Explore More

Subcription: Premium CDAC NOTES & MATERIAL @99

Contact to Join Premium Group

Click to Join
Telegram Group

For More E-Notes

Join Our Community to stay Updated

TAP ON THE ICONS TO JOIN!

	codewitharrays.in freelance project available to buy contact on 8007592194	
SR.NO	Project NAME	Technology
1	Online E-Learning Platform Hub	React+Springboot+MySql
2	PG Mates / RoomSharing / Flat Mates	React+Springboot+MySql
3	Tour and Travel management System	React+Springboot+MySql
4	Election commition of India (online Voting System)	React+Springboot+MySql
5	HomeRental Booking System	React+Springboot+MySql
6	Event Management System	React+Springboot+MySql
7	Hotel Management System	React+Springboot+MySql
8	Agriculture web Project	React+Springboot+MySql
9	AirLine Reservation System / Flight booking System	React+Springboot+MySql
10	E-commerce web Project	React+Springboot+MySql
11	Hospital Management System	React+Springboot+MySql
12	E-RTO Driving licence portal	React+Springboot+MySql
13	Transpotation Services portal	React+Springboot+MySql
14	Courier Services Portal / Courier Management System	React+Springboot+MySql
15	Online Food Delivery Portal	React+Springboot+MySql
16	Muncipal Corporation Management	React+Springboot+MySql
17	Gym Management System	React+Springboot+MySql
18	Bike/Car ental System Portal	React+Springboot+MySql
19	CharityDonation web project	React+Springboot+MySql
20	Movie Booking System	React+Springboot+MySql

freelance_Project available to buy contact on 8007592194			
21	Job Portal web project	React+Springboot+MySql	
22	LIC Insurance Portal	React+Springboot+MySql	
23	Employee Management System	React+Springboot+MySql	
24	Payroll Management System	React+Springboot+MySql	
25	RealEstate Property Project	React+Springboot+MySql	
26	Marriage Hall Booking Project	React+Springboot+MySql	
27	Online Student Management portal	React+Springboot+MySql	
28	Resturant management System	React+Springboot+MySql	
29	Solar Management Project	React+Springboot+MySql	
30	OneStepService LinkLabourContractor	React+Springboot+MySql	
31	Vehical Service Center Portal	React+Springboot+MySql	
32	E-wallet Banking Project	React+Springboot+MySql	
33	Blogg Application Project	React+Springboot+MySql	
34	Car Parking booking Project	React+Springboot+MySql	
35	OLA Cab Booking Portal	React+NextJs+Springboot+MySql	
36	Society management Portal	React+Springboot+MySql	
37	E-College Portal	React+Springboot+MySql	
38	FoodWaste Management Donate System	React+Springboot+MySql	
39	Sports Ground Booking	React+Springboot+MySql	
40	BloodBank mangement System	React+Springboot+MySql	

41	Bus Tickit Booking Project	React+Springboot+MySql
42	Fruite Delivery Project	React+Springboot+MySql
43	Woodworks Bed Shop	React+Springboot+MySql
44	Online Dairy Product sell Project	React+Springboot+MySql
45	Online E-Pharma medicine sell Project	React+Springboot+MySql
46	FarmerMarketplace Web Project	React+Springboot+MySql
47	Online Cloth Store Project	React+Springboot+MySql
48	Train Ticket Booking Project	React+Springboot+MySql
49	Quizz Application Project	JSP+Springboot+MySql
50	Hotel Room Booking Project	React+Springboot+MySql
51	Online Crime Reporting Portal Project	React+Springboot+MySql
52	Online Child Adoption Portal Project	React+Springboot+MySql
53	online Pizza Delivery System Project	React+Springboot+MySql
54	Online Social Complaint Portal Project	React+Springboot+MySql
55	Electric Vehical management system Project	React+Springboot+MySql
56	Online mess / Tiffin management System Project	React+Springboot+MySql
57		React+Springboot+MySql
58		React+Springboot+MySql
59		React+Springboot+MySql
		Reactispinigoodtiviysqi
60		React+Springboot+MySql

