ALGEBRA MODERNA

Examen Parcial 1:

Respuestas y Sugerencias

21 de abril de 2004

 $\fbox{1}$ Da las definiciones de grupo, subgrupo normal y acción de un grupo G en un conjunto X.

Definición. La pareja (G, \cdot) , donde G es un conjunto, y \cdot una operación binaria definida en G es un **grupo** si cumple:

- i) Existe $e \in G$, tal que $a \cdot e = e \cdot a = a$, para todo $a \in G$.
- ii) Dado $a \in G$ existe $b \in G$ con $a \cdot b = b \cdot a = e$.

Definición. Un subgrupo S < G de un grupo (G, \cdot) es un **subgrupo normal** si para todo $a \in G$ se cumple

$$aS = Sa$$
.

donde $aS := \{a \cdot s \ : \ s \in S\}$ y Sa se define de manera análoga.

Definición. Dados un grupo (G, \cdot) y un conjunto $X \neq \emptyset$, definimos una **acción de** G **sobre** X como una función:

$$\theta: G \times X \to X$$
.

que cumple las siguientes propiedades:

- i) $\theta(e,x) = x$ para todo $x \in X$, donde $e \in G$ es el elemento identidad.
- ii) $\theta(g_1, \theta(g_2, x)) = \theta(g_1 \cdot g_2, x)$ para todos $g_1, g_2 \in G$ y $x \in X$.

 $\fbox{2}$ Sea G un grupo y S un subgrupo de G tal que el índice de S en G es 2. Probar que S es normal en G.

Demostración. Como S tiene índice 2 y las clases laterales de un subgrupo particionan al grupo se sigue que, dado $g \in G$, los conjuntos gS y Sg pueden ser únicamente S ó $G \setminus S$. Sea pues $g \in G$ y supongamos que gS = S, entonces $g = ge \in gS = S$, por lo que $g \in S$ y entonces Sg = S, ya que si $Sg = G \setminus S$ se tendría $g \in S$ y $g \in G \setminus S$ lo cual es absurdo. El caso cuando $gS = G \setminus S$ es análogo.

Por lo tanto gS = Sg para todo $g \in S$, lo cual es la definición de subrugo normal (ver problema anterior).

3 Sea G un grupo con elemento identidad e, supongamos que para todo $g \in G$, $g^2 = e$, demostrar que G es abeliano.

Demostración. Por unicidad del inverso se sigue que, para todo $g \in G$ se cumple: $g^{-1} = g$. Luego para todos $a, b \in G$ se sigue,

$$ab = (ab)^{-1} = b^{-1}a^{-1} = ba,$$

por lo tanto G es abeliano.

Definición. Un grupo G se dice soluble si existen subgrupos

$$N_r = \{e\} < N_{r-1} < \dots < N_1 < N_0 = G,$$

tales que $N_i \triangleleft N_{i-1}$ y N_{i-1}/N_i es abeliano para toda i=1,...,r.

4 Demuestra que el grupo Sym₄ es soluble.

Demostración. Consideremos la siguiente cadena de subgrupos de Sym₄

$$N_3 := \{1\} < N_2 := \Gamma := \{(1), (12)(34), (13)(24), (14)(23)\} < N_1 := Alt_4 < N_0 := Sym_4.$$

Para verificar la definición de grupo soluble hay que seguir lo siguiente:

- i) Los hechos que $N_3 \triangleleft N_2$ y N_2/N_3 es abeliano son inmediatos.
- ii) $N_2 \triangleleft N_1$ se sigue observando que Γ es el grupo 4 y éste es el centro del grupo Alt₄. Ahora, la abelianidad de N_1/N_3 es consecuencia de que

$$|N_1/N_2| = |N_1|/|N_2| = 12/4 = 3,$$

y todo grupo de cardinalidad menor que 6 es abeliano.

iii) $N_1 \triangleleft N_0$ se sigue utilizando el problema 2, dado que

$$|N_0|/|N_1| = 24/12 = 2,$$

e.g. el índice de N_1 en N_0 es 2. Entonces también $|N_0/N_1|=2$, por lo que N_0/N_1 es abeliano.

