Table of Contents

Table of Contents	1
Internet of Things (IoT)	3
1. Windows Subsystem for Linux 2 (WSL2)	4
1.1 Enable the Windows Subsystem for Linux	4
1.2 Check requirements for running WSL 2	4
1.3 Enable Virtual Machine Feature	5
1.4 Download the Linux kernel update package	5
1.5 Set WSL 2 as your default version	5
1.6 Install your Linux distribution of choice	6
1.6.1 Open the Microsoft Store (https://aka.ms/wslstore) and select your favo	orite Linux
distribution	6
1.6.2 From the distribution's page, select "Get"	6
2. Docker	7
2.1 Install and Use Docker on Ubuntu	7
2.1.1 Installing Docker	7
2.1.2 Executing the Docker Command Without Sudo (Optional)	9
2.2 How to use Docker and Docker compose to Start service (php, Apache, N	lode-Red,
nfluxdb, MySQL, PHPMyadmin, Adminer, Grafana and MQTT)	9
2.2.1 การ Clone Project จาก GitHub เพื่อใช้งาน	9
2.2.2 การตั้งค่า Username และ Password ให้กับ Service	10

3. How to use	12	
	40	
3.1 Node-Red	12	
วิธีการใช้งาน Node-Red:	14	

Internet of Things (IoT)

IoT ย่อมาจาก Internet of Things (อินเทอร์เน็ตของสิ่งของ) ซึ่งเป็นแนวคิดที่เกี่ยวข้องกับการเชื่อมต่อ อุปกรณ์ต่าง ๆ กันทางอินเทอร์เน็ต เพื่อให้สามารถรับส่งข้อมูลและทำงานร่วมกันได้อย่างอัตโนมัติและมี ประสิทธิภาพมากขึ้น

ในระบบ IoT อุปกรณ์ต่าง ๆ เช่น เซ็นเซอร์ เครื่องมือวัด หรือ อุปกรณ์ไฟฟ้า เชื่อมต่อกับเครือข่าย อินเทอร์เน็ตและสื่อสารกันได้ ซึ่งทำให้สามารถเก็บรวบรวมข้อมูลจากอุปกรณ์เหล่านั้นและใช้ข้อมูลเหล่านั้นในการ วิเคราะห์ ประมวลผล หรือใช้ในการควบคุมอุปกรณ์ต่าง ๆ ได้อย่างสะดวกและรวดเร็ว

ระบบ IoT มีการนำเอาเทคโนโลยีเครือข่าย การสื่อสารไร้สาย การรวมระบบคอมพิวเตอร์ การวิเคราะห์ ข้อมูลและปัญญาประดิษฐ์ เพื่อให้เกิดความสามารถในการติดต่อสื่อสารและการทำงานอัตโนมัติระหว่างอุปกรณ์ ต่าง ๆ

ตัวอย่างการนำ IoT มาใช้ประโยชน์ได้แก่ การติดตามและจัดการการส่งสินค้าในธุรกิจขนส่ง การควบคุม และจัดการอุปกรณ์ในระบบอัตโนมัติในอาคารสำนักงานหรือบ้าน หรือ ระบบควบคุมแสงสว่างและอุณหภูมิในสวน พักผ่อนอัตโนมัติ เป็นต้น

1. Windows Subsystem for Linux 2 (WSL2)

WSL2 เป็นเทคโนโลยีที่ออกแบบมาเพื่อเป็นช่วงส่วนกลางที่ทำให้สามารถรันระบบปฏิบัติการ Linux บน ระบบปฏิบัติการ Windows ได้

WSL2 เป็นการพัฒนาของ Microsoft ที่มีเป้าหมายในการเพิ่มประสิทธิภาพและความเข้ากันได้ระดับสูงของ WSL ซึ่งเป็นเวอร์ชันก่อนหน้า โดย WSL2 ใช้เทคโนโลยีการจำลองสถาปัตยกรรมหนึ่งเพื่อสร้างเคอร์เนล Linux แยกออกมาตัวเองที่ทำงานบน Windows ในลักษณะเป็นระบบปฏิบัติการเสมือน (virtualized) นั่นหมายความว่า WSL2 ทำงานบนระบบปฏิบัติการ Windows แต่ให้บริการและรันโปรแกรม Linux ในพื้นที่เอมูเลชันของตัวเอง

