Bank Customer Churn Prediction

Initialization

Dependencies

```
In [1]:
        import pandas as pd
        data = pd.read_csv("Bank Customer Churn Prediction.csv")
In [2]:
In [3]:
        data.head()
Out[3]:
            customer_id credit_score country
                                                                               products_number credit_card
                                              gender
                                                       age
                                                            tenure
                                                                      balance
         0
               15634602
                                                                 2
                                                                         0.00
                                 619
                                       France
                                               Female
                                                        42
                                                                                                          1
         1
               15647311
                                                                     83807.86
                                                                                                          0
                                 608
                                        Spain
                                               Female
                                                        41
                                                                                              1
                                                                                              3
         2
               15619304
                                 502
                                                        42
                                                                  8 159660.80
                                       France
                                               Female
                                                                                                          1
         3
                                                                                              2
                                                                                                          0
               15701354
                                 699
                                       France
                                               Female
                                                        39
                                                                         0.00
         4
                                 850
                                                                  2 125510.82
                                                                                              1
               15737888
                                        Spain
                                               Female
                                                        43
                                                                                                          1
         Data Info
In [4]: data.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	customer_id	10000 non-null	int64
1	credit_score	10000 non-null	int64
2	country	10000 non-null	object
3	gender	10000 non-null	object
4	age	10000 non-null	int64
5	tenure	10000 non-null	int64
6	balance	10000 non-null	float64
7	products_number	10000 non-null	int64
8	credit_card	10000 non-null	int64
9	active_member	10000 non-null	int64
10	estimated_salary	10000 non-null	float64
11	churn	10000 non-null	int64
1.0	C1 (C4/2) :	164(0) 1: 1/2	`

dtypes: float64(2), int64(8), object(2)

memory usage: 937.6+ KB

```
In [5]: data.describe()
```

Out[5]:		customer_id	credit_score	age	tenure	balance	products_number	cre
	count	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	1000
	mean	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	1.530200	
	std	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	
	min	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	
	25%	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	
	50%	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	
	75%	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	
	max	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	

Columns

EDA

1. How many total countries are there

3. How many accounts are active and how many are inactive

4. How many people does have credit and how many does not

```
In [11]: activeCreditCards = data['active_member'].value_counts()

plt.xticks([0,1])
plt.bar(activeCreditCards.index,activeCreditCards.values)

plt.show()
```


5. How many people are male and female with active accounts

```
In [12]: genderBasedData = data[data['active_member'] == 1]['gender'].value_counts()
    plt.bar(genderBasedData.index,genderBasedData.values)
    plt.show()
```


6. Make box plot for balance and estimated salary

```
In [14]: plt.boxplot(data['estimated_salary'])
    plt.show()
```


It confirms that their are no outliers

Feature Engineering

1. Convert gender value into 0 and 1

```
data['gender'] = data['gender'].apply(lambda x: 1 if x == 'Male' else 0)
In [15]:
          data.head()
Out[15]:
             customer_id credit_score country gender age
                                                                                  products_number
                                                                                                    credit_card
                                                                         balance
                                                              tenure
          0
                15634602
                                   619
                                                           42
                                                                    2
                                                                            0.00
                                                                                                 1
                                         France
                                                      0
          1
                15647311
                                   608
                                                           41
                                                                        83807.86
                                                                                                             0
                                          Spain
                                                                                                 3
          2
                15619304
                                   502
                                                           42
                                                                       159660.80
                                         France
                                                      0
                                                                                                 2
          3
                15701354
                                   699
                                                           39
                                                                            0.00
                                         France
                                   850
                                                      0
                                                           43
                                                                       125510.82
                                                                                                 1
                15737888
                                          Spain
```

2. Do feature engineering in country section

```
In [16]: dummies = pd.get_dummies(data['country'],dtype=int)
    combinedDf = data.join(dummies)
    combinedDf.head()
```

Out[16]:		customer_id	credit_score	country	gender	age	tenure	balance	products_number	credit_card
	0	15634602	619	France	0	42	2	0.00	1	1
	1	15647311	608	Spain	0	41	1	83807.86	1	0
	2	15619304	502	France	0	42	8	159660.80	3	1
	3	15701354	699	France	0	39	1	0.00	2	0
	4	15737888	850	Spain	0	43	2	125510.82	1	1
	4				_		_			

Data Preprocessing

Train and test split

```
In [17]: from sklearn.model_selection import train_test_split
         columnsForPrediction = ['credit_score', 'gender', 'age', 'tenure', 'balance', 'products_numbe
         X = combinedDf[columnsForPrediction]
         y = combinedDf['churn']
         X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=35,shuffle=True)
```

Scaling

```
In [18]: from sklearn.preprocessing import StandardScaler
         scaler = StandardScaler()
         scaled_data = scaler.fit_transform(X_train)
         scaled_test_data = scaler.transform(X_test)
         scaled_data = pd.DataFrame(scaled_data)
         scaled test data = pd.DataFrame(scaled test data)
```

Model Training

79],

[285, 221]])

```
In [32]:
         from sklearn.metrics import accuracy_score, confusion_matrix
         from sklearn.ensemble import RandomForestClassifier
         classifier = RandomForestClassifier(random state=42)
         classifier.fit(X_train, y_train)
         y_pred = classifier.predict(X_test)
In [34]:
         accuracy = accuracy_score(y_test, y_pred)
         print(f'Accuracy: {accuracy * 100:.2f}%')
         conf_matrix = confusion_matrix(y_test, y_pred)
         conf_matrix
        Accuracy: 85.44%
Out[34]: array([[1915,
```