汇编指令大全

零、状态寄存器

1	MOVE	数据传送指令 MOV	说明:
		格式: MOV OPRD1, OPRD2 功能: 本指令将一个源操作数送到目的操作数 中,即OPRD1 <oprd2.< td=""><td>1. OPRD1 为目的操作数,可以是寄存器、存储器、累加器. OPRD2 为源操作数,可以是寄存器、存储器、累加器和立即数.</td></oprd2.<>	1. OPRD1 为目的操作数,可以是寄存器、存储器、累加器. OPRD2 为源操作数,可以是寄存器、存储器、累加器和立即数.
			2. MOV 指令以分为以下四种情况: (1) 寄存器与寄存器之间的数据传送指令 (2) 立即数到通用寄存器数据传送指令 (3) 寄存器与存储器之间的数据传送指令 (4) 立即数到存储器的数据传送
			3. 本指令不影响状态标志位
2	PUSH	堆栈操作指令 PUSH和POP 格式: PUSH OPRD	说明: 1. 0PRD为16位(字)操作数,可以 是寄存器或存储器操作数.
		POP OPRD 功能:实现压入操作的指令是PUSH指令;实现弹出操作的指令是POP指令.	2. PUSH的操作过程是: (SP) < (SP) -2, ((sp)) < 0PRD 即先修 改堆栈指针SP(压入时为自动减 2), 然后, 将指定的操作数送入新 的栈顶位置.
			此处的((SP)) <oprd, [(ss)*16+(sp)]<oprd或="" [ss:sp]<oprd<="" td="" 也可以理解为:=""></oprd,>
3	POP	堆栈操作指令 PUSH和POP	说明:
		格式: PUSH OPRD POP OPRD	1. OPRD为16位(字)操作数,可以 是寄存器或存储器操作数.
		功能:实现压入操作的指令是PUSH指令;实现弹出操作的指令是POP指令.	2. POP指令的操作过程是: POP OPRD:OPRD<((SP)),(SP)< (SP)+2
			它与压入操作相反,是先弹出栈 顶的数顶,然后再修改指针SP的 内容.
			3. 示例: POP AX POP DS POP DATA1 POP ALFA[BX][DI]
			4. PUSH和POP指令对状态标志位 没有影响.
4	XCHG	数据交换指令 XCHG	说明:
		格式: XCHG OPRD1, OPRD2 其中的OPRD1为目的操作数, OPRD2为源操作数	1. 0PRD1及0PRD2可为通用寄存器或存储器,但是两个存储器之间是不能用XCHG指令实现的.
		功能:将两个操作数相互交换位置,该指令把源操作数0PRD2与目的操数0PRD1交换.	2. 段寄存器内容不能用XCHG指 令来交换.
			3. 若要实现两个存储器操作数 DATA1及DATA2的交换,可用以下 指令实现: 示例: PUSH DATA1

			PUSH DATA2 POP DATA1 POP DATA2
	777 A.M.		4. 本指令不影响状态标志位.
5	XLAT	查表指令 XLAT 格式: XLAT TABLE其中TABLE为一待查表格的首地 址.	说明: 1. 在执行该指令前,应将TABLE 先送至BX寄存器中,然后将待查
		功能:把待查表格的一个字节内容送到AL累加器中.	字节与在表格中距表首地址位移 量送AL,即 (AL)<((BX)+ (AL)).
			2. 本指令不影响状态标位, 表格 长度不超过256字节.
6	LAHF	标志传送指令 LAHF 格式: LAHF	说明:该指令不影响FLAG的原来 内容,AH只是复制了原FLAG的低8 位内容.
		功能:取FLAG标志寄存器低8位至AH寄存器.(AH)<(FLAG)7~0	
7	SAHF	标志传送指令 SAHF 格式: SAHF	说明:本指令将用AH的内容改写 FLAG标志寄存器中的SF、ZF、 AF、PF、和CF标志,从而改变原
		功能:将AH存至FLAG低8位	来的标志位.
8	PUSHF	标志传送指令 PUSHF	
		格式: PUSHF	
		功能:本指令可以把标志寄存器的内容保存到堆栈中去	
9	POPF	标志传送指令 POPF	说明:如果对堆栈中的原FLAG内容进行修改,如对TF等标志位进
		格式: POPF	行修改,然后再弹回标志位寄存器FLAG.这是通过指令修改TF标
		功能:本指令的功能与PUSHF相反,在子程序调用和中断服务程序中,往往用PUSHF指令保护FLAG的内容,用POPF指令将保护的FLAG内容恢复.	
10	LEA	有效地址传送指令 LEA	说明:
		格式: LEA OPRD1, OPRD2	1. 0PRD1 为目的操作数,可为任 意一个16位的通用寄存器.
		功能:将源操作数给出的有效地址传送到指定的的寄存器中.	0PRD2 为源操作数,可为变量 名、标号或地址表达式.
			示例: LEA BX,DATA1 LEA DX,BETA[BX+SI] LEA BX BX,[BP],[DI]
11	I DC		2. 本指令对标志位无影响。
11	LDS	从存储器取出32位地址的指令 LDS	说明:
		格式: LDS OPRD1, OPRD2	OPRD1 为任意一个16位的寄存器.
		功能:从存储器取出32位地址的指令.	0PRD2 为32位的存储器地址.
			示例: LDS SI,ABCD LDS BX,FAST[SI] LDS DI,[BX]
			注意:上面LDS DI,[BX]指令的 功能是把BX所指的32位地址指针 的段地址送入DS,偏移地址送入

4 cl= :	11	DI.
12 LES	从存储器取出32位地址的指令 LES	说明:
	格式: LES OPRD1, OPRD2	0PRD1 为任意一个16位的寄存器.
	功能: 从存储器取出32位地址的指令.	0PRD2 为32位的存储器地址.
		示例: LES SI,ABCD LES BX,FAST[SI] LES DI,[BX]
		注意:上面LES DI,[BX]指令的功能是把BX所指的32位地址指针的段地址送入ES,偏移地址送入
13 ADD	加法指令 ADD(Addition)	说明:
	格式: ADD OPRD1, OPRD2 功能: 两数相加	1. 0PRD1为任一通用寄存器或存储器操作数,可以是任意一个通用寄存器,而且还可以是任意一个存储器操作数.
		0PRD2为立即数,也可以是任意一个通用寄存器操作数.立即数只能用于源操作数.
		2. 0PRD1和0PRD2均为寄存器是允许的,一个为寄存器而另一个为存储器也是允许的,但不允许两个都是存储器操作数.
		3. 加法指令运算的结果对CF、SF、0F、PF、ZF、AF都会有影响. 以上标志也称为结果标志. 加法指令适用于无符号数或有符号数的加法运算.
14 ADC	带进位加法指令 ADC(Addition Carry)	说明:
	格式: ADC OPRD1, OPRD2 功能: OPRD1 <oprd1 +="" cf<="" oprd2="" td=""><td>1. 0PRD1为任一通用寄存器或存储器操作数,可以是任意一个通用寄存器,而且还可以是任意一个存储器操作数. 0PRD2为立即数,也可以是任意一个通用寄存器操作数. 立即数只能用于源操作数.</td></oprd1>	1. 0PRD1为任一通用寄存器或存储器操作数,可以是任意一个通用寄存器,而且还可以是任意一个存储器操作数. 0PRD2为立即数,也可以是任意一个通用寄存器操作数. 立即数只能用于源操作数.
		2. 0PRD1和0PRD2均为寄存器是允许的,一个为寄存器而另一个为存储器也是允许的,但不允许两个都是存储器操作数.
		3. 加法指令运算的结果对CF、SF、OF、PF、ZF、AF都会有影响. 以上标志也称为结果标志.
		4. 该指令对标志位的影响同ADI 指令.
15 INC	加1指令 INC(INCrement by 1)	说明:
	格式: INC OPRD	1. OPRD 为寄存器或存储器操作
	功能: OPRD <oprd+1< td=""><td>数. 2. 这条指令执行结果影响AF、OF、PF、SF、ZF标志位,但不影响CF标志位.</td></oprd+1<>	数. 2. 这条指令执行结果影响AF、OF、PF、SF、ZF标志位,但不影响CF标志位.

