线性规划复习题

例1. 下表中给出某*L.P.*计算过程中的一张单纯形表,目标函数为 $\max z = 28x_4 + x_5 + 2x_6$,约束全为 \leq ,表中 x_1, x_2, x_3 为松弛变量,

表中解的目标函数值为z=14.

X_B		x_1	x_2	x_3	x_4	x_5	x_6
x_6	a	3	0	- 14/3	0	1	1
x_2	5	6	d	2	0	5/2	0
x_4	0	0	e	f	1	0	0
σ_{j}	ţ	b	С	0	0	- 1	g

X_B		x_1	x_2	x_3	x_4	x_5	x_6
x_6	a	3	0	- 14/3	0	1	1
x_2	5	6	d	2	0	5/2	0
x_4	0	0	e	f	1	0	0
σ_{j}		b	С	0	0	- 1	g

			0	0	0	28	1	2	
C_B	X_B	b	x_1	x_2	x_3	x_4	x_5	x_6	
2	x_6	7	3	0	- 14/3	0	1	1	
0	x_2	5	6	1	2	0	5/2	0	
28	x_4	0	0	0	1/3	1	0	0	
	σ_{j}		- 6	0	0	0	€ lig	0	大学

例2. 下表中给出某极大化问题的单纯形表,

问表中的 a_1, a_2, c_1, c_2, d 以及变量满足什么条件时有:

- (1)表中是唯一最优解;
- (2)表中是无穷多最优解;
- (3)下一步迭代将以 x_1 替代 x_5
- (4)该问题是无界解;
- (5)该问题无可行解。

X_B		x_1	x_2	x_3	x_4	x_5
x_3	d	4	a_1	1	0	0
x_4	2	- 1	- 5	0	1	0
x_5	3	a_2	- 3	0	0	1
σ_{j}		c_1	c_2	0	0	0

例2解答:

X_B		x_1	x_2	x_3	x_4	x_5
x_3	d	4	a_1	1	0	0
x_4	2	- 1	- 5	0	1	0
x_5	3	a_2	- 3	0	0	1
σ_{j}		c_1	c_2	0	0	0

- (1) 表中是唯一最优解: $d \ge 0, c_1 < 0, c_2 < 0$
- (2)表中是无穷多最优解:

 $d \ge 0, c_1 \le 0, c_2 \le 0$ 但是二者至少一个为零

(3)下一步迭代将以
$$x_1$$
替代 x_5 : $c_1 > 0, \frac{3}{a_2} < \frac{d}{4}$

- (4)该问题是无界解: $c_2 > 0, a_1 \le 0$
- (5)该问题无可行解: x_5 为人工变量,且 $c_1 \le 0, c_2 \le 0$

例 4:

- (1) 若 $X^{(1)}$ 与 $X^{(2)}$ 均为某线性规划的最优解,证明在这两点连线上的所有点也是该问题的最优解。
 - (2) 线性规划 $\max z = CX$, AX = b, $X \ge 0$, 设 $X^{(0)}$ 为问题的

最优解。若目标函数中用 C^* 代替C后,问题的最优解变为 X^* 。

求证:
$$(C^*-C)(X^*-X^0) \ge 0$$

例5. 设有 $\max z = \alpha x_1 + 2x_2 + x_3 - 4x_4$

$$\begin{cases} x_1 + x_2 & -x_4 = 4 + 2\beta \cdots (1) \\ 2x_1 - x_2 + 3x_3 - 2x_4 = 5 + 7\beta \cdots (2) \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

要求: 组成两个新的约束

$$\begin{cases} (1)' = (1) + (2) \\ (2)' = (2) - 2(1) \end{cases}$$

若 β =0,则 α 为何值时, x_1,x_2 为最优基?

