の 高京朝也大学 Nanjing University of Post & Telecom

物理实验数学中心

Wheatstone Bridge

NJUPT

Li Bin

I. Purposes

1. The structure and measurement principles of Wheatstone Bridge.

2. Build the circuit and handle the method of measuring resistance.

II. Principles

If
$$I_{G}=0$$
, $R_{x}=\frac{R_{1}}{R}R_{0}$

Circuit

Table I

R	R_1/Ω	R_2/Ω	R_0/Ω	R_{x1}/Ω
1	100.0	1000.0		
2	100.0	2000.0		

Table II

R	R_1/Ω	R_2/Ω	R_0/Ω	R_{x2}/Ω
1	1000.0	1000.0		
2	1000.0	2000.0		

Here is the weblink to download this slide:

https://github.com/bliseu/phylab/blob/master/Wheatstone%20Bridge.pdf Some useful links:

Wheatstone Bridge Circuit and Theory of Operation (electronics-tutorials.ws) Wheatstone Bridge - MagLab (nationalmaglab.org)

- 1. Please calculate and finish the tables in the slide.
- 2. Write a 300-word essay to describe the "Wheatstone bridge".

The DEADLINE is May 16, 2024.

END