

TO STATE OF THE PROPERTY OF TH

NATIONAL TECHNICAL INFORMATION SERVICE

DOCUMENT	CONTROL	DATA.	RRO

Security classification of title mody of abstract and indexact air tales, our tales, our tale entered when the overall report is classified)

ORIGI A TING ACTIVITY (Corporate ordior)

[20. REPORT SECURITY CLASSIFICATION

NAVAL MEDICAL RESEARCH INSTITUTE NATIONAL NEVAL MEDICAL CENTER BETHESDA, 'ARYLAND 20014 28. REPORT SECURITY CLASSIFICATION UNCLASSIFIED

Zb. GROUP

3 REPORT TITLE

STUDIES ON THE MECHANISM OF FASTING HYPERBILIRUBINENTA

Consensive notes (1) pe of moor and inclusive dates;
Me Leal research progress report

s. AUTSCRIS) (First name, middle initial, last name)

Joseph R. BLOOMER, M.D., Peter V. BARRETT, M.D., F. Lee RODKEY, Ph.D., and Mathaniel I. BERLIN, M.D., h.D.

TO THE REPORT NOISI (Arry other numbers that may be assigned this report)

ID. DISTRIBUTION STATEMENT

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITED.

II. SUPPLEMENT ARY MOTES

GASTROENTEROLOGY Vol. 61, No. 4, Part 1

BUREAU OF MEDICINE AND SURGERY (NAVY)
WASHINGTON, D. C.

PEROLEMAN SERVICE SERV

The total plasma bilirubin concentration (Br) increased by 23 to 334% in 12 individuals (10 healthy volunteers and 2 patients with Gilbert's syndrome) who fasted for 1 to 3 days. Eighty-six per cent of the rise in Er was due to an increase in plasma unconjugated bilirubin. The percentage in trease in Br did not correlate with the magnitude of the base line concentration atuates with bilitybin-3H in 5 subjects showed that the happing clearance of fillrobin from the plasma (CBr) was reduced by 28 to 54% during fasting, accounting for the increase in Br. The ratio of the plasma bilirubin turnover during fasting to that in base line state was 0.99 ± 0.16 (mean I SD) for these five individuals, indicating that increased plasma bilirubin turnover did not contrabute to the rate in Br In 5 addilional subjects the mean change in carbon monoxide production with fisting was only +24%, whereas Br increased by 188%. Further studies were done to deturning why GBr decreases with fasting. The plasma disappearance rate of independe green in 5 subjects after a 48-hr fast was unchanged from base line. Nine hor sygous Gunn rats had a 41 ± 10% (mean ± SE) increase in Br over control which 48 hr of fasting. Bilirubin-H clearance studies in 2 homozygous Gunr cate deconstrated 43 and 44% decreases in the whole body clearance of bilirubin during in long, with return to control rates on refeeding. Multicompartmental analysis it the human bilirubin clearance data showed that the ratio of the hepatic bul subjected to placma bilirubin pool decreased during fasting. These results are only consistent with the hypothesis that C_{Br} decreases with fasting horness of related hepari ability to extract bilirubin from the plasma.

DD FORM 1473

(PAGE 1)

UNCLASSIFIED

S/N 0102-0;4-6760

Security Classification

UNCLASSIFIED Security Classification LINK 3 KEY WORDS ROLE ROLE ROI, E w T Fasting
Hyperbilirubinemia
Carbon monoxide production
Bilirubin glucuronyl transical

DD 1 100 . 1473

(BACK)

S/(1 3102-014-000

STUDIES ON THE MECHANISM OF FASTING HYPERBILIRUBINEMIA

JOSEPH R. BLOOMER, M.D., PETER V. BARRETT, M.D. F. LEE RODKEY, P.D., AND NATHANIEL I. BERLIN, M.D., Ph.D.

National Cancer Institute, National Institutes of Health; Naval Medical Research Institute, Bethesda, Maryland; and Harbor General Hospital, Torrance, California

