Process Management

- Scheduling Policies-I -

Recall: Basics and Criteria

First Come First Serve (FCFS)

- Schedule process that requested execution first
 - Oldest process in the ready queue
 - Manage ready queue using a first-in, first-out policy.
 - When CPU idle, scheduler selects head of line (HOL)
 - Once scheduled, process is removed from the queue, next one become HOL.
 - New process added to queue tail

FCFS Example

<u>Process</u>	<u>Arrival Time</u>	Burst Time
P_1	-3	24
\overline{P}_2	3	3
P_3	9	3

The Gantt Chart for the schedule is:

Process	Waiting Time
P_1	0 - (-3) = 3 ms
P_2	24 - 3 = 21 ms
P_3	27 - 9 = 18 ms
Average	14 ms

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

$$P_2$$
, P_3 , P_1

• The Gantt chart for the schedule is:

- Waiting time for P1 = 6; P2 = 0; P3 = 3
- Average waiting time: (6 + 0 + 3)/3 = 3
- Much better than previous case
- Convoy effect short process behind long process
 - Consider one CPU-bound and many I/O-bound processes
 - Is there a convoy effect in the above Gantt chart?

FCFP Pros and Cons

• Pros:

- Simple and easy to implement
- Fair every process will eventually run as long as CPU is not blocked by a process

• Cons:

- Waiting time depends on arrival order
- Short process stuck waiting for longer process convoy effect
- No differentiation between processes
- Nonpreemptive

Shortest Job First (SJF)

- Schedule process with shortest burst time first
 - Associate with each process the length of its next CPU burst?
 - Use these lengths to schedule the process with the shortest time
 - Waiting-time optimal, but poor on turnaround and response times
- Example (nonpreemptive SJF):

<u>Process</u>	Arrival Time	Burst Time
P_1	-4	6
P_2	-3	8
P_3	-2	7
$P_{{\scriptscriptstyle\mathcal A}}$	-1	3

- Average waiting time FCFS = (4 + 9 + 16 + 22)/4 = 12.75 ms
- Average waiting time SJF = (1 + 7 + 11 + 19) / 4 = 9.5 ms

Predicting Burst Times

Predicting?

- Knowing exact burst times is impossible, must be predicted
- Typically, should have some correlation with previous bursts
- Exponential average based prediction:
 - τ_n : Predicted value for *n*-th burst
 - t_n = Actual time of n-th burst
 - $\tau_{n+1} = \alpha . t_n + (1 \alpha) . \tau_n$
 - α must be in [0,1], typically = $\frac{1}{2}$

Preemptive SJF

- Shortest Remaining Time First (SRTF)
 - Stop current process and schedule new one if burst time for latter shorter than remaining time former.
 - Now we add the concepts of varying arrival times and preemption to the analysis considering four processes and the length of CPU burst in milliseconds (msec).

<u>Process</u>	<u>Arrival Time</u>	Burst Time	
P_1	0	8	
P_2	1	4	
P_3	2	9	
P_{4}	3	5	

Waiting Time in SRTF

- Waiting time = Start time of last executed segment –
 Arrival time Scheduled time of all prior segments
- Example

Process	<u> Arrival Time</u>	Burst Time		$\mathbf{M}_{\mathbf{r}}$: $\mathbf{G}_{\mathbf{r}}$: \mathbf{G}
P_1	0	8	•	Waiting time $(P_1) = 10 - 0 - 1 = 9 \text{ ms}$
P_2	1	4	•	Waiting time $(P_2) = 1 - 1 - 0 = 0$ ms
P_3	2	9	•	Waiting time $(P_3) = 17 - 2 - 0 = 15 \text{ ms}$
P_4	3	5	•	Waiting time $(P_4) = 5 - 3 - 0 = 2 \text{ ms}$
P_3	2	-		

• Average waiting time = (9+0+15+2)/4 = 26/4 = 6.5 ms

Round Robin (RR)

- FCFS with preemption to enable time sharing
 - Defines a time quantum/slice (10 100 ms)
 - Circular operation
 - Process bursts sequentially get up to 1 slice
 - First burst get another slice after slice of last one expires, and so on
- Implementable in a circular FIFO queue
 - Timer interrupts every quantum to schedule next process
 - Interrupt occurs = context switching, current process sent to tail
 - A terminating process releases CPU for next process
- Pros: Fast response time
- Con: Long waiting and turnaround times

Example

The process will complete at Round 5

Process	Waiting Time	Turnaround Time	Response Time
P_1	31 - 0 - 12 = 19 ms	33 - 0 = 33 ms	0 - 0 = 0 ms
P_2	?	?	4 - 1 = 3 ms
P_3	?	?	16 - 9 = 7 ms
Average	?	?	3.33 ms

RR Facts and Considerations

- N bursts in ready queue, t_s ms per slice
 - Each burst gets $\leq 1/N$ of the time
 - No burst waits more than $(N-1) \times t_s$ without executing
 - Response time ≤ $(N-1) \times t_s$
- t_s must be carefully selected
 - $-t_s \gg \Rightarrow FCFS$
 - $-t_s \ll \Rightarrow$ Too many context switching \Rightarrow Low CPU utilization
 - $-t_s \ll \Rightarrow$ Typically higher average turnaround and waiting times

80% of CPU burst times $\leq t_s$

Time Quantum and Context Switch Time

Assume, a process is of 10 time unit:

- If q = 12 time unit, process finishes in 1 time q, no context switch
- If q = 6 time unit, process finishes in 2 time q, 1 context switch
- If q = 1 time unit, process finishes in 10 time q, 9 context switch