Introduction to informatics

Piroska Biró

Revision

- History of computing, Computer generations
- Who used punched cards for operations at first?
 - Joseph Jacquard
- Who started to develop the Analytical Engine?
 - Charles Babbage
- Who designed the Z1, Z2, Z3 computers?
 - Konrad Zuse
- In which computer generation did the transistors appear?
 - The Second Generation

Revision

- Who can tell me the definition of the computer?
- Which are the input peripherals?
- Which are the output peripherals?
- What is the unit of information?
- What do we know about the relationship of bit and byte?

Bit, Byte

- ▶ 1 byte = 8 bit
- 1 Kbyte = 2^{10} byte = 1024 byte = 8194 bit
- 1 Mbyte = 2¹⁰ Kbyte = 2²⁰ byte = 1048576
 byte
- ▶ 1 Gbyte = 2^{10} Mbyte = 2^{20} Kbyte = 2^{30} Kbyte
- ▶ 1 Tbyte = 2¹⁰ Gbyte

Number/Numeral system concepts

- The numeral or number systems are all the processes of the denominations and the description of numbers.
 - non-positional (e.q. Egyptian, Mayan, Roman; difficult calculation in them)
 - positional notation or place-value notation
 - Babylonian(B.C.1750): sexagesimal (time and angle measuring)
 - Indian (A.D. 600): decimal system (digits: 1, 2, . . . , 9)
 - Arabic (A.D. 750): appereance of the 0
 - Europe between 1200–1600 spread generally

Name	Base	Sample	Approx. first appearance	
Babylonian numerals	60		3100 B.C.	
Greek numerals	10	αβγδε _Γ ζηθι		
Roman numerals	10	I II III IV V VI VII VIII IX X	1000 B.C.	
Chinese rod numerals	10		1st century	
Arabic numerals	10	012345678910	9th century	
Nepers's Location arithmetic	2	a b c d e f g h i j	1617 in Rabdology, a non- positional binary system	

Babylonians

- sexagesimal (base-60)
- first appeared around 3100 B.C

▶ 23 or 23×60 or 23×60×60 or 23/60

Babylonian symbols

7 1	∢7 11	∜7 21	₩7 31	₹ 7 41	₹₹7 51
77 2	(77 12	4(77 22	(((77 32	42/77 42	12 77 52
999 3	√γγγ 13	(१११) 23	(((7)) 33	45 999 43	15 111 53
💯 4	₹\$ 7 14	(1) 24	((() 34	14 19 44	11/2 5 4
XX 5	√∰ 15	∜∰ 25	(((XXX) 35	₹ ₩ 45	12 73 55
₩ 6	∜∰ 16	*(\$ \$\$\$ 26	₩₩ 36	₹ 🐺 46	12
7	₹₹ 17	(() 27	₩₩ 37	17 47	12 57
8	√∰ 18	() 28	₩₩ 38	₹₹ 48	124 🛱 58
777 9	∢∰ 19	4 7 29	*** 39	14 49	12 59
(10	44 20	₩ 30	₩ 40	∜ 50	

Greek numerals

Letter	Value	Letter	Value	Letter	Value
α΄	1	l'	10	ρ'	100
β΄	2	K'	20	σ'	200
γ'	3	λ′	30	T'	300
δ΄	4	μʻ	40	U'	400
ε'	5	٧′	50	φ′	500
F' or ζ' or στ'	6	ξ′	60	Χ'	600
ζ′	7	oʻ	70	ψ′	700
η΄	8	π΄	80	ω′	800
8'	9	ት'	90	3 ′	900

Roman numerals

1	=	
2	=	II
3	=	Ш
4	=	IV
5	=	V
6	=	VI
7	=	VII
8	=	VIII
9	=	IX
1 (O =	= X

Roman numerals

I=1

V=5

X = 10

L=50

C = 100

D = 500

M = 1000

Exercise:

49 = XLIX

68 = LXVIII

156 = CLVI

496 = CDXCVI

1347 = MCCCXLVII

201**3** = MMXIV

Arabic numerals

0123456789

General Numeral systems

Definition: The p-based positional notation or place-value notation number systems rule is:

$$(\dots \bar{a}_2 \bar{a}_1 \bar{a}_0 . \bar{a}_{-1} \bar{a}_{-2} \dots)_r =$$

$$= \sum_{i=-\infty}^{\infty} a_i p^i =$$

$$= \dots + a_2 p^2 + a_1 p + a_0 + a_{-1} p^{-1} + a_{-2} p^{-2} + \dots.$$

Decimal number system

3457,28

3457.28

3thousand + 4hundred + 5ten + 7one + 2tenth + 8hundreth

$$3 \cdot 10^3 + 4 \cdot 10^2 + 5 \cdot 10 + 7 + 2 \cdot 10^{-1} + 8 \cdot 10^{-2}$$

