## Quantitative SOTIF Analysis for highly automated Driving Systems

| Confere   | nce Paper · November 2017                                             |           |  |
|-----------|-----------------------------------------------------------------------|-----------|--|
| CITATIONS | 5                                                                     | READS     |  |
| 0         |                                                                       | 6,227     |  |
| 1 author  | r:                                                                    |           |  |
|           | Wilhard Wendorff                                                      |           |  |
|           | Mentor Graphics                                                       |           |  |
|           | 20 PUBLICATIONS 33 CITATIONS                                          |           |  |
|           | SEE PROFILE                                                           |           |  |
| Some of   | f the authors of this publication are also working on these related p | projects: |  |
| Project   | Functional Safety View project                                        |           |  |
| Project   | Optoelectronic and electrooptic testing View project                  |           |  |













AUTOMOTIVE INFOCOM

MOBILITY, ENERGY & ENVIRONMENT

AERONAUTICS

**SPACE** 

**DEFENCE & SECURITY** 



# **Quantitative SOTIF Analysis for highly automated Driving Systems**

Dr. Wilhard von Wendorff, IABG - Center of Competence Safety

Stuttgart, November 8th, 2017



# Safetronic. 2017 Functional Safety in Automotive

#### Contents

- 1. The Different Aspects of Safety
  - 1.1 Safe in Use
  - 1.2 Functional Safety
  - 1.3 Functional Performance
- 2. Goals of SotiF FMEDA
- 3. Space Segment Approach
- 4. ADAS Models
  - 4.1 Environment Model
  - 4.2 Obstacle Model
  - 4.4 Vehicle Model
  - 4.5 Driving Strategy
- 5. Target Value to be achieved by SotiF FMEDA
- 6. Examples of SotiF FMEDA



# Safetronic. 2017 Functional Safety in Automotive

#### Contents

- 1. The Different Aspects of Safety
  - 1.1 Safe in Use
  - 1.2 Functional Safety
  - 1.3 Functional Performance
- 2. Goals of SotiF FMEDA
- 3. Space Segment Approach
- 4. ADAS Models
  - 4.1 Environment Model
  - 4.2 Obstacle Model
  - 4.4 Vehicle Model
  - 4.5 Driving Strategy
- 5. Target Value to be achieved by SotiF FMEDA
- 6. Examples of SotiF FMEDA





# **Different Aspects of Safety Functionality**

### Safety in use

Gebrauchs-Sicherheit

preventing or reducing the risk of injuries resulting from the use of an electronic system



# **Functional Safety**

Funktionale Sicherheit

- absence of unreasonable risk due to hazards caused by erroneous (random faults) parts
  - Is it safe when wearing out?



#### **Functional Performance** Funktionale Performanz

The ability of the system in case of absence of random faults to behave safe



# Some Examples regarding Aspects of Safety Functionality

Specified safety function (ISO 26262 functional safety goal)

Safe in Use: User expects more than the specified function (foreseeable/not foreseeable (mis)use) e.g. highway assist is expected by driver to work on rural road



Functional Safety: System integrator is not aware of a limit EE system (unknown limitations) systematic functional safety failure e.g. not specifying US traffic signs



Functional Performance: System integrator is aware of system limit (accepted risk, specified limitation)
e.g. Radar only detects object having absolute speed





#### Contents

- 1. The Different Aspects of Safety
  - 1.1 Safe in Use
  - 1.2 Functional Safety
  - 1.3 Functional Performance

#### 2. Goals of SotiF FMEDA

- 3. Space Segment Approach
- 4. ADAS Models
  - 4.1 Environment Model
  - 4.2 Obstacle Model
  - 4.4 Vehicle Model
  - 4.5 Driving Strategy
- 5. Target Value to be achieved by SotiF FMEDA
- 6. Examples of SotiF FMEDA





