Transformer and Large-Language Models

Tianxiang (Adam) Gao

November 4, 2024

Outline

Transformer

2 Large-Language Models

Recap: Seq2Seq Models

- Word Analogy Task: Given an analogy "a is to b as c is to ?", find the word d by maximizing cosine similarity.
- GloVe: Uses a co-occurrence matrix to capture word meaning based on surrounding context.
- Bias in Word Embeddings: Identify bias directions using definitional pairs, then neutralize non-definitional words.
- Seq2Seq: Use an RNN Encoder-Decoder architecture to handle tasks where both input and output are sequences.
- Conditional Language Model: The output sequence is generated sequentially based on the context vector that summarizes the input sequence
- Beam Search: Keeps multiple high-probability sequences to improve output quality.
- BLEU Score: A metric using modified precision to assess the accuracy of generated sequences.
- ullet Distinct Convex Vector: A distinct context word e_t is used to generate each target word \hat{y}_t

$$\mathbb{P}(\boldsymbol{y}_t \mid \boldsymbol{x}, \boldsymbol{y}_1, \cdots, \boldsymbol{y}_{t-1}) = \mathbb{P}_{\boldsymbol{\phi}}(\boldsymbol{y}_t \mid \boldsymbol{s}_t), \quad \text{where} \quad \boldsymbol{s}_t = g_{\boldsymbol{\phi}}(\boldsymbol{s}_{t-1}, \boldsymbol{y}_{t-1}, \boldsymbol{c}_t)$$

ullet Attention Weights: The distinct context word $oldsymbol{e}_t$ is a weighted sum of encoder hidden states:

$$c_t = \sum_i \alpha_{t,i} h_i,$$

where $\alpha_{t,i} = \operatorname{softmax}(\boldsymbol{e}_{t,i})$ are attention weights

• Alignment Scores: Alignment scores $e_{t,i} = a(s_{-1}, h_i)$ indicate relevance between encoder hidden states h_i and decoder states s_{t-1} .

Outline

Transformer

2 Large-Language Models

Recall: Attention Mechanism in Seq2Seq

ullet In Seq2Seq models, the conditional probability of the target word $oldsymbol{y}_t$ is given by:

$$\mathbb{P}(\boldsymbol{y}_t \mid \boldsymbol{x}, \boldsymbol{y}_1, \dots, \boldsymbol{y}_{t-1}) = g_{\boldsymbol{\phi}}(\boldsymbol{s}_t),$$

where the decoder hidden state s_t is updated with the distinct context vector c_t as follows:

$$oldsymbol{s}_t = \mathsf{GRU}(oldsymbol{s}_{t-1}, [oldsymbol{y}_{t-1}; oldsymbol{c}_t]), \quad \mathsf{with} \quad oldsymbol{c}_t = \sum_{i=1}^{T_x} lpha_{t,i} oldsymbol{h}_i,$$

where $lpha_t \in \mathbb{R}^{T_x}$ are the attention weights based on alignment scores $m{e}_t \in \mathbb{R}^{T_x}$:

$$\alpha_t = \operatorname{softmax}(\boldsymbol{e}_t), \quad \text{with} \quad \boldsymbol{e}_{t,i} = \boldsymbol{a}^{\top} \tanh(\boldsymbol{W}_a[\boldsymbol{s}_{t-1}; \boldsymbol{h}_i]).$$

Self-Attention

Define: Self-attention creates a contextually enriched representation of each token by learning its relevance to all other tokens in the sequence.

• For each token, three vectors are computed:

$$oldsymbol{q}_t = oldsymbol{W}^q oldsymbol{x}_t, \quad oldsymbol{k}_t = oldsymbol{W}^k oldsymbol{x}_t, \quad oldsymbol{v}_t = oldsymbol{W}^v oldsymbol{x}_t$$

where the query q_t interacts with keys k_i to measure relevance:

$$oldsymbol{lpha}_{t,i} \propto oldsymbol{q}_t^ op oldsymbol{k}_i, \quad \Rightarrow \quad oldsymbol{lpha}_t = \operatorname{softmax}\left(rac{oldsymbol{K} oldsymbol{q}_t}{\sqrt{d_k}}
ight),$$

where

$$oldsymbol{K} = egin{bmatrix} oldsymbol{k}_1 & \cdots & oldsymbol{k}_T \end{bmatrix}^ op$$

ullet The new representation z_t is a weighted sum of value vectors v_i :

$$oldsymbol{z}_t = \sum_{i=1}^T oldsymbol{lpha}_{t,i} oldsymbol{v}_i$$

Self-Attention: Matrix Form

• Define matrices:

$$Q = XW^{q\top}, \quad K = XW^{k\top}, \quad V = XW^{v\top}$$

where

$$oldsymbol{Q} = egin{bmatrix} oldsymbol{q}_1 & \cdots & oldsymbol{q}_T \end{bmatrix}^ op, \quad oldsymbol{K} = egin{bmatrix} oldsymbol{k}_1 & \cdots & oldsymbol{k}_T \end{bmatrix}^ op, \quad oldsymbol{V} = egin{bmatrix} oldsymbol{v}_1 & \cdots & oldsymbol{v}_T \end{bmatrix}^ op$$

