

Reti di Calcolatori e Laboratorio

Lezione 2 Architettura di rete

Prof. E. Di Nardo

Università degli Studi di Napoli Parthenope

A.A. 2023/2024

Protocolli di comunicazione

- La rete è eterogenea
 - Diverse tipologie di tecniche di comunicazione e scambio dati
- Necessario la definizione e l'utilizzo di regole specifiche
- Nasce il concetto di Protocollo

Definizione

Insieme coordinato di regole che consente a due interlocutori (un utente e un calcolatore elettronico, due utenti oppure due calcolatori) di scambiarsi rapidamente e univocamente dati e messaggi

https://www.treccani.it/vocabolario/protocollo/

Placeholder

Vai avanti...

Modello a strati I

- La rete è organizzata a livelli (o strati)
 - ► Una rete avrà **N** possibili livelli
 - Ogni livello ha un certo grado di astrazione
 - Ogni livello ha una propria responsabilità nella rete
- Ogni elemento di un livello n comunica con lo strato successivo n+1 e precedente n-1
 - ▶ Un livello non più comunicare con i livelli non adiacenti
- Ogni livello interagisce con il suo corrispettivo sull'host mittente/destinatario
- Al variare della tipologia di architettura cambiano le responsabilità dei livelli
- L'insieme dei protocolli di una singola architettura è detto Stack di protocolli

Modello a strati II

Figure: Architettura a strati

Comunicazione tra livelli I

Facciamo un esempio con un'architettura a 5 livelli (N=5)

- Un messaggio M parte dal livello più alto (n=5)
- Il messaggio viene inviato al livello n-1 (4)
 - ▶ Il livello 4 inserisce un **header** con informazioni di controllo (H4)
- Si passa il pacchetto al livello n-1 (3)
 - Esiste una dimensione **massima** per ogni pacchetto
 - ▶ Il pacchetto deve essere scomposto in pacchetti più piccoli (M1, M2).
 - Nuove informazioni di controllo vengono aggiunte ad ogni porzione (H3)
 - ▶ N.B. Le informazioni di controllo precedenti non vengono suddivise!
- Il pacchetto viene inviato al livello n-1 (2)
 - ▶ Vengono aggiunte informazioni di controllo (H2) ed informazioni dette **trailer** per determinare il termine del pacchetto (T2)
- Il messaggio può essere inviato tramite mezzo fisico

Comunicazione tra livelli II

- Si risale l'albero verso il livello più grande
- Ad ogni livello n+1 vengono lette le informazioni di controllo
- N.B. Le informazioni di controllo sono utilizzate dai protocolli dello stesso livello

Comunicazione tra livelli III

- Per l'interazione con i livelli adiacenti si utilizza un'interfaccia di comunicazione
- Se ci si trova al livello n
 - ► Livello n+1 definito come **service user**
 - ► Livello n-1 si definito come **service provider**
- L'interfaccia di comunicazione Service Access Point (SAP)
 - ► Le informazioni in un SAP sono dette Interface Data Unit (IDU)
 - ► Tale componente è composta da un Service Data Unit (**SDU**) ed un Interface Control Information (**ICI**)
 - ▶ N.B. Lo SDU è una nomenclatura temporanea
 - ▶ Allo SDU vengono aggiunte le Protocol Control Information ed esso diventa il Protocol Data Unit (**PDU**)
- Quando si parla di n-SAP, n-SDU e n-PDU ci si riferisce ad una componente ad un determinato livello n

Responsabilità dei livelli

Ogni livello ha un determinato compito

- Indirizzamento
- Controllo errori di trasmissione
- Frammentazione
- Controllo degli errori
- Trasferimento dati
 - ► Simplex
 - ► Half-duplex
 - ► Full-duplex
- Multiplexing

Primitive di comunicazione

- Si definiscono primitive le operazioni che un livello può effettuare per utilizzare il servizio
- Coinvolgono il livello n ed uno dei suoi vicini
- Ogni primitiva ha associata una corrispettiva risposta con il livello da raggiungere

Nomenclature

- ISO (International Standard Organization)
- OSI (Open Systems Interconnection)
- IEEE (Institute of Electrical and Electronics Engineers)

Il modello ISO/OSI I

- Modello di riferimento per le architetture di rete
- Definisce
 - ► Il **numero** dei livelli
 - Le relazioni tra i livelli
 - Le caratteristiche funzionali dei livelli
- Composto da 7 livelli
 - Gli ultimi 4 sono detti applicativi
 - ► I primi tre sono detti **fisici**

II modello ISO/OSI II

II modello ISO/OSI III

#	Livello	Definizione
7	Applicazione	Interfaccia tra il sistema di comunicazione e le applicazioni
6	Presentazione	Formatta e trasforma i dati in base la
		loro rappresentazione locale.
		Fornisce anche la cifratura/decifratura dei dati
5	Session	Si occupa delle sessioni di comunicazione,
		dall'inizializzazione alla chiusura
4	Trasporto	Invio e ricezione dei dati.
		Controllo e correzione (se possibile) degli errori
3	Rete	Creazione dei pacchetti, indirizzamento ed instradamento
		degli stessi ad alto livello (astrazione)
2	Data Link	Definizione del frame e dell'indirizzamento
		in funzione del mezzo fisico
1	Fisico	Trasmissione dei dati tramite il mezzo fisico

Livello FISICO

- Trasmissione dei dati grezzi (bit) su un canale di comunicazione
- Specifica le caratteristiche meccaniche, elettriche e procedurali dell'apparato di connessione
- Specifica le caratteristiche del mezzo fisico
 - ► Tensioni scelte
 - Durata di un singolo bit
 - ► Tipo di trasmissione
 - . . .

Livello DATA LINK I

- Finalizza il framing dei dati
- Prepara ed invia i frame in sequenza
- Si assicura che il frame sia giunto a destinazione (acknowledgement - ack)
 - Regola il traffico sulla rete in modo da evitare che il ricevente sia sommerso di dati

Livello DATA LINK II

- Gli ack possono essere inviati come
 - frame separati (competizione con il traffico di rete)
 - piggybacking
- Evita la presenza di errori
 - Errore in ricezione
 - Perdita di frame
 - ▶ Duplicazione di frame
- Esiste un sottolivello chiamato MAC (Media Access Control)
 - ► Esiste nelle reti broadcast
 - ► Controlla e gestisce l'accesso al canale di trasmissione

Livello NETWORK

Pacchetti

Rete

determinazione dei percorsi e indirizzamento logico (IP)

- Specifica e controlla il funzionamento della sottorete di comunicazione
- Effettua il routing
 - ► Statico
 - Dinamico
- Registra il traffico generato dalla rete (accounting)
- Si occupa di effettuare la conversione di dati
 - La conversione si applica quando si comunica con reti differenti
 - Rimappa gli indirizzi
 - ► Seleziona i pacchetti da frammentare

Livello TRASPORTO I

Segmenti Trasporto connessioni end-to-end e affidabilità

- Chiamato livello end-to-end
 - ► Isola i livelli superiori dal mezzo fisico
 - ► Cambiare la tecnologia di rete non influenza i livelli superiori
- Divide i dati in pacchetti
- Su richiesta effettua il controllo che i pacchetti giungano a destinazione

Livello TRASPORTO II

Segmenti

Trasporto

connessioni end-to-end e affidabilità

- Si occupa del tipo di connessione da creare
 - ► Una connessione network per ciascuna connessione transport
 - Una singola connessione network per molte connessioni transport (multiplexing)
 - ► Molte connessioni network per una singola connessione transport (alto throughput)
- Offre due tipologie di connessione al livello superiore
 - ► Connection Oriented canale punto a punto affidabile (i dati sono consegnati in ordine e senza errori)
 - Connectionless Invio senza garanzia di consegna

Livello SESSION

- Consente ad utenti su sistemi diversi di stabilire una sessione di comunicazione
- Token management
 - ► Autorizza le parti coinvolte alla trasmissione evitando sovrapposizioni
 - ► Checkpointing in fase di download

Livello PRESENTAZIONE

- Si occupa della conversione di tipi standard (caratteri, interi)
- Attua i meccanismi di cifratura/decifratura
- Checkpointing

Livello APPLICAZIONE

Dati Applicazione
dal processo di rete
all'applicazione

- Offre i servizi all'utente
 - ► Terminale virtuale
 - ► Trasferimento file
 - Posta elettronica

Riassumendo...

Tipologie di connessione I

Connection-Oriented

- Si stabilisce la connessione Si stabilisce un percorso (instradamento) attraverso la rete
- ► Si effettua la comunicazione Invio dei pacchetti
- ► Si rilascia la connessione

Tipologie di connessione II

Connectionless

- Le informazioni vengono inviate sulla rete senza un percorso predefinito
- ▶ I pacchetti potrebbero arrivare in ordine sparso o non arrivare

Affidabilità del servizio

Acknowledgement

- Sistema di notifica di azioni tra hosts
- ► Abbreviato in ack

Reliable

- ► I dati devono essere tutti consegnati al destinatario
- ▶ Per ogni pacchetto ricevuto viene inviato un ack al mittente
- ⊕ Affidable
- ⊖ Lento

Unreliable

- Nessuna garanzia che i dati vengano consegnati
- ⊕ Veloce
- → Non affidabile

Connessione ed affidabilità

E' possibile utilizzare le due tipologie di connessione con ogni livello di affidabilità

- Reliable Connection-Oriented
 - ► Altamente affidabile
- 2 Reliable Connectionless
 - ▶ I dati saranno ricevuti tutti, ma non nell'ordine desiderato
 - ► Si utilizzano gli ack
 - Anche chiamato acknowledged datagram service
- Onreliable Connection-Oriented
 - Possibili perdite di dati
- 4 Unreliable Connectionless
 - ► Altamente inaffidabile
 - Possibili perdite di dati non ordinati
 - ► Anche chiamato datagram service

