Overview of Stochastic Convergence

Statistical Theory

Guillaume Dehaene Ecole Polytechnique Fédérale de Lausanne

- 1 Motivation: Functions of Random Variables
- 2 Stochastic Convergence
 - How does a R.V. "Converge"?
 - Convergence in Probability and in Distribution
- Useful Theorems
 - Weak Convergence of Random Vectors
- 4 Stronger Notions of Convergence
- 5 The Two "Big" Theorems

Motivation: Functions of Random Variables

Functions of Random Variables

Let $X_1,...,X_n$ be i.i.d. with $\mathbb{E}X_i = \mu$ and $\text{var}[X_i] = \sigma^2$. Consider:

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

- If $X_i \sim \mathcal{N}(\mu, \sigma^2)$ or $X_i \sim \exp(\lambda = 1/\mu)$ then know dist $[\bar{X}_n]$.
- But X_i may be from some more general distribution
- ullet Joint distribution of X_i may not even be completely understood

Would like to be able to say something about \bar{X}_n even in those cases!

Perhaps this is not easy for fixed n, but what about letting $n \to \infty$? \hookrightarrow (a very common approach in mathematics)

Functions of Random Variables

Once we assume that $n \to \infty$ we start understanding dist $[\bar{X}_n]$ more:

ullet At a crude level $ar{X}_n$ becomes concentrated around μ

$$\mathbb{P}[|\bar{X}_n - \mu| < \epsilon] \approx 1, \quad \forall \ \epsilon > 0, \ \text{as} \ n \to \infty$$

Perhaps more informative is to look at the "magnified difference"

$$\mathbb{P}[\sqrt{n}(\bar{X}_n - \mu) \le x] \stackrel{n \to \infty}{pprox} ? \text{ could yield } \mathbb{P}[\bar{X}_n \le x]$$

More generally \longrightarrow Want to understand distribution of $Y = g(X_1, ..., X_n)$ for some general g:

- Often intractable
- ullet Resort to asymptotic approximations to understand behaviour of Y

Warning: asymptotics are often abused (n small!)

Stochastic Convergence

Convergence of Random Variables

Need to make precise what we mean by:

- Y_n is "concentrated" around μ as $n \to \infty$
- More generally what " Y_n behaves like Y" for large n means
- dist $[g(X_1,...,X_n)] \stackrel{n \to \infty}{\approx}$?
- → Need appropriate notions of convergence for random variables

Recall: random variables are functions between measurable spaces

- ⇒ Convergence of random variables can be defined in various ways:
 - Convergence in probability (convergence in measure)
 - Convergence in distribution (weak convergence)
 - Convergence with probability 1 (almost sure convergence)
 - Convergence in L^p (convergence in the p-th moment)

Each of these is qualitatively different - Some notions stronger than others

Convergence in Probability

Definition (Convergence in Probability)

Let $\{X_n\}_{n\geq 1}$ and X be random variables defined on the same probability space. We say that X_n converges in probability to X as $n\to\infty$ (and write $X_n\stackrel{p}{\to} X$) if for any $\epsilon>0$,

$$\mathbb{P}[|X_n - X| > \epsilon] \stackrel{n \to \infty}{\longrightarrow} 0.$$

Intuitively, if $X_n \stackrel{p}{\to} X$, then with high probability $X_n \approx X$ for large n.

Example

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{U}[0,1]$, and define $M_n = \max\{X_1, \ldots, X_n\}$. Then,

$$F_{M_n}(x) = x^n \implies \mathbb{P}[|M_n - 1| > \epsilon] = \mathbb{P}[M_n < 1 - \epsilon]$$

= $(1 - \epsilon)^n \stackrel{n \to \infty}{\longrightarrow} 0$

for any $0 < \epsilon < 1$. Hence $M_n \stackrel{p}{\to} 1$.

Convergence in Probability

Lemma (Ky-Fan definition of convergence in probability)

 $X_n \stackrel{P}{\to} X$ if and only if there exists some $\alpha_n \downarrow 0$ such that

$$\mathbb{P}[|X_n - X| > \alpha_n] \le \alpha_n, \qquad \forall \, n \ge 1.$$

Proof.

Suppose that there exists such an α_n . Then given any $\epsilon>0$, there exists n sufficiently large so that $\alpha_n<\epsilon$. It follows that

$$\mathbb{P}[|X_n - X| > \epsilon] \leq \mathbb{P}[|X_n - X| > \alpha_n] \leq \alpha_n \stackrel{n \to \infty}{\longrightarrow} 0.$$

and thus $X_n \stackrel{p}{\to} X$. For the converse, suppose that $X_n \stackrel{p}{\to} X$. Then, $\exists \{n_k\}_{k \ge 1}$ s.t.

$$n_k < n_{k+1}, \quad \& \quad \mathbb{P}[|X_n - X| > 1/k] \le \frac{1}{k}, \forall n \ge n_k.$$

Define $\alpha_n = \sum_{k=1}^{\infty} \frac{1}{k} \mathbf{1}\{n_k \le n < n_{k+1}\}$, and observe that $\mathbb{P}[|X_n - X| > \alpha_n] \le \alpha_n$, for all $n \ge 1$, and $\alpha_n \downarrow 0$, thus completing the proof.

Convergence in Distribution

Definition (Convergence in Distribution)

Let $\{X_n\}$ and X be random variables (not necessarily defined on the same probability space). We say that X_n converges in distribution to X as $n \to \infty$ (and write $X_n \xrightarrow{d} X$) if

$$\mathbb{P}[X_n \leq x] \stackrel{n \to \infty}{\longrightarrow} \mathbb{P}[X \leq x],$$

at every continuity point of $F_X(x) = \mathbb{P}[X \leq x]$.

Example

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathcal{U}[0,1]$, $M_n = \max\{X_1, \ldots, X_n\}$, and $Q_n = n(1-M_n)$.

$$\mathbb{P}[Q_n \le x] = \mathbb{P}[M_n \ge 1 - x/n] = 1 - \left(1 - \frac{x}{n}\right)^n \xrightarrow{n \to \infty} 1 - e^{-x}$$

for all x > 0. Hence $Q_n \stackrel{d}{\to} Q$, with $Q \sim exp(1)$.

Some Comments on " $\stackrel{p}{\rightarrow}$ " and " $\stackrel{d}{\rightarrow}$ "

- Convergence in probability implies convergence in distribution.
- Convergence in distribution does NOT imply convergence in probability
 - \hookrightarrow Consider $X \sim \mathcal{N}(0,1)$, $-X + \frac{1}{n} \stackrel{d}{\to} X$ but $-X + \frac{1}{n} \stackrel{p}{\to} -X$.
- " $\stackrel{d}{\rightarrow}$ " relates distribution functions
 - → Can use to approximate distributions (approximation error?).
- Both notions of convergence are metrizable
 - i.e. there exist metrics on the space of random variables and distribution functions that are compatible with the notion of convergence.
 - → Hence can use things such as the triangle inequality etc.
- " $\stackrel{d}{\rightarrow}$ " is also known as "weak convergence" (will see why).

Equivalent Def: $X \stackrel{d}{\to} X \iff \mathbb{E}f(X_n) \to \mathbb{E}f(X) \ \forall \ \text{cts and bounded} \ f$

Useful Theorems

Some Basic Results

Theorem

- (a) $X_n \stackrel{p}{\to} X \implies X_n \stackrel{d}{\to} X$
- (b) $X_n \stackrel{d}{\to} c \implies X_n \stackrel{p}{\to} c, c \in \mathbb{R}$.

Proof

(a)Let x be a continuity point of F_X and $\epsilon > 0$. Then,

$$\mathbb{P}[X_n < x] = \mathbb{P}[X_n < x, |X_n - X| < \epsilon] + \mathbb{P}[X_n < x, |X_n - X| > \epsilon]$$

$$\leq \mathbb{P}[X \leq x + \epsilon] + \mathbb{P}[|X_n - X| > \epsilon]$$

since $\{X \le x + \epsilon\}$ contains $\{X_n \le x, |X_n - X| \le \epsilon\}$. Similarly,

$$\mathbb{P}[X \le x - \epsilon] = \mathbb{P}[X \le x - \epsilon, |X_n - X| \le \epsilon] + \mathbb{P}[X \le x - \epsilon, |X_n - X| > \epsilon]$$

$$\leq \mathbb{P}[X_n \leq x] + \mathbb{P}[|X_n - X| > \epsilon]$$

(proof cont'd).

which yields $\mathbb{P}[X \leq x - \epsilon] - \mathbb{P}[|X_n - X| > \epsilon] \leq \mathbb{P}[X_n \leq x].$

Combining the two inequalities and "sandwitching" yields the result.

