Clathrate Hydrates of Natural Gases

Third Edition

CHEMICAL INDUSTRIES

A Series of Reference Books and Textbooks

Founding Editor

HEINZ HEINEMANN Berkeley, California

Series Editor

JAMES G. SPEIGHT Laramie, Wyoming

- 1. Fluid Catalytic Cracking with Zeolite Catalysts, Paul B. Venuto and E. Thomas Habib, Jr.
- Ethylene: Keystone to the Petrochemical Industry, Ludwig Kniel, Olaf Winter, and Karl Stork
- 3. The Chemistry and Technology of Petroleum, James G. Speight
- 4. The Desulfurization of Heavy Oils and Residua, James G. Speight
- 5. Catalysis of Organic Reactions, edited by William R. Moser
- 6. Acetylene-Based Chemicals from Coal and Other Natural Resources, Robert J. Tedeschi
- 7. Chemically Resistant Masonry, Walter Lee Sheppard, Jr.
- 8. Compressors and Expanders: Selection and Application for the Process Industry, Heinz P. Bloch, Joseph A. Cameron, Frank M. Danowski, Jr., Ralph James, Jr., Judson S. Swearingen, and Marilyn E. Weightman
- 9. Metering Pumps: Selection and Application, James P. Poynton
- 10. Hydrocarbons from Methanol, Clarence D. Chang
- 11. Form Flotation: Theory and Applications, Ann N. Clarke and David J. Wilson
- 12. The Chemistry and Technology of Coal, James G. Speight
- 13. Pneumatic and Hydraulic Conveying of Solids, O. A. Williams

- 14. Catalyst Manufacture: Laboratory and Commercial Preparations, Alvin B. Stiles
- 15. *Characterization of Heterogeneous Catalysts,* edited by Francis Delannay
- BASIC Programs for Chemical Engineering Design, James H. Weber
- 17. Catalyst Poisoning, L. Louis Hegedus and Robert W. McCabe
- 18. Catalysis of Organic Reactions, edited by John R. Kosak
- 19. Adsorption Technology: A Step-by-Step Approach to Process Evaluation and Application, edited by Frank L. Slejko
- Deactivation and Poisoning of Catalysts, edited by Jacques Oudar and Henry Wise
- 21. Catalysis and Surface Science: Developments in Chemicals from Methanol, Hydrotreating of Hydrocarbons, Catalyst Preparation, Monomers and Polymers, Photocatalysis and Photovoltaics, edited by Heinz Heinemann and Gabor A. Somorjai
- 22. Catalysis of Organic Reactions, edited by Robert L. Augustine
- 23. Modern Control Techniques for the Processing Industries, T. H. Tsai, J. W. Lane, and C. S. Lin
- 24. Temperature-Programmed Reduction for Solid Materials Characterization, Alan Jones and Brian McNichol
- 25. Catalytic Cracking: Catalysts, Chemistry, and Kinetics, Bohdan W. Wojciechowski and Avelino Corma
- Chemical Reaction and Reactor Engineering, edited by J. J. Carberry and A. Varma
- 27. Filtration: Principles and Practices: Second Edition, edited by Michael J. Matteson and Clyde Orr
- 28. Corrosion Mechanisms, edited by Florian Mansfeld
- 29. Catalysis and Surface Properties of Liquid Metals and Alloys, Yoshisada Ogino
- Catalyst Deactivation, edited by Eugene E. Petersen and Alexis T. Bell
- 31. Hydrogen Effects in Catalysis: Fundamentals and Practical Applications, edited by Zoltán Paál and P. G. Menon
- 32. Flow Management for Engineers and Scientists,
 Nicholas P. Cheremisinoff and Paul N. Cheremisinoff
- 33. Catalysis of Organic Reactions, edited by Paul N. Rylander, Harold Greenfield, and Robert L. Augustine
- 34. Powder and Bulk Solids Handling Processes: Instrumentation and Control, Koichi linoya, Hiroaki Masuda, and Kinnosuke Watanabe
- 35. Reverse Osmosis Technology: Applications for High-Purity-Water Production, edited by Bipin S. Parekh
- Shape Selective Catalysis in Industrial Applications,
 N. Y. Chen, William E. Garwood, and Frank G. Dwyer

- 37. Alpha Olefins Applications Handbook, edited by George R. Lappin and Joseph L. Sauer
- 38. Process Modeling and Control in Chemical Industries, edited by Kaddour Najim
- 39. Clathrate Hydrates of Natural Gases, E. Dendy Sloan, Jr.
- 40. Catalysis of Organic Reactions, edited by Dale W. Blackburn
- 41. Fuel Science and Technology Handbook, edited by James G. Speight
- 42. Octane-Enhancing Zeolitic FCC Catalysts, Julius Scherzer
- 43. Oxygen in Catalysis, Adam Bielanski and Jerzy Haber
- 44. The Chemistry and Technology of Petroleum: Second Edition, Revised and Expanded, James G. Speight
- 45. Industrial Drying Equipment: Selection and Application, C. M. van't Land
- 46. Novel Production Methods for Ethylene, Light Hydrocarbons, and Aromatics, edited by Lyle F. Albright, Billy L. Crynes, and Siegfried Nowak
- 47. Catalysis of Organic Reactions, edited by William E. Pascoe
- 48. Synthetic Lubricants and High-Performance Functional Fluids, edited by Ronald L. Shubkin
- 49. Acetic Acid and Its Derivatives, edited by Victor H. Agreda and Joseph R. Zoeller
- 50. Properties and Applications of Perovskite-Type Oxides, edited by L. G. Tejuca and J. L. G. Fierro
- 51. Computer-Aided Design of Catalysts, edited by E. Robert Becker and Carmo J. Pereira
- 52. Models for Thermodynamic and Phase Equilibria Calculations, edited by Stanley I. Sandler
- 53. Catalysis of Organic Reactions, edited by John R. Kosak and Thomas A. Johnson
- 54. Composition and Analysis of Heavy Petroleum Fractions, Klaus H. Altgelt and Mieczyslaw M. Boduszynski
- 55. NMR Techniques in Catalysis, edited by Alexis T. Bell and Alexander Pines
- Upgrading Petroleum Residues and Heavy Oils, Murray R. Grav
- 57. *Methanol Production and Use*, edited by Wu-Hsun Cheng and Harold H. Kung
- 58. Catalytic Hydroprocessing of Petroleum and Distillates, edited by Michael C. Oballah and Stuart S. Shih
- The Chemistry and Technology of Coal: Second Edition, Revised and Expanded, James G. Speight
- 60. Lubricant Base Oil and Wax Processing, Avilino Sequeira, Jr.
- 61. Catalytic Naphtha Reforming: Science and Technology, edited by George J. Antos, Abdullah M. Aitani, and José M. Parera

