2013. 9 класс. решения.

1. В U-образной трубке, заполненной жидкостью плотности ρ , оба конца закрыты поршнями площади сечения S_1 и S_2 , с массами M_1 и M_2 . Насколько изменится уровень воды с обоих концов, если на первый поршень положить груз массы m?

Решение

Пусть на первом конце уровень уменьшился на $\delta h_{\!\scriptscriptstyle 1}$, а на втором увеличился на $\delta h_{\!\scriptscriptstyle 2}$.

- 1. Условие несжимаемоести $\delta h_1 S_1 = \delta h_2 S_2$.
- 2. Условие сохранения равновесия (равенства гидростатических давлений на дне сосудов)

$$\rho g \, \delta h_2 = -\rho g \, \delta h_1 + \frac{mg}{S_1}$$

Подставляя, получаем $\delta h_{\!_1} = \! \frac{m}{\rho} \frac{S_2 \, / \, S_1}{S_1 + S_2}$, $\delta h_2 = \! \frac{m}{\rho} \frac{1}{S_1 + S_2}$.

2. На однородный стержень, оба конца которого заземлены, падает пучок электронов, причём в единицу времени на единицу длины стержня попадает постоянное число электронов. Найдите разность потенциалов между серединой стержня и его концом, если сопротивление стержня равно *R*, а полный ток заземления равен *I*.

Решение

- 1. В единицу времени на единицу длины стержня падает одинаковое число электронов. Для того, чтобы картина была стационарной, и заряд не накапливался, на каждом участке стержня заданной длины величина силы тока меняется одинаково. Это значит, что ток меняется линейно по длине стержня.
- 2. В середине стержня из симметрии ток равен нулю, а на конце I/2, поэтому средний ток равен $I_a = (I/2)/2 = I/4$.
- 3. Сопротивление половины стержня равно $R_{1/2}=R/2$, поэтому разность потенциалов $\Delta\phi=I_aR_{1/2}=IR/8$.
- **3.** Два резистора соединены последовательно и подключены к источнику постоянного напряжения 12 В. Если вольтметр подключить параллельно первому резистору, он покажет 6 В, если параллельно второму 4 В. Каковы напряжения на резисторах в отсутствие вольтметра?

Решение

Пусть напряжение источника $U_0=12$ В, первое показание вольтметра $U_1=6$ В, второе $U_2=4$ В, сопротивления резисторов R_1 и R_2 , внутреннее сопротивление вольтметра r .

1. При первом подключении сопротивление параллельно подсоединенных $R_{\rm l}$ и r равно $R_{\rm l}r/(R_{\rm l}+r)$, поэтому равенство силы тока на двух последовательных участках записывается в виде

$$rac{U_0-U_1}{R_2}=rac{U_1}{R_1r/(R_1+r)}$$
, откуда получаем $rac{U_0-U_1}{U_1}=rac{R_2}{R_1}rac{R_1+r}{r}$.

- 2. Аналогично при втором подключении $\dfrac{U_0 \, \, {}^-\!U_2}{U_2} = \dfrac{R_1}{R_2} \dfrac{R_2 + r}{r}$
- 3. Решая систему, получим $\dfrac{R_{_{1}}}{R_{_{2}}}=\dfrac{U_{_{1}}}{U_{_{2}}}$, а значит при последовательном соединении разница

потенциалов, пропорциональная сопротивлению участка, равна

на первом участке
$$U_{{\scriptscriptstyle II}}=U_{{\scriptscriptstyle 0}}\frac{R_{{\scriptscriptstyle 1}}}{R_{{\scriptscriptstyle 1}}+R_{{\scriptscriptstyle 2}}}=\frac{2}{5}U_{{\scriptscriptstyle 0}}=4,8\,{\rm B}$$

на втором участке
$$U_{II}=U_0 \frac{R_2}{R_1+R_2}=\frac{3}{5}U_0=7,2\,\mathrm{B}$$

4. В воду при температуре $0^{\circ}C$ бросили полую алюминиевую конструкцию со средней плотностью 1050 кг/м^3 . До какой температуры нужно было её предварительно охладить, чтобы она всплыла за счёт намёрзшего льда? Теплоёмкость алюминия $900 \text{ Дж/(кг} \cdot {}^{\circ}C)$, удельная теплота плавления льда 336 кДж/кг, его плотность 900 кг/м^3 .

Решение

Пусть средняя плотность конструкции это ho_{av} , воды ho_0 , льда ho_1 , V это объем сплошного алюминия, а V полный объем конструкции; масса m, намерзло льда массы Δm и объема ΔV .

- 1. Условие теплового равновесия $mc\Delta T=\Delta m\lambda$, откуда получаем $\Delta T=\frac{\Delta m}{m}\frac{\lambda}{c}$
- 2. Условие всплытия $\rho_0 = \frac{m + \Delta m}{V_0 + \Delta V}$. Учитывая что $\Delta V = \Delta m / \rho_1$, получим $\rho_0 (V_0 + \frac{\Delta m}{\rho_1}) = m + \Delta m$. Решение $\frac{\Delta m}{m} = \frac{1 - \rho_0 / \rho_{av}}{\rho_0 / \rho_1 - 1}$. Подставляем: $\Delta T = \frac{\rho_{av} - \rho_0}{\rho_0 - \rho_1} \frac{\rho_1}{\rho_{av}} \frac{\lambda}{c} = \frac{\rho_{av} - \rho_0}{\rho_{av}} \frac{\rho_1}{\rho_0 - \rho_1} \frac{\lambda}{c}$.
- 3. В числах: $\Delta T = \left(1 \frac{1000}{1050}\right) \frac{0.9}{0.1} \frac{336000}{900} = \frac{1}{21}3360 = 160(^{\circ}C)$
- **5.** Наблюдатель измеряет скорость объекта по зависимости угла от времени прихода светового сигнала с соответствующего направления. Источник, на большом расстоянии от наблюдателя, которое известно, движется со скоростью $\mathbf{v} < c$ под углом θ к лучу зрения. Скорость света c конечна. Какова кажущаяся (измеряемая наблюдателем) скорость источника перпендикулярно лучу зрения и может ли она быть больше c?

Решение

- 1. За время Δt источник сдвигается перпендикулярно лучу зрения на $\Delta x = v\cos\theta \ \Delta t$, а по направлению к наблюдателю на $\Delta y = v\sin\theta \ \Delta t$.
- 2. Кажущееся смещение перпендикулярно лучу зрения совпадает с истинным и равно Δy . Так как расстояние до источника известно, то оно правильно измеряется по углу.
- 3. Запаздывание светового сигнала, то есть время между приходом лучей, излучённых из первой и второй точками, равно $\delta t = \Delta t \Delta y / c$, так из-за движения источника второму лучу нужно пройти меньшее на Δy расстояние до наблюдателя.
- 4. Измеряемая скорость это $v_{obs} = \frac{\Delta y}{\delta t} = \frac{v \cos \theta}{1 \frac{v}{c} \sin \theta}$
- 5. Пусть скорость источника меньше \$c\$, но очень близка (понятно из общих соображений, что это именно тот случай, когда может быть что-то интересное). Тогда $\mathbf{v}_{obs} \approx c \frac{\cos \theta}{1-\sin \theta}$. При $\theta=0$ получим $\mathbf{v}_{obs} \approx c$, что не дает ответа на вопрос, зато при больших углах можно видеть, что \mathbf{v}_{obs} может быть больше c. Например, при $\theta=30^\circ$ будет $\mathbf{v}_{obs} \approx \sqrt{3}c$.