Optimization algorithms

1.Question 1

Which notation would you use to denote the 3rd layer's activations when the input is the 7th example from the 8th minibatch?

4.Question 4

any progress.

whole training set before making progress.

Suppose your learning algorithm's cost ${\bf J}J$, plotted as a function of the number of iterations, looks like this:

If the mini-batch size is m, you end up with batch gradient descent, which has to process the

If the mini-batch size is 1, you end up having to process the entire training set before making

Which of the following do you agree with?

1 / 1 point

Ans. If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

5.Question 5

Suppose the temperature in Casablanca over the first three days of January are the same:

Jan 1st: $\theta_1=10C$

Jan 2nd: $\theta_2 10C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with β =0.5 to track the temperature: v_0 = 0, v_t = βv_t -1+ $(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and v_2 corrected is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

1 / 1 point

 $v_2=10$, v_2 corrected=10

 \circ v2=7.5, v2corrected=10

 $v_2=7.5$, v_2 corrected=7.5

 $v_2=10$, v_2 corrected=7.5

6.Question 6

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

1 / 1 point

 $\alpha = e^t \alpha 0$

 $\alpha = (1 / \operatorname{sqrt}\{t\}) \alpha 0$

 $\alpha = 0.95^{t} \alpha_0$

7. Question 7

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_{t} = \beta v_{t-1} + (1-\beta)\theta_{t}$. The red line below was computed using $\beta = 0.9\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

1 / 1 point

- Decreasing β will shift the red line slightly to the right.
- Increasing β will shift the red line slightly to the right.
- lacktriangledown Decreasing eta will create more oscillation within the red line.
- Increasing $\$ will create more oscillations within the red line.

8.Question 8 Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum ($\beta = 0.5$) and gradient descent with momentum ($\beta = 0.9$). Which curve corresponds to which algorithm?

1 / 1 point

des	(1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient cent with momentum (large β)
(sma	(1) is gradient descent with momentum (small β), (2) is gradient descent with momentum all β), (3) is gradient descent
des	(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient cent with momentum (large β)
C desc	(1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient cent with momentum (small β)
9.Question 9 Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the cost function $\mathcal{J}(W^{[1]},b^{[1]},,W^{[1]},b^{[1]},b^{[1]},,W^{[1]},b^{[1]},b^{[1]},,W^{[1]},b^{[1]$	
	Try better random initialization for the weights Try mini-batch gradient descent Try using Adam Try initializing all the weights to zero Try tuning the learning rate $\alpha \alpha$
10.Question 10 Which of the following statements about Adam is False?	
0 0 0 = 0.	Adam combines the advantages of RMSProp and momentum The learning rate hyperparameter α in Adam usually needs to be tuned. We usually use "default" values for the hyperparameters β_1 , β_2 and ε in Adam ($\beta_1=0.9,\ \beta_2=999,\ \varepsilon=10^{-8}$) Adam should be used with batch gradient computations, not with mini-batches.