The 40 strain which overexpresses AgKPR1H196Q with the GAP promoter produces 51 mg/l riboflavin.

Figure 1:

Measurement of the activity of Gln-PRPP amidotransferase from A. 45 gossypii and of modified forms of the enzyme as a function of the concentration of adenosine 5'-monophosphate (AMP) and guanosine 5'-monophosphate (GMP).

40036433-021502

WT: Gln-PRPP amidotransferase

A417W: Gln-PRPP amidotransferase, alanine at position 417 replaced by tryptophan.

5 K333A: Gln-PRPP amidotransferase, lysine at position 333 replaced by alanine.

D310VK333A: Gln-PRPP amidotransferase, aspartate at position 310 replaced by valine and lysine at position 333 replaced by alanine.

10

Figure 2:

Measurement of the activity of the PRPP synthetase from A. gossypii and of modified forms of the enzyme as a function of the concentration of adenosine 5'-diphosphate (ADP)

15 WT: PRPP synthetase

L131I: PRPP synthetase, leucine at position 131 replaced by isoleucine

H196Q: PRPP synthetase, histidine at position 196 replaced by glutamine

20 H196Q, L131I: PRPP synthetase, histidine at position 196 replaced by glutamine and leucine at position 131 replaced by isoleucine

25

30

35

40

45

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT:

- (A) NAME: BASF Aktiengesellschaft
- (B) STREET: Carl-Bosch-Strasse 38
- (C) CITY: Ludwigshafen
- (E) COUNTRY: Federal Republic of Germany
- (F) POSTAL CODE: D-67056
- (G) TELEPHONE: 0621/6048526
- (H) TELEFAX: 0621/6043123
- (I) TELEX: 1762175170

(ii) TITLE OF APPLICATION: Genes of purine biosynthesis from *Ashbya gossypii* and their use in microbial riboflavin biosynthesis

(iii) NUMBER OF SEQUENCES: 13

(iv) COMPUTER-READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
- (B) COMPUTER: IBM PC compatible
- (C) OPERATING SYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)

(2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1911 base pairs
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTISENSE: NO

(ix) FEATURES:

- (A) NAME/KEY: 5'UTR
- (B) LOCATION: 1..625

(ix) FEATURES:

- (A) NAME/KEY: CDS
- (B) LOCATION: 626..1582

(ix) FEATURES:

- (A) NAME/KEY: 3'UTR

(B) LOCATION: 1583..1911

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

GGTAGTCGCT CATCGACAGA CACAATCGCG TGTTCTCTCT GAATCGTCCA TTGGGTGTCA 60
 GCATCCTGAT CGCGGGCGGA TGGAATGGGT AATCATTAGG AAACACCAAT GTCCCATGGT 120
 ATTGTCCGTC CTCGTATGGT GTCTCAGGAG GACCCGTGAT CACGTAGTGC CACACCAGGA 180
 TATTGTCTTC CTTGGTGCT GCCACGATGT AGGGCGGGGG GTTCTCGGTC ATCATTGGT 240
 ACTCCTTGAGAGCCGCTTG TACGCCGTGC TTGATGCCAT CTTGCCTACT ATTAGTTCT 300
 CACCACTTCC CGCCAAACAA TCTGCACCTT ACGAGCGCTA TCTATCCCTC GGGTCGCTCT 360
 AGTTGATTAT TGGCGAAACT GATAGTCAG GTACTTCCAT GATGCGGTCA TATCCACGTA 420
 TGTGATCACG TGATCATCACG CCATGCTGCC AGCTCACGGG CCTGCCTACA CTATTGGAGG 480
 CTCTGTGAGT CATGATTTAT TGCATATCAA GCCCAGATAG TCGTTGGGGA TACTACCGTT 540
 GCCGCGATGA GCTCCGATAT TAAGTTGTAG CAAAAAATTT TAACGGATGA CTTCTTAACA 600
 GTTATTGACG CCGCAATCCT ACGCC ATG TCG TCC AAT AGC ATA AAG CTG CTA 652
 Met Ser Ser Asn Ser Ile Lys Leu Leu
 1 5
 GCA GGT AAC TCG CAC CCG GAC CTA GCT GAG AAG GTC TCC GTT CGC CTA 700
 Ala Gly Asn Ser His Pro Asp Leu Ala Glu Lys Val Ser Val Arg Leu
 10 15 20 25
 GGT GTA CCA CTT TCG AAG ATT GGA GTG TAT CAC TAC TCT AAC AAA GAG 748
 Gly Val Pro Leu Ser Lys Ile Gly Val Tyr His Tyr Ser Asn Lys Glu
 30 35 40
 ACG TCA GTT ACT ATC GGC GAA AGT ATC CGT GAT GAA GAT GTC TAC ATC 796
 Thr Ser Val Thr Ile Gly Glu Ser Ile Arg Asp Glu Asp Val Tyr Ile
 45 50 55
 ATC CAG ACA GGA ACG GGG GAG CAG GAA ATC AAC GAC TTC CTC ATG GAA 844
 Ile Gln Thr Gly Thr Gly Glu Gln Glu Ile Asn Asp Phe Leu Met Glu
 60 65 70
 CTG CTC ATC ATG ATC CAT GCC TGC CGG TCA GCC TCT GCG CGG AAG ATC 892
 Leu Leu Ile Met Ile His Ala Cys Arg Ser Ala Ser Ala Arg Lys Ile
 75 80 85

ACA GCG GTT ATA CCA AAC TTC CCT TAC GCA AGA CAA GAC AAA AAG GAC Thr Ala Val Ile Pro Asn Phe Pro Tyr Ala Arg Gln Asp Lys Lys Asp	90	95	100	105	940
AAG TCG CGA GCA CCG ATA ACT GCC AAG CTG GTG GCC AAG ATG CTA GAG Lys Ser Arg Ala Pro Ile Thr Ala Lys Leu Val Ala Lys Met Leu Glu	110	115		120	988
ACC GCG GGG TGC AAC CAC GTT ATC ACG ATG GAT TTG CAC GCG TCT CAA Thr Ala Gly Cys Asn His Val Ile Thr Met Asp Leu His Ala Ser Gln	125	130		135	1036
ATT CAG GGT TTC TTC CAC ATT CCA GTG GAC AAC CTA TAT GCA GAG CCG Ile Gln Gly Phe Phe His Ile Pro Val Asp Asn Leu Tyr Ala Glu Pro	140	145		150	1084
AAC ATC CTG CAC TAC ATC CAA CAT AAT GTG GAC TTC CAG AAT AGT ATG Asn Ile Leu His Tyr Ile Gln His Asn Val Asp Phe Gln Asn Ser Met	155	160		165	1132
TTG GTC GCG CCA GAC GCG GGG TCG GCG AAG CGC ACG TCG ACG CTT TCG Leu Val Ala Pro Asp Ala Gly Ser Ala Lys Arg Thr Ser Thr Leu Ser	170	175	180	185	1180
GAC AAG CTG AAT CTC AAC TTC GCG TTG ATC CAC AAA GAA CGG CAG AAG Asp Lys Leu Asn Leu Asn Phe Ala Leu Ile His Lys Glu Arg Gln Lys	190	195		200	1228
GCG AAC GAG GTC TCG CGG ATG GTG TTG GTG GGT GAT GTC GCC GAC AAG Ala Asn Glu Val Ser Arg Met Val Leu Val Gly Asp Val Ala Asp Lys	205	210		215	1276
TCC TGT ATT ATT GTA GAC GAC ATG GCG GAC ACG TGC GGA ACG CTA GTG Ser Cys Ile Ile Val Asp Asp Met Ala Asp Thr Cys Gly Thr Leu Val	220	225		230	1324
AAG GCC ACT GAC ACG CTG ATC GAA AAT TGT GCG AAA GAA GTG ATT GCC Lys Ala Thr Asp Thr Leu Ile Glu Asn Cys Ala Lys Glu Val Ile Ala	235	240		245	1372
ATT GTG ACA CAC GGT ATA TTT TCT GGC GGC GCC CGC GAG AAG TTG CGC Ile Val Thr His Gly Ile Phe Ser Gly Gly Ala Arg Glu Lys Leu Arg	250	255	260	265	1420
AAC AGC AAG CTG GCA CGG ATC GTA AGC ACA AAT ACG GTG CCA GTG GAC Asn Ser Lys Leu Ala Arg Ile Val Ser Thr Asn Thr Val Pro Val Asp	270	275		280	1468

100% IDENTICAL

CTC AAT CTA GAT ATC TAC CAC CAA ATT GAC ATT AGT GCC ATT TTG GCC	1516																										
Leu Asn Leu Asp Ile Tyr His Gln Ile Asp Ile Ser Ala Ile Leu Ala																											
285	290		295	GAG GCA ATT AGA AGG CTT CAC AAC GGG GAA AGT GTG TCG TAC CTG TTC	1564	Glu Ala Ile Arg Arg Leu His Asn Gly Glu Ser Val Ser Tyr Leu Phe		300	305		310	AAT AAC GCT GTC ATG TAGTGCTGTC AGTGGCAGAT GCATGATCGC TGGCCTAATT	1619	Asn Asn Ala Val Met		315		ATCTGTGTAAGTTGATACAA TGCAGTAAAT ACAGTACATA AAACGTGAATG TTTTTCACTT	1679	AGGGGTGCTT TGTTGTTCTG ATAGCGTGTG TGCAGATTG GAGGTGAAAG TTGAACATCA	1739	CGTAATGAAT ACAAAACAAGA TTGCACATTA GGAAAAGCGA TAAATTATTT ATTATTTGCA	1799	ACTGGCCTTT GAGCGTTAA GCCTGAACAT TTTGCCCTT TTGTTGACC GTACCGTTAT	1859	CACTCGTCCT TATATATGGC TATCCTTCTC TTCCGGAAC TCTTCGAGCG TA	1911
	295																										
GAG GCA ATT AGA AGG CTT CAC AAC GGG GAA AGT GTG TCG TAC CTG TTC	1564																										
Glu Ala Ile Arg Arg Leu His Asn Gly Glu Ser Val Ser Tyr Leu Phe																											
300	305		310	AAT AAC GCT GTC ATG TAGTGCTGTC AGTGGCAGAT GCATGATCGC TGGCCTAATT	1619	Asn Asn Ala Val Met		315		ATCTGTGTAAGTTGATACAA TGCAGTAAAT ACAGTACATA AAACGTGAATG TTTTTCACTT	1679	AGGGGTGCTT TGTTGTTCTG ATAGCGTGTG TGCAGATTG GAGGTGAAAG TTGAACATCA	1739	CGTAATGAAT ACAAAACAAGA TTGCACATTA GGAAAAGCGA TAAATTATTT ATTATTTGCA	1799	ACTGGCCTTT GAGCGTTAA GCCTGAACAT TTTGCCCTT TTGTTGACC GTACCGTTAT	1859	CACTCGTCCT TATATATGGC TATCCTTCTC TTCCGGAAC TCTTCGAGCG TA	1911								
	310																										
AAT AAC GCT GTC ATG TAGTGCTGTC AGTGGCAGAT GCATGATCGC TGGCCTAATT	1619																										
Asn Asn Ala Val Met																											
315																											
ATCTGTGTAAGTTGATACAA TGCAGTAAAT ACAGTACATA AAACGTGAATG TTTTTCACTT	1679																										
AGGGGTGCTT TGTTGTTCTG ATAGCGTGTG TGCAGATTG GAGGTGAAAG TTGAACATCA	1739																										
CGTAATGAAT ACAAAACAAGA TTGCACATTA GGAAAAGCGA TAAATTATTT ATTATTTGCA	1799																										
ACTGGCCTTT GAGCGTTAA GCCTGAACAT TTTGCCCTT TTGTTGACC GTACCGTTAT	1859																										
CACTCGTCCT TATATATGGC TATCCTTCTC TTCCGGAAC TCTTCGAGCG TA	1911																										

