2021 Advanced Institute on Health Investigation and Air Sensing for Asian Pollution (AI on Hi-ASAP)

Q & A for Exam I

Speaker: Chun-Hu Liu

1

Data cleaning

Q1.

There are two calibration data set. One is for simple linear regression and another is for two segments regression. Please get the calibration factor from the two data set and past them to the google sheet (Maximum concentration is 200). You can get the google sheet link from "GoogleSheetAndAPI.xlsx".

- A. Which data set is simple linear regression?
- B. What are the regression factors of AL-0216 in data set 2? Slope, intercept and R^2

Q1.a Which data set is simple linear regression?

Dataset 1 Dataset 2

- Step 1. plot simple linear regression via excel
- Step 2. there are not enough data point at high concentration
- Step 3. there is a recurve point at dataset 2 and enough data point data at high concentration

Get calibration factor

WHAT ARE THE REGRESSION FACTORS OF AL-0216 IN DATA SET 2? SLOPE, INTERCEPT AND R^2

Step 1. Copy Dataset to ASLung_Calibration_Factor_RawData and rename the file name of reference PM with keyword "standard"

Step 2. rename column of reference PM and delete row 1 to row 4

Step 3. run python code

Step 4. Select 1: ASLung Calibration factor from reference instrutment

Step 5. Select 2: Two segments regression

Step 6. Input 200: Maximum concentration of standard PM

```
Al_2020 D:\python_project\Al_2020
                                                                                                                                                               import os
                                                                                                                                                               import warnings
             MSLung Calibrated Data
                                                                                                                                                               warnings.filterwarnings("ignore", category=RuntimeWarning)

✓ Massaury Market 
                                                                                                                                                               def dataurls():
                     SegmentRegressFactor 202110051102.csv
                     SimpleLinearReg essFactor_202110051028.csv
                                                                                                                                                                          calfactorurl="https://script.google.com/macros/s/AKfycbwdqClAkikVl8eJMcw_ZsN1RS9pf03Nbv/
     > MacLung_Calibration_Factor_RawData
                                                                                                                                                                          return calfactorurl
     > MSLung_RawData
    ∨ 🛅 lib
                                                                                                                                                              if name == " main ":
                     __init__.py
                                                                                                                                                                          options = ["ASLung calibration factor from reference instrument", "Data cleaning and ca
                     cal_factor_2s.py
                                                                                                                                                                          def let user pick(options):
                     Lal PM.py
                                                                                                                                                                                    print("Please choose:")
                     cleanPM.pv
                                                                                                                                                                                    for idx, element in enumerate(options):

df.py

df.py

df.py

df.py

dr.py

dr.p
                                                                                                                                                                                               print("{}) {}".format(idx + 1, element))
                     aget_cal_factor.py
                                                                                                                                                                                    iii = input("Please select which you want to do: ")
                     🐁 lib.py
                                                                                                                                          16
                                                                                                                                                                                    return int(iii)
                     segmented_regress_lib_Al.py
                     SetNaN.py
                                                                                                                                                                          iii = let user pick(options)
      > venv p374 x librar
                                                                                                                                                                          if iii == 1:
              & AS_LungQAQC_0908_2S.py
                                                                                                                                                                                    os.system('python ASLungCalFractor 2Segment Regesssion AI.py')
              ASLungCalFractor_2Segment_Regesssion_Al.py
                                                                                                                                                                          elif iii == 2:
                                                                                                                                                                                    os.system('python AS_LungQAQC_0908_25.py')
              license.txt
                                                                                                                                          24
                                                                                                                                                                                    print("-----
              arun.py
                                                                                                                                                                                    print("If there is any error, the log message will save in the folder of log.")
Illi External Libraries
                                                                                                                                                                 if name == " main " > let user pick() > for idx, element in enumerate(o...
     Scratches and Console
                       See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy
                            pm_data_array loc[:, 'pred_%s_sub'%aslung][pm_data_array['pred_%s_sub'%aslung] <= 0] = np.nan
                                       0.00567 minutes
                       D:\python projet\AI 2020\lib\segmented regress lib AI.py:28: SettingWithCopyWarning:
                       A value is trying to be set on a copy of a slice from a DataFrame
                       See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
                            pm_data_array loc[:, 'pred_%s'%aslung][pm_data_array['pred_%s'%aslung] <= 0] = np.nan
                       D:\python projet\AI 2020\lib\segmented regress lib AI.py:42: SettingWithCopyWarning:
                       A value is trying to be set on a copy of a slice from a DataFrame
                       See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy
                            pm_data_array loc[:, 'pred_%s_sub'%aslung][pm_data_array['pred_%s_sub'%aslung] <= 0] = np.nan
                                         0.00607 minutes
                       Process finished with exit code 0
```

Step 7. When python finish, it will show "Process finished exit code o"

Step 8. The calibration factions will save in "2segmentRegressionFactionxxx.csv" file