- 62. Catalysis of Organic Reactions, edited by Mike G. Scaros and Michael L. Prunier
- 63. Catalyst Manufacture, Alvin B. Stiles and Theodore A. Koch
- 64. *Handbook of Grignard Reagents,* edited by Gary S. Silverman and Philip E. Rakita
- 65. Shape Selective Catalysis in Industrial Applications: Second Edition, Revised and Expanded, N. Y. Chen, William E. Garwood, and Francis G. Dwyer
- Hydrocracking Science and Technology, Julius Scherzer and A. J. Gruia
- 67. Hydrotreating Technology for Pollution Control: Catalysts, Catalysis, and Processes, edited by Mario L. Occelli and Russell Chianelli
- 68. Catalysis of Organic Reactions, edited by Russell E. Malz, Jr.
- Synthesis of Porous Materials: Zeolites, Clays, and Nanostructures, edited by Mario L. Occelli and Henri Kessler
- 70. Methane and Its Derivatives, Sunggyu Lee
- Structured Catalysts and Reactors, edited by Andrzej Cybulski and Jacob A. Moulijn
- 72. Industrial Gases in Petrochemical Processing, Harold Gunardson
- 73. Clathrate Hydrates of Natural Gases: Second Edition, Revised and Expanded, E. Dendy Sloan, Jr.
- 74. Fluid Cracking Catalysts, edited by Mario L. Occelli and Paul O'Connor
- 75. Catalysis of Organic Reactions, edited by Frank E. Herkes
- 76. The Chemistry and Technology of Petroleum: Third Edition, Revised and Expanded, James G. Speight
- 77. Synthetic Lubricants and High-Performance Functional Fluids: Second Edition, Revised and Expanded, Leslie R. Rudnick and Ronald L. Shubkin
- 78. The Desulfurization of Heavy Oils and Residua, Second Edition, Revised and Expanded, James G. Speight
- Reaction Kinetics and Reactor Design: Second Edition, Revised and Expanded, John B. Butt
- 80. Regulatory Chemicals Handbook, Jennifer M. Spero, Bella Devito, and Louis Theodore
- 81. Applied Parameter Estimation for Chemical Engineers, Peter Englezos and Nicolas Kalogerakis
- 82. Catalysis of Organic Reactions, edited by Michael E. Ford
- 83. The Chemical Process Industries Infrastructure: Function and Economics, James R. Couper, O. Thomas Beasley, and W. Roy Penney
- 84. Transport Phenomena Fundamentals, Joel L. Plawsky

- 85. Petroleum Refining Processes, James G. Speight and Baki Özüm
- 86. Health, Safety, and Accident Management in the Chemical Process Industries, Ann Marie Flynn and Louis Theodore
- 87. Plantwide Dynamic Simulators in Chemical Processing and Control, William L. Luyben
- 88. Chemical Reactor Design, Peter Harriott
- 89. Catalysis of Organic Reactions, edited by Dennis G. Morrell
- Lubricant Additives: Chemistry and Applications, edited by Leslie R. Rudnick
- 91. Handbook of Fluidization and Fluid-Particle Systems, edited by Wen-Ching Yang
- 92. Conservation Equations and Modeling of Chemical and Biochemical Processes, Said S. E. H. Elnashaie and Parag Garhyan
- 93. Batch Fermentation: Modeling, Monitoring, and Control, Ali Çinar, Gülnur Birol, Satish J. Parulekar, and Cenk Ündey
- 94. Industrial Solvents Handbook, Second Edition, Nicholas P. Cheremisinoff
- 95. Petroleum and Gas Field Processing, H. K. Abdel-Aal, Mohamed Aggour, and M. Fahim
- 96. Chemical Process Engineering: Design and Economics, Harry Silla
- 97. Process Engineering Economics, James R. Couper
- 98. Re-Engineering the Chemical Processing Plant: Process Intensification, edited by Andrzej Stankiewicz and Jacob A. Moulijn
- Thermodynamic Cycles: Computer-Aided Design and Optimization, Chih Wu
- Catalytic Naphtha Reforming: Second Edition, Revised and Expanded, edited by George T. Antos and Abdullah M. Aitani
- Handbook of MTBE and Other Gasoline Oxygenates, edited by S. Halim Hamid and Mohammad Ashraf Ali
- 102. Industrial Chemical Cresols and Downstream Derivatives, Asim Kumar Mukhopadhyay
- 103. Polymer Processing Instabilities: Control and Understanding, edited by Savvas Hatzikiriakos and Kalman B. Migler
- 104. Catalysis of Organic Reactions, John Sowa
- 105. Gasification Technologies: A Primer for Engineers and Scientists, edited by John Rezaiyan and Nicholas P. Cheremisinoff
- 106. Batch Processes, edited by Ekaterini Korovessi and Andreas A. Linninger
- Introduction to Process Control, Jose A. Romagnoli and Ahmet Palazoglu

