

Mecanismo Elétrico de Operação

HM 0.460.002

Instruções de Uso

SHANGHAI HUAMING INDUSTRIA DE EQUIPAMENTOS ELÉTRICOS S.A.

Índice

1. Generalidades ·····	
2. Principais parâmetros do Acionamento Motorizado ······	3
3. Composição	4
4. Funcionamento······	6
5. Instalação ·····	18
6. Operação · · · · · · · · · · · · · · · · · · ·	21
7. Manutenção·····	21
Anexo 1	23
Anexo 2 · · · · · · · · · · · · · · · · · ·	24
Anexo 3	25
Anexo 4 · · · · · · · · · · · · · · · · · ·	26
Anexo 5	27

1. Generalidades

O Acionamento Motorizado do Modelo CMA 7, serve para posicionar corretamente o comutador de tapes do Comutador Sob Carga - modelo CM.

A caixa do acionamento motorizado contém todas as partes mecânicas e elétricas necessárias para o comando do comutador de tapes. O controle segue o princípio do "passo a passo". O comutador de tapes, passa de uma posição a outra adjacente, sem interrupção e apenas com uma simples ação do acionamento motorizado.

A ultrapassagem das posições extremas é evitada com limitadores elétricos e mecânicos, através de equipamentos de segurança mais avançados disponíveis.

O acionamento motorizado pode ser equipado com motores de várias potências, de maneira que, qualquer combinação de comutadores de tapes, poderá ser acionado por aquele mecanismo.

1.1 Abrangência de Aplicação

Este produto tem sua aplicação direcionada para a transmissão de informações elétricas e mecânicas para acionar comutadores de tapes dos Modelos CM e CV, industrializados por nossa fábrica.

- 1.2 **Condições de Aplicação:** O acionamento motorizado do Modelo CMA7 deve cumprir com o seguinte:
- **1.2.1** Em locais em que a altitude máxima seja de 2000 m em relação ao nível do mar. Para outras altitudes, especificar e contatar nossa fábrica.
- **1.2.2** A temperatura ambiente é limitada a máxima de 55°C e a mínima de -25°C.
- **1.2.3** Máximo desvio vertical de 5%, em relação à linha do horizonte (posição vertical).
- **1.2.4** No local da instalação, o ar atmosférico deve estar livre de poeira, material poluente em suspensão ou gases explosivos.

Figura 1- Estrutura interna do Acionamento Motorizado CMA7

2- Principais Parâmetros do Acionamento Motorizado

- 2.1 Os principias parâmetros do Acionamento Motorizado estão indicados no Anexo 1.
- 2.2 A vida mecânica do Acionamento motorizado é superior a 800.000 operações.

3 - Composição

O Acionamento Motorizado CMA7 é composto da caixa metálica, o redutor principal, o indicador de posição e o contador do número de operações elétricas, como mostra a Figura 1.

3.1 - Caixa Metálica

A caixa possui duas partes, o fundo e a tampa, ambas feitas de liga de alumínio a prova de corrosão. Externamente, é pintada de verniz especial para exposição ao ar livre. O fundo e a tampa se unem através de uma dobradiça, que pode trocar o sentido de giro da abertura (para a direita ou para a esquerda), e assim, facilitar o atendimento às diferentes necessidades dos usuários. Entre o fundo e a tampa, utiliza-se uma borracha de vedação, a fim de garantir a hermeticidade.

Na parte posterior ou traseira da caixa, existem dois furos para circulação de ar. Todos os furos existentes no eixo de transmissão, na tampa, onde está a vigia ou visor de vidro para observação, na manivela e nas botoeiras, são de estrutura hermética, as quais protegem da chuva, poeira, insetos, entre outros.

Na parte inferior do fundo, há duas aberturas para a entrada dos cabos elétricos, as quais se encontram bem fechadas e com vedação, já quando o Acionamento Motorizado sai da fábrica. Para sua instalação, devemos tirar essas vedações sem perfurá-las, para que os cabos passem através da vedação e pelos furos existentes.

3.2 Redutor principal

O redutor principal é composto por uma transmissão por correia (ou polia), motor elétrico, dois interruptores protetores de posição terminal e o dispositivo de transmissão manual, conforme a Figura 2.

A polia está instalada dentro de uma caixa de liga de alumínio. Os eixos da dita polia estão submetidos a uma engrenagem mecânica, que serve para a proteção mecânica das posições limites. Quando for solicitada uma limitação de posição, a engrenagem mecânica trabalhará impedindo o eixo sair, ainda que o motor siga girando.