16 AAA	未组合的十进制加法调整指令 AAA(ASCII Adgust for Addition) 格式: AAA 功能: 对两个组合的十进制数相加运算(存在AL中)的结果进行调整,产生一个未组合的十进制数放在AX中.	3. 示例: INC SI; (SI) < (SI) +1 INC WORD PTR[BX] INC BYTE PTR[BX+DI] INC CL; (CL) < (CL) +1 注意: 上述第二, 三两条指令, 是对存储字及存储字节的内容加1以替代原来的内容. 说明: 1. 组合的十进制数和未组合的十进制数: 在计算中, 十进制数可用四位二进制数编码, 称为BCD码. 当一个节(8位)中存放一位BCD
		码,且放在字节的低4位,高4位为时称为未组合的BCD码. 2. AAA的调整操作 若(AL) and 0FH>9 或 AF=1,则调整如下: (AL) < (AL) +6, (AH) < (AH) +1, AF=1, CF < AF, (AL) < (AL) and 0FH
17 DAA	组合的十进制加法调整指令 DAA (Decimal Adjust for Addition) 格式: DAA 功能: 对AL中的两个组合进制数相加的结果进行调整,调整结果仍放在AL中,进位标志放在CF中.	说明: 1. 调整操作如下 (1) 若(AL) and 0FH>9 或 AF=1,则(AL)<(AL)+6,AF<1,对低四位的调整. (2) 若(AL) and 0F0H>90H 或CF=1,则(AL)<(AL)+60H,CF<1. 2. 示例: (AL)=18H,(BL)=06H ADD AL,BL; (AL)<(AL)+(BL); (AL)=1EH DAA; (AL)
299 SUB	减法指令SUB(SUBtract) 格式: SUB OPRD1, OPRD2 功能: 两个操作数的相减,即从OPRD1中减去OPRD2, 其结果放在OPDR1中.	说明: 示例 SUB DX,CX SUB [BX+25],AX SUB DI,ALFA[SI] SUB CL,20 SUB DATA1[DI][BX],20A5H
300 SBB	带借位减去指令 SBB(SuBtraction with Borrow) 格式: SBB OPRD1, OPRD2 功能: 是进行两个操作数的相减再减去CF进位标志 位,即从OPRD1 <oprd1-oprd2-cf, 其结果放在opdr<br="">1中.</oprd1-oprd2-cf,>	
301 DEC	减一指令 DEC(Decrement by 1) 格式: DEC OPRD 功能: OPRD <oprd-1< td=""><td>说明: 1. OPRD 为寄存器或存储器操作数. 2. 这条指令执行结果影响AF、OF、PF、SF、ZF标志位,但不影响CF标志位。</td></oprd-1<>	说明: 1. OPRD 为寄存器或存储器操作数. 2. 这条指令执行结果影响AF、OF、PF、SF、ZF标志位,但不影响CF标志位。

	1	3. 示例 DEC AX
		DEC CL
		DEC WORD PTR[DI] DEC ALFA[DI+BX]
302 NEG	取补指令 NEG(NEGate)	说明:
	格式: NEG OPRD	1. 0PRD为任意通用寄存器或存储器操作数.
	功能:对操作数OPRD进行取补操作,然后将结果送回OPRD.取补操作也叫作求补操作,就是求一个数的相反数的补码.	2. 示例: (AL)=44H,取补后, (AL)=0BCH(-44H).
		3. 本指令影响标志位CF、OF、 SF、PF、ZF及AF.
303 CMP	比效指令 CMP(CoMPare)	说明:
	格式: CMP OPRD1, OPRD2	1. 0PRD1为任意通用寄存器或存储器操作数.
	功能:对两数进行相减,进行比较.	OPRD2为任意通用寄存器或存储器操作数,立即数也可用作源操作数0PRD2.
		2. 对标志位的影响同SUB指令, 完成的操作与SUB指令类似,唯一 的区别是不将OPRD1-OPRD2的结 果送回OPRD1,而只是比较.
		3. 在8088/8086指令系统中,专 门提供了一组根据带符号数比较 大小后,实现条件转移的指令.
304 AAS	未组合十进制减法调整指令 AAS(ASCII Adjust for Subtraction)	说明:
	格式: AAS	1. 本指令影响标志位CF及AF.
		2. 调整操作
	功能:对两个未组合十进制数相减后存于AL中的结果进行调整,调整后产生一个未组合的十进制数数 且仍存于AL中.	若(AL) and OFH > 9 或 AF=1
		则(AL)<(AL)-6, (AH)<(AH)- 1, CF <af, (al)<(al)="" 0<br="" and="">FH,</af,>
		否则(AL)<(AL) and OFH
305 DAS	组合十进制减法调整指令 DAS(Decimal Adjust for Subtraction)	说明:
	格式: DAS	调整操作
	功能:对两个组合十进制数相减后存于AL中的结果	若(AL) and OFH > 9 或 AF=1, 则(AL)<(AL)-6,AF=1
	进行调整,调整后产生一个组合的十进制数且仍存于AL中.	若(AL) and OFOH > 90H 或 CF= 1,则(AL)<(AL)-60,CF=1
306 MUL	无符号数乘法指令 MUL(MULtiply)	说明:
	格式: MUL OPRD	1. OPRD为通用寄存器或存储器 操作数.
	功能:乘法操作.	2. OPRD为源操作数,即作乘数. 目的操作数是隐含的,即被乘数 总是指定为累加器AX或AL的内 容.
		3. 16位乘法时, AX中为被乘数. 8 位乘法时, AL为被乘数. 当16位乘 法时, 32位的乘积存于DX及AX中;

			8位乘法的16位乘积存于AX中.
			4. 操作过程: 字节相乘:(AX)<(AL)*0PRD, 当结果的高位字节(AH)不等于0时,则CF=1、0F=1
307	IMUL	带符号数乘法指令 IMUL(Integer MULtiply)	说明:
		格式: IMUL OPRD	1. 其中OPRD为任一通用寄存器 或存储器操作数.
		功能:完成两个带符号数的相乘	2. MUL指令对带符号相乘时,不 能得到正确的结果.
			例如: (AL)=255 (CL)=255 MUL CL (AX)=65025 注意: 这对无符号数讲,结果是 正确的,但对带符号数讲,相当于 (-1)*(-1)结果应为+1,而65025 对应的带符号数为-511,显然是 不正确的.
308	AAM	未组合十进制数乘法调整指令 AAM(ASCII Adjust MULtiply)	说明:
			1. 实际上是两个未组合的十进制数字节相乘,一个0~9的数与另一个0~9的数相乘其积最大为81. 为了得到正确的结果,应进行如下调整:
		中.	乘积: (AH)<(AL)/10 (AL)<(AL)MOD10
			2. 本指令应跟在MUL指令后使用, 乘积的两位十进制结果, 高位放在AH中, 低位放在AL中. AH内容是MUL指令的结果被10除的商, 即(AL)/10, 而最后的AL内容是乘积被10整除的余数(即个位数).
309	DIV	无符号数除法指令 DIV(DIVision)	说明:
		格式: DIV OPRD 功能: 实现两个无符号二进制数除法运算.	1. 其中OPRD为任一个通用寄存 器或存储器操作数.
		为化。天外内下九市与一起的效应好。	2. 字节相除,被除数在AX中;字相除,被除数在DX,AX中,除数在 0PRD中.
			字节除法: (AL)<(AX)/OPRD, (AH)<(AX)MOD OPRD
			字除法: (AX)<(DX) (AX)/OPRD,(DX)<(DX)(AX) MOD OPRD
310	IDIV	带符号数除法指定 IDIV(Interger DIVision)	说明:
		格式: IDIV OPRD	1. 其中OPRD为任一通用寄存器 或存储器操作数.
		功能:这实现两个带符号数的二进制除法运算.	2. 理由与IMUL相同,只有IDIV指令,才能得到符号数相除的正确结果.
			3. 当被除数为8位,在进行字节 除法前,应把AL的符号位扩充至