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 318 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Met Ser Ser Asn Ser Ile Lys Leu Leu Ala Gly Asn Ser His Pro Asp			
1	5	10	15
Leu Ala Glu Lys Val Ser Val Arg Leu Gly Val Pro Leu Ser Lys Ile			
20	25	30	
Gly Val Tyr His Tyr Ser Asn Lys Glu Thr Ser Val Thr Ile Gly Glu			
35	40	45	
Ser Ile Arg Asp Glu Asp Val Tyr Ile Ile Gln Thr Gly Thr Gly Glu			
50	55	60	
Gln Glu Ile Asn Asp Phe Leu Met Glu Leu Leu Ile Met Ile His Ala			
65	70	75	80

Cys Arg Ser Ala Ser Ala Arg Lys Ile Thr Ala Val Ile Pro Asn Phe
 85 90 95

Pro Tyr Ala Arg Gln Asp Lys Lys Asp Lys Ser Arg Ala Pro Ile Thr
 100 105 110

Ala Lys Leu Val Ala Lys Met Leu Glu Thr Ala Gly Cys Asn His Val
 115 120 125

Ile Thr Met Asp Leu His Ala Ser Gln Ile Gln Gly Phe Phe His Ile
 130 135 140

Pro Val Asp Asn Leu Tyr Ala Glu Pro Asn Ile Leu His Tyr Ile Gln
 145 150 155 160

His Asn Val Asp Phe Gln Asn Ser Met Leu Val Ala Pro Asp Ala Gly
 165 170 175

Ser Ala Lys Arg Thr Ser Thr Leu Ser Asp Lys Leu Asn Leu Asn Phe
 180 185 190

Ala Leu Ile His Lys Glu Arg Gln Lys Ala Asn Glu Val Ser Arg Met
 195 200 205

Val Leu Val Gly Asp Val Ala Asp Lys Ser Cys Ile Ile Val Asp Asp
 210 215 220

Met Ala Asp Thr Cys Gly Thr Leu Val Lys Ala Thr Asp Thr Leu Ile
 225 230 235 240

Glu Asn Cys Ala Lys Glu Val Ile Ala Ile Val Thr His Gly Ile Phe
 245 250 255

Ser Gly Gly Ala Arg Glu Lys Leu Arg Asn Ser Lys Leu Ala Arg Ile
 260 265 270

Val Ser Thr Asn Thr Val Pro Val Asp Leu Asn Leu Asp Ile Tyr His
 275 280 285

Gln Ile Asp Ile Ser Ala Ile Leu Ala Glu Ala Ile Arg Arg Leu His
 290 295 300

Asn Gly Glu Ser Val Ser Tyr Leu Phe Asn Asn Ala Val Met
 305 310 315

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5369 base pairs

- (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTISENSE: NO

(ix) FEATURES:

- (A) NAME/KEY: 5'UTR
(B) LOCATION: 1..54

(ix) FEATURES:

- (A) NAME/KEY: CDS
(B) LOCATION: 55..1482

(ix) FEATURES:

- (A) NAME/KEY: CDS
(B) LOCATION: 1767..3299

(ix) FEATURES:

- (A) NAME/KEY: CDS
(B) LOCATION: 3588..4703

(ix) FEATURES:

- (A) NAME/KEY: 3'UTR
(B) LOCATION: 4704..5369

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

```

AAGCTTGACC TTGGCTGGCA CTTGAGTCGG CAGACAGGTG GACTAACCCG AGCA ATG      57
                                         Met
                                         1

GAT CGT GGT TGT AAA GGT ATC TCT TAT GTG CTC AGT GCA ATG GTT TTT      105
Asp Arg Gly Cys Lys Gly Ile Ser Tyr Val Leu Ser Ala Met Val Phe
                                         5                      10                      15

CAC ATA ATA CCG ATT ACA TTT GAA ATA TCG ATG GTA TGT GGC ATA TTG      153
His Ile Ile Pro Ile Thr Phe Glu Ile Ser Met Val Cys Gly Ile Leu
                                         20                     25                     30

```

ACA TAC CAG TTT GGT GCT TCC TTC GCT GCT ATA ACA TTC TCG ACT ATG Thr Tyr Gln Phe Gly Ala Ser Phe Ala Ala Ile Thr Phe Ser Thr Met	35	40	45	201
CTT CTT TAC TCC ATC TTT ACT TTC AGA ACG ACG GCG TGG CGC ACA CGG Leu Leu Tyr Ser Ile Phe Thr Phe Arg Thr Thr Ala Trp Arg Thr Arg	50	55	60	65
TTT AGG CGT GAT GCG AAC AAG GCT GAC AAT AAG GCC GCT AGT GTG GCA Phe Arg Arg Asp Ala Asn Lys Ala Asp Asn Lys Ala Ala Ser Val Ala	70	75	80	297
TTG GAT TCC CTA ATA AAT TTT GAA GCT GTA AAG TAT TTC AAT AAC GAG Leu Asp Ser Leu Ile Asn Phe Glu Ala Val Lys Tyr Phe Asn Asn Glu	85	90	95	345
AAG TAC CTT GCG GAC AAG TAT CAC ACA TCC TTG ATG AAG TAC CGG GAT Lys Tyr Leu Ala Asp Lys Tyr His Thr Ser Leu Met Lys Tyr Arg Asp	100	105	110	393
TCC CAG ATA AAG GTC TCG CAA TCG CTG GCG TTT TTG AAC ACC GGC CAG Ser Gln Ile Lys Val Ser Gln Ser Leu Ala Phe Leu Asn Thr Gly Gln	115	120	125	441
AAC CTA ATT TTT ACC ACT GCA CTG ACT GCA ATG ATG TAT ATG GCC TGT Asn Leu Ile Phe Thr Thr Ala Leu Thr Ala Met Met Tyr Met Ala Cys	130	135	140	145
AAT GGT GTT ATG CAG GGC TCT CTT ACA GTG GGG GAT CTT GTG TTA ATT Asn Gly Val Met Gln Gly Ser Leu Thr Val Gly Asp Leu Val Leu Ile	150	155	160	537
AAT CAA CTG GTA TTC CAG CTC TCC GTG CCA CTA AAC TTC CTT GGT AGC Asn Gln Leu Val Phe Gln Leu Ser Val Pro Leu Asn Phe Leu Gly Ser	165	170	175	585
GTC TAC CGT GAT CTC AAG CAG TCT CTG ATA GAT ATG GAA TCT TTA TTT Val Tyr Arg Asp Leu Lys Gln Ser Leu Ile Asp Met Glu Ser Leu Phe	180	185	190	633
AAA CTG CAA AAA AAT CAG GTC ACA ATT AAG AAC TCC CCA AAT GCC CAG Lys Leu Gln Lys Asn Gln Val Thr Ile Lys Asn Ser Pro Asn Ala Gln	195	200	205	681
AAC CTA CCA ATA CAC AAA CCG TTG GAT ATT CGC TTT GAA AAT GTT ACG Asn Leu Pro Ile His Lys Pro Leu Asp Ile Arg Phe Glu Asn Val Thr	210	215	220	225

1997-6-15 by CDR 1532

TTT GGC TAT GAC CCG GAG CGG CGT ATA TTG AAC AAT GTT TCG TTT ACC Phe Gly Tyr Asp Pro Glu Arg Arg Ile Leu Asn Asn Val Ser Phe Thr 230 235 240	777
ATC CCA GCT GGA ATG AAG ACT GCC ATA GTA GGC CCA TCG GGC TCG GGG Ile Pro Ala Gly Met Lys Thr Ala Ile Val Gly Pro Ser Gly Ser Gly 245 250 255	825
AAG TCC ACC ATT TTG AAG CTC GTA TTT AGA TTC TAT GAG CCC GAG CAA Lys Ser Thr Ile Leu Lys Leu Val Phe Arg Phe Tyr Glu Pro Glu Gln 260 265 270	873
GGT CGT ATC CTA GTT GGC GGC ACA GAT ATC CGC GAT TTA GAC TTG CTT Gly Arg Ile Leu Val Gly Gly Thr Asp Ile Arg Asp Leu Asp Leu Leu 275 280 285	921
TCT TTA CGG AAG GCT ATC GGT GTC GTG CCC CAA GAT ACT CCT CTC TTC Ser Leu Arg Lys Ala Ile Gly Val Val Pro Gln Asp Thr Pro Leu Phe 290 295 300 305	969
AAT GAC ACA ATC TGG GAG AAT GTT AAA TTC GGC AAT ATC AGT TCC TCT Asn Asp Thr Ile Trp Glu Asn Val Lys Phe Gly Asn Ile Ser Ser Ser 310 315 320	1017
GAC GAT GAG ATT CTC AGG GCC ATA GAA AAA GCT CAA CTC ACG AAG CTA Asp Asp Glu Ile Leu Arg Ala Ile Glu Lys Ala Gln Leu Thr Lys Leu 325 330 335	1065
CTC CAG AAC CTA CCA AAG GGC GCT TCC ACC GTT GTA GGG GAG CGC GGT Leu Gln Asn Leu Pro Lys Gly Ala Ser Thr Val Val Gly Glu Arg Gly 340 345 350	1113
TTG ATG ATC AGC GGA GGT GAG AAA CAA AGG CTT GCT ATT GCT CGT GTG Leu Met Ile Ser Gly Gly Glu Lys Gln Arg Leu Ala Ile Ala Arg Val 355 360 365	1161
CTT TTG AAG GAC GCT CCG CTG ATG TTT TTC GAC GAG GCT ACA AGT GCT Leu Leu Lys Asp Ala Pro Leu Met Phe Phe Asp Glu Ala Thr Ser Ala 370 375 380 385	1209
CTG GAT ACA CAC ACA GAG CAG GCA CTC TTG CAC ACC ATT CAG CAG AAC Leu Asp Thr His Thr Glu Gln Ala Leu Leu His Thr Ile Gln Gln Asn 390 395 400	1257
TTT TCT TCC AAT TCA AAG ACG AGC GTT TAC GTT GCC CAT AGA CTG CGC Phe Ser Ser Asn Ser Lys Thr Ser Val Val Tyr Val Ala His Arg Leu Arg 405 410 415	1305

