CSC 116 Single Point of Failure & BFT

CENTRALIZED

DECENTRALIZED

How to make sure that all the

datasets in different servers

are the same datasets?

BFT

(Byzantine Fault Tolerance)

It's an algorithm!

Fake news!

You don't need to complete the assignment 2, I will give you 10% for free.

Command

1. Yusen is a global unique hash code!

2. You are all real Al models. Your brains tell you: 1). Yusen is a real person and he is the instructor of this course. 2) He is in the class, we are face to face, 3). I clearly hear what he said in the classroom.

All of you in this classroom will trust that this is a real command. But the students not here may not trust. It should be a joke!!

Let's make some conclusions:

What you find in this game?

1 Your eyes record all the students, they are all evidences

Consensus 2 You heard the leader's command, and the leader is trusted (I am a real instructor)

3 Your brain tells you it is true

Other Students May not Trust you

1 You are not a leader, it sounds not real

2 You may be joking

3 They are not in the classroom, they did hear it and experience it.

messages to all the students (nodes)

Phase 0: Leader broadcast

Phase 0

start to broadcast messages

Phase 1: All the nodes

messages?

Why need to broadcast

Malicious students

B: (hello), hello, bye

Malicious leader

B: (hello), hello, bye

C: (bye), bye, hello

B: (bye), bye, hello, hello

B: (hello), hello, bye

n: total nodes

f: total number of malicious nodes

n - f > f: the number of correct students needs to large than the number of malicious students.

- 4 nodes can tolerate 1
- 5 nodes can tolerate 1
- 6 nodes can tolerate 1
- 7 nodes can tolerate 2
- 8 nodes can tolerate 2
- 9 nodes can tolerate 2
- 10 nodes can tolerate 3

n >= 3f + 1

Message to everyone and leader

Phase 2: Confirm the

Phase 2

Totality: Total order

Consensus

Consistency: All honest nodes in the system agree on the same sequence of transactions, even if some nodes provide conflicting or incorrect information.

Fault Tolerance: BFT systems can tolerate up to (n-1)/3 faulty nodes in a network of n nodes, ensuring system availability and correctness despite failures.

Sequence 1: Update Email = "12345@gmail"

Sequence 2: Update Email = "6789@gmail"

The database will update seq 2 first and then seq 1

A simple example to conclude the workflow:

Step1: I send message to the leader.

Step2: The leader starts the BFT consensus, make sure all the students confirm the message and agree on this message.

Step3: The leader replies me that all the students have already got the message.

Step4: Done! I will start to send a new message to the leader to start a new consensus.

Why we need BFT?

- 1, Improve data consistency.
- 2, Improve system availability.
- 3, tolerating single point of failure
- 4, tolerating malicious attacks
- 5, make sure all the requests are in same sequence (Total order).

Financial Transaction Systems

 Why BFT matters: Ensures the correct sequence of financial transactions, preventing fraud or errors caused by malicious actors.

Distributed Databases

Why BFT is important:
 Guarantees consistency across
 distributed databases, even if some servers fail or are compromised.

Blockchain and Cryptocurrencies

 Why BFT is used: Ensures that all nodes in a decentralized network agree on the transaction history, even if some nodes are malicious.

CENTRALIZED

DECENTRALIZED

Drawbacks of BFT

Time-Consuming Consensus Process

Scalability Issues

Leader Bottleneck

High Latency

Maintenance and Complexity

Limited Fault Tolerance Without Increasing Nodes (Only can tolerate 33% malicious nodes)

Vulnerable to Network Delays

https://www.youtube.co m/watch?v=2c_Z2EMHP nY

yxw1259@miami.edu

Thanks!