ОГЛАВЛЕНИЕ

	Стр.
ОРГАНИЗАТОРЫ И СПОНСОРЫ	vi
МЕЖДУНАРОДНЫЙ ОРГКОМИТЕТ КОНФЕРЕНЦИИ	vii
ПРОГРАММНЫЙ КОМИТЕТ	viii
ПРИВЕТСТВИЯ КОНФЕРЕНЦИИ	ix
К 85-ЛЕТНИЮ ПРОФЕССОРА Т.Н. ВЕЗИРОГЛУ	xxi
К 75-ЛЕТИЮ ПРОФЕССОРА В.В.СКОРОХОДА	XXV
К 70-ЛЕТИЮ ПРОФЕССОРА Д.К. РОССА	xxix
К 150-ЛЕТИЮ СВАНТЕ АРРЕНИУСА	xxxvii
ОЖЕ ПЬЕР ВИКТОР	xxxviii
ПАМЯТИ Ю.Ф.ШМАЛЬКО	xxxix
ПАМЯТИ Н.С. АСТРАТОВА	xli
ПАМЯТИ Ю.А. ОСИПЬЯНА	xlii
К 150-ЛЕТИЮ СО ДНЯ РОЖДЕНИЯ М. ПЛАНКА	xliv
К 115-ЛЕТИЮ СО ДНЯ РОЖДЕНИЯ П. КАПИЦЫ	xlvi
К 100-ЛЕТИЮ СО ДНЯ РОЖДЕНИЯ Л.Д. ЛАНДАУ	xlviii
СЕКЦИЯ 1 ГИДРИДЫ МЕТАЛЛОВ	
СЕКЦИЯ 1.1 ПОЛУЧЕНИЕ ГИДРИДОВ МЕТАЛЛОВ	1
Механохимический способ получения алюмогидридов щелочноземельных металлов и борогидридов лантаноидов	3
Влияние различных аллотропных форм углерода на кинетику сорбции водорода магнием в процессе реактивной механоактивационной обработки	6
Формирование квазикристаллов в системе Ti-Zr-Ni и их гидридов в режиме CBC	10
Фотоэлектрохимическая ячейка для аккумулирования водорода: характеристики катодов	18
Формирование сплавов в системе Ti-V в гидридном цикле и синтез их гидридов в режиме CBC	22
Исследование взаимодействия водорода со сплавами металлов IVB группы в режиме горения	26
Процессы горения в системе Ti –V-Cr –С-Н и синтез сложных карбогидридов	30
Образование гидридов внедрения на катализаторе разложения воды	34
СЕКЦИЯ 1.2 ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ГИДРИДОВ МЕТАЛЛОВ	37
О химическом аккумулировании тепловой энергии. Падурец Л.Н., Кузнецов Н.Т., Шилов А.Л.	39
Структура и водородосорбционные свойства новых соединений и сплавов на основе магния	42

Исследование взаимосвязи термической стабильности гидридов интерметаллидов состава AB ₂ с характером их химических Me-H связей	48
Добровольский В.Д., Ершова О.Г., Солонин Ю.М., Завалий И.Ю.	.0
Распределение водорода в сплаве $Mo_{0.5}Ti_{0.5}$ H_x по данным ЯМР	52
Корреляция упруго - и термодинамических свойств с электронными параметрами гидридов	56
редкоземельных металлов	30
Удержание дейтерия в магнии, сплаве магния $Mg_{72}Mm_8Ni_{20}$ и двухслойной системе $Mg_{72}Mm_8Ni_{20}$ – Pd Неклюдов И.М., Морозов А.Н., Кулиш В.Г., Бовда А.М., Журба В.И., Онищенко Л.В.	60
Подвижность водорода в наноструктурированном соединении ZrTi ₂ H _{3.9} со структурой типа C15	64
Термодинамические свойства и диаграммы состояния тройных систем Me-B-C	67
Фазы высокого давления в системах магний – переходный металл – водород	70
Анализ общих закономерностей формирования сплавов в гидридном цикле в тройных системах Ti-Zr-H; Ti-Hf-H; Zr-Hf-H; Ti-Zr-Hf.	74
Долуханян С.К., Алексанян А.Г., Шехтман В.Ш., Маилян Д. Г., Мнацаканян Н.Л., Тер Галстян О.П.	70
Структурно-фазовый механизм деструктивного гидрирования сплава α_2 - Ti_3Al	78
Диагностика водородом структурных изменений в стали Х18Н10Т, прошедшей	02
низкотемпературную экструзию	82
Влияние добавок Ni и La на особенности гидрирования и водородоемкость композитов на основе	0.6
сплавов циркония	86
