Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Алтайский государственный технический университет им. И.И. Ползунова»

Факультет специальных технологий Кафедра «Физика»

ЛАБОРАТОРНЫЕ РАБОТЫ ПО ФИЗИКЕ

ЧАСТЬ І. МЕХАНИКА. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА. ЭЛЕКТРИЧЕСТВО

ЖУРНАЛ ЛАБОРАТОРНЫХ ОТЧЕТОВ ДЛЯ СТУДЕНТОВ ОЧНОЙ ФОРМЫ ОБУЧЕНИЯ

Студент		
Группа		
Факультет _		
Преполавате	ПЬ	

СОДЕРЖАНИЕ

Лабораторная работа № 1.	Изучение законов поступательного движения тел с помощью машины Атвуда	
Лабораторная работа № 2.	Изучение законов вращательного движения с помощью маятника Обербека	
Лабораторная работа № 7.	Определение отношения теплоемкостей воздуха при постоянном давлении и объеме методом Клемана и Дезорма	
Лабораторная работа № 8.	Определение приращения энтропии при плавлении олова	22
Лабораторная работа № 1*.	Изучение закона Ома. Определение удельного сопротивления проводника	
Лабораторная работа № 23.	Определение ЭДС методом компенсации	32
Лабораторная работа № 24	Определение сопротивления проводников мостиком Уитстона	
Приложение 1	Расчет погрешностей измерений	40
Приложение 2	Обозначения на приборах	41
Приложение 3	Классы точности приборов	41
Приложение 4	Таблица коэффициентов Стьюдента	41
Приложение 5	Графическое представление результатов эксперимента	42
Рекоменлуемая литепатура		43

МАРШРУТНАЯ КАРТА

№ звена	НОМЕР РАБОТЫ								
	1	2	3	4	5	6			
1	1	2	7	1*	24	23			
2	1	2	8	1*	23	24			
3	1	2	7	1*	24	23			
4	1	2	8	1*	23	24			
5	1	2	7	1*	24	23			
6	1	2	7	1*	23	24			
7	1	2	8	1*	24	23			
8	1	2	7	1*	23	24			
9	1	2	8	1*	24	23			
10	1	2	7	1*	23	24			
11	1	2	8	1*	24	23			
12	1	2	7	1*	23	24			
13	1	2	7	1*	24	23			
14	1	2	8	1*	23	24			

ПРИМЕЧАНИЕ: Номера и порядок выполняемых работ уточнить у преподавателя, возможны изменения.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Алтайский государственный технический университет им. И.И. Ползунова»

Факультет специальных технологий

Кафедр	оа «Физика»		
(обозначе	ение документа)		
Отчеты по лабо	раторным рабо	отам	
по дисциплине			
(названи	е дисциплины)		
		неты защиц	цены с оценкой
Номер и название работы	Дата защиты	Оценка (баллы)	Подпись преподавателя
Студент группы(ин	нициалы, фамилия)		
Преподаватель			

(инициалы, фамилия)

(должность, ученое звание)

ЛАБОРАТОРНАЯ РАБОТА № 1 ИЗУЧЕНИЕ ЗАКОНОВ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ ТЕЛ С ПОМОЩЬЮ МАШИНЫ АТВУДА

ЦЕЛЬ РАБОТЫ:
Приборы и оборудование:
ОСНОВНАЯ ЧАСТЬ 1 Теоретическое обоснование работы

2 Описание лабораторной установки	

\vec{T}_1 \vec{T}_2 \vec{T}_2 $(m+m_1)\vec{g}$ $(m+m_2)\vec{g}$
 $(m+m_1)\vec{g}$ $(m+m_2)\vec{g}$

3 Порядок выполнения работы и задания

Задание 1. Изучение зависимости ускорения от величины приложенной силы

- 1. На платформы установите по одинаковому набору перегрузков $m_1 = m_2 = 0.01$ кг. Проверьте равновесие системы.
- **2.** Часть перегрузков с левой платформы переложите на правую платформу (смотри таблицу 1). Рассчитайте силу $F_g = (m_2 m_1)g$, приводящую систему в движение.
- 3. Измерьте время t движения правого груза от нулевой отметки шкалы до пола (расстояние h). Проведите измерения не менее 3-5 раз. Вычислите среднее время движения грузов по формуле $t_{cp} = \frac{1}{n} \sum_{i=1}^{n} t_i$.
- **4.** Используя значение t_{cp} , рассчитайте ускорение движения грузов по формуле $a = \frac{2h}{t_{cp}^2}$.
- **5.** Повторите пункты 2-4 для пяти различных значений (m_2 - m_1). Результаты измерений и вычислений запишите в таблицу 1.
- **6.** Постройте график зависимости ускорения от силы $a=f_1(F_g)$ (правила построения графиков приведены в теоретическом введении методических указаний пособия).
- 7. Воспользовавшись графиком, по котангенсу угла наклона прямой определите полную массу ($m_{nocm}+m_{\delta n}$) системы. Используя известное значение m_{nocm} , найдите эффективную массу $m_{\delta n}$ блока, необходимую для выполнения задания 2.
- 8. По графику определите силу трения покоя $m{F_{ ext{Tp}}^{ ext{nok}}}$ установки.

Таблица 1

№ изм.	<i>т</i> ₁ , 10 ⁻³ кг лев.	<i>m</i> ₂ , 10 ⁻³ кг прав.		F _g , 10 ⁻² H	<i>t</i> ₁ , c	<i>t</i> ₂ , c	<i>t</i> ₃ , c	<i>t</i> ₄ , c	$t_{cp},$ c	Δ <i>t</i> _{сл} , с	Δ <i>t</i> ,	а, м/с ²	Δa , M/c^2	ε _a , %
1	5+2+3=10	10	0					про	верка ра	вновесия	системы	I		
2	5+3=8	10+2=12	4											
3	5+2=7	10+3=13	6											
4	5	10+2+3=15	10											
5	3	10+2+5=17	14											
6	2	10+3+5=18	16											
Данные установки: $\Delta t_{cucm} =$ c ; $\Delta h_{cucm} =$ м; $m_{nocm} = 0.12$ кг. $\alpha = 0.95$; $n = 0.95$														
					m	_{бл} =		к	г;	$F_{ m Tp}^{ m non}$	' =		н.	

Задание 2. Изучение зависимости ускорения от массы системы

- **1.** Установите на правую платформу перегрузок, создающий движущую силу F_g =0,15 H. Затем 3-5 раз измерьте время движения груза с высоты h. Рассчитайте среднее время движения.
- **2.** Повторите пункт 1 для четырех значений массы m_{nocm} грузов, <u>не изменяя величину движущей силы.</u> Результаты измерений и расчетов внесите в таблицу 2.
- 3. Постройте график зависимости ускорения от величины, обратной общей движущейся массе $a = f_2 \Big[1 / \Big(m_{nocm} + m_{\delta n} \Big) \Big]$. При этом необходимо учитывать массу блока $m_{\delta n}$, найденную в предыдущей серии опытов.
- **4.** По тангенсу угла наклона прямой определите экспериментальное значение движущей силы $F_{
 m g}^{
 m эксп}$ и сравните его с теоретическим значением. Сделайте соответствующие выводы.

Таблица 2

№ изм.	$m_{\text{пр}} = m_{\text{лев}} = m,$ 10^{-3} кг	$m_{nocm} =$ $= 2m + m_2,$ KF	1/(m _{nocm} + m _{бл}), КГ ⁻¹	<i>t</i> ₁ , c	<i>t</i> ₂ , c	<i>t</i> ₃ , c	<i>t</i> ₄ , c	t_{cp} ,	Δt_{cn} ,	$\frac{\Delta t}{c}$	а, м/с ²	Δa , M/c^2	ϵ_a , %
1	50	0,115											
2	50+50=100	0,215											
3	50+100=150	0,315											
4	50+100+50=200	0,415											
	Данные уста m _{бл} =		$h = $; $m_2 = 0.01$	м; 15 кг ;		= 0,15 I	Н.	$\Delta t_{cucm} =$	F _g ^{эксп} =	c ; Δ <i>h</i>	_{сист} = Н .		м;

Задание 3. Расчет погрешностей измерений

- 1. Познакомьтесь с методами оценок погрешностей прямых и косвенных измерений.
- 2. По данным приборов определите систематические погрешности Δt_{cucm} и Δh_{cucm} .
- **3.** Случайную погрешность Δh_{cn} примите равной **нулю**, поскольку высота, с которой опускается груз каждый раз, задается одинаковым образом.
- **4.** Для каждой серии экспериментов определите по формуле $\sigma = \sqrt{\frac{1}{n(n-1)} \cdot \sum_{i=1}^{n} (t_i t_{cp})^2}$ стандартные

доверительные интервалы времени движения грузов.

