Fsusy and Field Theoretical Construction

December 21, 2009

M.B. SEDRA, and J. ZEROUAOUI

Université Ibn Tofail, Faculté des Sciences, Département de Physique, Laboratoire de Physique de la Matière et Rayonnement (LPMR), Kénitra, Morocco

Abstract

Following our previous work on fractional spin symmetries (FSS) [6, 7], we consider here the construction of field theoretical models that are invariant under the D = 2(1/3, 1/3) supersymmetric algebra.

1 Superspace setup

Fractional supersymmetry [1, 2, 3, 4, 5, 6, 7] is once again considered in this work. The D=2(1/3,1/3) superalgebra discussed in [2, 3, 6, 7] is generated by the left and right conserved charges $Q_{1/3}^-$, $Q_{1/3}^+$, P and $\overline{Q}_{-1/3}^-$, $\overline{Q}_{-1/3}^+$, \overline{P} respectively together with four topological charges $\Delta^{(-,-)}$, $\Delta^{(-,+)}$, $\Delta^{(+,-)}$ and $\Delta^{(+,+)}$ relating the two sectors. The \pm and 0 charges carried by these objects are those of the $Z_3 \times \overline{Z}_3$ automorphism symmetry acting as:

$$\Gamma Q^{+} = qQ^{+}, \ \Gamma Q^{-} = \overline{q}Q^{-}, \ \Gamma P = P,
\overline{\Gamma Q}^{+} = q\overline{Q}^{+}, \ \overline{\Gamma Q}^{-} = \overline{q}\overline{Q}^{-}, \ \overline{\Gamma P} = \overline{P},
\overline{\Gamma Q}^{\pm} = \overline{Q}^{\pm}, \ \overline{\Gamma Q}^{\pm} = Q^{\pm}, \ \Gamma \overline{P} = \overline{P},$$
(1)

where Γ and $\overline{\Gamma}$ are the generators of the Z_3 and \overline{Z}_3 group and where we have used the convention notations $Q_{-1/3}^{\pm} = \overline{Q}^{\pm}$ and $P_{-1} = \overline{P}$ in addition to $Q_{1/3}^{\pm} = Q^{\pm}$ and $P_{1} = P$ used in [7]. The D = 2(1/3, 1/3) supersymmetric algebra admits moreover an extra $Z_2 \times \overline{Z}_2$ symmetry, generated by $C \otimes \overline{C}$, acting as follows:

$$CQ^{-} = Q^{+}C,$$

$$\overline{CQ}^{-} = \overline{Q}^{+}\overline{C}.$$
(2)

Note that under the complex conjugation (*) of complex variables $z^* = \overline{z}$, we have the obvious relations:

$$\overline{Q}^+ = (Q^-),
\overline{P} = P^*,$$
(3)

¹Corresponding author: msedra@ictp.it

showing that the left and right sectors are related by the complex conjugation of the two dimensional world sheet parametrized by z and \overline{z} . For later use, we quote hereafter the different automorphisms of the D = 2(1/3, 1/3) superalgebra

A differential representation of the D=2(1/3,1/3) superalgebra respecting (4) may be obtained by introducing a large superspace $(z, \theta^{\pm}, \overline{z}, \overline{\theta}^{\pm}, x^{++}, x^{--}, x^{+-}, x^{-+})$ with $(\theta^{\pm})^3=0$ and $(\overline{\theta}^{\pm})^3=0$. We find

$$D^{-} = D^{-} + \alpha \overline{\theta}^{-} \partial^{(-,+)} + \alpha \overline{\theta}^{+} \partial^{(-,-)},$$

$$D^{+} = D^{+} + \alpha \overline{\theta}^{+} \partial^{(+,-)} + \alpha \overline{\theta}^{-} \partial^{(+,+)},$$

$$\overline{D}^{-} = \overline{D}^{-} + \overline{\alpha} \theta^{-} \partial^{(+,-)} + \overline{\alpha} \theta^{+} \partial^{(-,-)},$$

