Modelltheorie

Wintersemester 2019/20 Mitschrift von Floris Remmert

Prof. Dr. Amador Martin-Pizarro Abteilung für mathematische Logik Mathematisches Institut Albert-Ludwigs-Universität Freiburg

31. Oktober 2019

Inhaltsverzeichnis

I	Theorien und Quantorenelimination	1
1	Erinnerung	1
2	Tarskis Test	4
3	Quantorenelimination	7

Teil I

Theorien und Quantorenelimination

Satz 0.1 (Morley)

Sei T eine Theorie, welche ein einziges (bis auf Isomorphie) Modell der Mächtigkeit \aleph_0 besitzt. Dann besitzt T für jede Kardinalzahl $\kappa > \aleph_0$ ein einziges Modell der Mächtigkeit κ (bis auf Isomorphie).

1 Erinnerung

Definition 1.1 • Eine Sprache \mathcal{L} ist eine Kollektion von Konstanten-, Funktions-, und Relationszeichen

- Eine L-Struktur A besteht aus einer <u>nicht-leeren</u> Grundmenge (oder Universum) A zusammen mit Interpretationen der Symbole aus L:
 - Für jedes Funktionszeichen f der Stelligkeit n

$$f^{\mathcal{A}}:A^n\longrightarrow A$$

- Für jedes Relationszeichen R der Stelligkeit m

$$R^{\mathcal{A}} \subset A^m$$

- Eine Einbettung F von \mathcal{A} nach \mathcal{B} ist eine <u>injektive</u> Abbildung $F: A \longrightarrow B$, welche mit den Interpretationen kompatibel¹ ist
- Ein Isomorphismus ist eine surjektive Einbettung.
- A ist eine Unterstruktur von \mathcal{B} , falls $A \subset B$ und die Inklusion $\iota : A \longrightarrow B$ eine Einbettung bestimmt

Bemerkung: Sei \mathcal{B} eine \mathcal{L} -Struktur, $\emptyset \neq A \subset B$. Dann gibt es eine Unterstruktur von \mathcal{B} , welche von A erzeugt wird.

Das Universum besteht aus A zusammen mit dem Abschluss von A unter allen Interpretationen der Funktionszeichen von \mathcal{L} .

¹das bedeutet, dass Funktions- und Relationszeichen bei Hin- und Rückrichtung erhalten bleiben

Definition 1.2

Sei (I, <) eine partielle Ordnung. Die Ordnung ist gerichtet, falls für $i, j \in I$ gibt es $k \in I$ mit $i \le k$ und $j \le k$.

Bemerkung: Sei $(A_i)_{i \in I}$ eine Familie von \mathcal{L} -Strukturen indexiert nach der gerichteten partiellen Ordnung I derart, dass für $i \leq j$ gilt: $A_i \subset A_j$.

Die Menge $A = \bigcup_{i \in I} A_i$ ist das Universum einer (eindeutig bestimmten) \mathcal{L} -Struktur

$$\mathcal{A} = \bigcup_{i \in I} \mathcal{A}_i \tag{1}$$

Falls I eine lineare Ordnung ist, dann ist $(A_i)_{i \in I}$ eine <u>Kette</u>.

Zu 1:

- $c^A = c^{A_i}$ für ein (alle) $i \in I$, denn $c^{A_i} = c^{A_j} = c^{A_k}$, wegen gerichteter Ordnung
- $a_1, \ldots a_n \in A = \bigcup_{i \in I} A_i \Longrightarrow \exists i \in I \text{ mit } a_1, \ldots, a_n \in A_i.$ Also ist $f^{\mathcal{A}}(a_1, \ldots, a_n) = f^{\mathcal{A}_i}(a_1, \ldots, a_n)$ wohldefiniert.
- $(a_1, \ldots, a_m) \in R^{\mathcal{A}}$ gdw es ein $i \in I$ gibt mit $a_1, \ldots, a_m \in A_i$ und $(a_1, \ldots, a_m) \in R^{\mathcal{A}_i}$

<u>Beachte</u>, dass $\mathcal{A}_i \subset_{IIS} \mathcal{A}$ für alle $i \in I$.

