Temporal Aggregation of (Growth) Timeseries

Rob van Harrevelt and Anita van der Roest

2020-02-17

Contents

L	Introduction	1
2	Function aggregate	1
3	Aggregation of growth timeseries	3
	Aggregation methods for growth timeseries 4.1 difsum method	3
	4.2 difmean method	
	4.3 rel method	
	4.4 pct method	6

1 Introduction

This vignette discusses temporal aggregation of timeseries, i.e. the conversion of a timeseries to a lower frequency. The vignette is an extension of the vignette "Introduction to regts", but can be read independently.

Section 2 describes the standard aggregation function aggregate. Section 3 discusses aggregation for growth timeseries with several methods, which are described in detail in section 4.

2 Function aggregate

The standard function aggregate can be used to convert a timeseries to a lower frequency, for example a quarterly to an annual timeseries, or a monthly to a quarterly timeseries.

An example with a monthly timeseries:

```
> regm <- regts(1:24, start = "2016M1")
> regm
     Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
2016
                       5
                            6
                                7
                                    8
                                        9
                                          10
                                               11
                                                    12
2017
          14
             15
                  16
                      17
                          18
                              19
                                   20
                                       21
                                               23
                                                   24
> aggregate(regm, FUN = mean, nfrequency = 4)
     Qtr1 Qtr2 Qtr3 Qtr4
2016
        2
             5
                  8
                      11
```

The observations in the timeseries are split into blocks for each quarter and FUN is applied to the three observations in that quarter. The result is a quarterly timeseries holding the aggregated values.

Another example with a quarterly timeseries:

```
> regq <- regts(1:10, start = "2016q1")
> regq
     Qtr1 Qtr2 Qtr3 Qtr4
2016
        1
             2
                   3
2017
        5
             6
                   7
                        8
2018
            10
> aggregate(regq, FUN = sum)
         +1
2016 10
```

The quarters in 2016 add up to 10, the quarters in 2017 to 26. Note that the two quarters in 2018 are ignored. The aggregate function skips the incomplete years at the end.

Incomplete years at the beginning are also skipped. For example, the next timeseries starts in the second quarter:

2017 26

The quarters in 2017 add up to 26 as before. But now the information for 2016 is also not complete, and therefore ignored.

Thus for regts objects the aggregate function skips all incomplete years at the beginning and end of the timeseries. However for standard timeseries (ts) the implementation of aggregate only skips incomplete years at the end. The previous example but now with a ts timeseries:

```
> tq2 <- ts(2:10, start = c(2016,2), frequency = 4)
> tq2
     Qtr1 Qtr2 Qtr3 Qtr4
2016
             2
                   3
                        4
                   7
                        8
2017
        5
             6
2018
        9
            10
> aggregate(tq2, FUN = sum)
Time Series:
```

```
Start = 2016.25
End = 2017.25
Frequency = 1
[1] 14 30
```

The result is an unconventional timeseries with frequency year but a shifted period (the start is 2016.25). The result for 2016.25 is the sum of the observations in period 2016Q2/2017Q1.

In all other cases the aggregate function works exactly the same for regts and ts objects.

3 Aggregation of growth timeseries

As is shown in the next section the function aggregate does not yield correct results for timeseries with absolute, relative or percentage changes. For growth timeseries the function aggregate_gr can be used. It accepts both regts and ts timeseries. The function implements several methods (rel, pct, difmean and difsum) for different types of input timeseries.

The rel and pct methods assume that the input timeseries is a one-period relative or percentage change and calculate the exact low frequency relative or percentage change. Methods difmean and difsum assume that the input timeseries is a first difference:

$$x_t = z_t - z_{t-1}$$

where t is the period (like year or quarter). These methods calculate the low frequency first difference timeseries. This is done by first calculating the corresponding index series, then computing the mean or sum of this index series and subsequently calculating the differences of this timeseries.

Some examples for change timeseries, the results are (by default) annual timeseries:

```
> xgrowth <- growth(regts(1:8, start = "2019q1"))
> aggregate_gr(xgrowth, method = "rel")
```

2020 1.6

```
> xdif <- diff(regts(1:8, start = "2019q1"))
> aggregate_gr(xdif, method = "difmean")
```

2020 4

The methods are described in detail in the next section.

4 Aggregation methods for growth timeseries

This section describes the methods implemented in function aggregate_gr, including the derivation of the corresponding mathematical formulas.

Suppose we are temporally aggregating a timeseries x with n subperiods to a timeseries X with a lower frequency. In other words we want to convert a timeseries x with a high frequency (monthly, quarterly) to a new timeseries with a lower frequency (quarterly, annual).

Let $x_{t,i}$ stand for the value of x in subperiod i of main period t. The index i takes on values in the range 1..n. We always interpret $x_{t,0}$ to mean $x_{t-1,n}$. The time index t refers to the periods in the time domain of X. Many conversion methods only need the observations subperiod i of main period t. For example the mean method calculates X_t as follows

$$X_t = \sum_{i=1}^n x_{t,i}/n$$

However there are transformations which are not so straightforward. A case in point is when x is a high frequency first difference and must be converted to a low frequency first difference. A simple averaging of n high frequency observations will not give the correct answer. For example, for a quarterly growth series the yearly aggregates also depend on the quarterly observations of the previous year. Therefore we cannot use function aggregate, function aggregate_gr must be applied. In the next subsections a more detailed description of the available frequency conversion methods for this function is given.

