An Introduction To Algebraic Topology

Rotman

July 13, 2021

Contents

1	Introduction1.1 Notation	
2	Categories and Functors	3
3	Some Basic Topological Notions 3.1 Homotopy	7 7 11
4	Simplexes4.1 Affine Spaces4.2 Affine Maps	20 20 26
5	The Fundamental Group 5.1 The Fundamental Groupoid	27 27
6	Problem	30
7	Index	30

1 Introduction

1.1 Notation

$$I = [0, 1].$$

$$S^n = \{ x \in \mathbb{R}^{n+1} \mid ||x|| = 1 \}$$

 S^n is called the n-sphere. $S^n \subset \mathbb{R}^{n+1}$ (S^1 is the circle); 0-sphere S^0 consists of the two points $\{-1,1\}$ and hence is a discrete two-point space. We may regard S^n as the **equator** of S^{n+1}

$$S^n = \mathbb{R}^{n+1} \cap S^{n+1} = \{(x_1, \dots, x_{n+2}) \in S^{n+1} : x_{n+2} = 0\}$$

The **north pole** is $(0,0,\ldots,0,1)\in S^n$; the **south pole** is $(0,0,\ldots,0,-1)$. The **antipode** of $x=(x_1,\ldots,x_{n+1})\in S^n$ is the other endpoint of the diameter having one endpoint x; thus the antipode of x is $-x=(-x_1,\ldots,-x_{n+1})$, for the distance from -x to x is 2.

$$D^n = \{x \in \mathbb{R}^n \mid ||x|| \le 1\}$$

 D^n is called the n-disk (or n-ball). Observe that $S^{n-1} \subset D^n \subset \mathbb{R}^n$; indeed S^{n-1} is the boundary of D^n in \mathbb{R}^n

$$\Delta^n = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : \text{ each } x_i \ge 0 \text{ and } \sum x_i = 1\}$$

 Δ^n is called the **standard** *n***-simplex**. Δ^0 is a point, Δ^1 is a closed interval, Δ^2 is a triangle (with interior), Δ^3 is a (solid) tetrahedron, and so on.

There is a standard homeomorphism from S^n - {north pole} to \mathbb{R}^n , called **stereographic projection**. Denote the north pole by N, and define $\sigma: S^n - \{N\} \to \mathbb{R}^n$ to be the intersection of \mathbb{R}^n and the line joining x and N. Points on the latter line have the form tx + (1-t)N, hence they have coordinates $(tx_1, \dots, tx_n, tx_{n+1} + (1-t))$. The last coordinate is zero for $t = (1-x_{n+1})^{-1}$; hence

$$\sigma(x) = (tx_1, \dots, tx_n)$$

where $t = (1 - x_{n+1})^{-1}$. It is now routine to check that σ is indeed a homeomorphism. Note that $\sigma(x) = x$ iff x lies on the equator S^{n-1}

1.2 Brouwer Fixed Point Theorem

Theorem 1.1. Every continuous $f: D^1 \rightarrow D^1$ has a fixed point

Proof. Let f(-1) = a and f(1) = b. If either f(-1) = -1 or f(1) = 1, we are done. Therefore we may assume that f(-1) = a > -1 and that f(1) = b < 1 as drawn. If G is the graph of f and Δ is the graph of the identity function, then we must prove that $G \cap \Delta \neq \emptyset$. The idea is to use a connectness argument to show that every path in $D^1 \times D^1$ from a to b must cross Δ .

Since f is continuous, $G = \{(x, f(x)) : x \in D^1\}$ is connected (continuous image of connected space is connected). Define $A = \{(x, f(x)) : f(x) > x\}$ and $B = \{(x, f(x)) : f(x) < x\}$. Note that $a \in A$ and $b \in B$, so that $A \neq \emptyset$ and $B \neq \emptyset$. If $G \cap \Delta = \emptyset$, then G is the disjoint union of A and B.

Definition 1.2. A subspace X of a topological space Y is a **retract** of Y if there is a continuous map $r: Y \to X$ with r(x) = x for all $x \in X$; such a map r is called a **retraction**

Theorem 1.3 (Brouwer fixed point theorem). *If* $f: D^n \to D^n$ *is continuous, then there exists* $x \in D^n$ *with* f(x) = x

2 Categories and Functors

Definition 2.1. A category C consists of three ingredients: a class of **objects**, obj C; sets of **morphisms** $\operatorname{Hom}(A,B)$, one for every ordered pair $A,B \in \operatorname{obj} C$; **composition** $\operatorname{Hom}(A,B) \times \operatorname{Hom}(B,C) \to \operatorname{Hom}(A,C)$, denoted by $(f,g) \to g \circ f$, for every $A,B,C \in \operatorname{obj} C$ satisfying the following axioms

- 1. the family of Hom(A, B)'s is pairwise disjoint
- 2. composition is associative when defined
- 3. for each $A \in \operatorname{obj} \mathcal{C}$ there exists an identity $1_A \in \operatorname{Hom}(A,A)$ satisfying $1_A \circ f = f$ for every $f \in \operatorname{Hom}(B,A)$, all $B \in \operatorname{obj} \mathcal{C}$ and $g \circ 1_A = g$ for every $g \in \operatorname{Hom}(A,C)$, all $C \in \operatorname{obj} \mathcal{C}$

Definition 2.2. Let \mathcal{C} and \mathcal{A} be categories with obj $\mathcal{C} \subset \operatorname{obj} \mathcal{A}$. If $A, B \in \operatorname{obj} \mathcal{C}$, let's denote the two possible Hom sets by $\operatorname{Hom}_{\mathcal{C}}(A, B)$ and $\operatorname{Hom}_{\mathcal{A}}(A, B)$. Then \mathcal{C} is a **subcategory** of \mathcal{A} if $\operatorname{Hom}_{\mathcal{C}}(A, B) \subset \operatorname{Hom}_{\mathcal{A}}(A, B)$ for all $A, B \in \operatorname{obj} \mathcal{C}$ and if composition in \mathcal{C} is the same as composition in \mathcal{A}

Example 2.1. $C = \mathbf{Top}^2$. here obj C consists of all ordered pairs (X, A) where X is a topological space and A is a subspace of X. A morphism $f:(X,A) \to (Y,B)$ is an ordered pair (f,f') where $f:X \to Y$ is continuous and fi=jf' (where i and j are inclusions)

$$\begin{array}{ccc}
A & \stackrel{i}{\longrightarrow} & X \\
f' \downarrow & & \downarrow f \\
B & \stackrel{f}{\longrightarrow} & Y
\end{array}$$

and composition is coordinatewise. \mathbf{Top}^2 is called the category of \mathbf{pairs} (of topological spaces)

Example 2.2. $C = \mathbf{Top}_*$. Here obj C consists of all ordered pairs (X, x_0) where X is a topological space and x_0 is a point of X. \mathbf{Top}_* is a subcategory of \mathbf{Top}^2 and it is called the category of **pointed spaces**; x_0 is called the **basepoint** of (X, x_0) and morphisms are called **pointed maps** (or **basepoint preserving maps**). The category \mathbf{Sets}_* of pointed sets is defined similarly

Exercise 2.0.1. Let $f \in \operatorname{Hom}(A,B)$ be a morphism in a category \mathcal{C} . If f has a left inverse g ($g \in \operatorname{Hom}(B,A) \setminus$ and $g \circ f = 1_A$) and a right inverse h ($h \in \operatorname{Hom}(B,A)$ and $f \circ h = 1_B$), then g = h

Exercise 2.0.2. A set X is called **quasi-ordered** (or **pre-ordered**) if X has a transitive and reflexive relation \leq (such a set is partially ordered if \leq is antisymmetric). Prove that the following construction gives a category C. Define obj C = X, if $x, y \in X$ and $x \nleq y$, define $\operatorname{Hom}(x, y) = \emptyset$; if $x \leq y$, define $\operatorname{Hom}(x, y)$ to be a set with exactly one element, denoted by i_y^x ; if $x \leq y \leq z$ define composition by $i_z^y \circ i_y^x = i_z^x$

Exercise 2.0.3. Let G be a **monoid**, that is, a semigroup with 1. Show that the following gives a category C. Let obj C have exactly one element, denoted by *; define Hom(*,*) = G and define composition $G \times G \to G$ as the given multiplication in G

Definition 2.3. A **diagram** in a category \mathcal{C} is a directed graph whose vertices are labeled by objects of \mathcal{C} and whose directed edges are labeled by morphisms in \mathcal{C} . A **commutative diagram** in \mathcal{C} is a diagram in which, for each pair of vertices, every two paths (composites) between them are equal as morphisms.

