$\Pi\Lambda H30$

ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ

Μάθημα 3.3: Μη Ντετερμινιστικά Πεπερασμένα Αυτόματα (ΜΠΑ)

Δημήτρης Ψούνης

Α. Σκοπός του Μαθήματος

Β. Θεωρία

- 1. Πεπερασμένα Αυτόματα
 - 1. Τρόπος Λειτουργίας
 - 2. Μεθοδολογία Κατασκευής
 - 3. Ορισμός Κανονικής Γλώσσας
- 2. Μαθηματικοί Ορισμοί
 - 1. Μαθηματικός Ορισμός ΜΠΑ (χωρίς ε-κινήσεις)
 - 2. ΜΠΑ: Απόφαση μέσω της αναδρομικής συνάρτησης δ*
 - 3. Μαθηματικός Ορισμός ΜΠΑ (με ε-κινήσεις)
 - 4. ΜΠΑ(με ε-κινήσεις): Απόφαση μέσω της αναδρομικής συνάρτησης δ*

Γ.Ασκήσεις

Α. Σκοπός του Μαθήματος

Οι στόχοι του μαθήματος είναι:

Επίπεδο Α

- > Μη Ντετερμινιστικά Πεπερασμένα Αυτόματα
- Μεθοδολογία Κατασκευής ΜΠΑ

Επίπεδο Β

> Μαθηματικοί Ορισμοί και αναδρομικές συναρτήσεις υπολογισμού

Επίπεδο Γ

> (-)

1.Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο

1. Τρόπος Λειτουργίας

Ορισμός:

Πεπερασμένο Αυτόματο Μ $_{\rm L}$ της γλώσσας L είναι μία μηχανή που με είσοδο μία συμβολοσειρά $x\in \Sigma^*$

- Av $x \in L$ τότε «απαντά» NAI.
 - Ή πιο τυπικά... Αναγνωρίζει ή κάνει δεκτές τις συμβολοσειρές που ανήκουν στην L
- Av $x \notin L$ τότε «απαντά» OXI.
 - Ή πιο τυπικά... Απορρίπτει τις συμβολοσειρές που δεν ανήκουν στην L

Σε ένα Ντετερμινιστικό Πεπερασμένο Αυτόματο (ΝΠΑ)

• Από κάθε κατάσταση φεύγει ακριβώς ένα βελάκι με 0 και με 1.

Σε ένα μη Ντετερμινιστικό Πεπερασμένο Αυτόματο (ΜΠΑ)

- Άπό μία κατάσταση μπορεί να μεταβαίνουμε σε διαφορετικές καταστάσεις με το ίδιο σύμβολο
- Από μία κατάσταση μπορεί να μην καθορίζεται μετάβαση με διάβασμα κάποιου συμβόλου
- Είναι δυνατές οι ε-μεταβάσεις (μεταβάσεις χωρίς διάβασμα κάποιου συμβόλου)

1.Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο

1.Τρόπος Λειτουργίας

Παράδειγμα 1: Το Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας L=1(01+011)* είναι το ακόλουθο:

Και για παράδειγμα:

Αναγνωρίζει την συμβολοσειρά 101011 (υπάρχει μονοπάτι που οδηγεί σε τελική κατάσταση.

Απορρίπτει την συμβολοσειρά 101001 (δεν υπάρχει μονοπάτι που οδηγεί σε τελική κατάσταση).

