

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier.com/locate/he

Development of porous nickel catalysts by lowtemperature Ni-Al chemical alloying and post selective Al leaching, and their application for ammonia decomposition

Yu-Jin Lee a,b, Yong-Seok Lee a,c, Jun Young Cha a, Young Suk Jo a, Hyangsoo Jeong a, Hyuntae Sohn a, Chang Won Yoon a,d, Yongmin Kim a,*, Kwang-Bum Kim a,*, Suk Woo Nam a,**

HIGHLIGHTS

- Ni—Al alloy powders were synthesized by a low-temperature chemical alloying method.
- Post aluminum leaching converts Ni–Al alloy precursors into porous nickel catalysts.
- Ammonia decomposition was successfully carried out using porous nickel catalysts.

GRAPHICAL ABSTRACT

ARTICLE INFO

Article history:
Received 11 December 2019
Received in revised form
29 April 2020
Accepted 4 May 2020
Available online 7 June 2020

ABSTRACT

Micron-sized Ni–Al alloy powders (Ni–x wt.%Al, x = 40, 50, 60) were synthesized using the low-temperature chemical alloying (LTCA) at 500 °C. The three different as-prepared Ni–Al alloy powders were composed of Ni₂Al₃ and/or NiAl₃ phases while achieving thermodynamic equilibrium compositions (Ni–40 wt%Al, Ni₂Al₃; Ni–50 wt%Al, the coexistence of Ni₂Al₃ and NiAl₃; Ni–60 wt%Al, NiAl₃). The LTCA method demonstrates that it is capable of producing Al-rich Ni–Al alloy powders while maintaining a particle size similar to that of the starting Ni particles. The three Ni–Al alloy powders were used as precursor materials to

^a Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea

^b Department of Material Science & Engineering, Yonsei University, Seoul, 03722, Republic of Korea

^c Department of Mechanical Engineering, School of Industrial and Mechanical Engineering, The University of Suwon, Hwaseong, 18323, Republic of Korea

^d KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea

^{*} Corresponding author.

^{**} Corresponding author.

^{***} Corresponding author.