ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М. В. ЛОМОНОСОВА»

МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ТЕОРИИ ВЕРОЯТНОСТЕЙ

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА (ДИПЛОМНАЯ РАБОТА) специалиста

ОНЛАЙН КРАТНЫЕ РАСКРАСКИ ГИПЕРГРАФОВ

Выполнил студент 608 группы
Николаев Александр Евгеньевич
подпись студента
Научный руководитель:
д.фм.н., профессор
Шабанов Дмитрий Александрович
, , , , , , , , , , , , , , , , , , , ,
полнись научного руковолителя

Содержание

1	Введение и история задачи	2
	1.1 Основные определения	2
	1.2 Известные результаты	3
2	Новые результаты	5
3	Существование предела для числа независимости в сильно разреженном случае	- 5
4	Нахождение предела в сильно разреженном случае	5
	4.1 Алгоритм Карпа-Сипсера	7
	4.2 Случайное гипердерево	9
	4.3 Аппроксимация моделей	9
5	Доказательство теоремы 4	13
6	Последнее замечание	13
7	Заключение	14
Л	итература	15

1 Введение и история задачи

Работа посвящена изучению асимптотического поведения числа независимости случайного многодольного гиперграфа в биномиальной модели. Сначала мы напомним основные определения из теории гиперграфов.

1.1 Основные определения.

Гиперграфом H называется пара множеств H=(V,E), где V=V(H) — это конечное множество, элементы которого называются вершинами гиперграфа, а E=E(H) - произвольная совокупность подмножеств V, которые принято называть ребрами гиперграфа H. Если каждое ребро $A\in E$ состоит ровно из k вершин (т. е. A это k-подмножество V), то говорят, что гиперграф H является k-однородным. Гиперграф, множество вершин которого можно разбить на k множеств таким образом, что каждое ребро содержит не более одной вершины из каждого множества, называется k-дольным гиперграфом. Степенью вершины v гиперграфа v называется количество ребер v0, содержащих v0. Заметим, что 2-однородный гиперграф — это обыкновенный граф, в котором ребрами являются некоторые пары вершин.

Множество вершин $W \subset V$ в гиперграфе H = (V, E) называется независимым, если оно не содержит полных ребер внутри себя, т.е. для любого ребра $A \subset E$ выполнено $A \not\subseteq W$. Числом независимости, $\alpha(H)$, гиперграфа H называется максимальный размер независимого множества в H.

Случайным гиперграфом H(n,k,p), $n>k\geq 2$, $n,k\in\mathbb{N}$, $p\in(0,1)$, называется случайный элемент, принимающий значения в множестве всех k-однородных гиперграфов на фиксированном множестве из n вершин V_n (например, $V_n=\{1,\ldots,n\}$) и имеющий следующее распределение: для любого $H'=(V_n,E')$

$$P(H(n, k, p) = H') = p^{|E'|} (1 - p)^{\binom{n}{k} - |E'|}$$

Несложно видеть, что случайный гиперграф H(n,k,p) получается независимым включением с вероятностью p всех k-подмножеств V_n в качестве ребер (схема Бернулли на k-подмножествах). При k=2 модель H(n,k,p) есть не что иное, как классическая биномиальная модель случайного графа G(n,p), по которой имеется обширная литература.

Случайным k-однородным k-дольным гиперграфом с одинаковым числом n - числом вершин в каждой доли, $H_k(n,k,p), k \geq 2, n,k \in \mathbb{N}, p \in (0,1)$, называется случайный элемент, принимающий значения в множестве всех k-однородных k-дольных гиперграфов на фиксированном множестве из nk вершин V_{nk} (например, $V_{nk} = \{1, \ldots, nk\}$), фиксированом разбиении на k долей и имеющий следующее распределение: для любого $H' = (V_{nk}, E')$

$$P(H_k(n, k, p) = H') = p^{|E'|} (1 - p)^{n^k - |E'|}$$

Несложно видеть, что случайный многодольный гиперграф $H_k(n,k,p)$ получается независимым включением с вероятностью p всех множеств получаемых независимым выбором одной вершины из каждой доли в качестве ребер. При k=2 модель $H_k(n,k,p)$ есть не что иное, как классическая биномиальная модель случайного многодольного графа, по которой имеется обширная литература.

1.2 Известные результаты.

Число независимости случайного графа G(n,p) активно изучается, начиная с опубликованных в 70-х годах прошлого века работ Д. Матулы [1], Дж. Гримметта и К. МакДиармида [2], П. Эрдеша и Б. Боллобаша [3] для случая постоянного $p \in (0,1)$. Была доказана сильная концентрация значений $\alpha(G(n,p))$, точная формулировка приведена в теореме 1.