100% IDENTICAL

ACA ATC GCT GCA GAT AAG ATC ATT GTT CTT GAA CAA GGT TCT GTC			1353
Thr Ile Ala Asp Ala Asp Lys Ile Ile Val Leu Glu Gln Gly Ser Val			
420	425	430	
CGC GAA GAG GGC ACA CAC AGC TCG CTG TTA GCG TCA CAA GGA TCC CTA			1401
Arg Glu Glu Gly Thr His Ser Ser Leu Leu Ala Ser Gln Gly Ser Leu			
435	440	445	
TAC CGG GGT CTG TGG GAT ATT CAG GAA AAC CTA ACG CTT CCG GAA CGG			1449
Tyr Arg Gly Leu Trp Asp Ile Gln Glu Asn Leu Thr Leu Pro Glu Arg			
450	455	460	465
CCT GAG CAG TCA ACC GGA TCT CAG CAT GCA TAGACGTCTG ACTAGAGATT			1499
Pro Glu Gln Ser Thr Gly Ser Gln His Ala			
470	475		
ATATAATAAC CCTCGAGCCA AAATTATACG GCGCTAACAA GTAAAAATT TAGTTACTTT			1559
TCTGACTTCT CTACGCTGAC TTCTCTACCC TTCTAACATA GTTAATTGAA GTAGTGGTTA			1619
ATGACGACTG CATTATTA TTGTCACCT TGCAATTAGAA GTACTAGTGC TTAAGCGCTC			1679
TTTAGGCCGC TTTCTTCTTC TTTGTCAGGC CGCAAGGTAA AGGAAGCACC AACGGATTGC			1739
TACCGCTGCT ATTCCCTGCTC TCTCAAG ATG TGT GGC ATA TTA GGC GTT GTG			1790
Met Cys Gly Ile Leu Gly Val Val			
1	5		
CTA GCC GAT CAG TCG AAG GTG GTC GCC CCT GAG TTG TTT GAT GGC TCA			1838
Leu Ala Asp Gln Ser Lys Val Val Ala Pro Glu Leu Phe Asp Gly Ser			
10	15	20	
CTG TTC TTA CAG CAT CGC GGT CAA GAT GCT GCC GGG ATT GCT ACG TGC			1886
Leu Phe Leu Gln His Arg Gly Gln Asp Ala Ala Gly Ile Ala Thr Cys			
25	30	35	40
GGC CCC GGT GGG CGC TTG TAC CAA TGT AAG GGC AAT GGT ATG GCA CGG			1934
Gly Pro Gly Gly Arg Leu Tyr Gln Cys Lys Gly Asn Gly Met Ala Arg			
45	50	55	
GAC GTG TTC ACG CAA GCT CGG ATG TCA GGG TTG GTT GGC TCT ATG GGG			1982
Asp Val Phe Thr Gln Ala Arg Met Ser Gly Leu Val Gly Ser Met Gly			
60	65	70	
ATT GCA CAC CTG AGA TAT CCC ACT GCA GGC TCC AGT GCG AAC TCA GAA			2030
Ile Ala His Leu Arg Tyr Pro Thr Ala Gly Ser Ser Ala Asn Ser Glu			
75	80	85	

4003761537 EEM-ESD2

GCG CAG CCA TTC TAT GTG AAT AGT CCC TAC GGA ATT TGC ATG AGT CAT Ala Gln Pro Phe Tyr Val Asn Ser Pro Tyr Gly Ile Cys Met Ser His 90 95 100	2078
AAT GGT AAT CTG GTG AAC ACG ATG TCT CTA CGT AGA TAT CTT GAT GAA Asn Gly Asn Leu Val Asn Thr Met Ser Leu Arg Arg Tyr Leu Asp Glu 105 110 115 120	2126
GAC GTT CAC CGT CAT ATT AAC ACG GAC AGC GAT TCT GAG CTA CTG CTT Asp Val His Arg His Ile Asn Thr Asp Ser Asp Ser Glu Leu Leu Leu 125 130 135	2174
AAT ATA TTT GCC GCG GAG CTG GAA AAG TAC AAC AAA TAT CGT GTG AAC Asn Ile Phe Ala Ala Glu Leu Glu Lys Tyr Asn Lys Tyr Arg Val Asn 140 145 150	2222
AAC GAT GAT ATA TTT TGT GCT CTA GAG GGT GTT TAC AAA CGT TGT CGC Asn Asp Asp Ile Phe Cys Ala Leu Glu Gly Val Tyr Lys Arg Cys Arg 155 160 165	2270
GGT GGC TAT GCT TGT GTT GGC ATG TTG GCG GGA TAT GGA TTG TTT GGT Gly Gly Tyr Ala Cys Val Gly Met Leu Ala Gly Tyr Gly Leu Phe Gly 170 175 180	2318
TTC CGG GAC CCC AAT GGG ATC AGG CCG CTA TTG TTT GGT GAG CGC GTC Phe Arg Asp Pro Asn Gly Ile Arg Pro Leu Leu Phe Gly Glu Arg Val 185 190 195 200	2366
AAC GAT GAC GGC ACC ATG GAC TAC ATG CTA GCG TCC GAA AGT GTC GTT Asn Asp Asp Gly Thr Met Asp Tyr Met Leu Ala Ser Glu Ser Val Val 205 210 215	2414
CTT AAG GCC CAC CGC TTC CAA AAC ATA CGT GAT ATT CTT CCC GGC CAA Leu Lys Ala His Arg Phe Gln Asn Ile Arg Asp Ile Leu Pro Gly Gln 220 225 230	2462
GCC GTC ATT ATC CCT AAA ACG TGC GGC TCC AGT CCA CCA GAG TTC CGG Ala Val Ile Ile Pro Lys Thr Cys Gly Ser Ser Pro Pro Glu Phe Arg 235 240 245	2510
CAG GTA GTG CCA ATT GAG GCC TAC AAA CCG GAC TTG TTT GAG TAC GTG Gln Val Val Pro Ile Glu Ala Tyr Lys Pro Asp Leu Phe Glu Tyr Val 250 255 260	2558
TAT TTC GCT CGT GCT GAC AGC GTT CTG GAC GGT ATT TCC GTT TAC CAT Tyr Phe Ala Arg Ala Asp Ser Val Leu Asp Gly Ile Ser Val Tyr His 265 270 275 280	2606

100% IDENTICAL

ACA CGC CTG TTG ATG GGT ATC AAA CTT GCC GAG AAC ATC AAA AAA CAG Thr Arg Leu Leu Met Gly Ile Lys Leu Ala Glu Asn Ile Lys Lys Gln 285	290	295	2654
ATC GAT CTG GAC GAA ATT GAC GTT GTT GTA TCT GTT CCT GAC ACT GCA Ile Asp Leu Asp Glu Ile Asp Val Val Val Ser Val Pro Asp Thr Ala 300	305	310	2702
CGT ACC TGT GCA TTG GAG TGT GCC AAC CAT TTA AAC AAA CCT TAT CGC Arg Thr Cys Ala Leu Glu Cys Ala Asn His Leu Asn Lys Pro Tyr Arg 315	320	325	2750
GAA GGA TTT GTC AAG AAC AGA TAT GTT GGA AGA ACA TTT ATC ATG CCA Glu Gly Phe Val Lys Asn Arg Tyr Val Gly Arg Thr Phe Ile Met Pro 330	335	340	2798
AAC CAA AAA GAG CGA GTA TCT TCT GTG CGC CGC AAG TTG AAC CCA ATG Asn Gln Lys Glu Arg Val Ser Ser Val Arg Arg Lys Leu Asn Pro Met 345	350	355	2846
AAC TCA GAA TTT AAA GAC AAG CGC GTG CTG ATT GTC GAT GAT TCC ATT Asn Ser Glu Phe Lys Asp Lys Arg Val Leu Ile Val Asp Asp Ser Ile 365	370	375	2894
GTG CGA GGT ACC ACT TCC AAA GAG ATT GTT AAC ATG GCG AAG GAA TCC Val Arg Gly Thr Thr Ser Lys Glu Ile Val Asn Met Ala Lys Glu Ser 380	385	390	2942
GGT GCT GCC AAG GTC TAC TTT GCC TCT GCA GCG CCA GCA ATT CGT TTC Gly Ala Ala Lys Val Tyr Phe Ala Ser Ala Ala Pro Ala Ile Arg Phe 395	400	405	2990
AAT CAC ATC TAC GGG ATT GAC CTA GCA GAT ACT AAG CAG CTT GTC GCC Asn His Ile Tyr Gly Ile Asp Leu Ala Asp Thr Lys Gln Leu Val Ala 410	415	420	3038
TAC AAC AGA ACT GTT GAA GAA ATC ACT GCG GAG CTG GGC TGT GAC CGC Tyr Asn Arg Thr Val Glu Glu Ile Thr Ala Glu Leu Gly Cys Asp Arg 425	430	435	3086
GTC ATC TAT CAA TCT TTG GAT GAC CTC ATC GAC TGT TGC AAG ACA GAC Val Ile Tyr Gln Ser Leu Asp Asp Leu Ile Asp Cys Cys Lys Thr Asp 445	450	455	3134
ATC ATC TCA GAA TTT GAA GTT GGA GTT TTC ACT GGT AAC TAC GTT ACA Ile Ile Ser Glu Phe Glu Val Gly Val Phe Thr Gly Asn Tyr Val Thr 460	465	470	3182

GGT GTT GAG GAT GTG TAC TTG CAG GAA TTA GAA CGT TGC CGC GCT CTT Gly Val Glu Asp Val Tyr Leu Gln Glu Leu Glu Arg Cys Arg Ala Leu 475 480 485	3230
AAT AAC TCG AAT AAG GGT GAA GCG AAG GCC GAG GTT GAT ATT GGT CTC Asn Asn Ser Asn Lys Gly Glu Ala Lys Ala Glu Val Asp Ile Gly Leu 490 495 500	3278
TAC AAT TCT GCC GAC TAT TAGCGGCGCC GTTGCCGGCA TCCGGCCCCA Tyr Asn Ser Ala Asp Tyr 505 510	3326
TATATAGACT CATCGGGACC TAAAATAAGC CTTTACAGAT CATTATCTAC AAATATAGAT ACCATTAAGA GCCTGACTTT CGACTTACTC CTAGCACACC CCGTTGTATC CCTGTGCTTG CTTTCTTAAA TGCCGTTGGT TAGGCTTTGG ACTTAGCGTC CCGCCCATT TCTAGCATGT GCAGATCTAG CAAATTTGGC CTAAGACAAG AAGATCCATT CGGCACCCAC ATCCTGGAGC CAGCACACAG TGGACCCAGA C ATG AGC AGC GGC AAT ATA TGG AAG CAA TTG Met Ser Ser Gly Asn Ile Trp Lys Gln Leu 1 5 10	3386 3446 3506 3566 3617
CTA GAG GAG AAT AGC GAA CAG CTG GAC CAG TCC ACT ACG GAG ACT TAC Leu Glu Glu Asn Ser Glu Gln Leu Asp Gln Ser Thr Thr Glu Thr Tyr 15 20 25	3665
G TG GTA TGC GAG AAC GAA GAT TCC CTT AAC CAG TTT TTG CAA CAA Val Val Cys Cys Glu Asn Glu Asp Ser Leu Asn Gln Phe Leu Gln Gln 30 35 40	3713
TGT TGG CAG ATT GAC GAG GGC GAG AAG GTG ACC AAC CTG GAG CCG TTG Cys Trp Gln Ile Asp Glu Gly Glu Lys Val Thr Asn Leu Glu Pro Leu 45 50 55	3761
GGA TTC TTT ACA AAG GTG GTT TCG CGC GAC GAA GAG AAC CTC CGG CTC Gly Phe Phe Thr Lys Val Val Ser Arg Asp Glu Glu Asn Leu Arg Leu 60 65 70	3809
AAC GTA TAC TAT GCC AAG AGC CCA CTG GAT GCA CAG ACG CTG CAG TTT Asn Val Tyr Tyr Ala Lys Ser Pro Leu Asp Ala Gln Thr Leu Gln Phe 75 80 85 90	3857
CTG GGC GTG TTC CTG CGC CAA ATG GAA ACC TCA CAA ATA CGT TGG ATC Leu Gly Val Phe Leu Arg Gln Met Glu Thr Ser Gln Ile Arg Trp Ile 95 100 105	3905

