

Case Study 3 Insurance Premium

Case Study – Insurance Premium

Problem Statement

- In 2022, Singapore's life expectancy is around 83 years old. Obesity has been rising
 in recent years, leading to a higher risk of health problems and shortened life
 expectancy
- Ideally, a beneficiary claim should not exceed the customer premium claim. In reality, due to obesity, obese policyholder's claims had exceeded their premium
- Obese policyholders have higher needs and demands for medical care
- More claims lead to lesser profit

Data

- Data is taken from https://www.kaggle.com/datasets/simranjain17/insurance
 (insurance.csv)
- Age from 18 to 64 years old
- BMI from 15.96 to 53.13
- Premium charges from \$1.12k to \$63.8k
- There is a total of 1,338 policyholders

Data

Steps taken to collect and consolidate the data

```
import pandas as pd
insurance_csv = 'insurance.csv'
ins = pd.read_csv(insurance_csv)
```

This is how the data appears before any cleaning

THE								
	age	sex	bmi	children	smoker	region	charges	
0	19	female	27.900	0	yes	southwest	16884.92400	
1	18	male	33.770	1	no	southeast	1725.55230	
2	28	male	33.000	3	no	southeast	4449.46200	
3	33	male	22.705	0	no	northwest	21984.47061	
4	32	male	28.880	0	no	northwest	3866.85520	
1333	50	male	30.970	3	no	northwest	10600.54830	
1334	18	female	31.920	0	no	northeast	2205.98080	
1335	18	female	36.850	0	no	southeast	1629.83350	
1336	21	female	25.800	0	no	southwest	2007.94500	
1337	61	female	29.070	0	yes	northwest	29141.36030	
1338 rows × 7 columns								

- Check for duplicated rows and remove if any
- Check for correct data type and any missing values
- Check for any negatives values
- Rename charges column to premium_charges

```
# Check for any duplicated row ins.loc[ins.duplicated(), :]

age sex bmi children smoker region charges|
581 19 male 30.59 0 no northwest 1639.5631

# Remove duplicate and keep original ins.drop_duplicates(inplace=Irue)

ins = ins.rename(columns={"charges": "premium_charges"})

((ins['bmi'] < 0) & (ins['charges'] < 0)).values.any()
# check if there is any negative values

False
```

```
ins.dtypes
               int64
age
              object
sex
bmi
             float64
children.
               int64
smoker
              object
region
              object
charges
             float64
dtype: object
```

```
ins.isna().any()
            False
age
            False
sex
            False
bmi
children
            False
            False
smoker
region
            False
charges
            False
dtype: bool
```


- age_group and bmi_group was created from bmi and age columns
- bmi and premium_charges was converted to 2 decimal place
- After data is cleaned, saved to insurance_cleansed.xlsx format

	age	age_group	sex	bmi	bmi_group	smoker	children	region	premium_charges
0	19	Young Adults	female	27.90	Overweight	yes	0	southwest	16,884.92
1	18	Young Adults	male	33.77	Obese	no	1	southeast	1,725.55
2	28	Young Adults	male	33.00	Obese	no	3	southeast	4,449.46
3	33	Young Adults	male	22.70	Healthy	no	0	northwest	21,984.47
4	32	Young Adults	male	28.88	Overweight	no	0	northwest	3,866.86
1333	50	Middle Age	male	30.97	Obese	no	3	northwest	10,600.55
1334	18	Young Adults	female	31.92	Obese	no	0	northeast	2,205.98
1335	18	Young Adults	female	36.85	Obese	no	0	southeast	1,629.83
1336	21	Young Adults	female	25.80	Overweight	no	0	southwest	2,007.94
1337	61	Seniors	female	29.07	Overweight	yes	0	northwest	29,141.36

```
def age group(x):
                             if x > 18 and x < 35:
                                 return 'Young Adults'
                             elif x >= 36 and x <=55:
                                 return "Middle Age"
                             else:
                                 return "Seniors"
                         ins['age group']= ins['age'].apply(age group)
                          def bmi group(x):
                              if x < 18.5:
                                  return 'Underweight'
                              elif x \rightarrow 18.5 and x \leftarrow 24.9:
                                  return "Healthy"
                              elif x > 25.0 and x <=29.9:
                                  return "Overweight"
                              else:
                                  return "Obese"
                         ins['bmi_group'] = ins['bmi'].apply(bmi_group)
ins['bmi'] = ins['bmi'].map(lambda x: round(x, 2))
ins['premium charges'] = ins['premium charges'].map(lambda x: round(x, 2))
ins.head()
ins.to excel("insurance cleaned.xlsx")
```

