

Celebrating the Establishment in Year 2024

Lecture 3: Word Embedding

CS6493 Natural Language Processing

Instructor: Linqi Song

Outline

- 1. Word embedding definition and principles
- 2. Embedding methods word2vec
 - Continuous bag-of-words
 - Skip-gram
- 3. Improve training efficiency
 - Negative sampling
 - Hierarchical softmax
- 4. Other word embedding methods
 - GloVe
- 5. Contextualized word embeddings (ELMo)

Meaning of words in human languages

Definition from Webster dictionary:

- the thing one intends to convey especially by language
- the thing that is conveyed by language

Linguistic way of thinking of meaning:

WordNet: synonyms and hypernyms

Common NLP solutions: by lists of synonym sets and hypernyms

e.g., WordNet - a lexical database of semantic relations between words in more than 200

into a whole)

languages

'red' is the hypernym of 'scarlet', 'vermilion', and 'crimson'

SCARLET VERMILION CRIMSON

Problems with resources like WordNet

- Missing nuance
 - Is "proficient" always a synonym of "good"?
- Impossible to keep up-to-date
 - Example: ninja (a person skilled in the Japanese art of ninjutsu), bombest (a word to describe something that is amazing), nifty (particularly good, skillful, or effective)
- Subjective
- Human labor for creation and adaptation
- Cannot compute accurate word similarity

One-hot vector: discrete symbols

- A localist representation
- One-hot vectors
 - one 1, the rest 0s

```
hotel = [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
motel = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
```

Vector diemension = number of words in vocabulary

Problems with discrete symbol representation

Consider the consine similarity of the "hotel, motel" examples

There's no natural notation for one-hot vectors!

Solution

Learn to encode similarity in the vectors themselves.

Distributional hypothesis

Distributional hypothesis (1)

- Words that occur in similar contexts tend to have similar meanings
- Proposed by J. R. Firth in 1957
- "You shall know a word by the company it keeps."
- One of the most successful ideas of modern statistical NLP

John Rupert Firth

Distributional hypothesis (2)

- When a word w appears in a text, its context is the set of words that appear nearby (with a fixed-size window)
- Use many contexts of w to build up a representation of w
- In the example, the context words will represent banking

Example: context words represent banking

... government debt problems turning into **banking** crises as happened in 2009...

...saying that Europe needs unified **banking** regulation to replace the hodgepodge...

...India has just given its **banking** system a shot in the arm...

Inspired by distributional hypothesis

- Latent Semantic Analysis representation
 - (Deerwester et al, 1990): co-occurrence counting + SVD
- Collobert & Weston vectors first neural pretrained word embedding
 - (Collobert et al, 2008: A unified architecture for natural language processing) based on joint probability of target and context words, word embedding to support multiple downstream tasks
- Word2vec learn good vector presentations for words/phrases
 - (Mikolov et al, 2013 two papers: Distributed representations of sentences and documents, Efficient estimation of word representations in vector space) word2vec, negative sampling and hierarchical softmax
- GloVe global statistics (LSA) + local contexts (word2vec)
 - (Pennington et al., 2014: GloVe: Global Vectors for Word Representation): co-occurrence matrix to
 capture global statistics and local contexts training

Word embeddings - goal

- Build a dense vector for each word
- A word vector should be similar to vectors of words that appear in similar contexts
- Word embeddings also called word vectors or (neural) word representation
- A distributed representation

Word2vec examples

Word2vec

Word2vec (Mikolov et al. 2013) is a framework for learning word vectors.

Idea:

- Input: Given a large corpus of text (e.g., a bunch of sentences or documents)
- Output: Every word in a fixed vocabulary is represented by a vector
- Go through each position t in the text, which has a target word (or center word) w_t and several context words w_c
- Use the similarity of the word vectors for w_t and w_c
 - \circ Skip-gram: to calculate the probability of context words w_c given the target word w_t
 - \circ Continuous bag of words (CBOW): to calculate the probability of target word w_t given context words w_c
- Keep adjusting the word vectors to maximize the probability

Skip-gram vs CBOW (1)

INPUT **PROJECTION** OUTPUT w(t-2) w(t-1)SUM w(t)w(t+1)w(t+2)

CBOW model

Skip-gram vs CBOW (2)

