93 Sono date le funzioni $f(x) = \sqrt{3^{\frac{x}{2}} + 3^x - 2}$ e $g(x) = \log_{\frac{1}{2}}(x^2 - x + 1)$.

- **a.** Determina il dominio D_f di f(x) e il dominio D_g di g(x).
- **b.** Trova quale valore assume f(x) per $x = \log_3 4$.
- **c.** Calcola i valori di *x* per cui è $g(x) > -\log_2 3$.
- **d.** Considerata la funzione $y = \frac{f(x)}{g(x)}$, studiane il dominio e trova gli zeri.

[a) D_f : $x \ge 0$, D_g : \mathbb{R} ; b) 2; c) -1 < x < 2; d) D: $x > 0 \land x \ne 1$; non ci sono zeri]

e)
$$f(x) = \sqrt{3^{\frac{3}{2}} + 3^{x} - 2}$$
 $D_{q} = \left\{ \times 6 \mathbb{R} \mid 3^{\frac{3}{2}} + 3^{x} - 2 > 0 \right\}$
 $3^{\frac{3}{2}} + 3^{x} - 2 > 0$ $t = 3^{\frac{3}{2}}$
 $t + t^{2} - 2 > 0$
 $t^{2} + t - 2 > 0$ $(t + 2)(t - 1) > 0$ $t \le -2 \lor t > 1$
 $3^{\frac{3}{2}} \le -2 \lor 3^{\frac{3}{2}} > 1$
 $1 \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2} \times 10^{-2}$
 $\frac{x}{2} > 0$
 $\frac{$

$$|x| = \sqrt{3^{\frac{3}{2}} + 3^{\frac{3}{2}} + 2}$$

$$|x| = \log_3 4$$

$$|x| = \sqrt{3^{\frac{2}{3}} + 3^{\frac{3}{2}} + 3^{\frac{2}{3}} + 4} = \sqrt{3^{\frac{2}{3}} + 4} = \sqrt$$

$$\frac{\log_2(x^2-x+1)}{\log_2\frac{1}{2}} > -\log_23$$

$$x^2 \times +1 < 3$$
 $x^2 \times -2 < 0$

a)
$$y = \frac{f(x)}{g(x)}$$
 $y = \frac{\sqrt{3^{\frac{2}{5}} + 3^{\frac{3}{5}} - 2}}{2eg_{\frac{1}{2}}(x^{2} + x + 1)}$

$$(3^{\frac{3}{5}} + 3^{\frac{3}{5}} - 2 \ge 0) \qquad (x \ge 0)$$

$$(x^{2} - x + 1 \ge 0) \qquad (x \ge 0)$$

$$(x^{2} - x + 1) \ne 0 \qquad (x^{2} - x + 1) \ne 1 \qquad (x^{2} - x \neq 0)$$

$$(x \ge 0) \qquad (x \ge 0)$$

$$(x \ge 0) \qquad (x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne 0) \qquad (x \ne 0) \qquad (x \ne 0)$$

$$(x \ne$$