«dataType»

wbmToolLink

+ee_vqT_tt: vector

+urdf_link_name: string 0..*

Tool at a spezified end-effector link, i.e.

hand/finger, with an orientation and translation relative to the link frame.

+chains.name: string[1..*] {readOnly}

+nChains: integer {readOnly}

+nJoints: integer {readOnly}

+joints.name: string[1..*] {readOnly}

+joints.idx: integer[1..*] {readOnly}

+chains.start_idx: integer[1..*] {readOnly}

+chains.end_idx: integer[1..*] {readOnly}

+getChainTable(out chn_tbl: table, obj)

+getJointTable(out jnt_tbl: table, obj)

+getChainIndices(out jnt_idx: vector, obj, chain_name: string)

+getJointNames(out jnt_names: string[1..*], obj, joint_idx: vector)

+getJointIndex(out jnt_idx: integer, obj, joint_name: string)

+tool_links

Configuration data to define the

-checkInitStateDimensions(out result: logical, obj, stInit: wbmStateParams) -getLinkName(out lnk_name: string, obj, lnk_list: vector, idx: integer)

«use»

body components of the robot.

0..1

+wbmBody(out obj: wbmBody, chain_names: string[1..*], chain_idx: matrix, joint_names: string[1..*], joint_idx: vector)

wbmSimEnvironment +background_color_opt: string +environment +getToolTable(out tool_tbl: table, obj) +updateToolFrame(obj, t_idx: integer, new_frm_tt: vector) genericSimConfig +toolFrame(out wf_H_tt: matrix, obj, wf_R_b: matrix, wf_p_b: vector, q_j: vector, t_idx: integer)
+toolFrame(out wf_H_tt: matrix, obj, wf_R_b: matrix, wf_p_b: vector, q_j: vector) +DF GROUND COLOR 2: vector {readOnly} +toolFrame(out wf_H_tt: matrix, obj, t_idx: integer) genericSimConfig(out obj: genericSimConfig, main_title: string, robot_sim_body: wbmSimBody, env_settings: wbmSimEnvironment) +toolFrame(out wf_H_tt: matrix, obj) +jacobianTool(out wf_J_tt: matrix, obj, wf_R_b: matrix, wf_p_b: vector, q_j: vector, t_idx: integer)
+jacobianTool(out wf_J_tt: matrix, obj, wf_R_b: matrix, wf_p_b: vector, q_j: vector) +jacobianTool(out wf_J_tt: matrix, obj, t_idx: integer) +jacobianTool(out wf_J_tt: matrix, obj) +getStateChains(out chn_q: cell, out chn_dq: cell, obj, chain_names: string[1..*])
+getStateChains(out chn_q: cell, out chn_dq: cell, obj, chain_names: string[1..*], q_j: vector, dq_j: vector) +getStateJointNames(out jnt_q: vector, out jnt_dq: vector, obj, joint_names: string[1..*]) +getStateJointNames(out jnt_q: vector, out jnt_dq: vector, obj, joint_names: string[1..*], q_j: vector, dq_j: vector) +getStateJointIdx(out jnt_q: vector, out jnt_dq: vector, obj, joint_idx: integer[1..*]) +getStateJointIdx(out jnt_q: vector, out jnt_dq: vector, obj, joint_idx: integer[1..*], q_: vector, dq_j: vector) +getStateParams(out stParams: wbmStateParams, obj, stChi: vector) +getStateParams(out stParams: wbmStateParams, obj, stChi: matrix) +getPositions(out vqT_b: vector, out q_j: vector, obj, stChi: vector) +getPositions(out vqT_b: matrix, out q_j: matrix, obj, stChi: matrix) +getPositionsData(out stmPos: matrix, obj, stmChi: matrix) -getMixedVelocities(out v. b. vector, out dg. i. vector, obi, stChi, vector +getMixedVelocities(out v_b: matrix, out dq_j: matrix, obj, stChi: matrix) +getBaseVelocities(out v_b: vector, obj, stChi: vector) +getBaseVelocities(out v_b: matrix, obj, stChi: matrix) +get.stvChiInit(out stvChi: vector, obj) +get.stvLen(out stvLen: integer, obj) +get.vqTInit(out vqT_b: vector, obj) +get.stvqT(out vqT_b: vector, obj) +get.robot_body(out robot_body: wbmBody, obj) +get.robot_config(out robot_config: wbmBaseRobotConfig, obj) +get.robot_params(out robot_params: wbmBaseRobotParams, obj) +set.init_state(obj, stInit: wbmStateParams) +get.init_state(out stlnit: wbmStateParams, obj) +dispConfig(obj, prec: integer) -initConfig(obj, robot_config: wbmBaseRobotConfig) -getJointValues(out jnt q: vector, out jnt dq: vector, obj, q j: vector, dq j: vector, joint idx: integer[1..*], len: integer)