- **5.** Найдите коэффициенты Стьюдента $t_{n,\alpha}$ при доверительной вероятности α =0,95 и соответствующего числа n параллельных измерений по таблице (1) введения.
- 6. Определите случайные погрешности Δt_{cn} измерений времени по формуле $\Delta t_{cn} = t_{n,\alpha} \cdot \sigma$ и занесите результаты в таблицы 1 и 2.
- 7. Рассчитайте полные абсолютные погрешности Δt результатов измерения по формуле $\Delta t = \Delta t_{cn} + \Delta t_{cucm}$. Результаты вычислений занесите в таблицы 1 и 2.
- **8.** Рассчитайте величины относительных погрешностей ε_a измерения ускорения движения грузов по формуле

$$\varepsilon_a = \sqrt{\left(\frac{\Delta h}{h_{cp}}\right)^2 + \left(2\frac{\Delta t}{t_{cp}}\right)^2} \cdot 100\%$$

- 9. Вычислите абсолютные погрешности Δa ускорения по формуле $\Delta a = a_{cp} \cdot \varepsilon_a$, где ε_a относительная погрешность, представленная в долях целого числа.
- 10. Для каждой серии экспериментов проведите округление результатов вычислений и занесите их в таблицы 1 и 2 соответственно.

Промежуточные вычисления и анализ результатов работы могут быть выполнены на дополнительных листах формата A4 и представлены для контроля при защите лабораторной работы. Полученные значения измеряемых физических величин с указанием единиц измерения, абсолютной и относительной погрешностей, надежности (см. Введение) запишите в выводах к работе.

Для студентов, стремящихся продемонстрировать повышенный уровень своих знаний, рекомендуется выполнять вычисления и построение графиков с использованием программы Microsoft Office Excel или других программ для работы с электронными таблицами. В этом случае обязательно наличие распечатки результатов.

4 Обработка результатов измерений

выводы:		

- 1. Дайте определение следующих понятий: скорость, ускорение (полное, тангенциальное, нормальное), масса, импульс, сила. Объясните их физический смысл. Укажите единицы измерения.
- 2. Сформулируйте I, II, III законы Ньютона, объясните их физический смысл и область применения.
- **3.** Поясните устройство и принцип работы машины Атвуда. Какие силы действуют на грузы и блок в машине Атвуда? Запишите уравнения, описывающие движение данной системы. Каким образом можно убедиться в справедливости второго закона Ньютона?
- **4.** Почему ускорение системы определяется по кинематической формуле $a = 2h/t^2$, а не из соотношения $a = F_g/m$? Объясните методику определения ускорения a грузов в данной работе.
- **5.** Какой смысл имеет отрезок, отсекаемый прямой на оси абсцисс, на графике зависимости $a = f(F_g)$?
- 6. Сформулируйте основные правила построения графиков.
- 7. Что такое абсолютная и относительная погрешности измерений? Для чего вводятся эти погрешности?
- 8. Дайте понятие случайной и систематической погрешностей, класса точности прибора.
- 9. Как определяются погрешности табличных величин?
- 10. Какие измерения называются прямыми, косвенными? Методы определения погрешностей прямых и косвенных измерений.
 - **1.** При движении точки по окружности радиусом 1 м в некоторый момент времени тангенциальное ускорение равно 3 м/с 2 , полное ускорение 5 м/с 2 . Найти скорость точки в этот момент времени.
- 2. Точка М движется по спирали с постоянной по величине угловой скоростью в направлении, указанном стрелкой. Как при этом изменяется величина линейной скорости, нормального ускорения? Ответ пояснить.

3. Проекция скорости тела изменяется с течением времени так, как показано на рисунке. Изобразите график зависимости проекции силы, действующей на это тело, от времени.

4. На рисунке приведен график зависимости силы, действующей на тело, от времени. На сколько изменится импульс тела за первые **5** секунд ?

5. Теннисный мяч летит с импульсом \vec{p}_1 (масштаб и направление указаны на рисунке). Теннисист произвел по мячу резкий удар с средней силой $40~\mathrm{H}$. Изменившийся импульс мяча стал равен \vec{p}_2 . Сколько времени действовала сила на мяч?

- **6.** Зависимость импульса частицы от времени описывается законом $\vec{p} = 6t^2\vec{i} + 3t\vec{j}$, где \vec{i} и \vec{j} векторы координатных осей x, y соответственно. Изобразите график зависимости горизонтальной проекции силы F_x , действующей на частицу, от времени.
- 7. Объем параллелепипеда определяется по формуле V=abc, где a, b, c его стороны, определяемые прямым способом. Получите выражение для расчета абсолютной и относительной погрешности измерения объема.
- **8.** Масса медной проволоки, взвешенная на лабораторных весах равна 2,67 ε . Плотность меди 8,9 \pm 0,1 ε /с ω ³. Определите объем проволоки (в ε / ω ³). Запишите результат определения объема с учетом погрешности. Относительная погрешность весов составляет 0,5%.
- 9. Определите систематические погрешности приборов.

10. Определите размер тела, представленного на фотографии.

ЛАБОРАТОРНАЯ РАБОТА № 2

ИЗУЧЕНИЕ ЗАКОНОВ ДИНАМИКИ ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ С ПОМОЩЬЮ МАЯТНИКА ОБЕРБЕКА

ЦЕЛЬ РАБОТЫ:
Приборы и оборудование:
ОСНОВНАЯ ЧАСТЬ 1 Теоретическое обоснование работы

2	Описание	пабора	топной	установки
_	Onneanne	JIAUUPA	HOHION	yClanobkn

R
 R m.
m.
 $\bigvee_{\mathbf{m}\mathbf{\vec{g}}}^{\mathbf{m}}$

3 Порядок выполнения работы и задания

Масса m грузов на нитях может быть набрана из трех грузов: одного основного (платформы) массой 50 г и двух дополнительных: 50 г и 100 г.

В расчётах следует использовать эффективный радиус шкива $r = r_{2\phi\phi}$. Для этого измерьте диаметр выбранного шкива d_1 без нити, а затем диаметр шкива с намотанной на него нитью d_2 . Эффективный радиус $r_{2\phi\phi}$ определите как

$$r_{\partial\phi\phi} = \frac{d_1 + d_2}{4} \, .$$

Погрешность в определении радиуса шкива Δr можно считать равной систематической погрешности Δr_{cucm} .

Задание 1. Изучение зависимости углового ускорения от момента приложенных сил $\varepsilon = f(mgr)$.

- **1.** *По указанию преподавателя выберите один из шкивов* радиусом r. Намотайте на него нить с платформой массой m = 50 г, которая сама будет грузом, определяющим момент силы тяжести.
- 2. Установите грузы m_0 (m_0 =50 г) на спицах на расстоянии R от оси вращения, равном его среднему значению R=10 см.
- **3.** Предоставьте грузу возможность свободного движения вниз с указанной высоты h, измеряя при этом время движения груза t. Опыт повторите три пять раз, данные занесите в таблицу 1.
- **4.** На платформу поместите груз массой **50** г (общая масса станет равной m = 100 г). Измерьте время движения груза t с указанной высоты h. Опыт повторите три пять раз, данные занесите в таблицу 1.
- **5.** На платформу поместите груз массой **100** г (общая масса m = 150 г). Также как в пункте 4, измерьте три пять раз время движения груза t с указанной высоты h.
- **6.** На платформу поместите грузы массами **100** г и **50** г, (общая масса станет равной m = 200 г). Также как в предыдущих пунктах 4 и 5, измерьте три пять раз время движения груза t с указанной высоты h.
- 7. Для каждого значения m определите среднее значение времени t_{cp} .
- 8. Используя t_{cp} , по формуле $\varepsilon = \frac{2h}{r \cdot t_{cp}^2}$ определите среднее значение ускорения ε (здесь $r = r_{i\phi\phi}$)..
- **9.** По данным таблицы 1 постройте график зависимости углового ускорения ϵ от момента силы тяжести опускающегося груза mgr, т.е. $\epsilon = f(mgr)$ с соответствующими доверительными интервалами $\Delta\epsilon$.
- 10. Определите момент силы трения по отрезку, отсекаемому прямой $\varepsilon = f(mgr)$ на оси моментов сил.

