AD A 089416

MANUFACTURING METHODS AND TECHNOLOGY (MANTECH) PROGRAM

TECHNICAL LIBRARY

SERVICE LIFE DETERMINATION FOR THE UH-60A (BLACKHAWK) HELICOPTER ELASTOMERIC BEARINGS

Seymour A. Hatch
CR Industries
Mechanical Products Division
Engineering Facilities
2517 Pan Am Boulevard
Elk Grove Village, IL 60007

April 1980

FINAL REPORT

Contract No. DAAG46-78-C-0029

Approved for public release; distribution unlimited

United States Army
AVIATION RESEARCH AND DEVELOPMENT COMMAND

```
2
         OF
                 2
       AD NUMBER: A089416
  1
                                       TAV
 48 -
       SBI SITE HOLDING SYMBOL:
       FIELDS AND GROUPS: 1/3.1, 11/10, 13/9
  2 -
                                 UNCLASSIFIED
       ENTRY CLASSIFICATION:
  3 --
       CORPORATE AUTHOR: CR INDUSTRIES ELK GROVE VILLAGE IL MECHANICAL
  5 -
       PRODUCTS DIV
                                 SERVICE LIFE DETERMINATION FOR THE UH-60A
       UNCLASSIFIED TITLE:
  6 ....
        (BLACKHAWK) HELICOPTER ELASTOMETRIC BEARINGS.
                                 UNCLASSIFIED
        TITLE CLASSIFICATION:
  8 ---
        DESCRIPTIVE NOTE: FINAL REPT.,
  9 ---
        PERSONAL AUTHORS: HATCH, SEYMOUR A.;
--10 -
                                 , 1980
       REPORT DATE:
                           APR
--11 -
                                                                    AC
                               MEDIA COST:
                                             $ 11.00 PRICE CODE:
                        246P
--12 -
        PAGINATION:
       CONTRACT NUMBER:
                           DAAG46-78-C-0029
--15 -
        MONITOR ACRONYM:
                           USAAVRADCOM, AMMRC
--18 --
                           TR-80-F-8, TR-80-24
--19 -
        MONITOR SERIES:
        REPORT CLASSIFICATION:
                                 UNCLASSIFIED
--20 --
                                 REPORT ON MANUFACTURING METHODS AND
        SUPPLEMENTARY NOTE:
--21 -
        TECHNOLOGY (MANTECH) PROGRAM.
                           *MANUFACTURING, *TECHNOLOGY TRANSFER,
--23 -
        DESCRIPTORS:
        *METHODOLOGY, *BEARINGS, *ELASTOMERS, FATIGUE(MECHANICS),
           <<P FOR NEXT PAGE>> OR <<ENTER NEXT COMMAND>>
                                                *MSG RECEIVED*
                                                                               Poll
                           (Ctrl)H For Help
1a ROW=24 COL= 01
```

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents,

Mention of any trade names or manufacturers in this report shall not be construed as advertising nor as an official indorsement or approval of such products or companies by the United States Government.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed.

Do not return it to the originator.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
AVRADCOM-80-F-8		
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
SERVICE LIFE DETERMINATIO	N FOR THE	Final Report
UH-60A (BLACKHAWK) HELICO		
ELASTOMERIC BEARINGS		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)
		o. contract on Grant Number(s)
Seymour A. Hatch		DAAG-46-78-C-0029
9. PERFORMING ORGANIZATION NAME AND ADDRES	S	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
CR Industries Mechanical Products Divis	ion	D/A Project: 1757095
2515-2517 Pan Am Blvd.		AMCMS Code: 1498.94.587095
Elk Grove Village, IL 60		Agency Accession: (YYS)
11. CONTROLLING OFFICE NAME AND ADDREUS		12. REPORT DATE
Army Aviation Research &	Devalorment	April, 1980
St. Louis, MO 63166	Command	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II differe		15. SECURITY CLASS. (of this report)
Army Materials & Mechanic	Center	Unclassified
Watertown, MA 02131		15a. DECLASSIFICATION/DOWNGRADING
		N/A
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; dis		
17. DISTRIBUTION STATEMENT (of the abstract entere	d in Block 20, if different fro	m Report)
18. SUPPLEMENTARY NOTES		
AMMRC TR 80-24		
AMMRC TR 80-24		
19. KEY WORDS (Continue on reverse side if necessary	and identify by block number))
UH-60A Helicopter Ela	stomers	Predictions
	ring	Blackhawk
	e expectancy	Finite Element
20. ABSTRACT (Continue on reverse side if necessary a	nd Identify by block number)	
The contract with AMMRC can of predicting the service neral with specific reference bearings. One object of between a bearing that has its remaining service life objective is to develop as	alls for devel life of elast ence to the Bl this study is sustained so e based on its	omeric bearings in ge- ackhawk main rotor to develop a correlation me endurance damage and appearance. The second
objective is to develop at	п апатустсат с	apability to predict the

DD 1 FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Block No. 20

ABSTRACT

service life of bearings without the necessity for testing.

An endurance rating for an appropriate elastomer is determined by testing a series of 13 test specimens. The test specimen and the Blackhawk main rotor bearings are analysed by finite element methods. A procedure is developed for relating the complex strain history of the Blackhawk bearings to the endurance data so that a life prediction can be made for the main rotor bearings without testing. The main rotor bearings are then tested and experimental and analytical results compared.

FOREWARD

This project was accomplished as part of the U. S. Army Aviation Research and Development Command Manufacturing Technology program. The primary objective of this program is to develop, on a timely basis, manufacturing processes, techniques, and equipment for use in production of Army Material. Comments are solicited on the potential utilization of the information contained herein as applied to present and/or future production programs. Such comments should be sent to: U. S. Army Aviation Research and Development Command, ATTN: DRSAV-EXT, P. O. Box 209, St. Louis, MO 63166.

The work described in this report was accomplished under a contract let and monitored by the U. S. Army Materials and Mechanics Research Center (DAAG46-78-C-0029).

PREFACE

The author is grateful for the contributions of the following individuals:

- Dr. Barnard Halpin -- Coordination of this

 project for the Army Material and Mechanics

 Research Center.
- J.P. Morley -- Coordination of this project for CR Industries.
- E.M. Skroch -- Supervision and reporting of test work.
- T.G. Mueller -- Material recommendations, testing and reporting.
- S. Rengarajan -- Finite element modeling, data reduction and general assistance.
- Mrs. Olga Kriz -- Typing this report.

INDEX OF REPORT SECTIONS

SECTI	ION TITLE	PAGE
	FORWARD	3
	PREFACE	5
1.	OUTLINE OF OBJECTIVES	9
2.	METHODOLOGY OF FINITE ELEMENT ANALYSIS AT CR INDUSTIES	27
3.	ANALYSIS OF ENDURANCE STRAINS	47
4.	ANALYSIS OF THE AMMRC FATIGUE SPECIMEN	71
5.	EXPERIMENTAL DATA ON AMMRC ENDURANCE SPECIMEN	97
6.	ANALYSIS OF THE BLACKHAWK MAIN ROTOR THRUST BEARING	.113
7.	ANALYSIS OF THE SHELL STRESSES IN AN ALTERNATE BLACKHAWK MAIN ROTOR THRUST BEARING	.145
8.	ANALYSIS OF THE BLACKHAWK MAIN ROTOR SPHERICAL BEARING	.171
9.	TEST RESULTS ON THE BLACKHAWK MAIN ROTOR BEARINGS	. 225
10.	TEST RESULTS ON THE BLACKHAWK MAIN ROTOR SPHERICAL BEARING WITH ON-OFF CENTRIFUGAL FORCE AS THE ONLY LOADING MODE	.241
11.	TEST RESULTS ON THE ALTERNATE BLACKHAWK MAIN ROTOR THRUST BEARING WITH ON-OFF CENTRIFUGAL FORCE AS THE ONLY LOADING MODE	. 253
12.	SUMMARY AND CONCLUSIONS	. 269

SECTION 1.
OUTLINE OF OBJECTIVES

OUTLINE OF OBJECTIVES

The main rotor elastomeric bearings used on the Blackhawk model helicopter are flight critical hardware. It is imperative that their service life be predictable and well known. Correctly applied elastomeric bearings should degrade gradually and give some visual indication of their remaining life. Blackhawk main rotor bearings are to be replaced on an "on condition basis". It is, therefore, important to be able to correlate the appearance of a bearing with its remaining service life.

Under this contract two sets of Blackhawk main rotor bearings (see Figs. 1, 2 & 3) will be endurance tested to Sikorsky Aircraft's load and motion specification S.E.S. 701059 Rev. 4. Fig. 4, 5 & 6 show the proposed blocks of endurance testing that will be used. During the test the free heights, spring rates and photographic appearance of the bearings will be recorded. The unaccelerated test will be run for the equivalent of 1500 hrs. of helicopter flight or until a red line value is reached for any of the above. Fig. 7

& 8 are basic line drawings of the existing test rigs that will be used for this testing. Photographs of these rigs are shown in Fig. 9 & 10.

Because of the high cost of running full scale endurance tests, it is very desirable that a method be developed for predicting the service life of these bearings and all military elastomeric bearings in general. The most reliable tool that we have at this point for making these predictions is a complete analysis of the strain in the elastomeric bearings by finite element analysis (F.E.A.) followed by a correlation of the resulting strain histories to basic endurance data. Because of the complexity of these bearings, it is usually found that some modeling compromises must be made in order that the problem can be handled on even the largest available computers. Our experience on the other hand, shows that these compromises must be intelligently made, for the results of F.E.A. are no better than the model from which they are generated.

In order to get this project started on a firm basis, a relatively simple endurance test specimen will be designed. The simplicity of this specimen will allow a F.E.A. to be performed with a fine grid mesh with relatively few modeling compromises. This model will be used first to study modeling compromises that can be made so that good results can be

obtained from a relatively coarse mesh model. This skill will be needed later to model the full scale Blackhawk elastomeric bearings for F.E.A. Next, thirteen endurance test specimens will be fabricated and tested for "first damage" according to the tentative test plan in Fig. 11. An endurance life rule will be generated for the elastomer from the data from these tests. A F.E.A. will be made for the full scale Blackhawk main rotor elastomeric bearings and the strain history in the full scale endurance test bearings generated. In generating this strain history it will at first be assumed that strains can be combined as time-space vectors and that "first damage" can be predicted by Miner's Rule for accumulated damage. basic elastomer endurance life data previously generated will be used to predict the main rotor E.B. "first damage" This "first damage" point will be correlated with full scale testing.

Elastomeric bearings are in general three-dimensional bodies loaded in three-dimensional space. Because of computational limitations it is usually necessary to apply a finite element program that was written to analyze axisymmetric objects of revolution that are loaded either axisymmetrically or by simple rotational loading rules such as a sine loading rule, but not both. These restrictions are not a severe handicap in the

case of the thrust bearing and its loading system (see Fig. 3). For the spherical bearing (see Fig. 2) it will not be possible to include a complete loading system in any one computer solution. The elastomer strains from several runs that form a complete loading case must be combined as time-space vectors. This technique yields useful results in the case of elastomer strains, but can not be used to find the maximum shell stress in the spherical bearing. This maximum stress has been found experimentally with strain gages to occur when the combined centrifugal force (C.F.) and cocking rotation (lead-lag or flap) is applied to the bearing.

The two principal modes of failure of elastomeric bearings are elastomer endurance degradation and metal fatigue. The major effort in this project will be directed towards predicting elastomer damage. The endurance test on full scale bearings will, however, yield valuable endurance data on metal shells. To show the usefulness of F.E.A. in predicting metal fatigue in some types of elastomeric bearings a special fatigue test will be run on a thrust bearing that can be completely analyzed.

BLACKHAWK MAIN ROTOR BEARINGS LAYOUT

FIG. 1

	-																	
PERPENDICULAR LOAD (POUNDS)	±Vn	1,196	•						-								-	1,196
PERPENI LOAD (P	Λn	1,026	i		· · · ·													1,026
AXIAL LOAD	Tc	68,000 LBS.									_						-	68,000
ANGLE	∓θz	6.490	•		*		-											6.49
-	θz	-5,72°															•	-5.72
[±3]	±θy	1,50	-				-,											1,5
HUNT	θу	0)	-								<u> </u>		-		-	-	> 0
FLAP	∓⊖x	5.00	4.5	4.0	3,65	3,5	3.4	3.3	3.15	2.97	2.9	2.72	2.59	2.5	1.4	1.44	1.3	1.2
CONE	$\Theta \mathbf{x}$	-4,32°	•															-4:32
TIME HRS.	HR. BLÖCK	1.50	3.8	17.9	13.1	3.0	2.4	9.2	9.1	9.4	14.4	2.1	2.5	5.6	2.4	1.2	3.0	2.9
S.E.S. CONDITION NO.	(S.E.S.Rev.4 of 4-4-74)	10	1, 30, 50 & 57	9, 28, 29, 51 & 58	8, 27, 33	38 & 40	20 & 26	19, 21 & 39	8 T	25, 34 & 37	7, 17, 31 & 35	16 & 22	2, 24 & 36	6, 11, 12, 15 & 23	13 & 14	3	3.2	4 & 5

Total hrs. per hr. block 98.92

Cycling Frequency: 263 CPM. Phasing: $\pm \theta y$ & $\pm \theta x$ & $\pm Vn$ both out of phase with θz by 90^{o} θz & $\pm \theta z$ in phase, $\pm \theta x$ between the thrust and spherical bearings according to their relative spring rates.

FIG. 4

Fig.

2

,188 3,128 2,989 2,870 2,770 ,188 2,334 2,176 2,503 2,335 1,980 2,177 1,979 1,891 ±Vη PERPENDICULA LOAD (POUNDS) 1,608 1,608 1,598 1,579 1,470 1,354 1,500 1,431 1,373 1,540 1,431 1,334 1,315 1,37 Vn LOAD LBS 68,000 68,000 AXIAL 14.40 12.5 11.5 9.5 ANGLE 10.5 8.0 14.4 7.5 12.6 10.9 10.0 5 ±θz 13, 00 6 PITCH 3.600 4.60 3.70 3.90 4.10 .25 4.40 4.55 4.70 3.60 3.85 4.15 4.45 4.30 θZ 1.50 ANGLE +θ Α 2 90 HUNT 6 2.7 2.4 2.1 1.8 0.8 0.4 0.9 9.0 7.0 7 θу 2 2 0 12.00 $\begin{array}{c} FLAP\\ANGLE\\\pm\theta x\end{array}$ 11.0 10.0 0. 0. 7.0 0. 5.5 5.0 7.0 0.9 5.0 0. 5. 5. 6 ∞ 9 œ -3.180 -3.18 -2.69 -2.09 0.55 1.33 0.55 . 45 -1.46 1.11 1.34 2.11 CONE ANGLE Ox -0.86 2.0 7 CYCLES @ 258 RPM/100 HR: 1.5 1.5 \sim 36 340 1,548 1,703 4,644 9 17 29 433 1,858 6,037 S.E.S.
CONDITION NO.
S.E.S.Rev.40f4-41 42 43 7 7 45 9 7 47 48 6 5 52 53 54 55 56

II

TEST BLOCK

ENDURANCE LIFE

E.B.

ROTOR

BLACKHAWK MAIN

BLACKHAWK MAIN ROTOR E.B. ENDURANCE LIFE TEST BLOCK III

CONDITION	CYCLES/	CONE	FLAP	HUNT	ANGLE	PITCH A	NGLE(1)	FLAP HUNT ANGLE PITCH ANGLE (1) AXIAL LOAD (LBS.) LOAD	(LBS.)	PERPENDICULAR LOAD (POUNDS)	ENDICULAR (POUNDS)
(S.E.S.Rev.4 of 4-4-74)100 HR.	4)100 HR.	нисть Өх	+0x	θу	±8y	θг	∓ θ z	Tc	±Τc	Λn	u∧∓
Start/Stop (2)	300	-8.50	0	0	±100	±100 11.50	0	1,300	0	0	0 1,000
On/Off Centrifugal	200	0	0	0	0	0 11.5	0	34,000 34,000	34,000	0	0
Control Check	400	-8.5	0	0	0	-3.5	24.5	0 -3.5 24.5 1,300	0	0 4,025	0
Rotor Overspeed	100	0	0	0		0 11.5 0	0	41,000 41,000	41,000	0	0

Cycling Frequencies: Will be between 1 & 10 CPM.

