Лабораторная работа 5.1.3. Изучение рассеяния медленных электронов на атомах (эффект Рамзауэра).

Мельникова Юлия, Калинин Даниил, Б01-108 3 декабря 2023 г.

Цель работы: Исследуется энергетическая зависимость вероятности рассеяния электронов атомами ксенона, определяются энергии электронов, при которых наблюдается «просветление» ксенона, и оценивается размер его внешней электронной оболочки.

В работе используются: тиратрон ТГ3-01/1.3Б

Теоретическая справка:

Эффективное сечение реакции — величина, характеризующая вероятность перехода системы двух сталкивающихся частиц в результате их рассеяния в определённое конечное состояние.

$$\sigma = \frac{N}{nv} \tag{1}$$

Если построить зависимость $\sigma(E)$, то получится график как на рис. 1.

Рис. 1. Качественная картина результатов измерения упругого рассеяния электронов в аргоне

Отсюда видно, что при энергии 1 эВ есть «прозрачное окно», т.е. электроны свободно проходят через среду аргона. Такое явление нельзя объяснить с помощью классической физики. По отношению к электронной волне атом ведёт себя как преломляющая волна:

$$n = \frac{\lambda}{\lambda'} = \sqrt{1 - \frac{U}{E}} \tag{2}$$

Решение задачи о рассеянии электрона на сферической потенциальной яме достаточно громоздко, поэтому в нашей модели будем считать, что яма является одномерной конечной глубины U_0 шириной l. Используя уравнение Шрёдингера и вычисляя коэффициент прохождения, получаем условие на его максимумы:

$$k_2 l = \sqrt{\frac{2m(E+U)}{\hbar^2}} l = \pi n, \ n \in \mathbb{N}$$
 (3)

Для качественного объяснения эффекта Рамзауэра достаточно использовать соотношение де Бройля и рассмотреть интерференцию волн ле Бройля в атоме. Условие максимума: разность хода равна длине волны в атоме:

$$2l = \lambda_1 = \frac{h}{\sqrt{2m(E_1 + U_0)}}\tag{4}$$

Здесь E_1 — энергия, соответствующая данному условию. С другой стороны, можно таким же образом найти минимум:

$$2l = \frac{3}{2}\lambda_2 = \frac{3}{2} \frac{h}{\sqrt{2m(E_2 + U_0)}} \tag{5}$$

Решив эти уравнения, исключаем U_0 и получаем:

$$l = \frac{h\sqrt{5}}{\sqrt{32m(E_2 - E_1)}}\tag{6}$$

Понятно, что энергии E_1 и E_2 соответствуют энергиям электронов, прошедших разность потенциалов, т. е. $E_1 = eV_1$, $E_2 = eV_2$. Из уравнений (4) и (5) можно получить глубину ямы:

$$U_0 = \frac{4}{5}E_2 - \frac{9}{5}E_1 \tag{7}$$

Экспериментальная установка:

В данной работе для изучения эффекта Рамзауэра используется тиратрон ТГ3-01/1.3Б (см. рис. 2). В нём:

- 1, 2, 3 сетки
- 4 внешний металлический цилиндр
- 5 катод
- 6 анод
- 7 накаливаемая спираль

Уравнение ВАХ выражается так:

$$I_a = I_0 e^{-C\omega(V)} \tag{8}$$

где $I_0=eN_0$ — ток катода, $I_a=eN_a$ — анодный ток, $C=Ln_a\Delta_a$, L — расстояние от катода до анода, n_a — концентрация атомов газа в лампе, Δ_a — площадь поперечного сечения атома, $\omega(V)$ — вероятность рассеяния на атоме. Отсюда вероятность выражается так:

$$\omega(V) = -\frac{1}{C} \ln \frac{I_a(V)}{I_0} \tag{9}$$

Рис. 2. Схема тиратрона (слева) и его конструкция (справа)

Рис. 3. Схема включения тиратрона

Рис. 4. Блок-схема экспериментальной установки

Ход работы:

- 1. Подготовим осциллограф к работе, затем включим в сеть.
- 2. Поставим переключатель в динамический режим. Измерим с помощью осциллографа напряжение в точках максимума, минимума и пробоя. Результаты представлены в таблице 1, а осциллограммы на рисунках 5 и 6.

$U_{\mu a\kappa}$, B	V_{max} , B	V_{min} , B	V_{np} , B
2.7	ПОДСТАВИТЬ±?	ПОДСТАВИТЬ±?	ПОДСТАВИТЬ±?
3.007	ПОДСТАВИТЬ±?	ПОДСТАВИТЬ±?	ПОДСТАВИТЬ±?

Таблица 1. Данные с осциллограммы

3. Теперь переключим в статический режим. Измерим ток анода, изменяя катода с промежутком 0.5 В при тех же $U_{na\kappa}$. Результаты для $U_{na\kappa}=2.7$ В представлены в таблице 2, а для $U_{na\kappa}=3.007$ — в таблице 3.

