

FUNCTIONAL SAFETY COURSE #2

SECURE CONNECTIONS FOR A SMARTER WORLD

Awareness of Functional Safety

- Overview of the ISO26262
- The Concept phase
 - Item definition
 - Hazard Analysis and Risk Assessment (HARA)
 - Functional Safety Concept (FSC)
- System level development
 - Technical Safety Concept
- Design decisions : ASIL decomposition
- Safety Analysis at system level
- > Test & Integration

01 **OVERVIEW OF THE ISO26262**

Part 2: Safety Management

- Safety Lifecycle
- Safety Culture
- Competence Management
- Quality Management
- Tailoring

Part 3: Concept Phase

Car OEM / Tier1

- Item definition
- HARA
- FSC

9-5 Requirements decomposition with respect to ASIL tailoring
9-6 Criteria for coexistence of elements

9-7 Analysis of dependent failures 9-8 Safety analyses

10. Guidelines on ISO 26262

11. Guidelines on application of ISO 26262 to semiconductors

Part 4: Product Development at the System Level

Car OEM / Tier1

- Technical Safety Requirements
- System Architectural Design
- Technical Safety Concept

O2 THE CONCEPT PHASE

Concept development context

- - - - - : outside the item

Renault Group

O2.1 THE ITEM DEFINITION

Item Definition – What is an Item?

Item Definition

The first objective is to **define and describe** the item, its dependencies on, and interaction with, the environment and other items.

The second objective is to support an adequate **understanding of the item** so that the activities in subsequent phases can be performed.

The Item Definition contains all the information defining the product :

Functional requirements of the Item

Environmental conditions for the intended use

Legal requirements

Known Safety requirements

Elements of the item

Requirements/interaction by and upon other items

Item Definition – Example of the Electrical Power Steering (EPS)

02.2

THE HAZARD ANALYSIS AND RISK ASSESSMENT (HARA)

- Situation
 analysis and
 identification
 of hazards
 - Systematic specification of the driving situations
 - Identification of possible related hazards

- Classificatio
 n of the
 hazards
 - Derivation of risk parameters (S, E, C)
- თ ASIL determinatio n
 - Derivation of the ASIL using a risk matrix

		Controllability C		
Seventy S	Exposure E	C1	C2	C3
S1	E1	QM	QM	QM
	E2	QM	QM	OM
	E3	QM	QM	ASIL A
	E4	QM	ASIL A	ASIL B
52	E1	QM	QM	QM
	E2	QM	QM	ASIL A
	E3	QM	ASL A	ASIL B
	E4	ASIL A	ASIL B	ASIL C
83	E1	QM	QM	ASILA
	E2	QM	ASLA	ASIL B
	E3	ASIL A	ASIL B	ASIL C
	E4	ASIL B	ASIL C	ASIL D

- → Definition of the Safety objectives
 - Description of the Safety Goals to be complied with

S Review

 Check for completeness , accuracy and consistency of the classifications

HARA

Criteria for analysis

Failure modes

Loss of function

Function delayed

Function corrupted

Untimely function

Etc.

Driving conditions

Stopping, Parking

Traveling at low speed

Traveling at high speed

Towing

Etc.

Road conditions

Normal road

Wet road

Snow and ice on road

Slippery leaves on road

Etc.

Vehicle conditions

In repair garage

Trailer attached

Vehicle being refueled

Vehicle during jump start

Etc.

Road layout

One-street way

Highway

Highway exit ramp

Country road

Etc.

Example of risk identification - EPS

HE#	Hazardous Events	ASIL	Effect on vehicle
HE-A1	Unintended vehicle lateral motion (eg. auto steering)	D	Aintended Direction—
HE-A2	Unintended vehicle reverse steering	D	
HE-A3	Uncontrolled vehicle lateral motion due to steering over assistance and steering assistance oscillations	D	Intended Direction
HE-A7	Sudden loss of driver steering assistance	В	Nacida Discours

Safety goals definition + Safe States

Classification of the risk

ASIL Determination

E= Exposure

C= Controllability

		C1 – SIMPLE	C2 – NORMAL	C3 – DIFFICULT
S1 LIGHT	E1 (very low)	QM	QM	QM
	E2 (low)	QM	QM	QM
	E3 (medium)	QM	QM	А
	E4 (high)	QM	А	В
S2 SEVERE	E1 (very low)	QM	QM	QM
	E2 (low)	QM	QM	А
	E3 (medium)	QM	A	В
	E4 (high)	A	В	С
	E1 (very low)	QM	QM	A
CO EATAI	E2 (low)	QM	A	В
S3 FATAL	E3 (medium)	A	В	С
	E4 (high)	В	С	D

