1	(a)	•	By reference to the direction of propagation of energy, state what is meant by a <i>transverse</i> wave.
			State the principle of superposition.
			[2]

(b) Circular water waves may be produced by vibrating dippers at points P and Q, as illustrated in Fig. 4.1.

Fig. 4.1 (not to scale)

The waves from P alone have the same amplitude at point R as the waves from Q alone. Distance PR is 44 cm and distance QR is 29 cm.

The dippers vibrate in phase with a period of 1.5 s to produce waves of speed 4.0 cm s⁻¹.

(i) Determine the wavelength of the waves.

wavelength =cm [2]

	(11)	point R.
		[3]
(c)		ave is produced on the surface of a different liquid. At one particular time, the variation of vertical displacement y with distance x along the surface of the liquid is shown in Fig. 4.2.
		Fig. 4.2
	(i)	The wave has intensity I_1 at distance $x = 2.0 \mathrm{cm}$ and intensity I_2 at $x = 10.0 \mathrm{cm}$.
		Determine the ratio
		$\frac{\mathrm{intensity}\;I_2}{\mathrm{intensity}\;I_1}\;.$
		ratio =[2]
	(ii)	State the phase difference, with its unit, between the oscillations of the liquid particles at distances $x = 3.0 \text{cm}$ and $x = 4.0 \text{cm}$.
		phase difference =[1]
		[Total: 11]