 θz & $\pm \theta z$ proportioned between the thrust and spherical bearings according to their relative spring rates. 1)

 δ 2) $\pm \theta$ y & $\pm Tc$ in phase for Start/Stop test.

FIG. 7 BLADE RETENTION BEARING FATIGUE TEST STAND

SPHERICAL BEARING TEST RIG. FIGURE 9

THRUST BEARING TEST RIG. FIGURE 10

TENTATIVE ENDURANCE SPECIMEN TEST PLAN

Test No.	Hours
1	0
1	2
2	3
3	5
4	10
5	20
6	30
7	50
8	100
9	200
10	300
11	500
1 2	1000
13	1500
	3720

NOTE: Loads for the first test will be estimates based on the results of the F.E.A. of this part. Loads for subsequent test will be chosen to obtain a good distribution of data.

Fig. 11.

SECTION 2. METHODOLOGY OF FINITE ELEMENT

ANALYSIS AT CR INDUSTRIES

This section will cover the mechanics of utilizing finite element analysis that are currently employed by CR Industries. The essential basis for our finite element program is Texgap controlled by E. B. Becker and R. S. Dunham at the University of Texas (see enclosed cover sheet for the program manual in Figure 1). The library elements used for our work are solid two-dimensional ring elements with the third displacement handled by one of the following rules; plane stress, plane strain, axial symmetry with no tangential displacement, axial symmetry with tangential displacement and axial symmetry with tangential displacement following a sinusoidal distribution.

In order to have a meaningful solution with the above program, loading conditions must be restricted to those that are compatible with the chosen third dimension displacement condition. Plane strain and plane stress problems are normally well known. With the tangential displacement set to zero problems with axisymmetrical models and loading conditions are handled. Constant tangential displacement handles axial torsion on an axisymmetrical model. Sinusoidal tangential displacements are used to handle lateral loading cases and non-axial twisting or rotation on an axisymmetrical model. Unfortunately the complete set of boundary conditions chosen for each problem case must be

totally compatible with the displacement restriction used-combination types of loadings are not allowed in a single
program run.

The most useful element for laminated elastomeric bearing work is the "Quad", which is a four node quadratic displacement solid ring element that can handle Poisson's ratio as close to ½ as desired. Also useful at times, is the "Tri" ring element, which is a three node quadratic displacement solid element that also allows Poisson's ratio to approach or equal ½. Other elements available are "Quad 8", "Liner", "Case" and "Crack".

The program has a good mesh generator for developing two-dimensional nodal points in both rectangular and polar co-ordinates. For some comlex problems, however, it has been found desirable to supplement the programs mesh generation with a pre-processing mesh generation program that feeds the main program. The program has a nice looping feature that aids in establishing connectivity, element assignment, material deployment and establishing boundary conditions. These features expedite the generation of the two-dimensional model that is needed for each problem solved by this finite element program. This model is supplied to the main program as an input data program.

The computation work for our finite element analysis is done on our IBM 370 computer located at Elgin, Illinois.

The operating system accepts card image programs supplied by a remote Tektronix 4051 terminal located at Elk Grove Village, Illinois. See Figure 2 for a sample input program. In processing a job the main computer pulls from storage a binary copy of the finite element program and produces a line printer file and a graphics data file. Both files are accessible at Elk Grove Village.

Finite element data is retained through line printing done at Elgin and graphics data plotted at Elk Grove Village. See Figure 3 for a sample element model plot. A sample of the output stress and strain, as line printed, is shown in Figure 4. The maximum and minimum stress and strains are calculated for each material. A sample of this summary is shown in Figure 5. Because of the tedium of reading 75 pages of computer line print, it is normal practice to plot the pertinent strain value from the line output with the graphics terminal. See Figure 6 for a sample strain plot.

Interreactive graphics can be used at CR Industries for model preparation. The part to be analysed is first drawn on the Tektronix 4051 CRT and into a data base by a CAD (Computer Aided Design) program (see Fig. 7 & 8). Auxililiary element model construction lines are added and the pertinent coordinate points are queried (see Fig. 9) for use in the input data program. After the input data program is assembled, it can

be read by our off-line preview program and a preview model generated (see Fig. 10, 11, 12 & 13). This debugging aid can save a considerable amount of mainframe time.

The following CR Industries capabilities result in a powerful elastomer bearing analysis tool:

- A) A finite element program with solid elements for use with elastomeric material which have Poisson's ratios that approach ½.
- B) Large main-frame computational capability.
- C) Direct data input to a remote terminal.
- D) Graphics output both to a CRT and hardcopy.
- E) Interactive graphics input during model preparation.
- F) Off-line verification of both the input data program and the element model.
- G) Personnel skilled in modeling finite element problems and interpreting the resulting output.

TEXGAP-THE TEXAS GRAIN ANALYSIS PROGRAM

by R. S. Dunham and E. B. Becker

TICOM REPORT 73-1

Final Report
to the
United Technology Company
Sunnyvale, California
and
Air Force Rocket Propulsion Lab
Edwards, California

THE TEXAS INSTITUTE for COMPUTATIONAL MECHANICS

THE UNIVERSITY OF TEXAS AT AUSTIN

August, 1973

FIG. 1

34

â

MODEL

-1 -1 -1

-	AU G	_	α	2	ELEM	MAX IMU4	ū	7	ELEN	MUMINIM
	RADIAL	IL STRESS	1.500	0.575	1	-0.1415329D 04	2.000	0.575	80	-0.1232979D 05
	AXIAL	. STPESS	1.500	0.575	^	-0.1464780D 04	2.000	0.575	•	-0.1237981D 05
	H30P	STRESS	1.500	0.575	^	-0.1460910D 04	2.000	0.575	٢	-0.123668BD 05
	TAURZ	STRESS	1.750	0.530	E	0.3278019D 03	1.750	0.620	11	-0.3322344D 03
	TAURO		2.000	0.635	12	0.0	2.000	0.635	12	0.0
	TAUZO	STRESS	2.000	0.635	12	0.0	2.000	0.635	12	0.0
	X A X	STRESS	1.500	0.575	^	-0.1415322D 04	2.000	0.575	c o	-0.12329790 05
	Z F	STRESS	1.500	0.575	^	-0.1464796D 04	2.000	0.575	80	-0.12379810 05
	X X	SHFAR	1.750	0.620	1.1	0.33242660 03	1.500	0.515	E	0.2448620D 02
	RADIAL	L STRAIN	2.500	0.635	12	0. R260673D=01	1.750	0.500	m	0.52356670-04
	AXIAL	STRAIN	1.500	0.635	11	-0.16973010-01	2.250	0.620	12	-0.54340870-01
	H30P	STRAIN	2.500	0.575	00	0.78418790-02	1.500	0.635	11	-0-1160334D-01
	GAMRZ	STRAIN	1.750	0.530	m	C.1156948D 01	1.750	0.620	::	-0.1172592D 01
	SAMRO	STRAIN	2.000	0.635	12	0.0	2.000	0.535	12	0.0
	GAMZO		2.000	0.635	12	0.0	2.000	0.535	12	0.0
	×	STFAIN	1.750	0.620	11	0.5669476D 00	2.000	0.515	•	0.65576560-01
	Z	STRAIN	1.500	0.515	E)	-6.1732509D-01	2.250	0.650	12	-0.6066723D 00
	X A X	SHEAR	1.750	0.620	11	0.11732700 01	1.500	0.515	ю	0.8642186D-01
0	AU S	QUANTI TY	α	7	ELEM	MAX INUM	Œ	7	ELEM	MINIMOM
	RADIAL	RADIAL STRESS	2.000	0.545	ď	0.1250740D 05	2.500	0.605	10	0.14355600 04
	AXIAL	STRESS	1.500	0.545	ĸ	-0.15274460 04	2.000	0.545	ø	-0.1236281D 05
	HOOD	STRESS	2.250	0.620	10	0.73231770 04	1.750	065.0	o	0.5846440 04
	TAURZ	STRESS	1.750	069 • 0	o•	0.33336680 03	1.750	0.560	S	-0.3300834D 03
	TA URO	STRESS	2.000	0.605	0.	0.0	2.000	0.605	10	0.0
	TAUZD	STRESS	2.000	0.605	10	0.0	2.000	0.605	10	0.0
	X X	STRESS	2.000	0.545	S	0.1250742D 05	2.500	0.545	•0	0-14357330 04
	2 ¥	STRESS	1.500	0.545	r.	-0.1527556D 04	2.000	0.545	vo	-0+1236284D 05
	* A X	SHEAF	2.000	0.545	พ	0.1243512D 05	2.500	0.545	ø	0.15857670 04
	RADIAL	STEAIN	2.000	909.0	Φ	0.4751131D-03	2.500	0.545	•0	-0.4326231D-05
	AXIAL	STRAIN	1.500	909.0	o	-0.13211240-03	2.000	0.545	ø	-0.60403460-03
	H00P	STRAIN	2.250	0.560	40	0.24594590-03	1.750	0.590	o	0.19584070-03
	GAMRZ	STRAIN	1.750	0.590	6	C.2889179D-04	1.750	0.560	ın	-0.2860723D-04
	GAMRO	STFAIN	2.000	9.605	10	0.0	2.000	0.605	0.1	0.0
	GA # 20	STFAIN	2.000	0.605	10	0.0	2.000	0.505	0 7	0.0
	¥ ¥	STEAIN	2.000	909.0	6	0.4751153D-03	2.500	0.545	٠	-0.4321377D-05
	Z ¥	STRAIN	1.500	0.605	٥	-0.1321370D-03	2.000	0.545	v	-0.6040355D-03
	×	SHEAR	2.000	0.545	S	0.1077711D-02	2.500	0.545	9	0.1374332D-03

FIG. 11

43

BLOW UP OF FIG. 10

FIG. 12

44

3LOW UP OF FIG. 10 FIG. 13

SECTION 3.
ANALYSIS OF ENDURANCE STRAINS

The previous section covered the use of the finite element method to determine stresses and strains within a laminated elastomeric bearing. It was explained how each loading case must be compatible with the tangential displacement specified for a single problem run. The result is that when all the individual loading cases shown in the S.E.S. Specification (see Section 1.) are analyzed, the analyst is left with a number of states of stress or strain at each location in the bearing. The task covered by this section is how to use this data to predict the life of the bearing.

The following discussion will show a method for determining the life of an elastomer when subject to a spectrum of non-random loading cases. For each loading case a finite element analysis will, in general, produce several shear strain resultants with similar and/or different geometric and time phase angles. The principal of superposition will be used to allow these resultants to be combined. The usual restriction on superposition of a linear stress-strain relationship, loading that is independent of deformation, etc., of course apply here. Fortunately for the elastomer in a laminated elastomeric bearing these conditions are usually met.

In October, 1968, C.H. Fagan, Senior R & D Engineer, Bell Helicopter, Fort Worth, Texas, published in the American Helicopter Society Periodical, a 5th power relationship

for the endurance life of natural rubber (see Figure 1).

(Note, in this report γ will be used to represent the actual shear strain.) In order to find the combined effect of independent loading cases, Miner's Rule will be used. See Appendix I for the specialized case of using Miner's Rule on materials that have a 5th power endurance life relationship. Effective values for the pertinent parameters from the Blackhawk load and motion spectrum (S.E.S.) were calculated and are given in Figure 2.

The analysis of the state of stress and strain for an elastomer is very different from what it would be for most common engineering materials. The strains are usually so large that the analytical basis for small strain analysis is unjustifiable. For relatively incompressible elastomeric materials (Poisson's ratio close to ½) conventional normal stress-strain relationships do not hold up. Shear stress, however, is still directly related to shear strain even for strains that would in other material be past the yield point. When converting from a strain analysis to a stress analysis a troublesome hydrostatic pressure term must be found. In the case of thin elastomer and metal laminates this hydrostatic pressure term can be large. Normally a vibratory hydrostatic stress in-and-of itself does not result in fatigue damage in an elastomeric part. It has been found that some of the best correlations between experimental and analytical results for elastomers have been based on shear strain (see Figure 1).

One of the problems that an analyst faces in analyzing complex elastomeric bearings is that the state of strain is seldom one-dimensional but, usually two- or three-dimensional. The reason that this poses such a large problem for the analyst is that two- and three-dimensional shear failure theories do not exist for elastomers. The analyst is, therefore, sometimes more interested in finding an "effective" one-dimensional state of strain than he is in obtaining a complete two- or three-dimensional solution to a problem.

It would be thought that the best way to combine states of strain for a superposition solution to a problem would be a tensor addition (See Appendix II). At this point in time, however, this is not necessarily the case. The lack of a two- or three-dimensional endurance failure theory makes it difficult to use tensor results to predict the endurance life of elastomeric parts. Classical solutions to elastomeric bearing problems are normally given in terms of a maximum shear strain and superpositions is made by vector methods. It is easier to visualize the interaction of individual states of strains by looking at their maximum shear strains rather than their tensors.

Shear strains are often combined by vector methods. Shear strains are normally identified by the plane around whose normal line they act. For the case of combining shear strains with coincident normal lines the reader is referred to classical two-dimensional strain analysis for a discussion of Mohr's cirlce which looks like a "double angle vector". This technique will not be needed for this study. For the case of combining shear strains with noncoincident normal lines, see Figure 3 for the mathematics of combining time dependent vectors. Appendix II shows that for certain important cases the behavior of the strain tensor is the same as a conventional vector.

Normally an analytical analysis of elastomer degradation in an elastomeric bearing is valid only until endurance damage has resulted. After endurance damage the original model used in the analysis is no longer valid. The degradation of the elastomer in an elastomeric bearing has been found to be progressive and noncatastrophic. Actual bearing life is characteristically several times the calculated and observed life to first damage.

It might be thought that because of the larger amount of data that is available on metal fatigue, that the analysis of the endurance life of the metal shells would be less difficult.

Determining the stress in the shell of the Blackhawk main

rotor thrust bearing is relatively straight forward but the resulting endurance "S-N" is usually at the low cycle end of the endurance curve making a precise life prediction very difficult. For the Blackhawk main rotor spherical bearing the maximum shell stress results from a combined loading case that has a shifting loading vector. This prevents the use of superposition and a full three-dimensional finite element analysis would be needed.

Fig. 1.

EFFECTIVE MAGNITUDES AND PHASE ANGLES FOR THE S.E.S. SPECTRUM

Note 1: The first 5 @ 258 cycles per second

Note 2: The first 5 effective magnitudes

were obtained from the S.E.S. with

the following formula from the Appendix I

$$\Theta_{e} = \sqrt{\frac{\sum_{i=1}^{m} N_{i} (\Theta_{i})^{5}}{\sum_{i=1}^{m} N_{i}}}$$

FIG. 2.

COMBINATION OF TIME DEPENDENT VECTORS

$$V_1(t) = ||V_1|| SIN\omega t$$

$$V_2(t) = ||V_2||SIN(\omega t + \theta)$$

Where $| \ | \ V \ | \ |$ is the maximum value of the vector V.

$$V_{R}(t) = \pm \sqrt{\left[\left| \left| V_{1} \right| \left| SIN\omega t \right|^{2} + \left[\left| \left| V_{2} \right| \left| SIN(\omega t + \theta) \right|^{2} \right] \right]} + 2 \left| \left| V_{1} \right| \left| * \left| \left| V_{2} \right| \left| SIN\omega t \right| SIN(\omega t + \theta) \cos \beta \right]$$

PHASE ANGLE θ	VECTOR ANGLE β	MAXIMUM MAGNITUDE
0	0	V 1 + V 2
0	± 90°	
± 90°	0	
± 90°	± 90°	Greater of V
0	180°	
180°	0	V ₂ - V ₁

^{*}It is customary in elastomeric strain analysis to also consider the Miner's Rule effect of the smaller vector.

