Вільні групи

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

26 жовтня 2022

FACULTY OF MECHANICS AND MATHEMATICS

Нехай $X = \{x_i | i ∈ I\}$ — деяка множина символів.

Множину X називатимемо *алфавітом*, а $\ddot{\text{ii}}$ елементи — *буквами*.

Слово в алфавіті X — це скінченна послідовність w (можливо, порожня) елементів з X:

$$w=x_{i_1}\ldots x_{i_k}, \quad x_{i_j}\in X.$$

Кількість k букв у записі слова називається *довжиною* слова, яку позначатимемо l(w). Порожнє слово позначатимемо Λ та покладемо $l(\Lambda) = 0$.

Приклад

$$X = \{a, b, c\}$$

w = abbcba

$$X^{-1} = \left\{ x^{-1} \, | \, x \in X \right\}.$$

Покладемо

$$X^{\pm 1} = X \cup X^{-1}.$$

Для букви $y \in X^{\pm 1}$ визначимо y^{-1} за правилом

$$y^{-1} = \begin{cases} x^{-1}, & \text{якщо } y = x \in X^{\pm 1}; \\ x, & \text{якщо } y = x^{-1} \in X^{\pm 1}. \end{cases}$$

Груповим словом w в алфавіті X називається або порожнє слово, або скінченна послідовність вигляду

$$w = x_{i_1}^{\varepsilon_1} \dots x_{i_k}^{\varepsilon_k}, \quad x_{i_j} \in X, \varepsilon_j \in \{1, -1\}.$$

Групове слово w називається нескоротним, якщо воно

- або порожнє,
- або в ньому немає пар вигляду xx^{-1} або $x^{-1}x$.

В іншому разі слово називається скоротним.

Приклад

Слово $w = aa^{-1}bcba$ — скоротне. Слово w = bcba — нескоротне.

Процес видалення пари aa^{-1} або $a^{-1}a$ зі слова w називатимемо *елементарним скороченням* слова w.

Приклад

 $aa^{-1}bcba \rightarrow bcba$.

Скорочення слова w — це послідовне застосування елементарних скорочень, що розпочинаються зі слова w та закінчуються нескоротним словом:

$$w \to w_1 \to \ldots \to w_n$$
, де w_n —нескоротне.

Приклад

$$cabb^{-1}a^{-1}c^{-1}ca \rightarrow cabb^{-1}a^{-1}c^{-1}ca \rightarrow caa^{-1}c^{-1}ca \rightarrow ce^{-1}ca \rightarrow ca.$$

$$cabb^{-1}a^{-1}c^{-1}ca \rightarrow cabb^{-1}a^{-1}c^{-1}ca \rightarrow cabb^{-1}a^{-1}a \rightarrow cae^{-1}a \rightarrow ca.$$

Лема

Для довільних елементарних скорочень

$$w \rightarrow w_1$$
 ta $w \rightarrow w_2$

групового слова w над алфавітом X існують елементарні скорочення

$$w_1 \rightarrow w_0$$
 та $w_2 \rightarrow w_0$,

які роблять діаграму

комутативною.

Нехай $w \xrightarrow{\lambda_1} w_1$ та $w \xrightarrow{\lambda_2} w_2$ — два елементарних скорочення слова w. \in два способи виконати скорочення λ_1 та λ_2 :

- 🔾 скорочення не накладаються;
- 💿 скорочення накладаються.

Випадок 1. У цьому випадку:

$$w=u_1y_1y_1^{-1}u_2y_2y_2^{-1}u_3,\quad y_i\in X^{\pm 1},$$

та λ_i видаляє підслово $y_i y_i^{-1}$, i=1,2. Тоді

$$w \xrightarrow{\lambda_1} u_1 u_2 y_2 y_2^{-1} u_3 \xrightarrow{\lambda_2} u_1 u_2 u_3,$$

 $w \xrightarrow{\lambda_2} u_1 y_1 y_1^{-1} u_2 u_3 \xrightarrow{\lambda_1} u_1 u_2 u_3.$