Таблица 1

№ изм.	т, 10 ⁻³ кг	<i>mgr</i> , 10 ⁻² Н∙м	<i>t</i> ₁ , c	t2, c	<i>t</i> ₃ , c	t4, c	<i>t</i> ₅ , c	t_{cp} , c	Δt_{cn} ,	Δ <i>t</i> ,	ε, рад/c²	Δε, рад/c ²	Отн. пог, %
1	50												
2	50+50=100												
3	50+100=150												
4	50+100+50=200												
	Данные установки: $h=$ м; $\Delta h_{cucm}=$ м; $R=$ м;												
r_{20}	$p_{\phi} =$	м;	$\Delta r_{cucm} =$:		м;	Δt_{cu}	ıcm =	c	; M_{mp}	, =		Н∙м.

Задание 2. Изучение зависимости углового ускорения от момента инерции системы $\frac{1}{\varepsilon} = f\left(2m_0R^2\right)$.

- 1. По указанию преподавателя выберите один из шкивов радиусом r.
- **2.** Массу груза m на нити установите равной $100 \, \Gamma$.
- 3. В соответствии с таблицей 2 изменяйте момент инерции системы, меняя расстояния R грузов m_0 до оси вращения.
- **4.** Для каждого из четырех случаев *симметричных* расположений грузов m_0 на спицах маятника (расстояния от центров масс грузов до оси вращения измеряются линейкой) проведите три-пять измерений времени движения груза с заданной высоты h. Результаты занесите в таблицу 2.
- 5. Для каждого значения R определите среднее значение времени t_{cp} .
- 6. Используя t_{cp} , по формуле $\frac{1}{\varepsilon} = \frac{r \cdot t_{cp}^2}{2h}$ определите среднее значение $\frac{1}{\varepsilon}$ (в таблице ε^{-1}).
- 7. По данным таблицы 2 постройте график зависимости $\frac{1}{\epsilon} = f\left(2m_{_0}R^2\right)$ с соответствующими доверительными интервалами $\Delta\epsilon^{-1}$.
- 8. По отрезку, отсекаемому прямой $\frac{1}{\varepsilon} = f\left(2m_0R^2\right)$ на оси моментов инерции, определите момент инерции маятника без грузов m_0 (т.е., момента инерции шкивов и спиц).

Таблица 2

№ изм.	<i>R</i> , 10 ⁻² м	$2m_0 \text{R}^2$, 10^{-3} кг·м^2	<i>t</i> ₁ , c	<i>t</i> ₂ , c	<i>t</i> ₃ , c	t4, c	<i>t</i> ₅ , c	t_{cp} , c	$\begin{array}{c} \Delta t_{c\pi}, \\ \mathrm{c} \end{array}$	Δ <i>t</i> ,	$1/\epsilon$, $c^2/paд$	$\Delta(1/\epsilon)$, $c^2/paд$	Отн. пог, %
1	5												
2	10												
3	15												
4	20												

Данные установки: h = m; $\Delta h_{cucm} = m$; $r_{9\phi\phi} = m$; $\Delta r_{cucm} = m$;

 $\Delta t_{cucm} =$ c; m = $\kappa \Gamma$; mgr = $H \cdot M$; $I_{ui\kappa + cnuu} =$ $\kappa \Gamma \cdot M^2$.

Задание 3. Расчет погрешностей измерений.

- **1.** По данным приборов определите систематические погрешности Δt_{cucm} и Δh_{cucm} . Поскольку высота, с которой опускается груз каждый раз задается одинаковым образом, то можно считать, что $\Delta h_{cn} = 0$.
- 2. Рассчитайте случайные погрешности Δt_{cn} в определении времени по формуле $\Delta t_{cn} = t_{n,\alpha} \cdot \sigma$ (σ стандартный доверительный интервал, $t_{n,\alpha}$ коэффициент Стьюдента). Результаты вычислений занесите в таблицы 1 и 2.
- **3.** Рассчитайте полные абсолютные погрешности Δt результатов измерения по формуле $\Delta t = \Delta t_{cn} + \Delta t_{cucm}$. Результаты вычислений занесите в таблицы 1 и 2 соответственно.
- **4.** Используя полученные значение Δt , рассчитайте относительные погрешности измерений по формуле

omh.nozp =
$$\sqrt{\left(\frac{\Delta h}{h}\right)^2 + \left(\frac{\Delta r}{r}\right)^2 + \left(2\frac{\Delta t}{t_{cp}}\right)^2} \cdot 100\%$$

- **5.** Определите абсолютные погрешности $\Delta \epsilon$ и $\Delta \epsilon^{-1}$ по формулам $\Delta \epsilon = \epsilon \cdot \textit{отн. norp}$ и $\Delta \epsilon^{-1} = \epsilon^{-1} \cdot \textit{отн. norp}$, (относительную погрешность, взять в долях целого числа).
- 6. По результатам работы сделайте соответствующие выводы.

<u>Примечания:</u> Для студентов, стремящихся продемонстрировать повышенный уровень своих знаний, рекомендуется выполнять вычисления и построение графиков с использованием программы Microsoft Office Excel или других программ для работы с электронными таблицами. В этом случае обязательно наличие распечатки результатов.

4 Обработка результатов измерений

выводы:	

- 1. Запишите и объясните основной закон динамики вращательного движения. Дайте определения величин, входящих в это уравнение.
- 2. Как определяются направления векторов углового ускорения и момента сил?
- 3. Проведите аналогию между характеристиками поступательного и вращательного движения.
- **4.** Каким образом в данной работе доказывается справедливость основного уравнения динамики вращательного движения?
- 5. Почему в работе угловое ускорение определяется с помощью кинематического уравнения $\varepsilon = 2h/(rt^2)$, а не с помощью динамического уравнения $\varepsilon = \frac{mgr M_{mp}}{I_{_0} + 2m_{_0}R^2 + mr^2}$.
- **6.** Какой физический смысл имеют отрезки, отсекаемые прямой на оси абсцисс на графиках $\varepsilon = f(mgr)$ и $1/\varepsilon = f(2m_0R^2)$, соответственно?
- 7. Каким будет движение маятника при отсутствии трения в блоке?
- 8. Какая сила создает вращающий момент крестовины, и как он определяется в данной работе?
 - 1. На рисунке к диску, который может свободно вращаться вокруг оси, проходящей через точку О, прикладывают одинаковые по величине силы. В каком положении момент сил будет максимальным?

2. К стержню приложены три одинаковых по модулю силы, как показано на рисунке. Ось вращения перпендикулярна плоскости рисунка и проходит через точку О. Определить направление вектора результирующего момента сил.

3. Диск начинает вращаться под действием момента сил, график временной зависимости которого представлен на рисунке. Построить график, отражающий зависимость угловой скорости диска от времени.

4. Диск равномерно вращается вокруг вертикальной оси в направлении, указанном на рисунке белой стрелкой. В некоторый момент времени к ободу диска была приложена сила, направленная по касательной. Как направлены: вектор углового перемещения, вектор угловой скорости, вектор углового ускорения, вектор момента силы \vec{F} , вектор момента импульса?

- **5.** Момент силы, приложенной к вращающемуся телу, изменяется по закону $M = \alpha t^2$, где α некоторая положительная константа. Момент инерции тела остается постоянным в течение времени вращения. Качественно изобразить график зависимости углового ускорения от времени.
- **6.** Диску придали угловое ускорение, приложив силу 5 H по касательной к ободу диска на расстоянии 1 м от оси вращения в течение 0,4 с. На сколько увеличился момент импульса диска?

- **7.** Момент внешних сил, действующих на тело, изменяется по закону $M=8t-3t^2$ (СИ). Определить изменение момента импульса тела за первые 2 с.
- **8.** Шар и полый цилиндр (трубка), имеющие одинаковые массы и радиусы, скатываются без проскальзывания с наклонной плоскости высотой *h*. Сравнить скорости тел у основания наклонной плоскости.

