```
Notation: let X be a set and let y: \mathbb{R} \to \mathbb{R} then y^{(0)} = y.
```

Notation: let X, Y be sets let $n \in \mathbb{N}_+$ and let $y \in C^n(X, Y)$ then $y^{(n)} = (y^{(n-1)})'$.

Ordinary Differential Equation (ODE): let $n \in \mathbb{N}$ and let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ then $f(x, y(x), y'(x), \dots, y^{(n)}(x)) = 0$.

Solution of an Ordinary Differential Equation: let $n \in \mathbb{N}$ let $\mathcal{U} \subseteq \mathbb{R}$ and let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ then a function $y \in C^n(\mathcal{U})$ such that $f(x, y(x), \dots, y^{(n)}(x)) = 0$ for all $x \in \mathcal{U}$.

Notation: let $n \in \mathbb{N}$ let $\mathcal{U} \subseteq \mathbb{R}$ and let $f : \mathbb{R}^{n+1} \to \mathbb{R}$ then

$$\operatorname{sols}\left(f\left(x,y\left(x\right),y'\left(x\right),\ldots y^{\left(n\right)}\left(x\right)\right)=0\right)=\left\{y\in C^{n}\left(\mathcal{U}\right)\mid f\left(x,y\left(x\right),\ldots ,y^{\left(n\right)}\left(x\right)\right)=0\right\}.$$

First Order Ordinary Differential Equation: let $f: \mathbb{R}^3 \to \mathbb{R}$ then f(x, y, y') = 0.

Separable Ordinary Differential Equation: let $f, g : \mathbb{R} \to \mathbb{R}$ then y' = f(y) g(x).

Claim Separation of Variables: let $f,g:\mathbb{R}\to\mathbb{R}$ such that $f(x)\neq 0$ for all $x\in\mathbb{R}$ then

$$\operatorname{sols}\left(y'=f\left(y\right)g\left(x\right)\right)=\operatorname{sols}\left(\int \frac{1}{f\left(y\right)}\mathrm{d}y=\int g\left(x\right)\mathrm{d}x\right).$$

Corollary: sols $(y = y') = \{Ce^x \mid C \in \mathbb{R}\}.$

Curves that foliate a domain: Let $\Omega \subseteq \mathbb{R}^2$ and let $I \subseteq \mathbb{R}$ then a set of curves $\{\gamma_\alpha\} \subseteq I \to \mathbb{R}$ such that $[+]\gamma_i = \Omega$.

Claim: sols (y = y') foliate the plane.

Remark: let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ and let $g \in \text{sols}(f(x, y, \dots, y^{(n)}))$ such that g is piecewise continuous then each continuous branch of q is a solution of the ODE.

Initial Value Problem (IVP): let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ and let $p \in \mathbb{R}^2$ then $\left\{ egin{array}{l} f\left(x,y',\dots y^{(n)}\right)=0 \\ y(p_1)=p_2 \end{array} \right.$. Theorem Cauchy-Peano: let $I,J\subseteq\mathbb{R}$ be closed intervals let $f\in C^1\left(I\times J\right)$ and let $p\in \operatorname{int}\left(I\times J\right)$ then there exists $\varepsilon>0$ such that $\begin{cases} y'=f(x,y) \\ y(p_1)=p_2 \end{cases}$ has a solution on the interval $(p_1-\varepsilon,p_1+\varepsilon)$.

Theorem of Existence and Uniqueness: let $I,J\subseteq\mathbb{R}$ be closed intervals let $f\in C^1\left(I\times J\right)$ and let $p\in\operatorname{int}\left(I\times J\right)$ then there exists $\varepsilon>0$ such that $\left\{ egin{array}{l} y'=f(x,y) \\ y(p_1)=p_2 \end{array}
ight.$ has a unique solution on the interval $(p_1-\varepsilon,p_1+\varepsilon)$.

Corollary: let $I, J \subseteq \mathbb{R}$ be closed intervals and let $f \in C^1(I \times J)$ then sols (y' = f(x, y)) foliates $I \times J$.

Vector Field: let $\Omega \subseteq \mathbb{R}^2$ be a domain then $\nu \in C(\Omega, \mathbb{R}^2)$.

Integral curve: let $\nu:\Omega\to\mathbb{R}^2$ be a vector field then a curve $\gamma:[a,b]\to\Omega$ such that $\frac{\mathrm{d}\gamma}{\mathrm{d}t}(t)=\nu\,(g\,(t))$.

Claim: let $\nu:\Omega\to\mathbb{R}^2$ be a vector field such that $v(x)\neq 0$ for all $x\in\Omega$ and let $\gamma:[a,b]\to\Omega$ be a curve such that $v\left(\gamma\left(t\right)\right)\in T_{\gamma\left(t\right)}\left(\mathrm{Im}\left(\gamma\right)\right)$ for all $t\in\left[a,b\right]$ then there exists a curve $\eta:\left[\alpha,\beta\right]\to\left[a,b\right]$ such that $\gamma\circ\eta$ is an integral curve. C^n Vector Field: let $\Omega \subseteq \mathbb{R}^2$ be a domain then $\nu \in C^n(\Omega, \mathbb{R}^2)$.

Claim: let $\nu:\Omega\to\mathbb{R}^2$ be a C^1 vector field then $\{\gamma:[a,b]\to\Omega\mid (a,b\in\mathbb{R})\land (\gamma \text{ is an integral curve of }\nu)\}$ foliates Ω .

Theorem Peano: let $\nu:\Omega\to\mathbb{R}^2$ be a vector field then $\{\gamma:[a,b]\to\Omega\mid (a,b\in\mathbb{R})\land (\gamma \text{ is an integral curve of }\nu)\}$ covers Ω .

Lemma: let $\Omega \subseteq \mathbb{R}^2$ be a domain and let $f \in C^1(\Omega)$ then $\binom{1}{f}$ is a vector field.

Theorem of Existence and Uniqueness: let $\Omega \subseteq \mathbb{R}^2$ be a domain let $f \in C^1(\Omega)$ and let $g \in C^1(\mathbb{R})$ then $(g' = f(x,g)) \iff ((\frac{x}{g}) \text{ is an integral curve of } (\frac{1}{f})).$

Autonomous Ordinary Differential Equations: let $f: \mathbb{R} \to \mathbb{R}$ then y' = f(y).

Logistic Equation: let L > 0 then $\dot{P}(t) = P(t)(L - P(t))$.

Equilibrium Solution: let $f: \mathbb{R} \to \mathbb{R}$ then a function $g \in \operatorname{sols}(y' = f(y))$ such that f(g(x)) = 0 for all $x \in \mathbb{R}$.

Corollary: let $f \in C(\mathbb{R})$ and let $g : \mathbb{R} \to \mathbb{R}$ be an equilibrium solution then g is constant.

Corollary: let L > 0 then $\{0, L\}$ are the equilibrium solutions of the logistic equation.

Logistic Equation With Harvesting: let L, k > 0 then $\dot{P}(t) = P(t)(L - P(t)) - k$.