- Metal Oxides: Chemistry and Applications, edited by J. L. G. Fierro
- Molecular Modeling in Heavy Hydrocarbon Conversions, Michael T. Klein, Ralph J. Bertolacini, Linda J. Broadbelt, Ankush Kumar and Gang Hou
- Structured Catalysts and Reactors, Second Edition, edited by Andrzej Cybulski and Jacob A. Moulijn
- 111. Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology, edited by Leslie R. Rudnick
- 112. Alcoholic Fuels, edited by Shelley Minteer
- 113. Bubbles, Drops, and Particles in Non-Newtonian Fluids, Second Edition, R. P. Chhabra
- 114. The Chemistry and Technology of Petroleum, Fourth Edition, James G. Speight
- 115. Catalysis of Organic Reactions, edited by Stephen R. Schmidt
- 116. Process Chemistry of Lubricant Base Stocks, Thomas R. Lynch
- 117. Hydroprocessing of Heavy Oils and Residua, edited by James G. Speight and Jorge Ancheyta
- 118. Chemical Process Performance Evaluation, Ali Cinar, Ahmet Palazoglu, and Ferhan Kayihan
- 119. Clathrate Hydrates of Natural Gases, Third Edition, E. Dendy Sloan and Carolyn A. Koh

Clathrate Hydrates of Natural Gases

Third Edition

E. Dendy Sloan

Colorado School of Mines Golden, Colorado, U.S.A.

Carolyn A. Koh

Colorado School of Mines Golden, Colorado, U.S.A.

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2008 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Printed in the United States of America on acid-free paper $10\,9\,8\,7\,6\,5\,4\,3\,2\,1$

International Standard Book Number-13: 978-0-8493-9078-4 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright. com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Sloan, E. Dendy, 1944-

Clathrate hydrates of natural gases. -- 3rd ed. / E. Dendy Sloan and Carolyn Koh.

p. cm. -- (Chemical industries series; 119) Includes bibliographical references and index.

ISBN-13: 978-0-8493-9078-4 (alk. paper)

ISBN-10: 0-8493-9078-8 (alk. paper)

 $1. \ \, \text{Natural gas--Hydrates.} \, 2. \ \, \text{Clathrate compounds.} \, \, \text{I. Koh, Carolyn. II. Title. III.} \, \, \text{Series.}$

TN884.S56 2007 665.7--dc22

2007008791

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Contents

Pref	ace		xix
Auth	nors		XXV
Cha	pter 1	Overview and Historical Perspective	1
1.1	Hydra	tes as a Laboratory Curiosity	1
	1.1.1	Hydrates of Hydrocarbons Distinguished from Inorganic	
		Hydrates and Ice	5
	1.1.2	Methods to Determine the Hydrate Composition	5
	1.1.3	Phase Diagrams Provide Hydrate Classification	6
1.2	Hydra	tes in the Natural Gas Industry	9
	1.2.1	Initial Experiments on Natural Gas Hydrates	9
	1.2.2	Initial Correlation of Hydrate Phase Equilibria	11
	1.2.3	Hydrate Crystal Structures and Hydrate Type Definitions	11
	1.2.4	Basis for Current Thermodynamic Models	14
	1.2.5	Time-Dependent Studies of Hydrates	16
	1.2.6	Work to Enable Gas Production, Transport, and Processing	19
	1.2.7	Hydrates in Mass and Energy Storage and Separation	20
1.3	Hydra	tes as an Energy Resource	22
	1.3.1	In Situ Hydrates	23
	1.3.2	Investigations Related to Hydrate Exploration and Recovery	26
1.4	Enviro	onmental Aspects of Hydrates	27
1.5	Safety	Aspects of Hydrates	27
1.6		onship of This Chapter to Those That Follow	28
Refe			29
		Molecular Structures and Similarities to Ice	45
2.1	Crysta	d Structures of Ice Ih and Natural Gas Hydrates	46
	2.1.1	Ice, Water, Hydrogen Bonds, and Clusters	46
		2.1.1.1 Ice and Bjerrum defects	46
		2.1.1.2 The water molecule	49
		2.1.1.3 Hydrogen bonds	49
		2.1.1.4 Hydrogen bonds cause unusual water, ice, and	
		hydrate properties	50
		2.1.1.5 Pentamers and hexamers	52

