15.094J: Robust Modeling, Optimization, Computation

Lectures 3: RLO: Tractability

September 12, 2012

Outline

- RLO with Row-wise uncertainty
- RLO with Row-wise Polyhedral Uncertainty
- 3 RLO with Row-wise Ellipsoidal uncertainty
- 4 RLO with General Polyhedral Uncertainty

Objectives Today

- Tractability of RLO
- Row-wise uncertainty
- General uncertainty

Row-wise Uncertainty

- Primitives: Uncertainty sets U_i , i = 1, ..., m, $\boldsymbol{b}, \boldsymbol{c}$ (known, WLOG).
- RLO with row-wise uncertainty:

- Note that the problem has infinitely many constraints.
- Reformulation:

$$\begin{array}{ll} \max & \boldsymbol{c}' \boldsymbol{x} \\ \mathrm{s.t.} & \max_{\boldsymbol{a}_i \in U_i} \boldsymbol{a}_i' \boldsymbol{x} \leq b_i \\ & \boldsymbol{x} > \boldsymbol{0}. \end{array}$$

Note that the uncertainty for different constraints is independent.

Tractability

- Suppose that U_i , i = 1, ..., m are convex sets.
- Given an \boldsymbol{x} , we can solve $i=1,\ldots,m$:

$$\max_{\boldsymbol{a}_i \in U_i} \boldsymbol{a}_i' \boldsymbol{x},$$

efficiently.

• How should we solve the RLO problem?

Theoretical Tractability

- Solve the nominal problem; find x_0 .
- Separation problem: Given an x_0 , does there exist an $a_i \in U_i$ that violates the constraint $a_i'x > b_i$?
- Solution: Solve $\max_{a_i \in U_i} a_i' x$ and check whether

$$\max_{\boldsymbol{a}_i \in U_i} \boldsymbol{a}_i' \boldsymbol{x} \leq b_i.$$

- This shows that if U_i are convex, we can solve the separation problem in polynomial time, thus we can solve the RLO with convex uncertainty sets in polynomial time using the Ellipsoid method (see Chapter 8 of Bertsimas and Tsitsiklis book).
- The key take away from this: Even though RLO has infinitely many constraints it is polynomially solvable.
- Question: How about practically solvable? The Ellipsoid method is not a practical algorithm.

Practical Tractability

- Solve the nominal problem; find x_0 .
- Solve $\max_{\boldsymbol{a}_i \in U_i} \boldsymbol{a}_i' \boldsymbol{x}_0$, solution $\overline{\boldsymbol{a}}_i$.
- Solve (the dual Simplex method is the right choice)

$$\begin{array}{ll}
\text{max} & \mathbf{c}' \mathbf{x} \\
\text{s.t.} & \overline{\mathbf{a}}_i' \mathbf{x} \leq b_i \\
\mathbf{x} \geq \mathbf{0}.
\end{array}$$

• Find x_1 ; iterate.

Robust Counterpart-Polyhedral uncertainty

$$\begin{array}{ll} \max & \boldsymbol{c}' \boldsymbol{x} \\ \mathrm{s.t.} & \max_{\boldsymbol{a}_i \in U_i} \boldsymbol{a}_i' \boldsymbol{x} \leq b_i. \\ & \boldsymbol{x} \geq \boldsymbol{0}. \end{array}$$

- $U_i = \{a_i | D_i a_i \leq d_i\}, D_i : k_i \times n.$
- Consider the problem and its dual:

$$\begin{array}{lll} \max & \textbf{\textit{a}}_i'\textbf{\textit{x}} & \min & \textbf{\textit{p}}_i'\textbf{\textit{d}}_i \\ \text{s.t.} & \textbf{\textit{D}}_i\textbf{\textit{a}}_i \leq \textbf{\textit{d}}_i & \text{s.t.} & \textbf{\textit{p}}_i'\textbf{\textit{D}}_i = \textbf{\textit{x}}' \\ & \textbf{\textit{p}}_i \geq \textbf{\textit{0}}. \end{array}$$

0

Robust Counterpart continued

RC becomes

$$\begin{aligned} \max_{\mathbf{x}, \boldsymbol{p}_i} \quad \boldsymbol{c}' \boldsymbol{x} \\ \text{s.t.} \quad & \boldsymbol{p}_i' \boldsymbol{d}_i \leq b_i, \quad i = 1, \dots, m, \\ & \boldsymbol{p}_i' \boldsymbol{D}_i = \boldsymbol{x}', \quad i = 1, \dots, m, \\ & \boldsymbol{p}_i \geq \boldsymbol{0}, \quad i = 1, \dots, m, \\ & \boldsymbol{x} > \boldsymbol{0}. \end{aligned}$$

- Original nominal problem: n variables, m constraints.
- Uncertainty dimension: k_i.
- Size of Robust Counterpart: $n + \sum_{i=1}^{m} k_i$, variables; $m + m \cdot n$ constraints.

Row-wise Ellipsoidal uncertainty

• RO:

$$\begin{array}{ll} \max & \boldsymbol{c}' \boldsymbol{x} \\ \mathrm{s.t.} & \max_{\boldsymbol{a}_i \in U_i} \boldsymbol{a}_i' \boldsymbol{x} \leq b_i. \\ & \boldsymbol{x} \geq \boldsymbol{0}. \end{array}$$

- $U_i = \{ \mathbf{a}_i | \mathbf{a}_i = \overline{\mathbf{a}}_i + \Delta'_i \mathbf{u}_i, ||\mathbf{u}_i||_2 \le \rho \}, \Delta_i : k_i \times n, \mathbf{u}_i : k_i \times 1.$
- RC:

max
$$c'x$$

s.t. $\overline{a}_i'x + \rho||\Delta_ix||_2 \le b_i$, $i = 1, ..., m$.
 $x \ge 0$.

• Second order cone problem, nearly as tractable as linear optimization.

Proof

- $\bullet \ \ Z^* = \max_{\boldsymbol{a} \in U} \boldsymbol{a}' \boldsymbol{x} = \overline{\boldsymbol{a}}' \boldsymbol{x} + \max_{||\boldsymbol{u}|| < \rho} \boldsymbol{u}'(\boldsymbol{\Delta} \boldsymbol{x})$
- Lagrangean dual:

$$Z(\lambda) = \overline{a}'x + \max u'(\Delta x) - \lambda(u'u/2 - \rho^2/2).$$

- $\mathbf{u}^* = \Delta \mathbf{x}/\lambda$.
- •

$$Z(\lambda) = \overline{a}'x + \frac{1}{2}\left(\frac{||\Delta x||^2}{\lambda} + \lambda \rho^2\right).$$

- For $\lambda \geq 0$, $Z^* \leq Z(\lambda)$ and strong duality: $Z^* = \min_{\lambda \geq 0} Z(\lambda)$.
- $\lambda^* = ||\Delta \mathbf{x}||/\rho$.
- $Z^* = \overline{a}'x + \rho||\Delta x||$.

Robust Counterpart-General Norm uncertainty

• RO:

$$\begin{array}{ll} \max & \boldsymbol{c}' \boldsymbol{x} \\ \mathrm{s.t.} & \max_{\boldsymbol{a}_i \in U_i} \boldsymbol{a}_i' \boldsymbol{x} \leq b_i. \\ & \boldsymbol{x} \geq \boldsymbol{0}. \end{array}$$

- $U_i = \{ \mathbf{a}_i | \mathbf{a}_i = \overline{\mathbf{a}}_i + \Delta'_i \mathbf{u}_i, ||\mathbf{u}_i|| \le \rho \}, \Delta_i : k_i \times n, \mathbf{u}_i : k_i \times 1.$
- Dual norm:

$$||\boldsymbol{s}||^* = \max_{\{||\boldsymbol{x}|| \leq 1\}} |\boldsymbol{s}'\boldsymbol{x}|.$$

- The dual of the L_p -norm $||\mathbf{x}||_p = \left(\sum_{j=1}^n |x_j|^p\right)^{1/p}$:
- $||s||^* = ||s||_q$ with $q = 1 + \frac{1}{p-1}$.
- The dual norm of the L_2 norm is L_2 .
- The dual norm of the L_1 norm is the L_{∞} norm.
- RC:

max
$$c'x$$

s.t. $\overline{a}_i'x + \rho||\Delta_ix||^* \le b_i$, $i = 1, ..., m$.
 $x > 0$.

