4.4, 4.5 HW MS

1. (a) nucleophilic addition

(b) (i) 2-hydroxybutanenitrile

1

[11]

4

1

(ii) 2

$$C \longrightarrow C$$
 O
 O
 O
 O
 O
 O

(allow 1 for amide even if not C_4H_7NO , i.e. $RCONH_2$) (if not amide, allow one for any isomer of C_4H_7NO which shows geometric isomerism)

(c) (i) 1

(ii) 1

(iii) CH₃CH=CHCOOH 1

- **2.** (a) (i) 2, 3 dimethylbutan 2 ol (1)
 - (ii) elimination (1)

Mechanism

(iii) Structure

$$H_2C = C CH(CH_3)_2$$

$$CH_3 (1)$$

Name of isomer 2, 3 – dimethylbut – 1 – ene (1)

Explanation loss of H^+ or H (1)

from end C also possible (1) 10

(b) (i) Equation OCOCH₃ $(CH_3)_2C - CH(CH_3)_2 + CH_3COC1 \rightarrow (CH_3)_2C - CH(CH_3)_2 + HC1$ (1)

Name of mechanism addition – elimination (1)

Mechanism

(ii) Type of reaction esterification (1) Reagent(s) CH₃COOH or ethanoic acid (1) Conditions strong acid catalyst (1) or H_2SO_4 or HCL

[19]

9

3. (a) (i) propyl methanoate (1)

not propanyl

N A wrong reagent or no reagent scores zero

N An incomplete reagent such as silver nitrate for Tollens, or potassium dichromate loses the reagent mark, but can get both observation marks

N penalise observations which just say colour change occurs or only state starting colour

(ii) Reagent: NaHCO₃ (1)

Observation with C: no reaction (1)
Observation with D: effervescence (1)
for C and D NOT Tollens

4

Test	an identified (hydrogen) carbonate	acidified K ₂ Cr ₂ O ₇	acidified KMnO ₄	correct metal	UI or stated indicator	PCl ₅
Observation with C	no reaction	goes green	goes colourless	no reaction	no change	no reaction
observation with D	bubbles or CO ₂	no change	no change	bubbles or H ₂	red or correct colour pH 3 – 6.9	(misty) fumes

(b) (i) Reagent: pentan-2-one (1) or 2-pentanone but not pent-2-one or pentyl

(ii) Reagent: Tollen's or Fehling's (1)

only answer

Observation with E: no reaction (1)

Observation with F: silver mirror or red ppt (1)

4

for E and F

Test	Tollens	Fehlings or Benedicts	iodoform or I ₂ /NaOH	acidified K ₂ Cr ₂ O ₇	Schiff's
observation with E	no reaction	no reaction	yellow (ppt)	no change	no reaction
observation with F	silver or mirror or grey or ppt	red or ppt not red solution	no reaction	goes green	goes pink

(c)
$$H$$
 (1) 1

 CH_3CH_2 — C — CHO
 CH_3
 CH_3

[9]

- 4. **B**: propanoyl chloride (or consequentially on part (a) (ii)) (1) (a) (i)
 - C: propanoic anhydride (or consequentially on part (a) (ii)) (1)

2

[11]

do not allow formulae

effervescence / misty fumes / steamy fumes / fumes / (ii) solution becomes warm / fizzing not just gas (1) 1

(iii)

$$H \longrightarrow \begin{bmatrix} & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

(the minimum necessary for the mark is C=O and C-N shown)

- (iv) $(CH_3CH_2CO)_2O + H_2O \longrightarrow 2CH_3CH_2COOH (1)$ 1 allow C₂H₅.....
- (b) (i) methanol (1) methyl propanoate (or consequentially on part (a) (ii)) (1) 2 do **not** allow formulae
 - A: in presence of (concentrated) sulphuric acid (ii) / H₂SO₄ / strong acid / gaseous hydrogen chloride or HCl allow dilute H_2SO_4 (1)

heat / reflux (but only if first mark awarded) (1) allow 1 mark for acidic conditions / H+ and heat

B: room temperature / in the cold / not heated / cooling **not** acid (1)

C: heat / reflux not acid (1) 4

5. (a) (i)

(a) (i)
$$CH_3 - CH - CH_2CH_3 + CH_3COOH \rightarrow CH_3 - C CH_3 + H_2O CH_2CH_3$$

(1) $CH_3 - CH - CH_2CH_3 + CH_3COOH \rightarrow CH_3 - C CH_3 + H_2O CH_2CH_3$

- ester (1) (ii) solvent, flavourings (1)
- (iii) conc $\cap H_2SO_4$ (1) in same physical state (1) 6

(b)
$$C_4H_{10}O + 6O_2 \rightarrow 4CO_2 + 5H_2O$$
 (1)

(c) (i)

(ii) two H on carbon in double bond (1)

