Proof

a) Independent!

- \rightarrow Since LHS has no x^m , but RHS has one x^m term, $q_m = 0$.
- \Rightarrow Since LHS has no 8^{m-1} , but RHS has one 8^{m-1} term, $q_{m-1}=0$
 - > Proceed, the same way, and we'll obtain $a_0 = a_1 = \dots = a_m = 0$

Since dim P_m (|R) = m+1, and the hist above has renegth m+1, it is a basis. Cby 2.39 Axter1.

In the dual basis of the basis $1, x-5, ..., (x-5)^m$ of $P_m(\mathbb{R})$ is $e_0, e_1, ..., e_m$, where $e_j(p) = 0$

P(j)(5) here p(j) denotes the jth derivative

Similar procedure to previous que stion.