

Clever Codes

2 December 2024

Prof. Dr. Sebastian Wild

Learning Outcomes

Unit 8: *Clever Codes*

- 1. Know the principles and performance characteristics of *arithmetic coding*.
- **2.** Judge the use of arithmetic coding in applications.
- **3.** Understand the context of *error-prone communication*.
- **4.** Understand concepts of *error-detecting codes* and *error-correcting codes*.
- **5.** Know and understand *Hamming codes*, in particular (7,4) Hamming code.
- **6.** Reason about the *suitability of a code* for an application.

Outline

8 Clever Codes

- 8.1 Arithmetic Coding
- 8.2 Error Correcting Codes
- 8.3 Coding Theory
- 8.4 Hamming Codes

8.1 Arithmetic Coding

8.2 Error Correcting Codes

Noisy Communication

- most forms of communication are "noisy"
 - humans: acoustic noise, unclear pronunciation, misunderstanding, foreign languages
- ► How do humans cope with that?
 - ▶ slow down and/or speak up
 - ask to repeat if necessary

► But how is it possible (for us) to decode a message in the presence of noise & errors?

Because it semes taht nearrul lanaguge has a lots fo **redundancy** bilt itno it!

- → We can
- **1. detect errors** "This sentence has aao pi dgsdho gioasghds."
- **2. correct** (some) **errors** "Tiny errs ar corrrected automaticly." (sometimes too eagerly as in the Chinese Whispers / Telephone)

Noisy Channels

- computers: copper cables & electromagnetic interference
- transmit a binary string
- but occasionally bits can "flip"
- → want a robust code

- ▶ We can aim at
 - 1. error detection
- → can request a re-transmit
- 2. error correction
- → avoid re-transmit for common types of errors
- ▶ This will require *redundancy*: sending *more* bits than plain message
 - → goal: robust code with lowest redundancy

that's the opposite of compression!

8.3 Coding Theory

Block codes

- ▶ model:
 - ▶ want to send message $S \in \{0, 1\}^*$ (bitstream) across a (communication) channel
 - ▶ any bit transmitted through the channel might *flip* $(0 \rightarrow 1 \text{ resp. } 1 \rightarrow 0)$ **no other errors** occur (no bits lost, duplicated, inserted, etc.)
 - ▶ instead of *S*, we send *encoded bitstream* $C \in \{0, 1\}^*$ sender *encodes S* to *C*, receiver *decodes C* to *S* (hopefully)
 - → what errors can be detected and/or corrected?
- ▶ all codes discussed here are *block codes*
 - ▶ divide *S* into *messages* $m \in \{0, 1\}^k$ of *k* bits each $(k = message \ length)$
 - encode each message (separately) as $C(m) \in \{0, 1\}^n$ $(n = block \ length, \ n \ge k)$
 - → can analyze everything block-wise
- ▶ between 0 and n bits might be flipped invalid code
 - how many flipped bits can we definitely detect?
 - how many flipped bits can we correct without retransmit?

i.e. decoding *m* still possible

Code distance

$$m \neq m' \implies C(m) \neq C(m')$$

- each block code is an *injective* function $C: \{0,1\}^k \to \{0,1\}^n$
- ▶ define \mathcal{C} = set of all codewords = $C(\{0, 1\}^k)$
- Arr $\mathcal{C} \subseteq \{0,1\}^n$ $|\mathcal{C}| = 2^k \text{ out of } 2^n \text{ } n\text{-bit strings are valid codewords}$
- decoding = finding closest valid codeword
- ► distance of code:

 $d = \text{minimal Hamming distance of any two codewords} = \min_{x,y \in \mathcal{C}} d_H(x,y)$

Implications for codes

- **1.** Need distance d to **detect** all errors flipping up to d-1 bits.
- **2.** Need distance *d* to **correct** all errors flipping up to $\lfloor \frac{d-1}{2} \rfloor$ bits.

Lower Bounds

► Main advantage of concept of code distance: can *prove* lower bounds on block length

otherwise no such code exists

Given block length n, message length k, code distance d, we must have:

- ► Singleton bound: $2^k \le 2^{n-(d-1)} \rightsquigarrow n \ge k+d-1$
 - ▶ *proof sketch:* We have 2^k codeswords with distance d after deleting the first d-1 bits, all are still distinct but there are only $2^{n-(d-1)}$ such shorter bitstrings.
- ► Hamming bound: $2^k \le \frac{2^n}{\sum_{f=0}^{\lfloor (d-1)/2 \rfloor} \binom{n}{f}}$
 - ▶ proof idea: consider "balls" of bitstrings around codewords count bitstrings with Hamming-distance $\leq t = \lfloor (d-1)/2 \rfloor$ correcting t errors means all these balls are disjoint so 2^k · ball size $\leq 2^n$
- → We will come back to these.

