Inbhuvan University Institute of Sciences and Technology

SCHOOL OF MATHEMATICAL SCIENCES First Assessment 2079

Subject Multivariable Calculus for Data Science

Course No MSMT 554

Level MDS. /I Year /II Semester

Full Marks 45

Pass Marks: 22 5

[15+15]

Time 2 hrs

Candidates are required to give their answer in their own words as far as practicable.

Group A $[5 \times 3=15]$

- 1. Define scalar triple product of three vectors and give its geometrical meaning. Using scalar triple product, verify that the vectors $\vec{u} = \vec{i} + 5\vec{j} 2\vec{k}$, $\vec{v} = 3\vec{j} \vec{j}$, and $\vec{w} = 5\vec{i} + 9\vec{j} 4\vec{k}$ are coplanar.
- 2. Find the parametric equations and symmetric equation for the lines through (2,1,0) and perpendicular to both the vectors $\vec{i} + \vec{j}$ and $\vec{j} + \vec{k}$.
- 3. Define curvature of a vector function $\vec{r} = \vec{r}(t)$. Find the curvature of the vector function $\vec{r}(t) = p \cos t \vec{i} + p \sin t \vec{j}$, where p is constant.
- 4. Find the limit, if it exists, or show that the limit does not exist:

a)
$$f(x, y) = \frac{5y^4 \cos 2x}{x^4 + y^4}$$
 b) $f(x, y) = \frac{xy}{\sqrt{x^2 + y^2}}$

5. Explain why the function $f(x, y) = \sqrt{x + e^{4y}}$ is differentiable at the given point (3, 0). Find the linearization L(x, y) of the function f(x, y) at that point. [1+2]

Group B |5 ×6=30

6. Prove the Parallelogram Law $|\vec{a} + \vec{b}|^2 + |\vec{a} - \vec{b}|^2 = 2 |\vec{a}|^2 + 2|\vec{b}|^2$ for any two vectors \vec{a} and \vec{b} . Give its geometric interpretation. Also if $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ are orthogonal, show that the vectors \vec{a} and \vec{b} must have the same length. [2+1+3]

OR

Derive a vector equation of a straight line

- a) through the given point \vec{a} and parallel to the vector \vec{b}
- b) through two points \vec{a} and \vec{b} . Also, find a vector equation for the line through the point (1, 0, 6) and perpendicular to the plane x + 3y + z = 5. [2+2+2]
- Derive the expression for the derivative of scalar triple product of three vectors Find the derivative of the scalar triple product of the vectors

$$t \, \vec{i} + t^2 \, \vec{j} + t \, \vec{k}$$
, $(t+1) \, \vec{i} + (t+2) \, \vec{j} - 3t \, \vec{k}$ and $t^2 \, \vec{i} + 2t \, \vec{j} + t \, \vec{k}$ at $t = 2$. [2+4]

- 8. Find the domain and range of the function $f(x, y) = \sqrt{16 4x^2 y^2}$. Describe the graph of fSketch a contour map of this surface using level curves corresponding to c = 1, 2, 3, 4, 5.
- Let f(x, y) be defined on an open disk D that contains the point (a, b). Prove that if the functions f_{xy} and f_{yx} are continuous on D, then $f_{xy}(a, b) = f_{yx}(a, b)$. [4]

b) Show that
$$z = e^x \sin y$$
 satisfies the equation $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$. [2]

10. a) Prove that if x = x(t) and y = y(t) are differentiable functions of t and z = f(x, y) is a differentiable function of x and y, then z = f(x(t), y(t)) is a differentiable function of t and $\frac{dz}{dt} = \frac{\partial z}{\partial x} + \frac{dx}{dt} + \frac{\partial z}{\partial y} + \frac{dy}{dt}$

where the ordinary derivatives are evaluated at t and the partial derivatives are evaluated at (x, y).

b) Calculate $\partial z/\partial u$ and $\partial z/\partial v$ using the following functions:

$$z = f(x, y) = 3x^2 - 2xy + y^2, x = x(u, v) = 3u + 2v, y = y(u, v) = 4u - v.$$
 [3]

- a) Prove that if f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector u = (a, b) and $D_u f(x, y) = f_v(x, y)a + f_v(x, y)b$. [3]
- b) Find the direction for which the directional derivative of $f(x, y) = 3x^2 4xy + 2y^2$ at (-2, 3) is a maximum. What is the maximum value? Find the maximum rate of change of $f(x, y) = \sqrt{x^2 + y^4}$ at (-2, 3) and the direction in which this maximum rate of change occurs.

