Lecture Notes: Tangent and Gradient

Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk

Let $p(x_1, x_2, ..., x_d)$ be a point in \mathbb{R}^d . We will often view it as a d-dimensional vector $[x_1, x_2, ..., x_d]$. As a convention, if it has been clear from the context that p is a point, then p represents this corresponding vector.

1 Curves and Tangent Vectors

Curves. Imagine that you move a point around in \mathbb{R}^d . The locus of the point forms a *curve*. Intuitively, a curve is a 1d geometric object. Indeed, we can represent a curve using a vector function $\mathbf{r}(t)$:

$$r(t) = [x_1(t), x_2(t),, x_d(t)]$$

where t is a real value in a certain range, and each function $x_i(t)$ (with $i \in [1, d]$) returns a real value. For each t, $(x_1(t), ..., x_d(t))$ defines a point, and $\mathbf{r}(t)$ gives the corresponding vector.

For example, $\mathbf{r}(t) = [\cos t, \sin t]$ for $t \in [0, 2\pi)$ defines a circle in \mathbb{R}^2 , whereas $\mathbf{r}(t) = [\cos t, \sin t, t]$ for $t \in [0, 2\pi)$ defines a circular helix in \mathbb{R}^3 as shown below:

As yet another example, given constant d-dimensional vectors \mathbf{p} and \mathbf{q} with $\mathbf{q} \neq \mathbf{0}$, function $\mathbf{r}(t) = \mathbf{p} + t\mathbf{q}$ for $t \in (-\infty, \infty)$ gives a line in \mathbb{R}^d .

Tangent Vectors. We are ready to introduce:

Definition 1. Let r(t) be a curve, t_0 be a value of t, and p be the point corresponding to $r(t_0)$. If r(t) is differentiable at t_0 , then the vector $r'(t_0)$ is the tangent vector of the curve at p.

The tangent vector has an intuitive geometric interpretation. Let q be the point that corresponds to $f(t_0 + \Delta t)$; see the figure below. Let us focus on the direction of the directed segment $\overrightarrow{p,q}$. Now, imagine q moving along the curve towards p (namely, Δt tends to 0). The direction of the directed segment gradually converges to the direction of the tangent vector at p.

We will refer to

$$\boldsymbol{u}(t_0) = \frac{\boldsymbol{r}'(t)}{|\boldsymbol{r}'(t)|}$$

as the unit tangent vector of the curve at p. Note that $|\mathbf{u}(t_0)| = 1$.

As an example, consider the helix mentioned earlier: $\mathbf{r}(t) = [\cos t, \sin t, t]$ for $t \in [0, 2\pi)$. Let p be the point corresponding to $\mathbf{r}(1)$. Then, the tangent vector of the curve at p is $\mathbf{r}'(1) = [-\sin(1), \cos(1), 1]$. The unit tangent vector at p is therefore $[-\frac{\sin(1)}{\sqrt{2}}, \frac{\cos(1)}{\sqrt{2}}, \frac{1}{\sqrt{2}}]$.

2 Gradient

Let $f(x_1, x_2, ..., x_d)$ be a scalar function of real-valued parameters $x_1, ..., x_d$. In other words, for each point $p(x_1, ..., x_d)$ of \mathbb{R}^d , $f(x_1, x_2, ..., x_d)$ returns a real value, if it is defined at p. For simplicity, sometimes we may write $f(x_1, x_2, ..., x_d)$ simply as f(p). Next, we introduce a concept called gradient for such functions:

Definition 2. Let $f(x_1,...,x_d)$ be a function defined as above. Consider a point $(t_1,t_2,...,t_d)$ at which the partial derivative $\frac{\partial f}{\partial x_i}(t_1,...,t_d)$ exists for all $i \in [1,d]$. Then, the **gradient** of $f(x_1,...,x_d)$ at $(t_1,t_2,...,t_d)$ is the vector:

$$\nabla f(t_1, ..., t_d) = \left[\frac{\partial f}{\partial x_1}(t_1, ..., t_d), \frac{\partial f}{\partial x_2}(t_1, ..., t_d), ..., \frac{\partial f}{\partial x_d}(t_1, ..., t_d) \right].$$

