Uncertain Data Management Querying Probabilistic Databases

Antoine Amarilli¹, Silviu Maniu²

¹Télécom ParisTech

²Université Paris-Sud

January 9th, 2017

Credits

Stucture, flow, and examples are based on the book Probabilistic Databases by D. Suciu, D. Olteanu, C. Ré, C. Koch (Morgan&Claypool, 2011)

PDFs of the slides available at http://silviu.maniu.info/teaching/

Reminder: we work with relational queries

• in the following: queries in FO or relational calculus

Reminder: we work with relational queries

• in the following: queries in FO or relational calculus

Booking					Room	
date	teacher	room		room	equipment	
3011	Silviu	C42	<i>x</i> ₁	C42	projector	y ₁
0712	Antoine	C42	x_2	C42	none	$\neg y_1$
1412	Silviu	C017	x_3	C017	projector	y_2
0401	Antoine	C017	x_4	C017	none	$\neg y_2$

	Booking			Room		
date	teacher	room		room	equipment	
3011	Silviu	C42	<i>x</i> ₁	C42	projector	<i>y</i> ₁
0712	Antoine	C42	x_2	C42	none	$\neg y_1$
1412	Silviu	C017	X 3	C017	projector	y_2
0401	Antoine	C017	x_4	C017	none	$\neg y_2$

Query: List dates when courses are taught in rooms with projectors

Booking			Room			
date	teacher	room		room	equipment	
3011	Silviu	C42	<i>x</i> ₁	C42	projector	<i>y</i> ₁
0712	Antoine	C42	x_2	C42	none	$\neg y_1$
1412	Silviu	C017	X 3	C017	projector	y_2
0401	Antoine	C017	x_4	C017	none	$\neg y_2$

Query: List dates when courses are taught in rooms with projectors

 SQL: SELECT B.date FROM B, R WHERE B.room=R.room AND R.equipment='projector'

Booking				Room		
date	teacher	room		room	equipment	
3011	Silviu	C42	<i>x</i> ₁	C42	projector	y ₁
0712	Antoine	C42	x_2	C42	none	$\neg y_1$
1412	Silviu	C017	X 3	C017	projector	y_2
0401	Antoine	C017	x_4	C017	none	$\neg y_2$

Query: List dates when courses are taught in rooms with projectors

- SQL: SELECT B.date FROM B, R WHERE B.room=R.room
 AND R.equipment='projector'
- calculus: Q(d) : $\exists t, r.B(d, t, r) \land R(r, 'projector')$

Booking					Room		
date	teacher	room		room	equipment		
3011	Silviu	C42	<i>x</i> ₁	C42	projector	<i>y</i> ₁	
0712	Antoine	C42	x_2	C42	none	$\neg y_1$	
1412	Silviu	C017	X 3	C017	projector	y_2	
0401	Antoine	C017	x_4	C017	none	$\neg y_2$	

Query: Is any course taught in a room without a projector? (Boolean query)

Booking					Room	
date	teacher	room		room	equipment	
3011	Silviu	C42	x ₁	C42	projector	y ₁
0712	Antoine	C42	x_2	C42	none	$\neg y_1$
1412	Silviu	C017	X 3	C017	projector	y_2
0401	Antoine	C017	x_4	C017	none	$\neg y_2$

Query: Is any course taught in a room without a projector? (Boolean query)

 SQL: SELECT DISTINCT 1 FROM B, R WHERE B.room=R.room AND R.equipment='none'

Booking				Room		
date	teacher	room		room	equipment	
3011	Silviu	C42	<i>x</i> ₁	C42	projector	<i>y</i> ₁
0712	Antoine	C42	x_2	C42	none	$\neg y_1$
1412	Silviu	C017	X 3	C017	projector	y_2
0401	Antoine	C017	x_4	C017	none	$\neg y_2$

Query: Is any course taught in a room without a projector? (Boolean query)

- SQL: SELECT DISTINCT 1 FROM B, R WHERE B.room=R.room AND R.equipment='none'
- calculus: $Q(): \exists d, t, r.B(d, t, r) \land R(r, 'none')$

Query Evaluation Problem

Definition

For a fixed query Q, a database \mathcal{D} , and a possible answer tuple a, compute its marginal probability $P(a \in Q)$.

