

CINÉTICA QUÍMICA | QUÍMICA 2.º BACH EJERCICIOS

ALBA LÓPEZ VALENZUELA

- 1. Escribe la ecuación de velocidad de las siguientes reacciones:
 - a) $NO(g) + O_3(g) \longrightarrow NO_2(g) + O_2(g)$, si sabemos que la reacción es de primer orden con respecto a cada reactivo;
 - b) $2 CO(g) + O_2(g) \longrightarrow 2 CO_2(g)$, si sabemos que es de primer orden con respecto al O_2 y de segundo orden con respecto al CO.

Solución: a)
$$v = k[NO][O_3]$$
; b) $v = k[CO]^2[O_2]$

- 2. La reacción: $A + 2B \longrightarrow 2C + D$ es de primer orden con respecto a cada uno de los reactivos.
 - a) Escriba la ecuación de velocidad.
 - b) Indique el orden total de reacción.
 - c) Indique las unidades de la constante de velocidad.

Solución: a)
$$v = k[A][B]$$
; b) 2; c) L mol⁻¹ s⁻¹

- 3. A una hipotética reacción química, A + B \longrightarrow C , le corresponde la siguiente ecuación de velocidad:
 - v = k[A][B]. Indique:
 - a) El orden de la reacción respecto de A.
 - b) El orden total de la reacción.
 - c) Las unidades de la constante de la velocidad.

4. La destrucción de la capa de ozono es debida entre otras a la siguiente reacción:

$$NO(g) + O_3(g) \longrightarrow NO_2(g) + O_2(g)$$

La velocidad de reacción que se ha obtenido en tres experimentos en los que se ha variado las concentraciones iniciales de los reactivos ha sido la siguiente:

Experimento	$[NO]_0(M)$	$\left[O_3\right]_0$ (M)	Velocidad inicial (mol/Ls)
1	1.0×10^{-6}	3.0×10^{-6}	6.6×10^{-5}
2	1.0×10^{-6}	9.0×10^{-6}	1.98×10^{-4}
3	3.0×10^{-6}	9.0×10^{-6}	5.94×10^{-4}

- a) Determinar los órdenes parciales.
- b) Determinar el orden total de reacción.
- c) Determinar la ecuación de velocidad.
- d) Calcular el valor de la constante de velocidad y sus unidades.

Solución: a)
$$\alpha = 1$$
, $\beta = 1$; b) 2; c) $v = k[NO][O_3]$; d) $2.2 \times 10^7 \text{ L mol}^{-1} \text{ s}^{-1}$

Experimento	$v (\mathrm{mol} \mathrm{L}^{-1} \mathrm{s}^{-1})$	$[NO]_0 (\operatorname{mol} \operatorname{L}^{-1})$	$\left[\mathrm{O_2} ight]_0 \left(\mathrm{mol}\mathrm{L}^{-1} ight)$
1	0.028	0.020	0.010
2	0.056	0.020	0.020
3	0.224	0.040	0.020
4	0.014	0.010	0.020

- a) Determinar los órdenes parciales y el orden global de reacción.
- b) Calcular el valor de la constante de velocidad y sus unidades.
- c) Escribe la ecuación cinética.

Solución: a)
$$\alpha = 2$$
, $\beta = 1$, O.T. = 3; b) $k = 7000 L^2 / \text{mol}^2 \text{s}$; c) $v = 7000 [\text{NO}]^2 [\text{O}_2]$

iniciales de reacción para diferentes concentraciones de reactivos. Los resultados se muestran en la siguiente tabla:

Experimento	$[A]_0 (\mathrm{mol/L})$	$[B]_0 (\mathrm{mol/L})$	$v(\mathrm{mol/Ls})$
1	1.0	0.5	1.2×10^{-3}
2	2.0	1.0	9.6×10^{-3}
3	1.0	1.0	2.4×10^{-3}
4	2.0	0.5	4.8×10^{-3}

- a) Indica los órdenes parciales de la reacción y el orden global.
- b) Escribe la ecuación de la velocidad.
- c) ¿En qué unidades se mide la constante de velocidad?
- d) ¿Cuánto valdría la velocidad de reacción si las concentraciones iniciales fueran 1.5 mol/L para A y para B?

Solución: a)
$$\alpha = 2$$
, $\beta = 1$, O.G. = 3; b) $v = k[A]^2[B]$; c) L^2/mol^2 s d) $8.1 \times 10^{-3} \text{ mol } L^{-1} \text{ s}^{-1}$

iniciales de A y B, se obtuvieron los valores de velocidad de reacción que se indican en la tabla.