• The attention weights are computed as:

$$egin{bmatrix} m{lpha}_1 & \cdots & m{lpha}_T \end{bmatrix} = \mathsf{softmax}\left(rac{m{K}m{Q}^ op}{\sqrt{d_k}}
ight)$$

ullet The new representation ${oldsymbol{Z}}$ is then:

$$oldsymbol{Z} = \mathsf{Attention}(oldsymbol{Q}, oldsymbol{K}, oldsymbol{V}) = \mathsf{softmax}\left(rac{oldsymbol{Q}oldsymbol{K}^ op}{\sqrt{d_k}}
ight)oldsymbol{V}$$

Multi-Head Attention

Definition: Multi-head attention extends self-attention by allowing multiple heads to focus on **different aspects** of each token, capturing diverse patterns and dependencies across the sequence.

ullet Each head produces an independent attention output $oldsymbol{Z}_h$:

$$oldsymbol{Z}_h = \mathsf{Attention}(oldsymbol{Q}_h, oldsymbol{K}_h, oldsymbol{V}_h),$$

where
$$oldsymbol{Q}_h = oldsymbol{Q} oldsymbol{W}_h^q$$
 , $oldsymbol{K}_h = oldsymbol{K} oldsymbol{W}_h^v$, and $oldsymbol{V}_h = oldsymbol{V} oldsymbol{W}_h^v$.

 Head outputs are concatenated and linearly transformed to form the final representation:

$$oldsymbol{Z} = egin{bmatrix} oldsymbol{Z}_1 & \cdots & oldsymbol{Z}_H \end{bmatrix} oldsymbol{W}_o^ op$$

where $oldsymbol{W}_o$ is the output projection and H is the number of heads.

• In Matrix Form: With Q_h, K_h, V_h for each head,

$$oldsymbol{Z} = \mathsf{MultiHead}(oldsymbol{Q}, oldsymbol{K}, oldsymbol{V}) \in \mathbb{R}^{T imes d_{\mathsf{model}}}$$

Note: The multi-head can be computed in **parallel**, each with complexity $\mathcal{O}(T^2d)$.

Multi-Head Attention Layer: LayerNorm and FNN

Layer Normalization computes statistics across different hidden units:

• In an RNN or MLP, a hidden state update is given by:

$$z = Wx$$
, $h = \tanh(z)$

where the pre-activation vector $\boldsymbol{z} \in \mathbb{R}^m$.

• The statistics are computed across the hidden units:

$$oldsymbol{z}_i = oldsymbol{w}_i^ op oldsymbol{x}, \quad \mu = rac{1}{m} \sum_{i=1}^m oldsymbol{z}_i, \quad \sigma = \sqrt{rac{1}{m} \sum_{i=1}^m (oldsymbol{z}_i - \mu)^2}$$

where w_i is the *i*th row of W.

• Re-scale and shift the normalized pre-activation:

$$oldsymbol{z}_{\mathsf{norm}} = rac{oldsymbol{z} - \mu}{\sigma}, \quad ilde{oldsymbol{z}} = oldsymbol{lpha} \odot oldsymbol{z}_{\mathsf{norm}} + oldsymbol{eta}$$

where lpha and eta are trainable

Feed-Forward Layer captures non-linear relationships between tokens:

$$\mathsf{FFN}(oldsymbol{x}_t) = \mathsf{ReLU}(oldsymbol{x}_toldsymbol{W}_1 + oldsymbol{b}_1)oldsymbol{W}_2 + oldsymbol{b}_2$$

Multi-Head Attention Encoder and Decoder Stacks

Encoder:

- Input Embedding: Converts input to dense word embeddings.
- Multi-Head Attention: Enhances token representations by attending to various parts of the sequence.
- FFN: Applies non-linear transformations to capture complex relationships between words.

Decoder:

- Output Embedding: Converts the previously generated output (one-hot encoded) into dense word embeddings.
- First Multi-Head Attention: Refines the output embeddings or hidden states using self-attention.
- ullet Second Multi-Head Attention: Uses the output of the first attention as the query Q, with K and V from the encoder's output, allowing the decoder to attend to the input sequence.
- Final Output: Computes the conditional probability of the next token through a linear layer and softmax.

Positional Encoding

- Unlike RNNs, transformers do **not** inherently process tokens in sequence order.
- Positional Encoding is defined as:

$$\mathsf{PE}_{\mathsf{pos},2i} = \sin\left(\mathsf{pos}/10000^{\frac{2i}{d_\mathsf{model}}}\right), \quad \mathsf{and} \quad \mathsf{PE}_{\mathsf{pos},2i+1} = \cos\left(\mathsf{pos}/10000^{\frac{2i}{d_\mathsf{model}}}\right)$$

Key Properties

- Provides unique and consistent representation for each position.
- Represents positions in a low-dimensional subspace.
- Enables linear transformations for relative positioning, i.e., \exists a linear M_k s.t. $M_k \mathsf{PE}_{\mathsf{pos}+k} = \mathsf{PE}_{\mathsf{pos}}$.

Transformer

Training Process: Teacher Forcing

- During training, the true output sequence is fed into the decoder.
- Masking ensures only past and current tokens are visible, preserving autoregressive properties.
- Cross-entropy loss is used to compare the predicted probability distribution with the true token.

Loss Function: Cross-Entropy

$$\mathcal{L} = -\frac{1}{T} \sum_{t=1}^{T} y_t \log \mathbb{P}(\hat{y}_t)$$

- ullet y_t : True one-hot encoded token.
- $\mathbb{P}(\hat{y}_t)$: Predicted probability for the token at time t.

Summary

- **Self-attention** refines the representation of each token by learning its relevance to other tokens using **query-key** pairs.
- Multi-head self-attention captures different aspects of each token, enhancing the overall representation.
- Layer normalization computes statistics across hidden units to stabilize information propagation.
- Positional encoding adds order information to word embeddings, enabling the model to learn relative positioning through a linear transformation.
- Encoder-decoder attention refines the output representation by attending to the input sequence representation.
- The **Transformer** uses **teacher forcing** with cross-entropy loss to facilitate effective training.

Outline

Transformer

2 Large-Language Models

 $\textbf{Definition} : \ \mathsf{BERT} \ \mathsf{stands} \ \mathsf{for} \ \mathbf{B} \mathsf{idirectional} \ \mathbf{E} \mathsf{ncoder} \ \mathbf{Representations} \ \mathsf{from} \ \mathbf{T} \mathsf{ransformers}.$

- Utilizes only the **encoder** part of the Transformer architecture.
- Designed for pre-training on large corpora and fine-tuning on downstream NLP tasks.

Model Details: BERT_Large, with 340 million parameters, was trained on TPU v3 pods over 4 days using the BooksCorpus (800 million words) and English Wikipedia (2.5 billion words) datasets.

BERT: Pre-training

Masked Language Modeling (MLM): Randomly masks 15% of tokens in the input sequence and predicts masked tokens based on context.

- Problem: [MASK] token never used in finite-tuning
- Solution: Do not always replace selected words with [MASK], e.g., my dog is hairy
 - \bullet 80% of the time: Replace the word with the [MASK] token, e.g., my dog is [MASK]
 - \bullet 10% of the time: Replace the word with a random word, e.g., my dog is apple
 - \bullet 10% of the time: Keep the word unchanged, e.g., my dog is hairy.

Next Sentence Prediction (NSP): Predicts if the second sentence follows the first, using the hidden state of the **[CLS]** token for binary classification (*IsNext* or *NotNext*).

- Input=[CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP], Label=IsNext
- Input=[CLS] the man [MASK] to the store [SEP] penguin [MASK] are flight ##less birds [SEP], Label=NotNext

BERT: Performance on SQuAD 1.1

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

GPT-1: Decoder-Only Generative Pretrained Transformer

Unsupervised Pre-training: Given a sequence of tokens $\{x_t\} = \{x_1, \cdots, x_T\}$:

• Maximize the likelihood in the standard language model:

$$\mathcal{L}_1 = \sum_t \log \mathbb{P}_{oldsymbol{ heta}}(oldsymbol{x}_t \mid oldsymbol{x}_{t-k}, \cdots, oldsymbol{x}_{t-1})$$

Transformer decoder structure:

$$\boldsymbol{h}^{(0)} = \boldsymbol{x} \boldsymbol{W}_e + \boldsymbol{W}_p, \quad \boldsymbol{h}^{(\ell)} = \operatorname{transformer_layer}(\boldsymbol{h}^{(\ell-1)}), \ \forall \ell \in [L], \quad \mathbb{P}_{\boldsymbol{\theta}}(\boldsymbol{x}_t) = \operatorname{softmax}(\boldsymbol{h}^L \boldsymbol{W}_e^\top),$$
 where $\boldsymbol{x} = (\boldsymbol{x}_{-k}, \cdots, \boldsymbol{x}_{-1})$ is the context vector, L is the number of layers, \boldsymbol{W}_e is the embedding matrix, and \boldsymbol{W}_p is the positional embedding matrix.

