نظم استرجاع المعلومات **Information Retrieval System** مقدمة Introduction Afaf Al shalaby, PH.D

مخطط العرض PLAN

- الهدف من مقرر نظم استرجاع المعلومات (IR) Information Retrieval System
 - تطبيقات نظم استرجاع المعلومات
 - ما هي نظم استرجاع المعلومات؟
 - تنظيم المقرر الدراسي Course Organization
 - خارطة الطريق لليوم Today's Roadmap
 - التحديات Challenges

الهدف من المقرر Goals

- تعلم المبادئ الأساسية في نظم استرجاع المعلومات.
- التعرف على الأدوات المستعملة لبناء نظم استرجاع معلومات من خلال جلسات العملي

الهدف من المقرر

Search Engines changed the world!

الهدف من المقرر

- تتيح لنا محركات البحث، البحث عن المعلومات بشكل آلي.
 - سرعة في البحث
 - جودة في المصادر
 - تخفيض الكلفة في البحث
 - إتاحة الوصول لمعلومات كبيرة جدا

الهدف من المقرر

Search Engines changed the world!

IR is the field that changed the world!

• نظم استرجاع المعلومات هي التقنية أو العلم ما وراء محركات البحث

مخطط العرض PLAN

- الهدف من المقرر
- تطبيقات نظم استرجاع المعلومات
- ما هي نظم استرجاع المعلومات؟
- تنظيم المقرر الدراسي Course Organization
 - خارطة الطريق لليوم Today's Roadmap
 - التحديات Challenges

تطبيقات نظم استرجاع المعلومات

• ما هي IRS؟

- ما هي تطبيقات نظم استرجاع المعلومات الموجودة في حياتنا اليومية؟
- استرجاع المعلومات هو ليس فقط جوجل

IR is **NOT** just the search box!

• ليس مجرد البحث النصي في غوغل.

:microblog search: •

- البحث في المدونات الصغيرة
- كالبحث في وسائل التواصل الاجتماعي

- Text :classification
- التصنيف الآلي للنصوص

- :Expert Search •
- البحث عن أشخاص (ليس وثائق) خبراء في مجال معين وفي مجتمع معين وبثقه عالية

• Speech Search: البحث عن مقاطع صوتية وليس نصوص

• Conversational: الإجابة الآلية عن Search: المستخدم في نظم التحاور الآلي

Recommendation •

: التوصيات سواء التتبع للأشخاص أو التوصيات ببعض المنتجات

Stuff on Search Results Page!

Information

مخطط العرض PLAN

- الهدف من المقرر
- تطبيقات نظم استرجاع المعلومات
- ما هي نظم استرجاع المعلومات؟
- تنظيم المقرر الدراسي Course Organization
 - خارطة الطريق لليوم Today's Roadmap
 - التحديات Challenges

ما هي نظم استرجاع المعلومات؟

• هي التقنية أو العلم الذي يربط الناس بالمعلومات

IR is about technology to connect people to information

ما هي نظم استرجاع المعلومات؟

مخطط العرض PLAN

- الهدف من المقرر
- تطبيقات نظم استرجاع المعلومات
- ما هي نظم استرجاع المعلومات؟
- تنظيم المقرر الدراسي Course Organization
 - خارطة الطريق لليوم Today's Roadmap
 - التحديات Challenges

تنظيم المقرر الدراسي Course Organization

- Duration & Daily Schedule
 - 3 "intensive" months!
 - Every Sunday from today (Sunday October 14th) to Sunday January 15th

Time	Activity
On Sunday 8:00 am-9:30 am	Lecture Part 1
On Sunday 11:00 am-12:30 pm	Lecture Part 1
On Sunday 9:30 am-11:00 am	Practical Session

المصادر Resources

- Lecture slides
- Readings
 - Introduction to Information Retrieval, by C. Manning, P. Raghavan, and H. Schütze, 2008.
 - Search Engines: Information Retrieval in Practice, by W. Bruce Croft, D. Metzler, and T. Strohman, 2010.
 - An introduction to Neural Information Retrieval, by Bhaskar Mitra and Nick Craswell, 2018.
 - Pretrained Transformers for Text Ranking: BERT and Beyond, by Jimmy Lin, Rodrigo Nogueira, and Andrew Yates, 2020.
- Lab notebooks

المتطلبات المسبقة Prerequisites

- No prior knowledge of IR is required.
- At least, undergrad-level courses
 - Programming (Python)
 - Data structures or Algorithms
 - Basic Probability theory
 - Basic Linear algebra

مخطط العرض PLAN

- الهدف من المقرر
- تطبيقات نظم استرجاع المعلومات
- ما هي نظم استرجاع المعلومات؟
- تنظيم المقرر الدراسي Course Organization
 - خارطة الطريق لليوم Today's Roadmap
 - التحديات Challenges

