Optimizing Graph Transformer Networks with Graph-based Techniques

Loc Hoang *

The University of Texas at Austin loc@cs.utexas.edu Udit Agarwal, Gurbinder Gill, Roshan Dathathri

KatanaGraph {udit,gill,roshan}@katanagraph.com

Abhik Seal, Brian Martin

AbbVie Inc. {abhik.seal,brian.martin}@abbvie.com

Keshav Pingali

The University of Texas at Austin pingali@cs.utexas.edu

REVIEW; ii tae jeong 22.07.21

Novelty

- 1. We present a new algorithm for the graph transformer network that formulates the problem as a series of graph operations rather than as matrix operations.
- 2. We present a random walk based approach that uses this graph-based formulation to sample important metapaths to further reduce memory usage and computation cost.
- 3. We implement this algorithm and show that it outperforms the original implementation by $6.5 \times$ on average. We also show that random-walk sampling improves performance by $155 \times$ over the original implementation without compromising accuracy of node classification.
- 4. We show experimentally that the sampling approach can run and scale on large graphs with up to 1.5 billion edges.

\rightarrow GTN(heterogeneous)'s metapath \rightarrow graph pathfinding algorithm

METAPATH

Heterogeneous graph 의 node-node 관계를 sequence화 하여 meta 정보만을 담아 놓은 schema

Figure 1: An illustration of the terms defined in Section 2. (a) An example heterogeneous graph with three types of nodes (i.e., users, artists, and tags). (b) The User-Artist-Tag-Artist (UATA) metapath and the User-Artist-Tag-Artist-User (UATAU) metapath. (c) Example metapath instances of the UATA and UATAU metapaths, respectively. (d) The metapath-based graphs for the UATA and UATAU metapaths, respectively.

Definition 2.1. Heterogeneous Graph. A heterogeneous graph is defined as a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ associated with a node type mapping function $\phi : \mathcal{V} \to \mathcal{A}$ and an edge type mapping function $\psi : \mathcal{E} \to \mathcal{R}$. \mathcal{A} and \mathcal{R} denote the predefined sets of node types and edge types, respectively, with $|\mathcal{A}| + |\mathcal{R}| > 2$.

Definition 2.2. Metapath. A metapath P is defined as a path in the form of $A_1 \stackrel{R_1}{\longrightarrow} A_2 \stackrel{R_2}{\longrightarrow} \cdots \stackrel{R_l}{\longrightarrow} A_{l+1}$ (abbreviated as $A_1A_2 \cdots A_{l+1}$), which describes a composite relation $R = R_1 \circ R_2 \circ \cdots \circ R_l$ between node types A_1 and A_{l+1} , where \circ denotes the composition operator on relations.

Definition 2.3. Metapath Instance. Given a metapath P of a heterogeneous graph, a metapath instance p of P is defined as a node sequence in the graph following the schema defined by P.

Definition 2.4. Metapath-based Neighbor. Given a metapath P of a heterogeneous graph, the metapath-based neighbors \mathcal{N}_v^P of a node v is defined as the set of nodes that connect with node v via metapath instances of P. A neighbor connected by two different metapath instances is regarded as two different nodes in \mathcal{N}_v^P . Note that \mathcal{N}_v^P includes v itself if P is symmetric.

Graph Transformer

Figure 2: Graph Transformer Networks (GTNs) learn to generate a set of new meta-path adjacency matrices $\mathbb{A}^{(l)}$ using GT layers and perform graph convolution as in GCNs on the new graph structures. Multiple node representations from the same GCNs on multiple meta-path graphs are integrated by concatenation and improve the performance of node classification. $\mathbb{Q}_1^{(l)}$ and $\mathbb{Q}_2^{(l)} \in \mathbf{R}^{N \times N \times C}$ are intermediate adjacency tensors to compute meta-paths at the lth layer.