	2.1.2	Hydrate Crystalline Cavities and Structures	53
		2.1.2.1 The cavities in hydrates	53
		2.1.2.2 Hydrate crystal cells—structures I, II, and H	59
	2.1.3	Characteristics of Guest Molecules	72
		2.1.3.1 Chemical nature of guest molecules	72
		2.1.3.2 Geometry of the guest molecules	73
		2.1.3.3 Filling the hydrate cages	85
	2.1.4	Summary Statements for Hydrate Structure	91
2.2		arison of Properties of Hydrates and Ice	92
	2.2.1	Spectroscopic Implications	93
	2.2.2		95
	2.2.2	2.2.2.1 Mechanical strength	95
		2.2.2.2 Elastic properties	96
	2.2.3	Thermal Properties	97
	2.2.3	2.2.3.1 Thermal conductivity of hydrates	97
		2.2.3.2 Thermal expansion of hydrates and ice	
2.2	The W	/hat and the How of Hydrate Structures	
2.3		· · · · · · · · · · · · · · · · · · ·	
Keie	rences		102
Cha	nton 3	Hydrota Commetion and Dissociation Dunasses	113
3.1	pter 3	•	116
3.1	•	te Nucleation	
	3.1.1		
		3.1.1.1 Key properties of supercooled water	
		3.1.1.2 Solubility of natural gases in water	
		3.1.1.3 Nucleation theory for ice and hydrates	
		3.1.1.4 Site of hydrate nucleation	129
	3.1.2	Conceptual Picture of Hydrate Nucleation at the Molecular	
		Level	130
		3.1.2.1 Labile cluster nucleation hypothesis	
		3.1.2.2 Nucleation at the interface hypothesis	
		3.1.2.3 Local structuring nucleation hypothesis	
	3.1.3	Stochastic Nature of Heterogeneous Nucleation	138
	3.1.4	Correlations of the Nucleation Process	
		3.1.4.1 Driving force of nucleation	143
	3.1.5	The "Memory Effect" Phenomenon	147
	3.1.6	State-of-the-Art for Hydrate Nucleation	149
3.2	Hydra	te Growth	150
	3.2.1	Conceptual Picture of Growth at the Molecular Level	150
		3.2.1.1 Crystal growth molecular concepts	150
		3.2.1.2 The boundary layer	152
	3.2.2	Hydrate Crystal Growth Processes	155
		3.2.2.1 Single crystal growth	155
		3.2.2.2 Hydrate film/shell growth at the water–hydrocarbon	100
		interface interface interface	156
		3.2.2.3 Crystal growth with interfacial agitation	166
		STAND STAND STAND STORES WITH WITH HIRCHAUTH AZHAHUH	100

		3.2.2.4 Growth of metastable phases	167
	3.2.3	Correlations of the Growth Process	168
		3.2.3.1 Growth kinetics—the Englezos–Bishnoi model	169
		3.2.3.2 Mass transfer—the Skovborg–Rasmussen model	171
		3.2.3.3 Heat transfer models	
	3.2.4	State-of-the-Art for Hydrate Growth	
3.3	Hydra	ate Dissociation	
	3.3.1	Conceptual Picture of Hydrate Dissociation	
	3.3.2	Correlations of Hydrate Dissociation	
	3.3.3	Anomalous Self-Preservation	
	3.3.4	State-of-the-Art for Hydrate Dissociation	
3.4		nary	
Refe			
Cha	pter 4	Estimation Techniques for Phase Equilibria of Natural Gas	
	P	Hydrates	189
Intro	oduction	n	189
4.1		ate Phase Diagrams for Water + Hydrocarbon Systems	196
	4.1.1		170
		$N_2 + H_2O$) System	197
	4.1.2	Systems (e.g., $H_2O + C_2H_6$, C_3H_8 , or i- C_4H_{10}) with Upper	
	2	Quadruple Points	200
	4.1.3	Pressure–Temperature Diagrams for Multicomponent Natural	200
	1.1.5	Gas Systems	201
	4.1.4	Pressure–Temperature Diagrams for Systems with	201
	7.1.7	Inhibitors	202
	4.1.5	Temperature–Composition Diagrams for Methane + Water	
	4.1.6	Solubility of Gases Near Hydrate Formation Conditions	
	4.1.7	Pressure–Temperature Diagrams for Structure H Systems	
4.2		-Phase (L _W -H–V) Equilibrium Calculations	
7.2	4.2.1	The Gas Gravity Method	
	7.2.1	4.2.1.1 Hydrate limits to gas expansion through a valve	
	4.2.2		
4.3		ruple Points and Equilibrium of Three Condensed Phases	213
4.5		H–L _{HC})	226
	4.3.1		
	4.3.2		
1.1		•	
4.4	4.4.1	t of Thermodynamic Inhibitors on Hydrate Formation	
15	4.4.2	Hydrate Inhibition Using Salts	
4.5		Phase Equilibrium: Hydrates with One Other Phase	
	4.5.1	Water Content of Vapor in Equilibrium with Hydrate	237
	4.5.2	Water Content of Liquid Hydrocarbon in Equilibrium with	000
	4.5.2	Hydrates	239
	4.5.3	Meinane Content of Water in Equilibrium with Hydrafes	240