ЛАБОРАТОРНАЯ РАБОТА № 7

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПУАССОНА ВОЗДУХА МЕТОДОМ АДИАБАТИЧЕСКОГО РАСШИРЕНИЯ

ЦЕЛЬ РАБОТЫ:
Приборы и оборудование:
ОСНОВНАЯ ЧАСТЬ 1 Теоретическое обоснование работы

2 On	исание лабора	торной устано	овки									
						манометр						
						опапан Н	1acoc					
	сосуд											
3 Порядок выполнения работы и задания												
1. При закраравным 100 -	ытом клапане на - 130 мм. рт. ст.	качать воздух в с	осуд так, чтобы	_	_		іение стало					
2. Через некоторое время, когда давление перестанет падать, записать в таблицу величину давления ΔP_1 . 3. Открыть на мгновение клапан сосуда и, когда стрелка манометра упадет до нуля, быстро закрыть его. Через												
4. Повторит	ь пункты 1-3 пять	-		-								
	1 3	_ рассчитать коэф	ффициент Пуасо	сона для каждо	го опыта. Выч	числить средн	ее значение					
6. Найти те двухатомным постоянном о 7. Сравнить	коэффициента Пуассона γ_{cp} . 6. Найти теоретическое значение коэффициента Пуассона γ_{meop} для воздуха, считая его молекулы жесткими двухатомными (<i>указание</i> : воспользоваться определениями коэффициента Пуассона и молярных теплоемкостей при постоянном объеме и давлении). 7. Сравнить теоретическое и среднее экспериментальное значения коэффициента Пуассона, оценив величину относительного отклонения по формуле $\delta = \frac{\left \gamma_{meop} - \gamma_{cp}\right }{\gamma_{meop}} \cdot 100 \%$.											
	1				T		Таблица					
№ изм.	ΔP ₁ , мм. рт. ст.	ΔP ₃ , мм. рт. ст.	γ	ү ср	ү теор	Δγ	δ,%					
1												
2												
3												
4												
5 4 Oбı	работка резул	ьтатов измере	ений									
					.							
}			}	}	 							
				 								
					jiji.							
выводы	[:											

- 1. Что такое изопроцессы и каким законам они подчиняются? Нарисуйте графики этих процессов.
- **2.** Сформулируйте первое начало термодинамики. Запишите этот закон применительно к изопроцессам и дайте пояснения.
- 3. Что такое удельная и молярная теплоемкости вещества? От чего они зависят, в каких единицах измеряются?
- **4.** Что такое внутренняя энергия идеального газа? Дайте определение работы газа и количества теплоты. От чего зависят эти характеристики.
- 5. Выведите уравнение Майера. Каков физический смысл универсальной газовой постоянной?
- **6.** Выведите формулу для молярных теплоемкостей \mathbf{C}_V и \mathbf{C}_p идеального газа.
- 7. Дайте определение числа степеней свободы молекулы. Чему равна величина *і* для 1-, 2-, 3- и многоатомного идеальных газов?
- Что такое коэффициент Пуассона γ? Рассчитайте теоретическое значение показателя адиабаты для 1-, 2- и 3атомного идеального газа.
- 9. В чем заключается адиабатический метод Клемана и Дезорма для определения γ?
- **10.** Опишите рабочий цикл экспериментальной установки по *P-V* диаграмме. Как и почему изменяется температура газа в колбе при проведении опыта?
- 1. Молярная теплоемкость молекулы идеального газа при постоянном давлении равна C_p =9R/2, где R универсальная газовая постоянная. Число вращательных степеней свободы молекулы равно...
- **2.** Кинетическая энергия вращательного движения линейной молекулы углекислого газа \mathbf{CO}_2 (см. рис.), согласно модели жесткой связи атомов в молекуле, составляет от полной энергии долю...

- **3.** Идеальному двухатомному газу сообщили **1000** Дж теплоты при постоянном давлении. Определить работу, совершенную газом и изменение внутренней энергии газа.
- **4.** На рисунке показаны различные процессы изменения состояния в идеальном одноатомном газе. Укажите процессы, в которых внугренняя энергия идеального газа убывает. Кривая 1-4 изотерма, кривая 1-3 адиабата.

5. На рисунке показан график процесса в координатах P(T). Какие участки графика соответствуют случаю, когда газ получает тепло извне?

6. Диаграмма циклического процесса идеального одноатомного газа представлена на рисунке. Отношение работы за весь цикл к работе при нагревании газа равно...

ЛАБОРАТОРНАЯ РАБОТА № 8

ОПРЕДЕЛЕНИЕ ПРИРАЩЕНИЯ ЭНТРОПИИ ПРИ ПЛАВЛЕНИИ ОЛОВА ЦЕЛЬ РАБОТЫ:

Приборы и оборудование:
ОСНОВНАЯ ЧАСТЬ 1 Теоретическое обоснование работы

								2 mv 3 4		6
 Порядок выполнения Включите установку в сеть. За плавлении олова. Результаты измер Когда олово расплавится выклю охлаждении олова. По приведенному на установко температуры. Постройте график зависимости т. По графику определите темп параллельной оси времени. По формуле ΔS = c ⋅ m ⋅ ln (T_n/T) 	пишите рений заприте уст	показан несите в гановку п ировочно гуры от п плавле	ния милл таблицу. и, продол ому граф времени сния оло	пжая отс рику пер T=f(t) . рва. Это	чет врем реведите рй темп	ени, сни показан ературе	мите ана ния милл соответ	алогичны пивольтм сствует	ые измер иетра в участок	ения прі значени: кривой
№ изм.	1	2	3	4	5	6	7	8	9	10
Время, с										
Показ. милливольтметра, мВ										
Температура, К										
№ изм.	11	12	13	14	15	16	17	18	19	20
Время, с										
Показ. милливольтметра, мВ										
Температура, К										
№ изм.	21	22	23	24	25	26	27	28	29	30
Время, с										
Показ. милливольтметра, мВ										
Температура, К										
№ изм.	31	32	33	34	35	36	37	38	39	40
Время, с										
Показ. милливольтметра, мВ										
Температура, К										
Данные установки:	m=(0,0)	0020 ± 0),0005) н	$\kappa_{\Gamma}; T_{\kappa}$	= 293 I	ζ;				
c = (0,230)	± 0,001)·10 ³ Дх	к/(кг∙К)	; λ = ($(58,6\pm0)$	$(0,1)\cdot 10^3$	Дж/кг.			

K; Приращение энтропии: $\Delta S =$

Дж/К.

Температура плавления: $T_{nn} =$

4 Обработка результатов измерений

выводы:		

- 1. Что такое термодинамическая система, термодинамические параметры?
- 2. Какая система называется равновесной?
- 3. Какие процессы называются обратимыми, какие необратимыми? Приведите примеры таких процессов.
- 4. Что такое энтропия? Статистическая и термодинамическая интерпретация энтропии.
- 5. Сформулируйте второе и третье начала термодинамики.
- 6. Запишите неравенство Клаузиуса.
- 7. Назовите основные свойства энтропии.
- 8. Как изменяется энтропия при переходе из одного агрегатного состояния в другое?
- 9. Что называется фазой? Что такое фазовый переход первого и второго рода? Приведите примеры фазовых переходов.
- 10. Объясните суть метода измерения приращения энтропии в данной работе.

2. На рисунке изображен цикл Карно в координатах (T, S), где S — энтропия. На каком этапе происходит адиабатное расширение, на каком этапе теплота подводится к системе?

3. 1 моль одноатомного идеального газа при постоянном объеме **10 м** 3 увеличил свою температуру в **2** раза. Изменение энтропии газа равно...

(Принять R=8,31 Дж/(моль·К), ln2=0,693).

4. 1 моль одноатомного идеального газа при постоянной температуре $100~\rm{K}$ увеличил свой объем в **2** раза. Изменение энтропии газа равно...

(Принять R=8,31 Дж/(моль·К), ln2 = 0,693)

5. Кусок льда, находившийся при температуре -10 °C, нагрели до 0 °C и превратили в воду той же температуры. Как изменялась энтропия системы ледвода?

6. Чтобы расплавить некоторую массу меди, требуется большее количество теплоты, чем для плавления такой же массы цинка, так как удельная теплота плавления меди в 1,5 раза больше ,чем цинка (λ_{Cu} =180 кДж/кг, λ_{Zn} =120 кДж/кг). Температура плавления меди примерно в 2 раза выше чем у цинка (T_{Cu} =1356 K, T_{Zn} =693K). Разрушение кристаллической решетки металла при плавлении приводит к возрастанию энтропии. Если энтропия цинка увеличилась на ΔS , то изменение энтропии меди будет равно...

ЛАБОРАТОРНАЯ РАБОТА № 1* ИЗУЧЕНИЕ ЗАКОНА ОМА. ОПРЕДЕЛЕНИЕ УДЕЛЬНОГО СОПРОТИВЛЕНИЯ ПРОВОДНИКА

ЦЕЛЬ РАБОТЫ:
Πημβοητι μ οδοηνποραμμο
Приборы и оборудование:
ОСНОВНАЯ ЧАСТЬ
1 Теоретическое обоснование работы

2 Описание лабораторной установки	
	R_1
	- R I
	- 111
	-
A 17	

3 Порядок выполнения работы и задания

- **1.** Установить длину проволоки l=50 см, включить прибор, установить силу тока через проводник I=0,25 А и снять показания вольтметра. Данные занести в таблицу 1.
- **2.** Уменьшая длину проволоки на 5 см, снимать показания вольтметра. При этом резистором R_1 корректировать силу тока в цепи так, чтобы она оставалась неизменной и равной 0,25 A. Значения длины, силы тока, напряжения также занести в таблицу 1. Повторить измерения не менее 10 раз.