$$\overline{D}^{+} = \overline{D}^{+} + \overline{\alpha} \theta^{+} \partial^{(-,+)} + \overline{\alpha} \theta^{-} \partial^{(+,+)},$$

$$P = -\overline{q} \frac{\partial}{\partial z}, \overline{P} = -q \frac{\partial}{\partial \overline{z}},$$

$$\Delta^{(+,+)} = (\overline{\alpha} - \alpha q) \partial^{(+,+)}, \Delta^{(-,-)} = (\overline{\alpha} - \alpha \overline{q}) \partial^{(-,-)},$$

$$\Delta^{(+,-)} = (\overline{\alpha} - \alpha \overline{q}) \partial^{(+,-)}, \Delta^{(-,+)} = (\overline{\alpha} - \alpha q) \partial^{(-,+)},$$

$$(5)$$

where the derivatives along the extra directions, realizing the topological charges as translation generators, are defined as: $\partial^{(+,+)} = \frac{\partial}{\partial x^{--}}$ and so on. \overline{D}^- and \overline{D}^+ are the spin $\frac{1}{3}$ charge operators realizing the right sector of the D=2(1/3,1/3) superalgebra without topological charges. As shown on the table (4), \overline{D}^- and \overline{D}^+ read as:

$$\overline{D}^{+} = \partial/\partial\overline{\theta}^{-} + \overline{\theta}^{-2}\partial/\partial\overline{z}
\overline{D}^{-} = \partial/\partial\overline{\theta}^{+} + \overline{\theta}^{+2}\partial/\partial\overline{z}$$
(6)

Note that \overline{D}^- and \overline{D}^+ are related to each other the \overline{Z}_2 automorphism group acting on the superspace variables θ^{\pm} and z as

$$\overline{C}\overline{\theta}^{-} = \overline{\theta}^{+}\overline{C}
\overline{C}\overline{z} = \overline{z}\overline{C}$$
(7)

Superfields describing off shell representations of the D=2(1/3,1/3) superalgebra are superfunctions defined on the generalized superspace $(z,\theta,\overline{z},\overline{\theta},x)$. They consist of $3^4=81$ component fields depending on the bosonic variable z,\overline{z} and x. This is a big number of degrees of freedom that renders very difficult the elaboration of invariant field theoretical models under the D=2(1/3,1/3) symmetry. However, forgetting about some automorphism symmetries, one may construct models which are invariant under subalgebras of D=2(1/3,1/3). To do that, various possibilities are in order. The simple way is to ignore all the automorphisms given by (4). This is the case of the subalgebra:

$$Q^{-3} = P,$$

$$\overline{Q}^{-3} = \overline{P},$$

$$Q^{-}\overline{Q}^{-} - \overline{q}\overline{Q}^{-}Q^{-} = \Delta^{(-,-)}$$
(8)

generated by non hermitian charge operators. Non unitary invariant models under this symmetry will be considered here. The same thing may be said about the subalgebra generated by $\left(Q^+, \overline{Q}^+, P, \overline{P}\right)$ as it is related to (8) by the $Z_2 \times \overline{Z}_2$ symmetry generated by $C \otimes \overline{C}$. The second kind of models, which will be studied later, are based on the subalgebra:

$$\overline{Q}^{-} = P,$$

$$\overline{Q}^{+} = \overline{P},$$

$$Q^{-}\overline{Q}^{+} - q\overline{Q}^{+}Q^{-} = \Delta.$$
(9)

