

Class: D10 Term Test 1 Date: (2022-23)20/02/2023

Name of Subject: Computer Organisation and

Architecture

Maximum Marks:

Duration: 1 hr.

Semester: IV

1) All Questions are compulsory N.B.

2) Assume suitable data wherever necessary.

	Ansv	wer Any Five		Marks	CO	\mathbf{BL}
a)	Com	pare Computer Organization a	2M	CO 2	BL1	
	S.No	Computer Architecture	Computer Organisation			
	1.	. They explain what a computer does. They explain how a computer actually does it.				
	2.	They majorly focus on the functional behaviour of computer systems.	They majorly focus on the structural relationship and deep knowledge of the internal working of a system.			
	3.	Computer architectures deal with high- level design matters.	They deal with low-level design matters.			
	4.	4. It comes before computer organisation. It comes after the architecture part.				
	5.	It is also called instruction set architecture.	It is also called microarchitecture.			
	It covers logical functions, such as registers, data types, instruction sets, and addressing modes.		It covers physical units like peripherals, circuit designs, and adders.			
	7.	They coordinate between the hardware and software of the system.	They manage the portion of the network in a system.			
b)	(259) 25	vert the following numbers (a 86)10 = (?)16 OR (428.1 986 ₁₀ = 6582 ₁₆ 8.10 ₁₀ = 110101100.000110	10)10 = (?)2	2M	CO 1	BL 2,6
c)	Expl	ain Half Adder with diagram	2M	CO 1	BL 2	
,	• Ha	of Adder is the digital logic of the plement the binary addition.				
		A Half Adder	· S (Sum)			

Class: D10 Term Test 1
Date: (2022-23)

Name of Subject: Computer Organisation and

Architecture

Maximum Marks:

20

Duration: 1 hr.

Semester: IV

					10		
•	It adds	the two bits an	nd generates the sum bit (S) and ca	arry			
	bit (C) as an output.						
Inputs Outputs A SUM(8)							
	Α	B Sum	Carry	-0			
	0	0 0	0 0				
	0	1 1					
_	1	0 1 1 1					
_			1				
	Fig	g: Truth Table	Fig: Half adder circuit				
		S= A					
		C= A·I					
			of this circuit is that it can only a				
	-		any carry, it is neglected. The	us, the			
ľ	ocess is	incomplete.					
	overco	me this diffici	ılty Full Adder is designed.				
•	o verec	me tins diffie	ity I all riddel is designed.				
)	iscuss a	ny 4 arithme	tic instruction of 8086 with exa	mples	2M	CO 2	BI
	OPCODE	OPERAND	EXPLANATION	EXAMPLE			1,2
	ADD	D, S	D = D + S	ADD AX,			
	SUB	D, S	D = D - S	SUB AX, [SI]			
	MUL	8-bit register	AX = AL * 8-bit reg.	MUL BH			
		J	3				
	DIV	8-bit register	AX = AX / 8-bit reg. ; AL = quotient ;	DIVIDI			
		o zittogiste.	AN ANTO BILLEG. THE AUGUSTIC	DIV BL		I	l
		o zittegiste.	AH = remainder	DIVBL			
	1-:		AH = remainder	DIV BL	21/4	CO 1	DI
	-	nultiplexer ar	AH = remainder ad demultiplexer		2M	CO 1	BL
	• A mu	multiplexer ar	AH = remainder and demultiplexer mbinational circuit that has 2 ⁿ inpu		2M	CO 1	BL
	A mul	nultiplexer ar tiplexer is a co	AH = remainder and demultiplexer mbinational circuit that has 2 ⁿ inpune.	nt lines	2M	CO 1	BL
	A muland a Simple	multiplexer are tiplexer is a cosingle output liply, the multiple	AH = remainder and demultiplexer mbinational circuit that has 2 ⁿ inpune. exer is a multi-input and single-	nt lines	2M	CO 1	BL
	A muland a Simple combined	nultiplexer are tiplexer is a cosingle output lipley, the multiple transfer in ational circuit	AH = remainder and demultiplexer mbinational circuit that has 2 ⁿ inpune. exer is a multi-input and single- it.	nt lines -output	2M	CO 1	BL
	A muland a Simple combine The b	multiplexer and tiplexer is a consingle output lipley, the multiple mational circuitinary informat	AH = remainder and demultiplexer mbinational circuit that has 2 ⁿ inpune. exer is a multi-input and single- it. ion is received from the input lin	output es and	2M	CO 1	BL
	A muland a Simple combined The behaviored.	multiplexer are tiplexer is a consingle output liple multiple inational circuitinary informated to the output	AH = remainder and demultiplexer mbinational circuit that has 2 ⁿ inpune. exer is a multi-input and single- it. ion is received from the input line at line. On the basis of the values	output es and of the	2M	CO 1	BL
	A muland a Simple combined The bedirected select.	multiplexer and tiplexer is a consingle output liple y, the multiple mational circuit in ary informated to the output ion lines, one of	AH = remainder and demultiplexer mbinational circuit that has 2 ⁿ inpune. exer is a multi-input and single- it. ion is received from the input lin	output es and of the	2M	CO 1	BL

Class: D10 Term Test 1 Date: (2022-23)20/02/2023

Name of Subject: Computer Organisation and

Architecture

Maximum Marks:

20

Duration: 1 hr.

Semester: ĪΫ

Class: D10 Term Test 1
Date: (2022-23)

Name of Subject: Computer Organisation and

Architecture

Maximum Marks:

20

Duration: 1 hr.

Semester: IV

	Minimum mode	Maximum mode			
	There can be only one processor.	There can be multiple processors.			
	Performance is slower.	Performance is faster.			
	The circuit is simple.	The circuit is complex.			
	Multiprocessing cannot be performed.	Multiprocessing can be performed.			
	MN/MX is 1 to indicate the minimum mode.	MN/MX is 0 to indicate the maximum mode			
	The 8086 generates INTA for interrupt acknowledgment.	The 8288 Bus Controller generates the interrupt acknowledgment signal (INTA).			
	The 8086 generates INTA for interrupt acknowledgment.	The 8288 Bus Controller generates the interrupt acknowledgment signal (INTA).			
	The 8086 itself provides an ALE for the latch.	Because there are several processors, the 8288 bus controller provides ALE for the latch.			
	The system is more affordable.	The system costs more money.			
	It is used for small systems.	It is used for large systems.			
	The multiprocessor setup is not supported.	The multiprocessor configuration is accepted.			
Q.2	Answer Any One				
I I S	Explain SR and JK flip flop was Answer: SR flip flop is the simplest type of the stands for Set Reset flip flop. It is a clocked flip flop. SR Flip-Flop is Used as a storate following are the two methods for the storage of the stor	f flip flops. Ige device for a single data bit.	5M	CO 1	BL 1

Class: D10 Term Test 1
Date: (2022-23)

Name of Subject: Computer Organisation and

Architecture

LEA DI, a2

Maximum Marks:

20

IV

Duration: 1

hr. Semester:

	Truth	Table			
S	R	Q _N	Q _{N+1}		
0	0	0	0		
0	0	1	1	š D	
0	1	0	0		
1	0	0	1	→	
1	0	1	1	CK	
1	1	0	<u> </u>	لب المالة	
1	1	1		R)) —	
both the	inputs are	e 1. g two me	thods for	Nip flop when State O	
		Circuit	1	1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
				OR	
				function using 5M 5M	CO 1
Answe	r Any C)ne			
example	each	_		of 8086 Microprocessor with one BB, JMP, DAA 5M	CO 2
Example DF=1	sed to se	et the dire			
Example MOV AI	: ., 000110			ryte or word.	
MOVSB Example ORG 100	:	o move tl	ne byte/v	ord from one string to another.	

Duration: 1

Class: D10 Maximum Marks: Term Test 1 20

Date: (2022-23)

20/02/2023 hr. Semester: Name of Subject: Computer Organisation and IV

Architecture

Architecture	10	
MOV CX, 5		
REP MOVSB		
ICLI WIO VOD		
LEA – Used to load the address of operand into the provided register.		
1 1		
Example:		
org 100h		
LEA AX, m; $AX = offset of m$		
RET		
m dw 1234h		
END		
ROL – Used to rotate bits of byte/word towards the left, i.e. MSB to LSB		
and to Carry Flag [CF].		
Example:		
MOV AL, 1Ch; AL = 00011100b		
ROL AL, 1; AL = 00111000b, CF=0.		
RET		
SBB – Used to perform subtraction with borrow.		
Example:		
STC		
MOV AL, 5		
SBB AL, 3; AL = 5 - 3 - 1 = 1		
RET		
IVL I		
DAD. Head to improve to the provided address to proceed to the part		
JMP – Used to jump to the provided address to proceed to the next		
instruction.		
Example:		
mov ax, 5; set ax to 5.		
mov bx, 2; set bx to 2.		
jmp calc ; go to 'calc'.		
back: jmp stop ; go to 'stop'.		
calc:		
add ax, bx ; add bx to ax.		
jmp back ; go 'back'.		
stop:		
ret ; return to operating system.		
DAA – Used to adjust the decimal after the addition/subtraction operation		
Example:		
MOV AL, 0Fh; AL = 0Fh (15)		
DAA; AL = 15h		
RET		
OR		

Class: D10 Maximum Marks: Term Test 1

20 Date: (2022-23)

Duration: 1 20/02/2023 hr.

Name of Subject: Computer Organisation and Semester: IV Architecture

	Identify addressing modes of the following instructions and explain their meaning			
b)	 a. MOV AX,89C5H - Immediate addressing mode b. MOV AX,[1234] -Direct addressing mode c. MOV CL,BH - Register Addressing mode d. MOV [BX],AX - Register indirect addressing mode 	5M	CO 2	BL 1
	e. MOV AX,[SI +200] -Indexed addressing mode			

Class: D10 Term Test 1 Date: (2022-23)20/02/2023

Duration: 1

hr.

Maximum Marks:

Name of Subject: Computer Organisation and

Semester: ΙV

Architecture

N.B. 1) All Questions are compulsory

2) Assume suitable data wherever necessary.

Q.1	Answer Any Five	Marks	СО
a)	Compare Computer Organization and Computer Architecture	2M	CO 2
b)	Convert the following numbers (any one) $(25986)10 = (?)16$ OR $(428.10)10 = (?)2$	2M	CO 1
c)	Explain Half Adder with diagram	2M	CO 1
d)	Discuss any 4 arithmetic instruction of 8086 with examples	2M	CO 2
e)	Explain multiplexer and demultiplexer	2M	CO 1
f)	Difference between Minimum and Maximum mode of 8086	2M	CO 2
Q.2	Answer Any One		
a)	Explain SR and JK flip flop with Truth Table and diagrams	5M	CO 1
	OR		
b)	Minimize the following Boolean function using K-map $F(A,B,C,D) = m(0,2,8,10,14) + d(5,15)$	5M	CO 1
Q.3	Answer Any One		
a)	Explain any 5 following instruction of 8086 Microprocessor with one example each STD, NOT, MOVSB, LEA, ROL, SBB, JMP, DAA	5M	CO 2
	OR		
	Identify addressing modes of the following instructions and explain their meaning		
b)	 a. MOV AX,89C5H b. MOV AX,[1234] c. MOV CL,BH d. MOV [BX],AX e. MOV AX,[SI +200] 	5M	CO 2