例5解答:

(1)':
$$3x_1 + 3x_3 - 3x_4 = 9 + 9\beta$$

$$(2)': \quad -3x_2 + 3x_3 = -3 + 3\beta$$

以 x₁, x₂ 为基列出初始单纯形表如下:

			α	2	1	-4
C_B	X_B	b	x_1	x_2	x_3	x_4
α	x_1	3+3β	1	0	1	- 1
2	x_2	1 – β	0	1	- 1	0
	σ_{j}		0	0	$3-\alpha$	$\alpha - 4$

若 β =0,则3≤ α ≤4时,最优基不变。

例6. 分别用图解法、单纯形法求解,并指出问题的解属于哪一类:

$$\max z = 2x_1 + 3x_2$$

$$\begin{cases} 4x_1 & \le 16 \\ 4x_2 & \le 12 \\ x_1 + 2x_2 & \le 8 \\ x_1, x_2 & \ge 0 \end{cases}$$

$$\max z = 2x_1 + 3x_2$$

$$s.t.\begin{cases} 4x_1 & \le 16 \\ 4x_2 \le 12 \\ x_1 + 2x_2 \le 8 \\ x_1, x_2 \ge 0 \end{cases}$$

$$\max z = 2x_1 + 3x_2$$

首先化成标准形如下:

$$s.t. \begin{cases} 4x_1 & \le 16 \\ 4x_2 & \le 12 \\ x_1 + 2x_2 & \le 8 \\ x_1, x_2 & \ge 0 \end{cases}$$

max
$$z = 2x_1 + 3x_2$$
 首先化成标准形如下:

$$\begin{cases} 4x_1 & \leq 16 \\ 4x_2 \leq 12 \\ x_1 + 2x_2 \leq 8 \\ x_1, x_2 \geq 0 \end{cases}$$
 s.t.
$$\begin{cases} 4x_1 & +x_3 & =16 \\ 4x_2 & +x_4 & =12 \\ x_1 + 2x_2 & +x_5 = 8 \\ x_1, \dots, x_5 \geq 0 \end{cases}$$

$$A = \begin{bmatrix} 4 & 0 & 1 & 0 & 0 \\ 0 & 4 & 0 & 1 & 0 \\ 1 & 2 & 0 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 16 \\ 12 \\ 8 \end{bmatrix}$$

其次建立初始单纯形表如下

	$c_j \rightarrow$		2	3	0	0	0	0
C_B	基 X_B	b	x_1	x_2	x_3	x_4	x_5	θ_i
0	x_3	16	4	0	1	0	0	
0	x_4	12	0	4	0	1	0	
0	x_5	8	1	2	0	0	1	
检	验数 σ	j						

			2	3	0	0	0		
C_B	基 X_B	b	x_1	x_2	x_3	x_4	x_5	θ_i	
0	x_3	16	4	0	1	0	0		
0	x_4	12	0	4	0	1	0	3	
0	x_5	8	1	2	0	0	1	4	
	检验数		2	3	0	0	0		
			2	3	0	0	0)	
C_B	基 X_B	b	x_1	x_2	x_3	x_4	x_5	θ_i	
C_B	基 X_B x_3	<i>b</i>	<i>x</i> ₁ 4	x_2	1 x ₃	x_4	x_5	$\frac{\theta_i}{4}$	
0	x_3	16	4	0	1	0	0		

			2	3	0	0	0		
C_B	基X _B	b	x_1	x_2	x_3	x_4	x_5	θ_i	
0	x_3	8	0	0	1	2	-4	4	
3	x_2	3	0	1	0	1/4	0	12	
2	x_1	2	1	0	0	-1/2	1		
	检验数		0	0	0	1/4	-2		
			2	3	0	0	0		
C_B	基 X_B	b	x_1	x_2	x_3	x_4	x_5	θ_i	
C_B	基 X_B	<i>b</i> 4	x_1	x_2	1/2	x_4	x_5 -2	θ_i	
0	x_4	4	0	0	1/2	1	-2		

例7. 分别用图解法、单纯形法求解, 并指出问题的解属于哪一类:

$$\max z = 3x_1 + 5x_2$$

$$\begin{cases} x_1 & \le 4 \\ 2x_2 \le 12 \\ 3x_1 + 2x_2 \le 18 \\ x_1, x_2 \ge 0 \end{cases}$$

例7解答: 唯一最优解

			3	5	0	0	0
C_B	X_B	b	x_1	x_2	x_3	x_4	x_5
0	x_3	2	0	0	1	1/3	- 1/3
5	x_2	6	0	1	0	1/2	0
3	x_1	2	1	0	0	- 1/3	1/3
	σ_{j}		0	0	0	- 3/2	-1

例 用单纯形法求解线性规划问题

max
$$Z = 2x_1 + x_2 - 3x_3 + 5x_4$$

$$\begin{cases} x_1 + 7x_2 + 3x_3 + 7x_4 \leq 46 \\ 3x_1 - x_2 + x_3 + 2x_4 \leq 8 \\ 2x_1 + 3x_2 - x_3 + x_4 \leq 10 \\ x_j \geqslant 0 \ (j = 1, 2, 3, 4) \end{cases}$$
s. t.