These equations are stable under the complex (*) as shown by (4). The field theory invariant under (9) is real and may describe unitary D=2(1/3,1/3) supersymmetric models. In what follows, we first study those theories that are invariant under (8). Introducing the superspace $(z, \theta^+, \overline{z}, \overline{\theta}^+, x^{++})$ with $\theta^{+3}=0$ and $\overline{\theta}^{+3}=0$ a representation of this algebra reads as:

$$D^{-} = D^{-} + \alpha \overline{\theta}^{+} \partial^{(-,-)},$$

$$\overline{D}^{-} = \overline{D}^{-} + \beta \theta^{+} \partial^{(-,-)},$$

$$P = -\overline{q} \frac{\partial}{\partial z}, \overline{P} = -q \frac{\partial}{\partial \overline{z}},$$

$$\Delta^{(-,-)} = (\beta - \alpha \overline{q}) \partial^{(-,-)},$$
(10)

where D^- and \overline{D}^- are given by (6). To check that the above relations form indeed a representation of (8), we follow the same strategy as before. First we calculate the the square of $D^-(\overline{D}^-)$. We find:

$$D^{-2} = D^{-2} + \overline{\theta}^{+2} \partial^{(-,-)2} + (1 + \overline{q}) \overline{\theta}^{+} \partial^{(-,-)} D^{-}, \tag{11}$$

where D^{-2} is given by [7]

$$D^{-2} = \frac{\partial^2}{\partial \theta^{+2}} + (1+q)\theta^+ \frac{\partial}{\partial \theta^+} \frac{\partial}{\partial z} + (1+q^2)\theta^{+2} \frac{\partial^2}{\partial \theta^{+2}} \frac{\partial}{\partial z}$$
(12)

Repeating the some procedure, we get:

$$D^{-3} = (1+q)\frac{\partial}{\partial z} + \alpha(1+\overline{q}+\overline{q}^2)[\overline{\theta}^+D^- + \alpha\overline{\theta}^{+2}\partial^{(-,-)}]D^-\partial^{(-,-)}, \tag{13}$$

which reduces to P because of the identity $1 + \overline{q} + \overline{q}^2 = 0$. A similar proof is valid for \overline{D}^- . Moreover using the commutation rules:

$$D^{-}\overline{D}^{-} = q\overline{D}^{-}D^{-}$$

$$D^{-}\overline{\theta}^{+} = \overline{q}\overline{\theta}^{+}D^{-},$$

$$\overline{D}^{-}\theta^{+} = \overline{q}\overline{\theta}^{+}\overline{D}^{-}$$

$$P\overline{D}^{-} = \overline{D}^{-}P$$

$$\Delta^{(-,-)}\overline{D}^{-} = \overline{D}^{-}\Delta^{(-,-)},$$
(14)

It is not difficult to see that the second equality of (8) is also satisfied.

2 Field theoretical construction

Superfields defined on the superspace $(z, \theta^+, \overline{z}, \overline{\theta}^+, x^{++})$ are usually complex. These off shell representations, consisting of 3^2 complex degrees of freedom, may carry both a spin $s = h - \overline{h}$ and $Z_3 \times \overline{Z}_3$ charge (m, n) with $m, n = 0, \pm 1 \pmod{3}$. The $\theta^+_{-1/3}$ and $\overline{\theta}^+_{1/3}$ expansion of a generic superfield $\phi^{(m,n)}_{h,\overline{h}}$ reads as:

$$\phi_{h,\overline{h}}^{(m,n)} = \varphi_{h,\overline{h}}^{(m,n)} + \theta_{-1/3}^{+} \psi_{(h+\frac{1}{3},\overline{h})}^{(m-1,n)} + \overline{\theta}_{1/3}^{+} \eta_{(h,\overline{h}+\frac{1}{3})}^{(m,n-1)}
+ \theta_{-1/3}^{+} \overline{\theta}_{1/3}^{+} F_{(h+\frac{1}{3},\overline{h}+\frac{1}{3})}^{(m-1,n-1)} + \theta_{-1/3}^{+2} \chi_{(h+\frac{2}{3},\overline{h})}^{(m-2,n)}
+ \overline{\theta}_{1/3}^{+2} \lambda_{(h,\overline{h}+\frac{2}{3})}^{(m,n-2)} + \theta_{-1/3}^{+2} \overline{\theta}_{1/3}^{+} \xi_{(h+\frac{2}{3},\overline{h}+\frac{1}{3})}^{(m-2,n-1)}
+ \overline{\theta}_{1/3}^{+2} \theta_{-1/3}^{+} V_{(h+\frac{1}{3},\overline{h}+\frac{2}{3})}^{(m-1,n-2)} + \theta_{-1/3}^{+2} \overline{\theta}_{1/3}^{+2} D_{(h+\frac{2}{3},\overline{h}+\frac{2}{3})}^{(m-2,n-2)}$$
(15)

