18.06 Recitation May 5

Kai Huang

Similar Matrices

Consider an $n \times n$ matrix A.

1. B is similar to A if $B = Q^{-1}AQ$ for some $n \times n$ matrix Q.

2. Similar matrices have the same eigenvalues, determinant, trace.

3. (Jordan form) Any $n \times n$ matrix is similar to a matrix called its Jordan form.

Statistics

Suppose we have a series of data $x_1, x_2, \ldots, x_n \in \mathbb{R}$.

1. The average $\bar{x} = (x_1 + x_2 + \dots + x_n)/n$.

2. The sample variance

$$s = \frac{1}{n-1} \sum_{i} (x_i - \bar{x})^2$$

.

3. Suppose we have a random variable X, $P(X = x_i) = p_i$, $p_1 + p_2 + \cdots + p_N = 1$. Then the variance

$$Var(X) = \sum_{i=1}^{N} p_i (x_i - \mu)^2$$

where μ is the expected value

$$\mu = E[X] = \sum_{i=1}^{N} p_i x_i$$

If all p_i are the same, then

$$Var(X) = \frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2$$

Problems

- 1. Let A, B be two positive definite matrices. Prove that the real eigenvalues of AB is positive.
- 2. True or false? Explain why or why not.
 - (a) A symmetric matrix cannot be similar to a nonsymmetric one.
 - (b) An invertible matrix cannot be similar to a singular one.
 - (c) A cannot be similar to -A unless A = 0.
 - (d) A cannot be similar to A + I.
 - (e) If A is similar to A^{-1} , then all the eigenvalues of A must be 1 or -1.
- 3. Suppose all the eigenvalues of $A_{n\times n}$ are 0. Show that $A^n=0$.
- 4. Suppose we have a set of data x_1, \ldots, x_N . N is very large, so we can only take a sample Y_1, \ldots, Y_n to analyze (n < N). Directly taking the variance of the sample data gives

$$\sigma_Y^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \bar{Y})^2$$

where $\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$. Since Y_i are selected randomly, both \bar{Y} and σ_Y^2 are random variables. We can compute the expected values of them. Show that

$$E[\sigma_Y^2] = \frac{n-1}{n}\sigma^2$$

where

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2$$

(Therefore

$$s^{2} = \frac{n}{n-1}\sigma_{Y}^{2} = \frac{1}{n-1}\sum_{i=1}^{n}(Y_{i} - \bar{Y})^{2}$$

is called the *unbiased sample variance*)