Uma Introdução aos Sistemas Dinâmicos Caóticos

Agenor Gonçalves Neto

São Paulo, 2020

Sumário

L	Cor	nceitos Elementares	1
2	Família Quadrática		2
	2.1	Estudo Inicial	3
	2.2	Conjuntos de Cantor	3
	2.3	Caos	5
	2.4	Conjugação Topológica	6
	2.5	Dinâmica Simbólica	7
3	Teorema de Sharkovsky		8
1	1 Teorema de Singer		11
5	Matriz de Transição		13

1 Conceitos Elementares

De maneira suficiente para os nossos objetivos, definimos um sistema dinâmico como uma função $f: X \to X$, onde X é um espaço métrico. Usualmente, X será um subconjunto de \mathbb{R} e será considerada a distância usual. Dado $x \in X$ e denotando por f^n a composição de f com ela mesma n-1 vezes, queremos estudar as propriedades da sequência x, f(x), $f^2(x)$, Para esse estudo, iniciamos definindo alguns conceitos importantes que estarão presentes durante todo o texto.

Se $p \in X$ e f(p) = p, então p é um ponto fixo de f. Se $f^n(p) = p$ para algum $n \ge 1$, então p é um ponto periódico de f de período n. Se $f^n(p) = p$ para algum $n \ge 1$ e $f^k(p) \ne p$ para todo $1 \le k < n$, então p é um ponto periódico f de período principal n. O conjunto dos pontos periódicos de f será denotado por Per(f) e o conjunto dos pontos periódicos de f de período principal f0 será denotado por f1.

Se $x \in X$, então o conjunto $\{x, f(x), f^2(x), \dots\}$, que será denotado por $\mathcal{O}(x)$, é a órbita de x. Se p um ponto periódico de período n, então o conjunto $\{x \in X : \lim_{k \to \infty} f^{kn}(x) = p\}$, que será denotado por $\mathcal{B}(p)$, é a bacia de atração de p. Por fim, o conjunto $\{x \in X : \lim_{k \to \infty} |f^k(x)| = \infty\}$, que será denotado por $\mathcal{B}(\infty)$, é a bacia de atração do infinito. A Proposição 1.1 nos fornece uma maneira simples para verificar se uma função contínua definida num intervalo de \mathbb{R} possui ponto fixo.

Proposição 1.1. Seja $f:[a,b] \to \mathbb{R}$ uma função contínua. Se $f([a,b]) \subset [a,b]$ ou $f([a,b]) \supset [a,b]$, então f possui ponto fixo.

Demonstração. Considere a função contínua $g:[a,b] \to \mathbb{R}$ dada por g(x)=f(x)-x. Em ambos os casos é possível verificar, pelo Teorema do Valor Intermediário (TVI), que existe $p \in [a,b]$ tal que g(p)=0.

Se f for de classe C^1 , então podemos conhecer o comportamento de pontos numa vizinhança de um ponto periódico p cuja derivada $Df^n(p)$ em módulo é diferente de 1.

Teorema 1.2. Sejam $f: \mathbb{R} \to \mathbb{R}$ uma função de classe C^1 e $p \in Per_n(f)$.

- 1. Se $|Df^n(p)| < 1$, então existe uma vizinhança de p contida em $\mathcal{B}(p)$.
- 2. Se $|Df^n(p)| > 1$, então existe uma vizinhança V de p com a seguinte propriedade: se $x \in V$ e $x \neq p$, então $f^{kn}(x) \notin V$ para algum $k \geq 1$.

Demonstração.

1. Sendo Df^n contínua, existe $\varepsilon > 0$ tal que $|Df^n(x)| \le \lambda < 1$ para todo $x \in (p - \varepsilon, p + \varepsilon)$. Pelo TVM, se $x \in (p - \varepsilon, p + \varepsilon)$, então $|f^n(x) - p| \le \lambda |x - p|$. Por indução, $|f^{kn}(x) - p| \le \lambda |x - p|$ para todo $k \ge 1$. Desse modo, $\lim_{k \to \infty} f^{kn}(x) = p$.

2. Exercício.

Definição 1.3. Sejam $f: \mathbb{R} \to \mathbb{R}$ uma função de classe C^1 e $p \in \operatorname{Per}_n(f)$.

- i. Se $|Df^n(p)| < 1$, então p é um ponto atrator.
- ii. Se $|Df^n(p)| > 1$, então p é um ponto repulsor.

A Definição 1.3, que segue naturalmente do Teorema 1.2, pode ser estendida para órbitas de pontos periódicos. De fato, é imediato verificar pela Regra da Cadeia que são iguais as derivadas de todos os pontos de uma órbita de um ponto periódico. Desse modo, se a órbita de um ponto periódico possui um ponto atrator, então dizemos que ela é uma órbita atratora. Uma definição análoga segue se a órbita possui um ponto repulsor.

2 Família Quadrática

Nessa seção, estudaremos a dinâmica da família de funções $h_{\mu}: \mathbb{R} \to \mathbb{R}$ dadas por $h_{\mu}(x) = \mu x(1-x)$, onde μ é um parâmetro maior que 1. Essa família de funções é conhecia por Família Quadrática. Para simplificar a notação, denotaremos a função h_{μ} simplesmente por h.

Temos o objetivo de estudar a dinâmica da Família Quadrática pois, através dela, estudaremos os principais tópicos relacionados aos Sistemas Dinâmicos Caóticos.

2.1 Estudo Inicial

Iniciamos o estudo da dinâmica de h observando que existem dois pontos fixos em [0,1] e que cada um desses pontos possui um pré-imagem em [0,1].

Proposição 2.1. Se $\mu > 1$, então

- 1. h(1) = h(0) = 0.
- 2. $h(\frac{1}{\mu}) = h(p_{\mu}) = p_{\mu}$, onde $p_{\mu} = \frac{\mu 1}{\mu}$.
- 3. $0 < p_{\mu} < 1$.

A Proposição 2.2 nos restringir o estudo da dinâmica de h ao intervalo [0,1], pois todos os pontos fora desse intervalo pertencem à bacia de atração do infinito.

Proposição 2.2. Se $\mu > 1$, então $(-\infty, 0) \cup (1, \infty) \subset \mathcal{B}(\infty)$.

Demonstração. Basta observar que a sequência $(x, h(x), h^2(x), \dots)$ é estritamente decrescente e ilimitada quando $x \in (-\infty, 0)$.

A Proposição 2.3, que pode visualizada graficamente, nos mostra que, para valores baixos de μ , a dinâmica de h é simples.

Proposição 2.3. Se $\mu \in (1,3)$, então

- 1. 0 é um ponto repulsor e p_{μ} é um ponto atrator.
- 2. $(0,1) \subset \mathcal{B}(p_{\mu})$.

