

Instituto Tecnológico de Aeronáutica

Programa de Pós-Graduação em Engenharia de Infraestrutura Aeronáutica Programa de Pós-Graduação em Engenharia Aeronáutica e Mecânica

Prova de Seleção – 1º semestre de 2016 – Questões de Matemática

5 de novembro de 2015

Nome do Candidato

Observações

- 1. Duração da prova: 90 minutos (uma hora e meia)
- 2. Não é permitido o uso de calculadoras ou outros dispositivos eletrônicos
- 3. Cada pergunta admite uma única resposta
- 4. Marque a alternativa que considerar correta na tabela abaixo
- 5. Utilize o verso das folhas para a resolução das questões

Questão	01	02	03	04	05	06	07	08	09	10	11	12	13	14	15	16
Resp.																

Questões em Português

- 1. A equação |x|+|y|+|z|=1 representa, no espaço de coordenadas $(x,y,z)\in\mathbb{R}^3$,
 - (a) uma esfera centrada na origem
 - (b) um cubo centrado na origem com faces perpendiculares aos eixos cartesianos
 - (c) um cubo centrado na origem com faces inclinadas em relação aos eixos cartesianos
 - (d) um octaedro centrado na origem
 - (e) nenhuma resposta está correta.

- 2. Em uma gincana, um jogador é colocado à frente de três portas iguais, sabendo que ganhará um prêmio se abrir a porta certa. Ele escolhe uma das portas; porém, antes de abrí-la, o organizador da gincana abre uma das outras duas portas restantes, mostrando que não existe prêmio nesta porta aberta. Depois disso, o organizador oferece ao jogador a possibilidade de trocar sua escolha para a terceira porta, que não havia sido escolhida pelo jogador, nem aberta pelo organizador. O jogador aceita a oferta. Fazendo isso, o jogador:
 - (a) diminuiu a probabilidade de acertar a porta premiada em 50%
 - (b) permaneceu com a mesma probabilidade de acertar a porta premiada
 - (c) aumentou sua probabilidade de acertar em 50%
 - (d) aumentou sua probabilidade de acertar em 100%
 - (e) nenhuma resposta está correta.
- 3. Sobre a equação do segundo grau em x

$$-a \cdot b \cdot x^2 + (a-b) \cdot x - 1 = 0,$$

sabe-se que $a \cdot b \neq 0$. Sobre os seguintes eunuciados,

- (I) a soma das raízes é $\frac{1}{a} \frac{1}{b}$
- (II) pode-se sempre calcular x pela fórmula de Bhaskara
- (III) as soluções sempre serão reais
- (IV) o produto das raízes é $-\frac{1}{a \cdot b}$

pode-se dizer que

- (a) todas as afirmativas são falsas
- (b) apenas uma das afirmativas é verdadeira
- (c) apenas duas das afirmativas são verdadeiras
- (d) apenas três das afirmativas são verdadeiras
- (e) todas as afirmativas sao verdadeiras
- 4. Se P é o perímetro de um triângulo equilátero, qual dos seguintes valores corresponde à sua altura?
 - (a) $\frac{P}{3}$
 - (b) $\frac{\sqrt{3}}{3}P$
 - (c) $\frac{P}{4}$
 - (d) $\frac{\sqrt{3}}{6}P$
 - (e) $\frac{P}{6}$

- 5. Quantos valores diferentes podem ser obtidos para a soma de três números, escolhidos arbitrariamente (sem repetição) do conjunto $\{1, 2, 3, 4, \dots 15\}$?
 - (a) 37
 - (b) 42
 - (c) $15 \cdot 14 \cdot 13$
 - (d) $\frac{15 \cdot 14 \cdot 13}{3 \cdot 2 \cdot 1}$
 - (e) 15^3
- 6. Podemos escolher 4 entre n objetos de 15 modos diferentes, caso a ordem deles não seja importante. Qual o valor de n?
 - (a) 5
 - (b) 6
 - (c) 7
 - (d) 8
 - (e) 10
- 7. Na Figura 1, o triângulo ABC é mostrado com o segmento AE passando pelo centro do círculo inscrito e o segmento AE' passando pelo centro do círculo exinscrito. E e E' pertencem à reta de suporte do lado BC. Considere os seguintes enunciados:
 - (I) $\angle BAE = \angle EAC$
 - (II) E e E^\prime são conjugados harmônicos de B e C
 - (III) $\frac{BE'}{BA} = \frac{CE'}{CA}$
 - (IV) $\angle EAE' = 90^{\circ}$

pode-se dizer que

- (a) todas as afirmativas são falsas
- (b) apenas uma das afirmativas é verdadeira
- (c) apenas duas das afirmativas são verdadeiras
- (d) apenas três das afirmativas são verdadeiras
- (e) todas as afirmativas sao verdadeiras

Figura 1: Triângulo com círculos inscrito e exinscrito

Figure 2: Triangle with a line intersecting two sides and the extension of another

8. Um certo restaurante possui uma demanda de uma entrega de um prato por dia, nos sete dias da semana. A empresa de entrega cobra r reais por entrega mais c centavos por prato entregue. Na semana passada, este restaurante teve uma média de x pedidos de pratos individuais por dia. Qual o custo total, em reais, das entregas da última semana?

