Opérateurs monotones aléatoires et application à l'optimisation stochastique

Adil SALIM

Télécom ParisTech

26 novembre 2018

Sommaire

Présentation du problème

Forward Backward stochastique à pas constant

Inclusion différentielle non monotone

Problèmes d'optimisation aléatoire

Contexte: approximation stochastique

$$\min_{x \in X} F(x)$$

 $F: X \to \mathbb{R}$ convexe lisse, X euclidien.

► Traitement du signal/Apprentissage en ligne :

$$F(x) = \mathbb{E}_{\boldsymbol{\xi}}(f(\boldsymbol{\xi}, x))$$

V.a. ξ : donnée aléatoire.

▶ Sommes finies : N > 0 grand

$$F(x) = \frac{1}{N} \sum_{i=1}^{N} f(i, x).$$

$$F(x) = \mathbb{E}_{\xi}(f(\xi, x))$$
 où $\xi \sim \text{Unif}(1, \dots, N)$.

- Optimisation distribuée asynchrone
- **.**..

Algorithme du gradient stochastique

Algorithme [Robbins, Monro'51] : (ξ_n) suite de v.a,

$$x_{n+1} = x_n - \gamma_{n+1} \nabla_x f(\xi_{n+1}, x_n)$$

où $\gamma_n > 0$.

 $\textbf{M\'ethode de l'EDO} \ [\texttt{Ljung'77}, \ \texttt{Kushner'77}]:$

Trajectoire interpolée proche de l'EDO

$$\dot{\mathsf{x}}(t) = -\nabla F(\mathsf{x}(t)), \quad t \geq 0, \quad \mathsf{x}(0) = \mathsf{x}_0.$$

Cas non lisse?

Algorithme du gradient proximal

Présence de contraintes ou de régularisations.

$$\min_{x \in X} F(x) + G(x)$$

où G convexe, s.c.i (non lisse).

Algorithme du gradient proximal : $\gamma > 0$,

$$x_{n+1} = \operatorname{prox}_{\gamma G}(x_n - \gamma \nabla F(x_n))$$

où [Moreau'62]

$$\mathrm{prox}_{G}(x) := \operatorname*{arg\,min}_{y \in \mathsf{X}} \frac{1}{2} \|y - x\|^2 + G(y).$$

Parfois difficile à évaluer.

Algorithme du gradient proximal stochastique

$$F(x) = \mathbb{E}_{\xi}(f(\xi, x)), \quad G(x) = \mathbb{E}_{\xi}(g(\xi, x))$$

Algorithme du **gradient proximal stochastique** :

$$x_{n+1} = \mathsf{prox}_{\gamma_{n+1}g(\xi_{n+1},\cdot)}(x_n - \gamma_{n+1}\nabla_x f(\xi_{n+1},x_n))$$

 $\gamma_n > 0$, (ξ_n) i.i.d.

Exemples : $G(x) = \mathbb{E}_{\xi}(g(\xi, x))$.

- ► Contraintes : $G = \iota_{\mathcal{C}}$. Si $\mathcal{C} = \bigcap_{s=1}^{p} C_s$, alors $G(x) = \mathbb{E}_{\xi}(\iota_{C_{\xi}}(x))$
- Régularisations : Lasso structuré (groupes, graphes)
- ► Fonctions de coût (logistique, SVM)

Retour à la méthode de l'EDO

Inclusion Differentielle (ID)

$$\dot{\mathbf{x}}(t) \in -(\nabla F + \partial G)(\mathbf{x}(t)), \quad t \geq 0.$$

L'EDO devient cette ID.

Autres problèmes et algorithmes

- 1. Problèmes : minimiseurs, points selles, solutions d'inégalités variationnelles
- Variété d'algorithmes déterministes : gradient proximal, Douglas-Rachford, ADMM, Chambolle-Pock, Vu-Condat.

