Device Modeling Report

COMPONENTS:OPERATIONAL AMPLIFIER

PART NUMBER:NJM2141

MANUFACTURER: NEW JAPAN RADIO CO.,LTD

Bee Technologies Inc.

Spice Model


```
* PART NUMBER: NJM2141
* MANUFACTURER: NEW JAPAN RADIO
* All Rights Reserved Copyright (c) Bee Technologies Inc. 2006
.Subckt NJM2141 OUT1 -IN1 +IN1 V- +IN2 -IN2 OUT2 V+
X U1
       +IN1 -IN1 V+ V- OUT1 NJM2141_ME
X U2
       +IN2 -IN2 V+ V- OUT2 NJM2141_ME
.ends NJM2141
.subckt NJM2141 ME 12345
 c1 11 12 8.6603E-12
 c2 6 7 30.000E-12
 dc 5 53 dy
 de 54 5 dy
 dlp 90 91 dx
 dln 92 90 dx
 dp 4 3 dx
 egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
 fb 7 99 poly(5) vb vc ve vlp vln 0 2.3319E6 -1E3 1E3 2E6 -2E6
 ga 6 0 11 12 1.7153E-3
 gcm 0 6 10 99 54.242E-9
 iee 3 10 dc 100.66E-6
 hlim 90 0 vlim 1K
 q1 11 2 13 qx1
 q2 12 1 14 qx2
 r2 6 9 100.00E3
 rc1 4 11 582.99
 rc2 4 12 582.99
 re1 13 10 68.166
 re2 14 10 68.166
 ree 10 99 1.9869E6
 ro1 8 5 50
 ro2 7 99 25
 rp 3 4 1.0183E3
 vb 9 0 dc 0
 vc 3 53 dc 3.8991
 ve 54 4 dc 4.3991
 vlim 7 8 dc 0
 vlp 91 0 dc 1.0000E3
 vln 0 92 dc 1.0000E3
.model dx D(Is=800.00E-18)
.model dy D(Is=800.00E-18 Rs=1m Cjo=10p)
.model qx1 PNP(Is=800.00E-18 Bf=600.57)
.model qx2 PNP(Is=814.9854E-18 Bf=649.81)
.ends
*$
```

Output Voltage Swing,+Vout

Simulation result

Output Voltage Swing	Measurement	Simulation	%Error
+Vout(V)	6.000	5.962	-0.633

Output Voltage Swing,-Vout

Simulation result

Output Voltage Swing	Measurement	Simulation	%Error
-Vout(V)	5.5	5.463	-0.673

Input Offset Voltage

Simulation result

\/oo(m\/)	Measurement	Simulation	Error
Vos(mV)	0.5	0.5	0

Slew Rate

Simulation result

Slew Rate(v/us)	Measurement	Simulation	%Error
	3.000	3.139	4.633

Input current

Simulation result

	Measurement	Simulation	%Error
lb(nA)	80.000	80.208	0.260
Ibos(nA)	5.000	5.003	0.060

Open Loop Voltage Gain vs. Frequency

Simulation result

Evaluation circuit

Frequency

	Measurement	Simulation	%Error
f-0dB(MHz)	8.000	7.939	-0.762
Av-dc(dB)	100.000	99.610	-0.390

Common-Mode Rejection Voltage gain

Simulation result

Evaluation circuit

Common Mode Reject Ratio=95609/2.9671=32223

	Measurement	Simulation	%Error
CMRR	90.000	90.163	0.181

Remark Output Voltage Swing

Before

Remark Slew Rate

Before

Remark Input current

Before

Remark Open Loop Voltage Gain vs. Frequency

Before

