Assignment 3

a.

The overall churn rate is 14.49 % (0.14491449). This has been obtained using excel.

b. Using the training dataset, the scatterplot of Churn on the Y axis and RoamMin on the x axis has been generated by using ContractRenewal as a color.

c.

The confusion table is:

Reference Prediction 0 1

Accuracy rate is 0.851

Misclassification error is 0.149

Sensitivity value is 0.097

d.

Contract renewal has the highest correlation value with churn, which is (-0.2718).

This means that if a contract is renewed, it will result in a decrease in the log odds of churn by 0.2718.

The accuracy rate is 0.854

Misclassification error is 0.146

Sensitivity value is 0.188

e.

The confusion matrix is as follows:

Accuracy rate is 0.854

Misclassification error is 0.146

Sensitivity value is 0.198

f.

Given average Net Loss Table is:

Reference
Prediction 0 1
0 \$0 \$200
1 \$50 \$0

For part c:

Reference Prediction 0 1 0 1115 187 1 11 20

Average net loss = (187*200) + (11*50) = \$37950

For part d:

Reference Prediction 0 1 0 1099 168 1 27 39

Average net loss = (168*200) + (27*50) = \$34950

For Part e:

Reference
Prediction 0 1
0 1098 166
1 28 41

Average net loss = (166*200) + (28*50) = \$34600

ROC curve for part C

The AUC value is 0.7376.

Lift Chart

ROC Curves

1 - Specificity: False Positive Rate

ROC curve for part D

The AUC value is 0.795.

Lift Chart

e

ROC Curves

1 - Specificity: False Positive Rate

ROC curve for part E.

The model used in Part (e) has the highest AUC value, hence that is the best model.

h.

Accuracy for 0.1 to 0.9:

- [1,] 0.6654164 [2,] 0.8087022
- [3,] 0.8402101 [4,] 0.8469617
- [5,] 0.8544636
- [6,] 0.8462116
- [7,] 0.8477119
- [8,] 0.8492123 [9,] 0.8469617

The maximum accuracy is for cut off value of 0.5, which makes it the best cutoff value.

Appendix


```
trainindex <- sample(n, round(0.6*n), replace=FALSE)</pre>
training=data[trainindex,]
validation=data[-trainindex,]
ggplot(training,aes(x=RoamMins,y=Churn))+geom\_point(aes(color = factor(ContractRenewal)))
#problem c
#to get numerical rows
num_data=data.frame(training)
num_data <- subset(num_data, select = -c( ContractRenewal,</pre>
                                                                  DataPlan))
#logistic regression fit line
fit_c=glm(Churn~.,family= binomial, data=num_data)
summary(fit_c)
#for the validation data
```

```
val<-predict(fit_c,validation,type="response")</pre>
validationdf <-cbind(validation,val)</pre>
validationdf$response <- as.factor(ifelse(validationdf$val>0.5, 1, 0))
confmatrix=confusionMatrix(data=factor(validationdf$response),
reference=factor(validationdf$Churn), positive='1')
#confusion table
confmatrix$table
#accuracy rate
round(confmatrix$overall[1],3)
# Misclassification error
round(1-confmatrix$overall[1],3)
```

```
#sensitivity value
round(confmatrix$byClass[1],3)
#problem d
fit\_d = glm(Churn \sim AccountWeeks + ContractRenewal + DataPlan + \\
DataUsage + CustServCalls +DayMins + DayCalls + MonthlyCharge
+ OverageFee + RoamMins,family= binomial, data=training)
summary(fit_d)
cor(training)
val<-predict(fit_d,validation,type="response")</pre>
mydf <-cbind(validation,val)
mydf$response <- as.factor(ifelse(mydf$val>0.5, 1, 0))
```



```
fit_e=step(fit_d,direction="backward")
summary(fit_e)
val<-predict(fit_e,validation,type="response")</pre>
mydf_e <-cbind(validation,val)</pre>
mydf_e$response <- as.factor(ifelse(mydf_e$val>0.5, 1, 0))
cm_E=confusionMatrix(data=factor(mydf_e$response),
                                                              reference=factor(mydf_e$Churn),
positive='1')
#Confusion Table
cm_E$table
#Overall accuracy rate
round(cm_E$overall[1],3)
#Misclassification error
```



```
plot(logit_perf,
  main="ROC Curves",
  xlab="1 - Specificity: False Positive Rate",
  ylab="Sensitivity: True Positive Rate",
  col="darkblue", lwd = 3)
abline(0,1, lty = 300, col = "green", lwd = 3)
grid(col="aquamarine")
# AREA UNDER THE CURVE
logit_auc <- performance(logit_scores, "auc")</pre>
as.numeric(logit_auc@y.values) ##AUC Value
```

```
###################
# Getting Lift Charts in R
# For getting Lift Chart in R, use measure="lift", x.measure="rpp" in the performance function.
# Get data for ROC curve and create lift chart values
logit_lift <- performance(logit_scores, measure="lift", x.measure="rpp")</pre>
plot(logit_lift,
  main="Lift Chart",
  xlab="% Populations (Percentile)",
  ylab="Lift",
  col="darkblue", lwd = 3)
abline(1,0,col="red", lwd = 3)
grid(col="aquamarine")
```

```
# for part d
```

```
logit_scores <- prediction(predictions=mydf$val, labels=mydf$Churn)</pre>
#PLOT ROC CURVE
logit_perf <- performance(logit_scores, "tpr", "fpr")</pre>
plot(logit_perf,
  main="ROC Curves",
  xlab="1 - Specificity: False Positive Rate",
  ylab="Sensitivity: True Positive Rate",
  col="darkblue", lwd = 3)
```

abline(0,1, lty = 300, col = "green", lwd = 3)


```
main="Lift Chart",
  xlab="% Populations (Percentile)",
  ylab="Lift",
  col="darkblue", lwd = 3)
abline(1,0,col="red", lwd = 3)
grid(col="aquamarine")
# for part e
logit_scores <- prediction(predictions=mydf_e$val, labels=mydf_e$Churn)</pre>
#PLOT ROC CURVE
logit_perf <- performance(logit_scores, "tpr", "fpr")</pre>
```

```
plot(logit_perf,
  main="ROC Curves",
  xlab="1 - Specificity: False Positive Rate",
  ylab="Sensitivity: True Positive Rate",
  col="darkblue", lwd = 3)
abline(0,1, lty = 300, col = "green", lwd = 3)
grid(col="aquamarine")
# AREA UNDER THE CURVE
logit_auc <- performance(logit_scores, "auc")</pre>
as.numeric(logit_auc@y.values) ##AUC Value
```

```
###################
# Getting Lift Charts in R
# For getting Lift Chart in R, use measure="lift", x.measure="rpp" in the performance function.
# Get data for ROC curve and create lift chart values
logit_lift <- performance(logit_scores, measure="lift", x.measure="rpp")</pre>
plot(logit_lift,
  main="Lift Chart",
  xlab="% Populations (Percentile)",
  ylab="Lift",
  col="darkblue", lwd = 3)
abline(1,0,col="red", lwd = 3)
grid(col="aquamarine")
```

```
# problem h
temp = matrix(data=NA, nrow = 9)
for (i in seq(0.1,0.9,0.1)) {
 mydf_e <-cbind(validation,val)
 mydf_e$response <- as.factor(ifelse(mydf_e$val>i, 1, 0))
 cmat = confusionMatrix(mydf_e$response,mydf_e$Churn)
 temp[i*10] = cmat$overall[1]
}
temp
```