Cadre théorique

- 1. Opérateur monotone qui généralise sous-différentiel convexe
- 2. Algorithme Forward-Backward qui généralise gradient proximal

Version stochastique?

Idée :

- Opérateurs monotones aléatoires
- ► Forward-Backward stochastique
- ▶ ID monotone

Opérateurs monotones aléatoires et application à l'optimisation stochastique

Présentation du problème

Forward Backward stochastique à pas constant

Inclusion différentielle non monotone

Problèmes d'optimisation aléatoire Algorithme Primal Dual stochastique Régularisation sur les Graphes

Sommaire

Présentation du problème

Forward Backward stochastique à pas constant

Inclusion différentielle non monotone

Problèmes d'optimisation aléatoire

Opérateurs monotones maximaux

Opérateur monotone sur X. A : $X \rightarrow 2^X$

$$\forall x, y, \forall u \in A(x), v \in A(y), \langle u - v, x - y \rangle \ge 0.$$

Exemple:

- ▶ $A = \partial G$, G convexe.
- ▶ Si $X = \mathbb{R}$, monotone \iff croissant.

 $\mathcal{M}(X) = \{ \text{Op\'erateurs monotones maximaux} \}$: Graphe maximal.

Opérateurs monotones maximaux

Problème: Trouver

$$Z(A + B) := \{x \in X \text{ tel que } 0 \in A(x) + B(x)\}$$

où $A, B \in \mathscr{M}(X)$.

Exemples :
$$A = \partial G$$
, $B = \nabla F$, $Z(A + B) = \arg \min F + G$

Domaine: dom A := $\{x \in X, A(x) \neq \emptyset\}$

Résolvante : $\gamma > 0$, [Minty'62]

$$J_{\gamma A} := (I + \gamma A)^{-1}$$
 monovalué.

Exemple : $A = \partial G$, $J_{\gamma A} = \text{prox}_{\gamma G}$.

Algorithme Forward-Backward (FB)

B monovalué, continue sur X.

Algorithme Forward Backward:

$$x_{n+1} = J_{\gamma A}(x_n - \gamma B(x_n))$$

Exemples:

- ▶ $A = \partial G$, $B = \nabla F$, algorithme du gradient proximal
- Douglas-Rachford, ADMM, Chambolle-Pock, Vu-Condat.

Version stochastique?

Opérateurs monotones aléatoires

Opérateurs monotones aléatoires : V.a. à valeurs $\mathcal{M}(X)$. $A(\xi), B(\xi)$ opérateurs monotones aléatoires, B monovalué.

Algorithme Forward Backward stochastique à pas constant :

$$x_{n+1}^{\gamma} = J_{\gamma A(\xi_{n+1})}(x_n^{\gamma} - \gamma B(\xi_{n+1}, x_n^{\gamma}))$$

- ▶ Notation : $B(\xi, x) := B(\xi)(x)$
- $(\xi_n)_n$ copies i.i.d de ξ
- ▶ Pas $\gamma > 0$ constant (pas décroissant [Bianchi, Hachem'16])
- dom $A(\xi)$ aléatoire.

Littérature

Gradient proximal stochastique

- ▶ Prox déterministe : [Nemirovski et al.'09], [Atchadé et al.'14,'17], [Rosasco et al.'14], [Defazio et al.'14]
- ► Prox stochastique : [Wang, Bertsekas'13,'15], [Ryu, Boyd'14], [Toulis *et al.*'15], [Patrascu, Necoara'17]

Forward Backward stochastique

- ▶ Backward déterministe : [Ouyang et al.'13], [Rosasco et al.'16], [Yurtsever et al.'16]
- ► Backward stochastique : [Rockafellar'76], [Combettes, Pesquet'16], [Bianchi'16]

Approximation stochastique avec inclusions différentielles

- ▶ Pas décroissant : [Benaïm et al.'05], [Faure, Roth'10], [Bianchi, Hachem'16], [Majewski et al.'18]
- ▶ Pas constant : [Roth, Sandholm'13]

