Laboratório 2 - Programação inteira

Para cada um dos seguintes problemas formule como programa inteira (pura,0-1 ou misto), implementa o modelo em AMPL e resolve com GLPK. Começa formular e resolver o exercício 1, aplicando as técnicas para formular condições lógicas visto em aula. Depois resolve o problema de coloração de grafos 3 e o Sudoku 4.

Exercício 1 (Investimento, Formulação, fácil)

Uma empresa projetou quatro novos tipos de produtos e quer decidir quais deles e quantos de cada um ela vai produzir. A produção de cada tipo de produto gera um custo inicial e cada item produzido tem um lucro de venda conforme a tabela

Produto	1	2	3	4
Custo inicial [KR\$]	50	40	70	60
Lucro [R\$/item]	70	60	90	80

Além disso, o marketing definiu as seguintes restrições:

- A empresa pode produzir no máximo dois tipos de produtos.
- Os produtos de tipo 3 e 4 só podem ser produzidos se um tipo dos produtos 1 ou 2 for produzido.
- Para cada produto existe um mercado de no máximo 2000 items.

Formule um programa inteiro com o objetivo de maximizar o lucro total.

Exercício 2 (Coloração de grafos, Formulação, média)

Implemente a formulação do problema de coloração de grafos em AMPL. Qual o menor número de cores para colorir o seguinte grafo?

Exercício 3 (Sudoku, Formulação, média)

Um Sudoku é um tabuleiro de 3×3 quadros maiores, cada um subdividido em mais 3×3 quadros menores. Todo quadro menor tem que ser preenchido com um número entre 1 e 9 tal que

- (i) Todo quadro maior contém cada número somente uma única vez.
- (ii) Toda linha e coluna contém cada número somente uma única vez.

Um exemplo de um Sudoku corretamente preenchido é:

9	1	3	4	6	2	7	8	5
7	6	2	1	8	5	9	3	4
4	5	8	9	7	3	2	6	1
3	4	1	5	2	7	8	9	6
6	2	3	8	9	1	3	4	7
8	7	9	3	4	6	1	5	2
1	8	6	7	5	9	4	2	3
2	3	4	6	1	8	5	7	9
5	9	7	2	3	4	6	1	8

Formule um programa inteiro, que resolve Sudokus. Aplica o solver para resolver

							1	
					2			3
			4					
						5		
4		1	6					
		7	1					
	5					2		
				8			4	
	3		9	1				

Dica: Usa variáveis booleanas $x_{i,j,k}$ que indicam que o quadro i,j está ocupado com o número k.

Exercício 4 (Caixeiro viajante)

Estuda o problema da caixeiro viajante, usando os dados de 58 cidades do Brasil em

http://www.inf.ufrgs.br/~mrpritt/brazil58.dat

- (a) Implemente o PCV sem eliminação de subtours em AMPL e compara o valor obtido com a solução ótima 25395.
- (b) Implemente a eliminação de subtours para conjuntos de uma, duas e três cidades. Compare a tempo de execução e a solução obtida.

Exercício 5 (Ponder this, Formulação, difícil)

Resolve o problema em

Observação: O primeiro que encontra a solução ótima para n=7 recebe um prêmio!