Álgebra Linear e Geometria Analítica

— Atividade de Recuperação da Aprendizagem —

Vetores no Plano e no Espaço

Junho/2019

Nome:		
Curso:		

1 Instruções importantes

Esta *Atividade de Recuperação da Aprendizagem* consiste de 67 questões, das quais 18 são obrigatórias¹, que abordam o seguinte conteúdo:

- Vetores no plano e no espaço
 - Conceitos básicos
 - Representação e propriedades de vetores
 - Operações no plano
 - Operações no espaço

QUESTÕES OBRIGATÓRIAS:

1, 5, 12, 13, 19, 20, 28, 30, 32, 37, 38, 39, 43, 46, 55, 56, 62 *e* 63.

PRAZO PARA ENTREGA: DIA 12/06/2019!

As regras abaixo devem ser obedecidas:

- 1. A atividade poderá ser feita durantes as monitorias ou como atividade para casa;
- 2. O monitor não dará respostas, mas explicará a matéria e esclarecerá dúvidas tantas vezes quanto necessário;
- 3. As respostas serão escritas em folhas de papel almaço, disponibilizadas pelo monitor. Não se esqueça de escrever seu nome nas folhas;
- 4. As questões de verdadeiro ou falso (V ou F) e/ou questões objetivas podem ser resolvidas na própria folha de questões. Questões discursivas devem ser resolvidas na própria folha ou na folha de papel almaço;
- 5. É permitido a consulta de qualquer material bibliográfico, impresso ou online, e também é permitido o uso de calculadoras (desde que o desenvolvimento de todas as contas esteja descrito);
- 6. Essa atividade servirá para recuperar, além da aprendizagem, uma parte da nota da segunda avaliação. As regras para isso ainda serão definidas pelo Prof. Rober. Observação: recuperar a nota é a consequência, o objetivo é recuperar a aprendizagem!

¹DICA IMPORTANTE: não se limite a fazer as questões obrigatórias, pelo menos *leia* as outras questões para identificar conteúdos que você ainda não domina! Se, ao ler as questões opcionais, você perceber que não domina o conteúdo, faça essas questões também! Assim você terá o máximo aproveitamente desta atividade.

2 Vetores: conceitos fundamentais

- 1. O que é um vetor? O que diferencia um vetor de um escalar?
- 2. Identifique abaixo se a grandeza indicada é vetorial (V) ou escalar (E):
 - (a) ___ Massa de uma pessoa, em kg.
 - (b) ____ Deslocamento, em km, de uma pessoa, de um ponto A para o ponto B.
 - (c) ___ Altura de uma pessoa, em m.
 - (d) $_$ Peso de uma pessoa, em N^2 .
 - (e) ___ A direção de uma avião, voando de Vitória para São Paulo.
 - (f) ____ O Índice de Massa Corporal (IMC) de uma pessoa, calculado como $IMC = \frac{m}{a^2}$, onde m é massa em kg, e a é a altura em m.
- 3. Os vetores podem ser representados de *muitas* formas diferentes (e isso causa até uma certa confusão para quem está começando a estudar o assunto). Considere que temos um vetor \vec{u} qualquer em \mathbb{R}^2 , que **sai** do ponto A e **chega** no ponto B em um sistema de coordenadas. Assinale abaixo todas as formas corretas de se representar esse vetor.
 - $\bigcirc \overrightarrow{AB}$
 - $\cap \vec{u}$
 - $\bigcirc u = AB$
 - $\bigcap \overrightarrow{BA}$
 - $\bigcirc \vec{u} = x\hat{i} + y\hat{j}$
 - $\bigcirc \vec{u} = u_x \hat{i} + u_y \hat{j}$
- 4. O *comprimento* de um vetor também pode ser representado por diversas denominações (mais uma fonte de confusão!). Assinale abaixo todas as formas corretas de se denominar o comprimento de um vetor \vec{u} qualquer.
 - () tamanho
 - magnitude
 - norma
 - () módulo
 - valor absoluto
 - $\bigcirc \|\vec{u}\|$
 - $\bigcirc u$
 - $\bigcirc |\vec{u}|$

 $^{^{2}}$ N é o símbolo do **newton**, uma unidade de medida de força: $1N=1\frac{kg imes m}{s^{2}}$

