STA 141C - Big Data & High Performance Statistical Computing

Spring 2022

Week 7-1: Power method

Lecturer: Bo Y.-C. Ning May 10, 2022

Disclaimer: My notes may contain errors, distribution outside this class is allowed only with the permission of the Instructor.

Last time

• PCA and SVD

Today

• Power method

1 Review of singular value decomposition (SVD)

For a rectangular matrix $A \in \mathbb{R}^{m \times n}$, let $p = \min\{m, n\}$, then we have the SVD

$$A = U\Sigma V'$$
.

where $U = (u_1, \ldots, u_m)$ and $V = (v_1, \ldots, v_n)$ are orthogonal matrices and $\Sigma = \text{diag}(\sigma_1, \ldots, \sigma_p)$ is a diagonal matrix such that $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_p \geq 0$. σ_i s are called the *singular values*, u_i s are the left singular vectors and v_i s are the right singular vectors.

The matrix Σ is not a square matrix, one can define thin SVD, which factorizes A as

$$A = U_n \Sigma_n V' = \sum_{i=1}^n \sigma_i u_i v_i',$$

where $U_n \in \mathbb{R}^{m \times n}$, $U'_n U_n = I_n$, $\Sigma = \operatorname{diag}(\sigma_1, \ldots, \sigma_n)$. This is for m > n, if m < n, then we let $V \in \mathbb{R}^{m \times n}$,

The following properties are useful: for $\sigma(A) = (\sigma_1, \dots, \sigma_p)'$, the rank of A is the number of nonzero singular values denoted as $\|\sigma(A)\|_0$. The Frobenius norm of A, $\|A\|_F = (\sum_{i=1}^p \sigma_i^2)^{1/2} = \|\sigma(A)\|_2$, and the spectrum norm of A, $\|A\|_2 = \sigma_1 = \|\sigma(A)\|_{\infty}$. Using the fact that U, V are both orthogonal matrices

$$A'A = V\Sigma U'U\Sigma V' = V\Sigma^2 V',$$

$$AA' = U\Sigma V'V\Sigma U' = U\Sigma^2 U'$$

Last, the eigen-decomposition for a real symmetric matrix is $B = W\Lambda W'$, where $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$, which is the SVD of B.

2 Power method

To start, let's assume $A \in \mathbb{R}^{n \times n}$ is a symmetric and p.s.d. matrix, the power method for obtaining the largest eigenvalue is given as:

- 1) Choose an initial guess of $q^{(0)}$ (non-zero);
- 2) Repeat k = 1, ..., K,

$$z^{(k)} = Aq^{(k-1)}$$
$$q^{(k)} = \frac{z^{(k)}}{\|z^{(k)}\|_2};$$

3) Output: $\lambda_1 \leftarrow q^{(K)'} A q^{(K)}$.

3 Why the power method works?

Let's understand how the power method works. Before that, we need to recall a few facts:

- The eigenvalue v_i attached to *i*-th eigenvalue λ_i has the relation $Av_i = \lambda_i v_i$
- Given $A, A = \sum_{i=1}^n \lambda_i v_i v_i'$, where $\lambda_1 \geq \cdots \geq \lambda_n \geq 0$ and $\langle v_i, v_j \rangle = 0$ for $i \neq j$
- $A^k = \sum_{i=1}^n \lambda_i^k v_i v_i'$, why?