(iii)
$$CH_3$$
 CH_3 CH_3 CH_3 H $C = C$

H

 $C = C$
 C
 CH_3
 CH_3

cis but-2-ene (1) trans but-2-ene

7 **[14]**

Type of reaction reduction (1) 2

(b) (i)
$$Reagents(s)$$
 $K_2Cr_2O_7$ (1) H_2SO_4 (1) $Conditions$ reflux (1)

(ii)
$$CH_3CH_2CH_2OH + 2[O] \rightarrow CH_3CH_2COOH + H_2O$$
 (1) 4

- (d) (i) mirror images (1)
 - (ii) plane polarized light (1)
 rotated in opposite directions (1)

 3

(e) (i) Structure
$$CH_3CH_2C$$
OCH $_2CH_2CH_3$ (1)

Name propyl propanoate (1)

(ii) $H-C$
OCH $_2CH_3$ (1)

(f)
$$CH_3CH_2CO \text{ or } C_3H_6O + 4 O_2 \xrightarrow{(1)} \rightarrow 3 CO_2 + 3H_2O \text{ (1)}$$
 2 [16]

7. (a) (i) correct graphical formula for tertiary alcohol allow CH_3 not C_2H_5 (1)

2-methylbutan-2-ol / 2-hydroxy-2-methylbutane / 2-methyl-2-hydroxybutane award name mark even if it follows incorrect formula (1)

2

- (ii) graphical formula of pent-1-ene (1)
 - graphical formula of pent-2-ene (1)

2

- accept geometrical isomers of pent-2-ene if clearly shown to be different
- (iii) dehydration / elimination (1)

1

- (iv) no H atoms on C atom next to C–OH / three methyl groups on C (1)
- (b) (i) ethanenitrile / ethanonitrile / methyl cyanide / cyanomethane / acetonitrile (1)

1

(ii) any hydrolysis (1)

1

2

(iii) CH₃COCl + CH₃NH₂ ® CH₃CONHCH₃ + HCl

for correct formula of methylamine / HCl product (1) $\,$

overall correct (1)

[10]

8. (a) NaBH₄ (1)

1

(b) nucleophilic addition (1)

5

4

2

- (c) (i) hexanedioic acid (1)
 - (ii) $C_6H_{10}O \rightarrow C_6H_{10}O_4$ $Mr = 98 \ (1)$ $Mr = 146 \ (1)$

2.40 g $\rightarrow \frac{2.40}{98} \times 146 = 3.58 \text{ g (1)}$

[10]

9. (a) (i) ethyl ethanoate

1)

(ii) esterification / condensation / addition - elimination (1)

(b) (i) aqueous / dilute sulphuric / hydrochloric acid (allow HCl(aq); H_2SO_4 (aq) $\frac{not}{not} \ water) \ (1)$ temp. $< 100^\circ$ / warm / heat / reflux (this mark dependent on sensible reagent) (1)

2

- (ii) $CH_3COOC_2H_5 + H_2O \rightarrow CH_3COOH + C_2H_5OH$ (allow $C_4H_8O_2$, $C_2H_4O_2$ but must have C_2H_5OH) (1)
- (c) (i) sodium hydroxide / sodium carbonate / sodium hydrogen carbonate (allow formula) (1)

room temperature / aqueous (2nd mark dependent on correct reagent) (1) 2

(ii) ethanoic anhydride

2

(methyl groups can be shown as -CH₃ but the C-C bond must be drawn)

(iii) addition of water / hydrolysis (1) $(CH_3CO)_2O + H_2O \rightarrow 2CH_3COOH$ (1)

(d) (i) ethanamide **not** ethylamide.

2

2

(ii) ammonia (not if dilute implied) / ammonium carbonate /PCl₅ followed by NH₃ (allow formulae) (1)

heat or temperature $< 100^{\circ}$ (1)

(iii) $CH_3CONH_2 + HCl + H_2O \rightarrow CH_3COOH + NH_4Cl$ (1)

[17]

10.	(a)	(i)	An appropriate alkene; CH ₃ CH ₂ CHCH ₂ or (CH ₃) ₂ CCH ₂	1			
			Isomer 1	1			
			Isomer 2	1			
(Position isomerism	1				
			Mechanism				
			electrophilic attack and electron shift to Br (Unless H ⁺ used)	1			
			carbocation	1			
			reaction with carbocation	1			
			[Allow mechanism marks for the alkene CH ₃ CHCHCH ₃]				
		[Allow one mark if mechanism for minor product given]					
		(ii)	An appropriate carbonyl; CH ₃ CH ₂ CHO	1			
			Mechanism nucleophilic attack and electron shift to O	1			
			anion intermediate	1			
			reaction with anion	1			
			[Allow mechanism marks for the carbonyl $(CH_3)_2CO$]				
			Isomer 1	1			
			Isomer 2	1			
			Optical isomerism	1			
			NB Isomer structures must be tetrahedral				
		NB Penalise "stick" structures once in part (a)					
		(b) QoL Large charge on carbonyl carbon atom due to bonding to O and C					
		(0)	Nucleophiles have electron pairs which can be donated	1 1			
			Equation Species	1			
			Balanced	1			
					[18]		