4.6	Hydra	te Enthalpy and Hydration Number from Phase	
	Equili	brium	240
	4.6.1	The Clausius–Clapeyron Equation and Hydrate	
		Equilibrium	241
		4.6.1.1 Enthalpy of dissociation and cavity occupation	243
	4.6.2	* * *	
		4.6.2.1 Using the Clapeyron equation to obtain hydration	
		number	247
		4.6.2.2 Hydration numbers by the Miller and	
		Strong method	
4.7		nary and Relationship to Chapters Which Follow	
Refe	erences		252
Cha	pter 5	A Statistical Thermodynamic Approach to Hydrate Phase	
		Equilibria	257
		n and Overview	
5.1		tical Thermodynamics of Hydrate Equilibria	
	5.1.1	Grand Canonical Partition Function for Water	
	5.1.2	The Chemical Potential of Water in Hydrates	
	5.1.3	The Langmuir Adsorption Analogy	270
	5.1.4	Relating the Langmuir Constant to Cell Potential Parameters	272
	5.1.5	Activity Coefficient for Water in the Hydrate	277
	5.1.6	Defining the Hydrate Fugacity and Reference Parameters	281
	5.1.7	The Gibbs Free Energy Method	285
	5.1.8	Accuracy of CSMGem Compared to Commercial	
		Hydrate Programs	291
	5.1.9	Ab Initio Methods and the van der Waals and	
		Platteeuw Method	293
5.2	Applic	cation of the Method to Analyze Systems of	
		ane + Ethane + Propane	296
	5.2.1	•	
	5.2.2		
		5.2.2.1 Methane + propane hydrates	
		5.2.2.2 Methane + ethane hydrates	
		5.2.2.3 Ethane + propane hydrates	
		5.2.2.4 Ternary hydrate phase equilibria and industrial	
		application	305
5.3	Comp	outer Simulation: Another Microscopic–Macroscopic Bridge	
0.0	5.3.1	Basic Techniques of Monte Carlo and Molecular Dynamics	
	5.5.1	Simulation	308
		5.3.1.1 Molecular dynamics	309
		5.3.1.2 Monte Carlo	310
	5.3.2	What Has Been Learned from Molecular Simulation?	311
5.4		er Summary and Relationship to Following Chapters	313
	rences	or summary and relationship to I onlowing enapters	314

Cha	pter 6	Experimental Methods and Measurements of Hydrate Properties	319
6.1	Exper	imental Apparatuses and Methods for Macroscopic	
	Measu	rements	320
	6.1.1	Measurement Methods for Hydrate Phase Equilibria and	
		Kinetics	320
		6.1.1.1 Principles of equilibrium apparatus development	327
		6.1.1.2 Apparatuses for use above the ice point	328
		6.1.1.3 Apparatus for use below the ice point	334
		6.1.1.4 Apparatuses for two-phase equilibria	
		6.1.1.5 Flow loops for hydrate formation kinetics	335
	6.1.2	Methods for Measurement of Thermal Properties	337
		6.1.2.1 Heat capacity and heat of dissociation methods	338
		6.1.2.2 Methods for thermal conductivity measurements	341
6.2	Measu	rements of the Hydrate Phase	342
	6.2.1	Mesoscopic Measurements of the Hydrate Phase	342
	6.2.2	Molecular-Level Measurements of the Hydrate Phase	346
		6.2.2.1 Diffraction methods	349
		6.2.2.2 Spectroscopic methods	350
6.3	Data f	or Natural Gas Hydrate Phase Equilibria and	
	Therm	nal Properties	358
	6.3.1	Phase Equilibria Data	358
		6.3.1.1 Equilibria of simple natural gas components	358
		6.3.1.2 Equilibria of binary guest mixtures	392
		6.3.1.3 Equilibria of ternary guest mixtures	440
		6.3.1.4 Equilibria of multicomponent guest mixtures	448
		6.3.1.5 Equilibria with inhibitors	461
	6.3.2	Thermal Property Data	
		6.3.2.1 Heat capacity and heat of dissociation	519
6.4	Summ	ary and Relationship to Chapters that Follow	523
Refe	erences		523
Cha	pter 7	Hydrates in the Earth	537
Intro	oduction	and Overview	537
7.1	The Pa	aradigm Is Changing from Assessment of Amount to	
	Produ	ction of Gas	539
	7.1.1	Extent of the Occurrence of <i>In Situ</i> Gas Hydrates	539
7.2	Sedim	ents with Hydrates Typically Have Low Contents of	
		nic Methane	550
	7.2.1	Generation of Gases for Hydrate Formation	551
	7.2.2	The SMI, the Hydrate Upper Boundary, and the SMI	
		Rule-of-Ten	555
	7.2.3	Mechanisms for Generation of Hydrates	557
		7.2.3.1 Hydrate formation in the two-phase region	
		7 2 3 2 Models for <i>in situ</i> hydrate formation	560

1.3		sition	566
7.4		te Methods Enable an Estimation of the Extent of a Hydrated	300
7.4		voir	566
	7.4.1		
	7.4.1		307
	7.4.2	Reflections	571
	7.4.3	Methane Solubility Further Limits the Hydrate Occurrence	
75			373
7.5		ng Logs and/Coring Provide Improved Assessments of	576
	7.5.1	nted Gas Amounts	
	7.5.1	Open Hole Well Logs	
		Evidence of Hydrates in Cores	
7.0	7.5.3	2 , 1	582
7.6		ate Reservoir Models Indicate Key Variables for Methane	502
77		ction	583
7.7		e Hydrated Gas Production Trends Are from the Permafrost to	507
7.0		cean	
7.8		ates Play a Part in Climate Change and Geohazards	589
	7.8.1	Case Study 1: Leg 164 in the Blake-Bahama Ridge (Hydrate	500
		Assessment)	592
		7.8.1.1 Site 994	
		7.8.1.2 Site 995	
		7.8.1.3 Site 997	
		7.8.1.4 Common features	
	7.8.2	Case Study 2: Hydrate Ridge (Hydrate Assessment)	599
		7.8.2.1 Near surface hydrates: the chemosynthetic	
		community and chemoherms	601
		7.8.2.2 Deeper hydrates at Southern Hydrate Ridge:	
		characterization and assessment	
		7.8.2.3 Logs and remote sensing	
		7.8.2.4 Coring and direct evidence	
		7.8.2.5 The lessons of Hydrate Ridge	608
	7.8.3	Case Study 3: Messoyakha (Hydrate Production	
		in Permafrost)	609
	7.8.4	Case Study 4: Mallik 2002 (Hydrate Production	
		in Permafrost)	
		7.8.4.1 Background of the Mallik 2002 well	
		7.8.4.2 Overview of the Mallik 2002 well	
		7.8.4.3 Well logs in Mallik 2002	
		7.8.4.4 Pressure stimulation tests in the 5L-38 well	
		7.8.4.5 The Thermal stimulation test in Mallik 5L-38	
		7.8.4.6 Modeling gas production from hydrates	
7.9	Sumn	nary	
Refe	erences		629

