Physique – Mécanique Chapitre 3 – Travail, Puissance Energie

SOMMAIRE

- Travail d'une force
- Puissance
- Énergie cinétique
- Énergie potentielle
- Énergie mécanique

Force et travail

Force constante et déplacement rectiligne

Travail de la force F :
$$W = \overrightarrow{F} \cdot \overrightarrow{AB} = F \cdot AB \cdot \cos \alpha$$

W en Joule

$$\Rightarrow$$
 Si $\overrightarrow{F} \perp \overrightarrow{AB} \Rightarrow W = 0 \Rightarrow$ La force ne travaille pas

- $-W > 0 \rightarrow$ Force motrice
- W < 0 → Force résistante</p>

Travail élémentaire

Généralisation

$$\overrightarrow{F} \neq \text{constante}$$

 $\overrightarrow{AB} \neq \text{rectiligne}$

Au point M:

$$dW = \vec{F} \cdot \vec{dl}$$

Sur le trajet :

$$W_{A \to B}(\vec{F}) = \int_{A}^{B} \vec{F}(M) \cdot \vec{dl}$$

Exemple 1 – Le poids d'un corps

Exemple 2 – Force élastique

Forces conservatives vs forces non conservatives

Forces conservatives

- Le travail ne dépend pas du chemin parcouru
- Ex : Forces de pesanteurs, forces de rappels...

Forces non conservatives

- Le travail dépend du chemin parcouru
- Ex : Forces de frottements

(travail toujours négatif == énergie dissipée)

Puissance

La puissance instantanée est définie à partir du travail élémentaire

$$P = \frac{dW}{dt}$$

P en Watt

On peut en déduire :

$$P = \overrightarrow{F} \cdot \overrightarrow{v}$$
 et $W = \int_{t_1}^{t_2} P dt$

Si plusieurs forces:

$$\vec{F} = \sum_{i} \vec{F}_{i}$$
 $P = \sum_{i} P_{i}$

Énergie cinétique

Seulement dans un référentiel galiléen

$$E_c = \frac{1}{2} m v^2$$

Théorème:

La variation de l'énergie cinétique est égal au travail de toutes les forces extérieures appliquées à un point matériel

$$\Delta E_c = \sum_i W_i$$

Énergie potentiel

Seulement pour les forces conservatives

$$E_p(B) - E_p(A) = -W_{A \rightarrow B}(\overrightarrow{F}_{ext}^C)$$

$$dE_p = -\vec{F}_{ext}^C \cdot \vec{dl}$$

Forme locale :
$$\vec{F}_{ext}^{C} = -\overrightarrow{\text{grad}}(E_p)$$

Exemples

Potentiel de pesanteur

Potentiel élastique

Énergie mécanique

Nouvelle grandeur : l'énergie mécanique

$$E_{m\acute{e}ca} = E_p + E_c$$

Théorème de l'énergie cinétique (ou TEC)

$$\Delta E_{m\acute{e}ca} = \sum W(\vec{F}_{ext}^{NC})$$