Таблица 1

№ изм.	<i>l,</i> м	I, A	U, B	R, Ом	ρ, <i>О</i> м∙м	ρ_{cp} , O м·м	Δρ, Ом·м	ε,%
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								

3. Установить длину проволоки в пределах $I = 40 \div 50$ см. Изменяя резистором R_1 силу тока в цепи от минимального до максимального значения через равные интервалы, измерить напряжение U на концах проводника. Показания амперметра и вольтметра занести в таблицу 2.

Таблица 2

№ изм.	1	2	3	4	5	6	7	8	9	10
<i>I, A</i>										
<i>U</i> , <i>B</i>										

4. Выключить прибор. Микрометром измерить диаметр проволоки d в пяти произвольных точках ее длины. Определить систематическую погрешность микрометра Δd_{cucm} . Рассчитать погрешности Δd_{cn} и Δd (см. Приложение 1-3). Результаты измерений занести в таблицу 3.

Таблица 3

№ изм.	D , м	d_{cp} , M	Δd_{cn} , M	Δd_{cucm} , M	Δd , M
1					
2					
3					
4					
5					

5. Определить основные характеристики электроизмерительных приборов, занести их в таблицу 4. Рассчитать систематические погрешности измерительных приборов (см. Приложение 1-3).

Таблица 4

Прибор	Класс точности	Предельное значение	Систематическая погрешность
Вольтметр			
Миллиамперметр			
Линейка			

6. По формулам
$$R = \frac{U}{I}$$
 и $\rho = \frac{U}{I} \cdot \frac{S}{l} = \frac{U}{I} \cdot \frac{\pi}{4} \cdot \frac{d^2_{cp}}{l}$ рассчитать сопротивление R и удельное сопротивление

ho проводника. (Для вычислений использовать среднее значение диаметра d_{cp} ($S=rac{\pi}{4}\cdot d_{cp}^2$)).

7. Рассчитать относительную погрешность
$$\varepsilon$$
 по формуле $\varepsilon_{\rho} = \frac{\Delta \rho}{\rho} = \sqrt{\left(\frac{\Delta U}{U}\right)^2 + \left(\frac{\Delta I}{I}\right)^2 + \left(2\frac{\Delta d}{d}\right)^2 + \left(\frac{\Delta I}{I}\right)^2}$

Здесь, каждая из абсолютных погрешностей ΔU , Δd , ΔI , ΔI складывается из случайной и систематической погрешности. В случае измерения диаметра проволоки $\Delta d = \Delta d_{cr} + \Delta d_{cucm}$. При каждом измерении значения силы тока, напряжения и длины проводника остаются постоянными при прочих равных условиях. Поэтому для этих величин можно ограничиться систематической погрешностью измерения $\Delta U = \Delta U_{cucm}$, $\Delta I = \Delta I_{cucm}$. Погрешности ΔU и ΔI находятся по классу точности приборов (см. приложения 1-3).

- 8. Вычислить абсолютную погрешность $\Delta \rho$ измерений удельного сопротивления по формуле $\Delta \rho = \rho_{\it cp} \cdot \epsilon_{\it p}$.
- **9.** Используя данные таблицы 1, построить график зависимости напряжения на концах исследуемого проводника от его длины U=f(l). Для всех экспериментальных точек отложить абсолютные погрешности.
- **10.** По данным таблицы 2 построить зависимость напряжения на концах проводника от силы тока, протекающего через него U=f(I). Для всех экспериментальных точек отложить абсолютные погрешности.
- **11.** На основании полученных зависимостей сделать соответствующие выводы. Сравнить полученный результат для **р** со справочными данными.

4 Обработка результатов измерений

выводы:	

- 1. Сформулировать закон Ома для однородного участка цепи в интегральной и дифференциальной формах.
- 2. Что такое сила тока, плотность электрического тока, напряжение?
- 3. Что такое сопротивление проводника, проводимость проводника?
- 4. Что называется удельным сопротивлением проводника, от чего оно зависит?
- 5. Какова зависимость сопротивления металлов от температуры? Что такое сверхпроводимость?
- **6.** Показать, что сила тока в цепи на рисунке 2 почти не зависит от длины проводника, с которой снимается напряжение.
- 7. Каково должно быть соотношение между сопротивлением амперметра $R_{\rm A}$, вольтметра $R_{\rm V}$ и исследуемым сопротивлением R, чтобы свести ошибку в определении сопротивления R, а следовательно и удельного сопротивления ρ , до минимума.
- **8.** Записать функциональную зависимость между падением напряжения на однородном участке проводника и его длиной.
 - На графике показана зависимость плотности тока в проводнике от напряженности электрического поля. Удельное сопротивление проводника в единицах (Ом·м) равно ...

2. На рисунке представлена зависимость плотности тока \mathbf{j} , протекающего в проводниках $\mathbf{1}$ и $\mathbf{2}$, от напряженности электрического поля \mathbf{E} . Отношение удельных проводимостей γ_1/γ_2 этих элементов равно ...

3. На рисунке показана зависимость силы тока в электрической цепи от времени. Заряд, прошедший по проводнику в интервале времени от **10** до **20** с, равен...

4. Вольт-амперные характеристики двух нагревательных спиралей изображены на рисунке. Из графиков следует, что проводимость одной спирали больше проводимости другой на...

- **5.** Как изменится плотность тока в проводнике, если увеличить длину проводника и площадь его поперечного сечения вдвое, не изменяя приложенного напряжения?
- **6.** В схеме на рисунке R_1 =2 Ом, R_2 =4 Ом, R_3 =3 Ом, R_4 =6 Ом. Общее сопротивление участка равно...

ЛАБОРАТОРНАЯ РАБОТА № 23

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОДВИЖУЩИХ СИЛ МЕТОДОМ КОМПЕНСАЦИИ

ЦЕЛЬ РАБОТЫ:
Приборы и оборудование:
OCHODILA GILA CITI
ОСНОВНАЯ ЧАСТЬ
1 Теоретическое обоснование работы

2 0	писани	е лабор	аторн	ой уста	HO)	вки		_		€ _B	
								A		B	⊣ с
					· · · · ·						
 Собрат Включі 	ь электри ить в цег	ческую сх пь источн	кему, пр пик с эт	едставле галонной	нну Э,	ДС и найт					ой схеме Таблица
$l_{AB_{2}1}, M$	$l_{AB_{\vartheta}2}$,	M l_{AB}	3, M	$l_{AB_{\mathfrak{I}}cp}$, м	! Z	\. I _{АВэ сл} , м	Δl_{AB} cucm, M	Δl_{AB} , M	\mathcal{E}_{2m} , B	$\Delta \mathcal{E}_{2m}, B$	отн.
										0,1	
16		T				1	ы определить в $M \ \Delta l_{ABx \ cucm} , .$	1	T		блицу 2. Таблица 2 <i>отн</i> .
ЭДС	VABX I ,	ABX 2, Sit	*ABX 3 9	АВХ СР	, .,.	Авх сл у	A ABx cucm ,	Δt_{ABX} , M	<i>O</i> _X , <i>B</i>	$\Delta c_{x}, b$	погр.
1											
2											
3											
5. По даниЭДС всех в6. Найти	ным табл источник относі	иц 1 и 2 на ов. ительные	айти ср и	едние зна абсолю	гны	ния l _{AB} , и l	вмерения по пу A_{Bx} , и по форм $\frac{1}{2}$ и $\Delta \mathcal{E}_{x}$ =	уле $\boldsymbol{\mathcal{E}}_{x}=\boldsymbol{\mathcal{E}}$ езультатов	$S_{\it эm} \cdot rac{l_{\it ABx}}{l_{\it ABa}}$ измерени	- вычислить	
4 (Обработ	гка резу.	льтат	ов изме	pei	ний					

выводы:	

- 1. Указать условия, необходимые для поддержания тока в цепи.
- 2. Что такое сторонние силы? Что такое ЭДС элемента? Единицы измерения ЭДС.
- 3. Записать закон Ома для замкнутой цепи.
- 4. Какие способы (схемы) можно предложить для измерения ЭДС?
- 5. Сформулировать и записать правила Кирхгофа.
- 6. Пояснить сущность метода компенсации.
- 7. Какие требования должны быть предъявлены к ЭДС батареи и эталонной ЭДС?
- 1. На рисунке приведена зависимость силы тока от сопротивления внешней цепи для трех источников тока, обладающих одинаковыми ЭДС. Их внутренние сопротивления находятся в соотношении...