3.3 Indicador de Posição

O indicador de posição inclui: um disco de arraste que controla a velocidade do disco indicador do ciclo de comutação, o disco indicador de posição, o transmissor de sinal de posição remota e o indicador de operações que é fixado ao lado do dispositivo de transmissão. Tanto o indicador de posição como o disco de arraste, operam por movimento circular de cada comutação. O disco indicador do ciclo de comutação é dividido em 33 segmentos. A zona verde é a posição de parada do interruptor de arraste.

O contador do número de operações indica o número de vezes que opera o Comutador Sob Carga (CSC). Para fazer a leitura do número de operações ou realizar operações manuais não é necessário abrir a tampa da caixa de comando.

Figura 2 -Dispositivo de Transmissão

Figura 3- Localização dos componentes Elétricos do CMA7

3.4 Componentes Elétricos (figura 3)

H1: Lâmpada de sinal de corte do interruptor de proteção (guardamotor/proteção do motor).

K1/K2: Contactor/Contactora para o controle de direção de giro do aparelho.

Subir $(1 \rightarrow n)$: K1 em contato Descer $(n \rightarrow 1)$: K2 em contato

K3: Contactora do freio do mecanismo.

K20: Contactora auxiliar para manobras de passo a passo.

M1: Motor Elétrico

Q1: Interruptor de proteção do motor.

R1: Resistência de caldeo/aquecimento, valor de $1.5k\Omega$.

X10: Tomada de corrente

S38: Interruptor controlador de troca remoto/local.

S1/S2: Pulsador/Botão c/ iluminação controlador de giro do aparelho.

S5: Pulsador para parada de emergência, com porta-lâmpadas (H1).

S16/S17: Interruptor de fim de curso para posições N e 1, (contato adiantado de fim de curso).

S8: Interruptor de bloqueio pela introdução de manivela.

S12/S14: Interruptor para controle de direção subir – descer. (comandado por arraste)

S12: $n \rightarrow 1$

S14: 1→n

S13: Interruptor para controle de passo a passo. (comandado por arraste)

X20: Ficha/Entrada multipla onde se conectam os pulsadores S1, S2 e S5.

X1/X3: Bornes de conexão de cabos externos.

K21: Relé de tempo.

S6/S7: Interruptor de fim de curso de N e 1, para conectar e desconectar o circuito principal.

4. Funcionamento

4.1 Funcionamento Teórico do Mecanismo (Figura 4)

Normalmente, a operação do acionamento motorizado é realizada eletricamente, para inspeção ou teste, pode ser operado manualmente.

O motor 1 dá a partida e a polia 2 conduz a polia maior 3 através da correia. Essa força é transmitida ao eixo 4 e por este chega ao comutador.

O eixo 4 arrasta a roda dentada intermediária 101 e por esta conduz o movimento à coroa indicadora de comutação 104. Com ela, a roda indicadora de posição 108 também se move, indicando a posição de trabalho do mecanismo. A coroa de contatos 121, conforme a posição, envia sinal indicando a posição de trabalho. O contador do número de operações é controlado pela coroa indicadora e registra todas as comutações realizadas. Quando no disco indicador do ciclo de comutação aparecem os 4 setores de cor verde, o interruptor de arraste se encontra livre, e o motor realiza uma frenagem.

Quando o mecanismo do acionamento motorizado chega a uma posição limite 1 ou N, o disco indicador de comutação segue rodando, aciona a barra 115 e desconecta o interruptor 110 para que o acionamento motorizado não gire além das posições 1 ou N. Caso o interruptor de fim de curso elétrico parar de funcionar, o mecanismo seguira girando além da posição 1 ou N. Diante desta situação, a barra de fim de curso mecânico acionará a embreagem que deixará de girar o eixo de acionamento 4. Desta maneira, consegue-se dupla proteção, com o qual o eixo rotativo 8 pare.

A proteção das posições extremas deve cumprir com a seguinte norma operativa:

- A. Operação do interruptor de fim de curso elétrico que controla o circuito;
- B. Operação do interruptor de fim de curso elétrico que controla o circuito principal do motor;
- C. Operação da engrenagem mecânica.

4.2 Funcionamento Teórico Elétrico

O funcionamento teórico elétrico do acionamento motorizado CMA7 é explicado no Anexo 2(É UMA TABELA??), incluindo o circuito do acionamento motorizado (circuito principal), circuito de comando, circuito de proteção e circuito de sinalização.

4.2.1 Circuito do motor

Os bornes U, V e W do motor são conectados na borneira X1 (bornes 1, 2, 3) e com a alimentação L1, L2 e L3 respectivamente, passando pelas contactoras K3, K1/K2, os interruptores limites S6/S7, o interruptor de bloqueio por introdução da manivela S8 e o interruptor de proteção Q1.

