数字逻辑设计

高翠芸 School of Computer Science gaocuiyun@hit.edu.cn

- 多路复用器(multiplexers)
- 三态器件(Three-state Buffer)
- 译码器(Decoders)
- 编码器(Encoders)
- ■奇偶校验器
- ■比较器
- 只读存储器(ROM)
- ■利用MSI设计组合逻辑电路

奇偶校验器

- □ 用来检查数据传输和存取过程中是否产生错误的组合逻辑电路。 (就是检测数据中包含"1"的个数是奇数还是偶数)
- □ 广泛用于计算机的内存储器以及磁盘等外部设备中

「奇偶校验发生器:可产生奇偶校验位,与数据一起传输或保存

奇偶校验检测器: 可以检验所接受数据的正确性

被校验的原始数据和1位校验位组成 n+1位校验码。

n位 1位 原始数据 校验位 校验码: n+1 位

偶校验位逻辑值的表达式:

 $\mathsf{P}_\mathsf{E} = \mathsf{A}_3 \oplus \mathsf{A}_2 \oplus \mathsf{A}_1 \oplus \mathsf{A}_0$

偶校验位逻辑值电路是 在<mark>奇校验位</mark>逻辑值电路 输出端加非门实现

4位二进制数校验码真值表

$A_3A_2A_1A_0$	P _E P _O
0000	0 1
0001	1 0
0010	1 0
0011	0 1
0100	1 0
0101	0 1
0110	0 1
0111	1 0
1000	1 0
1001	0 1
1010	0 1
1011	1 0
1100	0 1
1101	1 0
1110	1 0
1111	0 1

奇校验位逻辑值的表达式:

 $P_0 = A_3 \oplus A_2 \oplus A_1 \oplus A_0$

奇偶校验器一般由异或门构成

异或门特性

- ◆ 两个输入中有奇数个"1",输出为1;有偶数个 "1",输出为0。
- ◆ 扩展: n个1位二进制数中有奇数个"1",输出为1; 有偶数个"1",输出为0。

异或门真值表

Α	В	F	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

奇偶校验器

奇偶校验器/产生器: 74xx180、 74xx280

例)用9位奇偶校验器74LS280设计一个8位二进制码的奇校验位发生器和检测器。

74XX280功能表

A~I	EVEN	ODD
偶数个"1"	1	0
奇数个"1"	0	1

奇偶校验器

奇偶校验实际应用意义

- ① 能够检测传送出错,但不能确定错误位置,不能纠错;
- ② 数据在存储或传送过程中,发生一位错误的可能性占 96%以上;
- ③ 电路简单,容易实现,且有实际应用意义。

- 多路复用器(multiplexers)
- 三态器件(Three-state Buffer)
- 译码器(Decoders)
- 编码器(Encoders)
- ■奇偶校验器
- ■比较器
- 只读存储器(ROM)
- ■利用MSI设计组合逻辑电路

数值比较器

- 计算机中对数据的基本处理方法
 - □加、减、乘、除
 - □ 比较运算
- •数值比较器:一种关系运算电路
 - □ 能对2个 n 位二进制数 A和B 进行比较的多输入、多输出的组合逻辑电路
 - □ 比较结果: Y_{A>B}、Y_{A<B}、Y_{A=B}

一位数值比较器

真值表

			<u> </u>	
A	В	$Y_{A=B}$	$Y_{A>B}$	$Y_{A < B}$
0	0	1	0	0
0	1	0	0	1
1	0	0	1	0
1	1	1	0	0

$$\begin{cases} Y_{A=B} = A \odot B \\ Y_{A>B} = A\overline{B} \\ Y_{A$$

$$Y_{A=B} = \overline{A}\overline{B} + AB = (A+\overline{B})(\overline{A}+B) = (\overline{A}+\overline{A}+\overline{B})(B+\overline{A}+\overline{B})$$

$$= (\overline{A}+\overline{A}+\overline{B}) + (\overline{B}+\overline{A}+\overline{B})$$

$$Y_{A>B} = A\overline{B} = \overline{A}(\overline{A}+\overline{B}) = \overline{A} + (\overline{A}+\overline{B})$$

