Data Structures & Algorithms for Problem Solving (CS1.304)

Searching in Integer Data

Avinash Sharma

Center for Visual Information Technology (CVIT),
IIIT Hyderabad

Motivation - Integer Data

- Consider settings where it is known that the input keys arrive from a known range [0,m-1].
 - Example: Vertex ids in a graph algorithm
 - Marks in an exam out of 100.
 - Age, ...
- Suppose we are still interested in the set of operations such as insert/delete/find and in addition prev/next/isEmpty and max/min.
- This set of operations is called as the dictionary set of operations over dynamic set.
- Notice that a height-balanced BST can do each of these operations in O(log n) time.

Motivation - Integer Data

- However, the BST does not intend to benefit from the fact that the input keys are from a small known range.
- One possibility is to use an array of size O(m).
- Each operation can be done in O(m) time, some can be done in O(1) time.
- However, m can be closer to n, and hence, much bigger than O(log n).
- So, ideal solutions should do all operations in time less than O(log n).

Motivation

- We will see one data structure today that can do each of these operations in time O(loglog m).
 - The space used will be a bit high at O(m).
 - There are other ways to deal with that issue.
- The data structure is called the van Emde Boas tree after dutch computer scientist Peter van Emde Boas who invented it in 1974.
- We will take a two step approach.
 - First, to get to O(loglog m) for some operations and O(log m) for some,
 - Then, find ways to optimize the above solution and get to O(loglog m) for every operation.

Bit Vectors

- By a bit vector, we mean an array where the values stored are 1 or 0.
- Usually, 1 in cell i means the presence of key i, and 0 means the absence of key i.

Tiered Bit Vectors

- While using one bit vector for the entire data structure is not efficient, we can keep a hierarchy of bit vectors.
- Call the first vector as A and the second bit vector as T.
- If T[i] is 1, it means that at least one element in the corresponding part of A is present.

Tiered Bit Vectors

- Formally, let s be a parameter.
- The array A is partitioned into A/s pieces and the array T is of size s.

- Insert(x) Two steps
 - Check if T[x / s] is 0. If it is, then make T[x / s] as 1.
 - Mark A[x] as 1. Can be viewed alternatively as inserting in the array $A_{i/s}$.
- Each Insert(x) is therefore translated to two Insert calls into appropriate vectors (arrays).

- Find(x) Two steps
 - Otherwise, check for x in array $A_{x/s}$.
- Each Find(x) is therefore translated to one isempty() query and one find on a small array.

- Min() should return the value of the smallest present element.
- Find the minimum value in the smaller vector, say j.
- Suggests that T[j] is 1 and all other T[i] if i < j are 0.
- Find minimum in A_i.
- In essence, Min() translates to two Min() operations on smaller vectors.

- Prev(x) Again multiple steps on smaller vectors.
 - Find Min() in the vector $A_{x/s}$.
 - If the answer is different from x, return.
 - Otherwise, find j = Prev(x/s) in the smaller vector.
 - Find Max() in A_i.
- Each Prev(x) is translated to two Prev() queries. Same with Next(x).

- Delete(x) Again two steps
 - Mark A[x] in $A_{x/s}$ as 0.
 - If all entries in $A_{x/s}$ are 0, then set T[x/s] to 0.

Each operation turns into operations on smaller arrays as follows.

• insert: 2x insert

• find : 1x lookup

• is-empty: 1x is-empty

• min: 2x min

prev: 2x Prev, 1x max, and 1xmin

• delete: 2x delete, 1x is-empty

- Each operation turns into operations on smaller arrays as follows. Time taken is:
 - insert: 2x insert O(1)
 - find : 1x lookup O(1)
 - is-empty: 1x is-empty O(1)
- min: 2x min O(s + m/s)
- next: 1x next, 1x max, 1x min O(s+m/s)
- delete: 2x delete, 1x is-empty O(s+m/s)

- Each operation turns into operations on smaller arrays as follows. Time taken is:
 - The run time of O(s+m/s) is seen to be minimized when s = sqrt{m}.
 - In other words, all operations finish in time O(sqrt{m}).
 - Some operations are much faster.
 - Not a good solution BST much better.

- Consider the second bit vector T of size sqrt{m}.
- Since sqrt{m} is much bigger than log m in general, our run times are all large.
- But, what prevents us from using additional techniques for storing a summary of this bit vector?
 - Nothing. Can apply our technique recursively.

- Let us call the large vector of size m, A, as T_0 and summary vector as T_1 of size $m^{1/2}$.
- Consider using a summary vector for vector T₁.
- The length of this summary vector should be $m^{1/4}$. Call this vector as T_2 .
- Since T_2 is also large, possibly, we will use a summary vector T_3 to help operations on T_2 .
 - The size of T_3 is $m^{1/8}$.
- Continue this until the summary vector is of size O(1).
 - We will see that there will be O(log log m) vectors.

 A helpful view is to see the two levels of the hierarchy as forming 1+m^{1/2ⁱ} smaller vectors at level i.

- Consider the set of operations again.
 - Insert: 2x insert, at each recursive level.
 - Find: 1x lookup but can say lookup in a smaller bit vector.
 - is-empty: 1x is-empty, but can say on a smaller bit vector
 - min: 2x min, one each at a smaller level
 - next: 1x next, 1x max, 1x min, at a smaller level
 - delete: 2x delete at a smaller level, 1x is-empty,

- Consider the set of operations again.
 - Insert: 2x insert, at each recursive level.

Time = 2T(sqrt{m}) + O(1) Solution: T(n) = log(m)

Proposition 1. $T(U) = T(\sqrt{U}) + O(1) = O(\log \log U)$.

