Basics of Numerical Optimization: Preliminaries

Ju Sun

Computer Science & Engineering University of Minnesota, Twin Cities

February 11, 2020

- Underlying true function: f_0
- Training data: $\{oldsymbol{x}_i, oldsymbol{y}_i\}$ with $oldsymbol{y}_i pprox f_0\left(oldsymbol{x}_i\right)$
- Choose a family of functions \mathcal{H} , so that $\exists f \in \mathcal{H}$ and f and f_0 are close

- Underlying true function: f_0
- Training data: $\{oldsymbol{x}_i, oldsymbol{y}_i\}$ with $oldsymbol{y}_i pprox f_0\left(oldsymbol{x}_i
 ight)$
- Choose a family of functions \mathcal{H} , so that $\exists f \in \mathcal{H}$ and f and f_0 are close
- Find f, i.e., optimization

$$\min_{f \in \mathcal{H}} \sum_{i} \ell\left(\boldsymbol{y}_{i}, f\left(\boldsymbol{x}_{i}\right)\right) + \frac{\Omega\left(\boldsymbol{f}\right)}{2}$$

– Approximation capacity: Univeral approximation theorems (UAT) \Longrightarrow replace $\mathcal H$ by $\mathrm{DNN}_{\pmb W}$, i.e., a deep neural network with weights $\pmb W$

- Underlying true function: f_0
- Training data: $\{oldsymbol{x}_i, oldsymbol{y}_i\}$ with $oldsymbol{y}_i pprox f_0\left(oldsymbol{x}_i
 ight)$
- Choose a family of functions \mathcal{H} , so that $\exists f \in \mathcal{H}$ and f and f_0 are close
- Find f, i.e., optimization

$$\min_{f \in \mathcal{H}} \sum_{i} \ell\left(\boldsymbol{y}_{i}, f\left(\boldsymbol{x}_{i}\right)\right) + \frac{\Omega\left(\boldsymbol{f}\right)}{2}$$

- Approximation capacity: Univeral approximation theorems (UAT) \Longrightarrow replace $\mathcal H$ by $\mathrm{DNN}_{m W}$, i.e., a deep neural network with weights m W
- Optimization:

$$\min_{oldsymbol{W}} \sum_{i} \ell\left(oldsymbol{y}_{i}, \frac{\mathrm{DNN}_{oldsymbol{W}}}{\mathbf{W}}\left(oldsymbol{x}_{i}
ight)
ight) + \Omega\left(oldsymbol{W}
ight)$$

- Underlying true function: f_0
- Training data: $\{oldsymbol{x}_i, oldsymbol{y}_i\}$ with $oldsymbol{y}_i pprox f_0\left(oldsymbol{x}_i
 ight)$
- Choose a family of functions \mathcal{H} , so that $\exists f \in \mathcal{H}$ and f and f_0 are close
- Find f, i.e., optimization

$$\min_{f \in \mathcal{H}} \sum_{i} \ell\left(\boldsymbol{y}_{i}, f\left(\boldsymbol{x}_{i}\right)\right) + \frac{\Omega\left(\boldsymbol{f}\right)}{2}$$

- Approximation capacity: Univeral approximation theorems (UAT) \Longrightarrow replace $\mathcal H$ by $\mathrm{DNN}_{m W}$, i.e., a deep neural network with weights m W
- Optimization:

$$\min_{oldsymbol{W}} \sum_{i} \ell\left(oldsymbol{y}_{i}, \frac{\mathsf{DNN}_{oldsymbol{W}}}{\mathsf{W}}\left(oldsymbol{x}_{i}
ight)
ight) + \Omega\left(oldsymbol{W}
ight)$$

- **Generalization:** how to avoid over-complicated DNN_{W} in view of UAT

- Underlying true function: f_0
- Training data: $\{oldsymbol{x}_i, oldsymbol{y}_i\}$ with $oldsymbol{y}_i pprox f_0\left(oldsymbol{x}_i
 ight)$
- Choose a family of functions \$\mathcal{H}\$, so that
 \(\frac{1}{2} f \in \mathcal{H} \) and \(\frac{f_0}{2} \) are close
- Find f, i.e., optimization

$$\min_{f \in \mathcal{H}} \sum_{i} \ell\left(\boldsymbol{y}_{i}, f\left(\boldsymbol{x}_{i}\right)\right) + \frac{\Omega\left(\boldsymbol{f}\right)}{2}$$

- Approximation capacity: Univeral approximation theorems (UAT) \Longrightarrow replace $\mathcal H$ by DNN_W , i.e., a deep neural network with weights W
- Optimization:

$$\min_{oldsymbol{W}} \sum_{i} \ell\left(oldsymbol{y}_{i}, \frac{\mathsf{DNN}_{oldsymbol{W}}}{\mathsf{W}}\left(oldsymbol{x}_{i}
ight)
ight) + \Omega\left(oldsymbol{W}
ight)$$

- **Generalization:** how to avoid over-complicated DNN_{W} in view of UAT

Now we start to focus on optimization.

Outline

Elements of multivatiate calculus

Optimality conditions of unconstrained optimization

Recommended references

[Munkres, 1997, Zorich, 2015, Coleman, 2012]

- scalars: x, vectors: x, matrices: X, tensors: X, sets: S

- scalars: x, vectors: x, matrices: X, tensors: X, sets: S
- vectors are always column vectors, unless stated otherwise

- scalars: x, vectors: x, matrices: X, tensors: X, sets: S
- vectors are always column vectors, unless stated otherwise
- x_i : i-th element of x, x_{ij} : (i,j)-th element of X, x^i : i-th row of X as a **row vector**, x_j : j-th column of X as a **column vector**

- scalars: x, vectors: x, matrices: X, tensors: X, sets: S
- vectors are always column vectors, unless stated otherwise
- x_i : i-th element of \boldsymbol{x} , x_{ij} : (i,j)-th element of \boldsymbol{X} , \boldsymbol{x}^i : i-th row of \boldsymbol{X} as a **row vector**, x_j : j-th column of \boldsymbol{X} as a **column vector**
- \mathbb{R} : real numbers, \mathbb{R}_+ : positive reals, \mathbb{R}^n : space of n-dimensional vectors, $\mathbb{R}^{m \times n}$: space of $m \times n$ matrices, $\mathbb{R}^{m \times n \times k}$: space of $m \times n \times k$ tensors, etc

- scalars: x, vectors: x, matrices: X, tensors: X, sets: S
- vectors are always column vectors, unless stated otherwise
- x_i : i-th element of x, x_{ij} : (i,j)-th element of X, x^i : i-th row of X as a **row vector**, x_j : j-th column of X as a **column vector**
- \mathbb{R} : real numbers, \mathbb{R}_+ : positive reals, \mathbb{R}^n : space of n-dimensional vectors, $\mathbb{R}^{m \times n}$: space of $m \times n$ matrices, $\mathbb{R}^{m \times n \times k}$: space of $m \times n \times k$ tensors, etc
- $[n] \doteq \{1, \dots, n\}$

Consider $f(\boldsymbol{x}): \mathbb{R}^n \to \mathbb{R}^m$

– Definition: **First-order differentiable** at a point x if there exists a matrix $B \in \mathbb{R}^{m \times n}$ such that

$$\frac{f\left(x+\delta\right)-f\left(x\right)-B\delta}{\left\Vert \delta\right\Vert _{2}}\rightarrow\mathbf{0}\quad\text{as}\quad\delta\rightarrow\mathbf{0}.$$

Consider $f(\boldsymbol{x}): \mathbb{R}^n \to \mathbb{R}^m$

– Definition: **First-order differentiable** at a point x if there exists a matrix $B \in \mathbb{R}^{m \times n}$ such that

$$\frac{f\left(x+\delta\right)-f\left(x\right)-B\delta}{\left\Vert \delta\right\Vert _{2}}\rightarrow\mathbf{0}\quad\text{as}\quad\delta\rightarrow\mathbf{0}.$$

i.e.,
$$f(\mathbf{x} + \boldsymbol{\delta}) = f(\mathbf{x}) + B\boldsymbol{\delta} + o(\|\boldsymbol{\delta}\|_2)$$
 as $\boldsymbol{\delta} \to \mathbf{0}$.

