## Tutorial 01: Number Systems and Signed Numbers

**Computer Science Department** 

CS2208b: Fundamentals of Computer Organization and Architecture

**Winter 2018** 

Instructor: Mahmoud R. El-Sakka

Office: MC-419

Email: elsakka@csd.uwo.ca

**Phone:** 519-661-2111 x86996



### **Number Systems**

- A number system
  - ☐ Is a notation for *representing* (*encoding*) numbers in a consistent manner.
  - ☐ Can be based on
    - positional notation (i.e., place-value),
      - □ Using the same symbol for the different orders of magnitude
        - for example, in decimal, we have the *ones place*, *tens place*, *hundreds place*.
    - other notations (e.g., Roman numerals)



### **Number Systems**

- A radix or base is
  - □ the number of unique digits, *including zero*, used to represent numbers in a positional numeral system.
- With the use of a *radix point*, the notation can be extended to include *fractions* and *real numbers*.



### Number Systems

- Examples of positional numeral systems
  - Decimal is base-10
- $\rightarrow$  {0, 1, 2, 3, 4, 5, 6, 7, 8, and 9}

- Binary is base-2
- Quaternary is base-4  $\rightarrow$  {0, 1, 2, and 3}
- Octal is base-8
- Trinary is base-3
- Quinary is base-5
- Senary is base-6
- ☐ Septenary is base-7
- Nonary is base-9

- $\rightarrow$  {0, and 1}
- $\rightarrow$  {0, 1, 2, 3, 4, 5, 6, and 7}
- Hexadecimal is base-16  $\rightarrow$  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F}
  - $\rightarrow$  {0, 1, and 2}
  - $\rightarrow$  {0, 1, 2, 3, and 4}
  - $\rightarrow$  {0, 1, 2, 3, 4, and 5}
  - $\rightarrow$  {0, 1, 2, 3, 4, 5, and 6}
  - $\rightarrow$  {0, 1, 2, 3, 4, 5, 6, 7, and 8}
- Duodecimal is base-12  $\rightarrow$  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, and B}
- Sexagesimal is base-60  $\rightarrow$  {0, 1, 2, 3, 4, 5, ..., 58 and 59}

You need to know how

 $\square$  If the original number in base b is:

$$(a_{n-1} a_{n-2} \dots a_i \dots a_1 a_0 \cdot a_{-1} a_{-2} \dots a_{-m})_b$$

□ The *decimal* value of this number is defined as

$$\mathbf{N}_{10} = (\mathbf{a}_{\mathbf{n}-1}\mathbf{b}^{\mathbf{n}-1} + \dots + \mathbf{a}_{\mathbf{i}}\mathbf{b}^{\mathbf{i}} + \dots + \mathbf{a}_{\mathbf{1}}\mathbf{b}^{\mathbf{1}} + \mathbf{a}_{\mathbf{0}}\mathbf{b}^{\mathbf{0}} + \mathbf{a}_{\mathbf{-1}}\mathbf{b}^{\mathbf{-1}} + \mathbf{a}_{\mathbf{-2}}\mathbf{b}^{\mathbf{-2}} + \dots + \mathbf{a}_{\mathbf{-m}}\mathbf{b}^{\mathbf{-m}})_{10}$$

Example 1: Convert 2E8<sub>16</sub> to decimal

$$2E8_{16} = 2 \times 16^{2} + E \times 16^{1} + 8 \times 16^{0}$$

$$= 2 \times 256 + 14 \times 16 + 8 \times 1$$

$$= 512 + 224 + 8$$

$$= 744_{10}$$

**Example 2**: Convert  $361_8$  to decimal

$$361_8 = 3 \times 8^2 + 6 \times 8^1 + 1 \times 8^0$$

$$= 3 \times 64 + 6 \times 8 + 1 \times 1$$

$$= 192 + 48 + 1$$

$$= 241_{10}$$

**Example 3**: Convert  $0.361_8$  to decimal

$$0.361_8 = 3 \times 8^{-1} + 6 \times 8^{-2} + 1 \times 8^{-3}$$

$$= 3 \times 0.125 + 6 \times 0.015625 + 1 \times 0.001953125$$

$$= 0.375 + 0.09375 + 0.001953125$$

$$= 0.470703125_{10}$$

#### Another method:

$$0.361_8 = 361_8 / 1000_8$$

$$= (3 \times 8^2 + 6 \times 8^1 + 1 \times 8^0) / (1 \times 8^3)$$

$$= (3 \times 64 + 6 \times 8 + 1 \times 1) / (1 \times 512)$$

$$= (192 + 48 + 1) / (512)$$

$$= 241 / 512$$

$$= 0.470703125_{10}$$

**Example 4**:  $12.112_3$  to decimal

$$12.112_{3}$$

$$= 1 \times 3^{1} + 2 \times 3^{0} + 1 \times 3^{-1} + 1 \times 3^{-2} + 2 \times 3^{-3}$$

