Chuẩn hóa miền trị của thuộc tính

- Với thuộc tính lợi ích: $\{x_1, x_2, ..., x_m\}$, giả sử >0,
- Chuẩn hóa tuyến tính: $\{r_1, r_2, ..., r_m\}$, $r_i = {x_i/x^*}$ với $x^* = \max\{x_i\}$
 - Chuẩn hóa vecto: $\{\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_m\}, \ \mathbf{r_i} = \frac{x_i}{\sqrt{\sum_j x_j^2}}$
- Với thuộc tính giá: $\{x_1, x_2, ..., x_m\}$, lấy $x'_i = 1/x_i$ hoặc $x'_i = x^* x_i$ thì $\{x'_1, x'_2, ..., x'_m\}$ giống thuộc tính lợi ích, có thể chuẩn hóa tuyến tính hoặc chuẩn hóa vecto

Chuẩn hóa miền trị của thuộc tính

• Với thuộc tính không đơn điệu: $r_i = \exp(-z^2/2)$,

với
$$z = \frac{x_i - x^0}{\sigma}$$
 và $\sigma = \sqrt{\frac{\sum (x_i - x^0)^2}{m - 1}}$

Với thuộc tính định tính (thang điểm ngôn ngữ):
 chuyển thành thang điểm số giống thuộc tính lợi ích

VÍ DỤ - CHUẨN HÓA

- {30, 29, 12}
 → {0.4, 0.414, 1}
 th.tính giá
 → {0.3466, 0.3587, 0.8667}
- {174170, 74683, 22496} thuộc tính lợi ích
 → {1, 0.429, 0.129}, → {0.913, 0.391, 0.118}
- {3, 4, 5} th.tính lợi ích ...
- {3, 5, 4} th.tính giá ...
- {3,4,5,6,7} th.tính không đơn điệu, x⁰=4,
 σ=1.581

VÍ DỤ - TRỌNG SỐ

- Cho trước: {0.3, 0.2, 0.4, 0.1}
- Từ thứ tự: {1,2,3,4,5} → {0.33, 0.27, 0.2, 0.13, 0.07}
- Từ bảng so sánh

	X1	X2	X3	X4
X1	_	р	X X - X	р
X2	Х	_	X	X
Х3	р	p		р
X4	l x	р	Х	_

BIỂU DIỄN BẢNG QUYẾT ĐỊNH

Các thuộc tính

		X1	X2	 Χj	 <u>Xn</u>			X1	X2	 Χj
án	A1	X ₁₁	X ₁₂	X _{1j}	X _{1n}		A1	r ₁₁	r ₁₂	r_{1j}
Các phương án	A2	X ₂₁	X ₂₂	X _{2j}	X _{2n}		A2	r ₂₁	r ₂₂	r _{2j}
c phu										
Cá	Am	X _{m1}	X _{m2}	Xmi	 Xmo		Am	r _{m1}	r _{m2}	 <u>[mi</u>
ngướ	ờng	δ1	δ2		δ n	Chuẩn báo				
trong	số	W ₁	W ₂		$\mathbf{w}_{\mathbf{n}}$	Chuẩn hóa				

Xn

 r_{1n}

 r_{2n}

rma

Các phương pháp

- Phương pháp TRỘI
 - $A1 \rightarrow A2$ (A1 trội hơn A2), nếu các giá trị đều tốt hơn hoặc tương đương ở tất cả các thuộc tính
 - Chọn các phương án không bị phương án khác trội hơn
- HỘI: Mỗi thuộc tính đều có giá trị Ngưỡng, chọn phương án mà mọi giá trị thuộc tính đều tốt hơn Ngưỡng tương ứng
- TUYÉN: Chọn phương án có ít nhất một giá trị tốt hơn Ngưỡng tương ứng

Các phương pháp

- Loại bỏ dần:
 - Xét thuộc tính X_1 , chọn $A^1 = \{A_i \mid x_{i1} \text{ thoả } X_1\}$ Tiếp tục xét các thuộc tính tiếp theo để loại bỏ
- MAXIMAX: $l_i^{max} = max_j \{x_{ij}\}$ Chọn A_k , nếu $l_k^{max} = max_i \{l_i^{max}\}$
- MAXIMIN: $l_i^{min} = min_j \{x_{ij}\}$ Chọn A_k , nếu $l_k^{min} = max_i \{l_i^{min}\}$
- TÍCH HỢP: chuẩn hóa bảng, với mỗi phương án: $d_i = \Sigma_i (r_{ij} \times w_i)$, so sánh các d_i để ra quyết định

