Optimización dinámica de microservicios: Implementación y evaluación de un escalador automático

Presentado por: Gastón Rial Saibene Dirigido por: Miguel Angel Navarro Burgos

Máster en Ingeniería Matemática y Computación 10 de Julio de 2024

Contenido

- Introducción
 - Motivación
 - Planteamiento del trabajo
- Contexto y Estado del Arte
 - Contextualización
 - Análisis del estado del arte
- Identificación de Requisitos
- Descripción del sistema
- Desarrollo del trabajo
 - Modelo de optimización de recursos
 - Diseño del autoescalador
 - Implementación del autoescalador
- Evaluación y Resultados
- Conclusiones

Introducción Motivación

La motivación de esta investigación radica en dos aspectos críticos del autoescalado en entornos de microservicios.

- 1. Garantizar el cumplimiento de los Objetivos de Nivel de Servicio (SLOs) mediante la asignación dinámica y eficiente de recursos.
- Abordar la necesidad de optimizar el uso de recursos en un contexto económico desafiante, donde los costos de los servicios de infraestructura de TI son elevados.

Introducción Planteamiento del trabajo

- Propuesta: Diseño e implementación de un escalador automático para orquestar tareas contenerizadas en Kubernetes, tanto en entornos locales como en la nube.
- Objetivos: Evaluar el rendimiento de este escalador, basado en algoritmos de optimización y predicción implementados en Julia, comparándolo con soluciones existentes, extrayendo conclusiones de trabajos previos sobre gestión de recursos en entornos de microservicios.

Contexto y Estado del Arte Contextualización

- Microservicios
- Computación en la nube
- SLOs Objetivos de Nivel de Servicio
- Algoritmos genéticos
- Series temporales
- Contenedores
- Kubernetes
- Autoescaladores de microservicios
- Entorno de programación Julia
- Pruebas de carga k6

Contexto y Estado del Arte Análisis del estado del arte

- El uso de reglas predefinidas y métricas simples para automatizar la asignación de recursos han demostrado ser limitados en su capacidad para adaptarse a la dinámica de los microservicios.
- La introducción de técnicas basadas en aprendizaje automático ha mejorado la precisión y eficiencia del autoscalado, permitiendo una predicción más precisa de la demanda de recursos y una asignación óptima en tiempo real.
- La complejidad computacional de los modelos de ML son algunos de los desafíos que enfrentan los desarrolladores y administradores de sistemas. Por ejemplo:
 - Trafico variable y fluctuante
 - Complejidad de la topología de los sistemas distribuidos
 - Ajuste en tiempo real de los recursos a bajo costo
 - Garantizar el cumplimiento de los SLOs

Identificación de Requisitos

A grandes razgos, podemos destacar los elementos de la implementación del autoescalador en el siguiente diagrama.

Figura: Descripción general de la implementación

Descripción del sistema

Las funciones claves del autoescalador son:

- **Recolección de datos:** Para cada microservicio, se recogen las métricas de uso de CPU, memoria y red a traves de API REST, y se almacenan en una base de datos de series temporales (TSDB).
- Predicción: Se utilizan regresiones lineales para predecir el valor futuro de una serie en función de sus observaciones pasadas.
- Ajuste de recursos: Se utiliza un algoritmo de optimización basados en algoritmos genéticos para ajustar el número de replicas de microservicios basándose en las predicciones de demanda.
- Integración con Kubernetes clúster -: Un operador de k8s actualizará el número de replicas de cada microservicio.

Descripción del sistema (cont.)

La aplicación de pruebas a utilizar cuenta con dos microservicios, 'web-a' y 'web-b'. El microservicio 'web-a' es 'stateless' o sin estado, mientras que el microservicio 'web-b' es 'stateful' o con estado, puesto que persiste y manteiene sincronizada la información relevante para la aplicación.

Desarrollo del trabajo Modelo de optimización de recursos

El problema de optimización para un instante de tiempo dado se puede expresar como:

$$\begin{cases} \text{minimizar} & -\sum_i x_i \frac{1}{\mathsf{RTT}_i} \\ \text{sujeto a} \end{cases}$$

$$\begin{aligned} & \sum_i x_i \frac{1}{\mathsf{RTT}_i} \leq \sum_i x_i \frac{1}{\mathsf{RTT}_n}, \\ & \sum_i x_i \mathsf{CPU}_i \leq \mathsf{CPU}_{\mathsf{max}}, \\ & \sum_i x_i \mathsf{MEM}_i \leq \mathsf{MEM}_{\mathsf{max}}, \\ & \sum_i x_i \mathsf{RPS}_i \geq \sum_i \mathsf{RPS}_{\mathsf{real}_i} \mathsf{SLO}_i, \\ & 0 \leq \mathsf{SLO}_i \leq 1, \\ & x_i \in \mathbb{N}^+, \quad \forall i \in \{1, \dots, n\}. \end{aligned}$$

