

Sistemas de propulsão I

Exercícios - Tópicos 01 e 02

Apresentar e resolver exercícios envolvendo motores:

- Turboeixo

- Turbojato

-Turbofan

Tabela ISA - International Standard Atmosphere

z [m]	p [bar]	$\frac{T}{[K]}$	$ ho/ ho_0$	$\frac{a}{[m/s]}$
0	1,01325	288,15	1,0000	340,3
500	0,9546	284,9	0,9529	338,4
1,000	0,8988	281,7	0,9075	336,4
1,500	0,8456	278,4	0.8638	334,5
2,000	0,7950	275,2	0,8217	332,5
2,500	0,7469	271,9	0,7812	330,6
3,000	0,7012	268,7	0,7423	328,6
3,500	0,6578	265,4	0,7048	326,6
4,000	0,6166	262,2	0,6689	324,6
4.500	0,5775	258,9	0,6343	322,6
5.000	0,5405	255,7	0,6012	320,5
5.500	0,5054	252,4	0,5694	318,5
6,000	0,4722	249,2	0,5389	316,5
6.500	0,4408	245,9	0,5096	314,4
7.000	0,4111	242,7	0,4817	312,3
7.500	0,3830	239,5	0,4549	310,2
8.000	0.3565	236,2	0,4292	308,1
8,500	0,3315	233,0	0,4047	306,0
9,000	0,3080	229,7	0,3813	303,8
9.500	0,2858	226,5	0,3589	301,7
10,000	0,2650	223,3	0,3376	299,5

Tabela ISA - International Standard Atmosphere

<u>z</u> [m]	p [bar]	$\frac{T}{[K]}$	$ ho/ ho_0$	$\frac{a}{[m/s]}$
10,500	0,2454	220,0	0,3172	297,4
11.000	0,2270	216,8	0,2978	295,2
11.500	0,2098	216,7	0,2755	295,1
12.000	0,1940	216,7	0,2546	295,1
12.500	0,1793	216,7	0,2354	295,1
13,000	0.1658	216,7	0,2176	295,1
13.500	0,1533	216,7	0,2012	295,1
14.000	0,1417	216,7	0,1860	295,1
14,500	0,1310	216,7	0,1720	295,1
15,000	0,1211	216,7	0,1590	295,1
15,500	0,1120	216,7	0,1470	295,1
16.000	0,1035	216,7	0,1359	295,1
16.500	0,09572	216,7	0,1256	295,1
17,000	0,08850	216,7	0,1162	295,1
17,500	0,08182	216,7	0,1074	295,1
18,000	0,07565	216,7	0,09930	295,1
18.500	0,06995	216,7	0,09182	295,1
19.000	0,06467	216,7	0,08489	295,1
19.500	0,05980	216,7	0,07850	295,1
20.000	0,05529	216,7	0,07258	295,1

UFABC

Exercício - Turboeixo

Determine o trabalho específico entregue ao eixo de saída, o consumo específico de combustível e a eficiência do ciclo para uma turbina a gás aeronáutica, na configuração turboeixo, com as seguintes especificações:

- ✓ Razão de pressão do compressor = 12,0;
- ✓ Temperatura de entrada da turbina = 1350 K;
- Eficiência isentrópica do compressor = 0,86;
- ✓ Eficiência isentrópica da turbina = 0,89;
- ✓ Eficiência de transmissão mecânica = 0,99;
- ✓ Eficiência de combustão = 0,99;
- ✓ Condições ambientais (P_a, T_a) = 1 bar, 288 K;
- ✓ Poder Calorífico Inferior do Combustível = 43.100 kJ/kg;
- ✓ As seguintes perdas de pressão:
 - Câmara de combustão (ΔP_{cc}) = 6% da pressão de saída do compressor.
 - Duto de exaustão ($\Delta P_{exaustão}$) = 0,03 bar.

1. Dados:

- . Turboeixo
- $r_c = 12$
- . TET = 1350 K
- $\eta_c = 0.86$
- . $\eta_{t_gg} = \eta_{t_lp} = 0.89$
- $\eta_{\rm m} = 0.99$
- $. \eta_{comb} = 0.99$
- $\Delta P_{cc} = 6\% \text{ de } P_{02}$
- . $\Delta P_{\text{exaut}\tilde{a}o} = 0.03 \text{ bar}$

2. Determinar:

- a) $W_{sai} = ?$
- b) CEC = ?
- c) $\eta_{térm} = ?$

3. Hipótese simplificadora:

- . O motor está operando em regime permanente;
- . Ar ambiente encontra-se a 1 bar e 288 K;
- . Padrão ar aplicável (gases de comb. modelados como ar).

