Inteligência Artificial Lista 4

Pontificia Universidade Católica - Ciência da Computação

Prof^a Cristina Neri Nobre Camila Moreira Lopes

1.)

Análise singular do modelo de Árvore de Decisão

Imagem 1 - Matriz de Confusão ao implementar o modelo de Árvore de Decisão com dados desbalanceados

Imagem 3 - Matriz de Confusão ao implementar o modelo de Árvore de Decisão com dados balanceados por undersampling

Imagem 5 - Matriz de Confusão ao implementar o modelo de Árvore de Decisão com dados balanceados por oversampling

	precision	recall	f1-score	support
no-recurrence-events	0.69	0.86	0.77	36
recurrence-events	0.62	0.36	0.77	22
recurrence-events	0.02	0.50	0.46	22
accuracy			0.67	58
macro avg	0.65	0.61	0.61	58
weighted avg	0.66	0.67	0.65	58

Imagem 2 - Tabela com métricas de avaliação ao implementar o modelo de Árvore de Decisão com dados desbalanceados

	precision	recall	f1-score	support
no-recurrence-events recurrence-events	0.63 0.40	0.67 0.36	0.65 0.38	36 22
accuracy macro avg weighted avg	0.52 0.54	0.52 0.55	0.55 0.51 0.55	58 58 58

Imagem 4 - Tabela com métricas de avaliação ao implementar o modelo de Árvore de Decisão com dados balanceados por undersampling

		precision	rec	all	f1-score	support
	urrence-events	0.63	0		0.65	36
	urrence-events	0.40	0		0.38	22
	accuracy				0.55	58
	macro avg	0.52	0		0.51	58
	weighted avg	0.54	0		0.55	58
_						

Imagem 6 - Tabela com métricas de avaliação ao implementar o modelo de Árvore de Decisão com dados balanceados por oversampling

Podemos observar que na Árvore de Decisão as métricas possuem tendências para o conjunto de dados desbalanceados, significando que o nesse caso o uso de balanceamento prejudicou o treinamento e não o oposto esperado.

Análise singular do modelo de Naive Bayes

Imagem 7 - Matriz de Confusão ao implementar o modelo de Naive Bayes com dados desbalanceados

	precision	recall	f1-score	support
no-recurrence-events recurrence-events	0.76 0.71	0.86 0.55	0.81 0.62	36 22
accuracy macro avg weighted avg	0.73 0.74	0.70 0.74	0.74 0.71 0.73	58 58 58

Imagem 8 - Tabela com métricas de avaliação ao implementar o modelo de Naive Bayes com dados desbalanceados

Imagem 9 - Matriz de Confusão ao implementar o modelo de Naive Bayes com dados balanceados por undersampling

	precision	recall	f1-score	support
no-recurrence-events	0.78	0.86	0.82	36
recurrence-events	0.72	0.59	0.65	22
accuracy			0.76	58
macro avg	0.75	0.73	0.73	58
weighted avg	0.75	0.76	0.75	58

Imagem 10 - Tabela com métricas de avaliação ao implementar o modelo de Naive Bayes com dados balanceados por undersampling

Imagem 11 - Matriz de Confusão ao implementar o modelo de Naive Bayes com dados balanceados por oversampling

	precision	recall	f1-score	support
no-recurrence-events recurrence-events	0.76 0.56	0.69 0.64	0.72 0.60	36 22
accuracy macro avg weighted avg	0.66 0.68	0.67 0.67	0.67 0.66 0.68	58 58 58

Imagem 12 - Tabela com métricas de avaliação ao implementar o modelo de Naive Bayes com dados balanceados por oversampling

Pode ser observado que o uso do balanceamento undersampling foi de grande importância para ocorrer uma melhora no treinamento.

Análise singular do modelo de Random Forest

Imagem 1 - Matriz de Confusão ao implementar o modelo de Árvore de Decisão com dados desbalanceados

Imagem 2 - Tabela com métricas de avaliação ao implementar o modelo de Árvore de Decisão com dados desbalanceados

Imagem 3 - Matriz de Confusão ao implementar o modelo de Árvore de Decisão com dados balanceados por undersampling

	precision	recall	f1-score	support
no-recurrence-events recurrence-events	0.72	0.92	0.80	36
	0.75	0.41	0.53	22
accuracy			0.72	58
macro avg	0.73	0.66	0.67	58
weighted avg	0.73	0.72	0.70	58

Imagem 4 - Tabela com métricas de avaliação ao implementar o modelo de Árvore de Decisão com dados balanceados por undersampling

Imagem 3 - Matriz de Confusão ao implementar o modelo de Árvore de Decisão com dados balanceados por oversampling

	precision	recall	f1-score	support
no-recurrence-events recurrence-events	0.71 0.69	0.89 0.41	0.79 0.51	36 22
accuracy macro avg	0.70	0.65	0.71 0.65	58 58
weighted avg	0.70	0.71	0.69	58

Imagem 4 - Tabela com métricas de avaliação ao implementar o modelo de Árvore de Decisão com dados balanceados por oversampling

Igualmente ao Naive Bayes, no modelo Random Forest o uso de balanceamento undersampling aprimorou o treinamento e demonstrou que o desbalanceamento neste caso prejudicou significativamente.

Análise geral

Foi demonstrado que o modelo Naive Bayes foi o mais compatível para a análise do banco de dados de câncer de mama, apresentando as melhores métricas na precisão e no f1-score. Já na métrica recall, também se apresentou o mais compatível juntamente ao modelo Random Forest.

Assim, é possível concluir que o balanceamento undersampling se adaptou melhor aos modelos Naive Bayes e Random Forest, sendo o primeiro o que apresentou melhores resultados no treinamento

obs.: as duas outras questões presentes foram feitas a partir da aplicação para solucionar a questão anterior, logo a resposta está presente no arquivo ipynb.