Experimento	[A] (mol/L)	[B] (mol/L)	$v (\mathrm{mol/L min})$
1	0.020	0.010	1.2×10^{-5}
2	0.020	0.020	4.8×10^{-5}
3	0.040	0.010	1.2×10^{-5}

- a) Órdenes parciales respecto a A y B.
- b) Orden global de la reacción.
- c) Ecuación de velocidad.
- d) El valor y las unidades de la constante de velocidad.
- e) La velocidad de reacción cuando las concentraciones iniciales de A y B son 0.030 M.

Solución: a)
$$\alpha = 0$$
, $\beta = 2$; b) O.G. = 2; c) $v = k[B]^2$; d) $0.12 L/mol min$; e) $1.08 \times 10^{-4} mol/L min$

valores de velocidad de reacción:

Experimento	[A] (mol/L)	[B] (mol/L)	$v(\mathrm{mol/Lmin})$
1	2.00	1.00	2.00×10^{-3}
2	0.50	1.00	0.50×10^{-3}
3	1.00	2.00	4.00×10^{-3}

Indica los órdenes parciales con respecto a A y B y el orden global de reacción.

Solución: a)
$$\alpha = 1$$
, $\beta = 2$, O.G. = 3

- velocidad se duplica al duplicar la concentración de A y se reduce a la cuarta parte al reducir a la mitad la concentración de В.
 - a) Calcula el orden de reacción global.
 - b) ¿Cómo es su ecuación de velocidad?
 - c) ¿En cuánto ha de aumentarse la concentración de A para cuadruplicar la velocidad de la reacción? ¿y la de B para lograr el mismo objetivo?

Solución: a) O.G. = 3; b)
$$v = k[A][B]^2$$
; c) 4 veces, 2 veces.

- 10. La reacción de formación del fosgeno (COCl₂) es CO(g) + Cl₂(g) \longrightarrow COCl₂(g) y tiene la ecuación de velocidad: $v = k[CO][Cl_2]^2$. Explica cómo variará la velocidad de reacción en los siguientes casos:
 - a) Si se duplica la concentración de cloro.
 - b) Si se duplica la concentración de monóxido de carbono.
 - c) Si se duplica la concentración de ambos reactivos.
 - d) Si se reduce a la mitad la concentración de ambos reactivos.

Solución: a)
$$v = 4v_0$$
; b) $v = 2v_0$; c) $v = 8v_0$; d) $v = \frac{1}{8}v_0$

11. **[EBAU, Extremadura 2020]** Para la reacción $2 A(g) + B(g) \longrightarrow C(g) + D(g)$ se obtuvieron los siguientes resultados:

Experimento	$[A]_0 \pmod{L^{-1}}$	$[B]_0 (\operatorname{mol} L^{-1})$	$v (\mathrm{mol}\mathrm{L}^{-1}\mathrm{s}^{-1})$
1	0.7	0.4	0.15
2	1.4	0.4	0.60
3	1.4	0.8	1.20

- a) Escribir la expresión de la velocidad indicando el orden global de la reacción.
- b) Calcular el valor y las unidades de la constante de velocidad.

Solución: a)
$$v = k[A]^2[B]$$
, O.G.=3; b) $0.77 L^2/\text{mol}^2\text{s}$

12. **[EBAU, Extremadura 2019]** Para la reacción A + B \longrightarrow C se obtuvieron los siguientes resultados:

Experimento	$[A]_0 (\operatorname{mol} \operatorname{L}^{-1})$	$[B]_0 (\operatorname{mol} \operatorname{L}^{-1})$	$v(\mathrm{mol}\mathrm{L}^{-1}\mathrm{s}^{-1})$
1	0.2	0.2	X
2	0.4	0.2	2X
3	0.2	0.4	4X

- a) Calcular el orden global de la reacción y escribir la ecuación de velocidad.
- b) Determinar el valor y las unidades de la constante de velocidad si $X = (1.5 \times 10^{-3} \text{ mol L}^{-1} \text{ s}^{-1})$.

Solución: a) O.G.=3,
$$v = k[A][B]^2$$
; b) 0.1875 L²/mol²s

13. Para la reacción A + 2 B + C \longrightarrow D + 2 E se encontraron experimentalmente las velocidades en función de las concentraciones de los reactivos que se muestran en la tabla.