Теорема 1. (П. Эрдеш, Б. Боллобаш, [3])

Пусть $p \in (0,1)$ фиксировано, $b = (1-p)^{-1}$. Для положительного $\varepsilon > 0$ положим

$$k_{+\varepsilon} = \begin{bmatrix} 2\log_b n - 2\log_b \log_b n + 2\log_b \frac{e}{2} + 1 + \varepsilon \\ k_{-\varepsilon} = \begin{bmatrix} 2\log_b n - 2\log_b \log_b n + 2\log_b \frac{e}{2} + 1 - \varepsilon \end{bmatrix}$$

Tогда для любого $\varepsilon > 0$

$$P(k_{-\varepsilon} \leq \alpha(G(n,p)) \leq k_{+\varepsilon} - 1) \to 1 \quad npu \ n \to +\infty$$

Таким образом, для фиксированного $p \in (0,1)$ число независимости случайного графа имеет порядок $2\log_b n$. Обобщение вышеприведенного результата на случай не слишком быстро убывающих функций p=p(n)=o(1)(при $n\to +\infty)$ было найдено А. Фризом [4] в 1990 году. Здесь порядок $\alpha(G(n,p))$ оказался равен $\frac{2\ln(np)}{n}$.

Теорема 2. (А. Фриз, [4]).

Для любого положсительного $\varepsilon > 0$ сушествует такая величина d_{ε} , что для любой функции p = p(n), удовлетворяющей условию $d_{\varepsilon} \leqslant np = o(n)$

$$P\left(\left|\alpha(G(n,p)) - \frac{2}{p}(\ln(np) - \ln\ln(np) - \ln 2 + 1)\right| \leqslant \frac{\varepsilon}{p}\right) \to 1 \quad npu \ n \to +\infty$$

Заметим, что теорема 2 дает точную асимптотику числа независимости (закон больших чисел) только при $np \to +\infty$ при $n \to +\infty$. В этой ситуации

$$\frac{\alpha(G(n,p))}{2\ln(np)/p} \stackrel{P}{\longrightarrow} 1.$$

Случай же постоянного np оставался открытым. Легко заметить, что число независимости G(n,c/n) для постоянной c>0 должно иметь линейный порядок по числу вершин, ведь таково уже число изолированных вершин в случайном графе.

В связи с этим была выдвинута гипотеза (см. например, [5]), что существует такая константа $\gamma(c) \in (0,1)$, что при $n \to +\infty$

$$\frac{\alpha(G(n, c/n))}{n} \xrightarrow{P} \gamma(c) \tag{1}$$

Эта гипотеза была доказана в недавней работе М. Бойяти, Д. Гамарника и П. Тетали [6], которые обосновали существование искомой величины $\gamma(c)$ с помощью метода интерполяции, взятого из математической физики. Однако их результат - это теорема существования: явный вид $\gamma(c)$ как функции от c им получить не удалось. Для небольших значений c предельная величина может быть найдена с помощью алгоритма, который предложили Р. Карп и М. Сипсер [7] для поиска максимального паросочетания в случайном графе G(n, c/n). Следствие из их доказательства может быть сформулировано следующим образом: если $c \leq e$, то

$$\frac{\alpha(G(n, c/n))}{n} \xrightarrow{P} r + \frac{cr^2}{2}, \tag{2}$$

где r=r(c) является единственным на (0,1) решением уравнения $r=e^{-cr}$. В общем случае значение величины $\gamma(c)$ в (1) остается неизвестным. В [8] аналогичный вопрос был решен для случайных регулярных графов и для достаточно больших констант c.

Целью настоящей работы является обобщение результата (2) для случайных однородных многодольных гиперграфов. Отметим, что аналоги теорем 1 и 2 были доказаны для случайного гиперграфа H(n,k,p) в работе М. Кривелевича и Б. Судакова [9].

Теорема 3. (М. Кривелевич, Б. Судаков, [9])

Для любого фиксированного $k \geqslant 3$ существует такое $d_0 = d_0(k) > 0$, что при условии

$$d = (k-1) \left(\begin{array}{c} n-1 \\ k-1 \end{array} \right) p \geqslant d_0$$

справедливо соотношение

$$P\left(n\left(\frac{d}{k\ln d}\left(1+(\ln d)^{-\frac{1}{10}}\right)\right)^{-\frac{1}{k-1}} \leqslant \alpha(H(n,k,p)) \leqslant n\left(\frac{d}{k\ln d}\right)^{-\frac{1}{k-1}}\right) \to 1 \ npu \ n \to +\infty$$

Как и в случае графов, из теоремы 3 следует концентрация числа независимости только при растущем среднем значении степени вершины $d \to +\infty$. При постоянном d мы имеем просто некоторые оценки вида c_1n и c_2n (в этом случае число независимости тоже линейно) при несовпадающих $c_1, c_2 > 0$.

