SYDNEY TECHNICAL HIGH SCHOOL

EXTENSION 1 MATHEMATICS PRELIMINARY ASSESSMENT TASK 2

2010

Time	Allowed:	70	minutes
A REEF T	Z MILO IV Cu.	7 0	

Instructions:

- Write using blue or black pen.
- Approved calculators may be used.
- Attempt all questions.
- All necessary working must be shown. Marks may not be awarded for careless or badly arranged work.
- Marks indicated are a guide only and may be varied if necessary.
- PLEASE START EACH NEW QUESTION ON A NEW PAGE

Name:			reacher:		
Q1 /10	/10	Q3 /10	Q4 /10	Q5 /10	Q6 /10

Total	
	/60

Question 1

Find the values of k such that $x^2 + (k+1)x + 4 = 0$ has real roots. a)

3

 $\lim_{x \to 3} \frac{2x^2 + x - 21}{x^2 - 3x}$ b) Evaluate

2

Differentiate $y = \sqrt{2x - 1}$ (i) c)

2

(ii) Hence find the equation of the normal to the above function at x = 1. 3

Question 2

d)

(i)

If $sinx = \frac{2}{3}$ and $cosy = \frac{1}{9}$, where angles x and y are acute, show

2

 $\cos(x - y) = \frac{\sqrt{5}}{3}$ (ii) cosy - cos2x = 0

2

Find the acute angle between the lines x = 2 and $y = \frac{1}{\sqrt{3}}x + 2$ b)

2

Let $t = \tan \frac{\theta}{2}$ and then use the 't' results to prove c)

3

$$sec\theta - tan\theta = \frac{1}{sec\theta + tan\theta}$$

1

For which x value(s) is the function not differentiable?

Question 3

Marks

- a) If α and β are the roots of the equation $2x^2 13x + 9 = 0$,
 - (i) Show that $(\alpha + 1)(\beta + 1) = 12$

2

(ii) Find the quadratic equation with integer coefficients which has roots $\alpha + 1$ and $\beta + 1$.

2

b) Show that the line $y = mx - m^2$ is a tangent to the parabola $y = \frac{x^2}{4}$ for all real m.

2

c) Use differentiation by first principles to find the derivative of $f(x) = x^2 - 5x$.

3

d) If the discriminant of a quadratic equation has the value of 36, what conclusion can you make about the 2 distinct real roots of the equation?

1

Question 4

c)

a) (i) Expand tan(A + B)

value of p.

1

(ii) Find the exact value of tan105° (do not rationalise denominator)

2

b) Differentiate $y = \frac{1+2x}{1-2x}$ and give your answer as a fully simplified algebraic fraction.

2

3

d) At what point(s) on the curve $y = x^2 - 2x - 1$ is the tangent parallel to the line y = x.

If the difference between the roots $2x^2-12x+p+2=0$ is equal to 2, find the

2

Quest	tion 5		Marks
a)	Solve	$2\cos^2 x = \sin 2x \text{ for } 0 \le x \le \pi.$	3
b)		the ratio in which the point $(\frac{7}{9}, \frac{-2}{9})$ divides the interval joining $(3, -6)$ $(-2,7)$.	3
c)	(i)	Express $cos x + \sqrt{3} sin x$ in the form $Acos(x - \alpha)$ where $A > 0$ and $0 \le \alpha \le \frac{\pi}{2}$.	2
	(ii)	Hence solve $\cos x + \sqrt{3}\sin x = 1$ for $-\pi < x < \pi$	2.

.

Question 6

Marks

a) Solve
$$9^x - 7(3^x) - 18 = 0$$

2

b) Show that $(p + 3)x^2 - px + 1$ can never be negative definite.

3

c)

The angle of elevation of a tower PQ, of height h metres, at a point A due east of it is 12° . From another point B, the bearing of the tower is $015^{\circ}T$ and the angle of elevation is 11° . The points A and B are 1000m apart and on the same level as the base Q of the tower.

