Part 3: Overfitting-Underfitting

- 1. Validation/Cross-Validation:
 - 1. Validation set
 - 2. Model selection
 - 3. Cross-validation: k-fold method
- 2. Regularization

Reminder

Definition: APAC learning model

H follows agnostic PAC learning, if there exist m_H : $(0,1)^2 \to \mathbb{N}$ and A_α . Having the following property: $\forall \varepsilon, \delta \in (0,1), \forall \mathcal{D}$ on $X \times Y$.

Then, if we run A_{α} on $m \ge m_H(\varepsilon, \delta)$ generated (i, i, d) such that S is selected with a probability at least $(1 - \delta)$, A_{α} will generate the hypothesis h_S such that:

$$P_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}}(h_S) \leq \min_{h \in H} L_{\mathcal{D}}(h) + \varepsilon \right] \geq 1 - \delta \quad \forall \ m \geq m_H(\varepsilon, \delta)$$

In other words:

$$P_{S \sim \mathcal{D}^m} \left[L_{\mathcal{D}}(h_S) > \min_{h \in H} L_{\mathcal{D}}(h) + \varepsilon \right] \leq \delta \ \forall \ m \geq m_H(\varepsilon, \delta)$$

Motivation

- If $L_S(h_S)$ is too big, we have the Underfitting problem. So, we should variate the model's configuration
- Variate the whole model, and select the best one that have the smaller $L_D(\pmb{h_S})$.

Objective:

How to select the best Model/Configuration?

Tools:

- Validation (sufficient training data points)
- Cross-validation (unsufficient training data points).

Validation & Cross-Validation

1. Validation Set

Definition: Validation

The validation consists in extracting from the training set another set named: validation set. This is for two objectives :

- Select the best model (algorithm or hyper-parameter).
- Better estimation of the generalization error.

Let's consider the following validation set:

$$V = (x_1, y_1), ..., (x_{m_v} y_{m_v})$$

Whose data points are sampled according to the distribution ${\cal D}$ independently from the ${\cal m}$ data of the training set.

Machine Learning Algorithm(PSOL): Validation set

1. Validation Set

Theorem:

Consider the hypothesis h and the cost function belonging to [0,1]. So $\forall \delta \in [0,1]$:

$$P_{V \sim D^{m_v}} \left[|L_V(h) - L_D(h)| \le \varepsilon = \sqrt{\frac{\log\left(\frac{2}{\delta}\right)}{2m_v}} \right] \ge 1 - \delta$$

Notice : $|H| \cong \infty$

- This generalization bound doesn't depend neither on the learning algorithm nor on the training set.
- The generalization bound of the validation set is better than that of the training set:

$$L_D(h) - L_S(h) \leq \sqrt{C \frac{d_{VC}(H) + log(\frac{1}{\delta})}{m}}$$

With: C is a constant.

 $Model = \{learning \ algorithm; hyperparameters\}$

If $h^* \in H_i$ so M_i is the best model, with i = 1, ..., n.

Theorem : $|H_V| < \infty$

Let's consider the hypothesis set $H_V = \{h_1^*, h_2^*, \dots, h_n^*\}$ and the cost function belonging to [0,1]. Let's consider the validation set V of size m_v sampled independently from H_V . So $\forall \delta \in [0,1]$ and $\forall h^* \in H_V$:

$$P_{V \sim D^{m_v}} \left[|L_V(h^*) - L_D(h^*)| \le \varepsilon = \sqrt{\frac{\log\left(\frac{2|H_V|}{\delta}\right)}{2m_v}} \right] \ge 1 - \delta$$

Notice:

The generalization bound based on the validation set is better than that of the training set under the condition that the size of H_V is small.

What is the best polynomial?

Definition:

The model selection curve presents the training error and the validation error in function of

the model complexity.

Course of M.L. by Pr. Abdellatif El Afia

Definition: k-Fold cross-validation

The training set is partitioned on k subsets (folds) of size $\frac{m_H(\varepsilon,\delta)=m}{k}$.

For each subset S_i i=1,...,k, the algorithm A_{α} is trained on the union of the remaining subsets, then the estimation of the validation error of $A_{\alpha}(h)$ is made on S_i .

Finally, the total validation error of the model is the mean of all validation errors of the subsets S_i .

Definition: Leave-one-out cross-validation

Leave-one-out cross-validation is a particular case of the k-Fold cross-validation with k=1.

```
ALGORITHM: « k-Fold Cross Validation »
INPUT: Training set : S = \{(x_1, y_1), ..., (x_m, y_m)\}
             Parameter values set : Θ
             Learning Model A
             Integer k
BEGIN:
        Partition S into S_1, \dots, S_k
        FOREACH \theta \in \Theta
               FOR i = 1 ... k
                       h_{i,\theta} = A(S \setminus S_i; \theta)
                       Compute the error estimation L_{S_i}(h_{i,\theta})
               ENDFOR
               error(\theta) = \frac{1}{k} \sum_{i=1}^{k} L_{S_i}(h_{i,\theta})
END
OUTPUT: Optimal parameter: \theta^* = \operatorname{argmin}_{\theta \in \Theta} (\operatorname{error}(\theta))
               Optimal hypothesis : h_{\theta^*} = A(S; \theta^*)
```

Course of M.L. by Pr. Abdellatif El Afia

Example: k = 5

• Partition S into 5 subsets $S_1, ..., S_5$

- For each i = 1, ..., 5:
 - The training is done on the set $S \setminus S_i$

• The error estimation $L_{S_i}(h_{i,\theta})$ is done on S_i :

• For $\forall i=1,\ldots,5$: $m_{\mathcal{S}_i} < m_H = m$

Course of M.L. by Pr. Abdellatif El Afia