Loan Approval Prediction

By Theo Jeremiah

Lending Business Model

Revenue = (No of Loans - No of NPL) X Loan amount X Interest

How to increase revenue?

- ↑ Number of Loans
- ↓ Number of Non Performing Loans
- ↑ Loan Amount
- ↑ Interest

High Quality Loaners!

What is a Loan Approval Prediction?

A loan approval prediction is a system to help the **Credit Analyst** on doing risk assessment by implementing a score to each application based on their multiple characteristic to boost the **speed of assessment** and **minimize human error** when doing so. Based on this assessment, an implementation of Machine Learning Model for loan approval prediction can multiply the revenue roughly by 2x.

59% of applications are automatically declined w/o human intervention

Checking Account Status & Credit History are the top two characteristic for the risk assessment

	Top 5 Features	
1	No Checking Account	
2	Installment as Income	
3	Purpose for Used Car	
4	Foreign Worker	
5	Credit Amount	

^{*} Red = Negative Correlation

^{*}Green = Positive Correlation

Heavy feature engineering needs to be done because of the raw data quality

Summary from the exercise

Suggestions:

- Machine Learning Model are best applied when the risk assessment stage becomes a bottleneck for the company revenue growth
- Credit Analyst can spend more time assessing to the most significant characteristic/ features based on the model recommended.

Things to improve:

- The amount of training data is not enough to produce a high precision model
- The quality of the raw data needs to be improved to have a more efficient model creation
- There are possibility to try different models if there are more time to assess the data

APPENDIX

Appendix 1 - Data Understanding

- The Data contains 20 independent variables
- 7 Numerical Variables and 13 Categorical Variables

```
Data columns (total 21 columns):
default
                              1000 non-null int64
account check status
                              1000 non-null object
duration in month
                              1000 non-null int64
credit history
                              1000 non-null object
                              1000 non-null object
purpose
credit amount
                              1000 non-null int64
savings
                              1000 non-null object
present emp since
                              1000 non-null object
installment as income perc
                              1000 non-null int64
personal status sex
                              1000 non-null object
other debtors
                              1000 non-null object
present res since
                              1000 non-null int64
property
                              1000 non-null object
                              1000 non-null int64
age
other installment plans
                              1000 non-null object
housing
                              1000 non-null object
credits this bank
                              1000 non-null int64
job
                              1000 non-null object
people under maintenance
                              1000 non-null int64
telephone
                              1000 non-null object
foreign worker
                              1000 non-null object
```

Appendix 2 - Target Data

Target data is not balanced, Oversampling technique need to be applied to balanced the data and get more accurate predictions

Appendix 3 - Numerical Features

Need to apply standard scaler to standardize the scale of the numerical features

Appendix 4 - Confusion Matrix

Confusion Matrix

	Predicted O	Predicted 1
Actual O	TN	FP
Actual 1	FN	TP

		P	No	P	Yes
A	No		55		22
Α	Yes		4		19

Appendix 5 - Classification Report

Classification Report

1	precision	recall	f1-score	support
0	0.93	0.71	0.81	77
1	0.46	0.83	0.59	23
accuracy			0.74	100
macro avg	0.70	0.77	0.70	100
weighted avg	0.82	0.74	0.76	100

Appendix 6 - Significant Features

	P> z	coef
account_check_status_no checking account	2.301828e-14	-1.586928
installment_as_income_perc	4.355345e-09	0.523008
personal_status_sex_male : single	9.442988e-06	-0.842057
purpose_car (used)	3.606069e-05	-1.723244
foreign_worker_yes	6.559689e-05	2.106572
credit_amount	1.660816e-04	0.425709
credit_history_critical account/ other credits existing (not at this bank)	4.514576e-04	-1.355127
property_real estate	3.910701e-03	-0.656115
present_emp_since_4 <= < 7 years	7.778062e-03	-0.716524
age	9.664570e-03	-0.242301