M 621 notes: Week of 10.17

Here's a list of the topics we covered. Discussion of those topics follows the list. Below G is a group.

- 1. Some Chapter 3 topics that were discussed.
 - (a) We proved that if $G \geq H$ and [G : H] = 2, then H is a normal subgroup of G.
 - (b) We reviewed the Fourth Isomorphism Theorem (also known as the Correspondence Theorem). For a group G, let Sub(G) denote the lattice of subgroups of G. For a subgroup H of G, let $I[H,G] = \{J \leq G : J \geq H\}$, the interval above H in Sub(G). A statement of most of the Fourth Isomorphism Theorem follows.

Proposition 0.1 Let G be a group with normal subgroup N. The map $S: I[N,G] \to Sub(G/N)$ given by S(K) = K/N for all $K \in I[N,G]$ is

- i. a bijective order-preserving function
- ii. that maps normal subgroups in I[N,G] to normal subgroups of G/N, and
- iii. whenever A is normal in G/N, $S^{-1}(A)$ is normal in G.

Scott, Christen, and Yuenyen will present a solid sketch of the proof of the above proposition.

- (c) Maximal subgroups and maximal normal subgroups of G were defined and discussed, and it was observed that if G is a finite group, it contains a maximal normal subgroup (perhaps even several maximal normal subgroups).
- (d) We reviewed the definition of *simple group*. A group G is simple if its only normal subgroups are $\{e\}$ and G. That is, G is simple if it has no proper, non-trivial normal subgroups.
- (e) It follows from the Fourth Isom. Theorem that if G is a group, N is a normal subgroup of G, then G/N is simple if and only if N is a maximal normal subgroup of G.
- (f) We classified the Abelian simple groups, showing that G is a simple Abelian group if and only if there exists a prime p such that $G \cong \mathbb{Z}_p$.

- (g) We defined the *composition series* of a group G: A composition series an "increasing chain" of subgroups $H_0 = \{e\} \bowtie H_1 \bowtie H_2 \dots H_{n-1} \bowtie H_n = G$ satisfying for all all $i = 1, \dots, n$,
 - i. $H_{i-1} \leq H_i$, and
 - ii. H_i/H_{i-1} is a simple group.
- (h) We provided several examples of composition series. For examples, with $G = Z_2 \times Z_3$, and $H_1 = \{(g, e) : g \in Z_2\}$ and $H_2 = \{(e, h) : h \in Z_3\}$, consider
 - i. $\{e\} \leq H_1 \leq H_1 \times H_2 = G$
 - ii. $\{e\} \leq H_2 \leq H_1 \times H_2 = G$

These are both composition series for G. (Thus, a group G can have more than one composition series). Let $G = D_8$. Another example:

- i. $\{e\} \leqslant \langle r^2 \rangle \leqslant \langle r \rangle \leqslant D_8$.
- ii. $\{e\} \leqslant \langle s \rangle \leqslant \langle s, r^2 \rangle \leqslant D_8$.

Be sure you can explain why both of the above are composition series of D_8 —that is, you can show that both properties that comprise the definition of composition series are valid for the above two sequences of subgroups of D_8 .

Here's a short answer question. Complete: A group G has a composition series of length 1 (i.e., $\{e\} \leq G$ is a composition series) if and only if G is simple.

(i) We defined the factors of a composition series $H_0 = \{e\} \leq H_1 \leq H_2 \dots H_{n-1} \leq H_n = G$ is the multiset of simple groups $\{N_i/N_{i-1} : i = 1, \dots, n\}$.

For examples, the factors of the first composition series for $G = Z_2 \times Z_3$ are (up to isomorphism) Z_2, Z_3 , and the factors for the second series are Z_3, Z_2 .

For further examples, the factors of the first composition series are (up to isomorphism) Z_2, Z_2, Z_2 ; the second series for D_8 also has factors Z_2, Z_2, Z_2 .

(j) We stated Holder's Theorem.

Theorem 0.2 Holder's Theorem For any two composition series of a group G, including multiplicities, the factors of each series are the same.

(k) We defined the notion of a solvable group. A group G is solvable if all of its factors are Abelian.

As witnessed by their composition series, both $Z_2 \times Z_3$ and D_8 are solvable groups.

