第四章 函数的连续性

§1 连续性概念

1. 按定义证明下列函数在其定义域内连续

$$(1)f(x) = \frac{1}{x}$$
 $(2)f(x) = |x|$

证:(1) $f(x) = \frac{1}{x}$ 的定义域为 $D = (-\infty,0) \cup (0,+\infty)$

当 $x,x_0 \in D$ 时,有

$$\left| \frac{1}{x} - \frac{1}{x_0} \right| = \frac{\left| x - x_0 \right|}{\left| x \right| \left| x_0 \right|}$$

由三角不等式可得: $|x| \ge |x_0| - |x - x_0|$,故当 $|x - x_0| < |x_0|$ 时,有

$$\left|\frac{1}{x} - \frac{1}{x_0}\right| \le \frac{\left|x - x_0\right|}{\left|x_0\right|^2 - \left|x - x_0\right| \left|x_0\right|}$$

对任给正数 ϵ ,取 $\delta = \frac{\epsilon x_0^2}{1 + \epsilon |x_0|} > 0$,则 $\delta < |x_0|$

当 $x \in D$ 且 $|x-x_0| < \delta$ 时,有

$$|f(x) - f(x_0)| = |\frac{1}{x} - \frac{1}{x_0}| < \varepsilon$$

可见 f(x) 在 x_0 连续.

由 x_0 的任意性知: f(x) 在其定义域内连续.

(2) f(x) = |x| 的定义域为 $(-\infty, +\infty)$,对任何 $x_0 \in (-\infty, +\infty)$,由于, $||x| - |x_0|| \le |x - x_0|$

从而对任给正数 ϵ .取 $\delta = \epsilon$.当 $|x - x_0| < \delta$ 时,有

$$|f(x) - f(x_0)| = ||x| - |x_0|| \le |x - x_0| < \varepsilon$$

故 f(x) 在 x_0 连续,由 x_0 的任意性知, f(x) 在 $(-\infty, +\infty)$ 连续.

2. 指出下列函数的间断点并说明其类型

(1)
$$f(x) = x + \frac{1}{x}$$
 (2) $f(x) = \frac{\sin x}{|x|}$

(3)
$$f(x) = [|\cos x|]$$
 (4) $f(x) = \operatorname{sgn} |x|$

$$(5) f(x) = \operatorname{sgn}(\cos x) \quad (6) f(x) = \begin{cases} x, x \text{ 为有理数} \\ -x, x \text{ 为无理数} \end{cases}$$

(7)
$$f(x) = \begin{cases} \frac{1}{x+7}, & -\infty < x < -7 \\ x, & -7 \le x \le 1 \\ (x-1)\sin\frac{1}{x-1}, & 1 < x < +\infty \end{cases}$$

解 (1) f(x) 在 x = 0 间断. 由于 $\lim_{x \to 0} (x + \frac{1}{x})$ 不存在,故x = 0 是 f(x) 的第二类间断点.

(2)
$$f(x)$$
 在 $x = 0$ 间断.由于 $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sin x}{x} = 1$

(3)
$$f(x)$$
 在 $x = n\pi$ 间断, $(n = 0, \pm 1, \pm 2, \cdots)$ 由于 $\lim_{x \to n\pi^+} f(x) = \lim_{x \to n\pi^+} [+\cos x +] = 0$, $\lim_{x \to n\pi^-} f(x) = \lim_{x \to n\pi^-} [+\cos x +] = 0$ 故 $x = n\pi$ 是 $f(x)$ 的可去间断点 $(n = 0, \pm 1, \pm 2, \cdots)$

(4)
$$f(x)$$
 在 $x = 0$ 间断.由于 $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \operatorname{sgn} |x| = -1$,

 $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} \operatorname{sgn} |x| = 1, 故 x = 0 是 f(x) 的可去间断点.$

(5)
$$f(x)$$
 在 $x = 2k\pi \pm \frac{\pi}{2}(k = 0, \pm 1, \pm 2, \cdots)$ 间断.由于
$$\lim_{x \to \frac{4k+1}{2}\pi^{+}} f(x) = 1, \lim_{x \to \frac{4k+1}{2}\pi^{-}} f(x) = 1,$$

$$\lim_{x \to \frac{4k-1}{2}\pi^{+}} f(x) = 1, \lim_{x \to \frac{4k-1}{2}\pi^{-}} f(x) = -1$$

故 $x = 2k\pi \pm \frac{\pi}{2}(k = 0, \pm 1, \pm 2, \cdots)$ 是 f(x) 的跳跃间断点.

- (6) f(x) 在 $x \neq 0$ 的点间断且若 $x_0 \neq 0$,则 $\lim_{x \to x_0} f(x)$ 不存在,故 $x \neq 0$ 是 f(x) 的第二类间断点.
- (7) f(x) 在 x = -7, x = 1 间断且 $\lim_{x \to -7^+} f(x) = -7$, $\lim_{x \to -7^-} f(x)$ 不存在,故 x = -7是 f(x)的第二类间断点.又因

3. 延拓下列函数,使其在 R 上连续:

(1)
$$f(x) = \frac{x^3 - 8}{x - 2}$$
 (2) $f(x) = \frac{1 - \cos x}{x^2}$ (3) $f(x) = x \cos \frac{1}{x}$ 解 (1) 当 $x = 2$ 时, $f(x)$ 没有定义.而

$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2} = \lim_{x \to 2} (x^2 + 2x + 4) = 12$$
 于是函数

(2) 当 x = 0 时, f(x) 没有定义, 而 $\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$ 于是函数

$$F(x) = \begin{cases} \frac{1 - \cos x}{x^2}, x \neq 0 \\ \frac{1}{2}, x = 0 \end{cases}$$
 是 $f(x)$ 的延拓,且在 $(-\infty, +\infty)$ 上连续.

(3) 当 x = 0 时, f(x) 没有定义, 而 $\lim_{x \to 0} f(x) = \lim_{x \to 0} x \cos \frac{1}{x} = 0$ 于 是函数

$$F(x) = \begin{cases} 0, x = 0 \\ x\cos\frac{1}{x}, x \neq 0 \end{cases}$$
 是 $f(x)$ 的延拓,且在 $(-\infty, +\infty)$ 上连续.

4. 证明:若 f 在 x_0 连续,则 $+ f + = f^2$ 也在点 x_0 连续.又问:若 $+ f + = f^2$ 在 I 上连续,那么 f 在 I 上是否必连续?

证:(1) 若 f 在 x_0 连续,则 |f| 与 f^2 也在 x_0 连续.

- (|) | f | 在 x_0 连续.事实上,由于 f(x) 在 x_0 连续,从而对任给 正数 ε ,存在正数 δ ,当 | $x-x_0$ | $< \delta$ 时,有 | $f(x)-f(x_0)$ | $< \varepsilon$,而 | | f(x) | - | $f(x_0)$ | $| \le | f(x)-f(x_0)$ | 故当 | $x-x_0$ | $< \delta$ 时, | | f(x) | - | $| f(x_0)$ | $| < \varepsilon$,因此 | | f(x) | 在 x_0 连续.
- (ii) f^2 在 x_0 连续. 事实上,由于 f(x) 在 x_0 连续,从而由局部有界性知:存在 M > 0 及 $\delta_1 > 0$ 使当 $|x x_0| < \delta_1$ 时,有

 $|f(x)| < \frac{M}{2}$ ①,由连续的定义知:对任给正数 ϵ ,存在正数 δ_2 , 当 $|x-x_0| < \delta_2$ 时,有 $|f(x)-f(x_0)| < \frac{\epsilon}{M}$ ② 现取 $\delta = \min\{\delta_1,\delta_2\}$,则当 $|x-x_0| < \delta$ 时,① 与 ② 同时成立,因此 $|f^2(x)-f^2(x_0)| = |f(x)-f(x_0)| \cdot |f(x)+f(x_0)|$ 《 $|f(x)-f(x_0)| \cdot |f(x)| + |f(x_0)| < \epsilon$ 故 f^2 在 x_0 连续.