Consider $f(\boldsymbol{x}): \mathbb{R}^n \to \mathbb{R}^m$

– Definition: **First-order differentiable** at a point x if there exists a matrix $B \in \mathbb{R}^{m \times n}$ such that

$$\frac{f\left(x+\delta\right)-f\left(x\right)-B\delta}{\left\Vert \delta\right\Vert _{2}}\rightarrow\mathbf{0}\quad\text{as}\quad\delta\rightarrow\mathbf{0}.$$

i.e.,
$$f(x + \delta) = f(x) + B\delta + o(\|\delta\|_2)$$
 as $\delta \to 0$.

- \boldsymbol{B} is called the (Fréchet) derivative. When m=1, $\boldsymbol{b}^{\mathsf{T}}$ (i.e., $\boldsymbol{B}^{\mathsf{T}}$) called **gradient**, denoted as $\nabla f\left(\boldsymbol{x}\right)$. For general m, also called **Jacobian** matrix, denoted as $\boldsymbol{J}_{f}\left(\boldsymbol{x}\right)$.

Consider $f(\boldsymbol{x}): \mathbb{R}^n \to \mathbb{R}^m$

– Definition: **First-order differentiable** at a point x if there exists a matrix $B \in \mathbb{R}^{m \times n}$ such that

$$\frac{f\left(x+\delta\right)-f\left(x\right)-B\delta}{\left\Vert \delta\right\Vert _{2}}\rightarrow\mathbf{0}\quad\text{as}\quad\delta\rightarrow\mathbf{0}.$$

i.e.,
$$f(x + \delta) = f(x) + B\delta + o(\|\delta\|_2)$$
 as $\delta \to 0$.

- B is called the (Fréchet) derivative. When m=1, b^{T} (i.e., B^{T}) called **gradient**, denoted as $\nabla f(x)$. For general m, also called **Jacobian** matrix, denoted as $J_f(x)$.
- Calculation: $b_{ij} = \frac{\partial f_i}{\partial x_j} \left(oldsymbol{x}
 ight)$

Consider $f(\boldsymbol{x}): \mathbb{R}^n \to \mathbb{R}^m$

– Definition: **First-order differentiable** at a point x if there exists a matrix $B \in \mathbb{R}^{m \times n}$ such that

$$\frac{f\left(x+\delta\right)-f\left(x\right)-B\delta}{\left\Vert \delta\right\Vert _{2}}\rightarrow\mathbf{0}\quad\text{as}\quad\delta\rightarrow\mathbf{0}.$$

i.e.,
$$f(x + \delta) = f(x) + B\delta + o(\|\delta\|_2)$$
 as $\delta \to 0$.

- B is called the (Fréchet) derivative. When m=1, b^{T} (i.e., B^{T}) called **gradient**, denoted as $\nabla f(x)$. For general m, also called **Jacobian** matrix, denoted as $J_f(x)$.
- Calculation: $b_{ij} = \frac{\partial f_i}{\partial x_j}\left(m{x}\right)$
- Sufficient condition: if all partial derivatives exist and are continuous at x, then f (x) is differentiable at x.

Calculus rules

Assume $f,g:\mathbb{R}^n \to \mathbb{R}^m$ are differentiable at a point $x \in \mathbb{R}^n$.

- **linearity**: $\lambda_{1}f + \lambda_{2}g$ is differentiable at x and $\nabla \left[\lambda_{1}f + \lambda_{2}g\right](x) = \lambda_{1}\nabla f\left(x\right) + \lambda_{2}\nabla g\left(x\right)$
- **product**: assume m=1, fg is differentiable at \boldsymbol{x} and $\nabla \left[fg\right]\left(\boldsymbol{x}\right)=f\left(\boldsymbol{x}\right)\nabla g\left(\boldsymbol{x}\right)+g\left(\boldsymbol{x}\right)\nabla f\left(\boldsymbol{x}\right)$
- **quotient**: assume m=1 and $g\left(\boldsymbol{x}\right)\neq0$, $\frac{f}{g}$ is differentiable at \boldsymbol{x} and $\nabla\left[\frac{f}{g}\right]\left(\boldsymbol{x}\right)=\frac{g\left(\boldsymbol{x}\right)\nabla f\left(\boldsymbol{x}\right)-f\left(\boldsymbol{x}\right)\nabla g\left(\boldsymbol{x}\right)}{g^{2}\left(\boldsymbol{x}\right)}$

Calculus rules

Assume $f,g:\mathbb{R}^n \to \mathbb{R}^m$ are differentiable at a point $x \in \mathbb{R}^n$.

- **linearity**: $\lambda_{1}f + \lambda_{2}g$ is differentiable at x and $\nabla \left[\lambda_{1}f + \lambda_{2}g\right](x) = \lambda_{1}\nabla f\left(x\right) + \lambda_{2}\nabla g\left(x\right)$
- **product**: assume m=1, fg is differentiable at \boldsymbol{x} and $\nabla \left[fg\right]\left(\boldsymbol{x}\right)=f\left(\boldsymbol{x}\right)\nabla g\left(\boldsymbol{x}\right)+g\left(\boldsymbol{x}\right)\nabla f\left(\boldsymbol{x}\right)$
- **quotient**: assume m=1 and $g\left(\boldsymbol{x}\right)\neq0$, $\frac{f}{g}$ is differentiable at \boldsymbol{x} and $\nabla\left[\frac{f}{g}\right]\left(\boldsymbol{x}\right)=\frac{g(\boldsymbol{x})\nabla f(\boldsymbol{x})-f(\boldsymbol{x})\nabla g(\boldsymbol{x})}{g^{2}(\boldsymbol{x})}$
- Chain rule: Let $f:\mathbb{R}^m \to \mathbb{R}^n$ and $h:\mathbb{R}^n \to \mathbb{R}^k$, and f is differentiable at x and y=f(x) and h is differentiable at y. Then, $h\circ f:\mathbb{R}^n \to \mathbb{R}^k$ is differentiable at x, and

$$\boldsymbol{J}_{\left[h\circ f\right]}\left(\boldsymbol{x}\right)=\boldsymbol{J}_{h}\left(f\left(\boldsymbol{x}\right)\right)\boldsymbol{J}_{f}\left(\boldsymbol{x}\right).$$

Calculus rules

Assume $f,g:\mathbb{R}^n \to \mathbb{R}^m$ are differentiable at a point $\boldsymbol{x} \in \mathbb{R}^n$.

- **linearity**: $\lambda_{1}f + \lambda_{2}g$ is differentiable at x and $\nabla \left[\lambda_{1}f + \lambda_{2}g\right](x) = \lambda_{1}\nabla f\left(x\right) + \lambda_{2}\nabla g\left(x\right)$
- **product**: assume m=1, fg is differentiable at x and $\nabla \left[fg \right](x) = f\left(x \right) \nabla g\left(x \right) + g\left(x \right) \nabla f\left(x \right)$
- **quotient**: assume m=1 and $g\left(x\right)\neq0$, $\frac{f}{g}$ is differentiable at x and $\nabla\left[\frac{f}{g}\right]\left(x\right)=\frac{g(x)\nabla f(x)-f(x)\nabla g(x)}{g^{2}(x)}$
- Chain rule: Let $f:\mathbb{R}^m \to \mathbb{R}^n$ and $h:\mathbb{R}^n \to \mathbb{R}^k$, and f is differentiable at x and y=f(x) and h is differentiable at y. Then, $h\circ f:\mathbb{R}^n \to \mathbb{R}^k$ is differentiable at x, and

$$\boldsymbol{J}_{\left[h\circ f\right]}\left(\boldsymbol{x}\right)=\boldsymbol{J}_{h}\left(f\left(\boldsymbol{x}\right)\right)\boldsymbol{J}_{f}\left(\boldsymbol{x}\right).$$

