Transfer Learning

17 February 2022 11:57

ML Lecture 19: Transfer Learning

- Data no directly related to the task considered
- Speech recognition, image recognition, text analyze(specific domain)
- Overview

Transfer Learning - Overview

Source Data (not directly related to the task) labelled unlabeled Self-taught learning labelled Fine-tuning Rajat Raina , Alexis Battle , Honglak 0 Lee, Benjamin Packer, Andrew Y. Ng, Multitask Learning Target Data Self-taught learning: transfer learning from unlabeled data, ICML, 2007 Domain-adversarial unlabeled Self-taught Clustering training Wenyuan Dai, Qiang Yang, Gui-Rong Xue, Yong Yu, "Self-taught clustering", ICML 2008 Zero-shot learning

Source data 具有泛性,target data 为specific domain,才能有好的结 果,反之不可。

Model Fine-tuning

Conservation Training
Conservative Training

o Layer Transfer

- Lowe level的feature被使用
- Which layer should be chosen, based on the specific case
- 选择cover不同的层,结果会不同

Multitask Learning

- 同时关心target domain和source domain的效果。
- $\circ \ \ \textbf{Examples: Translation, multilingual speech recognition}$

Multitask Learning

• The multi-layer structure makes NN suitable for multitask learning

Progressive Neural Networks

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Razvan Pascanu, Raia Hadsell, "Progressive Neural Networks". arXiv preprint 2016

• Domain-adversarial training

Task description

Domain-adversarial training

Yaroslav Ganin, Victor Lempitsky, Unsupervised Domain Adaptation by Backpropagation, ICML, 2015

Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Domain-Adversarial Training of Neural Networks, JMLR, 2016

f(*) and g(*) can be NN.

 $f(x^n)$ and $g(y^n)$ as

Training target:

· Zero-shot learning

Target data 没有出现在Source data中

How we solve this problem in speech recognition?

y³ (attribute of

 $g(y^3) f(y^3)$

Embedding Space

Zero-shot Learning

· Self-taught learning

Self-taught learning

- · Learning to extract better representation from the source data (unsupervised approach)
- · Extracting better representation for target data

Domain	Unlabeled data	Labeled data	Classes	Raw features
Image classification	10 images of outdoor scenes	Caltech101 image classifi- cation dataset	101	Intensities in 14x14 pixel patch
Handwritten char- acter recognition	Handwritten digits ("0"-"9")	Handwritten English characters ("a"-"z")	26	Intensities in 28x28 pixel character/digit image
Font character recognition	Handwritten English characters ("a"-"z")	Font characters ("a"/"A" - "z"/"Z")	26	Intensities in 28x28 pixel character image
Song genre classification	Song snippets from 10 genres	Song snippets from 7 dif- ferent genres	7	Log-frequency spectrogram over 50ms time windows
Webpage classification	100,000 news articles (Reuters newswire)	Categorized webpages (from DMOZ hierarchy)	2	Bag-of-words with 500 word vocabulary
UseNet article classification	100,000 news articles (Reuters newswire)	Categorized UseNet posts (from "SRAA" dataset)	2	Bag-of-words with 377 word vocabulary