

Computational Geometry

South China University of Technology

Author: 916852

一:	基本公式	
	1.1 三角形	6
	1.2 四边形	6
	1.3 正 n 边形	6
	1.4 圆	6
	1.5 棱柱	7
	1.6 棱锥	7
	1.7 棱台	7
	1.8 圆柱	7
	1.9 圆锥	7
	1.10 圆台	7
	1.11 球	7
	1.12 球台	7
	1.13 球扇形	8
二:	点、线	
	2.1 结构定义	8
	2.2 向量 p 绕着圆点转动 radian (弧度) 返回得到的点	9
	2.3 二维叉乘 返回 a × b	9
	2.4 二维点乘 返回 a · b	9
	2.5 二维两点距离	9
	2.6 向量 a, b 夹角的余弦值(弧度制)	9
	2.7 向量 a, b 夹角的正弦值(弧度制)	9
	2.8 判断 a,b,c 三点共线	9
	2.9 判断点在线段的位置	9
	2.10 判断线段 ab 和 cd 是否相交1	0
	2.11 判断直线 ab 和线段 cd 是否相交1	0
	2.12 判断直线 ab 和直线 cd 是否相交1	1
	2.13 判断两点在线段的同侧或异侧1	1
	2.14 求线段所在直线的一般方程1	1
	2.15 求点关于直线的对称点1	2
	2.16 点到直线的最近距离1	2
	2.17 点到线段的最近距离1	2
	2.18 两线段最近距离1	2
	2.19 向量夹角1	2
	2.20 动点共线方程1	2
	2.21 最近点对	3
三:	三角形	
	3.1 结构定义1	4
	3.2 点在三角形内判定1	4
	3.3 三角形覆盖 k 次面积并 (可扩展为任意多边形, 二叉空间划分)1	4
	3.4 三角形四心1	6
	3 F 一 左 形 赴 耳 上	_

四:)	
	4.1	结构定义17
	4.2	点与圆的切点18
	4.3	圆的公切线18
	4.4	线段与圆交点19
	4.5	圆与圆交点19
	4.6	圆的面积并
	4.7	圆覆盖 k 次面积并20
	4.8	圆与多边形面积交21
	4.9	点集最小圆覆盖23
五:	凸包	多边形
	5.1	andrew 求凸包23
	5.2	点在多边形内判定24
	5.3	旋转卡壳求凸包直径24
	5.4	旋转卡壳求凸包上最大三角形面积24
	5.5	旋转卡壳求凸包最近距离25
	5.6	logn 直线切割凸包
	5.7	动态凸包
	5.8	任意多边形最大内切圆(点+线=3 限制内切圆)
	5.9	多边形面积并33
六:	概率	算法
	6.1	最小球覆盖34
	6.2	二维费马点34
七:	平面	问题
	7.1	半平面交36
	7.2	PSLG 平面直线图37
入:	三维	几何
	8.1	三维叉乘42
	8.2	三维旋转矩阵43
	8.3	三维旋转模型43
	8.4	三维凸包相关44
	8.5	三维光线反射48
	8.6	点到直线距离48
	8.7	点到线段距离49
	8.8	两直线距离49
	8.9	两线段距离49
	8.10	Э 直线相交判定
	8.1	1 线段相交判定
	8.12	2 点关于直线的对称点
	2 1:	3. 占到亚而跖剪 51

	8.14 点在平面投影	51
	8.15 点关于平面的对称点	51
	8.16 直线与平面交点	51
	8.17 线段与平面交点	51
	8.18 直线与平面位置关系判定	51
	8.19 两平面位置关系判定	52
	8.20 平面交线	52
	8.21 平面距离	52
	8.22 点在空间三角形内判定	52
	8.23 线段和空间三角形的位置关系	53
	8.24 经纬度坐标转笛卡尔坐标	53
	8.25 球面距离	53
九:	数据结构优化算法	
	9.1 K-D 树	53
十:	其他	
	10.1 欧拉四面体公式	55
	10.2 simpson 数值积分	55
	10.3 常用积分公式	56
	10 4 = 角函粉	56

一:基本公式

1.1 三角形

1.2 四边形

D1,D2 为对角线,M 对角线中点连线,A 为对角线夹角

1.
$$a^2 + b^2 + c^2 + d^2 = D1^2 + D2^2 + 4M^2$$

2.
$$S = D1D2sin(A)/2$$

(以下对圆的内接四边形)

3.
$$ac + bd = D1 * D2$$

1.3 正 n 边形

R 为外接圆半径,r 为内切圆半径

3. 边长
$$a = 2 \operatorname{sqrt}(R^2 - r^2) = 2R * \sin(A/2) = 2r * \tan(A/2)$$

1.4 圆

r为半径,A为角度

弓形高
$$h = r - sqrt(r^2 - a^2/4) = r(1 - cos(A/2)) = atan(A/4) / 2$$

1.5 棱柱

- 1. 体积 V = Ah, A 为底面积,h 为高
- 2. 侧面积 S = 1p, 1 为棱长, p 为直截面周长
- 3. 全面积 T=S+2A

1.6 棱锥

- 1. 体积 V = Ah/3, A 为底面积,h 为高 (以下对正棱锥)
- 2. 侧面积 S = 1p/2, 1 为斜高,p 为底面周长
- 3. 全面积 T = S + A

1.7 棱台

- 1. 体积 V = (A1 + A2 + sqrt(A1A2)) * h / 3, A1.A2 为上下底面积,h 为高(以下为正棱台)
- 2. 侧面积 S = (p1 + p2) 1 / 2, p1.p2 为上下底面周长,1 为斜高
- 3. 全面积 T = S + A1 + A2

1.8 圆柱

- 1. 侧面积 S = 2 * PI * r * h
- 2. 全面积 T = 2 * PI * r * (h + r)
- 3. 体积 V = PI * r^2 * h

1.9 圆锥

母线 1 = sqrt(h^2 + r^2)

侧面积 S = PI * r * 1

全面积 T = PI * r (1+r)

体积 V = PI * r^2 * h / 3

1.10 圆台

母线 1 = sqrt(h^2 + (r1 - r2)^2)

侧面积 S = PI * (r1 + r2) * 1

全面积 T = PI * r1 * (1 + r1) + PI * r2 * (1 + r2)

