

Inhalt

- Schwächen des Internet-Protokolls (IP)
- IPSec: Sicherheitserweiterung des IP-Protokolls
 - □ Authentication Header (AH)
 - Encapsulating Security Payload (ESP)
 - □ Anwendungsbeispiele
- Schlüsselverteilung mit IKEv2 (Internet Key Exchange)
 - □ Aufbau einer IKE SA
 - Authentisierung der Partner
 - □ Aufbau der IPSec SA
 - Erzeugung von Schlüsselmaterial

IP: Gefahren und Schwächen

- Vertraulichkeit:
 - Mithören relativ einfach möglich
 - Man-in-the-middle-Angriffe
 - □ Verkehrsfluss-Analyse
- Integrität:
 - Veränderung der Daten
 - Session Hijacking
 - □ Replay-Angriffe
- Authentisierung:
 - □ IP Spoofing
- Lösung: IPSec (Sicherheitserweiterungen für IP)
 - □ Fester Bestandteil von IPv6
 - □ Als Erweiterungs-Header auch für IPv4 einsetzbar
 - Motivation: Erspart den Aufwand für entsprechende Gegenmaßnahmen in jeder einzelnen Anwendung (d.h. auf höheren Schichten)

IPSec Überblick

- IP Authentication Header (AH)
 - ☐ Integrität des verbindungslosen Verkehrs
 - □ Authentisierung des Datenursprungs (genauer: des IP-Headers)
 - Optional: Anti-Replay-Dienst
- IP Encapsulating Security Payload (ESP)
 - Vertraulichkeit (eingeschränkt auch für den Verkehrsfluss)
 - □ Integrität
 - Authentisierung (der sog. Security Association)
 - Anti-Replay Dienst
- Jeweils zwei verschiedene Betriebsmodi:
 - Transport Mode
 - □ Tunnel Mode

Transport Mode / Tunnel Mode

■ In beiden Modi können AH und/oder ESP eingesetzt werden

Transport Mode

Einschub: Herkömmlicher IPv4 Header

Version

Version of IP Protocol. 4 and 6 are valid. This diagram represents version 4 structure only.

Header Length

Number of 32-bit words in TCP header, minimum value of 5. Multiply by 4 to get byte count.

Protocol

IP Protocol ID. Including (but not limited to):

- 1 ICMP 17 UDP 57 SKIP 2 IGMP 47 GRE 88 EIGRP 6 TCP 50 ESP 89 OSPF
- 9 IGRP 51 AH 115 L2TP

Total Length

Total length of IP datagram, or IP fragment if fragmented. Measured in Bytes.

Fragment Offset

Fragment offset from start of IP datagram. Measured in 8 byte (2 words, 64 bits) increments. If IP datagram is fragmented, fragment size (Total Length) must be a multiple of 8 bytes.

Header Checksum

Checksum of entire IP header

IP Flags

x D M

x 0x80 reserved (evil bit) D 0x40 Do Not Fragment M 0x20 More Fragments follow

RFC 791

Please refer to RFC 791 for the complete Internet Protocol (IP) Specification.

IT-Sicherheit | WS 24/25| © Helmut

Bildquelle: nmap.org

Einschub: Herkömmlicher TCP-Header

Congestion Notification							
ECN (Explicit C Notification). S 3168 for full de states below.	ee R	FC					
Packet State	DSB	ECN bits					
Syn	00	11					
Syn-Ack	00	01					
Ack	0 1	00					

Congestion Notification

Packet State	DSB	ECN bits	
Syn	00	11	
Syn-Ack	00	01	
Ack	0 1	0.0	
No Congestion	01	0.0	
No Congestion	10	0.0	
Congestion	11	00	
Receiver Response	11	0 1	
Sender Response	11	11	

TCP Options

- 0 End of Options List
- 1 No Operation (NOP, Pad)
- 2 Maximum segment size
- 3 Window Scale
- 4 Selective ACK ok
- 8 Timestamp

Checksum

Checksum of entire TCP segment and pseudo header (parts of IP header)

Offset

Number of 32-bit words in TCP header, minimum value of 5. Multiply by 4 to get byte count.

RFC 793

Please refer to RFC 793 for the complete Transmission Control Protocol (TCP) Specification.

