TIER IV ACADEMY 自動運転システム構築塾

Day1 自動運転システム実践解説

自動運転システムの自己位置推定技術

目次

第1章:自己位置推定とは

第2章:位置推定手法の種類

第3章: Autoware の自己位置推定システム

1. Autoware の自己位置推定

2. Autoware での位置推定の実装

第4章: まとめ

自動運転システムの自己位置推定技術

第1章:自己位置推定とは

自己位置推定とは

走行中の車両の 位置・向き を推定すること

● 自動運転システムの位置推定に求められる要件

1. 精度(数10cm以内)

2. リアルタイム性

- 現在の車両の位置・向きから、車両を制御する ため、高い精度・リアルタイム性が必要

3. ロバスト性(安定性)

- 場所・環境の変化に影響を受けてはならない

位置推定が高精度にできないと、 重大な事故につながる可能性がある

自動運転システムの自己位置推定技術

第2章:位置推定手法の種類

位置推定手法

位置推定には様々な手法があり、用いられるセンサーも異なる

	デッドレコニング (自律航法)	GNSS (Global Navigation Satellite System)	スキャンマッチング
用いられる センサー	IMU ホイールエンコーダ等	GNSS受信機	LIDAR
利点	どこでも使える	地図がなくても 使える	高精度な 位置推定が可能
欠点	誤差の蓄積大	信号の受信状況に影響トンネル内では使えず	地図データが必須特徴のないエリアでは 使えず
		GNSS Signals of Opportunity	

デッドレコニング(自律航法)

車両に取り付けられた内部センサを用いて、車両の位置を逐次的に推定

●内部センサの例

- IMU (Inertial Measurement Unit)
 - 慣性計測装置、3軸ジャイロ+3方向加速度計
- オドメトリ
 - ホイールエンコーダによるタイヤの回転角・回転数

●利点

- ▶ 場所によって精度が変わらない (衛星信号が届かない場所でも使える)
- > 短期的には精度が良い

• 欠点

- ホイールエンコーダはタイヤの滑りを検知できない
- ▶ 誤差の蓄積 → デッドレコニング単体では位置推定困難

http://gigazine.net/news/20140909-google-self-driving-car-sensor/

GNSS (測位衛星システム)

複数の衛星からの信号を受信機が受信することにより、グローバルな(地球上の)位置を取得

- ●様々な測位衛星システムが存在し、衛星群によって目的が異なる
- GPSといっても、GPS以外の衛星に対応したGNSS機能が搭載されているものが多数

1.グローバル軌道衛星群

	GPS (米)	GLONASS(露)	Galileo(EU)	BeiDou(中)
(計画)衛星数	32	24	30 (8機試験中)	35 (15機運用中)

2.補強衛星群 - 測位精度を向上するための補正信号を送信 (現在運用中)

	WAAS (米)	EGNOS(EU)	MSAS(日)	GAGAN(印)
衛星数	4	3	2	2

3.特定地域衛星群 - 特定地域上空に衛星を配置し、衛星信号を受信しやすくする

	QZSS(日)	IRNSS(即)
衛星数	4+3	7

※よく言われるGPSは、アメリカによって開発・運用されているシステムであり、あくまでGNSSの1種類です

GNSS(測位衛星システム)

GNSSの大きな誤差要因 - マルチパス

- 信号が受信機に直接届かず、反射物に跳ね返った信号を受信することによって、受信遅延が生じるために発生
- 約 1~10mの誤差が発生

測位衛星技術株式会社

スキャンマッチング

地図データとスキャンデータがきれいに重なる座標変換を計算し、 地図内の位置・向きを算出

代表的なスキャンマッチングのアルゴリズム

- ICP (Iterative Closest Point) P.J. Besl et al. (1992)
- > 2D-NDT (Normal Distributions Transform) P. Biber et al. (2003)
- > 3D-NDT E. Takeuchi et al. (2006), M. Magnusson et al. (2007)

車両の位置・向き

自己位置推定と環境地図作成を同時に行うこと

Localization (位置推定)

- 地図 が与えられている
- ・ 計測値を地図と照らし合わせて 位置を特定

Mapping (地図生成)

- 位置 が与えられている
- 位置情報に計測値を重ね合わせて 地図を作成

SLAMにおいて、地図の誤差修正、ループクロージングに対応

ノードとノード間の拘束からなるグラフの最適化

- 1. ノードの生成
- 2. ノード間の拘束の生成
- 3. ノード位置の最適化

Borrmann, D., Elseberg, J., Lingemann, K., Nüchter, A., & Hertzberg, J. (2008). Globally consistent 3D mapping with scan matching. Robotics and Autonomous Systems, 56(2), 130-142.