(2) 逆命题不成立,例如设 $f(x) = \begin{cases} -1, x \text{ 为有理数} \\ 1, x \text{ 为无理数} \end{cases}$

则 |f|, f^2 均为常函数, 故是连续函数, 但 f(x) 在 $(-\infty, +\infty)$ 中的任一点都不连续.

5. 设当 $x \neq 0$ 时 $f(x) \equiv g(x)$,而 $f(0) \neq g(0)$.证明:f = 1 语 两者中至多一个在 x = 0 连续.

证: (反证) 假设 f(x) 与 g(x) 均在 x = 0 连续,则 $\lim_{x\to 0} f(x) = f(0)$, $\lim_{x\to 0} g(x) = g(0)$ 又因 $x \neq 0$ 时, $f(x) \equiv g(x)$, 于是 $\lim_{x\to 0} f(x) = \lim_{x\to 0} g(x)$ 从而 f(0) = g(0), 这与 $f(0) \neq g(0)$ 相矛盾. 故 f(0) = g(0) 至多有一个在 f(0) = g(0) 以

6. 设 f 为区间I 上的单调函数. 证明: 若 $x_0 \in I$ 为 f 的间断点,则 x_0 必是 f 的第一类间断点.

证 不妨设 f 为区间I 上的递增函数. 于是当 $x \in I$ 且 $x < x_0$ 时, $f(x) < f(x_0)$. 从而,由函数极限的单调有界定理可知: $f(x_0 - 0)$ 存

在且
$$f(x_0 - 0) = \lim_{x \to x_0^-} f(x) \leqslant f(x_0)$$

同理可证
$$f(x_0 + 0)$$
 存在且 $f(x_0 + 0) = \lim_{x \to x_0^+} f(x) \geqslant f(x_0)$

因此, x_0 是 f(x) 的第一类间断点.

7. 设函数 f 只有可去间断点,定义 $g(x) = \lim_{y \to x} f(y)$. 证明 g 为连续函数.

证 设 f 的定义域为区间 I ,则 g(x) 在 I 上处处有定义(因 f 只有可去间断点,从而极限处处存在). 任取 $x_0 \in I$,下证 g(x) 在 x_0 连续. 由于 $g(x_0) = \lim_{y \to x_0} f(y)$ 且 $g(x) = \lim_{y \to x} f(y)(x \in I)$,从而对任给正数 ε ,存在正数 δ ,当 $0 < |y - x_0| < \delta$ 时,有

$$g(x_0) - \frac{\varepsilon}{2} < f(y) < g(x_0) + \frac{\varepsilon}{2}$$
 (1)

任取 $x \in U^{\circ}(x_0, \delta)$, 则必存在 $U(x, \eta) \subset U^{\circ}(x_0 \delta)$ 于是当 $y \in U(x, \eta)$ 时,(1) 成立. 由极限的不等式性质知

$$g(x_0) - \frac{\varepsilon}{2} \leqslant g(x) = \lim_{y \to x} f(y) \leqslant g(x_0) + \frac{\varepsilon}{2}$$

因此当 $x \in U^{\bullet}(x_0, \delta)$ 时,有 $|g(x) - g(x_0)| < \epsilon$ 故 g(x) 在 x_0 处 连续.

8. 设 f 为 R 上的单调函数,定义 g(x) = f(x+0),证明 g 在 R 上每一点都右连续.

证 由于 f为 $(-\infty, +\infty)$ 上单调函数,故 f只有第一类间断点.故右极限处处存在.于是 g(x) 处处有定义,任取 $x_0 \in (-\infty, +\infty)$,下证 g 在 x_0 右连续.由于 $g(x_0) = f(x_0 + 0) = \lim_{y \to x_0^+} f(y)$ 且 $g(x) = \lim_{y \to x_0^+} f(y)(-\infty < x < \infty)$,从而对任给正数 ε ,存在正数 δ ,当 $0 < x - x_0 < \delta$ 时,有

$$g(x_0) - \frac{\varepsilon}{2} < f(y) < g(x_0) + \frac{\varepsilon}{2}$$
 (1)

任取 $x \in U_+^{\circ}(x_0,\delta)$,则必存在 $U_+^{\circ}(x,y) \subset U_+^{\circ}(x_0,\delta)$. 于是

当 $y \in U_+$ °(x,y) 时,(1) 成立. 由极限不等式性质知

$$g(x_0) - \frac{\varepsilon}{2} \leqslant g(x) = \lim_{x \to x^+} f(y) \leqslant g(x_0) + \frac{\varepsilon}{2}$$

因此当 $x \in U_+$ ° (x_0, δ) 时,有 $| g(x) - g(x_0) | < \epsilon$, 故 g(x) 在 x_0 处右连续.

- 9. 举出定义在[0,1] 上符合下述要求的函数:
- (1) 只在 $\frac{1}{2}$, $\frac{1}{3}$ 和 $\frac{1}{4}$ 三点不连续的函数;
- (2) 只在 $\frac{1}{2}$, $\frac{1}{3}$ 和 $\frac{1}{4}$ 三点连续的函数;
- (3) 只在 $\frac{1}{n}$ ($n=1,2,3,\cdots$)上间断的函数;
- (4) 只在 x = 0 右连续,而在其他点都不连续的函数.

$$\mathbf{H} \quad (1) \ f(x) = \frac{1}{2x - 1} + \frac{1}{3x - 1} + \frac{1}{4x - 1}$$

$$(3) f(x) = \left[\frac{1}{x}\right]$$

(4)
$$f(x) = \begin{cases} -x, x & \text{是}[0,1] \text{ 中无理数} \\ x, x & \text{是}[0,1] \text{ 中有理数} \end{cases}$$

§ 2 连续函数的性质

- 1. 讨论复合函数 $f \circ g = g \circ f$ 的连续性,设
- (1) $f(x) = \operatorname{sgn} x, g(x) = 1 + x^2$
- (2) $f(x) = \operatorname{sgn} x, g(x) = (1 x^2)x$

解 (1)由于 $f(x) = \operatorname{sgn} x, g(x) = 1 + x^2, 故(f \circ g)(x) = \operatorname{sgn}(1 + x^2) = 1$ 是连续函数. 又因为

$$(g \circ f)(x) = \begin{cases} 2, x \neq 0 \\ 1, x = 0 \end{cases}$$

因此,x = 0 是 gof 的可去间断点,其余点处处连续.

