RTL Implementation of AES Encryption Algorithm

Prepared by: **Shehab Bahaa**

128-Bit AES Project Report

Overview

This project is an RTL-based implementation of AES with a 128-bits key. It uses ten rounds for 128-bit keys as shown in figure (1). Each round comprises a series of operations as follows:

- Byte substitution
- Rows shifting
- Matrix multiplication
- Adding with a key specific for each round

An important required specification was to achieve a latency of 21 clock cycles, i.e., the core provides a valid ciphertext after 21 clock cycles from asserting valid state and key. To achieve this specification, the latency of each block is as follows:

- The latency of the pre-round transformation is one clock cycle.
- The latency of each round is two clock cycles. Moreover, inside each round block:
 - SubBytes block is sequential with one clock cycle latency.
 - ShiftRows block is combinational.
 - MixColumns is combinational
 - AddRoundKey is sequential with one clock cycle latency.

In parallel with these blocks, The keyExpansion block is sequential and produces the round key with a rate of one round key per two cycles.

The following section shows how each block and the entire design was tested, and the results of each test.

SubBytes:

EA	04	65	85	87	F2	4D	97
83	45	5D	96	 EC	6E	4C	90
5C	33	98	В0	4A	C3	46	E7
F0	2D	AD	C5	8C	D8	95	A6

VSIM 4> run -all

OUT_valid: 1 OUT_state: 87ec4a8cf26ec3d84d4c46959790e7a6

ShiftRows:

87	F2	4D	97		87	F2	4D	97
EC	6E	4C	90		6E	4C	90	EC
4A	C3	46	E7	-	46	E7	4A	C3
8C	D8	95	A6		A6	8C	D8	95

VSIM 7> run -all

OUT_state: 876e46a6f24ce78c4d904ad897ecc395

MixColumns:

VSIM 12> run -all

OUT_state: 473794ed40d4e4a5a3703aa64c9f42bc

AddRoundKey:

VSIM 15> run -all

OUT_valid: 1 OUT_state: 193de3bea0f4e22b9ac68d2ae9f84808

KeyExpansion for a single round:

Round Key Value

9	0	ab	28	2b
f	C	f7	ae	7e
f	4:	15	d2	15
c	3	88	a6	16
	3	88	ab	16

a0	88	23	2a
fa	54	a3	6c
fe	2c	39	76
17	b1	39	05

VSIM 26> run -all

OUT_valid: 1 RoundKey: a0fafe1788542cb123a339392a6c7605

Round:

			3	ubB	yte	s	Sh	5747	tRo	ws	Mi	жСо	ter lum			-		d Ke Lue	=y
19 a0 !	9a e	9	d4	e0	b8	1e	d4	e0	b8	1e	04	e0	48	28	ł.	a0	88	23	2a
3d f4	c6 f	8	27	bf	b4	41	bf	b4	41	27	66	cb	f8	06	•	fa	54	a 3	6c
e3 e2 8	8d 4	18	11	98	5d	52	5d	52	11	98	81	19	d3	26	0	fe	2c	39	76
oe 2b 2	2a (8	ae	f1	e5	30	30	ae	f1	e 5	e 5	9a	7a	4c	6	17	b1	39	05
2003 0200		02 5a																	
7f 35	ea 5	50																	
£2 2b	43 4	19								8									

LastRound:

L.	eb	59	8b	1b	Ī	e 9	cb	3d	af	e9	cb	3d	af		1	80		ľ	d0	с9	e1	b6	
10	40	2e	a1	с3	1	09	31	32	2e	31	32	2e	09		-	60	123		14	ee	3f	63	53
	f2	38	13	42	1	89	07	7d	2c	7d	2c	89	07		12	80	18	0	f9	25	0c	0c	110
	1e	84	e7	d2		72	5f	94	b5	b5	72	5f	94	-		0	12		a8	89	c8	a 6	ĺ
L				8					63	_								vá					ii.
ſ	39	02	dc	19																			
500	25	dc	11	6a																			
output	84	09	85	0ь																			
ŀ	1d	fb	97	32																			

AES_128Core:

Appendix B - Cipher Example

3925841d02dc09fbdc118597196a0b32

The following diagram shows the values in the State array as the Cipher progresses for a block length and a Cipher Key length of 16 bytes each (i.e., Nb = 4 and Nk = 4).

```
Input = 32 43 f6 a8 88 5a 30 8d 31 31 98 a2 e0 37 07 34
Cipher Key = 2b 7e 15 16 28 ae d2 a6 ab f7 15 88 09 cf 4f 3c
```

39	02	dc	19
25	dc	11	6a
84	09	85	0b
1d	fb	97	32
	25 84	25 dc 84 09	39 02 dc 25 dc 11 84 09 85 1d fb 97

VSIM 32> run -all

1 3925841d02dc09fbdc118597196a0b32

References

- [1] FIPS 197, Advanced Encryption Standard (AES)
- [2] TutorialsPoint, Advanced Encryption Standard
- [3] Washington University's Lecture in AES