Recitation 2: Proof Techniques

10-607

1. Prove that there is no smallest positive rational number.

Solution. We proceed by contradiction. Suppose r > 0 is the smallest positive rational. Then r/2 is rational and satisfies 0 < r/2 < r, contradicting minimality.

2. Let $n \in \mathbb{Z}$. Prove that if 3n + 2 is even, then n is even.

Solution. We prove the contrapositive. Suppose that n is odd, so n = 2k + 1 for some $k \in \mathbb{Z}$. Then 3n + 2 = 3(2k + 1) + 2 = 6k + 5, which is odd, completing the proof.

3. Prove that there is no integer x such that $x^2 \equiv 2 \pmod{3}$.

Solution. Any integer x is either 0,1, or 2 mod 3. If $x \equiv 0 \pmod{3}$ then x = 3k for some $k \in \mathbb{Z}$ so $x^2 = 0 \pmod{3}$. Likewise, if $x \equiv 1 \pmod{3}$ then x = 3k + 1 for some k, so $x^2 = 9k^2 + 6k + 1 \equiv 1 \pmod{3}$. And if $x \equiv 3 \pmod{3}$ then x = 3k + 2 for some k so $x^2 = 9k^2 + 12k + 4 \equiv 1 \pmod{3}$. In no case do we have $x^2 \equiv 2 \pmod{3}$.

4. Prove that if ab is even (with $a, b \in \mathbb{Z}$), then a is even or b is even.

Solution. We prove the contrapositive: if a and b are both odd, then ab is odd. With a = 2k + 1, $b = 2\ell + 1$, we have $(2k + 1)(2\ell + 1) = 4k\ell + 2k + 2\ell + 1$, which is odd.

5. Prove that for all $n \ge 1$, $n! \ge 2^{n-1}$.

Solution. We proceed via induction. Base case n=1: $1!=1\geq 1=2^0$. Now assume that the claim holds for some $k\geq 1$. That is, $k!\geq 2^{k-1}$. We will show that $(k+1)!\geq 2^k$. We have $(k+1)!=(k+1)k!\geq (k+1)2^{k-1}\geq 2\cdot 2^{k-1}=2^k$, as desired. This completes the proof.

6. Prove that if $r \in \mathbb{Q}$ and $s \notin \mathbb{Q}$, then $r + s \notin \mathbb{Q}$.

Solution. Suppose $r \in \mathbb{Q}$ and $s \notin \mathbb{Q}$. Suppose for contradiction that $r + s \in \mathbb{Q}$, meaning that there exist $a, b \in \mathbb{Z}$ such that r + s = a/b. By assumption, there exist $c, d \in \mathbb{Z}$ such that r = c/d. Therefore,

$$s = \frac{a}{b} - r = \frac{a}{b} - \frac{c}{d} = \frac{ad - cb}{bd} \in \mathbb{Q},$$

since $ad - cb, bd \in \mathbb{Z}$. Thus $s \in \mathbb{Q}$, a contradiction.

7. Prove that for all $n \ge 1$, $10^n - 1$ is divisible by 9, i.e., that $9|(10^n - 1)$.

Solution We proceed by induction. For the base case of n=1 we have $10^n-1=9$, which is clearly divisible by 9. Suppose the claim holds for some n=kk; we will show it holds for k+1. Since it holds for k, we have that $10^k-1=9\ell$ for some $\ell \in \mathbb{Z}$. Therefore, $10^{k+1}-k=10\cdot 10^k-1=10(9\ell+1)-1=9(10\ell+1)$, which is divisible by 9. The claim thus holds for k+1, which completes the proof.

1

8. For all $r \in \mathbb{R}$, $r \neq 1$, prove that, for all $n \geq 0$,

$$\sum_{j=0}^{n} r^j = \frac{r^{n+1} - 1}{r - 1}. (1)$$

Solution. Fix $r \neq 1$ and let us proceed by induction on n. For n = 0, the left hand side of (1) is 1, and the right hand side is (r-1)/(r-1) = 1, so the claim holds. Now suppose it holds for some n = k and consider n = k + 1. Using the induction hypothesis, we have

$$\sum_{j=0}^{k+1} r^j = \sum_{j=0}^k + r^{k+1} = \frac{r^{k+1} - 1}{r - 1} + r^{k+1} = \frac{r^{k+1} - 1 + r^{k+1}(r - 1)}{r - 1} = \frac{r^{k+2} - 1}{r - 1},$$

which is as desired. This completes the proof.