VisKE: Visual Knowledge Extraction and Question Answering by Visual Verification of Relation Phrases

FERESHTEH SADEGHI,
SANTOSH K DIVVALA,
ALI FARHADI
UNIVERSITY OF WASHINGTON
THE ALLEN INSTITUTE FOR AI

PRESENTED BY JAVIER LORES (JLORES@KNIGHTS.UCF.EDU)

Outline

- Motivation
- Problem Statement
- Main Contributions
- Approach
- Implementation
- Results

Do Dogs Eat Ice Cream?

Image credits: https://www.pinterest.com/pin/200621358375219357/

Motivation

- Primary modality for learning and reason
 - Vision
 - o Text
- Relation questions
 - o Do horses eat hay?
 - O Do butterflies flap wings?

Problem Statement

- How to estimate the confidence of a mentionsrelation predicate by reasoning with images
 - o Focusing on verb-based relations between common nouns

Main Contributions

- Presents an unsupervised approach for verifying relationships by analyzing the spatial consistency of the relative configurations of the entities and the relation involved
- Verified 12,000 relation phrases and doubled the size of the ConceptNet knowledge base at a precision of 0.85

Approach-Overview

Approach-Relation Model

- How to model visual composites?
 - o e.g. A person riding a horse
- Independently?
 - Detect person
 - Detect horse
 - Describe relation
- Problem
 - Appearances change with relation

Person Riding a Horse

Image credit: <u>horse</u>, <u>person</u>, <u>person riding horse</u>

Approach-Relation Model

- Relation
 - Verb (Subject, Object)
- Meaningful patterns (R)
 - o (SVO, SV)
 - o (S, VO)
 - o (VO, SV)
 - o (SVO, O)
 - o (SVO, S)
 - o V, SO variables
 - ➤ Ignored due to visual ambiguity
 - o Patterns required to have V, S, and O

Problem Formulation

$$P(\mathcal{R}, \mathcal{S}, \mathcal{O}, \mathcal{SV}, \mathcal{VO}, \mathcal{SVO}) \propto \prod_{x \in \{\mathcal{O}, \mathcal{S}, \mathcal{SV}\}} \Phi(\mathcal{R}, \mathcal{SVO}, x) *$$

$$\prod_{y \in \{\mathcal{SV}, \mathcal{S}\}} \Phi(\mathcal{R}, \mathcal{VO}, y) * \prod_{z \in \{\mathcal{S}, \mathcal{O}, \mathcal{SV}, \mathcal{VO}, \mathcal{SVO}\}} \Psi(z), \quad (1)$$

$$\Phi^{i}(\mathcal{R}, x, y) = \begin{cases} \max_{\theta} \mathcal{L}(x, y, \bar{I}; \theta) & \mathcal{R} = i \\ 1 & \text{otherwise} \end{cases}$$
(2)

Feature Representation

- Translation between detections
- Intersection over union of two detection boxes
- Ratio of intersection over area of bounding box x
- Ratio of intersection over area of bounding box y
- Height and width of bounding box x
- Height and width of bounding box y
- Unary potential
 - Height of bounding box
 - Width of bounding box
 - o (x, y) mid-point of bounding box

Feature Representation

Learning Model Detectors-Webly Learning

- Webly-unsupervised learning
 - Leverages image-search engines
- System
 - o Feed n-gram
 - o Image-search
 - Prune images
 - Train Deformable Part Model (DPM)
 - Various parts of the image are used separately to determine if object of interests exists

Relation Phrase Dataset

- Google Books Ngram (English 2012)
 - <noun, verb, noun>
- Base Set
 - o 6093 relations
 - × 45 subjects
 - × 1158 verbs
 - × 1839 objects
- Permute Set (Permuted S,V,O from Base Set)
 - o 6500 relations

Results

• Mean Average Precision

	Base Set	Permute Set	Combined Set
Visual Phrase [32]	49.67	14.12	42.49
Co-detection Model	49.24	14.65	43.14
Google Ngram Model [1]	46.17	NA	NA
Language Model [22]	56.20	22.68	50.23
VisKE	62.11	20.93	54.67

Results Per Subject

Relation Examples

Ablation Analysis

Model	M.A.P.
VisKE (All Factors)	62.11
Without $\Phi(R, VO, SV)$	60.41
Without $\Phi(R, VO, S)$	61.16
Without $\Phi(R, SVO, S)$	60.40
Without $\Phi(R, SVO, O)$	59.55
Without $\Phi(R, SVO, SV)$	59.55
Without binary terms	60.61
Without unary terms	58.52
CRF	58.01

Application: Enriching Knowledge Bases

ConceptNet

- A Semantic network containing common sense knowledge
- Contains very little relational facts
 - x 300 across 45 concepts
- Added relationships for
 - \times IsA
 - × PartOf
 - × HasA
 - **MemberOf**
 - × CapableOf

ConceptNet Addition Results

Question Answer Reasoning

- What do lions devour?
 - o Verb(subject, ?)
 - × E.g. prey
- What eats ice cream?
 - o Verb(?, object)
 - × E.g. dog
- What do men do with sofa?
 - o ?(subject, object)
 - \times E.g. sit

Question Answer Reasoning

Question Answer Reasoning

Multiple Choice

- o Elementary-level general science questions
 - What part of a plant produces seeds?
 - o (a) Flower
 - o (b) Leaves
 - o (c) Stem
 - o (d) Roots

System accuracy

- o VisKE: 85.7%
- Text Based Reasoning: 71.4%

References

[1] "VisKE: Visual Knowledge Extraction and Question Answering by Visual Verification of Relation Phrases", Fereshteh Sadeghi, Santosh K Divvala, Ali Farhadi, CVPR, 2015