$$= 1 \times 3 + 2 \times 1 + 1 \times 0.333333 + 1 \times 0.111111 + 2 \times 0.03703$$

$$= 3 + 2 + 0.333333 + 0.111111 + 0.07406 = 5.5185_{10}$$

#### Another method:

$$12.112_{3} = 12112_{3} / 1000_{3}$$

$$= (1 \times 3^{4} + 2 \times 3^{3} + 1 \times 3^{2} + 1 \times 3^{1} + 2 \times 3^{0}) / (1 \times 3^{3})$$

$$= (81 + 54 + 9 + 3 + 2) / 27$$

$$= 149 / 27 = 5.5185_{10}$$

- Division Method (for integer numbers)
  - ☐ Initialize the quotient by the value of the *decimal number*
  - □ *Repeat*:
    - Divide the quotient from the previous stage by the new base to get
      - □ A quotient (the whole number)
      - □ A remainder
    - The *remainder* here is *the next least significant digit* in the new number *Until* the quotient becomes 0.

- *Example 5*: Convert 14<sub>10</sub> to binary
  - Binary means the new base is 2
    - □ 14/2 = 7 Remainder:  $0 \rightarrow$  This is the least significant binary digit Quotient =  $7 \neq 0 \rightarrow$  continue
    - □ 7/2 = 3 Remainder: 1 → This is the 2<sup>nd</sup> least significant binary digit Quotient =  $3 \neq 0$  → continue
    - □ 3/2 = 1 Remainder: 1 → This is the 3<sup>rd</sup> least significant binary digit Quotient =  $1 \neq 0$  → continue
    - □ 1/2 = 0 Remainder: 1 → This is the 4<sup>th</sup> least significant binary digit Quotient = 0 → exit the *repeat-until* control structure

$$\Box 14_{10} = 1110_2 \bullet \bullet \bullet$$

Note that, it is 1110<sub>2</sub>
It is NOT 0111<sub>2</sub>

**Example 6**: Convert 2477<sub>10</sub> to hexadecimal:

Hexadecimal means the new base is 16

- □ 2477/16 = 154 Remainder:  $13 \rightarrow$  This is the least significant Hex digit Quotient =  $154 \neq 0 \rightarrow$  continue
- □ 154/16 = 9 Remainder:  $10 \rightarrow$  This is the 2<sup>nd</sup> least significant Hex digit Quotient =  $9 \neq 0 \rightarrow$  continue
- □ 9/16 = 0 Remainder: 9 → This is the 3<sup>rd</sup> least significant Hex digit Quotient = 0 → exit the *repeat-until* control structure

$$\square 2477_{10} = 9AD_{16}$$
Note that, it is  $9AD_{16}$ 
It is NOT DA9<sub>16</sub>

- Multiplication Method (for fraction numbers)
  - □ Initialize the fraction by the value of the *fractional decimal number*
  - □ *Repeat*:
    - Multiply the fraction from the previous stage by the new base to get
      - □ A whole number
      - □ A fraction
    - The *whole number* here is *the next digit to the right after the radix point* in the new number

*Until* the fraction becomes 0.



■ *Example 7*: Convert 0.017578125<sub>10</sub> to hexadecimal

Hexadecimal means the new base is 16

- □  $0.01757812 \times 16 = 0.28125$ whole number:  $0 \rightarrow the next digit to the right after the radix point fraction = <math>0.28125 \neq 0 \rightarrow continue$
- □  $0.28125 \times 16 = 4.5$ whole number:  $4 \rightarrow$  the next digit to the right after the radix point fraction =  $0.5 \neq 0 \rightarrow$  continue
- $□ 0.5 \times 16 = 8.0$ whole number:  $8 \rightarrow the \ next \ digit \ to \ the \ right \ after \ the \ radix \ point$ fraction =  $0.0 \rightarrow$  exit the repeat-until control structure
- $\square 0.017578125_{10} = 0.048_{16}$