The total plasma bilirubin concentration (Br) increased by 23 to 334% in 12 individuals (10 healthy volunteers and 2 patients with Gilbert's syndrome) who fasted for 1 to 3 days. Eighty-six per cent of the rise in Br was due to an increase in plasma unconjugated bilirubin. The percentage increase in Br did not correlate with the magnitude of the base line concentration. Studies with bilirubin-³H in 5 subjects showed that the hepatic clearance of bilirubin from the plasma (C_{Bt}) was reduced by 28 to 54° during fasting, accounting for the increase in Br. The ratio of the plasma bilirubin turnover during fasting to that in base line state was 0.99 \pm 0 16 (mean \pm sp) for these five individuals. indicating that increased plasma bilirubin turnover did not contribute to the rise in Br. In 5 additional subjects the mean change in carbon monoxide production with fasting was only +24%, whereas Br increased by 188%. Further studies were done to determine why C₁₀ decreases with fasting. The plasma disappearance rate of indocyanine green in 5 subjects after a 48-hr fast was unchanged from base line. Nine homozygous Gunn rats had a $41 \pm 10^{\circ}$ (mean \pm sE) increase in Br over control values wit: 48 hr of fasting. Bilirubin-'H clearance studies in 2 homozygous Guan rats demonstrated 43 and 44% decreases in the whole body clearance of bilirubin during fasting, with return to control rates on refeeding. Multicompartmental analysis of the human bilirubin clearance data showed that the ratio of the hepatic bilirubin pool to plasma bilimbin pool decreased during fasting. These results are most consistent with the hypothesis that CBr decreases with fasting because of reduced hepatic ability to extract bilirubin from the plasma.

The effect of caloric intake on the serum bilirubin concentration was noted as early as 1906 by Gilbert and Herscher. They observed that the serum bilirubin concen-

Received March 12, 197!. Accepted May 27, 1971.

Part of this work was presented at the annual meeting of the American Federation for Clinical Research, May 1971, in Atlantic City, New Jersey.

Address requests for reprints to: Dr. Nathaniel I. Berlin, National Cancer Institute, Metabolism Branch. Building 10, Room 4N117, National Institutes of Health, Bethesde, Maryland 20014.

This investigation was supported in part by United

tration was higher when individuals were fasting. More recently, Barrett² and Felsher et al.³ have shown that caloric restriction for 24 to 48 hr causes a significant in-

States Public Health Service Grant AM-12306 and CRC RR-00425 from the Nan, nal Institutes of Health (Dr. Barrett) and by the Hureau of Medicine and Surgery, Research Task M4206.02-4030BAK9 (Dr. Rodkey). The opinions or assertions contained herein are those of the authors and are not to be construed as official or reflecting the views of the Navy Department or the naval service at large.

Dr. Bloomer's present address is: Liver Unit, Yale-

crease in the serum bilirubin concentration of both normal indi 'duals and patients with a variety of types of hepatic dysfunction.

This investigation was designed to determine the mechanism responsible for the hyperbilirubinemua of fasting. The results indicate that hepatic clearance of bilirubin from the plasma decreases during fasting, causing the increase in the plasma bilirubin concentration. Additional studies were done to determine why hepatic bilirubin clearance is altered by fasting.

Methods

Plasma bilirubin concentrations in human subjects were measured by the method of Weber and Schalm. Plasma bilirubin concentrations in homozygous Gunn rats were measured by the method of Malloy and Evelyn's on 0.05 to 0.15 ml of blood collected from the tail vein in heparinized micro-blood collecting tubes (Arthur H. Thomas Co., Philadelphia, Pa.).

The plasma disappearance rate of bilirubin-³H in human subjects was determined following intra enous administration of 15 to 30 µc of bilirubin-³H in 0.5 mg of bilirubin. using the methods of Barrett et al. and Berk et al. The following indices of bilirubin metabolism were calculated from parameters of the plasma disappearance curve of bilirubin-³H and the plasma concentration of unconjugated bilirubin (Br) *- *: (1) C_{Br}, the volume of plasma cleared of unconjugated bilirubin each minute by the liver; (2) BRT, the plasma bilirubin turnover in milligrams per day; and (3) the percentage retention of labeled bilirubin in the plasma at 4 hr.

 C_{Pe} (ml per min) = initial distribution volume of bilirubin- ${}^{2}H \times$

area under bilicubin-³H plasma disappeacance curve (1)

BRT (mg per day) = C_{18} (ml per min) $\times \frac{Br}{100}$ (mg per ml) $\times 1400$ (min per day)

New Haven Hospital, New Haven, Connecticut 06514.

The authors thank Mr. John Vergalla, Harold Collison, and John O'Neal for their assistance in performing these studies, and Miss Teri Mills for preparation of the magascripe.

The bilirubin-3H clearance data were also analyzed by multicompartmental analysis in terms of a three-pool model previously described by Berk et al. In this model the plasma pool of unconjugated bilirubin is considered to exchange with a hepatic bilirubin pool and extravascular extrahepatic bilirubin pool. The pool sizes and fractional transfer rates between pools were determined.

Labeled bilirubin clearance studies in homozygous Gunn rats were done with bilirubin-³H dissolved in male Sprague-Dawley rat plasma. The solution (0.5 to 1.0 ml), containing 0.1 to 0.2 m_B of bifurbin, was injected into a tail vein. Plasma samples for radioactivity were obtained from blood collected at the end of the tail in heparinized micro-blood collecting tubes.