4.2.2 Circuito de comando

O circuito de comando se conecta com a alimentação L1 e N passando pelo borne 6, 7 de X1 através dos contatos do interruptor de proteção Q1 e do interruptor de bloqueio S8 e S18 de maneira que, no caso de abrir os contatos de Q1, S8 e S18 a tensão de controle desaparecerá.

4.2.1 Circuito do motor

O interruptor de proteção Q1 possui uma bobina de disparo que se energiza através de: o pulsador S5 (na porta da caixa de comando), o circuito de segurança e o circuito protetor relacionado. O

circuito de segurança é composto dos interruptores de arraste S12, S13 e S14 e os contatos auxiliares das contactoras K1 y K2. A proteção relacionada é o contato permanente do relevador de tempo K21.

4.2.2 Circuito de Controle

4.2.3 Circuito Indicador de Corte do Interruptor de Proteção Q1

Passando pela borneira X1 (bornes 18 e 17) este circuito se conecta com Q1 (bornes 22 e N). A lâmpada de sinal de corte H1 é instalada dentro do pulsador S5, para corte de emergência do acionamento motorizado. Os bornes do contato auxiliar de Q1 (43, 44) estão ligados com a borneira X1, (bornes 27-28) sendo fechados sem alimentação quando Q1 se encontra no estado "fechado".

4.2.4 Circuito Indicador de Operação do Acionamento Motorizado

Para a indicação remota da operação do acionamento motorizado, coloca-se uma lâmpada (H3) no painel de controle entre os bornes 19-20 da borneira X1. Também podemos conectar sinais através dos contactos K1 (53, 54) e K2 (53, 54) por intermédio da borneira X1 (bornes 25- 26).

4.2.3- Circuito de sinalização do Corte do Interruptor de Proteção O1

4.2.4-Circuito de operação do motor

HM0.460.302

HUAMING

4.2.5 Circuito Indicador de Posição Remota

O transmissor digital de sinal para posição remota, utiliza um conjunto de contatos deslocáveis que se marcam com os contatos fixos de numeração decimal, conectados com os pontos das linhas e os contatos flexíveis, deslocando-se de uma posição a outra, de forma a primeiro abrir e logo fechar, para mostrar o número de posições, em coordenação com o indicador.

4.2.6 Circuito de Caldeo/Aquecimento

O circuito de caldeo se conecta a corrente elétrica L1 e N passando pela borneira X1 (bornes 4 e 5). A resistência de caldeo R1 é conectada permanentemente a corrente.

4.3 Operação

4.3.1 Controle

O acionamento motorizado segue o princípio do "passo a passo", isto é, depois de receber um impulso, a manobra começa e continua automaticamente até o final, assim teremos acionado S1 ou S4, e somente o interrompemos, caso se aperte o botão de emergência. Outro comando, somente será aceito, depois de cumprir-se o anterior e todos os elementos estiverem em repouso (disco indicador do ciclo em zona verde marca vermelha central).

Condições imprescindíveis para a operação:

O interruptor de proteção Q1 deverá estar fechado.

Tensão de L1, L2, L3: 380v AC trifásico

Tensão na L1, N: 220v AC 50 Hertz. (CONFERIR A FREQUÊNCIA?)

Nota: Ao manobrar S1 e S2, S38 deverá estar na posição de "Local"; ao manobrar S3, S4 e S9, S38 deverá estar na posição "Controle Remoto".

Funcionamento: (até a posição N).

4.3.1.1 Arrangue

Pressiona-se o pulsador S1, que fecha os contatos 13-14 para alimentar a bobina de K1 e abre 21-22 e a corrente passa X1/6 a Q1 (13, 14), S8 (S, V), S38 (2, 1), S2 (21, 22), S1 (13, 14), K20 (5, 3), S16 (C, Nc), S6 (S, V), K2 (62, 61). Conecta-se a bobina K1 e a contactora se fechará para que o contato auxiliar K1 (5, 6) se feche também. Manter a bobina de K1 energizada por intermédio de K20 (11, 13), de modo que, se realize a auto-excitação.

4.2.6 Circuito de caldeo

Ao fechar K1, seu contato (13, 14) se fechará para a conexão de K3. Quando se fecharem os contatos de K1 e K3, o motor M1 começará a funcionar. Simultaneamente K21 se conectará, e empieza/começará a contabilizar o tempo.

4.3.1.2 Operação "passo a passo"

Na operação do motor, o disco indicador do ciclo se movimenta para fora da zona verde e o interruptor de arraste S14 é acionado e fecha os contatos (C, NO1). Nesse momento, a contactora K1 recebe tensão nos bornes (A1, A2) fornecida por S14 borne (C, NO1).