**Example 8**: Convert 255.017578125<sub>10</sub> to hexadecimal:

Hexadecimal means the new base is 16

$$255.017578125_{10} = 255_{10} + 0.017578125_{10}$$

Using the *division method*:  $255_{10} \rightarrow FF_{16}$ 

Using the *multiplication method*:  $0.017578125_{10} \rightarrow 0.048_{16}$ 

$$255.017578125_{10} = FF.048_{16}$$

- **Example 9**: Convert 0.85<sub>10</sub> to hexadecimal Hexadecimal means the new base is 16
  - □  $0.85 \times 16 = 13.6$  whole number:  $13 \rightarrow the next digit to the right after the radix point fraction = <math>0.6 \neq 0 \rightarrow continue$
  - □  $0.6 \times 16 = 9.6$ whole number:  $9 \rightarrow$  the next digit to the right after the radix point fraction  $= 0.6 \neq 0 \rightarrow$  continue
  - □  $0.6 \times 16 = 9.6$ whole number:  $9 \rightarrow$  the next digit to the right after the radix point fraction =  $0.6 \neq 0 \rightarrow$  continue

  - $\square 0.85_{10} = 0.D999999...9_{16}$
  - □ Can be approximated in 4 digits after the radix point, for example, as
    - $0.D999_{16}$  (using truncation) or as
    - $0.D99A_{16}$  (using rounding)

#### Conversion between any two bases, other than decimal

- This task can be done in two steps:
  - □ Convert from the source base to the decimal
  - □ Convert from the decimal to the destination base

#### Conversion between any two bases, other than decimal

■ Example 10: Convert  $2E8_{16}$  to octal  $2E8_{16} = 2 \times 16^2 + E \times 16^1 + 8 \times 16^0$  $= 2 \times 256 + 14 \times 16 + 8 \times 1$ 

 $= 512 + 224 + 8 = 744_{10}$ 

744/8 = 93 Remainder: 0 → This is the least significant octal digit Quotient =  $93 \neq 0$  → continue

93/8 = 11 Remainder:  $5 \rightarrow$  This is the 2<sup>nd</sup> least significant octal digit Quotient =  $11 \neq 0 \rightarrow$  continue

11/8 = 1 Remainder:  $3 \rightarrow$  This is the 3<sup>rd</sup> least significant octal digit Quotient =  $1 \neq 0 \rightarrow$  continue

1/8 = 0 Remainder:  $1 \rightarrow$  This is the 4<sup>th</sup> least significant octal digit Quotient =  $11 \neq 0 \rightarrow$  exit the *repeat-until* control structure

$$2E8_{16} = 744_{10} = 1350_8$$

# Conversion between <u>any two bases</u>, <u>other than decimal</u> (Special cases)

- Binary to octal or hexadecimal:
  - □ Binary to octal conversion
    - Group bits in three's, *starting from the binary point* (pad the last group with 0's, if needed)
  - □ Binary to hexadecimal conversion
    - Group bits in four's, *starting from the binary point* (pad the last group with 0's, if needed)



Example 11: Convert 11001111<sub>2</sub> to octal

11001111<sub>2</sub>

- → 011 001 111<sub>2</sub>
- $\rightarrow 317_{8}$

$$0 = 000$$

$$1 = 001$$

$$2 = 010$$

$$3 = 011$$

$$4 = 100$$

$$5 = 101$$

$$6 = 110$$

$$7 = 111$$

Conversion between <u>any two bases</u>, <u>other than decimal</u> (Special cases)

(Special cases)

Example 12: Convert 1111010101<sub>2</sub> to hexadecimal

1111010101<sub>2</sub>

 $\rightarrow$  0011 1101 0101<sub>2</sub>

 $\rightarrow$  3D5<sub>16</sub>

| 0 = 0000 | 8 = 1000 |
|----------|----------|
| 1 = 0001 | 9 = 1001 |
| 2 = 0010 | A = 1010 |
| 3 = 0011 | B = 1011 |
| 4 = 0100 | C = 1100 |
| 5 = 0101 | D = 1101 |
| 6 = 0110 | E = 1110 |
| 7 = 0111 | F = 1111 |

## Conversion between any two bases, other than decimal (Special cases)

- Octal or hexadecimal to binary:
  - □ Octal to binary conversion
    - Expanding each octal digit into three bits
  - ☐ Hexadecimal to binary conversion
    - Expanding each hexadecimal digit into four bits



Example 13: Convert 743<sub>8</sub> to binary

743<sub>8</sub>

- **→**111 100 011<sub>2</sub>
- $\rightarrow 111100011_2$

$$0 = 000$$

$$1 = 001$$

$$2 = 010$$

$$3 = 011$$

$$4 = 100$$

$$5 = 101$$

$$6 = 110$$

$$7 = 111$$

## Conversion between <u>any two bases</u>, <u>other than decimal</u> (Special cases)

Special cases)
■ Example 14: Convert FA9<sub>16</sub> to binary

FA9<sub>16</sub>

- **→**1111 1010 1001<sub>2</sub>
- **→**111110101001<sub>2</sub>

| 0 = 0000 | 8 = 1000 |
|----------|----------|
| 1 = 0001 | 9 = 1001 |
| 2 = 0010 | A = 1010 |
| 3 = 0011 | B = 1011 |
| 4 = 0100 | C = 1100 |
| 5 = 0101 | D = 1101 |
| 6 = 0110 | E = 1110 |
| 7 = 0111 | F = 1111 |

# Conversion between <u>any two bases</u>, <u>other than decimal</u> (Special cases)

- Octal to hexadecimal or hexadecimal to octal:
  - Convert from the source base to the binary
    - □ Expanding each digit into three bits (in case of octal) or four bits (in case of octal)
  - Convert from the binary to the destination base
    - □ Group bits in three's (in case of octal) or four's (in case of hexadecimal), <u>starting from the binary point</u> (pad the last group <u>from both sides</u> with 0's, if needed)

#### Conversion between any two bases, other than decimal

(Special cases) *Example 15*: Convert ABC<sub>16</sub> to octal

ABC<sub>16</sub>

 $\rightarrow$  1010 1011 1100<sub>2</sub>

 $\rightarrow$  101010111100<sub>2</sub>

 $\rightarrow$  101 010 111 100<sub>2</sub>

**→**5274<sub>8</sub>

| 0 = 000 |
|---------|
| 1 = 001 |
| 2 = 010 |
| 3 = 011 |
| 4 = 100 |
| 5 = 101 |
| 6 = 110 |
| 7 = 111 |

E = 1110

F = 1111

$$0 = 0000$$
  $8 = 1000$   
 $1 = 0001$   $9 = 1001$   
 $2 = 0010$   $A = 1010$   
 $3 = 0011$   $B = 1011$   
 $4 = 0100$   $C = 1100$   
 $5 = 0101$   $D = 1101$ 

6 = 0110

7 = 0111

#### Conversion between any two bases, other than decimal

(Special cases)

Example 16: Convert 0.AB<sub>16</sub> to octal

 $0.AB_{16}$ 

 $\rightarrow$  0.1010 1011<sub>2</sub>

 $\rightarrow$  0.10101011<sub>2</sub>

 $\rightarrow$ 000.101 010 110<sub>2</sub>

**→**0.526<sub>8</sub>

|        |      | 0 = 000 $1 = 001$ $2 = 010$ $3 = 011$ $4 = 100$ $5 = 101$ $6 = 110$ |
|--------|------|---------------------------------------------------------------------|
|        |      | 7 = 111                                                             |
| $\cap$ | 0000 | 0 4000                                                              |



(Special cases)

Example 17: Convert AB.BA<sub>16</sub> to octal

AB.BA<sub>16</sub>

 $\rightarrow$  1010 1011.1011 1010<sub>2</sub>

→ 10101011.1011101<sub>2</sub>

 $\rightarrow$ 010 101 011.101 110 100<sub>2</sub>

**→**253.564<sub>8</sub>

| 0 = 0000 | 8 = 1000 |
|----------|----------|
| 1 = 0001 | 9 = 1001 |
| 2 = 0010 | A = 1010 |
| 3 = 0011 | B = 1011 |
| 4 = 0100 | C = 1100 |
| 5 = 0101 | D = 1101 |
| 6 = 0110 | E = 1110 |
| 7 = 0111 | F = 1111 |

0 = 000

1 = 001

2 = 010

3 = 011

4 = 100

5 = 101

6 = 110

7 = 111



(Special cases)

■ *Example 18*: Convert 123<sub>8</sub> to hexadecimal

123<sub>8</sub>

 $\rightarrow 001 \ 010 \ 011_2$ 

→ 1010011<sub>2</sub>

 $\rightarrow$  0101 0 011<sub>2</sub>

**→**53<sub>16</sub>

| 0 = 0 | 000 |
|-------|-----|
|-------|-----|

$$1 = 001$$

$$2 = 010$$

$$3 = 011$$

$$4 = 100$$

$$5 = 101$$

$$6 = 110$$

$$7 = 111$$

$$0 = 0000$$

$$1 = 0001$$

$$2 = 0010$$

$$3 = 0011$$

$$4 = 0100$$

$$5 = 0101$$

$$6 = 0110$$

$$7 = 0111$$

$$8 = 1000$$

$$9 = 1001$$

$$A = 1010$$

$$B = 1011$$

$$C = 1100$$

$$D = 1101$$

$$E = 1110$$

$$F = 1111$$

Conversion between any two bases, other than decimal

(Special cases)