## **Goals of SotiF FMEDA**

SotiF FMEDA quantifies the Functional Performance of a system



Supports identifying Unknown Limitation









#### Contents

- 1. The Different Aspects of Safety
  - 1.1 Safe in Use
  - 1.2 Functional Safety
  - 1.3 Functional Performance
- 2. Goals of SotiF FMEDA

# 3. Space Segment Approach

- 4. ADAS Models
  - 4.1 Environment Model
  - 4.2 Obstacle Model
  - 4.4 Vehicle Model
  - 4.5 Driving Strategy
- 5. Target Value to be achieved by SotiF FMEDA
- 6. Examples of SotiF FMEDA





# **Use Case Approach**

- Classical approach is to analyze complex problems is based on use cases (driving scenarios),
   e.g. driving while having fog in a tunnel and another car changes the lane...
- Figure assumes (clarification) only two physical parameters influencing safety of ADAS system.







#### **Issues with Use cases**

- This approach base on engineering assumptions therefore is not systematic.
- Use cases may be all "nearby" instead being distributed over a large multidimensional data space"
- No evidence can be provided that chosen use cases are relevant





# **Space Segment Approach**

- This approach uses physical parameters instead of driving scenarios, as the amount of physical parameters is limited, the driving scenarios not.
- Following figure assumes (clarification) only two physical parameters influencing safety of ADAS system.

SotiF FMEDA breaks the multidimensional parameter space into space segments (quantile) and determines the vehicle controllability regarding the Worst Case value within every bin (quantile).

Size of Rain Drops



#### Contents

- 1. The Different Aspects of Safety
  - 1.1 Safe in Use
  - 1.2 Functional Safety
  - 1.3 Functional Performance
- 2. Goals of SotiF FMEDA
- 3. Space Segment Approach
- 4. ADAS Models
  - 4.1 Environment Model
  - 4.2 Obstacle Model
  - 4.4 Vehicle Model
  - 4.5 Driving Strategy
- 5. Target Value to be achieved by SotiF FMEDA
- 6. Examples of SotiF FMEDA





# **SotiF FMEDA Calculations (modelling)**

For each space segment the SotiF FMEDA calculates:

- Detecting capabilities of environmental conditions (environment model) (e.g. curve having small curve radius, road friction μ=0,3 due to ice)
  - > Calculation of consequence by driving strategy, e.g. speed reduction
- Capabilities of obstacle detection (obstacle model)
   (e.g. detecting person / small RADAR cross section in a lane curve)
  - Calculation of detection distance regarding obstacle
- Detecting capability of vehicle state (vehicle model)
   (e.g. vehicle speed, centripetal forces, changing lanes)
  - Calculation of brake deceleration and crash velocity (severity)
- Reaction of driving system (**driving & reaction strategy**) (e.g. reducing driving speed, initiating lane change)
  - Implementing driving strategy











# **Examples of Physical Parameters**

#### **Environmental Model**

- Dry Friction
- Curve Radius
- Vision Range
- RADAR Attenuation
- (vertical) Curves (hills)
- RADAR Interference
- Visual Backlighting

#### **Obstacle Model**

- Distance to Obstacle
- Relative Speed of obstacle
- Lane change of obstacle.
- Lane of obstacle
- Vision Cross Section.
- RADAR Cross Section

#### **Vehicle Model**

- Dry Friction
- Vehicle Speed
- Lane change of vehicle
- Curve Radius



# **Safetronic**. Functional Safety in Automotive

## **Contents**

- 1. The Different Aspects of Safety
  - 1.1 Safe in Use
  - 1.2 Functional Safety
  - 1.3 Functional Safety
- 2. Goals of SotiF FMEDA
- 3. Space Segment Approach
- 4. ADAS Models
  - 4.1 Environment Model
  - 4.2 Obstacle Model
  - 4.4 Vehicle Model
  - 4.5 Driving Strategy
- 5. Target Value to be achieved by SotiF FMEDA
- 6. Examples of SotiF FMEDA