(a)
$$\frac{7 c r x}{100}$$

(b)
$$r + \frac{7 c x}{100}$$

(c)
$$7r + \frac{cx}{100}$$

(d)
$$7rx + \frac{7cx}{100}$$

(e)
$$7crx$$

Questões em Inglês

9. Figure 2 shows triangle ABC, with line EDF intersecting two sides and the extension of the third. According to Menelau's theorem, the following vector equality must hold:

(a)
$$\frac{\overrightarrow{AF}}{\overrightarrow{FB}} \frac{\overrightarrow{BD}}{\overrightarrow{DC}} \frac{\overrightarrow{EA}}{\overrightarrow{CE}} = -1$$

(b)
$$\overrightarrow{AF} \overrightarrow{BD} \overrightarrow{CE} = -1$$

(c)
$$\frac{\overrightarrow{AF}}{\overrightarrow{FB}} \frac{\overrightarrow{DC}}{\overrightarrow{BD}} \frac{\overrightarrow{CE}}{\overrightarrow{EA}} = -1$$

(d)
$$\frac{\overrightarrow{AF}}{\overrightarrow{FB}} \frac{\overrightarrow{DC}}{\overrightarrow{BD}} \frac{\overrightarrow{EA}}{\overrightarrow{CE}} = -1$$

- (e) none of the above expressions correspond to Menelau's theorem.
- 10. A geometric progression has $a_0 = 1$ and q = 3. The average of the first five terms is
 - (a) 9
 - (b) 13
 - (c) 16.2
 - (d) 24.2
 - (e) 41

11. The system

$$\begin{cases} x_1 &= 1\\ 2x_1 - x_2 &= 0\\ 2x_2 - x_3 &= 0\\ \vdots &= \vdots\\ 2x_8 - x_9 &= 0\\ 2x_9 - x_{10} &= 0 \end{cases}$$

- (a) has $x_{10} = -512$ as part of its solution
- (b) has $x_{10} = 0$ as part of its solution
- (c) has $x_{10} = 512$ as part of its solution
- (d) has no real solution
- (e) has several solutions and is not determined.

12. In the polynomial expression

$$(x+y+z)^3 = a_{003}x^3 + a_{012}x^2y + a_{021}xy^2 + a_{102}x^2z + a_{111}xyz + a_{120}y^2z + a_{201}xz^2 + a_{210}yz^2 + a_{300}z^3,$$

 a_{111} is

- (a) 2
- (b) 3
- (c) 6
- (d) 9
- (e) 15
- 13. Working at a constant rate, Alice can finish a job in 6 hours. Bob, also working at a constant rate, can finish the same task in 3 hours. At last, if Clark works at a constant rate, he can finish the same task of Alice and Bob in 2 hours. If Alice, Bob and Clark work together in this task, each of them at his/her respective constant rate, how much time they will take to finish it?
 - (a) 30 minutes
 - (b) 40 minutes
 - (c) 60 minutes
 - (d) 1 hour and 50 minutes
 - (e) 2 hours
- 14. If n is a positive integer, which of the following must be odd?
 - (a) (n+1)(n+1)
 - (b) (n+2)(n+4)
 - (c) (n+2)(n+5)
 - (d) n(n+4)+1
 - (e) (n+4)(n+3)-1

Figure 3: Paralelogram (drawing not in real scale)

- 15. Are a and b a positive integers?
 - (I) a + b is a positive integer
 - (II) $a \cdot b$ is a positive integer
 - (a) Statement (I) *alone* is sufficient, but statement (II) alone is not sufficient to determine it
 - (b) Statement (II) alone is sufficient, but statement (I) alone is not sufficient to determine it
 - (c) Both statements together are sufficient, but neither statement alone is not sufficient to determine it
 - (d) Each statement alone is sufficient to determine it
 - (e) Statements (I) and (II) together are not sufficient
- 16. In the paralelogram of Figure 3, 3a = b. What is the value of b a?
 - (a) 2
 - (b) 30
 - (c) 45
 - (d) 90
 - (e) 135