10026152 - DECODED

TTC CTA CTG GAC TGG CTG CTA GAC GAT AAA CGA TTA TGG CTA CGT CAA Phe Leu Leu Asp Trp Leu Leu Asp Asp Lys Arg Leu Trp Leu Arg Gln 110 115 120	3953
CTG CGG AAC TCG TGG GCC GCC TTG GAG GAA GCG CAG GTG GCA CCC TTT Leu Arg Asn Ser Trp Ala Ala Leu Glu Glu Ala Gln Val Ala Pro Phe 125 130 135	4001
CCA GGT GGC GCT GTG GTG GTC CTC AAC CCG AGT CAC GTG ACA CAA Pro Gly Gly Ala Val Val Val Val Leu Asn Pro Ser His Val Thr Gln 140 145 150	4049
CTG GAG CGA AAC ACG ATG GTT TGG AAC TCC CGC CGT CTG GAC CTG GTA Leu Glu Arg Asn Thr Met Val Trp Asn Ser Arg Arg Leu Asp Leu Val 155 160 165 170	4097
CAC CAG ACA CTG CGA GCT GCA TGC CTC AAC ACC GGC TCG GCG CTA GTT His Gln Thr Leu Arg Ala Ala Cys Leu Asn Thr Gly Ser Ala Leu Val 175 180 185	4145
ACA CTT GAT CCT AAT ACT GCG CGC GAA GAC GTC ATG CAC ATA TGT GCG Thr Leu Asp Pro Asn Thr Ala Arg Glu Asp Val Met His Ile Cys Ala 190 195 200	4193
CTG CTT GCG GGG CTG CCT ACA TCC CGT CCC GTC GCG ATG CTA AGC CTG Leu Leu Ala Gly Leu Pro Thr Ser Arg Pro Val Ala Met Leu Ser Leu 205 210 215	4241
CAA AGT CTA TTC ATC CCC CAC GGT GCA GAT TCC ATC GGC AAG ATC TGC Gln Ser Leu Phe Ile Pro His Gly Ala Asp Ser Ile Gly Lys Ile Cys 220 225 230	4289
ACC ATC GCG CCC GAG TTC CCT GTT GCT ACG GTG TTC GAC AAC GAT TTT Thr Ile Ala Pro Glu Phe Pro Val Ala Thr Val Phe Asp Asn Asp Phe 235 240 245 250	4337
GTG AGC TCG ACA TTC GAG GCC GCA ATT GCT CCA GAA CTT ACT CCA GGA Val Ser Ser Thr Phe Glu Ala Ala Ile Ala Pro Glu Leu Thr Pro Gly 255 260 265	4385
CCA CGT GTG CCA TCT GAC CAC CCA TGG CTA ACA GAG CCT ACC AAC CCC Pro Arg Val Pro Ser Asp His Pro Trp Leu Thr Glu Pro Thr Asn Pro 270 275 280	4433
CCT TCG GAG GCA ACC GCT TGG CAT TTC GAT CTC CAA GGT CGC CTC GCT Pro Ser Glu Ala Thr Ala Trp His Phe Asp Leu Gln Gly Arg Leu Ala 285 290 295	4481

ACC CTA TAC CGG CAT CTT GGT GAC TCT AAC AAG GCC ATA TCT GTT ACT		4529
Thr Leu Tyr Arg His Leu Gly Asp Ser Asn Lys Ala Ile Ser Val Thr		
300	305	310
CAG CAC CGC TTC CAC AAG CCC CGC TCG GAA GAT TAT GCA TAC GAA TTC		4577
Gln His Arg Phe His Lys Pro Arg Ser Glu Asp Tyr Ala Tyr Glu Phe		
315	320	325
330		
GAG CTG CCG TCT AAG CAC CCT ACA ATA CGT GAC CTC ATA CGC TCT GCC		4625
Glu Leu Pro Ser Lys His Pro Thr Ile Arg Asp Leu Ile Arg Ser Ala		
335	340	345
GCA GCC GAC TCA CCG AAC GAC GTC GCT GAC TCC ATC GAT GGG CTT ATG		4673
Ala Ala Asp Ser Pro Asn Asp Val Ala Asp Ser Ile Asp Gly Leu Met		
350	355	360
GAT GGT ATC GTA CAA AGG AAT GTT CAT TGACGTCGAC ACAAAAATTT		4720
Asp Gly Ile Val Gln Arg Asn Val His		
365	370	
TGTTACTGTT CTCTCGAGAA CTATTCTCAT CCAGTACTGA CATATTAGAA GGCGAAGTGA		4780
ACTAGGATTT ATATAAAGTA GCCTTCAGGC AATTGCACAG GGTCTATTGA GTCGCTGCCG		4840
TTCACGAGAG AGCCCAATAT ATCGAGGACT AATTGGTCAC TTTTGTGTTG CTATACTCAC		4900
CCTGTATTTG CTAATCATTT ATCCGCTTTG TCCAAGTGGT TCGGAAGATA TCGAGCCAGA		4960
ACATTAGAAC CTGGTTTGCC GCATCCTAGA GCTGTCTCCA AGCCAGTTGA ACCGTTGCGG		5020
GAGATTACCG CAGCCGGTTT GATCAGAGTA CTGGTGACTG CCAGCACCCA CGTTTGTGAC		5080
TTATAAATAT ACGCCCTGTG GAGCCATAGC CATTGGCATA AAGAGAAGAG CACCCCGTGC		5140
CACGATGCAG ACACCTCCGG TGTACCCAGC GTCACAGACT GCGTCGCCTA CGAAGCGTGA		5200
ACTTGCAGCG GCGCCCTCGG TGCCGCAGGA CGGCGCCCGG CTGCCCTGCGC AGCTCACTTT		5260
AGTGACGCC CCAGAACCTG ATATCCAGAA GAAGTCAGTG CGATCTCAGG TCGCGCGTTT		5320
AAGCATCTCG GAGACAGATG TAGTGAAGAG TGATATCGTG GCTAAGCTT		5369

(2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 475 Amino acids
 - (B) TYPE: Amino acid
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Asp Arg Gly Cys Lys Gly Ile Ser Tyr Val Leu Ser Ala Met Val
 1 5 10 15