Tribhuvan University Institute of Sciences and Technology

SCHOOL OF MATHEMATICAL SCIENCES Second Assessment 2079

Subject: Multivariable Calculus for Data Science Course No: MDS 554

Full Marks: 45 Pass Marks: 22.5 Time: 2 hrs

Level: MDS/I Year /II Semester

Candidates are required to give their answer in their own words as far as practicable.

Attempt All Questions.

Group A $|5 \times 3 = 15|$

- 1. Find the normal vector and binormal vector of the space curve $\overrightarrow{r} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$ where $x = t^2$, $y = t^2$, $z = t^3$ at point (1, 1, 1).
- Evaluate $\iint (10x^2 y^3 6) dA$, where D is the region bounded by $x = -2y^2$ and $x = y^3$.
 - Evaluate $\iiint (12y 8x) dV$ where E is the region behind y = 10 2z and in front of the region in the xz-plane bounded by z = 2x, z = 5 and x = 0.
 - 4. If $\overrightarrow{F} = (2x + y) \overrightarrow{i} + (3y x) \overrightarrow{j}$, evaluate the line integral $C \overrightarrow{F} \cdot d\overrightarrow{r}$ where C is the curve in the xy-plane consisting of the straight lines from (0, 0) to (2, 0) and then to (3, 2).
 - 5. If a closed surface S enclosed a volume V and $\overrightarrow{F} = x\overrightarrow{i} + 2y\overrightarrow{j} + 3z\overrightarrow{k}$, Using Gauss' theorem show that $\iint_{S} \overrightarrow{F} \cdot \overrightarrow{n} \, ds = 6V$.

Group B $[5 \times 6 = 30]$

Group B [5 × 6 = 30]

6. Find the maximum and minimum values of $f(x, y, z) = y^2 - 10z$ subject to the constraint $x^2 + y^2 + z^2 = 36$.

The plane x + y + 2z = 2 intersects the paraboloid $z = x^2 + y^2$ in an ellipse. Find the points on this ellipse that are nearest to and farthest from the origin.

- a) Use a double integral to determine the volume of the solid that is inside the cylinder
 - $x^2 + y^2 = 16$, below $z = 2x^2 + 2y^2$ and above the xy-plane. Use a triple integral to determine the volume of the region below z = 6 x, above $z = -\sqrt{4x^2 + 4y^2}$ inside the cylinder $x^2 + y^2 = 3$ with $x \le 0$.
- Evaluate $\iint_R (x+2y) dA$ where R is the triangle with vertices (0, 3), (4, 1) and (2, 6)using the transformation $x = \frac{1}{2}(u - v)$, $y = \frac{1}{4}(3u + v + 12)$ to R.
 - Determine the surface area of the portion of $y = 2x^2 + 2z^2 7$ that is inside the cylinder $x^2 + z^2 = 4$.
- 9. Define line integral. Is the the vector field $\overrightarrow{F} = (x^2 yz) \overrightarrow{i} + (y^2 zx) \overrightarrow{j} + (z^2 xy) \overrightarrow{k}$ irrigational? Justify. Also find a scalar function \emptyset such that $\overrightarrow{F} = \nabla_{\emptyset}$.

State Green's theorem in the plane. Prove that the area enclosed by a simple closed curve C is given by = $\frac{1}{2}\int_C (x \, dy - y \, dx)$. Verify Green's theorem in the plane for $\int_C (2xy - x^2) dx + (x + y^2) dy$ where C is the closed curve given by $y = x^2$, $x^2 = y$.

10. State Stokes' theorem in a surface S. Show that in a plane, Green's theorem is a particular case of Stokes' theorem. Verify Stokes' theorem for the vector function $\overrightarrow{I} = (x^2 + y^2) \overrightarrow{I} = 2xy \overrightarrow{I}$ taken round the rectangle in the xy-plane bounded by x = 0, x = a, y = 0, y = b.

