Metrics for Classification

Classification models predict class and/or probability

- Classification model outcomes:
 - HARD: Class prediction (e.g. whether a patient has a disease or not)
 - SOFT: Probability of being a given class
- Not all classification models have a meaningful definition of probability
 - Some have a pseudo-probability (e.g. tree models and SVMs) generally costly for SVM
- We judge our models based on the class and probability predictions they make
- Sometimes we care only about the class predictions, other times we use probabilities as inputs into other downstream models

The most naive metric: Accuracy

What percent did we get right?

Accuracy is % of observations classified correctly

Accuracy for any classification model is defined as:

Observations Correctly Classified
All Observations

Accuracy is % of observations classified correctly

- Accuracy: (observations correctly classified / all observations)
- Accuracy is useful as a first heuristic, but it has shortcomings

Student exercise

- (a) Is 95 percent accuracy a good score?
- (b) Can you name some shortcomings of accuracy as a metric? Think about cases where we're trying to predict highly imbalanced classes.

Accuracy Example

- Say we're trying to predict whether a patient has a disease
- In our sample, 99.5% of patients do not have the disease

What naive model could we use to get high accuracy?

Accuracy Example

- Say we're trying to predict whether a patient has a disease
- In our sample, 99.5% of patients do not have the disease

- What naive model could we use to get high accuracy?
- If we naively predict "no disease" for every observation, we get 99.5% accuracy!

Accuracy Example

- Say we're trying to predict whether a patient has a disease
- In our sample, 99.5% of patients do not have the disease

- What naive model could we use to get high accuracy?
- If we naively predict "no disease" for every observation, we get 99.5% accuracy!

So... maybe we should look at other metrics as well

Demystifying the confusion matrix

A confusion matrix is accuracy by class

A confusion matrix is accuracy by class

A confusion matrix is used to detail the performance of a classification model.

A confusion matrix is accuracy by class

For those quadrants where our model was correct, we call them true positive/negative. Where our model was wrong, we call them false positive/negative.

Confusion Matrix Example

From the previous naïve model where we predicted "no disease" for every observation, what does the confusion matrix look like for 1000 people? (Recall: 99.5% do not have disease)

Confusion Matrix Example

From the previous naïve model where we predicted "no disease" for every observation, what does the confusion matrix look like for 1000 people? (Recall: 99.5% do not have disease)

Predicted Negative class Positive class Negative class **Actual** 995 0 Positive class

A confusion matrix is useful in multiclass problems

Other accuracy-based metrics: Precision and recall

When getting one class correct is more important

relevant elements

Sometimes we don't care about the accuracy of all classes equally

- e.g. Detecting credit card fraud or the presence of a rare disease
- Sometimes we're willing to trade misclassifying one class to get better accuracy in a different class

Precision and recall

How many selected items are relevant?

How many relevant items are selected?

Student exercise:

- Can you name cases where we may care more about precision?
- What about cases where we care more about recall?

Using class probability predictions

Choosing a probability threshold

- Some models give us probability predictions and not just class predictions
- So far we've looked at accuracy, precision and recall derived from a 50% probability threshold (sklearn default)
 - But, we don't have to take the 50% cutoff, we can choose our own!
 - Setting this cutoff means choosing our probability threshold

Probability threshold – 50%

Probability threshold – 70%

Probability threshold – 90%

Probability threshold – 90%

Note: SF = positive class

Student exercise:

- As we increase the threshold, do we have:
 - Cower/higher recall?
 - Cower/higher precision?
 - Lower/higher true positive rate? (TP/AP)
 - Lower/higher false positive rate? (FP/AN)

Using a ROC curve to determine probability thresholds

- Drawing a ROC curve: change the probability threshold and plot how true positive rate and false positive rate change
- Each threshold gives us a new model!
- We can plot the ROC curve only for binary cases

Using a ROC curve to determine probability thresholds

Check for understanding:

Which corner represents a higher threshold? Lower threshold?

NOTE:

- TPR = True Positive Rate
 (True Positives/Actual Positives)
- FPR = False Positive Rate
 (False Positives/Actual Negatives)

Using a ROC curve to determine probability thresholds

 Lower threshold: Better at catching positives. Higher recall, lower precision. Higher true positive rate, higher false positive rate

 Higher threshold: Better at catching negatives. Lower recall, higher precision.
 Lower true positive rate, lower false positive rate.

The perfect classifier

- The perfect classifier (pink line) would be a curve that reaches the northwest corner
- This represents a zero false positive rate and a 100% true positive rate

- A metric related to the ROC curve is the area under the curve (AUC)
- Notice that for the perfect classifier, the AUC would equal 1
- An AUC closer to 1 is better, and it ranges from 0 (0.5) to 1

ROC-AUC Interpretation

Figure 6. Predictions ranked in ascending order of logistic regression score.

One way of interpreting AUC:

Probability that random actual positive is ranked higher than random actual negative

ROC-AUC Interpretation

Figure 6. Predictions ranked in ascending order of logistic regression score.

Perfect Classifier:

All actual negatives have lower probability than all actual positives.

ROCAUC = 1

Precision and recall -- encore!

relevant elements

How many selected items are relevant?

How many relevant items are selected?

