指数対数·数列

2023.05.29

指数対数(復習十)

- a は正の定数
- \bullet 任意の実数x について a^x が定まる.

$$a^0 = \;\;,\; a^{-n} = \;\;\;\;,\; a^{rac{n}{m}} =$$

- a は正の定数
- \bullet 任意の実数x について a^x が定まる.

$$a^0 = 1, \,\, a^{-n} = \,\,\,\,\,\,\,, \,\, a^{rac{n}{m}} =$$

- a は正の定数
- \bullet 任意の実数xについて a^x が定まる.

$$a^0=1,\ a^{-n}=rac{1}{a^n},\ a^{rac{n}{m}}=$$

- a は正の定数
- \bullet 任意の実数xについて a^x が定まる.

$$a^0=1,\,\,a^{-n}=rac{1}{a^n},\,\,a^{rac{n}{m}}=\sqrt[m]{a^n}$$

- a は正の定数
- \bullet 任意の実数xについて a^x が定まる.

$$a^0=1,\,\,a^{-n}=rac{1}{a^n},\,\,a^{rac{n}{m}}=\sqrt[m]{a^n}$$

• 指数法則

$$(1) a^p a^q = a^{p+q}$$

$$(2) (a^p)^q = a^{pq}$$

$$(3) (ab)^p = a^p b^p$$

 $ullet y = a^x$ のグラフ

- aは正の定数
- \bullet 任意の実数xについて a^x が定まる.

$$a^0=1,\; a^{-n}=rac{1}{a^n},\; a^{rac{n}{m}}=\sqrt[m]{a^n}$$

• 指数法則

$$(1) a^p a^q = a^{p+q}$$

$$(2) (a^p)^q = a^{pq}$$

$$(3) (ab)^p = a^p b^p$$

 $ullet y = a^x$ のグラフ

対数関数

$$ullet y = \log_a x$$

• $y = \log_a x$ aを底,xを真数

• $y = \log_a x$ a を底, x を真数 y を a を底とする x の対数という.

- $y = \log_a x$ a を底,x を真数 y を a を底とする x の対数という.
- 対数yは、aを何乗したらxになるかという数

- $y = \log_a x$ a を底,x を真数 y を a を底とする x の対数という.
- 対数yは,aを何乗したらxになるかという数 $a^{\square}=x$ となる $^{\square}$ のこと

- $y = \log_a x$ a を底, x を真数 y を a を底とする x の対数という.
- 対数yは,aを何乗したらxになるかという数 $a^{\boxed{y}}=x$ となる \boxed{y} のこと

- $y = \log_a x$ a を底, x を真数 y を a を底とする x の対数という.
- 対数yは,aを何乗したらxになるかという数 $a^{\boxed{y}}=x$ となる \boxed{y} のこと

例)
$$y = \log_3 9$$

- $y = \log_a x$ a を底, x を真数 y を a を底とする x の対数という.
- 対数yは,aを何乗したらxになるかという数 $a^{\boxed{y}} = x$ となる \boxed{y} のこと
- 例) $y = \log_3 9$ 3 = 9 となるyのこと

- $y = \log_a x$ a を底,x を真数 y を a を底とする x の対数という.
- 対数yは,aを何乗したらxになるかという数 $a^{\boxed{y}} = x$ となる \boxed{y} のこと
- 例) $y=\log_3 9$ 3 y=9 となる y のこと $3^2=9$ だから

- $y = \log_a x$ a を底,x を真数 y を a を底とする x の対数という.
- $oldsymbol{\bullet}$ 対数 y は,a を何乗したら x になるかという数 $a^{\boxed{y}}=x$ となる \boxed{y} のこと