General Polyhedral Uncertainty

 $\begin{array}{ll}
\text{max} & \mathbf{c}' \mathbf{x} \\
\text{s.t.} & \tilde{\mathbf{A}} \mathbf{x} \leq \mathbf{b}, \quad \forall \tilde{\mathbf{A}} \in \mathcal{U} \\
\mathbf{x} \in P.
\end{array}$

- $\mathcal{U} = \{ \text{vec}(\tilde{\mathbf{A}}) \mid \mathbf{G} \cdot \text{vec}(\tilde{\mathbf{A}}) \leq \mathbf{d} \},$
- $\mathbf{G} \in \Re^{l \times (m \cdot n)}$, $\mathbf{d} \in \Re^{l \times 1}$, and $\text{vec}(\tilde{\mathbf{A}}) \in \Re^{(m \cdot n) \times 1}$.

RC

• The RC is

$$\begin{array}{ll} \max & \boldsymbol{c}'\boldsymbol{x} \\ \text{s.t.} & \boldsymbol{\rho}_i'\boldsymbol{G} = \boldsymbol{x}_i', \quad i = 1, \dots, m \\ & \boldsymbol{\rho}_i'\boldsymbol{d} \leq b_i, \quad i = 1, \dots, m \\ & \boldsymbol{\rho}_i \geq \boldsymbol{0}, \quad i = 1, \dots, m \\ & \boldsymbol{x} \in P, \end{array}$$

- $\mathbf{p}_i \in \Re^{l \times 1}$.
- $\mathbf{x}_i \in \Re^{(m \cdot n) \times 1}$, $i = 1, \dots, m$; \mathbf{x}_i contains \mathbf{x} in entries $(i 1) \cdot n + 1$ through $i \cdot n$, and zero everywhere else.

Proposition

- Suppose $\mathcal{U} \neq \emptyset$.
- A given $\hat{\mathbf{x}}$ satisfies $\tilde{\mathbf{a}}_i'\hat{\mathbf{x}} \leq b_i$ for all $\tilde{\mathbf{A}} \in \mathcal{U}$ if and only if there exists a vector $\mathbf{p}_i \in \Re^{l \times 1}$ such that

$$\begin{array}{ccc} \boldsymbol{p}_i'\boldsymbol{d} & \leq & b_i \\ \boldsymbol{p}_i'\boldsymbol{G} & = & \hat{\boldsymbol{x}}_i' \\ \boldsymbol{p}_i & \geq & \boldsymbol{0} \end{array}$$

• $\hat{\mathbf{x}}_i \in \Re^{(m \cdot n) \times 1}$ contains $\hat{\mathbf{x}}$ in entries $(i-1) \cdot n + 1$ through $i \cdot n$, and zero everywhere else.

Proof

Consider the primal-dual pair

$$egin{aligned} & \mathsf{max}_{oldsymbol{A}} & oldsymbol{a}_i' \hat{oldsymbol{x}} \ & \mathrm{s.t.} & oldsymbol{G} \cdot \mathsf{vec}(oldsymbol{A}) \leq oldsymbol{d} \ & & & \\ & & \mathsf{min}_{oldsymbol{p}_i} & oldsymbol{p}_i' oldsymbol{d} \ & & & \\ & & & \mathrm{s.t.} & oldsymbol{p}_i' oldsymbol{G} = \hat{oldsymbol{x}}_i' \end{aligned}$$

 $p_i > 0$.

• Suppose that
$$\hat{x}$$
 satisfies $\tilde{a}_i'\hat{x} \leq b_i$ for all $\tilde{A} \in \mathcal{U}$.

- Then, $\max_{\mathbf{A}} \mathbf{a}_i' \hat{\mathbf{x}} \leq b_i$.
- Then primal is feasible and bounded, and so is its dual.
- $m{\bullet}$ Thus, there exists a vector $m{p}_i \in \Re^{(m \cdot n) imes 1}$ satisfying the dual constraints.
- By strong duality, the optimal objective function value of the dual equals $\max_{\mathbf{A}} \mathbf{a}_i' \hat{\mathbf{x}}$ and is less than b_i .

