Carrera de Data Scientist

Juan Morales Volosín

Ha realizado y completado con éxito su carrera en Coderhouse. La duración fue de 40 semanas, cumpliendo todos los requisitos académicos exigidos.

24 de octubre de 2024

Alejandra Vatrano

Directora académica

AD

Christian Patiño

Contenidos

En las siguientes diapositivas, y separados por curso, presento un pantallazo de los trabajos finales correspondientes. Para estos utilicé Power BI, Python (con 'pandas') y Google Colaboratory.

En el repositorio, adicionalmente a estos trabajos se encuentran otros realizados durante la cursada.

Para acceder a todos los archivos, hacer clic en este <u>enlace al</u> <u>repositorio</u>.

Data Analytics

Juan Morales Volosín

Ha realizado y completado con éxito su curso en Coderhouse. La duración fue de 46 horas dictadas a lo largo de 12 semanas, cumpliendo todos los requisitos académicos exigidos.

12 de marzo de 2024

Pablo Guzzi

Director de la Carrera de Data Chief Data & Analytics Officer en Ualá Certificado por

O LEMON

An)

Christian Patiño

Por Juan Ignacio Morales Volosín

Educación

Se presenta información sobre el nivel educativo en la Ciudad, mostrando cuántos años de escolaridad cursaron sus ciudadanos. Asimismo, se analiza a fondo qué tipos de estudios cursaron, cursan, y en qué tipos de instituciones.

Data Science I: Fundamentos para la Ciencia de Datos

Juan Morales Volosín

Ha realizado y completado con éxito su curso en Coderhouse. La duración fue de 38 horas dictadas a lo largo de 10 semanas, cumpliendo todos los requisitos académicos exigidos.

21 de mayo de 2024

Tamara Drainer

Coderhouse Head de operaciones académicas Certificado por

In The

Christian Patiño

Data Science II: Machine Learning para la Ciencia de Datos

Juan Morales Volosín

Ha realizado y completado con éxito su curso en Coderhouse. La duración fue de 62 horas dictadas a lo largo de 16 semanas, cumpliendo todos los requisitos académicos exigidos.

24 de septiembre de 2024

Tamara Drajner

Coderhouse Head de operaciones académicas

Christian Patiño


```
+ Code + Text
                                                                                                                                            Gemini
                                                                                                                             Connect v
Table of contents
                                         [ ] # Printing the DataFrame
        k Nearest Neighbors
                                              ml results df ordered = ml results df.sort values(by = ['Final Adjusted R2'], ascending = False)
       Regression
                                              print(
                                                  ml results df ordered[
           kNN Optimization
                                                      ['Model', 'Final Adjusted R2', 'Final RMSE', 'Final RAE', 'Best R2 Score', 'Best Parameters']
                                                  ].map(lambda x: list(x.values()) if isinstance(x, dict) else x)
        Random Forest Regression
           RDF Optimization
                                         ₹
                                                    Model Final Adjusted R2 Final RMSE Final RAE Best R2 Score
                                                                                                                               Best Parameters
                                                 RDF Reg
                                                                    0.982490
                                                                               906.689630
                                                                                           0.051243
                                                                                                          0.965414
                                                                                                                          [25, sqrt, 1, 2, 380]
        Gradient Boosting
                                                                                                          0.968199
                                                  GBM Reg
                                                                   0.981033 943.649359 0.051275
                                                                                                                          [25, sqrt, 2, 5, 160]
       Regression
                                                  GBM Reg
                                                                   0.977067 1041.489312 0.051538
                                                                                                          0.981108
                                                                                                                       [None, sqrt, 1, 10, 380]
                                                                   0.977067 1041.489633
                                                                                           0.051538
                                                                                                          0.981108
                                                  GBM Reg
                                                                                                                       [None, sqrt, 1, 10, 280]
                                                  GBM Reg
                                                                   0.977067 1041.493103
                                                                                           0.051539
                                                                                                          0.981108
                                                                                                                       [None, sqrt, 1, 10, 220]

    GBM Optimization

                                                  XGB Reg
                                                                   0.973169 1126.521971 0.054162
                                                                                                          0.978444
                                                                                                                     [0.8, 0.1, None, 360, 1.0]
                                                                                                          0.978451
                                                                                                                     [0.8, 0.1, None, 320, 1.0]
                                                 XGB Reg
                                                                   0.973075 1128.500991 0.054885
        Support Vector Machine
                                                  XGB Reg
                                                                   0.973049 1129.028778
                                                                                           0.055241
                                                                                                          0.978447
                                                                                                                     [0.8, 0.1, None, 300, 1.0]
       Regression
                                                  kNN Reg
                                                                   0.933780 1763.226547
                                                                                           0.179632
                                                                                                          0.932780
                                                                                                                       [euclidean, 5, distance]
                                                  SVM Reg
                                                                   0.703453 3745.144158
                                                                                                          0.893006
                                                                                                                                  [10, linear]
                                                                                           0.260710
           SVM Optimization
                                                  SVM Reg
                                                                   0.647048 4085.823710
                                                                                          0.356155
                                                                                                          0.872526
                                                                                                                           [50, 3, auto, poly]
                                                 SVM Reg
                                                                   0.602688 4334.980719 0.464197
                                                                                                          0.839854
                                                                                                                           [10, 3, auto, poly]
        Extreme Gradient Boosting
       Regression
                                                                                                                                 Métricas desde Python
                                         [ ] # Parameter names ordered as in the last printout

    XGB Optimization

                                                                                                                                    'scikit-learn' tras
                                              for index, row in ml results df ordered.iterrows():
                                                  model = row['Model']
                                                                                                                               búsquedas en cuadrícula.
        Model Selection
                                                  best parameters = row['Best Parameters']
                                                  print(model, list(best parameters.keys()))
     Monetization
                                         → RDF Reg ['max depth', 'max features', 'min samples leaf', 'min samples split', 'n estimators']
     Insights / Conclusions
                                              GBM Reg ['max depth', 'max features', 'min samples leaf', 'min samples split', 'n estimators']
                                              GBM Reg ['max depth', 'max features', 'min samples leaf', 'min samples split', 'n estimators']
        Future Directions
                                              GBM Reg ['max depth', 'max features', 'min samples leaf', 'min samples split', 'n estimators']
                                              GBM Reg ['max depth', 'max features', 'min samples leaf', 'min samples split', 'n estimators']
                                              XGB Reg ['colsample bytree', 'learning rate', 'max depth', 'n estimators', 'subsample']
    Section
                                              XGB Reg ['colsample_bytree', 'learning_rate', 'max_depth', 'n_estimators', 'subsample']
                                              XGB Reg ['colsample bytree', 'learning rate', 'max depth', 'n estimators', 'subsample']
                                              kNN Reg ['metric'. 'n neighbors'. 'weights']
```


Data Science III: NLP & Deep Learning aplicado a Ciencia de Datos

Juan Morales Volosín

Ha realizado y completado con éxito su curso en Coderhouse. La duración fue de 16 horas dictadas a lo largo de 4 semanas, cumpliendo todos los requisitos académicos exigidos.

24 de octubre de 2024

Tamara Drajner

Coderhouse Head de operaciones académicas An)

Christian Patiño

