IC設計實驗期中考練習1 2024

班級:	學號:	姓名:	成績:

- 1. The input signal rising/falling time is 0.5ns. The output loading is 1pf. Please design the 3-input dynamic XOR with the same delay time as 1ns for various input patterns. (0.95ns < T_{000} , T_{001} , T_{010} , T_{011} , T_{100} , T_{101} , T_{110} , T_{111} < 1.05ns) (Function Validation: 30%, 0.8ns < Delay < 1.2ns: 30%, 0.9ns < Delay < 1.1ns: 10%, 0.95ns < Delay < 1.05ns: 10%)
- 2. Please write down your consideration during constructing function and sizing procedure. (20%)

IC設計實驗期中考練習2 2024

班級:	學號:	姓名:	成績:

- 1. The input signal rising/falling time is 0.5ns. The output loading is 1pf. Please design the 3-input pseudo nMOS XOR with the same delay time as 1ns for various input patterns. (0.95ns < T₀₀₀, T₀₀₁, T₀₁₀, T₀₁₁, T₁₀₀, T₁₀₁, T₁₁₀, T₁₁₁ < 1.05ns) (Function Validation: 30%, 0.8ns < Delay < 1.2ns: 30%, 0.9ns < Delay < 1.1ns: 10%, 0.95ns < Delay < 1.05ns: 10%)
- 2. Please write down your consideration during constructing function and sizing procedure. (20%)

IC設計實驗期中考練習3 2024

班級:	學號:	姓名:	成績:

- 1. The input signal rising/falling time is 0.5ns. The output loading is 1pf. Please design the 3-input pass-transistor XOR with the same delay time as 1ns for various input patterns. (0.95ns < T_{000} , T_{001} , T_{010} , T_{011} , T_{100} , T_{111} , T_{111} < 1.05ns) (Function Validation: 30%, 0.8ns < Delay < 1.2ns: 30%, 0.9ns < Delay < 1.1ns: 10%, 0.95ns < Delay < 1.05ns: 10%)
- 2. Please write down your consideration during constructing function and sizing procedure. (20%)

IC設計實驗期中考練習4 2024

班級:	學號:	姓名:	
	.1 A)O.	, <u>, , , , , , , , , , , , , , , , , , </u>	// 'A'

1. The input signal rising/falling time is 0.5ns. The output loading of Co and S is 1pf. Please design the single bit pseudo-nMOS Full-adder with the same rising time and falling time as 1ns in both S and Co. (0.95ns $< T_{000}$, T_{001} , T_{010} , T_{011} , T_{100} , T_{101} , T_{111} , T_{111} < 1.05ns) (You can only tune the size of transistor. Altering the circuit architecture is not allowed.)

(Function Validation: 30%, 0.8ns < Delay < 1.2ns: 30%, 0.9ns < Delay < 1.1ns: 10%, 0.95ns < Delay < 1.05ns: 10%)

(Reference Full-Adder Circuit)

2. Please write down your consideration during constructing function and sizing procedure. (20%)

IC設計實驗期中考練習5 2024

班級:	學號:	姓名:	
	.1 A)O.	, <u>, , , , , , , , , , , , , , , , , , </u>	// 'A'

1. The input signal rising/falling time is 0.5ns. The output loading of Co and S is 1pf. Please design the single bit dynamic CMOS Full-adder with the same rising time and falling time as 1ns in both S and Co. (0.95ns $< T_{000}$, T_{001} , T_{010} , T_{011} , T_{100} , T_{101} , T_{111} , T_{111} < 1.05ns) (You can only tune the size of transistor. Altering the circuit architecture is not allowed.)