			AH中. 在16位除法时, 若被除数为 16位, 则应将AX中的符号位扩到 DX中.
311	CBW	字节扩展指令 CBW(Convert Byte to Word)	说明:
		功能: 将字节扩展为字, 即把AL寄存器的符号位扩	1. 两个字节相除时, 先使用本指令形成一个双字节长的被除数.
			2. 本指令不影响标志位.
			3. 示例: MOV AL, 25 CBW
312	CWD	字扩展指令 CWD(Convert Word to Double Word)	IDIV BYTE PTR DATA1 说明:
		₩±P. CWD	
		格式: CWD 功能: 将字扩展为双字长, 即把AX寄存器的符号位 扩展到DX中.	1. 两个字或字节相除时, 先用本指令形成一个双字长的的被除数.
		沙 及到[[[]]	2. 本指令不影响标志位.
			3. 示例: 在B1、B2、B3字节类 型变量中,分别存有8们带符号数 a、b、c,实现(a*b+c)/a运算。
313	AAD	未组合十进制数除法调整指令 AAD(ASCII Adjust for Division)	说明:
		格式: AAD 功能: 在除法指令前对AX中的两个未组合十进制数	1. AAD指令是在执行除法DIV之前使用的,以便得到二进制结果存于AL中,然后除以OPRD,得到的商在AL中,余数在AH中.
		进行调整,以便能用DIV指令实现两个未组合的十进	2. 示例: MOV BL,5 MOV AX,0308H AAD ;(AL)<1EH+08H=26H,(AH) <0
			DIV BL ;商=07H>(AL),余数 =03H>(AH).
314	AND	逻辑与运算指令 AND	说明:
		格式: AND OPRD1, OPRD2 功能: 对两个操作数实现按位逻辑与运算, 结果送至目的操作数. 本指令可以进行字节或字的'与'运算,	1. 目的操作数0PRD1为任一通用 寄存器或存储器操作数. 源操作 数0PRD2为立即数, 任一通用寄存 器或存储器操作数.
		OPRD1 <oprd1 and="" oprd2.<="" td=""><td>2. 示例: AND AL, OFH; (AL) < (AL) AND OFH AND AX, BX; (AX) <(AX) AND (BX)</td></oprd1>	2. 示例: AND AL, OFH; (AL) < (AL) AND OFH AND AX, BX; (AX) <(AX) AND (BX)
			AND DX, BUFFER[SI+BX] AND BETA[BX], 00FFH 注意:两数相与,有一个数假则 值为假
315	OR	逻辑或指令 OR	说明:
		格式: OR OPRD1, OPRD2	1. 其中OPRD1, OPRD2含义与AND 指令相同, 对标志位的影响也与
		功能: 0R指令完成对两个操作数按位的'或'运算,结果送至目的操作数中,本指令可以进行字节或字的'或'运算.	AND指令相同. 2. 两数相或,有一个数为真则值 为真.
0.1.0	NOT	OPRD1 <oprd1 oprd2.<="" or="" td=""><td></td></oprd1>	
316	NOT	逻辑非运算指令 NOT	说明:
		格式: NOT OPRD	1. 其中0PRD可为任一通用寄存 器或存储器操作数.
		功能:完成对操作数按位求反运算(即0变1,1变0),	

		结果关回原操作数.	2. 本指梳令可以进行字或字节 '非'运算.
			3. 本指令不影响标志位.
317	XOR	逻辑异或运算指令 XOR	说明:
		格式: XOR OPRD1, OPRD2	1. 其在OPRD1、OPRD2的含义与 AND指令相同,对标志位的影响与
		功能:实现两个操作数按位'异或'运算,结果送至目的操作数中.	与AND指令相同.
		OPRD1 <oprd1 oprd2<="" td="" xor=""><td>2. 相异为真,相同为假.</td></oprd1>	2. 相异为真,相同为假.
318	TEST	测试指令 TEST	说明: TEST与AND指令的关系,有
		格式: TEST OPRD1, OPRD2	点类似于CMP与SUB指令之间的关系.
		功能: 其中0PRD1、0PRD2的含义同AND指令一样,也是对两个操作数进行按位的'与'运算,唯一不同之处是不将'与'的结	
		果送目的操作数,即本指令对两个操作数 的内容均不进行修改,仅是在逻辑与操作后,对标志位重新置位.	
319	SHL	逻辑左移指令 SHL(Shift logical left)	说明:
		格式: SHL OPRD1, COUNT	1. 其中OPRD1为目的操作数,可 以是通用寄存器或存储器操作
		功能:对给定的目的操作数左移COUNT次,每次移位时最高位移入标志位CF中,最低位补零.	
			2. COUNT代表移位的次数(或位数). 移位一次, COUNT=1; 移位多于1次时, COUNT=(CL), (CL)中为移位的次数.
			3. 例如: SHL AL,1 SHL CX,1
			SHL ALFA[DI] 或者:
			MOV CL, 3 SHL DX, CL
200	CIID) 中 <i>村</i> ナイタ + と 人 CHD	SHL ALFA[DI], CL
320	SHK	逻辑右移指令 SHR	说明:
		格式: SHR OPRD1, COUNT 功能: 本指令实现由COUNT决定次数的逻辑右移操	1. 其中0PRD1为目的操作数,可以是通用寄存器或存储器操作数.
		作,每次移位时,最高位补0,最低位移至标志位CF	
		中.	2. COUNT代表移位的次数(或位数). 移位一次, COUNT=1; 移位多于1次时, COUNT=(CL), (CL) 中为移位的次数.
			3.影响标志位0F, PF, SF, ZF, CF.
321	SAL	算术左移指令 SAL(Shift Arithmetic Left)	说明:
		格式: SAL OPRD1, COUNT	1. 其中OPRD1为目的操作数,可 以是通用寄存器或存储器操作
		功能: 其中OPRD1, COUNT与指令SHL相同. 本指令与SHL的功能也完全相同, 这是因为逻辑左移指令与算	数.
		术左移指令所要完成的操作是一样的.	2. COUNT代表移位的次数(或位 数). 移位一次, COUNT=1;移位多 于1次时, COUNT=(CL), (CL)中为 移位的次数.
322	SAR	算术右移指令 SAR	说明:
		格式: SAR OPRD1, COUNT	1. 其中OPRD1为目的操作数,可 以是通用寄存器或存储器操作