Skip-gram network structure

CBOW network structure

Skip-gram (1)

Computing P(context words | "into")

Skip-gram (2)

Computing P(context words | "banking")

Skip-gram's optimization problem

For each position t = 1, ..., T, predict context words within a window of fixed size m, given center word w_i . Data likelihood:

Likelihood =
$$L(\theta) = \prod_{t=1}^{T} \prod_{-m \le j \le m} P(w_{t+j} \mid w_t; \theta)$$
 θ is all variables to be optimized sometimes called a cost or loss function

The objective function $J(\theta)$ is the (average) negative log likelihood:

$$J(\theta) = -\frac{1}{T} \log L(\theta) = -\frac{1}{T} \sum_{t=1}^{T} \sum_{\substack{-m \le j \le m \\ j \ne 0}} \log P(w_{t+j} \mid w_t; \theta)$$

Minimizing objective function

⇔ Maximizing predictive accuracy

Network structure of skip-gram (1)

- Input X as one-hot encoding
- V: size of vocabulary
- N: number of hidden
 layers in h
- The number of nodes in each output layer S = V.

Network structure of skip-gram (2)

Hidden layer weight matrix = word vector lookup

$$h = x^T W = W_{(k,.)} := v_{w_I}$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 17 & 24 & 1 \\ 23 & 5 & 7 \\ 4 & 6 & 13 \\ 10 & 12 & 19 \\ 11 & 18 & 25 \end{bmatrix} = \begin{bmatrix} 10 & 12 & 19 \end{bmatrix} \overset{\text{def}}{\overset{\text{def}}}{\overset{\text{def}}{\overset{\text{d}}}{\overset{\text{def}}{\overset{\text{def}}{\overset{\text{def}}{\overset{\text{def}}}{\overset{\text{def}}{\overset{\text{def}}{\overset{\text{def}}{\overset{\text{def}}{\overset{\text{def}}{\overset{\text{def}}{\overset{\text{def}}{\overset{\text{d}}}}\overset{\text{def}}{\overset{\text{def}}{\overset{\text{d}}}}}{\overset{\text{def}}{\overset{\text{def}}}{\overset{\text{def}}{\overset{\text{def$$

Network structure of skip-gram (3)

Output layer weight matrix = weighted sum as final score

Softmax output as co-occurence probability

$$P(w_O|w_I) = \frac{\exp v_O'^T v_I}{\sum_{w \in Voc} \exp(v_w'^T v_I)}$$

We have two vectors for each word **w** in the vocabulary:

- v_w when w is a center word (row vectors of $W_{V\times N}$ matrix)
- v'_{w} when w is a context word (column vectors of $W'_{N\times V}$ matrix)
- $v_i^T v_j$ measures how likely context word *i* appears with center word *j*. Larger product = larger probability.
- exp() makes everything positive
- $\sum_{w \in Voc} \exp(v'_w^T v_I)$ normalize over the entire vocabulary to give probability distribution

Loss function for a given target word

Given a target word (w₁)

$$C(\theta) = -\log p(w_{O,1}, w_{O,2}, \cdots, w_{O,C} \mid w_I)$$

$$= -\log \prod_{c=1}^{C} \frac{\exp(s_{j_c})}{\sum_{j'=1}^{V} \exp(s_{j'})} \qquad s_j = v'_{w_j}^T \cdot h$$

$$= -\sum_{c=1}^{C} s_{j_c} + C \log \sum_{j'=1}^{V} \exp(s_{j'})$$

Backpropagation

Given a target word (w₁)

$$\begin{split} \frac{\partial C(\theta)}{\partial w_{ij}'} &= \sum_{c=1}^{C} \frac{\partial C(\theta)}{\partial s_{j_c}} \frac{\partial s_{j_c}}{\partial w_{ij}'} = \sum_{c=1}^{C} (y_{j_c} - t_{j_c}) \cdot h_i \\ \frac{\partial C(\theta)}{\partial s_{j_c}} &= y_{j_c} - \underbrace{t_{j_c}}_{\text{=1, when } w_{j_c} \text{ is within the context window}}_{\text{=0, otherwise}} \end{split}$$

$$w'_{ij}^{(t+1)} = w'_{ij}^{(t)} - \eta \cdot \sum_{c=1}^{C} (y_{j_c} - t_{j_c}) \cdot h_i$$