Stable Equilibrium Solution: let $f: \mathbb{R} \to \mathbb{R}$ then an equilibrium solution $g: \mathbb{R} \to \mathbb{R}$ such that for all $y \in \text{sols}\,(y' = f(y))$ and for all $\varepsilon > 0$ if there exists $\delta > 0$ and $p \in \mathbb{R}$ for which $|y(p) - g(p)| < \delta$ then $|y(t) - g(t)| < \varepsilon$ for all t > p.

Notation: let X be a set and let $\gamma: \mathbb{R} \to X$ then $\dot{\gamma} = \frac{d\gamma}{dt}$.

Notation: let X be a set and let $\gamma: \mathbb{R} \to X$ then $\ddot{\gamma} = \frac{d}{d}$

Remark: the notation $\dot{\gamma}, \ddot{\gamma}$ is often used when γ is a function of time.

System of Ordinary Differential Equation: let $n \in \mathbb{N}$ let $m \in \mathbb{N}_+$ and let $f : \mathbb{R} \times (\mathbb{R}^m)^n \to \mathbb{R}^m$ then $f(t, y(t), y'(t), \dots y^{(n)}(t)) = 0.$

Remark: all the theory of first order ODEs also applies to vectors of first order ODEs.

Claim: let $\alpha > 0$ then $\{\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix}\}$ are the equilibrium solutions of the lotka-volterra equation.

Conserved Quantity: let $\mathcal{U}\subseteq\mathbb{R}^n$ and let $f:\mathcal{U}\to\mathbb{R}$ then a function $g\in C^1(\mathcal{U})$ such that $g\circ y$ is constant for all $y \in \text{sols}(y' = f(y)).$

Claim: let $\alpha>0$ and let $\binom{x}{y}\in C^1\left(\mathbb{R}^2\right)$ be a solution to the lotka-volterra equation then $\frac{\mathrm{d}}{\mathrm{d}t}\left(\left(y\left(t\right)-1-\log\left(y\left(t\right)\right)\right)+\alpha\left(x\left(t\right)-1-\log\left(x\left(t\right)\right)\right)\right)=0.$

and $\frac{1}{T} \int_0^T y dt = 1$.

Claim Linear Substitution: let $a,b,c\in\mathbb{R}$ let $f:\mathbb{R}\to\mathbb{R}$ and let $y\in\operatorname{sols}\left(y'=f\left(ax+by+c\right)\right)$ then the function $z:\mathbb{R}\to\mathbb{R}$ which defined by z(x) = ax + by + c satisfies z' = a + bf(z).

Notation: let $\Omega \subseteq \mathbb{R}^2$ be a domain let $f:\Omega \to \mathbb{R}$ and let $p \in \mathbb{R}^2$ then (α_-, α_+) is the maximal interval where a solution to $\begin{cases} y'=f(x,y) & \text{is defined.} \\ y(p_1)=p_2 & \text{is defined.} \end{cases}$

Corollary: let $\Omega \subseteq \mathbb{R}^2$ be a domain let $f \in C^1(\Omega)$ and let $p \in \mathbb{R}^2$ then $\alpha_- < p_1 < \alpha_+$.

Theorem: let $f \in C^1(\mathbb{R}^2)$ and let $p \in \mathbb{R}^2$ then

- $(\alpha_+ < \infty) \iff (\lim_{x \to \alpha_+^-} |y(x)| = \infty).$
- $\bullet \ (-\infty < \alpha_{-}) \Longleftrightarrow \Big(\lim_{x \rightarrow \alpha_{-}^{+}} |y \, (x)| = \infty \Big).$

Theorem Extensibility of Solutions: let $D \subseteq \mathbb{R}^{n+1}$ be a closed set let $f \in C^1(D, \mathbb{R}^n)$ and let $y \in \operatorname{sols}(y' = f(x, y))$ such that $\Gamma_{y}\cap D\neq\varnothing$ then there exists $\psi:\left[a,b\right]\rightarrow\mathbb{R}^{n}$ such that $\psi\in\operatorname{sols}\left(y'=f\left(x,y\right)\right)$ and $\psi\left(x\right)=y\left(x\right)$ for all $x\in\operatorname{Dom}\left(y\right)$ and $\begin{pmatrix} a \\ \psi(a) \end{pmatrix}, \begin{pmatrix} b \\ \psi(b) \end{pmatrix} \in \partial D$.

Corollary: let $D \subseteq \mathbb{R}^{n+1}$ such that for all $\alpha, \beta \in \mathbb{R}$ the set $D \cap \{\alpha \leq x_1 \leq \beta\}$ is bounded let $f \in C^1(D, \mathbb{R}^n)$ and let $y\in\operatorname{sols}\left(y'=f\left(x,y\right)\right)$ such that $\Gamma_{y}\cap D\neq\varnothing$ then one of the next statements is true

- ullet there exists $\psi:\left[a,b
 ight]
 ightarrow \mathbb{R}^{n}$ such that $\psi\in\operatorname{sols}\left(y'=f\left(x,y
 ight)
 ight)$ and $\psi\left(x
 ight)=y\left(x
 ight)$ for all $x\in\operatorname{Dom}\left(y
 ight)$ and $\left(\begin{smallmatrix} a \\ \psi(a) \end{smallmatrix}\right), \left(\begin{smallmatrix} b \\ \psi(b) \end{smallmatrix}\right) \in \partial D.$ • there exists $\psi: \mathbb{R} \to \mathbb{R}^n$ such that $\psi \in \operatorname{sols}\left(y' = f\left(x,y\right)\right)$ and $\psi\left(x\right) = y\left(x\right)$ for all $x \in \operatorname{Dom}\left(y\right)$.

Corollary: let $I \subseteq \mathbb{R}$ be an open interval let $D \subseteq \mathbb{R}^n$ let $f \in C^1(I \times D, \mathbb{R}^n)$ and let $p, q : \mathbb{R} \to \mathbb{R}$ such that

