臺北區 110 學年度第一學期 第二次學科能力測驗模擬考試

數學B考科

--作答注意事項--

考試範圍:第一~二冊、數學B第三~四冊

考試時間:100分鐘

作答方式:

- 選擇(填)顯用 2B 鉛筆在「答題券」上作答;更正時,應以橡皮擦擦拭,切勿使用修正液(帶)。
- 除題目另有規定外,非選擇題用筆尖較粗之黑色墨水的筆在「答題卷」上作答;更正時,可以使用修 正液(帶)。
- 考生須依上述規定劃記或作答,若未依規定而導致答案難以辨識或評閱時,恐將影響成績並損及權益。
- 答題恭每人一張,不得要求增補。
- 選填題考生必須依各題的格式填答,且每一個列號只能在一個格子劃記。請仔細閱讀下面的例子。

,而依題意計算出來的答案是 $\frac{3}{8}$,則考生必須分別在答題卷上的第 18-1

列的二與第 18-2 列的二劃記,如:

例:若答案格式是 $\frac{(9-1)(9-2)}{50}$,而答案是 $\frac{-7}{50}$ 時,則考生必須分別在答題卷的第 19-1 列的 $_{-}$ 與第

選擇(填)題計分方式:

- 單選題:每題有 n 個選項,其中只有一個是正確或最適當的選項。各題答對者,得該題的分數;答錯、 未作答或劃記多於一個選項者,該題以零分計算。
- 多選題:每題有 n 個選項,其中至少有一個是正確的選項。各題之選項獨立判定,所有選項均答對者, 得該題全部的分數;答錯 k 個選項者,得該題 $\frac{n-2k}{}$ 的分數;但得分低於零分或所有選項均未作答者, 該題以零分計算。
- 選填題每題有 n 個空格,須全部答對才給分,答錯不倒扣。
- ※試題中參考的附圖均為示意圖,試題後附有參考公式及數值。

祝考試順利

版權所有。翻印必究

第壹部分、選擇(填)題(占85分)

一、單選題(占40分)

說明:第1題至第8題,每題5分。

- 1. 若在坐標平面上有一個三角形面積為 10,且其三頂點坐標分別為 (5,0)、(-5,0)、 $(5\cos\theta,5\sin\theta)$,則滿足條件的三角形有幾個?
 - (1)0個
 - (2)2個
 - (3)4個
 - (4) 6 個
 - (5)無限多個
- 2. 已知 $a, b \in \{-1, 0, 1, 2\}$,且聯立方程式 $\begin{bmatrix} a & 1 \\ -2 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$ 恰有一組解,則滿足此條件的數對 (a, b) 共有幾組?
 - (1) 10 組
 - (2) 12 組
 - (3) 14 組
 - (4) 16 組
 - (5) 18 組
- 3. 如右圖所示,在空間坐標系中有一個半徑為 100 單位的地球儀,其球心為原點 O,赤道在 xy 平面上,x 軸正向與赤道交於 A 點,且 A 點在 0 度經線上。若 P 點位於此地球儀北緯 30 度,東經 135 度的交點上,試求 P 點的空間坐標為何?

- $(2)(-50\sqrt{2}, 50\sqrt{2}, 50)$
- $(3)(25\sqrt{6}, -25\sqrt{6}, 50)$
- $(4)(-25\sqrt{6}, 25\sqrt{6}, 50)$
- $(5)(50\sqrt{2}, 50\sqrt{2}, 50\sqrt{3})$

4. 已知五筆資料 3,a,9,b,19,其算術平均數為 10,標準差為 $\frac{12\sqrt{5}}{5}$ 。設 a < b,試求 b 的

值。

- (1) 9
- (2) 10
- (3) 11
- (4) 12
- (5) 13

5. 設 n 為正整數且函數 $f(n) = \frac{\log(n+2)}{\log(n+1)}$,試求

 $\log(f(1)) + \log(f(2)) + \log(f(3)) + \log(f(4)) + \log(f(5)) + \log(f(6))$ 的值。