例)
$$y=\log_3 9$$
 3 $y=9$ となる y のこと $3^2=9$ だから $y=\log_3 9=2$

$$ullet y = \log_a x \Longleftrightarrow a^y = x$$

$$ullet y = \log_a x \Longleftrightarrow a^y = x$$

(例)
$$y = \log_2 16$$

•
$$y = \log_a x \iff a^y = x$$

(例)
$$y = \log_2 16 \iff 2^y = 16$$

•
$$y = \log_a x \iff a^y = x$$

(例)
$$y = \log_2 16 \iff 2^y = 16 = 2^4$$

•
$$y=\log_a x \Longleftrightarrow a^y=x$$
(例) $y=\log_2 16 \Longleftrightarrow 2^y=16=2^4$
 $y=4$ となるから $\log_2 16=4$

•
$$y = \log_a x \iff a^y = x$$

(例)
$$y = \log_2 16 \Longleftrightarrow 2^y = 16 = 2^4$$
 $y = 4$ となるから $\log_2 16 = 4$

• 対数法則

- $(1) \log_a b + \log_a c = \log_a(bc)$
- (2) $\log_a b \log_a c = \log_a \frac{b}{c}$
- (3) $\log_a b^p = p \log_a b$

$$(1)\,\log_{10}5 + \log_{10}2$$

(1)
$$\log_{10} 5 + \log_{10} 2$$
 与式 = $\log_{10} (5 \times 2)$

$$(1)\,\log_{10}5+\log_{10}2$$

与式 =
$$\log_{10}(5 \times 2) = \log_{10} 10$$

$$(1)\,\log_{10}5 + \log_{10}2$$

与式 =
$$\log_{10}(5 \times 2) = \log_{10} 10 = 1$$

- (1) $\log_{10} 5 + \log_{10} 2$ 与式 = $\log_{10} (5 \times 2) = \log_{10} 10 = 1$
- (2) $\log_2 12 \log_2 3$

(1)
$$\log_{10} 5 + \log_{10} 2$$
 与式 = $\log_{10} (5 \times 2) = \log_{10} 10 = 1$

$$(2) \log_2 12 - \log_2 3$$
 与式 = $\log_2(\frac{12}{3})$

$$(1)\,\log_{10}5 + \log_{10}2$$

与式 =
$$\log_{10}(5 \times 2) = \log_{10} 10 = 1$$

$$(2)\,\log_2 12 - \log_2 3$$

与式 =
$$\log_2(\frac{12}{3}) = \log_2 4$$

$$(1)\,\log_{10}5+\log_{10}2$$

与式 =
$$\log_{10}(5 \times 2) = \log_{10} 10 = 1$$

$$(2)\,\log_2 12 - \log_2 3$$

与式 =
$$\log_2(\frac{12}{3}) = \log_2 4 = 2$$

- $(1) \log_{10} 5 + \log_{10} 2$ 与式= $\log_{10} (5 \times 2) = \log_{10} 10 = 1$
- (2) $\log_2 12 \log_2 3$ 与式 $= \log_2 (\frac{12}{3}) = \log_2 4 = 2$
- $(3) \ 2 \log_3 4 + \log_3 4 \log_3 8$

- (1) $\log_{10} 5 + \log_{10} 2$ 与式 = $\log_{10} (5 \times 2) = \log_{10} 10 = 1$
- $(2) \ \log_2 12 \log_2 3$ 与式 $= \log_2 (rac{12}{3}) = \log_2 4 = 2$
- (3) $2\log_3 4 + \log_3 4 \log_3 8$ 与式= $\log_3 4^2 + \log_3 4 \log_3 8$

- $(1) \log_{10} 5 + \log_{10} 2$ 与式= $\log_{10} (5 \times 2) = \log_{10} 10 = 1$
- $(2) \ \log_2 12 \log_2 3$ 与式 $= \log_2 (rac{12}{3}) = \log_2 4 = 2$
- (3) $2 \log_3 4 + \log_3 4 \log_3 8$ 与式 = $\log_3 4^2 + \log_3 4 - \log_3 8$ = $\log_3 \frac{16 \times 4}{8}$

対数の計算

- $(1) \log_{10} 5 + \log_{10} 2$ 与式= $\log_{10} (5 \times 2) = \log_{10} 10 = 1$
- $(2) \ \log_2 12 \log_2 3$ 与式 $= \log_2 (rac{12}{3}) = \log_2 4 = 2$

$$ullet y = \log_a x \Longleftrightarrow a^y = x$$

- $ullet y = \log_a x \Longleftrightarrow a^y = x$
- $\bullet \log_a 1 = , \log_a a =$

