기 명면좌표

유형의 이해에 [[가라 ● 안에 O, X 표시를 하고 반복하여 학습합니다.	1st	2nd
필수유형 01	두 점 사이의 거리		
필수유형 02	같은 거리에 있는 점		
필수유형 03	선분의 길이의 제곱의 합의 최솟값		
필수유형 04	두 점 사이의 거리의 활용(1) - 삼각형의 모양		
필수유형 05	두 점 사이의 거리의 활용(2) - 도형의 성질 확인하기		
필수유형 06	선분의 내분점과 외분점		
필수유형 07	선분의 내분점과 외분점의 활용		
필수유형 08	삼각형의 무게중심		
필수유형 09	사각형에서 중점의 활용		
발전유형 10	각의 이등분선의 성질		

필수유형 (01) 두점 사이의 거리

다음 물음에 답하여라.

- (1) 두 점 A(a, 5), B(2, 1) 사이의 거리가 5일 때, a의 값을 모두 구하여라.
- (2) 네 점 A(2, -a), B(2a, 4), C(0, 0), D(3, -1)에 대하여 $\overline{AB} = 2\overline{CD}$ 일 때, 양수 a의 값을 구하여라.
- (3) 두 점 A(-2, a), B(a, 6)에 대하여 선분 AB의 길이의 최솟값을 구하여라.

풍쌤 POINT

두 점 사이의 거리 공식을 이용하여 a에 대한 방정식을 세워 봐!

두 점 $A(x_1, y_1)$, $B(x_2, y_2)$ 사이의 거리는 $\overline{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

풀이 •● (1) 점B=5이므로

 $\mathbf{O} \overline{AB}^2 = 25$

(2)
$$\overline{AB} = 2\overline{CD}$$
에서 $\overline{AB}^2 = 4\overline{CD}^2$ $\overline{AB}^2 = (2a-2)^2 + (4+a)^2 = 5a^2 + 20$, $\overline{CD}^2 = 3^2 + (-1)^2 = 10$ 이므로 $5a^2 + 20 = 4 \times 10$, $5a^2 = 20$, $a^2 = 4$ $\therefore a = 2 \ (\because a > 0)$

주 점 사이의 거리 공식에는 근호가 있으므로 양변을 제곱하여 정리한다.

(3)
$$\overline{AB} = \sqrt{(a+2)^2 + (6-a)^2}$$

= $\sqrt{2a^2 - 8a + 40}$
= $\sqrt{2(a-2)^2 + 32}$

 ③ 2(a-2)²+32에서
 2(a-2)²≥0이므로 a=2일 때 최솟값은 32이다.

따라서 선분 AB의 길이는 a=2일 때 최솟값 $\sqrt{32}=4\sqrt{2}$ 를 갖는다.

 \blacksquare (1) -1, 5 (2) 2 (3) $4\sqrt{2}$

풍쌤 강의 NOTE

좌표평면 위의 두 점 $A(x_1, y_1)$, $B(x_2, y_2)$ 에 대하여

$$\overline{AB} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

이때 제곱근에 문자가 포함되어 있을 때는 제곱을 하여 전개하는 것이 편리하다.

$$\overline{AB}^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$$

좌표평면 위의 두 점 A(a, 3), B(2, 1) 사이의 거리가 $\sqrt{13}$ 일 때, 양수 a의 값을 구하여라.

01-4 인유사)

두 점 A(a, 2), B(4, a)에 대하여 선분 AB의 길이가 최소가 되도록 하는 실수 a의 값을 구하여라.

01-2 (유사)

세 점 A(-k+4,1), B(-3,k), C(1,5)에 대하여 $\overline{AB} = \overline{BC}$ 일 때 k의 값을 구하여라.

01-5 🤊 변형

두 점 A(4, -a), B(2, a) 사이의 거리가 10 이하가 되도록 하는 정수 a의 개수를 구하여라.

01-3 (유사)

네 점 A(a, 4), B(5, -a), C(-2, 1), D(2, 3)에 대하여 $2\overline{AB} = 3\overline{CD}$ 일 때, 음수 a의 값을 구하여라.

01-6 인 실력

오른쪽 그림과 같이 O y(m) 지점에서 수직으로 만 나는 두 직선 도로에서 B O 지점으로 O 사람 A는 O 지점으로

부터 동쪽으로 80 m 떨어진 지점에서 출발해 서쪽으로 초속 4 m의 속력으로 움직이고, 사람 $B \leftarrow 0$ 지점에서 출발하여 북쪽으로 초속 2 m의 속력으로 움직인다. 두 사람 A, B가 동시에 출발할 때, 두 사람 사이의 거리의 최솟값을 구하여라.

필수유형 (02) 같은 거리에 있는 점

다음 물음에 답하여라.

- (1) 두 점 A(2, 3), B(0, -1)에서 같은 거리에 있는 x축 위의 점 P의 좌표를 구하여라.
- (2) 두 점 A(-2, 0), B(6, 4)에서 같은 거리에 있는 y축 위의 점 P의 좌표를 구하여라.
- (3) 두 점 A(-2, 1), B(-1, 8)에서 같은 거리에 있는 직선 y=x+2 위의 점 P의 좌표 를 구하여라

풍쌤 **POINT**

구하는 점 P의 좌표를 미지수를 이용하여 나타낸 후. $\overline{AP} = \overline{BP}$. 즉 $\overline{AP}^2 = \overline{BP}^2$ 임을 이용하여 점 P 의 좌표를 구해.

풀() ← (1) STEP1 점 P의 *x*좌표 구하기

점 P의 좌표를 (a, 0) 이라고 하면

 \bigcirc 점 P가 x축 위에 있으므로 y좌표가 0이다.

$$\overline{AP} = \overline{BP}$$
에서 $\overline{AP}^2 = \overline{BP}^2$ 이므로 $(a-2)^2 + (-3)^2 = a^2 + 1^2$
 $a^2 - 4a + 13 = a^2 + 1$. $-4a = -12$ $\therefore a = 3$

STEP2 점 P의 좌표 구하기

따라서 점 P의 좌표는 (3, 0)이다.

(2) **STEP1** 점 **P**의 *y*좌표 구하기

점 P의 좌표를 (0, a)라고^② 하면

② 점 P가 y축 위에 있으므로 x좌표가 0이다.

$$a^2+4=a^2-8a+52, 8a=48$$
 : $a=6$

 $\overline{AP} = \overline{BP}$ 에서 $\overline{AP}^2 = \overline{BP}^2$ 이므로 $2^2 + a^2 = (-6)^2 + (a-4)^2$

STEP2 점 P의 좌표 구하기

따라서 점 P의 좌표는 (0, 6)이다.

(3) STEP1 점 P의 *x*좌표 구하기

점 P의 좌표를 (a, a+2)라고 하면

 $\overline{AP} = \overline{BP}$ 에서 $\overline{AP}^2 = \overline{BP}^2$ 이므로

$$(a+2)^2 + (a+1)^2 = (a+1)^2 + (a-6)^2$$

 $2a^2+6a+5=2a^2-10a+37$

16a=32 $\therefore a=2$

STEP 2 점 P의 좌표 구하기

따라서 점 P의 좌표는 (2, 4)이다.

