Abhishek Gupta

Intern :- Bharat Intern

Object :- In this project, you will need to evaluate each factor and its relationship with attrition, for example, the distance from home to office, the job role impact on attrition, etc

```
In [ ]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
In [3]:
pd.set_option('display.max_rows',None)
pd.set_option('display.max_columns',None)
In [4]:
df = pd.read csv('HR-Employee-Attrition.csv')
df
Out[4]:
       Age
           Attrition
                      BusinessTravel DailyRate
                                                Department DistanceFromHome
                                                                               Education
                                                                                         EducationField
                                                                                                        EmployeeCount
                                                                                                                        EmployeeNumber
                                                                                                                                         Environn
        41
                        Travel_Rarely
                                          1102
                                                      Sales
                                                                                            Life Sciences
                                                                                                                                       1
   0
                Yes
                                                 Research &
                                                                                            Life Sciences
        49
                 No
                     Travel_Frequently
                                          279
                                               Development
                                                Research &
        37
                Yes
                        Travel_Rarely
                                          1373
                                                                            2
                                                                                       2
                                                                                                  Other
                                                                                                                                       4
                                               Development
                                                Research &
                                                                                            Life Sciences
   3
        33
                 No
                    Travel_Frequently
                                          1392
                                                                            3
                                                                                                                                       5
                                               Development
                                                 Research &
        27
                 No
                        Travel_Rarely
                                          591
                                                                                                 Medical
                                                                                                                                       7
                                               Development
                                                Research &
                 No
                    Travel_Frequently
                                          1005
                                                                                            Life Sciences
                                               Development
                                                Research &
In [169]:
df.head()
Out[169]:
```

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EnvironmentSatisfaction	Gender
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	2	Female
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	3	Male
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	4	Male
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	4	Female
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	Male
4										•

In [6]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1470 entries, 0 to 1469
Data columns (total 35 columns):

#	Columns (total 35 Columns	Non-Null Count	Dtype
0	Age	1470 non-null	int64
1	Attrition	1470 non-null	object
2	BusinessTravel	1470 non-null	object
3	DailyRate	1470 non-null	int64
4	Department	1470 non-null	object
5	DistanceFromHome	1470 non-null	int64
6	Education	1470 non-null	int64
7	EducationField	1470 non-null	object
8	EmployeeCount	1470 non-null	int64
9	EmployeeNumber	1470 non-null	int64
10	EnvironmentSatisfaction	1470 non-null	int64
11	Gender	1470 non-null	object
12	HourlyRate	1470 non-null	int64
13	JobInvolvement	1470 non-null	int64
14	JobLevel	1470 non-null	int64
15	JobRole	1470 non-null	object
16	JobSatisfaction	1470 non-null	int64
17	MaritalStatus	1470 non-null	object
18	MonthlyIncome	1470 non-null	int64
19	MonthlyRate	1470 non-null	int64
20	NumCompaniesWorked	1470 non-null	int64
21	Over18	1470 non-null	object
22	OverTime	1470 non-null	object
23	PercentSalaryHike	1470 non-null	int64
24	PerformanceRating	1470 non-null	int64
25	RelationshipSatisfaction	1470 non-null	int64
26	StandardHours	1470 non-null	int64
27	StockOptionLevel	1470 non-null	int64
28	TotalWorkingYears	1470 non-null	int64
29	TrainingTimesLastYear	1470 non-null	int64
30	WorkLifeBalance	1470 non-null	int64
31	YearsAtCompany	1470 non-null	int64
32	YearsInCurrentRole	1470 non-null	int64
33	YearsSinceLastPromotion	1470 non-null	int64
34	YearsWithCurrManager	1470 non-null	int64
dtype	. ,, , , ,		
memor	ry usage: 402.1+ KB		

localhost:8888/notebooks/Desktop/Untitled5.ipynb?kernel_name=python3

In [9]:

df.isna().sum()

Out[9]:

0 Age Attrition 0 BusinessTravel0 DailyRate 0 Department 0 DistanceFromHome 0 Education 0 EducationField 0 ${\tt EmployeeCount}$ 0 EmployeeNumber EnvironmentSatisfaction 0 Gender HourlyRate JobInvolvement JobLevel 0 JobRole 0 JobSatisfaction MaritalStatus 0 MonthlyIncome 0 MonthlyRate 0 NumCompaniesWorked 0ver18 0 OverTime 0 PercentSalaryHike PerformanceRating 0 ${\tt RelationshipSatisfaction}$ ${\sf StandardHours}$ StockOptionLevel 0 TotalWorkingYears ${\tt Training Times Last Year}$ WorkLifeBalance YearsAtCompany 0 YearsInCurrentRole 0 ${\tt YearsSinceLastPromotion}$ 0

In [11]:

df.describe()

YearsWithCurrManager dtype: int64

Out[11]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	HourlyRate
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	1470.000000	1470.000000
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	2.721769	65.891156
std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	1.093082	20.329428
min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	1.000000	30.000000
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250000	2.000000	48.000000
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500000	3.000000	66.000000
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750000	4.000000	83.750000
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000000	4.000000	100.000000
4								→

In [12]:

df.describe(include=object)

Out[12]:

	Attrition	BusinessTravel	Department	EducationField	Gender	JobRole	MaritalStatus	Over18	OverTime
count	1470	1470	1470	1470	1470	1470	1470	1470	1470
unique	2	3	3	6	2	9	3	1	2
top	No	Travel_Rarely	Research & Development	Life Sciences	Male	Sales Executive	Married	Υ	No
freq	1233	1043	961	606	882	326	673	1470	1054

```
In [70]:
df = df.drop(columns=['Over18','EmployeeCount','EmployeeNumber','StandardHours'])
In [72]:
df.shape
Out[72]:
(1470, 31)
In [40]:
round(df['Attrition'].value_counts()/df.shape[0] *100,2)
Out[40]:
No
       83.88
       16.12
Yes
Name: Attrition, dtype: float64
In [50]:
x = round(df['Attrition'].value_counts()/df.shape[0] *100,2).values
y = round(df['Attrition'].value_counts()/df.shape[0] *100,2).index
plt.pie(x,labels = y, autopct='%1.1f%%')
plt.show()
   No
        83.9%
In [27]:
df['Age'].value_counts().index.sort_values()
Out[27]:
Int64Index([18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
             35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60],
            dtype='int64')
In [29]:
data = df[['Age','Attrition']]
data
Out[29]:
      Age Attrition
   0
       41
               Yes
   1
       49
               No
   2
       37
               Yes
   3
       33
               No
       27
   4
               No
   5
       32
               No
   6
       59
               No
```

7 30

9 36

38

No

No

No

In [166]:

```
data['Age_details'] = ['18-29' if 18<i<30 else '30-45' if 30<=i<45 else '45-60' if 45<=i<60 else 'Above 60' for i in df['Age
data
\verb|C:\Users\Dell\AppData\Local\Temp\ipykernel\_10904\1824373510.py:1: SettingWithCopyWarning: AppData CopyWarning: SettingWithCopyWarning: SettingWith
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#re
 turning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-
 a-view-versus-a-copy)
      data['Age_details'] = ['18-29' if 18<i<30 else '30-45' if 30<=i<45 else '45-60' if 45<=i<60 else 'Above 6
0' for i in df['Age']]
Out[166]:
                                   Attrition Age_details
                     Age
                                                                                 30-45
            0
                        41
                                                  Yes
            1
                         49
                                                   No
                                                                                 45-60
```

2 37

30-45 Yes 3 33 No 30-45

In [167]:

data.groupby(['Age_details','Attrition'])['Attrition'].count()

Out[167]:

Age_de	tails	Attı	rition	
18-29		No		231
		Yes		87
30-45		No		720
		Yes		110
45-60		No		273
		Yes		36
Above	60	No		9
		Yes		4
Name:	Attrit	ion,	dtype:	int64