- $(1) \log 2$
- $(2) \log 3$
- (3) log 4
- $(4) \log 5$
- (5) log 6

- 6. 已知圓 $\Gamma: (x-h)^2 + (y-k)^2 = 25$ 與直線 L: 3x + 4y 10 = 0 交兩點,此兩交點形成的弦長為 8 單位,現將直線 L 向右移動 1 單位,向下移動 2 單位,得到一新直線 L',試問圓 Γ 與直線 L' 有幾個交點?
 - (1)0個交點
 - (2)1個交點
 - (3) 2 個交點
 - (4) 3 個交點
 - (5)資料不足,無法確定

7. 如右圖,有一撞球檯的邊緣設計成一拋物線,將9號球放在此拋物線的焦點。 已知母球沿著平行拋物線之對稱軸的方向往球檯邊緣直線前進,碰到撞球檯邊 緣後反彈會命中9號球。試問母球擺放在右圖中哪個位置,命中9號球時所移 動的路徑最短?

- (1)A
- (2) B
- (3) C
- (4) D
- (5) E
- 8. 有一等比數列 a_1 , a_2 , a_3 ,……, a_n ,n 為正整數,已知 $a_1+a_4+a_6=a_5+a_7$,試求 $a_{14}+a_{13}+a_{12}-a_{11}-2a_{10}-2a_9-a_8=?$
 - (1) 3
 - (2)-2
 - (3) 0
 - (4) 2
 - (5) 3

二、多選題(占25分)

說明:第9題至第13題,每題5分。

- 9. 試問 $y=a^x(a>0$,且 $a\neq 1$) 的函數圖形,經過下列哪一種平移的效果,可以得到 $y=2a^x$ 的函數圖形?
 - (1) 左移
 - (2)右移
 - (3)上移
 - (4)下移
 - (5)不具有平移關係

10. 坐標平面上,設 O 為原點, $\overrightarrow{OA} = (2,1)$, $\overrightarrow{OB} = (1,2)$ 。若 P 點滿足 $\overrightarrow{OP} = x \overrightarrow{OA} + y \overrightarrow{OB}$,且 $1 \le x \le 2$, $0 \le y \le 2$, 其中 x, y 為實數,則下列哪 些點可能是 P 點的位置?

- $(1) Q_1$
- (2) Q_2
- $(3) Q_3$
- $(4) Q_4$
- $(5) Q_5$
- 11. 已知 $A \cdot B \cdot C$ 皆為二階方陣,I 為二階單位方陣,O 為二階零方陣,且 $A+B=\begin{bmatrix} 4 & -3 \\ 5 & -4 \end{bmatrix}$,

$$A-B=\begin{bmatrix} 2 & -7 \\ 3 & -10 \end{bmatrix}$$
,試選出正確的選項。

$$(1) B - A = \begin{bmatrix} -2 & 7 \\ -3 & 10 \end{bmatrix}$$

(2) AB = BA

$$(3)$$
若 $AC=I$,則 $C=\begin{bmatrix} -7 & 5 \\ -4 & 3 \end{bmatrix}$

$$(4)$$
若 $AC=O$,則 $C=\begin{bmatrix}0&0\\0&0\end{bmatrix}$

$$(5) A^2 - B^2 = \begin{bmatrix} -1 & 2 \\ -2 & 5 \end{bmatrix}$$

12. 110 年 5 月因為 COVID-19 (新冠肺炎)的疫情影響, 臺北市十二個行政區實施「停課不停學」,截至 5 月 20 日為止,各區的人口數與本土病例人數統計如 右表。已知「確診比例= 本土病例人數 人口數

右表選出正確的選項。

- (1)若行政區的人口數越多,則本土病例人數也越多
- (2)大同區的確診比例小於文山區的確診比例
- (3)每一行政區的確診比例都不超過千分之 2
- (4)臺北市的確診比例為各區確診比例的總和
- (5)從臺北市市民中任意抽取一人,假設每人被抽中的機會相等。若此人為本土病例,則此人住在文山區的比例大於 5 %

人口數(人)	本土病例(人)
198603	21
212559	19
299823	26
221679	16
154461	25
123334	28
181044	299
266439	35
117777	15
280785	16
275823	20
248679	14
2581006	534
	198603 212559 299823 221679 154461 123334 181044 266439 117777 280785 275823 248679

- 13. 下列哪些選項的兩個函數圖形經平移後會重疊?