8.4 Hamming Codes

Parity Bit

▶ simplest possible error-detecting code: add a parity bit

- ► can detect any single-bit error (actually, any odd number of flipped bits)
- ▶ used in many hardware (communication) protocols
 - PCI buses, serial buses
 - caches
 - early forms of main memory
- very simple and cheap
- cannot correct any errors

Error-correcting codes

any downtime is expensive!

- typical application: heavy-duty server RAM
 - bits can randomly flip (e.g., by cosmic rays)
 - individually very unlikely, but in always-on server with lots of RAM, it happens!

https://blogs.oracle.com/linux/attack-of-the-cosmic-rays-v2

Can we correct a bit error without knowing where it occurred? How?

- ► Yes! store every bit *three times!*
 - ▶ upon read, do majority vote
 - ▶ if only one bit flipped, the other two (correct) will still win

You want WHAT!?!

instead of 200% (!)

Can do it with 11% extra memory!

How to locate errors?

- ► **Idea**: Use several parity bits
 - each covers a subset of bits
 - ▶ clever subsets → violated/valid parity bit pattern narrows down error
 - flipped bit can be one of the parity bits!
- ► Consider n = 7 bits $B_1, ..., B_7$ with the following constraints:

Observe:

- No error (all 7 bits correct) \rightarrow $C = C_2C_1C_0 = 000_2 = 0$
- ▶ What happens if (exactly) 1 bit, say B_i flips?

 $C_j = 1$ iff *j*th bit in binary representation of *i* is $1 \rightarrow C$ encodes **position of error!**

(7, 4) Hamming Code

► How can we turn this into a code?

- ▶ B_4 , B_2 and B_1 occur only in one constraint each \leadsto **define** them based on rest!
- ► (7,4) *Hamming Code* Encoding
 - **1. Given:** message $D_3D_2D_1D_0$ of length k=4
 - **2.** copy $D_3D_2D_1D_0$ to $B_7B_6B_5B_3$
 - **3.** compute $P_2P_1P_0 = B_4B_2B_1$ so that C = 0
 - **4.** send $D_3D_2D_1P_2D_0P_1P_0$

(7, 4) Hamming Code – Decoding

- ► (7,4) *Hamming Code* Decoding
 - **1. Given:** block $B_7B_6B_5B_4B_3B_2B_1$ of length n = 7
 - **2.** compute *C* (as above)
 - 3. if C = 0 no (detectable) error occurred otherwise, flip B_C (the Cth bit was twisted)
 - **4.** return 4-bit message $B_7B_6B_5B_3$

(7, 4) Hamming Code – Properties

► Hamming bound:

- ▶ 2⁴ valid 7-bit codewords (on per message)
- ▶ any of the 7 single-bit errors corrected towards valid codeword
- → each codeword covers 8 of all possible 7-bit strings
- ► $2^4 \cdot 2^3 = 2^7$ \longrightarrow exactly cover space of 7-bit strings
- ightharpoonup distance d = 3
- can *correct* any 1-bit error
- ► How about 2-bit errors?
 - ▶ We can *detect* that *something* went wrong.
 - ▶ **But:** above decoder mistakes it for a (different!) 1-bit error and "corrects" that
 - ► Variant: store one additional parity bit for entire block
 - → Can *detect* any 2-bit error, but *not correct* it.

Hamming Codes – General recipe

- construction can be generalized:
 - Start with $n = 2^{\ell} 1$ bits for $\ell \in \mathbb{N}$ (we had $\ell = 3$)
 - use the ℓ bits whose index is a power of 2 as parity bits
 - ▶ the other $n \ell$ are data bits
- ► Choosing $\ell = 7$ we can encode entire word of memory (64 bit) with 11% overhead (using only 64 out of the 120 possible data bits)
- simple and efficient coding / decoding
- fairly space-efficient

Outlook

- ▶ Indeed: $(2^{\ell}-1, 2^{\ell}-\ell-1)$ Hamming Code is "perfect" code

= matches Hamming lower bound

- ▶ if message length is $2^{\ell} \ell 1$ for $\ell \in \mathbb{N}_{\geq 2}$ i. e., one of 1, 4, 11, 26, 57, 120, 247, 502, 1013, . . .
- ▶ and we want to correct 1-bit errors
- ▶ For other scenarios, finding good codes is an active research area
 - ▶ information theory predicts that *almost all* randomly chosen codes are good(!)
 - but these are inefficient to decode