Definition 1.3

Eine atomare Formel ist ein Ausdruck der Form $(t_1 = t_2), t_1, \ldots, t_k$ Terme, $R(t_1, \ldots, t_k)$.

Die Kollektion von Formeln ist die kleinste Klasse, welche alle atomaren Formeln enthält und derart, dass:

$$\varphi \ Formel \Longrightarrow \neg \varphi \ Formel$$

$$\varphi, \psi \ Formel \Longrightarrow (\varphi \lor \psi) \ Formel$$

$$\varphi \ Formel, x \ Variable \Longrightarrow \exists x \varphi \ Formel, (x \ hei\betat \ dann \ "gebunden")$$

Abk.:

$$(\varphi \wedge \psi) = \neg(\neg \varphi \vee \neg \psi)$$

$$\forall x \varphi = \neg \exists x \neg \varphi$$

$$(\varphi \rightarrow \psi) = (\neg \varphi \vee \psi)$$

$$(\varphi \leftrightarrow \psi) = ((\varphi \rightarrow \psi) \wedge (\psi \rightarrow \varphi))$$

Bemerkung: • Jede Formel $\varphi[x_1, \ldots, x_n]$ lässt sich in pränexer Normalform umschreiben: $Q_1y_1Q_2y_2\ldots Q_my_m\psi[x_1, \ldots, x_n, y_1, \ldots, y_m]$. Das ist eine quantorfreie Formel, diese lässt sich weiter zerlegen in KNF bzw. DNF.

- Eine Formel ohne freie Variablen ist eine Aussage
- Eine Theorie ist eine Kollektion von Aussagen

Beispiel 1.4

Sei A eine \mathcal{L} -Struktur. Erweitere die Sprache zu der Sprache $\mathcal{L}_A = \mathcal{L} \cup \{d_a\}_{a \in A}$.

 \mathcal{A} ist eine \mathcal{L}_A -Struktur, $d_a^{\mathcal{A}} = a$.

- Diag^{at}(\mathcal{A}) = {quantorenfreie \mathcal{L}_A -Aussagen χ mit $\mathcal{A} \models \chi$ } heißt "atomares Diagramm"
- $Diag(A) = \{ \mathcal{L}\text{-}Aussagen \ \theta \ mit \ A \models \theta \} \ hei \beta t \ "vollständiges \ Diagramm"$

Sei nun \mathcal{B} eine \mathcal{L}_A -Struktur.

$$\mathcal{B} \models \operatorname{Diag}^{at}(\mathcal{A}) \Leftrightarrow \mathcal{A} \hookrightarrow \mathcal{B} \text{ einbetten lässt}$$

$$A \longrightarrow B$$

$$a \mapsto d_a^{\mathcal{B}}$$

 $\mathcal{B} \models \operatorname{Diag}(\mathcal{A}) \Leftrightarrow \mathit{die obige Abbildung ist } \underline{\mathit{elementar}}$

$$\mathcal{A} \models \varphi[a_1, \dots, a_n] \Leftrightarrow \mathcal{B} \models \varphi[F(a_1), \dots, F(a_n)], a_1, \dots a_n \in \mathcal{A}, \varphi[x_1, \dots, x_n] \text{ Formel}$$

Definition 1.5 • T ist konsistent, falls T ein Modell besitzt.

• T ist vollständig, falls T konsistent ist und je zwei Modelle von T elementar äquivalent sind.

Satz 1.6 (Kompaktheitssatz)

Eine Theorie ist genau dann konsistent, wenn sie endlich konsistent² ist.

Wie zeigen wir, dass $A \equiv B$?

Satz 1.7 (Back & Forth)

$$S = \{F : \mathcal{C}_{US} \longrightarrow \mathcal{D}_{SS}, F \text{ partieller Isomorphismus zwischen } \mathcal{C} \text{ und } \mathcal{D} \text{ geeignet}^3\}.$$

<u>Back:</u> Für alle $F \in S$ und $b \in B$, $F : \mathcal{C} \longrightarrow \mathcal{D}$ gibt es $G \in S$ mit $G \supset F$ Erweiterung und $b \in \operatorname{Im}(G)$.

