Effectivess comparison report

Raphael Rodrigues Campos January 17, 2016

Eu implementei o BROOF usando Extremely Randomized Trees no lugar da RF, gerando o algoritmo que chamei de BERT (Boosted Extremely Randomized Trees).

A própria ERT se sai melhor em alguns datasets do que a RF. Portanto, era de se esperar que a BERT se saísse um pouco melhor que o BROOF, como pode-se verificar no arquivo anexo.

O arquivo anexo possui uma tabela comparando todos os métodos rodados até agora.

Além da implementação do BERT, eu também implementei método de ensemble "Stacked Generalization" descrito em [1] David H. Wolpert, "Stacked Generalization", Neural Networks, 5, 241–259, 1992.

O método comb1 na tabela é o stacking de 2 níveis para combinação dos métodos LazyNN_RF e BROOF. No nível do zero do stacking foram utilizados os classificadores LazyNN_RF e BROOF para gerar o conjunto de treino do nível 1. No nível 1 foi utilizado uma RF com 200 árvores.

Os resultados apresentados são promissores. Sobretudo quando se trata de métrica microf1, onde tivemos mais ganhos significativos.

Resultados

% latex table generated in R 3.2.4 by xtable 1.8-0 package % Sun Apr 17 12:53:10 2016

Legenda para os métodos:

- BERT: Boosted Extremely Randomized Trees
- LXT: Lazy Extremely Randomized Trees
- RF: Random Forest com 200 árvores
- RF1000: Random Forest com 1000 árvores
- XT: Extremely Randomized Trees com 200 árvores
- XT1000: Extremely Randomized Trees com 1000 árvores
- COMB1: Stacking (Lazy + BROOF)
- COMB2: Stacking (LXT + BERT)
- COMB3: Stacking (Lazy + BROOF + LXT + BERT)
- COMBSOTA: Stacking (KNN + RF + SVM + NB)

V1	V2	20NG	4UNI	ACM	REUTERS90
BERT	microF1	88.93 ± 0.39	84.61 ± 0.98	74.8 ± 0.59	67.33 ± 0.72
	macroF1	88.59 ± 0.5	73.61 ± 1.85	$\textbf{62.1}\pm\textbf{0.99}$	29.24 ± 1.4
BROOF	microF1	87.96 ± 0.24	84.41 ± 1.07	73.35 ± 0.79	66.79 ± 0.97
	macroF1	87.44 ± 0.28	73.23 ± 1.1	60.76 ± 0.8	28.48 ± 2.17
COMB1	microF1	89.32 ± 0.42	$\textbf{86.52}\pm\textbf{1.18}$	76.74 ± 0.73	$\textbf{77.22}\pm\textbf{1.14}$
	macroF1	89.01 ± 0.44	$\textbf{78.66}\pm\textbf{1.9}$	$\textbf{62.2}\pm\textbf{1.01}$	$\textbf{31.71}\pm\textbf{2.7}$
COMB2	microF1	90.2 ± 0.51	$\textbf{86.54} \pm \textbf{1.06}$	76.88 ± 0.55	$\textbf{78.25}\pm\textbf{1.17}$
	macroF1	89.95 ± 0.52	$\textbf{79.41}\pm\textbf{1.63}$	$\textbf{62.66}\pm\textbf{0.81}$	$\textbf{32.86}\pm\textbf{2.23}$
COMB3	microF1	90.63 ± 0.57	$\textbf{86.79}\pm\textbf{0.86}$	$\textbf{77.34}\pm\textbf{0.6}$	$\textbf{79}\pm\textbf{1.14}$
	macroF1	90.4 ± 0.57	$\textbf{79.63}\pm\textbf{1.91}$	$\textbf{62.91}\pm\textbf{0.92}$	$\textbf{33.93}\pm\textbf{2.97}$
COMBALL	microF1	$\boxed{91.67\pm0.44}$	$\textbf{86.74}\pm\textbf{1.17}$	$\textbf{78.46}\pm\textbf{0.72}$	0 ± 0
	macroF1	$\textbf{91.43}\pm\textbf{0.42}$	$\textbf{79.45}\pm\textbf{2.23}$	$\textbf{63.72}\pm\textbf{1.01}$	0 ± 0
COMBSOTA	microF1	90.65 ± 0.4	83.79 ± 1.3	77.9 ± 0.73	74.41 ± 1.21
	macroF1	90.41 ± 0.4	74.19 ± 2.13	$\textbf{63.15}\pm\textbf{0.76}$	28.18 ± 1.58
KNN	microF1	87.53 ± 0.69	75.63 ± 0.94	70.99 ± 0.96	68.07 ± 1.07
	macroF1	87.22 ± 0.66	60.34 ± 1.36	55.85 ± 0.97	$\textbf{29.93}\pm\textbf{2.48}$
LAZY	microF1	87.96 ± 0.37	82.34 ± 0.61	74.02 ± 0.79	66.3 ± 1.07
	macroF1	87.39 ± 0.37	68.33 ± 1.6	59.46 ± 1.35	26.61 ± 2.12
LXT	microF1	88.39 ± 0.51	81.24 ± 0.71	69.63 ± 0.91	65.92 ± 0.82
	macroF1	88.05 ± 0.44	66.89 ± 1.23	57.33 ± 1.48	26.71 ± 2.53
NB	microF1	88.99 ± 0.54	62.63 ± 1.7	73.54 ± 0.71	65.32 ± 1.13
	macroF1	88.68 ± 0.55	51.38 ± 3.19	58.03 ± 0.85	27.86 ± 0.79
RF	microF1	83.64 ± 0.29	81.52 ± 1	71.05 ± 0.31	63.92 ± 0.81
	macroF1	83.08 ± 0.35	65.44 ± 1.91	56.56 ± 0.45	24.36 ± 1.98
SVM	microF1	88.35 ± 0.37	81.36 ± 1.01	73.82 ± 0.78	67.6 ± 1.1
	macroF1	88.3 ± 0.38	68.01 ± 2.39	$\textbf{62.55}\pm\textbf{1.53}$	$\textbf{31.73}\pm\textbf{3.13}$
XT	microF1	85.94 ± 0.23	81.66 ± 1.03	71.94 ± 0.66	64.33 ± 0.86
	macroF1	85.57 ± 0.22	65.44 ± 2.41	57.4 ± 1.13	24.47 ± 2.22
XT2	microF1	85.94 ± 0.23	0 ± 0	0 ± 0	0 ± 0
	macroF1	85.57 ± 0.22	0 ± 0	0 ± 0	0 ± 0

Table 1: Comparação entre todos os métodos