Market Risk Forecasting: Traditional vs. Machine Learning Approaches

Guillaume Friez

2023-2025

Supervisor : Prof. Guillaume Coqueret

Introduction

Context

- Since 2008 and again during the COVID-19 crisis, financial institutions have experienced major failures in their risk models.
- Traditional Value-at-Risk models failed to anticipate tail events, resulting in regulatory breaches and unexpected capital requirements.
- These repeated breakdowns highlight the urgent need to revisit how we forecast market risk, especially under extreme conditions

Motivation

- Traditional models often fall short during market turmoil
- While ML offers more flexibility, it must also meet regulatory demands for interpretability
- During my internship at Rothschild & Co, I saw firsthand the limits of VaR models under stress, which led me to explore smarter, more robust alternatives

Objective

This thesis aims to compare traditional, ML, and hybrid market risk forecasting models.

We assess them based on:

- 1. Accuracy
- 2. Robustness during crises
- **3. Interpretability** (SHAP and LIME)

The goal is to determine if Al-based models can outperform classical approaches without sacrificing explainability.

Research Question & Hypotheses

Main question

Can ML and hybrid models improve market risk prediction while remaining interpretable and robust in crises?

Hypotheses:

H1a: ML/hybrid models → higher accuracy

H1b: ML/hybrid models → more robust in stress

H1c: ML/hybrid models → interpretable enough via SHAP/LIME

H0: No significant improvement over traditional methods

Research Design

Assets

ETFs, equities, bonds, cyrptos and commodities

Risk Metrics

VaR, CVaR, volatility and drawdown

Horizons

1-day and 21-day

Dimensions

Accuracy, Robustness and Interpretability

Forecasting Models Compared

Category	Models Implemented	Notes		
Traditional	Historical VaR, Parametric VaR, CVaR, GARCH	Basel III compliant, but limited in tail risk and regime change handling		
Machine Learning	Random Forest, Gradient Boosting, XGBoost, LSTM	Data-driven, distributional assumptions		
Hybrid	GARCH-LSTM	Combines d-short-term volatility from GARCH + LSTM memory for sequence modeling		

Input Data and Risk Targets

Data Sources

- Market and macro data from Refinitiv Eikon
- Multiple asset classes : ETFs, Equities, Bonds, Cryptocurrencies, Commodities

Contextual Features (by Asset Class)

- Commodities: volume-weighted average price, number of intraday price moves, indicative NAV
- Cryptocurrencies → medium and long-term moving averages (50D, 200D) to capture momentum
- Equities → liquidity-adjusted price levels, short-term trend indicators, block trading volume
- ETFs → indicative net asset value (NAV), institutional block trade counts
- Fixed Income → indicative NAV, bid and ask price quotes for spread estimation

Feature Categories

- Price-based: returns, volatility (10/30/60d), drawdown
- Technical Indicators: RSI, Moving Averages, momentum, turnover...
- Macroeconomic: VIX, CPI, 10Y yields, PLI, Fed rates...
- Engineering Metrics: skewness, kurtosis, realized variance, liquidity shocks...

Forecast Targets

- **Value-at-Risk** (1-day, 21-day at 95% and 99%)
- Conditional VaR (CVaR)
- Realized Volatility
- Maximum drawdown

Pipeline & Methodology

Historical time series from Refinitiv

- Asset-level folders by class (equities, crypto, bonds...)
- Macroeconomic time-aligned dataset

Data Collection

Preprocessing & Feature Engineering

- Cleaning: missing values, outlier filtering, forward-fill for macro
- Rolling window computations: returns, volatilities, drawdowns
- Feature scaling (Min-Max) and standardization
- Dynamic feature injection depending on asset class
- Validation: assets filtered based on data quality (NaN %, min history...)

- Time-aware train/test split (last 20% held out)
- Recursive Feature Elimination (RFE)
- RandomizedSearchCV for hyperparameter tuning
- One model per target, asset and horizon (no multi-tasking)
- LSTM inputs reshaped into 3D sequences (window-based)

Model Training

Evaluation & Backtesting

- VaR: Quantile loss, Violation Rate, kupiec Test
- CVaR: Quantile Loss
- Volatility / Drawdown: RMSE, MAE, Adjusted R²
- Interpretability:
- SHAP (RF, XGB, GB)
- LIME (LSTM, GARCH-LSTM)

RESULTS

VaR Violation Rate

- Gradient Boosting, XGBoost, and Random Forest show strong calibration at both 95% and 99%, even under crisis conditions.
- Traditional models are too conservative in calm periods but fail during crises, with violation rates rising above 12%.
- LSTM and GARCH-LSTM consistently underpredict tail risk, with violation rates reaching 14–15% at 95% and up to 6% at 99%.

Kupiec Backtest Results

XGBoost passes in both full sample and crisis periods.

Random Forest and Gradient Boosting also show strong validity.

Traditional models fail consistently, especially under stress.

LSTM and GARCH-LSTM show poor calibration, with clustered breaches.

Quantile Loss (VaR)

XGBoost, RF, and GB show the lowest quantile loss, including during 2008 and COVID.

Traditional models are acceptable overall but struggle under certain conditions of stress.

LSTM and GARCH-LSTM perform poorly in crises, with high loss values and unstable behavior.

CVaR Results

Tree-based models (XGB, RF, GB) provide the most accurate estimates of expected tail losses.

Traditional models are less precise, especially in turbulent periods.

LSTM and hybrids again fail in crises, with large CVaR loss and erratic behavior.

Volatility & Drawdown Prediction

MAE						
Category	GARCH_LSTM	GB	LSTM	RF	traditional	XGB
Drawdown (Crisis)	0,05	0,04	0,23	0,02	0,06	0,04
Drawdown (Full Sample)	0,03	0,03	0,13	0,01	0,04	0,03
Volatility (Crisis)	0,15	0,15	0,21	0,13	0,20	0,15
Volatility (Full Sample)	0,09	0,11	0,14	0,08	0,15	0,11

RMSE						
Category	GARCH_LSTM	GB	LSTM	RF	traditional	XGB
Drawdown (Crisis)	0,07	0,06	0,31	0,03	0,07	0,05
Drawdown (Full Sample)	0,05	0,05	0,18	0,02	0,06	0,05
Volatility (Crisis)	0,20	0,20	0,29	0,18	0,28	0,20
Volatility (Full Sample)	0,13	0,17	0,21	0,13	0,24	0,16

R ² adjusted						
Category	GARCH_LSTM	GB	LSTM	RF	traditional	XGB
Drawdown (Crisis)	0,18	0,77	-290,20	0,88	-2,62	0,77
Drawdown (Full Sample)	0,16	0,78	-197,70	0,88	-0,16	0,78
Volatility (Crisis)	0,12	0,48	-0,25	0,51	-1,81	0,49
Volatility (Full Sample)	0,11	0,49	-0,34	0,52	-0,20	0,49

- RF and XGB consistently deliver the lowest errors and highest
 R², both in normal and crisis regimes.
- LSTM shows severe instability, with extreme errors and deeply negative R^2 especially on drawdown.
- Traditional models and GARCH-LSTM perform slightly better but still fall short in explaining risk under stress.
- Yellow cells highlight the second-worst performers, confirming that only tree-based models are reliably robust.

INTERPRETABILITY (XAI)

LIME Analysis

MA_50D and LOG_RETURN are highly used by LSTM, but lead to fragile performance

Volume and NAV-based features (e.g., BLKVOLUM, NAVALUE) are shared by tree-based models

US10Y emerges as a strong macro predictor in GB and XGB

→ Tree-based models focus more on **economically relevant and stable signals**

SHAP Analysis

MA_200D and MA_50D (trend) are top predictors across models

Volatility & turnover features (Vol_50, TRNOVR) strongly contribute

Macro-input like US10Y appear in GB — intuitive and explainable

SHAP by Asset Class

SHAP attribution varies meaningfully by asset class:

- **Bonds** → macro rates (US10Y), yield spreads
- Cryptos → trend and drawdown metrics dominate
- ETFs → NAV deviation, liquidity/volume signals
- → The model dynamically learns the relevant drivers depending on asset structure.

Tree-based models not only perform well — they also provide **clear**, stable and economically meaningful explanations.

Their ability to adapt to each asset class reinforces their credibility for real-world risk management.

WRAP-UP

Summary Table

Status	Model	Accuracy	Robustness	Interpretability
/	XGBoost	Best Overall (low ViR, Kupiec OK)	Strong in stress, stable R ²	SHAP/LIME Consistent
~	Random Forest	Stable VaR + Kupiec passed	Best on drawdown/volatility metrics	SHAP/LIME interpretable
~	Gradient Boosting	Minor violations, solid shape	Good balance	Globally coherent
X	Traditional	Systematic rejection (Kupiec failed)	Fragile under stress (neg. R²)	Transparent
1	LSTM	Severe over-violation & test failure	Catastrophic drawdown & volatility forecasts	Transparent but no SHAP
	GARCH-LSTM	Fails on calibration	Slight improvement over LSTM	Transparent but no SHAP

Limitations & Future Work

Limitations

- LSTM and GARCH-LSTM models underused
 Due to time and compute constraints, hyperparameter tuning was minimal, limiting their potential.
- Interpretability on sequential models is partial SHAP/LIME offer only approximate insights on LSTM architectures.
- Feature selection not fully optimized
 Top SHAP/LIME variables were not yet reused to retrain models.
- Vendor bias & data scope
 The study relied solely on Refinitiv data results lack external validation.
- Real-time performance not assessed
 Models were not tested in live market streaming conditions.

▲ Future Work

- Re-train models using SHAP-selected features Iterative feature refinement could improve both performance and interpretability.
- Explore attention-based architectures
 Improve tuning and architecture for LSTM/GARCH-LSTM
- Expand to real-time and news-based variables
 Add macroeconomic and news-based variables
- Add new models to the comparison
 Modelize GAN model and apply it to EVT theory
- Improve hybrid models with variants
 Apply hybrid models with different types of GARCH models (EGARCH, GJR-GARCH)