TECHNICAL DATA

TOSHIBA MOS DIGITAL INTEGRATED CIRCUIT TC518129 CPL / CFWL / CFTL - 70, TC518129 CPL / CFWL / CFTL - 80 TC518129 CPL / CFWL / CFTL - 10, TC518129 CPL / CFWL / CFTL - 70L TC518129 CPL / CFWL / CFTL - 80L, TC518129 CPL / CFWL / CFTL - 10L SILICON GATE CMOS

131,072-WORD BY 8-BIT CMOS PSEUDO STATIC RAM **DESCRIPTION**

The TC518129CPL/CFL/CFWL/CFTL is a 1,048,578-bit CMOS pseudo static random access memory (PSRAM) organized as 131.072 words by 8 bits. It feature a one-transistor dynamic memory cell using CMOS peripheral circuitry to provide large capacity, high speed and low power. It uses a single 5 V ± 10% power supply. A RFSH input selects either auto or self refresh operation. This device family also features SRAM-like write functions whereby data is written to the memory cell rising edge of R/W signal, for easy interfacing to microprocessors. The CE2 pin of the TC518128C family is replaced by the CS pin in this device family for standby mode operation. The TC518129CPL/CFL/CFWL/CFTL is available in molded 32-pin standard 0.6inch dual-inline plastic packages (DIP) and 0.525-inch small-outline plastic packages (SOP), and thin smalloutline plastic package (TSOP).

FEATURES

- Organized as 131,072 words by 8 bits (1.048,576 bits).
- Fast access time and low power dissipation.
- Single power supply voltage of 5 V \pm 10%.

	TC5	18129C Far	nily
	-70	-80	-10
t _{CEA} CE Access Time	70 ns	80 ns	100 ns
t _{OEA} OE Access Time	25 ns	30 ns	40 ns
t _{RC} Cycle Time	115 ns	130 ns	160 ns
Power Dissipation	385 mW	330 mW	275 mW
Self Refresh Current		μA (L versi	
Sell Kellesil Cullent	50 A	ι Α (LL versi	on)

- Internal counter can be used for auto and self refresh operations.
- Internal timer can be used for self refresh operation.
- Auto refresh power down function.
- 512 refresh cycles per 8 ms.
- All inputs and outputs are TTL compatible.
- Pin compatible with 1M SRAM (JEDEC).
- Logic compatible with SRAM R/W pin.
- Packages: DIP32-P-600 (CPL) (Weight: 4.45 g typ) SOP32-P-525 (CFWL) (Weight: 1.04 g typ) TSOP32-P-0820 (CFTL) (Weight: 0.32 g typ)

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. These TOSHIBA products are intended for use in igeneral commercial applications (office equipment, communication equipment, measuring equipment, domestic appliances, etc.). please make sure that you consult with us before you use these TOSHIBA products in equipment which requires extraordinarily high quality and/or reliability, and in equipment which may involve life-intentating or critical application, including but not limited to such uses as atomic energy control, airplane or spaceship instrumentation, traffic signals, medical instrumentation, combustion control, all types of safety devices, etc. TOSHIBA connot accept and hereby disclaims liability for any damage which may occur in case the TOSHIBA products are used in such equipment or applications without prior consultation with TOSHIBA.

	TC518129CPL — 1
0	1996 - 09 - 02
	TOSHIBA CORPORATION

TECHNICAL DATA

TC518129 CPL/CFWL/CFTL - 70, TC518129 CPL/CFWL/CFTL - 80 TC518129 CPL/CFWL/CFTL - 10, TC518129 CPL/CFWL/CFTL - 70L TC518129 CPL/CFWL/CFTL - 80L, TC518129 CPL/CFWL/CFTL - 10L

TRUTH TABLE

CE	CS	ŌĒ	R/W	RFSH	A0 to A16	I/O1 to 8	CONDITION
L	Н	L	Н	×	××	OUT	Read
L	Н	×	L	×	××	IN	Write
L	Н	Н	Н	×	××	HZ	CE Only Refresh
Н	L	×	×	×	×	HZ	CS standby
Н	×	×	×	L	×	HZ	Auto/Self Refresh
Н	×	×	×	Н	×	HZ	Stand by

