Chapter 20-- Nomenclature sec 20.1

Note bp data, p 1009 Table 20.1; Note pKa data, p 1010 Table 20.2; IR C=O stretch table 20.3

Note: NMR data Table 20.4

DERIVATIVES OF CARBOXYLIC ACIDS:

Cl Cl HO OH
$$H_2N$$
 NH_2 HO NH_2 phosgene carbonic acid urea carbamic acid H_2N H_2N H_3N H_4N H_5N H_5N H_5N H_6N H_6N

READ: Nomenclature, text 19.1

Caboxylic Acids:

Dominant feature: acidity and influence of structure on acidity. You know all of this stuff.

Structure:

Dominant reaction:

Accelerated by acid and base

$$OH OH O* = {}^{17}O$$

Mechanism: 2

Not very interesting for carboxylic acids; not even noticeable unless the water is labeled.

BUT: a major reaction with other nucleophiles. Addition/elimination

$$Nu$$
:, H
 Nu :, H
 Nu :, H
 Nu : Nu : RO -, R_2N -, halide, RS -, etc.

Formation of Esters:

Completely reversible: also serves as a mechanism for hydrolysis of esters to carboxylic acids:

$$R$$
 CH_3 HOH, H R O H $+$ CH_3OH

<u>Drive</u> the reaction by using excess of one or the other of the reactants: e.g., MeOH as solvent to make ester water as solvent to hydrolyze ester

What about reaction under basic conditions?

$$\begin{array}{c} O \\ R \end{array} \begin{array}{c} H \\ + CH_3OH \end{array} \begin{array}{c} base? \\ \hline \\ NaH \\ \hline \\ CH_3O \end{array} \begin{array}{c} O \\ R \end{array} \begin{array}{c} CH_3 \\ + H_2O \end{array}$$

What about amines as the nucleophile? Amide bond formation.

$$R \rightarrow O \rightarrow H + NH_3 \rightarrow O \rightarrow NH_4 \rightarrow NH_2 + H_2O$$
amine salt

need better leaving group

$$R \xrightarrow{O} H + :NH_3 \xrightarrow{H}$$

$$R \stackrel{O}{\longleftarrow} H + :NH_3 \stackrel{O}{\longrightarrow} MO$$

Recall correlation of IR stretching frequencies of C=O with substituent effect, via polar resonance structure (more resonance stabilization, less reactive toward nucleophiles)

A. Addition of stabilized nucleophiles (O, N)

$$R$$
 + H_2O + $H-Cl$

$$\begin{array}{c} O \\ R \\ Cl \end{array} + MeOH \longrightarrow \begin{array}{c} O \\ R \\ OMe \end{array} + H-Cl \\ \\ R \\ Cl \end{array} + \begin{array}{c} O \\ R \\ OMe \end{array} + Cl \\ \\ R \\ Cl \end{array} + Cl \\ \\ R \\ Cl \end{array} + HNMe_2 \longrightarrow \begin{array}{c} O \\ R \\ NMe_2 \end{array} + HCl$$

Aslo:

B. Addition of reactive carbon anions

Same for esters, anhydrides.

But

C. Addition of metal hydrides

$$\begin{array}{c} O \\ R \\ X \end{array} + \begin{array}{c} LiAlH_4 \\ \hline \\ [H_2O] \end{array} \begin{array}{c} H \\ R \\ OH \end{array} \begin{array}{c} Double \ addition \ of \ H \\ Mechanism? \end{array}$$

Analogy with Nitriles:

R—C
$$\equiv$$
N

 H_3O
 H_3

Write mechanisms: multistep

Enolate chemistry of esters: