Formule de l'intégration par parties

Remarque sur le corrigé. Lorsque nous devons expliciter une suite d'intégrales vérifiant une relation de récurrence non triviale d'ordre 1, j'utilise ce que j'appelle (sans grande créativité...) la « méthode du télescopage ». Pour avoir plus de détails sur cette méthode, veuillez consulter mes documents de méthodologie (Suites récurrentes) sur ma page professionnelle.

Exercice 1.

 \rightarrow page 12

- 1. Soit $n \in \mathbb{N}$. Montrer que l'intégrale $\int_1^{+\infty} x^n e^{(-x)} dx$ converge.
- 2. On pose: $\forall n \in \mathbb{N}, I_n = \int_1^{+\infty} x^n e^{(-x)} dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = e^{(-1)} + nI_{n-1}.$$

3. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 2.

 \rightarrow page 12

- 1. Montrer que l'intégrale $\int_{\frac{1}{4}\pi}^{+\infty} x^2 e^{(-x)} \sin{(4\,x)}\,\mathrm{d}x$ converge.
- 2. Calculer l'intégrale : $\int_{\frac{1}{4}\pi}^{+\infty} x^2 e^{(-x)} \sin{(4\,x)} \, \mathrm{d}x.$

Exercice 3.

 \rightarrow page 13

1. On pose: $\forall n \in \mathbb{N}, I_n = \int_0^{\frac{2}{3}\pi} x^n e^{(21ix)} dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = -\frac{1}{21}i \left(\frac{2}{3}\pi\right)^n + \frac{1}{21}inI_{n-1}.$$

- 2. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.
- 3. En déduire une expression explicite de $\int_0^{\frac{2}{3}\pi} x^n \cos(21x) dx$ pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 4.

 \rightarrow page 14

1. On pose: $\forall n \in \mathbb{N}, I_n = \int_{-\frac{1}{4}\pi}^{\frac{1}{6}\pi} x^n e^{(ix)} dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = -\frac{1}{2} \left(\frac{1}{6}\pi\right)^n \left(i\sqrt{3} - 1\right) + \left(\frac{1}{2}i + \frac{1}{2}\right) \sqrt{2} \left(-\frac{1}{4}\pi\right)^n + inI_{n-1}.$$

- 2. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.
- 3. En déduire une expression explicite de $\int_{-\frac{1}{4}\pi}^{\frac{1}{6}\pi} x^n \sin(x) dx$ pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 5. Calculer:
$$\int_{-3}^{0} (17x^2 - 64x + 1)e^{(6x)} dx$$
.

 \rightarrow page 15

Exercice 6.

 \rightarrow page 15

1. Montrer que l'intégrale $\int_{\frac{2}{3}\pi}^{+\infty} x e^{(-x)} \sin(x) dx$ converge.

2. Calculer l'intégrale: $\int_{\frac{2}{3}\pi}^{+\infty} x e^{(-x)} \sin(x) dx.$

Exercice 7.

- 1. Soit $n \in \mathbb{N}$. Montrer que l'intégrale $\int_1^{+\infty} \frac{\ln{(x)}^n}{x^4} \mathrm{d}x$ converge.
- 2. On pose: $\forall n \in \mathbb{N}, I_n = \int_1^{+\infty} \frac{\ln(x)^n}{x^4} dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = \frac{1}{3}nI_{n-1}.$$

3. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 8.

- 1. Montrer que l'intégrale $\int_{-4\pi}^{+\infty} x^2 \cos{(2\,x)^2}\,e^{(-2\,x)} \mathrm{d}x$ converge.
- 2. Calculer l'intégrale : $\int_{-4\,\pi}^{+\infty} x^2 \cos{(2\,x)^2}\,e^{(-2\,x)}\mathrm{d}x.$
- **Exercice 9.** Calculer l'intégrale : $\int_{-\frac{3}{2}\pi}^{0} x e^{(-5x)} \sin(3x)^{2} dx.$
- **Exercice 10.** Calculer l'intégrale : $\int_{-\frac{1}{6}\pi}^{0} x e^{(-3x)} \sin(2x) dx.$

Exercice 11.

- 1. Soit $n \in \mathbb{N}$. Montrer que l'intégrale $\int_0^1 x \ln(x)^n dx$ converge.
- 2. On pose: $\forall n \in \mathbb{N}, I_n = \int_0^1 x \ln(x)^n dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = -\frac{1}{2}nI_{n-1}.$$

- 3. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.
- **Exercice 12.** Calculer: $\int_{1}^{4} (x+1) \ln(x) dx$.

Exercice 13.

1. On pose: $\forall n \in \mathbb{N}, I_n = \int_0^1 x^n e^{(3x)} dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = \frac{1}{3}e^3 - \frac{1}{3}nI_{n-1}.$$

2. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 14.

1. On pose: $\forall n \in \mathbb{N}, I_n = \int_{-\frac{9}{2}\pi}^{\frac{1}{3}\pi} x^n e^{(21ix)} dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = \frac{1}{21}i \left(\frac{1}{3}\pi\right)^n + \frac{1}{21} \left(-\frac{9}{2}\pi\right)^n + \frac{1}{21}inI_{n-1}.$$

2. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.

 \rightarrow page 16

- \rightarrow page 16
- \rightarrow page 17
- \rightarrow page 18
- \rightarrow page 18

- \rightarrow page 19
- \rightarrow page 19

3. En déduire une expression explicite de $\int_{-\frac{9}{3}\pi}^{\frac{1}{3}\pi} x^n \sin(21x) dx$ pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 15.

- 1. Montrer que l'intégrale $\int_0^{+\infty} x^2 e^{(-2x)} \sin(x) dx$ converge.
- 2. Calculer l'intégrale: $\int_0^{+\infty} x^2 e^{(-2x)} \sin(x) dx.$
- **Exercice 16.** Calculer: $\int_{-\frac{191}{4}\pi}^{\pi} (3x 11) \cos(5x) dx$.

Exercice 17.

- 1. Soit $n \in \mathbb{N}$. Montrer que l'intégrale $\int_0^1 x^5 \ln(x)^n dx$ converge.
- 2. On pose: $\forall n \in \mathbb{N}, I_n = \int_0^1 x^5 \ln(x)^n dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = -\frac{1}{6}nI_{n-1}.$$

3. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 18.

1. On pose: $\forall n \in \mathbb{N}, I_n = \int_{-\frac{1}{2}\pi}^{\pi} x^n e^{(ix)} dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = i \pi^n + \left(-\frac{1}{2}\pi\right)^n + inI_{n-1}.$$

- 2. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.
- 3. En déduire une expression explicite de $\int_{-\frac{1}{2}\pi}^{\pi} x^n \cos(x) dx$ pour tout $n \in \mathbb{N} \setminus \{0\}$.
- **Exercice 19.** Calculer l'intégrale : $\int_{-\pi}^{0} x \cos(91 x) e^{(-x)} dx.$

Exercice 20.

- 1. Montrer que l'intégrale $\int_0^{+\infty} x \cos(x)^2 e^{(-x)} dx$ converge.
- 2. Calculer l'intégrale: $\int_{0}^{+\infty} x \cos(x)^{2} e^{(-x)} dx.$

Exercice 21.

- 1. Soit $n \in \mathbb{N}$. Montrer que l'intégrale $\int_{-1}^{+\infty} x^n e^{(-6x)} dx$ converge.
- 2. On pose: $\forall n \in \mathbb{N}, I_n = \int_{-1}^{+\infty} x^n e^{(-6x)} dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = \frac{1}{6} (-1)^n e^6 + \frac{1}{6} n I_{n-1}.$$

3. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 22. \rightarrow page 25

$$\rightarrow$$
 page 21

$$\rightarrow$$
 page 21

$$\rightarrow$$
 page 23

$$\rightarrow$$
 page 23

1. Montrer que l'intégrale $\int_{\frac{74}{3}\pi}^{+\infty} x \cos(x) e^{(-x)} dx$ converge.

2. Calculer l'intégrale :
$$\int_{\frac{74}{3}\pi}^{+\infty}x\cos\left(x\right)e^{(-x)}\mathrm{d}x.$$

Exercice 23. Calculer: $\int_{-3}^{0} (2x^2 - x)e^{(6x)} dx$.

 \rightarrow page 25

Exercice 24. Calculer: $\int_{-2}^{3} x e^{(2x)} dx.$

 \rightarrow page 26

Exercice 25. Calculer: $\int_{2}^{40} (x^2 + x) \ln(x) dx.$

 \rightarrow page 26

Exercice 26. Calculer: $\int_0^{\frac{1}{2}\pi} (4x^2 - 7x - 21) \sin(x) dx$.

 \rightarrow page 26

Exercice 27. Calculer l'intégrale : $\int_{-4\pi}^{-\frac{1}{4}\pi} x e^{(-x)} \sin(x) dx.$

 \rightarrow page 27

Exercice 28.

 \rightarrow page 27

1. Montrer que l'intégrale $\int_{-2\pi}^{+\infty} x^2 e^{(-4x)} \sin(3x) dx$ converge.

2. Calculer l'intégrale : $\int_{-2\pi}^{+\infty} x^2 e^{(-4x)} \sin(3x) dx.$

 \rightarrow page 28

Exercice 29. Calculer: $\int_0^{\pi} 2(x-1)\sin(5x) dx.$

 \rightarrow page 28

Exercice 30. Calculer l'intégrale : $\int_{\pi}^{4\pi} x e^{(-x)} \sin(25 x)^2 dx.$

 \rightarrow page 28

Exercice 31.

1. Soit $n \in \mathbb{N}$. Montrer que l'intégrale $\int_2^{+\infty} x^n e^{(-2x)} dx$ converge.

2. On pose: $\forall n \in \mathbb{N}, I_n = \int_2^{+\infty} x^n e^{(-2x)} dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = 2^{n-1}e^{(-4)} + \frac{1}{2}nI_{n-1}.$$

3. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 32. Calculer l'intégrale : $\int_{\frac{1}{6}\pi}^{\frac{1}{2}\pi} x e^{(-x)} \sin(x) dx.$

 \rightarrow page 29

Exercice 33. Calculer l'intégrale : $\int_{-\frac{1}{3}\pi}^{14\pi} x \cos(x)^2 e^x dx.$

 \rightarrow page 30

Exercice 34.

 \rightarrow page 30

1. On pose: $\forall n \in \mathbb{N}, I_n = \int_{-\frac{2}{3}\pi}^{\pi} x^n e^{(ix)} dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = \frac{1}{2} \left(-\frac{2}{3}\pi\right)^n \left(\sqrt{3} - i\right) + i\pi^n + inI_{n-1}.$$

- 2. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.
- 3. En déduire une expression explicite de $\int_{-\frac{2}{3}\pi}^{\pi} x^n \sin(x) dx$ pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 35.

- 1. Montrer que l'intégrale $\int_{\frac{1}{4}\pi}^{+\infty} x \cos(x) e^{(-x)} dx$ converge.
- 2. Calculer l'intégrale: $\int_{\frac{1}{4}\pi}^{+\infty} x \cos(x) e^{(-x)} dx$.
- **Exercice 36.** Calculer l'intégrale: $\int_{-\frac{1}{2}\pi}^{0} x \cos(3x)^{2} e^{(-10x)} dx.$
- **Exercice 37.** Calculer: $\int_{-\frac{1}{3}\pi}^{0} (x^2 + x) \sin(x) dx.$
- **Exercice 38.** Calculer: $\int_{-\pi}^{29\pi} (x^2 4x 1) \cos(4x) dx$.

Exercice 39.

1. On pose: $\forall n \in \mathbb{N}, I_n = \int_0^{\frac{5}{6}\pi} x^n e^{(ix)} dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = \frac{1}{2} \left(\frac{5}{6}\pi\right)^n \left(i\sqrt{3}+1\right) + inI_{n-1}.$$

- 2. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.
- 3. En déduire une expression explicite de $\int_0^{\frac{5}{6}\pi} x^n \sin(x) dx$ pour tout $n \in \mathbb{N} \setminus \{0\}$.
- **Exercice 40.** Calculer: $\int_0^{\frac{2}{3}\pi} (2x+3)\cos(x) dx$.
- **Exercice 41.** Calculer l'intégrale : $\int_{-\frac{7}{2}}^{0} x \cos(2x)^{2} e^{(-x)} dx.$
- **Exercice 42.** Calculer: $\int_{-1}^{0} (x+2)e^{(-7x)} dx$.
- **Exercice 43.** Calculer l'intégrale : $\int_{-\frac{277}{2}}^{-\frac{1}{6}\pi} x \cos(x)^2 e^{(-x)} dx.$

Exercice 44.

1. On pose: $\forall n \in \mathbb{N}, I_n = \int_{-\frac{1}{4}\pi}^0 x^n e^{(ix)} dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = \left(\frac{1}{2}i + \frac{1}{2}\right)\sqrt{2}\left(-\frac{1}{4}\pi\right)^n + inI_{n-1}.$$

- 2. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.
- 3. En déduire une expression explicite de $\int_{-\frac{1}{4}}^{0} x^n \sin(x) dx$ pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 45.

- \rightarrow page 32
- \rightarrow page 32
- \rightarrow page 32
- \rightarrow page 33

- \rightarrow page 34
- \rightarrow page 34
- \rightarrow page 35
- \rightarrow page 35

- 1. Montrer que l'intégrale $\int_{-2\pi}^{+\infty} x e^{(-4x)} \sin(7x)^2 dx$ converge.
- 2. Calculer l'intégrale: $\int_{-2\pi}^{+\infty} x e^{(-4x)} \sin(7x)^2 dx.$

Exercice 46.

- 1. Montrer que l'intégrale $\int_{-3\pi}^{+\infty} x^2 e^{(-x)} \sin(x) dx$ converge.
- 2. Calculer l'intégrale : $\int_{-3\pi}^{+\infty} x^2 e^{(-x)} \sin(x) dx.$

Exercice 47.

1. On pose: $\forall n \in \mathbb{N}, I_n = \int_{-\frac{1}{2}\pi}^{\frac{1}{4}\pi} x^n e^{(ix)} dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = -\left(\frac{1}{2}i - \frac{1}{2}\right)\sqrt{2}\left(\frac{1}{4}\pi\right)^n + \left(-\frac{1}{2}\pi\right)^n + inI_{n-1}.$$

- 2. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.
- 3. En déduire une expression explicite de $\int_{-\frac{1}{2}\pi}^{\frac{1}{4}\pi} x^n \sin(x) dx$ pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 48. Calculer: $\int_0^{17\pi} (x^2 + x - 2) \cos(x) dx.$

Exercice 49.

- 1. Montrer que l'intégrale $\int_{\frac{8}{3}\pi}^{+\infty} x \cos(3x) e^{(-2x)} dx$ converge.
- 2. Calculer l'intégrale : $\int_{\frac{8}{3}\pi}^{+\infty}x\cos\left(3\,x\right)e^{\left(-2\,x\right)}\mathrm{d}x.$

Exercice 50. Calculer l'intégrale :
$$\int_{-\frac{1}{4}\pi}^{\frac{1}{3}\pi} x \cos(x)^2 e^x dx.$$

Exercice 51.

- 1. Montrer que l'intégrale $\int_{7\pi}^{+\infty} x^2 e^{(-x)} \sin(x)^2 dx$ converge.
- 2. Calculer l'intégrale: $\int_{7\pi}^{+\infty} x^2 e^{(-x)} \sin(x)^2 dx.$

Exercice 52. Calculer:
$$\int_{-\frac{2}{3}\pi}^{\frac{29}{4}\pi} (x^2 - x - 3) \cos(2x) dx$$
.

Exercice 53. Calculer l'intégrale:
$$\int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} x e^{(6x)} \sin(2x)^2 dx.$$

Exercice 54.

- 1. Montrer que l'intégrale $\int_{-\frac{1}{6}\pi}^{+\infty} x^2 e^{(-x)} \sin(x) dx$ converge.
- 2. Calculer l'intégrale : $\int_{-\frac{1}{2}\pi}^{+\infty} x^2 e^{(-x)} \sin(x) dx.$

 \rightarrow page 37

 \rightarrow page 38

 \rightarrow page 38

 \rightarrow page 39

 \rightarrow page 39

 \rightarrow page 40

 \rightarrow page 41

 \rightarrow page 41

Exercice 55. Calculer: $\int_{-\pi}^{0} (x^2 + x) \cos(x) dx.$

 \rightarrow page 42

 \rightarrow page 42

Exercice 56.

1. On pose:
$$\forall n \in \mathbb{N}, I_n = \int_{-\frac{1}{3}\pi}^{\frac{1}{4}\pi} x^n e^{(ix)} dx$$
. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = -\left(\frac{1}{2}i - \frac{1}{2}\right)\sqrt{2}\left(\frac{1}{4}\pi\right)^n + \left(-\frac{1}{2}\pi\right)^n + inI_{n-1}.$$

- 2. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.
- 3. En déduire une expression explicite de $\int_{-\frac{1}{2}\pi}^{\frac{1}{4}\pi} x^n \cos(x) dx$ pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 57. Calculer l'intégrale: $\int_{\frac{2}{3}\pi}^{\frac{5}{4}\pi} x \cos(8x)^2 e^{(-x)} dx.$

 \rightarrow page 43

 \rightarrow page 44

Exercice 58.

- 1. Montrer que l'intégrale $\int_{\frac{3}{2}\pi}^{+\infty} x e^{(-x)} \sin(x)^2 dx$ converge.
- 2. Calculer l'intégrale : $\int_{\frac{3}{2}\pi}^{+\infty} x e^{(-x)} \sin{(x)}^2 dx.$

Exercice 59. Calculer: $\int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} 3x \cos(41x) dx$.

 \rightarrow page 45

Exercice 60. Calculer: $\int_{0}^{48} 2(3x+1) \ln(x)^{2} dx$.

 \rightarrow page 45

Exercice 61. Calculer: $\int_{5}^{40} (10 x + 1) \ln(x)^{2} dx$.

 \rightarrow page 45

 \rightarrow page 46

Exercice 62.

1. On pose: $\forall n \in \mathbb{N}, I_n = \int_{\frac{1}{n}\pi}^{\frac{1}{3}\pi} x^n e^{(2ix)} dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = \frac{1}{4} \left(\frac{1}{3}\pi\right)^n \left(\sqrt{3}+i\right) - \frac{1}{4} \left(\frac{1}{6}\pi\right)^n \left(\sqrt{3}-i\right) + \frac{1}{2}inI_{n-1}.$$

- 2. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.
- 3. En déduire une expression explicite de $\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} x^n \cos(2x) dx$ pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 63.

 \rightarrow page 47

1. On pose: $\forall n \in \mathbb{N}, I_n = \int_1^{10} x^n e^{(-x)} dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = -10^n e^{(-10)} + e^{(-1)} + nI_{n-1}.$$

2. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 64. Calculer: $\int_{-9\pi}^{0} (x^2 + 3x - 1) \cos(7x) dx$.

 \rightarrow page 47

Exercice 65.

1. On pose: $\forall n \in \mathbb{N}, I_n = \int_{-\frac{13}{c}\pi}^{-\pi} x^n e^{(ix)} dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = \frac{1}{2} \left(-\frac{13}{6} \pi \right)^n \left(i \sqrt{3} + 1 \right) + i \left(-\pi \right)^n + i n I_{n-1}.$$

- 2. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.
- 3. En déduire une expression explicite de $\int_{-\frac{13}{6}}^{-\pi} x^n \cos(x) dx$ pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 66. Calculer:
$$\int_{1}^{5} (x^2 + 3x) \ln(x)^2 dx$$
.

$$\rightarrow$$
 page 49

Exercice 67. Calculer: $\int_{1}^{2} (5 x + 2) \ln(x)^{2} dx$.

$$\rightarrow$$
 page 49

Exercice 68. Calculer l'intégrale : $\int_{-\pi}^{11\pi} x e^{(-x)} \sin(4x) dx.$

$$\rightarrow$$
 page 49

 \rightarrow page 50

Exercice 69.

- 1. Montrer que l'intégrale $\int_{\frac{1}{4}\pi}^{+\infty} x^2 \cos(3x) e^{(-4x)} dx$ converge.
- 2. Calculer l'intégrale : $\int_{\frac{1}{4}\pi}^{+\infty} x^2 \cos(3x) e^{(-4x)} dx.$

$$\rightarrow$$
 page 50

Exercice 70. Calculer: $\int_{1}^{160} (3x^2 + x - 3) \ln(x)^2 dx$.

 \rightarrow page 51

Exercice 71.

1. On pose: $\forall n \in \mathbb{N}, I_n = \int_{-5}^{-2} x^n e^{(-9x)} dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = \frac{1}{9} (-5)^n e^{45} - \frac{1}{9} (-2)^n e^{18} + \frac{1}{9} n I_{n-1}.$$

2. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 72. Calculer l'intégrale: $\int_0^{\pi} x \cos(2x) e^{(-x)} dx$.

 \rightarrow page 51

 \rightarrow page 52

Exercice 73.

- 1. Soit $n \in \mathbb{N}$. Montrer que l'intégrale $\int_{2}^{+\infty} \frac{\ln(x)^{n}}{x^{3}} dx$ converge.
- 2. On pose: $\forall n \in \mathbb{N}, I_n = \int_2^{+\infty} \frac{\ln(x)^n}{x^3} dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = \frac{1}{8} \ln(2)^n + \frac{1}{2} n I_{n-1}.$$

3. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 74. Calculer: $\int_{2}^{3} (x^{2} - 3x + 8) \ln(x) dx$.

 \rightarrow page 53

Exercice 75. Calculer: $\int_{4}^{7} x \ln(x)^{2} dx.$

Exercice 76. Calculer: $\int_{-7}^{-2} (x^2 - x)e^x dx.$

 \rightarrow page 53

Exercice 77.

1. Soit $n \in \mathbb{N}$. Montrer que l'intégrale $\int_0^1 \ln{(x)}^n dx$ converge.

2. On pose: $\forall n \in \mathbb{N}, I_n = \int_0^1 \ln(x)^n dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = -nI_{n-1}.$$

3. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 78.

1. Montrer que l'intégrale $\int_{\frac{1}{4}\pi}^{+\infty} x \cos(x) e^{(-7x)} dx$ converge.

2. Calculer l'intégrale : $\int_{\frac{1}{4}\pi}^{+\infty} x \cos(x) e^{(-7x)} dx$.

Exercice 79. Calculer l'intégrale : $\int_0^{\frac{1}{2}\pi} x e^{(-x)} \sin(x)^2 dx.$

Exercice 80. Calculer: $\int_{-1}^{1} (7x+2)e^x dx.$

Exercice 81. Calculer l'intégrale : $\int_0^{\frac{1}{3}\pi} x \cos(2\pi)^2 e^{(3\pi)} dx.$

Exercice 82.

1. On pose: $\forall n \in \mathbb{N}, I_n = \int_{\frac{1}{4}\pi}^{3\pi} x^n e^{(2ix)} dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = -\frac{1}{2}i (3\pi)^n - \frac{1}{2} \left(\frac{1}{4}\pi\right)^n + \frac{1}{2}inI_{n-1}.$$

2. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.

3. En déduire une expression explicite de $\int_{\frac{1}{4}\pi}^{3\pi} x^n \sin(2x) dx$ pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 83.

1. On pose : $\forall n \in \mathbb{N}, I_n = \int_0^{\frac{1}{3}\pi} x^n e^{(ix)} dx$. Montrer :

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = \frac{1}{2} \left(\frac{1}{3}\pi\right)^n \left(\sqrt{3} - i\right) + inI_{n-1}.$$

2. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.

3. En déduire une expression explicite de $\int_0^{\frac{1}{3}\pi} x^n \cos(x) dx$ pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 84. Calculer: $\int_{-1}^{13} (9 x + 2) e^{(7 x)} dx$.

Exercice 85. Calculer l'intégrale : $\int_{-\frac{8}{3}\pi}^{\frac{5}{2}\pi} x e^x \sin(x)^2 dx.$

 \rightarrow page 54

 \rightarrow page 55

 \rightarrow page 55

 \rightarrow page 56

 \rightarrow page 56

 \rightarrow page 56

 \rightarrow page 57

 \rightarrow page 58

Exercice 86. Calculer: $\int_{-\frac{1}{6}\pi}^{\frac{1}{4}\pi} (3x^2 + 47) \sin(3x) dx$.

 \rightarrow page 59

Exercice 87. Calculer: $\int_{1}^{17} 2 x \ln(x)^{2} dx.$

 \rightarrow page 59

Exercice 88. Calculer l'intégrale : $\int_{-\pi}^{0} x e^{(5x)} \sin(x) dx.$

 \rightarrow page 60

Exercice 89. Calculer: $\int_0^{\pi} (x+2) \sin(x) dx.$

 \rightarrow page 60

Exercice 90. Calculer: $\int_2^5 (2x^2 - 3)e^x dx.$

 \rightarrow page 60

Exercice 91.

1. Soit $n \in \mathbb{N}$. Montrer que l'intégrale $\int_{-\pi}^{+\infty} x^n e^{(-x)} dx$ converge.

 \rightarrow page 61

2. On pose: $\forall n \in \mathbb{N}, I_n = \int_{-7}^{+\infty} x^n e^{(-x)} dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = (-7)^n e^7 + nI_{n-1}.$$

3. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 92. Calculer l'intégrale : $\int_{-\frac{1}{3}\pi}^{0} x e^{(13x)} \sin(x) dx.$

 \rightarrow page 61

Exercice 93. Calculer: $\int_{1}^{3} (x-8) \ln(x) dx.$

 \rightarrow page 62

 \rightarrow page 62

Exercice 94.

1. Montrer que l'intégrale $\int_{\frac{1}{4}\pi}^{+\infty} x^2 e^{(-6x)} \sin(x)^2 dx$ converge.

2. Calculer l'intégrale : $\int_{\frac{1}{2}\pi}^{+\infty} x^2 e^{(-6x)} \sin(x)^2 dx.$

Exercice 95.

1. Montrer que l'intégrale $\int_{-\frac{1}{2}\pi}^{+\infty} x^2 \cos(6x) e^{(-6x)} dx$ converge.

2. Calculer l'intégrale : $\int_{-\frac{1}{2}\pi}^{+\infty} x^2 \cos\left(6\,x\right) e^{\left(-6\,x\right)} \mathrm{d}x.$

 \rightarrow page 63

Exercice 96.

1. Montrer que l'intégrale $\int_{-\frac{1}{4}\pi}^{+\infty}x\cos{(x)^2}\,e^{(-17\,x)}\mathrm{d}x$ converge.

2. Calculer l'intégrale : $\int_{-\frac{1}{4}\pi}^{+\infty} x \cos(x)^2 e^{(-17x)} dx.$

 \rightarrow page 63

Exercice 97. Calculer l'intégrale : $\int_{\frac{1}{4}\pi}^{7\pi} x e^{(3x)} \sin(6x)^2 dx.$

 \rightarrow page 64

Exercice 98. Calculer: $\int_{-1}^{1} (x^2 - 4)e^x dx.$

Exercice 99.

 \rightarrow page 65

- 1. Soit $n \in \mathbb{N}$. Montrer que l'intégrale $\int_{-5}^{+\infty} x^n e^{(-x)} \mathrm{d}x$ converge.
- 2. On pose: $\forall n \in \mathbb{N}, I_n = \int_{-5}^{+\infty} x^n e^{(-x)} dx$. Montrer:

$$\forall n \in \mathbb{N} \setminus \{0\}, \quad I_n = (-5)^n e^5 + nI_{n-1}.$$

3. En déduire une expression explicite de I_n pour tout $n \in \mathbb{N} \setminus \{0\}$.

Exercice 100. Calculer l'intégrale : $\int_{\frac{1}{3}}^{2\pi} x e^{(-4x)} \sin(x) dx.$

Corrigé 1.

 \leftarrow page 1

1. Soit $n \in \mathbb{N}$. L'application $x \mapsto x^n e^{(-x)}$ est continue sur $[1, +\infty[$. Pour tout x au voisinage de $+\infty$, on a par croissances comparées :

$$x^{2} \cdot x^{n} e^{(-x)} = x^{2} x^{n} e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0,$$

donc: $x^n e^{(-x)} = \underset{x \to +\infty}{o} \left(\frac{1}{x^2}\right)$. Or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$ converge parce que son exposant est

- 2>1. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} x^n e^{(-x)} dx$ converge, d'où le résultat.
- 2. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto x^n$ et en intégrant $x \mapsto e^{(-x)}$. Le lecteur en exercice prendra bien garde à vérifier l'existence du terme entre crochets, par un calcul de limite aux extrémités (il trouvera une limite nulle, par croissances comparées, à l'extrémité problématique). L'intégration par parties conserve la nature des intégrales donc $\int_{-\infty}^{+\infty} -nx^{n-1}e^{(-x)}dx$ converge également et on en

tion par parties conserve la nature des intégrales, donc $\int_1^{+\infty} -nx^{n-1}e^{(-x)}dx$ converge également et on en déduit :

$$\int_{1}^{+\infty} x^{n} e^{(-x)} dx = \left[-x^{n} e^{(-x)} \right]_{1}^{+\infty} - \int_{1}^{+\infty} -nx^{n-1} e^{(-x)} dx.$$

C'est-à-dire, après simplifications:

$$I_n = e^{(-1)} + nI_{n-1}.$$

D'où le résultat.

3. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k - kI_{k-1} = e^{(-1)}$$
.

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{1}{l \cdot l}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{k!} I_k - \frac{1}{(k-1)!} I_{k-1} = \frac{e^{(-1)}}{k!}.$$

On somme cette égalité de k=1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{1}{n!}I_n - I_0 = \sum_{k=1}^n \left(\frac{e^{(-1)}}{k!}\right),\,$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_n = n! \left[I_0 + \sum_{k=1}^n \left(\frac{e^{(-1)}}{k!} \right) \right].$$

Or: $I_0 = \int_1^{+\infty} e^{(-x)} dx = \left[-e^{(-x)} \right]_1^{+\infty} = e^{(-1)}$, donc finalement:

$$I_n = n! \left[e^{(-1)} + \sum_{k=1}^n \left(\frac{e^{(-1)}}{k!} \right) \right].$$

Corrigé 2.

 \leftarrow page 1

1. L'application $x\mapsto x^2e^{(-x)}\sin{(4\,x)}$ est continue sur $[\frac{1}{4}\,\pi,+\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x\in[\frac{1}{4}\,\pi,+\infty[$, on a:

$$\left| x^2 e^{(-x)} \sin(4x) \right| \leqslant x^2 e^{(-x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-x)} = x^4 e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc :

$$x^2 e^{(-x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2} \right).$$

 \leftarrow page 1

Or l'intégrale de Riemann $\int_{\frac{1}{4}\pi}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{4}\pi}^{+\infty} x^2 e^{(-x)} \mathrm{d}x$ converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{4}\pi}^{+\infty} x^2 e^{(-x)} \sin{(4x)} \, \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{\frac{1}{4}\pi}^{+\infty} x^2 e^{(-x)} \sin(4x) \, dx = \operatorname{Im} \left(\int_{\frac{1}{4}\pi}^{+\infty} x^2 e^{((4i-1)x)} \, dx \right),$$

et on calcule cette intégrale en intégrant par parties deux fois : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{\frac{1}{4}\pi}^{+\infty} x^2 e^{(-x)} \sin\left(4\,x\right) \mathrm{d}x = \mathrm{Im}\left(-\left(\frac{1}{68}i + \frac{1}{272}\right)\,\pi^2 e^{\left(-\frac{1}{4}\,\pi\right)} - \left(\frac{4}{289}i - \frac{15}{578}\right)\,\pi e^{\left(-\frac{1}{4}\,\pi\right)} + \left(\frac{104}{4913}i + \frac{94}{4913}\right)\,e^{\left(-\frac{1}{4}\,\pi\right)}\right),$$

et donc:

$$\int_{\frac{1}{4}\pi}^{+\infty} x^2 e^{(-x)} \sin{(4x)} \, \mathrm{d}x = -\frac{1}{68} \, \pi^2 e^{\left(-\frac{1}{4}\pi\right)} - \frac{4}{289} \, \pi e^{\left(-\frac{1}{4}\pi\right)} + \frac{104}{4913} \, e^{\left(-\frac{1}{4}\pi\right)}.$$

Corrigé 3.

1. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto x^n$ et en intégrant $x \mapsto e^{(21ix)}$. On en déduit :

$$\int_0^{\frac{2}{3}\pi} x^n e^{(21ix)} dx = \left[-\frac{1}{21} i \, x^n e^{(21ix)} \right]_0^{\frac{2}{3}\pi} - \int_0^{\frac{2}{3}\pi} -\frac{1}{21} i \, n x^{n-1} e^{(21ix)} dx.$$

C'est-à-dire, après simplifications:

$$I_n = -\frac{1}{21}i\left(\frac{2}{3}\pi\right)^n + \frac{1}{21}inI_{n-1}.$$

D'où le résultat.

2. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k - \frac{1}{21}ikI_{k-1} = -\frac{1}{21}i\left(\frac{2}{3}\pi\right)^k.$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{21^k}{i^k k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{21^k}{i^k k!} I_k - \frac{21^{k-1}}{i^{k-1} (k-1)!} I_{k-1} = -\frac{i \cdot 21^k \left(\frac{2}{3} \pi\right)^k}{21 i^k k!}.$$

On somme cette égalité de k=1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{21^n}{i^n n!} I_n - I_0 = \sum_{k=1}^n \left(-\frac{i \cdot 21^k \left(\frac{2}{3} \pi\right)^k}{21 \, i^k k!} \right),\,$$

et il suffit d'isoler I_n pour avoir le résultat voulu

$$I_{n} = \frac{i^{n} n!}{21^{n}} \left[I_{0} + \sum_{k=1}^{n} \left(-\frac{i \cdot 21^{k} \left(\frac{2}{3} \pi\right)^{k}}{21 i^{k} k!} \right) \right].$$

Or: $I_0 = \int_0^{\frac{2}{3}\pi} e^{(21ix)} dx = \left[-\frac{1}{21} i e^{(21ix)} \right]_0^{\frac{2}{3}\pi} = 0$, donc finalement:

$$I_n = \frac{i^n n!}{21^n} \left[+ \sum_{k=1}^n \left(-\frac{i \cdot 21^k \left(\frac{2}{3} \pi\right)^k}{21 i^k k!} \right) \right].$$

3. Il suffit de prendre la partie réelle dans l'expression de la question précédente. On y parvient en développant le produit du membre de droite, et en mettant sous forme exponentielle le terme général de la somme. Souvenons-nous que : $\forall k \in \mathbb{N}, \ i^k = \left(e^{\frac{i\pi}{2}}\right)^k = e^{\frac{ki\pi}{2}}, \ \text{et} : 1 = e^{14i\,\pi}, \ \text{de} \ \text{sorte} \ \text{que} \ \text{finalement} \ \text{on trouve} \ \text{que} \ \text{pour tout} \ n \in \mathbb{N} \setminus \{0\} \ \text{on a, après calculs} :$

$$\int_0^{\frac{2}{3}\pi} x^n \cos{(21\,x)} \, \mathrm{d}x = \frac{n!}{21^n} \left[+ \sum_{k=1}^n \left(\frac{21^k \left(\frac{2}{3}\,\pi\right)^{k-1} \sin{\left(-\frac{1}{2}\,\pi k + \frac{1}{2}\,\pi n\right)}}{k!} \right) \right].$$

Corrigé 4.

 \leftarrow page 1

1. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto x^n$ et en intégrant $x \mapsto e^{(ix)}$. On en déduit :

$$\int_{-\frac{1}{4}\pi}^{\frac{1}{6}\pi} x^n e^{(i\,x)} \mathrm{d}x = \left[-i\,x^n e^{(i\,x)} \right]_{-\frac{1}{4}\pi}^{\frac{1}{6}\pi} - \int_{-\frac{1}{4}\pi}^{\frac{1}{6}\pi} -i\,n x^{n-1} e^{(i\,x)} \mathrm{d}x.$$

C'est-à-dire, après simplifications:

$$I_n = -\frac{1}{2} \left(\frac{1}{6} \pi \right)^n \left(i \sqrt{3} - 1 \right) + \left(\frac{1}{2} i + \frac{1}{2} \right) \sqrt{2} \left(-\frac{1}{4} \pi \right)^n + inI_{n-1}.$$

D'où le résultat.

2. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k - ikI_{k-1} = -\frac{1}{2} \left(\frac{1}{6}\pi\right)^k \left(i\sqrt{3} - 1\right) + \left(\frac{1}{2}i + \frac{1}{2}\right) \sqrt{2} \left(-\frac{1}{4}\pi\right)^k.$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{1}{i^k k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{i^k k!} I_k - \frac{1}{i^{k-1} (k-1)!} I_{k-1} = -\frac{\left(\frac{1}{6} \pi\right)^k \left(i \sqrt{3} - 1\right) - \left(i + 1\right) \sqrt{2} \left(-\frac{1}{4} \pi\right)^k}{2 i^k k!}.$$

On somme cette égalité de k=1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{1}{i^n n!} I_n - I_0 = \sum_{k=1}^n \left(-\frac{\left(\frac{1}{6}\pi\right)^k \left(i\sqrt{3} - 1\right) - \left(i + 1\right)\sqrt{2}\left(-\frac{1}{4}\pi\right)^k}{2i^k k!} \right),\,$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_n = i^n n! \left[I_0 + \sum_{k=1}^n \left(-\frac{\left(\frac{1}{6}\pi\right)^k \left(i\sqrt{3}-1\right) - \left(i+1\right)\sqrt{2}\left(-\frac{1}{4}\pi\right)^k}{2i^k k!} \right) \right].$$

Or:
$$I_0 = \int_{-\frac{1}{4}\pi}^{\frac{1}{6}\pi} e^{(ix)} dx = \left[-i e^{(ix)} \right]_{-\frac{1}{4}\pi}^{\frac{1}{6}\pi} = -\frac{1}{2} i \sqrt{3} + \left(\frac{1}{2} i + \frac{1}{2} \right) \sqrt{2} + \frac{1}{2}$$
, donc finalement:

$$I_n = i^n n! \left[-\frac{1}{2} i \sqrt{3} + \left(\frac{1}{2} i + \frac{1}{2} \right) \sqrt{2} + \frac{1}{2} + \sum_{k=1}^n \left(-\frac{\left(\frac{1}{6} \pi \right)^k \left(i \sqrt{3} - 1 \right) - \left(i + 1 \right) \sqrt{2} \left(-\frac{1}{4} \pi \right)^k}{2 i^k k!} \right) \right].$$

3. Il suffit de prendre la partie imaginaire dans l'expression de la question précédente. On y parvient en développant le produit du membre de droite, et en mettant sous forme exponentielle le terme général de la somme. Souvenons-nous que : $\forall k \in \mathbb{N}, \ i^k = \left(e^{\frac{i\pi}{2}}\right)^k = e^{\frac{ki\pi}{2}}, \ \text{et} : -\left(\frac{1}{2}i - \frac{1}{2}\right)\sqrt{2} = e^{-\frac{1}{4}i\,\pi}, \ \frac{1}{2}\sqrt{3} + \frac{1}{2}i = e^{\frac{1}{6}i\,\pi}, \ \text{de sorte que finalement on trouve que pour tout } n \in \mathbb{N} \setminus \{0\} \text{ on a, après calculs :}$

$$\int_{-\frac{1}{4}\pi}^{\frac{1}{6}\pi} x^n \sin(x) dx = n! \left[\sin\left(-\frac{1}{3}\pi + \frac{1}{2}\pi n\right) - \sin\left(-\frac{3}{4}\pi + \frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(\frac{\left(\frac{1}{6}\pi\right)^{k-1} \sin\left(-\frac{1}{3}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n\right) - \left(-\frac{1}{4}\pi\right)^{k-1} \sin\left(-\frac{1}{2}\pi k + \frac{1}{2}\pi n\right) - \left(-\frac{1}{4}\pi\right)^{k-1} \sin\left(-\frac{1}{4}\pi k + \frac{1}{2}\pi n\right) - \left(-\frac{1}{4}\pi\right)^{k-1} \sin\left(-\frac{1}{4}\pi\right)^{k-1} \sin\left(-\frac{1}{4}\pi k + \frac{1}{4}\pi n\right) - \left(-\frac{1}{4}\pi\right)^{k-1} \sin\left$$

Corrigé 5. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties deux fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial : pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

 \leftarrow page 1

Mettons cela en œuvre: l'application $x \mapsto 17 x^2 - 64 x + 1$ est de classe C^1 sur [-3,0], de dérivée $x \mapsto 34 x - 64$, tandis que $x \mapsto e^{(6 x)}$ est continue sur [-3,0], et une primitive est $x \mapsto \frac{1}{6} e^{(6 x)}$. D'après la formule de l'intégration par parties:

$$\int_{-3}^{0} (17x^2 - 64x + 1)e^{(6x)} dx = \left[\frac{1}{6} (17x^2 - 64x + 1)e^{(6x)} \right]_{-3}^{0} - \int_{-3}^{0} \frac{1}{3} (17x - 32)e^{(6x)} dx$$
$$= -\frac{173}{3} e^{(-18)} + \frac{1}{6} - \int_{-3}^{0} \left(\frac{1}{3} (17x - 32)e^{(6x)} \right) dx.$$

On recommence : l'application $x\mapsto 34\,x-64$ est de classe C^1 sur [-3,0], de dérivée $x\mapsto 34$, tandis que $x\mapsto \frac{1}{6}\,e^{(6\,x)}$ est continue sur [-3,0], et une primitive est $x\mapsto \frac{1}{36}\,e^{(6\,x)}$. D'après la formule de l'intégration par parties :

$$\begin{split} \int_{-3}^{0} \frac{1}{3} (17x - 32) e^{(6x)} dx &= \left[\frac{1}{18} (17x - 32) e^{(6x)} \right]_{-3}^{0} - \int_{-3}^{0} \frac{17}{18} e^{(6x)} dx \\ &= \frac{83}{18} e^{(-18)} - \frac{16}{9} - \int_{-3}^{0} \left(\frac{17}{18} e^{(6x)} \right) dx. \end{split}$$

Or:
$$\int_{-3}^{0} \left(\frac{17}{18} e^{(6x)} \right) dx = \left[\frac{17}{108} e^{(6x)} \right]_{-3}^{0} = -\frac{17}{108} e^{(-18)} + \frac{17}{108}. \text{ On conclut:}$$
$$\int_{-3}^{0} \left(17 x^2 - 64 x + 1 \right) e^{(6x)} dx = -\frac{6743}{108} e^{(-18)} + \frac{227}{108}.$$

Corrigé 6.

 \leftarrow page 1

1. L'application $x \mapsto xe^{(-x)}\sin(x)$ est continue sur $\left[\frac{2}{3}\pi, +\infty\right[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in \left[\frac{2}{3}\pi, +\infty\right[$, on a:

$$\left| xe^{(-x)}\sin\left(x\right) \right| \leqslant xe^{(-x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot xe^{(-x)} = x^3e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc :

$$xe^{(-x)} = \underset{x \to +\infty}{o} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{\frac{2}{3}\pi}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{2}{3}\pi}^{+\infty} x e^{(-x)} \mathrm{d}x$ converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{2}{3}\pi}^{+\infty} x e^{(-x)} \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{\frac{2}{3}\pi}^{+\infty} x e^{(-x)} \sin(x) \, \mathrm{d}x = \mathrm{Im} \left(\int_{\frac{2}{3}\pi}^{+\infty} x e^{((i-1)x)} \, \mathrm{d}x \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{\frac{2}{3}\pi}^{+\infty} x e^{(-x)} \sin{(x)} dx = \operatorname{Im}\left(\left(\frac{1}{6}i - \frac{1}{6}\right) \sqrt{3}\pi e^{\left(-\frac{2}{3}\pi\right)} - \left(\frac{1}{6}i + \frac{1}{6}\right) \pi e^{\left(-\frac{2}{3}\pi\right)} - \frac{1}{4}\sqrt{3}e^{\left(-\frac{2}{3}\pi\right)} - \frac{1}{4}i e^{\left(-\frac{2}{3}\pi\right)}\right),$$

et donc:

$$\int_{\frac{2}{3}\pi}^{+\infty} x e^{(-x)} \sin(x) \, \mathrm{d}x = \frac{1}{6} \sqrt{3} \pi e^{\left(-\frac{2}{3}\pi\right)} - \frac{1}{6} \pi e^{\left(-\frac{2}{3}\pi\right)} - \frac{1}{4} e^{\left(-\frac{2}{3}\pi\right)}.$$

Corrigé 7.

 \leftarrow page 2

1. Soit $n \in \mathbb{N}$. L'application $x \mapsto \frac{\ln(x)^n}{x^4}$ est continue sur $[1, +\infty[$. Pour tout x au voisinage de $+\infty$, on a par croissances comparées:

$$x^{\frac{5}{2}} \cdot \frac{\ln(x)^n}{x^4} = \frac{\ln(x)^n}{x^{\frac{3}{2}}} \xrightarrow[x \to +\infty]{} 0,$$

 $\operatorname{donc} \colon \frac{\ln\left(x\right)^n}{x^4} = \underset{x \to +\infty}{o} \left(\frac{1}{x^{\frac{5}{2}}}\right). \text{ Or l'intégrale de Riemann } \int_{1}^{+\infty} \frac{\mathrm{d}x}{x^{\frac{5}{2}}} \text{ converge parce que son exposant est } \frac{1}{x^{\frac{5}{2}}} \left(\frac{1}{x^{\frac{5}{2}}}\right)$

 $\frac{5}{2} > 1$. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{1}^{+\infty} \frac{\ln(x)^n}{x^4} dx$ converge, d'où le résultat.

2. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto \ln(x)^n$ et en intégrant $x \mapsto \frac{1}{x^4}$. Le lecteur en exercice prendra bien garde à vérifier l'existence du terme entre crochets, par un calcul de limite aux extrémités (il trouvera une limite nulle, par croissances comparées, à l'extrémité problématique). L'intégration par parties conserve la nature des intégrales, donc $\int_1^{+\infty} -\frac{n \ln(x)^{n-1}}{3x^4} dx$ converge également et on en déduit:

$$\int_{1}^{+\infty} \frac{\ln(x)^{n}}{x^{4}} dx = \left[-\frac{\ln(x)^{n}}{3x^{3}} \right]_{1}^{+\infty} - \int_{1}^{+\infty} -\frac{n\ln(x)^{n-1}}{3x^{4}} dx.$$

C'est-à-dire, après simplifications:

$$I_n = \frac{1}{3}nI_{n-1}.$$

D'où le résultat.

3. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k - \frac{1}{3}kI_{k-1} = 0.$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{3^k}{k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{3^k}{k!} I_k - \frac{3^{k-1}}{(k-1)!} I_{k-1} = 0.$$

On somme cette égalité de k=1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{3^n}{n!}I_n - I_0 = 0,$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_n = \frac{n!}{3^n} I_0.$$

Or: $I_0 = \int_1^{+\infty} \frac{1}{x^4} dx = \left[-\frac{1}{3x^3} \right]_1^{+\infty} = \frac{1}{3}$, donc finalement:

$$I_n = \frac{n!}{3^n} \frac{1}{3}.$$

Corrigé 8.

 \leftarrow page 2

1. L'application $x \mapsto x^2 \cos(2x)^2 e^{(-2x)}$ est continue sur $[-4\pi, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [-4\pi, +\infty[$, on a :

$$0 \leqslant x^2 \cos(2x)^2 e^{(-2x)} \leqslant x^2 e^{(-2x)}$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-2\,x)} = x^4 e^{(-2\,x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$x^2 e^{(-2x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right).$$

 $\leftarrow \text{page } 2$

Or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2 > 1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{1}^{+\infty} x^2 e^{(-2x)} \mathrm{d}x$ converge, et donc $\int_{-4\pi}^{+\infty} x^2 e^{(-2x)} \mathrm{d}x$ converge aussi par continuité sur le segment $[-4\pi,1]$. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-4\pi}^{+\infty} x^2 \cos(2x)^2 e^{(-2x)} \mathrm{d}x$ converge : d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a :

$$\int_{-4\pi}^{+\infty} x^2 \cos(2x)^2 e^{(-2x)} dx = \int_{-4\pi}^{+\infty} \left(\frac{1}{2} x^2 (\cos(4x) + 1) e^{(-2x)} \right) dx$$
$$= \frac{1}{2} \int_{-4\pi}^{+\infty} x^2 \cos(4x) e^{(-2x)} dx + \frac{1}{2} \int_{-4\pi}^{+\infty} x^2 e^{(-2x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-4\pi}^{+\infty} x^2 \cos(4x) e^{(-2x)} dx = \text{Re}\left(\int_{-4\pi}^{+\infty} x^2 e^{((4i-2)x)} dx\right),$$

et on calcule cette intégrale en intégrant par parties deux fois : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-4\,\pi}^{+\infty} x^2 \cos\left(4\,x\right) e^{(-2\,x)} \mathrm{d}x = \operatorname{Re}\left(\left(\frac{16}{5}i + \frac{8}{5}\right)\,\pi^2 e^{(8\,\pi)} - \left(\frac{8}{25}i - \frac{6}{25}\right)\,\pi e^{(8\,\pi)} - \left(\frac{1}{250}i + \frac{11}{500}\right)\,e^{(8\,\pi)}\right),$$

et donc:

$$\int_{-4\pi}^{+\infty} x^2 \cos(4x) e^{(-2x)} dx = \frac{8}{5} \pi^2 e^{(8\pi)} + \frac{6}{25} \pi e^{(8\pi)} - \frac{11}{500} e^{(8\pi)}.$$

On calcule de même $\int_{-4\pi}^{+\infty} x^2 e^{(-2x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient : $\int_{-4\pi}^{+\infty} x^2 e^{(-2x)} dx = 8\pi^2 e^{(8\pi)} - 2\pi e^{(8\pi)} + \frac{1}{4}e^{(8\pi)}$. On peut conclure :

$$\int_{-4\pi}^{+\infty} x^2 \cos(2\pi)^2 e^{(-2\pi)} dx = \frac{24}{5} \pi^2 e^{(8\pi)} - \frac{22}{25} \pi e^{(8\pi)} + \frac{57}{500} e^{(8\pi)}.$$

Corrigé 9. Commençons par linéariser le terme trigonométrique. On a :

$$\int_{-\frac{3}{2}\pi}^{0} x e^{(-5x)} \sin(3x)^{2} dx = \int_{-\frac{3}{2}\pi}^{0} \left(-\frac{1}{2} x (\cos(6x) - 1) e^{(-5x)} \right) dx$$
$$= -\frac{1}{2} \int_{-\frac{3}{2}\pi}^{0} x \cos(6x) e^{(-5x)} dx + \frac{1}{2} \int_{-\frac{3}{2}\pi}^{0} x e^{(-5x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\frac{3}{2}\pi}^{0} x \cos(6x) e^{(-5x)} dx = \operatorname{Re} \left(\int_{-\frac{3}{2}\pi}^{0} x e^{((6i-5)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\frac{3}{2}\pi}^{0} x \cos\left(6\,x\right) e^{\left(-5\,x\right)} \mathrm{d}x = \operatorname{Re}\left(\left(\frac{9}{61}i + \frac{15}{122}\right)\,\pi e^{\left(\frac{15}{2}\,\pi\right)} - \left(\frac{60}{3721}i - \frac{11}{3721}\right)\,e^{\left(\frac{15}{2}\,\pi\right)} - \frac{60}{3721}i + \frac{11}{3721}\right),$$

et donc:

$$\int_{-\frac{3}{2}\pi}^{0} x \cos(6x) e^{(-5x)} dx = \frac{15}{122} \pi e^{(\frac{15}{2}\pi)} + \frac{11}{3721} e^{(\frac{15}{2}\pi)} + \frac{11}{3721}.$$

On calcule de même $\int_{-\frac{3}{2}\pi}^0 x e^{(-5x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient : $\int_{-\frac{3}{3}\pi}^0 x e^{(-5x)} dx = -\frac{1}{50} (15\pi - 2) e^{\left(\frac{15}{2}\pi\right)} - \frac{1}{25}$. On peut conclure :

$$\int_{-\frac{3}{2}\pi}^{0} x e^{(-5x)} \sin(3x)^2 dx = -\frac{1}{186050} (39345\pi - 3446) e^{(\frac{15}{2}\pi)} - \frac{1998}{93025}.$$

Corrigé 10. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a:

 $\leftarrow \text{page 2}$

$$\int_{-\frac{1}{6}\pi}^{0} x e^{(-3x)} \sin(2x) dx = \operatorname{Im} \left(\int_{-\frac{1}{6}\pi}^{0} x e^{((2i-3)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\frac{1}{6}\pi}^{0} x e^{(-3\,x)} \sin{(2\,x)} \, \mathrm{d}x = \mathrm{Im}\left(\left(\frac{1}{52}i - \frac{1}{78}\right) \sqrt{3}\pi e^{\left(\frac{1}{2}\,\pi\right)} - \left(\frac{1}{78}i + \frac{1}{52}\right) \pi e^{\left(\frac{1}{2}\,\pi\right)} - \left(\frac{5}{338}i - \frac{6}{169}\right) \sqrt{3}e^{\left(\frac{1}{2}\,\pi\right)} + \left(\frac{6}{169}i + \frac{5}{338}\right) e^{\left(\frac{1}{2}\,\pi\right)} + \left(\frac{6}{169}i + \frac{5}{169}\right) e^{\left(\frac{1}{2}\,\pi\right)} + \left(\frac{6$$

et donc:

$$\int_{-\frac{1}{6}\pi}^{0} x e^{(-3x)} \sin(2x) dx = \frac{1}{52} \sqrt{3}\pi e^{\left(\frac{1}{2}\pi\right)} - \frac{1}{78} \pi e^{\left(\frac{1}{2}\pi\right)} - \frac{5}{338} \sqrt{3} e^{\left(\frac{1}{2}\pi\right)} + \frac{6}{169} e^{\left(\frac{1}{2}\pi\right)} - \frac{12}{169} e^{\left(\frac{1}{2}\pi\right)} = \frac{12}{169} e^{\left(\frac{1}{2}\pi\right)} + \frac{6}{169} e^{\left(\frac{1}{2}\pi\right)} = \frac{12}{169} e^{\left(\frac$$

Corrigé 11.

 \leftarrow page 2

1. Soit $n \in \mathbb{N}$. L'application $x \mapsto x \ln(x)^n$ est continue sur]0,1]. Pour tout x au voisinage de 0, on a par croissances comparées:

$$\sqrt{x} \cdot x |\ln(x)|^n = x^{\frac{3}{2}} |\ln(x)|^n \underset{x \to +\infty}{\longrightarrow} 0,$$

donc: $x|\ln(x)|^n = \int_{x \to +\infty}^{\infty} \left(\frac{1}{\sqrt{x}}\right)$. Or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{\sqrt{x}}$ converge parce que son exposant est $\frac{1}{2} < 1$. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^1 x |\ln(x)|^n \mathrm{d}x$ converge absolument donc converge, d'où le résultat.

2. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto \ln(x)^n$ et en intégrant $x \mapsto x$. Le lecteur en exercice prendra bien garde à vérifier l'existence du terme entre crochets, par un calcul de limite aux extrémités (il trouvera une limite nulle, par croissances comparées, à l'extrémité problématique). L'intégration par parties conserve la nature des intégrales, donc $\int_0^1 \frac{1}{2} nx \ln(x)^{n-1} dx$ converge également et on en déduit :

$$\int_0^1 x \ln(x)^n dx = \left[\frac{1}{2} x^2 \ln(x)^n\right]_0^1 - \int_0^1 \frac{1}{2} nx \ln(x)^{n-1} dx.$$

C'est-à-dire, après simplifications:

$$I_n = -\frac{1}{2}nI_{n-1}.$$

D'où le résultat.

3. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k + \frac{1}{2}kI_{k-1} = 0.$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{(-2)^k}{k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{(-2)^k}{k!} I_k - \frac{(-2)^{k-1}}{(k-1)!} I_{k-1} = 0.$$

On somme cette égalité de k=1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{(-2)^n}{n!}I_n - I_0 = 0,$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_n = \frac{n!}{(-2)^n} I_0.$$

Or: $I_0 = \int_0^1 x dx = \left[\frac{1}{2}x^2\right]_0^1 = \frac{1}{2}$, donc finalement:

$$I_n = \frac{n!}{\left(-2\right)^n} \frac{1}{2}.$$

Corrigé 12. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties une fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme logarithmique, ce qu'on obtiendra par dérivation.

 \leftarrow page 2

Mettons cela en œuvre : l'application $x\mapsto \ln{(x)}$ est de classe \mathbf{C}^1 sur [1,4], de dérivée $x\mapsto \frac{1}{x}$, tandis que $x\mapsto x+1$ est continue sur [1,4], et une primitive est $x\mapsto \frac{1}{2}\,x^2+x$. D'après la formule de l'intégration par parties :

$$\int_{1}^{4} (x+1) \ln(x) dx = \left[\frac{1}{2} (x^{2}+2x) \ln(x) \right]_{1}^{4} - \int_{1}^{4} \frac{x^{2}+2x}{2x} dx$$
$$= 24 \ln(2) - \int_{1}^{4} \left(\frac{1}{2} x + 1 \right) dx.$$

Or:
$$\int_{1}^{4} \left(\frac{1}{2}x + 1\right) dx = \left[\frac{1}{4}x^{2} + x\right]_{1}^{4} = \frac{27}{4}$$
. On conclut:

$$\int_{1}^{4} (x+1) \ln(x) dx = 24 \ln(2) - \frac{27}{4}.$$

Corrigé 13.

 \leftarrow page 2

1. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto x^n$ et en intégrant $x \mapsto e^{(3x)}$. On en déduit :

$$\int_0^1 x^n e^{(3x)} dx = \left[\frac{1}{3} x^n e^{(3x)} \right]_0^1 - \int_0^1 \frac{1}{3} n x^{n-1} e^{(3x)} dx.$$

C'est-à-dire, après simplifications:

$$I_n = \frac{1}{3}e^3 - \frac{1}{3}nI_{n-1}.$$

D'où le résultat.

2. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k + \frac{1}{3}kI_{k-1} = \frac{1}{3}e^3.$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{(-3)^k}{k!}$. On a alors:

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{(-3)^k}{k!} I_k - \frac{(-3)^{k-1}}{(k-1)!} I_{k-1} = \frac{(-3)^k e^3}{3 k!}.$$

On somme cette égalité de k=1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{(-3)^n}{n!}I_n - I_0 = \sum_{k=1}^n \left(\frac{(-3)^k e^3}{3k!}\right),\,$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_n = \frac{n!}{(-3)^n} \left[I_0 + \sum_{k=1}^n \left(\frac{(-3)^k e^3}{3 k!} \right) \right].$$

Or: $I_0 = \int_0^1 e^{(3x)} dx = \left[\frac{1}{3}e^{(3x)}\right]_0^1 = \frac{1}{3}e^3 - \frac{1}{3}$, donc finalement:

$$I_n = \frac{n!}{(-3)^n} \left[\frac{1}{3} e^3 - \frac{1}{3} + \sum_{k=1}^n \left(\frac{(-3)^k e^3}{3 k!} \right) \right].$$

Corrigé 14.

 \leftarrow page 2

1. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto x^n$ et en intégrant $x \mapsto e^{(21ix)}$. On en déduit :

$$\int_{-\frac{9}{2}\pi}^{\frac{1}{3}\pi} x^n e^{(21ix)} \mathrm{d}x = \left[-\frac{1}{21} i \, x^n e^{(21ix)} \right]_{-\frac{9}{2}\pi}^{\frac{1}{3}\pi} - \int_{-\frac{9}{2}\pi}^{\frac{1}{3}\pi} -\frac{1}{21} i \, n x^{n-1} e^{(21ix)} \mathrm{d}x.$$

C'est-à-dire, après simplifications:

$$I_n = \frac{1}{21}i\left(\frac{1}{3}\pi\right)^n + \frac{1}{21}\left(-\frac{9}{2}\pi\right)^n + \frac{1}{21}inI_{n-1}.$$

D'où le résultat.

2. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k - \frac{1}{21}ikI_{k-1} = \frac{1}{21}i\left(\frac{1}{3}\pi\right)^k + \frac{1}{21}\left(-\frac{9}{2}\pi\right)^k.$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{21^k}{i^k k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{21^k}{i^k k!} I_k - \frac{21^{k-1}}{i^{k-1} (k-1)!} I_{k-1} = -\frac{21^k \left(-i \left(\frac{1}{3} \pi\right)^k - \left(-\frac{9}{2} \pi\right)^k\right)}{21 i^k k!}.$$

On somme cette égalité de k=1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{21^n}{i^n n!} I_n - I_0 = \sum_{k=1}^n \left(-\frac{21^k \left(-i \left(\frac{1}{3} \pi \right)^k - \left(-\frac{9}{2} \pi \right)^k \right)}{21 i^k k!} \right),$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_n = \frac{i^n n!}{21^n} \left[I_0 + \sum_{k=1}^n \left(-\frac{21^k \left(-i \left(\frac{1}{3} \pi \right)^k - \left(-\frac{9}{2} \pi \right)^k \right)}{21 i^k k!} \right) \right].$$

Or: $I_0 = \int_{-\frac{9}{2}\pi}^{\frac{1}{3}\pi} e^{(21ix)} dx = \left[-\frac{1}{21} i e^{(21ix)} \right]_{-\frac{9}{3}\pi}^{\frac{1}{3}\pi} = \frac{1}{21} i + \frac{1}{21}$, donc finalement:

$$I_n = \frac{i^n n!}{21^n} \left[\frac{1}{21} i + \frac{1}{21} + \sum_{k=1}^n \left(-\frac{21^k \left(-i \left(\frac{1}{3} \pi \right)^k - \left(-\frac{9}{2} \pi \right)^k \right)}{21 i^k k!} \right) \right].$$

3. Il suffit de prendre la partie imaginaire dans l'expression de la question précédente. On y parvient en développant le produit du membre de droite, et en mettant sous forme exponentielle le terme général de la somme. Souvenons-nous que: $\forall k \in \mathbb{N}, i^k = \left(e^{\frac{i\pi}{2}}\right)^k = e^{\frac{ki\pi}{2}}, \text{ et}: -i = e^{-\frac{189}{2}i\pi}, -1 = e^{7i\pi}, \text{ de sorte que finalement on trouve que pour tout } n \in \mathbb{N} \setminus \{0\} \text{ on a, après calculs:}$

$$\int_{-\frac{9}{2}\pi}^{\frac{1}{3}\pi} x^n \sin(21x) dx = \frac{n!}{21^n} \left[\frac{1}{21} \cos\left(\frac{1}{2}\pi n\right) + \frac{1}{21} \sin\left(\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(\frac{\left(\left(\frac{1}{3}\pi\right)^{k-1} \cos\left(-\frac{1}{2}\pi k + \frac{1}{2}\pi n\right) + \left(-\frac{9}{2}\pi\right)^{k-1} \sin\left(-\frac{1}{2}\pi n\right) + \left(-\frac{9}{2}\pi\right)^{k-1} \sin\left(-\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(\frac{\left(\frac{1}{3}\pi\right)^{k-1} \cos\left(-\frac{1}{2}\pi k + \frac{1}{2}\pi n\right) + \left(-\frac{9}{2}\pi\right)^{k-1} \sin\left(-\frac{1}{2}\pi n\right) + \left(-\frac{9}{2}\pi\right)^{k-1} \sin\left(-\frac{1}{2}\pi\right) + \left(-\frac{9}{2}\pi\right)^{k-1} \sin\left(-\frac{1}{2}\pi\right)^{k-1} \sin\left(-\frac{1}{2}\pi\right) + \left(-\frac{9}{2}\pi\right)^{k-1} \sin\left(-\frac{1}{2}\pi\right)^{k-1} \sin\left(-\frac{1}{2}\pi\right) + \left(-\frac{9}{2}\pi\right)^{k-1} \sin\left(-\frac{1}{2}\pi\right) + \left(-\frac{9}{2}\pi\right)^{k-1} \sin\left(-\frac{1}{2}\pi$$

Corrigé 15.

 \leftarrow page 3

1. L'application $x \mapsto x^2 e^{(-2x)} \sin(x)$ est continue sur $[0, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [0, +\infty[$, on a:

$$\left| x^2 e^{(-2x)} \sin(x) \right| \leqslant x^2 e^{(-2x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-2x)} = x^4 e^{(-2x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$x^2 e^{(-2x)} = \mathop{o}\limits_{x \to +\infty} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} x^2 e^{(-2x)} \mathrm{d}x$ converge, et donc $\int_0^{+\infty} x^2 e^{(-2x)} \mathrm{d}x$ converge aussi par continuité sur le segment [0,1]. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^{+\infty} x^2 e^{(-2x)} \sin{(x)} \, \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a:

$$\int_0^{+\infty} x^2 e^{(-2x)} \sin(x) dx = \operatorname{Im} \left(\int_0^{+\infty} x^2 e^{((i-2)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties deux fois : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_0^{+\infty} x^2 e^{(-2x)} \sin(x) dx = \operatorname{Im}\left(\frac{22}{125}i + \frac{4}{125}\right),\,$$

et donc:

$$\int_0^{+\infty} x^2 e^{(-2x)} \sin(x) \, \mathrm{d}x = \frac{22}{125}$$

Corrigé 16. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties une fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial : pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

 $\leftarrow \text{page } 3$

Mettons cela en œuvre : l'application $x\mapsto 3\,x-11$ est de classe C^1 sur $[-\frac{191}{4}\,\pi,\pi]$, de dérivée $x\mapsto 3$, tandis que $x\mapsto\cos(5\,x)$ est continue sur $[-\frac{191}{4}\,\pi,\pi]$, et une primitive est $x\mapsto\frac{1}{5}\sin(5\,x)$. D'après la formule de l'intégration par parties :

$$\int_{-\frac{191}{4}\pi}^{\pi} (3x - 11)\cos(5x) dx = \left[\frac{1}{5}(3x - 11)\sin(5x)\right]_{-\frac{191}{4}\pi}^{\pi} - \int_{-\frac{191}{4}\pi}^{\pi} \frac{3}{5}\sin(5x) dx$$
$$= -\frac{1}{40}\sqrt{2}(573\pi + 44) - \int_{-\frac{191}{4}\pi}^{\pi} \left(\frac{3}{5}\sin(5x)\right) dx.$$

Or:
$$\int_{-\frac{191}{4}\pi}^{\pi} \left(\frac{3}{5} \sin(5x) \right) dx = \left[-\frac{3}{25} \cos(5x) \right]_{-\frac{191}{4}\pi}^{\pi} = -\frac{3}{50} \sqrt{2} + \frac{3}{25}.$$
 On conclut:

$$\int_{-\frac{191}{4}\pi}^{\pi} (3x - 11)\cos(5x) dx = -\frac{1}{40}\sqrt{2}(573\pi + 44) + \frac{3}{50}\sqrt{2} - \frac{3}{25}.$$

Corrigé 17.

