

Fakultät für Physik und Astronomie Prof. Dr. Thorsten Ohl

Manuel Kunkel, Christopher Schwan

3. Übung zur Klassischen Mechanik

30. Oktober 2023

Lagrangeformalismus

3.1 Harmonischer Oszillator in 2D

Die Differentialgleichung für den harmonischen Oszillator in zwei Dimensionen lautet:

$$\ddot{\vec{x}}(t) + \omega^2 \vec{x}(t) = 0 \quad \text{mit } \omega = \sqrt{\frac{k}{m}}.$$
 (1)

Entwickeln Sie den Ortsvektor $\vec{x}(t)$ und seine zeitlichen Ableitungen in der Polarkoordinatenbasis $\{\vec{e}_r, \vec{e}_\phi\}$ und überzeugen Sie sich, dass die so aus (1) folgenden Differentialgleichungen den Bewegungsgleichungen entsprechen, die Sie wie in der Vorlesung mittels der Euler-Lagrange-Gleichung

$$\left(\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial}{\partial \dot{q}_i} - \frac{\partial}{\partial q_i}\right)L\left(q(t), \dot{q}(t), t\right) = 0 \tag{2}$$

direkt aus der Lagrangefunktion in Polarkoordinaten $q_i = r, \phi$ erhalten.

3.2 Zwei Massen an einem Faden

Eine Punktmasse m rotiere reibungslos auf einer Tischplatte. Über einen gespannten Faden der Länge l (l=r+s) sei sie durch ein Loch in der Platte mit einer anderen Masse M verbunden (s. Skizze). Wie bewegt sich M unter dem Einfluss der Schwerkraft?

- 1. Formulieren Sie die Zwangsbedingungen.
- 2. Stellen Sie die Lagrange-Funktion in den generalisierten Koordinaten s und φ auf und ermitteln Sie daraus die Bewegungsgleichungen. Zeigen Sie, dass $\frac{\partial L}{\partial \dot{\varphi}} = \mathrm{const} \equiv C$ gilt.
- 3. Verwenden Sie das Ergebnis aus Teilaufgabe 2, um die φ -Abhängigkeit in der Differentialgleichung für s zu eliminieren. Betrachten Sie nun den Gleichgewichtsfall s(t) = const und finden Sie einen Ausdruck für die resultierende Rotationsgeschwindigkeit $\dot{\varphi}(t) = \text{const} \equiv \omega_0$ der Masse m. Ausgehend vom Gleichgewichtsfall, unter welchen Bedingungen rutscht die Masse M nach oben, wann nach unten?
- 4. Diskutieren Sie das Ergebnis für die Anfangsbedingung $\dot{\varphi}(t_0) = 0$.

3.3 Knallpeitsche

Eine einmal gefaltete Schnur mit Gesamtlänge l und konstanter Masse pro Länge ρ bewegt sich auf der x-Achse. Die Endpunkte der Schnur seien mit $x_1(t)$ und $x_2(t)$ bezeichnet. Die Stelle, an der die Schnur gefaltet ist, sei mit y(t) bezeichnet.

$$\underbrace{\frac{x_2(t)}{y(t)}}_{y(t)} \xrightarrow{x_1(t)} x$$

- 1. Geben Sie die Zwangsbedingungen des Systems an.
- 2. Geben Sie eine Langrangefunktion des Systems an¹.
- 3. Die Lagrangefunktion kann in den Relativ- und Schwerpunktskoordinaten

$$\xi = x_1 - x_2$$
 und $X = \frac{1}{2l}((x_1 - y)(x_1 + y) + (x_2 - y)(x_2 + y))$ (3)

zu

$$L = \frac{M}{2}\dot{X}^2 + \frac{\mu}{2}\dot{\xi}^2 \tag{4}$$

umgeschrieben werden, wobei M und μ Funktionen von X und ξ sind. Bestimmen Sie M und μ durch den Vergleich der Lagrangefunktionen in Koordinaten (x_1, x_2) und (X, ξ) .

¹Betrachten Sie für die kinetische Energie T die Endpunkte x_1 und x_2 , deren "Masse" durch die integrierte Masse des Schnurstücks zwischen x_1 und y bzw. x_2 und y gegeben ist.

- $4.\,$ Geben Sie die Bewegungsgleichungen in Relativ- und Schwerpunktskoordinaten an.
- 5. Zeigen Sie, dass für die Energie gilt:

$$E(X,\xi) = E_{SP}(X) + E_{rel}(\xi). \tag{5}$$

Zeigen Sie, dass die Energie des Relativ- und des Schwerpunktsystems erhalten ist, also, dass gilt $\dot{E}=\dot{E}_{rel}=\dot{E}_{SP}=0.$

6. Betrachten Sie $E_{rel}(\xi)$ im Limes $\xi \to \pm l$. Warum knallt die Peitsche?