A P P E N D I X I

PROCEDURE FOR CALCULATING THE ENDURANCE

LIFE OF ELASTOMERS

The following procedure is intended for materials that follow the fifth power life rule (see the body of this report). It is specialized to incorporate Miner's rule for the accumulated latent damage that results from a spectrum of loading conditions.

The fifth power life rule is

$$N = \left(\frac{12.5}{\gamma}\right)^5$$

Where:

 γ = Is the shear strain.

N -- Is the life in cycles.

Miner's rule states that apparent damage occurs when

$$\sum_{i=1}^{m} \frac{N_{i}}{N_{f}} = 1$$

Where:

N $_{\rm i}$ -- Is the number of cycles at the i'th loading case.

 ${\rm N}_{\rm f}$ -- Is the number of cycles to apparent damage at

the i'th load.

n -- Is the total number of loading cases in the loading spectrum.

The life of an elastomeric part to first apparent damage then is

Life (hours) =
$$\frac{1}{\sum_{i=1}^{m} \frac{N_i}{(\frac{12.5}{\gamma_i})^5}}$$

Life =
$$\frac{(12.5)^5}{\sum_{i=1}^{m} N_i (\gamma_i)^5}$$

Where:

 N_i -- Is now the number of loading cycles per hour for the i'th case.

To simplify calculations when a spectrum of strain conditions is given, a single strain can be found that is equivalent to the spectrum in that it will produce a damage equivalent to the spectrum when applied for the same total number of cycles. This equivalent value may be found as follows:

$$\gamma_{e} = \sqrt{\frac{\sum_{i=1}^{m} N_{i} (\gamma_{i})^{5}}{\sum_{i=1}^{m} N_{i}}}$$

Where:

 γ_{e} -- Is effective strain magnitude.

Obviously for materials with a linear stress-strain relationship an equivalent value may be found by this procedure for any load or motion that is specified by a spectrum of conditions.

APPENDIX II

COMBINATION OF STRAINS BY THE STRAIN TENSOR METHOD

The three - dimensional strain tensor is

$$\begin{bmatrix} \varepsilon \\ x & \frac{1}{2}\gamma \\ xy & \varepsilon \\ y & \frac{1}{2}\gamma \\ xz & \frac{1}{2}\gamma \\ xz & \varepsilon \end{bmatrix}$$

where ϵ_x , ϵ_y & ϵ_z are the normal strains along the X, Y & Z axes respectively

and $\gamma_{xy},~\gamma_{yz}$ & γ_{xz} are the shear strains acting on X-Y, Y-Z, X-Z planes respectively.

In order to solve for the principal strains and maximum shear strains the following eigenmatrix is used;

$$\begin{bmatrix}
(\varepsilon_{x} - P) & \frac{1}{2}\gamma_{xy} & \frac{1}{2}\gamma_{xz} \\
\frac{1}{2}\gamma_{xy} & (\varepsilon_{y} - P) & \frac{1}{2}\gamma_{yz} \\
\frac{1}{2}\gamma_{xz} & \frac{1}{2}\gamma_{yz} & (\varepsilon_{z} - P)
\end{bmatrix} = 0$$

where P is a principal strain.

This matrix equation results in the following cubic equation in terms of strain invarients;

$$\begin{array}{lll} P^3 - I_1 P^2 + I_2 P - I_3 &= 0 \\ \\ \text{where } I_1 &= (\varepsilon_{\mathbf{x}} + \varepsilon_{\mathbf{y}} + \varepsilon_{\mathbf{z}}) \\ \\ I_2 &= (\varepsilon_{\mathbf{x}} \varepsilon_{\mathbf{y}} + \varepsilon_{\mathbf{y}} \varepsilon_{\mathbf{z}} + \varepsilon_{\mathbf{z}} \varepsilon_{\mathbf{x}}) - \frac{1}{4} (\gamma_{\mathbf{x}\mathbf{y}}^2 + \gamma_{\mathbf{y}\mathbf{z}}^2 + \gamma_{\mathbf{x}\mathbf{z}}^2) \\ \\ I_3 &= \varepsilon_{\mathbf{x}} \varepsilon_{\mathbf{y}} \varepsilon_{\mathbf{z}} + \frac{1}{4} (\gamma_{\mathbf{x}\mathbf{y}} \gamma_{\mathbf{y}\mathbf{z}} \gamma_{\mathbf{x}\mathbf{z}} - \varepsilon_{\mathbf{x}} \gamma_{\mathbf{y}\mathbf{z}}^2 - \varepsilon_{\mathbf{y}} \gamma_{\mathbf{x}\mathbf{z}}^2 - \varepsilon_{\mathbf{z}} \gamma_{\mathbf{x}\mathbf{y}}^2) \end{array}$$

The maximum shear strains are

$$\gamma_1 = ABS(P_1 - P_2); \quad \gamma_2 = ABS(P_2 - P_3); \quad \gamma_3 = ABS(P_3 - P_1)$$

where P, P & P are the principal strains (roots of the cubic).

A computer program in Basic to solve these equations is shown in Figure 1. Figure 2. shows some interesting maximum shear strain results for monoplanar, biplanar and triplanar states of shear.

NOTE: The 2nd, 4th, 5th and 6th examples have a maximum shear strain resulting from a biplanar state of shear strain that is equal to the vector combination of the shear strains. The 3rd example shows that this result can not be expanded to the triplanar case.

As an example the maximum shear strain will be calculated for the fourth layer of the spearical bearing at the I.D. for 6 and 12 o'clock positions.

The flap strain tensor is

$$\begin{bmatrix}
.03400 & -.03205 & -.03518 \\
-.03205 & -.03988 & -.05858 \\
-.03518 & -.05858 & 0
\end{bmatrix}$$

The vibratory in-plane strain tensor is

The vibratory out-of-plane strain tensor is

The combined strain tensor is

$$= \begin{bmatrix} .1217 & .1390 & -.1317 \\ .1390 & -.0870 & -.2163 \\ -.1317 & -.2163 & 0 \end{bmatrix}$$

The principal strains and maximum shear strains resulting from this strain tensor is calculated in Figure 3.

Great care must be excercised with regard to the choice of signs of the tensors since an incorrect sign will completely alter the boundary conditions of the problem.

At this point we must take a large and as of yet unjustified step in using the triplanar maximum as the uniplanar value. The maximum strain of .38001 shown in Figure 3 (triplanar) compares to .379 obtained by vector combination of these states of strain as shown below:

The two-dimensional maximum shear strain from the above tensors are,

Y flap =
$$\sqrt{(.03400 - (-.03988))^2 + (-.03205)^2}$$
 = .0803
Y vibratory in - plane
= $\sqrt{(-1.314 - 1.343)^2 + (-1.358)^2}$ = 2.9839

$$^{\gamma}$$
 vibratory out-of-plane
= $\sqrt{(-.03417 - .03509)^2 + (-.03521)^2}$ = .07769

The resulting combined shear strain is

$$\gamma_{V1} = 3.58 * .0803 + 2.9839 \left(\frac{315}{68000}\right) + .07769$$

= .379

```
I3=-(X*Y*T+(T8*X8*Y8-X*X8+2-Y*Y8+2-T*T8+2)/4)
S=8.3
LIJPRINICPAL STRAIN DETERMINATIONJ"
ENTER EPSILON - X ";
                                                                                                                                                                                                                                            "PRINCIPAL STRAINS ",S,S1,S2 "MAXIMUM SHEAR STRAINS " ABS(S-S1), ABS(S1-S2), ABS(S2-S),
                                                                                                   I1=-(Y+X+T)
I2=X*Y+X*T+Y*T-(T012+X012+Y012)/4
                                                                    =
                                                                                                                                                                       IF ABS(R/(N*R1))>1.0E-12 THEN B=11+5
                                                                    XTHETA
                                                                                    YTHETA
                                     "ENTER EPSILON - THETA
                                                    * \X
                                                                                      1
                                                      1
                                                                      111
                                                                                                                                                                                                        458
                      "ENTER EPSILON
                                                                                                                                  R=((S+I1)*S+I2)*S+I3
R1=(3*S+2*I1)*S+I2
                                                                    "ENTER GAMMA
                                                                                   "ENTER GAMMA
                                                    "ENTER GAMMA
                                                                                                                                                                                                        THEN 398
                                                                                                                                                        ON SIZE THEN 338
S=S-R/R1
                                                                                                                                                                                                                              $1=-8/2-D
$2=-8/2+D
PRIHT "PRINCIPAL
                                                                                                                                                                                        IF D<-1, 0E-3
OH SIZE THEN
                                                                                                                                                                                                D=B#B/4-C
                                                                                                                                                                                                                        D=SQR(D)
PRINT
                                                                   PRIHT
                                                                            INPUT
                                                                                   PRINT
IMPUT
              INPUT
                      PRINT
                              INPUT
                                     PRIHT
                                             INPUT
                                                    PRIHT
                                                            INPUT
                                                                                                                                                                                                                                                      PRINT
                                                                                                                                                 HES H
396
```

FIG. 1

FIG. 1 (CONTINUED)

440 GO TO 110 450 PRINT "IMPOSSIBLE STATE OF STRAIN J" 460 GO TO 110 470 END

PRINICPAL STRAIN DETERMINATION

```
= 1.7320508
                                                                                                                                  = 1.41421356
                                                                                                                                                                                                                     က
                                                                                                                                                   0.707106781187
                                                                                                                                                                    0.707106781187
                                                                                                                  EXAMPLE
                                                                                                                                                                                                                     EXAMPLE
                            EXAMPLE
                                                                                                                                                                                                                                                             1.4999998283
                                                                                                                                                                                                                                 2+12+12
                                                                                                                                 \sqrt{1^2+1^2}
                                                                         8.5
                                                         0
                                                                                                                                              -8.588888817169
                                                                                                                                                                                                                                                            1.58888881717
                                                                                                                                YTHETA 0
                                                                                                                                                                                                                      XTHETA
YTHETA
                                                          HAXIMUM SHEAR STRAINS
0.5
                                                                                                           THETA
                                                                                                                                                                                                     THETA
                                                                                                                                                                                                                                    RINCIPAL STRAINS
-0,499999982831 -0,
HAXIMUM SHEAR STRAINS
3,433785587E-8 1.
                THEI
                                               PRINCIPAL STRAINS
                                                                                                                                          PRINCIPAL STRAINS
                                                                                         EPSILON
EPSILON
EPSILON
GAMMA ---
                                                                                                                                                                                    EPSILON
EPSILON
EPSILON
GAMMA ---
        LON
               EPSILON
GANNA --
                                GAMMA
                                       GAMMA
                                                                                                                          CAMMA
                                                                                                                                                                                                                      GAMMA
                                                                                                                                                                                                                             GAMMA
                                                                                                                                   GAMMA
                                                                                                                                                                                                                                     PRINCIPAL
                                                                                                                                                                                                                                                      MUNI XUN
                                                                                                                                                                                                    EHTER
EHTER
                                                                                                                                                                                    EHTER
EHTER
                                                                                                                                                                                                                             EHTER
ENTER
ENTER
               ENTER
ENTER
                                ENTER
                                       EHTER
                                                                                                                 ENTER
                                                                                                                                   ENTER
                                                                                                                                                                                                                     EHTER
                                                                                                 EHTER
                                                                                                          EHTER
                                                                                                                          ENTER
```

FIG. 2 (CONTINUED)

PRINICPAL STRAIN DETERMINATION

```
2.2360679
                                                                 1.11803398875
                                                                                    1.11803398875
                     EXAMPLE
                                     \sqrt{1^2 + 2^2}
                                                                -1.11893398875
                                                                                    2.2368679775
                                                                          MAXIMUM SHEAR STRAINS
1,11803398875 2.
                                                        STRAIMS
EPSILON
EPSILON
EPSILON
GAMMA --
                                     GAMMA
                                              GAMMA
                                                        PRINCIPAL
ENTER
ENTER
ENTER
ENTER
                                              ENTER
```

EPSILON

2.2360679 2.11883338875 2.2360679775 $\sqrt{1^2 + 2^2}$ EXAMPLE 1.11803398875 XY 1 XTHETA 2 YTHETA 8 PRINCIPAL STRAINS -6.11803398875 1 MAXIMUM SHEAR STRAINS 1.11803398875 EPSILON EPSILON GAMMA GAMMA GAMMA EN THE EN

= 1.41421356CXAMPLE THETA EPSILON EPSILON EPSILON LOH CANNA GAMMA GGMMG

EHTER

EHTER

EHTER

EHTER EHTER

EHTER

1.78710678119

1.41421356237

6.787186781187 PRINCIPAL STRAINS 6.292893218813 MAXINUM SHEAR STRAINS 6.707106781187 6.

PRINCIPAL STRAIN DETERMINATION

	9 0.0376062727086	0.088378204042
X .09364 Y18408 THETA 0 XY14366 XTHETA12364 YTHETA20592 NS	-8.25483874945	60
PSILCON PSILCO	0.125984476751 0.125984476751 0x1808 SHFQR S	8.38801522621

FIG. 3

SECTION 4.

ANALYSIS OF THE AMMRC FATIGUE SPECIMEN

A fatigue specimen has been designed (see 80 6627 in Figure 1). It was designed with an undercut radius at the O.D. of the part that is intended to lower the strain at this critical location. This is normal design practice. The location of this radius is shown in the enlarged section of Fig. 1. Note, the spherical design of the elastomer will minimize the effects of equipment nonparallelism during endurance testing.

A fine mesh model for this specimen was generated and is shown in Figure 2. Note, this model has a small center hole (not obvious) that avoids a mathematical pole in the analysis and is eliminated by the boundary conditions applied to the model. A finite element analysis (F.E.A.) was completed on this model. For this analysis the model was loaded with a compressive force system equal to the half amplitude range to be applied during the fatigue tests. A listing of the input data program is included in Appendix I. The shear strain occurring along the bond line is shown in Figure 3. The location of this bond line strain is shown on the model in Figure 2 as line A-A. The strain along the undercut radius is shown in Figure 4. The location of this radius is shown again on the model in Figure 2 along Curve A-B-C.

Figure 5 is the second model of the fatigue test spec-

imen. This coarse model was set up with the thickness of the elastomer layer represented by a single element. The elastomer layer is divided so that each of seven elements have the same polar angle width. The bond line shear strain is shown in Figure 6. The program for this analysis is given in Appendix II.

The third model as shown in Figure 7 incorporates a small element at the outside edge to improve the resolution of strain at this critical position. The reasoning behind this procedure is that this finite element analysis program actually only calculates the state of strain at an integration point in the middle of each side. The aim is to get a reading from a "mid-side mode" near the edge of the part. The strain results for this model are given in Figure 8. The program is listed in Appendix III.

The conclusion of the coarse grid modelling study is as follows: The strain reducing effect of a radius undercut at the edge of the layer is missed and hence, elastomer strain results tend to be a little high (conservative). It is safest, especially when strain gradients are high, to incorporate a small element with a width about equal to its thickness at the edges of a layer. When this is done it is felt that a coarse grid model will consistantly give results that are slightly conservative.

