

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/039,316	10/19/2001	Kenji Yoshino	450100-03548	6887
20999	7590	02/03/2005	EXAMINER	
FROMMER LAWRENCE & HAUG 745 FIFTH AVENUE- 10TH FL. NEW YORK, NY 10151			MANOSKEY, JOSEPH D	
		ART UNIT	PAPER NUMBER	
		2113		

DATE MAILED: 02/03/2005

Please find below and/or attached an Office communication concerning this application or proceeding.

Office Action Summary	Application No.	Applicant(s)
	10/039,316	YOSHINO ET AL.
	Examiner Joseph Manoskey	Art Unit 2113

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --

Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
 - If the period for reply specified above is less than thirty (30) days, a reply within the statutory minimum of thirty (30) days will be considered timely.
 - If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
 - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133).
- Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

- 1) Responsive to communication(s) filed on 22 November 2004.
- 2a) This action is FINAL. 2b) This action is non-final.
- 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

- 4) Claim(s) 1-25 is/are pending in the application.
- 4a) Of the above claim(s) _____ is/are withdrawn from consideration.
- 5) Claim(s) _____ is/are allowed.
- 6) Claim(s) 1-25 is/are rejected.
- 7) Claim(s) _____ is/are objected to.
- 8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

- 9) The specification is objected to by the Examiner.
- 10) The drawing(s) filed on 19 October 2001 is/are: a) accepted or b) objected to by the Examiner.
Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).
- 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

- 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).
- a) All b) Some * c) None of:
 1. Certified copies of the priority documents have been received.
 2. Certified copies of the priority documents have been received in Application No. _____.
 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

- | | |
|---|---|
| 1) <input type="checkbox"/> Notice of References Cited (PTO-892) | 4) <input type="checkbox"/> Interview Summary (PTO-413) |
| 2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948) | Paper No(s)/Mail Date. _____ |
| 3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO-1449 or PTO/SB/08)
Paper No(s)/Mail Date _____. | 5) <input type="checkbox"/> Notice of Informal Patent Application (PTO-152) |
| | 6) <input type="checkbox"/> Other: _____. |

DETAILED ACTION

Claim Rejections - 35 USC § 102

1. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless –

(b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.

2. Claims 1-3, 6-8, 11-14, 17-19, and 22-25 are rejected under 35 U.S.C. 102(b) as being anticipated by Frederickson et al., U.S. Patent 5,805,799, hereinafter referred to as "Frederickson".
3. Referring to claims 1, 12, and 24, Frederickson teaches a storage system, interpreted as an information recording device, which stores actual data in an actual data part and ECC bytes tagged on to the end, this is interpreted as redundant data stored in a redundant part (See Fig. 1-3). Frederickson discloses the information recording device comprising a memory interface unit for accessing the data storage means and a microcontroller for controlling the memory interface unit (See Fig. 1). Frederickson also teaches the memory interface unit having a data integrity block encoder, interpreted as a cryptosystem unit (See Fig. 1). Frederickson discloses the DIB encoder processing an LBA that is associated with the data and generating a cross-

check redundancy is appended to the data, this is interpreted as an integrity check value generated based on the data and stored in the redundant part (See Fig. 3 and Col. 2, lines 53-67).

4. Referring to claims 2 and 13, Frederickson discloses the information recording device consisting of a plurality of blocks and a plurality of sectors that are 512 bytes long, which is a predetermined data capacity (See Fig. 3). The sector provides both an actual data part and a redundant part (See Fig. 3). Finally the DIB encoder, "cryptosystem unit", generates the cross-check redundancy, integrity check value, and appends it to the sector in the redundant part (See Fig. 3 and Col. 2, lines 53-67).

5. Referring to claims 3 and 14, Frederickson teaches the memory interface unit processing in which, in the redundant data part the cross-check value, integrity check value, and ECC bytes are stored in the redundant part, and actual data is stored in the actual data part (See Fig. 3).

