

NDDR-CNN: Layerwise Feature Fusing in Multi-Task CNNs by Neural Discriminative Dimensionality Reduction Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, Alan Yuille

LONG BEACH CALIFORNIA June 16-20, 2019

Motivation

Standard Multi-Task CNNs:

Q: Is it appropriate to assume that the low- and mid-level features for different tasks in MTL should be identical (i.e., shared), and only split at the last layer?

A: Empirical splitting/sharing leads to different results [1]!

Best arch can be Task/Dataset-Related and achieves in Middle

Infeasible Exhaust Search

Generalization Problem

Improper arch harms to one or more tasks

General Purpose,

Efficient, Plug and Play,

Multi-task Learning CNN

architecture

Key Ideas

- 1. Start with Single Task Networks.
- 2. Explore *feature embedding* from *different tasks* at *every CNN level*.

This can be achieved by a novel *Neural Discriminative* (supervised) *Dimensionality Reduction* (NDDR) operation formulated by *1x1 Conv*, *BatchNorm*, and *Weight Decay*.

Methodology

Equivalence of NDDR and Concat + 1x1 Conv + BatchNorm + WeightDecay:

- 1. \forall task i, concat features $F_l^i \in \mathbb{R}^{N \times H \times W \times C}$ from layer l: $\mathbf{F}_l = \mathrm{Concat}[\mathbf{F}_l^1,...,\mathbf{F}_l^K] \in \mathbb{R}^{N \times H \times W \times KC}$
- 2. Perform feature projection on the concated features: $\mathbf{F}_l^{i*} = \mathbf{F}_l \mathbf{W} \in \mathbb{R}^{N \times H \times W \times C}$

3. Constraints on Transformation W \longrightarrow Weight Decay Normalization on Input $\mathbf{F}_{l}^{i*} \longrightarrow$ BatchNorm

Overview of our networks:

Features

- 1. General Purpose: w/o tasks or dataset assumption;
- 2. Efficient: very few additional NDDR layers enables significant boost (e.g., 5 vs. 101 in ResNet-101);
- 3. Plug and Play: support most (if not all) existing CNN arches in an end-to-end trainable manner.
- 4. Robust to Hyperparas: see the ablations on weight init., learning rate init., and pretrains in our paper!

Experiments

Pixel Labeling Tasks: Seg. + Surface Normal

	Surface Normal Prediction				Semantic Seg.] [Surface Normal Predictio				
	Errors		Within t° (%)			(%)		1 [Errors		Within t° (
	(Lower Better)		(Higher Better)			(Higher Better)				(Lower Better)		(Higher Bet	
	Mean	Med.	11.25	22.5	30	mIoU	PAcc	1 [Mean	Med.	11.25	22.5
Sing.	15.6	12.7	44.3	74.8	87.2	39.5	69.2	1 [Sing.	15.4	12.1	46.9	76.1
Mult.	16.3	13.8	41.1	73.9	86.5	39.1	68.7		Mult.	15.2	11.8	48.0	76.4
CS.	15.9	13.2	42.9	75.1	86.8	40.5	69.5		CS.	14.8	11.1	50.3	76.9
Sluice	15.3	12.8	44.1	76.9	88.2	40.8	70.1		Sluice	14.2	10.6	51.7	78.2
Ours	<u>14.4</u>	<u>11.6</u>	48.5	<u>79.1</u>	89.5	43.3	<u>71.5</u>		Ours	<u>13.4</u>	<u>9.8</u>	<u>55.1</u>	80.5

Results w/ ResNet-101-Deeplab Results w/ VGG16-Deeplab-Shortcut

Image Level Tasks:

Age + Gender Est.

	A	Gender	
	(Lowe	(Higher Better)	
	Mean AE	Median AE	Acc. (%)
Single-Task	9.1	7.4	83.5
Multi-Task	9.0	7.4	82.3
Cross-Stitch	8.6	7.0	84.0
Sluice	8.5	7.0	84.1
Ours	<u>8.0</u>	<u>6.2</u>	<u>84.0</u>

Results w/ VGG16

Our Code is Released!

https://github.com/ethanygao/ NDDR-CNN

Reference

- Misra, Shrivastava, Gupta, Hebert. CVPR 2016.
- 2. Ruder, Bingel, Augenstein, Søgaard, AAAI 2019.
- . Chen, Papandreou, Kokkinos, Murphy, Yuille. TPAMI 2018.
- 4. He, Zhang, Ren, Sun. CVPR2016. 5.Simonyan, Zisserman. ICLR2015.