	نحة	الصة
<	\	1
	4	/
-	_	

الامتحان الوطني الموحد للبكالوريا المسالك الدولية – خيار فرنسية الدورة العادية 2019 - الموضوع -

+0xnx4+ i Nevoto
+0colo+ i 30xc4 oloto

\(\lambda \) 1 30xc4 oloto
\(\lambda \) 1 30xc4 oloto
\(\lambda \) 1 30xc4 oloto
\(\lambda \) 1 3xxc4 oloto
\(\lambda \) 1 3x

NS22F

المركز الوطني للتقويم والامتحانات والتوجيه

3	مدة الانجاز
7	المعامل

الرياضيات	المادة
مسلك علوم الحياة والأرض ومسلك العلوم الفيزيائية ـ خيار فرنسية	الشعبة أو المسلك

INSTRUCTIONS GENERALES

- √ L'utilisation de la calculatrice non programmable est autorisée ;
- ✓ Le candidat peut traiter les exercices de l'épreuve suivant l'ordre qui lui convient ;
- √ L'utilisation de la couleur rouge lors de la rédaction des solutions est à éviter.

COMPOSANTES DU SUJET

L'épreuve est composée de trois exercices et un problème indépendants entre eux et répartis suivant les domaines comme suit :

Exercice 1	Géométrie dans l'espace	3 points	
Exercice 2	Nombres complexes	3 points	
Exercice 3	Calcul des probabilités	3 points	
Problème	Etude d'une fonction numérique, calcul intégral et suites numériques	11 points	

√ In désigne la fonction logarithme népérien

0.5

NS22F

الامتحان الوطني الموحد للبكالوريا (المسالك الدولية) - الدورة العادية 2019 – الموضوع - مادة: الرياضيات – مسلك علوم الحياة والأرض و مسلك العلوم الفيزيائية – خيار فرنسية

Exercice 1: (3 points)

Dans l'espace rapporté à un repère orthonormé direct $\left(O,\vec{i},\vec{j},\vec{k}\right)$, on considère les points

$$A(1,-1,-1)$$
, $B(0,-2,1)$ et $C(1,-2,0)$

- ig| 0.75 ig| 1) a) Montrer que $\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$
 - 0.5 b) En déduire que x + y + z + 1 = 0 est une équation cartésienne du plan (ABC)
 - 2) Soit (S) la sphère d'équation $x^2 + y^2 + z^2 4x + 2y 2z + 1 = 0$
- 0.75 Montrer que le centre de la sphère (S) est $\Omega(2,-1,1)$ et que son rayon est $R=\sqrt{5}$
- 0.5 3) a) Calculer $d(\Omega, (ABC))$ la distance du point Ω au plan (ABC)
 - b) En déduire que le plan (ABC) coupe la sphère (S) selon un cercle (Γ) (la détermination du
 - centre et du rayon de (Γ) n'est pas demandée)

Exercice 2: (3 points)

- 0.75 | 1) Résoudre dans l'ensemble $\mathbb C$ des nombres complexes l'équation : $z^2-2z+4=0$
 - 2) Dans le plan complexe rapporté à un repère orthonormé direct $(O,\vec{u}\,,\vec{v})$, on considère les points A , B C et D d'affixes respectives $a=1-i\sqrt{3}$, b=2+2i , $c=\sqrt{3}+i$ et $d=-2+2\sqrt{3}$
- **0.5** a) Vérifier que $a-d=-\sqrt{3}(c-d)$
- 0.25 b) En déduire que les points A , C et D sont alignés .
 - 3) On considère z l'affixe d'un point M et z' l'affixe de M' image de M par la rotation R de centre O et d'angle $\frac{-\pi}{3}$
- 0.5 Vérifier que $z' = \frac{1}{2}az$
 - 4) Soient H l'image du point B par la rotation R , h son affixe et P le point d'affixe p tel que p=a-c
- 0.5 a) Vérifier que h = ip
- 0.5 b) Montrer que le triangle OHP est rectangle et isocèle en O

Exercice 3: (3 points)

Une urne contient dix boules : trois boules vertes , six boules rouges et une boule noire indiscernables au toucher . On tire au hasard et simultanément trois boules de l'urne .

On considère les événements suivants : A : « Obtenir trois boules vertes . »

B: « Obtenir trois boules de même couleur . »

C: « Obtenir au moins deux boules de même couleur .»

- 2 1) Montrer que $p(A) = \frac{1}{120}$ et $p(B) = \frac{7}{40}$
- 1 2) Calculer p(C).

0.5

0.5

0.5

1

1

0.5

Problème : (11 points)

Première partie :

Soit f la fonction numérique définie sur $]0,+\infty[$ par : $f(x)=x+\frac{1}{2}-\ln x+\frac{1}{2}(\ln x)^2$

et (C) sa courbe représentative dans un repère orthonormé $\left(O, \vec{i}, \vec{j}\right)$ (unité : 1 cm)

0.5 1) Calculer $\lim_{\substack{x \to 0 \\ x > 0}} f(x)$ puis interpréter le résultat géométriquement

0.25 2) a) Vérifier que pour tout x de $\left[0, +\infty\right[$, $f(x) = x + \frac{1}{2} + \left(\frac{1}{2}\ln x - 1\right)\ln x$

b) En déduire que $\lim_{x\to +\infty} f(x) = +\infty$

c) Montrer que pour tout x de $\left]0, +\infty\right[$, $\frac{(\ln x)^2}{x} = 4\left(\frac{\ln\sqrt{x}}{\sqrt{x}}\right)^2$ puis en déduire que $\lim_{x \to +\infty} \frac{(\ln x)^2}{x} = 0$

d) Montrer que (C) admet au voisinage de $+\infty$ une branche parabolique de direction asymptotique la droite (Δ) d'équation y=x

3)a) Montrer que pour tout x de $\left[0,1\right]:(x-1)+\ln x\leq 0$ et que pour tout x de $\left[1,+\infty\right[:(x-1)+\ln x\geq 0$

b) Montrer que pour tout x de $]0,+\infty[$, $f'(x)=\frac{x-1+\ln x}{x}$

0.5 c) Dresser le tableau de variations de la fonction f

0.5 4) a) Montrer que $f''(x) = \frac{2-\ln x}{x^2}$ pour tout x de $]0, +\infty[$

0.5 b) En déduire que (C) admet un point d'inflexion dont on déterminera les coordonnées .

