統計学(基礎)

第3回 基本統計量とグラフ出力、JASPの出力利用

統計学(基礎)

データの整理・要約

基本統計量

データの整理・要約

- ・ 基本統計量の算出
 - 度数の算出
 - 平均値、標準偏差、中央値、最大値、最小値などの算出
- 表・グラフによる整理
 - 棒グラフ、円グラフ、帯グラフ、折れ線グラフ、散布図
 - ヒストグラム
 - クロス集計表
- 記述統計でも推測統計でも行う

使うファイル

- JASPで開く
 「開く」-「データライブラリ」-「1. Descriptives」
 Plot layout.csv
- jamoviで開く
 「開く」-「このPC」-「ブラウズ」
 C:\text{Program Files (x86)}\text{YJASP\text{Yresources}}\text{Data Sets}\text{Data Library}\text{1. Descriptives Plot layout.csv
 - ※Macの場合は Data Library以降

Plot layout: Plot Builder (beta)

• 説明

- 南極のパーマー諸島(Palmer Archipelago)の3つの島で、 2007~2009年に科学者が収集したペンギンのデータ

• 参考文献

Horst A. M., Hill A. P., & Gorman K. B. (2020).
 palmerpenguins: Palmer Archipelago (Antarctica)
 penguin data. R package version 0.1.0.

Plot layout: Plot Builder (beta)

• 変数

- species(名義): Adelie(アデリーペンギン)、Chinstrap(ヒゲペンギン)、Gentoo(ジェンツーペンギン)
- island(名義):データが収集された島(Biscoe, Dream, Torgersen)
- bill_length_mm(スケール):くちばしの長さ[mm]
- bill depth mm (スケール):くちばしの深さ(高さ)[mm]
- flipper length mm(スケール):ひれ(フリッパー)の長さ[mm]
- body_mass_g(スケール):体重[g](5g単位に四捨五入)
- sex(名義):性別(male / female)
- year(順序):調査年(2007, 2008, 2009)

おまけ

- ・ペンギンについて
 - アデリーペンギン、ヒゲペンギン、ジェンツーペンギンはみな、ア デリーペンギン属に属するペンギン、南極大陸に生息
- https://nagoyaaqua.jp/study/column/27729/
 - 名古屋港水族館(公益財団法人名古屋みなと振興財団) スタッフコラム2025.09.16

JASPの記述統計

Plot layout*								▼ 統計量	
	アの編集	記述統計量	t検定	分散分析	混合モデル	回帰	度	サンプルサイズ ・ 妥当・ 欠損値	分位数四分位数カットポイント: 4 等分のグループ
▼ 記述統 species sisland bill_length bill_depth flipper_ler body_mas sex year	_mm _mm ngth_mm	記述統計 雨雲プロット 時系列記述統計 フレックスプロット Plot Builder (be	■	変数	R		8	代表値 最頻値 中央値 マサウ値 が悪準偏差 変動係数 中央絶対偏差 ロバスト中央値絶対偏差 四分位範囲 分散 範囲 最大値	パーセンタイル値: 分布
記述表を転	置する		•	分割			<u></u>	▼ 表 ☑ 度数分布表 異なる値の最大値 10	幹葉図 スケール 1

jamoviの記述統計

記述統計出力

結果

記述統計

記述統計

	species	bill_length_mm
妥当	333	333
欠損値	0	0
平均值		43.99
標準偏差		5.469
最小値		32.10
最大値		59.60

度数分布表

species の頻度

•				
species	頻度	パーセント	有効パーセント	累積パーセント
Adelie	146	43.8	43.8	43.8
Chinstrap	68	20.4	20.4	64.3
Gentoo	119	35.7	35.7	100.0
欠損値	0	0.0		
合計	333	100.0		

注以下の変数には10点の重複値が含まれるので、省略されています:bill_length_mm.