Taking $h = \overline{h} = -1$ and n = m = -1, we that the fields $\varphi^{(-,-)}$, $\chi^{(0,-)}_{\frac{2}{3}}$, $\lambda^{(-,0)}_{-\frac{2}{3}}$ and $D^{(-,-)}$ are exactly those appearing in the realization of thee critical spin $\frac{1}{3}$ supersymmetry of the TPM namely

$$\varphi^{(-,-)} = \phi_{\frac{1}{21},\frac{1}{21}}^{(-,-)}, D^{(0,0)} = \phi_{\frac{1}{21},\frac{5}{7}}^{(0,0)}
\chi_{\frac{2}{3}}^{(0,-)} = \phi_{\frac{5}{7},\frac{1}{21}}^{(0,-)}, \lambda_{\frac{-2}{3}}^{(0,-)} = \phi_{\frac{1}{21},\frac{5}{7}}^{(-,0)}$$
(16)

The remaining fields $\psi_{\frac{1}{3}}^{(-,-)}$, $\eta_{-\frac{1}{3}}^{(-,+)}$, $F^{(+,+)}$, $\xi_{\frac{1}{3}}^{(0,+)}$ and $V_{-\frac{1}{3}}^{(+,0)}$ which are identified with:

$$\psi_{\frac{1}{3}}^{(-,-)} = \phi_{\frac{8}{21},\frac{1}{21}}^{(+,-)}, \eta_{-\frac{1}{3}}^{(-,+)} = \phi_{\frac{1}{21},\frac{8}{21}}^{(-,+)}
\xi_{\frac{1}{3}}^{(0,+)} = \phi_{\frac{5}{7},\frac{8}{21}}^{(0,+)}, F^{(+,+)} = \phi_{\frac{8}{21},\frac{8}{21}}^{(+,+)}
V_{-\frac{1}{3}}^{(+,0)} = \phi_{\frac{8}{21},\frac{5}{2}}^{(+,0)}$$
(17)

Are extra conformal fields since they are not predicted by the $C = \frac{6}{7}$ conformal theory. They are however indispensable in the building of a manifestly D = 2(1/3, 1/3) supersymmetric theory eventually invariant under the $Z_3 \times \overline{Z}_3$ discrete symmetry of (8). As for the left sector considered previously, here also the highest θ -component terms of superfields (14) transform as a total space time derivative under the change $\delta\theta^+ = \varepsilon^+$ and $\delta\overline{\theta}^+ = \overline{\varepsilon}^+$. Invariant actions S are then constructed as in D = 2(1/2, 1/2) supersymmetric theories. We have:

$$S = \int d^2z d^4\theta L^{(-,-)},\tag{18}$$

where $\int d^4\theta \sim \overline{D}^{-2}D^{-2}$ and where the super-Lagrangian $L^{(-,-)}$ carries a $(-,-)Z_3 \times \overline{Z}_3$ charge and scales as 1/3+1/3 dimensional quantity since the integral measure scales as $(\text{length})^{1/3+1/3}$. Note that we have ignored the x-dependence realizing the topological charge $\Delta^{(-,-)}$. Other details will given when examining hermitian models. Using dimensional arguments, it is not difficult to see that $L^{(-,-)}$ is of the form:

$$L^{(-,-)} \sim D^{-} \phi_1^{(m,n)} \overline{D}^{-} \phi_2^{(-m,-n)} + W^{(-,-)} (\phi_1, \phi_2), \tag{19}$$