Spring Boot + React JS + MySQL Project List

Sr.No	Project Name	YouTube Link
1	Online E-Learning Hub Platform Project	https://youtu.be/KMjyBaWmgzg?si=YckHuNzs7eC84-IW
2	PG Mate / Room sharing/Flat sharing	https://youtu.be/4P9cIHg3wvk?si=4uEsi0962CG6Xodp
3	Tour and Travel System Project Version 1.0	https://youtu.be/-UHOBywHaP8?si=KHHfE_A0uv725f12
4	Marriage Hall Booking	https://youtu.be/VXz0kZQi5to?si=IIOS-QG3TpAFP5k7
5	Ecommerce Shopping project	https://youtu.be/vJ_C6LkhrZ0?si=YhcBylSErvdn7paq
6	Bike Rental System Project	https://youtu.be/FlzsAmIBCbk?si=7ujQTJqEgkQ8ju2H
7	Multi-Restaurant management system	https://youtu.be/pvV-pM2Jf3s?si=PgvnT-yFc8ktrDxB
8	Hospital management system Project	https://youtu.be/lynlouBZvY4?si=CXzQs3BsRkjKhZCw
9	Municipal Corporation system Project	https://youtu.be/cVMx9NVyI4I?si=qX0oQt-GT-LR_5jF
10	Tour and Travel System Project version 2.0	https://youtu.be/ 4u0mB9mHXE?si=gDiAhKBowi2gNUKZ

Sr.No	Project Name	YouTube Link
11	Tour and Travel System Project version 3.0	https://youtu.be/Dm7nOdpasWg?si=P_Lh2gcOFhlyudug
12	Gym Management system Project	https://youtu.be/J8_7Zrkg7ag?si=LcxV51ynfUB7OptX
13	Online Driving License system Project	https://youtu.be/3yRzsMs8TLE?si=JRI_z4FDx4Gmt7fn
14	Online Flight Booking system Project	https://youtu.be/m755rOwdk8U?si=HURvAY2VnizlyJlh
15	Employee management system project	https://youtu.be/ID1iE3W GRw?si=Y jv1xV BljhrD0H
16	Online student school or college portal	https://youtu.be/4A25aEKfei0?si=RoVgZtxMk9TPdQvD
17	Online movie booking system project	https://youtu.be/Lfjv_U74SC4?si=fiDvrhhrjb4KSlSm
18	Online Pizza Delivery system project	https://youtu.be/Tp3izreZ458?si=8eWAOzA8SVdNwlyM
19	Online Crime Reporting system Project	https://youtu.be/0UlzReSk9tQ?si=6vN0e70TVY1GOwPO
20	Online Children Adoption Project	https://youtu.be/3T5HC2HKyT4?si=bntP78niYH802I7N

ADS CCEE Mock Test2

0 of 0 points

MCQ 19 of 40 points

×	What is a memory-efficient double-linked list? *	0/1
0	Each node has only one pointer to traverse the list back and forth	
0	The list has breakpoints for faster traversal	
•	An auxiliary singly linked list acts as a helper list to traverse through the doubly linked list	×
0	None of the mentioned	
Corre	ect answer	
	Each node has only one pointer to traverse the list back and forth	
✓	Which of the following is True about the Spanning Tree? *	1/1
✓	Which of the following is True about the Spanning Tree? *	1/1
✓	Which of the following is True about the Spanning Tree? * A spanning is a minimal set of edges in a graph that contains no cycle, connects all the vertices	1/1
<!--</th--><th>A spanning is a minimal set of edges in a graph that contains no cycle,</th><th>1/1</th>	A spanning is a minimal set of edges in a graph that contains no cycle,	1/1
<!--</th--><th>A spanning is a minimal set of edges in a graph that contains no cycle, connects all the vertices</th><th>1/1</th>	A spanning is a minimal set of edges in a graph that contains no cycle, connects all the vertices	1/1
	A spanning is a minimal set of edges in a graph that contains no cycle, connects all the vertices A spanning is a maximal set of edges in a graph that connects all vertices.	1/1

×	Let $G = (V, G)$ be a weighted undirected graph and let T be a Minimum Spanning Tree (MST) of G maintained using adjacency lists. Suppose a new weighed edge $(u, v) \in V \times V$ is added to G . The worst-case time complexity of determining if T is still an MST of the resultant graph is	*0/1
•	Θ(ΙΕΙ + ΙVΙ)	×
0	Θ(Ε . V) Θ(Ε log V) Θ(V)	
0	Θ(Ε log V)	
0	$\Theta(IVI)$	
Corr	ect answer	
•	Θ(ΙVΙ)	
	Nation 1	
✓	The worst-case time complexity for the linear search algorithm is *	1/1
•	O(n)	✓
0	O(log n)	
0	$O(n^2)$	
0	O(n log n)	