²endlich konsistent bedeutet: jede Teilmenge der Theorie besitzt ein Modell.

³bspw. endlich erzeugt

<u>Forth:</u> Für alle $F \in S$ und $a \in A$, $F : \mathcal{C} \longrightarrow \mathcal{D}$ gibt es $H \in S$, mit $H \supset F$ Erweiterung mit $a \in \text{Dom}(H)$

A und B heißen dann "Back & Forth äquivalent"

 \rightarrow ist jedes $F \in S$ <u>elementar</u>, so gilt insbesondere $A \equiv B$.

2 Tarskis Test

Lemma 2.1 (Tarskis Test)

Sei \mathcal{B} eine \mathcal{L} -Struktur und $A \subset B$ Teilmenge derart, dass für jede \mathcal{L} -Formel $\varphi[x_1, \ldots, x_n]$ und Elemente $a_1, \ldots, a_n \in A$: falls:

$$\mathcal{B} \models \varphi[a_1, \dots, a_n, b] \text{ für ein } b \in B \Rightarrow \text{ existient } a \in A \text{ sodass } \mathcal{B} \models \varphi[a_1, \dots, a_n, a]$$
 (2)

 \underline{dann} ist A das Universum einer elementaren Unterstruktur von \mathcal{B} .

Insbesondere: Falls $A \subset B$ Unterstruktur, ist $A \leq B \Leftrightarrow A$ erfüllt 2.

Beweis. Betrachte $A \neq \emptyset \rightarrow$ Betrachte $\varphi[y] = (y = y)$. $B \neq \emptyset \rightarrow \exists b \in B \text{ mit } \mathcal{B} \models \varphi[b]$. $\hookrightarrow \exists a \in A \text{ mit } \mathcal{B} \models \varphi[a]$

Beh.: Für jedes Konstantenzeichen $c \in \mathcal{L}$ ist $c^{\mathcal{B}} \in A$. $\hookrightarrow \varphi[y] = (y = c)$, $\mathcal{B} \models \varphi[c^{\mathcal{B}}] \Rightarrow \text{es}$ gibt $a \in A$ mit $a = c^{\mathcal{B}}$.

Beh.: A ist unter den Funktionen $f^{\mathcal{B}}$ abgeschlossen, für jedes Funktionszeichen $f \in \mathcal{L}$.

Sei
$$\varphi[x_1,\ldots,x_n,y]=(y=f(x_1,\ldots,x_n))$$

Für $R \in \mathcal{L}$ m-stellig setze $R^{\mathcal{A}} = A^m \cap R^{\mathcal{B}} \longrightarrow \text{somit bildet } A \text{ eine } \mathcal{L}\text{-Unterstruktur } \mathcal{A}$ von \mathcal{B} .

Noch zu zeigen: $\mathcal{A} \leq \mathcal{B}$, d. h. $\varphi[x_1, \ldots, x_n]$ \mathcal{L} -Formel.

Seien dazu $a_1, \ldots, a_n \in A$.

$$\mathcal{A} \models \varphi[a_1, \dots, a_n] \Leftrightarrow \mathcal{B} \models \varphi[a_1, \dots, a_n] \tag{3}$$

Induktiv über den Aufbau von φ .

$$\varphi$$
 ist atomar $\longrightarrow \checkmark$

$$\mathcal{A} \not\models \psi[a_1, \dots, a_n] \Leftrightarrow \qquad \qquad \mathcal{B} \not\models \psi[a_1, \dots, a_n]
\updownarrow
\mathcal{A} \models \varphi[a_1, \dots, a_n] \qquad \qquad \qquad \updownarrow
\mathcal{B} \models \phi[a_1, \dots, a_n]$$