$$\bar{a}_n \bar{a}_{n-1} \bar{a}_{n-2} \dots \bar{a}_2 \bar{a}_1 \bar{a}_0 \dots \bar{a}_{-1} \bar{a}_{-2} \dots \bar{a}_{-m}$$

$$S_{(10} = \sum_{i=-m}^{n} a_i \cdot 10^i$$

Number systems

- p base system (any p>1)
 - ∘ digits: 0, 1, ..., *p*−1
- binary system
 - p = 2
 - digits: 0, 1
- octal system
 - *p* = 8
 - digits: 0, 1, 2, 3, 4, 5, 6, 7
- hexadecimal system
 - p = 16
 - odigits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

$$\sum_{i=-m}^{n} a_i \cdot p^i$$

$$\sum_{i=-m}^{n} a_{i} \cdot 2^{i}$$

$$\sum_{i=-m}^{n} a_i \cdot 8^i$$

$$\sum_{i=-m}^{n} a_i \cdot 16^i$$

Rules

Convert from p-base to decimal system.

Exercises

- Convert from p-base system to decimal.
 - 101.101₍₂=
 - 32121.41₍₄=
 - 423.45₆=
 - \circ 293.745(₈=
 - 154.485₍₉=

Rules

Convert from decimal to p-base system.

Exercises

- Convert from decimal to other p-base system.
 - 45.55₍₁₀=?₍₂
 - 111.45₍₁₀=?₍₄
 - $^{\circ}$ 23.45₍₁₀=?₍₅
 - 23.45₍₁₀=?₍₈
 - 54.45₍₁₀=?₍₁₆

Rules

Conections between binary, octal and hexadecimal systems.

Exercises

- 1. $1000\ 1001\ 1111\ 1101_{(2} =$
- 2. $1010\ 0111\ 1101\ 1110_{(2} =$
- 3. $1011\ 1100\ 0001\ 0001_{(2} =$
- 4. $1000\ 0101\ 0110\ 1001_{(2} =$
- 5. $BCDFA_{(16} =$
- 6. $A94F6_{(16} =$
- 7. DF237₍₁₆=
- 8. $A12F8_{(16} =$

Exercises

- ▶ 23612.352 ₍₉ =?₍₁₀
- \rightarrow 32918.35₍₁₀ =?₍₇₎
- \blacktriangleright B7E3DAC ₍₁₆ =? ₍₂ =? ₍₈
- ▶ 101001011011110101101111 ₍₂ =?₍₈ =?₍₁₆

Data representation

- Bitseries are computerized form of data, the basic units of storage consists of 8 bits which equals one byte.
- Two methods of data storage
 - computerized number representation (calculations)
 - decoded representation

Representation of Numbers

- Fixed-point
 - sign-and-magnitude method (absolute value)
 - one's complement
 - two's complement
 - excess K
- Floating point

Signed fixed-point numbers

- 256 different numbers stored in eight bits
 - $^{\circ}$ 2⁸ = 256
- Which are the negative numbers?

Sign-and-magnitude method

- sign bit
 - the highest place value (the first bit on the left)
 - · 0: +
 - · 1: -
- remaining bits
 - binary
 - magnitude or absolute value of the number
- properties
 - two ways to represent 0:
 00000000 (+0) and 10000000 (-0)
 - the smallest number: -127: 11111111
 - the biggest number: +127: 011111111

Sign-and-magnitude method

$$+ 9 1 _{(10)} = 0 1 0 1 1 0 1 1$$

- sign bit
 - the highest place value (the first bit on the left)
 - 0: +
 - · 1:-
- remaining bits
 - binary
 - positive number
 - number
 - negative number
 - number*(-1) (negative binary number)
- properties
 - two ways to represent 0:
 00000000 (+0) and 111111111 (-0)
 - the smallest number: -127: 11111111
 - the biggest number: +127: 01111111

- sign bit
 - the highest place value (the first bit on the left)
 - · 0: +
 - 1: -
- remaining bits
 - binary
 - positive number
 - number
 - negative number
 - 1' complement+1
- properties
 - one ways to represent 0 (0000000)
 - the smallest number: −128
 - the biggest number: +127

$$+25_{(10} = 00011001$$

$$+25_{(10} = 0001 | 1001$$

1's complement2's complement

$$-25_{(10} = 11100110$$

$$-25_{(10} = 1110|0110$$

1's complement

$$-25_{(10} = 11100111$$

$$-25_{(10} = 1110|0111$$

Binary addition

sign-and-magnitude

Excess-K number representation Offset binary/biased representation

- represent the sum of the number and the excess in a binary form
 - positive number
 - the excess in the case of n bit number: $2^{n-1}-1$, 2^{n-1}
 - the higest place value is 1, the remaining 0
 - the higest place value is 0, the remaining 1
- properties (excess-128)

