Optimization 1 — Tutorial 1

October 22, 2020

Definition (Matrix Norm)

A function $\|\cdot\|: \mathbb{R}^{m \times n} \to \mathbb{R}$ is a norm if it satisfies the following three properties:

- 1. Non-negativity: $\|\mathbf{A}\| \geq 0$ and $\|\mathbf{A}\| = 0$ if and only if $\mathbf{A} = \mathbf{0}_{m \times n}$.
- 2. Positive homogeneity: $\|\lambda \mathbf{A}\| = |\lambda| \|\mathbf{A}\|$ for all $\lambda \in \mathbb{R}$.
- 3. Triangle inequality: $\|\mathbf{A} + \mathbf{B}\| \le \|\mathbf{A}\| + \|\mathbf{B}\|$.

Definition (Induced Norm)

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and two norms $(\mathbb{R}^n, \|\cdot\|_a)$ and $(\mathbb{R}^m, \|\cdot\|_b)$, the induced norm is defined by

$$\left\|\mathbf{A}\right\|_{a,b} = \max_{\mathbf{x} \in \mathbb{R}^n} \left\{ \left\|\mathbf{A}\mathbf{x}\right\|_b : \ \left\|\mathbf{x}\right\|_a \leq 1 \right\}.$$

Definition (Open Set)

A set $U \subseteq \mathbb{R}^n$ is said to be open if it contains only interior points. That is, for every $\mathbf{x} \in U$ there exists r > 0 such that $B(\mathbf{x}, r) \subseteq U$ (open ball with center \mathbf{x} and radius r contained in U).

Definition (Closed Set)

A set $U \subseteq \mathbb{R}^n$ is said to be closed if it contains all the limits of convergent sequences of points in U. That is, for every sequence $\{\mathbf{x}^i\}_{i\geq 1}\subseteq U$ satisfying $\mathbf{x}^i\to\mathbf{x}^*\in\mathbb{R}^n$ as $i\to\infty$, it holds that $\mathbf{x}^*\in U$.

Theorem (Spectral Decomposition)

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then there exists an orthogonal matrix $\mathbf{U} \in \mathbb{R}^{n \times n}$ ($\mathbf{U}^T \mathbf{U} = \mathbf{U} \mathbf{U}^T = \mathbf{I}_n$) and a diagonal matrix $\mathbf{D} \in \mathbb{R}^{n \times n}$ for which $\mathbf{U}^T \mathbf{A} \mathbf{U} = \mathbf{D}$.

Definition (Directional Derivative)

Let $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$, let $\mathbf{x} \in \text{interior}(S)$ and let $\mathbf{0}_n \neq \mathbf{d} \in \mathbb{R}^n$. If the limit

$$\lim_{t\to0^{+}}\frac{f\left(\mathbf{x}+t\mathbf{d}\right)-f\left(\mathbf{x}\right)}{t}$$

exists, then it is called the directional derivative of \mathbf{x} along the direction \mathbf{d} .

Problem 1

Prove that the induced ℓ_1 norm of $\mathbf{A} \in \mathbb{R}^{m \times n}$ is given by

$$\|\mathbf{A}\|_{1} = \max_{j=1,2,...,n} \sum_{i=1}^{m} |\mathbf{A}_{ij}|.$$

Problem 2

Prove that a set is closed if and only if its complement is open.

Problem 3

Solve the optimization problem $\max_{\mathbf{x} \in \mathbb{R}^n} \left\{ \mathbf{x}^T \mathbf{A} \mathbf{x} \colon \| \mathbf{x} \| = 1 \right\}$ for some symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$.

Problem 4

- (a) Calculate the directional derivative of the function $\|\mathbf{x}\|_2$.
- (b) Calculate the directional derivative of the function $\|\mathbf{x}\|_1$.