Backpropagation (cont.)

$$\frac{\partial C(\theta)}{\partial w_{ki}} = \frac{\partial C(\theta)}{\partial h_i} \frac{\partial h_i}{\partial w_{ki}} = \sum_{j=1}^{V} \sum_{c=1}^{C} (y_{jc} - t_{jc}) \cdot w'_{ij} \cdot x_k$$

$$\frac{\partial C(\theta)}{\partial h_i} = \sum_{j=1}^{V} \frac{\partial C(\theta)}{\partial s_j} \frac{\partial s_j}{\partial h_i} = \sum_{j=1}^{V} \sum_{c=1}^{C} (y_{jc} - t_{jc}) \cdot w'_{ij}$$

$$s_j = v'_{w_j}^T \cdot h$$

$$w_{ij}^{(t+1)} = w_{ij}^{(t)} - \eta \cdot \sum_{j=1}^{V} \sum_{c=1}^{C} (y_{j_c} - t_{j_c}) \cdot w_{ij}' \cdot x_j$$

SGD update via backpropogation

$$w'_{ij}^{(t+1)} = w'_{ij}^{(t)} - \eta \cdot \sum_{c=1}^{C} (y_{j_c} - t_{j_c}) \cdot h_i$$

$$v'_{w_j}^{(t+1)} = v'_{w_j}^{(t)} - \eta \cdot EI_j \cdot h$$

$$EI_j = \sum_{c=1}^{C} (y_{j_c} - t_{j_c})$$

$$w_{ij}^{(t+1)} = w_{ij}^{(t)} - \eta \cdot \sum_{j=1}^{V} \sum_{c=1}^{C} (y_{j_c} - t_{j_c}) \cdot w'_{ij} \cdot x_j$$

$$v_{w_I}^{(t+1)} = v_{w_I}^{(t)} - \eta \cdot EH^T$$

$$EH_i = \sum_{j=1}^{V} EI_j \cdot w'_{ij} \cdot x_j$$

$$EH_i = \sum_{j=1}^{V} EI_j \cdot w'_{ij} \cdot x_j$$

large vocabularies or large training corpora \rightarrow expensive computations

Improve the efficiency in training

Reason:

- The size of vocabulary *V* is impressively large
- Evaluation of the objective function would take O(V) time

Solution:

- Negative sampling
- Hierarchical softmax

Comparison:

- Hierarchical softmax tends to be better for infrequent words.
- Negative sampling works better for frequent words and lower dimensional vectors.

Negative sampling

- A simplified version of NCE (Noise Contrastive Estimation)
- Sample from a noise distribution $P_n(w)$
- The probabilities in $P_n(w)$ match the ordering of the frequency in the vocabulary
- Pick out k words from $P_n(w)$, training together with the center word
- Convert to (k+1) binary classification problems
- e.g., in tensorflow, the probability distribution to select samples: (decreasing in s(w))

$$P(w_i) = rac{\log(s(w_i) + 2) - \log(s(w_i) + 1)}{\log(W + 1)}$$

where s(w) is the index of word w in the dictionary according to word frequencies descendingly

Negative sampling example

- Target word w_i and context word w_i
- From $P_n(w)$, based on a certain probability distribution, pick out k words $\widetilde{w}_1, \widetilde{w}_2, ..., \widetilde{w}_k$
- Positive sample: {w_i, w_i}
- Negative samples: $\{w_i, \widetilde{w}_1\}, ..., \{w_i, \widetilde{w}_k\}$
- Then given w_i , predict the occurrence of w_i using binary classifications:
 - o w_i co-occurs with w_j : truth label 1
 - o w_i does not co-occur with any $\widetilde{w}_{k'}$ $(1 \le k' \le k)$: truth label 0

Negative sampling example (cont.)

