<u>Announcements</u>

HW9 posted (due Fri. 4/18 @ 9am)

Late drop deadline is this Friday

Still figuring out the homework grading; thanks for your patience

Midterm 3: Wed 4123, 7:00-8:30pm, Sidney Lu 1043

Galois groups of polynomials

Recall: The discriminant of f(x) & F[x] is

$$D = \prod_{i < j} (\alpha_i - \alpha_j)^2$$

where a; are the roots of F in K:=Sp_(f).

Prop: D=0 F is inseparable.

Prop: DeF

(in fact, D can be written in terms of the coefficients of f)

Fix a sqrt:
$$K = F(x_1, ..., x_n)$$

$$V = F(x_1, ..., x_n)$$

$$V = F(x_0, ..., x_n)$$

Assume Char F + 2 from now on

then 30 ED W/ 0 (10) = -10. Thus, 10 & F e.g. 0=(12)

Prop: GEAN COTEF

 \Box

Now let's find some Galois gps.

f(x) + F[x] sep. of deg. n, K:= Spff, G:= Gal(k/f)

N=5: £(x)=x2+1x+c

If Fred., K=F, G=id = Az

If f irred., then [K:F]=2, G=76/271 = S2

 $K = F(\sqrt{0}) = F(\sqrt{1-4}) = F(\sqrt{1-4})$

 $\left(\begin{array}{ccc} Roots & are & -\frac{1}{2}\sqrt{l_2-4c} \end{array}\right)$

 $N=3: f(x) = x^3 + \alpha x^2 + bx + c$ G \(\(\sigma \)

If f red., see case above

Assume f irred. Sz has lots of subgps. What could G be?

Def: A group G acts transitively on a set A if Ga = A for any/all $a \in A$.

Prop: If feF[x] irred., K=Spff,

Gal(K/F) acts transitively on the cet of roots of f.

Pf: Let
$$Ga = \{a_{11},...,a_{k}\}$$
. If $\sigma \in G$, σ permutes Ga , so $\sigma(e_{i}(a_{i1},...,a_{k})) = e_{i}(\sigma(a_{i1}),...,\sigma(a_{k}))$

$$= e_{i}(a_{i1},...,a_{ik})$$

This mean that
$$e_i(a_{11}, -, d_k) \in Fix G = F$$
, so

$$F(x - x_i) = x^k - e_i(a_{11}, -, d_k) + - ... + (-1)^k e_k(a_{11}, -, d_k) \in F(x).$$
 $i = 1$

Since this divides f, it must equal f, so Gacts trusitively

Transitive subgps. of S3:

$$\chi^{3}-3\chi-1$$
 $D=81$ $\sqrt{0}=9\in \mathbb{Q} \implies G=C_{3}$

$$X^3-3x+1 \quad D=-135 \quad \sqrt{D} \notin \mathbb{Q} \implies \mathbb{G}=S_3$$

both irred. since

$$f(x) = x_A + \alpha x_3 + \rho x_5 + cx + \varphi$$

Substitute y = x + a/y to get

$$g(y) = y^{4} + py^{2} + qy + r$$
(where $p_{1}q_{1}r$ are functions of $a_{1}b_{1}c_{1}d$)

(Same splitting field, same discriminant, same Galois gp.)

If 9 has a linear factor, see above cases

If g is the product of two irred. quadratic factors w/ disc. D, L Dz, then $K = F(JD_1, JD_2)$ and

If 9 is irred., then G is a transitive subgp. of Sy let 9 have roots α_1 , α_2 , α_3 , α_4 Then G must be one of S_4 , A_4 $D_8 = \{1, (1324), (12)(34), (1423), (13)(24), (14)(23), (12)(34)\}$ and $V = \{1, (12)(34), (13)(24), (14)(23)\}$ and $C = \{1, (1234), (13)(24), (1432)\}$ and $C = \{1, (1234), (13)(24), (1432)\}$ and $C = \{1, (1234), (13)(24), (1432)\}$

Let $\Theta_1 = (\alpha_1 + \alpha_2)(\alpha_3 + \alpha_4)$ $\Theta_2 = (\alpha_1 + \alpha_3)(\alpha_2 + \alpha_4)$ $\Theta_3 = (\alpha_1 + \alpha_4)(\alpha_2 + \alpha_3)$ Generalized these

These are the roots of the <u>resolvent</u> cubic $h(x) := x^3 - 2px^2 + (p^2 - 4r)x + q^2$

for g.

h has the same discriminant D as g (and f). and $Gal(h) \leq Gal(g) = g$

- If h is irred and $\sqrt{D} \notin F$, then $Gal(h) = S_3$, and $G \notin A_4$, so $G = S_4$.
- If h is irred and $\sqrt{0} \in F$, then $Gal(h) = A_3$, and $G \subseteq A_4$, so $G = S_4$.
- If h splits into linear factors, then $\theta_1, \theta_2, \theta_3 \in F = Fix G$, so G = V
- If h has an irred. quadratic factor, then precisely one of θ_1 , θ_2 , θ_3 is in F. Depending on which one, and whether g is irred. over $F(\sqrt{0})$, we have G=Dp or C or a conjugate of one of them.