	功能:本指令通常用于对带符号数减半的运算中, 因而在每次右移时,保持最高位(符号位)不变,最低位右移至CF中.	数. 2. COUNT代表移位的次数(或位 数). 移位一次, COUNT=1;移位多 于1次时, COUNT=(CL), (CL)中为 移位的次数.
323 ROL	循环移位指令	说明:
	格式: ROL OPRD1, COUNT;不含进位标志位CF在循环中的左循环移位指令.	1. 本指令组只影响标志CF、 0F. 0F由移入CF的内容决定, 0F取 决于移位一次后符号位是否改
	ROR OPRD1, COUNT;不含进位示志位CF在循环中的右循环移位指令.	变,如改变,则0F=1.
	RCL OPRD1, COUNT;带进位的左循环移位指令.	2. 由于是循环移位,所以对字节 移位8次;对字移位16次,就可恢 复为原操作数.由于带CF的循环
	RCR OPRD1, COUNT ;带进位的右循环移位指令.	移位,可以将CF的内容移入, 所以可以利用它实现多字节的循环.
324 ROR	循环移位指令	说明:
	格式: ROL OPRD1, COUNT;不含进位标志位CF在循环中的左循环移位指令. ROR OPRD1, COUNT;不含进位示志位CF在循环中的右循环移位指令. RCL OPRD1, COUNT;带进位的左循环移位指令.	1. 本指令组只影响标志CF、 0F. 0F由移入CF的内容决定, 0F取 决于移位一次后符号位是否改 变, 如改变,则0F=1. 2. 由于循环移位,所以对字节移
	RCR OPRD1, COUNT ;带进位的右循环移位指令.	位8次;对字移位16次,可恢复为 原操作数.
325 RCL	循环移位指令	说明:
	格式: ROL OPRD1, COUNT;不含进位标志位CF在循环中的左循环移位指令. ROR OPRD1, COUNT;不含进位示志位CF在循环中的右循环移位指令. RCL OPRD1, COUNT;带进位的左循环移位指令. RCR OPRD1, COUNT;带进位的右循环移位指令.	1. 本指令组只影响标志CF、0F. 0F由移入CF的内容决定, 0F取决于移位一次后符号位是否改变, 如改变, 则0F=1. 2. 由于是循环移位, 所以对字节移位8次; 对字移位16次, 就可恢复为原操作数. 由于带CF的循环
		移位,可以将CF的内容移入, 所以可以利用它实现多字节的循 环.
326 RCR	循环移位指令	说明:
	格式: ROL OPRD1, COUNT;不含进位标志位CF在循环中的左循环移位指令.	1. 本指令组只影响标志CF、 0F. 0F由移入CF的内容决定, 0F取 决于移位一次后符号位是否改
	ROR OPRD1, COUNT;不含进位示志位CF在循环中的右循环移位指令.	变,如改变,则0F=1.
	RCL OPRD1, COUNT ;带进位的左循环移位指令.	2. 由于是循环移位,所以对字节 移位8次;对字移位16次,就可恢 复为原操作数.由于带CF的循环
	RCR OPRD1, COUNT;带进位的右循环移位指令.	移位,可以将CF的内容移入,所以 可以利用它实现多字节的循环.
		注意:以上程序中的指令SHR AL, CL如改为SAR AL, CL, 虽然最高4位可移入低4位,但最高位不为0,故应加入一条指令AND AL, 0 FH. 否则,若最高位不为0时,将得到错误结果.
327 JMP	无条件转移指令JMP	说明:
	格式: JMP OPRD	1. 其中OPRD为转移的目的地址. 程序转移到目的地址所指向的指

	址去执行. 当目的地址仍在同一个代码段内, 称为段	
	内转移;当目标地址不在同一个代码段内,则称为段间转移.这两种情况都将产生不同的指令代码,以便	
	能正确地生成目的地址,在 段内转移时,指令只要 能提供目的地址的段 内偏移量即够了;而在段间转 移时,指令应能提供目的地址的段地址及段内偏移	
	地址值.	<2> 段内间接转移指令: JMP OPRD
		<3> 段间直接转移指令: JMP FAR 标号
		<4> 段间间接转移指令: JMP OPRD其中的OPRD为存储器双字操作数. 段间间接转移只能通过存储器操作数来实现.
328 JC	条件转移指令 JC	说明: JC为根据标志位CF进行转 移的指令
	格式: JC 标号	以及 L C J L L C A
	功能: CF=1,转至标号处执行	
329 JNC	条件转移指令JNC	说明: JNC为根据标志位CF进行 转移的指令
	格式: JNC标号	
	功能: CF=0, 转至标号处执行	
330 JE	条件转移指令JE/JZ	说明:
	格式: JE/JZ标号	1. 指令JE与JZ等价,它们是根据标志位ZF进行转移的指令
	功能: ZF=1,转至标号处执	2. JE, JZ均为一条指令的两种助
		记符表示方法
331 JZ	条件转移指令JE/JZ	说明:
	格式: JE/JZ标号	1. 指令JE与JZ等价,它们是根据标志位ZF进行转移的指令
	功能: ZF=1,转至标号处执	
		2. JE, JZ均为一条指令的两种助记符表示方法
332 JNE	条件转移指令JNE/JNZ	说明:
	格式: JNE/JNZ 标号	1. 指令JNE与JNZ等价,它们是根据标志位ZF进行转移的指令
	功能: ZF=0, 转至标号处执行	
		2. JNE, JNZ均为一条指令的两种 助记符表示方法
333 JNZ	条件转移指令JNE/JNZ	说明:
	格式: JNE/JNZ 标号	1. 指令JNE与JNZ等价,它们是根据标志位ZF进行转移的指令
	功能: ZF=0, 转至标号处执行	
		2. JNE, JNZ均为一条指令的两种助记符表示方法
334 JS	条件转移指令JS	说明: JS是根据符号标志位SF进 行转移的指令
	格式: JS 标号	11 44.15 #1114 4
	功能: SF=1,转至标号处执行	
335 JNS	条件转移指令JNS	说明: JNS是根据符号标志位SF 进行转移的指令
	格式: JNS 标号	- 14 1. N H44H
	功能: SF=0, 转至标号处执行	
]		

336 <mark>J0</mark>	条件转移指令J0	说明: J0是根据溢出标志位0F进
	格式: J0 标号	行转移的指令
	功能: 0F=1,转至标号处执行	
337 JNO	条件转移指令JN0	说明: JNO是根据溢出标志位0F 进行转移的指令
	格式: JNO 标号	
220 TD	功能: 0F=0, 转至标号处执行	24 00 .
338 JP	条件转移指令JP/JPE	说明:
	格式: JP/JPE 标号	1. 指令JP与JPE,它们是根据奇 偶标志位PF进行转移的指令
	功能: PF=1,转至标号处执行	2. JP, JPE均为一条指令的两种
339 JPE	▲ 条件转移指令JP/JPE	助记符表示方法 说明:
	格式: JP/JPE 标号	1. 指令JP与JPE, 它们是根据奇
	功能: PF=1, 转至标号处执行	偶标志位PF进行转移的指令
	为形。117—1,农主你与处办(们	2. JP, JPE均为一条指令的两种 助记符表示方法
340 JNP	条件转移指令JNP/JP0	说明:
	格式: JNP/JPO 标号	1. 指令JNP与JP0,它们是根据奇
	功能: PF=0, 转至标号处执行	偶标志位PF进行转移的指令
		2. JNP, JP0均为一条指令的两种 助记符表示方法
341 JP0	条件转移指令JNP/JP0	说明:
	格式: JNP/JPO 标号	1. 指令JNP与JP0,它们是根据奇 偶标志位PF进行转移的指令
	功能: PF=0, 转至标号处执行	
		2. JNP, JPO均为一条指令的两种 助记符表示方法
342 JA	条件转移指令JA/JNBE	说明:
	格式: JA/JNBE标号	1. 例如两个符号数a,b比较时,a>b(即CF=0,ZF=0)时转移.因
	功能: 为高于/不低于等于的转移指令	为单一标志位CF=0, 只表示a>=b.
		2. JA/JNBE是同一条指令的两种 不同的助记符.
		3. 该指令用于无符号数进行条
242 INDE	夕州北北北北	件转移
343 JNBE	条件转移指令JA/JNBE	说明:
	格式: JA/JNBE标号	1. 例如两个符号数a, b比较时, a>b(即CF=0, ZF=0)时转移. 因
	功能:为高于/不低于等于的转移指令	为单一标志位CF=0, 只表示a>=b.
		2. JA/JNBE是同一条指令的两种 不同的助记符.
		3. 该指令用于无符号数进行条件转移
344 JAE	条件转移指令JAE/JNB	说明:
	格式: JAE/JNB 标号	1. JAE/JNB是同一条指令的两种不同的助记符.

1 1	功能:为高于等于/不低于的转移指令	I
		2. 该指令用于无符号数进行条件转移.
345 JNB	条件转移指令JAE/JNB	说明:
	格式: JAE/JNB 标号	1. JAE/JNB是同一条指令的两种 不同的助记符.
	功能: 为高于等于/不低于的转移指令	
		2. 该指令用于无符号数进行条件转移.
346 JB	条件转移指令JB/JNAE	说明:该指令用于无符号数的条 件转移
	格式: JB/JNAE 标号	
O 47 THAT	功能: 低于/不高于等于时转移	
347 JNAE	条件转移指令JB/JNAE	说明:该指令用于无符号数的条件转移
	格式: JB/JNAE 标号	
348 JBE	功能: 低于/不高于等于时转移 条件转移指令JBE/JNA	说明:该指令用于无符号数的条
JAOJDE		件转移
	格式: JBE/JNA 标号	
349 JNA	功能: 低于等于/不高于时转移 条件转移指令JBE/JNA	说明: 该指令用于无符号数的条
	格式: JBE/JNA 标号	件转移
350 JG	功能: 低于等于/不高于时转移 条件转移指令JG/JNLE	说明:用于带符号数的条件转移
	格式: JG/JNLE 标号	指令
	」 功能:大于/不小于等于时转移	
351 JNLE	条件转移指令JG/JNLE	说明:用于带符号数的条件转移
	格式: JG/JNLE 标号	指令
	功能:大于/不小于等于时转移	
352 JGE	条件转移指令JGE/JNL	说明:用于带符号数的条件转移 指令
	格式: JGE/JNL标号	1111 4
	功能:大于等于/不小于时转移	
353 JNL	条件转移指令JGE/JNL	说明:用于带符号数的条件转移指令
	格式: JGE/JNL标号	
054 7	功能:大于等于/不小于时转移	
354 JL	条件转移指令JL/JNGE	说明:用于带符号数的条件转移指令
	格式: JL/JNGE标号	
355 JNGE	功能:小于/不大于等于时转移 条件转移指令JL/JNGE	说明:用于带符号数的条件转移
JINGE		指令
	格式: JL/JNGE标号	
356 JLE	功能:小于/不大于等于时转移 条件转移指令JLE/JNG	说明:用于带符号数的条件转移
	格式: JLE/JNG 标号	指令
	功能:小于等于/不大于时转移	

357 JNG	条件转移指令JLE/JNG	说明:用于带符号数的条件转移
	格式: JLE/JNG 标号	指令
	功能:小于等于/不大于时转移	
358 LOOP	循环控制指令LOOP	说明:
	格式: LOOP 标号	1. 本指令是用CX寄存器作为计数器,来控制程序的循环.
	功能: (CX)<(CX)-1,(CX)<>0,则转移至标号处循环执行,直至(CX)=0,继续执行后继指令.	2. 它属于段内SHORT短类型转 移,目的地址必须距本指令在- 128到+127个字节的范围内.
359 LOOPZ	循环控制指令LOOPZ/LOOPE	说明:
	格式: LOOPZ/LOOPE 标号	1. 本指令是用CX寄存器作为计数器,来控制程序的循环.
	功能: (CX)<(CX)-1,(CX)<>0 且ZF=1时,转至标号处循环	2. 它属于段内SHORT短类型转移,目的地址必须距本指令在-128到+127个字节的范围内.
		3. 以上两种助记符等价.
360 <mark>L00PE</mark>	循环控制指令LOOPZ/LOOPE	说明:
	格式: LOOPZ/LOOPE 标号	1. 本指令是用CX寄存器作为计数器,来控制程序的循环.
	功能: (CX)<(CX)-1,(CX)<>0 且ZF=1时,转至标号处循环	2. 它属于段内SHORT短类型转 移,目的地址必须距本指令在- 128到+127个字节的范围内.
		3. 以上两种助记符等价.
361 LOOPNZ	循环控制指令LOOPNZ/LOOPNE	说明:
	格式: LOOPNZ/LOOPNE 标号	1. 本指令是用CX寄存器作为计数器,来控制程序的循环.
	功能: (CX)<(CX)-1,(CX)<>0 且ZF=0时,转至标号处循环	2. 它属于段内SHORT短类型转移,目的地址必须距本指令在-128到+127个字节的范围内.
		3. 以上两种助记符等价.
362 LOOPNE	循环控制指令LOOPNZ/LOOPNE	说明:
	格式: LOOPNZ/LOOPNE 标号	1. 本指令是用CX寄存器作为计数器,来控制程序的循环.
	功能: (CX)<(CX)-1,(CX)<>0 且ZF=0时,转至标号处循环	2. 它属于段内SHORT短类型转移,目的地址必须距本指令在-128到+127个字节的范围内.
		3. 以上两种助记符等价.
363 CALL	过程调用指令 CALL	说明:
	格式: CALL OPRD	1. 其中0PRD为过程的目的地址.
	功能:过程调用指令	2. 过程调用可分为段内调用和 段间调用两种. 寻址方式也可以 分为直接寻址和间接寻址两种.
364 RET	返回指令 RET	3. 本指令不影响标志位. 说明:
JOH ILL		
	格式: RET	由于在过程定义时,已指明其近

		功能: 当调用的过程结束后实现从过程返回至原调用程序的下一条指令,本指令不影响标志位.	(NEAR) 或远(FAR) 的属性, 所以 RET指令根据段内调用与段间调 用, 执行不同的操作
			对段内调用:返回时,由堆栈弹 出一个字的返回地址的段内偏移 量至IP.
			对段外调用:返回时,由堆栈弹出的第一个字为返回地址的段内偏移量,将其送入IP中,由堆栈弹出第二个字为返回地址的段基址,将其送入CS中.
365	MOVS	字符串传送指令 MOVS	说明:
		格式: MOVS OPRD1,OPRD2 MOVSB MOVSW	1. 其中OPRD2为源串符号地址, OPRD1为目的串符号地址.
		功能: OPRD1 <oprd2.< td=""><td>2. 字节串操作: 若DF=0,则作 加,若DF=1,则作减.</td></oprd2.<>	2. 字节串操作: 若DF=0,则作 加,若DF=1,则作减.
			3. 对字串操作时: 若DF=0,则作加,若DF=1,则作减,.
			4. 在指令中不出现操作数时,字 节串传送格式为MOVSB、字串传 送格式为MOVSW.
366	MOVSB	字符串传送指令 MOVS	5. 本指令不影响标志位. 说明:
		格式: MOVS OPRD1,OPRD2 MOVSB MOVSW	1. 其中OPRD2为源串符号地 址, OPRD1为目的串符号地址.
		功能: OPRD1 <oprd2.< td=""><td>2. 字节串操作: 若DF=0,则作 加, 若DF=1,则作减.</td></oprd2.<>	2. 字节串操作: 若DF=0,则作 加, 若DF=1,则作减.
			3. 对字串操作时: 若DF=0,则作 加,若DF=1,则作减,.
			4. 在指令中不出现操作数时,字 节串传送格式为MOVSB、字串传 送格式为MOVSW.
			5. 本指令不影响标志位.
367	MOVSW	字符串传送指令 MOVS	说明:
		格式: MOVS OPRD1,OPRD2 MOVSB MOVSW	1. 其中OPRD2为源串符号地址,OPRD1为目的串符号地址.
		功能: OPRD1 <oprd2.< td=""><td>2. 字节串操作: 若DF=0,则作 加,若DF=1,则作减.</td></oprd2.<>	2. 字节串操作: 若DF=0,则作 加,若DF=1,则作减.
			3. 对字串操作时: 若DF=0,则作加,若DF=1,则作减,.
			4. 在指令中不出现操作数时,字 节串传送格式为MOVSB、字串传 送格式为MOVSW.
0.0.5	OLES C	22 66 to 11.42 EV. A	5. 本指令不影响标志位.
368	CMPS	字符串比较指令	说明:
		格式: CMPS OPRD1,OPRD2 CMPSB CMPSW	1. 其中OPRD2为源串符号地址, OPRD1为目的串符号地址.

		功能:由SI寻址的源串中数据与由DI寻址的目的串中数据进行比较,比较结果送标志位,而不改变操作数本身. 同时SI,DI将自动调整.	
369	CMPSB		说明:
		格式: CMPS OPRD1,OPRD2 CMPSB CMPSW	1. 其中OPRD2为源串符号地 址, OPRD1为目的串符号地址.
		功能:由SI寻址的源串中数据与由DI寻址的目的串中数据进行比较,比较结果送标志位,而不改变操作数本身.同时SI,DI将自动调整.	
			3. 与MOVS相似, CMPS指令也可以 不使用操作数,此时可用指令 CMPSB或CMPSW分别表示字节串比 较或字串比较.
370	CMPSW	字符串比较指令	说明:
		格式: CMPS OPRD1,OPRD2 CMPSB CMPSW	1. 其中OPRD2为源串符号地 址, OPRD1为目的串符号地址.
		功能:由SI寻址的源串中数据与由DI寻址的目的串中数据进行比较,比较结果送标志位,而不改变操作数本身. 同时SI,DI将自动调整.	
			3. 与MOVS相似, CMPS指令也可以 不使用操作数,此时可用指令 CMPSB或CMPSW分别表示字节串比 较或字串比较.
371	SCAS	字符串搜索指令 SCAS	说明:
		格式: SCAS OPRD SCASB SCASW	1. 其中OPRD为目的串符号地址.
		功能: 把AL(字节串)或AX(字串)的内容与由DI寄存器寻址的目的串中的数据相减,结果置标志位,但不改变任一操作数本身.	
		地址指针DI自动调整.	把关键字放在AL(字节)或AX(字 串)中,用重复前缀可在整串中 查找.
			指令中不使用操作数时,可用指 令格式SCASB, SCASW, 分别表示字 节串或字串搜索指令.
$37\overline{2}$	SCASB	字符串搜索指令 SCAS	说明:
		格式: SCAS OPRD SCASB SCASW	1. 其中OPRD为目的串符号地址.
		功能: 把AL(字节串)或AX(字串)的内容与由DI寄存器寻址的目的串中的数据相减,结果置标志位,但不改变任一操作数本身.	

		I	1
		地址指针DI自动调整.	把关键字放在AL(字节)或AX(字串)中,用重复前缀可在整串中查找.
			指令中不使用操作数时,可用指 令格式SCASB, SCASW,分别表示字 节串或字串搜索指令.
373	SCASW	字符串搜索指令 SCAS	说明:
		格式: SCAS OPRD SCASB SCASW	1. 其中OPRD为目的串符号地址.
		功能: 把AL(字节串)或AX(字串)的内容与由DI寄存器寻址的目的串中的数据相减,结果置标志位,但不改变任一操作数本身.	
		地址指针DI自动调整.	把关键字放在AL(字节)或AX(字串)中,用重复前缀可在整串中查找.
			指令中不使用操作数时,可用指 令格式SCASB, SCASW,分别表示字 节串或字串搜索指令.
$\overline{374}$	LODS	取字符串元素指令 LODS	说明:
		格式: LODS OPRD 其中OPRD为源字符串符号地址.	1. 本指令不影响标志位.
		功能:把SI寻址的源串的数据字节送AL或数据字送AX中去,并根据DF的值修改地址指针SI进行自动调整.	
375	ST0S	字符串存储指令 STOS	说明:
		格式: STOS OPRD	1. 其中OPRD为目的串符号地址.
		功能:把AL(字节)或AX(字)中的数据存储到DI为目的串地址指针所寻址的存储器单元中去.指针DI将根据DF的值进行自动调整.	2. 本指令不影响标志位. 当不使用操作数时, 可用STOSB或STOSW分别表示字节串或字串的操作.
376	REP	重复前缀的说明	说明:
		格式: REP ;CX<>0 重复执行字符串指令 REPZ/REPE ;CX<>0 且ZF=1重复执行字符串指令 REPNZ/REPNE ;CX<>0 且ZF=0重复执行字符串指令	1. REP与MOVS或STOS串操作指令相结合使用,完成一组字符的传送或建立一组相同数据的字符串.
		串进重复处理. 由于加上重复前缀后, 对应的指令代	2. REPZ/REPE常用与CMPS串操作指令结合使用,可以完成两组字符串的比较.
		INC. EXECUTE TO THE TO	3. REPZ/REPE常与SCAS指令结合使用,可以完成在一个字符串中搜索一个关键字.
			4. REPNZ/REPNE与CMPS指令结合使用,表示当串未结束(CX=1)且当对应串元素不相同(ZF=0)时,继续重复执行串比较指令.
377	REPZ	重复前缀的说明	说明:
		格式: REP ;CX<>0 重复执行字符串指令 REPZ/REPE ;CX<>0 且ZF=1重复执行字符串指令 REPNZ/REPNE ;CX<>0 且ZF=0重复执行字符串指令	1. REPZ/REPE常用与CMPS串操作 指令结合使用,可以完成两组字 符串的比较.
			2. REPZ/REPE常与SCAS指令结合

		功能:在串操作指令前加上重复前缀,可以对字符串进重复处理.由于加上重复前缀后,对应的指令代码是不同的,所以指令的功能便具有重复处理的功能,重复的次数存放在CX寄存器中.	3. REPNZ/REPNE与CMPS指令结合使用,表示当串未结束(CX=1)且当对应串元素不相同(ZF=0)时,继续重复执行串比较指令.
378	REPE	重复前缀的说明	4. REPNZ/REPNE与SCAS指令结合使用,表示串未结束(CX=1)且当关键字与串元素不相同(ZF=0)时,继续重复执行串搜索指令. 说明:
			1. REPZ/REPE常用与CMPS串操作 指令结合使用,可以完成两组字 符串的比较.
		串进重复处理.由于加上重复前缀后,对应的指令代码是不同的,所以指令的功能便具有重复处理的功	
		能, 重复的次数存放在CX寄存器中.	3. REPNZ/REPNE与CMPS指令结合使用,表示当串未结束(CX=1)且当对应串元素不相同(ZF=0)时,继续重复执行串比较指令.
270	REPNZ	重复前缀的说明	4. REPNZ/REPNE与SCAS指令结合使用,表示串未结束(CX=1)且当关键字与串元素不相同(ZF=0)时,继续重复执行串搜索指令. 说明:
513	REF NZ	格式: REP ;CX<>0 重复执行字符串指令	1. REPZ/REPE常用与CMPS串操作 指令结合使用,可以完成两组字
			2. REPZ/REPE常与SCAS指令结合使用,可以完成在一个字符串中搜索一个关键字.
			3. REPNZ/REPNE与CMPS指令结合使用,表示当串未结束(CX=1)且当对应串元素不相同(ZF=0)时,继续重复执行串比较指令.
			4. REPNZ/REPNE与SCAS指令结合使用,表示串未结束(CX=1)且当关键字与串元素不相同(ZF=0)时,继续重复执行串搜索指令.
380	REPNE	重复前缀的说明	说明:
			1. REPZ/REPE常用与CMPS串操作 指令结合使用,可以完成两组字 符串的比较.
			2. REPZ/REPE常与SCAS指令结合使用,可以完成在一个字符串中搜索一个关键字.
			3. REPNZ/REPNE与CMPS指令结合使用,表示当串未结束(CX=1)且当对应串元素不相同(ZF=0)时,继续重复执行串比较指令.
			4. REPNZ/REPNE与SCAS指令结合

		使用,表示串未结束(CX=1)且当 关键字与串元素不相同(ZF=0) 时,继续重复执行串搜索指令.
381 CLC	处理器控制指令一标志位操作指令 格式:	说明:例如串操作中的程序,经 常用CLD指令清方向标志使DF=0 ,在串操作指令执行时,按增量的
	CLC ;置CF=0 STC ;置CF=1	方式修改吕指针.
	CMC ;置CF=(Not CF)进位标志求反 CLD ;置DF=0 STD ;置DF=1	
	CLI ;置IF=0, CPU禁止响应外部中断 STI ;置IF=1, 使CPU允许向应外部中断	
	功能:完成对标志位的置位、复位等操作.	
382 STC	处理器控制指令一标志位操作指令 格式: CLC;置CF=0	说明:例如串操作中的程序,经常用CLD指令清方向标志使DF=0,在串操作指令执行时,按增量的方式修改吕指针.
	STC ;置CF=1 CMC ;置CF=(Not CF)进位标志求反 CLD ;置DF=0 STD ;置DF=1	
	CLI;置IF=0,CPU禁止响应外部中断 STI;置IF=1,使CPU允许向应外部中断	
383 CMC	功能:完成对标志位的置位、复位等操作. 处理器控制指令一标志位操作指令	说明:例如串操作中的程序,经
	格式: CLC;置CF=0 STC;置CF=1 CMC;置CF=(Not CF)进位标志求反 CLD;置DF=0 STD;置DF=1 CLI;置IF=0,CPU禁止响应外部中断 STI;置IF=1,使CPU允许向应外部中断	常用CLD指令清方向标志使DF=0 ,在串操作指令执行时,按增量的 方式修改吕指针.
	功能:完成对标志位的置位、复位等操作.	
384 CLD	处理器控制指令一标志位操作指令 格式: CLC;置CF=0 STC;置CF=1 CMC;置CF=(Not CF)进位标志求反 CLD;置DF=0 STD;置DF=1 CLI;置IF=0,CPU禁止响应外部中断 STI;置IF=1,使CPU允许向应外部中断	说明:例如串操作中的程序,经常用CLD指令清方向标志使DF=0,在串操作指令执行时,按增量的方式修改吕指针.
385 STD	功能:完成对标志位的置位、复位等操作. 处理器控制指令一标志位操作指令	说明:例如串操作中的程序,经
עומיסס	格式: CLC;置CF=0 STC;置CF=1 CMC;置CF=(Not CF)进位标志求反 CLD;置DF=0 STD;置DF=1 CLI;置IF=0,CPU禁止响应外部中断 STI;置IF=1,使CPU允许向应外部中断	常用CLD指令清方向标志使DF=0 ,在串操作指令执行时,按增量的 方式修改吕指针.
386 CLI	功能:完成对标志位的置位、复位等操作. 处理器控制指令一标志位操作指令	
ODI	格式:	常用CLD指令清方向标志使DF=0 ,在串操作指令执行时,按增量的

	CLC ;置CF=0 STC ;置CF=1	方式修改吕指针.
	CMC ;置CF=(Not CF)进位标志求反 CLD ;置DF=0 STD ;置DF=1	
	CLI ;置IF=0,CPU禁止响应外部中断 STI ;置IF=1,使CPU允许向应外部中断	
207 CT	功能:完成对标志位的置位、复位等操作.	28 四 . <i>因</i> 由中提 <i>比</i> 由的和京 <i>因</i>
387 ST	处理器控制指令一标志位操作指令 格式: CLC;置CF=0 STC;置CF=1 CMC;置CF=(Not CF)进位标志求反 CLD;置DF=0 STD;置DF=1 CLI;置IF=0,CPU禁止响应外部中断 STI;置IF=1,使CPU允许向应外部中断	说明:例如串操作中的程序,经常用CLD指令清方向标志使DF=0,在串操作指令执行时,按增量的方式修改吕指针.
388 HL	功能:完成对标志位的置位、复位等操作.	나는 다른 ·
JOO HL	处理器暂停指令 HLT	说明:
	格式: HLT	1. 本指令不影响标志位.
	功能: 使处理器处于暂时停机状态.	2. 由执行HLT引起的暂停,只有 RESET(复位)、NMI(非屏蔽中断 请求)、INTR(可屏蔽的外部中断 请求)信号可以使
		其退出暂停状态. 它可用于等待中断的到来或多机系统的同步操作.
389 WA	T 处理器等待指令 WAIT	说明:本指令不影响标志位.
	格式: WAIT	
	功能:本指令将使处理器检测TEST端脚,当TEST有效时,则退出等待状态执行下条指令,否则处理器处于等待状态,直到TEST有效.	
390 ES	处理器交权指令 ESC	说明:
	格式: ESC EXTOPRD, OPRD	1. 其中EXTOPRD为外部操作码, OPRD为源操作数.
	功能:使用本指令可以实现协处理器出放在ESC指令代码中的6位常数,该常数指明协处理器要完成的功能.	
	当源操作数为存储器变量时,则取出该存储器操作数传送给协处理器.	
391 NO	空操作指令 NOP	说明:本指令不影响标志位.
	格式: NOP	
	功能:本指令不产生任何结果,仅消耗几个时钟周期的时间,接着执行后续指令,常用于程序的延时等.	
392 LO	K 封锁总线指令 LOCK	无可用信息!用户可自行添加!
	格式: LOCK	
	功能:指令是一个前缀,可放在指令的前面,告诉 CPU在执行该指令时,不允许其它设备对总线进行访	
	问.	

		格式: IN AL, n; (AL) <(n) IN AX, n; (AX) <(n+1), (n) IN AL, DX; (AL) <[(DX)] IN AX, DX; (AX) <[(DX)+1], [(DX)] 功能: 输入指令	1. 其中n为8位的端口地址,当字节输入时,将端口地址n+1的内容送至AH中,端口地址n的内容送AL中. 2. 端口地址也可以是16位的,但必须将16位的端口地址送入DX中.当字节寻址时,由DX内容作端口地址的内容送至AL中; 当输入数据字时,[(DX)+1]送AH,[(DX)]送AL中,用符号:(AX)<[(DX)+1],[(DX)]表示.
394	OUT	输出指令 OUT 格式: OUT n, AL; (n) < (AL) 功能: 输出指令	说明: 1. OUT n, AX; (n+1), (n) < (AX) OUT DX, AL; [(DX)] <(AL) OUT DX, AX; [(DX)+1], [(DX)] < (AX)
395	INTO	溢出中断指令 INTO(INTerrupt if Overflow)	2. 输入指令及输出指令对标志 位都不影响. 说明:
		格式: INTO 功能:本指令检测0F标志位,当0F=1时,说明已发生 溢出,立即产生一个中断类型4的中断,当0F=0时, 本指令不起作用.	1. 本指令影响标志位IF及TF. 2. 本指令可用于溢出处理,当 0F=1时,产生一个类型4的软中 断.在中断处理程序中完成溢出 的处理操作.
396	INT	软中断指令 INT 格式: INT n 其中n为软中断的类型号. 功能:本指令将产生一个软中断,把控制转向一个 类型号为n的软中断,该中断处理程序入口地址在中 断向量表的n*4地址 处的二个存储器字(4个单元)中.	说明:操作过程与INTO指令雷同,只需将10H改为n*4即可.所以,本指令也将影响标志位IF及TF.
397	IRET	中断返回指令 IRET 格式: IRET 功能: 用于中断处理程序中, 从中断程序的断点处 返回, 继续执行原程序.	说明: 1. 本指令将影响所有标志位. 2. 无论是软中断,还是硬中断,本指令均可使其返回到中断程序的断点处继续执行原程序.

