TCP/IP Protocol Suite

- A protocol suite for internetworking
- The TCP/IP Internet Protocols or, simply, TCP/IP is the mostly widely used internetworking protocol suite
- First internetworking protocol suite
- OSI 7-layer model does not explicitly include internetworking
- TCP/IP model replaces the old ISO model

TCP/IP Layering

- Layer #5: Application
- Corresponds to ISO model layers 6 and 7
- Used for communication among applications
- Layer #4: Transport
- Corresponds to layer 4 in the ISO model Provides reliable delivery of data

- Layer #3: Internet
- Defines uniform format of packets forwarded across networks of different technologies
- Rules for forwarding packets in routers
- Layer #2: Network Interface
- Corresponds to layer 2 in the ISO model
- Defines formats for carrying packets in hardware frames
- Layer #1: Hardware
- Corresponds to layer 1 in the ISO model
- Defines basic networking hardware

5

4

3

2

1

Application

Transport

Internet

Network Interface

Physical

TCP/IP vs OSI

		Application	7
5	Application	Presentation	6
		Session	5
4	Transport	Transport	4
3	Internet	 Network	3
2 1	Network Interface	Data Link	2
1	Physical	Physical	1
3	Internet Network Interface	Transpo Networ	ort rk nk

Addresses for the Virtual Internet

- One key aspect for creating a virtual network is a single, uniform addressing format
- Can't use hardware addresses because different technologies have different address formats
- Address format must be independent of any particular hardware address format
- · Sending host puts destination internet address in packet
- · Destination address can be interpreted by any intermediate router
- Routers examine address and forward packet on to the destination
- TCP/IP addresses:
- Addressing in TCP/IP is specified by the Internet Protocol (IP)
- Each host (not really) is assigned a 32-bit number
- Called the IP address or Internet address
- Unique across entire Internet

IP Address Hierarchy

- · Each IP address is divided into a prefix and a suffix
- Prefix identifies the network to which a computer is attached
- · Suffix identifies a computer within that network
- · Address format makes routing efficient
- Every network in a TCP/IP internet is assigned a unique network number
- Each host on a specific network is assigned a host number or host address that is unique within that network
- Host's IP address is the combination of the network number (prefix) and host address (suffix)

6

IP Address Assignment

- An IP address does not identify a specific computer
- An IP address specifies an interface, or network attachment point, not a computer
- A computer with multiple network interconnections (e.g., a router) must be assigned one IP address for each connection
- Global authority assigns unique prefix to network
- · Local administrator assigns unique suffix to host

IP Address Format Design

- IP designers chose 32 bit addresses
- Allocate some bits for prefix, some for suffix
- Large prefix, small suffix: many networks, few hosts per network
- Small prefix, large suffix: few networks, many hosts per network
- Because of a variety of technologies, need to allow for both large and small networks
- Designers chose a compromise- multiple address formats that allow both large and small prefixes
- Each format is called an address *class*

Classful IP Addressing

- First four bits of an address determine the class to which the class belongs
- Specify how the remainder of the address is divided into prefix and suffix

	01234	8		16	24		31
Class A	0 prefix			suffix			
Class B	1 0	prefix			suffix		
							_
Class C	1 1 0		prefix			suffix	
	ratatatat						-
Class D	111110		multi	cast addres	S		
	Faladalat						-
Class E	[1]רורורו		reserve	d for future	use		

Dotted Decimal Notation

- · Shorthand for IP address
- · Allows humans to avoid binary
- Represents each byte in decimal separated by dots
- · Four decimal values per 32-bit address
- Each decimal number:
- Represents eight bits
- Is between 0 and 255

32-bit Binary Number	Equivalent Dotted Decimal
10000001 00110100 00000110 00000000	129.52.6.0
11000000 00000101 00110000 00000011	192.5.48.3
00001010 00000010 00000000 00100101	10.2.0.37
10000000 00001010 00000010 00000011	128.10.2.3
10000000 10000000 11111111 00000000	128 . 128 . 255 . 0

10

Classes and Dotted Decimal Notation

Class identified by the decimal value of the first byte

Class	Range
A	0 127
В	128 191
С	192 223
D	224 239
Е	240 255

Classful Addressing and Network Sizes

- Maximum network size determined by class of address:
- Class A large
- Class B medium
- Class C small

Address Class	Bits In Prefix	Maximum Number of Networks	Bits In Suffix	Maximum Number Of Hosts Per Network
Α	7	128	24	16777216
В	14	16384	16	65536
C	21	2097152	8	256

Classful Addressing Example 128.10.0.1 128.10.0.2 128.211.6.115 128.211.28.4 prefix 192.5.48 prefix 192.5.48

Address Masks

- · IP address space was being exchausted
- Since one of three possible sizes had to be chosen many addresses were unused
- Idea: Instead of having three distinct classes, allow the division between prefix and suffix to occur on an arbitrary bit boundary
- · Two pieces of information must be kept for each address:
- The 32-bit address itself
- A 32-bit value that specifies the boundary between the prefix and the suffix (address mask or subnet mask)
 - * 1 bits mark the network prefix
 - * 0 bits mark the host suffix