Các phương pháp

Các thông tin liên quan đến bài toán	Phương pháp
Từ bảng quyết định	TRỘI
Từ bảng quyết định + ngưỡng các thuộc tính	HỘI, TUYỂN
Từ bảng quyết định + điều kiện thỏa các thuộc tính	LOẠI BỔ DẦN
Từ bảng quyết định được chuẩn hóa	MAXIMAX, MAXIMIN
Từ bảng quyết định được chuẩn hóa + bộ trọng số	TÍCH HỢP

VÍ DỤ

Sinh viên	GRE	GPA	College	Recommendation	Interview
A	690	3.1	9	7	4
В	590	3,9	7	6	10
C	600	3.6	8	8	7
D	620	3.8	7	10	6
E	700	2.8	10	4	6
F	650	4.0	6	9	8

- Ngưỡng: GRE: 620, GPA: 3.2, College: 6,
 Recommendation: 6, interview: 6
- Thứ tự thuộc tính: GRE, GPA, College, Interview, Recommendation

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution

- Quan sát thêm các phương án lý tưởng với các giá trị tốt nhất (xấu nhất) ở các thuộc tính, sau đó tính khoảng cách và độ tương tự của các phương án so với các phương án lý tưởng
- Dựa vào đó để sắp xếp thứ tự hoặc lựa chọn

TOPSIS (Technique for Order Preference by Similarity to Ideal Solution

- Bước 1: chuẩn hoá, đưa các giá trị về r_{ij} ∈[0,1]
- Bước 2: tính giá trị theo trọng số $v_{ij} = r_{ij} \times w_{j}$
- Bước 3: tính các giải pháp lý tưởng
- $A^* = (v_1^*, v_2^*, ..., v_n^*)$, với v_j^* là giá trị tốt nhất của X_j $A^- = (v_1^-, v_2^-, ..., v_n^-)$, với v_i^- là giá trị xấu nhất của X_i
- Bước 4: tính khoảng cách so với A*, A⁻ $S_i^* = (\Sigma_j (v_{ij} v_j^*)^2)^{1/2}, S_i^- = (\Sigma_j (v_{ij} v_j^-)^2)^{1/2}$
- Bước 5: tính độ tương tự: $C_i^* = S_i^- / (S_i^* + S_i^-)$

Ví dụ TOPSIS

Ví dụ: Lựa chọn cấp học bổng

Sinh viên	GRE	GPA	College	Recommendation	Interview
A	690	3.1	9	7	4
В	590	3,9	7	6	10
C	600	3.6	8	8	7
D	620	3.8	7	10	6
E	700	2.8	10	4	6
F	650	4.0	6	9	8
Giá trị cao					
nhất	800	4.0	10	10	10
Trọng số	0.3	0.2	0.2	0.15	0.15

					•
Bước 1: Chuẩn hoá	các giá trị				
	X1	X2	X3	X4	X5
A	0.4381	0.3555	0.4623	0.3763	0.2306
В	0.3746	0.4472	0.3596	0.3226	0.5764
C	0.3809	0.4128	0.4109	0.4301	0.4035
D	0.3936	0.4357	0.3596	0.5376	0.3458
E	0.4444	0.3211	0.5137	0.2150	0.3458
F	0.4127	0.4587	0.3082	0.4838	0.4611
Bước 2: Tính giá trị	theo trọng	số			
	X1	X2	X3	X4	X5
A	0.1314	0.0711	0.0925	0.0564	0.0346
В	0.1124	0.0894	0.0719	0.0484	0.0865
C	0.1143	0.0826	0.0822	0.0645	0.0605
D	0.1181	0.0871	0.0719	0.0806	0.0519
E	0.1333	0.0642	0.1027	0.0323	0.0519
F	0.1238	0.0917	0.0616	0.0726	0.0692
	-				

```
Bước 3: Các giải pháp lý tưởng

A^* = (0.1333, 0.0917, 0.1027, 0.0806, 0.0865)

A^- = (0.1124, 0.0642, 0.0616, 0.0323, 0.0346)
```