 - (2) $y=x^3+x \neq y=x^3+3x^2+2x+2$

 - (4) $y = \log x 100 (100x)$
 - $(5) y = \sin x \pi y = \sin (2x) 3$

三、選填題(占20分)

說明:第14題至第17題,每題5分。

14. 設 f(x), g(x) 為兩實係數多項式,已知 f(x) 有一次因式 x-1,且 f(x) 除以 g(x) 的商式為 x+2,餘式為 x^2+x+1 ,試求 g(x) 除以 x-1 的餘式為 x-1 的餘式為 x-1

15. 如右圖,有一個邊長為 2 的正八面體,外部有一隻螞蟻,內部有一隻蜜蜂,同時從 A 點出發,想要走最短路徑到達 B 點,試問螞蟻(爬)要比蜜

蜂(飛)多移動 (15-1) (15-2) - (15-3) (15-4)

的距離。(化為最簡根式)

- 16. 設f(n) 表示正整數 n 的各位數字之總和,例如:f(12)=1+2=3,f(20)=2+0=2。若 n 為
 - 二位數,則 $\frac{n}{f(n)}$ 的最小值為

。(化為最簡分數)

17. 因應 COVID-19 (新冠肺炎)疫情趨緩,政府適度鬆綁餐廳內用的條件,店家提供內用以五人為限,並採取梅花座(前後左右不坐人)。 方方小吃店同時來了甲、乙、丙三位客人,三人入座 3x3 座位表如右,甲坐第一排第一位,若需符合室內用餐規定,則乙、丙的入座

	甲

第貳部分、混合題或非選擇題(占15分)

說明:本部分共有1題組,每一子題配分標於題末。限在標示題號作答區內作答。選擇題與「非選擇題作圖部分」使用2B鉛筆作答,更正時,應以橡皮擦擦拭,切勿使用修正液(帶)。非選擇題請由左而右橫式書寫,作答時必須寫出計算過程或理由,否則將酌予扣分。

18-19 題為題組

歐洲常見的哥德式尖拱建築,是由兩個半徑相等之圓弧所組成。尖拱的一種類型可以用坐標平面上的圖來描述:以 $O_1(-4,-1)$ 與 $O_2(4,-1)$ 為圓心,取半徑為5 畫圓弧 \widehat{BC} 與 \widehat{AC} ,兩圓弧交於尖點 C 且分別交x 軸於 B、A 兩點,如右圖。

- 18. 試求尖點 C 至尖拱底部 \overline{AB} 的距離 ? (單撰題, 5分)
 - (1) 1
 - (2) 1.5
 - (3) 2
 - (4) 2.5
 - (5) 3
- 19. 兩弧相交處的切線夾角稱為尖拱的頂角,如右圖所示。若此尖拱的頂角為 θ ,試求 $\cos \theta$ 。(非選擇題,10 分)

参考公式及可能用到的數值

1. 首項為 a,公差為 d 的等差數列前 n 項之和為 $S = \frac{n(2a + (n-1)d)}{2}$

首項為 a ,公比為 $r(r \neq 1)$ 的等比數列前 n 項之和為 $S = \frac{a(1-r^n)}{1-r}$

2. $\triangle ABC$ 的正弦定理: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R \left(R \ \triangle \triangle ABC \right)$ 接圓半徑)

 $\triangle ABC$ 的餘弦定理: $c^2 = a^2 + b^2 - 2ab \cos C$

3. 一維數據 $X: x_1, x_2, \dots, x_n$

算術平均數 $\mu_X = \frac{1}{n}(x_1 + x_2 + \dots + x_n)$

標準差 $\sigma_X = \sqrt{\frac{1}{n}[(x_1 - \mu_X)^2 + (x_2 - \mu_X)^2 + \dots + (x_n - \mu_X)^2]} = \sqrt{\frac{1}{n}[(x_1^2 + x_2^2 + \dots + x_n^2) - n\mu_X^2]}$

4. 二維數據 (X,Y): (x_1,y_1) , (x_2,y_2) ,, (x_n,y_n)

相關係數 $r_{X,Y} = \frac{(x_1 - \mu_X)(y_1 - \mu_Y) + (x_2 - \mu_X)(y_2 - \mu_Y) + \dots + (x_n - \mu_X)(y_n - \mu_Y)}{n\sigma_X\sigma_Y}$

