THE COLLATZ CONJECTURE IN A GROUP THEORETIC CONTEXT

STEFAN KOHL

ABSTRACT. In this paper we exhibit a permutation group which acts transitively on \mathbb{N}_0 if and only if the Collatz conjecture holds. We also give an infinite series of finitely generated simple groups many of which contain this group as a subgroup, and whose intersection is isomorphic to Thompson's group V.

1. Introduction

By r(m) we denote the residue class $r + m\mathbb{Z}$, where we assume that $0 \le r < m$. The Collatz conjecture asserts that iterated application of the mapping

$$C: \mathbb{Z} \to \mathbb{Z}, \ n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \in 0(2), \\ 3n+1 & \text{if } n \in 1(2) \end{cases}$$

to any positive integer yields 1 after a finite number of steps (cf. Lagarias [6], [7]).

The mapping C is surjective, but not injective. It is affine on residue classes, and it maps negative to negative and nonnegative to nonnegative integers. The most basic *bijective* mappings which share the latter properties are those which interchange two disjoint residue classes:

Definition 1.1. Given disjoint residue classes $r_1(m_1)$ and $r_2(m_2)$ of \mathbb{Z} , let the *class transposition* $\tau_{r_1(m_1),r_2(m_2)}$ be the permutation which interchanges r_1+km_1 and r_2+km_2 for each integer k and which fixes all other points.

The set of all class transpositions generates a countable simple group $CT(\mathbb{Z}) < Sym(\mathbb{Z})$ which has a rich class of subgroups, cf. [4]. In this paper we exhibit subgroups of $CT(\mathbb{Z})$ which act transitively on the set of nonnegative integers in their support if and only if the Collatz conjecture holds:

Proposition 1.2. The following hold:

- a) The group $G_C := \langle \tau_{1(2),4(6)}, \tau_{1(3),2(6)}, \tau_{2(3),4(6)} \rangle$ acts transitively on $\mathbb{N} \setminus 0(6)$ if and only if the Collatz conjecture holds.
- b) The group $G_T := \langle \tau_{0(2),1(2)}, \tau_{1(2),2(4)}, \tau_{1(4),2(6)} \rangle$ acts transitively on \mathbb{N}_0 if and only if the Collatz conjecture holds.

By Corollary 3.7 in [4], the following subgroups of $CT(\mathbb{Z})$ are simple as long as $2 \in \mathbb{P}$:

Definition 1.3. Given a set \mathbb{P} of prime numbers, let $\mathrm{CT}_{\mathbb{P}}(\mathbb{Z}) \leqslant \mathrm{CT}(\mathbb{Z})$ denote the subgroup which is generated by all class transpositions $\tau_{r_1(m_1),r_2(m_2)}$ for which all prime factors of m_1 and m_2 lie in \mathbb{P} .

Both G_C and G_T are subgroups of $CT_{\{2,3\}}(\mathbb{Z})$.

2010 Mathematics Subject Classification. 20B22, 11B99.

STEFAN KOHL

Remark 1.4. The group $CT_{\{2\}}(\mathbb{Z})$ is isomorphic to Higman's group $G_{2,1}$ defined in [2]. This finitely presented infinite simple group is usually treated in the literature under the name *Thompson's group V*.

The isomorphism between $\mathrm{CT}_{\{2\}}(\mathbb{Z})$ and Thompson's group V has been pointed out by John P. McDermott in response to the question of the author which known simple group the former group would be isomorphic to.

If $|\mathbb{P}| > 1$, the group $\mathrm{CT}_{\mathbb{P}}(\mathbb{Z})$ has no underlying tree structure. This makes the situation notably more complicated. Anyway if \mathbb{P} is finite, then $\mathrm{CT}_{\mathbb{P}}(\mathbb{Z})$ is still finitely generated – cf. Theorem 3.2.

2. A PERMUTATION GROUP EQUIVALENT OF THE COLLATZ CONJECTURE

In this section we prove Proposition 1.2.

