ECNU ICPC

Team Reference Document

F0RE1GNERS March 2019

Contents

1		Thing First
	1.1 1.2	Header
2	Data	Structure 2
_	2.1	RMQ
	2.2	Segment Tree Beats
	2.3	Segment Tree
	2.4	K-D Tree
	2.5	STL+
	2.6	BIT
	2.7	Trie
	2.8	Treap
	2.9	·
	2.10	Cartesian Tree
	2.10	
	2.11	
	2.12	
	2.14	Persistent Union Find
3	Math	
	3.1	Multiplication, Powers
	3.2	Matrix Power
	3.3	Sieve
	3.4	Prime Test
	3.5	Pollard-Rho
	3.6	Berlekamp-Massey
	3.7	Extended Euclidean
	3.8	Inverse
	3.9	Binomial Numbers
	3.10	NTT, FFT, FWT
	3.11	Simpson's Numerical Integration
	3.12	Gauss Elimination
	3.13	Factor Decomposition
	3.14	Primitive Root
	3.15	Quadratic Residue
	3.16	Chinese Remainder Theorem
	3.17	Bernoulli Numbers
	3.18	Simplex Method
	3.19	BSGS
4	Cron	h Theory 18
4		······································
	4.1	LCA
	4.2	Maximum Flow
	4.3	Minimum Cost Maximum Flow
	4.4	Path Intersection on Trees
	4.5	Centroid Decomposition (Divide-Conquer)
	4.6	Heavy-light Decomposition
	4.7	Bipartite Matching
	4.8	Virtual Tree
	4.9	Euler Tour 22
	4.10	SCC, 2-SAT
	4.11	Topological Sort
	4.12	General Matching
	4.13	Tarjan
	4.14	Bi-connected Components, Block-cut Tree
	4.15	Minimum Directed Spanning Tree
	4.16	Cycles
	4.17	Dominator Tree
	4.18	Global Minimum Cut
5	Geon	netry 26
-	5.1	2D Basics
	5.2	Polar angle sort
	5.3	Segments, lines
	5.4	Polygons
	5.4	
	3.3	Half-plane intersection

```
5.7
   5.10
   5.11
   5.12
6
  String
       Aho-Corasick Automation
   6.1
   6.2
       Miscellaneous
   First Thing First
1.1 Header
 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 using LL = long long;
 4 #define FOR(i, x, y) for (decay<decltype(y)>::type i = (x), _##i = (y)
      ; i < \#i; ++i)
 5 #define FORD(i, x, y) for (decay<decltype(x)>::type i = (x), _##i = (y
       ); i > \#i; -- i)
 6 #ifdef zerol
 7/4 define dbg(x...) do { cout << "\033[32;1m" << #x << " -> "; err(x); }
        while (0)
 8 void err() { cout << "\033[39;0m" << endl; }
 9 template < template < typename ... > class T, typename t, typename ... A>
 void \operatorname{err}(T < t > a, A ... x) { for (auto v: a) \operatorname{cout} << v << ' '; \operatorname{err}(x ...)
 11 template<typename T, typename ... A>
 void err (T a, A... x) { cout \ll a \ll ''; err (x...); }
```

1.2 55kai

13 #else

15 | #endif

14 #define dbg(...)

2 Data Structure

2.1 RMQ

```
1 int f [maxn] [maxn] [10] [10];
| 2 | inline int highbit (int x) { return 31 - __builtin_clz(x); }
s in line int calc(int x, int y, int xx, int yy, int p, int q) {
      return max(
          \max(f[x][y][p][q], f[xx - (1 << p) + 1][yy - (1 << q) + 1][p][
           \max(\hat{f}[xx - (1 \ll p) + 1][y][p][q], f[x][yy - (1 \ll q) + 1][p][
9 void init() {
      FOR (x, 0, highbit(n) + 1)
      FOR (y, 0, highbit(m) + 1)
           FOR (i, 0, n - (1 << x) + 1)
          FOR (j, 0, m - (1 << y) + 1)
               (if'(!x \&\& !y) { f[i][j][x][y] = a[i][j]; continue; } f[i][j][x][y] = calc(
                   i + (1 \ll x) - 1, j + (1 \ll y) - 1,
                   \max(x - 1, 0), \max(y - 1, 0)
20
21
  inline int get_max(int x, int y, int xx, int yy) {
      return calc(x, y, xx, yy, highbit(xx - x + 1), highbit(yy - y + 1)
23
24 }
25
26 struct RMQ {
      int f [22] [M];
       inline int highbit(int x) { return 31 - builtin clz(x); }
28
       void init(int* v, int n) {
29
          FOR (i, 0, n) f [0][i] = v[i];
30
31
          FOR (x, 1, highbit(n) + 1)
32
               FOR (i, 0, n - (1 << x) + 1)
                   f[x][i] = min(f[x-1][i], f[x-1][i+(1 << (x-1))]
33
35
      int get_min(int l, int r) {
           assert(1 \le r);
36
           int t = highbit(r - l + 1);
37
           return \min(f[t][1], f[t][r - (1 << t) + 1]);
  } rmq;
```

2.2 Segment Tree Beats

```
int m1[N], m2[N], cm1[N];
       LL sum [N]:
       void up(int \ o) \{ int \ lc = o * 2, rc = lc + 1; \}
            m1[o] = max(m1[lc], m1[rc]);
            sum[o] = sum[lc] + sum[rc];
            if (m1[lc] = m1[rc]) {
                 [\operatorname{cml}[o] = \operatorname{cml}[\operatorname{lc}] + \operatorname{cml}[\operatorname{rc}];
                 m2[0] = max(m2[1c], m2[rc]);
                 cm1[o] = m1[lc] > m1[rc] ? cm1[lc] : cm1[rc];
                 m2[o] = max(min(m1[lc], m1[rc]), max(m2[lc], m2[rc]));
       void mod(int o, int x) {
            if (x >= m1[o]) return;
            assert (x > m2[o]);
            sum[o] = 1LL*(m1[o] - x) * cm1[o];
            m1[o] = x;
       void down(int o)
24
            int lc = o * 2, rc = lc + 1;
25
            mod(lc, m1[o]); mod(rc, m1[o]);
26
27
       void build(int o, int l, int r) {
28
            if (1 \stackrel{\cdot}{=} r) { int t; read(t); sum[o] = m1[o] = t; m2[o] = -INF
29
                ; \text{ cm1}[o] = 1; 
            else { build(lson); build(rson); up(o); }
30
31
       void update(int ql, int qr, int x, int o, int l, int r) {
            if (r < ql | | qr < l | | ml[o] \ll x) return;
            if (ql \le l \&\& r \le qr \&\& m2 | o | < x) \{ mod(o, x); return; \}
            update(ql, qr, x, lson); update(ql, qr, x, rson);
37
            up(o);
38
       int qmax(int ql, int qr, int o, int l, int r) { if (r < ql \mid | qr < l) return -INF;
            if (ql \ll l \&\& r \ll qr) return m1[o];
            down(o);
            return max(qmax(ql, qr, lson), qmax(ql, qr, rson));
43
44
45
       LL qsum(int ql, int qr, int o, int l, int r) {
            if (r < ql \mid | qr < l) return 0;
            if (ql \ll l \&\& r \ll qr) return sum[o];
            down(o);
            return qsum(ql, qr, lson) + qsum(ql, qr, rson);
49
50
```

2.3 Segment Tree

```
memset(maxv, 0, size of maxv);
13
            memset(sumv, 0, size of sumv);
14
       void maintain (LL o, LL l, LL r) {
15
16
            if (1 < r) {
                LL lc = o * 2, rc = o * 2 + 1;
17
                sumv[o] = sumv[lc] + sumv[rc];
                minv[o] = min(minv[lc], minv[rc]);
                \max[o] = \max(\max[lc], \max[rc]);
20
            else sumv[o] = minv[o] = maxv[o] = 0;
21
            if (setv[o] != RS) { minv[o] = maxv[o] = setv[o]; sumv[o] = setv[o] * (r - l + 1); }
if (addv[o]) { minv[o] += addv[o]; maxv[o] += addv[o]; sumv[o]
22
23
                  += addv[o] * (r - l + 1);
24
       void build (LL o, LL l, LL r)
25
            if (1 = r) addv[0] = a[1];
26
27
            else {
28
                LL m = (1 + r) / 2;
                build(ls); build(rs);
29
30
31
            maintain(o, l, r);
32
33
       void pushdown(LL o) {
            LL lc = o * 2, rc = o * 2 + 1;
34
            if (setv[o] != RS) {
35
                setv[lc] = setv[rc] = setv[o];
36
                addv[lc] = addv[rc] = 0;
37
38
                setv[o] = RS;
39
40
            if (addv[o]) {
41
                addv[lc] \stackrel{\cdot}{=} addv[o]; addv[rc] \stackrel{\cdot}{=} addv[o];
42
                addv[o] = 0;
43
44
45
       void update(LL p, LL q, LL o, LL l, LL r, LL v, LL op) {
            if (p \le r \&\& l \le q)
46
            if (p \le 1 \&\& r \le q) {
47
                if (op = 2) \{ setv[o] = v; addv[o] = 0; \}
48
49
                 else addv[o] += v;
50
            } else {
51
                pushdown(o):
52
                LL m = (1 + r) / 2;
53
                update(p, q, ls, v, op); update(p, q, rs, v, op);
54
55
            maintain(o, l, r);
56
57
       void query(LL p, LL q, LL o, LL l, LL r, LL add, LL& ssum, LL&
            smin, LL& smax) {
            if (p > r \mid | 1 > q) return;
58
            if (setv[o] != RS) {
59
60
                LL v = setv[o] + add + addv[o];
61
                ssum += v * (min(r, q) - max(l, p) + 1);
                smin = min(smin, v);
62
63
                smax = max(smax, v);
            } else if (p <= l \&\& r <= q) {
64
                \operatorname{ssum} + \operatorname{sumv}[o] + \operatorname{add} *'(r - l + 1);
65
                smin = min(smin, minv[o] + add);
66
                smax = max(smax, maxv[o] + add);
            } else {
                LL \stackrel{\cdot}{m} = (1 + r) / 2;
69
                query(p, q, ls, add + addv[o], ssum, smin, smax);
70
                query(p, q, rs, add + addv[o], ssum, smin, smax);
73
74 } IT;
```

```
// persistent
79 namespace tree {
#define mid ((l+r) \gg 1)
#define lson ql, qr, l, mid
|\# define rson ql, qr, mid + 1, r
       struct P
           LL add sum:
       int ls, rs;
} tr[maxn * 45 * 2];
       int \mathbf{sz} = 1;
       int N(LL add, int l, int r, int ls, int rs) {
            tr[sz] = {add, tr[ls].sum + tr[rs].sum + add * (len[r] - len[l])}
                 - 1]), ls, rs};
90
            return sz++;
91
       int update(int o, int ql, int qr, int l, int r, LL add) {
92
            if (ql > r \mid | l > qr) return o;
93
94
            const P\& t = tr[o];
            if (ql \le l \&\& r \le qr) return N(add + t.add, l, r, t.ls, t.rs
95
            return N(t.add, l, r, update(t.ls, lson, add), update(t.rs,
96
                rson, add));
       LL query (int o, int ql, int qr, int l, int r, LL add = 0) {
            if (ql > r \mid \mid l > qr) return 0;
99
            const P\& t = tr[o];
100
101
            if (ql \le l \&\& r \le qr) return add * (len[r] - len[l - 1]) + t
            return query(t.ls, lson, add + t.add) + query(t.rs, rson, add
102
                + t.add);
103
```

2.4 K-D Tree

```
global variable pruning
 2 // visit L/R with more potential
 3 namespace kd {
             const int K = 2, inf = 1E9, M = N;
             const double \lim = 0.7;
             struct P
                      int d[K], l[K], r[K], sz, val;
                     LL sum;
P *ls, *rs;
                     P* up() {
                              sz = ls - sz + rs - sz + 1;
                              sum = ls -> sum + rs -> sum + val;
                              FOR (i, 0, K) -
                                       \begin{array}{l} \left[ \begin{array}{l} i \\ i \end{array} \right] = \min \left( d \left[ \begin{array}{l} i \end{array} \right], \ \min \left( ls -> l \left[ \begin{array}{l} i \end{array} \right], \ rs -> l \left[ \begin{array}{l} i \end{array} \right] \right); \\ r \left[ \begin{array}{l} i \end{array} \right] = \max \left( d \left[ \begin{array}{l} i \end{array} \right], \ \max \left( ls -> r \left[ \begin{array}{l} i \end{array} \right], \ rs -> r \left[ \begin{array}{l} i \end{array} \right] \right); \end{array} 
                              return this;
17
18
19
             pool[M], *null = new P, *pit = pool;
             static P *tmp[M], **pt;
20
             void init() {
21
                      null \rightarrow ls = null \rightarrow rs = null;
22
                     FOR (i, 0, K) null \rightarrow l[i] = inf, null \rightarrow r[i] = -inf;
23
24
                      null->sum = null->val = 0;
                      \text{null} \rightarrow \text{sz} = 0;
25
26
```

```
27
         P^* build (P^{**} l, P^{**} r, int d = 0) { // [l, r)}
28
                if (\dot{d} = K) d = 0;
29
                 if (l >= r) return null;
30
                \begin{array}{l} P^{**} \; m = 1 \; + \; (r \; - \; l) \; / \; 2; \; assert (l <= m \; \&\& \; m < \; r); \\ nth\_element (l \; , \; m \; , \; r \; , \; [\&] (const \; P^* \; a \; , \; const \; P^* \; b) \{ \\ return \; a -> d [d] \; < \; b -> d [d]; \end{array}
31
32
33
                34
35
36
                o->ls = build(1, m, d + 1); o->rs = build(m + 1, r, d + 1);
37
                return o->up();
38
39
         P* Build() {
40
                pt = tmp; FOR (it, pool, pit) *pt++ = it;
41
                return build(tmp, pt);
42
           \begin{array}{l} \mbox{inline bool } \mbox{inside(int } p[] \,, \, \mbox{int } q[] \,, \, \mbox{int } l[] \,, \, \mbox{int } r[]) \,\, \{ \\ \mbox{FOR } (i \,, \, 0 \,, \, K) \,\, \mbox{if } (r[i] < q[i] \,\, || \,\, p[i] < l[i]) \,\, \mbox{return } false \,; \\ \end{array} 
43
44
45
                return true:
46
         LL query(P* o, int l[], int r[]) {
   if (o == null) return 0;
47
48
                FOR (i, 0, K) if (o->r[i] < l[i] || r[i] < o->l[i]) return 0; if (inside(o->l, o->r, l, r)) return o->sum;
49
50
51
                return query(o->ls, l, r) + query(o->rs, l, r) +
52
                            (inside(o->d, o->d, l, r) ? o->val : 0);
53
54
          void dfs(P* o) {
55
                if (o = null) return;
                 *pt + = o; dfs(o->ls); dfs(o->rs);
56
57
          P^* ins (P^* \circ, P^* \times, \text{ int } d = 0) {
58
                if (d = K) d = 0;
59
                if (o = null) return x->up();
60
                P^*\& oo = x->d[d] \le o->d[d]? o->ls : o->rs;
61
                 if (oo->sz > o->sz * lim)
62
                      pt = tmp; dfs(o); *pt++= x;
63
64
                      return build (tmp, pt, d);
65
                oo = ins(oo, x, d + 1);
                return o->up();
```

2.5 STL+

```
1 // priority queue
3 // binary_heap_tag
4 // pairing heap tag: support editing
5 // thin heap tag: fast when increasing, can't join
6 #include < ext/pb_ds/priority_queue.hpp>
7 using namespace gnu pbds;
9 typedef __gnu_pbds::priority_queue<LL, less<LL>, pairing_heap_tag> PQ;
10 __gnu_pbds::priority_queue<int, cmp, pairing_heap_tag>::point_iterator
       it:
11 PQ pq, pq2;
12
13 int main() {
      auto it = pq.push(2);
      pq.push(3);
      assert(pq.top() == 3);
      pq.modify(it, 4);
```

```
assert(pq.top() == 4);
      pq2.push(5);
      pq.join(pq2);
20
       assert(pq.top() = 5);
21
22 }
23
   // BBT
24
25
   // ov_tree_tag
   // rb_tree_tag
   // splay tree tag
   // mapped: null_typeor or null_mapped_type (old) is null
   // Node_Update should be tree_order_statistics_node_update to use
       find_by_order & order_of_key
     find by order: find the element with order+1 (0-based)
     order of key: number of elements lt r key
34 // support join & split
#include <ext/pb ds/assoc container.hpp>
  using namespace <u>gnu_pbds</u>;
  using Tree = tree<int, null_type, less<int>, rb_tree_tag,
       tree_order_statistics_node_update>;
   // Persistent BBT
43 #include <ext/rope>
  using namespace gnu cxx;
  rope < int > s;
46
  int main() {
      FOR (i, 0, 5) s.push_back(i); // 0 1 2 3 4 s.replace(1, 2, s); // 0 (0 1 2 3 4) 3 4
      auto ss = s.substr(2, 2); // 1 2
50
      s.erase(2, 2); // 0 1 4
51
      s.insert((2, s); '// equal to s.replace((2, 0, s))
52
       assert (s[2] = s.at(2)); // 2
53
54 }
  // Hash Table
58 #include < ext/pb ds/assoc container.hpp>
59 #include < ext/pb ds/hash policy.hpp>
  using namespace gnu pbds;
  gp hash table<int, int> mp;
63 cc_hash_table<int, int> mp;
```

2.6 BIT

```
int kth(LL k) {
            int \mathbf{p} = 0;
            for (int \lim_{n \to \infty} 1 << 20; \lim_{n \to \infty} |\lim_{n \to \infty} | (int \lim_{n \to \infty} |
                 if (p + \lim < M \&\& c[p + \lim] < k)
                     p += \lim ;
                      k = c[p];
20
21
            return p + 1;
22
23 }
24 namespace bit {
       int c[maxn], cc[maxn];
       inline int lowbit (int x) { return x & -x; }
26
       void add(int x, int v) {
27
            for (int i = x; i \le n; i + lowbit(i)) {
                c[i] += v; cc[i] += x * v;
29
30
31
32
       void add(int 1, int r, int v) { add(1, v); add(r + 1, -v); }
       int sum(int x) {
33
34
            int ret = 0;
            for (int i = x; i > 0; i \leftarrow lowbit(i))
35
                 ret += (x + 1) * c[i] - cc[i];
36
37
            return ret;
38
39
       int sum(int l, int r) { return sum(r) - sum(l - 1); }
40 }
41 namespace bit {
       LL c[N], ccc[N]; inline LL lowbit(LL x) { return x & -x; }
43
       void add(LL x, LL v)
44
            for (LL i = x; i < N; i \leftarrow lowbit(i)) {
45
                c[i] = (c[i] + v) \% MOD;

cc[i] = (cc[i] + x * v) \% MOD;
                 ccc[i] = (ccc[i] + x * x % MOD * v) % MOD;
49
50
       void add(LL l, LL r, LL v) { add(l, v); add(r + 1, -v); }
51
       LL sum(LL x) {
52
            static LL INV2 = (MOD + 1) / 2;
53
54
            LL ret = 0:
55
            for (LL i = x; i > 0; i = lowbit(i))
                 ret += (x + 1) * (x + 2) % MOD * c[i] % MOD
57
                          -(2 * x + 3) * cc[i] \% MOD
                          + ccc[i];
            return ret % MOD * INV2 % MOD;
59
60
       LL sum(LL l, LL r) \{ return sum(r) - sum(l - 1); \}
61
```

2.7 Trie

```
namespace trie {
   const int M = 31;
   int ch[N * M][2], sz;
   void init() { memset(ch, 0, sizeof ch); sz = 2; }
   void ins(LL x) {
      int u = 1;
      FORD (i, M, -1) {
         bool b = x & (1LL << i);
         if (!ch[u][b]) ch[u][b] = sz++;
         u = ch[u][b];
}
</pre>
```

```
// persistent
   // !!! sz = 1
18 \mid \text{struct } P \text{ { int } w, ls, rs; };
19 P \text{ tr}[M] = \{\{0, 0, 0\}\};
20 int sz;
  [int \_new(int w, int ls, int rs) \{ tr[sz] = \{w, ls, rs\}; return sz++; \}
23 int ins (int oo, int v, int d = 30) {
       P\& o = tr[oo];
       if (d = -1) return _new(o.w + 1, 0, 0);
25
       bool u = v \& (1 << d);
26
       return _{new}(o.w + 1, u = 0)? ins(o.ls, v, d - 1) : o.ls, u = 1)?
27
             \overline{\operatorname{ins}}(o.rs, v, d-1) : o.rs);
28
  int query (int pp, int qq, int v, int d = 30) {
       if (d = -1) return 0;
       bool u = v \& (1 << d);
31
32
       P \&p = tr[pp], \&q = tr[qq];
       int lw = tr[q.ls].w - tr[p.ls].w;
33
       int rw = tr[q.rs].w - tr[p.rs].w;
34
35
       int ret = 0;
       if (\mathbf{u} = 0)
            if (rw) { ret += 1 \ll d; ret += query(p.rs, q.rs, v, d - 1); }
            else ret += query(p.ls, q.ls, v, d - 1);
39
40
           if (lw) { ret += 1 << d; ret += query(p.ls, q.ls, v, d - 1); }
            else ret += query(p.rs, q.rs, v, d - 1);
43
       return ret;
```