Proof. Let $m = \log U \Rightarrow U = 2^m$. Our recurrence relation is now: $T(2^m) = T(2^{\frac{m}{2}}) + O(1)$. Let $S(m) = T(2^m)$, then we have that: $S(m) = S(\frac{m}{2}) + O(1)$. By case 2 of the master method, $S(m) = O(\log m)$. Therefore, $T(U) = T(2^m) = S(m) = O(\log m) = O(\log \log U)$. [?]

- Consider the set of operations again.
 - Find: 1x lookup but can say lookup in a smaller bit vector.
 - is-empty: 1x is-empty, but can say on a smaller bit vector
 - min: 2x min, one each at a smaller level
 - successor: 1x successor, 1x max, 1x min,
 at a smaller level
 - delete: 2x delete at a smaller level, 1x isempty,

- Consider the set of operations again.
 - Find: 1x lookup but can say lookup in a smaller bit vector.

Time : $T(m) = T(sqrt\{m\}) + O(1)$

Solution: T(m) = O(loglog m).

- Consider the set of operations again.
 - is-empty: 1x is-empty, but can say on a smaller bit vector

Time: $T(m) = T(sqrt\{m\}) + O(1)$.

min: 2x min, one each at a smaller level

Time: $T(m) = 2T(sqrt\{m\}) + O(1)$

Solution: From earlier, T(m) = log(m)

- Consider the set of operations again.
 - next: 1x next, 1x max, 1x min, at a smaller level
 - delete: 2x delete at a smaller level, 1x isempty,

Our Solution So Far

- We have a data structure, the tiered bit vector, where some operations are O(loglog m).
 - These are exponentially faster than using BSTs.
- Other operations are in O(log m).
 - These are worse than BST.
- Can we make all operations faster?
 - Let us identify some potential places for optimization.

Scope for Optimization

- Notice that our recurrences that lead to slower run times are of the form T(m) = 2T(sqrt{m}) + O(1).
- We will see if we can use do with just one T(sqrt{m}) on the RHS instead of two of them.
- For this, let us start with Min/Max/isEmpty.

Faster Min/Max

- Finding the smallest or the largest should be O(1).
- Even when there is a data structure that does lots of other operations, min/max can be found in O(1).
- The trick is to store the minimum and maximum explicitly outside of the data structure.
 - Operations that affect min/max can check before proceeding to the data structure.

- Before we see the impact of this reduced cost of Min/Max, let us define the van Emde Boas Tree formally.
- The van Emde Boas tree of size m is a bit vector of size m that has
 - 1 + sqrt{m} vectors of size sqrt{m} with pointers to each of these vectors.
 - Two separate data items, for the min and the max of the current level.
 - Each vector, including the summary, is again stored recursively via vectors of size $m^{1/4}$.

- Let us look at Insert operation in detail.
- Insertions in a vEB tree work as earlier.
 - Careful to handle min and max.
 - Handle the case where the tree is empty.
 - Handle the case where the tree has just one element.
 - May need to displace min or max into the tree

```
INSERT(x, V)
if V.min == +\infty then
  V.min = x
  return
else if x < V.min then
  SWAP(x, V.min)
end if
if x > V.max then
  V.max = x
end if
if V.cluster[c].min == +\infty then
  INSERT(i, V.cluster[c])
  INSERT(c, V.summary)
else
  INSERT(i, V.cluster[c])
end if
```

- 1. If V is empty, i.e., $V.min = +\infty$, then we only need to set V.min = x. $\Rightarrow O(1)$
- 2. Else if x < V.min, then x is the new minimum element in V. Hence, we swap x and V.min and continue with the insertion with our new x value. $\Rightarrow O(1)$
- 3. If x > V.max, then x is the new maximum element in V. Unlike V.min, V.max is also stored in the clusters, thus we simply set V.max = x and proceed with the insertion. $\Rightarrow O(1)$
- 4. If V.cluster[c] is empty, i.e., if $V.cluster[c].min == +\infty$, we need to insert i into V.cluster[c] and also insert c into V.summary. Here we need to execute two recursive calls on a universe size of \sqrt{U} . However since V.cluster[c] is empty, to insert i into V.cluster[c] we only need to set V.cluster[c].min = i which is O(1) time.
 - \Rightarrow Two recursive calls on a problem size of \sqrt{U} , with one recursive call taking O(1) time.
- 5. Else we just need to insert *i* into V.cluster[c]. \Rightarrow One recursive call on a problem size of \sqrt{U}

- Time to insert analyzed as follows.
 - If the tree is empty or has just one element, update min and max appropriately and stop.
 - Insert x % sqrt{m} into the appropriate vector ($A_{x/m}$).
 - Insert x / sqrt{m} into the summary vector.
- Still has 2 recursive inserts and O(1) time.
- Not much help.
- Notice however that the second insert, into the summary vector, is not needed on every insert.
 - Needed only when the corresponding summary vector is empty so far.

- New recurrence relation:
 - $T(m) = T(sqrt\{m\}) + O(1)$ when no insert into the summary. Otherwise,
 - An insert into an empty vector followed by an insert into another vector.

- New recurrence relation:
 - T(m) = T(sqrt{m}) + O(1) when no insert into the summary. Otherwise,
 - An insert into an empty vector followed by an insert into another vector.
 - Inserting into an empty vector is O(1).
 - If the tree is empty or has just one element, update min appropriately and stop.
 - The recurrence in this case is T(m) = T(sqrt{m}) + O(1).
 - In both cases, the time to insert is O(log log m).

- TODO: Analyze other operations.
- You can then conclude that each operation runs in time O(loglog m).

Thank You