Exercises: Dot Product and Cross Product

Problem 1. Give the result of $a \cdot b$ for each of the following:

- 1. $\boldsymbol{a} = [1, 2], \boldsymbol{b} = [2, 5]$
- 2. $\boldsymbol{a} = [1, 2, 3], \boldsymbol{b} = [2, 5, -7]$

Problem 2. Give the result of $a \times b$ for each of the following:

- 1. $\boldsymbol{a} = [1, 2, 3], \boldsymbol{b} = [3, 2, 1]$
- 2. a = i j + k, b = [3, 2, 1]

Problem 3. In each of the following, you are given two vectors $\boldsymbol{a} \cdot \boldsymbol{b}$. Let γ be the angle between the two vectors' directions. Give the value of $\cos \gamma$.

- 1. $\boldsymbol{a} = [1, 2], \boldsymbol{b} = [2, 5]$
- 2. $\boldsymbol{a} = [1, 2, 3], \boldsymbol{b} = [3, 2, 1]$

Problem 4. This exercise explores the usage of dot product for calculation of projection lengths. Consider points P(1,2,3), A(2,-1,4), B(3,2,5). Let ℓ be the line passing P and A. Now, let us project point B onto ℓ ; denote by C the projection. Calculate the distance between P and C.

Problem 5. Let $\overrightarrow{P}, \overrightarrow{A}, \overrightarrow{P}, \overrightarrow{B}$, and $\overrightarrow{P}, \overrightarrow{C}$ be directed segments that are not in the same plane. They determine a parallelepiped as shown below:

Suppose that $\overrightarrow{P}, \overrightarrow{A}, \overrightarrow{P}, \overrightarrow{B}$, and $\overrightarrow{P}, \overrightarrow{C}$ are instantiations of vectors $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} , respectively. Prove that the volume of the parallelepiped equals $|(\boldsymbol{a} \times \boldsymbol{b}) \cdot \boldsymbol{c}|$.

Problem 6. Given a point p(x, y, z) in \mathbb{R}^3 , we use \boldsymbol{p} to denote the corresponding vector [x, y, z]. Let q be a point in \mathbb{R}^3 , and \boldsymbol{v} be a non-zero 3d vector. Denote by ρ the plane passing q that is perpendicular to the direction of \boldsymbol{v} . Prove that for any p on ρ , it holds that $(\boldsymbol{p} - \boldsymbol{q}) \cdot \boldsymbol{v} = 0$.

Problem 7. Given a point p(x, y, z) in \mathbb{R}^3 , we use \boldsymbol{p} to denote the corresponding vector [x, y, z]. Let q be a point in \mathbb{R}^3 , and \boldsymbol{u} be a unit 3d vector (i.e., $|\boldsymbol{u}|=1$). Denote by ρ the plane passing q that is perpendicular to the direction of \boldsymbol{u} . Prove that for any p in \mathbb{R}^3 , its distance to ρ equals $|(\boldsymbol{p}-\boldsymbol{q})\cdot\boldsymbol{u}|$.

Problem 8. Consider the plane x + 2y + 3z = 4 in \mathbb{R}^3 . Calculate the distance from point (0,0,0) to the plane.

1

Problem 9. Consider the line x + 2y = 4 in \mathbb{R}^2 . Calculate the distance from point (0,0) to the line.

Problem 10. Given a point p(x, y, z) in \mathbb{R}^3 , we use \boldsymbol{p} to denote the corresponding vector [x, y, z]. Let q be a fixed point in \mathbb{R}^3 , and \boldsymbol{v} a non-zero 3d vector. Given a real value s, f(s) gives a point p in \mathbb{R}^3 such that $\boldsymbol{p} = \boldsymbol{q} + s \cdot \boldsymbol{v}$. As s goes from $-\infty$ to ∞ , what is the locus of f(s)?