Cha	pter 8	Hydrates in Production, Processing, and Transportation	643
		n	
8.1	How I	Do Hydrate Plugs Form in Industrial Equipment?	644
	8.1.1	Case Study 1: Hydrate Prevention in a Deepwater	
		Gas Pipeline	645
	8.1.2	Case Study 2: Hydrates Prevention via Combination	
		of Methods	647
		8.1.2.1 Burying the pipeline	648
		8.1.2.2 Line burial with wellhead heat addition	649
		8.1.2.3 Burial, heat addition, and insulation	
		8.1.2.4 Methanol addition alternative	650
	8.1.3	Case Study 3: Hydrate Formation via Expansion through	
		Valves or Restrictions	651
	8.1.4	Conceptual Overview: Hydrate Plug Formation in	
		Oil-Dominated Systems	653
	8.1.5	Conceptual Overview: Hydrate Formation in Gas-Dominated	
		Systems	654
8.2	How A	Are Hydrate Plug Formations Prevented?	656
J	8.2.1	Case Study 4: Thermodynamic Inhibition Canyon Express	000
	0.2.1	and Ormen Lange Flowlines	656
	8.2.2	Case Study 5: Under-Inhibition by Methanol in a Gas Line	658
	8.2.3	Kinetic Hydrate Inhibition	
	0.2.3	8.2.3.1 Antiagglomerant means of preventing	00)
		hydrate plugs	662
	8.2.4	• • •	002
	0.2.1	Prevention Tool	668
8.3	How I	Is a Hydrate Plug Dissociated?	
0.5	8.3.1	Case Study 7: Gulf of Mexico Plug Removal in	00)
	0.5.1	Gas Export Line	675
8.4	Safety	and Hydrate Plug Removal.	
0.7	8.4.1	Case Study 8: Hydrate Plug Incident Resulting in	070
	0.7.1	Loss of Life	677
8.5	Applie	cations to Gas Transport and Storage	
8.6		nary of Hydrates in Flow Assurance and Transportation	
		ary of rigurates in Flow Assurance and Transportation	679
Kere	rences		0/9
4	endix A	A CSMGem Example Problems	685
Арр А.1		oduction	685
A.1 A.2			
		ample Problems	
A.3		ting up the Natural Gas Example	
A.4		ipient Hydrate Formation Conditions	
A.5		tting a 2-Phase VLE Curve	
A.6		ling Hydrate Inhibitor	
A.7	Add	ling Hydrate Inhibitor Solutions	690

A.8	Expansion Across a Valve	 690
A.9	Expansion Across a Valve Solutions	
A.10	Real Life Situation	
Appei	ndix B CSMPlug Example Problems	 693
B.1	Introduction	 693
B.2	Example Problem for One-Sided Dissociation	 693
B.3	1SD Solutions	 694
B.4	Example Problem for Two-Sided Dissociation	 695
B.5	2SD Solution.	 697
B.6	Example Problem for Safety Simulator	 697
B.7	Safety Simulator Solutions	
B.8	Example Problem for Electrical Heating	 699
B.9	Electrical Heating Solutions	

Preface

Since each reader has a unique perspective, it is worthwhile to provide a guide for reading and an apologia for this book. The goal of writing this book was for it to be of use in practice and in research.

The third edition conforms to the Library of Congress dictum that a minimum of 33% new material is required to determine a new edition, rather than a new printing. In particular, the third edition includes new information on

- New fundamental information on structure, kinetics, and prediction methods
- Industrial transition from time-independence to time-dependence
- New phase equilibrium data and kinetic models
- A new computer program CSMGem, for hydrate thermodynamic calculations
- A new program CSMPlug to predict safety/dissociation times for plug removal
- A description of the paradigm change in flow assurance to risk management
- Conceptual pictures in flow assurance of oil- and gas-dominated flowlines
- Concepts and case studies on low dosage hydrate inhibitor prevention
- The paradigm change from hydrate reservoir assessment to reservoir production
- Eight summary *in situ* conditions for hydrates in the permafrost and oceans
- New case studies summarizing Hydrate Ridge and Mallik 2002 test drillings

Our primary objective was to update the hydrate knowledge base over the last decade—an explosion of knowledge with more than 4000 hydrate-related publications. These unique compounds are more properly called clathrate hydrates to distinguish them from the stoichiometric hydrates commonly found in inorganic chemistry. A modern, increased understanding of these compounds can provide a fresh perspective on past theories and data. It was hoped that such an overview would yield new insights for both the readers and the authors, and that directions might be suggested for future research and practical applications.

A second objective was to provide a balance between hydrate experimental and theoretical perspectives. The monograph was intended as a single record of the majority of hydrocarbon thermodynamic data obtained since 1934, the time of discovery of hydrates in pipelines. The third edition, in particular, shows the transition away from thermodynamics to kinetics, as mankind learns to study more sophisticated, time-dependent phenomena.