0.5 S)a) Montrer que pour tout x de $\left]0,+\infty\right[$, $f(x)-x=\frac{1}{2}(\ln x-1)^2$ et déduire la position relative de (C) et (Δ)

b) Construire (Δ) et (C) dans le même repère $\left(O,\vec{i},\vec{j}\right)$

6)a) Montrer que la fonction $H: x \mapsto x \ln x - x$ est une primitive de la fonction $h: x \mapsto \ln x$ sur $]0, +\infty[$

0.75 b) A l'aide d'une intégration par parties , montrer que $\int_1^e (\ln x)^2 dx = e - 2$

c) Calculer en cm^2 l'aire du domaine plan limité par (C) et (Δ) et les droites d'équations x=1 et x=e

	NS22F	تحان الوطني الموحد للبكالوريا (المسالك الدولية) - الدورة العادية 2019 - الموضوع ادة: الرياضيات - مسلك علوم الحياة والأرض و مسلك العلوم الفيزيانية - خيار فرنسية	a¥1 La -		
	Deuxième		73.7		
		a suite numérique définie par : $u_0=1$ et $u_{n+1}=f(u_n)$ pour tout n d	le I/V		
.5		The repair recurrence que $1 \le u_n \le e$ pour tout n de IN			
b) Montrer que la suite (u_n) est croissante.					
).5					
.75	2) Calculer la limite de la suite (u_n) .				

þage

Exercice Nº 1

L'espace est rapporté à un repère orthonormé direct $(O,\vec{i},\vec{j},\vec{k})$. on considère les points A(1,-1,-1) et B(0,-2,1) et C(1,-2,0).

<u>1.</u> ..

a. Montrer que : $\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$. (0,75)

On a:
$$\overrightarrow{AB} \begin{pmatrix} 0-1 \\ -2+1 \\ 1+1 \end{pmatrix} = \overrightarrow{AB} \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix}$$
 et $\overrightarrow{AC} \begin{pmatrix} 1-1 \\ -2+1 \\ 0+1 \end{pmatrix} = \overrightarrow{AC} \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$.

D'où:

$$\overrightarrow{AB} \wedge \overrightarrow{AC} = \begin{pmatrix} -1 \\ -1 \\ 2 \end{pmatrix} \wedge \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} = \begin{vmatrix} -1 & -1 \\ 2 & 1 \end{vmatrix} \vec{i} - \begin{vmatrix} -1 & 0 \\ 2 & 1 \end{vmatrix} \vec{j} + \begin{vmatrix} -1 & 0 \\ -1 & -1 \end{vmatrix} \vec{k} = (-1+2)\vec{i} - (-1+0)\vec{j} + (1+0)\vec{k} .$$

Conclusion: $\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$

b. En déduire que x+y+z+1=0 est l'équation cartésienne du plan (ABC).....(0,5)

1^{ère} méthode :

- On a le vecteur $\overrightarrow{AB} \wedge \overrightarrow{AC} = \overrightarrow{i} + \overrightarrow{j} + \overrightarrow{k}$ ou encore $\overrightarrow{AB} \wedge \overrightarrow{AC} (1,1,1)$ est un vecteur normal au plan (ABC).
- D'où:

$$M(x,y,z) \in (ABC) \Leftrightarrow \overrightarrow{AM}. (\overrightarrow{AB} \wedge \overrightarrow{AC}) = 0$$

$$\Leftrightarrow \begin{pmatrix} x-1 \\ y+1 \\ z+1 \end{pmatrix}. \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 0$$

$$\Leftrightarrow 1 \times (x-1) + 1 \times (y+1) + 1 \times (z+1) = 0$$

$$\Leftrightarrow x-1+y+1+z+1=0$$

$$\Leftrightarrow x+y+z+1=0$$

Conclusion: x+y+z+1=0 est une équation cartésienne du plan (ABC)

2^{ième} méthode :

- Le vecteur $\overrightarrow{AB} \wedge \overrightarrow{AC}(1,1,1)$ est un vecteur normal au plan (ABC) donc équation du plan (ABC) est de la forme : x+y+z+d=0.
- Le point A(1,-1,-1) appartienne au plan (ABC) donc : $1\times1+1\times(-1)+1\times(-1)+d=0$ d'où d=1.

Conclusion: x+y+z+1=0 est une équation cartésienne du plan (ABC).

2019

þage

2. on considère la sphère (S) d'équation cartésienne $x^2 + y^2 + z^2 - 4x + 2y - 2z + 1 = 0$.

on vérifie que la sphère (S) a pour centre le point $\Omega(2,-1,1)$ et pour rayon $R=\sqrt{5}$ (0,75)

on a:
$$x^2 + y^2 + z^2 - 4x + 2y - 2z + 1 = 0 \Leftrightarrow \underbrace{x^2 - 4x + 4}_{(x-2)^2} - 4 + \underbrace{y^2 + 2y + 1}_{(y+1)^2} - 1 + \underbrace{z^2 - 2z + 1}_{(z-1)^2} - 1 + 1 = 0$$

$$\Leftrightarrow (x-2)^2 - 4 + (y+1)^2 - 1 + (z-1)^2 - 1 + 1 = 0$$

$$\Leftrightarrow (x-2)^2 + (y+1)^2 + (z-1)^2 = 5 = \sqrt{5}^2$$

La dernière écriture représente l'équation cartésienne de la sphère de centre $\Omega(2,-1,1)$ et de rayon $R=\sqrt{5}$.