Observe que, se $\mu \in (1,3)$, então a dinâmica de h está completamente determinada. De fato,

$$\mathcal{B}(0) = \{0, 1\}, \quad \mathcal{B}(p_{\mu}) = (0, 1) \quad \text{e} \quad \mathcal{B}(\infty) = (-\infty, 0) \cup (1, \infty).$$

2.2 Conjuntos de Cantor

Após estudar a dinâmica h quando $\mu \in (1,3)$, vamos ver o que acontece quando $\mu > 4$. Inicialmente, observe que então $h(\frac{1}{2}) = \frac{\mu}{4} > 1$ e, portanto, existem pontos em [0,1] que não permanecem em [0,1] após uma iteração de h. Pela Proposição 2.2, tais pontos pertencem à bacia de atração do infinito. De modo mais geral, se um ponto de [0,1] não permanece em [0,1] após um número finito de iterações, então ele pertence à bacia de atração do infinito.

Considere o conjunto $\Lambda_n = \{x \in [0,1] : h^n(x) \in [0,1]\}$ formado pelos pontos que permanecem em [0,1] após n iterações de h e o conjunto $\Lambda = \{x \in [0,1] : h^n(x) \in [0,1] \text{ para todo } n \geq 1\}$ formado pelos pontos de [0,1] que sempre permanecem em [0,1] por iterações de h. Desse modo, vamos restringir o estudo da dinâmica de h ao conjunto Λ .

Podemos verificar que $\Lambda_1 = [0, x_1] \cup [x_2, 1]$, onde $x_1 = \frac{1}{2} - \frac{\sqrt{\mu^2 - 4\mu}}{2\mu}$ e $x_2 = \frac{1}{2} + \frac{\sqrt{\mu^2 - 4\mu}}{2\mu}$. De modo mais geral, temos o seguinte resultado:

Proposição 2.4. Se $\mu > 4$, então

- 1. Λ_n é a união de 2^n intervalos fechados disjuntos.
- 2. $h^n:[a,b]\to [0,1]$ é bijetora, onde [a,b] é um dos intervalos que formam Λ_n .

Demonstração. Suponha que Λ_{k-1} é a união de 2^{k-1} intervalos fechados disjuntos e que h^{k-1} : $[a,b] \to [0,1]$ é bijetora, onde [a,b] é um desses intervalos. Suponha que h^{k-1} é estritamente crescente em [a,b]; se h^{k-1} é estritamente decrescente em [a,b], a demonstração é análoga.

Inicialmente, observamos que existem $x_1' < x_2'$ tais que $h^{k-1}([a,x_1']) = [0,x_1], h^{k-1}((x_1',x_2')) = (x_1,x_2)$ e $h^{k-1}([x_2',1]) = [x_2,1]$. Desse modo, os intervalos $[a,x_1']$ e $[x_2',b]$ são disjuntos. Além disso, temos que $h^k([a,x_1']) = [0,1], h^k((x_1',x_2')) > 1$ e $h^k([x_2',1]) = [0,1]$. Pela Regra da Cadeia, temos também que $Dh^k([a,x_1']) = Dh([0,x_1])Dh^{k-1}([a,x_1']) > 0$ e $Dh^k([x_2',1]) = Dh([x_2,1])Dh^{k-1}([x_2',1]) < 0$.

Portanto, é imediato concluir que Λ_k é a união de 2^k intervalos fechados disjuntos e que $h^k: [a,b] \to [0,1]$ é bijetora, onde [a,b] é um desses intervalos.

O conjunto Λ possui uma estrutura bem definida. Provaremos que Λ é um Conjunto de Cantor. Antes, relembraremos a definição desse conceito.

Definição 2.5. Seja $\Gamma \subset \mathbb{R}$ um conjunto não vazio. Dizemos que Γ é um conjunto de Cantor se as seguintes condições são válidas:

- i. Γ é compacto.
- ii. Γ não possui intervalos.
- iii. Todo ponto de Γ é um ponto de acumulação de Γ .

Para facilitar a demonstração de que Λ é um Conjunto de Cantor, vamos considerar que $\mu > 2 + \sqrt{5}$, pois nesse caso a derivada de h é maior que 1 em Λ_1 .

Lema 2.6. Se $\mu > 2 + \sqrt{5}$, então

- 1. existe $\lambda > 1$ tal que $|Dh(\Lambda_1)| > \lambda$.
- 2. $b-a<\frac{1}{\lambda^n}$, onde [a,b] é um dos intervalos que formam Λ_n .

Demonstração.

- 1. Se $\mu > 2 + \sqrt{5}$, então $Dh(x_1) = \sqrt{\mu^2 4\mu} > 1$ e $Dh(x_2) = -\sqrt{\mu^2 4\mu} < -1$ e, portanto, existe $\lambda > 1$ tal que $|Dh(\Lambda_1)| > \lambda$.
- 2. Se $x \in [a, b]$, então $h^k(x) \in \Lambda_1$ para todo $0 \le k < n$. Desse modo, $Dh^n(x) = \prod_{k=0}^{n-1} Dh(h^k(x)) > \lambda^n$ e, pelo TVM, existe $c \in (a, b)$ tal que

$$1 = |h^{n}(b) - h^{n}(a)| = |Dh^{n}(c)||b - a| > \lambda^{n}|b - a|.$$

Sejam $x \in \Lambda$ e $\varepsilon > 0$. Pelo Lema anterior, existe um intervalo $[a,b] \subset \Lambda_n$ para algum $n \ge 1$ tal que $x \in [a,b], b-a < \varepsilon$ e $h^n : [a,b] \to [0,1]$ é bijetora.

Teorema 2.7. Se $\mu > 2 + \sqrt{5}$, então Λ é um conjunto de Cantor.

Demonstração. Se Λ contém algum intervalo, então existem x < y tais que $[x, y] \subset \Lambda$. Seja k tal que $\frac{1}{\lambda^k} < |x - y|$. Em particular, $[x, y] \subset \Lambda_k$, o que é um absurdo pois os intervalos de Λ_k possuem tamanho menor que $\frac{1}{\lambda^k}$.

Sejam $x \in \Lambda$ e $\varepsilon > 0$. Como $\frac{1}{\lambda^k} < \varepsilon$ para algum $k \geq 0$, os intervalos que formam Λ_k possuem tamanho menor que ε . Se $x \in [a,b]$, onde [a,b] é um desses intervalos, então $a \in \Lambda$ e $|x-a| < \varepsilon$.

O Teorema 2.7 é válido quando $\mu > 4$, porém utiliza técnicas que serão vistas apenas no fim do texto.