1.Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο

2.Μεθοδολογία Κατασκευής ΜΠΑ

Παράδειγμα 2: L={w|w περιέχει την συμβολοσειρα 01}

Η κατασκευή ενός ΜΠΑ μπορεί να γίνει **άμεσα** από την συσχέτιση με την κανονική έκφραση. Μεθοδολογία 1: Οι υποχρεωτικές Συμβολοσειρές καταγράφονται «ξαπλωτές» σε διαδοχικές μεταβάσεις

Δώστε ΜΠΑ για τις γλώσσες:

L₁={w|w περιέχει την συμβολοσειρα 01 ή την συμβολοσειρά 11}

 $L_2=\{w|w \ \alpha p \chi i \zeta ει \ με \ 00, \ περιέχει το \ 10 και τελειώνει με \ 11\}$

1.Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο

2.Μεθοδολογία Κατασκευής ΜΠΑ

<u>Παράδειγμα 3:</u> L=(01+110)*

Μεθοδολογία 2: Αστεράκι Kleene θα δημιουργεί κύκλο μήκους όσα και τα σύμβολα που παρατίθενται.

$$L_3 = (1+01+001)^*$$

$$L_4 = (001 + 110 + 01)^*$$

1.Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο

2.Μεθοδολογία Κατασκευής ΜΠΑ

Μεθοδολογία 3: Περίπλοκες κατασκευές που παρατίθενται θα ενώνονται με ε-κινήση (κίνηση χωρίς διάβασμα συμβόλου)

$$L_5 = (1+10+110)*(011)*$$

$$L_6 = (0000 + 1111)*(0 + 11)*(10 + 0)*$$

1.Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο

2.Μεθοδολογία Κατασκευής ΜΠΑ

Μεθοδολογία 4: Περίπλοκες κατασκευές που ενωνονται με + , θα φεύγουν ε-κινήσεις από την αρχική κατάσταση και θα κατασκευάζουμε ξεχωριστά τα μέρη.

$$L_7 = (10+01)^* + (00+11)^* + 11(0+1)^*00(0+1)^*00$$

1.Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο

2.Μεθοδολογία Κατασκευής ΜΠΑ

Μεθοδολογία 5: Αν έχουμε αστέρι μέσα σε αστέρι, κατασκευάζουμε πρώτα την εσωτερική παράσταση και στο τέλος με ε-κίνηση πάμε από τις τελικές στην αρχική. Η αρχική γίνεται τελική.

$$L_8 = ((10+01)^* + (00+11)^*)^*$$

$$L_9 = (((0+01)^* + (1+10)^*)^* + (00+1)^*)^*$$

1.Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο

3. Ορισμός Κανονικής Γλώσσας (ξανά)

Ορισμός Κανονικής Γλώσσας:

- Μία γλώσσα θα λέγεται Κανονική Γλώσσα αν και μόνο αν
 - Υπάρχει Κανονική Εκφραση (Κ.Ε.) που την περιγράφει.
 - Υπάρχει Ντετερμινιστικό Πεπερασμένο Αυτόματο (Ν.Π.Α.) που αναγνωρίζει τις συμβολοσειρές της.
 - Υπάρχει Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο (Μ.Π.Α) που αναγνωρίζει τις συμβολοσειρές της.
- Άρα για να δείξουμε ότι μία γλώσσα είναι κανονική αρκεί:
 - > Να δώσουμε μια Κ.Ε. που παράγει τις συμβ/ρες της γλώσσας
 - Να δώσουμε ένα Ν.Π.Α. που αναγνωρίζει τις συμβολοσειρές της γλώσσας
 - Να δώσουμε ένα Μ.Π.Α. που αναγνωρίζει τις συμβολοσειρές της γλώσσας.
- Άρα, διαισθητικά, οι έννοιες της Κ.Ε., Ν.Π.Α και Μ.Π.Α. είναι <u>ισοδύναμες</u> (κάνουν την ίδια δουλειά, αποδεικνύουν ότι μία γλώσσα είναι κανονική)

2. Μαθηματικοί Ορισμοί

1. Τυπικός (μαθηματικός) Ορισμός ΜΠΑ (χωρίς ε-κινήσεις)

Ορισμός:

Ένα Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο (ΜΠΑ) είναι μία 5-άδα

$$M=(Q,\Sigma,q_0,\delta,F)$$

Όπου:

- Q είναι το σύνολο των καταστάσεων
- Σ είναι το αλφάβητο των συμβόλων εισόδου
- $ightharpoonup q_0 \in Q$ είναι η αρχική κατάσταση
- $\delta: Q \times \Sigma \to 2^{\varrho}$ είναι η συνάρτηση μετάβασης (π.χ. δ(q₁,σ)=S όπου S είναι ένα υποσύνολο των καταστάσεων $S \subseteq Q$)
- $ightharpoonup F \subseteq Q$ είναι το σύνολο των τελικών καταστάσεων

Υπενθύμιση: 2^Q είναι το δυναμοσύνολο του Q.

