Exercice 1

1. Parmi les variables suivantes, lesquelles peuvent raisonnablement être représentées par des fonctions continues du temps?

 \boxtimes La taille d'un enfant qui grandit.

⊠ La vitesse d'un avion en vol.

 \boxtimes La distance parcourue par une voiture.

 $\hfill \square$ Le nombre d'habitants de Genève.

 \square Aucune des réponses ci-dessus.

2. Quelle est l'image de 2 par la fonction $f(x) = \begin{cases} x^2 - 1 & \text{si } x \leq 2 \\ -x^2 + 1 & \text{si } x > 2 \end{cases}$?

 \boxtimes 3

 \square 27

 \Box -3

 \Box -37

 \square Aucune des réponses ci-dessus.

3. On considère la fonction $f(x)=\left\{\begin{array}{ccc} x^3-5x, & \text{si} & x<4\\ 11x, & \text{si} & x>4 \end{array}\right.$. Cocher ce qui est vrai:

 \square La fonction est bien définie en 4.

 $\boxtimes \lim_{x \to 4} f(x) = 44$

 $\Box \lim_{x \to 4} f(x) = f(4) = 44$

 \boxtimes La fonction n'est pas définie en 4.

☐ Aucune des réponses ci-dessus.

4. Un avion survole un relief. On note x la position à la verticale duquel il se trouve et y la distance de l'avion au sol en dessous de lui. La situation est illustrée dans la figure ci-dessous où le relief est représenté par la zone hachurée. Est-ce que y est une fonction continue de x?

□ Oui

⊠ Non

- 5. La fonction $f(x) = \begin{cases} 3x 2 & \text{si} \quad x < 2 \\ x + 6 & \text{si} \quad x \geqslant 2 \end{cases}$
 - \square est continue sur \mathbb{R} ,
 - \boxtimes est continue en x=3,
 - \square est continue en x=2,
 - \boxtimes est discontinue en x=2.
 - ☐ Aucune des réponses ci-dessus.
- 6. La fonction $f(x) = \begin{cases} \frac{1}{x^2 1} & \text{si } x < -1\\ \frac{1}{x^2 + 1} & \text{si } x \geqslant -1 \end{cases}$
 - \boxtimes est continue sur] -1,1 [
 - \boxtimes est discontinue sur] -2,1[
 - \boxtimes est discontinue sur [-1,1].
 - \square Aucune des réponses ci-dessus.
- 7. On considère la fonction $f(x) = \begin{cases} x^2 1 & \text{si} \quad x < 2 \\ -x^2 + 1 & \text{si} \quad x \geqslant 2 \end{cases}$. Peut-on calculer $\lim_{x \to 2} f(x)$ en utilisant la continuité?
 - □ Oui
 - ⊠ Non
- 8. On considère la fonction $f(x) = \begin{cases} x^2 1 & \text{si} & x < 2 \\ -x^2 + 1 & \text{si} & x \geqslant 2 \end{cases}$. Peut-on calculer $\lim_{x \to 4} f(x)$ en utilisant la continuité?
 - ⊠ Oui
 - □ Non
- 9. Quelles valeurs faut-il attribuer à $c \in \mathbb{R}$ pour que la fonction suivante soit continue sur \mathbb{R} :

$$f(x) = \begin{cases} c^2 x + 1 & \text{si} \quad x \le 2\\ 9x^2 + 1 & \text{si} \quad x > 2 \end{cases}$$

- □ 3 ou −3
- $\Box 9\sqrt{2}$ ou $-9\sqrt{2}$
- $\boxtimes \sqrt{18}$ ou $-\sqrt{18}$
- $\boxtimes 3\sqrt{2}$ ou $-3\sqrt{2}$
- ☐ Aucune des réponses ci-dessus.
- 10. La fonction $f(x) = \begin{cases} x+1 & \text{si} & x \leq 1 \\ x^2+1 & \text{si} & x > 1 \end{cases}$ est-elle dérivable en x = 1?
 - □ Oui
 - ⊠ Non