خارطة الطريق لليوم Today's Roadmap

- Introduction to IR
- How IR "sees" documents?
- Boolean retrieval

Introduction to IR

IR, basic form

Two main issues in IR

About 293,000,000 results (0.79 seconds)

- جودة البحث وهي مقدار جودة النتائج المعادة (هل هي ذات صلة) Effectiveness
 - need to find relevant documents
 - needle in a haystack
 - very different from relational DBs (SQL)
- سرعة البحث أو سرعة استجابة محرك البحث وسرعة الرد Efficiency
 - need to find them quickly
 - vast quantities of data (10's billions pages)
 - thousands queries per second (Google, ~40,000)
 - data constantly changes, need to keep up

الوثائق Documents

- Document = the element to be retrieved
 - Unstructured nature عادة تكون غير مهيكلة
 - Unique ID لها رقم فريد
 - عددها كبير وتدعى مدونة أو مجموعة N documents --> Collection
- web-pages, emails, book, page, sentence, tweets
- photos, videos, musical pieces, code
- answers to questions
- product descriptions, advertisements
- people

الاستعلامات Queries

- لدى المستخدم مهمة يريد البحث عنها نعبر عنها ب حاجة المعلومات وهي موجودة داخل عقل المستخدم، أعبر عن هذه الحاجة داخل صندوق البحث باستعلام
 - الاستعلام ليس هو Information need وإنما هي تمثيل لحاجة المعلومات
- Free text to express user's information need
- Same information need can be described by different queries مثلاً للبحث عن الخصوصية في تطبيقات الدردشة
 - Are chatting Apps secure? هل تطبيقات الدردشة آمنة
 - Live chat protection حماية الدردشة الحية
 - Breaches in online chat الخروقات في الدردشة عبر الانترنت
- Same query can represent different information needs
 - Apple
 - Jaguar

Queries - different forms

• هناك العديد من الأشكال لكتابة الاستعلام:

- Web search e.g.: keywords, narrative ...
- Image search e.g. keywords, sample image
- QA e.g. question
- Music search e.g. humming a tune
- Filtering/recommendation e.g. user's interest/history
- Scholar search e.g. structured (author, title ..)
- Advanced search
 - #wsyn(0.9 #field (title, #phrase (homer, simpson)) 0.7 #and (#> (pagerank, 3), #ow3 (homer, simpson)) 0.4 #passage (homer, simpson, dan, castellaneta))

الموائمة Relevance

- في المستوى التجريدي، مهمة محركات البحث إعادة نتائج (وثائق) توافق استعلام معطى:
- does item d match query q? ... or ...
- is item d relevant to query q?
- Relevance is a tricky notion
 - will the user like it / click on it?
 - will it help the user achieve a task? (satisfy information need)
 - is it novel (not redundant)?
- Relevance and similarity يتحول موضوع الموائمة إلى قياس درجة التشابه
 - i.e. d,q share similar "meaning" بين الوثيقة والاستعلام
 - about the same topic / subject / issue التشابه بالموضوع

Information Need/Query/Relevance

- Information need
 - Topic about which the user desires to know more
 - In the user's mind!
- Query
 - What the user conveys to the computer
 - Considered one representation of the information need
- Relevance
 - Document having a value with respect to the information need
 - i.e., a document is relevant if it satisfies the information need

A central problem in search

What is the challenge in relevance?

- No clear semantics!
 - "William Shakespeare"
 - Author history's? list of plays? a play by him?
- Inherent ambiguity of language!
 - polysemy: "Apple", "Jaguar"
- Relevance is highly subjective!
 - Rel: yes/no, Rel: perfect/excellent/good/fair/bad

Information Retrieval (IR) is ...

Finding material (usually documents) of an unstructured nature (usually text) that satisfies an information need from within large collections

IR vs DB vs NLP vs ML

IR == DB?

IR is NOT "DB"

	DB	IR
What we're retrieving	Structured data. Clear semantics based on a formal model.	Mostly unstructured. Free text with some metadata.
Queries we're posing	Formally-defined (relational algebra, SQL). Unambiguous.	Free text ("natural language"), Boolean
Results we get	Exact (always "correct")	Imprecise (need to measure effectiveness)
Interaction with system	One-shot queries	Interaction is important

IR vs DB vs NLP vs ML

IR == NLP?

IR is NOT "NLP"!

معالجة اللغات الطبيعية (NLP)

استرجاع المعلومات (IR)

"IR makes NLP useful. NLP makes IR interesting."
- Jimmy Lin

IR vs DB vs NLP vs ML

IR == ML?

AI

خارطة الطريق لليوم Today's Roadmap

- Introduction to IR
- How IR "sees" documents?
- Boolean retrieval

How IR "sees" documents?

