ALMA MATER STUDIORUM – UNIVERSITÀ DI BOLOGNA

Corso di Laurea Triennale in Ingegneria e Scienze Informatiche

DGA Domain Generation Algorithm

Tesi di laurea in:
Programmazione a Oggetti

Relatore

Prof. Mirko Viroli

Candidato Simone Collorà

Correlatori

Dott. CoSupervisor 1
Dott. CoSupervisor 2

Abstract

 ${\rm Max}~2000$ characters, strict.

Contents

Abstract			
1	Intr	roduction	1
2	Uso	di Machine Learning e AI per rilevare i DGA	3
	2.1	Botnets e C&C	3
		2.1.1 Botnets	3
		2.1.2 Command and Control	4
		2.1.3 Domain Generation Algorithm	5
	2.2	Machine Learning	7
		2.2.1 Reti Neurali	7
		2.2.2 LSTM	8
3	Pro	getto	9
	3.1	Obiettivi	9
	3.2		9
4	Con	ntribution	11
	4.1	Fancy formulas here	11
			13
Bi	bliog	graphy	13

CONTENTS vii

viii CONTENTS

List of Figures

2.1	Ciclo di vita di un botnet [6]	4
2.2	Esempio di server C&C. (a) centralizzato, (b) decentralizzato [5]	5
2.3	esempio del funzionamento di un DGA	6
2.4	Esempio di neurone artificiale [13]	8

LIST OF FIGURES ix

LIST OF FIGURES

x LIST OF FIGURES

List of Listings

listings/HelloWorld.java		1.
--------------------------	--	----

LIST OF LISTINGS xi

LIST OF LISTINGS

xii LIST OF LISTINGS

Introduction

Write your intro here.

La sicurezza informatica è un argomento di crescente importanza nel mondo moderno. Con il passare del tempo, i sistemi di protezione sono diventati sempre più sofisticati e potenti ma, allo stesso tempo, anche gli hackers hanno sviluppato tecniche sempre più avanzate per eludere i sistemi di protezione. Tra queste vi è sicuramente l'uso di Botnets dei Command and Control (C&C) servers. I C&C sono dei server che manipolano i computer infetti da malwares, i Botnets, permettendo all'attaccante di eseguire codice malevolo da remoto. Il malware, però, deve conoscere un indirizzo IP o un dominio per contattare il server. L'attaccante potrebbe inserire in modo bruto l'indirizzo IP del server nel codice del malware, ma questo metodo è facilmente rilevabile e bloccabile. Gli hackers, quindi, preferiscono utilizzare dei domini generati in modo pseudo casuale per nascondere i loro server chiamati Domain Generation Algorithm (DGA) servers.

Structure of the Thesis

Uso di Machine Learning e AI per rilevare i DGA

2.1 Botnets e C&C

I suggest referencing stuff as follows: fig. 2.3 or Figure 2.3

2.1.1 Botnets

I Botnets sono reti di computer infetti da malware, chiamati bot, che possono essere controllati da un attaccante, il botmaster. La vita di un botnet di solito sono questi:

- 1. Infezione e propagazione: Questo è il primo passaggio. L'attaccante cerca di infettare un computer tramite vari metodi come email con link malevoli o Peer to Peer (P2P) sharing. Una volta infettato un dispositivo, il malware cerca di infettare altri dispositivi nella rete.
- 2. Rallying: i bots cercano di contattare per la prima volta il server C&C per far capire all'attaccante che l'attacco è andato a buon fine.
- 3. Commands and Reports: il malware esegue le istruzioni ricevute dal server C&C e invia i risultati al botmaster. I bots ascoltano i comandi dal server C&C o si connettono ad esso periodicamente. Appena ricevono un

Figure 2.1: Ciclo di vita di un botnet [6]

comando lo eseguono, inviano i risultati al botmaster e aspettano un nuovo comando.

