IN1020 – oblig 1

Pilasilda Antony-George

Hvordan jeg tenkte:

I denne oppgaven er det tallet vi har fått utgitt 10des. Det første jeg tenkte på var hvordan tallet 10 kan faktoriseres i matte. Dette ville gitt oss $2^1 + 2^3 = 10$. Her er $2^1 = 2 = 10$ (bin) og $2^3 = 8 = 1000$ (bin). Jeg skrev så opp alle mulige kombinasjoner av $A_3 A_2 A_1 A_0$ (se sannhetsverditabell under). Jeg ganget så en mulig kombinasjon med binære tallet av $2^1 + 2^3$. Her skal 2x legge til en 0 og 8x legge til 3 nuller. Så plusset jeg svaret og fant output til den kombinasjonen slik gjorde jeg for hver enkelt av kombinasjonene. Slik løste jeg problemet vi hadde med binære tallet gange 10des.

	\mathbf{A}_3	$\mathbf{A_2}$	$\mathbf{A_1}$	A_0	F
0	0	0	0	0	00000000
1	0	0	0	1	00001010
2	0	0	1	0	00010100
3	0	0	1	1	00011110
4	0	1	0	0	00101000
5	0	1	0	1	00110010
6	0	1	1	0	00111100
7	0	1	1	1	01000110
8	1	0	0	0	01010000
9	1	0	0	1	01011010
10	1	0	1	0	01100100
11	1	0	1	1	01101110
12	1	1	0	0	01111000
13	1	1	0	1	10000010
14	1	1	1	0	10001100
15	1	1	1	1	10010110

Etter å ha sett på forelesningsfoilene kom jeg som sagt fram til at kretsen trengte en fulladder. Dette tolket jeg det som fordi vi hadde flere inngangssignaler enn bare 1.

Hva gjorde jeg:

Jeg har delt kretsen min i 5 deler: Main, FULLADDER, add2x8x, 2x og 8x. Filen FULLADDER viser fulladderen som har mente inn og ut, som jeg også har markert i kretsen.

For fulladderen kom jeg fram til følgende funksjonsutrykk:

 $S = a \oplus b \oplus c_{in}$

 $C_0 = \mathbf{A}\mathbf{B} + \mathbf{C}_{in}(\mathbf{A} \oplus \mathbf{B})$

Ferdig krets:

Hva jeg synes om oppgaven:

- Synes oppgaven var vanskelig å løse.
- Brukte lang tid på å skjønne hva som skjer, men da jeg begynte å forstå hvordan ting hang sammen ble det mer og mer forståelig.