Fisica

Autore

 $6~\mathrm{marzo}~2024$

If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed on to the next generations of creatures, what statement would contain the most information in the fewest words? I believe it is the atomic hypothesis [...] that all things are $made\ of\ atoms{--little}\ particles$ that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon being squeezed into one another. In that one sentence, you will see, there is an enormous amount of information about the world, if just a little imagination and thinking are applied.

Richard P. Feynman, The Feynman Lectures on Physics

Indice

Ι	Bo	ok	5
1	Intr 1.1 1.2 1.3 1.4	Definizione e scopi della fisica	7 7 7 8 9
2	Des	crizione del moto	13
	2.1	Moto del punto	13
		2.1.1 Sistemi di riferimento	13
	2.2	Moto rettilineo uniforme	13
3	Din	amica	15
	3.1	Recap	15
	3.2	Leggi della dinamica	15
		3.2.1 La prima legge	15
		3.2.2 La seconda legge	15
		3.2.3 Analisi dimensionale	16 16
	3.3	Forza agente sul moto	16
	3.4	Lancio verso l'alto	17
		3.4.1 La terza legge	18
II	Le	ezioni	19
4	Lezi	ione 2024-02-26	21
5	Test	t	23
	5.1	Thermodynamics	23
		5.1.1 First law of Thermodynamics	23
	5.2	Cinematics	24
	5.3	Other section	24
	5.4	More sections	24
	5.5 5.6	More	24 24
	5.7	More	24
	5.8	Another one please	24
	5.9	More	24
	5.10	Another one please, but way longer such that it does not fit the	
		margin	24
II	тт	Esercitazioni	25
11	1 L	28 C I CITAZIOIII	ن⊿

4 INDICE

Parte I

 \mathbf{Book}

Introduzione alla Fisica

1.1 Definizione e scopi della fisica

Si possono formulare definizioni diverse riguardo la disciplina scientifica della fisica, come la seguente:

Fisica

La fisica è lo studio quantitativo delle leggi fondamentali della natura, cioè delle leggi che governano tutti i fenomeni naturali dell'universo. Una legge fisica (o principio) è una regolarita' della natura esprimibile in forma matematica, ma anche una verità non dimostrabile che tuttavia non contraddice i fenomeni osservabili dell'esperienza.

La fisica si avvale del **metodo scientifico**, secondo cui la natura deve essere interrogata per vie sperimentali, facendosi guidare da **ipotesi** e modelli teorici. Una particolarita' di questo metodo è la capacita' di isolare un certo fenomeno che si intende studiare, tralasciando (si usera' spesso il termine *trascurare*) certi aspetti ritenuti non rilevanti in modo da scoprire quelle regolarita' dalle quali potrebbe essere dedotta una certa' relazione matematica.

Il ruolo della matematica è di fornire un linguaggio formale per descrivere quantitativamente i fenomeni osservati e costruire modelli utili alla loro trattazione.

1.2 Grandezze fisiche

La fisica è una scienza quantitativa, ovvero essa si occupa di caratteristiche e proprieta' del mondo che possono essere misurate e quantificate: le cosiddette grandezze fisiche. Esempi di grandezze fisiche sono la lunghezza, la massa, la temperatura, la durata temporale e cosi' via.

Grandezza fisica

Una grandezza fisica è una caratteristica di un oggetto o di un fenomeno che puo' essere misurata in termini quantitativi (oltre che oggettivi, ovvero indipendentemente dalle sensazioni personali degli individui).

È implicito, intuitivamente, il concetto di **misura**. Misurare una grandezza fisica significa confrontarla con una grandezza "campione", detta **unita**' di

- 1.1 Definizione e scopi della fisica
- 1.2 Grandezze fisiche
- 1.3 Incertezza
- 1.4 Notazione scientifica e ordini di grandezza

misura, e stabilire quante volte l'unita' di misura è contenuta nella grandezza data. Il valore numerico ottenuto è la misura della grandezza e deve essere sempre accompagnato dall'unita' di misura. In altre parole, la misura non è altro che un *rapporto* tra la grandezza che si intende misurare e la grandezza campione scelta convenzionalmente per tale scopo.

