

lesson 36 Bitwise operator XOR

64	32	16	8	4	2	1	
0	0	0	0	1	0	1	– x in binary
0	0	0	0	1	1	0	- y in binary
0	0	0	0	0	1	1	x ^ y

To express the \mathbf{XOR} operation we use $\boldsymbol{\wedge}$

$$0 \land 1 = 1$$

int
$$x = 11, y = 3;$$

int $z = x \land y;$

7	

64	32	16	8	4	2	1
0	0	0	1	0	1	1
0	0	0	0	0	1	1
0	0	0	1	0	0	0

The result is going to be 8, you can check by converting the x^y binary form to decimal number.

Example:

```
int x = 5, y = 7;
x = x ^ y;
y = x ^ y;
x = x ^ y;
x = x ^ y;
printf("x=%d ,y=%d", x, y);
output:
x=7 ,y=5
```

Try the code: Click Here!

Explication of the code:

x= 5

y = 7

first step:

 $X=X \wedge Y$

64 32 16 8 4 2	1
----------------	---

71	
M	

0	0	0	0	1	0	1
0	0	0	0	1	1	1
0	0	0	0	0	1	0

The result is 2

so now x=2.

Second step

y=x^y

64	32	16	8	4	2	1
0	0	0	0	0	1	0
0	0	0	0	1	1	1
0	0	0	0	1	0	1

The result is 5

so now Y=5.

Third Step:

х=у^х

64	32	16	8	4	2	1
0	0	0	0	0	1	0
0	0	0	0	1	0	1

V
N.Y
114

0	0	0	0	1	1	1

The result is 7

So now x=7