К вопросу о температуре разложения гидридной фазы MgH_2 , полученной различными способами Ершова О.Г., Добровольский В.Д., Солонин Ю.М.	90
Калориметрическое исследование взаимодействия водорода с ${\rm Ti}_{0.9}\ {\rm Zr}_{0.1}\ {\rm Mn}_{1.2}\ {\rm V}_{0.1}$ Аникина Е.Ю., Вербецкий В.Н.	93
Теоретические исследования структуры, стабильности и элементарных реакций простых и комплексных гидридов легких элементов	95
Нейтронная спектроскопия и термодинамические свойства γ модификации тригидрида алюминия	98
Зонно-ковалентная модель системы (4f) металл-водород. Силы связи. Растворение Н	102
Роль зонного спектра в растворении водорода в 4f-металлах	106
Магнитные свойства и растворение водорода в локально-ковалентной модели 4f-металлов	110
Модифицирование поверхности магния комплексным металлическим покрытием	114
Особенности взаимодействия с водородом нанокристаллического магния	118
Исследование систем $Ti_{1.5}Al-NH_3$ и Ti_2Al-NH_3	122
Особенности разложения AlH ₃	126

Ооразование непрерывного ряда ОЦК твердых растворов в системе 11-Ст при размоле смеси порошков титана и хрома в планетарной мельнице
Савяк М.П., Андреева М.Г., Хомко Т.В., Мацера В.Ю., Удовик О.А.,Будылина О. Н., Уварова И.В.
Взаимодействие в системе CeCo _{2.95} M _{0.05} -H ₂ (M-Cu, Si) при давлении водорода до 100 атм
Исследование динамической стабильности дефектной фазы гидрида палладия из первых принципов 13 Исаева Л.Э., Бажанов Д.И., Исаев Э.И., Еремеев С.В., Кулькова С.Е., Абрикосов И.А.
Особенности фазовых превращений в фольгах сплава Pd-8,3ат.%Y-Н в процессе релаксации
Моделирование относительно стабильных гидридов щелочноземельных металлов. 14 Бояркина О. В., Караваев Д. В.
Улучшение метрологических характеристик при анализе интерметаллических соединений
Генерирование водорода взаимодействием алюминия, активированного сплавами галлия, с водой
Водород-генерирующие композиции на основе магния
Теоретическое исследование элементарных реакций гидрирования допированных алюминидных кластеров $Al_{12}X$, $X = Al$, B , C , Si , Ti
Парамагнитная восприимчивость ИМС RNi (R=Sm, Tb, Gd, Dy) и их гидридов
К проблеме влияния водородной атмосферы на свойства покрытий на основе переходных d -металлов с p -элементами
Влияние водорода на неупруго-упругие свойства сплава Ti_3Al и SiO_2
Особенности взаимодействия водорода с покрытиями на основе никеля
Водородосорбционные свойства ИМС $ZrFe_x$ (1.9 \leq x \leq 2.5).
Динамика сорбции металлогидридом водорода в плазме тлеющего разряда
Взаимодействие водорода с ИМС RNi (R=Sm, Tb, Gd, Dy, Y)
Изобаро-волюметрические исследования водородосорбционных и термодинамических характеристик механически активированного ${\rm TiH_{1.9}}$
Электронный вклад в образование вакансий сверхвысокой концентрации в гидриде палладия при высоком давлении водорода
Повышение термической стабильности гидрида титана
Анизотропия оптических колебаний в PdD. 21 Кузовников М.А., Антонов В.Е., Давыдов А.И., Федотов В.К., Гнесин Б.А., Иванов А.С., Колесников А.И.