FIG. 2

FIG. 7

A P P E N D I X I

```
1:# FATIGUE TEST SPECIMEN ANMRC MODEL 1

2:SETUP, 4, PRESCRIB, 25

3:RUBBER, 1, 600, .4995

4:SSTEEL, 2, 30E6, .3

5:END, MATERIAL

6:11, 12, 14, 1

7:01, 06346, .06946, 0

8:4.47466, 4.47466, 4.47466

9:3, 1, 4, 1

10.13891, .20833, .20833, .13891

11:4.47466, 4.47466, 4.47466, 4.47466

12:27, 1, 8, 1

14:4.47466, 4.47466, 4.47466, 4.47466

15:7, 1, 8, 1

16:37555, .40405, .37555

17:4.47466, 4.47466, 4.47466, 4.47466

19:4, 47466, 4.47466, 4.47466, 4.47466

22:48947, .51791, .51791, .48947

23:4, 47466, 4.47466, 4.47466, 4.47466

24:3, 1, 14, 1

25:4633, .57474, .57474, .5463, 4.47466

26:4.47466, 4.47466, 4.47466, 4.47466

30:17, 116, 1

22:47466, 4.47466, 4.47466, 4.47466

30:17, 116, 1

31:65984, 66816, 68816, 65984

32:4.47466, 4.47466, 4.47466, 4.47466

33:19, 1, 20, 1

34:7166, .74474, .74474, .71646
```

```
0
                                   37933
                                                       5253
5253
                                          689
0
                  5253
                             959
253
                                                 439
253
                                                                    000
                      831
253
                                                              SIM
       0
                                                              200
                                                                    400
 98
0
POLAR, 6
       POLAR
3.025
5.86
                             5.58
                                          4 10
                                                 40
                      4 M
                                                              95
                                                                     மும
                                                 4
                                                              ٠
•
                                          4
                                                       כט
                                                                     \boldsymbol{\omega}
               5253, 5.
                                                                     · 117
                       ·10
                                    ·10
                                           · 10
                                                  - שו
                                                        · 17
                                                               * ID
                             35053,
                                                52312,
                                   5253,
                                                       5253,
                      mm
                                          SM
                                                              12 M
                                                                     נאינט
                      2184
                                          4656
                                                              378
       -ION
                                                                     60 m
. N
       1, 1
255,
861,
                                                                    SO
                                                                    9
なできてきてきてきているとのなるなのなるなのなりなりなりなりなりなりのののなるものでするできるできるものできるようできょうできるなっているない。
```

```
193: .72368; .75224; .75224; .75224; .75253

194: 5.5253; 5.5253; 5.5253; 5.5253

195: 20, 13, 21, 13

196: .75224; .78078; .78078; .75224

197: 5.5253; 5.5253; 5.5253

198: 21, 11, 22, 12

199: .78077

111 21, 12, 22, 13

112: .78077; .8, .8, .78077

113: 4.96397; 4.9609; 5.5253; 5.5253

114: 21, 12, 23, 13

115: .7299; .8, .8, .77291

116: 4.47466, 4.47466, 4.91026, 4.91458

116: 4.77299; 8, .8, .77301

117: 21, 2, 23, 2

118: .7299; 8, .8, .77301

119: 4.91458, 4.91025, 4.91532, 4.91952

120: END

121: ILOOP, 20, 1

122: ILOOP, 20, 1

122: ILOOP, 20, 1

123: ILOOP, 20, 1

126: QUAD, 1, 1, 2

127: ILOOP, 2, 1, 1

128: JEND

129: ILOOP, 2, 1, 1

130: QUAD, 1, 21, 11

131: QUAD, 2, 21, 12

135: QUAD, 1, 21, 11

135: QUAD, 2, 22, 1

135: QUAD, 1, 21, 21
```

```
137: QUAD, 1,22,2
138: ILOOP, 22, 1
139: BC, UZ, 1,11,0
140: IEND
141: ILOOP, 21, 1
142: BC, PRESSURE, 1,12,3,2486.79
143: IEND
144: END, ELEMENTS
145: PLOT, ELEMENTS, -.25,4.25,1,5.75,10
146: AXISYM
```

A P P E N D I X II

CAMMRC> N

```
35: QUAD, 2, 1, 1
36: IEND
37: ILOOP, 7, 1
38: QUAD, 1, 1, 2
39: IEND
40: ILOOP, 7, 1
41: QUAD, 2, 1, 3
42: IEND
43: ILOOP, 7, 1
44: BC, UZ, 1, 1, 1, 0
45: IEND
46: ILOOP, 7, 1
47: BC, PRESSURE, 1, 3, 3, 2616
48: IEND
49: END, ELEMENTS
59: PLOT, ELEMENTS, -. 1, 4.25, .9, 5.75, 10
51: AXISYM
52: STOP
```

A P P E N D I X III

```
CAMMRC
 3
 1
SETUP, 4, PRESCRIB, 10
RUBBER, 1, 600, 4995
SSTEEL, 2, 30E6, 3
END, MATERIAL
```

```
35: 5. 5253, 5. 5253, 5. 5253, 5. 5253

36: 7, 4, 8, 4

37: .62756; .73146; .62756

38: 5. 5253; 5. 5253; 5. 5253

39: 8, 4, 9, 4

40: .73146; .78089; .78089; .73146

41: 5. 5253; 5. 5253; 5. 5253

42: END, GRID

43: ILUOP, 8, 1

44: QUAD, 2, 1, 1

45: IEND

45: IEND

49: ILUOP, 8, 1

50: QUAD, 2, 1, 3

51: IEND

52: ILUOP, 8, 1

53: BC, UZ, 1, 1, 1, 0

54: IEND

55: ILUOP, 8, 1

56: BC, PRESSURE, 1, 3, 3, 2616

57: IEND

56: BC, PRESSURE, 1, 3, 3, 2616

57: IEND

56: BC, PRESSURE, 1, 3, 3, 2616

57: IEND

58: END, ELEMENTS

59: PLOT, ELEMENTS

59: PLOT, ELEMENTS

59: PLOT, ELEMENTS

59: FLOP
```

SECTION 5.

EXPERIMENTAL DATA ON THE AMMRC ENDURANCE SPECIMEN

The report in Appendix I. of this section gives experimental results of endurance tests on thirteen AMMRC fatigue specimens (see Table 1 of the Appendix). The data is plotted in Fig. 1. The report gives the following fifth power curve fitted to the life (N) vs. load (L) data;

$$N = \left(\frac{29,500}{L}\right)^5$$

In the previous section we found a maximum shear strain of 1.8 for a load of 5000 lbs. on the coarse grid model, so that the shear strain is given by

$$\gamma = \frac{L}{2778}$$

Substituting we find the life to be

$$N = \left(\frac{10.6}{\gamma}\right)^5$$

Since this experimental endurance curve was obtained from an actual elastomeric bearing based on the materials, analytic and measuring techniques normally used in elastomeric bearings it should be specific to these conditions. It does, however, compare well with a published general relationship listed in Section 3 as

$$N = \left(\frac{12.5}{\gamma}\right)^5$$

A documentation of the criterion of first damage used on the AMMRC endurance specimen is given in Appendix II. Fig. 1 is a photomicrograph of the elastomer edge from the fatigue specimen before test. Fig. 2 is a photomicrograph of the same edge after test. Fig. 3 is a line drawing interpretation of the significance of these photos. Admittedly this criterion of first damage was stringent, but, when scaled up to elastomeric bearings the size of the Blackhawk main rotor bearings, it is felt that this criterion is consistant with that used for the larger bearings.

A P P E N D I X I

TEST REPORT

AMMRC Contract DAA-46-78-C-0029

September 27, 1979

Ъу

Emmet M. Skroch

Test Lab Manager

Test Report

Testing of the AMMRC Fatigue Specimens (CR 80 6627) has been completed. A total of 13 specimens were tested, until evidence of first damage was observed.

Compressive axial loading of the test parts was done using a sine wave forcing function at a cycling rate of 4.2 Hz. The minimum compressive axial load for each test specimen was established as 10% of the peak-to-peak cyclic loading.

Table I shows the loading spectrum that was used in testing the fatigue plugs. Figure 1 is a plot of the half amplitude cyclic loading vs. the cycles to first damage. All observation for first damage were made using a microscope with 15 x magnification. The solid line shown in Figure 1 is a 5th power curve derived from the empirical data. The line as shown in Figure 1 is not continuous. For cyclic loads of approximately 1700 lbs. and less a knee is evident. This knee is an indication of infinite fatigue life. The continuous portion of this curve can be described by the following equation:

$$N = \left(\frac{29,500}{L}\right)^5$$

CHICAGO RAWHIDE MANUFACTURING COMPANY

Page 2

In the above equations

N is the number of cycles

L is the half amplitude cyclic load

	L 0 A D (1bs)	CYCLES
٠		
1.	5050 ± 4200	1.75 x 10 ⁴
2.	4320 ± 3600	3.00 x 10 ⁴
3.	3900 ± 3250	5.69 x 10 ⁴
4.	3900 ± 3250	5.10 x 10 ⁴
5.	3660 ± 3050	7.00 x 10 ⁴
6.	3510 ± 2925	6.00 x 10 ⁴
7.	3120 ± 2600	1.50×10^{5}
8.	2925 ± 2438	4.20×10^{5}
9.	2640 ± 2200	4.70×10^{5}
10.	2400 ± 2000	9.00 x 10 ⁵
11.	2100 ± 1750	1.30×10^{6}
12.	2040 ± 1700	2.00×10^{6}
13.	1950 ± 1625	1.60 x 10 ⁷

TABLE I

A P P E N D I X II

FATIGUE SPECIMEN BEFORE TEST FIG. 1

FATIGUE SPECIMEN AFTER TEST FIG. 2

FATIGUE SPECIMEN ELASTOMER EDGE BEFORE TEST

FATIGUE SPECIMEN ELASTOMER EDGE AFTER TEST FIG. 3

SECTION 6.

ANALYSIS OF THE BLACKHAWK MAIN ROTOR THRUST BEARING

The subject covered in this section is an analysis of the elastomer strain and metal shell stress in the Blackhawk main rotor elastomeric thrust bearing (see Figure 1.) A prediction of the life of the thrust bearing will be given based on this data. As reference it is suggested that the Sections 2 and 3, covering finite element analysis and the use of strain data to predict the life of elastomeric parts, be reviewed. The analysis of this thrust bearing was straight forward and superposition was not required.

The first model for stress or strain at the I.D. of the thrust bearing is shown in Figure 2 and enlarged sections in Figures 3 and 4. Note, the small element at the I.D. allows "mid-side node" stress or strain values for a location close to the edge. The model for O.D. stress and strain is shown in Figure 5 and blow-ups in Figures 6 and 7. A listing of the programs are given in the Appendix.

The maximum stress in the A-70 C.P. titanium shells for a 68,000 pound C.F. load is shown in Figures 8 and 9 to be 70 ksi. With a 70 ksi yield point the stress in the shells after the first cycle may be considered to be 35 ± 35 ksi. The metal shells, therefore, are not expected to suffer endurance failure within the expected life of this bearing.

The elastomer strain for the 68,000 pound C.F. load is shown in Figures 10 and 11. The elastomer strain due to pitch change can be calculated directly from first principles. For a 1 degree rotation

$$\gamma = \frac{R\Theta}{t}$$

$$\gamma_{\text{I.D.}} = \frac{1.5 (1/180)}{(10*0.025+45*0.030)} = 0.0164$$

$$^{\gamma}$$
 O.D. = $\frac{2.55 (^{\$}/180)}{(10*0.025+45*0.030)} = 0.0278$

Where: γ is the shear strain

 Θ is the angle of rotation (in radians)

t is the total elastomer thickness

R is the radius

Note; the above may seem like an oversimplification, but is identical to the result obtained by an integral solution. The finite element backup solution is shown in Figure 12.

The spherical and the thrust bearing share the total blade pitch change.

Spring rate of the spherical bearing = 1000 in.-lb./degreeSpring rate of 80 9589 = 120 in.-lb./degree

$$\left(\frac{1000}{1000 + 120}\right)$$
 100 = 89.3% of the total pitch change for 80 9589.

The effective pitch change angle found from S.E.S. 701054

Rev. 4 by the method previously described (see Appendix of Section 3) is 6.54 degrees.

The following is a sample calcultaion of the life limiting combination of pitch change and centrifugal force strain calculated for the I.D. of the first layer (see the Appendix of Section 3);

γ =

$$\sqrt{\frac{258*60(6.54*0.893*0.0164)^{5} + \left(\frac{7.29}{2} * \frac{82000}{68000}\right)^{5} + 2*\left(\frac{7.29}{2}\right)^{5}}{258*60 + 1.0 + 2.0}}$$

 $\gamma = .717$

The life limiting strain at the I.D. is shown for all the layers in Figure 13. The results for a similar procedure for the O.D. is shown in Figure 14.

On the basis of this analysis, first damage is predicted at

Life =
$$\left(\frac{10.6}{.717}\right)^5 * \frac{1}{60*258}$$

= 46 hrs

The predicted location for this first damage is at the I.D. of the first layer next to the flanged end fitting (see Figures 13 and 14).

FIG. 2

FIG. 5

2/15/79

FIG. 14

A P P E N D I X

...

```
2. SETUP, 4, PRESCRIB, 18
3. RUBBER, 1, 600, 4995
3. TITANN, 2, 15E6, 3
4. TITANN, 2, 15E6, 3
5. FILDN, 4, 10E6, 33
7. END, HATERIAL
8. 1, 1, 3, 2, 2, 1, 2, 1
9. 1, 5, 1, 795, 1, 795, 1, 5
10. 0, 0, 41, 41
11. 4, 1, 5, 2
13. 0, 0, 2, 2
15. 1, 795, 1, 795, 1, 5
16. 0, 0, 41, 41
11. 4, 1, 5, 2
15. 1, 795, 1, 795, 1, 5
15. 1, 3, 3, 4, 2, 1, 2, 1
15. 1, 3, 3, 4, 2, 1, 2, 1
16. 0, 0, 2, 2
17. 1, 3, 3, 4, 2, 1, 2, 1
18. 1, 5, 1, 795, 1, 795, 1, 5
19. 435, 435, 470, 470
22. 2251, 225, 250, 2, 50
22. 2251, 255, 250, 2, 26
22. 2251, 2, 550, 2, 550, 2, 26
22. 2251, 2, 550, 2, 550, 2, 26
22. 2251, 2, 550, 2, 550, 2, 26
23. 2251, 2, 550, 2, 550, 2, 26
23. 2251, 2, 550, 2, 550, 2, 26
23. 2251, 2, 550, 2, 550, 2, 26
23. 2251, 2, 550, 2, 550, 2, 26
23. 2251, 2, 550, 2, 550, 2, 26
23. 2251, 2, 550, 2, 550, 2, 26
23. 2251, 2, 550, 2, 550, 2, 26
23. 2251, 2, 550, 2, 550, 2, 26
23. 2251, 2, 550, 2, 550, 2, 26
23. 2251, 2, 550, 2, 550, 2, 26
23. 2251, 2, 550, 2, 550, 2, 26
23. 2251, 2, 550, 2, 550, 2, 26
23. 2251, 2, 550, 2, 550, 2, 26
23. 2251, 2, 550, 2, 550, 2, 26
23. 2251, 2, 550, 2, 550, 2, 26
23. 2251, 2, 345, 380, 380
23. 2251
```

```
35:11.91.31.181.211
36:11.51.7951.1.7951.1.5
33: 41.91.7951.1.7951.1.5
33: 41.91.7951.1.7951.1.5
33: 2.261.2.5581.2.5581.2.261
42: 4851.4851.4481.448
42: 4851.4851.2.11
42: 4851.4851.2.11
43: 4851.4851.2.11
43: 4851.4851.2.11
44: 41.13, 12.12
45: 4651.6751.7181.2.1
46: 4651.7951.1.2.1
47: 4651.7951.1.2.1
48: 4651.7951.1.2.1
48: 4651.7951.1.2.1
48: 4651.7951.1.2.1
48: 4651.7951.1.2.1
58: 5251.7951.7951.2
58: 5251.7951.7951.2
58: 561.2.781.2.11
58: 561.2.781.2.11
58: 561.2.781.2.11
58: 561.2.782.2.261
68: 6651.2.7831.2.11
68: 5661.2.11.2.1
68: 5661.2.7951.1.2.1
68: 56651.2.5581.2.261
68: 56651.2.5581.2.261
```

```
69: 2. 261, 2. 550, 2. 550, 2. 261
70: 3. 29, 3. 29, 3. 325, 3. 325
71: 6, 67, 8, 68; .2, 1, 2, 1
72: 1. 5, 1, 795, 1. 795, 1. 2
73: 3. 56, 3. 56, 3. 595, 3. 595
74: 9, 67, 10, 68
75: 2. 261, 2. 550, 2. 550, 2. 261
76: 3. 35, 3. 35, 3. 385, 3. 385
77: 6, 69, 8, 70, .2, 1, 2, 1
78: 1. 5, 1, 795, 1. 795, 1. 5
80: 9, 69, 10, 70
81: 2. 261, 2. 550, 2. 550, 2. 261
82: 3. 41, 3. 41, 3. 445, 3. 445
82: 3. 41, 3. 41, 3. 445, 3. 445
82: 41, 5, 1, 795, 1. 5, 1
84: 1. 5, 1, 795, 1. 795, 1. 5
86: 9, 71, 10, 72
87: 2. 261, 2. 550, 2. 550, 2. 261
88: 3. 47, 3. 47, 3. 505, 3. 505
99: 1. 33, 1. 5, 1. 5, 1. 33
91: 3. 74, 3. 74, 4. 24, 4. 24
95: 9, 73, 10, 74
95: 9, 73, 10, 74
95: 9, 73, 10, 74
95: 9, 73, 10, 74
95: 9, 73, 10, 74
95: 9, 73, 10, 74
95: 9, 73, 10, 74
95: 9, 73, 10, 74
95: 9, 73, 10, 74
95: 11. 100P, 5, 1
100: 1END
```

```
QUAD, 2, 1,69,2,69,7,30,6,30
IEND
                                                                                                            ILOOP,4,1
BC,PRESSURE,6,73,3,5434
IEND
                                                                                                                      END, ELEMENTS
BC, SLOPE, 1
                                                                                                    QUAD, 3,5,
IEND
                                       QUAD, 1, 1
IEND
                        OUAD, 2
IEND
JEND
ILOOP,
                                                                           guap, 2
                                                                BUAD,
                                                                                                 ILOOP,
                                              IL00P,
                                                         JL00P
                                                                                          guad,
                                                                        IL 00P
                                                                                       ILOOP
                                                                               JEHD
JEHD
                                                                                              IEHD
```

```
AMMRC MODEL
SHELLS
STEPPED
                                                                     3,1,5,1,795,1,795,1,5

3,1,5,2,4,886,1,4,886,1

3,1,5,2,2

3,1,6,2

3,1,6,2

3,1,6,2

3,1,6,2

3,1,6,2

3,1,6,2

3,1,6,2

3,1,6,2

3,1,6,2

3,1,6,2

3,1,795,1,795,1,5

3,1,5,1,795,1,795,1,5

3,1,5,1,795,1,795,1,5

3,1,5,1,795,1,795,1,5

3,1,5,1,795,1,795,1,5

3,1,5,1,795,1,795,1,5

3,1,5,1,795,1,795,1,5

3,1,5,1,795,1,795,1,5

3,1,5,1,795,1,795,1,5
                                                                                                                                                                                                                                                                         5,1.5
. 598
[,4.886
358,2.2
        :SETUP, 4, PRESCRIB, 10
:RUBBER, 1, 600, 4995
:TITAHM, 2, 15E6, 3
:TITAHM, 3, 15E6, 3
:ALUMHM, 4, 10E6, 33
:END, MATERIAL
        SETUP, 4, P
RUBBER, 1,
TITAHM, 2,
TITAHM, 3,
                                                               1,1,2,2
を見ることできるともできてきならします。

ないないないないないない。

ないないないないないないないないないないないないないないない。

ないないないないないないないないないないないないないないないない。

ないないないないないないないないないないないないないないないない。
```