Desarrollo del trabajo Modelo de optimización de recursos

Cuadro: Descripción del Modelo de Optimización de Recursos

Término	Descripción
x_i	Variable de decisión que representa la cantidad de replicas asignadas al
	servicio i .
$\overline{RTT_i}$	Tiempo de ida y vuelta promedio (Round-Trip Time) para el servicio i .
CPU_i	Requerimiento de CPU del servicio i .
MEM_i	Requerimiento de memoria del servicio i .
CPU _{max}	Máximo límite de recursos de CPU disponibles.
MEM _{max}	Máximo límite de recursos de memoria disponibles.
CFT	Throughput (tasa de procesamiento) total considerando los requisitos de
	cada servicio.
CFT _{min}	Cota inferior de throughput deseado.
RPS_i	Solicitudes por segundo que cada unidad el servicio $\it i$ puede tolerar antes
	de sobrecargarse.
RPS_{reali}	Solicitudes por segundo reales para cada unidad del servicio i .
SLO_i	Objetivo de Nivel de Servicio (Service Level Objective) para el servicio i .

Desarrollo del trabajo

Diseño del autoescalador

Figura: Arquitectura del autoescalador

Desarrollo del trabajo Diseño del autoescalador

Cuadro: Valores de recursos y SLOs por unidad de cada microservicio

μ servicio	CPU	Memoria	RPS	SLO
web-a	200m	512MB	500	0.99
web-b	200m	512MB	300	0.999

Desarrollo del trabajo Implementación del autoescalador

Tanto la implementación del rastreador de métricas como la del controlador de escalado son implementaciones de referencia que cumplen con los requisitos del sistema.

- Controlador de Carga: Utilizar regresiones lineales para predecir el uso futuro (CPR). Para ello, se utiliza el RTT promedio y RPS para los microservicios 'web-a' y 'web-b'. LinearRegression.jl implementa la regresión lineal utilizando el algoritmo de mínimos cuadrados.
- Solver de Optimización Empleando la biblioteca Evolutionary.jl, se implementa un algoritmo de optimización basado en programación genética (PG) para encontrar la mejor asignación de recursos.

Pruebas de carga: Autoescalado de las réplicas

(a) Autoescalado de las réplicas del μ servicio web-a

(b) Autoescalado de las réplicas del μ servicio web-b

Pruebas de carga: Respuesta del autoescalador

(c) Tiempo de respuesta promedio del autoescalador para el μ servicio web-a

(d) Tiempo de respuesta promedio del autoescalador para el μ servicio web-b

Pruebas de carga: Disponibilidad de los microservicios

(e) Disponibilidad del μ servicio web-a

(f) Disponibilidad del μ servicio web-b

Pruebas de carga: Cumplimiento de SLOs

Cuadro: Tasa de violación de SLO para los microservicios durante las pruebas de carga

μ servicio	Tasa promedio
web-a	29 %
web-b	20 %

Conclusiones

Resumen de las conclusiones del trabajo

Punto clave	Descripción
Diseño y evaluación del autoescala-	Se diseñó, implementó y evaluó un
dor	autoescalador en Julia para gestio-
	nar recursos en Kubernetes median-
	te microservicios, mejorando predic-
	ción y asignación de recursos.
Modelo de optimización	El modelo de optimización usa téc-
	nicas avanzadas de regresión lineal y
	algoritmos de predicción para prever
	la demanda futura y ajustar recur-
	sos, manteniendo los SLOs sin uso
	excesivo de recursos.

Conclusiones

Resumen de las conclusiones del trabajo

Punto clave	Descripción
Eficiencia de Julia	Julia se ha demostrado eficiente y
	adaptable para desarrollar compo-
	nentes críticos del autoescalador,
	manejando cálculos numéricos in-
	tensivos y permitiendo despliegue
	escalable en Kubernetes.
Resultados de pruebas	El autoescalador mantiene un equi-
	librio óptimo entre uso de recursos
	y cumplimiento de SLOs, mostrando
	rendimiento competitivo comparado
	con soluciones existentes como Ur-
	sa.

Conclusiones Resumen de las conclusiones del trabajo

Punto clave	Descripción
Limitaciones	A pesar del buen rendimiento, el au-
	toescalador desarrollado no supera a
	todas las soluciones existentes en to-
	dos los aspectos. Cada solución tiene
	fortalezas y áreas específicas de apli-
	cación.

www.unir.net