Démarche

Pas constant : Pas de convergence p.s du processus $x^{\gamma}=(x_n^{\gamma})_n$

- $\{x^{\gamma}\}_{\gamma}$ Famille de processus indexée par γ petit.
- Adaptation de la méthode de l'EDO
- ▶ Double régime asymptotique $n \to \infty$ puis $\gamma \to 0$

EDO devient Inclusion différentielle

Opérateur moyen : Intégrale de sélection

$$\begin{split} \mathcal{B}(x) &:= \mathbb{E}_{\xi}(B(\xi, x)) \\ \mathcal{A}(x) &:= \overline{\{\mathbb{E}(\varphi) \ : \ \varphi \ \text{integrable}, \ \varphi \in A(\xi, x) \ \text{p.s.}\}}. \end{split}$$

Exemple [Rockafellar, Wets'82] :

$$A(\xi) = \partial g(\xi, \cdot), \ \mathcal{A} = \partial G \text{ où } G(x) = \mathbb{E}_{\xi}(g(\xi, x)).$$

Inclusion Différentielle (ID)

$$\dot{x}(t) \in -(\mathcal{A} + \mathcal{B})(x(t)), \quad t \geq 0.$$

ID monotones [Komura'67], [Brezis'73] : Solution unique si $x(0) \in \text{dom } A$.

1er résultat : comportement dynamique

Figure 1: Processus continu interpolé : $x^{a,\gamma}(t)$ démarrant en $x^{a,\gamma}(0)=a$.

Famille $\{x^{a,\gamma}\}_{\gamma}$ de $C(\mathbb{R}_+, X)$ -variables aléatoires, topologie cvg. unif. sur compacts

1er résultat : comportement dynamique

Soit $a \in \text{dom } A$, $\Phi(a, \cdot)$ la solution de ID issue de a, Φ flot.

Convergence de processus stochastiques : $x^{a,\gamma} \xrightarrow[\gamma \to 0]{\text{loi}} \Phi(a,\cdot)$.

- 1. Tension de $\{x^{a,\gamma}\}_{\gamma}$ (sous des hypothèses légères de **moments** et de **régularité des domaines** dom $A(\xi)$).
- 2. Identification des valeurs d'adhérence.

Théorème [BHS'19] : Comportement dynamique $\forall \varepsilon > 0, \ T > 0, \ K$ compact de dom \mathcal{A} ,

$$\sup_{a\in K}\mathbb{P}\left[\sup_{t\in[0,T]}\|x^{a,\gamma}(t)-\Phi(a,t)\|>\varepsilon\right]\xrightarrow{\gamma\to 0}0.$$

2e résultat : Mesures invariantes

- $(x_n^{\gamma})_n$ chaîne de Markov Feller de noyau P_{γ}
- $I_{\gamma} = \{ \text{lois invariantes pour } P_{\gamma} \}$
- ▶ $Inv = \bigcup_{\gamma \in (0,\gamma_0]} I_{\gamma}$

Corollaire [Haz'minskii'63] 1 : sous réserve d'existence. Soit π valeur d'adhérence de Inv, $\gamma \to 0$. Alors π invariante pour le flot :

$$\pi = \pi \Phi(\cdot, t)^{-1}, \quad t \ge 0$$

Conséquence.

- 1. Moyenne de π est un zéro
- 2. Demipositivité : π supportée par les zéros.

 $^{^{1}}$ [BHS'19] : Cas du domaine dom $A(\xi)$ aléatoire

Existence de mesures invariantes

Lemme [BHS'18] : **Stabilité**.

Si $\exists V \geq 0, \psi$ coercive,

$$P_{\gamma}V \le V - \gamma\psi + \gamma^2C. \tag{PH}$$

Alors

- 1. $I_{\gamma} \neq \emptyset$ (classique)
- 2. Tension de Inv

De plus,

3. Tension de $\{\frac{1}{n}\sum_{k=0}^{n-1}\delta_{x_k^{\gamma}}, n\in\mathbb{N}\}$ (en tant que v.a.)

Cas sous-différentielles, affine, etc.

