Probabilistic Models for Biological Sequences

Laboratory of Bioinformatics I Module 2

27 and 31 March, 2020

Emidio Capriotti
http://biofold.org/

Department of Pharmacy and Biotechnology (FaBiT) University of Bologna

Models for Sequence

Generative definition:

- Objects producing different outcomes (sequences) with different probabilities
- The probability distribution over the sequences space determines the model specificity

Generates s_i with probability $P(s_i \mid M)$

e.g.: *M* is the representation of the family of globins

Associative Definition

The generative definition is useful as operative definition

Objects that, given an outcome (sequence), compute a probability value

Calculates the associated probability $P(s_i \mid M)$ to s_i .

e.g.: *M* is the representation of the family of globins

Which Model?

The most useful probabilistic models are Trainable systems

The probability density function over the sequence space can be estimated from known examples by a learning algorithm

Define a generic representation of the sequences of globins starting from a set of known globins

Similarity Measure

Given a class of proteins (e.g. Globins), a probabilistic model trained on this family can be adopted to compute a probability value for new sequences

This value measures the similarity between the new sequence and the family described by the model

Which Probability?

A model M associates to a sequence s_i the probability $P(s_i \mid M)$ This probability answers the question:

Which is the probability for a model M (e.g. describing the Globins) to generate the sequence s_i ?

The question we want to answer is:

Given a sequence s_i , does it belong to the class described by the model M? (e.g. is it a Globin?)

We need to compute $P(M \mid s_i)$

Bayes Theorem

$$P(X,Y) = P(X \mid Y) P(Y) = P(Y \mid X) P(X)$$
 Joint probability

$$P(Y \mid X) = \frac{P(X \mid Y) P(Y)}{P(X)}$$

$$P(M \mid s_i) = \frac{P(s_i \mid M) P(M)}{P(s_i)}$$

P(M) and $P(s_i)$ A priori probabilities

P(M) is the probability of the model (i.e. of the class described by the model) BEFORE we know the sequence:

Can be estimated as the abundance of the class

 $P(s_i)$ is the probability of the sequence in the sequence space.

Cannot be reliably estimated!!

Comparing Models

We can overcome the problem comparing the probability of generating s_i from different models

$$\frac{P(M_1 \mid s_i)}{P(M_2 \mid s_i)} = \frac{P(s_i \mid M_1) P(M_1)}{P(s_i)} \frac{P(s_i)}{P(s_i \mid M_2) P(M_2)} = \frac{P(s_i \mid M_1) P(M_1)}{P(s_i \mid M_2) P(M_2)}$$

$$\frac{P(M_1)}{P(M_2)}$$

Ratio between the abundances of the classes

Null Model

Alternatively, we can score a sequence for a model M comparing it to a Null Model:

a model that generates ALL the possible sequences with probabilities depending ONLY on letter (e.g. residue) statistical abundance

$$S(M \mid s_i) = log \frac{P(s_i \mid M)}{P(s_i \mid N)}$$
Sequences NOT belonging to model M

Sequences belonging to model M

In this case we need a threshold and a statistic for evaluating the significance (E-value, P-value)

A Simple Model

Time series of the weather conditions as a first hypothesis the weather condition in a day probabilistically depends ONLY on the weather conditions in the day before.

Define the conditional probabilities

P(CIC), P(CIR),.... P(RIC).....

The probability for the 5-days registration

CRRCS

 $P(CRRCS) = P(C) \cdot P(RIC) \cdot P(RIR) \cdot P(CIR) \cdot P(SIC)$

C: Clouds

R: Rain

F: Fog

S: Sun

Markov Model

Stochastic generator of sequences in which the probability of state in position *i* depends ONLY on the state in position *i-1*

Given a set of states (== alphabet)

$$C = \{c_1; c_2; c_3; \dots c_N \}$$

a Markov model is described with $N \times (N+2)$ parameters

 $\{a_{r,t}, a_{BEGIN,t}, a_{r,END} \text{ with } r, t \in C\}$

$$a_{r,q} = P(s_i = q \mid s_{i-1} = r)$$
 $a_{BEGIN,q} = P(s_1 = q)$
 $a_{r,END} = P(s_T = END \mid s_{T-1} = r)$

$$\sum_{t} a_{r,t} + a_{r,END} = 1 \ \forall \ r$$

$$\sum_{t} a_{BEGIN,t} = 1$$

All transitions going out from a state sum up to 1

Sequence Probability

Given the sequence:

$$s = s_1 s_2 s_3 s_4 s_6 \dots s_T$$
 with $s_i \in C = \{c_1; c_2; c_3; \dots c_N\}$

$$P(s \mid M) = P(s_1) \prod_{i=2}^{T} P(s_i \mid s_{i-1}) =$$

$$a_{BEGIN,s_1} \times \prod_{i=2}^{T} a_{s_{i-1},s_i} \times a_{s_{i}} \times a_{s_{i}}$$

$$P(ALKALI) = a_{BEGIN,A} \times a_{A,L} \times a_{L,K} \times a_{K,A} \times a_{A,L} \times a_{L,I} \times a_{I,END}$$

Probability Constrains

What are the missing probabilities given the constrains?

What is the better model to describe the weather in winter?

Probability Calculation

Consider the sequence "CSSSCFS" and calculate its probability with both models when $P(X \mid BEGIN) = 0.25$

P(CSSSCFS | Winter) = 0.25×0.1×0.2×0.2×0.3×0.2×0.2

P(CSSSCFS | Summer) = 0.25×0.4×0.8×0.8×0.1×0.1×1.0

To which season the weather sequence is more likely to belong?

