Hands-on Examples Artificial Intelligence with Real-time Application Projects

Types of Machine Learning

1. Supervised Machine Learning

2. Unsupervised Machine Learning

3. Reinforcement Machine Learning

1. Supervised Machine Learning

2. Unsupervised Machine Learning

Supervised Machine Learning

Regression Models

- 1. Linear Regression
- 2. Decision Tree Regressor
- 2. Support Vector Regressor

Classification Models

- - 1. Logistic Regression
- 2. Support Vector Classifier

- 3. Naive-Bayes

- 4. Random Forest / Decision Tree

- 5. K Nearest Neighbour (KNN)

Unsupervised Machine Learning

1. K-Means Clustering

2. DBSCAN Clustering

LINEAR REGRESSION

Linear Regression

- Linear regression is a regression model which tries to predict the relationship between the dependent variable Y and independent variable X in a linear fashion.

Cost Function:

$$ext{MSE} = rac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y_i})^2$$

Linear Regression Types

1. Simple Linear Regression

- Single Feature (X),
- Single Label (Y)

Ad Expenses in \$ (x)

Y = mx + c

Ad_exp	Sales
24	724
28	756
32	782
39	831
44	853
45	860
54	896
58	914
62	924
65	938
68	947
76	971

2. Multi Linear Regression

Multiple Features (X1, X2, X3....Xn), Single Label (Y)

Location (X2)

House Age(X3)

Distance from Graveyard (X4)

House Price (Y)

Location (X2)

House Age(X3)

Distance from Graveyard (X4)

Y = m1 * X1 + m2 * X2 + m3 * X3 + m4 * X4 + c

m1, **m2**, **m3** & **m4** → **Weights**

X1, X2, X3 & X4 → **Features**

Practical Implementation of Linear Regression:

Project 1: Experience based Salary Prediction

Feature → **Numeric**

Labels → **Continuous**

Machine Learning Model Building Steps:

Practical Implementation of Linear Regression:

```
1. Load Data Set
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

```
data=pd.read_csv("Salary.csv")
print(data.columns)
print(data.shape)
data.head()
```


data.isnull().sum()

```
Visualize the Feature & Label
```

sns.set theme()

sns.set_tneme()
sns.scatterplot(data = data, x = data['Salary'], y = data['YearsExperience'])

x = data.iloc[:,:-1]
y = data.iloc[:,-1]

from sklearn.model_selection import train_test_split

xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size = 0.2, random_state = 42)

7. Train the Model using suitable ML Models

```
from sklearn.linear_model import LinearRegression

L=LinearRegression()
L.fit(xtrain,ytrain)

y_pred=L.predict(xtest)
print(y_pred)
print(L.score(xtest, ytest))

print(y_pred)
print(y_pred)
print(ytest)
```

Assignment Project 1: Ice Cream Sales Prediction

Practical Implementation of Linear Regression:

Project 2: Insurance Expense Prediction using Linear Regression

Practical Implementation of Linear Regression:

```
1. Load Data Set
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

data = pd.read_excel("insurance.xlsx")
data.head()
```



```
print(data.shape)
data.info()
fig, ax = plt.subplots(figsize=(8,8))

corr = data.corr()
sns.heatmap(corr , annot = True , ax=ax)
```

```
 \Longrightarrow
```

3. Check for null value & perform Data Cleaning

```
data.isnull().sum()
```


4. Convert Categorical Data into Numerical

```
data.info()
print(data["sex"].value_counts())
print(data["smoker"].value_counts())
print(data["region"].value_counts())

from sklearn.preprocessing import LabelEncoder
Le = LabelEncoder()

data["sex"] = Le.fit_transform(data["sex"])
data["smoker"] = Le.fit_transform(data["smoker"])
data["region"] = Le.fit_transform(data["region"])

data.info()
```

```
\Longrightarrow
```

5. Extract Features (X) & Labels (Y) from Data Set

```
X = data.iloc[:,:-1].values
Y = data.iloc[:,-1].values
print(X.shape , Y.shape)
```


6. Split the data into train & test. Then do Feature Scaling

```
from sklearn.model_selection import train_test_split

Xtrain , Xtest , Ytrain , Ytest = train_test_split(X , Y , test_size = 0.2 , random_state = 4)
print(Xtrain.shape , Xtest.shape , Ytrain.shape , Ytest.shape)

from sklearn.preprocessing import StandardScaler

Scaler = StandardScaler()
Xtrain = Scaler.fit_transform(Xtrain)|
Xtest = Scaler.transform(Xtest)
```

```
7. Train the Model using suitable ML Models
```

```
from sklearn.linear_model import LinearRegression

model = LinearRegression()
model.fit(Xtrain , Ytrain)
print(model.coef_)
print(model.intercept_)
# Y = W.X + c
model.coef_.dot(Xtest[10,:]) + model.intercept_
```


model.score(Xtest,Ytest)

Feature Selection using RFECV:

- RFECV stands for "Recursive Feature Elimination & Cross Validation"
- Eliminating unimportant feature recursively

Important Functions:

RFECV(model, step, min_features_to_select, n_jobs)

.support()

.ranking()

7. Train the Model using suitable ML Models & RFECV

```
from sklearn.linear model import LinearRegression
from sklearn.feature selection import RFECV
model = LinearRegression()
rfecv = RFECV(model, step = 1, min features to select = 4, n jobs = -1)
rfecv.fit(Xtrain , Ytrain)
print(rfecv.support )
print(rfecv.ranking )
selected features = np.where(rfecv.support )[0]
Xtrain = Xtrain[:,selected_features]
Xtest = Xtest[:,selected features]
model.fit(Xtrain , Ytrain)
```


8. Check Accuracy Score of ML Model

model.score(Xtest,Ytest)

K folds Cross Validation:

- 20% Test data is too small to be confident about predictions
- We are not validating our predictions on the remaining 80% of the data as we have trained our model on it

K folds cross validation solves these issues

Disadvantages of K-folds Cross Validation:

We re-create Train and Test split in every Iteration and train our model from scratch

- If k = 5, we need to train the model 5 times
- Computationally expensive when data is too large

```
K-folds Cross Validation:

from sklearn.model_selection import KFold

k_fold = KFold(n_splits=5)

test_scores = []
for train_idx , test_idx in k_fold.split(X):
    Xtrain = X[train_idx]
    Ytrain = Y[train_idx]
```

test scores.append(model.score(Xtest , Ytest))

Xtest = X[test_idx]
Ytest = Y[test_idx]

model = LinearRegression()
model.fit(Xtrain , Ytrain)

Classification Models

===>	1. Logistic Regression
===	2. SVC
\Longrightarrow	3. Decision Tree
\Longrightarrow	4. K-Nearest Neighbour
=== >	5. Random Forest

- Logistic regression is a classification model
- Classification models predict a discrete value

Study Hours	Pass/Fail
1	0
1.5	0
2	0
3	1
3.5	0
4	1
5	1
6	1

Study Hours	Pass/Fail
1	0
1.5	0
2	0
3	1
3.5	0
4	1
5	1
6	1

Study Hours	Pass/Fail
1	0
1.5	0
2	0
3	1
3.5	0
4	1
5	1
6	1

Linear equation:

•
$$y = b_0 + b_1 * x$$

Apply Sigmoid function:

•
$$P(x) = sigmoid(y)$$

$$P(x) = \frac{1}{1 + e^{-x}}$$

$$P(x) = \frac{1}{1 + e^{-(b_0 + b_1 * x)}}$$

Project 3: Customer Churn Prediction using Logistic Regression

Confusion Matrix:

Support Vector Machines

Support Vector Machines

nD

Hyperplanes

Hyperplanes

The Kernel Tricks for Support Vector Machines

Understanding Kernel Trick

- Two classes of observations: the blue points and the purple points.
- There are tons of ways to separate these two classes as shown in the graph on the left.

How to ffind best Hyperplane?

- To find the "best" hyperplane that could maximize the margin between the hyperplane and the nearest data points on each side is the largest.
- Depending on which side of the hyperplane a new data point locates, we could assign a class to the new observation.

Understanding Kernel Trick

- Not all data are linearly separable.
- To map the data from 2-dimensional space to 3-dimensional space, we will be able to find a decision surface that clearly divides between different classes.

Types of Kernels

- Linear Kernel
- Polynomial Kernel

Support Vector Machine Implementation:

#accuracy and classification report

print(accuracy score(y pred,y test))

print(classification report(y pred,y test))

```
from sklearn.svm import SVC
from sklearn.metrics import classification report, confusion matrix, accuracy score
#Linear SVM model
svc clf=SVC(kernel='linear')
svc clf.fit(X train,y train)
y pred=svc clf.predict(X test)
#confusion matrix
cm=confusion matrix(y pred,y test)
sns.heatmap(cm, annot=True)
```

Support Vector Machine Implementation:

```
from sklearn.svm import SVC
from sklearn.metrics import classification report, confusion matrix, accuracy score
#rbf svm model
svc clf rbf=SVC(kernel='rbf')
svc clf rbf.fit(X train,y train)
y pred=svc clf rbf.predict(X test)
#confusion matrix
cm=confusion matrix(y pred,y test)
sns.heatmap(cm, annot=True)
#accuracy and classification report
print(accuracy score(y pred,y test))
print(classification report(y pred,y test))
```

Decision Tree

Decision Tree

company	job	degree	salary_more_then_100k
google	sales executive	bachelors	0
google	sales executive	masters	0
google	business manager	bachelors	1
google	business manager	masters	1
google	computer programmer	bachelors	0
google	computer programmer	masters	1
abc pharma	sales executive	masters	0
abc pharma	computer programmer	bachelors	0
abc pharma	business manager	bachelors	0
abc pharma	business manager	masters	1
facebook	sales executive	bachelors	1
facebook	sales executive	masters	1
facebook	business manager	bachelors	1
facebook	business manager	masters	1
facebook	computer programmer	bachelors	1
facebook	computer programmer	masters	1

Decision Tree

- In Decision tree terminology 'Feature' or a 'Column' is called an 'Attribute'
- There are mainly two algorithms to control the splitting conditions in a decision tree
 - Information gain (Entropy)
 - Gini index

Entropy =
$$\sum_{i=1}^{C} -p_i * \log_2(p_i)$$
 Gini = $1 - \sum_{i=1}^{C} (p_i)^2$

Gini Impurity

Decision Tree Implementation:

print(accuracy score(y pred,y test))

print(classification_report(y pred,y test))

```
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
model.fit(Xtrain , Ytrain)
print("Testing Accuracy : " , model.score(Xtest , Ytest))
y pred = model.predict(xtest)
#confusion matrix
cm=confusion matrix(y pred,y test)
sns.heatmap(cm, annot=True)
#accuracy and classification report
```