В 2016 году А. С. Семенов и Д. А. Шабанов в [11] доказали существование константы $\gamma(c)$ для случая биномиальной модели случайного k-однорного гиперграфа с $p=\frac{c}{\binom{n-1}{k-1}}$ при положительном постоянном c>0. И нашли $\gamma(c)$ при $c\leq \frac{1}{k-1}$

2 Новые результаты

Основной результат настоящей работы - это нахождение предела математического ожидания для числа независимости случайного многодольного гиперграфа $H_k(n,k,p)$ в разреженном случае, т.е. при $p=\frac{nc}{n^k}$, где $c\in(0,\frac{1}{k-1})$

Согласно следующей теореме величина $\gamma(k,c)$ в случае небольшой константы c>0 может быть найдена как решение трансцендентного уравнения.

Теорема 4. Для любых фиксированных $k \geq 3$ и $c \in (0, \frac{1}{k-1})$ при $p = \frac{nc}{n^k}$

$$\frac{\alpha(H_k(n,k,p))}{n} \xrightarrow{P} k(r + \frac{c(k-1)}{k}r^k), \quad ecnu \ n \to +\infty$$
 (3)

где r - это единственное решение уравнения $r = e^{-cr^{k-1}}$ из (0,1).

3 Существование предела для числа независимости в сильно разреженном случае

Сначала мы воспользуемся утверждением, которое показывает, что для доказательства теоремы 4 достаточно проверить, что нормированное математическое ожидание числа независимости имеет предел.

Утверждение 1. Для любой функции $p = p(n) \in (0,1)$ выполнено соотношение

$$\frac{\alpha(H_k(n,k,p)) - E\alpha(H_k(n,k,p))}{n} \xrightarrow{P} 0 \ npu \ n \to \infty$$
 (4)

Доказательство утверждения 1 использует стандартный мартингальный анализ, и мы его не приводим. Оно полностью идентично аналогичному утверждению для случайного графа G(n,p), которое приведено в монографии [10] (см. параграф 11.4). Тем самым, для обоснования (3) достаточно показать, что существует такая константа $\gamma = \gamma(k,c) \in (0,1)$, что при $p = \frac{nc}{n^k}$

$$\frac{E\alpha(H_k(n,k,p))}{n} \longrightarrow \gamma(k,c) \quad \text{при } n \to +\infty$$
 (5)

4 Нахождение предела в сильно разреженном случае

Покажем, что в этом случае гиперграф имеет достаточно простую структуру что позволяет найти явный вид для $\frac{\alpha(H_k(n,k,p))}{n}$, при $n\to\infty$. Напомним что $\mathit{гипердерево}$ - это связный граф без циклов. $\mathit{Циклом}$ гиперграфе называют последовательность различных вершин и различных ребер $(v_1,e_1,\ldots,e_t,v_{t+1})$ такую, что $e_i\cap e_{i+1}=v_i$ для всех $1\le i\le t$ и $v_1=v_{t+1}$

Лемма 1. Среднее число компонент с циклами ограниченно сверху величиной $2\ln 2n$

Доказательство. Если есть вершина цикла которая принадлежит хотя бы трем ребрам, то можно расмотреть более короткий цикл в этой компоненте, так как ребро должно проходить через каждую долю, то получаем, что через одну долю не может пройти более 2n ребер, а значит длины циклов не превосходят 2n. Построим цикл набирая случаи с запасом, n^k - число ребер которые могуть быть первыми, kn^{k-1} число ребер которые могуть быть вторыми - выбрали к точек состыковки и для каждой все возможные варианты, далее ребра до последнего будут выбираться $(k-1)n^{k-1}$ способами, k-1 - чтобы не получить цикл короче. И у последнего ребра есть $(k-1)(k-1)n^{k-2}$ вариантов. Поделив на число способов записать цикл получили математическое ожидание компонент с циклами ограничевается сверху

$$\sum_{a=3}^{2n} \frac{1}{2a} n^k k n^{k-1} ((k-1)n^{k-1})^{a-3} (k-1)^2 n^{k-2} p^a =$$

$$\leq \sum_{a=3}^{2n} \frac{1}{2a} \frac{k}{k-1} \leq 2\ln(2n)$$

Лемма 2. Компоненты размером от $\frac{4}{k-1} \ln n$ покрывают не более o(n) вершин с вероятностью, стремящейся к 1.

