Continuous Function

University of Minnesota, Twin Cities Mathematic Department

Jonggoo Kang

Introduction

Generally speaking in Calculus class, if x goes and infinitely close to a, then we say function f(x) converges to f(a). Is it understandable? It might make sense; however, is it possible to logically prove that the value can be infinitely close to a certain value? To be clear this, we will talk about cool Mathematical theorem in this chapter.

§ 1.1 Continuity

Definition 1.1.1

Let $D \subseteq \mathbb{R}$. A function $f: D \to \mathbb{R}$ is **continuous** at $c \in D$ if, for every sequence x_n in D which converges to c, the sequence $f(x_n)$ converges to f(c). In symbols, assuming $x_n \in D$ for all n,

$$x_n \to c \Rightarrow f(x_n) \to f(c)$$
.

If f is continuous at every point in its domain, we simply say f is continuous.

However, a function $f: D \to \mathbb{R}$ is **discontinuous** at a point $a \in D$ if, there exists sequence $\{x_n\}$ in D that converges to a, for which $f(x_n)$ does not converge to f(a).

Example 1.1.2

(a) f(x) = 3x - 1 is continuous at x = 2. Let $x_n \to 2$.

Now need to show $f(x_n) \to f(2)$,

for any $\varepsilon > 0$, there exists N such that $n > N \Rightarrow |f(x_n) - f(2)| < \varepsilon$.

Then,
$$|f(x_n) - f(2)| = |3x_n - 1 - (3(2) - 1)|$$

 $= |3x_n - 1 - (6 - 1)|$
 $= |3x_n - 1 - (5)|$
 $= |3x_n - 6|$
 $= 3(|x_n - 2|)$
 $< 3\varepsilon$, since $x_n - 2 < \varepsilon$ by definition
 $\le \varepsilon$, as required.

So given $\varepsilon' > 0$ there exists $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, $n \ge N$ implies $|a_n^2 - 2| < \varepsilon'$

(b)
$$f(x) = \begin{cases} \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

This is not continuous at 0 since $\lim_{x\to 0} f(x)$ does not exists.

Also, $\lim_{x\to -0} f(x)$ does not exist at 0.

 $\lim_{x \to +0} f(x)$ does not exist at 0.

Thus, f has a discontinuity at 0.

Theorem 1.1.3

Let f and g be functions from $D \subseteq \mathbb{R}$ to \mathbb{R} and let $c \in D$.

Suppose that f and g are continuous at c. Then:

- (a) f + g and fg are continuous at c.
- (b) $k \cdot f$ is continuous for any $k \in \mathbb{R}$.
- (c) f/g is continuous at c if $f(c) \neq 0$.

Proof

(a) Let w be a point in the intersection of the domains of f and g.

Then
$$|(f+g)(w) - (f+g)(c)| = |(f(w) + g(w)) - (f(c) - g(c))|$$

 $\leq |f(w) - f(c)| + |g(w) - g(c)|$

Now, given any $\varepsilon > 0$, since $f(w) \to f(c)$, there exists $n \ge N_1$ implies that $|f(w) - f(c)| < \varepsilon/2$. Similarly, since $g(w) \to g(c)$, there exists $N_2 \in \mathbb{N}$, such that $n \ge N_2$ implies that $|g(w) - g(c)| < \varepsilon/2$.

$$|(f+g)(w) - (f+g)(c)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon|$$

(b) Let w be a point in the intersection of the domains of f and g.

$$\begin{aligned} &|(fg)(w) - (fg)(c)| \\ &= |f(w)g(w)) - f(c)g(c)| \\ &= |f(w)g(w) - f(w)g(c)| + |f(w)g(c) - f(c)g(c)| \\ &\leq |f(w)||g(w) - g(c)| + |g(c)||f(w) - f(c)| \\ &= |f(w) - f(c) + f(c)||g(w) - g(c)| + |g(c)||f(w) - f(c)| \\ &\leq (|f(w) - f(c)| + |f(c)|)|g(w) - g(c)| + |g(c)||f(w) - g(c)| \\ &= |f(w) - f(c)||g(w) - g(c)| + |f(c)||g(w) - g(c)| + |g(c)||f(w) - f(c)| \\ &\text{Let } \varepsilon_1 > 0 \text{ and } \varepsilon_2 > 0. \end{aligned}$$

By the continuity of f at c, we know that there exists $\varepsilon' > 0$ such that

 $|f(w) - f(c)| < \varepsilon_2$ for all w in the domain of f with $|w - c| < \varepsilon_1'$.

Similarly, by the continuity of g at c, we know that there exists $\varepsilon_2' > 0$

such that $|g(w) - g(c)| < \varepsilon_2$ for all w in the domain of g with $|w - c| < \varepsilon_2'$.

Now choose any $\varepsilon' > 0$ smaller than both ε'_1 and ε'_2 .

So we get for all w in the domains of both f and g with $|w-z| < \varepsilon'$.

$$<\varepsilon_2 \bullet \varepsilon_2 + |f(c)|\varepsilon_2 + |g(c)|\varepsilon_2$$

$$= \varepsilon_2(\varepsilon_2 + |f(c)| + |g(c)|$$

$$<\varepsilon_2(1 + |f(c)| + |g(c)|$$

$$<\varepsilon$$

(c) Let w be a point in the intersection of the domains of f and g.

Assume that c is in the domains of f and g as well as $g(c) \neq 0$.

Assume that c is in the domains of f and g as well as
$$g(c) \neq 0$$
.
$$\left| \left(\frac{f}{g} \right)(w) - \left(\frac{f}{g} \right)(c) \right| = \left| \frac{f(w)}{g(w)} - \frac{f(c)}{g(c)} \right|$$

$$= \left| \frac{f(w)g(c) - f(c)g(w)}{g(w)g(c)} \right|$$

$$= \left| \frac{(f(w)g(c) - f(c)g(c)) + (f(c)g(c) - f(c)g(w))}{g(w)g(c)} \right|$$

$$= \frac{|(f(w)g(c) - f(c)g(c))| + |(f(c)g(c) - f(c)g(w))|}{|g(w)||g(c)|}$$

$$= \frac{|(f(w) - f(c)||g(c))| + |(f(c)||g(w) - g(c)|}{|g(w)||g(c)|}$$

Let $\varepsilon_2 > 0$.

Now choose $|\varepsilon_2'>0|$, so $|f(w)-f(c)|<\varepsilon_2$ for all w in the domains of f and g such that $|w - z| < \varepsilon_2'$. Thus,

$$< \frac{\varepsilon_2 |g(c)| + |f(c)| \varepsilon_2}{\left(\frac{1}{2}\right) |g(c)^2|}$$

$$= \varepsilon_2 \bullet \frac{|g(c)| + |f(c)|}{\left(\frac{1}{2}\right) |g(c)^2|} < \varepsilon$$

Theorem 1.1.4

Let f and g be continuous real-valued functions such that the range of f is contained in the domain of g. Then the composition $g \circ f$ is continuous.

Proof

Consider that for any sequence (a_n) such that $a_n \to a$,

$$g \circ f(a_n) \to g \circ f(a)$$

Since f is continuous at a, $f(a_n) \to f(a)$.

Thus, the sequence $(f(a_n))$ is a convergent sequence converging to f(a).

Therefore, since g is continuous at f(a), $g(f(a_n)) \rightarrow g(f(a))$.

Hence,
$$g \circ f(a_n) = g(f(a_n)) \to g(f(a)) = g \circ f(a)$$
.

Thus, $g \circ f$ is continuous at a.