- 0 can be represented definitely
- the biggest number: $+127(2^{8-1}-1)$
- the smallest number: $-128 (2^{8-1})$
- observations
 - the system is the same as the two's complement, with changed sign
 - using: floating point numbers in exponents part

Exercise Positive number with excess representation

addition in binary system

addition in decimal system, conversion

Exercise Negative numbers with excess representation

addition in binary system

subtraction is in binary system

$$103_{(10} = 01100111_{(2}$$

subtraction in decimal system, conversion

Exercise

- Represent the given decimal numbers in 8 bits with the following fixed-pointed methods.
 - sign-and-magnitude
 - 1's complement
 - 2's complement
 - excess-127
 - excess-128
 - 1. 67₁₀
 - **2.** -99₁₀
 - 3. 108₁₀
 - **4.** -117₁₀
- Convert the results to hexadecimal form.

Exercise

- Represent the given decimal numbers in 16 bits with the following fixed-pointed methods.
 - sign-and-magnitude
 - 1's complement
 - 2's complement
 - excess-2¹⁵ -1
 - excess-215
 - 1. -356₁₀
 - **2.** 987₁₀
 - **3.** 8789₁₀
 - **4.** -27269₁₀
- Convert the results to hexadecimal form.

BCD code-Binary Coded Decimal

- We represent just the digits with the following two methods.
- Uncompressed: each numeral is encoded into one byte
- Packed: every decimal digit is represented in four bits (1 nibble)
- Encoding the decimal number 91 using
 - uncompressed BCD results in the following binary pattern of two bytes:

0000 1001 0000 0001

- in packed BCD, the same number would fit into a single byte:
 1001 0001
- representation of negative numbers
 - nine's and ten's complement

BCD code

- representation of negative numbers
 - nine's and ten's complement
- Example:
- **▶** −432
- ▶ the nine's complement is 9999-432=9567
- the ten's complement is the nine's complement plus one: 9568
- ▶ −432 in signed BCD is 1001 0101 0110 1000.

BCD code

$$6892_{(10} = 0110 \,|\, 1000 \,|\, 1001 \,|\, 0010_{_{BCD}}$$

$$+301_{(10} = 0000 | 0011 | 0000 | 0001$$

$$-301_{(10)} = 1001 | 0110 | 1001 | 1000$$

9's complement

BCD

$$-301_{(10} = 1001 | 0110 | 1001 | 1001$$

Exercise

Define the packed BCD code of the following numbers (with negative numbers use the nine's and ten's complement).

- 378₁₀=
- \circ -864₁₀=
- 5643₁₀=
- \circ -8327₁₀=

Representing real numbers

- fixed point
- floating point
 - numbers in normalized form

$$N = \pm M \cdot p^{\pm E}$$

$$254.25_{(10)} = 2.5425 \cdot 10^2 = 0.25425 \cdot 10^3$$

Fixed point

- storage capacity, tha place of binary point
 - size of numbers to be representatied
 - punctuality of representation
 - special cases
 - if the binary point is on the right edge of storage, then fixed-pointed integer
 - if the binary point is on the left edge of storage, then fixed-pointed fraction

Floating point representation IEEE 754

- normalized in binary number system
- normalized to ineger
- characteristic: excess-127
- sign
 - positive number: 0
 - negative number: 1

$$N = \left(-1\right)^{S} \cdot \left(2^{E-127}\right) \cdot \left(1.M\right)$$

IEEE 754 standard

Туре	Number of bits	Sign bit	Characteristic	Mantissa
single	32	1	8 bit Excess-127	23 bit
double	64	1	11 bit Excess -1023	52 bit

Exercise

- S = 0
- $E = 1000 \ 1000_{(2} = 136_{(10)}$
- $M = .00010101001_{(2)} = .082519531_{(10)}$
- Number = $1.082519531 \cdot 2^9 = 554.25$

Exercise

$$554.25_{(10} = 1000101010.01_{(2)} = 1.00010101001 \cdot 2^9$$

- S = 0
- $E = 127 + 9 = 136_{(10)} = 1000 \ 1000_{(2)}$
- $M = .00010101001_{(2)}$

 $0100\,0100\,0000101010010000\,00000000$

4 4 0 A 9 0 0 0