6. Referring to claims 6,17, and 25, Frederickson teaches a storage system, interpreted as an information playback device, which stores actual data in an actual data part and ECC bytes tagged on to the end, this is interpreted as redundant data stored in a redundant part (See Fig. 1-3). Frederickson discloses the information playback device comprising a memory interface unit for accessing the data storage means and a microcontroller for controlling the memory interface unit (See Fig. 1).

Frederickson also teaches the memory interface unit having a data integrity block encoder, interpreted as a cryptosystem unit (See Fig. 1). Frederickson discloses the DIB encoder processing an LBA that is associated with the data and generating a cross-check redundancy is appended to the data, this is interpreted as an integrity check value generated based on the data and stored in the redundant part (See Fig. 3 and Col. 2, lines 53-67). This is done to later enable LBA verification, which is interpreted as collating a generated integrity check value with the stored version (See Fig. 2 and Col. 2, lines 62-67).

7. Referring to claims 7 and 18, Frederickson discloses the information playback device consisting of a plurality of blocks and a plurality of sectors that are 512 bytes long, which is a predetermined data capacity (See Fig. 3). The sector provides both an actual data part and a redundant part (See Fig. 3). Finally the DIB encoder, “cryptosystem unit”, generates the cross-check redundancy, integrity check value, and appends it to the sector in the redundant part (See Fig. 3 and Col. 2, lines 53-67). This is done to later enable LBA, data integrity, verification, which is interpreted as collating a generated integrity check value with the stored version (See Fig. 2 and Col. 2, lines 62-67).

8. Referring to claims 8 and 19, Frederickson teaches performing LBA, data integrity, verification (See Fig. 2 and Col. 2, lines 62-67) and error correction using ECC (See Fig. 2 and Col. 2, lines 10-13).

9. Referring to claims 11 and 22, Frederickson discloses the DIB encoder, "cryptosystem unit", generating the cross-check redundancy, integrity check value, and appends it to the sector in the redundant part (See Fig. 3 and Col. 2, lines 53-67). This is done to later enable LBA, data integrity, verification, which is interpreted as collating a generated integrity check value with the stored version (See Fig. 2 and Col. 2, lines 62-67). Frederickson also teaches having a DIB error reported and determining an unrecoverable error, this interpreted as a read-success flag being set to indicate a failure and a data-reading command being cancelled (See Col. 9, lines 26-33).

10. Referring to claim 23, Frederickson discloses the information recording device consisting of a plurality of blocks and a plurality of sectors that are 512 bytes long, which is a predetermined data capacity (See Fig. 3). The sector provides both an actual data part and a redundant part (See Fig. 3). Finally the DIB encoder, "cryptosystem unit", generates the cross-check redundancy, integrity check value, and appends it to the sector in the redundant part (See Fig. 3 and Col. 2, lines 53-67).

Claim Rejections - 35 USC § 103

11. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negated by the manner in which the invention was made.

12. Claim 4, 5, 9, 10, 15, 16, 20, and 21 are rejected under 35 U.S.C. 103(a) as being unpatentable over Fredrickson, in view of Hogan, U.S. Patent 6,252,961.

13. Referring to claims 4 and 15, Frederickson teaches all the limitations (See rejection of claim 1), including discloses the information recording device consisting of a plurality of blocks and a plurality of sectors that are 512 bytes long, which is a predetermined data capacity (See Fig. 3). Frederickson also discloses the sector providing both an actual data part and a redundant part (See Fig. 3). Frederickson does not teach header information corresponding to the data which contains a flag to indicate the presence of the integrity check value in the redundant part of the sectors. Hogan discloses the use of a header in a data encryption and error code correction system that contains an encryption key, which is interpreted as a flag that indicates the use of encryption (See Col. 5, lines 17-18). It would be obvious to one of ordinary skill in the art at the time of the invention to combine the header with a flag of Hogan with the information recording device of Frederickson. This would be obvious to one of ordinary skill in the art at the time of the invention to do because the header provides information relating to copy protection (See Hogan, Col. 5, lines 17-18).