The rate of carbon monoxide production in human subjects was measured in a closed rebreathing system. The methods of Collison et al.* and Rodkey et al.* were used.

The plasma disappearance rate of indocyanine green (ICG) in human subjects was determined by the method of Cherrick et al. 11 following intravenous administration (6.5 mg per kg of body weight).

The water content of rat liver was determined as the difference between the wet weight and the dry weight of tissue. The protein content was measured on trichloroacetic acid precipitates of liver homogenates by the method of Lowry et al. ¹² Bilirubin glucuronyl transferase activity in liver homogenates from male Sprague-Dawley rats was measured by the method of Black et al. ¹²

Subjects

Twelve individuals participated in these studies. All individuals except H. G. and K. S. we're healthy volunteers. H. G. had Gilbert's syndrome and an undefined congenital hemolytic anemia (red cell life span measured with tritiated diisopropylfuorophosphate was 30 days). K. S. had Gilbert's syndrome. Informed consent was obtained from each individual.

During periods of fasting both human subjects and rats underwent total caloric restriction, with only water intake allowed. During base line studies the human subjects were on an ad libitum diet, and rats were fed unlimited Purina rat chow.

Results

The plasma bilirubin concentration of each individual rose with caloric restriction (tables 1 to 3). The percentage increase in the bilirubin concentration did not correlate

with the magnitude of the base line value (r = 0.19). Eighty-six per cent (range, 69 to 93°,) of the increase in the total plasma bilirubin concentration was due to an increase in the unconjugated fraction. The greatest increase occurred during the first 24 to 34 hr of fasting, with a smaller increase over the subsequent 24 hr of fasting. The plasma bilirubin concentration in each individual returned to the base line value within 24 to 48 hr of refeeding.

The results of bilirubin-3H clearance studies in 5 subjects in the base line state as compared with fasting are shown in table 1. The fasting bilirubin-'H clearance study was started after 40 to 57 hr of total caloric restriction. Caloric restriction was continued for the duration of the study (an additional 24 to 30 hr). In four of the individuals the plasma bilirubin concentration had reached a new constant level by the time the fasting bilirubin-3H clearance study was started (the ratios of the plasma bilirubin concentrations at the end of the study to those at the beginning were 0.89, 0.99, 1.00, and 1.09). This indicates that a new steady state with respect to the plasma bilirubin concentration was present during the fasting bilirubin-3H clearance study. The plasma bilirubin concentration in H. G. was constant over the first 15 hr of the fasting bilirubin- 3H clearance study, but then increased by 28% during the last 9 hr of the study. However, the measurement of hepatic bilirubin clearance was well determined in this subject (uncertainty in the measurement was $\pm 5\%$.

The difference between the plasma disappearance of bilirubin-3H in the base line state compared with that during fasting is shown in figure 1. Indices of bilirubin metabolism obtained from parameters of the curves are given in table 1. In each individual the hepatic clearance of unconjugated bilirubin decreased during fasting, and the plasms retention of labeled bilirubin at 4 hr increased. The average uncertainty in the clearance measurement for the 5 subjects was $\pm 8^{\circ}$, both during base line state and fasting. The decreases in hepatic bilirubin clearance (by 28 to 54%) accounted for the increases in the plasma unconjugated bilirubin concentration. The ratio of the plasma bilirubin turnoyer during fasting to that during base line was 0.99 ± 0.16 (mean \pm sp) for the 5 subjects. indicating that an increase in plasma bilirubin turnover did not contribute to the increase in the plasma unconjugated bilirubin concentration. The increase in

TABLE 1. Bilirubin-'H clearance data'

Prince of the Control	.s. s	Pasma bilitular	Hepape	[To-mailhr	Planta	
	Stude	Consisted	Unconsigned	bilitulæi •learance	bdaska-44 bdaska-44	ไม่เกาะการ ในการจาก
:		Mg,	in mi	नालक		ne das
C, G, 1	Hase line	0.02 ± 0.01	0.39 ± 0.06	48	4	270
	Fasting	0.38 ± 0.02	0.86 ± 0.09	22	8	275
L 3.	Base Fine	9.08 ± 0.01	0.81 ± 0.06	28	11	330
	Fasting	6.24 ± 0.01	1.51 ± 0.06	18	17	391
B. C.	Base line	10.0 ± 60.0	0.97 ± 0.05	29	9	.197
:	Fasting	0.14 ± 0.03	1.17 ± 0.05	21	15	350
K. S.	Base line	0.07 ± 0.02	1.30 ± 0.03	13	21	285
8	Fasting	0.43 ± 0.43	1.69 ± 0.12	9 -	37	223
H. G.	Base line	0.24 ± 0.01	8.79 ± 0.33	• .	36	859
4.4	Fasting	0.66 ± 0.07	15.47 = 0.62		42	936

Indices of bilirabin metabolism calculated for in parameters of the bilirabin of disappearance curve and the plasma concentration of unconjugated bilirabin are glorun. The fasting studies in K. S. and H. G. were started after 40 br of total caloric restriction. The fasting studies in the other three individuals were started after 57 hr of total caloric restriction.

^{*}The plasma concentration listed for both conjugated bilimbin and unconjugated bilimbin is the mean \pm 53 of seven to eight samples obtained during the \approx 3dy.

plasma conjugated bilirubin during fasting, which forms a small percentage of the total increase, may also be due to decreased hepatic clearance, although this could not be studied by the present method.

The rate of carbon monoxide production was measured in 5 additional subjects during fasting (table 2). Carbon monoxide and bilirubin are both produced by catabolism of heme compounds, 14, 15 An increase in bilirubin production resulting from increased home degradation will be accompanied by an equimolar increase in carbon monoxide production. 16-18 although the converse may not be true.17 Since the plasma unconjugated bilirubin concentration is directly propertional to the plasma bilirubin turnover, 19 carbon monoxide croduction must change by at least the same percentage as the plasma bilirubin concentration during fasting, if augmented heme degradation alone is to account for the increase. This was not observed. The mean increase in the plasma bilirubin con-

TABLE 2. Carbon monoxide (CO) production*

Siĝea	Studs	Total plants intrubin concess tearies	dare. CD	CO produc- tien
		mg/l@ml	m!	mi das
3, V.	Base line	0.79	1024	12.2
	Base line	0.58	1048	14.6
	After 24-br fast	2.01	1013	11.2
R. H.	Base line	0,63	1305	29.4
	After 48-hr fast	1.34	1.315	23,5
P. B.*	Base lin		12.	1.2.8
	After 48h fast		1095	16.3
F. R.	Base line	0.34	824	9.2
	After 24-hr fast	0,85	794	10.5
	Fer 48-hr fast	0,90	771	16.9
J. R. B.	Hase line	9.59	1093	13.1
	After 24-hr fast	2,05	1078	18.9
	After 48-lir fast	2.56	1111	19,0
	L !			7

*The carbon monoxide production rate during fasting is compared with that during ad libitum caloric intake. A closed rebreathing system was used to measure the CO production rate. All studies except those in P. B. were performed on consecutive days.

*The total plasma bilitubin concentration is the mean of at least two samples obtained during the study.

^eA base line plasma bilirabin concentration was not established.

centration in the 5 subjects was 188', whereas the mean change in the carbon monoxide production rate was only +24'. The coefficients of variation seen on several

TAME 3. Indocyanine green (ICG) plasma clearance*

Subject	Kush	Total plasma belgubin concentration	H'O plaseus halt lite	
		लहः(।क m!	then:	
C. G.	Base line	0.40	3,0	
	Fasting	1.12	2.8	
M. C.	Base line	9,55	3.3	
	Fasting	0.78	3,6	
B. C.	Base line	6.81	3.6	
	fasting	1.37	3,6	
J. B.	Base line	0.73	3,7	
	Fasting	0.90	3.6	
R. H.	Base line	6.53	4.0	
~	Fasting	1,34	4.3	
Mean	Base line	0.62 £ 0.16	3.5 ± 0.4	
± 80	Fasting	1.10 ± 0.26	3.6 ± 0.5	

"The plasma clearance of ICG during fasting is compared with control clearance. The base line study was done following an 8-hr overnight fast (midnight to 8 AM). Each subject was then fasted an additional 48 hr and the fasting study was performed. There was no difference in the plasma half-life of ICG during fasting compared with base line.

*The total plasma bilirubin concentration is the mean of at least two samples obtained during the study.

Fig. 1. The plasma disappearance of biarubin-¹H in subject L. S. while fasting is compared with that during ad libitum cabric intake these line study), Individual data points are shown as a fraction of the extrapolated value at zero time. The solid lines represent computer fits to the data. The plasma disappearance rate of bilitubin-³H decreased with fasting.

replicate determinations of the base line carbon monoxide production rate in two individuals were $\pm 9^{\circ}_{c}$ and $\pm 16^{\circ}_{c}$. These results support the hypothesis that a reduction in hepatic bilirubin clearance is mainly responsible for the hyperbilirubinemia of fasting.