Conclusion: la sphère (S) a pour centre le point $\Omega(2,-1,1)$ et pour rayon $R=\sqrt{5}$

3. ..

 $\underline{\mathbf{a}}$ Calculer $\mathbf{d}(\Omega, (ABC))$. (0,5)

On a:
$$d(\Omega, (ABC)) = \frac{|2-1+1+1|}{\sqrt{1^2+1^2+1^2}} = \frac{3}{\sqrt{3}} = \sqrt{3}$$
. (on remplace $x+y+z+1$ (sans écrire = 0)

par les coordonnées de $\Omega(2,-1,1)$)

Conclusion: $d(\Omega,(ABC)) = \sqrt{3}$

<u>b.</u> En déduire que le plan (ABC) coupe la sphère (S) suivant un cercle (Γ)......(0,5)

Puisque le rayon du cercle est $R = \sqrt{5}$ et on a ; $d(\Omega, (ABC)) = \sqrt{3} < \sqrt{5}$ d'où l'intersection du plan (ABC) et la sphère (S) sera un cercle (Γ).

Conclusion : le plan (ABC) coupe la sphère (S) suivant un cercle (Γ) .

On a:
$$\Delta = (-2)^2 - 4 \times 1 \times 4 = 4 - 16 = -12 < 0$$
.

D'où l'équation a deux solutions complexes conjuguées :

$$z_1 = \frac{2 + i\sqrt{-\Delta}}{2 \times 1} = \frac{2 + i\sqrt{12}}{2} = \frac{2 + i2\sqrt{3}}{2} = 1 + i\sqrt{3} \text{ et } z_2 = \overline{z}_1 = 1 - i\sqrt{3}$$

Conclusion: ensemble des solutions de l'équation est : $S = \{1 + i\sqrt{3}; 1 - i\sqrt{3}\}$

2. Dans le plan complexe (P) étant rapporté à un repère orthonormé direct $(0,\vec{u},\vec{v})$, On considère les points A, B, C et D d'affixes respectives $a = 1 - i\sqrt{3}$, b = 2 + 2i, $c = \sqrt{3} + i$ et $d = -2 + 2\sqrt{3}$.

- $c d = \sqrt{3} + i (-2 + 2\sqrt{3}) = -\sqrt{3} + 2 + i$.
- $\mathbf{a} \mathbf{d} = 1 i\sqrt{3} \left(-2 + 2\sqrt{3}\right) = 3 2\sqrt{3} i\sqrt{3} = -\sqrt{3}\left(\underbrace{-\sqrt{3} + 2 + i}\right) = -\sqrt{3}\left(\mathbf{c} \mathbf{d}\right)$
- donc $a-d=-\sqrt{3}(c-d)$

Conclusion: $a-d=-\sqrt{3}(c-d)$

- - Le vecteur \overrightarrow{DA} a pour affixe $\mathbf{z}_{\overrightarrow{DA}} = \mathbf{a} \mathbf{d}$.
 - Le vecteur \overrightarrow{DC} a pour affixe $z_{\overrightarrow{DC}} = c d$

$$\mathbf{a} - \mathbf{d} = -\sqrt{3} \left(\mathbf{c} - \mathbf{d} \right) \Leftrightarrow \mathbf{z}_{\overrightarrow{DA}} = -\sqrt{3} \mathbf{z}_{\overrightarrow{DC}}$$
$$\Leftrightarrow \overrightarrow{DA} = -\sqrt{3} \overrightarrow{DC}$$

Par suite les deux vecteurs \overrightarrow{DA} et \overrightarrow{DC} sont colinéaires donc les points A et C et D sont alignés. Conclusion : les points A et C et D sont alignés.

3. Soit z l'affixe du point M et z' l'affixe du point M'; l'image de M par la rotation R de centre le point O et d'angle $-\frac{\pi}{3}$.

Vérifier que : $z' = \frac{1}{2}az$. (0,5)

L'écriture complexe de la rotation R est de la forme : $z'-\omega=(z-\omega)e^{i\theta}$ avec ω est l'affixe du centre de la rotation et θ est l'angle de la rotation .

D'où: $z'-0=(z-0)e^{i\frac{-\pi}{3}}$

(avec $\omega = 0$ est l'affixe du point O centre de la rotation et $\theta = \frac{-\pi}{3}$ est l'angle de la rotation R) .

$$z' = z \times \left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(\frac{-\pi}{3}\right)\right)$$

$$= z \times \left(\cos\left(\frac{\pi}{3}\right) - i\sin\left(\frac{\pi}{3}\right)\right)$$

$$= z\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)$$

$$= z\frac{1}{2}(1 - i\sqrt{3})$$

$$= \frac{1}{2}az \qquad ; \left(car : 1 - i\sqrt{3} = a\right)$$

D'où : L'écriture complexe de la rotation R est $z' = \frac{1}{2}az$

Conclusion: $z' = \frac{1}{2}az$

2019

þage

- Soit le point H d'affixe h est l'image du point B par la rotation R, et le point P d'affixe p tel que p = a c.
 - <u>a.</u> Vérifier que : h = ip. (0,5) On a :