#### **SotiF FMEDA Results**

#### The SotiF FMEDA calculates:

- The probability of an incident for each severity over life time of vehicle
- Possible targets values may be found in: COMMISSION DECISION of 16 December 2009 laying down guidelines for the management of the Community Rapid Information System 'RAPEX' established under Article 12 and of the notification procedure established under Article 11 of Directive 2001/95/EC (the General Product Safety Directive) (notified under document C(2009) 9843)





# **SotiF FMEDA Target Values**

## Risk level from the combination of the severity of injury and probability

| Probability of damage during the foreseeable lifetime |               | Severity of injury |   |   |   |  |  |
|-------------------------------------------------------|---------------|--------------------|---|---|---|--|--|
| of the pi                                             | 1             | 2                  | 3 | 4 |   |  |  |
| High                                                  | > 50 %        | Н                  | S | S | S |  |  |
|                                                       | > 1/10        | M                  | S | S | S |  |  |
|                                                       | > 1/100       | M                  | S | S | S |  |  |
|                                                       | > 1/1 000     | L                  | Н | S | S |  |  |
|                                                       | > 1/10 000    | L                  | M | Н | S |  |  |
|                                                       | > 1/100 000   | L                  | L | M | Н |  |  |
| <b>Y</b>                                              | > 1/1 000 000 | L                  | L | L | M |  |  |
| Low                                                   | < 1/1 000 000 | L                  | L | L | L |  |  |

| S — Serious Risk |
|------------------|
| H — High risk    |
| M — Medium risk  |
| L — Low risk     |



# **Safetronic**. Functional Safety in Automotive

#### Contents

- 1. The Different Aspects of Safety
  - 1.1 Safe in Use
  - 1.2 Functional Safety
  - 1.3 Functional Performance
- 2. Goals of SotiF FMEDA
- 3. Space Segment Approach
- 4. ADAS Models
  - 4.1 Environment Model
  - 4.2 Obstacle Model
  - 4.4 Vehicle Model
  - 4.5 Driving Strategy
- 5. Target Value to be achieved by SotiF FMEDA
- 6. Examples of SotiF FMEDA





# **Examples I**

- Current example analyses 959.040 combinations of parameters (scenarios).
- The Physical parameters and physical parameter distribution

**Physical Parameters** 

| Friction Tire<br>to Road | (horizontal) Curve<br>Radius of Lane | Visibility in visible and infrared light                                    | Attenuation at 24/77GHz       | Angle Vehicle to<br>slope surface<br>(vertical curve) | Longitudinal Speed of Vehicle<br>(EGO speed) | Width of Obstacle    | Quantile<br>Bins         |
|--------------------------|--------------------------------------|-----------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------|----------------------------------------------|----------------------|--------------------------|
| Friction µ: 0,3          | lane radius: 100m                    | visibility 20m                                                              | RADAR attenuation 1,0dB/km -  | 0° slope angle                                        | Vehicle longitudinal Speed: 0 - 30km/h       | obstacle width: 0,3m |                          |
| Friction µ: 0,5          | lane radius: 200m                    | visibility 60m                                                              | RADAR attenuation 10,0dB/km - | 3° slope angle                                        | Vehicle longitudinal Speed: 30 - 60km/h      | obstacle width: 0,5m |                          |
| Friction μ: 0,7          | lane radius: 400m                    | visibility 100m                                                             |                               | 6° slope angle                                        | Vehicle longitudinal Speed: 60 - 90km/h      | obstacle width: 2,0m |                          |
|                          | lane radius: 1.200m                  | visibility 1.000m                                                           |                               |                                                       | Vehicle longitudinal Speed: 90 - 130km/h     | obstacle width: 3,0m |                          |
|                          |                                      |                                                                             |                               |                                                       |                                              | obstacle width: 4,0m |                          |
|                          |                                      |                                                                             |                               |                                                       |                                              |                      |                          |
|                          |                                      |                                                                             |                               |                                                       |                                              |                      |                          |
|                          |                                      |                                                                             |                               |                                                       |                                              |                      |                          |
|                          |                                      |                                                                             |                               |                                                       |                                              |                      |                          |
| 8%                       | 1,16%                                | _1;1;2,72211203969778%_1<br>;2;2,72211203969778%_1;3<br>;0,427252167491747% |                               | 84,27229%                                             | 13,8%                                        | 1,128%               | Distribution of Quantile |
| 38%                      | 3,17%                                | _1;1;18,6224097152064%_1;2;18,6224097152064%_1;3;2,92290133495925%          |                               | 15,26215%                                             | 16,2%                                        | 4,509%               |                          |
| 53%                      | 15,61%                               | _1;1;78,6554782450959%_1;2;78,6554782450959%_1;3;12,3454593621533%          |                               | 0,46556%                                              | 35,0%                                        | 68,573%              |                          |
|                          | 80,07%                               | _1;3;84,3043871353957%                                                      |                               |                                                       | 35,0%                                        | 5,481%               |                          |
|                          |                                      |                                                                             |                               |                                                       |                                              | 20,309%              | J                        |