H ... High Level Input ($V_{\rm IN}=6.5\,V$ to $V_{\rm IH}$ min)

L ... Low Level Input $(V_{IN} = V_{IL} \text{ max to } -1.0 \text{ V})$

× ··· Don't care

 $\times\times$ ··· At $\overline{\text{CE}}$ falling edge, all address are "IN", and at the other condition, the address

are "X"

HZ ... High Impedance

ABSOLUTE MAXIMUM RATINGS

SYMBOL	RATING	VALUE	UNIT	NOTE
V _{IN}	Input Voltage	- 1.0 to 7.0	V	
Vout	Output Voltage	- 1.0 to 7.0	V	
V _{DD}	Power Supply Voltage	- 1.0 to 7.0	V	
T _{OPR}	Operating Temperature	0 to 70	°C	
T _{STG}	Storage Temperature	– 55 to 150	°C	1
T _{SOLDER}	Soldering Temperature (10 s)	260	°C	
P _D	Power Dissipation	600	mW	
l _{out}	Short Circuit Output Current	50	mA	

DC RECOMMENDED OPERATING CONDITIONS (Ta = 0° to 70°C)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	NOTE
V_{DD}	Power Supply Voltage	4.5	5.0	5.5	V	
V _{IH}	Input High Voltage	2.4	-	6.5	٧	2
VIL	Input Low Voltage	- 1.0	_	0.8	V	

TC518129CPL-2
1996 - 09 - 02
TOSHIBA CORPORATION

TECHNICAL DATA

TC518129 CPL / CFWL / CFTL - 70, TC518129 CPL / CFWL / CFTL - 80 TC518129 CPL / CFWL / CFTL - 10, TC518129 CPL / CFWL / CFTL - 70L TC518129 CPL / CFWL / CFTL - 80L, TC518129 CPL / CFWL / CFTL - 10L

DC CHARACTERISTICS ($V_{DD} = 5 V \pm 10\%$, Ta = 0° to 70° C)

SYMBOL	PARAMETER		MIN	TYP	MAX	UNITS	NOTES
I _{DDO}	Operating Current (Average Power Supply) CE, Address Cycling: t _{RC} = t _{RC} min	70 ns version 80 ns version 100 ns version		50 40 35	70 60 50	mA	3, 4
I _{DD\$1}	Standby Current, $\overline{CE} = V_{ H}$, $\overline{RFSH} = V_{ H}$		-	-	1	mA	
I _{DDS2}	Standby Current	L version	_	50	100	μA	
5552	$\overline{CE} = V_{DD} - 0.2 \text{ V}, \overline{RF5H} = V_{DD} - 0.2 \text{ V}$	LL version	_	35	50	,	
I _{DDF1}	Self Refresh Current (Average) $\overline{CE} = V_{ H}, \overline{RFSH} = V_{ L}$		-	_	1	mA	
	Self Refresh Current (Average)	L version	_	50	100		
I _{DDF2}	$\overline{CE} = V_{DD} - 0.2 \text{ V}, \overline{RFSH} = 0.2 \text{ V}$	LL version	_	35	50	μΑ	
I _{DDF3}	Auto Refresh Current (Average) (RFSH Cycling: $t_{FC} = t_{FC}$ min)		_	-	2	mA	
	CE Only Refresh Current (Average)	70 ns version	_	50	70		
I _{DDF4}	(\overline{CE} , Address Cycling: $t_{RC} = t_{RC}$ min)	80 ns version	_	40	60	mA	3
	(-1)	100 ns version	-	35	50		
I _{I(L)}	Input Leakage Current $0 \text{ V} \leq V_{\text{IN}} \leq V_{\text{DD}}$, All Other Inputs Not Under	Test = 0 V	- 10	_	10	μA	
I _{O(L)}	Output Leakage Current Output Disable ($\overline{CE} = V_{IH}$ or $\overline{OE} = V_{IH}$ or R/V $0 \text{ V} \leq V_{OUT} \leq V_{DD}$	$V = V_{ L}$),	- 10	_	10	μΑ	
V _{OH}	Output High Level I _{OH} = -1 mA		2.4	_	_	V	
V _{OL}	Output Low Level I _{OL} = 2.1 mA		_	_	0.4	V	