$$Y_{A$$

多位数值比较器

■ 自高而低逐位比较,只有在高位相等时,才需要比较低位。

接低位芯片的比较结果,用于芯片扩展。

当A₃A₂A₁A₀= B₃B₂B₁B₀,比较器的输出复现3个输入端(A=B);、(A>B); (A<B); 的状态。

Ĭ	比较	輸入	级联输入			输出			
A ₃ B ₃	A ₂ B ₂	A ₁ B ₁	B ₀ A ₀	(A>B) _i	(A <b)<sub>i</b)<sub>	(A=B) _i	Y _{A>B}	Y _{A<b< sub=""></b<>}	Y _{A=B}
$A_3 > B_3$	Х	Х	Х	Х	Х	Х	1	0	0
$A_3 < B_3$	Х	Х	Х	Х	Х	Х	0	1	0
$A_3 = B_3$	$A_2 > B_2$	Х	Х	Х	Х	Х	1	0	0
$A_3 = B_3$	$A_2 \le B_2$	Х	Х	Х	Х	Х	0	1	0
$A_3 = B_3$	$A_2 = B_2$	$A_1 > B_1$	Х	Х	Х	Х	1	0	0
$A_3 = B_3$	$\mathbf{A_2} = \mathbf{B_2}$	$A_1 \le B_1$	Х	Х	Х	Х	0	1	0
$A_3 = B_3$	$A_2 = B_2$	$A_1 = B_1$	$\mathbf{A}_0 > \mathbf{B}_0$	Х	Х	Х	1	0	0
$A_3 = B_3$	$\mathbf{A_2} = \mathbf{B_2}$	$\mathbf{A}_1 = \mathbf{B}_1$	$A_0 < B_0$	Х	Х	Х	0	1	0
$A_3 = B_3$	$\mathbf{A_2} = \mathbf{B_2}$	$\mathbf{A}_1 = \mathbf{B}_1$	$\mathbf{A}_0 = \mathbf{B}_0$	1	0	0	1	0	0
$A_3 = B_3$	$A_2 = B_2$	$\mathbf{A}_1 = \mathbf{B}_1$	$\mathbf{A}_0 = \mathbf{B}_0$	0	1	0	0	1	0
$A_3 = B_3$	$\mathbf{A}_2 = \mathbf{B}_2$	$A_1 = B_1$	$\mathbf{A}_0 = \mathbf{B}_0$	0	0	1	0	0	1
$A_3 = B_3$	$\mathbf{A_2} = \mathbf{B_2}$	$A_1 = B_1$	$\mathbf{A}_0 = \mathbf{B}_0$	0	0	0	0	0	0
$A_3 = B_3$	$\mathbf{A_2} = \mathbf{B_2}$	$A_1 = B_1$	$\mathbf{A}_0 = \mathbf{B}_0$	0	1	1	0	1	1
$A_3 = B_3$	$\mathbf{A_2} = \mathbf{B_2}$	$A_1 = B_1$	$\mathbf{A}_0 = \mathbf{B}_0$	1	0	1	1	0	1
$A_3 = B_3$	$\mathbf{A_2} = \mathbf{B_2}$	$A_1 = B_1$	$\mathbf{A}_0 = \mathbf{B}_0$	1	1	0	1	1	0
$A_3 = B_3$	$\mathbf{A_2} = \mathbf{B_2}$	$A_1 = B_1$	$\mathbf{A}_0 = \mathbf{B}_0$	1	1	1	1	1	1

数值比较器的级联—— ①串行方式

数值比较器的级联——②并行方式

- <u>多路复用器(multiplexers)</u>
- 三态器件(Three-state Buffer)
- <u>译码器(Decoders)</u>
- 编码器(Encoders)
- 奇偶校验器
- 比较器
- 只读存储器(ROM)
- 利用MSI设计组合逻辑电路

- 多路复用器(multiplexers)
- 三态器件(Three-state Buffer)
- 译码器(Decoders)
- 编码器(Encoders)
- ■奇偶校验器
- ■比较器
- ■利用MSI设计组合逻辑电路
- 只读存储器(ROM)

- 多路复用器(multiplexers)
- 三态器件(Three-state Buffer)
- 译码器(Decoders)
- 编码器(Encoders)
- ■奇偶校验器
- ■比较器
- ■利用MSI设计组合逻辑电路
- 只读存储器(ROM)

Design with MSI blocks

- ① 了解各类典型集成电路芯片的功能、外特性;
- ② 学会查阅器件资料;
- ③ 能灵活运用,完成最佳设计。

Write the expression of F

$$F = \overline{ABC} + \overline{ABC} + A\overline{BC} + ABC$$

Use 8 to 1 MUX realize $\mathbf{F} = \mathbf{A}\mathbf{\overline{B}} + \mathbf{\overline{A}C} + \mathbf{B}\mathbf{\overline{C}}$

ABO	C 00	01	11	10
0	0	1	1	1
1	1	1	0	1

K.Map of F

K.Map of MUX

Method: 降维

利用 8 to 1 MUX 设计组合逻辑:

 $F(A,B,C,D)=\sum m(1,5,6,7,9,11,12,13,14)$

 $F(A,B,C,D)=\sum m(1,5,6,7,9,11,12,13,14)$

$$f(x_1x_2....x_i....x_n)$$
= $x_i \cdot f(x_1x_2....1....x_n) + \overline{x_i} \cdot f(x_1x_2....0....x_n)$

