DOI: 10.1039/b307583d

Trifluoropropynylxenon(II) tetrafluoroborate $[CF_3C\equiv CXe]$ $[BF_4]$ – isolation of an alkynylxenon(II) compound for the first time

Hermann-Josef Frohn*a and Vadim V. Bardinb

- ^a Institute of Chemistry, Inorganic Chemistry, University Duisburg Essen, Lotharstr. 1, D-47048 Duisburg, Germany
- ^b N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Acad. Lavrentjev Ave., 9, 630090 Novosibirsk, Russia

Received (in Cambridge, UK) 3rd July 2003, Accepted 31st July 2003 First published as an Advance Article on the web 8th August 2003

The salt [CF₃C \equiv CXe] [BF₄] was prepared as neat compound by the reaction of the hitherto unknown alkynyldifluoroborane CF₃C \equiv CBF₂ with XeF₂ in 1,1,1,3,3-pentafluoropropane (PFP) at -45 °C in 59% yield. [CF₃C \equiv CXe] [BF₄] was unambiguously characterised by multinuclear NMR spectroscopy in anhydrous HF (aHF) solution.

The preparative chemistry of organoxenon compounds started in 1989 with the isolation and structural characterisation of arylxenon(II) salt [ArXe] [Y]. Later alkenylxenon(II) salts [RXe] [Y] (R = polyfluorocycloalk-1-enyl and trifluorovinyl) were obtained. Pentafluorophenyldifluoroxenon(IV) tetrafluoroborate [C₆F₅XeF₂] [BF₄] was the first example of a Xe^{IV}– C compound. Recently the neutral polyfluorophenyl xenon(II) molecules of the type ArXeF, Ar₂Xe, and ArXeAr' were prepared. The current research in Xe–C chemistry is compiled in some reviews.

In 1992 Zhdankin et al. published a short communication on the detection of the [t-BuC=CXe] [BF₄] salt obtained by the reaction of Li [t-BuC≡CBF₃] with XeF₂ in CH₂Cl₂ (Scheme 1), but they were not able to isolate this thermally unstable salt (decomposition at -30 °C) in a pure state.¹⁰ They proved the presence of a Xe-C species in the dark oily product by multinuclear NMR spectroscopy at -40 °C, by IR spectrum (at 0 °C) and by alkynylation of PPh3 to [t-BuC≡CPPh3] [BF4] (-78 °C). They established that the preparation of xenonium salts from other starting alkynes analogously to Scheme 1 was unsuccessful, but they were able to monitor the formation of some alkynylxenon(II) tetrafluoroborates by their ¹²⁹Xe resonance (singlet) in the reaction of RC≡CSiMe₃ with XeF₂ and $BF_3 \cdot OEt_2$ in CD_2Cl_2 at -45 °C when R = Et, Pr, t-Bu and Me₃Si. No xenon-containing species were monitored by ¹²⁹Xe NMR when R = H, Me, Ph, CF_3 , 4-CH₃C₆H₄SO₂, (i-Pr)₃Si,

In 1999 we elaborated a convenient route to arylxenon(II) tetrafluoroborates which consists of the reaction of aryldifluoroborane with xenon difluoride in CH₂Cl₂ at -40 to -30 °C.¹¹ This route was successfully applied to the preparation of the trifluoroethenylxenon(II) salt³ and a series of 2-X-1,2-difluoroethenylxenon(II)¹² and 1-X-2,2-difluoroethenylxenon(II) salts, all these were isolated as neat salts.¹³ This synthetic method allowed the isolation of the new salts in a pure form and the possibility of characterising them unambiguously. Pursuing our systematic efforts in the field of organoxenon chemistry, we decided to extend this procedure also to the synthesis of alkynylxenon(II) salts in order to demonstrate the common character of the methodical approach. Therefore we investigated the reaction of trifluoropropynyldifluoroborane 1 with xenon difluoride. A neat alkynylxenon(II) salt could be isolated in a satisfactory to good yield for the first time.

