SCHOOL OF COMPUTATION, INFORMATION AND TECHNOLOGY — INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master's Thesis in Informatics

FLOps: Practical Federated Learning via Automated Orchestration (on the Edge)

Alexander Malyuk

SCHOOL OF COMPUTATION, INFORMATION AND TECHNOLOGY — INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master's Thesis in Informatics

FLOps: Practical Federated Learning via Automated Orchestration (on the Edge)

TODO

Author: Alexander Malyuk Supervisor: Prof. Dr-Ing. Jörg Ott

Advisor: Dr. Nitinder Mohan, Giovanni Bartolomeo

Submission Date: 15.09.2024

I confirm that this master's thesis is n and material used.	ny own work and I	have documented all sources
Munich, 15.09.2024		Alexander Malyuk

Abstract

Kurzfassung

Contents

Acknowledgments											
A l	bstrac	et		iv							
Κı	urzfa	ssung		v							
1	Intr	oductio	on	1							
	1.1	Proble	em Statement	. 1							
	1.2	Motiv	vation	. 1							
	1.3	Contr	ribution	. 1							
	1.4	Thesis	s Structure	. 1							
2	Bacl	kgroun	nd	2							
	2.1	Feder	ated Learning	. 2							
		2.1.1	Basics	. 2							
		2.1.2	Architectures	. 2							
		2.1.3	Research	. 2							
		2.1.4	Industry	. 2							
		2.1.5	Frameworks & Libraries	. 2							
		2.1.6	Flower	. 2							
	2.2	Machi	ine Learning Operations	. 2							
		2.2.1	DevOps	. 2							
		2.2.2	MLOps	. 2							
		2.2.3	MLflow	. 2							
	2.3	Orche	estration	. 2							
		2.3.1	Fundamentals	. 2							
		2.3.2	ML Containerization & Orchestration	. 2							
		2.3.3	Oakestra	. 2							
	2.4	Relate	ed Work	. 2							
3	Req	uireme	ents Analysis	3							
4	Syst	tem De	esign	4							

Contents

5	Obj	ect Des	ign	5
6	Eval	luation		6
	6.1	Ration	ale	6
		6.1.1	Chosen Experiments	6
	6.2	Experi	mental Setup	6
		6.2.1	Monolith	6
		6.2.2	Multi-Cluster	6
		6.2.3	Evaluation Procedure	6
	6.3	Result	S	6
		6.3.1	Basics	6
		6.3.2	Image Builder	6
		6.3.3	Different ML Frameworks/Libraries & Datasets	6
		6.3.4	Multi-cluster & HFL	6
7	Con	clusion	ı	7
	7.1	Limita	tions & Future Work	7
		7.1.1	Federated Learning via FLOps	7
		7.1.2	Complementary Components & Integrations	7
8	DEI	.ME tui	m example	8
	8.1	Section	n	8
		8.1.1	Subsection	8
Ał	brev	iations		10
Lis	st of	Figures		11
Lis	st of '	Tables		12
Bi	bliog	raphy		13

1 Introduction

- 1.1 Problem Statement
- 1.2 Motivation
- 1.3 Contribution
- 1.4 Thesis Structure

2 Background

2.1 Federated Learning

- **2.1.1 Basics**
- 2.1.2 Architectures
- 2.1.3 Research
- 2.1.4 Industry
- 2.1.5 Frameworks & Libraries
- 2.1.6 Flower

2.2 Machine Learning Operations

- 2.2.1 DevOps
- **2.2.2 MLOps**
- 2.2.3 MLflow

2.3 Orchestration

- 2.3.1 Fundamentals
- 2.3.2 ML Containerization & Orchestration
- 2.3.3 Oakestra
- 2.4 Related Work

3 Requirements Analysis

4 System Design

5 Object Design

6 Evaluation

- 6.1 Rationale
- 6.1.1 Chosen Experiments
- 6.2 Experimental Setup
- 6.2.1 Monolith
- 6.2.2 Multi-Cluster
- 6.2.3 Evaluation Procedure
- 6.3 Results
- **6.3.1 Basics**
- 6.3.2 Image Builder
- 6.3.3 Different ML Frameworks/Libraries & Datasets
- 6.3.4 Multi-cluster & HFL

7 Conclusion

- 7.1 Limitations & Future Work
- 7.1.1 Federated Learning via FLOps
- **7.1.2** Complementary Components & Integrations

8 DELME tum example

8.1 Section

Citation test [Lam94].

Acronyms must be added in main.tex and are referenced using macros. The first occurrence is automatically replaced with the long version of the acronym, while all subsequent usages use the abbreviation.

E.g. \ac{TUM} , \ac{TUM} \Rightarrow Technical University of Munich (TUM), TUM For more details, see the documentation of the acronym package¹.

8.1.1 Subsection

See Table 8.1, Figure 8.1, Figure 8.2, Figure 8.3.

Table 8.1: An example for a simple table.

A	В	C	D
1	2	1	2
2	3	2	3

Figure 8.1: An example for a simple drawing.

¹https://ctan.org/pkg/acronym

Figure 8.2: An example for a simple plot.

```
SELECT * FROM tbl WHERE tbl.str = "str"
```

Figure 8.3: An example for a source code listing.

Abbreviations

TUM Technical University of Munich

List of Figures

8.1	Example drawing	8
8.2	Example plot	9
8.3	Example listing	9

List of Tables

8.1	Example table																																		8
-----	---------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

Bibliography

[Lam94] L. Lamport. *LaTeX : A Documentation Preparation System User's Guide and Reference Manual.* Addison-Wesley Professional, 1994.