N

```
35:11,912,10

36:11.51,1795;1.795;1.5

37:.615;.615;.659;.650

39:2,261;2.559;2.550;2.261

40:.405;.405;.440;.440

41:11,11;2;12

42:1.5;1.795;1.70

44:3;11;5;12;4.886;1;4.886;1

45:2,261;2.550;2.550;2.261

45:2,261;2.550;2.550;2.261

48:1.5;1.795;1.77

48:1.5;1.795;1.77

48:1.5;1.795;1.77

58:3;13;5;14,4.886;1;4.886;1

51:2,261;2.550;2.550;2.261

52:1,14;2;7.6;2.4686;1;4.886;1

55:2,261;2.550;2.44;2.24

56:2,14;5;70;2.47;2.44

60:1.5;1.795;1.795;1.5

61:2,45;2.45;3.47;3.47

62:8;30;10;64;4.886;1;4.886;1

63:2,261;2.550;2.550;2.261

64:2,24;2.24;3.26;3.26

65:6;65;7,66

66:1.5;1.795;1.795;1.5

67:2,24;2.24;3.26;3.26

66:1.5;1.795;1.795;1.5
```

```
69:2.261,2.559,2.359,2.261
78:3.29,3.29,3.325,3.325
71:6,67,7,68
72:1.5,1.795,1.795,1.5
73:3.56,3.56,3.595,3.595
74:8,67,10,68,4.886,1,4.886,1
75:2.261,2.550,2.550,2.261
76:3.35,3.35,3.35,3.385,3.385
77:6,69,7,70
78:1.5,1.795,1.795,1.5
88:69,10,70
88:69,10,70
88:69,10,70
88:3.41,3.445,3.445
88:3.47,3.47,3.505,1.5
88:3.47,3.47,3.505,2.261
88:3.47,3.47,3.505,1.5
88:3.47,3.74,4.24
98:3.47,3.74,4.24
98:3.47,3.74,4.24
99:3.77,77
99:3.74,3.74,4.24
95:6,73,774
96:2.261,2.553,2.55,1.5
96:2.261,2.553,4.24
96:2.261,2.553,4.24
96:2.261,2.553,4.24
96:3.74,3.74,4.886,1,4.886,1
96:3.53,3.53,4.24,4.24
```

```
103 BC, SLOPE, 1, 1, 1

104 IEND

105 JLOOP, 33, 2

106 ILOOP, 4, 1

107 QUAD, 1, 1, 2

108 IEND

113 ILOOP, 4, 1

114 QUAD, 2, 1, 3

115 IEND

115 IEND

117 QUAD, 2, 1, 69, 2, 69, 7, 30, 6, 30

118 IEND

119 JLOOP, 4, 1

120 IEND

121 QUAD, 2, 1, 6

122 IEND

123 ILOOP, 4, 1

124 QUAD, 2, 6, 31

125 IEND

126 JEND

127 ILOOP, 4, 1

128 QUAD, 1, 6, 72

128 QUAD, 1, 6, 72

128 QUAD, 3, 5, 73

131 QUAD, 3, 5, 73

132 IEND

134 BC, PRESSURE, 6, 73, 3, 5434

135 IEND

135 IEND
```

SECTION 7.

ANALYSIS OF THE SHELL STRESSES IN AN ALTERNATE
BLACKHAWK MAIN ROTOR THRUST BEARING

The stress in the metal shells of an alternate Black-hawk main rotor thrust bearing (see SK4-80 9590 in Fig. 1) will be analyzed in this section. This analysis can be accomplished with a single finite element problem run without the use of superposition.

The analysis of this thrust bearing begins with the model shown in Figure 2. Even with the coarse modeling technique previously developed, computational limits on the number of available elements prevent a generous representation of the shell radii at the center of the shell where the peak stress occurs. This limitation also restricts the number of shells modeled to 35 -- the real bearing has 52. A small element (see the enlarged view in Figure 3.) is used to check the stress at the transition point in this model. Figure 4 shows the stress that results in this element for a 68,000 pound thrust load.

As a result of the nice plateau on the previous result, the number of shells was further reduced to 17 to study the effect of length on shell stress. The model is shown in Figure 5, a blowup in Figure 6 and the results in Figure 7. The model shown in Figure 8 again has 17 shells but, has a good representation of the center radius. The stress values are shown in Figure 9.

The similarity of Figure 7 and Figure 9 would indicate

that the crude radius representation is giving useful results. The increase in peak stress from Figure 7 to Figure 4, representing an increase from 17 to 35 shells, would suggest an estimate of 115 ksi for the peak stress in the real bearing with 52 shells. In the interest of weight reduction it is intended that the shells for the test bearing be made of A-70 C.P. Titanium. The stress results from the application of the C.F. load should be nonreversing and, hence, it is anticipated that the first loading cycle will locally yield the 70 ksi yield strength titanium so that the stress for subsequent cycles might be considered to be 12.5 + 57.5 ksi. Fatigue failure of this part is, therefore, predicted at a reasonably low number of cycles. In service the loading spectrum is somewhat more complicated but, the total number of cycles expected is less than 20,000.

FIG. 2

BLOW UP OF FIG. 2

151

A P P E N D I X I

```
31:6,73,7,74
32:2.425;2.55,2.425
33:2.63;2.63;3.25;3.25
34:END,GRID
35:ILOOP,6,1
36:QUAD,3,1,1,2
38:JLOOP,6,1
37:QUAD,3,1,1,4
41:JEND
42:QUAD,3,1,73,3,5434
41:JEND
44:ILOOP,6,1
45:BC,FRESSURE,1,73,3,5434
47:IEND
49:PLOT,ELEMENTS,1.25,-.25,2.8,3.56:31
```

A P P E N D I X II

```
35: ILOOP, 6, 1
36: QUAD, 3, 1, 1
37: QUAD, 3, 1, 1
37: QUAD, 1, 1, 2
38: JLOOP, 17, 2
39: QUAD, 2, 1, 3
40: QUAD, 1, 1, 4
41: JEND
42: QUAD, 3, 1, 37
42: QUAD, 3, 1, 37
42: QUAD, 3, 1, 37
42: QUAD, 5, 1
42: QUAD, 5, 1
42: QUAD, 6, 1
43: IEND
44: ILOOP, 6, 1
45: BC, SLOPE, 1, 1, 1
45: BC, SLOPE, 1, 1, 1
45: BC, PRESSURE, 1, 37, 3, 5434
47: IEND
48: END, ELEMENTS
49: PLOT, ELEMENTS
59: AXISYM
51: STOP
```

A P P E N D I X III

```
34:8,2,9,37
35:2,425,2.55,2.55,2.425
36:5,5,1.55,1.55
37:1,37;2,38
38:1,5,1.625,1.625,1.5
49:3,37;4,38
41:1,95,1.7927,2.17,2.17
43:5,37;5,38
44:2,025,2.025,2.025
45:1,7055,1.7055,2.17,2.17
45:1,7055,1.7055,2.17,2.17
46:6,37;5,38
47:2,0625,2.17,2.17,2.17
48:1,7055,1.694,2.17,2.17
59:2,425,2.55,2.17,2.17
51:1,55,1.55,2.17,2.17
51:1,55,1.37
52:00AD,3,1,1
54:00AD,3,1,1
55:00AD,1,1,2
56:10AP,2,1,37
61:1END
62:10AP,8,1
63:BC,50PE,1,1,1
```

SECTION 8,

ANALYSIS OF THE BLACKHAWK MAIN ROTOR SPHERICAL BEARING

The subject covered in this section is an analysis of the elastomer strain in the Blackhawk main rotor spherical elastomeric bearing (see Figure 1) and a prediction of the life of this bearing. It is suggested that the two sections, covering finite element analysis and determining the life of elastomeric parts based on strain, be reviewed.

The model for the spherical bearing is shown in Figure 2 and an enlargement in Figure 3. A listing of the input program is shown in Appendix I. In order to generate the nodal data for this program a mesh generator program was written in Basic language for our Tektronix 4051 mini-computer. This program is included in Appendix II.

The strain resulting from a 68,000 pound axial C.F. load is shown for the I.D. in Figure 4 and for the O.D. in Figure 5. At the 6 and 12 o'clock positions the strain for an out-of-plane load of 1,292 pounds is shown in Figure 6 for the I.D. and Figure 7 for the O.D.. For this load at the 3 and 9 o'clock positions the strain at the I.D. is shown in Figure 8 and for the O.D. in Figure 9. The strain at the 6 and 12 o'clock position for a 1 degree flapping cock is shown in Figure 10 for the I.D. and Figure 11 for the O.D. The 3 and 9 o'clock strains are shown in Figures 12 and 13.

The strain due to pitch change may be calculated directly from first principals. The relationships are derived in Appendix III and a Basic language computer program is listed in Appendix IV. The calculated I.D. strain for 1 degree of pitch change rotation is given in Figure 14. The finite element solution is shown in Figure 15. It can be seen that at the I.D. the agreement is very good. At the O.D. there is an approximate 10% difference. The O.D. finite element results are given in Figure 16. The spherical and the thrust bearing share the total pitch change motion.

Spring rate of the spherical bearing 1000 in-lbs./ degree.

Spring rate of the thrust bearing 120 in-lbs./degree.

$$\left(\frac{120}{1000 + 120}\right) 100 = 10.7\% \text{ of the pitch change for the spherical bearing.}$$

The following is a sample calculation of the life limiting strain for the 6 and 12 o'clock position on the I.D. of the fourth layer:

The vibratory strain vectors due to flap $(\underline{+}\ \Theta_{\mathrm{X}})$, inplane load $(\underline{+}\ V_{\mathrm{C}})$ and vibratory out-of-plane load $(\underline{+}\ V_{\mathrm{n}})$ are all in the same direction and phase. The strain magnitudes are, therefore, directly additive.

$$\gamma_{v_1} = 3.58*0.0803 + 2.984 * \left(\frac{315}{68000}\right) + 0.0777$$

$$\gamma_{v_1} = 0.379$$

Note: Pitch change strain did not enter the above calculation because it is 90° out of phase in both geometry and time but, its Miner's Rule effect will be considered in the following vector:

$$\gamma_{v2} = 0.0385*6.54*0.107 = 0.0269$$

The life limiting strain is (see Appendix of Section 3)

$$\gamma = \sqrt{\frac{258*60 \left[\gamma_{v_1}^5 + \gamma_{v_2}^5 \right] + \left(\frac{\gamma_{cf}}{2} * \frac{82000}{68000} \right)^5}{258*60 + 1 + 2}} + 2* \left(\frac{\gamma_{cf}}{2} \right)^5}$$

$$\gamma = \sqrt{\frac{258*60(.379^5 + .0269^5) + \left(\frac{2.984*82000}{2}*68000}{258*60 + 3}}^5 + 2*\left(\frac{2.984}{2}*58*60 + 3*60 + 3*60 + 3*60}\right)^5}$$

 $\gamma = 0.398$

Note: lead-lag motion causes negligible damage at this location.

A plot of life limiting strain for the 6 and 12 o'clock position of each layer is given in Figure 17.

The following is a sample calculation of the life limiting strain for the 6 or 12 o'clock position on the 0.D. of the fourth layer:

The vibratory strain vectors due to flap $(\underline{+}\ \Theta_{_{X}})$, inplane load $(\underline{+}\ V_{_{C}})$ and vibratory out-of-plane load $(\underline{+}\ V_{_{n}})$ are all in the same direction and phase. The strain magnitudes are, therefore, directly additive.

$$\gamma_{v_1} = 3.58*0.0761 + 1.652* \left(\frac{315}{68000}\right) + 0.0709$$

$$\gamma_{v_1} = 0.351$$

Note: Pitch change strain did not enter the above calculation because it is 90° out of phase in both geometry and time but, its Miner's Rule effect will be considered in the following vector:

$$\gamma_{V_2} = 0.05077*6.54*0.107 = 0.0355$$
The life limiting strain is

The life limiting strain is

$$\gamma = \sqrt[5]{258*60 \left[\gamma_{v_1}^5 + \gamma_{v_2}^5\right] + \left(\frac{\gamma_{cf}}{2} \frac{*82000}{68000}\right)^5 + 2* \left(\frac{\gamma_{cf}}{2}\right)^5}$$

$$258*60 + 1 + 2$$

$$\gamma = \sqrt[5]{258*60 \left(.351^5 + .0355^5\right) + \left(\frac{1.652}{2} * \frac{82000}{68000}\right)^5 + 2* \left(\frac{1.652}{2}\right)^5}$$

$$\gamma = 0.352$$

Note: Lead-lag motion causes negligible damage at this location.

This life limiting strain is plotted for all layers in Figure 18.

The following is a sample calculation of the life limiting strain for the 3 and 9 o'clock position on the I.D. of the fourth layer:

The strain due to blade flapping is

$$\gamma_{f} = 3.58*0.0581 = 0.207$$

The strain due to vibitory C.F. is

$$\gamma_{cf} = \left(\frac{2.984}{2}\right) * \left(\frac{315}{68000}\right) = 0.0069$$

The strain due to lead-lag motion is

$$\gamma_{11} = 1.5*0.0803 = 0.120$$

The strain due to pitch change is

$$\gamma_{pc} = 0.0385*6.54*0.107 = 0.0269$$

These strains can be combined as shown in the following table;

STRAIN	TIME PHASE	DIRECTION	MAGNITUDE
Υ _{pc}	00	00	0.0269
Υ ₁₁	0°	90°	0.120
In-phase resultant*	0°	90°	0.123
Υ _f	90°	90°	0.207
γ _{cf}	90°	90°	0.0069
Out-of-phase resultant*	90°	90°	0.214

* Conventional vector combination

$$\gamma = \sqrt{(0.214)^2 + (0.123)^2} = 0.247$$

Note: in the general case of non-perpendicular phase resultants obtaining this effective strain vector is more complicated.

The life limiting strain is

$$\gamma = \sqrt{\frac{258*60(0.247^5) + (\frac{2.984*82000}{2})^5 + 2* (\frac{2.984}{2})^5}{258*60 + 3}}$$

$$\gamma = .315$$

A plot of the life limiting strain for this location on all the shells is given in Figure 19. A plot for the O.D. is given in Figure 20.

On the basis of this analysis, first damage is predicted at

LIFE =
$$\left(\frac{10.6}{0.398}\right)^5$$
 60*258

 $= 866 \, HR.$

The predicted location for first damage is the I.D. of the fourth layer. This location for first damage agrees with previous test results.

FIG. 2

BLOW UP OF FIG. 2

FIG. 3

A P P E N **D** I X I

EB MODEL 1 (AMMRC) ROTOR SPHERICAL BLACKHAHK MAIN

```
35.60.110,59.158,59.038,59.974
36.3,2,13,3.011,11,11,100LRR,0,0
38.59.158,19.982,20.742,59.038
39.13,2,14,3,11,11,11,11,100LRR,0,0
43.3,100,3.010,3.062,3.062
41.19.982,19.030,19.812,20.742
42.2,4,3,5013,100,3.062
44.59.817,58.900,58.764,59.662
45.3,124,3.15,11,11,11,100LRR,0,0
45.3,124,3.124,3.188,3.188
47.58.960,2.12,900,58.764,59.662
48.3,124,3.124,3.188,3.188
47.58.960,3.250,3.316,3.188
55.2,250,3.250,3.316,3.188
55.3,250,3.250,3.316,3.316
55.3,250,3.250,3.316,3.316
55.3,250,3.250,3.316,3.316
55.3,250,3.250,3.316,3.316
55.3,250,3.250,3.316,3.316
55.3,250,3.250,3.316,3.316
55.3,250,3.250,3.316,3.316
55.3,250,3.250,3.316,3.346
55.3,378,3.378,3.346,3.446
66.3,378,3.378,3.446,3.446
66.3,8,14,9,11,11,100LRR,0,0
67.3,378,3.378,3.446,3.446
67.3,378,3.378,3.446,3.446
67.3,378,3.378,3.446,3.446
67.3,378,3.378,3.446,3.446
67.3,378,3.378,3.446,3.446
67.3,378,3.378,3.446,3.446
67.3,378,3.378,3.446,3.446
```

```
183.3.918,3.918,3.985,3.985

184.29.743,29.832,29.627,38.324

185.2.18,3.19;1,1,1,1,100LRR,9,8

187.38.853,57.358,57.253,57.947

188.3;18;13;19;11,11,11,100LRR,9,8

188.3;18;13;19;11,11,11,100LRR,9,8

188.3;18;13;19;11,11,11,100LRR,9,8

189.7,389,38,38,39,33,139

114.2,186,4.186,4.265,4.265

115.4.186,4.186,4.265,4.265

115.4.186,4.186,4.265,4.265

123.2,22,17,1,1,1,1,100LRR,9,8

124.327,4.327,4.488,4.488

125.31,289,13,10,11,1,100LRR,9,8

125.31,289,13,10,11,1,100LRR,9,8

125.31,289,13,10,11,1,100LRR,9,8

126.31,27,4.327,4.488,4.488

127.4.327,4.327,4.488,4.488

128.57.81,322,11,1,1,1,1,100LRR,9,8

138.4.78,4.478,4.553,4.553

134.478,4.478,4.553,4.553

134.57.478,4.478,4.553,4.553

135.24,13,25,11,1,11,100LRR,9,8

137.24,478,4.478,4.553,4.553

137.25,13,221,11,1,11,100LRR,9,8

137.25,13,225,11,1,11,100LRR,9,8

137.27,4.478,4.553,4.553

137.27,4.478,4.553,4.553

137.27,4.478,4.553,4.553
```

```
137:56.855;33.559;34.036;56.768
138:13,24;14;25;1;1;1;1;1;1;1;1;1;0,0,0,0
139:4.470;4.470;4.553;4.553
140:33.559;32.930;33.417;34.036
141:2;26;3;27;1;1;1;1;1;1;1;0,0,0,0
142:4.615;4.615;4.700;4.700
145:4.615;4.615;4.700;4.700
145:56.706;34.280;34.836
146:56.706;34.280;34.836
148:3.26;13,27;1;1;1;1;1;0,0,0,0
149:3.7326;13,27;1;1;1;1;1;0,0,0,0
149:3.7326;13,27;1;1;1;1;1;0,0,0,0
150:3.20;3,323;1;1;1;1;1;0,0,0,0
151:4.762;4.762;4.849;4.849
152:56.564;35.55;1;1;1;1;1;0,0,0,0
152:4.762;4.762;4.849;4.849
153:20;13,20;14,29;1;1;1;1;1;0,0,0,0
153:30;13;20;13;1;1;1;1;1;0,0,0,0,0
163:4.762;4.762;4.849;4.849
156:33:20;13;1;1;1;1;1;0,0,0,0,0
163:4.762;4.762;4.849;4.985
164:4.911;4.911;4.985;4.985
165:32:33:33:1;1;1;1;1;1;0,0,0,0,0
167:35.8597;2.9017;3.842;3
```

```
171: 3, 32, 13, 33

172: 2, 9017, 4, 008, 4, 008, 5, 008

174: 13, 32, 14, 33

175: 4, 068, 4, 05, 4, 008

176: 3, 7281, 3, 791, 5, 008, 5, 008

176: 3, 7281, 3, 791, 5, 008, 5, 008

177: 14, 32, 16, 33

178: 4, 05, 5, 065, 4, 835, 4, 05

178: 4, 05, 5, 065, 4, 835, 4, 05

179: 3, 781, 3, 781, 5, 008, 5, 008

178: 14, 32, 16, 33

178: 4, 05, 5, 065, 4, 835, 4, 05

178: 100P, 13, 1

182: 000P, 12, 1

183: 000P, 12, 1

184: 100P, 12, 1

195: 100P, 12, 1

196: 1100P, 12, 1

197: 000P, 12, 1

198: 120P, 12, 1
```

```
205: IEND
206: JLOOP, 2, 1
207: ILOOP, 12, 1
208: RUAD, 5, 2, 31
208: RUAD, 5, 2, 31
209: IEND
211: RUAD, 5, 14, 32
213: ILOOP, 2, 1
214: BC, UZ, 14, 32, 1, 0
215: BC, UZ, 14, 1
215: BC, UZ, 2, 32, 3, 0
217: ILOOP, 14, 1
218: BC, UZ, 2, 32, 3, 0
219: IEND
220: PLOT, ELEMENTS, 1, 225, 594, 5, 215, 5, 128, 10
222: AXISYM
222: AXISYM
```

A P P E N D I X II

```
C'S ARE INTERCEPTS
                                                                                                                                                                                                       ELMENT
                                                                                                                    SPHERICAL RADIUS
                         SHELLS
                                                                                                                                                                                                       REM ANGLE FOR .05 END
Q=ACS(X1/R1)-0.05/R1
                                                                                                                                                                                                                               X1=R1#COS(Q)
Q=ACS(X2/R2)-0.05/R2
Y2=R2#SIN(Q)
X2=R2#COS(Q)
S2=(Y1-Y2)/(X1-X2)
                                                                                                           YI=SQR(R1#R1-X1#X1)
PRINT "J----S
                                                                                                                                                                             SI=(Y1-Y2)/(X1-X2)
C1=Y1-S1*X1
                                                                                                                                                             X2=M2/2
Y2=SQR(R2*R2-X2*X2
REM S/S ARE SLOPES
                        JNUMBER OF
                                                                 JSPHERICAL
                                                                                                                            "JSPHERICAL
                                                                                                                                             *
                                                                                                                                                                                                                        Y1=R1#SIN(Q)
                                                 RADIANS
                                                                                                                                                                                                                                                                         C2=Y1-S2*X1
                                                                                                   X1=M1/2
                                                                                                                            PRINTINPUT
                                                                 PRIHT
                INPUT
                                                                                           INPUT
                         PRINT
                                 INPUT
                                         = +1
                                                         PRINT
                                                                                                                                                     IHPUT
                                                                          INPUT
                                                                                                                                             PRIHT
                                                                                   PRINT
                                                                 198
288
                                                                                                                                             288
                                                                                                                                                             386
328
338
348
                                                                                                                                                                                                                                 388
                                                                                                                                                                                                                                         398
```

```
, R2
                                                                                                                                                                                                                                                        , R2,
                                                                                              0
POINT
                                    POINT
                                                                                                                                                                                      & ANGLES
                                                                                                                                                                                                                                                        , R1,
                                                                                              ELEMENT
-FIRST 0.D.
                                   ----SECOND 0.D.
                                                                                                                                                                                                                    H
                                                                                                                                                                                                                                                 2D, A, 2A, A, 2D, 1
USING 798: R1, "
                                                                                                                                                                               DEGREES
SUBROUTINE FOR RADII
                                                                                                                                                                                                    "JINSIDE RADIUS="
                                                                                                                                                                                                                                  , POLAR, 0, 8"
                                                                                                                                                                                                                   *JOUTSIDE RADIUS RZ
                                                                                              EHO
                                                                                                                                                                REH DUTPUT FORMATTING
                           Y1=SQR(R1*R1-X1*X1)
PRINT "J----SEC
PRINT "0.0, 2 = ";
INPUT M2
                                                                                              REM ANGLE FOR .05 EN
Q=ACS(X1/R1)+0.05/R1
                                                                                                                           Q=ACS(X2/R2)+0.05/R2
Y2=R2#SIH(Q)
                                                                       Y2=SQR(R2*R2-X2*X2)
S3=(Y1-Y2)/(X1-X2)
C3=Y1-S3*X1
                                                                                                                                          XZ=R2*COS(Q)
S4=(Y1-Y2)/(X1-X2)
C4=Y1-S4*X1
                                                                                                                    X1=R1 #C0S(Q)
                                                                                                             71=R1#SIH(0
       ٥.
                                                                X2=H2/2
                                                                                                                                                                                                    PRIHT
PRINT
PRINT
INPUT
                      X1=M1
                                                                                                                                                                                                             IHPUT
                                                                                                                                                                                                                                                        PRINT
                                                                                                                                                                        FIHD
                                                                                                                                                                                                                    PRINI
                                                                                                                                                                                                                            INFUL
                                                                                                                                                                                                                                          PRIH
                                                                                                                                                                                                                                                 IMAGE
                                                                                                                                                                                                                                  --$3
                                                                                                                                                                                       REM
                                                                                                                                                                               SET
                                                                                                                                                                                               P=1
ヰヰヰヰヰならいいいいいここことではなるなるなるなんなんだってってって
ヰいらっちょむ!ころヰこんっとうあーころヰこんこのよめ!ころヰちらて
あのものものものものものものものものものものものものものもの
```

```
X=SGR(Y*Y+(R1*R1-A*A)/(B*B+1))-γ
Z7=ACS(X/R1)
X=SGR(Y*Y+(R2*R2-A*A)/(B*B+1))-γ
Z8=ACS(X/R2)
PRIHT @33: USING 1130:Z1,",",Z3,",",Z4,",",Z2
IMAGE 20.30,A,20.30,A,20.30,A,20.30
                                                                                                                                                                                                                                     Y=A*B/(B*B+1)
X=SQR(Y*Y+(R1*R1-A*A)/(B*B+1))-Y
ZS=ACS(X/R1)
X=SQR(Y*Y+(R2*R2-A*A)/(B*B+1))-Y
Z6=ACS(X/R2)
                                           X=SQR(Y*Y+(R1*R1-A*A)/(B*B+1))-Y
REM Z/S ARE ANGLES
Z1=ACS(X/R1)
                                                                             X=SQR(Y*Y+(R2*R2-A*A)/(B*B+1))-Y
Z2=ACS(X/R2)
REM REPEATING FOR C2 & S2
                                                                                                                                                   X=SQR(Y#Y+(R1*R1-A*A)/(B*B+1))-Y
Z3=ACS(X/R1)
X=SQR(Y*Y+(R2*R2-A*A)/(B*B+1))-Y
Z4=ACS(X/R2)
REM REPEATING FOR C4 & S4
D. 3D, A, D. 3D, A, D. 3D, A, D. 3D
                                                                                                                                                                                                                                                                                                REM REPEATING FOR C3 & A=C3
B=S3
                                                                                                                A=C2
B=S2
Y=A*B×(B*B+1)
                                                                                                                                                                                                                                                                                                                                     Y=A*B/(B*B+1)
                                 Y=A*B/(B*B+1)
IMAGE
          A=C1
B=S1
                                                                                                                                                                                                                           B=$4
                                                                                                                                                                                                                A=C4
                                                                                                                                                                                                                                                            1616
1926
1936
1646
                                                                                                                                                                                                                                                                                                            828
838
878
                                                                                                                            888
                                                                                                                                                                                                                                                                                                                                               888
                                                                                                     888
                                                                                                                 868
                                                       348
858
                                                                              868
```

```
388
278
1278
1278
USING
USING
USING
USING
                             HEN THEN 19
PRINT 033
C=2*L+1
IF P=C TH
IF P=15 TH
CO TO 718
CCOSE CCOSE
```

A P P E N D I X III

NOMENCLATURE

- K = A linear spring rate.
- K_T = A torsional spring rate.
- d = The differential operator.
- A = Area.
- G = The shear modulus.
- T = Torque.
- t = The perpendicular layer thickness.
- R = The spherical radius.
- \overline{R} = The moment arm or distance to the bearing axis.
- \overline{R}_{o} = The largest moment arm in a layer.
- H = The axial distance from a point to the spherical axis.
- H_o = The axial distance of the O.D. of a layer to the spherical axis.
- H = The axial distance of the I.D. of a layer to the spherical axis.
- θ = The torsional angle of relative rotation for the layer.
- ϕ = An arbitrary angle of integration.
- γ = The shear strain.

AXIAL TORSION ON A POLAR SPHERICAL E.B.

AXIAL TORSION ON A POLAR SPHERICAL E.B.