(b) Let F be the distribution function of a constant r.v. c,

$$F(x) = \mathbb{P}[c \le x] = \begin{cases} 1 & \text{if } x \ge c, \\ 0 & \text{if } x < c. \end{cases}$$

$$\mathbb{P}[|X_n - c| > \epsilon] = \mathbb{P}[\{X_n - c > \epsilon\} \cup \{c - X_n > \epsilon\}] \\
= \mathbb{P}[X_n > c + \epsilon] + \mathbb{P}[X_n < c - \epsilon] \\
\leq 1 - \mathbb{P}[X_n \le c + \epsilon] + \mathbb{P}[X_n \le c - \epsilon] \\
\xrightarrow{n \to \infty} 1 - F(\underbrace{c + \epsilon}) + F(\underbrace{c - \epsilon}) = 0$$

Since $X_n \stackrel{d}{\to} c$.

Theorem (Continuous Mapping Theorem)

Let $g : \mathbb{R} \to \mathbb{R}$ be a continuous function. Then,

- (a) $X_n \stackrel{p}{\to} X \implies g(X_n) \stackrel{p}{\to} g(X)$
- (b) $Y_n \stackrel{d}{\to} Y \implies g(Y_n) \stackrel{d}{\to} g(Y)$

Exercise

Prove part (a). You may assume without proof the *Subsequence Lemma*: $X_n \stackrel{p}{\to} X$ if and only if every subsequence X_{n_m} of X_n , has a further subsequence $X_{n_{m(k)}}$ such that $\mathbb{P}[X_{n_{m(k)}} \stackrel{k \to \infty}{\longrightarrow} X] = 1$.

Theorem (Slutsky's Theorem)

Let $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{d}{\to} c \in \mathbb{R}$. Then

- (a) $X_n + Y_n \stackrel{d}{\rightarrow} X + c$
- (b) $X_n Y_n \stackrel{d}{\rightarrow} cX$

Proof of Slutsky's Theorem.

(a) We may assume c = 0. Let x be a continuity point of F_X . We have

$$\mathbb{P}[X_n + Y_n \le x] = \mathbb{P}[X_n + Y_n \le x, |Y_n| \le \epsilon] + \mathbb{P}[X_n + Y_n \le x, |Y_n| > \epsilon]$$

$$\le \mathbb{P}[X_n \le x + \epsilon] + \mathbb{P}[|Y_n| > \epsilon]$$

Similarly,
$$\mathbb{P}[X_n \le x - \epsilon] \le \mathbb{P}[X_n + Y_n \le x] + \mathbb{P}[|Y_n| > \epsilon],$$
 therefore,

$$\mathbb{P}[X_n \le x - \epsilon] - \mathbb{P}[|Y_n| > \epsilon] \le \mathbb{P}[X_n + Y_n \le x] \le \mathbb{P}[X_n \le x + \epsilon] + \mathbb{P}[|Y_n| > \epsilon]$$

Since ϵ is arbitrary, this proves (a) by taking $n \to \infty$.

Proof.

(b) It suffices to assume c=0 (since $(Y_n+c)X_n=X_nY_n+X_nc$, so if we can show $X_nY_n\stackrel{d}{\to} 0$, then (a) gives conclusion). Let $\epsilon,M>0$:

$$\begin{split} \mathbb{P}[|X_n Y_n| > \epsilon] & \leq & \mathbb{P}[|X_n Y_n| > \epsilon, |Y_n| \leq 1/M] + \mathbb{P}[|Y_n| \geq 1/M] \\ & \leq & \mathbb{P}[|X_n| > \epsilon M] + \mathbb{P}[|Y_n| \geq 1/M] \\ & \stackrel{n \to \infty}{\longrightarrow} & \mathbb{P}[|X| > \epsilon M] + 0 \end{split}$$

The first term can be made arbitrarily small by letting $M \to \infty$.

