Well-formed formula

Problem Set 2

- 1. Let \mathcal{P} denote propositional logic. Suppose we add to \mathcal{P} the axiom schema $(A \to B)$ for wffs A, B of \mathcal{P} . Comment on the consistency of the resulting logical system obtained. A logic system \mathcal{P} is inconsistent if it is capable of producing \bot using the rules of natural deduction.
- 2. An adequate set of connectives is a set such that for every formula there is an equivalent formula with only connectives from that set. For example, $\{\neg, \lor\}$ is adequate for propositional logic since any occurrence of \land and \rightarrow can be removed using the equivalences

$$\varphi \to \psi \equiv \neg \varphi \vee \psi$$

$$\varphi \wedge \psi \equiv \neg (\neg \varphi \vee \neg \psi)$$

- Show that $\{\neg, \land\}$, $\{\neg, \rightarrow\}$ and $\{\rightarrow, \bot\}$ are adequate sets of connectives. $(\bot \text{ treated as a nullary connective}).$
- Show that if $C \subseteq \{\neg, \land, \lor, \rightarrow, \bot\}$ is adequate, then $\neg \in C$ or $\bot \in C$.
- 3. The binary connective nand, $F \downarrow G$, is defined by the truth table corresponding to $\neg (F \land G)$. Show that nand is complete that is, it can express all binary boolean connectives.
- 4. The binary connective xor, $F \oplus G$ is defined by the truth table corresponding to $(\neg F \land G) \lor (F \land \neg G)$. Show that xor is not complete- that is, it cannot express all binary boolean connectives.
- 5. If a contradiction can be derived from a set of formulae, then the set of formulae is said to be inconsistent. Otherwise, the set of formulae is consistent. Let \mathcal{F} be a set of formulae. Show that \mathcal{F} is consistent iff it is satisfiable.
- 6. Suppose \mathcal{F} is an inconsistent set of formulae. For each $G \in \mathcal{F}$, let \mathcal{F}_G be the set obtained by removing G from \mathcal{F} .
 - (a) Prove that for any $G \in \mathcal{F}$, $\mathcal{F}_G \vdash \neg G$, using the previous question.
 - (b) Prove this using a formal proof.