Depois que o disco indicador do ciclo se movimentar, o interruptor de arraste S13 atuará, fechando os contatos (NO1, NO2) abastecendo de tensão a contactora K20 que abrirá seus contatos (5, 3) e

(11, 13) e fechará (4, 2) e (12, 10). Então K20 se desenergizará primeiro a através de S13 (NO1, NO2), porém seguirá energizado por K3 por meio dos bornes (13, 14) e K20 por (12, 10).

4.3.1.1 Arranque

4.3.1.2-Operação "passo a passo"

4.3.1.3 Parada

Ao terminar a primeira operação, o interruptor de arraste S14 (C, NO1) se desconecta e K1 fica sem excitação. O contato 13-14 de K1 abre e K3 também fica sem excitação. Desconecta o circuito principal e conecta os contatos de freio 51-52, 61-62, 71-72, 81-82 produzindo a frenagem do motor M1.

Simultaneamente, o contato 13-14 de K3 se abre, para tirar a excitação de K20. Todavia, se o pulsador S1 (ou S2) já se encontra acionado, K20 se bloqueia automaticamente através do contato 2-4 (ou 6-8). Desta forma, se prepara K1 (ou K2) para outra energização através de 3-5 (ou 7-9) de K20. Caso o botão pulsador S1 (ou S2) não ficar pressionado, K20 se liberará.

Controle da comutação até a posição 1:

Acionar o botão S2

A contactora K2 é energizada

A contactora de freio K3 é energizada

O motor M1 gira em direção contrária

O interruptor de arraste com memória direcional S12 entra em ação

O restante do ciclo é idêntico ao descrito para a posição n.

4.3.1.3 Parada

De um tape a outro de comutação a roda indicadora de comutação percorre 33 seções. Os componentes de controle do acionamento motorizado trabalham na seguinte norma:

Norma de conexão : S1 (S2), K1 (K2), K3 S14 (S12), S13, K20

4.3.2 Acesso automático de uma ou várias posições de trabalho (repetidas).

A operação passo a passo é anulada na posição repetida por um contato fechado (S37) colocado na coroa de sinalização. Caso necessitar, solicite conforme o Anexo 2.

4.3.3 Funções de Proteção e Segurança

4.3.3.1 Proteção da Posição Extrema

Quando passa pela posição extrema, o interruptor limite S16 (na posição N) ou S17 (na posição 1) abre o contato C-NC, de modo que a contactora K1 ou K2 fica sem excitação.

Quando passa pela posição extrema, o interruptor limite S6 (ou S7) desconecta os contatos R-U, T-W do circuito principal e o motor pára. Igualmente o contacto S-V abre, interrompendo o circuito de auto-alimentação das contactoras K1 (ou K2).

4.3.3.1 Proteção de Posição Extrema

4.3.3.2 Proteção para Operação Manual

Introduzir a manivela no eixo e empurra-la. A introdução provoca a abertura do interruptor S8, cortando a alimentação do motor do comando.

Ao finalizar o acionamento manual e retirar-se a manivela, o interruptor S8 é fechado.

Atenção: para evitar um novo arranque automático do motor, depois da operação manual, devemos colocar o disco da coroa indicadora de comutação no centro da zona verde, onde há um traço vermelho. Nessa posição, os interruptores de arraste encontram-se na posição de repouso.

4.3.3.3 Proteção de Seqüência de Fases

Para garantir que o motor gire na direção prédeterminada, há alguns requisitos para a seqüência de fases do motor. Caso a seqüência de L1, L2 e L3 não seja a correta, desconecta-se o interruptor de proteção Q1 através do circuito de proteção de seqüência de fases, como mostra a Figura 5. Quando a seqüência for correta, acionamos S1 para que K1 se energize e abra K1(71, 72), o motor girará em direção contrária, de modo que o mecanismo motorizado também opere em direção contrária. Conecta S12 (C, NO2) para fornecer tensão a bobina de Q1 através de S12 (C, NO2), K2 (71, 72), S13

4.3.3.2 Protección de Operación Manual

(NC1, NC2) e o interruptor de proteção desconecta-se para cortar os circuitos de potência e de comando. Então, o motor pára.

Para trocar a seqüência de fases, trocam-se duas fases. Deveremos operar de forma manual para que o disco da coroa de indicação chegue a zona verde (marca vermelha central), dessa maneira, poderemos conectar novamente o interruptor de proteção para continuar a operação. Um disparo do interruptor de proteção ocorre também quando o comando do motor recebe um impulso no início da comutação pelo contato de arraste S14/S12 (que depende do sentido de rotação e não do pulsador S1/S2 - passo de posições não automático-). O interruptor de proteção Q1 desconecta-se também mediante S14 (C, NO2), K1 (71, 72), S13 (NC1, NC2) ou S12 (C, NO2), K2 (71, 72), S13 (NC1, NC2).