Bước 4: Tính khoảng cách tới giải pháp lý tưởng $S^* = (0.0617, 0.0493, 0.0424, 0.0490, 0.0655, 0.0463)$ $S^- = (0.0441, 0.0608, 0.0498, 0.0575, 0.0493, 0.0609)$

Bước 5: Độ đo tương tự tới giải pháp lý tưởng C* = (0.4167, 0.5519, 0.5396, 0.5399, 0.4291, 0.5681)

Lựa chọn:

- Theo S*: sinh viên C tốt nhất
- Theo S⁻: sinh viên F tốt nhất
- Theo C*: sinh viên F tốt nhất

Phương pháp PROMETHEE

	G1	G2		Gn
A1				
. a			g _j (a)	
. b Am			g _j (b)	
Am				

$$d_{\mathbf{j}}(\mathbf{a},\mathbf{b}) = g_{\mathbf{j}}(\mathbf{a}) - g_{\mathbf{j}}(\mathbf{b})$$

Tính độ ưa thích hơn:

$$P_j(a,b) = 1$$
, nếu $d_j(a,b) > 0$; = 0, nếu ngược lại

Độ ưa thích hơn trung bình: (phương án a so với b)

$$\pi(a,b) = \sum_{i} \left(P_{i}(a,b) * w_{i} \right)$$

PROMETHEE - Các dòng hơn cấp

Dòng hơn cấp dương

$$\Phi^{+}(a) = \frac{1}{m-1} \sum_{x \in A} \pi(a, x)$$

Dòng hơn cấp âm

$$\Phi^{-}(a) = \frac{1}{m-1} \sum_{x \in A} \pi(x, a)$$

Xếp hạng PROMETHEE 1

aPb néu

$$[\Phi^{+}(a)>\Phi^{+}(b) \text{ và } \Phi^{-}(a)<\Phi^{-}(b)]$$
 hoặc $[\Phi^{+}(a)=\Phi^{+}(b) \text{ và } \Phi^{-}(a)<\Phi^{-}(b)]$ hoặc $[\Phi^{+}(a)>\Phi^{+}(b) \text{ và } \Phi^{-}(a)=\Phi^{-}(b)]$

- alb nếu $\Phi^+(a)=\Phi^+(b)$ và $\Phi^-(a)=\Phi^-(b)$
- aRb néu

$$[Φ^+(a)>Φ^+(b) và Φ^-(a)>Φ^-(b)]$$
 hoặc $[Φ^+(a)<Φ^+(b) và Φ^-(a)<Φ^-(b)]$

Xếp hạng PROMETHEE 2

$$\Phi(a) = \Phi^+(a) - \Phi^-(a)$$

Xếp hạng toàn phần:

aPb nếu
$$\Phi(a) > \Phi(b)$$

alb nếu $\Phi(a) = \Phi(b)$

 Có thể ứng dụng PROMETHEE ra quyết định đa tiêu chuẩn

Phương pháp AHP

- Bài toán ra quyết định được phân cấp thành các mức: ĐÍCH – TIÊU CHUẨN – PHƯƠNG ÁN, các tiêu chuẩn thỏa mãn đích, các phương án thỏa mãn tiêu chuẩn ...
- Thang đo khi so sánh về mức độ thỏa mãn của 2 phần tử ngang cấp, ví dụ, quan trọng ngang (=1), quan trọng hơn (=3), quan trọng hơn nhiều (=5), quan trọng hơn rất nhiều (=7) ...

