Algèbre II Clément Chivet

TD3: Extensions normales et séparables

09/10/2023

Exercice 1 : Sous-groupes multiplicatifs d'un corps

Soit U un sous-groupe multiplicatif fini d'un corps K. On veut montrer que G est cyclique.

- **1.** Soit (G, +) un groupe abélien de torsion, montrer que $G = \bigoplus_{p \in \mathcal{P}} G(p)$ où G(p) est le sous-groupe des éléments de G dont l'ordre est une puissance de p.
 - **2.** En déduire qu'il suffit de montrer que U(p) est cyclique.
 - 3. Conclure.

Exercice 2: Une infinité d'extensions intermédiaires

Soit p un nombre premier, on considère l'extension $\mathbb{F}_p(X,Y)/\mathbb{F}_p(X^p,Y^p)$.

- 1. Déterminer le degré de cette extension.
- 2. Trouver une infinité de corps intermédiaires pour cette extension.
- 3. Montrer que cette extension n'est ni séparable ni monogène.

Exercice 3 : Théorème de l'élément primitf

- **1.** Soit K une extension finie séparable de k de degré n. Soit \overline{K} une cloture algébrique de K. On veut montrer que K = k(x).
 - a. Conclure si k est fini.

On suppose maintenant que k est infini et on note $\operatorname{Hom}_k(K,\overline{K}) = \{\sigma_1,\ldots,\sigma_n\}.$

- b. Montrer qu'il existe $x \in K$ tel que pour $i \neq j, \sigma_i(x) \neq \sigma_j(x)$.
- c. Conclure.
- **2.** Soit L/K une extension finie. Montrer que L/K admet un nombre fini d'extensions interdmédiaires si et seulement si L/K est monogène.

Exercice 4: Extensions séparables et degré

1. Soit K un corps de caractérisque p, montrer que le Frobenius $\operatorname{Fr}: x \mapsto x^p$ est bien un morphisme de corps.

Soit $F \subset E$ une extension finie de corps de caractéristique p > 0.

2.

- a. Montrer qu'un élément $x \in E$ est séparable si et seulement si on a $F(x) = F(x^p)$.
- b. Montrer l'équivalence des assertions suivantes :
- (i) Il existe une base (x_1, \ldots, x_n) de E sur F telle que (x_1^p, \ldots, x_n^p) est aussi une base de E sur F.
- (ii) Pour toute base (x_1, \ldots, x_n) de E sur F, (x_1^p, \ldots, x_n^p) est aussi une base de E sur F.
 - c. Montrer que ces assertions sont vraies si et seulement si l'extension E/F est séparable.

Exercice 5:

Soit K un corps algébriquement clos. Montrer que K est infini.

Exercice 6 : Première preuve du Théorème de Steinitz

- 1. (Existence d'une clôture algébrique) On note \mathcal{E} l'ensemble des polynômes irréductibles sur K[X]. Par le théorème de Zermelo (équivalent à Zorn), on choisit un bon ordre \prec sur \mathcal{E} .
- a. Montrer que le principe d'induction fonctionne, c'est à dire que si on a montré l'assertion "pour $P \in \mathcal{E}$, si pour tout Q < P, $\mathcal{P}(Q)$ est vraie, alors $\mathcal{P}(P)$ est vraie." alors \mathcal{P} est vraie pour tout $P \in \mathcal{E}$.

Algèbre II Clément Chivet

b. Montrer qu'il existe une famille $j_P: K \to \Omega_P$ d'extensions algébriques où P est scindé, et de K-morphismes $j_P^Q: \Omega_Q \to \Omega_P$ pour Q < P, vérifiant $j_P = j_P^Q \circ j_Q$.

- c. Montrer qu'il existe $j:K\to\Omega$ extension algébrique telle que tous les $P\in\mathcal{E}$ sont scindés sur Ω .
- d. Conclure que Ω est une clôture algébrique de K.
- **2.** (Unicité) Soit $K \to \Omega'$ une autre clôture algébrique de K.
 - a. Construire des K-morphismes $\alpha_P:\Omega_P \to \Omega'$ tels que $\alpha_P \circ j_P^Q = \alpha_Q$ pour Q < P.
 - b. En déduire qu'on a un K-morphisme injectif $\alpha: \Omega \to \Omega'$.
 - c. Conclure en montrant que α est surjectif.

Exercice 7: Extensions finie non normale ni séparable

Montrer que l'extension $\mathbb{F}_2(t^{1/6})/\mathbb{F}_2(t)$ n'est ni séparable ni normale.

Exercice 8: Un exemple

Soit $K = \mathbb{Q}(\sqrt[3]{2}, j)$ où $j = e^{2i\pi/3}$.

- 1. Déterminer $[K:\mathbb{Q}]$, et exprimer K comme corps de décomposition d'un polynôme bien choisi.
- $\mathbf{2}$. Déterminer tous les sous-corps de K ainsi que leur degré.

Exercice 9 : Deuxième preuve du Théorème de Steinitz

- 1. Soit $K \subset L$ une extension algébrique. On suppose que tout polynôme de K[X] est scindé dans L. Montrer que L est une clôture algébrique de K.
- **2.** On note \mathcal{P} l'ensemble des polynômes unitaires de K[X]; à chaque polynôme $P \in \mathcal{P}$ on associe des indéterminées $\{X_{P,i}\}_{0 \leq i \leq deg(P)}$ et on considère la K-algèbre $A := K[X_{P,i}, P \in \mathcal{P}, 0 \leq i \leq deg(P)]$.

Pour $P \in \mathcal{P}$ de degré n, on note $a_{P,0}, \ldots, a_{P,n} \in A$ les coefficients du polynôme

$$P(T) - \prod_{i=1}^{n} (T - X_{P,i}) \in A[T].$$

On considère alors I l'idéal de A engendré par tous les $a_{P,i}$ lorsque P parcourt \mathcal{P} et $0 \leq i \leq deg(P)$.

- a. Montrer que I est un idéal propre de A.
- b. Conclure.

Exercice 10 : Troisème preuve du théorème de Steinitz

Soit K un corps, on note $A = \{\omega_{f,i}, f \in K[X], i = 1, \ldots, \deg f\}$ où $\omega_{f,i}$ sont les zéros de f dans un corps de décomposition. Soit Ω un ensemble de cardinal strictement plus grand que A, qui contient K. On va regarder les extensions de K dont les éléments sont des éléments de Ω

- 1. Montrer que si L est une extension algébrique de K, alors il existe $L' \subset \Omega$ (l'inclusion est juste ensembliste) tel que $L' \simeq L$.
- **2.** En considérant $S = \{E_j \subset \Omega\}$, où E_j est une extension algébrique de K dont les éléments sont dans Ω , muni de l'inclusion ensembliste, montrer que S possède un élément maximal.
 - 3. Conclure.

Exercice 11 : Quatrième preuve du théorème de Steinitz

- 1. (Un lemme utile) Soit Ω un corps algébriquement clos, et K un sous corps. Montrer que \overline{K} l'ensemble des éléments de Ω algébriques sur K est une clôture algébrique de K.
- **2.** Pour $f \in K[X] \setminus K$, on considère une indéterminée X_f , et $A = \mathbb{K}[X_f]_{f \in K[X] \setminus K}$. On pose $I = (f(X_f))_{f \in K[X] \setminus K}$. Montrer que I est un idéal propre.
- **3.** En déduire qu'il existe $\Omega_1 \supset K$ une extension de corps telle que tout polynôme de K[X] possède une racine dans Ω_1 .
 - 4. Conclure