Problem Set 3 O FES, + 4HCl > 2HS+ FeCl4 HS+NB + HO2 -> NAJSO4+ H2 NHJSQ + 2Hel -> 12504+2NHZQ 1+2501 + Bacl2 -> Bas24+2Hel 20351 g Restly = 8,720 mml sty > 4,360 mml. Fest 4.360 mm) x 413.87 = 0.5226g > [77.40%] (4) Egust Volumes $Cu = \frac{(.001)(.005)}{.002(21-1)} = 1.25 \times 10^{4} \text{ or } \frac{(1)(5)}{2(21-1)} = 0.125 \text{ mM}$ 5) Cun = C10 mM) (0.001L) = 2.44mM (011L) (1.282) - (000L) (10mm) (1ml) (1,282)-10ml)= 2.44

K+ grans 0.02759 Kmles 0.7033 imm8 XMM K25094 K2 504 mles . 3517 mmo) 5.3517 mma > 2.964 mmn tobal 3.316 mmo? W/X 265.5 ×100= 27.2%

Problem 6 (best Pt. Deletal)

METHOD looks for the smallest square of variation of the dependent variable (Yi) from the predicted fitted function $Y=Mx_i+b$

DROP LAST POINT SINCE IT IS ON PLATEAU

$\mathbf{x_i}$	y _i
1.00	0.08
2.00	0.161
5.00	0.368
10.00	0.735
20.00	1.448

				135.5 ppm
N=	5			0.1 L
У	y, -y	(y ₁ -y) ²		
0.084119403	-0.00412	1.697E-05		1.355
0.1559801	0.00502	2.520E-05	•	2.71
0.371562189	-0.00356	1.269E-05		6.775
0.730865672	0.004134	1.709E-05		13.55
1.449472637	-0.00147	2.169E-06		27.1
		7.412E-05	$\Sigma (y_i - y)^2$	

Σχ 38.0000	$D=n^*\Sigma x^2-[\Sigma x]^2$
Σγ 2.7920 $Σ$ γ ² 2.8047	$\mathbf{m} = \{\mathbf{n} \; \Sigma \mathbf{x} \mathbf{y} - \Sigma \mathbf{x} \; \Sigma \mathbf{y}\} / \mathbf{D}$
Σx^2 530.0000 Σxy 38.5520	$b = \{ \Sigma x^2 \Sigma y - \Sigma xy \} / D$

SLOPE m= 0.07186 INTERCEPT b= 0.01226

STANDARD DEVIATIONS

$S_{v} = \sum_{i=1}^{n} (y_{i-v})^{2}/(n-2)$ 0.00497	Signal Detection Limit = γ _{blank} + 3S _y	0.0149
$S_m = S_v^* \{ n/[n \Sigma x^2 - (\Sigma x)^2] \}^{1/2}$ 0.00032	Detection Limit = $3 S_{y/m}$	0.2075
$S_h = S_* \{ \sum x^2 / [n \sum x^2 - (\sum x)^2] \}^{1/2}$ 0.0033		

CORRELATION COEFFICEIENT

$S_{xx} = \Sigma x^2 - (\Sigma x)^2 / n$ 241,2000 R= $S_{xy} / Sqrt(S_{xx}S_{yy}) =$	0.99	997
$S_{W} = \Sigma y^2 - (\Sigma y)^2 / n$ 1.2456 $R^2 = 1$	0.999	94
$S_{xy} = \sum xy - \sum x \sum y / n$ 17.3328		