§7. Метод трапеций для приближённого вычисления определенного интеграла

При наличии современной компьютерной техники метода трапеций достаточно для приближенного вычисления определенного интеграла с любой степенью точности, поэтому более сложные методы не рассматриваются.

Требуется приближенно вычислить интеграл $\int_a^b f(x) dx$.

Промежутков [a,b] интегрирования разбивается на n равных по длине частичных промежутков точками $x_0=a,x_1,x_2,\dots,x_{n-1},x_n=b$. На каждом частичном промежутке $[x_k,x_{k+1}]$ с длиной Δx построим прямолинейную трапецию с параллельными основаниями, длины которых равны $y_k=f(x_k),\ y_{k+1}=f(x_{k+1})$. Предполагаем сначала, что $f(x)\geq 0$ в промежутке интегрирования. Тогда площадь частичной прямолинейной трапеции будет равна $\frac{1}{2}(y_k+y_{k+1})\Delta x$. Площадь фигуры, составленной из частичных прямолинейных трапеций, равна

$$\Delta x \left(\frac{y_0 + y_1}{2} + \frac{y_1 + y_2}{2} + \dots + \frac{y_{n-1} + y_n}{2} \right). \tag{7.1}$$

В то же время она приближенно равна площади криволинейной трапеции, выражаемой определенным интегралом (рис. 7.1). Таким образом, получаем приближенное равенство после сложения одинаковых слагаемых в формуле (7.1):

$$\int_{a}^{b} f(x) dx \approx \Delta x \left(\frac{y_0 + y_n}{2} + y_1 + y_2 + \dots + y_{n-1} \right).$$
 (7.2)

Это равенство тем более точное, чем больше n.

Рис. 7.1. Иллюстрация метода трапеций приближенного вычисления определенного интеграла

Погрешность R_n приближенной формулы трапеций (7.2) может быть оценена по формуле

$$\left| R_n \right| \le \frac{b - a}{12} (\Delta x)^2 \cdot \max_{x \in [a, b]} \left| f''(x) \right|. \tag{7.3}$$

Формула (7.2), полученная на основе геометрических соображений при $f(x) \ge 0$, справедлива при любых знаках подынтегральной функции в промежутке интегрирования.

Если точность формулы (7.2) при выбранном n недостаточна, то число n удваивается и формула (7.2) применяется снова.

Формула (7.3), в силу сложности нахождения $\max_{x \in [a,b]} |f''(x)|$, для оценки погрешности применяется редко. Практически применяется *правило Рунге*.

Пусть S_n равно правой части формулы (7.2) и ε — заданная точность вычислений интеграла. Тогда удвоение числа n производится до тех пор, пока не будет выполнено неравенство

$$\frac{1}{3}\left|S_{2n}-S_{n}\right|<\varepsilon. \tag{7.4}$$

Пример 7.1. Вычислить приближенно по формуле трапеций определенный интеграл $\int\limits_0^1 e^{-x^2} dx$. Заметим при этом, что неопределенный интеграл $\int\limits_0^1 e^{-x^2} dx$ является неберущимся.

В формуле трапеций (7.2) возьмем n = 4. Тогда

$$\Delta x = 1/4 = 0.25$$
; $x_0 = 0$; $x_1 = 0.25$; $x_2 = 0.5$; $x_3 = 0.75$; $x_4 = 1$.
 $y_0 = \exp(0) = 1$; $y_1 = \exp(-0.0625) = 0.939413$; $y_2 = \exp(-0.25) = 0.778801$; $y_3 = \exp(-0.5625) = 0.569783$; $y_4 = \exp(-1) = 0.367879$.

Получаем

$$\int_{0}^{1} e^{-x^{2}} dx \approx \Delta x \left(\frac{y_{0} + y_{4}}{2} + y_{1} + y_{2} + y_{3} \right) = 0.742984.$$

Сравним этот результат с более точным, взятым из таблиц. Для этого воспользуемся специальной функцией erf $x=\frac{2}{\sqrt{\pi}}\int\limits_0^x e^{-t^2}dt$, которая называется интегралом вероятностей, или функцией ошибок (error function):

$$\int_{0}^{1} e^{-x^{2}} dx = \frac{\sqrt{\pi}}{2} \operatorname{erf} 1 = 0.74682412.$$

Сравнивая это более точное значение интеграла с полученным по формуле трапеций, находим абсолютную погрешность вычислений $\Delta \approx 0.004$.

Удвоим число точек деления промежутка, взяв n = 8. Тогда

$$\Delta x = 0.125$$
; $x_0 = 0$; $x_1 = 0.125$; $x_2 = 0.25$; $x_3 = 0.375$; $x_4 = 0.5$; $x_5 = 0.625$; $x_6 = 0.75$; $x_7 = 0.975$; $x_8 = 1$.

К старым значения функции добавились 4 новых:

$$y_1 = \exp(-0.125^2) = 0.984496$$
; $y_3 = \exp(-0.375^2) = 0.868815$;
 $y_5 = \exp(-0.625^2) = 0.676634$; $y_7 = \exp(-0.875^2) = 0.465043$.

Подставляя старые и новые значения функции в формулу

$$J = \int_{0}^{1} e^{-x^{2}} dx \approx \Delta x \left(\frac{y_{0} + y_{8}}{2} + y_{1} + y_{2} + y_{3} + y_{4} + y_{5} + y_{6} + y_{7} \right),$$

получим $J \approx 0.745866$. Это приближенное значение интеграла — более точное. Абсолютная погрешность в этом случае $\Delta \approx 0.000958 < 0.001$. По формуле Рунге (7.4) получаем

$$\frac{1}{3}|S_8 - S_4| = \frac{1}{3}(0.745860 - 0.742984) = 0.000959 < 0.001.$$

Видим, что точность вычислений $\varepsilon = 0.001$ при n = 8 обеспечивается и при ориентировке на правило Рунге.