- GT layer를 활용하여 metapath 를 생성함.
- 2. 생성된 metapath 들과 기존 graph adj(structure, topology)를 concat하여 new Adjacency matrix 생성
- 앞서 생성된 matrix 를 GCN 레이어를 통과시켜 벡터화.

source code

preliminary

Graph Transformer

```
class GTLayer(nn.Module):
class GTConv(nn.Module):
                                                                                         def __init__(self, in_channels, out_channels, first=True):
                                                                                              super(GTLayer, self).__init__()
   def __init__(self, in_channels, out_channels):
                                                                                              self.in_channels = in_channels
        super(GTConv, self).__init__()
                                                                                              self.out channels = out channels
        self.in_channels = in_channels
                                                                                              self.first = first
        self.out_channels = out_channels
                                                                                             if self.first == True:
        self.weight = nn.Parameter(torch.Tensor(out channels,in channels,1,1))
                                                                                                 self.conv1 = GTConv(in channels, out channels)
                                                                                                 self.conv2 = GTConv(in_channels, out_channels)
        self.bias = None
        self.scale = nn.Parameter(torch.Tensor([0.1]), requires_grad=False)
                                                                                              else:
                                                                                                 self.conv1 = GTConv(in channels, out channels)
        self.reset_parameters()
    def reset_parameters(self):
                                                                                         def forward(self, A, H_=None):
        n = self.in_channels
                                                                                             if self.first == True:
        nn.init.constant (self.weight, 0.1)
                                                                                                 a = self.conv1(A)
        if self.bias is not None:
                                                                                                 b = self.conv2(A)
            fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight)
                                                                                                 H = torch.bmm(a, b)
            bound = 1 / math.sgrt(fan in)
                                                                                                 W = [(F.softmax(self.conv1.weight, dim=1)).detach(),(F.softmax(self.conv2.weight, dim=1)).detach()]
            nn.init.uniform (self.bias, -bound, bound)
                                                                                                 a = self.conv1(A)
   def forward(self, A):
                                                                                                 H = torch.bmm(H, a)
        A = torch.sum(A*F.softmax(self.weight, dim=1), dim=1)
                                                                                                 W = [(F.softmax(self.conv1.weight, dim=1)).detach()]
        return A
                                                                                              return H,W
```

First, GT layer softly selects two graph structures Q1 and Q2 from candidate adjacency matrices A. **Second**, it learns a new graph structure by the composition of two relations (i.e., matrix multiplication of two adjacency matrices, Q1Q2)

RANDOMWALK

Algorithm 4 Random Walk Algorithm

Input: Graph G; vertex v; Number of walks num_walks ; Walk-length $walk_length$ **Output:** Set of paths \mathcal{P}

- 1: $\mathcal{P} \leftarrow \phi$
- 2: for $i \leftarrow 1$ to num_walks do
- 3: $p \leftarrow \{v\}$
- 4: **for** $j \leftarrow 1$ to $walk_length$ **do**
- 5: $last \leftarrow p[j-1]$
- 6: Randomly sample u from $\mathcal{N} \cup \{last\}$ using acceptance-rejection sampling
- 7: $p \leftarrow p \cdot (last, u)$
- 8: $\mathcal{P} \leftarrow \mathcal{P} \cup p$
- 9: return \mathcal{P}

which takes into account the weights of outgoing edges. Edges with higher weights are more likely to get picked, meaning more important metapaths (at that point in training/inferencing) are more likely to be sampled.

Random Walk

9/28/2021

Jure Les kovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu

	ACM		IMDB		DBLP	
	Time (s)	Accuracy	Time (s)	Accuracy	Time (s)	Accuracy
GCN	0.05	0.92	0.04	0.57	0.03	0.89
P-GTN	12.20	0.90	32.25	0.57	73.03	0.94
G-GTN	6.88	0.90	0.26	0.57	56.68	0.95
W-GTN-10	0.06	0.90	0.10	0.54	0.11	0.90
W-GTN-50	0.14	0.92	0.17	0.59	0.32	0.94
W-GTN-100	0.20	0.92	0.24	0.60	0.57	0.94

Table 2: Average epoch time and peak accuracy across 300 epochs with GTNs with 3 graph transformer layers (i.e., metapath with up to 4 edges).

P-GTN (Pytorch implemented GTN) G-GTN (Graph-GTN) W-GTN-X (Walk-GTN)

X 는 random walk 를 활용해 생성된 metapath counts 를 의미함.

ex) W-GTN-100 , 100개의 metapaths generated

the key computation is a dense matrix multiplication

→ find graph paths(metapath)→ dynamic programming

traditional methodology

Figure 2: Example of matrix computation that occurs to find the metapaths in Fig. 1. The graph's adjacency matrix is duplicated, and the scores corresponding to each edge type for a particular on is filled accordingly. A matrix multiply then finds metapaths edges with the correct score: (A,C)=7 and (A,E)=2.

our approach

Figure 1: Metapath graph construction. The matrix denotes the importance of an edge type for a position in the metapath. The heterogeneous graph's edges are scored based on this matrix. The metapath graph has edges (A,C) and (A,E): the former is composed of (A,B,C) and (A,D,C) with scores 2*2=4 and 1*3=3, and the latter is composed of (A,D,E) with score 1*2=2.