Exercise 2.0.4. Given a category C, shows that the following construction gives a category M. First, an object of M is a morphism of C. Next, if $f,g \in \text{obj } M$, say $f:A \to B$ and $g:C \to D$, then a morphism in M is an ordered pair (h,k) of morphisms in C s.t. the diagram

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow h & & \downarrow k \\
C & \xrightarrow{g} & D
\end{array}$$

commutes. Define composition coordinatewise

$$(h',k')\circ(h,k)=(h'\circ h,k'\circ k)$$

Definition 2.4. A **congruence** on a category C is an equivalence relation \sim on the class $\bigcup_{(A,B)} \operatorname{Hom}(A,B)$ of all morphisms in C s.t.

- 1. $f \in \operatorname{Hom}(A, B)$ and $f \sim f'$ implies $f' \in \operatorname{Hom}(A, B)$
- 2. $f \sim f'$, $g \sim g'$ and the composite $g \circ f$ exists imply that

$$g \circ f \sim g' \circ f'$$

Theorem 2.5. Let C be a category with congruence \sim and let [f] denote the equivalence class of a morphism f. Define C' as follows

$$obj C' = obj C$$

$$Hom_{C'}(A, B) = \{ [f] : f \in Hom_{C}(A, B) \}$$

$$[g] \circ [f] = [g \circ f]$$

Then C' is a category

Proof. Property 1 in the definition of congruence shows that \sim partitions each set $\operatorname{Hom}_{\mathcal{C}}(A,B)$ and this implies that $\operatorname{Hom}_{\mathcal{C}'}(A,B)$ is a set; moreover, the family of these sets is pairwise disjoint. Property 2 in the definition of congruence shows that composition in \mathcal{C}' is well. \mathcal{C}' is associative and $[1_A]$ is the identity is not hard

The category C' is called a **quotient category** of C; one usually denotes $\operatorname{Hom}_{C'}(A,B)$ by [A,B]

Exercise 2.0.5. Let G be a group and let C be the one-object category it defines: obj $C = \{*\}$, Hom(*,*) = G and composition is the group operation. If H is a normal subgroup of G, define $x \sim y$ to mean $xy^{-1} \in H$. Show that \sim is a congruence on C and that [*,*] = G/H in the corresponding quotient category

Definition 2.6. If A and C are categories, a **functor** $T:A\to C$ is a function, that is,

- 1. $A \in \text{obj } A \text{ implies } TA \in \text{obj } C$
- 2. if $f:A\to A'$ is a morphism in A, then $Tf:TA\to TA'$ is a morphism in C
- 3. if f, g are morphisms in A for which $g \circ f$ is defined, then

$$T(g \circ f) = (Tg) \circ (Tf)$$

4. $T(1_A) = 1_{TA}$ for every $A \in \text{obj } A$

Example 2.3. If C is a category, the **identity functor** $J: C \to C$ is defined by JA = A for every object A and Jf = f for every morphism

Example 2.4. If M is a fixed topological space, Then $T_m: \mathbf{Top} \to \mathbf{Top}$ is a functor, where $T_M(X) = X \times M$ and if $f: X \to Y$ is continuous, then $T_M(f): X \times M \to Y \times M$ is defined by $(x,m) \mapsto (f(x),m)$

Example 2.5. Fix an object A in category C. Then $\operatorname{Hom}(A,-):C\to\operatorname{Sets}$ is a functor assigning to each object B the set $\operatorname{Hom}(A,B)$ and to each morphism $f:B\to B'$ the induced map $\operatorname{Hom}(A,f):\operatorname{Hom}(A,B)\to\operatorname{Hom}(A,B')$ defined by $g\mapsto f\circ g$. One usually denotes the induced map $\operatorname{Hom}(A,f)$ by f_*

Functors as just defined are also called **covariant functors** to distinguish them from **contravariant functors** that reverse the direction of arrows. Thus the functor of the example is sometimes called a **covariant Hom functor**.

Definition 2.7. if A and C are categories, a **contravariant functor** $S : A \to C$ is a function that

- 1. $A \in \text{obj } A \text{ implies } SA \in \text{obj } C$
- 2. if $f: A \to A'$ is a morphism in C, then $Sf: SA' \to SA$ is a morphism in C
- 3. if f, g are morphisms in A for which $g \circ f$ is defined, then

$$S(g \circ f) = S(f) \circ S(g)$$

4. $S(1_A) = 1_{SA}$ for every $A \in \text{obj } A$

Example 2.6. Fix an object B in a category C. Then $\operatorname{Hom}(-,B):C\to\operatorname{Sets}$ is a contravariant functor assigning to each object A the set $\operatorname{Hom}(A,B)$ and to each morphism $g:A\to A'$ the **induced map** $\operatorname{Hom}(g,B):\operatorname{Hom}(A',B)\to\operatorname{Hom}(A,B)$ defined by $h\mapsto h\circ g$. One usually denotes the induced map $\operatorname{Hom}(g,B)$ by g^* ; $\operatorname{Hom}(-,B)$ is called a **contravariant Hom functor**

Definition 2.8. An **equivalence** in a category C is a morphism $f: A \to B$ for which there exists a morphism $g: B \to A$ with $f \circ g = 1_B$ and $g \circ f = 1_A$

Theorem 2.9. *If* A *and* C *are categories and* $T : A \to C$ *is a functor of either variance, then* f *an equivalence in* A *implies that* Tf *is an equivalence in* C

Exercise 2.0.6. Let C and A be categories, let \sim be a congruence on C. If $T:C\to A$ is a functor with T(f)=T(g) whenever $f\sim g$, then T defines a functor $T':C'\to A$ (where C' is the quotient category) by T'(X)=T(X) for every object X and T'([f])=T(f) for every morphism f.

Exercise 2.0.7. 1. if X is a topological space, show that C(X), the set of all continuous real-valued functions on X, is a commutative ring with 1 under pointwise operations

$$f + g : x \mapsto f(x) + g(x)$$
 and $f \cdot g \mapsto f(x)g(x)$

for all $x \in X$

2. show that $X \mapsto C(X)$ gives a (contravariant) functor **Top** \rightarrow **Rings**

Proof. 2. From exercise 2.0.4

3 Some Basic Topological Notions

3.1 Homotopy

Definition 3.1. If X and Y are spaces and if f_0 , f_1 are continuous maps from X to Y, then f_0 is **homotopic** to f_1 , denoted by $f_0 \simeq f_1$ if there is a continuous map $F: X \times \mathbf{I} \to Y$ with

$$F(x,0) = f_0(x)$$
 and $F(x,1) = f_1(x)$ for all $x \in X$

Such a map F is called a **homotopy**, written as $F: f_0 \simeq f_1$

If $f_t: X \to Y$ is defined by $f_t(x) = F(x,t)$, then a homotopy F gives a one-parameter family of continuous maps deforming f_0 into f_1

Lemma 3.2 (Gluing lemma). Assume that a space X is a finite union of closed subsets $X = \bigcup_{i=1}^{n} X_i$. If, for some space Y, there are continuous maps $f_i : X_i \to Y$ that agree on overlaps $(f_i|X_i \cap X_j = f_j|X_i \cap X_j$ for all i, j), then there exists a unique continuous $f: X \to Y$ with $f|X_i = f_i$ for all i

Proof. If *C* is closed in *Y*, then

$$\begin{split} f^{-1}(C) &= X \cap f^{-1}(C) = (\bigcup X_i) \cap f^{-1}(C) \\ &= \bigcup (X_i \cap f^{-1}(C)) \\ &= \bigcup (X_i \cap f_i^{-1}(C)) = \bigcup f_i^{-1}(C) \end{split}$$

Since each f_i is continuous, $f_i^{-1}(C)$ is closed in X_i . Since X_i is closed in X, $f_i^{-1}(C)$ is closed in X, therefore $f^{-1}(C)$ is closed in X and f is continuous \square

Lemma 3.3 (Gluing Lemma). Assume that a space X has a (possibly infinite) open cover $X = \bigcup X_i$. If for some space Y, there are continuous maps $f_i : X_i \to Y$ that agree on overlaps, then there exists a unique continuous $f : X \to Y$ with $f|X_i = f_i$ for all i

Theorem 3.4. Homotopy is an equivalence relation on the set of all continuous maps $X \to Y$

Proof. Reflexivity. If $f: X \to Y$, define $F: X \times \mathbf{I} \to Y$ by F(x,t) = f(x) for all $x \in X$ and $t \in \mathbf{I}$; clearly $F: f \simeq f$

Symmetry: Assume that $f \simeq g$, so there is a continuous $F: X \times \mathbf{I} \to Y$ with F(x,0) = f(x) and F(x,1) = g(x) for all $x \in X$. Define $G: X \times \mathbf{I} \to Y$ by G(x,t) = F(x,1-t), and note that $G: g \simeq f$.

Transivity: assume that $F : f \simeq g$ and $G : g \simeq h$. Define $H : X \times I \to Y$ by

$$H(x,t) = \begin{cases} F(x,2t) & 0 \le t \le 1/2 \\ G(x,2t-1) & 1/2 \le t \le 1 \end{cases}$$

Because these functions agree on the overlap $\{(x,1/2):x\in X\}$, the gluing lemma shows that H is continuous. Therefore $H:f\simeq h$

Definition 3.5. If $f: X \to Y$ is continuous, its **homotopy class** is the equivalence class

$$[f] = \{\text{continuous } g: X \to Y: g \simeq f\}$$

The family of all such homotopy classes is denoted by [X, Y]

Theorem 3.6. Let $f_i: X \to Y$ and $g_i: Y \to Z$, for i = 0, 1, be continuous. If $f_0 \simeq f_1$ and $g_0 \simeq g_1$, then $g_0 \circ f_0 \simeq g_1 \circ f_1$; that is, $[g_0 \circ f_0] = [g_1 \circ f_1]$

Proof. Let $F: f_0 \simeq f_1$ and $G: g_0 \simeq g_1$ be homotopies. First, we show that

$$g_0 \circ f_0 \simeq g_1 \circ f_0$$

Define $H: X \times \mathbf{I} \to Z$ by $H(x,t) = G(f_0(x),t)$. Clearly, H is continuous; moreover, $H(x,0) = G(f_0(x),0) = g_0(f_0(x))$ and $H(x,1) = G(f_0(x),1) = g_1(f_0(x))$. Now observe that

$$K: g_1 \circ f_0 \sim g_1 \circ f_1$$

where $K: X \times \mathbf{I} \to Z$ is the composite $g_1 \circ F$. Now use the transitivity of the homotopy relation, we have $g_0 \circ f_0 \simeq g_1 \circ f_1$

Corollary 3.7. *Homotopy is a congruence on the category Top.*

It follows from Theorem 2.5 that there is a quotient category whose objects are topological spaces X, whose Hom sets are Hom(X,Y) = [X,Y] and whose composition is $[g] \circ [f] = [g \circ f]$

Definition 3.8. The quotient category just described is called the **homotopy category**, and it is denoted by **hTop**

All the functors $T: \mathbf{Top} \to \mathcal{A}$ that we shall construct, where \mathcal{A} is some "algebraic" category (e.g. **Ab**, **Groups**, **Rings**) will have the property that $f \simeq g$ implies T(f) = T(g). This fact, aside from a natural wish to identify homotopic maps, makes homotopy valuable, beacause it guarantees that the algebraic problem in \mathcal{A} arising from a topological problem via T is simpler than the original problem

Definition 3.9. A continuous map $f: X \to Y$ is a **homotopy equivalence** if there is a continuous map $g: Y \to X$ with $g \circ f \simeq 1_X$ and $f \circ g \simeq 1_Y$. Two spaces X and Y have the **same homotopy type** if there is a homotopy equivalence $f: X \to Y$

f is a homotopy equivalence iff $[f] \in [X, Y]$ is an equivalence in **hTop**. ()

Definition 3.10. Let X and Y be spaces, and let $y_0 \in Y$. The **constant map** at y_0 is the function $c: X \to Y$ with $c(x) = y_0$ for all $x \in X$. A continuous map $f: X \to Y$ is **nullhomotopic** if there is a constant map $c: X \to Y$ with $f \simeq c$

Theorem 3.11. Let $\mathbb C$ denote the complex numbers, let $\Sigma_{\rho} \subset \mathbb C \approx \mathbb R^2$ denote the circle with center at the origin 0 and radius ρ , and let $f_{\rho}^n : \Sigma_{\rho} \to \mathbb C - \{0\}$ denote the restriction to Σ^{ρ} of $z \mapsto z^n$. If none of the maps f_{ρ}^n is nullhomotopic ($n \ge 1$ and $\rho > 0$) then the fundamental theorem of algebra is true (i.e., every nonconstant complex polynomial has a complex root)

Proof. Consider the polynomial with complex coefficients

$$g(z) = z^n + a_{n-1}z^{n-1} + \dots + a_1z + a_0$$

Choose $\rho > \max\{1, \sum_{i=1}^{n-1} |a_i|\}$ and define $F : \Sigma_{\rho} \times \mathbf{I} \to \mathbb{C}$

$$F(z,t) = z^{n} + \sum_{i=0}^{n-1} (1-t)a_{i}z^{i}$$

It's obvious that $F: g|\Sigma_{\rho} \simeq f_{\rho}^{n}$ if we can show that the image of F is contained in $\mathbb{C}-\{0\}$. that is, $F(z,t)\neq 0$. If, on the contrary, F(z,t)=0 for some $t\in \mathbf{I}$ and some z with $|z|=\rho$, then $z^{n}=-\sum_{i=0}^{n-1}(1-t)a_{i}z^{i}$. The triangle inequality gives

$$\rho^n \leq \sum_{i=0}^{n-1} (1-t) |a_i| \rho^i \leq \sum_{i=0}^{n-1} |a_i| \rho^i \leq \left(\sum_{i=0}^{n-1} |a_i|\right) \rho^{n-1}$$

for $\rho > 1$ implies that $\rho^i \leq \rho^{n-1}$. Canceling ρ^{n-1} gives $\rho \leq \sum_{i=0}^{n-1} |a_i|$, a contradiction.

Assume now that g has no complex roots. Define $G: \Sigma_{\rho} \times \mathbf{I} \to \mathbb{C} - \{0\}$ by G(z,t) = g((1-t)z). (Since g has no roots, the values of G do lie in $\mathbb{C} - \{0\}$) Visibly, $G: g|\Sigma_{\rho} \simeq k$, where k is the constant function at a_0 . Therefore $g|\Sigma_{\rho}$ is nullhomotopic and by transitivity, f_{ρ}^n is nullhomotopic, contradicting the hypothesis.

A common problem involves extending a map $f: X \to Z$ to a larger space Y; the picture is

$$\begin{array}{c}
Y \\
\uparrow \qquad g \\
X \xrightarrow{f} Z
\end{array}$$

Homotopy itself raises such a problem: if $f_0, f_1: X \to Z$ then $f_0 \simeq f_1$ if we can extend $f_0 \cup f_1: X \times \{0\} \cup X \times \{1\} \to Z$ to all of $X \times \mathbf{I}$

Theorem 3.12. Let $f: S^n \to Y$ be a continuous map into some space Y. TFAE

- 1. f is nullhomotopic
- 2. f can be extended to a continuous map $D^{n+1} \to Y$
- 3. if $x_0 \in S^n$ and $k: S^n \to Y$ is the constant map at $f(x_0)$, then there is a homotopy $F: f \simeq k$ with $F(x_0, t) = f(x_0)$ for all $t \in I$

Proof. $1 \to 2$. Assume that $F: f \simeq c$, where $c(x) = y_0$ for all $x \in S^n$. Define $g: D^{n+1} \to Y$ by

$$g(x) = \begin{cases} y_0 & 0 \le ||x|| \le 1/2 \\ F(x/||x||, 2 - 2 ||x||) & 1/2 \le ||x|| \le 1 \end{cases}$$

if $x \neq 0$, then $x/\|x\| \in S^n$; if $1/2 \leq \|x\| \leq 1$ then $2-2\|x\| \in I$; if $\|x\| = 1/2$ then $2-2\|x\| = 1$ and $F(x/\|x\|,1) = c(x/\|x\|) = y_0$. The gluing lemma shows that g is continuous. Finally g does extend f: if $x \in S^n$, then $\|x\| = 1$ and g(x) = F(x,0) = f(x).

 $2 \to 3$. Assume that $g: D^{n+1} \to Y$ extends f. Define $F: S^n \times \mathbf{I} \to Y$ by $F(x,t) = g((1-t)x + tx_0)$; note that $(1-t)x + tx_0 \in D^{n+1}$. Visibly F is continuous. Now F(x,0) = g(x) = f(x) while $F(x,1) = g(x_0) = f(x_0)$ for all $x \in S^n$; hence $F: f \simeq k$ where $k: S^n \to Y$ is the constant map at $f(x_0)$. Finally, $F(x_0,t) = g(x_0) = f(x_0)$ for all $t \in \mathbf{I}$

$$3 \rightarrow 1$$
 obvious

3.2 Convexity, Contractibility, and Cones

Definition 3.13. A subset X of \mathbb{R}^m is **convex** if for each pair of points $x, y \in X$ the line segment joining x and y is contained in X. In other words, if $x, y \in X$, then $tx + (1 - t)y \in X$ for all $t \in \mathbf{I}$

Definition 3.14. A space X is **contractible** if 1_X is nullhomotopic

Theorem 3.15. *Every convex set X is contractible*

Proof. Choose
$$x_0 \in X$$
, and define $c: X \to X$ by $c(x) = x_0$ for all $x \in X$. Define $F: X \times \mathbf{I} \to X$ by $F(x,t) = tx_0 + (1-t)x$. Hence $F: 1_X \simeq c$.