結果

記述統計

記述統計

	species	bill_length_mm
N	333	333
欠損値	0	0
平均値		44.0
中央値		44.5
標準偏差		5.47
最小値		32.1
最大値		59.6

度数

speciesの度数分布表

species	度数	全体%	累積%
Adelie	146	43.8 %	43.8 %
Chinstrap	68	20.4 %	64.3 %
Gentoo	119	35.7 %	100.0 %

基本統計量

質的変数(名義・順序)

- 度数
- 相対度数(度数割合)
- 累積度数
- 累積相対度数(累積度数割合)

量的変数

- 平均
- 中央値
- 最大値
- 最小値
- 分散
- 標準偏差
- など

質的変数用の基本統計量

- 度数
 - カテゴリに該当する数
- 相対度数(度数割合)
 - 合計に対する各度数の割合
- 累積度数
 - カテゴリを順に累積した度数
- 累積相対度数(累積度数割合)
 - 合計に対する各累積度数の割合

度数と累積度数(イメージ)

質的変数用の基本統計量

- 度数
 - カテゴリに該当する数
- 相対度数(度数割合)
 - 合計に対する各度数の割合
- 累積度数
 - カテゴリを順に累積した度数
- 累積相対度数(累積度数割合)
 - 合計に対する各累積度数の割合

名義尺度、順序尺度 のどちらでも

順序尺度でないと意 味が無い

量的変数の基本統計量

- 平均值
- ・最大値
- 最小值
- ・中央値
- 分散
- 標準偏差

平均值

- データをすべて足して、足した数で割る
 - 極端に大きな値、小さな値があるとその影響を受ける
 - 真ん中ではない

平均値→真ん中ではない

例 今お財布にいくら入ってる?

※取っ払い→現金支払いのこと

かわいいフリー素材集 いらすとや https://www.irasutoya.com/7/61

平均値→真ん中ではない

・ 例 今お財布にいくら入ってる?

W	
(ث	

1000

合計は、

2000

1000+2000+3000+4000+5000

3000

0=60000

平均は、60000÷5=12000

4000

50000

でも、平均より多い人は1人しかいない

かわいいフリー素材集 いらすとや https://www.irasutoya.com/

最大值:最小值:中央值

- 最大值
 - 一番大きな値
- 最小值
 - 一番小さな値
- 中央値
 - 真ん中の値

最大値・最小値・中央値

例 今お財布にいくら入ってる?

1000 ←最小値

2000

←中央値 中央値は真ん中なので、必ずそれより大きい 人と小さい人が同じだけいる

4000

50000 ←最大値

かわいいフリー素材集 いらすとや https://www.irasutoya.com/ 20/61

中央値 データが偶数の時

・ 例 今お財布にいくら入ってる?

3000

4000

←この間が中央値 この場合は2500

真ん中の2つのデータを足して2で割る。 中央値は真ん中なので、必ずそれより大 きい人と小さい人が同じだけいる。

かわいいフリー素材集 いらすとや https://www.irasutoya.com/ 21/

標準偏差

- ・標準偏差は平均値からのばらつきの平均(のようなもの)
 - 1. 各値の平均値との差を出す
 - 2. 「各値の平均値との差」を2乗する
 - 3. 「各値の平均値との差の2乗」を全部足す
 - 4. 「各値の平均値との差の2乗を全部足したもの」をデータ数で割る (ここまでが分散)
 - 5. 「各値の平均値との差の2乗を全部足したものをデータ数で割ったもの」の平方根(√)を求める

標準偏差をなぜ求めるのか

A・Bの2クラスで100点満点のテストをしました。

かわいいフリー素材集 いらすとや https://www.irasutoya.com/

かわいいフリー素材集 いらすとや https://www.irasutoya.com/

標準偏差をなぜ求めるのか

- · A 30 40 50 60 70 平均値50 中央値50
- B 48 49 50 51 52 平均値50 中央値50

- ・平均値と中央値だけなら同じ集団と言えてしまう
 - 今回は5つずつしかデータがないから見て違いもわかるけど、 データが100個以上あるときなどは気づかない

標準偏差

・ 違いに気づきたい→平均値からの差を出す

	点数	30	40	50	60	70
A	平均値との差	-20	-10	0	10	20
_	点数	48	49	50	51	52
В	平均値との差	-2	-1	0	1	2