Later, we will show that A_5 is simple. Explain why the following is true: "Since A_5 is simple and non-Abelian, A_5 is not solvable".

- (l) **Exercise.** Every finite Abelian group is solvable. Reed, YoYo, and Israel will explain this.
- 2. The following topics from Chapter 4 were discussed.
 - (a) The Orbit-Stabilizer Proposition: Let G be a group acting on a set A. Then for all $a \in A$ we have $|O_a| = [G:G_a]$. Proof: Let $g, h \in G$, and let a, b be in A. We show that there is a bijection between O_a and the left cosets of G_a in G: We have $g \cdot a = b$ and $h \cdot a = b$ if and only if $h^{-1}g \cdot a = a$ if and only if $h^{-1}g \in G_a$ if and only if $hG_a = gG_a$. It is now easy to establish that the map $gG_a \to g \cdot a$ defines a bijection from the left cosets of G_a in G to the elements of O_a . \square
 - (b) Let G act on itself by conjugation. That is, for $g \in G$ and $h \in G$, $g \cdot h = ghg^{-1}$, an action (as you can and should verify). Let $h \in G$. The orbit of h under the action is $\{g \cdot h = ghg^{-1} : h \in G\}$, the set of conjugates of h. We refer to the orbit of h as the *conjugacy class of* h.

Examples: Let's take at the conjugacy classes of S_3 . Here they are: $\{e\}$, $\{(12), (13), (23)\}$, $\{(123), (132)\}$. In general, for S_n , with the exception of the conjugacy class of e (which is $\{e\}$), each conjugacy class is associated with a "shape". For example, here are the possible shapes of S_4 : 2 (the transpositions); 2, 2 (the elements of the form (ij)(kl), disjoint 2-cycles) 3 (the 3-cycles) and 4 (the 4-cycles).

As we observed in the stabilizer of h is $C_G(h)$, the centralizer of h in G. So the Orbit-Stabilizer formula gives us the size of the conjugacy class of h—it is $[G:C_G(h)]$. Test this: The conjugacy class of (123) in S_4 is the set of all three-cycles in S_4 , of which there are 8. On the other hand, $C_{S_4}(123) = \{\alpha \in S_4 : \alpha(123)\alpha^{-1} = (123)\} = \{e, (123), (132)\}$, as you can easily verify. So the conjugacy class of (123) should have $[G:C_{S_4}((123))] = \frac{24}{3} = 8$, which agrees with our original observation.

- (c) We reviewed Aut(G), the emphautomorphisms of G, and Z(G), the *center* of G, and connected them.
 - i. We observed that Aut(G) is a group—it's operation is function composition. Be sure you can verify that Aut(G) is a group.
 - ii. We defined the set of inner automorphisms of G: Let $g \in G$. The function $c_g : G \to G$ given by for all $h \in G$, $c_g(h) = ghg^{-1}$, is an automorphism of G, a so-called inner automorphism of G. The set of all inner automorphisms of G, denoted Inn(G), is a subgroup of Aut(G). Suppose c_g is the inner automorphism given by conjugation by g, and that σ is an arbitrary automorphism of G. Determine $\sigma c_g \sigma^{-1}$. Is it an inner automorphism? Is Inn(G) normal in Aut(G)?
 - iii. We commented that Inn(G) is trivial if and only if G is Abelian.
 - iv. Let $n \in \mathbb{N}$, $G = Z_n$. Let $m \in Z_n$. The map $\lambda_m : Z_n \to Z_n$ given by $\lambda_m(k) = mk$, for all $k \in Z_n$, is easily checked to a homomorphism. Conversely, suppose $\phi : Z_n \to Z_n$ is a homomorphism, and that $\phi(1) = m \in Z_n$. Since ϕ is a homomorphism, for any $k \in \mathbb{Z}_n$, $\phi(k) = \phi(1 + \ldots + 1) = \phi(1) + \ldots + \phi(1) = mk = \lambda_m(k)$. That is, all homomorphisms with co-domain Z_n are of the form λ_m , where $m \in Z_n$. The image of λ_m is clearly S < m >, the cyclic subgroup of Z_n generated by m. So in order for λ_m to be an automorphism, $m > \infty$ and this is the case if and only if $m > \infty$. Notice that $m > \infty$ and this is the given mod $m > \infty$. It follows now that $m > \infty$, the group of units of $m > \infty$.
 - v. The map $\Gamma: G \to Inn(G)$ given by $g \to c_g$, for all $g \in G$. The map Γ is a homomorphism, as we showed. Its kernel is

- Z(G), as you are asked to verify. By the First Isomorphism Theorem, $G/Z(G) \cong Inn(G)$.
- vi. We proved the following classic proposition, followed by an important corollary.

