Open system Interconnection (OSI) DataLink Layer

Munesh Singh

Indian Institute of Information Technology, Design and Manufacturing Kancheepuram, Chennai, Tamil Nadu 600127

September 16, 2020

Sliding Window Protocol

- Sliding window protocol is a flow control protocol.
- It allows the sender to send multiple frames before needing the acknowledgments.
- Sender slides its window on receiving the acknowledgments for the sent frames.
- This allows the sender to send more frames.
- It is called so because it involves sliding of senders window.
- Maximum number of frames that sender can send without acknowledgment = Sender window size
- Optimal Window Size

In a sliding window protocol, optimal sender window size = 1 + 2a

Derivation

- As we know $\eta = \frac{T_t}{T_t + 2 \times T_p}$
- To get 100% efficiency, we must have-

$$\eta = 1$$

$$1 = \frac{T_t}{T_t + 2xT_p}$$

$$T_t = T_t + 2xT_p$$

- Thus
 - To get 100% efficiency, transmission time must be $T_t + 2T_p$ instead of T_t .
 - This means sender must send the frames in waiting time too.
 - Now, let us find the maximum number of frames that can be sent in time $T_t + 2T_p$.
- We have-
 - In time T_t , sender sends one frame.
 - Thus, In time $T_t + 2T_p$, sender can send $(T_t + 2T_p)/T_t$ frames i.e. 1 + 2a frames.
 - Thus, to achieve 100% efficiency, window size of the sender must be 1+2a.

Required Sequence Numbers

- Each sending frame has to be given a unique sequence number.
- Maximum number of frames that can be sent in a window = 1 + 2a.
- So, minimum number of sequence numbers required = 1 + 2a.
 - To have 1+2a sequence numbers, Minimum number of bits required in sequence number field = $\lceil log_2(1+2a) \rceil$
- Note:
 - When minimum number of bits is asked, we take the ceil.
 - When maximum number of bits is asked, we take the floor

Choosing a Window Size

• The size of the senders window is bounded by-

Receivers Ability

- Receivers ability to process the data bounds the sender window size.
- If receiver can not process the data fast, sender has to slow down and not transmit the frames too fast.

Sequence Number Field

- Number of bits available in the sequence number field also bounds the sender window size.
- If sequence number field contains n bits, then 2n sequence numbers are possible.
- Thus, maximum number of frames that can be sent in one window = 2n.
- For n bits in sequence number field, Sender Window Size = $\min (1+2a, 2n)$

Implementations of Sliding Window Protocol

- The two well known implementations of sliding window protocol are-
 - Go back N Protocol
 - Selective Repeat Protocol

Implementations of Sliding Window Protocol

• Efficiency of any flow control protocol may be expressed as-

OR

OR

• In Stop and Wait ARQ, sender window size = 1. Efficiency of Stop and Wait $ARQ = \frac{1}{1+2a}$

- Q1 If transmission delay and propagation delay in a sliding window protocol are 1 msec and 49.5 msec respectively, then-
 - What should be the sender window size to get the maximum efficiency?
 - What is the minimum number of bits required in the sequence number field?
 - If only 6 bits are reserved for sequence numbers, then what will be the efficiency?
 - Solution- Given- Transmission delay = 1 msec, Propagation delay = 49.5 msec

To get the maximum efficiency, sender window size= $1 + 2a = 1 + 2x \frac{49.5 msec}{1 msec} = 100$ For maximum efficiency, sender window size = 100

September 16, 2020

- Minimum number of bits required in the sequence number field= $\lceil log_2(1+2a) \rceil = \lceil log_2(100) \rceil$
- If only 6 bits are reserved in the sequence number field, then-Maximum sequence numbers possible $= 2^6 = 64$
- Now, Efficiency= $\frac{Sender\ window\ size\ in\ the\ protocol}{Optimal\ sender\ window\ size}=\frac{64}{100}=64\%$

- Q2 If transmission delay and propagation delay in a sliding window protocol are 1 msec and 99.5 msec respectively, then-
 - What should be the sender window size to get the maximum efficiency?
 - What is the minimum number of bits required in the sequence number field?
 - If only 7 bits are reserved for sequence numbers, then what will be the efficiency?
 - Solution- Given- Transmission delay = 1 msec, Propagation delay = 99.5 msec
 - 1: To get the maximum efficiency, sender window size=1+2a
 - 2: Minimum number of bits required in the sequence number field
 - 3: Efficiency = Sender window size in the protocol / Optimal sender window size