2. К источнику тока с ЭДС **12** В подключили реостат. На рисунке показан график зависимости силы тока в реостате от его сопротивления. Внутреннее сопротивление этого источника тока равно...

3. Для произвольного узла и замкнутого контура в электрической схеме, записать уравнения по I и II правилам Кирхгофа.

4. В электрической схеме, представленной на рисунке, $\varepsilon_1=1$ В, $\varepsilon_3=4$ В, R_1 =4 Ом, R_2 =6 Ом, R_3 =3 Ом, I_1 =3 А, I_2 =2 А. Определить величину Э.Д.С. источника тока ε_2 .

5. На участке неразветвленной цепи протекает ток I заданного направления. Определить разность потенциалов между точками **AD**.

6. Электрическая цепь состоит из источника тока с ЭДС 20 В и внутренним сопротивлением 1 Ом, а также резистора с неизвестным сопротивлением. Вольтметр, подключенный к зажимам источника, показывает 16 В. Определить силу тока в цепи.

ЛАБОРАТОРНАЯ РАБОТА № 24

ОПРЕДЕЛЕНИЕ СОПРОТИВЛЕНИЯ ПРОВОДНИКОВ МОСТИКОМ УИТСТОНА

ЦЕЛЬ РАБОТЫ:
Приборы и оборудование:
ОСНОВНАЯ ЧАСТЬ 1 Теоретическое обоснование работы
1 Teopera tecnoe occaronante pacoria

2 Описание лабораторной установки		
		R_{x} R_{2}
		$R_3 \downarrow R_4$
	A	l_3 D l_4
	Cx	ема экспериментальной установки

3 Порядок выполнения работы и задания

- 1 На магазине сопротивлений R_2 установить сопротивление 1 Ом. Положения остальных ручек должны соответствовать нулевым сопротивлениям.
- **2** Уравновесить схему. Для этого щупом найти положение точки **D**, соответствующее нулевой силе тока через гальванометр, и определить длины l_3 и l_4 . Данные R_2 , l_3 и l_4 занести в таблицу 1.
- **3** Последовательно изменяя сопротивление R_2 от 1 до 9 Ом, повторить п. 2.
- **4** Микрометром измерить в нескольких местах диаметр проволоки с неизвестным сопротивлением R_X , а линейкой ее длину. Результаты занести в таблицу 1.
- 5 Вычислить в каждой строке измерении сопротивление R_X по формуле $R_X = R_2 \cdot \frac{l_3}{l_4}$. Рассчитать среднее значение $R_{X\,cp}$ как среднее арифметическое всех R_X .
- 6 Используя значение R_{Xcp} , по формуле $\rho = R_X \cdot \frac{S}{l}$ найти удельное сопротивление ρ проводника. Результаты занести в таблицу 1.
- 7 Вычислить абсолютную погрешность измерения сопротивления ΔR_X и относительную погрешность ϵ по результатам одной из средних строк таблицы, считая ошибки в определении длин Δl_3 , Δl_4 и сопротивлений

$$\Delta R_2$$
 систематическими:
$$\epsilon = \frac{\Delta R_X}{R_{X\ cp}} = \sqrt{\left(\frac{\Delta R_2}{R_2}\right)^2 + \left(\frac{\Delta I_3}{I_3}\right)^2 + \left(\frac{\Delta I_4}{I_4}\right)^2} \ .$$

8 По результатам работы сделать вывод.

Таблина 1

№ изм.	R_2 , O_M	l ₃ , м	l ₄ , M	R_X , O_M	R_{Xcp} , Om	ΔR_X , Om	d_{cp} , M	р , Ом·м	ε, %
1	1								
2	2								
3	3								
4	4								
5	5								
6	6								
7	7								
8	8								
9	9								

	•		opa			pes	,	,		,							,										 	
						:				:				:	:							:			:			
	! !	! ! !	1 1 1		!		! !			! ! !			! !	! ! !	! ! !		! ! !					! ! !	! !		! ! !			! ! !
	; !	; :	;·		; ·		; · !	 	} 	;			(; :	(; ;		; :			(; 	; :	; :		 	;
	¦ !	<u>-</u>	!		!	 -	<u>-</u>	¦		¦ !	 !		! !	- !	¦ !		¦ !		! !			¦ !	 !		; : :		 	¦
<u>.</u>	¦ !	<u> </u>	<u>.</u>		<u>.</u>		<u>.</u> !	¦ !	<u></u> -	¦ !	<u></u>	! !	<u></u> !	! !	¦ ! !	<u>.</u>	¦ !		¦ !		<u>.</u>	; : :	<u></u> .		<u></u> -		 	¦ !
; 	; { 	; }	; {	÷	; 		; } !	; { !	; }	; 			; 	; }	: 	; i	; }		; }		; }	: 	; }		; · 	; }	 	:
- 	¦ 	<u>-</u>	 	 	¦ 	ļ	¦ 	¦ 	¦ 	 			¦ 	- 	¦ ¦	 -	¦ 		¦ 			¦ ¦	¦ 		! ! ! :		 	¦
	¦ 	<u>-</u>	¦ 	ļ	<u> </u>	ļ	¦ 	¦ 	<u></u>	: ! !	<u>.</u>		¦ 	! ! ! !	: : :	<u>.</u>	: !	<u>.</u> 	¦ 			: : :	<u>.</u> 	<u>.</u>	! ! !		 	¦
	; ; 		; ; ; ;	<u>.</u>	<u>.</u> 	<u>.</u>	; ; 	; ; 	: 	; ; ;			; ;	: : 	; ; ;		; ; ;		: ! 			; ; ;	: 	: : :	; ; ;		 	
	! ! !	! ! !	1 1 1 1			:	! ! !	! ! !	! ! !	! ! ! !			! ! !	! ! ! !	! ! ! !		! ! ! !		! ! !			! ! ! !	! ! !		! ! ! !			! ! !
	! !	! !	,				, ·		 ! !	 			! !		 		 		 				 ! !		·	 	 	!
	; !	 !	 !				 !	; !	 ! !	 !			 !	 ! !	 !				 ! !			 !	 !		!		 	 !
	; :	 	; :	<u></u>	: :	<u>:</u> :		; :	 !	: :			; ¦		; !	<u></u> -	; :		: :		<u>.</u>	; !	 - !				 	; :
	, { !	, !	 	- - - !		- !	, 	, { !	, } !	} !	- 		, !	, 	; { {		{ !	 	, 			 !	, } !		, ¦ : ¦	 	 	¦
	¦ ¦	<u></u>	¦	 	¦		¦	¦ ¦	¦	¦ ¦			¦ ¦	¦ 	¦ ¦		: : :		¦ ¦			¦ ¦	¦	¦	: 		 	¦
<u>.</u>	¦ !	<u>.</u> 	¦ 	<u> </u> 	: :	¦ 	¦ !	¦ !	: :	¦ !	: 		¦ !	! !	¦ !	 !	¦ !	: :	¦ 	<u></u>		¦ !	¦ !	: :	! ! !	¦	 	¦
	; !	; ! !:		<u> </u>		<u>.</u>	; ! L:	; , !	; ! L				; !		; !		: !		; ! !			; !	; 		: ! !		 	;
	; ;	<u>.</u>	¦ 	<u> </u>	ļ 	<u>.</u>	<u>.</u> 	; }	¦ }				; ;	; }					; ; ;				¦ }		: 		 	; ;
			! ! !	<u> </u>	<u>.</u>	<u>.</u>				¦ ¦	<u>.</u>		<u>.</u>		: : :		; ; ;					: : :		ļ 		; ;	 	<u>.</u>
	<u>.</u>		<u>.</u>	<u> </u>	<u>.</u>	<u>.</u>		: :		<u>.</u>			<u>.</u>		! ! !													<u>.</u>
	! ! !	! !	! ! !	-			! ! !						! ! !	! !	! !		! !					! !	! ! !		! !			:
	 !								 !	 	 !				 		 							 ! !	,) !	 	! !
	; ! !	 ! !	; !	; !		i	; ! !	; ! !	 ! !	; ! !			; ! !	; !	; !		; ! !		; ! !			; !	 ! !		 !		 	 !
	: :	<u></u> -	 	- -	:	-	¦ ¦	: :	 !	 			: :		: :		 !		 			: :	 !		:· :		 	
	 		; ;	 			¦ ¦	 																			 	
	¦	¦	¦	 	ļ		¦ ¦	¦	¦ ¦	 :			¦	¦ 	 :		 :		¦ 			 :	¦ ¦		 		 	
	: :	! 	¦ 	<u> </u>	<u>:</u> :	<u> </u>	! 	! !	! 	! !	: :		: :	 	! !		! ! !		! 			! !	! 	¦	! !: !		 	¦
	; ! !	<u>.</u> !	<u>.</u> 	<u> </u>	i !	<u>.</u>	: ! !	; ! !	: !	: ! !			; ! !	: ! !	; ! !		: ! !		: ! !			; ! !	: !		; ! !		 	; !:
	; {	; }	; 	; 		<u>.</u> 	; }	; {	; }	: 			; {	; }	; }				; }			; }	; }	}	 	; }	 	
	: : :	<u>.</u>	¦ 	- - 	¦ 	<u> </u>		: : :		; ; ;			: 		! ! ! !		: : :	ļ 	: : : :			; ; ;			! ! !		 	
	! ! !	! ! ! !	 	! ! !		! !	 	! ! !	 	! ! !	 		! ! !	 	! ! ! !	 - 	! ! !	! ! !	! ! ! !			! ! ! !	! ! ! !		 			! ! ! !
		:	1	-	:					: :			:	: :	:		: :					:			: :			
ВЬ	IB(ЭДΙ	Ы:																								 	