Example 19: Convert 0.123<sub>8</sub> to hexadecimal

0.1238

 $\rightarrow$  0.001 010 011<sub>2</sub>

 $\rightarrow$  0.001010011<sub>2</sub>

 $\rightarrow$ 0000.0010 1001 1000<sub>2</sub>

**→**0.298<sub>16</sub>

| 0 | = | 000 |
|---|---|-----|
| 1 |   | 004 |

$$1 = 001$$

$$2 = 010$$

$$3 = 011$$

$$4 = 100$$

$$5 = 101$$

$$6 = 110$$

$$7 = 111$$

$$0 = 0000$$

$$2 = 0010$$

$$3 = 0011$$

$$4 = 0100$$

$$5 = 0101$$

$$6 = 0110$$

$$7 = 0111$$

$$8 = 1000$$

$$9 = 1001$$

$$A = 1010$$

$$B = 1011$$

$$C = 1100$$

$$D = 1101$$

$$E = 1110$$

$$F = 1111$$

Conversion between any two bases, other than decimal

(Special cases)

**Example 20**: Convert 321.123<sub>8</sub> to hexadecimal

321.123<sub>8</sub>

→ 011 010 001.001 010 011<sub>2</sub>

→ 11010001.001010011<sub>2</sub>

 $\rightarrow$  1101 0001.0010 1001 1000<sub>2</sub>

→D1.298<sub>16</sub>

5 = 101 6 = 110 7 = 111 0 = 0000 1 = 0001 2 = 0010 A = 1010

0 = 000

1 = 001

2 = 010

3 = 011

4 = 100

3 = 0011 B = 1011 4 = 0100 C = 1100 5 = 0101 D = 1101

6 = 0110 E = 1110

7 = 0111 F = 1111



## **Signed Numbers**

- □ Computer designers have adopted various techniques to represent negative numbers, including
  - o sign and magnitude,
  - two's complement, and
  - biased representation.

In binary system,
the sign is encoded as:
MSD = 0 → positive
MSD = 1→ negative

In radix R systems, the sign is encoded as: MSD < R/2 → positive MSD ≥ R/2→ negative



#### Sign and Magnitude

■ Example 21: Convert –743<sub>8</sub> to binary using sign and magnitude method

```
743<sub>8</sub>

→ 1111 100 011<sub>2</sub>

→ 111100011<sub>2</sub>
```

```
0 = 000
1 = 001
2 = 010
3 = 011
4 = 100
5 = 101
6 = 110
7 = 111
```

```
-743_{8}
```

**→** 1111100011<sub>2</sub>

value



#### Sign and Magnitude

■ Example 22: Convert –AB.BA<sub>16</sub> to binary using sign and magnitude method unsigned

AB.BA<sub>16</sub>

- **→**1010 1011.1011 1010<sub>2</sub>
- → 10101011.1011101<sub>2</sub>

-AB.BA<sub>16</sub>

 $\rightarrow$  110101011.1011101<sub>2</sub>

```
0 = 0000
```

$$1 = 0001$$

$$2 = 0010$$

$$3 = 0011$$

$$4 = 0100$$

$$5 = 0101$$

$$6 = 0110$$

$$7 = 0111$$

$$8 = 1000$$

$$9 = 1001$$

$$A = 1010$$

$$B = 1011$$

$$C = 1100$$

$$D = 1101$$

$$E = 1110$$

$$F = 1111$$

value



#### Sign and Magnitude

■ Example 23: Convert –0.0A<sub>16</sub> to binary using sign and magnitude method unsigned

 $0.0A_{16}$ 

- $\rightarrow 0000.0000 \ 1010_2$
- $\rightarrow$  0.0000101<sub>2</sub>

 $-0.0A_{16}$ 

**→** 10.0000101<sub>2</sub>

0 = 0000

1 = 0001

2 = 0010

3 = 0011

4 = 0100

5 = 0101

6 = 0110

7 = 0111

8 = 1000

9 = 1001

A = 1010

B = 1011

C = 1100

D = 1101

E = 1110

F = 1111



#### 2's Complement

- □ In binary arithmetic, the *two's complement* of an *N-bit* number is formed by
  - o Subtraction from  $2^{N}$ . The *two's complement* of  $01100101_{2}$  is  $100000000 - 01100101_{2} = 10011011_{2}$
  - o *Inverting its bits* and *adding 1*. The *two's complement* of  $01100101_2$  is  $10011010_2 + 1 = 10011011_2$ .
  - o Working from LSB towards MSB start at the least significant bit (LSB), and copy all the zeros (working from LSB toward the most significant bit) until the first 1 is reached; then copy that 1, and flip all the remaining bits The *two's complement* of 01100101<sub>2</sub> is 10011011<sub>2</sub>.

