Limits

Limits for Continuous Functions

- Suppose two functions f,g:[a,b] o R have limits $k\in R$ and $l\in R$ respectively at $x_0\in [a,b]$
 - $f\pm g$ has limit $k\pm l$ at x_0
 - The product $f.\,g$ has limit kl at x_0
 - If l
 eq 0, then f/g has limit k/l at x_0

The sequence $(a_n)_{n\geq 1}$ converges in R on $a\in R$ is written as:

$$\lim_{n o\infty}a_n=a$$

 a_n diverges to ∞ or a_n converges in $R \cup \infty$ is written as:

$$\lim_{n o\infty}a_n=\infty$$