Rough Estimation of Instruction Rate

Anshul Gupta 28/06/2014

Motive

Calculate the instruction rate of execution using TIC traces.

Overview

5 traces with TIC instrumentation of LU benchmark, class C and 16 processes were acquired on graphene cluster.

Their COMP 4b and COMP 4c global average values and involved processes were parsed using the scripts/Expand.java code with this format.

See org/analysis.org

```
setwd('...')
library(ggplot2)
dataset.tic.lu.C.16.comp.4b.I<-read.table("datasets/tic.lu.C.16.comp.4b.I", header=TRUE)
dataset.tic.lu.C.16.comp.4b.II<-read.table("datasets/tic.lu.C.16.comp.4b.II", header=TRUE)
dataset.tic.lu.C.16.comp.4b.III<-read.table("datasets/tic.lu.C.16.comp.4b.III", header=TRUE)
dataset.tic.lu.C.16.comp.4b.IV<-read.table("datasets/tic.lu.C.16.comp.4b.IV", header=TRUE)
dataset.tic.lu.C.16.comp.4b.V<-read.table("datasets/tic.lu.C.16.comp.4b.V", header=TRUE)
dataset.tic.lu.C.16.comp.4c.I<-read.table("datasets/tic.lu.C.16.comp.4c.I", header=TRUE)
dataset.tic.lu.C.16.comp.4c.II<-read.table("datasets/tic.lu.C.16.comp.4c.II", header=TRUE)
dataset.tic.lu.C.16.comp.4c.III<-read.table("datasets/tic.lu.C.16.comp.4c.III", header=TRUE)
dataset.tic.lu.C.16.comp.4c.IV<-read.table("datasets/tic.lu.C.16.comp.4c.IV", header=TRUE)
dataset.tic.lu.C.16.comp.4c.IV<-read.table("datasets/tic.lu.C.16.comp.4c.IV", header=TRUE)</pre>
```

The variables are named as d.<A>..4b.4c.<X>, where <X> is the TIC dataset, <A> is the class, and is the number of processes. Each d.<A>..4b.4c.<X> has 6 fields:

- eventID = Event ID
- opcode = Opcode of the event
- subblock = Subblock ID of the event
- events = Number of elements involved in the event
- COMP.4b.avg = Average of COMP 4b
- COMP.4c.avg = Average of COMP 4c

```
d.C.16.4b.4c.I<-cbind(dataset.tic.lu.C.16.comp.4b.I[,1:4], dataset.tic.lu.C.16.comp.4b.II$avg/1e6, datas d.C.16.4b.4c.II<-cbind(dataset.tic.lu.C.16.comp.4b.II[,1:4], dataset.tic.lu.C.16.comp.4b.III$avg/1e6, dataset.tic.lu.C.16.comp.4b.III$avg/1e6, dataset.tic.lu.C.16.comp.4b.III$avg/1e6, dataset.tic.lu.C.16.comp.4b.III$avg/1e6, dataset.tic.lu.C.16.comp.4b.IV[,1:4], dataset.tic.lu.C.16.comp.4b.IV$avg/1e6, dataset.tic.lu.C.16.comp.4b.IV$avg/1e6, dataset.tic.lu.C.16.comp.4b.V$avg/1e6, dataset.tic.lu.C.16.comp.4b.V$avg/1e6,
```

```
colnames(d.C.16.4b.4c.II)[5:6]<-c("COMP.4b.avg", "COMP.4c.avg")
colnames(d.C.16.4b.4c.III)[5:6]<-c("COMP.4b.avg", "COMP.4c.avg")
colnames(d.C.16.4b.4c.IV)[5:6]<-c("COMP.4b.avg", "COMP.4c.avg")
colnames(d.C.16.4b.4c.V)[5:6]<-c("COMP.4b.avg", "COMP.4c.avg")</pre>
```

Get the average instruction rate

Having COMP 4b averages and COMP 4c averages, instruction rate is calculated by: instruction rate = mean(COMP.4c.average / COMP.4b.average)

```
inst_rate<-c(mean(d.C.16.4b.4c.I$COMP.4c.avg/d.C.16.4b.4c.I$COMP.4b.avg),
    mean(d.C.16.4b.4c.II$COMP.4c.avg/d.C.16.4b.4c.II$COMP.4b.avg),
    mean(d.C.16.4b.4c.III$COMP.4c.avg/d.C.16.4b.4c.III$COMP.4b.avg),
    mean(d.C.16.4b.4c.IV$COMP.4c.avg/d.C.16.4b.4c.IV$COMP.4b.avg),
    mean(d.C.16.4b.4c.V$COMP.4c.avg/d.C.16.4b.4c.V$COMP.4b.avg))

names(inst_rate)<-c('dataset1','dataset2','dataset3','dataset4','dataset5')
print(inst_rate)</pre>
```

```
## dataset1 dataset2 dataset3 dataset4 dataset5
## 3.389e+09 3.416e+09 3.414e+09 3.419e+09 3.408e+09
```

Plots

On x-axis, we have the eventID subblock.

On y-axis, we have the Instruction Rate (COMP.4c.avg/COMP.4b.avg).

The size of each point represents the number of elements involved in the current event_subblock. Color represents the average number of instructions (COMP.4c.avg).

6

26

vs Instruction Rate Dataset 1.pdf

```
ggplot(d.C.16.4b.4c.II, aes(x=1:nrow(d.C.16.4b.4c.II),
                      y=COMP.4c.avg/COMP.4b.avg,
                      color=COMP.4c.avg,
                      size=events)) +
  geom_point() + xlab("Event") + ylab("Instruction Rate") +
  geom_hline(yintercept=inst_rate[2])
```


66

26

vs Instruction Rate Dataset 2.pdf

```
ggplot(d.C.16.4b.4c.III, aes(x=1:nrow(d.C.16.4b.4c.III),
                      y=COMP.4c.avg/COMP.4b.avg,
                      color=COMP.4c.avg,
                      size=events)) +
  geom_point() + xlab("Event") + ylab("Instruction Rate") +
  geom_hline(yintercept=inst_rate[3])
```


66

26

vs Instruction Rate Dataset 3.pdf

```
ggplot(d.C.16.4b.4c.IV, aes(x=1:nrow(d.C.16.4b.4c.IV),
                      y=COMP.4c.avg/COMP.4b.avg,
                      color=COMP.4c.avg,
                      size=events)) +
  geom_point() + xlab("Event") + ylab("Instruction Rate") +
  geom_hline(yintercept=inst_rate[4])
```


6

26

vs Instruction Rate Dataset 4.pdf

```
ggplot(d.C.16.4b.4c.V, aes(x=1:nrow(d.C.16.4b.4c.V),
                      y=COMP.4c.avg/COMP.4b.avg,
                      color=COMP.4c.avg,
                      size=events)) +
  geom_point() + xlab("Event") + ylab("Instruction Rate") +
  geom_hline(yintercept=inst_rate[5])
```


66

26

vs Instruction Rate Dataset 5.pdf

Results

Instruction rate is around 3.4e9 Instructions per sec

Conclusions

It is clear from the plots that the executions are quite stable as CPU bursts on each execution occur at same places.