XI. Gyakorlat (2019.04.30)

Hashelés

A hashelés / hasítás célja egy olyan adattárolási eljárás megvalósítása, amelyben a keresés, beszúrás, törlés, műveletek várhatóan nagyon hatékonyak. Feltesszük, hogy a tárolandó rekordnak van egy egyedi kulcs adattagja. A kulcsok egy U halmaz elemei (U a kulcsok univerzuma), amiről ezúttal nem szükséges feltételezni, hogy rendezhető.

A legegyszerűbb megvalósítás az ún. direkt címzés. Ezt akkor használjuk, ha a kulcshalmaz nagyon kicsi. Ha U=0..m-1, akkor egy m méretű tömbben / hasítótáblában tárolhatjuk a rekordokra mutató pointereket úgy, hogy a tömb ${\bf k}$ indexű tagja a ${\bf k}$ kulcsú rekordra mutat. Amennyiben nincs ${\bf k}$ kulcsú rekord, a megfelelő pointer értéke NULL.

Amennyiben a kulcshalmaz nagy, a direkt címzés nem alkalmazható. Ilyenkor felveszünk egy \mathbf{m} részre osztott Z[0..(m-1)] hasítótáblát, és bevezetünk egy $\mathbf{h}: \mathbf{U} \rightarrow \mathbf{1}..m-\mathbf{1}$ hasító függvényt (tipikusan $|\mathbf{U}| >> m$). A \mathbf{k} kulcsú rekordot a hasítótábla Z[h(k)] részében próbáljuk meg eltárolni. Ha két adat k_1 és k_2 kulcsára $h(k_1) = h(k_2)$, akkor kulcsütközésről beszélünk. A különféle hasítási eljárások a \mathbf{h} függvény megválasztásában és kulcsütközések kezelésében különböznek egymástól.

Láncolt / vödrös hashelés

Az adatokat \mathbf{m} darab S1L listában tároljuk. A hasítótábla $\mathbf{Z}[\mathbf{i}]$ eleme az \mathbf{i} . láncolt lista első elemére mutató pointer. Ez a lista azokat a \mathbf{k} kulcsú elemeket tartalmazza, amikre $\mathbf{h}(\mathbf{k}) = \mathbf{i}$. Beszúráskor a megfelelő lista első elejére szúrjuk be az új elemet azért, hogy a beszúrás konstans műveletigényű legyen.

Példa: m = 7, $h : \mathbb{N} \to 0..6$, $h(k) = k \mod 7$. A táblába beszúrt elemek sorban: 3, 21, 73, 8, 24, 35, 26, 14, 5, 10, 18.

Feladat: készítsük el a láncolt hashelés kétirányú listás változatát, és rajzoljuk fel a törlés művelet struktogramját. A kétirányú lista nem ciklikus.

A hashelés láncolt megvalósításánál a korábban tanult E1, E2 adattípusok helyett a D1 és D2 adattípusokat használjuk. Ezek azonban mindenben megegyeznek a korábbi változatukkal.

Nyílt címzéses hashelés

Ebben az esetben nem engedjük meg azt, hogy a hastábla egy eleméhez egynél több rekord is tartozzon. Ekkor a rekordokattárolhatjuk közvetlenül a hashtáblában, azonban foglalkoznunk kell a kulcsütközésekkel. Ennek érdekében a kulcsokhoz most már nem egyetlen hash értéket vezetünk be, hanem egy m-tagú sorozatot, ahol m a hashtábla mérete. Legyen h: $U \times 0..(m-1) \rightarrow 0..m-1$ egy olyan függvény, amelyre teljesül, hogy tetszőleges k kulcsra a h(k, 0), h(k,1)..h(k, m-1) sorozat a 0..m-1 számok egy permutációja. h-t hasító/hash függvénynek nevezzük, az előbbi sorozatot pedig k próbasorozatának hívjuk. Általában olyan próbasorozatot választunk, amely az első eleméből önnyen rekonstruálható. Az első elemet $h_1(k)$ -val is jelölhetjük.

Beszúrás: ha a k kulcsú elemet akarjuk beszúrni a táblába, akkor először megnézzük, hogy szabad-e a h(k,0) indexű pozíció. Amennyiben igen, beszúrjuk, ha nem, akkor megnézzük szabad-e a h(k,1) pozíció. Es így tovább, egészen addig, amíg nem találunk neki egy szabad helyet.