4.1 difsum method

Define x to be the first difference of z. Thus

$$x_{t,i} = z_{t,i} - z_{t,i-1}$$

We can also define $z_{t,i}$ in terms of x as follows

$$z_{t,i} = z_{t,i-1} + x_{t,i}$$

= $z_{t-1,n} + \sum_{j=1}^{i} x_{t,j}$

Now define Z_t as the level timeseries in time domain t corresponding to z

$$Z_{t} = \sum_{i=1}^{n} z_{t,i}$$

$$= \sum_{i=1}^{n} z_{t-1,n} + \sum_{i=1}^{n} \sum_{j=1}^{i} x_{t,j}$$

$$= \sum_{i=1}^{n} z_{t-2,n} + \sum_{i=1}^{n} \sum_{j=1}^{n} x_{t-1,j} + \sum_{i=1}^{n} \sum_{j=1}^{i} x_{t,j}$$

Then X in any period t can be calculated from

$$X_t = Z_t - Z_{t-1}$$

Since Z_{t-1} can be written as

$$Z_{t-1} = \sum_{i=1}^{n} z_{t-2,n} + \sum_{i=1}^{n} \sum_{j=1}^{i} x_{t-1,j}$$

it is easy to show that X_t does not depend on $z_{t-2,n}$. In any practical algorithm $z_{t-2,n}$ can be set to 0.

A compact equation for X_t can be derived by substituting the equations for Z_t and Z_{t-1} into the definition of X_t

$$X_{t} = \sum_{i=1}^{n} \left(\sum_{j=i+1}^{n} x_{t-1,j} + \sum_{j=1}^{i} x_{t,j} \right)$$

This expression can be futher simplified by changing the order of summation. For the first summation, we can write

$$\sum_{i=1}^{n} \sum_{j=i+1}^{n} x_{t-1,j} = \sum_{j=2}^{n} \sum_{i=1}^{j-1} x_{t-1,j} = \sum_{j=2}^{n} (j-1)x_{t-1,j}$$

Similarly,

$$\sum_{i=1}^{n} \sum_{j=1}^{i} x_{t,j} = \sum_{j=1}^{n} \sum_{i=j}^{n} x_{t,j} = \sum_{j=1}^{n} (n-j+1)x_{t,j}$$

The final equation is given by

$$X_{t} = \left(\sum_{j=2}^{n} (j-1)x_{t-1,j} + \sum_{j=1}^{n} (n-j+1)x_{t,j}\right)$$

4.2 difmean method

The difference is that the aggregate Z_t is calculated with an average instead of a sum:

$$Z_t = \sum_{i=1}^n z_{t,i}/n$$

Further derivations are analogous. The result for diffmean is the result for diffsum divided by n:

$$X_{t} = \left(\sum_{j=2}^{n} (j-1)x_{t-1,j} + \sum_{j=1}^{n} (n-j+1)x_{t,j}\right)/n$$

4.3 rel method

Define x to be the relative change in z. Thus, assuming that z >= 0,

$$x_{t,i} = (z_{t,i} - z_{t,i-1})/z_{t,i-1}$$

We can also define $z_{t,i}$ in terms of x as follows

$$z_{t,i} = z_{t,i-1}(1+x_{t,i})$$

$$= z_{t-1,n} \prod_{j=1}^{i} (1+x_{t,j})$$

$$= z_{t-2,n} \prod_{j=1}^{n} (1+x_{t-1,j}) \prod_{j=1}^{i} (1+x_{t,j})$$

Now define Z_t as the level time series in time domain t corresponding to z

$$Z_{t} = \sum_{i=1}^{n} z_{t,i}$$

$$= z_{t-1,n} \sum_{i=1}^{n} \prod_{j=1}^{i} (1 + x_{t,j})$$

$$= z_{t-2,n} \prod_{j=1}^{n} (1 + x_{t-1,j}) \sum_{i=1}^{n} \prod_{j=1}^{i} (1 + x_{t,j})$$

Then X in any period t can be calculated from

$$X_t = Z_t/Z_{t-1} - 1$$

Using the expression for Z_{t-1}

$$Z_{t-1} = z_{t-2,n} \sum_{i=1}^{n} \prod_{j=1}^{i} (1 + x_{t-1,j})$$

we obtain

$$X_{t} = \frac{\prod_{j=2}^{n} (1 + x_{t-1,j}) \sum_{i=1}^{n} \prod_{j=1}^{i} (1 + x_{t,j})}{1 + \sum_{i=2}^{n} \prod_{j=2}^{i} (1 + x_{t-1,j})} - 1$$

4.4 pct method

Define x to be the percentage change in z. Thus, as before assuming that z >= 0,

$$x_{t,i} = 100(z_{t,i} - z_{t,i-1})/z_{t,i-1}$$

The derivations are analogous to the rel method described in the previous subsection.

The result is

$$X_{t} = 100 \frac{\prod_{j=2}^{n} (1 + x_{t-1,j}/100) \sum_{i=1}^{n} \prod_{j=1}^{i} (1 + x_{t,j}/100)}{1 + \sum_{i=2}^{n} \prod_{j=2}^{i} (1 + x_{t-1,j}/100)} - 1$$