4. Desenho esquemático:

5. Solução:

a)

Variação de temperatura entre a entrada e a saída do compressor durante a transferência de energia para fluido de trabalho do motor:

$$T_{02} - T_{ar} = \frac{T_{ar}}{\eta_c} \left[\left(\frac{P_{02}}{P_a} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right] \longrightarrow T_{02} - T_{ar} = \frac{288}{0,86} \left[(12)^{\frac{1,4 - 1}{1,4}} - 1 \right] = 346,3 \text{ K}$$

O trabalho específico produzido pela turbina do conjunto gerador de gases é o consumido pelo compressor, considerando-se as <u>perdas mecânicas</u>:

$$w_{t_gg} = \frac{w_c}{\eta_m} = Cp_{ar} \frac{(T_{02} - T_{ar})}{\eta_m} \longrightarrow w_{t_gg} = 1,005 \frac{kJ}{kg. K} \frac{346,3 \text{ K}}{0,99} = 351,5 \frac{kJ}{kg}$$

Pressão na entrada da turbina do gerador de gases:

$$P_{03} = P_{02}(1 - \Delta P_{cc}) = 12(1 - 0.06) = 11.28 \text{ bar}$$

A queda de temperatura dos gases de combustão nessa turbina para que seja produzida a quantidade de trabalho requerida pelo compressor:

$$(T_{03} - T_{04}) = \frac{w_{t_gg}}{Cp_{gases}}$$

$$= \frac{w_{t_gg}}{Cp_{gases}}$$

$$Cv_{gases} = 0.861 \text{ kJ/kg.K}$$

$$v_{gases} = 0.861 \text{ kJ/kg.K}$$

$$(T_{03} - T_{04}) = \frac{351,5 \text{ kJ/kg}}{1,148 \text{ kJ/kg. K}} = 306,2 \text{ K}$$

A razão de expansão do fluido de trabalho na turbina do gerador de gases:

$$T_{03} - T_{04} = \eta_{t_gg} T_{03} \left[1 - \left(\frac{1}{P_{03}/P_{04}} \right)^{\frac{\gamma - 1}{\gamma}} \right]$$

306,2 K = 0,89.1350 K
$$\left[1 - \left(\frac{1}{P_{03}/P_{04}}\right)^{\frac{1,333-1}{1,333}}\right]$$

$$\frac{P_{03}}{P_{04}} = 3,243$$

A temperatura dos gases na saída da turbina do conjunto gerador de gases:

$$T_{04} = T_{03} - (T_{03} - T_{04}) = 1350 \text{ K} - 306.2 \text{ K} = 1043.8 \text{ K}$$

Desprezando as perdas no escoamento do fluido de trabalho entre a saída da turbina do conjunto gerador de gases e entrada da turbina livre de potência, a condição na entrada desta turbina é:

$$P_{04} = \frac{P_{03}}{\left(\frac{P_{03}}{P_{04}}\right)} = \frac{11,28 \text{ bar}}{3,243} = 3,478 \text{ bar}$$

$$T_{04} = 1043,8 \text{ K}$$

A razão de expansão dos gases na turbina livre de potência deve ser:

$$\left(\frac{P_{04}}{P_{05}}\right) = \frac{P_{04}}{(P_{ar} + \Delta P_{exaustão})} = \frac{3,478 \text{ bar}}{(1 \text{ bar} + 0,03 \text{bar})} = \frac{3,377 \text{ bar}}{(1 \text{ bar} + 0,03 \text{bar})}$$

<u>Onde:</u> P_{05} = pressão imediatamente após a saída dos gases da turbina livre e antes de ser admitido no duto de exaustão do motor.

Portanto, a queda de temperatura entre a entrada e a saída da turbina livre de potência:

$$T_{04} - T_{05} = \eta_{t_{lp}} T_{04} \left[1 - \left(\frac{1}{P_{04}/P_{05}} \right)^{\frac{\gamma - 1}{\gamma}} \right]$$

$$T_{04} - T_{05} = 0.89.1043.8 \text{ K} \left[1 - \left(\frac{1}{3,377 \text{ bar}} \right)^{\frac{1,333-1}{1,333}} \right] = 243.7 \text{ K}$$

O trabalho específico entregue ao eixo de saída da turbina a gás é o produzido pela turbina livre de potência descontando-se as perdas mecânicas:

$$\mathbf{w_{sai}} = Cp_{gases}(T_{04} - T_{05})\eta_{m}$$

$$w_{sai} = 1,148 \frac{kJ}{kg. K} 243,7 \text{ K}.0,99 = 277 \frac{kJ}{kg}$$

$$w_{sai} = 277 \frac{kW. s}{kg}$$

b)

