LLM - Fine-tuning

Luciano Barbosa

Prompt Engineering: Limitações

- Tamanho da janela de contexto é limitado
- Requer esforço humano para construção e melhoria de prompts
- Um mesmo prompt pode entregar saídas diferentes
- Inconsistência na experiência com usuário

Por que utilizar modelos Open-Source?

- Fine-tuning: N\u00e3o precisa treinar do zero ou depender apenas de prompt engineering
 - OpenAl disponibiliza fine-tuning apenas para alguns modelos através de sua API
- Não depende de terceiros
 - Perda de disponibilidade do serviço
 - Alteração nos custos do serviço
 - Latência
 - Sem controle sobre mudanças no modelo usado
 - Moderação e Segurança: dados sendo transmitidos para terceiros

Por que utilizar modelos Open-Source?

- Mais customizáveis
- Privados
- Existem modelos abertos com menor número de parâmetros mas com performance competitiva

 LLMs podem ser muito generalistas devido ao pré-treino em uma grande base de dados genérica

- No fine-tuning, o LLM é especializado em uma tarefa específica e um domínio específico
- Uma nova etapa de treino é executada a partir dos parâmetros pré-treinados do LLM

Exemplo:

Pré-treino Autosupervisionado

Base textual de contexto geral

DADO ROTULADO

SAÍDA: Rotulagem de Entidade Nomeada no Contexto da tarefa

EXEMPLO: "conforme autoriza o art. 4.o, da Lei de Introdução às Normas do Direito Brasileiro, com redação determinada pela Lei 12.376/2010 (Dec.-lei 4.657/1942)."

(Santana, 2019) *

TAREFA: Rotulagem de Entidade Nomeada no Contexto Jurídico

- No fine-tuning, o LLM é especializado em uma tarefa específica e um domínio específico
- Uma nova etapa de treino é executada a partir dos parâmetros pré-treinados do LLM

- É possível obter bons resultados a partir de um pequeno conjunto de dados
- Full fine-tuning:
 - Alto custo computacional
 - Catastrophic Forgetting

Fine-tuning: Diminuindo os Custos Computacionais

- Técnicas para redução do número de pesos "tunáveis" dos modelos
 - Parameter-Efficient Fine-Tuning (PEFT)
- Quantização: Técnica para "tunagem" de parâmetros com menor precisão numérica

Parameter Efficient Fine-Tuning (PEFT)

- Vários métodos que permitem a adaptação do fine-tuning de um LLM pré-treinado
 - Congelam pesos ou camadas do modelo
 - Atualizam apenas alguns pesos ou camadas
 - Adicionam camadas ou parâmetros
- Performance comparável ao fine-tuning completo do LLM
- Menos propenso a esquecimento catastrófico durante fine-tuning completo

 Reparametriza os pesos do modelo utilizando uma representação de baixo nível

- Reparametriza os pesos do modelo utilizando uma representação de baixo nível
- Congela os pesos originais do modelo

- Reparametriza os pesos do modelo utilizando uma representação de baixo nível
- Congela os pesos originais do modelo
- Injeta duas matrizes menores de decomposição

- Reparametriza os pesos do modelo utilizando uma representação de baixo nível
- Congela os pesos originais do modelo
- Injeta duas matrizes menores de decomposição
 - O produto das dimensões dessas duas matrizes deve ser igual às dimensões dos pesos originais

- Reparametriza os pesos do modelo utilizando uma representação de baixo nível
- Congela os pesos originais do modelo
- Injeta duas matrizes menores de decomposição
 - O produto das dimensões dessas duas matrizes deve ser igual às dimensões dos pesos originais

- Treina os pesos das matrizes de decomposição
- Adiciona os pesos aprendidos aos congelados

- Reduz o número de parâmetros treináveis
- Possibilita a execução do fine-tuning com menos recurso computacional
- Possibilita Inferência mais customizada:
 - Adicionando as matrizes de decomposição, aprendidas anteriormente, aos pesos congelados do modelo em tempo de inferência

Exemplo de Fine-tuning

Comentário Cliente	Horrível! Restaurante vazio e o atendimento ainda demora. Pedi um frango e veio com gosto de de peixe.	
D E 1	Nojo!	
Resposta Falcon 7B	Horrível! Restaurante vazio e o atendimento ainda de-	
	mora. Pedi um frango e veio com gosto de de peixe.	
	Nojo!	
Resposta LLaMA 2	Obrigado pelo seu comentário. Nós estamos muito preo-	
	cupados com a sua experiência.	
Resposta Open-LLaMA	O cliente não gostou do frango.	

Λ	1	L
Δ	nı	22
$\overline{}$		

Comentário Cli-	Horrível! Restaurante vazio e o atendimento ainda demora.
ente	Pedi um frango e veio com gosto de de peixe. Nojo!
Falcon 7B	Olá, agradecemos pelo seu feedback. Lamentamos muito pela experiência negativa que você teve em nosso restaurante. Pedimos desculpas pelo atendimento demorado e pelo frango com gosto de peixe. Vamos investigar o ocorrido e tomar as medidas necessárias para melhorar esses pontos negativos. Agradecemos por nos informar sobre sua experiência e esperamos ter a oportunidade de recebê-la novamente para uma experiência melhor.
LLaMA 2 7B	Caro cliente, lamentamos profundamente pela experiência negativa que você teve em nosso restaurante. Pedimos desculpas pelo atendimento lento e pela confusão com o prato que você pediu. Vamos investigar o ocorrido para garantir que isso não se repita. Agradecemos seu feedback e esperamos ter a oportunidade de oferecer uma experiência melhor no futuro.
Open LLaMA 7B	Caro cliente, lamentamos profundamente pela experiência negativa que você teve em nosso restaurante. Pedimos desculpas pelo atendimento demorado e pelo frango com gosto de peixe. Vamos investigar o ocorrido e tomar medidas para garantir que isso não aconteça novamente. Agradecemos seu feedback e esperamos ter a oportunidade de recebê-lo novamente para oferecer uma experiência melhor.

Depois

Quantização

- Técnica que reduz a quantidade de memória necessária para armazenar e treinar modelos
- Projeta os valores originais com precisão de 32 bits em espaços de precisão menor.
- Quantização + LoRA = QLoRA

PRECISÃO	MEMORY	EXEMPLO
FP32	4 bytes	3.14159202575683 59375
FP16	2 bytes	3.140625
INT8	1 Byte	3

Desafios dos Modelos de Linguagem

- Não possuem informação atualizada
- Alucinações

Desafios dos Modelos de Linguagem

- Não possuem informação atualizada
- Alucinações

Qual o planeta com mais luas no sistema solar?

Desafios dos Modelos de Linguagem

- Não possuem informação atualizada
- Alucinações

Qual o planeta com mais luas no sistema solar?

Desafios: Deployment de Aplicações baseadas em LLMs

- Treino e Inferência
 - Treino do zero:
 - Muitos dados
 - Requer muita memória
 - Demanda poder computacional
 - Inferência com CPU: Técnicas de conversão para C++ [1]