2024 年上海市高等学校信息技术水平考试试卷

四级 人工智能(A 场)

(本试卷考试时间 150 分钟)
一、单选题 (本大题 15 道小题 , 每小题 1 分, 共 15 分), 从下面题目给出的 A、B、
C、D 四个可供选择的答案中选择一个正确答案。
1. 大模型性能评估中,准确性评估的常见指标不包括。
A. 准确率
B. 精确度
C. 召回率
D. 吞吐量
2. 常见的模型评估方法中,是准确率(Accuracy)的正确描述。
A. 正确预测的样本数占总样本数的比例
B. 所有被预测为正类样本占总样本数的比例
C. 实际的正类样本占总样本数的比例
D. 实际的正类样本占所有被预测为正类样本的比例
3. 在线性回归模型中,使用最小二乘法求解参数、这基于的假设是。
A. 线性假设
B. 误差项服从正态分布
C. 独立变量和因变量之间存在因果关系
D. 非线性假设
4. LDA 的局限性是指。
A. LDA 假设各类别样本的协方差矩阵相同,这在实际情况中可能不总是成立
B. LDA 假设各类别样本的矩阵相同,这在实际情况中可能不总是成立
C. LDA 假设各类别样本相同,这在实际情况中可能不总是成立
D. LDA 假设各类别样本交叉矩阵相同,这在实际情况中可能不总是成立
5. 决策树算法的优点是。
A. 易于理解和解释
B. 需要样本数据较少
C. 处理多分类问题效果最好
D. 仅能用于回归
6. 在一个包含大量离散特征且类别分布不均衡的数据集上,使用决策树进行分类。关于增
益率正确的描述是。
A. 增益率能够有效避免因特征取值过多而导致的偏差,提高分类准确性
B. 增益率在这种数据集上效果不佳,不如信息增益
C. 增益率与信息增益效果相同,对分类准确性没有影响

D. 增益率在这种数据集上无法发挥作用

7. 在支持向量机中,会使用软间隔分类器的情况是。 A. 数据集线性不可分 B. 数据集存在噪声 C. 多分类问题 D. 二分类问题
8. 在一个感知机中,负责实现逻辑运算的部分。 A. 激活函数 B. 输出层 C. 隐藏层 D. 输入层
9. 假定在神经网络中的隐藏层中使用激活函数 X, 在特定神经元给定任意输入, 会得到输出[-0.0001]。该激活函数可能是。 A. Tanh B. ReLU C. Sigmoid D. 所有选项均不正确
10. 常见的神经网络优化策略可以
11. 在 KPCA 中,将原始数据非线性映射到高维空间后,再把数据从高维空间投影降维到需要的维数,这个维数通常应。 A. 等于原始数据的维度 B. 大于原始数据的维度 C. 小于原始数据的维度 D. 与原始数据的维度无关
12
13

14. 反向传播算法主要需要计算。
A. 神经元输出值对于输入值(包括上一层神经元的输出)的梯度
B. 目标函数的梯度
C. 约束中的梯度
D. 无约束中的梯度
15. 在机器学习中,为了避免陷入局部极小,不是常见的策略。
A. 以不同的初始值来训练网络
B. 只使用一种优化算法
C. 使用模拟退火技术
D. 使用随机梯度下降
二、多选题 (本大题 10 道小题 , 每小题 2 分, 共 20 分), 从下面题目给出的 A、B、
C、D 四个可供选择的答案中选择所有正确答案。
1. 让大语言模型处理更长文本的办法有。
A. 将长文本分割成较短的片段逐个处理
B. 将长文本划分为更小的层次,比如段落、句子和子句
C. 只输入上下文生成所需要的部分
D. 引入注意力机制
2. 支持向量机的特点包括。
A. 最大间隔原则使得结构风险最小化
B. 对偶理论用来克服维数灾难问题
C. 核函数实现了非线性到线性的转换
D. SMO 算法可以加快 SVM 的训练
3
A. 回声状态网络
B. 液态状态机
C. 卷积神经网络
D. 多层感知机
A. 地区网络大压运影像公账市的应用从执力长
4. 神经网络在医疗影像诊断中的应用优势包括。 A. 能够快速处理大量复杂的医疗影像数据
B. 提高疾病诊断的准确性
C. 帮助医生发现肉眼难以识别的微小病变
D. 减少医生的工作负担
5. 对于 K-Means 聚类,描述正确的是。
A. 不适用于处理非球状的数据分布
B. 对初始聚类中心敏感
C. 不能自动确定最优的聚类数量 K
D. 常用于市场细分

