Making Predictions with the Standardized Coefficients

For these lessons we will need NumPy, pandas, matplotlib and seaborn import pandas as pd

Load the data

SAT Rand 1,2,3 GPA

from sklearn.linear model import LinearRegression

data = pd.read csv('1.02. Multiple linear regression.csv')

GPA

3.330238

0.271617

2.400000

3.190000

3.380000

3.502500

3.810000

Declare the dependent and independent variables

Create the multiple linear regression

In [4]: # There are two independent variables: 'SAT' and 'Rand 1,2,3'

84.000000 84.000000

2.059524

0.855192

1.000000

1.000000

2.000000

3.000000

3.000000

and a single dependent variable: 'GPA'

In [6]: # Create an instance of the StandardScaler class

from sklearn.preprocessing import StandardScaler

StandardScaler(copy=True, with mean=True, with std=True)

Let's store it in a new variable, named appropriately

In [8]: # The actual scaling of the data is done through the method 'transform()'

x = data[['SAT', 'Rand 1, 2, 3']]

In [2]: # Load the data from a .csv in the same folder

Let's explore the top 5 rows of the df

1 2.40

3 2.52

3 2.54

3 2.74

2 2.83

SAT Rand 1,2,3

Libraries

sns.set()

and of course the actual regression (machine learning) module

import numpy as np import matplotlib.pyplot as plt import seaborn as sns

data.head()

0 1714

1 1664

2 1760

3 1685

4 1693

count

min

data.describe()

mean 1845.273810

25% 1772.000000

50% 1846.000000

75% 1934.000000

max 2050.000000

y = data['GPA']

scaler.fit(x)

In [9]: # The result is an ndarray

x scaled

Out[7]:

Standardization

In [5]: # Import the preprocessing module

scaler = StandardScaler()

x scaled = scaler.transform(x)

array([[-1.26338288, -1.24637147],

[-1.74458431, 1.10632974], [-0.82067757, 1.10632974],[-1.54247971, 1.10632974], [-1.46548748, -0.07002087],[-1.68684014, -1.24637147],[-0.78218146, -0.07002087],[-0.78218146, -1.24637147],[-0.51270866, -0.07002087],[0.04548499, 1.10632974], [-1.06127829, 1.10632974], [-0.67631715, -0.07002087],[-1.06127829, -1.24637147],[-1.28263094, 1.10632974], [-0.6955652, -0.07002087],[0.25721362, -0.07002087],[-0.86879772, 1.10632974],[-1.64834403, -0.07002087],[-0.03150724, 1.10632974],[-0.57045283, 1.10632974],[-0.81105355, 1.10632974],[-1.18639066, 1.10632974], [-1.75420834, 1.10632974], [-1.52323165, -1.24637147],[1.23886453, -1.24637147], [-0.18549169, -1.24637147],[-0.5608288, -1.24637147],[-0.23361183, 1.10632974],[1.68156984, -1.24637147], [-0.4934606, -0.07002087],[-0.73406132, -1.24637147],[0.85390339, -1.24637147],[-0.67631715, -1.24637147],[0.09360513, 1.10632974], [0.33420585, -0.07002087],[0.03586096, -0.07002087], [-0.35872421, 1.10632974],[1.04638396, 1.10632974], [-0.65706909, 1.10632974],[-0.13737155, -0.07002087],[0.18984542, 1.10632974], [0.04548499, -1.24637147],[1.1618723 , 1.10632974], [-1.37887123, -1.24637147],[1.39284898, -1.24637147], [0.76728713, -0.07002087],[-0.20473975, -0.07002087],[1.06563201, -1.24637147], [0.11285319, -1.24637147],[1.28698467, 1.10632974], [-0.41646838, 1.10632974],[0.09360513, -1.24637147],[0.59405462, -0.07002087],[-2.03330517, -0.07002087],[0.32458182, -1.24637147],[0.40157405, -1.24637147],[-1.10939843, -0.07002087],[1.03675993, -1.24637147], [-0.61857297, -0.07002087],[0.44007016, -0.07002087],[1.14262424, -1.24637147], [-0.35872421, 1.10632974],[0.45931822, 1.10632974], [1.88367444, 1.10632974], [0.45931822, -1.24637147],[-0.12774752, -0.07002087],[0.04548499, 1.10632974], [0.85390339, -0.07002087],[0.15134931, -0.07002087],[0.8250313 , 1.10632974], [0.84427936, 1.10632974], [-0.64744506, -1.24637147],[1.24848856, -1.24637147], [0.85390339, 1.10632974], [1.69119387, 1.10632974], [1.6334497 , 1.10632974], [1.46021718, -1.24637147], [1.68156984, -0.07002087], [-0.02188321, 1.10632974],[0.87315144, 1.10632974], [-0.33947615, -1.24637147],[1.3639769 , 1.10632974], [1.12337618, -1.24637147], [1.97029069, -0.07002087]])