Mostriamo un esempio: supponiamo di voler misurare la lunghezza di qualsiasi cosa in "chiavette USB" (si potrebbe argomentare circa quale chiavetta si stia impiegando e quale posizione la chiavetta debba assumere durante la misura. Supponiamo qui che la chiavetta sia posta in verticale, senza perderci in ulteriori dettagli). Decidiamo poi di misurare l'altezza di una porta—anche qui, non specifichiamo quale porta—utilizzando l'unita' appena scelta. Supponiamo quindi di aver registrato il seguente dato:

$$H=20$$
 chiavette USB

Notare come siano stati specificati:

- Un nome per l'oggetto che si intendeva misurare, H, ovvero l'altezza della porta.
- Il valore numerico individuato, 20.
- Una affermazione per legare il nome e il dato, = ("corrisponde a", "è uguale a")—caratteristica che peraltro si trova anche nei linguaggi di programmazione.
- L'unita' di misura, chiavette USB.

Tuttavia, tale misurazione non è stata affatto "sincera": non vi è la garanzia del fatto che il valore registrato sia esatto. La prossima sezione trattera' questo problema, ovvero quello dell'incertezza.

1.3 Incertezza

Idealmente, si vorrebbe impiegare, grazie alle misure, numeri puntuali ed esatti. In altre parole, dei numeri con una precisione indefinita, aventi un numero illimitato di cifre decimali e non.

Ma quando si effettua una misura di una grandezza, il risultato ottenuto è noto solo con una certa precisione. Riprendendo l'esempio della chiavetta USB, è impossible misurare con certezza tutte le lunghezze, in quanto non multipli esatti della chiavetta stessa: ci sara' sempre un certo margine di "un pezzo di chiavetta", minore dell'unita' prescelta. Ma al di sotto di quella unita' non è possibile fornire alcuna garanzia sulla puntualita' del dato. In altre parole, la $sensibilità^1$ dello strumento è uno dei limiti alla precisione della misura.

¹La più piccola variazione della grandezza che lo strumento è in grado di rilevare.

Cifre significative del risultato di una misura

Le cifre significative del risultato di una misura sono le cifre note con certezza e la prima cifra incerta. In altre parole, esse sono le cifre che si possono controllare con lo strumento impiegato nella misura.

Ad esempio, il valore corrispondente alla lunghezza di una barca L=10,5 m possiede tre cifre significative, che non equivale a 10,50 m. Il secondo dato, infatti, dichiara che la misurazione è stata possibile controllando le cifre fino al centimetro. L=0,002 possiede solo una cifra significativa, perché in genere si ignorano gli zeri a sinistra della prima cifra significativa diversa da zero. Possono essere ambigui valori come L=2500 m: quali zeri sono cifre significative? Come vedremo tra poco, è utile esprimere questi valori in notazione scientifica per eliminare ambiguità.

Vi potrebbero anche essere errori dovuti a imprecisioni introdotte nell'utilizzo degli strumenti di misura. Questo errore deve tuttavia essere quantificato ed ogni misura ne è affetta (comprese quelle che non la riportano).

Risultato della misura di una grandezza

Il risultato della misura di una grandezza è sempre un'approssimazione accompagnata da una certa incertezza, ovvero un valore attendibile e un errore assoluto (o semplicemente *incertezza*).

$$x = \overline{x} \pm e_x$$

Questo risultato non è quindi altro che un intervallo in cui il valore reale della misura si trova. Ci limiteremo agli errori relativi a singole misure, nelle quali x corrisponde al valore misurato e e_x la sensibilità dello strumento. Di conseguenza, possiamo ora correggere il risultato della misura effettuata in chiavette USB:

$$H = (20 \pm 1)$$
 chiavette USB

1.4 Notazione scientifica e ordini di grandezza

Unità di misura come il metro e il kologrammo sono comode nella vita di tutti i giorni, ma rappresentano quantità enormi su scala atomica e subatomica e quantità minuscole su scala astronomica e cosmica. Conseguenza di ciò è che alcune misure possono essere espresse da numeri "scomodi". Considerando solo valori attendibili, la massa dell'atomo di idrogeno è circa

mentre la massa della Terra è

È pressoché evidente il motivo di tale scomodità: la notazione è di difficile trattazione. Viene dunque in aiuto la **notazione scientifica**, ovvero una notazione numerica che permette di contrarre rappresentazioni estese impiegando potenze di 10. Nella notazione scientifica, ogni numero è scritto come prodotto di due fattori:

- Un numero decimale $x: x \in R, 1 \le x < 10^2$.
- Una potenza di 10, con esponente intero.

