Q1)
$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} \text{ by definition}$$

$$= \frac{1}{n-1} \sum_{i=1}^{n} (X_{i}^{2} - 2X_{i} \overline{X} + \overline{X}^{2})$$

$$= \frac{1}{n-1} \left[\sum_{i=1}^{n} X_{i}^{2} - 2\overline{X} \sum_{i=1}^{n} X_{i} + n \overline{X}^{2} \right]$$

$$= \frac{1}{n-1} \left[\sum_{i=1}^{n} X_{i}^{2} - n \overline{X}^{2} \right]$$

$$= \frac{1}{n(n-1)} \left[n \sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i} \right)^{2} \right] \sum_{i=1}^{n} x_{i} = n \overline{X}$$

$$= \frac{1}{n(n-1)} \left[n \sum_{i=1}^{n} X_{i}^{2} - \left(\sum_{i=1}^{n} X_{i} \right)^{2} \right] \sum_{i=1}^{n} x_{i} = n \overline{X}$$
(Shown)

Given:
$$\leq x_i^2 = 171$$

 $\leq x_i = 31$
 $n = 6$

$$S^{2} = \frac{1}{(6)(5)} \left[(6)(171) - (31)^{2} \right] = \frac{65}{30} = \frac{13}{6}$$

Q2 (i)
$$E[X] = E[\frac{X_1 + X_2 + \dots + X_N}{N}]$$

$$= \frac{1}{N} \left[E[X_1] + E[X_2] + \dots + E[X_N] \right]$$

$$= \frac{1}{N} \left[NM \right] = M \quad (Shown)$$
(ii) $Var[X] = Var[\frac{X_1 + X_2 + \dots + X_N}{N}]$

$$= \frac{1}{N^2} \left[Var(X_1) + Var(X_2) + \dots + Var(X_N) \right] \quad (i \neq j) \text{ and } i \neq j \text{ and$$

Remark: This method is easier than using the definition $Var[X] = E[(X-\mu)^2]$ which we cover in class.

(iii)
$$E(S^{2}) = E\left(\frac{1}{N-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}\right)$$

 $= \frac{1}{N-1} \sum_{i=1}^{n} E\left[(X_{i} - \bar{X})^{2}\right]$ (1)
We first consider $E\left[(X_{i} - \bar{X})^{2}\right]$; $i = 1, 2, ..., n$.
 $(X_{i} - \bar{X})^{2} = X_{i}^{2} - 2X_{i}\bar{X} + \bar{X}^{2}$
 $= X_{i}^{2} - 2X_{i} \left[\frac{X_{1} + X_{2} + ... + X_{n}}{n}\right] + \left[\frac{X_{1} + X_{2} + ... + X_{n}}{n}\right]^{2}$
 $= X_{i}^{2} - \frac{2}{n} X_{i} (X_{1} + X_{2} + ... + X_{n}) + \frac{1}{N^{2}} \left(\frac{N}{N-1} X_{i}^{2} + \frac{N}{N-1} X_{i}^{2} X_{i}^{2}\right)$

Taking expectation,

$$E[(X_i - \bar{X})^2]$$

$$= E[X_{i}^{2}] - \frac{2}{N} \{ E[X_{i}^{2}] + \underbrace{E[X_{i}^{2}]}_{j=1}^{2} + \underbrace{E[X_{i}^{2}]$$

① Random variables are independent.
$$E[X_iX_j] = E[X_i]E[X_j] ; i \neq j$$
②
$$Var(X_i) = E(X_i^2) - [E(X_i)]^2 \Rightarrow E(X_i^2) = 6^2 + \mu^2$$

(2)
$$Var(X_i) = E(X_i^2) - [E(X_i)]^2 \Rightarrow E(X_i^2) = 6^2 + \mu^2$$

$$= (\sigma^{2} + \mu^{2}) - \frac{2}{n} \{ (\sigma^{2} + \mu^{2}) + (n-1)\mu^{2} \} + \frac{1}{n^{2}} \{ n(\sigma^{2} + \mu^{2}) + (n^{2} - n)\mu^{2} \}$$

$$= \left(\sigma^{2} - \frac{2}{n}\sigma^{2} + \frac{1}{n}\sigma^{2}\right) + \left(\mu^{2} - 2\mu^{2} + \mu^{2}\right)$$

$$= \frac{n-1}{n}\sigma^{2}; \quad i = 1, 2, ..., n$$

Substituting into (1),

$$E(S^2) = \frac{1}{MT} (M) \left[\frac{MT}{M} \sigma^2 \right) = \sigma^2$$
 (Shown)

Alternative Solution

we consider
$$Var(X_i - \overline{X})$$
 first.

