Homework 1/Math205A

- Real numbers and related subjects
- 1. Prove $\sqrt{3}$ is not a rational number
- 2. If $r \neq 0$ is a rational number and q is a irrational number (not rational real number). Prove r + q and rq are irrational.
- 3. Let $\mathbb{Q}^c = \mathbb{R} \setminus \mathbb{Q}$ be the set of all irrational numbers. Prove \mathbb{Q}^c is dense in \mathbb{R} .
- 4. Let A be a nonempty set of real numbers which is bounded from below. Let $-A = \{-x : x \in A\}$. Prove inf $A = -\sup(-A)$.
- 5. Fix b > 1. Complete the following problems:
 - (a) If $m, n, p, q \in \mathbb{Z}$ (integers) with n, q > 0 and r = m/n = p/q, prove

$$(b^m)^{1/n} = (b^p)^{1/q}.$$

Hence it makes sense to define $b^r = (b^m)^{1/n}$.

- (b) Prove that $b^{r+s} = b^r b^s$ if r and s are rational.
- (c) If x is real, define $B(x) = \{b^t : t \text{ is rational and } t \leq x\}$. Prove that $b^r = \sup B(r)$ when r is rational. Hence it makes sense to define

$$b^x = \sup B(x), \quad x \in \mathbb{R}$$

- (d) Prove $b^{x+y} = b^x b^y$ for all $x, y \in \mathbb{R}$.
- 6. For b > 1 and y > 0. Prove that there is a unique $x \in \mathbb{R}$ so that $b^x = y$.
- 7. If x and y are complex numbers. Prove that

$$\left| |x| - |y| \right| \le |x - y|$$

8. Use mathematics induction to prove: If z_1, \dots, z_n are complex number, then

$$|z_1 + z_2 + \dots + z_n| \le |z_1| + |z_2| + \dots + |z_n|.$$

9. Prove that

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$$

if $x = (x_1, \dots, x_k), y = (y_1, \dots, y_k) \in \mathbb{R}^k$. Interpret this geometrically, as a statement about parallelograms.