

Executar Teste e Implantação de Aplicativos Computacionais

SENAC PE

28 de Setembro de 2024

Teste Funcional

Particionamento em Classes de Equivalência;

- Alguns critérios:
 - Particionamento em classes de equivalência;
 - Análise do valor limite;
 - Grafo causa-efeito;
 - Error guessing;
 - Teste Funcional sistemático;
 - Entre outros.
- Todos os critérios baseiam-se na especificação do produto testado.

<u>Critério Particionamento em Classes de Equivalência:</u>

Divide o **domínio de entrada** em **classes** de equivalência (subconjuntos) que, de acordo com a especificação do programa, podem ser tratadas da mesma maneira.

Visão Geral: Particionamento em Classes

- Passo 1: A partir da especificação do software, identificar as classes de equivalência.
 - Para ajudar na identificação das classes, analise a especificação do produto procurando por termos como Intervalo e Conjunto, bem como palavras similares.
 - Verifique as diretrizes para definir as classes.
 - Se elementos de uma mesma classe forem tratadas de forma diferente, divida tal classe em outras menores.
 - Defina classes válidas e inválidas.
- Passo 2: Gerar casos de teste selecionando um elemento de cada classe.
 - Identificadas as classes, escolhe-se de forma arbitrária os elementos de cada uma.
 - Os casos de teste são então definidos para as classes válidas e inválidas.

Diretrizes para definir as classes

- Se a condição de entrada especifica um intervalo, então define-se uma classe válida e duas inválidas.
- Se a condição de entrada especifica uma quantidade, então define-se uma classe válida e duas inválidas.
- Se a condição especifica conjuntos determinados de valores, define-se uma classe válida para cada conjunto e uma classe inválida com outro valor qualquer.
 - Exemplo: Tabela do Imposto de Renda
 - Até R\$: 1.903,38: isento
 - De R\$: 1.903,99 até R\$: 2.826,65: alíquota de 7,5%
 - De R4: 2.826,66 até R\$ 3.751,05: alíquota de 15%
 - De R\$: 3.751,06 até R\$ 4.664,68: alíquota de 22,5%
 - Acima de 4.664,68: alíquota de 27,5%
 - Se a condição de entrada é específica ("deve ser assim"), então define-se uma classe válida e uma inválida.
 - Exemplo: identificador deve iniciar com uma letra

Exemplo

- Especificação do programa *Identifier*: "O programa deve determinar se um identificador é válido ou não. Um identificador válido deve começar com uma letra e conter apenas letras ou dígitos. Além disso, deve ter no mínimo um caractere e no máximo seis caracteres de comprimento".
- Passo 1: identificar as classes de equivalência

	Variáveis de entrada	Classes de equivalência válidas	Classes de equivalência inválidas	
	Comprimento (t)	1<= t <= 6 (1)	t < 1 (2) e t > 6 (3)	
	Iniciar com uma letra (i)	Sim, inicia com letra (4)	Não inicia com letra (5)	
	Contém letras ou dígitos (c)	Sim, só contém letras ou dígitos (6)	Contém caracteres diferentes de letras e dígitos (7)	

- Passo 2: Definição do conjunto de casos de teste:
 - T0 = {(a5, Válido), ("", Inválido), (665432197, Inválido), (B*ss1)}
 (1), (4), (6) (2) (3), (5) (7)

Resumo

Teste Funcional

• Análise do valor limite

- Alguns critérios:
 - Particionamento em classes de equivalência;
 - Análise do valor limite;
 - Grafo causa-efeito;
 - Error guessing;
 - Teste Funcional sistemático;
 - Entre outros.
- Todos os critérios baseiam-se na especificação do produto testado.
- Análise do valor limite complementa os resultados do Particionamento em classe de equivalência.

Critério Análise do Valor limite:

Em vez de os dados de teste serem escolhidos aleatoriamente, eles devem ser selecionados considerando o valor limitante de cada classe de equivalência.

Recomendações Gerais para aplicação

Se a condição de entrada	Exemplo	devem ser definidos dados de teste
(1) Especifica um intervalo de valores	Um valor no intervalo entre -1 e +1. -1 0 +1	Para os limites desse intervalo e dados de teste imediatamente subsequentes, que explorem classes inválidas vizinhas: -1 +1 -1.001 +1.001

(2) Especifica
Uma quantidade
De valores

Um valor no tamanho de 1 até 255 caracteres.

com nenhum valor de entrada; com somente 1 valor; com **255** valores; E com **256** valores de entrada.

- Usar a recomendação (1) para as condições de saída.
- Usar a recomendação (2) para as condições de saída.
- Se a entrada ou saída for um conjunto ordenado, preocupa-se com o primeiro e último elemento.

Exemplo – Parte II

• Passo 1: identificar as classes de equivalência

Variáveis de entrada	Classes de equivalência válidas	Classes de equivalência inválidas
Comprimento (t)	1<= t <= 6 (1)	t < 1 (2) e t > 6 (3)
Iniciar com uma letra (i)	Sim, inicia com letra (4)	Não inicia com letra (5)
Contém letras ou dígitos (c)	Sim, só contém letras ou dígitos (6)	Contém caracteres diferentes de letras e dígitos (7)

• Passo 2: Definição dos casos de teste considerando os limites e as recomendações para o critério:

	Entrada	Saida	
t	i	С	Salua
""(nenhum valor) (2) (5)			Inválido
a (1) (4) (6)	a (1) (4) (6)	a (1) (4) (6)	Válido
a12345 (1) (4) (6)	a12345 (1) (4) (6)	a12345 (1) (4) (6)	Válido
a123456 (3)			Inválido
	2 (5)		Inválido
		A#\$1 2 (7)	Inválido

Resumo

Exercício

Exercício: Form. Cadastro de Usuário

- Você está responsável por testar o sistema de cadastro de usuários de um site. O formulário de cadastro contém os seguintes campos:
 - 1. Nome: Deve ser um string até 30 caracteres
 - 2. Nome: Não deve haver caracteres especiais
 - 3. Idade: Deve ser um número inteiro entre 18 e 65 anos
- Tarefas:
 - Particionamento em Classes de Equivalência:
 - Identifique classes válidas e inválidas para cada campo do formulário
 - Análise do Valor Limite:
 - Defina os valores exatos para testar os limites de cada campo.
- Busque um código de Cadastro de Sistema de Usuário no github para realizar os testes.

Senac Pernambuco Educação Profissional Recife

Thiago Dias Nogueira

Instrutor Técnico

(81) 9 9627-0419

thiago.nogueira@pe.senac.br