体积 V = PI * (r1^2 + r2^2 + r1r2) * h / 3

1.11 球

- 1. 全面积 T = 4 * PI * r^2
- 2. 体积 V = 4 * PI * r^3 / 3

1.12 球台

- 1. 侧面积 S = 2 * PI * r * h
- 2. 全面积 T = PI * (2rh + r1^2 + r2^2)
- 3. 体积 V = PI * h(3 * (r1^2 + r2^2) + h^2) / 6

```
1.13 球扇形
```

```
1. 全面积 T = PI * r(2h + r0), h 为球冠高, r0 为球冠底面半径
   2. 体积 V = 2 * PI * r^2 * h / 3
   3. 球缺 V = V球扇 - V圆锥 = PI * h * h * (3r - h) / 3
二: 点、线
2.1 结构定义
#define MP make_pair
#define LL long long
#define uLL unsigned long long
const double PI = acos(-1.0);
const double eps = 1e-8;
struct point {
   double x, y, z;
   point(){}
   point( double x, double y, double z ) : x(x), y(y), z(z) {}
   point operator - ( const point b ) const {
       return point( x - b.x, y - b.y, z - b.z);
   }
   point operator + ( const point b ) const {
       return point( x + b.x, y + b.y, z + b.z);
   }
    point operator * ( double d ) const {
       return point( x * d, y * d, z * d);
   }
   point operator / ( double d ) const {
       return point( x / d, y / d, z / d);
   double len() {
       return sqrt( x * x + y * y + z * z);
   }
   void input() {
       scanf( "%lf%lf%lf", &x, &y, &z );
   }
};
struct Line { point a, b; };
struct Nline { int a, b, c; }; // ax + by + c = 0 一般方程
struct Circle { double r; point c; };
struct Sphere { double r; point3 c; }; //球体
int dcmp( double x ){
   return (x > eps) - (x < -eps);
}
```

```
2.2 向量 p 绕着圆点转动 radian (弧度) 返回得到的点
point rotate(point p, double radian) {
   double c = cos(radian), s = sin(radian);
   point res;
   res.x = p.x * c - p.y * s;
   res.y = p.y * c + p.x * s;
   return res;
}
2.3 二维叉乘 返回 a × b
double cross( point a, point b ) {
   return a.x * b.y - a.y * b.x;
}
2.4 二维点乘 返回 a · b
double dot( point a, point b ) {
   return a.x * b.x + a.y * b.y;
}
2.5 二维两点距离
double dis(point a, point b) {
   return sqrt(dot(a - b, a - b));
}
2.6 向量 a, b 夹角的余弦值(弧度制)
double cos(point a, point b) {
   return dot(a, b) / a.len() / b.len();
}
2.7 向量 a, b 夹角的正弦值(弧度制)
double sin(point a, point b) {
   return fabs( cross(a, b) / a.len() / b.len() );
}
2.8 判断 a,b,c 三点共线
bool in_line(point a, point b, point b) {
   return dcmp( cross(b - a, c - a) ) == 0;
}
2.9 判断点在线段的位置
前提假设 a、b、x 共线
   返回:
       x 在 seg(a,b)内: -1
       x 在 seg(a,b)上: 0
```

```
x 在 seg(a,b)外: 1
int btw(point x, point a, point b) {
   return dcmp( dot(a - x, b - x) );
}
2.10 判断线段 ab 和 cd 是否相交
             返回
   类型
                    res
1. 不相交
                0
                        不变
2. 规范相交
                1
                        交点 (交叉)
                        不变 (端点在另一线段,有重叠段)
3. 非规范相交
int segCross(point a, point b, point c, point d, point &res) {
   double s1, s2;
   int d1, d2, d3, d4;
   d1 = dcmp(s1 = cross(b - a, c - a));
   d2 = dcmp(s2 = cross(b - a, d - a));
   d3 = dcmp(cross(d - c, a - c));
   d4 = dcmp(cross(d - c, b - c));
   if( (d1^d2) == -2 && (d3^d4) == -2 ){
       res.x = (c.x * s2 - d.x * s1) / (s2 - s1);
       res.y = (c.y * s2 - d.y * s1) / (s2 - s1);
       return 1;
   }
   if( d1 == 0 && btw(c, a, b) <= 0 ||
      d2 == 0 \&\& btw(d, a, b) <= 0 | |
      d3 == 0 \&\& btw(a, c, d) <= 0 | |
       d4 == 0 \&\& btw(b, c, d) <= 0)
       return 2;
   return 0;
}
2.11 判断直线 ab 和线段 cd 是否相交
   类型
             返回
1. 不相交
                0
                        不变
2. 规范相交
                1
                        交点 (交叉)
3. 非规范相交
                2
                        不变 (线段端点在直线,有重叠段)
int segLineCross(point a, point b, point c, point d, point &res) {
   double s1, s2;
   int d1, d2;
   d1 = dcmp(s1 = cross(b - a, c - a));
   d2 = dcmp(s2 = cross(b - a, d - a));
   if((d1^d2) == -2) {
       res.x = (c.x * s2 - d.x * s1) / (s2 - s1);
```

```
res.y = (c.y * s2 - d.y * s1) / (s2 - s1);
      return 1;
   if( d1 == 0 || d2 == 0 ) return 2;
   return 0;
}
2.12 判断直线 ab 和直线 cd 是否相交
   类型
               返回
1. 不相交 (平行)
                   0
                           不变
2. 规范相交
                   1
                           交点
3. 非规范相交 (重合) 2
                          不变
int lineCross(point a, point b, point c, point d, point &res) {
   double s1, s2;
   s1 = cross(b - a, c - a);
   s2 = cross(b - a, d - a);
   if( dcmp(s1) == 0 \& dcmp(s2) == 0 ) return 2;
   if( dcmp(s2 - s1) == 0 ) return 0;
   res.x = (c.x * s2 - d.x * s1) / (s2 - s1);
   res.y = (c.y * s2 - d.y * s1) / (s2 - s1);
   return 1;
}
2.13 判断两点在线段的同侧或异侧......
               返回
   类型
-----
1. 某点在线段上
                  0
2. 同侧
3. 异侧
                  -1
int pointside( point a, point b, Line 1 ) {
   return dcmp( cross(a - 1.a, 1.b - 1.a) * cross(b - 1.a, 1.b - 1.a));
}
2.14 求线段所在直线一般方程
Nline lfs(point p1, point p2) //line from segment
   Nline tmp;
   tmp.a = p2.y - p1.y;
   tmp.b = p1.x - p2.x;
   tmp.c = p2.x * p1.y - p1.x * p2.y;
   return tmp;
}
```

```
2.15 求点关于直线的对称点
point spl(point p, Nline L) { // symmetrical point of Line
   point p2;
   double d;
   d = L.a * L.a + L.b * L.b;
   p2.x = (L.b * L.b * p.x - L.a * L.a * p.x -
          2 * L.a * L.b * p.y - 2 * L.a * L.c) / d;
   p2.y = (L.a * L.a * p.y - L.b * L.b * p.y -
          2 * L.a * L.b * p.x - 2 * L.b * L.c) / d;
   return p2;
}
2.16 点到直线的最近距离
double ptoline( point p, point a, point b ){
   return fabs(cross(p - a, b - a)) / dis(a, b);
double ptoline( point p, Nline 1 ){
   return ( p.x * 1.a + p.y * 1.b + 1.c ) / sqrt( 1.a * 1.a + 1.b * 1.b );
}
2.17 点到线段的最近距离
double ptoseg( point p, point a, point b ) {
   if( dcmp(dot(p - a, b - a)) <= 0) return dis(p, a);
   if( dcmp(dot(p - b, a - b)) \leftarrow 0) return dis(p, b);
   return fabs(cross(p - a, b - a)) / dis(a, b);
}
2.18 两线段最近距离
相交距离为 0, 否则枚举两条线段的端点到另一线段的距离
2.19 向量夹角
double angle( point a, point b ) {
   double k = dot(a, b) / a.len() / b.len();
   k = max(k, -1.0); k = min(k, 1.0);
   return acos( k );
}
2.20 动点共线方程
//动点 point( pnt[i].x + dx[i] * t, pnt[i].y + dy[i] * t ) 求大于0的解
void cal( int &i, int &j, int &k, double &t1, double &t2 ) {
   double a1 = pnt[i].x - pnt[j].x, b1 = dx[i] - dx[j];
   double a2 = pnt[k].y - pnt[j].y, b2 = dy[k] - dy[j];
   double a3 = pnt[i].y - pnt[j].y, b3 = dy[i] - dy[j];
   double a4 = pnt[k].x - pnt[j].x, b4 = dx[k] - dx[j];
```

```
double a = b1 * b2 - b3 * b4;
   double b = a1 * b2 + a2 * b1 - a3 * b4 - a4 * b3;
   double c = a1 * a2 - a3 * a4;
   double dlt = b * b - 4.0 * a * c;
   if( dcmp(a) == 0 ) {
       if( dcmp(b) == 0 ) { //c == 0 无穷解 c != 0 无解
           t1 = t2 = -1.0;
       }
       else t1 = -c / b, t2 = -1.0;
   else if( dcmp(dlt) == 0 ) t1 = -b / (2 * a), t2 = -1.0;
   else if( dlt > 0 ) {
       t1 = (-b - sqrt(dlt)) / (2 * a);
       t2 = (-b + sqrt(dlt)) / (2 * a);
   }
   else t1 = t2 = -1.0;
}
2.21 最近点对
//调用 closep(p, 0, n)
point p[mxn], py[mxn];
bool cmpy( point a, point b ) {
   return a.y < b.y;
}
double closep( point *p, int 11, int rr ) {
   if( rr - 11 <= 1 ) return inf; //周长最小三角形返回 MP(inf,-1)
   int m = (11 + rr) >> 1;
   double midx = p[m].x;
   double res = min( closep(p, 11, m), closep(p, m, rr) );
   inplace_merge(p + 11, p + m, p + rr, cmpy);
   double x1 = midx - res, x2 = midx + res;
   int len = 0;
   for( int i = 11; i < rr; ++i )</pre>
       if(p[i].x > x1 && p[i].x < x2)
          py[len++] = p[i];
   for( int i = 0; i < len; ++i )</pre>
       for( int j = i + 1; j < len && py[j].y < py[i].y + res; ++j)
           res = min(res, dis(py[i], py[j]));
   //可以再加一层 for(k = j + 1 -> len && py[k].y < py[i].y + res) 求周长最小
的三角形 res 初始化为当前最优三角形周长一半 函数返回 pair<周长, id>
   return res;
}
```

```
3.1. 结构定义
struct triangle {
   point a, b, c;
   void input() {
       a.input(); b.input(); c.input();
       if( dcmp(cross(b - a, c - a)) < 0 ) //保障逆时针序
          swap(b, c);
   }
};
3.2 点在三角形内判定
//判断点 o 是否在△abc 内
bool intrian( point o, point a, point b, point c ) {
   if( dcmp(cross(b - a, o - a)) < 0 ) return false;</pre>
   if( dcmp(cross(c - b, o - b)) < 0 ) return false;</pre>
   if( dcmp(cross(a - c, o - c)) < 0 ) return false;</pre>
   return true;
}
3.3 三角形覆盖 k 次面积并 (可扩展为任意多边形, 二叉空间划分)
//初始无穷大平面 递归切割
struct polygon {
   int n;
   vector<point> p;
   double area() {
       double s = 0;
       for( int i = 2; i < n; ++i )
           s += cross(p[i-1] - p[0], p[i] - p[0]);
       return fabs(s) / 2;
   }
   point center() { //多边形重心
       double s = 0, sx = 0, sy = 0;
       for( int i = 2; i < n; ++i ) {
          double x = p[0].x + p[i-1].x + p[i].x;
          double y = p[0].y + p[i-1].y + p[i].y;
          double tmps = cross(p[i-1] - p[0], p[i] - p[0]) / 2;
          s += tmps;
          sx += x * tmps;
          sy += y * tmps;
       }
       return point( sx / s / 3, sy / s / 3 );
   }
```

```
}g[mxn]; Line L[mxn]; triangle sjx[mxn]; int cnt;
void add( point a, point b, int id, int cur ) {
   g[cur].p.clear();
   for( int i = 0; i < g[id].n; ++i ) {
       int d1 = dcmp( cross(b - a, g[id].p[i] - a) );
       int d2 = dcmp( cross(b - a, g[id].p[i+1] - a));
       if( d1 \ge 0 ) g[cur].p.push_back( g[id].p[i] );
       if((d1 ^ d2) == -2) {
           point x = linecross( a, b, g[id].p[i], g[id].p[i+1] );
           g[cur].p.push_back(x);
       }
   }
   g[cur].n = g[cur].p.size();
}
void dfs( int dep, int id ) {
   g[id].p.push_back(g[id].p[0]);
   if( dep == m ) return ;
   point a = L[dep].s, b = L[dep].t;
   bool nolft = true, norht = true;
   for( int i = 0; i < g[id].n; ++i ) {</pre>
       int d = dcmp(cross(b - a, g[id].p[i] - a));
       if( d > 0 ) nolft = false;
       if( d < 0 ) norht = false;</pre>
   }
   if( nolft || norht ) {
       dfs(dep + 1, id);
       return;
   bad[id] = true;
   ++cnt;
   add(a, b, id, cnt);
   dfs( dep + 1, cnt );
   ++cnt;
   add(b, a, id, cnt);
   dfs(dep + 1, cnt);
}
int t, n;
scanf( "%d", &t );
while( t-- ) {
   scanf( "%d", &n );
   m = cnt = 0;
```

```
memset( ans, 0, sizeof(ans) );
   memset( bad, 0, sizeof(bad) );
   for( int i = 0; i < n; ++i ) {
       sjx[i].input();
       L[m++] = Line(sjx[i].a, sjx[i].b);
       L[m++] = Line(sjx[i].b, sjx[i].c);
       L[m++] = Line(sjx[i].c, sjx[i].a);
   }
   g[0].p.clear();
   g[0].p.push_back( point(-200, -200) ); //确保足够大
   g[0].p.push_back( point(200, -200) );