A hemisphere is contractible but not convex, so that the converse of Theorem 3.15 is not true

Exercise 3.2.1. Let $R: S^1 \to S^1$ be rotation by α radians. Prove that $R \simeq 1_S$. Conclude that every continuous map $f: S^1 \to S^1$ is homotopic to a continuous map $g: S^1 \to S^1$ with g(1) = 1 (where $1 = e^{2\pi i 0} \in S^1$)

Proof. Let $F: S^1 \times \mathbf{I} \to S^1$ be

$$F((\cos\theta,\sin\theta),t) = (\cos(\theta+\alpha(1-t)),\sin(\theta+\alpha(1-t)))$$

Exercise 3.2.2. Let $X = \{0\} \cup \{1, 1/2, 1/3, ..., 1/n, ...\}$ and let Y be a countable discrete space. Show that X and Y do not have the same homotopy type.

Definition 3.16. Let X be a topological space and let $X' = \{X_j : j \in J\}$ be a partition of X. The **natural map** $\nu : X \to X'$ is defined by $\nu(x) = X_j$ where $x \in X_j$. The **quotient topology** on X' is the family of all subsets U' of X' for which $\nu^{-1}(U')$ is open in X

 $\nu: X \to X'$ is continuous when X' has the quotient topology. There are two special cases that we wish to mention. If A is a subset of X, then we write X/A for X', where the partition of X consists of A together with all the one-point subsets of X-A. The second special case arises from an equivalence relation \sim on X. In this case, the partition consists of the equivalence classes, the natural map is given by $\nu: x \mapsto [x]$, and the quotient space is denoted by X/\sim .

Example 3.1. Let $X = \mathbf{I} \times \mathbf{I}$ and define $(x,0) \sim (x,1)$ for every $x \in \mathbf{I}$. Then

 X/\sim is homeomorphic to the cylinder $S^1\times \mathbf{I}$. Furthermore, suppose we define a second equivalence relation on $\mathbf{I}\times\mathbf{I}$ by $(x,0)\sim(x,1)$ for all $x\in\mathbf{I}$ and $(0,y)\sim(1,y)$ for all $y\in\mathbf{I}$. Then $\mathbf{I}\times\mathbf{I}/\sim$ is the **torus** $S^1\times S^1$

Example 3.2. If $h: X \to Y$ is a function, then **ker** h is the equivalence relation on X defined by $x \sim x'$ if h(x) = h(x'). The corresponding quotient space is denoted by $X/\ker h$. Note that, given $h: X \to Y$ there always exists an injection $\varphi: X/\ker h \to Y$ making the diagram

namely, $\varphi([x]) = h(x)$

Definition 3.17. A continuous surjection $f: X \to Y$ is an **identification** if a subset U of Y is open iff $f^{-1}(U)$ is open in X

Example 3.3. If \sim is an equivalence relation on X and X/\sim is given the quotient topology, then the natural map $\nu:X\to X/\sim$ is an identification

Example 3.4. If $f: X \to Y$ is a continuous surjective map having a **section** (i.e., there is a continuous $s: Y \to X$ with $fs = 1_Y$), then f is an identification

Theorem 3.18. Let $f: X \to Y$ be a continuous surjection. Then f is an identification iff for all spaces Z and all functions $g: Y \to Z$, one has g continuous iff gf is continuous

Proof. Assume f is an identification. If g is continuous, then gf is continuous. Conversely, if f is continuous and let V be open in Z. Then $f^{-1}g^{-1}(V)$ is open in X; since f is an identification, $g^{-1}(V)$ is open in Y

Assume the condition. Let $Z/\ker f$, let $\nu:X\to X/\ker f$ be the natural map and let $\varphi:X/\ker f\to Y$ be the injection of Example 3.2. Note that φ is surjective because f is. Consider the commutative diagram

Then $\varphi^{-1}f=\nu$ is continuous implies that φ^{-1} is continuous, by hypothesis. Also φ is continuous because ν is an identification. We conclude that φ is a homeomorphism \Box

Definition 3.19. Let $f: X \to Y$ be a function and let $y \in Y$. Then $f^{-1}(y)$ is called the **fiber** over y

Corollary 3.20. Let $f: X \to Y$ be an identification and, for some space Z, let $h: X \to Z$ be a continuous function that is constant on each fiber of f. Then $hf^{-1}: Y \to Z$ is continuous

Moreover, hf^{-1} is an open (closed) map iff h(U) is open (closed) in Z whenever U is an open (closed) set in X of the form $U = f^{-1}f(U)$

Proof. h is constant on each fiber of f implies that hf^{-1} is well-defined. hf^{-1} is continuous because $(hf^{-1})(f) = h$ is continuous, and Theorem 3.18 applies. Finally if V is open in Y, then $f^{-1}(V)$ is an open set of the stated form $f^{-1}(V) = f^{-1}f(f^{-1}(V))$

Corollary 3.21. Let X and Z be spaces and let $h: X \to Z$ be an identification. Then the map $\varphi: X/\ker h \to Z$ defined by $[x] \mapsto h(x)$ is a homeomorphism

Proof. φ is a bijection. φ is continuous by Corollary 3.20. The $\nu: X \to X/\ker h$ be the natural map. Let U open in $X/\ker h$. Then $h^{-1}\varphi(U) = \nu^{-1}(U)$ is an open set in X, because ν is continuous and hence $\varphi(U)$ is open, because h is an identification

Exercise 3.2.3. Let $f: X \to Y$ be an identification and let $g: Y \to Z$ be a continuous surjection. Then g is an identification iff gf is an identification

Exercise 3.2.4. Let X and Y be spaces with equivalence relations \sim and \square , respectively, and let $f: X \to Y$ be a continuous map preserving the relations (if $x \sim x'$ then $f(x) \square f'(x)$). Prove that the induced map $\overline{f}: X/ \sim \to Y/\square$ is continuous; moreover, if f is an identification then so is \overline{f}

Proof. Consider

$$X \xrightarrow{f} Y$$

$$\downarrow^{\nu_1} \qquad \qquad \downarrow^{\nu_2}$$

$$X/\sim \xrightarrow{\bar{f}} Y/\square$$

Visibly, the diagram commutes

Definition 3.22. If *X* is a space, define an equivalence relation on $X \times \mathbf{I}$ by $(x,t) \sim (x',t')$ if t=t'=1. Denote the equivalence class of (x,t) by [x,t]. The **cone** over *X*, denoted by *CX*, is the equivalence space $X \times \mathbf{I} / \sim$

One may regard CX as the quotient space $X \times \mathbf{I} / X \times \{1\}$. The identified point [x, 1] is called the **vertex**

Example 3.5. For spaces X and Y, every continuous map $f: X \times \mathbf{I} \to Y$ with $f(x,1) = y_0$, say, for all $x \in X$, induces a continuous map $\bar{f}: CX \to Y$, namely, $\bar{f}: [x,t] \to f(x,t)$. In particular, let $f: S^n \times \mathbf{I} \to D^{n+1}$ be the map $(u,t) \mapsto (1-t)u$; since f(u,1) = 0 for all $u \in S^n$, there is a continuous map $\bar{f}: CS^n \to D^{n+1}$ with $[u,t] \mapsto (1-t)u$. Check: \bar{f} is a homeomorphism.

Exercise 3.2.5. For fixed t with $0 \le t < 1$, prove that $x \mapsto [x, t]$ defines a homeomorphism from a space X to a subspace of CX

Theorem 3.23. *For every space X*, *the cone CX is contractible*

Proof. Define
$$F: CX \times \mathbf{I} \to CX$$
 by $F([x,t],s) = [x,(1-s)t+s]$

Theorem 3.24. A space X has the same homotopy type as a point iff X is contractible

Proof. Let $\{a\}$ be a one-point space, and assume that X and $\{a\}$ have the same homotopy type. There are thus maps $f: X \to \{a\}$ and $g: \{a\} \to X$ (with $g(a) = x_0 \in X$) with $g \circ f \simeq 1_X$ and $f \circ g \simeq 1_{\{a\}}$ (actually $f \circ g = 1_{\{a\}}$). But $gf(x) = g(a) = x_0$ for all $x \in X$, so that $g \circ f$ is constant. Therefore 1_X is nullhomotopic and X is contractible

Assume that $1_X \simeq k$ where $k(x) \equiv x_0 \in X$. Define $f: X \to \{x_0\}$ as the constant map at x_0 and define $g: \{x_0\} \to X$ by $g(x_0) = x_0$. $f \circ g = 1_{\{x_0\}}$ and $g \circ f = k \simeq 1_X$, by hypothesis.