Figura 5 Estado de comutação dos dispositivos de controles durante a manobra de uma posição a outra

4.3.3.4 Proteção para o Restabelecimento Automático da Tensão de Comando após uma Perda Temporária

Caso a tensão de comando se restabeleça após uma perda temporária (durante a operação do Acionamento Motorizado), este arranca novamente seguindo o mesmo sentido de direção antes da falha. Uma vez em operação, a troca de conexão e desconexão será efetuada pelo interruptor de arraste de memória direcional S14 (ou S12), que continua ativado. Nesta situação, o circuito de segurança não esta fornecendo tensão, já que o interruptor de arraste S13 (NC1, NC2) está aberto. 4.3.3.5 Disparo Voluntário do Interruptor de Segurança (parada de emergência)

Quando é pressionado o botão da parada de emergência S5 no acionamento motorizado, ou o pulsador S9 na cabine de controle, o interruptor de segurança Q1 é desligado. Estes dois botões pulsadores se encontram conectados em paralelo.

Depois que o interruptor de segurança é desligado, para realizar nova operação, necessita-se acessar o acionamento motorizado, através de sua porta frontal, e religar este interruptor.

4.3.3.6 Corte de Proteção Aliada/proteção de retaguarda

O relevador de tiempo K21 possui um valor pré-fixado. Caso o mecanismo realize trocas contínuas sem sinal de controle, o tempo de excitação do K21 irá superar esse valor, de modo que o contato 6-8 se fechará e o interruptor de proteção Q1 se abrirá.

4.4 Borneira para Circuitos Externos

Dentro da caixa do acionamento motorizado há uma borneira X1 exclusiva para conectar os condutores que servem para: o controle remoto, o indicador de sinal, a operação de subir-descer e pulsador de emergência do painel de controle e, a indicação remota do estado da operação. (X1-1, X1-2, X1-3 e X1-5 são borneiras de entrada de cabos).

4.3.3.3 Proteção de Seqüência de Fases

4.3.3.4 Proteção para o Restabelecimento Automático da Tensão de Comando após uma perda temporária

HM0.460.302

4.3.3.5 Parada de Emergência

4.3.3.6 Proteção Aliada

4.5 Borneira de Sinalização de Operação (chamada Duplo Sinal)

No circuito de posição remota, é instalada uma coroa com contatos fixos e um cursor variável. Os contatos fixos conectam-se na borneira X3 como o cursor. Estes estão livres de potencial. O cursor está acoplado mecanicamente e segue a norma de indicação de posição $1 \rightarrow N$.

4.4 Borneira para Circuitos Externos

4.5 Borneira sem Sinal de Tensão de Operação

5- Instalação

5.1 Instalação do Acionamento Motorizado no tanque do Transformador

(Ref.: as medidas externas estão indicadas na Figura 8)

O acionamento motorizado é montado através de 4 parafusos prisioneiros soldados no tanque do transformador. A base utilizada para sua instalação deverá ser plana e reta, caso contrário, o acionamento motorizado sofrerá deformações, que o impedirá de fechar sua tampa, afetando inclusive o seu uso. Deve-se instalar verticalmente o mecanismo e facilitar a operação, com o alinhamento vertical dos eixos de acionamento e o da caixa de engrenagens cônicas.

Caso o transformador apresentar vibração excessiva, recomenda-se um acoplamento amortecedor.

5.2 Montagem do Eixo de Acionamento e a Caixa de Engrenagens Cônicas (Veja Figura 6)

Figura 6-Instalação do Acionamento Motorizado CMA7

5.3 Acoplamento do C.S.C. com o Acionamento Motorizado

É absolutamente necessário que a chave comutadora atue antes que o acionamento motorizado finalize a operação.

Isso fica assegurado ajustando o tempo de atuação do seletor da chave comutadora (= comutação), a uns instantes antes do acionamento motorizado finalizar a manobra (1,5-2) seções da marca vermelha da roda indicadora de operação). Esta marca vermelha serve de referência para o ajuste.

Uma comutação corresponde a uma volta completa da roda indicadora. Essa roda indicadora está dividida em 33 seções, cada uma delas corresponde a uma volta de manivela.

