

Álgebra Relacional

Base de Dados - 2014/15 Carlos Costa

Introdução

Linguagem de Consulta/Interrogação da BD

- Álgebra Relacional
 - Linguagem formal do Modelo Relacional
 - Um conjunto básico de operações
- Outras linguagem formais: relational calculus
- As linguagens formais oferecem uma base teórica para a linguagem de consulta utilizada na prática.
- Linguagem prática do Modelo Relacional
 - SQL

Álgebra Relacional

deti

Questões?

- Como deve ser uma linguagem interrogação da BD?
- Como formular interrogações?
- Que tipo de interrogações existem?
- Como é que são os resultados?
- Expressões de álgebra relacional (linguagem).
 - Sequência de operações de álgebra relacional.
 - Permitem formular pedidos básicos de recuperação de informação (retrieval requests) sobre uma ou mais relações.
- Para formalizar uma interrogação necessitamos de um conjunto de operadores que operam sobre as relações e devolvem uma nova relação.
- Vamos estudar um conjunto de operações.

Selecção

- Notação: σ_{<selection condition>}(R)
 - Utilizada para selecionar um subconjunto de tuplos da relação (t ∈ R) que satisfazem os critérios de seleção.
 - "selection condition" é uma expressão boleana.

 $Relation2 \leftarrow \mathbf{O}_{< selection \ condition>}(Relation1)$

• O resultado é uma nova relação (Relation2) que tem um esquema relacional igual à original (Relation1).

5

deti

Seleção - Predicado

- Operadores de Comparação
 - Permitem comparar dois atributos ou um atributo com um valor.
 - Operandos: Nomes dos atributos e constantes.
 - Operadores: =, ≠, ≤, ≥ , <, >
 - Exemplos:

σ_{Dno=4} (EMPLOYEE)

σ_{Salary>30000} (EMPLOYEE)

- Condições Booleanas
 - Utilização de AND, OR e NOT.
 - Exemplo:

σ_(Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000)</sub> (EMPLOYEE)

Intersecção

- Notação: R∩S={t:t∈R∧t∈S}
- As tabelas têm de ser compatíveis

- Mesmo número de atributos
- Atributos com domínios compatíveis
- O resultado é uma relação que inclui os tuplos que existem simultaneamente em R e S
 - Os tuplos duplicados são eliminados

Diferença

- Notação: R-S={t:t∈r∧t ∉s}
- As tabelas têm de ser compatíveis

- Mesmo número de atributos
- Atributos com domínios compatíveis
- O resultado é uma relação que inclui os tuplos de R que não existem em S

União, Intersecção e Diferença

- Em SQL existem os seguintes comandos
 - UNION (ALL), INTERSECT (ALL) e EXCEPT (ALL)

Propriedades:

- União e Intersecção são operações comutativas:
 - $R \cup S = S \cup R$ e $R \cap S = S \cap R$
- A diferença não é comutativa:
 - R-S ≠ S-R
- União e Intersecção são operações associativas:
 - $R \cup (S \cup T) = (R \cup S) \cup T$ e $(R \cap S) \cap T = R \cap (S \cap T)$

15

deti

Produto Cartesiano

- Notação: R X S
- Permite-nos combinar tuplos de relações diferentes.
 - O resultado é uma nova relação (Q) que combina cada elemento (tuplo) de uma relação (R) com um elemento (tuplo) da outra relação (S):

 $Q(A1, A2, ..., An, B1, B2, ..., Bm) = R(A1, A2, ..., An) \times S(B1, B2, ..., Bm)$

- O número de tuplos de Q é n * m.
- UK: "CROSS JOIN"

Junção θ (THETA JOIN)

deti

- Notação: R ⋈_C S
 - Pode ser visto como o resultado das seguintes operações:

R3 ← R1 X R2 (produto cartesiano)

 $\mathbf{O}_{\mathcal{C}}$ (R3) (seleção com condição c)

• C é <join condition> que pode tomar a seguinte forma:

<condition> AND <condition> AND ... AND <condition>

 Em cada <condition> podemos aplicar operadores de comparação:

Divisão

• Notação: R ÷ S

Dadas as relações R(A1,...,Ar,B1,...,Bk) e S(B1,...,Bk)

- O resultado incluirá todos os tuplos de R1(A1,...,Ar) que tenham correspondência com todos os tuplos de S em R2(B1,...,BK).
 - R1 e R2 são projeções de R
- número de atributos de R > número de atributos de S.
- Em SQL não existe um operador que implemente a divisão. Temos de recorrer a operadores básicos:

■ R ÷ S =
$$\pi_{R-S}$$
 (R) - π_{R-S} ((π_{R-S} (R) x S) - R)
onde π_{R-S} -> $\pi_{(A1,...,Ar)}$

22

deti

OPERATION	PURPOSE	NOTATION
SELECT	Selects all tuples that satisfy the selection condition from a relation R .	$\sigma_{\langle \text{selection condition} \rangle}(R)$
PROJECT	Produces a new relation with only some of the attributes of <i>R</i> , and removes duplicate tuples.	$\pi_{_{< attribute \ list>}}(R)$
THETA JOIN	Produces all combinations of tuples from R_1 and R_2 that satisfy the join condition.	$R_1 \bowtie_{< \text{join condition}>} R_2$
EQUIJOIN	Produces all the combinations of tuples from R_1 and R_2 that satisfy a join condition with only equality comparisons.	$\begin{matrix} R_1 \bowtie_{< \text{join condition}>} R_2 \text{, OR} \\ R_1 \bowtie_{(< \text{join attributes 1}>),} \\ (< \text{join attributes 2}>) \end{matrix} R_2$
NATURAL JOIN	Same as EQUIJOIN except that the join attributes of R_2 are not included in the resulting relation; if the join attributes have the same names, they do not have to be specified at all.	$\begin{array}{c} R_1 *_{< \text{join condition>}} R_2 *\\ \text{OR } R_1 *_{(< \text{join attributes 1>}),} \\ \text{OR } R_1 * R_2 \end{array}$
UNION	Produces a relation that includes all the tuples in R_1 or R_2 or both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cup R_2$
INTERSECTION	Produces a relation that includes all the tuples in both R_1 and R_2 ; R_1 and R_2 must be union compatible.	$R_1 \cap R_2$
DIFFERENCE	Produces a relation that includes all the tuples in R_1 that are not in R_2 ; R_1 and R_2 must be union compatible.	$R_1 - R_2$
CARTESIAN	Produces a relation that has the attributes of R_1 and	$R_1 \times R_2$
PRODUCT	R_2 and includes as tuples all possible combinations of tuples from R_1 and R_2 .	
DIVISION	Produces a relation $R(X)$ that includes all tuples $t[X]$ in $R_1(Z)$ that appear in R_1 in combination with every tuple from $R_2(Y)$, where $Z = X \cup Y$.	$R_1(Z) \div R_2(Y)$

Álgebra Relacional - Operações Estendidas

- Semi-Join (Semi Junção)
 - Left Semi Join
 - Right Semi Join
- Outer Join (Junção Externa)
 - Left Outer Join
 - Right Outer Join
 - Full Outer Join
- Agregação
 - Funções de Agregação

25

deti

Semi Join

Projeção dos atributos de R na junção natural de R com S

• Right Semi Join: $R \ltimes S = \Pi_S (R \bowtie S)$

Projeção dos atributos de S na junção natural de R com S

Inner Join vs Outer Join

Inner Join

- As operações de junção anteriores combinam dados de duas tabelas para que estes possam ser apresentados na forma de uma única tabela.
- Os tuplos que não estão relacionados (matching) são descartados.
 - · Incluindo os tuplos com valores Null nos atributos de junção.

Outer Join

- Incluímos no resultado todos os tuplos de uma (ou de ambas) das relações componentes.
- Os atributos que n\u00e3o fazem matching s\u00e3o preenchidos com Null.

Agregação

• Operação de Agregação

<grouping attributes> \Im <function list> (R)

3 - Script F symbol

deti

- Operações sobre vários tuplos da relação
- Lista de Funções de Agregação:

avg: média dos valores

• min: mínimo dos valores

• max: máximo dos valores

• sum: soma dos valores

• count: número dos valores

31

deti

Funções de Agregação

- Também podem ser usadas em projeções
 - criar atributos agregados
 - os atributos não agregados são agrupados de forma a não haver valores repetidos.
- Exemplos:

Fname	Minit	Lname	Ssn	Bdate	Address	Sex	Salary	Super_ssn	Dno
John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	М	40000	888665555	5
Alicia	J	Zelaya	999887777	1968-01-19	3321 Castle, Spring, TX	F	25000	987654321	4
Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	М	38000	333445555	5
Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
Ahmad	٧	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	М	25000	987654321	4
James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	М	55000	NULL	1

 $\Pi_{Dno, \ Avg_Salary=avg(Salary)}(EMPLOYEE)$

 Dno
 Avg_Salary

 1
 55000

 4
 31000

 5
 33250

Resumo

Álgebra Relacional:

- Operações Básicas
- Operações Estendidas
- Caso de Estudo Queries

42

deti