Lengoaiak, Konputazioa eta Sistema Adimendunak

 gaiko lehenengo zatia: AFD-ak eta minimizazioa – Soluzioa Bilboko IITUE 1,6 puntu

2014-01-13

1 Automata finitu deterministen (AFD-en) diseinua (0,900 puntu)

 $A = \{a, b, c\}$ alfabetoaren gainean definitutako honako hiru lengoaientzat AFD bana diseinatu:

1.1 c-rik ez eta, edozein ordenatan, gutxienez a bat eta gutxienez b bat dituzten hitzen lengoaia (0,300 puntu)

c sinboloaren agerpenik ez eta gutxienez a sinboloaren agerpen bat eta gutxienez b sinboloaren agerpen bat dituzten hitzez osatutako L_1 lengoaia. Hor a eta b sinboloen agerpenei dagokionez, ordenak ez du garrantzirik. Adibidez, bbbab, ababbb, ba, ab eta bbbaaaa hitzak L_1 lengoaiakoak dira baina aac, aabcbc, aacc, aaa, bbbb eta ε hitzak ez dira L_1 lengoaiakoak. L_1 lengoaiaren definizio formala honako hau da:

$$L_1 = \{ w \mid w \in A^* \land |w|_a \ge 1 \land |w|_b \ge 1 \land |w|_c = 0 \}$$

1.2 c-rik agertzen bada, a-rik eta b-rik ez duten hitzen lengoaia (0,300 puntu)

c sinboloaren agerpenik baldin badute, a eta b sinboloen agerpenik ez duten hitzen L_2 lengoaia. Beraz hitz batean a eta b nahasian ager daitezke, baina c agertzen bada, orduan hitza c-ren errepikapenez osatutakoa izango da, hau da, ez du a-rik eta b-rik izango. Adibidez, abaabba, aaba, aaa, ε , ccc, bb eta bbaaab hitzak L_2 lengoaiakoak dira baina aacb, bccbbb, cccaa eta ccaaabab ez. Jarraian L_2 lengoaiaren bi definizio formal erakusten dira:

$$L_2 = \{ w \mid w \in A^* \land (|w|_c = |w| \lor |w|_c = 0) \}$$

$$L_2 = \{ w \mid w \in A^* \land (|w|_c \ge 1 \rightarrow (|w|_a = 0 \land |w|_b = 0)) \}$$

1.3 Bi zati osatuz agertzen diren bi sinboloren errepikapenez osatutako hitzen lengoaia (0,300 puntu)

Bi zati osatuz agertzen diren alfabetoko bi sinbolo desberdinen errepikapenez eratutako hitzen L_3 lengoaia. Zati bakoitzak gutxienez elementu bat izan beharko du. Adibidez, aaabbbb, bbaaaa, cccaa, bbbccc, aaac eta cbbb hitzak L_3 lengoaiakoak dira baina aaba, a, aa, abbabcaa eta ε ez. L_3 lengoaiaren definizio formala honako hau da:

$$L_3 = \{ w \mid w \in A^* \land \exists \alpha, \beta, u, v \mid (\alpha \in A \land \beta \in A \land u \in A^* \land v \in A^* \land \alpha \neq \beta \land |u| \geq 1 \land |v| \geq 1 \land |u| = |u|_{\alpha} \land |v| = |v|_{\beta} \land w = uv) \}$$

2 Konputazio deterministen garapena (0,150 puntu)

Jarraian erakusten den AFD-a kontuan hartuz, hor zehazten diren konputazioak garatu urratsez urrats, bukaeran AFD-ak "Bai" ala "Ez" erantzungo duen esanez:

1. $\delta^*(q_0, aba)$

2. $\delta^*(q_0, aaa)$

3. $\delta^*(q_0,\varepsilon)$

$$(q_0, \varepsilon)$$
 Erantzuna "Ez"da.

4. $\delta^*(q_0, abb)$

$$\begin{array}{c|c} (q_0,abb) \\ & | \\ (q_1,bb) \\ & | \\ (q_3,b) \\ & | \\ (q_3,\varepsilon) \\ \text{Erantzuna "Ez"da.} \end{array}$$

5. $\delta^*(q_0, a)$

$$(q_0,a)$$
 $|$ $(q_1,arepsilon)$ Erantzuna "Bai"da.

Kasu bakoitzak 0,030 balio du.