Кристаллическая структура и состав водородного гидрата С1

использование интерметаллических соединении типа MmN _{15-x-y-z} Co _x Al _y Mn _z в качестве накопителеи водорода в фотоэлектрохимических и электрохимических системах	226
Щербакова Л.Г., Солонин Ю.М., Муратов В.Б., Хомко Т.В., Добровольский В.Д.	220
Водородосорбционные свойства гексагональной фазы Лавеса интерметаллического соединения $TiMn_{1,5}$ <i>Маринин В.С., Умеренкова К.Р., Воловчук О.В.</i>	230
Исследования водородосорбционных свойств, термической стойкости и характера химических связей Ме-Н гидридов Но и Lu методами термодесорбционной и рентгеновской абсорбционной спектроскопии <i>Добровольский В.Д., Ершова О.Г., Солонин Ю.М., Морозов И.А.</i>	234
Влияние слабоагрессивных сред на образование гидридов в титановых порошках	238
Особенности гидридообразования в системах $LaNi_{5-x}Cu_x$ — H_2 ($2\le x\le 3$) Бердоносова Е.А., Сотнезова К.М.	244
Синтез и кристаллическая структура сверхстехиометрического дейтерида LaNi $_5$ D $_{9.5}$	248
Фазовые превращения Ti_2Cu в процессе деструктивного гидрирования	252
Индуцированные водородом фазовые превращения в аморфных сплавах	257
Влияние термонапряжений на термодиффузию водорода	262
Водород-аккумулирующие композиты на основе модифицированных эвтектических магниевых сплавов <i>Фурсиков П.В., Борисов Д.Н., Тарасов Б.П.</i>	266
Гидрирование и свойства нанодисперсных Pd-Mg-C и Pd-Al-C систем. Чурилов Г.Н., Осипова И.В., Новиков П.В., Гребенникова Н.В., Чесноков Н.В.	270
О роли легирующих компонентов на процессы диффузии водорода в сплавах в зависимости от природы легирующих добавок	274
Термическая устойчивость и термодинамические свойства тристетрагидрофуранатов борогидридов лантанидов.	278
Гафуров Б.А., Мирсаидов И.У., Хакеров И.З., Бадалов А.Б.	202
Исследование термодинамических и кинетических характеристик десорбции водорода в гидридах магния <i>Муратов В.Б., Гарбуз В.В., Хомко Т.В., Горбачук Н.П.</i>	282
СЕКЦИЯ 1.3 ИСПОЛЬЗОВАНИЕ ГИДРИДОВ МЕТАЛЛОВ	285
Влияние водородной и внепечной обработки на свойства сплава типа АК9	288
Получение компактных образцов гафния и лигатур из отходов в «гидридном цикле»	292
Экспериментальное исследование циклического взаимодействия порошков LaNi $_5$ и ZrCrFe $_{1.2}$ с водородом. <i>Шанин Ю.И., Соловей А.И.</i>	304
Сравнительный анализ гидридного теплового насоса с другими тепловыми насосами	308
Влияние мишметалла на свойства гидридов на основе LaNi ₅	312
Синтез и свойства нанокристаллического MgO-Fe, полученного восстановлением железо-магниевого оксалата в водороде	315
Надутов В.М., Войнаш В.З., Перекос А.Е, Залуцкий В.П., Ефимова Т.В., Свистунов Е.А.	
Накопители и компрессоры водорода для лабораторного использования	318

Водородные горелки различного назначения	322
О механизмах образования гидридов в системах металл-бор	325
СЕКЦИЯ 2 УГЛЕРОДНЫЕ НАНОСТРУКТУРНЫЕ МАТЕРИАЛЫ	329
СЕКЦИЯ 2.1 ПОЛУЧЕНИЕ ФУЛЛЕРЕНОВ И ДРУГИХ УГЛЕРОДНЫХ НАНОСТРУКТУР	
Получение и исследование фуллерита C_{60} , интеркалированного малыми молекулами. <i>Шульга Ю.М.</i>	332
Примесная инженерия: чем заполнить корзину фуллерена?	336
Новый маршрут термической трансформации углеводородов и новые структуры и соединения углерода Харламов А.И., Кириллова Н.В., Фоменко В.В., Губарени Н.И., Скрипниченко А.В.	340
Самосборка и самоорганизация неравновесных наногелей углерода. Жуковский М.С., Безносюк С.А., Лерх Я.В., Жуковская Т.М.	344
Структурные превращения в металлических частицах катализаторов в различных процессах синтеза углеродных нанотрубок	347
Синтез и реакционная способность высших фуллеренов	350
Плазмохимический синтез нанопорошков металлуглеродных систем	353
Получение нанопористого углерода пиролизом алюминийхлоруглеводородных соединений	356
Гибридные наноматериалы в конфигурации ядро (нанокристаллы SiC) и оболочка (полимер): синтез и исследование методом ЭПР	360
Пути стабилизации молекулы бирадикального фуллерена C_{74}	366
Влияние параметров плазмы на скорости образования фуллеренов, нанотрубок и наночастиц	370
Металлоуглеродные волокна, содержащие высокодисперсные Fe, Co, Ni – перспективный материал для синтеза углеродных наноструктур.	374
Сафонова А.М., Сметанина О.В., Шпилевская Л.Е., Гонов А.Н.	