การใช้งาน WSL2 ช่วยให้ผู้ใช้งานสามารถเรียกใช้คำสั่ง Linux และรันแอปพลิเคชัน Linux ได้โดยตรงใน เครื่อง Windows โดยไม่ต้องติดตั้งเครื่องมือสำหรับจำลองหรือตั้งค่าเซิร์ฟเวอร์ Linux แยกต่างหาก ผู้ใช้งาน สามารถเรียกใช้คำสั่งที่รู้จักของ Linux, ติดตั้งและใช้งานซอฟต์แวร์ Linux, และทำงานกับไฟล์และไดเรกทอรีของ Linux ได้ในระบบไฟล์ของ Windows

สามารถศึกษาเพิ่มเติมได้จาก Windows Subsystem for Linux Documentation | Microsoft Learn

ในการเริ่มใช้งาน WSI 2 มีขั้นตอนการติดตั้งดังต่อไปนี้

1.1 Enable the Windows Subsystem for Linux

เปิดใช้ฟีเจอร์เสริม "Windows Subsystem for Linux" ก่อนติดตั้ง Linux รุ่นต่าง ๆ บน Windows ซึ่งจะต้อง ใช้ PowerShell ในการกำเนินงาน โดยการดังนี้ Start menu > PowerShell > right-click > Run as Administrator

จากนั้นพิมคำสั่งใน PowerShell ดังนี้

dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux
/all /norestart

1.2 Check requirements for running WSL 2

หากต้องการปรับเป็น WSL 2 คุณต้องใช้

Windows 10

- สำหรับระบบ x64: รุ่น 1903 หรือใหม่กว่า พร้อม Build 18362 หรือใหม่กว่า
- สำหรับระบบ ARM64: รุ่น 2004 หรือใหม่กว่า พร้อม Build 19041 หรือใหม่กว่า

หรือ Windows 11

หากต้องการตรวจสอบรุ่นและหมายเลขบิลด์ของคุณ ให้เลือก Windows logo key + R พิมพ์ winver เลือก ตกลง ปรับเป็น Windows รุ่นล่าสุดในเมนูการตั้งค่า

หมายเหตุ

- 1) รุ่นต่ำกว่า 18362 ไม่รองรับ WSL 2 ใช้ Windows Update Assistant เพื่อปรับรุ่นของ Windows
- 2) หากคุณใช้ Windows 10 รุ่น 1903 หรือ 1909 ให้เปิด "การตั้งค่า" จากเมนู Windows ไปที่ "Update & Security" แล้วเลือก "Check for Updates" Build number ต้องเป็น 18362.1049+ หรือ 18363.1049+

1.3 Enable Virtual Machine Feature

ก่อนการติดตั้ง WSL 2 ต้องเปิดใช้งานคุณสมบัติเสริมของแพลตฟอร์มเครื่องเสมือน ตรวจสอบคุณสมบัติ Troubleshooting Windows Subsystem for Linux | Microsoft Learn และพิมพ์คำสั่งใน PowerShell ดังนี้

dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all
/norestart

จากนั้นรีสตาร์ทเครื่อง เพื่อทำการติดตั้ง WSL และอัปเดตเป็น WSL 2

1.4 Download the Linux kernel update package

- 1) ดาวน์โหลดแพ็คเกจล่าสุด:
 - https://wslstorestorage.blob.core.windows.net/wslblob/wsl_update_x64.msi
- 2) เรียกใช้แพ็คเกจการปรับปรุงที่ดาวน์โหลดในขั้นตอนก่อนหน้า

หมายเหตุ

หากคุณใช้เครื่อง ARM64 โปรดดาวน์โหลดแพ็คเกจ ARM64 แทน หากคุณไม่แน่ใจว่าคุณมีเครื่องประเภทใด ให้เปิด Command Prompt หรือ PowerShell แล้วพิมพ์: systeminfo | find "System Type"