   g[0].p.push_back( point(200, 200) );
   g[0].p.push_back( point(-200, 200) );
   g[0].n = g[0].p.size();
   dfs(0, 0);
   for( int i = 0; i <= cnt; ++i ) {</pre>
       if( bad[i] ) continue;
       point x = g[i].center();
       int num = 0;
       for( int j = 0; j < n; ++j )</pre>
          if( intrian(x, sjx[j].a, sjx[j].b, sjx[j].c) )
              ++num;
       ans[num] += g[i].area();
   }
   for( int i = 1; i <= n; ++i )
       printf( "%.10lf\n", ans[i] );
}
3.4 三角形四心
重心:中线交点,近边三等分点,三角形内到三边距离之积最大,到三顶点距离的平方和最小
point zhong(point a, point b, point c) {
   return (a + b + c) / 3;
}
外心: 三条垂直平分线交点, 外接圆圆心
point wai( point& a, point& b, point& c ) {
   point res;
   double a1 = b.x - a.x, b1 = b.y - a.y, c1 = (a1 * a1 + b1 * b1)/2;
   double a2 = c.x - a.x, b2 = c.y - a.y, c2 = (a2 * a2 + b2 * b2)/2;
   double d = a1 * b2 - a2 * b1;
   res.x = a.x + (c1 * b2 - c2 * b1) / d;
   res.y = a.y + (a1 * c2 - a2 * c1) / d;
   return res;
}
```

```
内心: 三内角平分线交点, 内接圆圆心
point nei(point a, point b, point c) {
   double A = dis(b, c), B = dis(a, c), C = dis(a, b);
   double P = A + B + C;
   return a * (A/P) + b * (B/P) + c * (C/P);
}
旁心: 一内角平分线和另外两角的外角平分线 (好像木有啥用)
3.5 三角形费马点
费马点: 到所有点距离之和最小的点
有△ABC,设∠A大于120度,则点A为费马点
否则,费马点到三点的连线等分费马点周角,故此类三角形费马点也是三角形等角中心
从三角形三边向外做等边三角形 A'BC, AB'C, ABC', 则 AA', BB', CC'三线共点于费马点
//凸四边形费马点:对角线交点
//凹四边形费马点: 凹点
//Find three numbers r + s + t = 1, which make p = r * a + s * b + t * c
void parametric(point p, point a, point b, point c) {
   double d = cross(b - a, c - a);
   r = cross(b - p, c - p) / d;
   s = cross(p - a, c - a) / d;
   t = cross(b - a, p - a) / d;
}
四:圆
4.1 结构定义
struct circle {
   point c;
   double r;
   int id;
   circle(){}
   circle(point c, double r) : c(c), r(r) {}
   point getp(double ang) { //圆上相对圆心以 ang 为极角的点
      return point(c.x + r * cos(ang), c.y + r * sin(ang), id);
   }
   void input(int k) {
      id = k;
      c.input(); scanf( "%lf", &r );
   }
}
```

```
4.2 点与圆的切点
//前提点在圆外
int ptancircle( point k, circle a ) {
   point u = k - a.c;
   double len = u.len();
   double ang = acos( a.r / len );
   double bas = atan2( u.y, u.x );
   pnt[num++] = a.getp( bas + ang );
   pnt[num++] = a.getp( bas - ang );
   return 2;
}
4.3 圆的公切线
//精度曾卡 1e-15, pnt 保存所有切点, 可分别保存在另外两个数组
int getTangents( circle a, circle b ) {
   int cnt = 0;
   if( a.r < b.r ) swap(a, b);
   double d2 = dis2(a.c, b.c);
   double rcha = a.r - b.r;
   double rsum = a.r + b.r;
   if( dcmp(d2 - rcha * rcha) < 0 ) return 0;</pre>
   double bas = atan2(b.c.y - a.c.y, b.c.x - a.c.x);
   if( dcmp(d2) == 0 \&\& dcmp(a.r - b.r) == 0 ) return -1;
   if( dcmp(d2 - rcha * rcha) == 0 ) {
       pnt[num++] = a.getp(bas);
       pnt[num++] = b.getp(bas);
       cnt++;
       return 1;
   }
   double ang = acos( (a.r - b.r) / sqrt(d2) );
   pnt[num++] = a.getp(bas + ang); pnt[num++] = a.getp(bas - ang); cnt++;
   pnt[num++] = b.getp(bas + ang); pnt[num++] = b.getp(bas - ang); cnt++;
   if( dcmp(d2 - rsum * rsum) == 0 ) {
       pnt[num++] = a.getp(bas); pnt[num++] = b.getp(bas + pi);
       cnt++;
   }
   else if( dcmp(d2 - rsum * rsum) > 0 ) {
       double ang = acos((a.r + b.r) / sqrt(d2));
       pnt[num++] = a.getp(bas + ang); pnt[num++] = a.getp(bas - ang); cnt++;
       pnt[num++] = b.getp(pi + bas + ang); pnt[num++] = b.getp(pi + bas - ang);
       cnt++;
   }
   return cnt;
}
```

```
4.4 线段与圆交点
//圆心 c, 半径 r, 线段 ab, 交点为 res1, res2, 返回 k 是交点个数
//#define sqr(x) ((x)*(x))
int seg_cir(point c, double r, point a, point b, point &res1, point &res2) {
   int k = 0;
   double aa = sqr(a.x - b.x) + sqr(a.y - b.y);
   double bb = 2 * ((b.x - a.x)*(a.x - c.x) + (b.y - a.y)*(a.y - c.y));
   double cc = sqr(c.x) + sqr(c.y) + sqr(a.x) + sqr(a.y) - r * r - 2 * (c.x)
* a.x + c.v * a.v);
   if( dcmp( bb * bb - 4 * aa * cc ) >= 0 ) {
       double u1 = (-bb + sqrt(bb * bb - 4 * aa * cc)) / 2.0 / aa;
       double u2 = (-bb - sqrt(bb * bb - 4 * aa * cc)) / 2.0 / aa;
       if( u1 > u2 \&\& dcmp(u2) >= 0 ) swap(u1, u2);
       if( dcmp(u1) >= 0 && dcmp(u1-1) <= 0 ) {
          res1.x = a.x + u1 * (b.x - a.x);
          res1.y = a.y + u1 * (b.y - a.y);
          //if( dcmp(res1.y - c.y) <= 0 ) res1.ok = true; 下半圆判定
          ++k;
       }
       if( dcmp(u1-u2) && dcmp(u2) >= 0 && dcmp(u2-1) <= 0 ) {
          res2.x = a.x + u2 * (b.x - a.x);
          res2.y = a.y + u2 * (b.y - a.y);
          //if( dcmp(res2.y - c.y) <= 0 ) res2.ok = true; 下半圆判定
          ++k;
       }
   }
   return k;
}
4.5 圆与圆交点
//两圆圆心为 c1, c2, 半径为 r1, r2, 交点保存在 k1, k2
//两圆重合需要自行特判,返回交点个数
int CirCrossCir(point c1, double r1, point c2, double r2, point &k1, point &k2)
   double mx = c2.x - c1.x, sx = c2.x + c1.x, mx2 = mx * mx;
   double my = c2.y - c1.y, sy = c2.y + c1.y, my2 = my * my;
   double sq = mx2 + my2, d = -(sq - sqr(r1 - r2)) * (sq - sqr(r1 + r2));
   if (dcmp(d) < 0) return 0;</pre>
   if (dcmp(d) == 0) d = 0; else d = sqrt(d);
   double x = mx * ((r1 + r2) * (r1 - r2) + mx * sx) + sx * my2;
   double y = my * ((r1 + r2) * (r1 - r2) + my * sy) + sy * mx2;
   double dx = mx * d, dy = my * d; sq *= 2;
   k1.x = (x - dy) / sq; k1.y = (y + dx) / sq;
   k2.x = (x + dy) / sq; k2.y = (y - dx) / sq;
```

```
if (d > eps) return 2;
   else return 1;
}
4.6 圆的面积并
把下面那个覆盖 k 次加起来, 都是 O(n^2)的复杂度
4.7 圆覆盖 k 次面积并
//area[i]保存覆盖i次的面积
#define sqr(x) ((x)*(x))
struct Circle {
    point c;
   double r, ang;
   int d;
   Circle(){}
   Circle(point c, double ang = 0, int d = 0):c(c), ang(ang), d(d) {}
   void input() {
       c.input(); d = 1;
       scanf( "%lf", &r );
}cir[mxn], tp[mxn * 2];
bool circmp(const Circle& a, const Circle& b) {
   return dcmp(a.r - b.r) < 0;</pre>
}
bool cmp(const Circle& a, const Circle& b) {
   if( dcmp(a.ang - b.ang) )
       return a.ang < b.ang;</pre>
   return a.d > b.d;
}
double calc(Circle o, Circle a, Circle b) {
   double ans = (b.ang - a.ang) * sqr(o.r)
       - cross(a.c - o.c, b.c - o.c) + cross(a.c - point(0,0), b.c - point(0,0));
   return ans / 2;
}
void CirUnion(Circle cir[], int n) {
   Circle res1, res2;
   sort( cir, cir + n, circmp );
   for( int i = 0; i < n; ++i )
       for( int j = i + 1; j < n; ++j)
           if( dcmp(dis(cir[i].c, cir[j].c) + cir[i].r - cir[j].r) <= 0 )</pre>
              cir[i].d++;
```

```
for( int i = 0; i < n; ++i ) {
       int tn = 0, cnt = 0;
       for( int j = 0; j < n; ++j ) {
          if( i == j ) continue;
          if( CirCrossCir(cir[i].c, cir[i].r, cir[j].c, cir[j].r,
          res2.c, res1.c) < 2) continue; //res2和res1不能交换
          res1.ang = atan2(res1.c.y - cir[i].c.y, res1.c.x - cir[i].c.x);
          res2.ang = atan2(res2.c.y - cir[i].c.y, res2.c.x - cir[i].c.x);
          res1.d = 1;
                        tp[tn++] = res1;
          res2.d = -1; tp[tn++] = res2;
          if( dcmp(res1.ang - res2.ang) > 0 ) cnt++;
       }
       tp[tn++] = Circle(point(cir[i].c.x - cir[i].r, cir[i].c.y), pi, -cnt);
       tp[tn++] = Circle(point(cir[i].c.x - cir[i].r, cir[i].c.y), -pi, cnt);
       sort( tp, tp + tn, cmp );
       int p, s = cir[i].d + tp[0].d;
       for( int j = 1; j < tn; ++j ) {
          p = s; s += tp[j].d;
          area[p] += calc( cir[i], tp[j - 1], tp[j] );
       }
   }
}
void solve() {
   for (int i = 0; i < n; ++i)
       cir[i].input();
   memset(area, 0, sizeof(area));
   CirUnion(cir, n);
   for (int i = 1; i <= n; ++i)
       area[i] -= area[i + 1];
   for (int i = 1; i <= n; ++i)
       printf("[%d] = %.31f\n", i, area[i]);
}
4.8 圆与多边形面积交
//圆的圆心固定为(0,0),如果不是进行坐标变换,半径是R
double R;
point point::change() { //加到点结构体的函数
   return point( R * x / d, R * y / d);
}
double calang(point a, point b) { //有方向的极角差,不同于向量夹角
   double t = atan2(a.y, a.x) - atan2(b.y, b.x);
```

```
while( dcmp(t - pi) > 0 ) t -= pi*2;
   while (dcmp(t + pi) < 0) t += pi*2;
   return t;
}
double solve( int n, point *p ) {
   double ans = 0, ang = 0;
   point res1, res2, o(0, 0);
   p[n] = p[0]; //点加一个变量 d 保存点到原点的距离
   for( int i = 0; i <= n; ++i )
       p[i].d = p[i].len();
   for( int i = 1; i <= n; ++i ) {
       if( dcmp(p[i-1].d - R) < 0 ) {
           if( dcmp(p[i].d - R) < 0 )
               ans += cross(p[i-1], p[i]);
           else {
               seg_cir(o, R, p[i-1], p[i], res1, res2); //线段与圆交
               ans += cross(p[i-1], res1);
               ang += calang(p[i].change(), res1);
           }
       }
       else {
           if( dcmp(p[i].d - R) < 0 ) {
               seg_cir(o, R, p[i-1], p[i], res1, res2);
               ans += cross(res1, p[i]);
               ang += calang(res1, p[i-1].change());
           }
           else {
               if( seg_cir(o, R, p[i-1], p[i], res1, res2) == 2 ) {
                   ang += calang(res1, p[i-1].change());
                   ans += cross(res1, res2);
                   ang += calang(p[i].change(), res2);
               }
               else
                   ang += calang(p[i].change(), p[i-1].change());
           }
       }
   }
   ans = ans / 2 + ang * R * R / 2;
   return fabs(ans);
}
```

```
4.9 点集最小圆覆盖
//期望复杂度是线性的
void minCirle( int n, point *p, point &c, double &r ) {
   random_shuffle( p, p + n );
   c = p[0]; r = 0;
   for( int i = 1; i < n; ++i ) if( dcmp(dis(p[i], c) - r) > 0 ) {
       c = p[i]; r = 0;
       for( int j = 0; j < i; ++j ) if( dcmp(dis(p[j], c) - r) > 0 ) {
           c.x = 0.5 * (p[i].x + p[j].x);
           c.y = 0.5 * (p[i].y + p[j].y);
           r = dis(p[j], c);
           for( int k = 0; k < j; ++k ) if( dcmp(dis(p[k], c) - r) > 0 ) {
              c = wai(p[i], p[j], p[k]); //三角形外心
              r = dis(p[i], c);
           }
       }
   }
}
五: 凸包多边形
5.1 andrew 求凸包
//点按 X 坐标从小到大排序,相同按 Y 排序,double 要加 dcmp,PS 先按 Y 排序也可以
//凸包边上无共线点,如果要保留共线点,去掉 cross 后面的等号
int andrew( int n ) {
   sort( pnt, pnt + n );
   int m = 0;
   for( int i = 0; i < n; ++i ) {
       while(m > 1 && cross(res[m-1] - res[m-2], pnt[i] - res[m-1]) <= 0)
           --m;
       res[m++] = pnt[i];
   }
   int k = m;
   for( int i = n - 2; i >= 0; --i ) {
       while(m > k \&\& cross(res[m-1] - res[m-2], pnt[i] - res[m-1]) <= 0)
           --m;
       res[m++] = pnt[i];
   if(n > 1) --m;
   return m;
```