O número de seções desde o inicio da comutação até a marca vermelha central da roda indicadora (que coincidirá com o centro da vigia), deverá ser idêntica em ambas as direções. Apenas uma diferença mínima é admissível. Um acoplamento simétrico é obtido da seguinte forma:

- a. Somente podemos fazer o ajuste a mão;
- b. A cada ajuste, observar que tanto a posição do comutador como a do acionamento motorizado sejam coincidentes;
- c. O Comutador Sob Carga e o Acionamento Motorizado deverão estar na posição pré-fixada de acoplamento;
- d. Acoplar o Comutador Sob Carga ao Acionamento Motorizado;
- e. Girar a manivela em uma direção, até perceber a atuação da chave comutadora;
- f. Contar à partir desse momento, o número de seções (roda indicadora) necessários até conseguir que a marca vermelha central da roda indicadora coincida com o centro da vigia;
- g. Repetir esta operação no sentido inverso;
- h. Caso haja diferença entre o número de seções contadas em ambas direções, ajustar novamente o Acionamento Motorizado em relação ao Comutador Sob Carga, levando em conta neste novo ajuste, a metade da diferença entre elas. Como exemplo, veja a Figura 7.

Exemplo:

a. O Comutador Sob Carga está na posição de trabalho 10. Girar a manivela para a posição 11, até ouvir a ação da chave comutadora. Contar o número de seções até alcançar a marca vermelha.

Resultado: 7 seções.

b. O Comutador Sob Carga está agora, na posição 11. Girar a manivela na direção a posição 10, contando o número de seções necessárias até alcançar a marca vermelha;

Resultado: 1,5 seções Correção a realizar:

 $\frac{1}{2}$ (7-1,5) = 2,75 seções, valor mais próximo: 3 seções.

- c. Girar a manivela até a posição 11 até alcançar a marca vermelha;
- d. Desacoplar o eixo vertical de transmissão;
- e. Girar a manivela na mesma direção (até a posição 12) por 3 seções;
- f. Acoplar eixo de transmissão;
- g. Girar a manivela na mesma direção até que se obtenha a atuação da chave comutadora. Contar o número de seções necessárias até alcançar a marca vermelha;

Resultado: 4.5 seções

h. Testar na direção contrária;

Resultado: 4 seções

O acoplamento entre o Comutador Sob Carga e Acionamento Motorizado está correto, uma vez que a diferença em ambos os sentidos é mínima.

Retirar a manivela do acionamento manual para trocar da operação manual para a automática.

- a,b- número de seções em ambas direções, depois da atuação da chave comutadora.
- c- acionamento a manivela em direção ao maior número de seções obtidas.
- d- desacoplamento
- e- acionamento a manivela no mesmo sentido para realizar a correção do valor
- f- acoplamento
- g- comprovação final do número de seções.
- h- verificação no sentido contrário.

Figura 7- Acoplamento do Comutador Sob Carga ao Acionamento Motorizado

6- Entrada em Operação

6.1 Teste de Operação

Antes de aplicar tensão no Acionamento Motorizado a ser instalado, certificar-se de que os circuitos de alimentação do motor, comando e auxiliares, estão especificados corretamente e de acordo com o tipo e nível de tensão requeridos.

6.1.1 Controle da operação "passo a passo".

Pressionar o botão S1 (S2) e mantê-lo pressionado durante o período de funcionamento. Após realizar uma manobra, o acionamento motorizado deverá parar automaticamente.

6.1.2 Teste de Operação (Controle de fim de curso mecânico)

Levar o comando até a penúltima posição, passar mediante a manivela a posição extrema.

Ao continuar girando a manivela, o redutor será bloqueado depois de 2-3 giros.

Girar a manivela no sentido contrário até que o comando volte a se colocar na posição extrema. (roda indicadora - seções verdes)

Seguir o mesmo procedimento para testar a outra posição extrema.

6.1.3 Teste do Acionamento dos Interruptores de Fim de Curso Elétrico

Levar o Acionamento Motorizado a uma posição extrema qualquer. O motor não deverá arrancar se receber um comando no mesmo sentido. O motor deverá arrancar quando receber um comando no sentido contrário.

Proceder da mesma forma na outra posição extrema.

6.2 Transporte do Transformador

Caso as medidas do transformador ultrapassar os limites máximos para o traslado ou deslocamento do mesmo, desde à fábrica até o local da instalação definitiva, e for necessário desacoplar o Acionamento Motorizado, teremos que levar previamente o Comutador e o Acionamento Motorizado a posição de ajuste ou alinhamento.

Uma vez instalado no local definitivo, montar o Acionamento Motorizado, conforme descrito no ítem 5.

6.3 Entrada em Operação no Local da Instalação definitiva

Após realizar os testes conforme o estabelecido no item 6.1, poderemos colocar o transformador em operação.

7- Manutenção

O Acionamento Motorizado não requer inspeções periódicas. A correia de transmissão não exige manutenção. Os mancais de esfera do motor de impulso são bem lubrificados com óleo lubrificante. Todavia, recomenda-se fazer as seguintes inspeções aleatórias:

- -Garantia da estanqueidade da caixa metálica;
- -Correto funcionamento do equipamento de caldeo (checar a resistência)
- -Visual dos componentes;

Recomenda-se que ao realizar as inspeções aleatórias acima, realizar algumas comutações e testar o funcionamento correto dos fins de cursos.