# **Examples II**

Pull-down menus configure features.



Look-up tables configure sensor capabilities (environmental model)

| Probability not detecting a physical parameter    | Short-Range RADAR | Long-Range RADAR | LIDAR | Omniview Cameras | Stereo Camera | Long Range Camera |
|---------------------------------------------------|-------------------|------------------|-------|------------------|---------------|-------------------|
| Friction µ: 0,3                                   | 1                 | 1                | 1     | 1                | 1             | 1                 |
| Friction µ: 0,5                                   | 1                 | 1                | 1     | 1                | 1             | 1                 |
| Friction µ: 0,7                                   | 1                 | 1                | 1     | 1                | 1             | 1                 |
| Vehicle longitudinal Speed: 0 - 30km/h            | 1                 | 1                | 1E+0  | 1                | 1             | 1                 |
| Vehicle longitudinal Speed: 30 - 60km/h           | 1                 | 1                | 1E+0  | 1                | 1             | 1                 |
| Vehicle longitudinal Speed: 60 - 90km/h           | 1                 | 1                | 1E+0  | 1                | 1             | 1                 |
| Vehicle longitudinal Speed: 90 - 130km/h          | 1                 | 1                | 1E+0  | 1                | 1             | 1                 |
| obstacle distance (longitudinal): 20m             | 2E-1              | 1                | 1E+0  | 4E-1             | 1E+0          | 1E-2              |
| obstacle distance (longitudinal): 39m             | 2E-1              | 2E-1             | 1E+0  | 4E-1             | 1E+0          | 1E-2              |
| obstacle distance (longitudinal): 59m             | 1E+0              | 2E-1             | 1E+0  | 4E-1             | 1E+0          | 1E-2              |
| obstacle distance (longitudinal): 85m             | 1E+0              | 2E-1             | 1E+0  | 1E+0             | 1E+0          | 1E-2              |
| obstacle distance (longitudinal): 200m            | 1E+0              | 2E-1             | 1E+0  | 1E+0             | 1E+0          | 1E-2              |
| Obstacle relative longitudinal Speed: -13090km/h  | 2E-1              | 2E-1             | 1E+0  | 1E-1             | 1E+0          | 1E-1              |
| Obstacle relative longitudinal Speed: -9060km/h   | 2E-1              | 2E-1             | 1E+0  | 1E-1             | 1E+0          | 1E-1              |
| Obstacle relative longitudinal Speed: -6030km/h   | 2E-1              | 2E-1             | 1E+0  | 1E-1             | 1E+0          | 1E-1              |
| Obstacle relative longitudinal Speed: -30 - 0km/h | 2E-1              | 2E-1             | 1E+0  | 1E-1             | 1E+0          | 1E-1              |
| <del></del>                                       |                   |                  |       |                  |               |                   |

 Look-up tables enable configuration regarding degradation of sensor capabilities due to environmental conditions (obstacle model)