1.5 Set WSL 2 as your default version

เปิด PowerShell และเรียกใช้คำสั่งนี้เพื่อตั้งค่า WSL 2 เป็นรุ่นเริ่มต้น เมื่อทำการติดตั้ง Linux ใหม่

wsl --set-default-version 2

1.6 Install your Linux distribution of choice

1.6.1 Open the Microsoft Store (https://aka.ms/wslstore) and select your favorite Linux distribution.

1.6.2 From the distribution's page, select "Get".

ครั้งแรกที่เปิด Linux ที่ติดตั้งใหม่ หน้าต่างคอนโซลจะเปิดขึ้น รอหนึ่งหรือสองนาทีเพื่อให้ไฟล์คลายการ บีบอัดและจัดเก็บไว้ในเครื่องคอมพิวเตอร์ จากนั้นต้องสร้างบัญชีผู้ใช้และรหัสผ่าน <u>Set up a WSL development</u> <u>environment | Microsoft Learn</u> *เสร็จขั้นตอนการติดตั้ง Linux OS บน Windows*

```
Installing, this may take a few minutes...
Installation successful!
Please create a default UNIX user account. The username does not need to match your Windows username.
For more information visit: https://aka.ms/wslusers
Enter new UNIX username:
```

2. Docker

Docker เป็นแพลตฟอร์มสำหรับการจัดการและปรับใช้แอปพลิเคชันที่อยู่ในสภาพแวดล้อมที่เรียกว่า "คอน เทนเนอร์" (Containers) ซึ่งเป็นเทคโนโลยีที่ช่วยให้สามารถแพคแอปพลิเคชันและส่วนประกอบต่าง ๆ ที่เกี่ยวข้อง ไว้ในคอนเทนเนอร์เดียวกันได้ ทำให้ง่ายต่อการโอนย้ายและเปิดใช้งานแอปพลิเคชันในสภาพแวดล้อมที่ต่างกันได้ อย่างยืดหยุ่นและมีประสิทธิภาพมากขึ้น นอกจากนี้ Docker ยังมีเครื่องมือที่ช่วยในการจัดการคอนเทนเนอร์ เช่น Docker Compose เพื่อการจัดการและกำหนดคอนเทนเนอร์และบริการที่เกี่ยวข้องอื่น ๆ

2.1 Install and Use Docker on Ubuntu

2.1.1 Installing Docker

การติดตั้ง Docker เวอร์ชันล่าสุดใน Ubuntu นั้นไม่ควรใช้เวอร์ชันที่มีอยู่ในที่เก็บ Ubuntu เพราะอาจจะ ไม่เป็นเวอร์ชันล่าสุด แทนที่นั้นควรติดตั้ง Docker จากที่เก็บ Docker อย่างเป็นทางการโดยการเพิ่มแหล่งที่มาของ แพ็คเกจใหม่และคีย์ GPG จาก Docker เพื่อให้มั่นใจว่าการดาวน์โหลดและติดตั้งแพ็คเกจถูกต้องตามมาตรฐาน นั่นคือขั้นตอนที่แนะนำในการติดตั้ง Docker ให้ถูกต้องและปลอดภัย รายละเอียดดังต่อไปนี้

1) Update your existing list of packages:

sudo apt update

2) Install a few prerequisite packages which let apt use packages over HTTPS:

sudo apt install apt-transport-https ca-certificates curl software-propertiescommon

3) Add the GPG key for the official Docker repository to your system:

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

4) Add the Docker repository to APT sources:

sudo add-apt-repository "deb [arch=amd64]
https://download.docker.com/linux/ubuntu focal stable"

5) Make sure you are about to install from the Docker repo instead of the default Ubuntu repo:

apt-cache policy docker-ce

You'll see output like this, although the version number for Docker may be different:

```
docker-ce:
   Installed: (none)
   Candidate: 5:19.03.9~3-0~ubuntu-focal
   Version table:
     5:19.03.9~3-0~ubuntu-focal 500
     500 https://download.docker.com/linux/ubuntu focal/stable amd64 Packages
```

6) Finally, install Docker:

```
sudo apt install docker-ce
```

Docker should now be installed, the daemon started, and the process enabled to start on boot. Check that it's running:

```
sudo systemctl status docker
```

The output should be similar to the following, showing that the service is active and running:

- 2.1.2 Executing the Docker Command Without Sudo (Optional)
- 1) If you want to avoid typing sudo whenever you run the docker command, add your username to the docker group:

```
sudo usermod -aG docker ${USER}
```

2) To apply the new group membership, log out of the server and back in, or type the following:

su - \${USER}

3) If you need to add a user to the docker group that you're not logged in as, declare that username explicitly using:

```
sudo usermod -aG docker username
```

2.2 How to use Docker and Docker compose to Start service (php, Apache, Node-Red, Influxdb, MySQL, PHPMyadmin, Adminer, Grafana and MQTT)

ในขั้นตอนนี้จะต้องเข้าใช้ใน Command ของ Ubuntu ซึ่งสามารถใช้คีย์ลัดในการค้นหาคือ **windows key + R** จากนั้นพิมพ์ **ubuntu** แล้ว Enter เพื่อเปิดหน้า Ubuntu

2.2.1 การ Clone Project จาก GitHub เพื่อใช้งาน

ในหน่วยนี้ผู้จัดทำได้สร้าง Project ไว้แล้ว โดยนำไปไว้ใน GitHub ซึ่งเป็นแพลตฟอร์มเว็บเซอร์วิสที่ ให้บริการในการพัฒนาซอฟต์แวร์ร่วมกันแบบระบบควบคุมเวอร์ชัน (Version Control System) ที่ใช้งานได้อย่าง ทั่วไป โดย GitHub ให้ผู้ใช้สร้างและจัดการโปรเจกต์ซอฟต์แวร์ของตน และทำให้ผู้ใช้สามารถทำงานร่วมกันบน โครงการเดียวกันได้ง่ายขึ้น

GitHub ให้บริการการจัดเก็บโค้ดและการเปิดเผยโค้ดที่เป็นระบบควบคุมเวอร์ชัน Git ซึ่งเป็นระบบ ควบคุมเวอร์ชันที่ใช้กันอย่างแพร่หลายในการพัฒนาซอฟต์แวร์ ผู้ใช้สามารถสร้างรีพอสิทอรี (repository) เพื่อ จัดเก็บโค้ดและเทรนด์การเปลี่ยนแปลงต่างๆ ในโปรเจกต์ของตนได้ รวมถึงสามารถทำงานร่วมกับผู้อื่น และดู ประวัติการเปลี่ยนแปลง และแก้ไขข้อบกพร่องของโค้ดร่วมกันได้

นอกจากนี้ GitHub ยังมีคุณสมบัติและเครื่องมือต่าง ๆ เพื่อช่วยในกระบวนการพัฒนาซอฟต์แวร์ เช่น การ ตรวจสอบการเปลี่ยนแปลงในโค้ด (code review), การจัดการงาน (issue tracking), การบริหารจัดการโค้ด (project management), การแบ่งงาน (task management), การทดสอบ (testing) เป็นต้น

GitHub เป็นแพลตฟอร์มที่ได้รับความนิยมอย่างมากในชุมชนนักพัฒนาซอฟต์แวร์ และมีการใช้งาน กว้างขวางทั่วโลก นอกจากนี้ยังมีการบริการ GitHub Enterprise ที่ให้การเปิดเผยโค้ดภายในองค์กรเป็นไปอย่าง ปลอดภัย

การใช้งาน Git เพื่อ Clone Project มาจาก GitHub แล้วเริ่มใช้งาน

ในการเริ่มต้นจะต้อง Clone Project มาจาก GitHub ก่อน (1) จากนั้น เข้าไปยังโฟลเดอร์ docker ที่ Clone มา (2) และใช้คำสั่งเพื่อเริ่มการทำงานของ Docker (3)

- (1) \$ git clone https://github.com/woeis-me/docker.git
- (2) \$ cd docker
- (3) \$ sudo docker compose up -d

2.2.2 การตั้งค่า Username และ Password ให้กับ Service

1) Node-Red Config

ตั้งค่า Node-Red ใน Command โดยพิมพ์คำสั่งตามลำดับ (1) – (4)

- (1) \$ sudo apt-get install npm
- (2) \$ sudo npm install -g node-red-admin
- (3) \$ sudo docker exec -it user-nodered sh
- (4) \$ npx node-red admin hash-pw

ในข้อที่ (4) Command จะให้ใส่รหัสผ่าน (แต่จะไม่แสดงบน Command) จากนั้นจะได้รหัสผ่านจากการ เข้ารหัส ตัวอย่างเช่น

\$2b\$08\$X8stDRyPOvBU6KCSEi5j8uWeETKA5OKLvegXRnHf3hRUCV7MU2P72

จากนั้นคัดลอกไปวางไว้ในไฟล์ /nodered/setting.js (สามารถใช้คำสั่งใน Command **sudo nano** /nodered/setting.js)

```
adminAuth: {
   type: "credentials",
   users: [{
    username: "admin",
    password: "$2b$08$X8stDRyPOvBU6KCSEi5j8uWeETKA5OKLvegXRnHf3hRUCV7MU2P72",
    permissions: "*"
   }]
},
```

2) Influxdb Config

เริ่มต้นทำการคอมเม้นต์โค้ด ซึ่งอยู่ในไดเรกทอรี่ /influxdb/config/influxdb.conf ในบรรทัดที่ 263

```
#Determines whether user authentication is enabled over HTTP/HTTPS.
#auth-enabled = true
```

จากนั้นพิมพ์คำสั่งดังต่อไปนี้ โดยแก้ไข *ชื่อผู้ใช้และรหัสผ่าน* ตามความเหมาะสม

```
$ sudo docker exec -it user-influxdb sh
$ influx
$ create database mydb
$ CREATE USER "admin" WITH PASSWORD 'admin_passwd' WITH ALL PRIVILEGES
$ exit
$ exit
```

จากนั้นทำการปิดคอมเม้นต์โค้ด ซึ่งอยู่ในไดเรกทอรี่ /influxdb/config/influxdb.conf ในบรรทัดที่ 263

```
#Determines whether user authentication is enabled over HTTP/HTTPS.
auth-enabled = true
```

3) MQTT Config

การตั้งค่า MQTT ให้มีชื่อผู้ใช้และรหัสผ่าน จะต้องใช้คำสั่งในการดำเนินงาน โดยสามารถพิมพ์คำสั่ง ดังต่อไปนี้

```
$ sudo docker exec -it user-mosquitto sh
$ mosquitto_passwd -b /mosquitto/config/password_file user pass
$ exit
```

ตัวอย่างการตั้งค่ารหัสผ่าน

\$ mosquitto_passwd -b /mosquitto/config/password_file admin 12345678

การตั้งค่าการเข้ารหัสของโปรแกรมทั้งหมดครบทุกขั้นตอนแล้ว จะต้องทำการเริ่มระบบใหม่อีกครั้ง โดยใช้ คำสั่ง

\$ docker compose restart

3. How to use ...

การใช้งานโปรแกรม โปรเจค หรือ เซอร์วิสที่ได้ดำเนินการในหัวข้อที่ 2 สามารถดำเนินการได้ดังรายละเอียด ต่อไปนี้

3.1 Node-Red

Node-Red เป็นแพลตฟอร์มแบบเบส์ออนเปิดต้นฉบับที่ใช้สำหรับสร้างและจัดการกระบวนการอัตโนมัติที่ เชื่อมต่อกับอุปกรณ์และบริการต่างๆ ส่วนใหญ่ใช้งานในการสร้างและควบคุมอินเทอร์เน็ตของสร้างของอุปกรณ์ อิเล็กทรอนิกส์ (IoT) โดยใช้กราฟสร้างเส้นทางที่เรียกว่า "flow" ซึ่งประกอบด้วยโหนด (nodes) และการเชื่อมต่อ กันเพื่อให้ข้อมูลไหลผ่านกัน

หน้าของ Node-Red ประกอบด้วยส่วนหลัก ๆ ดังนี้:

- 1. Flow Editor: เป็นส่วนที่ให้ผู้ใช้สร้างและแก้ไขกราฟแฟลว์ (flow) ซึ่งเป็นการเชื่อมต่อและประมวลผล ข้อมูลระหว่างโหนด (node) ต่าง ๆ ภายในโครงการ Node-Red
- 2. Palette: เป็นเครื่องมือที่ใช้ในการเลือกและเพิ่มโหนด (node) เข้าสู่ Flow Editor เพื่อให้สามารถใช้งาน และปรับแต่งกราฟแฟลว์ได้ตามต้องการ
- 3. Sidebar: เป็นส่วนที่มีเครื่องมือและการตั้งค่าต่าง ๆ ที่เกี่ยวข้องกับโปรเจ็กต์ Node-Red รวมถึงการจัดการ กับโหนด (node) ที่อยู่ใน Flow Editor ในรูปแบบของตารางหรือรายการ
- 4. Debug Console: เป็นส่วนที่แสดงผลลัพธ์หรือข้อมูลที่ผ่านการประมวลผลในโหนด (node) ต่าง ๆ ภายใน Flow Editor ให้ผู้ใช้สามารถติดตามข้อมูลที่ถูกส่งผ่านได้

5. Toolbar: เป็นแถบเครื่องมือที่อยู่ด้านบนของหน้าจอ ใช้ในการบันทึกโปรเจ็กต์ การเริ่มต้น/หยุดการทำงาน ของโปรเจ็กต์ และฟังก์ชันอื่น ๆ เช่น Import/Export, Deploy, และการเปิด/ปิด Sidebar

หน้าที่หลักของ Node-Red คือให้ผู้ใช้สร้างและจัดการกราฟแฟลว์การประมวลผลข้อมูลต่าง ๆ ในรูปแบบของ โหนด โดยทำหน้าที่เชื่อมต่อและประมวลผลข้อมูลในรูปแบบของแพลตฟอร์มสตรีมข้อมูล (streaming platform) โดยรองรับการสร้างและปรับแต่งโหนดต่าง ๆ เพื่อให้เหมาะสมกับงานที่ต้องการทำในโครงการแต่ละรายการ

วิธีการใช้งาน Node-Red:

- 1. ติดตั้งและเปิดใช้งาน Node-Red: ให้ติดตั้ง Node-Red บนเครื่องคอมพิวเตอร์หรือเซิร์ฟเวอร์ของคุณ โดยใช้คำสั่งที่เหมาะสมสำหรับระบบปฏิบัติการที่คุณใช้ หลังจากติดตั้งเสร็จสิ้น คุณสามารถเรียกใช้งาน Node-Red ได้ผ่านทางเบราว์เซอร์โดยพิมพ์ URL ต่อท้ายด้วยพอร์ตที่กำหนด (เช่น http://localhost:1880)
- 2. สร้างเส้นทาง (flow): เมื่อเริ่มต้น Node-Red คุณจะเห็นหน้าต่างของตัวจัดการเส้นทาง ในการสร้าง เส้นทางใหม่ ให้ลากโหนดจากแถบเครื่องมือและวางลงในพื้นที่ทำงาน (workspace) ตามต้องการ คุณสามารถเพิ่ม และปรับเปลี่ยนโหนดต่างๆ และเชื่อมต่อกันเพื่อกำหนดกระบวนการที่คุณต้องการให้เกิดขึ้น
- 3. กำหนดค่าและการตั้งค่า: คุณสามารถกำหนดค่าและการตั้งค่าของโหนดแต่ละตัวได้ตามความต้องการ โดยคลิกขวาที่โหนดและเลือก "Edit" เพื่อเข้าสู่หน้าต่างการตั้งค่า ตรวจสอบค่าต่างๆ และปรับเปลี่ยนตามต้องการ

- 4. เชื่อมต่อกับอุปกรณ์หรือบริการ: Node-Red มีความสามารถในการเชื่อมต่อกับอุปกรณ์หรือบริการ ต่างๆ เช่น อุปกรณ์ IoT, ฐานข้อมูล, บริการเว็บ, และอื่นๆ ให้คลิกขวาที่โหนดที่ต้องการเชื่อมต่อและเลือก "Edit" เพื่อกำหนดการเชื่อมต่อให้เหมาะสม
- 5. บันทึกและประมวลผล: เมื่อคุณได้กำหนดเส้นทางที่ต้องการและกำหนดการตั้งค่าให้เรียบร้อยแล้ว คุณ สามารถบันทึกและประมวลผลเส้นทางนั้นๆ โดยกดปุ่ม "Deploy" ที่มุมบนด้านขวาของหน้าต่าง Node-Red นี้จะ ทำให้กระบวนการที่คุณสร้างขึ้นเริ่มทำงาน
- 6. ตรวจสอบผลลัพธ์: Node-Red จะแสดงผลลัพธ์ของกระบวนการในหน้าต่างของเบราว์เซอร์ คุณ สามารถตรวจสอบผลลัพธ์จากการทำงานของโหนดแต่ละตัว และดูข้อมูลที่ได้รับจากอุปกรณ์หรือบริการที่คุณ เชื่อมต่อ

การใช้งานโหนดต่าง ๆ ใน Node-Red

1. Inject Node

Inject ใน Node-Red เป็นโหนดที่ใช้เป็นจุดเริ่มต้นของกระบวนการ โดยเป็นตัวแทนของเหตุการณ์ (event) หรือเหตุการณ์ที่เริ่มต้นกระบวนการทำงาน

องค์ประกอบหลักของโหนด Inject ประกอบด้วย:

- 1. Timestamp (ประเภท: timestamp): เป็นข้อมูลเวลาที่เริ่มต้นกระบวนการ ค่านี้สามารถกำหนดได้ว่า เป็นเวลาปัจจุบันหรือเวลาที่กำหนดเอง
- 2. Payload (ประเภท: ข้อมูล): เป็นข้อมูลที่ส่งผ่านไปยังโหนดถัดไปในกราฟ ข้อมูลใน Payload สามารถ เป็นประเภทต่างๆ เช่น ข้อความ (string), ตัวเลข (number), ออบเจ็กต์ (object) หรืออาเรย์ (array) ซึ่งขึ้นอยู่กับ การกำหนดค่าในการใช้งาน

โหนด Inject สามารถใช้ในการเริ่มต้นกระบวนการในหลายวิธี เช่น:

- 1. เริ่มต้นกระบวนการที่กำหนดเวลา: โหนด Inject สามารถกำหนดให้เริ่มต้นกระบวนการในเวลาที่ กำหนด โดยการเลือกค่า Timestamp เป็นเวลาที่คุณต้องการให้เกิดเหตุการณ์
- 2. เริ่มต้นกระบวนการด้วยการกดปุ่ม: โหนด Inject ยังสามารถใช้เป็นปุ่มเริ่มต้นกระบวนการ คุณสามารถ กำหนดให้เหตุการณ์เกิดขึ้นเมื่อคุณคลิกที่ปุ่ม Inject ในหน้าต่าง Node-Red

3. เริ่มต้นกระบวนการจากเหตุการณ์ภายนอก: คุณสามารถใช้โหนด Inject เพื่อรอรับเหตุการณ์จาก แหล่งข้อมูลภายนอก เช่น การรับข้อมูลจากเซ็นเซอร์หรือระบบอื่นๆ และนำข้อมูลที่ได้รับมาเป็น Payload เพื่อส่ง ต่อไปยังโหนดอื่นๆ ในกราฟ

โหนด Inject เป็นโหนดที่มีความสำคัญในการสร้างกราฟ Node-Red เนื่องจากมันเป็นจุดเริ่มต้นของ กระบวนการและเหตุการณ์ที่เกิดขึ้นในโหนดอื่นๆ สามารถตั้งค่าและใช้งานโหนด Inject ได้ตามความต้องการของ โปรเจกต์

2. Debug Node

Debug เป็นกระบวนการการตรวจสอบและแก้ไขข้อผิดพลาดหรือปัญหาที่เกิดขึ้นในโปรแกรมหรือระบบที่ กำลังทำงาน การ debug ช่วยให้นักพัฒนาซอฟต์แวร์สามารถวิเคราะห์และตรวจสอบข้อมูลที่เกี่ยวข้องกับ ข้อผิดพลาดเพื่อหาสาเหตุและแก้ไขได้

การ debug มักใช้เครื่องมือหรือโปรแกรมช่วย เช่น:

- 1. ตัวแปรการแสดงผล (print statement): การแสดงผลข้อมูลต่างๆ ในตำแหน่งที่สำคัญของโค้ด เช่น ค่าตัวแปร ข้อความสถานะ เพื่อตรวจสอบค่าและสถานะของโปรแกรมในขณะทำงาน
- 2. เครื่องมือ Debugging: เป็นโปรแกรมหรืออุปกรณ์ที่ให้ความสามารถในการตรวจสอบและแก้ไข ข้อผิดพลาด มีฟังก์ชันต่างๆ เช่น การหยุดทำงานที่จุดหนึ่ง (breakpoint) เพื่อตรวจสอบค่าข้อมูล การดูค่าตัวแปร การติดตามการเข้าถึงฟังก์ชัน และอื่นๆ
- 3. การบันทึกข้อมูล (logging): การบันทึกข้อมูลเกี่ยวกับการทำงานของโปรแกรม รวมถึงข้อผิดพลาดที่ เกิดขึ้น ไว้ในไฟล์หรือระบบบันทึกเพื่อวิเคราะห์หรือตรวจสอบภายหลัง
- 4. เครื่องมือตรวจสอบการทำงาน (debugger): เครื่องมือที่ช่วยให้นักพัฒนาสามารถติดตามกระบวนการ ทำงานของโปรแกรมได้ละเอียด รวมถึงเข้าถึงค่าตัวแปร การเรียกฟังก์ชัน และกระบวนการอื่นๆ ในระหว่างการ ทำงาน

การ debug เป็นกระบวนการที่สำคัญในการพัฒนาซอฟต์แวร์เนื่องจากช่วยให้สามารถตรวจสอบและ แก้ไขข้อผิดพลาดได้อย่างรวดเร็ว นอกจากนี้ยังช่วยให้เข้าใจการทำงานของโค้ดและระบบในระดับลึกขึ้น

3. Function Node

Function ใน Node-Red เป็นโหนดที่ใช้ในการเขียนโค้ดหรือสคริปต์ที่กำหนดเองเพื่อประมวลผลข้อมูล หรือกระบวนการที่ซับซ้อนกว่าที่โหนดอื่นๆ ใน Node-Red สามารถทำได้ โดยโหนดนี้ให้คุณเขียนโค้ด JavaScript ภายในตัวเองเพื่อประมวลผลข้อมูลที่เข้าสู่โหนดและส่งผลลัพธ์ออกไปยังโหนดถัดไปในกราฟ Node-Red

โหนด Function มีลักษณะเด่นต่อไปนี้:

- 1. ภาษาโปรแกรม: สามารถเขียนโค้ด JavaScript ภายในโหนด Function ซึ่งเป็นภาษาโปรแกรมที่ กว้างขวางและมีความสามารถมากมาย เพื่อประมวลผลข้อมูลตามต้องการ
- 2. การประมวลผลเส้นทางที่ซับซ้อน: โหนด Function ช่วยให้สามารถดำเนินการประมวลผลที่ซับซ้อน และยืดหยุ่นขึ้นได้ โดยคุณสามารถเขียนโค้ดที่ต้องการในการประมวลผลข้อมูล การควบคุมการไหลของข้อมูล หรือ การเรียกใช้งานบริการหรืออุปกรณ์ภายนอกได้
- 3. การเข้าถึงข้อมูล: โหนด Function สามารถเข้าถึงข้อมูลที่เข้าสู่โหนดได้ โดยข้อมูลนั้นจะถูกส่งผ่านเป็น พารามิเตอร์ในฟังก์ชัน JavaScript ภายในโหนด เช่น ข้อมูลจากโหนดที่เชื่อมต่อมา หรือข้อมูลที่ได้รับผ่านการ สื่อสารกับอุปกรณ์หรือบริการอื่นๆ

โหนด Function เป็นอีกหนึ่งเครื่องมือที่ทรงพลังในการทำงาน โดยมีความยืดหยุ่นและความสามารถใน การปรับแต่งการประมวลผลข้อมูลและการควบคุมไหลข้อมูลให้ตรงตามความต้องการของโปรเจกต์