2.8 Treap

```
// set
 2 namespace treap {
       const int M = \max * 17;
       extern struct P* const null;
      struct P {
P *ls , *rs;
           int v, sz;
           unsigned rd;
           P(int v): ls(null), rs(null), v(v), sz(1), rd(rnd()) 
           P(): sz(0) \{\}
           P^* up() { sz = ls -> sz + rs -> sz + 1; return this; }
           int lower(int v) {
               if (this = null) return 0;
               return this->v >= v ? ls->lower(v) : rs->lower(v) + ls->sz
           int upper(int v) {
               if (this = null) return 0;
               return this->v > v ? ls->upper(v) : rs->upper(v) + ls->sz
19
                   + 1;
20
       } *const null = new P, pool[M], *pit = pool;
21
22
       P^* \text{ merge}(P^* l, P^* r)  {
23
           if (l = null) return r; if (r = null) return l;
```

```
if (1->rd < r->rd) { 1->rs = merge(1->rs, r); return 1->up();
25
           else \{r->ls = merge(l, r->ls); return r->up(); \}
26
                                                                                   83
27
28
                                                                                   84
29
       void split (P^* \circ, int rk, P^*\& l, P^*\& r) {
                                                                                   85
30 İ
           if (o = null) { l = r = null; return; }
           if (o->ls->sz>=rk) { split (o->ls, rk, l, o->ls); r=o->up()
31
           else \{ split(o->rs, rk - o->ls->sz - 1, o->rs, r); l = o->up() \}
32
33
34 }
35 // persistent set
36 namespace treap {
       const int M = \max * 17 * 12;
37
       extern struct P* const null, *pit;
38
       struct P {
    P *ls , *rs;
39
40
           int v, sz;
41
           LL sum;
42
           P(P^* ls, P^* rs, int v): ls(ls), rs(rs), v(v), sz(ls->sz + rs->
43
                                                            sum(ls->sum + rs
44
                                                                                   99
                                                                 ->sum + v) \{\}
                                                                                  100
           P() {}
                                                                                  101
46
                                                                                  102
           void* operator new(size t ) { return pit++; }
                                                                                  103
           template<typename T>
                                                                                  104
49
           int rk(int v, T&& cmp) {
50
               if (this = null) return 0:
                                                                                  105
51
               return cmp(this->v, v) ? ls->rk(v, cmp) : rs->rk(v, cmp) +
                     ls \rightarrow sz + 1:
                                                                                  106
52
           int lower(int v) { return rk(v, greater_equal<int>()); }
53
54
           int upper(int v) { return rk(v, greater<int>()); }
         pool [M], *pit = pool, *const null = new P;
55
                                                                                  110
       P* merge(P* 1, P* r) {
56
                                                                                  111
           if (l = null) return r; if (r = null) return l;
57
                                                                                  112
           if (rnd()\% (1->sz + r->sz) < 1->sz) return new P\{1->ls, merge
58
                                                                                  113
                (1->rs, r), 1->v;
                                                                                  114
           else return new P\{\text{merge}(1, r->ls), r->rs, r->v\};
59
                                                                                  115
60
       void split (P* o, int rk, P*& 1, P*& r) {
61
           if (o = null) { l = r = null; return; }
62
           if (o->ls->sz'>=rk) { split (o->ls, rk, l, r); r = new P\{r, o-rk, l, r\}
63
                -> rs, o->v; }
           else { split (o->rs, rk - o->ls->sz - 1, l, r); l = new P{o->ls
                , 1, o->v; }
65
                                                                                  122
                                                                                  123
  // persistent set with pushdown
                                                                                  124
68 int now;
                                                                                  125
namespace Treap {
const int M = 10000000;
                                                                                  126
                                                                                  127
       extern struct P* const null, *pit;
71
                                                                                  128
       72
                                                                                  129
73
                                                                                  130
           int sz, time;
74
                                                                                  131
           LL cnt, sc, pos, add;
                                                                                  132
           bool rev;
                                                                                  133
                                                                                  134
           P^* up() { sz = ls->sz + rs->sz + 1; sc = ls->sc + rs->sc + cnt
                                                                                  135
                ; return this; } // MOD
                                                                                  136
           P* check() {
79
                                                                                  137
                if (time = now) return this;
80
                                                                                  138
```

```
P^* t = \text{new}(\text{pit}++) P; t = \text{this}; t - \text{time} = \text{now}; return t;
                do_{rev} () { rev \hat{} = 1; add *= -1; pos *= -1; swap(ls, rs);
            return this; } // MOD

P* _do_add(LL v) { add += v; pos += v; return this; } // MOD

P* do_rev() { if (this == null) return this; return check()->
            _do_rev(); } // FIX & MOD

P* do_add(LL v) { if (this == null) return this; return check
                 ()->_do_add(v); } // FIX & MOD
                 \underline{\text{down}}() { // \underline{\text{MOD}}
                 if (rev) { ls = ls - > do rev(); rs = rs - > do rev(); rev = 0;
                 if (add) { ls = ls -> do_add(add); rs = rs -> do_add(add); add
                 return this;
            P* down() { return check()->_down(); } // FIX & MOD
            void _split(LL p, P*& l, P*& r) { // MOD
                 if (pos >= p) \{ ls -> split(p, l, r); ls = r; r = up(); \}
                                  \{ rs - split(p, 1, r); rs = 1; 1 = up(); \}
            void split(LL p, P*& l, P*& r) { // FIX & MOD
                 if (this = null) l = r = null;
                 else down() \rightarrow split(p, l, r);
          pool [M], *pit = pool, *const null = new P;
       P* merge (P* a, P* b) {
            if (a = null) return b; if (b = null) return a;
            if (rand()\% (a->sz + b->sz) < a->sz)  { a = a->down(); a->rs =
                  merge(a->rs, b); return a->up();
                                                          b = b > down(); b > ls =
                 merge(a, b>ls); return b>up();
107 }
108 // sequence with add, sum
109 namespace treap {
        const int \dot{M} = 8E5 + 100;
        extern struct P*const null;
        struct P {
            P *ls, *rs;
            int sz, val, add, sum;
            P(int v, P^* ls = null, P^* rs = null): ls(ls), rs(rs), sz(1),
                 val(v), add(0), sum(v) {}
            P(): sz(0), val(0), add(0), sum(0) \{ \}
            P* up() {
                 assert(this != null);
                 sz = ls - > sz + rs - > sz + 1;
                 sum = ls -> sum + rs -> sum + val + add * sz;
                 return this;
            void upd(int v) {
                 if (this = null) return;
                 add += v;
                 sum += sz * v:
            P* down()
                 if (add) {
                      ls-\hat{u}pd(add); rs-\hat{u}pd(add);
                      val += add;
                      add = 0:
                 return this;
            P* select(int rk) {
```

```
if (rk = ls - sz + 1) return this;
139
                return ls -> sz >= rk ? ls -> select(rk) : rs -> select(rk - ls)
140
                     -> sz - 1):
141
       } pool[M], *pit = pool, *const null = new P, *rt = null;
142
143
       P* merge(P* a, P* b) {
144
            if (a = null) return b->up();
145
            if (b = null) return a > up();
146
            if (rand() \% (a->sz + b->sz) < a->sz) {
147
                a \rightarrow down() \rightarrow rs = merge(a \rightarrow rs, b);
148
149
                return a > up();
150
            } else {
151
                b > down() > ls = merge(a, b > ls);
                return b->up();
152
153
154
155
       void split (P^* \circ, int rk, P^*\& l, P^*\& r) {
156
            if (o = null) { l = r = null; return; }
157
            o > down();
158
            if (o-> ls->sz >= rk) {
159
160
                split(o->ls, rk, l, o->ls);
                r = o > up();
161
            } else {
162
                split(o->rs, rk - o->ls->sz - 1, o->rs, r);
163
164
                l = o > up();
165
166
167
       inline void insert(int k, int v) {
168
            P *1, *r;
169
            split(rt, k - 1, l, r);
170
            rt = merge(merge(l, new (pit++) P(v)), r);
172
173
       inline void erase(int k) {
            P *1, *r, *_, `*t;
            split (rt, k - 1, 1, t);
176
177
            split(t, 1, _, r);
178
            rt = merge(1, r);
179
180
       P* build(int l, int r, int* a) {
181
            if (l > r) return null;
182
183
            if (1 = r) return new(pit++) P(a[1]);
            int m = (1 + r) / 2;
184
            return (new(pit++) P(a[m], build(1, m - 1, a), build(m + 1, r,
185
                  a)))->up();
186
187
      persistent sequence
188
   namespace treap {
189
190
       struct P;
        extern P*const null;
191
       P^* N(P^* ls, P^* rs, LL v, bool fill);
192
       struct P {
193
            P *const ls, *const rs;
194
195
            const int sz, v;
196
            const LL sum;
            bool fill;
197
198
            int cnt;
199
            void split (int k, P*& l, P*& r) {
200
                if (this = null) { l = r = null; return; }
201
202
                if (ls->sz>=k) {
```

```
ls \rightarrow split(k, l, r);
                     r = N(r, rs, v, fill);
                } else {
205
                     rs->split(k - ls->sz - fill, l, r);
206
                     l = N(ls, l, v, fill);
207
208
209
210
211
       *const null = new P{0, 0, 0, 0, 0, 0, 1};
212
213
       P* N(P* ls, P* rs, LL v, bool fill) {
214
            ls -> cnt ++; rs -> cnt ++;
215
            return new P\{ls, rs, ls->sz+rs->sz+fill, v, ls->sum+rs->
216
                sum + v, fill, 1};
217
218
       P* merge(P* a, P* b) {
219
            if (a = null) return b;
220
            if (b = null) return a;
221
222
            if (rand() \% (a->sz + b->sz) < a->sz)
223
                return N(a->ls, merge(a->rs, b), a->v, a->fill);
            else
224
                return N(\text{merge}(a, b > ls), b > rs, b > v, b > fill);
225
226
227
       void go(P^* o, int x, int y, P^*\& l, P^*\& m, P^*\& r) {
228
229
            o > split(y, l, r);
            1 - split(x - 1, 1, m);
230
231
232 }
```

2.9 Cartesian Tree

```
void build() {
    static int s[N], last;
    int p = 0;
    FOR (x, 1, n + 1) {
        last = 0;
        while (p && val[s[p - 1]] > val[x]) last = s[--p];
        if (p) G[s[p - 1]][1] = x;
        if (last) G[x][0] = last;
        s[p++] = x;
    }
    rt = s[0];
}
```

2.10 LCT

```
// do not forget down when findint L/R most son
// make_root if not sure

namespace lct {
    extern struct P *const null;
    const int M = N;
    struct P {
        P *fa, *ls, *rs;
        int v, maxv;
        bool rev;

bool has_fa() { return fa->ls = this || fa->rs = this; }
```

```
bool d() { return fa > ls = this; }
    P^*\& c(bool x) \{ return x ? ls : rs; \}
    void do rev()
         if (this = null) return;
        rev ^= 1;
        swap(ls, rs);
    P* up() {
        \max = \max(v, \max(ls->\max(rs->\max(v)));
        return this;
    void down() {
         if (rev) {
             rev = 0;
             ls \rightarrow do rev(); rs \rightarrow do rev();
    void all_down() { if (has_fa()) fa->all_down(); down(); }
\} *const null = new P\{0, 0, 0, 0, 0, 0\}, pool [M], *pit = pool;
void rot(P^* o) {
    bool dd = o > d();
    P * f = o > fa, * f = o > c(!dd);
    if (f->has\_fa()) f->fa->c(f->d()) = o; o->fa = f->fa;
    if (t != null) t->fa = f; f->c(dd) = t;
    o > c(!dd) = f > up(); f > fa = o;
void splay (P* o) {
    o->all_down();
    while (o->has_fa()) {
        if (o->fa->has_fa())
             rot(o>d() ^o>fa>d() ? o : o>fa);
        rot(o);
    o > up();
void access(P^* u, P^* v = null) {
    if (\mathbf{u} = \mathbf{null}) return;
    splay(u); u->rs = v;
    access(u->up()->fa, u);
void make_root(P* o) {
    access(o); splay(o); o->do_rev();
void split (P* o, P* u) {
    make root(o); access(u); splay(u);
void link (P* u, P* v) {
    make\_root(u); u->fa = v;
void cut(P^* u, P^* v) {
    split(u, v);
    u \rightarrow fa = v \rightarrow ls = null; v \rightarrow up();
bool adj(P* u, P* v) {
    split(u, v);
    return v->ls = u \&\& u->ls = null \&\& u->rs = null;
bool linked (P* u, P* v) {
    split(u, v);
    return u = v || u->fa != null;
P* findrt(P* o) {
    access(o); splay(o);
    while (o->ls != null) o = o->ls;
    return o;
```

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65 66

67

68

69

70

71

72

73

74

```
P* findfa(P* rt, P* u) {
80
            split (rt, u);
81
            u = u > ls;
82
83
            while (u->rs != null) {
                u = u \rightarrow rs;
                u->down();
            return u;
88
89
   // maintain subtree size
90
91 P* up() {
       sz = ls - > sz + rs - > sz + \_sz + 1;
92
       return this;
93
94 }
yoid access (P* u, P* v = null) {
       if (\mathbf{u} = \mathbf{null}) return;
       splay(u);
97
98
       u->_sz += u->rs->sz - v->sz;
99
       u > rs = v;
       access(u->up()->fa, u);
100
101 }
  void link (P* u, P* v) {
103
       split(u, v);
       u > fa = v; v > \_sz += u > sz;
       v \rightarrow up();
105
106
107
   109 // latest spanning tree
extern struct P* null;
112
       struct P {
    P *fa , *ls , *rs;
            int v;
115
           P *minp;
116
117
            bool rev;
118
            bool has_fa() { return fa->ls = this || fa->rs = this; }
119
            bool d() { return fa -> ls = this; }
120
           P*& c(bool x) { return x ? ls : rs; }
void do_rev() { if (this == null) return; rev ^= 1; swap(ls,
                 rs); }
123
           P* up() {
124
                 minp = this;
125
                 if (\min -> v > ls -> \min -> v) \min = ls -> \min ;
126
127
                 if (\min p > v > rs - \min p > v) \min p = rs - \min p;
                 return this;
128
129
130
            void down() { if (rev) { rev = 0; ls->do rev(); rs->do rev();
            void all_down() { if (has_fa()) fa -> all_down(); down(); }
131
        * * null = new P{0, 0, 0, INF, 0, 0}, pool [maxm], *pit = pool;
132
       void rot (P* o) {
133
            bool dd = o > d();
134
            P * f = o > fa, * f = o > c(!dd);
135
            if (f->has_fa()) f->fa->c(f->d()) = o; o->fa = f->fa;
136
            if (t != null) t -> fa = f; f -> c(dd) = t;
137
           o > c(!dd) = f > up(); f > fa = o;
138
139
140
       void splay (P* o) {
           o->all down();
141
            while (o->has_fa()) {
142
```

```
if (o > fa - has_fa()) rot(o - d() \cap o - fa - d()? o : o - fa);
                 rot(o);
144
145
             o \rightarrow up();
146
147
        void access(P^* u, P^* v = null) {
148
             if (\mathbf{u} = \mathbf{null}) return;
149
             splay(u); u->rs = v;
150
151
             access(u->up()->fa, u);
152
        void make_root(P* o) { access(o); splay(o); o->do_rev(); }
153
        void split(P* u, P* v) { make_root(u); access(v); splay(v); }
154
        155
        void link(P^* u, P^* v) \{ make\_root(u); u->fa = v; \}
156
        void \operatorname{cut}(P^* u, P^* v) { \operatorname{split}(u, v); u \to fa = v \to ls = null; v \to up();
157
158
159
   using namespace lct;
160
   int n, m;
162 P *p maxn;
   struct Q {
       int tp, u, v, 1, r;
164
165
   vector <Q> q;
166
167
   int main() {
168
        null \rightarrow minp = null;
169
170
        cin >> n >> m;
        FOR (i, 1, n + 1) p[i] = new (pit++) P\{null, null, null, INF, p[i]\}

\begin{cases}
    , 0; \\
    \text{int } clk = 0;
\end{cases}

        map<pair<int, int>, int> mp;
173
        FOR (_, 0, m) {
174
             int tp, u, v; scanf("%d%d%d", &tp, &u, &v);
175
             if (u > v) swap(u, v);
176
             if (tp = 0) mp.insert(\{\{u, v\}, clk\});
177
             else if (tp = 1) {
178
                 auto it = mp. find(\{u, v\}); assert(it != mp.end());
179
                 q.push\_back(\{1, u, v, it->second, clk\});
180
181
                 mp.erase(it);
182
             else q.push back({0, u, v, clk, clk});
183
             ++clk;
184
        for (auto& x: mp) q.push_back({1, x.first.first, x.first.second, x
185
             .second , clk });
186
        sort(q.begin(), q.end(), [](const Q& a, const Q& b)->bool { return
              a.l < b.l; \});
        map < P^*, int > mp2;
187
188
        FOR (i, 0, q.size()) {
             Q\& cur = q[i];
189
190
             int u = cur.u, v = cur.v;
             if (\operatorname{cur.tp} = 0)
191
                  if (! linked(p[u], p[v])) puts("N");
192
                  else puts(p[v]->minp->v'>= cur.r ? "Y" : "N");
193
                 continue;
194
195
             if (linked(p[u], p[v])) {
196
                 P^* t = p[v] - minp;
197
                 if (t->v > cur.r) continue;
Q& old = q[mp2[t]];
198
199
                 \operatorname{cut}(p[\operatorname{old}.u], t); \operatorname{cut}(p[\operatorname{old}.v], t);
200
201
             \dot{P}^* t = new (pit++) P {null, null, null, cur.r, t, 0};
202
            mp2[t] = i;
```

```
link(t, p[u]); link(t, p[v]);
206 }
```

2.11 Mo's Algorithm On Tree

```
struct Q {
       int u, v, idx;
       bool operator < (const Q& b) const {
            const \mathbb{Q}_{a} = *this;
            return blk[a.u] < blk[b.u] || (blk[a.u] == blk[b.u] && in[a.v]
                  < in [b.v];
  };
  void dfs(int u = 1, int d = 0) {
       static int S[maxn], sz = 0, blk\_cnt = 0, clk = 0;
       in[u] = clk++;
       dep[u] = d;
       int btm = sz;
       for (int v: G[u]) {
            if (\mathbf{v} = \mathbf{fa}[\mathbf{u}]) continue;
            fa\left[ v\right] \,=\,u\,;
            dfs(v, d + 1);
            if (sz - btm >= B) {
                while (sz > btm) blk [S[--sz]] = blk\_cnt;
                ++blk_cnt;
20
21
22
23
       S[sz++] = u;
       if (u = 1) while (sz) blk [S[--sz]] = blk\_cnt - 1;
24
25
26
   void flip(int k) {
27
       dbg(k);
       if (vis[k]) {
       } else {
32
            // ...
33
       vis[k] = 1;
34
35 }
   void go(int& k) {
       if (bug = -1) {
            if (vis[k] \&\& !vis[fa[k]]) bug = k;
if (!vis[k] \&\& vis[fa[k]]) bug = fa[k];
       flip(k);
       k = fa[k];
43
44
  void mv(int a, int b) {
       bug = -1:
       if (vis[b]) bug = b;
       if (dep[a] < dep[b]) swap(a, b);
       while (dep[a] > dep[b]) go(a);
50
51
       while (a != b) {
            go(a); go(b);
52
53
       go(a); go(bug);
54
55 }
57 for (Q& q: query) {
```

2.12 CDQ's Divide and Conquer

```
1 \cos t \sin t = 2E5 + 100;
 2 struct P {
       int x, y; int * f;
       bool d1, d2;
  a[maxn], b[maxn], c[maxn];
  int f [maxn];
9 void go2(int 1, int r) {
       if (1 + 1 = r) return;
       int m = (l + r) >> 1;
       go2(1, m); go2(m, r);
       FOR (i, 1, m) b[i] . d2 = 0;
FOR (i, m, r) b[i] . d2 = 1;
       merge(b + 1, b + m, b + m, b + r, c + 1, [](const P& a, const P& b)
                if (a.y != b.y) return a.y < b.y;
                return a.d2 > b.d2;
       int mx = -1;
       FOR (i, l, r) {
21
            if (c[i].d1 \&\& c[i].d2) *c[i].f = max(*c[i].f, mx + 1);
            if (!c[i].d1 \&\& !c[i].d2) mx = max(mx, *c[i].f);
22
23
24
       FOR (i, l, r) b[i] = c[i];
25 }
26
  void gol(int l, int r) { // [l, r)}
27
       if (1 + 1 = r) return;
       int m = (1 + r) >> 1;
29
       go1(1, m);
30
       FOR (i, 1, m) a [i] d1 = 0;
FOR (i, m, r) a [i] d1 = 1;
31
32
33
       copy(a + 1, a + r, b + 1);
34
       sort(b+1, b+r, [](const P\& a, const P\& b)->bool {
                if (a.x != b.x) return a.x < b.x;
35
                return a.d1 > b.d1;
36
37
       go2(1, r);
       go1(m, r);
```

2.13 Persistent Segment Tree

```
if (sz = MAGIC) assert (0);
           tr[\dot{s}z] = \{sum, \dot{l}s, rs\};
12
13
           return sz++;
14
15
       int ins(int o, int x, int v, int l = 1, int r = ls) {
           if (x < 1 \mid | x > r) return o;
16
           const P\& t = tr[o];
           if (1 = r) return N(t.sum + v, 0, 0);
           return N(t.sum + v, ins(t.ls, x, v, lson), ins(t.rs, x, v,
20
       int query(int o, int ql, int qr, int l = 1, int r = ls) {
           if (ql > r \mid | l > qr) return 0;
22
           const P\& t = tr[o];
           if (ql \ll l \&\& r \ll qr) return t.sum;
24
           return query(t.ls, ql, qr, lson) + query(t.rs, ql, qr, rson);
25
26
27
   // kth
28
29 int query(int pp, int qq, int l, int r, int k) \{ // (pp, qq) \}
       if (1 = r) return 1;
       const P &p = tr [pp], &q = tr [qq];
int w = tr [q.ls].w - tr [p.ls].w;
32
       if (k \le w) return query (p.ls, q.ls, lson, k);
33
       else return query(p.rs, q.rs, rson, k - w);
34
35 }
   37
   // with bit
41 typedef vector<int> VI;
42 struct TREE {
43 | #define mid ((l + r) >> 1)
  #define lson l, mid
\#define rson mid + 1, r
       struct P {
       int w, ls, rs;
} tr[maxn * 20 * 20];
       int \dot{\mathbf{s}}\mathbf{z} = 1;
49
       TREE() { tr[0] = \{0, 0, 0\}; \}
50
       int N(int w, int ls, int rs) {
51
           tr[sz] = \{w, ls, rs\};
52
53
           return sz++;
54
       int add(int tt, int l, int r, int x, int d) {
55
           if (x < l \mid \mid r < x) return tt;
           const P\& t = tr[tt];
58
           if (l = r) return N(t.w + d, 0, 0);
           return N(t.w + d, add(t.ls, lson, x, d), add(t.rs, rson, x, d)
59
60
       int ls_sum(const VI& rt) {
           int ret = 0;
           FOR (i, 0, rt.size())
                ret += tr[tr[rt[i]].ls].w;
65
           return ret;
66
       inline void ls(VI& rt) { transform(rt.begin(), rt.end(), rt.begin
67
            (), [&](int x)->int{ return tr[x].ls; }); }
       inline void rs(VI& rt) { transform(rt.begin(), rt.end(), rt.begin
      (), [&](int x)->int{ return tr[x].rs; }); }
       int query(VI& p, VI& q, int 1, int r, int k) {
69
           if (1 = r) return 1;
70
           int w = ls_sum(q) - ls_sum(p);
71
72
           if (k \le w) {
```

```
ls(p); ls(q);
               return query(p, q, lson, k);
           else {
               rs(p); rs(q);
               return query(p, q, rson, k - w);
81 } tree;
82 struct BIT {
       int root [maxn];
       void init() { memset(root, 0, size of root); }
       inline int lowbit(int x) { return x & -x; }
       void update(int p, int x, int d) {
           for (int i = p; i \le m; i + lowbit(i))
               root[i] = tree.add(root[i], 1, m, x, d);
       int query(int 1, int r, int k) {
           VI p, q;
           for (int i = l - 1; i > 0; i = lowbit(i)) p.push back(root[i
92
           for (int i = r; i > 0; i = lowbit(i)) q.push back(root[i]);
           return tree query (p, q, 1, m, k);
95
  } bit;
96
97
98
  void init()
      m = 10000:
       tree sz = 1;
100
       bit.init();
101
      FOR (i, 1, m + 1)
102
           bit.update(i, a[i], 1);
103
104
```

2.14 Persistent Union Find

```
1 namespace uf {
      int fa [maxn], sz [maxn];
      int undo [maxn], top;
      void init() { memset(fa, -1, size of fa); memset(sz, 0, size of sz);
            top = 0;  }
      int findset(int x) { while (fa[x] != -1) x = fa[x]; return x; }
      bool join (int x, int y) {
          x = findset(x); y = findset(y);
           if (x == y) return false;
           if (sz[x] > sz[y]) swap(x, y);
undo[top++] = x;
           fa[x] = y;
sz[y] += sz[x] + 1;
           return true;
      inline int checkpoint() { return top; }
      void rewind(int t) {
           while (top > t)
               int x = undo [--top];
               \operatorname{sz}[\operatorname{fa}[x]] = \operatorname{sz}[x] + 1;
               fa[x] = -1;
```

3 Math

3.1 Multiplication, Powers

```
1 LL mul(LL u, LL v, LL p) {
2     return (u * v - LL((long double) u * v / p) * p + p) % p;
3  }
4 LL mul(LL u, LL v, LL p) { // better constant
5     LL t = u * v - LL((long double) u * v / p) * p;
6     return t < 0 ? t + p : t;
7  }
8 LL bin(LL x, LL n, LL MOD) {
9     n %= (MOD - 1); // if MOD is prime
1    LL ret = MOD! = 1;
10 for (x %= MOD; n; n >>= 1, x = mul(x, x, MOD))
11     if (n & 1) ret = mul(ret, x, MOD);
12     return ret;
14 }
```