~	Consider a binary max-heap implemented using an array. Which one of the following arrays represents a binary max-heap?	*1/1
0	25,12,16,13,10,8,14	
•	25,14,16,13,10,8,12	✓
0	25,16,12,13,10,8,14	
0	25,14,12,13,10,8,16	
×	We use a dynamic programming approach when *	0/1
•	We need an optimal solution	×
0	The solution has an optimal substructure	
0	The given problem can be reduced to the 3-SAT problem	
0	It's faster than Greedy	
Corre	ect answer	
•	The solution has an optimal substructure	

×	Let H be a binary min-heap consisting of n elements implemented as an array. What is the worst-case time complexity of an optimal algorithm to find the maximum element in H?	*0/1
	Θ(1)	×
0	Θ(log n)	
0	Θ(n)	
0	$\Theta(\log n)$ $\Theta(n)$ $\Theta(n \log n)$ ect answer	
Corre	ect answer	
•	Θ(n)	
✓	Which of the following are not Associative Containers? *	1/1
	priority queue	✓
0	map	
0	multimap	
0	multiset	

✓ A hash function h defined h(key)=key mod 7, with linear probing, is used to insert the keys 44, 45, 79, 55, 91, 18, and 63 into a table indexed from to 6. What will be the location of key 18?	
 3 4 5 6 	✓
X If you want to store the name and marks of N students, which of the following is the correct choice?	*0/1
 An array of structures that contains names and marks as a field. A structure containing arrays of Names and arrays of Marks An array of names and an Array of marks All of the above 	×
Correct answer An array of structures that contains names and marks as a field.	••

What are the time complexities of finding the 8th element from the *0/1 beginning and the 8th element from the end in a singly linked list? Let n be the number of nodes in a linked list, you may assume that n > 8. O(1) and O(n) O(1) and O(1) O(n) and O(1) O(n) and O(n) X Correct answer (1) and O(n)

```
Consider the following sequence of operations on an empty stack
                                                                       *1/1
indicated by 'S'.
Push(54);push(52);pop();push(55);push(62);s=pop();
Consider the following sequence of operations on an empty queue
indicated by 'Q'
enqueuer(21);
enqueuer(24);
dequeuer();
enqueuer(28);
enqueuer(32);
q=dequeuer();
The value of (S+Q) is—62
68
```


Which is the safest method to choose a pivot element? *
Choosing a random element as a pivot
Choosing the first element as a pivot
Choosing the last element as a pivot
Median-of-three partitioning method
Correct answer
Choosing a random element as a pivot

★ The recurrence relation capturing the optimal time of the Tower of Hanoi *0/1 problem with n discs is.---

X

- T(n) = 2T(n-2)+2
- T(n) = 2T(n-1)+n
- T(n) = 2T(n/2)+1
- T(n) = 2T(n-1)+1

Correct answer

T(n) = 2T(n-1)+1

✓ Let A[1...n] be an array of n distinct numbers. If i < j and A[i] > A[j], then the *1/1 pair (i, j) is called an inversion of A. What is the expected number of inversions in any permutation on n elements?

- n(n-1)/2
- n(n-1)/4
- n(n+1)/4
- 2n[logn]

×	Let 'm' and 'n' be the number of edges and vertices in a graph G, respectively. Which of the following is the time complexity of Kruskal's algorithm to find the minimum spanning tree of G?	*0/1
•	O(n log n)	×
0	O(m log m)	
0	O(n2)	
0	O(m2)	
Corr	rect answer	
•	O(m log m)	
	JS.1"	
>	In the worst case, the number of comparisons needed to search a singly linked list of length n for a given element is $O(\log 2 n)$ $O(n/2)$ $O(\log 2 n-1)$	*1/1
•	O(n)	✓

✓	Suppose prevnode, p, nextnode are three consecutive nodes in a Doubly Linked List. Deletion of node p in this Doubly Linked List can be represented by which code snippet?	*1/1
	[getPrev() method returns the prev node and getNext() method returns the next node in DLL.]	
	[SetPrev() method sets the prev node value and setNext() method sets the next node value in DLL.]	
0	p.getPrev().setPrev(p.getNext()); p.getNext().setNext(p.getPrev());	
0	p.getPrev().setNext(p.getPrev()); p.getNext().setPrev(p.getNext());	
•	p.getNext().setPrev(p.getPrev()); p.getPrev().setNext(p.getNext());	✓
0	None of the above	
	codewithe	