Experimento	[А] м	[B] M	[С] м	v de formación de D (\mathbf{m}/\mathbf{min})
I	2.0	2.0	2.0	2.0
II	2.0	1.0	2.0	2.0
III	4.0	4.0	2.0	8.0
IV	2.0	4.0	1.0	1.0

- a) Halla los órdenes parciales de cada reactivo y el orden global.
- b) Escribe la ecuación de velocidad.
- c) 👲 En el experimento II, ¿cuál es la velocidad de formación de Е (en м/ min)?.
- d) Halla el valor de la constante de velocidad con sus unidades.

$$Soluci\'on: a) \ \alpha = 2, \ \beta = 0, \ \gamma = 1, \ \text{O.G.} = 3; \ b) \ v = k[\text{A}]^2[C]; \ c) \ v_D = \frac{1}{2} v_E - v_E = 4.0; \ d) \ 0.25 \ \text{L}^2/\text{mol}^2 \ \text{min}$$

- 14. [EBAU, Extremadura 2017] La ecuación de velocidad de una reacción química es: $v = k[A]^{\alpha}$, siendo α el orden de reacción.
 - a) Con los datos siguientes, determinar el valor de α :

[А] м	$v (\mathrm{M s}^{-1})$
0.2	1.2×10^{-2}
0.4	4.8×10^{-2}

b) Calcular el valor y unidades de la constante de velocidad.

Solución: a) α =2; b) 0.3 L/mols

15. [EBAU, Extremadura 2018] Para una reacción entre las sustancias A y B se han obtenido los siguientes resultados, a temperatura constante:

[A] (M)	[В] (м)	$v (\mathrm{m s}^{-1})$
0.12	0.045	6.5×10^{-4}
0.24	0.090	2.6×10^{-3}
0.72	0.090	7.8×10^{-3}

Considerando que la ecuación de velocidad es $v=k[{\bf A}]^\alpha[{\bf B}]^\beta$, determinar:

- a) Los valores de α y β e indicar cuál es el orden global de reacción.
- b) La constante de velocidad con sus unidades.

Solución: a) $\alpha = 1$, $\beta = 1$, O.G.=2;b) 0.12 L mol⁻¹ s Ecuación de Arrhenius

Datos: $R = 8.314 \,\mathrm{J \, mol^{-1} \, K^{-1}}$

16. Para la reacción $A(g) \longrightarrow B(g) + C(g)$, se sabe que su energía de activación es 140 kJ mol⁻¹, y su constante de velocidad vale 0.34 s⁻¹, a 300 °C. a) Calcular el factor de frecuencia y sus unidades; b) Razonar el orden de la reacción y calcular la concentración inicial de A(g) si la velocidad de reacción es $0.68\,\mathrm{mol}\,\mathrm{L}^{-1}\,\mathrm{s}^{-1}$.

Solución: a)
$$2 \times 10^{12} \, \text{s}^{-1}$$
; b) orden 1, 2 M

17. Para la reacción de formación del HI a 400 °C a partir de H₂ y I₂ la energía de activación es 197.8 kJ mol⁻¹. Calcula el aumento que experimentará la velocidad de dicha reacción al pasar de 400 °C a 500 °C.

Solución: $v_2 = 100v_1$

18. Calcula la energía de activación para una reacción cuya velocidad se cuadruplica al pasar de 290 K a 312 K.

Solución: $E_a = 47.4 \text{ kJ/mol}$

19. Para la reacción $2 \text{ NO}_2(g) \longrightarrow 2 \text{ NO}(g) + O_2(g)$ se han obtenido los siguientes datos relativos a la constante de velocidad:

$T(\mathbf{K})$	$k (\mathrm{mol/L})^{-1} \mathrm{s}^{-1}$
375	1.60
430	7.50

- a) Calcula la E_a .
- b) A la vista de las unidades de k, indica de qué orden es la reacción.

Solución: a) $E_a = 37.7 \text{ kJ/mol}$; b) orden 2

- 20. [EBAU, Extremadura 2017] Para una reacción de primer orden, la constante de velocidad a 100 °C se multiplica por diez al incrementar la temperatura en 50 °C.
 - a) Hallar el valor de la energía de activación de la reacción.
 - b) Razonar las unidades que tendrá la constante de velocidad de esta reacción.

Datos:
$$R = 8.314 \,\mathrm{J \, mol}^{-1} \,\mathrm{K}^{-1}$$

Solución: a) $E_a = 60.4 \, \text{kJ/mol}$; b) s⁻¹

- 21. [EBAU, Extremadura 2020] La constante de velocidad de una reacción tiene un valor de 0.25 s⁻¹ a 25 °C. Sabiendo que la constante de velocidad se duplica a 35 °C, calcular:
 - a) la energía de activación (E_a);
 - b) el factor de frecuencia (A);
 - c) el orden global de la reacción.