5.	O	que	significa	a	direção	de	um	vetor?	E	o sentido?	•
----	---	-----	-----------	---	---------	----	----	--------	---	------------	---

- 6. Assinale a (única) alternativa verdadeira:
 - O Dois vetores são iguais se tiverem a mesma magnitude, não importando a direção ou o sentido.
 - A magnitude de um vetor pode ser 0, um valor positivo, ou um valor negativo.
 - O Dois vetores com a mesma magnitude, direção e sentido, mas localizados em locais diferentes no espação, são diferentes.
 - O Dois vetores com a mesma magnitude, mesma direção, mas sentidos opostos são iguais.
 - Obis vetores são iguais se, e somente se, tiverem a mesma magnitude, direção e sentido, mesmo que estejam em locais diferentes no espaço.
 - O Dois vetores são iguais se, e somente se, forem colineares.
 - Não existem vetores nulos.
- 7. Se a magnitude de dois vetores for a mesma, $\|\vec{a}\| = \|\vec{b}\|$, então podemos afirmar que os vetores serão iguais? Justifique sua resposta.
- 8. Assinale verdadeiro (V) ou falso (F):
 - (a) $\overrightarrow{v} + \overrightarrow{0} = \overrightarrow{v}$
 - (b) $\vec{v} + (-\vec{v}) = \vec{0}$
 - (c) $\vec{v} \vec{w} = \vec{v} + (-\vec{w})$
 - (d) $\overrightarrow{v} + \overrightarrow{w} \neq \overrightarrow{w} + \overrightarrow{v}$
- 9. Quando "escalonamos" um vetor \vec{v} qualquer através da multiplicação desse vetor com um número escalar k qualquer, o resultado será um múltiplo escalar de \vec{v} . Assinale verdadeiro (V) ou falso (F):
 - (a) ___ Se $\vec{w} = k \vec{v}$, então $\|\vec{w}\| = |k| \|\vec{v}\|$
 - (b) ___ Se $\overrightarrow{w} = k \overrightarrow{v}$, então \overrightarrow{w} será nulo se, e apenas se, k for igual a zero ou \overrightarrow{v} for igual ao vetor nulo.
 - (c) ___ Se $\vec{w} = k \vec{v}$, então \vec{w} pode ser paralelo ou perpendicular a \vec{v} .
 - (d) ____ Se $\vec{w} = k\vec{v}$, então \vec{w} sempre terá a mesma direção de \vec{v} .
 - (e) ____ Se $\vec{w} = k\vec{v}$, então \vec{w} sempre terá o mesmo sentido de \vec{v} .
 - (f) ___ É possível obter um vetor \overrightarrow{w} de magnitude 1 multiplicando-se um vetor \overrightarrow{v} pelo inverso de sua magnitude, ou seja, $\overrightarrow{w} = \frac{1}{\|\overrightarrow{v}\|}\overrightarrow{v}$. Esse vetor \overrightarrow{w} , além de ter magnitude 1, também terá o mesmo sentido e direção do vetor \overrightarrow{v} .

3 Componentes e Vetores Componentes

10. A figura abaixo ilustra o vetor \overrightarrow{A} juntamente com seus vetores componentes $\overrightarrow{A_x}$ e $\overrightarrow{A_y}$.

Fonte: Young HD, Freedman RA, Ford LA. *University Physics*, 13. ed.

- (a) Qual a diferença, e a relação, entre um determinado **vetor** \overrightarrow{A} e seus *vetores componentes* $\overrightarrow{A_x}$ e $\overrightarrow{A_y}$?
- (b) Como representar um vetor \overrightarrow{A} em termos de seus vetores componentes $\overrightarrow{A_x}$ e $\overrightarrow{A_y}$?
- 11. A figura abaixo ilustra o vetor \overrightarrow{A} juntamente com seus componentes A_x e A_y .

Fonte: Young HD, Freedman RA, Ford LA. University Physics, 13. ed.

(a) O que é um *componente* de um vetor? (não cofunda com "vetor componente")

(b) Como representar um vetor \overrightarrow{A} em termos de seus *componentes* A_x e A_y ?