- The prob. of correctly distinguishing a positive sample: $P(D=1|\{w_i,w_j\}) = \sigma(u_j^T v_i) = \frac{1}{1+\exp(-u_i^T v_i)}$
- The prob. of correctly distinguishing all negative samples:

$$\Pi_{k'=1}^{k} P(D=0|\{w_i, \widetilde{w}_{k'}\}) = \Pi_{k'=1}^{k} \left(1 - \sigma(u_{k'}^T v_i)\right) = \Pi_{k'=1}^{k} \sigma(-u_{k'}^T v_i) = \Pi_{k'=1}^{k} \frac{1}{1 + \exp(u_{k'}^T v_i)}$$

Maximize the probability of correctly distinguishing all the positive and negative samples:

$$\max P(D = 1 | \{w_i, w_i\}) \prod_{k'=1}^k P(D = 0 | \{w_i, \widetilde{w}_{k'}\})$$

Or the negative log likelihood (cross-entropy) loss function:

$$\min -\log \sigma(u_j^T v_i) - \log \Pi_{k'=1}^k \sigma(-u_{k'}^T v_i) = -\log \frac{1}{1 + \exp(-u_j^T v_i)} - \sum_{k'} \log \frac{1}{1 + \exp(u_{k'}^T v_i)}$$

cross-entropy in binary classification

time complexity: O(k) << O(V)

Hierarchical softmax

- Huffman tree: the binary tree with minimal external path weight
- Construct a Huffman tree, with each leaf node representing a word
- Each internal node (a cluster of similar words) of the graph (except the root and the leaves) is associated to a vector that the model is going to learn.
- The probability of a word w given a vector w_i , $P(w|w_i)$, is equal to the probability of a random walk starting at the root and ending at the leaf node corresponding to w.
- Complexity: $O(\log(V))$, corresponding to the length of the path.

Huffman tree

Fraguancy	Encoding type		
Symbol Frequency	One	Two	Three
11	000	111	000
12	001	110	001
13	100	011	010
14	101	010	011
24	01	10	10
26	11	00	11
	12 13 14 24	Frequency One 11 000 12 001 13 100 14 101 24 01	Frequency One Two 11 000 111 12 001 110 13 100 011 14 101 010 24 01 10

(a)

Construct a Huffman tree: merge two nodes with the minimum frequencies and consider them together as a single node; repeat until there is only one node.

Hierarchical softmax example (1)

- Let L(w) be the number of nodes (length+1)
 in the path from the root to the leaf w.
- n(w, i) as the i-th node on this path with associated vector $v_{n(w,i)}$.
- For each inner node n, we arbitrarily choose one of its children and call it ch(n).
- The probability can be calculated as follows:

Hierarchical softmax example (2)

$$P(w|w_i) = \prod_{i=1}^{L(w)-1} \sigma([n(w,j+1) = ch(n(w,j))] \cdot v_{n(w,j)}^T v_{w_i})$$

 compute a product of terms based on the shape of the path.

e.g., assume ch(n) is always the left node of n, then the term returns 1 when the path goes left, and -1 if right. provide normalization.

e.g., at a node n, if we sum the probabilities for going to the left and right node, you can check that for any value of $v_n^T v_{w_i}$,

$$\sigma(v_n^T v_{w_i}) + \sigma(-v_n^T v_{w_i}) = 1$$

$$\sum_{w=1}^{|V|} P(w|w_i) = 1$$

Hierarchical softmax example (3)

$$P(w|w_i) = \prod_{j=1}^{L(w)-1} \sigma([n(w,j+1) = ch(n(w,j))] \cdot v_{n(w,j)}^T v_{w_i})$$

• The dot product compares the similarity of our input vector v_{w_i} to each inner node vector $v_{n(w,i)}^T$.

Take two left edges and then a right edge to reach w_2 from the root

$$P(w_2|w_i) = p(n(w_2, 1), \text{left}) \cdot p(n(w_2, 2), \text{left}) \cdot p(n(w_2, 3), \text{right})$$

$$= \sigma(v_{n(w_2, 1)}^T v_{w_i}) \cdot \sigma(v_{n(w_2, 2)}^T v_{w_i}) \cdot \sigma(-v_{n(w_2, 3)}^T v_{w_i})$$

Hierarchical softmax example (4)

$$P(w|w_i) = \prod_{j=1}^{L(w)-1} \sigma([n(w,j+1) = ch(n(w,j))] \cdot v_{n(w,j)}^T v_{w_i})$$

- Minimize negative log likelihood $-\log P(w|w_i)$
- Update the vectors of the nodes in the binary tree that are in the path from root to leaf node
- Speed of this method is determined by the way in which the binary tree is constructed and words are assigned to leaf nodes
- Huffman tree assigns frequent words shorter paths in the tree

