P for POWER

Statistical Inference

Linda Angulo Lopez

R4.0 Environment

library(knitr) # creating slides
library(ggplot2) # making plots
library(reshape2) # handling data frames

:: if
$$\alpha = 5\%$$

:: *if*
$$H_0$$
 is $\mu_0 = 30$

:: if
$$H_a$$
 is $\mu_a > 30$

CASE: Respiratory Distress Index and Sleep Disturbances

Central Theory Limit

Where $(X'-30)/(S/\sqrt{n})$ measures the number of standard errors the sample mean is from the mean hypothesized by H_0 and the denominator

 (S/\sqrt{n}) (is the standard error of the sample mean)

PS: if H_a specified that $\mu_a > \mu_0$

:: flip the following reasoning

:: look at the right tail

POWER

Power is the probability of rejecting the NULL HYPOTHESIS H_0 , when it is false.

:: Used to determine if your sample size was big enough to yield a meaningful, rather than random result

:: Detect if your ALTERNATIVE HYPOTHESIS, H_a is true, to lower the risk of a Type II errors.

Equation

As beta, β , is the probability of a *Type II error*, for accepting a false null hypothesis, then the complement of this the power is $(1-\beta)$.

$$P = (1 - \beta)$$

Do you remember this ... ?

- :: As μ_a gets bigger, the test gets more powerful
- :: As n gets bigger, the test gets more powerful
- :: Power decreases with increases in variation
- :: As α increases, power increases
- :: In a one sided test the power is greater as α
- is bigger than $\alpha/2$

Alpha

Power is the probability that the true mean μ is greater than the (1- α) quantile, in our sleep example:

:: if α = .05 and as H_a μ_a 30 <

:: for normal distributions of which we know the variances

:: we make p = qnorm(.95) our reference

When to reject H_0?

If a test statistic fell in the shaded portion, 5% of the area under the curve, we would reject H_0 in favor H_a

Two distributions

The two hypotheses, H_0 and H_a , represent two distributions

:: since they're talking about means or

:: centers of distributions

Normal distributed

For a random variable X which is distributed as Normal with a mean mu, μ and variance sigma squared, σ^2

```
:: under H_0, X' is N(\mu_0, \sigma^2/n)
```

:: under H_a , X' is N(μ_a , σ^2/n)

95th percentile of H_0 , black vertical on the red plot

Mean proposed by H_a , peak of blue plot

Power is how far H_a is from the right of 95th percentile of H_0

Power depends on the null distribution's variance

If μ_a = 34 > μ_0 the test H_a is more powerful than H_0

If power is large, we can reject the null hypothesis

The distribution represented by H_a moved to the right, most of the blue curve is to the right of the vertical line, indicating that with μ_a , 34 = the test is more powerful, so it is

:: correct to reject the H_0 as it appears to be false.

If
$$\mu_a$$
 = 30 = μ_0 the power is at α

If power is similar or equal to the 95th percentile of H_0 , we cannot reject the null hypothesis

The distribution represented by H_{α} ,in the above graph moved under the blue curve, indicating that with

:: $\mu_a = 30 = \mu_0$, the test,

 $:: H_a$ is almost as powerful as H_0 , so it is

:: incorrect to reject the null hypothesis since it does not appear to be false.

If $\mu_a > 28 = \mu_0$ the test's power is weaker

Not worth investigating

The distribution represented by H_a will move to the left of μ_0 , 30 = the area under the blue curve is less than the 5% our α , so the test is not only less powerful, it even contradicts H_a

:: it is therefore not worth looking into.

RECAP

Power is a function that depends on a specific value of an alternative mean, μ_{α} , which is any value greater than μ_0 , the mean hypothesized by H_0

 \square Recall that H_a specified $\mu > 30$, in the sleep case.

RECAP

If μ_a is much bigger than μ_0 30 = then the power, a probability, is bigger than if μ_a is close to 30.

:: As μ_a approaches 30, the mean under H_0 , the power approaches α .

Power Curves *n*

z <- qnorm(.95)

```
# mean=30

z <- qnorm(.95)

pnorm(30+z,mean=30,lower.tail=FALSE)
## [1] 0.05</pre>
```

With the mean set to μ_0 the two distributions, null and alternative, are the same and power = α = 5%.

$\mu_a < \mu_0$

```
#mean=32

z <- qnorm(.95)

pnorm(30+z, mean=32,lower.tail=FALSE)
## [1] 0.63876</pre>
```

With $\mu_a < \mu_0$ the power is greater than α , at 64%.

:: When the sample mean is many standard errors greater than the mean hypothesized by the null hypothesis, :: the probability of rejecting H_0 is false is much higher.

Standard deviation, sd

```
# sd=1

z <- qnorm(.95)

pnorm(30+z, mean=32, sd= 1, lower.tail=FALSE)
## [1] 0.63876
# sd=2

z <- qnorm(.95)

pnorm(30+z, mean=32, sd= 2, lower.tail=FALSE)
## [1] 0.5704709</pre>
```

:: Power decreases with increases in variation

Power Curves, σ

RECAP

:: As α increases, power increases

:: In a one sided test the power is greater as α is bigger than $\alpha/2$

Power Curves, α

POWERful RECAP

- :: As μ_a gets bigger, the test gets more **powerful**
- :: As n gets bigger, the test gets more powerful
- :: Power decreases with increases in variation
- $:: As \ \alpha \ increases$, power increases, so
- :: A one sided test has **greater power**

@lindangulopez Statistical Inference

myCOURSERA notes:

plots from swirl