(c) Os componentes A_x e A_y são vetores? Por quê? (de novo, não confunda "componente" com "vetor componente")

12. Um vetor \vec{w} em \mathbb{R}^2 sai do ponto P=(-4,5) e chega no ponto Q=(3,-12). Que vetor é esse? (represente esse vetor em termos de seus *componentes*)

13. Um vetor \vec{u} em \mathbb{R}^5 sai do ponto P=(3,4,-2,1,-8) e chega no ponto Q=(-1,-1,4,8,2). Que vetor é esse? (represente esse vetor em termos de seus *componentes*)

14. Considere a figura abaixo, que representa um vetor \overrightarrow{V} no espaço em três dimensões, e responda verdadeiro (V) ou falso (F):

Fonte: slides do material da disciplina

(a) $v_1, v_2 \in v_3$ representam os vetores componentes de \overrightarrow{V} .

(b) ____Podemos considerar que (v_1, v_2, v_3) são as coordenadas (x, y, z) do ponto final de \overrightarrow{V} , já que esse vetor se inicia na origem do sistema cartesiano.

(c) $\overrightarrow{V}=(v_1,v_2,v_3)$ é a representação do vetor \overrightarrow{V} através de seus componentes.

(d) ____ Uma outra forma de representar o vetor \overrightarrow{V} seria através dos vetores componentes, da seguinte forma: $\overrightarrow{V} = \overrightarrow{v_1} + \overrightarrow{v_2} + \overrightarrow{v_3}$.

(e) Podemos usar os componentes para representar o vetor \vec{V} da seguinte forma: $\vec{V} = v_1 \, \hat{i} + v_2 \, \hat{j} + v_3 \, \hat{k}$.

15. Eu entendi a diferença entre "componente" e "vetor componente", bem como as formas de representar um vetor utilizando componentes ou utilizando vetors componentes!

○ Sim

○ Não

4 Soma, subtração, múltiplos escalares e magnitude de vetores

- 16. Dados os pontos A = (-2, 6), B = (4, 10), C = (6, -2) e O = (0, 0), calcule:
 - (a) $\overrightarrow{OA} \overrightarrow{AB}$
 - (b) $\overrightarrow{OC} \overrightarrow{BC}$
 - (c) $3\overrightarrow{BA} 4\overrightarrow{CB}$
 - (d) $\overrightarrow{OO} \overrightarrow{AC}$
- 17. Seja o vetor $\vec{u}=(-1,3)$. Sabendo-se que esse vetor termina no ponto Q=(3,1), qual é seu ponto de origem P?
- 18. Dados os vetores $\vec{v} = (3, -1)$ e $\vec{u} = (-1, 2)$, ache o vetor \vec{x} tal que:
 - (a) $4(\vec{v} \vec{u}) + \frac{1}{3}\vec{x} = 2\vec{v} \vec{x}$
 - (b) $3\vec{x} (2\vec{u} \vec{v}) = 2(4\vec{x} 3\vec{v})$
- 19. Dados os vetores $\vec{u} = (6, -2), \vec{v} = (-6, 8)$ e $\vec{w} = (4, -3)$:
 - (a) Calcule $\|\vec{u}\|$.
 - (b) Encontre o vetor unitário de sentido oposto ao vetor \vec{w} .
 - (c) Encontre um vetor que tenha a metade do tamanho de \overrightarrow{v} , tenha a mesma direção, mas sentido contrário.
 - (d) Qual o tamanho do vetor que é resultante da soma do dobro do vetor \vec{u} com a metade do vetor \vec{w} ?
 - (e) Qual o resultado de $\left\| \frac{\overrightarrow{w}}{\|\overrightarrow{w}\|} \right\|$?
- 20. Dadas as coordenadas (2,-6,z) de um vetor \vec{x} em \mathbb{R}^3 , encontre o valor da coordenada z de maneira que $\|\vec{x}\|=15$.
- 21. Qual a norma do vetor $\vec{a} \in \mathbb{R}^7 = (2, 3, -1, 0, 4, -1, 5)$?
- 22. É possível somar ou subtrair o vetor $\vec{r} \in \mathbb{R}^4$ com o vetor $\vec{s} \in \mathbb{R}^5$? Justifique sua resposta.
- 23. Quanto vale a metade da norma do vetor $\vec{b} = -2\hat{i} + 3\hat{j} 5\hat{k}$?
- 24. Eu entendi como calcular a soma e subtração de vetores. Também entendi como encontrar um vetor unitário e um múltiplo escalar de qualquer vetor. Por fim, já entendi e sei calcular o que é a norma de um vetor.
 - Sim
 - Não

5 Produto escalar entre dois vetores

25. Sejam 2 vetores, \vec{u} e \vec{w} . O produto escalar entre esses dois vetores resulta em um valor escalar, e é simbolizado por $\vec{u} \cdot \vec{w}$. Existem duas maneiras de se calcular o produto escalar entre esses dois vetores: a) através de seus componentes; e b) através das magnitudes e do ângulo entre eles. Pergunta-se:

(a) Como calcular o produto escalar através dos componentes dos vetores?

