THE R FUNCTION Im ()

Meets most of the preceding needs

- "linear model" linear in the coefficients. These are OK:
 - $(V = A + Bx^3 + C \ln(x) + D \sin y + E f(x, y, z)$
- R call: F <- /m
 (V~I(x^3)+I(In(x))+sin(y)+I(f(x,y,z))+exp(x))
- not linear: $V = a \exp(bx) \text{but } v' = \ln V = a' + bx$ is linear
- If you use Im $(V \sim A*B)$ this will be interpreted as $V^*A+B+AB$ so use I(), even for x^2 : I(x^2)

Simple example:

Fitting to a speed run to find $\alpha = c_0 + c_1(\mathsf{ADIFR/QCF})$

Method: $\alpha_{Ref} = \theta - w_p / V \sim I(ADIFR/QCF)$

comment re terminology

you fit an equation to data (not fit data)