 \leftarrow page 3

1. Soit $n \in \mathbb{N}$. L'application $x \mapsto x^5 \ln(x)^n$ est continue sur]0,1]. Pour tout x au voisinage de 0, on a par croissances comparées: $\sqrt{x} \cdot x^5 |\ln(x)|^n = x^{\frac{11}{2}} |\ln(x)|^n \longrightarrow 0,$

 $\operatorname{donc}\colon x^5|\ln{(x)}|^n = \mathop{o}\limits_{x\to +\infty}\left(\frac{1}{\sqrt{x}}\right). \text{ Or l'intégrale de Riemann } \int_0^1\frac{\mathrm{d}x}{\sqrt{x}} \text{ converge parce que son exposant est } \frac{1}{\sqrt{x}} \left(\frac{1}{\sqrt{x}}\right)$

 $\frac{1}{2}$ < 1. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^1 x^5 |\ln(x)|^n dx$ converge absolument donc converge, d'où le résultat.

 \leftarrow page 3

2. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto \ln(x)^n$ et en intégrant $x \mapsto x^5$. Le lecteur en exercice prendra bien garde à vérifier l'existence du terme entre crochets, par un calcul de limite aux extrémités (il trouvera une limite nulle, par croissances comparées, à l'extrémité problématique). L'intégration par parties conserve la nature des intégrales, donc $\int_0^1 \frac{1}{6} nx^5 \ln(x)^{n-1} dx$ converge également et on en déduit:

$$\int_0^1 x^5 \ln(x)^n dx = \left[\frac{1}{6} x^6 \ln(x)^n\right]_0^1 - \int_0^1 \frac{1}{6} nx^5 \ln(x)^{n-1} dx.$$

C'est-à-dire, après simplifications:

$$I_n = -\frac{1}{6}nI_{n-1}.$$

D'où le résultat.

3. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k + \frac{1}{6}kI_{k-1} = 0.$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{(-6)^k}{k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{(-6)^k}{k!} I_k - \frac{(-6)^{k-1}}{(k-1)!} I_{k-1} = 0.$$

On somme cette égalité de k=1 à $n\in\mathbb{N}\setminus\{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{\left(-6\right)^{n}}{n!}I_{n}-I_{0}=0,$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_n = \frac{n!}{\left(-6\right)^n} I_0.$$

Or: $I_0 = \int_0^1 x^5 dx = \left[\frac{1}{6} x^6 \right]_0^1 = \frac{1}{6}$, donc finalement:

$$I_n = \frac{n!}{(-6)^n} \frac{1}{6}.$$

Corrigé 18.

1. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto x^n$ et en intégrant $x \mapsto e^{(ix)}$. On en déduit :

$$\int_{-\frac{1}{2}\,\pi}^{\pi} x^n e^{(i\,x)} \mathrm{d}x = \left[-i\,x^n e^{(i\,x)}\right]_{-\frac{1}{2}\,\pi}^{\pi} - \int_{-\frac{1}{2}\,\pi}^{\pi} -i\,nx^{n-1} e^{(i\,x)} \mathrm{d}x.$$

C'est-à-dire, après simplifications:

$$I_n = i \pi^n + \left(-\frac{1}{2}\pi\right)^n + inI_{n-1}.$$

D'où le résultat.

2. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k - ikI_{k-1} = i\,\pi^k + \left(-\frac{1}{2}\,\pi\right)^k.$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{1}{i^k k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{i^k k!} I_k - \frac{1}{i^{k-1} (k-1)!} I_{k-1} = \frac{i \pi^k + \left(-\frac{1}{2} \pi\right)^k}{i^k k!}.$$

On somme cette égalité de k = 1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{1}{i^n n!} I_n - I_0 = \sum_{k=1}^n \left(\frac{i \, \pi^k + \left(-\frac{1}{2} \, \pi \right)^k}{i^k k!} \right),\,$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_n = i^n n! \left[I_0 + \sum_{k=1}^n \left(\frac{i \pi^k + \left(-\frac{1}{2} \pi \right)^k}{i^k k!} \right) \right].$$

Or: $I_0 = \int_{-\frac{1}{2}\pi}^{\pi} e^{(ix)} dx = \left[-i e^{(ix)} \right]_{-\frac{1}{2}\pi}^{\pi} = i + 1$, donc finalement:

$$I_n = i^n n! \left[i + 1 + \sum_{k=1}^n \left(\frac{i \pi^k + \left(-\frac{1}{2} \pi \right)^k}{i^k k!} \right) \right].$$

3. Il suffit de prendre la partie réelle dans l'expression de la question précédente. On y parvient en développant le produit du membre de droite, et en mettant sous forme exponentielle le terme général de la somme. Souvenons-nous que: $\forall k \in \mathbb{N}, \ i^k = \left(e^{\frac{i\pi}{2}}\right)^k = e^{\frac{ki\pi}{2}}, \ \text{et}: -i = e^{-\frac{1}{2}i\,\pi}, \ -1 = e^{i\,\pi}, \ \text{de sorte que finalement on trouve que pour tout } n \in \mathbb{N} \setminus \{0\} \text{ on a, après calculs:}$

$$\int_{-\frac{1}{2}\pi}^{\pi} x^{n} \cos(x) dx = n! \left[\cos\left(\frac{1}{2}\pi n\right) - \sin\left(\frac{1}{2}\pi n\right) + \sum_{k=1}^{n} \left(\frac{\left(-\frac{1}{2}\pi\right)^{k-1} \cos\left(-\frac{1}{2}\pi k + \frac{1}{2}\pi n\right) - \pi^{k-1} \sin\left(-\frac{1}{2}\pi k + \frac{1}{2}\pi n\right)}{k!} \right) \right].$$

 $\textbf{Corrig\'e 19.} \ \ \text{On passe \`a la forme exponentielle pour simplifier les calculs qui suivent.} \ \ \text{On a:}$

 $\leftarrow \text{page } 3$

$$\int_{-\pi}^{0} x \cos(91 x) e^{(-x)} dx = \text{Re} \left(\int_{-\pi}^{0} x e^{((91i-1) x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\pi}^{0} x \cos(91 \, x) \, e^{(-x)} dx = \text{Re}\left(\left(\frac{91}{8282}i + \frac{1}{8282}\right) \, \pi e^{\pi} - \left(\frac{91}{34295762}i - \frac{2070}{17147881}\right) \, e^{\pi} - \frac{91}{34295762}i + \frac{2070}{17147881}\right),$$

et donc:

$$\int_{-\pi}^{0} x \cos(91 x) e^{(-x)} dx = \frac{1}{8282} \pi e^{\pi} + \frac{2070}{17147881} e^{\pi} + \frac{2070}{17147881}.$$

Corrigé 20

 $\leftarrow \text{page } 3$

1. L'application $x \mapsto x \cos(x)^2 e^{(-x)}$ est continue sur $[0, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [0, +\infty[$, on a :

$$0 \leqslant x \cos(x)^2 e^{(-x)} \leqslant x e^{(-x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot xe^{(-x)} = x^3e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$xe^{(-x)} = \underset{x \to +\infty}{o} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} x e^{(-x)} \mathrm{d}x$ converge, et donc $\int_0^{+\infty} x e^{(-x)} \mathrm{d}x$ converge aussi par continuité sur le segment [0,1]. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^{+\infty} x \cos{(x)^2} \, e^{(-x)} \mathrm{d}x$ converge : d'où le résultat.

 \leftarrow page 3

2. Commençons par linéariser le terme trigonométrique. On a :

$$\int_0^{+\infty} x \cos(x)^2 e^{(-x)} dx = \int_0^{+\infty} \left(\frac{1}{2} x (\cos(2x) + 1) e^{(-x)} \right) dx$$
$$= \frac{1}{2} \int_0^{+\infty} x \cos(2x) e^{(-x)} dx + \frac{1}{2} \int_0^{+\infty} x e^{(-x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a:

$$\int_0^{+\infty} x \cos(2x) e^{(-x)} dx = \text{Re}\left(\int_0^{+\infty} x e^{((2i-1)x)} dx\right),$$

et on calcule cette intégrale en intégrant par parties: on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas:

$$\int_{0}^{+\infty} x \cos(2x) e^{(-x)} dx = \text{Re}\left(\frac{4}{25}i - \frac{3}{25}\right),\,$$

et donc:

$$\int_{0}^{+\infty} x \cos(2x) e^{(-x)} dx = -\frac{3}{25}.$$

On calcule de même $\int_0^{+\infty} xe^{(-x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient : $\int_0^{+\infty} xe^{(-x)} dx = 1$. On peut conclure :

$$\int_0^{+\infty} x \cos(x)^2 e^{(-x)} dx = \frac{11}{25}.$$

Corrigé 21.

1. Soit $n \in \mathbb{N}$. L'application $x \mapsto x^n e^{(-6x)}$ est continue sur $[-1, +\infty[$. Pour tout x au voisinage de $+\infty$, on a par croissances comparées:

$$x^2 \cdot x^n e^{(-6x)} = x^2 x^n e^{(-6x)} \underset{x \to +\infty}{\longrightarrow} 0,$$

 $\operatorname{donc}\colon x^n e^{(-6\,x)} = \mathop{o}_{x\to +\infty}\left(\frac{1}{x^2}\right). \text{ Or l'intégrale de Riemann } \int_{-1}^{+\infty} \frac{\mathrm{d}x}{x^2} \text{ converge parce que son exposant est}$

2 > 1. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-1}^{+\infty} x^n e^{(-6x)} dx$ converge, d'où le résultat.

2. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto x^n$ et en intégrant $x \mapsto e^{(-6x)}$. Le lecteur en exercice prendra bien garde à vérifier l'existence du terme entre crochets, par un calcul de limite aux extrémités (il trouvera une limite nulle, par croissances comparées, à l'extrémité problématique). L'intégration par parties conserve la nature des intégrales, donc $\int_{-1}^{+\infty} -\frac{1}{6} n x^{n-1} e^{(-6x)} dx$ converge également et on en déduit:

$$\int_{-1}^{+\infty} x^n e^{(-6x)} dx = \left[-\frac{1}{6} x^n e^{(-6x)} \right]_{-1}^{+\infty} - \int_{-1}^{+\infty} -\frac{1}{6} n x^{n-1} e^{(-6x)} dx.$$

C'est-à-dire, après simplifications:

$$I_n = \frac{1}{6} (-1)^n e^6 + \frac{1}{6} n I_{n-1}.$$

D'où le résultat.

3. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k - \frac{1}{6}kI_{k-1} = \frac{1}{6}(-1)^k e^6.$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{6^k}{k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{6^k}{k!} I_k - \frac{6^{k-1}}{(k-1)!} I_{k-1} = \frac{6^k (-1)^k e^6}{6 k!}.$$

On somme cette égalité de k = 1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{6^n}{n!}I_n - I_0 = \sum_{k=1}^n \left(\frac{6^k (-1)^k e^6}{6 k!} \right),$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_n = \frac{n!}{6^n} \left[I_0 + \sum_{k=1}^n \left(\frac{6^k (-1)^k e^6}{6 k!} \right) \right].$$

Or: $I_0 = \int_{-1}^{+\infty} e^{(-6x)} dx = \left[-\frac{1}{6} e^{(-6x)} \right]_{-1}^{+\infty} = \frac{1}{6} e^6$, donc finalement:

$$I_n = \frac{n!}{6^n} \left[\frac{1}{6} e^6 + \sum_{k=1}^n \left(\frac{6^k (-1)^k e^6}{6 k!} \right) \right].$$

Corrigé 22.

1. L'application $x \mapsto x \cos(x) e^{(-x)}$ est continue sur $\left[\frac{74}{3}\pi, +\infty\right[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in \left[\frac{74}{3}\pi, +\infty\right[$, on a:

$$\left| x \cos(x) e^{(-x)} \right| \leqslant x e^{(-x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot xe^{(-x)} = x^3e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$xe^{(-x)} = \underset{x \to +\infty}{o} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{\frac{74}{3}\pi}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{74}{3}\pi}^{+\infty} x e^{(-x)} \mathrm{d}x$ converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{74}{3}\pi}^{+\infty} x \cos(x) \, e^{(-x)} \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{\frac{74}{3}\pi}^{+\infty} x \cos(x) e^{(-x)} dx = \text{Re}\left(\int_{\frac{74}{3}\pi}^{+\infty} x e^{((i-1)x)} dx\right),\,$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{\frac{74}{3}\pi}^{+\infty} x \cos\left(x\right) e^{\left(-x\right)} \mathrm{d}x = \operatorname{Re}\left(\left(\frac{37}{6}i - \frac{37}{6}\right) \sqrt{3}\pi e^{\left(-\frac{74}{3}\pi\right)} - \left(\frac{37}{6}i + \frac{37}{6}\right) \pi e^{\left(-\frac{74}{3}\pi\right)} - \frac{1}{4}\sqrt{3}e^{\left(-\frac{74}{3}\pi\right)} - \frac{1}{4}i e^{\left(-\frac{74}{3}\pi\right)}\right),$$

et donc:

$$\int_{\frac{74}{3}\pi}^{+\infty} x \cos(x) e^{(-x)} dx = -\frac{37}{6} \sqrt{3}\pi e^{\left(-\frac{74}{3}\pi\right)} - \frac{37}{6} \pi e^{\left(-\frac{74}{3}\pi\right)} - \frac{1}{4} \sqrt{3} e^{\left(-\frac{74}{3}\pi\right)}.$$

Corrigé 23. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties deux fois: l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial: pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

Mettons cela en œuvre : l'application $x\mapsto 2\,x^2-x$ est de classe C¹ sur [-3,0], de dérivée $x\mapsto 4\,x-1$, tandis que $x\mapsto e^{(6\,x)}$ est continue sur [-3,0], et une primitive est $x\mapsto \frac{1}{6}\,e^{(6\,x)}$. D'après la formule de l'intégration par parties :

$$\int_{-3}^{0} (2x^{2} - x)e^{(6x)} dx = \left[\frac{1}{6} (2x^{2} - x)e^{(6x)}\right]_{-3}^{0} - \int_{-3}^{0} \frac{1}{6} (4x - 1)e^{(6x)} dx$$
$$= -\frac{7}{2} e^{(-18)} - \int_{-3}^{0} \left(\frac{1}{6} (4x - 1)e^{(6x)}\right) dx.$$

 \leftarrow page 4

 \leftarrow page 3

On recommence: l'application $x\mapsto 4\,x-1$ est de classe C^1 sur [-3,0], de dérivée $x\mapsto 4$, tandis que $x\mapsto \frac{1}{6}\,e^{(6\,x)}$ est continue sur [-3,0], et une primitive est $x\mapsto \frac{1}{36}\,e^{(6\,x)}$. D'après la formule de l'intégration par parties:

$$\int_{-3}^{0} \frac{1}{6} (4x - 1)e^{(6x)} dx = \left[\frac{1}{36} (4x - 1)e^{(6x)} \right]_{-3}^{0} - \int_{-3}^{0} \frac{1}{9} e^{(6x)} dx$$

$$= \frac{13}{36} e^{(-18)} - \frac{1}{36} - \int_{-3}^{0} \left(\frac{1}{9} e^{(6x)} \right) dx.$$

$$Or: \int_{-3}^{0} \left(\frac{1}{9} e^{(6x)} \right) dx = \left[\frac{1}{54} e^{(6x)} \right]_{-3}^{0} = -\frac{1}{54} e^{(-18)} + \frac{1}{54}. \text{ On conclut :}$$

$$\int_{-3}^{0} (2x^{2} - x)e^{(6x)} dx = -\frac{419}{108} e^{(-18)} + \frac{5}{108}.$$

Corrigé 24. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties une fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial : pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

 \leftarrow page 4

Mettons cela en œuvre : l'application $x \mapsto x$ est de classe C^1 sur [-2,3], de dérivée $x \mapsto 1$, tandis que $x \mapsto e^{(2x)}$ est continue sur [-2,3], et une primitive est $x \mapsto \frac{1}{2} e^{(2x)}$. D'après la formule de l'intégration par parties :

$$\int_{-2}^{3} x e^{(2x)} dx = \left[\frac{1}{2} x e^{(2x)}\right]_{-2}^{3} - \int_{-2}^{3} \frac{1}{2} e^{(2x)} dx$$

$$= \frac{3}{2} e^{6} + e^{(-4)} - \int_{-2}^{3} \left(\frac{1}{2} e^{(2x)}\right) dx.$$

$$\operatorname{Or}: \int_{-2}^{3} \left(\frac{1}{2} e^{(2x)}\right) dx = \left[\frac{1}{4} e^{(2x)}\right]_{-2}^{3} = \frac{1}{4} e^{6} - \frac{1}{4} e^{(-4)}. \text{ On conclut}:$$

$$\int_{-2}^{3} x e^{(2x)} dx = \frac{5}{4} e^{6} + \frac{5}{4} e^{(-4)}.$$

Corrigé 25. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties une fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme logarithmique, ce qu'on obtiendra par dérivation.

 \leftarrow page 4

Mettons cela en œuvre: l'application $x \mapsto \ln(x)$ est de classe C¹ sur [2,40], de dérivée $x \mapsto \frac{1}{x}$, tandis que $x \mapsto x^2 + x$ est continue sur [2,40], et une primitive est $x \mapsto \frac{1}{3}x^3 + \frac{1}{2}x^2$. D'après la formule de l'intégration par parties:

$$\int_{2}^{40} (x^{2} + x) \ln(x) dx = \left[\frac{1}{6} \left(2x^{3} + 3x^{2} \right) \ln(x) \right]_{2}^{40} - \int_{2}^{40} \frac{2x^{3} + 3x^{2}}{6x} dx$$

$$= \frac{66400}{3} \ln(40) - \frac{14}{3} \ln(2) - \int_{2}^{40} \left(\frac{1}{3}x^{2} + \frac{1}{2}x \right) dx.$$

$$\operatorname{Or}: \int_{2}^{40} \left(\frac{1}{3}x^{2} + \frac{1}{2}x \right) dx = \left[\frac{1}{9}x^{3} + \frac{1}{4}x^{2} \right]_{2}^{40} = \frac{67583}{9}. \text{ On conclut}:$$

$$\int_{2}^{40} (x^{2} + x) \ln(x) dx = \frac{66400}{3} \ln(40) - \frac{14}{3} \ln(2) - \frac{67583}{9}.$$

Corrigé 26. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties deux fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial : pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

← page 4

Mettons cela en œuvre : l'application $x \mapsto 4x^2 - 7x - 21$ est de classe C¹ sur $[0, \frac{1}{2}\pi]$, de dérivée $x \mapsto 8x - 7$, tandis que $x \mapsto \sin(x)$ est continue sur $[0, \frac{1}{2}\pi]$, et une primitive est $x \mapsto -\cos(x)$. D'après la formule de l'intégration par

parties:

$$\int_0^{\frac{1}{2}\pi} (4x^2 - 7x - 21) \sin(x) dx = \left[-(4x^2 - 7x - 21) \cos(x) \right]_0^{\frac{1}{2}\pi} - \int_0^{\frac{1}{2}\pi} -(8x - 7) \cos(x) dx$$
$$= -21 - \int_0^{\frac{1}{2}\pi} (-(8x - 7) \cos(x)) dx.$$

On recommence : l'application $x\mapsto 8\,x-7$ est de classe C^1 sur $[0,\frac{1}{2}\,\pi]$, de dérivée $x\mapsto 8$, tandis que $x\mapsto -\cos{(x)}$ est continue sur $[0,\frac{1}{2}\,\pi]$, et une primitive est $x\mapsto -\sin{(x)}$. D'après la formule de l'intégration par parties :

$$\int_0^{\frac{1}{2}\pi} -(8x-7)\cos(x) dx = [-(8x-7)\sin(x)]_0^{\frac{1}{2}\pi} - \int_0^{\frac{1}{2}\pi} -8\sin(x) dx$$
$$= -4\pi + 7 - \int_0^{\frac{1}{2}\pi} (-8\sin(x)) dx.$$

Or: $\int_0^{\frac{1}{2}\pi} (-8\sin(x)) dx = [8\cos(x)]_0^{\frac{1}{2}\pi} = -8$. On conclut:

$$\int_0^{\frac{1}{2}\pi} \left(4x^2 - 7x - 21 \right) \sin(x) \, \mathrm{d}x = 4\pi - 36.$$

Corrigé 27. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-4\pi}^{-\frac{1}{4}\pi} x e^{(-x)} \sin(x) dx = \operatorname{Im} \left(\int_{-4\pi}^{-\frac{1}{4}\pi} x e^{((i-1)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-4\,\pi}^{-\frac{1}{4}\,\pi} x e^{(-x)} \sin\left(x\right) \mathrm{d}x = \mathrm{Im}\left(\frac{1}{8}\,\sqrt{2}\pi e^{\left(\frac{1}{4}\,\pi\right)} - \left(2i+2\right)\,\pi e^{(4\,\pi)} - \left(\frac{1}{4}i+\frac{1}{4}\right)\,\sqrt{2}e^{\left(\frac{1}{4}\,\pi\right)} + \frac{1}{2}i\,e^{(4\,\pi)}\right),$$

et donc:

$$\int_{-4\pi}^{-\frac{1}{4}\pi} x e^{(-x)} \sin(x) dx = -2\pi e^{(4\pi)} - \frac{1}{4}\sqrt{2}e^{(\frac{1}{4}\pi)} + \frac{1}{2}e^{(4\pi)}.$$

Corrigé 28.

1. L'application $x \mapsto x^2 e^{(-4x)} \sin(3x)$ est continue sur $[-2\pi, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [-2\pi, +\infty[$, on a:

$$\left| x^2 e^{(-4x)} \sin(3x) \right| \le x^2 e^{(-4x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-4x)} = x^4 e^{(-4x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$x^2 e^{(-4x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} x^2 e^{(-4\,x)} \mathrm{d}x$ converge, et donc $\int_{-2\,\pi}^{+\infty} x^2 e^{(-4\,x)} \mathrm{d}x$ converge aussi par continuité sur le segment $[-2\,\pi,1]$. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-2\,\pi}^{+\infty} x^2 e^{(-4\,x)} \sin{(3\,x)} \, \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-2\pi}^{+\infty} x^2 e^{(-4x)} \sin(3x) \, \mathrm{d}x = \mathrm{Im} \left(\int_{-2\pi}^{+\infty} x^2 e^{((3i-4)x)} \mathrm{d}x \right),$$

 \leftarrow page 4

 \leftarrow page 4

et on calcule cette intégrale en intégrant par parties deux fois: on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas:

$$\int_{-2\pi}^{+\infty} x^2 e^{(-4x)} \sin(3x) dx = \operatorname{Im}\left(\left(\frac{12}{25}i + \frac{16}{25}\right) \pi^2 e^{(8\pi)} - \left(\frac{96}{625}i + \frac{28}{625}\right) \pi e^{(8\pi)} + \left(\frac{234}{15625}i - \frac{88}{15625}\right) e^{(8\pi)}\right),$$

et donc:

$$\int_{-2\,\pi}^{+\infty} x^2 e^{(-4\,x)} \sin{(3\,x)} \,\mathrm{d}x = \frac{12}{25}\,\pi^2 e^{(8\,\pi)} - \frac{96}{625}\,\pi e^{(8\,\pi)} + \frac{234}{15625}\,e^{(8\,\pi)}.$$

Corrigé 29. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties une fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial : pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

 \leftarrow page 4

Mettons cela en œuvre: l'application $x\mapsto 2\,x-2$ est de classe C^1 sur $[0,\pi]$, de dérivée $x\mapsto 2$, tandis que $x\mapsto\sin{(5\,x)}$ est continue sur $[0,\pi]$, et une primitive est $x\mapsto-\frac{1}{5}\cos{(5\,x)}$. D'après la formule de l'intégration par parties:

$$\int_0^{\pi} 2(x-1)\sin(5x) dx = \left[-\frac{2}{5}(x-1)\cos(5x) \right]_0^{\pi} - \int_0^{\pi} -\frac{2}{5}\cos(5x) dx$$
$$= \frac{2}{5}\pi - \frac{4}{5} - \int_0^{\pi} \left(-\frac{2}{5}\cos(5x) \right) dx.$$

Or:
$$\int_0^{\pi} \left(-\frac{2}{5} \cos(5x) \right) dx = \left[-\frac{2}{25} \sin(5x) \right]_0^{\pi} = 0$$
. On conclut:

$$\int_0^{\pi} 2(x-1)\sin(5x) dx = \frac{2}{5}\pi - \frac{4}{5}.$$

Corrigé 30. Commençons par linéariser le terme trigonométrique. On a :

 \leftarrow page 4

$$\int_{\pi}^{4\pi} x e^{(-x)} \sin(25x)^2 dx = \int_{\pi}^{4\pi} \left(-\frac{1}{2} x (\cos(50x) - 1) e^{(-x)} \right) dx$$
$$= -\frac{1}{2} \int_{\pi}^{4\pi} x \cos(50x) e^{(-x)} dx + \frac{1}{2} \int_{\pi}^{4\pi} x e^{(-x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{\pi}^{4\pi} x \cos(50 x) e^{(-x)} dx = \text{Re} \left(\int_{\pi}^{4\pi} x e^{((50i-1) x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{\pi}^{4\pi} x \cos(50 x) e^{(-x)} dx = \text{Re}\left(\left(\frac{50}{2501}i + \frac{1}{2501}\right) \pi e^{(-\pi)} - \left(\frac{200}{2501}i + \frac{4}{2501}\right) \pi e^{(-4\pi)} + \left(\frac{100}{6255001}i - \frac{2499}{6255001}\right) e^{(-\pi)} - \left(\frac{100}{6255001}i - \frac{100}{6255001}i -$$

et donc:

$$\int_{\pi}^{4\pi} x \cos(50 x) e^{(-x)} dx = \frac{1}{2501} \pi e^{(-\pi)} - \frac{4}{2501} \pi e^{(-4\pi)} - \frac{2499}{6255001} e^{(-\pi)} + \frac{2499}{6255001} e^{(-4\pi)}.$$

On calcule de même $\int_{\pi}^{4\pi} x e^{(-x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient: $\int_{\pi}^{4\pi} x e^{(-x)} dx = (\pi + 1)e^{(-\pi)} - (4\pi + 1)e^{(-4\pi)}$. On peut conclure:

$$\int_{\pi}^{4\pi} x e^{(-x)} \sin(25x)^2 dx = \frac{1250}{6255001} (2501\pi + 2503) e^{(-\pi)} - \frac{1250}{6255001} (10004\pi + 2503) e^{(-4\pi)}.$$

Corrigé 31. \leftarrow page 4

1. Soit $n \in \mathbb{N}$. L'application $x \mapsto x^n e^{(-2x)}$ est continue sur $[2, +\infty[$. Pour tout x au voisinage de $+\infty$, on a par croissances comparées:

$$x^2 \cdot x^n e^{(-2x)} = x^2 x^n e^{(-2x)} \underset{x \to +\infty}{\longrightarrow} 0,$$

donc: $x^n e^{(-2x)} = o_{x \to +\infty} \left(\frac{1}{x^2}\right)$. Or l'intégrale de Riemann $\int_2^{+\infty} \frac{\mathrm{d}x}{x^2}$ converge parce que son exposant est

- 2 > 1. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{2}^{+\infty} x^{n} e^{(-2x)} dx$ converge, d'où le résultat.
- 2. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto x^n$ et en intégrant $x \mapsto e^{(-2x)}$. Le lecteur en exercice prendra bien garde à vérifier l'existence du terme entre crochets, par un calcul de limite aux extrémités (il trouvera une limite nulle, par croissances comparées, à l'extrémité problématique). L'intégration par parties conserve la nature des intégrales, donc $\int_2^{+\infty} -\frac{1}{2} nx^{n-1} e^{(-2x)} dx$ converge également et on en déduit:

$$\int_{2}^{+\infty} x^{n} e^{(-2x)} dx = \left[-\frac{1}{2} x^{n} e^{(-2x)} \right]_{2}^{+\infty} - \int_{2}^{+\infty} -\frac{1}{2} n x^{n-1} e^{(-2x)} dx.$$

C'est-à-dire, après simplifications:

$$I_n = 2^{n-1}e^{(-4)} + \frac{1}{2}nI_{n-1}.$$

D'où le résultat.

3. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k - \frac{1}{2}kI_{k-1} = 2^{k-1}e^{(-4)}.$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{2^k}{k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{2^k}{k!} I_k - \frac{2^{k-1}}{(k-1)!} I_{k-1} = \frac{2^{k-1} 2^k e^{(-4)}}{k!}.$$

On somme cette égalité de k = 1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{2^n}{n!}I_n - I_0 = \sum_{k=1}^n \left(\frac{2^{k-1}2^k e^{(-4)}}{k!}\right),$$

et il suffit d'isoler I_n pour avoir le résultat voulu

$$I_n = \frac{n!}{2^n} \left[I_0 + \sum_{k=1}^n \left(\frac{2^{k-1} 2^k e^{(-4)}}{k!} \right) \right].$$

Or:
$$I_0 = \int_2^{+\infty} e^{(-2x)} dx = \left[-\frac{1}{2} e^{(-2x)} \right]_2^{+\infty} = \frac{1}{2} e^{(-4)}$$
, donc finalement:

$$I_n = \frac{n!}{2^n} \left[\frac{1}{2} e^{(-4)} + \sum_{k=1}^n \left(\frac{2^{k-1} 2^k e^{(-4)}}{k!} \right) \right].$$

Corrigé 32. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a:

$$\leftarrow$$
 page 4

$$\int_{\frac{1}{6}\pi}^{\frac{1}{2}\pi} x e^{(-x)} \sin(x) dx = \operatorname{Im} \left(\int_{\frac{1}{6}\pi}^{\frac{1}{2}\pi} x e^{((i-1)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{\frac{1}{6}\pi}^{\frac{1}{2}\pi} x e^{(-x)} \sin(x) dx = \operatorname{Im}\left(\left(\frac{1}{24}i + \frac{1}{24}\right) \sqrt{3}\pi e^{\left(-\frac{1}{6}\pi\right)} + \left(\frac{1}{24}i - \frac{1}{24}\right) \pi e^{\left(-\frac{1}{6}\pi\right)} - \left(\frac{1}{4}i - \frac{1}{4}\right) \pi e^{\left(-\frac{1}{2}\pi\right)} + \frac{1}{4}i\sqrt{3}e^{\left(-\frac{1}{6}\pi\right)} - \frac{1}{4}e^{\left(-\frac{1}{6}\pi\right)} + \frac{1}{4}i\sqrt{3}e^{\left(-\frac{1}{6}\pi\right)} + \frac{1}{4}i\sqrt{3}e^{\left(-\frac{1}{6}\pi\right)}$$

et donc:

$$\int_{\frac{1}{6}\pi}^{\frac{1}{2}\pi} x e^{(-x)} \sin(x) dx = \frac{1}{24} \sqrt{3}\pi e^{\left(-\frac{1}{6}\pi\right)} + \frac{1}{24} \pi e^{\left(-\frac{1}{6}\pi\right)} - \frac{1}{4} \pi e^{\left(-\frac{1}{2}\pi\right)} + \frac{1}{4} \sqrt{3} e^{\left(-\frac{1}{6}\pi\right)}.$$

Corrigé 33. Commençons par linéariser le terme trigonométrique. On a :

 $\leftarrow \text{page } 4$

$$\int_{-\frac{1}{3}\pi}^{14\pi} x \cos(x)^2 e^x dx = \int_{-\frac{1}{3}\pi}^{14\pi} \left(\frac{1}{2} x (\cos(2x) + 1) e^x\right) dx$$
$$= \frac{1}{2} \int_{-\frac{1}{2}\pi}^{14\pi} x \cos(2x) e^x dx + \frac{1}{2} \int_{-\frac{1}{2}\pi}^{14\pi} x e^x dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\frac{1}{3}\pi}^{14\pi} x \cos(2\pi) e^x dx = \text{Re}\left(\int_{-\frac{1}{3}\pi}^{14\pi} x e^{((2i+1)\pi)} dx\right),\,$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\frac{1}{3}\pi}^{14\pi} x \cos(2\pi) e^x dx = \operatorname{Re}\left(-\left(\frac{1}{30}i + \frac{1}{15}\right) \sqrt{3}\pi e^{\left(-\frac{1}{3}\pi\right)} - \left(\frac{28}{5}i - \frac{14}{5}\right) \pi e^{\left(14\pi\right)} + \left(\frac{1}{15}i - \frac{1}{30}\right) \pi e^{\left(-\frac{1}{3}\pi\right)} + \left(\frac{3}{50}i - \frac{2}{25}\right) \sqrt{3}e^{\left(-\frac{1}{3}\pi\right)} + \left(\frac{3}{50}i - \frac{2}{50}\right) \sqrt{3}e^{\left(-\frac{1}{3}\pi\right)}$$

et donc:

$$\int_{-\frac{1}{3}\pi}^{14\pi}x\cos\left(2\,x\right)e^{x}\mathrm{d}x = -\frac{1}{15}\sqrt{3}\pi e^{\left(-\frac{1}{3}\,\pi\right)} + \frac{14}{5}\pi e^{\left(14\,\pi\right)} - \frac{1}{30}\pi e^{\left(-\frac{1}{3}\,\pi\right)} - \frac{2}{25}\sqrt{3}e^{\left(-\frac{1}{3}\,\pi\right)} + \frac{3}{25}\,e^{\left(14\,\pi\right)} + \frac{3}{50}\,e^{\left(-\frac{1}{3}\,\pi\right)}.$$

On calcule de même $\int_{-\frac{1}{3}\pi}^{14\pi} x e^x dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient: $\int_{-\frac{1}{3}\pi}^{14\pi} x e^x dx = 14\pi e^{(14\pi)} + \frac{1}{3}(\pi+3)e^{\left(-\frac{1}{3}\pi\right)} - e^{(14\pi)}$. On peut conclure:

$$\int_{-\frac{1}{3}\pi}^{14\pi} x \cos(x)^2 e^x dx = \frac{42}{5} \pi e^{(14\pi)} - \frac{1}{300} \left(5\pi \left(2\sqrt{3} - 9 \right) + 12\sqrt{3} - 159 \right) e^{\left(-\frac{1}{3}\pi \right)} - \frac{11}{25} e^{(14\pi)}.$$

Corrigé 34.