Törlés: egy elem törlése során először megkeressük az előző eljárással a helyét. Fonsot, hogy a törlésnél nem változtathatjuk a megtalált pozíciót üresre, hiszen ez gondot okozhatna a későbbi kereséseknél. Épp ezért a törölt elemek helyét valójában nem szabadítjuk fel, hanem az addig ott tárolt kulcsot lecseréljük egy U halmazban szereplő D (deleted) szimbólumra.

Lineáris próba

Lineáris próba esetén a próbasorozat egy számtani sorozatot alkot. Tehát $h(k,n) = h(k,0) + nd \mod m$.

Példa: $m =$	11. h	: N → 010	h(k, n) =	(k+n)) mod 11.
--------------	-------	-----------	-----------	-------	-----------

Művelet	k	$h_1(k)$	Próbasorozat	0	1	2	3	4	5	6	7	8	9	10
Beszúr	24	2	$2_E \checkmark$			24								
Beszúr	16	5	$5_E \checkmark$			24			16					
Beszúr	57	2	$2, 3_E \checkmark$			24	57		16					
Beszúr	32	10	10 _E ✓			24	57		16					32
Beszúr	15	4	4_E \checkmark			24	57	15	16					32
Töröl	57	2	2, 3 ₅₇ ✓			24	D	15	16					32
Beszúr	21	10	$10,0_{E}$ \checkmark	21		24	D	15	16					32
Keres	2	2	$2, 3_D, 4, 5, 6_E$ X	21		24	D	15	16					32
Beszúr	2	2	$2, 3_D, 4, 5, 6_E \checkmark$	21		24	2	15	16					32
Beszúr	2	2	2, 3 ₂ X	21		24	2	15	16					32
Keres	21	10	10, 0 ₂₁ ✓	21		24	2	15	16					32

A lépések lejátszása után határozzuk meg a hashtábla kitöltöttségi arányszámát: $\alpha = \frac{6}{11}$

Feladat: beszúrás struktogramja. A hasítótáblába illesztett adatok típusa R (rekord), ami rendelkezik egy k nevű kulcs adattaggal. Az algoritmus visszatérési értéke egy logikai érték, ami megmondja, hogy sikeres volt-e a beszúrás.

Négyzetes próba

Négyzetes próba esetén a próbasorozat egy másodfokú függvény segítségével írható le, vagyis h(k, n) = (h(k, 0) + c₁ * n + c₂ * n²) mod m valamilyen c₁, c₂ konstansokra. (Ezeket a konstansokat úgy kell megválasztani, hogy a próbasorozat a teljes táblát kiadja, pl. kettőhatvány m esetén a c₁ = c $_2$ = $\frac{1}{2}$ egy jó választás, ha pedig m egy 4k + 3 alakú prím, akkor bármilyen c₂ jó lesz c₁ = 0 esetén.) c₁ = c₂ = $\frac{1}{2}$ esetén h(k, n) = h(k, n · 1) + n.

1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Példa: $m=8$	$h: \mathbb{N} \to 07,$	h(k,n) = ($\left(k + \frac{n+n^2}{2}\right)$	$\mod 8$.
---	--------------	-------------------------	------------	------------------------------------	------------

Művelet	k	$h_1(k)$	Próbasorozat	0	1	2	3	4	5	6	7
Beszúr	13	5	5_E \checkmark						13		
Beszúr	20	4	4_E \checkmark					20	13		
Beszúr	31	7	7 _E ✓					20	13		31
Beszúr	87	7	$7,0_E$ \checkmark	87				20	13		31
Beszúr	12	4	$4, 5, 7, 2_E \checkmark$	87		12		20	13		31
Töröl	31	7	7 ₃₁ ✓	87		12		20	13		D
Keres	12	4	$4, 5, 7_D, 2_{12}$	87		12		20	13		D
Keres	15	7	$7_D, 0, 3_E$ X	87		12		20	13		D
Beszúr	4	4	$4,5,7_D,2,6_E$ \checkmark	87		12		20	13		4
Töröl	10	2	$2,3_E$ X	87		12		20	13		4
Beszúr	35	3	3 _E ✓	87		12	35	20	13		4
Beszúr	10	2	$2, 3, 5, 0, 4, 1_E \checkmark$	87	10	12	35	20	13		4

$$\alpha = \frac{7}{8}$$

Feladat: készítsük el a keresés struktogramját. Az algoritmus visszatérési értéke egy egész szám, ami megadja a paraméterül kapott kulcsú rekord indexét. Sikertelen keresés esetén a visszatérési érték -1.