where the integers m, n may take the values $0, \pm 1$. As pointed out from the beginning of this work, the action S and the lagrangian (18-19) are not hermitian. Setting n = m = -1 as suggested by the thermal deformation of the TPM [6] and using the θ -expansion of the complex superfields $\phi_1^{(-,-)}$ and $\phi_2^{(+,+)}$ as well as the expression of the derivatives D^- and \overline{D}^- and (6), one may calculate the component fields contribution to the action S of the first term of (18). Straightforward algebra leads to:

$$D^{-}\phi_{1}^{(-,-)} = \psi_{\frac{1}{3}}^{(+,-)} + \overline{\theta}^{+} F^{(+,+)} + q^{2} \overline{\theta}^{+2} V_{-\frac{1}{3}}^{(+,0)}$$

$$-\overline{q}\theta^{+} \left(\chi_{\frac{2}{3}}^{(0,+)} + \overline{\theta}^{+} \xi_{\frac{1}{3}}^{(0,+)} + \overline{\theta}^{+2} D^{(0,0)} \right)$$

$$+\theta^{+2} \left(\partial \varphi + \overline{\theta}^{+} \partial \eta_{-\frac{1}{3}}^{(-,+)} + \overline{\theta}^{+2} \partial \lambda_{-\frac{2}{3}}^{(-,0)} \right),$$
(20)

$$\overline{D}^{-}\phi_{1}^{(+,+)} = \overline{\eta}_{-\frac{1}{3}}^{(+,0)} + \overline{q}\theta^{+} \overline{F}^{(0,0)} + q\theta^{+2} \overline{\xi}_{\frac{1}{3}}^{(-,0)}
-q\overline{\theta}^{+} \left(\overline{\lambda}_{-\frac{2}{3}}^{(+,-)} + \theta^{+} \overline{V}_{-\frac{1}{3}}^{(0,-)} + q\theta^{+2} \overline{D}^{(-,-)} \right)
+\overline{\theta}^{+2} \left(\overline{\partial} \overline{\varphi}^{(+,+)} + \theta^{+} \overline{\partial} \overline{\psi}_{\frac{1}{3}}^{(0,-)} + \theta^{+2} \overline{\partial} \overline{\chi}_{\frac{2}{3}}^{(-,+)} \right),$$
(21)

where we have put a bar on the component fields of the superfield $\phi_2^{(+,+)}$ in order to avoid the confusion with the $\phi_1^{(-,-)}$ component fields. Evidently, ∂ and $\overline{\partial}$ mean $\frac{\partial}{\partial z}$ and $\frac{\partial}{\partial \overline{z}}$ respectively. Integrating with respect to $d^4\theta$ the superfield kinetic term taking into account the commutation rule $\overline{\theta}^+\theta^+=q\theta^+\overline{\theta}^+$, we get:

$$L_{0} \sim \partial \varphi^{(-,-)} \overline{\partial} \overline{\varphi}^{(+,+)} + (\partial \lambda_{-2/3}^{(-,0)} \overline{\eta}_{-1/3}^{(+,0)} - \overline{q} \chi_{2/3}^{(0,-)} \overline{\partial} \overline{\psi}_{1/3}^{(0,-)})$$

$$- \left(\partial \eta_{-\frac{1}{3}}^{(-,+)} \overline{\lambda}_{-\frac{2}{3}}^{(+,-)} - \overline{q} \psi_{1/3}^{(+,-)} \overline{\partial} \overline{\chi}_{\frac{2}{3}}^{(-,+)} \right)$$

$$- \overline{q} \psi - q D^{(0,0)} \overline{F}^{(0,0)} - \overline{q} F^{(+,+)} \overline{D}^{(-,-)} + \overline{q} V_{-1/3}^{(+,0)} \overline{\xi}_{1/3}^{(-,0)} + \overline{q} \xi_{1/3}^{(0,+)} \overline{V}_{-1/3}^{(0,-)}.$$
 (22)

