Functional interrogation of Toxcast database for DILI-associated differences in Troglitazone vs Rosiglitazone Maleate

Sricharan Bandhakavi March 2019

How to better leverage preclinical data for eliminating bad drugs from going into clinical trials/market?

EBTC GOAL

Leverage "preclinical data" for identifying drugs with potential toxicities to liver

Anti-diabetic TZD drugs, Troglitazone and Rosiglitazone, stimulate insulin function by targeting PPARγ

Thiazolidinediones (TZDs):

(In market since 1999) Rosiglitazone (maleate)* – Target: PPARγ (withdrawn in year 2000) Troglitazone **– Target: PPARγ > PPARα

https://www.fda.gov/ohrms/dockets/ac/00/slides/3615s1a/sld018.htm

Can we leverage preclinical data (cell-based assays/test results) for Troglitazone to understand potential basis for liver toxicity?

<u>http://tmedweb.tulane.edu/pharmwiki/doku.php/thiazolidinediones</u> & <u>www.diabetesincontrol.com</u> (Handbook of Diabetes, 4th edition excerpt)

High level project workflow

Extract AC50 information from ToxCast (Level 5/6) tests for two drugs of interest

From up to 700 cell based assays/tests, classify all "positive" test results

- Positive with Troglitazone only
- Positive with both Troglitazone and Rosiglitazone Maleate
- Positive with Rosiglitazone Maleate only

Develop schema for differential analysis of tests/targets affected by each drug

- Generate an "activation score" for potential activation of test "targets" in patients
- Identify differentially affected tests/targets by Troglitazone vs Rosiglitazone Maleate

Correlate differentially affected targets with liver toxicity

Higher # of "positive" tests for Troglitazone relative to Rosiglitazone Maleate

Troglitazone yields higher # of positive tests across biological processes

Troglitazone uniquely activates additional targets across target family of transcriptional regulators

Stratification of targets' activation potential in humans using <u>Normalized Activation Score</u> (NAS)

 C_{max} (of drug in humans) is > AC50 (for any in vitro/cellular assay) \rightarrow higher potential for activation (of assay target)

 C_{max} (of drug in humans) << AC50 (for any in vitro/cellular assays) \rightarrow lower potential for activation (of assay target)

Schema for stratification of targets' activation potential in humans

Normalized activation score (NAS) level	Indication
NAS>=0	C _{max} > EC50; highest activation potential
0>NAS>-4	C _{max} < EC50; modest activation potential
NAS<-4	C _{max} <<< EC50; lowest activation potential

For the 437 "common tests" between Rosiglitazone Maleate and Troglitazone:

→**NAS** values were generated and compared across corresponding biological processes

NAS stratified putative transcriptional regulatory targets of Rosiglitazone Maleate in humans

NAS stratified putative transcriptional regulatory targets of Troglitazone in humans

Troglitazone uniquely activates additional targets across target family of gene expression regulators

NAS stratified putative gene expression regulatory targets of Rosiglitazone Maleate in humans

NAS stratified putative gene expression regulatory targets of Troglitazone in humans

Cell cycle/Cell morphology targets

NAS stratified putative cell cycle/morphology targets of Rosiglitazone Maleate and Troglitazone in humans

** C_{max} (Troglitazone) = 2.82 μ g/mL (at 600mg/day dose) = 6.38 μ moles/L

** C_{max} (Rosiglitazone Maleate) = 598 ng/mL (at 8mg/day dose) = 1.26 μ moles/L

NAS based "clustering" of all tests

NAS based "clustering" of all Targets/Pathways

^{*} Implicated in liver injury/repair pathways -

Summary/Conclusions

Normalized activation score (NAS) stratifies molecular actions of drugs

• Targets/pathways with NAS > 0 expected to have highest potential for activation in patients and represent potential non-target effects.

Troglitazone associated targets are correlated with DILI risk

 Correlation with Troglitazone-associated targets (higher NAS for Troglitazone vs Rosiglitazone Maleate) with role in liver injury/repair pathways

Next step: harness ToxCast for Liver Toxicity modeling

• Integrate ToxCast targets/pathways data with known predictors of liver toxicity for potentially enhanced models of liver toxicity (initiated)

Appendix

- "mostDILI" risk for Troglitazone-associated vs Rosiglitazone associated targets
- Comparison of target rankings for activation potential using NAS vs Falgun Shah score
- Count of positive tests for each biological process in Troglitazone vs Rosiglitazone (3 slides)
- Pharmacological activity/targets by DILI class from ToxCast database (3 slides)

Normalized Activation Score* performs nearly identically to Falgun Score** for stratification of Troglitazone affected targets/proteins (n = 89)

*Normalized Activation Score = (Cmax - EC50)/Cmax

^{**}Falgun Score = Cmax/EC50 (Shah F et al., 2015 Toxicol Sci)

Activation level	Normalized Activation score	Falgun Score (C _{max} /AC50)
High activation	1 to ~0	~300 - ~1
Medium activation	0 to -4.0	1 - ~0.20
Low activation	Less than - 4.0	Less than 0.20

Count of positive tests per transcriptional targets for each drug

Count of positive assays for gene expression regulatory targets per drug

Count of positive assays for cell cycle/cell morphology targets per drug

Subset of drugs are more pharmacologically active in each DILI class

Subset of drugs are more pharmacologically active towards distinct* molecular targets

Highly reactive targets/pathways by DILI class

