heh

1 Основные понятия

Определение 1.1:

Сигнатура - множество имён операций с указанием их местности.

$$(f^{(2)}, g^{(3)}, h^{(0)}), (+^{(2)}, \cdot^{(3)})$$

 $h^{(0)}$ - символ константы, V - имена переменных

Определение 1.2:

Терм - выражение, составленное из символов сигнатуры и переменных

- 1. $x \in V$, x терм
- $2.\ c$ символ константы, c терм
- 3. если $t_1,...,t_n$ термы и f символ n-местной операции, то $f(t_1,...,t_n)$ терм

Пример 1.1:

Примеры термов: -(x), -(0), +(x, y), 2 + 3 + a

Определение 1.3:

Замкнутый терм - терм, не содержащий переменных

Определение 1.4:

Универсальная алгебра - пусть Σ - сигнатура, тогда *универсальная алгебра* сигнатуры Σ - это пара вида (A,I), где A - произвольное непустое множество, а I - некоторое отображение, которое для всякого $p^{(m)} \in \Sigma$, $I(p^{(m)})$ - n-местной операции на множестве

Пример 1.2:

Пример универсальной алгебры: пусть $\Sigma = (+^{(2)}, \cdot^{(2)}, -^{(1)}, 0^{(0)}, 1^{(0)})$, тогда

$$R=(\mathbb{R},I): I(+)$$
— сложение $I(\cdot)$ — умножение $I(-)$ — вычитание $I(0)-0$ $I(1)-1$

Определение 1.5:

 $\mathbb R$ называется **основным множеством** или носителем алгебры, а I - интерпретацией или интерпретирующей функцией

Определение 1.6:

Состояние - функция, приписывающая переменной некоторый элемент носителя $\sigma:V \to A$

Пример 1.3:

Пример состояний: $\sigma = \{(x,3),(y,-8)\}\,, \sigma(x) = 3$

Определение 1.7:

Значение терма на состоянии - значение того выражения, в котором переменные заменены их значениями

- 1. t переменная, $\sigma(t)$ по определению состояния
- 2. t символ константы, $I(t) = \sigma(t_1) = v_1$
- 3. если $t_1,...,t_n$ термы и $\sigma(t_1)=v_1,...,\sigma(t_n)=v_n$, то $\sigma(t)=I(f)(v_1,...,v_n)$

2 Изоморфизм

Определение 2.1:

Изоморфизм - Пусть Σ - сигнатура, $\mathbf{A}=(A,I), \mathbf{B}=(B,J)$ - универсальные алгебры сигнатуры Σ , тогда изоморфизм между \mathbf{A} и \mathbf{B} - это $h:\mathbf{A}\to\mathbf{B}$ - биективная функция, которая удовлетворяет следующему условию:

$$h(I(f_i)(a_1,...,a_n)) = J(f_i)(h(a_1),...,h(a_n))$$

для любых $a_1,...,a_n$ и $f_i \in \Sigma$

Пример 2.1:

Пример изоморфизма: пусть $\Sigma=(f^{(2)}), \mathbf{A}=(\mathbb{R},+), \mathbf{B}=(\mathbb{R},\cdot)$

Надо доказать:

$$h(a_1 + a_2) = h(a_1) \cdot h(a_2)$$

 $a_1, a_2 \in \mathbb{R}$

Пусть $h(x) = e^x$, тогда

$$h(a_1 + a_2) = e^{a_1 + a_2} = e^{a_1} \cdot e^{a_2} = h(a_1) \cdot h(a_2) \blacksquare$$

Теорема 2.1. h - изоморфизм между A и B, то h^{-1} - изоморфизм между B и A

Proof. пусть $b_1,...,b_{n_i} \in B$, тогда надо доказать

$$h^{-1}(J(f_i)(b_1,...,b_{n_i})) = I(f_i)(h^{-1}(b_1),...,h^{-1}(b_{n_i}))$$

Так как $b_1 = h(a_1), ..., b_{n_i} = h(a_{n_i}),$

$$I(f_i)(h^{-1}(b_1),...,h^{-1}(b_{n_i})) = I(f_i)(h^{-1}(h(a_1)),...,h^{-1}(h(a_{n_i}))) = I(f_i)(a_1,...,a_{n_i})$$

По определению изоморфизма

$$h^{-1}(J(f_i)(b_1,...,b_{n_i})) = h^{-1}(h(I(f_i)(a_1,...,a_{n_1}))) = I(f_i)(a_1,...,a_{n_1})$$

Из этих двух равенств следует то, что надо доказать

Определение 2.2:

Системы, между которыми существует изоморфизм называют **изоморфными**

$$\mathbf{A} \simeq \mathbf{B}$$

операции в изоморфных системах обладают одними и теми же свойствами

Определение 2.3:

 $t(x_1,...,x_n)$ - терм t не содержит других переменных кроме $x_1,...,x_n$

Определение 2.4:

Пусть **A** - алгебра, $a_1, ..., a_n$ - элементы алгебры **A**, тогда

$$t(a_1, ..., a_n) = \sigma(t), \sigma(x_1) = a_1, ..., \sigma(x_n) = a_n$$

Теорема 2.2. h - изоморфизм между $\mathbf{A}=(A,I)$ и $\mathbf{B}=(B,J)$, то для любого терма $t(x_1,...,x_n)$ и любых $a_1,...,a_n$ выполняется

$$h(t^{\mathbf{A}}(a_1,...,a_n)) = t^{\mathbf{B}}(h(a_1),...,h(a_n))$$

 ${\it Proof.}$ Индукция по построению терма t

1.
$$t = x$$

$$t^{\mathbf{A}}(a) = a \Leftrightarrow h(t^{\mathbf{A}}(a)) = h(a) \Leftrightarrow t^{\mathbf{B}}(h(a)) = h(a)$$

2. t = c

$$\sigma(c) = I(c) = J(c) \Rightarrow t^{\mathbf{A}} = I(c), t^{\mathbf{B}} = J(c) \Rightarrow h(I(c)) = J(c)$$

по определению гомоморфизма

3.
$$t = f(t_1, ..., t_k)$$

$$\begin{split} h(t^{\mathbf{A}}(a_1,...,a_n)) &= \\ &\quad h(I(f)(t_1^{\mathbf{A}}(a_1,...,a_n),...,t_k^{\mathbf{A}}(a_1,...,a_n))) &= \\ &\quad J(f)(h(t_1^{\mathbf{A}}(a_1,...,a_n)),...,h(t_k^{\mathbf{A}}(a_1,...,a_n))) &= \\ &\quad J(f)(t_1^{\mathbf{B}}(h(a_1),...,h(a_n)),...,t_k^{\mathbf{B}}(h(a_1),...,h(a_n)) &= \\ &\quad t^{\mathbf{B}}(h(a_1),...,h(a_n)) \end{split}$$