When k=1,

$$\nabla \left[h \circ f\right](\boldsymbol{x}) = \boldsymbol{J}_f^{\top}\left(\boldsymbol{x}\right) \nabla h\left(f\left(\boldsymbol{x}\right)\right).$$

Consider $f(x): \mathbb{R}^n \to \mathbb{R}$ and assume f is 1st-order differentiable in a small ball around x

- Write
$$\frac{\partial f^2}{\partial x_j \partial x_i}(\boldsymbol{x}) \doteq \left[\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i}\right)\right](\boldsymbol{x})$$
 provided the right side well defined

Consider $f(x): \mathbb{R}^n \to \mathbb{R}$ and assume f is 1st-order differentiable in a small ball around x

- Write $\frac{\partial f^2}{\partial x_j \partial x_i}(\boldsymbol{x}) \doteq \left[\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i}\right)\right](\boldsymbol{x})$ provided the right side well defined
- **Symmetry**: If both $\frac{\partial f^2}{\partial x_j \partial x_i}(x)$ and $\frac{\partial f^2}{\partial x_i \partial x_j}(x)$ exist and both are continuous at x, then they are equal.
- Hessian (matrix):

$$\nabla^{2} f(\mathbf{x}) \doteq \left[\frac{\partial f^{2}}{\partial x_{j} \partial x_{i}} (\mathbf{x}) \right]_{j,i}, \tag{1}$$

where $\left[\frac{\partial f^2}{\partial x_j \partial x_i}\left(\boldsymbol{x}\right)\right]_{j,i} \in \mathbb{R}^{n \times n}$ has its (j,i)-th element as $\frac{\partial f^2}{\partial x_j \partial x_i}\left(\boldsymbol{x}\right)$.

Consider $f(x): \mathbb{R}^n \to \mathbb{R}$ and assume f is 1st-order differentiable in a small ball around x

- Write $\frac{\partial f^2}{\partial x_j \partial x_i}(\boldsymbol{x}) \doteq \left[\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i}\right)\right](\boldsymbol{x})$ provided the right side well defined
- **Symmetry**: If both $\frac{\partial f^2}{\partial x_j \partial x_i}(x)$ and $\frac{\partial f^2}{\partial x_i \partial x_j}(x)$ exist and both are continuous at x, then they are equal.
- Hessian (matrix):

$$\nabla^{2} f(\mathbf{x}) \doteq \left[\frac{\partial f^{2}}{\partial x_{j} \partial x_{i}} (\mathbf{x}) \right]_{j,i}, \tag{1}$$

where $\left[\frac{\partial f^{2}}{\partial x_{j}\partial x_{i}}\left(\boldsymbol{x}\right)\right]_{j,i}\in\mathbb{R}^{n\times n}$ has its (j,i)-th element as $\frac{\partial f^{2}}{\partial x_{j}\partial x_{i}}\left(\boldsymbol{x}\right)$.

– $\nabla^2 f$ is symmetric.

Consider $f(x): \mathbb{R}^n \to \mathbb{R}$ and assume f is 1st-order differentiable in a small ball around x

- Write $\frac{\partial f^2}{\partial x_j \partial x_i}(\boldsymbol{x}) \doteq \left[\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_i}\right)\right](\boldsymbol{x})$ provided the right side well defined
- **Symmetry**: If both $\frac{\partial f^2}{\partial x_j \partial x_i}(x)$ and $\frac{\partial f^2}{\partial x_i \partial x_j}(x)$ exist and both are continuous at x, then they are equal.
- Hessian (matrix):

$$\nabla^2 f(\mathbf{x}) \doteq \left[\frac{\partial f^2}{\partial x_j \partial x_i} (\mathbf{x}) \right]_{i,i}, \tag{1}$$

where $\left[\frac{\partial f^{2}}{\partial x_{j}\partial x_{i}}\left(\boldsymbol{x}\right)\right]_{j,i}\in\mathbb{R}^{n\times n}$ has its (j,i)-th element as $\frac{\partial f^{2}}{\partial x_{j}\partial x_{i}}\left(\boldsymbol{x}\right)$.

- $\nabla^2 f$ is symmetric.
- Sufficient condition: if all $\frac{\partial f^2}{\partial x_j \partial x_i}(x)$ exist and are continuous, f is 2nd-order differentiable at x (not converse; we omit the definition due to its technicality).

Vector version: consider $f(x): \mathbb{R}^n \to \mathbb{R}$

- If f is 1st-order differentiable at x, then

$$f\left(\mathbf{x} + \mathbf{\delta}\right) = f\left(\mathbf{x}\right) + \left\langle \nabla f\left(\mathbf{x}\right), \mathbf{\delta} \right\rangle + o(\left\|\mathbf{\delta}\right\|_{2}) \text{ as } \mathbf{\delta} \to \mathbf{0}.$$

Vector version: consider $f(x): \mathbb{R}^n \to \mathbb{R}$

- If f is 1st-order differentiable at x, then

$$f(\mathbf{x} + \mathbf{\delta}) = f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{\delta} \rangle + o(\|\mathbf{\delta}\|_2) \text{ as } \mathbf{\delta} \to \mathbf{0}.$$

- If f is 2nd-order differentiable at x, then

$$f\left(oldsymbol{x}+oldsymbol{\delta}
ight)=f\left(oldsymbol{x}
ight)+\left\langle
abla f\left(oldsymbol{x}
ight),oldsymbol{\delta}
ight
angle+rac{1}{2}\left\langleoldsymbol{\delta},
abla^2 f\left(oldsymbol{x}
ight)oldsymbol{\delta}
ight
angle+o(\|oldsymbol{\delta}\|_2^2) ext{ as }oldsymbol{\delta}
ightarrow 0.$$

Vector version: consider $f(x): \mathbb{R}^n \to \mathbb{R}$

- If f is 1st-order differentiable at x, then

$$f(\mathbf{x} + \boldsymbol{\delta}) = f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \boldsymbol{\delta} \rangle + o(\|\boldsymbol{\delta}\|_2) \text{ as } \boldsymbol{\delta} \to \mathbf{0}.$$

- If f is 2nd-order differentiable at x, then

$$f\left(oldsymbol{x}+oldsymbol{\delta}
ight)=f\left(oldsymbol{x}
ight)+\left\langle
abla f\left(oldsymbol{x}
ight),oldsymbol{\delta}
ight
angle +rac{1}{2}\left\langle oldsymbol{\delta},
abla^{2}f\left(oldsymbol{x}
ight)oldsymbol{\delta}
ight
angle +o(\|oldsymbol{\delta}\|_{2}^{2}) ext{ as }oldsymbol{\delta}
ightarrow 0.$$

Matrix version: consider $f(X): \mathbb{R}^{m \times n} \to \mathbb{R}$

- If f is 1st-order differentiable at X, then

$$f\left(\boldsymbol{X}+\boldsymbol{\Delta}\right)=f\left(\boldsymbol{X}\right)+\left\langle \nabla f\left(\boldsymbol{X}\right),\boldsymbol{\Delta}\right\rangle +o(\left\|\boldsymbol{\Delta}\right\|_{F})\text{ as }\boldsymbol{\Delta}\rightarrow\mathbf{0}.$$

Vector version: consider $f(x): \mathbb{R}^n \to \mathbb{R}$

- If f is 1st-order differentiable at x, then

$$f(\mathbf{x} + \mathbf{\delta}) = f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{\delta} \rangle + o(\|\mathbf{\delta}\|_2) \text{ as } \mathbf{\delta} \to \mathbf{0}.$$

- If f is 2nd-order differentiable at x, then

$$f\left(oldsymbol{x}+oldsymbol{\delta}
ight)=f\left(oldsymbol{x}
ight)+\left\langle
abla f\left(oldsymbol{x}
ight),oldsymbol{\delta}
ight
angle +rac{1}{2}\left\langle oldsymbol{\delta},
abla^{2}f\left(oldsymbol{x}
ight)oldsymbol{\delta}
ight
angle +o(\|oldsymbol{\delta}\|_{2}^{2}) ext{ as }oldsymbol{\delta}
ightarrow 0.$$

Matrix version: consider $f(X) : \mathbb{R}^{m \times n} \to \mathbb{R}$

- If f is 1st-order differentiable at X, then

$$f\left(\boldsymbol{X}+\boldsymbol{\Delta}\right)=f\left(\boldsymbol{X}\right)+\left\langle \nabla f\left(\boldsymbol{X}\right),\boldsymbol{\Delta}\right\rangle +o(\left\|\boldsymbol{\Delta}\right\|_{F})\text{ as }\boldsymbol{\Delta}\rightarrow\mathbf{0}.$$

– If f is 2nd-order differentiable at $oldsymbol{X}$, then

$$f(X + \Delta) = f(X) + \langle \nabla f(X), \Delta \rangle + \frac{1}{2} \langle \Delta, \nabla^2 f(X) \Delta \rangle + o(\|\Delta\|_F^2)$$

as $oldsymbol{\Delta}
ightarrow oldsymbol{0}$.

