Entiers, changements de bases

1. Rappels sur l'exponentielle et le logarithme

Simplifier les expressions suivantes :

- 1. $a^3 \times a^4$. 2. $(a^3)^4$.
- 3. $a^2 \times \frac{1}{a^3}$.
- $4.6^6 \times (\frac{1}{3})^6$.
- 5. $\log_a a^{10}$.
- 6. $\log_2 64$.
- $7.\log_2 a + \log_4 a.$
- 8. $a^{\log_a 11}$.

2. Conversions de base

Faire les conversions de bases suivants :

- 1. $(101010)_2$ en base 10.
- 2. $(1021)_3$ en base 10.
- 3. $(483)_{10}$ en binaire, puis en ternaire.
- 4. $(111100011)_2$ en hexadécimal.
- 5. $(A31B)_{16}$ en base 2.
- 6. $(10212)_3$ en base 9.

Calculer, sans passer par la base 10, les expressions suivantes :

- 1. $(102013)_4 + (1)_4$.
- 2. $(102013)_4 \times (4)_{10}$.
- 3. $(102013)_4 \div (4)_{12}$.
- 4. $(101011)_2 + (2A)_{16}$.
- 5. $(10110)_2 + (111)_2$.
- 6. $(10110)_2 \times (101)_2$.
- 7. $((100)_2)^4$.

3. Propriétés des représentations en base b

- 1. Quel est le nombre le plus grand que l'on puisse représenter avec 2 chiffres binaires ? Et avec $3,4,\ldots$? Et en général avec n chiffres ?
- 2. Pour un entier m quelconque, combien de chiffres binaires faut-il pour le représenter ?
- 3. Généraliser à une base b quelconque.
- 4. Sans effectuer la conversion, dire combien de chiffres binaires il faut pour représenter le nombre quarante-deux.
- 5. Combien faut-il de chiffres hexadécimaux pour représenter le nombre quarante-deux ?

2011-2020 Mélanie Boudard http://christina-boura.info/en/content/home, Luca De Feo http://creativecommons.org/licenses/by-sa/4.0/.