$$R(B) = H \Leftrightarrow h = \frac{1}{2}ab$$

$$\Leftrightarrow h = \frac{1}{2}(1 - i\sqrt{3})(2 + 2i)$$

$$\Leftrightarrow h = (1 - i\sqrt{3})(1 + i)$$

$$\Leftrightarrow h = (1 - i\sqrt{3}) + i(1 - i\sqrt{3})$$

$$\Leftrightarrow h = i(-i - \sqrt{3}) + i(1 - i\sqrt{3})$$

$$\Leftrightarrow h = i(a - c)$$

$$\Leftrightarrow h = ip$$

D'où: h = ip

Conclusion: h = ip

$$\begin{split} \frac{h-0}{p-0} &= \frac{ip}{p} = i \Rightarrow \begin{cases} \frac{|h-0|}{|p-0|} &= |i| \\ \hline \left(\overrightarrow{OP}, \overrightarrow{OH} \right) &\equiv \arg\left(\frac{h-0}{p-0} \right) \left[2\pi \right] \end{cases} \\ \Rightarrow &\begin{cases} \frac{OH}{OP} &= 1 \\ \hline \left(\overrightarrow{OP}, \overrightarrow{OH} \right) &\equiv \arg\left(i \right) \left[2\pi \right] ; \left(\frac{h}{p} &= i \right) \end{cases} \\ \Rightarrow &\begin{cases} \frac{OH &= OP}{\left(\overrightarrow{OP}, \overrightarrow{OH} \right)} &\equiv \frac{\pi}{2} \left[2\pi \right] \end{cases} \end{split}$$

Donc on a:

- OH = OP d'où le triangle OHP est isocèle en O.
- $(\overrightarrow{OP}, \overrightarrow{OH}) \equiv \frac{\pi}{2} [2\pi]$ d'où le triangle OHP est rectangle en O.

Conclusion : le triangle OHP est rectangle et isocèle en O .

Une urne contient dix boules indiscernables au toucher:

• Trois boules vertes .

2019

- Six boules rouges .
- Une boule noire.

On considère l'expérience suivante : On tire au hasard et simultanément trois boules de l'urne . Soient les événements suivants :

- ❖ B « les trois boules tirées sont de même couleur » .
- ❖ C « au moins deux boules de même couleur »

• Montrons que :
$$p(A) = \frac{1}{120}$$

$$\triangleright$$
 On calcule card Ω : (ou encore le nombre des tirages possibles).

Tirer simultanément 3 boules parmi 10 boules présente une combinaison de 3 parmi 10 ,. d'où le nombre des tirages possibles est le nombre des combinaisons de 3 parmi 10 ce nombre est :

$$card\Omega = C_{10}^3 = \frac{10\times9\times8}{1\times2\times3} = 120 \ . \label{eq:card}$$

donc:
$$card\Omega = C_{10}^3 = 120$$
.

l'événement A « les 3 boules tirées sont vertes »

Tirées 3 boules vertes simultanément parmi 3 boules vertes de l'urne ceci présente une combinaison de 3 parmi 3.

Donc le nombre des tirages qui réalisent l'événement A est $\mathbb{C}_3^3 = \frac{3 \times 2 \times 1}{1 \times 2 \times 3} = 1$ (Remarque $\mathbb{C}_n^n = 1$)

donc:
$$\operatorname{cardA} = \operatorname{C}_3^3 = 1$$
.

Conclusion:
$$p(A) = \frac{cardA}{card\Omega} = \frac{C_3^3}{C_{10}^3} = \frac{1}{120}$$

• Montrons que :
$$p(B) = \frac{7}{40}$$
.

> On calcule cardB: (le nombre des tirages qui réalisent l'événement B).

l'événement B « les 3 boules tirées sont de même couleur » ou encore l'événement B est B « les 3 boules tirées sont vertes ou les boules sont rouges » .

↓ les 3 boules tirées simultanément sont vertes parmi 3 boules vertes de l'urne on a : $cardA = C_3^3 = 1$

les 3 boules tirées simultanément sont rouges parmi 6 boules rouges de l'urne on a :

$$C_6^3 = \frac{6 \times 5 \times 4}{3 \times 2 \times 1} = 20.$$

4 D'où:
$$\frac{1}{3} + \frac{1}{6} = 1 + 20 = 21$$

donc:
$$p(B) = \frac{cardB}{card\Omega} = \frac{C_3^3 + C_6^3}{C_{10}^3} = \frac{21}{120} = \frac{7 \times \cancel{3}}{\cancel{3} \times 40} = \frac{7}{40}$$
.

Conclusion:
$$p(B) = \frac{7}{40}$$

D'où:
$$p(A) = \frac{1}{120}$$
 et $p(B) = \frac{7}{40}$

2. Calculer p(C).....(1)

> On calcule cardC: (le nombre des tirages qui réalisent l'événement C).

1^{ère} méthode :

C « au moins deux boules de même couleur »

ou encore C « exactement deux boules de même couleur ou exactement trois boules de même couleur »

L'événement C est l'événement \overline{C}

 $\overline{\mathbf{C}}$ « les trois boules de couleurs différentes »

Donc: card $\overline{C} = C_3^1 \times C_6^1 \times C_1^1 = 3 \times 6 \times 1 = 18$.

Par suite card $C = \text{card } \Omega - \text{card } \overline{C} = 120 - 18 = 102$.