Theorem (General Version of Slutsky's Theorem)

Let $g: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ be continuous and suppose that $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{d}{\to} c \in \mathbb{R}$. Then, $g(X_n, Y_n) \to g(X, c)$ as $n \to \infty$.

→Notice that the general version of Slutsky's theorem <u>does not follow</u> immediately from the continuous mapping theorem.

- The continuous mapping theorem would be applicable if (X_n, Y_n) weakly converged jointly (i.e. their joint distribution) to (X, c).
- But here we assume only marginal convergence (i.e. $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{d}{\to} c$ separately, but their joint behaviour is unspecified).
- The key of the proof is that in the special case where $Y_n \stackrel{d}{\to} c$ where c is a constant, then marginal convergence \iff joint convergence.
- However if $X_n \stackrel{d}{\to} X$ where X is non-degenerate, and $Y_n \stackrel{d}{\to} Y$ where Y is non-degenerate, then the theorem fails.
- Notice that even the special cases (addition and multiplication) of Slutsky's theorem fail of both X and Y are non-degenerate.

Theorem (The Delta Method)

Let $Z_n := a_n(X_n - \theta) \stackrel{d}{\to} Z$ where $a_n, \theta \in \mathbb{R}$ for all n and $a_n \uparrow \infty$. Let $g(\cdot)$ be continuously differentiable at θ . Then, $a_n(g(X_n) - g(\theta)) \stackrel{d}{\to} g'(\theta)Z$.

Proof

Taylor expanding around θ gives:

$$g(X_n) = g(\theta) + g'(\theta_n^*)(X_n - \theta), \quad \theta_n^* \text{ between } X_n, \theta.$$

Thus $|\theta_n^* - \theta| < |X_n - \theta| = a_n^{-1} \cdot |a_n(X_n - \theta)| = a_n^{-1} Z_n \xrightarrow{P} 0$ [by Slutsky] Therefore, $\theta_n^* \xrightarrow{P} \theta$. By the continuous mapping theorem $g'(\theta_n^*) \xrightarrow{P} g'(\theta)$.

Thus
$$a_n(g(X_n) - g(\theta)) = a_n(g(\theta) + g'(\theta_n^*)(X_n - \theta) - g(\theta))$$

= $g'(\theta_n^*)a_n(X - \theta) \stackrel{d}{\to} g'(\theta)Z$.

The delta method actually applies even when $g'(\theta)$ is not continuous (proof uses Skorokhod representation).

Exercise: Give a counterexample to show that neither of $X_n \stackrel{p}{\to} X$ or $X_n \stackrel{d}{\to} X$ ensures that $\mathbb{E} X_n \to \mathbb{E} X$ as $n \to \infty$.

Theorem (Convergence of Expecations)

If $|X_n| < M < \infty$ and $X_n \stackrel{d}{\to} X$, then $\mathbb{E} X$ exists and $\mathbb{E} X_n \stackrel{n \to \infty}{\longrightarrow} \mathbb{E} X$.

Proof.

Assume first that X_n are non-negative $\forall n$. Then,

$$|\mathbb{E}X_{n} - \mathbb{E}X| = \left| \int_{0}^{M} \mathbb{P}[X_{n} > x] - \mathbb{P}[X > x] dx \right|$$

$$\leq \int_{0}^{M} |\mathbb{P}[X_{n} > x] - \mathbb{P}[X > x]| dx \xrightarrow{n \to \infty} 0.$$

since $M < \infty$ and the integration domain is bounded.

Exercise: Generalise the proof to arbitrary random variables.

Remarks on Weak Convergence

- Often difficult to establish weak convergence directly (from definition)
- Indeed, if F_n known, establishing weak convergence is "useless"
- Need other more "handy" sufficient conditions

Scheffé's Theorem

Let X_n have density functions (or probability functions) f_n , and let X have density function (or probability function) f. Then

$$f_n \stackrel{n \to \infty}{\longrightarrow} f$$
 (a.e.) $\implies X_n \stackrel{d}{\to} X$

 The converse to Scheffé's theorem is NOT true (why?).