Method: 降维

Use 4-to-1 MUX realize:

 $F(A,B,C,D)=\sum m(0,1,5,6,7,9,10,14,15)$

利用4-to-1 MUX 设计组合逻辑 $F(A,B,C,D,E)=\sum m(0,5,8,9,10,11,17,18,19,20,22,23,28,30,31)$

A B	C D	E F		A B	C D	E F	
	0 0		E		0 0	} E	
00	0 1		$\left.\right\}$ 0	10	0 1	1	
	1 0		\rightarrow E		1 0	$\left.\right\} \mathbf{\bar{E}}$	
	1 1		$\left.\right\}$ 0		1 1		
	0 0		- 1		0 0		
	0 1	-	- - 1		0 1	\} 0	
01	1 0		} 0	11	1 0	\rightarrow \mathbf{E}	
	1 1		} 0		1 1		

Use 4-to-1 MUX realize

 $F(A,B,C,D)=\sum m(1,2,4,9,10,11,12,14,15)$

Method: 降维

从函数的多个输入变量中选出2个作为MUX的选择控制变量。原则上讲,这种选择是任意的,但选择合适时可使设计简化。

1 Choose A and B

1 Choose A and B

2 Choose B and C

2.用译码器来实现组合逻辑电路

$$y_i = m_i$$
, $i = 0$ to $2^n - 1$ (noninverted outputs)
 $y_i = m_i' = M_i$, $i = 0$ to $2^n - 1$ (inverted outputs)

2.用译码器来实现组合逻辑电路

$$f_1(a, b, c, d) = m_1 + m_2 + m_4$$

 $f_2(a, b, c, d) = m_4 + m_7 + m_9$

利用 74LS138 设计 1-bit FA

$\mathbf{a_i}$	b _i (Si	$C_{\mathbf{i}}$	
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

741	38	功	能	表
, , ,	\sim	-//	HL	~~

	1	吏能	耑		输入					译码	输出	}		
	G₁	G _{2A}	G _{2B}	ပ	В	Α	Y ₀	Y ₁	Y ₂	Y ₃	Y_4	Y ₅	Y ₆	Y ₇
	0	X	X	X	X	X	1	1	1	1	1	1	1	1
1	\mathbf{X}	1	X	X	X	X	1	1	1	1	1	1	1	1
L	X	X	1	X	X	X	1	1	1	1	1	1	1	1
1	1	0	0	0	0	0	0	1	1	1	1	1	1	1
1	1	0	0	0	0	1	1	0	1	1	1	1	1	1
1	1	0	0	0	1	0	1	1	0	1	1	1	1	1
1	1	0	0	0	1	1	1	1	1	0	1	1	1	1
1	1	0	0	1	0	0	1	1	1	1	0	1	1	1
1	1	0	0	1	0	1	1	1	1	1	1	0	1	1
1	1	0	0	1	1	0	1	1	1	1	1	1	0	1
L	1	0	0	1	1	1	1	1	1	1	1	1	1	0

$$y_i = \overline{m}_i$$

$$S_i = \sum (1,2,4,7) = \overline{\overline{m}_1 \overline{m}_2 \overline{m}_4 \overline{m}_7}$$

$$c_{i-1} = \sum (3,5,6,7) = \overline{\overline{m}_3 \overline{m}_5 \overline{m}_6 \overline{m}_7}$$

74138功能表

输入

В

С

Y₆

译码输出

$S_i = \sum (1,2,4,7)$	$= \overline{\overline{\mathbf{m}}_{1}} \overline{\overline{\mathbf{m}}_{2}} \overline{\overline{\mathbf{m}}_{4}} \overline{\overline{\mathbf{m}}_{7}}$
$c_{i-1} = \sum (3,5,6,7)$	$= \overline{\overline{\mathbf{m}}_{3} \overline{\mathbf{m}}_{5} \overline{\mathbf{m}}_{6} \overline{\mathbf{m}}_{7}}$

 $\mathbf{a}_{\mathbf{i}}$

 $\mathbf{b_i}$

 G_{2A}

 G_{2B}

使能端

G₁ G_{2A} G_{2B}

2.用译码器来实现组合逻辑电路

设计一个**地址译码器**,利用地址线 A₉A₈…A₀选择外设A, B, C。 三个外设的地址分别是20H~2FH, 40H~4FH, 70H~7FH。

2.用译码器来实现组合逻辑电路

Circuit

例:利用 8-to -1 MUX以及 4-10线译码器设计一个能实现2组3位数码等值比较的电路。

A	$_{3}A_{2}A_{1}A_{0}$	$f_0 f_1 f_2 f_3 f_4 f_5 f_6 f_7 f_8 f_9$
0	0 0 0	01 1111 1111
0	0 0 1	10 1111 1111
0	0 1 0	11 0111 1111
0	0 1 1	11 1 <mark>0</mark> 11 1111
0	1 0 0	11 1101 1111
0	1 0 1	11 111 <mark>0</mark> 1111
0	1 1 0	11 1111 0111
0	1 1 1	11 1111 1 <mark>0</mark> 11
1	0 0 0	11 1111 1101
1	0 0 1	11 1111 1110

