Lenguajes, Computación y Sistemas Inteligentes

Grado en Ingeniería Informática de Gestión y Sistemas de Información Escuela de Ingeniería de Bilbao (UPV/EHU) Departamento de Lenguajes y Sistemas Informáticos 2º curso

Curso académico: 2023-2024 Grupo 16 Tema 4: λ-cálculo 0,700 puntos

Modelo de examen

Índice

4.1	Renombramiento (0,100 puntos)	1
4.2	Sustitución (0,200 puntos)	2
4.3	β -reducción (0,400 puntos)	2

4.1 Renombramiento (0,100 puntos)

Dados un λ -término E y dos variables γ y δ , la operación que consiste en renombrar en E todas las apariciones de la variable γ mediante la variable δ se representa como $(E\{\delta/\gamma\})$ y su **definición inductiva** es la siguiente:

- (B1) Si E es la variable γ : $(\gamma \{\delta/\gamma\}) \equiv \delta$.
- (B2) Si E es una variable π distinta a γ : $(\pi\{\delta/\gamma\}) \equiv \pi$.
- (B3) Si E tiene la forma (QR), siendo Q y R dos λ -términos: $((QR)\{\delta/\gamma\}) \equiv ((Q\{\delta/\gamma\})(R\{\delta/\gamma\})).$
- (B4) Si E tiene la forma $(\lambda \gamma. Q)$, siendo Q un λ -término: $((\lambda \gamma. Q)\{\delta/\gamma\}) \equiv (\lambda \delta. (Q\{\delta/\gamma\})).$
- (B5) Si E tiene la forma $(\lambda \pi. Q)$, siendo π una variable distinta de γ y siendo Q un λ -término: $((\lambda \pi. Q)\{\delta/\gamma\}) \equiv (\lambda \pi. (Q\{\delta/\gamma\})).$

Realizar paso a paso el siguiente renombramiento, indicando el caso —(B1), (B2), etc.— utilizado en cada paso:

$((h(\lambda h.(h(\lambda h.((hj)g)))))\{j/h\})$

¿Son α -equivalentes el λ -término original y el λ -término obtenido tras realizar el renombramiento?

4.2 Sustitución (0,200 puntos)

Dados dos λ -términos E y S y una variable γ , la operación que consiste en sustituir en E todas las apariciones libres de la variable γ por la expresión S se representa como $(E[S/\gamma])$. En la operación de sustitución, las variables que son libres en S han de seguir siendo libres en los sitios donde se haya colocado S dentro de E. La **definición inductiva** de $(E[S/\gamma])$ es la siguiente:

- (O1) Si E es la variable γ : $(\gamma[S/\gamma]) \equiv S$.
- (O2) Si E es una variable π distinta a γ : $(\pi[S/\gamma]) \equiv \pi$.
- (O3) Si E tiene la forma (QR), siendo Q y R dos λ -términos: $((QR)[S/\gamma]) \equiv ((Q[S/\gamma])(R[S/\gamma])).$
- (O4) Si E tiene la forma $(\lambda\gamma.Q)$, siendo Q un λ -término: $((\lambda\gamma.Q)[S/\gamma]) \equiv (\lambda\gamma.Q).$
- (O5) Si E tiene la forma $(\lambda \pi. Q)$, siendo π una variable distinta de γ y siendo Q un λ -término y se cumple o bien $\pi \notin \mathsf{libres}(S)$ o bien $\gamma \notin \mathsf{libres}(Q)$: $((\lambda \pi. Q)[S/\gamma]) \equiv (\lambda \pi. (Q[S/\gamma])).$
- (O6) Si E tiene la forma $(\lambda \pi. Q)$, siendo π una variable distinta de γ y siendo Q un λ -término y se cumple $\pi \in \text{libres}(S)$ y se cumple $\gamma \in \text{libres}(Q)$: $((\lambda \pi. Q)[S/\gamma]) \equiv (\lambda \rho. ((Q\{\rho/\pi\})[S/\gamma]))$, donde ρ es una variable para la cual se cumple $\rho \not\in \text{variables}(S)$ y se cumple $\rho \not\in \text{variables}(Q)$.

Realizar paso a paso la siguiente sustitución, indicando el caso —(O1), (O2), etc.— utilizado en cada paso:

$$((h(\lambda g.(h(\lambda h.((hf)g)))))[(\lambda z.(hg))/h])$$

4.3 β -reducción (0,400 puntos)

La regla de la β -reducción es la siguiente:

$$((\lambda \gamma. Q)R) \rightarrow_{\beta} (Q[R/\gamma])$$

donde Q y R son dos λ -términos y γ es una variable.

Calcular paso a paso —indicando dónde se aplica la β -reducción en cada paso— la forma β -normal del siguiente λ -término:

(NOT(NOT TRUE))

donde los esquemas de los λ -términos not, true y false son los siguientes:

- NOT $\equiv (\lambda \delta.((\delta \text{ FALSE}) \text{TRUE}))$. Este esquema representa $(\neg \delta)$.
- TRUE $\equiv (\lambda \gamma_1.(\lambda \gamma_2.\gamma_1))$
- False $\equiv (\lambda \rho_1.(\lambda \rho_2.\rho_2))$