

Topology-Aware Segmentation Using Discrete Morse Theory

Xiaoling Hu¹, Yusu Wang² Fuxin Li³, Dimitris Samaras¹ and Chao Chen¹

1, Stony Brook University, New York, USA

2, University of California San Diego, California, USA

3, Oregon State University, Oregon, USA

1 Introduction

Problem: segmentation of fine-scale image structures: membranes, neurons, vessels, etc.

- Existing methods are optimized for per-pixel accuracy.
- Prone to **structural errors**: broken / wrong connections.
- Affects downstream analysis.

Contribution: a topology-preserving deep neural network.

- DMT loss: capturing the critical structures of the training data
- DMT-based loss function for end-to-end training of neural networks
- Efficiency: converging faster than topological loss

2 Method

Challenge: Topological loss identifies difficult locations/critical pixels during training, and it needs to fix the critical pixels one by one. Not efficient enough.

Key: To address this issue, instead of identifying critical points, we use discrete Morse theory to capture critical structures, consequently we will be able to fix the broken connections once at a time.

Negative Gradient:

$$-\nabla f(x) = -\left[\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_d}\right]^T$$

Critical Points (minimum, maximum, saddle):

$$-\nabla f(x) = 0$$

Persistence-based structure pruning

We use the tool of persistent homology to remove the noisy structures with small persistence. The persistence epsilon is a dataset dependent hyperparameter:

- If epsilon is too small, the obtained structure will remain lots of noises.
- If the epsilon is too large, there will be fewer structures/less useful information left.

Approximation

In terms of 3D cases, we need an efficient algorithm to compute $S_2(\epsilon)$, because this computation needs to be carried out at each epoch. To this end, we propose to approximate $S_2(\epsilon)$ by $\hat{S_2}(\epsilon)$ which intuitively comes from the "boundary" of the stable manifold for minima.

Workflow of our algorithm

3 Results

Qualitative results

- This shows the qualitative results compared with several popular methods, such as DIVE, standard U-Net, Mosin. paper and the topological loss.
- From the results, we could find that our proposed method achieves better results in terms of structures, like recovering the broken connections.

Quantitative Results for 2D datasets

• Our method achieves superiorperformance on both the DICE score and topological metrics.

Method	Accuracy	DICE	ARI	VOI	Betti Error					
ISBI13										
DIVE	0.9642 ± 0.0018	0.9658 ± 0.0020	0.6923 ± 0.0134	2.790 ± 0.025	3.875 ± 0.326					
U-Net	0.9631 ± 0.0024	0.9649 ± 0.0057	0.7031 ± 0.0256	2.583 ± 0.078	3.463 ± 0.435					
Mosin.	0.9578 ± 0.0029	0.9623 ± 0.0047	0.7483 ± 0.0367	1.534 ± 0.063	2.952 ± 0.379					
TopoLoss	0.9569 ± 0.0031	0.9689 ± 0.0026	0.8064 ± 0.0112	1.436 ± 0.008	1.253 ± 0.172					
DMT	0.9625 ± 0.0027	0.9712 ± 0.0047	0.8289 ± 0.0189	$\textbf{1.176} \pm \textbf{0.052}$	1.102 ± 0.203					
CREMI										
DIVE	0.9498 ± 0.0029	0.9542 ± 0.0037	0.6532 ± 0.0247	2.513 ± 0.047	4.378 ± 0.152					
U-Net	0.9468 ± 0.0048	0.9523 ± 0.0049	0.6723 ± 0.0312	2.346 ± 0.105	3.016 ± 0.253					
Mosin.	0.9467 ± 0.0058	0.9489 ± 0.0053	0.7853 ± 0.0281	1.623 ± 0.083	1.973 ± 0.310					
TopoLoss	0.9456 ± 0.0053	0.9596 ± 0.0029	0.8083 ± 0.0104	1.462 ± 0.028	1.113 ± 0.224					
DMT	0.9475 ± 0.0031	0.9653 ± 0.0019	$\bf 0.8203 \pm 0.0147$	$\textbf{1.089} \pm \textbf{0.061}$	$\textbf{0.982} \pm \textbf{0.179}$					
		Crac	ckTree							
DIVE	0.9854 ± 0.0052	0.6530 ± 0.0017	0.8634 ± 0.0376	1.570 ± 0.078	1.576 ± 0.287					
U-Net	0.9821 ± 0.0097	0.6491 ± 0.0029	0.8749 ± 0.0421	1.625 ± 0.104	1.785 ± 0.303					
Mosin.	0.9833 ± 0.0067	0.6527 ± 0.0010	0.8897 ± 0.0201	1.113 ± 0.057	1.045 ± 0.214					
TopoLoss	0.9826 ± 0.0084	0.6732 ± 0.0041	0.9291 ± 0.0123	0.997 ± 0.011	0.672 ± 0.176					
DMT	0.9842 ± 0.0041	0.6811 ± 0.0047	0.9307 ± 0.0172	$\textbf{0.901} \pm \textbf{0.081}$	$\textbf{0.518} \pm \textbf{0.189}$					
Road										
DIVE	0.9734 ± 0.0077	0.6743 ± 0.0051	0.8201 ± 0.0128	2.368 ± 0.203	3.598 ± 0.783					
U-Net	0.9786 ± 0.0052	0.6612 ± 0.0016	0.8189 ± 0.0097	2.249 ± 0.175	3.439 ± 0.621					
Mosin.	0.9754 ± 0.0043	0.6673 ± 0.0044	0.8456 ± 0.0174	1.457 ± 0.096	2.781 ± 0.237					
TopoLoss	0.9728 ± 0.0063	0.6903 ± 0.0038	0.8671 ± 0.0068	1.234 ± 0.037	$\textbf{1.275} \pm \textbf{0.192}$					
DMT	0.9744 ± 0.0049	$\textbf{0.7056} \pm \textbf{0.0022}$	0.8819 ± 0.0104	$\textbf{1.092} \pm \textbf{0.129}$	$\textbf{0.995} \pm \textbf{0.301}$					