Let $f:\mathbb{R} \to \mathbb{R}$ be k ($k \geq 1$ integer) times differentiable at a point x. If $P(\delta)$ is a k-th order polynomial satisfying $f\left(x+\delta\right)-P\left(\delta\right)=o(\delta^k)$ as $\delta \to 0$, then $P\left(\delta\right)=P_k(\delta)\doteq f(x)+\sum_{i=1}^k \frac{1}{k!}f^{(k)}\left(x\right)\delta^k$.

Let $f: \mathbb{R} \to \mathbb{R}$ be k $(k \geq 1$ integer) times differentiable at a point x. If $P(\delta)$ is a k-th order polynomial satisfying $f(x+\delta) - P(\delta) = o(\delta^k)$ as $\delta \to 0$, then $P(\delta) = P_k(\delta) \doteq f(x) + \sum_{i=1}^k \frac{1}{k!} f^{(k)}(x) \, \delta^k$.

Generalization to the vector version

- Assume $f\left(\boldsymbol{x}\right):\mathbb{R}^{n}\to\mathbb{R}$ is 1-order differentiable at \boldsymbol{x} . If $P\left(\boldsymbol{\delta}\right)\doteq f\left(\boldsymbol{x}\right)+\langle\boldsymbol{v},\boldsymbol{\delta}\rangle$ satisfies that $f\left(\boldsymbol{x}+\boldsymbol{\delta}\right)-P\left(\boldsymbol{\delta}\right)=o(\left\|\boldsymbol{\delta}\right\|_{2})\quad\text{as }\boldsymbol{\delta}\to\mathbf{0},$ then $P\left(\boldsymbol{\delta}\right)=f\left(\boldsymbol{x}\right)+\langle\nabla f\left(\boldsymbol{x}\right),\boldsymbol{\delta}\rangle$, i.e., the 1st-order Taylor expansion.

Let $f: \mathbb{R} \to \mathbb{R}$ be k ($k \ge 1$ integer) times differentiable at a point x. If $P(\delta)$ is a k-th order polynomial satisfying $f(x+\delta) - P(\delta) = o(\delta^k)$ as $\delta \to 0$, then $P(\delta) = P_k(\delta) \doteq f(x) + \sum_{i=1}^k \frac{1}{k!} f^{(k)}(x) \, \delta^k$.

Generalization to the vector version

– Assume $f(x): \mathbb{R}^n \to \mathbb{R}$ is 1-order differentiable at x. If $P(\delta) \doteq f(x) + \langle v, \delta \rangle$ satisfies that

$$f\left(\boldsymbol{x}+\boldsymbol{\delta}\right)-P\left(\boldsymbol{\delta}\right)=o(\|\boldsymbol{\delta}\|_2)\quad \text{as } \boldsymbol{\delta} \rightarrow \mathbf{0},$$

then $P\left(\pmb{\delta}\right)=f\left(\pmb{x}\right)+\langle\nabla f\left(\pmb{x}\right),\pmb{\delta}\rangle$, i.e., the 1st-order Taylor expansion.

- Assume $f(x): \mathbb{R}^n \to \mathbb{R}$ is 2-order differentiable at x. If $P(\delta) \doteq f(x) + \langle v, \delta \rangle + \frac{1}{2} \langle \delta, H\delta \rangle \text{ with } H \text{ symmetric satisties that}$ $f(x+\delta) - P(\delta) = o(\|\delta\|_2^2) \quad \text{as } \delta \to 0,$

then $P\left(\delta\right)=f\left(x\right)+\left\langle \nabla f\left(x\right),\delta\right\rangle +\frac{1}{2}\left\langle \delta,\nabla^{2}f\left(x\right)\delta\right\rangle$, i.e., the 2nd-order Taylor expansion. We can read off ∇f and $\nabla^{2}f$ if we know the expansion!

Let $f: \mathbb{R} \to \mathbb{R}$ be k $(k \geq 1$ integer) times differentiable at a point x. If $P(\delta)$ is a k-th order polynomial satisfying $f(x+\delta) - P(\delta) = o(\delta^k)$ as $\delta \to 0$, then $P(\delta) = P_k(\delta) \doteq f(x) + \sum_{i=1}^k \frac{1}{k!} f^{(k)}(x) \, \delta^k$.

Generalization to the vector version

– Assume $f(x): \mathbb{R}^n \to \mathbb{R}$ is 1-order differentiable at x. If $P(\delta) \doteq f(x) + \langle v, \delta \rangle$ satisfies that

$$f(\mathbf{x} + \mathbf{\delta}) - P(\mathbf{\delta}) = o(\|\mathbf{\delta}\|_2)$$
 as $\mathbf{\delta} \to \mathbf{0}$,

then $P\left(\pmb{\delta}\right)=f\left(\pmb{x}\right)+\langle\nabla f\left(\pmb{x}\right),\pmb{\delta}\rangle$, i.e., the 1st-order Taylor expansion.

- Assume $f(x): \mathbb{R}^n \to \mathbb{R}$ is 2-order differentiable at x. If $P(\delta) \doteq f(x) + \langle v, \delta \rangle + \frac{1}{2} \langle \delta, H\delta \rangle$ with H symmetric satisfies that $f(x + \delta) P(\delta) = o(\|\delta\|_2^2)$ as $\delta \to 0$,
 - then $P\left(\delta\right) = f\left(x\right) + \left\langle \nabla f\left(x\right), \delta\right\rangle + \frac{1}{2}\left\langle \delta, \nabla^{2} f\left(x\right) \delta\right\rangle$, i.e., the 2nd-order Taylor expansion. We can read off ∇f and $\nabla^{2} f$ if we know the expansion!

Similarly for the matrix version. See Chap 5 of [Coleman, 2012] for other

forms of Taylor theorems and proofs of the asymptotic uniqueness.

Asymptotic uniqueness — why interesting?

Two ways of deriving gradients and Hessians (Recall HW0!)