Получение и спектрофотометрические исследования органических растворов эндо- и экзометаллофуллеренов C_{60}	378
Бис-азагомофуллерены: региоселективный синтез и механизмы реакций	382
Адамантановые и карборановые аналоги фуллереновых нанокластеров	386
Образование высокодисперсного углерода во время процесса гидрокрекинга тяжелых нефтяных фракций <i>Рустамов М.И., Абад-заде Х.И., Кулиев А.Д., Мухтарова Г.С.</i>	390
І. О процессах формирования углеродных наноструктур на катоде в условиях электродугового разряда Золотаренко А.Д., Золотаренко Ан.Д., Лысенко Е.А., Головченко Т.Н., Власенко А.Ю., Щур Д.В., Помыткин А.П.	395
II. О процессах формирования углеродных наноструктур в газовой фазе и на стенках реактора в условиях электродугового разряда	400

III. К процессам формирования углеродных наноструктур в жидкой фазе	404
Синтез углеродных нанотрубок на поверхности углеродных волокон	408
СЕКЦИЯ 2.2 ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА	411
Исследование методом ДСК окисления фуллерита C_{60} растворенным кислородом	414
Исследование методом КР фазовых превращений наноструктурированного анатаза TiO ₂ в результате	418
ударного сжатия. Шульга Ю.М., Матюшенко Д.В., Голышев А.А., Шахрай Д.В., Молодец А.М., Куркин Е.Н., Домашнев И.А.	410
О тонкой структуре спектра ЯМР 13 С фуллерита C_{60} , интеркалированного молекулярным кислородом Шульга Ю.М., Мартыненко В.М., Анохин Е.М., Максимычев А.В., Michtchenko A.	422
Фуллерит в органической матрице	427
Эндоэдральные металлофуллерены: синтез, выделение, реакционная способность, возможные применения.	432
Бубнов В.П., Кареев И.Е., Котов А.И., Ягубский Э.Б.	
Свойства металл-фуллереновых материалов. Жданок С.А., Шпилевский Э. М., Шпилевский М.Э., Баран Л.В.	436
ГЦК-наноуглерод: электронная структура и применения	440
Влияние кислородосодержащих добавок к этилену на каталитический синтез углеродных нановолокон <i>Володин А.А., Тарасов Б.П.</i>	444
Структуры замещения, устойчивые по отношению к образованию антифазных границ, в легированном металлом графене. Кинетика дальнего порядка	448
Фуллериты в ударных волнах	451
Производство и дистрибюция фуллеренов и других углеродных наноматериалов	453
Спектральные и термодинамические свойства водных систем с одностенными углеродными нанотрубами <i>Адаменко И.И., Королович В.Ф., Королович А.Ф., Прилуцкий Ю.И., Ritter U., Scharff P.</i>	456
Радиационная устойчивость и особенности фонового парамагнетизма фуллерена C_{60}	460
$[C_{60}]$ – $[C_{74}]$ – фуллерены: перечисление изомеров замещения на основе вершинной, реберной и граневой дифференциации	464
Механохимический синтез производных фуллерена и их свойства	468
Сверхпроводимость фуллеридов $A_nTl_mHg_xC_{60}$ (A=K,Rb,Cs; n=1,2; m=0.25-2), синтезированных из амальгам Кульбачинский В.А., Булычев Б.М., Лунин Р.А., Кытин В.Г.	472
Влияние природы катализатора на свойства углеродных нанотрубок и особенности их синтеза из паров	47.4
этанола	476
Трибологические свойства модифицированных фуллеренов в различных дисперсионных средах	479
Влияние углеродосодержащих добавок на водородосорбционные свойства "псевдосплавов" Mg-P3M-Ni	482

Химия углеродных нанотрубок
Влияние примеси водорода на низкотемпературное тепловое расширение жгутов одностенных углеродных нанотрубок.
Попов С.Н., Винников Н.А., Гаврилко В.Г., Долбин А.В., Есельсон В.Б., Манжелий В.Г., Sundqvist В.
Магнитные свойства нанокластеров углерода в гидрогенизированных аморфных пленках карбида кремния Савченко Д.В., Калабухова Е.Н., Лукин С.Н., Шанина Б.Д., Васин А.В., Лысенко В.С., Назаров А.Н., Русавский А.В., Кошка Я.