3.2 Matrix Power

```
struct Mat {
       static const LL M = 2;
      LL v[M][M];
       Mat() { memset(v, 0, size of v); }
       void eye() { FOR (i, 0, M) v[i][i] = 1; }
      LL* operator [] (LL x) { return v[x]; }
      const LL* operator [] (LL x) const { return v[x]; }
Mat operator * (const Mat& B) {
           const Mat& \hat{A} = *this;
           Mat ret;
           FOR (k, 0, M)
               FOR (i, 0, M) if (A[i][k])
                    FOR (j, 0, M)
                         ret[i][j] = (ret[i][j] + A[i][k] * B[k][j]) % MOD;
           return ret;
       Mat pow(LL n) const {
           Mat A = *this, ret; ret.eye();
           for (; n; n >>= 1, A = A * A)
             if (n \& 1) ret = ret * A;
           return ret:
22
       Mat operator + (const Mat& B) {
           const Mat& \hat{A} = *this;
           Mat ret;
           FOR (i, 0, M)
FOR (j, 0, M)
                     ret[i][j] = (A[i][j] + B[i][j]) \% MOD;
28
           return ret:
29
30
       void prt() const {
31
           FOR (i, 0, M)
32
33
                     printf(\%lld\%c", (*this)[i][j], j == M - 1 ? '\n' : '
34
36 };
```

3.3 Sieve

```
| \text{const LL p max} = 1\text{E}5 + 100;
2 LL phi [p_max];
3 void get phi() {
       phi[1] = 1;
       static bool vis [p_max];
       static LL prime[p max], p sz, d;
      FOR (i, 2, p_max) {
            if (! vis[i]) {
                prime[p_sz++] = i;
                phi[i] = i - 1;
           for (LL j = 0; j < p sz && (d = i * prime[j]) ) {
                vis[d] = 1;
                if (i % prime[j] == 0) {
                     phi[d] = phi[i] * prime[j];
                     break;
                else phi[d] = phi[i] * (prime[j] - 1);
20
21 }
22 // mobius
23 const LL p_max = 1E5 + 100;
24 LL mu[p_max];
25 void get mu() {

\underline{\mathbf{mu}}[1] = 1;

       static bool vis[p max];
28
       static LL prime[p_max], p_sz, d;
29
      mu[1] = 1;
      FOR (i, 2, p_max) {
30
           if (!vis[i]) {
31
32
                prime[p\_sz++] = i;
                mu[i] = -1;
33
34
           for (LL j = 0; j < p_sz && (d = i * prime[j]) < p_max; ++j) {
35
                vis[d] = 1;
36
                if (i % prime[j] == 0) {
37
38
                    mu[d] = 0;
39
                    break;
40
41
                else mu[d] = -mu[i];
42
43
44 }
45 // min_25
46 namespace min25 {
       const int M = 1E6 + 100;
47
48
      LL B, N;
49
       // g(x)
       inline LL pg(LL x) { return 1; }
50
       inline LL ph(LL x) { return x \% MOD; }
51
52
       // Sum[g(i), \{x, 2, x\}]
53
       inline LL psg(LL x) { return x % MOD - 1; }
54
       inline LL psh(LL x) {
55
           static LL inv2 = (MOD + 1) / 2;
56
           x = x \% MOD;
57
           return x * (x + 1) \% MOD * inv2 \% MOD - 1;
58
59
       // f(pp=p^k)
       inline LL fpk(LL p, LL e, LL pp) { return (pp - pp / p) % MOD; }
60
61
       // f(p) = fgh(g(p), h(p))
       inline LL fgh (LL g, LL h) { return h - g; }
62
63
64
      LL \operatorname{pr}[M], \operatorname{pc}, \operatorname{sg}[M], \operatorname{sh}[M];
       void get_prime(LL n) {
```

```
static bool vis[M]; pc = 0;
            FOR (i, 2, n + 1) {
                  if (!vis[i]) {
                       pr[pc++] = i;
                       sg[pc] = (sg[pc - 1] + pg(i)) \% MOD;
                       sh[pc] = (sh[pc - 1] + ph(i)) \% MOD;
                 FOR (j, 0, pc) {
    if (pr[j] * i > n) break;
    vis[pr[j] * i] = 1;
                        if (i \% pr[j] = 0) break;
      LL w[M];
      LL \ id1[M], \ id2[M], \ h[M], \ g[M];
      inline LL id(LL x) { return x \le B ? id1[x] : id2[N / x]; }
      LL go(LL x, LL k)
            if (x \le 1 \mid | (k \ge 0 \&\& pr[k] > x)) return 0;
            LL t = id(x);
            LL ans = fgh((g[t] - sg[k+1]), (h[t] - sh[k+1]));
           FOR (i, k + 1, pc) {
                  LL p = pr[i];
                  if (p * p > x) break;
                  ans -= fgh(pg(p), ph(p));
                  for (LL pp = p, e = 1; pp \ll x; ++e, pp = pp * p)
                       ans += fpk(p, e, pp) * (1 + go(x / pp, i)) % MOD;
            return ans % MOD;
      LL solve (LL _N) {
           N = N;
           B = sqrt(N + 0.5);
            get_prime(B);
            int sz = 0;
            for (LL l = 1, v, r; l \le N; l = r + 1) {
                  \dot{\mathbf{v}} = \mathbf{N} / \mathbf{1}; \ \mathbf{r} = \mathbf{N} / \mathbf{v};
                 w[sz] = v; g[sz] = psg(v); h[sz] = psh(v); if (v \le B) id1[v] = sz; else id2[r] = sz;
                  sz++;
           FOR(k, 0, pc)
                  LL p = pr[k];
                 FOR (i, 0, sz) {
LL v = w[i]; if (p * p > v) break;
LL t = id(v / p);
                        \begin{array}{l} g\left[\,i\,\right] \,=\, \left(\,g\left[\,i\,\right]\,\,\widehat{}\,\,-\,\,\left(\,g\left[\,t\,\right]\,\,-\,\,sg\left[\,k\,\right]\,\right)\,\,*\,\,pg\left(\,p\right)\,\right)\,\,\%\,\,MOD; \\ h\left[\,i\,\right] \,=\, \left(\,h\left[\,i\,\right]\,\,-\,\,\left(\,h\left[\,t\,\right]\,\,-\,\,sh\left[\,k\,\right]\right)\,\,*\,\,ph\left(\,p\right)\right)\,\,\%\,\,MOD; \end{array} 
            return (go(N, -1) \% MOD + MOD + 1) \% MOD;
// see cheatsheet for instructions
namespace dujiao {
      const int M = 5E6;
      LL f[M] = \{0, 1\};
      void init() {
            static bool vis [M];
            static \ LL \ pr\left[M\right], \ p\_sz\,, \ d\,;
            FOR (i, 2, M)
                  if (!vis[i]) { pr[p\_sz++] = i; f[i] = -1; }
                  FOR (j, 0, p_sz)
                        if ((d = pr[j] * i) >= M) break;
                        vis[d] = 1;
                        if (i\% pr[j] = 0) {
```

67

68

69

70

71

72

73

74

78

79

80

81

82

83

86

88

89

90

91

92

93

94

95

96

97

102

103

104

105

106

107

108

109

110

112

113

114

115

116

117

118

122

123

124

125

126

127

128

129

130

```
f[d] = 0;
132
133
                             break;
                        else f[d] = -f[i];
134
135
136
137
             FOR (i, 2, M) f[i] += f[i - 1];
138
         inline LL s_fg(LL n) { return 1; }
139
         inline LL s_g(LL n) { return n; }
140
141
        LL N, rd [M];
142
        bool vis [M];
143
        LL go(LL n) {
144
              if (n < M) return f[n];
145
             LL id = N / n;
if (vis[id]) return rd[id];
146
147
              vis[id] = true;
148
              LL\& ret = rd[id] = s_fg(n);
149
150
              for (LL l = 2, v, r; l \le n; l = r + 1) {
                  \dot{\mathbf{v}} = \mathbf{n} / 1; \mathbf{r} = \mathbf{n} / \mathbf{v};
151
                  ret -= (s_g(r) - s_g(l - 1)) * go(v);
152
153
154
              return ret;
155
        LL solve(LL n) {
156
             N = n
157
             memset(vis, 0, sizeof vis);
158
159
              return go(n);
160
161
```

3.4 Prime Test

```
bool checkQ(LL a, LL n) {
      if (n = 2 \mid a = n) return 1;
      if (n = 1 | | !(n & 1)) return 0;
      LL d = n - 1;
      while (!(d \& 1)) d >>= 1;
      LL t = bin(a, d, n); // usually needs mul-on-LL
      while (d != n - 1 \&\& t != 1 \&\& t != n - 1) {
           t = mul(t, t, n);
           d <<= 1;
      return t = n - 1 \mid | d \& 1;
13 bool primeQ(LL n) {
      static vector \langle LL \rangle t = {2, 325, 9375, 28178, 450775, 9780504,
           1795265022};
      if (n \le 1) return false;
      for (LL k: t) if (!checkQ(k, n)) return false;
      return true;
```

3.5 Pollard-Rho

3.6 Berlekamp-Massey

```
namespace BerlekampMassey
      inline void up(LL& a, LL b) { (a += b) %= MOD; }
      V mul(const V&a, const V&b, const V&m, int k) {
          Vr; r.resize(2 * k - 1);
          FOR (i, 0, k) FOR (j, 0, k) up(r[i + j], a[i] * b[j]);
          FORD (i, k - 2, -1) {
              FOR (j, 0, k) up(r[i + j], r[i + k] * m[j]);
              r.pop_back();
          return r;
      V pow(LL n, const V& m) {
          int k = (int) m. size() - 1; assert (m[k] = -1 || m[k] = MOD
          V r(k), x(k); r[0] = x[1] = 1;
          for (; n; n >>= 1, x = mul(x, x, m, k))
               if (n \& 1) r = mul(x, r, m, k);
          return r:
17
18
19
      LL go(const V& a, const V& x, LL n) {
          // a: (-1, a1, a2, ..., ak).reverse
20
          // x: x1, x2, ..., xk
21
          // x[n] = sum[a[i]*x[n-i],{i,1,k}]
22
          int k = (int) a.size() - 1;
23
          if (n \le k) return x[n - 1];
24
          if (a.size() = 2) return x[0] * bin(a[0], n - 1, MOD) % MOD;
25
          V r = pow(n - 1, a);
27
          LL ans = 0;
          FOR (i, 0, k) up (ans, r[i] * x[i]);
28
          return (ans + MOD) % MOD;
29
30
      V BM(const V& x) {
31
32
          \vec{V} a = {-1}, b = {233}, t;
          FOR (i, 1, x.size()) {
33
              b.push\_back(0);
              LL d = 0, la = a.size(), lb = b.size();
              FOR (j, 0, la) up(d, a[j] * x[i - la + 1 + j]);
               if (d = 0) continue;
               t.clear(); \ for \ (auto\&\ v:\ b)\ t.push\_back(d\ *\ v\ \%\ MOD);
              FOR (\_, 0, la - lb) t.push_back(0);
               lb = max(la, lb);
              FOR (j, 0, la) up(t[lb - 1 - j], a[la - 1 - j]);
               if (lb > la) {
                  b.swap(a);
                  LL inv = -get_inv(d, MOD);
                  for (auto v: b) v = v * inv % MOD;
```

3.7 Extended Euclidean

3.8 Inverse

```
1 // if p is prime
2 inline LL get_inv(LL x, LL p) { return bin(x, p - 2, p); }
3 // if p is not prime
4 LL get inv(LL a, LL M) {
      static LL x, y;
      assert (exgcd(a, M, x, y) = 1);
      return (x \% M + M) \% M;
9 ///////
10 LL inv [N];
11 void inv_init(LL n, LL p) {
      \operatorname{inv}\left[\overline{1}\right] = \dot{1};
      FOR^{\cdot}(i, 2, n)
          inv[i] = (p - p / i) * inv[p \% i] \% p;
FOR (i, 1, n)
           fac[i] = i * fac[i - 1] \% p;
      invf[n - 1] = bin(fac[n - 1], p - 2, p);
21
      FORD (i, n - 2, -1)
           invf[i] = invf[i + 1] * (i + 1) % p;
```

3.9 Binomial Numbers

```
inline LL C(LL n, LL m) \{ // n >= m >= 0 
                                         return n < m \mid \mid m < 0? 0 : fac[n] * invf[m] % MOD * invf[n - m] %
    4 // The following code reverses n and m
     5 \mid LL \mid C(LL \mid n, \mid LL \mid m) \mid \{ // \mid m >= n >= 0 \mid C(LL \mid n, \mid LL \mid m) \mid \{ // \mid m >= n >= 0 \mid C(LL \mid n, \mid LL \mid m) \mid \{ // \mid m >= n >= 0 \mid C(LL \mid n, \mid LL \mid m) \mid \{ // \mid m >= n >= 0 \mid C(LL \mid n, \mid LL \mid m) \mid \{ // \mid m >= n >= 0 \mid C(LL \mid n, \mid LL \mid m) \mid \{ // \mid m >= n >= 0 \mid C(LL \mid n, \mid LL \mid m) \mid \{ // \mid m >= n >= 0 \mid C(LL \mid n, \mid LL \mid m) \mid \{ // \mid m >= n >= 0 \mid C(LL \mid n, \mid LL \mid m) \mid \{ // \mid m >= n >= 0 \mid C(LL \mid n, \mid LL \mid m) \mid \{ // \mid m >= n >= 0 \mid C(LL \mid n, \mid LL \mid m) \mid \{ // \mid m >= n >= 0 \mid C(LL \mid n, \mid LL \mid m) \mid \{ // \mid m >= n >= 0 \mid C(LL \mid n, \mid LL \mid m) \mid \{ // \mid m >= n >= 0 \mid C(LL \mid n, \mid LL \mid m) \mid \{ // \mid m >= n >= 0 \mid C(LL \mid n, \mid LL \mid m) \mid \{ // \mid m >= n >= 0 \mid C(LL \mid n, \mid LL \mid m) \mid C(LL \mid n, \mid LL \mid n) \mid C(LL
                                         if (m - n < n) n = m - n;
                                         if (n < 0) return 0;
                                        LL ret = 1;
                                       FOR (i, 1, n + 1)
                                                                ret = ret * (m - n + i) % MOD * bin(i, MOD - 2, MOD) % MOD;
                                         return ret;
 12
13 \dot{L}L Lucas(LL n, LL m) \{ // m >= n >= 0 \}
                                        return m? C(n % MOD, m % MOD) * Lucas(n / MOD, m / MOD) % MOD:
                    // precalculations
17 LL C[M] [M];
18 void_init_C(int_n) {
                                       FOR(i, 0, n) {
                                                                \hat{C}[i][0] = \hat{C}[i][i] = 1;
                                                                FOR (j, 1, i)
21
                                                                                          C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) \% MOD;
22
23
24 }
```

3.10 NTT, FFT, FWT

```
2|LL \text{ wn}[N \ll 2], \text{ rev}[N \ll 2];
3 int NTT_init(int n_) {
       int \overline{\text{step}} = 0; \overline{\text{int}} = 1;
      for (; n < n_; n <<= 1) ++step;
FOR (i, 1, n)
            rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (step - 1));
       int g = bin(G, (MOD - 1) / n, MOD);
       wn[0] = 1;
       for (int i = 1; i \le n; ++i)
            \operatorname{wn}[i] = \operatorname{wn}[i - 1] * g \% MOD;
11
       return n;
13 }
14 void NTT(LL a[], int n, int f)
       FOR (i, 0, n) if (i < rev[i])
            std::swap(a[i], a[rev[i]]);
       for (int k = 1; k < n; k <<= 1)
            for (int i = 0; i < n; i += (k << 1)) {
                int t = n / (k \ll 1);
                FOR(j, 0, k)
                     LLw = f = 1 ? wn[t * j] : wn[n - t * j];
                     LL x = a[i + j];
                     LL y = a[i + j + k] * w \% MOD;
                     a[i + j] = (x + y) \% MOD;
                     a[i + j + k] = (x - y + MOD) \% MOD;
26
27
28
       if (f = -1) {
29
           `LL ninv = get_inv(n, MOD);
30
           FOR (i, 0, n)
31
                a[i] = a[i] * ninv % MOD;
32
33
34
```

```
// n needs to be power of 2
 37 typedef double LD;
 |S| = |S| 
 39 struct C {
                LD r, i;
                C(LD r = 0, LD i = 0): r(r), i(i) 
 42 };
 43 C operator + (const C& a, const C& b) {
                return C(a.r + b.r, a.i + b.i);
 44
 45 }
 46 C operator - (const C& a, const C& b) {
                return C(a.r - b.r, a.i - b.i);
 47
 48 }
 49 C operator * (const C& a, const C& b) {
                return C(a.r * b.r - a.i * b.i, a.r * b.i + a.i * b.r);
 50
 51 }
      void FFT(C \times [], int n, int p) {
                 for (int i = 0, t = 0; i < n; ++i) {
 53
                           if (i > t) swap(x[i], x[t]);
 54
                            for (int j = n >> 1; (t \hat{j} = j) < j; j >>= 1);
 55
 56
 57
                 for (int h = 2; h \le n; h \le 1) {
                           \dot{C} \text{ wn}(\cos(p^* 2 * PI / h), \sin(p^* 2 * PI / h));
 58
                            for (int i = 0; i < n; i += h) {
 59
                                     C w(1, 0), u;
 60
 61
                                     for (int j = i, k = h >> 1; j < i + k; ++j) {
                                                \mathbf{u} = \mathbf{x}[\mathbf{j} + \mathbf{k}] * \mathbf{w};
 62
                                                x[j+k] = x[j] - u;
 63
                                                x[j] = x[j] + u;
 64
                                                w = w * wn;
 65
 66
 67
 68
 69
                 if (p = -1)
                           FOR (i, 0, n)
                                     x[i].r /= n;
 72 }
 73 void conv(C a[], C b[], int n) {
 74
                FFT(a, n, 1);
                FFT(b, n, 1);
                FOR(i, 0, n)
                           \hat{\mathbf{a}}[\hat{\mathbf{i}}] = \hat{\mathbf{a}}[\hat{\mathbf{i}}] * \hat{\mathbf{b}}[\hat{\mathbf{i}}];
 78
                FFT(a, n, -1);
 79
 80
 82 // C_k = \sum_{i \oplus j=k} A_i B_j
 83 template<typename T>
for (int i = 0, t = d * 2; i < n; i += t)
 86
                                     FOR (j, 0, d)
 87
 88
                                                f(a[i+j], a[i+j+d]);
 89
 90
      void AND(LL& a, LL& b) { a += b; }
 92 void OR(LL\& a, LL\& b) \{b \neq a; \}
 93 void XOR (LL& a, LL& b) {
                LL x = a, y = b;
                \mathbf{a} = (\mathbf{x} + \mathbf{y}) \% \text{ MOD};
                b = (x - y + MOD) \% MOD;
 97 }
 98 void rAND(LL& a, LL& b) { a \rightarrow b; }
 99 void rOR(LL\& a, LL\& b) = a;
100 void rXOR(LL& a, LL& b) {
```

3.11 Simpson's Numerical Integration

```
 \begin{array}{c} \text{LD simpson(LD 1, LD r) } \{ \\ \text{LD c} = (1+r) \ / \ 2; \\ \text{return } (f(1)+4*f(c)+f(r))*(r-1) \ / \ 6; \\ \\ \text{4} \\ \} \\ \text{5} \\ \text{6} \\ \text{LD asr(LD 1, LD r, LD eps, LD S) } \{ \\ \text{LD m} = (1+r) \ / \ 2; \\ \text{LD L} = \text{simpson}(1, m), R = \text{simpson}(m, r); \\ \text{if } (\text{fabs}(L+R-S) < 15*eps) \text{ return } L+R+(L+R-S) \ / \ 15; \\ \text{return asr}(1, m, eps \ / \ 2, L) + \text{asr}(m, r, eps \ / \ 2, R); \\ \\ \text{10} \\ \text{12} \\ \text{12} \\ \text{13} \\ \text{LD asr}(\text{LD 1, LD r, LD eps)} \ \{ \text{ return asr}(1, r, eps, simpson}(1, r)); \ \} \\ \end{array}
```

3.12 Gauss Elimination

```
1 // n equations, m variables
\frac{1}{2} // a is an n x (m + 1) augmented matrix
3 // free is an indicator of free variable
4 // return the number of free variables, -1 for "404"
5 int n, m;
6 LD a [maxn] [maxn], x [maxn];
7 bool free x [maxn];
|s| in line int sgn(LD x) { return (x > eps) - (x < -eps); }
9 int gauss (LD a maxn maxn , int n, int m)
    memset(free_x, 1, size of free_x); memset(x, 0, size of x);
    int \mathbf{r} = 0, \mathbf{c} = 0;
     while (r < n \&\& c < m) {
       int m r = r;
       FOR (i, r + 1, n)
         if (fabs(a[i][c]) > fabs(a[m_r][c])) m_r = i;
       if (m r != r)
         FOR (j, c, m+1)
            swap(a[r][j], a[m_r][j]);
       if (!sgn(a[r][c])) {
         \mathbf{a}[\mathbf{r}][\mathbf{c}] = 0; ++\mathbf{c};
20
21
         continue;
22
       FOR (i, r + 1, n)
23
         if (a[i][c]) {
24
           LD \ t = a[i][c] / a[r][c];
25
           FOR (j, c, m + 1) \ a[i][j] = a[r][j] * t;
```

```
28
       ++r; ++c;
29
     FOR (i, r, n)
30
       if (sgn(a[i][m])) return -1;
31
     if (r < m) {
32
       FORD (i, r - 1, -1) { int f_cnt = 0, k = -1;
33
34
          FOR (j, 0, m)
35
             if (sgn(a[i][j]) && free_x[j]) {
36
               ++f_cnt; k = j;
37
           if (f_{cnt} > 0) continue;
39
          LD s = a[i][m];
40
          FOR (j, 0, m)
             if (j != k) s -= a[i][j] * x[j];
          x[k] = s / a[i][k];
          free_x[k] = 0;
45
       return m - r;
     FORD (i, m - 1, -1) {
       LD \stackrel{\cdot}{s} = a[i][m];
49
       FOR (j, i + 1, m)

s = a[i][j] * x[j];

x[i] = s / a[i][i];
50
54
     return 0;
```

3.13 Factor Decomposition

```
LL factor [30], f_sz, factor_exp[30];

void get_factor (LL x) {
    f_sz = 0;
    LL t = sqrt(x + 0.5);
    for (LL i = 0; pr[i] <= t; ++i)
        if (x % pr[i] = 0) {
        factor_exp[f_sz] = 0;
        while (x % pr[i] == 0) {
            x /= pr[i];
            ++factor_exp[f_sz];
        }
    factor[f_sz++] = pr[i];

if (x > 1) {
    factor_exp[f_sz] = 1;
    factor[f_sz++] = x;
}

}
```

3.14 Primitive Root

```
LL find_smallest_primitive_root(LL p) {
    // p should be a prime
    get_factor(p - 1);
    FOR (i, 2, p) {
        bool flag = true;
        FOR (j, 0, f_sz)
        if (bin(i, (p - 1) / factor[j], p) == 1) {
            flag = false;
            break;
        }
}
```

