Politechnika Śląska w Gliwicach Wydział Automatyki, Elektroniki i Informatyki

Laboratorium Metod Numerycznych

dla kierunku Automatyka i Robotyka

Temat ćwiczenia:

Całkowanie numeryczne

Ćwiczenie wykonano: 17.05.2022, godz. 9:00-11:15

Grupa 6:

Jakub Kula

Funkcja nr. 1:	4
Metoda analityczna	4
Kod:	4
Wynik:	4
Metoda prostokątów	4
Kod:	4
Wyniki:	4
Metoda trapezów	4
Kod:	4
Wyniki:	5
Metoda Simpsona	5
Kod:	5
Wyniki:	5
Błąd Metody Simpsona	6
Kod:	6
Wyniki:	6
Funkcja nr. 2:	6
Metoda analityczna	6
Kod:	6
Wynik:	6
Metoda prostokątów	7
Kod:	7
Wyniki:	7
Metoda trapezów	7
Kod:	7
Wyniki:	7
Metoda Simpsona	8
Kod:	8
Wyniki:	8
Błąd Metody Simpsona	8
Kod:	8
Wyniki:	9
Funkcja nr. 3:	9
Metoda analityczna	9
Kod:	9
Wynik:	9
Metoda prostokątów	9
Kod:	9
Wyniki:	9
Metoda trapezów	10
Kod:	10

10
10
10
10
11
11
11

Funkcja nr. 1:

$$f(x) = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \cos(x) dx$$

Metoda analityczna

Kod:

 $Z = \sin(pi / 2) - \sin(pi / 6);$

Wynik:

$$f(x) = \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} cos(x) dx = 0.5$$

Metoda prostokątów

Kod:

```
for p = pi/6 : dp : pi/2

z = cos((p + p + dp) / 2) * dp;

suma = suma + z;

end
```

Wyniki:

Krok	0,5	0,1	0,01
Wartość funkcji	0.4034	0.4988	0.5

Metoda trapezów

Kod:

```
for p = pi / 6: dp : pi / 2

z = (cos(p) + cos(p + dp)) / 2 * dp;

suma = suma + z;

end
```

Wyniki:

Krok	0,5	0,1	0,01
Wartość funkcji	0.3909	0.4982	0.5

Metoda Simpsona

```
Kod:
x0 = pi / 6;
x2 = pi / 2;
h = (x2 - x0) / ((abs(x2 - x0)) / dp);
suma = suma + cos(x0);
suma = suma + cos(x2);

for p = x0 + dp : dp : x2 - dp
   if mod(i,2) == 1
      suma = suma + 4 * cos(p);
   else
      suma = suma + 2 * cos(p);
   end
   i = i + 1;
end

suma = h * suma / 3;
```

Krok	0,5	0,1	0,01
Wartość funkcji	0.4912	0.4973	0.5000

Błąd Metody Simpsona

```
Kod:
f = cos(x);
Z = diff(f,4);
F = matlabFunction(Z);
for p = x0 : dp : x2
```

if(max < abs(F(p)))max = abs(F(p));

end end

 $MAX = -h^{5} / 90 * max;$

Wyniki:

Krok	0,5	0,1	0,01
Wartość błędu	-3.0070e-04	-9.6225e-08	-9.6225e-13

Funkcja nr. 2:

$$f(x) = \int\limits_0^1 \frac{1}{1+x^2} dx$$

Metoda analityczna

Kod:

Z=atan(1) - atan(0);

$$f(x) = \int_{0}^{1} \frac{1}{1+x^{2}} dx = 0.7854$$

Metoda prostokątów

```
Kod:
```

```
for p = 0: dp: 1

z = 1 / (1 + ((p + p + dp)/ 2)^2) * dp;

suma = suma + z;

end
```

Wyniki:

Krok	0,5	0,1	0,01
Wartość funkcji	0.9857	0.8332	0.7904

Metoda trapezów

Kod:

```
for p = 0: dp: 1 z = ((1/(1 + ((p))^2 2)) + (1/(1 + ((p + dp))^2 2))) / 2 *dp; suma = suma + z; end
```

Krok	0,5	0,1	0,01
Wartość funkcji	0.9769	0.8326	0.7904

Metoda Simpsona

```
Kod:

x0 = 0;

x2 = 1;

h = (x2 - x0) / ((abs(x2 - x0)) / dp);

suma = suma + (1 / (1 + x0^2));

suma = suma + 1 / ((1 + x2^2));

for p = x0 + dp : dp : x2 - dp

if mod(i,2) == 1

suma = suma + 4 * 1 / (1 + p^2);

else

suma = suma + 2 * 1 / (1 + p^2);

end

i = i + 1;

end

suma = h * suma / 3;
```

Wyniki:

Krok	0,5	0,1	0,01
Wartość funkcji	0.7833	0.7854	0.7854

Błąd Metody Simpsona

```
Kod:
f = 1 / (1 + x^2);
Z = diff(f,4);
max = 0;
F = matlabFunction(Z);
for p = x0 : dp : x2
    if(max < F(p))
        max = F(p);
    end
end

MAX = -h^ 5 / 90 * max;</pre>
```

Wyniki:

Krok	0,5	0,1	0,01
Wartość błedu	-0.0083	-2.6667e-06	-2.6667e-11

Funkcja nr. 3:

$$f(x) = \int\limits_{-15}^{-3} \frac{8}{x} dx$$

Metoda analityczna

Kod:

Z=8 * log(3) - 8 * log(15);

Wynik:

$$f(x) = \int_{-15}^{-3} \frac{8}{x} dx = -12.8755$$

Metoda prostokątów

Kod:

for p = -15 : dp : -3 z=8 / (((p + p + dp)) / 2)*dp;suma = suma + z; end

Krok	0,5	0,1	0,01
Wartość funkcji	-14.3212	-13.1463	-12.9022

Metoda trapezów

```
Kod:
```

```
for p = -15: dp: -3

z = (8 / p + 8 / (p + dp)) / 2 * dp;

suma=suma+z;

end
```

Wyniki:

Krok	0,5	0,1	0,01
Wartość funkcji	-14.3599	-13.1463	-12.9022

Metoda Simpsona

```
Kod:
```

```
x0 = -15;

x2 = -3;

h = (x2 - x0) / ((abs(x2 - x0)) / dp);

suma = suma + 8 / x0;

suma = suma + 8 / x2;

for p = x0 + dp : dp : x2 - dp

if mod(i,2) == 1

suma = suma + 4 * 8 / p;

else

suma = suma + 2 * 8 / p;

end

i = i + 1;

end

suma = h * suma / 3;
```

Krok	0,5	0,1	0,01
Wartość funkcji	-12.8757	-12.8755	-12.8755

Błąd Metody Simpsona

```
Kod:
f = 8/x;
Z = diff(f,4);
max = 0;
F=matlabFunction(Z);
for p=x0:dp:x2
    if(max < abs(F(p)))
        max = abs(F(p));
    end
end

MAX = -h^ 5 / 90 * max;</pre>
```

Krok	0,5	0,1	0,01
Wartość funkcji	-2.7435e-04	-8.7791e-08	-8.7791e-13