- $ullet y = \log_a x \Longleftrightarrow a^y = x$
- $\bullet \log_a 1 = 0, \log_a a =$

- $ullet y = \log_a x \Longleftrightarrow a^y = x$
- $\bullet \, \log_a 1 = 0, \, \log_a a = 1$

- $y = \log_a x \iff a^y = x$
- $\log_a 1 = 0$, $\log_a a = 1$
- 底 a の条件は

- $y = \log_a x \iff a^y = x$
- $\log_a 1 = 0$, $\log_a a = 1$
- 底aの条件は $a>0, a \pm 1$

- $y = \log_a x \iff a^y = x$
- $\bullet \, \log_a 1 = 0, \, \log_a a = 1$
- ullet 底aの条件は a>0, a + 1
- 真数 x の条件は

- $y = \log_a x \iff a^y = x$
- $\bullet \, \log_a 1 = 0, \, \log_a a = 1$
- \bullet 底aの条件は a>0, a
 eq 1
- 真数xの条件は x>0

- $y = \log_a x \iff a^y = x$
- $\bullet \, \log_a 1 = 0, \, \log_a a = 1$
- \bullet 底aの条件は a>0, a
 eq 1
- 真数xの条件は x>0
- ullet 対数 $y = \log_a x$ の値の範囲は

- $y = \log_a x \iff a^y = x$
- $\bullet \, \log_a 1 = 0, \, \log_a a = 1$
- \bullet 底aの条件は a>0, a
 eq 1
- 真数xの条件は x>0
- ullet 対数 $y = \log_a x$ の値の範囲は 実数全部

$$\bullet \ y = \log_a x \Longleftrightarrow a^y = x \ (x = a^y)$$

- $ullet y = \log_a x \Longleftrightarrow a^y = x \; (x = a^y)$
- ullet x と y を入れ替えれば $y=a^x$ のグラフになる.

- $ullet y = \log_a x \Longleftrightarrow a^y = x \; (x = a^y)$
- ullet x と y を入れ替えれば $y=a^x$ のグラフになる.
- これを逆関数という.

- $ullet y = \log_a x \Longleftrightarrow a^y = x \; (x = a^y)$
- ullet x と y を入れ替えれば $y=a^x$ のグラフになる.
- これを逆関数という.
- アプリ「指数と対数」を動かしてみよう

- $ullet y = \log_a x \Longleftrightarrow a^y = x \ (x = a^y)$
- ullet x と y を入れ替えれば $y=a^x$ のグラフになる.
- これを逆関数という.
- アプリ「指数と対数」を動かしてみよう

課題 0529-1 $y = \log_a x$ と $y = a^x$ について () を埋めよ.

- [1] グラフは直線 y=x に関して()
- $[2] \ y = \log_a x \ \mathsf{i} \ \mathsf{i} \ y = a^x \ \mathcal{O} \ \ (\ \ \)$

底をaから別のcに変える公式

$$\log_a b = rac{\log_c b}{\log_c a}$$

底をaから別のcに変える公式

$$\log_a b = \frac{\log_c b}{\log_c a}$$
 $\log_2 3 = \frac{\log_{10} 3}{\log_{10} 2}$

$$\log_2 3 = \frac{\log_{10} 3}{\log_{10} 2}$$

底をaから別のcに変える公式

$$\left|\log_a b = rac{\log_c b}{\log_c a}
ight| \quad \log_2 3 = rac{\log_{10} 3}{\log_{10} 2}$$