Випадок 2. У цьому випадку $y_1 = y_2$ та слово має вигляд

$$w=u_1yy^{-1}yu_2,\quad y\in X^{\pm 1}.$$

Тоді

$$w = u_1 y(y^{-1}y) u_2 \stackrel{\lambda_1}{\rightarrow} u_1 y u_2,$$

$$w = u_1(yy^{-1})yu_2 \stackrel{\lambda_2}{\rightarrow} u_1yu_2.$$

Твердження

Нехай w — групове слово над алфавітом X. Тоді для довільних двох скорочень слова w:

$$w \to w'_1 \to \dots \to w'_{n'}$$

 $w \to w''_1 \to \dots \to w''_m$.

його нескоротні форми однакові, тобто $w'_{n} = w''_{m}$.

Індукція за l(w).

Якщо l(w) = 0, то $w = \Lambda$ і все доведено.

Нехай тепер $l(w) \ge 1$ та

$$w \to w'_1 \to \dots \to w'_n,$$

 $w \to w''_1 \to \dots \to w''_m$

два скорочення слова w. За лемою існують елементарні скорочення

$$w_1' \rightarrow w_0$$
 та $w_1'' \rightarrow w_0$.

Розглянемо процес скорочення для слова $w_0: w_0 \to w_1 \to \ldots \to w_k$. Йому відповідає діаграма:

За індукцією кожне зі слів слово w_1' та w_1'' має єдину нескоротну форму. Оскільки w_k — нескоротна форма обох слів w_1' та w_1'' , то $w_2' = w_k = w_m''$.

Алгебра Вільні групи 26 жовтня 2022

Конкатенація та редукція

Позначимо \overline{w} — єдина нескоротна форма слова w над алфавітом X.

Нехай F(X) — множина всіх нескоротних слів над алфавітом X.

Для нескоротних слів $u, v \in F(X)$ визначимо множення на множині F(X) за правилом:

$$u \cdot v = \overline{uv}$$
.

Приклад

Нехай
$$u = abcb^{-1}a$$
, $v = a^{-1}babc^{-1}$. Тоді

$$u \cdot v = abcb^{-1}aa^{-1}babc^{-1} \rightarrow abcb^{-1}babc^{-1} \rightarrow abcabc^{-1}$$
.

Теорема

Множина F(X) є групою відносно дії \cdot .

Доведення.

Асоціативність. Досить довести, що для $u, v, w \in F(X)$

$$\overline{\overline{(uv)}w} = \overline{u\overline{(vw)}}.$$

Кожне з нескоротних слів $\overline{(uv)}w$ та u(vw) можна отримати зі слова uvw за допомогою послідовності елементарних скорочень. Тому за попереднім твердженням

$$\overline{uv}w = \overline{uvw} = u\overline{vw}.$$

Нейтральним елементом ϵ порожн ϵ слово Λ .

Обернений елемент. Нехай $w=x_1\dots x_k$, $x_i\in X^{\pm 1}$. Тоді слово

$$w^{-1} = x_k^{-1} \dots x_1^{-1}$$

теж є нескоротним та

$$w \cdot w^{-1} = \overline{x_1 \dots x_k x_k^{-1} \dots x_1^{-1}} = \Lambda = \overline{x_k^{-1} \dots x_1^{-1} x_1 \dots x_k} = w^{-1} \cdot w.$$

Вільна група

Означення

Група F(X) з дією

$$u \cdot v = \overline{uv}$$

називається *вільною групою* з системою твірних X. Потужність множини X називається *рангом* вільної групи.

Приклад $X = \{a\}$

$$F(X) \simeq \mathbb{Z};$$

Z — вільна абелева група.

Приклад $X = \{a, b\}$

Вправа

Якщо |X|=1, то $F(X)\simeq \mathbb{Z}$. Якщо $|X|\geq 2$, то F(X) — неабелева.

Вправа

У вільній групі немає відмінних від порожнього слова елементів скінченого порядку.

Теорема

 $F(X) \simeq F(Y) \Leftrightarrow |X| = |Y|$.

Теорема (Нільсена-Шрайєра)

Підгрупи вільної групи вільні.