★ Depth First Search graph traversal method makes use of data structure.	*0/1
Tree	×
○ Stack	
O Queue	
Queue O Linked list Correct answer	
Correct answer	
Stack	
in	
✓ In which of the following tree do the height of the left subtree and the height of the right subtree differ at most by one?	*1/1
AVL Tree	✓
Expression Tree	
Threaded Binary Tree	
O Binary Search Tree	

✓ Which of the following types of Linked List support forward and backward traversal?	*1/1
Singly Linked List	
Doubly Linked List	✓
O Circular Singly Linked List	
O All of these	
V ₁	
Which of the following algorithm solves the all-pair shortest path algorithm?	*0/1
Prim's algorithm	×
O Dijkstra's algorithm	
Bellman-Ford algorithm	
Floyd-Warshall's algorithm	
Correct answer	
Floyd-Warshall's algorithm	

★ What would be the order in which edges are added to form a minimum spanning tree using Kruskal's and Prim's algorithms for the following graph:

*0/1

X

- Kruskal's AB CD CF AE FE and Prim's AB AE FE CF CD
- Kruskal's AB CD CF FE AE and Prim's AB AE FE CF CD
- Kruskal's AB CD CF FE AE and Prim's AB AE FE CD CF
- Kruskal's CD AB CF FE AE and Prim's AB AE FE CF CD

Correct answer

Kruskal's - AB CD CF FE AE and Prim's - AB AE FE CF CD

✓ Which one of the following is an application of Stack Data Structure? * 1/1
Managing function calls
The stock span problem
Arithmetic expression evaluation
All of the above
 ✓ Which one of the following is the tightest upper bound that represents the *1/1 time complexity of inserting an object into a binary search tree of n nodes? ○ O(1) ○ O(logn) ○ O(nlogn) ✓ O(nlogn)

Statement 1: When applying the Backtracking algorithm, all choices *****0/1 made can be undone when needed. Statement 2: When applying the Backtracking algorithm, the worst-case scenario is, that it exhaustively tries all paths, traversing the entire search space Both, Statements 1 and 2, are true Statement 1 is true, Statement 2 is false Statement 2 is true, Statement 1 is false X Both, Statements 1 and 2, are false Correct answer Both, Statements 1 and 2, are true

×	In the worst case, the number of comparisons needed to search a singly linked list of length n for a given element is	*0/1
0	log2 n	
0	n/2	
•	log2 (n-1)	×
0	n	
Corr	log2 (n-1) n rect answer n	
•	n 800	
	n	
	codewitharraysin	
	gen	

The postfix equivalent of prefix expression * + a b - c d is *
ab + c d - *
ab + c d * ab + - c d *
Correct answer
a b + c d - *

Consider the following array.	*1/1
23,32,45,69,72,73,89,97	
Which algorithm out of the following options uses the least number of comparisons (among the array elements) to sort the above array in ascending order?	
Selection sort	
Merge sort	
Insertion sort	✓
Quicksort using the last element as a pivot	
codenitha.	
	23,32,45,69,72,73,89,97 Which algorithm out of the following options uses the least number of comparisons (among the array elements) to sort the above array in ascending order? Selection sort Merge sort Insertion sort

	Which of the following algorithm design techniques is used in finding all pairs of shortest distances in a graph (Warshall algorithms)?	*1/1
0	Dynamic programming	✓
0	Back Tracking	
0	Greedy	
0	Divide & Conquer	
	A digraph is said to be COMPLETE, if it has N vertices andedges. *	1/1
•	A digraph is said to be solvin LETE, it it has it vertices andedges.	17 1
0	N*N	
0	N-1	
•	N*(N-1)	✓
0	N*(N-1)/2	

C I	A complete n-ary tree is a tree in which each node has n children or no children. Let I be the number of internal nodes and L be the number of leaves in a complete n-ary tree. If L = 41, and I = 10, what is the value of n?	*0/1
	6	
\bigcirc	3	
	4	×
	5	
Correc	ct answer	
	5	

This content is neither created nor endorsed by Google. - <u>Terms of Service</u> - <u>Privacy Policy</u> Does this form look suspicious? Report

Google Forms

codewitharrays in 800159219A

https://www.youtube.com/@codewitharrays

https://www.instagram.com/codewitharrays/

https://t.me/codewitharrays Group Link: https://t.me/ccee2025notes

+91 8007592194 +91 9284926333

codewitharrays@gmail.com

https://codewitharrays.in/project