BERT: Model and Applications

- ▶ BERT Base: 12 layers, 768-dim per wordpiece token, 12 heads. Total params = 110M
- BERT Large: 24 layers, 1024-dim per wordpiece token, 16 heads.
 Total params = 340M
- Positional embeddings and segment embeddings, 30k word pieces
- This is the model that gets **pretrained** on a large corpus

What can BERT do?

(b) Single Sentence Classification Tasks: SST-2, CoLA

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

- Artificial [CLS] token is used as the vector to do classification from
- Sentence pair tasks (entailment): feed both sentences into BERT
- BERT can also do tagging by predicting tags at each word piece

What can BERT do?

Entails (first sentence implies second is true)

Transformer

...

Transformer

[CLS] A boy plays in the snow [SEP] A boy is outside

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

- How does BERT model sentence pair tasks?
- Transformers can capture interactions between the two sentences (even though the NSP objective doesn't really cause this to happen)

What can BERT NOT do?

- ▶ BERT cannot generate text (at least not in an obvious way)
 - ▶ Can fill in MASK tokens, but can't generate left-to-right (you can put MASK at the end repeatedly, but this is slow)
- Masked language models are intended to be used primarily for "analysis" tasks

Fine-tuning BERT

(b) Single Sentence Classification Tasks: SST-2, CoLA

- Fine-tune for 1-3 epochs, small learning rate
- Large changes to weights up here (particularly in last layer to route the right information to [CLS])
- Smaller changes to weights lower down in the transformer
- Small LR and short fine-tuning schedule mean weights don't change much
- More complex "triangular learning rate" schemes exist

Fine-tuning BERT

Pretraining	Adaptation	NER CoNLL 2003	SA SST-2	Nat. lang	g. inference SICK-E	Semantic SICK-R	textual si	milarity STS-B
Skip-thoughts		-	81.8	62.9	-	86.6	75.8	71.8
ELMo		91.7	91.8	79.6	86.3	86.1	76.0	75.9
		91.9	91.2	76.4	83.3	83.3	74.7	75.5
	$\Delta = 0$	0.2	-0.6	-3.2	-3.3	-2.8	-1.3	-0.4
BERT-base		92.2	93.0	84.6	84.8	86.4	78.1	82.9
		92.4	93.5	84.6	85.8	88.7	84.8	87.1
	$\Delta = 0$	0.2	0.5	0.0	1.0	2.3	6.7	4.2

▶ BERT is typically better if the whole network is fine-tuned, unlike ELMo

Evaluation

Corpus	Train	Test	Task	Metrics	Domain				
Single-Sentence Tasks									
CoLA SST-2	8.5k 67k	1k 1.8k	acceptability sentiment	Matthews corr. acc.	misc. movie reviews				
	Similarity and Paraphrase Tasks								
MRPC STS-B QQP	3.7k 7k 364k	1.7k 1.4k 391k	paraphrase sentence similarity paraphrase	acc./F1 Pearson/Spearman corr. acc./F1	news misc. social QA questions				
Inference Tasks									
MNLI QNLI RTE WNLI	393k 105k 2.5k 634	20k 5.4k 3k 146	NLI QA/NLI NLI coreference/NLI	matched acc./mismatched acc. acc. acc. acc.	misc. Wikipedia news, Wikipedia fiction books				

Evaluation

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	_
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

- Huge improvements over prior work (even compared to ELMo)
- ▶ Effective at "sentence pair" tasks: textual entailment (does sentence A imply sentence B), paraphrase detection

Analysis

▶ Heads on transformers learn interesting and diverse things: content heads (attend based on content), positional heads (based on position), etc.

Analysis

Head 8-10

- **Direct objects** attend to their verbs
- 86.8% accuracy at the dobj relation

Head 8-11

- Noun modifiers (e.g., determiners) attend to their noun
- 94.3% accuracy at the det relation

Still way worse than what supervised parsing systems can do, but interesting that this is learned organically

RoBERTa

- "Robustly optimized BERT"
- ▶ 160GB of data instead of 16 GB
- Dynamic masking: standard BERT uses the same MASK scheme for every epoch, RoBERTa recomputes them

Model	data	bsz	steps	SQuAD (v1.1/2.0)	MNLI-m	SST-2
RoBERTa						
with BOOKS + WIKI	16 G B	8K	100K	93.6/87.3	89.0	95.3
+ additional data (§3.2)	160GB	8K	100K	94.0/87.7	89.3	95.6
+ pretrain longer	160GB	8K	300K	94.4/88.7	90.0	96.1
+ pretrain even longer	160GB	8K	500K	94.6/89.4	90.2	96.4
BERT _{LARGE}						
with BOOKS + WIKI	13 G B	256	1 M	90.9/81.8	86.6	93.7

- ► New training + more data = better performance
- For this and more: check out Huggingface Transformers or fairseq