Влияние примесей углерода и водорода на магнитные свойства нанокристаллического никеля, полученного размолом в шаровой мельнице
Электронная структура продуктов карбонизации поливинилиденфторида и толуилендиизоцианата в матрице из Al_2O_3
Рентгеноструктурный анализ наночастиц с использованием синхротронного излучения
Эндо- и экзопроизводные фуллеренов как антиоксиданты органических соединений
Новые углерод-металлосодержащие материалы для сорбции водорода
Особенности электронной структуры углеродных наноматериалов
Образование и свойства наноструктурных пленок при высокотемпературном трении титановых материалов
Свойства фуллерен- и наноалмазосодержащих композитов на основе ароматического полиамида фенилон С-2
Кончиц А.А., Колесник С.П., Ефанов В.С., Гуле Е.Г., Буря А.И., Шерстюк А.И., Кузнецова О.Ю.
Некоторые физико-химические характеристики наноструктурированного фуллеренового C_{60} покрытия на жаропрочных сплавах
Нелюба П.Л., Матвеева Л.А., Лашнева В.В., Костенко А.Д., Максюта И.И., Квасницкая Ю.Г.
Измерение ударной сжимаемости C_{70} с использованием синхротронного излучения
Трифторметильные производные фуллерена C_{76}
Особенности формирования нанокластеров каталитически активных металлов внутри наноструктурированных углеродных материалов. <i>Головко Л.В., Поважный В.А., Гомза Ю.П., Бортышевский В.А., Несин С.Д., Каменских Д.С.</i>
Структурное состояние аморфного углерода, полученного методом электрического пробоя углеводородных жидкостей
Структура и электрические свойства наноструктурированных порошков твердых растворов кубического ${\rm Ti_{1-x}Al_xN}$ и композитов ${\rm Ti_{1-x}Al_xN+AlN}$ с многослойными углеродными нанотрубками
Влияние смещения на подложке на структурные и механические свойства a-SiC:H пленок
ЭПР и КРС исследования компактов из микродисперсных порошков алмазов для электрохимических применений. Ефанов В.С., Кончиц А.А., Колесник С.П., Янчук И.Б., Ефанов А.В., Валах М.Я., Бочечка А.А.,
Романко Л.А., Свирид Е.А.

Эффективность наномодифицирования строительных композитов	558
Нуклеофильное присоединение к фуллереновой черни. 5 Кущ С.Д., Куюнко Н.С.	562
Факторы, определяющие сродство к электрону азотистых производных фуллерена C_{60}	566
Исследование электронных свойств углеродных нанотрубок. 5 Бояркина О. В.	570
Структура и морфология Pt–Re(Rh)-углеродных нанокомпозитов. 5 Земцов Л.М., Ефимов М.Н., Карпачева Г.П., Дзидзигури Э.Л.	574
Термодинамические свойства трёхкомпонентных углеродсодержащих систем	577
Электронная структура химических производных фуллерена C_{60} : компьютерное моделирование 5 Лопатин Д.В., Чиркин Е.С.	580
Эволюция неалмазной формы углерода и ее влияние на структурные превращения	584
Влияние азотной плазмы на фуллериты и углеродные нанотрубки	588
Квантовохимическое исследование эндоэдральных комплексов додекаэдрана и его производных 5 Грибанова Т.Н., Гапуренко О.А., Миняев Р.М., Минкин В.И.	592
Исследование протонной проводимости графен-графансодержащих мембран	596
Фазовые превращения ПК \leftrightarrow ОЦК \leftrightarrow ГЦК в фуллерите, обусловленные формированием различных модификаций фуллереновых молекул	601
Открытие "Эффекта упорядочения" мета-изомера-продукта нитрования однозамещенных бензола и его связь с реакционной способностью однозамещенных бензолов в реакциях межмолекулярного донорно-акцепторного взаимодействия с фуллереном С ₆₀	606
	610
Растворение фуллерена C_{60} в галогенпроизводных углеводородов со связью $C(sp^3)$ – X	614
СЕКЦИЯ 2.3 ХРАНЕНИЕ ВОДОРОДА В НАНОСТРУКТУРНОМ УГЛЕРОДЕ	617
Исследование электрохимически наводороженных углеродных нанотрубок	622
Перспективы применения композиционных материалов в системах хранения и транспортировки водорода <i>Коротеев А.С., Кошлаков В.В., Миронов В.В.</i>	626
Наносистемные аккумуляторы водорода: квантовые поликонденсаты бирадикалов водорода в нанотрубках углерода	630
От микро- к наноразмерным каталитическим мембранным реакторам гидрирования с аккумулированным	634
Солдатов А.П., Цодиков М.В., Тепляков В.В., Паренаго О.П.	•
Адсорбция водорода и ксенона нанопористыми материалами из бурого угля	638

Окислительная модификация углеродных нанотрубок и их сорбционные свойства	642
Исследование взаимодействия плазмы водорода и кислорода с углеродными нанотрубками	646
