

Bankruptcy Prediction using Logistic Regression & Bagged Decision Trees

Albert Bezzina, Daniel Farrugia & Ivan Salomone 22nd January 2019

Overview

- Objective: to classify companies as bankrupt/solvent
- Dataset consists of 5 years of financial ratios of Polish companies
- 64 features
- Dataset characteristics
 - Class imbalance
 - Missing values
 - Outliers
 - Correlated attributes

Experiments Setup

- Established Baseline models for comparability
 - Random search Cross Validation used to find optimal hyper parameters
 - Stratified k-Folds
 - Hyper parameters chosen based on best AUC
- Hyper parameters kept constant when comparing against library models
- 10-fold Cross-Validation used throughout
- Evaluation metrics AUC, sensitivity, specificity on out-of-sample examples (20% of dataset)
- Experiments: Class Imbalance, Normalisation, Feature Selection / Dimensionality Reduction, Imputations

Imputations for Missing Data

Class-partitioned Mean

Class Imbalance

	Logistic Regression			Bagged Decision Trees			
	Class Weights	SMOTE	Under- sampling	Class Weights	SMOTE	Under- sampling	
AUC	0.875	0.879	0.867	0.909	0.918	0.915	
Sensitivity	0.725	0.775	0.758	0.581	0.612	0.801	
Specificity	0.869	0.845	0.826	0.997	0.991	0.858	

Normalisation

Quantile Normalisation

Z-Score Normalisation

Feature Selection

		Logistic R	Bagged Decision Trees			
	Baseline	PCA	L2	k-Best	Baseline	PCA
AUC	0.875	0.877	0.874	0.865	0.909	0.875
Sensitivity	0.725	0.775	0.725	0.706	0.581	0.352
Specificity	0.869	0.839	0.870	0.866	0.997	0.996

Logistic Regression

- Vectorised implementation
- Early stopping (halt if no progress after 5 iterations)
- Comparable to Scikit-learn's SGDClassifier() with log loss function
- In-built class imbalance handling using weights

Bagged Decision Trees

- Bagging classifier that train a decision tree estimator
- Uses class weights to handle imbalance
- Decision tree uses information gain / entropy as criterion
- Needs to handle continuous feature set

Custom vs Scikit-learn (1)

ROC: 0.86 vs 0.87

Custom logistic regression model

Scikit-learn logistic regression model

Custom vs Scikit-learn (2)

ROC: 0.90 vs 0.91

Custom bagged decision trees model

Scikit-learn bagged decision tree model

Conclusion

- Class-partitioned mean imputation helped for both models
- For Logistic regression quantile normalisation improved results
- For Bagged decision tree sensitivity score is below average

12