Datos: $R = 8.314 \,\mathrm{I} \,\mathrm{mol}^{-1} \,\mathrm{K}^{-1}$

Solución: a)
$$E_a = 52.9 \text{ kJ/mol}$$
; b) $A = 4.68 \times 10^8 \text{ s}^{-1}$; c) orden 1

22. [Grado en Química, UNEX] En la reacción entre $NO_2(g)$ y $CO_2(g)$, la energía de activación vale $27.44\,\mathrm{kcal}\,\mathrm{mol}^{-1}$ y la constante de velocidad a 327 °C es 0.385 L mol $^{-1}$ s $^{-1}$. Calcular: a) La temperatura a la que la constante valdrá 16.11 L mol $^{-1}$ s $^{-1}$; b) el factor de frecuencia y c) la constante de velocidad a 373 °C.

Solución: a)
$$T = 443$$
 °C; b) $A = 3.73 \times 10^9$ L mol⁻¹ s⁻¹; c) $k = 2$ L mol⁻¹ s⁻¹

- 23. **[EBAU, Extremadura 2019]** A 25 °C la constante de velocidad de una reacción vale 0.035 s⁻¹. Esta reacción tiene una energía de activación de 40.5 kJ mol⁻¹.
 - a) Determinar el valor de la constante de velocidad a 75 °C.
 - b) Razonar cuál será el orden de la reacción mediante la información disponible.

Datos: $R = 8.314 \,\mathrm{J \, mol^{-1} \, K^{-1}}$

Solución: a) $k = 0.37 \text{ s}^{-1}$; b) orden 1

24. [Grado en Química, UNEX] La velocidad de la hidrólisis del tejido de músculo de pescado es doble a 2.2 °C que a -1.1 °C. Calcular la energía de activación para esta reacción. ¿Tendrá este hecho alguna relación con el almacenamiento de pescado? *Solución:* a) $E_a = 130.7 \,\mathrm{kJ/mol}$

......Diagramas energéticos

25. En una determinada reacción del tipo A + B \longrightarrow productos, la E_a de la reacción directa es 145 kJ/mol, y la ΔH , 76 kJ/mol. ¿Se trata de una reacción exotérmica o endotérmica? ¿Cuánto valdrá la E_a de la reacción inversa?

Solución: $\vec{E}_a = 69 \, \text{kJ/mol}$

- 26. ¿Qué le ocurriría a la velocidad de una reacción si se incrementa la energía de activación? ¿y si se eleva la temperatura?
- guientes preguntas:
 - a) ¿Cuál puede ser la causa de la diferencia entre la curva 1 y la 2?
 - b)¿Para cuál de las dos curvas la reacción transcurre a mayor velocidad?
 - c) ¿Qué le sucederá a las constantes de velocidad de reacción si se aumenta la temperatura?
 - d) ¿La reacción es exotérmica o endotérmica?

- 28. A partir de las gráficas energía-coordenada de reacción, razonar:
 - a) ¿Cuáles son reacciones exotérmicas y cuáles endotérmicas?
 - b) Con respecto a I y II, cuál tiene mayor energía de activación y cuál mayor entalpía de reacción.
 - c) En la gráfica III, se representa una curva de la reacción sin catalizar y la curva de la reacción catalizada. Señala cuál es cuál, dibuja las entalpías de reacción sin catalizar ΔH y catalizada ΔH y las energías de activación sin catalizar E_a y catalizada E_a .

29. Los siguientes datos describen cuatro reacciones químicas del tipo: A + B ----> C + D

Reacción	E_a (kJ mol ⁻¹)	ΔG (kJ mol ⁻¹)	$\Delta H (\mathbf{kJ} \mathbf{mol}^{-1})$
1	1	-2	0.2
2	0.5	5	-0.8
3	0.7	0.7	0.6
4	1.5	-0.5	-0.3

Se desea saber:

- (a) ¿Cuál es la reacción más rápida?
- (b) ¿Cuál o cuáles de estas reacciones son espontáneas?
- (c) ¿Cuál o cuáles son endotérmicas?
- (d) ¿Qué valores de la tabla podrían modificarse por la presencia de un catalizador en cualquiera de las situaciones anteriores?

