Yueming Yang

Email: yangyueming1025@163.com | Phone: +86-18354116765 Address: Shandong University, Jinan 250061, China

PROFESSIONAL SUMMARY

Yueming Yang research interests are the computational fluid dynamics; the design, simulation, and optimization of supercritical CO₂ (SCO₂) radial inflow turbines and centrifugal compressors; physical properties of working fluids in SCO₂ power cycles; and modeling of fluid- and thermo- dynamic systems (mainly the SCO₂ Brayton cycles).

EDUCATION

College of Mechanical and Electronic Engineering, Shandong University of Science and Technology Qingdao Bachelor's Degree in Engineering September 2016 – June 2020

- Cumulative GPA: 3.57 / 5.0 Ranking: 10 / 117
- Main Courses and Scores: Engineering Fluid Mechanics/90, Thermodynamic Engineering/91, Heat Transfer/81, Steam Turbine Principle/91, Boiler Principle/93, Heat Exchanger Principle and Design/87, Enhanced Heat Transfer Technology/96

School of Energy and Power Engineering, Shandong University

Jinan

Master's Degree in Engineering

September 2020 – now

 Main Courses and Scores: Engineering Mathematics/73, Computational Fluid Dynamics/93, Advanced Fluid Mechanics/86

PUBLICATIONS AND ARTICLES SUBMITTED

- Yueming Y, Bingkun M A, Yongqing X, Jianhui Q*. Influence of Different Equations of State on Simulation Results of Supercritical CO₂ Centrifugal Compressor[J]. Mechanical Engineering Science, 2021, 3(2): 25-33.
- YANG Yue-ming, QIN Kan, QI Jian-hui*, et al. Performance of Supercritical CO₂ Radial Turbine for Gas Turbine Waste Heat Recovery System[J]. Journal of Propulsion Technology, 2022, 43(10): 192-204.
- Yueming Yang, Jianhui Q*, Kamel Hooman, et al. Effect of CO₂-based Binary Mixtures on the Performance of Radial-Inflow Turbines for the Supercritical CO₂ Cycles[J]. Energy, Jul 02, 2022 submitted (Under Review)
- Jianhui Qi*, Yueming Yang, Kuihua Han, et al. Design Space Analysis for Supercritical CO₂ Radial Inflow Turbine Stators[J]. Thermal Science and Engineering Progress, May 16, 2022 submitted (Under Review)

ACADEMIC CONFERENCE

Chinese Society of Engineering Thermophysics -- Thermal Engine Aerodynamic Thermodynamics and Fluid Machinery Academic Conference 2022

• Make an oral presentation on the topic: Simulation of Cascade Passage Loss Mechanism in SCO₂ Radial Turbine.

Chinese Society for Electrical Engineering -- 2nd Supercritical CO₂ Power Cycle Symposium 2022

• Make an oral presentation on the topic: Research on CO₂-based Binary Mixtures and Loss Mechanism for SCO₂ Turbomachinery

ADDITIONAL INFORMATION

LANGUAGE: Chinese (Native); English—IELTS 6: Listing 5.5; Reading 6.5; Writing 6; Speaking 5.5. **PROGRAMMING LANGUAGE:** Proficient in Python, solved SCO₂ physical property acquisition and other related issues.

SOFTWARE USAGE: Proficient in ANSYS; extensive Creo (PRO/E); familiar with OpenFOAM, et al. **PROJECT EXPERIENCES:** Participate in multiple vertical themes and horizontal projects. **VOLUNTEER SERVICE:** Over 200 hours of volunteer work during graduate study.