4. **Abbandono**: Quando un bot non è più utile o utilizzabile, il botmaster può decidere di abbandonarlo. Il botnet, invece, sarà completamente distrutto quando tutti i bot saranno abbandonati o bloccati dalla vittima o quando il C&C server verrà bloccato

2.1.2 Command and Control

Il meccanismo del C&C crea un canale di comunicazione tra il botmaster e i bot. Questo è essenziale per il funzionamento del botnet. Ci sono tre tipi di server C&C:

• Centralizzati: In questo tipo di server, il botmaster controlla tutti i bot tramite un server centrale. Questo è il metodo più semplice e veloce per controllare i bot ma è anche il più vulnerabile. Se il server centrale viene bloccato, tutti i bot non possono più ricevere comandi. Questo a sua volta è diviso in due categorie:

Figure 2.2: Esempio di server C&C. (a) centralizzato, (b) decentralizzato [5]

- IRC: Internet Relay Chat (IRC) è un sistema di chat usato per comunicare tra i bot e il botmaster in tempo reale. Questo era più usato nella prima generazione di botnet. I bot si connettono al server IRC e aspettano i comandi dal botmaster. I bot seguono un approccio PUSH ovvero quando un bot si connette ad un determinato canale, esso rimane connesso.
- HTTP: Il più usato. Con questa tecnica, i bot usano un URL o IP per contatattare il server C&C. Qua invece i bot seguono un approccio PULL. I bot si connettono al server C&C periodicamente e controllano se ci sono nuovi comandi. Questo processo va ad intervalli regolari definiti dal botmaster.
- Decentralizzati: Questo tipo di C&C è basato su un sistema P2P senza un server centrale. In questo modo, computer infetti fanno sia da bot che da server C&C. Questo metodo è più difficile da rilevare ma anche più complesso da implementare [8].

2.1.3 Domain Generation Algorithm

I DGA sono algoritmi che generano migliaia di domini in modo pseudo casuale. Prima viene scelto un seed, di solito la data odierna o anche le previsioni meteo

Figure 2.3: esempio del funzionamento di un DGA

[1] e, tramite un algoritmo di hashing, vengono generati i domini. Questi domini vengono poi utilizzati per contattare i server C&C. Non tutti i domini generati però sono registrati. Il computer infetto, tramite i DNS locali, cercherà di tradurre un dominio in un indirizzo IP. Se non riesce a contattarlo con un determinato dominio, proverà con il successivo finché non troverà un dominio valido che permetterà al malware di comunicare con il server C&C [2]. In questo modo, diventa più difficile per i sistemi di protezione rilevare e bloccare i loro attacchi. Si potrebbe pensare di bloccare direttamente i domini tramite una blacklist ma questo metodo risulta inefficace poiché vengono generati migliaia di domini continuamente. Si pensi che Conficker C, un famoso malware che utilizza DGA, è in grado di generare fino a 50.000 domini pseudo casuali al giorno [3].

Un altro modo per contrastare ciò potrebbe essere quello di fare reverse engineering del DGA per capire quale seed viene utilizzato per generare i domini. Questo però risulta lento e dispendioso e possibilmente inefficace [4].

Per contrastare i DGA, sono stati sviluppati vari metodi di Machine Learning in grado di rilevare i domini generati. Questi metodi hanno due lati poisitivi:

- Non richiedono un lungo processo di reverse engineering.
- Essendo l'AI una blackbox, è molto difficile per gli hackers eseguire un reverse engineering del modello.

2.2 Machine Learning

Il Machine Learning è una branca dell'informatica che punta a far ragionare le macchine come gli esseri umani, ovvero a svolgere compiti autonomamente senza essere programmati esplicitamente e migliorando le loro prestazioni con l'esperienza e i dati. Abbiamo vari tipi di Machine Learning:

- Supervised Learning: È la tecnica più comune per allenare le reti neurali [11]. In questo tipo di apprendimento, il modello viene addestrato su un dataset etichettato. Un esempio di uso di questo tipo di apprendimento è la classificazione di immagini.
- Unsupervised Learning: In questo tipo di apprendimento, il modello, deve scoprire dei pattern o delle relazioni senza avere nessuna etichetta. Il modello deve trovare degli oggetti che condividono delle caratteristiche simili, chiamati cluster
- Reinforcement Learning: In questo tipo di apprendimento, ogni azione ha un effetto nell'ambiente che può essere positivo o negativo.