- (b) Se soubermos qual o ângulo entre esses vetores e se soubermos qual a magnitude de cada um, como calcular o produto escalar entre eles?
- 26. Sabe-se que $\|\vec{x}\| = 8$ e que $\|\vec{y}\| = 4$. Sabe-se também que o ângulo entre esses dois vetores é de 60°. É possível calcular $\vec{x} \cdot \vec{y}$? Se sim, calcule.
- 27. Calcule o produto escalar entre os vetores $\vec{a} = (1, 2, 3, 4, 5)$ e $\vec{b} = (5, 4, 3, 2, 1)$.
- 28. Sabendo-se que $\vec{r} \cdot \vec{s} = -15$, $\|\vec{r}\| = \sqrt{26}$ e $\|\vec{s}\| = \sqrt{41}$, calcule o ângulo θ entre esses vetores. Antes de calcular o ângulo, você anteciparia que: a) $0^{\circ} \le \theta < 90^{\circ}$; ou b) $\theta = 90^{\circ}$; ou c) $90^{\circ} < \theta < 180^{\circ}$? Calcule e confira.
- 29. Calcule o ângulo entre o vetor $\vec{w} = 3\hat{i} 2\hat{j}$ e o vetor $\vec{z} = 5\hat{i} + 1\hat{j}$.
- 30. Sendo $\vec{a} = (2, -1, 1)$, $\vec{b} = (1, -2, -2)$ e $\vec{c} = (1, 1, -1)$, encontre o vetor $\vec{x} = (x, y, z)$ tal que: $\vec{v} \cdot \vec{a} = 4$; $\vec{v} \cdot \vec{b} = -9$; e $\vec{v} \cdot \vec{c} = 5$.
- 31. Responda verdadeiro (V) ou falso (F):
 - (a) ____Se dois vetores são ortogonais entre si, não é possível calcular o produto escalar.
 - (b) ____ Podemos afirmar com certza que: se o produto escalar entre dois vetores é negativo, então o ângulo entre eles será maior do que 90° e menor ou igual a 180°.
 - (c) ___ O produto escalar entre dois vetores será nulo se: um deles for um vetor nulo, ou o ângulo entre eles for de 90°
 - (d) ___ Se só temos a informação sobre os componentes de dois vetores, podemos calcular o produto escalar entre eles, mas não o ângulo.
 - (e) ____ Dependendo da situação, o produto escalar entre dois vetores pode resultar em um outro vetor.
 - (f) ___ O produto escalar entre dois vetores nunca será nulo.
- 32. Determinar o valor de x para que os vetores $\vec{v}=x\,\hat{i}-2\,\hat{j}+3\,\hat{k}$ e $\vec{w}=2\,\hat{i}-\hat{j}+2\,\hat{k}$ sejam ortogonais.

33. Eu entendi como calcular o produto escalar entre dois vetores, tanto usando os componentes, quanto usando as magnitudes e o ângulo entre eles.

○ Sim○ Não

figura abaixo:

34. Uma última questão para saber se você realmente entendeu o produto escalar: determine o ângulo entre a diagonal de um cubo unitário e a aresta no eixo x, conforme a

Fonte: slides do material da disciplina

6 Decomposição de um vetor em componentes

35.	O que é decompor um vetor em seus componentes?

36. Imagine que temos o vetor $\vec{a} \in \mathbb{R}^2$. Sabemos a magnitude desse vetor e o ângulo θ que esse vetor faz com o eixo x no plano cartesiano.