}

```
5.2 点在多边形内判定
//double 要 dcmp
bool ponseg( point p, point a, point b ) {
    return cross( a - p, b - p ) == 0 && dot( a - p, b - p ) <= 0;
}
// 0:外, 1:内, 2:边
int pointInPolygon( point cp, point* p, int n ) {
   int w = 0;
   p[n] = p[0];
   for( int i = 0; i < n; ++i ) {</pre>
       if( ponseg(cp, p[i], p[i+1]) )
          return 2;
       int k = dcmp(cross(p[i+1] - p[i], cp - p[i]));
       int d1 = dcmp(p[i].y - cp.y);
       int d2 = dcmp(p[i+1].y - cp.y);
       if( k > 0 & d1 <= 0 & d2 > 0)
                                         W++;
       if( k < 0 \&\& d2 <= 0 \&\& d1 > 0 )
                                         W--;
   }
   return w != 0;
}
5.3 旋转卡壳求凸包直径
double maxd( point* p, int n ) {
   double ret = 0;
   int j = 0;
   for( int i = 0; i < n; ++i ) {
       while( (j + 1) \% n != i \&\& cross(p[(i+1)\%n] - p[i], p[(j+1)\%n] - p[i])
           >= cross(p[(i+1)%n] - p[i], p[j] - p[i]) )
           j = (j + 1) \% n;
       ret = max(ret, dis(p[i], p[j]));
       ret = max(ret, dis(p[i+1], p[j]));
   }
   return ret;
}
5.4 旋转卡壳求凸包上最大三角形面积
double maxarea( point* p, int n ) {
   int j = 1, k = 2;
   LL ans = 0;
   p[n] = p[0];
   p[n+1] = p[1];
   p[n+2] = p[2];
   for( int i = 0; i < n; ++i ) {
       if(j == i) j = (j+1)%n;
```

```
if( k == j ) k = (k+1)%n;
       while( cross(p[j] - p[i], p[k] - p[i]) <
       cross(p[j] - p[i], p[(k+1)%n] - p[i]) )
           k = (k + 1) \% n;
       ans = max(ans, cross(p[j] - p[i], p[k] - p[i]));
       while( cross(p[j] - p[i], p[k] - p[i]) <
       cross(p[(j+1)%n] - p[i], p[k] - p[i]) )
           j = (j + 1) \% n;
       ans = max(ans, cross(p[j] - p[i], p[k] - p[i]));
   }
   return ans / 2;
}
5.5 旋转卡壳求凸包最近距离
double mind( point *p, int np, point *q, int nq ) {
   int sp = 0, sq = 0;
   for( int i = 1; i < np; ++i )
       if(dcmp(p[i].y - p[sp].y) < 0 \mid | dcmp(p[i].y - p[sp].y) == 0 &&
dcmp(p[i].x - p[sp].x) < 0)
           sp = i;
   for( int i = 1; i < nq; ++i )
       if(dcmp(q[i].y - q[sq].y) > 0 \mid | dcmp(q[i].y - q[sq].y) == 0 &&
dcmp(q[i].x - q[sq].x) > 0)
           sq = i;
    int tp = sp, tq = sq;
   double ans = dis(p[sp], q[sq]);
   do {
       double len = cross(p[(sp+1)%np] - p[sp], q[sq] - q[(sq+1)%nq]);
       if( dcmp(len) == 0 ) {
           ans = min(ans, ptoseg(p[sp], q[sq], q[(sq+1)%nq]));
           ans = min(ans, ptoseg(p[(sp+1)%np], q[sq], q[(sq+1)%nq]));
           ans = min(ans, ptoseg(q[sq], p[sp], p[(sp+1)%np]));
           ans = min(ans, ptoseg(q[(sq+1)%nq], p[sp], p[(sp+1)%np]));
           sp = (sp + 1) \% np; sq = (sq + 1) \% nq;
       else if( dcmp(len) > 0 ) {
           ans = min(ans, ptoseg(q[sq], p[sp], p[(sp+1)%np]));
           sp = (sp + 1) \% np;
       }
       else {
           ans = min(ans, ptoseg(p[sp], q[sq], q[(sq+1)%nq]));
           sq = (sq + 1) \% nq;
   } while( tp != sp || tq != sq );
```

```
return ans;
}
5.6 logn 直线切割凸包
//点结构重载小于号运算符 return ang < b.ang, res 是凸包点集
//andrew 排序务必先按y轴,保障凸包点集第一个点是y坐标最小,逆时针序
double cal_ang( point& a, point& b ) {
   double ang = atan2(b.y - a.y, b.x - a.x);
   if( ang < 0 ) ang += 2 * pi;
   return ang;
}
double sum[mxn];
void init( point *p, int n ) {
   p[n] = p[0];
   for( int i = 0; i < n; ++i )
       p[i].ang = cal_ang(p[i], p[i+1]);
   sum[0] = cross(p[0], p[1]);
   for( int i = 1; i < n; ++i )
       sum[i] = sum[i-1] + cross(p[i], p[i+1]);
}
double get( int a, int b ) {
   if( (--b) < 0 ) return 0;
   if( (--a) < 0 ) return sum[b];</pre>
   return sum[b] - sum[a];
}
int find( int beg, int maxlen, point s, point t, point *p, int n ) {
    int sign = dcmp(cross(t - s, p[beg] - s));
   int l = 0, r = maxlen + 1;
   while (r-l>1) {
       int m = (1 + r) / 2;
       if( dcmp(cross(t - s, p[(beg+m)%n] - s)) * sign >= 0)
           1 = m;
       else
           r = m;
   }
   return (beg + 1) % n;
}
double line_cut_con( point s, point t, point *p, int n ) {
   double ang = cal_ang(s, t), res;
   point tmp, res1, res2;
```

```
p[n] = p[0];
    tmp.ang = ang;
    int a = upper_bound(p, p + n, tmp) - p; a %= n;
    tmp.ang = (ang + pi > 2 * pi) ? ang - pi : ang + pi;
    int b = upper_bound(p, p + n, tmp) - p; b %= n;
    int d1 = dcmp(cross(t - s, p[a] - s));
    int d2 = dcmp(cross(t - s, p[b] - s));
    if( d1 * d2 != -1 )
       return 0;
   d1 = find(a, (b-a+n)%n, s, t, p, n);
   d2 = find(b, (a-b+n)%n, s, t, p, n);
    if( d1 > d2 ) swap(d1, d2);
    lineCross(s, t, p[d1], p[d1+1], res1);
    lineCross(s, t, p[d2], p[d2+1], res2);
    res = cross(p[d2], res2) + cross(res2, res1) + cross(res1, p[d1]);
    res += get(d1, d2);
    return fabs(res);
}
//SGU 345
int main()
{
    int n, m;
    point s, t;
   while( scanf( "%d", &n ) != EOF ) {
       for( int i = 0; i < n; ++i)
           pnt[i].input();
       n = andrew(n);
       init(res, n);
       double area = fabs(get(0, n)), tmp;
       scanf("%d", &m);
       while( m-- ) {
           s.input(); t.input();
           tmp = line_cut_con(s, t, res, n);
           tmp = min(tmp, area - tmp);
           printf("%.10lf\n", tmp * 0.5);
       }
    }
    return 0;
}
```

```
5.7 动态凸包
#define spit set<point>::iterator
//部分函数省略
struct point {
    LL x, y;
   double ang;
    bool operator < (const point &b) const {</pre>
        return ang < b.ang;</pre>
    }
   double angle(double X, double Y) {
       return atan2(y - Y, x - X);
    }
};
bool cmp( point a, point b ) {
    return a.x < b.x || a.x == b.x && a.y < b.y;
}
set<point> st;
vector<point> vec;
LL area;
double X, Y;
void init(point a, point b, point c) { //abc 不共线
    st.clear();
   X = (a.x + b.x + c.x + 0.0) / 3;
   Y = (a.y + b.y + c.y + 0.0) / 3;
    a.ang = a.angle(X, Y); st.insert(a);
    b.ang = b.angle(X, Y); st.insert(b);
    c.ang = c.angle(X, Y); st.insert(c);
    area = cross(a, b) + cross(b, c) + cross(c, a);
    if( area < 0 ) area = -area;</pre>
}
spit pre( spit it ) {
    if( it == st.begin() ) it = st.end();
    return --it;
}
spit nxt( spit it ) {
    if( ++it == st.end() ) it = st.begin();
    return it;
}
```

```
void update( point p ) {
    p.ang = p.angle(X, Y);
    spit it = pre(st.lower_bound(p));
    if( cross(*nxt(it) - *it, p - *it) > 0 ) return ;
    spit lft = it, rht = it;
   while( cross(*nxt(rht) - p, *rht - p) >= 0 ) rht = nxt(rht);
   while( cross(*lft - p, *pre(lft) - p) >= 0 ) lft = pre(lft);
    it = 1ft;
   while( it != rht ) area -= cross(*it, *(nxt(it))), it = nxt(it);
    it = nxt(lft);
   while( it != rht ) it = nxt(it), st.erase(pre(it));
    area += cross(*lft, p) + cross(p, *rht);
    st.insert(p);
}
//SGU 277
int main()
{
    int n;
    point a, b, c, p;
   while( scanf( "%I64d%I64d", &a.x, &a.y ) == 2 ) {
       area = 0; b.input(); c.input();
       bool hav = false;
       if( cross(b - a, c - a) != 0 ) init(a, b, c), hav = true;
       else {
           point t[3] = {a, b, c};
           sort(t, t + 3, cmp);
           a = t[0], b = t[2];
       }
       scanf( "%d", &n );
       while( n-- ) {
            p.input();
           if( hav ) update(p);
            else if( cross(b - a, p - a) == 0 ) {
               point t[3] = {a, b, p};
               sort(t, t + 3, cmp);
               a = t[0], b = t[2];
           }
            else init(a, b, p), hav = true;
           printf( "%I64d\n", area );
       }
    }
   return 0;
}
```

```
5.8 任意多边形最大内切圆(点+线=3 限制内切圆)
//省略部分函数
struct point {
   double x, y;
   point perp() {
       return point(-y, x);
};
struct Line {
   point s, t; bool seg;
   Line(){}
   Line(point s, point t, bool f = true):s(s), t(t), seg(f){}
   bool intersectLine(const Line &L, point* r = NULL) const {
       point v1 = t - s, v2 = L.t - L.s;
       point dS = L.s - s;
       double D = v2.x * v1.y - v1.x * v2.y;
       if (D == 0) return false;
       double u1 = (dS.y * v2.x - dS.x * v2.y) / D;
       double u2 = (dS.y * v1.x - dS.x * v1.y) / D;
       if (r != NULL) *r = s + v1 * u1;
       return ((!seg || (0 <= u1 && u1 <= 1))
           && (!L.seg || (0 <= u2 && u2 <= 1)));
   }
};
double pointToLineDist(const point &p, const Line &L) {
   point v = L.t - L.s;
   double u = ((p.x - L.s.x) * v.x + (p.y - L.s.y) * v.y)
       / (v.x * v.x + v.y * v.y);
   if (L.seg) u = max(min(u, 1.0), 0.0);
   return (L.s + v * u - p).len();
}
struct Quadr \{ // Ax^2 + By^2 + Cxy + Dx + Ey + F = 0 \}
   double A, B, C, D, E, F;
   Quadr(){}
   Quadr(double a, double b, double c, double d, double e, double f) {
       A = a; B = b; C = c; D = d; E = e; F = f;
   }
};
Line getBisector(const point &p1, const point &p2) {
   point mid = (p1 + p2) / 2;
```

```
return Line(mid, mid + (p2 - p1).perp(), false);
}
Line getBisector(const Line &L1, const Line &L2) {
   point v1 = L1.s - L1.t, v2 = L2.t - L2.s;
   v1 = v1 / v1.len(); v2 = v2 / v2.len();
   point v = (v1 + v2) / 2;
   point p;
   if (L1.intersectLine(L2, &p)) return Line(p, p + v, false);
       double u = ((L1.s.x - L2.s.x) * v2.x + (L1.s.y - L2.s.y) * v2.y)
           / (v2.x * v2.x + v2.y * v2.y);
       p = L2.s + v2 * u; v1 = (p - L1.s) / 2;
       return Line(L1.s + v1, L1.t + v1);
