Name: Key

Consider a language with the following typing rules

$$\frac{\Gamma[x \mapsto T_1] \vdash t : T_2}{\Gamma \vdash \lambda x. t : T_1 \to T_2} \quad \frac{\Gamma \vdash t_1 : T_1 \to T_2}{\Gamma \vdash t_1 \: t_2 : T_2} \quad \frac{\Gamma \vdash t_1 : T_1}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : (T_1, T_2)}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : (T_1, T_2)}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : (T_1, T_2)}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : (T_1, T_2)}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash t : \sigma}{\Gamma \vdash (t_1, t_2) : (T_1, T_2)} \quad \frac{\Gamma \vdash (t_1, t_2) : (T_1, t_2)}{\Gamma \vdash (t_1, t_2) : (T_1, t_2)} \quad \frac{\Gamma \vdash (t_1, t_2) : (T_1, t_2)}{\Gamma \vdash (t_1, t_2) : (T_1, t_2)} \quad \frac{\Gamma \vdash (t_1, t_2) : (T_1, t_2)}{\Gamma \vdash (t_1, t_2) : (T_1, t_2)} \quad \frac{\Gamma \vdash (t_1, t_2)}{\Gamma \vdash (t_1, t_2) : (T_1, t_2)} \quad \frac{\Gamma \vdash (t_1, t_2)}{\Gamma \vdash (t_1, t_2)} \quad \frac{\Gamma \vdash (t_1, t_2)}{\Gamma \vdash (t_1, t_2)} \quad \frac{\Gamma \vdash (t_1, t_2)$$

- 1. For each of the following pairs of types, give the *most specific* type scheme that includes both types. For example, the most specific type scheme that includes both Int and Int \rightarrow Int is $\forall \alpha.\alpha$, but the most specific type scheme that includes Int \rightarrow Int and Int \rightarrow Bool is $\forall \alpha.$ Int $\rightarrow \alpha$.
 - (a) Int \rightarrow Int, Bool \rightarrow Int

```
orall lpha.lpha	o {	t Int}
```

(b) $(Int, Bool) \rightarrow Int, (Bool, Int) \rightarrow Bool$

$$\forall \alpha. \forall \beta. (\alpha, \beta) \to \alpha$$

(c) Int \rightarrow Int, (Int \rightarrow Int) \rightarrow (Int \rightarrow Int).

$$\forall \alpha. \alpha o \alpha$$

2. Derive the typing assertion $\emptyset \vdash \lambda a.\operatorname{snd} a : \forall \alpha. \forall \beta. (\alpha, \beta) \to \beta.$