

Multivariable regression

Regression

Brian Caffo, Jeff Leek, Roger Peng Johns Hopkins Bloomberg School of Public Health

Consider the following simulated data

Code for the first plot, rest omitted (See the git repo for the rest of the code.)

```
n <- 100; t <- rep(c(0, 1), c(n/2, n/2)); x <- c(runif(n/2), runif(n/2));
beta0 <- 0; beta1 <- 2; tau <- 1; sigma <- .2
y <- beta0 + x * beta1 + t * tau + rnorm(n, sd = sigma)
plot(x, y, type = "n", frame = FALSE)
abline(lm(y ~ x), lwd = 2)
abline(h = mean(y[1 : (n/2)]), lwd = 3)
abline(h = mean(y[(n/2 + 1) : n]), lwd = 3)
fit <- lm(y ~ x + t)
abline(coef(fit)[1], coef(fit)[2], lwd = 3)
abline(coef(fit)[1] + coef(fit)[3], coef(fit)[2], lwd = 3)
points(x[1 : (n/2)], y[1 : (n/2)], pch = 21, col = "black", bg = "lightblue", cex = 2)
points(x[(n/2 + 1) : n], y[(n/2 + 1) : n], pch = 21, col = "black", bg = "salmon", cex = 2)</pre>
```


- · The X variable is unrelated to group status
- · The X variable is related to Y, but the intercept depends on group status.
- · The group variable is related to Y.
 - The relationship between group status and Y is constant depending on X.
 - The relationship between group and Y disregarding X is about the same as holding X constant

- · The X variable is highly related to group status
- The X variable is related to Y, the intercept doesn't depend on the group variable.
 - The X variable remains related to Y holding group status constant
- · The group variable is marginally related to Y disregarding X.
- · The model would estimate no adjusted effect due to group.
 - There isn't any data to inform the relationship between group and Y.
 - This conclusion is entirely based on the model.

- · Marginal association has red group higher than blue.
- · Adjusted relationship has blue group higher than red.
- · Group status related to X.
- · There is some direct evidence for comparing red and blue holding X fixed.

- \cdot No marginal association between group status and Y.
- · Strong adjusted relationship.
- · Group status not related to X.
- · There is lots of direct evidence for comparing red and blue holding X fixed.

- · There is no such thing as a group effect here.
 - The impact of group reverses itself depending on X.
 - Both intercept and slope depends on group.
- · Group status and X unrelated.
 - There's lots of information about group effects holding X fixed.

Do this to investigate the bivariate relationship

```
library(rgl)
plot3d(x1, x2, y)
```

Residual relationship

- · X1 unrelated to X2
- · X2 strongly related to Y
- · Adjusted relationship between X1 and Y largely unchanged by considering X2.
 - Almost no residual variability after accounting for X2.

Some final thoughts

- · Modeling multivariate relationships is difficult.
- · Play around with simulations to see how the inclusion or exclustion of another variable can change analyses.
- · The results of these analyses deal with the impact of variables on associations.
 - Ascertaining mechanisms or cause are difficult subjects to be added on top of difficulty in understanding multivariate associations.