- Average Premium Charges / No. Of Policyholders plotted against BMI Group and Smoker Category
- There is a total of 721 obese policyholders
- As BMI increases, charges increases as well

- Premium Charges plotted against Gender
- Males are charged more (as compared to Females)

- Premium Charges plotted against BMI and Smoker category
- Charges increases with BMI
- Smokers are charged more (as compared to non-smokers)

Copyright © 2022. Smartcademy Pte. Ltd. All rights reserved.

- Premium Charges plotted against Age and Age Group
- Charges increases with Age
- Seniors are charged more (as compared to young adults and middle aged)

Dashboard

https://public.tableau.com/app/profile/kaijie.ng/viz/CaseStudyInsurance/InsurancePremiumsDashboard?publish=yes

Who are the main customers?

- Obese policyholders paid the highest Average Premium Charges across all different regions
- We will further analyse on the 3 different types of Age Group (Young Adults, Middle Age & Seniors)

- Obese policyholders paid the highest Average Premium Charges across all different regions
- There is a total of 61 obese smokers and 228 obese non-smokers policyholders in Young Adults group

- Obese policyholders paid the highest Average Premium Charges across all different regions except Southwest Underweight policyholders
- There is only a total of 5 underweight policyholders in Middle Age group
- There is a total of 61 obese smokers and 238 non-smokers policyholders in Middle Age group Copyright © 2022. Smartcademy Pte. Ltd. All rights reserved.

Why Middle Age group in Southwest Underweight group paid the highest Average Premium Charges?

- There is only 1 policyholder in Middle Age group in Southwest that is underweight
- Policyholder is a smoker therefore charged at a higher premium

- Obese policyholders paid the highest Average Premium Charges across all different regions
- There is a total of 25 obese smokers and 108 non-smokers policyholders in Seniors group

To reduce obese people from claiming, the company can help them to lose weight while maintaining customer retention rate at the same time

- The recommendation is to collaborate with government to help promote health awareness
- Study customer's lifestyle habits, and reward them with food/entertainment vouchers if they hit a certain quota of exercising

To attract new customers, the company can implement a new Insurance Enhance Benefit Package (IEBP), mainly targeting obese people

- Rate of return (ROR) for normal BMI 5%
- IEBP ROR 3% only, but if their weight hits optimal weight, the package will autoenhance to 7% for a certain period

Conclusion

- Data analysis has identified obese policyholders paid the highest across all different regions as main customers, but there could be changes with more data in the future
- To reduce more claims from the obese group, the company can collaborate with government to help promote health awareness
- Study customers' lifestyle habits and reward them with food/entertainment vouchers if they hit a certain exercise quota. This helps in customer retention
- To attract new customers, the company can implement a new Insurance Enhance Benefit Package targeting obese customers
- However, **competitors** might also implement IEBP **at an even lower price.** The company has to consider these to **determine profit or loss**
- Surveys needed for customers' preferred vouchers and government health agency collaboration

Conclusion

What have you learnt?

- I have learnt new technical skills like python, tableau and sql
- Identify different sources of data and basic data quality standards
- Apply the right visualisation for different types of charts

What were the main challenges in applying data analytics skills to this project?

- To identify and research problem statement and recommendations
- Limited data columns from excel

THANK YOU

