Unit 1

Chapter 1: Understanding Networks and their Building Blocks

Introduction to Networks

Network is a collection of interconnected devices (such as computer, printers, etc.)

Some advantages of networks

- o Decrease cost
- o Saves time
- o Saves effort
- o Increase productivity
 o Resource optimization

How do network works?

Most basic form of network

Network with a HUB

Message Delivery:

- Unicast
- Broadcast
- Multicast

Problems with using a HUB?

- Repeats information received from one host to all other hosts
- Creates a shared medium where only a single host can send a packets at a time. The shared network <mark>medium</mark> is called a single Collision Domain.

A switched network

*Switch - overcomes the problems associated with hubs. It break up collision $\frac{domain}{domain}$ for every port. *Switches do not flood every frames out to all ports, creating one broadcast domain.

Exercise: Determine the number of collision domain in the given topology Problem with using a Switch Too many broadcast message will slow down the network, creating a **broadcast** storm.

Router in an internetwork

*Router - breaks up a broadcast domain and do now allow broadcast to be transmitted across different networks. Essential functions:

> Packet Switching switches packets between network Communication between Network - allows communication between networks connected to it. Path Selection select the best path to reach a network Packet Filtering drops or forwards packets

II. Networking Types

Lan - covers a limited geographical area. Ethernet is the most commonly used technology in LANs. **WAN** - covers a large geographical area. Used to connect LANs.

III. Internetworking Models

Internetworking Models created to support and promote inter-operability between different vendors.

OSI - layered approach created to promote communication <mark>between devices</mark> of various vendors.

TCP/IP - similar with OSI, but is more commonly used.

OSI Reference Model

Application - provides a user interface

Presentation - presents data; handles encryption/decryption, encoding/decoding,
compression/decompression.

Session - maintains distinction between data of separate applications; provides dialog control between hosts.

Transport - provides end-toend connection; provides
reliable or unreliable
delivery and flow control.

Network - provides logical
addressing and path
determination.

Data Link - Provides media access and physical addressing Physical - converts digital data to signal over a physical medium; moves data between hosts.

Encapsulation & PDU

IV. TCP/IP Reference Model

1. Application Layer

Application Layer performs all functions of the OSI model's Application, Presentation and Session layers.

Exercise: name some of the common application layer protocols used today.

2. Transport Layer

Same as the OSI layer's Transport Layer. It is concerned with the end-to-end transportation of data and set-ups a logical connection between two hosts.

Two Common Protocols under
Transport Layer:

TCP - connection oriented and reliable protocol

UDP - connectionless
and unreliable
protocol

Port Numbers - both protocols uses this concept by assigning port numbers to know which data belongs to which application.

Socket - combination of IP address, protocol (TCP/UDP) and port numbers at both the receiving and sending hosts. Each socket is unique.

a. Transport Control Protocol

Functions of the TCP:

- Connection
 establishment using
 the 3-way handshake
 process.
- 2. Data segmentation limits the data (MTU) to be sent across the network.
- 3. Flow control determines the number
 of segments that can
 be sent at a time.
- 4. Reliable delivery with Error recovery
- 5. Ordered delivery uses the sequence number to mark the order
- 6. Connection
 termination using
 the 2-way handshake
 process

7.

Fields of the TCP Header

Source Port (16 bits)			Destination Port (16 bits)		
	Sequence Number (32 bits)				
Acknowledgement Number (32 bits)					
Header (4 bits)	Reserved (6 bits)	Code Bits (6 bits)	Window (16bits)		
Ch	ecksum (16	ibits)	Urgent (16bits)		
Options (0 to 32 bits)					

b. UDP

- UDP neither
establishes a connection
- Unreliable protocol
that delivers data
= Faster than TCP
- Does not create delay
(since TCP holds data
till it receives
acknowledgement)

Fields of the UDP Header

3. Internet Layer

Provides the ff.:

- 1. Logical addressing
- 2. Path determination
- 3. Path forwarding

Most common protocol:

- 1. IP (Internet Protocol)
- 2. ICMP (Internet Control Message Protocol)
- 3. Routing Protocols

Fields of IPv4 Header

Bit () 4	4	В 1	16 1	19	31
	version	Header Length	Differentiated Services (DS) Field		total Length	
	Identification			Flags	Fragment Offset	
	Time to Live		Protocol	Header Checksum		
	Source IP Address					
	Destination IP Address					

ICMP - management protocol
and messaging service for
IP.

ICMP messages:

- 1. Echo Reply uses "Ping" to send echo requests to check network connectivity.
- 2. Destination Network
 Unreachable packet
 cannot be routed in
 which the destination
 address resides
- 3. **Time Exceeded** TTL of a packet expires (reduces to zero)
- 4. Request Time Out destination host might
 be down or unreachable
 (different network,
 shutdown, behind a
 firewall, etc.)

