Applications linéaires

Exercice 1 ★★

Noyaux et images itérés

Soit u un endomorphisme de E, pour tout entier naturel p, on notera $I_p = \operatorname{Im} u^p$ et $K_p = \operatorname{Ker} u^p$.

- **1.** Montrer que : $\forall p \in \mathbb{N}$, $K_p \subset K_{p+1}$ et $I_{p+1} \subset I_p$.
- **2.** On suppose que E est de dimension finie et u injectif. Déterminer I_p et K_p pour tout $p \in \mathbb{N}$.
- **3.** On suppose que E est de dimension finie $n \in \mathbb{N}$.
 - **a.** Montrer qu'il existe un plus petit entier naturel $r \le n$ tel que : $K_r = K_{r+1}$.
 - **b.** Montrer qu'alors : $I_r = I_{r+1}$ et que : $\forall p \in \mathbb{N}$, $K_r = K_{r+p}$ et $I_r = I_{r+p}$.
 - **c.** Montrer que : $E = K_r \oplus I_r$.
- **4.** Lorsque E n'est pas de dimension finie, existe-t-il un plus petit entier naturel r tel que $K_r = K_{r+1}$?

Exercice 2 ★★

Soient *p* et *q* deux projecteurs d'un espace vectoriel E qui commutent.

- **1.** Montrer que $p + q p \circ q$ et $p \circ q$ sont des projecteurs.
- **2.** Montrer que $\operatorname{Ker}(p \circ q) = \operatorname{Ker} p + \operatorname{Ker} q$ et que $\operatorname{Im}(p \circ q) = \operatorname{Im} p \cap \operatorname{Im} q$.
- 3. Montrer que $\operatorname{Ker}(p+q-p \circ q) = \operatorname{Ker} p \cap \operatorname{Ker} q$ et que $\operatorname{Im}(p+q-p \circ q) = \operatorname{Im} p + \operatorname{Im} q$.

Exercice 3 ★

On pose $E = \mathbb{R}^{\mathbb{R}}$. Montrer que l'application s qui à une fonction $f \in E$ associe l'application $x \mapsto f(-x)$ est une symétrie dont on précisera les éléments caractéristiques.

Exercice 4 ★★

Endomorphismes de rang au plus 1

Soient E un \mathbb{K} -espace vectoriel et f un endomorphisme de E dont l'image est une droite vectorielle vect(u) avec $u \neq 0_E$. On pose alors :

$$\forall x \in E, \ f(x) = \varphi(x)u$$

Montrer que φ est une forme linéaire sur E et qu'il existe $\lambda \in \mathbb{K}$ tel que $f^2 = \lambda f$.

Matrices

Exercice 5

Soient $n \in \mathbb{N}^*$ et $A_n = (\min(i, j))_{1 \le i, j \le n}$. Montrer que A_n est inversible et calculer son inverse.

Exercice 6

Soit $f : P \in \mathbb{R}_3[X] \mapsto P(X+2) + P(X) - 2P(X+1)$.

- **1.** Montrer que P est un endomorphisme de $\mathbb{R}_3[X]$.
- **2.** Déterminer la matrice de f dans la base canonique de $\mathbb{R}_3[X]$. En déduire Ker f et Im f.
- 3. Déterminer une base de $\mathbb{R}_3[X]$ dans laquelle la matrice de f est $\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

Exercice 7

Soient A, B
$$\in \mathcal{M}_n(\mathbb{R})$$
 et $f: \left\{ \begin{array}{ccc} \mathcal{M}_n(\mathbb{R}) & \longrightarrow & \mathcal{M}_n(\mathbb{R}) \\ \mathrm{X} & \longmapsto & \mathrm{X} + \mathrm{tr}(\mathrm{AX})\mathrm{B} \end{array} \right.$

- **1.** Montrer que f est un endomorphisme de $\mathcal{M}_n(\mathbb{R})$.
- 2. Déterminer des conditions nécessaires et suffisantes sur ${\bf A}$ et ${\bf B}$ pour que f soit une symétrie.
- 3. Déterminer la base et la direction de f dans ce cas.

Exercice 8

Soit A une matrice réelle. Montrer que $\operatorname{rg} A = \operatorname{rg} A^{\mathsf{T}} A = \operatorname{rg} AA^{\mathsf{T}}$.

Exercice 9 Navale

Soient
$$a \in \mathbb{R}^*$$
 et $M = \begin{pmatrix} 0 & a & a^2 \\ \frac{1}{a} & 0 & a \\ \frac{1}{a^2} & \frac{1}{a} & 0 \end{pmatrix}$. Calculer de deux façons M^n pour tout $n \in \mathbb{N}$.

Exercice 10 Sans calculs

Soit A =
$$\begin{pmatrix} 0 & 2 & 0 & 0 \\ -1 & 0 & 0 & 2 \\ 1 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
. Déterminer sans calculs des bases de Ker A et

Exercice 11

Im A.

Soit f l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice $A = \begin{pmatrix} 2 & -1 & 0 \\ -2 & 1 & -2 \\ 1 & 1 & 3 \end{pmatrix}$. Caculer le déterminant de la matrice $\begin{pmatrix} n+i \\ j \end{pmatrix}_{0 \le i,j \le p}$ avec $0 \le p \le n$.

Soient $e_1 = (1, 1, -1)$, $e_2 = (1, 0, -1)$ et $e_3 = (1, -1, 0)$.

- **1.** Montrer que $\mathcal{B} = (e_1, e_2, e_3)$ est une base de \mathbb{R}^3 .
- **2.** Ecrire la matrice de passage P de la base canonique vers la base \mathcal{B} et calculer P^{-1} .
- **3.** Ecrire la matrice de f dans la base \mathcal{B} .
- **4.** Calculer A^n pour tout $n \in \mathbb{N}$.

Exercice 12

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Résoudre l'équation X + tr(X)A = 0 d'inconnue $X \in \mathcal{M}_n(\mathbb{R})$.

Exercice 13

Rang du complément de Schur

Soit
$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$
 où $A \in GL_p(\mathbb{R})$ et $D \in \mathcal{M}_q(\mathbb{R})$. On pose $S = D - CA^{-1}B$. Montrer que $rg(M) = rg(A) + rg(S)$.

Déterminants

Exercice 14 ★

Soient A, B $\in \mathcal{M}_n(\mathbb{Z})$.

- **1.** Montrer que det A, det $B \in \mathbb{Z}$.
- 2. On suppose que det A et det B sont premiers entre eux. Montrer qu'il existe deux matrices $U, V \in \mathcal{M}_n(\mathbb{Z})$ telles que $AU + BV = I_n$.

Exercice 15 **

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Donner le rang de com(A) en fonction de celui de A. On pourra distinguer les cas rg A = n, rg A < n - 1 et rg A = n - 1.

Exercice 16 ★

Exercice 17 ★

Calculer le déterminant de taille *n*

$$D_{n} = \begin{vmatrix} 1+x^{2} & x & 0 & \dots & \dots & 0 \\ x & 1+x^{2} & x & 0 & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & x & 1+x^{2} & x \\ 0 & \dots & \dots & 0 & x & 1+x^{2} \end{vmatrix}_{[n]}$$