$$\varphi = \neg \psi \longrightarrow \checkmark$$

$$\varphi = (\psi_1 \vee \psi_2) \longrightarrow \checkmark$$

 $\varphi = \exists y \psi[x_1, \dots, x_n, y] \colon \mathcal{A} \models \varphi[a_1, \dots, a_n] \Rightarrow \text{es gibt ein } a \in A \text{ sodass } \mathcal{A} \models \psi[a_1, \dots, a_n, a]$ $\xrightarrow{\Rightarrow} \mathcal{B} \models \psi[a_1, \dots, a_n, a] \text{ für ein } a \in A \subset B \Rightarrow \mathcal{B} \models \varphi[a_1, \dots, a_n]$

$$\mathcal{B} \models \varphi[a_1, \dots, a_n] \Rightarrow \text{ es gibt } b \in B \text{ mit } \mathcal{B} \models \psi[a_1, \dots, a_n, b] \underset{2}{\Rightarrow} \text{ es gibt ein } a \in A \text{ mit } \mathcal{B} \models \psi[a_1, \dots, a_n, a] \underset{3}{\Rightarrow} \mathcal{A} \models \psi[a_1, \dots, a_n, a] \Rightarrow \mathcal{A} \models \varphi[a_1, \dots, a_n].$$

Proposition 2.2 (aufwärts Löwenheim-Skolem)

Sei \mathcal{A} eine unendliche \mathcal{L} -Struktur, und $\kappa < \max\{|A|, |\mathcal{L}|\}$. Dann gibt es eine elementare \mathcal{L} -Erweiterung $\mathcal{B} \geq \mathcal{A}$ der Mächtigkeit κ .

Beweis. $\operatorname{Diag}(\mathcal{A}) \cup \{\neg(c_{\alpha} = c_{\beta})\}_{\alpha \neq \beta < \kappa}$, wobei $\{c_{\alpha}\}_{\alpha < \kappa}$ eine Menge neuer Konstantenzeichen ist, ist konsistent weil sie endlich konsistent⁴ ist.

Aus der Konstruktion von Henkin hat $\operatorname{Diag}(\mathcal{A}) \cup \{\neg(c_{\alpha} = c_{\beta})\}_{\alpha \neq \beta < \kappa}$ ein Modell der Mächtigkeit der Sprache.

$$\rightarrow$$
 ein Modell der Mächtigkeit $\underline{\kappa}$.

Bemerkung: $|A| = n \in \mathbb{N}, \ \mathcal{B} > \mathcal{A} \Rightarrow |B| = n$

Proposition 2.3 (abwärts Löwenheim-Skolem)

Sei \mathcal{B} eine \mathcal{L} -Struktur und $S \subset B$ beliebig. Dann gibt es eine elementare Unterstruktur $\mathcal{A} \preceq \mathcal{B}$ mit $A \supset S$ und $|A| \leq \max\{|S|, |\mathcal{L}|, \aleph_0\}$.

Bemerkung: \mathbb{C} in der Ringsprache \mathcal{L}_{Ring} , $S = \emptyset \Rightarrow$ es gibt eine abzählbare elementare Unterstruktur von \mathbb{C} . $\to \bar{\mathbb{Q}} \leq \mathbb{C}$

⁴Kompaktheit

Beweis 2.3. Setze $S_0 = S$. Angenommen S_k wurde bereits konstruiert, wähle für jedes $n \in \mathbb{N}$, jede \mathcal{L} -Formel $\varphi[x_1, \ldots, x_n, y]$ und Elemente $a_1, \ldots, a_n \in S_k$ ein Element $a_{\varphi[a_1, \ldots, a_n, y]} \in B$ derart, dass $\mathcal{B} \models ((\exists y \in \varphi)[a_1, \ldots, a_n] \rightarrow \varphi[a_1, \ldots, a_n, a_{\varphi[a_1, \ldots, a_n, y]}])$. Setze $S_{k+1} = S_k \cup \{a_{\varphi}\}_{\varphi \mathcal{L}\text{-Formel}, (a_1, \ldots, a_n) \in S_k}$

Definiere $A = \bigcup_{k \in \mathbb{N}} S_k \supset S$. Wir überprüfen, dass A den Test von Tarski erfüllt. Sei $\varphi = \varphi[x_1, \dots, x_n, y]$ eine \mathcal{L} -Formel, $a_1, \dots, a_n \in A$.

