Homework Assignment 4

Matthew Tiger

September 20, 2015

Problem 2.3. Find the ACVF of the time series $X_t = Z_t + aZ_{t-1} + bZ_{t-2}$ where $Z_t \sim WN(0, \sigma^2)$ when:

a.
$$a = 0.3$$
, $b = -0.4$, and $\sigma^2 = 1$.

b.
$$a = -1.2$$
, $b = -1.6$, and $\sigma^2 = 0.25$.

Solution. The ACVF of the time series $\{X_t\}$, $\gamma_X(h)$, is by definition:

$$\gamma_X(h) = \operatorname{Cov}(X_{t+h}, X_t)
= \operatorname{Cov}(Z_{t+h} + aZ_{t+h-1} + bZ_{t+h-2}, Z_t + aZ_{t-1} + bZ_{t-2})
= \operatorname{Cov}(Z_{t+h}, Z_t) + a\operatorname{Cov}(Z_{t+h}, Z_{t-1}) + b\operatorname{Cov}(Z_{t+h}, Z_{t-2})
+ a\operatorname{Cov}(Z_{t+h-1}, Z_t) + a^2\operatorname{Cov}(Z_{t+h-1}, Z_{t-1}) + ab\operatorname{Cov}(Z_{t+h-1}, Z_{t-2})
+ b\operatorname{Cov}(Z_{t+h-2}, Z_t) + ab\operatorname{Cov}(Z_{t+h-2}, Z_{t-1}) + b^2\operatorname{Cov}(Z_{t+h-2}, Z_{t-2}).$$
(1)

Using (1), we can see that since $Z_t \sim WN(0, \sigma^2)$

$$\gamma_X(h) = \begin{cases} (1 + a^2 + b^2)\sigma^2 & \text{if } h = 0\\ a(1+b)\sigma^2 & \text{if } h = \pm 1\\ b\sigma^2 & \text{if } h = \pm 2\\ 0 & \text{otherwise} \end{cases}.$$

Therefore, when

a. a = 0.3, b = -0.4, and $\sigma^2 = 1$, the ACVF of $\{X_t\}$ is:

$$\begin{cases} 1.25 & \text{if } h = 0 \\ 0.18 & \text{if } h = \pm 1 \\ -0.4 & \text{if } h = \pm 2 \\ 0 & \text{otherwise} \end{cases}$$

b. a = -1.2, b = -1.6, and $\sigma^2 = 0.25$, the ACVF of $\{X_t\}$ is:

$$\begin{cases} 1.25 & \text{if } h = 0 \\ 0.18 & \text{if } h = \pm 1 \\ -0.4 & \text{if } h = \pm 2 \\ 0 & \text{otherwise} \end{cases}$$

Problem 2.5. Suppose that $\{X_t, t = 0, \pm 1, \dots\}$