Email training, N8 Level 3, November 1-7

Problem 8.1. Find all pairs of integers (m, n) such that

$$\binom{n}{m} = 1984.$$

Problem 8.2. Prove that for any natural number n > 1, the number $2^n - 1$ does not divide $3^n - 1$.

Problem 8.3. Let u_n be the least common multiple of the first n terms of a strictly increasing sequence of positive integers $a_1, a_2, a_3, \ldots, a_{1000}$. Prove that

$$\sum_{k=1}^{1000} \frac{1}{u_k} \le 2.$$

Problem 8.4. Let $\sigma(n)$ denote the sum of the divisors of n. Prove that there exist infinitely many integers n such that $\sigma(n) > 3n$. Prove also that $\sigma(n) < n(1 + \log_2 n)$.

Problem 8.5. Let $\sigma(n)$ denote the sum of divisors of n. Show that $\sigma(n) = 2^k$ if and only if n is a product of Mersenne primes, i.e., primes of the form $2^k - 1$.

Problem 8.6. Let $a_1 = 1$, $a_{n+1} = a_n + [\sqrt{a_n}]$. Find all n for which a_n is a perfect square.

Problem 8.7. In an acute angled triangle ΔABC , let D is on BC such that $AD \perp BC$. Let O and H be the circumcenter and orthocenter of ΔABC respectively. The perpendicular bisector of AO intersects BC extended at E. Show that the midpoint of OH is on the circumcircle of ΔADE .

Solution submission deadline November 7, 2021 Submit single PDF file in filename format L3_YOURNAME_week8.pdf submission email imo20etraining@gmail.com