 $\left\|f\left(x,y\right)\right\|\leq p\left(x\right)\left\|y\right\|+q\left(x\right) \text{ then for all } y\in\operatorname{sols}\left(y'=f\left(x,y\right)\right) \text{ such that } \Gamma_{y}\cap\left(I\times D\right)\neq\varnothing \text{ there exists } \psi:I\to\mathbb{R}^{n} \text{ such that } \Gamma_{y}\cap\left(I\times D\right)\neq\varnothing \text{ there exists } \psi:I\to\mathbb{R}^{n} \text{ such that } \Gamma_{y}\cap\left(I\times D\right)\neq\varnothing \text{ there exists } \psi:I\to\mathbb{R}^{n} \text{ such that } \Gamma_{y}\cap\left(I\times D\right)\neq\varnothing \text{ there exists } \psi:I\to\mathbb{R}^{n} \text{ such that } \Gamma_{y}\cap\left(I\times D\right)\neq\varnothing \text{ there exists } \psi:I\to\mathbb{R}^{n} \text{ such that } \Gamma_{y}\cap\left(I\times D\right)\neq\varnothing \text{ there exists } \psi:I\to\mathbb{R}^{n} \text{ such that } \Gamma_{y}\cap\left(I\times D\right)\neq\varnothing \text{ there exists } \psi:I\to\mathbb{R}^{n} \text{ such that } \Gamma_{y}\cap\left(I\times D\right)\neq\varnothing \text{ there exists } \psi:I\to\mathbb{R}^{n} \text{ such that } \Gamma_{y}\cap\left(I\times D\right)\neq\varnothing \text{ there exists } \psi:I\to\mathbb{R}^{n} \text{ such that } \Gamma_{y}\cap\left(I\times D\right)\neq\varnothing \text{ there exists } \psi:I\to\mathbb{R}^{n} \text{ such that } \Gamma_{y}\cap\left(I\times D\right)\neq\varnothing \text{ there exists } \psi:I\to\mathbb{R}^{n} \text{ such that } \Gamma_{y}\cap\left(I\times D\right)\neq\varnothing \text{ there exists } \psi:I\to\mathbb{R}^{n} \text{ such that } \Gamma_{y}\cap\left(I\times D\right)\neq\varnothing \text{ there exists } \Gamma_{y}\cap\left(I\times D\right)=\Gamma_{y}\cap\left(I\times D\right)$ that $\psi \in \operatorname{sols}(y' = f(x, y))$ and $\psi(x) = y(x)$ for all $x \in \operatorname{Dom}(y)$.

Theorem Continuous Dependence on Initial Conditions: let $\Omega \subseteq \mathbb{R}^2$ let $f \in C^1(\Omega)$ let $a,b,p \in \mathbb{R}$ and let y_p be a solution to $\left\{ \begin{array}{l} y'=f(x,y) \\ y(a)=p \end{array} \right. \text{ such that } y_p \text{ is defined on } [a,b] \text{ then for all } \varepsilon>0 \text{ there exists } \delta>0 \text{ such that for all } q\in\mathbb{R} \text{ for which } |p-q|<\delta \right\}$

 $\text{if }y_q \text{ is a solution to } \left\{ \begin{smallmatrix} y'=f(x,y) \\ y(a)=q \end{smallmatrix} \right. \text{ then } y_q \text{ is defined on } [a,b] \text{ and } |y_p-y_q| < \varepsilon.$

Theorem Continuous Dependence on Initial Conditions: let $\Omega \subseteq \mathbb{R}^2$ let $f \in C^1(\Omega)$ let $a,b \in \mathbb{R}$ let $p \in \mathbb{R}$ let pthen there exists $g:\mathbb{R}\to\mathbb{R}$ such that $g_{p_n}\xrightarrow{p.w.}g$ and $g\in\operatorname{sols}\left(\left\{egin{array}{c} y'=f(x,y)\\y(a)=p\end{array}
ight)$

n-th Order Ordinary Differential Equation: let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ then $f(x, y \dots y^{(n)}) = 0$.

Claim: let $n \in \mathbb{N}_+$ let $f: \mathbb{R}^{n+1} \to \mathbb{R}$ and let $g: \mathbb{R} \to \mathbb{R}$ then

$$\left(g \in \operatorname{sols}\left(f\left(t, x\left(t\right) \dots x^{(n)}\left(t\right)\right) = 0\right)\right) \Longleftrightarrow \left(\left(\begin{array}{c} g\\ \vdots\\ g^{(n)} \end{array}\right) \in \operatorname{sols}\left(\left\{\begin{array}{c} y_{1} = \dot{x}\\ \vdots\\ y_{n-1} = y_{n-2}\\ y_{n-1} = f\left(t, x, y_{1} \dots, y_{n-1}\right) \end{array}\right)\right)$$

Harmonic Oscillator/Spring Position Equation: $\ddot{x} = -x$.

Claim: the function $E\left(x,y\right)=\frac{1}{2}x^2+\frac{1}{2}y^2$ is a conserved quantity of $\left\{ egin{array}{l} \dot{x}=y\\ \dot{y}=-x \end{array} \right.$

Spring with Friction Position Equation: $\ddot{x} = -x - \dot{x}$.

Constant Tension Spring Position Equation: $\ddot{x} = -1$.

Claim: the function $E(x,y) = x + \frac{1}{2}y^2$ is a conserved quantity of $\begin{cases} \dot{x} = y \\ \dot{y} = -1 \end{cases}$.

Gravity in One Dimension Equation: $\ddot{x} = -\frac{1}{r^2}$.

Claim: the function $E\left(x,y\right)=\frac{1}{x}+\frac{1}{2}y^2$ is a conserved quantity of $\begin{cases} \dot{x}=y\\ \dot{y}=-\frac{1}{2} \end{cases}$

Pendulum Equation: $\ddot{x} = -\sin(x)$.

Claim: the function $E\left(x,y\right)=\frac{1}{2}y^{2}-\cos\left(x\right)$ is a conserved quantity of $\begin{cases} \dot{x}=y\\ \dot{y}=-\sin\left(x\right) \end{cases}$.

Differential 1-form: let $P,Q:\mathbb{R}^2\to\mathbb{R}$ then $P(x,y)\,\mathrm{d} x+Q(x,y)\,\mathrm{d} y$

Remark: in this course we won't explain the formal definition of a differential 1-form so we will use it as an object with certain properties.

Integral: let $\gamma:[a,b]\to\mathbb{R}^2$ be a curve and let $P,Q:\mathbb{R}^2\to\mathbb{R}$ then

$$\int_{\gamma} \left(P\left(x,y \right) \mathrm{d}x + Q\left(x,y \right) \mathrm{d}y \right) = \lim_{\Delta \to 0} \sum_{i=0}^{n-1} \left(P\left(x_{i},y_{i} \right) \left(x_{i+1} - x_{i} \right) + Q\left(x_{i},y_{i} \right) \left(y_{i+1} - y_{i} \right) \right).$$

Remark: in the definition above $\lim_{\Delta\to 0}$ is the limit of all partitions of γ to horizontal and vertical segments.

Claim: let $\gamma:[a,b]\to\mathbb{R}^n$ be a curve let $\nu:[\alpha,\beta]\to[a,b]$ such that $\gamma\circ\nu$ is a reparameterization of γ and let ω be a differential 1-form then $\int_{\gamma} \omega = \int_{\gamma \circ \nu} \omega$.

Claim: let $\gamma:[a,b]\to\mathbb{R}^n$ be a curve and let ω be a differential 1-form then $\int_{\gamma}\omega=-\int_{-\gamma}\omega$.

Integral: let $\gamma:[a,b]\to\mathbb{R}^2$ be a curve and let $f,g:\mathbb{R}^2\to\mathbb{R}$ then $\int_{\gamma}f\mathrm{d}g=\lim_{\Delta\to 0}\sum_{i=0}^{n-1}\left(f\left(x_i,y_i\right)\left(g\left(x_{i+1},y_{i+1}\right)-g\left(x_i,y_i\right)\right)\right)$.

Claim: let $g \in C^1(\mathbb{R}^2)$ then $dg = \frac{\partial g}{\partial x} dx + \frac{\partial g}{\partial y} dy$.

 $\text{Corollary: let } \gamma:[a,b] \to \mathbb{R}^2 \text{ be a curve let } f:\mathbb{R}^2 \to \mathbb{R} \text{ and let } g \in C^1\left(\mathbb{R}^2\right) \text{ then } \int_{\gamma} f \mathrm{d}g = \int_{\gamma} \Big(f \cdot \frac{\partial g}{\partial x} \mathrm{d}x + f \cdot \frac{\partial g}{\partial y} \mathrm{d}y\Big).$

Exact Differential 1-form: a differential **1-form** ω such that there exists $g \in C^1(\mathbb{R}^2)$ for which $\omega = \mathrm{d}g$.

Theorem: let ω be a differential **1-**form then TFAE

- \bullet ω is exact.
- there exists $f: \mathbb{R} \to \mathbb{R}$ such that for all curves $\gamma: [a,b] \to \mathbb{R}^2$ we have $\int_{\gamma} \omega = f(\gamma(b)) f(\gamma(a))$.
- for all closed curves $\gamma:[a,b]\to\mathbb{R}^2$ we have $\int_{\gamma}\omega=0$.

Primitive/Potential: let ω be an exact differential 1-form then $g \in C^1(\mathbb{R}^2)$ such that $\omega = \mathrm{d}g$.

Claim: let $X: \mathbb{R} \to \mathbb{R}^3$ and let $f: \mathbb{R}^3 \to \mathbb{R}$ then $\frac{d}{dt} (f \circ X) = (\nabla f) \cdot \dot{X}$.

Conservative Vector Field: a vector field $F: \mathbb{R}^n \to \mathbb{R}^n$ such that there exists $U \in C^1(\mathbb{R}^n)$ for which $F = -\nabla U$.

Kinetic Energy: let $X \in C^1(\mathbb{R}, \mathbb{R}^n)$ then $K : \mathbb{R}^n \to \mathbb{R}$ such that $K(X(t)) = \frac{\|\dot{X}(t)\|^2}{2}$.

Total Energy: let $U \in C^1(\mathbb{R}^n)$ let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a conservative vector field such that $F = -\nabla U$ let $X \in \operatorname{sols}\left(\ddot{X} = F(X)\right)$

and let $K: \mathbb{R}^n \to \mathbb{R}$ be the kinetic energy of X then $E: \mathbb{R}^n \to \mathbb{R}$ such that E = K + U.

Lemma: let $U \in C^1(\mathbb{R}^n)$ let $F: \mathbb{R}^n \to \mathbb{R}^n$ be a conservative vector field such that $F = -\nabla U$ let $X \in \operatorname{sols}\left(\ddot{X} = F(X)\right)$

and let $E: \mathbb{R}^n \to \mathbb{R}$ be the total energy of X then $\dot{E}(X(t)) = 0$.

Weighted Average/Center of Mass: let $p_1 \dots p_n \in \mathbb{R}^n$ and let $w: \{p_1 \dots p_n\} \to \mathbb{R}_+$ then $\frac{\sum_{i=1}^n w(p_i) \cdot p_i}{\sum_{i=1}^n w(p_i)}$. Center of Mass: let $K \subseteq \mathbb{R}^2$ be compact and let $\rho: K \to \mathbb{R}$ then $\left(\frac{\int_K x \cdot \rho(x,y) \mathrm{d}x \mathrm{d}y}{\int_K \rho(x,y) \mathrm{d}x \mathrm{d}y}, \frac{\int_K y \cdot \rho(x,y) \mathrm{d}x \mathrm{d}y}{\int_K \rho(x,y) \mathrm{d}x \mathrm{d}y}\right)$.

Line: let $A, B \in \mathbb{R}^2$ then $L_{A,B} = \{\lambda A + (1 - \lambda) B \mid \lambda \in [0,1]\}.$

Triangle: let $A, B, C \in \mathbb{R}^2$ such that $A \notin L_{B,C}$ and $B \notin L_{A,C}$ and $C \notin L_{A,B}$ then $\{A, B, C\}$.

Theorem Ceva: let $A,B,C\in\mathbb{R}^2$ such that $\{A,B,C\}$ is a triangle let $A'\in L_{B,C}$ let $B'\in L_{A,C}$ and let $C'\in L_{A,C}$ then $(L_{A,A'}\cap L_{B,B'}\cap L_{C,C'}\neq\varnothing)\Longleftrightarrow \left(\frac{d(A,B')}{d(B',C)}\cdot\frac{d(C,A')}{d(A',B)}\cdot\frac{d(B,C')}{d(C',A)}=1\right).$

Special Orthogonal Group: let $n \in \mathbb{N}$ then SO $(n) = \{A \in M_n(\mathbb{R}) \mid (\det(A) = 1) \land (A^T = A^{-1})\}.$

Cross Product: let $x,y\in\mathbb{R}^3$ then $x\times y=\begin{pmatrix} x_2y_3-x_3y_2\\x_3y_1-x_1y_3\\x_1y_2-x_2y_1 \end{pmatrix}$. Claim Antisymmetry: let $x,y\in\mathbb{R}^3$ then $x\times y=-y\times x$.

Claim Orthogonality: let $x, y \in \mathbb{R}^3$ be linearly independent then $x \times y \perp x$ and $x \times y \perp y$.

Claim: let $x, y \in \mathbb{R}^3$ and let θ be the angle between x, y then $||x \times y|| = ||x|| \cdot ||y|| \cdot \cos(\theta)$.

Corollary: let $x, y \in \mathbb{R}^3$ then $(x \times y = 0) \iff (x, y \text{ are linearly dependent)}$.

Claim: let $x, y, z \in \mathbb{R}^2$ and let $\alpha, \beta \in \mathbb{R}$ then $(\alpha x + \beta y) \times z = \alpha (x \times z) + \beta (y \times z)$.

Claim: let $X, Y \in C^1(\mathbb{R}^3)$ then $\frac{d}{dt}(X \times Y) = \dot{X} \times Y + X \times \dot{Y}$. Angular Momentum: let $X \in C^1(\mathbb{R}^3)$ then $X \times \dot{X}$. **Lemma**: angular momentum is a conserved quantity of $\ddot{X} = -\frac{X}{\|X\|^2}$. Exact Ordinary Differential Equation: let $\Omega\subseteq\mathbb{R}^2$ and let $F\in C^1\left(\Omega\right)$ then $\frac{\partial F}{\partial x}\left(x,y\right)+y'\cdot\frac{\partial F}{\partial y}\left(x,y\right)=0$. **Remark:** let $\Omega \subseteq \mathbb{R}^2$ and let $F \in C^1(\Omega)$ then $\frac{\partial F}{\partial x} + y' \cdot \frac{\partial F}{\partial y} = \mathrm{d}F$. $\textbf{Claim: let }\Omega\subseteq\mathbb{R}^{2}\text{ let }F\in C^{1}\left(\Omega\right)\text{ and let }y\in\operatorname{sols}\left(\frac{\partial F}{\partial x}\left(x,y\right)+y'\cdot\frac{\partial F}{\partial y}\left(x,y\right)=0\right)\text{ then }\frac{\mathrm{d}}{\mathrm{d}x}\left(F\left(x,y\left(x\right)\right)\right)=0.$ **Remark:** let $\Omega \subseteq \mathbb{R}^2$ let $F \in C^1(\Omega)$ and let $c \in \mathbb{R}$ then $\{F = c\}$ are solutions to $\frac{\partial F}{\partial x}(x,y) + y' \cdot \frac{\partial F}{\partial y}(x,y) = 0$. Claim: let $\Omega\subseteq\mathbb{R}^{2}$ be a simply connected domain and let $P,Q\in C^{1}\left(\Omega\right)$ then $(P\left(x,y\right)+y'\cdot Q\left(x,y\right)=0$ is an exact ODE) \iff $(\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}).$ Linear Ordinary Differential Equation: let $f: \mathbb{R} \to \mathbb{R}$ let $n \in \mathbb{N}$ and let $a_0 \dots a_{n-1} : \mathbb{R} \to \mathbb{R}$ then $y^{(n)} + \sum_{i=0}^{n-1} a_i(x) \cdot y^{(i)} = f$. $\textbf{Claim: let } I \subseteq \mathbb{R} \text{ be an interval let } p,q:I \to \mathbb{R} \text{ and let } \psi \in \operatorname{sols} (y'+py=q) \text{ then sols } (y'+py=q) = \operatorname{sols} (y'+py=0) + \psi.$ **Bernoulli's Equation:** let $\alpha \in \mathbb{R} \setminus \{0,1\}$ and let $p,q:\mathbb{R} \to \mathbb{R}$ then $y'=py+qy^{\alpha}$. Claim: let $\alpha \in \mathbb{R} \setminus \{0,1\}$ and let $p,q:\mathbb{R} \to \mathbb{R}$ then $\operatorname{sols}\left(y'=py+qy^{\alpha}\right)=\operatorname{sols}\left(\frac{1}{1-\alpha}\cdot\left(y^{1-\alpha}\right)'=p\cdot y^{1-\alpha}+q\right)\cup\{0\mid\alpha>0\}.$ **Riccati's Equation:** let $p, q, r : \mathbb{R} \to \mathbb{R}$ then $y' + p + qy + ry^2 = 0$. Claim: let $p,q,r:\mathbb{R}\to\mathbb{R}$ and let $\psi\in\operatorname{sols}\left(y'+p+qy+ry^2=0\right)$ then $sols (y' + p + qy + ry^{2} = 0) = sols ((y + \psi)' + (q + 2r\psi)(y + \psi) + r(y + \psi)^{2} = 0).$ Fibonacci Sequence: a sequence $F: \mathbb{N} \to \mathbb{N}$ such that $F_0 = 0$ and $F_1 = 1$ and $F_{n+2} = F_{n+1} + F_n$ for $n \in \mathbb{N}$. Lemma: let $n, m \in \mathbb{N}$ then $F_{m+n+1} = F_m F_n + F_{m+1} F_{n+1}$. Lemma Cassini Identity: let $n \in \mathbb{N}_+$ then $F_n^2 = F_{n+1}F_{n-1} + (-1)^{n-1}$. **Left Shift Operator:** a function LS : $(\mathbb{N} \to \mathbb{C}) \to (\mathbb{N} \to \mathbb{C})$ such that LS $(x) = \lambda n \in \mathbb{N}.x_{n+1}$. Remark; let $x \in \mathbb{N} \to \mathbb{C}$ then $(\forall n \in \mathbb{N}.x_{n+2} = x_{n+1} + x_n) \iff (x \in \ker(LS^2 - LS - 1))$. **Lemma**: let $p, q \in \mathbb{C}[x]$ then $(p \cdot q)(\mathsf{LS}) = p(\mathsf{LS}) \cdot q(\mathsf{LS})$. Corollary: $LS^2 - LS - 1 = \left(LS - \frac{-1 + \sqrt{5}}{2}\right) \left(LS - \frac{-1 - \sqrt{5}}{2}\right)$ Homogeneous Linear Ordinary Differential Equation: let $n \in \mathbb{N}$ and let $a_0 \dots a_{n-1}$: $\mathbb{R} \to \mathbb{R}$ then $y^{(n)} + \sum_{i=0}^{n-1} a_i(x) \cdot y^{(i)} = 0$. Remark: In this course we will discuss only homogeneous linear ODEs where the coefficients are constant. Characteristic Polynomial of a Homogeneous Linear Ordinary Differential Equation: let $n\in\mathbb{N}$ and let $a_0\ldots a_{n-1}\in\mathbb{R}$ then $p(x) = x^{n} + \sum_{i=0}^{n-1} a_{i} \cdot x^{i}$. Claim: let $n \in \mathbb{N}$ let $a_0 \dots a_{n-1} \in \mathbb{R}$ and let $f,g \in \operatorname{sols}\left(y^{(n)} + \sum_{i=0}^{n-1} a_i \cdot y^{(i)} = 0\right)$ then $f + g \in \text{sols}\left(y^{(n)} + \sum_{i=0}^{n-1} a_i \cdot y^{(i)} = 0\right).$ Theorem: let $n \in \mathbb{N}$ let $a_0 \dots a_{n-1} \in \mathbb{R}$ and let $\alpha \in \mathbb{R}$ be a solution to p(x) with multiplicity ρ then $\left\{x^0e^{\alpha x},\dots,x^{\rho-1}e^{\alpha x}\right\}\subseteq\operatorname{sols}\left(y^{(n)}+\sum_{i=0}^{n-1}a_i\cdot y^{(i)}=0\right)$. Claim: let $n \in \mathbb{N}$ let $a_0 \dots a_{n-1} \in \mathbb{R}$ and let $f \in \operatorname{sols}\left(y^{(n)} + \sum_{i=0}^{n-1} a_i \cdot y^{(i)} = 0\right)$ then $\operatorname{Re}\left(f\right),\operatorname{Im}\left(f\right)\in\operatorname{sols}\Big(y^{(n)}+\textstyle\sum_{i=0}^{n-1}a_{i}\cdot y^{(i)}=0\Big).$ Claim: let $f: \mathbb{R} \to \mathbb{R}$ let $n \in \mathbb{N}$ let $a_0 \dots a_{n-1} : \mathbb{R} \to \mathbb{R}$ and let $\psi \in \operatorname{sols}\left(y^{(n)} + \sum_{i=0}^{n-1} a_i\left(x\right) \cdot y^{(i)} = f\right)$ then $\operatorname{sols}\left(y^{(n)} + \textstyle\sum_{i=0}^{n-1} a_i\left(x\right) \cdot y^{(i)} = f\right) = \operatorname{sols}\left(y^{(n)} + \textstyle\sum_{i=0}^{n-1} a_i\left(x\right) \cdot y^{(i)} = 0\right) + \psi.$ Complex Quasi Polynomial: let $\gamma \in \mathbb{C}$ and let $p \in \mathbb{C}[x]$ then $f : \mathbb{C} \to \mathbb{C}$ such that $f(z) = e^{\gamma z} \cdot p(z)$. **Degree of a Complex Quasi Polynomial:** let $\gamma \in \mathbb{C}$ and let $p \in \mathbb{C}[x]$ then $\deg(e^{\gamma z} \cdot p(z)) = \deg(p)$. **Exponent of a Complex Quasi Polynomial:** let $\gamma \in \mathbb{C}$ and let $p \in \mathbb{C}[x]$ then γ . **Real Quasi Polynomial:** let $\alpha, \beta \in \mathbb{R}$ and let $p, q \in \mathbb{R}[x]$ then $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) = e^{\alpha x} (p(x) \cos(\beta x) + q(x) \sin(\beta x))$. Degree of a Real Quasi Polynomial: let $\alpha, \beta \in \mathbb{R}$ and let $p, q \in \mathbb{R}[x]$ then $\deg(e^{\alpha x}(p(x)\cos(\beta x) + q(x)\sin(\beta x))) =$

Claim: let $P:\mathbb{C}\to\mathbb{C}$ be a complex quasi polynomial then $\operatorname{Re}(P)$ is a real quasi polynomial.