3 AFD-en minimizazioa (0,550 puntu)

 $A = \{a, b, c\}$ alfabetoaren gainean definitutako honako AFD hau minimizatu:

Lehenengo zatiketa

Lehenengo zatiketan bi multzo sortuko dira. Batean Y multzokoak direnak sartuko dira ("Bai" erantzuten dutenak) eta bestean Y multzokoak ez direnak ("Ez" erantzuten dutenak). Multzo batean agertzen den azpiindize txikiena j baldin bada, multzoa $[q_j]$ bezala identifikatuko dugu.

$$[q_0] = \{q_0, q_3, q_7\}$$

$$[q_5] = \{q_1, q_2, q_4, q_5, q_6, q_8\}$$

Bigarren zatiketa

Gogoan izan δ trantsizio funtzioari dagokion taula honako hau dela:

δ	a	b	c
q_0	q_2	q_0	q_0
q_1	q_1	q_1	q_1
q_2	q_1	q_4	q_1
q_3	q_2	q_3	q_3
q_4	q_1	q_7	q_1
q_5	q_5	q_5	q_5
q_6	q_5	q_3	q_5
q_7	q_8	q_7	q_7
q_8	q_5	q_6	q_5

Orain egoera bakoitzetik zein egoeratara joango garen adierazi beharrean, egoera bakoitzetik zein multzotara joango garen adieraziz taula hori eraldatu egingo dugu. Horrela, q_0 egoeran gaudenean a sinboloa irakurriz q_2 egoerara joango garenez, eta q_2 egoera $[q_1]$ multzoan dagoenez, q_2 ipini beharrean $[q_1]$ ipiniko dugu. Kasu guztietan aldaketa hori egin behar da:

δ	a	b	c
q_0	$[q_1]$	$[q_0]$	$[q_0]$
q_1	$[q_1]$	$[q_1]$	$[q_1]$
q_2	$[q_1]$	$[q_1]$	$[q_1]$
q_3	$[q_1]$	$[q_0]$	$[q_0]$
q_4	$[q_1]$	$[q_0]$	$[q_1]$
q_5	$[q_1]$	$[q_1]$	$[q_1]$
q_6	$[q_1]$	$[q_0]$	$[q_1]$
q_7	$[q_1]$	$[q_0]$	$[q_0]$
q_8	$[q_1]$	$[q_1]$	$[q_1]$

Jarraian $[q_0]$ eta $[q_1]$ multzoak zatitu behar al diren aztertuko da.

 $[q_0]$ multzoko egoeren jokaera aztertuz, q_0 , q_3 eta q_7 egoerek jokaera bera dutela ikus dezakegu. a sinboloa irakurriz gero $[q_1]$ multzoko egoera batera doaz eta b edo c sinboloak irakurriz $[q_0]$ multzoko egoera batera doaz. Beraz, $[q_0]$ berdin geratuko da, ez da zatituko.

 $[q_1]$ multzoko egoeren jokaera aztertuz, q_1 , q_2 , q_5 eta q_8 egoerek jokaera bera dutela ikus dezakegu. Bai a, bai b eta bai c irakurriz, $[q_1]$ multzoko egoera batera doaz. Bestalde, q_4 eta q_6 egoerek jokaera bera dute, baina jokaera hori ez dator bat q_1 egoeraren jokaerarekin: a edo c-rekin $[q_1]$ multzoko egoera batera doaz eta b-rekin $[q_0]$ multzoko egoera batera doaz. Beraz, $[q_1]$ multzoa bi multzotan zatituko da. $[q_1]$ multzo berrian q_1 , q_2 , q_5 eta q_8 egoerak izango ditugu eta $[q_4]$ multzo berrian q_4 eta q_6 egoerak izango ditugu.

Ondorioz, orain honako hiru multzo hauek izango ditugu:

$$[q_0] = \{q_0, q_3, q_7\}$$

$$[q_1] = \{q_1, q_2, q_5, q_8\}$$

$$[q_4] = \{q_4, q_6\}$$

Hirugarren zatiketa

Bigarren zatiketa kontuan hartuz trantsizio-taula eguneratuko dugu:

δ	a	b	c
q_0	$[q_1]$	$[q_0]$	$[q_0]$
q_1	$[q_1]$	$[q_1]$	$[q_1]$
q_2	$[q_1]$	$[q_4]$	$[q_1]$
q_3	$[q_1]$	$[q_0]$	$[q_0]$
q_4	$[q_1]$	$[q_0]$	$[q_1]$
q_5	$[q_1]$	$[q_1]$	$[q_1]$
q_6	$[q_1]$	$[q_0]$	$[q_1]$
q_7	$[q_1]$	$[q_0]$	$[q_0]$
q_8	$[q_1]$	$[q_4]$	$[q_1]$

Jarraian $[q_0]$, $[q_1]$ eta $[q_4]$ multzoak zatitu beharrik ba al dagoen erabakiko dugu.

 $[q_0]$ multzoko egoeren jokaera aztertuz, q_0 , q_3 eta q_7 egoerek jokaera bera dutela ikus dezakegu. a sinboloa irakurriz gero $[q_1]$ multzoko egoera batera doaz eta b edo c sinboloak irakurriz $[q_0]$ multzoko egoera batera doaz. Beraz, $[q_0]$ berdin geratuko da, ez da zatituko.