value



# 2's Complement

■ Example 24: Convert –AB.BA<sub>16</sub> to binary using 2's complement method unsigned

AB.BA<sub>16</sub>

- **→**1010 1011.1011 1010<sub>2</sub>
- → 10101011.1011101<sub>2</sub>

+AB.BA<sub>16</sub>

- $\rightarrow$  010101011.1011101<sub>2</sub>
- -AB.BA<sub>16</sub>
  - **→**101010100.0100011<sub>2</sub>

0 = 0000

1 = 0001

2 = 0010

3 = 0011

4 = 0100

5 = 0101

6 = 0110

7 = 0111

8 = 1000

9 = 1001

A = 1010

B = 1011

C = 1100

D = 1101

E = 1110

F = 1111



■ Example 25: Convert –0.0A<sub>16</sub> to binary using 2's complement method

 $0.0A_{16}$ 

- $\rightarrow 0000.0000 \ 1010_2$
- $\rightarrow$  0.0000101<sub>2</sub>

 $+0.0A_{16}$ 

- $\rightarrow$  00.0000101<sub>2</sub>
- $-0.0A_{16}$ 
  - **→** 11.1111011<sub>2</sub>

$$1 = 0001$$

$$2 = 0010$$

$$3 = 0011$$

$$4 = 0100$$

$$5 = 0101$$

$$6 = 0110$$

$$7 = 0111$$

$$8 = 1000$$

$$9 = 1001$$

$$A = 1010$$

$$B = 1011$$

$$C = 1100$$

$$D = 1101$$

$$E = 1110$$

$$F = 1111$$



# **Signed Numbers**

| _              |                                                                  |
|----------------|------------------------------------------------------------------|
| Unsigned       | Signed-and-mag                                                   |
| 0              | +0                                                               |
| 1              | +1                                                               |
| 2              | +2                                                               |
| $\overline{3}$ | $+\overline{3}$                                                  |
| 4              | +4                                                               |
| 5              | +5                                                               |
| 6              | +6                                                               |
| 7              | +7                                                               |
| 8              | -0                                                               |
| 9              | <b>–</b> 1                                                       |
| 10             | <b>-</b> 2                                                       |
| 11             | <b>–</b> 3                                                       |
| 12             | <b>–</b> 4                                                       |
| 13             | <b>–</b> 5                                                       |
| 14             | <b>-</b> 6                                                       |
| 15             | <b>–</b> 7                                                       |
|                | 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12 |

| ned-and-magnitude        | 2's complement        |
|--------------------------|-----------------------|
| +0                       | +0                    |
| +1                       | +1                    |
| +2                       | +2                    |
| +3                       | +3                    |
| +4                       | +4                    |
| +5                       | +5                    |
| +6<br>+7                 | +6<br>+7              |
| -0                       | <b>-8</b>             |
| <b>- 0</b><br><b>-</b> 1 | - <del>0</del><br>- 7 |
| $-\frac{1}{2}$           | <b>-</b> 6            |
| $-\overline{3}$          | <b>-</b> 5            |
| <b>-</b> 4               | <b>–</b> 4            |
| <b>-</b> 5               | <b>–</b> 3            |
| <u> - 6</u>              | <b>-</b> 2            |
| <del>-</del> 7           | <b>–</b> 1            |

#### For a given *n* bit binary pattern

Range 
$$0 \rightarrow 2^{n} - 1 - (2^{n-1} - 1) \rightarrow 2^{n-1} - 1 - (2^{n-1}) \rightarrow 2^{n-1} - 1$$
  
Number of zeros 1 2 1



### **Unsigned**

■ Example 26: Convert 11011.11011<sub>2</sub> to decimal, assuming that it is an *unsigned* number.

$$11011_{2} \rightarrow 27_{10}$$
 $0.11011_{2} \rightarrow 0.84375_{10}$ 
 $11011.11011_{2} \rightarrow 27.84375_{10}$ 

### Another method:

$$11011.11011_{2} = 11011111011_{2} / 100000_{2}$$

$$= 891_{10} / 32_{10}$$

$$= 27.84375_{10}$$



#### Sign and Magnitude

■ Example 27: Convert 11011.11011<sub>2</sub> to decimal, assuming that it is encoded using sign and magnitude method.

```
11011.11011_{2} \rightarrow -1011.11011_{2}
1011_{2} \rightarrow 11_{10}
0.11011_{2} \rightarrow 0.84375_{10}
1011.11011_{2} \rightarrow 11.84375_{10}
11011.11011_{2} \rightarrow -11.84375_{10}
```