Comportement asymptotique des itérées

Théorème [BHS'19] : Comportement asymptotique

1.
$$\bar{x}_n^{\gamma} = \frac{1}{n} \sum_{k=0}^{n-1} x_k^{\gamma}$$

$$\forall \varepsilon > 0, \quad \limsup_{n \to \infty} \mathbb{P} \left[d \left(\bar{x}_n^{\gamma}, Z(A + B) \right) \ge \varepsilon \right] \xrightarrow{\gamma \to 0} 0.$$

$$\underset{n\to\infty}{\lim\sup} \ d\left(\mathbb{E}(\bar{x}_n^{\gamma}), Z(\mathcal{A}+\mathcal{B})\right) \xrightarrow[\gamma\to 0]{} 0.$$

2. A + B demipositif:

$$\forall \varepsilon > 0, \quad \limsup_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \mathbb{P}\left[d\left(x_k^{\gamma}, Z(\mathcal{A} + \mathcal{B})\right) \geq \varepsilon\right] \xrightarrow{\gamma \to 0} 0.$$

Sommaire

Présentation du problème

Forward Backward stochastique à pas constant

Inclusion différentielle non monotone

Problèmes d'optimisation aléatoire

Approximation stochastique générique

Algorithme d'approximation stochastique générique :

$$x_{n+1}^{\gamma} = x_n^{\gamma} + \gamma h_{\gamma}(\xi_{n+1}, x_n^{\gamma})$$

 (ξ_n) i.i.d.

Applications:

- Modèle de files d'attentes parallèles [Gast, Gaujal'12]
- ► Gradient stochastique non convexe proximal [Bolte'15].

Inclusion différentielle

Méthode de l'Inclusion Différentielle [BHS'18] :

Trajectoire interpolée proche de l'ID

$$\dot{\mathsf{x}}(t) \in \mathsf{H}(\mathsf{x}(t)), \quad t \geq 0.$$

-H non monotone.

Principales différences :

- Multiples solutions issues de a ∈ X
- ► Notion de mesure invariante plus complexe [Roth, Sandholm'13].

Sommaire

Présentation du problème

Forward Backward stochastique à pas constant

Inclusion différentielle non monotone

Problèmes d'optimisation aléatoire Algorithme Primal Dual stochastique Régularisation sur les Graphes

Sommaire

Présentation du problème

Forward Backward stochastique à pas constant

Inclusion différentielle non monotone

Problèmes d'optimisation aléatoire Algorithme Primal Dual stochastique Régularisation sur les Graphes

Problème d'optimisation sous contraintes stochastiques

$$\min_{x \in X} F(x) + G(x) \quad \text{s.c.} \quad \mathbf{M}x = \mathbf{p} \tag{1}$$

οù

- $F(x) = \mathbb{E}_{\xi}(f(\xi, x))$
- $G(x) = \mathbb{E}_{\xi}(g(\xi, x))$
- $\qquad \qquad \mathbf{M} = \mathbb{E}_{\xi}(M(\xi))$
- ightharpoonup $\mathbf{p} = \mathbb{E}_{\xi}(p(\xi))$

Approche

- 1. Points selles du Lagrangien
- 2. Zéros d'une somme d'opérateurs monotones
- 3. Opérateurs monotones comme opérateurs moyens
- 4. Forward-Backward stochastique à pas décroissants

Algorithme proposé

Généralisation du gradient proximal stochastique [Bianchi, Hachem'16].

$$\begin{aligned} x_{n+1} &= \mathrm{prox}_{\gamma_{n+1} g(\xi_{n+1}, \cdot)} \left(x_n - \gamma_{n+1} (\widetilde{\nabla} f(\xi_{n+1}, x_n) + M(\xi_{n+1})^T \lambda_n) \right) \\ \lambda_{n+1} &= \lambda_n + \gamma_{n+1} \left(M(\xi_{n+1}) x_n - p(\xi_{n+1}) \right) . \end{aligned}$$

οù

- $ightharpoonup \widetilde{\nabla} f(s,x)$ sous-gradient de $f(s,\cdot)$ en x.
- $ightharpoonup \gamma_n \downarrow 0$

Convergence de l'algorithme

Soit
$$\bar{x}_n = \frac{\sum_{k=1}^n \gamma_k x_k}{\sum_{k=1}^n \gamma_k}$$
, idem pour $\bar{\lambda}_n$.