   }
}
Quadr getBisector(const point &p, const Line &L) {
   point v = L.t - L.s; v = v / v.len(); v = v.perp();
   double C = -v.x * L.s.x - v.y * L.s.y; // v.x * x + v.y * y + C = 0
   return Quadr(1.0 - v.x * v.x, 1.0 - v.y * v.y, -2.0 * v.x * v.y, -2.0 *
   (p.x + v.x * C), -2.0 * (p.y + v.y * C), p.x * p.x + p.y * p.y - C * C);
}
vector<point> intersect(const Line &L, const Quadr &Q) {
   vector<point> V;
   point v = L.t - L.s; v = v / v.len();
   double A = Q.A * v.x * v.x + Q.B * v.y * v.y + Q.C * v.x * v.y;
   double B = 2.0 * (Q.A * L.s.x * v.x + Q.B * L.s.y * v.y)
       + Q.C * (L.s.x * v.y + L.s.y * v.x) + Q.D * v.x + Q.E * v.y;
   double C = Q.A * L.s.x * L.s.x + Q.B * L.s.y * L.s.y
       + Q.C * L.s.x * L.s.y + Q.D * L.s.x + Q.E * L.s.y + Q.F;
   if (A == 0) {
       if (B != 0.0) {
           double u = -C/B;
           V.push_back(L.s + v * u);
       return V;
   }
   double D = B * B - 4.0 * A * C;
   if (D < 0.0) return V;
   D = sqrt(D);
   double u1 = (-B + D)/(2.0 * A);
   double u2 = (-B - D)/(2.0 * A);
```

```
V.push\_back(L.s + v * u1); V.push\_back(L.s + v * u2);
   return V;
}
int N;
point P[25];
double maxR;
double fitCircle(const point &p) {
   if (!pointInPoly(p)) return 0.0;
   double R = 1000000;
   for (int i = 0; i < N; i++) {
       int j = (i+1)%N;
       R = min(R, pointToLineDist(p, Line(P[i], P[j])));
   }
   return R;
}
void check(const point &p1, const point &p2, const point &p3) {
   point r;
   if(getBisector(p1, p2).intersectLine(getBisector(p2, p3), &r))
       maxR = max(maxR, fitCircle(r));
}
void check(const point &p1, const point &p2, const Line &L) {
   vector<point> V = intersect(getBisector(p1, p2), getBisector(p1, L));
   for(int i = 0; i < V.size(); i++) maxR = max(maxR, fitCircle(V[i]));</pre>
}
void check(const point &p, const Line &L1, const Line &L2) {
   vector<point> V = intersect(getBisector(L1, L2), getBisector(p, L1));
   for (int i = 0; i < V.size(); i++) maxR = max(maxR, fitCircle(V[i]));</pre>
}
void check(const Line &L1, const Line &L2, const Line &L3) {
   point r;
   if(getBisector(L1, L2).intersectLine(getBisector(L2, L3), &r))
       maxR = max(maxR, fitCircle(r));
}
void solve() {
   cin >> N;
   for (int i = 0; i < N; i++) cin >> P[i].x >> P[i].y;
```

```
maxR = 0.0;
    for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) {
        if (i == j) continue;
        for (int k = 0; k < N; k++) {
            if (k == i \mid \mid k == j) continue;
           int i2 = (i+1)%N, j2 = (j+1)%N, k2 = (k+1)%N;
           check(P[i], P[j], P[k]);
           if (k2 != i && k2 != j)
               check(P[i], P[j], Line(P[k], P[k2], 0));
           if (k2 != i && j2 != i)
               check(P[i], Line(P[j], P[j2], 0), Line(P[k], P[k2], 0));
            check(Line(P[i], P[i2], 0), Line(P[j], P[j2], 0), Line(P[k], P[k2],
0));
        }
    }
   printf( "%.21f\n", maxR );
}
5.9 多边形面积并
//输入点集为逆时针,输入后调用 init()
struct polygon {
    point p[500];
    int sz;
   void init() {
        p[sz] = p[0];
    }
}g[505];
pair<double, int> c[100000];
double segP( point a, point b, point c ) {
    if( dcmp(b.x - c.x) )
        return (a.x - b.x) / (c.x - b.x);
    return (a.y - b.y) / (c.y - b.y);
}
double polyUnion( int n )
    double sum = 0;
    for( int i = 0; i < n; ++i )</pre>
    for( int ii = 0; ii < g[i].sz; ++ii ) {</pre>
        int tot = 0;
        c[tot++] = MP(0, 0);
        c[tot++] = MP(1, 0);
        for( int j = 0; j < n; ++j ) if( i != j )
```

```
for( int jj = 0; jj < g[j].sz; ++jj ) {</pre>
            int d1 = dcmp(cross(g[i].p[ii+1] - g[i].p[ii],
                           g[j].p[jj] - g[i].p[ii]));
            int d2 = dcmp(cross(g[i].p[ii+1] - g[i].p[ii],
                           g[j].p[jj+1] - g[i].p[ii]));
            if( !d1 && !d2 ) {
               point t1 = g[j].p[jj+1] - g[j].p[jj];
               point t2 = g[i].p[ii+1] - g[i].p[ii];
               if( dcmp( dot(t1, t2) ) > 0 && j < i ) {
               c[tot++]=MP(segP(g[j].p[jj], g[i].p[ii], g[i].p[ii+1]), 1);
               c[tot++]=MP(segP(g[j].p[jj+1],g[i].p[ii],g[i].p[ii+1]), -1);
               }
            }
            else if( d1 \ge 0 \&\& d2 < 0 \mid \mid d1 < 0 \&\& d2 \ge 0 ) {
               double tc = cross(g[j].p[jj+1] - g[j].p[jj],
                                   g[i].p[ii] - g[j].p[jj]);
               double td = cross(g[j].p[jj+1] - g[j].p[jj],
                                   g[i].p[ii+1] - g[j].p[jj]);
               if( d2 < 0 )
                   c[tot++] = MP(tc / (tc - td), 1);
               else c[tot++] = MP(tc / (tc - td), -1);
            }
        }
        sort(c, c + tot);
        double cur = min(max(c[0].first, 0.0), 1.0);
        int sgn = c[0].second;
        double s = 0;
        for( int j = 1; j < tot; ++j ) {
            double nxt = min(max(c[j].first, 0.0), 1.0);
            if( !sgn ) s += nxt - cur;
            sgn += c[j].second;
            cur = nxt;
        sum += cross(g[i].p[ii], g[i].p[ii+1]) * s;
    }
    return sum / 2;
}
```

```
6.1 最小球覆盖 (模拟退火)
int cal( point t, int n ) {
   int id = -1;
   double r = 0;
   for( int i = 0; i < n; ++i ) {
       double d = (p[i] - t).len();
       if(d > r)
           r = d, id = i;
   }
   return id;
}
double solve( int n ) {
   double r = 0.0;
   point t = point(0, 0, 0);
   for( int i = 0; i < n; ++i )
       r = max(r, p[i].len());
   double dlt = r;
   while( dlt > eps ) {
       int id = cal(t, n);
       double d = (p[id] - t).len();
       r = min(r, d);
       t.x += (p[id].x - t.x) / d * dlt;
       t.y += (p[id].y - t.y) / d * dlt;
       t.z += (p[id].z - t.z) / d * dlt;
       dlt *= 0.98;
   }
   return r;
}
6.2 平面费马点
double solve( int n ) {
   point t = point(0, 0);
   double r = 0;
   for( int i = 0; i < n; ++i )
       r += p[i].len();
   double dlt = 10000;
   while( dlt > eps ) {
       for( int i = 0; i < 30; ++i ) {
           double ang = (rand() % 20000 * pi) / 10000 - pi;
           point k = point(t.x + dlt * cos(ang), t.y + dlt * sin(ang));
           double rk = 0;
```

```
for( int i = 0; i < n; ++i)
               rk += (p[i] - k).len();
           if(rk < r)
               r = rk, t = k;
       }
       dlt *= 0.98;
   return r;
}
七: 平面问题
7.1 半平面交
//直线用向量法 p-v 表示, 半平面为直线左侧平面
struct line {
   point p, v;
   double ang;
   line(){}
   line( point p, point v ) :p(p), v(v) { ang = atan2(v.y, v.x); }
   bool operator < ( const line &b ) const {</pre>
       return ang < b.ang;</pre>
   }
}L[mxn], q[mxn];
point p[mxn], poly[mxn];
point normal( point a ) {
   double 1 = a.len();
   return point( -a.y / 1, a.x / 1 );
}
bool onleft( line 1, point p ) {
   return dcmp( cross( 1.v, p - 1.p ) ) > 0;
}
point lineinter( line a, line b ) {
   point u = a.p - b.p;
   double t = cross( b.v, u ) / cross( a.v, b.v );
   return a.p + a.v * t;
}
int halfplane( int n ) {
   sort( L, L + n);
   int head = 0, tail = 0;
```

```
q[tail] = L[0];
    for( int i = 0; i < n; ++i ) {
        while( head < tail && !onleft( L[i], p[tail-1] ) ) --tail;</pre>
        while( head < tail && !onleft( L[i], p[head] ) ) ++head;</pre>
        q[++tail] = L[i];
        if( dcmp( cross( q[tail].v, q[tail-1].v ) ) == 0 ) {
            if( onleft( q[tail], L[i].p ) ) q[tail] = L[i];
        }
        if( head < tail )</pre>
            p[tail-1] = lineinter( q[tail-1], q[tail] );
    }
   while( head < tail && !onleft( q[head], p[tail-1] ) ) --tail;</pre>
    if( tail - head <= 1 ) return 0;</pre>
    p[tail] = lineinter( q[tail], q[head] );
    int m = 0;
   for( int i = head; i <= tail; ++i ) poly[m++] = p[i];</pre>
    return m;
}
7.2 PSLG 平面直线图
#define Polygon vector<point>
//省略部分函数
struct point {
    double x, y;
    bool operator < (const point &b) const {</pre>
        return dcmp(x - b.x) < 0 \mid | dcmp(x - b.x) == 0 && dcmp(y - b.y) < 0;
    }
    bool operator == (const point &b) const {
        return dcmp(x - b.x) == 0 \&\& dcmp(y - b.y) == 0;
    }
};
point LineCross(point &P, point &Pv, point &Q, point &Qw) {
    point u = P - Q;
    point v = Pv - P, w = Qw - Q;
    double t = cross(w, u) / cross(v, w);
    return P + v * t;
}
bool SegInter(point &a1, point &a2, point &b1, point &b2) {
    double c1 = dcmp(cross(a2 - a1,b1 - a1));
    double c2 = dcmp(cross(a2 - a1,b2 - a1));
    double c3 = dcmp(cross(b2 - b1,a1 - b1));
```

```
double c4 = dcmp(cross(b2 - b1,a2 - b1));
   return c1 * c2 < 0 && c3 * c4 < 0;
}
bool ponseg(point p, point a, point b) {
 return dcmp(cross(a - p, b - p)) == 0
     && dcmp(dot(a - p, b - p)) < 0;
}
double PolygonArea(Polygon poly) {
   double area = 0;
   int n = poly.size();
   for( int i = 1; i < n - 1; ++i )
       area += cross(poly[i] - poly[0], poly[(i+1)%n] - poly[0]);
   return area / 2;
}
struct Edge {
   int from, to;
   double ang;
   Edge(){}
   Edge(int f, int t, double a):from(f), to(t), ang(a){}
};
const int mxn = 10000 + 10; // 最大边数
struct PSLG {
   int n, m, face_cnt;
   double x[mxn], y[mxn];
   vector<Edge> edges;
   vector<int> G[mxn];
   int vis[mxn*2]; // 每条边是否已经访问过
