Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И Лобачевского»

Отчёт по лабораторной работе № 205 «Измерение ЭДС»

Выполнили:

Студенты 2 курса, ВШОПФ

Парфенов Ярослав Кульшин Даниил **Дата допуска:** 06.09.22 г.

Дата отчета: 13.09.22 г.

Оборудование: нуль-гальванометр, источник питания, эталонная ЭДС (нормальный элемент типа НЭ-65 класса 0,005), резисторы R1 и R2, защитный резистор R3, пробный источник ЭДС.

Цель работы: измерить ЭДС с помощью вольтметра и компенсационным методом, определить, какой из методов наиболее точный, сравнить погрешности измерений.

Теоретические обоснования.

Электродвижущей силой (ЭДС) на участке цепи 1-2 называется работа сторонней силы, совершаемая при перемещении по этому участку единичного положительного заряда:

$$\varepsilon_{12} = \int_{1}^{2} E_{l}^{\text{CT}} dl \quad (1),$$

где $\overrightarrow{E^{cr}}$ — напряженность поля сторонних сил. Под действием сторонних сил может происходить разделение зарядов, из-за чего возникает электростатическое поле $\overrightarrow{E^{\kappa}}$. Работа, совершаемая кулоновской силой при перемещении единичного положительного заряда из точки 1 в точку 2, есть разность потенциалов между этими точками:

$$\varphi_1 - \varphi_2 = \int_{1}^{2} E_l^{\kappa} \, dl \, (2)$$

Так же на носители тока в проводниках действуют силы сопротивления, пропорциональные скорости упорядоченного движения зарядов. Работа этой силы, отнесенная к единичному заряду, равна произведению силы тока I на сопротивление участка цепи R_{12} . Поскольку заряды движутся равномерно, алгебраическая сумма кулоновских, сторонних и сил сопротивления равна нулю. Следовательно, на любом участке цени выполняется закон Ома:

$$IR_{12} = \varphi_1 - \varphi_2 + \varepsilon_{12}$$
 (3)

Измерение ЭДС с помощью вольтметра.

Подключим вольтметр с сопротивлением R_{v} к батарее с ЭДС ε и внутренним сопротивлением r. Тогда показания вольтметра:

Рис. 1. Измерение ЭДС при помощи вольтметра

$$U = IR_v = \frac{\varepsilon R_v}{R_v + r} \tag{4}$$

будут отличаться от ε на величину: $\varepsilon - U = Ir = \frac{\varepsilon r}{R_v + r}$ (5)

При $R_V\gg r$, относительная ошибка измерения ЭДС δE становится малой и примерно равна:

$$\delta \varepsilon \approx \frac{r}{R_v}$$
 (6)

Но при использовании более точных вольтметров такое измерение дает заметную ошибку. Чтобы получить более точные измерения, воспользуемся методом компенсации.

Измерение ЭДС методом компенсации.

 ε_x – неизвестная ЭДС, которую мы хотим измерить, ε – ЭДС источника питания (ε > ε_x), R_2 , R_1 – сопротивления, НГ – нуль-гальванометр (прибор, который показывает с высокой точностью течет ли ток через участок цепи).

Чтобы измерить неизвестную ЭДС, необходимо, подбирая R_1 добиться обращения в ноль тока через нуль-гальванометр (I_3) при неизменной сумме:

$$R_1 + R_2 = R = const (7)$$

Чтобы найти ток через нуль-гальванометр, запишем 1-ое и 2-ое правило Кирхгофа:

$$I_1 = I_2 + I_3$$
 (8)

$$\begin{cases} \varepsilon_x = -I_3 r + I_2 R_1 \\ \varepsilon = I_2 R_1 + I_1 R_2 \end{cases} (9)$$

Выразим из первого уравнения системы в формуле (9) I_2 и подставим во второе уравнение системы, учитывая формулу (8), получим:

$$\varepsilon = \varepsilon_{x} + I_{3}(r + R_{2}) + \frac{\varepsilon_{x} + I_{3}r}{R_{1}}R_{2} \mid *R_{1}$$