- (a) Derive the gradient and Hessian of the linear least-squares function $f(x) = \|y Ax\|_2^2$. Please include your calculation details.
- (b) Let $\sigma = \frac{1}{1+e^{-x}}$, i.e., the *logistic function*. Derive the gradient of the matrix-variable function $g(\mathbf{W}) = \|\mathbf{y} \sigma(\mathbf{W}\mathbf{x})\|_2^2$, where σ is applied to the vector $\mathbf{W}\mathbf{x}$ elementwise. This is regression based on a simplified one-neuron network. Please include your calculation details.
- (a) Consider the least-squares objective $f(x) = \|y Ax\|_2^2$ again. Recall that for any two vectors $a, b, \|a b\|_2^2 = \|a\|_2^2 2a^{\mathsf{T}}b + \|b\|_2^2$. Now $f(x + \delta) = \|(y Ax) A\delta\|_2^2$. Expand this square by the previous formula, and compare it to the 2nd order Taylor expansion by plugging your results from **Problem 1(a)**. Are they equal or not? Why? (Hint: You may find this fact useful: for any two vectors $u, v \in \mathbb{R}^n$ and any matrix $M \in \mathbb{R}^{n \times n}$, $\langle u, Mv \rangle = \langle M^{\mathsf{T}}u, v \rangle$. This can be derived from the trace cyclic property above.)
- (b) Consider the one-neuron network regression again: $g(W) = \|y \sigma(Wx)\|_2^2$ with $\sigma = \frac{1}{1+e^{-\sigma}}$, i.e., the *logistic function*. Let's try to work out its 1st order Taylor expansion by direct expansion as follows.
 - Show that $\sigma\left((W+\Delta)\,x\right)=\sigma\left(Wx\right)+\sigma'\left(Wx\right)\odot\left(\Delta x\right)+o(\|\Delta\|_F)$ when $\Delta\to 0$. Here, both σ and σ' are applied elementwise, and \odot denotes the elementwise (Hadamard) product.
 - So $y \sigma((W + \Delta)x) = (y \sigma(Wx)) \sigma'(Wx) \odot (\Delta x) o(\|\Delta\|_F)$ when $\Delta \to 0$. Substitute this back into the square and use the identity $\|a + b + c\|_2^2 = \|a\|_2^2 + \|b\|_2^2 + \|c\|_2^2 + 2a^{\mathsf{T}}b + 2a^{\mathsf{T}}c + 2b^{\mathsf{T}}c$ to obtain the first-order approximation to $g(W + \Delta)$. Remember that any terms lower order than $\|\Delta\|_F$ are not interesting and we can always assume Δ as small as needed.
 - Substitute the result from Problem 1(b) into the 1st order Taylor expansion formula above and compare it to the result obtained here. Are they equal or not?

Asymptotic uniqueness — why interesting?

Think of neural networks with identity activation functions

$$f(\boldsymbol{W}) = \sum_{i} \|\boldsymbol{y}_{i} - \boldsymbol{W}_{k} \boldsymbol{W}_{k-1} \dots \boldsymbol{W}_{2} \boldsymbol{W}_{1} \boldsymbol{x}_{i}\|_{F}^{2}$$

Asymptotic uniqueness — why interesting?

Think of neural networks with identity activation functions

$$f(\boldsymbol{W}) = \sum_{i} \|\boldsymbol{y}_{i} - \boldsymbol{W}_{k} \boldsymbol{W}_{k-1} \dots \boldsymbol{W}_{2} \boldsymbol{W}_{1} \boldsymbol{x}_{i}\|_{F}^{2}$$

How to derive the gradient?

– Scalar chain rule?

Asymptotic uniqueness — why interesting?

Think of neural networks with identity activation functions

$$f(\boldsymbol{W}) = \sum_{i} \|\boldsymbol{y}_{i} - \boldsymbol{W}_{k} \boldsymbol{W}_{k-1} \dots \boldsymbol{W}_{2} \boldsymbol{W}_{1} \boldsymbol{x}_{i}\|_{F}^{2}$$

How to derive the gradient?

- Scalar chain rule?
- Vector chain rule?

Asymptotic uniqueness — why interesting?

Think of neural networks with identity activation functions

$$f(\boldsymbol{W}) = \sum_{i} \|\boldsymbol{y}_{i} - \boldsymbol{W}_{k} \boldsymbol{W}_{k-1} \dots \boldsymbol{W}_{2} \boldsymbol{W}_{1} \boldsymbol{x}_{i}\|_{F}^{2}$$

How to derive the gradient?

- Scalar chain rule?
- Vector chain rule?
- First-order Taylor expansion

Asymptotic uniqueness — why interesting?

Think of neural networks with identity activation functions

$$f(\boldsymbol{W}) = \sum_{i} \|\boldsymbol{y}_{i} - \boldsymbol{W}_{k} \boldsymbol{W}_{k-1} \dots \boldsymbol{W}_{2} \boldsymbol{W}_{1} \boldsymbol{x}_{i}\|_{F}^{2}$$

How to derive the gradient?

- Scalar chain rule?
- Vector chain rule?
- First-order Taylor expansion

Why interesting? See e.g., [Kawaguchi, 2016, Lampinen and Ganguli, 2018]

Consider
$$f(\boldsymbol{x}): \mathbb{R}^n \to \mathbb{R}$$

- directional derivative: $D_{\boldsymbol{v}}f\left(\boldsymbol{x}\right)\doteq\frac{d}{dt}f\left(\boldsymbol{x}+t\boldsymbol{v}\right)$

Consider $f(\boldsymbol{x}): \mathbb{R}^n \to \mathbb{R}$

- directional derivative: $D_{\boldsymbol{v}}f\left(\boldsymbol{x}\right) \doteq \frac{d}{dt}f\left(\boldsymbol{x}+t\boldsymbol{v}\right)$
- When f is 1-st order differentiable at x,

$$D_{\boldsymbol{v}}f\left(\boldsymbol{x}\right) = \left\langle \nabla f\left(\boldsymbol{x}\right), \boldsymbol{v} \right\rangle.$$

Consider $f(\boldsymbol{x}): \mathbb{R}^n \to \mathbb{R}$

- directional derivative: $D_{\boldsymbol{v}}f\left(\boldsymbol{x}\right)\doteq\frac{d}{dt}f\left(\boldsymbol{x}+t\boldsymbol{v}\right)$
- When f is 1-st order differentiable at x,

$$D_{\boldsymbol{v}}f\left(\boldsymbol{x}\right) = \left\langle \nabla f\left(\boldsymbol{x}\right), \boldsymbol{v} \right\rangle.$$

- Now $D_{\boldsymbol{v}}f\left(\boldsymbol{x}\right):\mathbb{R}^{n}\rightarrow\mathbb{R}$, what is $D_{\boldsymbol{u}}\left(D_{\boldsymbol{v}}f\right)\left(\boldsymbol{x}\right)$?

Consider $f(\boldsymbol{x}): \mathbb{R}^n \to \mathbb{R}$

- directional derivative: $D_{\boldsymbol{v}}f\left(\boldsymbol{x}\right)\doteq\frac{d}{dt}f\left(\boldsymbol{x}+t\boldsymbol{v}\right)$
- When f is 1-st order differentiable at x,

$$D_{\boldsymbol{v}}f\left(\boldsymbol{x}\right) = \left\langle \nabla f\left(\boldsymbol{x}\right), \boldsymbol{v} \right\rangle.$$

- Now $D_{\boldsymbol{v}}f\left(\boldsymbol{x}\right):\mathbb{R}^{n}\rightarrow\mathbb{R}$, what is $D_{\boldsymbol{u}}\left(D_{\boldsymbol{v}}f\right)\left(\boldsymbol{x}\right)$?

$$D_{\boldsymbol{u}}\left(D_{\boldsymbol{v}}f\right)(\boldsymbol{x}) = \left\langle \boldsymbol{u}, \nabla^2 f\left(\boldsymbol{x}\right) \boldsymbol{v} \right\rangle.$$

Consider $f(\boldsymbol{x}): \mathbb{R}^n \to \mathbb{R}$

- directional derivative: $D_{\boldsymbol{v}}f\left(\boldsymbol{x}\right)\doteq\frac{d}{dt}f\left(\boldsymbol{x}+t\boldsymbol{v}\right)$
- When f is 1-st order differentiable at x,

$$D_{\boldsymbol{v}}f\left(\boldsymbol{x}\right) = \left\langle \nabla f\left(\boldsymbol{x}\right), \boldsymbol{v} \right\rangle.$$

- Now $D_{\boldsymbol{v}}f\left(\boldsymbol{x}\right):\mathbb{R}^{n}\rightarrow\mathbb{R}$, what is $D_{\boldsymbol{u}}\left(D_{\boldsymbol{v}}f\right)\left(\boldsymbol{x}\right)$?

$$D_{\boldsymbol{u}}\left(D_{\boldsymbol{v}}f\right)\left(\boldsymbol{x}\right) = \left\langle \boldsymbol{u}, \nabla^{2}f\left(\boldsymbol{x}\right)\boldsymbol{v}\right\rangle.$$

