Säuren und pH-Wert

Ein bisschen Theorie

Eine Säure ist ein Stoff, der bei der Reaktion mit Wasser ein Proton $(H^+)^1$ abspalten kann. Das Proton verbindet sich mit Wasser (H_2O) .

DEFINITION

Säurereaktion/Protolyse:

$$H-Rest + H_2O \longrightarrow Rest^- + H_3O^+$$

Bei dieser Reaktion entsteht immer ein negativ geladenes Säurerest-Ion.

Das verbindende aller Säuren ist das bei der Reaktion mit Wasser entstehende H_3O^+ -Teilchen, das *Oxonium-Ion*.² Je mehr Oxonium-Ionen in der Säurelösung schwimmen, desto saurer ist die Lösung.

In neutralem, reinem Wasser sind ebenfalls Oxonium-Ionen vorhanden, etwa 1 Ion auf 10 Millionen Wassermoleküle. Das entspricht der Konzentration von

$$c = 0.000\,000\,1\,\text{mol/L} = 10^{-7}\,\text{mol/L}$$
 (1)

Der pH-Wert einer Lösung gibt die Konzentration der Oxonium-Ionen in mol/L an. Da aber Zahlen wie $0.000\,000\,1$ unhandliche Zahlen sind, ist der pH-Wert durch den negativen dekadischen Logarithmus dieser Konzentration gegeben. Bei reinem Wasser entspricht das

$$pH = -\log 0.000\,000\,1 = -\log 10^{-7} = -(-7) = 7.$$
 (2)

Je höher die Konzentration ist (je mehr Oxonium-Ionen sich in der Lösung befinden, je saurer die Lösung also ist), desto niedriger wird der pH-Wert (siehe Tabelle 1). Eine Konzentration von $1:1000=0.0001\,\mathrm{mol/L}$ entspricht dann

$$pH = -\log 0.0001 = -\log 10^{-3} = 3.$$
 (3)

¹Gibt das Wasserstoff-Atom, das aus einem Proton im Kern und einem Elektron in der Hülle besteht, sein Elektron ab, bleibt nur ein Proton übrig. Daher nennt man das Wasserstoff-Ion H⁺ auch Proton.

²früher: Hydronium-Ion

pH-Wert	Konzentration	als Dezimale	als Zehnerpotenz
0	1:1	1	10^{0}
1	1:10	0.1	10^{-1}
2	1:100	0.01	10^{-2}
3	1:1000	0.001	10^{-3}
4	1:10000	0.0001	10^{-4}
5	1:100000	0.00001	10^{-5}
6	1:1000000	0.000001	10^{-6}
7 (= neutral)	1:10000000	0.0000001	10^{-7}

Tabelle 1: Zusammenhang zwischen pH-Wert und der Konzentration von Oxonium-Ionen in Wasser in mol/L.

Aufgaben zum pH-Wert

1. Übung

In ein Planschbecken von $1000\,\mathrm{L}$ wird $1\,\mathrm{L}$ Essigsäure (pH = 3) gegossen. Welchen pH-Wert hat dann das Wasser?

2. Übung

Wieviel Wasser brauche ich, um 1 L Salzsäure (pH = 1) zu neutralisieren?

3. Übung

Wieviel Wasser benötigt man, um $0.3\,\mathrm{L}$ Salzsäure zu neutralisieren?

4. Übung

Du möchtest aus Salpetersäure (pH = 1) $500\,\mathrm{mL}$ eine Salpetersäure mit pH = 5 herstellen. Wie sieht das Mischungsverhältnis aus?

5. Übung

Wieviel Wasser muss ich zu Essigsäure (pH = 3) geben, um $300\,\mathrm{mL}$ einer Essigsäure mit pH = 5 zu erhalten?

6. Übung

Ich verdünne $30\,\mathrm{mL}$ Salzsäure-Lösung (pH = 2) mit Wasser zu einem pH von 4. Welches Volumen hat die Lösung dann?

7. Übung

 $1\,\mathrm{mL}$ Schwefelsäure (pH = 0.5) wird auf pH = 6 verdünnt. Wieviel Wasser brauche ich?

Lösungen

1. Lösung

Die Säure hat den pH-Wert pH = 3, also eine Konzentration von $10^{-3}=0.001\,\mathrm{mol/L}$. Das entspricht 1:1000. Nun wird die Säure auf das tausendfache³ verdünnt und hat damit eine Konzentration von $1:1000\,000=0.000\,001$. Das entspricht einem pH-Wert von

$$pH = -\log 0.000001 = -\log 10^{-6} = 6$$
.

Das Wasser hat also einen pH-Wert von 6.

2. Lösung

Der pH-Wert von 1 bedeutet, dass die Säure eine Konzentration (in mol/L) von $10^{-1}=0.1=1:10$ hat. Sie muss nun auf $1:10\,000\,000$ (siehe Gleichung (1)) verdünnt werden, also um eine Million. Das heißt, man benötigt $1\,000\,000$ L Wasser.

3. Lösung

Da man eine Million Liter Wasser für $1\,\mathrm{L}$ Salzsäure benötigte (siehe Aufgabe 2.), benötigen wir hier das 0.3-fache, also $300\,000\,\mathrm{L}$ Wasser.

4. Lösung

Um die Salpetersäure mit pH = 1 (Konzentration $1:10\,\text{mol/L}$) auf pH = 5 (Konzentration $1:100\,000\,\text{mol/L}$) zu verdünnen, müsste ich $1\,\text{L}$ auf $10\,000\,\text{L}$ verdünnen. Da ich aber nur $500\,\text{mL} = 0.5\,\text{L}$ und nicht $10\,000\,\text{L}$ herstellen möchte, benötige ich (Dreisatz):

Säure mit $pH = 1$	Säure mit $pH = 5$	
1 L	$10000\mathrm{L}$	
$0.0001\mathrm{L}$	1 L	
0.000.051.	0.51.	

 $0.000\,05\,\mathrm{L}$ sind $0.05\,\mathrm{mL}$. Ich muss also $0.05\,\mathrm{mL}$ der Säure mit pH =1 auf einen halben Liter verdünnen.

5. Lösung

pH = 3 entspricht einer Konzentration (in mol/L) von 1 : 1000, pH = 5 einer Konz. von 1 : 100 000. Ich muss die Säure also um das 100-fache verdünnen. Das bedeutet also, ich muss 3 mL der Säure mit pH = 1 auf 300 mL verdünnen.

6. Lösung

pH = 2 bedeutet eine Konzentration (in mol/L 1:10, pH = 4 bedeutet $1:10\,000$. Ich muss um das 1000-fache verdünnen. Also muss ich die $30\,\text{mL}$ auf $30\,000\,\text{mL} = 30\,\text{L}$ verdünnen.

³Eigentlich auf das 1001-fache, das kann man aber vernachlässigen.

7. Lösung

Der pH = 0.5 entspricht einer Konzentration (in mol/L) von $10^{-0.5}=\frac{1}{\sqrt{10}}\approx\frac{1}{3.162}$, also etwa 1:3.162. Um diese Lösung auf pH = 6, also $1:1\,000\,000$ zu verdünnen, muss ich die Lösung um das $\frac{1\,000\,000}{3.162}=316\,200$ -fache verdünnen. Ich muss die Lösung also auf $316\,200\,\mathrm{mL}=316.2\,\mathrm{L}$ verdünnen.