(QM: "quality managed" → no requirements from standard applied explicitly)

Safety Goals – EPS Example

SG#	Safety Goal	ASI L	Safe State	FTTI	
SG-A1	Avoid self steering	D	Switch-off assistance and warning lamp	20ms	
SG-A2	Avoid reverse steering	D	Switch-off assistance and warning lamp	20ms	Steering Torque A Oversteering
SG-A3	Avoid over or oscillated steering	D	Switch-off assistance and warning lamp	20ms	Desired Torque
SG-A7	Avoid sudden loss of steering	В	Ramp down assistance and warning lamp	20ms	Uno

02.3

THE FUNCTIONAL SAFETY CONCEPT (FSC)

Functional Safety Concept

Elements

Conceptual description of the functional interrelationships required to achieve the Safety Goals

The derivation of the Functional Safety Requirements for each Safety Goal

Functional parameters (Operating conditions, FTTI, Safe State, Transition to safe state, Functional redundancies)

Warning and degradation concept

Emergency running operation

Driver actions that contribute to achieving Safety Goals

Functional Safety Architecture

Assignments

Deriving a Safety Architecture

- Block diagram with representation of :
 - Functional redundancies
 - Independence of the individual functional blocks

Assignment of the ASIL requirement to the E/E elements

- Assignment of the ASIL requirement to the individual functional blocks
- Possibility of "ASIL decomposition" (see later)

Representation and description of measures from other technologies or external measures

Functional Safety Concept

Example of the EPS

03.

SYSTEM LEVEL DEVELOPMENT

The Technical Safety Concept refines the functional safety concept, considering both the functional concept and the preliminary architectural assumptions.

It is a specification of Safety requirements at the system and/or element level. It includes:

Technical Safety Requirements derived from the Functional Safety Requirements and the preliminary system architecture

- Safety Mechanisms to identify and control faults in the system itself
- Safety Mechanisms to identify and control faults in other systems
- Measures to achieve and maintain the safe state (transition, fault tolerant time, emergency running interval)
- Measures for implementing the warning and degradation concepts

Specification for the item validation

Separate validation plan relating to the Safety Goal

Avoidance of latent faults

•Multiple-point fault detection interval (e.G at any start-up or shutdown)

Fault control mechanisms for latent faults (Safety measures)

- •They must satisfy the following requirements:
 - •ASIL B for ASIL D safety goals
 - •ASIL A for ASIL B and C safety goals
 - •QM for ASIL A safety goals

Example of the EPS

Properties of a Safety Mechanism

Diagnostic Method	Communication Control	
ID Number	SM 18	
Description (References ISO/DIS 26262)	The "Inspection using test patterns" (D 2.7.4) Table D8 is chosen. The Aim is to detect static failures (stuck-at failure) and cross-talk. This is a dataflow-independent cyclical test of data paths. It uses a defined test pattern to compare observations with the corresponding expected values.	
	Test coverage is dependent on the degree of independence between the test pattern information, the test pattern reception, and the test pattern evaluation. In a good design, the functional behavior of the system is not unacceptably influenced by the test pattern. This execution of test pattern has to be reviewed during a Safety Assessment. Additionally Transmission redundancy (D2.7.5.) and Information redundancy (D2.7.6 is used).	
Diagnostic coverage	99% regarding Table D8 for the D 2.7.4. 90% for regarding Table D8 for the D 2.7.5 90% for regarding Table D8 for the D 2.7.6 MAX is 99% for using in the FMEDA	
Fault Diagnostic	Data set entry in the fault memory	
Fault reaction and safe state	Start UP: AB01 is put out of action – VCU opens contacts During operation: Upper and lower port shut down Communication circuit is switched to high	
Diagnostic test interval	< 100 ms	
Fault recognition time	< 300 ms	
Affected component	Upper and Lower port communication interface	
Allocation	Specification of the safety requirement (assumption) is SA 215, safety function FB235 to FB325	
Responsible for the realization	For the Software: Software department and SW-Designer For the hardware: Hardware developer	

04.

DESIGN DECISIONS: ASIL DECOMPOSITION

ASIL Decomposition

Example – Electric sliding door

Top safety requirement: "Prevent door opening at vehicle speed > 15 km/h → ASIL C"

SR1: The DSC shall provide accurate speed data from 0 to 15km/h → ASIL C

SR2: The PSDM shall power the switch only when vehicle speed data from DSC indicates speed not greater than 15 km/h -> ASIL B(C)

SR3: The switch remains in open position when vehicle speed data from DSC indicates speed not greater than 15 km/h → ASIL A(C)

ASIL Decomposition

"ASIL Decomposition" covers the decomposition of one Safety requirement into redundant/complementary Safety requirements according to ISO26262-9.

