

MU4MEM14 - MMC : Modélisation des Solides Déformables

TD 2: Flexion d'une poutre cylindrique orthotrope

On considère une structure cylindrique de section quelconque de génératrices parallèles à l'axe \underline{e}_1 , constituée d'un matériau orthotrope d'axes d'orthotropie $\underline{e}_1,\underline{e}_2,\underline{e}_3$. Les efforts imposés sur la face terminale S_1 donnent une répartition de contraintes de la forme : $\sigma_{11} = -Cx_2$ et $\sigma_{ij} = 0$ pour les autres composantes, où C est une constante donnée.

FIGURE 1 – Représentation schématique de la poutre et de son système de coordonnées

- 1) On recherche le champ de contraintes dans la poutre de la forme $\sigma_{11} = -Cx_2$, les autres composantes étant identiquement nulles $\sigma_{ij} = 0$, pour $(i,j) \neq (1,1)$.
 - a. Vérifier que ce champ satisfait les équations d'équilibre.
 - b. Calculer la résultante et le moment en C_0 du torseur des efforts sur la face S_0 .
 - c. Calculer la résultante et le moment en C_1 du torseur des efforts sur la face S_1 .
 - d. Caractériser la sollicitation imposée à la poutre.
- 2) Rappeler la forme de la loi de comportement d'un matériau orthotrope. Calculer le champ de déformation associé au champ de contraintes adopté en question 1.
- 3) Montrer que ce champ de déformation obtenu dérive bien d'un déplacement.
- 4) Déterminer la fome générale du champ de déplacement.
- 5) En déduire la composante verticale u_2 (selon la direction \underline{e}_2) du déplacement en tout point de la fibre centrale de la poutre ($x_2 = x_3 = 0$), (on supposera bloquer le mouvement rigidifiant).

 Déterminer la courbure γ_3 de la fibre centrale de la poutre définie par la dérivée seconde du déplacement, soit :

$$\gamma_3 = \frac{d^2 u_2}{dx_1^2}(x_1, 0, 0).$$

- 6) Etablir la relation entre le moment de flexion M_3 appliqué au point C_1 et la courbure γ_3 résultante de la poutre orthotrope.
- 7) Comparer la solution obtenue avec le résultat classique pour une structure isotrope (au besoin on reprendra l'exercice avec une structure isotrope) : $M_3 = EI_3\gamma_3$ où I_3 est le moment d'inertie de la section par rapport à l'axe \underline{e}_3 .