→ (O^2) cost (dense matrix) → algorithm(random-walk) based compression

Figure 3: Illustration of the Graph Transformer Network architecture. The Graph Transformer Layers (one layer for each metapath edge) output a metapath graph for use by the GCN and dense layers.

$$A_P = \left(\sum_{t_1 \in \mathcal{T}^e} \alpha_{t_1}^{(1)} A_{t_1}\right) \left(\sum_{t_2 \in \mathcal{T}^e} \alpha_{t_2}^{(2)} A_{t_2}\right) \dots \left(\sum_{t_l \in \mathcal{T}^e} \alpha_{t_l}^{(l)} A_{t_l}\right)$$

metapath-generation

Algorithm 1 Vanilla Metapath Graph Generation

Input: Graph G; Edge Score Function ES; Edge Type Function ET **Output:** Metapath Graph MG = (V, E, W)

- 1: **for** all vertices v in G **do**
- 2: Enumerate length l paths P from v
- 3: **for** path $p = (v, x_1, ..., x_l)$ in P **do**
- 4: $score = ES(ET(v, x_1), 1) \cdot \prod_{i=2}^{l} ES(ET(x_{i-1}, x_i), i)$
- 5: add edge (v, x_l) to MG.E, if it already doesn't exist
- 6: $MG.W(v, x_l) + = score$

This approach allows us to significantly reduce the total amount of computation and memory usage while also allowing us to build a metapath graph that gives comparable accuracy to original GTN formulation.

Because we only find a constant number of paths per node, we can explicitly store them as well so recomputation of paths is not needed during the backward step.

Algorithm 2 Metapath Graph Generation using Random Walks

Input: Graph G; Edge Score Function ES; Edge Type Function ET; Number of walks num_walks **Output:** Metapath Graph MG = (V, E, W)

- 1: for all vertices v in G do
- 2: Sample length $l num_walks$ paths P from v
- 3: **for** path $p = (v, x_1, ..., x_l)$ in P **do**
- 4: $score = ES(ET(v, x_1), 1) \cdot \prod_{i=2}^{l} ES(ET(x_{i-1}, x_i), i)$
- 5: add edge (v, x_l) to MG.E, if it already doesn't exist
- 6: $MG.W(v, x_l) + = score$

metapath-generation

Algorithm 3 Metapath Graph Generation with l/2 Paths

Input: Graph G; Edge Score Function ES; Edge Type Function ET;

Output: Metapath Graph for first-half l/2 paths MG_1 ; Metapath Graph for second-half l/2 paths MG_2 ; Metapath Graph for full l paths MG

- 1: for all vertices v in G do
- Enumerate length l/2 paths P from v

4:
$$score_1 = ES(ET(v, x_1), 1) \cdot \prod_{i=2}^{i/2} ES(ET(x_{i-1}, x_i), i)$$

- 6: add edge $(v, x_{l/2})$ to $MG_1.E$ and $MG_2.E$, if it already doesn't exist
- $MG_1.W(v, x_{1/2}) + = score_1$
- $MG_2.W(v, x_{1/2}) + = score_2$
- 9: for metapath edge $e_1 = (a, b)$ in MG_1 do
- for metapath edge $e_2 = (b, c)$ in MG_2 do
- add edge (a, c) to MG, if it already doesn't exist 11:
- 12: $MG.W(a,c) + = MG_1.W(e_1) * MG_2.W(e_2)$

Figure 4: Time to accuracy for GTN based systems for runs with 3 metapath layers.

Fig. 4 shows the time to accuracy for the ACM graph for the GTN-based systems. G-GTN reaches high accuracy significantly faster than P-GTN because each epoch takes less time. Similarly, the variations of W-GTN reach good accuracy faster than G-GTN because of faster epoch time.

PyTorch; The PyTorch implementation uses dense matrices for each intermediate metapath graph, so the memory overhead is impractical for large graphs.

G-GTN; Our graph formulation precomputes the space required for the metapath graph and the intermediate metapath graphs.

next . GCN from scratch in Numpy

next . dynamic graph embedding in e-commerce sector (PYG)

next . heterogeneous graph embedding in e-commerce sector (DGL)

next . study group for GNN application at pseudo lab

give me the your email address then i will alert next study time:)