#### Another method:

```
11011.11011_{2} \rightarrow -1011.11011_{2}
1011.11011_{2} = 101111011_{2} / 100000_{2}
= 379_{10} / 32_{10} = 11.84375_{10}
11011.11011_{2} \rightarrow -11.84375_{10}
```



■ Example 28: Convert 11011.11011<sub>2</sub> to decimal, assuming that it is encoded using 2's complement method.

```
11011.11011<sub>2</sub> \rightarrow negative number

11011.11011<sub>2</sub> \rightarrow -00100.00101<sub>2</sub>

00100<sub>2</sub> \rightarrow 4<sub>10</sub>

0.00101<sub>2</sub> \rightarrow 0.15625<sub>10</sub>

00100.00101<sub>2</sub> \rightarrow 4.15625<sub>10</sub>

11011.11011<sub>2</sub> \rightarrow -4.15625<sub>10</sub>
```

### Another method:

```
\begin{array}{c} 11011.11011_{2} \implies negative\ number \\ 11011.11011_{2} \implies -00100.00101_{2} \\ 00100.00101_{2} = 0010000101_{2} /\ 100000_{2} \\ &= 133_{10} /\ 32_{10} = 4.15625_{10} \\ 11011.11011_{2} \implies -4.15625_{10} \end{array}
```



■ The following numbers represent the same value, which is  $+14_{10}$ 



■ By Converting these numbers into the 2's complement, you get



■ Example 29: Convert 11011<sub>2</sub> to decimal, assuming that it is encoded using 2's complement method.

- 11011<sub>2</sub> → negative number
- $\blacksquare 11011_2 \rightarrow -00101_2$
- $\bullet$  00101<sub>2</sub>  $\rightarrow$  5<sub>10</sub>
- $\blacksquare 11011_2 \rightarrow -5_{10}$



■ Example 30: Convert 1111011<sub>2</sub> to decimal, assuming that it is encoded using 2's complement method.

- 1111011<sub>2</sub> → negative number
- $\blacksquare$  1111011<sub>2</sub>  $\rightarrow$  -0000101<sub>2</sub>
- $\bullet$  0000101<sub>2</sub>  $\rightarrow$  5<sub>10</sub>
- $\blacksquare$  1111011<sub>2</sub>  $\rightarrow$  -5<sub>10</sub>



■ Example 31: Convert 1111111011<sub>2</sub> to decimal, assuming that it is encoded using 2's complement method.

- 1111111011<sub>2</sub> → negative number
- $\blacksquare$  1111111011<sub>2</sub>  $\rightarrow$  -000000101<sub>2</sub>
- $\bullet$  000000101<sub>2</sub>  $\rightarrow$  5<sub>10</sub>
- $\blacksquare$  1111111011<sub>2</sub>  $\rightarrow$  -5<sub>10</sub>



■ Example 32: Convert –AB.BA<sub>16</sub> to binary 2's complement

Normalize your answer.

AB.BA<sub>16</sub>

- $\rightarrow$  10101011.10111010<sub>2</sub>
- +AB.BA<sub>16</sub>
  - $\rightarrow$ 010101011.10111010<sub>2</sub>
- -AB.BA<sub>16</sub>
  - $\rightarrow 101010100.01000110_2$
- *After normalization*, –AB.BA<sub>16</sub>
  - $\rightarrow$  1.0101010001000110<sub>2</sub> × 2<sup>+8</sup>

- 0 = 0000
- 1 = 0001
- 2 = 0010
- 3 = 0011
- 4 = 0100
- 5 = 0101
- 6 = 0110
- 7 = 0111
- 8 = 1000
- 9 = 1001
- A = 1010
- B = 1011
- C = 1100
- D = 1101
- E = 1110
- F = 1111



- Example 33: Convert –AB.BA<sub>16</sub> to binary 2's complement
  - Normalize your answer and
    - $\square$  limit it (using truncation) to 6 bits (1 + 5 bits) in total
    - $\square$  limit it (using truncation) to 8 bits (1 + 7 bits) in total
    - $\square$  limit it (using truncation) to 11 bits (1 + 10 bits) in total
    - $\square$  limit it (using truncation) to 15 bits (1 + 14 bits) in total
    - $AB.BA_{16} \rightarrow 10101011.10111010_{2}$
  - $+AB.BA_{16} \rightarrow 010101011.10111010_2$
  - $-AB.BA_{16} \rightarrow 101010100.01000110_{2}$

- 0 = 0000
- 1 = 0001
- 2 = 0010
- 3 = 0011
- 4 = 0100
- 5 = 0101
- 6 = 0110
- 7 = 0111
- 8 = 1000
- 9 = 1001
- A = 1010
- B = 1011
- C = 1100
- D = 1101
- E = 1110
- F = 1111



- After normalization, -AB.BA<sub>16</sub>  $\rightarrow$  1.0101010001000110<sub>2</sub> × 2<sup>+8</sup>
- After limiting the answer to 6 bits (5+1) in total,  $= 1.01010_2 \times 2^{+8}$  (using truncation)
- To read this number,

$$1.01010_2 \times 2^{+8} \rightarrow 101010000_2$$

This is a *negative* number.

Its absolute value is  $0\ 1011\ 0000_2 = B0_{16}$ 

- $1.01010_2 \times 2^{+8} \rightarrow -B0_{16}$
- Truncation error =  $-AB.BA_{16} (-B0_{16}) = 4.46_{16}$

```
0 = 0000
1 = 0001
2 = 0010
```

$$3 = 0011$$

$$4 = 0100$$

$$5 = 0101$$

$$6 = 0110$$

$$7 = 0111$$

$$8 = 1000$$

$$9 = 1001$$

$$A = 1010$$

$$B = 1011$$

$$C = 1100$$

$$D = 1101$$

$$E = 1110$$

$$F = 1111$$



- *After normalization*,  $-AB.BA_{16}$   $\longrightarrow 1.01010100011000110_2 \times 2^{+8}$
- After limiting the answer to 8 bits (1 + 7) in total,  $\rightarrow$  1.0101010<sub>2</sub> × 2<sup>+8</sup> (using truncation)
- To read this number,

$$1.0101010_2 \times 2^{+8} \rightarrow 101010100_2$$

This is a *negative* number.

Its absolute value is  $0 \ 1010 \ 1100_2 = AC_{16}$ 

- $1.0101010_2 \times 2^{+8} \rightarrow -AC_{16}$
- Truncation error =  $-AB.BA_{16} (-AC_{16}) = 0.46_{16}$

- 0 = 0000 1 = 0001 2 = 0010 3 = 0011 4 = 0100 5 = 0101
- 6 = 0110
- 7 = 0111
- 8 = 1000
- 9 = 1001
- A = 1010
- B = 1011
- C = 1100
- D = 1101
- E = 1110
- F = 1111



- *After normalization*, –AB.BA<sub>16</sub>  $\rightarrow$  1.0101010001000110<sub>2</sub> × 2<sup>+8</sup>
- After limiting the answer to 11 bits (10+1) in total,  $\rightarrow$  1.0101010001<sub>2</sub> × 2<sup>+8</sup> (using truncation)
- To read this number,
  - $1.0101010001_{2} \times 2^{+8} \rightarrow 101010100.01_{2}$

This is a *negative* number.

Its absolute value is 0 1010 1011.11<sub>2</sub>

51

- 0 1010 1011.11<sub>2</sub>  $\rightarrow$  0 1010 1011.1100<sub>2</sub> =AB.C<sub>16</sub>
- $1.0101010001_2 \times 2^{+8} \rightarrow -AB.C_{16}$
- Truncation error =  $-AB.BA_{16} (-AB.C_{16}) = 0.06_{16}$

```
0 = 0000
1 = 0001
2 = 0010
3 = 0011
4 = 0100
5 = 0101
6 = 0110
7 = 0111
8 = 1000
9 = 1001
A = 1010
```

B = 1011

C = 1100

D = 1101

E = 1110

F = 1111



- *After normalization*,  $-AB.BA_{16}$   $\rightarrow 1.01010100011000110_2 \times 2^{+8}$
- After limiting the answer to 15 bits (14+1) in total,  $\rightarrow$  1.01010100010001<sub>2</sub> × 2<sup>+8</sup> (using truncation)
- To read this number,  $1.01010100010001_2 \times 2^{+8} \rightarrow 101010100.010001_2$

This is a *negative* number.

Its absolute value is  $0 \ 1010 \ 1011.1011 \ 11_2$  $01010 \ 1011.1011 \ 11_2 \rightarrow 01010 \ 1011.1011 \ 1100_2$ 

 $=AB.BC_{16}$ 

- $1.01010100010001_2 \times 2^{+8} \rightarrow -AB.BC_{16}$
- Truncation error =  $-AB.BA_{16} (-AB.BC_{16}) = 0.02$

0 = 0000

1 = 0001

2 = 0010

3 = 0011

4 = 0100

5 = 0101

6 = 0110

7 = 0111

8 = 1000

9 = 1001

A = 1010

B = 1011

C = 1100

D = 1101

E = 1110

'F = 111'