 $[q_1]$ multzoko egoeren jokaera aztertuz, q_1 eta q_5 egoerek jokaera bera dutela ikus dezakegu. Bai a, bai b eta bai c irakurriz, $[q_1]$ multzoko egoera batera doaz. Bestalde, q_2 eta q_8 egoerek jokaera bera dute, baina jokaera hori ez dator bat q_1 egoeraren jokaerarekin: a edo c-rekin $[q_1]$ multzoko egoera batera doaz eta b-rekin $[q_4]$ multzoko egoera batera doaz. Beraz, $[q_1]$ multzoa bi multzotan zatituko da. $[q_1]$ multzo berrian q_1 eta q_5 egoerak izango ditugu eta $[q_2]$ multzo berrian q_2 eta q_8 egoerak izango ditugu.

 $[q_4]$ multzoko egoeren jokaera aztertuz, q_4 eta q_6 egoerek jokaera bera dutela ikus dezakegu. a edo c irakurriz $[q_1]$ multzoko egoera batera doaz eta b irakurriz $[q_0]$ multzoko egoera batera doaz. Beraz, $[q_4]$ berdin geratuko da, ez da zatituko.

Guztira lau multzo ditugu orain:

$$[q_0] = \{q_0, q_3, q_7\}$$

$$[q_1] = \{q_1, q_5\}$$

$$[q_2] = \{q_2, q_8\}$$

$$[q_4] = \{q_4, q_6\}$$

Ez dago laugarren zatiketarik

Hirugarren zatiketa kontuan hartuz trantsizio-taula eguneratuko dugu:

δ	a	b	c
q_0	$[q_2]$	$[q_0]$	$[q_0]$
q_1	$[q_1]$	$[q_1]$	$[q_1]$
q_2	$[q_1]$	$[q_4]$	$[q_1]$
q_3	$[q_2]$	$[q_0]$	$[q_0]$
q_4	$[q_1]$	$[q_0]$	$[q_1]$
q_5	$[q_1]$	$[q_1]$	$[q_1]$
q_6	$[q_1]$	$[q_0]$	$[q_1]$
q_7	$[q_2]$	$[q_0]$	$[q_0]$
q_8	$[q_1]$	$[q_4]$	$[q_1]$

Orain $[q_0]$, $[q_1]$, $[q_2]$ eta $[q_4]$ multzoak zatitu beharrik ba al dagoen aztertuko da.

 $[q_0]$ multzoko egoeren jokaera aztertuz, q_0 , q_3 eta q_7 egoerek jokaera bera dutela ikus dezakegu. a sinboloa irakurriz gero $[q_2]$ multzoko egoera batera doaz eta b edo c sinboloak irakurriz $[q_0]$ multzoko egoera batera doaz. Beraz, $[q_0]$ berdin geratuko da, ez da zatituko.

 $[q_1]$ multzoko egoeren jokaera aztertuz, q_1 eta q_5 egoerek jokaera bera dutela ikus dezakegu. Bai a, bai b eta bai c irakurriz, $[q_1]$ multzoko egoera batera doaz. Beraz, $[q_1]$ ere berdin geratuko da, ez da zatituko.

 $[q_2]$ multzoko egoera jokaera aztertuz, q_2 eta q_8 egoerek jokaera bera dutela ikus dezakegu: a edo c-rekin $[q_1]$ multzoko egoera batera doaz eta b-rekin $[q_4]$ multzoko egoera batera doaz. Beraz, $[q_2]$ ere berdin geratuko da, ez da zatituko.

Azkenik, $[q_4]$ multzoko egoeren jokaera aztertuz, q_4 eta q_6 egoerek jokaera bera dute: a edo c-rekin $[q_1]$ multzoko egoera batera doaz eta b-rekin $[q_0]$ multzoko egoera batera doaz. Ondorioz, $[q_4]$ ere ez da zatitu behar

Beraz, ez da zatiketarik egin urrats honetan.

AFD txikiena

Beraz, honako lau multzo hauek geratu dira:

$$[q_0] = \{q_0, q_3, q_7\}$$

$$[q_1] = \{q_1, q_5\}$$

$$[q_2] = \{q_2, q_8\}$$

$$[q_4] = \{q_4, q_6\}$$

Multzo horietako bakoitza egoera bat izango da AFD berrian. Trantsizioak kalkulatzeko, azkeneko taula hartuko da kontuan. Geratu diren lau egoerak bakarrik interesatzen zaizkigu:

δ	a	b	c
q_0	$[q_2]$	$[q_0]$	$[q_0]$
q_1	$[q_1]$	$[q_1]$	$[q_1]$
q_2	$[q_1]$	$[q_4]$	$[q_1]$
q_4	$[q_1]$	$[q_0]$	$[q_1]$

Minimizatzeko eman zaigun AFD-ko q_0 hasierako egoera $[q_0]$ multzoan dagoenez, $[q_0]$ izango da AFD berriko hasierako egoera. Bestalde, minimizatzeko emandako AFD-an Y multzokoak ziren egoera denak $[q_0]$ multzoan daudenez, bi borobil izango dituen egoera bakarra $[q_0]$ izango da.

Ordenean joan daitezen, egoerak berrizenda ditzakegu:

