COMUNICAÇÃO DE DADOS E REDES Ano. Enganharia do Sistemas a Informátic

$3^{\underline{0}}$ Ano – Engenharia de Sistemas e Informática EXAME – $2^{\underline{a}}$ chamada

29/6/2004

Duração: 2h

Utilize um caderno separado para responder a cada um dos grupos de questões I e II

Ι

1. Considere as seguintes tabelas de encaminhamento de quatro estações num internet local.

Estação A:	Destino 192.168.100.0 default	Próximo salto 192.168.100.1 192.168.100.254	Máscara 255.255.255.0 0.0.0.0	Interf eth_A eth_A	MTU 1500 1500
Estação B:	Destino 192.168.200.0	Próximo salto 192.168.200.1	Máscara 255.255.255.0	Interf eth_B	MTU 1500
	default	192.168.200.254	0.0.0.0	eth_B	1500
Estação C:	Destino 192.168.100.0 192.168.150.0 default	Próximo salto 192.168.100.254 192.168.150.254 192.168.150.253	Máscara 255.255.255.0 255.255.255.0 0.0.0.0	Interf eth_C serial_C serial_C	
Estação D:	Destino 192.168.150.0 192.168.100.0 192.168.200.0 default	Próximo salto 192.168.150.253 192.168.150.254 192.168.200.253 192.168.200.254	Máscara 255.255.255.0 255.255.255.0 255.255.255.0 0.0.0.0	_	

- a) Apresente um esquema deste internet que contenha todos os equipamentos e as respectivas indicações de interface físico e IP.
- b) Que alterações poderiam ser feitas ao encaminhamento neste internet local para impedir apenas a estação A de ter acesso externo, admitindo que este acesso se faz através do interface 192.168.200.254.
- c) Suponha agora que apenas dispõe do endereço de rede 192.168.100.0 para atribuir a este internet e que deverá fazer subnetting com uma distribuição equitativa de endereços de estação por subnet.
 - i) Apresente, justificando, as novas tabelas de encaminhamento dessas quatro estações por forma a que o esquema de routing se mantenha inalterado.
 - ii) Que vantagens e desvantagens vê na utilização de subnetting.
- d) Suponha que a estação **A** envia um datagrama UDP contendo 1500 bytes de dados através do comando **ttcp -t -u -l1500 -n1 -s<end-da-estação-B>**. Diga, justificando:
 - i) quantas tramas são recebidas pela estação **B** resultantes desta acção sabendo que os cabeçalhos IP e UDP são de 20 e 8 bytes respectivamente?
 - ii) quais os endereços MAC presentes nessas tramas? (Nota: represente o endereço ethernet da interface eth $_X$ por MAC(eth $_X$))
 - iii) quais os valores de fragment offset e de more fragments presentes nos cabeçalhos IP desses fragmentos?
- 2. Suponha que as estações C e D do internet local anterior se encontram directamente ligadas por uma linha série onde opera o protocolo de linha HDLC em modo ABM.
 - a) Diga o que entende por modo ABM de operação e em que situações é usado.
 - b) Estabeleça um diagrama temporal de troca de dados entre as estações C e D que contemple de forma clara (e identificada no diagrama) os seguintes aspectos:

- i) a fase de estabelecimento duma ligação com contagem em módulo-8.
- ii) uma abertura de janela mínima de 3 na transmissão de C para D, e de 2 no sentido contrário.
- iii) C envia 7 tramas de dados para D, e esta envia 5 tramas de dados para C.
- iv) **D** recebe uma trama corrompida que deve ser recuperada.
- v) Após a transferência correcta de todas as tramas, a ligação termina.
- c) **REJ** e **SREJ** são duas tramas do tipo **S** que realizam mecanismos ARQ.
 - i) Qual o objectivo dos mecanismos ARQ e que formas de ARQ aquelas duas tramas permitem realizar.
 - ii) Explique o princípio de funcionamento dessas formas ARQ.
 - iii) Que vantagens e desvantagens apresentam a utilização dessas formas ARQ.
- 3. a) O cabeçalho de um datagrama ARP possui quatro campos para endereços, dois para endereços protocolares e dois para endereços de hardware. Quais os valores de cada um destes campos num ARP Request?
 - b) Discuta a validade da seguinte asserção: Sempre que uma estação tiver de enviar uma trama MAC, deve primeiramente efectuar um ARP Request na LAN.
 - c) Um datagrama ARP com endereço protocolar de destino igual ao endereço protocolar de origem é designado um anúncio ARP (ARP Announcement). Qual o significado ou objectivo de um anúncio ARP?
 - d) Um *ARP Probe* pode ser utilizado para detectar endereços protocolares repetidos. Explique como o faz.

II

4. A figura representa a parte da máquina de estados do protocolo TCP referente ao estabelecimento de conexões.

- a) Diga o que se entende por abertura passiva (passive open) de uma conexão TCP e qual a respectiva sequência normal de estados.
- b) Indique qual o evento (1) que determina a transição de estado de **LISTEN** para **SYN RCVD** bem como a correspondente acção semântica (2). Justifique.
- c) Suponha que a estação A é um cliente e a estação B é um servidor. Esboce num diagrama espaço-temporal a troca de segmentos TCP numa abertura passiva de uma conexão por parte do cliente.
- 5. A seguinte listagem é o resultado da execução do comando **netstat** num servidor S.

Proto	R-Q	S-Q	Local Address	Foreign Address	State	
tcp	0	0	0.0.0.0:111	0.0.0.0:*	LISTEN	(portmap)
tcp	0	0	192.168.90.90:53	0.0.0.0:*	LISTEN	(domain)
tcp	0	0	192.168.89.89:53	0.0.0.0:*	LISTEN	(domain)
tcp	0	0	192.168.90.90:515	0.0.0.0:*	LISTEN	(printer)
tcp	0	0	0.0.0.0:22	0.0.0.0:*	LISTEN	(ssh)
tcp	0	0	192.168.89.89:22	192.168.90.19:32912	TIME_WAI	Γ
tcp	0	0	192.168.89.89:32859	192.168.90.19:22	ESTABLIS	HED

- a) Quais os serviços disponíveis neste servidor e como os indentificou?
- b) Discuta a possibilidade da estação 192.168.89.13 usar a impressora de S.
- c) Interprete as duas últimas linhas desta listagem.