8-to -1 MUX

S	$A_2A_1A_0$	y
1	$\times \times \times$	0
0	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$	\mathbf{a}_0
0	0 0 1	\mathbf{a}_1
0	0 1 0	$\mathbf{a_2}$
0	0 1 1	$\mathbf{a_3}$
0	1 0 0	$\mathbf{a_4}$
0	1 0 1	\mathbf{a}_{5}
0	1 1 0	\mathbf{a}_{6}
0	1 1 1	a ₇

if:
$$B_2B_1B_0 = 110$$
, then $f_6 = a_6 = 0$

if:
$$C_2C_1C_0 = 110$$
, then $y = a_6 = 0$

if:
$$C_2C_1C_0 = 111$$
, then $y = a_7 = 1$

If
$$B_2B_1B_0 = C_2C_1C_0$$
,
Then $Z=0$

- 多路复用器(multiplexers)
- 三态器件(Three-state Buffer)
- 译码器(Decoders)
- 编码器(Encoders)
- ■奇偶校验器
- ■比较器
- ■利用MSI设计组合逻辑电路
- 只读存储器(ROM)

可编程逻辑器件

- 固定逻辑器件
- 任何组合逻辑函数均可以 化为"与或"表达式, 用"与门-或门"二级电 路实现。
- 所以可以采用**与或阵列**的 结构实现任何组合逻辑电 路。

PROM

ROM (Read-Only Memory)

- 半导体存储器: 是一种具有n个输入b个输出的组合逻辑电路,能够存储大量二值数字信息,以类似矩阵的形式存储,每次取其中的一行。
- 输入被称为地址输入 (address input), 通常命名为A0, A1, ···, An-1。
- 输出被称为数据输出(data output),通常命名为D0, D1, ···, Db-1。

ROM和真值表

- ROM"存储"了一个n输入、b输出的组合逻辑功能的真值表。
- 一个3输入、4输出的组合功能的真值表,可以被存储在一个2³ * 4 (8 * 4) 的只读存储器中。忽略延迟,ROM的数据输出总是等于真值表中由**地址输入所选择的那行输出位**。

每一组地址输入 对应ROM的一个 存储单元的地址

輸入			輸出			
A2	A1	A0	D3	D2	D1	D0 •
0	0	0	1	1	1	0
0	0	1	1	1	0	1
0	1	0	1	0	1	1
0	1	1	0	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	1	1	0	0	0

每一组输出对应 ROM的一个存储单 元中的**存放内容**。

乘积项结构

用ROM实现组合逻辑函数

- 两种不同的方式来构建译码器:
 - 使用分立的门
 - 用包含真值表的8 * 4 ROM
- 使用ROM的物理实现并不是唯一的。

具有输出极性控制的2-4译码器

用存储真值表的8 * 4 ROM构建2-4译码器

FPGA (Field Programmable Gate Array)

- 即现场可编程门阵列
- FPGA能完成任何数字逻辑功能,上至高性能计算,下至简单的74系列电路,也常用于ASIC流片前的原型验证。

嵌入式硬件算法加速

协处理器

FPGA中的查找表(LUT)

• 例: 使用LUT实现一个4与门电路逻辑功能

实际逻辑电路		LUT的实现方式		
a b c d		a16*1 RAMout		
a、b、c、d	逻辑输出	地址	RAM中存储的内容	
0000	0	0000	0	
0001	0	0001	0	
	0		0	
1111	1	1111	1	

LUT本质就是RAM,主流的FPGA是5输入或6输入LUT A,B,C,D由FPGA芯片的管脚输入后进入可编程连线,然后作为**地址线**连到 到LUT,LUT中已经**事先写入了所有可能的逻辑结果**,通过地址查找到相 应的数据然后输出,这样组合逻辑就实现了。

FPGA内部结构

CLB

BRAM

CMT

FIFO Logic

BUFG

MGT

DSP

- 内部资源分类:
- **逻辑资源: CLB** 、块存储(block ram)、DSP等;
- **连接资源:** 可编程互联线(PI)、输入输出块(IOB)等;
- 其他资源: 全局时钟网络、时钟管理模块等
- 高端FPGA还会集成ARM核、PCIE核等。
- 资源分布采用ASMBL架构,相同资源 以列方式排布。