3.15 Quadratic Residue

```
LL q1, q2, w;
struct P { // x + y * sqrt(w)
     LL x, y;
5 P pmul(const P& a, const P& b, LL p) {
      res.x = (a.x * b.x + a.y * b.y \% p * w) \% p;
      res.y = (a.x * b.y + a.y * b.x) \% p;
      return rès:
10
11 P bin (P x, LL n, LL MOD) {
      P ret = \{1, 0\};
       for (; n; n \gg 1, x = pmul(x, x, MOD))
           if (n \& 1) ret = pmul(ret, x, MOD);
       return ret;
16 }
17 L Legendre (LL a, LL p) { return bin(a, (p - 1) >> 1, p); }
18 LL equation_solve(LL b, LL p) {
       if (p = 2) return 1;
       if ((Legendre(b, p) + 1) % p = 0)
          return -1;
21
      LL a;
22
       while (true) {
23
           a = rand() \% p;
24
           w = ((a * a - b) \% p + p) \% p;
25
26
           if ((Legendre(w, p) + 1) \% p == 0)
27
28
       return bin({a, 1}, (p + 1) >> 1, p).x;
29
30 | }
   // Given a and prime p, find x such that x*x=a \pmod{p}
  int main() {
      LL a, p; cin \gg a \gg p;
      a = a \% p;
      LL x = equation\_solve(a, p);
       if (x = -1) {
           puts("No root");
37
       } else {
38
39
          LL y = p - x;
           if (x = y) cout \ll x \ll endl;
40
           else cout \ll \min(x, y) \ll " " \ll \max(x, y) \ll \text{endl};
41
42
```

3.16 Chinese Remainder Theorem

```
LL CRT(LL *m, LL *r, LL n) {
    if (!n) return 0;
    LL M = m[0], R = r[0], x, y, d;
    FOR (i, 1, n) {
        d = ex_gcd(M, m[i], x, y);
        if ((r[i] - R) % d) return -1;
        x = (r[i] - R) / d * x % (m[i] / d);
    }
```

3.17 Bernoulli Numbers

```
namespace Bernoulli {
       LL inv [M] = \{-1, 1\};
LL C[M][M];
       void init();
       LL B[M] = \{1\};
       void init()
             inv_init (M, MOD);
             init_C(M);
            FOR (i, 1, M - 1) {
                 LL\& \mathbf{s} = B[\mathbf{i}] = 0;
                 FOR (j, 0, i)
                      \dot{s} + \dot{c}[\dot{i} + 1][\dot{j}] * B[\dot{j}] \% MOD;
                 s = (s \% MOD * -inv[i + 1] \% MOD + MOD) \% MOD;
       LL p[M] = \{1\};
       LL go(LL n, LL k) {
            n \% = MOD;
             if (k = 0) return n;
            FOR(i, 1, k + 2)
20
                p[i] = p[i - 1] * (n + 1) % MOD;
21
            LL ret = 0;
22
23
            FOR (i, 1, k + 2)
            ret += C[k+1][i] * B[k+1-i] % MOD * p[i] % MOD;
ret = ret % MOD * inv[k+1] % MOD;
24
25
26
             return ret;
27
28 }
```

3.18 Simplex Method

```
v \leftarrow c[e] * b[1];
FOR (j, 0, n) if (j != e) c[j] \leftarrow c[e] * a[1][j];
c[e] \leftarrow c[e] * a[1][e];
23
24
25
26
        double simplex() {
27
             while (1) {
28
                  \mathbf{v} = 0;
29
                  int e = -1, l = -1;
30
                  FOR (i, 0, n) if (c[i] > eps) { e = i; break; }
31
                  if (e = -1) return v;
32
                  double t = INF;
33
                  FOR (i, 0, m)
34
                        if'(a[i][e] > eps && t > b[i] / a[i][e])  {
35
                             t = b[i] / a[i][e];
37
38
                  if (1 = -1) return INF;
39
                  pivot(1, e);
41
42
43
```

3.19 **BSGS**

```
2 \stackrel{!}{\text{LL}} BSGS(LL^{2}a, LL b, LL p)  { // a^{x} = b \pmod{p}
       a % → p;
       if (!a && !b) return 1;
       if (!a) return -1;
       static map<LL, LL> mp; mp.clear();
       LL m = \operatorname{sqrt}(p + 1.5);
       LL v = 1;
       FOR (i, 1, m + 1) {
            v = v * a \% p;
10
            mp[v * b \% p] = i;
11
12
       LL vv = v;
       FOR (i, 1, m + 1) {
14
            auto it = mp. find(vv);
            if (it != mp.end()) return i * m - it->second;
            vv = vv * v \% p:
19
       return -1;
20 }
     p can be not a prime
22 LL exBSGS(LL a, LL b, LL p) { // a^x = b (mod p)
       a %= p; b %= p;
23
       if (a = 0) return b > 1? -1 : b = 0 && p != 1;
       LL \dot{c} = 0, \dot{q} = 1;
25
       while (1)
26
           LL g' = gcd(a, p);
if (g == 1) break;
27
28
            if (b = 1) return c;
29
            if (b % g) return -1;
30
           ++c; b /= g; p /= g; q = a / g * q % p;
31
32
33
       static map<LL, LL> mp; mp.clear();
       LL m = sqrt(p + 1.5);
34
       LL v = 1;
35
       FOR (i, 1, m + 1) {
36
            \mathbf{v} = \mathbf{v} * \mathbf{a} \% \mathbf{p};
37
            mp[v * b \% p] = i;
38
```

```
40 FOR (i, 1, m + 1) {
    q = q * v % p;
    auto it = mp.find(q);
    if (it != mp.end()) return i * m - it->second + c;
}

41    return -1;

42    return -1;
```

4 Graph Theory

4.1 LCA

```
void dfs(int u, int fa) {
    pa[u][0] = fa; dep[u] = dep[fa] + 1;
    FOR (i, 1, SP) pa[u][i] = pa[pa[u][i - 1]];

for (int& v: G[u]) {
    if (v == fa) continue;
    dfs(v, u);
    }

}
int lca(int u, int v) {
    if (dep[u] < dep[v]) swap(u, v);
    int t = dep[u] - dep[v];
    FOR (i, 0, SP) if (t & (1 << i)) u = pa[u][i];
    FORD (i, SP - 1, -1) {
        int uu = pa[u][i], vv = pa[v][i];
        if (uu! = vv) { u = uu; v = vv; }
    }

    return u == v ? u : pa[u][0];
</pre>
```

Q.push(e.to); return d[t]; 38 39 40 int DFS(int u, int cp) { if $(\mathbf{u} = \mathbf{t} \mid | \cdot | \mathbf{cp})$ return \mathbf{cp} ; int tmp = cp, f;for (int& i = cur[u]; i < G[u].size(); i++) { $\dot{\mathbf{E}}$ e = edges $[\dot{\mathbf{G}}[\dot{\mathbf{u}}][\dot{\mathbf{i}}]]$; if (d[u] + 1 = d[e.to]) { f = DFS(e.to, min(cp, e.cp));edges $[G[u][i] ^ 1].cp += f;$ cp -= f;if (!cp) break; 53 return tmp - cp; 54 int go() { 55 56 int flow = 0;while (BFS()) { 57 memset(cur, 0, sizeof cur); 58 59 flow += DFS(s, INF); 60 return flow;

4.2 Maximum Flow

```
struct E {
      int to, cp;
      E(int to, int cp): to(to), cp(cp) {}
  };
  struct Dinic {
      static const int M = 1E5 * 5;
      int m, s, t;
      vector < E> edges;
      vector<int> G[M];
      int d[M];
      int cur [M];
      void init(int n, int s, int t) {
           this->s = s; this->t = t;
           for (int i = 0; i \le n; i++) G[i]. clear();
           edges. clear(); m = 0;
      void addedge(int u, int v, int cap) {
           edges.emplace_back(v, cap);
20
           edges.emplace_back(u, 0);
          G[u].push_back(m++);
21
          G[v]. push_back(m++);
22
23
24
      bool BFS()
          memset(d, 0, size of d);
           queue < int > Q;
```

4.3 Minimum Cost Maximum Flow

Q. push(s); d[s] = 1; while (!Q. empty()) {

int x = Q. front(); Q. pop(); for (int& i: G[x]) {

E &e = edges[i]; if (!d[e.to] && e.cp > 0) {

d[e.to] = d[x] + 1;

28

29

30

31

32

33

63 DC;

```
struct E {
       int from, to, cp, v;
       E(int f, int t, int cp, int v) : from(f), to(t), cp(cp), v(v) {}
5 };
 6 struct MCMF {
       int n, m, s, t;
       vector < E> edges;
       vector < int > G[maxn];
       bool inq [maxn];
       int d[maxn]; // shortest path int p[maxn]; // the last edge id of the path from s to i
       int a maxn; // least remaining capacity from s to i
       void init(int _n, int _s, int _t) {}
void addedge(int from, int to, int cap, int cost) {
            edges.emplace_back(from, to, cap, cost);
            edges.emplace_back(to, from, 0, -cost);
           G[from].push_back(m++);
18
           G[to]. push back (m++);
19
20
       bool BellmanFord(int &flow, int &cost) {
21
           FOR (i, 0, n + 1) d[i] = INF;
22
            memset(inq, 0, sizeof inq);
23
            d[s] = 0, a[s] = INF, inq[s] = true;
24
```

```
queue < int > Q; Q.push(s);
25
26
              while (!Q.empty())
                   int \mathbf{u} = \mathbf{Q}. \text{ front ()}; \ \mathbf{Q}. \text{ pop ()};
27
                   inq[u] = false;
28
                    for (int& idx: G[u]) {
29
                         E &e = edges [idx];
if (e.cp && d[e.to] > d[u] + e.v) {
30
31
                               d[e.to] = d[u] + e.v;
                               p[e.to] = idx;
                               a[e.to] = min(a[u], e.cp);
                               if (!inq[e.to]) {
                                    Q. push (e. to);
                                    inq[e.to] = true;
39
40
42
              if (d[t] = INF) return false;
43
              flow += a[t];
              cost += a[t]^* d[t];
44
              int \mathbf{u} = \mathbf{t};
             while (u != s) {
    edges[p[u]].cp -= a[t];
    edges[p[u] ^ 1].cp += a[t];
    u = edges[p[u]].from;
48
49
50
51
              return true;
52
53
54
        int go() {
55
              int flow = 0, cost = 0;
              while (BellmanFord(flow, cost));
56
57
              return cost;
   } MM;
```

4.4 Path Intersection on Trees

4.5 Centroid Decomposition (Divide-Conquer)

```
FORD (i, p - 1, -1) {
                \mathbf{u} = \mathbf{q}[\mathbf{i}];
                mx[u] = max(mx[u], p - sz[u]);
if (mx[u] * 2 \le p) return u;
12
13
                 \begin{array}{l} \operatorname{sz}\left[\operatorname{fa}\left[u\right]\right] \; + = \; \operatorname{sz}\left[u\right]; \\ \operatorname{mx}\left[\operatorname{fa}\left[u\right]\right] \; = \; \operatorname{max}\left(\operatorname{mx}\left[\operatorname{fa}\left[u\right]\right], \; \operatorname{sz}\left[u\right]\right); \end{array} 
15
16
          assert(0);
18 }
   void dfs(int u) {
          u = get rt(u);
          vis[u] = true;
23
          get dep(u, -1, 0);
24
          for (E& e: G[u]) {
25
                 int v = \dot{e} \cdot \dot{to};
                 if (vis[v]) continue;
27
28
                 dfs(v);
29
30
31
    // dynamic divide and conquer
    const int \max = 15E4 + 100, INF = 1E9;
37 struct E {
          int to, d;
40 vector E> G[maxn];
41 int n, Q, w[maxn];
42 LL A, ans;
    bool vis [maxn];
   int sz [maxn];
    int get_rt(int u)
          static int q[N], fa[N], sz[N], mx[N];
          int p = 0, cur = -1;
          q[p++] = u; fa[u] = -1;
          while (++cur < p)
51
                u = q[cur]; mx[u] = 0; sz[u] = 1;
52
                for (int& v: G[u])
53
                       if (! vis[v] \& v != fa[u]) fa[q[p++] = v] = u;
54
55
          FORD (i, p - 1, -1) {
56
57
                \mathbf{u} = \mathbf{q}[\mathbf{i}];
                mx[u] = max(mx[u], p - sz[u]);
                if (mx[u] * 2 \le p) return u;

sz[fa[u]] += sz[u];

mx[fa[u]] = max(mx[fa[u]], sz[u]);
59
60
62
          assert(0);
    int dep[maxn], md[maxn];
   void get_dep(int u, int fa, int d) {
    dep[u] = d; md[u] = 0;
    for (E& e: G[u]) {
                 int v = e.to;
                 if (vis[v] | | v = fa) continue;
                 get\_dep(v, u, d + e.d);
72
                \operatorname{md}[\overline{\mathbf{u}}] = \operatorname{max}(\operatorname{md}[\mathbf{u}], \operatorname{md}[\mathbf{v}] + 1);
73
74
75
```

```
struct P {
        int w;
        LL s;
   using VP = vector \langle P \rangle;
   struct R {
        VP *rt, *rt2;
        int dep;
85
   |\hat{V}P \text{ pool}[\max << 1], *pit = pool;
   vector R> tr [maxn];
88
   void go(int u, int fa, VP* rt, VP* rt2) {
89
90
        tr[u].push\_back(\{rt, rt2, dep[u]\});
         for (E& e: G[u]) {
91
              int v = \dot{e} \cdot \dot{to};
92
              if (v = fa | vis[v]) continue;
93
              go(v, u, rt, rt2);
96
97
   void dfs(int u) {
        u = get_rt(u);
100
         vis[u] = true;
         get\_dep(u, -1, 0);
101
        VP* rt = pit++; tr[u].push_back({rt, nullptr, 0});
102
         for (E\& e: G[u]) {
103
              int v = e.to;
104
105
              if (vis[v]) continue;
              go(v, u, rt, pit++);
106
107
              dfs(v);
108
109
110
   bool cmp(const P& a, const P& b) { return a.w < b.w; }
111
\frac{113}{LL} \frac{LL}{query} \frac{VP\&p, int d, int l, int r}{query}
        \begin{array}{l} 1 = lower\_bound(p.begin(), p.end(), P\{l, -1\}, cmp) - p.begin(); \\ r = upper\_bound(p.begin(), p.end(), P\{r, -1\}, cmp) - p.begin() - \\ \end{array}
114
115
        return p[r].s - p[l - 1].s + 1LL * (r - l + 1) * d;
116
117
118
119 | int main() {
        cin \gg n \gg Q \gg A;
120
        FOR (i, 1, n + 1) \operatorname{scanf}(\text{"%d"}, \operatorname{\&w}[i]);
121
        FOR (_, 1, n) {
122
              int u, v, d; scanf("%d%d%d", &u, &v, &d);
             G[u].push\_back(\{v, d\}); G[v].push\_back(\{u, d\});
124
125
        dfs(1);
126
127
        FOR (i, 1, n + 1)
              for (R& x: tr[i]) {
128
                  \dot{x}.rt->push\_back(\{w[i], x.dep\});
129
                  if (x.rt2) x.rt2->push_back(\{w[i], x.dep\});
130
131
        FOR (it, pool, pit)
132
              it->push_back({-INF, 0});
133
              sort(it->begin(), it->end(), cmp);
134
             FOR (i, 1, it -> size())
135
                   (*it)[i].s += (*it)[i - 1].s;
136
137
         while (Q--) {
138
              int u; LL a, b; scanf("%d%lld%lld", &u, &a, &b);
139
              a = (a + ans) \% A; b = (b + ans) \% A;
```

```
int l = \min(a, b), r = \max(a, b);
           ans = 0;
           for (R& x: tr[u]) {
                ans += query(*(x.rt), x.dep, 1, r);
145
                if (x.rt2) ans = query(*(x.rt2), x.dep, l, r);
146
147
           printf("%lld\n", ans);
148
149 }
```

4.6 Heavy-light Decomposition

```
1 // clear clk
2 // usage: hld::predfs(1, 1); hld::dfs(1, 1);
3 int fa[N], dep[N], idx[N], out[N], ridx[N];
4 namespace hld {
        int sz[N], son[N], top[N], clk;
        void predfs(int u, int d) {
             dep[u] = d; sz[u] = 1;
             int\& maxs = son[u] = -1;
             for (int& v : G[u]) {
                  if (\mathbf{v} = \mathbf{fa}[\mathbf{u}]) continue;
                  fa[v] = u;
                  predfs(v, d + 1);
                  void dfs(int u, int tp) {
             top\left[u\right] \,=\, tp\,;\;\; idx\left[u\right] \,\stackrel{\longleftarrow}{=}\, +\!\!\!+\!\! clk\,;\;\; ridx\left\lceil clk\right\rceil \,=\, u\,;
             if (son[u] != -1) dfs(son[u], tp);
             for \(\(\)(\(\)int\&\(\)v:\\(G[u]\)\)
20
                  if (v != fa[u] \&\& v != son[u]) dfs(v, v);
21
             out[u] = clk;
22
23
24
        template<typename T>
        int go(int u, int v, T\&\& f = [](int, int) {}) {}
25
             int uu = top[u], vv = top[v];
26
             while (uu != vv) {
27
                  if (dep[uu] < dep[vv]) { swap(uu, vv); swap(u, v); }
28
                  f(idx[uu], idx[u]);
29
30
                  u = fa[uu]; uu = top[u];
32
             if (dep[u] < dep[v]) swap(u, v);
             // choose one
33
             // f(idx[v], idx[u])
34
             // if (u'!=v) f(idx[v] + 1, idx[u]);
35
36
             return v;
37
        int up(int u, int d) {
38
             while (d) {
                  if (dep[u] - dep[top[u]] < d) {
                       d = dep[u] - dep[top[u]];
                       u = top[u];
                  } else return ridx[idx[u] - d];
                  \mathbf{u} = \mathbf{fa}[\mathbf{u}]; --\mathbf{d};
45
             return u;
46
47
        int finds (int u, int rt) { // find u in which sub-tree of rt
48
             while (top[u] != top[rt]) {
49
50
                  \mathbf{u} = \text{top}[\mathbf{u}];
                  if (fa[u] = rt) return u;
                  \mathbf{u} = \mathbf{fa} |\mathbf{u}|;
```

```
53 | }
54 | return ridx[idx[rt] + 1];
55 | }
```

4.7 Bipartite Matching

```
struct MaxMatch {
      int n;
      vector<int> G[maxn];
      int vis [maxn], left [maxn], clk;
      void init(int n) {
           this \rightarrow n = n;
          FOR (i, 0, n + 1) G[i].clear();
           memset(left, -1, sizeof left);
          memset(vis, -1, sizeof vis);
      bool dfs(int u) {
           for (int v: G[u])
               if (vis[v]] = clk
                   vis[v] = clk;
                   if (left[v] = -1 \mid | dfs(left[v])) {
                       left[v] = u;
                       return true;
21
22
           return false;
23
24
25
      int match() {
           int ret = 0;
26
27
           for (clk = 0; clk \le n; ++clk)
28
               if (dfs(clk)) + ret;
29
           return ret;
30
  } MM;
31
32
  // max weight: KM
  namespace R {
      const int \max = 300 + 10;
      int n, m;
      int left [maxn], L[maxn], R[maxn];
      int w[maxn][maxn], slack[maxn];
      bool visL[maxn], visR[maxn];
42
      bool dfs(int u) {
           visL[u] = true;
          FOR (\mathbf{v}, 0, \mathbf{m})
               if (visR[v]) continue;
               int t = L[u] + R[v] - w[u][v];
               if (t = 0) {
                   visR[v] = true;
49
                   if (left [v] == -1 || dfs(left [v])) {
    left [v] = u;
50
51
                       return true;
53
               else slack[v] = min(slack[v], t);
           return false;
```

```
int go() {
59
           memset(left, -1, sizeof left);
60
           memset(R, 0, size of R);
61
           memset(L, 0, sizeof L);
62
           FOR (i, 0, n)
               FOR (j, 0, m)
                    L[i] = \max(L[i], w[i][j]);
           FOR (i, 0, n) {
                memset(slack, 0x3f, sizeof slack);
68
                    memset(visL, 0, sizeof visL); memset(visR, 0, sizeof
                    if (dfs(i)) break;
                    int d = 0x3f3f3f3f3f:
                    FOR (j, 0, m) if (!visR[j]) d = min(d, slack[j]);
                    FOR (j, 0, n) if (visL[j]) L[j] = d;
FOR (j, 0, m) if (visR[j]) R[j] += d; else slack[j] =
           int ret = 0:
           FOR (i, 0, m) if (left[i] != -1) ret += w[left[i]][i];
           return ret;
80
81
```

4.8 Virtual Tree

```
void go(vector<int>& V, int& k) {
       int u = V[k]; f[u] = 0;
       dbg(u, k);
       for (auto\& e: G[u]) {
            int v = e.to;
            if (\mathbf{v} = \mathbf{pa}[\mathbf{u}][0]) continue;
            while (k + 1 < V. size()) { int to = V[k + 1];
                 if (in[to] \leftarrow out[v]) { go(V, ++k);
                     if (\text{key}[\text{to}]) f[u] += w[to];
                     else f[u] += min(f[to], (LL)w[to]);
                 } else break;
14
15
       dbg(u, f[u]);
17
18 inline bool cmp(int a, int b) { return in [a] < in [b]; }
19 LL solve (vector <int>& V) {
       static vector<int> a; a.clear();
       for (int& x: V) a.push back(x);
21
       sort(a.begin(), a.end(), cmp);
22
       FOR (i, 1, a.size())
23
            à.push_back(lca(a[i], a[i - 1]));
24
25
       a.push\_back(1);
26
       sort(a.begin(), a.end(), cmp);
27
       a.erase(unique(a.begin(), a.end()), a.end());
28
       dbg(a);
       int tmp; go(a, tmp = 0);
29
       return f[1];
30
```

4.9 Euler Tour

```
1 \mid \text{int } S[N \ll 1], \text{ top};
2 Edge edges [N << 1]; 3 set < int > G[N];
   void DFS(int u) {
       S[top++] = u;
       for (int eid: G[u]) {
            int v = edges [eid].get_other(u);
            G[u].erase(eid);
            G[v].erase(eid);
            DFS(v);
            return;
14 }
15 void fleury (int start) {
       int u = start;
       top = 0; path.clear();
       S[top++] = u;
       while (top) {
            u = \tilde{S}[-top];
20
            if (!G[u].empty())
21
22
                DFS(u);
            else path.push back(u);
23
24
```

4.10 SCC, 2-SAT

```
1 int n, m;
2 | \text{vector} < \text{int} > G[N], rG[N], vs;
3 int used [N], cmp[N];
  void add_edge(int from, int to) {
       G[from].push_back(to);
       rG[to].push_back(from);
10 void dfs(int v) {
       used[v] = true;
       for (int \mathbf{u} : \mathbf{G}[\mathbf{v}]) {
            if (!used[u])
                dfs(u):
       vs.push_back(v);
   void rdfs(int v, int k) {
       used[v] = true;
20
       cmp[v] = k;
21
       for (int u: rG[v])
22
23
            if (!used[u])
24
                rdfs(u, k);
25 }
26
27
  int scc()
       memset(used, 0, sizeof(used));
28
       vs.clear();
29
       for (int v = 0; v < n; ++v)
30
            if (!used[v]) dfs(v);
31
       memset(used, 0, sizeof(used));
       int \mathbf{k} = 0;
33
       for (int i = (int) vs. size() - 1; i >= 0; --i)
```

```
if (!used[vs[i]]) rdfs(vs[i], k++);
        return k;
37
39
  int main() {
        cin \gg n \gg m;
       n *= 2;
        for (int i = 0; i < m; ++i) {
            int a, b; cin >> a >> b;
add_edge(a - 1, (b - 1) ^ 1);
add_edge(b - 1, (a - 1) ^ 1);
45
46
47
        scc();
        for (int i = 0; i < n; i += 2) {
48
             if (cmp[i] = cmp[i + 1]) {
    puts("NIE");
50
                  return 0;
52
53
54
        for (int i = 0; i < n; i += 2) {
             if (cmp[i] > cmp[i + 1]) printf("%d\n", i + 1);
56
             else printf("%d n", i + 2);
57
```

4.11 Topological Sort

```
vector<int> toporder(int n) {
    vector<int> orders;
    queue<int> q;
    for (int i = 0; i < n; i++)
        if (!deg[i]) {
            q.push(i);
            orders.push_back(i);
        }
    while (!q.empty()) {
        int u = q.front(); q.pop();
        for (int v: G[u])
        if (!--deg[v]) {
            q.push(v);
            orders.push_back(v);
        }
}
return orders;
}</pre>
```

4.12 General Matching

```
int v1 = ce[u]. first, v2 = ce[u]. second;
            flip (mt[u], v1);
flip(s, v2);
connect(v1, v2);
17
18
       } else {
            flip(s, pre[mt[u]]);
19
            connect(pre[mt[u]], mt[u]);
20
21
22 }
23 int get lca(int u, int v) {
       lca_clk++;
        for (u = find(u), v = find(v); u = find(pre[u]), v = find(pre[v])
26
            if'(u \&\& lca_mk[u] = lca_clk) return u;
            lca_mk[u] = lca_clk;
27
            if (v \&\& lca_mk[v] = lca_clk) return v;
28
            lca_mk[v] = lca_clk;
29
30
31
  void access(int u, int p, const pair<int, int>& c, vector<int>& q) {
32
33
       for (\mathbf{u} = \text{find}(\mathbf{u}); \mathbf{u} != \mathbf{p}; \mathbf{u} = \text{find}(\text{pre}[\mathbf{u}])) {
34
            if (mk[u] = 2) {
35
                 ce[u] = c;
36
                q.push_back(u);
37
38
            fa[find(u)] = find(p);
39
40
  bool aug(int s) {
41
        fill(mk, mk + n + 1, 0);
42
43
        fill (pre, pre + n + 1, 0);
       iota(fa, fa + n + 1, 0);
44
     vector < int > q = \{s\};
46
     mk[s] = 1;
47
       int t = 0;
48
        for (int t = 0; t < (int) q.size(); ++t) {
             // q size can be changed
49
            int \mathbf{u} = \mathbf{q}[\mathbf{t}];
50
            for (int &v: G[u]) {
51
52
                 if (find(v) = find(u)) continue;
53
                 if (!mk[v] & !mt[v])
                      flip(s, u);
54
55
                      connect(u, v);
56
                      return true;
                 } else if (!mk[v]) {
   int w = mt[v];
58
                     mk[v] = 2; mk[w] = 1;
59
                     pre[w] = v; pre[v] = u;
60
61
                      q.push_back(w);
62
                 else if (mk[find(v)] == 1) 
                      int p = get_lca(u, v);
63
64
                      access(u, p, \{u, v\}, q);
65
                      access(v, p, \{v, u\}, q);
66
67
68
69
       return false;
70 | }
72 int match() {
        fill(mt + 1, mt + n + 1, 0);
        lca clk = 0;
75
       int ans = 0;
76
       FOR (i, 1, n + 1)
            if (!mt[i]) ans += aug(i);
       return ans:
```

|}

4.13 Tarjan

```
articulation points
   // note that the graph might be disconnected
int dfn[N], low[N], clk;
void init() { clk = 0; memset(dfn, 0, sizeof dfn); }
5 void tarjan (int u, int fa) {
       low[u] = dfn[u] = ++clk;
       int cc = fa != -1;
        for (int& v: G[u]) {
            if (v = fa) continue;
            if (!dfn[v]) {
                 tarjan(v, u);
                 low[u] = min(low[u], low[v]);
                 \operatorname{cc} += \operatorname{low}[v] >= \operatorname{dfn}[u];
13
            } else low[u] = \min(low[u], dfn[v]);
       if (cc > 1) // ...
16
17 }
   // note that the graph might have multiple edges or be disconnected
int dfn[N], low[N], clk;
void init() { memset(dfn, 0, sizeof dfn); clk = 0; }
  void tarjan(int u, int fa) {
       low[u] = dfn[u] = ++clk;
24
25
       int fst = 0;
       for (E\& e: G[u]) {
26
            int v = e.to; if (v = fa \&\& ++ fst = 1) continue;
27
            if (!dfn[v]) {
28
29
                 tarjan(v, u);
                 if (low[v] > dfn[u]) // ...
30
                 low[u] = min(low[u], low[v]);
31
            else low[u] = min(low[u], dfn[v]);
32
33
34
35
   // scc
37 int low[N], dfn[N], clk, B, bl[N];
38 vector (int > bcc [N];
  void init() { B = clk = 0; memset(dfn, 0, sizeof dfn); }
void tarjan(int u) {
   static int st[N], p;
42
       static bool in [N];
       dfn[u] = low[u] = ++clk;

st[p++] = u; in[u] = true;
43
44
       for (int& v: G[u]) {
45
            if (!dfn[v]) {
46
                 tarjan(v);
47
                 low[u] = min(low[u], low[v]);
48
49
            } else if (in[v]) low[u] = min(low[u], dfn[v]);
50
       if (dfn[u] = low[u]) {
51
            while (1) {
52
                 int x = st[--p]; in[x] = false;
53
                 bl[x] = B; bcc[B].push back(x);
                 if (x = u) break;
56
            <del>1</del>+B;
57
58
```

4.14 Bi-connected Components, Block-cut Tree

```
Array size should be 2 * N
      Single edge also counts as bi-connected comp
|V| = |V| = |E| to filter
4 struct E { int to, nxt; } e[N];
5 int hd[N], ecnt;
6 void addedge(int u, int v) {
       e[ecnt] = \{v, hd[u]\};
       hd[u] = ecnt++;
10 int low [N], dfn [N], clk, B, bno [N];
11 | \text{vector} < \text{int} > \text{bc}[N], \text{be}[N];
12 bool vise [N];
13 void init()
       memset(vise, 0, sizeof vise);
       memset(hd, -1, size of hd);
       memset(dfn, 0, sizeof dfn);
       memset(bno, -1, sizeof bno);
       B = clk = ecnt = 0;
20
   \begin{array}{c} \text{void } tarjan(\text{int } u, \text{ int } feid) \ \{\\ \text{static int } st\left[N\right], \ p; \\ \text{static auto } add = \left[\&\right](\text{int } x) \ \{ \end{array} 
23
             if (bno[x] != B) { bno[x] = B; bc[B].push\_back(x); }
24
25
26
       low[u] = dfn[u] = ++clk;
       for (int i = hd[u]; \sim i; i = e[i].nxt) {
27
             if ((feid ^ i) == 1) continue;
28
             if (!vise[i]) { st[p++] = i; vise[i] = vise[i ^ 1] = true; } int v = e[i] \cdot to;
29
30
             if (!dfn[v]) {
                 tarjan(v, i);
                 low[u] = min(low[u], low[v]);
                 if (low[v] >= dfn[u]) {
                      bc[B].clear(); be[B].clear();
                       while (1) {
                           int eid = st[--p];
                           add(e[eid].to); add(e[eid ^ 1].to);
                           be [B] push back (eid);
                           if ((eid ^ i) \le 1) break;
                      <u>+</u>+B;
             else low[u] = min(low[u], dfn[v]);
45
46
       block-cut tree
   // cactus -> block-cut tree
// N >= |E| * 2
  vector < int > G[N];
56 int nn:
58 struct E { int to, nxt; };
59 namespace C {
       \mathbf{E} = [\mathbf{N} + \hat{\mathbf{2}}];
       int hd[N], ecnt;
       void addedge(int u, int v) {
```

```
e[ecnt] = \{v, hd[u]\};
           hd[u] = ecnt++;
64
65
       int idx[N], clk, fa[N];
66
67
       bool ring [N];
       void init() { ecnt = 0; memset(hd, -1, size of hd); clk = 0; }
68
       void dfs(int u, int feid) {
69
           idx[\dot{u}] = ++clk;
70
           for (int i = hd[u]; \sim i; i = e[i].nxt) {
                if ((i ^ feid) == 1) continue;
72
                int \mathbf{v} = \mathbf{e}[\mathbf{i}] \cdot \mathbf{to};
                if (!idx[v]) {
                    fa[v] = u; ring[u] = false;
                    dfs(v, i);
                    if (!ring[u]) { G[u].push_back(v); G[v].push_back(u);
                else if (idx[v] < idx[u]) 
                    G[nn].push_back(v); G[v].push_back(nn); // put the
                         root of the cycle in the front
                    for (int x = u; x' = v; x = fa[x]) {
                         ring[x] = true;
                         G[nn]. push back(x); G[x]. push back(nn);
                    ring[v] = true;
87
88
```

4.15 Minimum Directed Spanning Tree

```
1 // edges will be modified
vector <E> edges;
int in [N], id [N], pre [N], vis [N];
      a copy of n is needed
5 LL zl_tree(int rt, int n) {
        L\overline{L} ans = 0;
        int \mathbf{v}, \underline{\mathbf{n}} = \mathbf{n};
        while (1) {
             fill(in, in + n, INF);
             for (E &e: edges) {
                  if (e.u != e.v \&\& e.w < in[e.v]) {
                       pre[e.v] = e.u;
                       in[e.v] = e.w;
            FOR (i, 0, n) if (i != rt \&\& in[i] == INF) return -1;
             fill(id, id + \underline{n}, -1); fill(vis, vis + \underline{n}, -1);

\frac{in[rt] = 0;}{FOR(i, 0, n)} 

                  ans += in [v = i];
                  while (vis[v] \stackrel{!}{=} i \&\& id[v] = -1 \&\& v \stackrel{!}{=} rt) {
                       vis[v] = i; v = pre[v];
                  if (v != rt \&\& id[v] == -1) {
26
                       for (int u = pre[v]; u != v; u = pre[u]) id[u] = tn;
                      id[v] = tn++;
27
28
29
30
             if (tn = 0) break;
            FOR (i, 0, n) if (id[i] = -1) id [i] = tn++;
31
             for (int i = 0; i < (int) edges.size(); ) {
```

```
auto &e = edges[i];
v = e.v;
e.u = id[e.u]; e.v = id[e.v];
if (e.u != e.v) { e.w -= in[v]; i++; }
else { swap(e, edges.back()); edges.pop_back(); }

n = tn; rt = id[rt];
}
return ans;
}
```

4.16 Cycles

```
refer to cheatsheet for elaboration
2 LL cycle4() {
      LL \text{ ans} = 0:
      iota(kth, kth + n + 1, 0);
       sort(kth, kth + n, [\&](int x, int y) \{ return deg[x] < deg[y]; \});
      FOR (i, 1, n + 1) \text{ rk}[kth[i]] = i;
      FOR (u, 1, n + 1)
            for (int v: G[u])
                if (rk[v] > rk[u]) key [u]. push_back(v);
      FOR (u, 1, n + 1) {
           for (int v: G[u])
                for (int w: key[v])
                     if (rk[w] > rk[u]) ans += cnt[w]++;
            for (int v: G[u])
                for (int w: key[v])
                     if (rk[w] > rk[u]) --cnt[w];
       return ans;
18
19
20
  |int cycle3()|
       int ans' = 0;
21
       for (E &e: edges) { deg[e.u]++; deg[e.v]++; }
22
       for (E &e: edges) {
23
24
            if (\deg[e.u] < \deg[e.v] \mid | (\deg[e.u] = \deg[e.v] \&\& e.u < e.v)
               \dot{G}[e.u].push\_back(e.v);
25
           else G[e.v].push_back(e.u);
26
27
28
      FOR(x, 1, n + 1) {
           for (int y: G[x]) p[y] = x;
for (int y: G[x]) for (int z: G[y]) if (p[z] = x) ans++;
29
30
31
32
       return ans;
```

4.17 Dominator Tree

```
vector<int> G[N], rG[N];
vector<int> dt[N];

namespace tl{
   int fa[N], idx[N], clk, ridx[N];
   int c[N], best[N], semi[N], idom[N];

void init(int n) {
   clk = 0;
   fill(c, c + n + 1, -1);
   FOR (i, 1, n + 1) dt[i].clear();
   FOR (i, 1, n + 1) semi[i] = best[i] = i;
```

```
fill (idx, idx + n + 1, 0);
13
      void dfs(int u) {
14
          idx[u] = ++clk; ridx[clk] = u;
15
          for (int\& v: G[u]) if (!idx[v]) { fa[v] = u; dfs(v); }
16
17
      int fix (int x) {
18
          if (c[x] = -1) return x;
19
          20
          return f = rt;
23
      void go(int rt) {
          dfs(rt);
          FORD (i, clk, 1) {
              int x = ridx[i], mn = clk + 1;
27
              for (int& u: rG[x]) {
                  if (!idx[u]) continue; // reaching all might not be
                  fix(u); mn = min(mn, idx[semi[best[u]]]);
              c[x] = fa[x];
dt[semi[x] = ridx[mn]].push_back(x);
x = ridx[i - 1];
              for (int\& u: dt[x]) {
                  fix(u);
                  if (semi[best[u]] != x) idom[u] = best[u];
                  else idom[u] = x;
              dt[x].clear();
         FOR (i, 2, clk + 1) {
              int u = ridx[i];
              if (idom[u] != semi[u]) idom[u] = idom[idom[u]];
              dt [idom [u]]. push back(u);
47
48
```

4.18 Global Minimum Cut

```
struct StoerWanger {
        LL n, vis [N];
LL dist [N];
        LL g[N] N;
         void init (int nn, LL w[N][N]) {
              n = nn;
              FOR (i, 1, n + 1) FOR (j, 1, n + 1)
                    \hat{\mathbf{g}}[\hat{\mathbf{i}}][\hat{\mathbf{j}}] = \mathbf{w}[\hat{\mathbf{i}}][\hat{\mathbf{j}}];
              memset(dist, 0, sizeof(dist));
12
13
        LL min_cut_phase(int clk, int &x, int &y) {
15
               vis[t = 1] = clk;
16
              FOR (i, 1, n + 1) if (vis[i] != clk)
17
                    dist[i] = g[1][i];
18
19
              FOR (i, 1, n) {
                    \mathbf{x} = \mathbf{t}; \ \mathbf{t} = 0;
20
                    FOR (j, 1, n + 1)
```

```
if (vis[j] != clk && (!t || dist[j] > dist[t]))
22
23
                 vis[t] = clk;
24
                 FOR (j, 1, n + 1) if (vis[j] != clk)
25
                      dist[j] += g[t][j];
26
27
            \hat{\mathbf{y}} = \mathbf{t};
28
29
            return dist[t];
30
31
32
       void merge(int x, int y) {
33
            if (x > y) swap(x, y);
34
            FOR(i, 1, n + 1)
                 if (i != x & i != y) {
35
                      g[i][x] += g[i][y];

g[x][i] += g[i][y];
36
37
38
39
            if (y = n) return;
40
            FOR (i, 1, n) if (i != y) {
                 swap(g[i][y], g[i][n]);
                 \operatorname{swap}(g[y][i], g[n][i]);
42
43
44
45
46
47
       LL go() {
            LL ret = INF;
48
            memset(vis, 0, sizeof vis);
49
50
            for (int i = 1, x, y; n > 1; ++i, --n) {
                 ret = min(ret, min\_cut\_phase(i, x, y));
                 merge(x, y);
52
53
            return ret;
  } sw;
```

5 Geometry

5.1 2D Basics

```
\frac{1}{1} int sgn(LD x) { return fabs(x) < eps ? 0 : (x > 0 ? 1 : -1); }
  struct L;
  struct P;
  typedef PV;
  struct P {
      LD x, y;
      explicit P(LD x = 0, LD y = 0): x(x), y(y) {}
      explicit P(const L& 1);
  };
  | struct L {
      P s, t;
      L() {}
      L(P s, P t): s(s), t(t) {}
14 };
16 P operator + (const P& a, const P& b) { return P(a.x + b.x, a.y + b.y)
77 P operator - (const P& a, const P& b) { return P(a.x - b.x, a.y - b.y)
18 P operator * (const P& a, LD k) { return P(a.x * k, a.y * k);
19 P operator / (const P& a, LD k) { return P(a.x / k, a.y / k); }
20 inline bool operator < (const P& a, const P& b) {
```

```
return sgn(a.x - b.x) < 0 || (sgn(a.x - b.x) = 0 && sgn(a.y - b.y |
) < 0);

bool operator = (const P& a, const P& b) { return !sgn(a.x - b.x) &&
!sgn(a.y - b.y); }

P::P(const L& 1) { *this = 1.t - 1.s; }

ostream &operator << (ostream &os, const P&p) {
    return (os << "(" << p.x << "," << p.y << ")");

istream &operator >> (istream &is, P&p) {
    return (is >> p.x >> p.y);
}

LD dist(const P& p) { return sqrt(p.x * p.x + p.y * p.y); }

LD dot(const V& a, const V& b) { return a.x * b.x + a.y * b.y; }

LD det(const V& a, const V& b) { return a.x * b.y - a.y * b.x; }

LD cross(const P& s, const P& t, const P& o = P()) { return det(s - o, t - o); }
```

5.2 Polar angle sort

```
int quad(P p) {
   int x = sgn(p.x), y = sgn(p.y);
   if (x > 0 && y >= 0) return 1;
   if (x <= 0 && y > 0) return 2;
   if (x < 0 && y <= 0) return 3;
   if (x >= 0 && y < 0) return 4;
   assert(0);
}

struct cmp_angle {
   P p;
   bool operator () (const P& a, const P& b) {
      int qa = quad(a - p), qb = quad(b - p);
      if (qa != qb) return qa < qb; // compare quad
      int d = sgn(cross(a, b, p));
   if (d) return d > 0;
      return dist(a - p) < dist(b - p);
}
};</pre>
```

5.3 Segments, lines

```
bool parallel (const L& a, const L& b) {
      return !sgn(det(P(a), P(b)));
  bool l_eq(const L& a, const L& b) {
      return parallel(a, b) && parallel(L(a.s, b.t), L(b.s, a.t));
  // counter-clockwise r radius
8 Protation (const P&p, const LD&r) { return P(p.x * cos(r) - p.y *
      \sin(r), p.x * \sin(r) + p.y * \cos(r); }
9 P RotateCCW90(const P& p) { return P(-p.y, p.x); }
10 P RotateCW90(const P& p) { return P(p.y, -p.x); }
11 V normal(const V& v) { return V(-v.y, v.x) / dist(v); }
12 // inclusive: <=0; exclusive: <0
bool p_on_seg(const P& p, const L& seg) {
      P a = seg.s, b = seg.t;
      return !sgn(det(p - a, b - a)) && sgn(dot(p - a, p - b)) <= 0;
15
17 LD dist_to_line(const P& p, const L& 1) {
```

```
return fabs(cross(l.s, l.t, p)) / dist(l);
20 LD dist_to_seg(const P& p, const L& 1) {
       if (1.s = 1.t) return dist(p - 1);
21
22
       V vs = p - 1.s, vt = p - 1.t;
23
       if (sgn(dot(l, vs)) < 0) return dist(vs);
24
       else if (sgn(dot(1, vt)) > 0) return dist(vt);
        else return dist_to_line(p, 1);
26 }
27
28 // make sure they have intersection in advance
29 P l_intersection(const L& a, const L& b) {
       LD s1 = det(P(a), b.s - a.s), s2 = det(P(a), b.t - a.s);
       return (b.s * s2 - b.t * s1) / (s2 - s1);
32 }
33 LD angle (const V& a, const V& b) {
       LD r = asin(fabs(det(a, b))) / dist(a) / dist(b));
       if (\operatorname{sgn}(\operatorname{dot}(a, b)) < 0) r = PI - r;
       return r:
37 }
38 // 1: proper; 2: improper
39 int s_l_cross(const L& seg, const L& line) {
       \overline{\text{int }} d1 = \operatorname{sgn}(\operatorname{cross}(\overline{\text{line.s}}, \overline{\text{line.t}}, \overline{\text{seg.s}}));
       int d2 = sgn(cross(line.s, line.t, seg.t));
       if ((d1 ^ d2) = -2) return 1; // proper
       if (d1 = 0 \mid d2 = 0) return 2;
       return 0;
46 // 1: proper; 2: improper
47 int s cross(const L& a, const L& b, P& p) {
       int d1 = \operatorname{sgn}(\operatorname{cross}(a.t, b.s, a.s)), d2 = \operatorname{sgn}(\operatorname{cross}(a.t, b.t, a.s))
49
       int d3 = \operatorname{sgn}(\operatorname{cross}(b.t, a.s, b.s)), d4 = \operatorname{sgn}(\operatorname{cross}(b.t, a.t, b.s))
       if ((d1 \hat{} d2) = -2 \&\& (d3 \hat{} d4) = -2) { p = 1 intersection(a, b)
50
             ; return 1; }
       if (!d1 \&\& p\_on\_seg(b.s, a)) \{ p = b.s; return 2; 
51
52
        if (!d2 \&\& p\_on\_seg(b.t, a)) { p = b.t; return 2;
53
        if (!d3 \&\& p\_on\_seg(a.s, b)) \{ p = a.s; return 2; \}
       if (!d4 \&\& p\_on\_seg(a.t, b)) \{ p = a.t; return 2; \}
       return 0:
```

5.4 Polygons

```
typedef vector <P>S;
  // 0 = outside, 1 = inside, -1 = on border
  int inside (const S& s, const P& p) {
      int cnt = 0;
      FOR (i, 0, s.size())
           P = s[i], b = s[nxt(i)];
           if (p_on_seg(p, L(a, b))) return -1;
           if (\operatorname{sgn}(a.y - b.y) \le 0) \operatorname{swap}(a, b);
           if (sgn(p.y - a.y) > 0) continue;
           if (sgn(p.y - b.y) \le 0) continue;
           cnt += sgn(cross(b, a, p)) > 0;
      return bool(cnt & 1);
     can be negative
17 LD polygon area (const S& s) {
      LD ret = 0;
      FOR (i, 1, (LL)s.size() - 1)
```

```
ret += cross(s[i], s[i+1], s[0]);
       return ret / 2:
22 }
23 // duplicate points are not allowed
24 // s is subject to change
25 const int MAX N = 1000;
26 S convex_hull(S& s) {
27 //
         assert(s.size() >= 3);
      sort(s.begin(), s.end());
S ret(MAX_N * 2);
29
       int \mathbf{sz} = 0;
30
      FOR (i, 0, s.size()) {
31
           while (sz > 1) & sgn(cross(ret[sz - 1], s[i], ret[sz - 2])) < 
           ret[sz++] = s[i];
35
       int k = sz:
      FORD (i, (LL)s.size() - 2, -1) {
           while (sz > k \&\& sgn(cross(ret[sz - 1], s[i], ret[sz - 2])) <
                0) --sz;
           ret[sz++] = s[i];
       ret.resize(sz - (s.size() > 1));
       return ret;
   // centroid
44 P ComputeCentroid(const vector<P> &p) {
      P c(0, 0);
       LD scale = 6.0 * polygon\_area(p);
       for (unsigned i = 0; i < p.size(); i++) { unsigned j = (i + 1) \% p.size();
           c = c + (p[i] + p[j]) * (p[i].x * p[j].y - p[j].x * p[i].y);
50
       return c / scale;
51
52 }
     Rotating Calipers, find convex hull first
54 LD rotating Calipers (vector < P>& qs) {
       int n = qs. size();
       if (n = 2)
           return dist(qs[0] - qs[1]);
57
       int i = 0, j = 0;
       FOR (k, 0, n) {
           if (!(qs[i] < qs[k])) i = k;
           if (qs[j] < qs[k]) j = k;
      \dot{L}D res = 0;
       int si = i, sj = j;
       while (i != sj \mid | j != si) {
           res = max(res, dist(qs[i] - qs[j]));
           if (sgn(cross(qs[(i+1)\%n] - qs[i], qs[(j+1)\%n] - qs[j])) < 0)
               i = (i + 1) \% n;
           else j = (j + 1) \% n;
       return res;
```