In [168]:

```
sns.countplot(data['Age_details'],hue=data['Attrition'])
```

C:\Users\Dell\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arg uments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

Out[168]:

<AxesSubplot:xlabel='Age_details', ylabel='count'>

In [65]:

```
df.groupby(['BusinessTravel','Attrition'])['Attrition'].count()
```

Out[65]:

```
Attrition
BusinessTravel
Non-Travel
                                 138
                   Nο
                    Yes
                                  12
                                 208
Travel_Frequently
                   No
                                  69
                    Yes
Travel_Rarely
                   No
                                 887
                    Yes
                                 156
Name: Attrition, dtype: int64
```

In [66]:

```
sns.set(style='whitegrid')
sns.countplot(df['BusinessTravel'], hue=df['Attrition'])
plt.show()
```

C:\Users\Dell\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arg uments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

In [67]:

```
df.groupby(['Attrition']).mean()
```

Out[67]:

kOptionLevel TotalWorkingYears TrainingTimesLastYear WorkLifeBalance YearsAtCompany YearsInCurrentRole YearsSinceLastPromotion Yea

0.845093	11.862936	2.832928	2.781022	7.369019	4.484185	2.234388
0.527426	8.244726	2.624473	2.658228	5.130802	2.902954	1.945148
4)

In [170]:

```
plt.figure(figsize=(10,8))
plt.subplot(2,2,1)
plt.title('DailyRate Vs Attrition')
sns.boxplot(data=df,x='Attrition',y='DailyRate')

plt.subplot(2,2,2)
plt.title('DistanceFromHome Vs Attrition')
sns.boxplot(data=df,x='Attrition',y='DistanceFromHome')

plt.subplot(2,2,3)
plt.title('MonthlyIncome Vs Attrition')
sns.boxplot(data=df,x='Attrition',y='MonthlyIncome')

plt.subplot(2,2,4)
plt.title('YearsInCurrentRole Vs Attrition')
sns.boxplot(data=df,x='Attrition',y='YearsInCurrentRole')
plt.tight_layout()
plt.show()
```


In [83]:

In [77]:

```
plt.title('Department Vs Attrition')
sns.countplot(df['Department'],hue=df['Attrition'])
plt.show()
```

C:\Users\Dell\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arg uments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

In [109]:

```
plt.title('Departmentwise jobSatisfaction Vs Attrition')
sns.boxplot(data=df,x='Department',y='JobSatisfaction',hue='Attrition')
plt.show()
```


In [99]:

In [104]:

```
plt.title('Education vs Attrition')
sns.countplot(df['Education_details'], hue=df['Attrition'])
plt.show()
```

C:\Users\Dell\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arg uments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

In [117]:

df.groupby(['EducationField','Attrition'])['Attrition'].count()

Out[117]:

EducationField	Attrition	
Human Resources	No	20
	Yes	7
Life Sciences	No	517
	Yes	89
Marketing	No	124
	Yes	35
Medical	No	401
	Yes	63
Other	No	71
	Yes	11
Technical Degree	No	100
	Yes	32

Name: Attrition, dtype: int64

In [125]:

pd.crosstab(index=df['EducationField'],columns=df['Attrition'],margins=True)

Out[125]:

Attrition	No	Yes	AII
EducationField			
Human Resources	20	7	27
Life Sciences	517	89	606
Marketing	124	35	159
Medical	401	63	464
Other	71	11	82
Technical Degree	100	32	132
All	1233	237	1470

In [137]:

```
plt.figure(figsize=(10,8))
plt.subplot(2,2,1)
plt.title('Education Vs Attrition')
sns.countplot(data = df, x='EducationField',hue='Attrition')
plt.xticks(rotation=90)
plt.subplot(2,2,2)
plt.title('Gender Vs Attrition')
sns.countplot(data=df,x='Gender',hue='Attrition')
plt.subplot(2,2,3)
plt.title('MaritalStatus Vs Attrition')
sns.countplot(data=df,x='MaritalStatus',hue='Attrition')
plt.subplot(2,2,4)
plt.title('JobRole Vs Attrition')
sns.countplot(data=df,x='JobRole',hue='Attrition')
plt.xticks(rotation=90)
plt.tight_layout()
plt.show()
```


