Statistics for Linguists with R – a SIGIL course

Unit 2: Corpus Frequency Data & Statistical Inference

Marco Baroni¹ & Stefan Evert² http://SIGIL.R-Forge.R-Project.org/

¹Center for Mind/Brain Sciences, University of Trento ²Corpus Linguistics Group, FAU Erlangen-Nürnberg

A simple toy problem

How many passives are there in English?

- ◆ American English style guide claims that
 - "In an average English text, no more than 15% of the sentences are in passive voice. So use the passive sparingly, prefer sentences in active voice."
 - http://www.ego4u.com/en/business-english/grammar/passive actually states that only 10% of English sentences are passives (as of January 2009)!
- ◆ We have doubts and want to verify this claim

Frequency estimates & comparison

- ◆ How often is *kick the bucket* really used?
- ◆ What are the characteristics of "translationese"?
- ◆ Do Americans use more split infinitives than Britons? What about British teenagers?
- ◆ What are the typical collocates of *cat*?
- ◆ Can the next word in a sentence be predicted?
- ◆ Do native speakers prefer constructions that are grammatical according to some linguistic theory?
- → evidence from frequency comparisons / estimates

From research question to statistical analysis

How many

passives are there in English?

linguistic question

corpus data

From research question to statistical analysis

How do you count passives?

- ◆ Types vs. tokens
 - **type** count: How many *different* passives are there?
 - token count: How many instances are there?
- ◆ How many passive tokens are there in English?
 - infinitely many, of course!

◆ **Absolute frequency** is not meaningful here

What is English?

- ◆ Sensible definition: group of speakers
 - e.g. American English as language spoken by native speakers raised and living in the U.S.
 - may be restricted to certain communicative situation
- ◆ Also applies to definition of sublanguage
 - dialect (Bostonian, Cockney), social group (teenagers), genre (advertising), domain (statistics), ...
- ◆ Here: professional writing by native speakers of AmE (➪ target audience of style guide)

Against "absolute" frequency

- ◆ Are there **20,000** passives?
 - Brown (1M words)
- ♦ Or 1 million?
 - BNC (90M words)
- ♦ Or 5.1 million?
 - ukWaC sampler (450M words)

How do you count passives?

- ◆ Only **relative frequency** can be meaningful!
- ◆ What is the relative frequency of passives?
 - ... 20,300 per million words?
 - ... 390 per thousand sentences?
 - ... **28** per **hour** of recorded speech?
 - ... **4,000** per **book**?

corpus

data

◆ What is a sensible unit of measurement?

From research question to statistical analysis

11

How do you count passives?

- ♦ How many passives could there be at most?
 - every VP can be in active or passive voice
 - frequency of passives only has a meaningful interpretation by comparison with frequency of potential passives
- ◆ What proportion of VPs are in passive voice?
 - easier: proportion of sentences that contain a passive
 - in general, proportion wrt. some unit of measurement
- Relative frequency = proportion π

From research question to statistical analysis

How do you count tokens in an infinite language?

- ◆ Statistics deals with similar problems:
 - goal: determine properties of **large population** (human populace, objects produced in factory, ...)
 - method: take (completely) **random sample** of objects, then extrapolate from sample to population
 - this works only because of **random** sampling!
- ◆ Many statistical methods are readily available

The library metaphor

13

- ◆ Extensional definition of a language:

 "All utterances made by speakers of the language under appropriate conditions, plus all utterances they *could* have made"
- ◆ Imagine a huge library with all the books written in a language, as well as all the hypothetical books that have never been written
 - → library metaphor (Evert 2006)

From research question to statistical analysis

From research question to statistical analysis

A random sample of a language

- ◆ Apply statistical procedure to linguistic problem

 ⇒ need random sample of objects from population
- ◆ Quiz: What are the objects in our population?
 - words? sentences? texts? ...
- ◆ Objects = whatever **unit of measurement** the proportions of interest are based on
 - we need to take a random sample of such units