The plasma disappearance rate of ICG was determined in 5 subjects in the base line state and during fasting (table 3). Since ICG is extracted from the plasma by the liver with an efficiency of 63 to 88%, measurement of its plasma disappearance rate has been used to estimate hepatic blood flew indirectly. 11, 20, 21 In the individuals studied there was no difference in the plasma clearance of ICG in the fasting state compared with control values. These results indicate that a decrease in hepatic blood flow does not occur during fasting.

The total plasma bilirubin concentration in each of 9 homozygous Gunn rats with unconjugated hyperbilirubinemia increased during fasting. The base line concentration in these rats was 10.0 ± 3.5 mg per 100 ml (mean \pm sp). During 48 hr of fasting, the mean plasma bilirubin concentration increased by $41^{\circ}c$ (range, 12 to $88^{\circ}c$) of the

Fig. 2. The plasma clearance of bilirubin-³H in bomozygous Gunn rats decreases during fasting, returning to control values on refeeding, individual data points are shown as a fraction of the extrapolated value at zero time. The least squares fits to the bilirubin-³H clearance data during od libitum caloric intake and fasting are shown by the solid lines and dashed lines respectively.

TABLE 4. Rat liver composition changes during fasting

	. Bosé composition								
Cresp		Hali weight	3	i - Lore weight	Grass of H ₂ O	Grams of protein			
THE PERSON	'1)	Fasted	Kefsd	inerweight percellner		ner g of liver			
		, , ,		,					
1	$264~\pm~20$			10.2 ± 1.6	0.68 ± 0.004	0.20 ± 0.002			
2	261 ± 11	226 ± 7	1	7.8 ± 0.7	0.69 ± 0.007	$9.2^{\circ} \pm 0.904$			
3	282 ± 10	222 ± 9	249 ± 12	10.2 ± 0.8	0.68 ± 0.004	0.19 ± 0.005			

Bilimbin glocurous) transferred

Ì	Relitables consugation							
Grap	8 तर बल्किंग			Milligratus	Milligranie	Meligranis		
	Ray law	Faerd	! Liver weight	व्या हर्ग है। इस हर्ग है।	गरका रेका प्रां किस के वह क्ष्रुक्तुक	per gof protoin per hr		
1			٠ .					
4	96 ± 3	PART AND	3.0 ± 0.1	2.4 ± 0.03	7.3 ± 0.3	11.7 ± 0.3		
5	66 ± 1	50 ± 2	1.8 💥 0.1	2.7 ± 0.2	4.9 ± 0.6	11.3 ± 0.7		
6	174 🕳 6		6.5 ± 0.7	2.5 ± 0.1	15.9 🚊 1.2	į		
7	173 ± 6	151 ± 3	4.0 ± 0.2	2.8 ± 0.2	11.2 ± 1.0	t ;		

^{*}Seven groups of 4 rats each were used in these studies. Values listed are the mean \pm 5z for the entire group. Groups 1, 4, and 6 were control groups. Groups 2, 5, and 7 were studied after 48 hr of total caloric restriction. Group 3 was fasted for 48 hr, then refed for 48 hr before study.

Holy Language and the control of the

control value. In 6 rats which were fasted an additional 24 hr there was a further increase (mean increase at 72 hr was 59% of cort of value). The total body weight in the erats decreased by an average of 11% during this period of fasting, whereas the mean homatocrit rose slightly from 40% to 41%.

Labeled bilimbin clearance studies it. 2 barnozygous Gunn rats are shown in figure 2. Bat 1 was a 249-g female with a total plasma bilirubin concentration of 15.7 mg per 10th ml. Rat 2 was a 196-g iemale with a bilirabin concentration of 14.6 mg per 100 ml. The fract, seal turnover of the total iscible bilirubin pool, determined from terminal lope of the plasma disaparance curve, 22 was 0.397 per day in rat 1 and 0.401 per day in rat 2 during normul caloric intake. The rate decreased to 0.226 per day in rat 1 and to 0.223 per day in rat 2 during fasting, with return to control rates on refeeding. These results in an animal which lacks bilirubin glucuronyl transferase indicate that a decrease in the rate of bilirubin conjugation is unlikely to explain the increase in the plasma uncodjugated bilirubin concentration occurs during fasting.

In male Sprague-Dawley rats a decrease in both total body weight (by 13 to 24'.) and liver weight (by 24 to 40'.) occurred during

48 hr of fasting (see table 4). The concentration of protein in the liver rose approximately 15% during fasting (P < 0.01 by Student's t-test). The water content [grams of H_2O per gram of liver (wet weight)] did not e^2 ange, Identical changes in hepatic protein and water content occurred in Gunn rats during fasting. The changes in bilirubin glucuronyl transferase activity in male Sprague-Dawley rat livers were the same as for total protein, and activity per gram of protein did not change.