2.2.1 Reti Neurali

Una Rete Neurale o in inglese Artificial Neural Network (ANN) è il nome di una branca dell'intelligenza artificiale che mira a simulare il funzionamento del cervello umano [10]. Il cervello umano è composto da miliardi di neuroni che comunicano tra di loro tramite sinapsi. Con le reti neurali artificiali, il funzionamento è analogo. A livello matematico, un neurone artificiale è composto principalmente da tre componenti:

Figure 2.4: Esempio di neurone artificiale [13]

- **Pesi**: I pesi sono valori numerici che determinano l'importanza di ogni input. Ogni input ha un peso associato che viene aggiornato durante il processo di apprendimento.
- Funzione di attivazione: La funzione di attivazione è la funzione che determina se un neurone deve essere attivato o meno. Le funzioni di attivazione più comuni sono la funzione sigmoide, la funzione ReLU e la funzione tanh.

2.2.2 LSTM

TODO

Progetto

3.1 Obiettivi

Il progetto ha come obiettivo quello di sviluppare un sistema di rilevamento di domini generati da DGA tramite l'uso di tecniche di Machine Learning.

3.2 Some cool topic

Contribution

You may also put some code snippet (which is NOT float by default), eg: chapter 4.

4.1 Fancy formulas here

```
public class HelloWorld {
  public static void main(String[] args) {
    // Prints "Hello, World" to the terminal window.
    System.out.println("Hello, World");
}
```

Bibliography

- [1] R. Sivaguru, C. Choudhary, B. Yu, V. Tymchenko, A. Nascimento, and M. D. Cock, "An evaluation of dga classifiers," in 2018 IEEE International Conference on Big Data (Big Data), 2018, pp. 5058–5067.
- [2] B. Yu, J. Pan, J. Hu, A. Nascimento, and M. De Cock, "Character level based detection of dga domain names," in 2018 International Joint Conference on Neural Networks (IJCNN), 2018, pp. 1–8.
- [3] G. Alley-Young, "Conficker worm," in *The Handbook of Homeland Security*. CRC Press, 2023, p. 175.
- [4] J. Namgung, S. Son, and Y.-S. Moon, "Efficient deep learning models for dga domain detection," Security and Communication Networks, vol. 2021, no. 1, 2021. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10. 1155/2021/8887881
- [5] M. Eslahi, R. Salleh, and N. B. Anuar, "Bots and botnets: An overview of characteristics, detection and challenges," in 2012 IEEE International Conference on Control System, Computing and Engineering, 2012, pp. 349–354.
- [6] E. Ogu, N. Vrakas, C. Ogu, and A.-I. B.M., "On the internal workings of botnets: A review," *International Journal of Computer Applications*, vol. 138, pp. 975–8887, 04 2016.
- [7] X. Ma, X. Guan, J. Tao, Q. Zheng, Y. Guo, L. Liu, and S. Zhao, "A novel irc botnet detection method based on packet size sequence," in 2010 IEEE International Conference on Communications, 2010, pp. 1–5.

BIBLIOGRAPHY 13

- [8] M. Bailey, E. Cooke, F. Jahanian, Y. Xu, and M. Karir, "A survey of botnet technology and defenses," in 2009 Cybersecurity Applications and Technology Conference for Homeland Security, 2009, pp. 299–304.
- [9] A. L. Samuel, "Some studies in machine learning using the game of checkers," *IBM Journal of Research and Development*, vol. 3, no. 3, pp. 210–229, 1959.
- [10] J. Zou, Y. Han, and S.-S. So, "Overview of artificial neural networks," *Artificial neural networks: methods and applications*, pp. 14–22, 2009.
- [11] T. O. Ayodele, "Types of machine learning algorithms," New advances in machine learning, vol. 3, no. 19-48, pp. 5–1, 2010.
- [12] E. Grossi and M. Buscema, "Introduction to artificial neural networks," *European journal of gastroenterology & hepatology*, vol. 19, no. 12, pp. 1046–1054, 2007.
- [13] W. Commons, "File:artificialneuronmodel english.png wikimedia commons, the free media repository," 2024, [Online; accessed 13-maggio-2025]. [Online]. Available: https://commons.wikimedia.org/w/index.php?title=File:ArtificialNeuronModel_english.png&oldid=840034703

14 BIBLIOGRAPHY

Acknowledgements

Optional. Max 1 page.

BIBLIOGRAPHY 15