 $\max \{\deg(p), \deg(q)\}.$

Claim: let $n \in \mathbb{N}$ let $a_0 \dots a_{n-1} \in \mathbb{R}$ let $\gamma \in \mathbb{C}$ let $p \in \mathbb{C}[x]$ and let $k \in \mathbb{N}$ the multiplicity of the root γ in $x^n + \sum_{i=0}^{n-1} a_i \cdot x^i$ then there exists $q \in \mathbb{C}[x]$ such that $\deg(q) = \deg(p)$ and $t^k q(t) e^{\gamma t} \in \operatorname{sols}\left(y^{(n)} + \sum_{i=0}^{n-1} a_i \cdot y^{(i)} = p \cdot e^{\gamma t}\right)$.

Linear System of Ordinary Differential Equation: let $n \in \mathbb{N}$ and let $A \in M_n(\mathbb{R})$ then $y'(x) = A \cdot y(x)$.

Definition: let $A \in M_n(\mathbb{R})$ then $\max(|A|) = \max\{\left| (A)_{i,j} \right| \mid i,j \in [n] \}$.

Lemma: let $n, k \in \mathbb{N}$ let $A \in M_n(\mathbb{R})$ and let $i, j \in [n]$ then $(A)_{i,j}^k \leq n^{k-1} \cdot \max(|A|)^k$.

Corollary: let $n, k \in \mathbb{N}$ let $A \in M_n(\mathbb{R})$ and let $i, j \in [n]$ then $(A)_{i,j}^k \leq (n \cdot \max(|A|))^k$.

Theorem: let $n \in \mathbb{N}$ and let $A \in M_n(\mathbb{R})$ then $\sum_{k=0}^{\infty} \frac{A^k}{k!} \in M_n(\mathbb{R})$.

Definition: let $n \in \mathbb{N}$ and let $A \in M_n(\mathbb{R})$ then $e^A = \sum_{k=0}^{\infty} \frac{A^k}{k!}$.

Lemma: let $A \in M_n(\mathbb{R})$ and let $s, t \in \mathbb{R}$ then $e^{sA} \cdot e^{tA} = e^{(s+t)A}$.

Matrix Differentiation: let $A: \mathbb{R} \to M_n\left(\mathbb{R}\right)$ such that $(A)_{i,j} \in C^1\left(\mathbb{R}\right)$ for all $i,j \in [n]$ then $(A'(t))_{i,j} = (A(t))'_{i,j}$.

Claim: let $A, B \in C^1(\mathbb{R}, M_n(\mathbb{R}))$ then $\frac{\mathrm{d}}{\mathrm{d}t}(AB) = \dot{A}B + A\dot{B}$.

Corollary: let $A \in C^1(\mathbb{R}, M_n(\mathbb{R}))$ and let $v \in C^1(\mathbb{R}, \mathbb{R}^n)$ then $\frac{\mathrm{d}}{\mathrm{d}t}(Av) = \dot{A}v + A\dot{v}$.

Lemma: let $A \in M_n(\mathbb{R})$ then $\left(\frac{d}{dt}\left(e^{tA}\right)\right)(0) = A$.

Corollary: let $A\in M_{n}\left(\mathbb{R}\right)$ and let $\mu\in\mathbb{R}$ then $\left(\frac{\mathrm{d}}{\mathrm{d}t}\left(e^{tA}\right)\right)\left(\mu\right)=e^{\mu A}A$.

Theorem: let $n \in \mathbb{N}$ and let $A \in M_n\left(\mathbb{R}\right)$ then $e^{tA}v$ is a solution to $\begin{cases} y' = A \cdot y \\ y(0) = v \end{cases}$.

Zeckendorff Representation: let $n \in \mathbb{N}$ let $k \in \mathbb{N}$ and let $c_0 \dots c_k \in \mathbb{N}$ such that $c_0 \geq 2$ and $c_{i+1} > c_i + 1$ for all $i \in \{0 \dots k-1\}$ and $n = \sum_{i=0}^k F_{c_i}$ then $(F_{c_0}, \dots, F_{c_k})$.

Theorem Zeckendorff: let $n \in \mathbb{N}$ then

- ullet Existence: there exists a zeckendorff representation for n.
- Uniqueness: let $(F_{c_0}, \ldots, F_{c_k}), (F_{d_0}, \ldots, F_{d_m})$ be zeckendorff representations for n then k = m and $c_i = d_i$ for all $i \in \{0 \ldots k 1\}$.

Theorem Grönwall's Inequality: let $\Omega \subseteq \mathbb{R}^2$ let $f_1, f_2 \in C\left(\Omega\right)$ such that $f_2\left(x,y\right) > f_1\left(x,y\right)$ for all x>0 and $y\in\mathbb{R}$ let $a_1,a_2\in\mathbb{R}$ such that $a_2>a_1$ let $y_1\in\operatorname{sols}\left(\left\{ y'=f_1(x,y) \atop y(0)=a_1 \right\}\right)$ and let $y_2\in\operatorname{sols}\left(\left\{ y'=f_2(x,y) \atop y(0)=a_2 \right\}\right)$ then $y_2\left(x\right)>y_1\left(x\right)$ for all x>0. Theorem: let $\Omega\subseteq\mathbb{R}^2$ let $f_1,f_2\in C^1\left(\Omega\right)$ such that $f_2\left(x,y\right)\geq f_1\left(x,y\right)$ for all x>0 and $y\in\mathbb{R}$ let $a_1,a_2\in\mathbb{R}$ such that $a_2\geq a_1$ let $y_1\in\operatorname{sols}\left(\left\{ y'=f_1(x,y) \atop y(0)=a_1 \right\}\right)$ and let $y_2\in\operatorname{sols}\left(\left\{ y'=f_2(x,y) \atop y(0)=a_2 \right\}\right)$ then $y_2\left(x\right)\geq y_1\left(x\right)$ for all x>0.

Wronskian: let $\mathcal{U} \subseteq \mathbb{R}$ and let $u, v \in C^1(\mathcal{U})$ then $W_{u,v}: \mathcal{U} \to \mathbb{R}$ such that $W_{u,v}(t) = \det \begin{pmatrix} u(t) & v(t) \\ u'(t) & v'(t) \end{pmatrix}$.