# **Examples III**

Pull-down menus configure erroneous sensors (limb home evaluation)

|                                                                                                                        |                  | 9                           |                             | `                              |                             |                  |
|------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------|-----------------------------|--------------------------------|-----------------------------|------------------|
| Short-Range RADAR Long-Range RADAR                                                                                     |                  | ng-Range RADAR LIDAR        |                             | Omniview Cameras Stereo Camera |                             | Unused0          |
| 6 Instantiations                                                                                                       | 1 Instantiations | 0 Instantiations            | 4 Instantiations            | 0 Instantiations               | 1 Instantiations            | 0 Instantiations |
| 6 Fault Free Instantiations Ut Free Instantiations 0 Fault Free Instantiations                                         |                  | 4 Fault Free Instantiations | 0 Fault Free Instantiations | 1 Fault Free Instantiations    | 0 Fault Free Instantiations |                  |
| 0 Instantiations 1 Instantiations 2 Instantiations 3 Instantiations 4 Instantiations 5 Instantiations 5 Instantiations |                  |                             |                             |                                |                             |                  |

Look-up tables configure driving strategy (driving & reaction strategy)

|                        |                     | 0° slope angle             |                             |                            |                             |                            |                             |                            |  |
|------------------------|---------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|--|
| Maximum Speed Strategy |                     | visibility 20m             |                             | visibility 60m             |                             | visibility 100m            |                             | visibility                 |  |
|                        |                     | RADAR attenuation 1,0dB/km | RADAR attenuation 10,0dB/km | RADAR attenuation 1,0dB/km | RADAR attenuation 10,0dB/km | RADAR attenuation 1,0dB/km | RADAR attenuation 10,0dB/km | RADAR attenuation 1,0dB/km |  |
|                        | lane radius: 100m   | 0km/h                      | 0km/h                       | 0km/h                      | 0km/h                       | 0km/h                      | 0km/h                       | 0km/h                      |  |
| F-1-1-1 0 2            | lane radius: 200m   | 0km/h                      | 0km/h                       | 0km/h                      | 0km/h                       | 0km/h                      | 0km/h                       | 0km/h                      |  |
| Friction µ: 0,3        | lane radius: 400m   | 0km/h                      | 0km/h                       | 0km/h                      | 0km/h                       | 0km/h                      | 0km/h                       | 0km/h                      |  |
|                        | lane radius: 1.200m | 0km/h                      | 0km/h                       | 0km/h                      | 0km/h                       | 0km/h                      | 0km/h                       | 0km/h                      |  |
|                        | lane radius: 100m   | 60km/h                     | 60km/h                      | 60km/h                     | 60km/h                      | 60km/h                     | 60km/h                      | 60km/h                     |  |
| F-1-1                  | lane radius: 200m   | 90km/h                     | 90km/h                      | 90km/h                     | 90km/h                      | 90km/h                     | 90km/h                      | 90km/h                     |  |
| Friction µ: 0,5        | lane radius: 400m   | 130km/h                    | 130km/h                     | 130km/h                    | 130km/h                     | 130km/h                    | 130km/h                     | 130km/h                    |  |
|                        | lane radius: 1.200m | 130km/h                    | 130km/h                     | 130km/h                    | 130km/h                     | 130km/h                    | 130km/h                     | 130km/h                    |  |
|                        | lane radius: 100m   | 90km/h                     | 90km/h                      | 90km/h                     | 90km/h                      | 90km/h                     | 90km/h                      | 90km/h                     |  |
| Fairble a 0 7          | lane radius: 200m   | 130km/h                    | 130km/h                     | 130km/h                    | 130km/h                     | 130km/h                    | 130km/h                     | 130km/h                    |  |
| Friction μ: 0,7        | lane radius: 400m   | 130km/h                    | 130km/h                     | 130km/h                    | 130km/h                     | 130km/h                    | 130km/h                     | 130km/h                    |  |
|                        | lane radius: 1.200m | 130km/h                    | 130km/h                     | 130km/h                    | 130km/h                     | 130km/h                    | 130km/h                     | 130km/h                    |  |