Β. Θεωρία

2. Μαθηματικοί Ορισμοί

1. Τυπικός (μαθηματικός) Ορισμός ΜΠΑ (χωρίς ε-κινήσεις)

Παράδειγμα: Το Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας L=(0+1)*00 είναι το ακόλουθο:

Και τυπικά περιγράφεται από την πεντάδα: $M=(Q, \Sigma, q_0, \delta, F)$ όπου:

- ightharpoonup Q={A,B, Γ }
- \triangleright $\Sigma = \{0,1\}$
- \rightarrow q₀=A
- Η δ μπορεί να περιγραφεί από τον ακόλουθο <u>πίνακα μετάβασης</u>:

	0	1	
A	{A,B}	{A}	
В	$\{\Gamma\}$	Ø	
Γ	Ø	Ø	

Β. Θεωρία

2. Μαθηματικοί Ορισμοί

2. ΜΠΑ: Απόφαση μέσω της αναδρομικής συνάρτησης δ*

Για να μπορούμε να κατασκευάσουμε μια υπολογιστική διαδικασία υπολογισμού της λειτουργίας του αυτομάτου, ορίζουμε την συνάρτηση δ* ως εξής:

Ορισμός:

Έστω ένα μη ντετερμινιστικό πεπερασμένο αυτόματο M=(Q,Σ,q₀,δ,F). Ορίζουμε την συνάρτηση δ* ως την συνάρτηση

- \rightarrow $\delta^*(q,\epsilon)=q$
- $\succ \delta^*(q, w\sigma) = \delta(\delta^*(q, w), \sigma) = U_{p \in \delta^*(q, w)} \delta(p, \sigma)$
 - q: κατάσταση,
 - wσ: είναι μία συμβολοσειρά με τελευταίο σύμβολο το σ
 Δηλαδή το σύνολο των καταστάσεων που πηγαίνει το αυτόματο όταν βρίσκεται σε οποιαδήποτε κατάσταση έχοντας διαβάσει ήδη το w και διαβάσει το σ.

2. Μαθηματικοί Ορισμοί

2. ΜΠΑ: Απόφαση μέσω της αναδρομικής συνάρτησης δ*

Παράδειγμα: Το Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας L={w | w περιέχει το 00} είναι το ακόλουθο:

	0	1	
A	{A,B}	{A}	
В	$\{\Gamma\}$	Ø	
Γ	Ø	Ø	

Να υπολογιστεί το δ*(Α,1010):

$$\delta * (A,1010) =$$

$$\delta(\delta * (A,101),0) =$$

$$\delta(\delta(\delta((\delta(A,10),1),0)) =$$

$$\delta(\delta(\delta(\delta(\delta^*(A,1),0),1),0)) =$$

$$\delta(\delta(\delta(\delta(\delta(\delta((A,\varepsilon),1),0),1),0)) =$$

$$\delta(\delta(\delta(\delta(\{A\},1),0),1),0) =$$

$$\delta(\delta(\delta(\{A\},0),1),0) =$$

$$\delta(\delta(\{A,B\},1),0) =$$

$$\delta(\{A\},0) =$$

 $\{A,B\}$

άρα από το Α με είσοδο την 1010 καταλήγουμε στα {Α,Β}.

