EU Export Controls and IP Classification									
Technology Classification									
(Ref. Work Instructions 011-04226)	AL: N	ECCN: N							
Classification of IP in Systems									
(Ref. Work Instructions 011-04284)	IP: S00	IP: R00							

GPPS CFD Workshop TUDa test case

Giuseppe Bruni

SIEMENS Chargy

TUDa test case Introduction

- Results presented using GPU solver TurboStream [1]:
 - Up to an order of magnitude faster than traditional CPU solvers
 - Allows large scale simulations to be used as part of the design process
 - Prediction of rotating stall and surge [2]
 - Forced response calculations for LEOs and NSVs [3]
 - Summary of the solver settings, further details can be found in [1]
 - Advection Scheme: JST
 - Linear system solver: Jacobi
 - Second order spatial discretisation
 - Standard Mixing-Plane implementation
 - Adaptive wall functions
 - Fully turbulent boundary layers
 - Ideal Gas properties
 - Turbulence model: SAnoft2-Helicity model
 - Helicity correction for improved near stall predictions [4]

TUDa test case CFD Setup

- Inlet boundary conditions:
 - Converted from *InletBC.input*
- Outlet boundary conditions :
 - Nozzle with atmospheric back pressure, PR controlled by increasing nozzle contraction ratio
 - Aids convergence when the slope of the characteristic approaches zero
- Geometry based on TUDa specs:
 - Single passage model
 - Inviscid wall in inlet duct up to spinner, spinner set to rotating wall
 - Location of mixing planes based on measurement planes
 - Stator geometries based on CAD: Real fillet geometry used
 - No geometrical simplifications compared to standard grids
- Convergence criteria:
 - Solver ran for 50k timesteps for each OP
 - CPU time with 4 GPUs and 50k timesteps: ~20 min

TUDa test case Mesh

- Resulting mesh is an example of what can be used for practical applications to multi-stage industrial axial compressors
- Numeca Autogrid5 mesh
 - Structured mesh: HOH topology
 - ~2.7 million nodes overall
 - Rotor 1.28M, Stator 0.78M, OGV 0.66M
 - Average y⁺ of the first layer grid:
 - ~1 blade surface
 - >30 end-walls
- Fillets meshed with butterfly topology, 17 points
- 13 rotor tip gap points

	Flow Paths	Cell width		% mid-	B2B Mesh				Points in clearance	Exp.			
		Hub	Shroud	flow cells	Α	В	С	D	E	F	O-mesh	Ratio	У
Rotor	73	5.0E-05	5.0E-05	50	28	81	21	13	21	81	13	1.2	1.6E-06
Stator	73	5.0E-05	5.0E-05	50	28	61	17	17	21	93	13	1.2	1.6E-06
OGV	61	5.0E-05	5.0E-05	50	17	53	17	9	21	93	13	1.2	5.0E-05

TUDa test case Overall Performance

TUDa test case Mesh Independence

- Results shown are a summary of a wider mesh independence study considering the effect of:
 - HOH mesh resolution
 - O-grid points [17 to 33] and expansion ratio [1.2 to 1.4]
 - Spanwise mesh resolution [61 to 85 points]
 - Tip gap mesh resolution [5 to 17 points]

Guidelines updated based on the tradeoff between agreement with test data and computational cost

Design Point ME21 Rotor Outlet

Design Point ME30 Stator Outlet

Near Stall Point ME30 Stator Outlet

- The under-prediction of the stator open corner separation becomes more apparent approaching stall
- This is potentially due to a stator hub leakage flow which is not modelled

Pressure Ratio Contours ME30 Stator Outlet

- The under-prediction of the stator open corner separation becomes more apparent approaching stall
- This is potentially due to a stator hub leakage flow which is not modelled

TUDa test case Conclusions

- The overall performance can reasonably be captured with the CFD setup presented
- The discrepancies with the test data can be attributed to:
 - Limitations of the turbulence models
 - Trade-off between computational cost and mesh resolution
 - Real-geometry effects not being modelled
- Future work to improve the CFD setup can include:
 - Consider different turbulence models
 - SST or more sophisticated if required
 - Increase the mesh resolution to address specific discrepancies
 - Tip leakage flow and stator open corner separation
 - Include a realistic amount of stator hub leakage flow to replicate the test configuration
 - The resulting guidelines can then be translated back for the relevant application

References

2022-09-11

- 1. Brandvik, T., and Pullan, G. (October 27, 2010). "An Accelerated 3D Navier—Stokes Solver for Flows in Turbomachines." ASME. *J. Turbomach*. April 2011; 133(2): 021025. https://doi.org/10.1115/1.4001192
- 2. Krishnababu, SK. "On the Prediction of Rotating Stall in an Industrial Gas Turbine Compressor." *Proceedings of the ASME Turbo Expo 2020*. Virtual, Online. September 21–25, 2020. V02ET41A027. ASME. https://doi.org/10.1115/GT2020-15330
- 3. Krishnababu, S, Bruni, G, & Frach, A. "On the Forced Response Predictions and Life Improvements of an Industrial Axial Compressor Rotor Blade." *Proceedings of the ASME Turbo Expo 2021*. Virtual, Online. June 7–11, 2021. V09AT23A007. ASME. https://doi.org/10.1115/GT2021-58923
- 4. Kim, S., Pullan, G., Hall, C. A., Grewe, R. P., Wilson, M. J., and Gunn, E. (February 22, 2019). "Stall Inception in Low-Pressure Ratio Fans." ASME. *J. Turbomach*. July 2019; 141(7): 071005. https://doi.org/10.1115/1.4042731

Contact

Giuseppe Bruni

Senior Aerodynamicist

Compressor Engineering Department Siemens Industrial Turbomachinery Ltd.

1 Waterside South Lincoln LN5 7FD, United Kingdom

Phone: +44 1522 583191

giuseppe.bruni@siemens-energy.com

siemens-energy.com