③ 점 P가 직선 y=x+2 위에 있 으므로 x=a를 대입하면 $y = a + 20 | \Box |$

 \blacksquare (1) P(3, 0) (2) P(0, 6) (3) P(2, 4)

풍쌤 강의 NOTE

좌표평면 위의 점 P의 좌표를 구할 때 위치에 따라 다음과 같이 놓는다.

- ① 점 P가 x축 위의 점일 때. P(a, 0)
- ② 점 P가 y축 위의 점일 때, P(0, a)
- ③ 점 P가 직선 y=mx+n 위의 점일 때, P(a, ma+n)

다음 물음에 답하여라.

- (1) 두 점 A(-1, -1), B(1, 3)에서 같은 거리에 있는 x축 위의 점 P의 좌표를 구하여라.
- (2) 두 점 A(-4, 0), B(1, 3)에서 같은 거리에 있는 *y*축 위의 점 P의 좌표를 구하여라.

02-2 인유사

두 점 A(1, 1), B(-1, 3)에서 같은 거리에 있는 직선 y=2x-3 위의 점 P의 좌표를 구하여라.

02-3 ৄন্ম)

좌표평면 위에 두 점 A(-2, 1), B(4, 3)이 있다. 직 선 y=x 위의 점 P에 대하여 $\overline{AP}=\overline{BP}$ 일 때, 점 P의 좌표를 구하여라.

02-4 (변형)

두 점 (2, 1), (-1, 4)에서 같은 거리에 있는 x축 위의 점을 P, y축 위의 점을 Q라고 할 때, 선분 PQ의 길이를 구하여라.

02-5 《변형》

세 점 A(0, 2), B(3, 1), C(4, 4)를 꼭짓점으로 하는 삼각형 ABC의 외심의 좌표를 구하여라.

02-6 ◈ 질력)

학교는 집에서 동쪽으로 4 km, 남쪽으로 2 km만큼 떨어진 위 치에 있고, 도서관은 동쪽으로 3 km, 북쪽으로 1 km만큼 떨 어진 위치에 있다. 집, 학교, 도

서관에서 같은 거리에 있는 지점에 공원을 만든다고 할 때, 집에서 공원까지의 거리를 구하여라.

필수유형 😘 선부의 길이의 제곱의 한의 최솟값

다음 물음에 답하여라.

- (1) 두 점 A(4, 1), B(-2, 3)과 x축 위의 점 P에 대하여 $\overline{AP}^2 + \overline{BP}^2$ 의 최솟값을 구하 여라
- (2) 두 점 A(6, 2), B(4, 6)과 임의의 점 P에 대하여 $\overline{AP}^2 + \overline{BP}^2$ 의 값이 최소일 때, 점 P 의 좌표를 구하여라

풍쌤 POINT

두 점 A B와 임의의 점 P에 대하여 $\overline{AP}^2 + \overline{PB}^2$ 의 최속값은

- 전 P의 좌표를 미지수를 이용하여 나타내고, 두 점 사이의 거리 공식을 이용하여 이차식을 세운다.
- ② 완전제곱식의 꼴을 이용하여 최솟값을 구한다.

풀이 \bullet (1) STEP1 점 P의 좌표를 정하고. $\overline{AP}^2 + \overline{BP}^2$ 을 식으로 나타내기

점 P의 좌표를 (a, 0) 이라고 하면

 $\overline{AP}^2 + \overline{BP}^2$

$$=(a-4)^2+(-1)^2+(a+2)^2+(-3)^2$$

$$=2a^2-4a+30$$

$$=2(a-1)^2+28$$

STEP 2 최솟값 구하기

따라서 $\overline{AP}^2 + \overline{BP}^2$ 은 a=1일 때 최솟값 28^{2} 을 갖는다.

② (a-1)²≥00|므로 $2(a-1)^2+28 \ge 28$

● 점 P는 x축 위의 점이므로 y좌표가 0이다.

(2) STEP1 점 P의 좌표를 정하고. $\overline{AP}^2 + \overline{BP}^2$ 을 식으로 나타내기

점 P의 좌표를 $(a, b)^{\odot}$ 라고 하면

$$\overline{AP}^{^{2}} + \overline{BP}^{^{2}}$$

$$=(a-6)^2+(b-2)^2+(a-4)^2+(b-6)^2$$

$$=2a^2-20a+2b^2-16b+92$$

$$=2(a-5)^2+2(b-4)^2+10$$

STEP 2 조건을 만족시키는 점 P의 좌표 구하기

따라서 $\overline{AP}^2 + \overline{BP}^2$ 은 a=5, b=4일 때 최솟값 10^{40} 을 가지므 40^{40} $(a-5)^2 \ge 0$, $(b-4)^2 \ge 0$ 이므로 로. 구하는 점 P의 좌표는 (5, 4)이다.

 $2(a-5)^2+2(b-4)^2+10\geq 10$

❸ 좌표평면 위의 임의의 점이므로 P(a, b)라고 놓는다.

(1) 28 (2) P(5, 4)

풍쌤 강의 NOTE

- x에 대한 이차식 $m(x-a)^2+k$ 는 x=a에서 최솟값 k를 갖는다. (단. m>0)
- x, y에 대한 이차식 $m(x-a)^2 + n(y-b)^2 + k$ 는 x=a, y=b에서 최솟값 k를 갖는다.

(단, m > 0, n > 0)

두 점 A(1, 5), B(9, 3)과 x축 위의 점 P에 대하여 $\overline{AP}^2 + \overline{BP}^2$ 의 최속값을 구하여라

03-4 (변형)

기출

좌표평면 위의 세 점 O(0,0), A(3,0), B(0,6)을 꼭 짓점으로 하는 삼각형 OAB의 내부에 점 P가 있다. 이 때 $\overline{OP}^2 + \overline{AP}^2 + \overline{BP}^2$ 의 값이 최소일 때, 점 P의 좌표를 구하여라.

03-2 (ਜਮ)

두 점 A(2,3), B(-2,-9)와 임의의 점 P에 대하 여 $\overline{AP}^2+\overline{BP}^2$ 의 값이 최소일 때, 점 P의 좌표를 구하여라.

03-5 (변형)

세 점 A(-3,1), B(2,-2), C(1,4)와 임의의 점 P에 대하여 $\overline{AP}^2+\overline{BP}^2+\overline{CP}^2$ 이 최솟값을 가질 때, 선분 AP의 길이를 구하여라.

03-3 ●변형

두 점 A(-2, 2), B(2, 1)과 직선 y=2x-1 위의 점 P에 대하여 $\overline{AP}^2+\overline{BP}^2$ 의 최솟값을 구하여라.

03-6 인질력

두 점 A(-4, 1), B(k, 5)와 임의의 점 P에 대하여 $\overline{AP}^2 + \overline{BP}^2$ 의 최솟값이 260이 되도록 하는 양수 k의 값을 구하여라.

필수유형 (04) 두 점 사이의 거리의 활용 (1) - 삼각형의 모양

다음 물음에 답하여라.