(2) 由于 $f(x) = \operatorname{sgn} x, g(x) = (1 - x^2)x$, 于是 $(g \circ f)(x) \equiv 0$, 可见 $g \circ f$ 处处连续. 因为

$$(f \circ g)(x) = \begin{cases} 1, x \in (-\infty, -1) \cup (0, 1) \\ 0, x = -1, 0, 1 \\ -1, x \in (-1, 0) \cup (1, +\infty) \end{cases}$$

故 x = -1.0.1 是 $f \circ g$ 跳跃间断点

- 2. 设 f,g 在点 x_0 连续,证明:
- (1) 若 $f(x_0) > g(x_0)$,则存在 $U(x_0,\delta)$,使在其内有 f(x) > g(x);
- (2) 若在某 $U^{\circ}(x_0)$ 内有 f(x) > g(x),则 $f(x_0) \ge g(x_0)$

证 (1) 由于 $f(x_0) > g(x_0)$, 从而 $\epsilon_0 = \frac{f(x_0) - g(x_0)}{2} > 0$, 因 f 在 x_0 连续, 于是 $\lim_{x \to x_0} f(x) = f(x_0)$. 因此, 存在正数 δ_1 , 使得当 $|x - x_0| < \delta_1$ 时, $|f(x) - f(x_0)| < \epsilon_0$

可见
$$f(x) > \frac{f(x_0) + g(x_0)}{2}$$
 (1)

又因 g 在 x_0 连续,从而存在正数 δ_2 ,当 $|x-x_0| < \delta_2$,

可见
$$g(x) < \frac{f(x_0) + g(x_0)}{2}$$
 (2)

现取 $\delta = \min\{\delta_1, \delta_2\}$, 当 $|x - x_0| < \delta$ 时, (1), (2) 同时成立 因此 $f(x) > g(x), x \in U(x_0, \delta)$

- (2) 假设命题不真,从而 $f(x_0) < g(x_0)$,由(1) 可知,存在 x_0 的某个 邻域 $U(x_0,\delta)$, 使 f(x) < g(x), $x \in U(x_0,\delta)$ 这与 $x \neq x_0$ 时, f(x) > g(x) 矛盾,故 $f(x_0) \geqslant g(x_0)$
- 3. 设 f,g 在区间 I 上连续,记 $F(x) = \max\{f(x),g(x)\}$ $G(x) = \min\{f(x),g(x)\}$ 证明 F 和 G 也都在 I 上连续.

提示:利用第一章总练习题 1.

证:由
$$F(x) = \frac{1}{2} \{ f(x) + g(x) + | f(x) - g(x) | \}$$

$$G(x) = \frac{1}{2} [f(x) + g(x) - | f(x) - g(x) |]$$

又由,若 f(x) 在 I 上连续 $\therefore h(x) = |f(x)|$ 在 I 上也连续. 由 f(x),g(x) 在 I 上连续. 所以, F(x),G(x) 在 I 上连续.

4. 设 f 为 R 上连续函数,常数 c > 0,记

$$F(x) = \begin{cases} -c, & \text{if } f(x) < -c \\ f(x), & \text{if } f(x) | \leq c \\ c, & \text{if } f(x) > c \end{cases}$$

证明 F 在 R 上连续.

提示: $F(x) = \max\{-c, \min\{c, f(x)\}\}$

证明:因为
$$F(x) = \frac{1}{2} \{ | c + f(x) | - | c - f(x) | \}$$

由题设, f(x) 在 R 上连续. 从而 $| f(x) \pm c |$ 在 R 上连续. 所以 F(x) 在 R 上连续.

5. 设
$$f(x) = \sin x$$
, $g(x) = \begin{cases} x - \pi, x \leq 0 \\ x + \pi, x > 0 \end{cases}$ 证明:复合函数 $f \circ g$ 在 $x = 0$ 连续,但 g 在 $x = 0$ 不连续.

证 由于
$$f(x) = \sin x, g(x) = \begin{cases} x - \pi, x \leq 0 \\ x + \pi, x > 0 \end{cases}$$

于是
$$f(g(x)) = \begin{cases} \sin(x-\pi), x \leq 0 \\ \sin(x+\pi), x > 0 \end{cases}$$

$$\lim_{x \to 0^+} f(g(x)) = \lim_{x \to 0^+} \sin(x - \pi) = 0$$

$$\frac{g(x)}{\sin(x+\pi), x > 0}
\lim_{x \to 0^{+}} f(g(x)) = \lim_{x \to 0^{+}} \sin(x-\pi) = 0
\lim_{x \to 0^{-}} f \circ g(x) = \lim_{x \to 0^{-}} \sin(x+\pi) = 0 \qquad f \circ g(0) = 0
\lim_{x \to 0^{+}} f \circ g(x) = \lim_{x \to 0^{-}} f \circ g(x) = f \circ g(0)$$

$$\frac{1}{x \to 0^{+}} f \circ g(x) = \frac{1}{x \to 0^{-}} f \circ g(x) = f \circ g(0)$$

$$\frac{1}{x \to 0^{+}} f \circ g(x) = \frac{1}{x \to 0^{+}} f \circ g(x) = f \circ g(0)$$

故
$$\lim_{x \to 0^+} f \circ g(x) = \lim_{x \to 0^-} f \circ g(x) = f \circ g(0)$$

从而 $f \circ g(x)$ 在x = 0 连续

但
$$\lim_{x\to 0^+} g(x) = \lim_{x\to 0^+} (x+\pi) = \pi$$
, $\lim_{x\to 0^-} g(x) = \lim_{x\to 0^-} (x-\pi) = -\pi$.

于是 x = 0 是 g 的跳跃间断点,从而 g 在 x = 0 不连续.

6. 设 f 在[a, + ∞) 上连续, 且 $\lim_{x\to\infty} f(x)$ 存在. 证明:f 在

[a, + ∞) 上有界,又问 f 在[a, + ∞) 上必有最大值或最小值吗?

由于 $\lim_{x\to +\infty} f(x)$ 存在,不妨记 $\lim_{x\to +\infty} f(x) = A$,对 $\epsilon = 1$,存在正数

证 假设 f(x) 在 [a,b] 上不恒为正且不恒为负,则必存在 $x_1,x_2 \in [a,b]$ 使 $f(x_1)$ 与 $f(x_2)$ 异号,不妨设 $x_1 < x_2, f(x_1) > 0$, $f(x_2) < 0$. 由于函数 f 在 [a,b] 上连续,故 f(x) 在 $[x_1,x_2]$ 上连续. 由根的存在性定理可得,存在 $\xi \in (x_1,x_2)$ 使得 $f(\xi) = 0$,这与不存在任何 x,使得 f(x) = 0 相矛盾,故 f 在 [a,b] 上恒正或恒负.

10. 证明:任一实系数奇次方程至少有一实根

证 设 $a_0x^{2n+1} + a_1x^{2n} + \cdots + a_{2n}x + a_{2n+1} = 0$ 为一实系数奇次方程且 $a_0 \neq 0$, 令其左端为 f(x) 且可设 $a_0 < 0$, 因而 f(x) 在 $(-\infty, +\infty)$ 上连续且 $\lim_{x \to +\infty} f(x) = +\infty$, $\lim_{x \to +\infty} f(x) = -\infty$, 从而存在 a < b, 使 0 < f(a) 且 f(b) < 0, 在 [a,b] 上应用根的存在性定理可知: f(x) = 0 在区间 [a,b] 内至少有一个实根.

11. 试用一致连续的定义证明:若 f, g 都在区间 I 上一致连续,则 f+g 也在 I 上一致连续.