Note that this relation contains two kinds of fields. Dynamical fields namely $\varphi^{(-,-)}, \psi^{(+,-)}, \overline{\eta}^{(-,+)}, \lambda^{(-,0)}$ and $\overline{\varphi}^{(+,+)}, \overline{\psi}^{(0,-)}, \overline{\overline{\eta}}^{(+,0)}, \overline{\lambda}^{(+,0)}$. The obey free field equations of motion whose solutions factorise into analytic and antianalytic parts. Auxiliary fields $F^{(+,+)}, V^{(+,0)}, \xi^{(0,+)}, D^{(0,0)}$ and $\overline{F}^{(0,0)}, \overline{\xi}^{(-,0)}, \overline{V}^{(0,-)}, \overline{D}^{(-,-)}$. They appear linearly in L_0 and lead then to constraint equations. Details on the role of these fields will be given later. Note

moreover that (22) is invariant under the following transformations:

$$\delta\varphi^{(m,n)} = \varepsilon_{-1/3}^{+} \psi_{1/3}^{(m-1,n)} + \overline{\varepsilon}_{1/3}^{+} \eta_{-1/3}^{(m,n-1)}$$

$$\delta\psi_{1/3}^{(m-1,n)} = -q\varepsilon_{-1/3}^{+} \chi_{2/3}^{(m-2,n)} + \overline{\varepsilon}_{1/3}^{+} F^{(m-1,n-1)}$$

$$\delta\eta_{-1/3}^{(m,n-1)} = -\overline{\varepsilon}_{1/3}^{+} \lambda_{-2/3}^{(m,n-2)} + \overline{q}\varepsilon_{-1/3}^{+} F^{(m-1,n-1)}$$

$$\delta F^{(m-2,n-1)} = (1+q)\varepsilon_{-1/3}^{+} \xi_{1/3}^{(m-2,n-1)} - \overline{q}\varepsilon_{1/3}^{+} V_{-1/3}^{(m-1,n-2)}$$

$$\delta\chi_{2/3}^{(m-2,n)} = q\varepsilon_{-1/3}^{+} \partial\varphi^{(m,n)} + \overline{\varepsilon}_{1/3}^{+} \xi_{1/3}^{(m-2,n-1)}$$

$$\delta\lambda_{-2/3}^{(m,n-2)} = \overline{q}\varepsilon_{1/3}^{+} \overline{\partial}\varphi^{(m,n)} + \varepsilon_{-1/3}^{+} V_{-1/3}^{(m-1,n-2)}$$

$$\delta\xi_{1/3}^{(m-2,n-1)} = \overline{q}\varepsilon_{-1/3}^{+} \partial\eta_{-1/3}^{(m,n-1)} - q\overline{\varepsilon}_{1/3}^{+} D^{(m-2,n-2)}$$

$$\delta V_{-1/3}^{(m-1,n-2)} = \overline{q}\varepsilon_{1/3}^{+} \overline{\partial}\psi_{1/3}^{(m-1,n)} - q\varepsilon_{-1/3}^{+} D^{(m-2,n-2)}$$

$$\delta D^{(m-2,n-2)} = \varepsilon_{-1/3}^{+} \partial\lambda_{-2/3}^{(m,n-2)} - \overline{q}\varepsilon_{1/3}^{+} \overline{\partial}\chi_{2/3}^{(m-2,n)}$$

The spin $\pm 4/3$ supersymmetric conserved current G^- and \overline{G}^- generating these transformations are obtained by using the Noether method. They read as:

$$G^{-} = \partial \varphi^{(-,-)} \overline{\psi}^{(0,+)} - q \psi^{(+,0)} \partial \overline{\varphi}^{(+,+)} + \overline{q} \chi^{(0,-)} \overline{\chi}^{(-,+)}, \tag{24}$$

$$\overline{G}^{-} = \overline{q}\overline{\partial}\varphi^{(-,-)}\overline{\eta}^{(+,0)} + \overline{q}\overline{\partial}\overline{\varphi}^{(+,+)}\eta^{(-,+)} + \lambda^{(-,0)}\overline{\lambda}^{(+,-)}$$
(25)

