

Time Series and Sequence Learning

Validation, Order selection

Fredrik Lindsten, Linköping University

ex) Toy model

We simulate an AR(3) model for n = 300 time steps,

$$y_t = 0.9y_{t-1} - 0.4y_{t-2} + 0.2y_{t-3} + \varepsilon_t,$$
 $\varepsilon_t \sim \mathcal{N}(0, 1)$

Estimating the model parameters with OLS gives:

$$\widehat{\theta} = (0.84, -0.33, 0.16) \text{ and } \widehat{\sigma}_{\varepsilon}^2 = 0.95.$$

Order selection

In practice we only observe the data.

How do we know which model order p to pick?!

Order selection

In practice we only observe the data.

How do we know which model order p to pick?!

Two approaches:

- 1. Try to figure it out *before* fitting the model ("exploratory data analysis")
- 2. Estimate multiple models of different orders and perform model selection by validation!

1. Look for the "bend" in training error plot

plot the MSE of training data 1st

Residual analysis

2. Look at the residuals!

The model assumption is

$$y_t = {\color{red} m{ heta}}^{\!\! {\sf T}} {\color{black} m{\phi}}_t + {\color{black} arepsilon}_t, \hspace{1cm} {\color{black} arepsilon}_t \stackrel{
m iid}{\sim} {\color{black} \mathcal{N}}(0, \sigma_{\varepsilon}^2).$$

Residual analysis

2. Look at the residuals!

The model assumption is

$$y_t = {\color{red} m{ heta}^{\mathsf{T}}} m{\phi}_t + arepsilon_t, \hspace{1cm} arepsilon_t \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(0, \sigma_{arepsilon}^2).$$

Hence, if the model is accurate, we expect

$$y_t - \widehat{\theta}^{\mathsf{T}} \phi_t \approx \varepsilon_t.$$

The residuals should be white Gaussian noise!

- 1. Auto-correlation
- 2. QQ-plots for marginal Gaussianity
- 3. ...

 $ph(h) = h^{1/4} \text{City one) at lagt} \\ \text{Vatify} h(h) = sun_{\text{t}} \text{End} \text{Yol} h(b, \text{cbar}(x)) \text{X}_{\text{c}}(\text{th}) \text{-bar}(x) \text{Y} \\ \text{sum}_{\text{t}}(\text{th})^{2} \text{Yol} (b, \text{cbar}(x)) \text{X}_{\text{c}}(\text{th}) \text{-bar}(x) \text{Y} \\ \text{when N is big Vat(ph)} (h) is approximately normal solution (phi(h)), high phi(h) is true autcoorr and var of Vat(phi) (h) is appr 1/h because var/bat(phi) (h) -1/s n soort/war -1/sort(h) -1/sort(h) +1/sort(h) +1/sor$

 $X_t = phi * X_{t-1} + epsilon$

Reason: Asymptotic Normality of Sample Autocorrelations 样本自相关的新近正态性 $\hat{g}(h) \sim N(0, \frac{1}{\sqrt{n}}) h^{2} o$, n large

Estimated model: AR(1)

Estimated model: AR(2)

This could indicate that there is some degree of autocorrelation at those lags which is not explained by the AR(1) model.

Estimated model: AR(3)

Estimated model: AR(4)

Prediction error validation

3. Evaluate on held-out validation data!

Validation mean-squared error, using one-step-ahead predictions:

$$Val-MSE(\widehat{\boldsymbol{\theta}}) = \frac{1}{m} \sum_{t=n+1}^{n+m} (y_t - \widehat{\boldsymbol{\theta}}^T \phi_t)^2$$

Testing the model

