ST3233: Tutorial 1

August 2016

1 Mean and covariance computations

Consider a white noise process $\{W_k\}_{k\geq 0}$ with variance $\operatorname{Var}(W_k) = \sigma_W^2$.

1. Consider the time series $\{Y_{k\geq 1}\}$ defined by

$$Y_k = W_k - \frac{1}{2} W_{k-1}.$$

Compute the mean $\mathbb{E}\left[Y_{k}\right]$ and covariance function $\mathrm{Cov}(Y_{p},Y_{q})$

2. Consider the time series $\{Y_{k\geq 1}\}$ defined by $Y_0=1$ and

$$Y_k = Y_{k-1} \times W_k.$$

Compute the mean $\mathbb{E}[Y_k]$ and covariance function $Cov(Y_p, Y_q)$.

3. Consider the time series $\{Y_{k\geq 1}\}$ defined by $Y_0=0$ and

$$Y_k = \frac{1}{2} Y_{k-1} + W_k.$$

Compute the mean $\mathbb{E}[Y_k]$ and variance function $Var(Y_k)$.

2 Temperature in Singapore

Consider the dataset contained in temperature_in_singapore.csv.

- 1. Load the dataset and plot it. You may want to use the command ts(...). Use the R help if you are not familiar with this command.
- 2. Decompose the time series into a trend, seasonal and reminder time series.
- 3. Plot the seasonal pattern. Does it look alright to you?
- 4. Use the command forecast(...) to make a forecast for the monthly temperature in Singapore in the next few months.