Insper

Camada Física da Computação

Aula 23 - Modulação Digital

2016 - Engenharia

Fábio Ayres <fabioja@insper.edu.br>

Objetivos

Transmissão digital

Transmissão digital

- A entrada do sistema é um stream de bits
- Agrupam-se estes bits em símbolos
- Cada símbolo é transformado em um segmento de sinal analógico
- O sinal recebido é o sinal transmitido que foi distorcido pelo canal e que recebeu ruído adicional
- Detectam-se os símbolos a partir do sinal recebido. Podem haver erros.
- Os símbolos são transformados novamente em bits.

Símbolos

- Conjuntos de um ou mais bits
- Pode ser simplesmente 1 bit/símbolo, ou podemos ter mais bits por símbolo.
- Exemplo: modulação QPSK

Bit 0	Bit 1	Símbolo
0	0	S_0
0	1	S_1
1	0	S ₂
1	1	S ₃

Exercício

 Qual a sequência de símbolos para as streams de bits abaixo, na modulação QPSK?

0101001011110110

Resposta

01 01 00 10 11 11 01 10 S₁ S₁ S₀ S₂ S₃ S₃ S₁ S₂

Modulação digital

Para entender a transmissão digital, vamos começar pela modulação:

 Para cada símbolo, gerar um segmento de sinal analógico.

Modulação digital

- Principais modulações:
 - ASK Amplitude Shift Keying (Modulação em amplitude)
 - PSK Phase Shift Keying (Modulação em fase)
 - FSK Frequency Shift Keying (Modulação em frequência)
 - QAM Quadrature Amplitude Modulation (Uma combinação de modulação em amplitude e fase)

Amplitude Shift Keying

Amplitudes diferentes para símbolos diferentes

On/Off keying (OOK)

Caso limite do ASK

Exemplo de modulação OOK

Circuito demodulador simples

Frequency shift keying

Frequências diferentes para cada símbolo

Phase shift keying

 Muda a fase da portadora para cada simbolo

Exemplo: QPSK

Bit 0	Bit 1	Simbolo	Fase
0	0	00	45°
0	1	01	135°
1	1	11	225°
1	0	10	315°

Insper

Em resumo

Sistema	Fórmula
ASK	$x_i(t) = A_i \cos(2\pi f_0 t)$
FSK	$x_i(t) = A\cos(2\pi(f_0 + \Delta f_i)t)$
PSK	$x(t) = A\cos(2\pi f_0 t + \phi_i)$

Detecção de símbolos

 Procura decidir qual foi o símbolo transmitido a partir do símbolo recebido.

Erros de recepção e relação sinal-ruído

 A presença de ruído pode ocasionar a detecção de um símbolo falso, que difere do símbolo transmitido

 Quanto maior o ruído, maior a taxa de erros por bit (ou por símbolo) transmitido

Erros de recepção e relação sinal-ruído

 Geralmente representado pela taxa de erro de bit versus relação sinal-ruído

 Em inglês: bit error rate (BER) versus signal-to-noise ratio (SNR)

Erros de recepção e relação sinal-ruído

- Também representado pela BER versus SNR por bit: E_b/N₀
- E_b: energia do sinal por bit
- N₀: energia do ruído por bit

BER vs SNR

Insper

Exercício

 Se a relação sinal-ruído for 10dB, quantos bits errados podemos esperar, em média, ao transmitir um arquivo de 1MB usando modulação 8-PSK?

Insper

www.insper.edu.br

Apêndice: Bluetooth

Agora conseguimos (quase) ler a Wikipedia! https://en.wikipedia.org/wiki/Bluetooth#Implementation

- Bluetooth operates at frequencies
 - between 2402 and 2480 MHz,
 - Or 2400 and 2483.5 MHz including guard bands
 - 2 MHz wide at the bottom end
 - and 3.5 MHz wide at the top. [15]
- This is in the globally unlicensed (but not unregulated) Industrial, Scientific and Medical (<u>ISM</u>) 2.4 GHz short-range radio frequency band.

Bluetooth

- Bluetooth uses a radio technology called frequency-hopping spread spectrum.
 - Bluetooth divides transmitted data into packets, and
 - transmits each packet on one of 79 designated Bluetooth channels.
 - Each channel has a bandwidth of 1 MHz.
 - It usually performs 800 hops per second,
 with Adaptive Frequency-Hopping (AFH) enabled.
 - Bluetooth low energy uses 2 MHz spacing, which accommodates 40 channels.

Bluetooth

- Originally, Gaussian frequency-shift keying (GFSK) modulation was the only modulation scheme available.
- Since the introduction of Bluetooth 2.0+EDR,
 - π/4-DQPSK(Differential Quadrature Phase Shift Keying) and
 - 8DPSK modulation
 may also be used between compatible devices.