解 引进松驰变量 x5, x6, x7, 将原问题化为标准形

$$\max Z = 2x_1 + x_2 - 3x_3 + 5x_4 + 0x_5 + 0x_6 + 0x_7$$

s. t.
$$\begin{cases} x_1 + 7x_2 + 3x_3 + 7x_4 + x_5 &= 46 \\ 3x_1 - x_2 + x_3 + 2x_4 &+ x_6 &= 8 \\ 2x_1 + 3x_2 - x_3 + x_4 &+ x_7 &= 10 \\ x_j \geqslant 0 \ (j = 1, 2, \dots, 7) \end{cases}$$

列表求解如下

C_J	>	2	. 1	-3	5	0	0	0	ь
C_B	X _B	x_1	<i>x</i> ₂	x_3	<i>x</i> ₄	x_5	x_6	<i>x</i> ₇	
0	<i>x</i> ₅	1	7	3	7	1	0	0	46
0	x ₆	3	-1	1	(2)	0	1	0	8
0	x ₇	2	3	<u>-1</u>	1	0	0	1	10
λ	bj .	2	1	-3	5	0	0	Ø.	0
0	<i>x</i> ₅	$-\frac{19}{2}$	$\frac{21}{2}$	$-\frac{1}{2}$	0	1	$-\frac{7}{2}$	0	18
5	<i>x</i> ₄	3 2	$-\frac{1}{2}$	1 2	1	0	$\frac{1}{2}$	0	4
•	<i>x</i> ₇	$\frac{1}{2}$	$(\frac{7}{2})$	$-\frac{3}{2}$	0	0	$-\frac{1}{2}$	1	6
λ	ij	$-\frac{11}{2}$	7 2	$-\frac{11}{2}$	0	0	$-\frac{5}{2}$	0	-20
0	x_5	-11	0	4	0	1	-2	-3	0
5	x4	$\frac{11}{7}$	0	$\frac{2}{7}$	1	0	3 7	$\frac{1}{7}$	$\frac{34}{7}$
1	x2	1 7	1	$-\frac{3}{7}$	0	0	$-\frac{1}{7}$	7	12 7
7	l.j	— 6	0	-4	0	0	-2	-1	-26

因所有 $\sigma_j \leq 0$,故得最优解 $X=(0, 12/7, 0, 34/7, 0, 0)^T$ 。最优值 $\max z=26$

例 求解线性规划问题

$$\min Z = -2x_2 + 5x_4 + x_6$$

$$x_1 - 2x_2 + x_4 + x_5 = 2$$

$$-3x_2 + 4x_4 + 2x_5 + x_6 = 4$$

$$x_2 + x_3 + 2x_4 - 3x_5 = 3$$

$$x_j \geqslant 0 \ (j = 1, 2, 3, 4, 5, 6)$$

解:基变量: x_1 , x_6 , x_3 列表求解:

C_J	→	0	2	0	— 5	0	— 1	ь
C_B	X_B	x_1	x_2	x_3	<i>x</i> ₄	x_{5}	<i>x</i> ₆	0
0	x_1	1	-2	0	1	(1)	0	2
$\left -1\right $	x_6	0	— 3	0	4	2	1	4
0	<i>x</i> ₃	0	• 1	1	2	-3	0	3
λ	ij	0	-1	0	-1	2	0	4
0	x_5	1	-2	0	1	1	0	2
$\left -1\right $	x_6	-2	(1)	0	2	0	1	0
0	x_3	3	-5	1	5	0	0	9
λ	ij	-2	3	0	-3	0	0	0
0	x_5	— 3	0	0	õ	1	2	2
2	<i>x</i> ₂	-2	1	0	2	0	1	0
0	x_3	-7	0	1	12	0	5	9
λ	ij	4	0	0 - 31	-9	0	-3	0