A typical procedure will be described as follows. Solid XeF_2 (83 mg, 0.49 mmol) was added in one portion to a cold (-47 °C)

$$t\text{-BuC} = \text{CLi} \xrightarrow{\text{i}} \text{Li} \ [t\text{-BuC} = \text{CBF}_3] \xrightarrow{\text{ii}} [t\text{-BuC} = \text{CXe}] \ [\text{BF}_4]$$

Scheme 1 Reagents and conditions: i, BF $_3$ (excess), CH $_2$ Cl $_2$, -100 °C; ii, XeF $_2$, CH $_2$ Cl $_2$, -40 °C, 1 h.

solution of CF₃C \equiv CBF₂¹⁴ (0.45 mmol) in 1,1,1,3,3-penta-fluoropropane (PFP) (1.5 ml). After 10 minutes a white precipitate was formed. The reaction mixture was stirred at -45 °C for 1.5 h before the volatile components were removed under vacuum at -45 °C to give trifluoropropynylxenon(π) tetra-fluoroborate 2 (82 mg, 59%) (Scheme 2).

The significant difference between our procedure and the one described in 10 consists of the use of alkynyldifluoroborane as precursor for the alkynylxenon(π) salt instead of lithium alkynyltrifluoroborate or alkynyltrimethylsilane in combination with BF3·OEt2. In the reaction of CF3C \equiv CSiMe3, XeF2 and BF3·OEt2 in CD2Cl2 no organoxenon(π) species could be detected. The successful synthesis of 2 from 1 and XeF2 in contrast shows the preference of alkynyldifluoroboranes as starting materials over alkynyltrifluoroborates and -trimethylsilanes.

The alkynylxenon(II) salt **2** is a white solid which is stable at 20 °C at least for 2–3 hours. **2** is well soluble in aHF. The solution of **2** in aHF showed remarkable stability. The conversion of **2** into *cis*- and *trans*-CF₃CH=CHF was only approximately 30% after 24 h at 20 °C.

The ¹⁹F NMR spectrum of the propynylxenon(II) salt 2 in aHF (-20 °C) displayed resonances at δ -52.45 (s, CF₃) and -147.72 (s, $[BF_4]^{-}$). 15 Resonances of the carbon atoms C-1, C-2 and C-3 in the ¹⁹F decoupled ¹³C NMR spectrum of 2 were located at δ -5.19, 81.18 and 112.78 ppm, respectively, and displayed ¹²⁹Xe-satellites: ${}^{1}J(C-1)$ –(¹²⁹Xe) 343 Hz and ${}^{2}J(C-1)$ 2)– (^{129}Xe) 69 Hz (a coupling $^{3}J(C-3)$ – (^{129}Xe) was not observed). 15 These are by far the largest ${}^{1}J({}^{13}C)$ –(${}^{129}Xe$) coupling values observed in Xe-C compounds until now. The 129Xesatellites found for C-1 and C-2 are a proof that the alkynyl fragment was bonded to xenon(II). It is useful to compare the ¹³C NMR data of the new alkynylxenon salt with some related Xe-C salts. The 13C resonance of the carbon atom C-1 of (nonafluorocyclohexen-1-yl)xenon(II) hexafluoroarsenate in aHF (-10 °C) occurred at δ 96.28 and ${}^{1}J(C-1)$ -(129Xe) was 114 Hz⁴ whereas ^{13}C signals of [CF₂=CFXe]+ were located at δ 100.60 (C-1) and 148.77 ppm (C-2), respectively. Both displayed 129 Xe-satellites: $^{1}J(\text{C-1})$ –(129 Xe) 131 Hz and $^{2}J(\text{C-1})$ 2)-(129Xe) 18 Hz.3 Zhdankin et al. reported the 13C NMR resonances of [t-BuC \equiv CXe] [BF₄] at δ 21 (C-1) and δ 105 (C-2) and the corresponding spin-spin coupling constants ¹³C-¹²⁹Xe with 120 Hz and 79 Hz, respectively (CDCl₃, -40 °C).¹⁰

