Mathematical Toolkit Assignment 1

Yota Toyama

October 19, 2016

1. (a)

$$dim(A) = rank(A) + null(A)$$

$$n = m + null(A)$$

$$null(A) = n - m$$

(b)

$$\operatorname{null}(A) = \dim(\ker(A))$$

Then, ker(A) can have a basis B.

i.e.
$$\forall \mathbf{v} \in \ker(A), \exists a_1, ..., a_{n-m} \in \mathbb{F}_2, \mathbf{v} = a_1 \mathbf{b}_1 + \cdots + a_{n-m} \mathbf{b}_{n-m} \ (\mathbf{b}_i \in B)$$

 \therefore The answer is 2^{n-m} .

(c)

$$\forall \mathbf{x} \text{ s.t. } A\mathbf{x} = \mathbf{b}, A(\mathbf{x} - \mathbf{x}_0) = 0 :: A\mathbf{x}_0 = \mathbf{b}$$

 $\therefore \mathbf{x} - \mathbf{x}_0 \in \ker(A)$

Then, choosing each element of \mathbf{x} carefully (1 or 0), $\mathbf{x} - \mathbf{x}_0$ can be any element of \mathbb{F}_2^n .

$$\therefore \{\mathbf{x} - \mathbf{x}_0 | A\mathbf{x} = \mathbf{b}\} = \ker(A)$$

 $\therefore \mathbf{x} - \mathbf{x}_0$ has 2^{n-m} solutions.

 \therefore **x** has 2^{n-m} solutions.

2. (a)

$$\forall \mathbf{v}, f(c\mathbf{v} + (-c)\mathbf{v}) \ge \min\{f(\mathbf{v}), f(\mathbf{v})\}\$$
$$f(\mathbf{0}_V) \ge f(\mathbf{v})$$

(b) Because every element $\mathbf{v}_t \in V_t$ is in V by definition.

$$V_t \subseteq V$$

3.

$$p(x) = x^{2} + bx + c$$

$$= (x - r_{1})(x - r_{2})$$

$$= x^{2} - (r_{1} + r_{2})x + r_{1}r_{2}$$

$$\therefore b = -r_{1} - r_{2}, c = r_{1}r_{2}$$

I'm lost.

4.

$$\mu(P,Q) = \operatorname{degree}(PQ)$$

$$= \operatorname{degree}(QP)$$

$$= \mu(Q,P)$$

$$\mu(0,0) = \operatorname{degree}(0)$$

$$= 0$$

$$\forall P \neq 0, \mu(P,P) = \operatorname{degree}(P^2)$$

$$= 2\operatorname{degree}(P)$$

$$> 0$$

$$\mu(P+Q,R) = \operatorname{degree}((P+Q)R)$$

$$= \max \left\{ \operatorname{degree}(P), \operatorname{degree}(Q) \right\} + \operatorname{degree}(R)$$

$$\mu(P,R) + \mu(Q,R) = \max \left\{ \operatorname{degree}(P) + \operatorname{degree}(R), \operatorname{degree}(Q) + \operatorname{degree}(R) \right\}$$

$$= \max \left\{ \operatorname{degree}(P), \operatorname{degree}(Q) \right\} + \operatorname{degree}(R)$$

$$\therefore \mu(P+Q,R) = \mu(P,R) + \mu(P,Q)$$

$$c \in \mathbb{R}, \mu(cP,R) = \operatorname{degree}(cPR)$$

$$= \operatorname{degree}(PR)$$

$$\neq c \cdot \operatorname{degree}(P,R)$$

 $\therefore \mu(\cdot, R)$ is not a LT. $\therefore \mu$ is not a IP.

5.

$$\alpha \beta \mathbf{x} = \lambda \mathbf{x}$$
$$\beta \alpha \beta \mathbf{x} = \beta(\lambda \mathbf{x})$$
$$\beta \alpha(\beta \mathbf{x}) = \lambda(\beta \mathbf{x})$$

 $\therefore \lambda$ is an eigenvalue of $\beta \alpha$.