因为 σ_1 =4>0, 而 $P_1 \le 0$, 所以该LP问 题是无界解。

对偶理论及灵敏度分析复习题

练习1. 已知原问题最优解为 $X^*=(2, 2, 4, 0)^T$, 试用对偶理论求出其对偶问题的最优解。

$$\max z = 2x_1 + 4x_2 + x_3 + x_4$$

$$\begin{cases} x_1 + 3x_2 & + x_4 \le 8 \\ 2x_1 + x_2 & \le 6 \\ x_2 + x_3 + x_4 \le 6 \\ x_1 + x_2 + x_3 & \le 9 \\ x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

$$y_1 = \frac{4}{5}, y_2 = \frac{3}{5}, y_3 = 1, y_3 = 0$$

练习2. 已知原问题如下。

- (1) 写出其对偶问题;
- (2) 用图解法求解对偶问题;
- (3) 试用对偶理论求出原问题的最优解。

$$\min w = 2x_1 + 3x_2 + 5x_3 + 6x_4$$

$$\begin{cases} x_1 + 2x_2 + 3x_3 + x_4 \ge 2 \\ -2x_1 + x_2 - x_3 + 3x_4 \le -3 \end{cases}$$

$$x_1, x_2, x_3, x_4 \ge 0$$

其对偶问题为 max 8 = 2 y1 + 3 y2

$$\begin{cases} y_1 + 2y_2 \le 2 \\ 2y_1 - y_2 \le 3 \end{cases}$$
 由国外游和 最优额为
$$y_1 + y_2 \le 5$$
 权
$$y_1 - 3y_2 \le 6$$

$$y_1 - 3y_2 \le 6$$

$$y_1, y_2 \ge 7$$

$$y_1, y_2 \ge 7$$

把最优净代入约束方程组中,由于第4个方程代入后为左边为多一至二1~6由于第4个方程代入后为左边为多一至二1~6由对偶理论知序模型中次二0

$$\begin{cases} x_{1} + 2x_{2} + 3x_{3} = 2 \\ 2x_{1} - x_{2} + x_{3} = 3 \end{cases} \Rightarrow \begin{cases} x_{1} = \frac{8}{5} - c \\ x_{2} = \frac{1}{5} - c \\ x_{3} = c \end{cases}$$

$$2x_{1} + 3x_{2} + 5x_{3} = \frac{19}{5}$$

$$2x_{1} + 3x_{2} + 5x_{3} = \frac{19}{5}$$

$$x_{3} = c$$

$$x_{4} = 0$$

C为任务, \$10 (1) 大客客教说母。

3. 已知线性规划问题如下, 试用对偶理论证明该问题无最优解。

$$\max z = x_1 + x_2$$

$$\begin{cases} -x_1 + x_2 + x_3 \le 2 \\ -2x_1 + x_2 - x_3 \le 1 \end{cases}$$

$$x_1, x_2, x_3 \ge 0$$

对偶问题的性质: 无界性

若原问题(对偶问题)为无界解,则对偶问题(原问题)为无可行解。

注:此性质的逆不成立。逆命题正确叙述如下

若原问题(对偶问题)为无可行解,

则对偶问题(原问题)或为无界解,或为无可行解。

因此,本题只需说明对偶问题无可行解,同时原问题有可行解,那么原问题为无界解(即无最优解)。

4. 已知线性规划问题如下, 试用对偶理论证明该问题的最优值不大于30。

$$\max z = 4x_1 + 7x_2 + 2x_3$$

$$\begin{cases} x_1 + 2x_2 + x_3 \le 10 \\ 2x_1 + 3x_2 + 3x_3 \le 10 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

对偶问题的性质: 弱对偶性

设 \bar{X} 为原问题的可行解, \bar{Y} 为对偶问题的可行解,

则 $C\bar{X} \leq \bar{Y}b$

推论:

- (1)max问题任一可行解的目标值为min问题目标值的一个下界;
- (2)min问题任一可行解的目标值为max问题目标值的一个上界。

先求出对偶问题的一个可行解为(y1,y2)=(2,1),其目标函数值为30,再由对偶问题性质可得证。

或者也可以:

写出对偶问题;