Bag-of-Words trick

- Can you guess what this is about:
 - per is salary hour £5,594 Neymar's
 - Neymar's salary per hour is £5,594
 - obesity French is of full cause and fat fries
 - French fries is full of fat and cause obesity
- Main idea: Re-ordering doesn't destroy the topic
 - individual words are "building blocks"
 - "bag" of words: a "composition" of "meanings"

Simplest: Bag-of-Words trick

- Most search engines use BOW
 - treat documents and queries as bags of words
- A "bag" is a set with repetitions
 - match = "degree of overlap" between d, q
- Retrieval models
 - statistical models (functions): usually use words as features
 - decide which documents most likely to be relevant
- BOW makes these models tractable (and also effective!) دقة في البحث (وسرعة)

Retrieval Models

BOOLEAN RETRIVAL

What's the Simplest IR System?

- Given a collection of documents and a "free text" query
- How can we get some search results in a simple way?
- grep-like: a "sequential scan"
- Simple but ...
 - very inefficient
- Is it effective?

How can we make it more effective AND efficient?

The goal is

جعل طريقة البحث أكثر فاعلية more effective وأكثر سرعة more efficient

Boolean Retrieval Model

- يهمنا في النموذج طريقة تمثيل الاستعلام والوثائق
 - الاستعلام يكتب كتعبير بولياني
 - الوثائق تمثل بمجموعة من BOW
- Queries: Users express queries as a Boolean expression
 - AND, OR, NOT
 - Can be arbitrarily nested
 - Ex. query: information AND retrieval AND NOT technology
- Documents: Views each document as a "bag" of words
- Return only documents that satisfy the Boolean query.

Exercise

- Build a Term-Document Incidence Matrix
 - Which term appears in which document
 - Rows are terms
 - Columns are documents
- Given example collection:
 - d1: He likes to play, he likes to eat
 - d2: He likes to eat, and eat, and eat
 - d3: The thing he likes to eat is apple
 - d4: The apple he likes to eat is red
 - d5: He likes to play, and eat red apple

	d1	d2	d3	d4	d5
he	1	1	1	1	1
likes	1	1	1	1	1
to	1	1	1	1	1
play	1	0	0	0	1
eat	1	1	1	1	1
and	0	1	0	0	1
the	0	0	1	1	0
thing	0	0	1	0	0
is	0	0	1	1	0
apple	0	0	1	1	1
red	0	0	0	1	1

Term-Document Incidence Matrix

Documents

	d1	d2	d3	d4	d5
he	1	1	1	1	1
likes	1	1	1	1	1
to	1	1	1	1	1
play	1	0	0	0	1
eat	1	1	1	1	1
and	0	1	0	0	1
the	0	0	1	1	0
thing	0	0	1	0	0
is	0	0	1	1	0
apple	0	0	1	1	1
red	0	0	0	1	1

TERMS

1 if document contains term, 0 otherwise

_

Term-Document Incidence Matrix

	d1	d2	d3	d4	d5	
he	1	1	1	1	1	
likes	1	1	1	1	1	
to	1	1	1	1	1	
play	1	0	0	0	1	
eat	1		1	1	1	
and	0	1	0	0	1	
the	0	0	1	1	0	
thing	0	0	1	0	0	
is	0	0	1	1	0	
apple	0	0	1	1	1	
red	0	0	0	1	1	

Query: play AND eat AND NOT apple

Apply on rows: 10001 AND 11111 AND !(00111) = 10000

Boolean Retrieval Model

- Any given query divides the collection into two sets:
 - retrieved (matching)
 - not-retrieved (not matching)
- Returns a set of documents that "exactly" satisfy the query (Boolean expression)
 - Called "Exact-Match" retrieval
- Used?
 - Many search systems still in-use are Boolean
 - e.g., Email, library catalog, Mac OS X Spotlight, legal search

Google?

Advanced Search

Find pages with		To do this in the search box.
all these words:		Type the important words: tri-colour rat terrier
this exact word or phrase:		Put exact words in quotes: "rat terrier"
any of these words:		Type OR between all the words you want: miniature OR standard
none of these words:		Put a minus sign just before words that you don't want: -rodent, -"Jack Russell"
numbers ranging from:	to	Put two full stops between the numbers and add a unit of measurement: 1035 kg, £300£500, 20102011

Bigger Collections

- Consider N = 1 million documents, each with about 1000 words. عدد كبير من الوثائق
- Say there are M = 500K distinct terms among these. في كل وثيقة عدد كبير من المصطلحات المميزة
- 500K x 1M matrix has half-a-trillion 0's and 1's. عدد كبير جدا من الأصفار والواحدات
- But it has no more than one billion 1's. عدد قليل من الواحدات
- matrix is extremely sparse. المصفوفة ستكون مبعثرة

What's a better representation?

Will Term-Doc Incidence Matrix "works" for large collections?

If not, how can we make retrieval efficient?

How documents are preprocessed?

Is "Car" == "Cars"?

Thank you for Attention Afaf Al Shalaby, Ph.D.

