Math101

16. oktober 2018

Benjamin Støttrup benjamin@math.aau.dk

> Institut for matematiske fag Aalborg universitet Danmark

Agenda

Delvis integration

Integration ved substitution

$$\int f(x)g(x) dx = f(x)G(x) - \int f'(x)G(x) dx$$
$$\int_a^b f(x)g(x) dx = [f(x)G(x)]_a^b - \int_a^b f'(x)G(x) dx$$

- ▶ Det er ikke lige meget hvordan f og g vælges.
- ► Eksempler: Udregn

$$\int x e^x \, dx,$$

$$\int_0^{\frac{\pi}{2}} x \sin(x) \, dx.$$

$$\int f(x)g(x) dx = f(x)G(x) - \int f'(x)G(x) dx$$
$$\int_a^b f(x)g(x) dx = [f(x)G(x)]_a^b - \int_a^b f'(x)G(x) dx$$

- ▶ Det er ikke lige meget hvordan f og g vælges.
- ► Eksempler: Udregn

$$\int x e^x dx,$$

$$\int_0^{\frac{\pi}{2}} x \sin(x) dx.$$

$$\int f(x)g(x) dx = f(x)G(x) - \int f'(x)G(x) dx$$
$$\int_a^b f(x)g(x) dx = [f(x)G(x)]_a^b - \int_a^b f'(x)G(x) dx$$

- ▶ Det er ikke lige meget hvordan f og g vælges.
- ► Eksempler: Udregn

$$\int x e^x \, dx,$$

$$\int_0^{\frac{\pi}{2}} x \sin(x) \, dx$$

$$\int f(x)g(x) dx = f(x)G(x) - \int f'(x)G(x) dx$$
$$\int_a^b f(x)g(x) dx = [f(x)G(x)]_a^b - \int_a^b f'(x)G(x) dx$$

- ▶ Det er ikke lige meget hvordan f og g vælges.
- ► Eksempler: Udregn

$$\int x e^x dx,$$

$$\int_0^{\frac{\pi}{2}} x \sin(x) dx$$

$$\int f(x)g(x) dx = f(x)G(x) - \int f'(x)G(x) dx$$
$$\int_a^b f(x)g(x) dx = [f(x)G(x)]_a^b - \int_a^b f'(x)G(x) dx$$

- ▶ Det er ikke lige meget hvordan f og g vælges.
- ► Eksempler: Udregn

$$\int xe^x dx,$$

$$\int_0^{\frac{\pi}{2}} x \sin(x) dx.$$

$$\int_{a} f(g(x))g'(x) dx = F(g(x)) + c$$
$$\int_{a}^{b} f(g(x))g'(x) dx = [F(g(x))]_{a}^{b}.$$

- Denne regneregel kaldes integration ved substitution.
- ▶ Vi vil ofte anvende en særlig metode der retfærdiggør navnet.

$$\int f(g(x))g'(x) dx = F(g(x)) + c$$
$$\int_a^b f(g(x))g'(x) dx = [F(g(x))]_a^b.$$

- Denne regneregel kaldes integration ved substitution.
- ▶ Vi vil ofte anvende en særlig metode der retfærdiggør navnet.

$$\int f(g(x))g'(x) \, dx = F(g(x)) + c$$
$$\int_{a}^{b} f(g(x))g'(x) \, dx = [F(g(x))]_{a}^{b}.$$

- ▶ Denne regneregel kaldes integration ved substitution.
- ▶ Vi vil ofte anvende en særlig metode der retfærdiggør navnet.

$$\int f(g(x))g'(x) \, dx = F(g(x)) + c$$
$$\int_{a}^{b} f(g(x))g'(x) \, dx = [F(g(x))]_{a}^{b}.$$

- ▶ Denne regneregel kaldes integration ved substitution.
- ► Vi vil ofte anvende en særlig metode der retfærdiggør navnet.

- ▶ Udregn $\int f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- ► Substituer g(x) og dx.
- ► Udregn integralet mht. *u*.
- ► Substituer tilbage.

