Matching directly on confounders

03.05.21 15:24

- we need to choose some metric of closeness e.g.

6) notwer unhalamotis distance to both at how similar two sets of avariates are from each other

Mahalanobis distance:

- X; ... Vector of covariates for subject ;

- then the distance btw. two subjects i and j is: Square-wot of the $O(X_i, X_i) = \sqrt{(X_i - X_i)^T S^{-1}(X_i - X_i)} \in \mathbb{R}$ Square-wot of the vector product scaled by

b) Ahinh of or "the square root of the sum of squared distances (x;-x;12 bAw. each covariante x; and x; scaled by the covariante matrix S = cov(X) where X is a random vector producing the samples X;, X;

-s undiplying $(X_i - X_j)^T (X_i - X_j)$ by S^1 allows us to scale each variable in X_i^l by its inverse-variance $Vow(X_i^l)$

Example using Mahalanobis distance:

-3 covariates: X'= age, X2= copp (yes=1, no=0), Female (yes=1, no=0)

	Tre	nded		Control		
Age	COPD	Female	Age	COPD	Flugde	Compused distance
78.17	\bigcirc	1	70.25	Λ	0	4.23
			75.33	0	1	0.17
			54.97	0	0	2.45
			18.04	0	1	3.60
		best match				

Robust Mahalanobis distance:

- Motivation: Outliers can create large distances btw. 2 subjects i and j, even if their covariates are otherwise similar
- use ranks instead, to make the distance robust to outliers

Is replace original values with ranks leg. X being age variable, then we give

* rank = 1 for younges + Subject &

* rank = N for oldes + Subject in the dataset WIN subjects

Method to compate Robust Mahadamobis distance:

- (1) replace each covariate with its rank
- (2) constant diagonal on avariance matrix S blc ranks should be on the same scale

[1,N] how.

(3) Compute the usual Mahadambis distance on the ranks

Other distance measures:

- distance un propensity score

- if we need exact matches on some variables, then we could for example set D= \infty if the variables' values don't match

Given that we have the distance measure, how do we select the matches?

- (a) greedy (neavest neighbor) matching: -> not as good but comp. fast
- (b) optimal matching:

 -> better but comp. demanding