# CALCULUS & ANALYTICAL GEOMETRY II

# LECTURE 24 WORKSHEET

Spring 2021

Subhadip Chowdhury

Math 112

# §A. Introduction

First recall the Monotone Convergence Theorem that we discussed last time.

#### Theorem A.1: Monotone Convergence Theorem

If a sequence  $\{a_n\}$  is monotone and bounded, then it converges.

So we can see that there are two ways a sequence can diverge:

- Either the sequence is unbounded. For example,  $a_n = 2^n$ .
- Or the sequence is bounded, but oscillating. For example,  $a_n = (-1)^n$ .

We can use similar ideas to show that a series is divergent.

#### Example A.2

Consider the series  $\sum_{i=1}^{\infty} \frac{1}{\sqrt{i}}$ . We can write

$$s_n = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{n}} + \dots + \frac{1}{\sqrt{n}} = \frac{n}{\sqrt{n}} = \sqrt{n}$$

So the sequence  $s_n$  is unbounded, and  $\lim_{n\to\infty} s_n$  does not exist.

#### Example A.3

Consider the harmonic series  $\sum_{i=1}^{\infty} \frac{1}{i}$ . We are going to show that it is divergent. Observe that we can write

$$\begin{split} s_2 &= 1 + \frac{1}{2} \\ s_4 &= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) > 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) = 1 + \frac{1}{2} + \frac{1}{2} \\ s_8 &= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) > 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) = 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{3}{2} \\ s_{16} &= 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \dots + \frac{1}{8}\right) + \left(\frac{1}{9} + \dots + \frac{1}{16}\right) \\ &> 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \dots + \frac{1}{8}\right) + \left(\frac{1}{16} + \dots + \frac{1}{16}\right) \\ &= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 1 + \frac{4}{2} \end{split}$$

So in general,  $s_{2^n} > 1 + \frac{n}{2}$ . This shows that  $s_n \to \infty$ , because it's unbounded! Therefore the harmonic series diverges.

# §B. Convergence/Divergence Tests for Series

We have the Monotone Convergence Theorem that gives us a nice criterion for knowing when a sequence converges. Next we will investigate if there are similar tests to check when a series converges or diverges. Let's start with the following claim.

#### Theorem B.4

If a series  $\sum_{i=1}^{\infty} a_i$  is convergent, then  $\lim_{a_i} = 0$ .

#### Question 1.

Let's prove the theorem above. If  $\sum_{i=1}^{\infty} a_i$  is convergent, then  $\lim_{n\to\infty} s_n = L$  exists. Now write

$$a_n = s_n - s_{n-1}$$

Does that make sense? What can you say about  $\lim_{n\to\infty} a_n$ ?

**Warning:** This theorem does not say that if  $\lim_{a_i} = 0$ , then  $\sum_{i=1}^{\infty} a_i$  is convergent. Harmonic series is a clear counterexample. For example,



If I'm not in California, then I'm not in Los Angeles.  $\leftarrow$  True If I'm in California, then I'm in Los Angeles. ← False

So we have the first test for convergence.

#### **DIVERGENCE TEST**

### **Theorem B.5: Divergence Test**

If  $\lim_{n\to\infty} a_n \neq 0$ , then  $\sum_{i=1}^{\infty} a_i$  is divergent.

#### ■ Question 2.

Show that the series  $\sum_{i=1}^{\infty} \frac{i^2}{3i^2 - 6i + 2}$  is divergent.

### **INTEGRAL TEST FOR POSITIVE SERIES**

Consider  $\sum_{i=1}^{\infty} \frac{1}{i^2}$ . There is a relationship between this series and the improper integral  $\int_{1}^{\infty} \frac{1}{x^2} dx$ .



$$s_n = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots + \frac{1}{n^2} < 1 + \int_{1}^{n+1} \frac{1}{x^2} dx$$

Because we know  $\lim_{n\to\infty} \int_{1}^{n+1} \frac{1}{x^2} dx = \int_{1}^{\infty} \frac{1}{x^2} dx < \infty$ , we have that the sequence of partial sums for  $\sum_{i=1}^{\infty} \frac{1}{i^2}$  is bounded. Hence, this series converges.

Observe that we can also use the upper Riemann sum to set up an upper bound for the integral as follows:

$$\int_{1}^{n+1} \frac{1}{x^2} dx < 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$

which is not very useful for comparison here, but may be useful in case we want to test for divergence. Combining these observations, we get the following test for convergence.

### Theorem B.6: Integral Test

Suppose f is a

- continuous
- positive
- decreasing

function on  $[1, \infty)$  and let  $a_i = f(i)$  for i = 1, 2, 3, ...

Then the series  $\sum_{i=1}^{\infty} a_i$  is convergent if and only if the improper integral  $\int_{1}^{\infty} f(x) dx$  is convergent.

■ Question 3. *p*-series

Describe the convergence and divergence of the p-series for different values of the constant p.

$$\sum_{i=1}^{\infty} \frac{1}{i^p}$$

■ Question 4.

First make sure that the integral test is applicable for the following series. Then use it to test the convergence of the following series:

$$(a) \quad \sum_{i=1}^{\infty} \frac{1}{2i+3}$$

(b) 
$$\sum_{i=1}^{\infty} \frac{e^{-i}}{1 + e^{-2i}}$$

$$(c) \quad \sum_{i=1}^{\infty} \frac{\ln(i)}{i^2}$$