

Nature 445, 515-518

Ming, Elena

Introduction

Experiment implement-deation

The model

Numerical simulation Property of the

Reproduce resi

Conclusion

Resolving photon number states in a superconducting circuit

Ming Lyu, Elena de la Hoz Lopez-Collado

Final projects for ELE456 at Princeton

May 11, 2017

Nature 445, 515-518

Ming, Elena

Introductio

Experimentimplementimplemention

Cavity QED

The mode
Driving terms
Measurement

Numerical simulation Property of the cavity Reproduce resu

Discussion

Conclusi

- Introduction
- Experiment implementdeation
 - Cavity QED
- The model
 - Driving terms
 - Measurement
- Mumerical simulation
 - Property of the cavity
 - Reproduce results
- Discussion
- 6 Conclusion

Outline

Nature 445, 515-518

Ming, Elen

Introduction

Experimen implement deation

Cavity QED

The model
Driving terms
Measurement

Numerical simulation Property of the cavity Reproduce resul

Discussion

- Resolve photon number states in a circuit QED
- $\hbox{ \begin{tabular}{l} System: superconducting qubit $+$ microwave transmission line \end{tabular} }$
- Strong dispersive regime
- Spectroscopic measurements:
 Qubit's spectral lines different for each photon number state

The system: circuit QED + cavity QED

Nature 445, 515-518

Ming, Elena

Introduction

Experiment implement-deation

The model

simulation
Property of the cavity
Reproduce resu

Discussio

Conclusion

Image from Schuster, D. I., et al. "Resolving photon number states in a superconducting circuit." Nature 445.7127 (2007): 515-518.[3]

The system: simplified

Nature 445, 515-518

Ming, Elena

Introduction

Experiment implement-deation

The mode

Numerical simulation Property of the cavity Reproduce result

Discussion

Conclusion

Image from Blais, Alexandre, et al. "Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation." Physical Review A 69.6 (2004): 062320.[1]

Cavity QED: the Hamiltonian

Nature 445, 515-518

Ming, Elena

Introductio

Experimentimplementdeation

Cavity QED

The model

Driving terms

Numerical simulation Property of the cavity

Discussion

Conclusio

Hamiltonian

$$H = \omega_r \left(a^{\dagger} a + \frac{1}{2} \right) + \omega_a \frac{\sigma^z}{2} + g \left(a^{\dagger} \sigma^- + a \sigma^+ \right)$$

- ω_r : cavity resonance frequency
- ω_a : qubit transition frequency
- g: strength qubit-photon coupling
- $\Delta = \omega_r \omega_a$: detuning between qubit and cavity

Strong Dispersive Regime

Nature 445, 515-518

Ming, Elena

Introduction

Experiment implement-deation

Cavity OED

The model

Driving terms

Numerical simulation Property of the cavity

Discussion

Conclusion

Image from Schuster, D. I., et al. "Resolving photon number states in a superconducting circuit." Nature $445.7127\ (2007):\ 515-518.[3]$

Strong dispersive Regime: Diagonalization

Nature 445, 515-518

Ming, Elen

Introduction

Experiment implement-deation

Cavity QED

The model

Driving terms Measurement

Numerical simulation Property of the cavity Reproduce resu

Discussion

Conclusion

• Transformation:

$$U = \exp\left(\frac{g}{\Delta} \left(a\sigma^{+} - a^{\dagger}\sigma^{-}\right)\right)$$

• Hamiltonian to first order in $\frac{g}{\Delta}$ (dispersive regime):

$$H_0 = U H U^{\dagger}$$

$$\simeq \omega_r \left(a^{\dagger} a + \frac{1}{2} \right) + \omega_a \frac{\sigma^z}{2} + \chi \left(a^{\dagger} a + \frac{1}{2} \right) \frac{\sigma^z}{2}$$

where
$$\chi = g/\Delta^2$$

Nature 445, 515-518

Ming, Elen

Introduction

Experiment implement-deation

The mode

Numerical simulation Property of the cavity

Discussion

Image from Schuster, D. I., et al. "Resolving photon number states in a superconducting circuit." Nature 445.7127 (2007): 515-518.[3]

Driving terms

Nature 445, 515-518

Ming, Elen

Introductio

Experimentimplement deation

Cavity QED

The model
Driving terms
Measurement

Numerical simulation Property of the cavity Reproduce resul

Discussio

Conclusio

To conduct a measurement we first drive the cavity:

$$H_{\rm rf} = \epsilon_{\rm rf} \left(a^{\dagger} {\rm e}^{-{\rm i}\omega_{\rm rf}t} + a {\rm e}^{{\rm i}\omega_{\rm rf}t} \right)$$

with $\omega_{\rm rf}$ near ω_r

 The frequency shift of the qubit measured with a sweeping signal

$$H_s = \epsilon_s \left(a^{\dagger} e^{-i\omega_s t} + a e^{i\omega_s t} \right)$$

with ω_s near ω_a

• Note that relative strength of ϵ_s is not mentioned. We treat it as a perturbation.