Определение водород-сорбционных характеристик фуллерита C_{60}	652
СЕКЦИЯ 2.4 ДРУГИЕ ПРИМЕНЕНИЯ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ	654
Получение водорода с использованием подземной газификации угля	657
Наноматериалы для водородной энергетики	660
Миниатюрный катодно-модуляторный узел с автокатодом из полиакрилонитрильного углеродного волокна.	664
негров Д. В., Ламанов М. М., Шешин Е. П.	004
Катодолюминисцентный источник ультрафиолетового излучения с автокатодом из углеродных волокон Ехменина И. В., Шешин Е. П., Чадаев Н. Н.	668
Планарный автокатод из углеродной фольги. Грознов С.И., Лейченко А.С., Стариков П.А., Шешин Е.П.	672
Исследование автоэмиссионных свойств композитов алмаз-углерод	676
Коронный разряд как метод визуализации автоэмиссионных центров	680
Роль нанотонких слоев углерода в формировании неоднородного упругого ротационного искривления решетки нанотонких кристаллов селена и межблочных границ	684
Протонная проводимость угольного порошка, стимулированная гамма облучением	688
Перспективы применения наносистем на основе линейного углерода в микроэлектронике и медицине Новиков Н.Д., Александров А.Ф., Корнеева Ю.В.	692
Композиционные материалы, полученные на основе многостенных углеродных нанотрубок	696
Применение углеродных нанотрубок для защиты от радиолокационного обнаружения	699
Монтмориллонитовые наноглины Беглярского месторождения	701
Углеродные наноматериалы как сенсоры на газы: квантовохимическое исследование	704
Разложение метанола (этанола) до водорода на углерод-металлических наноструктурных композитах Сулейманов Н.М., Хантимеров С.М., Куковицкий Е.Ф., Шоерман Р., Герлах Д., Лощин А.А., Гнездилов О.И., Матухин В.Л.	708
Сравнительное изучение анодов на основе углеродных наноматериалов и металлического лития в химических источниках тока с гель-электролитом	714
Ярмоленко О.В., Хатмуллина К.Г., Тулибаева Г.З., Шувалова Н.И., Ефимов О.Н.	
Теоретическое исследование механизма фиксации азота фуллереном C ₆₀	718

Высокоэффективные холодные эмиттеры на основе линейно-цепочечного наноуглерода	722
Нанокомпозиты на основе углеродных нанотрубок и наночастиц Cu (Ni)	726
Влияние структуры наноуглеродного носителя на каталитические свойства платино-рутениевого сплава $\it Eрмилова M.M., \it Eфимов M.H., \it Земцов \it Л.M., \it Карпачева \it Г.\Pi., \it Кулакова \it M.M., \it Opexoвa \it H.B., \it Tерещенко \it \Gamma.\Phi.$	730
Платино-углеродные нанокомпозиты в мембранном катализе	734
Особенности синтеза углеродных нановолокон на неорганических матрицах и адгезионные свойства УНВ-содержащих носителей	738
Применение углеродных наноструктур (фуллерен C_{60} - C_{70} и фуллереносодержащей сажи) при синтезе пластических смазок	744
Получение гибридных 3d-нано/микроструктур на основе углеродных волокон	748
Нейтрондифракционные исследования механоактивированных фуллеренов	753
Исследование термостойкости Me-C нанокомпозитов	758
Влияние МОС марганца на структуру и состав электроосажденных фуллереносодержащих покрытий Хотыненко Н.Г., Рогозинская А.А., Коваль А.Ю., Щур Д.В., Загинайченко С.Ю., Каменецкая Е.А., Пишук В.К.	762
Методика нанесения тонких фуллереновых пленок на циркониевые подложки	766
Отработка технологии электроосаждения фуллереновых металлосодержащих покрытий	770
Свойства металлоуглеродных нанокомпозитов железа и никеля, синтезированных с использованием дугового разряда в жидкости	775
Металлоуглеродные нанокомпозиты, синтезированные испарением механических смесей в электрической дуге	780
Деагломерация многостенных углеродных нанотрубок (УНТ) и получение нанокомпозитов полимер/УНТ Семенцов Ю.И., Алексеева Т.А., Пятковский М.Л., Приходько Г.П., Гаврилюк Н.А., Картель Н.Т., Грабовский Ю.Е., Горчев В. Ф., Чунихин А. Ю.	784
Отработка технологии синтеза углеродных нанотрубок на циркониевой подложке	788
Углеродные наноматериалы в источниках света	793
О физической природе потенциалов ионизации монозамещенных бензолов и растворимости в них фуллерена C_{60}	798
Особенности растворимости гидрофуллеритов	802

влияние магнитного поля на структурное состояние, фазовыи состав и дисперсность порошков Fe, полученных методом электроискрового диспергирования
Дубовой А.Г., Перекос А.Е., Щур Д.В., Ефимова Т.В., Шумейко И.Л., Залуцкий В.П., Загинайченко С.Ю., Помыткин А.П.
