REPORT	
<u>Credora Internship</u> – <u>Data Science</u>	
WEEK 3 -Task 03	
Decision Tree Classifier – Customer Purchase Prediction	
Submitted by: AKANKSHA BHOSLE	
DATE: 02-06-2025	

Introduction:

This project focuses on predicting whether a customer will subscribe to a term deposit using the Bank Marketing dataset. A Decision Tree Classifier was used to analyze client features and predict outcomes based on behavior and demographics.

Dataset Overview:

• Dataset:

deposit Bank Marketing Dataset from [UCI]

• Goal:

Predict if a customer subscribes to a term (y)

• Files used:

bank.csv – 10% samplebank-full.csv – full datasetbank-names.txt – column info

- No missing values
- Includes both numerical and categorical features
- Key features: age, job, balance, duration, contact, poutcome
- <u>Target:</u> y (yes/no subscription)

Tools & Libraries:

• **Python**: Core programming language used for all data analysis and modeling tasks.

Pandas:

- For loading and exploring the dataset
- Used to clean and manipulate data with DataFrames

• NumPy:

- Used for numerical operations
- Supports arrays and efficient math behind the scenes

• Scikit-learn (sklearn):

- Used to build and train the DecisionTreeClassifier
- Provided tools for data splitting, encoding, and evaluation

_

• Matplotlib:

- Used to plot the decision tree structure
- Helpful for basic visualizations

· Seaborn:

- Used to create a heatmap of the confusion matrix
- Makes statistical plots more visually appealing

• Google Colab:

- Cloud platform used to run and share notebooks without local setup
- Allows easy access to Python and libraries in the browser

Data Preprocessing:

Loaded

the dataset bank.csv using pandas. read_csv () with semicolon (;) as a separator.

· Checked for missing values

Using isnull().sum()

→ No missing values were found in the dataset.

Identified categorical features

(like job, education, contact, etc.).

Encoded categorical columns

using Label Encoder for sklearn. preprocessing

→ Converted text labels into numeric format for modeling

· Separated features and target

- \circ X \rightarrow All columns except y
- \circ y \rightarrow Target column (yes/no for term deposit)

• Split the dataset

into training and testing sets using train_test_split()

- 80% for training
- 20% for testing
- Final dataset was ready for building the Decision Tree model.

Model Training:

Used

DecisionTreeClassifier from sklearn.tree to build the model.

Set

max_depth=5 to prevent the tree from growing too deep and overfitting on the training data.

Trained the model

using .fit(X train, y train)

- → This allowed the model to learn patterns from the training dataset.
- The Decision Tree algorithm **automatically selected the most important features** (e.g., duration, poutcome, month) to make splits.
- The model uses a **tree structure** where internal nodes represent conditions and leaf nodes represent final predictions (yes/no for term deposit).
- Model training was **fast and interpretable**, making it suitable for business use cases.

Evaluation Metrics:

- **1.Accuracy score** Measures the overall correctness of the model. It is the ratio of correctly predicted instances to the total instances.
- **2.Confusion matrix** A table showing True Positives, True Negatives, False Positives, and False Negatives, helping visualize model errors.

3.Classification report (precision, recall, F1-score) Includes:

• Precision: How many selected items are relevant.

• Recall: How many relevant items are selected.

• **F1-score:** Harmonic mean of precision and recall.

Classification Report:

	precision	recall	f1-score	support
0	0.92	0.96	0.94	7952
1	0.59	0.40	0.48	1091
accuracy			0.89	9043
macro avg	0.75	0.68	0.71	9043
weighted avg	0.88	0.89	0.88	9043

Decision Tree Visualization:

The tree shows that features like call duration, month, and poutcome influence predictions the most.

Key Insights:

- Longer call durations lead to higher subscription rates
- Previous campaign outcomes matter
- Clients contacted in May or with short calls are less likely to subscribe

Challenges & Solutions:

Challenge	Solution
Many categorical columns	Used LabelEncoder
Overfitting risk	Limited tree depth
Large dataset	Used sample for testing, full for final training

Links:

- GitHub Repo: [REPO]
- **@** Google Colab Notebook: [colab]
- Dataset: <u>UCI Bank Marketing Repository</u>

Contact

[AKANKSHA BHOSLE] Data Science Intern @Credora

- Email: [akanshabhosle31@gmail.com]
- LinkedIn: [LINKDIN AKANKSHA]
- GitHub: [GITHUB AKANKSHA]