A temperatura do ar na entrada da câmara de combustão é a mesma da saída do compressor (T_{02}) :

$$T_{02} = T_{ar} + (T_{02} - T_{ar}) = 288 \text{ K} + 346,3 \text{ K} = 634,3 \text{ K}$$

Dessa maneira, a câmara de combustão precisa aumentar a temperatura do fluido de trabalho de 634,3 K (T_{02}) até 1350 K (T_{03}) para que a turbina seja capaz de converter a energia do fluido em energia mecânica e fornecer o trabalho requerido pelo compressor. Assim como também, entregar no eixo de saída o trabalho necessário para movimentar as hélices da aeronave, logo:

$$\Delta T_{cc} = T_{03} - T_{02} = 1350 \text{ K} - 634,3 \text{ K} \longrightarrow \Delta T_{cc} = 715,7 \text{ K}$$

Uma vez conhecido o valor do aumento de temperatura que a câmara de combustão deverá realizar no fluido de trabalho, torna-se possível determinar a razão equivalência global da máquina. Ou seja, a relação entre a quantidade de ar e de combustível dos produtos de exaustão na saída do combustor.

Assim, pode-se encontrar no gráfico ao lado a razão de combustível/ar(R_{CO}) na saída da câmara de combustão do turboélice em análise:

$$T_{02} = 634,3 \text{ K}$$

$$\Delta T_{cc} = 715,7 \text{ K}$$
 $R_{CO} = 0.0202$

Entretanto, para determinar corretamente a vazão de combustível deve-se considerar a energia térmica perdida no processo de combustão, uma vez que a eficiência de combustão é de 99%. Assim, a razão de equivalência real (R_{CO real}):

$$R_{\text{CO_real}} = \frac{R_{\text{CO}}}{\eta_{\text{comb}}} = \frac{0,0202}{0,99} = 0,0204$$

Logo, o Consumo Específico de Combustível (CEC):

$$CEC = \frac{R_{CO_real}}{w_{sai}} = \frac{0,0204}{277 \frac{\text{kW. s}}{\text{kg}}} \frac{3600 \text{ s}}{1 \text{ h}} = \frac{0,0204 \cdot 3600}{277 \frac{\text{kW. h}}{\text{kg}}} \longrightarrow CEC = 0,265 \frac{\text{kg}}{\text{kW. h}}$$

c) Por fim, a eficiência térmica do ciclo Brayton para o turboeixo:

$$\eta_{\text{térm}} = \frac{3600}{\text{CEC.PCI}_{comb}} = \frac{w_{sai}}{R_{\text{CO_real.}} PCI_{comb}} = \frac{277 \frac{\text{kJ}}{\text{kg}}}{0,0204.43.100 \frac{\text{kJ}}{\text{kg}}}$$

$$\eta_{\text{térm}} = 0.315$$

Determine o empuxo específico e o consumo específico de combustível de um motor turbojato cujo ponto de projeto foi determinado para a velocidade de cruzeiro Mach = 0,8 e a altitude de 10.000 metros. No ponto de projeto os componentes da máquina apresentam os seguintes desempenhos:

- ✓ Razão de pressão do compressor = 8,0;
- ✓ Temperatura de entrada da turbina = 1200 K;
- ✓ Eficiência isentrópica do compressor = 0,87;
- Eficiência isentrópica da turbina = 0,90;
- ✓ Eficiência isentrópica da entrada = 0,93;
- ✓ Eficiência isentrópica do bocal de saída = 0,95;
- ✓ Eficiência de transmissão mecânica = 0,99;
- ✓ Eficiência de combustão = 0,98
- ✓ Perda de pressão na câmara de combustão (ΔP_{cc}) = 4% da pressão entregue pelo compressor
- ✓ Poder Calorífico Inferior do Combustível = 43.100 kJ/kg;

1. Dados:

- . Turbojato
- M = 0.8 e 10.000 m
- $r_{c} = 8$
- . TET = 1200 K
- $\eta_{c} = 0.87$
- $\eta_t = 0.90$
- $\eta_{\rm entr} = 0.93$
- $. \eta_{saida} = 0.95$
- $\eta_{\rm m} = 0.99$
- $\eta_{comb} = 0.98$
- . ΔP_{cc} = 4% de P_{02}
- . PCI = 43.100 kJ/kg

2. Determinar:

- a) $F_{esp} = ?$ b)CEC = ?
- 3. Hipótese simplificadora:
- . O motor está operando em regime permanente;
- . Ar ambiente encontra-se a 1 bar e 288 K;
- . Padrão ar aplicável (gases de comb. modelados como ar).