(Function Validation: 30%, 0.8ns < Delay < 1.2ns: 30%, 0.9ns < Delay < 1.1ns: 10%, 0.95ns < Delay < 1.05ns: 10%)

(Reference Full-Adder Circuit)

2. Please write down your consideration during constructing function and sizing procedure. (20%)

IC設計實驗期中考練習6 2024

班級:	學號:	姓名:	成績:

- 1. The input signal rising/falling time is 0.5ns. The output loading is 0.5pf. Please design the 3-input pass-transistor A*B+C*(B*D+A*E) with the same delay time as 1ns for various input patterns. (0.95ns < T_{000} , T_{001} , T_{010} , T_{011} , T_{100} , T_{101} , T_{111} < 1.05ns) (Function Validation: 30%, 0.8ns < Delay < 1.2ns: 30%, 0.9ns < Delay < 1.1ns: 10%, 0.95ns < Delay < 1.05ns: 10%)
- 2. Please write down your consideration during constructing function and sizing procedure. (20%)

IC設計實驗期中考練習7 2024

班級:	學號:	姓名:	成績:
-)	-1 ADG-	/ L /L	// · X ·

1. The input signal rising/falling time is 0.5ns. The output loading of A=B, A>B, and A<B are all 0.5pf. Please design the comparator by using pseudo-nMOS with the same rising time and falling time as 1ns. (0.95ns $< T_{00}$, T_{01} , T_{10} , $T_{11} < 1.05$ ns) (You can only tune the size of transistor. Altering the circuit architecture is not allowed.)

(Function Validation: 30%, 0.8ns < Delay < 1.2ns: 30%, 0.9ns < Delay < 1.1ns: 10%, 0.95ns < Delay < 1.05ns: 10%)

輸	入			
a	b	a < b	a = b	a > b
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

表 1 一位元數位比較器真值表

圖 1 一位元數位比較器電路圖

Please write down your consideration during constructing function and sizing procedure.
(20%)

IC設計實驗期中考練習8 2024

班級:	學號:	姓名:	
	.1 A)O.	, <u>, , , , , , , , , , , , , , , , , , </u>	// 'A'

1. The input signal rising/falling time is 0.5ns. The output loading of A=B, A>B, and A<B are all 0.5pf. Please design the comparator by using dynamic CMOS logic with the same rising time and falling time as 1ns. (0.95ns $< T_{00}$, T_{01} , T_{10} , $T_{11} < 1.05$ ns) (You can only tune the size of transistor. Altering the circuit architecture is not allowed.)

(Function Validation: 30%, 0.8ns < Delay < 1.2ns: 30%, 0.9ns < Delay < 1.1ns: 10%, 0.95ns < Delay < 1.05ns: 10%)

輸	入			
a	b	a < b	a = b	a > b
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

表 1 一位元數位比較器真值表

圖 1 一位元數位比較器電路圖

Please write down your consideration during constructing function and sizing procedure.
(20%)

IC設計實驗期中考練習9 2024

班級:	學號:	姓名:	
	.1 A)O.	, <u>, , , , , , , , , , , , , , , , , , </u>	// 'A'

1. The input signal rising/falling time is 0.5ns. The output loading of A=B, A>B, and A<B are all 2pf. Please design the comparator by using pass-transistor with the same rising time and falling time as 1ns. (0.95ns $< T_{00}$, T_{01} , T_{10} , $T_{11} < 1.05$ ns) (You can only tune the size of transistor. Altering the circuit architecture is not allowed.)

(Function Validation: 30%, 0.8ns < Delay < 1.2ns: 30%, 0.9ns < Delay < 1.1ns: 10%, 0.95ns < Delay < 1.05ns: 10%)

輸	入			
a	b	a < b	a = b	a > b
0	0	0	1	0
0	1	1	0	0
1	0	0	0	1
1	1	0	1	0

表 1 一位元數位比較器真值表

圖 1 一位元數位比較器電路圖

Please write down your consideration during constructing function and sizing procedure.
(20%)

IC設計實驗期中考練習10 2024

班級: 學號: 姓名:	E級:			成績:	
-------------	-----	--	--	-----	--

3. The input signal rising/falling time is 0.5ns. The output loading is 2pf. Please design the circuit by using pass-transistor with the same rising time and falling time as 1ns. (0.95ns $< T_{00}, T_{01}, T_{10}, T_{11} < 1.05$ ns)

(Function Validation: 30%, 0.8ns < Delay < 1.2ns: 30%, 0.9ns < Delay < 1.1ns: 10%, 0.95ns < Delay < 1.05ns: 10%)

圖1 要求相關電路

4. Please write down your consideration during constructing function and sizing procedure. (20%)