Rotating frame and Rotating wave approximation

Nature 445, 515-518

Ming, Elena

Introductio

Experiment implement-deation

Cavity QED

The mode

Driving terms

Measurement

Numerical simulation Property of the cavity Reproduce resu

Conclusion

Applying the transformation

$$U = \exp\left[\frac{g}{\Delta} \left(a\sigma^{+} - a^{\dagger}\sigma^{-}\right)\right]$$

• And moving to the rotating frame:

$$U_I = \exp\left[it\left(\omega_{\rm rf}a^{\dagger}a + \omega_s\sigma^z/2\right)\right]$$

Under rotating frame, H_{rf} and H_s are (with RWA):

$$H_{\mathsf{rf}} = \epsilon_{\mathsf{rf}} \left(a^{\dagger} + a \right)$$

$$H_{s} = \left(\frac{g}{\Delta} \right) \epsilon_{s} \left(\sigma^{+} + \sigma^{-} \right)$$

Final Hamiltonian and collapse operators

Nature 445, 515-518

Ming, Elen

Introductio

Experiment implementdeation Cavity QED

The mode
Driving terms
Measurement

Numerical simulation Property of the cavity Reproduce resu

Discus

Conclusion

Full Hamiltonian:

$$\begin{split} H = & \omega_r \left(a^\dagger a + \frac{1}{2} \right) + \omega_a \frac{\sigma^z}{2} + \chi \left(a^\dagger a + \frac{1}{2} \right) \frac{\sigma^z}{2} \\ & - \left(\omega_{\rm rf} a^\dagger a + \omega_s \frac{\sigma^z}{2} \right) + \epsilon_{\rm rf} \left(a^\dagger + a \right) + \epsilon_s \frac{g}{\Delta} \left(\sigma^+ + \sigma^- \right) \end{split}$$

- Collapse operator:
 - Collapse operators cavity: $\sqrt{\kappa \left(1+n_{\mathsf{th}}\right)}a$, $\sqrt{\kappa n_{\mathsf{th}}}a^{\dagger}$
 - Collapse operator qubit: $\sqrt{\gamma}\sigma^-$
 - Dephasing: $\sqrt{\gamma_\phi}\sigma^z$

Measurement

Nature 445, 515-518

Ming, Elena

Introductio

Experimer implement deation Cavity QED

The mode
Driving terms
Measurement

Numerical simulation Property of the cavity Reproduce resu

Discussio

Conclusio

• In the experiment, the transmitted amplitude at frequency $\omega_{\rm rf}$ is the main observable under steady state.

Steady state

$$\dot{\rho}_s = 0 = -\mathrm{i}[H, \rho_s] + \sum_n \left(2C_n \rho_s C_n^{\dagger} - \{ \rho_s, C_n^{\dagger} C_n \} \right)$$

• What they really measure is the expectation of the electrical field $E \propto \langle a+a^\dagger \rangle$ [2] on a given frequency

$$E \propto \langle a + a^{\dagger} \rangle = \text{Tr}[\rho_s(a + a^{\dagger})]$$

Property of the cavity: Analytical

Nature 445, 515-518

Ming, Elena

Introduction

Experimen implement deation

Cavity QED

The mode

Numerical simulation Property of the cavity

Reproduce resu

Conclusion

 Without the qubit, the cavity state is equivalently a damped harmonic oscillator with driving

$$H = \delta a^{\dagger} a + \epsilon (a + a^{\dagger})$$

Collapse operators: $\sqrt{\kappa(n_{\rm th}+1)}a$ and $\sqrt{\kappa n_{\rm th}}a^{\dagger}$

- When it's off resonant, its steady state is not but approximately a coherent state
- Analytically the photon number expectation value is

$$\bar{n} = \frac{\epsilon^2}{\delta^2 + \kappa^2/4} + n_{\mathsf{th}}$$

Property of the cavity: Numerical

Nature 445, 515-518

Ming, Elena

Introductio

Experiment implementdeation Cavity QED

The model
Driving terms
Measurement

Numerical simulation Property of the cavity

Discussion

- Numerically, a truncate on Fock space is needed
- To check the validity of the truncate, we plot the photon distribution and frequency response of the cavity.