图解法求出对偶问题的最优解,为(2,1),最优值为30; 由对偶理论知,该对偶问题最优值为原问题的最优值的一个上界。

5. 已知下面线性规划的最优解为 $X^*=(-5, 0, -1)$, 试用对偶理论求出其对偶问题的最优解。

$$\min z = 2x_1 - x_2 + 2x_3$$

$$\begin{cases} -x_1 + x_2 + x_3 = 4 \\ -x_1 + x_2 - x_3 \le 6 \end{cases}$$

$$\begin{cases} x_1 \le 0, x_2 \ge 0, x_3 \pm 6$$

灵敏度分析练习

1.已知LP问题 $\max z = 2x_1 - x_2 + x_3$

$$\begin{cases} x_1 + x_2 + x_3 \le 6 \\ -x_1 + 2x_2 \le 4 \\ x_1, \dots, x_3 \ge 0 \end{cases}$$

先用单纯形法求出最优解,再分析下列条件下最优解的变化:

- (1) 目标函数变为 $\max z = 2x_1 + 3x_2 + x_3$
- (2)约束条件右端项由 $\begin{pmatrix} 6 \\ 4 \end{pmatrix}$ 变为 $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$
- (3) 增加一个约束 $-x_1 + 2x_3 \ge 2$

2.已知LP问题

$$\max z = 2x_1 + 3x_2 + x_3$$

$$\begin{cases} x_1 + x_2 + x_3 \le 3 \\ x_1 + 4x_2 + 7x_3 \le 9 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- (1) 目标函数变为 $\max z = 2x_1 + 3x_2 + 6x_3$
- (2)约束条件右端项由 $(3,9)^T$ 变为 $(6,9)^T$
- (3) 增加一个新产品 x_6 , $P_6 = (3,3)^T$, $c_6 = 7$
- (4) 确定 c_1 在什么范围变化时,最优解不变。

用单纯形法求解的最终单纯形表如下,试做灵敏度分析:

·			2	3	1	0	0
C_B	基XB	b	x_1	x_2	x_3	x_4	x_5
2	x_1	1	1	0	-1	4/3	- 1/3
3	x_2	2	0	1	2	- 1/3	1/3
	$\sigma_{_{j}}$		0	0	-3	- 5/3	- 1/3

运输问题复习题

用沃格尔法求下面运输问题的初始可行解

销地 产地	B1		B2		В3		B4		产量
A1	1	6		7		5	13	3	14
A2	2	8	13	4	12	2		7	27
A3	19	5		9		10		6	19
销量	22		13		12		13		

用位势法做最优性检验

销地产地	B1		B2		В3		B4		产量	行位势U _i
A1	1	6		7		5	13	3	14	$\mathbf{U_1}$
A2	-L	8		4		2	13	7	27	U_2
A2	2		13		12				21	\mathbf{O}_{2}
A3		5		9		10		6	19	TT
AS	19								19	U_3
销量	22		13		12		13			
列位势V _j	$\mathbf{V_1}$		$\mathbf{V_2}$		V_3		${ m V_4}$			

设行位势为 u_i , 列位势为 v_i ,

非基变量检验数计算公式为 $\sigma_{ij} = c_{ij} - u_i - v_j$,

由基变量的 $\sigma_{ij} = 0$,

可知对数字格有 $c_{ij} = u_i + v_j$,

由此可以解出 u_i 和 v_i ,

再由此计算非基变量的检验数。

用位势法做最优性检验

销地产地	B1		B2		В3		B 4		产量	行位势Ui
A 1	1	6		7		5	13	3	14	$\mathbf{U_{1}}$
A2	2	8	13	4	12	2		7	27	$\mathbf{U_2}$
А3	19	5		9		10		6	19	$\mathrm{U_3}$
销量	22		13		12		13			
列位势V _j	V	, 1	V ₂		V_3		V_4			

非基变量检验数计算公式为

$$\sigma_{ij} = c_{ij} - u_i - v_j ,$$

$$\begin{cases} u_1 + v_1 = 6 \\ u_1 + v_4 = 3 \\ u_2 + v_1 = 8 \\ u_2 + v_2 = 4 \\ u_2 + v_3 = 2 \\ u_3 + v_1 = 5 \\ 令 u_1 = 0, \end{cases}$$
可解出 u_i 和 v_i

整数规划复习题

由图解法知最优解为: $x_1 = 3/2$, $x_2 = 10/3$, Z = 29/6

现求整数解(最优解):如果用 舍入取整法可得到4个点,即 (1,3),(2,3),(1,4),(2,4)。 显然,它们都不可能是整数 规划的最优解。

整数规划的可行解必定在其松 弛问题可行域内且为整数点。 故整数规划问题的可行解集是 一个有限集,如右图所示。 其中(2,2),(3,1)点的目标函数 值最大,即为Z=4。