Β. Θεωρία

2. Μαθηματικοί Ορισμοί

3. Τυπικός (μαθηματικός) Ορισμός ΜΠΑ (με ε-κινήσεις)

Ορισμός:

Ένα Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο (ΜΠΑ) με ε κινήσεις είναι μία 5-άδα

$$\mathbf{M} = (Q, \Sigma, q_0, \widehat{\delta}, F)$$

Όπου:

- Q είναι το σύνολο των καταστάσεων
- Σ είναι το αλφάβητο των συμβόλων εισόδου
- $ightharpoonup q_0 \in Q$ είναι η αρχική κατάσταση
- $\widehat{\delta}: Q \times (\Sigma \cup \{\varepsilon\}) \to 2^{\varrho}$ είναι η συνάρτηση μετάβασης (π.χ. δ(q₁,σ)=S όπου S είναι ένα υποσύνολο των καταστάσεων $S \subseteq Q$)
- $ightharpoonup F \subseteq Q$ είναι το σύνολο των τελικών καταστάσεων

Η διαφορά σε σχέση με τα ΜΠΑ (χωρίς ε-κινήσεις) είναι ότι καθορίζεται και μετάβαση με κίνηση ε, για κάθε κατάσταση

2. Μαθηματικοί Ορισμοί

3. Τυπικός (μαθηματικός) Ορισμός ΜΠΑ (με ε-κινήσεις)

Παράδειγμα: Το Μη Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας L=(01)*(10)* είναι το

ακόλουθο:

Και τυπικά περιγράφεται από την πεντάδα: Μ=(Q,Σ,q₀, δ, F) όπου:

- ightharpoonup Q={A,B, Γ , Δ }
- \triangleright $\Sigma = \{0,1\}$
- \rightarrow q₀=A
- Η δ μπορεί να περιγραφεί από τον ακόλουθο <u>πίνακα μετάβασης</u>:

	0	1	3
A	{B}	Ø	$\{\Gamma\}$
В	Ø	{A}	Ø
Γ	Ø	$\{\Delta\}$	Ø
Δ	{Γ}	Ø	Ø

Β. Θεωρία

2. Μαθηματικοί Ορισμοί

4. ΜΠΑ (με ε-κινήσεις): Απόφαση μέσω της αναδρομικής συνάρτησης $\hat{\delta}^*(q,w)$.

Για να μπορούμε να κατασκευάσουμε μια υπολογιστική διαδικασία υπολογισμού της λειτουργίας του αυτομάτου, ορίζουμε την συνάρτηση $\widehat{\delta}*(q,w)$ ω εξής:

Ορισμός:

Έστω ένα μη ντετερμινιστικό πεπερασμένο αυτόματο $M=(Q,\Sigma,q_0,\delta,F)$ με ε-κινήσεις. Ορίζουμε την συνάρτηση $\widehat{\delta}*(q,w)$ ως την συνάρτηση

- $\triangleright \ \hat{\delta}^*(q,\varepsilon) = \varepsilon(q)$
- $\triangleright \hat{\delta}^*(q, w\sigma) = \varepsilon(\hat{\delta}(\hat{\delta}^*(q, w), \sigma))$
 - q: κατάσταση,
 - wσ: είναι μία συμβολοσειρά με τελευταίο σύμβολο το σ
 Δηλαδή το σύνολο των καταστάσεων που πηγαίνει το αυτόματο όταν βρίσκεται σε οποιαδήποτε κατάσταση έχοντας διαβάσει ήδη το w και διαβάσει το σ.
- Παραπάνω έχουμε ορίσει την συνάρτηση ε(q) που με όρισμα μια κατάσταση επιστρέφει το σύνολο των καταστάσεων που είναι προσβάσιμες χωρίς διάβασμα συμβόλου.