標準偏差

「平均値からの差」で違いが言えそうなので、「平均値からの差」の平均を出したいが、合計がOになる

	点数	30	40	50	60	70	
Α	平均値との差	-20	-10	0	10	20	合計0
_	点数	48	49	50	51	52	
В	平均値との差	-2	-1	0	1	2	合計0

平均値の考え方

・各値と平均値の差を合計すると0になる

- ・ 平均値の差からのオーバー部 分とアンダー部分は同じ
- ・ 平均値は全体の凸凹を平ら にしたもの
- なので、平均値からの差の合計は0

標準偏差

- ・どうにか「平均値からの差」を使いたい
- マイナスを取るために2乗する

	点数	30	40	50	60	70
A	平均値と の差	-20	-10	0	10	20
	↑の2乗	400	100	0	100	400
	点数	48	49	50	51	52
В	平均値と の差	-2	-1	O	1	2
	↑の2乗	4	1	0	1	4

合計 1000

合計 10

標準偏差

・ 2乗したものの合計をデータ数で割る

点数	30	40	50	60	70
平均値と の差	-20	-10	0	10	20
↑の2乗	400	100	0	100	400

2乗したものの合計 1000 1000÷5=200 ←これが「分散」

	点数	48	49	50	51	52
3	平均値と の差	-2	-1	0	1	2
	↑の2乗	4	1	0	1	4

2乗したものの合計 10 10÷5=2 ←これが「分散」

分散はあんまり便利じゃない

_/	\
	7

点数	30	40	50	60	70
平均値と の差	-20	-10	0	10	20
↑の2乗	400	100	0	100	400

3

点数	48	49	50	51	52
平均値と の差	-2	-1	0	1	2
↑の2乗	4	1	0	1	4

- Aの分散は200
- Bの分散は2

- Bは平均50で最小値が48、 最大値が52なので分散が2 でもなんとなくわかる
- ・ Aは最小値30、最大値70で 分散が200といわれてもピ ンとこない

標準偏差

・分散を平方根にして見やすくした

点数	30	40	50	60	70
平均値と の差	-20	-10	0	10	20
↑の2乗	400	100	0	100	400

分散 1000÷5=200 その平方根

$$\sqrt{200} = \sqrt{2 \times 10^2} = 10\sqrt{2}$$

÷ 14.142←標準偏差

点数	48	49	50	51	52
平均値と の差	-2	-1	0	1	2
↑の2乗	4	1	0	1	4

分散 10÷5=2 その平方根 $\sqrt{2} \div 1.414$ ←標準偏差

<u>32/61</u>

標準偏差

Aクラス

平均值 50 中央值 50 標準偏差 14.1

Bクラス

点数

点数

平均值 50 中央值 50 標準偏差 1.4

かわいいフリー素材集 いらすとや https://www.irasutoya.com/33/61

標準偏差とは

- ・平均値からのばらつきの平均(のようなもの)
 - 1. 各値の平均値との差を出す
 - 2. 「各値の平均値との差」を2乗する
 - 3. 「各値の平均値との差の2乗」を全部足す
 - 4. 「各値の平均値との差の2乗を全部足したもの」をデータ数で割る(ここまでが分散)
 - 5. 「各値の平均値との差の2乗を全部足したものをデータ数で割ったもの」の平方根(√)を求める

標本標準偏差

- 1. 各値の平均値との差を出す
- 2.「各値の平均値との差」を2乗する
- 3.「各値の平均値との差の2乗」を全部足す
- 4. 「各値の平均値との差の2乗を全部足したもの」をデータ数-1で割る(ここまでが不偏分散)
- 5. 「各値の平均値との差の2乗を全部足したものをデータ数-1で割ったもの」の平方根(√)を求める

標準偏差はどっちだ

- 「各値の平均値との差の2乗を全部足したものをデータ数で割ったもの」の平方根(√)を求める
 - 標準偏差
- 「各値の平均値との差の2乗を全部足したものをデータ数-1で割ったもの」の平方根(√)を求める
 - 標本標準偏差→標本データから求めた母集団の標準偏差の推定値

統計学(基礎)

記述統計では考えない

推定

推定

- ・抽出した実測データから母集団のデータを推定する
 - 点推定
 - 区間推定

点推定

- ・ 母平均の推定値
- ・ 母分散の推定値
- ・ 平均値の標準誤差

母平均の推定値

- ・ 母平均の推定値=標本平均
 - 標本の平均を、そのまま母集団の平均値の推定値と見なす
 - 母集団の平均値=母平均

母分散と不偏分散 母標準偏差と標本標準偏差

- ・ 不偏分散(標本分散)は、母分散の不偏推定値
- データ数が多ければ、不偏分散と母分散は同じと見なせる
- ・ 母標準偏差と、標本標準偏差も同じ考え

手持ちのデータから推測を行うときの考え方

母集団についての補足

- ・「母集団(Population)」の「母」は、性別を表すものではない
- ここでの「母」は「もとになる」「起点となる」という意味
 - 例:母国語=もととなる言語、母校=出身校
- ・統計学では、調査や実験の対象となる全体の集団を表す既定 の専門用語として「母集団」という語を広く用いている
 - したがって、この言葉はジェンダー的な意味合いを持つものではなく、統計学上の慣用表現として理解してください。

出力されているのは

- ・ JASPやjamoviで出力される標準偏差は、標本標準偏差 (n-1で割っている方)
 - 用途として推測統計に使うのが圧倒的だから
 - 統計解析アプリは「統一的な計算基準を保つ」目的で、標本標準 偏差(n-1)に揃えてあることがほとんど
 - Excelの関数だと、stdev.pとstdev.sで別になっている

出力の使い方

- ・行政や地域保健のデータのように、母集団全体を把握している(=全数調査)場合は、理論的には「母標準偏差(分母 = N)」が正しい
- 実際の分析では n-1補正をしても数値上の差はごくわずか
 - 特に自治体レベルで数千〜数万世帯の規模になると、両者の差は 小数点3〜4桁以下となり、政策判断に影響するようなレベルでは なくなる
 - 数理的厳密さを求めると「母標準偏差」
 - 実務・分析手法の整合性を保つなら「標本標準偏差」でも問題なし。

(平均値の)標準誤差

•
$$\frac{\delta}{\sqrt{n}}$$

- 1. 標本標準偏差を求める(本来は母集団の標準偏差の推定値)
- 2. 1.をデータ数の平方根(√)で割る
- ・標準誤差は推定の精度
 - 標準誤差が小さくなる条件は
 - ・分散が小さい
 - データ数が多い

区間推定

- ・母平均値を範囲で推定する
 - 標本抽出を多数回繰り返したときに、標本平均の平均は正規 分布という分布に従う→中心極限定理

区間推定

- ・平均値の95%信頼区間
 - 95%の確率で母平均が取り得る範囲

・ 平均値±(t分布の2.5%点×標準誤差)が95%信頼区間 平均値- t分布の2.5%点×標準誤差<平均値<平均値+ t 分布の2.5%点×標準誤差

統計学(基礎)

グラフ

記述統計量のグラフ JASP

記述統計のグラフ JASP

記述統計量のグラフ JASP

記述統計量のグラフ JASP

記述統計量のグラフ jamovi

記述統計量のグラフ jamovi

記述統計量のグラフ jamovi

出力の扱い

出力の利用

- · 全体
 - HTMLかPDF

出力の利用

• 部分

・個別

コピーをするとHTML形式

Wordへの貼り付け

• 形式

グラフ

※全体の一括保存を選択したときにグラフがあると、pngファイルとなって、HTML内で埋め込まれる

グラフ出力形式

- png
- tiff

- pdf
- pptx(PowerPoint)