Магнитные свойства композитов ферромагнитный металл—углерод
Электрохимическая интеркаляция водорода в активированный углерод
Силовой электрохимический суперконденсатор на основе углеродных нанотрубок
Особенности водородной связи в углеводородных материалах
Возможности исследования углеродных материалов и наноматериалов методом позитронной аннигиляционной спектроскопии
СЕКЦИЯ З МАТЕРИАЛЫ ДЛЯ ТОПЛИВНЫХ ЭЛЕМЕНТОВ
Процессы массопереноса при мембранном выделении водорода из синтез-газа
Блочный носитель катализатора и катализатор для получения водорода и синтез-газа паровой конверсией углеводородов
Источники водорода для низкотемпературных портативных топливных элементов
Компьютерное моделирование подсистем водородных топливных элементов: наногелевые углеродные электроды и фрактальные наночастицы катализатора
Гвердоэлектролитные элементы на основе ${ m ZrO_2}$ топливных малогабаритных электрогенераторов и датчиков кислорода
Нанокомпозитный металл-диоксид марганца катализатор для катодных реакций восстановления кислорода в топливном элементе
Структурно-функциональные свойства катализаторов для гетерогенно-каталитических процессов получения и очистки водорода
Исследование процессов окисления водорода на нанодисперсных алмазах и наноуглеродных трубках Богатырева Г.П., Маринич М.А., Базалий Г.А.
Низкотемпературная каталитическая очистка от СО водорода для ТЭ
Исследование электронного строения некоторых веществ – основы новых твердых электролитов для топливных элементов
оноиренко 1.н., копылови е.м., лижун О.Ю. Особенности получения сульфофторид-содержащих мономеров для ионообменных мембран

Управление структурными характеристиками и активность Pt/C, Pt-Ni/C и Pt-Co/C материалов	884
Использование высокопористого активированного антрацита в качестве материала для топливных	0.07
элементов	887
Твёрдофазный нанореактор на основе поликаликс[4]резорцинарена для процессов абсорбции водорода и гидрирования	890
Политетрафенилметациклофаноктолы как полиэлектролиты для топливных элементов	894
Нанокомпозиты на матрице полициклофаноктолов как электродные материалы для топливных элементов Альтиулер Г.Н. , Малышенко Н.В., Шкуренко Г.Ю., Трясунов Б.Г., Остапова Е.В.	898
Упорядоченные нанокристаллические структуры – кристаллы, сформированные из нанокристаллитов в пленках твердого электролита на основе диоксида циркония	902
Лабораторные накопители водорода, использующиеся при эксплуатации топливных элементов	906
Аварийный металлогидридный источник электроэнергии	910
Мезопористые TiO_2 -материалы для систем генерации водорода. Ермохина Н.И., Бухтияров В.К., Кишеня Я.В., Литвин В.И., Ильин В.Г., Манорик П.А., Капитанчук Л.М., Смиян О.Д., Каменских Д.С., Бортышевский В.А.	914
СЕКЦИЯ 4 ВОДОРОДНАЯ ЭНЕРГЕТИКА И ПРОБЛЕМЫ ОКРУЖАЮЩЕЙ СРЕДЫ	921
Роль водорода в современных и будущих технологиях	924
Перспективы водородной энергетики и проблемы экологии в Украине	928
Нанохимические и нанотоксикологические особенности нанообъектов (наночастиц, наноструктур и нанофаз) Скрипниченко А.В., Кириллова Н.В., Фоменко В.В., Губарени Н.И., Бондаренко М.Э., Харламов А.И.	932
Материалы водородной энергетики	936
Использование радиоактивных отходов для процесса радиационно-каталитического получения водорода из воды и его хранение в твердом теле	940
Получение водорода из попутных нефтяных газов и его безопасное накопление в металлогидридных системах <i>Гасанов А.М., Самедов Э.А.</i>	944
Проблемы создания энергоустановок с электрохимическими генераторами подводных лодок	948
«Научная мысль…» В. Вернадского как мессия «Водородной Цивилизации»	956
Гидроксоапатит кальция как матрица для захоронения радиоактивных отходов	959
