RCIF Applied Al Seminar Series: Explainable Al for Healthcare Applications

Introduction

- Transparency: Explainable AI (xAI) clarifies AI decisions, building trust among clinicians and patients.
- Safety: Understanding AI processes helps identify and correct potential biases or errors, ensuring reliable interventions.
- Compliance: xAI meets regulatory standards requiring transparency and accountability, aiding approvals and integration.
- Collaboration: xAl fosters better clinician-Al interaction, enhancing the accuracy and effectiveness of patient care.
- Patient Trust: Clear explanations of Al decisions increase patient acceptance and adherence to treatments, improving outcomes.

Peeking into the Black Box

- Integrated Gradients & Feature Ablation: Identify feature importance across modalities.
- Layer Activation & Layer Attribution: Understand how specific layers contribute to model decisions, crucial for deep imaging models.
- Saliency Maps: Visualize which parts of an input image influence the model's predictions.
- Cross-Model Comparisons: Facilitate understanding of how different model architectures process and prioritize information.
- Customizable & Extensible: Tailor explanations to specific multimodal interactions and imaging modalities.

xAl with Captum

ATTRIBUTION ALGORITHMS

Methods and Use Cases

Algorithm	Use Case for CNNs	Pres	Cens
SHAP Methods	Understanding teature attributions across different image regions.	Accurate, interpretable, model- agnostic.	Computationally expensive, complex to implement.
GradientSHAP	Adding robustness to gradient-based explanations in CNNs.	Improves robustness, combines gradients with SHAP	500 congutationally intensive, can be sensitive to noise.
OuldedGradCam	Highlighting Important regions in Images processed by CNNs.	Contines benefits of Guided Backpropagation and GradCam, highly interpretable.	Requires careful implementation, may not capture global features.
integrated Gradients	Providing comprehensive feature attributions for CNN extputs.	Theoretically sound, accorate, ecolatie.	Requires baseline selection, computationally intersive.
Salency	Quick approximation of important regions in images processed by CNNs.	Simple, tast, easy to implement.	Less precise, can be noisy, tacks rebustness.
Occlusion	Systematically marking parts of the legal image to understand impact on CNN output.	intuitive, easy to understand, model- agnostic	Computationally expensive, may must interactions between features.
DuidedSackgrop, Deconvolution	Visualizing which features in input images contribute most to CNN's predictions.	High-resolution visualizations. Interpretable	May produce resileading results, serly highlights positive gradients.
Orad Cam	Highlighting the most relevant regions in images for CNN decisions.	intuitive, effective for incalization tasks, visually interpretable.	Limited to conventional layers, lower resolution.
Layer Activation	Visualizing activations of CNN intermediate layers.	Provides resight into Tayer behaviors, Interpretable.	Does not directly attribute features to outputs.
NuiseTunnel (Smoothgrad, Vurgrad, Smoothgrad Square)	Adding noise to gradient-based methods for more robust attributions in CNNs.	Enhances robostness, reduces noise in attributions	Adds computational overhead, may stiff require parameter tuning

Intro to Integrated Gradients

- Definition: Integrated Gradients (IG) is an attribution method that helps explain the predictions of deep neural networks.
- Purpose: It assigns importance scores to input features based on their contribution to the model's output.
- Transparency: Provides insight into how features influence predictions, enhancing model interpretability.
- Gradient-Based: Utilizes gradients to measure changes in predictions relative to input features.
- Path Integration: Integrates gradients along a path from a baseline to the actual input.

How does it work?

- Baseline Selection: Choose a baseline input (e.g., a black image) for comparison.
- Gradient Calculation: Compute gradients of the model's output with respect to the input features.
- Path Integration: Integrate these gradients along the path from the baseline to the input.
- Attribution Mapping: Visualize the importance scores for each input feature.

Occlusion

- Definition: Occlusion is a method for interpreting neural network predictions by systematically masking parts of the input and observing the change in the output.
- Purpose: Helps determine the importance of different regions in an input image for the model's decision-making.
- Sliding Window: Occlude parts of the input image using a sliding window.
- Replace with Baseline: Replace the occluded region with a baseline value (e.g., black).
- Attribute Calculation: Measure the impact on the model's output for each occluded region.

How does it work?

Let's Open a Black Box...

Open

Schedule a AI/HPC Consult