 $arepsilon R_1 = arepsilon_x (R_1 + R_2) + I_3 (rR_1 + R_1R_2 + rR_2)$, учитывая формулу (7), получим:

$$I_3 = \frac{\varepsilon R_1 - \varepsilon_{\chi} R}{rR + R_1 R_2} \tag{10}$$

Из условия $I_3=0$ выражаем ϵ_x , считая, что R_{1x} – значение R_1 , при котором выполняется условие компенсации.

$$\varepsilon_{x} = \frac{R_{1x}\varepsilon}{R} \ (11)$$

Чтобы найти неизвестную нам ЭДС, подключим вместо ε_x эталонную ЭДС ε_N . Аналогично получаем условие компенсации с компенсационным значением сопротивления R_1-R_{1N} :

$$\varepsilon_N = \frac{R_{1N}\varepsilon}{R} \ (12)$$

Из уравнения (10) - (11) получаем значение неизвестной ЭДС:

$$\varepsilon_{x} = \frac{R_{1x}\varepsilon_{N}}{R_{1N}}$$
 (13)

Практическая часть.

1. В паспорте нормального элемента типа НЭ-65 указано его ЭДС при t=20°С:

$$\varepsilon_{N20} = 1,018565B$$

При проведении эксперимента температура в комнате была равна t=23°C, поэтому нам необходимо пересчитать значение эталонной ЭДС по эмпирической формуле:

$$\varepsilon_N = \varepsilon_{N20} - (40,6(t-20) + 0,95(t-20)^2)10^{-6}$$

 $\varepsilon_N = 1,018565 - (40,6*3 + 0,95*9)10^{-6} = 1,01843 \text{ B}$

2. Измерение при помощи вольтметра

$$\varepsilon_{\rm x} = (1.41 \pm 0.016) \, {\rm B}$$

3. Измерим теперь методом компенсации

Предварительно оценим R_{1N} , R_{1x} для ε =3,01 B, ε =6,00 B и R = 11111 Ом по формулам, занеся результаты в таблицу 1, чтобы обезопасить нуль-гальванометр:

$$R_{1N} = \frac{\varepsilon_N}{\varepsilon} R, R_{1x} = \frac{\varepsilon_x}{\varepsilon} R$$

ε, Β	ε_N , B	R _{1N} , Ом	R _{1x} , Ом	
3,01	1,01834	3770,3	5204,8	
6,00		1885,2	2611,1	

Таблица 1.

Рис.3

С помощью метода компенсации определим $\varepsilon_{\rm x}$, предварительно собрав схему, изображенную на рис.3. Обозначим R^{-1} – значение сопротивления, при котором стрелка нуль-гальванометра отклоняется на одно деление влево от нулевого значения при замыкании всей цепи, R^{+1} – вправо, а R^0 – стрелка находится на нулевом значении. Результаты эксперимента представлены в таблице 2.

ε, B ∖R, Oм	R_X^{+1}	R_X^0	R_X^{-1}	R_N^{+1}	R_N^0	R_N^{-1}	$\varepsilon_{\mathrm{x}},\mathrm{B}$
3,01	5090	5091	5097	3710	3725	3730	1,3919
6,00	2577	2578	2584	1883	1885	1888	1,3928

Таблица 2.

Таким образом, ЭДС методом компенсации ε_{χ} =(1,39±2*10⁻³) В, что отличается от измерений с помощью вольтметра.

Расхождения могли произойти из-за ряда причин.

1) Лабораторная работа была проведена при 23 градусов Цельсия, следовательно, ЭДС эталонной батарейки отличается от табличной.

- 2) Основной вклад в погрешность дает вольтметр, но при измерении методом компенсаций, мы его не учитываем. Также не учитывается погрешность источника тока, так как он выдает стабильное напряжение, а точное значение этого напряжения при измерении данным методом нам не важно.
- 3) При измерении ЭДС методом компенсаций основной вклад в величину погрешности дает погрешность резисторов.

Выводы.

Мы провели измерения ЭДС двумя методами:

- 1) с помощью вольтметра ε_x =(1,41±0,016) В
- 2) методом компенсаций ε_x =(1,39±2 * 10⁻³) В.