Föreläsning 9 - Sekvensanalys

Josef Wilzen

2020-09-15

Outline

Associations analys forts.

2 Sekvensanalys

Projekt

Behandla kategoriska attribut

- Betrakta en mängd av flygbiljetter som sålts av ett flygbolag.
 - Transittyp (inrikes, utrikes, ej transit)
 - Avgångspunkt (Linköping, Sundsvall)

Behandla kategoriska attribut

• Transformera attribut till binär form.

Transaction	Transfer =	Transfer =	Transfer =	Origin =	Origin =
ID	No transfer	Domestic	International	Linköping	Sundsvall
1	0	1	0	1	0
2	1	0	0	0	0
3	0	0	1	0	1

• Alt: Transformera till transaktionsform om det behövs.

Problem med kategoriska data

- Om en attribut har många attributvärden leder detta till mindre frekventa binära attribut som inte uppfyller supporttröskeln.
 - Minska ej tröskeln för då ökar antalet frekventa regler väsentligt.
 - Lösning: Gruppera attributvärden på ett logiskt sätt, t.ex. städer i olika län eller regioner.
- Om det finns attributvärden med väldigt hög support, t.ex. pasta i Italienska stormarknader.
 - Ta bort dessa binära variabler.
- Komplexiteten ökar exponentiellt med antalet attributvärden
 - Genererar många fler kandidater till frekventa enhetsmängder.

Behandla kontinuerliga attribut

- Diskretisering (vanligaste metoden)
 - ▶ Dela upp attributsvärden i intervall genom olika metoder:
 - ★ Lika bredd
 - ★ Lika frekvens
 - * Lika andel
 - ★ (Kluster)
 - Skapa ett attribut f\u00f6r varje kategoriskt v\u00e4rde .
- Ex: Ålder = [0,5), [5,12), [12,25), [25,40), [40,+Inf)

Problem med diskretisering

Age group	Chat = Yes	Chat = No	Support for Yes (%)	Confidence for Yes (%)
[12, 16)	12	13	0.048	0.480
[16, 20)	11	2	0.044	0.846
[20, 24)	11	3	0.044	0.786
[24, 28)	12	13	0.048	0.480
[28, 32)	14	12	0.056	0.538
[32, 36)	15	12	0.060	0.556
[36, 40)	16	14	0.064	0.533
[40, 44)	16	14	0.064	0.533
[44, 48)	4	10	0.016	0.286
[48, 52)	5	11	0.020	0.313
[52, 56)	5	10	0.020	0.333
[56, 60)	4	11	0.016	0.267
Sum	125	125		

- Om intervallen är för breda försvinner regler p.g.a. för låg konfidens.
- Om intervallen är för smala försvinner regler p.g.a. för låg support.

Sekvensanalys

- Associationsanalys + tidvariabel = Sekvensanalys
- Vi vill hitta sekventiella mönster
- Transaktionsdatabaser brukar innehålla en attribut som motsvarar tidpunkt, dvs. händelser är tidsmarkerade

Customer	Day	Purchased items	
Α	10	bread, diapers, beer	
Α	20	beer, milk	
Α	23	milk	
В	11	diapers, beer	
В	17	bread	
В	21	diapers, milk, bread	
В	28	milk, beer	
С	14	milk, diapers, beer	

Object	Time- stamp	Events
Α	10	2, 3, 4
Α	20	4, 1
Α	23	1
В	11	3, 4
В	17	2
В	21	3, 1, 2
В	28	1, 4
С	14	1, 3, 4

Sekventiella mönster

En sekvens är en ordnad lista av element:

$$S = \{e_1, e_2, \dots, e_n\}$$

där varje element

$$e_j = \{i_1, i_2, \dots, i_k\}$$

är en händelsemängd som förknippas med ett givet objekt.

