

Assignment No. 3

9.1 Explain chamskey Hierarchy in detail.

3. A grammer can be classified on the basis of production rules.

Chamskey classified grammers into the following types! 2. Type 2: Context Free Grammer

3. Type 1: Context Sensitive Grammer

4. Type 0: Unrestricted Grammer 3 Type 3 OR Regular Grammer

Type 3 OR Regular Grammer

Type 3 or regular

Grammer if all its production are of the Following forms: April Einter de partir As ling in more A. ABieselle: 5 1/2 12 B) \rightarrow Ba Where, $a \in \Sigma$ and $A, B \in V$ is known as regular language. Type 2 OR Context Free Grammer

=) A grammer is called Type 2 or context

free grammar if all its production are of
following form

Where, A EN, and & E (VUT)*

Vis set of variables and Tis set

is called, as a context. Free language,
a regular language but not the reverse

Type 1 OR context sensitive Grammer

A grammer is called a Type 1 or context

sensitive grammer if all its production of

are of the following form -

Where, IB his atleast as long as &

Type D or Unrestricted Grammer

> Productions can be written without any restriction in a unrestricted grammer. - If there is production of the d+B, the length of a could be more than Every grammer also is a Type O Arammer.

A Type 2 Arammer is also a Type 1 Grammer length of B. - A Type 3 Grammer is also a Type 2 Grammer. Construct Finite Automata recognize L(G) 9.2 where h is grammer given by -5 -1 as | bA | b A - a A | bs a 501n:-

We can write Automata as-

M(Q, 2, 5, 90, F)

Q = { 90, 9, 9, 9

E = {a,b} 20 = 20 F = 22

Transition table (8)

90 {90} {91,28} 91 {91,28} {90} 92 \$ \$

A I A I I A B

•

aka ministra a ki ma a ma a ki s

1 - 1 - 1 - 1 - 1

9.3	3 Consider the following grammar:		
	S -1 i C+S i C+Ses 9		
	C -1 b		
$\overline{}$	5010:-		
/			
	Face allies Willedon's Col Cilia		
	For string "ib +1 btaea" And following -		
	i) LMD		
- 4	ii) RMD		
	ili) Parse Tree		
	solve theck if above grammar is abiguous		
/	301-		
	;) LMD		
I.			
	S Hicks [SHICKS]		
	5 4 1645 [CAb]		
	S - 1 lbtictses [S-1 ctses]		
	S -1 ibtibtses [C-16]		
	Sy ibtibtaes [s-a]		
	5-1 ibtibtaea [5-10]		
	ii) RMD		
	=)		
	[245ime] [shiche]		
	S + ictictses [s-ictses		
	S - ictict Sea [S -197		
	S - ictictapa [Caro]		

Q.4 Convert the following grammar to CNF S - ABA B + bB | aAle 5017: 2. The non-terminals \$5,A,B) are nullable. Null productions as e removed. The resulting grammer is: SHABAIBAIABIAAIAIR ATAAIDAID By bBI aA 1619 2. Removing unit productions, we get S-1 ABAIBAIABIAAIOAIBAIOIB/BBIOA A + aA | bA | alb B-1 bBlaA | bla 3. Every symbol in x, in production of the Form A da where talk |x| >2 should be a variable. This can be done by adding two productions.

Ca ~ a

Cb -1 b

The set of productions ofter above changes is!

SHABA| BALABIAA| CQA| CBA| alb| CBB| CQA AH CQA| CBA| alb BH CBA| CQA| bla CaHq, CBHb

4. Finding an equivalent CNF:

Original Roduction	Equivalent production
	IN CHE
S -1 ABA 11 D'	S-ACI, CI-BA
S-BA ABI AAI (aA)	SHBALABIAAI 19A1
(bD)ab) (bB)CaA	ChAlalb IGBI GA
A - CaA CbA lalb	AH CAAL BALalb
B+ CbB CaAlbla	B+ (BB CaA b a
1 Ca dade 1 seller	Ca - 1 9
	(6-16