Use word2vec package

- Using this package is extremely simple:
 - Download the code from Mikolov's git repository: https://github.com/tmikolov/word2vec
 - Compile the package
 - Download the default corpus (wget http://mattmahoney.net/dc/text8.zip) or another corpus of your choice ∘
 - Train the model using the desired parameters
- Jupyter: code for downloading, compiling, and training

Word2vec performance – different window size

Word: walk

Window size = 3

Window size = 30

Word	Cosine distance	Word	Cosine distance
go	0.488083	walking	0.486317
snipe	0.464912	walked	0.430764
shoot	0.456677	walks	0.406772
fly	0.449722	stairs	0.401518
sit	0.449678	go	0.399274
pass	0.442459	sidewalk	0.385786
climbs	0.440931	stand	0.380480
walked	0.436502	cortege	0.371033
ride	0.434034	wheelchair	0.362877
stumble	0.426750	strapped	0.360179
bounce	0.425577	hollywood	0.356544
travelling	0.419419	carousel	0.356187
walking	0.412107	grabs	0.356007
walks	0.410949	swim	0.355027
trot	0.410418	breathe	0.354314
leaping	0.406744	tripped	0.352899
sneak	0.401918	cheer	0.352477
climb	0.399793	moving	0.350943
move	0.396715	inductees	0.347791
wait	0.394463	walkway	0.347164
going	0.391639	shout	0.346229
shouted	0.388382	pounding	0.340554
roam	0.388073	blvd	0.339121
thrown	0.384087	crowd	0.338731
get	0.383894	levada	0.334899

Word2vec performance – different No. iterations

Word: walk	No. of i	terations = 1	No. of ite	No. of iterations = 100			
	Word	Cosine distance	Word	Cosine distance			
	walking walks bat ride crowd quiet spot steal door doors bed dinner shadow luck baby shoot walked sitting shirt rides watching	0.851438 0.846485 0.843796 0.830734 0.821692 0.812538 0.802777 0.787917 0.787571 0.786485 0.773686 0.772160 0.769573 0.768221 0.767862 0.765968 0.765739 0.765739 0.7657394 0.759116 0.759047 0.759140	walked ride walks stand walking go shoot get move live fly climbs throw climb wiggle thrown pull goes moving pass conversing	0.483473 0.470925 0.470889 0.449993 0.449071 0.430172 0.421110 0.404258 0.403757 0.403347 0.400929 0.396346 0.391768 0.384038 0.384038 0.380892 0.380426 0.375478 0.375406 0.375406			
	watch gehrig shoots looking	0.750808 0.741494 0.740971 0.740904	sit crowd kiss stay	0.362765 0.361651 0.359883 0.357015			

Word2vec performance – different dimensions

Word: walk

No. of dimensions = 5

No. of dimensions = 1000

Word	Cosine distance	Word	Cosine distance
catcher	0.998074	walks	0.304954
shirt	0.996589	walked	0.303322
lechuck	0.995313	snipe	0.287221
bullseye	0.994644	walking	0.272690
bowler	0.994381	ride	0.266770
punter	0.993154	canter	0.251025
lovell	0.992815	bandleaders	0.246454
heels	0.992255	climbs	0.233725
whip	0.992085	catapulted	0.230075
outfit	0.992047	climb	0.229263
tore	0.991924	trot	0.228362
steals	0.991524	shouted	0.227306
guybrush	0.991166	stand	0.223288
gigs	0.990291	seagulls	0.221745
hanging	0.990201	fly	0.216602
burns	0.990043	fences	0.216366
backing	0.989966	lifts	0.215402
orser	0.989960	pray	0.214977
torch	0.989747	paws	0.214865
beat	0.989435	bounces	0.214449
showdown	0.989381	shoot	0.213457
feat	0.989242	grabs	0.212018
cheers	0.988951	walkway	0.211136
clad	0.988646	swim	0.209120
lunch	0.988326	tumble	0.207765

Other word embedding models – GloVe (1)

- GloVe: Global Vectors for Word Representation
 - Global statistics (LSA) + local context window (word2vec)
 - \circ Co-occurrence matrix, decreasing weighting: decay X_{ij} =1/d (distance of word pairs)

- •I like deep learning.
- •I like NLP.
- •I enjoy flying.

counts	I	like	enjoy	deep	learning	NLP	flying	ě
ì	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

Other word embedding models – GloVe (2)

Loss function

$$J = \sum_{i,j=1}^V f(X_{ij}) (w_i^T ilde{w}_j + b_i + ilde{b}_j - log(X_{ij}))^2$$

Figure 1: Weighting function f with $\alpha = 3/4$.