The precision-recall curve

- So we can change our probability threshold, and thus the hard classifications of our model
- As we move the threshold, we will also change our precision and recall
- Want to find every positive class in the data?
 - Then decrease the threshold to almost nothing:
 Voilà! Almost all observations will be classified as positive
- Want to make sure what you classify as positive is truly positive?
 - Increase the threshold and make it harder for the model to classify observations as positive

Applications to model development

Fit to training data, evaluate on test (or cross-val)

FIT MODEL TO TRAINING DATA

EVALUATE ERROR
METRICS ON VAL
(or K-FOLD CV)

- Accuracy, Precision, Recall
- Confusion Matrix
- ROC Curve
- F1-Score

...AND FINALLY...

REPORT METRICS
FROM HOLDOUT
TEST DATA

Appendix: Objectives & Even more classification metrics

Learning Objectives

- Understand the difference between model class predictions vs. probability predictions
- Learn about the most common error metrics for classification:
 - Accuracy and accuracy-based metrics:
 - Confusion matrix
 - Precision and recall
 - Log-loss as a measure that takes the magnitude of uncertainty into account
 - Others:
 - ROC curve and maximizing the area under the curve (AUC)
- Understand when to apply each metric, particularly the difference between two-class and multiclass problems

	Condition (as determined by "Gold standard")				
	Total population	Condition positive	Condition negative	Prevalence = Σ Condition positive Σ Total population	
Test outcome	Test outcome positive	True positive	False positive (Type I error)	Positive predictive value (PPV, Precision) = Σ True positive Σ Test outcome positive	False discovery rate (FDR) = Σ False positive Σ Test outcome positive
	Test outcome negative	False negative (Type II error)	True negative	False omission rate (FOR) = Σ False negative Σ Test outcome negative	Negative predictive value (NPV) = Σ True negative Σ Test outcome negative
	Positive likelihood ratio (LR+) = TPR/FPR	True positive rate (TPR, Sensitivity, Recall) = Σ True positive Σ Condition positive	False positive rate (FPR, Fallout) = Σ False positive Σ Condition negative	Accuracy (ACC) = Σ True positive + Σ True negative Σ Total population	
	Negative likelihood ratio (LR-) = FNR/TNR	False negative rate (FNR) = Σ False negative Σ Condition positive	True negative rate (TNR, Specificity, SPC) = Σ True negative Σ Condition negative		•
	Diagnostic odds ratio				

	Condition (as determined by "Gold standard")				
	Total population	Condition positive	Condition negative	Prevalence = Σ Condition positive Σ Total population	
Test outcome	Test outcome positive	True positive	False positive (Type I error)	Positive predictive value (PPV, Precision) = Σ True positive Σ Test outcome positive	False discovery rate (FDR) = Σ False positive Σ Test outcome positive
	Test outcome negative	False negative (Type II error)	True negative	False omission rate (FOR) = Σ False negative Σ Test outcome negative	Negative predictive value (NPV) = Σ True negative Σ Test outcome negative
	Positive likelihood ratio (LR+) = TPR/FPR	True positive rate (TPR, Sensitivity, Recall) = Σ True positive Σ Condition positive	False positive rate (FPR, Fallout) = Σ False positive Σ Condition negative	Accuracy (ACC) = Σ True positive + Σ True negative Σ Total population	
	Negative likelihood ratio (LR-) = FNR/TNR Diagnostic odds ratio	False negative rate (FNR) = Σ False negative Σ Condition positive	True negative rate (TNR, Specificity, SPC) = Σ True negative Σ Condition negative		

	Condition (as determined by "Gold				
	Total population	Condition positive	Condition negative	Prevalence = Σ Condition positive Σ Total population	
Test outcome	Test outcome positive	True positive	False positive (Type I error)	Positive predictive value (PPV, Precision) = Σ True positive Σ Test outcome positive	False discovery rate (FDR) = Σ False positive Σ Test outcome positive
	Test outcome negative	False negative (Type II error)	True negative	False omission rate (FOR) = Σ False negative Σ Test outcome negative	Negative predictive value (NPV) = Σ True negative Σ Test outcome negative
	Positive likelihood ratio (LR+) = TPR/FPR	True positive rate (TPR, Sensitivity, Recall) = Σ True positive Σ Condition positive	False positive rate (FPR, Fallout) = Σ False positive Σ Condition negative	Accuracy (ACC) = Σ True positive + Σ True negative Σ Total population	
	Negative likelihood ratio (LR-) = FNR/TNR Diagnostic odds ratio	False negative rate (FNR) = Σ False negative Σ Condition positive	True negative rate (TNR, Specificity, SPC) = Σ True negative Σ Condition negative		

	Condition (as determined by "Gold standard")				
	Total population	Condition positive	Condition negative	Prevalence = Σ Condition positive Σ Total population	
Test outcome	Test outcome positive	True positive	False positive (Type I error)	Positive predictive value (PPV, Precision) = Σ True positive Σ Test outcome positive	False discovery rate (FDR) = Σ False positive Σ Test outcome positive
	Test outcome negative	False negative (Type II error)	True negative	False omission rate (FOR) = Σ False negative Σ Test outcome negative	Negative predictive value (NPV) = Σ True negative Σ Test outcome negative
	Positive likelihood ratio (LR+) = TPR/FPR	True positive rate (TPR, Sensitivity, Recall) = Σ True positive Σ Condition positive	False positive rate (FPR, Fallout) = Σ False positive Σ Condition negative	Accuracy (ACC) = Σ True positive + Σ True negative Σ Total population	
	Negative likelihood ratio (LR-) = FNR/TNR Diagnostic odds ratio	False negative rate (FNR) = Σ False negative Σ Condition positive	True negative rate (TNR, Specificity, SPC) = Σ True negative Σ Condition negative		

Using a ROC curve to compare algorithms