Los incisos i, ii y iii demuestran que Sym_4 es soluble.

5 Supongamos que la aplicación

$$\phi: G \times X \to X$$

$$(g,x)\mapsto gx$$

define una acción del grupo G en el conjunto X. Demuestra que $\operatorname{Est}_G(gx) = g\operatorname{Est}_G(x)g^{-1}$.

Demostración. Sea $h \in \operatorname{Est}_G(gx)$, entonces $h = g(g^{-1}hg)g^{-1}$ y

$$(g^{-1}hg)(x) = g^{-1}(hgx) = g^{-1}(gx) = x,$$

i.e. $g^{-1}hg(x) \in \text{Est}_G(x)$, por lo que $h = g(g^{-1}hg)g^{-1} \in g\text{Est}_G(x)g^{-1}$ y por lo tanto $\text{Est}_G(gx) \subset g\text{Est}_G(x)g^{-1}$.

Ahora, sea $h \in g\mathrm{Est}_G(x)g^{-1}$, entonces $h = gh'g^{-1}$ con h'x = x, luego

$$h(gx) = gh'g^{-1}(gx) = gh'x = gx,$$

e.g. $h \in \operatorname{Est}_G(gx)$, lo que demuestra que $\operatorname{Est}_G(gx) \supset g\operatorname{Est}_G(x)g^{-1}$. Por lo tanto, hemos demostrado que $\operatorname{Est}_G(gx) = g\operatorname{Est}_G(x)g^{-1}$.

6 Sea G un grupo y M, N subgrupos normales de G. Demuestra que $G/(M \cap N)$ es isomorfo a un subgrupo del producto directo $G/M \times G/N$.

Idea de la demostración. Definimos la aplicación

$$\varphi: G/(M\cap N) \to G/M \times G/N$$

por $\varphi([g]) = ([g]_M, [g]_N)$, donde $[g], [g]_M$ y $[g]_N$ denotan, respectivamente, la clase de g en $G/(M \cap N)$, G/M y G/N. Es posible demostrar que φ cumple las propiedades:

- i) está bien definida,
- ii) es invectiva y,
- iii) es homomorfismo.

Entonces φ es isomorfismo con su imagen, la cual es un subgrupo de $G/M \times G/N$ (la imagen de un homomorfismo es un subgrupo del codominio).

Otra idea de demostración. Definamos la aplicación

$$\varphi: G \to G/M \times G/N$$

por $\varphi(g)=([g]_M,[g]_N)$, donde $[g],[g]_M$ y $[g]_N$ son como arriba. Podemos demostrar que φ cumple las propiedades:

- i) está bien definida,
- ii) es invectiva,
- iii) es homomorfismo y,
- iv) su kernel es precisamente el grupo $G/(M \cap N)$.

Concluímos utilizando el teorema de isomorfismo.

El ejercicio aquí es llenar los detalles de ambas demostraciones.

[7] Sea p un primo. Demostrar que un grupo finito G es un p-grupo si y sólo si para todo $a \in G$ tal que $o(a) = p^k$ para algún $k \in \mathbb{Z}^+$.

Demostración. \Rightarrow) Supongamos que G es un p-grupo, entonces $|G| = p^n$ para algún $n \in \mathbb{Z}^+$. Sea $a \in G$, entonces por el teorema de Lagrange $o(a)|p^n$, por lo tanto $o(a) = p^k$ para algún $k \in \mathbb{Z}^+$.

 \Leftarrow) Supongamos que para todo $a \in G$ se tiene $o(a) = p^k$ para algún $k \in \mathbb{Z}^+$. Ahora,

sea $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$ la descomposición en primos del orden de G. Por el teorema de Cauchy existe un elemento de orden p_i para todo i=1,...,r, pero por hipótesis dicho elemento tiene orden p^k , entonces $p_i=p^{k_i}$ para algunos $k_i \in \mathbb{Z}^+$, para toda i=1,...,r. Por lo tanto el orden de G es p^n , para $n \in \mathbb{Z}^+$ i.e. G es un p-grupo.