第 3 页, 共 7 页 41 (计算机视觉-模拟卷)

6. KNN 算法是一种基于实例的学习,具有等优点。 A. 无需进行参数估计 B. 对异常值敏感 C. 对非线性可分数据有较好的分类效果
D. 适用于多分类问题
7. 随机森林在处理高维度数据时具有等优势。 A. 特征选择
B. 抗过拟合 C. 对数据分布不敏感
D. 并行计算
8. 在计算学习理论中,用于评估模型稳定性的常见方法包括。
A. 交叉验证法
B. 噪声注入法
C. 重复实验法
D. 模型比较法
9. 常见的半监督学习方法包括。
A. 基于生成式模型的方法
B. 基于图的方法
C. 基于低密度分离的方法
D. 基于潜在模式的方法
10. 不能够处理具有连续动作空间问题的强化学习算法是。
A. Policy Gradient B. Q-learning
C. Sarsa
D. Monte Carlo Tree Search
三、是非题 (本大题 15 道小题 , 每小题 1 分, 共 15 分)。
1. 大模型的参数数量是决定其在所有任务中表现的唯一因素。
2. 朴素贝叶斯分类器在文本分类、垃圾邮件过滤、情感分析等领域有广泛的应用。
3. 极大似然估计不一定是无偏估计,且即使是无偏估计,也不一定在所有无偏估计中方差最小,所以不能得出极大似然估计的风险最小的结论。
4. 朴素贝叶斯分类器的基本假设之一是样本各维属性相互依赖。

第 4 页, 共 7 页 41 (计算机视觉-模拟卷)

5. 在实际应用中,特征之间完全独立的情况较为少见,这只是朴素贝叶斯分类器的一种简

化假设。

- 6. 神经网络按结构可分为前馈网络和反馈网络。
- 7. DBI 指数是一种内部指标,用于评估聚类结果。DBI 指数的值越大越好,值越小表示聚类 效果越佳, 簇内相似度高且簇间相似度低。
- 8. 当 p=1 时, 闵可夫斯基距离转化为欧式距离; 当 p=2 时, 闵可夫斯基距离转化为曼哈顿 距离。
- 9. PCA 能有效地降低数据维度、去除噪声和冗余信息。
- 10. 基于稀疏表示的分类算法是 K-最近邻分类器 (K-NN)。
- 11. 压缩感知中常用的测量矩阵包括随机高斯矩阵、伯努利矩阵和部分哈达玛矩阵等,并非 必须是随机高斯矩阵。
- 12. 对于某个学习算法, 若假设空间越大, 则其中包含目标概念的可能性越大, 但同时找到 某个具体概念的难度也越大。
- 13. VC 维增大通常意味着模型的复杂度增加,且一定是线性关系
- 14. Rademacher 复杂度与样本数量有关,样本数量会影响其计算和结果。
- 15. 在规则学习中,解决冲突的办法称为冲突消解,常用的冲突消解策略除了投票法,还有 排序法、元规则法等。不同的策略适用于不同的场景和数据特点。

四、操作题

(一)基础实践题(共10分)

以下基础实践题题目请在文件"C.\KS\人工智能-计算机视觉-答题纸.docx"中作答!

图像识别是深度学习应用最广泛的领域之一。在一个图像分类任务中,你需要使用深度 学习模型对一组图像进行分类。请回答以下问题:

1. 请简要描述深度学习模型的基本结构, 并解释其工作原理。

请在答题纸作答!此处答题一律无效!

2. 请列出至少三种常用的深度学习模型,并比较它们在图像分类任务中的优缺点。

请在答题纸作答!此处答题一律无效!

