

<6장> 판다스 활용

학습 목표

- 판다스로 데이터를 처리하는 과정을 익힌다.
- 판다스 라이브러리를 활용하여 붓꽃 데이터 셋을 분석하는 방법을 익힌다.
- 판다스 라이브러리를 활용하여 타이타닉 데이터 셋을 분석하는 방법을 익힌다.
- 판다스로 데이터 시각화하는 방법을 익힌다.

목차

01 붓꽃 데이터 분석

02 타이타닉 데이터 분석

01

붓꽃 데이터 분석

■ 데이터 설명

- 통계학자가 정리한 아이리스 데이터는 붓꽃의 3가지 종을 각각의 특성에 맞게 분류
- 꽃잎의 각 부분의 너비와 길이 등을 측정한 데이터이며 150개의 레코드로 구성

Iris Versicolor

or Iris Setosa

Iris Virginica

그림 6-1. 붓꽃의 3가지 종

표 6-1. 데이터 정보: 붓꽃(iris) 정보에 관한 데이터 파일

■ 필드의 이해

■ 5개의 필드로 구성

변수명	변수 설명
Sepal Length	꽃받침의 길이 정보
Sepal Width	꽃받침의 너비 정보
Petal Length	꽃잎의 길이 정보
Petal Width	꽃잎의 너비 정보
Species	꽃의 종류 정보, Setosa/Versicolor/Virginica 3종류로 구분

	SepalLength	SepalWidth	PetalLength	PetalWidth	Species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
	***	***	***		***
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

그림 6-2. 원본 데이터 형태

붓꽃 데이터 읽어와서 확인

- (1) 1행에서는 파이썬 라이브러리 판다스(Pandas)를 임포트(Import)
- 3행에서는 판다스의 read_csv를 사용하여 'iris.csv' 파일을 읽어 데이터프레임 변수 iris에 저장
- 4행에서는 iris의 처음 5행을 출력한다. head 함수에 숫자를 입력하면, 숫자만큼의 행을 추출

X =	끝' 파일 읽어	오기					
1 import pandas as pd 2 filename='iris.csv' # 코랩 파일 경로 : '/content/drive/MyDrive/iris.csv' 3 iris=pd.read_csv(filename) 4 iris.head()							
	생결과〉 SepalLength	SepalWidth	PetalLength	PetalWidth	Species		
0	5.1	3.5	1.4	0.2	setosa		
1	4.9	3.0	1.4	0.2	setosa		
1 2	4.9 4.7	3.0	1.4				
•							

■ 붓꽃 데이터 읽어와서 확인

■ (2) 데이터 전체적인 구조를 확인

■ 붓꽃 데이터 읽어와서 확인

■ (3) 데이터 기초 통계량을 확인

ı	데이터의 기초 통계량 출력								
1	ı	iris.describe	()						
(실행결	과〉							
		SepalLength	SepalWidth	PetalLength	PetalWidth				
	count	150.000000	150.000000	150.000000	150.000000				
	mean	5.843333	3.057333	3.758000	1.199333				
	std	0.828066	0.435866	1.765298	0.762238				
	min	4.300000	2.000000	1.000000	0.100000				
	25%	5.100000	2.800000	1.600000	0.300000				
	50%	5.800000	3.000000	4.350000	1.300000				
	75%	6.400000	3.300000	5.100000	1.800000				
	max	7.900000	4.400000	6.900000	2.500000				

■ 붓꽃 데이터 읽어와서 확인

■ (4) value_counts()를 적용하여 품종별 데이터 개수 구하기

■ 붓꽃 데이터 전처리

- 결측치 확인하기
 - 결측값이면 True, 정상 데이터면 False를 반환

결측치 확인							
	⟨코드⟩	〈실행결과〉					
1	iris.isnull().sum()	SepalLength SepalWidth PetalLength PetalLidth Species dtype: int 64	0 0 0 0 0				

■ 붓꽃 데이터 전처리

- 중복 데이터 확인하기
 - 중복되면 True, 아니면 False를 반환

■ 붓꽃 데이터 전처리

- 중복 데이터를 모두 확인하기
 - duplicated() 결과를 가지고 어떤 데이터 행끼리 중복되는지 확인

중복	데이터 모두 확인		
	⟨코드⟩	〈실행결과〉	
2	<pre>result=(iris['SepalLength']==5.8) & (iris['PetalWidth']==1.9) iris.loc[result,:]</pre>	PassengerId 0 Survived 0 Pclass 0 Name 0	
		Sex 0 Age 177 SibSp 0	
		Parch 0 Ticket 0 Fare 0 Cabin 687	
		Embarked 2	

■ 붓꽃 데이터 전처리

- 중복 데이터 삭제하기
 - duplibcates()를 이용하여 나머지 중복 데이터 제거

3 iris=iris.drop_duplicates() 2 #iris.duplicated().sum() 3 result=(iris['SepalLength']==5.8) & (iris['PetalWidth']==1.9) 4 iris.loc[result,:] 〈실행결과〉 SepalLength SepalWidth PetalLength PetalWidth Species 101 5.8 2.7 5.1 1.9 virginica

■ 붓꽃 데이터 그룹핑

■ 붓꽃 데이터 그룹핑

sklearn(사이킷런) 패키지에서 붓꽃 데이터 셋 불러오기

- from sklearn.datasets import load_iris
- 2 iris_dataset=load_iris()
- #iris_dataset.keys()
- 4 df=pd.DataFrame(iris_dataset['data'], columns=iris_dataset['feature_names'])
 - df.head()

〈실행결과〉

	sepal	length (cm)	sepal width (cn)	petal length (cm)	petal width (cm)
0		5.1	3.5	1.4	0.2
1		4.9	3.0	1.4	0.2
2		4.7	3.2	1.3	0.2
3		4.6	3.1	1.5	0.2
4		5.0	3.6	1.4	0.2

시본 모듈에서 붓꽃 데이터 셋 불러오기

- import seaborn as sns
- df=sns.load_dataset('iris')
- 3 df.head()

〈실행결과〉

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

■ 판다스의 데이터 시각화

■ 판다스의 시리즈나 데이터프레임은 'plot'이라는 시각화 메소드를 내장

옵션	종류	옵션	종류
line	선 그래프	kde	커널 밀도 그래프
bar	막대 그래프 – 수직	area	면적 그래프
barh	막대 그래프 – 수평	pie	원형 그래프
his	히스토그램 그래프	scatter	산점도 그래프
box	박스 그래프	hexbin	고밀도 산점도 그래프

- 막대 그래프 그리기
 - kind = 'bar' 옵션을 통해 구현

- 히스토그램 그래프 그리기
 - kind = 'hist' 옵션을 통해 구현

- 상자 그래프 그리기
 - kind = 'box' 옵션을 통해 구현

- 산점도 그래프 그리기
 - kind = 'scatter' 옵션을 통해 구현

02

타이타닉 데이터 분석

■ 데이터 설명

- 데이터 사이언스나 머신러닝 분야에서 입문자용으로 가장 많이 사용하는 예제 중 하나
- 데이터 분석 경연 사이트인 캐글(Kaggle)에서 입문자용으로 가장 많이 사용
- 당시 사망자와 생존자를 구분하는 요인 분석을 통해 승객들의 생존 여부를 예측

■ 필드의 이해

■ 타이타닉 데이터 셋에 포함된 12개의 변수 표6-2.메티정보:

표 6-2. 데이터 성모	타이타닉(Titanic)) 성보에 관한 데이터 파일

변수명	변수 설명
Passengerld	승객 번호
Survived	생존 여부 : 0=시망, 1=생존
Pclass	객실 등급 : 1=등급, 2=등급, 3=등급
Name	승객 이름
Sex	성별
Age	나이
SibSp	함께 탑승한 형제와 배우자의 수
Parch	함께 탑승한 부모, 아이의 수
Ticket	티켓 번호
Fare	탑승 요금
Cabin	객실 번호
Embarked	탑승 항구:C=Cherbourg/Q=Queenstown/S=Southampton

	PassengerId	Survived	Polass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

그림 6-3. 원본 데이터 형태

타이타닉 데이터 읽어와서 확인

- (1) 1행에서는 파이썬 라이브러리 판다스(Pandas)를 임포트(Import)
- 3행에서는 판다스의 read_csv를 사용하여 데이터프레임 변수 titanic에 저장
- 3행에서는 titanic의 처음 5행을 출력

타이타닉 데이터 읽어와서 확인

• (2) 데이터 전체적인 구조 확인

■ 타이타닉 데이터 읽어와서 확인

(3) 데이터 기초 통계량 확인

- 타이타닉 데이터 읽어와서 확인
 - (4) 요금 기준으로 오름차순 정렬한 결과 확인

- 타이타닉 데이터 읽어와서 확인
 - (5) 생존자별 인원수를 확인

■ 타이타닉 데이터 전처리

■ 결측치 확인하기

결측	지 확인		
	⟨코드⟩	〈실행결과〉	
1	titanic.isnull().sum()	PassengerId	0
		Survived	0
		Pclass	0
		Name	0
		Sex	0
		Age	177
		SibSp	0
		Parch	0
		Ticket	0
		Fare	0
		Cabin	687
		Embarked	2

■ 타이타닉 데이터 전처리

■ 객실번호(Cabin) 컬럼 삭제

결측데이터가 포함된 컬럼 삭제

```
1 titanic.drop(['Cabin'],axis=1,inplace=True)
2 titanic.columns
```

〈실행결과〉

■ 타이타닉 데이터 전처리

■ 결측데이터 최빈값으로 대체하기

최빈값 찾기 1 titanic['Embarked'].value_counts() (실행결과) S 644 C 168 Q 77

■ 타이타닉 데이터 전처리

■ 결측데이터 평균값으로 대체하기

평균	값 대체			
	⟨코드⟩	〈실행결과〉		
1	avg=titanic['Age'].mean()	PassengerId	0	
2	titanic['Age']=titanic['Age'].fillna(avg)	Survived	0	
		Pclass	0	
		Name	0	
		Sex	0	
		Age	0	
		SibSp	0	
		Parch	0	
		Ticket	0	
		Fare	0	
		Cabin	0	
		Embarked	0	
		dtype: int6	nt64	
		dtype: Into	4	

■ 타이타닉 데이터 그룹핑하기

■ 판다스의 데이터 시각화

■ 좌석 등급별 생존자 확인

- 판다스의 데이터 시각화
 - 상관관계 확인

- 상관 분석에 대한 이해
 - 상관 분석 개념
 - 두 변수가 어떤 선형적 관계에 있는지를 분석하는 방법-두 변수는 서로 독립적이거나 상관된 관계일 수 있는데, 두 변수의 관계의 강도를 상관관계라고 한다.
 - 단순 상관 분석-두 변수가 어느 정도 강한 관계에 있는지 측정한다.
 - 상관 계수
 - 변수 간 관계의 정도(0~1)와 방향(+, -)을 하나의 수치로 요약하는 지수로 -1에서 +1 사이의 값을 가진다.
 - 상관 계수가 +면 양의 상관관계이며, 한 변수가 증가하면 다른 변수도 증가한다.
 - 상관 계수가 -면 음의 상관관계이며, 한 변수가 증가할 때 다른 변수는 감소한다.
 - 상관 계수는 데이터프레임.corr() 함수로 구한다.
 - 상관 분석 결과의 시각화
 - 두 변수의 관계를 보여 주는 산점도나 히트맵을 많이 사용한다.