- When u=v,

$$D_{\boldsymbol{u}}\left(D_{\boldsymbol{u}}f\right)(\boldsymbol{x}) = \left\langle \boldsymbol{u}, \nabla^2 f\left(\boldsymbol{x}\right) \boldsymbol{u} \right\rangle = \frac{d^2}{dt^2} f\left(\boldsymbol{x} + t\boldsymbol{u}\right).$$

Consider $f(\boldsymbol{x}): \mathbb{R}^n \to \mathbb{R}$

- directional derivative: $D_{\boldsymbol{v}}f\left(\boldsymbol{x}\right)\doteq\frac{d}{dt}f\left(\boldsymbol{x}+t\boldsymbol{v}\right)$
- When f is 1-st order differentiable at x,

$$D_{\boldsymbol{v}}f\left(\boldsymbol{x}\right) = \left\langle \nabla f\left(\boldsymbol{x}\right), \boldsymbol{v} \right\rangle.$$

- Now $D_{\boldsymbol{v}}f\left(\boldsymbol{x}\right):\mathbb{R}^{n}\rightarrow\mathbb{R}$, what is $D_{\boldsymbol{u}}\left(D_{\boldsymbol{v}}f\right)\left(\boldsymbol{x}\right)$?

$$D_{\boldsymbol{u}}\left(D_{\boldsymbol{v}}f\right)\left(\boldsymbol{x}\right) = \left\langle \boldsymbol{u}, \nabla^{2}f\left(\boldsymbol{x}\right)\boldsymbol{v}\right\rangle.$$

- When u=v,

$$D_{\boldsymbol{u}}\left(D_{\boldsymbol{u}}f\right)(\boldsymbol{x}) = \left\langle \boldsymbol{u}, \nabla^2 f\left(\boldsymbol{x}\right) \boldsymbol{u} \right\rangle = \frac{d^2}{dt^2} f\left(\boldsymbol{x} + t\boldsymbol{u}\right).$$

 $-rac{\left\langle u,
abla^2 f(x)u
ight
angle}{\|u\|_2^2}$ is the **directional curvature** along u independent of the norm of u

Directional curvature

 $\frac{\left\langle u,\nabla^2 f(x)u\right\rangle}{\|u\|_2^2}$ is the **directional curvature** along u independent of the norm of u

Directional curvature

 $\frac{\left\langle u,\nabla^2 f(x)u\right\rangle}{\|u\|_2^2}$ is the **directional curvature** along u independent of the norm of u

Blue: negative curvature (bending down)
Red: positive curvature (bending up)

Outline

Elements of multivatiate calculus

Optimality conditions of unconstrained optimization

Nothing takes place in the world whose meaning is not that of some maximum or minimum. – Euler

$$\min_{\boldsymbol{x}} f\left(\boldsymbol{x}\right) \text{ s. t. } \boldsymbol{x} \in C.$$

- x: optimization variables, f(x): objective function, C: constraint (or feasible) set

Nothing takes place in the world whose meaning is not that of some maximum or minimum. – Euler

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})$$
 s. t. $\boldsymbol{x} \in C$.

- x: optimization variables, f(x): objective function, C: constraint (or feasible) set
- C consists of discrete values (e.g., $\{-1,+1\}^n$): discrete optimization; C consists of continuous values (e.g., \mathbb{R}^n , $[0,1]^n$): continuous optimization

Nothing takes place in the world whose meaning is not that of some maximum or minimum. – Euler

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})$$
 s. t. $\boldsymbol{x} \in C$.

- x: optimization variables, f(x): objective function, C: constraint (or feasible) set
- C consists of discrete values (e.g., $\{-1,+1\}^n$): discrete optimization; C consists of continuous values (e.g., \mathbb{R}^n , $[0,1]^n$): continuous optimization
- C whole space \mathbb{R}^n : **unconstrained optimization**; C a strict subset of the space: constrained optimization

Nothing takes place in the world whose meaning is not that of some maximum or minimum. – Euler

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})$$
 s. t. $\boldsymbol{x} \in C$.

- x: optimization variables, f(x): objective function, C: constraint (or feasible) set
- C consists of discrete values (e.g., $\{-1,+1\}^n$): discrete optimization; C consists of continuous values (e.g., \mathbb{R}^n , $[0,1]^n$): continuous optimization
- C whole space \mathbb{R}^n : unconstrained optimization; C a strict subset of the space: constrained optimization

We focus on continuous, unconstrained optimization here.

Global and local mins

Let
$$f\left(oldsymbol{x}
ight):\mathbb{R}^{n}
ightarrow\mathbb{R}$$
, $\min_{oldsymbol{x}\in\mathbb{R}^{n}}f\left(oldsymbol{x}
ight)$

Credit: study.com

- x_0 is a **local minimizer** if: $\exists \varepsilon > 0$, so that $f(x_0) \le f(x)$ for all x satisfying $\|x - x_0\|_2 < \varepsilon$. The value $f(x_0)$ is called a **local minimum**.

Global and local mins

Let
$$f\left(oldsymbol{x}
ight):\mathbb{R}^{n}
ightarrow\mathbb{R}$$
, $\min_{oldsymbol{x}\in\mathbb{R}^{n}}f\left(oldsymbol{x}
ight)$

Credit: study.com

- x_0 is a **local minimizer** if: $\exists \varepsilon > 0$, so that $f(x_0) \leq f(x)$ for all x satisfying $\|x x_0\|_2 < \varepsilon$. The value $f(x_0)$ is called a **local minimum**.
- x_0 is a **global minimizer** if: $f(x_0) \le f(x)$ for all $x \in \mathbb{R}^n$. The value is $f(x_0)$ called the **global minimum**.

Grid search

– For 1D problem, assume we know the global min lies in $\left[-1,1\right]$

Grid search

- For 1D problem, assume we know the global min lies in [-1,1]
- Take uniformly grid points in [-1,1] so that any adjanent points are separated by $\varepsilon.$

Grid search

- For 1D problem, assume we know the global min lies in $\left[-1,1\right]$
- Take uniformly grid points in [-1,1] so that any adjanent points are separated by $\varepsilon.$
- Need $O(\varepsilon^{-1})$ points to get an ε -close point to the global min by exhaustive search

Grid search

- For 1D problem, assume we know the global min lies in $\left[-1,1\right]$
- Take uniformly grid points in [-1,1] so that any adjanent points are separated by ε .
- Need $O(\varepsilon^{-1})$ points to get an ε -close point to the global min by exhaustive search

For N-D problems, need $O\left(\varepsilon^{-n}\right)$ computation.

Grid search

- For 1D problem, assume we know the global min lies in $\left[-1,1\right]$
- Take uniformly grid points in [-1,1] so that any adjanent points are separated by ε .
- Need $O(\varepsilon^{-1})$ points to get an ε -close point to the global min by exhaustive search

For N-D problems, need $O\left(\varepsilon^{-n}\right)$ computation.

Better characterization of the local/global mins may help avoid this.

Assume f is 1st-order differentiable at x_0 . If x_0 is a local minimizer, $\nabla f\left(x_0\right)=\mathbf{0}.$

Assume f is 1st-order differentiable at x_0 . If x_0 is a local minimizer, $\nabla f\left(x_0\right)=0.$

Intuition: ∇f is "rate of change" of function value. If the rate is not zero at \boldsymbol{x}_0 , possible to decrease f along $-\nabla f\left(\boldsymbol{x}_0\right)$

Assume f is 1st-order differentiable at x_0 . If x_0 is a local minimizer, $\nabla f\left(x_0\right)=\mathbf{0}.$

Intuition: ∇f is "rate of change" of function value. If the rate is not zero at x_0 , possible to decrease f along $-\nabla f\left(x_0\right)$

Taylor's:
$$f(x_0 + \delta) = f(x_0) + \langle \nabla f(x_0), \delta \rangle + o(\|\delta\|_2)$$
. If x_0 is a local min:

Assume f is 1st-order differentiable at x_0 . If x_0 is a local minimizer, $\nabla f\left(x_0\right)=0$.