Types, tokens and proportions

- ◆ Proportions and relative sample frequencies are defined formally in terms of types & tokens
- ◆ Relative frequency of type v in sample $\{t_1, ..., t_n\}$ = proportion of tokens t_i that belong to this type

$$p = \frac{f(v)}{n} \underbrace{\qquad}_{\text{sample size}}^{\text{frequency of type}}$$

• Compare relative sample frequency p against (hypothesised) population proportion π

The library metaphor

- ◆ Random sampling in the library metaphor
 - in order to take a sample of sentences:
 - walk to a random shelf ...
 - ... pick a random book ...
 - ... open a random page ...
 - ... and choose a random sentence from the page
 - this gives us 1 item for our sample
 - repeat *n* times for sample size *n*

Types, tokens and proportions

- ◆ Example: word frequencies
 - word type = dictionary entry (distinct word)
 - word token = instance of a word in library texts
- ◆ Example: passive VPs
 - relevant VP types = active or passive (→ abstraction)
 - VP token = instance of VP in library texts
- ◆ Example: verb sucategorisation
 - relevant types = itr., tr., ditr., PP-comp., X-comp, ...
 - verb token = occurrence of selected verb in text

19

Inference from a sample

- ◆ Principle of inferential statistics
 - if a sample is picked at random, proportions should be roughly the same in sample and population
- ◆ Take a sample of 100 sentences
 - observe 19 passives $\rightarrow p = 19\% = .19$
 - style guide \rightarrow population proportion $\pi = 15\%$
 - $p > \pi$ \rightarrow reject claim of style guide?
- ◆ Take another sample, just to be sure
 - observe 13 passives $\rightarrow p = 13\% = .13$
 - $p < \pi \rightarrow$ claim of style guide confirmed?

Reminder: The role of statistics

Sampling variation

- ◆ Random choice of sample ensures proportions are the same on average in sample & population
- ◆ But it also means that for every sample we will get a different value because of chance effects
 → sampling variation
 - problem: erroneous rejection of style guide's claim results in publication of a false result
- ◆ The main purpose of statistical methods is to estimate & correct for sampling variation
 - that's all there is to inferential statistics, really

The null hypothesis

◆ Our "goal" is to refute the style guide's claim, which we call the **null hypothesis** *H*₀

$$H_0: \pi = .15$$

- we also refer to π_0 = .15 as the **null proportion**
- Erroneous rejection of H_0 is problematic
 - leads to embarrassing publication of false result
 - known as a **type I error** in statistics
- ◆ Need to control risk of a type I error

22

Estimating sampling variation

- lacktriangle Assume that style guide's claim H_0 is correct
 - i.e. rejection of H_0 is always a type I error
- \bullet Many corpus linguists set out to test H_0
 - each one draws a random sample of size n = 100
 - how many of the samples have the expected k = 15 passives, how many have k = 19, etc.?
 - if we are willing to reject H_0 for k = 19 passives in a sample, all corpus linguists with such a sample will publish a false result

25

27

• risk of type I error = percentage of such cases

Comic relief

Estimating sampling variation

- We don't need an infinite number of monkeys (or corpus linguists) to answer these questions
 - randomly picking sentences from our metaphorical library is like drawing balls from an infinite urn
 - red ball = passive sent. / white ball = active sent.
 - H_0 : assume proportion of red balls in urn is 15%
- ◆ This leads to a **binomial distribution**

$$\Pr(k) = \binom{n}{k} (\pi_0)^k (1 - \pi_0)^{n-k}$$
percentage of samples = **probability**

Binomial sampling distribution

value k of observed frequency X

...., ...

Statistical hypothesis testing

- ◆ Statistical **hypothesis tests**
 - define a **rejection criterion** for refuting H_0
 - control the risk of false rejection (type I error) to a "socially acceptable level" (significance level α)
 - **p-value** = risk of type I error given observation, interpreted as amount of evidence against *H*₀
- ◆ Two-sided vs. one-sided tests
 - in general, two-sided tests are recommended (safer)
 - one-sided test is plausible in our example

Binomial hypothesis test in R

- ◆ Relevant R function: binom.test()
- ◆ We need to specify
 - observed data: 19 passives out of 100 sentences
 - null hypothesis: H_0 : $\pi = 15\%$
- ◆ Using the binom.test() function:
 - > binom.test(19, 100, p=.15) # two-sided
 - > binom.test(19, 100, p=.15, # one-sided alternative="greater")