证: $\forall \epsilon > 0$,由于 f(x) 在 I 上一致收敛,故 $\exists \delta_1 > 0$ 对任意 $x', x'' \in I$. 只要 $|x' - x''| < \delta_1$,就有 $|f(x') - f(x'')| < \frac{\epsilon}{2}$,又由于 g(x) 在 I 上一致收敛,故 $\exists \delta_2 > 0$,对任意 $x', x'' \in I$,只要 $|x' - x''| < \delta_2$,就有 $|g(x') - g(x'')| < \frac{\epsilon}{2}$,令 $\delta = \min\{\delta_1, \delta_2\}$ 对 任 意 $x', x'' \in I$ 只 要 $|x' - x''| < \delta$, 恒 有 |f(x') + g(x')| - [f(x'') + g(x'')]

$$\leqslant |f(x') - f(x'')| + |g(x') - g(x'')| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

故 f(x) + g(x) 在 I 上一致连续.

12. 证明 $f(x) = \sqrt{x}$ 在 $[0, +\infty)$ 上一致连续.

提示: $[0, +\infty) = [0,1] \cup [1, +\infty]$,利用定理 4.9 和例 10 的结论.

证明:因为 $f(x) = \sqrt{x}$ 在 $[0, +\infty)$ 上连续,故对任意的 a > 0, \sqrt{x} 在[0,a] 上连续,故在[0,a] 上一致连续,所以对任给的 $\epsilon > 0$,总 $\exists \delta_1 > 0$ 对 [0,a] 中的任意 x_1, x_2 , 当 $|x_1 - x_2| < \delta_1$ 时有

证 假设 f(x) 在 [a,b] 上不恒为正且不恒为负,则必存在 $x_1,x_2 \in [a,b]$ 使 $f(x_1)$ 与 $f(x_2)$ 异号,不妨设 $x_1 < x_2, f(x_1) > 0$, $f(x_2) < 0$. 由于函数 f 在 [a,b] 上连续,故 f(x) 在 $[x_1,x_2]$ 上连续. 由根的存在性定理可得,存在 $\xi \in (x_1,x_2)$ 使得 $f(\xi) = 0$,这与不存在任何 x,使得 f(x) = 0 相矛盾,故 f 在 [a,b] 上恒正或恒负.

10. 证明:任一实系数奇次方程至少有一实根

证 设 $a_0x^{2n+1} + a_1x^{2n} + \cdots + a_{2n}x + a_{2n+1} = 0$ 为一实系数奇次方程且 $a_0 \neq 0$, 令其左端为 f(x) 且可设 $a_0 < 0$, 因而 f(x) 在 $(-\infty, +\infty)$ 上连续且 $\lim_{x \to +\infty} f(x) = +\infty$, $\lim_{x \to +\infty} f(x) = -\infty$, 从而存在 a < b, 使 0 < f(a) 且 f(b) < 0, 在 [a,b] 上应用根的存在性定理可知: f(x) = 0 在区间 [a,b] 内至少有一个实根.

11. 试用一致连续的定义证明:若 f, g 都在区间 I 上一致连续,则 f+g 也在 I 上一致连续.

证: $\forall \epsilon > 0$,由于 f(x) 在 I 上一致收敛,故 $\exists \delta_1 > 0$ 对任意 $x', x'' \in I$. 只要 $|x' - x''| < \delta_1$,就有 $|f(x') - f(x'')| < \frac{\epsilon}{2}$,又由于 g(x) 在 I 上一致收敛,故 $\exists \delta_2 > 0$,对任意 $x', x'' \in I$,只要 $|x' - x''| < \delta_2$,就有 $|g(x') - g(x'')| < \frac{\epsilon}{2}$,令 $\delta = \min\{\delta_1, \delta_2\}$ 对 任 意 $x', x'' \in I$ 只 要 $|x' - x''| < \delta$, 恒 有 |f(x') + g(x')| - [f(x'') + g(x'')]

$$\leqslant |f(x') - f(x'')| + |g(x') - g(x'')| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

故 f(x) + g(x) 在 I 上一致连续.

12. 证明 $f(x) = \sqrt{x}$ 在 $[0, +\infty)$ 上一致连续.

提示: $[0, +\infty) = [0,1] \cup [1, +\infty]$,利用定理 4.9 和例 10 的结论.

证明:因为 $f(x) = \sqrt{x}$ 在 $[0, +\infty)$ 上连续,故对任意的 a > 0, \sqrt{x} 在[0,a] 上连续,故在[0,a] 上一致连续,所以对任给的 $\epsilon > 0$,总 $\exists \delta_1 > 0$ 对 [0,a] 中的任意 x_1, x_2 , 当 $|x_1 - x_2| < \delta_1$ 时有

 $|f(x_1) - f(x_2)| < \varepsilon$, 对上述的任意 $\varepsilon > 0$, 对 $[a, +\infty)$ 上的任意 x_1, x_2 . 因为 $|\sqrt{x_1} - \sqrt{x_2}| = \frac{|x_1 - x_2|}{|\sqrt{x_1} + \sqrt{x_2}|} < \frac{|x_1 - x_2|}{2\sqrt{a}}$, 只要 $|x_1 - x_2| < \varepsilon$ 即可,取 $\delta_2 = 2\sqrt{a\varepsilon}$. 当 $|x_1 - x_2| < \delta_2$ 时,有 $|\sqrt{x_1} - \sqrt{x_2}| < \varepsilon$,取 $\delta = \min\{\delta_1, \delta_2, \frac{a}{2}\}$,当任意 $x_1, x_2 \in [0, +\infty)$,且 $|x_1 - x_2| < \delta$ 时,总有 $x_1, x_2 \in [0, a]$ 或 $x_1, x_2 \in [\frac{a}{2}, +\infty)$,有 $|\sqrt{x_1} - \sqrt{x_2}| < \varepsilon$ 成立.

综上知 $f(x) = \sqrt{x}$ 在 $[0, +\infty)$ 上一致连续.

13. 证明: $f(x) = x^2 \text{在}[a,b]$ 上一致连续,但在 $(-\infty, +\infty)$ 上不一致连续.

证 (1) 先证 $f(x) = x^2$ 在 [a,b] 上一致连续. 对任给 $x_1, x_2 \in [a,b]$, 因 $|f(x_1) - f(x_2)| = |x_1^2 - x_2^2|$ = $|x_1 + x_2| \cdot |x_1 - x_2| \le 2 \max\{|a|, |b|\} \cdot |x_1 - x_2|$, 于是

对任给正数 ε ,取 $\delta = \frac{\varepsilon}{2\max\{|a|,|b|\}}$,当 $|x_1 - x_2| < \delta$ 时

有 $|f(x_1) - f(x_2)| < \varepsilon$ 故 f(x) 在[a,b] 上一致连续.

(2) 再证 f(x) 在 $(-\infty, +\infty)$ 上不一致连续. 取 $\epsilon_0 = 1$,不论正数 δ 取的多么小,只要 n 充分大,我们总可使

$$x_{n}' = n + \frac{1}{n} \, \exists \, x_{n}'' = n \,$$
的距离 $|x_{n}' - x_{n}''| = \frac{1}{n} < \delta$,但 $|f(x') - f(x'')| = 2 + \frac{1}{n^{2}} > \epsilon_{0}$

故 f(x) 在 $(-\infty, +\infty)$ 上不一致连续.

14. 设函数 f 在区间上满足利普希茨(Lipschitz)条件,即存在常数 L > 0,使得对 I 上任意两点 x', x'' 都有

$$|f(x') - f(x'')| \leq L |x' - x''|$$
,证明 f 在 I 上一致连续.