3. 为了提高模型的性能,你尝试了不同的优化算法,如随机梯度下降(SGD)、Adagrad 和

第 5 页, 共 7 页 41 (计算机视觉-模拟卷)

Adam。请简要描述这些优化算法的特点和适用场景。

请在答题纸作答!此处答题一律无效!

(二)综合实践题(共10分)

以下基础实践题题目请在文件"C:\KS\人工智能-计算机视觉-答题纸.docx"中作答!

随着大模型时代的到来,在我们的生活中出现了大量的大模型应用。结合此时代背景, 回答以下问题:

1. 目前的大模型多采用Transformer架构,请介绍一下Transformer架构中的注意力机制。

请在答题纸作答!此处答题一律无效!

2. 在Transformer架构的大模型中做提示词工作,如果出现prompt泛化,请写出相关解决方 案。

请在答题纸作答!此处答题一律无效!

3. AI框架作为日常模型训练的核心技术。随着大语言模型的发展,对AI框架提出了新的要求, 目前国内的开源AI框架(如:昇思MindSpore和飞桨)已经面向大模型的诉求快速发展,目 前已经支撑了国内半数原生大模型的开发。请写出大模型训练和推理过程中对于AI框架能力 的新诉求。

请在答题纸作答!此处答题一律无效!

(三)场景应用题(共30分)

以下场景应用题题目请在文件"C:\KS\人工智能-计算机视觉-答题纸.docx"中作答!

2024年巴黎奥运会,即第 33 届夏季奥林匹克运动会,已于 2024年 7月 26日至 8 月 11 日举行。本届奥运会共设有 32 个大项(增设了霹雳舞、滑板、攀岩和冲浪四个大 项, 329 个小项, 762 个比赛场次, 产生了329 块金牌。此次奥运会吸引了全球目光, 包 括中国在内的多个国家和地区,数千名运动员参与各项目的角逐。

另外,本届奥运会也运用了大量的人工智能技术,为奥运健儿保驾护航。下面,让我们 一起探秘吧!

1. AI训练、AI裁判等应用都使用到了计算机视觉技术,请再写出3个在奥运会中会涉及到计 算机视觉技术的应用场景。(非下面2-6题中的应用场景)

请在答题纸作答!此处答题一律无效!

第 6 页, 共 7 页 41 (计算机视觉-模拟卷)

2. 在立定跳远、实心球等项目中,目前通常利用计算机视觉技术来检测运动员的运动姿势, 讲而逐渐优化姿势来提升成绩。请简单介绍这个应用中涉及到的3个计算机视觉技术。

请在答题纸作答!此处答题一律无效!

3.AI技术不仅应用在运动员的训练中,也应用到了裁判判罚过程中。例如比赛中利用AI识别, 重新生成3D效果,给裁判判罚提供依据。请针对足球比赛,设计足球进球判定系统。请写出 该系统的设计流程。

请在答题纸作答!此处答题一律无效!

4. 除比赛本身, 奥运会的转播也运用了大量的AI技术。其中, "精彩镜头快速生成"利用了大 量的计算机视觉技术,包括"图像分割模型"和"图像检测模型"等技术, 请介绍这2个技术的 常见网络模型和其应用特点。

请在答题纸作答!此处答题一律无效!

5. 高效的医疗服务保障也是奥运会必有的服务。AI+影像可以有效辅助医生进行诊断,以便 进一步为运动员提供医疗解决方案,守护每个人对运动的热爱。请写出3个优化影像准确度 的技术。

请在答题纸作答!此处答题一律无效!

6.在乒乓球男女混双的比赛中,中国、朝鲜、韩国分别荣获冠亚季军。在颁奖台上,三国运 动员和两位颁奖嘉宾的合影,彰显了奥运无国界、以运动会友的奥运主张。这张照片也被渲 染成各种版本的漫画和卡通形象,并被各大媒体宣传。对于此类照片的渲染,请简述3个该 场景中涉及到的算法和模型。

E答题纸作答! 此处答题一律无效!