The shear spring rate of an elastomeric layer is

$$K = F/\delta = \frac{GA}{t}$$

For a layer with constant thickness and modulus the rate of change of spring rate is

$$dK = (G/t)dA$$

The rate of change in torsional rate is

$$dK_{T} = \frac{G\overline{R}^{2}}{t} dA$$

The differential area for a polar spherical layer (See Figure) is

$$dA = 2\pi \overline{R}Rd\phi$$

$$\phi = SIN^{-1}(H/R)$$

$$d\phi = \frac{dH}{\sqrt{R^2 - H^2}}$$

$$\overline{R} = \sqrt{R^2 - H^2}$$

$$dA = 2\pi RdH$$

Substituting in the spring rate equation

$$dK_{T} = \frac{2\pi GR}{t} (R^{2} - H^{2}) dH$$

$$K_{T} = \frac{2\pi GR}{t} \int_{H_{1}}^{H_{0}} (R^{2} - H^{2}) dH$$

$$K_{T} = \frac{2\pi GR}{t} \left[R^{2} (H_{1} - H_{0}) - (H_{1}^{3} - H_{0}^{3}) / 3 \right]$$

The definition of torsional spring rate is

$$K_T = T/\theta$$

The shear strain (See Figure) is

$$\gamma = \frac{\overline{R}\theta}{\overline{t}}$$

$$\gamma = \frac{\overline{R}T}{\overline{t}K_{T}}$$

$$\gamma = \frac{T\sqrt{R^{2} - H^{2}}}{\overline{t}K_{T}}$$

$$\gamma = \frac{T\sqrt{R^{2} - H^{2}}}{2\pi GR} \left[\frac{1}{R^{2}(H_{1} - H_{0}) - (H_{1}^{3} - H_{0}^{3})/3} \right]$$

The pitch change shear strain is seen to be a function of position but, has a maximum at the O.D. of each layer of

$$\gamma_{\text{MAX}}$$
. = $\frac{T}{2\pi G}$ $\left[\frac{\sqrt{1 - (H_0/R)^2}}{R^2 (H_i - H_0) - (H_i^3 - H_0^3)/3}\right]$

The composite rotation for a multi-layer bearing is

$$\theta = \sum \frac{t \gamma_{MAX}}{\overline{R}_{O}}$$

$$= \frac{T}{2\pi} \sum \frac{1}{GR} \left[\frac{t}{R^{2}(H_{1} - H_{O}) - (H_{1}^{3} - H_{O}^{3})/3} \right]$$

A P P E N D I X IV

```
elastomers attach
CALCULATIONS *********
                   "layer no. from mushroom end at which elastomer changes---"
         different
"***** for spherical EB with 2 d:
                                                                                                                                                                                                                                                     INTERCEPTS
                                                                                                                                                                                                                                                                               FIRST 0.D. POINT
                                                                                                                      POINT
                                    JFIRST SHEAR MODULUS, G1---"
                                                      "SECOND SHEAR MODULUS, G2---
                                                                                                                                                                                                                                                     ARE
                                                                        "NUMBER OF SHELLS----
                                                                                                            50), P(50), R1(50), U(50)
"J-----FIRST I
"JSPHERICAL RADIUS 1 =
                                                                                                                                                                                     "JSPHERICAL RADIUS 2
                                                                                                                                                                                                                                                      S/3
                                                                                            11
                                                                                          JAPPLIED TORQUE
                                                                                                                                                                                                                                            YZ=SQR(RZ*R2-XZ*XZ)
REM S'S ARE SLOPES
S1=(Y1-Y2)/(X1-X2)
                                                                                                                                                                            Y1=SQR(R*R-X1*X1)
                                                                                                                                                                                                                 "I.D.
                                                                                                                                                                                                                                   X2=H2/2
                                                                                                                                                                    X1=H1/2
                                                                                                                                                                                     PRINT
PRINT
INPUT
                                                                                                                               PRINTINPUT
PRINT
PRINT
                                                                        PRINT
                                                                                           PRINT
                                                               INPUT
                                                                                                                                                          IHPUT
                                                                                                                      PRINT
                                                                                                                                                  PRINT
                                                                                                                                                                                                                          IHPUT
                                    PRINT
                                                      PRINT
                                                                                  INPUT
                                                                                                    INPUT
                                                                                                                                                                                                                  PRINT
                                                                                                                                                                                                                                                                        C1=Y1
                           INPUT
                                             INPUT
                                                                                                                                                                                                                                                                                          PRIHI
                                                                                                             DIM
                                                              198
288
                                                                                                             248
258
                                                                                                                                268
                                                                                                                                                  288
                                                                                                                                                          298
                                                                                                                                                                            318
328
338
348
                                                                                                                                                                                                                  358
                                                                                                                                                                                                                          368
                                                                                                                                                                                                                                             380
                                                                                                                                                                                                                                                      398
                                                                                           228
                                                                                                                                                                    388
                                                                                                                                                                                                                                                               466
```

```
SPHERICAL RADIUS OF THE LAYER CONSIDERED"
                                                                                                              Z=C1#S1/(S1#S1+1)
X=SQR(Z#Z+(R1(I)#R1(I)-C1#C1)/(S1#S1+1))-Z
                                                                                                                                                    X=SQR(Z*Z+(R1(I)*R1(I)-C2*C2)/(S2*S2+1))-Z
                                                                                                                                                                                         *UERTICAL THICKNESS OF THE LAYER
                     POINT
                                                                                                                                                                   D=R1(1)#K1(1)#(H1-H2)-(H1+3-H2+3)/3
                                                                                                                                                                                                        P(I)=90±U(I)*T/(PI*PI*G*D*R1(I))
IF I<=L-1 THEN 740
                     SECOND O.D.
                                                                                                                                     $2
                                                                                                                                    REM REPEATING FOR C2 &
                                                                                                                                                                                                                                                           U=SQR(1-(H1/R1(1))+2)
                                                          72=SQR(R2*R2-X2*X2)
                                                                 S2=(Y1-Y2)/(X1-X2)
                                                                                                                                                                                 F(I)=U*T/(D*2*PI*
      X1=M1/2
Y1=SQR(R*R-X1#X1)
                                                                                                                                                                                                                                      THEN 578
                                                                                                                                            =C2#82/(S2#82+1)
                                                                                                "INSIDE
                                                                                                                                                                                                                                                           USING
                                                                         C2=Y1-S2*X1
I=1
                                                                                                                              41=C1+S1#X
                                                                                                                                                           H2=C2+S2*X
                                                                                                                                                                                                               IF I<=L-1
                                                                                                                                                                                                                                      IF I< J+2
                                            K2=H2/2
                                                                                                                                                                                                                                                     PAGE
PRINT
                                   INPUT
                                                                                               PRIHT
INPUT
                             PRINT
                                                                                                       INPUT
                                                                                                                                                                                                 IHPUT
                                                                                                                                                                                                                                [+[=[
                                                  PAGE
                                                                                                                                                                                                                       29=9
                                                                                        6=61
                                                                                                                                                                                                                                             K=8
```

"STRAIN", "LAYER" "INSIDE", "GAMMA", "THETA" A.411.FA. TWIST IN DEGREES (THETA)-USING 898:I, U(I), R1(I), F(I), P(I) 3T, 2D, 18T, D. 3D, 21T, D. 3D, 31T, D. 4D, 41T, D. 4D PRINT USING "78""—"":
PRINT USING 828: "NO.", "LAYER", "INSIDE", "GAMMA INACE3T, FA, 10T, FA, 21T, FA, 31T, FA, 41T, FA, PRINT USING 828: ", "THICK", "RADIUS", "STREEN TO SING "78"—"": IN LB. -INCHES--USING "78""-""; JAPPLIED TORQUE TO J+1 FOR I=1 T K=K+P(I) PRINT PRINT PRINT PRINT PRINT PRINT PRINT PRINT 997569

SECTION 9.

TEST RESULTS ON THE BLACKHAWK MAIN ROTOR BEARINGS

Enclosed in the Appendix is a test report covering the testing of a pair of Blackhawk main rotor sperical and thrust elastomeric bearings as outlined in Section 1. These results should be correlated with previous analytical results.

The agreement between experimental and analytical predictions is reasonably good for the thrust bearing. See that Figures 4 and 5 of the Appendix confirm the location of first damage predicted in Section 6. The analytical prediction of time to first damage was 46 hours, whereas, first damage was actually reported as occurring between 200 and 300 hours. The test substantiated the analytical prediction that elastomer damage would occur before metal fatigue.

For the spherical bearing the agreement between experimental and theoretical predictions is again reasonably good for the elastomer. Photograph 2 shows the I.D. of the first layer as the location of first damage. The I.D. of the fourth layer is the location predicted in Section 8. The first damage life was between 300 and 400 hours vs. a predicted 866 hours. Remember that no prediction of the endurance life of the metal shells could be made in section 8.

It is important to recognize that "first damage" as defined here is the first sign of damage visible under laboratory conditions and that elastomer damage in an elastomeric bearing is slowly progressive and noncatastrophic. The justification for this statement is Sikorsky Aircraft's 2000 hr. qualification test with these bearings. While laboratory level damage was observed on these bearings relatively early in the test they continued on for from 10 to 20 times the laboratory first damage life shown here without excessive damage.

A P P E N D I X

CR INDUSTRIES

TEST REPORT

AMMRC Contract DAA-46-78-C-0029

May 22, 1979

Ву

Emmet M. Skroch

Test Lab Manager

TEST REPORT

This test consisted of endurance testing two Blackhawk Main Rotor Elastomeric Bearings per the plan described in the AMMRC test proposal of September 15, 1978.

Prior to any endurance testing all samples were acceptance tested according to their respective Sikorsky approved ATP's (ATP No. 4014 for 80 9588, Sikorsky SB7001-045 and ATP No. 4015 for 80 9589, Sikorsky SB7002-045).

For the spherical bearings (P/N 80 9588), slight modification to the end fitting had to be made (Figure 1.1) to fixture them in our test rig (Figure 1.2). Thermocouples were attached at the 6 o'clock and 9 o'clock position, both inside and outside, at the inner race. For the thrust bearing (P/N 80 9589), a thermocouple was attached to the outer center part of the bearing.

All loads and motions of the test were applied in 100 hour blocks as specified in the Blackhawk Main Rotor E. B. Endurance Life Test Blocks I through III.

Testing of the spherical bearing (P/N 80 9588), has been terminated after a total of 4 blocks of testing or 400 flight hours. First damage was observed at the first rubber layer (smallest spherical radius) at the 5 and 11 o'clock positions when flapping was applied through the 6 and 12 o'clock axis. Figures 2 and 3 show the degree of damage of each bearing. The recorded temperatures of the test ranged from 91°F to 109°F.

The loss of measured axial spring rates ranged from 2.4% to 3.4% for the 400 flight hour period.

Testing of the thrust bearing (P/N 80 9588) has been terminated after a total of 3 blocks of testing or 300 flight hours. First damage was observed at the O.D. of the bearing on the spline side and at the I.D. on the flanged side. Figures 4 and 5 show the degree of the damage.

The recorded temperatures during the test ranged from $116^{\circ}F$ to $120^{\circ}F$. The loss of measured axial spring rates for the two bearings was as follows:

% Spring Rate Change

Flight Hours	SN 00049	SN 00051
New	-	-
200	1.3	2.6
300	1.3	5.1

MODIFIED SPHERICAL BEARING
FIGURE 1.1

SPHERICAL BEARING TEST RIG. FIGURE 1.2

THRUST BEARING TEST RIG. FIGURE 1.3

C.R. 80 9588 (SN 00005) SPHERICAL
BEARING I.D. AFTER 400 FLIGHT
HOURS.
FIGURE 2

C.R. 80 9588 (SN 00004) SPHERICAL BEARING I.D. AFTER 400 FLIGHT HOURS.
FIGURE 3

THRUST BEARING I.D. FIGURE 4

THRUST BEARING O.D. FIGURE 5

SECTION 10.

TEST RESULTS ON THE BLACKHAWK MAIN ROTOR SPHERICAL BEARING
WITH ON-OFF CENTRIFUGAL FORCE AS THE ONLY LOADING MODE

In order to obtain some correlation between analytical and experimental results for shell stress in a spherical bearing, a sample was tested with on-off centrifugal force as the only loading (see test report in the Appendix). This test case can be completely analyzed by one program run of our quasi three-dimensional finite element analysis program. Fig. 1 shows the shell stress at the I.D. for this loading case and Fig. 2 shows it for the O.D. This loading case is not expected to produce failure in the 17-7 PH stainless steel shells. Shell failure was not observed in this test.

From results in Section 8, the predicted elastomer life under this loading condition is

$$\left(\frac{10.6}{2.95/2}\right)^5 = 19,200 \text{ cycles}$$

with first damage predicted for the I.D. of the fourth layer. First damage was experimentally noted at 55,000 cycles at the bearing I.D. in the zone of the 3rd to 5th layers.

APPENDIX

Test Report

AMMRC Contract DAA-46-78-C-0029

May 29, 1979

bу

Emmet M. Skroch
Test Lab Manager

Test Report

This test consisted of endurance testing a Blackhawk Main Rotor Elastomeric Bearing by "on-off" C.F. loading.

Prior to any endurance testing, the sample was acceptance tested according to its' respective Sikorsky approved ATP (ATP No. 4014 for 80 9588, Sikorsky SB7001-045).

A spherical bearing (P/N 80 9588) was axially loaded and unloaded from 0 to 68,000 lbs. at a cycling rate of 20 cycles per minute (CPM). The test part was loaded in our 100 KIP test rig, see Figure 1.

First damage was observed after 55,000 on-off cycles or the equivalent of 27,500 flight hours as described in the AMMRC test proposal of September 15, 1978, Black Hawk Rotor E.B. Endurance Life Test Block III. The damaged area consisted of the first 10 elastomeric layers (smallest spherical radius being the 1st layer) at the I.D., in varying degree. Figure 2 shows the predominant damage which occurred in the zone of the 3rd through 5th layers.

AXIAL TEST RIG FIGURE 1

I.D. OF 80 9588 (SPHERICAL BEARING)
FIGURE 2

SECTION 11.

TEST RESULTS ON THE ALTERNATE BLACKHAWK MAIN ROTOR THRUST BEARING WITH ON-OFF CENTRIFUGAL FORCE AS THE ONLY LOADING MODE.

In order to demonstrate the ability of finite element analysis to predict the endurance life of the metal shells in laminate elastomeric bearings a marginal bearing design was analyzed in Section 7 (see Fig. 1) and tested. The test report is included in the appendix. The analysis of this test case did not require the use of superposition. The correlation between analytic and test results should, therefore, be good. The correlation between analytic and test results is seen to be good — the shells cracked about as predicted.

FIG. 1

APPENDIX

July 2, 1979

FINAL TEST REPORT

AMMRC - Chevron Washer SK5-80 9590

Thrust Bearing H90112-1

The bearing tested January 17-19, 1979 was pulled to destruction and then soaked in toluene to remove the rubber and observe the washers.

In the layer that broke in the pull test, about 80% of the rubber was destroyed by fatigue damage. The pull test values were:

	<u>Test Piece</u>	Control Piece
Breaking Load	1,400 lbs.	8,200 lbs.
Extension	0.1 in.	0.15 in.
Mode of Failure	100R	90R 10 unfill

The cleaned washers were examined for cracks. (Flange $end-1-52-Spline\ end$)

One radial crack in washer #22 intersected the O.D..

Nine washers exhibited tangential cracks along the top of the chevron. (#13, 18, 19, 20, 23, 24, 27, 29, 38)

Photographs of the cracked washers are attached.

Tom Mueller

Tom Mueller

TM:1k

Enclosures

RADIAL CRACK

TANGENTIAL CRACK

BEFORE

AFTER

I.D. DAMAGE

O.D. DAMAGE

O.D. CRACK

CHICAGO RAWHIDE MANUFACTURING COMPANY

January 23, 1979

T E S T R E P O R T

AMMRC - Chevron Washer SK5-80 9590 Thrust Bearing

H90112-1

Test Start: 2:00 P.M. January 17, 1979 Stop: 7:46 P.M. January 19, 1979

At 51,300 GAG cycles a cracked washer was observed on the 0.D. of the bearing.

The last inspection prior to the observation of the crack was at 45,800 GAG cycles.

A "clicking" sound was heard about the 43,000 cycle mark and went away.

The test has been stopped to get photographs of the cracked washer and to decide on further actions to be taken.

A table of axial spring rates is attached.

Tom Mueller

Jon Mueller

TM:1k Enclosure

cc: J. Morley

A. Hatch

E. Skroch

SK5-80 9590 H90112-1

Axial Spring Rate

# Cycles	Deflection to 68,000 # Inches	40,000-68,000 # Lbs./In.	Tangent 68,000 # Lbs./In.
0	0.100	933,000	1,000,000
15,000	0.110	830,000	1,000,000
25,000	0.112	830,000	950,000
30,000	0.115	830,000	950,000
45,000	0.115	830,000	890,000
50,000	0.115	830,000	890,000

Initial Ht. 50,000 AH7 4.202 4.180 .022

> T.G.M. 1-23-79

The initial Chevron Washer Endurance Test for the AMMRC Contract was started at 2:00 P.M. January 17, 1979.

The test is running with the following parameters:

- 1. Cyclic axial load
- 2. Frequency
- 3. Length of test
- 4. Inspection period
- 5. Documentation

100/68,000/100 lbs.

