Probabilités

William Hergès

March 19, 2023

1 Ensemble

L'ensemble vide est inclu dans \mathbb{R} .

Le nombre total de sous-élément de E, un ensemble à n éléments, est égale à :

 2^n

Soit n et k tel que $0 \le k \le n$.

Le nombre de combinaison de k éléments d'un ensemble à n éléments est noté $\binom{n}{k}$, et est donné par $\binom{n}{k} = \frac{n!}{(n-k)!k!}$.

2 Épreuves indépendantes

Soit une succession de n épreuves indépendantes.

L'univers des issues possibles est le produit cartésien $\Omega_1 * \Omega_2 * ... * \Omega_n$.

Soit une issue $(i_1, i_2, i_3, ..., i_n)$, sa propabilité est le produit des probabilité de chacune des issues du n-uplet.

3 Loi Binominale

Une épreuve de Bernouilli est une épreuve à issue S de probabilité P et \overline{S} de probabilité 1-P.

Le schéma de Bernouilli est une succession d'épreuve de Bernouilli identique et indépendante.

Soit $n \in \mathbb{N}*$ le nombre de succession d'épreuve lors d'un schéma de Bernouilli et X le nombre de succès.

La probabilité que X arrive k fois est donnée par :

$$P(X = k) = \binom{n}{k} * P^k * (1 - P)^{n-k}$$

Dans ce cas là, on dit que X suit la loi binominale de paramètre n et P. L'espèrence de X, noté E(X), est E(x) = np. La variance de X, noté V(x), est V(x) = np(1-p). L'écart-type de X, noté $\sigma(X)$, est $\sigma(X) = \sqrt{np(1-p)}$