Recap for Tutorial 2

MH1101

February 1, 2025

1 Fundamental Theorem of Calculus

Theorem 1. Suppose f(x) is continuous on [a,b], then for $x \in (a,b)$, we have

$$\frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{x} f(t) \, \mathrm{d}t = f(x).$$

Theorem 2. If f(x) is continuous on [a, b], then

$$\int_{a}^{b} f(x) \, \mathrm{d}x = F(b) - F(a),$$

where F(x) is any antiderivative of f(x).

2 Substitution Rule

Theorem 3. Suppose g' is continuous on [a,b] and f is continuous on the range of u:=g(x), then

$$\int_{a}^{b} f(g(x))g'(x) \, dx = \int_{g(a)}^{g(b)} f(u) \, du.$$

3 Mean Value Theorem for Integrals

Theorem 4. If f is continuous on [a,b], then there exists a number $c \in [a,b]$, such that

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx.$$

4 Extra Exercises

Problem 1. If $F(x) = \int_{1}^{x} f(t) dt$, where $f(t) = \int_{1}^{t^{2}} \frac{\sqrt{1 + u^{4}}}{u} du$. Find F''(2).

Problem 2. Find a function f(x) and a number a, such that

$$6 + \int_a^x \frac{f(t)}{t^2} dt = 2\sqrt{x} \quad \forall x > 0.$$

Problem 3. Compute the following.

(a)
$$\int \frac{1+x}{1+x^2} \, dx$$
.

(b)
$$\int_{1}^{2} \frac{e^{1/x}}{x^2} dx$$
.

(c)
$$\int_0^a x \sqrt{a^2 - x^2} \, dx$$
.