Linear Algebra

Notes by Finley Cooper

10th October 2025

Contents

1 Vector Spaces 3

1 Vector Spaces

For this lecture course, \mathbb{F} will always be field.

Definition. (Vector Space) A \mathbb{F} -vector space (or a vector space over \mathbb{F}) is an abelian group $(V, +, \mathbf{0})$ equipped with a function

$$\mathbb{F} \times V \to V$$
$$(\lambda, v) \to v$$

which we call scalar multiplication such that $\forall v, w \in V, \forall \lambda, \mu \in \mathbb{F}$

- (i) $(\lambda + \mu)v = \lambda v + \mu v$
- (ii) $\lambda(v+w) = \lambda v + \lambda w$
- (iii) $\lambda(\mu v) = (\lambda \mu)v$
- (iv) $1 \cdot v = v \cdot 1 = v$

Remember that $\mathbf{0}$ and 0 are not the same thing. 0 is an element in the field \mathbb{F} and $\mathbf{0}$ is the additive identity in V.

For an example consider \mathbb{F}^n n-dimensional column vectors with entries in \mathbb{F} . We also have the example of a vector space \mathbb{C}^n which is a complex vector space, but also a real vector space (taking either \mathbb{C} or \mathbb{R} as the underlying scalar field).

We also can see that $M_{m\times n}(\mathbb{F})$ form a vector space with m rows and n columns. For any non-empty set X, we denote \mathbb{F}^X as the space of functions from X to \mathbb{F} equipped with operations such that:

$$f+g$$
 is given by $(f+g)(x)=f(x)+g(x)$
 λf is given by $(\lambda f)(x)=\lambda f(x)$

Proposition. For all $v \in V$ we have that $0 \cdot v = \mathbf{0}$ and $(-1) \cdot v = -v$ where -v denotes the additive inverse of v.

Proof. Trivial.

Definition. (Subspace) A subspace of a \mathbb{F} -vector space V is a subset $U \subseteq V$ which is a \mathbb{F} -vector space itself under the same operations as V. Equivalently, (U, +) is a subgroup of (V, +) and $\forall \lambda \in \mathbb{F}$, $\forall u \in U$ we have that $\lambda u \in U$.

Remark. Axioms (i)-(iv) are always automatically inherited into all subspaces.

Proposition. (Subspace test) Let V be a \mathbb{F} -vector space and $U \subseteq V$ then U is a subspace of V if and only if,

- (i) U is nonempty.
- (ii) $\forall \lambda \in \mathbb{F}$ and $\forall u, w \in U$ we have that $u + \lambda w \in U$.

Proof. If U is a subspace then U satisfies (i) and (ii) since it contains 0 and is closed. Conversely suppose that $U \subseteq V$ satisfies (i) and (ii). Taking $\lambda = -1$ so $\forall u, w \in V, u - w \in U$ hence (U, +) is

a subgroup of (V, +) by the subgroup test. Finally taking $u = \mathbf{0}$ so we have that $\forall w \in U, \forall \lambda \in \mathbb{F}$ we have that $\lambda w \in U$. So U is a subspace of V.

We notate U by $U \leq V$.

For some examples

(i)

$$\left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x + y + z = t \right\} \subseteq \mathbb{R}^3,$$

for fixed $t \in \mathbb{R}$ is a subspace of \mathbb{R}^3 iff t = 0.

- (ii) Take $\mathbb{R}^{\mathbb{R}}$ as all the functions from \mathbb{R} to \mathbb{R} then the set of continuous functions is a subspace.
- (iii) Also we have that $C^{\infty}(\mathbb{R})$, the set of infintely differentiable functions from \mathbb{R} to \mathbb{R} is a subspace of $\mathbb{R}^{\mathbb{R}}$ and the subspace of continuous functions.
- (iv) A further subspace of all of those subspaces is the set of polynomial functions.

Lemma. For $U, W \leq V$ we have that $U \cap W \leq V$.

Proof. We'll use the subspace test. Both U,W are subspaces so they contain $\mathbf 0$ hence $\mathbf 0 \in U \cap W$ so $U \cap W$ is nonempty. Secondly take $x,y \in U \cap W$ with $\lambda \in \mathbb F$. Then $U \leq V$ and $x,y \in U$ so $x + \lambda y \in U$. Similarly with W so $x + \lambda y \in W$ hence we have that $x + \lambda y \in U \cap W$ hence $U \cap W \leq V$

Remark. This does not apply for subspaces, in fact from IA Groups, we know it doesn't even hold for the underlying abelian group.

Definition. (Subspace sum) For $U, W \leq V$, the subspace sum of U, W is

$$U + W = \{u + w : u \in U, w \in W\}.$$

Lemma. If $U, W \leq V$ then $U + W \leq V$.

Proof. Simple application of the subspace test.

Remark. U+W is the smallest subgroup of U,W in terms of inclusion, i.e. if K is such that $U\subseteq K$ and $W\subseteq K$ then $U+W\subseteq K$.

Definition. (Linear map) For V, W \mathbb{F} -vector spaces. A *linear map* from V to W is a group homomorphism, φ , from (V, +) to (W, +) such that $\forall v \in V$

$$\varphi(\lambda v) = \lambda \varphi(v)$$

Equivalently to show any function $\alpha:V\to W$ is a linear map we just need to show that $\forall u,w\in V,\,\forall\lambda\in\mathbb{F}$ we have

$$\alpha(u + \lambda w) = \alpha(u) + \lambda \alpha(w).$$

For some examples of linear maps

- (i) $V = \mathbb{F}^n, W = \mathbb{F}^m$ $A \in M_{m \times n}(\mathbb{F})$. Then let $\alpha : V \to W$ be given by $\alpha(v) = Av$. Then α is linear.
- (ii) $\alpha: C^{\infty}(\mathbb{R}) \to C^{\infty}(\mathbb{R})$ defined by taking the derivative.
- (iii) $\alpha: C(\mathbb{R}) \to \mathbb{R}$ defined by taking the integral from 0 to 1.
- (iv) X any nonempty set, $x_0 \in X$,

$$\alpha: \mathbb{F}^X \to \mathbb{F}$$
 $f \to f(x_0)$

- (v) For any V, W the identity mapping from V to V is linear and so is the zero map from V to W.
- (vi) The composition of two linear maps is linear.
- (vii) For a non-example squaring in $\mathbb R$ is not linear. Similarly adding constants is not linear, since linear maps preserve the zero vector.