HM0.460.302

Figura 8 - Acionamento Motorizado CMA7

Anexo 1-Principais Parâmetros do Acionamento Motorizado

Potência Elétrica (kW) Vermelho		0.75	1.1	2.2
Tensão Nominal (V)	Trifásico	380	380	380
	Monofásico	220	220	220
Corrente Nominal (A)	Trifásico	2.0	2.8	5.1
	Monofásico	3.4	5	8.8
Freqüência Nominal (Hz)		50,60	50,60	50,60
Número de Giros do Motor (R/Min.)		1400	1400	1400
Giros do Eixo de Transmissão em uma Comutação		33		
Tempo de uma manobra		Aprox. 5 segundos		
Força de Torsão do Eixo Transmissor (N.m)		18	26	52
Número Máximo de Posições de Trabalho		35		
Tensão do Sistema de Caldeo e Comando (V)		220		
Consumo de Potência do Circuito de Controle (W)	Arranque	52		
	Operação	24		
Potência da Resistência de Caldeo (W)		50		
Tensão de Teste a terra (kV) 2/(1min)				
Peso (kg)		90		

Observação:

- 1) O número de posições de trabalho deve ser idêntica, as do Comutador Sob Carga a acoplar-se.
- 2) No teste de tensão, excluir os contatos auxiliares do motor e interruptor guardamotor.

HUAMING

Anexo 2 -Lista de Códigos dos Requerimentos Técnicos do Mecanismo CMA7

Código	Conteúdo	Nota
	Mecanismo Manual	
	Acionamento a motor	
	Operação de Controle Remoto	
	Proteção da Posição Limite	
	Proteção de sequência de fase	
	Proteção de Operação Manual	
	Proteção de Re-arranque Automático após uma Perda Temporário de Tensão de comando	
	Proteção de Corte de Emergência (Desconexão de Emergência)	Um comando
C7 01	Função de Indicação de Posição	normal CMA7
C7-01	Função de Ajuste de Tensão (subir/descer)	se equipa de
	Conexão de Programação Decimal, exclusivo a Conexão com Indicador Remoto de Troca	HMC-3
	Controle Progressivo	
	Função de Caldeo e Secagem	
	Contador de Operações	
	Um Grupo de Contatos de Sinal conectados aos Pontos	
	Um Grupo de Cabos para o Controle Remoto	
	Cabos para a conexão do Interruptor de Proteção (proteção do motor)	
	L/R "Remoto" Contatos de Posição para os Cabos	
C7-02	Um normal CMA7 é equipado de HMC-3B (saída de BCD)	
C7-03	Acrescentar um grupo de contatos X4 sem fonte correspondente: 1-N	
C7-04	Acrescentar um grupo de contatos decimais sem fonte X4: 1-15	
C7-05	Acrescentar um par de contatos fechado por corrente (Q1-14,S18-NC)	
C7-06	Acrescentar um par de contatos indicativo de posição remota (S38-5, S38-6)	
C7-07	Indicador de visor iluminado	
C7-08	WSL	
C7-11	Acrescentar 1)correspondente, 2)contato de troca local ou remoto, 3)fechado por corrente	
C7-12	Acrescentar 1)correspondente, 2)contato de troca local ou remoto	
C7-13	Acrescentar 1)fechado por corrente, 2) equipar HMC-3B	
C7-14	Acrescentar 1)correspondente, 2) equipar HMC-3B	
C7-15	Acrescentar 1)decimal, 2)contato de troca local a remoto, 3) equipar HMC-3B	
C7-16	Acrescentar 1)fechado por corrente, 2) dois grupos de decimais	
C7-17	Acrescentar 1)contato de troca local a remoto, 2) fechado por corrente	
C7-18	Acrescentar 1)contato de troca local a remoto, 2)fechado por corrente, 3) equipar HMC-3B	
C7-19	Acrescentar 1)contato de troca local ou remoto, 2) equipar HMC-3B	
C7-20	Acrescentar dois grupos de contatos de posições correspondentes	
C7-21	Acrescentar 1) decimal, 2)equipar HMC-3B	
C7-22	Acrescentar 1)correspondentes, 2)contato de troca local ou remoto, 3)fechado por corrente,	
	4) equipar HMC-3B	