How can we answer such queries on probabilistic databases?

How can we answer such queries on probabilistic databases?

• *identify* the conditions when the query is true, or a tuple is an answer to a query

How can we answer such queries on probabilistic databases?

- identify the conditions when the query is true, or a tuple is an answer to a query
- estimate the probability of each possible output tuple in the query

$$Q(): \exists d, t, r.B(d, t, r) \land R(r, 'none')$$

 $Q(): \exists d, t, r.B(d, t, r) \land R(r, 'none')$ **Booking** \bowtie **Room**

date	teacher	room	equipment
3011	Silviu	C42	projector
3011	Silviu	C42	none
0712	Antoine	C42	projector
0712	Antoine	C42	none
1412	Silviu	C017	projector
1412	Silviu	C017	none
0401	Antoine	C017	projector
0401	Antoine	C017	none

$$Q(): \exists d, t, r.B(d, t, r) \land R(r, 'none')$$
Booking \bowtie **Room**

date	teacher	room	equipment	
3011	Silviu	C42	projector	x_1y_1
3011	Silviu	C42	none	$x_1 \neg y_1$
0712	Antoine	C42	projector	x_2y_1
0712	Antoine	C42	none	$x_2 \neg y_1$
1412	Silviu	C017	projector	x_3y_2
1412	Silviu	C017	none	$x_3 \neg y_2$
0401	Antoine	C017	projector	x_4y_2
0401	Antoine	C017	none	$x_4 \neg y_2$

$$Q(): \exists d, t, r.B(d, t, r) \land R(r, 'none')$$
Booking \bowtie **Room**

date	teacher	room	equipment	
3011	Silviu	C42	projector	x_1y_1
3011	Silviu	C42	none	$x_1 \neg y_1$
0712	Antoine	C42	projector	x_2y_1
0712	Antoine	C42	none	$x_2 \neg y_1$
1412	Silviu	C017	projector	x_3y_2
1412	Silviu	C017	none	$x_3 \neg y_2$
0401	Antoine	C017	projector	x_4y_2
0402	Antoine	C017	none	$x_4 \neg y_2$

$$Q() \iff x_1 \neg y_1 \lor x_2 \neg y_1 \lor x_3 \neg y_2 \lor x_4 \neg y_2$$
Booking \bowtie **Room**

date	teacher	room	equipment	
3011	Silviu	C42	projector	x_1y_1
3011	Silviu	C42	none	$x_1 \neg y_1$
0712	Antoine	C42	projector	x_2y_1
0712	Antoine	C42	none	$x_2 \neg y_1$
1412	Silviu	C017	projector	x_3y_2
1412	Silviu	C017	none	$x_3 \neg y_2$
0401	Antoine	C017	projector	x_4y_2
0402	Antoine	C017	none	$x_4 \neg y_2$

The propositional formula $x_1 \neg y_1 \lor x_2 \neg y_1 \lor x_3 \neg y_2 \lor x_4 \neg y_2$ is called the lineage of Q()

The propositional formula $x_1 \neg y_1 \lor x_2 \neg y_1 \lor x_3 \neg y_2 \lor x_4 \neg y_2$ is called the lineage of Q()

Formally:

• for a database \mathcal{D} having active domain $ADom(\mathcal{D})$;

The propositional formula $x_1 \neg y_1 \lor x_2 \neg y_1 \lor x_3 \neg y_2 \lor x_4 \neg y_2$ is called the lineage of Q()

Formally:

- for a database \mathcal{D} having active domain $ADom(\mathcal{D})$;
- for a Boolean query Q;

The propositional formula $x_1 \neg y_1 \lor x_2 \neg y_1 \lor x_3 \neg y_2 \lor x_4 \neg y_2$ is called the lineage of Q()

Formally:

- for a database \mathcal{D} having active domain $ADom(\mathcal{D})$;
- for a Boolean query Q;

The lineage Φ_Q is defined inductively as follows:

• if t is a ground tuple, then Φ_t is its propositional formula

The propositional formula $x_1 \neg y_1 \lor x_2 \neg y_1 \lor x_3 \neg y_2 \lor x_4 \neg y_2$ is called the lineage of Q()