2. Μαθηματικοί Ορισμοί

4. ΜΠΑ (με ε-κινήσεις): Απόφαση μέσω της αναδρομικής συνάρτησης $\hat{\delta}^*(q,w)$

<u>Παράδειγμα:</u> Το Ντετερμινιστικό Πεπερασμένο Αυτόματο της γλώσσας

 $L=(01)^*(10)^*$

είναι το ακόλουθο:

	0	1	3
A	{B}	Ø	$\{\Gamma\}$
В	Ø	{A}	Ø
Γ	Ø	$\{\Delta\}$	Ø
Δ	$\{\Gamma\}$	Ø	Ø

Να υπολογιστεί το δ*(Α,01):

$$\hat{\delta}^*(A,01) =$$

$$\varepsilon(\hat{\delta}(\hat{\delta}^*(A,0),1)) =$$

$$\varepsilon(\hat{\delta}(\varepsilon(\hat{\delta}(\hat{\delta}^*(A,\varepsilon),0)),1)) =$$

$$\varepsilon(\hat{\delta}(\varepsilon(\hat{\delta}(\hat{\delta}^*(A,\varepsilon),0)),1)) =$$

$$\varepsilon(\hat{\delta}(\varepsilon(\hat{\delta}(\varepsilon(A,\varepsilon),0)),1)) =$$

$$\varepsilon(\hat{\delta}(\varepsilon(\hat{\delta}(\varepsilon(A,\varepsilon),0)),1)) =$$

$$\varepsilon(\hat{\delta}(\varepsilon(\hat{\delta}(\varepsilon(A,\varepsilon),0)),1)) =$$

$$\varepsilon(\hat{\delta}(\varepsilon(\delta(\varepsilon(A,\varepsilon),0)),1)) =$$

$$\varepsilon(\hat{\delta}(\varepsilon(\delta(\varepsilon(A,\varepsilon),0)),1)) =$$

$$\varepsilon(\hat{\delta}(\varepsilon(\delta(\varepsilon(A,\varepsilon),0)),1)) =$$

$$\varepsilon(\hat{\delta}(\varepsilon(\varepsilon(E,\varepsilon),1))) =$$

$$\varepsilon(\hat{\delta}(\varepsilon(E,\varepsilon),1)) =$$

$$\varepsilon(\hat{\delta}(\varepsilon(E,\varepsilon),1) =$$

$$\varepsilon(\hat{\delta}(\varepsilon(E,\varepsilon),1)) =$$

$$\varepsilon(\hat{\delta}(\varepsilon(E,\varepsilon),1) =$$

$$\varepsilon(\hat{\delta}(\xi(E,\varepsilon),1) =$$

$$\varepsilon(\hat{\delta}(\xi(E,\varepsilon),1) =$$

$$\varepsilon(\hat{\delta}(\xi(E,\varepsilon),1) =$$

$$\varepsilon(\hat{\delta}($$

άρα από το Α με είσοδο το 01 καταλήγουμε στα {Α,Γ}.

Δ. Ασκήσεις Ασκηση Κατανόησης 1

Δίδεται το ακόλουθο αυτόματο:

Καταγράψτε την εκτέλεση με συμβολοσειρά εισόδου 11001.

Τι απαντά το αυτόματο με αυτήν την είσοδο;

Δ. Ασκήσεις Εφαρμογή 1

Δίδεται η γλώσσα του αλφαβήτου {0,1}: L={w|w ξεκινά με 00, περιέχει το 11 και τελειώνει με 01}

- Δώστε Κανονική Έκφραση που παράγει τις συμβολοσειρές της L
- 2. Δώστε ΜΠΑ που αναγνωρίζει τις συμβολοσειρές της L

3. Δώστε ΝΠΑ που αναγνωρίζει τις συμβολοσειρές της L

4. Δώστε ΝΠΑ για το συμπλήρωμα της L.

Δ. Ασκήσεις Εφαρμογή 2

Δώστε ΜΠΑ που αναγνωρίζουν τις γλώσσες που παράγονται από τις κανονικές εκφράσεις:

1. 0*1*01

2. 10*1*

- 3. (00+11)*+1
- 4. (1+00)*+0+11