证 对任给正数 ϵ , 取 $\delta = \frac{\epsilon}{L+1}$, 对 I 上任意两点 x', x'', 当

 $|x'-x''| < \delta$ 时,由利普希茨条件可得

$$|f(x') - f(x'')| \le L |x' - x''| \le L \cdot \frac{\varepsilon}{L+1} < \varepsilon$$

故 f(x) 在 I 上一致连续.

15. 证明 $\sin x$ 在 $(-\infty, +\infty)$ 上一致连续. 提示: 利用不等式 $|\sin x' - \sin x''| \le |x' - x''|$ (见第三章 § 1 例 4)

证 对任给正数 ϵ , 取 $\delta = \frac{\epsilon}{2}$, 当 $|x' - x''| < \delta$ 时有 $|\sin x_1 - \sin x_2| \le |x' - x''| < \delta < \epsilon$ 故 $\sin x$ 在 $(-\infty, +\infty)$ 一致连续.

16. 设函数 f 满足第6题的条件. 证明 f 在[a, + ∞) 上一致连续.

证: $\forall \epsilon > 0$ 由于 $\lim_{x \to +\infty} f(x)$ 存在. 故 $\exists Z > a$,使当 x' > Z,x'' > Z 时恒有 $|f(x') - f(x'')| < \epsilon$,由于 f(x) 在 [a,Z+1] 上连续,从而 $\exists \delta' > 0$. 使当 $x' \in [a,Z+1]$, $x'' \in [a,Z+1]$, $|x'-x''| < \delta$ 时,恒有 $|f(x') - f(x'')| < \epsilon$,取 $\delta = \min\{\delta',Z\}$ 时,现设 x',x'' 满足; $a \le x' < + \infty$, $a \le x'' < + \infty$, $|x' - x''| < \delta$ 的任何两点,由于 $|x' - x''| < \delta$,故 x' 与 x'' 或同时属于 [a,Z+1],或同时满足 x' > Z,x'' > Z,因此,恒有 $|f(x') - f(x'')| < \epsilon$,故 f(x) 在 $[a,+\infty)$ 上一致连续.

17. 设函数 f 在[0,2a] 上连续,且 f(0) = f(2a) 证明:存在点 $x_0 \in [0,a]$,使得 $f(x_0) = f(x_0 + a)$

证 设 F(x) = f(x) - f(x+a) 由于 f(x) 在[0,2a] 上连续, 故 f(x+a) 在[0,a] 上连续,于是 F(x) 在[0,a] 上连续.且

$$F(0) = f(0) - f(a), F(a) = f(a) - f(2a) = f(a) - f(0)$$

(I) 若 f(0) = f(a),则 x = 0, a 均是使得 f(x) = f(x + a) 成立的 x

(II) 若 $f(0) \neq f(a)$,则 $F(0) \cdot F(a) < 0$,由根的存在性定理可知:存在 $x \in (0,a)$,使得 F(x) = 0 即 f(x) = f(x+a)由(I)(II) 知结论成立.

18. 设 f 为[a,b] 上的增函数,其值域为[f(a),f(b)] 证明 f 在[a,b] 上连续.

证 (反证法) 设 $x_0 \in (a,b)$ 是 f(x) 的间断点,由于 f(x) 递增,故 f(x) 在(a,b) 上的间断点是第一类的.于是 $f(x_0-0)$, $f(x_0+0)$ 都存在,且 $f(x_0)-f(x_0-0)$ 与 $f(x_0+0)-f(x_0)$ 中至少有一个大于 0,不妨设 $f(x_0)-f(x_0-0)>0$ 由函数单调性可知

当
$$a \leq x < x_0$$
 时, $f(x) \leq f(x_0 - 0)$

当 $x_0 < x \leq b$ 时, $f(x) > f(x_0)$

即 f(x) 不能取得 $f(x_0 - 0)$ 与 $f(x_0)$ 之间的实数,这与 f(x) 的值域是 [f(a), f(b)] 相矛盾. 故 f(x) 在 (a, b) 内连续. 类似可证 f(x) 在 a, b 处单侧连续. 从而 f(x) 在 [a, b] 上连续.

19. 设 f 在 [a,b] 上连续, $x_1, x_2, \dots, x_n \in [a,b]$. 证明: 存在 $\xi \in [a,b]$, 使得 $f(\xi) = \frac{1}{n} [f(x_1) + f(x_2) + \dots + f(x_n)]$

证 由于 f(x) 在[a,b] 上连续,从而 f 在 $[x_1,x_n]$ 上连续.故 f 在 $[x_1,x_n]$ 上取得最大值 M 与最小值m,于是对任给 $x \in [x_1,x_n]$,有 $m \leq f(x) \leq M$ 从而

$$m \leqslant \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n} \leqslant M$$

设 $x', x'' \in [x_1, x_n]$, 使得 f(x') = M f(x'') = m 不妨设 x' < x'' 由介值性定理得:存在 $\xi \in [x', x''] \subset [x_1, x_n]$, 使得

$$f(\xi) = \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n}$$

20. 证明 $f(x) = \cos \sqrt{x}$ 在 $[0, +\infty)$ 上一致连续

提示: $[0, +\infty) = [0,1] \cup [1, +\infty)$ 在 $[1, +\infty)$ 上成立不等式

$$|\cos\sqrt{x'} - \cos\sqrt{x''}| \leqslant |\sqrt{x'} - \sqrt{x''}| \leqslant |x' - x''|$$

证 任取 a>0, $f(x)=\cos\sqrt{x}$ 在[0,a]上连续,从而一致连续. 即对任给正数 ε ,存在正数 δ_1 ,对 $x_1,x_2\in[0,a]$,当 $|x_1-x_2|<\delta_1$ 时,有 $|\cos\sqrt{x_1}-\cos\sqrt{x_2}|<\varepsilon$

现再考虑 f(x) 在[$\frac{a}{2}$, + ∞)上的一致连续性.

由于当
$$x_1, x_2 \in \left[\frac{a}{2}, +\infty\right)$$
 时

$$|\cos\sqrt{x_{1}} - \cos\sqrt{x_{2}}| = \left| 2\sin\frac{\sqrt{x_{1}} + \sqrt{x_{2}}}{2}\sin\frac{\sqrt{x_{1}} - \sqrt{x_{2}}}{2} \right|$$

$$\leq 2 |\sin\frac{\sqrt{x_{1}} - \sqrt{x_{2}}}{2}| \leq |\sqrt{x_{1}} - \sqrt{x_{2}}| = \frac{|x_{1} - x_{2}|}{\sqrt{x_{1}} + \sqrt{x_{2}}}$$

$$\leq \frac{1}{\sqrt{2\pi}} |x_{1} - x_{2}|$$

对上述
$$\epsilon$$
, 令 $\delta_2 = \sqrt{2a\epsilon}$, 当 $x_1 - x_2 \in [\frac{a}{2}, +\infty)$

且
$$|x_1 - x_2| < \delta_2$$
 时,有 $|f(x_1) - f(x_2)| < \epsilon$

现取
$$\delta = \min\{\delta_1, \delta_2, \frac{a}{2}\},$$
 当 $x_1, x_2 \in [0, +\infty)$ 且 $|x_1 - x_2| < \delta$

时,必有
$$x_1, x_2 \in [0, a]$$
 或 $x_1, x_2 \in [\frac{a}{2}, +\infty)$,从而有 $|f(x_1) - f(x_2)| < \varepsilon$

故 f(x) 在[0, + ∞) 上一致连续.

注 该题也可由不等式 $|\cos\sqrt{x_1} - \cos\sqrt{x_2}| \le |\sqrt{x_1} - \sqrt{x_2}|$ 及 $y = \sqrt{x}$ 在 $[0, +\infty)$ 上一致连续证明.

