If A is a complex $n \times n$ matrix, the eigenvalues $\lambda_1, \ldots, \lambda_n$ and the singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$ of A are not unrelated, since

$$\sigma_1^2 \cdots \sigma_n^2 = \det(A^*A) = |\det(A)|^2$$

and

$$|\lambda_1| \cdots |\lambda_n| = |\det(A)|,$$

so we have

$$|\lambda_1|\cdots|\lambda_n|=\sigma_1\cdots\sigma_n.$$

More generally, Hermann Weyl proved the following remarkable theorem:

Theorem 22.6. (Weyl's inequalities, 1949) For any complex $n \times n$ matrix, A, if $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$ are the eigenvalues of A and $\sigma_1, \ldots, \sigma_n \in \mathbb{R}_+$ are the singular values of A, listed so that $|\lambda_1| \geq \cdots \geq |\lambda_n|$ and $\sigma_1 \geq \cdots \geq \sigma_n \geq 0$, then

$$|\lambda_1| \cdots |\lambda_n| = \sigma_1 \cdots \sigma_n$$
 and $|\lambda_1| \cdots |\lambda_k| \le \sigma_1 \cdots \sigma_k$, for $k = 1, \dots, n-1$.

A proof of Theorem 22.6 can be found in Horn and Johnson [96], Chapter 3, Section 3.3, where more inequalities relating the eigenvalues and the singular values of a matrix are given.

Theorem 22.5 can be easily extended to rectangular $m \times n$ matrices, as we show in the next section. For various versions of the SVD for rectangular matrices, see Strang [170] Golub and Van Loan [80], Demmel [48], and Trefethen and Bau [176].

22.4 Singular Value Decomposition for Rectangular Matrices

Here is the generalization of Theorem 22.5 to rectangular matrices.

Theorem 22.7. (Singular value decomposition) For every real $m \times n$ matrix A, there are two orthogonal matrices U ($n \times n$) and V ($m \times m$) and a diagonal $m \times n$ matrix D such that $A = VDU^{\top}$, where D is of the form

$$D = \begin{pmatrix} \sigma_1 & \dots & & & \\ & \sigma_2 & \dots & & \\ \vdots & \vdots & \ddots & \vdots & & \\ & & \dots & \sigma_n \\ 0 & \vdots & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \vdots & \dots & 0 \end{pmatrix} \quad or \quad D = \begin{pmatrix} \sigma_1 & \dots & 0 & \dots & 0 \\ & \sigma_2 & \dots & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & 0 & \vdots & 0 \\ & & \dots & \sigma_m & 0 & \dots & 0 \end{pmatrix},$$