30. La siguiente reacción entre el dióxido de nitrógeno y el flúor:

$$2 \text{ NO}_2(g) + F_2(g) \longrightarrow 2 \text{ NO}_2F(g)$$

Se lleva a cabo en dos etapas elementales:

Etapa 1:
$$NO_2(g) + F_2(g) \longrightarrow NO_2F(g) + F(g)$$

Etapa 2: $NO_2(g) + F(g) \longrightarrow NO_2F(g)$

Experimentalmente se obtuvo que la ecuación de velocidad del proceso es: $v = k[NO_2][F_2]$ ¿Cuál es la etapa determinante del proceso?

31. \oint El mecanismo de reacción $H_2(g) + I_2(g) \longrightarrow 2 HI(g)$ tiene dos etapas:

Primera etapa:
$$I_2 \xrightarrow{k_1} 2I$$

Segunda etapa:
$$H_2 + 2I \xrightarrow{k_2} 2HI$$

Sabiendo que $k_2 \ll k_1$ y k_{-1} , determina su ecuación cinética.

Solución: $v = k[H_2][I_2]$

...... Integración de la ecuación cinética

Integración de la ecuación cinética

$$[A] = [A]_0 - kt$$

$$[A] = [A]_0 \cdot e^{-kt}$$

$$[A] = \frac{[A]_0}{(1+[A]_0kt)}$$

Orden 0

Orden 1

Orden 2

32. 👲 La descomposición de la sustancia A sigue una cinética de segundo orden, cuya constante vale $k=0.82\,\mathrm{mol}^{-1}\mathrm{Ls}^{-1}$. Si $[A]_0 = 0.5 \text{ mol/L}$, obtén [A] cuando hayan transcurrido 3 s.

Solución: [A] = 0.224 mol/L

referidas a dicha sustancia: a) orden 0, b) orden 1, c) orden 2.

Solución: a) [A] = 0.3 mol/L; b) [A] = 0.49 mol/L; c) [A] = 0.57 mol/L

- 34. Razona la veracidad de las siguientes afirmaciones:
 - (a) Las unidades de la velocidad de reacción dependen de cada tipo de reacción.
 - (b) La velocidad de reacción puede medirse en mol/Ls.
 - (c) La velocidad de reacción no tiene unidades.
 - (d) La velocidad de una reacción aumenta con el tiempo.
 - (e) La constante cinética, k, tiene siempre las mismas unidades, independientemente del orden de reacción.
 - (f) Que el orden parcial de un reactivo sea 0 indica que la velocidad no depende de la concentración de dicho reactivo.
 - (g) Si el orden parcial de un reactivo es negativo, quiere decir que la velocidad es inversamente proporcional a la concentración de ese reactivo.
 - (h) Si una reacción es de segundo orden con respecto a un reactivo significa que si duplicamos la concentración de dicho reactivo también se duplica la velocidad de la reacción.
 - (i) La ecuación de velocidad no puede depender de 3 o más reactivos.
 - (j) El complejo activado del estado de transición tiene menor energía que los reactivos y productos.
 - (k) Para una reacción exotérmica, la energía de activación de la reacción directa es menor que la energía de activación de la reacción inversa.
 - (l) La acción de un catalizador no influye en la velocidad de reacción.
 - (m) Un inhibidor actúa disminuyendo la energía de activación de un proceso.
 - (n) Si en una reacción añadimos un catalizador la entalpía de reacción disminuye.
 - (o) Si en una reacción añadimos un inhibidor la reacción se hace más espontánea.
 - (p) Si en una reacción añadimos un catalizador la energía de activación aumenta.
 - (q) Si añadimos un catalizador podemos conseguir obtener más cantidad de producto.
 - (r) Si en una reacción añadimos un catalizador se llega más rápido al equilibrio.
 - (s) Un catalizador actúa bajando la entalpía de los productos y haciendo la reacción más exotérmica.
 - (t) La temperatura no influye en la velocidad.
 - (u) Una reacción a 200 K es más lenta que una a 300 K.
 - (v) La presión sólo influye en reacciones en fase gaseosa.
 - (w) En una reacción en la que intervienen varias etapas, la etapa determinante es la más rápida.
 - (x) Un intermedio de reacción es aquel que aparece en alguna de las etapas pero no en la reacción global.
 - (y) En una reacción reversible, las constantes k_1 y k_{-1} son idénticas.
 - (z) En un proceso reversible, A \Longrightarrow B, y además, endotérmico, la energía de activación del proceso directo (A \longrightarrow B) es menor que la energía de activación del proceso inverso (B \longrightarrow A).