例) log₃ 8 を底が 2 の対数に変える

底をaから別のcに変える公式

$$\left|\log_a b = rac{\log_c b}{\log_c a}
ight| \quad \log_2 3 = rac{\log_{10} 3}{\log_{10} 2}$$

$$\log_2 3 = \frac{\log_{10} 3}{\log_{10} 2}$$

例) $\log_3 8$ を底が 2 の対数に変える

$$\log_3 8 = rac{\log_2 \square}{\log_2 \square}$$

底をaから別のcに変える公式

$$\log_a b = \frac{\log_c b}{\log_c a}$$
 $\log_2 3 = \frac{\log_{10} 3}{\log_{10} 2}$

$$\log_2 3 = \frac{\log_{10} 3}{\log_{10} 2}$$

例) $\log_3 8$ を底が 2 の対数に変える

$$\log_3 8 = \frac{\log_2 \boxed{8}}{\log_2 \boxed{3}} = \frac{\log_2 2^3}{\log_2 3} = \frac{3 \log_2 2}{\log_2 3} = \frac{3}{\log_2 3}$$

底をaから別のcに変える公式

$$\left|\log_a b = rac{\log_c b}{\log_c a}
ight| \quad \log_2 3 = rac{\log_{10} 3}{\log_{10} 2}$$

$$\log_2 3 = \frac{\log_{10} 3}{\log_{10} 2}$$

例) $\log_3 8$ を底が 2 の対数に変える

$$\log_3 8 = \frac{\log_2 \boxed{8}}{\log_2 \boxed{3}} = \frac{\log_2 2^3}{\log_2 3} = \frac{3 \log_2 2}{\log_2 3} = \frac{3}{\log_2 3}$$

課題 0529-2 底を変換して計算せよ

Text P193 問 1

$$[1]\,\log_4 32$$

$$[2] \log_9 3$$

$$[1] \log_4 32$$
 $[2] \log_9 3$ $[3] \log_3 2 \log_2 27$

$$[4] \log_a b imes \log_b a$$

● 底が 10 の対数 log₁₀ x

- 底が10の対数 log₁₀ x
- 数値計算ではよく用いられる(対数表,関数電卓)

- 底が 10 の対数 log₁₀ x
- 数値計算ではよく用いられる(対数表,関数電卓)
- $\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$ (近似値)

- 底が10の対数 log₁₀ x
- 数値計算ではよく用いられる(対数表,関数電卓)
- $\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$ (近似値)

例
$$\log_{10} 6 = \log_{10} 2 + \log_{10} 3 = 0.3010 + 0.4771$$

= 0.7781

- 底が 10 の対数 log₁₀ x
- 数値計算ではよく用いられる(対数表,関数電卓)
- $\log_{10} 2 = 0.3010$, $\log_{10} 3 = 0.4771$ (近似値)

例
$$\log_{10} 6 = \log_{10} 2 + \log_{10} 3 = 0.3010 + 0.4771$$

= 0.7781

課題 0529-3 次の値を求めよ

$$[1] \log_{10} 4$$
 $[2] \log_{10} 8$ $[3] \log_{10} \frac{1}{2}$ $[4] \log_{10} 5$

• 100000の桁数は

• 100000の桁数は

6桁

• 100000の桁数は 6桁

• $1000000 = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 10^5$ より

- 100000の桁数は 6桁
- $100000 = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 10^5$ より $\log_{10} 100000 = \log_{10} 10^5$

• 100000の桁数は 6桁

• $100000 = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 10^5$ より $\log_{10} 100000 = \log_{10} 10^5 = 5 \log_{10} 10 = 5$

- 100000の桁数は 6桁
- $100000 = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 10^5$ より $\log_{10} 100000 = \log_{10} 10^5 = 5 \log_{10} 10 = 5$
- 常用対数と桁数

- 100000の桁数は 6桁
- $100000 = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 10^5$ より $\log_{10} 100000 = \log_{10} 10^5 = 5 \log_{10} 10 = 5$
- 常用対数と桁数 桁数 = 常用対数の整数部分 +1

- 100000の桁数は 6桁
- $100000 = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 10^5$ より $\log_{10} 100000 = \log_{10} 10^5 = 5 \log_{10} 10 = 5$
- 常用対数と桁数 桁数 = 常用対数の整数部分 +1