Models Comparison

P (Seq I Winter) = 1.2×10^{-5}

0.4

P (Seq I Summer) = 6.4×10^{-4}

$$\frac{P(Summer | Seq)}{P(Winter | Seq)} = \frac{P(Seq | Summer)}{P(Seq | Winter)} \times \frac{P(Summer)}{P(Winter)} \quad with \quad \frac{P(Summer)}{P(Winter)} \approx \frac{P(Summer)}{P(Winter)} = \frac{P(Seq | Summer)}{P(Winter)} =$$

0.2

Modeling GpC Islands

In the Markov Model of GpC Islands a_{GC} is higher than in Markov Model Non-GpC Islands

$$P(GpC \mid s) = \frac{P(s \mid GpC) \times P(GpC)}{P(s \mid GpC) \times P(GpC) + P(s \mid notGpC) \times P(notGpC)}$$

Demonstration

We assume that only two models (GpC and notGpC) are possible.

$$P(s) = P(s,GpC) + P(s,notGpC)$$

Given the Bayes Theorem

$$P(s) = \frac{P(s \mid GpC) \times P(GpC)}{P(GpC \mid s)} = P(s \mid GpC) \times P(GpC) + P(s \mid notGpC) \times P(notGpC)$$

Thus,

$$P(GpC \mid s) = \frac{P(s \mid GpC) \times P(GpC)}{P(s \mid GpC) \times P(GpC) + P(s \mid notGpC) \times P(notGpC)}$$

Training of the Method

Generally speaking, a parametric model M aims to reproduce a set of known data

How to compare them?

Maximum Likelihood

Let θ_M be the set of parameters of model M.

During the training phase, θ_M parameters are estimated from the set of known data D

Maximum Likelihood Estimation (ML)

 $\theta^{ML} = argmax_{\theta} P(DIM, \theta)$

Training Proof

Given a sequence s contained in D: $s = s^1 s^2 s^3 s^4 s^6 \dots s^T$

$$P(s \mid M) = a_{BEGIN,s^{1}} \cdot \prod_{i=2}^{T-1} a_{s^{i}s^{i+1}} \cdot a_{s^{T}END}$$

We can count the number of transitions between any to states j and k: nj_k

$$P(s \mid M) = \prod_{j=0}^{N+1} \prod_{k=0}^{N+1} a_{jk}^{n_{jk}}$$
 Where states 0 and N+1 are BEGIN and END

On top of this, keep in mind that normalization constraints must be satisfied for each state

$$\forall j: \sum_{k'=0}^{N} a_{jk'} = 1$$

So the likelihood has to be maximized on the variety defined by the normalization constraints. How we do that?

Maximum Likelihood

Let θ_M be the set of parameters of model M.

During the training phase, θ_M parameters are estimated from the set of known data D

Maximum Likelihood Estimation (ML)

$$\theta^{ML} = argmax_{\theta} P(DIM, \theta)$$

It can be proved that:
$$a_{ik} = \frac{n_{ik}}{\sum_{j} n_{ij}}$$

Frequency of occurrence as counted in the data set *D*

Maximum A Posteriori Estimation

$$\theta^{MAP} = argmax_{\theta} P(\theta | M, D) = argmax_{\theta} [P(D | M, \theta) \times P(\theta)]$$

Example with Dice

We have 99 regular dice (\mathbf{R}) and 1 loaded die (\mathbf{L}).

Given a sequence of numbers:

4156266656321636543662152611536264162364261664616263

What is the sequence of dice that generated it?

Hypothesis

We chose a different die for each roll

Two stochastic processes give origin to the sequence of observations.

1) Choosing the die (R o L).

2) Rolling the die

The sequence of dice is hidden

The first process is assumed to be Markovian (in this case a 0-order MM)

The outcome of the second process depends only on the state reached in the first process (that is the chosen die)

Casinò

Each state (\mathbf{R} and \mathbf{L}) generates a character of the alphabet $\mathbf{C} = \{1, 2, 3, 4, 5, 6\}$

The emission probabilities depend only on the state.

The transition probabilities describe a Markov model that generates a state path: the hidden sequence (π)

The observations sequence (s) is generated by two concomitant stochastic processes

One Step

Choose the State: R Probability= 0.99

Chose the Symbol: 1 Probability= 1/6 (given R)

Alternative Step

Choose the State: L Probability= 0.01

Chose the Symbol: 5 Probability= 1/10 (given *L*)

4156266656321636543662152615

RRRRRLRLRRRRRRRRRRRRRRRRRRL

Some applications

1) **DEMOGRAPHY**

Observable: Number of births and deaths in a year in a village.

Hidden variable: Economic conditions (as a first approximation we can consider the success in business as a random variable, and by consequence, the wealth as a Markov variable

—> can we deduce the economic conditions of a village during a century by means of the register of births and deaths?

2) THE METEREOPATHIC TEACHER

Observable: Average of the marks that a meteoropathic teacher gives to their students during a day.

Hidden variable: Weather conditions

-> can we deduce the weather conditions during a years by means of the class register?

In Bioinformatics

1) **SECONDARY STRUCTURE**

Observable: protein sequence

Hidden variable: secondary structure

---> can we deduce (predict) the secondary structure of a protein given its amino acid sequence?

2) ALIGNMENT

Observable: protein sequence

Hidden variable: position of each residue along the alignment of a protein family

---> can we align a protein to a family, starting from its amino acid sequence?

Exercise

Given the observation sequence:

CCCFFCRRCCSSSSFSFRRFFSSF

and the model on the left

Write a script to set the parameters of the Markov Model that maximize the probability of the sequence