Often the comparative availability and low cost of computing causes the elevation of theory and simulation over experiment. In the field of hydrates, however, the most significant advances in knowledge have been made by researchers who have performed painstaking experiments guided by intuition, theory, and recently, simulation. Experiments have provided the physical foundation and correction of theories. In almost every case, the most marked theoretical advances, such as those of van der Waals and Platteeuw (1959), were founded upon significant experimental advances, such as the determination of the hydrate crystal structures by von Stackelberg and coworkers, Claussen, Pauling, and Marsh in the preceding two decades.

The final objective was to provide a complementary vehicle for the accompanying Windows + PC compatible computer programs. The principal program on the CD, CSMGem, is a complete Gibbs Energy Minimization revision of the program completed in this laboratory in 2002. Normally, such programs, based on fairly complex statistical thermodynamics, cannot be written precisely from the literature without substantial time and effort. It is not necessary to understand the theory (Chapter 5) in order to use the computer program to perform several hydrate calculations; the reader should follow the directions and examples in the User's Guide (Appendix A) and the User's Manual on the CD in this volume's end chapters. However, without the computer program, the theory would remain sterile. At the same time, the book provides a more thorough exposition of the program's principles than can be normally displayed in single papers accompanying a program.

A second major computer program, CSMPlug, also has a User's Guide in Appendix B and a User's Manual on the CD. This program enables the user to evaluate hydrate plug safety concerns and dissociation times. The safety aspects of plug dissociation should be a major concern in every hydrate situation, which sometimes results in damage to equipment and health. Often the plug dissociation times are much longer than intuition suggests and a prediction can help prevent "ineffective solutions" which sometimes worsen the problem. The program can be used to predict nonpressurized dissociation on core recovery, in addition to plug dissociation in a depressurized flowline.

Readers of different backgrounds will wish to follow different paths through the chapters. Both the engineer and the researcher may wish to read Chapter 1 that provides a historical overview of clathrate hydrates. One cannot deal with hydrates without some knowledge of the all-important crystal structures provided in Chapter 2. Chapter 3 on hydrate kinetics gives the current picture of hydrate time-dependence to supplement the time-independent phase equilibria in Chapter 4, the last chapter that should be of common interest to both the engineer and the

researcher. A recommendation summary for the book chapters is given in the following table:

A Suggestion on How to Read This Book

Reader's background	Engineer	Researcher	
Chapter title	Applicable sections		
Chapter 1: Historical Overview	All sections	All sections	
Chapter 2: Structures	All sections	All sections	
Chapter 3: Kinetics	3.1.6, 3.2	All sections	
Chapter 4: Phase Equilibria	4.1, 4.2, 4.4, 4.6	As needed	
Chapter 5: Statistical Thermodynamics	None	All sections	
Chapter 6: Experimental Methods and Data	6.1, 6.2 as needed	6.1, 6.2	
Chapter 7: Hydrates in Nature	As needed	All sections	
Chapter 8: Production, Transportation, and	As needed	As needed	
Processing			
Appendices—Users Guide & Examples for CSMGem and CSMPlug	All sections	All sections	

The initial limitations of the book are still largely present in the third edition. First the book applies primarily to clathrate hydrates of components in natural gases. Although other hydrate formers (such as olefins, hydrogen, and components larger than 9 Å) are largely excluded, the principles of crystal structure, thermodynamics, and kinetics in Chapters 2 through 5 will still apply.

Second, primarily due to language inability and literature access, the third edition has a Western Hemisphere perspective. Two translations (Schroeder, 1927 and Makogon, 1985) were made in preparation for the first edition manuscript. Discussions at length were held with Drs. Y.F. Makogon and Ginsburg, and with Professor Berecz and Ms. Balla-Achs, whose earlier hydrate monographs were initially published in Russian and in Hungarian. Yet as in all bi-author manuscripts, this book is the limited product of two individuals' perspectives, which were shaped by past workers and present colleagues.

Dr. John Ripmeester and his colleagues at the Steacie Institute of NRC Canada have led the world in hydrate science for the last several decades, and they have been gracious hosts to help CSM visitors learn. Drs. K.A. Kvenvolden and T.S. Collett of the U.S. Geological Survey and Scott Dallimore of the Canadian Geological Survey, have been generous with their publications and discussions regarding *in situ* hydrates. Our academic colleagues: Professor R.J. Bishnoi and colleagues Professors M. Pooladi-Darvish and M. Clarke (University of Calgary), Professor M. Adewumi (Penn State University), Professor P. Clancy (Cornell University), Dr. S.F. Dec (Colorado School of Mines), Professor K.D.M. Harris (Cardiff University), Professor J.-M. Herri (St. Etienne School of Mines), Professor W. Kuhs (University of Göttingen), Professor K.E. Gubbins (North Carolina State University), Professor K. Marsh (University of Canterbury), Professor

K.T. Miller (Colorado School of Mines), Professor Y.H. Mori (Keio University), Dr. G. Moridis (Lawrence Berkley National Laboratory), Professors C. Ruppel and C. Santamarina (Georgia Institute of Technology), Professor J. Sjöblom (Norwegian Technical National University), Professor A.K. Soper (Rutherford Appleton Laboratory), Professors A. Tréhu and M. Torres (Oregon State University), Professor B. Tohidi and Dr. R.E. Westacott (Heriot-Watt University), and Professor P. Englezos (University of British Columbia), have graciously shared their recent theoretical and experimental results that are of central importance to our current hydrate understanding.