例) 2100 の桁数

- 100000の桁数は 6桁
- $100000 = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 10^5$ より $\log_{10} 100000 = \log_{10} 10^5 = 5 \log_{10} 10 = 5$
- 常用対数と桁数 桁数 = 常用対数の整数部分 +1
- 例) 2^{100} の桁数 $\log_{10} 2^{100} = 100 \log_{10} 2$

常用対数と桁数

- 100000の桁数は 6桁
- $100000 = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 10^5$ より $\log_{10} 100000 = \log_{10} 10^5 = 5 \log_{10} 10 = 5$
- 常用対数と桁数 桁数 = 常用対数の整数部分 +1
- 例) 2^{100} の桁数 $\log_{10} 2^{100} = 100 \log_{10} 2 = 100 \times 0.3010 = 30.10$

常用対数と桁数

- 100000の桁数は 6桁
- $100000 = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 10^5$ より $\log_{10} 100000 = \log_{10} 10^5 = 5 \log_{10} 10 = 5$
- 常用対数と桁数 桁数 = 常用対数の整数部分 +1
- 例) 2100 の桁数

$$\log_{10} 2^{100} = 100 \log_{10} 2 = 100 \times 0.3010 = 30.10$$
よって 31 桁

常用対数と桁数

- 100000の桁数は 6桁
- $1000000 = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 10^5$ より $\log_{10} 1000000 = \log_{10} 10^5 = 5 \log_{10} 10 = 5$
- 常用対数と桁数 桁数 = 常用対数の整数部分 +1

例) 2100 の桁数

$$\log_{10} 2^{100} = 100 \log_{10} 2 = 100 \times 0.3010 = 30.10$$
よって 31 桁

課題 0529-4 330 の桁数を求めよ

Text P196 問 2

• もう1つ,数学では大切な自然対数がある.

- もう1つ,数学では大切な自然対数がある.
- ネイピアの定数eを底とする対数 e=2.718281828

- もう1つ,数学では大切な自然対数がある.
- \bullet ネイピアの定数 e を底とする対数 e=2.718281828
- 自然対数と常用対数の変換

$$\log_e 10 = \frac{\log_{10} 10}{\log_{10} e} = \frac{1}{\log_{10} e}$$

- もう1つ,数学では大切な自然対数がある.
- ullet ネイピアの定数eを底とする対数e=2.718281828
- 自然対数と常用対数の変換

$$\log_e 10 = \frac{\log_{10} 10}{\log_{10} e} = \frac{1}{\log_{10} e}$$

• 詳しくは,微分のときに説明する

数列

• 数の列

 a_1, a_2, \cdots

•数の列

 a_1, a_2, \cdots

KeTMath a_n

• 数の列

 a_1, a_2, \cdots

KeTMath a_n

• ここでは規則的に並んだ数列とする

 $1, \ 3, \ 5, \ 7, \ | \ , \ | \ , \ \cdots$

• 数の列

 a_1, a_2, \cdots

KeTMath a_n

• ここでは規則的に並んだ数列とする

 $1, \ 3, \ 5, \ 7, \ | \ 9 \ |, \ | \ |, \ \cdots$

• 数の列

 a_1, a_2, \cdots

KeTMath a_n

• ここでは規則的に並んだ数列とする

 $1, \ 3, \ 5, \ 7, \ | \ 9 \ |, \ | \ 11 \ |, \ \cdots$

数の列

 a_1, a_2, \cdots

KeTMath a_n

- ここでは規則的に並んだ数列とする $1, 3, 5, 7, 9, 11, \cdots$
- 最初の項を初項という

数の列

$$a_1, a_2, \dots$$
 KeTMath a_n

- ここでは規則的に並んだ数列とする $1, 3, 5, 7, 9, 11, \cdots$
- 最初の項を初項という
- ●最後の項(末項)があるとき,項の数を項数という