Donc:
$$p(C) = \frac{cardC}{card\Omega} = \frac{card\Omega - card\overline{C}}{C_{10}^3} = \frac{120 - 18}{120} = \frac{102}{120} = \frac{\cancel{6} \times 17}{\cancel{6} \times 20} = \frac{17}{20}$$

Conclusion: $p(C) = \frac{17}{20}$

2^{ième} méthode :

ou encore:

C « exactement deux boules de même couleur ou exactement trois boules de même couleur »

• On obtient exactement trois boules de même couleur donc l'événement B d'où :

cardB =
$$\mathbb{C}_3^3 + \mathbb{C}_6^3 = 1 + 20 = 21$$

- On obtient exactement deux boules de même couleur ou encore « (deux boules vertes et une boule parmi les deux autres couleurs) ou (deux boules rouges et une boule parmi les deux autres couleurs) »
 - ✓ Tirer deux boules vertes et une boule parmi les deux autres couleur (on a 7 boules) le nombre des tirages est : $C_3^2 \times C_7^1$.
 - ✓ Tirer deux boules rouges et une boule parmi les deux autres couleurs (on a 4 boules) le nombre des tirages est : $C_6^2 \times C_4^1$.
 - ✓ D'où : le nombre des tirages tel que : On obtient exactement deux boules de même couleur est : $\frac{C_3^2 \times C_7^1 + C_6^2 \times C_4^1 = 3 \times 7 + 15 \times 4 = 81}{2 \times C_7^1 + C_6^2 \times C_4^1 = 3 \times 7 + 15 \times 4 = 81}$
- Donc: cardC = $\frac{\text{C}_3^3 + \text{C}_6^3}{\text{C}_3^3 + \text{C}_6^3} + \frac{\text{C}_3^2 \times \text{C}_7^1 + \text{C}_6^2 \times \text{C}_4^1}{\text{C}_6^3 \times \text{C}_4^4} = 1 + 20 + 3 \times 7 + 15 \times 4 = 102.$

Par suite on obtient que :

$$p(C) = \frac{\text{card}C}{\text{card}\Omega} = \frac{C_3^3 + C_6^3 + C_3^2 \times C_7^1 + C_6^2 \times C_4^1}{C_{10}^3} = \frac{1 + 20 + 3 \times 7 + 15 \times 4}{120} = \frac{102}{120} = \frac{\cancel{6} \times 17}{\cancel{6} \times 20} = \frac{17}{20}$$

Conclusion: $p(C) = \frac{17}{20}$

Problème

Première Partie :

2019

þage

Soit la fonction numérique f définie sur $]0,+\infty[$ par : $f(x) = x + \frac{1}{2} - \ln x + \frac{1}{2} (\ln x)^2$

et $\left(C_{_f}\right)$ sa courbe représentative dans un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$ (unité : 1 cm).

• On calcule: $\lim_{\substack{x\to 0\\x>0}} f(x)$.

On a:

$$\lim_{\substack{x \to 0 \\ x > 0}} x + \frac{1}{2} = \frac{1}{2}.$$

$$\lim_{\substack{x \to 0 \\ x > 0 \\ x > 0}} \ln x = -\infty \Rightarrow \begin{cases} \lim_{\substack{x \to 0 \\ x > 0 \\ x > 0}} -\ln x = +\infty \\ \lim_{\substack{x \to 0 \\ x > 0}} \left(\ln x\right)^2 = +\infty \end{cases}$$

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} x + \frac{1}{2} - \ln x + \frac{1}{2} (\ln x)^2 = +\infty.$$

Conclusion: $\lim_{\substack{x\to 0\\x>0}} f(x) = +\infty$.

• On interprète le résultat géométriquement :

Puisque on a $\lim_{\substack{x\to 0\\x>0}} f(x) = +\infty$ donc la courbe (C) admet une asymptote verticale ou encore c'est la

droite d'équation x = 0 ou encore l'axe des ordonnées

2. ..

a. Vérifier que :pour tout x de
$$]0,+\infty[:f(x)=x+\frac{1}{2}+(\frac{1}{2}\ln x-1)\ln x]$$
 (0,25)

On a:

$$x + \frac{1}{2} + \left(\frac{1}{2}\ln x - 1\right) \ln x = x + \frac{1}{2} + \frac{1}{2}\ln x \times \ln x - \ln x$$
$$= x + \frac{1}{2} + \frac{1}{2}(\ln x)^{2} - \ln x$$
$$= f(x)$$

Conclusion: pour tout x de $]0,+\infty[:f(x)=x+\frac{1}{2}+(\frac{1}{2}\ln x-1)\ln x]$

 $\underline{\underline{\mathbf{b}}}_{\underline{\mathbf{c}}}$ En déduire que : $\lim_{x \to +\infty} \mathbf{f}(\mathbf{x}) = +\infty$. (0,5)

On a:
$$\lim_{x \to +\infty} x + \frac{1}{2} = \lim_{x \to +\infty} x = +\infty$$
 et $\lim_{x \to +\infty} \ln x = +\infty$ donc $\lim_{x \to +\infty} \left(\frac{1}{2} \ln x - 1\right) \ln x = +\infty$.

D'où:
$$\lim_{x\to +\infty} f(x) = \lim_{x\to +\infty} \left(x + \frac{1}{2} + \left(\frac{1}{2}\ln x - 1\right) \ln x\right) = +\infty$$
.

Conclusion: $\lim_{x \to +\infty} f(x) = +\infty$.

 $\underline{\underline{c}} \quad \text{Montrer que : pour tout x de } \left]0,+\infty\right[:\frac{\left(\ln x\right)^2}{x}=4\left(\frac{\ln\sqrt{x}}{\sqrt{x}}\right)^2 \text{ puis en déduire } \text{ que } \lim_{x\to+\infty}\frac{\left(\ln x\right)^2}{x}=0 \ .$

.....(0,5)

On a:

$$\frac{\left(\ln x\right)^{2}}{x} = \frac{\left(\ln\left(\sqrt{x}^{2}\right)\right)^{2}}{\left(\sqrt{x}\right)^{2}}$$

$$= \frac{\left(2\ln\sqrt{x}\right)^{2}}{\left(\sqrt{x}\right)^{2}} ; \left(\ln x^{r} = r\ln x ; r \in \mathbb{Q}\right)$$

$$= \frac{4\left(\ln\sqrt{x}\right)^{2}}{\left(\sqrt{x}\right)^{2}}$$

$$= 4\left(\frac{\ln\sqrt{x}}{\sqrt{x}}\right)^{2}$$

Conclusion: $\frac{\left(\ln x\right)^2}{x} = 4\left(\frac{\ln\sqrt{x}}{\sqrt{x}}\right)^2.$

En déduire que $\lim_{x \to +\infty} \frac{\left(\ln x\right)^2}{x} = 0$.

