IMPORTANT ELEMENTS OF NEURAL NETWORK

Loss Function

Optimizer

Activation Function

IMPORTANT ELEMENTS OF NEURAL NETWORK

Loss Function

Optimizer

Activation Function

SIMPLE NEURAL NETWORK

Function	Use Case	Pros	Cons
Pean Squared Error (MSE)	Regression	Simple to compute and differentiate.	Sensitive to outliers, can lead to slow convergence.
Mean Absolute Error (MAE)	Regression	Robust to outliers.	Less smooth gradients compared to MSE, can be slower to converge.
Huber Loss	Regression (robust to outliers)	Balances sensitivity and robustness to outliers.	Requires tuning of the hyperparameter δ\deltaδ.
Cross-Entropy Loss	Classification (binary and multiclass)	Effective for classification tasks, especially with softmax output.	Can be sensitive to class imbalance.
Binary Cross- Entropy	Binary Classification	Suitable for binary classification, handles probabilities well.	Can suffer from vanishing gradients for extreme predictions.
Categorical Cross-Entropy	Multiclass Classification	Standard for multiclass classification with one-hot encoded labels.	Assumes mutually exclusive classes, not suitable for multi-label classification.
Sparse	Multiclass	Efficient for large number Similar issues as	
Categorical	Classification with	of classes, avoids one-hot	categorical cross-entropy

Function	Use Case	Pros	Cons
Mean Squared Error (MSE) T	Regression	Simple to compute and differentiate.	Sensitive to outliers, can lead to slow convergence.
Mean Absolute Error (MAE)	Regression	Robust to outliers.	Less smooth gradients compared to MSE, can be slower to converge.
Huber Loss	Regression (robust to outliers)	Balances sensitivity and robustness to outliers.	Requires tuning of the hyperparameter δ\deltaδ.
Cross-Entropy Loss	Classification (binary and multiclass)	Effective for classification tasks, especially with softmax output.	Can be sensitive to class imbalance.
Binary Cross- Entropy	Binary Classification	Suitable for binary classification, handles probabilities well.	Can suffer from vanishing gradients for extreme predictions.
Categorical Cross-Entropy	Multiclass Classification	Standard for multiclass classification with one-hot encoded labels.	Assumes mutually exclusive classes, not suitable for multi-label classification.
Sparse Categorical	Multiclass Classification with	Efficient for large number S of classes, avoids one-hot	imilar issues as categorical cross-entropy

Function	Use Case	Pros	Cons
Mean Squared Error (MSE)	Regression	Simple to compute and differentiate. I	Sensitive to outliers, can lead to slow convergence.
Mean Absolute Error (MAE)	Regression	Robust to outliers.	Less smooth gradients compared to MSE, can be slower to converge.
Huber Loss	Regression (robust to outliers)	Balances sensitivity and robustness to outliers.	Requires tuning of the hyperparameter δ\deltaδ.
Cross-Entropy Loss	Classification (binary and multiclass)	Effective for classification tasks, especially with softmax output.	Can be sensitive to class imbalance.
Binary Cross- Entropy	Binary Classification	Suitable for binary classification, handles probabilities well.	Can suffer from vanishing gradients for extreme predictions.
Categorical Cross-Entropy	Multiclass Classification	Standard for multiclass classification with one-hot encoded labels.	Assumes mutually exclusive classes, not suitable for multi-label classification.
Sparse Categorical	Multiclass Classification with	Efficient for large number S of classes, avoids one-hot	imilar issues as categorical cross-entropy

Loss Function	Use Case	Pros	Cons
Mean Squared Error (MSE)	Regression	Simple to compute and differentiate.	Sensitive to outliers, an lead to slow convergence.
Mean Absolute Error (MAE)	Regression	Robust to outliers.	Less smooth gradients compared to MSE, can be slower to converge.
Huber Loss	Regression (robust to outliers)	Balances sensitivity and robustness to outliers.	Requires tuning of the hyperparameter δ\deltaδ.
Cross-Entropy Loss	Classification (binary and multiclass)	Effective for classification tasks, especially with softmax output.	Can be sensitive to class imbalance.
Binary Cross- Entropy	Binary Classification	Suitable for binary classification, handles probabilities well.	Can suffer from vanishing gradients for extreme predictions.
Categorical Cross-Entropy	Multiclass Classification	Standard for multiclass classification with one-hot encoded labels.	Assumes mutually exclusive classes, not suitable for multi-label classification.
Sparse Categorical	Multiclass Classification with	Efficient for large number S of classes, avoids one-hot	imilar issues as categorical cross-entropy

differentiate. lead to slow convergence. Error (MSE) Less smooth gradients Mean Absolute Regression Robust to outliers. Error (MAE) T compared to MSE, can be slower to converge. Requires tuning of the **Huber Loss** Regression (robust Balances sensitivity and hyperparameter $\delta \cdot delta \delta$. to outliers) robustness to outliers. Can be sensitive to class Cross-Entropy Classification Effective for imbalance. (binary and classification tasks, Loss multiclass) especially with softmax output. Suitable for binary Can suffer from vanishing Binary Cross-Binary classification, handles Classification gradients for extreme Entropy probabilities well. predictions. Standard for multiclass Multiclass Assumes mutually Categorical classification with oneexclusive classes, not Cross-Entropy Classification hot encoded labels. suitable for multi-label classification.

Efficient for large number Similar issues as

of classes, avoids one-hot | categorical cross-entropy

Multiclass

Classification with

Sparse

Categorical

Loss	Use Case	Pros	Cons
Function			
Mean Squared Error (MSE)	Regression	Simple to compute and differentiate.	Sensitive to outliers, can lead to slow convergence.
Mean Absolute Error (MAE) T	Regression	Robust to outliers.	Less smooth gradients compared to MSE, can be slower to converge.
Huber Loss	Regression (robust to outliers)	Balances sensitivity and robustness to outliers.	Requires tuning of the hyperparameter δ\deltaδ.
Cross-Entropy Loss	Classification (binary and multiclass)	Effective for classification tasks, especially with softmax output.	Can be sensitive to class imbalance.
Binary Cross- Entropy	Binary Classification	Suitable for binary classification, handles probabilities well.	Can suffer from vanishing gradients for extreme predictions.
Categorical Cross-Entropy	Multiclass Classification	Standard for multiclass classification with one-hot encoded labels.	Assumes mutually exclusive classes, not suitable for multi-label classification.
Sparse Categorical	Multiclass Classification with	Efficient for large number S of classes, avoids one-hot	milar issues as categorical cross-entropy

Showing results for Cross-Entropy Loss Search instead for Cross-EntropyLoss

Cross-entropy, also known as logarithmic loss or log loss, is a popular loss function used in machine learning to measure the performance of a classification model. Namely, it measures the difference between the discovered probability distribution of a classification model and the predicted values.

Cross-Entropy Loss Function in Machine Learning - DataCamp

About featured snippets • B Feedback

