Bernstein Theorem Notes

Paul Tee

The goal of this note is to provide a proof of *Bernstein's theorem* in \mathbb{R}^3 following 1.4 - 1.5 of [CM11].

Theorem 0.1 (Bernstein). If $u : \mathbb{R}^2 \to \mathbb{R}$ is an entire solution to the minimal surface equation, then its graph must be a plane, i.e. u = ax + by + c.

Remark 0.2. It's interesting to compare this statement to Liouville theorem, namely bounded (or sublinear) entire harmonic functions are constant.

1 Preliminaries

For $\Sigma^2 \subset \mathbb{R}^3$ be orientable and ν be a choice of unit normal on Σ . We will define two maps, which will be identified with each other [Figure 1]. The first map is the Weingarten map,

$$T\Sigma \to T\Sigma$$
$$X \mapsto \nabla_X \nu.$$

Note that changing this to the (0,2) version gives, up to sign, the second fundamental form

$$II(X,Y) := \langle \nabla_X \nu, Y \rangle.$$

In particular, the Weingarten map is symmetric, real-valued so it diagonalizes with eigenvalues κ_1, κ_2 . The second map is the differential of the *Gauss map*,

$$d\nu: T\Sigma \to T\mathbb{S}^2$$
$$X \mapsto d\nu(X).$$

Figure 1: Weingarten map is the differential of Gauss map

Figure 2: The full Hessian of r

The two maps can be identified since any orthonormal frame E_1 , E_2 on Σ can be carried to one on \mathbb{S}^2 , so there is no point in distinguishing the codomain between $T\Sigma$ or $T\mathbb{S}^2$. Furthermore assuming Σ is minimal forces $\kappa_2 = -\kappa_1$ and gives anti-conformality of the Gauss map,

$$|d\nu|^2 = |II|^2 = \kappa_1^2 + \kappa_2^2 = -2\kappa_1\kappa_2 = -2\det(d\nu). \tag{1}$$

We briefly remark that $\det(d\nu)$ is a common definition of Gauss curvature. \sim

We observe if Σ is given as the regular level set of a function $r: \mathbb{R}^3 \to \mathbb{R}$, then its second fundamental form is proportional the surface Hessian. Recall for $X, Y \in \mathfrak{X}(\Sigma)$,

$$\nabla_{\Sigma}^2 r(X,Y) := \langle \nabla_X \nabla r, Y \rangle.$$

Since the gradient is perpendicular to level sets, we see that

$$II = \frac{\nabla_{\Sigma}^2 r}{|\nabla r|}.$$

We will apply this observation to Bernstein's theorem via the following procedure which turns any graph into a level set. Let $u: \mathbb{R}^2 \to \mathbb{R}$ be a solution to the minimal surface equation, and consider $\Sigma = \text{graph } u \subset \mathbb{R}^3$ with the induced metric. Consider the signed distance function r in a neighborhood of Σ ,

$$r: \Sigma \times (-\epsilon, \epsilon) \to \mathbb{R}$$

 $(x, t) \mapsto u(x) - t.$

We compute the norm of the gradient of r and the Hessian of r as

$$|\nabla r| = \sqrt{(\partial_t r)^2 + |\nabla_{\Sigma} r|^2} = \sqrt{1 + |\nabla u|^2},$$
$$\nabla_{\Sigma}^2 r = \nabla_{\Sigma}^2 u.$$

The Hessian identity follows since all derivatives in the direction of Σ fall onto u [Figure 2]. Therefore, the second fundamental form can be expressed purely in terms of u,

$$\Pi = \frac{\nabla_{\Sigma}^2 r}{|\nabla r|} = \frac{\nabla_{\Sigma}^2 u}{\sqrt{1 + |\nabla u|^2}}.$$

In particular, if the second fundamental form vanishes, then so must the Hessian, so u will graph an affine plane.

2 Bernstein's theorem

We begin our quest of showing II $\equiv 0$ on $\Sigma := \text{graph } u$ by showing that the total curvature is bounded by the energy of any cutoff function.

Lemma 2.1. Let $u: \Omega \subset \mathbb{R}^2 \to \mathbb{R}$ be a solution to the minimal surface equation. For any non-negative, Lipschitz¹ function η with support contained in $\Omega \times \mathbb{R}$,

$$\int_{\Sigma} \eta^2 |II|^2 \le C \int_{\Sigma} |\nabla_{\Sigma} \eta|^2.$$

Proof. Let ω be the area form on \mathbb{S}^2 and consider the upper hemisphere. Consider the 1-form α such that $d\alpha = \omega$ on the upper hemisphere. Equation 1 implies

$$|\mathrm{II}|^2 d\Sigma = -2 \det(d\nu) d\Sigma = 2\nu^* \omega = 2d\nu^* \alpha.$$

Furthermore, in local coordinates we have $(\nu^*\alpha)_i = (d\nu)_i^j \alpha_i$, so Cauchy-Schwarz implies

$$|\nu^*\alpha| \le C|II|$$
,

with $C = C(\alpha)$. In total,

$$\begin{split} \int_{\Sigma} \eta^2 |\mathrm{II}|^2 d\Sigma &= 2 \int_{\Sigma} \eta^2 d\nu^* \alpha = \underbrace{-4 \int_{\Sigma} \eta d\eta \wedge \nu^* \alpha}_{\text{Stokes & η^2 vanishes on $\partial \Sigma$}} \\ &\leq 4 C \int_{\Sigma} \eta |\nabla_{\Sigma} \eta| |\mathrm{II}| d\Sigma \leq 4 C \left(\int_{\Sigma} \eta^2 |\mathrm{II}|^2 d\Sigma \right)^{\frac{1}{2}} \left(\int_{\Sigma} |\nabla_{\Sigma} \eta|^2 d\Sigma \right)^{\frac{1}{2}}, \end{split}$$

and so we reincorporate to get

$$\int_{\Sigma} \eta^2 |\mathrm{II}|^2 d\Sigma \le 16C^2 \int_{\Sigma} |\nabla_{\Sigma} \eta|^2 d\Sigma.$$

Remark 2.2. I'm not convinced that non-negativity of η is used in any meaningful way in the above proof. This assumption can probably be dropped.

In light of Lemma 2.1, game now is to find a sequence of non-negative Lipschitz cutoff functions η_N tending to 1, with energy tending to 0. Let us first work heuristically. Define radial cutoff functions [Figure 3] for r = |x|,

$$\eta_N(r) := \begin{cases} 1 & r \le e^N \\ 2 - \frac{\log(r)}{N} & e^N < r \le e^{2N} \\ 0 & e^{2N} < r. \end{cases}$$

¹It is helpful to recall Rademacher's theorem, which tells us that Lipschitz functions are differentiable almost everywhere.

Figure 3: η_N for N = 1, 1.5, 2

Observe $\eta_N \to 1$ as $N \to \infty$. We compute $|\nabla \eta_N| = \frac{1}{Nr}$, and by co-area formula we compute

$$\int_{\mathbb{R}^2} |\nabla \eta_N|^2 = \int_0^\infty \int_{\partial B_r} |\nabla \eta_N|^2 d\sigma dr = \int_{e^N}^{e^{2N}} \frac{2\pi r}{(Nr)^2} dr = \frac{2\pi}{N}.$$

In particular, the energy of η_N vanishes as $N \to \infty$. The same computation holds with *linear* perimeter growth

$$Length(\partial B_r) \leq Cr$$
,

as we may basically repeat the above argument

$$\int_{\Sigma} |\nabla \eta_N|^2 = \int_0^{\infty} \int_{\partial B_r} |\nabla \eta_N|^2 d\sigma dr = \int_{e^N}^{e^{2N}} \frac{\operatorname{Length}(\partial B_r)}{(Nr)^2} dr \le \frac{C}{N}.$$

However, what's important is that the same computation holds under the sharper assumption of quadratic area growth

$$Area(B_r) \leq Cr^2$$
.

This is important since by a calibration argument (Corollary 1.2 of [CM11]), a minimal surface $\Sigma^2 \subset \mathbb{R}^3$ will always satisfy a quadratic area growth (with $C = 2\pi$). To prove the energy bound under this assumption, first observe $|\nabla \eta_N|$ is monotonically decreasing, so

$$\sup_{B_{e^k} \backslash B_{e^{k-1}}} |\nabla_N \eta|^2 = |\nabla \eta_N|^2 \bigg|_{\partial B_{-k-1}} = N^{-2} e^{2-2k}.$$

We break up the "middle section" into concentric annuli and compute

$$\int_{\Sigma} |\nabla \eta_{N}|^{2} \leq \sum_{k=N+1}^{2N} \int_{B_{e^{k}} \setminus B_{e^{k-1}}} N^{-2} e^{2-2k} d\sigma$$

$$\leq \sum_{k=N+1}^{2N} N^{-2} e^{2-2k} \operatorname{Area}(B_{e^{k}} \setminus B_{e^{k-1}}) \leq \sum_{k=N+1}^{2N} CN^{-2} e^{2} = \frac{Ce^{2}}{N}.$$

Remark 2.3. Let's take a second to summarize what happened. The energy integrand decays like r^{-2} , while the domain grows like r^2 . To get the desired decay rate, you associate a constant N with the energy integrand, which pops out as N^{-2} . This combats the linear N that pops out of the sum over the annuli, leaving a final rate of N^{-1} .

 $^{^2 \}mathrm{In}$ fact, you probably start at this and define η from here.

Remark 2.4. This whole heuristic can obviously be sharpened. Two immediate directions are replacing Cauchy-Schwarz with Hölder in Lemma 2.1, and requiring a decay on the energy of η_N of $N^{-\alpha}$ for any $\alpha > 0$. Generalizing in these directions is the content of Chapter 2.

Inspired by these heuristic computations, we perform a similar logarithmic cutoff trick to conclude Bernstein's theorem.

Corollary 2.5. If $u : \Omega : \mathbb{R}^2 \to \mathbb{R}$ is a solution to the minimal surface equation, $\kappa > 1$ and Ω contains a ball of radius κR centered at the origin, then

$$\int_{B_{\sqrt{\kappa}R}\cap\Sigma} |II|^2 \le \frac{C}{\log \kappa}.$$

Remark 2.6. Note that the parameter R is needed as we require $\kappa > 1$ for taking log. But for Bernstein purposes, we can think of fixing R = 1 and $\kappa \to \infty$.

Proof. Define $\eta: \mathbb{R}^3 \to \mathbb{R}$ with support contained in $B_{\kappa R}$. Again for r = |x|, define

$$\eta(r) := \begin{cases} 1 & r \le \sqrt{\kappa}R \\ 2 - \frac{2\log(\frac{r}{R})}{\log \kappa} & \sqrt{\kappa}R < r \le \kappa R \\ 0 & \kappa R < r. \end{cases}$$

We compute $|\nabla_{\Sigma}\eta| \leq \frac{2}{r\log\kappa}$, and assuming for simplicity $\log\sqrt{\kappa} = \log\kappa/2$ is an integer,

$$\begin{split} \int_{B_{\sqrt{\kappa}R}\cap\Sigma} |\mathrm{II}|^2 &\leq \int_{\Sigma} \eta^2 |\mathrm{II}|^2 \leq C \int_{\Sigma} |\nabla_{\Sigma}\eta|^2 \leq \frac{4C}{(\log\kappa)^2} \underbrace{\int_{B_{\kappa R}\cap\Sigma} r^{-2} dr}_{\text{quadratic decay}} \\ &\leq \frac{4C}{(\log\kappa)^2} \sum_{k=\log\sqrt{\kappa}}^{\log\kappa} \int_{B_{e^kR}\setminus B_{e^{k-1}R}\cap\Sigma} r^{-2} dr \\ &\leq \frac{4C}{(\log\kappa)^2} \sum_{k=\log\sqrt{\kappa}}^{\log\kappa} (e^{k-1}R)^{-2} \cdot \underbrace{2\pi (e^kR)^2}_{\text{quadratic area growth}} \\ &= \frac{4C}{(\log\kappa)^2} \sum_{k=\log\sqrt{\kappa}}^{\log\kappa} 2e^2\pi = \frac{4\pi e^2C}{\log\kappa}. \end{split}$$

References

[CM11] T.H. Colding and W.P. Minicozzi. A Course in Minimal Surfaces. Graduate studies in mathematics. American Mathematical Society, 2011. ISBN: 9780821853238.