- (1) 세 점 A(-2, -2), B(2, 0), C(4, 4)를 꼭짓점으로 하는 삼각형 ABC는 어떤 삼각 형인지 말하여라.
- (2) 세 점 A(0, -2), $B(-\sqrt{3}, 1)$, C(a, b)를 꼭짓점으로 하는 삼각형 ABC가 정삼각형 일 때, a, b의 값을 각각 구하여라. (단, 점 C는 제1사분면 위의 점이다.)

풍쌤 POINT

세 꼭짓점의 좌표가 주어진 삼각형의 모양을 결정할 때

- 두점 사이의 거리를 구하는 공식을 이용하여 삼각형의 세 변의 길이를 구한다.
- ② 세 변의 길이 사이의 관계를 파악한다

풀() ← (1) STEP1 삼각형의 세 변의 길이 구하기

$$\overline{AB} = \sqrt{\{2 - (-2)\}^2 + \{0 - (-2)\}^2} = 2\sqrt{5}$$

$$\overline{BC} = \sqrt{(4 - 2)^2 + (4 - 0)^2} = 2\sqrt{5}$$

$$\overline{CA} = \sqrt{(-2-4)^2 + (-2-4)^2} = 6\sqrt{2}$$

STEP2 삼각형의 모양 결정하기

따라서 $\overline{AB} = \overline{BC}$ 이므로 삼각형 $\overline{ABC} = \overline{BC}$ 인 이등변 삼각형이다.

(2) STEP1 $\overline{AB} = \overline{BC} = \overline{CA}$ 임을 이용하여 a, b 사이의 관계식 구하기 삼각형 ABC가 정삼각형이므로 $\overline{AB} = \overline{BC} = \overline{CA}^{\otimes}$

 $\overline{AB} = \overline{BC}$ 에서 $\overline{AB}^2 = \overline{BC}^2$ 이므로

$$(-\sqrt{3})^2 + (1+2)^2 = (a+\sqrt{3})^2 + (b-1)^2$$

$$a^2 + 2\sqrt{3}a + b^2 - 2b - 8 = 0$$

....

또. $\overline{AB} = \overline{CA}$ 에서 $\overline{AB}^2 = \overline{CA}^2$ 이므로

$$(-\sqrt{3})^2 + (1+2)^2 = a^2 + (b+2)^2$$

$$a^2+b^2+4b-8=0$$

..... (L)

 \bigcirc -①을 하면 $2\sqrt{3}a-6b=0$ $\therefore a=\sqrt{3}b$

STEP 2 a, b의 값 구하기

 $a=\sqrt{3}b$ 를 \bigcirc 에 대입하면 $3b^2+6b+b^2-2b-8=0$

 $4b^2+4b-8=0$, $b^2+b-2=0$

(b+2)(b-1)=0 ∴ b=-2 또는 b=1

그런데 점 C가 제1사분면 위의 점이므로^❸

③ b > 00[므로 b = 1 $\therefore a = \sqrt{3}$

 삼각형의 모양을 결정할 때, 세 번의 길이 사이의 관계를 파악

한다. 특히 직각삼각형이 되는

지 파악해야 하는 경우도 있다.

 $\overline{AB} = \overline{BC}. \overline{BC} = \overline{CA}$ $\overline{AB} = \overline{CA}$. $\overline{BC} = \overline{CA}$ 로 풀 수

있다.

 $a = \sqrt{3}, b = 1$

달 (1) $\overline{AB} = \overline{BC}$ 인 이등변삼각형 (2) $a = \sqrt{3}$, b = 1

풍쌤 강의 NOTE

삼각형 ABC의 세 변의 길이를 각각 a, b, c라고 할 때

- ① a=b=c이면 정삼각형
- ② a=b 또는 b=c 또는 c=a이면 이등변삼각형
- ③ $a^2 + b^2 = c^2$ 을 만족시킬 때는 $\angle C = 90^{\circ}$ 인 직각삼각형

세 점 $A(\sqrt{3}, 1)$, B(0, 4), $C(-\sqrt{3}, 1)$ 을 꼭짓점으로 하는 삼각형 ABC는 어떤 삼각형인지 말하여라.

04-2 인유사

세 점 A(-2, -3), B(2, 0), C(-1, 4)를 꼭짓점으로 하는 삼각형 ABC는 어떤 삼각형인지 말하여라.

04-3 (유사)

세 점 A(-6, 4), B(6, -4), C(-2, 10)을 꼭짓점으로 하는 삼각형 ABC는 어떤 삼각형인지 말하여라.

04-4 (변형)

세 점 A(0, 2), B(6, 0), C(2, a)를 꼭짓점으로 하는 삼각형이 선분 AB를 빗변으로 하는 직각삼각형일 때, a의 값을 구하여라.

(단, 점 C는 제1사분면 위의 점이다.)

04-5 ⊚ 변형)

세 점 A(0,3), B(4,1), C(3,a)를 꼭짓점으로 하는 삼각형 ABC가 이등변삼각형일 때, 정수 a의 값을 구하여라.

04-6 인실력

이차함수 $y=x^2$ 의 그래프와 직선 y=2x+80 만나는 두 점을 A, B라고 하자. 이차함수 $y=x^2$ 의 그래프 위의 점 P에 대하여 삼각형 $\overline{AP}=\overline{BP}$ 인 이등변삼 각형일 때, 점 P의 좌표를 구하여라.

(단, 점 P는 제1사분면 위의 점이다.)

필수유형 (05) 두 점 사이의 거리의 활용 (2) - 도형의 성질 확인하기

오른쪽 그림과 같은 삼각형 ABC에서 변 BC의 중점을 M이라고 할 때.

$$\overline{AB}^2 + \overline{AC}^2 = 2(\overline{AM}^2 + \overline{BM}^2)$$

이 성립함을 보여라.

풍쌤 POINT

도형을 좌표평면 위로 옮기면 도형의 성질을 쉽게 확인할 수 있어.

주어진 점이 원점 또는 좌표축 위의 점이 되도록 좌표축을 정하면 계산이 간단해지니까 좌표축의 위 치를 잘 정해야 해.

풀이 • ● STEP1 삼각형 ABC를 좌표평면 위에 나타내기

오른쪽 그림과 같이 직선 BC를 x축으로 하고, 점 M을 지나고 직선 BC에 수직인 직선을 y축으로 하는 좌표평면을 잡으면 점 M은 원점이 다 0

에 대입했을 때. 계산이 간단해 지도록 좌표축을 정한다.

STEP 2 점의 좌표를 대입하여 관계식이 성립함을 보이기 이때 삼각형 ABC의 세 꼭짓점의 좌표를 A(a, b), B(-c, 0).

C(c, 0)이라고 하면

$$\overline{AB}^2 + \overline{AC}^2 = (-c-a)^2 + (-b)^2 + (c-a)^2 + (-b)^2$$

$$=2(a^2+b^2+c^2)$$

.....

$$\overline{AM}^2 + \overline{BM}^2 = a^2 + b^2 + c^2$$

.... (L)

따라서 ①. 心에서

$$\overline{AB}^2 + \overline{AC}^2 = 2(\overline{AM}^2 + \overline{BM}^2)^{2}$$

이 성립한다.

