Exemple relation d'équivalence (P144 des notes de cours)

Soit m un entier non nul et R la relation dans l'ensemble \mathbb{Z} tel que $R = \{(a, b) \mid a \equiv b \pmod{m}\}$

 $\forall a \in \mathbb{Z}, \quad a R a \ car a \equiv a \pmod{m}$ Réflexivité a - a = 0 et m divise 0 Soit $a \in \mathbb{Z}$ et $b \in \mathbb{Z}$, a R b**Symétrie** $a R b \rightarrow a \equiv b \pmod{m}$ $a R b \rightarrow m divise (a - b)$ $a R b \rightarrow \exists k \in \mathbb{Z}, a - b = k.m$ $a R b \rightarrow \exists k \in \mathbb{Z}, \qquad -(b-a) = k.m$ $a R b \rightarrow \exists k \in \mathbb{Z}, \qquad (b-a) = -k.m$ $a R b \rightarrow \exists t \in \mathbb{Z}, \qquad (b-a) = t.m, en posant t = -k; k \in \mathbb{Z}$ m divise (b-a) $a R b \rightarrow b \equiv a \pmod{m}$ $D'où \forall a \in A, b \in A, \quad a R b \rightarrow b R a$

Exemple relation d'équivalence (P144 des notes de cours)

Soit m un entier non nul et R la relation dans l'ensemble \mathbb{Z} tel que $R = \{(a, b) \mid a \equiv b \pmod{m}\}$

Soit $a \in \mathbb{Z}$, $b \in \mathbb{Z}$ et $c \in \mathbb{Z}$, $(a R b) \land (b R c)$ **Transitivité** $(a R b) \land (b R c) \rightarrow a \equiv b \pmod{m}$ et $b \equiv c \pmod{m}$ $(a R b) \land (b R c) \rightarrow \exists k, t \in \mathbb{Z}, a - b = k.m \ et \ b - c = t.m$ $(a R b) \land (b R c) \rightarrow \exists k, t \in \mathbb{Z}, a - b + b - c = k.m + t.m$ $(a R b) \land (b R c) \rightarrow \exists k, t \in \mathbb{Z}, a - c = (k + t).m$ $(a R b) \land (b R c) \rightarrow \exists n \in \mathbb{Z}, a - c = n.m \ avec \ n = k + t \ et \ k, t \in \mathbb{Z}$ $(a R b) \land (b R c) \rightarrow a \equiv c \pmod{m}$ m divise (a-c) $D'où \forall a \in A, b \in A, c \in A, ((a R b) \land (b R c)) \rightarrow (a R c)$

La relation R est reflexive, symétrique et transitive. Elle est donc une relation d'équivalence.