Hypothesis tests in practice

Binomial hypothesis test in R

```
> binom.test(19, 100, p=.15)
   Exact binomial test

data: 19 and 100

number of successes = 19, number of
trials = 100, p-value = 0.2623

alternative hypothesis: true probability of
success is not equal to 0.15

95 percent confidence interval:
   0.1184432 0.2806980

sample estimates:
probability of success
   0.19
```

Rejection criterion & significance level

> binom.test(23, 100, p=.15)\$p.value

[1] 0.03430725

 $p < .05 = \alpha$ *

> binom.test(25, 100, p=.15)\$p.value

[1] 0.007633061

 $p < .01 = \alpha$ **

> binom.test(29, 100, p=.15)\$p.value

[1] 0.0003529264

 $p < .001 = \alpha$ ***

33

35

Type II errors

Type II errors

- ◆ Rejection criterion controls risk of type I error
 - only for situation in which H_0 is true
- ♦ Type II error = failure to reject incorrect H_0
 - for situation in which H₀ is not true
 → rejection correct, non-rejection is an error
- ◆ What is the risk of a type II error?
 - depends on true population proportion π
 - intuitively, risk of type II error will be low if the difference $\delta = \pi \pi_0$ (the **effect size**) is large enough

Type II errors

34

Type II errors & effect size

Type II errors & sample size

Power

- Type II error = failure to reject incorrect H_0
 - the larger the difference between H_0 and the true population proportion, the more likely it is that H_0 can be rejected based on a given sample
 - a powerful test has a low type II error
 - power analysis explores the relationship between effect size and risk of type II error
- ◆ Key insight: larger sample = more power
 - relative sampling variation becomes smaller
 - power also depends on significance level

Power analysis for binomial test

39

Power analysis for binomial test

- ◆ Key factors determining the power of a test
 - **sample size** → more evidence = greater power
 - **significance level** \rightarrow trade-off btw. type I / II errors
- ◆ Influence of hypothesis test procedure
 - one-sided test more powerful than two-sided test
 - parametric tests more powerful than non-parametric
 - statisticians look for "uniformly most powerful" test

41

43

- ◆ Tests can become too powerful!
 - reject H_0 for 15.1% passives with n = 1,000,000

Trade-offs in statistics

- ◆ Inferential statistics is a trade-off between type I errors and type II errors
 - i.e. between **significance** and **power**
- ◆ Significance level
 - determines trade-off point
 - low significance level $\alpha \rightarrow$ low power
- **♦** Conservative tests
 - put more weight on avoiding type I errors → weaker
 - most non-parametric methods are conservative

Parametric vs. non-parametric

- ◆ People often talk about parametric and nonparametric tests without precise definition
- ◆ Parametric tests make stronger assumptions
 - not just normality assuming (= Gaussian distribution)
 - binomial test: strong random sampling assumption
 → might be considered a parametric test in this sense!
- ◆ Parametric tests are usually more powerful
 - strong assumptions allow less conservative estimate of sampling variation → less evidence needed against H₀

Confidence interval

- ◆ We now know how to test a null hypothesis *H*₀, rejecting it only if there is sufficient evidence
- ◆ But what if we do not have an obvious null hypothesis to start with?
 - this is typically the case in (computational) linguistics
- ◆ We can estimate the true population proportion from the sample data (relative frequency)
 - sampling variation → range of plausible values
 - such a **confidence interval** can be constructed by inverting hypothesis tests (e.g. binomial test)

42

Confidence interval

Confidence intervals in R

- ◆ Most hypothesis tests in R also compute a confidence interval (including binom.test())
 - omit H_0 if only interested in confidence interval
- ◆ Significance level of underlying hypothesis test is controlled by conf.level parameter
 - expressed as confidence, e.g. conf.level=.95 for significance level α = .05, i.e. 95% confidence
- ◆ Can also compute one-sided confidence interval
 - controlled by alternative parameter
 - two-sided confidence intervals strongly recommended