   int left[mxn*2]; // 左面的编号
   int prev[mxn*2];
   // prev 相同起点的上一条边 (即顺时针旋转碰到的下一条边) d 编号
   vector<Polygon> faces;
   double area[mxn]; // 每个 polygon 的面积
   void init(int n) {
       this->n = n;
       for( int i = 0; i < n; ++i ) G[i].clear();</pre>
       edges.clear();
       faces.clear();
```

```
}
// 有向线段 from->to 的极角
double getAngle(int from, int to) {
   return atan2(y[to] - y[from], x[to] - x[from]);
}
void AddEdge(int from, int to) {
    edges.push_back(Edge(from, to, getAngle(from, to)));
   edges.push_back(Edge(to, from, getAngle(to, from)));
   m = edges.size();
   G[from].push_back(m - 2);
   G[to].push_back(m - 1);
}
// 找出 faces 并计算面积
void Build() {
   for( int u = 0; u < n; ++u ) {
       // 给从 u 出发的各条边按极角排序
       int d = G[u].size();
       for( int i = 0; i < d; ++i )
           for( int j = i+1; j < d; ++j ) //假设从每点出发的线段不多
               if(edges[G[u][i]].ang > edges[G[u][j]].ang)
                   swap(G[u][i], G[u][j]);
       //必要时把 edges 拿出去, 写索引 sort
       for(int i = 0; i < d; i++)
           prev[G[u][(i+1)%d]] = G[u][i];
   }
   memset(vis, 0, sizeof(vis));
   face_cnt = 0;
   for( int u = 0; u < n; ++u)
   for( int i = 0; i < G[u].size(); ++i ) {</pre>
       int e = G[u][i];
       if(!vis[e]) { // 逆时针找圈
           face_cnt++;
           Polygon poly;
           for(;;) {
               vis[e] = 1; left[e] = face_cnt;
               int from = edges[e].from;
               poly.push_back(point(x[from], y[from]));
               e = prev[e^1];
               if(e == G[u][i]) break;
               //assert(vis[e] == 0);
```

```
}
               faces.push_back(poly);
           }
       }
       for(int i = 0; i < faces.size(); i++)</pre>
           area[i] = PolygonArea(faces[i]);
   }
};
PSLG g;
const int mxp = 100 + 5;
int n, c;
point P[mxp];
point V[mxp*(mxp-1)/2+mxp];
// 在 V 数组里找到点 p
int ID(point p) {
 return lower_bound(V, V + c, p) - V;
}
// 假定 poly 没有相邻点重合, 只需删除三点共线
Polygon simplify(const Polygon &poly) {
   Polygon ans;
   int n = poly.size();
   for( int i = 0; i < n; ++i ) {
       point a = poly[i];
       point b = poly[(i+1)%n];
       point c = poly[(i+2)%n];
       if(dcmp(cross(a-b, c-b)) != 0)
           ans.push_back(b);
   }
   return ans;
}
void build_graph() {
   c = n;
   for( int i = 0; i < n; ++i)
       V[i] = P[i];
   vector<double> dist[mxp]; // dist[i][j]是第i条线段上的第j个点离起点(P[i])
的距离
```

```
for( int i = 0; i < n; ++i )
for( int j = i+1; j < n; ++j )
if(SegInter(P[i], P[(i+1)%n], P[j], P[(j+1)%n])) {
   point p = LineCross(P[i], P[(i+1)%n], P[j], P[(j+1)%n]);
   V[c++] = p;
   dist[i].push_back((p - P[i]).len());
   dist[j].push_back((p - P[j]).len());
}
sort(V, V + c);
c = unique(V, V + c) - V;
g.init(c); // c 是平面图的点数
for( int i = 0; i < c; ++i ) {
   g.x[i] = V[i].x;
   g.y[i] = V[i].y;
for( int i = 0; i < n; ++i ) {
   point v = P[(i+1)%n] - P[i];
   double len = v.len();
   dist[i].push_back(0);
   dist[i].push_back(len);
   sort(dist[i].begin(), dist[i].end());
   int sz = dist[i].size();
   for( int j = 1; j < sz; ++j ) {
       point a = P[i] + v * (dist[i][j-1] / len);
       point b = P[i] + v * (dist[i][j] / len);
       if(a == b) continue;
       g.AddEdge(ID(a), ID(b));
   }
}
g.Build();
Polygon poly;
for( int i = 0; i < g.faces.size(); ++i ) if(g.area[i] < 0) {</pre>
   // 对于连通图,惟一一个面积小于零的面是无限面
   poly = g.faces[i];
   reverse(poly.begin(), poly.end());
   // 对于内部区域来说,无限面多边形的各个顶点是顺时针的
   poly = simplify(poly); // 无限面多边形上可能会有相邻共线点
   break;
}
```

```
int m = poly.size();
   printf("%d\n", m);
   // 挑选坐标最小的点作为输出的起点
   int start = 0;
   for( int i = 0; i < m; ++i )
       if(poly[i] < poly[start])</pre>
           start = i;
   for( int i = start; i < m; ++i )</pre>
       printf("%.41f %.41f\n", poly[i].x, poly[i].y);
   for( int i = 0; i < start; ++i )</pre>
       printf("%.4lf %.4lf\n", poly[i].x, poly[i].y);
}
//LA3218 自交多边形找不自交边界
int main()
{
   while(scanf("%d", &n) == 1 && n) {
       for(int i = 0; i < n; i++) {
           int x, y;
           scanf("%d%d", &x, &y);
           P[i] = point(x, y);
       build_graph();
   return 0;
}
八: 三维几何
8.1 三维叉乘
point cross( point a, point b ) {
   point res;
   res.x = a.y * b.z - b.y * a.z;
   res.y = a.z * b.x - b.z * a.x;
   res.z = a.x * b.y - b.x * a.y;
   return res;
}
```

```
8.2 三维旋转矩阵
```

```
//向量 p 绕向量 v 逆时针旋转 af 弧度、多重多种旋转可以用矩阵快速幂加速
point rot( point p, point v, double af ) {
   af = af * pi / 180;
   double c = cos( af ), s = sin( af );
   double 1 = v.len();
   double x = v.x / 1, y = v.y / 1, z = v.z / 1;
   double a[3][3] = {
       { x * x + ( 1 - x * x ) * c, x * y * ( 1 - c ) - z * s, x * z * ( 1 - c ) + y * s },
       { y * x * ( 1 - c ) + z * s, y * y + ( 1 - y * y ) * c, y * z * ( 1 - c ) - x * s },
       { z * x * ( 1 - c ) - y * s, z * y * ( 1 - c ) + x * s, z * z + ( 1 - z * z ) * c }
   };
   point res = point (
       p.x * a[0][0] + p.y * a[0][1] + p.z * a[0][2],
       p.x * a[1][0] + p.y * a[1][1] + p.z * a[1][2],
       p.x * a[2][0] + p.y * a[2][1] + p.z * a[2][2]
   );
   return res;
}
8.3 三维旋转模型
1. 将三维凸包一个面贴在地上
plane pl = vp[i]; //凸包的一个面
point z = point(0,0,1); //z 轴
point x = cross( pl.f, z ); //旋转轴
double af = angle( z, pl.f ); //旋转角度
把每个点都 rot(p[], x, af)
2. 多重旋转矩阵加速
旋转方式
translate tx ty tz
Everything in (x, y, z) must be moved to (x+tx, y+ty, z+tz)
scale a b c
Everything in (x, y, z) will be moved to (ax, by, cz)
rotate a b c d
Everything 绕向量 v(a, b, c) 逆时针旋转 d 弧度
定义一系列上述旋转序列、循环 k 次、求点 p 旋转后的位置
每种操作可以得到转化为一个矩阵,把旋转序列的矩阵都乘起来,再求 k 次幂得到矩阵 tmp
设点 p 最终的位置是点 o
则有[p.x, p.y, p.z, 1] * tmp[4][4] = [o.x, o.y, o.z, not_use]
下述矩阵未赋值的位置均为 0
void trans( point p ) { // p = point(tx, ty, tz)
   m[0][0] = m[1][1] = m[2][2] = m[3][3] = 1;
   m[3][0] = p.x, m[3][1] = p.y, m[3][2] = p.z;
```

```
}
void scal( point p ) { // p = point(a, b, c)
   m[0][0] = p.x, m[1][1] = p.y, m[2][2] = p.z, m[3][3] = 1;
}
void rot( point v, double af ) {
   m[][]左上角 3*3 赋值为 8.2 中 rot(v, af)的矩阵 a
   m[3][3] = 1;
}
8.4 三维凸包相关
const int mxn = 550;
const double eps = 1e-8;
int n;
struct face {
   int a, b, c;
   point v;
   //表示该面是否属于最终凸包上的面
   bool ok;
   void init() {
       v = cross(p[b] - p[a], p[c] - p[a]);
   }
};
struct CH3D {
   int num; //凸包表面的三角形数
   face F[8*mxn]; //凸包表面的三角形
   int g[mxn][mxn]; //凸包表面的边
   double area( point a, point b, point c ) {
       return cross( b - a, c - a ).len() / 2;
   }
   //四面体有向体积
   double volume( point a, point b, point c, point d ) {
       return dot( cross( b - a, c - a ), d - a ) / 6;
   }
   //点与面法向量方向关系 1 同向 0 点在面上 -1 反向
   int pside( point pt, face f ) {
       f.init();
       return dcmp( dot( f.v, pt - p[f.a] ) );
   void deal( int pt, int a, int b ) {
       int f = g[a][b]; //搜索与该边相邻的另一个平面
       face add;
       if( F[f].ok ) {
```

```
if( pside( p[pt], F[f] ) == 1 )
           dfs(pt, f);
       else {
          add.a = b;
          add.b = a;
          add.c = pt; //顺序要成右手系
          add.ok = true;
           g[pt][b] = g[a][pt] = g[b][a] = num;
           F[num++] = add;
       }
   }
void dfs(int pt, int now) { //递归搜索所有应该从凸包内删除的面
    F[now].ok = 0;
    deal( pt, F[now].b, F[now].a );
    deal( pt, F[now].c, F[now].b );
    deal( pt, F[now].a, F[now].c );
}
bool same( int s, int t ) {
   point &a = p[F[s].a];
   point \&b = p[F[s].b];
   point &c = p[F[s].c];
   return dcmp(volume(a, b, c, p[F[t].a])) == 0 &&
         dcmp( volume( a, b, c, p[F[t].b] ) ) == 0 &&
         dcmp( volume( a, b, c, p[F[t].c] ) ) == 0;
}
void create() { //构建三维凸包
   face add;
   num = 0;
   if( n < 4 ) return; //hehe</pre>
   bool flag = true;
   for( int i = 1; i < n; ++i ) { //前两点不共点
       if( dcmp((p[0] - p[i]).len()) > 0) {
           swap( p[1], p[i] );
          flag = false;
          break;
       }
   }
    if( flag ) return;
   flag = true;
   for( int i = 2; i < n; ++i ) { //前三点不共线
       if( dcmp( cross( p[0] - p[1], p[i] - p[1] ).len() ) != 0 ) {
          swap( p[2] ,p[i] );
          flag =false;
```

```
break;
       }
   }
   if( flag )return;
   flag = true;
   for( int i = 3; i < n; ++i ) { //前四点不共面
        if( dcmp( volume( p[0], p[1], p[2], p[i] ) ) != 0 ) {
           swap( p[3], p[i] );
           flag = false;
           break;
       }
   }
   if( flag ) return;
   for( int i = 0; i < 4; ++i ) {
       add.a = (i + 1) \% 4;
       add.b = (i + 2) \% 4;
       add.c = (i + 3) \% 4;
       add.ok = true;
        if( pside( p[i], add ) == 1 ) swap( add.b, add.c );
       g[add.a][add.b] = g[add.b][add.c] = g[add.c][add.a] = num;
       F[num++] = add;
   }
   for( int i = 4; i < n; ++i ) {
       for( int j = 0; j < num; ++j) {
           if( F[j].ok && pside( p[i], F[j] ) == 1 ) {
               dfs( i, j );
               break;
           }
       }
   int tmp = num; num = 0;
   for( int i = 0; i < tmp; ++i )</pre>
        if( F[i].ok )
            F[num++] = F[i];
double calarea() { //表面积
   double res=0;
   if( n == 3 )
        return area( p[0], p[1], p[2] );
   for( int i = 0; i < num; ++i )</pre>
        res += area( p[F[i].a], p[F[i].b], p[F[i].c] );
   return res;
double calvol() { //体积
```