4. Desenho esquemático:

5. Solução:

a)

Tabela ISA para 10.000 m

$$P_a = 0.2650 \text{ bar}$$
 $T_a = 223.3 \text{ K}$
 $a = 299.5 \text{ m/s}$

As condições de estagnação depois da entrada do motor podem ser obtidas:

$$\frac{V_a^2}{2c_n} = \frac{(0.8.299.5)^2}{2.1,005.1000} = 28.6 \text{ K}$$

$$T_{01} = T_a + \frac{V_a^2}{2c_p} = 223.3 + 28.6 = 251.9 \text{ K}$$

$$\frac{P_{01}}{P_{a}} = \left[1 + \eta_{\text{entr}} \frac{V_{a}^{2}}{2CpT_{a}}\right]^{\frac{\gamma}{(\gamma - 1)}} = \left[1 + \frac{0.93.28.6}{223.3}\right]^{3.5} = 1.482$$

$$P_{01} = 0.2650 \cdot 1.482 = 0.393 \text{ bar}$$

As condições de na saída do compressor:

$$P_{02} = \left(\frac{P_{02}}{P_{01}}\right) P_{01} = 8.0 \cdot 0.393 = 3.144 \text{ bar}$$

$$T_{02} - T_{01} = \frac{T_{01}}{\eta_c} \left[\left(\frac{P_{02}}{P_{01}} \right)^{\frac{\gamma - 1}{\gamma}} - 1 \right] \longrightarrow T_{02} - T_{01} = \frac{251,9}{0,87} \left[(8,0)^{\frac{1,4-1}{1,4}} - 1 \right] = 234,9 \text{ K}$$

$$T_{02} = 251.9 + 234.9 = 486.8 \text{ K}$$

O trabalho consumido pelo compressor é o trabalho fornecido pela turbina menos as perdas mecânicas, logo:

$$W_{\rm C} = W_{\rm T}.\eta_{\rm m} \longrightarrow W_{\rm T} = W_{\rm C}/\eta_{\rm m}$$

Logo:

$$T_{03} - T_{04} = \frac{\text{cp}_a (T_{02} - T_{01})}{\text{cp}_g. \eta_m} = \frac{1,005.234,9}{1,148.0,99} = 207,7 \text{ K}$$

$$T_{04} = 1200 - 207,7K = 992,3 K$$

$$P_{03} = P_{02} \left(1 - \frac{\Delta P_{cc}}{P_{02}} \right) = 3,144 \cdot (1 - 0,04) = 3,018 \text{ bar}$$

$$T_{04s} = T_{03} - \frac{1}{\eta_t} (T_{03} - T_{04}) = 1200 - \frac{207,7}{0,90} = 969,2 \text{ K}$$

$$P_{04} = P_{03} \left(\frac{T_{04s}}{T_{03}}\right)^{\frac{\gamma - 1}{\gamma}} = 3,018 \left(\frac{969,2}{1200}\right)^4 = 1,284 \text{ bar}$$

Portanto, a razão de pressão no bocal de saída é:

$$\frac{P_{04}}{P_{2}} = \frac{1,284}{0.265} = 4,845$$

A razão de pressão crítica no bocal de saída:

$$\frac{\frac{P_{04}}{P_{c}}}{\left[1 - \frac{1}{\eta_{iato}} \left(\frac{\gamma - 1}{\gamma + 1}\right)\right]^{\frac{\gamma}{\gamma - 1}}} = \frac{1}{\left[1 - \frac{1}{0.95} \left(\frac{1,333 - 1}{1,333 + 1}\right)\right]^{\frac{1,333}{1,333 - 1}}} = 1,914$$

Como:
$$\frac{P_{04}}{P_a} > \frac{P_{04}}{P_c}$$
 \longrightarrow O escoamento no bocal de saída está em choque

Assim:

$$T_5 = T_c = \left(\frac{2}{\gamma - 1}\right) T_{04} = \frac{2.992,3}{1,333 - 1} = 850,7 \text{ K}$$

$$P_5 = P_c = P_{04} \left(\frac{1}{P_{04}/P_c} \right) = 1,284 \left(\frac{1}{1,914} \right) = 0,671 \text{ bar}$$

$$\rho_5 = \frac{P_c}{RT_c} = \frac{100.0,671}{0.287.850.7} = 0,275 \text{ kg/m}^3$$

$$V_5 = (\gamma R T_c)^{1/2} = (1,333.0,287.850,7.1000)^{1/2} = 570,5 \text{ m/s}$$

$$\frac{A_5}{\dot{m}} = \frac{1}{\rho_5 V_5} = \frac{1}{0.275.570.5} = 0.006374 \text{ m}^2\text{s/kg}$$