整数线性规划解的特点

- 松弛问题作为一个线性规划,其可行域为凸集,任意两个可行解的凸组合仍是可行解。
- 整数规划问题的可行解集合是其松弛问题可行解集合的一个子集,任意两个可行解的凸组合不一定满足整数约束,因而不一定仍为可行解。
- 整数规划问题的可行解一定是它的松弛问题的可行解(反之不一定),因此前者最优解的目标函数值不会优于后者最优解的目标函数值。

0-1型整数规划

▶ 0-1变量

0-1变量常被用来表示系统是否处于某个特定状态,或者决策时是否取某个特定方案。例如:

$$x = \begin{cases} 1, & \exists \mathbb{R} \mathbb{R} \\ 0, & \exists \mathbb{R} \mathbb{R} \end{cases}$$

当问题有多项要素,每项要素皆有两种选择时,可用一组0-1变量来描述。设问题有有限项要素 E_1 , E_2 ,----, E_{n_1} 其中每项 E_j 有两种选择 A_j 和不选择 A_j (j=1,2,----,n),则令

$$x_{j} = \begin{cases} 1, & \textit{若}E_{j}$$
选择 $A_{j} \\ 0, & \textit{若}E_{j}$ 选择 $\overline{A}_{j} \end{cases} \quad (j = 1, 2, \dots, n)$

1. 投资场所的选定

例4 某公司拟在东、南、西三区的7个位置选点建立门市部。规定:

在东区,由 A_1 , A_2 , A_3 三个点中至多选两个;

在南区,由 A_4 , A_5 两个点中至少选一个;

在西区,由 A_6 , A_7 两个点中至少选一个。

若选用 A_i 点,则需投资 b_i 元,每年可获利 c_i 元,但总投资额不超过B元。应选择哪几个点可使年利润最大?

解: 设
$$x_j = \begin{cases} 1, & \text{若选择第} j \land \text{点} \\ 0, & \text{若不选择第} j \land \text{点} \end{cases}$$
 $(j = 1, 2, \dots, 7)$

$$\max z = \sum_{i=1}^{7} c_i x_i$$

2. 相互排斥的约束条件

(1) 两个约束中,只有一个起作用。

例:
$$a_{11}x_1 + a_{12}x_2 < B_1$$
 $a_{21}x_1 + a_{22}x_2 < B_2$

引入0-1变量 y_1, y_2 和足够大的正数M,则

$$a_{11}x_1 + a_{12}x_2 < B_1 + M_1y_1$$
 $a_{21}x_1 + a_{22}x_2 < B_2 + M_2y_2$
 $y_1 + y_2 = 1$

3. 固定费用问题

例 固定费用问题

单耗量 产品 资源	I	II	III	资源量
A	2	4	8	500
В	2	3	4	300
С	1	2	3	100
单件可变费用	4	5	6	
固定费用	100	150	200	
单件售价	8	10	12	

解:设 X_j 是第j种产品的产量。

 Y_j 是0-1变量, Y_j =1表示生产第j种产品。

$$\max Z = 4X_1 + 5X_2 + 6X_3 - 100Y_1 - 150Y_2 - 200Y_3$$

$$\begin{cases} 2X_1 + 4X_2 + 8X_3 \leq 500 \\ 2X_1 + 3X_2 + 4X_3 \leq 300 \\ X_1 + 2X_2 + 3X_3 \leq 100 \\ X_1 \leq M_1Y_1 \\ X_2 \leq M_2Y_2 \\ X_3 \leq M_1Y_3 \\ X_1, X_2, X_3 \geq 0, \quad Y_1, Y_2, Y_3 为 0 - 1 变量 \end{cases}$$

目标规划数学模型的基本概念

1. 偏差变量(用来表明实际值同目标值之间的差异)

正偏差变量:表示决策值超过目标值的部分,记为 d^+

负偏差变量:表示决策值未达到目标值的部分,记为d-

因为决策值不可能既超过目标值,同时又未达到目标值,所以 d⁺和 d⁻至少有一个为零,即存在如下关系:

- (1) $d^+ > 0$, $d^- = 0$ (决策值超过目标值)
- (2) $d^{-} > 0$, $d^{+} = 0$ (决策值未达到目标值)
- (3) $d^+ = d^- = 0$ (决策值等于目标值)

2. 绝对约束和目标约束

(1) 绝对约束:必须严格满足的约束条件。

绝对约束是硬约束,

不能满足这些约束条件的解为非可行解。

如:线性规划问题中的所有约束条件都是绝对约束。

(2) 目标约束:目标约束是目标规划特有的。

目标约束是软约束,在达到此目标值时允许发生正偏差或负偏差,因此在这些约束的左端要加入正偏差、负偏差变量;其约束右端项是要追求的目标值。

- > 也可根据问题的需要将绝对约束变换为目标约束。
- ▶ 线性规划问题的目标函数,在给定目标值和加入正、 负偏差变量后可变换为目标约束。

例如可将例1的

目标函数

 $z = 8x_1 + 10x_2$

变换为目标约束

 $8x_1+10x_2+d_1^--d_1^+=56$

约束条件

 $2x_1 + x_2 \le 11$

变换为目标约束

 $2x_1+x_2+d_2^--d_2^+=11$

5. 目标规划的目标函数

由各目标约束的正、负偏差变量及相应的优先因子和权系数构成。

当每一目标值确定后,决策者要求尽可能缩小偏离目标值,所以目标规划的目标函数只能是极小化,即:

$$\min \ z = f(d^+, d^-)$$

其基本形式有三种:

- (1) 希望恰好达到目标值
- (2) 希望不超过目标值
- (3) 希望不低于目标值

(1) 要求恰好达到目标值,即正、负偏差变量都要尽可能地小。构造的目标函数是

$$\min \ z = f(d^+ + d^-)$$

(2) 要求不超过目标值,但允许达不到目标值,即只有使正偏差量要尽可能地小(实现最少或为零)

$$\min \ z = f(d^+)$$

(3) 要求不低于目标值,即超过量不限。要求超额完成规定目标,要实现负偏差量为零或为最小

$$\min \ z = f(d^-)$$

1. 由于产品 I 销售疲软, 故希望产品 I 的产量不超过产品 II 的产量;

$$\min z = P_1 d_1^+$$

$$x_1 - x_2 + d_1^- - d_1^+ = 0$$

3. 尽可能充分利用设备台时, 但不加班;

$$\min z = P_2(d_2^- + d_2^+)$$

$$x_1 + 2x_2 + d_2^- - d_2^+ = 10$$

4. 利润额不小于 56 元。

$$\min z = P_3 d_3^-$$

$$8x_1 + 10x_2 + d_3^- - d_3^+ = 56$$

图论复习

图T=(V,E),点数|V|=n,边数|E|=m,则下列 关于树的说法是等价的。

- (1) T是一个树。
- (2) **T**无圈,且m=n-1。
- (3) **T**连通,且m=n-1。
- (4) T无圈,但每加一新边即得惟一一个圈。
- (5) T连通,但任舍去一边就不连通。
- (6) T中任意两点,有惟一链相连。

最小支撑树问题

用Dijkstra方法求下图v₁到各点的最短距离及最短路线。

练习:

1. 用Dijkstra算法求下图从v₁到v₆的最短距离及路线。

 v_1 到 v_6 的最短路为: $v_1 \rightarrow v_2 \rightarrow v_5 \rightarrow v_6$

$$v_1 \rightarrow v_2 \rightarrow v_5 \rightarrow v_6$$

例 求下图中 $S \rightarrow t$ 的最大流量,并找出最小截集。

一条增广链为 $S \rightarrow v_1 \rightarrow v_3 \rightarrow t$, 流量可增加1, 可得下图

再寻找增广链为 $S \rightarrow v_2 \rightarrow v_1 \rightarrow v_3 \rightarrow v_4 \rightarrow t$, 流量调整1,可得下图

作业: 求下图 $s \rightarrow t$ 的最大流,并找出最小截集 (课后习题11.12, P327)

一笔画问题

给定一个连通多重图G,

- 若存在一条链**,过每边**一次且仅一次,则称这条 链为<mark>欧拉链</mark>。
- 若存在一个简单圈,过每边一次且仅一次,称这个圈为欧拉圈。
- 一个图若有欧拉圈,则称为欧拉图。
- 显然,一个图若能一笔画出,这个图必是欧拉图 或含有欧拉链(出发点与终止点是否相同)。

