

Exercícios no modelo DART 3D: Work Package 1A

Autor: Douglas Galimberti Barbosa Orientador: Cristiano Lima Hackmann

1. Introdução

 Work Packages (WPs) visam ajudar iniciantes a familiarizarem-se com o modelo DART 3D e suas funções.

2. Objetivos

- Aprender as funcionalidades básicas do DART:
- a) Criar Earth Scenes (geometria, propriedades ópticas);
- b) Criar simulações mono-band (1 banda) e multi-band (N bandas);
- c) Visualizar imagens e gráficos;
- d) Computar e visualizar espectro e distribuição radiativa (radiative budget) de cenas.

3. Parâmetros

"Flux-tracking"	Radiative method: Flux-tracking Transition: TOA ↔ BOA: Analytic model
"Advanced mode"	Number of threads in DART tracking: Nb_ cores of your computer
"Flux tracking"//"Spectral band"	Mode R, $\lambda_{\text{mean}}=0.705\mu\text{m}$, $\Delta\lambda=0.01\mu\text{m} \Rightarrow [0.70\mu\text{m} 0.71\mu\text{m}]$
	All iteration products
"Flux tracking" / "Products" / "BRF/BTF"	Radiance Products Maximal zenith angle of images: 30° OrthoImages and irradiance: Energy conservation Exitance and Albedo images ✓
"Optical & Temperature properties" / "Lambertian"	Name: "Lamb_ro=0.50". <u>Database</u> : Lambertian <u>Reflectance model</u> : reflect_equal_1_trans_equal_0_0 <u>Multiplicative factor (same for all bands)</u> : \square (0.5,0,0,0) \Rightarrow ρ =0.5
"Earth scene"	<u>Cell</u> : $\Delta x = \Delta y = 1$ m, $\Delta z = 1$ m. <u>Scene</u> : $\Delta X = 50$ m, $\Delta Y = 50$ m <u>Phase function's name</u> : Lamb_ro=0.50

3.1 Métodos de Transferência Radiativa

"Flux-tracking"

| Radiative method: Flux-tracking |
| Transition: TOA ↔ BOA: Analytic model

<u>Flux-tracking</u>: um dos modos de operação do DART. Este modo rastreia fluxos de radiação emitida e espalhada dentro de cones angulares (GASTELLU ET AL., 2012).

Analytic Model: E_{BOA} é derivado de E_{TOA} com a função f_{analytic}

3.1.1 Modelo Analítico

```
Approximate analytical derivation of E_{s,BOA} for scene altitude z, using DART E_{s,TOA} and atmosphere database:

- Gas model: transmittance for absorption T_{gas,abs,}=\prod_i T_{gas,abs,i} and scattering T_{gas,scat}. Scattering optical depth \Delta \tau_{gas,scat}=-\ln(T_{gas,scat}) - Aerosol model: optical depth \Delta \tau_{aero}, single scattering albedo \omega_{aero} \Rightarrow \Delta \tau_{aero,scat}=\omega_{aero}.\Delta \tau_{aero}, T_{aero,abs}=e^{-(1-\omega_{aero}).\Delta \tau_{aero}} and T_{aero,abs}=e^{-(1-\omega_{aero}).\Delta \tau_{aero,abs}} and data (trapezoidal method): T_{aero,abs}=e^{-(1-\omega_{aero}).\Delta \tau_{aero,abs}} and T_{aero,abs}=e^{-(1-\omega_{aero,abs})} and T_{aero,abs}=e^{-(1-\omega_{aer
```

Table 2. The analytic model $f_{analytic}$. $E_{s,BOA,diffuse} = SKYL_{\Delta\lambda}$. $E_{s,BOA,direct} = (1 - SKYL_{\Delta\lambda}) E_{BOA,\Delta\lambda}$

3.2 Processamento e Bandas Espectrais

"Advanced mode"	Number of threads in DART tracking: Nb_ cores of your computer
"Flux tracking"//"Spectral band"	Mode R, $\lambda_{\text{mean}}=0.705\mu\text{m}$, $\Delta\lambda=0.01\mu\text{m} \Rightarrow [0.70\mu\text{m} 0.71\mu\text{m}]$

<u>Number of threads in DART tracking</u>: DART aplicará multi-threading para acelerar o processamento. Será implementado em iluminação, espalhamento e na função do cálculo de transferência na atmosfera.

Mode R: Modo Reflectância -> O Sol é a única fonte de radiação. Atmosfera é uma fonte secundária (GASTELLU ET AL., 2012).

Comprimento de onda central = $0.705 \mu m$; Banda espectral = $0.01 \mu m$.

✓ Flux-tracking	Spectral band	
 ✓ Flux-tracking parameters ✓ (1) Spectral intervals 	Spectral band number	0
Spectral band	Mode	Mode R ∨
> (1) Spectral irradiance and { > Products	Central wavelength [µm	0.705
(0) Sensors	Spectral bandwidth [µm	0.01

3.3 Produtos e Ângulos de Visada

"Flux tracking"/"Products"/		All iteration products
	"BRF/BTF"	Radiance Products 🗹
		Maximal zenith angle of images: 30°
		Maximal zenith angle of images: 30° OrthoImages and irradiance: Energy conservation
		Exitance and Albedo images ✓

All iteration products: resultados obtidos a cada iteração serão armazenados.