§ 3 初等函数的连续性

1. 求下列极限:

(1)
$$\lim_{x\to 0} \frac{e^x \cos x + 5}{1 + x^2 + \ln(1-x)}$$
; (2) $\lim_{x\to +\infty} (\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x})$

(3)
$$\lim_{x\to 0^+} \left(\sqrt{\frac{1}{x} + \sqrt{\frac{1}{x}} + \sqrt{\frac{1}{x}}} - \sqrt{\frac{1}{x} - \sqrt{\frac{1}{x} + \sqrt{\frac{1}{x}}}}\right)$$

$$(4) \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + 1}}; \qquad (5) \lim_{x \to 0} (1 + \sin x)^{\cot x}$$

解 (1) 因为该函数在 x = 0 处连续,故

$$\lim_{x \to 0} \frac{e^x \cos x + 5}{1 + x^2 + \ln(1 - x)} = \frac{e^x \cos 0 + 5}{1 + 0 + 0} = 6$$
(2) 由于
$$\lim_{x \to +\infty} (\sqrt{x + \sqrt{x} + \sqrt{x}} - \sqrt{x})$$

$$= \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x}}}{\sqrt{x + \sqrt{x + \sqrt{x}}} + \sqrt{x}} = \lim_{x \to +\infty} \frac{\sqrt{1 + \sqrt{\frac{1}{x}}}}{\sqrt{1 + \sqrt{\frac{1}{x}}} + \sqrt{\frac{1}{x^3}}} + 1$$

$$\Leftrightarrow t = \frac{1}{x}, \text{则当 } x \to +\infty \text{ ff}, t \to 0^+, \text{于是}$$

$$\lim_{x \to +\infty} \frac{\sqrt{1 + \sqrt{t}}}{\sqrt{1 + \sqrt{t + \sqrt{t^3}}} + 1} = \frac{1}{2}, \text{从而}$$

$$\lim_{x \to +\infty} (\sqrt{x + \sqrt{x + \sqrt{x}}} - \sqrt{x}) = \frac{1}{2}$$
(3) 由于
$$\lim_{x \to 0^+} (\sqrt{\frac{1}{x}} + \sqrt{\frac{1}{x}} + \sqrt{\frac{1}{x}} - \sqrt{\frac{1}{x}} - \sqrt{\frac{1}{x}} + \sqrt{\frac{1}{x}})$$

$$= \lim_{x \to 0^+} \sqrt{\frac{1}{x}} + \sqrt{\frac{1}{x}} + \sqrt{\frac{1}{x}} + \sqrt{\frac{1}{x}} - \sqrt{\frac{1}{x}} + \sqrt{\frac{1}{x}}$$

$$= 2 \lim_{x \to 0^+} \frac{\sqrt{1 + \sqrt{x}}}{\sqrt{1 + \sqrt{x}} + \sqrt{x^3}} + \sqrt{1 - \sqrt{x + \sqrt{x^3}}}$$
由于此函数在 $x = 0$ 处右连续,故
$$\lim_{t \to 0^+} (\sqrt{\frac{1}{x}} + \sqrt{\frac{1}{x}} + \sqrt{\frac{1}{x}} - \sqrt{\frac{1}{x}} + \sqrt{\frac{1}{x}}) = 1$$

(4)
$$\exists \exists \lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + 1}} = \lim_{x \to +\infty} \frac{\sqrt{1 + \sqrt{\frac{1}{x}} + \sqrt{\frac{1}{x^3}}}}{\sqrt{1 + \frac{1}{x}}}$$

令
$$t = \frac{1}{r}$$
, 当 $x \rightarrow + \infty$ 时, $t \rightarrow 0^+$, 于是

$$\lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + 1}} = \lim_{t \to 0^+} \frac{\sqrt{1 + \sqrt{t + \sqrt{t^3}}}}{\sqrt{1 + t}}$$

而此函数在 t = 0 处右连续. 故

$$\lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x}}}}{\sqrt{x + 1}} = \lim_{t \to 0^+} \frac{\sqrt{1 + \sqrt{t + \sqrt{t^3}}}}{\sqrt{1 + t}} = 1$$

$$(5) \lim_{x \to 0} (1 + \sin x)^{\cot x} = \lim_{x \to 0} (1 + \sin x)^{\frac{1}{\sin x}}$$

$$\Rightarrow t = \sin x$$
 则当 $\sin x \rightarrow 0$ 时 $t \rightarrow 0$

故
$$\lim_{x\to 0} (1+\sin x)^{\cot x} = \lim_{t\to 0} (1+t)^{\frac{1}{t}} = e$$

2. 设
$$\lim_{n\to\infty} a_n = a > 0$$
, $\lim_{n\to\infty} b_n = b$. 证明: $\lim_{n\to\infty} a_n^{b_n} = a^b$

提示: $a_n^b = e^{b_n l n a_n}$

证:由于 $\lim_{n\to\infty} a_n = a > 0$ 知:存在 N, 当 n > N 时, 有 $a_n > 0$.

当
$$n > N$$
 时, 令 $A_n = a_n^{b_n}$, 于是由 $lnA_n = b_n lna_n$ 知

$$\lim_{n \to \infty} \ln A_n = b \cdot \ln a$$

从而
$$\lim_{n\to\infty} a_n^{b_n} = \lim_{n\to\infty} e^{b_n} ln a_n = \lim_{n\to\infty} ln^{A_n} = e^{b \ln a} = a^b$$

总练习题

- 1. 设函数 f 在(a,b) 连续,且 f(a+0) 与 f(b-0) 为有限值. 证明:(1) f 在(a,b) 内有界
- (2) 若存在 $\xi \in (a,b)$,使得 $f(\xi) \ge \max\{f(a+0), f(b-0)\}$,则 f 在(a,b) 内能取到最大值.
 - 证:(1) 把 f 延拓到闭区间[a,b]:定义

$$F(x) = \begin{cases} f(a+0), x = a \\ f(x), x \in (a,b) \\ f(b-0), x = b \end{cases}$$

则 F(x) 在 [a,b] 上连续, 从而 F(x) 在 [a,b] 上有界, 由于 $x \in (a,b)$ 时, F(x) = f(x), 于是 f 在 (a,b) 上有界.

(2) 设 F(x) 在[a,b] 上的最大值为 $F(x_o), x_0 \in [a,b]$,则 $f(\xi) = F(\xi) \leqslant F(x_0), \xi \in (a,b)$

若 $f(\xi) = F(x_0)$,则 $F(\xi) = f(\xi)$ 也是 F(x) 在[a,b] 上的最大值. 若 $f(\xi) < f(x_0)$,则由题设知 $F(x_0) > F(a+0) = F(a)$ 且 $F(x_0) > f(b-0) = F(b)$,从而 $a < x_0 < b$,又因在(a,b)上,F(x) = f(x),故 f(x) 在(a,b) 内取得最大值.

2. 设函数 f 在(a,b) 内连续,且 $f(a+0) = f(b-0) = + \infty$ 证明: f 在(a,b) 内能取到最小值.