$$Var(X_{i}-X)=Var(X_{i})+Var(X)-2Cov(X_{i},X)$$

$$= \sigma^{2}+\frac{\sigma^{2}}{n}-2Cov(X_{i},\frac{Z_{i}X_{i}}{n})$$

$$||Cov(X_{i},X_{i})|=Var(X_{i})$$

$$||Cov(X_{i},X_{i})|=0 \text{ by independence}$$

$$= \sigma^2 + \frac{\sigma^2}{n} - \frac{2}{n} \sigma^2 = \frac{n-1}{n} \sigma^2$$

$$Var(X_i - \bar{X}) = E[(X_i - \bar{X})^2] - [E(X_i - \bar{X})]^2$$

1)
$$Var(X; -\overline{X}) = \frac{N-1}{N} o^{-2}$$

1)
$$Var(X_i - \bar{X}) = \frac{n-1}{n} \sigma^2$$

2) $E(X_i - \bar{X}) = E(X_i) - E(\bar{X}) = \mu - \mu = 0$

$$\int_{0}^{\infty} E[(X_{i} - \bar{X})^{2}] = Var(X_{i} - \bar{X}) + [E(X_{i} - \bar{X})]^{2}$$

$$= \frac{n-1}{n} 6^{2} + 0$$

$$= \frac{n-1}{n} 6^{2}$$

$$= \frac{n-1}{n} 6^{2}$$

$$= \frac{1}{2}, ..., n$$

$$E(S^{2}) = \frac{1}{n-1} \sum_{i=1}^{n} E[(X_{i} - \overline{X})^{2}]$$

$$= \frac{1}{n-1} \left(\frac{1}{n} \sum_{i=1}^{n} e^{2} \right) = 6^{2} \quad (shown)$$

$$\frac{\overline{X} - \mu}{S/5n} = \frac{\overline{X} - \mu}{S/6}$$

= X-11

$$0/\sqrt{N}$$

 $\sqrt{\frac{S^2}{6^2}}$

Let
$$Z = \frac{\overline{X} - \mathcal{U}}{\overline{S} \sqrt{N(0, 1)}}$$
 Z and $V = \frac{(n-1)S^2}{\overline{S}^2} \sim \chi^2_{n-1}$ Independent

$$= \frac{Z}{\sqrt{N-1}} \sim t_{n-1}$$
 (shown)

From Q1) $S^2 = \frac{1}{n-1} \left[\sum_{i=1}^n X_i^2 - n \overline{X}^2 \right]$

2

pg 5a

Taking expectation,

$$E[S^{2}] = \frac{1}{n-1} E\left[\sum_{i=1}^{n} X_{i}^{2} - nX^{2}\right]$$

$$= \frac{1}{n-1} \left[\sum_{i=1}^{n} E[X_{i}^{2}] - nE[X^{2}]\right]$$

$$= \frac{1}{n-1} \left[\sum_{i=1}^{n} E[X_{i}^{2}] - E[X_{i}]\right]^{2}$$

$$\Rightarrow E[X_{i}^{2}] = G^{2} + \mu^{2}$$

$$\forall ar[X] = E[X^{2}] - (E[X])^{2}$$

$$\Rightarrow E[X^{2}] = \frac{G^{2}}{n} + \mu^{2}$$

$$= \frac{1}{n-1} \left[\sum_{i=1}^{n} (G^{2} + \mu^{2}) - n(G^{2} + \mu^{2})\right]$$

$$= \frac{1}{n-1} \left[nG^{2} + n\mu^{2}\right]$$

$$X \sim \chi_{n}^{2}$$

 $Y \sim \chi_{n_{2}}^{2}$

then
$$\frac{X/n_1}{Y/n_2} \sim F_{n_1, n_2}$$
.

In our case,
$$X = \frac{V/n}{W/m}$$
 where $V = \frac{V}{N} \frac{V}{m} \frac{V_{1} V_{2}}{W^{2}}$ independent and $X \sim F_{n,m}$.

Now,
$$X^{-1} = \frac{W/m}{V/n} \sim F_{m,n} \times (shown)$$

(ii) If Z and V are independent random variables
Such that

$$V \sim \chi_n^2$$

then
$$T = \frac{Z}{\sqrt{y_n}} \sim t_n$$

Now
$$T^2 = \frac{Z^2}{V/n}$$
 where $Z^2 n \chi_1^2$

$$= \frac{Z^2/1}{V/n} \sim F_{1,n} \chi_1^2 \text{ (shown)}.$$

X ~ unknown distribution

$$P(\bar{X} > 30)$$

$$= P(\frac{\bar{x}-28}{\sqrt{25/40}} > \frac{30-28}{\sqrt{25/40}})$$

$$= P(Z > 2.53)$$

$$= 1 - P(Z \leq 2.53)$$

$$= 1 - 0.9943$$

$$= 0.0057$$

X

$$P(|\bar{X}-\mu|<0.05)=0.99$$

$$\Rightarrow P\left(\frac{-0.05}{\sqrt{y_n}} < \frac{\overline{x} - \mu}{\sqrt{y_n}} < \frac{0.05}{\sqrt{y_n}}\right) = 0.99$$

$$\Rightarrow P\left(\frac{-0.05}{JVn} < Z < \frac{0.05}{JVn}\right) = 0.99 \quad \text{Where} \\ Z \sim N(0,1)$$