Radiance products: resulta em produtos de imagens de radiância (W/m²/sr/μm).

<u>Maximal zenith angle of images</u>: isso é um limite do ângulo zenital das direções de visada; somente imagens com ângulo zenital menor que este limite serão armazenadas (para economizar memória).

<u>Ortholmages and irradiance: Energy Conservation</u> -> imagens são duplicadas para melhor interpretação visual.

Exitance and Albedo images: imagens de Irradiância, Emitância e Albedo.

3.4 Propriedades Ópticas e de Temperatura

"Optical & Temperature properties"
/ "Lambertian"

```
Name: "Lamb_ro=0.50". <u>Database</u>: Lambertian

<u>Reflectance model</u>: reflect_equal_1_trans_equal_0_0

<u>Multiplicative factor (same for all bands)</u>: \square (0.5, 0, 0, 0) \Rightarrow \rho=0.5
```

<u>Lambertian property name:</u> proporção de fótons interceptados ao longo de uma direção e espalhados dentro de um ângulo sólido ao longo de uma dada direção. Definição de uma reflectância p = 0.50, nomeada "Lamb_ro=0.50".

Lambertian database: base de dados de reflectância.

<u>Reflectance model</u>: reflect_equal_1_trans_equal_0_0 -> nome da base espectral (arquivo de texto) utilizada para computar a função de fase espectral.

<u>Multiplicative factor (same for all bands)</u>: quando selecionado, os valores dos parâmetros de cada banda espectral serão igualados a estes parâmetros.

Reflectância = 0.50

Transmitância difusa: 0 Transmitância direta: 0 Intensidade especular: 0

3.5 Earth Scene – Dimensões e Propriedades

"Earth scene" $\frac{Cell: \Delta x = \Delta y = 1 \text{m. } \underline{Scene}: \Delta X = 50 \text{m. } \underline{\Delta Y} = 50 \text{m}}{\underline{Phase function's name}: Lamb_ro=0.50}$

<u>Earth Scene</u>: criação de um terreno horizontal (50m x 50m), com células discretas de 1m³, com a já definida propriedade óptica de reflectância: "Lamb_ro=0.50".

Cell: dimensões das células tridimensionais (X, Y e Z); Scene: dimensões da cena (X e Y).

<u>Phase function's name</u>: "Lamb_ro=0.50" -> aplica as propriedades ópticas e de temperatura definidas anteriormente.

4. Resultados

- 1) Earth Scene: terreno com dimensões 50 metros por 50 metros, e células (voxels) discretas de 1m³ cada.
- 2) Cena 3D.
- 3) Imagens: reflectância (BRF) e radiância.
- 4) Arquivo "dart.txt" que armazena os resultados; arquivo "simulation.properties.txt" armazena os parâmetros de entrada da simulação.

4.1 Visualização de cena 3D

4.2 Gráfico de Reflectância

Menu View -> Directional Reflectance/Temperature -> 1D.

4.3 Visão bidimensional da reflectância

Menu View -> Directional Reflectance/Temperature -> 2D. Direção solar indicada pelo ponto preto.

4.3 Produtos de imagens - reflectância

Menu View -> Image -> Representação do produto de imagem de reflectância resultante da simulação. Como pode ser notado a contagem de pixels representa o valor de reflectância p = 0,50 para toda a cena.

4.4 Produtos de imagens - radiância

Representação do produto de imagem de radiância resultante da simulação. Como pode ser notado a contagem de pixels mostra o valor de radiância $L_{\rm e,\Omega}$ = 177,6 W·sr⁻¹·m⁻²· μ m para toda a cena.

5. Referências bibliográficas

DART User Manual (5.6.7), 2017. CESBIO. Paul Sabatier University. < http://www.cesbio.ups-tlse.fr/dart/Public/documentation/contenu/documentation/DART_User_Manual.pdf Acessado em 14/11/2017, às 21:30 (BRT).

GASTELLU-ETCHEGORRY, J.P., GRAU, E., LAURET, N. DART: a 3D model for remote sensing images and radiative budget of earth surfaces. Modeling and simulation in Engineering, 2012, pp.ISBN 978-953-307-959-2.

GASTELLU-ETCHEGORRY, J.P., et al. DART: modèle physique 3D de telédétéction et du bilan radiatif de paysages urbains et naturailes. Teledetection, Editions des Archives Contemporaines, 2008, 8 (3), pp.159-167.

GASTELLU-ETCHEGORRY, J.P., et al. DART: a 3D model for simulating satellite images and studying surface radiation budget. INT. J. Remote Sensing, 2004, vol. 25, nº 1, pp.73-96.