Proposition 2.1. Let $a := \tau_{1(2),4(6)}$, $b := \tau_{1(3),2(6)}$ and $c := \tau_{2(3),4(6)}$. Then the group $G_C := \langle a,b,c \rangle < \operatorname{CT}(\mathbb{Z})$ acts transitively on $\mathbb{N} \setminus 0(6)$ if and only if the Collatz conjecture holds

Proof. We observe that $C^{-1}(0(3)) = 0(6) \subset 0(3)$, that the restrictions of C and a to 3(6) are the same and map this residue class to $10(18) \subset \mathbb{Z} \setminus 0(3)$, that $10(18)^a = 3(6)$, and that no trajectory of C contains only multiples of 3. Therefore it suffices to show that for any $n \in \mathbb{N} \setminus 0(3)$ we have $\{n, n^a, n^b, n^c\} = \{n\} \cup \{n^C\} \cup C^{-1}(n)$. We treat four cases:

$n\bmod 6$	$\mid n \mid$	n^a	n^b	n^c	n	n^C	$C^{-1}(n)$
1	n	3n + 1	2n	n	n	3n + 1	$\{2n\}$
2	n	n	$\frac{n}{2}$	2n	n	$\frac{n}{2}$	$\{2n\}$
4	$\mid n \mid$	$\frac{n-1}{3}$	2n	$\frac{n}{2}$	n	$\frac{\tilde{n}}{2}$	$ \begin{cases} 2n \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
5	n	3n + 1	n	$\bar{2}n$	n	3n+1	$\{2n\}$

With a little more effort, we can get rid of the set 0(6) of fixed points:

Proposition 2.2. Let $a := \tau_{0(2),1(2)}$, $b := \tau_{1(2),2(4)}$ and $c := \tau_{1(4),2(6)}$. Then the group $G_T := \langle a,b,c \rangle < \operatorname{CT}(\mathbb{Z})$ acts transitively on \mathbb{N}_0 if and only if the Collatz conjecture holds.

Proof. Let

$$T: \mathbb{Z} \to \mathbb{Z}, \ n \mapsto \begin{cases} \frac{n}{2} & \text{if } n \in 0(2), \\ \frac{3n+1}{2} & \text{if } n \in 1(2) \end{cases}$$

be the Collatz mapping, and put

$$f: \mathbb{Z} \to \mathbb{Z}, \ n \mapsto \begin{cases} n^{ac} = \frac{3n+4}{2} & \text{if } n \in 0(4), \\ n^{c} = \frac{3n+1}{2} & \text{if } n \in 1(4), \\ n^{b} = \frac{n}{2} & \text{if } n \in 2(4), \\ n^{aba} = \frac{n-3}{2} & \text{if } n \in 3(4) \end{cases}$$

and

$$r: \mathbb{Z} \to \mathbb{Z}, n \mapsto \begin{cases} 2n-2 & \text{if } n \in 0(3) \cup 2(3), \\ 2n-1 & \text{if } n \in 1(3). \end{cases}$$

Then we have $rf^2 = T^2r$. Further, a interchanges the image of r with its complement in \mathbb{Z} . Therefore if the Collatz conjecture holds, then the group G_T acts transitively on \mathbb{N}_0 . It remains to show the other direction. Put

$$s: \mathbb{Z} \to \mathbb{Z}, \ n \mapsto \begin{cases} \frac{n+2}{2} & \text{if } n \in 0(2), \\ \frac{n+1}{2} & \text{if } n \in 1(2). \end{cases}$$

The mapping s is a right inverse of r, and for all integers n we have $n^s = n^{as}$. It suffices to check that for all $n \in \mathbb{N}_0$ we have $\{n^{bs}, n^{cs}\} \subseteq \{n^s, n^{sT}\} \cup T^{-1}(n^s)$. Indeed we have

- $n^{bs} = n^s$ if $n \in 0(4)$,
- $n^{bs} = n^{sT}$ if $n \in 2(4)$,
- $n^{bsT} = n^s$ if $n \in 1(2)$,
- $n^{cs} = n^s$ if $n \in 3(4) \cup 0(6) \cup 4(6)$, $n^{cs} = n^{sT}$ if $n \in 1(4)$, and $n^{csT} = n^s$ if $n \in 2(6)$,

which shows that if G_T acts transitively on \mathbb{N}_0 , then the Collatz conjecture holds.