This theorem suggests that contractible spaces may behave as singletons

Theorem 3.25. If Y is contractible, then any two maps $X \to Y$ are homotopic (indeed they are nullhomotopic)

Proof. Assume that $1_Y \simeq k$, where there is $y_0 \in y$ with $k(y) = y_0$ for all $y \in Y$. Define $g: X \to Y$ as the constant map $g(x) = y_0$ for all $x \in X$. If $f: X \to Y$ is any continuous map, we claim that $f \simeq g$. Consider the diagram

$$X \longrightarrow Y \xrightarrow{k} Y$$

Since $1_Y \simeq k$, Theorem 3.6 gives $f = 1_Y \circ f \simeq k \circ f = g$

Since homotopy relation is an equivalence, any two maps $X \to Y$ are homotopic \Box

Definition 3.26. A **path** in X is a continuous map $f : \mathbf{I} \to X$. if f(0) = a and f(1) = b, one says that f is a path **from** a **to** b

Definition 3.27. A space X is **path connected** if, for every $a, b \in X$, there exists a path in X from a to b

Theorem 3.28. If X is path connected, then X is connected

Proof. Suppose $X = A \coprod B$, where A and B are nonempty open subsets of X. Choose $a \in A$ and $b \in B$ and let $f : \mathbf{I} \to X$ be a path from a to b. Now $f(\mathbf{I})$ is connected, yet

$$f(\mathbf{I}) = (A \cap f(\mathbf{I})) \cup (B \cap f(\mathbf{I}))$$

displays $f(\mathbf{I})$ as disconnected, a contradiction

The converse of Theorem 3.28 is false

Example 3.6. The $\sin(1/x)$ space X is the subspace $X = A \cup G$ of \mathbb{R}^2 , where $A = \{(0, y) : -1 \le y \le 1\}$ and $G = \{(x, \sin(1/x)) : 0 < x \le 1/2\pi\}$

 $\bar{G}=X$. To show $\bar{G}\subseteq X$ we prove that X is closed. Let $\{(x_n,y_n)\}$ be a sequence in X with limit $(x,y)\in\mathbb{R}^2$. We must prove $(x,y)\in X$. If x=0 then $(x,y)=(0,y)\in X$. If x>1, then upon dropping the first few terms of the sequence we can assume $x_n>0$ for all n. Then $(x_n,y_n)\in G$. Since the function $t\mapsto\sin(1/t)$ on $(0,\infty)$ is continuous, from the condition $x_n\to x$ we conclude

$$y = \lim y_n = \lim \sin(1/x_n) = \sin(1/x)$$

Then as *G* is connected, \bar{G} is connected

Exercise 3.2.6. Show that the sin(1/x) space X is not path connected

Proof. Assume that $f: \mathbf{I} \to X$ is a path from $(0,0) \to (1/2\pi,0)$. If $t_0 = \sup\{t \in \mathbf{I}: f(t) \in A\}$, then $a = f(t_0) \in A$ and $f(s) \notin A$ for all $s > t_0$. One may thus assume that there is a path $g: \mathbf{I} \to X$ with $g(0) \in A$ and with $g(t) \in G$ for all t > 0.

From StackExchange.

If $f=(f_1,f_2):[0,1]\to X\subseteq\mathbb{R}^2$. is a path with f(0)=(0,0) ,then f(t)=(0,0) for all t

Suppose that f(t) is not always (0,0). Removing an initial part of the interval and then rescaling if necessary, assuming that $0=\sup\{t:f([0,t]=\{(0,0)\})\}$. By continuity of f_2 , there is a $\delta>0$ s.t. $|f_2(t)|<1$ for all $t<\delta$. Take $0< t_0<\delta$ with $f_1(t_0)>0$. By continuity of f_1 and the intermediate value theorem, $[0,f_1(t_0)]$ is in the image of f_1 restricted to $[0,t_0]$. Since $f_2(t)=\sin(1/f_1(t))$ for all t with $f_1(t)\neq 0$. It follows that [-1,1] is in the image of f_2 restricted to $[0,t_0]$, this contradicts $t_0<\delta$.

Exercise 3.2.7. 1. A space X is path connected iff every two constant maps $X \to X$ are homotopic

2. If X is contractible and Y is path connected, then any two continuous maps $X \to Y$ are homotopic (and each is nullhomotopic)

Proof. 1. \Rightarrow . Take two constants as initial point and end point. \Leftarrow . Same

2. Suppose $k: X \to X$ is a constant map.

$$X \xrightarrow{1_X} X \xrightarrow{f} Y$$

Then $f \circ 1_X \simeq f \circ k$, and $f \circ k$ is homotopic to any constant map. So f is homotopic to every constant map.

Exercise 3.2.8. If X and Y are path connected, then $X \times Y$ is path connected

Proof. A function
$$f \times g : \mathbf{I} \to X \times Y$$

Exercise 3.2.9. If $f: X \to Y$ is continuous and X is path connected, then f(X) is path connected

Theorem 3.29. *If* X *is a space, then the binary relation* \sim *on* X *defined by "a* \sim *b if there is a path in* X *from a to* b" *is an equivalence relation*

Proof. Transivity: if f is a path from a to b and g is a path from b to c, define $h : \mathbf{I} \to X$ by

$$h(t) = \begin{cases} f(2t) & 0 \le t \le 1/2 \\ g(2t-1) & 1/2 \le t \le 1 \end{cases}$$

This is continuous by gluing lemma

Definition 3.30. The equivalence classes of X under the relation \sim in Theorem 3.29 are called the **path components** of X

Exercise 3.2.10. The path components of a space X are maximal path connected subspaces; moreover, every path connected subset of X is contained in a unique path component of X

Definition 3.31. Define $\pi_0(X)$ to be the set of path components of X. If $f: X \to Y$, define $\pi_0(f): \pi_0(X) \to \pi_0(Y)$ to be the function taking a path component C of X to the (unique) path component of Y containing f(C) (Exercise 3.2.9 and 3.2.10)

Theorem 3.32. π_0 : **Top** \rightarrow **Sets** is a functor. Moreover, if $f \simeq g$, then $\pi_0(f) = \pi_0(g)$

Proof. If $F : f \simeq g$, where $f, g : X \to Y$. If C is a path component of X, then $C \times \mathbf{I}$ is path connected (Exercise 3.2.8), hence $F(C \times \mathbf{I})$ is path connected (Exercise 3.2.9). Now

$$f(C) = F(C \times \{0\}) \subset F(C \times \mathbf{I})$$

and

$$g(C) = F(C \times \{1\}) \subset F(C \times \mathbf{I})$$

the unique path component of Y containing $F(C \times \mathbf{I})$ thus contains both f(C) and g(C). This says that $\pi_0(f) = \pi_0(g)$

Corollary 3.33. *If X and Y have the same homotopy type, then they have the same number of path components*

Proof. Assume that $f: X \to Y$ and $g: Y \to X$ are continuous with $g \circ f \simeq 1_X$ and $f \circ g \simeq 1_Y$. Then $\pi_0(g \circ f) = \pi_0(1_X)$ and $\pi_0(f \circ g) = \pi_0(1_Y)$ by Theorem 3.32. Since π_0 is a functor, it follows that $\pi_0(f)$ is a bijection

Definition 3.34. A space X is **locally path connected** if, for each $x \in X$ and every open neighborhood U of x, there is an open V with $x \in V \subset U$ s.t. any two points in V can be joined by a path in U

Example 3.7. Let X be the subspace of \mathbb{R}^2 obtained from the $\sin(1/x)$ space by adjoining a curve from 0, 1 to $(\frac{1}{2\pi}, 0)$. X is path connected but not locally path connected

Theorem 3.35. A space X is locally path connected iff path components of open subsets are open. In particular, if X is locally path connected, then its path components are open.

Proof. Assume that X is locally path connected and that U is an open subset of X. Let C be a path component of U and let $x \in C$. There is an open V with $x \in V \subset U$ s.t. every point of V can be joined to x by a path in U. Hence $V \subset C$. Therefore C is open $(C = \bigcup V_x)$.

Conversely, let U be an open set in X, let $x \in U$ and let V be the path component of x in U. By hypothesis, V is open. Therefore X is locally path connected

Corollary 3.36. X is locally path connected iff for each $x \in X$ and each open neighborhood U of x, there is an open path connected V with $x \in V \subset U$.

