

ARQUITETURA PARA NAVEGAÇÃO AUTÔNOMA UTILIZANDO DRONES

Matheus Mahnke

Orientador: Dalton Solano dos Reis

Introdução 1/2

- Origem do drone
- Quadrotores
- Giroscópio, altímetro e acelerômetro
- Acúmulo de erros
- Câmeras

Introdução 2/2

- Processamento de imagem
- Dependência de servidor
- Plano de voo
- GPS

Objetivos

Objetivo geral:

Propor uma arquitetura de navegação autônoma de drones baseada em GPS e visão computacional.

Objetivos

Objetivos específicos:

- I. Detectar e desviar de obstáculos visíveis pela câmera
- II. Possui um plano de voo baseado em GPS
- III. Identificar marcadores para pouso
- IV. Possuir um sistema de estabilização
- V. Definir a arquitetura para a navegação independente de servidor

Trabalho Correlato 1/3

Título: ORB-SLAM2: AN OPEN-SOURCE SLAM SYSTEM FOR MONOCULAR, STEREO AND RGB-D CAMERAS

Mur-artal e Tardós (2017)

Trabalhos Características	Mur-artal e Tardós (2017)
usa GPS	não
navegação baseada em câmera	sim
processamento a bordo	não
desvio de obstáculos	não
plano de voo dinâmico	não
possui sistema SLAM	sim

Trabalho Correlato 2/3

• Título: DRONE AUTÔNOMO: VIGILÂNCIA AÉREA DE ESPAÇOS **EXTERNOS**

Corrêa (2020)

Trabalhos Características	Corrêa (2020)
usa GPS	sim
navegação baseada em câmera	não
processamento a bordo	não
desvio de obstáculos	não
plano de voo dinâmico	sim
possui sistema SLAM	não

Trabalho Correlato 3/3

Título: A COMPUTER VISION BASED ALGORITHM FOR **OBSTACLE AVOIDANCE (OUTDOOR FLIGHT)**

Martins, Ramos e Mora-Camino (2018)

Trabalhos Características	Martins, Ramos e Mora- Camino (2018)
usa GPS	não
navegação baseada em câmera	sim
processamento a bordo	sim
desvio de obstáculos	sim
plano de voo dinâmico	não
possui sistema SLAM	não

option 3	option 5	option 4
option 1		option 2
option 6		

Comparação entre os correlatos

Trabalhos Características	Mur-artal e Tardós (2017)	Corrêa (2020)	Martins, Ramos e Mora-Camino (2018)
usa GPS	não	sim	não
navegação baseada em câmera	sim	não	sim
processamento a bordo	não	não	sim
desvio de obstáculos	não	não	sim
plano de voo dinâmico	não	sim	não
possui sistema SLAM	sim	não	não

Requisitos

requisitos	descrição
RF01	o drone deverá seguir um plano de voo baseado em GPS
RF02	o drone deverá possuir uma câmera frontal
RF03	o drone deverá possuir uma câmera apontada para baixo
RF04	o drone deverá possuir um sistema de estabilização com base na câmera e sensores
RF05	o processamento em voo deverá ser totalmente a bordo, sendo dependente apenas da conexão com GPS
RF06	o drone deverá desviar de objetos em voo
RF07	a arquitetura deverá permitir o pouso em um marcador
RNF01	utilizar a biblioteca OpenCV para processar o reconhecimento das imagens
RNF02	o drone deverá possuir um Raspberry Pi para processamento de imagem abordo

Cronograma

	2021									
	ago.		set.		out.		nov.		dez.	
etapas / quinzenas	1	2	1	2	1	2	1	2	1	2
levantamento bibliográfico do hardware										
levantamento bibliográfico da solução										
elicitação dos requisitos										
especificação										
desenvolvimento do protótipo										
definição das técnicas de processamento das imagens										
testes										

Revisão bibliografica

Assunto	Referências bibliográficas
Hardware	BONVOISIN, Jérémy et al. (2017) MAKSIMOVIĆ, Mirjana et al. (2014)
Processamento de imagem	MARQUES FILHO, Ogê; NETO, Hugo V. (1999) MENESES, Paulo Roberto; ALMEIDA, Tati (2012)

Muito obrigado!