Anexo 3

Nº de Ponto X1	Descrição
1,2,3,4	Entrada do cabo; tensão de L1,L2,L3: 380V/50Hz; tensão de L1,N: 220v/50Hz
8	Ponto de entrada de ordem "Subir" a remoto
9	Ponto de entrada de ordem de "Descer" a remoto
10,11	Ponto comum de entrada de ordem a remoto
12	Ponto de entrada de ordem "Parar" a remoto
18	Ponto de saída de sinal de corte emergente (sinal de saída de corrente 220V/50Hz)
19,20	Ponto de saída de sinal de operação do motor (sinal de corrente 220V/50Hz)
23,24	Ponto de saída de sinal do estado de "Controle remoto" do interruptor "remoto/local" (saída de sinal sem fonte)
25,26	Ponto de saída de sinal de operação do motor elétrico (sinal sem fonte)
27,28	Ponto de saída do estado "fechado" do interruptor pneumático (sinal sem fonte)

Descrição da borneira X3:

O que habilita X3 é um grupo de sinal sem fonte correspondente, entre o qual X3-N+1 é um ponto comum de troca. X3-1 a X3-N corresponde respectivamente ao funcionamento do interruptor de 1 a N.

Anexo 4

CX manda sinal decimal de posição. O produto normal está conectado com o indicador HMC-3.

Sinal do conector CX	Descrição
CX-1	Número dígito do sinal de operação do interruptor "1"
CX-2	Número dígito do sinal de operação do interruptor "2"
CX-3	Número dígito do sinal de operação do interruptor "3"
CX-4	Número dígito do sinal de operação do interruptor "4"
CX-5	Número dígito do sinal de operação do interruptor "5"
CX-6	Número dígito do sinal de operação do interruptor "6"
CX-7	Número dígito do sinal de operação do interruptor "7"
CX-8	Número dígito do sinal de operação do interruptor "8"
CX-9	Número dígito do sinal de operação do interruptor "9"
CX-10	Número dígito do sinal de operação do interruptor "0"
CX-11	Número decimal do sinal de operação do interruptor "0"
CX-12	Número decimal do sinal de operação do interruptor "1"
CX-13	Número decimal do sinal de operação do interruptor "2"
CX-14	Número decimal do sinal de operação do interruptor "3"
CX-15	Ponto público do sinal de operação do interruptor
CX-16	Ponto público da lâmpada frontal do indicador
CX-17	Indicação de "Aumentar tensão"
CX-18	Indicação de "Diminuir tensão"
CX-19	Indicação de "Parar"

HM0.460.302 23-18 so EN 10.42 ¢ SI EN \$5 E Qt. X26-2 078 K20 7-179 MOTHER TO 813 NOI 514 C 512 C KI Y KZ\ HZT. KE Y HOS A GOL 194 100-7 3204 K20 1 154 Ha (X) K20 X1470 X1480 H1 Lâmpada "Q1 desconectado" H2 Lâmpada "Q1 desconectado" (na cabine de controle) H3 Lâmpada de operação do motor (na cabine \$12,\$14 Interruptor de arraste controlador de direção \$13 Interruptor de arraste passo a passo \$20 Concetor de multiplos pinos \$1,\$13 Borneira para conexão de condutores externos \$40,\$41 Cora de contatos de fechamento \$3,\$4 Pulsador para \$1/\$\tilde{X}2\$ (na cabine de controle) 9999999 **見りる時間の** ACCUMENT AND ACCUMENT 100 de controle) K1,K2 Contactoras do motor K1,K2 Contactoras do motor
K3 Contactora do freio
K20 Relé passo a passo
M1 Motor de tração
Q1 Interruptor protetor do motor
R1 Resistência aquecimento Roda indicativa de comutação 55.54 Fuisaoor para K1/KZ (na cabine de controte)
S9 Pulsador para Q1 desconetado (na cabine de controle)
CX Conexão de 19 pinos
S6.57 Interruptor fim de curso para K1/K2
S16,S17 Interruptor fim de curso Parte Verde X10 Conetor S1,S2 Pulsador de subir/descer K21 Relé de tempo S37 Contato livre de potencial 98 ST S5 Pulsador para desconexão de "Q1" S8 Interruptor de bloqueio manual S38 Interruptor de troca remoto/local S18 Interruptor para sinal remoto (somente aplicável a CMA7) X3 /ICN (CB)

Anexo 5- Circuito Elétrico do Acionamiento Motorizado CMA7

CMA7 ESQUEMA DE CABLAGEM

SHANGHAI HUAMING INDUSTRIA DE EQUIPAMENTOS ELÉTRICOS S.A.

Endereço: 977 Tongpu Rd., Shanghai 200333

Telefone.: +86-21-5270 8966*

Fax: +86-21-5270 3385 Website: www.huaming.com

Correio Eletrônico: public@huaming.com

Para maiores informações, contate nossa empresa Impresso em: