

# Department of Computer Engineering

Experiment No. 2

Analyze the Titanic Survival Dataset and apply appropriate regression technique

Date of Performance: 31-07-2023

Date of Submission: 10-08-2023



### Department of Computer Engineering

Aim: Analyze the Titanic Survival Dataset and apply appropriate Regression Technique.

**Objective:** Able to perform various feature engineering tasks, apply logistic regression on the given dataset and maximize the accuracy.

#### Theory:

Logistic Regression was used in the biological sciences in the early twentieth century. It was then used in many social science applications. Logistic Regression is used when the dependent variable(target) is categorical and is binary in nature. In order to perform binary classification the logistic regression techniques make use of Sigmoid function.

For example,

To predict whether an email is spam (1) or (0)

Whether the tumor is malignant (1) or not (0)

Consider a scenario where we need to classify whether an email is spam or not. If we use linear regression for this problem, there is a need for setting up a threshold based on which classification can be done. Say if the actual class is malignant, predicted continuous value 0.4 and the threshold value is 0.5, the data point will be classified as not malignant which can lead to serious consequences in real time.





### Department of Computer Engineering

From this example, it can be inferred that linear regression is not suitable for classification problems. Linear regression is unbounded, and this brings logistic regression into picture. Their value strictly ranges from 0 to 1.

#### **Dataset:**

The sinking of the Titanic is one of the most infamous shipwrecks in history. On April 15, 1912, during her maiden voyage, the widely considered "unsinkable" RMS Titanic sank after colliding with an iceberg. Unfortunately, there weren't enough lifeboats for everyone onboard, resulting in the death of 1502 out of 2224 passengers and crew.

While there was some element of luck involved in surviving, it seems some groups of people were more likely to survive than others. In this challenge, we ask you to build a predictive model that answers the question: "what sorts of people were more likely to survive?" using passenger data (ie name, age, gender, socio-economic class, etc).

| Variable     | Definition                                 | Key                                            |
|--------------|--------------------------------------------|------------------------------------------------|
| survival     | Survival                                   | 0 = No, 1 = Yes                                |
| pclass       | Ticket class                               | 1 = 1st, 2 = 2nd, 3 = 3rd                      |
| sex          | Sex                                        |                                                |
| Age          | Age in years                               |                                                |
| sibsp        | # of siblings / spouses aboard the Titanic |                                                |
| parch        | # of parents / children aboard the Titanic |                                                |
| ticket       | Ticket number                              |                                                |
| fare         | Passenger fare                             |                                                |
| cabin        | Cabin number                               |                                                |
| embarke<br>d | Port of Embarkation                        | C = Cherbourg, Q = Queenstown, S = Southampton |



### Department of Computer Engineering

Variable Notes

pclass: A proxy for socio-economic status (SES)

1st = Upper, 2nd = Middle, 3rd = Lower

age: Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5

sibsp: The dataset defines family relations in this way...,

Sibling = brother, sister, stepbrother, stepsister

Spouse = husband, wife (mistresses and fiancés were ignored)

parch: The dataset defines family relations in this way...

Parent = mother, father

Child = daughter, son, stepdaughter, stepson

Some children traveled only with a nanny, therefore parch=0 for them.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model\_selection import train\_test\_split
from sklearn.linear\_model import LogisticRegression
from sklearn.metrics import accuracy\_score

# load the data from csv file to Pandas DataFrame
titanic\_data = pd.read\_csv('/content/train.csv')

# printing the first 5 rows of the dataframe
titanic\_data.head()

|   | PassengerId | Survived | Pclass | Name                                                    | Sex    | Age  | SibSp | Parch | Ticket    | Fare    | Cabin | Embark |
|---|-------------|----------|--------|---------------------------------------------------------|--------|------|-------|-------|-----------|---------|-------|--------|
| 0 | 1           | 0        | 3      | Braund,<br>Mr. Owen<br>Harris                           | male   | 22.0 | 1     | 0     | A/5 21171 | 7.2500  | NaN   |        |
| 1 | 2           | 1        | 1      | Cumings,<br>Mrs. John<br>Bradley<br>(Florence<br>Briggs | female | 38.0 | 1     | 0     | PC 17599  | 71.2833 | C85   |        |

# number of rows and Columns
titanic\_data.shape

(891, 12)

# getting some informations about the data
titanic\_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

| Data | columns (tota | at is cotumus): |         |
|------|---------------|-----------------|---------|
| #    | Column        | Non-Null Count  | Dtype   |
|      |               |                 |         |
| 0    | PassengerId   | 891 non-null    | int64   |
| 1    | Survived      | 891 non-null    | int64   |
| 2    | Pclass        | 891 non-null    | int64   |
| 3    | Name          | 891 non-null    | object  |
| 4    | Sex           | 891 non-null    | object  |
| 5    | Age           | 714 non-null    | float64 |
| 6    | SibSp         | 891 non-null    | int64   |
| 7    | Parch         | 891 non-null    | int64   |
| 8    | Ticket        | 891 non-null    | object  |
| 9    | Fare          | 891 non-null    | float64 |
| 10   | Cabin         | 204 non-null    | object  |
| 11   | Embarked      | 889 non-null    | object  |
|      |               |                 |         |

dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB

# check the number of missing values in each column
titanic\_data.isnull().sum()

PassengerId Survived Pclass 0 Name 0 Sex 0 177 SibSp 0 Parch Ticket 0 Fare Cabin 687 Embarked dtype: int64

# drop the "Cabin" column from the dataframe
titanic\_data = titanic\_data.drop(columns='Cabin', axis=1)

# replacing the missing values in "Age" column with mean value titanic\_data['Age'].fillna(titanic\_data['Age'].mean(), inplace=True)

# finding the mode value of "Embarked" column
print(titanic\_data['Embarked'].mode())

```
0 S
Name: Embarked, dtype: object
```

print(titanic\_data['Embarked'].mode()[0])

S

# replacing the missing values in "Embarked" column with mode value titanic\_data['Embarked'].fillna(titanic\_data['Embarked'].mode()[0], inplace=True)

# check the number of missing values in each column
titanic\_data.isnull().sum()

| PassengerId  | 0 |
|--------------|---|
| Survived     | 0 |
| Pclass       | 0 |
| Name         | 0 |
| Sex          | 0 |
| Age          | 0 |
| SibSp        | 0 |
| Parch        | 0 |
| Ticket       | 0 |
| Fare         | 0 |
| Embarked     | 0 |
| dtype: int64 |   |

# getting some statistical measures about the data titanic\_data.describe()

|       | PassengerId | Survived   | Pclass     | Age        | SibSp      | Parch      | Fare       | 7. | 11. |
|-------|-------------|------------|------------|------------|------------|------------|------------|----|-----|
| count | 891.000000  | 891.000000 | 891.000000 | 891.000000 | 891.000000 | 891.000000 | 891.000000 |    |     |
| mean  | 446.000000  | 0.383838   | 2.308642   | 29.699118  | 0.523008   | 0.381594   | 32.204208  |    |     |
| std   | 257.353842  | 0.486592   | 0.836071   | 13.002015  | 1.102743   | 0.806057   | 49.693429  |    |     |
| min   | 1.000000    | 0.000000   | 1.000000   | 0.420000   | 0.000000   | 0.000000   | 0.000000   |    |     |
| 25%   | 223.500000  | 0.000000   | 2.000000   | 22.000000  | 0.000000   | 0.000000   | 7.910400   |    |     |
| 50%   | 446.000000  | 0.000000   | 3.000000   | 29.699118  | 0.000000   | 0.000000   | 14.454200  |    |     |
| 75%   | 668.500000  | 1.000000   | 3.000000   | 35.000000  | 1.000000   | 0.000000   | 31.000000  |    |     |
| max   | 891.000000  | 1.000000   | 3.000000   | 80.000000  | 8.000000   | 6.000000   | 512.329200 |    |     |

# finding the number of people survived and not survived
titanic\_data['Survived'].value\_counts()

0 5491 342

Name: Survived, dtype: int64

sns.set()

```
# making a count plot for "Survived" column
# Set the figure size
plt.figure(figsize=(3, 2)) # Adjust the width and height as needed
# Create the count plot
sns.countplot(x='Survived', data=titanic_data)
# Display the plot
plt.show()
```



titanic\_data['Sex'].value\_counts()

male 577 female 314

Name: Sex, dtype: int64

# making a count plot for "Sex" column
plt.figure(figsize=(4, 2))
sns.countplot(x='Sex', data=titanic\_data)
plt.show()



# number of survivors Gender wise
plt.figure(figsize=(4, 2))
sns.countplot(x='Sex', hue='Survived', data=titanic\_data)
plt.show()



# making a count plot for "Pclass" column
plt.figure(figsize=(4, 2))
sns.countplot(x='Pclass', data=titanic\_data)
plt.show()



plt.figure(figsize=(4, 2))
sns.countplot(x='Pclass', hue='Survived', data=titanic\_data)
plt.show()



titanic\_data['Sex'].value\_counts()

male 577 female 314

```
Name: Sex, dtype: int64
```

titanic\_data['Embarked'].value\_counts()

S 646 C 168 O 77

Name: Embarked, dtype: int64

# converting categorical Columns

titanic\_data.replace({'Sex':{'male':0,'female':1}, 'Embarked':{'S':0,'C':1,'Q':2}}, inplace=True)

titanic\_data.head()

|   | PassengerId | Survived | Pclass | Name                                                    | Sex | Age  | SibSp | Parch | Ticket    | Fare    | Embarked |
|---|-------------|----------|--------|---------------------------------------------------------|-----|------|-------|-------|-----------|---------|----------|
| 0 | 1           | 0        | 3      | Braund, Mr.<br>Owen Harris                              | 0   | 22.0 | 1     | 0     | A/5 21171 | 7.2500  | 0        |
| 1 | 2           | 1        | 1      | Cumings, Mrs.<br>John Bradley<br>(Florence Briggs<br>Th | 1   | 38.0 | 1     | 0     | PC 17599  | 71.2833 | 1        |
| 2 | 3           | 1        | 3      | Heikkinen, Miss.                                        | 1   | 26.0 | 0     | 0     | STON/02.  | 7.9250  | 0        |

X = titanic\_data.drop(columns = ['PassengerId','Name','Ticket','Survived'],axis=1)

Y = titanic\_data['Survived']

print(X)

|     | Pclass | Sex | Age       | SibSp | Parch | Fare    | Embarked |
|-----|--------|-----|-----------|-------|-------|---------|----------|
| 0   | 3      | 0   | 22.000000 | 1     | 0     | 7.2500  | 0        |
| 1   | 1      | 1   | 38.000000 | 1     | 0     | 71.2833 | 1        |
| 2   | 3      | 1   | 26.000000 | 0     | 0     | 7.9250  | 0        |
| 3   | 1      | 1   | 35.000000 | 1     | 0     | 53.1000 | 0        |
| 4   | 3      | 0   | 35.000000 | 0     | 0     | 8.0500  | 0        |
|     |        |     |           |       |       |         |          |
| 886 | 2      | 0   | 27.000000 | 0     | 0     | 13.0000 | 0        |
| 887 | 1      | 1   | 19.000000 | 0     | 0     | 30.0000 | 0        |
| 888 | 3      | 1   | 29.699118 | 1     | 2     | 23.4500 | 0        |
| 889 | 1      | 0   | 26.000000 | 0     | 0     | 30.0000 | 1        |
| 890 | 3      | 0   | 32.000000 | 0     | 0     | 7.7500  | 2        |

[891 rows x 7 columns]

print(Y)