Corollary 3.37. If X is locally path connected, then the components of every open set coincide with its path components. In particular, the components of X coincide with the path components of X

guess in here, component means open set

Proof. Let *C* be a component of an open set *U* in *X*, and let $\{A_j : j \in J\}$ be the path components of *C*; then *C* is the disjoint union of A_j ; By Theorem 3.35 each A_j is open in *C*, hence each A_j is closed in *C*. Were there more than one A_j , then *C* would be disconnected □

Corollary 3.38. *If X is connected and locally path connected, then X is path connected*

Proof. Since X is connected, X has only one component; since X is locally path connected, this component is a path component

Definition 3.39. Let A be a subspace of X and let $i: A \hookrightarrow X$ be the inclusion. Then A is a **deformation retract** of X if there is a continuous $r: X \to A$ s.t. $r \circ i = 1_A$ and $i \circ r \simeq 1_X$

Every deformation retract is a retract. One can repharse the definition as follows: there is a continuous $F: X \times \mathbf{I} \to X$ s.t. F(x,0) = x for all $x \in X$, $F(x,1) \in A$ for all $x \in X$, and F(a,1) = a for all $a \in A$ (in this formulation we have r(x) = F(x,1)).

Theorem 3.40. If A is a deformation retract of X, then A and X have the same homotopy type.

Corollary 3.41. S^1 is a deformation retract of $C - \{0\}$ and so these spaces have the same homotopy type.

Proof. Write each nonzero complex number *z* in polar coordinates

$$z = \rho e^{i\theta}, \quad \rho > 0, 0 \le \theta < 2\pi$$

Define $F : (\mathbf{C} - \{0\}) \times \mathbf{I} \to \mathbf{C} - \{0\}$ by

$$F(\rho e^{i\theta}, t) = [(1-t)\rho + t]e^{i\theta}$$

Exercise 3.2.11. For $n \ge 1$, show that S^n is a deformation retract of $\mathbb{R}^{n+1} - \{0\}$

Definition 3.42. Let $f: X \to Y$ be continuous and define ¹

$$M_f = ((X \times \mathbf{I}) \coprod Y) / \sim$$

where $(x,t) \sim y$ if y = f(x) and t = 1. Denote the class of (x,t) in M_f by [x,t] and the class of y in M_f by [y] (so that [x,1] = [f(x)]). The space M_f is called the **mapping cylinder** of f

4 Simplexes

4.1 Affine Spaces

Definition 4.1. A subset A of euclidean space is called **affine** if for every pair of distinct points $x, x' \in A$, the line determined by x, x' is contained in A

¹definition

Observe that affine subsets are convex

Theorem 4.2. If $\{X_j : j \in J\}$ is a family of convex (or affine) subsets of \mathbb{R}^n , then $\bigcup X_j$ is also convex (or affine)

It thus makes sense to speak of the **convex** (**affine**) **set** in \mathbb{R}^n **spanned** by a subset X of \mathbb{R}^n (also called the **convex hull** of X), namely, the intersection of all convex (affine) subsets of \mathbb{R}^n containing X. We denote the convex set spanned by X by [X]

Definition 4.3. An **affine combination** of points p_0, p_1, \dots, p_m in \mathbb{R}^n is a point with

$$x = t_0 p_0 + t_1 p_1 + \dots + t_m p_m$$

where $\sum_{i=0}^{m} t_i = 1$. A **convex combination** is an affine combination for which $t_i \ge 0$ for all i

Theorem 4.4. If $p_0, p_1, ..., p_m \in \mathbb{R}^n$, then $[p_0, p_1, ..., p_m]$ is the set of all convex combinations of $p_0, p_1, ..., p_m$

Proof. Let *S* denote the set of all convex combinations

 $[p_0,p_1,\ldots,p_m]\subset S$: it suffices to show that S is a convex set containing $\{p_0,\ldots,p_m\}$. First, if we set $t_j=1$ and the other $t_i=0$, then we see that $p_j\in S$ for every j. Second, let $\alpha=\sum a_ip_i$ and $\beta=\sum b_ip_i\in S$, where $a_i,b_i\geq 0$ and $\sum a_i=1=\sum b_i$. We claim that $t\alpha+(1-t)\beta\in S$ for $t\in \mathbf{I}$.

 $S \subset [p_0, \dots, p_m]$: if X is any convex set containing $\{p_0, \dots, p_m\}$, we show that $S \subset X$ by induction on $m \ge 0$. If m = 0, then $S = \{p_0\}$ and we are done. Let m > 0. If $t_i \ge 0$ and $\sum t_i = 1$. assume that $t_0 \ne 0$; by induction

$$q = \left(\frac{t_1}{1 - t_0}\right) p_1 + \dots + \left(\frac{t_m}{1 - t_0}\right) p_m \in X$$

and so

$$p = t_0 p_0 + (1 - t_0) q \in X$$

because *X* is convex

Corollary 4.5. The affine set spanned by $\{p_0, p_1, ..., p_m\} \subset \mathbb{R}^n$ consists of all affine combinations of these points

Definition 4.6. An ordered set of points $\{p_0, p_1, \dots, p_m\} \subset \mathbb{R}^n$ is **affine independent** if $\{p_1 - p_0, p_2 - p_0, \dots, p_m - p_0\}$ is a linearly independent subset of the real vector space \mathbb{R}^n

Theorem 4.7. The following conditions on an ordered set of points $\{p_0, p_1, \dots, p_m\}$ in \mathbb{R}^n are equivalent

- 1. $\{p_0, p_1, \dots, p_m\}$ is affine independent
- 2. if $\{s_0, s_1, \dots, s_m\} \subset \mathbb{R}$ satisfies $\sum_{i=0}^m s_i p_i = 0$ and $\sum_{i=0}^m s_i = 0$, then $s_0 = s_1 = \dots = s_m = 0$
- 3. each $x \in A$, the affine set spanned by $\{p_0, p_1, \dots, p_m\}$ has a unique expression as an affine combination

$$x = \sum_{i=0}^{m} t_i p_i \quad and \quad \sum_{i=0}^{m} t_i = 1$$

Proof. $1 \rightarrow 2$. Assume that $\sum s_i = 0$ and that $\sum s_i p_i = 0$. Then

$$\sum_{i=0}^m s_i p_i = \sum_{i=0}^m s_i p_i - \left(\sum_{i=0}^m s_i\right) = \sum_{i=0}^m s_i (p_i - p_0) = \sum_{i=1}^m s_i (p_i - p_0)$$

Affine independence of $\{p_0,p_1,\ldots,p_m\}$ gives linear independence of $\{p_1-p_0,\ldots,p_m-p_0\}$, hence $s_i=0$ for all $i=1,2,\ldots,m$. Finally $\sum s_i=0$ implies that $s_0=0$ as well

 $2 \rightarrow 3$. Assume that $x \in A$. By Corollary 4.5,

$$x = \sum_{i=0}^{m} t_i p_i$$

where $\sum_{i=0}^{m} t_i = 1$. If also

$$x = \sum_{i=0}^{m} t_i' p_i$$

where $\sum_{i=0}^{m} t'_i = 1$, then

$$0 = \sum_{i=0}^{m} (t_i - t_i') p_i$$

Since $\sum (t_i - t_i') = \sum t_i - \sum t_i' = 1 - 1 = 0$, it follows that $t_i - t_i' = 0$ for all i and $t_i = t_i'$ for all i as desired

 $3 \to 1$. We may assume that $m \neq 0$. Assume that each $x \in A$ has a unique expression as an affine combination of p_0, p_1, \dots, p_m . We shall reach

a contradiction by assuming that $\{p_1-p_0, \dots, p_m-p_0\}$ is linearly dependent. If so, there would be real numbers r_i , not all zero, with

$$0 = \sum_{i=1}^{m} r_i (p_i - p_0)$$

Let $r_j \neq 0$ and assume its 1. Now $p_j \in A$ has two expressions as an affine combination of p_0, p_1, \dots, p_m

$$p_j = 1p_j$$

$$p_j = -\sum_{i \neq j} r_i p_i + \left(1 + \sum_{i \neq j} r_i\right) p_0$$

where $1 \le i \le m$ in the summations

Corollary 4.8. Affine independence is a property of the set $\{p_0, p_1, \dots, p_m\}$ that is independent of the given ordering

Corollary 4.9. If A is the affine set in \mathbb{R}^n spanned by an affine independent set $\{p_0, p_1, \dots, p_m\}$, then A is a translate of an m-dimensional sub-vector-space V of \mathbb{R}^n , namely,

$$A = V + x_0$$

for some $x_0 \in \mathbb{R}^n$

Definition 4.10. A set of points $\{a_1, \dots, a_k\}$ in \mathbb{R}^n is in **general position** if every n+1 of its points forms an affine independent set

Assume that $\{a_1, \dots, a_k\} \subset \mathbb{R}^n$ is in general position. If n = 1, we are saying that every pair $\{a_i, a_j\}$ is affine independent; that is, all the points are distinct. If n = 2, we are saying that no three points are collinear, and if n = 3, that no four points are coplanar