4. Network Access Layer

Corresponds with the Data Link & Physical Layers of OSI reference model Protocol used: Ethernet

V. Cisco 3 Layer Model

Three-layer hierarchical Model - defined by Cisco that provides a hierarchical and modular method of building networks that makes it easy to implement, manage, scale and troubleshoot networks.

- 3 Layers:
- 1. Core Layer
- 2. Distribution Layer
- 3. Access Layer

1. Core Layer

Backbone of an internetwork and is the most critical layer.

Sole function is to transport large amount of data fast.

Two major requirement: Speed and Fault Tolerance
What should be done in this layer?

- 1. Routing protocols should have low converge time.
- 2. Network Access Layer technologies should be fast with low latency
- 3. Redundancy

2. Distribution Layer

Provide routing, filtering, and WAN access

Determine how packets can access the core.

Major requirement: Path
Determination

What should be done in this layer?

- 1. Routing between subnets and route distribution between routing protocols.
- Implement security policies, firewall, packet filtering, etc.
- 3. Breaking broadcast domain.

3. Access Layer

Edge of the network Where end devices are connected What should be done in this layer?

- Access control and policies (addition to what exist in distribution layer).
- 2. Dynamic Configuration mechanisms
- 3. Breaking Collision Domains
- 4. Ethernet switching and stating routing

Chapter 2: IP Addressing and Subnets

I. Composition, Types and Classes

Term to remember:

• IP Address

Uniquely identifies a device

IPv4 - 32 bits

Divided into 4

Divided into optet, 8 bit each

IPv6 - 128 bits

• Network Address Group name

• Subnet Mask

Identifies network/ host Defines the range of IP Addresses

IP Address: Network & Host portion 5 Classes:

Reminder: 127 is for loopback IP address, (127.0.0.1) for pinging yourself

A: 0 - 126
B: 128 - 191
C: 192 - 223
D: 224 - 239
E: 240 - 255

II. Private and Public IP Addresses

IANA - responsible for managing and
distributing IP addresses
*Private IP Addresses are for intranet
*Public IP Addresses are for internet
Ranges for Private IP addresses:

- Class A 10.0.0.0 to 10.255.255.255 (1 network)
- Class B 172.16.0.0 to 172.31.255.255 (16 networks)
- Class C 192.168.0.0 to 192.168.255.255 (256 networks)

III. Subnetting (FLSM & VLSM)

Subnetting - Divide/segment large
network into small ones

Subnetting Activity

- FLSM
 - o Determine the number of
 network
 - o 192.168.1.0/24 Prefix Length or CIDR
 - o IIIIIIII.IIIIIIIII.IIIIIII.
 00000000

 The first three octet is
 the network portion
 And the last octet is the
 host portion

The highlighted ones are now the network portion

• VLSM

o Determine the number of host

2) 192.168.0.32/27 ...

o Problem:
 172.16.0.0/16 = 26 hosts
 2(^n) -2 = 2^5-2 = 30
 8.8.8.11100000/27
 255.255.255.224
 NA: 172.16.0.0/27

1st: 172.16.0.1/27 Last: 172.16.0.30/27 BA: 172.16.0.31/27 Next NA: 172.16.32/27

Chapter 3: Cisco Switches, Routers & IOS

I. Definition of Terms

IOS Shell
IOS Kernel
Bootstrap
RAM
NVRAM
ROM
Flash
IOS Modes

II. Shortcut Keys

II. Shortcut Keys		
Shortcut	Purpose	
Keys		
Down	Scroll through command	
Arrow	history	
Up Arrow	Scroll backwards through commands	
Tab	Completes the remainder of the partially entered command	
Ctrl-A	Moves to the beginning of the line	
Ctrl-E	Moves to the end of the line	
Ctrl-Z or	Exits the current mode	
end	and returns to User Exec mode	
Ctrl-C	Aborts the current command	
Ctrl + Shift 6	Interrupt an IOS process	

III. Gathering & Verifying Information

Using SHOW commands
Running config
Startup config
Version
Interface information
Using pipes

IV. DNS &DHCP

Resolving Names of IOS

ip name-server <local ip>
ip host <word> <ip add>
Cisco IOS as the DHCP Server

Ip dhcp pool <name>
network <net add> <sub mask>
default-router <gateway ip>
dns-server <DNS IP address>
ip dhcp excluded-address <startIP> <end IP>

Server-based DHCP Server

Remote host is the DNS server IP add

V. Saving, Erasing & Backing Up Configs

Saving Commands
**Enter the CLI of R0

*copy run tftp
enter address remote host
enter source: R1-confg
Erase Commands
Backing up configs
TFTP
FTP
o Configure the username and
password
o Conft# ip ftp username
<username>
o Conft# ip ftp password
<password>
o copy run tftp

host

enter address remote

VI. Password Recovery Reboot Repeat Reboot Boot up the device Interrupt the boot up process using Ctrl-C Change configure registry to 0x2142 Reboot Copy start run Change the enable password Change configure registry to 0x2102 Save *disable *end *reboot *repeat reboot *common 1 > confreg 0x2142*common 2 > reset