}

```
double res = 0;
       point o( 0, 0, 0 );
       for( int i = 0; i < num; ++i )</pre>
           res += volume( p[F[i].a], p[F[i].b], p[F[i].c], o );
       return fabs( res );
   }
   //表面多边形个数
   int polygon() {
       int res = 0;
       for( int i = 0; i < num; ++i ) {</pre>
           int flag = 1;
           for( int j = 0; j < i; ++j ) {
               if( same( i, j ) ) {
                   flag = 0;
                   break;
               }
           }
           res += flag;
       }
       return res;
   }
   //三维凸包重心
   point barycenter()
       point ans(0,0,0), o(0,0,0);
       double all = 0;
       for( int i = 0; i < num; ++i ) {</pre>
           double vol = volume( p[F[i].a], p[F[i].b], p[F[i].c], o) * 6;
           ans = ans + ( o + p[F[i].a] + p[F[i].b] + p[F[i].c]) * vol / 4;
           all += vol;
       }
       ans = ans / all;
       return ans;
   double ptoface( point pt, int i ) {
       face tmp;
       tmp.a = F[i].a; tmp.b = F[i].b; tmp.c = F[i].c;
       tmp.init();
       return fabs( dot( pt - p[tmp.a], tmp.v ) ) / tmp.v.len();
   }
};
CH3D hull; //内有大数组,不宜定义在函数内
```

```
int main()
{
   while( scanf( "%d", &n ) == 1 ) {
       for( int i = 0; i < n; ++i )
           p[i].input();
       hull.create();
       point pt = hull.barycenter();
       double opt = 1e20;
       for( int i = 0; i < hull.num; ++i )</pre>
           opt = min( opt, hull.ptoface( pt, i ) );
       printf( "%.31f\n", opt );
   }
   return 0;
}
8.5 三维光线反射
1.平面反射
射线起点 S, 方向 V, 平面 p0-n
void reflect(point s, point v, point p0, point n, point &rs, point &rv) {
   rs = LinePlaneInter(s, s + v, p0, n);
   point tmp = p_plane_q(s, p0, n);
   rv = rs - tmp;
}
2.球面反射
射线起点 S, 方向 V, 球心 p, 半径 r
bool reflect(point s, point v, point p, double r, point &rs, point &rv) {
   double a = dot(v, v);
   double b = dot(s - p, v) * 2;
   double c = dot(s - p, s - p) - r * r;
   double dlt = b * b - 4 * a * c;
   if( dlt < 0 ) return false;</pre>
   double t = (-b - sqrt(dlt)) / a / 2;
   rs = s + v * t;
   point tn = p - rs;
   rv = v - tn * (dot(v, tn) * 2 / dot(tn, tn));
   return true;
}
8.6 点到直线距离
double ptoline( point p, point a, point b ) {
   return (cross( p - a, b - a )).len() / dis( a, b );
}
```

```
8.7 点到线段距离
double ptoseg( point p, point a, point b ) {
   if( dcmp(dot( p - a, b - a )) < 0 ) return dis( p, a );</pre>
   if( dcmp(dot( p - b, a - b )) < 0 ) return dis( p, b );</pre>
   return (cross( p - a, b - a )).len() / dis( a, b );
}
8.8 两直线距离
//n.len()为 0 说明直线平行
double LineDis( point a, point b, point c, point d ) {
   point n = cross(a - b, c - d);
   if( dcmp(n.len()) == 0 ) return ptoline(a, c, d);
   return fabs(dot(a - c, n)) / n.len();
}
8.9 两线段距离
double SegDis( point a, point b, point c, point d ) {
   point n = cross(a - b, c - d);
   if( dcmp(n.len()) != 0 ) {
       point cc = ptoplane(c, a, n);
       point dd = ptoplane(d, a, n);
       point res;
       if( SegCross(a, b, cc, dd, res) == 1 )
           return LineDis(a, b, c, d);
   }
   double ret = ptoseg(a, c, d);
   ret = min(ret, ptoseg(b, c, d));
   ret = min(ret, ptoseg(c, a, b));
   ret = min(ret, ptoseg(d, a, b));
   return ret;
}
8.10 直线相交判定
                 返回
                              res
1. 不相交(平行)
                      0
                              不变
2. 规范相交
                              交点
                      1
3. 非规范相交(重合)
                      2
                              不变
4. 异面不相交
                      3
                              不变
int LineCross( point a, point b, point c, point d, point &res ) {
   point n = cross(a - b, c - d);
   if( dcmp(n.len()) == 0 ) {
       if( dcmp(cross(a - b, c - b).len()) == 0 ) return 2;
       return 0;
```

```
}
   if( dcmp(ptoline(a, c, d)) == 0 ) {res = a; return 1;}
   if( dcmp(ptoline(b, c, d)) == 0 ) {res = b; return 1;}
   if( dcmp(ptoline(c, a, b)) == 0 ) {res = c; return 1;}
   if( dcmp(ptoline(d, a, b)) == 0 ) {res = d; return 1;}
   if( dcmp(dot( cross( b - a, c - a ), d - a )) != 0 ) return 3;
   n = d + n;
   point f = cross(d - c, n - c);
   double t = dot(f, c - a) / dot(f, b - a);
   res = a + (b - a) * t;
   return 1;
}
8.11 线段相交判定
   类型
                  返回
                             res
-----
1. 不相交
                             不变
                      0
2. 规范相交
                      1
                             交点
3. 非规范相交
                             不变
                      2
int SegCross(point a, point b, point c, point d, point &res) {
   int k = LineCross(a, b, c, d, res);
   if( k == 0 \mid \mid k == 3 ) return 0;
   if( k == 1 ) {
       double d1 = dot(a - res, b - res);
       double d2 = dot(c - res, d - res);
       if( d1 < 0 && d2 < 0 ) return 1;
       if( d1 == 0 && d2 <= 0 || d2 == 0 && d1 <= 0 ) return 2;
       return 0;
   }
   if( dot(a - c, b - c) \le 0 \mid | dot(a - d, b - d) \le 0
    || dot(c - a, d - a) <= 0 || dot(c - b, d - b) <= 0)
       return 2;
   return 0;
}
8.12 点关于直线的对称点
point p_line_q(point p, point a, point b) {
   point k = cross(b - a, p - a);
   if( dcmp(k.len()) == 0 ) return p;
   k = cross(k, b - a);
   return p_plane_q(p, a, k);
}
```

```
8.13 点到平面距离
//点p到平面 p0-n 的距离, 不加 fabs 是有向距离
double distoplane(point p, point p0, point n) {
   return fabs(dot(p - p0, n)) / n.len();
}
8.14 点在平面投影
//点 p 在平面 p0-n 上的投影
point ptoplane(point p, point p0, point n) {
   double d = dot(p - p0, n) / n.len();
   return p - n * d;
}
8.15 点关于平面的对称点
//点 p 关于平面 p0-n 的对称点
point p_plane_q(point p, point p0, point n) {
   double d = 2 * dot(p - p0, n) / n.len();
   return p - n * d;
}
8.16 直线与平面交点
//直线 p1-p2 到平面 p0-n 的交点
//分母(dot(n, p2 - p1))为 0 说明直线与平面平行或直线在平面上
point LinePlaneInter(point p1, point p2, point p0, point n) {
   point v = p2 - p1;
   double t = dot(n, p0 - p1) / dot(n, p2 - p1);
   return p1 + v * t;
}
8.17 线段与平面交点
//线段 p1-p2 到平面 p0-n 的交点,返回 0 说明无交点
//分母(dot(n, p2 - p1))为 0 说明线段与平面平行或直线在平面上
int SegPlaneInter(point p1, point p2, point p0, point n, point &res) {
   point v = p2 - p1;
   double t = dot(n, p0 - p1) / dot(n, p2 - p1);
   if( dcmp(t) < 0 \mid | dcmp(t - 1) > 0) return 0;
   res = p1 + v * t;
   return 1;
}
8.18 直线与平面位置关系判定
//直线 p1-p2 与平面 p0-n 的位置关系
//0:相交 1:平行 2:垂直
int LineAndPlane(point p1, point p2, point p0, point n) {
```

```
point v = p2 - p1;
   if( dcmp(dot(v, n)) == 0 ) return 1;
   if( dcmp(cross(v, n).len()) == 0 ) return 2;
   return 0;
}
8.19 两平面位置关系判定
//平面 p0-n0 和 p1-n1 的位置关系
//0:有唯一交线
              1:两平面垂直
                            2:两平面重合
                                           3:两平面平行不重合
int PlaneAndPlane(point p0, point n0, point p1, point n1) {
   if( dcmp(dot(n0, n1)) == 0 ) return 1;
   if( dcmp(cross(n0, n1).len()) == 0 ) {
       if( dcmp(dot(n0, p1 - p0)) == 0 ) return 2;
       return 3;
   }
   return 0;
}
8.20 平面交线
//平面 p0-n0 和 p1-n1 的交线, 仅知道这 4 个量的时候, 返回直线是向量式
bool PlaneCross(point p0, point n0, point p1, point n1, point &s, point &v) {
   v = cross(n0, n1);
   if( dcmp(v.len()) == 0 ) return false;
   point tmp = p0 + rot(n0, v, 90);
   s = LinePlaneInter(p0, tmp, p1, n1);
   return true;
}
8.21 平面距离
//平面 p0-n0 和 p1-n1 的距离
double PlaneDis(point p0, point n0, point p1, point n1) {
   if( PlaneAndPlane(p0, n0, p1, n1) != 3 ) return 0;
   return fabs(dot(p1 - p0, n0)) / n0.len();
}
8.22 点在空间三角形内判定
//判断点 p 是否在△abc 中,包括边界
bool PointInTri(point p, point a, point b, point c) {
   double area0 = cross(b - a, c - a).len();
   double area1 = cross(a - p, b - p).len();
   double area2 = cross(b - p, c - p).len();
   double area3 = cross(c - p, a - p).len();
   return dcmp(area1 + area2 + area3 - area0) == 0;
}
```

```
8.23 线段和空间三角形的位置关系
//线段 p1-p2 是否与三角形 abc 相交
bool SegTriInter(point p1, point p2, point a, point b, point c, point &res) {
   point n = cross(b - a, c - a);
   if( dcmp(dot(n, p2 - p1)) == 0 ) return false;
   //线段与三角形所在平面平行或重合,如果这种情况也算相交再求线段交点即可
   double t = dot(n, a - p1) / dot(n, p2 - p1);
   if( dcmp(t) < 0 \mid | dcmp(t - 1) > 0) return false;
   res = p1 + (p2 - p1) * t;
   return PointInTri(res, a, b, c);
}
8.24 经纬度坐标转笛卡尔坐标
//lat 纬度 -90 ~ 90 lng 经度 -180 ~ 180 R 球体半径
void get(double lat, double lng, double &x, double &y, double &z) {
   lat = lat * pi / 180;
   lng = lng * pi / 180;
   x = R * cos(lat) * cos(lng);
   y = R * cos(lat) * sin(lng);
   z = R * sin(lat);
}
8.25 球面距离
//ab 是笛卡尔坐标
double cal(point a, point b, double R) {
   double d = (a - b).len();
   return 2 * R * asin(d/(2*R));
}
九: 数据结构优化算法
9.1 K-D 树
int K = 2; //维数
struct kdNode {
   LL x[5];
   int div, id;
};//优先队列里保存的 pair 带有点 id, 有了 id 干什么都随便了
int cmpNo;
int cmp( kdNode a, kdNode b ) {
   return a.x[cmpNo] < b.x[cmpNo];</pre>
}
```

```
LL dis2( kdNode& a, kdNode& b ) {
   LL res = 0;
   for( int i = 0; i < K; ++i )
       res += (a.x[i] - b.x[i]) * (a.x[i] - b.x[i]);
   return res;
}
void buildKD( int 1, int r, kdNode* p, int d ) {
   if( 1 > r ) return;
   int m = (1 + r) >> 1;
   cmpNo = d;
   nth_element(p+1,p+m,p+r+1,cmp);
   p[m].div = d;
   buildKD( 1, m - 1, p, (d + 1) % K );
   buildKD( m + 1, r, p, (d + 1) % K );
//n 个点 编号 0 ~ n-1, 建树调用 buildKD(0,n-1,kp,0); kp 是 kdNode 点集
priority_queue<pair<LL,int> > Q; //(距离平方, 点的 id)
void KNN( int 1, int r, kdNode tar, kdNode* p, int k ) {
   if(l > r) return;
   int m = (1 + r) >> 1;
   pair<LL,int> v = MP(dis2(p[m], tar), p[m].id);
   if( Q.size() == k && v < Q.top() ) Q.pop();</pre>
   if( Q.size() < k ) Q.push(v);</pre>
   LL t = tar.x[ p[m].div ] - p[m].x[ p[m].div ];
   if( t <= 0 ) {
       KNN(1, m - 1, tar, p, k);
       if( Q.top().first > t * t )
           KNN(m+1, r, tar, p, k);
   else if( t > 0 ) {
       KNN(m + 1, r, tar, p, k);
       if( Q.top().first > t * t )
           KNN(1, m - 1, tar, p, k);
   }
//调用 KNN(0,n-1,tar,kp,k) 查找 tar 点的 k 个临近点,存在 Q 中
```