Ví dụ AHP

- Mục tiêu: O
- Các tiêu chuẩn: M, S, G, W thỏa mãn O

	M	S	G	W
M	1	7	1	7
S	1/7	1	1/3	2
G	1	3	1	5
W	1/7	1/2	1/5	1

Các phương án A1, A2, A3

	M	S	G	W
M	1	7	1	7
S	1/7	1	1/3	2
G	1	3	1	5
W	1/7	1/2	1/5	1

Các tiêu chuẩn M, S, G, W thỏa mục tiêu O

M:
$$(1 * 7 * 1 * 7) \land (1/4) = 2.65$$

S:
$$(1/7 * 1 * 1/3 * 2) \land (1/4) = 0.56$$

G:
$$(1 * 3 * 1 * 5) \land (1/4) = 1.97$$

W:
$$(1/7 * 1/2 * 1/5 * 1) ^ (1/4) = 0.35$$

Chuẩn hóa: trọng số (0.48, 0.10, 0.36, 0.06)

Ví dụ AHP <tiếp>

Các phương án thỏa M

th	nỏa	S

	A 1	A2	A 3
A1	1	1/3	2
A2	3	1	5
A3	1/2	1/5	1

	A1	A2	A3
A1	1	3	1/5
A2	1/3	1	1/7
A3	5	7	1

Các phương án thỏa G

thỏa W

	A1	A2	A 3
A1	1	1/5	2
A2	5	1	7
A3	1/2	1/7	1

	A1	A2	A3
A1	1	1/3	1/5
A2	3	1	1/3
A3	5	3	1

Kết quả: A1: 0.1966, A2: 0.6020, A3: 0.2014

	M	S	G	W
A1	0.23	0.19	0.17	0.10
A2	0.65	0.08	0.74	0.26
A3	0.12	0.73	0.09	0.64

Tương tự:

Các phương án A1, A2, A3 thỏa M: (0.23, 0.65, 0.12)

Các phương án A1, A2, A3 thỏa S: (0.19, 0.08, 0.73)

Các phương án A1, A2, A3 thỏa G: (0.17, 0.74, 0.09)

Các phương án A1, A2, A3 thỏa W: (0.10, 0.26, 0.64)

Kết hợp với trọng số thỏa O: (0.48, 0.10, 0.36, 0.06)

→ Kết quả: A1: 0.1966, A2: 0.6020, A3: 0.2014

Kết hợp thông tin khách quan và thông tin chủ quan

- Tập phương án A₁, A₂, ..., A_m
- Tập thuộc tính (tiêu chuẩn) G₁, G₂, ..., G_n
- Ma trận quyết định (X)_{m×n}, chuẩn hóa Z
- Trọng số w₁, w₂, ..., w_n
- Ma trận quan trọng hơn (Q)_{n×n}, về mức độ quan trọng hơn giữa các thuộc tính
- Ma trận ưa thích hơn (P)_{m×m}, về mức độ ưa thích hơn giữa các phương án
- Đánh giá các phương án d₁, d₂, ..., d_m

• Các phương pháp:

Cho ma trận quyết định ..., Cho Z ..., Cho Z, W ... Cho Z, Q ..., Cho Z, P ..., Cho Z, D ...

Toán tử tích hợp

TD Khang – ĐHBK Hà Nộ

- Trong quá trình ra quyết định, người ta thường phải kết nhập nhiều thông tin lại để lấy ra một kết quả tổng quát, ví dụ khi phải xét cùng một lúc nhiều tiêu chuẩn, khi có nhiều ý kiến đánh giá của chuyên gia,...
- Một cách hình thức, nếu x₁, ..., x_n là nhóm các dữ liệu, thì Agg(x₁,...,x_n)=a là hàm tích hợp, cho giá trị đầu ra theo yêu cầu
- Toán tử tích hợp nằm giữa phép toán hội và phép tuyển

Phép hội và phép tuyến

Toán tử t-norm (phép hội)
$$t: [0,1] \times [0,1] \rightarrow [0,1]$$

 $t(x,y) = t(y,x)$ $t(x,y) \le t(z,u), \forall x \le z, y \le u$
 $t(x, t(y,z)) = t(t(x,y), z)$ $t(x,1) = x$

Toán tử s-conorm (phép tuyến) s: $[0,1] \times [0,1] \rightarrow [0,1]$

$$s(x,y) = s(y,x) \qquad s(x,y) \le s(z,u), \quad \forall x \le z, \ y \le u$$

$$s(x, s(y,z)) = s(s(x,y), z) s(x,0) = x$$

Toán tử phủ định $n: [0,1] \rightarrow [0,1]$ thỏa mãn

$$n(0) = 1, \ n(1) = 0$$
 $n(x) \le n(y), \ \forall x \ge y$

Tính chất

TD Khang – ĐHBK Hà Nộ:

Toán tử tích hợp thường thỏa mãn một số tích chất sau:

- (1) Giới hạn tự nhiên: Khi chỉ có 1 phần tử vào thì kết quả chính là giá trị đó: Agg(a)=a
- (2) Tự đồng nhất: Nếu a= $Agg(x_1,...,x_n)$ thì $Agg(x_1,...,x_n,a)=Agg(x_1,...,x_n)=a$
- (3) Đơn điệu: Nếu $a_i \le b_i \ \forall i=1..n \ thì \ Agg(a_1,...,a_n) \le Agg(b_1,...,b_n)$
- (4) Kết hợp: Agg(x,y,z)=Agg(x,Agg(y,z))=Agg(Agg(x,y),z)
- (5) Giao hoán: $Agg(x_1,...,x_n) = Agg(X_1,...,X_n)$ với $(X_1,...,X_n)$ là một hoán vị bất kỳ của $(x_1,...,x_n)$

Nhận xét

TD Khang – ĐHBK Hà Nó

- Toán tử tích hợp không cần thỏa mãn tất cả các tính chất trên, nhưng thường thỏa mãn (1), (2), (3)
- Từ tính chất (1), (2) có thể chứng minh được tính lũy đẳng Agg(a,...,a)=a
- Đặt a= $\min_i [x_i]$, b= $\max_i [x_i]$ thì có tính bù trừ được suy ra từ (1), (2), (3): a \leq Agg(x_1 , ..., x_n) \leq b
- Từ (2), (3), nếu K>Agg($x_1,...,x_n$) thì Agg($x_1,...,x_n$) thì Agg($x_1,...,x_n$)

 Nếu K<Agg($x_1,...,x_n$) thì Agg($x_1,...,x_n$)

 Agg($x_1,...,x_n$)

Một số lớp các toán tử tích hợp

TD Khang – ĐHBK Hà Nộ

Người ta thường chia toán tử tích hợp thành nhiều lớp con, các toán tử trong mỗi lớp lại thỏa mãn thêm một số tính chất đặc trưng của lớp đó.

- Lớp toán tử tích hợp "trung bình"

$$Agg(x_1,...,x_n) = ((x_1^{\alpha} + ... + x_n^{\alpha}) / n)^{1/\alpha}, v\'{\alpha}i \alpha \in \mathbb{R}, \alpha \neq 0$$

- Lớp toán tử tích hợp có trọng số tuyến tính

$$Agg_w(x_1,...,x_n) = \sum w_i x_i$$
, với $w_i \ge 0$, $\forall i$ và $\sum w_i = 1$

Lớp toán tử trung bình có trọng số sắp thứ tự (OWA)

- Lớp các toán tử tích hợp Uninorm Agg(a,e) = a

Toán tử OWA

Một toán tử OWA n-chiều là một ánh xạ $f: \mathbb{R}^n \to \mathbb{R}$, $f_w(a_1,...,a_n) = \sum w_i b_i$,

với các trọng số $W = \{w_1, w_2, ..., w_n\}, w_i \ge 0, \forall i và$ $\sum w_i = 1$, trong đó $(b_1, ..., b_n)$ là hoán vị không tăng của $(a_1, ..., a_n)$

Nhận xét

(1) Toán tử OWA nhận giá trị giữa min và max

$$\begin{aligned} W^* &= \{1, 0, ..., 0\}, \quad F^*(a_1, ..., a_n) = \max \{a_i\} \\ W_* &= \{0, 0, ..., 1\}, \quad F_*(a_1, ..., a_n) = \min \{a_i\} \\ W_{ave} &= \{1/n, 1/n, ..., 1/n\}, \quad F_{ave}(a_1, ..., a_n) = \sum x_i / n \end{aligned}$$

- (2) Toán tử OWA thỏa mãn tính chất giao hoán: Cho $\{d_1, ..., d_n\}$ là một hoán vị bất kỳ của $(a_1, ..., a_n)$, ta đều có $F(d_1, ..., d_n) = F(a_1, ..., a_n)$, \forall F
- (3) Toán tử OWA thỏa mãn tính chất đơn điệu: Cho $a_i \le c_i$, $\forall i$ thì $F(a_1, ..., a_n) = F(c_1, ..., c_n)$
- (4) Toán tử OWA thỏa mãn tính chất lũy đẳng: F(a,...,a) = a