Proof continued

- For the reverse, since $\mathcal{U} \neq \emptyset$, primal is feasible. Suppose there exists a vector $\mathbf{p}_i \in \Re^{l \times 1}$ that satisfies the dual constraints.
- Since both problems are feasible, they must be bounded and their optimal objective function values must be equal.
- Then $\min_{\boldsymbol{p}_i} \boldsymbol{p}_i' \boldsymbol{d} \leq \boldsymbol{p}_i' \boldsymbol{d} \leq b_i$.
- By strong duality, $\max_{\mathbf{A}} \mathbf{a}_i' \hat{\mathbf{x}} = \min_{\mathbf{p}_i} \mathbf{p}_i' \mathbf{d} \leq b_i$, and hence $\hat{\mathbf{x}}$ satisfies $\mathbf{a}_i' \hat{\mathbf{x}} \leq b_i$ for all $\tilde{\mathbf{A}} \in \mathcal{U}$.

RC

RO:

$$\begin{array}{ll} \max & \boldsymbol{c}'\boldsymbol{x} \\ \text{s.t.} & \tilde{\boldsymbol{A}}\boldsymbol{x} \leq \boldsymbol{b}, \quad \forall \tilde{\boldsymbol{A}} \in \mathcal{U} \\ & \boldsymbol{x} \in P. \end{array}$$

- $\mathcal{U} = \{ \text{vec}(\tilde{\mathbf{A}}) \mid \mathbf{G} \cdot \text{vec}(\tilde{\mathbf{A}}) \leq \mathbf{d} \}.$
- The RC is

$$\begin{array}{ll} \max & \boldsymbol{c}'\boldsymbol{x} \\ \text{s.t.} & \boldsymbol{p}_i'\boldsymbol{G} = \boldsymbol{x}_i', \quad i = 1, \dots, m \\ & \boldsymbol{p}_i'\boldsymbol{d} \leq b_i, \quad i = 1, \dots, m \\ & \boldsymbol{p}_i \geq \boldsymbol{0}, \quad i = 1, \dots, m \\ & \boldsymbol{x} \in P. \end{array}$$

General uncertainty sets under a general norm

RO:

$$\label{eq:standard_equation} \begin{split} \max \quad & \boldsymbol{c}' \boldsymbol{x} \\ & \mathrm{s.t.} \quad \tilde{\boldsymbol{A}} \boldsymbol{x} \leq \boldsymbol{b} \\ & \quad & \boldsymbol{x} \in P \\ & \quad & \forall \tilde{\boldsymbol{A}} \in \mathcal{U} = \left\{ \tilde{\boldsymbol{A}} \mid || \boldsymbol{M}(\mathsf{vec}(\tilde{\boldsymbol{A}}) - \mathsf{vec}(\overline{\boldsymbol{A}})) || \leq \Delta \right\}. \end{split}$$

RC:

• $\mathbf{x}_i \in \Re^{(m \cdot n) \times 1}$ contains $\mathbf{x} \in \Re^{n \times 1}$ in entries $(i-1) \cdot n + 1$ through $i \cdot n$, and 0 everywhere else.

Proof

$$\quad \bullet \ \ \boldsymbol{y} = \frac{\boldsymbol{M}(\operatorname{vec}(\tilde{\boldsymbol{A}}) - \operatorname{vec}(\overline{\boldsymbol{A}}))}{\Delta}.$$

• Then, $U = \{ y : ||y|| \le 1 \}.$

$$\max_{\left\{ \operatorname{vec}(\tilde{\mathbf{A}}) \in \mathcal{U} \right\}} \left\{ \tilde{\mathbf{a}}_{i}' \mathbf{x} \right\} = \max_{\left\{ \operatorname{vec}(\tilde{\mathbf{A}}) \in \mathcal{U} \right\}} \left\{ (\operatorname{vec}(\tilde{\mathbf{A}}))' \mathbf{x}_{i} \right\}$$

$$= \max_{\left\{ \mathbf{y} : ||\mathbf{y}|| \leq 1 \right\}} \left\{ (\operatorname{vec}(\overline{\mathbf{A}}))' \mathbf{x}_{i} + \Delta (\mathbf{M}^{-1} \mathbf{y})' \mathbf{x}_{i} \right\}$$

$$= \overline{\mathbf{a}}_{i}' \mathbf{x} + \Delta \max_{\left\{ \mathbf{y} \mid ||\mathbf{y}|| \leq 1 \right\}} \left\{ \mathbf{y}' (\mathbf{M}^{-1} \mathbf{x}_{i}) \right\}$$

$$= \overline{\mathbf{a}}_{i} \mathbf{x} + \Delta ||\mathbf{M}^{-1} \mathbf{x}_{i}||^{*}$$