Доказательство. Построим компоненту при помощи следующего процесса. Выберем вершину и активируем ее, число вершин в ребрах исходящих из активированой вершины равно $X_0 = (k-1)Bin(n^{k-1},p)$, запишем в очередь каждую из еще не активированную вершину среди X_0 вершин. Возьмем первую вершину из очереди и повторим для нее процесс. После t шагов получаем, что размер компоненты будет не больше $\sum_{i=0}^{i=t} X_i \sim (k-1)Bin(n^{k-1}t,p)$). С другой стороны, если после t шагов $\sum_{i=0}^{i=t} X_i \le t$ то это означает что наш процесс остановился. Значит следущая вероятность эквивалентна тому что в компоненте будет хотя бы t вершин.

$$P(\sum_{i=0}^{t} X_i \ge t) = P(Y \ge \frac{t}{k-1}) = P(Y \ge ct + t(\frac{1}{k-1} - c))$$

где $Y=\sum_{i=0}^{i=t}\frac{X_i}{k-1}$ Так как $Y\sim Bin(n^{k-1}t,p),$ то применим неравенство Чернова

$$P(Y \ge ct + t(\frac{1}{k-1} - c)) \le \exp(-\frac{(\frac{1}{k-1} - c)^2 t^2}{2(ct + \frac{t}{3}(\frac{1}{k-1} - c))}) \le \exp(-\frac{t}{2(\frac{2}{3}c + \frac{1}{3}\frac{1}{k-1})})$$

$$\le \exp(-\frac{t}{\frac{2}{k-1}}) \le \exp(-\frac{t(k-1)}{2}) = n^{-2}$$

Значит перебирая для каждой вершины такой процесс устанавливаем, вероятность того, что размер компоненты в которой состоит вершина превышает $\frac{4}{k-1} \ln n$ является o(1)

Лемма 3. Гипердеревья занимают kn(1-o(1)) вершин c вероятностью, стремящейся κ 1.

Доказательство. Используя первые две леммы, оценим сверху число вершин не в гипердеревьях.

Пусть все большие компоненты не гипердеревья и все компоненты с циклами максимально допустимого размера. Тогда общее число вершин недревесных компонентах не превосходит

$$o(n) + 2\frac{4}{k-1} \ln n \ln 2n = o(n)$$

Перечисленные свойства гиперграфа $H_k(n,k,p)$ показывают, что линейный вклад в число независимости могут дать только древесные компоненты, которые занимают почти весь гиперграф. Кроме того, согласно утверждению 4 достаточно найти предел отношения $E\alpha(H_k(n,k,p))/n$. Доказательство проведем по следующей схеме. Сначала мы проанализируем аналог алгоритма Карпа-Сипсера, который в применении к гипердереву дает максимальное по размеру независимое множество. Далее, мы рассмотрим модель случайного гипердерева и найдем вероятности, с которыми его корень имеет тот или иной тип. Завершит доказательство обоснование близости моделей случайного многодольного гиперграфа и случайного гипердерева.

4.1 Алгоритм Карпа-Сипсера

Опишем аналог алгоритма Карпа-Сипсера для поиска независимого множества в k-однородном гипердереве T(V,E). Зафиксируем любую из вершин u гипердерева T в качестве корня и припишем каждой вершине $v \in V$ ее расстояние d_v до корня (длину минимального пути от нее до u). Рассмотрим пустое множество I. Постепенно будем добавлять к нему вершины так, чтобы оно образовывало независимое множество гипердерева T. Будем использовать обозначение $\deg v$ для степени вершины v. Данный алгоритм можно описать следующим образом:

- (1) Выделим $S := \{ v \in V \mid \deg v = 0 \}.$
- (2) Найдем такое $A = (w, v_1, \dots, v_{k-1})$, что $\deg v_1 = \dots = \deg v_{k-1} = 1$ (так называемое "висячее ребро") и $d_{v_1} = \max_{v \in V} d_v$. Обозначим через F(w) множество всех ребер, содержащих вершину w:

$$F(w) = \{ f \in E \mid w \in f \}$$

(3) $I \leftarrow I \cup S \cup \{v_1, \dots, v_{k-1}\}; V \leftarrow V \setminus (S \cup w \cup v_1 \cup \dots \cup v_{k-1}); E \leftarrow E \setminus F(w)$ Будем называть выполнение этих трех действий шагом алгоритма. Такие шаги выполняются до тех пор, пока в гиперграфе остаются вершины. Нетрудно убедиться, что множество I, полученное при помощи данного алгоритма, будет независимым множеством гиперграфа H. Более того, верно следующее утверждение о размере полученного независимого множества.

Утверждение 2. (А.С. Семенов, Д.А. Шабанов [11])

При применении алгоритма, описанного выше, к гипердереву T(V, E) полученное в его результате независимое подмножество I будет иметь максимальный размер, то есть $|I| = \alpha(T)$.

Выясним, какие вершины гипердеревьев попадают в множество I при применении описанного алгоритма.

- Зафиксируем любую вершину *v* гипердерева в качестве корня.
- Будем постепенно, начиная с висячих вершин, приписывать вершинам один из двух временных типов. Вершине присваивается некоторый временный тип только после того, как все ее потомки (т.е. те вершины, по отношению к которым она является родителем) получили свои временные типы.
- Всем висячим вершинам присваивается временный тип R.
- Припишем невисячей вершине временный тип R, если она не принадлежит ребру, в котором все ее потомки имеют временный тип R, Иначе припишем вершине временный тип W.
- Определенный таким образом временный тип корневой вершины v будем называть типом вершины v.
- Поочередно рассматривая каждую вершину в качестве корня, определим тип каждой вершины.

Пусть R — множество всех R-вершин, а W — множество всех W-вершин. Выделим в W подмножества W_0 и W_1 (и типы W_0 и W_1 соответственно). Отнесем к подмножеству W_1 все W-вершины, которые при их рассмотрении в качестве корня принадлежали ровно одному ребру, в котором все потомки имели временный тип R. Множество тех W-вершин, которые не попали в W_1 , обозначим через W_0 . Структуру множества W_1 проясняет следующее утверждение.

Утверждение 3. (А.С. Семенов, Д.А. Шабанов [11])

Все вершины множества W_1 k-однородного гипердерева T разбиваются на непересекающиеся группы по k вершин, причем вершины каждой из них образутот ребро T.

Утверждение 4. (А.С. Семенов, Д.А. Шабанов [11])

Пусть временные типы всех вершин гипердерева Т определены. Пронумеруем все вершины по неубыванию их расстояния от корня. Если после одного шага алгоритма заново найти временные типы всех оставшихся вершин (возможно, уже в гиперлесе, выбирая за корень в каждой компоненте вершину с наименьшим номером), то их временный тип будет такой же как и был до выполнения этого иага.

Лемма 4. (А.С. Семенов, Д.А. Шабанов [11])

Множество I, получившееся в результате применения алгоритма поиска независимого подмножества κ гипердереву T, состоит из всех его R-вершин и (k-1)/k-й части вершин множества W_1 (по k-1 из каждой группы по k веришин) и только из них.

4.2 Случайное гипердерево

Построим случайное k -однородное гипердерево T(k,c) с корнем в вершине \widetilde{v} , последовательно добавляя ребра, причем количество ребер выходящих из корня и любой из далее полученных вершин, будет иметь распределение Пуассона с параметром c. По сути мы рассматриваем ветвящийся случайный процесс Гальтона-Ватсона с законом размножения частиц $(k-1)\operatorname{Pois}(c)$. При c<1/(k-1) полученное гипердерево будет конечным с вероятностью 1. Для вершины \widetilde{v} , являющейся корнем подобного гипердерева, можно определить вероятности принадлежности ее множествам W_1, W_0 и R.

Утверждение 5. (А.С. Семенов, Д.А. Шабанов [11]) Если \widetilde{v} – корень случайного гипердерева T(k,c), то

$$P(\widetilde{v} \in R) = r, \quad P(\widetilde{v} \in W) = w = 1 - r$$

$$P(\widetilde{v} \in W_1) = w_1 = cr^k, \quad P(\widetilde{v} \in W_0) = w_0 = w - w_1$$

где $r \in (0,1)$ — решение уравнения $r = e^{-cr^{k-1}}$.

4.3 Аппроксимация моделей

Подведем промежуточные итоги. Из ранее полученных результатов мы знаем, что при $p=\frac{cn}{n^k}$ и c<1/(k-1) случайный гиперграф $H_k(n,k,p)$ имеет достаточно простую структуру: компоненты, не являющиеся гипердеревьями, занимают не более o(n) вершин с вероятностью, стремящейся к единице. Обозначив через $H_k'(n,k,p)$ объединение древесных компонент $H_k(n,k,p)$ и изолированных вершин, а через $H_k''(n,k,p)$ объединение всех оставшихся компонент.

$$E\alpha(H_k''(n,k,p)) \le E|V(H_k''(n,k,p))| \le o(1)nk = o(n)$$

Следовательно,

$$\lim_{n \to \infty} \frac{E\alpha(H_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H''_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H''_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H''_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H''_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H''_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H''_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H''_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H''_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H''_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H''_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H''_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H''_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H''_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H''_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H''_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H'_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H'_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H'_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H'_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H'_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H'_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H'_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H'_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H'_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H'_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H'_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H'_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H'_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H'_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H'_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H'_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H'_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H'_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H'_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha(H'_k(n, k, p))}{n} = \lim_{n \to \infty} \frac{E\alpha(H'_k(n, k, p)) + E\alpha$$