 $\mathcal{B} \models \varphi[a_1, \dots, a_n, b]$ für ein $b \in B \Rightarrow$ es gibt ein $k \in \mathbb{N}$ mit $a_1, \dots a_n \in S_k \Rightarrow$ es gibt ein $a_{\varphi[a_1, \dots, a_n, y]} \in S_{k+1} \subset A$ mit $\mathcal{B} \models \varphi[a_1, \dots, a_n, a] \checkmark$

Ferner ist
$$|A| \leq \max\{\aleph_0, |\mathcal{L}|, |S|\}.$$

Folgerung 2.4

Sei $(A_i)_{i \in I}$ eine gerichtete Familie von \mathcal{L} -Strukturen, sodass für $i \leq j$ ist $A_i \leq A_j$. Dann ist $A = \bigcup_{i \in I} A_i$ eine elementare Erweiterung jeder A_i .

Beweis. Wir beweisen induktiv über den Aufbau von $\varphi = \varphi[x_1, \dots, x_n]$, dass für alle $i \in I$, für alle $a_1, \dots, a_n \in A_i$: $A_i \models \varphi[a_1, \dots, a_n] \Leftrightarrow A \models \varphi[a_1, \dots, a_n]$.

 φ atomar \to klar, denn $\mathcal{A}_i \subset_{US} \mathcal{A}$

$$\varphi = \neg \varphi \Rightarrow \text{ok!}$$

$$\varphi = (\varphi_1 \vee \varphi_2) \Rightarrow \text{ok!}$$

$$\varphi = \exists y \psi[x_1, \dots, x_n, y] \colon \mathcal{A}_i \models \varphi[a_1, \dots, a_n] \Rightarrow \text{ es gibt ein } a \in A_i \text{ mit } \mathcal{A}_i \models \psi[a_1, \dots, a_n, a]$$

$$\underset{\text{ind. ""ber"} \psi}{\Rightarrow} \mathcal{A} \models \psi[a_1, \dots, a_n, a] \Rightarrow \mathcal{A} \models \varphi[a_1, \dots, a_n]$$

 $\mathcal{A} \models \varphi[a_1, \dots, a_n] \Rightarrow \text{ es gibt ein } b \in A = \bigcup_{i \in I} A_i \text{ mit } \mathcal{A} \models \psi[a_1, \dots, a_n, b] \Rightarrow \text{ es gibt } j \in I$ mit $b \in A_j \Rightarrow \text{ es existiert } k \in I \text{ mit } i \leq k, \ j \leq k, \ a_1, \dots, a_n, b \in A_k$ $\Rightarrow \mathcal{A}_k \models \psi[a_1, \dots, a_n, b] \underset{\mathcal{A}_i \preceq \mathcal{A}_k}{\Rightarrow} \text{ es gibt ein } a \in A_k \text{ mit } \mathcal{A}_i \models \psi[a_1, \dots, a_n, a] \Rightarrow \mathcal{A}_i \models \varphi[a_1, \dots, a_n].$

Definition 2.5

Eine Theorie T hat Quantorenelimination, falls jede \mathcal{L} -Formel $\varphi[x_1, \ldots, x_n]$ äquivalent modulo T zu einer quantorenfreien \mathcal{L} -Formel $\psi[x_1, \ldots, x_n]$ ist.

$$T \models \forall x_1 \dots \forall x_n (\varphi[x_1, \dots, x_n] \leftrightarrow \psi[x_1, \dots, x_n])$$

Beispiel 2.6

Sei $\mathcal{L} := (\mathbb{R}, 0, 1, +, -, \cdot)$ gegeben. Betrachte die Menge $\{(a, b, c) \in \mathbb{R}^3 | a \neq 0 \text{ und es gibt } x \in \mathbb{R} \text{ mit } ax^2 + bx + c = 0\} = \{(a, b, c) \in \mathbb{R}^3 | a \neq 0 \text{ und } b^2 - 4ac \geq 0\}.$

Diese Formel ist in \mathcal{L} nicht äquivalent zu einer quantorenfreien Formel, in $\mathcal{L}_1 := (\mathbb{R}, 0, 1, +, -, \cdot, <)$ hingegen doch. Somit ist die Menge in \mathcal{L}_1 quantorenfrei.

