96. (TNA Homework 1 - Dr. Stewart) Give two norms on infinite sequences $(x_1, x_2, ...)$ that are not equivalent.

Consider the 1, and lo norms, given by (for X = R)

$$\|\mathbf{x}\|_{\ell_{\mathbf{r}}} = \sum_{i} |\mathbf{x}_{i}|$$

$$\|x\|_{l_{\infty}} = \sup_{i} |x_{i}|$$

We claim these are not equivalent norms in \mathbb{R}^n , that is, $\not\vdash C, D > 0$ such that $|C| |X| |_{L_1} \leq ||X||_{L_\infty} \leq D||X||_{L_1}$

Assume to the contrary that such C and D exist. Define a sequence Y by $Y_i \equiv 1$. Then $\|Y\|_{L_1} = \infty$ and $\|Y\|_{L_\infty} = 1$, and it is obvious our inequality cannot hold,