 \bullet n を正の整数とするとき,第 n 項を表す式を一般項

 \bullet n を正の整数とするとき,第 n 項を表す式を一般項

例 1) 2, 3, 4, …

一般項(第n項)は

 \bullet n を正の整数とするとき,第 n 項を表す式を一般項

例 1) 2, 3, 4, …

一般項(第n項)はn+1

 \bullet n を正の整数とするとき,第 n 項を表す式を一般項

例 1) 2, 3, 4, \cdots 一般項(第 n 項)は n+1

例 2) 2, 4, 8, …

一般項(第ヵ項)は

 \bullet n を正の整数とするとき,第 n 項を表す式を一般項

例 1) 2, 3, 4, \cdots 一般項(第 n 項)は n+1

例 2) 2, 4, 8, \cdots 一般項(第 n 項)は 2^n

ullet n を正の整数とするとき,第 n 項を表す式を一般項

例 1) 2, 3, 4, …

一般項(第n項)はn+1

例 2) 2, 4, 8, …

一般項(第n項)は 2^n

課題 0529-5 次を求めよ

TextP200 問 1, 問 2

[1] 一般項が $a_n=2^n$ のとき, a_1 から a_5 までの値

[2] 数列 $rac{1}{2},rac{2}{3},rac{3}{4},rac{4}{5},\cdots$ の一般項 a_n

ullet $-1,\ 1,\ -1,\ 1,\ \cdots$ の一般項は $|\ (-1)^n|$

- ullet $-1,\ 1,\ -1,\ 1,\ \cdots$ の一般項は $(-1)^n$
- 1, -1, 1, -1, ・・・の一般項は

- ullet $-1,\ 1,\ -1,\ 1,\ \cdots$ の一般項は $(-1)^n$
- ullet $1, -1, 1, -1, \cdots$ の一般項は $(-1)^{n-1}$

- ullet $-1,\ 1,\ -1,\ 1,\ \cdots$ の一般項は $|\ (-1)^n|$
- ullet $1, -1, 1, -1, \cdots$ の一般項は $(-1)^{n-1}$
- 1, -2, 3, -4, ・・・ の一般項は

- ullet $-1,\ 1,\ -1,\ 1,\ \cdots$ の一般項は $(-1)^n$
- ullet $1, -1, 1, -1, \cdots$ の一般項は $(-1)^{n-1}$
- ullet $1, -2, 3, -4, \cdots$ の一般項は $|(-1)^{n-1}n|$

- ullet $-1,\ 1,\ -1,\ 1,\ \cdots$ の一般項は $|\ (-1)^n|$
- ullet $1, -1, 1, -1, \cdots$ の一般項は $(-1)^{n-1}$
- ullet $1, -2, 3, -4, \cdots$ の一般項は $|(-1)^{n-1}n|$
- 2, 0, 2, 0, … の一般項は

- ullet $-1,\ 1,\ -1,\ 1,\ \cdots$ の一般項は $|\ (-1)^n|$
- ullet $1, -1, 1, -1, \cdots$ の一般項は $(-1)^{n-1}$
- ullet $1, -2, 3, -4, \cdots$ の一般項は $\left| (-1)^{n-1} n \right|$
- ullet $2,\ 0,\ 2,\ 0,\ \cdots$ の一般項は $\left|\ (-1)^{n-1}+1\ \right|$

- ullet $-1,\ 1,\ -1,\ 1,\ \cdots$ の一般項は $|\ (-1)^n|$
- ullet $1, -1, 1, -1, \cdots$ の一般項は $(-1)^{n-1}$
- ullet $1, -2, 3, -4, \cdots$ の一般項は $|(-1)^{n-1}n|$
- ullet $2,\ 0,\ 2,\ 0,\ \cdots$ の一般項は $\left|\ (-1)^{n-1}+1
 ight|$

課題 0529-6 次の数列の一般項はどうなるか.

 $[1] \ 1, \ 0, \ 1, \ 0, \ \cdots \ [2] \ 0, \ 1, \ 0, \ 1, \ \cdots$

差(公差)が等しい数列

例)
$$1,3,5,7,\cdots$$

差(公差)が等しい数列
 例) 1, 3, 5, 7, ···

ullet 初項をa,公差をdとおくと $a,\ a+d,\ a+2d,\ \cdots$,第n項は?