5.5 Half-plane intersection

```
7 | bool operator < (const LV &a, const LV & b) { return a.ang < b.ang; }
s | bool on left(const LV& 1, const P& p) { return sgn(cross(1.v, p - 1.p)
      ) >= 0:
9 P l_intersection(const LV& a, const LV& b) {
      P u = a.p - b.p; LD t = cross(b.v, u) / cross(a.v, b.v);
      return a.p + a.v * t;
12 }
13
14 S half_plane_intersection(vector<LV>& L) {
      int n = L. size(), fi, la;
      sort(L.begin(), L.end());
      vector < P > p(n); vector < LV > q(n);
      q[fi = la = 0] = L[0];
      FOR (i, 1, n) {
           while (fi < la && !on_left(L[i], p[la - 1])) la --;
20
           while (fi < la && !on_left(L[i], p[fi])) fi++;
21
           q[++la] = L[i];
22
23
           if (\operatorname{sgn}(\operatorname{cross}(q[la].v, q[la - 1].v)) == 0) {
24
               if (on_{left}(q[la], L[i].p)) q[la] = L[i];
26
27
           if (fi < la) p[la - 1] = l intersection(q[la - 1], q[la]);
28
29
      while (fi < la && !on_left(q[fi], p[la - 1])) la--;
30
      if (la - fi \leq 1) return vector\langle P \rangle();
      p[la] = l_{intersection}(q[la], q[fi]);
31
32
      return vector \langle P \rangle (p. begin() + fi, p. begin() + la + 1);
33 }
34
35 S convex_intersection(const vector<P> &v1, const vector<P> &v2) {
      36
37
      FOR (i, 0, m) h.push_back(LV(v2[i], v2[(i + 1) \% m]));
38
      return half_plane_intersection(h);
```

5.6 Circles

```
struct C {
       Pp; LDr;
       C(LD x = 0, LD y = 0, LD r = 0): p(x, y), r(r) 
       C(P p, LD r): p(p), r(r) \{\}
  };
 P compute_circle_center(P a, P b, P c) {
       \mathbf{b} = (\mathbf{a} + \mathbf{b}) \ \overline{/} \ 2;
       \mathbf{c} = (\mathbf{a} + \mathbf{c}) / 2;
        return 1 intersection(\{b, b + RotateCW90(a - b)\}, \{c, c + b\}
             RotateCW90(a - c)});
13 // intersections are clockwise subject to center
14 vector <P> c_l_intersection(const L& l, const C& c) {
       vector <P> ret;
       P b(1), a = 1.s - c.p;
       LD x = dot(b, b), y = dot(a, b), z = dot(a, a) - c.r * c.r;
       LD D = y * y - x * z;
18
        if (sgn(D) < 0) return ret;
19
        ret.push back(c.p + a + b * (-y + sqrt(D + eps)) / x);
        if (\operatorname{sgn}(D) > 0) ret.push back(\operatorname{c.p} + \operatorname{a} + \operatorname{b} * (\operatorname{-y} - \operatorname{sqrt}(D)) / x);
        return ret;
23 }
|vector < P > c_c_intersection(C a, C b)|
```

```
vector<P> ret;
       LD d = dist(a.p - b.p);
27
       if (\operatorname{sgn}(d) \stackrel{\cdot}{=} 0 \mid | \operatorname{sgn}(d - (a.r + b.r)) > 0 \mid | \operatorname{sgn}(d + \min(a.r, b.
28
            r) - \max(a.r, b.r) < 0
29
            return ret;
       LD x = (d * d - b.r * b.r + a.r * a.r) / (2 * d);
30
       LD y = \operatorname{sqrt}(a.r * a.r - x * x);
31
       P v = (b.p - a.p) / d;
32
       ret.push_back(a.p + v * x + RotateCCW90(v) * y);
33
       if (\operatorname{sgn}(y) > 0) ret.push_back(a.p + v * x - RotateCCW90(v) * y);
34
35
       return ret;
36
      1: inside, 2: internally tangent
   // 3: intersect, 4: ext tangent 5: outside
  int c c relation (const C& a, const C& v) {
       LD d = dist(a.p - v.p);
       if (sgn(d - a.r - v.r) > 0) return 5;
       if (\operatorname{sgn}(d - a.r - v.r) = 0) return 4;
       LD \hat{l} = \hat{f}abs(a.r - v.r);
       if (\operatorname{sgn}(d - 1) > 0) return 3;
       if (\operatorname{sgn}(d-1) = 0) return 2;
       if (\operatorname{sgn}(d-1) < 0) return 1;
47
      circle triangle intersection
      abs might be needed
51 LD sector area (const P& a, const P& b, LD r) {
       LD th = atan2(a.y, a.x) - atan2(b.y, b.x);
       while (th \leq 0) th += 2 * PI;
       while (th > 2 * PI) th = 2 * PI;
54
       th = min(th, 2 * PI - th);
55
       return r * r * th / 2;
56
57
58 LD c_tri_area(P a, P b, P center, LD r) {
       a = a - center; b = b - center;
       int ina = \operatorname{sgn}(\operatorname{dist}(a) - r) < 0, inb = \operatorname{sgn}(\operatorname{dist}(b) - r) < 0;
60
        // dbg(a, b, ina, inb);
       if (ina && inb) {
            return fabs(cross(a, b)) / 2;
64
65
            auto p = c \mid intersection(L(a, b), C(0, 0, r));
            if (ina ^ inb) {
66
                 auto cr = p\_on\_seg(p[0], L(a, b)) ? p[0] : p[1];
                 if (ina) return sector_area(b, cr, r) + fabs(cross(a, cr))
                 else return sector_area(a, cr, r) + fabs(cross(b, cr)) /
            } else {
                 if ((int) p.size() = 2 \&\& p_on_seg(p[0], L(a, b)))  {
                      if (dist(p[0] - a) > dist(p[1] - a)) swap(p[0], p[1]);
                      return sector_area(a, p[0], r) + sector_area(p[1], b,
                           r)
                          + fabs(cross(p[0], p[1])) / 2;
                 } else return sector_area(a, b, r);
76
78
79 typedef vector <P> S;
80 LD c_poly_area(S poly, const C& c) {
       LD ret = 0; int n = poly.size();
       FOR (i, 0, n) {
            int t = \operatorname{sgn}(\operatorname{cross}(\operatorname{poly}[i] - \operatorname{c.p.}, \operatorname{poly}[(i+1)\% n] - \operatorname{c.p.}));
84
            if (t) ret += t * c_tri_area(poly[i], poly[(i + 1) % n], c.p,
85
86
       return ret;
```

5.7 Circle Union

```
version 1
2 // \text{ union } O(n^3 \log n)
3 struct CV {
      LD yl, yr, ym; Co; int type;
      CV() {}
      CV(LD yl, LD yr, LD ym, C c, int t)
           : yl(yl), yr(yr), ym(ym), type(t), o(c) 
9 pair LD, LD c point eval(const C& c, LD x) {
      LD d = fabs(c.p.x - x), h = rt(sq(c.r) - sq(d));
       return \{c.p.y - h, c.p.y + h\};
pair CV, CV> pairwise_curves (const C& c, LD xl, LD xr) {
      LD yl1, yl2, yr1, yr2, ym1, ym2;
       tie(yl1, yl2) = c_point_eval(c, xl);
       tie(ym1, ym2) = c_point_eval(c, (xl + xr) / 2);
       tie(yr1, yr2) = c_point_eval(c, xr);
       return \{CV(y|1, yr1, ym1, c, 1), CV(y|2, yr2, ym2, c, -1)\};
19
  |bool operator < (const CV& a, const CV& b) { return a.ym < b.ym; }
20
21 LD cv_area(const CV& v, LD xl, LD xr) {
      LD l = rt(sq(xr - xl) + sq(v.yr - v.yl));
22
      LD d = rt(sq(v.o.r) - sq(l/2));
LD ang = atan(l/d/2);
23
24
       return ang * sq(v.o.r) - d * 1 / 2;
25
26 }
27 LD circle_union(const vector < c> cs) {
       int n = cs.size();
       vector \langle LD \times xs;
29
30
      FOR (i, 0, n) {
           xs.push_back(cs[i].p.x - cs[i].r);
31
32
           xs.push\_back(cs[i].p.x);
33
           xs.push\_back(cs[i].p.x + cs[i].r);
           FOR (j, i + 1, n) {
                auto pts = c_c_{intersection}(cs[i], cs[j]);
36
                for (auto& p: pts) xs.push_back(p.x);
37
38
39
       sort(xs.begin(), xs.end());
       xs.erase(unique(xs.begin(), xs.end(), [](LD x, LD y) { return sgn(
40
           x - y = 0;  }), xs.end());
      LD ans = 0;
      FOR (i, 0, (int) xs.size() - 1) \{
LD xl = xs[i], xr = xs[i + 1];
           vector < CV> intv;
45
           FOR(k, 0, n) {
                auto& c = cs[k];
46
47
                if (\operatorname{sgn}(c.p.x - c.r - xl) \le 0 \&\& \operatorname{sgn}(c.p.x + c.r - xr) > =
                    auto t = pairwise_curves(c, xl, xr);
                    intv.push back(t.first); intv.push back(t.second);
50
51
           sort(intv.begin(), intv.end());
52
53
           vector \( \omega D \rightarrow \text{ areas (intv.size());} \)
54
           FOR (i, 0, intv.size()) areas [i] = cv area (intv[i], xl, xr);
           int cc = 0;
57
           FOR (i, 0, intv.size()) {
```

```
if (cc > 0) {
                     ans += (intv[i].yl - intv[i - 1].yl + intv[i].yr -
                    intv[i - 1].yr) * (xr - xl) / 2;
ans += intv[i - 1].type * areas[i - 1];
                    ans -= intv[i].type * areas[i];
                cc += intv[i].type;
64
66
       return ans;
67
68 }
  // version 2 (k-cover, O(n^2 \log n))
71 inline LD angle (const P &p) { return atan2(p.y, p.x); }
73 // Points on circle
74 // p is coordinates relative to c
75 struct CP {
    Pp;
    LD a
78
    int t;
    CP() {}
    CP(P, p, LD, a, int, t) : p(p), a(a), t(t) 
   bool operator < (const CP &u, const CP &v) { return u.a < v.a; }
83 LD cv_area(LD r, const CP &q1, const CP &q2) {
    return (r * r * (q2.a - q1.a) - cross(q1.p, q2.p)) / 2;
85 }
87 LD ans [N];
  void circle_union(const vector < &cs) {
     int n = cs.size();
    FOR(i, 0, n) {
       // same circle, only the first one counts
       bool ok = true;
       FOR(j, 0, i)
       if (sgn(cs[i].r - cs[j].r) = 0 \&\& cs[i].p = cs[j].p) {
         ok = false;
95
         break;
       if (!ok)
         continue;
       auto &c = cs[i];
       vector < CP> ev;
       int belong to = 0;
       P bound = c.p + P(-c.r, 0);
       ev.emplace_back(bound, -PI, 0);
       ev.emplace_back(bound, PI, 0);
        FOR(j, 0, \frac{n}{n}) \{ if (i == j) 
106
107
108
           continue;
          if (c_c_relation(c, cs[j]) \le 2) {
109
            if (\operatorname{sgn}(\operatorname{cs}[j].r - \operatorname{c.r}) >= 0) // totally covered
110
              belong to++;
112
            continue:
113
         auto its = c c intersection(c, cs[j]);
114
          if (its.size() == 2) {
115
           P p = its[1] - c.p, q = its[0] - c.p;
116
117
           LD a = angle(p), b = angle(q);
            if (sgn(a - b) > 0) {
118
              ev.emplace_back(p, a, 1);
119
              ev.emplace_back(bound, PI, -1);
120
              ev.emplace_back(bound, -PI, 1);
121
122
              ev.emplace_back(q, b, -1);
            } else {
123
```

```
ev.emplace_back(p, a, 1);
             ev.emplace back(q, b, -1);
125
126
127
128
       sort(ev.begin(), ev.end());
129
       int cc = ev[0].t;
130
       FOR(j, 1, ev. size()) {
131
132
         int t = cc + belong_to;
         ans[t] += cross(ev[j - 1].p + c.p, ev[j].p + c.p) / 2;
133
         ans [t] += cv_area(c.r, ev[j - 1], ev[j]);
134
         cc += ev[j].t;
137
138 }
```

5.8 Minimum Covering Circle

```
P compute circle center(Pa, Pb) { return (a + b) / 2; }
2 bool p_in_circle(const P& p, const C& c) {
      return sgn(dist(p - c.p) - c.r) \le 0;
5 C min_circle_cover(const vector<P> &in) {
      vector < P > a(in.begin(), in.end());
      dbg(a.size());
      random_shuffle(a.begin(), a.end());
      P c = \overline{a[0]}; LD r = \overline{0}; int n = a.size();
      FOR (i, 1, n) if (!p_in_circle(a[i], \{c, r\})) {
          c = a[i]; r = 0;
          FOR (j, 0, i) if (!p\_in\_circle(a[j], \{c, r\})) {
               c = compute\_circle\_center(a[i], a[j]);
               r = dist(a[j] - c);
              FOR (k, \hat{0}, \hat{j}) if (!p_in_circle(a[k], \{c, r\}))
                   c = compute\_circle\_center(a[i], a[j], a[k]);
                   r = dist(a[k] - c);
      return \{c, r\};
```

5.9 Circle Inversion

```
C inv(C c, const P& o) {
    LD d = dist(c.p - o);
    assert(sgn(d) != 0);
    LD a = 1 / (d - c.r);
    LD b = 1 / (d + c.r);
    c.r = (a - b) / 2 * R2;
    c.p = o + (c.p - o) * ((a + b) * R2 / 2 / d);
    return c;
}
```

5.10 3D Basics

```
struct P;
struct L;
typedef P V;
```

```
4 struct P {
            LD x, y, z
             explicit P(LD x = 0, LD y = 0, LD z = 0): x(x), y(y), z(z) {}
             explicit P(const L& 1);
 8 };
 9 struct L {
            P s, t;
            L() {}
           L(P s, P t): s(s), t(t) 
13 };
14 struct F {
            P a, b, c;
            F() {}
            F(P \ a, P \ b, P \ c): a(a), b(b), c(c) 
19 P operator + (const P& a, const P& b)
20 P operator - (const P& a, const P& b) {
21 P operator * (const P& a, LD k) {
22 Poperator / (const P& a, LD k) { }
23 inline int operator < (const P& a, const P& b) {
             return sgn(a.x - b.x) < 0 \mid | (sgn(a.x - b.x) = 0 && (sgn(a.y - b.x)) = 0 & & (sgn(a.y - b.x))
                     y > 0 | |
                                                                             (sgn(a.y - b.y) = 0 \&\& sgn(a.z - b.
                                                                                     (z) < 0));
    bool operator = (const P& a, const P& b) { return !sgn(a.x - b.x) &&
            !sgn(a.y - b.y) && !sgn(a.z - b.z);
28 P::P(\text{const } L\& 1) \ \{ \text{*this} = 1.t - 1.s; \} 
29 ostream &operator << (ostream &os, const P &p) {
30 return (os << "(" << p.x << "," << p.y << "," << p.z << ")");
31 }
32 istream & operator >> (istream & is, P & p) {
             return (is \gg p.x \gg p.y \gg p.z);
a_{35}LD dist2(const P& p) { return p.x * p.x + p.y * p.y + p.z * p.z; }
36 LD dist(const P& p) { return sqrt(dist2(p)); }
37 LD dot(const V& a, const V& b) { return a.x * b.x + a.y * b.y + a.z *
             b.z: }
38 P cross (const P& v, const P& w) {
             return P(v.y * w.z - v.z * w.y, v.z * w.x - v.x * w.z, v.x * w.y -
                       v.y^*w.x);
41 LD mix(const V& a, const V& b, const V& c) { return dot(a, cross(b, c)
     // counter-clockwise r radius
      // axis = 0 around axis x
     // axis = 1 around axis y
     // axis = 2 around axis z
46 P rotation (const P& p, const LD& r, int axis = 0) {
             if (axis = 0)
                      return P(p.x, p.y * cos(r) - p.z * sin(r), p.y * sin(r) + p.z
48
                              * \cos(r);
              else if (axis = 1)
                      return P(p.z *'cos(r) - p.x * sin(r), p.y, p.z * sin(r) + p.x
                              * cos(r));
              else if (axis = 2)
                      return P(p.x * cos(r) - p.y * sin(r), p.x * sin(r) + p.y * cos
                               (r), p.z);
      // n is normal vector
     // this is clockwise
56 Protation (const P&p, const LD&r, const P&n) {
             LD c = cos(r), s = sin(r), x = n.x, y = n.y, z = n.z;
             return P((x * x * (1 - c) + c) * p.x + (x * y * (1 - c) + z * s) * p.y + (x * z * (1 - c) - y * s) * p.z,
```

5.11 3D Line, Face

```
1 // \le 0 inproper, < 0 proper
2 bool p_on_seg(const P& p, const L& seg) {
       P a = seg.s, b = seg.t;
       return !\operatorname{sgn}(\operatorname{dist2}(\operatorname{cross}(p-a, b-a))) \&\& \operatorname{sgn}(\operatorname{dot}(p-a, p-b))
6 LD dist_to_line(const P& p, const L& l) {
       return dist(cross(l.s - p, l.t - p)) / dist(l);
9 LD dist_to_seg(const P& p, const L& 1) {
       if (l.s = l.t) return dist(p - l.s);
       V \stackrel{\cdot}{vs} = p - 1.s', vt = p - 1.t';
       if (sgn(dot(1, vs)) < 0) return dist(vs);
       else if (sgn(dot(1, vt)) > 0) return dist(vt);
       else return dist to line(p, 1);
15 }
17 P norm(const F& f) { return cross(f.a - f.b, f.b - f.c); }
18 int p on plane(const F& f, const P& p) { return sgn(dot(norm(f), p - f
       (a) = 0;
  // if two points are on the opposite side of a line
20 // return 0 if points is on the line
21 // makes no sense if points and line are not coplanar
22 int opposite side (const P& u, const P& v, const L& l) {
    return \operatorname{sgn}(\operatorname{dot}(\operatorname{cross}(P(1), u - 1.s), \operatorname{cross}(P(1), v - 1.s))) < 0;
24 }
25
  | bool parallel(const L& a, const L& b) { return !sgn(dist2(cross(P(a),
       P(b)))); }
  int s intersect (const L& u, const L& v) {
27
       return p_on_plane(F(u.s, u.t, v.s), v.t) &&
28
29
               opposite_side(u.s, u.t, v) &&
30
               opposite side(v.s, v.t, u);
```

5.12 3D Convex

```
struct FT {
    int a, b, c;
    FT() { }
    FT(int a, int b, int c) : a(a), b(b), c(c) { }
};

bool p_on_line(const P& p, const L& 1) {
    return !sgn(dist2(cross(p - 1.s, P(1))));
}

vector<F> convex_hull(vector<P> &p) {
    sort(p.begin(), p.end());
    p.erase(unique(p.begin(), p.end()), p.end());
    random_shuffle(p.begin(), p.end());
    vector<FT> face;
    FOR (i, 2, p.size()) {
```

```
if (p_on_line(p[i], L(p[0], p[1]))) continue;
           swap(p[i], p[2]);
           FOR (j, i + 1, p.size())
19
               if (sgn(mix(p[1] - p[0], p[2] - p[1], p[j] - p[0]))) {
20
                    swap(p[j], p[3]);
21
                    face .emplace\_back(0, 1, 2);
                    face.emplace_back(0, 2, 1);
                    goto found;
  found:
       vector<vector<int>>> mk(p. size(), vector<int>(p. size()));
      FOR (v, 3, p.size()) {
    vector<FT> tmp;
30
           FOR (i, 0, face.size()) {
               int a = face[i].a, b = face[i].b, c = face[i].c;
               if (sgn(mix(p[a] - p[v], p[b] - p[v], p[c] - p[v])) < 0) {
                   mk[c][a] = mk[a][c] = v;
               } else tmp.push_back(face[i]);
           face = tmp;
          FOR (i, 0, tmp.size()) {
               int a = face[i].a, b = face[i].b, c = face[i].c;
               if (mk[a][b] = v) face.emplace_back(b, a, v);
if (mk[b][c] = v) face.emplace_back(c, b, v);
               if (mk|c||a| = v) face emplace_back(a, c, v);
       vector <F> out:
      FOR (i, 0, face size())
49
           out.emplace_back(p[face[i].a], p[face[i].b], p[face[i].c]);
50
       return out:
```

6 String

6.1 Aho-Corasick Automation

```
const int N = 1e6 + 100, M = 26;
  int mp(char ch) { return ch - 'a'; }
   struct ACA {
       int ch[N][M], danger[N], fail[N];
       int sz;
       void init() {
           sz = 1:
           memset(ch[0], 0, size of ch[0]);
           memset (danger, 0, size of danger);
       void insert (const string &s, int m) {
           int n = s.size(); int u = 0, c;
           FOR (i, 0, n)
                c = mp(s[i])
                if (!ch[u][c]) {
                    memset(ch[sz], 0, sizeof ch[sz]);
                    danger [sz] = 0; ch[u][c] = sz++;
18
19
                \mathbf{u} = \mathbf{ch}[\mathbf{u}][\mathbf{c}];
20
            danger[u] = 1 \ll m;
21
22
```

```
void build() {
24
              queue<int> Q:
              fail[0] = 0;
25
              for (int c = 0, u; c < M; c++) {
26
27
                   \mathbf{u} = \mathbf{ch} [0] [\mathbf{c}];
28
                   if (\mathbf{u}) { \mathbf{Q}.\operatorname{push}(\mathbf{u}); \operatorname{fail}[\mathbf{u}] = 0; }
29
              while (!Q.empty()) {
30
                   int r = Q. front(); Q. pop();
31
                   danger[r] |= danger[fail[r]];
32
                    for (int c = 0, u; c < M; c++) {
                         \mathbf{u} = \mathbf{ch}[\mathbf{r}][\mathbf{c}];
                          if (!u)
35
36
                               ch[r][c] = ch[fail[r]][c];
37
                               continue;
39
                          fail[u] = ch[fail[r]][c];
                         Q. push(u);
42
43
44
   } ac;
   char s [N]
  int main() {
        int n; scanf("%d", &n);
48
        ac.init();
        while (n--) {
    scanf("%s", s);
50
51
              ac.insert(s, 0);
52
53
54
        ac.build();
55
        scanf("%s", s);
        int u = 0; n = strlen(s);
56
57
        FOR (i, 0, n) {
58
              \mathbf{u} = \mathbf{ac.ch}[\mathbf{u}][\mathbf{mp}(\mathbf{s}[\mathbf{i}])];
59
              if (ac.danger[u]) {
                   puts("YES");
60
61
                   return 0;
62
63
64
        puts("NO");
        return 0:
```

6.2 Hash

```
ULL res1 = 0, res2 = 0;
           h[length] = 0; // ATTENTION!
19
           for (int j = length - 1; j >= 0; --j) {
20
          #ifdef ENABLE DOUBLE HASH
21
               22
23
               h[j] = (res1 << 32) | res2;
24
          #else
25
               res1 = res1 * x + s[j];
26
27
               h[j] = res1;
          #endif
28
               // printf("%llu\n", h[j]);
29
30
31
           return h[0];
32
33
        // hash of [left, right)
      ULL get_substring_hash(int left, int right) const {
34
           int len = right - left;
35
      #ifdef ENABLE_DOUBLE_HASH
36
           // get hash of s[left...right-1]
37
38
           unsigned int \max 32 = (0u);
           ULL left1 = h[left] \gg 32, right1 = h[right] \gg 32;
          ULL left2 = h[left] & mask32, right2 = h[right] & mask32;
           return (((left1 - right1 * xp1[len] % p1 + p1) % p1) \ll 32) | (((left2 - right2 * xp2[len] % p2 + p2) % p2));
41
42
43
           return h[left] - h[right] * xp[len];
44
45
      #endif
46
       void get_all_subs_hash(int sublen) {
           subsize = length - sublen + 1;
           for (int i = 0; i < subsize; ++i)
               hl[i] = get substring hash(i, i + sublen);
51
           sorted = 0:
52
53
       void sort substring hash() {
54
           sort(hl, hl + subsize);
55
           sorted = 1;
56
       bool match (ULL key) const
57
           if (!sorted) assert (0);
58
           if (!subsize) return false;
59
           return binary_search(hl, hl + subsize, key);
60
61
       void init(const char *t) {
62
           length = strlen(t);
64
           strcpy(s, t);
65
66
   int LCP(const String &a, const String &b, int ai, int bi) {
       // Find LCP of a[ai...] and b[bi...]
68
69
      int l = 0, r = min(a.length - ai, b.length - bi);
       while (l < r) {
70
           int mid = (1 + r + 1) / 2;
           if (a.get_substring_hash(ai, ai + mid) == b.get_substring_hash
72
               (bi, bi + mid)
               l = mid;
           else r = mid - 1;
       return 1;
```

```
void get_pi(int a[], char s[], int n) {
    int j = a[0] = 0;
    FOR (i, 1, n) {
        while (j && s[i] != s[j]) j = a[j - 1];
        a[i] = j += s[i] == s[j];
    }
}
void get_z(int a[], char s[], int n) {
    int l = 0, r = 0; a[0] = n;
    FOR (i, 1, n) {
        a[i] = i > r ? 0 : min(r - i + 1, a[i - l]);
        while (i + a[i] < n && s[a[i]] == s[i + a[i]]) ++a[i];
        if (i + a[i] - 1 > r) { l = i; r = i + a[i] - 1; }
}
```

