1

Matrix Theory (EE5609) Assignment-8

Prasanth Kumar Duba EE20RESCH11008

Abstract—This document contains the solution to span of W which is a subspace of R³.

Download latex-tikz codes from

https://github.com/EE20RESCH11008/Matrix-Theory/tree/master/Assignment-8

1 Problem

Consider the subspaces $\mathbf{W_1}$ and $\mathbf{W_2}$ of \mathbf{R}^3 given by:

$$\mathbf{W_1} = \{ (\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \mathbf{R}^3 : \mathbf{x} + \mathbf{y} + \mathbf{z} = \mathbf{0} \}$$
 (1.0.1)

and

$$\mathbf{W}_2 = \{ (\mathbf{x}, \mathbf{y}, \mathbf{z}) \in \mathbf{R}^3 : \mathbf{x} - \mathbf{y} + \mathbf{z} = \mathbf{0} \}$$
 (1.0.2)

If W is a subspace of \mathbb{R}^3 such that

$$(i)\mathbf{W} \cap \mathbf{W}_2 = \text{span}\{(0, 1, 1)\}\$$
 (1.0.3)

(1.0.4)

$$(ii)$$
W \cap **W**₁ is orthogonal to **W** \cap **W**₂ (1.0.5)

with respect to the usual inner products of \mathbb{R}^3 , then

- 1. **W** = span $\{(0, 1, -1), (0, 1, 1)\}$
- 2. **W** = span $\{(1,0,-1),(0,1,-1)\}$
- 3. **W** = span $\{(1,0,-1),(0,1,1)\}$
- 4. **W** = span $\{(1,0,-1),(1,0,1)\}$

2 Solution

Using (1.0.1),

$$\mathbf{W_1} = \begin{pmatrix} 1\\1\\1 \end{pmatrix} \tag{2.0.1}$$

From (1.0.2),

$$\mathbf{W_2} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \tag{2.0.2}$$

From (1.0.4), we can say that, both the subspaces W and W_2 of R^3 contains the column vector as follows:

$$\mathbf{W} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \tag{2.0.3}$$

$$\mathbf{W_2} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \tag{2.0.4}$$

From (2.0.2) and (2.0.4),

$$\mathbf{W_2} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 1 & 1 \end{pmatrix} \tag{2.0.5}$$

$$Rank(\mathbf{W_2}) = 2 \tag{2.0.6}$$

Since, rank < 3 and the vectors are linearly independent they span a subspace of \mathbb{R}^3 .

Consider the vector,

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{W} \cap \mathbf{W_1} \tag{2.0.7}$$

From (1.0.4) and (1.0.5),

The vector $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ is orthogonal to $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$.

$$\implies \begin{pmatrix} x & y & z \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = 0 \tag{2.0.8}$$

$$\implies \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \tag{2.0.9}$$

Since,
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{W} \cap \mathbf{W}_1$$
:

From (2.0.1) and (2.0.9),

$$\mathbf{W_1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & -1 \end{pmatrix} \tag{2.0.10}$$

Also from (2.0.3) and (2.0.9),

$$\mathbf{W} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \\ 1 & -1 \end{pmatrix} \tag{2.0.11}$$

Using (2.0.11),

The vectors linearly independent and rank(W)=2 (< 3), then the vector span subspace of \mathbb{R}^3 .

Hence,

$$\mathbf{W} = span\{(0, 1, -1), (0, 1, 1)\} \implies \mathbf{Ans} : \mathbf{1}$$
(2.0.12)