Рис. 5. Осциллограма при $U_{np}=3B$

Рис. 6. Осциллограма при $U_{np}=2.7B$

$V_{\kappa am}$, B	0.12	0.53	2.01	10.37	14.57	20.41	27.77	30.95	33.09	35.12	36.29	37.55
V_{an} , B	2.293	2.376	2.687	2.740	2.797	2.876	2.963	3.020	3.055	3.139	3.222	3.625
$V_{\kappa am}$, B	37.42	37.38	36.92	35.81	34.58	33.18	32.28	31.58	28.82	26.52	24.34	22.20
V_{an} , B	3.770	3.929	4.311	4.594	4.880	5.212	5.425	5.570	6.193	6.667	7.145	7.581

$V_{\kappa am}$, I	3	21.03	20.11	18.71	10	6.50	1	5.08	1.	5.62	16.11
V_{an} , B	3	7.810	8.24	8.383	9.	.105	10	.317	11	.016	11.370
	V	κ_{am}, B	16.32	16.90)	16.2	20	15.3	86	15.43	2
	I	_{ан} , В	11.535	12.10	1	11.5	35	10.8	20	9.99	4

Таблица 2. Измерения для $U_{na\kappa}=2.7$

Обработка результатов:

4. Примем $U_0=2.5$ эВ и найдём размер электронной оболочки атома по результатам измерений в динамическом режиме по формулам (4) и (5). Получаем: Теперь вычислим данный размер по формуле (6). Получаем:

$V_{\kappa am}, B$	1.68	5.76	18.75	29.18	37.82	48.37	52.26	55.74	65.69	67.01
V_{an} , В	2.387	2.512	2.692	2.794	2.884	3.092	3.230	3.387	4.039	4.145
$V_{\kappa am}, B$	68.18	69.93	70.73	71.59	71.80	72.55	73.44	74.54	74.47	74.19
V_{an} , В	4.244	4.430	4.512	4.630	4.649	4.758	4.935	5.614	5.899	6.101
$V_{\kappa am}, B$	73.88	73.05	72.88	72.32	71.16	67.22	66.44	62.72	56.06	53.92
V_{an} , В	6.232	6.460	6.535	6.627	6.812	7.285	7.459	7.909	8.798	9.199
$V_{\kappa am}$, B	52.22	52.9	3 53.	.35 5	5.44	53.91	52.70	53.17	53.77	54.06
V_{an} , B	10.367	7 10.65	38 10.	737 1	1.198	10.770	10.336	9.496	9.342	9.281

Таблица 3. Измерения для $U_{\text{\it hak}} = 3.007$

$U_{na\kappa}$	l по формуле (4)	l по формуле (5)
2.7	ПОДСТАВИТЬ±? Å	ПОДСТАВИТЬ±? Å
3.007	ПОДСТАВИТЬ±? Å	ПОДСТАВИТЬ±? Å

$$l = \Pi O \mathcal{I} C T A B U T b \pm ?$$
 Å, при $U_{na\kappa} = 2.7$ $l = \Pi O \mathcal{I} C T A B U T b \pm ?$ Å, при $U_{na\kappa} = 3.007$

5. Найдём глубину потенциальной ямы по формуле (7):

$$U_0 = \Pi O \mathcal{A} CTABUTb \pm ?$$
 эВ, при $U_{nak} = 2.7$ $U_0 = \Pi O \mathcal{A} CTABUTb \pm ?$ эВ, при $U_{nak} = 3.007$

6. Построим графики $I_a = f(V_c)$ для статического режима. Учтём, что $I_a = V_a/R_a$, где $R_a = 100$ кОм. Теперь вычислим все величины, которые вычисляли для динамического режима:

$U_{na\kappa}$	U_{max}	U_{min}	l по формуле (4)	l по формуле (5)
2.7	$3.62 \pm 0.1 \text{ B}$	$10.31 \pm 0.1 \text{ B}$	$2.48 \pm 0.04 \text{ Å}$	$2.57 \pm 0.01 \text{ Å}$
3.007	$5.2 \pm 0.1 \text{ B}$	$11.3 \pm 0.2 \text{ B}$	$2.21 \pm 0.03 \; {\rm \AA}$	$2.47 \pm 0.03 \; \text{Å}$

$U_{na\kappa}$	l по формуле (6)	U_0
2.7	$1.33 \pm 0.04 \text{ Å}$	1.7 ± 0.3 эВ
3.007	$1.38 \pm 0.05 \; {\rm \AA}$	$-0.28 \pm 0.04 \text{ 9B}$

7. На основе формулы (9) найдём вероятности рассеяния электронов и построим соответствующий график.

Рис. 7. $U_{nak} = 2.7$

Рис. 8. $U_{nak} = 3.007$

Рис. 9. $U_{na\kappa} = 2.7$

Рис. 10. $U_{na\kappa} = 3.007$