- ► Udregn $\int x^2 \cos(x^3) dx$
 - ightharpoonup Lad $u = x^3$.
- Så er $\frac{du}{dx} = 3x^2$ og $dx = \frac{du}{3x^2}$.
- $ightharpoonup rac{1}{3} \int \cos(u) \, du = rac{1}{3} \sin(u) + c.$
- $\int x^2 \cos(x^3) dx = \frac{1}{3} \sin(x^3) + c.$

▶ Udregn
$$\int f(g(x))g'(x) dx$$
.

▶ Lad
$$u = g(x)$$
.

▶ Udregn
$$\frac{du}{dx}$$
 og isoler dx .

► Substituer
$$g(x)$$
 og dx .

▶ Udregn
$$\int x^2 \cos(x^3) dx$$
.

$$ightharpoonup$$
 Lad $u = x^3$.

Så er
$$\frac{du}{dx} = 3x^2$$
 og $dx = \frac{du}{3x^2}$.

► Udregn
$$\int f(g(x))g'(x) dx$$
.

► Lad
$$u = g(x)$$
.

► Udregn
$$\frac{du}{dx}$$
 og isoler dx .

► Substituer
$$g(x)$$
 og dx .

► Udregn
$$\int x^2 \cos(x^3) dx$$

$$ightharpoonup$$
 Lad $u=x^{\circ}$.

Så er
$$\frac{du}{dx} = 3x^2$$
 og $dx = \frac{du}{3x^2}$.

$$ightharpoonup rac{1}{3} \int \cos(u) \, du = rac{1}{3} \sin(u) + c.$$

$$\int x^2 \cos(x^3) dx = \frac{1}{3} \sin(x^3) + c.$$

- ► Udregn $\int f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- ► Substituer g(x) og dx.
- ► Udregn integralet mht. *u*.
- Substituer tilbage.

- ▶ Så er ^{du} 3*y*² og dy <u>du</u>

- $\int x^2 \cos(x^3) dx = \frac{1}{2} \sin(x^3) + c.$

- ▶ Udregn $\int f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ► Udregn $\frac{du}{dx}$ og isoler dx.
- ► Substituer g(x) og dx.
- ► Udregn integralet mht. *u*.
- Substituer tilbage.

- $ightharpoonup rac{1}{3} \int \cos(u) \, du = rac{1}{3} \sin(u) + c.$
- $\int x^2 \cos(x^3) dx = \frac{1}{3} \sin(x^3) + c.$

- ► Udregn $\int f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ► Udregn $\frac{du}{dx}$ og isoler dx.
- ► Substituer g(x) og dx.
- ► Udregn integralet mht. *u*.
- ► Substituer tilbage.

- ▶ Udregn $\int f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- ► Substituer g(x) og dx.
- ► Udregn integralet mht. *u*.
- ► Substituer tilbage.

- ► Udregn $\int x^2 \cos(x^3) dx$.
- ▶ Lad $u = x^3$.
- Så er $\frac{du}{dx} = 3x^2$ og $dx = \frac{du}{3x^2}$.

- ▶ Udregn $\int f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- ► Substituer g(x) og dx.
- ► Udregn integralet mht. *u*.
- ► Substituer tilbage.

- ► Udregn $\int x^2 \cos(x^3) dx$.
- ▶ Lad $u = x^3$.
- Så er $\frac{du}{dx} = 3x^2$ og $dx = \frac{du}{3x^2}$.

- ► Udregn $\int f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- ► Substituer g(x) og dx.
- ► Udregn integralet mht. *u*.
- Substituer tilbage.

- ► Udregn $\int x^2 \cos(x^3) dx$.
- ▶ Lad $u = x^3$.
- ► Så er $\frac{du}{dx} = 3x^2$ og $dx = \frac{du}{3x^2}$.

Proper University 4

► Udregn
$$\int f(g(x))g'(x) dx$$
.

▶ Lad
$$u = g(x)$$
.

▶ Udregn
$$\frac{du}{dx}$$
 og isoler dx .

► Substituer
$$g(x)$$
 og dx .

► Udregn
$$\int x^2 \cos(x^3) dx$$
.

► Lad
$$u = x^3$$
.

► Så er
$$\frac{du}{dx} = 3x^2$$
 og $dx = \frac{du}{3x^2}$.

Propagalist Control of the Control o

- ► Udregn $\int f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- ► Substituer g(x) og dx.
- ► Udregn integralet mht. *u*.
- ► Substituer tilbage.