- 11. Est-il justifié d'utiliser la règle de l'Hospital pour calculer $\lim_{x\to a} \frac{a^2+2ax+x^2}{x^2-a^2}$ avec $a\neq 0$?
 - □ Oui
 - ⊠ Non
- 12. Est-il justifié d'utiliser la règle de l'Hospital pour calculer $\lim_{x\to a} \frac{a^2-2ax+x^2}{x^2-a^2}$?
 - ⊠ Oui
 - □ Non
- 13. On considère les fonctions $f(x) = x^2 + 1$ et $g(x) = e^x x^3$. Déterminer $(g \circ f)'(x)$.
 - $\Box \ 2(e^x x^3)(e^x 3x^2)$
 - $\boxtimes 2xe^{x^2+1} 6x(x^2+1)^2$
 - $\Box e^{2x} + x^6 2x^3e^x + 1$
 - $\Box e^{x^2+1} (x^2+1)^3$
 - \square Aucune des réponses ci-dessus.
- 14. On considère les fonctions $f(x) = x^2 + 1$ et $g(x) = e^x x^3$. Déterminer $(g \cdot f)'(x)$.
 - $\Box (x^2+1)e^x x^5 x^3$
 - $\Box \ 2(e^x x^3)(e^x 3x^2)$
 - $\Box 2xe^{x^2+1}-6x(x^2+1)^2$
 - $\boxtimes (x+1)^2 e^x 5x^4 3x^2$
 - ☐ Aucune des réponses ci-dessus.
- 15. On considère les fonctions $f(x) = x^2 + 1$ et $g(x) = e^x x^3$. Déterminer $(\frac{g}{f})'(x)$.
 - $\frac{e^x-3x^2}{}$

 - $\boxtimes \frac{(x-1)^2 e^x x^4 3x^2}{(x^2+1)^2}$
 - $\frac{e^x-x^3}{x^2+1}$
 - ☐ Aucune des réponses ci-dessus.

Exercice 2

On voudrait déterminer la dérivée de la fonction $f(x) = x^x$, $\forall x \in \mathbb{R}_+^*$.

- 1. Considérer la fonction $g(x) = (\ln \circ f)(x) = \ln(x^x)$ et calculer g'(x) en utilisant la formule de la dérivée des fonction composée.
- 2. Utiliser la propriété du logarithme sur les puissances pour montrer que $g'(x) = \ln(x) + 1$.
- 3. Déduire des précédents points f'(x).
- 1. $g' = ((\ln f)' \circ f) \times f' \text{ donc } g'(x) = \frac{1}{f(x)} \times f'(x) = \frac{f'(x)}{f(x)}$
- 2. $g(x) = \ln(x^x) = x \ln(x)$ donc $g'(x) = 1 \times \ln(x) + x \times \frac{1}{x} = \ln(x) + 1$
- 3. $g'(x) = \frac{1}{x} = \ln(x) + 1 = \frac{f'(x)}{f(x)} \Leftrightarrow \frac{f'(x)}{x^x} = \ln(x) + 1 \Leftrightarrow f'(x) = x^x(\ln(x) + 1)$

Exercice 3

En utilisant la règle de l'Hôpital, calculer les limites :

1.
$$\lim_{x \to 1} \frac{e^{x^2 - 1} - 1}{e^{x^2} - e^x}$$

$$2. \lim_{x \to +\infty} \frac{\ln(x)^2}{x}$$

1. Premièrement, vérifions que nous avons une indétermination de type $\frac{0}{0}$ ou $\frac{\infty}{\infty}$:

$$\lim_{x \to 1} \frac{e^{x^2 - 1} - 1}{e^{x^2} - e^x} = \frac{0}{0}$$

Nous pouvons donc utiliser la règle de l'Hôpital:

$$\lim_{x \to 1} \frac{e^{x^2 - 1} - 1}{e^{x^2} - e^x} = \lim_{x \to 1} \frac{2xe^{x^2 - 1}}{2xe^{x^2} - e^x} = \frac{2}{2e - e} = \frac{2}{e}$$

2. Premièrement, vérifions que nous avons une indétermination de type $\frac{0}{0}$ ou $\frac{\infty}{\infty}$:

$$\lim_{x \to +\infty} \frac{\ln(x)^2}{x} = \frac{\infty}{\infty}$$

Nous pouvons donc utiliser la règle de l'Hôpital:

$$\lim_{x \to +\infty} \frac{\ln(x)^2}{x} = \lim_{x \to +\infty} \frac{2\ln(x) \cdot \frac{1}{x}}{1} = \lim_{x \to +\infty} 2\frac{\ln(x)}{x}$$

Qui est également une indétermination de type $\frac{\infty}{\infty}$. Nous pouvons donc utiliser à nouveau la règle de l'Hôpital:

$$\lim_{x\to +\infty} \frac{\ln(x)^2}{x} = \lim_{x\to +\infty} 2\frac{\ln(x)}{x} = \lim_{x\to +\infty} 2\frac{\frac{1}{x}}{1} = 0$$