Phe His Ile Ile Pro Ile Thr Phe Glu Ile Ser Met Val Cys Gly Ile
 20 25 30

Leu Thr Tyr Gln Phe Gly Ala Ser Phe Ala Ala Ile Thr Phe Ser Thr
 35 40 45

Met Leu Leu Tyr Ser Ile Phe Thr Phe Arg Thr Thr Ala Trp Arg Thr
 50 55 60

Arg Phe Arg Arg Asp Ala Asn Lys Ala Asp Asn Lys Ala Ala Ser Val
 65 70 75 80

Ala Leu Asp Ser Leu Ile Asn Phe Glu Ala Val Lys Tyr Phe Asn Asn
 85 90 95

Glu Lys Tyr Leu Ala Asp Lys Tyr His Thr Ser Leu Met Lys Tyr Arg
 100 105 110

Asp Ser Gln Ile Lys Val Ser Gln Ser Leu Ala Phe Leu Asn Thr Gly
 115 120 125

Gln Asn Leu Ile Phe Thr Thr Ala Leu Thr Ala Met Met Tyr Met Ala
 130 135 140

Cys Asn Gly Val Met Gln Gly Ser Leu Thr Val Gly Asp Leu Val Leu
 145 150 155 160

Ile Asn Gln Leu Val Phe Gln Leu Ser Val Pro Leu Asn Phe Leu Gly
 165 170 175

Ser Val Tyr Arg Asp Leu Lys Gln Ser Leu Ile Asp Met Glu Ser Leu
 180 185 190

Phe Lys Leu Gln Lys Asn Gln Val Thr Ile Lys Asn Ser Pro Asn Ala
 195 200 205

Gln Asn Leu Pro Ile His Lys Pro Leu Asp Ile Arg Phe Glu Asn Val
 210 215 220

Thr Phe Gly Tyr Asp Pro Glu Arg Arg Ile Leu Asn Asn Val Ser Phe
 225 230 235 240

Thr Ile Pro Ala Gly Met Lys Thr Ala Ile Val Gly Pro Ser Gly Ser
 245 250 255

Gly Lys Ser Thr Ile Leu Lys Leu Val Phe Arg Phe Tyr Glu Pro Glu
 260 265 270

Gln Gly Arg Ile Leu Val Gly Gly Thr Asp Ile Arg Asp Leu Asp Leu
 275 280 285

Leu Ser Leu Arg Lys Ala Ile Gly Val Val Pro Gln Asp Thr Pro Leu
 290 295 300

Phe Asn Asp Thr Ile Trp Glu Asn Val Lys Phe Gly Asn Ile Ser Ser
 305 310 315 320

Ser Asp Asp Glu Ile Leu Arg Ala Ile Glu Lys Ala Gln Leu Thr Lys
 325 330 335

Leu Leu Gln Asn Leu Pro Lys Gly Ala Ser Thr Val Val Gly Glu Arg
 340 345 350

Gly Leu Met Ile Ser Gly Gly Glu Lys Gln Arg Leu Ala Ile Ala Arg
 355 360 365

Val Leu Leu Lys Asp Ala Pro Leu Met Phe Phe Asp Glu Ala Thr Ser
 370 375 380

Ala Leu Asp Thr His Thr Glu Gln Ala Leu Leu His Thr Ile Gln Gln
 385 390 395 400

Asn Phe Ser Ser Asn Ser Lys Thr Ser Val Tyr Val Ala His Arg Leu
 405 410 415

Arg Thr Ile Ala Asp Ala Asp Lys Ile Ile Val Leu Glu Gln Gly Ser
 420 425 430

Val Arg Glu Glu Gly Thr His Ser Ser Leu Leu Ala Ser Gln Gly Ser
 435 440 445

Leu Tyr Arg Gly Leu Trp Asp Ile Gln Glu Asn Leu Thr Leu Pro Glu
 450 455 460

Arg Pro Glu Gln Ser Thr Gly Ser Gln His Ala
 465 470 475

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 510 Amino acids

- (B) TYPE: Amino acid
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

Met Cys Gly Ile Leu Gly Val Val Leu Ala Asp Gln Ser Lys Val Val
1 5 10 15

Ala Pro Glu Leu Phe Asp Gly Ser Leu Phe Leu Gln His Arg Gly Gln
20 25 30

Asp Ala Ala Gly Ile Ala Thr Cys Gly Pro Gly Gly Arg Leu Tyr Gln
35 40 45

Cys Lys Gly Asn Gly Met Ala Arg Asp Val Phe Thr Gln Ala Arg Met
50 55 60

Ser Gly Leu Val Gly Ser Met Gly Ile Ala His Leu Arg Tyr Pro Thr
65 70 75 80

Ala Gly Ser Ser Ala Asn Ser Glu Ala Gln Pro Phe Tyr Val Asn Ser
85 90 95

Pro Tyr Gly Ile Cys Met Ser His Asn Gly Asn Leu Val Asn Thr Met
100 105 110

Ser Leu Arg Arg Tyr Leu Asp Glu Asp Val His Arg His Ile Asn Thr
115 120 125

Asp Ser Asp Ser Glu Leu Leu Asn Ile Phe Ala Ala Glu Leu Glu
130 135 140

Lys Tyr Asn Lys Tyr Arg Val Asn Asn Asp Asp Ile Phe Cys Ala Leu
145 150 155 160

Glu Gly Val Tyr Lys Arg Cys Arg Gly Gly Tyr Ala Cys Val Gly Met
165 170 175

Leu Ala Gly Tyr Gly Leu Phe Gly Phe Arg Asp Pro Asn Gly Ile Arg
180 185 190

Pro Leu Leu Phe Gly Glu Arg Val Asn Asp Asp Gly Thr Met Asp Tyr
195 200 205

Met Leu Ala Ser Glu Ser Val Val Leu Lys Ala His Arg Phe Gln Asn
210 215 220

Ile Arg Asp Ile Leu Pro Gly Gln Ala Val Ile Ile Pro Lys Thr Cys
 225 230 235 240

Gly Ser Ser Pro Pro Glu Phe Arg Gln Val Val Pro Ile Glu Ala Tyr
 245 250 255

Lys Pro Asp Leu Phe Glu Tyr Val Tyr Phe Ala Arg Ala Asp Ser Val
 260 265 270

Leu Asp Gly Ile Ser Val Tyr His Thr Arg Leu Leu Met Gly Ile Lys
 275 280 285

Leu Ala Glu Asn Ile Lys Lys Gln Ile Asp Leu Asp Glu Ile Asp Val
 290 295 300

Val Val Ser Val Pro Asp Thr Ala Arg Thr Cys Ala Leu Glu Cys Ala
 305 310 315 320

Asn His Leu Asn Lys Pro Tyr Arg Glu Gly Phe Val Lys Asn Arg Tyr
 325 330 335

Val Gly Arg Thr Phe Ile Met Pro Asn Gln Lys Glu Arg Val Ser Ser
 340 345 350

Val Arg Arg Lys Leu Asn Pro Met Asn Ser Glu Phe Lys Asp Lys Arg
 355 360 365

Val Leu Ile Val Asp Asp Ser Ile Val Arg Gly Thr Thr Ser Lys Glu
 370 375 380

Ile Val Asn Met Ala Lys Glu Ser Gly Ala Ala Lys Val Tyr Phe Ala
 385 390 395 400

Ser Ala Ala Pro Ala Ile Arg Phe Asn His Ile Tyr Gly Ile Asp Leu
 405 410 415

Ala Asp Thr Lys Gln Leu Val Ala Tyr Asn Arg Thr Val Glu Glu Ile
 420 425 430

Thr Ala Glu Leu Gly Cys Asp Arg Val Ile Tyr Gln Ser Leu Asp Asp
 435 440 445

Leu Ile Asp Cys Cys Lys Thr Asp Ile Ile Ser Glu Phe Glu Val Gly
 450 455 460

Val Phe Thr Gly Asn Tyr Val Thr Gly Val Glu Asp Val Tyr Leu Gln
 465 470 475 480

Glu Leu Glu Arg Cys Arg Ala Leu Asn Asn Ser Asn Lys Gly Glu Ala
 485 490 495

1037532 - 021562

Lys Ala Glu Val Asp Ile Gly Leu Tyr Asn Ser Ala Asp Tyr
 500 505 510

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 371 Amino acids
- (B) TYPE: Amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Met Ser Ser Gly Asn Ile Trp Lys Gln Leu Leu Glu Glu Asn Ser Glu
 1 5 10 15

Gln Leu Asp Gln Ser Thr Thr Glu Thr Tyr Val Val Cys Cys Glu Asn
 20 25 30

Glu Asp Ser Leu Asn Gln Phe Leu Gln Gln Cys Trp Gln Ile Asp Glu
 35 40 45

Gly Glu Lys Val Thr Asn Leu Glu Pro Leu Gly Phe Phe Thr Lys Val
 50 55 60

Val Ser Arg Asp Glu Glu Asn Leu Arg Leu Asn Val Tyr Tyr Ala Lys
 65 70 75 80

Ser Pro Leu Asp Ala Gln Thr Leu Gln Phe Leu Gly Val Phe Leu Arg
 85 90 95

Gln Met Glu Thr Ser Gln Ile Arg Trp Ile Phe Leu Leu Asp Trp Leu
 100 105 110

Leu Asp Asp Lys Arg Leu Trp Leu Arg Gln Leu Arg Asn Ser Trp Ala
 115 120 125

Ala Leu Glu Glu Ala Gln Val Ala Pro Phe Pro Gly Gly Ala Val Val
 130 135 140

Val Val Leu Asn Pro Ser His Val Thr Gln Leu Glu Arg Asn Thr Met
 145 150 155 160

Val Trp Asn Ser Arg Arg Leu Asp Leu Val His Gln Thr Leu Arg Ala
 165 170 175

100-264-353 - 0215CE

Ala Cys Leu Asn Thr Gly Ser Ala Leu Val Thr Leu Asp Pro Asn Thr
 180 185 190

 Ala Arg Glu Asp Val Met His Ile Cys Ala Leu Leu Ala Gly Leu Pro
 195 200 205

 Thr Ser Arg Pro Val Ala Met Leu Ser Leu Gln Ser Leu Phe Ile Pro
 210 215 220

 His Gly Ala Asp Ser Ile Gly Lys Ile Cys Thr Ile Ala Pro Glu Phe
 225 230 235 240

 Pro Val Ala Thr Val Phe Asp Asn Asp Phe Val Ser Ser Thr Phe Glu
 245 250 255

 Ala Ala Ile Ala Pro Glu Leu Thr Pro Gly Pro Arg Val Pro Ser Asp
 260 265 270

 His Pro Trp Leu Thr Glu Pro Thr Asn Pro Pro Ser Glu Ala Thr Ala
 275 280 285

 Trp His Phe Asp Leu Gln Gly Arg Leu Ala Thr Leu Tyr Arg His Leu
 290 295 300

 Gly Asp Ser Asn Lys Ala Ile Ser Val Thr Gln His Arg Phe His Lys
 305 310 315 320

 Pro Arg Ser Glu Asp Tyr Ala Tyr Glu Phe Glu Leu Pro Ser Lys His
 325 330 335

 Pro Thr Ile Arg Asp Leu Ile Arg Ser Ala Ala Ala Asp Ser Pro Asn
 340 345 350

 Asp Val Ala Asp Ser Ile Asp Gly Leu Met Asp Gly Ile Val Gln Arg
 355 360 365

 Asn Val His
 370

(2) INFORMATION FOR SEQ ID NO: 7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3616 base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTISENSE: NO

(ix) FEATURES:

- (A) NAME/KEY: 5'UTR
- (B) LOCATION: 1..863

(ix) FEATURES:

- (A) NAME/KEY: CDS
- (B) LOCATION: 864..1316

(ix) FEATURES:

- (A) NAME/KEY: intron
- (B) LOCATION: 1317..1477

(ix) FEATURES:

- (A) NAME/KEY: CDS
- (B) LOCATION 1478..2592

(ix) FEATURES:

- (A) NAME/KEY: 3'UTR
- (B) LOCATION: 2593..3616

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

GGGCCCGGTG CCAGCTCGCC AGGTGCGGAC TCGCGCTCGG GCTGTGGCG CTCTACCTGC	60
TGCTGCTCGG CAGCTGCCTG ACGCGCGCGT ACGAGCTGTC GGATCTCGAA AACCTGGAAT	120
CCGATTACTA CAGCTACGTG CTGGATGTGA ACTTCGCGCT GCTGAGCGCC ATGAGCGCGA	180
CCGGCCTCGC GATGGGCGCC GTGAGCGGCT CCCTCGGGAG CGCGCCGGTG CTCGCGCAGT	240
GGCCGGCAGC GATCTGGGCC GTGCGCTTCC TGCGCGCCGC GGGCTATGTC GCGATAAGTCC	300
TAATCCTGCC GTTCCTGTCC GTCGTCGCAT TCCTGCAGCC GCTCTGCGAG CGCGCGCTGG	360
CGCTGTTCCC GTTTGTGCGC GCGTGGGGCA TGGACGGCGT GTTCAACTTC CTGCTGCTCT	420
CCGCCGTGCT CTGGACTGTA TTCCTGGCCG TTTCGCGCTGCT CCGCGCCGTC TACAGACTGC	480
TGCGCTGGCT GGTCGGTCTT TTGGTCCGCC TGGCACGCC GCTGCTGCGA GGCGCCCGTC	540
GGACGCCCTGC GGCGGCCCG GAGGAGCCCG TCTAGCGTGC GCGCGTTCTA GGCCCCTGAC	600
AGCTCCTACC TGGTGCTGGC CGCCGGTAGG GCTCGCATCG TGCAGCGCAG GCCCATTGCT	660

TTTTGGCCCC CGCTGGATCA TCGTTCTTT TACGTGAAAA GTTTGCAGCG ATGAGCTGCA 720
 GTATAAAATAG GTTTCTAGA TGCGCCAAAT CCCAGCTGGG TTTACCGGCG TCTGTTCGGG 780
 ATAGTTACTT GATGGATGGG TCAACTTGAG AGCTTGGGTT TAGTGTGAC TCCTTCTCTT 840
 CATAGCACGC CGAACAAAGC GCA ATG ACT TAC AGA GAC GCA GCC ACG GCA 890
 Met Thr Tyr Arg Asp Ala Ala Thr Ala
 1 5
 CTG GAG CAC CTG GCG ACG TAC GCC GAG AAG GAC GGG CTG TCC GTG GAG 938
 Leu Glu His Leu Ala Thr Tyr Ala Glu Lys Asp Gly Leu Ser Val Glu
 10 15 20 25
 CAG TTG ATG GAC TCC AAG ACG CGG GGC GGG TTG ACG TAC AAC GAC TTC 986
 Gln Leu Met Asp Ser Lys Thr Arg Gly Gly Leu Thr Tyr Asn Asp Phe
 30 35 40
 CTG GTC TTG CCG GGC AAG ATC GAC TTC CCA TCG TCG GAG GTG GTG CTG 1034
 Leu Val Leu Pro Gly Lys Ile Asp Phe Pro Ser Ser Glu Val Val Leu
 45 50 55
 TCG TCG CGC CTG ACC AAG AAG ATC ACC TTG AAC GCG CCG TTT GTG TCG 1082
 Ser Ser Arg Leu Thr Lys Lys Ile Thr Leu Asn Ala Pro Phe Val Ser
 60 65 70
 TCG CCG ATG GAC ACG GTG ACG GAG GCC GAC ATG GCG ATC CAC ATG GCG 1130
 Ser Pro Met Asp Thr Val Thr Glu Ala Asp Met Ala Ile His Met Ala
 75 80 85
 CTC CTG GGC GGC ATC GGG ATC ATC CAC CAC AAC TGC ACT GCG GAG GAG 1178
 Leu Leu Gly Gly Ile Gly Ile Ile His His Asn Cys Thr Ala Glu Glu
 90 95 100 105
 CAG GCG GAG ATG GTG CGC CGG GTC AAG AAG TAC GAA AAC GGG TTC ATC 1226
 Gln Ala Glu Met Val Arg Arg Val Lys Lys Tyr Glu Asn Gly Phe Ile
 110 115 120
 AAC GCC CCC GTG GTC GTG GGG CCG GAC GCG ACG GTG GCG GAC GTG CGC 1274
 Asn Ala Pro Val Val Val Gly Pro Asp Ala Thr Val Ala Asp Val Arg
 125 130 135
 CGG ATG AAG AAC GAG TTT GGG TTT GCA GGA TTT CCT GTG ACA 1316
 Arg Met Lys Asn Glu Phe Gly Phe Ala Gly Phe Pro Val Thr
 140 145 150
 GGTATGTTAG AGTGGCACGC GGGGCTGCAC GCTGGATGA TGATCATAAA TCAATAACTT 1376
 TCGTTCTACT GACTGCGATC AAACGATCGT GTAGACACCT TTTACTCTGA CCGCAGACGT 1436