By inspecting the algorithm, we have

$$q^{(k)} = \frac{A^k q^{(0)}}{\|A^k q^{(0)}\|_2}.$$

Now given an initial guess of $q^{(0)}$ of unit Euclidean norm, it is possible to express

$$q^{(0)} = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n,$$

for $\alpha_1, \ldots, \alpha_n$ are scalars. By the relation $Av_i = \lambda_i v_i$,

$$A^{k}q^{(0)} = \alpha_1 \lambda_1^{k} \left(v_1 + \sum_{j=2}^{n} \frac{\alpha_j \lambda_j^{k}}{\alpha_1 \lambda_1^{k}} v_j \right)$$

For simplicity, let's denote $y^{(k)} = \sum_{j=2}^{n} \frac{\alpha_j \lambda_j^k}{\alpha_1 \lambda_1^k} v_j$, note that $y^{(k)} \to 0$ as $k \to \infty$ as long as $\lambda_1 > \lambda_2 \ge \cdots \ge \lambda_n$ then

$$q^{(k)} = \frac{A^k q^{(0)}}{\|A^k q^{(0)}\|_2} = \frac{\alpha_1 \lambda_1^k (v_1 + y^{(k)})}{\|\alpha_1 \lambda_1^k (v_1 + y^{(k)})\|_2} \to v_1, \quad \text{as } k \to \infty$$

In practice, k will never goes to ∞ , the algorithm will stop as some K when $\min\{\|q^{(K)}-q^{(K-1)}\|_2, \|-q^{(K)}-q^{(K-1)}\|_2\} \le \epsilon$ for some small ϵ .

The output $q^{(K)}$ is a close approximation of v_1 , the leading eigenvector. How to obtain the leading eigenvalue λ_1 ? (Hint: using $Av_1 = \lambda_1 v_1$).

A few comments:

Figure 6.1: Convergence speed of the power method. [Source: https://web.mit.edu/18.06/www/Spring17/Power-Method.pdf.]

- The power method works well if $\lambda_1 > \lambda_2$. It converges slowly if $\lambda_1/\lambda_2 \approx 1$.
- The convergence speed of the power method is proportional to $(\lambda_2/\lambda_1)^k$, the ratio between λ_2 and λ_1
- For a general matrix $A^{n \times p}$, we can apply the power method to A'A or AA' instead. Then the output is the absolute value of λ_1 .
- How to get $\lambda_2, \dots, \lambda_n$?
- Eigen-decomposition is implemented in LAPACK, see eigen() in R and np.linalg.eig in numpy.

The power method is the most basic algorithm for SVD. There are other methods such as

- Inverse power method for finding the eigenvalue of smallest absolute value (replace A with A^{-1} in the power method);
- QR algorithm for symmetric eigen-decomposition (takes $4n^3/3$ for eigenvalues and $8n^3/3$ for eigenvector)
- "Golub-Kahan-Reinsch" algorithm (Section 8.6 of Golub and Van Loan); used in svd function in R $(4m^2n + 8mn^2 + 9n^3$ flops for an m > n matrix)
- Jacobi methods (Section 8.5 of Golub and Van Loan) (suitable for parallel computing).

Concluding remarks on numerical linear algebra:

- Numerical linear algebra forms the building blocks of most computation we do. Most lines of our code are numerical linear algebra.
- Be flop and memory aware! The form of a mathematical expression and the way the expression should be evaluated in actual practice may be quite different.
- Be alert to problem structure and make educated choice of software/algorithm the structure should be exploited whenever solving a problem.
- Do not write your own matrix computation routines unless for good reason. Utilize BLAS and LAPACK as much as possible!
- In contrast, for optimization, often we need to devise problem specific optimization routines, or even "mix and match" them.

4 Ridge regression by SVD

In ridge regression, we minimize

$$||y - X\beta||_2^2 + \lambda ||\beta||_2^2$$

If we obtain SVD of X such that $X = U\Sigma V$, then the equation is

$$(\Sigma^2 + \lambda I_p)V'\beta = \Sigma U'y.$$

We get

$$\hat{\beta}_{\lambda} = \sum_{i=1}^{r} \frac{\sigma_{i} u_{i}' y}{\sigma_{i}^{2} + \lambda} v_{i}, \ r = \operatorname{rank}(X).$$

It is clear that $\hat{\beta}_{\lambda} \to \beta_{OLS}$ as $\lambda \to 0$ and $\|\hat{\beta}_{\lambda}\|_2$ is monotone decreasing as $\lambda \to \infty$.