Ostfalia Hochschule für angewandte Wissenschaften	Modulprüfung Signale und Systeme
Fakultät für Fahrzeugtechnik Prof. DrIng. Michael Kolbus	Probeklausur
Name:	Matr. Nr.:
Vorname:	Unterschrift:

Zugelassene Hilfsmittel

Beidseitig beschriebenes DIN A4 Blatt Nicht programmierbarer Taschenrechner 90min

Zeit

Aufgabe:	1	2	3	4	5	6	7	Summe:
Punkte:	7	12	14	23	10	11	10	87
Ergebnis:								

Probeklausur 1/16

Aufgab	oe 1: Kurzfragen	(7 Punkte)
Krei	euzen Sie an, ob folgende Aussage	n über LTI Systeme richtig oder falsch sind.
rais	sche Antworten führen zu einem P	unkiaozag.
(a)	(1 Punkt) Das Ausgangssignal ei Eingangssignals mit der Impulsar	ne LTI Systems ergibt sich aus der Faltung des atwort.
	\bigcirc wahr \bigcirc falsch	
(b)	(1 Punkt) Das Ausgangssignal ei Eingangssignals mit der Sprungar	ne LTI Systems ergibt sich aus der Faltung des ntwort.
	\bigcirc wahr \bigcirc falsch	
(c)	(1 Punkt) Das neutrale Element	der Faltung ist der Einheitssprung.
	\bigcirc wahr \bigcirc falsch	
(d)	(1 Punkt) Die Verdoppelung des lung des Ausgangssignals.	Eingangssignals führt auch zu einer Verdoppe-
	\bigcirc wahr \bigcirc falsch	
(e)	(1 Punkt) Die Antwort eines LT gleicher Frequenz, nur Amplitude	Systems auf einen ewigen Sinus ist ein Sinus und Phasenlage ist verändert.
	\bigcirc wahr \bigcirc falsch	
(f)	(1 Punkt) IIR-Filter haben eine	endliche Impulsantwort.
	\bigcirc wahr \bigcirc falsch	
(g)	(1 Punkt) Die Impulsantwort von	ı IIR-Filtern ist stets konvergent.
,	○ wahr ○ falsch	

Probeklausur 2/16

(a) (2 Punkte) Die Phase eines Kosinus-Signals $x(t)=\cos(2\pi f_0 t+\varphi)$ lässt sich in Beziehung setzen zur Zeitverschiebung des ersten Maximums. Bestimmen Sie den Wert für die Phase φ in rad für die Werte $f_0=10\,\mathrm{Hz}$ und den Zeitpunkt des ersten Maximums bei $t_m=0{,}005\,\mathrm{s}$.

(b) (2 Punkte) Sei x(t) sein Kosinus-Signal der Form $x(t) = \cos(\omega_0 t)$ mit $\omega_0 \neq 0$, dann lässt sich das Signal $y(t) = (x(t))^2$ schreiben als $y(t) = A * \cos(\omega_0 t + \varphi)$. \bigcirc wahr \bigcirc falsch Begründen Sie Ihre Antwort.

(c) (2 Punkte) Ein zeitkontinuierliches System besitzt die Systemfunktion

$$H(s) = \frac{s-1}{s^2 + 5s + 4}.$$

Ist die Impulsantwort

 \bigcirc konvergent (das System ist stabil) \bigcirc divergent (das System ist instabil) Begründen Sie ihre Anwort.

Probeklausur

(d) (3 Punkte) Gegeben ist eine Funktion f(t). Kann die Funktion g(t) aus der Funktion f(t) durch Skalierung, Zeitdehnung, Spiegelung und Verschiebung erzeugt werden? Falls ja geben Sie für $g(t) = M \cdot f(at+b)$ die Unbekannten a, b, M an.

(e) (3 Punkte) Ein zeitdiskretes FIR System besitzt die allgemeine Differenzengleichung $y[n] = \sum_{k=0}^{M} b_k x[n-k]$. Das System besitzt die folgende Impulsanwort h[n]

Wie lauten die Filterkoeffizienten b_k des Filters?

Probeklausur 4/16

Prof. DrIng. Michael Kolbus				

Probeklausur $5\,/\,16$

$$\ddot{y}(t) + 6\dot{y}(t) + 8y(t) = x(t).$$

(a) (4 Punkte) Zeichnen Sie ein Blockschaltbild des Systems.

(b) (3 Punkte) Bestimmen Sie das Systemfunktional des Systems

(c) (1 Punkt) Wie viele Integratoren brauchen Sie minimal?

Probeklausur 6/16

(d) (4 Punkte) Bestimmen Sie die Pole des Systems und stellen Sie diese graphisch da. Verwenden Sie ein Kreuz zur Markierung der Polstellen im Diagramm.

(e) (2 Punkte) Ist die Impulsantwort des Systems konvergent (=ist das System stabil)? Begründen Sie Ihre Antwort.

Probeklausur 7/16

Probeklausur 8/16

$$y[n] = y[n-1] + y[n-2] + x[n]$$

(a) (3 Punkte) Berechnen Sie die Impulsantwort $(x[n] = \delta[n])$ des Systems h[n] für $n = 0, 1, 2, \dots, 7$.

n	-2	-1	0	1	2	3	4	5	6	7
y[n]	0	0								

(b) (4 Punkte) Bestimmen Sie die Systemfunktion des obigen Systems.

Probeklausur 9 / 16

(c) (4 Punkte) Zeichnen Sie ein Blockschaltbild des Systems.

(d) (4 Punkte) Bestimmen Sie die Polstellen der Systemfunktion.

(e) (2 Punkte) Ist die Impulsantwort konvergent (=ist das System stabil)? Begründen Sie Ihre Antwort.

Probeklausur 10/16

(f) (6 Punkte) Bestimmen Sie die Impulsantwort des Systems y[n].

Probeklausur 11/16

Probeklausur $12\,/\,16$

(a) (8 Punkte) Bestimmen Sie die Fourierkoeffizienten des Signals.

(b) (2 Punkte) Wie lautet der Gleichanteil des Signals?

Probeklausur $14\,/\,16$

$$H(z) = \frac{1 + z^{-2}}{1 - \frac{3}{4}z^{-1}}$$

(a) (4 Punkte) Bestimmen Sie sämtliche Polestellen und Nullstellen von H(z).

(b) (1 Punkt) Ist die Impulsantwort des Systems konvergent (ist das System stabil)?

(c) (3 Punkte) Bestimmen Sie die Impulsantwort h[n] des Systems.

(d) (3 Punkte) Bestimmen Sie allgemein den Betrag der Frequenzantwort $|H(e^{j\hat{\omega}})|$.

$$X \xrightarrow{+} a \xrightarrow{F} Y$$

Das Systemfunktional des System für den Fall a=10 ist bekannt und lautet

$$H|_{a=10} = \frac{Y}{X}\Big|_{a=10} = \frac{10\mathcal{A}}{1+12\mathcal{A}}$$

Bestimmen Sie aus diesen Informationen das Systemfunktional für den Fall a=20.

$$H|_{a=20} = \frac{Y}{X}\Big|_{a=20}$$

Probeklausur 16/16