Formally:

- for a database \mathcal{D} having active domain $ADom(\mathcal{D})$;
- for a Boolean query Q;

- ullet if t is a ground tuple, then Φ_t is its propositional formula
- $\bullet \Phi_{Q_1 \wedge Q_2} = \Phi_{Q_1} \wedge \Phi_{Q_2}$

The propositional formula $x_1 \neg y_1 \lor x_2 \neg y_1 \lor x_3 \neg y_2 \lor x_4 \neg y_2$ is called the lineage of Q()

Formally:

- for a database \mathcal{D} having active domain $ADom(\mathcal{D})$;
- for a Boolean query Q;

- if t is a ground tuple, then Φ_t is its propositional formula
- $\bullet \Phi_{Q_1 \wedge Q_2} = \Phi_{Q_1} \wedge \Phi_{Q_2}$
- $\bullet \ \Phi_{\mathcal{Q}_1 \vee \mathcal{Q}_2} = \Phi_{\mathcal{Q}_1} \vee \Phi_{\mathcal{Q}_2}$

The propositional formula $x_1 \neg y_1 \lor x_2 \neg y_1 \lor x_3 \neg y_2 \lor x_4 \neg y_2$ is called the lineage of Q()

Formally:

- for a database \mathcal{D} having active domain $ADom(\mathcal{D})$;
- for a Boolean query Q;

- if t is a ground tuple, then Φ_t is its propositional formula
- $\bullet \Phi_{Q_1 \wedge Q_2} = \Phi_{Q_1} \wedge \Phi_{Q_2}$
- $\bullet \quad \Phi_{Q_1 \vee Q_2} = \Phi_{Q_1} \vee \Phi_{Q_2}$
- $\bullet \quad \Phi_{\neg Q} = \neg \Phi_Q$

The propositional formula $x_1 \neg y_1 \lor x_2 \neg y_1 \lor x_3 \neg y_2 \lor x_4 \neg y_2$ is called the lineage of Q()

Formally:

- for a database \mathcal{D} having active domain $ADom(\mathcal{D})$;
- for a Boolean query Q;

- if t is a ground tuple, then Φ_t is its propositional formula
- $\bullet \Phi_{Q_1 \wedge Q_2} = \Phi_{Q_1} \wedge \Phi_{Q_2}$
- $\bullet \quad \Phi_{Q_1 \vee Q_2} = \Phi_{Q_1} \vee \Phi_{Q_2}$
- $\bullet \quad \Phi_{\neg Q} = \neg \Phi_Q$
- $\quad \Phi_{\exists x.\, Q} = \bigvee\nolimits_{a \in \mathsf{ADom}(\mathcal{D})} \Phi_{Q(a/x)}$

The propositional formula $x_1 \neg y_1 \lor x_2 \neg y_1 \lor x_3 \neg y_2 \lor x_4 \neg y_2$ is called the lineage of Q()

Formally:

- for a database \mathcal{D} having active domain $ADom(\mathcal{D})$;
- for a Boolean query Q;

- ullet if t is a ground tuple, then Φ_t is its propositional formula
- $\bullet \Phi_{Q_1 \wedge Q_2} = \Phi_{Q_1} \wedge \Phi_{Q_2}$
- $\bullet \quad \Phi_{\mathcal{Q}_1 \vee \mathcal{Q}_2} = \Phi_{\mathcal{Q}_1} \vee \Phi_{\mathcal{Q}_2}$
- $\bullet \quad \Phi_{\neg Q} = \neg \Phi_Q$
- $\bullet \ \Phi_{\exists x.Q} = \bigvee_{a \in \mathsf{ADom}(\mathcal{D})} \Phi_{Q(a/x)}$
- $\Phi_{\mathsf{true}} = \mathsf{true}, \; \Phi_{\mathsf{false}} = \mathsf{false}$

For non-Boolean queries with head variables \bar{x} , and for each possible answer \bar{a} , its lineage is defined as the lineage of $Q(\bar{a}/\bar{x})$

