COURSE DESCRIPTION FORM

INSTITUTION FAST - National University of Computers and Emerging

Sciences

PROGRAM (S) TO

ΒE

BS - Computer Science

EVALUATED

A. Course Description

Course Title	Design and Analysis of Algorithms					
Course Code	CS2009	Credit Hours	3 + 0			
Prerequisites by Course(s)	CS2001	Semester	Fall 2024			
Assessment Instruments (With tentative weights)	Semester Work 10% (5 assignments) Project 10% (one project) Midterm 30% (Midterm1:12.5, Midterm2: 17.5) Final 50% (Comprehensive end of semester exam)					
Current Catalog Description	Main objective of course is to un and analyze algorithms. Students use of mathematical tools for emp will be able to learn effective probl	will learn several algorithm de pirical analysis of algorithms.	esign techniques and Additionally, students			
Textbook (or Laboratory Manual for Laboratory Courses)	Thomas H. Cormen et al, Introduction to Algorithms, 4 th Edition					
Reference Material	1. Anany Levitin, Introduction to the design and analysis of algorithms, 3 rd Edition					
	A. Course Learning Outcomes CLO No. Course Learning Outcomes		Tools			
Course Goals	CLO-1 To apply acquired known computing problems of proofs CLO-2 To analyze complexiting algorithms using asymony complexity classes complexity function	es of different C4 (Cognitive)	A1, A2, A3, A4, A5, M1, M2, F A1, A2, A3, A4, A5, M1, M2, F			

CLO-3	To evaluate generic algorithmic solutions such as sorting, searching and graphs applied to real-world problems	C5 (Cognitive)	A3, A4, A5, M1, M2, F	
CLO-4	To construct and analyze real world problems solutions using different algorithms design techniques i.e. Brute Force, Divide and Conquer, Dynamic Programming, Greedy Algorithms.	C6 (Psychomotor)	Project	
Tool: A = Assignment, Q = Quiz, M = Midterm, F=Final, CEP = Complex Engineering Problem.				

B. Pro	ogram Learning	Outcomes
PLO 1	Computing Knowledge	Apply knowledge of mathematics, natural sciences, computing fundamentals, and a computing specialization to the solution of complex computing problems.
PLO 2	Problem Analysis	Identify, formulate, research literature, and analyze complex computing problems, reaching substantiated conclusions using first principles of mathematics, natural sciences, and computing sciences.
PLO 3	Design/Develo p Solutions	Design solutions for complex computing problems and design systems, components, and processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.
PLO 4	Investigation & Experimentation	Conduct investigation of complex computing problems using research-based knowledge and research-based methods
PLO 5	Modern Tool Usage	Create, select, and apply appropriate techniques, resources and modern computing tools, including prediction and modeling for complex computing problems.
PLO 6	Society Responsibility	Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal, and cultural issues relevant to context of complex computing problems.
PLO 7	Environment and Sustainability	Understand and evaluate sustainability and impact of professional computing work in the solution of complex computing problems
PLO 8	Ethics	Apply ethical principles and commit to professional ethics and responsibilities and norms of computing practice.
PLO 9	Individual and Team Work	Function effectively as an individual, and as a member or leader in diverse teams and in multi-disciplinary settings.
PLO 10	Communicatio n	Communicate effectively on complex computing activities with the computing community and with society at large.
PLO 11	Project Mgmnt and Finance	Demonstrate knowledge and understanding of management principles and economic decision making and apply these to one's own work as a member or a team.

	PLO Life Lo 12 Learni											
						ne, PLOs: Program Learning Outcomes)						
						<u> </u>	PLO	S				
		1	1	2	3	4	5	6	7	8	9	10
		1	~									
	CLOs	2		~								
	ll o	3					~					
		4									~	
	Basics of Algorithms, Mathematical Foundation, Growth of Function, asymptotic Notations. (Assignment 1 will be given at the start of week-2 and Project will be announced) Divide and Conquer, Substitution Method, Recurrence-Tree Method, Master's Method. Data Structures Review (Stack, Queue, Linked List, Hash Table, Binary Tree).				NO. O	f Weeks 2 2	6 6		(CLO-2		
Topics Covered in the Course (Tentative plan)	Sorting (Merge, Insertion, Quick, Heap, Counting, Radix, Bucket) (Assignment 2 will be given)				неар,		0.5	4			010100	
· ,	Mid-I Examination Geometric Algorithms (Introduction, Graham Scan, Close Points). String Matching				duction, String		2	6			CLO-1,2,3 CLO-2,3	
	Dynamic Programming (Assignment 3 will be given)				nt 3 will		2	6		(CLO-3	
	Mid-II Examination						0.5		2	(CLO-1,2	2,3,4
	Greedy Algorithms, Graph Theory (Graph Categorization, Graph Terminology, Representation of Graphs, BFS & DFS, Strongly Connected Components, Greedy Algorithms: Kruskal's Algorithm, Prim's Algorithms, Bellman-Ford Algorithms, Dijkstra's Algorithm)						3		9	(CLO-3	

	(Assignment 4 will be	given)				
	NP Complete Proble using Approximation Al Algorithms (Assignment 5 will be		2	6	CLO-1	
	Project Presentations	groon,	1	3	CLO-4	
	Final		1	3	CLO-1,2,3,4,5	
	Total		17	51(Including 3 hours final exam)		
Class Time Spent on	Theory Problem Analysis		Solution	on Design	Social and Ethical Issues	
(in credit hours)	8	20		20	0	
Oral and Written Communications	Every student is required to submit all 5 assignments and potential oral project presentations.					

Instructo	r Name	
Instructo	r Signature _	
Date	_13-08-2024_	