 $\leftarrow \text{page } 4$

1. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto x^n$ et en intégrant $x \mapsto e^{(ix)}$. On en déduit :

$$\int_{-\frac{2}{3}\,\pi}^{\pi} x^n e^{(i\,x)} \mathrm{d}x = \left[-i\,x^n e^{(i\,x)}\right]_{-\frac{2}{3}\,\pi}^{\pi} - \int_{-\frac{2}{3}\,\pi}^{\pi} -i\,nx^{n-1} e^{(i\,x)} \mathrm{d}x.$$

C'est-à-dire, après simplifications:

$$I_n = \frac{1}{2} \left(-\frac{2}{3} \pi \right)^n \left(\sqrt{3} - i \right) + i \pi^n + i n I_{n-1}.$$

D'où le résultat.

2. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k - ikI_{k-1} = \frac{1}{2} \left(-\frac{2}{3} \pi \right)^k \left(\sqrt{3} - i \right) + i \pi^k.$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{1}{i^k k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{i^k k!} I_k - \frac{1}{i^{k-1} (k-1)!} I_{k-1} = \frac{\left(-\frac{2}{3} \pi\right)^k \left(\sqrt{3} - i\right) + 2i \pi^k}{2 i^k k!}.$$

On somme cette égalité de k = 1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{1}{i^n n!} I_n - I_0 = \sum_{k=1}^n \left(\frac{\left(-\frac{2}{3}\pi\right)^k \left(\sqrt{3} - i\right) + 2i\pi^k}{2i^k k!} \right),$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_n = i^n n! \left[I_0 + \sum_{k=1}^n \left(\frac{\left(-\frac{2}{3}\pi\right)^k \left(\sqrt{3}-i\right) + 2i\pi^k}{2i^k k!} \right) \right].$$

 ${\rm Or} : I_0 = \int_{-\frac{2}{3}\pi}^{\pi} e^{(i\,x)} {\rm d}x = \left[-i\,e^{(i\,x)} \right]_{-\frac{2}{3}\pi}^{\pi} = \frac{1}{2}\,\sqrt{3} + \frac{1}{2}i, \ {\rm donc\ finalement} :$

$$I_n = i^n n! \left[\frac{1}{2} \sqrt{3} + \frac{1}{2} i + \sum_{k=1}^n \left(\frac{\left(-\frac{2}{3} \pi \right)^k \left(\sqrt{3} - i \right) + 2i \pi^k}{2 i^k k!} \right) \right].$$

3. Il suffit de prendre la partie imaginaire dans l'expression de la question précédente. On y parvient en développant le produit du membre de droite, et en mettant sous forme exponentielle le terme général de la somme. Souvenons-nous que : $\forall k \in \mathbb{N}, i^k = \left(e^{\frac{i\pi}{2}}\right)^k = e^{\frac{ki\pi}{2}}, \text{ et : } -\frac{1}{2}i\sqrt{3} - \frac{1}{2} = e^{-\frac{2}{3}i\pi}, -1 = e^{i\pi}, \text{ de sorte que finalement on trouve que pour tout } n \in \mathbb{N} \setminus \{0\} \text{ on a, après calculs : }$

$$\int_{-\frac{2}{3}\pi}^{\pi} x^n \sin(x) dx = n! \left[\cos\left(\frac{1}{2}\pi n\right) - \sin\left(-\frac{7}{6}\pi + \frac{1}{2}\pi n\right) + \sum_{k=1}^{n} \left(\frac{\pi^{k-1}\cos\left(-\frac{1}{2}\pi k + \frac{1}{2}\pi n\right) - \left(-\frac{2}{3}\pi\right)^{k-1}\sin\left(-\frac{7}{6}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n\right) - \left(-\frac{2}{3}\pi\right)^{k-1}\sin\left(-\frac{7}{6}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n\right) \right] dx$$

Corrigé 35

 \leftarrow page 5

1. L'application $x \mapsto x \cos(x) e^{(-x)}$ est continue sur $[\frac{1}{4}\pi, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [\frac{1}{4}\pi, +\infty[$, on a :

$$\left| x \cos(x) e^{(-x)} \right| \leqslant x e^{(-x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot xe^{(-x)} = x^3e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$xe^{(-x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{\frac{1}{4}\pi}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{4}\pi}^{+\infty} x e^{(-x)} \mathrm{d}x$ converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{4}\pi}^{+\infty} x \cos(x) \, e^{(-x)} \mathrm{d}x$ converge absolument donc converge : d'où le résultat

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{\frac{1}{4}\pi}^{+\infty} x \cos(x) e^{(-x)} dx = \operatorname{Re} \left(\int_{\frac{1}{4}\pi}^{+\infty} x e^{((i-1)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties: on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas:

$$\int_{\frac{1}{4}\pi}^{+\infty} x \cos(x) e^{(-x)} dx = \text{Re}\left(\frac{1}{8}i\sqrt{2\pi}e^{\left(-\frac{1}{4}\pi\right)} + \left(\frac{1}{4}i - \frac{1}{4}\right)\sqrt{2}e^{\left(-\frac{1}{4}\pi\right)}\right),\,$$

et donc:

$$\int_{\frac{1}{2}\pi}^{+\infty} x \cos(x) e^{(-x)} dx = -\frac{1}{4} \sqrt{2} e^{\left(-\frac{1}{4}\pi\right)}.$$

 \leftarrow page 5

Corrigé 36. Commençons par linéariser le terme trigonométrique. On a :

 $\int_{-\frac{1}{2}\pi}^{0} x \cos(3x)^{2} e^{(-10x)} dx = \int_{-\frac{1}{2}\pi}^{0} \left(\frac{1}{2} x (\cos(6x) + 1) e^{(-10x)}\right) dx$ $= \frac{1}{2} \int_{-\frac{1}{2}\pi}^{0} x \cos(6x) e^{(-10x)} dx + \frac{1}{2} \int_{-\frac{1}{2}\pi}^{0} x e^{(-10x)} dx.$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\frac{1}{2}\pi}^{0} x \cos(6x) e^{(-10x)} dx = \operatorname{Re} \left(\int_{-\frac{1}{2}\pi}^{0} x e^{((6i-10)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\frac{1}{3}\pi}^{0} x \cos(6x) e^{(-10x)} dx = \text{Re}\left(\left(\frac{3}{136}i + \frac{5}{136}\right) \pi e^{(5\pi)} - \left(\frac{15}{2312}i + \frac{1}{289}\right) e^{(5\pi)} - \frac{15}{2312}i - \frac{1}{289}\right),$$

et donc:

$$\int_{-\frac{1}{2}\pi}^{0} x \cos(6x) e^{(-10x)} dx = \frac{5}{136} \pi e^{(5\pi)} - \frac{1}{289} e^{(5\pi)} - \frac{1}{289}.$$

On calcule de même $\int_{-\frac{1}{2}\pi}^{0} xe^{(-10x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre

en compte), et on obtient: $\int_{-\frac{1}{2}\pi}^{0} x e^{(-10x)} dx = -\frac{1}{20} \pi e^{(5\pi)} + \frac{1}{100} e^{(5\pi)} - \frac{1}{100}.$ On peut conclure:

$$\int_{-\frac{1}{2}\pi}^{0} x \cos(3x)^{2} e^{(-10x)} dx = -\frac{9}{1360} \pi e^{(5\pi)} + \frac{189}{57800} e^{(5\pi)} - \frac{389}{57800}.$$

Corrigé 37. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties deux fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial : pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

Mettons cela en œuvre : l'application $x \mapsto x^2 + x$ est de classe C^1 sur $[-\frac{1}{3}\pi,0]$, de dérivée $x \mapsto 2x+1$, tandis que $x \mapsto \sin(x)$ est continue sur $[-\frac{1}{3}\pi,0]$, et une primitive est $x \mapsto -\cos(x)$. D'après la formule de l'intégration par parties :

$$\int_{-\frac{1}{3}\pi}^{0} (x^2 + x) \sin(x) dx = \left[-(x^2 + x) \cos(x) \right]_{-\frac{1}{3}\pi}^{0} - \int_{-\frac{1}{3}\pi}^{0} -(2x + 1) \cos(x) dx$$
$$= -\frac{1}{6}\pi + \frac{1}{18}\pi^2 - \int_{-\frac{1}{3}\pi}^{0} (-(2x + 1) \cos(x)) dx.$$

On recommence : l'application $x \mapsto 2x + 1$ est de classe C^1 sur $[-\frac{1}{3}\pi,0]$, de dérivée $x \mapsto 2$, tandis que $x \mapsto -\cos(x)$ est continue sur $[-\frac{1}{3}\pi,0]$, et une primitive est $x \mapsto -\sin(x)$. D'après la formule de l'intégration par parties :

$$\int_{-\frac{1}{3}\pi}^{0} -(2x+1)\cos(x) dx = \left[-(2x+1)\sin(x)\right]_{-\frac{1}{3}\pi}^{0} - \int_{-\frac{1}{3}\pi}^{0} -2\sin(x) dx$$
$$= \frac{1}{6}\sqrt{3}(2\pi - 3) - \int_{-\frac{1}{2}\pi}^{0} (-2\sin(x)) dx.$$

Or: $\int_{-\frac{1}{3}\pi}^{0} (-2\sin(x)) dx = [2\cos(x)]_{-\frac{1}{3}\pi}^{0} = 1. \text{ On conclut:}$

$$\int_{-\frac{1}{3}\pi}^{0} (x^2 + x) \sin(x) dx = -\frac{1}{6}\pi + \frac{1}{18}\pi^2 - \frac{1}{6}\sqrt{3}(2\pi - 3) + 1.$$

Corrigé 38. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties deux fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial : pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

 \leftarrow page 5

 \leftarrow page 5

 \leftarrow page 5

Mettons cela en œuvre : l'application $x \mapsto x^2 - 4x - 1$ est de classe C^1 sur $[-\pi,29\,\pi]$, de dérivée $x \mapsto 2\,x - 4$, tandis que $x \mapsto \cos{(4\,x)}$ est continue sur $[-\pi,29\,\pi]$, et une primitive est $x \mapsto \frac{1}{4}\sin{(4\,x)}$. D'après la formule de l'intégration par parties :

$$\int_{-\pi}^{29\pi} (x^2 - 4x - 1) \cos(4x) dx = \left[\frac{1}{4} (x^2 - 4x - 1) \sin(4x) \right]_{-\pi}^{29\pi} - \int_{-\pi}^{29\pi} \frac{1}{2} (x - 2) \sin(4x) dx$$
$$= 0 - \int_{-\pi}^{29\pi} \left(\frac{1}{2} (x - 2) \sin(4x) \right) dx.$$

On recommence : l'application $x\mapsto 2\,x-4$ est de classe C^1 sur $[-\pi,29\,\pi]$, de dérivée $x\mapsto 2$, tandis que $x\mapsto \frac{1}{4}\sin{(4\,x)}$ est continue sur $[-\pi,29\,\pi]$, et une primitive est $x\mapsto -\frac{1}{16}\cos{(4\,x)}$. D'après la formule de l'intégration par parties :

$$\int_{-\pi}^{29\pi} \frac{1}{2} (x - 2) \sin(4x) dx = \left[-\frac{1}{8} (x - 2) \cos(4x) \right]_{-\pi}^{29\pi} - \int_{-\pi}^{29\pi} -\frac{1}{8} \cos(4x) dx$$
$$= -\frac{15}{4} \pi - \int_{-\pi}^{29\pi} \left(-\frac{1}{8} \cos(4x) \right) dx.$$

Or:
$$\int_{-\pi}^{29\pi} \left(-\frac{1}{8} \cos(4x) \right) dx = \left[-\frac{1}{32} \sin(4x) \right]_{-\pi}^{29\pi} = 0. \text{ On conclut:}$$
$$\int_{-\pi}^{29\pi} \left(x^2 - 4x - 1 \right) \cos(4x) dx = \frac{15}{4} \pi.$$

Corrigé 39.

1. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto x^n$ et en intégrant $x \mapsto e^{(ix)}$. On en déduit :

$$\int_0^{\frac{5}{6}\pi} x^n e^{(ix)} \mathrm{d}x = \left[-i \, x^n e^{(ix)} \right]_0^{\frac{5}{6}\pi} - \int_0^{\frac{5}{6}\pi} -i \, n x^{n-1} e^{(ix)} \mathrm{d}x.$$

C'est-à-dire, après simplifications:

$$I_n = \frac{1}{2} \left(\frac{5}{6} \pi \right)^n \left(i \sqrt{3} + 1 \right) + inI_{n-1}.$$

D'où le résultat.

2. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul:

$$I_k - ikI_{k-1} = \frac{1}{2} \left(\frac{5}{6} \pi \right)^k \left(i \sqrt{3} + 1 \right).$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{1}{i^k k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{i^k k!} I_k - \frac{1}{i^{k-1} (k-1)!} I_{k-1} = \frac{\left(\frac{5}{6} \pi\right)^k \left(i \sqrt{3} + 1\right)}{2 i^k k!}.$$

On somme cette égalité de k=1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{1}{i^{n} n!} I_{n} - I_{0} = \sum_{k=1}^{n} \left(\frac{\left(\frac{5}{6} \pi\right)^{k} \left(i \sqrt{3} + 1\right)}{2 i^{k} k!} \right),$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_n = i^n n! \left[I_0 + \sum_{k=1}^n \left(\frac{\left(\frac{5}{6}\pi\right)^k (i\sqrt{3}+1)}{2i^k k!} \right) \right].$$

Or:
$$I_0 = \int_0^{\frac{5}{6}\pi} e^{(ix)} dx = \left[-i e^{(ix)} \right]_0^{\frac{5}{6}\pi} = \frac{1}{2} i \sqrt{3} + i + \frac{1}{2}$$
, donc finalement:

$$I_n = i^n n! \left[\frac{1}{2} i \sqrt{3} + i + \frac{1}{2} + \sum_{k=1}^n \left(\frac{\left(\frac{5}{6}\pi\right)^k \left(i\sqrt{3} + 1\right)}{2 i^k k!} \right) \right].$$

3. Il suffit de prendre la partie imaginaire dans l'expression de la question précédente. On y parvient en développant le produit du membre de droite, et en mettant sous forme exponentielle le terme général de la somme. Souvenons-nous que : $\forall k \in \mathbb{N}, \ i^k = \left(e^{\frac{i\pi}{2}}\right)^k = e^{\frac{ki\pi}{2}}, \ \text{et} : -\frac{1}{2}\sqrt{3} + \frac{1}{2}i = e^{\frac{5}{6}i\pi}, \ \text{de sorte que finalement}$ on trouve que pour tout $n \in \mathbb{N} \setminus \{0\}$ on a, après calculs :

$$\int_0^{\frac{5}{6}\pi} x^n \sin(x) dx = n! \left[\cos\left(\frac{1}{2}\pi n\right) + \sin\left(\frac{1}{3}\pi + \frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(\frac{\left(\frac{5}{6}\pi\right)^{k-1} \sin\left(\frac{1}{3}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n\right)}{k!}\right) \right].$$

Corrigé 40. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties une fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial : pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

 \leftarrow page 5

 \leftarrow page 5

Mettons cela en œuvre : l'application $x \mapsto 2x + 3$ est de classe C^1 sur $[0, \frac{2}{3}\pi]$, de dérivée $x \mapsto 2$, tandis que $x \mapsto \cos(x)$ est continue sur $[0, \frac{2}{3}\pi]$, et une primitive est $x \mapsto \sin(x)$. D'après la formule de l'intégration par parties :

$$\int_0^{\frac{2}{3}\pi} (2x+3)\cos(x) dx = \left[(2x+3)\sin(x) \right]_0^{\frac{2}{3}\pi} - \int_0^{\frac{2}{3}\pi} 2\sin(x) dx$$
$$= \frac{1}{6}\sqrt{3}(4\pi+9) - \int_0^{\frac{2}{3}\pi} (2\sin(x)) dx.$$

Or: $\int_0^{\frac{2}{3}\pi} (2\sin(x)) dx = [-2\cos(x)]_0^{\frac{2}{3}\pi} = 3. \text{ On conclut:}$

$$\int_0^{\frac{2}{3}\pi} (2x+3)\cos(x) \, \mathrm{d}x = \frac{1}{6}\sqrt{3}(4\pi+9) - 3.$$

Corrigé 41. Commençons par linéariser le terme trigonométrique. On a :

$$\int_{-\frac{7}{2}\pi}^{0} x \cos(2x)^{2} e^{(-x)} dx = \int_{-\frac{7}{2}\pi}^{0} \left(\frac{1}{2} x (\cos(4x) + 1) e^{(-x)} \right) dx$$
$$= \frac{1}{2} \int_{-\frac{7}{2}\pi}^{0} x \cos(4x) e^{(-x)} dx + \frac{1}{2} \int_{-\frac{7}{2}\pi}^{0} x e^{(-x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\frac{7}{2}\pi}^{0} x \cos(4x) e^{(-x)} dx = \text{Re}\left(\int_{-\frac{7}{2}\pi}^{0} x e^{((4i-1)x)} dx\right),\,$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\frac{7}{2}\pi}^{0} x \cos(4x) e^{(-x)} dx = \operatorname{Re}\left(-\left(\frac{14}{17}i + \frac{7}{34}\right) \pi e^{\left(\frac{7}{2}\pi\right)} + \left(\frac{8}{289}i - \frac{15}{289}\right) e^{\left(\frac{7}{2}\pi\right)} - \frac{8}{289}i + \frac{15}{289}\right),$$

et donc:

$$\int_{-\frac{7}{2}\pi}^{0} x \cos(4x) e^{(-x)} dx = -\frac{7}{34} \pi e^{(\frac{7}{2}\pi)} - \frac{15}{289} e^{(\frac{7}{2}\pi)} + \frac{15}{289}.$$

On calcule de même $\int_{-\frac{7}{2}\pi}^{0} xe^{(-x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en

compte), et on obtient: $\int_{-\frac{7}{2}\pi}^{0} x e^{(-x)} dx = -\frac{1}{2} (7\pi - 2) e^{(\frac{7}{2}\pi)} - 1$. On peut conclure:

$$\int_{-\frac{7}{2}\pi}^{0} x \cos(2x)^{2} e^{(-x)} dx = -\frac{1}{578} \left(1071\pi - 274\right) e^{\left(\frac{7}{2}\pi\right)} - \frac{137}{289}$$

Corrigé 42. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties une fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial : pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

 \leftarrow page 5

 \leftarrow page 5

 $\leftarrow \text{page 5}$

Mettons cela en œuvre: l'application $x\mapsto x+2$ est de classe C¹ sur [-1,0], de dérivée $x\mapsto 1$, tandis que $x\mapsto e^{(-7\,x)}$ est continue sur [-1,0], et une primitive est $x\mapsto -\frac{1}{7}\,e^{(-7\,x)}$. D'après la formule de l'intégration par parties:

$$\int_{-1}^{0} (x+2)e^{(-7x)} dx = \left[-\frac{1}{7} (x+2)e^{(-7x)} \right]_{-1}^{0} - \int_{-1}^{0} -\frac{1}{7} e^{(-7x)} dx$$
$$= \frac{1}{7} e^{7} - \frac{2}{7} - \int_{-1}^{0} \left(-\frac{1}{7} e^{(-7x)} \right) dx.$$

Or:
$$\int_{-1}^{0} \left(-\frac{1}{7} e^{(-7x)} \right) dx = \left[\frac{1}{49} e^{(-7x)} \right]_{-1}^{0} = -\frac{1}{49} e^{7} + \frac{1}{49}$$
. On conclut:

$$\int_{-1}^{0} (x+2)e^{(-7x)} dx = \frac{8}{49}e^{7} - \frac{15}{49}.$$

Corrigé 43. Commençons par linéariser le terme trigonométrique. On a :

 $\int_{-\frac{277}{2}\pi}^{-\frac{1}{6}\pi} x \cos(x)^2 e^{(-x)} dx = \int_{-\frac{277}{2}\pi}^{-\frac{1}{6}\pi} \left(\frac{1}{2} x (\cos(2x) + 1) e^{(-x)} \right) dx$ $= \frac{1}{2} \int_{-\frac{277}{2}\pi}^{-\frac{1}{6}\pi} x \cos(2x) e^{(-x)} dx + \frac{1}{2} \int_{-\frac{277}{2}\pi}^{-\frac{1}{6}\pi} x e^{(-x)} dx.$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\frac{277}{27}}^{-\frac{1}{6}\pi} x \cos(2x) e^{(-x)} dx = \operatorname{Re} \left(\int_{-\frac{277}{27}}^{-\frac{1}{6}\pi} x e^{((2i-1)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\frac{277}{2}\pi}^{-\frac{1}{6}\pi} x \cos(2x) e^{(-x)} dx = \operatorname{Re}\left(-\left(\frac{1}{60}i - \frac{1}{30}\right) \sqrt{3}\pi e^{\left(\frac{1}{6}\pi\right)} + \left(\frac{277}{5}i + \frac{277}{10}\right) \pi e^{\left(\frac{277}{2}\pi\right)} + \left(\frac{1}{30}i + \frac{1}{60}\right) \pi e^{\left(\frac{1}{6}\pi\right)} - \left(\frac{3}{50}i + \frac{2}{25}\right) \sqrt{3}e^{\left(\frac{1}{6}\pi\right)} + \left(\frac{277}{5}i + \frac{277}{10}\right) \pi e^{\left(\frac{277}{2}\pi\right)} + \left(\frac{1}{30}i + \frac{1}{60}\right) \pi e^{\left(\frac{1}{6}\pi\right)} - \left(\frac{3}{50}i + \frac{2}{25}\right) \sqrt{3}e^{\left(\frac{1}{6}\pi\right)} + \left(\frac{277}{5}i + \frac{277}{10}\right) \pi e^{\left(\frac{1}{6}\pi\right)} + \left(\frac{1}{30}i + \frac{1}{60}\right) \pi e^{\left(\frac{1}{6}\pi\right)} - \left(\frac{3}{50}i + \frac{2}{25}\right) \sqrt{3}e^{\left(\frac{1}{6}\pi\right)} + \left(\frac{277}{5}i + \frac{277}{10}\right) \pi e^{\left(\frac{1}{6}\pi\right)} + \left(\frac{1}{30}i + \frac{1}{60}\right) \pi e^{\left(\frac{1}{6}\pi\right)} + \left(\frac{3}{50}i + \frac{2}{50}i + \frac{$$

et donc

$$\int_{-\frac{277}{3}\pi}^{-\frac{1}{6}\pi} x \cos(2x) e^{(-x)} dx = \frac{1}{30} \sqrt{3}\pi e^{\left(\frac{1}{6}\pi\right)} + \frac{277}{10} \pi e^{\left(\frac{277}{2}\pi\right)} + \frac{1}{60} \pi e^{\left(\frac{1}{6}\pi\right)} - \frac{2}{25} \sqrt{3} e^{\left(\frac{1}{6}\pi\right)} + \frac{3}{25} e^{\left(\frac{277}{2}\pi\right)} + \frac{3}{50} e^{\left(\frac{1}{6}\pi\right)}.$$

On calcule de même $\int_{-\frac{277}{2}}^{-\frac{1}{6}\pi} x e^{(-x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre

en compte), et on obtient: $\int_{-\frac{277}{2}\pi}^{-\frac{1}{6}\pi} x e^{(-x)} dx = -\frac{1}{2} \left(277\pi - 2 \right) e^{\left(\frac{277}{2}\pi \right)} + \frac{1}{6} \left(\pi - 6 \right) e^{\left(\frac{1}{6}\pi \right)}.$ On peut conclure:

$$\int_{-\frac{277}{2}\pi}^{-\frac{1}{6}\pi} x \cos(x)^2 e^{(-x)} dx = -\frac{1}{25} \left(1385\pi - 14\right) e^{\left(\frac{277}{2}\pi\right)} + \frac{1}{600} \left(5\pi \left(2\sqrt{3} + 11\right) - 24\sqrt{3} - 282\right) e^{\left(\frac{1}{6}\pi\right)}.$$

Corrigé 44.

1. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto x^n$ et en intégrant $x \mapsto e^{(ix)}$. On en déduit :

 $\int_{-\frac{1}{2}\pi}^{0} x^{n} e^{(ix)} dx = \left[-i x^{n} e^{(ix)} \right]_{-\frac{1}{2}\pi}^{0} - \int_{-\frac{1}{2}\pi}^{0} -i n x^{n-1} e^{(ix)} dx.$

C'est-à-dire, après simplifications:

$$I_n = \left(\frac{1}{2}i + \frac{1}{2}\right)\sqrt{2}\left(-\frac{1}{4}\pi\right)^n + inI_{n-1}.$$

D'où le résultat.

2. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k - ikI_{k-1} = \left(\frac{1}{2}i + \frac{1}{2}\right)\sqrt{2}\left(-\frac{1}{4}\pi\right)^k.$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{1}{i^k k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{i^k k!} I_k - \frac{1}{i^{k-1} (k-1)!} I_{k-1} = \frac{(i+1) \sqrt{2} \left(-\frac{1}{4} \pi\right)^k}{2 i^k k!}.$$

On somme cette égalité de k=1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{1}{i^n n!} I_n - I_0 = \sum_{k=1}^n \left(\frac{(i+1)\sqrt{2} \left(-\frac{1}{4}\pi\right)^k}{2i^k k!} \right),$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_n = i^n n! \left[I_0 + \sum_{k=1}^n \left(\frac{(i+1)\sqrt{2}(-\frac{1}{4}\pi)^k}{2i^k k!} \right) \right].$$

 $\text{Or}: I_0 = \int_{-\frac{1}{4}\pi}^0 e^{(i\,x)} \mathrm{d}x = \left[-i\,e^{(i\,x)}\right]_{-\frac{1}{4}\pi}^0 = \left(\frac{1}{2}i + \frac{1}{2}\right)\,\sqrt{2} - i, \, \text{donc finalement}:$

$$I_n = i^n n! \left[\left(\frac{1}{2} i + \frac{1}{2} \right) \sqrt{2} - i + \sum_{k=1}^n \left(\frac{(i+1)\sqrt{2} \left(-\frac{1}{4}\pi \right)^k}{2i^k k!} \right) \right].$$

3. Il suffit de prendre la partie imaginaire dans l'expression de la question précédente. On y parvient en développant le produit du membre de droite, et en mettant sous forme exponentielle le terme général de la somme. Souvenons-nous que: $\forall k \in \mathbb{N}, \ i^k = \left(e^{\frac{i\pi}{2}}\right)^k = e^{\frac{ki\pi}{2}}, \ \text{et}: -\left(\frac{1}{2}i - \frac{1}{2}\right)\sqrt{2} = e^{-\frac{1}{4}i\pi}, \ \text{de sorte que finalement on trouve que pour tout } n \in \mathbb{N} \setminus \{0\} \text{ on a, après calculs:}$

$$\int_{-\frac{1}{4}\pi}^{0} x^{n} \sin(x) dx = n! \left[-\cos\left(\frac{1}{2}\pi n\right) - \sin\left(-\frac{3}{4}\pi + \frac{1}{2}\pi n\right) + \sum_{k=1}^{n} \left(-\frac{\left(-\frac{1}{4}\pi\right)^{k-1} \sin\left(-\frac{3}{4}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n\right)}{k!}\right) \right].$$

Corrigé 45.

 $\leftarrow \text{page 5}$

1. L'application $x \mapsto xe^{(-4x)}\sin{(7x)^2}$ est continue sur $[-2\pi, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [-2\pi, +\infty[$, on a:

$$\left| xe^{(-4x)} \sin(7x)^2 \right| \le |x|e^{(-4x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot |x|e^{(-4\,x)} = x^2|x|e^{(-4\,x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc :

$$|x|e^{(-4x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} |x| e^{(-4\,x)} \mathrm{d}x$ converge, et donc $\int_{-2\,\pi}^{+\infty} |x| e^{(-4\,x)} \mathrm{d}x$ converge aussi par continuité sur le segment $[-2\,\pi,1]$. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-2\,\pi}^{+\infty} x e^{(-4\,x)} \sin{(7\,x)^2} \, \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a :

$$\int_{-2\pi}^{+\infty} x e^{(-4x)} \sin(7x)^2 dx = \int_{-2\pi}^{+\infty} \left(-\frac{1}{2} x (\cos(14x) - 1) e^{(-4x)} \right) dx$$
$$= -\frac{1}{2} \int_{-2\pi}^{+\infty} x \cos(14x) e^{(-4x)} dx + \frac{1}{2} \int_{-2\pi}^{+\infty} x e^{(-4x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-2\pi}^{+\infty} x \cos(14x) e^{(-4x)} dx = \text{Re} \left(\int_{-2\pi}^{+\infty} x e^{((14i-4)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-2\pi}^{+\infty} x \cos(14x) e^{(-4x)} dx = \text{Re}\left(-\left(\frac{7}{53}i + \frac{2}{53}\right) \pi e^{(8\pi)} + \left(\frac{7}{2809}i - \frac{45}{11236}\right) e^{(8\pi)}\right),\,$$

et donc:

$$\int_{-2\pi}^{+\infty} x \cos(14x) e^{(-4x)} dx = -\frac{2}{53} \pi e^{(8\pi)} - \frac{45}{11236} e^{(8\pi)}.$$

On calcule de même $\int_{-2\pi}^{+\infty} x e^{(-4x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient: $\int_{-2\pi}^{+\infty} x e^{(-4x)} dx = -\frac{1}{2} \pi e^{(8\pi)} + \frac{1}{16} e^{(8\pi)}$. On peut conclure:

$$\int_{-2\pi}^{+\infty} x e^{(-4x)} \sin(7x)^2 dx = -\frac{49}{212} \pi e^{(8\pi)} + \frac{2989}{89888} e^{(8\pi)}.$$

Corrigé 46.

 \leftarrow page 6

1. L'application $x \mapsto x^2 e^{(-x)} \sin(x)$ est continue sur $[-3\pi, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [-3\pi, +\infty[$, on a:

$$\left| x^{2}e^{(-x)}\sin(x) \right| \leqslant x^{2}e^{(-x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-x)} = x^4 e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$x^2 e^{(-x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2} \right).$$

Or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2 > 1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{1}^{+\infty} x^2 e^{(-x)} \mathrm{d}x$ converge, et donc $\int_{-3\pi}^{+\infty} x^2 e^{(-x)} \mathrm{d}x$ converge aussi par continuité sur le segment $[-3\pi,1]$. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-3\pi}^{+\infty} x^2 e^{(-x)} \sin{(x)} \, \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-3\pi}^{+\infty} x^2 e^{(-x)} \sin(x) dx = \operatorname{Im} \left(\int_{-3\pi}^{+\infty} x^2 e^{((i-1)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties deux fois: on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas:

$$\int_{-3\,\pi}^{+\infty} x^2 e^{(-x)} \sin{(x)} \, \mathrm{d}x = \mathrm{Im} \left(-\left(\frac{9}{2}i + \frac{9}{2}\right)\,\pi^2 e^{(3\,\pi)} + 3i\,\pi e^{(3\,\pi)} - \left(\frac{1}{2}i - \frac{1}{2}\right)\,e^{(3\,\pi)} \right),$$

et donc:

$$\int_{-3\,\pi}^{+\infty} x^2 e^{(-x)} \sin\left(x\right) \mathrm{d}x = -\frac{9}{2}\,\pi^2 e^{(3\,\pi)} + 3\,\pi e^{(3\,\pi)} - \frac{1}{2}\,e^{(3\,\pi)}.$$

Corrigé 47.