Continuity Theorem

Let X_n and X have characteristic functions $\varphi_n(t) = \mathbb{E}[e^{itX_n}]$, and $\varphi(t) = \mathbb{E}[e^{itX}]$, respectively. Then, (a) $X_n \stackrel{d}{\to} X \Leftrightarrow \phi_n \to \phi$ pointwise (b) If $\phi_n(t)$ converges pointwise to some limit function $\psi(t)$ that is continuous at zero, then:

- (i) \exists a measure ν with c.f. ψ
- (ii) $F_{X_n} \stackrel{w}{\to} \nu$.

Weak Convergence of Random Vectors

Definition

Let $\{\mathbf{X}_n\}$ be a sequence of random vectors of \mathbb{R}^d , and \mathbf{X} a random vector of \mathbb{R}^d with $\mathbf{X}_n = (X_n^{(1)},...,X_n^{(d)})^\mathsf{T}$ and $\mathbf{X} = (X^{(1)},...,X^{(d)})^\mathsf{T}$. Define the distribution functions $F_{\mathbf{X}_n}(\mathbf{x}) = \mathbb{P}[X_n^{(1)} \leq x^{(1)},...,X_n^{(d)} \leq x^{(d)}]$ and $F_{\mathbf{X}}(\mathbf{x}) = \mathbb{P}[X^{(1)} \leq x^{(1)},...,X^{(d)} \leq x^{(d)}]$, for $\mathbf{x} = (x^{(1)},...,x^{(d)})^\mathsf{T} \in \mathbb{R}^d$. We say that \mathbf{X}_n converges in distribution to \mathbf{X} as $n \to \infty$ (and write $\mathbf{X}_n \overset{d}{\to} \mathbf{X}$) if for every continuity point of $F_{\mathbf{X}}$ we have

$$F_{X_n}(X) \stackrel{n \to \infty}{\longrightarrow} F_X(x).$$

There is a link between univariate and multivariate weak convergence:

Theorem (Cramér-Wold Device)

Let $\{X_n\}$ be a sequence of random vectors of \mathbb{R}^d , and X a random vector of \mathbb{R}^d . Then,

$$\mathbf{X}_{n} \stackrel{d}{\to} \mathbf{X} \Leftrightarrow \boldsymbol{\theta}^{\mathsf{T}} \mathbf{X}_{n} \stackrel{d}{\to} \boldsymbol{\theta}^{\mathsf{T}} \mathbf{X}, \ \forall \boldsymbol{\theta} \in \mathbb{R}^{d}.$$

Stronger Notions of Convergence

Almost Sure Convergence and Convergence in L^p

There are also two stronger convergence concepts (that do not compare)

Definition (Almost Sure Convergence)

Let $\{X_n\}_{n\geq 1}$ and X be random variables defined on the same probability space $(\Omega, \mathcal{F}, \mathbb{P})$. Let $A:=\{\omega\in\Omega: X_n(\omega)\stackrel{n\to\infty}{\to} X(\omega)\}$. We say that X_n converges almost surely to X as $n\to\infty$ (and write $X_n\stackrel{a.s.}{\longrightarrow} X$) if $\mathbb{P}[A]=1$.

More plainly, we say $X_n \stackrel{a.s.}{\longrightarrow} X$ if $\mathbb{P}[X_n \to X] = 1$.

Definition (Convergence in L^p)

Let $\{X_n\}_{n\geq 1}$ and X be random variables defined on the same probability space. We say that X_n converges to X in L^p as $n\to\infty$ (and write $X_n\stackrel{L^p}{\to} X$) if

$$\mathbb{E}|X_n-X|^p\stackrel{n\to\infty}{\longrightarrow} 0.$$

Note that $\|X\|_{L^p}:=(\mathbb{E}|X|^p)^{1/p}$ defines a complete norm (when finite)

