A Bayesian approach for Non Parametric Regression

MTH673A Project

Arvind Singh Yadav

Department of Mathematics and Statistics Indian Institute of Technology Kanpur

February 19, 2022

Overview

- 1. Setup
- 2. Mercer Theorem
- 3. An Example of Kernel
- 4. Non Parametric Regression using Gaussian Processes
- 5. Estimation
- 6. Prediction using Gaussian Process

Setup

- We are observing X_i , Y_i and have a model $\mathbb{M} = \{p(y|m) : m \in \Theta\}$ where i = 1(1)n. We put a prior $\pi(m)$ on the function m.
- Compute the posterior distribution using Bayes' rule
- $\pi(m|y) = \frac{L(m)\pi(m)}{m(Y)}$
- $Y = (Y_1, ..., Y_n), L(m) = \prod p(y_i|m)$ is the likelihood function
- m(y) is the marginal distribution for the data induced by the prior and the model.

Mercer Theorem

- The sample $S = x_1, ..., x_n$ includes n examples.
- For $S \in \mathcal{X} \subset R^d$ kernel function $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$
- The Kernel matrix K is an $n \times n$ matrix such that $K_{i,j} = k(x_i, x_j)$ and K is symmetric.
- A symmetric function K is a mercer kernel iff for any finite sample S the kernel matrix for S is positive semi-definite.

An Example of Kernel

Following is the structure of kernel

$$K(x) = \begin{bmatrix} k(x_1, x_1) & k(x_1, x_2) & \dots & k(x_1, x_n) \\ k(x_2, x_1) & k(x_2, x_2) & \dots & k(x_2, x_n) \\ \dots & \dots & \dots & \dots \\ k(x_n, x_1) & k(x_n, x_2) & \dots & k(x_n, x_n) \end{bmatrix}$$

• The most widely used co-variance function of this class is arguably the squared exponential function, given by:

$$k(x_i, x_j) = h^2 exp[-(\frac{x_i - x_j}{\lambda})^2]$$
 (1)

where h and λ are hyperparameters.

Gaussian Process

• Consider the non parametric regression model:

$$Y_i = m(X_i) + \epsilon_i \tag{2}$$

where $E(\epsilon_i) = 0$, i=1(1)n

• A stochastic process m(x) indexed by $x \in \mathcal{X} \subset R^d$ is a Gaussian process if for each $x_1, ..., x_n \in \mathcal{X}$ the vector $m(x) = (m(x_1), m(x_2), ..., m(x_n))$ is Normally distributed:

$$(m(x_1), m(x_2), ..., m(x_n)) \sim N_n(\mu(x), K(x))$$
 (3)

where

• $\mu(x) = \mathbb{E}(m(x))$ and K(x) is a mercer kernel .The model is summarized as:

$$m \sim \pi$$
 (4)

$$Y_1, \dots, Y_n | m \sim p(y|m) \tag{5}$$

Estimation

• Assume that $\mu = 0$. Then for given $x_1, ..., x_n$ the density of the Gaussian process prior of $m = (m(x_1), ..., m(x_n))^T$ is given as:

$$\pi(m) = (2\pi)^{-n/2} |K|^{-1/2} \exp(-\frac{1}{2} m^T K^{-1} m)$$
 (6)

• Let $m = K\alpha$, then $\alpha \sim N_n(0, K^{-1})$ then density of alpha is given as :

$$\pi(\alpha) = (2\pi)^{-n/2} |K|^{-1/2} \exp(-\frac{1}{2}\alpha^T K\alpha)$$
 (7)

Estimation(continued...)

• Since $Y_i = m(X_i) + \epsilon_i$ and $\epsilon_i \sim N(0, \sigma^2)$ we can write the log likelihood as :

$$log(p(y|m)) = -\frac{1}{2\sigma^2} \sum_{i} (y_i - m(x_i))^2 + c_1$$
 (8)

• The log-posterior is given by:

$$log(p(y|m)) + log(\pi(m)) = -\frac{1}{2\sigma^2}||(y - K\alpha)||^2 - \frac{1}{2}\alpha^T K\alpha + c_2$$
 (9)

Estimation(continued...)

• In this Bayesian setup, MAP estimation corresponds to Mercer kernel regression is the posterior mean given as:

$$\mathbb{E}(\alpha|Y) = (K + \sigma^2 I)^{-1} Y \tag{10}$$

Hence:

$$\hat{m} = \mathbb{E}(m|Y) = \mathbb{E}(K\alpha|Y) = K(K + \sigma^2 I)^{-1}Y$$
(11)

Prediction

• To compute the predictive distribution for a new point $Y_{n+1} = m(x_{n+1}) + \epsilon_{n+1}$, we note that $(Y_1, ..., Y_n) \sim N_n(0, (K + \sigma^2 I))$ also $(m(x_1), ..., m(x_n), m(x_{n+1}))$ will have following kernel :

$$K_{(x_1,...,x_n,x_{n+1})} = \begin{bmatrix} k(x_1,x_1) & k(x_1,x_2) & \dots & k(x_1,x_{n+1}) \\ k(x_2,x_1) & k(x_2,x_2) & \dots & k(x_2,x_{n+1}) \\ \dots & \dots & \dots & \dots \\ k(x_{n+1},x_1) & k(x_{n+1},x_2) & \dots & k(x_{n+1},x_{n+1}) \end{bmatrix}$$

Prediction (Continued...)

• Let z be the vector such that $z = (k(x_1, x_{n+1}, \dots, k(x_n, x_{n+1}))^T$ then $(Y_1, \dots, Y_n, Y_{n+1})$ is jointly Gaussian with covariance

$$\begin{bmatrix} K + \sigma^2 I & z \\ z^T & k(x_{n+1}, x_{n+1}) + \sigma^2 \end{bmatrix}$$

• so, conditional distribution of γ_{n+1} is

$$Y_n + 1|Y \sim N(z^T(K + \sigma^2I)^{-1}Y, k(x_{n+1}, x_{n+1}) + \sigma^2 - z^T(K + \sigma^2I)^{-1}z))$$
 (12)

Conclusion

- $\hat{m} = K(K + \sigma^2 I)^{-1} Y$
- Comparing it with kernel regression it can be more complex because we have to choose the appropriate merecer kernel for every data.
- It is computationally expensive.