Proposition 0.3 Let G be a group. We have G/Z(G) cyclic implies G Abelian.

Proof. Since G/Z(G) is cyclic, there exists $hZ(G) \in G/Z(G)$ such that $G/Z(G) = \langle hZ(G) \rangle$. Let $u, v \in G$. Since the cosets partition G, there exists $i, j \in \mathbb{Z}$ and $z_1, z_2 \in Z(G)$ such that $u = h^i z_1, v = h^j z_2$. So $uv = h^i z_1 h^j z_2 = h^i h^j z_1 z_2 = h^j h^i z_1 z_2 = h^j z_2 h^i z_1 = vu$. \square

vii. We discussed the Class Equation: Let G be a finite group. We observed that an element $g \in G$ has a singleton conjugacy class if and only if $g \in Z(G)$ if and only if $C_G(g) = G$.

Suppose A_1, \ldots, A_n are the non-singleton conjugacy classes of G. From each non-singleton class A_i , choose a representative $a_i \in A_i$. By the Orbit-Stabilizer result, $|A_i| = [G; C_G(a_i)]$.

Note that $|G| = |Z(G)| + \sum_{i=1}^{i=n} |A_i| = |Z(G)| + \sum_{i=1}^{i=n} [G:A_i]$ —this is the Class Equation.

viii. Let p be a prime. We defined p-group. A group G is a p-group if there exists $n \in \mathbb{N}$ such that $|G| = p^n$.

Lemma 0.4 If G is a p-group, then G has a non-trivial center.

Proof. We refer to the Class Equation. If G is a p-group, A_i is a non-singleton conjugacy class and $a_i \in A_i$, then $[G:C_G(a_i)]=|A_i|$. Since A_i is not a singleton class, $C_G(a_i)$ is a proper subgroup of G. Since G is a p-group, $[G:C_G(a_i)]=|G|/|C_G(a_i)|=p^k$, where k>0. Thus, $p|\sum_{i=1}^{i=n}[G:A_i]$, which implies that p||Z(G)|, which means that Z(G) is non-trivial. \square

ix. We have classified all groups have a prime number of elements. We do the same for group with p^2 elements, where p is prime. Corollary 0.5 Let p be prime. If $|G| = p^2$, then G is Abelian. Moreover, G is either isomorphic to Z_{p^2} or is isomorphic to $Z_p \times Z_p$.

Proof. Since G is a p-group, it has a non-trivial center Z(G). If Z(G) = G, G is Abelian, and there is nothing further to prove. If Z(G) were not G, then |Z(G)| = p, and |G/Z(G)| = p, so G/Z(G) is cyclic. But then (by an ear If not, $|Z(G)||p^2$, so |Z(G)| = p, and |G/Z(G)| = p, so G/Z(G) is cyclic, and by Proposition 0.3, G is Abelian after all.

For the second part, if G is cyclic, then $G \cong Z_{p^2}$; if G is not cyclic, for any $a \in G - \{e\}$, |a| = p. Since G is not cyclic, there exists $b \in G$ such that $b \notin G - \langle a \rangle$. Since $|b| = |\langle b \rangle = p = |a| = |\langle a \rangle|$. By Lagrange, $\langle a \rangle \cap \langle b \rangle - \{e\}$. Since $|\langle a \rangle| |\langle b \rangle| / |\langle a \rangle \cap \langle b \rangle|$, it follows that $\langle a \rangle \langle b \rangle = G$. Now apply the homework exercise: $G \cong \langle a \rangle \times \langle b \rangle$, and since $\langle a \rangle \cong Z_p \cong \langle b \rangle$, $G \cong Z_p \times Z_p$. \square