Ton with the cat
After self-testing phase, Alice and Bob stare a state of the
form (VABVB) IGHZ) (isometries
of Alice's measurement in her last box is VATIZIAVA.
Therefore, we can assume that Alice + Bob hold a state of the form
In comp. basis. Alice's measurement Bob's post-measurement choice outcome state
Since Bob knows VB (he is cheating), we can assume
they have H= 1/3 = x/2 sp(a x) a/ & SHZx,a/ Luniform? Luniform?
This is the state they start out with in the real process
(ofter self-testing).
In the "N finite" case, I am guessing we can assume
we have something "close" to this.

Define
$$S_0 = Tr_B(HXH) \otimes 1+ \lambda_R \otimes 1? \lambda_S$$
 XA
 $S_0 = U S_0 U^*$ to calculate S

On XAR $\Rightarrow S_0 = Tr_S(S_0)$ after S sent to Bab
 ARG $\Rightarrow S_0 = Tr_S(S_0) = S_0$
 $S_1' = S_1 \otimes \frac{1}{12} = \frac{1}{12} y y y y_R$
 $Y_1 = Tr_2(S_1) = S_1 \otimes \frac{1}{2} I_y$
 $Y_2 = Tr_2(S_1) = S_1 \otimes \frac{1}{2} I_y$
 $Y_3 = Tr_2(S_1) = S_1 \otimes \frac{1}{2} I_y$
 $Y_4 = Tr_2(S_1) = S_1 \otimes \frac{1}{2} I_y$
 $Y_5 = Tr_5(S_2) = S_1 \otimes \frac{1}{2} I_y$

Alice measures S_2 in compitation

Alice measures 32 in computational Basis. Aborts if 7 Completely diagonal pouls.
Accepts outcome 0 if ... Casier SD! 23 Aborts if

 $P_B^+ = SDP: Sup \langle T_{1,}S_z \rangle$ $T_{5}(3z) = S_1 \otimes \frac{1}{z} I_y$ $T_{5}(31) = S_0$

Tom: For finite N, can we have something similar to $\frac{1}{\sqrt{2}} \sum_{z} |z\rangle \sum_{a} \sqrt{p(a|z)} |a\rangle \otimes |GHZ_{za}\rangle$

In the protocol? Even if this is not the case, we just need that the probs are approximate as well as the post-measured states.