FICHE 0X-01: Majoration d'indice de nilpotence: ALG? K-29-1-14

Yvann Le Fay

Juin 2019

Enoncé

Soit E un espace vectoriel de dimension n, soit $f \in \mathcal{L}(E)$, nilpotente de rang p_0 . Soit $g \in \mathcal{L}(E)$ telle que, pour tout $x \in E$, il existe $p_x \in \mathbb{N}^*$ telle que $f^{p_x}(x) = 0$

- 1. Majorer p_0 .
- 2. Montrer que g est nilpotente.

Solution

- 1. Il existe $x_0 \in E$ tel que pour tout $j \in [0; p-1], f^j(x_0)$, cela par minimalité de p_0 . On montre par récurrence immédiate que la famille $(x_0, f(x_0), \dots, f^{p_0-1}(x_0))$ est une famille libre. On obtient donc $p_0 \le n$.
- 2. Soit (e_1, \ldots, e_n) une base de E. L'indice de nilpotence de g est alors $\max(p_{e_1}, \ldots, p_{e_n})$.