Pertanto, le misure precedenti si possono esprimere in notazione scientifica come segue:

$$m_H = 1,67 \cdot 10^{-27} \text{ kg}$$

 $m_T = 5,97 \cdot 10^{24} \text{ kg}$

Notare come la notazione sia in grado di eliminare ambiguità sul numero di cifre significative: ora sappiamo che la massa della Terra è stata calcolata fino a tre cifre significative e non 25.

Non sempre è necessario calcolare esattamente il valore di una certa grandezza. Talvolta basta averne solo un'idea approssimata. Supponiamo, ad esempio, che sia sufficiente sapere se una certa massa vale all'incirca 1 grammo oppure 1 ettogrammo. In questo caso, possiamo accontentarci di stimare il valore della massa con un'accuratezza di un fattore 10, cioè di calcolare il suo ordine di grandezza.

Ordine di grandezza

L'ordine di grandezza di un numero è la potenza di 10 più vicina a quel numero.

Per determinare l'ordine di grandezza di un numero occorre quindi esprimerlo in notazione scientifica—prodotto di un numero decimale compreso tra 1 e 10 e di una potenza di 10—e poi approssimare il valore alla potenza di 10 più vicina. In particolare:

• Se il numero decimale è minore di 5, si mantiene l'esponente della potenza. Ad esempio:

$$3, 6 \cdot 10^2 \rightarrow \mbox{ Ordine di grandezza } 10^2$$
 $4, 2 \cdot 10^{-3} \rightarrow \mbox{ Ordine di grandezza } 10^{-3}$

• Se il numero decimale è maggiore di 5, si somma +1 all'esponente della potenza. Ad esempio:

$$9\cdot 10^2\approx 10\cdot 10^2 o ext{ Ordine di grandezza } 10^3$$

$$8,1\cdot 10^{-12}\approx 10\cdot 10^{-12} o ext{ Ordine di grandezza } 10^{-11}$$

 $^{^2}$ In realtà, questa notazione corrisponde alla variante "ingegneristica". Esiste anche una notazione che prevede che il valore espresso x sia $0 \le x \le 1$.

Sono stati definiti dei prefissi stadard per certi ordini di grandezza notevoli, cioè quelli che, escludendo la potenza nulla, rappresentano multipli di tre. Utilizzando questi prefissi, di fianco all'unità di misura adottata, si contrae ancora di più la notazione scientifica, sottointendendo un certo ordine di grandezza.

Potenza	Simbolo	Prefisso
10^{12}	Т	Tera
10^{9}	G	Giga
10^{6}	M	Mega
10^{3}	k	kilo
10^{-3}	m	milli
10^{-6}	μ	micro
10^{-9}	n	nano
10^{-12}	р	pico

Descrizione del moto

2.1 Moto del punto

Un corpo è in moto quando la sua posizione cambia nel tempo. Nel descrivere il moto, si introdurrà la seguente semplificazione: gli oggetti in moto saranno trattati come punti materiali, ovvero concentrati in un punto adimensionale. Il modello del punto materiale è un buon punto di partenza per comprendere bene il fenomeno del moto (cominciare dal quadro attuale, ovvero quello della relatività ristretta, sarebbe interessante ma ostico). In particolare, le dimensioni dell'oggetto del quale si intende studiare il moto saranno considerate trascurabili rispetto a quelle dell'ambiente circostante.

2.1.1 Sistemi di riferimento

Abbiamo detto che il moto è caratterizzato da un cambiamento di posizione. Il primo passo nella descrizione del moto di un corpo consiste quindi nello stabilire il modello da adottare per catturare il concetto di **posizione**. Sappiamo già che i modelli della fisica si basano sul linguaggio matematico; il modello più naturale che si possa adottare è dunque un sistema di assi cartesiani. Da qui, la posizione del corpo può essere specificata mediante coordinate. Una speciale coordinata è il tempo.