证:由于 $f(a+0) = f(b-0) = +\infty$,令 $c = \frac{a+b}{2}$,则必存在 $\delta_1 > 0$, $\delta_2 > 0$,使得,当 $x \in (a,a+\delta_1)$ 时,有 f(x) > f(c),当 $x \in (b-\delta_2,b)$ 时 f(x) > f(c) 任取 $x_1 \in (a,a+\delta_1)$, $x_2 \in (b-\delta_2,b)$, $x_1 < c < x_2$, 于是 有 $f(x_1) > f(c)$, $f(x_2) > f(c)$.由于 f(x) 在[x_1,x_2] $\subset (a,b)$ 上连续.所以 f(x) 在[x_1,x_2] 上取最小值,且最小值在(x_1,x_2) 内取得,设为 $f(x_0)$,则 $f(x_0) \leq f(x)$.又当 $x \in (a,x_1)$ 或 $\in (x_2,b)$ 时有 f(x) > f(c),于是对任意 $x \in (a,b)$ 时有 $f(x) > f(x_0)$,

而 $x_0 \in (x_1, x_2) \subset (a, b)$. 故 f(x) 在(a, b) 内有最小值.

- 3. 设函数 f 在区间 I 上连续. 证明:
- (1) 若对任何有理数 $r \in I$ 有 f(r) = 0,则在 $I \perp f(x) \equiv 0$
- (2) 若对任意两个有理数 $r_1, r_2, r_1 < r_2$, 有 $f(r_1) < f(r_2)$. 则 $f \in I$ 上严格增.

证:(1) 只要证明对任一无理数 $\alpha \in [a,b]$, $f(\alpha) = 0$ 即可, 在 [a,b] 内取有理数 $\{r_n\}$, 使 $r_n \to \alpha (n \to \infty)$. 则由连续函数性质可知,

$$f(r_n) \rightarrow f(\alpha)(n \rightarrow \infty), \overline{m} f(r_n) = 0, (n = 1, 2, \dots) \quad \overline{m} f(\alpha) = 0$$

(2) 对任意的 $x_1, x_2 \in [a, b], x_1 < x_2,$ 可在[a, b] 内取有理数列 $\{r_n'\}$ 与 $\{r_n\}$,使 $\{r_n'\}$ 递减且 $r_n' \to x_1 (n \to \infty)$, $\{r_n\}$ 递增且 $r_n \to x_2 (n \to \infty), r_1' < r_1$,则由函数的连续性与极限性质可知 $f(x_1) = \underline{\lim} f(r_n') \leq f(r_1') < f(r_1) \leq \underline{\lim} f(r_n) = f(x_2)$.

故 $f \in [a,b]$ 上的严格递增函数.

4. 设 a_1, a_2, a_3 为正数, $\lambda_1 < \lambda_2 < \lambda_3$, 证明:方程

$$\frac{a_1}{x - \lambda_1} + \frac{a_2}{x - \lambda_2} + \frac{a_3}{x - \lambda_3} = 0$$

在区间 (λ_1,λ_2) 与 (λ_2,λ_3) 内各有一个根.

提示:考虑
$$f(x) = a_1(x - \lambda_2)(x - \lambda_3) + a_2(x - \lambda_1)(x - \lambda_3) + a_3(x - \lambda_1)(x - \lambda_2)$$

证:令
$$f(x) = \frac{a_1}{x - \lambda_1} + \frac{a_2}{x - \lambda_2} + \frac{a_3}{x - \lambda_3}$$

则当 $x \to \lambda_1^+$ 时, $f(x) \to +\infty$; 当 $x \to \lambda_2^-$ 时, $f(x) \to -\infty$, 于是存在 $x_1 < x_2, x_1, x_2 \in (\lambda_1, \lambda_2)$ ∃ x_0 , 使 $f(x_1) f(x_2) < 0$, 易见f(x) 在 [x_1, x_2], 使 $f(x_0) = 0$. 所以f(x) 在(λ_1, λ_2) 内有一实根.

同理, f(x) 在(λ_2 , λ_3) 内也有一实根.

5. 设f在[a,b]上连续,且对任何 $x \in [a,b]$,存在 $y \in [a,b]$,

使得
$$|f(y)| < \frac{1}{2} |f(x)|$$

证明:存在 $\xi \in [a,b]$,使得 $f(\xi) = 0$.

提示:函数 | f | 在 [a,b] 上有最小值 $m = f(\xi)$,若 m = 0,则已得证:若 m > 0,可得矛盾.

证:若对任何 $x \in [a,b]$,有 $f(x) \neq 0$,则 f(x) 在[a,b]上恒正或恒为负. 否则,由介值性知有零点存在,与假设矛盾. 不妨设 f(x) > 0, $x \in [a,b]$, 因 f 在 [a,b] 上连续. 故必有最小值,设 $f(x_0) = \min_{x \in [a,b]} \{f(x)\}$,则 $f(x_0) > 0$.另一方面,据题设,存在与之相

应的 $y_0 \in [a,b]$,使得 $f(y_0) = |f(y_0)| \leq \frac{1}{2} |f(x_0)| < f(x_0)$,但这与 $f(x_0)$ 为最小值矛盾.所以 f 在[a,b] 上必有零点.

6. 设 f 在[a,b] 上连续, $x_1, x_2, \dots, x_n \in [a,b]$, 另有一组正数 $\lambda_1, \lambda_2, \dots, \lambda_n$ 满足 $\lambda_1 + \lambda_2 + \dots + \lambda_n = 1$ 证明:存在一点 $\xi \in [a,b]$, 使得 $f(\xi) = \lambda_1 f(x_1) + \lambda_2 f(x_2) + \dots + \lambda_n f(x_n)$

注:本章 § 2 习题 19 是本题的特例,其中 $\lambda_1 = \lambda_2 = \cdots = \lambda_n = \frac{1}{n}$ 证 因 f 在 [a,b] 上连续,所以存在最大值 M 与最小值 m。

 $\Leftrightarrow m' = \min\{f(x_1), f(x_2), \dots, f(x_n)\}\$

 $M' = \max\{f(x_1), f(x_2), \dots, f(x_n)\}\$ \emptyset

 $\lambda_1 f(x_1) + \lambda_2 f(x_2) + \dots + \lambda_n f(x_n) \leqslant \lambda_1 M + \lambda_2 M + \dots + \lambda_n M = M$ $\lambda_1 f(x_1) + \lambda_2 f(x_2) + \dots + \lambda_n f(x_n) \geqslant \lambda_1 m' + \lambda_2 m' + \dots + \lambda_n m' = m'$

于是 $m \leq m' \leq \lambda_1 f(x_1) + \lambda_2 f(x_2) + \dots + \lambda_n f(x_n) \leq M' \leq M$ 由介值定理,必存在 $E \in [a,b]$,使得 $f(E) = \lambda_1 f(x_1) + \lambda_2 f(x_2) + \dots + \lambda_n f(x_n)$

7. 设 f 在 $[0, +\infty)$ 上连续,满足 $0 \le f(x) \le x, x \in [0, +\infty)$, 设 $a_1 \ge 0, a_{n+1} = f(a_n), n = 1, 2, \cdots$ 证明:

- (1) $\{a_n\}$ 为收敛数列; (2) 设 $\lim_{n \to \infty} a_n = t$, 则有 f(t) = t
- (3) 若条件改为 $0 \le f(x) < x, x \in (0, +\infty)$,则 t = 0.

证 (1) 由于 $0 \le f(x) \le x, x \in [0, +\infty)$,因此有 $a_{n+1} - a_n = f(a_n) - a_n \le 0, n = 1, 2, \cdots$ 即 $\{a_n\}$ 为单调递减数列. 又因 $a_1 > 0, f(x) \ge 0, a_{n+1} = f(a_n)$,所以 $a_n \ge 0, n = 1, 2, \cdots$ 综上可知 $\{a_n\}$ 为单调递减有下界数列,故必为收敛数列.