Corollary: let $\mathcal{U}\subseteq\mathbb{R}$ let $u\in C^{1}\left(\mathcal{U}\right)$ and let $c\in\mathbb{R}$ then $W_{u,c\cdot u}=0$.

Remark: let $\mathcal{U}\subseteq\mathbb{R}$ and let $u,v\in C^{1}\left(\mathcal{U}\right)$ then $W=W_{u,v}.$

Theorem Abel's Identity: let $I \subseteq \mathbb{R}$ be an open interval let $p,q:I \to \mathbb{R}$ and let $u,v \in \operatorname{sols}(y''+py'+qy=0)$ then $W_{u,v} \in \operatorname{sols}(y'+py=0)$.

Corollary: let $I \subseteq \mathbb{R}$ be an open interval let $p,q:I \to \mathbb{R}$ and let $u,v \in \operatorname{sols}\left(y''+py'+qy=0\right)$ then there exists $p \in I$ and $c \in \mathbb{R}$ such that $W_{u,v}\left(t\right) = \exp\left(c\right) \cdot W_{u,v}\left(p\right) \cdot \exp\left(-\int_{n}^{t} p\left(s\right) \mathrm{d}s\right)$ for all $t \in I$.

Corollary: let $I \subseteq \mathbb{R}$ be an open interval let $p,q:I \to \mathbb{R}$ and let $u,v \in \operatorname{sols}(y''+py'+qy=0)$ then $\operatorname{sign}(W(t_1)) = \operatorname{sign}(W(t_2))$ for all $t_1,t_2 \in I$.

Corollary: let $I \subseteq \mathbb{R}$ be an open interval let $p,q:I \to \mathbb{R}$ and let $u,v \in \operatorname{sols}(y''+py'+qy=0)$ then (u,v) are linearly dependent) \iff (sign (W)=0).

Corollary Complementary Solution: let $I \subseteq \mathbb{R}$ be an open interval let $p,q:I \to \mathbb{R}$ and let $u \in \operatorname{sols}(y'' + py' + qy = 0) \setminus \{0\}$ then $u \int \frac{W}{u^2}$ is a solution of y'' + py' + qy = 0 and $u, u \int \frac{W}{u^2}$ are linearly independent.

Claim Variation of Parameters: let $I\subseteq\mathbb{R}$ be an open interval let $p,q,f:I\to\mathbb{R}$ let $u,v\in\operatorname{sols}(y''+py'+qy=0)$ such that u,v are linearly independent and let $C_1,C_2\in C^1(I)$ such that C_1u+C_2v is a solution of y''+py'+qy=f and $C_1'u+C_2'v=0$ then $\left\{ \begin{array}{l} C_1'u+C_2'v=0\\ C_1'u'+C_2'v'=f \end{array} \right.$

Corollary Lagrange's Formula: let $I \subseteq \mathbb{R}$ be an open interval let $p,q,f:I \to \mathbb{R}$ and let $u,v \in \operatorname{sols}(y''+py'+qy=0)$ such that u,v are linearly independent then $-u\int \frac{fv}{W_{u,v}}+v\int \frac{fu}{W_{u,v}}$ is a solution of y''+py'+qy=f.

Green Function: let $\mathcal{U} \subseteq \mathbb{R}$ and let $u, v \in C^1(\mathcal{U})$ then $G_{u,v}: \mathcal{U}^2 \to \mathbb{R}$ such that $G_{u,v}(s,t) = \frac{v(t)u(s) - u(t)v(s)}{u(s)v'(s) - u'(s)v(s)}$.

Claim: let $\mathcal{U}\subseteq\mathbb{R}$ and let $u,v\in C^{1}\left(\mathcal{U}\right)$ then

- G(t,t) = 0 for all $t \in \mathcal{U}$.
- $\frac{\partial G}{\partial y}(t,t) = 1$ for all $t \in \mathcal{U}$.

Corollary: let $I \subseteq \mathbb{R}$ be an open interval let $p,q,f:I \to \mathbb{R}$ and let $u,v \in \operatorname{sols}\left(y''+py'+qy=0\right)$ such that u,v are linearly independent then there exists $p \in I$ such that $\int_{p}^{t} G_{u,v}\left(s,t\right) f\left(s\right) \mathrm{d}s$ is a solution of y''+py'+qy=f.

Lemma: let $I \subseteq \mathbb{R}$ be an open interval let $p,q,f:I \to \mathbb{R}$ let $u,v \in \operatorname{sols}\left(y''+py'+qy=0\right)$ such that u,v are linearly independent let $p \in I$ such that $\int_p^t G_{u,v}\left(s,t\right)f\left(s\right)\mathrm{d}s$ is a solution of y''+py'+qy=f and let $g \in \operatorname{sols}\left(\begin{array}{c} y''+py'+qy=f\\ y(p)=0\\ y'(p)=0 \end{array} \right)$

then $g(t) = \int_{p}^{t} G_{u,v}(s,t) f(s) ds$ for all $t \in I$.

Simple Zero: let $f \in C^1(\mathbb{R})$ then $p \in \ker(f)$ such that $f'(p) \neq 0$.

Isolated Zero: let $f: \mathbb{R} \to \mathbb{R}$ then $p \in \ker(f)$ such that there exists a neighbourhood \mathcal{U} of p for which $0 \notin f(\mathcal{U} \setminus \{p\})$.

Lemma: let $I \subseteq \mathbb{R}$ be an open interval let $p, q: I \to \mathbb{R}$ let $u \in \operatorname{sols}(y'' + py' + qy = 0) \setminus \{0\}$ and let $p \in \ker(u)$ then p is a simple and isolated zero of u.

Lemma: let $I \subseteq \mathbb{R}$ be an open interval let $p,q:I \to \mathbb{R}$ and let $u,v \in \operatorname{sols}(y''+py'+qy=0)$ such that u,v are linearly independent then $\ker(u) \cap \ker(v) = \emptyset$.

Theorem Sturm's Separation Theorem: let $I \subseteq \mathbb{R}$ be an open interval let $p,q:I \to \mathbb{R}$ and let $u,v \in \mathrm{sols}\,(y''+py'+qy=0)$ such that u,v are linearly independent then for all $z,w \in \ker(u)$ if $(z,w) \cap \ker(u) = \emptyset$ then $|(z,w) \cap \ker(v)| = 1$.

Theorem Sturm's Comparison Theorem: let $I\subseteq\mathbb{R}$ be an open interval let $p,q:I\to\mathbb{R}$ such that $p\geq q$ and $p\neq q$ let $u\in\operatorname{sols}(y''+py=0)$ let $v\in\operatorname{sols}(y''+qy=0)$ such that u,v are linearly independent and let $z,w\in\ker(v)$ then $(z,w)\cap\ker(u)\neq\varnothing$.

Claim: let k < 0 then $e^{\sqrt{-k} \cdot t}$ is a solution of y'' + ky = 0.

Claim: the function 1 is a solution of y'' = 0.