- 差(公差)が等しい数列
 例) 1, 3, 5, 7, ···
- ullet 初項をa,公差をdとおくとa,a+d,a+2d, \cdots ,第n項は?
- ullet 第n項(一般項)は $a_n=a+(n-1)d$

- 差(公差)が等しい数列
 例) 1, 3, 5, 7, ···
- ullet 初項をa,公差をdとおくと $a,\ a+d,\ a+2d,\ \cdots$,第n項は?
- ullet 第n項 $(一般項)は <math>a_n = a + (n-1)d$
- (例) 等差数列 1, 3, 5, 7, … の一般項は

- 差(公差)が等しい数列
 例) 1, 3, 5, 7, ···
- ullet 初項をa,公差をdとおくとa,a+d,a+2d, \cdots ,第n項は?
- ullet 第n項 $(一般項)は <math>a_n = a + (n-1)d$
- (例) 等差数列 $1,\ 3,\ 5,\ 7,\ \cdots$ の一般項は $a_n=1+2$

- 差(公差)が等しい数列
 例) 1, 3, 5, 7, ···
- ullet 初項をa,公差をdとおくとa,a+d,a+2d, \cdots ,第n項は?
- ullet 第n項 $(一般項)は <math>a_n = a + (n-1)d$
- (例) 等差数列 $1,\ 3,\ 5,\ 7,\ \cdots$ の一般項は $a_n=1+2 \boxed{(n-1)}$

等差数列

- 差(公差)が等しい数列
 例) 1, 3, 5, 7, ···
- ullet 初項をa,公差をdとおくとa,a+d,a+2d, \cdots ,第n項は?
- ullet 第n項 $(一般項)は <math>a_n = a + (n-1)d$
- (例) 等差数列 $1,\ 3,\ 5,\ 7,\ \cdots$ の一般項は $a_n=1+2\boxed{(n-1)}=2n-1$

比(公比)が等しい数列
 例)2,6,18,54,…

比(公比)が等しい数列

例)
$$2, 6, 18, 54, \cdots$$

• 初項をa, 公比をrとおくと

$$a,\;ar,\;ar^2,\;\cdots,\;$$
第 n 項 $a_n=$

比(公比)が等しい数列

例)
$$2, \underbrace{6, 18, 54, \cdots}_{\times 3}$$

• 初項をa, 公比をrとおくと

$$a,\ ar,\ ar^2,\ \cdots,\$$
第 n 項 $a_n=\left|a\ r^{n-1}
ight|$

- 比(公比)が等しい数列
 例)2,6,18,54,…
- ullet 初項をa,公比をrとおくと $a,\ ar,\ ar^2,\ \cdots,\$ 第n項 $a_n=egin{array}{c} a\ r^{n-1} \end{array}$
- 例) 等比数列 2, 6, 18, 54, … の一般項は

- 比(公比)が等しい数列
 例)2,6,18,54,…
- ullet 初項をa,公比をrとおくと $a,\ ar,\ ar^2,\ \cdots,\$ 第n項 $a_n=egin{bmatrix} a\ r^{n-1} \end{bmatrix}$
- 例) 等比数列 $2,\ 6,\ 18,\ 54,\ \cdots$ の一般項は $a_n=2\cdot 3^{n-1}$

- 比(公比)が等しい数列
 例)2,6,18,54,…
- $oldsymbol{\bullet}$ 初項をa,公比をrとおくと $a,\ ar,\ ar^2,\ \cdots,\$ 第n項 $a_n=\boxed{a\ r^{n-1}}$
- 例) 等比数列 $2, 6, 18, 54, \cdots$ の一般項は $a_n = 2 \cdot 3^{n-1} = 6^{n-1}$ としない

課題 (等差数列と等比数列)

課題 0529-7 次を求めよ

Text P201,203

- [1] 初項 2,公差 3 の等差数列 $\{a_n\}$ の一般項 a_n
- $[2] \,\, a_{10}$
- [3] 初項 2,公比 -3 の等比数列 $\{b_n\}$ の一般項 b_n
- [4] b_5