Industrial collaborators provided some degree of balance to an academic perspective. Dr. W.R. Parrish of Phillips Petroleum Company (retired) encouraged and contributed to the work from our laboratory for two decades. Dr. J. Chitwood and Dr. J.L. Creek of Chevron, Dr. L. Talley of ExxonMobil, and Dr. T. Palermo of IFP, have also provided leading industrial perspectives on flow assurance. Two decades of consortium participation by the following companies provided industrial perspectives: BP, Chevron, ConocoPhillips, ExxonMobil, Halliburton, Petrobras, Shell, Schlumberger, and Statoil.

Our collaborators at the Colorado School of Mines have always been the major end product from our laboratory. The graduate students and postdoctoral fellows have done all of the experiments and much of the thinking that has evolved from this laboratory. These young minds preserved a fresh perspective for the authors: Dr. S. Adisasmito, Dr. B. Al-Ubaidi, M. Amer, Dr. G.B. Asher, Dr. A. Ballard, Dr. V. Bansal, Dr. P. Bollavaram, J. Boxall, M.S. Bourrie (deceased), Dr. D. Bruinsma, S.B. Cha, Dr. T.S. Collett, S. Davies, L. Dieker, Dr. P.B. Dharmawardhana, Y. Du, M. Eaton, Dr. D.D. Erickson, Dr. E. Freer, A. Giussani, D. Greaves, Dr. A. Gupta, Dr. K.C. Hester, A. Hughson, Dr. Z. Huo, Dr. A. Khokhar, Dr. R. Kini, D. Kleehammer, T. Kotkoskie, J. Ivanic, Dr. M. Jager, R. Johnson, J.J. Johnson, Dr. P. Kumar, J. Lachance, Dr. R. Larsen, Dr. J.P. Lederhos, Dr. J.P. Long, Dr. P. Long, E. Maas, Dr. T.Y. Makogon, S. Mann, P. Matthews, L. McClure, Dr. A.P. Mehta, P.D. Menten, Dr. M. Mooijervan den Heuvel, B. Muller-Bongartz, Dr. A. Freitas-Mussemeci, J. Nicholas, T. Nguyen, Dr. H. Ohno, H. Ouar, Dr. V. Panchalingham, A. Papineau, Professor R. Pratt, P. Rensing, K. Rider, Dr. L. Rovetto, Dr. R.M. Rueff, B. Sikora, Dr. K.A. Sparks, T. Strobel, R. Sturgeon-Berg, Dr. S. Subramanian, Professor A.K.W. Sum, C. Taylor, C. Timm, Dr. D. Turner, J.W. Ullerich, M. Walsh, B.E. Weiler, Dr. S. Wierzchowski, S. Yamanlar, Dr. S.O. Yang, Dr. M.H. Yousif, and Dr. C.O. Zerpa. CAK also acknowledges the following graduate students and postdoctoral fellows from her former laboratory at King's College, London University: Dr. N. Aldiwan, Dr. V. Boissel, Dr. P. Buchanan, Dr. A. Carstensen, Dr. K. Hirachand, Dr. S. Klironomou, Dr. Y. Lui, Dr. R. Motie, Dr. R.I. Nooney, Dr. H. Thompson, Dr. R.E. Westacott, Dr. W. Zhang, Dr. M. Zugik. In this third edition we thank Simon Davies, Collin Timm, and Andrew Persichetti for their help with Appendices A, B, and the figures, respectively.

The intrinsic joy of learning about clathrate hydrates has in itself been a pleasure that we hope will be communicated through these pages to younger workers. The

survival of a research area, like that of a civilization, depends on whether the young see learning as a worthwhile goal. Noting that these pages doubtless contain several mistakes, the authors invoke the acute observation of Francis Bacon¹: "Truth emerges more readily from error than from confusion."

The third edition is dedicated to her parents, Ann and Paul, and husband Ian by CAK, and to his wife Marjorie by EDS.

E. Dendy Sloan, Jr. Carolyn A. Koh Golden, Colorado

¹ "Novum Organum," Vol. VIII, *The Works of Francis Bacon* (J. Spedding, R.L. Ellis, and D.D. Heath, eds.) New York, p. 210 (1969).

Authors

Carolyn Ann Koh is an associate professor of chemical engineering and is the co-Director of the Center for Hydrate Research at the Colorado School of Mines. Previously, she was a reader in chemistry at King's College, London University. She received the Young Scientist Award in 2002 and is a Fellow of the Royal Society of Chemistry. She has been visiting professor of Cornell University, Penn State, and London University. She has over 55 refereed publications, and has given numerous invited lectures on hydrates. Dr. Koh holds degrees from the University of West London and conducted a postdoctoral fellowship at Cornell University, Ithaca, NY.

E. Dendy Sloan, Jr. holds the Weaver Chair in chemical engineering and is the Director of the Center for Hydrate Research at the Colorado School of Mines, where he co-directs a group of 20 researchers on natural gas hydrates. He has three degrees in chemical engineering from Clemson University and did postdoctoral work at Rice University. Prior to coming to the Colorado School of Mines, he was a senior engineer with E.I. DuPont deNemours, Inc.

Sloan chairs both the Federal Methane Hydrate Advisory Committee and the CODATA International Hydrate Database Task Group. He has over 150 refereed hydrates publications, including a second book, *Hydrate Engineering* published by the Society of Petroleum Engineers in 2000. Sloan was named the Donald M. Katz Research Awardee by the Gas Processors Association in 2000 and has been an SPE Distinguished Lecturer on hydrates. He is a Fellow of the American Institute of Chemical Engineers.