Для нахождения $E\alpha(H'_k(n,k,p))$ воспользуемся алгоритмом Карпа-Сипсера из параграфа 4.1. Согласно лемме 2 максимальное независимое множество образуется из вершин типа R и (k-1)/k -й доли вершин типа W_1 . Значит,

$$\alpha (H'_k(n, k, p)) = |R| + \frac{k-1}{k} |W_1|$$

Далее, в силу симметрии распределения случайного гиперграфа

$$\frac{E\alpha (H'_k(n, k, p))}{n} = \frac{1}{n} \left(\sum_{v \in V(H_k(n, k, p))} P(v \in R) + \frac{k-1}{k} \sum_{v \in V(H_k(n, k, p))} P(v \in W_1) \right) = k(P(v \in R) + \frac{k-1}{k} P(v \in W_1))$$

где v - произвольная вершина $H_k(n,k,p)$. Тем самым, установлена справедливость следующего утверждения.

Утверждение 6. При $c < \frac{1}{k-1}$ выполяется утверждение

$$\gamma(k,c) = \lim_{n \to \infty} \frac{E\alpha(H_k(n,k,p))}{n} = \lim_{n \to \infty} k \left(P(v \in R) + \frac{k-1}{k} P(v \in W_1) \right)$$

.

Нам остается показать, что вероятности того, что вершина v случайного гиперграфа $H_k(n,k,p)$ имеет тип R или W_1 , стремятся к вероятностям принадлежности тем же типам в случайном гипердереве T(k,c).

Обозначим через \widetilde{v} корень случайного гипердерева T(k,c), а через v - произвольную фиксированную вершину $H_k(n,k,p)$ при $p=\frac{cn}{n^k}$. Рассмотрим следующие вероятности:

 $p_{n,d} = P(v)$ принадлежит древесной компоненте $H_k(n,k,p)$ размера не более d),

 $\widetilde{p}_d = P($ размер случайного гипердерева T(k,c) не превосходит $d) = P(|T(k,c)| \le d)$.

Начнем с леммы, устанавливающей близость $p_{n,d}$ и \widetilde{p}_d .

Лемма 5. Для любого $\varepsilon > 0$ существуют такие $d = d(\varepsilon)$ и $n_0 = n_0(\varepsilon)$, что для любого $n \ge n_0$

 $|p_{n,d} - \widetilde{p}_d| \leqslant \frac{\varepsilon}{2} \quad \widetilde{p}_d, p_{n,d} \geqslant 1 - \frac{\varepsilon}{2}$

Доказательство. Случайное гипердерево T(k,c) конечно с вероятностью 1, поэтому $p_d \to 1$ с ростом d. Значит, найдется такое $d = d(\varepsilon)$, что $\widetilde{p}_d \geqslant 1 - \frac{\varepsilon}{2}$. Далее, рассмотрим ветвящиеся случайные процессы $(X_m, m \in Z_+), (Z_m, m \in Z_+),$ первый из которых имеет закон размножения $(k-1)Bin\left(n^{k-1}, \frac{cn}{n^k}\right)$ а второй $(k-1)Bin\left((n-d)^{k-1}, \frac{cn}{n^k}\right)$. Пусть Y_n общее число частиц в первом процессе, а Y'_n во втором. Тогда $Y_n \stackrel{d}{\to} Y, Y'_n \stackrel{d}{\to} Y$ при $n \to \infty$, где Y это общее число частиц в случайном гипердереве T(k,c). Стало быть, с ростом n

$$P(Y_n \leqslant d) \to P(Y \leqslant d) = \widetilde{p}_d, \quad P(Y'_n \leqslant d) \to P(Y \leqslant d) = \widetilde{p}_d$$

Тогда существует такое $n_0=n_0(\varepsilon)$, что для всех $n\geqslant n_0$

$$|P(Y_n \leqslant d) - \widetilde{p}_d| \leqslant \frac{\varepsilon}{2}, \quad |P(Y_n' \leqslant d) - \widetilde{p}_d| \leqslant \frac{\varepsilon}{2}$$

Для завершения доказательства осталось заметить, что

$$P(Y_n \leqslant d) \leqslant p_{n,d} \leqslant P(Y_n' \leqslant d)$$

ведь в случайном гиперграфе $H_k(n,k,p)$ у каждой вершины при выборе нового ребра, ее содержащего и не содержащего другие уже выбранные вершины, будет всегда не менее $(n-d)^{k-1}$ вариантов и не более n^{k-1} вариантов.

Следующая лемма показывает, что имеет место сходимость вероятности конкретной структуры гипердерева в случайном гиперграфе и случайном гипердереве.

Лемма 6. Пусть $k \geqslant 3, c \in (0, \frac{1}{k-1})$ фиксированы. Тогда при $p = \frac{nc}{n^k}$ для любого фиксированного k-однородного гипердерева Γ c выделенным корнем выполняется соотношение $P(\text{компонента } H_k(n,k,p), \text{ содержащая } v, \text{ имеет структуру } \Gamma$ c корнем $v) \to P(T(k,c) = \Gamma)$ при $n \to \infty$.