14

Address Masks Example (1/2)

- Suppose we have the 32-bit destination address 128.10.2.3
- 10000000 00001010 00000010 00000011
- And a 32-bit mask 255.255.0.0
- 11111111 11111111 00000000 00000000
- In order a router to find the correct subnet to route an incoming packet to, performs a logical and between the destination address and the mask
- 10000000 00001010 00000000 00000000
- Which is 128.10.0.0 in the dotted decimal notation
- This is compared against a value in the router's routing table

15

Classless Inter-Domain Routing

- · A dotted decimal notation for address masks
- The mask associated with an address is specified by appending a slash to an address and the size of the mask in decimal
- Example:
- Classful: 128.10.0.0 (16-bit prefix, 16-bit suffix)
- CIDR: 128.10.0.0/16

Address Translation

- Upper levels of protocol stack use protocol addresses
- Network hardware must use hardware address for eventual delivery
- Protocol address must be translated into hardware address for delivery; will discuss three methods
- · Upper levels use only protocol addresses
- "Virtual network" addressing scheme
- Hides hardware details
- · Translation occurs at data link layer
- Upper layer hands down protocol address of destination
- Data link layer translates into hardware address for use by hardware layer

18

Address Resolution

- Finding hardware address for protocol address:
- Address resolution
- Data link layer *resolves* protocol address to hardware address
- · Resolution is local to a network
- Network component only resolves address for other components on same network

19

17

Address Resolution Example

- A resolves protocol address for B for protocol messages from an application on A sent to an application on B
- A does not resolve a protocol address for F
- Through the internet layer, A delivers to F by routing through R1 and R2
- A resolves R1 hardware address
- Network layer on A passes packet containing destination protocol address F for delivery to RI

Address Resolution Techniques

- Association between a protocol address and a hardware address is called a binding
- · Three techniques:
- Table lookup:
 - * Bindings stored in memory with protocol address as key
 - * Data link layer looks up protocol address to find hardware address
- Closed-form computation:
 - * Protocol address based on hardware address
- * Data link layer derives hardware address from protocol address
- Dynamic:
 - * Network messages used for "just-in-time" resolution
 - * Data link layer sends message requesting hardware address; destination responds with its hardware address

21

Address Resolution Protocol (ARP)

- IP uses dynamic (plus table lookup as an optimization)
- · Address Resolution Protocol (ARP) part of TCP/IP protocol suite
- · Two-part protocol
- Request from source asking for hardware address
- Reply from destination carrying hardware address
- · ARP request message dropped into hardware frame and broadcast
- Uses separate protocol type in hardware frame (Ethernet: 0x0806)
- Sender inserts IP address into message and broadcast
- · Every other computer examines request
- · Computer whose IP address is in request responds
- Puts hardware address in response
- Unicasts to sender
- Original requester can then extract hardware address and send IP packet to destination

22

ARP Packet

- The target machine responds by filling in the missing address
- Swaps the target and sender pairs and changes the operation to a reply
- A will add an entry into its ARP cache
- Other nodes may note the IP to MAC address mapping of the node that sent the ARP request

Hardware Type		Protocol Type		
Hardware length	Protocol length	Operation Request 1, Reply 2		
	Sender hardwar (For example, 6 bytes			
	Sender protoco (For example, 4 by			
	Target hardwa (For example, 6 byte (It is not filled in	s for Etherneti		
	Target protoco			

ARP Cache

- Using ARP for each IP packet adds two packets of overhead for each IP packet
- Computer caches ARP responses
- Flushes cache at system startup
- Entries discarded periodically
- · Cache searched prior to sending ARP request
- ARP lookup algorithm:
- Look for target IP address, B, in ARP table
- If not found
- * Send ARP request
- * Receive reply with B's hardware address
- * Add entry to table
- Return hardware address from table

25

ARP Vulnerability

- ARP replies overwrite existing information
- Also, legitimate hosts send ARP replies on joining network or changing IP address
- Not in response to any ARP request
- ARP replies have no proof of origin, so an attacker can claim any hardware address
- · Basis for many more attacks
- Knows as a man-in-the-middle (MITM) attack

ARP Attack Effect

- Attacker keeps a *relay index*: a table containing the true association between MAC addresses and IP addresses
- But the two devices at 192.168.0.20 and 192.18.0.40 update their ARP caches with false information
- All traffic for 192.168.0.20 and 192.168.0.40 gets sent to attacker
- Attacker can re-route this traffic to the correct devices using his relay index
- So these devices are oblivious to the attack
- Many implementations out there for many purposes:

 Output

 Output
- Capturing traffic in switched Ethernet environments (i.e. active sniffing)
- Hijacking any application protocol that relies on IP
- Bypassing firewalls
- * http://www.althes.fr/ressources/avis/smartspoofing.htm
- MITM attacks on cryptographically secure protocols
- Denial of service