- ► Udregn $\int x^2 \cos(x^3) dx$.
- ► Lad $u = x^3$.
- ► Så er $\frac{du}{dx} = 3x^2$ og $dx = \frac{du}{3x^2}$.

- ► Udregn $\int f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- ► Substituer g(x) og dx.
- ► Udregn integralet mht. *u*.
- Substituer tilbage.

- ► Udregn $\int x^2 \cos(x^3) dx$.
- ▶ Lad $u = x^3$.
- ► Så er $\frac{du}{dx} = 3x^2$ og $dx = \frac{du}{3x^2}$.

- ► Udregn $\int_a^b f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- Substituer g(x), dx samt grænser.
- ▶ Udregn integralet mht. *u*.

- ► Udregn $\int_{-1}^{\infty} -xe^x dx$
- ightharpoonup Lad $u = x^2$.
- Så er $\frac{du}{dx} = 2x$ og $dx = \frac{du}{2x}$

- ► Udregn $\int_a^b f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- Substituer g(x), dx samt grænser.
- ▶ Udregn integralet mht. *u*.

- ightharpoonup Lad $u = x^2$.
- Så er $\frac{du}{dx} = 2x$ og $dx = \frac{du}{2x}$
- $ightharpoonup = \frac{-1}{2} \int_1^4 e^u \, du = \frac{-1}{2} [e^u]_1^4 = \frac{e e^4}{2}.$

- ► Udregn $\int_a^b f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ► Udregn $\frac{du}{dx}$ og isoler dx.
- Substituer g(x), dx samt grænser.
- ▶ Udregn integralet mht. u. $\frac{1}{2} \int_{1}^{4} e^{u} du = \frac{-1}{2} [e^{u}]_{1}^{4} = \frac{e-e^{u}}{2}$.

- ► Udregn $\int_a^b f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ► Udregn $\frac{du}{dx}$ og isoler dx.
- Substituer g(x), dx samt grænser.
- ► Udregn integralet mht. *u*.

- ► Udregn $\int_a^b f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ► Udregn $\frac{du}{dx}$ og isoler dx.
- Substituer g(x), dx samt grænser.
- ► Udregn integralet mht. u.

- ► Udregn $\int_a^b f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- Substituer g(x), dx samt grænser.
- ► Udregn integralet mht. *u*.

- ► Udregn $\int_{-1}^{2} -xe^{x^2} dx$.
- ▶ Lad $u = x^2$.
- ▶ Så er $\frac{du}{dx} = 2x$ og $dx = \frac{du}{2x}$.

- ► Udregn $\int_a^b f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- Substituer g(x), dx samt grænser.
- ► Udregn integralet mht. u.

- ► Udregn $\int_{-1}^{2} -xe^{x^2} dx$.
- ▶ Lad $u = x^2$.
- ▶ Så er $\frac{du}{dx} = 2x$ og $dx = \frac{du}{2x}$.

- ► Udregn $\int_a^b f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- Substituer g(x), dx samt grænser.
- ► Udregn integralet mht. *u*.

- ► Udregn $\int_{-1}^{2} -xe^{x^2} dx$.
- ▶ Lad $u = x^2$.
- ▶ Så er $\frac{du}{dx} = 2x$ og $dx = \frac{du}{2x}$.

- ► Udregn $\int_a^b f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- Substituer g(x), dx samt grænser.
- ► Udregn integralet mht. *u*.

- ► Udregn $\int_{-1}^{2} -xe^{x^2} dx$.
- ▶ Lad $u = x^2$.
- ▶ Så er $\frac{du}{dx} = 2x$ og $dx = \frac{du}{2x}$.

- ► Udregn $\int_a^b f(g(x))g'(x) dx$.
- ▶ Lad u = g(x).
- ▶ Udregn $\frac{du}{dx}$ og isoler dx.
- Substituer g(x), dx samt grænser.
- ► Udregn integralet mht. *u*.

- ► Udregn $\int_{-1}^{2} -xe^{x^2} dx$.
- ▶ Lad $u = x^2$.
- ► Så er $\frac{du}{dx} = 2x$ og $dx = \frac{du}{2x}$.

Opgaveregning!