The bilirabin- 1 H clearance data from human subjects were subjected to multi-compartmental analysis in an attempt to define the specific step in hepatic bilirabin excretion which is altered by fasting. The model used (see fig. 3) considers the plasma pool of unconjugated bilirabin (M_1) to exchange with a hepatic pool (M_2) and exchange with

Fig. 3. Three compartment model for the metabolism of a recapitated bilirubia. Values for the A's, which are the fractional transfer rates between compartments, and for the pool sizes are calculated from the plasma disappearance curve of bilirubia. H and the plasma concentration of unconjugated bilirubia.

TABLE 5. Multicompartmental analysis of bilingbin-2H clearance studies.

Subsert	Sigh	Âş,	λ_{zz}	š	n-n	,u,∴u,
	•		707		;	
C, G,	: Base line	0.032	0.015	6.015	5.46	3.30
	Fasting	0,019	0,016	ં છે.હોક	6.59	2.67
L. S.	Base line	6,915	0.008	0,000	0.50	2.38
	Fasting	0.6.2	0.616	0,013	0.40	1.56
В. С.	Pase line	6,011	100,0	0.695	1.67	1,68
	. Fasting,	0.012	0.012	0,014	0.45	1.74
K. S.	Rase line	0,010	0,06G	0,000	9,82	1.19
	Fasing	6,005	0,004	: 0,001	; 0,63	1.30
H. G.	Base line	9.006	0,009	0,006	0.42	1.00
	Fasting	0.005	0.014	0,006	6.27	0.85

^{*}Results of multicompartmental analysis of hibrabin-*H clearance data in human subjects are shown λ_{12} —the fractional transfer rate of overningsted hibrabin (FTR) from plasma pool to hepatic pool, λ_{12} —FTR from the patic pool to plasma pool, λ_{n2} —irreversible fractional removal rate of unconjugated hibrabin from hepatic pool (~ conjugation), M_2/M_2 —ratio of hepatic pool of unconjugated hibrabin (milligrams) to plasma pool (milligrams), M_3/M_4 —ratio of extravascular extrahepatic pool of unconjugated hibrabin (milligrams) to plasma pool (milligrams).

travascular extrahepatic pool (M_3) of un-The fractional conjugated bilirubin. transfer rates between pools are depicted on figure 3 as λ 's In each individual a de crease in the ratio M_2 : M_1 occurred during fasting, indicating that the ability of the liver to extract bilirubin from the plasma was reduced by fasting (table 5). This decrease in the ratio of pool sizes was associated with a decrease in the fractional transfer rate of bilirubin from plasma to liver (λ_{2i}) and/or an increase in the fractional transfer rate from liver to plasma (λ_{12}) . The factional rate which represents conjugation, λ_{v2} decreased by 33% in subject K. S. during fasting but was unchanged or increased in the other 4 subjects. The ratio $M_3:M_4$ was unchanged in 2 subjects during fasting compared with base line, and slightly decreased in the other 3 subjects.

Discussion

The hyperbilirubinemia of fasting may be due to either a decrease in hepatic clearance of bilirubin from the plasma or an increase in plasma bilirubin turnover resulting from increased bilirubin production for a combination of both). In this investigation evidence has been presented which indicates that a reduction in hepatic bilirubin clearance during fasting is principally responsible for the increase in the plasma bilirubin concentration.

Measurements of the rate of carbon monoxide production in human individuals during fasting (table 2), while supporting the hypothesis that reduced hepatic bilirubin clearance is mainly responsible for the hyperbilirubinemia of fasting, suggest that an increased rate of heme degradation may also occur. Bakken et al.23 have in fact shown in rats that the activity of hepatic heme oxygenase, the enzyme responsible for the conversion of heme to bilirubin and carbon monoxide, is increased by fasting and by hermones released during hypoglycensia. The production of carbon monoxide.2°C from heme labeled with glycine-2-14C is also increased.23 The increased rate of carbon moroxide production observed in our subjects during fasting may thus indicate an increased rate of hepatic heme degradation. If this also reflects increased hepatic bilirubin production, the portion of hepatic bilirubin production which circulates in the plasma prior to excretion in the bile would contribute to the hyperbilirubinemic of fasting.24 It is necessary to point out, however, that an increase in the rate of carbon monoxide production does not always mean that there is an increase in bilirubin production. Landaw et al.17 showed in rats with experimental porphyria that hepatic heme may be degraded along nonbilirubin pathways. Likewise. Schacter et al.25 have described a mechanism for the degradation of heme and hemoprotein which results in the formation of carbon monoxide but variable amounts of bilirubin.

The physiological alteration causes the decrease in hepatic bilirubin clearance during fasting seems to be independent of the base line clearance rate and plasma bilirubin concentration. In 2 subjects with Gilbert's syndrome (K. S. and H. G. in table 1), base line hepatic bilirubin clearance was well below the normal range previously described.* Three other individuals (C. G., L. S., and B. C.) had values for clearance which were within the normal range. Subject L. S. had a plasma bilirubin concentration which was only 10% of that for H. G., and his base line hepatic bilirubin clearance was 3-fold greater. Yet both individuals had nearly identical percentage changes in both the plasma bilirubin concentration and hepatic bilirubin clearance with fasting. Multicompartmental analysis of the bilirubin clearance data demonstrated that the ratio of the benatic bilirubin pool to plasma bilirubin pool decreased in each individual during fasting (table 5).

It is unlikely that hepatic bilirubin clearance decreases with fasting because of a decrease in hepatic blood flow. In order to explain the magnitude of the increase in the plasma bilirubin concentration, a marked reduction in hepatic blood flow would be necessary. This would cause a decrease in the plasma clearance of ICG, since the plasma disappearance rate of ICG offers an indirect measurement of he-

patic blood flow which correlates very well with direct measurements. 11, 26, 21 Such a decrease was not observed in five individuals (table 3).

A decrease in the activity of hepatic bilirubin glucurchyl transferase is also unlikely to explain the hyperbilirubinemia of fasting. The demonstration that the plasma bilirubin concentration increases with fasting in Gunn rats which lack this enzyme, direct measurement of bilirubin glucuronyl transferase activity in homogenates of male Sprague-Dawley rat liver (table 4), and multicompartmental analysis of human bilirubin clearance data (table 5) indicate that a decrease in the activity of this enzyme does not explain the increase in the plasma bilirubin concentration during fasting.

Two hepatic cytoplasmic protein fractions which bind bilirubin and other organic anions have been described. However, the turnover rates of these proteins (halftimes of 19 days and 42 hr) 27 are too long to account for the rapidity of rise in the plasma bilirubin concentration during fasting, even if synthesis of the proteins stopped with fasting.

Diminished excretion of bilirubin into bile during fasting could cause the increase in plasma conjugated bilirubin. However, this would not explain the increase in plasma unconjugated bilirubin, since only conjugated bilirubin is exc. eted into bile.

A mechanism to explain fasting hyperbilirubinemia which is consistent with all the data presented is that a material forms (or increases) during fasting which inhibits hepatic bilirubin clearance. Alternatively, a material which facilitates hepatic bilirubin clearance could be depleted. Several compounds which may influence bilirubin metabolism change rapidly with fasting. For example, the plasma glucagon level increases to a peak by 3 days of fasting, whereas the plasma insulin and glucose levels decrease over the same time period.24 This is thought to reflect a period of accelerated hepatic gluconeogenesis. If henatic uptake of bilirubin is energy-dependent, such changes might be important. Free fatty acids, which have been shown to affect the binding of bilirubin to albumin, increase markedly with 24 hr of fasting and return rapidly to base line values on refeeding. Although the plasma concentration of free fatty acids attained during fasting is not sufficient to cause displacement of bilirubin from albumin in vitro, the free fatty acids might compete effectively with bilirubin for the hepatic cytoplasmic binding proteins, since the liver actively metabolizes free fatty acids during fasting.

Many other changes occur with fasting, and further work will be required to define the reason why hepatic bilirubin clearance decreases. Such investigation should add to the knowledge of bilirubin metabolism.

REFERENCES

- Gilbert A, Herscher M: Sur ley variations de la cholemic physiologique. Presse Med 14:209-211, 1906
- Barrett P: Hyperbilirubinemia of fasting, JAMA (in press)
- Felsber BF, Rickard D, Redeker AG: The reciprocal relation between caloric intake and the degree of hyperbilirubinemia in Gilbert's syndrome, New Eng 4 Med 283:170-172, 1970
- 4 Weber AP, Schalm L: Quantitative separation and determination of bilirubin and conjugated bilirub, n in human serum. Clin Chim Acta 7:80 10, 1969
- Malloy H, Evelyn K: The determination of bilirubin with the photoelectric colorimeter. J Biol Chem 119:481-490, 1937
- Howe RB, Berk PD, Bloomer JR, et al: Preparation and properties of specifically laueled radiochemically stable 2H-billimbin, J Lab Clin Med 75:499-502, 1979
- Barrett PVD, Berk PD, Menken M, et al: Bilirobin turnover studies in normal and pathologic states using bilirubin- °C, Ann Intern Med 68: 055-077, 1968
- Berk PD, Howe RB, Bloomer JR, et al; Studies of bilirubin kinetics in normal adults. J Clin Invest 48:2176-2190, 1969
- Collison HA, Rodkey FL, O'Neal JD: Determination of carbon monoxide in blood by gas chromatography. Clin Chem. 14:162-171, 1968.
- Rodkey FL, O'Neal JD, Collison HA: Oxygen and carbon monoxide equilibria of human eduli hemoglobin at atmospheric and elevated pressure. Blood 33:57-65, 1969
- 11. Cherrick GR, Stein SW, Leevy CM, et au Indo-

- cyanine green: observations on its physical properties, plason decay and hepatic extraction, J Clin Invest 39:592-600, 1960
- Lowry OH, Rosebrough NJ, Farr AL, et al: Protein measurement with the Folia phenol reagent. J Biol Chem 193;265-275, 1951
- Black M, Billing BH, Heirwegh KPM: Determination of billirubin UDP-glucuronyl transferase activity in needle-biopsy specimens of human liver. Clin Chim Acta 29:27–35, 1970
- Sjostrand T: The formation of carbon monoxide by the decomposition of haemoglobin in vivo. Acta Physiol Scand 26:338-344, 1952
- Ludwigg GD, Blakemore WS, Drabkin DL: Preduction of carbon monoxide by hemin oxidation. J Invest 36:912, 1957
- Engel R, Berk PD, Rodkey FL, et al: Estimation
 of heme turnover (HT) and erythrocyte survival
 (RBCLS) in man from cleazance of bilimbin
 (BR)-1°C and from carbon monoxide production
 (COP), Clin Res 17:325, 1969
- Landaw SA, Callahan EW Jr, Schmid R: Catabolism of heme in vivo: comparison of the sunultaneous production of bilirabin and carbon monoxide, J Clin Invest 49:914-925, 1970
- Coburn RF, Williams WJ, Kahn SB: Endogenous carbon monoxide production in patients with hemolytic anemia. J Clin Invest 45:460-468, 1966
- Berk PD Bloomer JR, Howe RB, and Berlin NI: Constitutional hepatic dysfunction (Gilbert's syndrome). A new definition based at kinetic studies with unconjugated radiobilizabin. Amer. J. Med 49:296-395, 1970.
- Reemstsma K, Hattinger GC, DeGraff AC, et al: The estimation of hepatic blood flow using indocyanine green. Surg Gynec Obstet 110:333–356, 1960

- 21 Caesar J, Shaldon S, Chiardussi L, et al: The use of indocyanine green in the measurement of hepatic blood flow and as a test of bepatic function. Clin Sci 21:43-57, 1961
- Schmid R, Hammaker L: Metabolism and disposition of C¹⁴-bihrubin in congenital nonhemolytic jaundice. J Clin Invest 42:1720-1734, 1963
- Bakken AF, Thalen MM, Schmid R: Hormonal control of hepatic heme catabolism. J Clin Invest 50:50a, 1971
- Jones EA, Bloomer JR, Berk PD, et al: The measurement of hepatic synthesis of bilirubin and its delivery to plasma in man. J Clin Invest 50:50a, 1971
- Schacter BA, Meyer UA, Hildebrandt AG, et al: Microsomal lipid peroxidation: a new mechanism for hemoprotein catabolism. Clin Res 19:429, 1871
- Levi AJ, Gatmaitan Z, Arias IM: Two hepatic cytoplasmic protein fractions, Y and Z, and their possible role in the hepatic uptake of bilirubin, sulfobromophthalein, and other anions. J Clin Invest 48:2456-2467, 1969
- Levi AJ, Gatmaitan Z, Arias IM: Study of the rates of turnover and development of two hepatic cytoplasmic proteins (Y and Z) which bind hillrubin and sulfobromphthalein (BSP) Gastroenterology 56:401, 1969
- Marliss EB, Aoki TT, Unger RH, et al. Glucagon levels and metabolic effects in fasting man. J Clin Invest 49:2256-2270, 1970
- Morse WI, Mahabit R: Changes in glucose tolerances and plasma free faity acids after fasting in obesity. Diabetes 13:286-290, 1964
- Starinsky R, Shaftir E: Displacement of albuminbound bilirubin by tree fatty acids. Implications for neonatal hyperbilirubinenia. Clin Chim Acta 29, 311–218, 1579