exercice 1

ercice 2

Exercice 3

Exercices RIP Correction

Christophe Viroulaud

Terminale - NSI

Archi 12

Sommaire

Exercices RIP Correction

Exercice 1

ercice 2

- 1. Exercice 1
- 2. Exercice 2
- 3. Exercice

Exercice 1

xercice 2

xercice 3

Remarque

Selon la littérature les notations des interfaces et passerelles sont variables. Pour chaque interface le routeur possède une adresse IP appartenant au réseau auquel il est connecté.

Exercice 1

xercice 2

ercice 3

- **▶** 18.13.0.0/16
- **▶** 192.168.0.0/16
- **▶** 19.20.1.0/24

Exercice 1

Exercice 2

Exercice 3

Destination	Passerelle	Interface	Distance
192.168.0.0/16		192.168.0.1	1
18.13.0.0/16	192.168.0.254 (R2)	192.168.0.1	2
19.20.1.0/24	192.168.0.254 (R2)	192.168.0.1	2

Tableau 1 – Table de routage de R1

Sommaire

Exercices RIP Correction

Exercice 1

Exercice 2

xercice 3

- 1. Exercice 1
- 2. Exercice 2
- 3. Exercice 3

xercice 1

Exercice 2

xercice 3

Remarque

Dans cet exercice, la destination à atteindre n'est pas un réseau mais un routeur.

xercice 3

Pour atteindre G on lit les tables de routage :

- ► table A : Vecteur (C,3),
- ► table C : Vecteur (F,2),
- ► table F : Vecteur (G,1)

Soit une distance de 6 pour un trajet : A \rightarrow C \rightarrow F \rightarrow G.

Destination	Routeur suivant (Passerelle)	Distance
А	E	3
В	E	3
С	E	2
D	E	2
E	E	1
F	F	1

Tableau 2 – Table de routage de G

Remarque

Pour atteindre A et C il est possible de passer par F.

kercice 2

Exercice 3

- 1. Exercice :
- 2. Exercice 2
- 3. Exercice 3

Exercice 1

Exercice 2

Exercice 3

Phase d'initialisation

Destination	Passerelle	Interface	Distance
С		eth1	1
В		eth0	1

Extrait de table pour atteindre G

Exercice 2
Exercice 3

·

Extrait de la table	Destination	Passerelle	Interface	Distance
А	G	В	eth0	3
В	G	F	eth0	2
С	G	В	eth2	3
D	G	Е	eth1	3
Е	G	F	eth1	2
F	G		eth1	1

exercice 1

xercice 2

Exercice 3

B envoie une route infinie soit le vecteur (G,16). Le maximum de sauts est 15 avec le protocole RIP.

- ▶ Les routeurs A et C reçoivent une route existante plus longue; cela signifie qu'un problème est apparu. Ils mettent leur table à jour : pour G ils enregistrent la route (B, 16).
- ▶ Le routeur D reçoit une nouvelle route plus longue vers G : il l'ignore.
- ► Le routeur C possède la route (B, 16) vers G. Il la remplace par (D, 4).

xercice 1

xercice 2

Exercice 3

Le routeur C envoie le vecteur (G, 4) à A (et à B). Ces routeurs mettent leur route vers G à jour avec le vecteur (C, 5).