Quantitative Results for 3D datasets

• We use the same evaluation metrics to demonstrate the effectiveness of the proposed method.

Method	Accuracy	DICE	ARI	VOI	Betti Error			
ISBI13								
3D DIVE	0.9723 ± 0.0021	0.9681 ± 0.0043	0.8719 ± 0.0189	1.208 ± 0.149	2.375 ± 0.419			
3D U-Net	0.9746 ± 0.0025	0.9701 ± 0.0012	0.8956 ± 0.0391	1.123 ± 0.091	1.954 ± 0.585			
MALA	0.9701 ± 0.0018	0.9699 ± 0.0013	0.8945 ± 0.0481	0.901 ± 0.106	1.103 ± 0.207			
3D TopoLoss	0.9689 ± 0.0031	0.9752 ± 0.0045	0.9043 ± 0.0283	0.792 ± 0.086	0.972 ± 0.245			
DMT	0.9701 ± 0.0026	0.9803 ± 0.0019	0.9149 ± 0.0217	$\textbf{0.634} \pm \textbf{0.086}$	$\textbf{0.812} \pm \textbf{0.134}$			
CREMI								
3D DIVE	0.9503 ± 0.0061	0.9641 ± 0.0011	0.8514 ± 0.0387	1.219 ± 0.103	2.674 ± 0.473			
3D U-Net	0.9547 ± 0.0038	0.9618 ± 0.0026	0.8322 ± 0.0315	1.416 ± 0.097	2.313 ± 0.501			
MALA	0.9472 ± 0.0027	0.9583 ± 0.0023	0.8713 ± 0.0286	1.109 ± 0.093	1.114 ± 0.309			
3D TopoLoss	0.9523 ± 0.0043	0.9672 ± 0.0010	0.8726 ± 0.0194	1.044 ± 0.128	1.076 ± 0.206			
DMT	0.9529 ± 0.0031	0.9731 ± 0.0045	0.9013 ± 0.0202	$\textbf{0.891} \pm \textbf{0.099}$	$\textbf{0.726} \pm \textbf{0.187}$			
3Dircadb								
3D DIVE	0.9618 ± 0.0054	0.6097 ± 0.0034	/	/	4.571 ± 0.505			
3D U-Net	0.9632 ± 0.0009	0.5898 ± 0.0025	/	/	4.131 ± 0.483			
MALA	0.9546 ± 0.0033	0.5719 ± 0.0043	/	/	2.982 ± 0.105			
3D TopoLoss	0.9561 ± 0.0019	0.6138 ± 0.0029	/	/	2.245 ± 0.255			
DMT	0.9587 ± 0.0023	0.6257 ± 0.0021	/	/	$\textbf{1.415} \pm \textbf{0.305}$			

Ablation study: Comparison with reweighted cross entropy loss

- The reweighted cross entropy loss contains lots of noise, which are useless for image structures.
- The proposed DMT loss identifies structures relevant to image topology.

Acknowledgement

The research of Xiaoling Hu and Chao Chen is partially supported by NSF IIS-1909038. The research of Li Fuxin is partially supported by NSF IIS-1911232. The research of Yusu Wang is partially supported by NSF under grants CCF-1733798, RI-1815697, and by NIH under grant R01EB022899. Dimitris Samaras is partially supported by a gift from Adobe, the Partner University Fund, the NSF IUCRC for Visual and Decision Informatics and the SUNY2020 Infrastructure Transportation Security Center.

Reference

1. Hu, Xiaoling, et al. "Topology-Preserving Deep Image Segmentation." Advances in neural information processing systems 32 (2019).