Seq2seq. Attention. Chatbots.

Маша Шеянова, masha.shejanova@gmail.com

Seq2seq + attention

seq2seq (стандартная)

<u>seq2seq + attention</u>

Виды attention (источник)

Виды attention (<u>источник</u>)

Name	Alignment score function	Citation		
Content- base attention	$score(s_t, h_i) = cosine[s_t, h_i]$	Graves2014		
Additive(*)	$score(s_t, \boldsymbol{h}_i) = \mathbf{v}_a^{\top} tanh(\mathbf{W}_a[s_t; \boldsymbol{h}_i])$	Bahdanau2015		
Location- Base	$\alpha_{t,i} = \operatorname{softmax}(\mathbf{W}_a \mathbf{s}_t)$ Note: This simplifies the softmax alignment to only depend on the target position.	Luong2015		
General	$score(s_t, h_i) = s_t^\top \mathbf{W}_a h_i$ where \mathbf{W}_a is a trainable weight matrix in the attention layer.	Luong2015		
Dot-Product	$score(s_t, \boldsymbol{h}_i) = \boldsymbol{s}_t^{T} \boldsymbol{h}_i$	Luong2015		
Scaled Dot- Product(^)	$\mathrm{score}(s_t, \boldsymbol{h}_i) = \frac{s_t^\intercal \boldsymbol{h}_i}{\sqrt{n}}$ Note: very similar to the dot-product attention except for a scaling factor; where n is the dimension of the source hidden state.	Vaswani2017		

Развитие идеи: <u>Transformers</u>

Чатботы

Какие чатботы бывают

- goal-oriented
 - попросить построить маршрут
 - о попросить включить песню
 - о спросить о погоде
- "болталка"
 - "мне скучно; кто себя создал; ..."
 - о бот для психологической помощи
- всё и сразу:)
 - о состоит из того и другого

How to train your dialog system

Andrey Zimovnov Yandex

Siri

- Voice assistant from Apple
- How to make one?

Intent classification

- Intent is a class of an action that assistant will execute
- Limited set of intents (navigation, music, notes, calendar, ... actions)

Intent: nav.time.closest

Intent: nav.directions.closest

Intent: nav.directions

Slot filling

- Slot is a parameter of an action
- Limited set of slots (POIs, cities, streets, music artists, ... names)

Slots: **@POI.NAME**{Starbucks}

Slots: **@POI.NAME**{Starbucks}

Slots: @POI.NAME{Starbucks}

Two classification tasks

- Assume that we have an ASR result (text from speech)
- Marked up utterances (12k):
 - take me to @NUMBER{ 1 0 8 2 } @STREET.NAME{ east el camino real } @CITY{ sunnyvale } → nav.route.start
- Intent classification (80 classes):
 - · media.play, nav.find, phone.call, ...
- Slot filling (25 slots):
 - @MEDIA.ARTIST, @CITY, @CONTACT.NAME, ...

Slot filling as classification

- Assign tag to each word:
 - B-@CITY beginning of the slot @CITY
 - I-@CITY continuation of the slot @CITY
 - **O** this word is not used in slots

Sentence	first	class	fares	from	boston	to	denver	
Slots	B-class_type	I-class_type	0	0	B-fromloc	0	B-toloc	
Intent	airfare							

Tag classification for each word

BIOES coding example

- Example for 4 lexicon dictionaries
- B, I, O, E, S are later encoded as one-hot vectors

Text	Hayao	Tada	,	commander	of	the	Japanese	North	China	Area	Army
LOC	1 - 1	-	_	_	-	В	I	-	S	-	-
MISC	1-1	-	-	S	В	В	I	S	S	S	S
ORG		_	_	-	_	В	I	В	I	I	E
PERS	В	E	-	_	_	_	_	-	S	_	_

Deep learning

- Encoder-decoder model for joint intent detection and slot filling
- Encoder is a bidirectional RNN (LSTM)
- With aligned inputs (h_i on the right) and attention (c_i on the right)

Joint training helps, so they say

• Paper results on ATIS (Airline Travel Information Systems) dataset:

Training	Slots F1	Intent % error
Independent training for slot filling	95.78	-
Independent training for intent detection	-	2.02
Joint training for slot filling and intent detection	95.87	1.57