Лескин К.А. гр. 9892

Задание

- а) Дан двоичный код длины m. Найти число k дополнительных бит и код Хемминга, соответствующий исходному двоичному коду
- б) Дан двоичный код Хемминга. Установить, в каком бите произошла ошибка и восстановить исходный код.

Bap. 4

- a) 1011111111
- б) 0100010

Решение а)

a) 1011111111

m = 10 — длина исходного кода.

Найдём k — количество контрольных бит:

$$2^k \ge k + m + 1$$

$$2^k \ge k + 11$$

$$k = 4$$

Общая длина кода Хемминга l:

$$l = k + m = 14$$

Составим таблицу битов и заполним её:

*	*	1	*	0	1	1	*	1	1	1	1	1	1
b_1	b_2	b_3	b_4	b_5	b_6	b_7	b_8	b_9	b_{10}	b_{11}	b_{12}	b_{13}	b_{14}

Выпишем "рабочие" множества L_{0-3} :

$$L_0 = \{1, 3, 5, 7, 9, 11, 13\}$$

$$L_1 = \{2, 3, 6, 7, 10, 11, 14\}$$

$$L_2 = \{4, 5, 6, 7, 12, 13, 14\}$$

$$L_3 = \{8, 9, 10, 11, 12, 13, 14\}$$

С помощью суммы Жегалкина найдём контрольные биты b_1, b_2, b_4, b_8 :

$$b_1 = b_3 \oplus b_5 \oplus b_7 \oplus b_9 \oplus b_{11} \oplus b_{13} = 1 \oplus 0 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 = 1$$

$$b_2 = b_3 \oplus b_6 \oplus b_7 \oplus b_{10} \oplus b_{11} \oplus b_{14} = 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 = 0$$

$$b_4 = b_5 \oplus b_6 \oplus b_7 \oplus b_{12} \oplus b_{13} \oplus b_{14} = 0 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 = 1$$

$$b_8 = b_9 \oplus b_{10} \oplus b_{11} \oplus b_{12} \oplus b_{13} \oplus b_{14} = 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 = 0$$

Запишем результат:

1	0	1	1	0	1	1	0	1	1	1	1	1	1
b_1	b_2	b_3	b_4	b_5	b_6	b_7	b_8	b_9	b_{10}	b_{11}	b_{12}	b_{13}	b_{14}

Ответ: код Хемминга для исходного сообщения $\beta = 101101101111111$

Решение б)

б) 0100010

$$l = 7$$

Запишем код в виде таблицы:

0	1	0	0	0	1	0
b_1	b_2	b_3	b_4	b_5	b_6	b_7

Выпишем "рабочие" множества L_{0-2} :

$$L_0 = \{1, 3, 5, 7\}$$

$$L_1 = \{2, 3, 6, 7\}$$

$$L_2 = \{4, 5, 6, 7\}$$

Найдём U_{0-2} :

$$U_0 = b_1 \oplus b_3 \oplus b_5 \oplus b_7 = 0 \oplus 0 \oplus 0 \oplus 0 = 0$$

$$U_1 = b_2 \oplus b_3 \oplus b_6 \oplus b_7 = 1 \oplus 0 \oplus 1 \oplus 0 = 0$$

$$U_2 = b_4 \oplus b_5 \oplus b_6 \oplus b_7 = 0 \oplus 0 \oplus 1 \oplus 0 = 1$$

Номер бита
$$n=U_2U_1U_0=100_2=4_{10}$$

Номер n=4 совпадает с контрольным битом, поэтому просто вычёркиваем контрольные биты и получаем ответ:

0	1	0	0	0	1	0
b_1	b_2	b_3	b_4	b_5	b_6	b_7

<u>Ответ:</u> $\alpha = 0010$