In [153]:

```
df['EnvironmentSatisfaction_details'] = ['Low' if i == 1 else 'Medium' if i == 2 else 'High' if i == 3 else 'Very High' for i :
```

In [155]:

```
In [158]:
```

```
df['PerformanceRating_details'].value_counts()
```

Out[158]:

Excellent 1244 Outstanding 226

Name: PerformanceRating_details, dtype: int64

In [159]:

```
df['PerformanceRating'].value_counts()
```

Out[159]:

3 12444 226

Name: PerformanceRating, dtype: int64

In [163]:

```
plt.figure(figsize=(10,8))
plt.subplot(2,2,1)
plt.title('EnvironmentSatisfaction Vs Attrition')
sns.countplot(data=df,x='EnvironmentSatisfaction_details',hue='Attrition')

plt.subplot(2,2,2)
plt.title('JobInvolvement Vs Attrition')
sns.countplot(data=df,x='JobInvolvement_details',hue='Attrition')

plt.subplot(2,2,3)
plt.title('PerformanceRating Vs Attrition')
sns.countplot(data=df,x='PerformanceRating_details',hue='Attrition')

plt.subplot(2,2,4)
plt.title('RelationshipSatisfaction Vs Attrition')
sns.countplot(data=df,x='RelationshipSatisfaction_details',hue='Attrition')

plt.tight_layout()
plt.show()
```


In [165]:

```
plt.figure(figsize=(10,8))
plt.subplot(2,2,1)
plt.title('JobSatisfaction Vs Attrition')
sns.countplot(df['JobSatisfaction_details'],hue=df['Attrition'])
plt.subplot(2,2,2)
plt.title('WorkLifeBalance Vs Attrition')
sns.countplot(df['WorkLifeBalance_details'],hue=df['Attrition'])
plt.show()
```

C:\Users\Dell\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arg uments without an explicit keyword will result in an error or misinterpretation.

C:\Users\Dell\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arg uments without an explicit keyword will result in an error or misinterpretation. warnings.warn(

In []:

Insights:

1. Dataset Overview:

Our dataset comprises 1470 records and 35 columns, predominantly featuring integer and object data types. Notably, we are pleas

2. Attrition Rate:

Our analysis reveals an attrition rate of 16.12% among our employees. This information serves as a crucial baseline for underst

3. Identified High-Risk Groups:

Our data-driven visualizations demonstrate that certain employee demographics exhibit a higher tendency towards attrition:

- a). Employees with lower daily rates, longer commutes, and relatively lower monthly incomes.
- b). Those holding lower-ranking positions within the company.
- c). Employees aged between 30-45, 18-29, and 45-60.
- d). Frequent travelers and those who travel rarely.
- e). Employees who belong to departments such as R&D, Sales, and HR.
- f). Individuals with education levels of Bachelor's, Master's, and College degrees.
- g). Employees in the Life Science and Medical fields, with Marketing and Technical fields showing equal vulnerability to
- h). Male employees are more likely to be affected by attrition compared to females.
- i). Marital status, including singles and married employees, as well as those in sales representation roles, show increased attrition risk
- j). Job roles such as Lab Technician, Sales Executive, and Researcher are notably prone to attrition. h). Performance ratings ranging from "Excellent" to "Outstanding" exhibit higher attrition rates.
- i). Employees with higher satisfaction ratings for Relationship, Employment, and Job satisfaction are more prone to attrition.
- j). Work-life balance ratings of "Better" and "Good" are indicative of higher attrition rates, while "Bad" and "Best" show equal susceptibility.

Recommendation:-

These insights underscore the importance of addressing specific areas to mitigate employee attrition. By focusing on improving work-life balance, optimizing compensation and benefits, enhancing job satisfaction, and creating a more inclusive and supportive work environment, we can effectively reduce attrition rates and foster a more engaged and committed workforce.