2.3 Caos

Proposição 2.8. Se $\mu > 2 + \sqrt{5}$, então $Per(h|_{\Lambda})$ é denso em Λ .

Demonstração. Sejam $x \in \Lambda$, $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. Temos que $h^k : [a,b] \to [0,1]$ é bijetora, onde $x \in [a,b]$ e [a,b] é um dos intervalos que formam Λ_k . Como $h^k([a,b]) \supset [a,b]$, existe $y \in [a,b]$ tal que $h^k(y) = y$. Observando que $y \in \Lambda$ e $|x-y| < \varepsilon$, concluímos que $Per(h|_{\Lambda})$ é denso em Λ .

Definição 2.9. Seja $f: X \to X$ uma função. Dizemos que f é topologicamente transitiva se dados $x, y \in X$ e $\varepsilon > 0$, existem $z \in X$ e $k \ge 1$ tais que $|x - z| < \varepsilon$ e $|y - f^k(z)| < \varepsilon$.

Proposição 2.10. Se $\mu > 2 + \sqrt{5}$, então $h|_{\Lambda}$ é topologicamente transitiva.

Demonstração. Sejam $x, y \in \Lambda$, $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. Temos que $h^k : [a, b] \to [0, 1]$ é bijetora, onde $x \in [a, b]$ e [a, b] é um dos intervalos que formam Λ_k . Pelo TVI, existe $z \in [a, b]$ tal que $h^k(z) = y$. Observando que $z \in \Lambda$, concluímos que $h|_{\Lambda}$ é topologicamente transitiva. \square

Definição 2.11. Seja $f: X \to X$ uma função. Dizemos que f depende sensivelmente das condições iniciais se existe $\delta > 0$ com a seguinte propriedade: dados $x \in X$ e $\varepsilon > 0$, existem $y \in X$ e $k \ge 1$ tais que $|x - y| < \varepsilon$ e $|f^k(x) - f^k(y)| > \delta$.

Proposição 2.12. Se $\mu > 2 + \sqrt{5}$, então $h|_{\Lambda}$ depende sensivelmente das condições iniciais.

Demonstração. Sejam $x \in \Lambda$, $\varepsilon > 0$ e $k \ge 1$ tal que $\frac{1}{\lambda^k} < \varepsilon$. Temos que $h^k : [a, b] \to [0, 1]$ é bijetora, onde $x \in [a, b]$ e [a, b] é um dos intervalos que formam Λ_k . Suponha que $h^k(a) = 0$ e $h^k(b) = 1$; se $h^k(a) = 1$ e $h^k(b) = 0$, a demonstração é análoga.

Como $h(\frac{1}{2}) > 1$ e $x \in \Lambda$, temos que $h^k(x) \in [0, \frac{1}{2}) \cup (\frac{1}{2}, 1]$. Se $h^k(x) \in [0, \frac{1}{2})$, então $|h^k(x) - h^k(b)| = |h^k(x) - 1| > \frac{1}{2}$ e se $h^k(x) \in (\frac{1}{2}, 1]$, então $|h^k(x) - h^k(a)| = |h^k(x)| > \frac{1}{2}$. Observando que $|x - a| < \varepsilon$ e $|x - b| < \varepsilon$, concluímos que $h|_{\Lambda}$ depende sensivelmente das condições iniciais.

Definição 2.13. Seja $f: X \to X$ uma função. Dizemos que f é caótica se as seguintes condições são válidas:

i. Per(f) é denso em X.

- ii. f é topologicamente transitiva.
- iii. f depende sensivelmente das condições iniciais.

Teorema 2.14. Se $\mu > 2 + \sqrt{5}$, então $h|_{\Lambda}$ é caótica.

Teorema 2.15. Seja $f: X \to X$ é uma função, onde X é um conjunto infinito. Se Per(f) é denso em X e f é topologicamente transitiva, então f é caótica.

2.4 Conjugação Topológica

Definição 2.16. Sejam $f: X \to X$, $g: Y \to Y$ e $\tau: X \to Y$ funções. Dizemos que f e g são topologicamente conjugadas por τ se as seguintes condições são válidas:

i. τ é um homeomorfismo.

ii. $\tau \circ f = g \circ \tau$.

Proposição 2.17. Sejam $f:X\to X,\ g:Y\to Y\ e\ \tau:X\to Y\ funções.$ Se f e g são topologicamente conjugadas por $\tau,$ então

- 1. Per(f) é denso em X se, e somente se, Per(g) é denso em Y.
- 2. f é topologicamente transitiva se, e somente se, g é topologicamente transitiva.

Demonstração.

- 1. Se $\operatorname{Per}(f)$ denso em X, então $\tau(\operatorname{Per}(f))$ é denso em Y pois τ é contínua. Observando que $\tau(\operatorname{Per}(f)) = \operatorname{Per}(g)$, concluímos que $\operatorname{Per}(g)$ é denso em Y. A outra implicação é demonstrada de maneira análoga.
- 2. Sendo τ contínua, dados $\varepsilon > 0$ e $k \ge 1$, existe $\delta > 0$ tal que se $z \in X$, $|x z| < \delta$ e $|y f^k(z)| < \delta$, então $|\tau(x) \tau(z)| < \varepsilon$ e $|\tau(y) \tau(k^n(z))| < \varepsilon$.

Se $x',y'\in Y$, existem $x,y\in X$ tais que $\tau(x)=x'$ e $\tau(y)=y'$. Sendo f topologicamente transitiva, existem $z\in X$ e $k\geq 1$ tais que $|x-z|<\delta$ e $|y-f^k(z)|<\delta$. Desse modo, $|\tau(x)-\tau(z)|<\varepsilon$ e $|\tau(y)-\tau(f^k(z))|<\varepsilon$. Se $\tau(z)=z'$, então $|x'-z'|<\varepsilon$ e $|y'-g^k(z')|<\varepsilon$. A outra implicação é demonstrada de maneira análoga.

Lema 2.18. A função $T : [0,1] \to [0,1]$ dada por

$$T(x) = \begin{cases} 2x, & x \in [0, \frac{1}{2}] \\ 2 - 2x, & x \in [\frac{1}{2}, 1] \end{cases}$$

 \acute{e} ca \acute{o} tica.

Demonstração. Inicialmente, é possível provar por indução que $T^n: \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right] \to [0,1]$ é uma função bijetora afim para todo $0 \le k < 2^n$ e para todo $n \ge 1$. Desse modo, dados $x \in [0,1]$ e $\varepsilon > 0$, seja $n \ge 1$ tal que $\frac{1}{2^n} < \varepsilon$, $x \in I$ e $T^n: I \to [0,1]$ é bijetora, onde $I = \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right]$.