Let r_0, r_1, \ldots, r_m be real numbers. The $(m+1) \times (m+1)$ **Vandermonde matrix** V has as its ith column $[1, r_i, r_i^2, \ldots, r_i^m]$; moreover, det $V = \prod_{j < i} (r_i - r_j)$, hence V is nonsingular if all the r_i are distinct. If one substracts column 0 from each of the other columns of V, then the ith column (for i > 0) of the new matrix is

$$[0, r_i - r_0, r_i^2 - r_0^2, \dots, r_i^m - r_0^m]$$

If V^* is the southeast $m \times m$ block of this new matrix, then det $V^* = \det V$

Theorem 4.11. For every $k \ge 0$, euclidean space \mathbb{R}^n contains k points in general position

Proof. We may assume that k > n+1 (otherwise, choose the origin together with k-1 elements of a basis). Select k distinct reals r_1, r_2, \ldots, r_k and for each $i=1,2,\ldots,k$, define

$$a_i = (r_i, r_i^2, \dots, r_i^n) \in \mathbb{R}^n$$

We claim that $\{a_1,\ldots,a_k\}$ is in general position. If not, there are n+1 points $\{a_{i_0},\ldots,a_{i_n}\}$ not affine independent, hence $\{a_{i_1}-a_{i_0},\ldots,a_{i_n}-a_{i_0}\}$ is linearly dependent. There are thus real numbers s_1,s_2,\ldots,s_n , not all zero, with

$$0 = \sum s_j(a_{i_j} - a_{i_0}) = (\sum s_j(r_{i_j} - r_{i_0}), \sum s_j(r_{i_j}^2 - r_{i_0}^2), \dots, \sum s_j(r_{i_j}^n - r_{i_0}^n))$$

If V^* is the $n \times n$ southeast block of the $(n+1) \times (n+1)$ Vandermonde matrix obtained from $r_{i_0}, r_{i_1}, \ldots, r_{i_n}$, and if σ is the column vector $\sigma = (s_1, s_2, \ldots, s_n)$, then the vector equation above is $V^*\sigma = 0$. But since all the r_i are distinct, V^* is nonsingular and $\sigma = 0$, contradicting our hypothesis that not all the s_i are zero

Definition 4.12. Let $\{p_0, p_1, \dots, p_m\}$ be an affine independent subset of \mathbb{R}^n , and let A be the affine set spanned by this subset. If $x \in A$, then Theorem 4.7 gives a unique (m+1)-tuple (t_0, t_1, \dots, t_m) with $\sum t_i = 1$ and $x = \sum_{i=0}^m t_i p_i$. The entries of this (m+1)-tuple are called the **barycentric coordinates** of x (relative to the ordered set $\{p_0, p_1, \dots, p_m\}$)

Definition 4.13. Let $\{p_0, p_1, \dots, p_m\}$ be an affine independent subset of \mathbb{R}^n . The convex set spanned by this set, denoted by $[p_0, p_1, \dots, p_m]$, is called the (affine) *m*-simplex with vertices p_0, p_1, \dots, p_m .

Theorem 4.14. If $\{p_0, p_1, ..., p_m\}$ is affine independent, then each x in the m-simplex $[p_0, p_1, ..., p_m]$ has a unique expression of the form

$$x = \sum t_i p_i$$
, where $\sum t_i = 1$ and each $t_i \ge 0$

Proof. Theorem 4.4 shows that every $x \in [p_0, \dots, p_m]$ is such a convex combination

Definition 4.15. If $\{p_0, \dots, p_m\}$ is affine independent, the **barycenter** of $[p_0, \dots, p_m]$ is $(1/m+1)(p_0+p_1+\dots+p_m)$

Example 4.1. The 1-simplex $[p_0, p_1] = \{tp_0 + (1-t)p_1 : t \in \mathbf{I}\}$ is the closed line segment with endpoints p_0, p_1 .

Example 4.2. The 2-simplex $[p_0, p_1, p_2]$ is a triangle (with interior) with vertices p_0, p_1, p_2 ; the barycenter $\frac{1}{3}(p_0 + p_1 + p_2)$ is the center of gravity. Note that the three edges are $[p_0, p_1]$, $[p_1, p_2]$ and $[p_2, p_2]$

Example 4.3. The 3-simplex $[p_0, p_1, p_2, p_3]$ is the (solid) tetrahedron with vertices p_0, p_1, p_2, p_3

Example 4.4. For $i=0,1,\ldots,n$, let e_i denote the point in \mathbb{R}^{n+1} having (cartesian) coordinates all zeros except for 1 in the (i+1)st position. $\{e_0,e_1,\ldots,e_n\}$ is affine independent. Now $[e_0,e_1,\ldots,e_n]$ consists of all convex combinations $x=\sum t_ie_i$. In this case, barycentric and cartesian coordinates (t_0,t_1,\ldots,t_n) coincide, and $[e_0,e_1,\ldots,e_n]=\Delta^n$, the standard n-simplex

Definition 4.16. Let $[p_0, p_1, \dots, p_m]$ be an m-simplex. The face opposite p_i is

$$[p_0,\ldots,\widehat{p}_i,\ldots,p_m]=\left\{\sum t_jp_j:t_j\geq 0,\sum t_j=1, \text{ and } t_i=0\right\}$$

The **boundary** of $[p_0, p_1, \dots, p_m]$ is the union of its faces

Theorem 4.17. Let S denote the n-simplex $[p_0, \dots, p_n]$

- 1. *if* $u, v \in S$ *then* $||u v|| \le \sup_{i} ||u p_{i}||$
- 2. diam $S = \sup_{i,j} ||p_i p_j||$
- 3. *if b is the barycenter of S, then* $||b p_i|| \le (n/n + 1) \operatorname{diam} S$

Proof. 1. $v = \sum t_i p_i$, where $t_i \ge 0$ and $\sum t_i = 1$. Therefore

$$||u - v|| = ||u - \sum_{i} t_{i} p_{i}|| = ||(\sum_{i} t_{i})u - \sum_{i} t_{i} p_{i}||$$

$$\leq \sum_{i} t_{i} ||u - p_{i}|| \leq \sum_{i} t_{i} \sup_{i} ||u - p_{i}|| = \sup_{i} ||u - p_{i}||$$

2. By 1, $||u - p_i|| \le \sup_j ||p_j - p_i||$

3. Since $b = (1/n + 1) \sum p_i$, we have

$$\begin{split} \|b-p_i\| &= \left\| \sum_{j=0}^n (1/n+1)p_j - p_i \right\| = \left\| \sum_{j=0}^n (1/n+1)p_j - \left(\sum_{j=0}^n (1/n+1) \right) p_i \right\| \\ &= \left\| \sum_{j=0}^n (1/n+1)(p_j - p_i) \right\| \\ &\leq (1/n+1) \sum_{j=0}^n \left\| p_j - p_i \right\| \\ &\leq (n/n+1) \sup_{i,j} \left\| p_j - p_i \right\| \quad (\text{for } \|p_j - p_i\| = 0 \text{ when } j = i) \\ &= (n/n+1) \operatorname{diam} S \end{split}$$

4.2 Affine Maps

Definition 4.18. Let $\{p_0, p_1, \dots, p_m\} \subset \mathbb{R}^n$ be affine independent and let A denote the affine set it spans. An **affine map** $T: A \to \mathbb{R}^k$ (for some $k \ge 1$) is a function satisfying

$$T(\sum t_i p_i) = \sum t_i T(p_i)$$

whenever $\sum t_j = 1$. The restriction of T to $[p_0, p_1, \dots, p_m]$ is also called an **affine map**

Theorem 4.19. If $[p_0, \ldots, p_m]$ is an m-simplex, $[q_0, \ldots, q_n]$ an n-simplex, and $f: \{p_0, \ldots, p_m\} \rightarrow [q_0, \ldots, q_n]$ any function, then there exists a unique affine map $T: [p_0, \ldots, p_m] \rightarrow [q_0, \ldots, q_n]$ with $T(p_i) = f(p_i)$ for $i = 0, 1, \ldots, m$

Exercise 4.2.1. If $T: \mathbb{R}^n \to \mathbb{R}^k$ is affine, then $T(x) = \lambda(x) + y_0$, where $\lambda: \mathbb{R}^n \to \mathbb{R}^k$ is a linear transformation and $y_0 \in \mathbb{R}^k$ is fixed

Proof. Some discussions. Link1 and Link2

Exercise 4.2.2. Given an explicit formula for the affine map $\theta: \mathbb{R} \to \mathbb{R}$ carrying $[s_1, s_2] \to [t_1, t_2]$ with $\theta(s_i) = t_i$, i = 1, 2.