 \leftarrow page 6

1. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto x^n$ et en intégrant $x \mapsto e^{(ix)}$. On en déduit :

$$\int_{-\frac{1}{2}\pi}^{\frac{1}{4}\pi} x^n e^{(i\,x)} \mathrm{d}x = \left[-i\,x^n e^{(i\,x)} \right]_{-\frac{1}{2}\pi}^{\frac{1}{4}\pi} - \int_{-\frac{1}{2}\pi}^{\frac{1}{4}\pi} -i\,n x^{n-1} e^{(i\,x)} \mathrm{d}x.$$

C'est-à-dire, après simplifications:

$$I_n = -\left(\frac{1}{2}i - \frac{1}{2}\right)\sqrt{2}\left(\frac{1}{4}\pi\right)^n + \left(-\frac{1}{2}\pi\right)^n + inI_{n-1}.$$

D'où le résultat.

2. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k - ikI_{k-1} = -\left(\frac{1}{2}i - \frac{1}{2}\right)\sqrt{2}\left(\frac{1}{4}\pi\right)^k + \left(-\frac{1}{2}\pi\right)^k.$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{1}{i^k k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{i^k k!} I_k - \frac{1}{i^{k-1} (k-1)!} I_{k-1} = -\frac{(i-1) \sqrt{2} \left(\frac{1}{4} \pi\right)^k - 2 \left(-\frac{1}{2} \pi\right)^k}{2 i^k k!}$$

On somme cette égalité de k=1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{1}{i^n n!} I_n - I_0 = \sum_{k=1}^n \left(-\frac{(i-1)\sqrt{2} \left(\frac{1}{4}\pi\right)^k - 2\left(-\frac{1}{2}\pi\right)^k}{2i^k k!} \right),$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_n = i^n n! \left[I_0 + \sum_{k=1}^n \left(-\frac{(i-1)\sqrt{2}(\frac{1}{4}\pi)^k - 2(-\frac{1}{2}\pi)^k}{2i^k k!} \right) \right].$$

Or:
$$I_0 = \int_{-\frac{1}{2}\pi}^{\frac{1}{4}\pi} e^{(ix)} dx = \left[-i e^{(ix)} \right]_{-\frac{1}{2}\pi}^{\frac{1}{4}\pi} = -\left(\frac{1}{2}i - \frac{1}{2} \right) \sqrt{2} + 1$$
, donc finalement:

$$I_n = i^n n! \left[-\left(\frac{1}{2}i - \frac{1}{2}\right) \sqrt{2} + 1 + \sum_{k=1}^n \left(-\frac{(i-1)\sqrt{2}\left(\frac{1}{4}\pi\right)^k - 2\left(-\frac{1}{2}\pi\right)^k}{2i^k k!}\right) \right].$$

3. Il suffit de prendre la partie imaginaire dans l'expression de la question précédente. On y parvient en développant le produit du membre de droite, et en mettant sous forme exponentielle le terme général de la somme. Souvenons-nous que : $\forall k \in \mathbb{N}, \ i^k = \left(e^{\frac{i\pi}{2}}\right)^k = e^{\frac{ki\pi}{2}}, \ \text{et} : -i = e^{-\frac{1}{2}i\,\pi}, \ \left(\frac{1}{2}i + \frac{1}{2}\right)\,\sqrt{2} = e^{\frac{1}{4}i\,\pi}, \ \text{de sorte que finalement on trouve que pour tout } n \in \mathbb{N} \setminus \{0\} \ \text{on a, après calculs} :$

$$\int_{-\frac{1}{2}\pi}^{\frac{1}{4}\pi} x^n \sin(x) dx = n! \left[\sin\left(-\frac{1}{4}\pi + \frac{1}{2}\pi n\right) + \sin\left(\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(\frac{\left(\frac{1}{4}\pi\right)^{k-1} \sin\left(-\frac{1}{4}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n\right) + \left(-\frac{1}{2}\pi\right)^{k-1} \sin\left(-\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(\frac{\left(\frac{1}{4}\pi\right)^{k-1} \sin\left(-\frac{1}{4}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n\right) + \left(-\frac{1}{2}\pi\right)^{k-1} \sin\left(-\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(\frac{\left(\frac{1}{4}\pi\right)^{k-1} \sin\left(-\frac{1}{4}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n\right) + \left(-\frac{1}{2}\pi\right)^{k-1} \sin\left(-\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(\frac{\left(\frac{1}{4}\pi\right)^{k-1} \sin\left(-\frac{1}{4}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n\right) + \left(-\frac{1}{2}\pi\right)^{k-1} \sin\left(-\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(\frac{\left(\frac{1}{4}\pi\right)^{k-1} \sin\left(-\frac{1}{4}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n\right) + \left(-\frac{1}{2}\pi\right)^{k-1} \sin\left(-\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(\frac{\left(\frac{1}{4}\pi\right)^{k-1} \sin\left(-\frac{1}{4}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n\right) + \left(-\frac{1}{2}\pi\right)^{k-1} \sin\left(-\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(\frac{\left(\frac{1}{4}\pi\right)^{k-1} \sin\left(-\frac{1}{4}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n\right) + \left(-\frac{1}{2}\pi\right)^{k-1} \sin\left(-\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(\frac{\left(\frac{1}{4}\pi\right)^{k-1} \sin\left(-\frac{1}{4}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n\right) + \left(-\frac{1}{2}\pi\right)^{k-1} \sin\left(-\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(\frac{1}{4}\pi\right)^{k-1} \sin\left(-\frac{1}{4}\pi - \frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(\frac{1}{4}\pi\right)^{k-1} \sin\left(-\frac{1}{4}\pi\right)^{k-1} \sin\left(-\frac{1}{4}\pi\right)^{k-1$$

Corrigé 48. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties deux fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial : pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

 $\leftarrow \text{page } 6$

Mettons cela en œuvre : l'application $x \mapsto x^2 + x - 2$ est de classe C¹ sur $[0,17\,\pi]$, de dérivée $x \mapsto 2\,x + 1$, tandis que $x \mapsto \cos(x)$ est continue sur $[0,17\,\pi]$, et une primitive est $x \mapsto \sin(x)$. D'après la formule de l'intégration par parties :

$$\int_{0}^{17\pi} (x^{2} + x - 2) \cos(x) dx = [(x^{2} + x - 2) \sin(x)]_{0}^{17\pi} - \int_{0}^{17\pi} (2x + 1) \sin(x) dx$$
$$= 0 - \int_{0}^{17\pi} ((2x + 1) \sin(x)) dx.$$

On recommence: l'application $x \mapsto 2x + 1$ est de classe C^1 sur $[0,17\pi]$, de dérivée $x \mapsto 2$, tandis que $x \mapsto \sin(x)$ est continue sur $[0,17\pi]$, et une primitive est $x \mapsto -\cos(x)$. D'après la formule de l'intégration par parties:

$$\int_0^{17\pi} (2x+1)\sin(x) dx = [-(2x+1)\cos(x)]_0^{17\pi} - \int_0^{17\pi} -2\cos(x) dx$$
$$= 34\pi + 2 - \int_0^{17\pi} (-2\cos(x)) dx.$$

Or: $\int_{0}^{17\pi} (-2\cos(x)) dx = [-2\sin(x)]_{0}^{17\pi} = 0$. On conclut:

$$\int_{0}^{17\pi} (x^2 + x - 2) \cos(x) dx = -34\pi - 2.$$

Corrigé 49.

1. L'application $x \mapsto x \cos(3x) e^{(-2x)}$ est continue sur $\left[\frac{8}{3}\pi, +\infty\right[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in \left[\frac{8}{3}\pi, +\infty\right[$, on a:

$$\left| x \cos(3x) e^{(-2x)} \right| \le x e^{(-2x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot xe^{(-2x)} = x^3e^{(-2x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc :

$$xe^{(-2x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{\frac{8}{3}\pi}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{8}{3}\pi}^{+\infty} x e^{(-2x)} \mathrm{d}x$ converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{8}{3}\pi}^{+\infty} x \cos{(3x)} e^{(-2x)} \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a:

$$\int_{\frac{8}{3}\pi}^{+\infty} x \cos(3x) e^{(-2x)} dx = \text{Re}\left(\int_{\frac{8}{3}\pi}^{+\infty} x e^{((3i-2)x)} dx\right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{\frac{8}{3}\pi}^{+\infty} x \cos\left(3\,x\right) e^{\left(-2\,x\right)} \mathrm{d}x = \mathrm{Re}\left(\left(\frac{8}{13}i + \frac{16}{39}\right)\,\pi e^{\left(-\frac{16}{3}\,\pi\right)} + \left(\frac{12}{169}i - \frac{5}{169}\right)\,e^{\left(-\frac{16}{3}\,\pi\right)}\right),$$

et donc:

$$\int_{\frac{8}{3}\pi}^{+\infty} x \cos(3x) e^{(-2x)} dx = \frac{16}{39} \pi e^{\left(-\frac{16}{3}\pi\right)} - \frac{5}{169} e^{\left(-\frac{16}{3}\pi\right)}.$$

Corrigé 50. Commençons par linéariser le terme trigonométrique. On a :

$$\int_{-\frac{1}{4}\pi}^{\frac{1}{3}\pi} x \cos(x)^2 e^x dx = \int_{-\frac{1}{4}\pi}^{\frac{1}{3}\pi} \left(\frac{1}{2} x (\cos(2x) + 1) e^x \right) dx$$
$$= \frac{1}{2} \int_{-\frac{1}{4}\pi}^{\frac{1}{3}\pi} x \cos(2x) e^x dx + \frac{1}{2} \int_{-\frac{1}{4}\pi}^{\frac{1}{3}\pi} x e^x dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\frac{1}{4}\pi}^{\frac{1}{3}\pi} x \cos(2x) e^x dx = \text{Re}\left(\int_{-\frac{1}{4}\pi}^{\frac{1}{3}\pi} x e^{((2i+1)x)} dx\right),$$

 \leftarrow page 6

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\frac{1}{4}\pi}^{\frac{1}{3}\pi} x \cos(2x) e^x dx = \operatorname{Re}\left(\left(\frac{1}{30}i + \frac{1}{15}\right) \sqrt{3}\pi e^{\left(\frac{1}{3}\pi\right)} + \left(\frac{1}{15}i - \frac{1}{30}\right) \pi e^{\left(\frac{1}{3}\pi\right)} - \left(\frac{1}{20}i + \frac{1}{10}\right) \pi e^{\left(-\frac{1}{4}\pi\right)} + \left(\frac{3}{50}i - \frac{2}{25}\right) \sqrt{3}e^{\left(\frac{1}{3}\pi\right)} - \left(\frac{1}{15}i - \frac{1}{30}\right) \pi e^{\left(\frac{1}{3}\pi\right)} + \left(\frac{3}{15}i - \frac{2}{15}\right) \pi e^{\left(\frac{1}{3}\pi\right)} + \left(\frac{3}{15}$$

et donc:

$$\int_{-\frac{1}{4}\pi}^{\frac{1}{3}\pi} x \cos(2x) e^x dx = \frac{1}{15} \sqrt{3}\pi e^{\left(\frac{1}{3}\pi\right)} - \frac{1}{30} \pi e^{\left(\frac{1}{3}\pi\right)} - \frac{1}{10} \pi e^{\left(-\frac{1}{4}\pi\right)} - \frac{2}{25} \sqrt{3} e^{\left(\frac{1}{3}\pi\right)} - \frac{3}{50} e^{\left(\frac{1}{3}\pi\right)} - \frac{4}{25} e^{\left(-\frac{1}{4}\pi\right)}.$$

On calcule de même $\int_{-\frac{1}{4}\pi}^{\frac{1}{3}\pi} x e^x dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient: $\int_{-\frac{1}{4}\pi}^{\frac{1}{3}\pi} x e^x dx = \frac{1}{3}(\pi - 3)e^{(\frac{1}{3}\pi)} + \frac{1}{4}(\pi + 4)e^{(-\frac{1}{4}\pi)}$. On peut conclure:

$$\int_{-\frac{1}{4}\pi}^{\frac{1}{3}\pi} x \cos(x)^2 e^x dx = \frac{1}{300} \left(5\pi \left(2\sqrt{3} + 9 \right) - 12\sqrt{3} - 159 \right) e^{\left(\frac{1}{3}\pi \right)} + \frac{3}{200} \left(5\pi + 28 \right) e^{\left(-\frac{1}{4}\pi \right)}.$$

Corrigé 51.

1. L'application $x \mapsto x^2 e^{(-x)} \sin(x)^2$ est continue sur $[7\pi, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [7\pi, +\infty[$, on a:

$$0 \leqslant x^2 e^{(-x)} \sin(x)^2 \leqslant x^2 e^{(-x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-x)} = x^4 e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$x^2 e^{(-x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2} \right).$$

Or l'intégrale de Riemann $\int_{7\pi}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2 > 1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{7\pi}^{+\infty} x^2 e^{(-x)} \mathrm{d}x$ converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{7\pi}^{+\infty} x^2 e^{(-x)} \sin{(x)^2} \, \mathrm{d}x$ converge: d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a

$$\int_{7\pi}^{+\infty} x^2 e^{(-x)} \sin(x)^2 dx = \int_{7\pi}^{+\infty} \left(-\frac{1}{2} x^2 (\cos(2x) - 1) e^{(-x)} \right) dx$$
$$= -\frac{1}{2} \int_{7\pi}^{+\infty} x^2 \cos(2x) e^{(-x)} dx + \frac{1}{2} \int_{7\pi}^{+\infty} x^2 e^{(-x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a

$$\int_{7\pi}^{+\infty} x^2 \cos(2x) e^{(-x)} dx = \text{Re}\left(\int_{7\pi}^{+\infty} x^2 e^{((2i-1)x)} dx\right),$$

et on calcule cette intégrale en intégrant par parties deux fois : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{7\pi}^{+\infty} x^2 \cos{(2\,x)} \, e^{(-x)} \mathrm{d}x = \operatorname{Re}\left(\left(\frac{98}{5}i + \frac{49}{5}\right) \, \pi^2 e^{(-7\,\pi)} + \left(\frac{56}{25}i - \frac{42}{25}\right) \, \pi e^{(-7\,\pi)} - \left(\frac{4}{125}i + \frac{22}{125}\right) \, e^{(-7\,\pi)}\right),$$

et donc:

$$\int_{7\pi}^{+\infty} x^2 \cos(2x) e^{(-x)} dx = \frac{49}{5} \pi^2 e^{(-7\pi)} - \frac{42}{25} \pi e^{(-7\pi)} - \frac{22}{125} e^{(-7\pi)}.$$

On calcule de même $\int_{7\pi}^{+\infty} x^2 e^{(-x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient: $\int_{7\pi}^{+\infty} x^2 e^{(-x)} dx = \Gamma(3, 7\pi)$. On peut conclure:

$$\int_{7\pi}^{+\infty} x^2 e^{(-x)} \sin(x)^2 dx = \frac{98}{5} \pi^2 e^{(-7\pi)} + \frac{196}{25} \pi e^{(-7\pi)} + \frac{136}{125} e^{(-7\pi)}.$$

Corrigé 52. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties deux fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial : pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

 \leftarrow page 6

Mettons cela en œuvre : l'application $x\mapsto x^2-x-3$ est de classe C^1 sur $[-\frac{2}{3}\,\pi,\frac{29}{4}\,\pi]$, de dérivée $x\mapsto 2\,x-1$, tandis que $x\mapsto\cos(2\,x)$ est continue sur $[-\frac{2}{3}\,\pi,\frac{29}{4}\,\pi]$, et une primitive est $x\mapsto\frac{1}{2}\sin(2\,x)$. D'après la formule de l'intégration par parties :

$$\int_{-\frac{2}{3}\pi}^{\frac{29}{4}\pi} \left(x^2 - x - 3\right) \cos(2x) \, \mathrm{d}x = \left[\frac{1}{2} \left(x^2 - x - 3\right) \sin(2x)\right]_{-\frac{2}{3}\pi}^{\frac{29}{4}\pi} - \int_{-\frac{2}{3}\pi}^{\frac{29}{4}\pi} \frac{1}{2} (2x - 1) \sin(2x) \, \mathrm{d}x$$

$$= -\frac{29}{8}\pi + \frac{841}{32}\pi^2 - \frac{1}{36}\sqrt{3} \left(6\pi + 4\pi^2 - 27\right) - \frac{3}{2} - \int_{-\frac{2}{3}\pi}^{\frac{29}{4}\pi} \left(\frac{1}{2} (2x - 1) \sin(2x)\right) \, \mathrm{d}x.$$

On recommence: l'application $x\mapsto 2\,x-1$ est de classe C^1 sur $[-\frac{2}{3}\,\pi,\frac{29}{4}\,\pi]$, de dérivée $x\mapsto 2$, tandis que $x\mapsto \frac{1}{2}\sin{(2\,x)}$ est continue sur $[-\frac{2}{3}\,\pi,\frac{29}{4}\,\pi]$, et une primitive est $x\mapsto -\frac{1}{4}\cos{(2\,x)}$. D'après la formule de l'intégration par parties:

$$\int_{-\frac{2}{3}\pi}^{\frac{29}{4}\pi} \frac{1}{2} (2x - 1) \sin(2x) dx = \left[-\frac{1}{4} (2x - 1) \cos(2x) \right]_{-\frac{2}{3}\pi}^{\frac{29}{4}\pi} - \int_{-\frac{2}{3}\pi}^{\frac{29}{4}\pi} - \frac{1}{2} \cos(2x) dx$$
$$= \frac{1}{6}\pi + \frac{1}{8} - \int_{-\frac{2}{3}\pi}^{\frac{29}{4}\pi} \left(-\frac{1}{2} \cos(2x) \right) dx.$$

Or:
$$\int_{-\frac{2}{3}\pi}^{\frac{29}{4}\pi} \left(-\frac{1}{2}\cos(2x) \right) dx = \left[-\frac{1}{4}\sin(2x) \right]_{-\frac{2}{3}\pi}^{\frac{29}{4}\pi} = \frac{1}{8}\sqrt{3} - \frac{1}{4}. \text{ On conclut:}$$
$$\int_{-\frac{2}{3}\pi}^{\frac{29}{4}\pi} \left(x^2 - x - 3 \right) \cos(2x) dx = -\frac{91}{24}\pi + \frac{841}{32}\pi^2 - \frac{1}{36}\sqrt{3} \left(6\pi + 4\pi^2 - 27 \right) + \frac{1}{8}\sqrt{3} - \frac{15}{8}.$$

Corrigé 53. Commençons par linéariser le terme trigonométrique. On a :

 \leftarrow page 6

$$\int_{-\frac{1}{3}\pi}^{\frac{1}{2}\pi} x e^{(6x)} \sin(2x)^2 dx = \int_{-\frac{1}{3}\pi}^{\frac{1}{2}\pi} \left(-\frac{1}{2} x (\cos(4x) - 1) e^{(6x)} \right) dx$$
$$= -\frac{1}{2} \int_{-\frac{1}{3}\pi}^{\frac{1}{2}\pi} x \cos(4x) e^{(6x)} dx + \frac{1}{2} \int_{-\frac{1}{3}\pi}^{\frac{1}{2}\pi} x e^{(6x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\frac{1}{3}\pi}^{\frac{1}{2}\pi} x \cos(4x) e^{(6x)} dx = \text{Re}\left(\int_{-\frac{1}{3}\pi}^{\frac{1}{2}\pi} x e^{((4i+6)x)} dx\right),\,$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\frac{1}{3}\pi}^{\frac{1}{2}\pi} x \cos(4x) e^{(6x)} dx = \operatorname{Re}\left(\left(\frac{1}{52}i + \frac{1}{78}\right) \sqrt{3}\pi e^{(-2\pi)} - \left(\frac{1}{26}i - \frac{3}{52}\right) \pi e^{(3\pi)} + \left(\frac{1}{78}i - \frac{1}{52}\right) \pi e^{(-2\pi)} + \left(\frac{5}{1352}i + \frac{3}{338}\right) \sqrt{3}e^{(-2\pi)} + \left(\frac{1}{78}i - \frac{1}{52}\right) \pi e^{(-2\pi)} + \left(\frac{5}{1352}i + \frac{3}{338}\right) \sqrt{3}e^{(-2\pi)} + \left(\frac{1}{78}i - \frac{1}{52}\right) \pi e^{(-2\pi)} + \left(\frac{5}{1352}i + \frac{3}{338}\right) \sqrt{3}e^{(-2\pi)} + \left(\frac{1}{78}i - \frac{1}{52}\right) \pi e^{(-2\pi)} + \left(\frac{5}{1352}i + \frac{3}{338}\right) \sqrt{3}e^{(-2\pi)} + \left(\frac{1}{78}i - \frac{1}{52}\right) \pi e^{(-2\pi)} + \left(\frac{5}{1352}i + \frac{3}{338}\right) \sqrt{3}e^{(-2\pi)} + \left(\frac{1}{78}i - \frac{1}{52}\right) \pi e^{(-2\pi)} + \left(\frac{5}{1352}i + \frac{3}{338}\right) \sqrt{3}e^{(-2\pi)} + \left(\frac{1}{78}i - \frac{1}{52}\right) \pi e^{(-2\pi)} + \left(\frac{5}{1352}i + \frac{3}{338}\right) \sqrt{3}e^{(-2\pi)} + \left(\frac{1}{78}i - \frac{1}{52}\right) \pi e^{(-2\pi)} + \left(\frac{5}{1352}i + \frac{3}{338}\right) \sqrt{3}e^{(-2\pi)} + \left(\frac{1}{78}i - \frac{1}{52}\right) \pi e^{(-2\pi)} + \left(\frac{5}{1352}i + \frac{3}{338}\right) \sqrt{3}e^{(-2\pi)} + \left(\frac{1}{78}i - \frac{1}{52}\right) \pi e^{(-2\pi)} + \left(\frac{5}{1352}i + \frac{3}{338}\right) \pi e^{(-2\pi)} + \left(\frac{5}{1352}i + \frac{3}{338}\right) \pi e^{(-2\pi)} + \left(\frac{5}{1352}i + \frac{3}{338}\right) \pi e^{(-2\pi)} + \left(\frac{5}{1352}i + \frac{3}{138}\right) \pi e$$

et donc:

$$\int_{-\frac{1}{3}\pi}^{\frac{1}{2}\pi}x\cos\left(4\,x\right)e^{(6\,x)}\mathrm{d}x = \frac{1}{78}\,\sqrt{3}\pi e^{(-2\,\pi)} + \frac{3}{52}\,\pi e^{(3\,\pi)} - \frac{1}{52}\,\pi e^{(-2\,\pi)} + \frac{3}{338}\,\sqrt{3}e^{(-2\,\pi)} - \frac{5}{676}\,e^{(3\,\pi)} - \frac{5}{1352}\,e^{(-2\,\pi)}.$$

On calcule de même $\int_{-\frac{1}{3}\pi}^{\frac{1}{2}\pi} x e^{(6x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en

compte), et on obtient: $\int_{-\frac{1}{3}\pi}^{\frac{1}{2}\pi} x e^{(6x)} dx = \frac{1}{12} \pi e^{(3\pi)} + \frac{1}{36} (2\pi + 1) e^{(-2\pi)} - \frac{1}{36} e^{(3\pi)}.$ On peut conclure:

$$\int_{-\frac{1}{3}\pi}^{\frac{1}{2}\pi} x e^{(6x)} \sin(2x)^2 dx = \frac{1}{78} \pi e^{(3\pi)} - \frac{1}{24336} \left(26\pi \left(6\sqrt{3} - 35 \right) + 108\sqrt{3} - 383 \right) e^{(-2\pi)} - \frac{31}{3042} e^{(3\pi)}.$$

Corrigé 54. \leftarrow page 6

1. L'application $x\mapsto x^2e^{(-x)}\sin{(x)}$ est continue sur $[-\frac{1}{6}\pi,+\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x\in[-\frac{1}{6}\pi,+\infty[$, on a:

$$\left| x^2 e^{(-x)} \sin(x) \right| \le x^2 e^{(-x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-x)} = x^4 e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc :

$$x^{2}e^{(-x)} = \underset{x \to +\infty}{o} \left(\frac{1}{x^{2}}\right).$$

Or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} x^2 e^{(-x)} \mathrm{d}x$ converge, et donc $\int_{-\frac{1}{6}\pi}^{+\infty} x^2 e^{(-x)} \mathrm{d}x$ converge aussi par continuité sur le segment $[-\frac{1}{6}\pi,1]$. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-\frac{1}{6}\pi}^{+\infty} x^2 e^{(-x)} \sin{(x)} \, \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\frac{1}{6}\pi}^{+\infty} x^2 e^{(-x)} \sin(x) dx = \operatorname{Im} \left(\int_{-\frac{1}{6}\pi}^{+\infty} x^2 e^{((i-1)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties deux fois : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\frac{1}{6}\pi}^{+\infty} x^2 e^{(-x)} \sin\left(x\right) \mathrm{d}x = \mathrm{Im}\left(\left(\frac{1}{144}i + \frac{1}{144}\right)\sqrt{3}\pi^2 e^{\left(\frac{1}{6}\pi\right)} - \left(\frac{1}{144}i - \frac{1}{144}\right)\pi^2 e^{\left(\frac{1}{6}\pi\right)} - \frac{1}{12}i\sqrt{3}\pi e^{\left(\frac{1}{6}\pi\right)} - \frac{1}{12}\pi e^{\left(\frac{1}{6}\pi\right)} + \left(\frac{1}{4}i - \frac{1}{4}i\right)\pi^2 e^{\left(\frac{1}{6}\pi\right)} + \frac{1}{12}i\sqrt{3}\pi e^{\left(\frac{1}{6}\pi\right)} - \frac{1}{12}\pi e^{\left(\frac{1}{6}\pi\right)} + \frac{1}{12}i\sqrt{3}\pi e$$

et donc:

$$\int_{-\frac{1}{6}\pi}^{+\infty} x^2 e^{(-x)} \sin{(x)} dx = \frac{1}{144} \sqrt{3}\pi^2 e^{\left(\frac{1}{6}\pi\right)} - \frac{1}{144} \pi^2 e^{\left(\frac{1}{6}\pi\right)} - \frac{1}{12} \sqrt{3}\pi e^{\left(\frac{1}{6}\pi\right)} + \frac{1}{4} \sqrt{3} e^{\left(\frac{1}{6}\pi\right)} + \frac{1}{4} e^{\left(\frac{1}{6}\pi\right)}.$$

Corrigé 55. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties deux fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial : pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

 \leftarrow page 7

Mettons cela en œuvre: l'application $x \mapsto x^2 + x$ est de classe C^1 sur $[-\pi,0]$, de dérivée $x \mapsto 2x + 1$, tandis que $x \mapsto \cos(x)$ est continue sur $[-\pi,0]$, et une primitive est $x \mapsto \sin(x)$. D'après la formule de l'intégration par parties:

$$\int_{-\pi}^{0} (x^2 + x) \cos(x) dx = [(x^2 + x) \sin(x)]_{-\pi}^{0} - \int_{-\pi}^{0} (2x + 1) \sin(x) dx$$
$$= 0 - \int_{-\pi}^{0} ((2x + 1) \sin(x)) dx.$$

On recommence: l'application $x \mapsto 2x + 1$ est de classe C^1 sur $[-\pi,0]$, de dérivée $x \mapsto 2$, tandis que $x \mapsto \sin(x)$ est continue sur $[-\pi,0]$, et une primitive est $x \mapsto -\cos(x)$. D'après la formule de l'intégration par parties:

$$\int_{-\pi}^{0} (2x+1)\sin(x) dx = [-(2x+1)\cos(x)]_{-\pi}^{0} - \int_{-\pi}^{0} -2\cos(x) dx$$
$$= 2\pi - 2 - \int_{-\pi}^{0} (-2\cos(x)) dx.$$

Or: $\int_{-\pi}^{0} (-2\cos(x)) dx = [-2\sin(x)]_{-\pi}^{0} = 0$. On conclut:

$$\int_{-\pi}^{0} (x^2 + x) \cos(x) dx = -2\pi + 2.$$

Corrigé 56.

1. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto x^n$ et en intégrant $x \mapsto e^{(ix)}$. On en déduit :

$$\int_{-\frac{1}{2}\pi}^{\frac{1}{4}\pi} x^n e^{(ix)} dx = \left[-i x^n e^{(ix)} \right]_{-\frac{1}{2}\pi}^{\frac{1}{4}\pi} - \int_{-\frac{1}{2}\pi}^{\frac{1}{4}\pi} -i n x^{n-1} e^{(ix)} dx.$$

C'est-à-dire, après simplifications:

$$I_n = -\left(\frac{1}{2}i - \frac{1}{2}\right)\sqrt{2}\left(\frac{1}{4}\pi\right)^n + \left(-\frac{1}{2}\pi\right)^n + inI_{n-1}.$$

D'où le résultat.

2. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k - ikI_{k-1} = -\left(\frac{1}{2}i - \frac{1}{2}\right)\sqrt{2}\left(\frac{1}{4}\pi\right)^k + \left(-\frac{1}{2}\pi\right)^k.$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{1}{i^k k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{i^k k!} I_k - \frac{1}{i^{k-1} (k-1)!} I_{k-1} = -\frac{(i-1) \sqrt{2} \left(\frac{1}{4} \pi\right)^k - 2 \left(-\frac{1}{2} \pi\right)^k}{2 i^k k!}$$

On somme cette égalité de k = 1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{1}{i^n n!} I_n - I_0 = \sum_{k=1}^n \left(-\frac{(i-1)\sqrt{2} \left(\frac{1}{4}\pi\right)^k - 2\left(-\frac{1}{2}\pi\right)^k}{2i^k k!} \right),$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_{n} = i^{n} n! \left[I_{0} + \sum_{k=1}^{n} \left(-\frac{(i-1)\sqrt{2} \left(\frac{1}{4}\pi\right)^{k} - 2\left(-\frac{1}{2}\pi\right)^{k}}{2i^{k}k!} \right) \right].$$

$$\mathrm{Or} : I_0 = \int_{-\frac{1}{2}\,\pi}^{\frac{1}{4}\,\pi} e^{(i\,x)} \mathrm{d}x = \left[-i\,e^{(i\,x)}\right]_{-\frac{1}{2}\,\pi}^{\frac{1}{4}\,\pi} = -\left(\frac{1}{2}i - \frac{1}{2}\right)\,\sqrt{2} + 1, \, \mathrm{donc \,\, finalement} :$$

$$I_n = i^n n! \left[-\left(\frac{1}{2}i - \frac{1}{2}\right) \sqrt{2} + 1 + \sum_{k=1}^n \left(-\frac{(i-1)\sqrt{2}\left(\frac{1}{4}\pi\right)^k - 2\left(-\frac{1}{2}\pi\right)^k}{2i^k k!}\right) \right].$$

3. Il suffit de prendre la partie réelle dans l'expression de la question précédente. On y parvient en développant le produit du membre de droite, et en mettant sous forme exponentielle le terme général de la somme. Souvenons-nous que: $\forall k \in \mathbb{N}, \ i^k = \left(e^{\frac{i\pi}{2}}\right)^k = e^{\frac{ki\pi}{2}}, \ \text{et}: -i = e^{-\frac{1}{2}i\pi}, \ \left(\frac{1}{2}i + \frac{1}{2}\right)\sqrt{2} = e^{\frac{1}{4}i\pi}, \ \text{de sorte que finalement on trouve que pour tout } n \in \mathbb{N} \setminus \{0\} \text{ on a, après calculs:}$

$$\int_{-\frac{1}{2}\pi}^{\frac{1}{4}\pi} x^n \cos(x) dx = n! \left[\cos\left(-\frac{1}{4}\pi + \frac{1}{2}\pi n\right) + \cos\left(\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(\frac{\left(\frac{1}{4}\pi\right)^{k-1}\cos\left(-\frac{1}{4}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n\right) + \left(-\frac{1}{2}\pi\right)^{k-1}\cos\left(-\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(\frac{1}{4}\pi\right)^{k-1}\cos\left(-\frac{1}{4}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n\right) + \left(-\frac{1}{2}\pi\right)^{k-1}\cos\left(-\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(\frac{1}{4}\pi\right)^{k-1}\cos\left(-\frac{1}{4}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n\right) + \left(-\frac{1}{2}\pi\right)^{k-1}\cos\left(-\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(\frac{1}{4}\pi\right)^{k-1}\cos\left(-\frac{1}{4}\pi - \frac{1}{2}\pi n\right) + \left(-\frac{1}{2}\pi\right)^{k-1}\cos\left(-\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(\frac{1}{4}\pi\right)^{k-1}\cos\left(-\frac{1}{4}\pi - \frac{1}{2}\pi n\right) + \left(-\frac{1}{2}\pi\right)^{k-1}\cos\left(-\frac{1}{2}\pi\right) + \sum_{k=1}^n \left(\frac{1}{4}\pi\right)^{k-1}\cos\left(-\frac{1}{4}\pi - \frac{1}{2}\pi n\right) + \left(-\frac{1}{2}\pi\right)^{k-1}\cos\left(-\frac{1}{2}\pi\right) + \sum_{k=1}^n \left(\frac{1}{4}\pi\right)^{k-1}\cos\left(-\frac{1}{4}\pi\right) + \sum_{k=1}^n \left(\frac{1}{4}\pi\right)^{k-1}\sin\left(-\frac{1}{4}\pi\right) + \sum_{k=1}^n \left(\frac{1}{4}\pi\right)^{k-1}\sin\left($$

Corrigé 57. Commençons par linéariser le terme trigonométrique. On a :

 $\int_{\frac{2}{3}\pi}^{\frac{5}{4}\pi} x \cos(8x)^2 e^{(-x)} dx = \int_{\frac{2}{3}\pi}^{\frac{5}{4}\pi} \left(\frac{1}{2} x (\cos(16x) + 1) e^{(-x)} \right) dx$ $= \frac{1}{2} \int_{\frac{2}{4}\pi}^{\frac{5}{4}\pi} x \cos(16x) e^{(-x)} dx + \frac{1}{2} \int_{\frac{2}{4}\pi}^{\frac{5}{4}\pi} x e^{(-x)} dx.$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{\frac{2}{3}\pi}^{\frac{5}{4}\pi} x \cos(16x) e^{(-x)} dx = \text{Re}\left(\int_{\frac{2}{3}\pi}^{\frac{5}{4}\pi} x e^{((16i-1)x)} dx\right),\,$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{\frac{2}{3}\pi}^{\frac{5}{4}\pi}x\cos\left(16\,x\right)e^{\left(-x\right)}\mathrm{d}x = \operatorname{Re}\left(\left(\frac{1}{771}i - \frac{16}{771}\right)\sqrt{3}\pi e^{\left(-\frac{2}{3}\,\pi\right)} - \left(\frac{16}{771}i + \frac{1}{771}\right)\pi e^{\left(-\frac{2}{3}\,\pi\right)} - \left(\frac{20}{257}i + \frac{5}{1028}\right)\pi e^{\left(-\frac{5}{4}\,\pi\right)} - \left(\frac{255}{132098}i + \frac{1}{1028}\right)\pi e^{\left(-\frac{5}{4}\,\pi\right)}\right)$$

et donc:

$$\int_{\frac{2}{3}\pi}^{\frac{5}{4}\pi}x\cos\left(16\,x\right)e^{(-x)}\mathrm{d}x = -\frac{16}{771}\,\sqrt{3}\pi e^{\left(-\frac{2}{3}\,\pi\right)} - \frac{1}{771}\,\pi e^{\left(-\frac{2}{3}\,\pi\right)} - \frac{5}{1028}\,\pi e^{\left(-\frac{5}{4}\,\pi\right)} - \frac{16}{66049}\,\sqrt{3}e^{\left(-\frac{2}{3}\,\pi\right)} + \frac{255}{132098}\,e^{\left(-\frac{2}{3}\,\pi\right)} + \frac{255}{66049}\,e^{\left(-\frac{5}{4}\,\pi\right)}.$$

On calcule de même $\int_{\frac{2}{3}\pi}^{\frac{5}{4}\pi} x e^{(-x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient: $\int_{\frac{2}{3}\pi}^{\frac{5}{4}\pi} x e^{(-x)} dx = \frac{1}{3} (2\pi + 3) e^{(-\frac{2}{3}\pi)} - \frac{1}{4} (5\pi + 4) e^{(-\frac{5}{4}\pi)}$. On peut conclure:

$$\int_{\frac{2}{\pi}\pi}^{\frac{5}{4}\pi} x \cos(8x)^2 e^{(-x)} dx = -\frac{1}{792588} \left(514\pi \left(16\sqrt{3} - 513 \right) + 96\sqrt{3} - 397059 \right) e^{\left(-\frac{2}{3}\pi\right)} - \frac{1}{264196} \left(165765\pi + 131588 \right) e^{\left(-\frac{5}{4}\pi\right)}.$$

Corrigé 58.