- a) $\operatorname{Per}(T)$ é denso em [0,1]. $\operatorname{Como}\ T(I)\supset I$, existe $p\in I$ tal que $T^n(p)=p$. Observando que $|x-p|\leq \frac{1}{2^n}<\varepsilon$, concluímos que $\operatorname{Per}(T)$ é denso em [0,1].
- b) T é topologicamente transitiva. Sendo $T^n:I\to [0,1]$ bijetora, se $y\in [0,1]$, então existe $z\in I$ tal que $T^n(z)=y$. Observando que $|x-z|\le \frac{1}{2^n}$ e $|y-T^n(z)|=0$, concluímos que T é topologicamente transitiva.
- c) T depende sensivelmente das condições iniciais. Sendo $T^n: I \to [0,1]$ bijetora, existem $a,b \in I$ tais que $T^n(a) = 0$ e $T^n(b) = 1$. Se $T^n(x) \in [0,\frac{1}{2}]$, então $|T^n(x) - T^n(b)| = |T^n(x) - 1| \ge \frac{1}{2}$ e se $T^n(x) \in [\frac{1}{2},1]$, então $|T^n(x) - T^n(a)| = |T^n(x)| \ge \frac{1}{2}$. Observando que $|x - a| \le \frac{1}{2^n}$ e $|x - b| \le \frac{1}{2^n}$, concluímos que T depende sensivelmente das condições iniciais.

Teorema 2.19. $Se \mu = 4$, então h é caótica.

Demonstração. Basta observar que $h \circ \tau = \tau \circ T$, onde $\tau : [0,1] \to [0,1]$ é o homeomorfismo dado por $\tau(x) = \text{sen}^2\left(\frac{\pi x}{2}\right)$.

2.5 Dinâmica Simbólica

Dado $N \geq 2$, seja Σ_N o conjunto das sequências de números naturais limitados entre 1 e N, isto é, $\Sigma_N = \{(x_0 \, x_1 \, x_2 \, \dots) : 1 \leq x_n \leq N \text{ para todo } n \geq 0\}$. Seja também $d_N : \Sigma_N \times \Sigma_N \to \mathbb{R}$ a função dada por

$$d_N(x,y) = \sum_{k=0}^{\infty} \frac{|x_k - y_k|}{N^k},$$

onde $x = (x_0 x_1 x_2 \dots)$ e $y = (y_0 y_1 y_2 \dots)$. Observe que (Σ_N, d_N) é um espaço métrico. Por fim, seja $\sigma : \Sigma_N \to \Sigma_N$ a função é dada por $\sigma(x_0 x_1 x_2 \dots) = (x_1 x_2 x_3 \dots)$.

Proposição 2.20. Sejam $x = (x_0 x_1 x_2 ...)$ $e \ y = (y_0 y_1 y_2 ...)$ elementos de Σ_N .

- 1. Se $x_k = y_k$ para todo $0 \le k \le n$, então $d_N(x, y) \le \frac{1}{N^n}$.
- 2. Se $d_N(x,y) < \frac{1}{N^n}$, então $x_k = y_k$ para todo $0 \le k \le n$.

Proposição 2.21. σ é contínua.

Demonstração. Sejam $x=(x_0\,x_1\,x_2\,\dots)\in\Sigma_N,\,\varepsilon>0$ e $n\geq 1$ tal que $\frac{1}{2^n}<\varepsilon$. Se $d(x,y)<\frac{1}{2^{n+1}},$ onde $y=(y_0\,y_1\,y_2\,\dots)\in\Sigma_N,$ então $x_k=y_k$ para todo $0\leq k\leq n+1$. Como $\sigma(x)=(x_1\,x_2\,x_3\,\dots)$ e $\sigma(y)=(y_1\,y_2\,y_3\,\dots),$ temos que as primeiras n+1 entradas de $\sigma(s)$ e $\sigma(t)$ são iguais. Desse modo, $d(\sigma(s),\sigma(t))\leq\frac{1}{2^n}<\varepsilon$ e, portanto, σ é contínua.

Para a demonstração do próximo resultado, vamos considerar N=2. Se $\Lambda_1=[0,x_1]\cup[x_2,1]$, sejam $J_1=[0,x_1]$ e $J_2=[x_2,1]$. Como $\Lambda\subset J_1\cup J_2$, podemos definir a função $S:\Lambda\to\Sigma_2$ dada por $S(x)=(x_0\,x_1\,x_2\,\dots)$, onde $x_k=1$ se $h^k(x)\in J_1$ e $x_k=2$ se $h^k(x)\in J_2$ para todo $k\geq 0$.

Proposição 2.22. Se $\mu > 2 + \sqrt{5}$, então $h|_{\Lambda}$ e σ são topologicamente conjugadas por S.

Demonstração.

a) S é injetora.

Sejam $x, y \in \Lambda$, x < y. Se S(x) = S(y), então $h^k(x)$ e $h^k(y)$ está no mesmo lado em relação ao ponto crítico para todo $k \ge 0$ e, portanto, h é monótona em cada intervalo I_k cujos extremos são $h^k(x)$ e $h^k(y)$. Desse modo, se $z \in [x, y]$, então $h^k(z) \in I_k \subset J_1 \cup J_2$ para todo $k \ge 0$ e, portanto, $z \in \Lambda$, o que é um absurdo pois Λ não contém intervalos.

b) S é sobrejetora.

Seja $(x_0 x_1 x_2 \dots) \in \Sigma_2$. Inicialmente, para cada $n \geq 0$, considere

$$J_{x_0...x_n} = \{x \in [0,1] : x \in J_{x_0},...,h^n(x) \in J_{x_n}\}.$$

Observe $J_{x_0...x_n} = J_{x_0} \cap h^{-1}(J_{x_1...x_n})$ e, portanto, é possível concluir por indução que $J_{x_0...x_n}$ é um intervalo fechado não vazio. Além disso, $J_{x_0...x_n} = J_{x_0...x_{n-1}} \cap h^{-n}(J_{x_n}) \subset J_{x_0...x_{n-1}}$.

Desse modo, $(J_{x_0...x_n})_{n=0}^{\infty}$ é uma sequência de intervalos encaixantes fechados e não vazios e, portanto, existe $x \in \bigcap_{n=0}^{\infty} J_{x_0...x_n}$. Como $h^k(x) \in J_{x_k}$ para todo $k \geq 0$, concluímos que $S(x) = (x_0 x_1 x_2 ...)$. Observe que x é único, pois S é injetora.

c) S é contínua.