8 Sea G un grupo finito y S un p-subgrupo de Sylow de G, sea $a \in G$ tal que $o(a) = p^k$ y $a \in N_G(S)$, demuestra que $a \in S$.

Demostración. Definamos

$$H := \{a^{p^r} : 0 \le r \le k - 1\},\$$

el cual es un p-grupo. Como S es un p-subgrupo de Sylow y H es un p-grupo, un resultado demostrado en clase dice que

$$H \cap S = H \cap N_G(S)$$
.

Entonces $a \in H$ por definición y $a \in N_G(S)$ por hipótesis, luego $a \in H \cap N_G(S) = H \cap S$, por lo tanto $a \in S$.

 $\fbox{9}$ Demuestra que si G es un grupo finito de orden 99 entonces G tiene un subgrupo normal de orden 9.

Demostración. Como $99 = 3^2 \times 11$ se sigue, por el primer teorema de Sylow que existe S < G un 3-subgrupo de Sylow. Queremos demostrar que S es normal, lo que es equivalente a demostrar que |C(S)| = 1.

Sabemos, por el segundo teorema de Sylow, que todo 3-subgrupo de Sylow es conjugado a S, e.g. si S' es un 3-subgrupo de Sylow entonces $S' \in C(S)$. Por último, por el tercer teorema de Sylow, el número de 3-subgrupos de Sylow de G es congruente a 1 módulo 3, e.g.

$$|C(S)| \equiv 1 \mod 3$$
,

pero sabemos que |C(S)| divide a |G|=66 (de hecho $|C(S)|=|G|/|\mathrm{Est}_G(S)|$), entonces ambas condiciones se cumplen únicamente si |C(S)|=1 e.g. $S \triangleleft N$.

10 Describe los distintos grupos abelianos de orden 66.

Solución. Tenemos, por un teorema demostrado en clase, que si p y q son primos relativos, entonces, el producto directo:

$$\mathbb{Z}_p \times \mathbb{Z}_q = \mathbb{Z}_{pq}.$$

Ahora, el teorema de Frobenius dice que todo grupo abeliano es producto directo de grupos cíclicos. Entonces, si G es un grupo de orden $66 = 2 \times 3 \times 11$ por los dos resultados anteriores se tiene:

$$G \cong \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_{11} \cong \mathbb{Z}_{66}$$

i.e. \mathbb{Z}_{66} es el único grupo abeliano de orden 66. \sharp

11 Sean p, q números primos distintos, demuestra que cualesquiera dos grupos de orden

pq son isomorfos.

Observación. El resultado es falso y el contraejemplo es un ejercicio de la tarea, en donde se demuestra que existen dos grupos distintos de orden $6 = 2 \times 3$.

Observación 2. Si imponemos la condición de que los grupos sean abelianos el resultado es consecuencia inmediata del mismo razonamiento utilizado para resolver el problema 10

Otra hipótesis. Si p < q y $q \not\equiv 1 \mod p$ entonces el resultado es cierto.

Ejercicios Suplementarios

- 1 Llena los detalles del ejercicio 6.
- $\boxed{2}$ Muestra que dado un grupo G el número de clases laterales izquierdas es igual al de clases laterales derechas, i.e. define una aplicación biyectiva entre la colección de clases laterales derechas y la colección de clases laterales izquierdas.
- **OjO**: Esto implica que el índice de un subgrupo puede ser definido indistintamente con las clases laterales izquierdas o derechas.
- 3 Demuestra con detalle el problema 11 con cada una de las hipótesis adicionales.
- [4] Sea G un p-grupo. Prueba que G es soluble.
- 5 Sea G un grupo finito y p un primo que divide al orden de G. Sea S < G un p-subgrupo de Sylow de G. Demuestra que $N_G(N_G(S)) = N_G(S)$
- [6] Demuestra que un p-subgrupo normal de un grupo finito está contenido en todo p-subgrupo de Sylow de dicho grupo.

Dudas y comentarios con: Jorge Albarrán. albarran@cimat.mx