迴歸直線(最適直線)方程式 $y-\mu_Y=r_{X,Y}\frac{\sigma_Y}{\sigma_X}(x-\mu_X)$

- 5. 參考數值: $\sqrt{2}\approx 1.414$, $\sqrt{3}\approx 1.732$, $\sqrt{5}\approx 2.236$, $\sqrt{6}\approx 2.449$, $\sqrt{7}\approx 2.646$, $\pi\approx 3.142$
- 6. 對數值: $\log 2 \approx 0.3010$, $\log 3 \approx 0.4771$, $\log 5 \approx 0.6990$, $\log 7 \approx 0.8451$

數學B考科詳解

1.	2.	3.	4.	5.	6.	7.
(3)	(3)	(4)	(4)	(2)	(3)	(1)
8.	9.	10.	11.	12.	13.	
(3)	(1)(2)	(1)(3)	(1)(4)	(3)(5)	(1)(3)(4)	

第壹部分、選擇(填)題

一、單選題

1. (3)

出處:第二冊〈三角比〉

目標:廣義角

解析:(5 $\cos \theta$, 5 $\sin \theta$) 在圓心 (0,0),半徑為 5 的圓上

且需滿足 | $5 \sin \theta$ | = 2

如下圖可看出滿足條件的三角形有 4 個,即 $\triangle ABC_1$, $\triangle ABC_2$, $\triangle ABC_3$, $\triangle ABC_4$

故撰(3)。

2. (3)

出處:第二冊〈排列組合與機率〉、第四冊〈矩陣與資料表〉

目標:反矩陣的運算、方程組解的情形

解析:若聯立方程式恰有一組解,則

$$\begin{vmatrix} a & 1 \\ -2 & b \end{vmatrix} \neq 0$$

 $\Rightarrow ab \neq -2 \Rightarrow (a, b) \neq (-1, 2)$ 及 (2, -1)

則滿足條件的數對 (a, b) 共 $4 \cdot 4 - 2 = 14$ 組

故選(3)。

3. (4)

出處:第四冊〈空間概念與空間坐標系〉

目標:空間坐標系

解析: 設P點坐標為(a,b,c), Q點為P點在xy 平面上的投

影點,則 Q 點坐標為 (a, b, 0) 且 $\angle POQ = 30^{\circ}$, $\angle AOQ = 135^{\circ}$

所以

 $c = \overline{PQ} = 100 \times \sin 30^{\circ} = 50$, $\square \overline{QQ} = 100 \times \cos 30^{\circ} = 50\sqrt{3}$

 $a = \overline{OQ} \times \cos 135^{\circ}$

$$=50\sqrt{3}\times\left(-\frac{\sqrt{2}}{2}\right)=-25\sqrt{6}$$

 $b = \overline{OQ} \times \sin 135^{\circ}$

$$=50\sqrt{3} \times \frac{\sqrt{2}}{2} = 25\sqrt{6}$$

故 P 點坐標為 $(-25\sqrt{6}, 25\sqrt{6}, 50)$

故選(4)。

4. (4)

出處:第二冊〈數據分析〉

目標:概念性知識

解析:由算術平均數為 10 知 a+b=19

$$\frac{7^2 + (a-10)^2 + 1^2 + (b-10)^2 + 9^2}{5} = \frac{144}{5}$$

$$\Rightarrow (a-10)^2 + (b-10)^2 = 13$$

又
$$a=19-b$$
,代入得 $(9-b)^2+(b-10)^2=13$

$$\Rightarrow 2b^2 - 38b + 168 = 0$$

$$\Rightarrow b^2 - 19b + 84 = 0$$

$$\Rightarrow$$
 $(b-12)(b-7)=0$

$$\therefore a < b \quad \therefore a = 7, b = 12$$

故選(4)。

5. (2)

出處:第三冊〈按比例成長模型〉

目標:對數概念性知識及推理論證能力

解析: $\log(f(1)) + \log(f(2)) + \log(f(3)) + \log(f(4)) + \log(f(5))$

$$+\log(f(6))$$

 $= \log (f(1) \times f(2) \times \cdots \times f(6))$

$$= log \bigg(\frac{log \, 3}{log \, 2} \times \frac{log \, 4}{log \, 3} \times \cdots \times \frac{log \, 8}{log \, 7} \bigg)$$

$$= \log \left(\frac{\log 8}{\log 2} \right) = \log \left(\frac{3 \log 2}{\log 2} \right)$$