CAPACITANCE ($V_{DD} = 5 \text{ V}, f = 1 \text{ MHz}, Ta = 25^{\circ}\text{C}$)

SYMBOL	PARAMETER	MIN	MAX	UNIT
C ₁₁	Input Capacitance (A0 to A16)	_	5	pF
C _{I2}	Input Capacitance (CE, CS, OE, R/W, RFSH)	_	7	pF
C ₁₀	Input/Output Capacitance	_	7	pF

Note: This parameter is periodically sampled and is not 100% tested.

TC518129CPL — 3
1996 - 09 - 02
TOSHIBA CORPORATION

TECHNICAL DATA

TC518129 CPL / CFWL / CFTL - 70, TC518129 CPL / CFWL / CFTL - 80 TC518129 CPL / CFWL / CFTL - 10, TC518129 CPL / CFWL / CFTL - 70L TC518129 CPL / CFWL / CFTL - 80L, TC518129 CPL / CFWL / CFTL - 10L

AC CHARACTERISTICS ($V_{DD} = 5 V \pm 10\%$, Ta = 0° to 70°C) (Notes: 5, 6, 7, 8)

SYMBOL	PARAMETER	_	70	-	80	-	10	UNIT	NOTES
STIVIBUL	PARAIVIETER	MIN	MAX	MIN	MAX	MIN	MAX	UNII	NOTES
t _{RC}	Random Read or Write Cycle Time	115	_	130	-	160	-	ns	
t _{RMW}	Read-Modify-Write Cycle Time	160	_	180	-	220	_	ns	
t _{CE}	CE Pulse Width	70	10,000	80	10,000	100	10,000	ns	
t _P	CE Precharge Time	35	_	40	-	50	-	ns	
t _{CEA}	CE Access Time	_	70	-	80	-	100	ns	
t _{OEA}	OE Access Time	_	25	-	30	-	40	ns	
t _{CLZ}	CE to Output in Low-Z	20	_	20	_	20	_	ns	
t _{OLZ}	OE to Output in Low-Z	0	_	0	_	0	_	ns	
t _{WLZ}	Output Active from End of Write	0	_	0	_	0	_	ns	
t _{CHZ}	Chip Disable to Output in High-Z	0	20	0	20	0	25	ns	9
t _{OHZ}	OE Disable to Output in High-Z	0	20	0	20	0	25	ns	9
t _{WHZ}	Write Enable to Output in High-Z	0	25	0	25	0	30	ns	9
t _{ODS}	OE Output Disable Setup Time	0	_	0	_	0	_	ns	
t _{ODH}	OE Output Disable Hold Time	10	_	10	_	10	_	ns	
t _{RCS}	Read Command Setup Time	0	_	0	_	0	_	ns	
t _{RCH}	Read Command Hold Time	0	_	0	_	0	-	ns	
t _{CSS}	Chip Select Setup Time	0	-	0	_	0	_	ns	
t _{CSH}	Chip Select Hold Time	20	_	25	_	30	_	ns	
t _{WP}	Write Pulse Width	20	_	25	-	30	_	ns	
t _{WCH}	Write Command Hold Time	35	10,000	40	10,000	50	10,000	ns	
t _{CWL}	Write Command to CE Lead Time	20	10,000	25	10,000	30	10,000	ns	
t _{DSW}	Data Setup Time from R/W	15	ı	20	_	25	_	ns	10
t _{DSC}	Data Setup Time from CE	15	ı	20	-	25	-	ns	10
t _{DHW}	Data Hold Time from R/W	0	ı	0	_	0	_	ns	10
t _{DHC}	Data Hold Time from CE	0	ı	0	-	0	_	ns	10
t _{ASC}	Address Setup Time	0	ı	0	_	0	_	ns	11
t _{AHC}	Address Hold Time	20	1	25	_	30	-	ns	11
t _{RHC}	RFSH Command Hold Time	15	ı	15	-	15	-	ns	
t _{FC}	Auto Refresh Cycle Time	115	ı	130	_	160	-	ns	
t _{RFD}	RFSH Delay Time from CE	35	-	40	-	50	_	ns	
t _{FAP}	RFSH Pulse Width (Auto Refresh)	30	8,000	30	8,000	30	8,000	ns	12
t _{FP}	RFSH Precharge Time	30	ı	30	_	30	_	ns	12
t _{FAS}	RFSH Pulse Width (Self Refresh)	8,000	-	8,000	-	8,000	_	ns	12
t _{FRS}	CE Delay Time from RFSH (Self Refresh)	160	ı	160	-	190	-	ns	12
t _{REF}	Refresh Period (512 cycles, A0 to A8)	_	8	_	8	_	8	ms	
t⊤	Transition Time (Rise and Fall)	3	50	3	50	3	50	ns	

TC518129CPL-4 1996-09-02 TOSHIBA CORPORATION

TECHNICAL DATA

TC518129 CPL / CFWL / CFTL - 70, TC518129 CPL / CFWL / CFTL - 80 TC518129 CPL / CFWL / CFTL - 10, TC518129 CPL / CFWL / CFTL - 70L TC518129 CPL / CFWL / CFTL - 80L, TC518129 CPL / CFWL / CFTL - 10L

Notes:

- 1) Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.
- 2) All voltage are referenced to GND.
- 3) IDDO and IDDF4 depend on cycle rate.
- 4) IDDO depends on output loading. Specified values are obtained with the output open.
- 5) An initial pause of 100 μ s with $\overline{\text{CE}}$ High is required after power-up before proper device operation is achieved.
- 6) AC measurements assume $t_T = 5$ ns.
- 7) Timing reference levels

 $\label{eq:linear_line$

 $V_{\rm IL} = 0.6 \, \rm V$

Input Reference Level : $V_{\rm IH} = 2.4\,V$

 $V_{\rm IL} = 0.8 \, \rm V$

Output Reference Level: $V_{\mathrm{OH}} = 2.2 \, \mathrm{V}$

 $V_{OL} = 0.8 V$

INPUT REFERENCE OUTPUT REFERENCE LEVEL LEVEL

- 8) Measured with a load equivalent to 1 TTL load and 100 pF.
- 9) Parameters t_{CHZ}, t_{OHZ} and t_{WHZ} define the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 10) In write cycles, input data is latched at the earlier of the R/W or $\overline{\text{CE}}$ rising edge. Therefore, input data must be valid during the setup time (t_{DSW} or t_{DSC}) and hold time (t_{DHW} or t_{DHC}).
- 11) All address inputs are latched on the falling edge of $\overline{\text{CE}}$. Therefore, all address inputs must be valid during tasc and tahc.
- 12) Two refresh operations—auto refresh and self refresh—are defined by the \overline{RFSH} pulse width under the condition $\overline{CE} = V_{IH}$.

Auto refresh: \overline{RFSH} pulse width $\leq t_{FAP}$ (max)

Self refresh : \overline{RFSH} pulse width $\geq t_{FAS}(min)$

The timing parameter (t_{FRS}) must be observed for proper device operation in accordance with the following conditions.

- After self refresh
- When $\overline{RFSH} = "L"$ after power-up

TC518129CPL-5

1996 - 09 - 02

TOSHIBA CORPORATION

TECHNICAL DATA

TC518129 CPL/CFWL/CFTL - 70, TC518129 CPL/CFWL/CFTL - 80 TC518129 CPL/CFWL/CFTL - 10, TC518129 CPL/CFWL/CFTL - 70L TC518129 CPL/CFWL/CFTL - 80L, TC518129 CPL/CFWL/CFTL - 10L

TIMING DIAGRAMS

READ CYCLE

WRITE CYCLE 1 (OE HIGH)