Доказательство. Пусть $\{v_1,\ldots,v_s\}$ — множество вершин Γ , причем вершина v_1 является корнем, а остальные вершины упорядочены по неубыванию расстояния

до корня. Обозначим через α_i число ребер, выходящих из вершины v_i (т.е. ребер, содержащих v_i , но не содержащих родителя v_i). Тем самым, число ребер Γ равно $\alpha_1 + \ldots + \alpha_s$, а $\alpha_i = \deg v_i - 1$ для i > 1 и $\alpha_1 = \deg v_1$. Ясно, что

$$P(T(k,c) = \Gamma) = \prod_{i=1}^{s} \frac{c^{\alpha_i}}{\alpha_i!} e^{-c}$$

В свою очередь, обозначим q=P(компонента $H_k(n,k,p)$, содержащая v, имеет структуру Γ с корнем v). Для многодольного гиперграфа приведем оценку сверху и оценку снизу на число компонент такой же структры. Будем использовать что на i шаге в каждой компоненте может быть занято не более чем $\sum_{j=1}^{j=i} \alpha_j$ вершин

$$\prod_{i=1}^{i=s} \frac{1}{\alpha_i!} (n - \sum_{j=1}^{j=i} \alpha_j)^{(k-1)\alpha_i} p^{\alpha_i} (1-p)^{n^{k-1}} \le q \le \prod_{i=1}^{i=s} \frac{1}{\alpha_i!} (n^{k-1})^{\alpha_i} p^{\alpha_i} (1-p)^{(n-(k-1)\sum_{j=1}^{j=i} \alpha_j)^{k-1}}$$

Заметим, что при $n \to \infty, \, p = \frac{cn}{n^k}$

 $(n-\sum_{j=1}^{j=i}\alpha_j)^{k-1}\sim n^{k-1}$, а значит левая часть асиптотически равна правой и следовательно $q\sim\prod_{i=1}^{i=s}rac{c^{\alpha_i}}{\alpha_i!}e^c=P(T(k,c)=\Gamma).$

Лемма 7. Пусть $k \geqslant 3, c \in (0, \frac{1}{k-1})$ фиксированы. Тогда при $p = \frac{nc}{n^k}$ выполнены следующие соотношения:

$$\lim_{n \to \infty} P(v \in R) = P(\widetilde{v} \in R) = r, \quad \lim_{n \to \infty} P(v \in W_1) = P(\widetilde{v} \in W_1) = w_1$$

где величины r и w_1 определены в утверждении 5.

Доказательство. Зафиксируем $\varepsilon > 0$ и возьмем $d = d(\varepsilon)$ из леммы 5. Введем обозначения: C(v) -компонента $H_k(n,k,p)$, содержащая вершину v,

$$r_d = P(\widetilde{v} \in R, |T(k,c)| \leq d), \quad r_{n,d} = P(v \in R, |C(v)| \leq d)$$

Далее, рассмотрим все гипердеревья Γ_1,\dots,Γ_t размера не более d с выделенными корнями, анализ которых дает тип R для корня гипердерева. Тогда $r_d = \sum_{j=1}^t P\left(T(k,c) = \Gamma_j\right), r_{n,d} = \sum_{j=1}^t P\left(C(v)\right)$ имеет структуру Γ_j с v в качестве корня). Согласно лемме 6

$$\lim_{n\to\infty} r_{n,d} = r_d$$

Наконец,

$$|r - r_d| = |P(\widetilde{v} \in R) - P(\widetilde{v} \in R, |T(k, c)| \leqslant d)| \leqslant P(|T(k, c)| > d) = 1 - \widetilde{p}_d \leqslant \frac{\varepsilon}{2}$$

$$|P(v \in R) - r_{n,d}| \leqslant P(|C(v)| > d) = 1 - p_{n,d} \leqslant \frac{\varepsilon}{2}.$$

Последние неравенства в обеих цепочках выполнены в силу леммы 5. Значит,

$$\limsup_{n \to \infty} P(v \in R) \leqslant \lim_{n \to \infty} r_{n,d} + \frac{\varepsilon}{2} = r_d + \frac{\varepsilon}{2} \leqslant r + \varepsilon,$$

$$\liminf_{n \to \infty} P(v \in R) \geqslant \lim_{n \to \infty} r_{n,d} - \frac{\varepsilon}{2} = r_d - \frac{\varepsilon}{2} \geqslant r - \varepsilon.$$

В силу произвольности $\varepsilon > 0$ существует предел $\lim_{n \to \infty} P(v \in R)$, равный r.

