A Set of Axioms for the Real-Number System

Tom M. Apostol

Lemma 1

Nonempty set S has supremum L if and only if set -S has infimum -L.

Proof. Apostol.Chapter_I_03.is_lub_neg_set_iff_is_glb_set_neg

Suppose $L = \sup S$ and fix $x \in S$. By definition of the supremum, $x \leq L$ and L is the smallest value satisfying this inequality. Negating both sides of the inequality yields $-x \geq -L$. Furthermore, -L must be the largest value satisfying this inequality. Therefore $-L = \inf -S$.

Theorem I.27

Every nonempty set S that is bounded below has a greatest lower bound; that is, there is a real number L such that $L = \inf S$.

Proof. Apostol.Chapter_I_03.exists_isGLB

Let S be a nonempty set bounded below by x. Then -S is nonempty and bounded above by x. By the completeness axiom, there exists a supremum L of -S. By Lemma 1 \circlearrowleft , L is a supremum of -S if and only if -L is an infimum of S.

Theorem I.29

For every real x there exists a positive integer n such that n > x.

Proof. Apostol.Chapter_I_03.exists_pnat_geq_self

Let $n = |\lceil x \rceil| + 1$. It is trivial to see n is a positive integer satisfying $n \ge 1$. Thus all that remains to be shown is that n > x. If x is nonpositive, n > x immediately follows from $n \ge 1$. If x is positive,

$$x = |x| \le |\lceil x \rceil| < |\lceil x \rceil| + 1 = n.$$

Theorem I.30

If x > 0 and if y is an arbitrary real number, there exists a positive integer n such that nx > y.

Note: This is known as the "Archimedean Property of the Reals."

Proof. Apostol.Chapter_I_03.exists_pnat_mul_self_geq_of_pos

Let x > 0 and y be an arbitrary real number. By Theorem I.29 \bigcirc , there exists a positive integer n such that n > y/x. Multiplying both sides of the inequality yields nx > y as expected.

Theorem I.31

If three real numbers a, x, and y satisfy the inequalities

$$a \le x \le a + \frac{y}{n}$$

for every integer $n \geq 1$, then x = a.

Proof. Apostol.Chapter_I_03.forall_pnat_leq_self_leq_frac_imp_eq

By the trichotomy of the reals, there are three cases to consider:

Case 1 Suppose x = a. Then we are immediately finished.

Case 2 Suppose x < a. But by hypothesis, $a \le x$. Thus a < a, a contradiction.

Case 3 Suppose x > a. Then there exists some c > 0 such that a + c = x. By Theorem I.30 \bigcirc , there exists an integer n > 0 such that nc > y. Rearranging terms, we see y/n < c. Therefore a + y/n < a + c = x. But by hypothesis, $x \le a + y/n$. Thus a + y/n < a + y/n, a contradiction.

Conclusion Since these cases are exhaustive and both case 2 and 3 lead to contradictions, x=a is the only possibility.

Lemma 2

If three real numbers a, x, and y satisfy the inequalities

$$a - y/n \le x \le a$$

for every integer $n \geq 1$, then x = a.

Proof. Apostol.Chapter_I_03.forall_pnat_frac_leq_self_leq_imp_eq

By the trichotomy of the reals, there are three cases to consider:

Case 1 Suppose x = a. Then we are immediately finished.

Case 2 Suppose x < a. Then there exists some c > 0 such that x = a - c. By Theorem I.30 \bigcirc , there exists an integer n > 0 such that nc > y. Rearranging terms, we see that y/n < c. Therefore a - y/n > a - c = x. But by hypothesis, $x \ge a - y/n$. Thus a - y/n < a - y/n, a contradiction.

Case 3 Suppose x > a. But by hypothesis $x \le a$. Thus a < a, a contradiction.

Conclusion Since these cases are exhaustive and both case 2 and 3 lead to contradictions, x=a is the only possibility.

Theorem I.32

Let h be a given positive number and let S be a set of real numbers.

Theorem I.32a

If S has a supremum, then for some x in S we have $x > \sup S - h$.

Proof. Apostol.Chapter_I_03.sup_imp_exists_gt_sup_sub_delta

By definition of a supremum, $\sup S$ is the least upper bound of S. For the sake of contradiction, suppose for all $x \in S$, $x \leq \sup S - h$. This immediately implies $\sup S - h$ is an upper bound of S. But $\sup S - h < \sup S$, contradicting $\sup S$ being the *least* upper bound. Therefore our original hypothesis was wrong. That is, there exists some $x \in S$ such that $x > \sup S - h$.

Theorem I.32b

If S has an infimum, then for some x in S we have $x < \inf S + h$.

Proof. Apostol.Chapter_I_03.inf_imp_exists_lt_inf_add_delta

By definition of an infimum, $\inf S$ is the greatest lower bound of S. For the sake of contradiction, suppose for all $x \in S$, $x \ge \inf S + h$. This immediately implies $\inf S + h$ is a lower bound of S. But $\inf S + h > \inf S$, contradicting $\inf S$ being the *greatest* lower bound. Therefore our original hypothesis was wrong. That is, there exists some $x \in S$ such that $x < \inf S + h$.