 $=\log 3$

故選(2)。

6. (3)

出處:第一冊〈直線與圓〉

目標:圓與直線的關係

解析:圓 Γ 與直線L相交有兩種情形,如下圖,圓 Γ 的圓心

為(h,k), 半徑為5

又圓 Γ 與直線L交兩點形成的弦長為8單位,則圓心 到直線L的距離

$$d = \frac{|3h + 4k - 10|}{\sqrt{3^2 + 4^2}} = 3$$

$$\Rightarrow |3h+4k-10|=15$$

$$\Rightarrow 3h+4k-10=15 \text{ } \text{ } \text{ } 3h+4k-10=-15$$

$$\Rightarrow 3h+4k=25 \stackrel{?}{\otimes} 3h+4k=-5$$

直線 L': 3(x-1)+4(y+2)-10=0

則圓心到直線 L'的距離

$$d' = \frac{|3(h-1)+4(k+2)-10|}{\sqrt{3^2+4^2}}$$

$$= \frac{|3h+4k-5|}{5}$$

$$= \frac{|25-5|}{5} \stackrel{!}{\cancel{\boxtimes}} \frac{|-5-5|}{5}$$

$$= 4 \stackrel{!}{\cancel{\boxtimes}} 2$$

因為 d' < 5,所以圓 Γ 與直線 L' 交兩點 故撰(3)。

7. (1)

出處:第四冊〈圓錐曲線的認識與應用〉

目標: 拋物線的焦點性質

解析:依照拋物線的光學性質,要擊中9號球需以平行拋物 線對稱軸的方向往球檯邊緣擊出,擊中9號球所移動 的路徑為每個點至準線之距離

如下圖

A 點至準線之距離最小

故選(1)。

8. (3)

出處:第二冊〈數列與級數〉

目標: 等比數列概念與解題技巧

解析: $a_1 + a_4 + a_6 = a_5 + a_7$ $\Rightarrow a_1 + a_4 = a_5 - a_6 + a_7$ $\Rightarrow a_1(1+r^3) = a_5(1-r+r^2)$ $\Rightarrow 1+r=r^4$ $\Rightarrow r^4 - r - 1 = 0$ 原式= $(a_{14} - a_{11} - a_{10}) + (a_{13} - a_{10} - a_9) + (a_{12} - a_9 - a_8)$ $= a_{10}(r^4 - r - 1) + a_9(r^4 - r - 1) + a_8(r^4 - r - 1)$ = 0

故選(3)。

二、多選題

9. (1)(2)

出處:第三冊〈按比例成長模型〉

目標:了解指數與對數關係、認識指數函數圖形及推理論證 44.4

解析: $y=2a^x=a^{\log_a 2}\cdot a^x=a^{x+\log_a 2}$ 為 $y=a^x$ 沿 x 軸方向平移的結果

a>1,則 $\log_a 2>0$ 代表左移 0<a<1,則 $\log_a 2<0$ 代表右移 故選(1)(2)。

10. (1)(3)

出處:第三冊〈平面向量與應用〉

目標:向量的線性組合

解析:所有P點所形成的區域如下圖, Q_1 和 Q_3 落於區域內

故撰(1)(3)。

11. (1)(4)

出處:第四冊〈矩陣與資料表〉

目標:矩陣的性質與運算

解析:由
$$\begin{cases} A+B = \begin{bmatrix} 4 & -3 \\ 5 & -4 \end{bmatrix} \\ A-B = \begin{bmatrix} 2 & -7 \\ 3 & -10 \end{bmatrix} \end{cases}, 可得 A = \begin{bmatrix} 3 & -5 \\ 4 & -7 \end{bmatrix}, B = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$$

$$(1)\bigcirc:B-A=-(A-B)=\begin{bmatrix} -2 & 7\\ -3 & 10 \end{bmatrix}$$

$$(2) \times : : AB = \begin{bmatrix} -2 & -9 \\ -3 & -13 \end{bmatrix}, BA = \begin{bmatrix} 11 & -19 \\ 15 & -26 \end{bmatrix}$$

 $AB \neq BA$

$$(3) \times : : \begin{vmatrix} 3 & -5 \\ 4 & -7 \end{vmatrix} = 3(-7) - (-5) 4 = -1 \neq 0$$

$$\therefore C = A^{-1} = \frac{1}{-1} \begin{bmatrix} -7 & 5 \\ -4 & 3 \end{bmatrix} = \begin{bmatrix} 7 & -5 \\ 4 & -3 \end{bmatrix}$$

(4) 〇:承(3)

$$\therefore A^{-1}$$
存在
$$\therefore C = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$(5) \times : A^{2} - B^{2} = \begin{bmatrix} -11 & 20 \\ -16 & 29 \end{bmatrix} - \begin{bmatrix} 3 & 8 \\ 4 & 11 \end{bmatrix}$$

$$= \begin{bmatrix} -14 & 12 \\ -20 & 18 \end{bmatrix}$$

故撰(1)(4)。

12. (3)(5)

出處:第二冊〈排列組合與機率〉、第四冊〈機率〉

目標:概念性知識 解析:(1)×:不一定

(2)(3)萬華區的確診比例為
$$\frac{299}{181044} \approx 0.0016 < 0.002$$

文山區的確診比例為 <u>35</u> 266439

大同區的確診比例為
$$\frac{28}{123334} = \frac{56}{246668}$$
 $> \frac{35}{266439}$

(4) X

$$(5)\bigcirc: \frac{35}{534} > \frac{35}{700} = 5\%$$

故選(3)(5)。

13. (1)(3)(4)

出處:第一冊〈多項式函數〉、第三冊〈正弦函數與週期性 現象〉、第三冊〈按比例成長模型〉

目標:函數圖形的平移

解析:
$$(1)$$
〇: $y=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}$
$$y=x^2-100x+100=(x-50)^2-2400$$
 單口方向、大小相同,故經平移後會重疊

 $(2) \times : y = x^3 + 3x^2 + 2x + 2 = (x+1)^3 - (x+1) + 2$

平移後不會和 $y=x^3+x$ 重疊
(3) $\bigcirc: y=\frac{1}{4}\cdot 2^x=2^{x-2}$ 經平移後會和 $y=2^x$ 重疊

(4) \bigcirc : $y = \log (100x) = \log x + 2$ 經平移後會和 $y = \log x$

(5) \times : $y = \sin(2x) - 3$ 的週期為 π , $y = \sin x$ 的週期為 2π , 故平移後不會重疊

故撰(1)(3)(4)。

三、選填題

14. -1

出處:第一冊〈多項式函數〉

目標:餘式定理

解析:已知 f(1)=0 且 $f(x)=g(x)\cdot(x+2)+(x^2+x+1)$ 所求 g(x) 除以 x-1 的餘式為 g(1),代人上式得 g(1)=-1 故餘式為 g(1)0 数余式為 g(1)0 数余式為 g(1)0 数余式為 g(1)0 数余式

15. $2\sqrt{3} - 2\sqrt{2}$

出處:第四冊〈空間概念與空間坐標系〉

目標:空間概念

解析:螞蟻移動的最短路徑距離為正三角形的高的兩倍= $2\sqrt{3}$ 蜜蜂移動的最短路徑距離為正方形的對角線= $2\sqrt{2}$ 所以螞蟻要比蜜蜂多移動 $2\sqrt{3} - 2\sqrt{2}$ 的距離。

16. $\frac{19}{10}$

出處:第一冊〈數與式〉

目標:正整數概念性知識及推理論證能力

解析: $\Leftrightarrow n=10a+b (a\neq 0 且 b 為 0\sim 9$ 的正整數),則

$$\frac{n}{f(n)} = \frac{10a+b}{a+b} = \frac{9a}{a+b} + 1$$

$$\ge \frac{9a}{a+9} + 1 = \frac{-81}{a+9} + 10$$

$$\ge \frac{-81}{10} + 10 = \frac{19}{10}$$

$$= \frac{19}{10}$$

故當 n=19 時,所求最小值為 $\frac{19}{10}$ 。

17.18

出處:第二冊〈排列組合與機率〉 目標:推理論證及解決問題能力 解析:將各座位位置標示如下表

A	X	甲
В	C	X
D	E	F

則乙、丙的入座方式如下

7/10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
乙入座 A	丙入座 CDEF	4		
乙入座 B	丙入座 EF	2		
乙入座 C	丙入座 ADF	3		
乙入座D	丙入座 ACF	3		
乙入座E	丙入座 AB	2		
乙入座 F	丙入座 ABCD	4		
合計		18		