Finally, observe that starting from (23, 24) and using the Z_2 -symmetries generated by C and \overline{C} , we can build the field realisations of the dual current G^+ and \overline{G}^+ as follows:

$$G^{+} = CG^{-}C^{-1}, \overline{G}^{+} = \overline{CG}^{-}\overline{C}^{-1}. \tag{26}$$

We have for G^+ for instance:

$$G^{+} = \partial \varphi^{(+,-)} \psi^{(0,+)} + \psi_{1/3}^{(-,-)} \partial \overline{\varphi}^{(-,+)} + \overline{q} \chi_{2/3}^{(0,-)} \overline{\chi}_{2/3}^{(+,+)} + \dots, \tag{27}$$

where $C\varphi^{(+,-)} = \varphi^{(-,-)}C$ and so on. The superpotential term $W^{(-,-)}$ is a priori an arbitrary function of the superfields ϕ_1 and ϕ_2 which may be restricted by requiring convariance under the $Z_3 \times \overline{Z}_3$ transformations. The most general form of $W^{(-,-)}$ respecting the $Z_3 \times \overline{Z}_3$ symmetry reads then as

$$W^{(-,-)} = \sum_{m} \left(g_{m} \phi_{1}^{(-,-)^{3m+1}} + g'_{m} \phi_{2}^{(+,+)^{3m+2}} \right) + \sum_{m} g''_{m} \phi_{1}^{(-,-)^{m+2}} \phi_{2}^{(+,+)^{m+1}}$$

$$(28)$$

where g_m , g'_m and g''_m are coupling constants. Note that leading linear term in the above equation $g_0\phi_1^{(-,-)}$, integrated with respect to $d^4\theta$, give $g_0D^{(0,0)}$. It describes exactly the $\phi_{1,3}$ thermal perturbation of the c=6/7 critical theory as shown by (16) and (14). We expect that this term is the mediator of the spontaneous breaking of the D=2(1/3.1/3) supersymmetry of the TPM. Recall that in the case of the TIM, the $\phi_{1,3}$ field scaling as 3/5+3/5 conformal object breaks spontaneously the (1/2,1/2) supersymmetry of the

c=7/10 model. Unfortunately, this feature cannot be checked directly on the scalar potential $V(\varphi,\varphi^*)$ since the theory we are considering in this section is non unitary .we shall not pursue this direction. D=2(1/3.1/3) supersymmetry breaking will be discussed on the following unitary model.

Acknowledgments

MBS would like to thank the Abdus Salam International Center for Theoretical Physics (ICTP) for hospitality during the participation to the workshop on Integrable systems and scientific computing (15-20 June 2009).

References

- [1] G. W. Semenoff, Phys. Rev. Lett. **61**, 517 (1988);
 - C. Ahn, D. Bernard, A. LeClair, Nucl Phys. B 346 (1990)409;
 - D. Bernard and A. LeClair, Nucl Phys. B 340 (1990)721;
 - A.B. Zamolodchikov, Int. J. Mod. Phys. A4 (1989)4235.
- [2] E.H.Saidi, M.B.Sedra, J.Zerouaoui, Class. Quant. Grav. 12 (1995) 1567;
- [3] E.H.Saidi, M.B.Sedra, J.Zerouaoui, Class. Quant. Grav. 12(1995) 2705.
- [4] A. Perez, M. Rausch de Traubenberg, P. Simon, Nucl. Phys. B 482(1996)325;
- [5] M. Rausch de Traubenberg, P. Simon, Nucl. Phys. B 517(1998)485.
- [6] M.B.Sedra, J.Zerouaoui, Adv. Studies Theor. Phys., Vol. 2, 2008, N.20, 965 973
- [7] M.B.Sedra, J.Zerouaoui, Adv. Studies Theor. Phys., Vol. 3, 2009, no. 7, 273 281