- (2) 因 $\lim_{n\to\infty} a_n = t$, f(x) 在 $[0, +\infty)$ 上连续, 且 $t \in [0, +\infty)$, 故有 $t = \lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} f(a_n) = f(\lim_{n\to\infty} a_n) = f(t)$
- (3) 由 $a_n \ge 0$ 及 $\lim_{n \to \infty} a_n = t$ 知 $t \ge 0$, 若 $t \ne 0$, 则 $t \in (0, +\infty)$ 且 f(t) < t, 但由(2) 知 f(t) = t, 矛盾. 故 t = 0.
 - 8. 设 f 在[0,1] 上连续, f(0) = f(1). 证明:对任何正整数 n,存在

$$\xi \in [0,1]$$
,使得 $f(\xi + \frac{1}{n}) = f(\xi)$

提示:n = 1时取 $\epsilon = 0, n > 1$ 时令 $F(x) = f(x + \frac{1}{n}) - f(x)$,

则有
$$F(0) + F(\frac{1}{n}) + \dots + F(\frac{n-1}{n}) = 0$$

证 当 n = 1 时 由 f(0) = f(1) 知 $\xi = 0$ 满足要求

不妨设
$$n > 1$$
. 令 $g(x) = f(x) - f(x + \frac{1}{n})$

由于 f(x) 在[0,1]上连续,故 $f(x+\frac{1}{n})$ 在[$-\frac{1}{n}$,1 $-\frac{1}{n}$]上连续,

从而 g(x) 在[0,1 - $\frac{1}{n}$] 上连续.

若对任何 $x \in [0,1-\frac{1}{n}]$ 有 $g(x) \neq 0$,则恒有 g(x) > 0或有 g(x) < 0,否则,将由介值定理知存在零点.

不妨设 $g(x) > 0, x \in [0, 1 - \frac{1}{n}]$,即 $f(x) > f(x + \frac{1}{n})$,于是推得

$$f(0) > f(\frac{1}{n}) > f(\frac{2}{n}) > \dots > f(\frac{n-1}{n}) > f(\frac{n}{n}) = f(1)$$

这与 f(0) = f(1) 矛盾,故必存在 $\xi \in [0,1-\frac{1}{n}] \subset [0,1]$,使得

$$g(\xi) = 0. \, \mathbb{P} f(\xi) = f(\xi + \frac{1}{n})$$

9. 设 f 在 x = 0 连续,且对任何 $x, y \in R$ 有

$$f(x+y) = f(x) + f(y)$$

证明:(1) f 在R上连续:(2) f(x) = f(1)x

提示:(1) 易见
$$\lim_{x \to 0} f(x) = f(0) = 0$$

$$\Rightarrow \lim_{x \to x_0} f(x) = \lim_{x \to x_0} [f(x - x_0) + f(x_0)] = f(x_0);$$

(2) 对整数 $p,q(\neq 0)$ 有 $f(p) = pf(1), f(\frac{1}{q}) = \frac{1}{q}f(1) \Rightarrow$ 对任何有理数有 $f(r) = rf(1) \Rightarrow$ 结论.

证 (1) 因
$$f(0) = f(0+0) = f(0) + f(0) = 2f(0)$$

所以 f(0) = 0,又对任意 $x \in (-\infty, +\infty)$ 有

$$\triangle y = f(x + \triangle x) - f(x) = f(x) + f(\triangle x) - f(x) = f(\triangle x)$$

所以 $\lim_{\Delta \to 0} \triangle y = \lim_{\Delta \to 0} f(\triangle x) = f(0) = 0$,即 f 在 $(-\infty, +\infty)$ 上连续.

(2) 先证对任何有理数 r,有 f(rx) = rf(x).事实上,令 y = x, 得 f(2x) = 2f(x), 由 数 学 归 纳 法 知, 对 任 何 自 然 数 n,

有
$$f(nx) = nf(x)$$
 即有 $f(x) = \frac{1}{n}f(nx)$ 用 $\frac{x}{n}$ 代替 x ,有
$$f(\frac{x}{n}) = \frac{1}{n}f(\frac{x}{n}) = \frac{1}{n}f(x)$$

设 $r = \frac{p}{q}(p,q)$ 为自然数),则有

$$f(rx) = f(\frac{p}{q}x) = pf(\frac{x}{q}) = \frac{p}{q}f(x) = rf(x)$$

又因 f(0) = f(x - x) = f(x) + f(-x),且 f(0) = 0,所以, f(-x) = -f(x),因之对任何负有理数 -r(r > 0) 有

$$f(-rx) = -f(rx) = -rf(x)$$

综上可知对任何有理数 r 都有 f(rx) = rf(x)

再证对任何无理数 α 也有 $f(\alpha x) = \alpha f(x)$

事实上,取有理数列 $\{r_n\}$,使 $\lim_{n\to\infty}r_n=\alpha$,则由 f 在 $(-\infty,+\infty)$ 上连续性及 $f(r_nx)=r_nf(x)$ 知

$$f(\alpha x) = f(\lim_{n \to \infty} r_n x) = \lim_{n \to \infty} f(r_n x) = \lim_{n \to \infty} r_n f(x) = \alpha f(x)$$

于是对任何 $x \in (-\infty, +\infty)$ 及任何实数 c 都有 $f(\alpha x) = c f(x)$

因此,对任意 $x \in (-\infty, +\infty)$ 有 $f(x) = f(x \cdot 1) = xf(1)$

10. 设定义在 R 上的函数 f 在 0,1 两点连续,且对任何 $x \in R$ 有 $f(x^2) = f(x)$. 证明 f 为常量函数.

提示:易见 f 偶;对任何 $x \in R^+, f(x) = f(x^{2^n}) \rightarrow f(1)(n \rightarrow \infty)$

从而得: $x \neq 0$ 时,f(x) = f(1); $f(0) = \lim_{x \to 0} f(x) = f(1)$.

证 当 $x \in (-1,1)$ 且 $x \neq 0$ 时,由条件知. $f(x) = f(x^2) = f(x^4) = \cdots = f(x^2), \text{由于 } f \text{ 在 } x = 0$ 连续,
令 $n \to \infty$,得 $f(x) = \lim_{n \to \infty} f(x^2) f(\lim_{n \to \infty} x^2) = f(0)$.
于是,当 x = 1 时,由 f 的连续性可得 $f(1) = \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} f(0) = f(0)$ 当 x = -1 时, $f(-1) = f((-1)^2) = f(1) = f(0)$ 于是可知 $f(x) = f(0, x \in [-1,1]]$ 又当 $x \in (1, +\infty)$ 时有 $f(x) = f(\sqrt{x}) = f(\sqrt[4]{x}) = \cdots = f(\sqrt[2^n]{x})$ 因 $\lim_{n \to \infty} \sqrt[2^n]{x} = 1$ 且 f 在 x = 1 连续
于是有 $f(x) = \lim_{n \to \infty} f(\sqrt[2^n]{x}) = \lim_{n \to \infty} f(x) = f(1) = f(0)$ 当 $x \in (-\infty, -1)$ 时,由于 $x^2 \in (1, +\infty)$,于是有 $f(x) = f(x^2) = f(1) = f(0)$

综上可知,对一切 $x \in (-\infty, +\infty)$ 有 $f(x) \equiv f(0)$.