(a) Qual das fórmulas abaixo nos fornecerá o componente vertical do \vec{a} ?

$$\bigcirc \ a_y = \|\vec{a}\| \cos\left(\theta\right)$$

$$\bigcirc \ a_y = \|\overrightarrow{a}\|\sin\left(\theta\right)$$

(b) Qual das fórmulas abaixo nos fornecerá o componente horizontal do \vec{a} ?

$$\bigcap a_x = \|\vec{a}\| \cos(\theta)$$

$$\bigcirc \ a_x = \|\vec{a}\| \sin(\theta)$$

(c) Responda verdadeiro (V) ou falso (F):

(a) ___ Sempre que soubermos a magnitude de um determinado vetor e sua direção, será possível decompor esse vetor em seus componentes.

- (b) ____ Se soubermos a magnitude de um vetor e a magnitude de um de apenas 1 de seus componentes, não será possível calcular sua direção.
- (c) ___ A partir dos componentes, podemos encontrar os vetores componentes.
- (d) ___ Se eu conheço a magnitude de um vetor mas não sei sua direção, então não é possível determinar seus componentes.
- 37. Seja $\|\vec{m}\| = 5$. Sabendo que \vec{m} tem direção -30° a partir do eixo x do plano cartesiano.
 - (a) Encontre os componentes m_x e m_y .
 - (b) Escreva o vetor \vec{m} utilizando seus componentes.
- 38. Sendo $\|\vec{w}\|=5$ e $w_y=3$, encontre o ângulo θ que esse vetor faz com o eixo x, ou seja, encontre sua direção.
- 39. Sendo $v_x = 5$, e a direção do vetor \vec{v} igual a $\theta = 45^{\circ}$, encontre o tamanho do vetor \vec{v} .
- 40. Eu entendi como decompor um vetor em seus componentes!
 - O Sim
 - Não

7 Projeção ortogonal

- 41. O que é encontrar a *projeção ortogonal* de um vetor sobre outro?
- 42. Imagine que precisamos projetar o vetor \vec{b} sobre o vetor \vec{a} . Sabemos quais são os componentes de cada vetor, mas não sabemos o ângulo θ entre eles.
 - (a) Como calcular a projeção de \overrightarrow{b} que é paralela ao vetor \overrightarrow{a} ?
 - (b) Como calcular a projeção de \vec{b} que é ortogonal ao vetor \vec{a} ?
- 43. Sejam os vetores $\overrightarrow{v}=(2,-1,3)$ e $\overrightarrow{w}=(4,-1,2)$. Encontre os vetores \overrightarrow{r} e \overrightarrow{s} tais que $\overrightarrow{r}/\!\!/\overrightarrow{w}$, e $\overrightarrow{s}\perp\overrightarrow{w}$.
- 44. É possível obter a projeção ortogonal de um vetor $\vec{a} \in \mathbb{R}^3$ sobre um vetor $\vec{b} \in \mathbb{R}^4$? Justifique sua resposta.
- 45. Sejam dois vetores, \vec{x} e \vec{y} . O que estamos obtendo se utilizarmos a seguinte fórmula:

$$\vec{x} - \operatorname{proj}_{\vec{y}} \vec{x} = \vec{x} - \left(\frac{\vec{x} \cdot \vec{y}}{\|\vec{y}\|^2}\right) \vec{y}$$

46. Decomponha o vetor $\overrightarrow{v}=(-1,2,-3)$ em dois vetores \overrightarrow{a} e \overrightarrow{b} , tais que \overrightarrow{a} $/\!\!/$ \overrightarrow{u} e $\overrightarrow{b} \perp \overrightarrow{u}$, sendo $\overrightarrow{u}=(2,1,-1)$.

47. Eu entendi como realizar a projeção ortogonal de um vetor sobre outro, encontrando o vetor paralelo e o vetor perpendicular.

() Sim

○ Não

8 Produto vetorial e o cálculo de áreas

48. O que é o *produto vetorial* entre dois vetores? Em que o produto vetorial é diferente do produto escalar?

- 49. Sejam os vetores $\vec{u} = (u_1, u_2, u_3)$ e $\vec{v} = (v_1, v_2, v_3)$. Como calcular $\vec{u} \times \vec{v}$?
- 50. Dados os vetores $\vec{u} = (-1, 3, 2)$, $\vec{v} = (1, 5, -2)$ e $\vec{w} = (-7, 3, 1)$, calcule:
 - (a) $\vec{u} \times \vec{v}$
 - (b) $\vec{v} \times \vec{w}$
 - (c) $\vec{v} \times (\vec{u} \times \vec{w})$
 - (d) $(\vec{v} \times \vec{u}) \times \vec{w}$
- 51. Qual a relação do produto vetorial com a área do paralelogramo determinado por dois vetores?
- 52. Qual a relação do produto vetorial com a área do triângulo determinado por dois vetores?
- 53. Dados os pontos P=(3,2,0), Q=(0,4,3) e R=(1,0,2), conforme a figura abaixo, calcula a área do triângulo PQR.

