STAT 433: HOMEWORK 3

DANIEL PFEFFER

Problem 1. Consider the following transition matrices. Identify the transient and recurrent states, and the irreducible closed sets in the Markov chains.

(a)	1	2	3	4	5			2				
` /		.3				1	.1	0	0	.4	.5	0
		.5				2	.1	.2	.2	0	.5	0
_	-	0	-		-	3	0	.1	.3	0	0	.6
						4	.1	0	0	.9	0	0
_		.5				5	0	0	0	.4	0	.6
5	0	.3	0	.3	.4	6	0	0	0	0	.5	.5

(c)	1	9	2	1	5	(d)	1	2	3	4	5	6
. /						1	.8	0	0	.2	0	0
1	0	0	0	0	1					0		
2	0	.2	0	.8	0	_	-		-	-		-
3	.1	9	3	4	Ω	3	0	0	.3	.4	.3	O
						4	.1	0	0	.9	0	0
4	0	.6	U	.4	U	5	Ο	2	Ω	0	8	Ο
5	.3	0	0	0	.7	_	-		-	-		-
						6	.7	()	()	.3	()	()

(a) Solution. The directed graph representation is

Since $1 \to 2$ but $2 \not\to 1$, state 1 is transient. Since $5 \to 4$ but $4 \not\to 5$, state 5 is transient. Since $3 \to 2$ but $2 \not\to 3$, state 3 is transient. So, states 2 and 4 are recurrent. The closed irreducible set is $\{2,4\}$.

(b) Solution. The directed graph representation is

Since $2 \to 1$ but $1 \not\to 2$, state 2 is transient. Since $3 \to 6$ but $6 \not\to 3$, state 3 is transient. So states 1, 4, 5, and 6 are recurrent. The closed irreducible set is $\{1, 4, 5, 6\}$.

1

(c) Solution. The directed graph representation is

Date: June 2, 2020.

Since $3 \to 1$ but $1 \not\to 3$, state 3 is transient. So state 1, 2, 4, and 5 are recurrent. The closed irreducible sets are $\{1,5\}$ and $\{2,4\}$.

(d) Solution. The directed graph representation is

Since $3 \to 4$ but $4 \not\to 3$, state 3 is transient, and since $6 \to 1$ but $1 \not\to 6$, state 6 is transient. So state 1, 2, 4, and 5 are recurrent. The closed irreducible sets are $\{1,4\}$ and $\{2,5\}$.

Problem 2. Let G be a connected graph. Let X_n be a simple random walk on G. Show that the Markov chain $\{X_n\}$ is irreducible. (Hint: for any two vertices x and y in G, consider a path of consecutive nodes from x to y.)

Solution. Let x and y be any two vertices in G. Since G is connected, x and y are connected by with a path of edges formed by

$$x = x_0, x_1, x_2, \dots, x_n = y,$$

which implies that

$$\rho_{xy} \ge \frac{1}{\deg(x)} \cdot \frac{1}{\deg(x_1)} \cdots \frac{1}{\deg(x_{n-1})} > 0$$

$$\rho_{yy} \ge \frac{1}{\deg(y)} \frac{1}{\deg(x_{n-1})} \cdots \frac{1}{\deg(x_1)} > 0.$$

Therefore $x \leftrightarrow y$.

Problem 3. Let G be a graph with two disjoint components G_1 and G_2 . Let X_n be a simple random walk on G.

- (i) Prove $\{X_n\}$ is not an irreducible Markov chain.
 - Solution. Since $G_1 \cap G_2 = \emptyset$, there does not exist an edge between some node $x \in G_1$ and some other node $y \in G_2$, which shows G_1 and G_2 are disconnected. So $x \not\to y$ and X_n on G is not irreducible. \square
- (ii) Let P be the transition matrix of X_n . Let P_1 and P_2 be the transition matrices for the SRW on G_1 and G_2 , respectively. Let $V_1 = \{1, \ldots, k\}$ and $V_2 = \{k+1, \ldots, k+\ell\}$ be the set of vertices in G_1 and G_2 . Show that P is of the following block diagonal form

$$P = \begin{pmatrix} P_1 & 0 \\ 0 & P_2 \end{pmatrix}. \tag{1}$$

Note a block diagonal matrix is a reducible matrix.

Solution. We have p(x,y)=0 if $1 \le x \le k$ and $k+1 \le y \le k+\ell$, or if $k+1 \le x \le k+\ell$ and $1 \le y \le k$, which shoes that P is diagonal. We also have $p(x,y)=p_1(x,y)$ if $1 \le x,y,\le k$ and $p(x,y)=p_2(x,y)$ if $k+1 \le x,y,\le k+\ell$, which establishes the fact that $P=\operatorname{diag}(P_1,P_2)$.

(iii) Show the the SRW $\{X_n\}$ on G has infinitely many stationary distributions.

Solution. Since the disjoint graphs G_1 and G_2 are finite, P_1 has a stationary distribution, call it π_1 , and P_2 has stationarity distribution, call it π_2 . Note that π_1 has dimension $1 \times k$, π_2 has dimension $1 \times \ell$. Let

$$\pi = \begin{cases} (\pi_1, 0) & \text{if } X_0 \in G_1\\ (0, \pi_2) & \text{if } X_0 \in G_2 \end{cases}$$

be the stationary distribution for the operator P on G, and note that π has dimension $1 \times k + \ell$. Note also that P has dimension $(k + \ell) \times (k + \ell)$. Now, for the chain started on any vertex in G_1 , let $\pi = (\pi_1, 0)$ where 0 is a $1 \times \ell$ dimensional vector. Then

$$(\pi_1, 0)$$
 $\begin{pmatrix} P_1 & 0 \\ 0 & P_2 \end{pmatrix} = (\pi_1 P_1, 0) = (\pi_1, 0),$

where the last equality follows since π_1 was defined to be the stationary distribution for P_1 . For the chain started on any vertex in G_2 , $\pi = (0, \pi_2)$ where here 0 is a $1 \times k$ vector. So

$$(0, \pi_2) \begin{pmatrix} P_1 & 0 \\ 0 & P_2 \end{pmatrix} = (0, \pi_2 P_2) = (0, \pi_2).$$

For $0 \le \lambda \le 1$, linear combinations of the form

$$(\lambda \pi_1 + (1 - \lambda)\pi_2) = (\lambda \pi_1 P + (1 - \lambda)\pi_2 P)$$

are also stationary distribution for P. Hence, there exists infinitely stationary for X_n on G.