Kettős hasítás

Ebben az esetben a próbasorozat egy számtani sorozat, azonban a differencia kulcsonként eltérő. Az első elemet egy $h_1: U \to 0..m-1$, a számtani sorozat differenciáját pedig egy $h_2U \to 0..m-1$ függvény adja meg. Ezekből a h hasítófüggvényt a $h(k, n) = (h_1(k) + n * h_2(k))$ mod m képlet adja meg.

Feida: $m = 11$, $n_1(k) = k \mod 11$, $n_2(k) = 1 + (k \mod 10)$.															
Művelet	k	$h_1(k)$	$h_2(k)$	Próbasorozat	0	1	2	3	4	5	6	7	8	9	10
Beszúr	23	1	4	1 _E ✓		24									
Beszúr	42	9	3	9 _E ✓		24								42	
Beszúr	31	9	2	$9, 0_E \checkmark$	31	24								42	
Beszúr	110	0	1	$0, 1, 2_E \checkmark$	31	24	110							42	
Beszúr	55	0	6	$0, 6_E$ \checkmark	31	24	110				55			42	
Töröl	55	0	6	0, 6 ₅₅ 🗸	31	24	110				D			42	
Keres	72	6	3	$6_D, 9, 1, 4_E X$	31	24	110				D			42	

 $0, 3, 6_D, 9, 1, 4_E X$

 $0, 1, 2_{110}$

 $2_D, 6_D, 10_E$

31

31

31

31

24

24

24

24

110

110

D

13

14

14

14

14

D

D

D

D

42

42

42

42

Példa: m = 11, $h_1(k) = k \mod 11$, $h_2(k) = 1 + (k \mod 10)$.

5

5

1

4

Hasítófüggvény megválasztása

3

3

0

2

14

22

110

13

A h : U \rightarrow 0..(m · 1) függvény egyszerű egyenletes hasítás, ha a kulcsokat a rések között egyenletesen szórja szét, azaz hozzávetőleg ugyanannyi kulcsot képez le az m rés mindegyikére. Tetszőleges hasító függvénnyel kapcsolatos elvárás, hogy egyszerű egyenletes hasítás legyen.

Osztó módszer

Beszúr

Töröl

Töröl

Beszúr

Ha a kulcsok egész számok, gyakran választják a $\mathbf{h}(\mathbf{k}) = \mathbf{k} \mod \mathbf{m}$ hasító függvényt, ami gyorsan és egyszerűen számolható, és ha m olyan prím, amely nincs közel a kettő hatványához, általában egyenletesen szórja szét a kulcsokat a $0..(\mathbf{m} - 1)$ intervallumon. Ha pl. a kulcsütközést láncolással szeretnénk feloldani, és kb. 2000 rekordot szeretnénk tárolni $\alpha \approx 3$ kitöltöttségi aránnyal, akkor a 701 jó választás: a 701 ui. olyan prímszám, ami közel esik a 2000/3-hoz, de a szomszédos kettőhatványoktól 512-től és az 1024-től is elég távol van.

Kulcsok a [0,1) intervallumon

ha egyenletesen oszlanak el, a $\mathbf{h}(\mathbf{k}) = [\mathbf{k} * \mathbf{m}]$ függvény is kielégíti az egyszerű, egyenletes hasítás feltételét.

Szorzó módszer

Ha a kulcsok valós számok, tetszőleges 0 < A < 0 konstanssal alkalmazható a a $\mathbf{h}(\mathbf{k}) = \lfloor \{\mathbf{k} * \mathbf{A}\} * \mathbf{m} \rfloor$ hasító függvény. ($\{\mathbf{x}\}$ az x törtrésze.) Nem minden lehetséges konstanssal szór egyformán jól. Knuth az $\mathbf{A} = \frac{\sqrt{5}-1}{2} \approx 0.168$ választást javasolja,

mint ami a kulcsokat valószínűleg szépen egyenletesen fogja elosztani a rések között. Az osztó módszerrel szemben előnye, hogy érzékeny a hasító tábla méretére.