Fonte: slides do material da disciplina

- 54. Já sabemos que o resultado do produto vetorial entre dois vetores é um terceiro vetor que é ortogonal aos outros dois. Como podemos determinar a direção do vetor resultante de um produto vetorial?
- 55. Encontre \vec{u} tal que $||\vec{u}|| = 3\sqrt{3}$, sendo \vec{u} ortogonal ao vetor $\vec{v} = (2, 3, -1)$ e ao vetor $\vec{w} = (2, -4, 6)$. Dos vetores \vec{u} encontrados, qual deles forma um ângulo agudo com o vetor $\hat{i} = (1, 0, 0)$?
- 56. Dados os vetores $\vec{u} = (1, -1, 1)$ e $\vec{v} = (2, -3, 4)$, calcular:
 - (a) A área do paralelogramo determinado por \vec{u} e \vec{v} .
 - (b) A altura do paralelogramo relativa à base definida pelo vetor \vec{u} .
- 57. Eu entendi como realizar o produto vetorial entre dois vetores, e também entendi a relação do produto vetorial com a área do paralelogramo determinado por esses dois vetores.
 - Sim Não

9 Produto misto e o cálculo de volumes

- 58. Sejam três vetores \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} . Chamamos de *produto misto* os resultados dos cálculos com a forma $(\overrightarrow{u} \times \overrightarrow{v}) \cdot \overrightarrow{w}$. Por que o produto misto é importante?
- 59. Considere a figura abaixo, que ilustra o produto misto $(\vec{v} \times \vec{w}) \cdot \vec{u}$:

Fonte: slides do material da disciplina

Qual a relação do produto misto com o volume do paralelogramo formado pelos três vetores utilizados no cálculo?

60. Como calcular o produto misto $(\vec{v} \times \vec{w}) \cdot \vec{u}$ com o uso de determinantes?

61. Por que podemos utilizar o produto misto entre 3 vetores para determinar se eles estão no mesmo plano?

62. Considere os vetores $\vec{v} = (4,0,0)$, $\vec{w} = (2,5,0)$ e $\vec{u} = (3,3,4)$, conforme a figura abaixo:

Fonte: slides do material da disciplina

- (a) Calcule o volume do paralelogramo delimitado por esses vetores.
- (b) Calcule a altura do paralelogramo.
- 63. Qual é o valor de x para que os vetores $\vec{a}=(3,-x,-2)$, $\vec{b}=(3,2,x)$ e $\vec{c}=(1,-3,1)$ sejam *coplanares*?
- 64. Sejam os vetores $\overrightarrow{u}=(1,1,0)$, $\overrightarrow{v}=(2,0,1)$, $\overrightarrow{w_1}=(3\overrightarrow{u}-2\overrightarrow{v})$, $\overrightarrow{w_2}=(\overrightarrow{u}+3\overrightarrow{v})$ e finalmente o $\overrightarrow{w_3}=\hat{i}+\hat{j}-2\hat{k}$. Determinar:
 - (a) O volume do paralelogramo definido por $\overrightarrow{w_1}$, $\overrightarrow{w_2}$ e $\overrightarrow{w_3}$.
 - (b) A altura do paralelogramo.
- 65. Eu entendi o que é o produto misto entre três vetores e a relação do produto misto com o volume do paralelogramo formado por esses mesmos vetores. Também aprendi a determinar se três vetores são coplanares.
 - Sim
 - Não

10 Concluindo

66.	Estou compreendendo os <i>conceitos</i> importantes a respeito de vetores, e sei <i>aplicar</i> e <i>ca</i> ar diversas coisas com os vetores.	ılcu [.]
	○ Sim	
	○ Não	
67.	Estou pronto para a próxima matéria, Geometria Analítica!	
	○ Sim	
	○ Não	