Intuition: ∇f is "rate of change" of function value. If the rate is not zero at x_0 , possible to decrease f along $-\nabla f(x_0)$

- For all
$$\delta$$
 sufficiently small,
$$f\left(\boldsymbol{x}_{0}+\boldsymbol{\delta}\right)-f\left(\boldsymbol{x}_{0}\right)=\left\langle \nabla f\left(\boldsymbol{x}_{0}\right),\boldsymbol{\delta}\right\rangle +o\left(\left\Vert \boldsymbol{\delta}\right\Vert _{2}\right)\geq0$$

Assume f is 1st-order differentiable at x_0 . If x_0 is a local minimizer, $\nabla f\left(x_0\right)=\mathbf{0}.$

Intuition: ∇f is "rate of change" of function value. If the rate is not zero at x_0 , possible to decrease f along $-\nabla f\left(x_0\right)$

- For all δ sufficiently small, $f\left(\boldsymbol{x}_{0}+\boldsymbol{\delta}\right)-f\left(\boldsymbol{x}_{0}\right)=\left\langle \nabla f\left(\boldsymbol{x}_{0}\right),\boldsymbol{\delta}\right\rangle +o\left(\left\Vert \boldsymbol{\delta}\right\Vert _{2}\right)\geq0$
- For all δ sufficiently small, sign of $\langle \nabla f\left(x_{0}\right), \delta \rangle + o\left(\left\|\delta\right\|_{2}\right)$ determined by the sign of $\langle \nabla f\left(x_{0}\right), \delta \rangle$, i.e., $\langle \nabla f\left(x_{0}\right), \delta \rangle \geq 0$.

Assume f is 1st-order differentiable at x_0 . If x_0 is a local minimizer, $\nabla f\left(x_0\right)=0$.

Intuition: ∇f is "rate of change" of function value. If the rate is not zero at x_0 , possible to decrease f along $-\nabla f\left(x_0\right)$

- For all δ sufficiently small, $f\left(\boldsymbol{x}_{0}+\boldsymbol{\delta}\right)-f\left(\boldsymbol{x}_{0}\right)=\left\langle \nabla f\left(\boldsymbol{x}_{0}\right),\boldsymbol{\delta}\right\rangle +o\left(\left\Vert \boldsymbol{\delta}\right\Vert _{2}\right)\geq0$
- For all δ sufficiently small, sign of $\langle \nabla f\left(x_{0}\right),\delta\rangle+o\left(\left\|\delta\right\|_{2}\right)$ determined by the sign of $\langle \nabla f\left(x_{0}\right),\delta\rangle$, i.e., $\langle \nabla f\left(x_{0}\right),\delta\rangle\geq0$.
- So for all δ sufficiently small, $\langle \nabla f(\mathbf{x}_0), \mathbf{\delta} \rangle \geq 0$ and $\langle \nabla f(\mathbf{x}_0), -\mathbf{\delta} \rangle = -\langle \nabla f(\mathbf{x}_0), \mathbf{\delta} \rangle \geq 0 \Longrightarrow \langle \nabla f(\mathbf{x}_0), \mathbf{\delta} \rangle = 0$

Assume f is 1st-order differentiable at x_0 . If x_0 is a local minimizer, $\nabla f\left(x_0\right)=\mathbf{0}.$

Intuition: ∇f is "rate of change" of function value. If the rate is not zero at \boldsymbol{x}_0 , possible to decrease f along $-\nabla f\left(\boldsymbol{x}_0\right)$

- For all δ sufficiently small, $f\left(\boldsymbol{x}_{0}+\boldsymbol{\delta}\right)-f\left(\boldsymbol{x}_{0}\right)=\left\langle \nabla f\left(\boldsymbol{x}_{0}\right),\boldsymbol{\delta}\right\rangle +o\left(\left\Vert \boldsymbol{\delta}\right\Vert _{2}\right)\geq0$
- For all δ sufficiently small, sign of $\langle \nabla f\left(\boldsymbol{x}_{0}\right), \delta \rangle + o\left(\left\|\boldsymbol{\delta}\right\|_{2}\right)$ determined by the sign of $\langle \nabla f\left(\boldsymbol{x}_{0}\right), \delta \rangle$, i.e., $\langle \nabla f\left(\boldsymbol{x}_{0}\right), \delta \rangle \geq 0$.
- So for all δ sufficiently small, $\langle \nabla f(\mathbf{x}_0), \delta \rangle \geq 0$ and $\langle \nabla f(\mathbf{x}_0), -\delta \rangle = -\langle \nabla f(\mathbf{x}_0), \delta \rangle \geq 0 \Longrightarrow \langle \nabla f(\mathbf{x}_0), \delta \rangle = 0$
- So $\nabla f(\boldsymbol{x}_0) = \boldsymbol{0}$.

Necessary condition: Assume $f(\boldsymbol{x})$ is 2-order differentiable at \boldsymbol{x}_0 . If \boldsymbol{x}_0 is a local min, $\nabla f(\boldsymbol{x}_0) = \mathbf{0}$ and $\nabla^2 f(\boldsymbol{x}_0) \succeq \mathbf{0}$ (i.e., positive semidefinite).

Necessary condition: Assume f(x) is 2-order differentiable at x_0 . If x_0 is a local min, $\nabla f(x_0) = 0$ and $\nabla^2 f(x_0) \succeq 0$ (i.e., positive semidefinite).

Sufficient condition: Assume f(x) is 2-order differentiable at x_0 . If $\nabla f(x_0) = 0$ and $\nabla^2 f(x_0) \succ 0$ (i.e., positive definite), x_0 is a local min.

Necessary condition: Assume f(x) is 2-order differentiable at x_0 . If x_0 is a local min, $\nabla f(x_0) = 0$ and $\nabla^2 f(x_0) \succeq 0$ (i.e., positive semidefinite).

Sufficient condition: Assume $f\left(\boldsymbol{x}\right)$ is 2-order differentiable at \boldsymbol{x}_{0} . If $\nabla f\left(\boldsymbol{x}_{0}\right)=\mathbf{0}$ and $\nabla^{2}f\left(\boldsymbol{x}_{0}\right)\succ\mathbf{0}$ (i.e., positive definite), \boldsymbol{x}_{0} is a local min.

$$\mathsf{Taylor's:}\ f\left(\boldsymbol{x}_{0}+\boldsymbol{\delta}\right)=f\left(\boldsymbol{x}_{0}\right)+\left\langle \nabla f\left(\boldsymbol{x}_{0}\right),\boldsymbol{\delta}\right\rangle +\frac{1}{2}\left\langle \boldsymbol{\delta},\nabla^{2} f\left(\boldsymbol{x}_{0}\right)\boldsymbol{\delta}\right\rangle +o\left(\left\Vert \boldsymbol{\delta}\right\Vert _{2}^{2}\right).$$

Necessary condition: Assume f(x) is 2-order differentiable at x_0 . If x_0 is a local min, $\nabla f(x_0) = 0$ and $\nabla^2 f(x_0) \succeq 0$ (i.e., positive semidefinite).

Sufficient condition: Assume f(x) is 2-order differentiable at x_0 . If $\nabla f(x_0) = \mathbf{0}$ and $\nabla^2 f(x_0) \succeq \mathbf{0}$ (i.e., positive definite), x_0 is a local min.

Taylor's:
$$f(\mathbf{x}_0 + \boldsymbol{\delta}) = f(\mathbf{x}_0) + \langle \nabla f(\mathbf{x}_0), \boldsymbol{\delta} \rangle + \frac{1}{2} \langle \boldsymbol{\delta}, \nabla^2 f(\mathbf{x}_0) \boldsymbol{\delta} \rangle + o(\|\boldsymbol{\delta}\|_2^2).$$

- If x_0 is a local min, $\nabla f\left(x_0\right) = \mathbf{0}$ (1st-order condition) and $f\left(x_0 + \delta\right) = f\left(x_0\right) + \frac{1}{2}\left\langle \delta, \nabla^2 f\left(x_0\right) \delta\right\rangle + o\left(\|\delta\|_2^2\right)$.