Regression with scaled features

LinearRegression(copy_X=True, fit_intercept=True, n jobs=1, normalize=False)

reg summary = pd.DataFrame([['Bias'],['SAT'],['Rand 1,2,3']], columns=['Features'])

reg summary['Weights'] = reg.intercept , reg.coef [0], reg.coef [1]

create and fill a second column, called 'Weights' with the coefficients of the regression

Making predictions with the standardized coefficients (weights)

new data = pd.DataFrame(data=[[1700,2],[1800,1]],columns=['SAT','Rand 1,2,3'])

In [16]: # We can make a prediction for a whole dataframe (not a single value)

In [17]: # Our model is expecting SCALED features (features of different magnitude)

We simply transform the 'new data' using the relevant method

Luckily for us, this information is contained in the 'scaler' object

What if we removed the 'Random 1,2,3' variable?

Since the standardized coefficients are called 'weights' in ML, this is a much better word choice for our cas

In fact we must transform the 'new data' in the same way as we transformed the inputs we train the model on

In [20]: # Theory suggests that features with very small weights could be removed and the results should be identical

Once more, we must reshape the inputs into a matrix, otherwise we will get a compatibility error

In [21]: # In a similar manner to the cell before, we can predict only the first column of the scaled 'new data'

Let's create a simple linear regression (simple, because there is a single feature) without 'Rand 1,2,3'

Moreover, we proved in 2-3 different ways that 'Rand 1,2,3' is an irrelevant feature

Note that instead of standardizing again, I'll simply take only the first column of x

LinearRegression(copy X=True, fit intercept=True, n jobs=1, normalize=False)

Note that we also reshape it to be exactly the same as xreg simple.predict(new data scaled[:,0].reshape(-1,1))

In [10]: # Creating a regression

coefficients

reg.intercept

3.330238095238095

reg.coef

In [12]: # intercept

In [14]: reg_summary

0

Features

new data

0 1700

1 1800

Bias

2 Rand 1,2,3 -0.007030

SAT Rand 1,2,3

reg.predict(new data)

Let's check the result

new data scaled

Weights

3.330238

In [15]: # a new dataframe with 2 *new* observations

array([295.39979563, 312.58821497])

array([[-1.39811928, -0.07002087],

reg.predict(new data scaled)

array([3.09051403, 3.26413803])

reg simple = LinearRegression()

Finally, we fit the regression reg_simple.fit(x_simple_matrix,y)

array([3.08970998, 3.25527879])

new data scaled = scaler.transform(new data)

[-0.43571643, -1.24637147]])

In [18]: # Finally we make a prediction using the scaled new data

 $x_{simple_matrix} = x_{scaled[:,0].reshape(-1,1)}$

SAT 0.171814

Out[10]:

In [11]:

Out[11]:

Out[12]:

Out[14]:

Out[15]:

Out[16]:

Out[17]:

Out[18]:

Out[20]:

Out[21]:

reg = LinearRegression()

reg.fit(x scaled,y)

inputs are the 'scaled inputs'

array([0.17181389, -0.00703007])

Creating a summary table

In [13]: # create a new data frame with the names of the features

84.000000

104.530661

1634.000000

Out[2]:

In [3]:

Out[3]: