Tema 5. Razonamiento con Incertidumbre y Teorema de Bayes

Introducción a la Incertidumbre

La incertidumbre en la inteligencia artificial se presenta cuando no se tiene un conocimiento completo del mundo o de las consecuencias de las acciones. Modelar la incertidumbre permite manejar situaciones complejas sin necesidad de describir exhaustivamente todas las reglas. En este contexto, se asigna un grado de creencia a las proposiciones, con valores entre 0 y 1, lo que permite expresar la confianza en la verdad de una proposición.

Grado de Creencia

El grado de creencia se asigna a una proposición para indicar su probabilidad de ser verdadera o falsa. Un valor de 0 significa que la proposición es inequívocamente falsa, mientras que un valor de 1 indica que es inequívocamente verdadera. Los valores intermedios reflejan niveles intermedios de creencia. Es importante diferenciar entre grado de creencia y grado de pertenencia, que es un concepto de la lógica difusa.

Decisiones Racionales

En situaciones de incertidumbre, un agente debe tomar decisiones racionales basadas en la teoría de la utilidad, que combina la teoría de la probabilidad y la utilidad. La utilidad mide el beneficio que un estado particular ofrece al agente, y el agente preferirá estados con mayor utilidad. La teoría de la decisión permite seleccionar acciones que maximicen la utilidad esperada.

Teoría de la Probabilidad

Notación Básica

Las variables aleatorias representan elementos del mundo cuyo estado es desconocido. Estas variables pueden ser:

- Booleanas: con dominio <cierto. falso>
- Discretas: con un dominio contable, como <soleado, lluvioso, nublado>
- Continuas: con dominio en los números reales o un subconjunto de estos.

Probabilidad a Priori o Incondicional

La probabilidad a priori de una proposición es el grado de creencia asignado en ausencia de información adicional. Por ejemplo, la probabilidad de que ocurra un choque puede escribirse como P(Chocar) = 0.2. Las probabilidades a priori se derivan de la observación y registro de eventos.

Distribución de Probabilidad

Una distribución de probabilidad asigna probabilidades a todos los posibles valores de una variable aleatoria. En una distribución conjunta, se consideran todas las combinaciones posibles de valores de un conjunto de variables.

Probabilidad Condicional

La probabilidad condicional P(a|b) indica la probabilidad de a dado que se conoce b. La regla del producto establece que $P(a \land b) = P(a|b)P(b) = P(b|a)P(a)$.

Axiomas de la Probabilidad

- 1. Las probabilidades están entre 0 y 1: $0 \le P(a) \le 1$.
- 2. Las proposiciones necesariamente ciertas tienen probabilidad 1, y las falsas 0.
- 3. La probabilidad de una disyunción se calcula como P(a ∨ b) = P(a) + P(b) P(a ∧ b).

Inferencia Probabilística

La inferencia probabilística se basa en la distribución conjunta completa de las variables. Permite calcular la probabilidad marginal y condicional de eventos complejos.

Independencia

Dos proposiciones a y b son independientes si P(a|b) = P(a), lo que simplifica los cálculos de probabilidad y reduce el tamaño de representación del problema.

Teorema de Bayes

El Teorema de Bayes relaciona las probabilidades condicionales y marginales de eventos. Se deriva de la regla del producto:

$$P(b|a) = \frac{P(a|b)P(b)}{P(a)}$$

Este teorema permite actualizar la probabilidad de una hipótesis a medida que se obtiene nueva evidencia.

Planteamiento del Ejercicio

Un robot móvil dispone de un sensor para detectar obstáculos. Se nos proporcionan los siguientes datos:

- P(Sensor+ | Choque) = 0.85 (El sensor detecta el obstáculo el 85% de las veces que hay choque)
- P(Choque) = 0.20 (Probabilidad de choque del 20%)
- P(Sensor+) = 0.25 (Probabilidad de que el sensor detecte un obstáculo)

Objetivos

- 1. Calcular P(Choque | Sensor+): Probabilidad de choque cuando el sensor detecta un obstáculo
- 2. Calcular P(No_Choque | Sensor-): Probabilidad de no chocar cuando el sensor no detecta obstáculo

Resolución

1. Cálculo de P(Choque | Sensor+)

Aplicando el Teorema de Bayes:

```
 P(Choque \mid Sensor+) = P(Sensor+ \mid Choque) \times P(Choque) / P(Sensor+) \\ P(Choque \mid Sensor+) = 0.85 \times 0.20 / 0.25 = 0.68
```

Esto significa que cuando el sensor detecta un obstáculo, hay un 68% de probabilidad de que el robot choque.

2. Cálculo de P(No_Choque | Sensor-)

Para este cálculo, necesitamos primero algunos valores adicionales:

```
a) P(No_Choque) = 1 - P(Choque) = 1 - 0.20 = 0.80
b) P(Sensor-) = 1 - P(Sensor+) = 1 - 0.25 = 0.75
```

c) P(Sensor- | No_Choque) podemos calcularlo usando la información dada:

Ahora podemos aplicar Bayes:

```
 P(No\_Choque \mid Sensor-) = P(Sensor- \mid No\_Choque) \times P(No\_Choque) / P(Sensor-) \\ P(No\_Choque \mid Sensor-) = 0.9125 \times 0.80 / 0.75 = 0.97
```

Interpretación de Resultados

- 1. Cuando el sensor detecta un obstáculo (lectura positiva), hay un 68% de probabilidad de que el robot choque.
- 2. Cuando el sensor no detecta obstáculos (lectura negativa), hay un 97% de probabilidad de que el robot no choque.

Conclusiones del Ejercicio

- El sensor es más fiable cuando no detecta obstáculos (97% de acierto) que cuando los detecta (68% de acierto).
- Esto sugiere que el sensor tiene una tasa de falsos positivos relativamente alta.
- · Para aplicaciones críticas de seguridad, podría ser necesario complementar este sensor con otros métodos de detección.

Implicaciones Prácticas

Este tipo de análisis es fundamental en robótica y sistemas autónomos para:

- Evaluar la fiabilidad de los sensores
- Tomar decisiones basadas en lecturas de sensores
- Diseñar sistemas de seguridad redundantes
- Calibrar la sensibilidad de los sensores