- **1** Каковы преимущества мостового метода измерения сопротивлений по сравнению с методом амперметра/вольтметра?
- 2 Дать определения: узел, ветвь, контур электрической цепи.
- **3** Сформулировать и записать правила Кирхгофа. Следствием каких законов они являются? Определить число уравнений, необходимых для описания электрической цепи.
- 4 Рассмотреть неравновесное состояние мостика Уитстона и написать систему уравнений, его характеризующую.
- 5 Равновесное состояние мостика Уитстона.
- 6 Показать, что соотношение $R_X = R_2 \cdot \frac{l_3}{l_4}$ справедливо, если проволока реохорда однородна.
- **1.** На рисунке приведена зависимость силы тока от сопротивления внешней цепи для трех источников тока, обладающих одинаковыми ЭДС. Их внутренние сопротивления находятся в соотношении...

2. К источнику тока с ЭДС **12** В подключили реостат. На рисунке показан график зависимости силы тока в реостате от его сопротивления. Внутреннее сопротивление этого источника тока равно...

3. Для произвольного узла и замкнутого контура в электрической схеме, записать уравнения по I и II правилам Кирхгофа.

4. В электрической схеме, представленной на рисунке, $\varepsilon_2 = 1$ В, $\varepsilon_3 = 4$ В, R_1 =4 Ом, R_2 =6 Ом, R_3 =3 Ом, I_1 =3 А, I_2 =2 А. Определить величину Э.Д.С. источника тока ε_1 .

5. На участке неразветвленной цепи протекает ток I заданного направления. Определить разность потенциалов между точками AC.

6. Электрическая цепь состоит из источника тока с ЭДС **10** В и внутренним сопротивлением **1** Ом, а также резистора с неизвестным сопротивлением. Вольтметр, подключенный к зажимам источника, показывает **8** В. Определить силу тока в цепи.

ПРИЛОЖЕНИЕ 1. РАСЧЕТ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЙ

ПРЯМЫЕ ИЗМЕРЕНИЯ.

Случайная погрешность Δx_{cn} определяется по формуле

$$\Delta x_{cn} = t_{n,\alpha} \sqrt{\frac{1}{n(n-1)} \cdot \sum_{i=1}^{n} (x_i - x_{cp})^2}$$

где n – число измерений, $t_{n,\alpha}$ – коэффициент Стъюдента, x_{cp} – среднее значение измеряемой величины. Доверительная вероятность α обычно принимается равной 0,95.

Систематическая погрешность Δx_{cucm} определяется через класс точности прибора

$$\Delta x_{cucm} = \frac{X_{nped} \cdot E_x}{100\%} ,$$

где X_{nped} — максимальное значение по шкале данного прибора, E_x — класс точности прибора.

Если класс точности прибора неизвестен, то систематическая погрешность считается **равной половине цены наименьшего** деления.

Абсолютная погрешность Δx складывается из случайной и систематической погрешностей :

$$\Delta x = \Delta x_{cn} + \Delta x_{cucm}$$

Относительная погрешность определяется по формуле:

$$\varepsilon = \frac{\Delta x}{x_{cp}} \cdot 100\%.$$

Окончательные результаты вычислений представляют в виде: $x = x_{cp} \pm \Delta x$, $\varepsilon = ...\%$.

КОСВЕННЫЕ ИЗМЕРЕНИЯ.

Результат косвенного измерения всегда рассчитывается по формуле на основании прямых измерений. Например, в случае функции двух переменных f = f(x,y) погрешность при косвенных измерениях будет находиться по правилам дифференцирования с последующей заменой дифференциалов погрешностями:

$$\Delta f = \sqrt{\left(\frac{\partial f}{\partial x} \cdot \Delta x\right)^2 + \left(\frac{\partial f}{\partial y} \cdot \Delta y\right)^2}.$$

Независимо от знака производных, слагаемые в данном выражении должны учитываться только со знаком «+». Если в формулу входят константы, то при расчетах в них необходимо учитывать хотя бы на одну значащую цифру больше, чем в измеряемой величине. Тогда они практически не вносят погрешности в результат измерения.

Рассмотрим более подробно расчет погрешности косвенных измерений на примере лабораторной работы № 1.

Относительная погрешность в определении удельного сопротивления может быть найдена в результате

дифференцирования соотношения $\rho = \frac{U}{I} \cdot \frac{\pi}{4} \cdot \frac{d^2}{I}$.

$$\varepsilon_{\rho} = \frac{\Delta \rho}{\rho} = \sqrt{\left(\frac{\Delta U}{U}\right)^2 + \left(\frac{\Delta I}{I}\right)^2 + \left(2\frac{\Delta d}{d}\right)^2 + \left(\frac{\Delta I}{I}\right)^2} \quad .$$

Каждая из абсолютных погрешностей ΔU , Δd , ΔI , ΔI складывается из случайной и систематической погрешности. Например, в случае измерения диаметра проволоки

$$\Delta d = \Delta d_{cn} + \Delta d_{cucm}$$
.

При каждом измерении значения силы тока, напряжения и длины проводника остаются постоянными при прочих равных условиях. Поэтому для этих величин можно ограничиться систематической абсолютной погрешностью измерения $\Delta U = \Delta U_{cucm}$, $\Delta I = \Delta I_{cucm}$. Систематические погрешности в определении длины и диаметра проволоки равны: $\Delta I_{cucm} = 0.5$ мм и $\Delta I_{cucm} = 0.01$ мм соответственно. Погрешности ΔU и ΔI находятся по классу точности приборов (см. приложение 2, 3).

Случайная погрешность Δd_{cr} находится на основании данных таблицы 3 (лаб. раб. №1) по формуле

$$\Delta d_{cn} = t_{n,\alpha} \sqrt{\frac{1}{n(n-1)} \cdot \sum_{i=1}^{n} (d_i - d_{cp})^2}$$

Абсолютная погрешность в определении удельного сопротивления может быть найдена умножением среднего значения на относительную погрешность (в долях целого числа)

$$\Delta \rho = \rho_{cp} \cdot \varepsilon_{\rho}$$

Окончательные результаты вычислений обычно представляют в виде: $\rho = \rho_{cp} \pm \Delta \rho$

ПРИЛОЖЕНИЕ 2. ОБОЗНАЧЕНИЯ НА ПРИБОРАХ

Основными характеристиками электроизмерительных приборов являются система приборов, класс точности, чувствительность, цена деления прибора и предел измерения. Система прибора определяется физическим явлением, положенным в основу действия прибора. Различают приборы магнитоэлектрической, электромагнитной, электродинамической и электростатической систем.

ПРИЛОЖЕНИЕ 3. КЛАССЫ ТОЧНОСТИ ПРИБОРОВ

Все электроизмерительные приборы по точности измерений делятся на несколько классов: 0,02; 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Класс точности прибора показывает, какой процент от предельного значения измеряемой величины составляет систематическая погрешность.

 E_{x} – класс точности прибора для измеряемой величины X. По определению $E_{x} = \frac{\Delta X}{X_{nped}} \cdot 100\%$, где X_{nped} – наибольшее значение величины X, которое можно измерить данным прибором. Следовательно, систематическая погрешность измерений $\Delta X = \frac{1}{100\%} \cdot E_{x} \cdot X_{nped}$ не зависит от результата измерений. Относительная же ошибка $\varepsilon_{x} = \frac{\Delta X}{X}$ оказывается тем меньше, чем больше значение измеряемой величины X. То есть, измерения оказываются более точными, если результаты близки к предельным значениям.