For non-Boolean queries with head variables \bar{x} , and for each possible answer \bar{a} , its lineage is defined as the lineage of $Q(\bar{a}/\bar{x})$

 the query evaluation problem reduces to computing the probability of its lineage

Proposition

For $Q(\bar{x})$ and \mathcal{D} a pc-database, the probability of a possible answer \bar{a} to Q is equal to the probability of its lineage formula:

$$P(\bar{a} \in Q) = P(\Phi_{Q(\bar{a}/\bar{x})})$$

Table of contents

The Query Problem

Query Complexity

Recall that
$$\mathrm{P}(\mathbf{a} \in \mathbf{Q}) = \mathrm{P}(\Phi_{\mathbf{Q}(\mathbf{a}/\mathbf{x})})$$

Recall that
$$P(a \in Q) = P(\Phi_{Q(a/x)})$$

• we know $P(\Phi) = \sum_{\theta \in w(\Phi)} P(\theta)$, where $w(\Phi)$ is the set of all possible assignments of Φ (possible worlds)

Recall that $P(a \in Q) = P(\Phi_{Q(a/x)})$

- we know $P(\Phi) = \sum_{\theta \in w(\Phi)} P(\theta)$, where $w(\Phi)$ is the set of all possible assignments of Φ (possible worlds)
- iterating through each $\theta \in w(\Phi)$ is exponential (if booleans, 2^n possible assignments)

Recall that $P(a \in Q) = P(\Phi_{Q(a/x)})$

- we know $P(\Phi) = \sum_{\theta \in w(\Phi)} P(\theta)$, where $w(\Phi)$ is the set of all possible assignments of Φ (possible worlds)
- iterating through each $\theta \in w(\Phi)$ is exponential (if booleans, 2^n possible assignments)
- inefficient even prohibitive; can we do better?

Recall that $P(a \in Q) = P(\Phi_{Q(a/x)})$

- we know $P(\Phi) = \sum_{\theta \in w(\Phi)} P(\theta)$, where $w(\Phi)$ is the set of all possible assignments of Φ (possible worlds)
- iterating through each $\theta \in w(\Phi)$ is exponential (if booleans, 2^n possible assignments)
- inefficient even prohibitive; can we do better?
- not in the general case!

Model Counting

Definition

The **Model Counting Problem**: given a formula Φ , count the number of satisfying assignments Φ , $\#\Phi = |w(\Phi)|$

Model Counting

Definition

The **Model Counting Problem**: given a formula Φ , count the number of satisfying assignments Φ , $\#\Phi = |w(\Phi)|$

• special case of probability computation: any algorithm for computing $P(\Phi)$ can be used to compute $\#\Phi$ (if p=0.5 everywhere, then $\#\Phi=P(\Phi)\cdot 2^n$)

Model Counting

Definition

The **Model Counting Problem**: given a formula Φ , count the number of satisfying assignments Φ , $\#\Phi = |w(\Phi)|$

- special case of probability computation: any algorithm for computing $P(\Phi)$ can be used to compute $\#\Phi$ (if p=0.5 everywhere, then $\#\Phi=P(\Phi)\cdot 2^n$)
- problem known as #SAT, in complexity class #P (given a polynomial-time, non-deterministic Turing machine, compute the number of accepting computations)

Definition

The **Probability Computation Problem**: given a formula Φ and a probability $\mathrm{P}(X)$ for each variable X, compute $\mathrm{P}(\Phi) = \sum_{\theta \in w(Q)} \mathrm{P}(\theta)$

Definition

The **Probability Computation Problem**: given a formula Φ and a probability $\mathrm{P}(X)$ for each variable X, compute $\mathrm{P}(\Phi) = \sum_{\theta \in w(Q)} \mathrm{P}(\theta)$

 probability computation is hard for #P, but not in #P (not a counting problem)

Definition

The **Probability Computation Problem**: given a formula Φ and a probability $\mathrm{P}(X)$ for each variable X, compute $\mathrm{P}(\Phi) = \sum_{\theta \in w(Q)} \mathrm{P}(\theta)$

- probability computation is hard for #P, but not in #P (not a counting problem)
- if we assume $P(X_i) = m_i/n_i$ (rational number), $\sum n_i = N$, then $N \cdot P(\Phi)$ is an integer

Definition

The **Probability Computation Problem**: given a formula Φ and a probability $\mathrm{P}(X)$ for each variable X, compute $\mathrm{P}(\Phi) = \sum_{\theta \in w(Q)} \mathrm{P}(\theta)$

- probability computation is hard for #P, but not in #P (not a counting problem)
- if we assume $P(X_i) = m_i/n_i$ (rational number), $\sum n_i = N$, then $N \cdot P(\Phi)$ is an integer
- hence, computing $N \cdot P(\Phi)$ is in #P

What about probability computation in probabilistic databases?