X\_train, X\_test, Y\_train, Y\_test = train\_test\_split(X,Y, test\_size=0.33, random\_state=42)

```
print(X.shape, X_train.shape, X_test.shape)
```

(891, 7) (596, 7) (295, 7)

model = LogisticRegression()

# training the Logistic Regression model with training data model.fit(X\_train, Y\_train)

\* LogisticRegression LogisticRegression() # accuracy on training data
X train prediction = model.predict(X train)

print(X train prediction)

[0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 . 100011000000000001000100000000111011000 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1]

training\_data\_accuracy = accuracy\_score(Y\_train, X\_train\_prediction)
print('Accuracy score of training data : ', training\_data\_accuracy)

Accuracy score of training data : 0.8003355704697986

# accuracy on test data
X\_test\_prediction = model.predict(X\_test)

print(X\_test\_prediction)

test\_data\_accuracy = accuracy\_score(Y\_test, X\_test\_prediction)
print('Accuracy score of test data : ', test\_data\_accuracy)

Accuracy score of test data : 0.8135593220338984

from sklearn.metrics import confusion\_matrix pd.DataFrame(confusion\_matrix(Y\_test, X\_test\_prediction),columns=['Predicted No','Predicted Yes'],index=['Actual No','Actual Yes'])

|            | Predicted No | Predicted Yes | 1 |
|------------|--------------|---------------|---|
| Actual No  | 153          | 22            |   |
| Actual Yes | 33           | 87            |   |

from sklearn.metrics import classification\_report
print(classification\_report(Y\_test, X\_test\_prediction))

|                                       | precision    | recall       | f1-score             | support           |
|---------------------------------------|--------------|--------------|----------------------|-------------------|
| 0                                     | 0.82         | 0.87         | 0.85                 | 175               |
| 1                                     | 0.80         | 0.72         | 0.76                 | 120               |
| accuracy<br>macro avg<br>weighted avg | 0.81<br>0.81 | 0.80<br>0.81 | 0.81<br>0.80<br>0.81 | 295<br>295<br>295 |

#### Conclusion:

The features that have been chosen to develop the model are as follows:

- 1. Pelass (Passenger Class): This is the class of the passenger's ticket (1st, 2nd, or 3rd class). It can be a valuable indicator as higher classes might have been given preference duringemergencies.
- 2. Sex: This feature represents the gender of the passenger Historically, during the Titanic disaster, the "women and children first" policy was followed during evacuation, potentially making gender a significant factor in survival prediction,
- 3. Age: The age of the passenger is an important consideration. It's known that children and elderly passengers might have had different survival rates compared to young adults.
- 4. SibSp (Number of Siblings/Spouses Aboard). This feature indicates the presence of family members (siblings or spouses) on board. It might influence the decision-making process during evacuation
- 5 Parch (Number of Parents/Children Aboardy Similar to 'SibSp', this feature represents the presence of parents or children on board, which could impact survival decisions.
- 6. Fare: The fare paid by the passenger might correlate with their class or accommodations. which could affect their access to lifeboats or safety measures.
- 7. Embarked: This feature represents the port of embarkation (S=Southampton, C= Cherbourg, Q = Queenstown). Different embarkation points might have socio-economic implications, potentially affecting survival rates.

#### Accuracy:-

- 1.Training Accuracy (80.03%): This means that your model correctly predicts the survival outcome for approximately 80.03% of the training data. In other words, out of all the instances in your training dataset, your model accurately predicted the survival outcome for about 80.03% of them.
- 2.Test Accuracy (81.36%): Similarly, this indicates that your model correctly predicts the survival outcome for around 81.36% of the test data. Out of all the instances in your test dataset, your model accurately predicted the survival outcome for about 81.36% of them.

The fact that the accuracy scores for both training and test data are relatively close suggests that your model is performing consistently on both datasets. A small difference between training and test accuracy indicates that the model is not significantly overfitting or underfitting the data. It's important to note that the actual values of the accuracy percentages are more important than the specific difference between them.