一、状态寄存器

PSW (Program Flag)程序状态字寄存器,是一个16位寄存器,由条件码标志(flag)和控制标志构成,如下所示:

_15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				0F	DF	IF	TF	SF	ZF		AF		PF		CF

条件码:

- ①OF (Overflow Flag)溢出标志。溢出时为1,否则置0。
- ②SF (Sign Flag) 符号标志。结果为负时置1, 否则置0.
- ③ZF (Zero Flag)零标志,运算结果为0时ZF位置1,否则置0.
- ④CF (Carry Flag)进位标志,进位时置1,否则置0.
- ⑤AF (Auxiliary carry Flag) 辅助进位标志,记录运算时第3位(半个字节)产生的进位置。有进位时1,否则置0.
- ⑥PF (Parity Flag) 奇偶标志。结果操作数中1的个数为偶数时置1, 否则置0.

控制标志位:

- ⑦DF (Direction Flag) 方向标志,在串处理指令中控制信息的方向。
- ⑧IF (Interrupt Flag) 中断标志。
- ⑨TF (Trap Flag) 陷井标志。

二、 直接标志转移(8位寻址)

指令格 式	机器码	测试条件	如则转移	指令格式	机器码	测试条件	如则转移
JC	72	C=1	有进位	JNS	79	S=0	正号
JNC	73	C=0	无进位	Ј0	70	0=1	有溢出
JZ/JE	74	Z=1	零/等于	JN0	71	0=0	无溢出
JNZ/JNE	75	Z=0	不为零/不等于	JP/JPE	7A	P=1	奇偶位为偶
JS	78	S=1	负号	JNP/IPO	7B	P=0	奇偶位为奇

三、间接标志转移(8位寻址)

指令格式	机器码	测试格式	如则转移
JA/JNBE(比较无符号数)	77	C或Z=0	> 高于/不低于或等于
JAE/JNB(比较无符号数)	73	C=0	>= 高于或等于/不低于
JB/JNAE(比较无符号数)	72	C=1	〈 低于/不高于或等于
JBE/JNA(比较无符号数)	76	C或Z=1	〈= 低于或等于/不高于
JG/JNLE(比较带符号数)	7F	(S异或0) 或Z=0	〉 大于/不小于或等于
JGE/JNL(比较带符号数)	7D	S异或0=0	>= 大于或等于/不小于
JL/JNGE(比较带符号数)	7C	S异或0=1	〈 小于/不大于或等于
JLE/JNG(比较带符号数)	7E	(S异或0)或Z=1	〈= 小于或等于/不大于

四、无条件转移指令

操作码		伪码指令	含义
ЕВ	cb	JMP re18	相对短跳转(8位),使rel8处的代码位下一条指令
E9	cw	JMP rel16	相对跳转(16位),使rel16处的代码位下一条指令
FF	/4	JMP r/m16	绝对跳转(16位),下一指令地址在r/m16中给出
FF	/4	JMP r/m32	绝对跳转(32位),下一指令地址在r/m32中给出
EA	cb	JMP ptr16:16	远距离绝对跳转, 下一指令地址在操作数中
EA	cb	JMP ptr16:32	远距离绝对跳转, 下一指令地址在操作数中
FF	/5	JMP m16:16	远距离绝对跳转, 下一指令地址在内存m16:16中
FF	/5	JMP m16:32	远距离绝对跳转, 下一指令地址在内存m16:32中

五、16位/32位寻址方式

操作码	伪码指令	跳转含义	跳转类型	跳转的条件(标志位)
0F 87 cw/cd	JA rel16/32	大于	near	(CF=0 and ZF=0)
0F 83 cw/cd	JAE rel16/32	大于等于	near	(CE=0)
0F 82 cw/cd	JB rel16/32	小于	near	(CF=1)
0F 86 cw/cd	JBE rel16/32	小于等于	near	(CF=1 or ZF=1)
0F 82 cw/cd	JC rel16/32	进位	near	(CF=1)
0F 84 cw/cd	JE rel16/32	等于	near	(ZF=1)
OF 84 cw/cd	JZ rel16/32	为0	near	(ZF=1)
OF 8F cw/cd	JG rel16/32	大于	near	(ZF=0 and SF=0F)
OF 8D cw/cd	JGE rel16/32	大于等于	near	(SF=0F)
OF 8C cw/cd	JL rel16/32	小于	near	(SF<>0F)
OF 8E cw/cd	JLE rel16/32	小于等于	near	(ZF=1 or SF<>0F)
OF 86 cw/cd	JNA rel16/32	不大于	near	(CF=1 or ZF=1)
0F 82 cw/cd	JNAE rel16/32	不大于等于	near	(CF=1)
0F 83 cw/cd	JNB rel16/32	不小于	near	(CE=0)
0F 87 cw/cd	JNBE rel16/32	不小于等于	near	(CF=0 and ZF=0)
OF 83 cw/cd	JNC rel16/32	不进位	near	(CE=0)
0F 85 cw/cd	JNE rel16/32	不等于	near	(ZF=0)
OF 8E cw/cd	JNG rel16/32	不大于	near	(ZF=1 or SF<>0F)
OF 8C cw/cd	JNGE rel16/32	不大于等于	near	(SF<>0F)

OF 8D cw/cd	JNL rel16/32	不小于	near	(SF=0F)
OF 8F cw/cd	JNLE rel16/32	不小于等于	near	(ZF=0 and SF=0F)
0F 81 cw/cd	JNO rel16/32	未溢出	near	(0F=0)
OF 8B cw/cd	JNP rel16/32	不是偶数	near	(PF=0)
0F 89 cw/cd	JNS rel16/32	非负数	near	(SF=0)
0F 85 cw/cd	JNZ rel16/32	非零 (不等 于)	near	(ZF=0)
0F 80 cw/cd	J0 rel16/32	溢出	near	(0F=1)
OF 8A cw/cd	JP rel16/32	偶数	near	(PF=1)
OF 8A cw/cd	JPE rel16/32	偶数	near	(PF=1)
OF 8B cw/cd	JPO rel16/32	奇数	near	(PF=0)
0F 88 cw/cd	JS rel16/32	负数	near	(SF=1)
0F 84 cw/cd	JZ rel16/32	为零 (等于)	near	(ZF=1)

注:一些指令操作数的含义说明:

rel8 表示 8 位相对地址

rel16 表示 16 位相对地址

rel16/32 表示 16或32 位相对地址

r/m16 表示16位寄存器

r/m32 表示32位寄存器

test逻辑与运算结果为零,就把ZF(零标志)置1; cmp 算术减法运算结果为零,就把ZF(零标志)置1