Tutorial - 2 : Quantum Mechanics

To be discussed on 12 November 2018

- Q1. Show that three operators, A, B and C satisfy the relation, [AB, C] = A[B, C] + [A, C]B.
- Q2. Consider the position and momentum operators, X and P, and the Hamiltonian operator of a free particle, H. Find the commutators, (a) $[X, P^2]$, (b) [H, P]
- Q3. Consider a particle in a one-dimensional box of length a, defined by the potential,

$$V(x) = 0$$
, for $(0 \le x \le a)$
= ∞ , for $(0 > x, x > a)$

The energy eigenvalues of the particle are given by $\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right)$, where $n = 1, 2, 3, \cdots$. Is $\psi_n(x)$ also eigenstate of momentum? (Compare with the case of unbound free particle.) Obtain the momentum space wave function, $\phi_1(k)$ corresponding to the ground state $(\psi_1(x))$.

Q4. The inner product (dot product) of two functions is defined as,

$$\langle \psi | \phi \rangle = \int \psi^*(x) \phi(x) \ dx$$

The length of a function is defined as

$$||\psi|| = \sqrt{\langle \psi | \psi \rangle}$$

Prove Cauchy-Scwartz inequality, $|\langle \psi | \phi \rangle| \leq ||\psi|| ||\phi||$.