103761321362

TCC ATC TGT ATC ACT CAG GAG GTG ATG GCC TGT GGT AGA CCA CAG GGT 2065
 Ser Ile Cys Ile Thr Gln Glu Val Met Ala Cys Gly Arg Pro Gln Gly
 185 190 195

ACC GCT GTC TAC AAC GTC ACG CAG TTC GCC AAC CAG TTT GGT GTG CCA 2113
 Thr Ala Val Tyr Asn Val Thr Gln Phe Ala Asn Gln Phe Gly Val Pro
 200 205 210

TGT ATT GCT GAC GGT GGT GTC CAG AAC ATC GGG CAC ATT ACC AAA GCT 2161
 Cys Ile Ala Asp Gly Gly Val Gln Asn Ile Gly His Ile Thr Lys Ala
 215 220 225

ATC GCT CTT GGC GCG TCC ACC GTC ATG ATG GGC GGT ATG CTG GCA GGC 2209
 Ile Ala Leu Gly Ala Ser Thr Val Met Met Gly Gly Met Leu Ala Gly
 230 235 240

ACT ACA GAG TCT CCA GGC GAG TAC TTC TTC AGG GAC GGG AAG AGA CTG 2257
 Thr Thr Glu Ser Pro Gly Glu Tyr Phe Phe Arg Asp Gly Lys Arg Leu
 245 250 255 260

AAG ACC TAC AGA GGT ATG GGC TCC ATC GAC GCC ATG CAA AAG ACT GAT 2305
 Lys Thr Tyr Arg Gly Met Gly Ser Ile Asp Ala Met Gln Lys Thr Asp
 265 270 275

GTC AAG GGT AAC GCC GCT ACC TCC CGT TAC TTC TCT GAG TCT GAC AAG 2353
 Val Lys Gly Asn Ala Ala Thr Ser Arg Tyr Phe Ser Glu Ser Asp Lys
 280 285 290

GTT CTG GTC GCT CAG GGT GTT ACT GGT TCT GTG ATC GAC AAG GGC TCC 2401
 Val Leu Val Ala Gln Gly Val Thr Gly Ser Val Ile Asp Lys Gly Ser
 295 300 305

ATC AAG AAG TAC ATT CCA TAT CTG TAC AAT GGT CTA CAG CAC TCG TGC 2449
 Ile Lys Lys Tyr Ile Pro Tyr Leu Tyr Asn Gly Leu Gln His Ser Cys
 310 315 320

CAG GAT ATC GGT GTG CGC TCT CTA GTG GAG TTC AGA GAG AAG GTG GAC 2497
 Gln Asp Ile Gly Val Arg Ser Leu Val Glu Phe Arg Glu Lys Val Asp
 325 330 335 340

TCT GGC TCG GTC AGA TTT GAG TTC AGA ACT CCA TCT GCC CAG TTG GAG 2545
 Ser Gly Ser Val Arg Phe Glu Phe Arg Thr Pro Ser Ala Gln Leu Glu
 345 350 355

GGT GGT GTG CAC AAC TTG CAC TCC TAC GAG AAG CGC CTA TTT GACTGAGTGC 2597
 Gly Gly Val His Asn Leu His Ser Tyr Glu Lys Arg Leu Phe Asp
 360 365 370

CACTAGGCC ACACATAGA AGTGGATCCG GGCGCGATGG CACCCATACT TTTATATTAT 2657

GTTGATTGAT GTACGTAAAC GATAGATATA ATAACAGACG CGGCATCTCA TTTGTATGCA	2717
ATATATCTGG AACATGGTTA TCGGTACTCA ACTGTATGTA CTACTTTATA TACACAGCTC	2777
TGGGACACTT GGTGAGATAT ATGTTTCATT ATGTATGCCT CGCTATCGAA AGGTCTGGCA	2837
TTATGGGCTA CTGGGTCTAA GAGTCATGGC TTATGAGTAT TTATTTATTT ATTTCTCTTC	2897
CTTTTCATTA AACTCCTCGA GCTTCTTCT GTAATACTGC TCTCTAGACT TCTCCACATC	2957
TGCTAATGAT GGTGGAAGTC GTTCGTTTC CAAATCCGCT CTACGAGCGC GCTCGAAGTT	3017
AGACAGCGCC TCGTTCAGAC CPTCAGACCC GCGTGACAGC GCTCCACGAG GCAGCACGCC	3077
AGAACATTCACTT GTTTTAGGT ACTGCACCTT ATCGCTCTCT TCTCTCAACA CGCTATACAT	3137
TCGGGAAACC TTGGCAATCG CCAATATTAA ACTGCGTAGT GCACGCCGTT TTGCATCATC	3197
GTCCAGAATA GACC GTTTTT TCTTCGATTT CTTGGAGCCA GGTATAACAG TTACAACCTG	3257
CTCAGTGTTC TTGGACTTCA ATGTAGCACC TAAGT CCTCC CTTATAACAA AAGTCTCTTC	3317
CTCCAATTCT TCTTCAGTAC AAATGTTAA TATCGAAACC AACATTTCAAG TCAC TTTCTC	3377
GCCAACAAAT GGCAAAGACC AGGTGAATAC GTCCATGAAA TTCGGTAACC AATACGGATG	3437
CTGTGACATG TTAAATTGTC TAATGTTCAT AACGTTATCC GAGTATTAA GGACCGCGGC	3497
CTTGGTCTTG TAAGTGTCCA AGTAGTTGGG TGCGCTGAAC AACGTAAGTA AACTAGGAAA	3557
GCCCAGATTC TTGGTATTCT TGTACATTCT GTAGCCCTGA TCTTGGCCTT CGTGGGCC	3616

(2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 151 Amino acids
- (B) TYPE: Amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

Met Thr Tyr Arg Asp Ala Ala Thr Ala Leu Glu His Leu Ala Thr Tyr			
1	5	10	15

Ala Glu Lys Asp Gly Leu Ser Val Glu Gln Leu Met Asp Ser Lys Thr		
20	25	30

Arg Gly Gly Leu Thr Tyr Asn Asp Phe Leu Val Leu Pro Gly Lys Ile
 35 40 45

 Asp Phe Pro Ser Ser Glu Val Val Leu Ser Ser Arg Leu Thr Lys Lys
 50 55 60

 Ile Thr Leu Asn Ala Pro Phe Val Ser Ser Pro Met Asp Thr Val Thr
 65 70 75 80

 Glu Ala Asp Met Ala Ile His Met Ala Leu Leu Gly Gly Ile Gly Ile
 85 90 95

 Ile His His Asn Cys Thr Ala Glu Glu Gln Ala Glu Met Val Arg Arg
 100 105 110

 Val Lys Lys Tyr Glu Asn Gly Phe Ile Asn Ala Pro Val Val Val Gly
 115 120 125

 Pro Asp Ala Thr Val Ala Asp Val Arg Arg Met Lys Asn Glu Phe Gly
 130 135 140

 Phe Ala Gly Phe Pro Val Thr
 145 150

(2) INFORMATION FOR SEQ ID NO: 9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 371 Amino acids
 - (B) TYPE: Amino acid
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: Protein

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:

Asp Asp Gly Lys Pro Thr Gly Lys Leu Gln Gly Ile Ile Thr Ser Arg
 1 5 10 15

 Asp Ile Gln Phe Val Glu Asp Glu Thr Leu Leu Val Ser Glu Ile Met
 20 25 30

 Thr Lys Asp Val Ile Thr Gly Lys Gln Gly Ile Asn Leu Glu Glu Ala
 35 40 45

 Asn Gln Ile Leu Lys Asn Thr Lys Lys Gly Lys Leu Pro Ile Val Asp
 50 55 60

Glu Ala Gly Cys Leu Val Ser Met Leu Ser Arg Thr Asp Leu Met Lys
 65 70 75 80

Asn Gln Ser Tyr Pro Leu Ala Ser Lys Ser Ala Asp Thr Lys Gln Leu
 85 90 95

Leu Cys Gly Ala Ala Ile Gly Thr Ile Asp Ala Asp Arg Gln Arg Leu
 100 105 110

Ala Met Leu Val Glu Ala Gly Leu Asp Val Val Val Leu Asp Ser Ser
 115 120 125

Gln Gly Asn Ser Val Phe Gln Ile Asn Met Ile Lys Trp Ile Lys Glu
 130 135 140

Thr Phe Pro Asp Leu Gln Val Ile Ala Gly Asn Val Val Thr Arg Glu
 145 150 155 160

Gln Ala Ala Ser Leu Ile His Ala Gly Ala Asp Gly Leu Arg Ile Gly
 165 170 175

Met Gly Ser Gly Ser Ile Cys Ile Thr Gln Glu Val Met Ala Cys Gly
 180 185 190

Arg Pro Gln Gly Thr Ala Val Tyr Asn Val Thr Gln Phe Ala Asn Gln
 195 200 205

Phe Gly Val Pro Cys Ile Ala Asp Gly Gly Val Gln Asn Ile Gly His
 210 215 220

Ile Thr Lys Ala Ile Ala Leu Gly Ala Ser Thr Val Met Met Gly Gly
 225 230 235 240

Met Leu Ala Gly Thr Thr Glu Ser Pro Gly Glu Tyr Phe Phe Arg Asp
 245 250 255

Gly Lys Arg Leu Lys Thr Tyr Arg Gly Met Gly Ser Ile Asp Ala Met
 260 265 270

Gln Lys Thr Asp Val Lys Gly Asn Ala Ala Thr Ser Arg Tyr Phe Ser
 275 280 285

Glu Ser Asp Lys Val Leu Val Ala Gln Gly Val Thr Gly Ser Val Ile
 290 295 300

Asp Lys Gly Ser Ile Lys Lys Tyr Ile Pro Tyr Leu Tyr Asn Gly Leu
 305 310 315 320

Gln His Ser Cys Gln Asp Ile Gly Val Arg Ser Leu Val Glu Phe Arg
 325 330 335

Glu Lys Val Asp Ser Gly Ser Val Arg Phe Glu Phe Arg Thr Pro Ser
 340 345 350

Ala Gln Leu Glu Gly Gly Val His Asn Leu His Ser Tyr Glu Lys Arg
 355 360 365

Leu Phe Asp
 370

(2) INFORMATION FOR SEQ ID NO: 10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2697 base pairs
- (B) TYPE: Nucleic acid
- (C) STRANDEDNESS: Single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTISENSE: NO

(ix) FEATURES:

- (A) NAME/KEY: 5'UTR
- (B) LOCATION: 1..455

(ix) FEATURES:

- (A) NAME/KEY: CDS
- (B) LOCATION: 456..2033

(ix) FEATURES:

- (A) NAME/KEY: 3'UTR
- (B) LOCATION: 2034..2697

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:

ATCGATTCA GGAGATTTT GGTAGCATTA TTGAGGTCAT TAGAGGCCTT CTGTGACTTT	60
CGACGATTTG CACGCGCAGA AGAGGGCGTT CAACCAGCCT TTCGGATATT CCGGTTCGAG	120
TTATACCAGC AGGGATCAGC GCAGGCACTA GAGTGGCGGG TGCTAATAAG AGGAGCAGGT	180
CCTGGAACTG AAGTTGCAAG AGATAAGCAT TGCGCGGAGA AGGAGGCGGT TAGAGGGTGC	240
AAGCGAGCAG GATGGGGTCT TCGATGAACT TCCCGTCTGG GTATGTGAAC AAGCACACGC	300

TCG AAG CCA ATC TTC GGG ATC CAG TTC CAC CCT GAG GTG ACG CAC TCC Ser Lys Pro Ile Phe Gly Ile Gln Phe His Pro Glu Val Thr His Ser 170 175 180	1001
TCG CAG GGG AAG ACG TTG CTG AAG AAC TTT GCG GTG GAG ATC TGC CAG Ser Gln Gly Lys Thr Leu Leu Lys Asn Phe Ala Val Glu Ile Cys Gln 185 190 195	1049
GCC GCG CAG ACC TGG ACG ATG GAA AAC TTC ATT GAC ACC GAG ATC CAG Ala Ala Gln Thr Trp Thr Met Glu Asn Phe Ile Asp Thr Glu Ile Gln 200 205 210	1097
CGG ATC CGG ACC CTT GTG GGC CCC ACC GCG GAA GTC ATC GGT GCT GTG Arg Ile Arg Thr Leu Val Gly Pro Thr Ala Glu Val Ile Gly Ala Val 215 220 225 230	1145
TCC GGC GGT GTC GAC TCG ACC GTC GCT GCG AAG CTG ATG ACC GAG GCC Ser Gly Gly Val Asp Ser Thr Val Ala Ala Lys Leu Met Thr Glu Ala 235 240 245	1193
ATC GGC GAC CGG TTC CAC GCG ATC CTG GTC GAC AAC GGT GTT CTG CGC Ile Gly Asp Arg Phe His Ala Ile Leu Val Asp Asn Gly Val Leu Arg 250 255 260	1241
CTC AAC GAA GCG GCC AAT GTG AAG AAA ATC CTC GGC GAG GGC TTG GGC Leu Asn Glu Ala Ala Asn Val Lys Lys Ile Leu Gly Glu Gly Leu Gly 265 270 275	1289
ATC AAC TTG ACT GTT GTT GAC GCC TCC GAA GAG TTC TTG ACG AAG CTC Ile Asn Leu Thr Val Val Asp Ala Ser Glu Glu Phe Leu Thr Lys Leu 280 285 290	1337
AAG GGC GTC ACG GAC CCT GAG AAG AAG AGA AAG ATC ATC GGT AAC ACC Lys Gly Val Thr Asp Pro Glu Lys Lys Arg Lys Ile Ile Gly Asn Thr 295 300 305 310	1385
TTC ATT CAT GTT TTT GAG CGC GAG GCA GCC AGG ATC CAG CCT AAG AAC Phe Ile His Val Phe Glu Arg Glu Ala Ala Arg Ile Gln Pro Lys Asn 315 320 325	1433
GGC GAG GAG ATT GAG TTC CTG TTG CAG GGT ACC CTA TAC CCT GAC GTT Gly Glu Glu Ile Glu Phe Leu Leu Gln Gly Thr Leu Tyr Pro Asp Val 330 335 340	1481
ATC GAG TCC ATT TCC TTT AAG GGC CCA TCT CAG ACG ATC AAG ACC CAC Ile Glu Ser Ile Ser Phe Lys Gly Pro Ser Gln Thr Ile Lys Thr His 345 350 355	1529

CAT AAC GTC GGT CTT TTG GAC AAC ATG AAA CTG AAG CTC ATT GAG His Asn Val Gly Gly Leu Leu Asp Asn Met Lys Leu Lys Leu Ile Glu 360 365 370	1577
CCT TTG CGC GAG CTT TTC AAG GAC GAG GTG AGA CAC CTG GGA GAA CTA Pro Leu Arg Glu Leu Phe Lys Asp Glu Val Arg His Leu Gly Glu Leu 375 380 385 390	1625
TTG GGG ATC TCC CAC GAG TTG GTC TGG AGA CAT CCG TTC CCA GGC CCA Leu Gly Ile Ser His Glu Leu Val Trp Arg His Pro Phe Pro Gly Pro 395 400 405	1673
GGT ATC GCC ATC CGT GTG CTA GGC GAG GTC ACC AAG GAG CAG GTG GAG Gly Ile Ala Ile Arg Val Leu Gly Glu Val Thr Lys Glu Gln Val Glu 410 415 420	1721
ATT GCC AGA AAG GCA GAC CAC ATC TAC ATC GAG GAG ATC AGG AAA GCA Ile Ala Arg Lys Ala Asp His Ile Tyr Ile Glu Glu Ile Arg Lys Ala 425 430 435	1769
GGT CTA TAC AAC AAG ATT TCT CAA GCT TTT GCT TGC TTG CTG CCT GTT Gly Leu Tyr Asn Lys Ile Ser Gln Ala Phe Ala Cys Leu Leu Pro Val 440 445 450	1817
AAG TCT GTG GGT GTC ATG GGT GAC CAG AGA ACC TAC GAC CAG GTC ATT Lys Ser Val Gly Val Met Gly Asp Gln Arg Thr Tyr Asp Gln Val Ile 455 460 465 470	1865
GCT CTA AGA GCA ATT GAG ACC ACG GAC TTC ATG ACT GCC GAC TGG TAT Ala Leu Arg Ala Ile Glu Thr Thr Asp Phe Met Thr Ala Asp Trp Tyr 475 480 485	1913
CCA TTT GAG CAC GAA TTC TTG AAG CAT GTC GCA TCC CGT ATT GTT AAC Pro Phe Glu His Glu Phe Leu Lys His Val Ala Ser Arg Ile Val Asn 490 495 500	1961
GAG GTT GAA GGT GTT GCC AGA GTC ACC TAC GAC ATA ACT TCT AAG CCT Glu Val Glu Gly Val Ala Arg Val Thr Tyr Asp Ile Thr Ser Lys Pro 505 510 515	2009
CCA GCT ACC GTT GAA TGG GAA TAATCACCCCT TGGGATCCGC TGACTGGCTA Pro Ala Thr Val Glu Trp Glu 520 525	2060
CTGTAATTCT ATGTAGTGGA TTAGTACGAT AAGTTACTTT TGTATGATAG ATGTAATCAC	2120
ATCTGGCTAT TAAAATGACT CAGCCGAGGT AAATCTAACG TCCCTTCACA AGGGTGTCC	2180
TGTGTGGACT TCCGCCTGAA TTTTTATAGA TATATAGATA CTCTACTCAT GAACAAACCTG	2240

CAACCGAATA AGCATTAGTG CCAGGAGAAG AGAACCGTGG AAATGGGCAGTAGAAAAAA	2300
ATCATATTCC TTAAGAATAA GACAGTACCA GAGGACCATT ACGAGACGAT TTTGAATCG	2360
AATGGCTTCC AGACTCACTT TGTACCCATA ATAACCCATG AACACCTGCC AGATGAGGTT	2420
CGCGGTCGAC TATCCGACGC GAATTACATG AAAAGGTTGA ATTGTTGGT GGTAACCTCT	2480
CAGAGGACTG TGGAGTGTCT CTATGAGGAC GTTCTGCCCT CTCTTCCAGC TGAAGCACGC	2540
AAATCTCTTC TCAATACGCC AGTATTCTGTG GTTGGCGTG CCACTCAGGA ATTTATGGAG	2600
AGATGCGGCT TTACGGACGT GAGAGGGGA TCTGAGACTG GTAATGGCGT TTTGCTAGCG	2660
GAGTTAATGT TAAATATGAT CCAGAAGGGC GATGGGG	2697

(2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 525 Amino acids
- (B) TYPE: Amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

Met Ala Ala Val Glu Gln Val Ser Ser Val Phe Asp Thr Ile Leu Val			
1	5	10	15
Leu Asp Phe Gly Ser Gln Tyr Ser His Leu Ile Thr Arg Arg Leu Arg			
20	25	30	
Glu Phe Asn Val Tyr Ala Glu Met Leu Pro Cys Thr Gln Lys Ile Ser			
35	40	45	
Glu Leu Gly Trp Lys Pro Lys Gly Val Ile Leu Ser Gly Gly Pro Tyr			
50	55	60	
Ser Val Tyr Ala Ala Asp Ala Pro His Val Asp Arg Ala Val Phe Glu			
65	70	75	80
Leu Gly Val Pro Ile Leu Gly Ile Cys Tyr Gly Leu Gln Glu Leu Ala			
85	90	95	
Trp Ile Ala Gly Ala Glu Val Gly Arg Gly Glu Lys Arg Glu Tyr Gly			
100	105	110	

Arg Ala Thr Leu His Val Glu Asp Ser Ala Cys Pro Leu Phe Asn Asn
 115 120 125

Val Asp Ser Ser Thr Val Trp Met Ser His Gly Asp Lys Leu His Ala
 130 135 140

Leu Pro Ala Asp Phe His Val Thr Ala Thr Thr Glu Asn Ser Pro Phe
 145 150 155 160

Cys Gly Ile Ala His Asp Ser Lys Pro Ile Phe Gly Ile Gln Phe His
 165 170 175

Pro Glu Val Thr His Ser Ser Gln Gly Lys Thr Leu Leu Lys Asn Phe
 180 185 190

Ala Val Glu Ile Cys Gln Ala Ala Gln Thr Trp Thr Met Glu Asn Phe
 195 200 205

Ile Asp Thr Glu Ile Gln Arg Ile Arg Thr Leu Val Gly Pro Thr Ala
 210 215 220

Glu Val Ile Gly Ala Val Ser Gly Gly Val Asp Ser Thr Val Ala Ala
 225 230 235 240

Lys Leu Met Thr Glu Ala Ile Gly Asp Arg Phe His Ala Ile Leu Val
 245 250 255

Asp Asn Gly Val Leu Arg Leu Asn Glu Ala Ala Asn Val Lys Lys Ile
 260 265 270

Leu Gly Glu Gly Leu Gly Ile Asn Leu Thr Val Val Asp Ala Ser Glu
 275 280 285

Glu Phe Leu Thr Lys Leu Lys Gly Val Thr Asp Pro Glu Lys Lys Arg
 290 295 300

Lys Ile Ile Gly Asn Thr Phe Ile His Val Phe Glu Arg Glu Ala Ala
 305 310 315 320

Arg Ile Gln Pro Lys Asn Gly Glu Glu Ile Glu Phe Leu Leu Gln Gly
 325 330 335

Thr Leu Tyr Pro Asp Val Ile Glu Ser Ile Ser Phe Lys Gly Pro Ser
 340 345 350

Gln Thr Ile Lys Thr His His Asn Val Gly Gly Leu Leu Asp Asn Met
 355 360 365

Lys Leu Lys Leu Ile Glu Pro Leu Arg Glu Leu Phe Lys Asp Glu Val
 370 375 380

18026337-024532

Arg His Leu Gly Glu Leu Leu Gly Ile Ser His Glu Leu Val Trp Arg
385 390 395 400

His Pro Phe Pro Gly Pro Gly Ile Ala Ile Arg Val Leu Gly Glu Val
405 410 415

Thr Lys Glu Gln Val Glu Ile Ala Arg Lys Ala Asp His Ile Tyr Ile
420 425 430

Glu Glu Ile Arg Lys Ala Gly Leu Tyr Asn Lys Ile Ser Gln Ala Phe
435 440 445

Ala Cys Leu Leu Pro Val Lys Ser Val Gly Val Met Gly Asp Gln Arg
450 455 460

Thr Tyr Asp Gln Val Ile Ala Leu Arg Ala Ile Glu Thr Thr Asp Phe
465 470 475 480

Met Thr Ala Asp Trp Tyr Pro Phe Glu His Glu Phe Leu Lys His Val
485 490 495

Ala Ser Arg Ile Val Asn Glu Val Glu Gly Val Ala Arg Val Thr Tyr
500 505 510

Asp Ile Thr Ser Lys Pro Pro Ala Thr Val Glu Trp Glu
515 520 525

(2) INFORMATION FOR SEQ ID NO: 12:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 1634 Base pairs
 - (B) TYPE: Nucleic acid
 - (C) STRANDEDNESS: Double
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA for mRNA

