Monday: Review
Wed: Quit 2; HW due at night/completion

08: LARGE SAMPLE PROPERTIES

Rice 5.3, 8.5.2 Prof Amanda Luby

Reminder: $\lim_{n \to \infty} P(|\hat{\theta} - \theta| < 6) = 1$

1 Sampling Distribution of a Statistic

"convergence in probability"

În = 0

Convergence in distribution

Let $X_1,...,X_n$ be a sequence of random variables with CDFs $F_1,...,F_n$ and let X be a random variable with CDF F. We say X_n converges in distribution to F if:

at every point x where F is

Sampling distribution of a statistic

Let $X_1,...,X_n$ be a random sample with pdf $f_x(\theta)$. Let $T=h(X_1,...,X_n,\theta)$. Then, the distribution of T (given θ) is called the *sampling distribution* of T.

Example: In 106 on wed, X2 example

Example:

(scipped)

2 Central Limit Theorem

Central Limit Theorem

For a large number n of iid observations $Y_i \sim f_y$, with mean μ and variance σ^2 , the sampling distribution of \bar{Y} is approximately:

approximately:
$$N(M, \frac{\sigma^2}{L})$$

$$(CLT gives in the sampling of the sampling distribution$$

Central Limit Theorem II

For a large number n of iid observations $Y_i \sim f_y$, with mean μ and variance σ^2 , then for each fixed

$$\lim_{N\to\infty} P\left(\frac{\bar{Y}_{N}-M}{\sqrt{r^{2}/n}}\leq X\right) = \Phi(X)$$

$$CDF of Y_{N}-M$$

$$P(\bar{X}\leq X)$$

3 Delta Method

7n-1 N(0,1)

Delta Method

Let Y_1,Y_2,\ldots be a sequence of random variables, and let F^* be a continuous c.d.f. Let θ be a real number, and let a_1, a_2, \ldots be a sequence of positive numbers that increase to ∞ . Suppose that $a_n(Y_n \theta$) converges in distribution to F^* . Let α be a function with continuous derivative such that $\alpha'(\theta) \neq 0$ 0. Then,

Proof outline: Know $a_n(Y_n - \theta) \rightarrow F^*$ and $a_n \rightarrow \infty$. So $(Y_n - \theta) \rightarrow 0$ with high probability as $n \rightarrow \infty \rightarrow 0$ $Y_n \rightarrow \theta$ with high probability.

Otherwise, $a_n[Y_n - \theta] \rightarrow \infty$ instead $R = F^*$.

- ② Since d is continuous, d(Yn) → d(0) with high probability. Since O.
- 3) Taylor expansion (15 term only): $\lambda(Y_n) \approx \lambda(\theta) + \lambda'(\theta)(Y_n \theta)$ Q(Yn) - Q(0) ≈ Q'(0) (Yn-0) $\frac{a_n}{a(\theta)} \left[\frac{2}{a(Y_n)} - a(\theta) \right] \approx \frac{a_n}{a'(\theta)} a'(\theta) \left(Y_n - \theta \right)$

Example: Variance-stabilizing transformation

$$V_{1,...,Y_{L}} \sim Poir(\lambda)$$

$$N(E: \overline{Y})$$

$$C(T: \overline{Y} \sim N(\lambda, \frac{\lambda}{n})) \rightarrow \int \frac{n}{\lambda} (\overline{Y} - \lambda) \xrightarrow{\alpha} P(0,1)$$

$$(n \text{ order to "Globilizing lariance"})$$

$$(n \text{ o$$

4 Large-Sample Properties of the MLE

- 1. MLE estimators are sufficient
- 2. MLE estimators are invariant
- 3. MLE estimators are asymptotically unbiased.
- 4. Under appropriate smoothness conditions of f_x , the MLE from an iid sample is *consistent*.
- 5. MLE estimators are asymptotically efficient: for large n, other estimators do not have smaller variance
- 6. Under smoothness conditions of f_x , the MLE has a normal sampling distribution for large samples

Sampling distribution of the MLE

Let $\hat{\theta} = h(Y)$ be the MLE for θ , where $Y \sim f_y(\theta)$.

$$\hat{\theta} \sim N(\theta, \overline{nI(\theta)})$$

Example: (Wyped)

5 Large-Sample Properties of the Bayes Estimator

The large-sample properties of the MLE generally extend to the Bayes estimator:

- 1. Bayes estimators are asymptotically unbiased
- 2. Bayes estimators are asymptotically efficient
- 3. Bayes estimators are consistent
- 4. Bayes estimators are sufficient
- 5. Bayes estimators have normal sampling distributions for large n