The 129 Xe NMR signal of compound **2** in aHF ($^{-}60$ °C) displays a singlet at $\delta-3636$ which was shifted to $\delta-3645$ ($\tau_{1/2}=12$ Hz) when the solution was warmed up to -30 °C. 15 These values practically coincide with the 129 Xe chemical shift of the cation [CF₂=CFXe]+ ($\delta-3636$ in aHF at -30 °C³). The 129 Xe chemical shifts of alkynylxenon species reported in 10 were located at $\delta-1802$ to -1887 with respect to XeF₂ (-45 °C).

$$CF_3C = CBF_2 + XeF_2 \xrightarrow{i, ii} [CF_3C = CXe] [BF_4]$$
1
2

Scheme 2 Reagents and conditions: i, 1,1,1,3,3-pentafluoropropane (PFP), -45 °C, 1.5 h; ii, evaporation of volatile substances at -45 °C.

Unfortunately, in ref. 10 neither the solvent nor the temperature used for the reference measurement of xenon difluoride were indicated. This knowledge is important, because of the significant solvent and temperature dependence of the $^{129}\mathrm{Xe}$ chemical shift. 16 A correct direct comparison of our $\delta(^{129}\mathrm{Xe})$ value and those obtained in ref. 10 is therefore not possible.

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft, the Russian Foundation for Basic Research, and the Fonds der Chemischen Industrie and generous donation of chemicals by Honeywell Fluorine Products Europe B.V., Weert, Netherlands.

Notes and references

- D. Naumann and W. Tyrra, J. Chem. Soc., Chem. Commun., 1989, 47.
- 2 (a) H.-J. Frohn and S. Jakobs, J. Chem. Soc., Chem. Commun., 1989, 625; (b) H.-J. Frohn, S. Jakobs and G. Henkel, Angew. Chem., Int. Ed. Engl., 1989, 28, 1506.
- 3 H.-J. Frohn and V. V. Bardin, Chem. Commun., 1999, 919.
- 4 H.-J. Frohn and V. V. Bardin, J. Chem. Soc., Chem. Commun., 1993, 1072.

- 5 H.-J. Frohn, N. LeBlond, K. Lutar and B. Žemva, *Angew. Chem. Int. Ed.*, 2000. **39**, 391.
- 6 N. Maggiarosa, D. Naumann and W. Tyrra, Angew. Chem. Int. Ed., 2000, 39, 4588.
- 7 H.-J. Frohn and M. Theissen, Angew. Chem. Int. Ed., 2000, 39, 4591.
- 8 H.-J. Frohn and M. Theissen, J. Fluorine Chem., submitted for publication.
- 9 (a) J. H. Holloway and E. G. Hope, Adv. Inorg. Chem., 1999, 46, 51; (b)
 H.-J. Frohn and V. V. Bardin, Organometallics, 2001, 20, 4750; (c) V.
 K. Brel, N. Sh. Pirkuliev and N. S. Zefirov, Russ. Chem. Rev., 2001, 70, 231; (d) W. Tyrra and D. Naumann, Organoxenon Compounds, in Inorganic Chemistry Highlights, G. Meyer, D. Naumann and L. Wesemann (Eds.), Wiley-VCH, Weinheim, 2002.
- 10 V. V. Zhdankin, P. J. Stang and N. S. Zefirov, J. Chem. Soc., Chem. Commun., 1992, 578.
- 11 H.-J. Frohn, H. Franke and V. V. Bardin, Z. Naturforsch., 1999, 54B, 1495
- 12 H.-J. Frohn, N. Yu. Adonin and V. V. Bardin, Z. Anorg. Allg. Chem., submitted for publication.
- 13 H.-J. Frohn and V. V. Bardin, Z. Anorg. Allg. Chem., submitted for publication.
- 14 The synthesis of CF₃C≡CBF₂ will be reported elsewhere.
- 15 The NMR shift values are relative to CCl_3F (^{19}F), TMS (^{13}C) and $XeOF_4$ (^{129}Xe).
- 16 C. J. Jameson, The Noble Gases, in Multinuclear NMR, J. Mason (Ed.), Plenum Press, New York, 1987.