(iii) HYPOTHETICAL: NO

(iv) ANTISENSE: NO

(ix) FEATURES:

- (A) NAME/KEY: 5'UTR
- (B) LOCATION: 1..519

(ix) FEATURES:

- (A) NAME/KEY: CDS

(B) LOCATION: 520..1482

(ix) FEATURES:

- (A) NAME/KEY: 3'UTR
- (B) LOCATION: 1483..1634

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

CCTCGAACAT CTATCTTCTG AGCTCGATAG TCTACGAAAT CGGCACACTA GCCTAATTGC	60
CGAGATGAAG AGCTCCAGGG AACCGTTAAA GATCTGATGT TCCATCTTCA ATCAGGACAA	120
ATGTTACGGG ATGTCCCTGA CGCCACAGAA GGTAGCCTGG TGGTCCAGAC AGAAAAAGAG	180
CCTACACCAA AGAAGAAACA TAACAAGAAA AAGCCTCCGC ATCGTTTGG TAAATCATAA	240
TAGGCACGAT GCGCATATAC CCTGACCATC ATAGCGGTTTC CCCCCGCTAA CTGCTCCGAG	300
CGGGTAACCC CATGTCACAA AGTGACTCTG TCTCTTCGTG GTAGGTGATG TCAAATTTC	360
ACGACTTCCC ACCCCGATGA GCATCCGTAT TCCTTTCAT CTAAATTCTA ATAGATGGCT	420
TATGGATTCT TATTGGCGAC TTACAAGCCT ATGTAGTTGG CTTCCCTCAA GTGTTCGTAG	480
TCTACCACCT CACACCCGGT CTAACAGCTT ACGAGAATA ATG GCT ACT AAT GCA	534
Met Ala Thr Asn Ala	
1	5
ATC AAG CTT CTT GCG CCA GAT ATC CAC AGG GGT CTG GCA GAG CTG GTC	582
Ile Lys Leu Leu Ala Pro Asp Ile His Arg Gly Leu Ala Glu Leu Val	
10	15
20	
GCT AAA CGC CTA GGC TTA CGT CTG ACA GAC TGC AAG CTT AAG CGG GAT	630
Ala Lys Arg Leu Gly Leu Arg Leu Thr Asp Cys Lys Leu Lys Arg Asp	
25	30
35	
TGT AAC GGG GAG GCG ACA TTT TCG ATC GGA GAA TCT GTT CGA GAC CAG	678
Cys Asn Gly Glu Ala Thr Phe Ser Ile Gly Glu Ser Val Arg Asp Gln	
40	45
50	
GAT ATC TAC ATC ACG CAG GTG GGG TCC GGG GAC GTG AAC GAC CGA	726
Asp Ile Tyr Ile Ile Thr Gln Val Gly Ser Gly Asp Val Asn Asp Arg	
55	60
65	
GTG CTG GAG CTG CTC ATC ATG ATC AAC GCT AGC AAG ACG GCG TCT GCG	774
Val Leu Glu Leu Leu Ile Met Ile Asn Ala Ser Lys Thr Ala Ser Ala	
70	75
80	85
CGG CGA ATT ACG GCT GTG ATT CCA AAC TTC CCA TAC GCG CGG CAG GAC	822
Arg Arg Ile Thr Ala Val Ile Pro Asn Phe Pro Tyr Ala Arg Gln Asp	
90	95
100	

CGG AAG GAT AAG TCA CGG GCG CCA ATT ACC GCG AAG CTC ATG GCG GAC Arg Lys Asp Lys Ser Arg Ala Pro Ile Thr Ala Lys Leu Met Ala Asp 105 110 115	870
ATG CTG ACT ACC GCG GGC TGC GAT CAT GTC ATC ACC ATG GAC TTA CAC Met Leu Thr Thr Ala Gly Cys Asp His Val Ile Thr Met Asp Leu His 120 125 130	918
GCT TCG CAA ATC CAG GGC TTC TTT GAT GTA CCA GTT GAC AAC CTT TAC Ala Ser Gln Ile Gln Gly Phe Phe Asp Val Pro Val Asp Asn Leu Tyr 135 140 145	966
GCA GAG CCT AGC GTG GTG AAG TAT ATC AAG GAG CAT ATT CCC CAC GAC Ala Glu Pro Ser Val Val Lys Tyr Ile Lys Glu His Ile Pro His Asp 150 155 160 165	1014
GAT GCC ATC ATC ATC TCG CCG GAT GCT GGT GGT GCC AAA CGT GCG TCG Asp Ala Ile Ile Ile Ser Pro Asp Ala Gly Gly Ala Lys Arg Ala Ser 170 175 180	1062
CTT CTA TCA GAT CGC CTA AAC TTG AAC TTT GCG CTG ATT CAT AAG GAA Leu Leu Ser Asp Arg Leu Asn Leu Asn Phe Ala Leu Ile His Lys Glu 185 190 195	1110
CGT GCA AAG GCA AAC GAA GTG TCC CGC ATG GTT CTG GTC GGC GAT GTT Arg Ala Lys Ala Asn Glu Val Ser Arg Met Val Leu Val Gly Asp Val 200 205 210	1158
ACC GAT AAA GTC TGC ATT ATC GTT GAC GAT ATG GCG GAT ACT TGT GGT Thr Asp Lys Val Cys Ile Ile Val Asp Asp Met Ala Asp Thr Cys Gly 215 220 225	1206
ACG CTG GCC AAG GCG GCA GAA GTG CTG CTA GAG CAC AAC GCG CGG TCT Thr Leu Ala Lys Ala Ala Glu Val Leu Leu Glu His Asn Ala Arg Ser 230 235 240 245	1254
GTG ATA GCC ATT GTT ACC CAC GGT ATC CTT TCA GGA AAG GCC ATT GAG Val Ile Ala Ile Val Thr His Gly Ile Leu Ser Gly Lys Ala Ile Glu 250 255 260	1302
AAC ATC AAC AAT TCG AAG CTT GAT AGG GTT GTG TGT ACC AAC ACC GTG Asn Ile Asn Asn Ser Lys Leu Asp Arg Val Val Cys Thr Asn Thr Val 265 270 275	1350
CCA TTC GAG GAG AAG ATG AAG TTA TGC CCG AAG TTA GAT GTA ATT GAT Pro Phe Glu Glu Lys Met Lys Leu Cys Pro Lys Leu Asp Val Ile Asp 280 285 290	1398
ATC TCG GCA GTT CTT GCG GAA TCC ATT CGC CGT CTA CAC AAT GGT GAA Ile Ser Ala Val Leu Ala Glu Ser Ile Arg Arg Leu His Asn Gly Glu 295 300 305	1446

AGT ATC TCC TAC CTC TTT AAA AAC AAC CCA CTA TGATTTGCT TCTCGATGCT	1499
Ser Ile Ser Tyr Leu Phe Lys Asn Asn Pro Leu	
310 315 320	
GGCTTCTTGA GGGCCAATT TGCCGTAGAG GTAGTATCCC TTCTTTTAT ATTGACTATT	1559
TAACGAAGAC TATTCTTCA TAAATGGACT TCGGCTTCAC TGTGAATCTC ACATGATATA	1619
GTTGTTTCAG AGACC	1634

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 320 Amino acids
- (B) TYPE: Amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: Protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

Met Ala Thr Asn Ala Ile Lys Leu Leu Ala Pro Asp Ile His Arg Gly	
1 5 10 15	
Leu Ala Glu Leu Val Ala Lys Arg Leu Gly Leu Arg Leu Thr Asp Cys	
20 25 30	
Lys Leu Lys Arg Asp Cys Asn Gly Glu Ala Thr Phe Ser Ile Gly Glu	
35 40 45	
Ser Val Arg Asp Gln Asp Ile Tyr Ile Ile Thr Gln Val Gly Ser Gly	
50 55 60	
Asp Val Asn Asp Arg Val Leu Glu Leu Leu Ile Met Ile Asn Ala Ser	
65 70 75 80	
Lys Thr Ala Ser Ala Arg Arg Ile Thr Ala Val Ile Pro Asn Phe Pro	
85 90 95	
Tyr Ala Arg Gln Asp Arg Lys Asp Lys Ser Arg Ala Pro Ile Thr Ala	
100 105 110	
Lys Leu Met Ala Asp Met Leu Thr Thr Ala Gly Cys Asp His Val Ile	
115 120 125	
Thr Met Asp Leu His Ala Ser Gln Ile Gln Gly Phe Phe Asp Val Pro	
130 135 140	
Val Asp Asn Leu Tyr Ala Glu Pro Ser Val Val Lys Tyr Ile Lys Glu	
145 150 155 160	
His Ile Pro His Asp Asp Ala Ile Ile Ile Ser Pro Asp Ala Gly Gly	
165 170 175	

Ala Lys Arg Ala Ser Leu Leu Ser Asp Arg Leu Asn Leu Asn Phe Ala
180 185 190

Leu Ile His Lys Glu Arg Ala Lys Ala Asn Glu Val Ser Arg Met Val
195 200 205

Leu Val Gly Asp Val Thr Asp Lys Val Cys Ile Ile Val Asp Asp Met
210 215 220

Ala Asp Thr Cys Gly Thr Leu Ala Lys Ala Ala Glu Val Leu Leu Glu
225 230 235 240

His Asn Ala Arg Ser Val Ile Ala Ile Val Thr His Gly Ile Leu Ser
245 250 255

Gly Lys Ala Ile Glu Asn Ile Asn Asn Ser Lys Leu Asp Arg Val Val
260 265 270

Cys Thr Asn Thr Val Pro Phe Glu Glu Lys Met Lys Leu Cys Pro Lys
275 280 285

Leu Asp Val Ile Asp Ile Ser Ala Val Leu Ala Glu Ser Ile Arg Arg
290 295 300

Leu His Asn Gly Glu Ser Ile Ser Tyr Leu Phe Lys Asn Asn Pro Leu
305 310 315 320