Flows in Networks: Slow Example

Daniel Kane

Department of Computer Science and Engineering University of California, San Diego

Advanced Algorithms and Complexity Data Structures and Algorithms

Learning Objectives

- Understand why the Ford-Fulkerson algorithm is sometimes slow.
- Provide an example of a potential slow execution of this algorithm.

Last Time

Ford-Fulkerson Algorithm for Maxflow:

- Runtime O(|E||f|).
- Potentially bad if |f| is large.
- Does this problem ever actually happen?

Example

Consider the following example:

Flow

Has following maxflow (|f| = 2000000):

Problem

How many iterations of Ford-Fulkerson will be required to compute a maximum flow, if it keeps choosing augmenting paths in this way?

Time

- Each step adds only one unit of flow (limited by middle edge).
- Need 2000000 total units.
- Ford-Fulkerson requires 2000000 iterations.

Time

- Each step adds only one unit of flow (limited by middle edge).
- Need 2000000 total units.
- Ford-Fulkerson requires 2000000 iterations.

Doesn't need to be this bad.

No path from S to T left

Next Time

We'll find a way to ensure that we never have this type of problem.