On a:

$$\lim_{x \to +\infty} \frac{\left(\ln x\right)^2}{x} = \lim_{x \to +\infty} 4 \left(\frac{\ln \sqrt{x}}{\sqrt{x}}\right)^2$$

$$= \lim_{t \to +\infty} 4 \left(\frac{\ln t}{t}\right)^2 \quad ; \quad \left(t = \sqrt{x} \; ; \; x \to +\infty \; ; \; t \to +\infty\right)$$

$$= 0 \qquad \qquad ; \quad \left(\lim_{t \to +\infty} \frac{\ln t}{t} = 0\right)$$

Conclusion: $\lim_{x \to +\infty} \frac{(\ln x)^2}{x} = 0.$

 $\underline{\underline{d}}. \quad \text{Montrer que } \left(C_f\right) \text{ admet au voisinage de } +\infty \text{ une branche parabolique de direction asymptotique la} \\ \quad \text{droite } \left(\Delta\right) \text{d'équation } y = x \,. \qquad \qquad (0.75)$ On a :

þage

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x + \frac{1}{2} - \ln x + \frac{1}{2} (\ln x)^2}{x} = \lim_{x \to +\infty} 1 + \frac{1}{2x} - \frac{\ln x}{x} + \frac{1}{2} \frac{(\ln x)^2}{x} = 1.$$

$$\left(\operatorname{car} \lim_{x \to +\infty} 1 + \frac{1}{2x} = 1 \text{ et } \lim_{x \to +\infty} \frac{\ln x}{x} = 0 \text{ et } \lim_{x \to +\infty} \frac{(\ln x)^2}{x} = 0 \text{ d'après la question précédente} \right)$$

D'où:
$$a = \lim_{x \to +\infty} \frac{f(x)}{x} = 1$$
.

$$\lim_{x \to +\infty} f(x) - x = \lim_{x \to +\infty} x + \frac{1}{2} + \left(\frac{1}{2} \ln x - 1\right) \ln x - x = +\infty \quad (\text{car}: \lim_{x \to +\infty} \ln x = +\infty)$$

$$\text{donc } b = \lim_{x \to +\infty} f(x) - x = +\infty$$

Par suite:
$$\lim_{x \to +\infty} f(x) = +\infty$$
 et $a = \lim_{x \to +\infty} \frac{f(x)}{x} = 1$ et $b = \lim_{x \to +\infty} f(x) - x = +\infty$.

Conclusion : (C_f) admet au voisinage de $+\infty$ une branche parabolique de direction

asymptotique la droite (Δ) d'équation y=x .

a. Montrer que : pour tout x de $]0,1]:(x-1)+\ln x \le 0$ et que pour tout x de $[1,+\infty[:(x-1)+\ln x \ge 0.$ (0,5)

Montrons que : pour tout x de $]0,1]:(x-1)+\ln x \le 0$

On a:
$$0 < x \le 1 \Rightarrow \begin{cases} -1 < x - 1 \le 0 \\ \ln x \le 0 \end{cases}$$

 \Rightarrow $(x-1)+\ln x \le 0$ (car la somme de deux nombres négatifs est un nombre négatif)

Donc: pour tout x de $]0,1]: (x-1)+\ln x \le 0$

Montrons pour tout x de $[1,+\infty[:(x-1)+\ln x \ge 0]$

On a:
$$x \ge 1 \Rightarrow \begin{cases} x-1 \ge 0 \\ \ln x \ge 0 \end{cases}$$

 \Rightarrow $(x-1)+\ln x \le 0$ (car la somme de deux nombres positifs est un nombre positif)

Donc: pour tout x de $[1,+\infty[:(x-1)+\ln x \ge 0.$

Conclusion:
$$\begin{cases} \text{pour tout } x \text{ de }]0,1] : (x-1) + \ln x \le 0 \\ \text{pour tout } x \text{ de } [1,+\infty[:(x-1) + \ln x \ge 0] \end{cases}$$

Remarque: on peut utiliser le tableau des signes de x-1 et $\ln x$ sur l'intervalle $\left]0,+\infty\right[$.

 $\underline{\mathbf{b}}. \quad \text{Montrer que: pour tout x de }]0,+\infty[:f'(x) = \frac{x-1+\ln x}{x}. \tag{1}$

On a:

þage

$$f'(x) = \left(x + \frac{1}{2} - \ln x + \frac{1}{2} (\ln x)^2\right)^{\frac{1}{2}}$$

$$= 1 - \frac{1}{x} + \frac{1}{2} \times 2 (\ln x)^{\frac{1}{2}} \ln x$$

$$= 1 - \frac{1}{x} + \frac{1}{x} \times \ln x$$

$$= \frac{x - 1 + \ln x}{x}$$

Conclusion: pour tout x de $]0,+\infty[:f'(x)=\frac{x-1+\ln x}{x}]$.

X	0 1	. +∞
f'(x)	- 0	+
f(x)	$\begin{array}{c c} +\infty \\ & \searrow \\ & \frac{3}{2} \end{array}$	+∞

4. ..

On a:

$$f''(x) = (f'(x))'$$

$$= \left(\frac{x-1+\ln x}{x}\right)'$$

$$= \frac{\left(1+\frac{1}{x}\right) \times x - (x-1+\ln x) \times 1}{x^2}$$

$$= \frac{x+1-x+1-\ln x}{x^2}$$

$$= \frac{2-\ln x}{x^2}$$

Conclusion: pour tout x de $]0,+\infty[$ on a: $f''(x) = \frac{2-\ln x}{x^2}$.