(i) By sketching a top view diagram show that $\angle AQB$ is 105°.

1

(ii) Show that AQ = htan78.

1

(iii) Calculate h to the nearest metre.

3

Teacher's Name: Student's Name/N	***************************************
Prelim. Ass. Task 2-	Extension 1-2010
Question	
a) Real roots if $\Delta > 0$	b) $\lim_{x \to 2} \frac{2x^2 + x - 21}{x^2 + x - 21}$
$\frac{(k+1)^2-4x1x4}{(k^2+2k+1-16)}$	$\begin{array}{ccc} x \rightarrow 3 & x^2 - 3x \\ \text{lin} & (2x + 7)(x - 3) \end{array}$
$k^2 + 2k - 15 > 0$	$x \rightarrow 3$ $x(x \rightarrow 3)$
(k-3)(k+5) > 0	13
$k \geqslant 3, k \leq -5$	= 3
c) ci) $y = \sqrt{2x-1}$ cii) y	$1 = \sqrt{2x-1}$
$=(2x-1)^{2}$	$+ \infty = 1$
1	1 = 1 = 1 (m of to
	$\frac{y}{x} = \frac{1}{x}$
· ·	- =-'(x-1)
OC .	y = -x + 2 x + y - 2 = 0
V I	2+ / 2-0
Question 2	_ F
a) (i) $\cos(3(-y) = \cos x \cos y + s$	indesiny
3 2 9 180	
	*
$= \frac{1}{2} \times \frac{1}{9} + \frac{2}{3}$	- x \sqrt{80}
$= \sqrt{5} + 2\sqrt{80}$	
27	
$= \sqrt{5 + 2 \times 4}$	·
- 91 5 - [5
27	3

Teacher's Name:

Student's Name/N°:

(ii)
$$\cos y - \cos 2x$$

= $\cos y - (2\cos^2 x - 1)$
= $\frac{1}{7} - (2x(\frac{1}{7})^2 - 1)$
= $\frac{1}{7} - (\frac{1}{9} - 1)$
= $\frac{1}{7} - \frac{1}{7}$
= 0

c)
$$\frac{\sec 0 - \tan 0}{1+t^2}$$
 $\frac{1+t^2}{1-t^2}$
 $\frac{1+t^2}{1-t^2}$
 $\frac{1-t^2}{1-t^2}$
 $\frac{1-t^2}{1-t^2}$

$$= \frac{1}{1+\frac{1}{2}} + \frac{2+}{1-+2}$$

$$= \frac{1}{1-+2} + \frac{2+}{1-+2}$$

$$= \frac{1}{1++2} + \frac{2+}{1-+2}$$

$$= \frac{1}{1++2} + \frac{2+}{1-+2}$$

$$= \frac{1}{1++2} + \frac{2+}{1+2}$$

$$= \frac{1}{1++2} + \frac{2+}{1+2}$$

$$= \frac{1}{1++2} + \frac{2+}{1+2} + \frac{2+}{1+2}$$

$$= \frac{1}{1++2} + \frac{2+}{1+2} + \frac{$$

$$d) x = b, c, e$$

Question 3
a) (i)
$$(4+1)(\beta+1)$$

 $= 2\beta + (x+\beta) + 1$
 $= 4\frac{1}{2} + 6\frac{1}{2} + 1$
 $= 12$

cii)
$$x^2 - (sun of coots) + produce$$

Sum of coots is
 $x + 1 + \beta + 1 = 2 + \frac{12}{2} = 8\frac{1}{7}$
 $x^2 - 8\frac{1}{2}x + 12 = 0$
 $2x^2 - 17x + 24 = 0$

Student's Name/N°: Teacher's Name: an eously are

Teacher's Name: Student's Name/No:

Δ

Teacher's Name: Student's Name/No: vestion

- 1