*common 2 > reset
*Router# copy tftp running-config
 Enter address remote host
 enter source: R1-confg
*copy startup-config running-config
*ena sec cisco
*enable secret class
*end
*conf t
*config-register 0x2102
*end
*wr (save)

CDP Neighbor

- Cisco Discovery Protocol (CDP) is a proprietary protocol designed by Cisco to help in finding information about neighboring devices
- Devices connected to each other exchange CDP packets to learn about each other. This can be useful in troubleshooting and documenting the network
- Enable CDP globally: cdp run
- Enable CDP on an interface: cdp enable
- *show cdp nei

IP helper-address

Discover - udp broadcast
Offer - udp unicast
Request - udp broadcast
Acknowledge - udp unicast
In router0 cli ***also in interface
that is conn. to
Another router
*ip helper-address <dns address>
*no ip dhcp pool DHCP
In router1 *ip address dhcp

Chapter 4: IP Routing

A router must know the ff:

- Destination Address
- Neighbor routers from which it can learn about remote networks
- Possible routes to all remote networks
- The best route to each remote network
- Be able to maintain and verify routing information

Types of Routing I.

- Routing table is stored in Routing Information Base (RIB)
- Routing table consist of destination address, subnet mask & next hop towards the destination
- 3 ways a Router learn routes:
 - o Static Routing
 - o Default Routing
 - o Dynamic Routing

II. Static Routing

- Route is manually added by an <mark>administrator</mark>
- Best in small networks

Advantages:

- o No overheado Adds a certain degree of security

Disadvantages:

- o Prior knowledge of the network
- o Every change should be done manually
- o Unmanageable in large networks
- *Ip route <destination>* <netmask> <next hop | exit interface>

III. Default Routing

- All routers are configured to send all packets towards a <mark>single router</mark>
- Very useful method for small networks with a single entry and exit point
- Used in addition to any unknown destination to a single next hop address
- Useful when a bulk of destination networks have to routed
- Note: when a more specific route to a destination exists in the routing table, the router will use that rout and not the default route.
- Ip route 0.0.0.0 0.0.0.0 <next hop>

IV. Dynamic Routing

- Algorithms are used to automatically propagate routing information
- Best in large networks

- Greater CPU and bandwidth usage
- Every routing protocol defines its own rules for communication between holders and selecting the best route.

v. Routing Protocols

- Classified as IGP & EGP
- IGP exchange routing information within internetworks that fall under a single administrative domain (also called as AS)
- **EGP** exchange routing information between different administrative domain.

VI. Administrative Distance & Routing Metrics

• Administrative Distance:

- o Trustworthiness of routing information received by a router
- o Used when multiple routing protocol is present on a single router.
- o Value from 0 to 255. Lowest value will be selected.
- o Any route with an AD value of 255 will never be used.

AD Values

Routing Protocol	Administrative Distance
RIP	120
OSPF	110
EIGRP	90
Static Routes	1
Directly Connected	0

• Routing Metrics:

- o A metric (or cost) of a route is calculated differently by each protocol.
- o Used when <mark>single routing</mark> protocol with multiple paths is running on a router.

VII. Choosing Routes:

1. When a routing protocol has more than one path to a destination, it will use the metrics to present a route to the router.

- 2. When a router is presented with multiple routes to a destination, it will use AD to decide which one to use and will install that route in the routing table.
- 3. Finally when a routers needs to route a packet, it will look at the routing table and use the route longest match prefix (subnet mask).

VIII. Classes of Routing Protocols

• Distance Vector

- o Uses distance to measure the cost of a route.
- o Periodically send their entire routing table.
- o Slower to converge, consume a lot more bandwidth & CPU.

• Link State

- o Form a neighbor relation with other routers before sharing routing information.
- o Exchange connectivity
 related information
 (links states)
- o Link state updates are sent out only when there is a change
- o Converge faster than distance vector.

• Hybrid

- o Use aspects of both

 distance vector and link

 state protocols.
- o Ex. EIGRP

IX. Routing Loops

- 1. Maximum Hop Count set to 15
- 2. **Split Horizon** prohibiting a router from advertising a route back onto the interface from which it was learned
- 3. Route Poisoning lost route is advertised with hop count of more than the maximum hop count
- 4. **Hold Downs** prevents a router from learning new info about a failed route until time expires

X. Routing Redistribution

- Route redistribution is the process of distributing routes learned from one source to another
- Useful when networks are expanding, merging or in a phase of transition

XI. Route Summarization

- 192.168.1.0/25
- 192.168.1.128/25
- 192.168.2.0/24
- 192.168.3.0/24
- 192.168.4.0/26192.168.4.64/26
- 192.168.4.128/26
- 192.168.4.192/26