Modular IEEE Robot

Luke Chapman, Reid Crews, Isaac Hoese, Isaac Jennings, Abigail Kennedy, Mabel Olson

What is the problem?

- Problem: Each year, the SECON capstone team faces the same operational problems: motor control, navigation, and wire and battery management.
- **Solution:** Create a sound robot platform with navigation control, precise motor control, integrated battery charging, and adaptable modules.

Industry Impact

- ROS led navigation allows for diverse applications
- Universal coding convention
- Small size and adaptability for multi-purpose use Clearpath Robotics Husky A200

Design

Our priorities:

- Modularity
- Autonomous Navigation
- Robust Power System

Chassis

- Modularity and Organization
 - Extruded Aluminum
 - Drop-in T-nuts
 - Slotted Sheets
- Iteration process with 3D components
- Motor attachment

Motor Control

- Navigation
 - Full range of movement
 - Reliable and consistent motor response
- Mecanum wheels
- DC motors

Power

- Battery
 - Motor runtime of 30 minutes
- Power Distribution
 - Battery power to 3.3 V and 5 V rails
 - Design based around TI buck converters
- Wireless Charging
 - Experimental system to charge robot while in arena

Navigation – Location and Object Detection

- Grove Ultrasonic Ranger
- Grove ToF Sensor (VL53L0X)
 - I2C Hub

Ultrasonic Ranger

Time of Flight

Navigation – Line Following and Orientation

Returns values from 0-1000

LSM6DSOX + LIS3MDL 9 DOF

Returns roll, pitch, yaw

- Utilized ROS2 middleware for SLAM
- Laid foundation for autonomous navigation

USB — latin-1 — Sensor_Communication.py

to

 Sensor intake: used pyserial to read, parse and publish data onto ROS2 topics

Data Parsing from Serial Port

```
def data_read_callback(self):
    if self.serialInst.in_waiting:
        self.data.clear()
        packet = self.serialInst.readline()
        rec = packet.decode('latin-1').rstrip('\n')
        rec = rec.replace('<', ")
        rec = rec.replace('>', ")
```

ROS2 Publisher

```
def publish_IMU(self):
    imu = Imu()
    imu.header.frame_id = "IMU"
    imu.header.stamp = self.get_clock().now().to_msg()
    imu.orientation.w = float(self.data[4])
    imu.orientation.x = float(self.data[5])
    imu.orientation.y = float(self.data[6])
    imu.orientation.z = float(self.data[7])
    self.IMU.publish(imu)
```

- Rviz2 utilized as the primary GUI
- URDF, robot state publisher, and joint state publisher
 - Established base_link -> base_scan (laser)

- Robot_localization used for localization and mapping
 - Ekf filter
 - Published odom -> base_link
- SLAM toolbox used for mapping
 - A* search algorithm configured for navigation

Experiments and Results - Battery Life

Robot run in circles in place in 10-minute increments

- Battery discharge curve compared to datasheet
 - Estimated battery life to be 4-5 hrs

Experiments and Results - Sensors

Two ESP32 microcontrollers were used to transmit data

Experiments and Results - Nav2 Mapping

- No working odometry: issues with the accuracy of our IMU
- No base scan for mapping
 - Initial solution: use other scanners to make a mock lidar
 - Solved by using Slamtec's Rplidar a2m8

Mapping Trial 1

Mapping Trial 3

Experiments and Results - Speed

Target: 2 ft/s (1.36 mph)

Actual: 0.731 ft/s

Ran the robot in a straight line for a preset number of seconds and measured the distance.

Tile	Tile -Ncapatyload_ab		
TriiæU	Distance ((inches))	Speed d (f (f/ls/ s)	
1	458	00.383	
2	4877	0 07.83 5	
3	8 ₿.5	0 0 .ø 2 9	
4	48755	00.529	
55	4585	0 0.58 3	

25 Pathad Macyload			
Tfiábl	((inuthess))	Speed (ft/s)	
11	8475	0.730	
22	8476	0.787	
33	8465	0.750	
44	%5. 5	0.758	
55	45. 5	0.758	

Experiments and Results - Wireless Power

 Capacitive wireless charging was evaluated as a method of providing power to the robot while testing

 Proof-of-concept demonstrated powering a small load

 Future implementations will require more research and safety precautions

Experiments and Results - Power Board

Can source up to 5 A from each voltage rail

Microcontroller used to emulate turning the power board on and

off

 Tested number of power cycles the power board can survive

 Board has currently been power cycled around 660,000 times

Summary Results

	Constraint	Was it met?
1	Single start button	Yes
2	Allocated spot for alternate start method	Yes
3	Customizable dimensions (only take up half cubic foot)	Yes
4	Plug and play adaptable	Yes
5	Robust centralized charging system	Yes
6	Evaluate wireless charging	Yes
7	Single emergency stop for motors	Yes
8	B Design power bus so motors don't inhibit operation	
9	Travel inclines and declines up to 25 degrees	Yes
10	Turn 360 degrees and move forward and backward based on sensors	Yes
11	Navigation system controls movement, knows location within 2 inches, maximum speed of 2 ft/s	No
12	All components will be 3D printed	Yes
13	Line sensor attachment will be between 0.125 and 0.375 inches off the ground	No
14	Frame can withstand 20 pounds	Yes

Line Following Demo

Budget

Proposed Budget		
Subsystem	Cost	
Chassis	\$245.00	
Power	\$730.00	
Master Control	\$150.00	
Motor Control	\$363.00	
Navigation	\$314.00	
Wireless Charging	\$0.00	
Miscellaneous	\$200.00	
Total Cost	\$2,002.00	

Final Budget		
Subsystem	Cost	
Chassis	\$145.01	
Power	\$428.80	
Master Control	\$196.44	
Motor Control	\$318.73	
Navigation	\$424.23	
Wireless Charging	\$134.06	
Miscellaneous	\$0.00	
Total Cost	\$1,647.27	

References

[1] "NFPA 79: Electrical Standard for Industrial Machinery". [Online]. Available: https://link.nfpa.org/free-access/publications/79/2121

[2] "Using the National Electrical Code (NEC) Ampacity Charts," May 2021. [Online]. Available:

https://www.nfpa.org/~/media/Files/Code%20or%20topic%20fact%20sheets/NECAmpacity Workflow.pdf

[3] "IEEE Code of Ethics," Jun. 2020. [Online]. Available:

https://www.ieee.org/about/coporate/governance/p7-8.html

[4] "RF Exposure Considerations for Low Power Consumer Wireless Power Transfer Applications," Jan. 2021. [Online]. Available:

https://apps.fcc.gov/kdb/GetAttachment.html?id=g5f2nQFxHnlMbja%2FFzq1QQ%3D%3D&desc=680106%20D01%20RF%20Exposure%20Wireless%20Charging%Apps%20v03r01&tracking_number=41701

Questions?

Position Sensing and Object Detection Video

Designing Power Board for Current

Capabilities

- Temperature of PCB substrate
- copper traces are narrowest right at the buck converter pins – point of failure
- Had to find copper weight that could support current at 0.5 mm width (min width of 3.3v/5v output trace) which yielded 2 oz
- Source: IPC-2221A(L): Generic Standard on Printed Board Design Section 6 Figures 6-4A and B