Direct spectroscopic observation of quantized cavity photon number

Nature 445, 515-518

Ming, Elena

Introductio

Experiment implement-deation

Cavity QED

The model
Driving terms

Numerical simulation Property of the cavity Reproduce results

C l

For a fixed driving $\epsilon_{\rm rf}$, plot the reduction $V_0 - \langle a^\dagger + a \rangle_{\rm ss}$ v.s. ω_s .

 $\epsilon_{\rm rf}$ is labeled by \bar{n} with relationship:

$$\bar{n} = n_{\mathsf{th}} + \frac{\epsilon_{\mathsf{rf}}^2}{\delta^2 + \kappa^2/4}$$

Direct spectroscopic observation of quantized cavity photon number: compare

Nature 445, 515-518

Ming, Elena

Introduction

Experimentimplementimplementon

The model

Numerical simulation Property of the cavity Reproduce results

Discussion

• Fits well with small \bar{n} , but other noise becomes significant for larger \bar{n}

Strengthen?

Nature 445, 515-518

Ming, Elena

Introduction

implementdeation

The model

Numerical simulation Property of the cavity

Reproduce results

Conclusion

For small signal, there's a range where the transmitted amplitude is increased. We'll explain it later.

Thermal Drive

Nature 445, 515-518

Ming, Elena

Introductio

Experimentimplementimplement

The mode

Numerical simulation Property of the cavity

Reproduce results

• Thermal Drive is equivalent to setting $n_{\rm th}$ in collapse operator to the driving average, with small $\epsilon_{\rm rf}$ to show the phase lock-in at the given frequency.

Thermal Drive: compare

Nature 445, 515-518

Ming, Elena

Introduction

Experimentimplementimpleation

Cavity QED

The model
Driving terms
Measurement

Numerical simulation Property of the cavity Reproduce results

Conclusio

 Note that there's no thermal drive theory fitting. Our results tracks fewer peaks, but this depends on how they do the measurement, which is not mentioned in the paper.

Discussion: The picture of what happens

Nature 445, 515-518

Ming, Elena

Introductio

Experimentimplementdeation

Cavity QED

The mode

Numerical simulation Property of the cavity Reproduce resi

Discussion

- The peaks shows discreteness in the photon state in the cavity.
- Exciting the qubit making the cavity off-resonance, which results in the reduction?

Discussion: The picture of what happens

Nature 445, 515-518

Ming, Elena

Introductio

Experiment implementdeation Cavity QED

The mode Driving terms Measurement

Numerical simulation Property of th cavity Reproduce res

Discussion

- The peaks shows discreteness in the photon state in the cavity.
- Exciting the qubit making the cavity off-resonance, which results in the reduction? NOT TRUE

Discussion: The picture of what happens

Nature 445, 515-518

Ming, Elena

Introductio

Experiment implement-deation

The model
Driving terms
Measurement

simulation
Property of the cavity
Reproduce result

Discussion

- The peaks shows discreteness in the photon state in the cavity.
- Exciting the qubit making the cavity off-resonance, which results in the reduction? NOT TRUE
- Expected photon number increases at the peaks!

What happens

Nature 445, 515-518

Ming, Elena

Introduction

Experimentimplement-deation

Cavity QED

The model

Driving terms

Measurement

Numerical simulation Property of the cavity Reproduce result

Discussion

- Excitation of the qubit is not the dominant effect, but the polarization of the qubit, which twists the cavity photon state.
- This can be shown from the difference of the Wigner function (quasiprobability distribution on phase diagram) with/without the signal field.

What happens

Nature 445, 515-518

Ming, Elena

Introduction

Experimentimplementdeation

The model
Driving terms
Measurement

Numerical simulation Property of the cavity Reproduce resul

Discussion

- Excitation of the qubit is not the dominant effect, but the polarization of the qubit, which twists the cavity photon state.
- This can be shown from the difference of the Wigner function (quasiprobability distribution on phase diagram) with/without the signal field.

Conclusion

Nature 445, 515-518

Ming, Elena

Introductio

Experimen implement deation Cavity QED

The mode

Numerica simulation Property of the cavity

Discussio

- Existence of photons in the cavity shifts the qubit frequency, which can be read out by applying the sweeping signal to see the qubit spectrum
- The way the qubit state affects the cavity state is trick: more like polarization of qubit affect the wave function

Conclusion

Nature 445, 515-518

Ming, Elena

Introductio

Experimen implement deation Cavity QED

The model Driving terms Measurement

Numerical simulation Property of the cavity Reproduce resu

- Existence of photons in the cavity shifts the qubit frequency, which can be read out by applying the sweeping signal to see the qubit spectrum
- The way the qubit state affects the cavity state is trick: more like polarization of qubit affect the wave function
- "Approximately" the peak hight can be interpreted as the photon number distribution: "Resolving" photon number
- Potential application of quantum nondemolition measurement (QND)

Reference

Nature 445, 515-518

Ming, Elena

Introduction

Experimentimplementimplement deation

Cavity QED

The model
Driving terms
Measurement

Numerical simulation Property of the cavity Reproduce resu

Discussion

Conclusion

► Alexandre Blais, Ren-Shou Huang, Andreas Wallraff, Steven M Girvin, and R Jun Schoelkopf.

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation.

Physical Review A, 69(6):062320, 2004.

David Isaac Schuster.
 Circuit quantum electrodynamics.
 Yale University, 2007.

▶ DI Schuster, AA Houck, JA Schreier, A Wallraff, JM Gambetta, A Blais, L Frunzio, J Majer, B Johnson, MH Devoret, et al. Resolving photon number states in a superconducting circuit. *Nature*, 445(7127):515–518, 2007.

The End...

Nature 445, 515-518

Ming, Elena

Introductio

Experimen implement deation

The mode

Numerical simulation Property of th cavity

Discussion

Conclusion

Thank you for listening!

Q & A

Josephson junction and superconducting circuit

Nature 445, 515-518

Ming, Elen

The Hamiltonian

$$H = E_c(N - N_g)^2 - E_J \cos \delta$$

- Commutation relationship: $[\delta,N]={\rm i}$, this means ${\rm e}^{\pm {\rm i}\delta}\,|n\rangle=|n\pm 1\rangle$
 - Approximately two-level system: $0 \le N_q \le 1$, N = 0, 1:

$$H = -E_c(1 - 2N_g)\sigma^z - \frac{1}{2}E_J\sigma^x$$

- With coupling, $N_a \longrightarrow N_a + CV_0(a+a^{\dagger})/2e$
- Choose eigen basis at degeneracy point $(N_g=1/2)$, we can have JC model up to some constants.

Energy levels

Nature 445, 515-518

Ming, Elen

Image from Schuster, D. I., et al. "Resolving photon number states in a superconducting circuit." Nature 445.7127 (2007): 515-518.[3]

Measurement

Nature 445, 515-518

In the experiment, the transmitted amplitude at frequency $\omega_{\rm rf}$ is the main observable. The exact way to measure can be found in Schuster's thesis [2]:

• What we really measure is the expectation of the voltage, or electrical field $E \propto \langle a+a^\dagger \rangle$

Wigner function (Wigner quasiprobability distribution)

Nature 445, 515-518

 Wigner function is an analogue of classical probability distribution on phase space

Definition: Wigner function

$$P(x,p) \equiv \frac{1}{(2\pi\hbar)^n} \int d^n y \, \psi(x-y/2) \psi^*(x+y/2) e^{ip \cdot y/\hbar}$$
$$= \frac{1}{(2\pi\hbar)^n} \int d^n y \, \langle x-y/2 | \rho | x+y/2 \rangle e^{ip \cdot y/\hbar}$$

• Marginals:

$$\int d^n p P(x, p) = \langle x | \rho | x \rangle$$
$$\int d^n x P(x, p) = \langle p | \rho | p \rangle$$

Wigner function: properties

Nature 445, 515-518

• Inner product → overlap:

$$|\langle \psi | \varphi \rangle|^2 = 2\pi\hbar \int d^n x d^n p P_{\psi}(x, p) P_{\varphi}(x, p)$$

• Operator Wigner transformation and expectation values:

$$g(x,p) \equiv \int d^n y \langle x - y/2 | G | x + y/2 \rangle e^{ip \cdot y/\hbar}$$
$$Tr[\rho G] = \int d^n x d^n p P(x,p) g(x,p)$$

Cauchy inequality for pure state

$$-\frac{2}{h} \le P(x, p) \le \frac{2}{h}$$