14. Referring to claims 5 and 16, Frederickson discloses all the limitations (See rejection of claim 1), including generating the cross-check redundancy, integrity check value, and appends it to the sector in the redundant part (See Fig. 3 and Col. 2, lines

53-67). Frederickson does not teach having header information that includes an integrity check value generating key. Hogan discloses the use of a header in a data encryption and error code correction system that contains an encryption key, which is interpreted as an integrity check value generating key. (See Col. 5, lines 17-18). It would be obvious to one of ordinary skill in the art at the time of the invention to combine the header with a key of Hogan with the information recording device of Frederickson. This would be obvious to one of ordinary skill in the art at the time of the invention to do because the header provides information relating to copy protection (See Hogan, Col. 5, lines 17-18).

15. Referring to claims 9 and 20, Frederickson teaches all the limitations (See rejection of claim 6), including discloses the information playback device consisting of a plurality of blocks and a plurality of sectors that are 512 bytes long, which is a predetermined data capacity (See Fig. 3). Frederickson also discloses the sector providing both an actual data part and a redundant part (See Fig. 3). Frederickson does not teach header information corresponding to the data which contains a information to indicate the presence of the integrity check value in the redundant part of the sectors and only performing the verification if the header information indicates the presence of the integrity check value. Hogan discloses the use of a header in a data encryption and error code correction system that contains an encryption key, which is interpreted as a header information that indicates the use of encryption, thus causes the collating between the stored and generated integrity check values (See Col. 5, lines 17-18). It

would be obvious to one of ordinary skill in the art at the time of the invention to combine the header with a flag of Hogan with the information recording device of Frederickson. This would be obvious to one of ordinary skill in the art at the time of the invention to do because the header provides information relating to copy protection (See Hogan, Col. 5, lines 17-18).

16. Referring to claims 10 and 21, Frederickson discloses all the limitations (See rejection of claim 6), including generating the cross-check redundancy, integrity check value, and appends it to the sector in the redundant part (See Fig. 3 and Col. 2, lines 53-67). Frederickson does not teach having header information that includes an integrity check value generating value being accessed by cryptosystem for generating and collating with the stored value. Hogan discloses the use of a header in a data encryption and error code correction system that contains an encryption key, which is interpreted as a header information that indicates the use of encryption, thus causes the collating between the stored and generated integrity check values. (See Col. 5, lines 17-18). It would be obvious to one of ordinary skill in the art at the time of the invention to combine the header with a key of Hogan with the information recording device of Frederickson. This would be obvious to one of ordinary skill in the art at the time of the invention to do because the header provides information relating to copy protection (See Hogan, Col. 5, lines 17-18).

Response to Arguments

Art Unit: 2113

17. Applicant's arguments, see page 15 of amendment, filed 22 November 2004, with respect to claims 24 and 25 have been fully considered and are persuasive. The 35 U.S.C. 101 rejection of claims 24 and 25 has been withdrawn.

18. Applicant's arguments, see pages 15-17 of amendment filed 22 November 2004, with respect to the 35 U.S.C. 102(b) and 35 U.S.C. 103(a) rejection of claims 1-25 have been fully considered but they are not persuasive.

Applicant argues that Fredrickson does not teach the limitation "said cryptosystem unit executes processing in which an integrity check value based on actual data to be stored in the actual data part is generated in response to a data-writing command from said control unit to said data storage means." The examiner respectfully disagrees. Frederickson discloses the DIB encoder processing an LBA that is associated with the data and generating a cross-check redundancy is appended to the data, this is interpreted as an integrity check value generated based on the data and stored in the redundant part (See Fig. 3 and Col. 2, lines 53-67). See above rejection.

Conclusion

19. **THIS ACTION IS MADE FINAL.** Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not

mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the mailing date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Joseph Manoskey whose telephone number is (571) 272-3648. The examiner can normally be reached on Mon.-Fri. (7:30am to 4pm).

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Robert Beausoliel can be reached on (571) 272-3645. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

JDM
January 27, 2005

SCOTT BADERMAN
PRIMARY EXAMINER