進捗報告

1 今週行ったこと

- ベンチマーク問題 ver.2 に対して CMA-ES の適用
- ベンチマーク問題 ver.1 に対して正規化した上 での CMA-ES の適用

2 ベンチマーク問題 ver.2 への CMA-ESの適用

実験1では、ベンチマーク問題 ver.2 に対して全時間で全機器を動かすように初期解を決め、CMA-ESで探索した、表1 に実験パラメータを示す、

表 1: 実験パラメータ

35 1. 天順バーノ		
パラメータ	値	
σ (初期標準偏差)	0.01	
入力変数の次元	144	
seed	0	
一世代の個体数	2880	
ρ(ペナルティ関数の係数)	1.0×10^{4}	

図1,2に目的関数値と制約違反合計値の遷移を 示す. 横軸はどちらも世代数を表し,縦軸は図1で は目的関数値を,図2では制約違反合計値を表す.

図 1: 目的関数値の遷移

図 2: 制約違反合計値の遷移

表 2 に目的関数値および制約違反合計値の結果 を示す. 既知解を改善することは出来なかったが, ver.1 同様, 実行可能解の探索は可能であった.

表 2: 解法と目的関数値および制約違反合計値

解法	目的関数値	制約違反合計值
既知解	3492559.600	9.20×10^{-11}
実験3	3553174.287	5.04×10^{-12}

3 ベンチマーク問題 ver.1 に対して 正規化した上での CMA-ES での 探索

それぞれの起動状態の取りうる最大値を 1.0 とする正規化をして、CMA-ES の探索を行った. なお、初期平均ベクトルは正規化後の状態で [0.5,0.5,...,0.5] とし、次元数が 120、一世代の個体数が 2400 である以外のパラメータは表 1 の通りである. 実験の結果を図 3、4 に目的関数値と制約違反合計値の遷移を示す. 横軸はどちらも世代数を表し、縦軸は図 3 では目的関数値を、図 4 では制約違反合計値を表す.

目的関数の遷移 4.8×10⁶ 4.7×10⁶ 4.6×10⁶ 4.5×10⁶ 4.4×10⁶ 4.1×10⁶ 4.1×10⁶

図 3: 目的関数値の遷移

制約違反合計値の遷移 10³ 10¹ 10⁻³ 10⁻³ 10⁻³ 10⁻³ 10⁻³ 10⁻³ 10⁻¹ 10⁻⁴ 10⁻⁵ 10⁻¹¹ 10⁻¹² 10⁻¹¹ 10⁻¹

図 4: 制約違反合計値の遷移

ボイラーのみ探索中に起動状態が切り替わった. これは、ボイラーのみ起動状態で取りうる最大値に 対して最小値が小さく、上手く状態が切り替わった ためだと思われる.そのため、正規化の仕方を工夫 して再実験したい.表3に変数の取りうる値と最大 値と最小値の関係を示す.

表 3: 変数説明

変数	変数の定義域	(最小値)/(最大値)
x_t	1.5~5.0	0.30
x_{s1}	4.5~15.0	0.30
x_{s2}	4.5~15.0	0.30
x_g	1103~3679	0.30
x_b	8.02~803	0.01

4 今後の展望

• 正規化の仕方を工夫して再実験