

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN, ĐHQG-HCM ĐỀ THI KẾT THÚC HOC PHẦN

MÃ LƯU TRỮ (do Phòng KT-ĐBCL ghi)

Học kỳ I - Năm học: 2019-2020

Tên học phần:	VI TÍCH PHÂN 1B	Mã HP:	MTH00003
Thời gian làm bài:	90 phút	Ngày thi:	
Họ và tên sinh viên:		MSSV:	
Ghi chú: Sinh viên không được phép sử dụng tài liệu khi làm bài.			

ĐỀ THI CÓ 4 CÂU, gồm 2 trang:

Câu 1 (2.5 điểm).

- a) Cho hàm số f định bởi $f(x)=\frac{\sqrt{(x-1)^2}}{x-1}$ khi $x\neq 1$; f(1)=2. Hàm số f có liên tục không, tại sao? Phác họa đồ thị của f.
- **b**) Chứng minh phương trình $\ln x = e^{-x}$ có ít nhất một nghiệm thực.
- c) Ký hiệu [t] là số nguyên lớn nhất nhưng không lớn hơn t. Xét hàm số f cho bởi $f(x) = \left[2\cos x\right]$. Hãy phác họa đồ thị của f trên đoạn $\left[-\frac{2\pi}{3}, 2\pi\right]$ và cho biết hàm f gián đoạn tại những điểm nào (không cần chứng minh).

Câu 2 (2.5 điểm).

- a) Cho đường cong (C): $y^2 \tan x + \ln y = y$. Hãy viết phương trình tiếp tuyến của (C) tại điểm $(\frac{\pi}{4}, 1)$.
- **b**) Một vỏ cầu bằng thép có độ dày vỏ là 1mm. Giả sử chu vi vòng ngoài của vỏ cầu là 3π mét. Hãy dùng vi phân để ước tính lượng thép làm vỏ cầu, biết thể tích hình cầu đường kính d được cho bởi công thức $V = \frac{\pi}{6} d^3$ (đơn vị thể tích).
- **c**) Một máy đo nhịp tim cho một bệnh nhân, đếm số nhịp đập n (nhịp) theo thời gian t (phút) và cho kết quả được ghi lai trong bảng sau

Giả sử người ta lập mô hình n là một hàm số theo t. Hãy ước tính độ dốc của đồ thị hàm n tại 1 bằng cách lấy trung bình cộng của hai độ dốc trong hai khoảng [0,5;1] và [1;1,5]. Trong các thời điểm $t \in \{1;1,5;2;2,5\}$, ở thời điểm nào tốc độ đập của tim là nhanh nhất?

Câu 3 (2.5 điểm).

a) Cho hàm số f liên tục trên \mathbb{R} . Biết một số thông tin giá trị hàm f như bảng

X	0	1	3	5	7	9	10
f(x)	2	0.5	1.0	1.5	2.0	2.5	3

- (i) Tìm xấp xỉ tích phân $\int_{1}^{9} f(x) dx$ bằng cách phân hoạch [1, 9] thành 4 đoạn với điểm mẫu là điểm bên trái của mỗi đoạn con.
- (ii) Xét hàm $g(x) := \int_0^{x^2} f(t+1)dt$. Tính g'(2).
- b) Tính tích phân suy rộng

Người ra đề/MSCB:	Người duyệt đề:
Chữ ký:	Chữ ký:

(i)
$$I_1 = \int_1^\infty \frac{\ln x}{x^3} \mathrm{d}x$$
,

(ii)
$$I_2 = \int_0^1 \frac{1}{(x+1)\sqrt{x}} dx$$
.

Câu 4 (2.5 điểm).

- a) Cho chuỗi lũy thừa $\sum_{n=0}^{\infty} \frac{(-1)^n (x+1)^n}{2^n}$. Chuỗi này chắc chắn hội tụ trên khoảng mở (a,b) nào đó và phân kỳ bên ngoài đoạn [a,b]. Hãy tìm a,b. Chuỗi này có hội tụ khi x=a và x=b hay không? Vì sao?
- **b)** Xét hàm số f cho bởi $f(x) = (\sin x)^2$. Hãy tìm khai triển Taylor của f đến bậc 3 (gọi là $T_3(x)$) xung quanh điểm $a = \frac{\pi}{2}$. Sau đó tính gần đúng $f(91^\circ)$ từ khai triển này và cho biết sai số của $f(91^\circ)$ so với giá trị gần đúng không quá bao nhiều?