Исследование методом РФС поверхности нанокристаллического дисульфида вольфрама. Шпак А.П., Кордубан А.М., Куликов Л.М., Крыщук Т.В., Кьониг Н.Б., Кандыба В.А.	962
Энергоаккумулирующие вещества в водородной энергетике	966

Разработка методов снижения затрат электроэнергии при получении водорода электролизом	970
Использование воды как топлива	973
Получение особо чистого водорода попутно с утилизацией углеводородов. Γ лазунов Γ . Π .	976
Низкотемпературный реформинг этанола на никель-медном катализаторе	980
Защита окружающей среды от фенола	984
Исследование процессов получения водорода железо-паровым методом с использованием отходов металлургического производства при нагреве концентрированной солнечной энергией	988
Физико-химические превращения отходов железной окалины в редокс-циклах получения водорода с использованием различных восстановительных сред	992
Низкотемпературный каталитический конвертор водорода в воду с прямым контактом реакционной смеси с теплоносителем	996
Энерготехнологические установки комбинированного производства водорода и электроэнергии с системами удаления $\mathrm{CO_2}^1$	1000
Мембраны для микро топливных элементов на основе пористого кремния	1004
Оценка эффективности использования водорода и алюминия в качестве экологически чистых энергоносителей	1008
Автоматизированный стенд для испытания катализаторов процесса конверсии углеводородов в водород Матвейчик Е.А., Чернухо А.П., Мигун А.Н.	1012
Методы изготовления мембрано-электродных блоков топливных элементов	1016
Особенности технологии генерации водорода и синтеза наноструктурированных гидроксидов при высоких температурах и давлении	1020
Численное моделирование десорбции водорода с цилиндрической поверхности	1024
Влияние водорода на формирование наночастиц металлов. Афтандилянц Е.Г., Лопатько К.Г., Зауличный Я.В.	1028
Параметрическая идентификация модели водородопроницаемости по временам запаздывания и сопряженным уравнениям	1032
Особенности горения и тушения металлов и гидридов металлов с применением огнетушащих порошковых составов	1037
Противопожарная защита производства кремния	1042
Предупреждение взрывов и тушение загораний на объектах водородной энергетики	1047
Оценка пожарной опасности дисперсных металлов и их гидридов	1052

Применение борогидридов в водородной энергетике	1056
Автоматизированная установка для получения чистого водорода каталитическим гидролизом борогидридов	1060
О возможности использования некоторых слоистыхкристаллов для аккумулирования водорода	1063
Экологически чистое производство водорода из угля	1066
Тепловые трубы с композиционными волокново-порошковыми структурами для теплопередающих устройств водородной энергетики	1070
Свойства гелей на основе тяжелой воды и дейтерия в сверхтекучем гелии. Межов-Деглин Л.П., Ефимов В.Б., Колмаков Г.В., Левченко А.А., Лохов А.В., Nesvizhevsky V.V.	1074
Нейтронные исследования гелей в сверхтекучем гелии. Левченко А.А., Ефимов В.Б., Колмаков Г.В., Лохов А.В., Межов-Деглин Л.П., Nesvizhevsky V.V.	1078
Высоководородистые материалы для ядерной энергетики	1082
ественные энергоэлементные процессы в системах нано (ДНК) – микро – макро - мега (Галактика) вня	. 1086
Равновесные давления трития над тритидом титана. <i>Голубева В.Н., Стеньгач А.В.</i>	1090
«Роснанотех»: через наноиндустрию - к инновационной экономике	1093
СЕКЦИЯ 5 ИСПОЛЬЗОВАНИЕ УГЛЕРОДНЫХ НАНОСТРУКТУР В ЧИСТЫХ ВОДОРОДНЫХ ЭНЕРГЕТИЧЕСКИХ СИСТЕМАХ	1099
нок З.Д., Бахтинов А.П., Водопьянов В.Н., Заслонкин А.В., Нетяга В.В.	1102
	1105
Раскрытие тайны Этрусских украшений из золота. Черниенко В.В., Заболотный О.В., Тигарев В.М., Павлышко Е.Г.	1108
АВТОРСКИЙ УКАЗАТЕЛЬ	1119
ОГЛАВЛЕНИЕ	1141