 \leftarrow page 7

1. L'application $x \mapsto xe^{(-x)}\sin(x)^2$ est continue sur $\left[\frac{3}{2}\pi, +\infty\right[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in \left[\frac{3}{2}\pi, +\infty\right[$, on a:

$$0 \leqslant xe^{(-x)}\sin(x)^2 \leqslant xe^{(-x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot xe^{(-x)} = x^3e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$xe^{(-x)} = \underset{x \to +\infty}{o} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{\frac{3}{2}\pi}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2 > 1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{3}{2}\pi}^{+\infty} x e^{(-x)} \mathrm{d}x$ converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{3}{2}\pi}^{+\infty} x e^{(-x)} \sin(x)^2 dx$ converge: d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a:

$$\int_{\frac{3}{2}\pi}^{+\infty} x e^{(-x)} \sin(x)^2 dx = \int_{\frac{3}{2}\pi}^{+\infty} \left(-\frac{1}{2} x (\cos(2x) - 1) e^{(-x)} \right) dx$$
$$= -\frac{1}{2} \int_{\frac{3}{2}\pi}^{+\infty} x \cos(2x) e^{(-x)} dx + \frac{1}{2} \int_{\frac{3}{2}\pi}^{+\infty} x e^{(-x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{\frac{3}{2}\pi}^{+\infty} x \cos(2x) e^{(-x)} dx = \text{Re}\left(\int_{\frac{3}{2}\pi}^{+\infty} x e^{((2i-1)x)} dx\right),\,$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{\frac{3}{2}\pi}^{+\infty} x \cos(2x) e^{(-x)} dx = \text{Re}\left(-\left(\frac{3}{5}i + \frac{3}{10}\right) \pi e^{\left(-\frac{3}{2}\pi\right)} - \left(\frac{4}{25}i - \frac{3}{25}\right) e^{\left(-\frac{3}{2}\pi\right)}\right),$$

et donc:

$$\int_{\frac{3}{2}\pi}^{+\infty} x \cos(2x) e^{(-x)} dx = -\frac{3}{10} \pi e^{\left(-\frac{3}{2}\pi\right)} + \frac{3}{25} e^{\left(-\frac{3}{2}\pi\right)}.$$

On calcule de même $\int_{\frac{3}{2}\pi}^{+\infty} x e^{(-x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient : $\int_{\frac{3}{2}\pi}^{+\infty} x e^{(-x)} dx = \Gamma\left(2, \frac{3}{2}\pi\right)$. On peut conclure :

$$\int_{\frac{3}{2}\pi}^{+\infty} x e^{(-x)} \sin(x)^2 dx = \frac{9}{10} \pi e^{\left(-\frac{3}{2}\pi\right)} + \frac{11}{25} e^{\left(-\frac{3}{2}\pi\right)}.$$

Corrigé 59. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties une fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial : pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

 \leftarrow page 7

Mettons cela en œuvre : l'application $x\mapsto 3\,x$ est de classe \mathbf{C}^1 sur $[-\frac{1}{2}\,\pi,\frac{1}{2}\,\pi]$, de dérivée $x\mapsto 3$, tandis que $x\mapsto\cos{(41\,x)}$ est continue sur $[-\frac{1}{2}\,\pi,\frac{1}{2}\,\pi]$, et une primitive est $x\mapsto\frac{1}{41}\,\sin{(41\,x)}$. D'après la formule de l'intégration par parties :

$$\int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} 3x \cos(41x) dx = \left[\frac{3}{41} x \sin(41x) \right]_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} - \int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} \frac{3}{41} \sin(41x) dx$$

$$= 0 - \int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} \left(\frac{3}{41} \sin(41x) \right) dx.$$

$$\operatorname{Or}: \int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} \left(\frac{3}{41} \sin(41x) \right) dx = \left[-\frac{3}{1681} \cos(41x) \right]_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} = 0. \text{ On conclut :}$$

$$\int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} 3x \cos(41x) dx = 0.$$

Corrigé 60. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties deux fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme logarithmique, ce qu'on obtiendra par dérivation. Une seule dérivation ne suffit pas, parce que la dérivée de $x \mapsto (\ln(x))^2$ est $x \mapsto \frac{2\ln(x)}{x}$: il reste un logarithme.

 \leftarrow page 7

Mettons cela en œuvre : l'application $x \mapsto \ln(x)^2$ est de classe C^1 sur [2,48], de dérivée $x \mapsto \frac{2 \ln(x)}{x}$, tandis que $x \mapsto 6x + 2$ est continue sur [2,48], et une primitive est $x \mapsto 3x^2 + 2x$. D'après la formule de l'intégration par parties :

$$\int_{2}^{48} 2(3x+1)\ln(x)^{2} dx = \left[(3x^{2}+2x)\ln(x)^{2} \right]_{2}^{48} - \int_{2}^{48} \frac{2(3x^{2}+2x)\ln(x)}{x} dx$$
$$= 7008 \ln(48)^{2} - 16 \ln(2)^{2} - \int_{2}^{48} (2(3x+2)\ln(x)) dx.$$

On recommence: l'application $x \mapsto \ln(x)$ est de classe C^1 sur [2,48], de dérivée $x \mapsto \frac{1}{x}$, tandis que $x \mapsto 6x + 4$ est continue sur [2,48], et une primitive est $x \mapsto 3x^2 + 4x$. D'après la formule de l'intégration par parties:

$$\int_{2}^{48} 2(3x+2)\ln(x) dx = \left[\left(3x^{2} + 4x \right) \ln(x) \right]_{2}^{48} - \int_{2}^{48} \frac{3x^{2} + 4x}{x} dx$$
$$= 7104 \ln(48) - 20 \ln(2) - \int_{2}^{48} (3x+4) dx.$$

Or:
$$\int_{2}^{48} (3x+4) dx = \left[\frac{3}{2}x^{2} + 4x\right]_{2}^{48} = 3634. \text{ On conclut:}$$
$$\int_{2}^{48} 2(3x+1) \ln(x)^{2} dx = 7008 \ln(48)^{2} - 16 \ln(2)^{2} - 7104 \ln(48) + 20 \ln(2) + 3634.$$

Corrigé 61. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties deux fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme logarithmique, ce qu'on obtiendra par dérivation. Une seule dérivation ne suffit pas, parce que la dérivée de $x \mapsto (\ln(x))^2$ est $x \mapsto \frac{2\ln(x)}{x}$: il reste un logarithme.

Mettons cela en œuvre: l'application $x \mapsto \ln(x)^2$ est de classe C¹ sur [5,40], de dérivée $x \mapsto \frac{2 \ln(x)}{x}$, tandis que $x \mapsto 10 \, x + 1$ est continue sur [5,40], et une primitive est $x \mapsto 5 \, x^2 + x$. D'après la formule de l'intégration par parties:

$$\int_{5}^{40} (10x+1) \ln(x)^{2} dx = \left[\left(5x^{2} + x \right) \ln(x)^{2} \right]_{5}^{40} - \int_{5}^{40} \frac{2 \left(5x^{2} + x \right) \ln(x)}{x} dx$$
$$= 8040 \ln(40)^{2} - 130 \ln(5)^{2} - \int_{5}^{40} (2 \left(5x + 1 \right) \ln(x)) dx.$$

On recommence : l'application $x\mapsto \ln{(x)}$ est de classe C¹ sur [5,40], de dérivée $x\mapsto \frac{1}{x}$, tandis que $x\mapsto 10\,x+2$ est continue sur [5,40], et une primitive est $x\mapsto 5\,x^2+2\,x$. D'après la formule de l'intégration par parties :

$$\int_{5}^{40} 2(5x+1)\ln(x) dx = \left[\left(5x^{2} + 2x \right) \ln(x) \right]_{5}^{40} - \int_{5}^{40} \frac{5x^{2} + 2x}{x} dx$$
$$= 8080 \ln(40) - 135 \ln(5) - \int_{5}^{40} (5x+2) dx.$$

Or:
$$\int_{5}^{40} (5x+2) dx = \left[\frac{5}{2} x^{2} + 2x \right]_{5}^{40} = \frac{8015}{2}. \text{ On conclut:}$$
$$\int_{5}^{40} (10x+1) \ln(x)^{2} dx = 8040 \ln(40)^{2} - 130 \ln(5)^{2} - 8080 \ln(40) + 135 \ln(5) + \frac{8015}{2}.$$

Corrigé 62.

1. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto x^n$ et en intégrant $x \mapsto e^{(2ix)}$. On en déduit :

$$\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} x^n e^{(2ix)} \mathrm{d}x = \left[-\frac{1}{2} i \, x^n e^{(2ix)} \right]_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} - \int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} -\frac{1}{2} i \, n x^{n-1} e^{(2ix)} \mathrm{d}x.$$

C'est-à-dire, après simplifications:

$$I_n = \frac{1}{4} \left(\frac{1}{3} \pi \right)^n \left(\sqrt{3} + i \right) - \frac{1}{4} \left(\frac{1}{6} \pi \right)^n \left(\sqrt{3} - i \right) + \frac{1}{2} i n I_{n-1}.$$

D'où le résultat.

2. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul:

$$I_k - \frac{1}{2}ikI_{k-1} = \frac{1}{4}\left(\frac{1}{3}\pi\right)^k \left(\sqrt{3} + i\right) - \frac{1}{4}\left(\frac{1}{6}\pi\right)^k \left(\sqrt{3} - i\right).$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{2^k}{i^k k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{2^k}{i^k k!} I_k - \frac{2^{k-1}}{i^{k-1} (k-1)!} I_{k-1} = \frac{\left(\left(\frac{1}{3} \pi\right)^k \left(\sqrt{3} + i\right) - \left(\frac{1}{6} \pi\right)^k \left(\sqrt{3} - i\right)\right) 2^k}{4 i^k k!}.$$

On somme cette égalité de k=1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{2^{n}}{i^{n} n!} I_{n} - I_{0} = \sum_{k=1}^{n} \left(\frac{\left(\left(\frac{1}{3} \pi \right)^{k} \left(\sqrt{3} + i \right) - \left(\frac{1}{6} \pi \right)^{k} \left(\sqrt{3} - i \right) \right) 2^{k}}{4 i^{k} k!} \right),$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_{n} = \frac{i^{n} n!}{2^{n}} \left[I_{0} + \sum_{k=1}^{n} \left(\frac{\left(\left(\frac{1}{3} \pi \right)^{k} \left(\sqrt{3} + i \right) - \left(\frac{1}{6} \pi \right)^{k} \left(\sqrt{3} - i \right) \right) 2^{k}}{4 i^{k} k!} \right) \right].$$

Or:
$$I_0 = \int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} e^{(2ix)} dx = \left[-\frac{1}{2} i e^{(2ix)} \right]_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} = \frac{1}{2} i$$
, donc finalement:

$$I_{n} = \frac{i^{n} n!}{2^{n}} \left[\frac{1}{2} i + \sum_{k=1}^{n} \left(\frac{\left(\left(\frac{1}{3} \pi \right)^{k} \left(\sqrt{3} + i \right) - \left(\frac{1}{6} \pi \right)^{k} \left(\sqrt{3} - i \right) \right) 2^{k}}{4 i^{k} k!} \right) \right].$$

3. Il suffit de prendre la partie réelle dans l'expression de la question précédente. On y parvient en développant le produit du membre de droite, et en mettant sous forme exponentielle le terme général de la somme. Souvenons-nous que: $\forall k \in \mathbb{N}, \ i^k = \left(e^{\frac{i\pi}{2}}\right)^k = e^{\frac{ki\pi}{2}}, \ \text{et}: \frac{1}{2}i\sqrt{3} + \frac{1}{2} = e^{\frac{1}{3}i\pi}, \ \frac{1}{2}i\sqrt{3} - \frac{1}{2} = e^{\frac{2}{3}i\pi}, \ \text{de sorte que finalement on trouve que pour tout } n \in \mathbb{N} \setminus \{0\} \ \text{on a, après calculs:}$

$$\int_{\frac{1}{6}\pi}^{\frac{1}{3}\pi} x^n \cos(2x) dx = \frac{n!}{2^n} \left[\frac{1}{2} \cos\left(\frac{1}{6}\pi + \frac{1}{2}\pi n\right) - \frac{1}{2} \cos\left(-\frac{1}{6}\pi + \frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(\frac{\left(\left(\frac{1}{3}\pi\right)^{k-1} \cos\left(\frac{1}{6}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n\right) - \left(\frac{1}{6}\pi\right)^{k-1} \sin\left(\frac{1}{6}\pi\right)^{k-1} \cos\left(\frac{1}{6}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n\right) - \frac{1}{6}\pi\right) \right] dx = \frac{n!}{2^n} \left[\frac{1}{2} \cos\left(\frac{1}{6}\pi + \frac{1}{2}\pi n\right) - \frac{1}{2}\cos\left(\frac{1}{6}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n\right) - \frac{1}{6}\pi\right] dx + \frac{1}{2}\pi n dx + \frac{1}{2}$$

Corrigé 63.

 \leftarrow page 7

1. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto x^n$ et en intégrant $x \mapsto e^{(-x)}$. On en déduit :

$$\int_{1}^{10} x^{n} e^{(-x)} dx = \left[-x^{n} e^{(-x)} \right]_{1}^{10} - \int_{1}^{10} -nx^{n-1} e^{(-x)} dx.$$

C'est-à-dire, après simplifications:

$$I_n = -10^n e^{(-10)} + e^{(-1)} + nI_{n-1}.$$

D'où le résultat.

2. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k - kI_{k-1} = -10^k e^{(-10)} + e^{(-1)}.$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{1}{k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{k!} I_k - \frac{1}{(k-1)!} I_{k-1} = -\frac{10^k e^{(-10)} - e^{(-1)}}{k!}.$$

On somme cette égalité de k = 1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{1}{n!}I_n - I_0 = \sum_{k=1}^n \left(-\frac{10^k e^{(-10)} - e^{(-1)}}{k!} \right),$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_n = n! \left[I_0 + \sum_{k=1}^n \left(-\frac{10^k e^{(-10)} - e^{(-1)}}{k!} \right) \right].$$

Or: $I_0 = \int_1^{10} e^{(-x)} dx = \left[-e^{(-x)} \right]_1^{10} = e^{(-1)} - e^{(-10)}$, donc finalement:

$$I_n = n! \left[e^{(-1)} - e^{(-10)} + \sum_{k=1}^n \left(-\frac{10^k e^{(-10)} - e^{(-1)}}{k!} \right) \right].$$

Corrigé 64. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties deux fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial : pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

 \leftarrow page 7

Mettons cela en œuvre : l'application $x\mapsto x^2+3\,x-1$ est de classe C^1 sur $[-9\,\pi,0]$, de dérivée $x\mapsto 2\,x+3$, tandis que $x\mapsto\cos{(7\,x)}$ est continue sur $[-9\,\pi,0]$, et une primitive est $x\mapsto\frac{1}{7}\sin{(7\,x)}$. D'après la formule de l'intégration par parties :

$$\int_{-9\pi}^{0} (x^2 + 3x - 1) \cos(7x) dx = \left[\frac{1}{7} (x^2 + 3x - 1) \sin(7x) \right]_{-9\pi}^{0} - \int_{-9\pi}^{0} \frac{1}{7} (2x + 3) \sin(7x) dx$$
$$= 0 - \int_{-9\pi}^{0} \left(\frac{1}{7} (2x + 3) \sin(7x) \right) dx.$$

On recommence : l'application $x\mapsto 2\,x+3$ est de classe C^1 sur $[-9\,\pi,0]$, de dérivée $x\mapsto 2$, tandis que $x\mapsto \frac{1}{7}\sin{(7\,x)}$ est continue sur $[-9\,\pi,0]$, et une primitive est $x\mapsto -\frac{1}{49}\cos{(7\,x)}$. D'après la formule de l'intégration par parties :

$$\int_{-9\pi}^{0} \frac{1}{7} (2x+3) \sin(7x) dx = \left[-\frac{1}{49} (2x+3) \cos(7x) \right]_{-9\pi}^{0} - \int_{-9\pi}^{0} -\frac{2}{49} \cos(7x) dx$$
$$= \frac{18}{49} \pi - \frac{6}{49} - \int_{-9\pi}^{0} \left(-\frac{2}{49} \cos(7x) \right) dx.$$

Or:
$$\int_{-9\pi}^{0} \left(-\frac{2}{49} \cos(7x) \right) dx = \left[-\frac{2}{343} \sin(7x) \right]_{-9\pi}^{0} = 0$$
. On conclut:

$$\int_{-9\pi}^{0} (x^2 + 3x - 1) \cos(7x) dx = -\frac{18}{49}\pi + \frac{6}{49}$$

Corrigé 65.

1. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto x^n$ et en intégrant $x \mapsto e^{(ix)}$. On en déduit :

$$\int_{-\frac{13}{6}\pi}^{-\pi} x^n e^{(ix)} dx = \left[-i x^n e^{(ix)} \right]_{-\frac{13}{6}\pi}^{-\pi} - \int_{-\frac{13}{6}\pi}^{-\pi} -i n x^{n-1} e^{(ix)} dx.$$

C'est-à-dire, après simplifications:

$$I_n = \frac{1}{2} \left(-\frac{13}{6} \pi \right)^n \left(i \sqrt{3} + 1 \right) + i \left(-\pi \right)^n + i n I_{n-1}.$$

D'où le résultat.

2. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k - ikI_{k-1} = \frac{1}{2} \left(-\frac{13}{6} \pi \right)^k \left(i \sqrt{3} + 1 \right) + i \left(-\pi \right)^k.$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{1}{i^k k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{i^k k!} I_k - \frac{1}{i^{k-1} (k-1)!} I_{k-1} = \frac{\left(-\frac{13}{6} \pi\right)^k \left(i \sqrt{3} + 1\right) + 2i \left(-\pi\right)^k}{2 i^k k!}.$$

On somme cette égalité de k=1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{1}{i^n n!} I_n - I_0 = \sum_{k=1}^n \left(\frac{\left(-\frac{13}{6}\pi\right)^k \left(i\sqrt{3}+1\right) + 2i \left(-\pi\right)^k}{2i^k k!} \right),$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_n = i^n n! \left[I_0 + \sum_{k=1}^n \left(\frac{\left(-\frac{13}{6} \pi \right)^k \left(i \sqrt{3} + 1 \right) + 2i \left(-\pi \right)^k}{2 i^k k!} \right) \right].$$

 $\text{Or}: I_0 = \int_{-\frac{13}{5}}^{-\pi} e^{(i\,x)} \mathrm{d}x = \left[-i\,e^{(i\,x)} \right]_{-\frac{13}{6}\,\pi}^{-\pi} = \frac{1}{2}i\,\sqrt{3} + i + \frac{1}{2}, \text{ donc finalement}:$

$$I_n = i^n n! \left[\frac{1}{2} i \sqrt{3} + i + \frac{1}{2} + \sum_{k=1}^n \left(\frac{\left(-\frac{13}{6} \pi \right)^k \left(i \sqrt{3} + 1 \right) + 2i \left(-\pi \right)^k}{2 i^k k!} \right) \right].$$

3. Il suffit de prendre la partie réelle dans l'expression de la question précédente. On y parvient en développant le produit du membre de droite, et en mettant sous forme exponentielle le terme général de la somme. Souvenons-nous que: $\forall k \in \mathbb{N}, \ i^k = \left(e^{\frac{i\pi}{2}}\right)^k = e^{\frac{ki\pi}{2}}, \ \text{et} : \frac{1}{2}\sqrt{3} - \frac{1}{2}i = e^{-\frac{13}{6}i\pi}, \ -1 = e^{-i\pi}, \ \text{de sorte que finalement on trouve que pour tout } n \in \mathbb{N} \setminus \{0\} \text{ on a, après calculs:}$

$$\int_{-\frac{13}{6}\pi}^{-\pi} x^n \cos(x) dx = n! \left[-\cos\left(-\frac{8}{3}\pi + \frac{1}{2}\pi n\right) - \sin\left(\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(-\frac{\left(-\frac{13}{6}\pi\right)^{k-1}\cos\left(-\frac{8}{3}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n\right) + \left(-\pi\right)^{k-1}\sin\left(\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(-\frac{\left(-\frac{13}{6}\pi\right)^{k-1}\cos\left(-\frac{8}{3}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n\right) + \left(-\pi\right)^{k-1}\sin\left(\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(-\frac{13}{6}\pi\right)^{k-1}\cos\left(\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(-\frac{13}{6}\pi\right)^{k-1}\sin\left(\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(-\frac{13}{6}\pi\right)^{k-1}\sin\left(\frac{1}{2}\pi\right) + \sum_{k=1}^n \left(-\frac{13}{6}\pi\right)^{k-1}\sin\left(\frac{1}{2}\pi\right)^{k-1}\sin\left(\frac{1}{2}\pi\right$$

Corrigé 66. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties deux fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme logarithmique, ce qu'on obtiendra par dérivation. Une seule dérivation ne suffit pas, parce que la dérivée de $x \mapsto (\ln(x))^2$ est $x \mapsto \frac{2\ln(x)}{x}$: il reste un logarithme.

 \leftarrow page 8

Mettons cela en œuvre : l'application $x\mapsto \ln\left(x\right)^2$ est de classe C¹ sur [1,5], de dérivée $x\mapsto \frac{2\ln(x)}{x}$, tandis que $x\mapsto x^2+3$ x est continue sur [1,5], et une primitive est $x\mapsto \frac{1}{3}x^3+\frac{3}{2}x^2$. D'après la formule de l'intégration par parties :

$$\int_{1}^{5} (x^{2} + 3x) \ln(x)^{2} dx = \left[\frac{1}{6} (2x^{3} + 9x^{2}) \ln(x)^{2} \right]_{1}^{5} - \int_{1}^{5} \frac{(2x^{3} + 9x^{2}) \ln(x)}{3x} dx$$
$$= \frac{475}{6} \ln(5)^{2} - \int_{1}^{5} \left(\frac{1}{3} (2x^{2} + 9x) \ln(x) \right) dx.$$

On recommence: l'application $x \mapsto \ln(x)$ est de classe C^1 sur [1,5], de dérivée $x \mapsto \frac{1}{x}$, tandis que $x \mapsto \frac{2}{3}x^2 + 3x$ est continue sur [1,5], et une primitive est $x \mapsto \frac{2}{9}x^3 + \frac{3}{2}x^2$. D'après la formule de l'intégration par parties:

$$\int_{1}^{5} \frac{1}{3} (2x^{2} + 9x) \ln(x) dx = \left[\frac{1}{18} (4x^{3} + 27x^{2}) \ln(x) \right]_{1}^{5} - \int_{1}^{5} \frac{4x^{3} + 27x^{2}}{18x} dx$$
$$= \frac{1175}{18} \ln(5) - \int_{1}^{5} \left(\frac{2}{9}x^{2} + \frac{3}{2}x \right) dx.$$

Or:
$$\int_{1}^{5} \left(\frac{2}{9}x^{2} + \frac{3}{2}x\right) dx = \left[\frac{2}{27}x^{3} + \frac{3}{4}x^{2}\right]_{1}^{5} = \frac{734}{27}$$
. On conclut:
$$\int_{1}^{5} \left(x^{2} + 3x\right) \ln\left(x\right)^{2} dx = \frac{475}{6} \ln\left(5\right)^{2} - \frac{1175}{18} \ln\left(5\right) + \frac{734}{27}.$$

Corrigé 67. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties deux fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme logarithmique, ce qu'on obtiendra par dérivation. Une seule dérivation ne suffit pas, parce que la dérivée de $x \mapsto (\ln(x))^2$ est $x \mapsto \frac{2\ln(x)}{x}$: il reste un logarithme.

 \leftarrow page 8

Mettons cela en œuvre : l'application $x \mapsto \ln(x)^2$ est de classe C^1 sur [1,2], de dérivée $x \mapsto \frac{2 \ln(x)}{x}$, tandis que $x \mapsto 5x + 2$ est continue sur [1,2], et une primitive est $x \mapsto \frac{5}{2}x^2 + 2x$. D'après la formule de l'intégration par parties :

$$\int_{1}^{2} (5x + 2) \ln(x)^{2} dx = \left[\frac{1}{2} (5x^{2} + 4x) \ln(x)^{2} \right]_{1}^{2} - \int_{1}^{2} \frac{(5x^{2} + 4x) \ln(x)}{x} dx$$
$$= 14 \ln(2)^{2} - \int_{1}^{2} ((5x + 4) \ln(x)) dx.$$

On recommence : l'application $x\mapsto \ln{(x)}$ est de classe C^1 sur [1,2], de dérivée $x\mapsto \frac{1}{x}$, tandis que $x\mapsto 5$ x+4 est continue sur [1,2], et une primitive est $x\mapsto \frac{5}{2}$ x^2+4 x. D'après la formule de l'intégration par parties :

$$\int_{1}^{2} (5x+4) \ln(x) dx = \left[\frac{1}{2} (5x^{2}+8x) \ln(x) \right]_{1}^{2} - \int_{1}^{2} \frac{5x^{2}+8x}{2x} dx$$
$$= 18 \ln(2) - \int_{1}^{2} \left(\frac{5}{2}x+4 \right) dx.$$

Or:
$$\int_{1}^{2} \left(\frac{5}{2}x + 4\right) dx = \left[\frac{5}{4}x^{2} + 4x\right]_{1}^{2} = \frac{31}{4}$$
. On conclut:
$$\int_{1}^{2} (5x + 2) \ln(x)^{2} dx = 14 \ln(2)^{2} - 18 \ln(2) + \frac{31}{4}.$$

Corrigé 68. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a:

$$\int_{-\pi}^{11\,\pi} x e^{(-x)} \sin(4\,x) \, \mathrm{d}x = \mathrm{Im} \left(\int_{-\pi}^{11\,\pi} x e^{((4i-1)\,x)} \mathrm{d}x \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\pi}^{11\,\pi} x e^{(-x)} \sin\left(4\,x\right) \mathrm{d}x = \mathrm{Im}\left(-\left(\frac{4}{17}i + \frac{1}{17}\right)\,\pi e^{\pi} - \left(\frac{44}{17}i + \frac{11}{17}\right)\,\pi e^{(-11\,\pi)} + \left(\frac{8}{289}i - \frac{15}{289}\right)\,e^{\pi} - \left(\frac{8}{289}i - \frac{15}{289}\right)\,e^{(-11\,\pi)}\right),$$

et donc:

$$\int_{-\pi}^{11\,\pi} x e^{(-x)} \sin(4\,x) \,\mathrm{d}x = -\frac{4}{17}\,\pi e^{\pi} - \frac{44}{17}\,\pi e^{(-11\,\pi)} + \frac{8}{289}\,e^{\pi} - \frac{8}{289}\,e^{(-11\,\pi)}.$$

Corrigé 69.

1. L'application $x \mapsto x^2 \cos(3x) e^{(-4x)}$ est continue sur $\left[\frac{1}{4}\pi, +\infty\right[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in \left[\frac{1}{4}\pi, +\infty\right[$, on a:

$$\left| x^2 \cos(3x) e^{(-4x)} \right| \le x^2 e^{(-4x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-4x)} = x^4 e^{(-4x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$x^2 e^{(-4x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{\frac{1}{4}\pi}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{4}\pi}^{+\infty} x^2 e^{(-4x)} \mathrm{d}x$ converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{4}\pi}^{+\infty} x^2 \cos{(3\,x)}\,e^{(-4\,x)} \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a:

$$\int_{\frac{1}{4}\pi}^{+\infty} x^2 \cos(3x) e^{(-4x)} dx = \text{Re}\left(\int_{\frac{1}{4}\pi}^{+\infty} x^2 e^{((3i-4)x)} dx\right),\,$$

et on calcule cette intégrale en intégrant par parties deux fois : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{\frac{1}{4}\pi}^{+\infty} x^2 \cos(3x) e^{(-4x)} dx = \operatorname{Re}\left(\left(\frac{1}{800}i - \frac{7}{800}\right) \sqrt{2}\pi^2 e^{(-\pi)} - \left(\frac{17}{2500}i + \frac{31}{2500}\right) \sqrt{2}\pi e^{(-\pi)} - \left(\frac{161}{15625}i + \frac{73}{15625}\right) \sqrt{2}e^{(-\pi)}\right) dx$$

et donc:

$$\int_{\frac{1}{4}\pi}^{+\infty} x^2 \cos(3x) e^{(-4x)} dx = -\frac{7}{800} \sqrt{2}\pi^2 e^{(-\pi)} - \frac{31}{2500} \sqrt{2}\pi e^{(-\pi)} - \frac{73}{15625} \sqrt{2}e^{(-\pi)}.$$

Corrigé 70. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties deux fois: l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme logarithmique, ce qu'on obtiendra par dérivation. Une seule dérivation ne suffit pas, parce que la dérivée de $x \mapsto (\ln(x))^2$ est $x \mapsto \frac{2\ln(x)}{x}$: il reste un logarithme.