Bildquelle: nmap.org

Autentication Header (AH)

- AH im Transport Mode
 - ☐ Integrität durch MAC
 - ☐ Authentisierung durch gemeinsamen Schlüssel
 - Anti-Replay durch gesicherte Sequenznummer

AH im Tunnel Mode

IP-Header neu	AH Header	IP Header alt	Daten

AH im Detail

Bit (<u> </u>	7	15	_31			
	Next Header	AH Length	Reserved				
	Security Parameter Index (SPI)						
	Sequence Number						
Integrity Check Value (ICV) (variable Länge)							

AH Transport Mode - Details

IPSec in AH Transport Mode

IT-Sicherheit | WS 24/25 | © Helmut Reiser

Bildquelle: Steve Friedl / unixwiz.net

Tunnel Mode im Detail

IPSec in AH Tunnel Mode

Encapsulating Security Payload (ESP) - Überblick

■ ESP Transport Mode

verschlüsselt

z.B.

HMAC-SHA1

- Vertraulichkeit durch Verschlüsselung
- □ Integrität durch MAC (optional)
- Authentisierung durch HMAC (optional)
- Anti-Replay durch gesicherte Sequenznummer (optional)
- ESP Tunnel Mode

IP Header neu ESP Header IP Header alt Daten ESP Trailer Auth. Data

Authentisierungsschlüssel

Schutz vor Traffic-Analysen durch verschlüsselten IP-Header "alt"

ESP im Detail

it <u>Q</u>	•	7	15	23	
5	Security Paramet	er Index (SPI)			
5	Sequence Numbe	er			
F	Payload Data (va	riable); protected			
		Padding (0 - 255	bytes)		
			Pad Length	Next Header	
I	ntegrity Check Va	alue (ICV)			

ESP Tunnel Mode - Details

IPSec in ESP Tunnel Mode

Replay Protection

- Empfänger verwaltet Window für empfangene Pakete
 - Ursprünglich als Mechanismus, um Überfluten des Empfängers zu vermeiden
 - □ nicht größer als 32 Bit
- Grundprinzip:

Sliding Window empfangener Pakete

Replay

IPSec Anwendungsszenarien

- AH und ESP können kombiniert verwendet werden
- Auch Tunnel und Transport Mode können kombiniert werden
- Mögliche Einsatzszenarien
 - Kopplung von verschiedenen Unternehmensstandorten
 Verbindung von Security Gateway (SGW) zu Security Gateway

Telearbeitsplätze; Remote Access ("Road Warrior")Endsystem zu SGW

Szenario: Standortvernetzung

- Mögliche Anforderungen:
 - Authentisierung SGW-to-SGW oder End-to-End
 - Integritätssicherung SGW-to-SGW oder End-to-End
 - Schutz gegen Replay-Angriffe
 - Vertraulichkeit auch im (jeweils) internen Netz
 - □ SGW realisiert auch Firewall-Funktionen
 - Verwendung privater IP-Adressen in den Standorten
 - Verschattung interner Netzstrukturen

Protokollkombinationen

- AH Tunnel Mode am Security Gateway
 - Integritätssicherung
 - Authentisierung SGW to SGW
 - Private Adressen im internen Netz
- ESP Tunnel Mode am Security Gateway
 - Vertraulichkeit (auch der privaten Adressen)
- AH Transport am Endsystem / ESP Transport am SGW
 - ☐ Integritätssicherung

IP Header

ESP Header

AH Header

Daten

ESP Trailer

- ☐ Authentisierung End to End
- Vertraulichkeit ab SGW
- Private Adressen nicht möglich
- Nur theoretische Kombination; praktisch schwer realisierbar (Empfänger SGW nicht adressierba

Protokollkombinationen (2)

- ESP Transport am Endsystem, AH Transport am SGW
 - Vertraulichkeit End to End
 - Authentisierung SGW to SGW
 - Private Adressen nicht möglich
 - □ SGW kann nicht mehr filtern (wegen Verschlüsselung)
 - ☐ Theoretisches Beispiel, in der Praxis schwer realisierbar, SGW nicht adressiert (transparentes SGW)

- AH Transport am Endsystem / ESP Tunnel am SGW
 - Integritätssicherung
 - Authentisierung End to End
 - Vertraulichkeit ab SGW
 - Private Adressen möglich