Tribbus an University Institute of Sciences and Technology 2079

Subject. Multivariable Calculus for Data Science Course No. MDS 554 Level: MDS /I Year /II Semester

Full Marks: 45 Pass Marks: 22.5 Time: 2 hrs

Candidates are required to give their answer in their own words as far as practicable.

Attempt ALL questions.

Group A $[5 \times 3 = 15]$

- 1. Find the normal vector of the space curve $\overrightarrow{r} = x \overrightarrow{i} + y \overrightarrow{j} + z \overrightarrow{k}$, where $x = t^2$, $y = t^2$, $z = t^3$ at point (1, 1, 1).
- 2. Find the equation of the tangent plane to $z = x^2 \cos(\pi y) \frac{6}{xy^2}$ at point (2,-1).
- 3. Find and classify all the critical points of the function: $f(x, y) = (y 2)x^2 y^2$.
- 4. Use a triple integral to determine the volume of the region below z = 4 xy and above the region in the xy-plane defined by $0 \le x \le 2$, $0 \le y \le 1$.
- 5. With the help of Gauss's divergence theorem, show that

$$\iint_{S} \overrightarrow{F} \cdot \hat{n} \, ds = \frac{4}{3} \pi \left(a + b + c \right)$$

where $\overrightarrow{F} = ax \overrightarrow{i} + by \overrightarrow{j} + cz \overrightarrow{k}$ and S is the surface of the sphere $x^2 + y^2 + z^2 = 1$.

Group B
$$[5 \times 6 = 30]$$

- 6. Establish the vector equation of a straight line through two points \vec{a} and \vec{b} . Find the vector equation of the line through the point (2, 1, 0) and perpendicular to both the vectors $\vec{k} 2\vec{j}$ and $\vec{j} + 2\vec{k}$. Also find the scalar and vector projections of $\vec{q} = \vec{i} \vec{j} + \vec{k}$ onto $\vec{p} = \vec{i} + \vec{j} + \vec{k}$. [2+2+2]
- 7. Derive the expression for the derivative of vector triple product of three vectors. Find the derivative of the scalar triple product of the vectors $\vec{p} = (a \cos t, b \sin t, 0), \vec{q} = (-a \sin t, b \cos t, t)$ and $\vec{r} = (1, 2, 3)$ at t = 0. [3+3]
- 8. Prove that if x = x(t) and y = y(t) are differentiable functions of t and z = f(x, y) is a

differentiable function of x and y, then
$$z = f(x(t), y(t))$$
 is a differentiable function of t and $\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$,

where the ordinary derivatives are evaluated at t and the partial derivatives are evaluated at (x, y). Also, find the maximum rate of change of $f(s, t) = te^{st}$ at point (0, 2) in the direction at which this maximum rate of change occurs.

IOST,TU [3+3]

Calculate $\partial z/\partial s$ and $\partial z/\partial t$ using the following functions: $z = e^{x+2y}$, x = s/t, y = t/s. Also Show that $u = e^{-x} \cos y - e^{-y} \cos x$ satisfies the Laplace equation $u_{xx} + u_{yy} = 0$.

- Evaluate $\iint_R xy^3 dA$ where R is the region bounded by xy = 1, xy = 3, y = 2, y = 6 $X = \frac{V}{GU}$ using the transformation $x = \frac{y}{6u}$, y = 2u. Using polar coordinates, find the area of the part of the surface z = xy that lies within the cylinder $x^2 + y^2 = 1$.
- State Green's theorem in the plane and use it to find the area of the circle of radius 4 unit. Verify Green's theorem in the plane for $\int_C (2xy - x^2) dx + (x + y^2) dy$ 10. where C is the closed curve given by the line y = x and parabola $x = y^2$. [1+2+3]

OR

Find the equation of the tangent plane to the surface with parametric equation $x = u^2$, $y = v^2$, and z = u + 2v. Verify Stokes' theorem for the vector function at point (+101 }) $\overrightarrow{F} = x \overrightarrow{i} + y \overrightarrow{j}$ around the square boundary x = 0, y = 0, x = a, y = a. [3+3]