Mettons cela en œuvre : l'application $x\mapsto \ln\left(x\right)^2$ est de classe C¹ sur [1,160], de dérivée $x\mapsto \frac{2\ln(x)}{x}$, tandis que $x\mapsto 3\,x^2+x-3$ est continue sur [1,160], et une primitive est $x\mapsto x^3+\frac{1}{2}\,x^2-3\,x$. D'après la formule de l'intégration par parties :

$$\int_{1}^{160} (3x^{2} + x - 3) \ln(x)^{2} dx = \left[\frac{1}{2} (2x^{3} + x^{2} - 6x) \ln(x)^{2} \right]_{1}^{160} - \int_{1}^{160} \frac{(2x^{3} + x^{2} - 6x) \ln(x)}{x} dx$$
$$= 4108320 \ln(160)^{2} - \int_{1}^{160} ((2x^{2} + x - 6) \ln(x)) dx.$$

← page 8

On recommence : l'application $x\mapsto \ln{(x)}$ est de classe C¹ sur [1,160], de dérivée $x\mapsto \frac{1}{x}$, tandis que $x\mapsto 2\,x^2+x-6$ est continue sur [1,160], et une primitive est $x\mapsto \frac{2}{3}\,x^3+\frac{1}{2}\,x^2-6\,x$. D'après la formule de l'intégration par parties :

$$\int_{1}^{160} (2x^{2} + x - 6) \ln(x) dx = \left[\frac{1}{6} (4x^{3} + 3x^{2} - 36x) \ln(x) \right]_{1}^{160} - \int_{1}^{160} \frac{4x^{3} + 3x^{2} - 36x}{6x} dx$$
$$= \frac{8227520}{3} \ln(160) - \int_{1}^{160} \left(\frac{2}{3}x^{2} + \frac{1}{2}x - 6 \right) dx.$$

Or:
$$\int_{1}^{160} \left(\frac{2}{3} x^2 + \frac{1}{2} x - 6 \right) dx = \left[\frac{2}{9} x^3 + \frac{1}{4} x^2 - 6 x \right]_{1}^{160} = \frac{3662671}{4}$$
. On conclut:

$$\int_{1}^{160} \left(3x^2 + x - 3\right) \ln\left(x\right)^2 dx = 4108320 \ln\left(160\right)^2 - \frac{8227520}{3} \ln\left(160\right) + \frac{3662671}{4}.$$

Corrigé 71.

1. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto x^n$ et en intégrant $x \mapsto e^{(-9x)}$. On en déduit :

$$\int_{-5}^{-2} x^n e^{(-9x)} dx = \left[-\frac{1}{9} x^n e^{(-9x)} \right]_{-5}^{-2} - \int_{-5}^{-2} -\frac{1}{9} n x^{n-1} e^{(-9x)} dx.$$

C'est-à-dire, après simplifications:

$$I_n = \frac{1}{9} (-5)^n e^{45} - \frac{1}{9} (-2)^n e^{18} + \frac{1}{9} n I_{n-1}.$$

D'où le résultat.

2. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k - \frac{1}{9}kI_{k-1} = \frac{1}{9} (-5)^k e^{45} - \frac{1}{9} (-2)^k e^{18}.$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{9^k}{k!}$. On a alors:

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{9^k}{k!} I_k - \frac{9^{k-1}}{(k-1)!} I_{k-1} = \frac{\left((-5)^k e^{45} - (-2)^k e^{18} \right) 9^k}{9 \, k!}.$$

On somme cette égalité de k=1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{9^n}{n!}I_n - I_0 = \sum_{k=1}^n \left(\frac{\left((-5)^k e^{45} - (-2)^k e^{18} \right) 9^k}{9 k!} \right),$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_n = \frac{n!}{9^n} \left[I_0 + \sum_{k=1}^n \left(\frac{\left((-5)^k e^{45} - (-2)^k e^{18} \right) 9^k}{9 k!} \right) \right].$$

Or: $I_0 = \int_{-5}^{-2} e^{(-9x)} dx = \left[-\frac{1}{9} e^{(-9x)} \right]_{-5}^{-2} = \frac{1}{9} e^{45} - \frac{1}{9} e^{18}$, donc finalement:

$$I_n = \frac{n!}{9^n} \left[\frac{1}{9} e^{45} - \frac{1}{9} e^{18} + \sum_{k=1}^n \left(\frac{\left((-5)^k e^{45} - (-2)^k e^{18} \right) 9^k}{9 k!} \right) \right].$$

Corrigé 72. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_0^{\pi} x \cos(2x) e^{(-x)} dx = \text{Re}\left(\int_0^{\pi} x e^{((2i-1)x)} dx\right),\,$$

 \leftarrow page 8

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_0^{\pi} x \cos(2x) e^{(-x)} dx = \operatorname{Re} \left(-\left(\frac{2}{5}i + \frac{1}{5}\right) \pi e^{(-\pi)} - \left(\frac{4}{25}i - \frac{3}{25}\right) e^{(-\pi)} + \frac{4}{25}i - \frac{3}{25} \right),$$

et donc:

$$\int_0^{\pi} x \cos(2x) e^{(-x)} dx = -\frac{1}{5} \pi e^{(-\pi)} + \frac{3}{25} e^{(-\pi)} - \frac{3}{25}.$$

Corrigé 73.

1. Soit $n \in \mathbb{N}$. L'application $x \mapsto \frac{\ln(x)^n}{x^3}$ est continue sur $[2, +\infty[$. Pour tout x au voisinage de $+\infty$, on a par croissances comparées:

$$x^{2} \cdot \frac{\ln(x)^{n}}{r^{3}} = \frac{\ln(x)^{n}}{r} \underset{x \to +\infty}{\longrightarrow} 0,$$

donc: $\frac{\ln(x)^n}{x^3} = o_{x \to +\infty} \left(\frac{1}{x^2}\right)$. Or l'intégrale de Riemann $\int_2^{+\infty} \frac{\mathrm{d}x}{x^2}$ converge parce que son exposant est

2 > 1. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_2^{+\infty} \frac{\ln(x)^n}{x^3} dx$ converge, d'où le résultat.

2. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto \ln(x)^n$ et en intégrant $x \mapsto \frac{1}{x^3}$. Le lecteur en exercice prendra bien garde à vérifier l'existence du terme entre crochets, par un calcul de limite aux extrémités (il trouvera une limite nulle, par croissances comparées, à l'extrémité problématique). L'intégration par parties conserve la nature des intégrales, donc $\int_2^{+\infty} -\frac{n \ln(x)^{n-1}}{2 x^3} dx$ converge également et on en

$$\int_{2}^{+\infty} \frac{\ln(x)^{n}}{x^{3}} dx = \left[-\frac{\ln(x)^{n}}{2x^{2}} \right]_{2}^{+\infty} - \int_{2}^{+\infty} -\frac{n\ln(x)^{n-1}}{2x^{3}} dx.$$

C'est-à-dire, après simplifications:

$$I_n = \frac{1}{8} \ln(2)^n + \frac{1}{2} n I_{n-1}.$$

D'où le résultat.

déduit:

3. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k - \frac{1}{2}kI_{k-1} = \frac{1}{8}\ln(2)^k$$
.

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{2^k}{k!}$. On a alors:

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{2^k}{k!} I_k - \frac{2^{k-1}}{(k-1)!} I_{k-1} = \frac{2^k \ln(2)^k}{8 \, k!}.$$

On somme cette égalité de k=1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{2^n}{n!}I_n - I_0 = \sum_{k=1}^n \left(\frac{2^k \ln(2)^k}{8 \, k!}\right),\,$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_n = \frac{n!}{2^n} \left[I_0 + \sum_{k=1}^n \left(\frac{2^k \ln(2)^k}{8 \, k!} \right) \right].$$

Or:
$$I_0 = \int_2^{+\infty} \frac{1}{x^3} dx = \left[-\frac{1}{2x^2} \right]_2^{+\infty} = \frac{1}{8}$$
, donc finalement:

$$I_n = \frac{n!}{2^n} \left[\frac{1}{8} + \sum_{k=1}^n \left(\frac{2^k \ln(2)^k}{8 \, k!} \right) \right].$$

Corrigé 74. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties une fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme logarithmique, ce qu'on obtiendra par dérivation.

 \leftarrow page 8

Mettons cela en œuvre: l'application $x\mapsto \ln{(x)}$ est de classe C¹ sur [2,3], de dérivée $x\mapsto \frac{1}{x}$, tandis que $x\mapsto x^2-3\,x+8$ est continue sur [2,3], et une primitive est $x\mapsto \frac{1}{3}\,x^3-\frac{3}{2}\,x^2+8\,x$. D'après la formule de l'intégration par parties:

$$\int_{2}^{3} (x^{2} - 3x + 8) \ln(x) dx = \left[\frac{1}{6} (2x^{3} - 9x^{2} + 48x) \ln(x) \right]_{2}^{3} - \int_{2}^{3} \frac{2x^{3} - 9x^{2} + 48x}{6x} dx$$
$$= \frac{39}{2} \ln(3) - \frac{38}{3} \ln(2) - \int_{2}^{3} \left(\frac{1}{3}x^{2} - \frac{3}{2}x + 8 \right) dx.$$

Or:
$$\int_2^3 \left(\frac{1}{3}x^2 - \frac{3}{2}x + 8\right) dx = \left[\frac{1}{9}x^3 - \frac{3}{4}x^2 + 8x\right]_2^3 = \frac{229}{36}$$
. On conclut:

$$\int_{2}^{3} (x^{2} - 3x + 8) \ln(x) dx = \frac{39}{2} \ln(3) - \frac{38}{3} \ln(2) - \frac{229}{36}.$$

Corrigé 75. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties deux fois: l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme logarithmique, ce qu'on obtiendra par dérivation. Une seule dérivation ne suffit pas, parce que la dérivée de $x \mapsto (\ln(x))^2$ est $x \mapsto \frac{2\ln(x)}{x}$: il reste un logarithme.

 \leftarrow page 8

Mettons cela en œuvre : l'application $x\mapsto \ln{(x)}^2$ est de classe C^1 sur [4,7], de dérivée $x\mapsto \frac{2\ln{(x)}}{x}$, tandis que $x\mapsto x$ est continue sur [4,7], et une primitive est $x\mapsto \frac{1}{2}x^2$. D'après la formule de l'intégration par parties :

$$\int_{4}^{7} x \ln(x)^{2} dx = \left[\frac{1}{2} x^{2} \ln(x)^{2}\right]_{4}^{7} - \int_{4}^{7} x \ln(x) dx$$
$$= \frac{49}{2} \ln(7)^{2} - 32 \ln(2)^{2} - \int_{4}^{7} (x \ln(x)) dx.$$

On recommence : l'application $x \mapsto \ln(x)$ est de classe C^1 sur [4,7], de dérivée $x \mapsto \frac{1}{x}$, tandis que $x \mapsto x$ est continue sur [4,7], et une primitive est $x \mapsto \frac{1}{2}x^2$. D'après la formule de l'intégration par parties :

$$\int_{4}^{7} x \ln(x) dx = \left[\frac{1}{2} x^{2} \ln(x)\right]_{4}^{7} - \int_{4}^{7} \frac{1}{2} x dx$$
$$= \frac{49}{2} \ln(7) - 16 \ln(2) - \int_{4}^{7} \left(\frac{1}{2} x\right) dx.$$

Or:
$$\int_{4}^{7} \left(\frac{1}{2}x\right) dx = \left[\frac{1}{4}x^{2}\right]_{4}^{7} = \frac{33}{4}$$
. On conclut:

$$\int_{4}^{7} x \ln(x)^{2} dx = \frac{49}{2} \ln(7)^{2} - 32 \ln(2)^{2} - \frac{49}{2} \ln(7) + 16 \ln(2) + \frac{33}{4}.$$

Corrigé 76. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties deux fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial : pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

 \leftarrow page 9

Mettons cela en œuvre: l'application $x \mapsto x^2 - x$ est de classe C^1 sur [-7, -2], de dérivée $x \mapsto 2x - 1$, tandis que $x \mapsto e^x$ est continue sur [-7, -2], et une primitive est $x \mapsto e^x$. D'après la formule de l'intégration par parties:

$$\int_{-7}^{-2} (x^2 - x)e^x dx = \left[(x^2 - x)e^x \right]_{-7}^{-2} - \int_{-7}^{-2} (2x - 1)e^x dx$$
$$= 6e^{(-2)} - 56e^{(-7)} - \int_{-7}^{-2} ((2x - 1)e^x) dx.$$

On recommence: l'application $x \mapsto 2x - 1$ est de classe C^1 sur [-7, -2], de dérivée $x \mapsto 2$, tandis que $x \mapsto e^x$ est continue sur [-7, -2], et une primitive est $x \mapsto e^x$. D'après la formule de l'intégration par parties:

$$\int_{-7}^{-2} (2x - 1)e^x dx = [(2x - 1)e^x]_{-7}^{-2} - \int_{-7}^{-2} 2e^x dx$$
$$= -5e^{(-2)} + 15e^{(-7)} - \int_{-7}^{-2} (2e^x) dx.$$

Or: $\int_{-7}^{-2} (2e^x) dx = [2e^x]_{-7}^{-2} = 2e^{(-2)} - 2e^{(-7)}$. On conclut:

$$\int_{-7}^{-2} (x^2 - x)e^x dx = 13e^{(-2)} - 73e^{(-7)}.$$

Corrigé 77.

1. Soit $n \in \mathbb{N}$. L'application $x \mapsto \ln(x)^n$ est continue sur]0,1]. Pour tout x au voisinage de 0, on a par croissances comparées :

$$\sqrt{x} \cdot \left| \ln(x) \right|^n = \sqrt{x} \left| \ln(x) \right|^n \underset{x \to +\infty}{\longrightarrow} 0,$$

donc: $\left|\ln\left(x\right)\right|^n = \underset{x \to +\infty}{o}\left(\frac{1}{\sqrt{x}}\right)$. Or l'intégrale de Riemann $\int_0^1 \frac{\mathrm{d}x}{\sqrt{x}}$ converge parce que son exposant est

 $\frac{1}{2}$ < 1. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_0^1 |\ln(x)|^n dx$ converge absolument donc converge, d'où le résultat.

2. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto \ln(x)^n$ et en intégrant $x \mapsto 1$. Le lecteur en exercice prendra bien garde à vérifier l'existence du terme entre crochets, par un calcul de limite aux extrémités (il trouvera une limite nulle, par croissances comparées, à l'extrémité problématique). L'intégration par parties conserve la nature des intégrales, donc $\int_0^1 n \ln(x)^{n-1} dx$ converge également et on en déduit :

$$\int_0^1 \ln(x)^n dx = [x \ln(x)^n]_0^1 - \int_0^1 n \ln(x)^{n-1} dx.$$

C'est-à-dire, après simplifications:

$$I_n = -nI_{n-1}.$$

D'où le résultat.

3. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul:

$$I_k + kI_{k-1} = 0.$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{(-1)^k}{k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{(-1)^k}{k!} I_k - \frac{(-1)^{k-1}}{(k-1)!} I_{k-1} = 0.$$

On somme cette égalité de k=1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{\left(-1\right)^{n}}{n!}I_{n}-I_{0}=0,$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_n = \frac{n!}{(-1)^n} I_0.$$

Or: $I_0 = \int_0^1 1 dx = [x]_0^1 = 1$, donc finalement:

$$I_n = \frac{n!}{(-1)^n} 1.$$

Corrigé 78.

 \leftarrow page 9

1. L'application $x \mapsto x \cos(x) e^{(-7x)}$ est continue sur $\left[\frac{1}{4}\pi, +\infty\right[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in \left[\frac{1}{4}\pi, +\infty\right[$, on a:

$$\left| x \cos(x) e^{(-7x)} \right| \leqslant x e^{(-7x)}$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot xe^{(-7x)} = x^3e^{(-7x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc :

$$xe^{(-7x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{\frac{1}{4}\pi}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{4}\pi}^{+\infty} x e^{(-7x)} \mathrm{d}x$ converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{4}\pi}^{+\infty} x \cos(x) \, e^{(-7x)} \mathrm{d}x$ converge absolument donc converge :

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{\frac{1}{4}\pi}^{+\infty} x \cos(x) e^{(-7x)} dx = \text{Re}\left(\int_{\frac{1}{4}\pi}^{+\infty} x e^{((i-7)x)} dx\right),$$

et on calcule cette intégrale en intégrant par parties: on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas:

$$\int_{\frac{1}{4}\pi}^{+\infty} x \cos\left(x\right) e^{(-7x)} \mathrm{d}x = \operatorname{Re}\left(\left(\frac{1}{50}i + \frac{3}{200}\right) \sqrt{2\pi} e^{\left(-\frac{7}{4}\pi\right)} + \left(\frac{31}{2500}i + \frac{17}{2500}\right) \sqrt{2} e^{\left(-\frac{7}{4}\pi\right)}\right),$$

et donc:

d'où le résultat.

$$\int_{\frac{1}{4}\pi}^{+\infty} x \cos(x) e^{(-7x)} dx = \frac{3}{200} \sqrt{2\pi} e^{\left(-\frac{7}{4}\pi\right)} + \frac{17}{2500} \sqrt{2} e^{\left(-\frac{7}{4}\pi\right)}.$$

Corrigé 79. Commençons par linéariser le terme trigonométrique. On a :

 $\leftarrow \text{page } 9$

$$\int_0^{\frac{1}{2}\pi} x e^{(-x)} \sin(x)^2 dx = \int_0^{\frac{1}{2}\pi} \left(-\frac{1}{2} x (\cos(2x) - 1) e^{(-x)} \right) dx$$
$$= -\frac{1}{2} \int_0^{\frac{1}{2}\pi} x \cos(2x) e^{(-x)} dx + \frac{1}{2} \int_0^{\frac{1}{2}\pi} x e^{(-x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_0^{\frac{1}{2}\pi} x \cos(2\pi) e^{(-x)} dx = \operatorname{Re} \left(\int_0^{\frac{1}{2}\pi} x e^{((2i-1)\pi)} dx \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_0^{\frac{1}{2}\pi} x \cos(2\pi) e^{(-x)} dx = \operatorname{Re}\left(\left(\frac{1}{5}i + \frac{1}{10}\right) \pi e^{\left(-\frac{1}{2}\pi\right)} + \left(\frac{4}{25}i - \frac{3}{25}\right) e^{\left(-\frac{1}{2}\pi\right)} + \frac{4}{25}i - \frac{3}{25}\right),$$

et donc:

$$\int_0^{\frac{1}{2}\pi} x \cos(2\pi) e^{(-x)} dx = \frac{1}{10} \pi e^{(-\frac{1}{2}\pi)} - \frac{3}{25} e^{(-\frac{1}{2}\pi)} - \frac{3}{25}.$$

On calcule de même $\int_0^{\frac{1}{2}\pi} xe^{(-x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient: $\int_0^{\frac{1}{2}\pi} xe^{(-x)} dx = -\frac{1}{2}(\pi+2)e^{\left(-\frac{1}{2}\pi\right)} + 1$. On peut conclure:

$$\int_0^{\frac{1}{2}\pi} x e^{(-x)} \sin(x)^2 dx = -\frac{1}{50} \left(15\pi + 22\right) e^{\left(-\frac{1}{2}\pi\right)} + \frac{14}{25}$$

Corrigé 80. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties une fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial : pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

 \leftarrow page 9

Mettons cela en œuvre: l'application $x \mapsto 7x + 2$ est de classe C^1 sur [-1,1], de dérivée $x \mapsto 7$, tandis que $x \mapsto e^x$ est continue sur [-1,1], et une primitive est $x \mapsto e^x$. D'après la formule de l'intégration par parties:

$$\int_{-1}^{1} (7x+2)e^x dx = \left[(7x+2)e^x \right]_{-1}^{1} - \int_{-1}^{1} 7e^x dx$$
$$= 9e + 5e^{(-1)} - \int_{-1}^{1} (7e^x) dx.$$

Or: $\int_{-1}^{1} (7e^x) dx = [7e^x]_{-1}^{1} = 7e - 7e^{(-1)}$. On conclut:

$$\int_{-1}^{1} (7x+2)e^x dx = 2e + 12e^{(-1)}.$$

Corrigé 81. Commençons par linéariser le terme trigonométrique. On a :

 \leftarrow page 9

$$\int_0^{\frac{1}{3}\pi} x \cos(2\pi)^2 e^{(3\pi)} dx = \int_0^{\frac{1}{3}\pi} \left(\frac{1}{2} x (\cos(4\pi) + 1) e^{(3\pi)} \right) dx$$
$$= \frac{1}{2} \int_0^{\frac{1}{3}\pi} x \cos(4\pi) e^{(3\pi)} dx + \frac{1}{2} \int_0^{\frac{1}{3}\pi} x e^{(3\pi)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_0^{\frac{1}{3}\pi} x \cos(4\pi) e^{(3\pi)} dx = \text{Re}\left(\int_0^{\frac{1}{3}\pi} x e^{((4i+3)\pi)} dx\right),\,$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_0^{\frac{1}{3}\pi} x \cos(4x) e^{(3x)} dx = \operatorname{Re}\left(-\left(\frac{1}{50}i + \frac{2}{75}\right) \sqrt{3}\pi e^{\pi} + \left(\frac{2}{75}i - \frac{1}{50}\right) \pi e^{\pi} - \left(\frac{7}{1250}i - \frac{12}{625}\right) \sqrt{3}e^{\pi} - \left(\frac{12}{625}i + \frac{7}{1250}\right) e^{\pi} - \frac{24}{625}i - \frac{12}{625}i -$$

et donc:

$$\int_0^{\frac{1}{3}\pi} x \cos(4x) e^{(3x)} dx = -\frac{2}{75} \sqrt{3}\pi e^{\pi} - \frac{1}{50} \pi e^{\pi} + \frac{12}{625} \sqrt{3}e^{\pi} - \frac{7}{1250} e^{\pi} - \frac{7}{625}.$$

On calcule de même $\int_0^{\frac{1}{3}\pi} x e^{(3x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en

compte), et on obtient: $\int_0^{\frac{1}{3}\pi} x e^{(3x)} dx = \frac{1}{9} \pi e^{\pi} - \frac{1}{9} e^{\pi} + \frac{1}{9}$. On peut conclure:

$$\int_0^{\frac{1}{3}\pi} x \cos(2\pi)^2 e^{(3\pi)} dx = -\frac{1}{900} \pi \left(12\sqrt{3} - 41\right) e^{\pi} + \frac{1}{22500} \left(216\sqrt{3} - 1313\right) e^{\pi} + \frac{281}{5625}.$$

Corrigé 82.

 \leftarrow page 9

1. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto x^n$ et en intégrant $x \mapsto e^{(2ix)}$. On en déduit :

$$\int_{\frac{1}{2}\pi}^{3\pi} x^n e^{(2ix)} \mathrm{d}x = \left[-\frac{1}{2} i \, x^n e^{(2ix)} \right]_{\frac{1}{2}\pi}^{3\pi} - \int_{\frac{1}{2}\pi}^{3\pi} -\frac{1}{2} i \, n x^{n-1} e^{(2ix)} \mathrm{d}x.$$

C'est-à-dire, après simplifications:

$$I_n = -\frac{1}{2}i (3\pi)^n - \frac{1}{2} \left(\frac{1}{4}\pi\right)^n + \frac{1}{2}inI_{n-1}.$$

D'où le résultat.

2. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k - \frac{1}{2}ikI_{k-1} = -\frac{1}{2}i(3\pi)^k - \frac{1}{2}\left(\frac{1}{4}\pi\right)^k.$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{2^k}{i^k k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{2^k}{i^k k!} I_k - \frac{2^{k-1}}{i^{k-1} (k-1)!} I_{k-1} = -\frac{2^k \left(i \left(3\pi\right)^k + \left(\frac{1}{4}\pi\right)^k\right)}{2 i^k k!}.$$

On somme cette égalité de k=1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{2^n}{i^n n!} I_n - I_0 = \sum_{k=1}^n \left(-\frac{2^k \left(i \left(3 \pi \right)^k + \left(\frac{1}{4} \pi \right)^k \right)}{2 i^k k!} \right),$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_n = \frac{i^n n!}{2^n} \left[I_0 + \sum_{k=1}^n \left(-\frac{2^k \left(i \left(3 \pi \right)^k + \left(\frac{1}{4} \pi \right)^k \right)}{2 i^k k!} \right) \right].$$

Or: $I_0 = \int_{\frac{1}{4}\pi}^{3\pi} e^{(2ix)} dx = \left[-\frac{1}{2} i e^{(2ix)} \right]_{\frac{1}{4}\pi}^{3\pi} = -\frac{1}{2} i - \frac{1}{2}$, donc finalement:

$$I_n = \frac{i^n n!}{2^n} \left[-\frac{1}{2}i - \frac{1}{2} + \sum_{k=1}^n \left(-\frac{2^k \left(i \left(3\pi \right)^k + \left(\frac{1}{4}\pi \right)^k \right)}{2i^k k!} \right) \right].$$

3. Il suffit de prendre la partie imaginaire dans l'expression de la question précédente. On y parvient en développant le produit du membre de droite, et en mettant sous forme exponentielle le terme général de la somme. Souvenons-nous que: $\forall k \in \mathbb{N}, \ i^k = \left(e^{\frac{i\pi}{2}}\right)^k = e^{\frac{ki\pi}{2}}, \ \text{et} : i = e^{\frac{1}{2}i\pi}, \ 1 = e^{6i\pi}, \ \text{de}$ sorte que finalement on trouve que pour tout $n \in \mathbb{N} \setminus \{0\}$ on a, après calculs:

$$\int_{\frac{1}{4}\pi}^{3\pi} x^n \sin(2x) dx = \frac{n!}{2^n} \left[-\frac{1}{2} \cos\left(\frac{1}{2}\pi n\right) - \frac{1}{2} \sin\left(\frac{1}{2}\pi n\right) + \sum_{k=1}^n \left(-\frac{\left((3\pi)^{k-1}\cos\left(-\frac{1}{2}\pi k + \frac{1}{2}\pi n\right) + \left(\frac{1}{4}\pi\right)^{k-1}\sin\left(-\frac{1}{2}\pi n\right) + \left(\frac{1}{4}\pi\right)^{k-1}\sin\left(-\frac{1}{4}\pi\right)^{k-1}\sin\left(-\frac{1}{4}\pi\right) + \left(\frac{1}{4}\pi\right)^{k-1}\sin\left(-\frac{1}{4}\pi\right) + \left(\frac{1}{4}\pi\right)^{k-1}\sin\left(-\frac{1}{4}\pi\right)^{k-1}\sin\left(-\frac{1}{4}\pi\right) + \left(\frac{1}{4}\pi\right)^{k-1}\sin\left(-\frac{1}{4}\pi\right)^{k-1}\sin$$

Corrigé 83.

 \leftarrow page 9

1. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto x^n$ et en intégrant $x \mapsto e^{(ix)}$. On en déduit :

$$\int_0^{\frac{1}{3}\pi} x^n e^{(ix)} dx = \left[-i \, x^n e^{(ix)} \right]_0^{\frac{1}{3}\pi} - \int_0^{\frac{1}{3}\pi} -i \, n x^{n-1} e^{(ix)} dx.$$

C'est-à-dire, après simplifications:

$$I_n = \frac{1}{2} \left(\frac{1}{3} \pi \right)^n \left(\sqrt{3} - i \right) + inI_{n-1}.$$

D'où le résultat.

2. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k - ikI_{k-1} = \frac{1}{2} \left(\frac{1}{3} \pi \right)^k \left(\sqrt{3} - i \right).$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{1}{i^k k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{i^k k!} I_k - \frac{1}{i^{k-1} (k-1)!} I_{k-1} = \frac{\left(\frac{1}{3} \pi\right)^k \left(\sqrt{3} - i\right)}{2 i^k k!}.$$

On somme cette égalité de k = 1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{1}{i^n n!} I_n - I_0 = \sum_{k=1}^n \left(\frac{\left(\frac{1}{3} \pi\right)^k (\sqrt{3} - i)}{2 i^k k!} \right),$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_n = i^n n! \left[I_0 + \sum_{k=1}^n \left(\frac{\left(\frac{1}{3}\pi\right)^k (\sqrt{3} - i)}{2 i^k k!} \right) \right].$$

Or: $I_0 = \int_0^{\frac{1}{3}\pi} e^{(ix)} dx = \left[-i e^{(ix)} \right]_0^{\frac{1}{3}\pi} = \frac{1}{2} \sqrt{3} + \frac{1}{2}i$, donc finalement:

$$I_n = i^n n! \left[\frac{1}{2} \sqrt{3} + \frac{1}{2} i + \sum_{k=1}^n \left(\frac{\left(\frac{1}{3} \pi\right)^k \left(\sqrt{3} - i\right)}{2 i^k k!} \right) \right].$$

3. Il suffit de prendre la partie réelle dans l'expression de la question précédente. On y parvient en développant le produit du membre de droite, et en mettant sous forme exponentielle le terme général de la somme. Souvenons-nous que: $\forall k \in \mathbb{N}, \ i^k = \left(e^{\frac{i\pi}{2}}\right)^k = e^{\frac{ki\pi}{2}}, \ \text{et} : \frac{1}{2}i\sqrt{3} + \frac{1}{2} = e^{\frac{1}{3}i\pi}, \ \text{de sorte que finalement on trouve que pour tout } n \in \mathbb{N} \setminus \{0\} \text{ on a, après calculs:}$

$$\int_0^{\frac{1}{3}\pi} x^n \cos(x) dx = n! \left[\cos\left(-\frac{1}{6}\pi + \frac{1}{2}\pi n \right) - \sin\left(\frac{1}{2}\pi n \right) + \sum_{k=1}^n \left(\frac{\left(\frac{1}{3}\pi\right)^{k-1} \cos\left(-\frac{1}{6}\pi - \frac{1}{2}\pi k + \frac{1}{2}\pi n \right)}{k!} \right) \right].$$

Corrigé 84. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties une fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial : pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

 \leftarrow page 9

Mettons cela en œuvre : l'application $x\mapsto 9\,x+2$ est de classe \mathbf{C}^1 sur [-1,13], de dérivée $x\mapsto 9$, tandis que $x\mapsto e^{(7\,x)}$ est continue sur [-1,13], et une primitive est $x\mapsto \frac{1}{7}\,e^{(7\,x)}$. D'après la formule de l'intégration par parties :

$$\int_{-1}^{13} (9x+2)e^{(7x)} dx = \left[\frac{1}{7}(9x+2)e^{(7x)}\right]_{-1}^{13} - \int_{-1}^{13} \frac{9}{7}e^{(7x)} dx$$
$$= 17e^{91} + e^{(-7)} - \int_{-1}^{13} \left(\frac{9}{7}e^{(7x)}\right) dx.$$

Or:
$$\int_{-1}^{13} \left(\frac{9}{7}e^{(7x)}\right) dx = \left[\frac{9}{49}e^{(7x)}\right]_{-1}^{13} = \frac{9}{49}e^{91} - \frac{9}{49}e^{(-7)}. \text{ On conclut:}$$
$$\int_{-1}^{13} (9x+2)e^{(7x)} dx = \frac{824}{49}e^{91} + \frac{58}{49}e^{(-7)}.$$

Corrigé 85. Commençons par linéariser le terme trigonométrique. On a :

 \leftarrow page 9

$$\int_{-\frac{8}{3}\pi}^{\frac{5}{2}\pi} x e^x \sin(x)^2 dx = \int_{-\frac{8}{3}\pi}^{\frac{5}{2}\pi} \left(-\frac{1}{2} x (\cos(2x) - 1) e^x \right) dx$$
$$= -\frac{1}{2} \int_{-\frac{8}{3}\pi}^{\frac{5}{2}\pi} x \cos(2x) e^x dx + \frac{1}{2} \int_{-\frac{8}{3}\pi}^{\frac{5}{2}\pi} x e^x dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a

$$\int_{-\frac{8}{3}\pi}^{\frac{5}{2}\pi} x \cos(2x) e^x dx = \text{Re}\left(\int_{-\frac{8}{3}\pi}^{\frac{5}{2}\pi} x e^{((2i+1)x)} dx\right),\,$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\frac{8}{3}\pi}^{\frac{5}{2}\pi} x \cos(2x) e^x dx = \operatorname{Re}\left(\left(\frac{4}{15}i + \frac{8}{15}\right) \sqrt{3}\pi e^{\left(-\frac{8}{3}\pi\right)} + \left(i - \frac{1}{2}\right) \pi e^{\left(\frac{5}{2}\pi\right)} + \left(\frac{8}{15}i - \frac{4}{15}\right) \pi e^{\left(-\frac{8}{3}\pi\right)} - \left(\frac{3}{50}i - \frac{2}{25}\right) \sqrt{3}e^{\left(-\frac{8}{3}\pi\right)} - \left(\frac{4}{25}i + \frac{8}{15}\right) \pi e^{\left(-\frac{8}{3}\pi\right)} + \left(\frac{4}{15}i + \frac{8}{15}i + \frac{8}{15}i$$

et donc:

$$\int_{-\frac{8}{3}\pi}^{\frac{5}{2}\pi} x \cos(2x) e^x dx = \frac{8}{15} \sqrt{3}\pi e^{\left(-\frac{8}{3}\pi\right)} - \frac{1}{2} \pi e^{\left(\frac{5}{2}\pi\right)} - \frac{4}{15} \pi e^{\left(-\frac{8}{3}\pi\right)} + \frac{2}{25} \sqrt{3} e^{\left(-\frac{8}{3}\pi\right)} - \frac{3}{25} e^{\left(\frac{5}{2}\pi\right)} + \frac{3}{50} e^{\left(-\frac{8}{3}\pi\right)}.$$

On calcule de même $\int_{-\frac{8}{3}\pi}^{\frac{5}{2}\pi} x e^x dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en

compte), et on obtient: $\int_{-\frac{8}{3}\pi}^{\frac{5}{2}\pi} x e^x dx = \frac{1}{2} (5\pi - 2) e^{\left(\frac{5}{2}\pi\right)} + \frac{1}{3} (8\pi + 3) e^{\left(-\frac{8}{3}\pi\right)}.$ On peut conclure:

$$\int_{-\frac{8}{3}\pi}^{\frac{5}{2}\pi} x e^x \sin(x)^2 dx = \frac{1}{50} \left(75\pi - 22\right) e^{\left(\frac{5}{2}\pi\right)} - \frac{1}{300} \left(40\pi \left(2\sqrt{3} - 11\right) + 12\sqrt{3} - 141\right) e^{\left(-\frac{8}{3}\pi\right)}.$$

Corrigé 86. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties deux fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial : pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

Mettons cela en œuvre: l'application $x\mapsto 3\,x^2+47$ est de classe C^1 sur $[-\frac{1}{6}\,\pi,\frac{1}{4}\,\pi]$, de dérivée $x\mapsto 6\,x$, tandis que $x\mapsto\sin(3\,x)$ est continue sur $[-\frac{1}{6}\,\pi,\frac{1}{4}\,\pi]$, et une primitive est $x\mapsto -\frac{1}{3}\cos(3\,x)$. D'après la formule de l'intégration par parties:

$$\int_{-\frac{1}{6}\pi}^{\frac{1}{4}\pi} \left(3x^2 + 47\right) \sin(3x) \, dx = \left[-\frac{1}{3} \left(3x^2 + 47\right) \cos(3x) \right]_{-\frac{1}{6}\pi}^{\frac{1}{4}\pi} - \int_{-\frac{1}{6}\pi}^{\frac{1}{4}\pi} - 2x \cos(3x) \, dx$$
$$= \frac{1}{96} \sqrt{2} \left(3\pi^2 + 752\right) - \int_{-\frac{1}{6}\pi}^{\frac{1}{4}\pi} \left(-2x \cos(3x) \right) dx.$$

On recommence: l'application $x\mapsto 6x$ est de classe C^1 sur $[-\frac{1}{6}\pi,\frac{1}{4}\pi]$, de dérivée $x\mapsto 6$, tandis que $x\mapsto -\frac{1}{3}\cos(3x)$ est continue sur $[-\frac{1}{6}\pi,\frac{1}{4}\pi]$, et une primitive est $x\mapsto -\frac{1}{9}\sin(3x)$. D'après la formule de l'intégration par parties:

$$\int_{-\frac{1}{6}\pi}^{\frac{1}{4}\pi} - 2x\cos(3x) \, \mathrm{d}x = \left[-\frac{2}{3}x\sin(3x) \right]_{-\frac{1}{6}\pi}^{\frac{1}{4}\pi} - \int_{-\frac{1}{6}\pi}^{\frac{1}{4}\pi} - \frac{2}{3}\sin(3x) \, \mathrm{d}x$$

$$= \frac{1}{9}\pi - \frac{1}{12}\sqrt{2}\pi - \int_{-\frac{1}{6}\pi}^{\frac{1}{4}\pi} \left(-\frac{2}{3}\sin(3x) \right) \, \mathrm{d}x.$$

$$\operatorname{Or}: \int_{-\frac{1}{6}\pi}^{\frac{1}{4}\pi} \left(-\frac{2}{3}\sin(3x) \right) \, \mathrm{d}x = \left[\frac{2}{9}\cos(3x) \right]_{-\frac{1}{6}\pi}^{\frac{1}{4}\pi} = -\frac{1}{9}\sqrt{2}. \text{ On conclut :}$$

$$\int_{-\frac{1}{4}\pi}^{\frac{1}{4}\pi} \left(3x^2 + 47 \right) \sin(3x) \, \mathrm{d}x = -\frac{1}{9}\pi + \frac{1}{12}\sqrt{2}\pi + \frac{1}{96}\sqrt{2} \left(3\pi^2 + 752 \right) - \frac{1}{9}\sqrt{2}.$$

Corrigé 87. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties deux fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme logarithmique, ce qu'on obtiendra par dérivation. Une seule dérivation ne suffit pas, parce que la dérivée de $x \mapsto (\ln(x))^2$ est $x \mapsto \frac{2\ln(x)}{x}$: il reste un logarithme.

