8:3 Encoder with enabler

- The Top-Level entity EightbyThreeEncode take as input
 - 1. A 8-bit logic signal (i_7 to i_0)
 - 2. enabler signal (en)
- It converts this signal into a 3-bit output signal (z_2 to z_0)
- Based on the 8 inputs one of the 3 outputs is selected.
- The truth table for 8 to 3 encoder is shown in table (1).

I_0	I_1	I_2	I_3	I_4	I_5	I_6	I_7	en	Z_2	Z_1	Z_0
1	0	0	0	0	0	0	0	1	0	0	0
0	1	0	0	0	0	0	0	1	0	0	1
0	0	1	0	0	0	0	0	1	0	1	0
0	0	0	1	0	0	0	0	1	0	1	1
0	0	0	0	1	0	0	0	1	1	0	0
0	0	0	0	0	1	0	0	1	1	0	1
0	0	0	0	0	0	1	0	1	1	1	0
0	0	0	0	0	0	0	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	0	0	1	1	0
0	0	0	0	0	0	0	0	0	1	1	1

- From the truth table, it is seen that only one of three outputs (z_0 to z_1) is selected based on 8 select inputs.
- From the truth table, the logic expressions for outputs (with en == 1) can be written as follows:

$$z_2 = I_7 + I_6 + I_5 + I_4$$

$$z_1 = I_7 + I_6 + I_3 + I_2$$

$$z_0 = I_7 + I_5 + I_3 + I_1$$

Structural Description

- 3 x 3 = 9 OR GATE:
 - 1. To perform the three OR operation for each ouput 3 OR GATES are used
 - 2. Each OR gate used 1 Multiplexer, which is obtained by making the selector input of the multiplexer equal to one of the two inputs
 - 3. So for 3 such output, 9 OR GATE and hence 9 MUXES are used
- 3 x 1 = 3 AND GATE:
 - 1. To And the ouput of the Or gates with the enabler signal 1 AND GATE was used.
 - 2. Thus using 3 AND Gates for each ouput, a total of 3 Multiplexer was used (Obtained my making one of the input signal 0 and using selector and other input to get their and as the output).
- Total Number of Mux used = 1 * OR Gate + 1 * AND Gate = 1 * 9 + 1 * 3 = **12 MUXES**

mux2:AndInst1

or4_gate:OrInst1