Corollary: let $I \subseteq \mathbb{R}$ be an open interval let $q: I \to \mathbb{R}$ such that $0 \ge q$ and let $v \in \operatorname{sols}(y'' + qy = 0)$ such that $v \ne 0$ then $|\ker(v)| \le 1$.

Claim: let k > 0 then $\sin\left(\sqrt{k} \cdot t\right)$ is a solution of y'' + ky = 0.

Supremum Norm/ L^{∞} Norm: let $a,b\in\mathbb{R}$ such that $a\leq b$ and let $f\in C\left([a,b]\right)$ then $\|f\|_{\infty}=\max\left(\operatorname{Im}\left(|f|\right)\right)$.

Claim: let $a, b \in \mathbb{R}$ such that $a \leq b$ then $\|\cdot\|_{\infty}$ is a norm on C([a, b]).

Claim: let $a,b\in\mathbb{R}$ such that $a\leq b$ then d_{∞} is a metric on $C\left([a,b]\right)$.

 $\text{Claim: let } a,b \in \mathbb{R} \text{ such that } a \leq b \text{ let } f \in C\left([a,b]\right) \text{ and let } \left\{f_n\right\}_{n=0}^{\infty} \subseteq C\left([a,b]\right) \text{ then } \left(f_n \xrightarrow{L^{\infty}} f\right) \Longleftrightarrow \left(f_n \xrightarrow{u} f\right).$

Theorem: let $a, b \in \mathbb{R}$ such that $a \leq b$ then $(C([a, b]), d_{\infty})$ is complete.

Closed Set: let (X,d) be a metric space then $A\subseteq X$ such that for all $\{a_n\}_{n=0}^{\infty}\subseteq A$ and for all $L\in X$ if $a_n\to L$ then $L\in A$. Fixed Point: let X be a set and let $f:X\to X$ then $p\in X$ such that f(p)=p.

Contraction: let (X,d) be a metric space then $f: X \to X$ such that there exists $\rho \in [0,1)$ for which $d(f(x),f(y)) \le \rho \cdot d(x,y)$ for all $x,y \in X$.

Theorem Contraction Mapping Theorem: let (X,d) be a complete metric space such that $X \neq \emptyset$ and let $f: X \to X$ be a contraction then there exists a unique $p \in X$ for which f(p) = p.

Lipschitz Function: let (X,d) be a metric space then $f:X\to\mathbb{R}$ such that there exists $L\in\mathbb{R}$ for which

 $|f(x) - f(y)| \le L \cdot d(x, y)$ for all $x, y \in X$.

Lipschitz Constant: let (X,d) be a metric space and let $f:X \to \mathbb{R}$ be lipschitz then minimal $L \in \mathbb{R}$ such that

 $|f(x) - f(y)| \le L \cdot d(x, y)$ for all $x, y \in X$.

Claim: let (X,d) be a metric space and let $f:X\to\mathbb{R}$ be lipschitz then $f\in C(X)$.

Locally Lipschitz Function: let (X,d) be a metric space then $f:X\to\mathbb{R}$ such that for all $x\in X$ there exists a neighbourhood \mathcal{U} of x for which $f_{\upharpoonright \mathcal{U}}$ is lipschitz.

Theorem Picard-Lindelöf: let $I,J\subseteq\mathbb{R}$ be closed intervals let $f\in C$ $(I\times J)$ such that f is locally lipschitz in the second coordinate and let $p\in \operatorname{int}(I\times J)$ then there exists $\varepsilon>0$ such that $\left\{ egin{array}{l} y'=f(x,y) \\ y(p_1)=p_2 \end{array} \right.$ has a unique solution on the interval $(p_1-\varepsilon,p_1+\varepsilon)$. Compact Set: let (X,d) be a metric space then $K\subseteq X$ such that for all $\{x_n\}_{n=0}^\infty\subseteq K$ there exists a convergent subsequence.

Uniformly Bounded Sequence of Functions: let $a,b\in\mathbb{R}$ such that $a\leq b$ then $\{f_n\}_{n=0}^{\infty}\subseteq C\left([a,b]\right)$ such that $\exists M\in\mathbb{R}.\forall x\in\mathbb{R}$ $[a, b] . \forall n \in \mathbb{N}. |f_n(x)| \leq M.$

Uniformly Equicontinuous Sequence of Functions: let $a,b \in \mathbb{R}$ such that $a \leq b$ then $\{f_n\}_{n=0}^{\infty} \subseteq C([a,b])$ such that $\forall \varepsilon > 0$ $0.\exists \delta > 0. \forall x, y \in [a, b]. |x - y| < \delta \Longrightarrow |f(x) - f(y)| < \varepsilon.$

Theorem Arzela-Ascoli: let $a,b\in\mathbb{R}$ such that $a\leq b$ and let $\{f_n\}_{n=0}^{\infty}\subseteq C\left([a,b]\right)$ then $(\{f_n\}_{n=0}^{\infty}$ has a convergent subsequence) \iff ($\{f_n\}_{n=0}^{\infty}$ is uniformly bounded and uniformly equicontinuous).

Notation: let $p \in \mathbb{R}^2$ and let $f : \mathbb{R} \to \mathbb{R}$ then $\eta_f(p) : \mathbb{R} \to \mathbb{R}$ such that $\eta_f(p)(x) = f(p) \cdot (x - p_1) + p_2$.

Algorithm Euler's Method: let $n \in \mathbb{N}$ let $f \in C(\mathbb{R})$ let $\varepsilon \in \mathbb{R}$ and let $p \in \mathbb{R}^2$ then

function EulerMethod(n, f, ε, p):

```
(x_0,y_0) \leftarrow p
for i \leftarrow \{1 \dots n\} do
  \begin{vmatrix} x_i \leftarrow x_0 + \varepsilon \cdot \frac{i}{n} \\ g_i \leftarrow (\lambda x \in [x_{i-1}, x_i].(f(x_{i-1}, y_{i-1}) \cdot (x - x_{i-1}) + y_{i-1})) \\ y_i \leftarrow g_i(x_i) \end{vmatrix}
end
return \bigcup_{i=1}^{n} g_i
```

Claim: let $n \in \mathbb{N}$ let $f \in C(\mathbb{R})$ let $\varepsilon \in \mathbb{R}$ and let $p \in \mathbb{R}^2$ then EulerMethod $(n, f, \varepsilon, p) : [p_1, p_1 + \varepsilon] \to \mathbb{R}$.

Notation: let $n \in \mathbb{N}$ let $f \in C(\mathbb{R})$ let $\varepsilon \in \mathbb{R}$ and let $p \in \mathbb{R}^2$ then EulerMethod_n = EulerMethod (n, f, ε, p) .

Claim: let $f \in C(\mathbb{R})$ let $\varepsilon \in \mathbb{R}$ let $p \in \mathbb{R}^2$ then there exists a convergent subsequence {EulerMethod}_{n_k} such that $\lim_{k\to\infty} \mathrm{EulerMethod}_{n_k} \text{ is a solution of } \left\{ \begin{smallmatrix} y'=f(x,y)\\y(p_1)=p_2 \end{smallmatrix} \right. \text{ defined on } [p_1,p_1+\varepsilon].$