- $\underline{\mathbf{b}}$ En déduire que $(\mathbf{C}_{\mathbf{f}})$ admet un point d'inflexion dont on déterminera les coordonnées (0,5)
 - Pour déterminer les points d'inflexions d'une fonction on étudie le signe de la fonction f'' dérivée seconde de f.

þage

- Le signe de $f''(x) = \frac{2 \ln x}{x^2}$ est le signe de $2 \ln x$ car $x^2 > 0$ avec $x \in]0, +\infty[$.
- On a: $2-\ln x \ge 0 \Leftrightarrow \ln x \le 2$

$$\Leftrightarrow x \le e^2$$

D'où le signe de f'' est donné par le tableau suivant :

X	0		e^2	+∞
f''(x)		+	0	_

Conséquence: la fonction f'' dérivée seconde de f s'annule en $x_0 = e^2$ et change de signe au voisinage de $x_0 = e^2$.

Conclusion: le point $I(e^2, f(e^2)) = I(e^2, \frac{2e^2+1}{2})$ est un point d'inflexion à la courbe (C) de f.

5. ..

- - Montrons que : pour tout x de $]0,+\infty[:f(x)-x=\frac{1}{2}(\ln x-1)^2]$.

On a:
$$\frac{1}{2} (\ln x - 1)^2 = \frac{1}{2} ((\ln x)^2 - 2\ln x + 1)$$

$$= \frac{1}{2} (\ln x)^2 - \ln x + \frac{1}{2}$$

$$= \underbrace{\frac{1}{2} (\ln x)^2 - \ln x + \frac{1}{2} + x - x}_{f(x)}$$

$$= f(x) - x$$

Conclusion: pour tout x de $]0,+\infty[:f(x)-x=\frac{1}{2}(\ln x-1)^2]$.

 $\underline{\underline{\ \ }} \quad \ \ En \ d\'eduire la position relative de <math display="inline">\left(C_{_f}\right) \ et \ \left(\Delta\right)$.

Pour cela on étudier le signe de : f(x)-x ou encore $\frac{1}{2}(\ln x-1)^2$ qui a un signe positif sur $]0,+\infty[$ mais s'annule si $\ln x-1=0 \Leftrightarrow \ln x=1$

$$\Leftrightarrow$$
 e = 1

Conclusion:

- La courbe (C) de f est située au dessus de la droite (Δ) sur chacune des intervalles]0,e[et $]e,+\infty[$
- La courbe (C) de f coupe la droite (Δ) au point A(e,f(e)) = A(e,e).

2019

þage

Remarque : on peut résumer la position relative de $\left(\mathrm{C_f}\right)$ et $\left(\Delta\right)$ par le tableau suivant :

X	((e	+∞
$f(x)-x$ et $(\ln x-1)^2$		+ 0)	+
position relative de $\left(\mathrm{C_{f}} ight)$ et $\left(\Delta ight)$		(C) est au dessus de (Δ)		(C) est au dessus de (Δ)
		(C) et (Δ) se coupent	↓ t au	point d'abscisse $x = e$

 $\underline{\mathbf{b}}$ Construire (Δ) et (\mathbf{C}_f) dans le même repère $(\mathbf{O}, \vec{\mathbf{i}}, \vec{\mathbf{j}})$(1)

<u>6.</u> ..

Montrer que : H : x → x ln x − x est une primitive de la fonction h : x → ln x sur]0,+∞[.(0,5) Pour cela on montre que : H'(x)=h(x).

On a: $H'(x) = (x \ln x - x)^{-1}$

þage

$$= (x) \ln x + (x)(\ln x) - (x)$$

$$= 1 \times \ln x + x \times \frac{1}{x} - 1$$

$$= \ln x + 1 - 1$$

$$= \ln x = h(x)$$
D'où: H'(x) = h(x).

Conclusion: la fonction $H: x \mapsto x \ln x - x$ est une primitive de la fonction $h: x \mapsto \ln x$ sur $]0,+\infty[$

 $\underline{\mathbf{b}}$ A l'aide d'une intégration par parties, montrer que $\int_{1}^{e} (\ln x)^{2} dx = e - 2$. (0,75)

On écrit:
$$\int_{1}^{e} (\ln x)^{2} dx = \int_{1}^{e} (\ln x) \times (\ln x) dx$$

On utilise la disposition suivante :

$$u(x) = \ln x \qquad u'(x) = \frac{1}{x}$$

$$(1) \downarrow \qquad (2) \searrow \qquad - \downarrow (3)$$

$$v'(x) = \ln x \qquad v(x) = x \ln x - x$$

Par suite on obtient:

$$\int_{1}^{e} (\ln x)^{2} dx = \left[\ln x \times (x \ln x - x) \right]_{1}^{e} - \int_{1}^{e} \frac{1}{x} \times (x \ln x - x) dx$$

$$= (\ln e \times (e \ln e - e)) - (\ln 1 \times (1 \ln 1 - 1)) - \int_{1}^{e} (\ln x - 1) dx$$

$$= (1(e \times 1 - e) - 0) - \int_{1}^{e} \ln x dx + \int_{1}^{e} 1 dx$$

$$= 0 - [x \ln x - x]_{1}^{e} + [x]_{1}^{e} \quad ; \quad (H'(x) = h(x))$$

$$= -((e \times 1 - e) - (1 \times 0 - 1)) + (e - 1)$$

$$= 0 - 1 + e - 1$$

$$= e - 2$$

Conclusion: $\int_{1}^{e} (\ln x)^{2} dx = e - 2$

Calculer en cm² l'aire du domaine plan limité par (C_f) et (Δ) et les droites d'équations x=1 et x=e. (0,5)

