Average Power, Power factor, Complex Number Intro

- Average Power and Power Factor
 - Intro and background
 - Instantaneous vs average power
 - Average power delivered (R,L,C)
 - Power factor definition
 - □ ICP Average power and power factor
- Lab #2 Capacitor Charge and Discharge
 - □ Overview and prelab discussion
- Complex Numbers
 - Introduction and forms
 - □ R->P, P-R conversions
 - Math with complex numbers

Power Delivered to a Load by A Sinusoidal Forcing Function

$$i = I_m \sin (\omega t + \theta_i)$$
 $P \longrightarrow +$
 $v = V_m \sin (\omega t + \theta_v)$

Load

FIG. 14.28 Determining the power delivered in a sinusoidal ac network.

$$\rho(x) = N(x) i(x) = V_m I_m S_{IN}(WX + \theta_i) S_{IN}(WX + \theta_i)$$

$$B_{U+}: S_{IN}(\lambda) S_{IN}(\beta) = \frac{1}{2} \left[C_{0S}(\lambda - \beta) - C_{0S}(\lambda + \beta) \right]$$

$$\stackrel{\circ}{\circ} \circ \rho(x) = V_m I_m \left[C_{0S}(WX + \theta_V - WX + \theta_i) - C_{0S}(WX + \theta_V + WX + \theta_i) \right]$$

$$= V_m I_m \left[C_{0S}(\Theta_V - \theta_i) - C_{0S}(\lambda WX + \Theta_V + \Theta_V + \theta_i) \right]$$

Power Delivered to a Load by A Sinusoidal Forcing Function

$$i = I_m \sin(\omega t + \theta_i)$$
 $P \longrightarrow +$
 $v = V_m \sin(\omega t + \theta_v)$

Load

-

FIG. 14.28 Determining the power delivered in a sinusoidal ac network.

$$= \frac{V_{m}I_{m}}{2} \left[Cos \left(\Theta v - \Theta i \right) - Cos \left(2WX + \Theta v + \Theta i \right) \right]$$

$$OP = \frac{V_{m}I_{m}}{P(S)} = \frac{V_{m}I_{m}}{Cos \left(\Theta v - \Theta i \right)} - \frac{V_{m}I_{m}}{2} Cos \left(2WX + \Theta v + \Theta i \right) \right]$$

$$F/XED = \frac{V_{m}I_{m}}{2} \left[\frac{V_{m}I_{m}}{V_{m}V_{m}V_{m}} Cos \left(2WX + \Theta v + \Theta i \right) \right]$$

Power Delivered to a Load by A Sinusoidal Forcing Function

FIG. 14.29 Defining the average power for a sinusoidal ac network.

PAUE = VMIM COS(A) WATTS
$$\Theta = |\Theta v - \Theta i|$$

Average Power for R,L,C

$$P_{AVE} = \underbrace{Vm Im}_{2}$$

$$BUT Vm = V_{RMS} \cdot \sqrt{2}$$

$$+ Im = I_{RMS} \cdot \sqrt{2}$$

INDUCTOR

CAPACITOR

DOWER FACTOR POWER FACTOR = $\left[\frac{F_p}{F_p} = \cos(\theta)\right]$ WHERE $\theta = |\theta_v - \theta_i|$ RECALL: PAVE = VRMS IRMS COS(0) ° (Cos(Q) = Fp = PAVE VAMS IRMS Fp: 0 > PURELY REACTIVE LOAD, NO POWER DELIVERED -> PURELY RESISTIVE LOAD, MAX POWER DELIVERED WE LOOK AT THE CURRENT THROUGH THE LOAD : > IF i(x) LENDS V(x), LEADING POWER FACTOR E > IF i(I) LAGS V(I), LAGGING POWER FACTOR CAPACITAUE INDUCTIVE

ICPs – Pave and Power Factor

A CIRCUIT DISSIPATES 100W (PAVE) AT 150V (VEFF) + 2A (IEFF).

(1) FIND: THE POWER FACTOR

(2) 15 THE LOAD RESISTIVE, REACTIVE OR BOTH? FIND $\Theta = |\Theta v - \Theta_i|$ IN DECREES

(3) CAN WE TELL IF THE LOPD IS INDUCTIVE OR CAPACITIVE IN NATURE WITH THE GIVEN INFO!

Lab #2 – Capacitor Charge and Discharge

Figure 1 - RC Charge and Discharge Circuit

Charge Simulation

Discharge Simulation

Lab #2 – Capacitor Charge and Discharge

Charge in Excel

Charge Simulation

Charge in Lab

Lab #2 – Capacitor Charge and Discharge Discharge in Simulation

Discharge in Excel

Discharge in Lab

Complex Numbers – Definition and Intro

COMPLEX NUMBER

1.2 Polan / RECTANGULAR CONVERSIONS

QUADRANT I

$$\frac{B-P}{b} = a + ib$$
, $a + b$ ANE POSITIVE

 $C = \sqrt{a^2 + b^2}$, MAGNITURE

 $C = \sqrt{a} = b/a$
 $C = \sqrt{a} = b$

٠,

Electrical Engineering Technology

Complex Numbers – Definition and Intro

2. j3 = -1.

1.4 = 1.

1.5 = j

COMPLEX NUMBER PLANE

MADE WITH THE RE AXIS (COUNTERCLOCKHISE,

$$Z = \frac{P \rightarrow R}{C \times \Theta}$$

Complex Numbers – On the Sharp EL-516

Mathematical operations (rectangular mode)

Complex Numbers – On the Sharp EL-516

Mathematical operations (polar form – think VECTORS)

See our text for more examples, addition/subtraction are is easier in rectangular form and multiplication/division is easier in polar form