

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ «Информатика, искусственный интеллект и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе № 1 по курсу «Методы вычислений» на тему: «Метод поразрядного поиска» Вариант № 15

Студент	ИУ7-21М (Группа)	(Подпись, дата)	<u>Миронов</u> Γ. А. (И. О. Фамилия)
Преподаватель		(Подпись, дата)	Власов П. А. (И. О. Фамилия)

1 Выполнение индивидуального задания

1.1 Цель работы

Изучение метода поразрядного поиска для решения задачи одномерной минимизации.

1.2 Постановка задачи

Необходимо:

- 1. реализовать метод поразрядного поиска в виде программы на ЭВМ.
- 2. провести решение задачи

$$\begin{cases} f(x) \to \min \\ x \in [a, b] \end{cases}$$

для данных индивидуального варианта.

3. организовать вывод на экран графика целевой функции, найденной точки минимума $(x^*, f(x^*))$ и последовательности точек $(x_i, f(x_i))$, приближающих точку искомого минимума (для последовательности точек следует предусмотреть возможность "отключения" вывода ее на экран)

Индивидуальный вариант целевой функции:

$$\sinh\left(\frac{3x^4 - x + \sqrt{17} - 3}{2}\right) + \sin\left(\frac{5^{1/3}x^3 - 5^{1/3}x + 1 - 4 * 5^{1/3}}{-x^3 + x + 2}\right),\,$$

при
$$[a, b] = [0, 1].$$

Метод поразрадного поиска

Данный метод является усовершенстованной версией метода перебора, с меньшим числом обращений к целевой функции.

Исходя из свойства унимодальной функции:

$$\begin{cases} x^* \in [a, x_{i+1}], \text{если} f(x_i) < f(x_{i+1}), \\ x^* \in [x_i, b], \text{иначе.} \end{cases}$$

Исходя из этого свойства можно сначала найти грубое приближение точки минимума с шагом $\delta,$ а затем уменьшить шаг и уточнить положение точки x*.

Обычно сначала рассматривают $\delta > \epsilon$ (ϵ — требуемая точность) и вычисляют значения $f(x_i) = f(a+i\delta), i = 0,1,2,\ldots$ до тех пор, пока на некотором шаге не будет выполнено условие: $f(x_i) < f(x_{i+1})$. В этих случаях направление поиска изменяют на противоположное и уменьшают шаг (как правило, в 4 раза).

1.3 Схема алгоритма

Рисунок 1.1 – Схема алгоритма

1.4 Текст программы

Π истинг $1.1-\Phi$ айл main.m

```
function lab01()
    clc();
   debugFlg = 1;
   delayS = 0.8;
   a = 0;
   b = 1;
   eps = 0.01;
   fplot(@f, [a, b]);
   hold on;
    [xStar, fStar] = bitwiseSearch(a, b, eps, debugFlg, delayS);
    scatter(xStar, fStar, 'r', 'filled');
end
function [x0, f0] = bitwiseSearch(a, b, eps, debugFlg, delayS)
    i = 0;
   delta = (b - a) / 4;
   x0 = a;
   f0 = f(x0);
   plot_x = [];
   plot_f = [];
    while 1
        i = i + 1;
        x1 = x0 + delta;
        f1 = f(x1);
        if debugFlg
            fprintf(' %2d x *= \%.10f f(x*) = \%.10f n', i, x1, f1);
            plot_x(end + 1) = x1;
            plot_f(end + 1) = f1;
            clc();
```

```
plot(plot_x, plot_f, 'xk');
            plot(x1, f1, 'xr');
            hold on;
            pause(delayS);
        end
        if f0 > f1
            x0 = x1;
            f0 = f1;
            if a < x0 && x0 < b
                 continue
            else
                 if abs(delta) <= eps
                     break;
                 else
                     x0 = x1;
                     f0 = f1;
                     delta = -delta / 4;
                 end
            end
        else
            if abs(delta) <= eps
                 break;
            else
                 x0 = x1;
                 f0 = f1;
                 delta = -delta / 4;
            end
        end
    end
    i = i + 1;
    if debugFlg
        fprintf(' %2d x*=\%.10f f(x*)=\%.10f\n', i, x0, f0);
        fprintf('RESULT: x*=\%.10f f(x*)=\%.10f n', x0, f0);
        plot(plot_x, plot_f, 'xk');
    end
end
```

```
function y = f(x)
  k = power(5,1/3);
  y = sinh((3 * power(x,4) - x + sqrt(17) - 3) / 2) + sin((k *
      power(x, 3) - k * x + 1 - 2 * k) ./ (-power(x,3) + x +
      2));
end
```

1.5 Результаты расчетов для задачи из индивидуального варианта.

Таблица 1.1 – Результаты расчетов

$N_{ar{f o}}$ π/π	ϵ	N	x^*	$f(x^*)$
1	1e-2	19	0.4414062500	-0.5511880697
2	1e-4	35	0.4423828125	-0.5511898802
3	1e - 6	49	0.4423646927	-0.5511898808