IP Header 2 ESP Header IP Header 1 AH Header Daten ESP Trailer

IPSec Security Association (SA)

- Inhalt einer SA
 - □ IPSec Protokoll Modus (Tunnel oder Transport)
 - Parameter (Algorithmen, Schlüssel, Zertifikat, Initialisierungsvektor,...)
 - Lebensdauer der SA
 - Sequenznummernzähler mit –overflow
 - □ Anti-Replay-Window
 - **_**
- Identifikation einer SA per Kombination aus:
 - Security Parameter Index (SPI); 32-Bit Zahl
 - □ Ziel-Adresse
 - Verwendetes Protokoll (AH, ESP)
- D.h. in jede Kommunikationsrichtung wird eine eigene SA vereinbart
- Jeder IPSec-Teilnehmer hat eine lokale Security Policy Database (SPD) mit SAs

Inhalt

- Schwächen des Internet-Protokolls (IP)
- IPSec: Sicherheitserweiterung des IP-Protokolls
 - Authentication Header (AH)
 - Encapsulating Security Payload (ESP)
 - Anwendungsbeispiele
- Schlüsselverteilung mit IKEv2 (Internet Key Exchange)
 - □ Aufbau einer IKE SA
 - Authentisierung der Partner
 - □ Aufbau der IPSec SA
 - Erzeugung von Schlüsselmaterial

Grundlage: Diffie-Hellman Schlüsselaustasch

- Ermöglicht den sicheren Austausch eines Schlüssels über einen unsicheren Kanal:
- Primzahl p und eine primitive Wurzel g (mod p) dürfen öffentlich bekannt gemacht werden (oft als Diffie-Hellman Group bezeichnet)
- Alice wählt ein x aus [1..p-2]
- Bob wählt ein y aus [1..p-2]
- Alice schickt $A = g^x \mod p$ an Bob
- Bob schickt $B = g^y \mod p$ an Alice
- Beide verwenden den folgenden Schlüssel:

$$Key = A^y = (g^x)^y = g^{xy} = (g^y)^x = B^x$$
 (mod p)

Diffie-Hellman Beispiel

- Achtung: Üblicherweise Zahlen mit mehreren hundert Stellen!
- Alice und Bob einigen sich auf p=13 und g=2
- Alice wählt zufällig x=5, Bob wählt zufällig y=7
- Alice berechnet A = 2⁵ mod 13 = 6, schickt dies an Bob
- Bob berechnet B = 2^7 mod 13 = 11, schickt dies an Alice
- Alice berechnet 115 mod 13 = 7
- Bob berechnet $6^7 \mod 13 = 7$
- Beide erhalten also das Ergebnis 7
- Angreifer kann die Zahlen 13, 2, 6 und 11 mithören, den Wert 7 aber nicht berechnen, da g^{xy} aufwendig zu berechnen ist, selbst wenn g, g^x und g^y bekannt sind. (Eng verwandt mit dem Diskreten-Logarithmus-Problem)

IPSec Schlüsselaustausch über IKEv2

Protokollprimitive

- 1. IKE_INIT
 - Aufbau einer bidirektionalen IKE SA
- 2. IKE AUTH
 - Authentisierung der Partner
 - Aufbau der ersten (und oft einzigen) bidirektionalen IPSec SA
- 3. IKE CHILD SA
 - Aushandeln weiterer IPSec SAs
 - Re-Keying einer bestehenden SA
- □ Ein durch IKE_AUTH etablierter Kanal kann für mehrere IKE_CHILD_SA Exchanges verwendet werden

■ Ziele:

- □ Erzeugung des für IPSec benötigten Schlüsselmaterials
- Authentisierung der Gegenseite schon in IKE (nicht erst in IPSec)

IKE-SA ausgehandelt, Schlüssel erzeugt, vertraulicher Kanal möglich; KEINE Authentisierung

- IKE-SA-Vorschlag: enthält die vom Initiator unterstützen Algorithmen
- Ni, Nr Zufallszahlen
- Diffie-Hellman Verfahren zur Berechnung von SKEYSEED
- Ableitung aus SKEYSEED (für jede Richtung separat)
 - □ SK_a: Authentisierungsschlüssel
 - SK_e: Schlüssel für Kryptoverfahren
- CertReq: Anforderung von Zertifikat(en); Optional