20 cpm.

Until washer failure observed.

At least twice daily.

Color photographs

- a) Initial condition.
- b) At point of washer failure.

This is a modified SK5-80 9590 thrust bearing molded in the 80 9589 mold with modifications. It has 52 Titanium A70 washers of .030 thickness and .245 radius (see drawing attached). The end fittings are steel.

The bonding process on the Titanium was done per P-7554, which is the current production process on the Sikorsky main rotor bearings for Titanium.

Weight: 9.25# Height: 4.202 in.

Tom Mueller

Ton Muller

TM: 1k

cc: J. Morley, A. Hatch, E. Skroch

SPOSITION:		REVISIONS			_
	LTR DESCRIPTION		ATE DRAWN	СНК	-
.156	± .005 4.850 DIA ± .005 3.250 DIA ± .002 3.000 I.D.	-		.025 R. TYP	
	±.005 4.050 DIA.	4 – 40' TYP		1	000
NOTES: 1. I.D. & O.D. MUST BE CON 2. MUST BE FLAT WITHIN .00		I.R.	•		
METRIC: 1 IN. = 25.4 mm UNLESS OTHERWISE SPECIFIED DIAMETER ± .010	MATERIAL TITANIUM	C R INDUST	MFG. CO.		_

SECTION 12.

SUMMARY AND CONCLUSIONS

An analytical method for predicting the service life of laminated elastomeric bearings based on finite element analysis has been demonstrated. This method has shown generally good agreement with experimental results. analytical method makes use of superposition to combine out-of-phase strain vectors and quasi three-dimensional strain analysis to find the endurance strain of complex bearings undergoing complex loadings. Limitations on superposition were indicated (shell stress in the spherical bearing). Finally a specific elastomer endurance relationship was drawn from test data on a fatigue spe-With this background the analytic analysis provided a reasonable estimate of the location and time of first damage on the Blackhawk main rotor spherical and thrust bearings tested as part of this program. sults were obtained in predicting the endurance life of the metal shells in the thrust bearing but, a prediction was not possible for the spherical bearing.

Future investigations in elastomeric bearing analysis could involve the study of some of the following areas:

- A) Three-dimensional finite element analysis.
- B) The effect of the bias strain on endurance life.
- C) The effect of temperature on endurance life.
- D) The effect of strain rate on endurance life.
- E) The strain-relaxation characteristics of elastomers under constant and varying loads.

- F) The effect of environmental media on the endurance life of elastomers.
- G) The measurement and control of the physical properties of the elastomer.
- H) The development of a three-dimensional shear strain endurance life criterion for elastomers.

DISTRIBUTION LIST

No. of Copies

To

Commander, U.S. Army Aviation Research and Development Command, P.O. Box 209, St. Louis, Missouri 63166

10 ATTN: DRDAV-EGX

1 DRDAV-D 1 DRDAV-N

Project Manager, Advanced Attack Helicopter, P.O. Box 209, St. Louis, Missouri 63166

2 ATTN: DRCPM-AAH-TM 1 DRCPM-AAH-TP

Project Manager, Black Hawk, P.O. Box 209, St. Louis, Missouri 63166

2 ATTN: DRCPM-BH-T

Project Manager, CH-47 Modernization, P.O. Box 209, St. Louis, Missouri 63166

2 ATTN: DRCPM-CH-47-MT

Project Manager, Aircraft Survivability Equipment, P.O. Box 209, St. Louis, Missouri 63166

2 ATTN: DRCPM-ASE-TM

Project Manager, Cobra, P.O. Box 209, St. Louis, Missouri 63166

2 ATTN: DRCPM-CO-T

Project Manager, Advanced Scout Helicopter, P.O. Box 209, St. Louis, Missouri 63166

2 ATTN: DRCPM-ASH

Project Manager, Navigation/Control Systems, Fort Monmouth, New Jersey 07703

2 ATTN: DRCPM-NC-TM

Project Manager, Tactical Airborne Remotely Piloted Vehicle/Drone Systems, P.O. Box 209, St. Louis, Missouri 63166

2 ATTN: DRCPM-RPV

Commander, U.S. Army Materiel Development and Readiness Command, 5001 Eisenhower Avenue, Alexandria, Virginia 22333

1 ATTN: DRCMT 1 DRCPM

Director, Applied Technology Laboratory, Research and Technology Laboratories (AVRADCOM), Fort Eustis, Virginia 23604

1 ATTN: DAVDL-ATL-ATS

Director, Research and Technology Laboratories (AVRADCOM), Moffett Field, California 94035

1 ATTN: DAVDL-AL-D

Director, Langley Directorate, U.S. Army Air Mobility Research and Development Laboratories (AVRADCOM), Hampton, Virginia 23365

1 ATTN: DAVDL-LA, Mail Stop 266

Commander, U.S. Army Avionics Research and Development Activity, Fort Monmouth, New Jersey 07703

1 ATTN: DAVAA-O

Director, Lewis Directorate, U.S. Army Air Mobility Research and Development Laboratories, 21000 Brookpark Road, Cleveland, Ohio 44135

1 ATTN: DAVDL-LE

Director, U.S. Army Materials and Mechanics Research Center Watertown, Massachusetts 02172

- 2 ATTN: DRXMR-PL
- 1 DRXMR-PR
- 1 DRXMR-PD
- 1 DRXMR-AP
- 1 DRXMR-PMT
- 8 DRXMR-RC, Mr. B. Halpin

Director, U.S. Army Industrial Base Engineering Activity, Rock Island Arsenal, Rock Island, Illinois 61299

2 ATTN: DRXIB-MT

Commander, U.S. Army Troop Support and Aviation Materiel Readiness Command, 4300 Goodfellow Boulevard, St. Louis, Missouri 63120

- 1 ATTN: DRSTS-PLC
- 1 DRSTS-ME
- 1 DRSTS-DIL

Office of the Under Secretary of Defense for Research and Engineering, The Pentagon, Washington, D.C. 20301

- 1 ATTN: Dr. L. L. Lehn, Room 3D 1079
- 12 Commander, Defense Technical Information Center, Cameron Station, Alexandria, Virginia 22314

Defense Industrial Resources Office, DIRSO, Dwyer Building, Cameron Station, Alexandria, Virginia 22314

1 ATTN: Mr. C. P. Downer

Headquarters, Department of the Army, Washington, D.C. 20310

- 1 ATTN: DAMA-CSS, Dr. J. Bryant
- DAMA-PPP, Mr. R. Vawter

Director, Defense Advanced Research Projects Agency, 1400 Wilson Boulevard, Arlington, Virginia 22209

1 ATTN: Dr. A. Bement

1 ATTN: DRSDS-PMI

To Commander, U.S. Army Missile Command, Redstone Arsenal, Alabama 35809 ATTN: DRSMI-ET 1 DRSMI-RBLD, Redstone Scientific Information Center 1 DRSMI-NSS Commander, U.S. Army Tank-Automotive Research and Development Command, Warren, Michigan 48090 1 ATTN: DRDTA-R DRDTA-RCKM, Dr. J. Chevalier 1 Technical Library 1 Commander, U.S. Army Tank-Automotive Materiel Readiness Command, Warren, Michigan 48090 1 ATTN: DRSTA-EB Commander, U.S. Army Armament Research and Development Command, Dover, New Jersey 07801 1 ATTN: DRDAR-PML Technical Library 1 Mr. Harry E. Pebly, Jr., PLASTEC, Director 1 Commander, U.S. Army Armament Research and Development Command, Watervliet, New York 12189 1 ATTN: DRDAR-LCB-S 1 SARWV-PPI Commander, U.S. Army Armament Materiel Readiness Command, Rock Island, Illinois 61299 1 ATTN: DRSAR-IRB 1 DRSAR-IMC Technical Library Commander, U.S. Army Foreign Science and Technology Center, 220 7th Street, N.E., Charlottesville, Virginia 22901 1 ATTN: DRXST-SD3 Commander, U.S. Army Electronics Research and Development Command, Fort Monmouth, New Jersey 07703 1 ATTN: DELET-DS Commander, U.S. Army Electronics Research and Development Command, 2800 Powder Mill Road, Adelphi, Maryland 20783 1 ATTN: DRDEL-BC Commander, U.S. Army Depot Systems Command, Chambersburg, Pennsylvania 17201

Commander, U.S. Army Test and Evaluation Command, Aberdeen Proving Ground, Maryland 21005 1 ATTN: DRSTE-ME

No. of Copies

To

Commander, U.S. Army Communications and Electronics Materiel Readiness Command, Fort Monmouth, New Jersey 07703

1 ATTN: DRSEL-LE-R

Commander, U.S. Army Communications Research and Development Command, Fort Monmouth, New Jersey 07703

1 ATTN: DRDCO-PPA-TP

Director, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland 21005

1 ATTN: DRDAR-TSB-S (STINFO)

Chief of Naval Research, Arlington, Virginia 22217

1 ATTN: Code 472

Headquarters, Naval Material Command, Washington, D.C. 20360

1 ATTN: Code MAT-042M

Headquarters, Naval Air Systems Command, Washington, D.C. 20361

1 ATTN: Code 5203

Headquarters, Naval Sea Systems Command, 1941 Jefferson Davis Highway, Arlington, Virginia 22376

1 ATTN: Code 035

Headquarters, Naval Electronics Systems Command, Washington, D.C. 20360

1 ATTN: Code 504

Director, Naval Material Command, Industrial Resources Detachment, Building 75-2, Naval Base, Philadelphia, Pennsylvania 19112

1 ATTN: Technical Director

Commander, U.S. Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio 45433

1 ATTN: AFWAL/MLTN

1 AFWAL/MLTM

1 AFWAL/MLTE

1 AFWAL/MLTC

National Aeronautics and Space Administration, Washington, D.C. 20546 1 ATTN: AFSS-AD, Office of Scientific and Technical Information

National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama 35812

1 ATTN: R. J. Schwinghammer, EHO1, Dir., M&P Lab

Mr. W. A. Wilson, EH41, Bldg. 4612

1 Metals and Ceramics Information Center, Battelle Columbus Laboratories, 505 King Avenue, Columbus, Ohio 43201

Hughes Helicopters-Summa, M/S T-419, Centinella Avenue and Teale Street, Culver City, California 90230

1 ATTN: Mr. R. E. Moore, Bldg. 314

Sikorsky Aircraft Division, United Aircraft Corporation, Stratford, Connecticut 06497

1 ATTN: Mr. Melvin M. Schwartz, Chief, Manufacturing Technology

Bell Helicopter Textron, Division of Textron, Inc., P.O. Box 482, Fort Worth, Texas 76101

1 ATTN: Mr. P. Baumgartner, Chief, Manufacturing Technology

1 Mr. Robert Phinney; Rotor Design Group

Kaman Aerospace Corporation, Bloomfield, Connecticut 06002

1 ATTN: Mr. A. S. Falcone, Chief, Materials Engineering

Boeing Vertol Company, Box 16858, Philadelphia, Pennsylvania 19142

1 ATTN: R. Pinckney, Manufacturing Technology

1 R. Drago, Advanced Drive Systems Technology

Detroit Diesel Allison Division, General Motors Corporation, P.O. Box 894, Indianapolis, Indiana 46206

1 ATTN: James E. Knott, General Manager

General Electric Company, 10449 St. Charles Rock Road, St. Ann, Missouri 63074

1 ATTN: Mr. H. Franzen

AVCO-Lycoming Corporation, 550 South Main Street, Stratford, Connecticut 08497

1 ATTN: Mr. V. Strautman, Manager, Process Technology Laboratory

United Technologies Corporation, Pratt & Whitney Aircraft Division, Manufacturing Research and Development, East Hartford, Connecticut 06108

1 ATTN: Mr. Ray Traynor

Grumman Aerospace Corporation, Plant 2, Bethpage, New York 11714

1 ATTN: Richard Cyphers, Manager, Manufacturing Technology

1 Albert Grenci, Manufacturing Engineer, Department 231

Lockheed Missiles and Space Company, Inc., Manufacturing Research, 1111 Lockheed Way, Sunnyvale, California 94088

1 ATTN: H. Dorfman, Research Specialist

Lockheed Missiles and Space Company, Inc., P.O. Box 504, Sunnyvale, California 94086

1 ATTN: D. M. Schwartz, Dept. 55-10, Bldg. 572

Barry Controls, 700 Pleasant Street, Watertown, Massachusetts 02172

1 ATTN: R. R. Peterson, Technical Director

Army Me Wa SJ	DH
AD UNCLASSIFIED UNLIMITED DISTRIBUTION	Key Words
Army Materials and Mechanics Research Center, Watertown, Massachusetts 02172 SERVICE LIFE DETERMINATION FOR 114-604 (RIACKHAUR) HEITCODFED	ELASTOMERIC BEARINGS

UH-60 Helicopter Elastomeric-Bearings

Technical Report AVRADCOM-80-F-8, April 1980, 270 pp-11lus-table, D/A Project: 1757095

AMCMS Code 1498.94,587095 (YYS)

Life expectancy

method is shown for using finite element strain data and elastomer endurance data to predict the service life of elastomeric bearings. The method was demonstrated on the UH-60A (Blackhawk) helicopter main rotor bearings. These bearings were then tested to determine the degree of correlation between analytical and test results. Photographic documentation is given for the damage seen on the elastomeric bearings as a guide in establishing a bearing life criterion based on bearing appearance.

AD	UNCLASSIFIED	UNLIMITED DISTRIBUTION		Key Words
Army Materials and Mechanics Research Center,	Watertown, Massachusetts 02172	SERVICE LIFE DETERMINATION FOR	UH-60A (BLACKHAWK) HELICOPTER	ELASTOMERIC BEARINGS

Elastomeric-Bearings Life expectancy Technical Report AVRADCOM-80-F-8, April 1980, 270 pp-illus-table, D/A Project: 1757095 AMCMS Code 1498.94.587095 (YYS)

method is shown for using finite element strain data and elastomer endurance data to predict the service life of elastomeric bearings. The method was demonstrated on the $\mathrm{UH-60A}$ (Blackhawk) helicopter main rotor bearings, between analytical and test results. Photographic documentation is given for the damage seen on the elastomeric bearings as a guide in establishing These bearings were then tested to determine the degree of correlation a bearing life criterion based on bearing appearance.

n data and elastomer end	A method is shown for using finite element strain data and elastomer end
Life expectancy	AMCMS Code 1498.94.587095 (YYS)
UH-60 Helicopter Elastomeric-Bearings	Technical Report AVRADCOM-80-F-8,April 1980, 270 pp-illus-table,D/A Project: 1757095
Key Words	ELASTOMERIC BEARINGS
UNLIMITED DISTRIBUTION	SERVICE LIFE DETERMINATION FOR UH-60A (BLACKHAWK) HELICOPTER
UNCLASSIFIED	Watertown, Massachusetts 02172
AD	Army Materials and Mechanics Research Center,

-uqurance data to predict the service life of elastomeric bearings. The method was demonstrated on the UH-60A (Blackhawk) helicopter main rotor bearings. between analytical and test results. Photographic documentation is given for the damage seen on the elastomeric bearings as a guide in establishing a bearing life criterion based on bearing appearance. These bearings were then tested to determine the degree of correlation

AD	UNCLASSIFIED	UNLIMITED DISTRIBUTION		Key Words	
Army Materials and Mechanics Research Center,	Watertown, Massachusetts 02172	SERVICE LIFE DETERMINATION FOR	UH-60A (BLACKHAWK) HELICOPTER	ELASTOMERIC BEARINGS	

Elastomeric-Bearings

Technical Report AVRADCOM-80-F-8,April 1980, 270 pp-illus-table,D/A Project: 1757095 AMCMS Code 1498.94.587095 (YYS)

UH-60 Helicopter Life expectancy A method is shown for using finite element strain data and elastomer endurance data to predict the service life of elastomeric bearings. The method was demonstrated on the UH-60A (Blackhawk) helicopter main rotor bearings. between analytical and test results. Photographic documentation is given for the damage seen on the elastomeric bearings as a guide in establishing These bearings were then tested to determine the degree of correlation a bearing life criterion based on bearing appearance.