TC518129CPL — 6	ı
1996 - 09 - 02	2
TOSHIBA CORPO	PATION
TOSHIBA CORPO	PATION

TECHNICAL DATA

TC518129 CPL/CFWL/CFTL - 70, TC518129 CPL/CFWL/CFTL - 80 TC518129 CPL/CFWL/CFTL - 10, TC518129 CPL/CFWL/CFTL - 70L TC518129 CPL/CFWL/CFTL - 80L, TC518129 CPL/CFWL/CFTL - 10L

TECHNICAL DATA

TC518129 CPL/CFWL/CFTL - 70, TC518129 CPL/CFWL/CFTL - 80 TC518129 CPL/CFWL/CFTL - 10, TC518129 CPL/CFWL/CFTL - 70L TC518129 CPL/CFWL/CFTL - 80L, TC518129 CPL/CFWL/CFTL - 10L

CE-ONLY REFRESH t<u>ce</u> VIH -CE V_{IL} _ CS t_{AHC} tasc V_{IH} A0 to A8 VIL **ADDRESS** tods t_{ODH} VIH -OE V_{IL} t_{RCH} t_{RCS} V_{IH} -R/W V_{IL} I/O1 to V_{OH}-OPEN -1/08 V_{OL} _ t_{RFD} V_{IH} $\overline{\text{RFSH}}$ $\overline{V_{\text{IL}}}$ -

Note: A9 to A16 = Don't care.

TC518129CPL-8 1996-09-02 TOSHIBA CORPORATION

Don't care

TECHNICAL DATA

TC518129 CPL/CFWL/CFTL-70, TC518129 CPL/CFWL/CFTL-80 TC518129 CPL/CFWL/CFTL-10, TC518129 CPL/CFWL/CFTL-70L TC518129 CPL/CFWL/CFTL-80L, TC518129 CPL/CFWL/CFTL-10L

RFSH AUTO REFRESH

Note: CS, \overline{OE} , R/W, A0 to A16 = Don't care.

SELF REFRESH

Note: CS, \overline{OE} , R/W, A0 to A16 = Don't care.

CS STANDBY MODE

TC518129CPL-9 1996-09-02 TOSHIBA CORPORATION

TECHNICAL DATA

TC518129 CPL/CFWL/CFTL - 70, TC518129 CPL/CFWL/CFTL - 80 TC518129 CPL/CFWL/CFTL - 10, TC518129 CPL/CFWL/CFTL - 70L TC518129 CPL/CFWL/CFTL - 80L, TC518129 CPL/CFWL/CFTL - 10L

PACKAGE DIMENSIONS (DIP32-P-600)

Weight: 4.45 g (typ)

TC518129CPL-70, -70L TC518129CPL-80, -80L TC518129CPL-10, -10L

> TC518129CPL- 10 1996 - 09 - 02 TOSHIBA CORPORATION

TECHNICAL DATA

TC518129 CPL/CFWL/CFTL - 70, TC518129 CPL/CFWL/CFTL - 80 TC518129 CPL/CFWL/CFTL - 10, TC518129 CPL/CFWL/CFTL - 70L TC518129 CPL/CFWL/CFTL - 80L, TC518129 CPL/CFWL/CFTL - 10L

PACKAGE DIMENSIONS (SOP32-P-525)

Units in mm

Weight: 1.04 g (typ)

TC518129CFWL-70, -70L TC518129CFWL-80, -80L TC518129CFWL-10, -10L

> TC518129CPL-11 1996-09-02 TOSHIBA CORPORATION

TECHNICAL DATA

TC518129 CPL/CFWL/CFTL - 70, TC518129 CPL/CFWL/CFTL - 80 TC518129 CPL/CFWL/CFTL - 10, TC518129 CPL/CFWL/CFTL - 70L TC518129 CPL/CFWL/CFTL - 80L, TC518129 CPL/CFWL/CFTL - 10L

PACKAGE DIMENSIONS (TSOP32-P-0820)

Units in mm

Weight: 0.32 g (typ)

TC518129CFTL-70, -70L TC518129CFTL-80, -80L TC518129CFTL-10, -10L

TC518129CPL-12*
1996-09-02
TOSHIBA CORPORATION