IKEv2 IKE AUTH

Alice							Bob
Initiator H	eader	IDi (Init	iator)	[Cert]	[CertRed	[IDr] (Respond	Responder der)
Al	UTH	IPSec S Vorschl	_	TSi	TSr		
	Hea	der	IDr		[Cert]	AUTH	
4	IPS	ec SA	TSi		TSr		

- Initiator und Responder k\u00f6nnen mehrere IDs haben; IDi und IDr bestimmen die jeweils gew\u00e4hlte ID
- Authentisierung über Public Key in AUTH
- Zertifikat und entsprechende Kette in Cert (Optional)
- TSx enthält Informationen aus lokaler Security Policy Database

TSx

- Falls IP-Paket verarbeitet wird, für das "protect" in der SPD gesetzt ist:
 - Paket muss verschlüsselt werden
 - Mögliches Problem: Es existiert keine SA
 - SPD-Verwaltung ist keine Aufgabe von IKE
 - □ Aber IKE dient zur Aushandlung von SAs
 - Informationen aus lokaler SPD können über TSx weitergegeben werden
 - Damit Wahrung der Konsistenz
- Bsp.: Bob ist Gateway für privates Subnetz
 - Alice will Verkehr ins Subnetz 10.11.12.* tunneln
 - □ TSi enthält Adress-Range: 10.11.12.0 10.11.12.255
 - □ Bob kann Adress-Range in TSr einschränken

Irz

Zusammenfassung

A und B authentisiert; IPSec-SA und Schlüsselmaterial vorhanden

CREATE_CHILD_SA

- Optional, da SA bereits mit IKE_AUTH ausgehandelt wird
- N enthält existierende SA, für die neues Schlüsselmaterial berechnet werden soll
- Optionaler Diffie-Hellman Key Exchange für Forward Security
- Nx sind von Initiator / Responder gewählte Zufallszahlen

Irz

Schlüsselgenerierung

- IKE-SA legt fest:
 - Verschlüsselungsalgorithmus
 - Integritätssicherungsalgorithmus
 - □ Diffie-Hellman Group (p und g)
 - Zufallszahlenfunktion (Pseudo-random function, prf)
- prf wird zur Schlüsselerzeugung verwendet;
- Abhängig von der benötigten Schlüssellänge wird prf iteriert
 - \Box prf+(K,S)
 - \neg prf+ = T1 | T2 | T3 | T4 | ... mit

K = Key

S = Seed

- \Box T1 = prf(K, S | 0x01)
- \Box T2 = prf(K, S | 0x02)
- **....**
- \neg Tn = prf(K, S | 0x n)

IKE-Schlüsselmaterial

- IKE-SA Schlüsselmaterial:
 - □ SK_d verwendet zur Ableitung neuer Schlüssel für CHILD_SA
 - □ SK_{ai} Schlüssel für Integritätssicherung des Initiators
 - □ SK_{ar} Schlüssel für Integritätssicherung des Responders
 - □ SK_{ei} und SK_{er} Schlüssel für Verschlüsselung
 - SK_{pi} und SK_{pr} Erzeugung der AUTH Payload
- SKEYSEED = prf (Ni | Nr , g^{xy})
- IKE-SA Schlüsselmaterial:

```
{SK_d \mid SK_{ai} \mid SK_{ar} \mid SK_{ei} \mid SK_{er} \mid SK_{pi} \mid SK_{pr}} = prf+ (SKEYSEED, Ni \mid Nr \mid SPI_i \mid SPI_r)
```

- CHILD_SA Schlüsselmaterial:
 - □ KEYMAT = prf+ (SK_d, Ni | Nr) bzw.
 - \Box KEYMAT = prf+ (SK_d, g^{xy} | Ni | Nr)

Authentisierung

- mehrere Alternativen:
- Durch digitale Signatur eines vordefinierten Datenblocks
 - Verifikation durch Empfänger
 - Zertifikat (und evtl. entsprechende Kette) erforderlich
 - Optionale Anforderung und Übertragung: CertReq und Cert
 - □ Zertifikat kann auch schon bekannt sein
- Durch HMAC des Datenblocks
- Durch Verwendung des Extensible Authentication Protocol (EAP, vgl. Kap. 9)