Pode-se, então, determinar o empuxo específico:

$$F_s = (V_5 - V_a) + \frac{A_5}{m}(P_c - P_a) \rightarrow F_s = (570.5 - 239.6) + 0.00637(0.0671 - 0.265)10^5$$

$$F_s = 330,9 + 259,8$$
 \longrightarrow $F_s = 589,7 \frac{\text{N s}}{\text{kg}}$

b)

A câmara de combustão precisa aumentar a temperatura do fluido de trabalho de $486.8 \text{ K} (T_{02})$ até $1200 \text{ K} (T_{03})$ para que a turbina seja capaz de converter a energia do fluido em energia mecânica e fornecer o trabalho requerido pelo compressor:

$$\Delta T_{cc} = T_{03} - T_{02} = 1200 \text{ K} - 486.8 \text{ K} \qquad \Delta T_{cc} = 713.2 \text{ K}$$

Uma vez conhecido o valor do aumento de temperatura que a câmara de combustão deverá realizar no fluido de trabalho, torna-se possível determinar a razão equivalência global da máquina. Ou seja, a relação entre a quantidade de ar e de combustível dos produtos de exaustão na saída do combustor.

Assim, pode-se encontrar no gráfico ao lado a razão de combustível/ar(R_{CO}) na saída da câmara de combustão do turboélice em análise:

$$T_{02} = 486.8 \text{ K}$$

$$\Delta T_{cc} = 713.2 \text{ K}$$
 $R_{CO} = 0.0194$

Entretanto, para determinar corretamente a vazão de combustível deve-se considerar a energia térmica perdida no processo de combustão, uma vez que a eficiência de combustão é de 98%. Assim, a razão de equivalência real (R_{CO real}):

$$R_{\text{CO_real}} = \frac{R_{\text{CO}}}{\eta_{\text{comb}}} = \frac{0.0194}{0.98} = 0.0198$$

Logo, o Consumo Específico de Combustível (CEC):

$$CEC = \frac{R_{CO_real}}{F_S} = \frac{0,0198}{589,7 \frac{N \text{ s}}{\text{kg}}} \frac{3600 \text{ s}}{1 \text{ h}} = \frac{0,0198.3600}{589,7 \frac{N.\text{h}}{\text{kg}}} \longrightarrow CEC = 0,121 \frac{\text{kg}}{\text{N. h}}$$

UFABC

Exercício - Turbofan

Determine o empuxo e o consumo específico de combustível de um motor turbofan em condições estáticas ao nível do mar, onde a pressão e a temperatura ambiente são de 1 bar e 288 K, respectivamente. Esse motor turbofan possui dois eixos, sendo um para acionar o ventilador por meio da turbina de baixa pressão e o outro conectado à turbina de alta pressão para acionar o compressor. Os escoamentos frio e quente são ejetados por bocais diferentes. No ponto de projeto os componentes da máquina apresentam os seguintes desempenhos:

- ✓ Razão de pressão global = 25,0;
- ✓ Razão de pressão do ventilador = 1,65;
- ✓ Razão de "by-pass" (B) = 5,0;
- ✓ Temperatura de entrada da turbina = 1.550 K;
- ✓ Eficiência politrópica do compressor e da turbina = 0,90;
- ✓ Eficiência de combustão = 0,99;
- ✓ Eficiência isentrópica de cada bocal de saída = 0,95;
- ✓ Eficiência de transmissão mecânica de cada eixo = 0,99;
- ✓ Perda de pressão na câmara de combustão (ΔP_{cc}) = 1,5 bar;
- ✓ Vazão total de ar = 215 kg/s.

1. Dados:

. Turbofan

$$r_{\rm g} = 25.0$$

$$r_{\rm v} = 1.65$$

$$B = 5,0$$

$$. TET = 1.550 K$$

.
$$\eta_{\infty_c} = \eta_{\infty_t} = 0.90$$

$$\eta_{comb} = 0.99$$

$$. \eta_{jato} = 0.95$$

$$\eta_{\rm m} = 0.99$$

$$\Delta P_{cc} = 1,65 \text{ bar}$$

$$. \dot{m}_{ar} = 215 \text{ kg/s}$$

$$T_{a} = 288 \text{ K}$$

$$. P_{a} = 1 \text{ bar}$$

2. Determinar:

a)
$$F_{total} = ?$$

3. Hipótese simplificadora:

- . O motor está operando em regime permanente;
- . Ar ambiente encontra-se a 1 bar e 288 K;
- . Padrão ar aplicável (gases de comb. modelados como ar).

