2412. Minimum Money Required Before Transactions

Description

You are given a 0-indexed 2D integer array [transactions], where $[transactions[i] = [cost_i]$, cashback [transactions].

The array describes transactions, where each transaction must be completed exactly once in **some order**. At any given moment, you have a certain amount of money . In order to complete transaction [i], money $>= cost_i$ must hold true. After performing a transaction, money becomes money $- cost_i + cashback_i$.

Return the minimum amount of money required before any transaction so that all of the transactions can be completed regardless of the order of the transactions.

Example 1:

```
Input: transactions = [[2,1],[5,0],[4,2]]
Output: 10
Explanation:
Starting with money = 10, the transactions can be performed in any order.
It can be shown that starting with money < 10 will fail to complete all transactions in some order.</pre>
```

Example 2:

```
Input: transactions = [[3,0],[0,3]]
Output: 3
Explanation:
- If transactions are in the order [[3,0],[0,3]], the minimum money required to complete the transactions is 3.
- If transactions are in the order [[0,3],[3,0]], the minimum money required to complete the transactions is 0.
Thus, starting with money = 3, the transactions can be performed in any order.
```

Constraints:

- 1 <= transactions.length <= 10 ⁵
- transactions[i].length == 2
- $\emptyset \leftarrow \text{cost}_i$, cashback $i \leftarrow 10^9$