Доказательство второго утверждения леммы полностью повторяет приведенные рассуждения с заменой множества гипердеревьев $\Gamma_1, \ldots, \Gamma_t$ на те, которые дают тип W_1 для корня при своем анализе. Теперь мы готовы завершить доказательство теоремы 4.

5 Доказательство теоремы 4

Доказательство. Согласно утверждению 6 мы имеем равенство

$$\gamma(k,c) = \lim_{n \to \infty} \frac{E\alpha(H_k(n,k,p))}{n} = \lim_{n \to \infty} k \left(P(v \in R) + \frac{k-1}{k} P(v \in W_1) \right)$$

В силу леммы 7

$$\lim_{n \to \infty} P(v \in R) = r, \quad \lim_{n \to \infty} P(v \in W_1) = w_1 = cr^k$$

где $r \in (0,1)$ — решение уравнения $r=e^{-cr^{k-1}}$. Отсюда при $p=\frac{cn}{n^k}$ и c<1/(k-1) мы получаем, что

$$\gamma(k,c) = \lim_{n \to \infty} \frac{E\alpha(H_k(n,k,p))}{n} = k(r + \frac{c(k-1)}{k}r^k)$$

Наконец, из утверждения 4 вытекает равенство пределов $\frac{E\alpha(H_k(n,k,p))}{n}$ и $\frac{\alpha(H_k(n,k,p))}{n}$, что и дает искомое соотношение (3)

$$\frac{\alpha(H_k(n,k,p))}{n} \xrightarrow{P} k(r + \frac{c(k-1)}{k}r^k)$$
 при $n \to +\infty$.

Теорема 4 доказана.

6 Последнее замечание

В качестве финального замечания выделим тот факт, что величина $\gamma(k,c)$ в теореме 4 лежит строго на интервале (0,1) для всех k,c.

Действительно, по теореме 4 это верно для небольших значений $c<\frac{1}{k-1}$. Согласно утверждению 4 пределы $\frac{\alpha(H(n,k,p))}{n}$ и $\frac{E\alpha(H(n,k,p))}{n}$ совпадают. Наконец, мы можем утверждать, что $E\alpha(H_k(n,k,p))$ при $p=\frac{cn}{n^k}$ не возрастает с увеличением c, ведь при $p_1< p_2$ случайный гиперграф $H_k(n,k,p_2)$ может быть получен из $H_k(n,k,p_1)$ независимым добавлением случайных ребер. Отсюда следует, что $\gamma(k,c)$ не возрастает с ростом c, а, значит, всегда строго меньше 1.

7 Заключение

В заключение работы можно добавить что, судя по всему, константа $\gamma(c)$ должна существовать и для $H_k(n,k,p), \ p=\frac{cn}{n^k}, \ c>0$, но доказательство этого факта требует нетривиальной модификации подхода, примененного С. А. Семеновым и Д. А. Шабановым в [11] для доказательства существования $\gamma(c)$ для $H(n,k,p), \ p=\frac{c}{\binom{n-1}{k-1}}, \ c>0$.

Список литературы

- [1] Matula D.W., "On the complete subgraphs of a random graph", In: Combinatory Mathematics and its applications, Chapel Hill, 1970, 356–369.
- [2] Grimmett G., McDiarmid C., "On colouring random graphs", Math. Proc. Cambr. Phil. Soc., 77 (1975), 313–325.
- [3] Bollobas B., Erdős P., "Cliques in random graphs", Math. Proc. Cambr. Phil. Soc., 80 (1976), 419–427.
- [4] Frieze A., "On the independence number of random graphs", Discrete Mathematics, 81 (1990), 171–175.
- [5] Wormald N., "Models of random regular graphs", Surveys in Combinatorics, London Math. Soc. Lec. Notes Ser., 267, Cambridge Univ. Press, Cambridge, 1999, 239–298.
- [6] Bayati M., Gamarnik D., Tetali P., "Combinatorial approach to the interpolation method and scaling limits in sparse random graphs", Ann. Probab., 41:6 (2013), 4080–4015.
- [7] Karp R., Sipser M., "Maximum matchings in sparse random graphs", 22nd Ann. Symp. on Found. Computer Sci., 1981, 364–375.
- [8] Ding J., Sly A., Sun N., Maximum independent sets on random regular graphs, arXiv: 1310.4787.
- [9] Krivelevich M., Sudakov B., "The chromatic numbers of random hypergraphs", Random Structures and Algorithms, 12 (1998), 381–403.
- [10] Bollobas B., Random Graphs, Cambridge Univ. Press, Cambridge, 2002.
- [11] А. С. Семенов, Д. А. Шабанов, "О числах независимости случайных разреженных гиперграфов", Дискретная математика, том 28, выпуск 3, 2016, 126-144