故乙、丙的入座方式共18種。

第貳部分、混合題或非選擇題

18. (3)

出處:第三冊〈平面向量與應用〉

目標:兩點間的距離

解析:設C(0,k)

因為
$$\overline{O_1C} = \sqrt{(0-(-4))^2 + (k-(-1))^2} = 5$$

則 $(k+1)^2 = 9$

可以解出 k=2 或-4 (不合)

所以 C(0,2),則尖點 C 至尖拱底部 \overline{AB} 的距離為 2 故谍(3)。

19. $\frac{7}{25}$

出處:第三冊〈平面向量與應用〉

目標:平面向量的內積

解析:方法一:

因為
$$\overrightarrow{CO_2} = (4, -3), \overrightarrow{CO_1} = (-4, -3)$$

切線上的向量需與 \overrightarrow{CO} , 和 \overrightarrow{CO} , 的內積為 0

可以取與 $\overline{CO_2}$ 垂直之切線上的 D 點及與 $\overline{CO_1}$ 垂直之切線上的 E 點

滿足
$$\overrightarrow{CD} = (3,4)$$
, $\overrightarrow{CE} = (-3,4)$

若尖拱的頂角為 θ

則
$$\cos \theta = \frac{(3,4) \cdot (-3,4)}{\sqrt{3^2 + 4^2} \sqrt{(-3)^2 + 4^2}} = \frac{7}{25}$$
。

方法二:

因為
$$m_{co_1} = \frac{3}{4}$$
, $m_{co_2} = -\frac{3}{4}$

切線的斜率需與 \overrightarrow{CO} , 和 \overrightarrow{CO} , 的斜率相乘為-1

可以取與 $\overrightarrow{CO_2}$ 垂直之切線上的 D 點及與 $\overrightarrow{CO_1}$ 垂直之切線上的 E 點,

滿足
$$m_{CD} = \frac{4}{3}$$
, $m_{CE} = -\frac{4}{3}$

若尖拱的頂角為 θ ,

則
$$\tan \theta = \frac{-\frac{4}{3} - \frac{4}{3}}{1 + \left(-\frac{4}{3}\right)\left(\frac{4}{3}\right)} = \frac{24}{7}$$

故
$$\cos \theta = \frac{7}{25}$$
 。

◎評分原則

方法一:

因為 $\overrightarrow{CO_2} = (4, -3)$, $\overrightarrow{CO_1} = (-4, -3)$

(兩切線的法向量共3分)

切線上的向量需與 \overrightarrow{CO} , 和 \overrightarrow{CO} 的內積為 0

可以取與 $\overrightarrow{CO_2}$ 垂直之切線上的 D 點及與 $\overrightarrow{CO_1}$ 垂直之切線上的 E 點

滿足
$$\overrightarrow{CD} = (3,4)$$
, $\overrightarrow{CE} = (-3,4)$

(兩切線的方向向量共3分)

若尖拱的頂角為 θ ,則 $\cos \theta = \frac{(3,4)\cdot(-3,4)}{\sqrt{3^2+4^2}\sqrt{(-3)^2+4^2}} = \frac{7}{25}$ 。

(4分,若無計算正確方向的切線向量,則應說明為何取正數)

方法二:

因為 $m_{co_i} = \frac{3}{4}$, $m_{co_i} = -\frac{3}{4}$ (兩切線的斜率共 3 分)

切線的斜率需與 \overrightarrow{CO} , 和 \overrightarrow{CO} , 的斜率相乘為-1

可以取與 $\overrightarrow{CO_2}$ 垂直之切線上的 D 點及與 $\overrightarrow{CO_1}$ 垂直之切線上的 E 點,

滿足
$$m_{CD} = \frac{4}{3}$$
 , $m_{CE} = -\frac{4}{3}$ (兩切線的斜率共 3 分)

若尖拱的頂角為 θ ,

則
$$\tan \theta = \frac{-\frac{4}{3} - \frac{4}{3}}{1 + \left(-\frac{4}{3}\right)\left(\frac{4}{3}\right)} = \frac{24}{7} (2 分)$$

故 $\cos \theta = \frac{7}{25}$ 。(2分)(若 $\tan \theta$ 算出來為負數,則應說明為何取正數)