3 Quantorenelimination

Bemerkung: \bullet Wenn T inkonsistent st, dann hat T immer Quantorenelimination

• Wenn
$$T$$
 Quantorenelimination hat, und $\mathcal{A}, \mathcal{B} \models T$ mit $\mathcal{A} \subset_{US} \mathcal{B} \Rightarrow \mathcal{A} \preceq \mathcal{B}$ Übung

Definition 3.1 • Eine einfache Existenzformel ist eine Formel der Form $\varphi[x_1, \ldots, x_n] = \exists y \psi[x_1, \ldots, x_n, y]$

• Eine primitive Existent formel ist eine Formel der Form $\varphi[x_1, \ldots, x_n] = \psi[x_1, \ldots, x_n, y]$, wobei ψ eine endliche Konjunktion von atomaren Formeln und Negationen ist

Lemma 3.2

Eine (konsistente) Theorie T hat genau dann Quantoreneliminantion, wenn jede primitive Existenzformel zu einer quantorenfreien Formel äquivalent modulo T ist.

Beweis. "⇒": klar

" \Leftarrow ": Beachte, $\exists y(\psi_1 \lor \psi_2) \leftrightarrow (\exists y\psi_1 \lor \exists y\psi_2)$. Insbesondere, wenn T Quantorenelimination für primitive Existenzformeln hat, dann hat T Quantorenelimination für einfache Existenzformeln.

$$\varphi_{\text{einfache Existenzformel}} = \exists y \underbrace{\psi[x_1, \dots, x_n]}_{\text{umschreiben in DNF}} \sim \exists y (\psi_1 \lor \dots \lor \psi_n) \sim \underbrace{\bigvee_{i=1}^n \exists y \psi_i}_{\text{primitive Existenzformel}}$$

Zu zeigen: Jede beliebige Formel $\varphi[x_1,\ldots,x_n]$ ist äquivalent zu einer quantorenfreien Formel modulo T.

$$\varphi[x_1,\ldots,x_n] \underbrace{\sim}_{\substack{\text{pränexe} \\ \text{Normalform}}} Q_1y_1\ldots Q_my_m \underbrace{\psi[x_1,\ldots,x_n,y_1,\ldots,y_m]}_{\substack{\text{quantorenfrei}}}, \text{ wobei } Q_i \in \{\forall,\exists\}$$

Induktion über m:

$$m=0$$
:

$$m = 1$$
: $\varphi = Q \underbrace{\psi[x_1, \dots, x_n, y]}_{\text{quantorenfrei}}$

 $Q = \exists \varphi$ einfache Existenzformel \checkmark

$$Q = \forall \ \varphi \sim \neg \underbrace{\exists y \neg \psi}_{\substack{\text{einfache} \\ \text{Existenzformel}} \rightarrow \text{eliminieren} \rightarrow \checkmark}$$

$$m-1 \to m$$
: $\varphi[x_1, \dots, x_n] = Q_1 y_1 Q_2 y_2 \dots \underbrace{Q_m y_m \psi[x_1, \dots, x_n, y_1, \dots, y_m]}_{\varphi'[x_1, \dots, x_n, y_1, \dots, y_{m-1}]}$. φ' ist eine einfache

Existenzformel, wir eliminieren also:

$$m-1$$
 viele Quantoren $\Theta[x_1,\ldots,x_n,y_1,\ldots,y_{m-1}]$ quantorenfrei

 \Rightarrow Induktion

Beispiel 3.3

Sei $K = \{unendliche Mengen\}$. Diese Klasse lässt sich definieren durch die Theorie $T = \{\exists x_1 \dots \exists x_n (\bigwedge_{i \neq j=1}^n \neg (x_i = x_j))\}_{n \in \mathbb{N}}$. Diese Theorie ist vollständig! Betrachte jetzt $\exists^{\infty} x$ die definierbaren Mengen:

$$\{b \in A | \mathcal{A} \models \underbrace{\varphi}_{quantorenfrei} [b, a_1, \dots, a_m]\}$$