4. Desenho esquemático:

5. Solução:

a)

Os valores de (n-1)/n para os processos politrópicos de compressão e de expansão são:

- Para compressão:

$$\frac{n-1}{n} = \frac{1}{\eta_{\infty_{c}}} \left(\frac{\gamma - 1}{\gamma} \right)_{a} = \frac{1}{0.9.3,5} = 0.3175$$

- Para expansão:

$$\frac{n-1}{n} = \eta_{\infty_{-}t} \left(\frac{\gamma - 1}{\gamma}\right)_{g} = \frac{0.9}{4} = 0.225$$

- Em <u>condições estáticas</u> $T_{01} = T_a$ e $P_{01} = P_a$:

$$\frac{T_{02}}{T_{01}} = \left(\frac{P_{02}}{P_{01}}\right)^{(n-1)/n}$$
 $T_{02} = 288.1,65^{0,3175} = 337,6 \text{ K}$

$$T_{02} - T_{01} = 337.6 \text{ K} - 288 \text{ K} = 49.6 \text{ K}$$

$$r_{\rm c} = \frac{P_{03}}{P_{02}} = \frac{25.0}{1.65} = 15.15$$

$$T_{03} = T_{02} \cdot (r_c)^{(n-1)/n} = 337,6 \text{ K} \cdot (15,15)^{0,3175} = 800,1 \text{ K}$$

$$T_{03} - T_{02} = 800,1 \text{ K} - 337,6 \text{ K} = 462,5 \text{ K}$$

- A razão de pressão no bocal frio é igual a razão de pressão do ventilador:

$$r_{\rm v} = \frac{P_{02}}{P_{\rm a}} = \frac{P_{02}}{P_{\rm 8}} = 1,65$$

- A razão de pressão crítica no bocal frio é:

$$\frac{P_{02}}{P_{c}} = \frac{1}{\left[1 - \frac{1}{n_{into}} \left(\frac{\gamma - 1}{\gamma + 1}\right)\right]^{\frac{\gamma}{\gamma - 1}}} = \frac{1}{\left[1 - \frac{1}{0.95} \left(\frac{0.4}{2.4}\right)\right]^{3.5}} = 1,965$$

Assim, o escoamento através do bocal frio não está em choque.

Logo, o empuxo produzido pelo bocal frio pode ser determinado:

$$F_{frio} = \dot{m}_{jato_frio}. V_8$$

A queda de temperatura do escoamento no bocal frio:

$$T_{02} - T_8 = \eta_{\text{jato}} T_{02} \left[1 - \left(\frac{1}{\frac{P_{02}}{P_8}} \right)^{\frac{(\gamma - 1)}{\gamma}} \right] = 0.95.337,6 \text{ K}. \left[1 - \left(\frac{1}{1,65} \right)^{\frac{1}{3,5}} \right] = 42.8 \text{ K}$$

Consequentemente:

$$V_8 = [2 \cdot \text{cp} \cdot (T_{02} - T_8)]^{\frac{1}{2}} = \left[2 \cdot 1,005 \frac{\text{kJ}}{\text{kg. K}} \cdot (42,8 \text{ K}) \cdot 1000\right]^{\frac{1}{2}} = 293,2 \frac{\text{m}}{\text{s}}$$

Como a razão de "by-pass" B = 5,0:

$$\dot{m}_{jato_frio} = \frac{\dot{m}_{total_jatos} \cdot B}{B+1} = \frac{\dot{m}_{ar} \cdot B}{B+1} = \frac{215 \text{ kg/s.} \cdot 5.0}{5.0+1} = 179.2 \frac{\text{kg}}{\text{s}}$$

$$\mathbf{F}_{frio} = \dot{m}_{jato_frio} \cdot \mathbf{V}_{8} = 179.2 \frac{\text{kg}}{\text{s}} \cdot 293.2 \frac{\text{m}}{\text{s}} = \mathbf{52.532 N}$$

Por sua vez, o empuxo produzido pelo bocal quente pode ser calculado por:

$$\mathbf{F}_{\mathbf{quente}} = \dot{\mathbf{m}}_{\mathbf{jato quente}} \cdot \mathbf{V}_7$$

