Лабораторная работа №1. Разработка консольного калькулятора на Python

Цель работы

Разработка программы для вычисления математических выражений с поддержкой основных арифметических операций и унарных знаков.

Задачи работы

- 1. Реализовать разбор математических выражений на токены
- 2. Обеспечить обработку унарных плюса и минуса
- 3. Реализовать вычисления с учётом приоритета операций
- 4. Организовать код в модульной структуре
- 5. Реализовать обработку ошибок
- 6. Написать модульные тесты

Требования к программе

- Ввод: строка с математическим выражением без скобок
- Поддерживаемые операции
- Приоритет операций: умножение и деление выше сложения и вычитания
- Поддержка унарных знаков
- Формат чисел: целые и вещественные
- Обработка ошибок: деление на ноль, неверные символы

Структура программы

Программа состоит из трёх основных модулей:

- 1. **tokenizer.py** модуль токенизации
 - Функция get tokens() разбивает строку на токены
 - Поддерживает унарные знаки и вещественные числа
 - Выявляет недопустимые символы
- 2. **calculator.py** модуль вычислений
 - Функция calculate() вычисляет значение выражения
 - Реализует приоритет операций
 - Обрабатывает деление на ноль
- 3. **main.py** главный модуль
 - Функция main() обеспечивает взаимодействие с пользователем
 - Организует ввод-вывод данных
 - Обрабатывает исключения

Алгоритм работы

Этап 1: Токенизация

Программа принимает строку выражения и разбивает её на токены - числа и операторы. Унарные знаки обрабатываются как часть чисел.

Этап 2: Вычисление

Выполняется два линейных прохода по токенам:

- 1. Обработка умножения и деления
- 2. Обработка сложения и вычитания

Тестирование

Написаны модульные тесты с использованием pytest:

- Тесты токенизации: проверка разбора выражений, унарных знаков, обработки ошибок
- Тесты вычислений: проверка операций, приоритета, обработки деления на ноль

Все тесты успешно проходят, покрывая основные сценарии работы программы.

Результаты работы

Разработана консольная программа-калькулятор, которая:

- Корректно разбирает математические выражения
- Правильно обрабатывает унарные знаки
- Соблюдает приоритет операций
- Обрабатывает ошибки ввода
- Имеет модульную структуру
- Протестирована на различных сценариях

Программа демонстрирует практическое применение основ Python: работу со строками, функциями, модулями, обработкой исключений и тестированием.