The decomposition is only allowed if there is **sufficient independence** between the elements implementing the decomposed requirements.

ASIL initial	Possibilities for ASIL decomposition with redundant elements			
ASIL D	ASIL D + QM(D)	ASIL C(D) + ASIL A(D)	ASIL B(D) + ASIL B(D)	
ASIL C		ASIL $C(C) + QM(C)$	ASIL B(C) + ASIL A(C)	
ASIL B		ASIL B(B) + QM(B)	ASIL A(B) + ASIL A(B)	
ASIL A			ASIL $A(A) + QM(A)$	

ASIL Decomposition allows to lower the requirements for the systematic capability of the element but does not change the requirements/targets for random HW failures.

05.

SAFETY ANALYSIS AT SYSTEM LEVEL

System level Safety Analysis

Types of Safety analysis

Deductive analysis

(e.g. FTA)

- From the top of the hierarchy to the bottom
- Leaves at one level become the top events in the next level

Inductive analysis

(e.g. FMEA)

- From the bottom of the hierarchy to the top
- Effects at one level become the causes at the next level

System level Safety Analysis

Types of Safety analysis

Inductive analysis	Deductive analysis
Bottom-up methods	Top-down methods that
Start from defined causes	Start from defined effects
Forecast the effects at higher level	Seek the causes at lower level
May identify previously unknown hazards	May identify previously unknown causes

Notes:

- Deductive analysis are able to cope with complexity and redundancy, which are typical for systems and functions with ASIL C or ASIL D
- Inductive and deductive approach are complementary, each having individual "blind spots".
 Applying them both for ASIL C and ASIL D (as required by ISO 26262), the certainty of sufficient analysis coverage is increased

System level Safety Analysis Flow

- Iterative FTA and FMEA in 3-steps:
 - 1) FSC
 - 2) TSC
 - 3) HW design- implement failures at parts level (R, C, Mosfets, ICs,..)
- Qualitative and Quantitative analysis are required by the ISO.

System level Safety Analysis

Fault Tree Analysis (FTA) Example

System level Safety Analysis

Failure Modes and Effects Analysis (FMEA) Example

System level Safety Analysis

Failure Modes and Effects Analysis (FMEA) Example

Diagnostic or SM is defined for each function failures at system sub-function level.

«TSC requirements specification» can be updated to implement as requirements the new defined SMs.

System Safety Analysis Summary

FMEA	FTA
Inductive method (Bottom up)	Deductive method (Top down)
Influence / effect analysis of failures	Analysis of root causes
Error propagation	Error / failure chain,
	also used for identifying dependent failures
Failure analysis	Logical root cause analysis
with keywords, catalog of causes, and lesson learnt	Architecture analysis
Risk assessment for systematic faults (S, O, D ratings)	For hardware random faults and software failures
Safety FMEA for verification of the SYS, HW, SW concept	Safety FTA for verification of the SYS, HW, SW concept
	Preliminary/RFQ phases to allocate safety requirements and ASIL decomposition.

06.

TEST & INTEGRATION

V-model of System development

HW/SW Integration:

- Put the SW on the HW → similar to testing of SW safety requirements
- Ensure the correct functional performance, accuracy and timing of the safety mechanisms at the hardware-software level
 - > HIL testing, simulated environment, real environment, etc. => With Fault injection

Goal: Verify the Hardware Software Interface (HSI), confirm safety measures and DC

System Integration:

- Put together the subsystems of the ECU (e.g. sensors, logic solvers, actuators), Integrate ECU with elements of other technologies (mechanics etc.)
- Ensure the correct functional performance, accuracy, coverage of failure modes at the system level, and timing of the safety mechanisms at the system level
 - > HIL Tests, Lab Car tests => With Fault injection at system level

Goal: Verify that the effects of the safety measures including other involved technologies work

Result: Complete item

Vehicle Integration:

- Put together the item with depending other items and/or elements
- Ensure the correct functional performance, accuracy and timing of the safety mechanisms at the vehicle level
 - HIL tests, Lab Car tests, vehicle tests =>
 With Fault injection at vehicle level

Goal: Confirm that the item interacts with other systems correctly (incl. tolerance of failures in other elements)

NP

07.

COURSE TAKEAWAYS

Course takeaways

Explored Functional Safety/ISO 26262 applied to an EPS System

Item Definition

HARA => Safety Goals

Functional Safety Concept

Technical Safety Concept

System Safety Analysis

Test & Integration

Torque assistance steering

Avoid over/understeering

Monitoring of the three Motor phases

Current sense feedback

Analyze possible failure of current sense feedback

SW/HW integration, System integration, Vehicle integration

SECURE CONNECTIONS FOR A SMARTER WORLD