	А	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	Р	Q	R	S	Т
1	Golden_standard	aslung_id	slope1	intercept1	region1_mae	region1_rmse	break_point1	slope2	intercept2	region2_mae	region2_rmse	r2	total_mae	total_rmse	sample	PM	high_conc	low_conc	Start_date	End_date
2	y_goldenstand	AL-0212	0.636	1.309	10.69110668	15.59651992	101.6	0.35	30.344	162.9780282	179.2623209	0.998929847	1.452288042	1.971093021	2009	PM2.5	200	1	2020/6/3	
3	y_goldenstand	AL-0213	0.597	0.948	10.85181733	15.71952827	98.1	0.343	25.929	171.0987424	189.8476768	0.999	1.253312292	1.681788926	2079	PM2.5	200	1	2020/6/3	
4	y_goldenstand	AL-0214	0.594	1.046	11.39977227	16.5237682	100.2	0.334	27.077	177.6203625	196.768013	0.999	1.268840056	1.703799943	2058	PM2.5	200	1	2020/6/3	
5	y_goldenstand	AL-0215	0.618	1.458	11.86555889	17.38533841	104.3	0.306	34.005	194.5645703	214.7304115	0.998846211	1.486286028	2.046609234	2010	PM2.5	200	1	2020/6/3	
5	y_goldenstand	AL-0216	0.574	1.053	11.84882477	17.17266265	98.9	0.318	26.358	191.6033689	213.0114306	0.999	1.11899021	1.491030187	2070	PM2.5	200	1	2020/6/3	
7	y_goldenstand	AL-0212	0.944	0.846	0.494928947	0.59237292	50.2	0.634	16.426	42.48252661	50.46678468	0.999	1.234079622	1.718069495	2009	PM1	200	1	2020/6/3	
8	y_goldenstand	AL-0213	0.851	0.618	1.589543601	2.30257094	47.7	0.601	12.555	53.85883231	63.05176569	0.999	1.302254739	1.772557772	2079	PM1	200	1	2020/6/3	
9	y_goldenstand	AL-0214	0.87	0.704	1.297618055	1.887068814	47.7	0.609	13.138	51.13278237	60.13584487	0.999	1.258186334	1.698384261	2058	PM1	200	1	2020/6/3	
.0	y_goldenstand	AL-0215	0.944	1.014	0.68596275	0.809721274	55.4	0.583	21.015	51.90423515	61.21700718	0.999	1.276783183	1.765149894	2010	PM1	200	1	2020/6/3	
.1	y_goldenstand	AL-0216	0.818	0.583	2.394982176	3.418482095	53.1	0.525	16.14	73.77153099	85.79145656	0.999	1.056191168	1.407530833	2070	PM1	200	1	2020/6/3	
.2																				

4	А	В	С	D	E	F	G	Н	1	
	Golden_standard	aslung_id	slope1	intercept1	break_point1	slope2	intercept2	r2	PM	
!	y_goldenstand	AL-0216	0.574	1.053	98.9	0.318	26.358	0.999	PM2.5	
1	y_goldenstand	AL-0216	0.818	0.583	53.1	0.525	16.14	0.999	PM1	
-										

Step 9. Open the CSV file and you can see the answer of Q1.b

Do the same steps for dataset 1

Data cleaning

Step 1. copy data to ASLung_RawData

Step 2. Find the "GoogleSheetAndApi.xlsx" file, you can see the google sheet and API link

Step 3. Open the google sheet, you will see a new sheet without any calibration factor data.

Step 4. copy the calibration factors to the sheet, which are generated from dataset 1 and dataset 2

```
import os
import varnings
warnings.filterwarnings("ignore", category=RuntimeWarning)
def dataurls():

calfactorurl="https://script.google.com/macros/s/AKfycbwdqClAkikVl8eJMcw_ZsN1RS9pf03NbvDJYgRuRsZrOKpIVCMG/exec"
return calfactorurl
```

Step 5. open "run.py" and update calibration factor API

Step 6. run the python code

Step 7. select 2(Data cleaning and calibrate ASLung raw data) then select 1(Calculate AS-Lung data from SD card)

Step 8. when python finish, it will shoe the error message on the window. The answer also save in the log file of SD_data_Error_log file

So, the answer of Q2 is AL-0211

Q2. How many sample size of AS-Lung device at the sampling date of 2018-08-30?

Step 1. open the log file of Sample_size file

Q2. How many sample size of AS-Lung device at the sampling date of 2018-08-30?

4	Α	В	С	D	
1	aslung_id	Data file	Samples	Data recove	ery
2	AL-0214	2020-08-03.csv	5712	99.2	
3	AL-0214	2020-08-04.csv	2175	37.8	
4	AL-0214	2020-08-05.csv	5760	100	
5	AL-0212	2020-08-14.csv	5760	100	
6	AL-0212	2020-08-15.csv	5760	100	
7	AL-0212	2020-08-16.csv	5760	100	
8	AL-0212	2020-08-17.csv	5760	100	
9	AL-0134	2018-09-05.csv	1408	97.8	
LO	AL-0134	2018-09-06.csv	1413	98.1	
l1	AL-0134	2018-09-07.csv	1408	97.8	
L2	AL-0135	2018-08-29.csv	1386	96.2	
L3	AL-0135	2018-08-30.csv	1374	95.4	
L4	AL-0135	2018-08-31.csv	1388	96.4	
15					

Step 2. The answer of Q2 is 1374

Q3. Which of the sampling date and AS-Lung ID is less than 80% data recovery?

4	Α	В	С	D	
1	aslung_id	Data file	Samples	Data recove	ery
2	AL-0214	2020-08-03.csv	5712	99.2	
3	AL-0214	2020-08-04.csv	2175	37.8	
4	AL-0214	2020-08-05.csv	5760	100	
5	AL-0212	2020-08-14.csv	5760	100	
6	AL-0212	2020-08-15.csv	5760	100	
7	AL-0212	2020-08-16.csv	5760	100	
8	AL-0212	2020-08-17.csv	5760	100	
9	AL-0134	2018-09-05.csv	1408	97.8	
LO	AL-0134	2018-09-06.csv	1413	98.1	
l1	AL-0134	2018-09-07.csv	1408	97.8	
12	AL-0135	2018-08-29.csv	1386	96.2	
L3	AL-0135	2018-08-30.csv	1374	95.4	
L4	AL-0135	2018-08-31.csv	1388	96.4	
15					

Step 1. open the log file of Sample_size file

Step 2. The answer is 2020-08-04 and AL-0214

Thank you for your attention!

Any question and comment are welcome

Chun-Hu Liu

SC Candice Lung