For example, suppose that $f(x, y, z) = x^3 + 2xy + 3xz^2$. We know that $\frac{\partial f}{\partial x} = 3x^2 + 2y + 3z^2$, $\frac{\partial f}{\partial y} = 2x$, and $\frac{\partial f}{\partial z} = 6x$. Therefore,

$$\nabla f(t_1, t_2, t_3) = \left[3t_1^2 + 2t_2 + 3t_3^2, 2t_1, 6t_1 \right].$$

We can as well just write the gradient as $\nabla f(x, y, z) = [3x^2 + 2y + 3z^2, 2x, 6x]$ by renaming the variables.

The gradient $\nabla f(t_1, ..., t_d)$ has an important geometric interpretation. Imagine that we are standing at the point $p(t_1, ..., t_d)$. Then the gradient points to the direction we should move in order to increase the value of function $f(x_1, ..., x_d)$ the most. Next, we will formalize the intuition.

Suppose that we decide to move from p towards the direction of a unit vector \boldsymbol{u} by a distance Δs . Let q be the point we will reach, as shown below:

We now prove an important lemma:

Lemma 1.

$$\lim_{\Delta s \to 0} \frac{f(q) - f(p)}{\Delta s} = \left(\nabla f(p)\right) \cdot \boldsymbol{u}. \tag{1}$$

Proof. Suppose that $\mathbf{u} = [u_1, u_2, ..., u_d]$, and the coordinates of p are $(t_1, t_2, ..., t_d)$.

Let ℓ be the line that passes p and q. We know that we can represent any point on ℓ as $(x_1(s), x_2(s), ..., x_d(s))$, where for all $i \in [1, d]$:

$$x_i(s) = t_i + s \cdot u_i.$$

In particular, if s = 0, the above representation gives p, whereas if $s = \Delta s$, the above representation gives q.

Define g(s) to be the $f(x_1(s),...,x_d(s))$. We can re-write the left hand side of (1) as:

$$\lim_{\Delta s \to 0} \frac{f(q) - f(p)}{\Delta s} = \lim_{\Delta s \to 0} \frac{g(\Delta s) - g(0)}{\Delta s}$$
(by def. of derivative) = $g'(0)$.

On the other hand, applying the chain rule, we know:

$$g'(s) = \sum_{i=1}^{d} \frac{\partial f}{\partial x_{i}}(x_{1}(s), ..., x_{d}(s)) \frac{dx_{i}}{ds}$$

$$= \left[\frac{\partial f}{\partial x_{1}}(x_{1}(s), ..., x_{d}(s)), ..., \frac{\partial f}{\partial x_{d}}(x_{1}(s), ..., x_{d}(s)) \right] \cdot \left[x'_{1}(s), ..., x'_{d}(s) \right]$$

$$= (\nabla f(x_{1}(s), ..., x_{d}(s))) \cdot [u_{1}, ..., u_{d}]$$

$$= (\nabla f(x_{1}(s), ..., x_{d}(s))) \cdot \mathbf{u}.$$

Therefore, $g'(0) = (\nabla f(x_1(0), ..., x_d(0))) \cdot \mathbf{u} = (\nabla f(p)) \cdot \mathbf{u}$.

As a corollary of the above lemma, we obtain

$$\lim_{\Delta s \to 0} \frac{f(q) - f(p)}{\Delta s} = \left| \nabla f(p) \right| |\boldsymbol{u}| \cos \gamma.$$

where γ is the angle between the directions of $\nabla f(p)$ and \boldsymbol{u} . Hence, the limit is maximized if $\gamma = 0$, namely, \boldsymbol{u} has the same direction as $\nabla f(p)$.

It is worth mentioning that the limit on the left hand side of (1) is called the *directional* derivative in the direction of u, and is denoted as $D_{u}f$. Note that this is a function of p. In other words, $D_{u}f(p)$ gives the directional derivative in the direction of u at point p.