Problem 4. Consider a Markov chain with state space $S = \{1, 2\}$ and transition matrix

$$P = \begin{pmatrix} 1 - a & a \\ b & 1 - b \end{pmatrix},$$

where 0 < a < 1 and 0 < b < 1.

(i) Find its stationary distribution π .

Solution. Let $\pi = (x, y)$. Then

$$\pi P = \pi \implies \begin{cases} (1-a)x + by = x \\ ax + (1-b)y = y \end{cases} \implies \begin{cases} ax = by \\ x + y = 1 \end{cases} \implies \begin{cases} x = b/(a+b) \\ y = a/(a+b). \end{cases}$$

(ii) Use the Markov property to show that

$$P(X_{n+1} = 1) - \frac{b}{a+b} = (1-a-b)\left(P(X_n = 1) - \frac{b}{a+b}\right).$$

Solution. Start from the left hand side and condition on X_n to obtain

$$P(X_{n+1} = 1) = \sum_{i} P(X_{n+1} = 1 \mid X_n = i) P(X_n = i)$$

$$= (1 - a)P(X_n = 1) + b(1 - P(X_n = 1))$$

$$= P(X_n = 1) - aP(X_n = 1) + b - bP(X_n = 1)$$

$$= (1 - a - b)P(X_n = 1) + b$$

$$= (1 - a - b)P(X_n = 1) + \frac{b(a + b)}{a + b}$$

$$= (1 - a - b)P(X_n = 1) + \frac{ab}{a + b} + \frac{b^2}{a + b}.$$

Next, subtract b/(a+b) from both sides

$$P(X_{n+1} = 1) - \frac{b}{a+b} = (1-a-b)P(X_n = 1) + \frac{ab}{a+b} + \frac{b^2}{a+b} - \frac{b}{a+b}.$$

Simplifying the above expression gives

$$P(X_{n+1} = 1) - \frac{b}{a+b} = (1-a-b)\left(P(X_n = 1) - \frac{b}{a+b}\right).$$

(iii) Use mathematical induction to show that

$$P(X_n = 1) = \frac{b}{a+b} + (1-a-b)^n \left(P(X_0 = 1) - \frac{b}{a+b} \right)$$

Proof (by induction on n). The first base case n = 0 holds since

$$P(X_0 = 1) = \frac{b}{a+b} + (1-a-b)^0 \left(P(X_0 = 1) - \frac{b}{a+b} \right)$$
$$= \frac{b}{a+b} + P(X_0 = 1) - \frac{b}{a+b} = P(X_0 = 1),$$

and the second base case n = 1 holds since

$$P(X_1 = 1) = \sum_{i} P(X_1 = 1 \mid X_0 = i) P(X_0 = i)$$

$$= P(X_1 = 1 \mid X_0 = 1) P(X_0 = 1) + P(X_1 = 1 \mid X_0 = 2) P(X_0 = 2)$$

$$= (1 - a) P(X_0 = 1) + b(1 - P(X_0 = 1))$$

$$= \frac{b}{a + b} + (1 - a - b) \left(P(X_0 = 1) - \frac{b}{a + b} \right)$$

where the last equality uses the same logic as in (ii).

Assume the claim is true for any n. We want to show that the result is also true for n + 1. From part (i), we know that

$$P(X_{n+1} = 1) = \frac{b}{a+b} + (1-a-b)\left(P(X_n = 1) - \frac{b}{a+b}\right).$$

Substituting in for $P(X_n = 1)$ gives

$$P(X_{n+1} = 1) = \frac{b}{a+b} + (1-a-b)\left(\left((1-a-b)^n\left(P(X_0 = 1) - \frac{b}{a+b}\right)\right) - \frac{b}{a+b}\right)$$
$$= \frac{b}{a+b} + (1-a-b)^{n+1}\left(P(X_0 = 1) - \frac{b}{a+b}\right).$$

Shifting the indices back one period gives

$$P(X_n = 1) = \frac{b}{a+b} + (1-a-b)^n \left(P(X_0 = 1) - \frac{b}{a+b} \right).$$

(iv) Show that $P(X_n = 1)$ converges exponentially fast to $\pi(1)$ for the π you found in (i). Solution. Since 0 < a < 1 and 0 < b < 1, the term |1 - a - b| < 1. Then, noting that $(1 - a - b)^n$ is the only term depending on n, we have

$$\lim_{n \to \infty} P(X_n = 1) = \lim_{n \to \infty} \left(\frac{b}{a+b} + (1-a-b)^n \left(P(X_0 = 1) - \frac{b}{a+b} \right) \right)$$
$$= \frac{b}{a+b} + \lim_{n \to \infty} (1-a-b)^n \left(P(X_0 = 1) - \frac{b}{a+b} \right),$$

which shows that convergence to the limiting distribution, $P(X_n=1) \to \pi(1)$ as $n \to \infty$, is exponential at rate $(1-a-b)^n$.