Computing Methods for Experimental Physics and Data Analysis

Data Analysis in Medical Physics

Lecture 2: intro to MATLAB

Alessandra Retico <u>alessandra.retico@pi.infn.it</u> INFN - Pisa

Brief introduction to MATLAB

- MATLAB (MATrix LABoratory) integrates computation, visualization, and programming in an easy-to-use environment.
- MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages, including C, C++, C#, Java, Fortran and Python.
- MATLAB users come from various backgrounds of engineering, science, and economics.
- First of all: download and install on your laptop: <u>http://doc.sid.unipi.it/Campus_Matlab</u>
- Follow the link <u>Come ottenere ed installare MATLAB</u> and then "Istruzioni ad uso degli studenti <u>(Installazione MATLAB Student)</u>"

Current stable release

is R2019a

System requirements and useful MATLAB toolboxes

- System requirements for installation:
 - Administrative rights
 - **Processors Minimum**: any Intel or AMD x86-64 processor
 - RAM Minimum: 3.3 GB. Recommended: 8 GB
 - DISK Minimum: 3.3 GB of HDD space for MATLAB only, 5-8 GB for a typical installation. Recommended: An SSD is recommended
- During the installation you have to specify the products to be installed, i.e. the MATLAB toolboxes.
- You may add some toolboxes you like to the suggested ones (e.g. the Statistics and Machine Learning toolbox, the Deep Learning toolbox)
 - Add wavelet toolbox and curve fitting toolbox we will use in exercises
- you can add more toolboxes whenever you need fro the Add-Ons drop down menu from the MATLAB desktop HOME tab.

Getting started with matlab

Multidimensional Matlab arrays

A multidimensional array in MATLAB® is an array with more than two dimensions. In a matrix, the two dimensions are represented by rows and columns.

	column			
row	(1,1)	(1,2)	(1,3)	(1,4)
	(2,1)	(2,2)	(2,3)	(2,4)
	(3,1)	(3,2)	(3,3)	(3,4)
	(4,1)	(4,2)	(4,3)	(4,4)

Each element is defined by two subscripts, the row index and the column index. Multidimensional arrays are an extension of 2-D matrices and use additional subscripts for indexing. A 3-D array, for example, uses three subscripts. The first two are just like a matrix but the third dimension represents *pages* or *sheets* of elements.

Basic image processing

- Basic operations with images:
 - imread(), imshow(), imwrite()
 - Histogram operations
 - Morphological Operations
 - Image filtering
 - Contrast (C), noise (N), signal-to-noise (SNR) and contrast-to-noise (CNR) ratio
 - ...
- A large variety of functions for image processing are available in the MATLAB Image Processing toolbox

See demo code:

- Lecture2_demo2_image_read_display.mlx
- Lecture2_demo3_read_dicom.m

Matlab m-files and user-defined functions

- Matlab programs can be written with any ASCII text editor, using the *.m file extension.
- M-files can be executed from the matlab command line:

```
% plot_sin.m
% this script plots the sinus function
x=linspace(0,10*pi,200);
y=sin(x);
plot(y)
```

```
>> plot_sin  % it works both with and without specifying the .m extension
```

• User defined functions work just like commands in Matlab:

```
function [avg,st_dev]= show_stats(x) % This function (show_stats.m) computes the basic statistics (average and standard deviation) n = length(x); avg = sum(x) / n; st_dev = sqrt(sum((x - avg).^2)/n);
```

```
>> v1 = randn(100,1)
>> [avg_v1,sd_v1]= show_stats(v1)
```

Matlab & git

- The best place to share your MATLAB projects is <u>File</u>
 <u>Exchange</u> because of its popularity with the MATLAB user community
- GitHub is one of the most popular websites that host Git repositories
- Since R2014b File Exchange is integrated with GitHub
- In addition to what you already know about GitHub usage, you have to follow the instructions to Register Binary Files with Git
 - https://it.mathworks.com/help/matlab/matlab_prog/set-up-git-source-control.html

You have to add some lines in the .gitattributes hidden file in your git repository

The .gitattributes file is already correctly set in the https://github.com/retico/cmepda_medphys repository

Add these lines to the .gitattributes file:

- *.mlx -crlf -diff -merge
- *.mat -crlf -diff -merge
- *.fig -crlf -diff -merge

ļ ...

References and sources

Books

- Digital Image Processing for Medical Applications, Geoff Dougherty
- Handbook of Medical Image Processing and Analysis, Isaac N. Bankman
- Image Processing and Acquisition using Python, Ravishankar Chityala & Sridevi Pudipeddi

Sources

- http://doc.sid.unipi.it/Campus Matlab
- https://it.mathworks.com/help/matlab/getting-started-with-matlab.html
- https://it.mathworks.com/videos/
- https://it.mathworks.com/help/matlab/external-language-interfaces.html
- https://it.mathworks.com/help/matlab/matlab_prog/set-up-git-source-control.html
- https://blogs.mathworks.com/community/2014/10/20/matlab-and-git/