<u>Пример:</u> миллиамперметр рассчитан на 100мА. Класс точности прибора $E_I = 0,2$. Систематическая погрешность определяется выражением

$$\Delta I = \frac{1}{100} \cdot E_I \cdot I_{npeo} = 0.2 \text{ MA}.$$

Пусть данным прибором измерен ток 50 мА. Тогда относительная погрешность измерений составляет:

$$\varepsilon_I = \frac{\Delta I}{I} \cdot 100\% = \frac{0.2 \text{ MA}}{50 \text{ MA}} \cdot 100\% = \pm 0.4\%$$

Если класс точности прибора неизвестен, то систематическая погрешность принимается равной половине цены наименьшего деления прибора.

ПРИЛОЖЕНИЕ 4. ТАБЛИЦА КОЭФФИЦИЕНТОВ СТЬЮДЕНТА

число измерений <i>п</i>	2	3	4	5	6	7	8	9	10
надежность α=0,95	12,7	4,3	3,2	2,8	2,6	2,4	2,4	2,3	2,3

ПРИЛОЖЕНИЕ 5.

ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

Часто в практике физического эксперимента искомую величину невозможно определить из опытов, проведенных в одних и тех же условиях путем многократных измерений. Искомая величина в процессе эксперимента изменяется. Цель эксперимента в этом случае состоит в нахождении функциональной зависимости, которая наилучшим образом описывает изменение интересующего параметра. Математическая обработка результатов измерений в этом случае сводится к нахождению формулы, наиболее близко описывающей экспериментальную функциональную зависимость.

Основные требования, предъявляемые к построению графиков

При построении графиков нужно придерживаться ниже перечисленных правил.

- 1. Графики аккуратно (карандашом) строятся на специальной бумаге (миллиметровой, логарифмической или полулогарифмической). При их отсутствии иногда приходится (хотя это крайне редко!) пользоваться бумагой «в клеточку» или белой бумагой, на которой карандашом нанесена сетка. Не следует выбирать слишком малый или слишком большой лист бумаги. Удобна бумага размером в обычный тетрадный лист (или развернутый лист). Полезно пользоваться листами миллиметровки из блокнотов (или планшетов) для диаграмм. Допускается построение графиков с помощью стандартных компьютерных программ, но и в этом случае графики должны соответствовать всем изложенным требованиям.
 - 2. На координатных осях должны быть указаны обозначения откладываемых величин и единицы их измерения.
- **3.** Начало координат, если это оговорено особо, может не совпадать с нулевыми значениями величин. Его выбирают таким образом, чтобы площадь чертежа была использована максимально.
- **4.** Перед построением графика для каждой из шкал необходимо **выбрать масштаб**. Масштабные деления на координатных осях нужно наносить равномерно, то есть через **равные** промежутки.
- **5.** Масштаб выбирают таким образом, чтобы кривая была равномерно растянута вдоль обеих осей. Если график представляет собой прямую, то угол ее наклона к осям должен быть близок к 45, а положение любой точки можно было определить легко и быстро (масштаб, при котором чтение графика затруднено, считается неприемлемым).

Масштаб является удобным для чтения графика, если в одном делении (миллиметре или сантиметре), нанесенном на оси графика, содержится одна или две (пять, десять, пятьдесят и т. д.) единиц измеряемой величины. Один из правильных вариантов градуировки может быть таким: 0; 1,0; 2,0; 3,0; 4,0; 5,0. Вариант 0; 1,25; 2,50; 3,75; 5,0 нежелателен, т.к. при такой «дробной» организации шкалы трудно строить и читать график. Предпочтительны варианты, когда между делениями шкалы две, четыре, пять или десять клеток. Нежелательны варианты с 3, 6, 7, 9 клетками.

6. После выбора и нанесения на оси масштаба наносятся значения физических величин. Экспериментальные точки изображаются четко и крупно: в виде кружков, крестиков, разноцветных точек и т.п. Координаты экспериментальных точек на осях не указывают, а линии, определяющие эти координаты, не проводят, так как это загромождает рисунок и затрудняет работу с графиком.

Нельзя подписывать на шкале числа, которые получаются в результате эксперимента. Например, 1,12; 1,19; 1,92; 2,87; 3,05; 3,28, 4,27!

Затем от каждой точки вверх и вниз, вправо и влево откладываются в виде отрезков соответствующие погрешности (доверительный интервал) в масштабе графика (см. рис.).

7. После нанесения экспериментальных точек строится график, т.е. проводится **предсказанная теорией плавная кривая** или **прямая** так, чтобы она пересекала все области доверительных интервалов. В пределах погрешности измерения по экспериментальным данным можно провести несколько кривых, проходящих достаточно близко к опытным точкам. Необходимо выбирать кривую с наиболее простым и удобным в использовании видом. *Для этого эмпирическую зависимость можно обработать при помощи математических методов.*

Рисунок - Нанесение экспериментальных точек и погрешностей на график

При значительном разбросе экспериментальных точек кривую (прямую) следует проводить не по точкам, а между ними. Причем, количество точек по обе стороны от нее должно быть одинаковым, и суммы отклонений экспериментальных точек снизу и сверху кривой должны быть близки.

Исключение составляют градуировочные графики, на которых точки, нанесенные без погрешностей, соединяются последовательными отрезками прямых, а точность градуировки указывается в правом верхнем углу под названием графика.

Однако, если в процессе градуировки прибора абсолютная погрешность измерений изменялась, то на градуировочном графике наносятся погрешности каждой измеренной точки.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. **Савельев, И.В.** Курс общей физики (в 3 тт.). Том 1. Механика. Молекулярная физика. [Электронный ресурс] СПб. : Лань, 2019. 436 с. Доступ из ЭБС «Лань». Режим доступа: https://e.lanbook.com/book/113944.
- 2. **Савельев И.В.** Курс общей физики. В 5 тт. Т. 2. Электричество и магнетизм: Учебное пособие. 5/е изд., испр. СПб.: Издательство «Лань», 2011. 352 с. Доступ из ЭБС «Лань». Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=705.
- 3. **Кузнецов С.И.** Курс физики с примерами решения задач. Часть І. Механика. Молекулярная физика. Термодинамика. 2014.- 464 с. Доступ из ЭБС «Лань». Режим доступа: https://e.lanbook.com/book/42189.
- 4. **Кузнецов С.И.** Курс физики с примерами решения задач. Часть ІІ. Электричество и магнетизм. Колебания и волны. Изд-во: «Лань», 2014. 416 с. Доступ из ЭБС «Лань». Режим доступа: http://e.lanbook.com/books/element.php?pl1_id=53682.
- 5. **Трофимова Т.И.** Курс физики. М.: Высшая школа. 2003. 542 с.
- 6. Лабораторные работы по физике. Часть І. Механика. Молекулярная физика и термодинамика. Учебное пособие и методические указания по выполнению лабораторных работ для студентов очной формы обучения. / Разработали и составили: Андрухова О.В., Гурова Н.М., Жуковская Т.М., Кирста Ю.Б., Кустов С.Л., Науман Л.В., Пацева Ю.В., Романенко В.В., Старостенкова Н.А., Черных Е.В. Барнаул: Изд-во АлтГТУ. 2019. 46 с. Прямая ссылка: http://elib.altstu.ru/eum/download/of/Andruhova PhisLabsPt1 ump.pdf.
- 7. Лабораторные работы по физике. Часть II. Электричество и магнетизм. Учебное пособие и методические указания по выполнению лабораторных работ для студентов всех форм обучения. / Разработали и составили: Гурова Н. М., Кустов С. Л., Пацева Ю. В., Романенко В. В., Черных Е. В. Барнаул: Изд-во АлтГТУ. 2019. 84 с. Прямая ссылка: http://elib.altstu.ru/eum/download/of/Andruhova PhisLabsPt2 ump.pdf.

Сергей Леонидович Кустов Вероника Викторовна Романенко Евгения Владимировна Черных Наталья Михайловна Гурова

питилом тихииловни г урови

Юлия Владимировна Пацева

ЛАБОРАТОРНЫЕ РАБОТЫ ПО ФИЗИКЕ

ЧАСТЬ І. МЕХАНИКА. МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА. ЭЛЕКТРИЧЕСТВО ЖУРНАЛ ЛАБОРАТОРНЫХ ОТЧЕТОВ

для студентов очной формы обучения

Издано в авторской редакции. Подписано в печать 20.01.21. Формат 60×84 1/8. Печать — ризография. Усл.п.л. 4,2. Тираж 700 экз. Заказ 2022 -

Издательство Алтайского государственного технического университета им. И.И. Ползунова, 656038, г. Барнаул, пр-т Ленина, 46.