vypracoval Jiří Sýkora

Zadání

(1) Z definice dokažte (k ε najděte δ), že

$$\lim_{r \to 2} x^2 = 4 \tag{1}$$

(2) Mějme zadané číslo $n \in \mathbb{N}, n \geq 3$. Rozhodněte, pro která reálná čísla a existuje limita

$$\lim_{x \to 0} \frac{(1+ax)^{n} - (1+anx+3ax^{2})}{4x^{3} + ax^{4}} \tag{2}$$

a čemu se v takovém případě rovná (najděte všechny možnosti).

(3) Najděte limitu

$$\lim_{x \to 0} \frac{x^2 - 8x}{\sqrt[3]{x^2 + 1} - \sqrt[3]{x^2 + 2x + 1}} \tag{3}$$

Řešení

(1) Snadno vidíme, že vzhledem ke spojitosti funkce x^2 bude tato limita rovna 4. Důkaz provedeme přímo z definice limity

$$\forall \varepsilon > 0, \exists \delta > 0 : \forall x \in P_{\delta}(2) \implies x^2 \in U_{\varepsilon}(4)$$

Jinak řečeno, k jakémukoliv $\varepsilon > 0$ tedy najdeme takové $\delta > 0$, že bude platit

$$0 < |x - 2| < \delta \implies |x^2 - 4| < \varepsilon$$

Ještě před tím než začneme se samotným důkazem, spočteme jaké δ je vhodné.

$$|x^2 - 4| = |x - 2||x + 2| < \delta|x + 2|$$

Zde jsme využili předpokladu, že $0 < |x-2| < \delta$. Abychom spočetli druhou absolutní hodnotu, zadefinujeme $\delta = \min\{\delta_1, \delta_2\}$ a položíme $\delta_1 = 1$, čímž obsáhneme možnost pro příliš velká ε . Nyní dopočteme δ_2 , po kterém budeme chtít, aby bylo menší jak jedna, a proto bude platit

$$|x-2| < 1 \Leftrightarrow |x+2| < 5$$

A proto

$$|x^2 - 4| < 5\delta$$

Stačí tedy zvolit $\delta < \frac{\varepsilon}{5}.$

Nyní provedeme samotný důkaz.+ Nechť $\varepsilon > 0$, vyberme $\delta = \min\{1, \frac{\varepsilon}{5}\}$. Pak

$$|x^2 - 4| < 5\delta < \varepsilon$$

(2) Začneme tím, že si tvar této limity nejprve upravíme pomocí binomického rozvoje.

$$\lim_{x \to 0} \frac{(1+ax)^{n} - (1+anx+3ax^{2})}{4x^{3} + ax^{4}} = \lim_{x \to 0} \frac{\sum_{k=0}^{n} \binom{n}{k} (ax)^{k} - (1+anx+3ax^{2})}{4x^{3} + ax^{4}}$$

Což lze dále upravit tak, že si vypíšeme první tři členy a vytknene x^2 ve jmenovateli.

$$= \lim_{x \to 0} \frac{\sum_{k=3}^{n} \binom{n}{k} a^k x^k + 1 + anx + \frac{n(n-1)}{2} a^2 x^2 - (1 + anx + 3ax^2)}{x^2 (4x + ax^2)}$$

$$\sum_{k=3}^{n} \binom{n}{k} a^k x^k + \left(\frac{n(n-1)}{2} a - 3\right) ax^2 \qquad \sum_{k=3}^{n} \binom{n}{k} a^k x^{k-2} + \left(\frac{n(n-1)}{2} a - 3\right) ax^2 \qquad \sum_{k=3}^{n} \binom{n}{k} a^k x^{k-2} + \binom{n(n-1)}{2} a - 3$$

$$= \lim_{x \to 0} \frac{\sum_{k=3}^{n} \binom{n}{k} a^k x^k + \left(\frac{n(n-1)}{2}a - 3\right) a x^2}{x^2 (4x + ax^2)} = \lim_{x \to 0} \frac{\sum_{k=3}^{n} \binom{n}{k} a^k x^{k-2} + \left(\frac{n(n-1)}{2}a - 3\right) a}{4x + ax^2}$$

Nyní si limitu rozdělíme na dva zlomky a upravíme je, abychom si ulehčili budoucí výpočty.

$$= \lim_{x \to 0} \frac{\left(\frac{n(n-1)}{2}a - 3\right)a}{4x + ax^2} + \frac{\sum_{k=3}^{n} \binom{n}{k}a^kx^{k-2}}{4x + ax^2} = \lim_{x \to 0} \frac{\left(\frac{n(n-1)}{2}a - 3\right)a}{4x + ax^2} + \frac{\sum_{k=3}^{n} \binom{n}{k}a^kx^{k-3}}{4 + ax}$$

Jestliže má být limita definovaná, musí se shodovat její limita zleva a zprava. Ukážeme si postupně, že pro $\frac{n(n-1)}{2}a^2-3a>0$ a pro $\frac{n(n-1)}{2}a^2-3a<0$ tato podmínka není splněna.

1)
$$\frac{n(n-1)}{2}a^2 - 3a > 0$$

(a)

$$\lim_{x \to 0^{+}} \frac{\left(\frac{n(n-1)}{2}a - 3\right)a}{4x + ax^{2}} + \frac{\sum_{k=3}^{n} \binom{n}{k}a^{k}x^{k-3}}{4 + ax} = \lim_{x \to 0^{+}} \frac{\left(\frac{n(n-1)}{2}a - 3\right)a}{4x + ax^{2}} + \lim_{x \to 0^{+}} \frac{\sum_{k=3}^{n} \binom{n}{k}a^{k}x^{k-3}}{4 + ax}$$
$$= \infty + const. = \infty$$

Kde využíváme toho, že čitatel prvního zlomku je konstantní a tedy až na znaménko nemůže ovlivnit výsledek limity, jakmile jde jmenovatel k nule.