I'm cheating here a tiny little bit (not always an interval)

Confidence intervals

- ◆ Confidence interval = range of plausible values for true population proportion
 - H_0 rejected by test iff π_0 is outside confidence interval
- ◆ Size of confidence interval depends on power of the test (i.e. sample size and significance level)

	n = 100 $k = 19$	n = 1,000 k = 190	n = 10,000 k = 1,900
$\alpha = .05$	11.8%28.1%	16.6% 21.6%	18.2% 19.8%
$\alpha = .01$	$10.1\% \dots 31.0\%$	15.9% 22.4%	18.0% 20.0%
$\alpha = .001$	8.3% 34.5%	$15.1\% \dots 23.4\%$	$17.7\% \dots 20.3\%$

40

48

Confidence intervals in R

```
> binom.test(190, 1000, conf.level=.99)
    Exact binomial test

data: 190 and 1000

number of successes = 190, number of
trials = 1000, p-value < 2.2e-16

alternative hypothesis: true probability of
success is not equal to 0.5

99 percent confidence interval:
    0.1590920 0.2239133

sample estimates:
probability of success
    0.19</pre>
```

Choosing sample size

Using R to choose sample size

- ◆ Call binom. test() with hypothetical values
- ◆ Plots on previous slides also created with R
 - requires calculation of large number of hypothetical confidence intervals
 - binom.test() is both inconvenient and inefficient
- ◆ The corpora package has a vectorised function
 - > library(corpora)
 - > prop.cint(190, 1000, conf.level=.99)
 - > ?prop.cint # "conf. intervals for proportions"

Choosing sample size

Frequency comparison

- Many linguistic research questions can be operationalised as a frequency comparison
 - Are split infinitives more frequent in AmE than BrE?
 - Are there more definite articles in texts written by Chinese learners of English than native speakers?
 - Does *meow* occur more often in the vicinity of *cat* than elsewhere in the text?
 - Do speakers prefer *I couldn't agree more* over alternative realisations such as *I agree completely*?
- ◆ Compare observed frequencies in two samples

50

Frequency comparison

◆ Null hypothesis for frequency comparison

$$H_0: \pi_1 = \pi_2$$

- no assumptions about the precise value $\pi_1 = \pi_2 = \pi$
- ◆ Observed data
 - target count k_i and sample size n_i for each sample i
 - e.g. $k_1 = 19 / n_1 = 100$ passives vs. $k_2 = 25 / n_2 = 200$
- ◆ Effect size: difference of proportions
 - effect size $\delta = \pi_1 \pi_2$ (and thus H_0 : $\delta = 0$)

Frequency comparison in R

```
> prop.test(c(19,25), c(100,200))
    2-sample test for equality of proportions with continuity correction
data: c(19, 25) out of c(100, 200)
X-squared = 1.7611, df = 1, p-value = 0.1845
alternative hypothesis: two.sided
95 percent confidence interval:
    -0.03201426    0.16201426
sample estimates:
prop 1 prop 2
    0.190    0.125
```

Frequency comparison in R

- ◆ Frequency comparison test: prop. test()
 - observed data: counts k_i and sample sizes n_i
 - also computes confidence interval for effect size
- ◆ E.g. for 19 passives out of 100 / 25 out of 200
 - parameters conf.level and alternative can be used in the familiar way
 - > prop.test(c(19,25), c(100,200))

Contingency tables

sample 1 sample 2

53

19	25
81	175

- ◆ Data can also be given as a **contingency table**
 - e.g. $k_1 = 19 / n_1 = 100$ passives vs. $k_2 = 25 / n_2 = 200$
 - represents a cross-classification of n = 300 items
 - various tests for contingency tables can be applied
- lacktriangle Chi-squared X^2 , likelihood ratio G^2 , Fisher's test

54

56

Contingency tables

- ◆ Can easily carry out chi-squared (chisq.test) and Fisher's exact test (fisher.test) in R
 - likelihood ratio test not in R standard library
- ◆ Table for 19 / 100 vs. 25 / 200