② 이를 파푸스 정리 또는 삼각형의 중선 정리라고 한다.

🖪 풀이 참조

풍쌤 강의 NOTE

도형을 좌표평면 위로 옮길 때 가장 많이 이용되는 점을 원점, 가장 많이 이용되는 직선을 x축 또는 y축 으로 정한다. 특히, 이등변삼각형, 직각삼각형, 정삼각형이 주어진 경우에는 다음 그림과 같이 좌표평 면을 정하면 편리하다.

오른쪽 그림과 같이 $\overline{AB} {=} \overline{AC}$ 인 이등변삼각형

ABC에서 변 BC의 연장선 위의 점 P에 대하여

$$\overline{AP}^2 - \overline{AB}^2 = \overline{BP} \times \overline{CP}$$
가 성립함을 보여라.

05-2 • ਥੋਰੇ

다음은 평행사변형 ABCD에서

$$\overline{AC}^2 + \overline{BD}^2 = (7 \text{ }) (\overline{AB}^2 + \overline{BC}^2)$$

이 성립함을 보이는 과정이다.

오른쪽 그림과 같이 직선 BC를 x축으로 하고, 점 B를 지나고 직선 BC에 수직 인 직선을 y축으로 하는 좌 표평면을 잡으면 점 B는 원점이 된다.

이때 두 점 A, C의 좌표를 각각 A(a, b), C(c, 0)이라고 하면 점 D((b, b))이므로

$$\overline{AC}^2 + \overline{BD}^2 = (C)$$

$$\overline{AB}^2 + \overline{BC}^2 = (21)$$

$$\therefore \overline{AC}^2 + \overline{BD}^2 = (71) (\overline{AB}^2 + \overline{BC}^2)$$

위의 과정에서 (가)~(라)에 알맞은 것을 구하여라.

05-3 (변형)

오른쪽 그림과 같이 직사각 A 형 ABCD의 내부에 점 P가 있을 때,

$$\overline{PA}^2 + \overline{PC}^2 = \overline{PB}^2 + \overline{PD}^2$$

이 성립함을 보여라.

05-4 (변형)

다음은 삼각형 ABC의 변 BC 위의 점 D에 대하여 $\overline{BD} = 2\overline{CD}$ 일 때,

$$\overline{AB}^2 + 2\overline{AC}^2 = (7) (\overline{AD}^2 + 2\overline{CD}^2)$$

이 성립함을 보이는 과정이다.

위의 과정에서 (가)~(라)에 알맞은 것을 구하여라.

다음 물음에 답하여라.

- (1) 두 점 A(-2, 1), B(4, 4)에 대하여 선분 AB를 2: 1로 내분하는 점을 P, 외분하는 점을 Q라고 할 때, 선분 PQ의 중점의 좌표를 구하여라.
- (2) 두 점 A(2, a), B(0, 8)에 대하여 선분 AB를 1: 2로 내분하는 점 P가 x축 위에 있을 때, a의 값을 구하여라.

풍쌤 POINT

좌표평면 위의 두 점 $\mathbf{A}(x_{\!\scriptscriptstyle 1},y_{\!\scriptscriptstyle 1})$, $\mathbf{B}(x_{\!\scriptscriptstyle 2},y_{\!\scriptscriptstyle 2})$ 를 이은 선분 \mathbf{AB} 를 m : n (m>0,n>0)으로 내분하는 점을 \mathbf{P} , 외분하는 점을 Q라고 하면

$$ightharpoonup P\Big(rac{mx_2+nx_1}{m+n},rac{my_2+ny_1}{m+n}\Big)$$
, 엇같리게 곱하여 더하거나 뺀다.
$$Q\Big(rac{mx_2-nx_1}{m-n},rac{my_2-ny_1}{m-n}\Big) \ (단,m
eq n)$$

풀이 • ● (1) STEP1 두 점 P. Q의 좌표 구하기

선분 AB를 2:1로 내분하는 점 P의 좌표는

$$\left(\frac{2\times 4+1\times (-2)}{2+1},\,\frac{2\times 4+1\times 1}{2+1}\right)^{\scriptsize \textcircled{\scriptsize 0}}\qquad \therefore \ \mathrm{P}(2,\,3)$$

선분 AB를 2:1로 외분하는 점 Q의 좌표는

$$\left(\frac{2\times 4-1\times (-2)}{2-1},\frac{2\times 4-1\times 1}{2-1}\right) \quad \therefore \mathbf{Q}(\mathbf{10},\mathbf{7})$$

좌표평면에서 내분점, 외분점의
 x좌표, y좌표는 서로 영향을 주지 않기 때문에 각각에 대하여
 식을 만든다.

STEP 2 선분 PQ의 중점의 좌표 구하기

따라서 선분 PQ의 중점의 좌표는

$$\left(\frac{2+10}{2}, \frac{3+7}{2}\right)$$
 $\therefore (6, 5)$

② 중점은 선분을 1:1로 내분하 는 점이다.

(2) STEP1 점 P의 좌표 구하기

선분 AB를 1:2로 내분하는 점 P의 좌표는

$$\left(\frac{1\times 0 + 2\times 2}{1+2}, \frac{1\times 8 + 2\times a}{1+2}\right) \qquad \therefore \ \mathbf{P}\!\left(\frac{4}{3}, \frac{8\!+\!2a}{3}\right)$$

STEP 2 a의 값 구하기

점
$$P\left(\frac{4}{3}, \frac{8+2a}{3}\right)$$
가 x 축 위에 있으므로[®]

③ 점 P가 *x*축 위에 있으려면 *y*좌 표가 0이어야 한다.

$$\frac{8+2a}{3}=0 \qquad \therefore a=-4$$

 \blacksquare (1) (6, 5) (2) -4

풍쌤 강의 NOTE

선분을 m: n으로 외분할 때

m: (-n)으로 내분하는 것으로 생각하여 내분점 공식을 적용해도 된다.

• 외분점은 m > n, m < n에 따라 위치가 달라진다.

두 점 A(3,6), B(-2,1)에 대하여 선분 AB를 3:2로 내분하는 점을 P, 외분하는 점을 Q라고 할 때, 선분 PQ의 중점의 좌표를 구하여라.

06-2 ্ন্ম)

두 점 A(a,4), B(-9,0)에 대하여 선분 AB를 4:3으로 내분하는 점이 y축 위에 있을 때, a의 값을 구하여라.

06-3 ⊚ 변형)

두 점 A(a,1), B(-3,4)에 대하여 선분 AB를 2:1로 외분하는 점의 좌표가 (-7,b)일 때, a+b의 값을 구하여라.

06-4 (변형)

두 점 A(-2,3), B(4,-2)에 대하여 선분 AB를 삼 등분하는 점 중에서 점 A에 가까운 점을 P라고 할 때, 점 P의 좌표를 구하여라.

06-5 ●변형

기출

두 점 A(-4,2), B(8,6)에 대하여 선분 AB를 사등 분하는 점 중에서 점 B에 가까운 점을 P(a,b)라고 할 때, a+b의 값을 구하여라.

06-6 인 실력

좌표평면 위의 두 점 A(-6,2), B(2,4)에 대하여 선분 AB를 2:1로 내분하는 점을 P, 외분하는 점을 Q라고 할 때, 선분 PQ의 중점은 선분 AB를 m:n으로 외분하는 점이다. 이때 m-n의 값을 구하여라.

(단, *m*, *n*은 서로소인 자연수이다.)

필수유형 (07)

선부의 내분점과 외분점의 활용

다음 물음에 답하여라.

- (1) 두 점 A(2, 3), B(-1, 6)을 이은 선분 AB의 연장선 위의 점 C가 $\overline{AB} = 3\overline{BC}$ 를 만 족시킬 때, 점 C의 좌표를 구하여라.
- (2) 두 점 A(-2, 4), B(1, 1)에 대하여 선분 AB를 k: 5로 외분하는 점이 직선 y=-2x-2 위에 있을 때, 실수 k의 값을 구하여라.(단, $k \neq 5$)

풍쌤 POINT

선부의 길이 사이의 비가 주어지면 주어진 조건을 그림으로 나타내어 선부의 길이의 비와 점의 위치를 파악하도록 해.

풀이 • (1) STEP1 AB=3BC를 이용하여 점 C의 위치 파악하기

 $\overline{AB} = 3\overline{BC}$ 에서 $\overline{AB} : \overline{BC} = 3 : 1$

따라서 점 C가 선분 AB의 연장선 위의 점일 때, 점 C는 선분

AB를 4:1로 외부하는 점¹이다

STEP2 점 C의 좌표 구하기

따라서 점 C의 좌표는

$$\left(\frac{4\times (-1)-1\times 2}{4-1},\,\frac{4\times 6-1\times 3}{4-1}\right)\quad \ \ \therefore \ C(-2,\,7)$$

다른 풀이

AB: BC=3: 1에서 점 B는 선부 AC를 3: 1로 내분하는 점이므로 점 C의 좌표를 (a, b)라고 하면

$$\frac{3 \times a + 1 \times 2}{3 + 1} = -1, \frac{3 \times b + 1 \times 3}{3 + 1} = 6$$

에서
$$a=-2$$
. $b=7$ $\therefore C(-2,7)$

(2) STEP1 외분하는 점의 좌표 구하기

선분 AB를 k: 5로 외분하는 점의 좌표는

$$\left(\frac{k \times 1 - 5 \times (-2)}{k - 5}, \, \frac{k \times 1 - 5 \times 4}{k - 5}\right)$$

$$\therefore \left(\frac{k+10}{k-5}, \frac{k-20}{k-5}\right)$$

STEP2 k의 값 구하기

이 점이 직선 y=-2x-2 위에 있으므로

$$\frac{k-20}{k-5} = -2 \times \frac{k+10}{k-5} - 2$$

$$k-20 = -2k-20-2k+10$$
, $5k=10$: $k=2$

 \blacksquare (1) C(-2, 7) (2) 2

풍쌤 강의 NOTE

 $m\overline{AB} = n\overline{BC}$ (m>0, n>0)이면 \overline{AB} : $\overline{BC} = n: m$

(1) 점 B는 선분 AC = n : m으로 내분하는 점

(2) 점 C는 선분 AB = (m+n) : m = 2 외분하는 점

두 점 A(-3, 2), B(3, 5)를 이은 선분 AB의 연장선 위의 점 C가 $2\overline{AB}$ = $3\overline{BC}$ 를 만족시킬 때, 점 C의 좌표 를 구하여라.

07-2 ৄ ন্ন

두 점 A(-4, 2), B(5, -1)에 대하여 선분 AB를 1: k로 내분하는 점이 직선 y = -x 위에 있을 때, 실수 k의 값을 구하여라.

07-3 (변형)

좌표평면 위의 두 점 A(-5, -2), B(1, 4)를 이은 선 분 AB를 t: (1-t)로 내분하는 점이 제2사분면 위에 있을 때, 실수 t의 값의 범위를 구하여라.

07-4 (변형)

두 점 A(-3,5), B(2,4)와 선분 AB의 연장선 위의 점 P에 대하여 삼각형 OAP의 넓이가 삼각형 OBP의 넓이의 2배가 된다. 점 P의 좌표가 (a,b)일 때, a+b의 값을 구하여라. (단, O는 원점이다.)

07-5 ⊚ ਥੋਰੇ

두 점 A(-2,0), B(2,2)를 지나는 직선 AB 위에 있고 $\overline{AB} = 2\overline{BC}$ 를 만족시키는 점 C의 좌표를 모두 구하여라.

07-6 (실력)

두 점 A(-4, 1), B(6, 6)에 대하여

 $\triangle OAP$: $\triangle OBP=2$: 3인 점 P는 2개가 생긴다. 두 점을 P_1 , P_2 라고 할 때, 선분 P_1P_2 의 길이를 구하여라. (단, O는 원점이다.)

다음 물음에 답하여라.

- (1) 세 점 A(a, b). B(-2b, 1). C(2, 5)를 꼭짓점으로 하는 삼각형 ABC의 무게중심의 좌표가 (3, 1)일 때, a+b의 값을 구하여라.
- (2) 세 점 A(3, 4), $B(x_1, y_1)$, $C(x_2, y_2)$ 를 꼭짓점으로 하는 삼각형 ABC의 무게중심의 좌표가 (7, 8)일 때, 변 BC의 중점의 좌표를 구하여라.

풍쌤 POINT

세 점 $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$ 을 꼭짓점으로 하는 삼각형 ABC의 무게중심의 좌표는 $\Rightarrow \left(\frac{x_1 + x_2 + x_3}{3}, \frac{y_1 + y_2 + y_3}{3}\right)$

풀OI ← (1) 삼각형 ABC의 무게중심의 좌표가 (3, 1)이므로

$$\frac{a-2b+2}{3}$$
=3, $\frac{b+1+5}{3}$ =1

● 삼각형의 무게중심의 좌표는 세 꼭짓점의 좌표의 평균이다.

$$a-2b+2=9, b+6=3$$

두 식을 연립하여 풀면 a=1, b=-3

$$a+b=-3+1=-2$$

(2) 삼각형 ABC의 무게중심의 좌표가 (7, 8)이므로

$$\frac{3+x_1+x_2}{3}$$
=7, $\frac{4+y_1+y_2}{3}$ =8

$$3+x_1+x_2=21, 4+y_1+y_2=24$$

$$x_1 + x_2 = 18, y_1 + y_2 = 20$$

이때
$$\overline{\mathrm{BC}}$$
의 중점의 좌표는 $\left(\frac{x_1+x_2}{2},\,\frac{y_1+y_2}{2}\right)$ 이므로 $(9,\,10)$

이다.

다른 풀이

 \overline{BC} 의 중점을 M(a, b)라고 하면 $\triangle ABC$ 의 무게중심은

AM을 2:1로 내분하는 점이므로 무게중심의 좌표는

$$\left(\frac{2\times a+1\times 3}{2+1}, \frac{2\times b+1\times 4}{2+1}\right) \qquad \therefore \left(\frac{2a+3}{3}, \frac{2b+4}{3}\right)$$

이 점이 점 (7,8)과 일치하므로

$$\frac{2a+3}{3}$$
=7, $\frac{2b+4}{3}$ =8 : a =9, b =10

따라서 \overline{BC} 의 중점의 좌표는 (9, 10)이다.

 \blacksquare (1) -2 (2) (9, 10)

풍쌤 강의 NOTE

삼각형의 세 중선은 한 점에서 만나고 이 점을 삼각형의 무게중심이라고 한 다. 이때 무게중심은 세 중선을 각 꼭짓점으로부터 각각 2:1로 내분한다. (삼각형에서 한 꼭짓점과 대변의 중점을 이은 선분을 중선이라고 하며, 삼 각형에는 세 개의 중선이 있다.)

7출

08-1 인유사)

세 점 A(a, -a), B(b, 3), C(-2, 1)을 꼭짓점으로 하는 삼각형 ABC의 무게중심의 좌표가 (-3, 2)일 때, a-b의 값을 구하여라.

08-2 ৄ ন্ম

세 점 A(4,5), $B(x_1,y_1)$, $C(x_2,y_2)$ 를 꼭짓점으로 하는 삼각형 ABC의 무게중심의 좌표가 (2,1)일 때, 변BC의 중점의 좌표를 구하여라.

08-3 ৄন্ন

좌표평면 위의 세 점 A, B, C를 꼭짓점으로 하는 삼각 형 ABC에서 점 A의 좌표가 (1,1), 변 BC의 중점의 좌표가 (7,4)이다. 삼각형 ABC의 무게중심의 좌표가 (a,b)일 때, a+b의 값을 구하여라.

08-4 ●변형

점 A(1,6)을 한 꼭짓점으로 하는 삼각형 ABC의 두 변 AB, AC의 중점을 각각 $M(x_1,y_1)$, $N(x_2,y_2)$ 라 고 하자. $x_1+x_2=2$, $y_1+y_2=4$ 일 때, 삼각형 ABC의 무게중심의 좌표를 구하여라.

08-5 (변형)

삼각형 ABC에서 A(2,6)이고 변 AB의 중점의 좌표 가 (-2,4), 변 AC의 중점의 좌표가 (3,2)일 때, 삼 각형 ABC의 무게중심의 좌표를 구하여라.

08-6 ● 실력)

기출

세 점 A, B, C를 꼭짓점으로 하는 삼각형 ABC에 대하여 세 변 AB, BC, CA를 2: 1로 내분하는 점의 좌표가 각각 P(7, 2), Q(8, 7), R(3, 6)일 때, 삼각형 ABC의 무게중심의 좌표를 구하여라.

필수유형 (19) 사각형에서 중점의 활용

다음 물음에 답하여라.

- (1) 세 점 A(0, 4), B(-3, 1), D(5, 7)에 대하여 사각형 ABCD가 평행사변형이 되도록 하는 점 C의 좌표를 구하여라.
- (2) 네 점 A(-1, 0), B(a, 1), C(b, 4), D(0, 3)을 꼭짓점으로 하는 사각형 ABCD가 마름모일 때, a+b의 값을 구하여라. (단, a>0)

풍쌤 POINT

사각형의 성질을 이용하여 꼭짓점의 좌표를 구할 수 있어.

- (1) 평행사변형: 두 대각선은 서로 다른 것을 이동분한다. 평행사변형과 마름모는 모두
- (2) 마름모: 두 대각선은 서로 다른 것을 수직이등부하다 ______ 두 대각선의 중점이 일치해

풀() ● (1) 평행사변형의 두 대각선은 서로 다른 것을 이등분하므로

$$\overline{\mathrm{BD}}$$
의 중점의 좌표는 $\left(\frac{-3+5}{2},\frac{1+7}{2}\right)$ $\therefore (1,4)$

점 C의 좌표를 (a, b)라고 하면 \overline{AC} 의 중점의 좌표는

$$\left(\frac{a}{2}, \frac{4+b}{2}\right)$$

이때 \overline{BD} 의 중점과 \overline{AC} 의 중점이 일치 $^{\odot}$ 하므로

$$1 = \frac{a}{2}$$
, $4 = \frac{4+b}{2}$: $a=2$, $b=4$

따라서 점 C의 좌표는 (2, 4)이다.

 ● 평행사변형은 두 대각선이 서로 다른 것을 이등분하므로 BD와 AC의 중점이 일치한다.

(2) STEP1 $\overline{AB} = \overline{DA}$ 임을 이용하여 a의 값 구하기

$$\overline{AB} = \overline{DA}$$
에서 $\overline{AB}^2 = \overline{DA}^2$ 이므로

$$(a+1)^2+1^2=(-1)^2+(-3)^2$$

$$a^2+2a+2=10$$
. $a^2+2a-8=0$. $(a+4)(a-2)=0$

$$\therefore a=2 (::a>0)$$

STEP 2 대각선의 성질을 이용하여 b의 값 구하기

$$\overline{\mathrm{BD}}$$
의 중점의 좌표는 $\left(\frac{a+0}{2},\,\frac{1+3}{2}\right)$ $\therefore (1,\,2)$

$$\overline{\mathrm{AC}}$$
의 중점의 좌표는 $\left(\frac{-1+b}{2},\frac{0+4}{2}\right)$ $\therefore \left(\frac{-1+b}{2},2\right)$

이때 \overline{AC} 의 중점과 \overline{BD} 의 중점이 일치 $^{@}$ 하므로

$$\frac{-1+b}{2}$$
=1 $\therefore b=3$

a+b=2+3=5

② 마름모는 두 대각선이 서로 다른 것을 수직이등분하므로 AC 와 BD의 중점이 일치한다.

(1) C(2, 4) (2) 5

- 평행사변형과 직사각형은 두 쌍의 대변의 길이가 같고 두 대각선은 서로 다른 것을 이동분한다.
- 마름모와 정사각형은 네 변의 길이가 같고 두 대각선은 서로를 수직이등분한다.

세 점 A(-2, 3), B(2, -1), C(0, 5)에 대하여 사 각형 ABCD가 평행사변형일 때, 점 D의 좌표를 구하 여라.

09-2 (유사)

네 점 A(a, 1), B(2, 1), C(6, 4), D(b, 4)를 꼭짓점 으로 하는 사각형 ABCD가 마름모일 때. a+b의 값을 구하여라. (단. *a*<0)

09-3 ⊚ ਥੋਰੇ

네 점 A(-3, 1), B(3, a), C(6, 4), D(0, b)를 꼭짓 점으로 하는 사각형 ABCD가 정사각형일 때, ab의 값 을 구하여라.

09-4 (변형)

마름모 ABCD에 대하여 A(1, 3), C(5, 1)이고 $B(x_1, y_1)$, $D(x_2, y_2)$ 라고 할 때, $x_1+x_2+y_1+y_2$ 의 값을 구하여라.

09-5 (변형)

평행사변형 ABCD의 두 꼭짓점 A, B의 좌표가 각각 (-3, -1), (2, -2)이고, 두 대각선 AC, BD의 교 점의 좌표가 (1, 1)일 때, 두 꼭짓점 C, D의 좌표를 각 각 구하여라.

09-6 인 실력

기출

직사각형 \overline{ABCD} 에서 \overline{AB} =18, \overline{AD} =12이고 두 대 각선의 교점은 M이다. 삼각형 ABD의 무게중심을 G. 삼각형 CDM의 무게중심을 H라고 할 때, 두 점 G와 H 사이의 거리를 구하여라.

발전유형 (10) 각의 이등분선의 성질

두 점 A(8,6), B(8,0)에 대하여 삼각형 OAB에서 $\angle A$ 의 이등분선이 변 OB와 만나는 점 C의 좌표를 구하여라. (단. O는 원점이다.)

풍쌤 POINT

 $\overline{AO}: \overline{AB} = \overline{OC}: \overline{BC} = m: n$ 이 성립해! 즉 점 C는 \overline{OB} 를 m: n으로 내분하는 점이야!

풀이 ← ● STEP1 AO: AB의 비구하기

 $\overline{AO} = \sqrt{8^2 + 6^2} = 10$, $\overline{AB} = \sqrt{(8-8)^2 + 6^2} = 6$ 이므로

 \overline{AO} : \overline{AB} =5:3

STEP $\mathbf{2}$ 점 \mathbf{C} 가 선분 \mathbf{OB} 를 내분하는 비율 구하기

오른쪽 그림과 같이 삼각형 AOB

에서 ∠A의 이등분선이 변 OB

와 만나는 점 C에 대하여

 $\overline{AO}: \overline{AB} = \overline{OC}: \overline{BC} = 5:3^{\bullet}$

STEP3 점 C의 좌표 구하기

따라서 점 C는 \overline{OB} 를 5:3으로

내분하는 점이므로 점 C의 좌표

누

$$\left(\frac{5\times 8+3\times 0}{5+3},\,\frac{5\times 0+3\times 0}{5+3}\right)$$

 $\therefore C(5, 0)$

● 삼각형 ABC에서 ∠A의 이등 분선이 변 BC와 만나는 점을 D 라고 할 때,

AB: AC=BD: CD 가 성립한다.

B C(5, 0)

풍쌤 강의 NOTE 삼각형 ABC에서 $\angle A$ 의 이등분선이 변 BC와 만나는 점을 D라고 할 때

 \overline{AB} : \overline{AC} = \overline{BD} : \overline{CD}

 \rightarrow 점 D는 \overline{BC} 를 \overline{AB} : \overline{AC} 로 내분하는 점이다.

오른쪽 그림과 같이 세 점 A(0,3), B(4,0), C(5,15)를 꼭짓점으로 하는 삼각형 ABC에서 $\angle A$ 의 이등분선이 변 BC와 만나는 점을 D라고 할 때, 점 D의 좌표를 구하여라.

10-2 (유사)

세 점 A(0, 3), B(1, 0), C(2, 9)를 꼭짓점으로 하는 삼각형 ABC가 있다. $\angle A$ 의 이동분선이 변 BC와 만나는 점을 D(a, b)라고 할 때, a+b의 값을 구하여라.

10-3 인류사

세 점 A(-3, 0), B(-3, -4), C(1, -3)을 꼭짓점으로 하는 삼각형 ABC에서 $\angle A$ 의 이등분선이 변BC와 만나는 점을 D(a, b)라고 할 때, a-b의 값을 구하여라.

10-4 (변형)

세 점 A(0, 12), B(-9, 0), C(16, 0)을 꼭짓점으로 하는 삼각형 ABC에 내접하는 원의 중심을 점 P라 하고, 두 점 B, P를 지나는 직선이 변 AC와 만나는 점을 D라고 할 때, 선분 AD와 선분 CD의 길이의 비를 가장 간단한 정수의 비로 나타내어라.

10-5 (ਸੋਰੇ)

세 점 A(-2, -1), B(-7, -13), C(6, 5)를 꼭짓점으로 하는 삼각형 ABC가 있다. $\angle A$ 의 이등분선이 변 BC와 만나는 점을 D라고 할 때, 삼각형 ABD와 삼각형 ACD의 넓이의 비를 가장 간단한 정수의 비로 나타내어라.

10-6 《실력》

좌표평면 위의 두 점 P(-3,4), Q(12,5)에 대하여 $\angle POQ$ 의 이등분선과 선분 PQ의 교점의 x좌표를 $\frac{b}{a}$ 라고 할 때, a+b의 값을 구하여라.

(단. O는 원점이고. a와 b는 서로소인 자연수이다.)

실전 연습 문제

01

두 점 A(a, -1), B(3, a)에 대하여 선분 AB의 길이가 최소가 되도록 하는 실수 a의 값은?

- ② 0
- ③ 1

- **4** 2
- (5) 3

02

서로 다른 세 점 A(a, -2), B(b, 6), C(a, b)에 대하여 삼각형 ABC의 외심의 좌표가 (4, 4)일 때, b의 값은?

- ① 4
- **②** 6
- 3 8

- **4** 10
- ⑤ 12

03 서술형 🗷

세 점 A(0,3k), B(-1,0), C(1,0)과 임의의 점 P에 대하여 $\overline{AP}^2+\overline{BP}^2+\overline{CP}^2$ 이 최솟값을 가질 때,

 $\frac{\overline{\mathrm{AP}}}{\overline{\mathrm{OP}}}$ 의 값을 구하여라. (단, k>0이고 O는 원점이다.)

04

다음 그림과 같이 좌표평면 위의 세 점 A(0, a), B(-3, 0), C(1, 0)을 꼭짓점으로 하는 삼각형 ABC가 있다. $\angle ABC$ 의 이등분선이 선분 AC의 중점을 지날 때, 양수 a의 값은?

- ① $\sqrt{5}$
- $\bigcirc \sqrt{6}$
- ③ √7

- (4) $2\sqrt{2}$
- (5) 3

05

두 점 A(-1, 2), B(3, 0)으로부터 같은 거리에 있는 점의 자취의 방정식을 구하여라.

06

세 점 A(0, 3), B(3, 1), C(5, 4)를 꼭짓점으로 하는 삼각형 ABC는 어떤 삼각형인가?

- ① 정삼각형
- ② $\overline{AB} = \overline{AC}$ 인 이등변삼각형
- ③ ∠B=90°인 직각이등변삼각형
- ④ ∠A=90°인 직각삼각형
- ⑤ 둔각삼각형

07

오른쪽 그림과 같이 삼각 형 ABC에서 점 M은 변 BC의 중점이고 \overline{AB} =8. $\overline{AM} = 6$. $\overline{BM} = 5$ 일 때. \overline{AC}^2 의 값을 구하여라.

08

점 A의 좌표가 (2, 3)이고 선분 AB를 3:1로 외분하 는 점의 좌표가 (5, 0)일 때, 점 B의 좌표는?

- \bigcirc (3, 3)
- (2)(3,5)
- (3)(4.1)
- (4, 2)
- (5) (4, 3)

09

좌표평면 위의 두 점 A(1,1), B(4,2)에 대하여 선분 AB를 t:(1+t)로 외분하는 점이 제2사분면 위에 있 을 때, 실수 t의 값의 범위는? (단, t>0)

- ① $\frac{1}{4} < t < \frac{2}{3}$ ② $\frac{1}{3} < t < \frac{2}{3}$
- $3\frac{1}{3} < t < 1$ $4\frac{2}{5} < t < \frac{4}{5}$

10 서술형 //

7/출

직선 $y = \frac{1}{2}x$ 위의 두 점 A(3, 1), B(a, b)가 있다.

제2사분면 위의 한 점 C에 대하여 삼각형 BOC와 삼각 형 OAC의 넓이의 비가 2:1일 때, a+b의 값을 구하 여라. (단. *a*<0이고. O는 원점이다.)

11

7출

삼각형 ABC의 변 BC를 3:1로 내분하는 점을 P라 하고, 선분 AP를 3: 1로 외분하는 점을 Q라고 할 때, (삼각형 ABC의 넓이) (삼각형 CPQ의 넓이)의 값은?

- \bigcirc 2
- (2) **4**
- (3) 6

- 4 8
- ⑤ 10

12 서술형 / 기

오른쪽 그림과 같은 삼 각형 ABC에서 점 D는 선분 BC를 1:1로 내 분하는 점이고, 점 E는

 $\triangle ABC = 8\triangle BDE$ 를 만족시킨다.

A(8, 6), B(-2, -4), C(10, 0)일 때, 점 E의 좌표 를 구하여라.

13

 $\triangle ABC$ 에 대하여 $\overline{AB}^2 + \overline{BP}^2 + \overline{CP}^2$ 의 값이 최소가 되도록 하는 점 P의 위치는?

- ① 삼각형 ABC의 내심
- ② 삼각형 ABC의 무게중심
- ③ 선분 BC를 2:1로 내분하는 점
- ④ ∠B의 이등분선을 2:1로 내분하는 점
- ⑤ 꼭짓점 A에서 변 BC에 내린 수선을 2:1로 내 분하는 점

14

세 점 A(1,7), B(-5,-2), C(4,-8)을 꼭짓점으 로 하는 삼각형 ABC에서 \overline{AB} , \overline{BC} , \overline{CA} 를 2: 1로 내 분하는 점을 각각 D, E, F라고 할 때, 삼각형 DEF의 무게중심의 좌표는?

- ① (-2, -1) ② (-2, 1)
- (0, -2)
- (0, -1) (0, -1)

15

평행사변형 ABCD의 두 꼭짓점 A, B의 좌표는 각각 (-1, 4), (5, 8)이다. 삼각형 ABD의 무게중심의 좌 표가 (2, 4)일 때, 꼭짓점 C의 좌표는?

- ① (8, 4)
- ② (8, 3)
- (3)(7,3)

- (4)(7,4)
- (5)(6,5)

16 서술형 //

네 점 A(0, a), B(5, b), C(12, c), D(7, 9)를 꼭짓점 으로 하는 사각형 ABCD가 마름모이고. a-1=b+c일 때, a+b의 최솟값을 구하여라.

17

세 점 A(3, -2), B(-5, 4), C(11, 13)을 꼭짓점으 로 하는 삼각형 ABC에서 ∠A의 이등분선이 변 BC 와 만나는 점을 D라고 할 때, 삼각형 ABD와 삼각형 ACD의 넓이의 비는 p:q이다. 이때 q-p의 값을 구 하여라. (단, p, q는 서로소인 자연수이다.)

18 서술형 //

세 점 A(a, b). B(-5, 0). C(5, 0)에 대하여 \overline{AB} =8, \overline{AC} =6이고, 점 A는 직선 y=7x-5 위에 있다. ∠OAC의 이등분선이 변 BC와 만나는 점을 D(c, 0)이라고 할 때, 세 실수 a, b, c에 대하여 abc의 값을 구하여라. (단. O는 원점이다.)

상위권 도약 문제

01

기출

다음 그림과 같이 이처함수 $y=ax^2 \ (a>0)$ 의 그래프 와 직선 $y=\frac{1}{2}x+1$ 이 서로 다른 두 점 P, Q에서 만 난다. 선분 PQ의 중점 M에서 y축에 내린 수선의 발을 H라고 하자. 선분 MH의 길이가 1일 때, 선분 PQ의 길이는?

- 1 4
- $2\frac{9}{2}$
- 3 5

- $4\frac{11}{2}$
- **⑤** 6

02

좌표평면 위의 두 점 A(2,5), B(6,0)에 대하여 선분 AB를 m:n (m>n>0)으로 외분하는 점을 Q라고하자. 삼각형 OAQ의 넓이가 40일 때, $\frac{n}{m}$ 의 값을 구하여라. (단, O는 원점이다.)

03

기출

삼각형 ABC에서 선분 BC를 1:3으로 내분하는 점을 D, 선분 BC를 2:3으로 외분하는 점을 E, 선분 AB를 1:2로 외분하는 점을 F라고 할 때, 삼각형 FEB의 넓이는 삼각형 ABD의 넓이의 k배이다. 이때 상수 k의 값을 구하여라.

04

평행사변형 ABCD의 꼭짓점 A의 좌표는 (2,1)이고 변 AB의 중점의 좌표가 (5,3), 변 BC의 중점의 좌표가 (9,10)일 때, 꼭짓점 B,C,D의 모든 좌표의 값의 합을 구하여라.

05

기출

다음 그림과 같이 좌표평면에 원점 O를 한 꼭짓점으로 하는 삼각형 OAB가 있다. 선분 OA를 2:1로 외분하는 점을 C, 선분 OB를 2:1로 외분하는 점을 D라고 할 때, 두 선분 AD와 BC의 교점을 E(p,q)라고하자. 삼각형 OAB의 무게중심의 좌표가 (5,4)일 때, p+q의 값은?

- ① 12
- 2 14
- ③ 16

- (4) 18
- ⑤ 20

06

삼각형 \overline{ABC} 에서 \overline{BC} 를 2:1로 내분하는 점을 D, \overline{AD} 의 중점을 E, \overline{BE} 를 2:1로 내분하는 점을 F라고하자. \overline{CF} 를 a:b로 외분하는 점이 \overline{AB} 를 c:d로 내분하는 점과 같다고 할 때, ab+cd의 값은?

(단, a와 b, c와 d는 각각 서로소인 자연수이다.)

- ① 22
- 2 24
- ③ 26

- 4) 28
- ⑤ 30

07

기출

세 꼭짓점의 좌표가 A(0,3), B(-5,-9), C(4,0) 인 삼각형 ABC가 있다. 다음 그림과 같이 $\overline{AC} = \overline{AD}$ 가 되도록 점 D를 선분 AB 위에 잡는다. 점 A를 지나면서 선분 DC와 평행인 직선이 선분 BC의 연장선과 만나는 점을 P라고 하자. 이때 점 P의 좌표는?

- $\bigcirc \left(\frac{61}{8}, \frac{29}{8} \right)$
- $2\left(\frac{65}{8}, \frac{33}{8}\right)$
- $4\left(\frac{73}{8}, \frac{41}{8}\right)$
- $(5)\left(\frac{77}{8}, \frac{45}{8}\right)$