Comp 341/441 - Human-Computer Interface Design

Spring Semester 2017 - Week 6

Dr Nick Hayward

intro

- consider the physical act of interacting with a computer
 - using a mouse, keyboard, touchscreen...touching, swiping, shaking
- physical actions incur a cost of time and effort
 - varying degrees of effort, both physical and mental
- cognitive load refers to the mental taxation exerted on a user
 - whilst performing a given task
 - refers to amount of sustained attention and cognitive effort required per task
- the more complex the task, the higher the level of focused attention
 - cognitive load will be higher as a result
- good design strategy to try to reduce a user's cognitive load
- try reducing the amount a user has to think about
 - general concepts, points of interaction, basic navigation, interface elements...
- "Don't make me think, revisited: A common sense approach to web usability."
 - Steve Krug, 2014.

impact of interactions

Cognitive load may be impacted by the following interactions:

- scrolling, navigating, searching within an application
- choosing options such as menus, lists, forms...
- reading instructions, labels, titles...
- switching contexts (eg: switching between windows, tabs, pages...)
- switching visual attention
 - reading text, then referring to an image, and then back to the text
- memory recall for a specific ID, name, action, task sequence...
- simply waiting for the system or application to respond...
- recovering from a specific distraction
 - such as an interruption not relevant to the current task at hand...

Image - Xerox

big green button...

Source - Fuji Xerox Printers

Weather.com

Source - Weather.com

Yahoo Weather app

Source - Yahoo! Weather Mobile App

thinking

- reduce cognitive loads by awareness of types of user thinking an app requires
- for example:
 - working out the next step in a procedure
 - using working memory to help complete an ongoing task
 - recall of commands, facts, procedures from long-term memory
 - memorising commands, facts, procedures etc for long-term memory
 - referencing information from another source
 - making decisions or considering judgements
 - mental integration of information from disparate sources
 - o including research, reference, or simply general peripheral sources...

Video - Cognitive Load

users and interaction - second try...

Filter photographs based on metadata

Source - Adobe Lightroom Tutorials

forced, unnecessary thinking

- our goal is not to reduce thinking relative to our application
 - intellectual thinking different from forced, unnecessary thinking due to poor design...
- our app should promote and facilitate thinking, and record results where applicable
- our app should try to limit extraneous cognitive load for activities such as
 - active research activities
 - creative development and output
 - general problem solving and issue resolution
 - reading, note taking, and other general tasks...
- cognitive load reduced by an app's focus upon
 - the task in hand, relevancy of UI information and implementation, reduction in extraneous content...
- reduce interface induced thinking additional to the primary task
 - better contextual support and research

distraction free

Source - Amazon Kindle Paperwhite

app's Big Green Button

Source - Fuji Xerox Printers

quantify cognitive load

- interested in how we can quantify the cognitive load
 - required by a user for performing a given task
- better understanding of load issues within our application and interface
 - helps guide us in apportioning emphasis and control in design
- for a particular task we can compile a list of actions, steps...
 - estimate a score (% etc) which represents our understanding of required effort
 - total all of the action scores to assign an overall score for the effort required
 - evaluate different design options by comparing overall scores...
- KLM-GOMS model
 - Keystroke-Level Model for the Goals, Operators, Methods, and Selection Rules
 - Card et al. "The Psychology of Human-Computer Interaction." 1983.

KLM-GOMS Model

intro

- users divide goals into a series of tasks
 - each task requiring some initial thought and preparation
- preparation known as task acquisition time
 - can be very short for simple, routine tasks
 - may be much longer, perhaps a few minutes, for more creative, original tasks
- user will then continue with their chosen task
 - using a sequence of actions or operations
- total required time to complete the actions is known as
 task execution time
- total time required to complete task is the sum of
 - task acquisition time + task execution time
- modified models for mobile devices, such as phones...
 - eg: Keystroke-level model for advanced mobile phone interaction

KLM-GOMS Model

usage

Code	Operation	Time (in seconds)	
K	Key press & release (keyboard)	Best Typist (135 wpm) = 0.08	
		Good Typist (90 wpm) = 0.12	
		Avg. Skilled Typist (55 wpm) = 0.20	
		Poor Typist (40 wpm) = 0.28	
		Typing Random Letters = 0.50	
		Typing Complex Codes = 0.75	
		Worst Typist = 1.20	
Р	Point mouse to an object on screen	1.10	
В	Button press or release (mouse)	0.10	
Н	Hand from keyboard to mouse & vice-versa	0.40	
М	Mental preparation (operation)	1.20	
T(n)	Type string of characters	n x K seconds	

wpm = words per minute

Source: Kieras, D. 1993. Wikipedia

KLM-GOMS Model

example

Example implementation - text search including mental operators

Action	KLM-GOMS Code	Time (in seconds)
move mouse to search menu	H (hand to mouse)	0.40
	M + P (search menu)	1.20 + 1.10
select search menu	BB (select search menu)	2 * 0.10
click on find text link	M + P (find text menu item)	1.20 + 1.10
	BB (select menu item)	2 * 0.10
	H (hand from mouse to keyboard)	0.40
enter search term et	KK (type et characters)	2 * 0.20 (avg. typist)
click the OK button	H (hand from keyboard to mouse)	0.40
	M + P (OK button)	1.20 + 1.10
	BB (click button)	2 * 0.10
Total		9.10

BB = double button press to simulate mouse click and release (0.20 seconds)

Reducing Cognitive Load

a few tips and tricks...

- consistent use of icons, labels, names, and general visual presentation
 - consistency should include design for multiple tasks as well
- clear navigation for process steps...wizards, paged results etc
- include visual cues and clues...saves users having to remember functionality
- avoid popups except for explicit intervention reasons...warnings, errors etc
- avoid redundancy in content and rendering
- relational material should be organised in close proximity to one another
- identify and remove unnecessary steps
- automate processes, steps where possible
- reduce delays and latency as much as possible...use progress updates, bars
- option for templates, tutorials for new documents in productivity apps etc
- video and audio tutorials often easier to follow and understand than text only
- repetitive user data entry can be avoided
 - app should not force a user to continually remember such data and information

References

- Card, S.K., Moran, T.P. and Newell, A. The psychology of human-computer interaction. Lawrence Erlbaum Associates. 1983.
- Holleis, P. et al. Keystroke-level model for advanced mobile phone interaction. CHI' 07. New York, USA. 2007.
- Kieras, D. Using the Keystroke-Level Model to Estimate Execution Times. 1993.
 http://courses.wccnet.edu/~jwithrow/docs/klm.pdf
- Krug, S. Don't make me think, revisited: A common sense approach to web usability. 3rd Edition. New Riders. 2014.
- Norman, D. The Design of Everyday Things. Basic Books.
 2013.