5 The Fundamental Group

5.1 The Fundamental Groupoid

Definition 5.1. Let $f, g : \mathbf{I} \to X$ be paths with f(1) = g(0). Define a path $f * g : \mathbf{I} \to X$ by

$$(f * g)(t) = \begin{cases} f(2t) & 0 \le t \le 1/2 \\ g(2t - 1) & 1/2 \le t \le 1 \end{cases}$$

The gluing lemma shows that f * g is continuous, and so f * g is path in X. Our aim is to construct a group whose elements are certain homotopy classes of paths in X with binary operation [f][g] = [f * g]. Now if we impose the rather mild condition that X be path connected, then contractibility of I implies that all maps $I \to X$ are homotopic (Exercise 3.2.7); thus there is only one homotopy class of maps.

Definition 5.2. Let $A \subset X$ and $f_0, f_1 : X \to Y$ be continuous maps with $f_0|A = f_1|A$. We write

$$f_0 \simeq f_1 \operatorname{rel} A$$

if there is a continuous map $F: X \times \mathbf{I} \to Y$ with $F: f_0 \simeq f_1$ and

$$F(a,t) = f_0(a) = f_1(a)$$
 for all $a \in A$ and all $t \in \mathbf{I}$

The homotopy F above is called a **relative homotopy** (a homotopy rel A); in contrast, the original definition (which may be viewed as a homotopy rel $A = \emptyset$) is called a **free homotopy**

Definition 5.3. Let $\dot{\mathbf{I}} = \{0,1\}$ be the boundary of \mathbf{I} in \mathbb{R} . The equivalence class of a path $f: \mathbf{I} \to X \operatorname{rel} \dot{\mathbf{I}}$ is called the **path class** of f and is denoted by [f]

Theorem 5.4. Assume that f_0, f_1, g_0, g_1 are paths in X with

$$f_0 \simeq f_1 \operatorname{rel} \dot{\mathbf{I}}$$
 and $g_0 \simeq g_1 \operatorname{rel} \dot{\mathbf{I}}$

If
$$f_0(1) = f_1(1) = g_0(0) = g_1(0)$$
 then $f_0 * g_0 \simeq f_1 * g_1$ rel \dot{I}

In path class notation, if $[f_0] = [f_1]$ and $[g_0] = [g_1]$, then $[f_0 * g_0] = [f_1 * g_1]$

Proof. If $F: f_0 \simeq f_1 \text{ rel } \dot{\mathbf{I}}$ and $G: g_0 \simeq g_1 \text{ rel } \dot{\mathbf{I}}$, then $H: \mathbf{I} \times \mathbf{I} \to X$ defined by

$$H(t,s) = \begin{cases} F(2t,s) & 0 \le t \le 1/2 \\ G(2t-1,s) & 1/2 \le t \le 1 \end{cases}$$

is a continuous map that is a relative homotopy $f_0 * g_0 \simeq f_1 * g_1 \operatorname{rel} \dot{\mathbf{I}}$

Exercise 5.1.1. Generalize Theorem 3.6 as follows. Let $A \subset X$ and $B \subset Y$ be given. Assume that $f_0, f_1 : X \to Y$ with $f_0|A = f_1|A$ and $f_i(A) \subset B$ for i = 0, 1; assume that $g_0, g_1 : Y \to Z$ with $g_0|B = g_1|B$. If $f_0 \simeq f_1 \operatorname{rel} A$ and $g_0 \simeq g_1 \operatorname{rel} B$, then $g_0 \circ f_0 \simeq g_1 \circ f_1 \operatorname{rel} A$

Proof. Visibly, for all $a \in A$, $g_0 \circ f_0(a) = g_1 \circ f_1(a)$. Then follows the proof of the theorem

- Exercise 5.1.2. 1. If $f: \mathbf{I} \to X$ is a path with $f(0) = f(1) = x_0 \in X$, then there is a continuous $f': S^1 \to X$ given by $f'(e^{2\pi it}) = f(t)$. If $f,g: \mathbf{I} \to X$ are paths with $f(0) = f(1) = x_0 = g(0) = g(1)$ and if $f \simeq g \operatorname{rel} \dot{\mathbf{I}}$, then $f' \simeq g' \operatorname{rel}\{1\}$ $(1 = e^0)$
 - 2. If f and g are as above, then $f \simeq f_1 \operatorname{rel} \dot{\mathbf{I}}$ and $g \simeq g_1 \operatorname{rel} \dot{\mathbf{I}}$ implies that $f' * g' \simeq f'_1 * g'_1 \operatorname{rel} \{1\}$

Proof. 1. Let $k: S^1 \to \mathbf{I}$ with $k(2^{2\pi it}) = t$. Then $f' = f \circ k$ and $g' = g \circ k$.

Definition 5.5. If $f: \mathbf{I} \to X$ is a path from x_0 to x_1 , call x_0 the **origin** of f and write $x_0 = \alpha(f)$; call x_1 the **end** of f and write $x_1 = \omega(f)$. A path f in X is **closed** at x_0 if $\alpha(f) = x_0 = \omega(f)$

Definition 5.6. If $p \in X$ then the constant function $i_p : \mathbf{I} \to X$ with $i_p(t) = p$ for all $t \in \mathbf{I}$ is called the **constant path** at p. If $f : \mathbf{I} \to X$ is a path, its **inverse** path $f^{-1}(x : \mathbf{I} \to X)$ is defined by $t \mapsto f(1-t)$

Exercise 5.1.3. Let $\sigma: \Delta^2 \to X$ be continuous, where $\Delta^2 = [e_0, e_1, e_2]$

Define $\epsilon_0: \mathbf{I} \to \Delta^2$ as the affine map with $\epsilon_0(0) = e_1$ and $\epsilon_0(1) = e_2$; similarly, define ϵ_1 by $\epsilon_1(0) = e_0$ and $\epsilon_1(1) = e_2$ and define $\epsilon_2(0) = e_0$ and $\epsilon_2(1) = e_1$. Finally define $\sigma_i = \sigma \circ \epsilon_i$ for i = 0, 1, 2

- 1. Prove that $(\sigma_0 * \sigma_1^{-1}) * \sigma_2$ is nullhomotopic rel **İ**
- 2. Let $F : \mathbf{I} \times \mathbf{I} \to X$ be continuous, and define paths α , β , γ , δ in X as indicated in the figure Thus $\alpha(t) = F(t,0)$, $\beta(t) = F(t,1)$, $\gamma(t) = F(0,t)$

and $\delta(t) = F(1, t)$. Prove that $\alpha \simeq \gamma * \beta * \delta^{-1}$ rel **İ**

Exercise 5.1.4. Let $f_0 \simeq f_1$ rel $\dot{\mathbf{I}}$ and $g_0 \simeq g_1$ rel $\dot{\mathbf{I}}$ be paths in X and Y, respectively. If, for i=0,1, (f_i,g_i) is the path in $X\times Y$ defined by $t\mapsto (f_i(t),g_i(t))$, prove that $(f_0,g_0)\simeq (f_1,g_1)$ rel $\dot{\mathbf{I}}$

Exercise 5.1.5. 1. If $f \simeq g \text{ rel } \dot{\mathbf{I}}$ then $f^{-1} \simeq g^{-1} \text{ rel } \dot{\mathbf{I}}$, where f,g are paths in X

2. if f and g are paths in X with $\omega(f) = \alpha(g)$, then

$$(f * g)^{-1} = g^{-1} * f^{-1}$$

- 3. Given an example of a closed path f with $f * f^{-1} \neq f^{-1} * f$
- 4. Show that if $\alpha(f) = p$ and f is notconstant, then $i_p * f \neq f$

Proof. 3.

Theorem 5.7. If X is a space, then the set of all path classes in X under the (not always defined) binary operation [f][g] = [f * g] forms an algebraic system (called a **groupoid**) satisfying the following properties

1. each path class [f] has an origin $\alpha[f]=p\in X$ and an end $\omega[f]=q\in X$ and

$$[i_p][f] = [f] = [f][i_q]$$

2. associativity holds whenever possible

3. if $p = \alpha[f]$ and $q = \omega[f]$, then

$$[f][f^{-1}] = [i_p]$$
 and $[f^{-1}][f] = [i_q]$

Proof. 1. We show that $i_p * f \simeq f \operatorname{rel} \dot{\mathbf{I}}$ First, draw the line in $\mathbf{I} \times \mathbf{I}$ joining

(0,1) to (1/2,0); its equation is 2s=1-t. For fixed t, define $\theta_t:[(1/t)/2,1] \to [0,1]$ as the affine map matching the endpoints of these intervals. By Exercise 4.2.2

6 Problem

7 Index

congruence, 5 contractible, 11 functor, 5

homotopy, 7 homotopy type, 9