Computer Engineering Course 2023/2024

Report 1

Date: 2023/10/18 Name 1: Rahaf Alabrsh Name 2: Christian Panov Name 3: Cora Zeitler

Accessing the Pis

Output hostname:

rspi06.inf-ra.uni-jena.de

Output lscpu:

Architecture: aarch64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 4
On-line CPU(s) list: 0-3
Vendor ID: ARM

Model name: Cortex-A72
Model: 3
Thread(s) per core: 1
Core(s) per cluster: 4
Socket(s):

CPU max MHz: 1500,0000
CPU min MHz: 600,0000
BogoMIPS: 108.00

Flags: fp asimd evtstrm crc32 cpuid

Caches (sum of all):

L1d: 128 KiB (4 instances)
L1i: 192 KiB (4 instances)
L2: 1 MiB (1 instance)

Vulnerabilities:

Itlb multihit: Not affected L1tf: Not affected Mds: Not affected Meltdown: Not affected Mmio stale data: Not affected Retbleed: Not affected Spec store bypass: Vulnerable

Spectre v1: Mitigation; _user pointer sanitization

Spectre v2: Vulnerable Srbds: Not affected Tsx async abort: Not affected

Working with Bits

name	type	value	bit value	explanation
l_data1	unsigned char	1	00000001	We selected 8 bits as that is the size of the char datatype. The leading zeroes represent the empty bits.
1_data2	unsigned char	255	11111111	This is simply 255 in binary: the largest number that can be stored in eight bits.
l_data3	unsigned char	1_data2 +	00000000	256 is beyond the boundary of numbers that can be stored as char datatype. Adding 1 to the char maximum creates an overflow, flipping all the bits back to 0.
l_data4	unsigned char	0xF0	11110000	F_{16} = 15 ₁₀ = 1111 ₂ . A single hex digit can be converted into a group of four bits. Zero is "0000". So it's just those digits in binary in the same order.
l_data5	unsigned char	0b10111	00010111	This is already in binary, so the bit output is the same (with additional leading zeroes because of the eight bits).

1_data6	unsigned char	'J'	01001010	Characters are saved as actual numbers (their ASCII code). For J that's 112 ₁₀ = 4A ₁₆ = 1001010 ₂ (the most significant bit being represented as leading 0).
l_data7	char	-11	11110101	For signed datatypes, the most significant bit is reserved for the sign: 1 for negative, 0 for positive. Positive 11 ₁₀ = 00001011 ₂ . Bitwise NOT leads to 11110100, the <i>one's</i> complement. Adding 1 to the one's complement yields the <i>two's</i> complement; the usual representation of negative numbers in binary. Thus -11 ₁₀ is 11110101 ₂ when using eight bits.
l_data8	unsigned int	1u << 7	000000000000000000000000000000000000000	1u is an unsigned 1. "a << b" shifts the bits of number a by b places to the left (inserting zeroes on the right). The 1 is now on the eigth position.
l_data9	unsigned int	1_data8 << 23	010000000000000000000000000000000000000	The previous number is shifted left another 23 times.
l_data10	unsigned int	0xfffffff >> 3	000111111111111111111111111111111111111	Each hex digit corresponds to a 4-group of bits. F ₁₆ = 1111 ₂ . Thus FFFFFFFF ₁₆ = 1111111111111111111111111111111111
l_data11	unsigned int	0b1001 ^ 0b11011	000000000000000000000000000000000000000	^ is a bitwise XOR. 01001 XOR 11011 yields 10010.
l_data12	unsigned int	~0b0011	111111111111111111111111111111111111111	NOT is true except for the two lowest bits.
l_data13	unsigned int	0xB0 & 0b1010101	000000000000000000000000000000000000000	Bitwise AND. B0 ₁₆ = 10110000 ₂ . 10110000 AND 01010101 = 00010000 (only the fifth bit is 1 in both numbers).
l_data14	unsigned int	0b011 0b110	00000000000000000000000000000000111	011 OR 110 yields 111.
l_data15	unsigned int	0x7c0	0000000000000000000011111000000	7C0 ₁₆ = 011111000000 ₂ .
l_data16	int	-1984	11111111111111111111100001000000	1984 ₁₀ = 11111000000 ₂ . Its 32-bit one's complement is 11111111111111111111111111111111111