Introduction to the generalized Roy model

Philipp Eisenhauer

Introduction

Heckman (2008) defines three policy evaluation tasks:

- Evaluating the impact of historical interventions on outcomes including their impact in terms of wellbeing of the treated and the society at large.
- ➤ Forecasting the impact of historical interventions implemented in one environment in other environments, including their impact in terms of well-being.
- Forecasting the impacts of interventions never historically experienced to various environments, including their impact on well-being.

Econometrics of policy evaluation

- ▶ is important
- ▶ is complicated
- is multifaceted

Numerous applications

- ► labor economics
- development economics
- industrial economics
- health economics

Numerous effects

- conventional average effects
- policy-relevant average effects
- marginal effects
- distributional effects
- effects on distributions

Numerous estimation strategies

- instrumental variables
- (quasi-)experimental methods
- matching

Model

Generalized Roy model

Potential Outcomes

$$Y_1 = \mu_1(X) + U_1$$

$$Y = DY_1 + (1 - D)Y_0$$

$$Y_0 = \mu_0(X) + U_0$$

Choice

$$D = I[\mu_D(X, Z) - V > 0]$$

Individual Heterogeneity

Individual-specific Benefit of Treatment

$$Y_1 - Y_0 = (\mu_1(X) - \mu_0(X)) + (U_1 - U_0)$$

Sources of Heterogeneity

- Difference in observables
- Difference in unobservables
 - Uncertainty
 - Private information

Figure: Distribution of benefits

Econometric problems

- ► **Evaluation problem**, we only observe an individual in either the treated or untreated state.
- ▶ **Selection problem**, individuals that select into treatment differ from those that do not.

Essential Heterogeneity

Definition: Individuals select their treatment status based on gains unobservable by the econometrician. More formally,

$$Y_1 - Y_0 \not\perp \!\!\!\perp D \mid X = x.$$

⇒ consequences for the choice of the estimation strategy

Objects of interest

Useful Notation

$$P(X, Z) = \Pr(D = 1 \mid X, Z) = F_V(\mu_D(X, Z))$$

 $U_D = F_V(V)$

Figure: First-stage unobservable

Figure: Support

Figure: Distribution of benefits

Figure: Conditional expectation and essential heterogeneity

Conventional Average Treatment Effects

Conventional Average Treatment Effects

$$B^{ATE} = E[Y_1 - Y_0]$$

 $B^{TT} = E[Y_1 - Y_0 \mid D = 1]$
 $B^{TUT} = E[Y_1 - Y_0 \mid D = 0]$

⇒ correspond to *extreme* policy alternatives

Selection Problem

$$\begin{split} E[Y \mid D = 1] - E[Y \mid D = 0] &= \underbrace{E[Y_1 - Y_0]}_{B^{ATE}} \\ &+ \underbrace{E[Y_1 - Y_0 \mid D = 1] - E[Y_1 - Y_0]}_{\text{Selection on gains}} \\ &+ \underbrace{E[Y_0 \mid D = 1] - E[Y_0 \mid D = 0]}_{\text{Selection on levels}} \end{split}$$

$$E[Y \mid D = 1] - E[Y \mid D = 0] = \underbrace{E[Y_1 - Y_0 \mid D = 1]}_{B^{TT}} + \underbrace{E[Y_0 \mid D = 1] - E[Y_0 \mid D = 0]}_{\text{Selection Bias}}$$

⇒ the bias depends on the parameter of interest

Figure: Distribution of effects with essential heterogeneity

Figure: Distribution of effects without essential heterogeneity

Policy-Relevant Average Treatment Effects

Observed Outcomes

$$Y_B = D_B Y_1 + (1 - D_B) Y_0$$

 $Y_A = D_A Y_1 + (1 - D_A) Y_0$

Effect of Policy

$$B^{PRTE} = \frac{1}{E[D_A] - E[D_B]} (E[Y_A] - E[Y_B])$$

Marginal Effect of Treatment

Marginal Benefit of Treatment

$$B^{MTE}(x, u_D) = E[Y_1 - Y_0 \mid X = x, U_D = u_D]$$

Intuition: Mean gross return to treatment for persons at quantile u_D of the first-stage unobservable V or a willingness to pay for individuals at the margin of indifference.

Figure: Margin of indifference

Figure: B^{MTE} and essential heterogeneity

Effects of treatment as weighted averages Parameter Δ_j , can be written as a weighted average of the $B^{MTE}(x, u_D)$.

$$\Delta_j(x) = \int_0^1 B^{MTE}(x, u_D) \omega^j(x, u_D) du_D,$$

where the weights $\omega^{j}(x, u_{D})$ are specific to parameter j and integrate to one.

Weights

$$\omega^{ATE}(x, u_D) = 1$$

$$\omega^{TT}(x, u_D) = \frac{1 - F_{P|X=X}(u_D)}{E[P \mid X = X]}$$

$$\omega^{TUT}(x, u_D) = \frac{F_{P|X=X}(u_D)}{E[1 - P \mid X = X]}$$

Figure: Effects of treatment as weighted averages

Local Average Treatment Effect

Local Average Treatment Effect

- ► Local Average Treatment Effect: Average effect for those induced to change treatment because of a change in the instrument.
 - ⇒ instrument-dependent parameter
- ► Marginal Treatment Effect: Average effect for those individuals with a given unobserved desire to receive treatment.
 - ⇒ deep economic parameter

$$B^{LATE} = \frac{E[Y \mid Z = z] - E[Y \mid Z = z']}{P(z) - P(z')}$$

$$B^{LATE}(x, u_D, u_{D'}) = \frac{1}{u_D - u_{D'}} \int_{u_D}^{u_{D'}} B^{MTE}(x, u) du,$$

Figure: Local average treatment effect

Distributions of Effects

Distributions of Effects

- marginal distribution of benefits
- joint distribution of potential outcomes
- joint distribution of benefits and surplus

Figure: Distribution of benefits

Figure: Distribution of potential outcomes

Figure: Distribution of benefits and surplus

Conclusion

Appendix

References

Heckman, J. J. (2008). Schools, skills, and synapses. *Economic Inquiry*, 46, 289–324.