La surface demandée à calculer en cm² est :

$$\left(\int_{1}^{e} \left| f(x) - x \right| dx \right) \times \left\| \vec{i} \right\| \times \left\| \vec{j} \right\| = \left(\int_{1}^{e} \left(f(x) - x \right) dx \right) \times \left\| \vec{i} \right\| \times \left\| \vec{j} \right\| cm^{2} (car C) est au dessus de (\Delta) sur [1,e] \right)$$

$$= \left(\int_{1}^{e} \left(\cancel{x} + \frac{1}{2} - \ln x + \frac{1}{2} (\ln x)^{2} - \cancel{x} \right) dx \right) \times 1 \times 1 cm^{2}$$

$$= \int_{1}^{e} \frac{1}{2} dx - \int_{1}^{e} \ln x dx + \frac{1}{2} \underbrace{\int_{1}^{e} (\ln x)^{2} dx} cm^{2}$$

þage

$$= \frac{1}{2} [x]_{1}^{e} - [x \ln x - x]_{1}^{e} + \frac{1}{2} (e - 2) \quad cm^{2}$$

$$= \frac{1}{2} (e - 1) - ((e \times 1 - e) - (1 \times 0 - 1)) + \frac{1}{2} (e - 2) \quad cm^{2}$$

$$= \frac{e}{2} - \frac{1}{2} - 1 + \frac{e}{2} - 1 = e - \frac{5}{2} \quad cm^{2}$$

Conclusion : la surface demandée est $\frac{2e-5}{2}$ cm².

Deuxième Partie :

Soit (u_n) la suite numérique définie par $u_0 = 1$ et $u_{n+1} = f(u_n)$ pour tout n de \mathbb{N} .

<u>1.</u> .

- On vérifie que la relation (1) est vraie pour n = 0.
 on a: 1≤u₀ = 1≤e d'où la relation (1) est vraie pour n = 0.
- On suppose que la relation (1) est vraie pour n . ou encore $1 \le u_n \le e$ est vraie (hypothèse de récurrence) .
- On montre que : la relation (1) est vraie pour n+1. (ou encore à démontrer que 1≤u_{n+1} ≤ e d'après hypothèse de récurrence on a : 1≤u_n ≤ e ou encore u_n ∈ [1,e]

 $Donc: \underbrace{1 \leq u_n \leq e} \Rightarrow f\left(1\right) \leq f\left(u_n\right) \leq f\left(e\right) \ (\ car\ la\ fonction\ est\ croissante\ sur\ \left[1,e\right]\ et\ u_n \in \left[1,e\right]\)\ .$

$$\Rightarrow \frac{3}{2} \le u_{n+1} \le e \qquad (f(e) = e \text{ puisque } (C) \text{ coupe } (\Delta) \text{ au point}$$

$$A(e,f(e)) = A(e,e)$$

$$\Rightarrow 1 \le \frac{3}{2} \le u_{n+1} \le e \quad \text{et} \quad f(1) = \frac{3}{2} \text{ voir tableau de variations de f})$$

D'où : la relation (1) est vraie pour n+1.

Conclusion: $1 \le u_n \le e$ pour tout n de \mathbb{N} .

Pour cela on montre que : $u_{n+1} \ge u_n$ pour tout n de \mathbb{N} (ou encore $u_{n+1} - u_n \ge 0$)

Soit n de \mathbb{N} , on pose $x = u_n$ et on a $u_n \in [1, e]$ car $1 \le u_n \le e$

D'après le résultat de la question I) 5) a -) on a (C) est au dessus de (Δ) sur l'intervalle [1,e]

En déduire que : $f(x) \ge x$ pour tout x de [1,e].

D'où:
$$x \in [1,e] \Rightarrow f(x) \ge x$$

$$\Rightarrow f(u_n) \ge u_n$$
; $(u_n = x \text{ et } 1 \le u_n \le e)$

$$\Rightarrow u_{n+1} \ge u_n$$
; $(u_{n+1} = f(u_n))$

$$\Rightarrow \mathbf{u}_{n+1} - \mathbf{u}_n \ge 0$$

þage

$$\Rightarrow \mathbf{u}_{n+1} \ge \mathbf{u}_n$$

Donc: $u_{n+1} \ge u_n$

Conclusion: la suite (u_n) est croissante.

Remarque : on peut utiliser une démonstration par récurrence (on montre que pour tout n de \mathbb{N} $u_{n+1} \geq u_n$) .

- - la suite (\mathbf{u}_n) est croissante.
 - la suite (u_n) est majorée (puisque $1 \le u_n \le e$).
 - d'après une propriété la suite (u_n) est convergente .(tel que sa limite sera notée par ℓ avec $\ell \in \mathbb{R}$) .

Conclusion: la suite (u_n) est convergente.

- - la suite (u_n) est de la forme $u_{n+1} = f(u_n)$.
 - la fonction f est continue sur I = [1,e] et $f(I) \subset I$

 $(\operatorname{car} f(I) = [f(1), f(e)] = [\frac{3}{2}, e] \subset I = [1, e]$ (car f est continue et croissante sur I = [1, e] et f(e) = e et $f(1) = \frac{3}{2}$).

- On a: $u_0 = 1 \in [1, e]$.
- la suite (u_n) est convergente vers ℓ avec ℓ∈ ℝ.
 donc ℓ est solution de l'équation : x ∈ I = [1,e] ; f(x) = x (d'après une propriété)
 pour résoudre l'équation f(x) = x sur l'intervalle [1,e] on étudier l'intersection de la courbe (C) et la droite (Δ) sur [1,e].

d'après ce qui a précédé (C) coupe (Δ) au point A(e,f(e)) = A(e,e) d'où la solution de l'équation précédente est : $x = e \in [1,e]$ donc $\ell = e$

Conclusion: $\lim_{n \to \infty} \mathbf{u}_n = \mathbf{e}$