1.) Problema

 Um dos desafios no uso da técnica de redes neurais é a configuração da rede: quantas camadas escondidas devem ser empregadas? Qual o número de neurônios em cada camada escondida? Qual o valor da taxa de aprendizado? Estas e outras questões são temas de pesquisa na comunidade de redes neurais e também são obstáculos ao uso por um não especialista.

2.) Solução

 Aqui, o problema de se encontrar uma arquitetura ótima para a rede é formulado como um problema de otimização. A solução do problema de otimização é endereçada pelo algoritmo de colisão de múltiplas partículas (MPCA) – ver (Luz et al., 2008), para determinar uma arquitetura ótima para uma rede Perceptron de Múltiplas Camadas (PMC).

3.) Aplicação

- Esta nova metodologia foi aplicada para o desenvolvimento de modelos empíricos de previsão climática, a partir de dados históricos de reanálise, da base de dados do National Oceanic & Atmospheric Administration (NOAA) [http://www.ncep.noaa.gov]: médias mensais de janeiro de 1998 a dezembro de 1999. A resolução espacial, em ambas as dimensões da grade é de 2.5° e resolução temporal de 1 mês. Os experimentos foram realizados sobre uma subregião do Nordeste do Brasil, entre as longitudes [47°W, 40°W] e entre as latitudes [0°, -10°S] ver (Anochi et al., 2013) e (Sambatti et al., 2012).
- O MPCA é empregado para definir os seguintes parâmetros: número de camadas intermédias, número de neurônios em cada camada intermédia, taxa de aprendizagem, constante momentum e o tipo da função de ativação. Os valores permitidos para esses parâmetros são mostrados na Tabela 1:

Tabela 1: Os valores permitidos para os parâmetros.

Parâmetro	Valor	
Número de camada escondida	[1 3]	
Número de neurônio camada escondida	[1 32]	
Taxa de Aprendizagem	[0 1]	
Constante momentum	[0.1 0.9]	
Função de ativação	Logística, tangente e gaussiana	

 As variáveis meteorológicas são: vento zonal e meridional em 300 e 500 hPa, e campo de precipitação. Na Tabela 2 são mostrados as variáveis de entrada e saída desejada para rede neural.

Tabela 2: Variáveis de entrada e saída desejada.

Variáveis de entrada (x_valid)					Variável de saída (yd_valid)
u500	u300	v500	v300	prec	prec
0,1700	0,1299	0,6841	0,5935	0,2264	0,2264
0,1835	0,1279	0,7058	0,5909	0,4058	0,4058
0,1929	0,1344	0,6992	0,5839	0,4692	0,4692
0,1893	0,1553	0,6625	0,5850	0,3782	0,3782
0,1750	0,1397	0,6805	0,5835	0,2077	0,2077
0,1877	0,1354	0,6805	0,5813	0,3974	0,3974
0,1950	0,1407	0,6667	0,5791	0,4695	0,4695
0,1851	0,1646	0,6378	0,5809	0,3533	0,3533
0,1686	0,1452	0,6595	0,5824	0,2061	0,2061
0,1783	0,1396	0,6342	0,5776	0,3526	0,3526
0,1860	0,1451	0,6107	0,5747	0,4047	0,4047
0,1761	0,1710	0,5945	0,5736	0,3069	0,3069
0,1566	0,1454	0,6264	0,5912	0,2043	0,2043
0,1625	0,1393	0,5885	0,5846	0,3084	0,3084
0,1728	0,1478	0,5668	0,5754	0,3156	0,3156
0,1669	0,1752	0,5686	0,5706	0,2473	0,2473
0,1507	0,1427	0,5963	0,6034	0,2141	0,2141
0,1540	0,1376	0,5590	0,5960	0,3312	0,3312
0,1672	0,1511	0,5463	0,5832	0,2703	0,2703
0,1660	0,1800	0,5668	0,5762	0,1856	0,1856

4.) Referências Bibliográficas

- Anochi J.A., Sambatti S.B.M., Luz E.F.P., Campos Velho H.F.. New learning strategy for supervised neural network: MPCA meta-heuristic approach. XI Congresso Brasileiro de Inteligência Computacional, Porto de Galinhas Recife, 2013.
- Anochi J.A., Sambatti S.B.M., Luz E.F.P., Campos Velho H.F.. Previsão climática de precipitação usando rede neural. In: Congresso Brasileiro de Meteorologia. Anais... Gramado-RS: CBMet Congresso Brasileiro de Meteorologia, 2012.
- LUZ, E., BECCENERI, J., VELHO, H.F., 2008. A new multi-particle collision algorithm for otimization in a high-performance environment. Journal of Computacional Interdisciplinary Sciences, v. 1, p. 1-7.
- Sambatti, S.B.M., Anochi, J.A.; Luz, E.F.P.; Shiguemori, E.H.; Carvalho, A.R.; Campos Velho, H.F.; MPCA Meta-Heuristics for Automatic Architecture Optimization of a Supervised Artificial Neural Network. In: World Congress on Computational Mechanics; Julho, 2012.