- interested in the data complexity of the query evaluation problem
- tractable if data complexity is polynomial

What about probability computation in probabilistic databases?

- interested in the data complexity of the query evaluation problem
- tractable if data complexity is polynomial

Example class of intractable (or unsafe) queries:

$$H_0 = R(x), S(x, y), T(y)$$

 $H_1 = R(x_0), S(x_0, y_0) \lor S(x_1, y_1), T(y_1)$
...

			S			
R		x_1	y ₁	1		Т
<i>x</i> ₁	0.5	<i>x</i> ₁	y_2	1	y_1	0.5
x_2	0.5	x_2	y 1	1	y_2	0.5
		x_2	y_2			
		• • • •				

			S			
R		x_1	y_1	1		Т
$\overline{x_1}$	0.5	<i>x</i> ₁	y_2	1	y_1	0.5
x_2	0.5	x_2	y 1	1	y_2	0.5
		x_2	y_2	1		

Let us analyze $H_0 = R(x), S(x, y), T(y)$ on a tuple-independent database

			5			
R		x_1	y 1	1		Т
<i>x</i> ₁	0.5	$x_1 \dots$	y_2	1	y ₁	0.5
x_2	0.5	<i>X</i> ₂	<i>y</i> ₁ <i>y</i> ₂		y_2	0.5
		x_2	y 2			

• each possible tuple is of the form $W = \langle R^W, S, T^W \rangle$, $\Phi(X_i) = \text{true} \iff X_i \in R^W$, similarly for $\Phi(Y_i)$

			S			
R		<i>x</i> ₁	<i>y</i> ₁		•	Т
$\overline{x_1}$	0.5	$x_1 \dots$	y_2	1	<i>y</i> ₁	0.5
x_2	0.5		y_1		y_2	0.5
		<i>x</i> ₂	y ₂			

- each possible tuple is of the form $W = \langle R^W, S, T^W \rangle$, $\Phi(X_i) = \text{true} \iff X_i \in R^W$, similarly for $\Phi(Y_i)$
- H_0 true iff $\exists x_i, x_j.R^W(x_i)S(x_i, y_j)T^W(y_j) = \text{true}$; 1-1 correspondence with possible worlds

			S			
R		x ₁	y 1	1	Т	
<i>x</i> ₁	0.5	$x_1 \dots$	y_2	1).5
x_2	0.5	<i>x</i> ₂	y ₁		y_2 \cdots).5
		<i>x</i> ₂	y ₂			

- each possible tuple is of the form $W = \langle R^W, S, T^W \rangle$, $\Phi(X_i) = \text{true} \iff X_i \in R^W$, similarly for $\Phi(Y_i)$
- H_0 true iff $\exists x_i, x_j.R^W(x_i)S(x_i, y_j)T^W(y_j) = \text{true}$; 1-1 correspondence with possible worlds
- $\#\Phi = 2^n P(H_0)$ an oracle for computing $P(H_0)$ can be used to compute $\#\Phi \rightsquigarrow P(H_0)$ is hard for #P

Generally, H_k for $k \ge 0$ are hard for #P

Generally, H_k for $k \ge 0$ are hard for #P

 H_k are used as primitives for finding intractable queries

Generally, H_k for $k \ge 0$ are hard for #P

 H_k are used as primitives for finding intractable queries

 H_k are not the only queries that are intractable, and there exist safe (tractable) queries

Generally, H_k for $k \ge 0$ are hard for #P

 H_k are used as primitives for finding intractable queries

 H_k are not the only queries that are intractable, and there exist safe (tractable) queries

Next:

- extensional query evaluation: reasoning on the query Q directly
- intensional query evaluation: reasoning on the lineage of the query $\Phi_{\mathcal{Q}}$