1. ノードの生成

拘束 - 2つのノード間の相対位置と分散

オドメトリでの拘束

ランドマーク観測を 介した拘束

2.ノード間の拘束の生成

全拘束の同時確率
$$p(x) = \prod_{i=0}^{n-1} p(x|c_i)$$
 を最大化
$$p(x) = \prod_{i=0}^{n-1} \exp(-f(x,c_i)^t \Sigma_i^{-1} f(x,c_i)) \qquad f(x,c) \text{ 期待値 }$$
 対数尤度
$$\log(p(x)) = -\sum_{i=0}^{n-1} f(x,c_i)^t \Sigma_i^{-1} f(x,c_i)$$
 線形化
$$\log(p(x)) = -\sum_{i=0}^{n-1} (J_i u - r_i)^t \Sigma_i^{-1} (J_i u - r_i)$$
 変位量
$$\frac{n-1}{A} \frac{1}{u} = \sum_{i=0}^{n-1} J_i^t \Sigma^{-1} r_i$$

巨大な連立方程式を解く問題に帰着

自動運転システムの自己位置推定技術

第3章: Autoware の自己位置推定システム

- 1. Autowareの自己位置推定
- 2. Autowareでの位置推定の実装

Autowareの自己位置推定システム

Autowareの自己位置推定の特徴

- ✓ 高精度3次元地図+LIDARのスキャンデータのNDTスキャンマッチング
- ✓ 高精度(誤差約10cm以内)かつ高速(リアルタイムに動作)
- ✓各種LIDAR対応(Velodyne HDL-64E/32E, VLP-16, Hokuyo 3D-URG)
- ✓ GNSSやIMUは補助的に使用(無くても可)

NDT Scan Matching

LIDARのリアルタイムデータ

高精度3次元地図は、Autoware PCに保存

GNSS/IMUも補助的に使用可能

高精度3次元地図

屋外の3次元情報を取得

- ポイントクラウド地図
 - ✓ 3次元座標(緯度・経度・標高)
 - ✓ RGB値
- ADAS地図 点群地図から地物を抽出
 - ✓ 信号、路面標示 etc.

MMS - Mobile Mapping System

http://www.whatmms.com/whatmms

高精度3次元地図

レーザーを対象物に照射し、散乱光を測定することにより、 対象物までの距離(や性質)を取得

対象物までの距離、位置、反射強度を取得

※ Rader – <u>Radio</u> Detection and Ranging レーザーではなく電波(波長が長い)を用いる

			Velodyne	
	Velodyne	Velodyne	Velodyne	Hokuyo
	HDL-64e	HDL-32e	VLP-16	3D-URG
測定距離	~120m	~70m	~100m	~50m
水平視野角		360°		210°
垂直視野角	26.8°	41.3°	30°	40°
	(+2°~-24.33°)	(+10.67°~-30.67°)	(+15°~-15°)	(+35°~-5°)
測定	1,333,000	700,000	300,000	10,360
ポイント数	ポイント/秒	ポイント/秒	ポイント/秒	ポイント/秒
価格	\$80,000	\$30,000	\$8000	\$5,000

NDT スキャンマッチングのアルゴリズム

- 1. モデルを一定の大きさのセルに分割
- 2. 各セルの平均・分散を計算

平均
$$q = \frac{1}{n} \sum_{k=1}^{n} x_k$$
分散
$$C = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - q)(x_k - q)^T$$
確率密度関数
$$p(x) = \frac{1}{c} \exp\left(-\frac{(x-q)^T C^{-1}(x-q)}{2}\right)$$
(PDF*)

n: セル内に含まれるポイント数

 $x_{k=1,...n}$: セル内に含まれるポイント

^{*} Probability Density Function

セル (NDボクセル)

NDT スキャンマッチング

- 3. 入力スキャンの各点に対応する要素を求める
- 4. 評価値を計算
- 5. ニュートン法により、入力スキャンの座標変換 値を更新

評価関数
$$s(\mathbf{p}) = -\sum_{k=1}^{n} p(T(\mathbf{p}, \mathbf{x}_k))$$

n: セル内に含まれるポイント数

p: 位置・姿勢

 $x_{k=1,...n}$: セル内に含まれるポイント

 $T(\mathbf{p}, \mathbf{x}_k)$: 座標変換後のポイント

6. 3-5 を収束するまで繰り返し

NDT スキャンマッチング

- 3. 入力 スキャンの各点に対応する 要素を求める
- 4. 評価値を計算
- 5. ニュートン法により、入力スキャンの座標変換 値を更新

評価関数
$$s(\mathbf{p}) = -\sum_{k=1}^{n} p(T(\mathbf{p}, \mathbf{x}_k))$$

6. 3-5を収束するまで繰り返し

計算量:スキャンデータに依存(地図データに依存しない)

Takeuchi Eijiro, and Takashi Tsubouchi.

"A 3-D scan matching using improved 3-D normal distributions transform for mobile robotic mapping." Intelligent Robots and Systems, 2006 IEEE/RSJ International Conference on. IEEE, 2006.

ICPスキャンマッチングのアルゴリズム

- 1. 2つのスキャン の 最近傍点(Nearest Neighbor)を求める
- 2. NN間の距離の和を最小化
 - 評価関数を最小化する座標変換 (T(並進), R(回転)) を反復的に計算

(補足)ICPとNDTの比較

	ICP (Iterative Closest Points)	NDT (Normal Distributions Transform)	
計算量 M: 地図 N: スキャン	O(MN) (O(N log M) – KD-treeを用いた場合) 地図とスキャンのポイント数に依存	O(N) 地図のポイント数には依存しない	
アルゴリズム	最近傍点間の2乗和を最小化	地図空間を正規分布で近似し、入力 スキャンの対応要素を探索	
	a ₃ a ₂ a ₁ a ₃ a ₂ a ₁ b ₁ b ₂ b ₃		

自動運転システムの自己位置推定技術

第3章: Autoware の自己位置推定システム

- 1. Autowareの自己位置推定
- 2. Autowareでの位置推定の実装

ノード構成 全体図

Points_Map_Loader

(複数の) PCDファイルを読み込み、points_mapトピックにパブリッシュ

PCD (Point Cloud Data) フォーマット

- PCL の標準フォーマット
- 多様な形式をサポート XYZ型, XYZRGB型(XYZ+色), XYZI型(XYZ+反射強度), etc.
- ASCII / Binary の2種類
 Binary は ASCII より保存・読み込みが高速

```
# .PCD v0.7 - Point Cloud Data file format
VFRSION 0.7
FIELDS x v z rgb
SIZE 4 4 4 4
TYPF F F F F
                            ヘッダ
COUNT 1 1 1 1
                            (形式、データ数など)
WIDTH 299939
HFIGHT 1
VIEWPOINT 0 0 0 1 0 0 0
POINTS 299939
DATA ascii
-92770.922 -16333.243 109.088 2.3509886e-38
-92771.492 -16331.994 108.753 1.2471689e-38
                                                 データ
-92771.805 -16332.02 108.843 6.0849158e-39
-92772.094 -16332.278 109.014 6.1893938e-39
                                                 (1行1ポイント)
-92772.375 -16332.604 109.211 1.9345711e-38
-92772.727 -16332.418 109.229 9.120906e-39
```


Points_Map_Loader

地図データの部分読み込み

自車位置周辺のPCDファイルのみをパブリッシュし、表示処理の軽量化

PCDファイル: 1つのPCDは100m×100m

arealists.txt filename, min_x,y,z, max_x,y,z

arealistsファイル: PCDファイル名と xyz座標の最小値・最大値

current_pose

current_pose:
ndt_matchingやcurrent_poseから得られる自車位置

current_poseとarealistsファイルから、自車周辺に対応するPCDファイルを探索 周辺何メートル読み込むかは指定可能 (1×1, 3×3, 5×5, 7×7)

points_map_loade r points_map

Voxel_Grid_Filter

LIDAR の スキャンデータ を ダウンサンプリング

ダウンサンプリングを行う理由

- ✓ ポイント数を削減して、マッチング計算の高速化
- ✓ 地図にない未知物体(他車両など)のマッチングへの影響緩和

nmea2tfpose

GNSSで取得されるNMEAセンテンス(緯度・経度・標高)をXYZに変換

*NMEA (National Marine Electronics Association) フォーマット
✓ 時刻、緯度・経度、測位品質、衛星数、衛星ID等が分かる

\$GPGGA, 052953.000, <u>3538.9921</u>, N, <u>13924.1102</u>, E, 1, <u>8</u>, 1.12, 133.6, M, 39.3, M, , * 51 緯度 経度 衛星数

\$GPGSA, A, 3, <u>25, 12, 14, 22, 18, 09, 27, 15, , , ,</u> 1.44, 1.12, 0.91 * 09 測位利用衛星ID

NDT_MATCHING

3次元地図とLIDARのスキャンデータのNDTスキャンマッチングにより、

NDT_MATCHING

マッチング探索範囲の限定

- スキャンマッチングは、精度の良いマッチング初期位置を与えることで、収束までの反復計算を減ら すことが可能
 - →過去2スキャンで得られた位置・向きの差分から、次のスキャンのマッチングの位置・向きを線形補間することで予測

参考: PCL

PCL – pointcloudlibrary

ndt_matching 等の実装には PCL の関数を使用

- ・2次元/3次元点群処理のためのオープンソースなライブラリ、ツール群
- ・ROSと強力な連携
- 様々な点群処理の機能をサポート


```
例:ndt_matching.cpp (一部)
```

```
#include <pcl/registration/ndt.h>
static pcl::NormalDistributionsTransform<pcl::PointXYZ, pcl::PointXYZ> ndt;
ndt.setInputTarget(map_ptr); // 地図データの読み込み
ndt.setInputSouce(filtered_scan_ptr); // スキャンデータの読み込み
ndt.align(output cloud, init guess); // マッチング計算
```


位置推定の様子

Ndt_matching 評価

位置推定精度 - 10cm以内

60 50 40 40 20 10 1.454E+09 1.454E+09 1.454E+09 1.454E+09 ime[§]

停車時の推定位置の分散 - xyともに5cm以内に収まっている

CANから得られる速度とNDTによる 位置推定から計算される速度の比較

- NDTによる位置推定が正確なため、 車速も正確に計算可能

Ndt_matching 評価

計算時間 – 30ms以内 (LIDARの計算間隔内での計算が可能)

位置推定の計算時間と計算収束までのイテレーション数の推移 (横軸:スキャン、縦軸:計算時間)

- 走行の最中、各スキャンに対して 100ms以内の位置推定が可能

自動運転システムの自己位置推定技術

第4章:まとめ

まとめ (1/2)

- ●自己位置推定とは
 - ▶自動運転の位置推定システムには精度・リアルタイム性・ロバスト性が求められる
- 車両の自己位置推定手法
 - ▶デッドレコニング
 - IMUやホイールエンコーダを用いた逐次的位置推定
 - 誤差の蓄積が問題 -> デッドレコニング単体では位置推定が困難

> GNSS

- 各国の測位システム、衛星群
- マルチパスにより1~10m程度の誤差

▶スキャンマッチング

- 地図データとLIDARのスキャンデータのマッチング
- 高精度な地図データが不可欠

まとめ (2/2)

- ●Autowareの位置推定システム
 - ▶高精度3次元地図
 - MMS(Mobile Mapping System)により計測
 - ポイントクラウド地図/ADAS地図
 - > LIDAR
 - ▶ NDTスキャンマッチング/ICPスキャンマッチング
 - ICPは地図のデータ量、スキャンのデータ量に依存するが、NDTはスキャンのデータ量のみに依存
 - ▶ノード構成
 - 各機能毎にノード化 points_map_loader/voxel_grid_filter/nmea2tfpose/ndt_matching
 - 精度・計算時間評価 自動運転に必要な精度・リアルタイム性を満足

自動運転システムの自己位置推定技術

Appendix

参考文献

- ■測位衛星技術株式会社 「GNSSの基礎知識」 Version 1.0 http://gnss.co.jp/gnss_basic
- Borrmann, Dorit, et al. "Globally consistent 3D mapping with scan matching." *Robotics and Autonomous Systems* 56.2 (2008): 130-142.
- P. J. Besl and H. D. McKay, "A method for registration of 3-D shapes," in *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 14, no. 2, pp. 239-256, Feb 1992.
- ■Biber, Peter, and Wolfgang Straßer. "The normal distributions transform: A new approach to laser scan matching." *Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on.* Vol. 3. IEEE, 2003.
- Takeuchi, Eijiro, and Takashi Tsubouchi. "A 3-D scan matching using improved 3-D normal distributions transform for mobile robotic mapping." 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2006.
- Magnusson, Martin, Achim Lilienthal, and Tom Duckett. "Scan registration for autonomous mining vehicles using 3D-NDT." *Journal of Field Robotics* 24.10 (2007): 803-827.
- Point Cloud Library http://pointclouds.org/