From statistical table, P(Z < 2.575)=0.995

Equating,
$$2.575 = \frac{0.05}{\sqrt{h}}$$

$$\Rightarrow \frac{1}{n} = 3.770 \times 10^{-4}$$

I round up so that In decreases. As a result, the regd probability is slightly bigger than 0.99

$$A = 6.5$$
 $M_{B} = 6.0$
 $C_{A} = 0.9$
 $C_{B} = 0.8$
 $C_{A} = 36$
 $C_{B} = 49$

XA-XB~ unknown distribution

$$\overline{X}_{A}-\overline{X}_{B} \sim N(6.5-6.0, \frac{0.9^{2}}{36}+\frac{0.8^{2}}{49})$$
 by CLT. i.e. $N(0.5, 0.189^{2})$

$$P(\bar{X}_A - \bar{X}_B \ge 1.0)$$

$$= P\left(\frac{(\bar{X}_A - \bar{X}_B) - 0.5}{0.189} > \frac{1.0 - 0.5}{0.189}\right)$$

$$= P(Z \geqslant 2.65)$$

Let X be weight of a carron.

Required region is shaded region.

Proportion =
$$2P(X > 10.5)$$

= $2(1 - P(X \le 10.5))$
= $2(1 - P(X = 10.5 - 9))$
= $2(1 - P(Z \le 1.5))$
= $2(1 - 0.9332)$
= 0.1336

(ii) Now
$$X \sim N(9, \sigma^2)$$
. We want $P(7.5 \leq X \leq 10.5) = 0.99$

$$\Rightarrow$$
 $P(\frac{7.5-9}{6} \le \frac{X-9}{6} \le \frac{10.5-9}{6}) = 0.99$

$$\Rightarrow P\left(\frac{-1.5}{\sigma} \le Z \le \frac{1.5}{\sigma}\right) = 0.99$$

From statistical table,
$$\frac{1.5}{6} = 2.575$$

$$\Rightarrow 6 = \frac{1.5}{2.575} \approx 0.5825$$

Q8) Given: n=15, $T \sim t_{14}$ From statistical table, $P(T \ge 1.761) = 0.05$

T~t,4 By symmetry,
$$P(T<-1.761)=0.05 -(1)$$
1.761 Also, $P(K$

Also,
$$P(K < 1 < -1.761)$$

= $P(T < -1.761) - P(T \le k)$

So we have

$$P(T<-1.761)-P(T\leq k)=0.045$$
 —(2)

Substituting (1) into (2):

$$P(T \le k) = 0.05 - 0.045 = 0.005$$

Trt₁₄
By symmetry,
$$P(T \ge -k) = 0.005$$

From statistical table, -k = 2.977

Hence
$$k = -2.977$$

Q9) Given:
$$N_1 = 25$$
 $N_2 = 31$
 $\sigma_1^2 = 10$ $\sigma_2^2 = 15$
normality normality

$$P\left(\frac{S_1^2}{S_2^2} > 1.26\right) = P\left(\frac{\sigma_2^2 S_1^2}{\sigma_1^2 S_2^2} > \left(\frac{\sigma_2^2}{\sigma_1^2}\right) 1.26\right)$$

$$= P\left(W > 1.89\right) \text{ where }$$

$$W \sim F_{24,30}$$

$$= 0.05 \text{ from statistical table}$$

a. frequency distribution

Class	Frequency
12<22	6
22<32	2
32<42	9
42<52	3
52<62	4
62<72	4

b. histogram

c. ogive

d. stem-and-leaf display

- S L
- 1 23557
- 2 148
- 3 2567799
- 4 0144
- 5 14699
- 6 2455

11)

				c.
			b.	Cumulative
		a. Relative	Cumulative	Relative
Classes	Frequency	Frequency	Frequency	Frequency
0<10	8	16.33%	8	16.33%
10<20	10	20.41%	18	36.74%
20<30	13	26.53%	31	63.27%
30<40	12	24.49%	43	87.76%
40<50	6	12.24%	49	100.00%
Total	49	100.00%		

12)

a. Draw a histogram of 20 forecasted earnings per share.

Answer to b., c. and d. are:

	(b)	(c)	(d)
Frequency	Relative Freq.	Cumulative Freq.	Cumulative %
2	0.1	2	10.00%
8	0.4	10	50.00%
6	0.3	16	80.00%
3	0.15	19	95.00%
1	0.05	20	100.00%

d. Cumulative relative frequencies are in the last column of the table above. These numbers indicate the percent of analysts who forecast that level of earnings per share and all previous classes, up to and including the current class. The third bin of 80% indicates that 80% of the analysts have forecasted up to and including that level of earnings per share.

Cluster bar chart for impact of SOX 45

■ Little or no impact ■ Moderate to very major impact

14)

a. Cross table

Type of Account	Male	Female	Subtotal
Easy Checking	80	100	180
Intelligent Checking	12	24	36
Super Checking	27	27	54
Ultimate Checking	24	6	30
Subtotal	143	157	300

b. Stacked bar chart

