Nombre: Sebastián Alexander Morales Cedeño

Curso: GR1CC

Fecha: 13/05/2025

[Tarea 04] Ejercicios Unidad 02-A Bisección

Repositorio:

 $\frac{\text{https://github.com/SebastianMoralesEpn/Github1.0/tree/ff9c9d2eca2c951275457577c12632ce3}{655e341/Tareas/\%5BTarea\%2004\%5D\%20Ejercicios\%20Unidad\%2002-A\%20\%20Bisecci\%C3\%B3n}$

CONJUNTO DE EJERCICIOS

1. Use el método de bisección para encontrar soluciones precisas dentro de 10^{-2} para $x^3 - 7x^2 + 14x - 6 = 0$ en cada intervalo

a. [0, 1]

Resultado:

Raíz encontrada: 0.5859

Iteración en que se encontró la raíz: 6

b. [1, 3.2]

Resultado:

Raíz encontrada: 3.0023

Iteración en que se encontró la raíz: 7

c. [3.2, 4]

Resultado:

Raíz encontrada: 3.4188

Iteración en que se encontró la raíz: 6

2. a. Dibuje las gráficas para y = x y $y = \sin x$.

b. Use el método de bisección para encontrar soluciones precisas dentro de 10^{-5} para el primer valor positivo de x con $x = 2 \sin x$.

Resultado:

Raíz encontrada: 1.895491

Iteración en que se encontró la raíz: 18

Solución aproximada en el intervalo [0, 3.141592653589793]: $x \approx 1.895491$

3. a. Dibuje las gráficas para y = x y $y = \tan x$.

b. Use el método de bisección para encontrar una aproximación dentro de 10^{-5} para el primer valor positivo de x con $x = \tan x$.

Resultado:

Raíz encontrada: 1.470791

Iteración en que se encontró la raíz: 17

Solución aproximada en el intervalo [0, 1.4707963267948965]: $x \approx 1.470791$

4. a. Dibuje las gráficas para $y = x^2 - 1 y y = e^{1-x^2}$

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS MÉTODOS NUMÉRICOS

INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

b. Use el método de bisección para encontrar una aproximación dentro de 10^{-3} para un valor en [-2, 0] con $x^2 - 1 = e^{1-x^2}$

Resultado:

Raíz encontrada: -1.250977

Iteración en que se encontró la raíz: 10

Solución aproximada en el intervalo [-2, 0]: $x \approx -1.250977$

- 5. Sea $f(x) = (x+3)(x+1)^2x(x-1)^3(x-3)$. ¿En qué cero de f converge el método de bisección cuando se aplica en los siguientes intervalos?
 - a. [-1.5, 2.5]

Resultado:

Raíz encontrada: p = 0.00

Iteración en que se encontró la raíz: 3

Solución aproximada en el intervalo [-1.5, 2.5]: $x \approx 0.000000$

b. [-0.5, 2.4]

Resultado:

Raíz encontrada: p = 0.00

Iteración en que se encontró la raíz: 3

Solución aproximada en el intervalo [-0.5, 2.4]: $x \approx 0.000562$

c. [-0.5, 3]

Resultado:

Raíz encontrada: p = 3.00

Iteración en que se encontró la raíz: 3

Solución aproximada en el intervalo [-0.5, 3]: $x \approx 2.999146$

d. [-3, -0.5]

Resultado:

Raíz encontrada: p = -3.00

Iteración en que se encontró la raíz: 3

Solución aproximada en el intervalo [-3, -0.5]: $x \approx -2.999390$

DISCUSIONES

1. Un abrevadero de longitud L tiene una sección transversal en forma de semicírculo con radio r. (Consulte la figura adjunta.) Cuando se llena con agua hasta una distancia h a partir de la parte superior, el volumen V de agua es

Suponga que L = 10 cm, r = 1 cm y $V = 12.4 cm^3$. Encuentre la profundidad del agua en el abrevadero dentro de 0.01 cm.

Resultado:

Raíz encontrada: p = 0.16, iteración 7

La profundidad aproximada del agua es $h \approx 0.16$ cm

2. Un objeto que cae verticalmente a través del aire está sujeto a una resistencia viscosa, así como a la fuerza de gravedad. Suponga que un objeto con masa m cae desde una altura s_0 y que la altura del objeto después de t segundos es

$$s(t) = s_0 - \frac{mg}{k}t + \frac{m^2g}{k^2}\left(1 - e^{-\frac{kt}{m}}\right)$$

Donde $g=9.81\frac{m}{s^2}$ y k representa el coeficiente de la resistencia del aire en $\frac{NS}{m}$. Suponga $s_0=300$ m , m=0.25 kg y $k=0.1\frac{NS}{m}$. Encuentre, dentro de 0.01 segundos, el tiempo que tarda un cuarto de kg en golpear el piso.

Resultado:

Raíz encontrada: p = 14.72, iteración 11

El tiempo aproximado de caída es $t \approx 14.72$ segundos

EJERCICIOS TEÓRICOS

1. Use el teorema 2.1 para encontrar una cota para el número de iteraciones necesarias para lograr una aproximación con precisión de 10^{-4} para la solución de $x^3 - x - 1 = 0$ que se encuentra dentro del intervalo [1, 2]. Encuentre una aproximación para la raíz con este grado de precisión.

Resultado:

Número de iteraciones necesarias: 14

Raíz encontrada: p = 1.3248

Raíz aproximada en el intervalo [1, 2]: 1.3248

ESCUELA POLITÉCNICA NACIONAL FACULTAD DE INGENIERÍA DE SISTEMAS MÉTODOS NUMÉRICOS

INGENIERÍA DE SISTEMAS INFORMÁTICOS Y DE COMPUTACIÓN

- 2. La función definida por $f(x) = \sin \pi x$ tiene ceros en cada entero. Muestre cuando -1 < a < 0 y 2 < b < 3, el método de bisección converge a
 - a. 0, si a + b < 2

Resultado:

Raíz encontrada: 0.000977

Iteración en que se encontró la raíz: 8

Solución aproximada en el intervalo [-0.5, 2.2]: $x \approx 0.000977$

b. 2, si a + b > 2

Resultado:

Raíz encontrada: 1.994727

Iteración en que se encontró la raíz: 8

Solución aproximada en el intervalo [-0.3, 2.8]: $x \approx 1.994727$

c. 1, si a + b = 2

Resultado:

Raíz encontrada: -0.002734

Iteración en que se encontró la raíz: 8

Solución aproximada en el intervalo [-0.7, 2.7]: $x \approx -0.002734$