Sejam $x \in \Lambda$, $\varepsilon > 0$ e $k \ge 0$ tal que $\frac{1}{N^k} < \varepsilon$. Se $S(x) = (x_0 x_1 x_2 \dots)$, então $x \in J_{x_0 \dots x_k}$. Sendo $J_{x_0 \dots x_k}$ um intervalo fechado, existe $\delta > 0$ tal que se $y \in \Lambda$ e $|x - y| < \delta$, então $y \in J_{x_0 \dots x_k}$. Desse modo, S(x) e S(y) são iguais nas primeiras k + 1 entradas e, portanto, $d_N(S(x), S(y)) \le \frac{1}{N^k} < \varepsilon$.

- d) S^{-1} é contínua.
- e) $S \circ h|_{\Lambda} = \sigma \circ S$.

Se $x \in \Lambda$ e $S(x) = (x_0 x_1 x_2 \dots)$, então $\bigcap_{n=0}^{\infty} J_{x_0 \dots x_n} = \{x\}$. Desse modo, é imediato que

$$S \circ h|_{\Lambda}(x) = S(h(\cap_{n=0}^{\infty} J_{x_0 \dots x_n})) = S(\cap_{n=1}^{\infty} J_{x_1 \dots x_n}) = (x_1 x_2 x_3 \dots) = \sigma \circ S(x).$$

3 Teorema de Sharkovsky

Ao longo dessa seção, consideraremos $f: \mathbb{R} \to \mathbb{R}$ uma função contínua. Além disso, escreveremos $I_0 \longrightarrow I_1 \longrightarrow \cdots \longrightarrow I_n$ quando I_0, I_1, \ldots, I_n são intervalos fechados e $f(I_k) \supset I_{k+1}$ para todo $0 \le k < n$.

Lema 3.1. Se $I_0 \longrightarrow I_1$, então existe um intervalo fechado $I'_0 \subset I_0$ tal que $f(I'_0) = I_1$.

Demonstração. Sejam $p, q \in [a, b]$ tais que f(p) = c e f(q) = d, onde $I_0 = [a, b]$ e $I_1 = [c, d]$. Se $p \leq q$, definimos $b' = \inf\{x \in [p, q] : f(x) = d\}$ e $a' = \sup\{x \in [p, b'] : f(x) = c\}$ e, pela continuidade de f, podemos concluir que $f(I'_0) = I_1$, onde $I'_0 = [a', b']$. Se $q \leq p$, a demonstração é análoga.

Lema 3.2. Se $I_0 \longrightarrow I_1 \longrightarrow \cdots \longrightarrow I_{n-1} \longrightarrow I_0$, então existe $p \in I_0$ tal que as seguintes condições são válidas:

- 1. $f^k(p) \in I_k$ para todo $1 \le k < n$.
- 2. $f^n(p) = p$.

Demonstração. Pelo Lema anterior, podemos construir uma sequência de intervalos fechados $I'_0, I'_1, \ldots, I'_{n-1}$ com as seguintes propriedades:

- a. $I_0 \supset I'_0 \supset I'_1 \supset \cdots \supset I'_{n-1}$.
- b. $f^{k}(I'_{k-1}) = I_{k}$ para todo $1 \le k < n$.
- c. $f^n(I'_{n-1}) = I_0$.

Desse modo, existe $p \in I'_{n-1}$ tal que $f^n(p) = p$. Em particular, $p \in I_0$ e $f^k(p) \in I_k$ para todo $1 \le k < n$.

Teorema 3.3. Se $\operatorname{Per}_3(f) \neq \emptyset$ e $n \geq 1$, então $\operatorname{Per}_n(f) \neq \emptyset$.

Demonstração. Sejam $p_1 < p_2 < p_3$ os pontos da órbita de um elemento de $Per_3(f)$ e suponha que $f(p_1) = p_2$ e $f(p_2) = p_3$. Se $f(p_1) = p_3$ e $f(p_3) = p_2$, a demonstração é análoga. Definindo $I_0 = [p_1, p_2]$ e $I_1 = [p_2, p_3]$, temos que $I_0 \longrightarrow I_1$, $I_1 \longrightarrow I_0$ e $I_1 \longrightarrow I_1$. Com isso, podemos demonstrar as seguintes afirmações:

- a) $\operatorname{Per}_1(f) \neq \emptyset$. De fato, $I_1 \longrightarrow I_1$ implica que existe $p \in I_1$ tal que f(p) = p.
- b) $\operatorname{Per}_2(f) \neq \emptyset$. De fato, $I_0 \longrightarrow I_1 \longrightarrow I_0$ implica que existe $p \in I_0$ tal que $f(p) \in I_1$ e $f^2(p) = p$. Se f(p) = p, então $p \in I_0 \cap I_1$, o que é um absurdo pois $I_0 \cap I_1 = \{p_2\}$ e $p_2 \in \operatorname{Per}_3(f)$.
- c) $\operatorname{Per}_4(f) \neq \emptyset$.

De fato, $I_1 \longrightarrow I_1 \longrightarrow I_1 \longrightarrow I_0 \longrightarrow I_1$ implica que existe $p \in I_1$ tal que $f^k(p) \in I_1$ para todo $1 \le k < 3$, $f^3(p) \in I_0$ e $f^4(p) = p$. Se $f^3(p) = p$, então $p \in I_0 \cap I_1$, o que é um absurdo pois $I_0 \cap I_1 = \{p_2\}$ e $f^2(p_2) = p_1 \notin I_1$. Se $f^k(p) = p$ para algum $1 \le k < 3$, então $f^k(p) \in I_1$ para todo $k \ge 1$. Em particular, $f^3(p) \in I_0 \cap I_1 = \{p_2\}$ e, portanto, $f^4(p) = p = p_3$, o que é um absurdo pois $f(p_3) = p_1 \notin I_1$.

Por fim, podemos demonstrar de maneira análoga à última afirmação que $\operatorname{Per}_n(f) \neq \emptyset$ para todo $n \geq 4$.

Definição 3.4 (Ordenação de Sharkovsky).

$$3 \mathrel{\triangleright} 5 \mathrel{\triangleright} \cdots \mathrel{\triangleright} 2 \cdot 3 \mathrel{\triangleright} 2 \cdot 5 \mathrel{\triangleright} \cdots \mathrel{\triangleright} 2^2 \cdot 3 \mathrel{\triangleright} 2^2 \cdot 5 \mathrel{\triangleright} \cdots \mathrel{\triangleright} 2^k \cdot 3 \mathrel{\triangleright} 2^k \cdot 5 \mathrel{\triangleright} \cdots \mathrel{\triangleright} 2^2 \mathrel{\triangleright} 2 \mathrel{\triangleright} 1.$$

Teorema 3.5 (Sharkovsky). Se $\operatorname{Per}_n(f) \neq \emptyset$ e $n \triangleright m$, então $\operatorname{Per}_m(f) \neq \emptyset$.

