Students attendance:

write a program to read the attendance states for 20 students in 15 weeks.

No absents during week 9

	W0	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W14
S0	3	0	0	2	0	0	0	0	2)_ \	/	0	1	2	2
S1	0	0	0	0	0	0	0	0	1 (0)	0	0	1	0	0
S2	1	1	1	2	2	2)	0	0	0	0	0	0	0	5	4
						:	;								
							<u> </u>								
								i/					:		
S19								:	ķ						

Then display the following:

- Average absents for each student.
- The student with the maximum absents.
- The student with minimum absents.

This 2 times absents during week 5

2)

Identity matrix:

In this program you need to read a matrix from the user (assume with size 100 x 100).

The program will notify the user if the matrix is identity or not.

1	0	0	0	0
0	1	0	0	0
0	0	1	0	0
0	0	0	1	0
0	0	0	0	1

1	0	0	0	0
0	1	0	0	0
0	0	5	0	0
0	0	0	1	0
0	0	0	0	1

Identity

Not Identity

3) Rotate Game:

in this game the board (3x3) which started by unsorted numbers (1:9) the board logically divided into 4 regions

R1 → bottom-right

R2 → bottom-left

R3 → top-right

R4 → top-left

The user will select both: The region & the direction.

e.g.

R1 & Left direction

The user will repeat the steps till the puzzle becomes sorted.

Finite State Machine:

Represented either graphically or as matrix

а	b
1	0
0	2
2	1

Your program will read the matrix that represents a given finite state machine, Also you have to read a string that contains (a's & b's).

Finally your program will display (accepted in case the machine ended at the final state).

Example:

aabbbab → accepted
aabbbabaab → not accepted

5)

Club rank:

Write a program to read the rank of 20 clubs in the previous 100 years. Then display the following :

- Display the maximum rank of the club, which selected by the user.
- Display each club, which get the 1st rank.
- Display the club of the century.

6)

- Write a program to read a matrix (100 x 100) from the user.
- Ask the user to select a row.
- Ask the user to select either
 - o The right diagonal or
 - o The left diagonal.
- Then, swap the selected row with the selected diagonal

7)

Puzzle: In this game your board contains (4×4) , that include unsorted values from (1 to 15)

Set only one cell by zero (the empty cell).

Let the player select cell to move , (the selected cell should be one of the 4 cells around the empty cell)

1	5	10	15
2	9		14
13	8	11	7
12	4	3	6

1	5	10	15
2	9	11	14
13	8		7
12	4	3	6

repeat the task till, the user make the puzzle sorted.

8 –)

2 55	0	Š	255	128	128	*	
255	255	0	128	128	218		
180	180	200	255	128	128		
128	128	128	128	128	128		
255	255	0	0	0	0		
0	0	128	128	0	128		

		_			
85	85	85)	170	170	170
170	170	170	158	158	158
186	186	186	170	170	170
•••	•••				•••
•••	•••				•••
	•••				•••

Read a matrix (99×99) , then for each 3 contiguous cells, replace them to the their average values.

$$(255 + 0 + 0) / 3 \rightarrow 85$$

 $(255 + 128 + 128) / 3 \rightarrow 170$

...

9)

Write a program to read a matrix (20x20) from the user and then do the following:

- Determine the square which includes the maximum sum.
- Determine the rectangle which includes the maximum sum.

-1	-2	-3	-1	-2	
-3	-6	-2	-5	-4	
-5	90	99	-2	-5	
-2	99	99	-1	-2	
-1	99	99	-1	-2	

 -1
 -2
 -3
 -1
 -2

 -3
 -6
 -2
 -5
 -4

 -5
 90
 99
 -2
 -5

 -2
 99
 99
 -1
 -2

 -1
 99
 99
 -1
 -2

-1	-2	-3	-1	-2
-3	-6	-2	-5	-4
-5	90	99	-2	-5
-2	99	99	-1	-2
-1	99	99	-1	-2

Largest square: Largest rectangle: $[(2,1) \rightarrow (4,3)]$ $[(2,1) \rightarrow (4,2)]$ 90+99+2 99+99+1 99+99+1 99+99+1 99+99+1

10)

-1 -3

Write a program to read a matrix (20x20) from the user and then do the following:

• Display the triangle with the largest sum.

-1	-2	-3	-1	-2			
-3	-6	-2	-5	-4			
-5	90	99	-2	-5			
-2	99	99	-1	-2			
-1	99	99	-1	-2			

-1	-2	-შ	-1	-2
-3	-6	-2	-5	-4
-5	90	99	-2	-5
-2	99	99	-1	-2
-1	99	99	-1	-2

-1	-2	-3	-1	-2
-3	-6	-2	-5	-4
-5	90	99	-2	-5
-2	99	99	-1	-2
-1	99	99	-1	-2

-1 -2

-5 -4

99 -1

-2

-2

-1 -2

-3

-2

-6

90

99

99

-1	-2	-3	-1	-2
-3	-6	-2	-5	-4
-5	90	99	-2	-5
-2	99	99	-1	-2
-1	99	99	-1	-2

-2	-3	-1	-2	
-6	-2	-5	-4	

-2

-2

99 -2

99

99 -1

90

-2 99 -1 99

-1	-2	-3	-1	-2
-3	-6	-2	-5	-4
-5	90	99	-2	-5
-2	99	99	-1	-2
-1	99	99	-1	-2

99

-1	-2	-3	-1	-2
-3	-6	-2	-5	-4
-5	90	99	-2	-5
-2	99	99	-1	-2
-1	99	99	-1	-2

-1	-2	ფ	-1	-2
-3	-6	-2	-5	-4
-5	90	99	-2	-5
-2	99	99	-1	-2
-1	99	99	-1	-2

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

••••••••

11)

- (2) Write a program to do the followings:
 - Read a matrix (100x200) of values from the user.
 - · Make the user to select a value.
 - If there are exactly 2 occurrences of this value in the matrix do the following:
 - Find the summation of all numbers in the rectangle that surrounded by the selected value.

TARGET = 30

11	-3	20	18	20	80	50	10
10	20	30	40	50	60	70	80
90	10	1	2	3	4	5	6
1	5	10	5	15	30	5	15
1	2	2	2	3	21	74	1

Summation = [30+40+50+60+1+2+3+4+10+5+15+30]