Mettons cela en œuvre : l'application $x \mapsto \ln(x)^2$ est de classe C^1 sur [1,17], de dérivée $x \mapsto \frac{2 \ln(x)}{x}$, tandis que $x \mapsto 2x$ est continue sur [1,17], et une primitive est $x \mapsto x^2$. D'après la formule de l'intégration par parties :

$$\int_{1}^{17} 2x \ln(x)^{2} dx = \left[x^{2} \ln(x)^{2}\right]_{1}^{17} - \int_{1}^{17} 2x \ln(x) dx$$
$$= 289 \ln(17)^{2} - \int_{1}^{17} (2x \ln(x)) dx.$$

On recommence: l'application $x\mapsto \ln{(x)}$ est de classe C^1 sur [1,17], de dérivée $x\mapsto \frac{1}{x}$, tandis que $x\mapsto 2\,x$ est continue sur [1,17], et une primitive est $x\mapsto x^2$. D'après la formule de l'intégration par parties:

$$\int_{1}^{17} 2 x \ln(x) dx = \left[x^{2} \ln(x)\right]_{1}^{17} - \int_{1}^{17} x dx$$
$$= 289 \ln(17) - \int_{1}^{17} (x) dx.$$

/ mama 10

Or:
$$\int_{1}^{17} (x) dx = \left[\frac{1}{2}x^{2}\right]_{1}^{17} = 144$$
. On conclut:
$$\int_{1}^{17} 2x \ln(x)^{2} dx = 289 \ln(17)^{2} - 289 \ln(17) + 144.$$

Corrigé 88. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

 \leftarrow page 10

$$\int_{-\pi}^{0} x e^{(5x)} \sin(x) dx = \operatorname{Im} \left(\int_{-\pi}^{0} x e^{((i+5)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\pi}^{0} x e^{(5x)} \sin(x) dx = \operatorname{Im}\left(\left(\frac{1}{26}i - \frac{5}{26}\right) \pi e^{(-5\pi)} + \left(\frac{5}{338}i - \frac{6}{169}\right) e^{(-5\pi)} + \frac{5}{338}i - \frac{6}{169}\right),$$

et donc:

$$\int_{-\pi}^{0} x e^{(5x)} \sin(x) dx = \frac{1}{26} \pi e^{(-5\pi)} + \frac{5}{338} e^{(-5\pi)} + \frac{5}{338}.$$

Corrigé 89. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties une fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial : pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

 \leftarrow page 10

Mettons cela en œuvre: l'application $x\mapsto x+2$ est de classe C^1 sur $[0,\pi]$, de dérivée $x\mapsto 1$, tandis que $x\mapsto\sin(x)$ est continue sur $[0,\pi]$, et une primitive est $x\mapsto-\cos(x)$. D'après la formule de l'intégration par parties:

$$\int_0^{\pi} (x+2)\sin(x) dx = [-(x+2)\cos(x)]_0^{\pi} - \int_0^{\pi} -\cos(x) dx$$
$$= \pi + 4 - \int_0^{\pi} (-\cos(x)) dx.$$

Or:
$$\int_0^{\pi} (-\cos(x)) dx = [-\sin(x)]_0^{\pi} = 0$$
. On conclut:

$$\int_0^{\pi} (x+2)\sin(x) \, \mathrm{d}x = \pi + 4.$$

Corrigé 90. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties deux fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial : pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

 \leftarrow page 10

Mettons cela en œuvre : l'application $x \mapsto 2x^2 - 3$ est de classe C^1 sur [2,5], de dérivée $x \mapsto 4x$, tandis que $x \mapsto e^x$ est continue sur [2,5], et une primitive est $x \mapsto e^x$. D'après la formule de l'intégration par parties :

$$\int_{2}^{5} (2x^{2} - 3)e^{x} dx = \left[(2x^{2} - 3)e^{x} \right]_{2}^{5} - \int_{2}^{5} 4xe^{x} dx$$
$$= 47e^{5} - 5e^{2} - \int_{2}^{5} (4xe^{x}) dx.$$

On recommence : l'application $x \mapsto 4x$ est de classe C^1 sur [2,5], de dérivée $x \mapsto 4$, tandis que $x \mapsto e^x$ est continue sur [2,5], et une primitive est $x \mapsto e^x$. D'après la formule de l'intégration par parties :

$$\int_{2}^{5} 4xe^{x} dx = [4xe^{x}]_{2}^{5} - \int_{2}^{5} 4e^{x} dx$$
$$= 20e^{5} - 8e^{2} - \int_{2}^{5} (4e^{x}) dx.$$

Or: $\int_{2}^{5} (4e^{x}) dx = [4e^{x}]_{2}^{5} = 4e^{5} - 4e^{2}$. On conclut:

$$\int_{2}^{5} (2x^{2} - 3)e^{x} dx = 31e^{5} - e^{2}.$$

Corrigé 91.

 $\leftarrow \text{page } 10$

1. Soit $n \in \mathbb{N}$. L'application $x \mapsto x^n e^{(-x)}$ est continue sur $[-7, +\infty[$. Pour tout x au voisinage de $+\infty$, on a par croissances comparées:

 $x^{2} \cdot x^{n} e^{(-x)} = x^{2} x^{n} e^{(-x)} \underset{x \to +\infty}{\longrightarrow} 0,$

 $\operatorname{donc}\colon x^n e^{(-x)} = \mathop{o}\limits_{x \to +\infty} \left(\frac{1}{x^2}\right). \text{ Or l'intégrale de Riemann } \int_{-7}^{+\infty} \frac{\mathrm{d}x}{x^2} \text{ converge parce que son exposant est } \frac{1}{x^2} \left(\frac{1}{x^2}\right)$

- 2 > 1. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-7}^{+\infty} x^n e^{(-x)} dx$ converge, d'où le résultat.
- 2. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto x^n$ et en intégrant $x \mapsto e^{(-x)}$. Le lecteur en exercice prendra bien garde à vérifier l'existence du terme entre crochets, par un calcul de limite aux extrémités (il trouvera une limite nulle, par croissances comparées, à l'extrémité problématique). L'intégration par parties conserve la nature des intégrales, donc $\int_{-7}^{+\infty} -nx^{n-1}e^{(-x)}dx$ converge également et on en déduit:

 $\int_{-7}^{+\infty} x^n e^{(-x)} dx = \left[-x^n e^{(-x)} \right]_{-7}^{+\infty} - \int_{-7}^{+\infty} -nx^{n-1} e^{(-x)} dx.$

C'est-à-dire, après simplifications:

$$I_n = (-7)^n e^7 + nI_{n-1}.$$

D'où le résultat.

3. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul:

$$I_k - kI_{k-1} = (-7)^k e^7.$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{1}{k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{k!} I_k - \frac{1}{(k-1)!} I_{k-1} = \frac{(-7)^k e^7}{k!}.$$

On somme cette égalité de k = 1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{1}{n!}I_n - I_0 = \sum_{k=1}^n \left(\frac{(-7)^k e^7}{k!}\right),\,$$

et il suffit d'isoler I_n pour avoir le résultat voulu :

$$I_n = n! \left[I_0 + \sum_{k=1}^n \left(\frac{(-7)^k e^7}{k!} \right) \right].$$

Or: $I_0 = \int_{-7}^{+\infty} e^{(-x)} dx = \left[-e^{(-x)} \right]_{-7}^{+\infty} = e^7$, donc finalement:

$$I_n = n! \left[e^7 + \sum_{k=1}^n \left(\frac{(-7)^k e^7}{k!} \right) \right].$$

Corrigé 92. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\frac{1}{6}\pi}^{0} x e^{(13x)} \sin(x) dx = \operatorname{Im} \left(\int_{-\frac{1}{6}\pi}^{0} x e^{((i+13)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\frac{1}{6}\pi}^{0} x e^{(13\,x)} \sin{(x)} \, \mathrm{d}x = \mathrm{Im}\left(-\left(\frac{1}{2040}i - \frac{13}{2040}\right) \sqrt{3}\pi e^{\left(-\frac{13}{6}\,\pi\right)} - \left(\frac{13}{2040}i + \frac{1}{2040}\right) \pi e^{\left(-\frac{13}{6}\,\pi\right)} - \left(\frac{13}{28900}i - \frac{21}{7225}\right) \sqrt{3}e^{\left(-\frac{13}{6}\,\pi\right)} - \left(\frac{13}{2040}i - \frac{13}{2040}i - \frac$$

et donc:

$$\int_{-\frac{1}{2}\pi}^{0} x e^{(13\,x)} \sin(x) \, dx = -\frac{1}{2040} \sqrt{3}\pi e^{\left(-\frac{13}{6}\,\pi\right)} - \frac{13}{2040} \pi e^{\left(-\frac{13}{6}\,\pi\right)} - \frac{13}{28900} \sqrt{3}e^{\left(-\frac{13}{6}\,\pi\right)} - \frac{21}{7225} e^{\left(-\frac{13}{6}\,\pi\right)} + \frac{13}{14450}.$$

Corrigé 93. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties une fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme logarithmique, ce qu'on obtiendra par dérivation.

 \leftarrow page 10

Mettons cela en œuvre : l'application $x \mapsto \ln(x)$ est de classe C^1 sur [1,3], de dérivée $x \mapsto \frac{1}{x}$, tandis que $x \mapsto x-8$ est continue sur [1,3], et une primitive est $x \mapsto \frac{1}{2}x^2 - 8x$. D'après la formule de l'intégration par parties :

$$\int_{1}^{3} (x-8) \ln(x) dx = \left[\frac{1}{2} (x^{2} - 16x) \ln(x) \right]_{1}^{3} - \int_{1}^{3} \frac{x^{2} - 16x}{2x} dx$$
$$= -\frac{39}{2} \ln(3) - \int_{1}^{3} \left(\frac{1}{2} x - 8 \right) dx.$$

Or:
$$\int_{1}^{3} \left(\frac{1}{2}x - 8\right) dx = \left[\frac{1}{4}x^{2} - 8x\right]_{1}^{3} = -14$$
. On conclut:
$$\int_{1}^{3} (x - 8) \ln(x) dx = -\frac{39}{2} \ln(3) + 14.$$

Corrigé 94.

 \leftarrow page 10

1. L'application $x \mapsto x^2 e^{(-6x)} \sin(x)^2$ est continue sur $\left[\frac{1}{4}\pi, +\infty\right[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in \left[\frac{1}{4}\pi, +\infty\right[$, on a:

$$0 \leqslant x^2 e^{(-6x)} \sin(x)^2 \leqslant x^2 e^{(-6x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-6\,x)} = x^4 e^{(-6\,x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$x^2 e^{(-6x)} = \mathop{o}\limits_{x \to +\infty} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{\frac{1}{4}\pi}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{4}\pi}^{+\infty} x^2 e^{(-6x)} \mathrm{d}x$ converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{\frac{1}{4}\pi}^{+\infty} x^2 e^{(-6x)} \sin{(x)^2} \, \mathrm{d}x$ converge : d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a :

$$\int_{\frac{1}{4}\pi}^{+\infty} x^2 e^{(-6x)} \sin(x)^2 dx = \int_{\frac{1}{4}\pi}^{+\infty} \left(-\frac{1}{2} x^2 (\cos(2x) - 1) e^{(-6x)} \right) dx$$
$$= -\frac{1}{2} \int_{\frac{1}{2}\pi}^{+\infty} x^2 \cos(2x) e^{(-6x)} dx + \frac{1}{2} \int_{\frac{1}{2}\pi}^{+\infty} x^2 e^{(-6x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{\frac{1}{4}\pi}^{+\infty} x^2 \cos(2x) e^{(-6x)} dx = \text{Re}\left(\int_{\frac{1}{4}\pi}^{+\infty} x^2 e^{((2i-6)x)} dx\right),$$

et on calcule cette intégrale en intégrant par parties deux fois: on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas:

$$\int_{\frac{1}{2}\pi}^{+\infty} x^2 \cos{(2\,x)} \, e^{(-6\,x)} \mathrm{d}x = \mathrm{Re}\left(\left(\frac{3}{320}i - \frac{1}{320}\right) \, \pi^2 e^{\left(-\frac{3}{2}\,\pi\right)} + \left(\frac{1}{100}i - \frac{3}{400}\right) \, \pi e^{\left(-\frac{3}{2}\,\pi\right)} + \left(\frac{9}{2000}i - \frac{13}{2000}\right) \, e^{\left(-\frac{3}{2}\,\pi\right)}\right),$$

et donc:

$$\int_{\frac{1}{4}\pi}^{+\infty} x^2 \cos\left(2\,x\right) e^{\left(-6\,x\right)} \mathrm{d}x = -\frac{1}{320}\,\pi^2 e^{\left(-\frac{3}{2}\,\pi\right)} - \frac{3}{400}\,\pi e^{\left(-\frac{3}{2}\,\pi\right)} - \frac{13}{2000}\,e^{\left(-\frac{3}{2}\,\pi\right)}.$$

On calcule de même $\int_{\frac{1}{4}\pi}^{+\infty} x^2 e^{(-6x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à

prendre en compte), et on obtient : $\int_{\frac{1}{4}\pi}^{+\infty} x^2 e^{(-6x)} dx = \frac{1}{864} \left(12\pi + 9\pi^2 + 8\right) e^{\left(-\frac{3}{2}\pi\right)}$. On peut conclure :

$$\int_{\frac{1}{4}\pi}^{+\infty} x^2 e^{(-6x)} \sin(x)^2 dx = \frac{1}{432000} \left(4620\pi + 2925\pi^2 + 3404\right) e^{\left(-\frac{3}{2}\pi\right)}.$$

Corrigé 95.

1. L'application $x \mapsto x^2 \cos(6x) e^{(-6x)}$ est continue sur $[-\frac{1}{2}\pi, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [-\frac{1}{2}\pi, +\infty[$, on a :

$$\left| x^2 \cos(6x) e^{(-6x)} \right| \leqslant x^2 e^{(-6x)},$$

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot x^2 e^{(-6\,x)} = x^4 e^{(-6\,x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$x^2 e^{(-6x)} = \mathop{o}_{x \to +\infty} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_1^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_1^{+\infty} x^2 e^{(-6\,x)} \mathrm{d}x$ converge, et donc $\int_{-\frac{1}{2}\,\pi}^{+\infty} x^2 e^{(-6\,x)} \mathrm{d}x$ converge aussi par continuité sur le segment $[-\frac{1}{2}\,\pi,1]$. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-\frac{1}{2}\,\pi}^{+\infty} x^2 \cos{(6\,x)}\,e^{(-6\,x)} \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\frac{1}{2}\pi}^{+\infty} x^2 \cos(6x) e^{(-6x)} dx = \text{Re}\left(\int_{-\frac{1}{2}\pi}^{+\infty} x^2 e^{((6i-6)x)} dx\right),$$

et on calcule cette intégrale en intégrant par parties deux fois: on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas:

$$\int_{-\frac{1}{3}\pi}^{+\infty} x^2 \cos(6x) e^{(-6x)} dx = \operatorname{Re}\left(-\left(\frac{1}{48}i + \frac{1}{48}\right) \pi^2 e^{(3\pi)} + \frac{1}{72}i \pi e^{(3\pi)} - \left(\frac{1}{432}i - \frac{1}{432}\right) e^{(3\pi)}\right),$$

et donc:

$$\int_{-\frac{1}{3}\pi}^{+\infty} x^2 \cos(6x) e^{(-6x)} dx = -\frac{1}{48} \pi^2 e^{(3\pi)} + \frac{1}{432} e^{(3\pi)}.$$

Corrigé 96.

1. L'application $x \mapsto x \cos(x)^2 e^{(-17x)}$ est continue sur $[-\frac{1}{4}\pi, +\infty[$. Étudions son intégrabilité au voisinage de $+\infty$. Pour tout $x \in [-\frac{1}{4}\pi, +\infty[$, on a :

$$\left| x \cos(x)^2 e^{(-17x)} \right| \le |x| e^{(-17x)},$$

 \leftarrow page 10

et on va montrer l'intégrabilité de ce majorant par croissances comparés. On a en effet, pour tout x au voisinage de $+\infty$: $x^2 \cdot |x| e^{(-17x)} = x^2 |x| e^{(-17x)} \underset{x \to +\infty}{\longrightarrow} 0$, donc:

$$|x|e^{(-17x)} = o_{x \to +\infty} \left(\frac{1}{x^2}\right).$$

Or l'intégrale de Riemann $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x^2}$ est d'exposant 2>1, donc elle converge. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{1}^{+\infty} |x| e^{(-17\,x)} \mathrm{d}x$ converge, et donc $\int_{-\frac{1}{4}\,\pi}^{+\infty} |x| e^{(-17\,x)} \mathrm{d}x$ converge aussi par continuité sur le segment $[-\frac{1}{4}\,\pi,1]$. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-\frac{1}{4}\,\pi}^{+\infty} x \cos{(x)^2} \, e^{(-17\,x)} \mathrm{d}x$ converge absolument donc converge : d'où le résultat.

2. Commençons par linéariser le terme trigonométrique. On a :

$$\int_{-\frac{1}{4}\pi}^{+\infty} x \cos(x)^2 e^{(-17x)} dx = \int_{-\frac{1}{4}\pi}^{+\infty} \left(\frac{1}{2} x (\cos(2x) + 1) e^{(-17x)} \right) dx$$
$$= \frac{1}{2} \int_{-\frac{1}{4}\pi}^{+\infty} x \cos(2x) e^{(-17x)} dx + \frac{1}{2} \int_{-\frac{1}{4}\pi}^{+\infty} x e^{(-17x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

$$\int_{-\frac{1}{4}\pi}^{+\infty} x \cos(2x) e^{(-17x)} dx = \text{Re}\left(\int_{-\frac{1}{4}\pi}^{+\infty} x e^{((2i-17)x)} dx\right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{-\frac{1}{4}\pi}^{+\infty} x \cos(2\pi) e^{(-17\pi)} dx = \operatorname{Re}\left(\left(\frac{17}{1172}i - \frac{1}{586}\right) \pi e^{\left(\frac{17}{4}\pi\right)} - \left(\frac{285}{85849}i - \frac{68}{85849}\right) e^{\left(\frac{17}{4}\pi\right)}\right),$$

et donc:

$$\int_{-\frac{1}{4}\pi}^{+\infty} x \cos(2\pi) e^{(-17\pi)} dx = -\frac{1}{586} \pi e^{(\frac{17}{4}\pi)} + \frac{68}{85849} e^{(\frac{17}{4}\pi)}.$$

On calcule de même $\int_{-\frac{1}{4}\pi}^{+\infty} x e^{(-17x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en compte), et on obtient: $\int_{-\frac{1}{4}\pi}^{+\infty} x e^{(-17x)} dx = -\frac{1}{1156} (17\pi - 4) e^{(\frac{17}{4}\pi)}$. On peut conclure:

$$\int_{-\frac{1}{4}\pi}^{+\infty} x \cos(x)^2 e^{(-17\pi x)} dx = -\frac{327}{39848} \pi e^{(\frac{17}{4}\pi)} + \frac{105501}{49620722} e^{(\frac{17}{4}\pi)}.$$

Corrigé 97. Commençons par linéariser le terme trigonométrique. On a :

$$\int_{\frac{1}{4}\pi}^{7\pi} x e^{(3x)} \sin(6x)^2 dx = \int_{\frac{1}{4}\pi}^{7\pi} \left(-\frac{1}{2} x (\cos(12x) - 1) e^{(3x)} \right) dx$$
$$= -\frac{1}{2} \int_{\frac{1}{4}\pi}^{7\pi} x \cos(12x) e^{(3x)} dx + \frac{1}{2} \int_{\frac{1}{4}\pi}^{7\pi} x e^{(3x)} dx.$$

On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a

$$\int_{\frac{1}{4}\pi}^{7\pi} x \cos(12x) e^{(3x)} dx = \text{Re}\left(\int_{\frac{1}{4}\pi}^{7\pi} x e^{((12i+3)x)} dx\right),\,$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{\frac{1}{4}\pi}^{7\pi} x \cos\left(12\,x\right) e^{(3\,x)} \mathrm{d}x = \operatorname{Re}\left(-\left(\frac{28}{51}i - \frac{7}{51}\right)\,\pi e^{(21\,\pi)} - \left(\frac{1}{51}i - \frac{1}{204}\right)\,\pi e^{\left(\frac{3}{4}\,\pi\right)} + \left(\frac{8}{2601}i + \frac{5}{867}\right)\,e^{(21\,\pi)} + \left(\frac{8}{2601}i + \frac{5}{867}\right)\,e^{\left(\frac{3}{4}\,\pi\right)}\right) e^{(3\,\pi)} \mathrm{d}x$$

et donc:

$$\int_{\frac{1}{4}\pi}^{7\pi} x \cos(12x) e^{(3x)} dx = \frac{7}{51} \pi e^{(21\pi)} + \frac{1}{204} \pi e^{\left(\frac{3}{4}\pi\right)} + \frac{5}{867} e^{(21\pi)} + \frac{5}{867} e^{\left(\frac{3}{4}\pi\right)}.$$

On calcule de même $\int_{\frac{1}{4}\pi}^{7\pi} xe^{(3x)} dx$ (c'est même plus simple puisqu'il n'y a plus de nombre complexe à prendre en

compte), et on obtient: $\int_{\frac{1}{4}\pi}^{7\pi} x e^{(3x)} dx = \frac{7}{3} \pi e^{(21\pi)} - \frac{1}{36} (3\pi - 4) e^{\left(\frac{3}{4}\pi\right)} - \frac{1}{9} e^{(21\pi)}.$ On peut conclure:

$$\int_{\frac{1}{4}\pi}^{7\pi} x e^{(3x)} \sin(6x)^2 dx = \frac{56}{51} \pi e^{(21\pi)} - \frac{1}{10404} (459\pi - 548) e^{\left(\frac{3}{4}\pi\right)} - \frac{152}{2601} e^{(21\pi)}.$$

Corrigé 98. Nous allons calculer cette intégrale en utilisant la formule de l'intégration par parties deux fois : l'objectif est de se ramener à une intégrale sans le terme gênant, c'est-à-dire sans terme polynomial : pour cela, nous allons le dériver autant de fois que son degré, jusqu'à obtenir un terme constant.

is: \leftarrow page 10 la,

Mettons cela en œuvre : l'application $x \mapsto x^2 - 4$ est de classe C^1 sur [-1,1], de dérivée $x \mapsto 2x$, tandis que $x \mapsto e^x$ est continue sur [-1,1], et une primitive est $x \mapsto e^x$. D'après la formule de l'intégration par parties :

$$\int_{-1}^{1} (x^2 - 4)e^x dx = [(x^2 - 4)e^x]_{-1}^{1} - \int_{-1}^{1} 2xe^x dx$$
$$= -3e + 3e^{(-1)} - \int_{-1}^{1} (2xe^x) dx.$$

On recommence : l'application $x \mapsto 2x$ est de classe C^1 sur [-1,1], de dérivée $x \mapsto 2$, tandis que $x \mapsto e^x$ est continue sur [-1,1], et une primitive est $x \mapsto e^x$. D'après la formule de l'intégration par parties :

$$\int_{-1}^{1} 2x e^{x} dx = \left[2x e^{x}\right]_{-1}^{1} - \int_{-1}^{1} 2e^{x} dx$$
$$= 2e + 2e^{(-1)} - \int_{-1}^{1} (2e^{x}) dx.$$

Or:
$$\int_{-1}^{1} (2e^x) dx = [2e^x]_{-1}^{1} = 2e - 2e^{(-1)}$$
. On conclut:

$$\int_{-1}^{1} (x^2 - 4)e^x dx = -3e - e^{(-1)}.$$

Corrigé 99.

 \leftarrow page 11

1. Soit $n \in \mathbb{N}$. L'application $x \mapsto x^n e^{(-x)}$ est continue sur $[-5, +\infty[$. Pour tout x au voisinage de $+\infty$, on a par croissances comparées: $x^2 \cdot x^n e^{(-x)} = x^2 x^n e^{(-x)} \xrightarrow[x \to +\infty]{} 0,$

donc: $x^n e^{(-x)} = o_{x \to +\infty} \left(\frac{1}{x^2}\right)$. Or l'intégrale de Riemann $\int_{-5}^{+\infty} \frac{\mathrm{d}x}{x^2}$ converge parce que son exposant est

- 2>1. Par le théorème de comparaison des intégrales de fonctions positives, l'intégrale $\int_{-5}^{+\infty} x^n e^{(-x)} dx$ converge, d'où le résultat.
- 2. Soit $n \in \mathbb{N} \setminus \{0\}$. On intègre par parties I_n , en dérivant $x \mapsto x^n$ et en intégrant $x \mapsto e^{(-x)}$. Le lecteur en exercice prendra bien garde à vérifier l'existence du terme entre crochets, par un calcul de limite aux extrémités (il trouvera une limite nulle, par croissances comparées, à l'extrémité problématique). L'intégration par parties conserve la nature des intégrales, donc $\int_{-5}^{+\infty} -nx^{n-1}e^{(-x)}dx$ converge également et on en déduit:

$$\int_{-5}^{+\infty} x^n e^{(-x)} dx = \left[-x^n e^{(-x)} \right]_{-5}^{+\infty} - \int_{-5}^{+\infty} -nx^{n-1} e^{(-x)} dx.$$

C'est-à-dire, après simplifications:

$$I_n = (-5)^n e^5 + nI_{n-1}.$$

D'où le résultat.

3. La relation de la question précédente peut également s'écrire, pour tout entier naturel k non nul :

$$I_k - kI_{k-1} = (-5)^k e^5.$$

Nous n'avons pas une différence de termes consécutifs. On y remédie en multipliant chaque membre de cette égalité par $\frac{1}{k!}$. On a alors :

$$\forall k \in \mathbb{N} \setminus \{0\}, \quad \frac{1}{k!} I_k - \frac{1}{(k-1)!} I_{k-1} = \frac{(-5)^k e^5}{k!}.$$

On somme cette égalité de k=1 à $n \in \mathbb{N} \setminus \{0\}$, et on simplifie le membre de gauche en remarquant que nous avons une somme télescopique. On a alors, pour tout entier naturel non nul n:

$$\frac{1}{n!}I_n - I_0 = \sum_{k=1}^n \left(\frac{(-5)^k e^5}{k!} \right),$$

et il suffit d'isoler I_n pour avoir le résultat voulu

$$I_n = n! \left[I_0 + \sum_{k=1}^n \left(\frac{(-5)^k e^5}{k!} \right) \right].$$

Or: $I_0 = \int_{-5}^{+\infty} e^{(-x)} dx = \left[-e^{(-x)} \right]_{-5}^{+\infty} = e^5$, donc finalement:

$$I_n = n! \left[e^5 + \sum_{k=1}^n \left(\frac{(-5)^k e^5}{k!} \right) \right].$$

Corrigé 100. On passe à la forme exponentielle pour simplifier les calculs qui suivent. On a :

 \leftarrow page 11

$$\int_{\frac{1}{3}\pi}^{2\pi} x e^{(-4x)} \sin(x) dx = \operatorname{Im} \left(\int_{\frac{1}{3}\pi}^{2\pi} x e^{((i-4)x)} dx \right),$$

et on calcule cette intégrale en intégrant par parties : on dérive la fonction puissance et intègre le facteur exponentielle. On obtient ainsi, après des calculs que nous ne détaillons pas :

$$\int_{\frac{1}{3}\pi}^{2\pi} x e^{(-4x)} \sin(x) dx = \operatorname{Im}\left(\left(\frac{2}{51}i - \frac{1}{102}\right) \sqrt{3}\pi e^{\left(-\frac{4}{3}\pi\right)} + \left(\frac{1}{102}i + \frac{2}{51}\right) \pi e^{\left(-\frac{4}{3}\pi\right)} - \left(\frac{2}{17}i + \frac{8}{17}\right) \pi e^{(-8\pi)} + \left(\frac{15}{578}i - \frac{4}{289}\right) \sqrt{3}e^{\left(-\frac{4}{3}\pi\right)} + \left(\frac{1}{102}i + \frac{2}{51}\right) \pi e^{\left(-\frac{4}{3}\pi\right)} - \left(\frac{2}{17}i + \frac{8}{17}\right) \pi e^{(-8\pi)} + \left(\frac{15}{578}i - \frac{4}{289}\right) \sqrt{3}e^{\left(-\frac{4}{3}\pi\right)} + \left(\frac{1}{102}i + \frac{2}{31}\right) \pi e^{\left(-\frac{4}{3}\pi\right)} + \left(\frac{1}{102}i + \frac{2}{31}\right) \pi e^{\left(-\frac$$

et donc:

$$\int_{\frac{1}{2}\pi}^{2\pi} x e^{(-4x)} \sin(x) dx = \frac{2}{51} \sqrt{3}\pi e^{\left(-\frac{4}{3}\pi\right)} + \frac{1}{102} \pi e^{\left(-\frac{4}{3}\pi\right)} - \frac{2}{17} \pi e^{(-8\pi)} + \frac{15}{578} \sqrt{3} e^{\left(-\frac{4}{3}\pi\right)} + \frac{4}{289} e^{\left(-\frac{4}{3}\pi\right)} - \frac{8}{289} e^{(-8\pi)}.$$