Visualizing word embeddings – word2vec

Visualizing word embeddings - GloVe

What we have learned so far (1)?

- Language model
 - Predict next words given a sequence of previous words
 - RNN-based language models

RNNs

• Basic RNNs, LSTMs, GRUs

Bi-directional RNNs

RNNs can be bi-directional

Stacked RNNs

- RNNs can be stacked.
- For each input, multiple representations (hidden states) can be learned.

What we have learned so far (2)?

Word embeddings

- Represent each word with a vector
- Word2vec: CBOW or skip-gram
- GloVe: global statistics (co-occurrence) + local context window

Problems with (non-contextual) embeddings

The GloVe word embedding of the word 'stick' - a vector of 200 floats (rounded to two decimals). It goes on for two hundred values.

-0.34 -0	0.84 0.20	-0.26	-0.12	0.23	1.04	-0.16	0.31	0.06	0.30	0.33	-1.17	-0.30	0.03	0.09	0.35	-0.28	-(
----------	-----------	-------	-------	------	------	-------	------	------	------	------	-------	-------	------	------	------	-------	----

What if for multi-sense words?

He sticks a stamp on the envelope.

The old lady leant on her stick as she talked.

Contextualized embeddings

ELMo: Deep contextualized word representations, AI2 & Univ. Washington, 2018

From context independent embeddings to context dependent embeddings

ELMo, what about sentences' context?

- In ELMo's design, the embedding of one word could have multiple possible answers.
- The model only gives a certain embedding for one word when this word is given in a sentence.
- For example:
 - when 'stick' is given as a word,
 ELMo may return several possible embeddings
 - when 'stick' is given in a sentence 'let's stick to improvisation in this skit', ELMo will return the embedding '-0.02, -0.16, 0.12, -0.1 ...'

High-level view: Embeddings from Language Models

ELMo gives an embedding of a word, e.g., 'stick', when inputting together with contexts

ELMo uses a bi-directional LSTM to pre-train the language model

Key features

- Replace static embeddings (lexicon lookup) with context-dependent embeddings (produced by a deep neural language model), i.e., each token's representation is a function of the entire input sentence.
- Computed by a deep multi-layer, bidirectional language model.
- Return for each token a (task-dependent) linear combination of its representation across layers.
- Different layers capture different information.

Embedding of "stick" in "Let's stick to" - Step #1

Backward Language Model

Embedding of "stick" in "Let's stick to" - Step #2

1- Concatenate hidden layers

2- Multiply each vector by a weight based on the task

3- Sum the (now weighted) vectors

Backward Language Model

ELMo architecture

- First layer: character level CNN to get context independent embeddings.
- Each layer of this language model network computes a vector representation for each token.
- Freeze the parameters of the language model.
- For each task: train task-dependent softmax weights to combine the layer-wise representations into a single vector for each token jointly with a task-specific model that uses those vectors.

When ELMo contextual representations was used in task-specific architecture, ELMo advanced the SOTA benchmarks.

- question answering (SQuAD)entailment/natural language inference (SNLI)
- semantic role labeling (SRL)— coreference resolution (Coref)
- named entity recognition (NER)– sentiment analysis (SST-5)

TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + E BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

References

Word2vec Skip gram Explained: https://thinkinfi.com/word2vec-skip-gram-explained/ word2vec Parameter Learning Explained: https://arxiv.org/pdf/1411.2738.pdf

CS224n: Natural Language Processing with Deep Learning Lecture Notes: Part I: http://web.stanford.edu/class/cs224n/readings/cs224n-2019-notes01-wordvecs1.pdf

Efficient Estimation of Word Representations in Vector Space: https://arxiv.org/pdf/1301.3781.pdf

Backpropagation: https://yuting3656.github.io/yutingblog//aiacademy/week11/nlp-word-embeddings-wrod2vec

Thanks for your attention!