Landmarks - Bibiliograhie DCSD/CD

Simon VERNHES

Onera

 $17\ novembre\ 2011$

Sommaire

- Définitions
 - Landmark
 - Ordres
 - Complexité

2 Algorithmes

Définitions

- Définitions
 - Landmark
 - Ordres
 - Complexité
- 2 Algorithmes

3 / 12

Landmark

Definition (Landmark)

Soit (A, I, G) une tâche de planification. Un fluent L est un landmark si $\forall P = \langle a_1, \ldots, a_n \rangle \in A^*, G \subset Result(I, P)$ $(\exists i \in \{1, \ldots, n\})$ $L \in Result(I, \langle a_1, \ldots, a_i \rangle)$

C'est-à-dire

L'appartient à au moins un état de tous les plans permettant d'aller de l'état initial I à l'état but G.

Necessary Order

Definition $(L \rightarrow_n L')$

Soient (A, I, G) une tâche de planification et deux landmarks L et L'. On dit qu'il existe un necessary order entre L et L' $(L \rightarrow_n L')$ si et seulement si

$$L' \notin I$$
 et $\forall P = \langle a_1, \ldots, a_n \rangle \in A^*, L' \in Result(I, P)$
 $L \in Result(I, \langle a_1, \ldots, a_{n-1} \rangle)$

C'est-à-dire

Pour toutes les séquences d'actions qui amènent à un état contenant L'. l'avant dernier état contient nécessairement L.

5 / 12

Landmarks - Bibiliographie

Greedy Necessary

Definition $(L \rightarrow_{gn} L')$

Soient (A, I, G) une tâche de planification et deux landmarks L et L'. On dit qu'il existe un greedy necessary order entre L et L' $(L \rightarrow_{gn} L')$ si et seulement si $L' \notin I$ et $\forall P = \langle a_1, \ldots, a_n \rangle \in A^*, L' \in Result(I, P)$ et $(\forall i \in \{1, \ldots, n-1\})L' \notin Result(I, \langle a_1, \ldots, a_i \rangle)$ $L \in Result(I, \langle a_1, \ldots, a_{n-1} \rangle)$

C'est-à-dire

Pour toutes les séquences d'actions qui amènent pour la première fois à un état contenant L', l'avant dernier état contient nécessairement L.

Simon Vernhes Landmarks - Bibiliograhie

Reasonable order

Definition $(S_{(L',\neg L)})$

 $S_{(L',\neg L)}$ est l'ensemble de tout les états où L' vient d'être ajouté mais où L n'est jamais encore apparu.

Definition (Aftermath)

L' est un effet/une suite (in the aftermath) de L si depuis tous les $s \in S_{(L', \neg L)}$, L devient vrai dans tous les plans solutions $P \in A^*$ tel que $G \in Result(P, s)$.

Definition $(L \rightarrow_r L')$

On dit que $L \rightarrow_r L'$ si

$$\begin{cases} L' \text{ est un effet de } L \ (orall s \in S_{(L',
eg L)}) (orall P \in A^* \text{ achevant } L)P \text{ supprime nécessairement } L' \subseteq S_{(L',
eg L')} \end{cases}$$

Reasonable order

Obedient Reasonable Orders

Example

Si on a $L' \to_n L''$, $L \to_r L''$ et que les seules actions permettant de produire L'.

TODO

Complexité

Décidabilité

- Landmark PSPACE-complete
- \rightarrow_n PSPACE-complete
- \rightarrow_{gn} PSPACE-complete
- \bullet \rightarrow_r PSPACE-complete

Algorithmes

- Définitions
- 2 Algorithmes

Landmark

En utilisant un graphe de planification relaxé (RPG), on construit un graphe de génération de landmark. On part des buts, et on remonte.

```
Algorithm 1: Landmark Generation Graph
```

for $(L' \in C)$ level $(L') \neq \emptyset$ do

```
input : (A, I, G) a planning task output: LGG = (N, A) où N est l'ensemble des noeuds, et A les arcs de l'arbre LGG \leftarrow (G, \emptyset); C \leftarrow G; while C \neq \emptyset do C' \leftarrow G:
```