Théorème [SBH'18]: $(\bar{x}_n, \bar{\lambda}_n) \longrightarrow_{n \to +\infty} (x_\star, \lambda_\star)$ p.s. où x_\star solution de (1) et λ_\star solution duale.

Sommaire

Présentation du problème

Forward Backward stochastique à pas constant

Inclusion différentielle non monotone

Problèmes d'optimisation aléatoire Algorithme Primal Dual stochastique Régularisation sur les Graphes

Problème d'optimisation sur graphe

- Graphe G = (V, E)
- $\mathbf{x} \in \mathbb{R}^V$
- Variation Totale

$$\mathrm{TV}(x,G) = \sum_{\{i,j\} \in E} |x(i) - x(j)|.$$

Problème:

$$\min_{x \in \mathbb{R}^V} F(x) + \text{TV}(x, G) \tag{2}$$

 $F: \mathbb{R}^V \to \mathbb{R}$ convexe, lisse.

Problème

Algorithme du gradient proximal

$$x_{n+1} = \operatorname{prox}_{\gamma \operatorname{TV}(\cdot,G)}(x_n - \gamma \nabla F(x_n))$$

Evaluation de $\operatorname{prox}_{\operatorname{TV}(\cdot,G)}(y)$

► Efficace si *G* est une chaîne : **Algorithme Taut String** [Condat'13],[Johnson'13],[Barbero, Sra'14].

Difficile sur les graphes non structurés

Tirage de marche aléatoires

Marche aléatoire simple et stationnaire sur G $\xi = (v_0, \dots, v_L)$.

$$\mathbb{E}_{\xi}\left(\mathrm{TV}(x,\xi)\right) = \frac{L}{|E|}\mathrm{TV}(x,G).$$

Problème équivalent

$$\min_{x \in \mathbb{R}^V} LF(x) + |E| \mathbb{E}_{\xi} \left(\mathrm{TV}(x, \xi) \right).$$

Algorithme du gradient proximal stochastique:

$$\begin{cases} \text{ Tirer la marche } \xi_{n+1}. \\ x_{n+1} = \operatorname{prox}_{\gamma_{n+1}|E|\text{TV}(\cdot,\xi_{n+1})} (x_n - \gamma_{n+1}L\nabla F(x_n)) \end{cases}$$

Algorithme Snake

Principe de l'algorithme :

- Découper la marche ξ en chemins sans cycles
- ▶ $\operatorname{prox}_{\gamma \mathrm{TV}(\cdot,\xi)}$ devient une composition de $\operatorname{prox}_{\gamma \mathrm{TV}}$ sur ces chemins (Taut String)
- Preuve de convergence de l'algorithme de composition de gradients-proximaux non indépendants.

Théorème [SBH'17] : Si $\gamma_n \downarrow 0$, $x_n \xrightarrow[n \to +\infty]{} x_\star$ où x_\star solution de (2).

Se généralise à d'autres régularisations sur graphe.

Illustration

Figure 2: Snake sur le graphe "Facebook" de [Leskovec et al.'16].

Conclusion et perspectives

Conclusion

- Approximation stochastique pour des ID monotones et non monotones
- Primal-dual stochastique
- Optimisation sur graphes

Perspectives

- Analyse non asymptotique des algorithmes
- Méthodes de simulations basés sur l'optimisation
- Optimisation non convexe, non lisse, stochastique