Provectos.

2 Encriptación.

2. Freciniento Exponencial COULD.

1. Programación Lineal.

1. Regresión Cineal Múltiple.

1. Sistemas de Ewaciones Lineales.

Objetivo AL: Resolver sistemas de ecs. lineales.

Ec. Recta en IR2: ax+by = C.

Ec. plano en IR3: ax+by+c=d.

Ec. lineal en n variables: 1, X, + az Xz + ... + an Xn = b

Coeficientes a, az, ... an. ai & IR.

Término Constante: b

Ejemplos: $3X_1 - 9X_2 + 12 = 0$. $\sqrt{2}w + \ln(8)X + e^{10}y + \frac{1}{\pi} = 5!$

son ecraciones lineales.

ECUACIONES QUE NO SON CINEALES.

Producto entre variables Xy + yz = 8. No Potencia diferente de una. $X^2 + Vy^2 + Z^{-1} = 8$ No Funciones no lineales: $\sqrt{2}w^2 + \ln(8x) + e^{\log x} = \sin 3$.

NO.

Solución le Ec. Lineal: es un vector [s, sz...sn] vyus componentes si satisfacen la ec. a,x,+ azxz+... + anxn = b. cuando se sustituyen las si.

Ejemplo: Considere la ec. lineal. $3X_1 - 9X_2 + 12 = 0$ Resuelva. para X_1 : $3X_1 = 9X_2 - 12$. $X_1 = 3X_2 - 4$.

La solución de esta ec. es la recta $X_1 = 3X_2 - 4$

Vector solución: $X_1 = 3t - 4$. $\overrightarrow{5} = \begin{bmatrix} 3t - 4 \end{bmatrix}$ t_i parámetro. $X_2 = t$. $= \begin{bmatrix} t \end{bmatrix}$ es cualquier número real

Jeritique: 9t-12-9t+12 = 0 V

Sistema de Écuaciones Lineales: es un conjunto finito de ecuaciones lineales. m ecuaciones de n variables.

X + y + z = 8 X + 2y + z = 9 2X + z = 4 2X + z = 42X + z = 5

X + y + z = 4X + 2y + z = 2 m y n pueden ser diferentes. que satisface todas las ecs. del sistema.

Ejercicio 1: Resuelua lus sigs. sistemas (p. 12)

a. $\boxed{x+y=2}$ decs x 2 variables. 3x+3y=6.

Mérodos: Algebraico (Eliminación, Sustitución, Igualación) Gráfico: la soln es la intersección entre las rectas,

 $R_2 - 3R_1$: O + O = O \rightarrow O = O Tautología. $\frac{1}{3}R_2$: X + y = 2., la recta está repetida

la solución es y = 2-x Infinitas soluciones

X = t. y = 2 - t. $5' = \begin{bmatrix} t \\ 2 - t \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, ...$

Sustitución: $y = 2 - \chi$ $3\chi + 6 - 3\chi = 6.$ \Rightarrow 6 = 6

b. x + y = 2. 3x + 3y = 9 R₂-3R₁: 0 + 0 = 3. $0 \neq 3$ Contradicción.

R: X+y=2 X+y=3 NO TIENE SOLUCIÓN.

Como las dos rectas son paralelas, no se pueden contar. (No hax soln).

$$\begin{array}{ccc} C. & X - Y = 0 \\ X + Y = 2. \end{array}$$

$$R_1 + R_2$$
: $2x = 2$. $3x = 1$
 $y = x$ $3y = 1$

ooln única: 5=[]

Fipos de Solución de un Sistema de Ecs-Lineaire.

¿ Solución Unica.

ii. Soluciones Infinitas. iii. No hay solución. 1 única, agregue más ecs.

Vinica, elimine algunas es,

Sistema Consistente: es un sistema que tiene una - o más soluciones.

sistemas Equivalentes: Jos sistemas de ecs. lineales son equivalentes si y sólo si tienen la misma solución.

La idea del AL es reescribir un sistema de ecuaciones utilitando eliminación a un sistema de ecs. más "sencillo", uno dónde se pueda observar la soln.

ivo
$$w + x + y + t = 6$$
.
 $2w + x + y + t = 7$ $w + x = 3$ hacin adelante.
 $2w + 2x + y + 2t = 7$ $w + x + y = 8$ adelante.
 $-w - x + 2y + t = 5$ $w + x + y + t = 6$.
 $w + x + y + t = 6$.

$$5m. w = 1$$

 $X = 5 - w = 2.$
 $y = 8 - w - X = 5$
 $z = 6 - w - X - y = 6 - 8 = -2.$
 $z = 6 - w - X - y = 6 - 8 = -2.$

Lus tres sistemas de ecs. Son equivalentes, nurque tienen in misma solución.

$$w = 1$$

 $x = 2$
 $y = 5$
 $z = -2$

Resolución de los sistemas de ecuaciones.

Leescriba el sistema sólo con sus coeficientes

forma compacta [Alb]

$$R_{1}: \ Y + y = 3$$

$$R_{2}: 2x + y = 5$$

$$R_{2}-2R_{1}:$$

$$[0]_{1}^{27}$$

$$x = 6 - x - y - z$$
.
 $x = 5 - y - z$.
 $y = 5$