### MATH E-156 Mathematical Statistics

Harvard Extension School

Dmitry Kurochkin

Fall 2020 Lecture 10

- Survey Sampling (Continued)
  - Estimation of Population Variance
    - Expectation of  $\hat{\sigma}^2$
    - ullet Expectation of  $s_{ar{X}}^2$
  - Estimation of Population Proportions
  - Normal Approximation to the Distribution of Sample Mean
    - ullet Normal Approximation to the Sampling Distribution of  $ar{X}$
    - $\bullet$  Confidence Interval for the Population Mean  $\mu$
- Estimation of Parameters and Fitting of Probability Distributions
  - Consistency of Parameter Estimators
  - Method of Moments (MM)
  - MM Examples
    - Bernoulli Distribution
    - Exponential Distribution
    - Normal Distribution

- Survey Sampling (Continued)
  - Estimation of Population Variance
    - Expectation of  $\hat{\sigma}^2$
    - Expectation of  $s_{\bar{X}}^2$
  - Estimation of Population Proportions
  - Normal Approximation to the Distribution of Sample Mean
    - ullet Normal Approximation to the Sampling Distribution of  $ar{X}$
    - ullet Confidence Interval for the Population Mean  $\mu$
- Estimation of Parameters and Fitting of Probability Distributions
  - Consistency of Parameter Estimators
  - Method of Moments (MM)
  - MM Examples
    - Bernoulli Distribution
    - Exponential Distribution
    - Normal Distribution

# Expectation of $\hat{\sigma}^2$

#### Thm.

Assuming simple random sampling from a population with the population variance  $\sigma^2$ ,

$$E[\hat{\sigma}^2] = \sigma^2 \left(\frac{n-1}{n}\right) \frac{N}{N-1},$$

where

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2.$$

#### <u>Remark</u>

lf

$$E[\hat{\sigma}^2] \neq \sigma^2,$$

we will say that  $\hat{\sigma}^2$  is *biased* estimator of  $\sigma^2$ .

# Expectation of $s_{\bar{X}}^2$

### Corollary

Assuming simple random sampling from a population with the population variance  $\sigma^2$ ,

$$s_{\bar{X}}^2 = \frac{\hat{\sigma}^2}{n} \left( \frac{n}{n-1} \right) \left( \frac{N-1}{N} \right) \left( \frac{N-n}{N-1} \right)$$

is an unbiased estimate of  $Var(\bar{X})$ , that is,

$$\mathrm{E}[s_{\bar{X}}^2] = \mathsf{Var}(\bar{X}).$$

#### Remark

Note that

$$s_{\bar{X}}^2 = \frac{S^2}{n} \left( 1 - \underbrace{\frac{n}{N}}_{\text{sampling fraction}} \right), \quad \text{where} \quad S^2 = \frac{1}{n-1} \sum_{i=1}^n \left( X_i - \bar{X} \right)^2.$$

- Survey Sampling (Continued)
  - Estimation of Population Variance
    - Expectation of  $\hat{\sigma}^2$
    - Expectation of  $s_{\bar{x}}^2$
  - Estimation of Population Proportions
  - Normal Approximation to the Distribution of Sample Mean
    - ullet Normal Approximation to the Sampling Distribution of  $ar{X}$
    - ullet Confidence Interval for the Population Mean  $\mu$
- Estimation of Parameters and Fitting of Probability Distributions
  - Consistency of Parameter Estimators
  - Method of Moments (MM)
  - MM Examples
    - Bernoulli Distribution
    - Exponential Distribution
    - Normal Distribution

## Estimation of Population Proportions

### Corollary

Assume simple random sampling from a population with  $x_1, x_2, \ldots, x_N \in \{0,1\}$  (dichotomous case).

Let

$$\hat{p} = \bar{X}$$
.

Then

$$s_{\hat{p}}^2 = \frac{\hat{p}(1-\hat{p})}{n-1} \left(1 - \frac{n}{N}\right)$$

is an unbiased estimate of  $Var(\hat{p})$ , that is,

$$\mathrm{E}[s_{\hat{p}}^2] = \mathsf{Var}(\hat{p}).$$

- Survey Sampling (Continued)
  - Estimation of Population Variance
    - Expectation of  $\hat{\sigma}^2$
    - ullet Expectation of  $s_{ar{X}}^2$
  - Estimation of Population Proportions
  - Normal Approximation to the Distribution of Sample Mean
    - ullet Normal Approximation to the Sampling Distribution of  $ar{X}$
    - $\bullet$  Confidence Interval for the Population Mean  $\mu$
- 2 Estimation of Parameters and Fitting of Probability Distributions
  - Consistency of Parameter Estimators
  - Method of Moments (MM)
  - MM Examples
    - Bernoulli Distribution
    - Exponential Distribution
    - Normal Distribution

# Normal Approximation to the Sampling Distribution of $ar{X}$

Assume simple random sampling. If sample size n is large, but small relative to population size N, then

$$\frac{\bar{X}_n - \mu}{s_{\bar{X}}} \ \ \text{is approximately} \ \ \text{Normal}(0,1),$$

that is,

$$P\left(\frac{X_n - \mu}{s_{\bar{X}}} \le x\right) \approx \Phi(x) \text{ for all } x \in \mathbb{R},$$

where

$$\Phi(z) \doteq \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

is the cdf of a standard normal random variable.