ĐÁP ÁN

Câu	Lời giải	Điểm
1a	$\forall x \neq 1, \frac{\sqrt{(x-1)^2}}{x-1} = \frac{ x-1 }{x-1}, \text{ do d\'o}$ $f(x) = \begin{cases} -1 & \text{n\'eu} x < 1\\ 1 & \text{n\'eu} x > 1\\ 2 & \text{n\'eu} x = 1 \end{cases}$ Ta thấy $\lim_{x \to 1-} f(x) = -1 \neq 1 = \lim_{x \to 1+} f(x) = -1$ nên hàm số f gián đoạn tại 1 .	
1b	Xét hàm số f cho bởi $f(x) = \ln x - e^{-x}$, là hàm sơ cấp liên tục trên $[1,e]$. Hơn nữa $f(1) = -e^{-1} < 0$ và $f(e) = 1 - e^{-e} > 1 - e^{0} = 0$. Theo định lý giá trị trung gian của hàm liên tục thì tồn tại số $c \in (1,e)$ sao cho $f(c) = 0$, nghĩa là $\ln c = e^{-c}$, suy ra đpcm.	
1c	$ \begin{aligned} & \text{Ta c\'o} - 1 \leq \cos x < -\frac{1}{2} \text{ khi } \frac{2\pi}{3} < x < \frac{4\pi}{3}; \\ & -\frac{1}{2} \leq x < 0 \text{ khi } -\frac{2\pi}{3} \leq x < -\frac{\pi}{2} \text{ hoặc } \frac{\pi}{2} < x \leq \frac{2\pi}{3} \text{ hoặc } \frac{4\pi}{3} \leq x < \frac{3\pi}{2} \\ & 0 \leq \cos x < \frac{1}{2} \text{ khi } -\frac{\pi}{2} \leq x < -\frac{\pi}{3} \text{ hoặc } \frac{\pi}{3} < x \leq \frac{\pi}{2} \text{ hoặc } \frac{3\pi}{2} \leq x \frac{5\pi}{3}; \\ & \frac{1}{2} \leq x < 1 \text{ khi } x \neq 0, x \neq 2\pi \text{ và } x \in \left[-\frac{\pi}{3}, \frac{\pi}{3} \right] \cup \left[\frac{5\pi}{3}, 2\pi \right) \cos x = 1 \text{ khi } x = 0 \\ & \text{hoặc } x = 2\pi. \text{ Do d\'o} \end{aligned} $ $ f(x) = \left[2 \cos x \right] = \begin{cases} -2 \text{ khi } -\frac{2\pi}{3} \leq x < -\frac{\pi}{2} \text{ hoặc } \frac{\pi}{2} < x < \frac{3\pi}{2} \\ 0 \text{ khi } x \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \cup \left[\frac{3\pi}{2}, 2\pi \right) \setminus \{0\} \end{cases} $ Các điểm gián đoạn của f là $\pm \frac{\pi}{2}, \frac{3\pi}{2}, 0$ và 2π .	
2a	Một khoảng cong của $(C): y^2 \tan x + \ln y = y$ chứa điểm $(\frac{\pi}{4}; 1)$ được xem là đồ thị của một ẩn hàm $y = f(x)$. Phương trình tiếp tuyến của (C) tại $\frac{\pi}{4}$ là $y = 1 + f'(\frac{\pi}{4})(x - \frac{\pi}{4}) \tag{1}$ Lấy đạo hàm theo x ở hai vế của phương trình của (C) , ta được $\frac{y^2}{\cos^2 x} + 2yy'\tan x + \frac{y'}{y} = y'$ Thay $x = \frac{\pi}{4}$ và $y = 1$ vào phương trình trên, ta được $2 + 2f'(\frac{\pi}{4}) + f'(\frac{\pi}{4}) = f'(\frac{\pi}{4})$, suy ra $f'(\frac{\pi}{4}) = -1$, thế vào (1) ta có phương trình tiếp tuyến cần tìm $y = 1 - (x - \frac{\pi}{4})$.	

2b	Đường kính ngoài của quả cầu là $d_0=3$ (mét). Đường kính trong là d (mét), trong đó $\Delta d=d-d_0=-0,002$ (mét). Thể tích hình cầu đường kính d được cho bởi công thức $V(d)=\frac{\pi}{6}d^3$ (m³). Thể tích của vỏ thép làm nên hình cầu là $V(3)-V(d)=-\Delta V\approx -dV=-V'(3)\Delta d=\frac{\pi}{2}\times 3^2\times 0,002=\frac{9\pi}{1000} \ (\text{m}^3)$	
2c	Uốc tính $n'(1) = \frac{1}{2} \left(\frac{75 - 35}{1 - 0, 5} + \frac{120 - 75}{1, 5 - 1} \right) = 85$ (nhịp/phút). Tốc độ đập của nhịp tim tại từng thời điểm cũng là độ dốc của các tiếp tuyến của đồ thị hàm n , được ước tính như sau $n'(1,5) = \frac{1}{2} \left(\frac{120 - 75}{1, 5 - 1} + \frac{170 - 120}{2 - 1, 5} \right) = 95 \text{ (nhịp/phút)}$ $n'(2) = \frac{1}{2} \left(\frac{170 - 120}{2 - 1, 5} + \frac{215 - 170}{2, 5 - 2} \right) = 95 \text{ (nhịp/phút)}$ $n'(2,5) = \frac{1}{2} \left(\frac{215 - 170}{2, 5 - 2} + \frac{250 - 215}{3 - 2, 5} \right) = 80 \text{ (nhịp/phút)}$ Vậy ở hai thời điểm $t = 1, 5$ và $t = 2$ thì tim đập nhanh nhất.	
3a	(i) $\int_{1}^{9} f(x) dx \approx L_{4} = 2 \cdot [f(1) + f(3) + f(5) + f(7)] = 2(0, 5 + 1 + 1, 5 + 2) = 10.$ (ii) Với $u = x^{2}$ thì $g(x) = \int_{0}^{u} f(t+1) dt$. Khi đó $g'(x) = \frac{dg}{du} \cdot \frac{du}{dx} = f(u+1) \cdot 2x = 2xf(x^{2} + 1).$ Vậy $g'(2) = 2 \cdot 2 \cdot f(5) = 4 \cdot 1, 5 = 6.$	