十: 其他

10.1 欧拉四面体公式

建立 x, y, z 直角坐标系。设 A、B、C 坐标分别为(a1,b,1,c1),(a2,b2,c2),(a3,b3,c3), 四面体 O-ABC 的六条棱长分别为 l,m,n,p,q,r (有向体积, 注意取 fabs)

$$V^{2} = \frac{1}{36} \begin{vmatrix} p^{2} & \frac{p^{2} + q^{2} - n^{2}}{2} & \frac{p^{2} + r^{2} - m^{2}}{2} \\ \frac{p^{2} + q^{2} - n^{2}}{2} & q^{2} & \frac{q^{2} + r^{2} - l^{2}}{2} \\ \frac{p^{2} + r^{2} - m^{2}}{2} & \frac{q^{2} + r^{2} - l^{2}}{2} & r^{2} \end{vmatrix}$$

```
10.2 simpson 数值积分
double f(double x) {
    return y = //函数值
}
double simpson(double x, double y) {
    return (f(x) + f(y) + f((x+y) / 2) * 4.0) / 6.0 * (y - x);
}
double rsimpson(double x, double y) { //积分区域是[x,y]
    double m = (x + y) / 2;
    double res = simpson(x, y), 1 = simpson(x, m), r = simpson(m, y);
    if( fabs(res-1-r) < eps*15 )
        return res;
    return rsimpson(x, m) + rsimpson(m, y);
}
```

10.3 常用积分公式

1. 弧长公式

有弧y = f(x),则弧长 $L = \int sqrt(1 + y'^2)$

2. 第一类曲线积分

设函数 f(x,y)在曲线 L 上有定义, L 的参数方程为

x = x(t), y = y(t)

則 $\int f(x,y)ds = \int f[x(t),y(t)] * sqrt(x'(t)^2 + y'(t)^2) dt$

3. 不定积分

- 1) $\int kdx = kx+c$
- 2) $\int x^u dx = (x^(u+1))/(u+1)+c$
- 3) $\int 1/x dx = \ln|x| + c$
- 4) $\int a^x dx = (a^x)/\ln a + c$
- 5) $\int e^x dx = e^x + c$
- 6) $\int \sin x dx = -\cos x + c$
- 7) $\int \cos x dx = \sin x + c$
- 8) $\int 1/(\cos x)^2 dx = \tan x + c$
- 9) $\int 1/(\sin x)^2 dx = -\cot x + c$
- 10) $\int 1/\sqrt{(a^2-x^2)}dx = \arcsin(x/a)+c$
- 11) $\int 1/(a^2+x^2)dx = 1/a*arctan(x/a)+c$
- 12) $\int 1/(a^2-x^2)dx = (1/(2a))\ln|(a+x)/(a-x)|+c$
- 13) $\int \operatorname{secxdx} = \ln|\operatorname{secx+tanx}| + c$
- 14) $\int \sec^2 x \, dx = \tan x + c$;
- 15) $\int shx dx = chx+c;$
- 16) $\int chx dx = shx+c;$
- 17) $\int thx dx = ln(chx)+c;$
- 18) $\int 1/(1+x^2) dx = arctanx+c$
- 19) $\int 1/\sqrt{(1-x^2)} dx = \arcsin x + c$
- 20) $\int \tan x \, dx = -\ln|\cos x| + c$
- 21) $\int \cot x \, dx = In|\sin x|+c$
- 22) $\int \sec x \, dx = In|\sec x + \tan x| + c$
- 23) $\int \csc x \, dx = In|\csc x \cot x| + c$
- 24) $\int 1/\sqrt{(x^2+a^2)} dx = In(x+\sqrt{(x^2+a^2)})+c$
- 25) $\int 1/\sqrt{(x^2-a^2)} dx = |In(x+\sqrt{(x^2-a^2)})|+c$

10.4 三角函数

稀有函数

正割(sec)等于斜边比邻边; secA = c/b = 1 / cosA

余割(csc)等于斜边比对边。cscA = c/a = 1 / sinA

sinh / 双曲正弦: sh(x) = [e^x - e^(-x)] / 2

cosh / 双曲余弦: ch(x) = [e^x + e^(-x)] / 2

tanh / 双曲正切: th(x) = sh(x) / ch(x)=[e^x - e^(-x)] / [e^x + e^(-x)]

 $coth / 双曲余切: coth(x) = ch(x) / sh(x) = [e^x + e^(-x)] / [e^(x) - e^(-x)]$

sech / 双曲正割: sech(x) = 1 / ch(x) = 2 / [e^x + e^(-x)]

csch / 双曲余割: csch(x) = 1 / sh(x) = 2 / [e^x - e^(-x)]

```
两角和与差的三角函数:
cos(\alpha + \beta) = cos\alpha \cdot cos\beta - sin\alpha \cdot sin\beta
cos(\alpha - \beta) = cos\alpha \cdot cos\beta + sin\alpha \cdot sin\beta
sin(\alpha + \beta) = sin\alpha \cdot cos\beta + cos\alpha \cdot sin\beta
sin(\alpha - \beta) = sin\alpha \cdot cos\beta - cos\alpha \cdot sin\beta
tan(\alpha + \beta) = (tan\alpha + tan\beta) / (1 - tan\alpha \cdot tan\beta)
tan(\alpha - \beta) = (tan\alpha - tan\beta) / (1 + tan\alpha \cdot tan\beta)
二倍角公式:
sin(2\alpha) = 2sin\alpha \cdot cos\alpha
cos(2\alpha) = cos^2(\alpha) - sin^2(\alpha) = 2cos^2(\alpha) - 1 = 1 - 2sin^2(\alpha)
tan(2\alpha) = 2tan\alpha/[1-tan^2(\alpha)]
倍角公式:
sin3\alpha = 3sin\alpha - 4sin^3(\alpha)
cos3\alpha = 4cos^3(\alpha) - 3cos\alpha
半角公式:
sin^2(\alpha/2) = (1-cos\alpha)/2
\cos^2(\alpha/2) = (1+\cos\alpha)/2
tan^2(\alpha/2) = (1-cos\alpha)/(1+cos\alpha)
tan(\alpha/2) = sin\alpha/(1+cos\alpha) = (1-cos\alpha)/sin\alpha
万能公式:
半角的正弦、余弦和正切公式 (降幂扩角公式)
sin\alpha = 2tan(\alpha/2) / [1+tan^2(\alpha/2)]
\cos\alpha = [1-\tan^2(\alpha/2)] / [1+\tan^2(\alpha/2)]
tan\alpha = 2tan(\alpha/2) / [1-tan^2(\alpha/2)]
积化和差公式:
\sin\alpha \cdot \cos\beta = (1/2)[\sin(\alpha+\beta) + \sin(\alpha-\beta)]
\cos\alpha \cdot \sin\beta = (1/2)[\sin(\alpha+\beta) - \sin(\alpha-\beta)]
\cos\alpha \cdot \cos\beta = (1/2)[\cos(\alpha+\beta) + \cos(\alpha-\beta)]
\sin\alpha \cdot \sin\beta = -(1/2)[\cos(\alpha+\beta) - \cos(\alpha-\beta)]
和差化积公式:
sin\alpha + sin\beta = 2sin[(\alpha+\beta)/2]cos[(\alpha-\beta)/2]
sin\alpha - sin\beta = 2cos[(\alpha+\beta)/2]sin[(\alpha-\beta)/2]
cos\alpha + cos\beta = 2cos[(\alpha+\beta)/2]cos[(\alpha-\beta)/2]
\cos \alpha - \cos \beta = -2\sin[(\alpha+\beta)/2]\sin[(\alpha-\beta)/2]
```