定理9 连通多重图G有欧拉圈,当且仅当G中无奇点。

推论 连通多重图G有欧拉链, 当且仅当G恰有两个奇点。

M/M/1排队模型练习

练习1. 某车间的工具仓库只有一个管理员,平均有4人/h来领工具,到达过程为Poisson流;领工具的时间服从负指数分布,平均为6min。试求

- (1) 仓库内没有人领工具的概率
- (2) 仓库内领工具的工人的平均数
- (3) 排队等待领工具的工人的平均数
- (4) 工人在系统中的平均花费时间
- (5) 工人平均排队时间

解: 本题属于M/M/1系统

$$\lambda = 4$$
 , $\mu = \frac{60}{6} = 10$, $\rho = \frac{\lambda}{\mu} = 0.4$

(1) 仓库内没有人领工具的概率

$$P_0 = 1 - \rho = 1 - 0.4 = 0.6$$

(2) 仓库内领工具的工人的平均数

$$L_s = \frac{\rho}{1-\rho} = \frac{0.4}{1-0.4} = \frac{2}{3}(\text{L})$$

(3) 排队等待领工具的工人的平均数

$$L_q = \frac{\rho^2}{1-\rho} = \frac{4}{15}(\text{A})$$

(4) 工人在系统中的平均花费时间

$$W_s = \frac{L_s}{\lambda} = \frac{2}{3} \cdot \frac{1}{4} = 10 \text{(min)}$$

(5) 工人平均排队时间

$$W_q = \frac{L_q}{\lambda} = \frac{4}{15} \cdot \frac{1}{4} = 4 \text{(min)}$$

- (6) 仓库内恰有3人来领工具的概率
- (7) 仓库内至少有1个人的概率
- (8) 顾客在仓库内逗留时间超过10min的概率

解: (6) 仓库内恰有3人来领工具的概率为

$$P_3 = (1 - \rho)\rho^3 = (1 - \frac{2}{5})(\frac{2}{5})^3 = 0.038$$

(7) 仓库内至少有1个人的概率为

$$P\{N \ge 1\} = 1 - P_0 = \rho = \frac{2}{5} = 0.4$$

- (6) 仓库内恰有3人来领工具的概率
- (7) 仓库内至少有1个人的概率
- (8) 顾客在仓库内逗留时间超过10min的概率

解: (8) 顾客在仓库内逗留时间超过10min的概率

顾客在系统中的逗留时间T,服从参数为 $\mu - \lambda$ 的负指数分布 ,即有

$$P\left\{T>t\right\}=e^{-(\mu-\lambda)t} \qquad t\geq 0$$

$$\therefore P\{T > 10\} = e^{-\frac{1}{6}(10-4)} = e^{-1} = 0.3679$$

练习2. 某单人理发店顾客到达为Poisson流,平均到达间隔为20分钟,理发时间服从负指数分布,平均为15分钟。求:

- (1) 顾客来理发不必等待的概率
- (2) 理发店内顾客平均数
- (3) 顾客在理发店内平均逗留时间
- (4) 若顾客在店内平均逗留时间超过1.25小时,则店主将考虑增加设备及理发师,那么平均到达率提高多少时店主才会考虑增加呢?

解: 本题属于M/M/1系统

$$\lambda = 3$$
 , $\mu = \frac{60}{15} = 4$, $\rho = \frac{\lambda}{\mu} = \frac{3}{4}$

(1) 顾客来理发不必等待的概率

$$p_0 = 1 - \rho = 1 - 0.75 = 0.25$$

(2) 理发店内顾客平均数

$$L_s = \frac{\rho}{1-\rho} = \frac{\lambda}{\mu - \lambda} = \frac{3}{4-3} = 3(\lambda)$$

(3) 顾客在理发店内平均逗留时间

$$W_s = \frac{1}{\mu - \lambda} = \frac{1}{4 - 3} = 1$$
(小时)

(4) 由
$$W_s = \frac{1}{\mu - \lambda} > 1.25$$
 可得

$$\lambda > 3.2$$

$$\therefore 3.2 - 3 = 0.2(人/小时)$$

平均到达率提高0.2人/小时,店主才会考虑增加.