(i) Trước hết ta tìm nguyên hàm bằng cách đặt $u = \ln x$ và d $v = \frac{1}{x^3} dx$, chọn $v = -\frac{1}{2x^2}$	<u>-</u> .
Khi đó	

$$\int \frac{\ln x}{x^3} dx = \int u dv = uv - \int v du = uv + \frac{1}{2} \int \frac{1}{x^3} dx = -\frac{\ln x}{2x^3} - \frac{1}{4x^2}$$

Vậy

3b

$$\int_{1}^{\infty} \frac{\ln x}{x^{3}} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{\ln x}{x^{3}} dx = \lim_{t \to \infty} \left(-\frac{\ln x}{2x^{3}} - \frac{1}{4x^{2}} \right)_{1}^{t}$$
$$= \lim_{t \to \infty} \left(-\frac{\ln t}{2t^{3}} - \frac{1}{4t^{2}} + \frac{1}{4} \right) = \frac{1}{4} \text{ (quy tắc L'Hospital)}$$

(ii) Trước hết ta tìm nguyên hàm bằng cách đặt $u=\sqrt{x},\,x=u^2,\,\mathrm{d}x=2u\mathrm{d}u.$ Khi đó

$$\int \frac{1}{(x+1)\sqrt{x}} dx = \int \frac{2du}{u^2+1} = 2 \arctan u = 2 \arctan(\sqrt{x}).$$

Vậy

$$\int_{0}^{1} \frac{1}{(x+1)\sqrt{x}} dx = \lim_{t \to 0+} \int_{t}^{1} \frac{1}{(x+1)\sqrt{x}} dx = 2 \lim_{t \to 0+} \arctan(\sqrt{x}) \Big|_{t}^{1}$$
$$= 2 \lim_{t \to 0+} \left(\arctan 1 - \arctan(\sqrt{t})\right) = \frac{\pi}{2}.$$

Hệ số tổng quát của chuỗi lũy thừa là $c_n = \frac{(-1)^n}{2^n}$. Ta có

$$L = \lim_{n \to \infty} \left| \frac{c_{n+1}}{c_n} \right| = \lim_{n \to \infty} \frac{2^n}{2^{n+1}} = \frac{1}{2}$$

4a

và bán kính hội tụ của chuỗi là $R = \frac{1}{L} = 2$. Khi |x+1| < 2, nghĩa là $x \in (-3,1)$, thì chuỗi hội tụ. Khi $x \not\in [-3,1]$ thì chuỗi phân kỳ.

Với x = -3 hay x = 1 thì số hạng tổng quát a_n của chuỗi thỏa $|a_n| = 1$, do đó dãy (a_n) không thể có giới hạn bằng 0, suy ra chuỗi phân kỳ.

4b

- Ta có $f(x) = (\sin x)^2 = \frac{1}{2} \frac{1}{2}\cos 2x$, $f^{(k)}(x) = -2^{k-1}\cos\left(2x + k\frac{\pi}{2}\right)$. Suy ra $f^{(k)}(\frac{\pi}{2}) = 2^{k-1}\cos(k\frac{\pi}{2}), \ \forall k \ge 1$ $f(\frac{\pi}{2}) = 1; \quad f'(\frac{\pi}{2}) = 0; \quad f''(\frac{\pi}{2}) = -2; \quad f'''(\frac{\pi}{2}) = 0$ $T_3(x) = \sum_{k=0}^3 \frac{1}{k!} f^{(k)}(\frac{\pi}{2}) (x \frac{\pi}{2})^k = 1 (x \frac{\pi}{2})^2$
- Ta có 91° = $\frac{\pi}{2} + \frac{\pi}{180}$ (rad). $\sin 91^\circ \approx T_3(\frac{\pi}{2} + \frac{\pi}{180}) = 1 \frac{\pi^2}{180^2}$. Sai số là $\left| R_3(\frac{\pi}{2}) \right| = \left| \frac{f^{(4)}(\theta)}{4!} \left(\frac{\pi}{180} \right)^3 \right| \le \frac{2^3}{4!} \cdot \frac{\pi^4}{180^4},$

trong đó ta dùng bất đẳng thức $|f^{(k)}(x)| \le 2^{k-1}$.