La scelta del sistema di riferimento di assi cartesiani è del tutto arbitraria, ma una volta fissata è necessario essere coerenti con essa.

2.2 Moto rettilineo uniforme

$$x(t) = x_i + v(t - t_i)$$

2.1 Moto del punto

2.2 Moto rettilineo uniforme

Figura 2.1: Un caso di sorpasso

Dinamica

3.1 Recap

$$\overrightarrow{x} = \overrightarrow{x_0} + \overrightarrow{v}(t - t_0)$$

Semplificazioni in termini di variazioni, infinità.

3.2 Leggi della dinamica

Nella descrizione introduttiva del moto, non è stata analizzata alcuna causa del fenomeno.

3.2.1 La prima legge

Prima legge della dinamica (legge di inerzia)

Un corpo permane nel suo stato di quiete o moto rettilineo uniforme finché non intervenga un agente esterno.

In altre parole, se nulla "rompe le scatole" al corpo, esso permanerà nel suo stato di moto, naturalmente.

Sistema inerziale

Sistema nel quale vale la prima legge della dinamica.

3.2.2 La seconda legge

Quando l'agente esterno agisce sull'oggetto, l'effetto è un cambiamento nello stato di moto di quell'oggetto. Ovvero, cambia la sua velocità. La variazione della velocità nel tempo è chiamata **accelerazione**.

$$\lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{dv}{dt} = a$$

- 3.1 Recap
- 3.2 Leggi della dinamica
- 3.3 Forza agente sul moto
- 3.4 Lancio verso l'alto

16 3. DINAMICA

Seconda legge della dinamica

$$\frac{F}{a} = m \tag{3.1}$$

Gli oggetti hanno inerzia, ovvero capacità di opporsi all'agire dell'agente esterno. Questa capacità di opporsi è rappresentato da una quantità detta massa (inerziale).

3.2.3 Analisi dimensionale

$$[F] = [ma] = \left[m \cdot \frac{v}{t}\right] = \left[m \cdot \frac{l}{t^2}\right]$$

$$1 \text{ kg} \cdot \frac{m}{s^2} = \text{udm} \left[M \cdot \frac{L}{T^2}\right] = \text{udm}[F] = 1 \text{ N}$$

3.2.4 Molla e forza elastica

$$F \propto \Delta x$$

La forza che la molla esercita, essendo in opposizione, corrisponde a:

$$F_{el} = -k\Delta x$$

3.3 Forza agente sul moto

Un blocco di massa m=10 kg viaggia ad una velocità $v_i=2$ m/s. Una forza F=20 N agisce sul blocco per T=5 s. Quale velocità raggiungerà il blocco dopo T?. Dopo T, la forza cessa di agire e il blocco viaggia a v_f trovata precedentemente. Includendo lo spazio percorso durante T (e dunque il tempo T), quanto tempo impiega il blocco a coprire $s_w=2$ km di distanza?

Per rispondere al primo quesito, possiamo assumere un moto rettilineo uniformemente accelerato durante l'intervallo T. Sappiamo che

$$a = \frac{F}{m} = \frac{dv}{dt}$$

Da cui possiamo esprimere la velocità in funzione del tempo (la velocità iniziale la conosciamo già, ma assumiamo un tempo iniziale $t_0 = 0$):

$$\frac{F}{m}dt = dv \to \int_{t_0}^t \frac{F}{m}dp = \int_{v_0}^v dw \to \frac{F}{m} \int_0^t dp = v - v_0 \to \frac{F}{m}t = v - v_0$$

Dunque

$$v(t) = v_0 + \frac{F}{m}t$$

Figura 3.1: Forza agente su una massa in moto

Non ci manca che calcolare la velocità in corrispondenza di un $t_f = t_0 + \Delta t = 0 + T = T$:

$$v(t_f) = v(T) = v_0 + \frac{F}{m}T$$

Nel secondo quesito, possiamo spezzare il problema in due parti: durante l'azione della forza, la distanza percorsa (s_a) deve essere calcolata tenendo conto del moto uniformemente accelerato, mentre nell'intervallo di tempo successivo (T_v) il moto è semplicemente uniforme. Dalla seguente equazione, possiamo ricavare T_v (T lo conosciamo già).