O trabalho produzido na turbina de alta pressão é o consumido pelo compressor considerando as perdas mecânicas. Portanto:

$$w_{\text{t_ap}} = \frac{w_{\text{c}}}{\eta_{\text{m}}}$$
 \longrightarrow $cp_{\text{g}}(T_{04} - T_{05}) = \frac{cp_{\text{a}}}{\eta_{\text{m}}}(T_{03} - T_{02})$

$$T_{04} - T_{05} = \frac{cp_{\rm a}}{\eta_{\rm m}cp_{\rm g}}(T_{03} - T_{02}) = \frac{1,005\frac{\rm kJ}{\rm kg.\,K}}{0,99.1,148\frac{\rm kJ}{\rm kg.\,K}}.462,5 \text{ K} = 409 \text{ K}$$

Já o trabalho produzido na turbina de baixa pressão é o consumido pelo ventilador considerando as perdas mecânicas;

Deve-se ter mente que a vazão de ar que recebe energia do ventilador é maior do que a vazão de gases quentes que passa pelo turbina de baixa pressão. Portanto:

$$w_{\rm v} = \eta_{\rm m} w_{\rm t}$$
 \longrightarrow $\frac{\dot{W}_{\rm v}}{\dot{m}_{\rm ar}} = \eta_{\rm m} \cdot \frac{\dot{W}_{\rm t_bp}}{\dot{m}_{\rm quente}}$ \longrightarrow $w_{\rm v} \cdot \dot{m}_{\rm ar} = \eta_{\rm m} \cdot \dot{m}_{\rm quente} \cdot w_{\rm t}$

$$\dot{m}_{ar} \cdot cp_a(T_{02} - T_{01}) = \dot{m}_{quente} \cdot \eta_m \cdot cp_g \cdot (T_{05} - T_{06})$$

$$(T_{05} - T_{06}) = \frac{\dot{m}_{ar}}{\dot{m}_{quente}} \cdot \frac{cp_a}{\eta_m \cdot cp_g} (T_{02} - T_{01})$$

$$(T_{05} - T_{06}) = \frac{\dot{m}_{frio} + \dot{m}_{quente}}{\dot{m}_{quente}} \cdot \frac{cp_a}{\eta_m \cdot cp_g} (T_{02} - T_{01})$$

Onde:
$$B = \frac{\dot{m}_{frio}}{\dot{m}_{quente}}$$

Chega-se a:
$$(T_{05} - T_{06}) = \frac{\dot{m}_{frio} + \dot{m}_{quente}}{\dot{m}_{quente}} \cdot \frac{cp_a}{\eta_m \cdot cp_g} (T_{02} - T_{01})$$

Dessa maneira:

$$(T_{05} - T_{06}) = (B + 1). \frac{cp_a}{\eta_m \cdot cp_g} (T_{02} - T_{01})$$

$$(T_{05} - T_{06}) = (5,0 + 1) \cdot \frac{1,005 \frac{\text{kJ}}{\text{kg. K}}}{0,99 \cdot 1,148 \frac{\text{kJ}}{\text{kg. K}}} (49,6 \text{ K})$$

$$(T_{05} - T_{06}) = 263.2 \text{ K}$$

Assim:

$$T_{05} = T_{04} - (T_{04} - T_{05}) = 1.550 \text{ K} - 409 \text{ K} = 1.141 \text{ K}$$

$$T_{06} = T_{05} - (T_{05} - T_{06}) = 1.141 \text{ K} - 263,2 \text{ K} = 877,8 \text{ K}$$

Dessa forma, a pressão na saída da turbina de baixa pressão e entrada do bocal de saída quente (P_6) pode ser encontrada:

$$\frac{P_{04}}{P_{05}} = \left(\frac{T_{04}}{T_{05}}\right)^{\text{n/(n-1)}} = \left(\frac{1.550 \text{ K}}{1.141 \text{ K}}\right)^{1/0,225} = 3,902$$

$$\frac{P_{05}}{P_{06}} = \left(\frac{T_{05}}{T_{06}}\right)^{\text{n/(n-1)}} = \left(\frac{1.141 \text{ K}}{877.8 \text{ K}}\right)^{1/0.225} = 3,208$$

$$P_{04} = P_{03} - \Delta P_{cc} = 25.0 . 1.0 \text{ bar } -1.5 \text{ bar } = 23.5 \text{ bar}$$

$$P_{06} = \frac{P_{04}}{(P_{04}/P_{05}).(P_{05}/P_{06})} = \frac{23.5 \text{ bar}}{3.902.3,208} = 1.878 \text{ bar}$$