6. (a)

$$\varphi(\mathbf{v}) = \lambda \mathbf{v}$$

$$\varphi(\mathbf{v}) = \lambda \varphi(\mathbf{v})$$

$$(\lambda - 1)\varphi(\mathbf{v}) = 0$$

$$\lambda = 1_{\mathbb{F}} \lor \varphi(\mathbf{v}) = 0$$

$$\lambda = 1_{\mathbb{F}} \lor \varphi(\mathbf{v}) = 0_{\mathbb{F}} \mathbf{v}$$

$$\therefore \lambda \in \{0_{\mathbb{F}}, 1_{\mathbb{F}}\}$$

(b) Let $\forall \mathbf{v}, \varphi(\mathbf{v}) = \mathbf{v}_0$ (\mathbf{v}_0 is fixed.) and assume $\varphi = \varphi^*$.

$$\forall \mathbf{v}, \mathbf{w} \in V \text{ s.t. } \mathbf{v} \neq \mathbf{w},$$

$$\langle \varphi(\mathbf{v}), \mathbf{w} \rangle = \langle \mathbf{v}, \varphi^*(\mathbf{w}) \rangle$$

$$\langle \mathbf{v}_0, \mathbf{w} \rangle = \langle \mathbf{v}, \mathbf{v}_0 \rangle$$

$$\langle \mathbf{w}, \mathbf{v}_0 \rangle = \langle \mathbf{v}, \mathbf{v}_0 \rangle$$

$$\mathbf{v} = \mathbf{w} E$$

 \therefore not always $\varphi = \varphi^*$

7. (a)

$$\langle \varphi(\mathbf{v}), \mathbf{w} \rangle = \langle \mathbf{v}, \varphi^*(\mathbf{w}) \rangle$$
$$\langle \varphi^*(\mathbf{w}), \mathbf{v} \rangle = \langle \mathbf{w}, \varphi(\mathbf{w}) \rangle$$
$$\therefore (\varphi^*)^* = \varphi$$

(b)

$$\forall \mathbf{v} \in \ker(\varphi), \varphi(\mathbf{v}) = 0$$

$$\forall \mathbf{v}' \in (\operatorname{im}(\varphi^*))^{\perp}, \forall \mathbf{w} \in W,$$

$$\langle \mathbf{v}, \varphi^*(\mathbf{w}) \rangle = 0$$

$$\langle \varphi(\mathbf{v}), \mathbf{w} \rangle = 0$$

$$\therefore \text{ if } \mathbf{v} \in \ker(\varphi),$$

$$\varphi(\mathbf{v}) = 0 \therefore \forall \mathbf{w}, \langle \varphi(\mathbf{v}), \mathbf{w} \rangle = 0$$

$$\langle \mathbf{v}, \varphi^*(\mathbf{w}) \rangle = 0$$

$$\mathbf{v} \in (\operatorname{im}(\varphi^*))^{\perp}$$

$$\forall \mathbf{v} \in V$$
If $\mathbf{w} \in \text{im}(\varphi), w = \varphi(\mathbf{v})$

$$\langle \varphi(\mathbf{v}), \mathbf{w}' \rangle = \langle \mathbf{v}, \varphi(\mathbf{w}') \rangle = 0$$

$$\therefore \mathbf{w} \in (\ker(\varphi^*))^{\perp}$$
If $\mathbf{w} \in (\ker(\varphi^*))^{\perp}$,
$$\forall \mathbf{w}' \in W \text{ s.t. } \varphi^*(\mathbf{w}') = 0_V, \langle \mathbf{w}, \mathbf{w}' \rangle = 0$$

$$\forall \mathbf{v} \in V, \langle \mathbf{v}, \varphi^*(\mathbf{w}') \rangle = 0$$

$$\langle \varphi(\mathbf{v}), \mathbf{w}' \rangle = 0 \quad \therefore \mathbf{w} \in \text{im}(\varphi)$$

$$\varphi(\mathbf{v}) = \mathbf{w}$$

$$\begin{aligned} \operatorname{rank}(\varphi) &= \dim(\operatorname{im}(\varphi)) \\ &= \dim((\ker(\varphi^*))^{\perp}) \\ &= \dim(W) - \dim(\ker(()\varphi^*)) \\ &= \dim(im(\varphi^*)) \\ &= \operatorname{rank}(\varphi^*) \end{aligned}$$

(e)

Let
$$A = BC, B \in \mathbb{C}^{m \times r}, C \in \mathbb{C}^{r \times n}$$

then $A_{i,:} = \sum_{j=1}^{r} B_{i,j} C_{i,:}$

$$A_{:,i} = \sum_{j=1}^{r} C_{j,i} B_{:,i}$$

$$\therefore \begin{cases} rank_{row}(A) \leq rank_{row}(C) \leq r \\ rank_{column}(A) \leq rank_{column}(B) \leq r \end{cases}$$

Choose a minimal r.

Then rows of C form a minimal spanning set of rows of A. And, columns of C form a minimal spanning set of columns of A. $\therefore r$ is the rank of both row and column spaces of A.

$$\therefore rank_{row}(A) = rank_{column}(A)$$