WESLEYAN

Chi Square Test of Independence

"Random Roadside Survey"

	Gender	Dro∨e drunk?
Driver 1	М	Υ
Driver 2	F	N
Driver 3	F	Υ
•	•	•
•	•	•
•	•	•
Dri∨er 619	М	N

	Drank Alcohol in Last 2 Hours?				
Gender↓	Yes	No	Total		
Male	77	404	481		
Female	16	122	138		
Total	93	526	619		

Drank Alcohol in Last 2 Hours (Y)?

Gender (X)	Yes	No	Total
Male	77/481=16.0%	404/481=84.0%	100%
Female	16/138=11.6%	122/138=88.4%	100%

H_o: There is <u>no difference</u> in the drunk driving rate between males and females under 20.

H_a: There is <u>a difference</u> in the drunk driving rate between males and females under 20.

Stating the Hypotheses

Ho: There is no relationship between the two categorical variables. (They are independent.)

 $\mathbf{H}_{\mathbf{a}}$: There is a relationship between the two categorical variables. (They are not independent.)

H_o: proportion of male drunk drivers = proportion of female drunk drivers

H_a: proportion of male drunk drivers ≠ proportion of female drunk drivers

Drank Alcohol in				
	Last 2	Hours?	1	
Gender	Yes	No	Total	
Male	77	404	481	
Female	16	\ 122	138	
Total	93	526	619	
		\		
		Observe	ed counts	

Calculating the expected counts

$$P(A \text{ and } B) = P(A) * P(B)$$

Applying the rule to the first (top left) cell, if driving drunk and gender were independent then:

P(drunk and male) = P(drunk) * P(male)

By dividing the counts in our table, we see that:

P(Drunk) = 93 / 619 and

P(Male) = 481 / 619,

and so,

P(Drunk and Male) = (93 / 619) (481 / 619)

Drank Alcohol in

Last 2 Hours?

Gender

Yes No

Gender	Yes	No	Total
Male	77	404	481
Female	16	122	138
Total	93	526	619

Therefore, since there are total of 619 drivers, **if drunk driving and gender were independent**, the **count** of drunk male drivers that I would **expect** to see is:

$$619*P(Drunk\ and\ Male) = 619\Big(\frac{93}{619}\Big)\Big(\frac{481}{619}\Big) = \frac{93*481}{619}$$

$$Expected\ Count = rac{Column\ Total*Row\ Total}{Table\ Total}$$

Expected count

Observed Counts

Drank Alcohol in

	Last 2 I		
Gender	Yes	No	Total
Male	77	404	481
Female	16	122	138
Total	93	526	619

Expected Counts

Drank Alcohol in

	Last Z F		
Gender	Yes No		Total
Male	(93*481)/619=72.3	(526*481)/619=408.7	481
Female	(93*138)/619=20.7	(526*138)/619=117.3	138
Total	93	526	619

$$\chi^2 = \sum_{all\ cells} \frac{\left(Observed\ Count - ExpectedCount\right)^2}{Expected\ Count}$$

$$\frac{\left(77-72.3\right)^{2}}{72.3}+\frac{\left(404-408.7\right)^{2}}{408.7}+\frac{\left(16-20.7\right)^{2}}{20.7}+\frac{\left(122-117.3\right)^{2}}{117.3}=.306+.054+1.067+.188=1.62$$

$$p = 0.201.$$

Ho: There is no relationship between the two categorical variables. (They are independent.)

 $\mathbf{H_a}$: There is a relationship between the two categorical variables. (They are not independent.)

Percentages presented in Cross Tabs

Row %

0/

Total %

Column %

	Region	Uninsured	Insured	Total
	Northeast	12.6%	87.4%	100%
table A	Midwest	12.0%	88.0%	100%
	South	18.2%	81.8%	100%
	west	17.4%	82.6%	100%
	Region	Uninsured	Insured	Total
table B	Northeast	2.3%	16.2%	18.5%
	Midwest	2.7%	19.6%	22.3%
	South	6.6%	29.5%	36.1%
	West	4.0%	19.1%	23.1%
	Total	15.6%	84.4%	100%
	Region	Uninsured	Insured	
table C	Northeast	15.0%	19.2%	
	Midwest	17.1%	23.3%	
	South	42.1%	35.0%	
	West	25.8%	22.6%	
	Total	100%	100%	

Chi Square Test of Independence using SAS

Table of TAB12MDX by USFRE	QMO						
			JSFR	EQMO			
	1	2.5	5	14	22	30	Total
TAB12MDX(Tobacco Dependence past 12 months)							
0 Frequency	64	53	69	59	41	521	807
Percent	3.76	3.11	4.05	3.46	2.41	30.59	47.39
Row Pct	7.93	6.57	8.55	7.31	5.08	64.56	
Col Pct	90.14	81.54	78.41	64.84	60.29	39.47	
1 Frequency	7	12	19	32	27	799	896
Percent	0.41	0.70	1.12	1.88	1.59	46.92	52.61
Row Pct	0.78	1.34	2.12	3.57	3.01	89.17	
Col Pct	9.86	18.46	21.59	35.16	39.71	60.53	
Total Frequency	71	65	88	91	68	1320	1703
Percent	4.17	3.82	5.17	5.34	3.99	77.51	100.00
Frequency Missing = 3				100000			

Statistic	DF	Value Prob
Chi-Square	5	165.2732 < .0001
Likelihood Ratio Chi-Square	5	176.1834 < .0001
Mantel-Haenszel Chi-Square	1	162.8952 < .0001
Phi Coefficient		0.3115
Contingency Coefficient		0.2974
Cramer's V		0.3115

Rate of ND by # Days Smoked per Month Categories

p = .0001

H_a: Not all ND rates are equal across smoking frequency categories.

Why not test multiple ANOVAs examining each pair?

Remember that we accept 'significance' and reject the null hypothesis at $P \le 0.05$ (i.e. a 5% chance that we are wrong)

Performing multiple tests therefore means that our overall chance of committing a type I error is >5%.

# Tests	Comparison α	Familywise α
1	.05	.05
3	.05	.14
6	.05	.26
10	.05	.40
15	.05	.54

0.05/c

(c=number of comparisons)

# comparisons	calculation	adjusted Bonferroni p value
3	.05 / 3	.017
6	.05 / 6	.008
10	.05 /10	.005
15	.05 /15	.003

Number of cigarettes smoked per month

	1	2.5	5	14	22	30
1	*					
2.5	0.15	*				
5	0.05	0.63	*			
14	0.0002	0.02	0.04	*		
22	0.0001	0.007	0.01	0.56	*	
30	0.0001	0.0001	0.0001	0.0001	0.0006	*

Bonferroni = 0.05 / 15 = .003

Rate of ND by # Days Smoked per Month Categories

X² p value = .0001 (Bonferroni Adjustment=.003)

Nicotine Dependence rates with the same letter are not significantly different

Summary: Chi Square Test of Independence

		Response		
		Categorical	Quantitative	
Explanatory	Categorical	(c →c	c→q	
	Quatitative	Q→C	Q →Q	

H_o: There is no relationship between the two categorical variables. (They are independent.)

 $\mathbf{H_a}$: There is a relationship between the two categorical variables. (They are not independent.)

$$\chi^2 = \sum_{all\ cells} \frac{\left(Observed\ Count-ExpectedCount\right)^2}{Expected\ Count}$$

PROC FREQ; TABLES CAT_RESPONSE*CAT_EXPLANATORY /CHISQ;

Chi Square Test of Independence

WESLEYAN