Sekventiella mönster

- Ex. 1. Köphistoria av en given kund där: element = transaktion = produkter köpta vid tidpunkt t
- Ex. 2. Webbaktivitet av en given användare där: element = sida som användaren besöker
- Ex. 3. Logg av händelser i en given kärnkraftsreaktor där: element = felmeddelande från sensorer i reaktorn

Delsekvens

- En delsekvens av s är en ordnad sekvens som består av element som ingår i s
- Ex:

Time-	Element	
stamp		
10	{2, 3, 4}	
20	{4, 1}	
23	{1,3}	

Exempel på delsekvenser:

Utvinning av sekventiella mönster

- Objektsekvens är transaktionslistan som förknippas med ett objekt/individ
- Ex. Tabellen på nästa sida innehåller 5 objektsekvenser
- Support av S är andelen objektsekvenser som innehåller S.
- Hitta alla sekvenser som har $s(S) \ge minsup$

Utvinning av sekventiella mönster

Object	Time-stamp	Events
A	1	1, 2, 4
A	2	2, 3
A	3	5
В	1	1, 2
В	2	2, 3, 4
С	1	1, 2
С	2	2, 3, 4
С	3	2, 4, 5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
Е	2	2, 4, 5

Beräkna:

Brute Force metodik

- Uppräkna alla möjliga sekvenser och beräkna supportnivån för varje blir dyrt!
 - ► 1-sekvenser $< i_1 >, < i_2 >, ..., < i_n >$
 - ► 2-sekvenser

$$<\{i_1,i_2\}>,<\{i_1,i_3\}>,\ldots,<\{i_{n-1},i_n\}>$$

- $lack < \{i_1\}, \{i_1\} >, < \{i_1\}, \{i_3\} >, \dots, < \{i_{n-1}\}, \{i_n\} >$
- 3-sekvenser...

Brute Force problem

- Det finns betydligt fler kandidatsekvenser än kandidatenheter vid analys av frekventa enhetsmängder eftersom:
 - ► En sekvens kan innehålla ett element flera gånger
 - ► Elementföljden spelar roll, permutation istället för kombination.
- Detta innebär ännu större problem med dimensionalitet och transaktionsstorlek än icke-sekventiella metodiken.

Apriori-like algoritm

Apriori-like algoritmen är utvecklad för sekvensanalys

Algorithm 7.1 Apriori-like algorithm for sequential pattern discovery.

```
1: k = 1.
 2: F_k = \{ i \mid i \in I \land \frac{\sigma(\{i\})}{N} \ge minsup \}. {Find all frequent 1-subsequences.}
 3: repeat
 4: k = k + 1.
     C_k = \operatorname{apriori-gen}(F_{k-1}). {Generate candidate k-subsequences.}
     for each data sequence t \in T do
    C_t = \text{subsequence}(C_k, t). {Identify all candidates contained in t.}
 7:
 8:
    for each candidate k-subsequence c \in C_t do
 9:
            \sigma(c) = \sigma(c) + 1. {Increment the support count.}
10:
         end for
     end for
11:
     F_k = \{ c \mid c \in C_k \land \frac{\sigma(c)}{N} \ge minsup \}. {Extract the frequent k-subsequences.}
13: until F_k = \emptyset
14: Answer = \bigcup F_k.
```

 Candidate generation: liknar metoden som används för Apriori-algoritmen

Apriori-like algoritm

Exempel

Frekventa 3sekvenser

<{1} {2} {3}>
<{1} {2, 5}>
<{1} {5} {3}>
<{2} {3} {4}>

<{2, 5} {3}> <{3} {4} {5}>

<{5} {3, 4}>

Kandidat-

framställning

<{1} {2} {3} {4}>

<{1} {2, 5} {3}>

<{1} {5} {3, 4}>

<{2} {3} {4} {5}>

<{2, 5} {3, 4}>

Kandidatbeskärning

<{1} {2, 5} {3}>

Tidsbegränsningar

- Maxspan största tillåtna avstånd mellan första och sista händelsen i sekvensen
- Mingap minsta tillåtna avståndet mellan intilliggande element
- Maxgap största tillåtna avståndet mellan intilliggande element

Tidsbegränsningar

 x_g : maxgap n_g : mingap m_s : maxspan $x_q = 2$, $n_g = 0$, $m_s = 4$

Objektsekvens	Delsekvens	Stödjer?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	Yes
< {1} {2} {3} {4} {5}>	< {1} {4} >	No
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No

Projekt

- Mer info på labben imorgon (29/9)
- Ni ska analysera riktig data med metoder från kursen

Avslut

- Kurshemsidan
- Labben