ORETO KIRRIBILLI 85 CARABELLA ST KIRRIBILLI 2061

# TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

# 1999

# **MATHEMATICS**

# 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON)

Time Allowed - Two hours (Plus 5 minutes reading time)

### DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- ALL questions are of equal value.
- Write your student Name / Number on every page of the question paper and your answer sheets.
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Standard integrals are supplied.
- Board approved calculators may be used.
- The answers to the seven questions are to be handed in separately clearly marked Question 1, Question 2, etc..
- The question paper must be handed to the supervisor at the end of the examination.

## STUDENT NUMBER / NAME.....

## Question 1 (Start a new page)

#### Marks

2

- a. Two dice are rolled. If you know that at least one of the dice is a 5, what is the probability of getting a total of 8?
- 2
- b. At an election, 30% of the voters favoured candidate A. If 7 voters are selected at random, what is the probability that 4 of them favour A?
- c. The point C(-1, -4) divides the interval AB externally in the ratio 3:1. If the coordinates of A are (3, 2), find the coordinates of B.
  - 2
- d. Evaluate  $\int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \sin x \cos^3 x \, dx$  using the substitution  $u = \cos x$

3

e. Find the exact value of  $\int_0^{\frac{\pi}{4}} \cos^2 \frac{1}{2} x \, dx$ 

3

### Question 2 (Start a new page)

a. Solve 
$$\frac{1}{x+1} \ge 1 - x$$

3

b. Find 
$$\int_0^{\frac{2}{5}} \frac{dx}{\sqrt{16 - 25x^2}}$$

3

c. The points  $P(2ap, ap^2)$  and  $Q(2aq, aq^2)$  lie on the parabola  $x = 2at, y = at^2$ .

3

- i. Find M, the midpoint of PQ.
- ii. Show that, if the gradient of PQ is constant, the locus of M is a line parallel to the y-axis.
- d. In the diagram, UZY, XZV, VYW and UXW are all straight lines.

  Given ZW bisects

  \( \angle XWY \) and

  \( \angle WUZ = \angle WVZ, \) prove that XW = YW.



3

## STUDENT NUMBER / NAME.....

## Question 3 (Start a new page)

Marks

a. Show that  $\frac{2x+1}{x+2} = 2 - \frac{3}{x+2}$ 

3

Hence or otherwise, find the exact value of  $\int_0^1 \frac{2x+1}{x+2} dx$ 

b. Solve  $\cos x - \sqrt{3}\sin x + 1 = 0$  for  $0 \le x \le 2\pi$ 

3

c. i. Show that the solution of  $x \ln x - 1 = 0$  lies between x = 1 and x = 2.

3

- ii. Using x = 2 as a first approximation, apply Newton's method once to obtain a better approximation. Give your answer to one decimal place.
- d. A mixed tennis team consisting of 2 men and 2 women is to be chosen from 5 men and 7 women.

3

- i. Find the probability that a particular woman is in the selected team.
- ii. If one of the original 5 men is selected as the captain of the team, find the probability that his brother, who was one of the original 5 men, is also in the team.

## Question 4 (Start a new page)

a. Two circles,  $C_1$  and  $C_2$ , are members of the set of circles defined by the equation  $x^2 + y^2 - 6x + 2ky + 3k = 0$ , where k is real.

4

The centre of  $C_1$  lies on the line x - 3y = 0 and  $C_2$  touches the x-axis.

Find the equations of  $C_1$  and  $C_2$ .

b. The acceleration, a, of a particle is given in terms of its position, x, by the equation  $a = 2x^3 + 2x$ .

4

4

- i. If v = 2 when x = 1, show that  $v^2 = (1 + x^2)^2$
- ii. Show that, if  $x = \frac{1}{\sqrt{3}}$  when t = 0, then  $t = \frac{\pi}{6}$  when  $x = \sqrt{3}$
- Prove by Mathematical Induction that  $5^{2n} 1$  is divisible by 6 when n is a positive integer

#### Question 5 (Start a new page)

Marks

a. At 9 am, an ultralight aircraft flies directly over Daryl's head at 500 metres. It maintains a constant speed of 20 ms<sup>-1</sup> and a constant altitude.

5

If x is the horizontal distance travelled by the plane and  $\theta$  is the angle of elevation from Daryl to the plane,

- i. show that  $\frac{dx}{d\theta} = -500 \csc^2 \theta$ .
- ii. Hence show that  $\frac{d\theta}{dt} = -\frac{1}{25} \sin^2 \theta$ .
- iii. Find the rate of change of the angle of elevation at 9:01 am.
- b. Two groups of terrorists are 150 metres from their target.

7

The first group, Group A, is on the same horizontal level as the target and can fire their missiles in any direction at a speed of 50 ms<sup>-1</sup>.

i. Show that Group A can hit the target and calculate the angle(s) at which their missiles are to be fired. [Use  $g = 10 \text{ ms}^{-2}$ ]

The second group, Group B, is positioned in a building 30 metres above the horizontal level of the target and can fire their missile only horizontally through a small window and at 55 ms<sup>-1</sup>.

ii. Determine whether Group B can hit their target. [Use  $g = 10 \text{ ms}^{-2}$ ]

#### Question 6 (Start a new page)

#### Marks

7

- a. The displacement, x cm, of an object from the origin is given by  $x = 2 \sin t 3 \cos t, \quad t \ge 0$  where time, t, is measured in seconds.
  - i. Show that the object is moving in Simple Harmonic Motion.
  - ii. Find the amplitude of the motion.
  - iii. At what time does the object first reach its maximum speed?
- b. A cup of soup at temperature  $T^{\circ}C$  loses heat when placed in the lounge room. It cools according to the law:

$$\frac{dT}{dt} = k(T - T_0)$$

where t is the elapsed time in minutes and  $T_0$  is the temperature of the room in degrees centigrade.

- i. Show that the equation  $T = T_0 + Ae^{kt}$  satisfies the above law of cooling.
- ii. A cup of soup at 95°C is placed in the freezer at -10°C for 5 minutes and cools to 65°C. Find the exact value of k
- iii. The same cup, at  $65^{\circ}$ C, is then taken into the lounge room where the surrounding temperature is  $26^{\circ}$ C. Assuming k remains the same, find, to the nearest degree, the temperature of the soup after another 5 minutes.

#### Question 7 (Start a new page)

Marks

a. Find the constant term in the expansion of  $\left(3x - \frac{1}{x^2}\right)^6$ 

3

b. i. Solve the equation  $x^4 + x^2 - 1 = 0$ , giving your answer(s) to two decimal places.

9

ii. On the same axes, draw the graphs of  $y = \tan^{-1} x$  and  $y = \cos^{-1} x$ , showing all important features. Mark the point, P, where the curves intersect.

iii. Show that, if  $\tan^{-1} x = \cos^{-1} x$ , then  $x^4 + x^2 - 1 = 0$ . Hence find the coordinates of P.

iv. Find to two decimal places the area enclosed by the curves and the y-axis.