mAP 평가지표

2022. 5. 18

충북대학교 산업인공지능학과 [21-8조] 이지호, 이충현

mAP가 무엇인지 알아내기 위한 과정

- 1. IOU (Intersection over Union)
- 2. Precision & Recall
- 3. AP (Average Precision)
- 4. mAP (mean Average Precision)

IOU (Intersection over Union)

- IOU란 Intersection over Union의 약자로 <u>객체 검출을 평가하기 위한 지표</u>로 두개의 박스의 겹침 정도를 계산하여 얼마나 실제 값을 예측하였는지 나타냅니다.
- IOU₅₀의 경우 IOU 값이 50%이상인 결과 만 검출에 성공한 것으로 평가 합니다.
- 예측 값과 실제 값의 교집합을 합집합으로 나누어 계산 합니다.

IOU 코드

```
def iou(bbox1: list, bbox2: list) -> float:
  cx1, cy1, w1, h1 = bbox1
  cx2, cy2, w2, h2 = bbox2
  bbox1 area = w1 * h1
  bbox2_area = w2 * h2
  intersection_x1 = \max(cx1 - (w1 / 2), cx2 - (w2 / 2))
  intersection_y1 = \max(\text{cy1} - (\text{h1} / 2), \text{cy2} - (\text{h2} / 2))
  intersection_x2 = min(cx1 + (w1 / 2), cx2 + (w2 / 2))
  intersection_y2 = min(cy1 + (h1 / 2), cy2 + (h2 / 2))
  intersection_w = \max(0, intersection_x2 - intersection_x1)
  intersection_h = max(0, intersection_y2 - intersection_y1)
  # 교집합, 합집합 넓이
  intersection area = intersection w * intersection h
  union_area = bbox1_area + bbox2_area - intersection_area
  return intersection_area / union_area
```

Precision & Recall (정밀도 & 재현률)

Coufusion Matrix		예측 결과 (Predict result)	
		Positive	Negative
정답 (Ground truth)	Positive	TP (True Positive) 정상 예측	FN (False Negative) 예측 실패 (미 탐지)
	Negative	FP (False Positive) 잘못된 예측 (오 탐지)	TN (True Negative) 정상 미예측

$$Precision = \frac{TP}{TP + FP} = \frac{TP}{Detection \ result} \qquad \qquad Recall = \frac{TP}{TP + FN} = \frac{TP}{Ground \ truth}$$

PR 곡선

• 이전 페이지에서 구한 Precision & Recall을 이용하여 그래프를 그리게 됩니다.

• PR곡선을 그릴 때 <u>Confidence값에 대한 T</u> hreshold값을 조절 하면 Precision, Recall 도 그에 따라 변하게 되는데 이것을 그리 게 됩니다.

AP (Average Precision)

- AP는 Precision-Recall 그래프 에서 그래프 면적을 뜻합니다.
- 일반적으로 계산전에 PR곡선을 단조적으로 감소하는 그래프가 되게 하기 위해 PR 곡선을 보정해 줍니다.
- 오른쪽 예시 그래프 경우 아래와 같습니다.

$$AP = A1 + A2$$

= 1×0.33 + 0.88×(0.47 - 0.33)
= 0.4532

AP 예제

rec: recall

prec: precision

mrec: recall 리스트

mpre: precision 리스트

[출처]

<u>rafaelpadilla/review_object_detection_metrics</u> (Github)

[URL]

https://github.com/rafaelpadilla/review_object_detection_n_metrics/blob/56d8969739d4774b4bab5b8122870e7e_4c833021/src/evaluators/pascal_voc_evaluator.py#L13-L31

```
v def calculate_ap_every_point(rec, prec):
   mrec = []
   mrec.append(0)
   [mrec.append(e) for e in rec]
   mrec.append(1)
   mpre = []
   mpre.append(0)
   [mpre.append(e) for e in prec]
   mpre.append(0)
   for i in range(len(mpre) - 1, 0, -1):
       mpre[i - 1] = max(mpre[i - 1], mpre[i])
   ii = []
   for i in range(len(mrec) - 1):
       if mrec[1:][i] != mrec[0:-1][i]:
            ii.append(i + 1)
   ap = 0
   for i in ii:
       ap = ap + np.sum((mrec[i] - mrec[i - 1]) * mpre[i])
   return [ap, mpre[0:len(mpre) - 1], mrec[0:len(mpre) - 1], ii]
```

mAP (mean Average Precision)

• 1개의 클래스당 1개의 AP 값을 구하고, <u>여러 클래스에 대해서 mean 값을 구한 것</u>입니다.

$$mAP = \frac{1}{cls} \sum_{1}^{cls} AP(cls)$$

mAP 예제

gt: Ground Truth (실제 값) preds: Predictions (예측 값)

cls: class (부류) vid: video (영상)

rec: recall

prec: precision

[출처]

rafaelpadilla/review_object_detection_metrics (Github)

[URL]

https://github.com/rafaelpadilla/review_object_detection_metrics/blob/main/src/evaluators/tube_evaluator.py# L63-L130

```
def evaluate(self, thr=0.5):
 """Evaluate the predictions according to the chosen IOU threshold
    thr (float, optional): IOU threshold 0 < thr < 1. Defaults to 0.5.
     res, mAP: return a dictionary (res) with results per class. Also, returns the mAP.
 if not 0 < thr <= 1:
    raise ValueError("IOU threshold must be 0 < thr <= 1: ", thr)
 self.__process()
 for obj_cls in self._classes:
    gt_cls = [gt for gt in self._gt if gt.category_id == obj_cls['id']]
     preds_cls = [pred for pred in self._predictions if pred.category_id == obj_cls['id']]
     preds cls = sorted(preds cls, key=lambda tube: tube.confidence, reverse=True)
     for vid id in self. videos:
         gts = [gt for gt in gt cls if gt.video id == vid id['id']]
         preds = [pred for pred in preds cls if pred.video id == vid id['id']]
        n_tp, n_fp, n_fn = self._classify_tubes(preds, gts, thr)
     TP = np.array([int(tube.isTP) for tube in preds_cls])
     FP = np.logical_not(TP).astype(int)
     acc TP = np.cumsum(TP)
     acc FP = np.cumsum(FP)
     rec = acc_TP / len(gt_cls)
     prec = np.divide(acc_TP, (acc_FP + acc_TP))
     if self. method == MethodAveragePrecision.EVERY POINT INTERPOLATION:
         [ap, mpre, mrec, ii] = calculate ap every point(rec, prec)
     elif self. method == MethodAveragePrecision.ELEVEN POINT INTERPOLATION:
         [ap, mpre, mrec, _] = calculate_ap_11_point_interp(rec, prec)
         raise ValueError(f'Invalid interpolation method: {self._method}')
     self._res[obj_cls['name']] = {
         'precision': prec,
          'interpolated precision': mpre,
         'interpolated recall': mrec,
          'total FN': n fn,
mAP = 0.0
 for c, r in self. res.items():
     if any(cat['name'] == c for cat in self. classes):
         MAP += r['AP']
 mAP /= len(self._classes)
 return self._res, mAP
```