Note however that for *some* groups generated by 3 class transpositions it is easy to find out that they act transitively on \mathbb{N}_0 :

Remark 2.3. With the GAP [1] package RCWA [5], using Method 10.4 in [3] one can check that the group $G_5:=\langle \tau_{0(2),1(2)},\tau_{1(2),2(4)},\tau_{0(3),2(3)}\rangle$ acts at least 5-transitively on \mathbb{N}_0 . The group G_5 can be obtained from G_T by replacing the generator $\tau_{1(4),2(6)}$ by $\tau_{0(3),2(3)}$. The important difference between G_5 and G_T is as follows: while there is a finite set S of elements of G_5 such that for every integer n>0 there is some $g\in S$ such that $n^g < n$, the group G_T does not have a finite subset with this property.

3. Thompson's group V and further subgroups of $\mathrm{CT}(\mathbb{Z})$

By Theorem 2.3 in [4], the group $CT(\mathbb{Z})$ is not finitely generated. By the arguments used in the proof of that theorem, it follows also that $\mathrm{CT}_{\mathbb{P}}(\mathbb{Z})$ is not finitely generated if \mathbb{P} is infinite. However we will see that $\mathrm{CT}_{\mathbb{P}}(\mathbb{Z})$ is finitely generated if \mathbb{P} is finite.

Definition 3.1. Given a positive integer m, let \mathcal{C}_m be the set of all class transpositions which interchange residue classes whose moduli divide m.

Theorem 3.2. Let \mathbb{P} be a finite set of primes. Then the group $\mathrm{CT}_{\mathbb{P}}(\mathbb{Z})$ is finitely generated. More precisely, $CT_{\mathbb{P}}(\mathbb{Z})$ is generated by \mathcal{C}_m , where $m:=\prod_{n\in\mathbb{P}}p^2$ if $2\notin\mathbb{P}$ and m:= $2 \cdot \prod_{p \in \mathbb{P}} p^2$ otherwise.

Proof. Let m be as above, and let $\tau = \tau_{r_1(m_1), r_2(m_2)} \in \mathrm{CT}_{\mathbb{P}}(\mathbb{Z})$ be a class transposition. We need to show that τ can be written as a product of elements of \mathcal{C}_m .

Let $p \in \mathbb{P}$, and let k_1 and k_2 be the exponents of the highest powers of p which divide m_1 or m_2 , respectively. Without loss of generality, we can assume $k_2 \ge k_1$ and $k_2 > 2$.

We put $m_3 := \gcd(m, m_2)$ and $m_4 := m_3/p$. Since $r_1(m_1)$ and $r_2(m_2)$ are disjoint residue classes and $m_4 \geqslant 3$, we can choose a residue class $r_4(m_4)$ which intersects trivially with the support of τ . Putting $\sigma := \tau_{r_2(m_3), r_4(m_4)} \in \mathcal{C}_m$, we have

$$\tau^{\sigma} = \tau_{r_1(m_1), r_4(m_2/p)}.$$

Now we can conclude by induction on k_i , i = 1, 2, carried out for all primes $p \in \mathbb{P}$, that there is a product π of elements of \mathcal{C}_m such that $\tau^{\pi} \in \mathcal{C}_m$. The assertion follows.

Small generating sets for the groups $CT_{\{2\}}(\mathbb{Z}) \cong G_{2,1}$ and $CT_{\{3\}}(\mathbb{Z})$ are immediate, and from Theorem 3.2, by means of computation with the GAP [1] package RCWA [5] we can also derive one for $CT_{\{2,3\}}(\mathbb{Z})$:

Proposition 3.3. We have

```
CT_{\{2\}}(\mathbb{Z}) = \langle \tau_{0(2),1(2)}, \tau_{1(2),2(4)}, \tau_{0(2),1(4)}, \tau_{1(4),2(4)} \rangle,
  CT_{\{3\}}(\mathbb{Z}) = \langle \tau_{0(3),1(3)}, \tau_{1(3),2(3)}, \tau_{2(9),3(9)}, \tau_{5(9),6(9)}, \tau_{2(3),3(9)} \rangle,
CT_{\{2,3\}}(\mathbb{Z}) = \langle \tau_{0(2),1(2)}, \tau_{0(3),1(3)}, \tau_{1(3),2(3)}, \tau_{0(2),1(4)}, \tau_{0(2),5(6)}, \tau_{0(3),1(6)} \rangle.
```

The generators for $\mathrm{CT}_{\{2\}}(\mathbb{Z})$ given in Proposition 3.3 correspond directly to Higman's generators for $G_{2,1}$:

Remark 3.4. As one can check by straightforward calculation, the generators $\kappa := \tau_{0(2),1(2)}$, $\lambda := \tau_{1(2),2(4)}, \mu := \tau_{0(2),1(4)}$ and $\nu := \tau_{1(4),2(4)}$ for $CT_{\{2\}}(\mathbb{Z})$ given in Proposition 3.3 satisfy the defining relations

- (1) $\kappa^2 = \lambda^2 = \mu^2 = \nu^2 = 1$,
- (2) $\lambda \kappa \mu \kappa \lambda \nu \kappa \nu \mu \kappa \lambda \kappa \mu = 1$,
- (3) $\kappa \nu \lambda \kappa \mu \nu \kappa \lambda \nu \mu \nu \lambda \nu \mu = 1$,
- (4) $(\lambda \kappa \mu \kappa \lambda \nu)^3 = (\mu \kappa \lambda \kappa \mu \nu)^3 = 1$,
- $(5) (\lambda \nu \mu)^2 \kappa (\mu \nu \lambda)^2 \kappa = 1,$
- (6) $(\lambda \nu \mu \nu)^5 = 1$,
- (7) $(\lambda \kappa \nu \kappa \lambda \nu)^3 \kappa \nu \kappa (\mu \kappa \nu \kappa \mu \nu)^3 \kappa \nu \kappa \nu = 1$,
- (8) $((\lambda \kappa \mu \nu)^2 (\mu \kappa \lambda \nu)^2)^3 = 1$,
- (9) $(\lambda \nu \lambda \kappa \mu \kappa \mu \nu \lambda \nu \mu \kappa \mu \kappa)^4 = 1$,
- (10) $(\mu\nu\mu\kappa\lambda\kappa\lambda\nu\mu\nu\lambda\kappa\lambda\kappa)^4 = 1$,
- (11) $(\lambda\mu\kappa\lambda\kappa\mu\lambda\kappa\nu\kappa)^2 = 1$, and (12) $(\mu\lambda\kappa\mu\kappa\lambda\mu\kappa\nu\kappa)^2 = 1$

of the group $G_{2,1}$ given on Page 50 in Higman [2]. Since $G_{2,1}$ is simple, it follows that $\operatorname{CT}_{\{2\}}(\mathbb{Z}) \cong G_{2,1}.$

REFERENCES

- 1. The GAP Group, GAP Groups, Algorithms, and Programming; Version 4.8.4, 2016, http://www.gap-
- 2. Graham Higman, Finitely presented infinite simple groups, Notes on Pure Mathematics, Department of Pure Mathematics, Australian National University, Canberra, 1974. MR 0376874 (51 #13049)
- 3. Stefan Kohl, Algorithms for a class of infinite permutation groups, J. Symb. Comp. 43 (2008), 545-581.
- , A simple group generated by involutions interchanging residue classes of the integers, Math. Z. **264** (2010), no. 4, 927-938, DOI: 10.1007/s00209-009-0497-8.
- _, RCWA Residue-Class-Wise Affine Groups; Version 4.4.1, 2016, GAP package, http://www.gapsystem.org/Packages/rcwa.html.
- 6. Jeffrey C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly 92 (1985), 3-23. MR 777565 (86i:11043)
- _, The 3x+1 problem: An annotated bibliography, 2011, http://arxiv.org/abs/math.NT/0309224 (Part I), http://arxiv.org/abs/math.NT/0608208 (Part II).

E-mail address: stefan@mcs.st-and.ac.uk