Introduction to Computer Graphics

2023/2024

Application Examples: 2D and 3D Transformations

2D Transformations

- 1- Given the square, defined by the vertices (2, 2), (3, 2), (3, 3) and (2, 3), it is to be rotated around its center by an angle of 90 degrees.
 - **a)** Determine the transformation matrix, in *Homogeneous Coordinates*, that accomplishes the desired rotation.
 - **b)** Compute the coordinates of the transformed vertices and draw the square resulting from the rotation.
- **2-** Given the triangle, defined by the vertices (2, 0), (4, 2) and (-1, 5), determine the triangle resulting from applying a symmetry transformation relative to the y = x straight-line.
 - **a)** Determine the transformation matrix, in *Homogeneous Coordinates*, that accomplishes the desired symmetry.
 - **b)** Compute the coordinates of the transformed vertices and draw the triangle resulting from the symmetry.
- **3-** It is required to apply a **2D transformation** to the triangle defined by the vertices (-1, 1), (1, 1) and (0, -5).

The transformation to be applied is composed of a **90-degrees rotation**, relative to the **center of the triangle**, followed by a **symmetry** regarding the *XX'* **axis**.

- **a**) Obtain the global transformation matrix representing the sequence of basic transformations that have to be applied.
- **b)** Compute the coordinates of the triangle vertices after carrying out the required transformation.
- **4-** The goal is to apply a **2D transformation** to the square defined by the following vertices (1,1), (3,1), (3,3) e (1,3).

The transformation to be applied is made up of a scaling, relative to the square center and with scaling factors $S_X = 2$ and $S_Y = 3$, followed by a symmetry relative to the XX' axis.

a) Obtain, using *Homogeneous Coordinates* and through the concatenation of elementary transformations, the global matrix representing the required transformation. Explain all the steps carried out.

b) Compute the coordinates of the square vertices after carrying out the required transformation.

3D Transformations

5- Consider the cube defined by the vertices:

$V_1(0,0,0)$	$V_2(0, 1, 0)$	$V_3(1, 1, 0)$	$V_4(1,0,0)$
$V_5(0,0,1)$	$V_6(1,0,1)$	$V_7(1, 1, 1)$	$V_8(0, 1, 1)$

Using *Homogeneous Coordinates*, determine the matrix that represents the transformation that is to be applied for the cube to rotate, by a 180 degrees angle, around the straight-line that passes through point (2, 0, 0) is parallel to the YY' axis.

- a) Obtain, through the concatenation of elementary transformations, the matrix M(180) representing the desired transformation. Explain the steps carried out.
- **b)** Compute the coordinates of the transformed cube vertices.
- c) Draw the transformed cube and check if the desired transformation was effectively carried out.
- **6-** Given a triangular prism defined by the following vertices:

$$V_1(1,0,0)$$
 $V_2(3,0,0)$ $V_3(2,0,3)$ $V_4(1,6,0)$ $V_5(3,6,0)$ $V_6(2,6,3)$

We want to obtain, using *Homogeneous Coordinates*, the transformation matrix that is to be applied so that the prism is repositioned in the following way:

- edge V_3V_6 belongs to the XX' axis
- the center of edge V_3V_6 is at (0, 0, 0), vertex V_3 belongs to the negative semi-axis and vertex V_6 belongs to the positive semi-axis.
- **a)** Obtain, through the concatenation of elementary transformations, the global matrix representing the required transformation. Explain all the steps carried out.
- **b)** Compute the coordinates of the prism vertices after carrying out the required transformation.
- c) Sketch the transformed prism and check if it is positioned as required.
- **7-** Given a **cube** defined by the following vertices:

$V_1(1,0,0)$	$V_2(3,0,0)$	$V_3(3,0,2)$	$V_4(1,0,2)$
$V_5(1, 2, 0)$	$V_6(3, 2, 0)$	$V_6(3, 2, 2)$	$V_6(1, 2, 2)$

We want to obtain, using *Homogeneous Coordinates*, the transformation matrix that is to be applied so that the cube is transformed into a **quadrangular prism** with the following features:

- The **center** of the prism is at (0, 0, 0);
- The **base** of the prism is a square of side 2;
- The **height** of the prism is 10.
- **a)** Obtain, through the concatenation of elementary transformations, the global matrix representing the required transformation. Explain all the steps carried out.
- **b)** Compute the coordinates of the model vertices after carrying out the required transformation.
- c) Sketch the transformed model and check if it is positioned as required.
- **8-** Given a square pyramid defined by the following vertices:

$$V_1(0,0,1)$$
 $V_2(0,0,3)$ $V_3(2,0,3)$ $V_4(2,0,1)$ $V_5(1,2,2)$

We want to obtain, using *Homogeneous Coordinates*, the transformation matrix that is to be applied so that the pyramid is repositioned in the following way:

- the centre of the square base is (0, 0, 0);
- vertices V_1 and V_3 belong to the ZZ' axis.
- **a**) Obtain the rotation matrix $R_Y(\theta)$ which allows performing a θ degrees rotation around the YY' axis. Explain all the steps carried out.
- **b)** Obtain, through the concatenation of elementary transformations, the global matrix representing the required transformation. Explain all the steps carried out.
- c) Compute the coordinates of the pyramid vertices after carrying out the required transformation.
- **d)** Sketch the transformed pyramid and check if it is positioned as required.