# Confidence Interval for the Population Mean $\mu$

Let  $z_{\alpha/2}$  denote a number such that  $\Phi(z_{\alpha})=1-\alpha/2$ . Then

$$P\left(-z_{\alpha/2} < \frac{\bar{X}_n - \mu}{s_{\bar{X}}} < z_{\alpha/2}\right) \approx 1 - \alpha$$

and therefore

$$P\left(\bar{X}_n - z_{\alpha/2}s_{\bar{X}} < \mu < \bar{X}_n + z_{\alpha/2}s_{\bar{X}}\right) \approx 1 - \alpha.$$

### Terminology

The interval  $\left( ar{X}_n - z_{lpha/2} \, s_{ar{X}}, ar{X}_n + z_{lpha/2} \, s_{ar{X}} 
ight)$ , denoted by

$$\bar{X}_n \pm z_{\alpha/2} \, s_{\bar{X}},$$

is called  $100(1-\alpha)\%$  confidence interval for  $\mu$ .



- Survey Sampling (Continued)
  - Estimation of Population Variance
    - Expectation of  $\hat{\sigma}^2$
    - ullet Expectation of  $s_{ar{x}}^2$
  - Estimation of Population Proportions
  - Normal Approximation to the Distribution of Sample Mean
    - ullet Normal Approximation to the Sampling Distribution of  $ar{X}$
    - ullet Confidence Interval for the Population Mean  $\mu$
- Estimation of Parameters and Fitting of Probability Distributions
  - Consistency of Parameter Estimators
  - Method of Moments (MM)
  - MM Examples
    - Bernoulli Distribution
    - Exponential Distribution
    - Normal Distribution

### Consistency of Parameter Estimators

#### Def.:

Let  $\hat{\theta}_n$  be an estimator of a parameter  $\theta$  of some distribution based on a sample of i.i.d.  $X_1, X_2, \dots, X_n$  from this distribution.

 $\hat{\theta}_n$  is called *consistent* (or *asymptotically consistent*) estimator of  $\theta$  if for any  $\varepsilon>0$ ,

$$\lim_{n \to \infty} P(|\hat{\theta}_n - \theta| > \varepsilon) = 0.$$

- Survey Sampling (Continued)
  - Estimation of Population Variance
    - Expectation of  $\hat{\sigma}^2$
    - ullet Expectation of  $s_{ar{x}}^2$
  - Estimation of Population Proportions
  - Normal Approximation to the Distribution of Sample Mean
    - ullet Normal Approximation to the Sampling Distribution of  $ar{X}$
    - ullet Confidence Interval for the Population Mean  $\mu$
- Estimation of Parameters and Fitting of Probability Distributions
  - Consistency of Parameter Estimators
  - Method of Moments (MM)
  - MM Examples
    - Bernoulli Distribution
    - Exponential Distribution
    - Normal Distribution

## Sample Moments

#### Def:

Given a sample of i.i.d.  $X_1, X_2, \dots, X_n$  from some distribution,

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

is called kth sample moment.

# Method of Moments (MM)

#### Method of Moments:

Assume that a distribution can be parametrized by  $\theta_1,\theta_2,\ldots,\theta_d$ , then given a sample of i.i.d.  $X_1,X_2,\ldots,X_n$  from this distribution, the unknown  $\theta_k$  can be obtained as the solution to the following system:

$$\mathrm{E}[X] \ \stackrel{\mathsf{set}}{=} \ \ \hat{\mu}_1 = \frac{1}{n} \sum_{i=1}^n X_i,$$

$$E[X^2] \stackrel{\text{set}}{=} \hat{\mu}_2 = \frac{1}{n} \sum_{i=1}^n X_i^2,$$

:

$$E[X^d] \stackrel{\text{set}}{=} \hat{\mu}_d = \frac{1}{n} \sum_{i=1}^n X_i^d,$$

where  $\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n X_k^i$  is the kth sample moment.

- Survey Sampling (Continued)
  - Estimation of Population Variance
    - Expectation of  $\hat{\sigma}^2$
    - ullet Expectation of  $s_{ar{x}}^2$
  - Estimation of Population Proportions
  - Normal Approximation to the Distribution of Sample Mean
    - ullet Normal Approximation to the Sampling Distribution of  $ar{X}$
    - $\bullet$  Confidence Interval for the Population Mean  $\mu$
- Estimation of Parameters and Fitting of Probability Distributions
  - Consistency of Parameter Estimators
  - Method of Moments (MM)
  - MM Examples
    - Bernoulli Distribution
    - Exponential Distribution
    - Normal Distribution

### MM for Bernoulli Distribution

#### Example:

Consider a sample of i.i.d.  $X_1, X_2, \ldots, X_n$  from Bernoilli(p), i.e. the pmf is

$$P(X = k|p) = \begin{cases} p^k (1-p)^{1-k}, & \text{if } k \in \{0,1\}, \\ 0, & \text{otherwise.} \end{cases}$$

Then the Method of Moments estimator of p is

$$\hat{p}_{\mathrm{MM}} = \bar{X}.$$

### MM for Exponential Distribution

### Example:

Consider a sample of i.i.d.  $X_1, X_2, \ldots, X_n$  from Exponential( $\lambda$ ), i.e. the pdf is

$$f(x|\lambda) = \begin{cases} \lambda e^{-\lambda x}, & \text{if } x \ge 0, \\ 0, & \text{otherwise }. \end{cases}$$

Then the Method of Moments estimator of  $\lambda$  is

$$\hat{\lambda}_{\rm MM} = \frac{1}{\bar{X}}.$$

### MM for Normal Distribution

### Example:

Consider a sample of i.i.d.  $X_1, X_2, \ldots, X_n$  from Normal $(\mu, \sigma^2)$ , i.e. the pdf is

$$f(x|\mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R},$$

Then the Method of Moments estimators of  $\mu$  and  $\sigma^2$  are

$$\begin{split} \hat{\mu}_{\mathrm{MM}} = & \bar{X}, \\ \hat{\sigma}_{\mathrm{MM}}^2 = & \frac{1}{n} \sum_{k=1}^n X_k^2 - \bar{X}^2. \end{split}$$