HASHING IN BLOCKCHAIN

Blockchain Development

Time: 60 mins

Introduction

In this class, the student/s will be introduced to concepts of advanced encryption like hashing. They will learn to store and encrypt the information of blocks using the hash concept.

New Commands Introduced

• sha256() Accepts the input string as a parameter and creates a hash

object.

import hashlib
Python provides a library called hashlib that provides

hashing techniques.

ord()
Returns the number representing the unicode code of a

specified character

hexdigest()
Digest is returned as a string object of double length,

containing only hexadecimal digits.

Vocabulary

• **Hash:** An algorithm can be used to create and add new blocks with a unique digital fingerprint called a Hash.

Learning Objectives

Student/s should be able to:

- **Recall** how encryption and decryption is done on a text.
- Explain how the concept of hashing works.
- **Demonstrate** how the SHA encryption is done.

Activities

- 1. Class Narrative: (2 mins)
 - Brief the student/s that the hashing encryption is done to encrypt the date on the blocks.
- 2. Concept Introduction Activity: (5 mins)

- Let the student/s play the explore-activity to observe.
- Explain the need of hashing in blockchain and introduce Secure hashing for data.
- Using the slides, explain that the student/s will learn:
 - o to generate hashcode of the data
 - to validate the data in the blocks

3. Activity 1: Generate a Simple HashCode (14 mins)

Teacher Activity: (7 mins)

- Explain how we hash the data using ASCII values.
- Explain how to get the ASCII value of every character and concatenate them.

Student Activity: (7 mins)

• Guide the student/s to perform simple hashing using ASCII code.

4. Activity 2: Generate HashCode (12 mins)

Teacher Activity: (3 mins).

- Let the student/s play the explore-activity to observe hashing on the SHA 256 Algorithm.
- Ask the student/s about their observations.
- Explain how to import hashing libraries and how to perform SHA encryption of data.
- Explain how to create a hashing object and get the hexadecimal value of hash.

Student Activity: (9 mins)

 Guide the student/s to perform securing hashing of the message or text and return its hash value.

5. Activity 3: Validate Data Received (12 mins)

Teacher Activity: (6 mins)

- Explain the concept of data validation and its importance in the activity.
- Explain how the validation of data happens and how validation is performed of hashed data.

Student Activity: (6 mins)

Guide the students to perform validation of hash data.

6. Introduce the Post class project: (2 min)

• Load the project and demonstrate how password validation is done for signin.

7. Test and Summarize the class learnings: (5 mins)

- Check for understanding through guizzes and summarize learning after respective missions.
- Summarize the overall class learning towards the end of the class.

8. Additional activities:

- Encourage the student/s to debug the ascii hashing for every character of string.
- Encourage the student/s to generate hash values of fixed length.

9. State the Next Class Objective: (1 min)

• In the next class, student/s will learn to use the blockchain technology to verify and trace the transactions.

U.S. Standards:

CSTA: 2-AP-11, 2-AP-12, 2-AP-13, 2-AP-14, 2-AP-19

Links Table		
Activity	Activity Name	Link
Class Presentation	Hashing in Blockchain	https://s3-whjr-curriculum-uploads. whjr.online/27fcf912-447d-40c8-a5 8c-51f30751cc6f.html
Explore Activity	Hash Validation	https://github.com/Tynker-Blockch ain/TNK-M11-C84-SAS
Student Activity 1	Generate a HashValue using ASCII values	https://github.com/Tynker-Blockchain/T NK-M11-C84-SAS-BP
Teacher Reference: Student Activity 1 Solution	Generate a HashValue using ASCII values	https://github.com/Tynker-Blockchain/T NK-M11-C84-SAS
Explore Activtiy	Hash Algorithm	https://emn178.github.io/online-tools/sha256.html
Student Activity 2	Generate a Hash value using Algotihtm	https://github.com/Tynker-Blockchain/T NK-M11-C84-SAS-BP

Teacher Reference: Student Activity 2 Solution	Generate a Hash value using Algotihtm	https://github.com/Tynker-Blockchain/T NK-M11-C84-SAS
Teacher Activity 3	Validate the Recieved Data	https://github.com/Tynker-Blockchain/T NK-M11-C84-TAS-BP
Teacher Reference: Teacher Activity 3 Solution	Validate the Recieved Data	https://github.com/Tynker-Blockchain/T NK-M11-C84-TAS
Student Activity 3	Validate the Recieved Data	https://github.com/Tynker-Blockchain/T NK-M11-C84-SAS-BP
Teacher Reference: Student Activity 3 Solution	Validate the Recieved Data	https://github.com/Tynker-Blockchain/T NK-M11-C84-SAS
Student's Additional Activity 1	Debug the generateHash() function	https://github.com/Tynker-Blockchain/T NK-M11-C84-SAS-BP
Teacher Reference: Student's Additional Activity 1 Solution	Debug the generateHash() function	https://github.com/Tynker-Blockchain/T NK-M11-C84-SAS
Student's Additional Activity 2	Find the Prime Numbers for Given Range	https://github.com/Tynker-Blockchain/T NK-M11-C84-SAS-BP
Teacher Reference: Student's Additional Activity 2 Solution	Find the Prime Numbers for Given Range	https://github.com/Tynker-Blockchain/T NK-M11-C84-SAS
Post Class Project	Hash the Password	https://github.com/Tynker-Blockchain/T NK-M11-C84-PCP-BP
Teacher Reference: Post Class Project Solution	Hash the Password	https://github.com/Tynker-Blockchain/T NK-M11-C84-PCP