Un modèle de Reed-Frost pour la propagation domestique de Covid-19

13 mai 2020

Modèle de Reed-Frost

Modèle SI(R) dans une population fermée de taille n.

- Mélange homogène entre susceptibles et infectieux
- Chaîne de Markov (S_n, I_n) , avec n la *génération* d'infection
- Sachant $((S_0, I_0), \dots, (S_n, I_n))$, chaque susceptible infecté par chaque infectieux avec probabilité 1 q, donc

$$I_{n+1} \sim \mathsf{Bin}(S_n, 1-q^{I_n}).$$

- Modèle construit par Frost pour étudier la transmission domestique de la grippe espagnole
- Équation fermée pour EMV \hat{q}_n si on a des observations complètes :

$$\sum_{k=0}^{n-1} \frac{i_k}{1 - q^{i_k}} (s_{k+1} - s_k q^{i_k}) = 0$$

Tableaux de contingence et inférence

Typiquement, observations non temporelles sous forme de tableaux de contingence :

- Pour $m \le n$, $k_{(m,n)} =$ nombre de foyers de taille n dont m personnes infectées au cours de l'épidémie
- Fraser et al. ajustent un modèle de Reed-Frost prenant en compte
 - Hétérogénéité de la contagiosité
 - ► Taille du foyer
 - Immunité antérieure
 - Asymptomatiques (contagieux ou non)
 - Non-réponse à l'enquête
- Inférence directe par calcul de la vraisemblance de m dans un foyer de taille n
- Sélection de modèle par critère d'information

Modèle à deux localisations (Cauchemez et al. 2014)

Transmission à deux niveaux :

- Communautaire, avec proba constante $1 \exp(-\lambda)$
- Domestique, avec proba dépendant du nombre d'infectieux dans le foyer $1-\exp(-\sum_{i\in I}\lambda_i)$

Prend en compte les covariables d'infection : âge, niveaux d'immunité mesurables (anticorps)

- Taux de transmission dépendent des covariables
- Vraisemblance intractable à partir des tableaux de contingence seuls
- Augmentation des données par les graphes de contagion (Demeris, O'Neill 2005)
- Estimation par MCMC en intégrant sur les graphes de contagion compatibles avec les donnnées

Cas de Covid-19

Données plus riches : on observe $(\Delta I_t^s, t \in [0, T])$ ainsi qu'un certain nombre de covariables

- Modèle de transmission SEII(R) pour prendre en compte la transmission présymptomatique
- Contagion démarre lors de l'entrée en l^p, maximale lors de l'entrée en l, puis décroît géométriquement
- Mélange homogène entre membres d'un foyer, contagion communautaire avec proba constante

Paramétrisation

Chaîne de Markov $X_n = (S_n, E_n, I_n^p, I_n, H_n)$. Sachant X_n :

- Pour chaque S, passage dans E avec proba $1 A \exp(-\beta (H_n + I_n^p h_0))$
- Pour chaque E, passage dans I^p avec proba p_I (incubation pré-contagieuse)
- Pour chaque I^p, passage dans I avec proba p_S (incubation post-contagieuse)
- Contagiosité des I^p égale à h_0
- Contagiosité des I décroît géométriquement d'un facteur γ .

Paramètres : A, β , p_I , p_S , h_0 , γ

Cadre d'inférence

Processus de Markov partiellement observé (POMP)

- Processus X non observé
- Schéma d'observation $Y_n = Binom(\Delta I_n, F)$
- Compartiment I: symptomatiques et asymptomatiques en phase de décroissance virale
- Seules données observées en l'absence de covariables

Objectif : estimation des 6 paramètres du modèle latent et du paramètre d'observation F à partir de la série temporelle (Y_n)

- En l'état, non identifiable : remplacer (β, h_0) par βh_0
- Données peu informatives, dynamique complexe

Une simulation

Méthodes particulaires

Filtre à particules (SMC) permet de calculer $\mathcal{L}(Y|\theta)$ par simulation (méthode plug-and-play)

- Maximum de vraisemblance : filtrage itéré (lonides et al. 2006, 2015)
 - ▶ Marche aléatoire θ_n pour les θ , variance σ_n variable
 - ightharpoonup À chaque itération, calcul de $\mathcal{L}(Y|\theta_n)$ par SMC
 - $\theta_n \to 0$: convergence vers EMV $\hat{\theta}_n$ sous conditions de régularité du modèle
 - ▶ Implémentation R : paquet pomp
- Estimation bayésienne : MCMC particulaire (Doucet et al. 2010)
 - Utilise le filtre à particules comme moyen de calcul de la vraisemblance dans un MCMC classique
 - ▶ Permet théoriquement de faire de la sélection bayésienne de modèles
 - ► Plusieurs implémentations : pomp (R), LibBi (C++)

Méthodes très intensives en temps de calcul, surtout s'il faut considérer un grand nombre d'observations indépendantes (N>10,000?)