Objectifs	Réaliser un montage oscillateur – Étudier ses caractéristiques, et les comparer à celles attendues.			
Thèmes	Oscillateur quasi-sinusoïdal – Apparition des oscillations – Fréquence d'oscillations – Spectre			
Matériel sur les paillasses élèves	ALI LM741 Alimentation ±15 V	GBF Oscilloscope	Boite à décades résistances Boite à décades capacités	Multimètre Plaquette connexions
Sécurité	Les ALI sont <u>fragiles</u> ! Il est nécessaire de <u>toujours</u> les alimenter en ±15 V <u>avant</u> de réaliser les montages.			

TABLE DES MATIERES

I - PARTIE THÉORIQUE : MONTAGE INTEGRATEUR HAUTE-FRÉQUENCE

I.1 - Caractéristiques de l'ALI idéal et réel

Les caractéristiques correspondant à l'ALI LM741 utilisés lors de cette séance (indiquées dans la notice d'utilisation) sont :

Gain statique : $\mu_0 = 10^5$	Résistance d'entrée : $R_e=10~M\Omega$	Slew rate : s. r. ~ 0.5 V. μs^{-1}
Fréquence de coupure : $f_c \simeq 10 \text{ Hz}$	Courants de polarisation : $i^+ = i^- = 80 \text{ nA}$	Tension d'offset max : $V_{off} = 6 \text{ mV}$

I.2 - Montage oscillateur quasi-sinusoïdal de Wien

L'oscillateur quasi-sinusoïdal de Wien permet de générer des oscillations quasi-sinusoïdales en faisant intervenir un faible nombre de composants. Il est constitué d'un étage d'amplification relié à un étage passe-bande. Le montage, ainsi que le calcul menant à l'équation différentielle décrivant les oscillations sont rappelés ci-dessous :

Un pont diviseur de tension en sortie de filtre de Wien permet d'établir la fonction de transfert de l'étage passe-bande : $\underline{\underline{H}} = \underline{\underline{u_3}}/\underline{\underline{u_2}} = \frac{jRC\omega}{1+3jRC\omega-R^2C^2\omega^2}$, à laquelle correspond l'équation différentielle via la correspondance (× j ω) \leftrightarrow $\left(\frac{d}{dt}\right)$:

$$\ddot{\mathbf{u}}_3 + \frac{3}{RC}\dot{\mathbf{u}}_3 + \frac{1}{R^2C^2}\mathbf{u}_3 = \frac{1}{RC}\dot{\mathbf{u}}_2$$

De même, la relation entrée-sortie associée à l'étage amplificateur est :

$$\mathbf{u}_2 = \left(1 + \frac{\mathbf{R}_1}{\mathbf{R}_2}\right) \, \mathbf{u}_1$$

La combinaison des deux relations donne alors :

$$\ddot{u}_3 + \frac{2R_2 - R_1}{RCR_2}\dot{u}_3 + \frac{1}{R^2C^2}u_3 = 0$$

- 1. Les oscillations apparaissent si le système est instable. Compte-tenu de l'expression ci-dessus, déterminer la condition sur les valeurs des dipôles afin que le système oscille.
- 2. Dans la limite (inatteignable en pratique) où l'inégalité trouvée ci-dessus est juste vérifiée, l'équation se confond avec celle d'un oscillateur harmonique non-amorti. Quelle est sa pulsation ?

II - PARTIE EXPÉRIMENTALE

Rappel: Les ALI sont <u>fragiles</u>! Il est nécessaire de <u>toujours</u> les alimenter en ±15 V <u>avant</u> de réaliser les montages.

Réaliser un comparateur simple entre une tension sinusoïdale et la masse pour s'assurer que l'ALI est fonctionnel.

II.1 - Démarche expérimentale

Réaliser le montage décrit plus haut avec les valeurs : $R = R_2 = 10 \text{ k}\Omega$ $10 \text{ k}\Omega < R_1 < 100 \text{ k}\Omega$ C = 10 nF On prendra la tension de sortie en u_3 , qu'on observera d'abord à l'oscilloscope. On pourra observer u_2 sur l'autre canal.

- 1. Rechercher la valeur précise de R₁ permettant l'existence d'oscillations. Est-ce conforme à la valeur attendue ?
- 2. Utiliser l'oscilloscope en mode « déclenchement unique » afin d'observer un cliché de l'apparition des oscillations (on peut passer de la stabilité aux oscillations de u₃ en changeant brusquement la valeur de R₁).
- 3. Mesurer la fréquence f_0 de l'oscillateur pour diverses valeurs de R_1 allant d'une valeur aussi faible que possible, jusqu' à $100 \text{ k}\Omega$. Qu'observe-t-on? À quoi ce phénomène est-il dû?
- 4. En utilisant la plaquette d'acquisition et le logiciel Latis-Pro, réaliser l'acquisition des signaux avec $R_1 = 20 \text{ k}\Omega$ et $R_1 = 100 \text{ k}\Omega$ et comparer leurs spectres. Expliquer la différence.

II.2 - Résultats attendus

La présentation devra comporter, a minima, les éléments suivants :

- La valeur de R₁ permettant l'apparition des oscillations, ainsi qu'une comparaison à la valeur théorique attendue ;
- Une courbe représentant les valeurs de f₀ en fonction de celles de R₁ pour la gamme de valeurs proposées ;
- Le spectre des signaux obtenus pour $R_1 \simeq 20 \text{ k}\Omega$ et $R_1 = 100 \text{ k}\Omega$, ainsi qu'une justification de leur allure.