

rel 1con hret= /lavicon.io

Centro Universitário Presidente Antônio Carlos Teoria de Grafos

Notações, Matriz / Lista de Adjacência e Isomorfismo Felipe Roncalli de Paula Carneiro

felipecarneiro@unipac.br

O que vamos aprender nessa aula

- Notações como representar;
- Matriz e Lista de Adjacências;
- Isomorfismo

Definição Formal

Grafo
$$G = (V, A)$$

- Conjunto V com n vértices (também chamados nós) $\{v_1, v_2, \ldots, v_n\}$
- Conjunto A com m arestas ou arcos $\{a_1, a_2, \dots, a_m\}$

Grafo não Direcionado

Como representar este Grafo utilizando a Definição Formal?

Grafo não Direcionado

Como representar este Grafo utilizando a Definição Formal?

$$G = (V,A)$$

$$V = \{v1, v2, v3, v4, v5\}$$

$$A = \{(v1, v2), (v1, v3), (v2, v4), (v2, v3), (v2, v5), (v3, v4), (v3, v5), (v4, v5)\}$$

Como o Grafo em questão é Não Direcionado o conjunto A é um conjunto de Arestas

Grafo Direcionado

Como representar este Grafo utilizando a Definição Formal?

V_1 V_2 V_3 V_4

Grafo Direcionado

Como representar este Grafo utilizando a Definição Formal?

$$G = (V,A)$$

$$V = \{v1, v2, v3, v4, v5\}$$

$$A = \{(v1, v2), (v1, v5), (v2, v4), (v3, v2), (v3, v4), (v4, v1), (v4, v3), (v5, v3)\}$$

Como o Grafo em questão é Direcionado o conjunto A é um conjunto de Arcos

Matriz de Adjacências

Matriz de Adjacências

Matriz $A_{n\times n}$, sendo que:

$$a_{ij} = \begin{cases} 1 & \text{se existe a aresta/arco} (v_i, v_j) \\ 0 & \text{caso contrário} \end{cases}$$

Propriedades:

- Simétrica para grafos não direcionados;
- Consulta existência de uma aresta/arco com um acesso à memória: O(1);

Matriz de Adjacências - Grafo Não Direcionado

Matriz de Adjacências - Grafo Não Direcionado

Matriz de Adjacências - Grafo Direcionado

Matriz de Adjacências - Grafo Direcionado

Lista de Adjacências

Lista de Adjacências

- Usa n listas, uma para cada vértice;
- Lista de v_i (o i-ésimo vértice) contém todos os vértices adjacentes a ele.

Propriedades:

- ightharpoonup Ocupa menos memória: O(m);
- No entanto, a complexidade da operação de determinar uma adjacência é limitada por O(n).

Lista de Adjacências - Grafo Não Direcionado

Lista de Adjacências

Lista de Adjacências - Grafo Direcionado

Lista de Adjacências

Exercícios - Parte 1

Determine o número de vértices para os seguintes grafos:

- a) G tem 9 arestas e todos os vértices têm grau 3;
- b) G é regular com 15 arestas;
- c) G tem 10 arestas com 2 vértices de grau 4 e todos os outros de grau 3.

Represente na Forma Padrão e monte a Matriz e Lista de Adjacências para os grafos gerados acima.

Exercícios - Parte 2

Com relação ao grafo abaixo, responda:

- a) O grafo é simples?
- b) Completo?
- c) Regular?
- d) Conexo?
- e) Encontre dois caminhos diferentes entre v3 e v6.
- f) Indique uma aresta cuja remoção tornará o grafo desconexo.
- g)Indique a representação deste grafo por listas de adjacências.

Isomorfismo

Dois grafos G e H são ditos isomorfos se existir uma correspondência um-para-um entre seus vértices e entre suas arestas, de maneira que as relações de incidência são preservadas.

Isomorfismo

Condições necessárias mas não suficientes para isomorfismo

- Mesmo número de vértices;
- Mesmo número de arestas;
- Mesmo número de componentes;
- Mesmo número de vértices com o mesmo grau.

Observação: Não existem algoritmos comprovadamente eficientes para determinar se dois grafos são isomorfos.

Exercícios - Parte 3

1) Encontre um grafo com 4 vértices que seja isomorfo a seu complemento (ou seja, auto-complementar).

2) Qual grafo é diferente dos demais?

Dúvidas??