6.4 Manacher

```
int RL[N]; void manacher(int* a, int n) { // "abc" \Rightarrow "#a#b#a#" int r = 0, p = 0; FOR (i, 0, n) { if (i < r) RL[i] = min(RL[2 * p - i], r - i); else RL[i] = 1; while (i - RL[i]) >= 0 && i + RL[i] < n && a[i - RL[i]] == a[i + RL[i]]) RL[i]++; if (RL[i]+i - 1 > r) { r = RL[i] + i - 1; p = i; } FOR (i, 0, n) --RL[i]; }
```

6.5 Palindrome Automation

```
num: the number of palindrome suffixes of the prefix represented by
     cnt: the number of occurrences in string (should update to father
       before using)
3 namespace pam {
       int t[N][2\hat{6}], fa[N], len[N], rs[N], cnt[N], num[N];
       int sz, n, last;
       int _new(int l) {
           memset(t[sz], 0, size of t[0]);
           len[sz] = 1; cnt[sz] = num[sz] = 0;
           return sz++;
       void init() {
           rs[n = sz = 0] = -1;

last = \underline{new(0)}; 

fa [last] = \underline{new(-1)};

       int get fa(int x) {
           while (rs[n-1] - len[x]] != rs[n]) x = fa[x];
           return x:
       void ins(int ch) {
           rs[++n] = ch;
21
           int p = get_fa(last);
           if (!t[p][ch]) \{
                int np = \underline{new}(len[p] + 2);
```

6.6 Suffix Array

24

25

27

29

30

37

46

47

48

49

50

```
struct SuffixArray {
    const int L;
    vector < vector < int > P:
    \label{eq:vector} \begin{array}{ll} \text{vector} < \text{pair} < \text{int} \;, \; \; \text{int} >, \; \; \text{int} > > \; M; \\ \end{array}
    int s[N], sa[N], rank[N], height[N];
     // s: raw string
    '// sa[i]=k: s[k...L-1] ranks i (0 based)
     // rank[i]=k: the rank of s[i...L-1] is k (0 based)
     // height[i] = lcp(sa[i-1], sa[i])
    Suffix Array (const string &raw_s): L(raw_s.length()), P(1, vector<
         int > (L, 0), M(L)
         for (int i = 0; i < L; i++)
              P[0][i] = this -> s[i] = int(raw_s[i]);
         for (int skip = 1, level = 1; skip < L; skip *= 2, level++) {
              \dot{P}. push back (vector < int > (L, 0));
              for (int i = 0; i < L; i++)
                  M[i] = make_pair(make_pair(P[level - 1][i], i + skip <
                        L ? P[level - 1][i + skip] : -1000), i);
              sort (M. begin (), M. end ());
              for (int i = 0; i < L; i++)
                  P[level][M[i].second] = (i > 0 && M[i].first == M[i - 1].first) ? P[level][M[i - 1].second] : i;
         for (unsigned i = 0; i < P.back().size(); ++i) {
              rank[i] = P.back()[i];
              \operatorname{sa}[\operatorname{rank}[i]] = i;
    // This is a traditional way to calculate LCP
    void getHeight() {
         memset(height, 0, sizeof height);
         int \mathbf{k} = 0:
         for (int i = 0; i < L; ++i) {
              if (rank[i] == 0) continue;
              if (k) k--
              int j = sa[rank[i] - 1];
              while (i + k < L \&\& j + k < L \&\& s[i + k] = s[j + k]) + k
              height [rank[i]] = k;
         rmq_init(height, L);
    int f[N][Nlog];
    inline int highbit (int x) {
         return 31 - builtin clz(x);
    int rmq_query(int x, int y) {
   int p = highbit(y - x + 1);
         return \min(f[x][p], f[y - (1 << p) + 1][p]);
    // arr has to be 0 based
    void rmq init(int *arr, int length) {
         for (int x = 0; x \le highbit(length); ++x)
              for (int i = 0; i \le length - (1 << x); ++i) {
                   if (!x) f[i][x] = arr[i];
```

```
else f[i][x] = min(f[i][x - 1], f[i + (1 << (x - 1))][ |
                        x - 1);
53
54
       #ifdef NEW
55
56
       // returns the length of the longest common prefix of s[i...L-1]
            and s[j...L-1]
       int LongestCommonPrefix(int i, int j) {
57
            int len = 0;
58
59
            if (i = j) return L - i;
            for (int k = (int) P. size() - 1; k >= 0 && i < L && j < L; k
60
                if'(\mathring{P}[k][i] = P[k][j]) {
                     i += 1 << k;
62
63
                     \mathbf{j} += 1 << \mathbf{k};
                     len += 1 \ll k;
64
65
66
67
            return len;
68
69
       #else
70
       int LongestCommonPrefix(int i, int j) {
            // getHeight() must be called first
72
            if (i = j) return L - i;
            if (i > j) swap(i, j);
73
74
            return rmq_query(i + 1, j);
75
76
       int checkNonOverlappingSubstring(int K) {
77
78 l
            // check if there is two non-overlapping identical substring
                of length K
            int minsa = 0, maxsa = 0;
79
            for (int i = 0; i < L; ++i) {
80
                if (height[i] < K) {
81
82
                     minsa = sa[i]; maxsa = sa[i];
                } else {
83
84
                    minsa = min(minsa, sa[i]);
                    maxsa = max(maxsa, sa[i]);
                     if (\max sa - \min sa >= K) return 1;
87
88
89
            return 0;
90
91
       int checkBelongToDifferentSubstring(int K, int split) {
92
            int minsa = 0, maxsa = 0;
            for (int i = 0; i < L; ++i) {
93
                if (height[i] < K)
94
                     minsa = sa[i]; maxsa = sa[i];
95
96
                } else {
97
                    minsa = min(minsa, sa[i]);
                    maxsa = max(maxsa, sa[i]);
98
99
                     if (maxsa > split && minsa < split) return 1;
100
101
            return 0;
102
103
104 } *S;
105 int main() {
       int sp = s.length();
s += "*" + t;
106
107
       S = new SuffixArray(s);
108
       S->getHeight();
109
       int left = 0, right = sp;
110
       while (left < right) {
111
112
            if (S->checkBelongToDifferentSubstring(mid, sp))
```

```
// ...
       printf("%d\n", left);
116
117 l
   // \text{ rk } [0..n-1] \rightarrow [1..n], \text{ sa/ht } [1..n]
   // s[i] > 0 \&\& s[n] = 0
121 // b: normally as bucket
   // c: normally as bucket1
   // d: normally as bucket2
   // f: normally as cntbuf
125
  template<size t size>
   struct SuffixArray {
       bool t[size \ll 1];
128
       int b[size], c[size];
129
       int sa[size], rk[size], ht[size];
130
131
       inline bool isLMS(const int i, const bool *t) { return i > 0 && t[
           i] && !t[i - 1]; }
132
       template < class T>
       inline void inducedSort(T s, int *sa, const int n, const int M,
133
           const int bs,
                                 bool *t, int *b, int *f, int *p) {
134
           fill(b, b + M, 0); fill(sa, sa + n, -1);
135
           FOR (i, 0, n) b[s[i]]++;
136
           f[0] = b[0];
137
           FOR^{1}(i, 1, M) f[i] = f[i - 1] + b[i];
138
           FORD (i, bs - 1, -1) sa[--f[s[p[i]]]] = p[i];

FOR (i, 1, M) f[i] = f[i - 1] + b[i - 1];
139
140
           FOR (i, 0, n) if (sa[i] > 0 && !t[sa[i] - 1]) sa[f[s[sa[i] - 1]]
141
                1]]++] = sa[i] - 1;
142
           f[0] = b[0];
           FOR^{-}(i, 1, M) f[i] = f[i - 1] + b[i];
143
           FORD (i, n-1, -1) if (sa[i] > 0 \&\& t[sa[i] - 1]) sa[--f[s[sa[i] - 1]])
144
                [i] - 1]] = sa[i] - 1;
145
146
       template < class T>
       inline void sais (Ts, int *sa, int n, bool *t, int *b, int *c, int
147
           int i, j, bs = 0, cnt = 0, p = -1, x, *r = b + M;
148
149
           t[n - 1] = 1;
150
           FORD (i, n - 2, -1) t[i] = s[i] < s[i + 1] || (s[i] = s[i + 1])
                1) && t[i + 1];
           FOR (i, 1, n) if (t[i] \&\& !t[i - 1]) c[bs++] = i;
151
           inducedSort(s, sa, n, M, bs, t, b, r, c);
           for (i = bs = 0; i < n; i++) if (isLMS(sa[i], t)) sa[bs++] =
153
           FOR (i, bs, n) sa[i] = -1;
155
           FOR (i, 0, bs) {
                x = sa[i];
156
                for (j = 0; j < n; j++) {
157
                    if (p = -1 \mid |s[x+j]| = s[p+j] \mid |t[x+j]| = t[p]
158
                         + j]) { cnt++, p = x; break; }
                    else if (j > 0 \&\& (isLMS(x + j, t)) || isLMS(p + j, t))
159
                        ) break:
                \dot{x} = (-x \& 1 ? x >> 1 : x - 1 >> 1), sa[bs + x] = cnt - 1;
162
           for (i = j = n - 1; i >= bs; i--) if (sa[i] >= 0) sa[j--] = sa
163
           int *s1 = sa + n - bs, *d = c + bs;
           if (cnt < bs) sais(s1, sa, bs, t + n, b, c + bs, cnt);
165
           else FOR (i, 0, bs) sa [s1[i]] = i;
166
           FOR (i, 0, bs) d[i] = c[sa[i]];
167
           inducedSort(s, sa, n, M, bs, t, b, r, d);
168
```

152

```
template<typename T>
170
       inline void getHeight (Ts, const int n, const int *sa) {
171
            for (int i = 0, k = 0; i < n; i++) {
172
                if (rk[i] = 0) k = 0;
173
                else {
174
                     i\hat{f} (k > 0) k--;
                     int j = sa[rk[i] - 1];
176
                     while (i + k < n \&\& j + k < n \&\& s[i + k] = s[j + k])
177
178
                ht[rk[i]] = k;
179
180
181
182
       template < class T>
       inline void init (T s, int n, int M) {
183
            sais(s, sa, +n, t, b, c, M);
184
            for (int i = 1; i < n; i++) rk[sa[i]] = i;
185
186
            getHeight(s, n, sa);
187
188
   SuffixArray<№ sa;
189
  int main() {
190
191
       int n = s.length();
192
       sa.init(s, n, 128);
       FOR (i, \^1, n' + 1) printf("%d%c", sa.sa[i] + 1, i == _i - 1 ? '\n' : ' ');
193
194
       FOR (i, 2, n + 1) printf("%d%c", sa.ht[i], i = _i - 1? '\n': '
195
```

6.7 Suffix Automation

```
namespace sam {
      const int \dot{M} = N \ll 1;
      = 1;
      void ins(int ch) {
          int \hat{p} = last, \hat{n}p = last = sz++;
          len[np] = len[p] + 1;
          for (; p \&\& !t[p][ch]; p = fa[p]) t[p][ch] = np;
          if (!p) { fa[np] = 1; return; }
          int q = t[p][ch];
          if (len[p] + 1 = len[q]) fa[np] = q;
              int nq = sz++; len[nq] = len[p] + 1;
              memcpy(t[nq], t[q], size of t[0]);
              fa[nq] = fa[q];
              fa[np] = fa[q] = nq;
              for (; t[p][ch] = q; p = fa[p]) t[p][ch] = nq;
18
19
20
      int c[M] = \{1\}, a[M];
21
      void rsort() {
22
          FOR (i, 1, sz) c[i] = 0;
          FOR (i, 1, sz) c[len[i]]++;
FOR (i, 1, sz) c[i] += c[i-1];
23
24
          FOR (i, 1, sz) a[--c[len[i]]] = i;
25
26
27
28 // really-generalized sam
29 int t[M][26], len[M] = \{-1\}, fa[M], sz = 2, last = 1;
30 LL cnt [M] [2];
31 void ins(int ch, int id) {
```

```
int p = last, np = 0, nq = 0, q = -1;
       if (!t[p][ch]) {
33
34
            np = sz++;
            len[np] = len[p] + 1;
35
36
            for (; p \&\& !t[p][ch]; p = fa[p]) t[p][ch] = np;
37
       if (!p) fa [np] = 1;
38
       else {
39
            q = t|p||ch|;
            if (len[p] + 1 = len[q]) fa[np] = q;
41
            else {
42
                 nq = sz++; len[nq] = len[p] + 1;
                 memcpy(t[nq], t[q], size of t[0]);
                 fa[nq] = fa[q];
                 fa[np] = fa[q] = nq;
                 for (; t[p][ch] = q; p = fa[p]) t[p][ch] = nq;
48
        last = np ? np : nq ? nq : q;
       cnt[last][id] = 1;
52
      lexicographical order
   // rsort2 is not topo sort
   void ins(int ch, int pp) {
       int p = last, np = last = sz++;
       \begin{array}{l} len \, [np] \, = \, len \, [p] \, + \, 1; \, \, one \, [np] \, = \, pos \, [np] \, = \, pp; \\ for \, (; \, p \, \&\& \, ! \, t \, [p] \, [ch]; \, \, p \, = \, fa \, [p]) \, \, t \, [p] \, [ch] \, = \, np; \end{array}
       if (!p) { fa[np] = 1; return; }
59
       int q = t[p][ch];
60
       if (\operatorname{len}[q] = \operatorname{len}[p] + 1) fa[\operatorname{np}] = q;
61
62
       else {
            int nq = sz++; len[nq] = len[p] + 1; one[nq] = one[q];
63
            memcpy(t[nq], t[q], size of t[0]);
64
            fa |nq| = fa |q|;
            fa[q] = fa[np] = nq;
            for (; p \&\& t[p][ch] == q; p = fa[p]) t[p][ch] = nq;
68
69
   // lexicographical order
   // generalized sam
72 int up [M], c[256] = \{2\}, a[M];
73 void rsort2() {
       FOR (i, 1, 256) c[i] = 0;
       FOR (i, 2, sz) up [i] = s[one[i] + len[fa[i]]];
       FOR (i, 2, sz) c[up[i]]++;
       FOR (i, 1, 256) c[i] += c[i - 1];
       FOR (i, 2, sz) a[-c[up[i]]] = i;
78
       FOR (i, 2, sz) G[fa[a[i]]].push_back(a[i]);
79
80
  int t[M][26], len[M] = \{0\}, fa[M], sz = 2, last = 1;
83 | char* one [M];
   void ins(int ch, char* pp) {
       int p = last, np = 0, nq = 0, q = -1;
        if (!t[p][ch]) {
86
87
            np = sz++; one[np] = pp;
            len[np] = len[p] + 1;
88
            for (; p \&\& !t[p][ch]; p = fa[p]) t[p][ch] = np;
89
90
       if (!p) fa [np] = 1;
91
92
       else {
93
            q = t[p][ch];
            if (len[p] + 1 = len[q]) fa[np] = q;
94
95
96
                 nq = sz++; len[nq] = len[p] + 1; one[nq] = one[q];
                 memcpy(t[nq], t[q], size of t[0]);
97
```

```
fa[nq] = fa[q];
                fa[np] = fa[q] = nq;
99
                for (; t[p][ch] = q; p = fa[p]) t[p][ch] = nq;
100
101
102
103
       last = np ? np : nq ? nq : q;
104
| \text{105} | \text{ int } \text{up } [M], c[256] = \{2\}, aa[M];
   vector <int > G[M];
106
  void rsort() {
107
       FOR (i, 1, 256) c[i] = 0;
       FOR (i, 2, sz) up [i] = *(one[i] + len[fa[i]]);
109
110
       FOR (i, 2, sz) c[up[i]]++;
       FOR (i, 1, 256) c[i] += c[i - 1];
111
       FOR (i, 2, sz) aa [-c[up[i]]] = i;
112
       FOR (i, 2, sz) G[fa[aa[i]]].push_back(aa[i]);
113
114 | }
   // match
116 int u = 1, l = 0;
117 FOR (i, 0, strlen(s)) {
       int ch = s[i] - 'a
118
       while (u \&\& !t[u][ch]) \{ u = fa[u]; l = len[u]; \}
119
       ++1; u = t[u][ch];
120
       if (!u) u = 1;
121
       if (1) // do something...
122
124 // substring state
int get_state(int l, int r) {
       int u = rpos[r], s = r - l + 1;
126
       FORD (i, SP - 1, -1) if (len[pa[u][i]] >= s) u = pa[u][i];
127
128
       return u;
129 }
130
131 // LCT-SAM
132 namespace lct_sam
       extern struct P *const null;
133
134
       const int M = N;
       struct P {
135
            P *fa, *ls, *rs;
136
            int last;
137
138
139
            bool has_fa() { return fa->ls = this || fa->rs = this; }
140
            bool d() { return fa > ls = this; }
            P^*\& c(bool x) \{ return x ? ls : rs; \}
141
            P* up() { return this; }
142
            void down() {
143
                if (ls != null) ls -> last = last;
144
                if (rs != null) rs -> last = last;
145
146
            void all_down() { if (has_fa()) fa->all_down(); down(); }
147
148
        *const null = new P\{0, 0, 0, 0\}, pool [M], *pit = pool;
       P* G[N]
149
       int t[M][26], len [M] = \{-1\}, fa [M], sz = 2, last = 1;
150
151
       void rot(P* o) {
152
153
            bool dd = o > d();
154
            P * f = o > fa, * t = o > c(!dd);
            if (f->has_fa()) f->fa->c(f->d()) = o; o->fa = f->fa;
155
            if (t != null) t->fa = f; f->c(dd) = t;
156
157
            o > c(!dd) = f > up(); f > fa = o;
158
       void splay (P* o) {
159
            o->all_down();
160
161
            while (o->has\_fa()) {
                if (o->fa->has fa())
162
                     rot(o>d() ^o>fa>d() ? o : o>fa);
163
```

```
rot(o);
165
            o > up();
166
167
       void access(int last, P^* u, P^* v = null) {
168
            if (u = null) { v > last = last; return; }
169
            splay(u);
170
            P *t = u;
171
172
            while (t->ls != null) t = t->ls;
            int L = \text{len}[fa[t - pool]] + 1, R = \text{len}[u - pool];
173
174
            if (u-> last) bit::add(u-> last - R + 2, u-> last - L + 2, 1);
175
176
            else bit :: add(1, 1, R - L + 1);
            bit :: add(last - R + 2, last - L + 2, -1);
178
179
            u > rs = v;
            access(last, u->up()->fa, u);
180
181
182
       void insert (P* u, P* v, P* t) {
            if (v != null) \{ splay(v); v->rs = null; \}
183
184
            splay(u);
            u > fa = t; t > fa = v;
185
186
187
       void ins(int ch, int pp) {
188
            int \hat{p} = last, np = last = sz++;
189
            len[np] = len[p] + 1;
100
            for (; p \&\& !t[p][ch]; p = fa[p]) t[p][ch] = np;
191
192
            if (!p) fa [np] = 1;
193
            else {
                 int q = t[p][ch];
                 if (len[p] + 1 = len[q]) { fa[np] = q; G[np] -> fa = G[q];
195
                 else {
196
                     int nq = sz++; len[nq] = len[p] + 1;
197
                     memcpy(t[nq], t[q], size of t[0]);
198
                     insert(G[q], G[fa[q]], G[nq]);
199
                     G[nq] -> last = G[q] -> last;
200
                     fa[nq] = fa[q];
201
                     fa[np] = fa[q] = nq;
                     G[np] -> fa = G[nq];
204
                     for (; t[p][ch] = q; p = fa[p]) t[p][ch] = nq;
205
206
            access(pp + 1, G[np]);
207
208
209
210
       void init() {
211
            ++pit;
            FOR (i, 1, N) {
212
                G[i] = pit++;
213
                G[i] -> ls = G[i] -> rs = G[i] -> fa = null;
214
215
            G[1] = null;
216
217
218
```

7 Miscellaneous

7.1 Date

```
2 // routines, months are expressed as integers from 1 to 12, days
3 // are expressed as integers from 1 to 31, and
4 // years are expressed as 4-digit integers.
5 string dayOfWeek[] = {"Mo", "Tu", "We", "Th", "Fr", "Sa", "Su"};
6 // converts Gregorian date to integer (Julian day number)
7 int DateToInt (int m, int d, int y) {
   return
      3 * ((y + 4900 + (m - 14) / 12) / 100) / 4 +
      d - 32075;
13 }
14 // converts integer (Julian day number) to Gregorian date: month/day/
15 void IntToDate (int jd, int &m, int &d, int &y) {
    int x, n, i, j;
    x = jd + 68569;
    n = 4 * x / 146097;
   x = (146097 * n + 3) / 4;

i = (4000 * (x + 1)) / 1461001;

x = 1461 * i / 4 - 31;
    j = 80 * x / 2447;
   d = x - 2447 * j / 80;
   x = j / 11;
    m = j + 2 - 12 * x;
    y = 100 * (n - 49) + i + x;
27 }
28 // converts integer (Julian day number) to day of week
29 string IntToDay (int jd){
    return dayOfWeek[id % 7];
```

7.2 Subset Enumeration

7.3 Digit DP

```
LL dfs(LL base, LL pos, LL len, LL s, bool limit) {
    if (pos == -1) return s ? base : 1;
    if (!limit && dp[base][pos][len][s] != -1) return dp[base][pos][
        len][s];
    LL ret = 0;
    LL ed = limit ? a[pos] : base - 1;
    FOR (i, 0, ed + 1) {
        tmp[pos] = i;
        if (len == pos)
```

```
ret += dfs(base, pos - 1, len - (i == 0), s, limit && i ==
           else if (s \&\&pos < (len + 1) / 2)
               ret += dfs(base, pos - 1, len, tmp[len - pos] == i, limit
11
                   && i = a[pos]);
           else
               ret += dfs(base, pos - 1, len, s, limit && i == a[pos]);
13
14
      if (!limit) dp[base][pos][len][s] = ret;
15
16
      return ret;
17
18
19 LL solve (LL x, LL base) {
      LL sz = 0:
21
      while (x) {
          a[sz++] = x \% base;
22
23
          x \neq base;
24
25
      return dfs(base, sz - 1, sz - 1, 1, true);
```