Relationship Between Different Types of Convergence

- $\bullet \ X_n \xrightarrow{a.s.} X \implies X_n \xrightarrow{p} X \implies X_n \xrightarrow{d} X$
- $X_n \xrightarrow{L^p} X$, for $p > 0 \implies X_n \xrightarrow{p} X \implies X_n \xrightarrow{d} X$
- for $p \ge q$, $X_n \xrightarrow{L^p} X \implies X_n \xrightarrow{L^q} X$
- There is no implicative relationship between " $\stackrel{a.s.}{\longrightarrow}$ " and " $\stackrel{L^p}{\longrightarrow}$ "

Theorem (Skorokhod's Representation Theorem)

Let $\{X_n\}_{n\geq 1}, X$ be random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $X_n \stackrel{d}{\to} X$. Then, there exist random variables $\{Y_n\}_{n\geq 1}, Y$ defined on some probability space $(\Omega', \mathcal{G}, \mathbb{Q})$ such that:

- (i) $Y \stackrel{d}{=} X \& Y_n \stackrel{d}{=} X_n, \forall n \geq 1$,
- (ii) $Y_n \stackrel{a.s.}{\longrightarrow} Y$.

Exercise

Prove part (b) of the continuous mapping theorem.

The Two "Big" Theorems

Recalling two basic Theorems

Multivariate Random Variables \rightarrow " $\stackrel{d}{\rightarrow}$ " defined coordinatewise

Theorem (Strong Law of Large Numbers)

Let $\{X_n\}$ be pairwise iid random variables with $\mathbb{E}X_k = \mu$ and $\mathbb{E}|X_k| < \infty$, for all $k \ge 1$. Then,

$$\frac{1}{n} \sum_{k=1}^{n} X_k \xrightarrow{a.s.} \mu$$

- "Strong" is as opposed to the "weak" law which requires $\mathbb{E}X_k^2 < \infty$ instead of $\mathbb{E}|X_k| < \infty$ and gives " $\stackrel{p}{\rightarrow}$ " instead of " $\stackrel{a.s.}{\longrightarrow}$ "
- This is insanely strong: $(E)|X_k| < \infty$ is the weakest condition for it to have an expected value. The theorem reads: if there is an expected value, we can find it with the empirical mean.
- The strong law says **nothing useful** about the **size** of the error.

Recalling two basic theorems

Theorem (Central Limit Theorem)

Let $\{\mathbf{X}_n\}$ be an iid sequence of random vectors in \mathbb{R}^d with mean $\boldsymbol{\mu}$ and covariance Σ and define $\bar{\mathbf{X}}_n := \sum_{m=1}^n \mathbf{X}_m/n$. Then,

$$\sqrt{n}\Sigma^{-\frac{1}{2}}(ar{\mathbf{X}}-oldsymbol{\mu})\overset{d}{
ightarrow}\mathbf{Z}\sim\mathcal{N}_d(\mathbf{0},I_d).$$

- Insanely strong theorem: as soon as the covariance exist, we are in business.
- Once more, no control on the size of error.
- There are many variants of this basic CLT.

Convergence Rates

The mathematician rarely cares about convergence speed. The statistician does (should?) because **data is money**.

- Law of Large Numbers: assuming finite variance, L^2 rate of $n^{-1/2}$. Optimal because of CLT.
- What about Central Limit Theorem?

The Berry-Esseen theorem

Theorem (Berry-Essen {Bentkus, 2005, Theory Prob Appl})

Let $X_1, ..., X_n$ be iid random vectors taking values in \mathbb{R}^d and such that $\mathbb{E}[X_i] = 0$, $cov[X_i] = I_d$. Define,

$$\mathbf{S}_n = \frac{1}{\sqrt{n}}(\mathbf{X}_1 + \ldots + \mathbf{X}_n).$$

If $\mathcal A$ denotes the class of convex subsets of $\mathbb R^d$, then for $\mathbf Z \sim \mathcal N_d(\mathbf 0, I_d)$,

$$\sup_{A \in \mathcal{A}} |\mathbb{P}[\mathbf{S}_n \in A] - \mathbb{P}[\mathbf{Z} \in A]| \le C \frac{d^{1/4} \mathbb{E} \|\mathbf{X}_i\|^3}{\sqrt{n}}.$$

The constant C is universal. $C \leq 4$.

Using this theorem, we can construct confidence regions with guaranteed coverage.