Lemma 3.4 (Trennungslemma)

Seien T_1 und T_2 zwei \mathcal{L} -Theorien, und Δ eine Kollektion von \mathcal{L} -Aussagen, welche unter endlichen Konjunktionen und Disjunktionen abgeschlossen ist. Folgende Eigenschaften sind äquivalent:

- 1) Es gibt eine Aussage $\chi \in \Delta$ mit $T_1 \models \chi$
- 2) Für alle $A \models T_1$, $\mathcal{B} \models T_2$ gibt es eine Aussage $\chi \in \Delta$ mit $A \models \chi, \mathcal{B} \models \neg \chi$

Bemerkung: Das ganze ist trivial für inkonsistente Theorien.

Beweis. $1 \Rightarrow 2$: trivial!

 $2 \Rightarrow 1$: OBdA T_1, T_2 konsistent. Sei $\mathcal{A} \models T_1$, setze $\Sigma_{\mathcal{A}} = \{\chi, \chi \text{ Aussagen in } \Delta \text{ mit } \mathcal{A} \models \chi\}$.

Betrachte jetzt $T_2 \cup \Sigma_{\mathcal{A}}$. Ist diese Theorie konsistent? Nein: Wäre $\mathcal{B} \models T_2 \cup \Sigma_{\mathcal{A}} \hookrightarrow \text{es}$ gibt $\chi \in \Delta$ mit $\mathcal{A} \models \chi, \mathcal{B} \models \neg \chi \Rightarrow \chi \in \Sigma_{\mathcal{A}} \Rightarrow \mathcal{B} \models \chi$. Widerspruch!

Das bedeutet (wegen Kompaktheit), dass es $\chi_1, \ldots, \chi_r \in \Sigma_A$ gibt mit $T_2 \cup \{\chi_1, \ldots, \chi_r\}$ inkonsistent.

$$\hookrightarrow T_2 \models \bigvee_{i=1}^r \neg \chi_i \Rightarrow T_2 \models \neg (\underbrace{\bigwedge_{i=1}^r \chi_i}_{=\chi_A \in \Delta})$$

Das heißt für jedes $\mathcal{A} \models T_1$ gibt es $\chi_{\mathcal{A}} \in \Delta$ mit $T_2 \models \neg \chi_{\mathcal{A}}$ und $\mathcal{A} \models \chi_{\mathcal{A}}$.

Sei nun $T_1 \cup \{\neg \chi_{\mathcal{A}}\}_{\mathcal{A} \models T_1}$. \hookrightarrow inkonsistent nach Konstruktion.

$$\Rightarrow$$
 es existieren $\chi_{\mathcal{A}_1}, \dots \chi_{\mathcal{A}_n}$ mit $T_1 \cup \{\neg \chi_{\mathcal{A}_1}, \dots, \chi_{\mathcal{A}_n}\}$ inkonsistent. Also: $T_1 \models \bigvee_{i=1}^n \chi_{\mathcal{A}_i} =: \chi \in \Delta$

$$T_1 \models \chi$$
. Wollen zeigen: $T_2 \models \neg \chi$. Aber $T_2 \models \neg \chi_{\mathcal{A}_i}, 1 \leq i \leq n$.

Folgerung 3.5

Zwei Theorien T_1 und T_2 werden von einer quantorenfreien Aussage getrennt, wenn je zwei Modelle $A \models T_1$ und $\mathcal{B} \models T_2$ von einer quantorenfreien Aussage getrennt werden.

$$\rightarrow \exists \chi \ quantorenfrei : \mathcal{A} \models \chi \ und \ \mathcal{B} \models \neg \chi$$

 $^{^5}$ Ist das überhaupt eine Menge? Es genügt die Einschränkung bis auf Isomorphie, das sollte reichen...