A razão de pressão do bocal de saída quente:

$$\frac{P_{06}}{P_{a}} = \frac{P_{06}}{P_{7}} = 1,878$$

Enquanto que a razão de pressão crítica no bocal de saída quente é:

$$\frac{P_{06}}{P_{c}} = \frac{1}{\left[1 - \frac{1}{\eta_{iato}} \left(\frac{\gamma - 1}{\gamma + 1}\right)\right]^{\frac{\gamma}{\gamma - 1}}} = \frac{1}{\left[1 - \frac{1}{0.95} \left(\frac{0.333}{2.333}\right)\right]^{4}} = 1.914$$

Logo, o escoamento através do bocal quente também NÃO está em choque.

$$T_{06} - T_7 = \eta_{\text{jato}} T_{06} \left[1 - \left(\frac{1}{\frac{P_{06}}{P_7}} \right)^{\frac{(\gamma - 1)}{\gamma}} \right] = 0.95.877,8 \text{ K}. \left[1 - \left(\frac{1}{1.878} \right)^{\frac{1}{4}} \right] = 121,6 \text{ K}$$

Consequentemente:

$$V_7 = [2 \cdot \text{cp} \cdot (T_{06} - T_7)]^{\frac{1}{2}} = \left[2 \cdot 1,148 \frac{\text{kJ}}{\text{kg. K}} \cdot (121,6 \text{ K}) \cdot 1000\right]^{\frac{1}{2}} = 528,3 \frac{\text{m}}{\text{s}}$$

A vazão em massa de gases que são ejetados pelo bocal quentes:

$$\dot{m}_{quente} = \frac{\dot{m}_{total_jatos}}{B+1} = \frac{\dot{m}_a}{B+1} = \frac{215 \frac{kg}{s}}{5,0+1} = 35,83 \frac{kg}{s}$$

O empuxo produzido pelo bocal quente:

$$\mathbf{F_{quente}} = \dot{\mathbf{m}}_{quente}. V_7 = 35,83 \frac{\text{kg}}{\text{s}}.528,3 \frac{\text{m}}{\text{s}} = 18.931 \text{ N}$$

O empuxo total produzido pelo motor:

$$F_{\text{total}} = F_{\text{frio}} + F_{\text{quente}} = 52.532 \text{ N} + 18.931 \text{ N} = \boxed{71.463 \text{ N}}$$

b)

A câmara de combustão precisa aumentar a temperatura da massa de fluido de trabalho quente (\dot{m}_{quente}) de 800 K (T_{03}) até 1.550 K (T_{04}) para que a turbina seja capaz de converter a energia do fluido em energia mecânica e fornecer o trabalho requerido pelo compressor:

$$\Delta T_{cc} = T_{04} - T_{03} = 1.550 \text{ K} - 800 \text{ K}$$
 $\Delta T_{cc} = 750 \text{ K}$

Uma vez conhecido o valor do aumento de temperatura que a câmara de combustão deverá realizar no fluido de trabalho, torna-se possível determinar a razão equivalência global da máquina. Ou seja, a relação entre a quantidade de ar e de combustível dos produtos de exaustão na saída do combustor.

Assim, pode-se encontrar no gráfico ao lado a razão de combustível/ar(R_{CO}) na saída da câmara de combustão do turboélice em análise:

$$T_{03} = 800 \text{ K}$$

$$\Delta T_{cc} = 750 \text{ K}$$
 $R_{CO} = 0.0221$

Entretanto, para determinar corretamente a vazão de combustível deve-se considerar a energia térmica perdida no processo de combustão, uma vez que a eficiência de combustão é de 99%. Assim, a razão de equivalência real (R_{CO real}):

$$R_{\text{CO_real}} = \frac{R_{\text{CO}}}{\eta_{\text{comb}}} = \frac{0,0221}{0,99} = 0,0223$$

A vazão em massa de combustível consumida pelo motor no ponto de projeto:

$$\dot{m}_{comb} = R_{CO real} \cdot \dot{m}_{quente} = 0,799 \text{ kg/s}$$

Logo, o Consumo Específico de Combustível (CEC):

CEC =
$$\frac{\dot{\mathbf{m}_{comb}}}{\mathbf{F_{total}}} = \frac{0,799 \frac{\text{kg}}{\text{s}}}{71.463 \text{ N}} \frac{3600 \text{ s}}{1 \text{ h}} \longrightarrow \boxed{\text{CEC} = 0,04025 \frac{\text{kg}}{\text{N. h}}}$$

- > Resolução de exercícios envolvendo:
 - Motor turboeixo
 - Motor turbojato
 - Motor turbofan