Look-up tables configure crash severity (obstacle model)

|                | Collision Velocity        |                            |                        |                                 |  |  |  |
|----------------|---------------------------|----------------------------|------------------------|---------------------------------|--|--|--|
| Crash Severity | passenger car↔Ego-vehicle | Truck <b>↔</b> Ego-vehicle | Motorcylce↔Ego-vehicle | Pedestrian <b>⇔</b> Ego-vehicle |  |  |  |
| S1             | ≥ 20 km/h                 | ≥ 15 km/h                  | ≥ 10 km/h              | ≥ 5 km/h                        |  |  |  |
| S2             | ≥ 65 km/h                 | ≥ 50 km/h                  | ≥ 30 km/h              | ≥ 20 km/h                       |  |  |  |
| S3             | ≥ 75 km/h                 | ≥ 60 km/h                  | ≥ 50 km/h              | ≥ 40 km/h                       |  |  |  |
|                |                           |                            |                        |                                 |  |  |  |

|                                                                 | Probability |                        |                        |      |  |
|-----------------------------------------------------------------|-------------|------------------------|------------------------|------|--|
| passenger car←Ego-vehicle Truck←Ego-vehicle Motorcylce←Ego-vehi |             | Motorcylce↔Ego-vehicle | Pedestrian↔Ego-vehicle |      |  |
| obstacle width: 0,3m                                            |             |                        |                        | 100% |  |
| obstacle width: 0,5m                                            |             |                        | 100%                   |      |  |
| obstacle width: 2,0m                                            | 100%        |                        |                        |      |  |
| obstacle width: 3,0m                                            |             | 100%                   |                        |      |  |
| obstacle width: 4,0m                                            | 80%         | 11%                    | 5%                     | 4%   |  |





# **Examples IV**

Detailed analysis for every scenario:



The table build-up is automated by script







# Quantitative Results

| Total Exposure:                             |
|---------------------------------------------|
| 100,0%                                      |
| Dangerous Undetected Exposure SO            |
| 9,430E-02                                   |
| Dangerous Undetected Exposure S1            |
| 2,166E-03                                   |
| Dangerous Undetected Exposure S2            |
| 2,166E-03                                   |
| Dangerous Undetected Exposure S3            |
| 2,058E-02                                   |
| Number of Combinations (scenarios): 959.040 |





# Summary

- A Methodology has been presented Quantifying the Safety Performance of Highly Automated Driving System
- The Methodology is based on an environmental model, an obstacle model, a vehicle model and a driving & reaction strategy
- This Methodology quantifies the entire multidimensional space into quantile (brute force method)
- The Methodology quantifies the probability not meeting safety performance
- The Tool Identifies Test Case for Driving Tests
- The Tool may be tailored to different analysis topics as it is built by scripts
- The Methodology is independent from Vendors (enables confirmation review)



#### Your contact

#### **IABG** mbH

Innovation Center Human Factors and Safety

Dr. Wilhard von Wendorff

Einsteinstrasse 20

85521 Ottobrunn

Germany

Phone +49 89 6088-2856

Fax +49 89 6088-13-2856

wendorff@iabg.de

www.iabg.de





#### **Overview Business Area**

# **Tests & Analyses**







### **Overview Competence Center**

# **Center of Competence Safety & Human Factors**

#### **Consulting and support**

- Functional safety
- Safe in Use
- Mechanical, electronic & software safety aspects
- Human factors (Interaction humans and machines)

#### **Services**

- Process consulting
- Safety engineering
- Audits and assessments
- Partner for outsourcing development services
- Training / Safety academy

### **Expertise regarding industry standards**

Automotive: ISO 26262

Defence: MIL-STD-882, IEC EN 61508

Aeronautics: RTCA/DO-178, RTCA/DO-254

Railway: EN 50128/9