(b) Když se ale přibližujeme zleva a uvědomíme si, že jelikož je x = 0 kořenem $4x + ax^2$, pak to ale znamená, že protíná osu x, a tudíž musí být z jedné strany kladná a z druhé záporná. To kde je kladná a kde záporná lze snadno zjistit podle koeficientu a, který je zároveň koeficientem u x^2 , a tedy určuje tvar paraboly.

$$\lim_{x \to 0^{-}} \frac{\left(\frac{n(n-1)}{2}a - 3\right)a}{4x + ax^{2}} + \frac{\sum_{k=3}^{n} \binom{n}{k}a^{k}x^{k-3}}{4 + ax} = \lim_{x \to 0^{-}} \frac{\left(\frac{n(n-1)}{2}a - 3\right)a}{4x + ax^{2}} + \lim_{x \to 0^{-}} \frac{\sum_{k=3}^{n} \binom{n}{k}a^{k}x^{k-3}}{4 + ax}$$
$$= -\infty + const. = -\infty$$

Jelikož se jednostranné limity neshodují, pak musí být daná limita nedefinovaná.

2) Totéž uděláme pro $\frac{n(n-1)}{2}a^2 - 3a < 0$

(a)

$$\lim_{x \to 0^{+}} \frac{\left(\frac{n(n-1)}{2}a - 3\right)a}{4x + ax^{2}} + \frac{\sum_{k=3}^{n} \binom{n}{k}a^{k}x^{k-3}}{4 + ax} = \lim_{x \to 0^{+}} \frac{\left(\frac{n(n-1)}{2}a - 3\right)a}{4x + ax^{2}} + \lim_{x \to 0^{+}} \frac{\sum_{k=3}^{n} \binom{n}{k}a^{k}x^{k-3}}{4 + ax}$$
$$= -\infty + const = -\infty$$

(b)
$$\lim_{x \to 0^{-}} \frac{\left(\frac{n(n-1)}{2}a - 3\right)a}{4x + ax^{2}} + \frac{\sum_{k=3}^{n} \binom{n}{k}a^{k}x^{k-3}}{4 + ax} = \lim_{x \to 0^{-}} \frac{\left(\frac{n(n-1)}{2}a - 3\right)a}{4x + ax^{2}} + \lim_{x \to 0^{-}} \frac{\sum_{k=3}^{n} \binom{n}{k}a^{k}x^{k-3}}{4 + ax}$$

A zde se taktéž limity neshodují.

3) Zbývá tedy poslední možnost - a to zkusit $\frac{n(n-1)}{2}a^2-3a=0$. To nastane ve dvou případech: a=0 a $a=\frac{6}{n(n-1)}$.

(a)
$$a = 0$$

$$\lim_{x \to 0} \frac{\left(\frac{n(n-1)}{2} - 3\right)a}{4x + ax^2} + \frac{\sum_{k=3}^{n} \binom{n}{k} a^k x^{k-3}}{4 + ax} = \lim_{x \to 0} 0 + 0 = 0$$
(b) $a = \frac{6}{n(n-1)}$

$$\lim_{x \to 0} \frac{\left(\frac{n(n-1)}{2} - 3\right)a}{4x + ax^2} + \frac{\sum_{k=3}^{n} \binom{n}{k} a^k x^{k-3}}{4 + ax} = 0 + \frac{36(n-2)}{4n^2(n-1)^2} = \frac{36(n-2)}{4n^2(n-1)^2}$$

Závěr: Limita existuje pouze pro $a_1=0$ a $a_2=\frac{6}{n(n-1)}$ a je v té chvíli rovna 0 a $\frac{36(n-2)}{4n^2(n-1)^2}$ respektivně.

(3) Abychom tuto limitu mohli vypočítat, budeme muset provést algebraické úpravy, které nás dovedou k výhodnějšímu tvaru. Na první pohled se tak nabízí usměrnění jmenovatele, načež bychom ho pak mohli zdárně vykrátit s některým členem v čitateli a limitu snadno dopočíst. Musíme tedy vyřešit otázku, jak usměrnit rozdíl dvou třetích odmocnin? Využijeme vztahu

$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

A tedy

$$\lim_{x \to 0} \frac{x^2 - 8x}{\sqrt[3]{x^2 + 1} - \sqrt[3]{x^2 + 2x + 1}}$$

$$= \lim_{x \to 0} \frac{x(x-8)\left(\sqrt[3]{(x^2+1)^2} + \sqrt[3]{(x^2+1)(x^2+2x+1)} + \sqrt[3]{(x^2+2x+1)^2}\right)}{x^2+1-(x^2+2x+1)}$$

$$= \lim_{x \to 0} \frac{x(x-8)\left(\sqrt[3]{(x^2+1)^2} + \sqrt[3]{(x^2+1)(x^2+2x+1)} + \sqrt[3]{(x^2+2x+1)^2}\right)}{-2x}$$

A jestliže zkrátíme členem x, tak se úloha stává triviální.

$$= \lim_{x \to 0} \left(-\frac{1}{2} (x - 8) \left(\sqrt[3]{(x^2 + 1)^2} + \sqrt[3]{(x^2 + 1)(x^2 + 2x + 1)} + \sqrt[3]{(x^2 + 2x + 1)^2} \right) \right)$$

$$= \left(-\frac{1}{2} (-8) \left(\sqrt[3]{(+1)^2} + \sqrt[3]{(+1)(+1)} + \sqrt[3]{(+1)^2} \right) \right) = 12$$

Závěr: Limita (3) je podle výpočtu výše rovna 12.