- Q3 A 3000 km long trunk operates at 1.536 Mbps and is used to transmit 64 byte frames and uses sliding window protocol. If the propagation speed is 6 μ sec / km, how many bits should the sequence number field be?
 - Solution- Given- Distance = 3000 km Bandwidth = 1.536 Mbps Packet size = 64 bytes Propagation speed = 6 μ sec / km
 - Calculating Transmission Delay-Transmission delay(T_t) = $\frac{Packetsize}{Bandwidth}$ = $\frac{(64 \times 8bits)}{(1.536 \times 10^6bitspersec)}$
 - Calculating Propagation Delay For 1km propagation $delay = 6\mu sec$ For 3000 km, propagation $delay = 3000 \times 6\mu sec = 18000\mu sec$
 - Calculating Value Of a- $a = \frac{T_p}{T_c} = \frac{18000\mu sec}{33333\mu sec}$

- Calculating Bits Required in Sequence Number Field-Bits required in sequence number field= $\lceil log_2(1+2a) \rceil$
 - Thus, Minimum number of bits required in sequence number field = 7
 - With 7 bits, number of sequence numbers possible = 128
 - We use only (1+2a) = 109 sequence numbers and rest remains unused.

- Q4 Compute approximate optimal window size when packet size is 53 bytes, RTT is 60 msec and bottleneck bandwidth is 155 Mbps.
 - Solution Given- Packet size = 53 bytes, RTT = 60 msec,
 Bandwidth = 155 Mbps
 - Calculating Propagation Delay $Propagationdelay(T_p) = \frac{RoundTripTime}{2} = 30msec$
 - Calculating Value of a- $a = \frac{T_p}{T_r}$
 - Calculating Optimal Window Size-Optimal window size = 1 + 2a

- Q5 : A sliding window protocol is designed for a 1 Mbps point to point link to the moon which has a one way latency (delay) of 1.25 sec. Assuming that each frame carries 1 KB of data, what is the minimum number of bits needed for the sequence number?
 - Solution Given- Bandwidth = 1 Mbps, Propagation delay (T_p) = 1.25 sec, Packet size = 1 KB
 - Calculating Transmission Delay

 Transmission delay $(T_t) = \frac{Packetsize}{Bandwidth} = \frac{(2^{10} \times 8bits)}{(10^6bitspersec)}$
 - Calculating Value of a $a = \frac{T_p}{T_t} = \frac{1.25sec}{8.192msec}$
 - Calculating Bits Required in Sequence Number Field Bits required in sequence number field = $\lceil log_2(1+2a) \rceil$
 - With 9 bits, number of sequence numbers possible = 512.

Q6: Host A is sending data to host B over a full duplex link. A and B are using the sliding window protocol for flow control. The send and receive window sizes are 5 packets each. Data packets (sent only from A to B) are all 1000 bytes long and the transmission time for such a packet is 50 μ s. Acknowledgment packets (sent only from B to A) are very small and require negligible transmission time. The propagation delay over the link is 200 μ s. What is the maximum achievable throughput in this communication?

Solution Given-

Sender window size = Receiver window size = 5, Packet size = 1000 bytes, Transmission delay (Tt) = 50 μ s, Propagation delay (Tp) = 200 μ s

Calculating Bandwidth

$$Transmission delay = \frac{Packetsize}{Bandwidth}$$

$$Bandwidth = \frac{PacketSize}{Transmission delay(T_t)} = \frac{(1000 \times 8bits)}{(50 \times 10^{-6} sec)}$$

- Calculating Value of a- $a = \frac{T_p}{T_r}$
- Calculating Optimal Window Size-Optimalwindowsize = 1 + 2a
- Calculating Efficiency- $Efficiency(\eta) = \frac{Sender \ window \ size}{Optimal \ window \ size}$
- Calculating Maximum Achievable Throughput-Maximum achievable throughput = Efficiency(η)xBandwidth
- Q7: Station A uses 32 byte packets to transmit messages to station B using a sliding window protocol. The round trip delay between A and B is 80 msec and the bottleneck bandwidth on the path between A and B is 128 Kbps. What is the optimal window size that A should use?

- Solution Given- Packet size = 32 bytes, Round Trip Time = 80 msec, Bandwidth = 128 Kbps
- Calculating Transmission Delay-Transmission delay (Tt)= $\frac{Packetsize}{Bandwidth} = \frac{(32\times8bits)}{(128\times103bitspersec)}$
- Calculating Propagation Delay-Propagation delay (Tp) $=\frac{RoundTripTime}{2}$
- Calculating Value of a- $a = \frac{T_p}{T_r}$
- Calculating Optimal Window Size-Optimal window size=1 + 2a

Thank You