Các tiêu chuẩn đánh giá toán tử OWA

TD Khang – ĐHBK Hà Nô

Tiêu chuẩn Entropy : Sự phân bố của các trọng số Disp (W) = $-\Sigma w_i.\ln w_i$ Tính HOẶC: ORness (W) = $\frac{1}{n-1}\sum_{i=1}^{n}(n-i).w_i$

Tính VÀ: ANDness (W) = 1 - ORness (W) Nếu ORness (W) > 0.5: nghiêng về phép tuyển Nếu ORness (W) < 0.5: nghiêng về phép hội

```
Ví dụ: W1 = (0.4, 0.2, 0.3, 0.1)

W2 = (0.3, 0.6, 0.1)

W3 = (0.2, 0.5, 0.3)

Tính f(12,15,9)

Tính f_{OWA}(12,15,9)

Tính f_{OWA}(12,15,6,9)
```

Xây dựng vector trọng số từ dữ liệu thực tế

TD Khang – ĐHBK Hà Nộ:

Giả sử có m bộ dữ liệu, mỗi bộ (n+1) số dưới dạng $(a_1^i, a_2^i, ..., a_n^i, y^i)$, $1 \le i \le m$,

Cần xây dựng bộ trọng số W

Gọi (b₁, b₂, ..., b_n) là hoán vị không tăng của (a₁, a₂, ..., a_n), thì để tính W, cần giải hệ phương trình n ẩn sau:

$$b_{1}^{1} w_{1} + b_{2}^{1} w_{2} + ... + b_{n}^{1} w_{n} = y^{1}$$

 $b_{1}^{2} w_{1} + b_{2}^{2} w_{2} + ... + b_{n}^{2} w_{n} = y^{2}$

. . .

$$b_{1}^{m} w_{1} + b_{2}^{m} w_{2} + ... + b_{n}^{m} w_{n} = y^{m}$$
 $w_{1} + w_{2} + ... + w_{n} = 1$
 $w_{i} \in [0,1]$

Các họ toán tử OWA

TD Khang – ĐHBK Hà Nô

```
Toán tử SO-OWA \alpha + (1-\alpha)/n, (1-\alpha)/n \dots

Toán tử SA-OWA (1-\beta)/n \dots \beta + (1-\beta)/n

Toán tử S-OWA

Toán tử Step-OWA

Toán tử Window-OWA
```

Toán tử SO-OWA

$$w_{i} = \begin{cases} \frac{1-\alpha}{n} + \alpha, & v \circ i = 1\\ \frac{1-\alpha}{n}, & v \circ i = 1\\ v \circ i = 1 \end{cases}, \alpha \in [0,1]$$

$$ORness(W) = \frac{1}{n-1} \left((n-1)\alpha + \frac{1-\alpha}{n} \sum_{i=1}^{n} (n-i) \right)$$

$$=\frac{\alpha+1}{2}$$

Toán tử SA-OWA

$$w_i = \begin{cases} \dfrac{1-\beta}{n}, & v \acute{o}i \ i < n \\ \dfrac{1-\beta}{n} + \beta, & v \acute{o}i \ i = n \end{cases}, \ \beta \in [0,1]$$

$$ORness(W) = \frac{1}{n-1} \left(\frac{1-\beta}{n} \sum_{i=1}^{n} (n-i) \right) = \frac{1-\beta}{2}$$

Cho trước Orness(W) = λ Nếu $0 \le \lambda \le 0.5$, toán tử SA-OWA với $\beta = 1 - 2\lambda$ Nếu $0.5 \le \lambda \le 1$, toán tử SO-OWA với $\alpha = 2\lambda - 1$

Toán tử S-OWA

$$w_{i} = \begin{cases} \frac{1 - \alpha - \beta}{n} + \alpha, & v \circ i = 1\\ \frac{1 - \alpha - \beta}{n}, & v \circ i = 1\\ \frac{1 - \alpha - \beta}{n} + \beta, & v \circ i = n \end{cases} \quad \alpha, \beta \in [0, 1]$$

 $ORness(W) = \frac{1 + \alpha - \beta}{2}$