7.4 Simulated Annealing

```
1 // Minimum Circle Cover
 |u| = |u| 
  | \text{const} | \text{int } N = 1E4 + 100;
  4 \mid \text{int } \mathbf{x}[N], \mathbf{y}[N], \mathbf{n};
  5 LD eval(LD xx, LD yy)
                     LD r = 0;
                     FOR (i, 0, n)
                                  \dot{\mathbf{r}} = \max(\dot{\mathbf{r}}, \text{ sqrt}(pow(xx - x[i], 2) + pow(yy - y[i], 2)));
                      return r;
  mt19937 mt(time(0));
 12 auto rd = bind(uniform_real_distribution \langle LD \rangle (-1, 1), mt);
       int main() {
                     int X, Y;
                      while (cin \gg X \gg Y \gg n) {
                                  FOR (i, 0, n) scanf("%d%d", &x[i], &y[i]);
                                   pair LD, LD ans;
                                  LD M = 1e9;
                                  FOR (_, 0, 100) {
                                                LD cur_x = X / 2.0, cur_y = Y / 2.0, T = max(X, Y);
                                                 while (T > 1e-3) {
                                                             LD best_ans = eval(cur_x, cur_y);
                                                             LD best_x = cur_x, best_y = cur_y;
                                                             FOR (_____, 0, 20) {
                                                                           LD \text{ nxt}_x = cur_x + rd() * T, \text{ nxt}_y = cur_y + rd()
                                                                                        * T;
                                                                           LD nxt_ans = eval(nxt_x, nxt_y);
                                                                            if (nxt ans < best ans) {
                                                                                         best x = nxt_x; best_y = nxt_y;
                                                                                         best ans = nxt ans;
                                                             \operatorname{cur}_{x} = \operatorname{best}_{x}; \operatorname{cur}_{y} = \operatorname{best}_{y};
                                                 if (eval(cur_x, cur_y) < M) {
                                                             ans = \{cur_x, cur_y\}; M = eval(cur_x, cur_y);
36
37
38
                                   printf("(%.1f,%.1f).\n%.1f\n", ans.first, ans.second, eval(ans
39
                                                 first, ans.second));
```

杜教筛

得到 $f(n) = (f * g)(n) - \sum_{d|n,d < n} f(d)g(\frac{n}{d})$ 。 构造一个积性函数 g,那么由 $(f*g)(n) = \sum_{d|n} f(d)g(\frac{n}{d})$, 求 $S(n) = \sum_{i=1}^{n} f(i)$,其中 f 是一个积性函数。

$$g(1)S(n) = \sum_{i=1}^{n} (f * g)(i) - \sum_{i=1}^{n} \sum_{d|i,d < i} f(d)g(\frac{n}{d}) \quad (1)$$

$$\stackrel{t=\frac{i}{d}}{=} \sum_{i=1}^{n} (f * g)(i) - \sum_{t=2}^{n} g(t) S(\lfloor \frac{n}{t} \rfloor)$$
 (2)

当然,要能够由此计算 S(n),会对 f,g 提出一些要求:

- f*g 要能够快速求前缀和。
- g 要能够快速求分段和 (前缀和)。
- 在预处理 S(n) 前 $n^{rac{2}{3}}$ 项的情况下复杂度是 $O(n^{rac{2}{3}})_{\circ}$ 对于正常的积性函数 g(1)=1, 所以不会有什么问题

素性测试

- 前置: 快速乘、快速幂
- int 范围内只需检查 2, 7, 61
- long long 范围 2, 325, 9375, 28178, 450775, 9780504, 1795265022
- 3E15 内 2, 2570940, 880937, 610386380, 4130785767
- 4E13 内 2, 2570940, 211991001, 3749873356
- http://miller-rabin.appspot.com/

扩展欧几里得

- 如果 a 和 b 互素,那么 x 是 a 在模 b 下的逆元
- 注意 x 和 y 可能是负数

类欧几里得

- $m = \lfloor \frac{an+b}{c} \rfloor.$
- (c,c,n); 否则 f(a,b,c,n) = nm f(c,c-b-1,a,m-1)。 f(a, b, c, n) = $f(a,b,c,n) = (\frac{a}{c})n(n+1)/2 + (\frac{b}{c})(n+1) + f(a \bmod c, b \bmod$ $\sum_{i=0}^{n} \lfloor \frac{ai+b}{c} \rfloor$: $\stackrel{\cdot}{=} a \geq c \text{ or } b \geq c \text{ B}$;
- $g(a,b,c,n) = (\frac{a}{c})n(n+1)(2n+1)/6 + (\frac{b}{c})n(n+1)/2 +$ $g(a,b,c,n) \; = \; \textstyle \sum_{i=0}^n i \lfloor \frac{ai+b}{c} \rfloor \colon \; \stackrel{\mbox{\tiny def}}{=} \; a \; \geq \; c \; \; \mbox{or} \; \; b \; \geq \; c \; \; \mbox{bt},$ 1)m - f(c, c - b - 1, a, m - 1) - h(c, c - b - 1, a, m - 1)) $g(a \bmod c, b \bmod c, c, n); \ \textcircled{AM} \ g(a, b, c, n) = \frac{1}{2}(n(n + c, n))$
- $h(a,b,c,n) = \sum_{i=0}^{n} \lfloor \frac{ai+b}{c} \rfloor^2$: $\stackrel{\text{def}}{=} a \geq c \text{ or } b \geq$ $c,b \bmod c,c,n)$; 否则 h(a,b,c,n) = nm(m+1) - 2g(c,c-1) $(c,c,n) \ + \ 2(\frac{a}{c})g(a \bmod c, b \bmod c, c, n) \ + \ 2(\frac{b}{c})f(a \bmod$ $(\frac{b}{c})^2 (n \ + \ 1) \ + \ (\frac{a}{c}) (\frac{b}{c}) n (n \ + \ 1) \ + \ h (a \bmod c, b \bmod c)$ b-1, a, m-1) - 2f(c, c-b-1, a, m-1) - f(a, b, c, n)时,h(a,b,c,n) = 0 $(\frac{a}{c})^2 n(n + 1)(2n + 1)/6 +$

斯特灵数

- 第一类斯特灵数: 绝对值是 n 个元素划分为 k 个环排列 的方案数。s(n,k) = s(n-1,k-1) + (n-1)s(n-1,k)
- 第二类斯特灵数: n 个元素划分为 k 个等价类的方案数 S(n,k) = S(n-1,k-1) + kS(n-1,k)

一些数论公式

- 当 $x \ge \phi(p)$ 时有 a^x $\equiv a^{x \mod \phi(p) + \phi(p)} \pmod{p}$
- $\mu^2(n) = \sum_{d^2|n} \mu(d)$
- $\sum_{d|n} \varphi(d) = n$
- $\sum_{d|n} 2^{\omega(d)} = \sigma_0(n^2)$,其中 ω 是不同素因子个数
- $\sum_{d|n} \mu^2(d) = 2^{\omega(d)}$

些数论函数求和的例子

- $\sum_{i=1}^{n} i[gcd(i,n) = 1] = \frac{n\varphi(n) + [n=1]}{2}$
- $\sum_{i=1}^{n} \sum_{j=1}^{m} [gcd(i,j) = x] = \sum_{d} \mu(d) \lfloor \frac{n}{dx} \rfloor \lfloor \frac{m}{dx}.$
- $\sum_{d} \varphi(d) \lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor$ $\sum_{i=1}^{n} \sum_{j=1}^{m} gcd(i,j) = \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{d|gcd(i,j)} \varphi(d)$
- $S(n) = \sum_{i=1}^{n} \mu(i) = 1 \sum_{i=1}^{n} \sum_{d|i,d < i} \mu(d) \stackrel{t = \frac{1}{d}}{=}$ $\sum_{t=2}^{n} S(\lfloor \frac{n}{t} \rfloor) \ (\mathbb{A}J\mathbb{H} \ [n=1] = \sum_{d|n} \mu(d))$
- $S(n) = \sum_{i=1}^{n} \varphi(i) = \sum_{i=1}^{n} i \sum_{i=1}^{n} \sum_{d|i,d < i} \varphi(i) \stackrel{t = \frac{1}{d}}{=}$ $\tfrac{i(i+1)}{2} - \textstyle\sum_{t=2}^n S(\tfrac{n}{t}) \ (\text{AJH} \ n = \textstyle\sum_{d|n} \varphi(d))$
- $\sum_{i=1}^{n} \mu^{2}(i) = \sum_{i=1}^{n} \sum_{d^{2}|n} \mu(d) = \sum_{d=1}^{\lfloor \sqrt{n} \rfloor} \mu(d) \lfloor \frac{n}{d^{2}} \rfloor$ $\sum_{i=1}^{n} \sum_{j=1}^{n} gcd^{2}(i,j) = \sum_{d} d^{2} \sum_{t} \mu(t) \lfloor \frac{n}{dt} \rfloor^{2}$
- $\stackrel{x=dt}{=} \sum_{x} \left\lfloor \frac{n}{x} \right\rfloor^2 \sum_{d|x} d^2 \mu(\frac{t}{x})$
- $\sum_{i=1}^{n} \varphi(i) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} [i \perp j] 1 =$ $\frac{1}{2} \sum_{i=1}^{n} \mu(i) .$

斐波那契数列性质

- $F_{a+b} = F_{a-1} \cdot F_b + F_a \cdot F_{b+1}$
- $F_1+F_3+\cdots+F_{2n-1}=F_{2n}, F_2+F_4+\cdots+F_{2n}=F_{2n+1}-1$
- $\sum_{i=1}^{n} F_i = F_{n+2} 1$
- $\sum_{i=1}^{n} F_i^2 = F_n \cdot F_{n+1}$
- $F_n^2 = (-1)^{n-1} + F_{n-1} \cdot F_{n+1}$
- $gcd(F_a, F_b) = F_{gcd(a,b)}$
- 模 n 周期 (皮萨诺周期)
- $-\pi(p^k) = p^{k-1}\pi(p)$ $\forall p \equiv \pm 1 \pmod{10}, \pi(p)|p-1$ $\pi(2) = 3, \pi(5) = 20$ $\pi(nm) = lcm(\pi(n), \pi(m)), \forall n \perp m$

常见生成函数

 $\forall p \equiv \pm 2 \pmod{5}, \pi(p)|2p+2$

- $(1+ax)^n = \sum_{k=0}^n \binom{n}{k} a^k x^k$
- $1 x^{r+1}$ 1 - x $= \sum_{k=0}^{n} x^k$
- 1-ax $\sum_{k=0}^{\infty} a^k x^k$

- $(\frac{1}{1}x)^2 = \sum_{k=0}^{\infty} (k+1)x^k$
- $\frac{1}{(1-x)^n} = \sum_{k=0}^{\infty} {n+k-1 \choose k} x^k$
- $e^x = \sum_{k=0}^{\infty} \frac{x}{k!}$
- $\ln(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{n}$

佩尔方程

正整数,则称此二元二次不定方程为佩尔方程。 -个丢番图方程具有以下的形式: $x^2-ny^2=1$ 。且 n 为

明了佩尔方程总有非平凡解。而这些解可由 \sqrt{n} 的连分数求出。 际上对任意的 n, $(\pm 1,0)$ 都是解)。对于其余情况,拉格朗日证 若 n 是完全平方数,则这个方程式只有平凡解 (±1,0) (实

$$x = [a_0; a_1, a_2, a_3] = x = a_0 + \cfrac{1}{a_1 + \cfrac{1}{a_2 + \cfrac{1}{a_3 + \cfrac{1}{$$

其中最小的i,将对应的 (p_i,q_i) 称为佩尔方程的基本解,或 列,由连分数理论知存在i使得 (p_i,q_i) 为佩尔方程的解。取 $x_i + y_i \sqrt{n} = (x_1 + y_1 \sqrt{n})^i$ 。或者由以下的递回关系式得到: 最小解,记作 (x_1,y_1) ,则所有的解 (x_i,y_i) 可表示成如下形式: 设 $\frac{p_i}{q_i}$ 是 \sqrt{n} 的连分数表示: $[a_0; a_1, a_2, a_3, \ldots]$ 的渐近分数

$$x_{i+1} = x_1 x_i + n y_1 y_i, \ y_{i+1} = x_1 y_i + y_1 x_i$$

容易解出 k 并验证。 前的系数通常是 -1)。暴力/凑出两个基础解之后加上一个 0, 通常, 佩尔方程结果的形式通常是 $a_n = ka_{n-1} - a_{n-2}(a_{n-2})$

Burnside & Polya

是说有多少种东西用 g 作用之后可以保持不变。 $|X/G|=\frac{1}{|G|}\sum_{g\in G}|X^g|$ 。 X^g 是 g 下的不动点数量,也就

同,每个置换环必须染成同色 -种置换 g,有 c(g) 个置换环, $|Y^X/G|=\frac{1}{|G|}\sum_{g\in G}m^{c(g)}$ 。用 m 种颜色染色,然后对于 为了保证置换后颜色仍然相

1.12皮克定理

2S = 2a + b - 2

- S 多边形面积
- a 多边形内部点数
- b 多边形边上点数

1.13 莫比乌斯反演

- $g(n) = \sum_{d|n} f(d) \Leftrightarrow f(n) = \sum_{d|n} \mu(d)g(\frac{n}{d})$ $f(n) = \sum_{n|d} g(d) \Leftrightarrow g(n) = \sum_{n|d} \mu(\frac{d}{n})f(d)$
- 1.14低阶等幂求和
- $\sum_{i=1}^{n} i^{1} = \frac{n(n+1)}{2} = \frac{1}{2}n^{2} + \frac{1}{2}n$ $\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6} = \frac{1}{3}n^{3} + \frac{1}{2}n^{2} + \frac{1}{6}n$

- $= \left[\frac{n(n+1)}{2}\right]^2 = \frac{1}{4}n^4 + \frac{1}{2}n^3 + \frac{1}{4}n^2$
- $\sum_{i=1}^{n} i^4 =$ $\frac{n(n+1)(2n+1)(3n^2+3n-1)}{30} = \frac{1}{5}n^5 + \frac{1}{2}n^4 + \frac{1}{3}n^3$
- $\sum_{i=1}^{n} i^5 = \frac{n^2(n+1)^2(2n^2+2n-1)}{12} = \frac{1}{6}n^6 + \frac{1}{2}n^5 + \frac{5}{12}n^4 \frac{1}{12}n^2$

1.15

- 错排公式: $D_1 = 0, D_2 = 1, D_n = (n-1)(D_{n-1} + D_{n-2}) =$ $n!(\tfrac{1}{2!}-\tfrac{1}{3!}+\dots+(-1)^n\tfrac{1}{n!})=\lfloor\tfrac{n!}{e}+0.5\rfloor$
- 卡塔兰数 (n 对括号合法方案数, n 个结点二叉树个数 的三角形划分数,n 个元素的合法出栈序列数): $C_n =$ $n \times n$ 方格中对角线下方的单调路径数,凸 n+2 边形 $\frac{1}{n+1} \binom{2n}{n} = \frac{(2n)!}{(n+1)!n!}$

1.16 伯努利数与等幂求和

 $\sum_{i=0}^{n} i^{k} = \frac{1}{k+1} \sum_{i=0}^{k} {k+1 \choose i} B_{k+1-i} (n+1)^{i}$ 。也可以 $\sum_{i=0}^{n} i^{k} = \frac{1}{k+1} \sum_{i=0}^{k} {k+1 \choose i} B_{k+1-i}^{+} n^{i}$ 。区别在于 $B_{1}^{+} = 1/2$ 。

1.17 数论分块

 $f(i) = \lfloor \frac{n}{i} \rfloor = v$ 时 i 的取值范围是 [l, r]。

for (LL 1 v = N / 1; r = N /1, v, r; 1 <= N; 1

1.18

- Nim 游戏: 每轮从若干堆石子中的一堆取走若干颗。 先手 必胜条件为石子数量异或和非零。
- 异或和非零 (对于偶数阶梯的操作可以模仿)。 推动一级,直到全部推下去。先手必胜条件是奇数阶梯的 阶梯 Nim 游戏:可以选择阶梯上某一堆中的若干颗向下
- Anti-SG: 无法操作者胜。先手必胜的条件是:
- SG 不为 0 且某个单一游戏的 SG 大于 1 。
- SG 为 0 且没有单一游戏的 SG 大于 1。
- Every-SG: 对所有单一游戏都要操作。 先手必胜的条件是 单一游戏中的最大 step 为奇数。
- 对于终止状态 step 为 0
- 对于 SG 为 0 的状态, step 是最大后继 step +1
- 对于 SG 非 0 的状态, step 是最小后继 step +1
- 树上删边: 叶子 SG 为 0, 非叶子结点为所有子结点的 SG 值加 1 后的异或和

账政:

- 打表找规律
- 寻找一类必胜态 (如对称局面)
- 直接博弈 dp

2 **函**浴

2.1 带下界网络流

- 无源汇: u → v 边容量为 [l,r],连容量 r l,虚拟源点到 v 连 l, u 到虚拟汇点连 l。
- 有源汇: 为了让流能循环使用, 连 $T \rightarrow S$, 容量 ∞ .
- 最大流: 跑完可行流后, 加 $S' \to S$, $T \to T'$, 最大流就是答案 $(T \to S)$ 的流量自动退回去了,这一部分就是下界部分的流量)。
- 最小流: T 到 S 的那条边的实际流量,减去删掉那条边后 T 到 S 的最大流。
- 费用流:必要的部分(下界以下的)不要钱,剩下的按照 最大流。

2.2 二分图匹配

- 最小覆盖数 = 最大匹配数
- 最大独立集 = 顶点数 二分图匹配数
- DAG 最小路径覆盖数 = 结点数 拆点后二分图最大匹配数

2.3 差分约束

一个系统 n 个变量和 m 个约束条件组成,每个约束条件形如 $x_j-x_i \leq b_k$ 。可以发现每个约束条件都形如最短路中的三角不等式 $d_u-d_v \leq w_{u,v}$ 。因此连一条边 (i,j,b_k) 建图。

若要使得所有量两两的值最接近,源点到各点的距离初始 成 0,跑最远路。

若要使得某一变量与其他变量的差尽可能大,则源点到各点距离初始化成 ∞,跑最短路。

2.4 三元环

将点分成度人小于 \sqrt{m} 和超过 \sqrt{m} 的两类。现求包含第一类点的三元环个数。由于边数较少,直接枚举两条边即可。由于一个点度数不超过 \sqrt{m} ,所以一条边最多被枚举 \sqrt{m} 次,复杂度 $O(m\sqrt{m})$ 。再求不包含第一类点的三元环个数,由于这样的点不超过 \sqrt{m} 个,所以复杂度也是 $O(m\sqrt{m})$ 。

对于每条无向边 (u,v),如果 $d_u < d_v$,那么连有向边 (u,v),否则有向边 (v,u)。度数相等的按第二关键字判断。然后枚举每个点 x,假设 x 是三元组中度数最小的点,然后暴力往后面枚举两条边找到 y,判断 (x,y) 是否有边即可。复杂度也是 $O(m\sqrt{m})$ 。

2.5 四元环

考虑这样一个四元环,将答案统计在度数最大的点 b 上。考虑枚举点 u,然后枚举与其相邻的点 v,然后再枚举所有度数比 v 大的与 v 相邻的点,这些点显然都可能作为 b 点,我们维护一个计数器来计算之前 b 被枚举多少次,答案加上计数器的值,然后计数器加一。

枚举完 u 之后,我们用和枚举时一样的方法来清空计数器就好了。

任何一个点,与其直接相连的度数大于等于它的点最多只有 $\sqrt{2m}$ 个。所以复杂度 $O(m\sqrt{m})$ 。

2.6 支配树

- semi [x] 半必经点 (就是 x 的祖先 z 中,能不经过 z 和 x 之间的树上的点而到达 x 的点中深度最小的)
- idom[x] 最近必经点(就是深度最大的根到 x 的必经点)

3 计算几何

3.1 k 次圆覆盖

一种是用竖线进行切分,然后对每一个切片分别计算。扫描线部分可以魔改,求各种东西。复杂度 $O(n^3 \log n)$ 。

复杂度 $O(n^2 \log n)$ 。原理是:认为所求部分是一个奇怪的多边形 + 若干弓形。然后对于每个圆分别求贡献的弓形,并累加多边形有向面积。可以魔改扫描线的部分,用于求周长、至少覆盖 k 次等等。内含、内切、同一个圆的情况,通常需要特殊处理。

3.2 三维凸包

增量法。先将所有的点打乱顺序、然后选择四个不共面的点组成一个四面体,如果找不到说明凸包不存在。然后遍历剩余的点,不断更新凸包。对遍历到的点做如下处理。

- 1. 如果点在凸包内,则不更新。
- 如果点在凸包外,那么找到所有原凸包上所有分隔了对于 这个点可见面和不可见面的边,以这样的边的两个点和新 的点创建新的面加人凸包中。

1 随机素数表

862481,914067307, 954169327 512059357, 394207349, 207808351,108755593, $47422547,\ 48543479,\ 52834961,\ 76993291,\ 85852231,\ 95217823,$ $17997457,\,20278487,\,27256133,\,28678757,\,38206199,\,41337119$ 10415371, $4489747, \quad 6697841, \quad 6791471, \quad 6878533, \quad 7883129,$ $210407, \ 221831, \ 241337, \ 578603, \ 625409,$ 330806107, 42737, 46411, 50101, 52627, 54577, 2174729, 2326673, 2688877, 2779417, 132972461,11134633,534387017, 409580177,345593317, 227218703,171863609, 12214801,345887293,306112619,437359931, 698987533,173629837, 764016151, 311809637,15589333,483577261, 362838523,191677, 713569,176939899. 906097321373523729 17148757. 91245533133583, 788813, 194869,

适合哈希的素数: 1572869, 3145739, 6291469, 12582917, 25165843, 50331653

 $1337006139375617,\ 19,\ 46,\ 3;\ 3799912185593857,\ 27,\ 47,\ 5.$ 263882790666241, 15, 44, 7; 1231453023109121, 35, 15, 37, 7; 2748779069441, 5, 39, 3; 6597069766657, 3, 41, 17, 27, 3; 3221225473, 3, 30, 5; 75161927681, 35, 31, 3; $1004535809,\ 479,\ 21,\ 3;\ 2013265921,\ 15,\ 27,\ 31;\ 2281701377,$ 104857601, 25, 22, 3; 167772161, 5, 25, 3; 469762049, 7, 26, 3; 10; 5767169, 11, 19, 3; 7340033, 7, 20, 3; 23068673, 11, 21, 3; $12289,\ 3,\ 12,\ 11;\ 40961,\ 5,\ 13,\ 3;\ 65537,\ 1,\ 16,\ 3;\ 786433,\ 3,\ 18,$ 17, 1, 4, 3; 97, 3, 5, 5; 193, 3, 6, 5; 257, 1, 8, 3; 7681, 15, 9, 17; 77309411329, 9, 33, 7; 206158430209, 3, 36, 22; 2061584302081, 39582418599937, 9, 42, NTT 素数表: $p = r2^k + 1$, 原根是 g. 3, 1, 1, 2; 5, 1, 2, 2; 5; 79164837199873, 9, 45, 43,

5 心态崩了

- (int)v.size()
- 1LL << k
- 递归函数用全局或者 static 变量要小心
- · 预处理组合数注意上限
- 想清楚到底是要 multiset 还是 set
- 提交之前看一下数据范围,测一下边界

- 数据结构注意数组大小(2 倍, 4 倍)
- 字符串注意字符集
- 如果函数中使用了默认参数的话, 注意调用时的参数个数
- 注意要读完
- 构造参数无法使用自己
- ,树链剖分/dfs 序,初始化或者询问不要忘记 idx, ridx
- 排序时注意结构体的所有属性是不是考虑了
- 不要把 while 写成 if
- 不要把 int 开成 char
- 清零的时候全部用 0 到 n+1。
- 模意义下不要用除法
- 哈希不要自然溢出
- 最短路不要 SPFA,乖乖写 Dijkstra
- 上取整以及 GCD 小心负数
- mid 用 1 + (r 1) / 2 可以避免溢出和负数的问题
- 小心模板自带的意料之外的隐式类型转换
- 求最优解时不要忘记更新当前最优解
- 图论问题一定要注意图不连通的问题
- · 处理强制在线的时候 lastans 负数也要记得矫正
- 不要觉得编译器什么都能优化