Theorem I.33

Given nonempty subsets A and B of \mathbb{R} , let C denote the set

$$C = \{a + b : a \in A, b \in B\}.$$

Note: This is known as the "Additive Property."

Theorem I.33a 🗸

If each of A and B has a supremum, then C has a supremum, and

$$\sup C = \sup A + \sup B.$$

Proof. Apostol.Chapter_I_03.sup_minkowski_sum_eq_sup_add_sup

We prove (i) $\sup A + \sup B$ is an upper bound of C and (ii) $\sup A + \sup B$ is the *least* upper bound of C.

- (i) Let $x \in C$. By definition of C, there exist elements $a' \in A$ and $b' \in B$ such that x = a' + b'. By definition of a supremum, $a' \le \sup A$. Likewise, $b' \le \sup B$. Therefore $a' + b' \le \sup A + \sup B$. Since x = a' + b' was arbitrarily chosen, it follows $\sup A + \sup B$ is an upper bound of C.
- (ii) Since A and B have supremums, C is nonempty. By (i), C is bounded above. Therefore the completeness axiom tells us C has a supremum. Let n > 0 be an integer. We now prove that

$$\sup C < \sup A + \sup B < \sup C + 1/n. \tag{1}$$

Left-Hand Side First consider the left-hand side of (1). By (i), $\sup A + \sup B$ is an upper bound of C. Since $\sup C$ is the *least* upper bound of C, it follows $\sup C \leq \sup A + \sup B$.

Right-Hand Side Next consider the right-hand side of (1). By Theorem I.32a \bigcirc , there exists some $a' \in A$ such that $\sup A < a' + 1/(2n)$. Likewise, there exists some $b' \in B$ such that $\sup B < b' + 1/(2n)$. Adding these two inequalities together shows

$$\sup A + \sup B < a' + b' + 1/n$$

$$\leq \sup C + 1/n.$$

Conclusion Applying Theorem I.31 \odot to (1) proves $\sup C = \sup A + \sup B$ as expected.

Theorem I.33b

If each of A and B has an infimum, then C has an infimum, and

 $\inf C = \inf A + \inf B.$

Proof. Apostol.Chapter_I_03.inf_minkowski_sum_eq_inf_add_inf

We prove (i) $\inf A + \inf B$ is a lower bound of C and (ii) $\inf A + \inf B$ is the greatest lower bound of C.

- (i) Let $x \in C$. By definition of C, there exist elements $a' \in A$ and $b' \in B$ such that x = a' + b'. By definition of an infimum, $a' \ge \inf A$. Likewise, $b' \ge \inf B$. Therefore $a' + b' \ge \inf A + \inf B$. Since x = a' + b' was arbitrarily chosen, it follows $\inf A + \inf B$ is a lower bound of C.
- (ii) Since A and B have infimums, C is nonempty. By (i), C is bounded below. Therefore Theorem I.27 \bigcirc tells us C has an infimum. Let n > 0 be an integer. We now prove that

$$\inf C - 1/n \le \inf A + \inf B \le \inf C. \tag{2}$$

Right-Hand Side First consider the right-hand side of (2). By (i), inf $A+\inf B$ is a lower bound of C. Since $\inf C$ is the *greatest* upper bound of C, it follows $\inf C \geq \inf A + \inf B$.

Left-Hand Side Next consider the left-hand side of (2). By Theorem I.32b \bigcirc , there exists some $a' \in A$ such that inf A > a' - 1/(2n). Likewise, there exists some $b' \in B$ such that inf B > b' - 1/(2n). Adding these two inequalities together shows

$$\inf A + \inf B > a' + b' - 1/n$$
$$\geq \inf C - 1/n.$$

Conclusion Applying Lemma 2 \bigcirc to (2) proves inf $C = \inf A + \inf B$ as expected.

Theorem I.34

Given two nonempty subsets S and T of \mathbb{R} such that

$$s \le t$$

for every s in S and every t in T. Then S has a supremum, and T has an infimum, and they satisfy the inequality

$$\sup S \leq \inf T$$
.

Proof. Apostol.Chapter_I_03.forall_mem_le_forall_mem_imp_sup_le_inf

By hypothesis, S and T are nonempty sets. Let $s \in S$ and $t \in T$. Then t is an upper bound of S and s is a lower bound of T. By the completeness axiom, S has a supremum. By Theorem I.27 \bigcirc , T has an infimum. All that remains is showing $\sup S \leq \inf T$.

For the sake of contradiction, suppose $\sup S > \inf T$. Then there exists some c > 0 such that $\sup S = \inf T + c$. Therefore $\inf T < \sup S - c/2$. By Theorem I.32a \bigcirc , there exists some $x \in S$ such that $\sup S - c/2 < x$. Thus

$$\inf T < \sup S - c/2 < x.$$

But by hypothesis, $x \in S$ is a lower bound of T meaning $x \leq \inf T$. Therefore x < x, a contradiction. Out original assumption is incorrect; that is, $\sup S \leq \inf T$.