Problem R-03GHI ($C_{10}H_{20}CINO_3$)

400 MHz ¹H NMR Spectra in D₂O

Source: Brouillete *J. Org. Chem.* **1994**, *59*, 4297 11/26 g

Problem R-03GHI. Determine the structure of three stereoisomeric

2-hydroxy-3-trimethylammoniocyclohexanecarboxylic acids from the partial 400 MHz ¹H NMR spectra provided (Brouillete *J. Org. Chem.* **1994**, *59*, 4297). You may find it useful to do part (c) first to aid in the assignments.

(a) For each isomer, identify the signals which are shown in the spectrum. Give coupling constants, multiplicities and chemical shifts.

	H ¹	H^2	H^3
R-03G δ, <i>J</i> :			
R-03H δ, <i>J</i> :			
R-03I δ, <i>J</i> :			

(b) Assign the stereochemistry and conformation of the three isomers by placing the proper substituents on the structures below. For each one, briefly give your reasoning.

R-03G

R-03H

R-03I

(c) The compounds **R-03GHI** are conformational models for carnitine. A spectrum of carnitine is shown below to

Assign each of the four sets of peaks in the NMR spectrum, and identify each pattern (e.g., AA' part of an AA'XX' pattern). Do not attempt to extract coupling constants.

 δ 2.4

 δ 3.2

 δ 3.4

 δ 4.6

Problem R-03GHI. $(C_{10}H_{20}CINO_3)$ 400 MHz ¹H NMR Spectra in D₂O (Source: Brouillete *J. Org. Chem.* **1994**, *59*, 4297 11/26)

Problem R-03GHI. Determine the structure of three stereoisomeric

2-hydroxy-3-trimethylammoniocyclohexanecarboxylic acids from the partial 400 MHz ¹H NMR spectra provided (Brouillete *J. Org. Chem.* **1994**, *59*, 4297). You may find it useful to do part (c) first to aid in the assignments.

$$\begin{array}{c|c} HO & OH \\ Me_3N^+ & 2 \\ CI^- & 3 & 1 \end{array}$$

(a) For each isomer, identify the signals which are shown in the spectrum. Give coupling constants, multiplicities and chemical shifts.

		H ¹	H^2	H³ (always ax)
	R-03G δ, <i>J</i> :	2.84, td, <i>J</i> = 4, 2 Hz	4.75, ≈s?	3.29, ddd, <i>J</i> = 12, 4, 3 Hz
8	R-03H δ, <i>J</i> :	3.05 hidden under Me ₃ N peak	4.01, dd, <i>J</i> = 10, 5 Hz	3.91, td, <i>J</i> = 11, 5 Hz
	R-03I δ, <i>J</i> :	2.46, ddd, <i>J</i> = 12, 5, 2 Hz	4.8, ≈s?	3.22, ddd, <i>J</i> = 12, 4, 3 Hz

Expect H¹ to be most upfield of the three protons, H² to be most downfield:

Curphy-Morrison $\Delta\delta$: 2° α NMe₃: 2.06, α OH: 2.30; α CO₂H: 1.00

(b) Assign the stereochemistry and conformation of the three isomers by placing the proper substituents on the structures below. For each one, briefly give your reasoning.

For each compound, the NMe_3 should be the "anchor" - it is as large as a ^tBu group - and should always be equatorial. This what we see: H^3 always has at least one large (ax-ax) coupling.

H³ must be axial, since is shows one large coupling (12 Hz).

H¹ and H² must both be equatorial, since neither shows a large coupling

 $\rm H^3$ shows two large couplings (3.91, td, $\it J$ = 11, 5 Hz) so must be axial and have axial protons on both sides, so $\rm H^2$ must also be axial

 H^2 has only one ax-ax proton coupling (4.01, dd, J = 10, 5 Hz) so H^1 must be equatorial (even though we cannot see it well).

 H^3 has only one ax-ax coupling (3.22, ddd, J = 12, 4, 3 Hz) so it is axial, but H^2 must be equatorial

 H^1 has one ax-ax coupling (2.46, ddd, J = 12, 5, 2 Hz), so it must be axial

12

(c) The compounds R-03GHI are conformational models for carnitine. A spectrum of carnitine is shown below to aid in your analysis.

Assign each of the four sets of peaks in the NMR spectrum, and identify each pattern (e.g., AA' part of an AA'XX' pattern). Do not attempt to extract coupling constants.

Calc δ: Base: 1.2 δ 2.4 CH₂ at C¹: AB of ABMXY pattern α CO₂H: 1.0 β OH: 0.2

Calc: 2.4

-NMe₃ singlet δ 3.2

5

Calc δ: Base: 1.2 CH2 at C3: XY of ABMXY δ 3.4 α NMe₃: 2.1 (ABX-type pattern with one β OH: 0.2 ab quartet collapsed to Calc: 3.5 singlet - 5-line ABX)

CH at C²: apparent quintet, probably a doublet of quartets δ 4.6

Problem R-03GHI. (C₁₀H₂₀CINO₃) 400 MHz ¹H NMR Spectra in D₂O (Source: Brouillete J. Org. Chem. 1994, 59, 4297 11/26) H^1 (eq), td, J = 4, 2 Hz H^3 (ax), ddd, J = 12, 4, 3 HzHOD 30 20 10 0 CI HO₂C 9H H² (eq) 2.84 2.80 3.32 3.28 OH 1.00 R-03G tc H^2 (ax), dd, J = 10, 5 HzCI HO_2C \int_3 H^3 (ax), td, J = 11, 5 Hz[†]Me₃ 10H 4.00 3.95 3.90 H¹ (eq) R-03H 1.00 0.91 ct H^3 (ax), ddd, J = 12, 4, 3 Hz H^1 (ax), ddd, J = 12, 5, 2 HzCI 9H H² (eq), ≈s 3.20 1.08 3.24 HO₂C 2.46 2.42 ОН 1.00 0.95 R-03I CC

3.6

3.4

3.2

3.0

2.8

2.6

2.4

4.8

4.6

4.4

4.2

4.0

3.8