初項a,公差d,項数が4の場合で説明する

$$S = a + (a+d) + (a+2d) + (a+3d)$$

初項a,公差d,項数が4の場合で説明する

$$S = a + (a+d) + (a+2d) + (a+3d)$$

$$S = (a+3d) + (a+2d) + (a+d) + a$$

初項a,公差d,項数が4の場合で説明する

$$S = \begin{bmatrix} a \\ (a+3d) \end{bmatrix} + \underbrace{(a+d) + (a+2d) + (a+3d)} + \underbrace{(a+2d) + (a+d) + (a+d)} + \underbrace{(a+d) +$$

2つの式を加えると

初項a,公差d,項数が4の場合で説明する

$$S = \begin{bmatrix} a \\ (a+3d) \end{bmatrix} + \underbrace{(a+d) + (a+2d) + (a+3d)} + \underbrace{(a+2d) + (a+d) + (a+d)} + \underbrace{a}$$

2つの式を加えると

$$2S = (2a + 3d) \times 4$$

初項a,公差d,項数が4の場合で説明する

$$S = \begin{bmatrix} a \\ (a+3d) \end{bmatrix} + \underbrace{(a+d) + (a+2d) + (a+3d)} + \underbrace{(a+2d) + (a+d) + (a+d)} + \underbrace{(a+d) +$$

2つの式を加えると

$$2S=(2a+3d) imes 4$$

したがって $S=rac{4(2a+3d)}{2}$

等差数列の和の公式

初項a,公差d,項数nの等差数列の和Sは

$$S = \frac{n(2a + (n-1)d)}{2}$$

等差数列の和の公式

初項a,公差d,項数nの等差数列の和Sは

$$S = \frac{n(2a+(n-1)d)}{2}$$

$$2a + (n-1)d = a + (a + (n-1)d) =$$
初項 $+$ 末項

等差数列の和の公式

初項a,公差d,項数nの等差数列の和Sは

$$S = \frac{n(2a+(n-1)d)}{2}$$

$$2a + (n-1)d = a + (a + (n-1)d) =$$
初項 $+$ 末項

$$S=rac{項数 imes(初項+末項)}{2}$$

例題)
$$S=1+3+5+7+\cdots+99$$
 を求めよ

例題) $S=1+3+5+7+\cdots+99$ を求めよ

解)項数nを求める.

例題) $S=1+3+5+7+\cdots+99$ を求めよ

解)項数nを求める.

例題) $S=1+3+5+7+\cdots+99$ を求めよ

解) 項数nを求める.

$$a_n = 1 + 2(n-1) = 2n-1$$

- 例題) $S=1+3+5+7+\cdots+99$ を求めよ
 - 解)項数nを求める.

$$a_n = 1 + 2(n-1) = 2n-1$$

$$a_n = 2n - 1 = 99$$
 より

- 例題) $S=1+3+5+7+\cdots+99$ を求めよ
 - 解)項数nを求める.

$$a_n = 1 + 2(n-1) = 2n-1$$

$$a_n=2n-1=99$$
より $n=rac{99+1}{2}=50$

例題) $S=1+3+5+7+\cdots+99$ を求めよ

解)項数nを求める.

$$a_n = 1 + 2(n-1) = 2n - 1$$

$$a_n = 2n - 1 = 99$$
より $n = \frac{99 + 1}{2} = 50$

したがって
$$S=rac{50(1+99)}{2}$$

例題) $S=1+3+5+7+\cdots+99$ を求めよ

解) 項数nを求める.

$$a_n = 1 + 2(n-1) = 2n-1 \ a_n = 2n-1 = 99$$
より $n = \frac{99+1}{2} = 50$

したがって
$$S = \frac{50(1+99)}{2} = 2500$$

例題) $S=1+3+5+7+\cdots+99$ を求めよ

解)項数nを求める.

$$a_n = 1 + 2(n-1) = 2n-1$$

したがって
$$S = \frac{50(1+99)}{2} = 2500$$

課題
$$0529$$
-8 $S=1+2+3+\cdots+100$ について

$$[1]$$
 項数を求めよ $[2]$ 和 S を求めよ