Universidade Estadual do Oeste do Paraná

Ciências Econômicas Econometria II Trabalho de autocorrelação

Prof. Dra. Rosângela

Amanda Ricarte

Lucas Freire

Marcelo dos Santos

a) Faça a estimativa do modelo e calcule o teste d, de Durbin-Watson, para verificar a existência de autocorrelação.

Estimativa do modelo:

$$y_t = \beta_0 + \beta_1 x_{1t} + \beta_2 x_{2t} + \varepsilon_t$$

y_t = Preço recebido pelo produtor na saca de 60 kgs de milho

 β_0 = Parâmetro que indica o intercepto do modelo;

 β_1 = Parâmetro que indica o efeito marginal da taxa de câmbio sobre o preço do milho;

 x_{1t} = variável contínua que indica o valor da taxa de câmbio;

 β_2 = Parâmetro que indica o efeito marginal do IPCA sobre o preço do milho;

 x_{2t} = variável contínua que indica a taxa de inflação, usando o IPCA como referência;

 ϵ_t = Termo de erro aleatório, no tempo t, que assume os pressupostos de um modelo de regressão linear múltipla.

a) Faça a estimativa do modelo e calcule o teste d, de Durbin-Watson, para verificar a existência de autocorrelação.

OLS Regression Results										
Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	Sui ons:	preco_milho OLS Least Squares n, 30 Mar 2025 22:30:11 168 165 2 nonrobust	Adj. F-sta Prob Log-L AIC:	ared: R-squared: tistic: (F-statistic) ikelihood:	:	0.699 0.695 191.4 1.01e-43 -656.63 1319. 1329.				
========	coef	std err	t	P> t	[0.025	0.975]				
const taxa_cambio ipca	-16.2397 13.5075 11.1770	2.889 0.711 2.560	-5.621 19.007 4.366	0.000 0.000 0.000	-21.944 12.104 6.122	-10.536 14.911 16.232				
Omnibus: Prob(Omnibus): Skew: Kurtosis:	:	5.103 0.078 0.416 2.770	Jarqu			0.184 5.223 0.0734 13.5				

$R^2 = 0.699$

O R² indica que 70% da variação da variável dependente é explicada pelo modelo. Sendo um bom indicativo da variabilidade das variáveis independente.

Estatística F = 191,4

O resultado para o teste F foi alto e satisfatório, além disso, seu p-valor foi estatisticamente significativo, nos permitindo rejeitar a hipótese nula de quê todos os coeficientes são iquais a zero.

Coeficientes

Todos os coeficientes foram estatisticamente significativo, entretanto, como descrito no relatório, o teste de Durbin-Watson foi próximo de 0, indicando autocorrelação positiva, sendo necessário o ajuste de transformação dos dados por meio do coeficiente de autocorrelação de primeira ordem (ρ).

a) Faça a estimativa do modelo e calcule o teste d, de Durbin-Watson, para verificar a existência de autocorrelação.

Teste d, de Durbin-Watson:
$$d = \frac{\sum \hat{u}_t^2 + \sum \hat{u}_{t-1}^2 - 2\sum \hat{u}_t \hat{u}_{t-1}}{\sum \hat{u}_t^2}$$

b) Caso se confirme a autocorrelação, faça a correção dos dados.

O gráfico de dispersão é uma ótima ferramenta para identificar autocorrelação, pois evidencia a relação entre as variáveis analisadas. Através dele, observase que há uma tendência de aumento do erro estimado à medida que se elevam os valores dos quadrados dos resíduos.

Coeficiente de autocorrelação de primeira ordem (ρ): 0.907665842205402

b) Caso se confirme a autocorrelação, faça a correção dos dados.

Após aplicar a correção de autocorrelação pelo método de Durbin-Watson (DW), observamos uma redução significativa na dispersão dos resíduos, resultando em um melhor ajuste do modelo. Isso aumentou a confiabilidade dos resultados da regressão.

c) Calcule a nova estimativa do modelo e analise o nível de significância dos parâmetros estimados, o resultado para o teste F e o resultado para o coeficiente de determinação.

OLS Regression Results											
Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	OLS Least Squares Sun, 30 Mar 2025 15:40:37 ons: 167 2		F-statistic: Prob (F-statistic):			0.072 0.061 6.360 0.00219 -452.09 910.2 919.5					
		std err	t	P> t	[0.025	0.975]					
	-1.2580 0.3450 0.1220		-3.364 3.250 1.532	0.001 0.001 0.127	-1.996 0.135 -0.035	-0.520 0.555 0.279					
Omnibus: Prob(Omnibus): Skew: Kurtosis:		59.399 0.000 1.361 7.683	Jarque Prob(J	Dai Daii Macadiii		1.374 204.161 4.65e-45 7.41					

$R^2 = 0,072$

O R² indica que 7,2% da variação da variável dependente é explicada pelo modelo. Não é um resultado satisfatório, sinalizando a necessidade da inclusão de mais variáveis explicativas para contribuir com o modelo.

Estatística F = 6,360

O resultado para o teste F não foi alto, entretanto seu p-valor foi estatisticamente significativo (0,00219), nos permitindo rejeitar a hipótese nula de quê todos os coeficientes são iguais a zero.

Coeficientes

Constante: estatisticamente significativo ao nível de confiança de 1%. Contudo, o resultado do coeficiente de -1,258, não faz sentido analisar, pois não é possível um câmbio zero e improvável uma inflação zero, para resultar em um preço negativo do milho.

Câmbio: estatisticamente significativo ao nível de confiança de 1%. O resultado de 0,3450, indica que, ceteris paribus, para cada aumento de 1 ponto percentual na taxa de câmbio, o preço do milho aumenta, em média, 0.3450 unidades monetárias.

Ipca: não significativo.

d) Como você interpreta a influência da taxa de câmbio e da taxa de inflação sobre o preço recebido pelo produtor na saca de 60kgs de milho?

A taxa de câmbio teve uma influência estatisticamente significativa no preço do milho ao nível de confiança de 1%. Isso significa que, mantidas as demais variáveis constantes (ceteris paribus), um aumento de 1% na taxa de câmbio eleva, em média, o preço da saca de milho em R\$ 0,345.

Para o produtor rural, essa relação é especialmente relevante, pois a valorização do dólar tende a elevar o preço do milho em reais, favorecendo sua comercialização. Isso ocorre pois o milho é uma commodity negociada mundialmente e cotada em dólares.

No entanto, o coeficiente de determinação (R^2) indica que as variáveis independentes explicam apenas 7,2% da variação no preço do saca do grão. Isso sugere que outros fatores, como estoques, oferta e demanda, expectativas do mercado e condições climáticas, podem desempenhar um papel significativo na formação dos preços.

Diante dessas incertezas, o produtor pode optar por estratégias de proteção de preços, como o hedge agrícola, utilizando instrumentos derivativos negociados na bolsa de valores. Compreender a influência da taxa de câmbio no preço do milho pode contribuir para uma tomada de decisão mais assertiva, além de possibilitar estimativas e previsões de mercado mais precisas.

A taxa de inflação não apresentou impacto significativo sobre o preço do milho e, portanto, será desconsiderada na análise.

Repositório script

https://github.com/flucasbauer/preco-milho-cambio