Teorema 3.6. Se $n \ge 1$, então existe uma função f com as seguintes propriedades:

- 1. Per_n $f \neq \emptyset$.
- 2. Per_m $f = \emptyset$ para todo $m \triangleright n$.

Demonstração. Seja $T:[0,1] \rightarrow [0,1]$ a função dada por

$$T(x) = \begin{cases} 2x, & x \in [0, \frac{1}{2}] \\ 2 - 2x, & x \in [\frac{1}{2}, 1] \end{cases}$$

e considere a família de funções $T_{\lambda}(x) = \min\{\lambda, T(x)\}$ definidas em [0, 1], onde o parâmetro λ varia em [0, 1].

Inicialmente, observe que $T(x) \leq 1$ para todo $x \in [0,1]$ implica que que $T_1 = T$. Além disso, é possível provar por indução que T_1 possui 2^k pontos periódicos de período k para todo $k \geq 1$. Desse modo, podemos definir

$$\lambda(k) = \min\{\max\{\mathcal{O} : \mathcal{O} \text{ \'e uma \'orbita de tamanho } k \text{ de } T_1\}\}$$

para todo $k \ge 1$. A ideia principal da prova consiste no fato de que $\lambda(k)$ desempenha os papéis de parâmetro, máximo e ponto de uma órbita de $T_{\lambda(k)}$. As seguintes afirmações tornarão preciso esse fato:

- a) Se $\mathcal{O} \subset [0, \lambda)$ é uma órbita de T_{λ} , então \mathcal{O} é uma órbita de T_{1} . Se $p \in \mathcal{O}$, então $T_{\lambda}(p) \in [0, \lambda)$. Desse modo, $T_{\lambda}(p) = \min\{\lambda, T(p)\} = T(p) = T_{1}(p)$. Assim, T_{λ} e T_{1} coincidem em \mathcal{O} e, portanto, \mathcal{O} é uma órbita de T_{1} .
- b) Se $\mathcal{O} \subset [0, \lambda]$ é uma órbita de T_1 , então \mathcal{O} é uma órbita de T_{λ} . Se $p \in \mathcal{O}$, então $T_1(p) \in [0, \lambda]$. Desse modo, $T_{\lambda}(p) = \min\{\lambda, T_1(p)\} = T_1(p)$. Assim, T_{λ} e T_1 coincidem em \mathcal{O} e, portanto, \mathcal{O} é uma órbita de T_{λ} .
- c) $T_{\lambda(k)}$ possui uma órbita $\mathcal{O} \subset [0, \lambda(k))$ de tamanho j se, e somente, se $\lambda(k) > \lambda(j)$. Se $T_{\lambda(k)}$ possui uma órbita $\mathcal{O} \subset [0, \lambda(k))$ de tamanho j, então \mathcal{O} é uma órbita de T_1 e, pela definição de $\lambda(j)$, concluímos que $\lambda(k) > \lambda(j)$. Por outro lado, se $\lambda(k) > \lambda(j)$, então T_1 possui uma órbita $\mathcal{O} \subset [0, \lambda(j)] \subset [0, \lambda(k)]$ de tamanho j e, desse modo, \mathcal{O} é uma órbita de $T_{\lambda(k)}$.
- d) A órbita de T_1 que contém $\lambda(k)$ é uma órbita de tamanho k de $T_{\lambda(k)}$. Além disso, todas as outras órbitas de $T_{\lambda(k)}$ estão em $[0,\lambda(k))$. Pela definição de $\lambda(k)$, T_1 possui uma órbita $\mathcal{O} \subset [0,\lambda(k)]$ de tamanho k e, portanto, \mathcal{O} é uma órbita de $T_{\lambda(k)}$.

Na segunda parte, basta observar que $\lambda(k)$ é o valor máximo de $T_{\lambda(k)}$ e, desse modo, toda órbita de $T_{\lambda(k)}$ está contida em $[0, \lambda(k)]$. Em particular, se a órbita não contém $\lambda(k)$, então ela está contida em $[0, \lambda(k))$.

e) $k \triangleright j$ se, e somente se, $\lambda(k) > \lambda(j)$.

Suponha que $k \triangleright j$. Sabemos que $T_{\lambda(k)}$ possui uma órbita de tamanho k e, pelo Teorema de Sharkovsky, $T_{\lambda(k)}$ admite uma órbita de tamanho j. Em particular, essa órbita está contida em $[0, \lambda(k))$ e, portanto, $\lambda(k) > \lambda(j)$.

Suponha que $\lambda(k) > \lambda(j)$. Se $j \triangleright k$, então $\lambda(k) < \lambda(j)$ pela demonstração no parágrafo anterior e, portanto, $k \triangleright j$.

Desse modo, $T_{\lambda(n)}$ possui órbita de tamanho n para cada $n \geq 1$. Além disso, se $m \triangleright n$ então $\lambda(m) > \lambda(n)$ e, portanto, $T_{\lambda(n)}$ não possui órbita de tamanho m.

4 Teorema de Singer

Definição 4.1. Seja $f: \mathbb{R} \to \mathbb{R}$ uma função de classe \mathcal{C}^3 . A derivada de Schwarz de f é função $\mathcal{S}f$ dada por

$$Sf(x) = \frac{D^3 f(x)}{Df(x)} - \frac{3}{2} \left(\frac{D^2 f(x)}{Df(x)}\right)^2$$

para todo x tal que $Df(x) \neq 0$.

Proposição 4.2. Se Sf < 0 e Sg < 0, então $S(f \circ g) < 0$.

Demonstração. Pela Regra da Cadeia, é possível mostrar que

$$\mathcal{S}(f \circ g)(x) = \mathcal{S}f(g(x))(Dg(x))^2 + \mathcal{S}g(x)$$

e, portanto, o resultado é imediato.

Corolário 4.3. Se Sf < 0, então $Sf^n < 0$ para todo $n \ge 1$.

Lema 4.4. Se Sf < 0 e x_0 é um ponto de mínimo local de Df, então $Df(x_0) \le 0$.

Demonstração. Se $Df(x_0) \neq 0$, então

$$Sf(x_0) = \frac{D^3 f(x_0)}{D f(x_0)} - \frac{3}{2} \left(\frac{D^2 f(x_0)}{D f(x_0)} \right)^2 < 0.$$

Sendo x_0 ponto de mínimo local de Df, temos que $D^2f(x_0) = 0$ e $D^3f(x_0) \ge 0$ e, portanto, $Df(x_0) < 0$.

Lema 4.5. Se Sf < 0 e a < b < c são pontos fixos de f com $Df(b) \le 1$, então f possui ponto crítico em (a, c).

Demonstração. Pelo TVM, existem $r \in (a,b)$ e $s \in (b,c)$ tais que Df(r) = Df(s) = 1. Sendo Df contínua, Df restrita ao intervalo [r,s] possui mínimo global. Como $b \in (r,s)$ e $Df(b) \leq 1$, temos que Df possui mínimo local em (r,s). Utilizando Lema anterior e o TVI, a demonstração está concluída.

Lema 4.6. Se Sf < 0 e a < b < c < d são pontos fixos de f, então f possui ponto crítico em (a, d).

Demonstração. Se $Df(b) \leq 1$ ou $Df(c) \leq 1$, o resultado é verdadeiro pelo Lema anterior. Se Df(b) > 1 e Df(c) > 1, existem $r, t \in (b, c)$ tais que r < t, f(r) > r e f(t) < t. Pelo TVM, existe $s \in (r, t)$ tal que Df(s) < 1. Portanto, Df possui mínimo local em (b, c). Utilizando Lema ?? e o TVI, a demonstração está concluída.

Lema 4.7. Se f possui finitos pontos críticos, então f^n possui finitos pontos críticos para todo $n \ge 1$.

Demonstração. Pelo TVM, se $c \in \mathbb{R}$, então f possui ponto crítico entre dois elementos de $f^{-1}(c)$ e, portanto, $f^{-1}(c)$ é finito. De modo mais geral, é possível provar por indução que $f^{-n}(c)$ é finito para todo $n \geq 1$.

Se $n \ge 1$, então $Df^n(x) = \prod_{k=0}^{n-1} Df(f^k(x)) = 0$ se, e somente se, $f^k(x)$ é ponto crítico de f para algum $1 \le k < n$. Portanto, o conjunto de pontos críticos de f^n é finito.

Lema 4.8. Se Sf < 0 e f possui finitos pontos críticos, então f^n possui finitos pontos fixos para todo $n \ge 1$.

Demonstração. Pelo Lema ??, se f^n possui infinitos pontos fixos para algum $n \ge 1$, então f^n possui infinitos pontos críticos, o que é um absurdo pelo Lema anterior.

Teorema 4.9 (Singer). Se Sf < 0 e f possui n pontos críticos, então f possui no máximo n+2 órbitas periódicas não repulsoras.

Demonstração. Seja p um ponto periódico não repulsor de f de período m. Se $g = f^m$, então g(p) = p e $|Dg(p)| \le 1$. Seja K a componente conexa de $\mathcal{B}(p) = \{x : \lim_{k \to \infty} g^k(x) = p\}$ que contém p. Inicialmente, suponha que K é limitado.

Se |Dg(p)| < 1, então é possível mostrar que K é aberto, $g(K) \subset K$ e g preserva os pontos extremos de K.

Escrevendo K = (a, b), se g(a) = a e g(b) = b, então g possui ponto crítico em K pelo Lema ??; se g(a) = b e g(b) = a, então g^2 possui ponto crítico em K pelo Lema ??; se g(a) = g(b), então g possui ponto crítico em K pelo TVM.

Se |Dg(p)| = 1, então os pontos fixos de g são isolados pelo Lema anterior e, portanto, existe uma vizinhança de p que não contém outros pontos fixos de g.

Suponha que Dg(p)=1. Se Dg(p)=-1, a demonstração é análoga considerando g^2 . Se p possui o comportamento de um ponto repulsor, então, para x numa vizinhança de p, g(x)>x quando x>p e g(x)< x quando x< p. Desse modo, 1 é um mínimo local de Dg, o que é um absurdo pelo Lema $\ref{lem:superpossuper}$ e, portanto, p é atrator em pelo menos um dos lados. Desse modo, K é um intervalo, $g(K)\subset K$ e g preserva os pontos extremos de K. Assim, é possível concluir de maneira análoga que g possui ponto crítico em K.

Assim, cada intervalo K limitado está associado à algum ponto crítico de f e, portanto, existem no máximo n desses intervalos. Não é possível obter a mesma conclusão se K não é limitado, mas observando que existem no máximo dois intervalos desse tipo, a demonstração está concluída.

Corolário 4.10. Se $\mu > 0$, então $h_{\mu}(x) = \mu x(1-x)$ possui no máximo 1 órbita periódica não repulsora.

5 Matriz de Transição

Dizemos que A é uma matriz de transição, se $A = (a_{ij})_{1 \leq i,j \leq N}$ uma matriz quadrada de ordem N tal que $a_{ij} \in \{0,1\}$ para todo $1 \leq i,j \leq N$. Se A é uma matriz de transição, definimos o conjunto Σ_A por

$$\Sigma_A = \{(x_0 \, x_1 \, x_2 \, \dots) \in \Sigma_N : a_{x_k x_{k+1}} = 1 \text{ para todo } k \ge 0\}.$$

Observe que se $x \in \Sigma_A$, então $\sigma(x) \in \Sigma_A$. Desse modo, podemos definir a função $\sigma_A : \Sigma_A \to \Sigma_A$ como sendo a restrição de σ em Σ_A .

Proposição 5.1. Σ_A é um subconjunto fechado de Σ_N .

Demonstração. Seja $\{x_n\}_{n=0}^{\infty}$ uma sequência de elementos em Σ_A convergente para $x \in \Sigma_N$. Vamos mostrar que $x \in \Sigma_A$.

Se $x=(\xi_0\,\xi_1\,\xi_2\,\dots)$ e $x\notin\Sigma_A$, então existe $k\geq 0$ tal que $a_{\xi_k\xi_{k+1}}=0$. Por outro lado, pela definição de convergência, existe $n_0\geq 0$ tal que $d(x_{n_0},x)<\frac{1}{N^{k+1}}$ e, portanto, as k+2 primeiras entradas de x e x_{n_0} são iguais. Escrevendo $x_{n_0}=(\eta_0\,\eta_1\,\eta_2\,\dots)$, concluímos que $a_{\eta_k\eta_{k+1}}=a_{\xi_k\xi_{k+1}}=0$, o que é um absurdo pois $x_{n_0}\in\Sigma_A$.

No restante dessa seção vamos estudar a dinâmica da função quadrática $h_{\mu}(x) = \mu x(1-x)$, onde o parâmetro $\mu = 3.839$ está fixado. Será omitido μ na notação da função e escreveremos apenas h.

Se a=0.149888, $\varepsilon=10^{-3}$ e $I=(a-\varepsilon,a+\varepsilon)$, então é possível mostrar que $h^3(I)\subset I$ e $|Dh^3(I)|<1$ e, portanto, o intervalo I possui um ponto periódico atrator de h de período principal 3. Se a_1 , a_2 e a_3 são os elementos dessa órbita em ordem crescente, então

$$a_1 \simeq 0.149888, \ a_2 \simeq 0.489149 \ e \ a_3 \simeq 0.959299.$$

Pelo Teorema de Sharkovsky, h possui infinitos pontos periódicos. Além disso, pelo Teorema de Singer, essa é a única órbita atratora de h.

De modo análogo, concluímos que h possui outra órbita de tamanho 3. Se b_1 , b_2 e b_3 são os elementos dessa órbita em ordem crescente, então

$$b_1 \simeq 0.169040, \ b_2 \simeq 0.539247 \ \text{e} \ b_3 \simeq 0.953837.$$

Observando o gráfico de h^3 , concluímos que para cada b_i , existe b'_i no lado oposto de b_i em relação ao ponto a_i tal que $h^3(b'_i) = b_i$. Defina $A_1 = (b'_1, b_1)$, $A_2 = (b'_2, b_2)$ e $A_3 = (b_3, b'_3)$. Cada A_i é exatamente o intervalo maximal contendo a_i utilizado na demonstração do Teorema de Singer.

Figura: Gráfico de h^3 com os pontos a_1 , a_2 e a_3 assinalados.

Sendo h^3 simétrica em relação ao ponto $\frac{1}{2}$, temos que $h(b'_2) = h(b_2) = b_3$. Além disso, podemos observar que $h(b'_1) = b'_2$ e $h(b'_3) = b'_1$ e, portanto, h mapeia de forma monótona A_1 em A_2 e A_3 em A_1 . Observando que o máximo de h em A_2 é $h(\frac{1}{2}) = 0.95975 < b'_3$, concluímos que $h(A_2) \subset A_3$.

Sabemos que se $x \notin [0,1]$, então $\lim_{n\to\infty} h^n(x) = -\infty$. Além disso, o único ponto periódico em A_i é a_i e todos os pontos em A_i tendem para a órbita de a_i . Desse modo, todos os outros pontos periódicos de h residem no complemento de $A_1 \cup A_2 \cup A_3$ em [0,1], que é formado por quatro intervalos fechados. Sejam $J_0 = [0,b'_1]$, $J_1 = [b_1,b'_2]$, $J_2 = [b_2,b_3]$ e $J_3 = [b'_3,1]$ tais intervalos. A Proposição a seguir nos permite dizer mais.

Proposição 5.2. Se $x \notin \{0, a_1, a_2, a_3\}$ é um ponto periódico de h, então $x \in J_1 \cup J_2$.

Demonstração. Observando que h é monótona em cada J_k , temos que $h(J_0) = J_0 \cup A_1 \cup J_1$, $h(J_1) = J_2$, $h(J_2) = J_1 \cup A_2 \cup J_2$ e $h(J_3) = J_0$. Desse modo, se $x \in I_1 \cup J_2$ é periódico, então órbita de x permanece em $J_1 \cup J_2$.

Por outro lado, se $x \in J_0 - \{0\}$, existe um menor $n \ge 1$ tal que $h^n(x) \notin J_0$. Se $h^n(x) \in A_1$, então x não pode ser periódico, pois o único ponto periódico de A_1 é a_1 . Se $h^n(x) \in J_1$, então x não pode ser periódico, pois caso contrário a órbita de x estaria contida em $J_1 \cup J_2$ e nunca retornaria para J_0 . Finalmente, se $x \in J_3$, então $h(x) \in J_0$ e a análise segue de maneira análoga.

Seja Λ o conjunto dado por

$$\Lambda = \{x \in J_1 \cup J_2 : h^n(x) \in J_1 \cup J_2 \text{ para todo } n \ge 1\}.$$

Pela Proposição anterior, todos os pontos periódicos de h estão em Λ , com exceção dos pontos $0, a_1, a_2$ e a_3 .

Lema 5.3. Existe $n_0 \ge 1$ tal que $|Dh^n(\Lambda)| > 1$ para todo $n \ge n_0$.

Demonstração. Inicialmente, podemos observar graficamente que $|Dh(J_1 \cup J_2)| \ge \nu$ para algum $\nu \in (0,1)$. Podemos observar também que o subconjunto de $J_1 \cup J_2$ no qual $|Dh^3|$ é menor que ou igual à 1 é formado por três intervalos fechados e que cada um desses intervalos possui intersecção vazia com Λ e, portanto, $|Dh^3(\Lambda)| \ge \lambda$ para algum $\lambda > 1$.

Por fim, sejam $x \in \Lambda$ e $K \ge 1$ tal que $\nu^2 \lambda^K > 1$. Se $n_0 = 3K$ e $n \ge n_0$, podemos escrever $n = 3L + \alpha$, onde $L \ge K$ e $0 \le \alpha \le 2$. Desse modo, se $\alpha = 0$, então $|Dh^n(x)| = |Dh^{3L}(x)| \ge \lambda^L > 1$; se $\alpha = 1$, então $|Dh^n(x)| = |Dh(h^{3L}(x))||Dh^{3L}(x)| \ge \nu \lambda^L > 1$; e se $\alpha = 2$, então $|Dh^n(x)| = |Dh(h^{3L+1}(x))||Dh(h^{3L}(x))||Dh^{3L}(x)| \ge \nu^2 \lambda^L > 1$.

Lema 5.4. Λ não contém intervalos.

Demonstração. Suponha que exista $[a,b] \subset \Lambda$. Utilizando notação do Lema anterior, seja $n \geq n_0$

tal que $\nu^{n_0}\lambda^{n-n_0}(b-a)>1$. Pelo TVM, existe $c\in(a,b)$ tal que

$$|h^{n}(b) - h^{n}(a)| = |Dh^{n}(c)|(b - a)$$

$$= \prod_{k=0}^{n_{0}-1} |Dh(h^{k}(c))| \prod_{k=n_{0}}^{n-1} |Dh(h^{k}(c))|(b - a)$$

$$\geq \nu^{n_{0}} \lambda^{n-n_{0}} (b - a) > 1$$

e, portanto, $h^n(a)$ ou $h^n(b)$ não é elemento de [0,1], o que é um absurdo.

Para as demonstrações dos próximos resultados, vamos considerar a matriz de transição

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}.$$

Seja $S: \Lambda \to \Sigma_A$ a função dada por $S(x) = (x_0 \, x_1 \, x_2 \, \dots)$, onde $x_k = 1$ se $h^k(x) \in J_1$ e $x_k = 2$ se $h^k(x) \in J_2$ para todo $k \ge 0$. Observe que S está bem definida, pois $h(J_1) = J_2$ e $h(J_2) \subset J_1 \cup J_2$ e, portanto, $a_{x_k x_{k+1}} = 1$ para todo $k \ge 0$.

Teorema 5.5. $h|_{\Lambda}$ e σ_A são topologicamente conjugadas por S.