Necessary condition: Assume f(x) is 2-order differentiable at x_0 . If x_0 is a local min, $\nabla f(x_0) = \mathbf{0}$ and $\nabla^2 f(x_0) \succeq \mathbf{0}$ (i.e., positive semidefinite).

Sufficient condition: Assume f(x) is 2-order differentiable at x_0 . If $\nabla f(x_0) = \mathbf{0}$ and $\nabla^2 f(x_0) \succeq \mathbf{0}$ (i.e., positive definite), x_0 is a local min.

Taylor's:
$$f(\mathbf{x}_0 + \boldsymbol{\delta}) = f(\mathbf{x}_0) + \langle \nabla f(\mathbf{x}_0), \boldsymbol{\delta} \rangle + \frac{1}{2} \langle \boldsymbol{\delta}, \nabla^2 f(\mathbf{x}_0) \boldsymbol{\delta} \rangle + o(\|\boldsymbol{\delta}\|_2^2).$$

- If x_0 is a local min, $\nabla f(x_0) = 0$ (1st-order condition) and $f(x_0 + \delta) = f(x_0) + \frac{1}{2} \langle \delta, \nabla^2 f(x_0) \delta \rangle + o(\|\delta\|_2^2)$.
- So $f\left(\boldsymbol{x}_{0}+\boldsymbol{\delta}\right)-f\left(\boldsymbol{x}_{0}\right)=\frac{1}{2}\left\langle \boldsymbol{\delta},\nabla^{2}f\left(\boldsymbol{x}_{0}\right)\boldsymbol{\delta}\right\rangle +o\left(\left\Vert \boldsymbol{\delta}\right\Vert _{2}^{2}\right)\geq0$ for all $\boldsymbol{\delta}$ sufficiently small

Necessary condition: Assume f(x) is 2-order differentiable at x_0 . If x_0 is a local min, $\nabla f(x_0) = 0$ and $\nabla^2 f(x_0) \succeq 0$ (i.e., positive semidefinite).

Sufficient condition: Assume f(x) is 2-order differentiable at x_0 . If $\nabla f(x_0) = 0$ and $\nabla^2 f(x_0) \succ 0$ (i.e., positive definite), x_0 is a local min.

Taylor's:
$$f(\mathbf{x}_0 + \boldsymbol{\delta}) = f(\mathbf{x}_0) + \langle \nabla f(\mathbf{x}_0), \boldsymbol{\delta} \rangle + \frac{1}{2} \langle \boldsymbol{\delta}, \nabla^2 f(\mathbf{x}_0) \boldsymbol{\delta} \rangle + o(\|\boldsymbol{\delta}\|_2^2).$$

- If x_0 is a local min, $\nabla f(x_0) = \mathbf{0}$ (1st-order condition) and $f(x_0 + \delta) = f(x_0) + \frac{1}{2} \langle \delta, \nabla^2 f(x_0) \delta \rangle + o(\|\delta\|_2^2)$.
- So $f\left(\boldsymbol{x}_{0}+\boldsymbol{\delta}\right)-f\left(\boldsymbol{x}_{0}\right)=\frac{1}{2}\left\langle \boldsymbol{\delta},\nabla^{2}f\left(\boldsymbol{x}_{0}\right)\boldsymbol{\delta}\right\rangle +o\left(\|\boldsymbol{\delta}\|_{2}^{2}\right)\geq0$ for all $\boldsymbol{\delta}$ sufficiently small
- For all δ sufficiently small, sign of $\frac{1}{2} \left\langle \delta, \nabla^2 f\left(x_0\right) \delta \right\rangle + o\left(\|\delta\|_2^2\right)$ determined by the sign of $\frac{1}{2} \left\langle \delta, \nabla^2 f\left(x_0\right) \delta \right\rangle \Longrightarrow \frac{1}{2} \left\langle \delta, \nabla^2 f\left(x_0\right) \delta \right\rangle \geq 0$

Necessary condition: Assume f(x) is 2-order differentiable at x_0 . If x_0 is a local min, $\nabla f(x_0) = 0$ and $\nabla^2 f(x_0) \succeq 0$ (i.e., positive semidefinite).

Sufficient condition: Assume f(x) is 2-order differentiable at x_0 . If $\nabla f(x_0) = \mathbf{0}$ and $\nabla^2 f(x_0) \succ \mathbf{0}$ (i.e., positive definite), x_0 is a local min.

$$\mathsf{Taylor's:}\ f\left(\boldsymbol{x}_{0}+\boldsymbol{\delta}\right)=f\left(\boldsymbol{x}_{0}\right)+\left\langle \nabla f\left(\boldsymbol{x}_{0}\right),\boldsymbol{\delta}\right\rangle +\frac{1}{2}\left\langle \boldsymbol{\delta},\nabla^{2} f\left(\boldsymbol{x}_{0}\right)\boldsymbol{\delta}\right\rangle +o\left(\left\Vert \boldsymbol{\delta}\right\Vert _{2}^{2}\right).$$

- If x_0 is a local min, $\nabla f\left(x_0\right) = \mathbf{0}$ (1st-order condition) and $f\left(x_0 + \delta\right) = f\left(x_0\right) + \frac{1}{2}\left\langle \delta, \nabla^2 f\left(x_0\right) \delta\right\rangle + o\left(\|\delta\|_2^2\right)$.
- So $f\left(\boldsymbol{x}_{0}+\boldsymbol{\delta}\right)-f\left(\boldsymbol{x}_{0}\right)=\frac{1}{2}\left\langle \boldsymbol{\delta},\nabla^{2}f\left(\boldsymbol{x}_{0}\right)\boldsymbol{\delta}\right\rangle +o\left(\|\boldsymbol{\delta}\|_{2}^{2}\right)\geq0$ for all $\boldsymbol{\delta}$ sufficiently small
- For all δ sufficiently small, sign of $\frac{1}{2} \left\langle \delta, \nabla^2 f\left(x_0\right) \delta \right\rangle + o\left(\|\delta\|_2^2\right)$ determined by the sign of $\frac{1}{2} \left\langle \delta, \nabla^2 f\left(x_0\right) \delta \right\rangle \Longrightarrow \frac{1}{2} \left\langle \delta, \nabla^2 f\left(x_0\right) \delta \right\rangle \geq 0$
- So $\nabla^2 f(\boldsymbol{x}_0) \succeq \boldsymbol{0}$.

What's in between?

2nd order sufficient: $\nabla f(x_0) = \mathbf{0}$ and $\nabla^2 f(x_0) \succ \mathbf{0}$ 2nd order necessary: $\nabla f(x_0) = \mathbf{0}$ and $\nabla^2 f(x_0) \succeq \mathbf{0}$

$$\nabla f = \begin{bmatrix} 2x \\ -2y \end{bmatrix}, \nabla^2 f = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$$

$$\nabla g = \begin{bmatrix} 3x^2 \\ -3y^2 \end{bmatrix}, \nabla^2 g = \begin{bmatrix} 6x & 0 \\ 0 & -6y \end{bmatrix}$$

References i

- [Coleman, 2012] Coleman, R. (2012). Calculus on Normed Vector Spaces. Springer New York.
- [Kawaguchi, 2016] Kawaguchi, K. (2016). Deep learning without poor local minima. arXiv:1605.07110.
- [Lampinen and Ganguli, 2018] Lampinen, A. K. and Ganguli, S. (2018). An analytic theory of generalization dynamics and transfer learning in deep linear networks. arXiv:1809.10374.
- [Munkres, 1997] Munkres, J. R. (1997). Analysis On Manifolds. Taylor & Francis Inc.
- [Zorich, 2015] Zorich, V. A. (2015). Mathematical Analysis I. Springer Berlin Heidelberg.