Supervised Fine-tuning: Given a label y:

ullet Pass the inputs $\{m{x}_t\}$ through the pre-trained model to obtain $m{h}^{(L)}$, which is used to predict $m{y}$:

$$\mathbb{P}_{oldsymbol{\phi}}(oldsymbol{y} \mid oldsymbol{x}_1, \cdots, oldsymbol{x}_t) = \mathsf{softmax}(oldsymbol{h}_t^{(L)} oldsymbol{W}_y)$$

Maximize the supervised likelihood:

$$\mathcal{L}_2 = \sum_{(oldsymbol{x}, oldsymbol{y})} \log \mathbb{P}_{oldsymbol{\phi}}(oldsymbol{y} \mid oldsymbol{x}_1, \cdots, oldsymbol{x}_t)$$

• Improved performance is achieved by fine-tuning with a combined objective: $\mathcal{L}_3 = \mathcal{L}_1 + \lambda \mathcal{L}_2$

GPT-1: Task-Specific Input Transformations

Model Details: GPT-1, with 117 million parameters, are trained on the BooksCorpus dataset (800 million words).

GPT-2: WebText Dataset

WebText Dataset:

- Curated using Reddit as a **filter** to include diverse, high-quality content.
- Comprised of approximately 8 million documents and 40GB of text.

Training:

- Trained as a **standard language model** on WebText.
- Objective: Maximize the likelihood of predicting the next token in a sequence.

Zero-Shot Inference:

- Inputs during inference are formatted as **prompts** that specify tasks.
- Generates responses based on pre-trained language understanding, without fine-tuning.
- Example: Input: "Q: What is the capital of France? A:" and Response: "Paris"

Model Details:

- 12-layer Transformer decoder with 1.5 billion parameters.
- Hidden size of 1600, with 25 attention heads.

GPT-2: Zero-Shot Inference

Parameters	Layers	d_{model}
117M	12	768
345M	24	1024
762M	36	1280
1542M	48	1600

Model configurations

Zero-shot performance of WebText GPT-2 on many NLP tasks.

GPT-3: Limitation of Pretraining and Finite-Tune

Limitation of Pretrained and Finite-Tune in NLP:

- Large Data Limitation: Language models need extensive labeled datasets for new tasks, limiting their practical use.
- Overfitting and Generalization Issues: Powerful models risk overfitting, especially when fine-tuned on small data with limited diversity, leading to poor real-world generalization.
- Human Adaptability: Humans learn language tasks with minimal examples and switch tasks seamlessly; achieving this in NLP systems would improve their versatility.

Solution: In-context learning and Transformer

 In-Context Learning: the model is conditioned on a natural language instruction and a few demonstrations of the task and is then expected to complete further instances of the task simply by predicting what comes next.

GPT-3: In-Context Learning

The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Traditional fine-tuning (not used for GPT-3)

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

GPT-3: Training

Model Name	n_{params}	n_{layers}	d_{model}	$n_{ m heads}$	$d_{ m head}$	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	6.0×10^{-4}
GPT-3 Medium	350M	24	1024	16	64	0.5M	3.0×10^{-4}
GPT-3 Large	760M	24	1536	16	96	0.5M	2.5×10^{-4}
GPT-3 XL	1.3B	24	2048	24	128	1M	2.0×10^{-4}
GPT-3 2.7B	2.7B	32	2560	32	80	1M	1.6×10^{-4}
GPT-3 6.7B	6.7B	32	4096	32	128	2M	1.2×10^{-4}
GPT-3 13B	13.0B	40	5140	40	128	2M	1.0×10^{-4}
GPT-3 175B	175.0B	96	12288	96	128	3.2M	0.6×10^{-4}

	Quantity	Weight in	Epochs elapsed when
Dataset	(tokens)	training mix	training for 300B tokens
Common Crawl (filtered)	410 billion	60%	0.44
WebText2	19 billion	22%	2.9
Books1	12 billion	8%	1.9
Books2	55 billion	8%	0.43
Wikipedia	3 billion	3%	3.4

GPT-3: Neural Scaling Laws