19	25
81	175

Significance vs. relevance

- ◆ Much focus on significant p-value, but ...
 - large differences may be non-significant if sample size is too small (e.g. 10/80 = 12.5% vs. 20/80 = 25%)
 - increase sample size for more powerful/sensitive test
 - very large samples lead to highly significant p-values for minimal and irrelevant differences (e.g. 1M tokens with 150,000 = 15% vs. 151,000 = 15.1% occurrences)
- ◆ It is important to assess both significance and relevance (= effect size) of frequency data!
 - confidence intervals combine both aspects

Contingency tables

- ◆ Tests are appropriate for different situations
 - Fisher: computationally expensive, small samples
 - X^2 : for large samples and small balanced samples
 - *G*²: suitable for highly skewed data
- ◆ Measures of effect size
 - **difference** $\delta = \pi_1 \pi_2$ \rightarrow approx. confidence interval from proportions test
 - relative risk $r = \pi_1 / \pi_2$
 - odds ratio $\theta = \pi_1 (1 \pi_2) / \pi_2 (1 \pi_1)$ \rightarrow exact confidence interval from Fisher's test

A case study: passives

- ◆ As a case study, we will compare the frequency of passives in Brown (AmE) and LOB (BrE)
 - pooled data
 - separately for each genre category
- ◆ Data files provided in CSV format
 - passives.brown.csv & passives.lob.csv
 - cat = genre category, passive = number of passives,
 n_w = number of word,
 n_s = number of sentences,
 name = description of genre category

58

60

Preparing the data

```
> Brown <- read.csv("passives.brown.csv")</pre>
> LOB <- read.csv("passives.lob.csv")</pre>
> library(SIGIL) # also included in SIGIL package
> Brown <- BrownPassives
> LOB <- LOBPassives
# now take a look at the two tables: what info do they provide?
# pooled data for entire corpus = column sums (col. 2 ... 4)
> Brown.all <- colSums(Brown[, 2:4])</pre>
> LOB.all <- colSums(LOB[, 2:41)</pre>
```

Automation: user functions

```
# user function do.test() executes proportions test for samples
# k_1/n_1 and k_2/n_2, and summarizes relevant results in compact form
> do.test <- function (k1, n1, k2, n2) {</pre>
   # res contains results of proportions test (list = data structure)
   res <- prop.test(c(k1, k2), c(n1, n2))
   # data frames are a nice way to display summary tables
   fmt <- data.frame(p=res$p.value,</pre>
     lower=res$conf.int[1], upper=res$conf.int[2])
   fmt # return value of function = last expression
> do.test(10123, 49576, 10934, 49742) # pooled data
                                              # humour genre
> do.test(146, 975, 134, 947)
```

Frequency tests for pooled data

```
# proportions test reports p-value is based on chi-squared test
# and approximate confidence interval for effect size \delta
> prop.test(c(10123, 10934), c(49576, 49742))
> ct <- cbind(c(10123, 49576-10123), # Brown</pre>
                  c(10934, 49742-10934)) # LOB
                  # contingency table for chi-squared / Fisher
> ct
> fisher.test(ct) # exact confidence interval for odds ratio \theta
# we could in principle do the same for all 15 genres ...
```

A nicer user function

```
# nicer version of user function with genre category labels
> do.test <- function (k1, n1, k2, n2, cat="") {</pre>
    res <- prop.test(c(k1, k2), c(n1, n2))
    data.frame(
       p=res$p.value,
      lower=100*res$conf.int[1], # scaled to % points
      upper=100*res$conf.int[2].
      row.names=cat # add genre as row label
    ) # return data frame directly without local variable fmt
# extract relevant information directly from data frames
> do.test(Brown$passive[15], Brown$n s[15],
           LOB$passive[15], LOB$n s[15],
           cat=Brown$name[15])
```

Ad-hoc functions & loops

It's your turn now ...

- **♦** Questions:
 - Which differences are significant?
 - Are the effect sizes linguistically relevant?
- ◆ A different approach:
 - You can construct a list of contingency tables with the cont.table() function from the corpora package
 - Apply fisher.test() or chisq.test() directly to each table in the list using the lapply() function
 - Try to extract relevant information with sapply()

R wizardry: working with lists

66