SAMPLE QUESTIONS 2

1.	What :	is considered as the key electrical conductivity?
	i.	The number of electrons in the valence orbit
	ii.	The number of protons in the nucleus
	iii.	The number of neutrons in the nucleus
	iv.	The number of protons plus the number of electrons in the atom
2.	The peak inverse voltage of a half wave rectifier circuit is approximately equal to	
	the	of the input signal.
	i.	Peak amplitude
	ii.	Frequency
	iii.	Voltage sinusoidal
	iv.	Current
3.	An acceptor atom is also called	
	i.	Pentavalent atom
		Trivalent atom
	iii.	Minority carrier
	iv.	Majority carrier
4.	When temperature increases, barrier potential	
	i.	Remains the same
	ii.	Decreases
	iii.	Increases
	iv.	Either increases or decreases depending on the semiconductor material used
5.	Avalanche effects occurs at	
	i.	Higher reverse voltages
	ii.	Lower reverse voltages
	iii.	Higher forward voltages
	iv.	Lower forward voltages
6.	What	temperature is inside the diode, right at the junction of the p and n-type
	materi	als?
	i.	Junction temperature
	ii.	Ambient temperature
	iii.	Internal temperature
	iv.	Absolute temperature
7.		
	i.	It produces a nonlinear graph
	ii.	Its current is not directly proportional to its voltage
	iii.	It has a built-in barrier potential
	iv.	It can rectify alternating current
8.		con crystal is a/an of a semiconductor if every atom in the crystal is a
	silicon	atom.
	i.	Extrinsic
	ii.	Intrinsic

- iii. P-type
- iv. N-type
- 9. The average dc voltage of a half wave rectifier circuit is _____ of the value of the peak input voltage.
 - i. 63.6%
 - ii. 31.8%
 - iii. 4.8%
 - iv. 6.2%
- 10. A heavily doped semiconductor has
 - i. High resistance
 - ii. No effect on the semiconductor characteristics
 - iii. More heat dissipation
 - iv. Low resistance
- 11. Avalanche breakdown in a semiconductor takes place
 - i. When forward current exceeds a certain value
 - ii. When potential barrier is reduced to zero
 - iii. When reverse bias exceeds a certain value
 - iv. When forward bias exceeds a certain value

THEORY

- An a.c. supply of 230V is applied to a half-wave rectifier circuit through transformer of turns ration 5:1. Assume the diode is an ideal one. The load resistance is 300Ω.
 Find
 - (a) Dc output voltage
 - (b) PIV
 - (c) Maximum and average values of power delivered to the load.
- 2. A Full-wave rectifier circuit uses two silicon diodes with a forward resistance of 20Ω each. A dc voltmeter connected across the load of $1k\Omega$ reads 55.4volts. Calculate
 - (a) I_{rms}
 - (b) Average voltage across each diode,
 - (c) Ripple factor, and
 - (d) Transformer secondary voltage rating.
- 3. In a bridge rectifier the transformer is connected to 220V, 60Hz mains and the turns ratio of the step down transformer is 11:1. Assuming the diode to be ideal, find:
 - (a) I_{dc}
 - (b) Voltage across the load
 - (c) PIV assume load resistance to be $1k\Omega$

4. A 230V, 60Hz voltage is applied to the primary of a 5:1 step down, center tapped transformer used in the Full-wave rectifier having a load of 900Ω . If the diode resistance and the secondary coil resistance together has a resistance of 100Ω .

Determine:

- (a) Dc voltage across the load
- (b) Dc current flowing through the load
- (c) Dc power delivered to the load
- (d) Ripple voltage.