$$s_w = s_a + s_v = s_a + v_f T_v = \int_0^T (v_0 + at) dp + v_f T_v = v_0 T + \frac{1}{2} a T^2 + v_f T_v$$

Il tempo per percorrere 2 km è dunque:

$$T_{2 \text{ km}} = T + \frac{s_w - v_i T - \frac{F}{2m} T^2}{v_f} = T + \frac{s_w - v_i T - \frac{F}{2m} T^2}{v_i + \frac{F}{m} T}$$

3.4 Lancio verso l'alto

Si consideri la situazione mostrata in Figura 3.2. Durante la salita, l'oggetto rallenta a causa dell'accelerazione di gravità g. Determiniamo la quota che l'oggetto raggiungerà.

$$a = \frac{dv}{dt} \rightarrow dv = adt \rightarrow \int_{v_0}^v dw = \int_{t_0}^t adp \rightarrow v - v_0 = a \int_{t_0}^t dp \rightarrow v - v_0 = a(t - t_0)$$

Dunque

$$v(t) = v_0 + a(t - t_0) = v_0 + at$$

Rallentando, si arriverà ad un istante t_f nel quale l'oggetto avrà velocità nulla:

$$v(t_f) = 0 \to v_0 + at_f = 0$$

Non disponiamo tuttavia del tempo, ma possiamo avvalerci della legge oraria che descrive la distanza percorsa:

$$v(t) = \frac{dh}{dt} \to \int_{h_0}^h dk = \int_{t_0}^t v(t)dp \to h - h_0 = \int_{t_0}^t (v_0 + ap)dp$$

$$h - h_0 = v_0 \int_{t_0}^t dp + a \int_{t_0}^t p dp \to h - h_0 = v_0 t + \frac{1}{2} a t^2$$

Da cui:

$$h(t) = h_0 + v_0 t + \frac{1}{2}at^2 = v_0 t + \frac{1}{2}at^2$$

Figura 3.2: Lancio di un oggetto verso l'alto

18 3. DINAMICA

Abbiamo quindi ottenuto la quota in funzione del tempo, che possiamo ricavare dall'equazione $v_0+at_f=0 \to t_f=-\frac{v_0}{a}$.

$$h(t_f) = v_0 t_f + \frac{1}{2} a t_f^2 = -\frac{v_0^2}{a} + \frac{1}{2} a \frac{v_0^2}{a^2} = -\frac{v_0^2}{a} + \frac{v_0^2}{2a} = -\frac{v_0^2}{2a}$$

Sapendo che a=-|g|,la quota massima h_m raggiunta è:

$$h_m = \frac{v_0^2}{2|g|}$$

3.4.1 La terza legge

Parte II

Lezioni

Lezione 2024-02-26

Riassunto

- Dinamica: dinamica del punto materiale (3 leggi dinamica)
- Meccanica: quantita' conservative (energia ecc)
- Termodinamica dei gas
- Entropia/probabilita'/senso del tempo
- Elettricita': Coulomb
- Magnetismo

Test

5.1 Thermodynamics

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus.

Some equations
$$\int_{-\infty}^{+\infty} f(x)dx = 1$$

$$\sum_{i=0}^{+\infty} \frac{1}{2^i} = 2$$
 (5.2)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus.

5.1.1 First law of Thermodynamics

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Equazione 5.1 e 5.2.

Il problema non è dove..., nemmeno quando..., solo il come importa.

Anonimo

- 5.1 Thermodynamics
- 5.2 Cinematics
- 5.3 Other section
- 5.4 More sections
- **5.5** More
- 5.6 Another one please
- **5.7** More
- 5.8 Another one please
- **5.9** More
- 5.10 Another one please, but way longer such that it does not fit the margin

Figura 5.1: VS Code logo, with some caption below

24 5. TEST

5.2 Cinematics

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus.

- Heading Heading
 Hello Hello
- 5.3 Other section
- 5.4 More sections
- **5.5** More
- 5.6 Another one please

Unnnumbered section

- **5.7** More
- 5.8 Another one please
- **5.9** More
- 5.10 Another one please, but way longer such that it does not fit the margin

Parte III Esercitazioni