Московский Авиационный институт

(государственный технический университет)

Факультет прикладной математики и информационных технологий

Кафедра вычислительной математики и программирования

Курсовая работа

По курсу

«Информатика»

I семестр

Задание IV. Процедуры и функции в качестве параметров

Студент: Арешин Станислав Олегович

Группа: М8О-106Б, №1 по списку

Руководитель: Дубинин А.В.

Оценка:

Дата:

Задача

Составить программу на языке Си с процедурами решения трансцендентных алгебраических уравнений различными численными методами (итерации, Ньютона и половинного деления – дихотомии). Нелинейные уравнения оформить как параметрыфункции, разрешив относительно неизвестной величины в случае необходимости. Применить каждую процедуру к решению двух уравнений, начиная с варианта с заданным номером. Если метод неприменим, дать математическое обоснование и графическую иллюстрацию.

Варианты

Варианты №22,23

	U U U			
22	$\arccos x - \sqrt{1 - 0.3x^3} = 0$	[0, 1]	итераций	0.5629
23	$3x - 4 \ln x - 5 = 0$	[2, 4]	Ньютона	3.23

Теоритическая часть

Пусть имеется уравнение вида

$$f(x)=0$$

где f(x) - заданная алгебраическая или трансцендентная функция.

Решить уравнение - значит найти все его корни, то есть те значения \mathbf{x} , которые обращают уравнение в тождество.

Если уравнение достаточно сложно, то задача точного определения корней является в некоторых случаях нерешаемой. Поэтому ставится задача найти такое приближенное значение корня $\mathbf{x}_{\mathbf{\Pi}\mathbf{P}}$, которое отличается от точного значения корня \mathbf{x}^* на величину, по модулю не превышающую указанной точности (малой положительной величины) $\mathbf{\epsilon}$, то есть

$$|x^*-x_{\pi p}| \le \varepsilon$$

Величину $\pmb{\varepsilon}$ также называют *допустимой ошибкой*, которую можно задать по своему усмотрению.

Этапы приближенного решения нелинейных уравнений

Приближенное решение уравнения состоит из двух этапов:

- Отделение корней, то есть нахождение интервалов из области определения функции $\mathbf{f}(\mathbf{x})$, в каждом из которых содержится только один корень уравнения $\mathbf{f}(\mathbf{x})=\mathbf{0}$.
- Уточнение корней до заданной точности.

Отделение корней

Отделение корней можно проводить графически и аналитически.

Графическое отделение корней

Для того чтобы графически отделить корни уравнения, необходимо построить график функции $\mathbf{f}(\mathbf{x})$. Абсциссы точек его пересечения с осью Ох являются действительными корнями уравнения.

Аналитическое отделение корней

Аналитическое отделение корней основано на следующих теоремах.

Теорема 1. Если непрерывная функция f(x) принимает на концах отрезка [a; b]значения разных знаков, т.е.

$$f(a) \cdot \dot{f(b)} < 0$$

то на этом отрезке содержится по крайней мере один корень уравнения.

Теорема 2. Если непрерывная на отрезке [a; b] функция $\mathbf{f}(\mathbf{x})$ принимает на концах отрезка значения разных знаков, а производная $\mathbf{f}'(\mathbf{x})$ сохраняет знак внутри указанного отрезка, то внутри отрезка существует единственный корень уравнения $\mathbf{f}(\mathbf{x}) = \mathbf{0}$.

Уточнение корней

Для *уточнения корней* может использоваться один из следующих методов:

- Метод половинного деления (метод дихотомии)
- Метод последовательных приближений (метод итераций)
- Метод Ньютона (метод касательных)

Метод дихотомии (метод половинного деления)

Метод заключается в делении отрезка пополам и его сужении в два раза на каждом шаге итерационного процесса в зависимости от знака функции в середине отрезка. Такой подход обеспечивает гарантированную сходимость метода независимо от сложности функции - и это весьма важное свойство. Недостатком метода является то же самое -

метод никогда не сойдется быстрее, т.е. сходимость метода всегда равна сходимости в наихудшем случае.

Метод половинного деления:

- 1. Один из простых способов поиска корней функции одного аргумента.
- 2. Применяется для нахождения *значений действительно-значной функции*, определяемому по какому-либо критерию (это может быть сравнение на *минимум*, *максимум* или конкретное число).

Очевидно, что если на отрезке [a, b] существует корень уравнения, то значения функции на концах отрезка имеют разные знаки: $F(a) \cdot F(b) < 0$ (*Teopema 1*).

Описание метода

За начальное приближение принимаются границы исходного отрезка $a_0 = a$, $b_0 = b$.

Итерационный процесс:

1)
$$a_{k+1} = (a_k + b_k) / 2$$
, $b_{k+1} = b_k$, если $F(a_k) * F((a_k + b_k) / 2) > 0$;

2)
$$a_{k+1} = a_k$$
, $b_{k+1} = (a_k + b_k) / 2$, если $F(b_k) * F((a_k + b_k) / 2) > 0$.

Условие окончания: $|a_k - b_k| < \varepsilon$.

Приближенное значение корня: $x^* \approx (a_{\text{конечное}} + b_{\text{конечное}}) / 2$.

Метод итераций

Метод итерации — численный метод решения математических задач, приближённый метод решения системы линейных алгебраических уравнений. Суть такого метода заключается в нахождении по приближённому значению величины следующего приближения (являющегося более точным). Метод позволяет получить значения корней системы с заданной точностью в виде предела последовательности некоторых векторов (итерационный процесс). Характер сходимости и сам факт сходимости метода зависит от выбора начального приближения корня х₀.

Идея метода заключается в замене исходного уравнения F(x) = 0 уравнением вида x = f(x).

Достаточное условие

Достаточное условие сходимости метода |f'(x)| < 1, $x \in [a,b]$. Это условие необходимо проверить перед началом решения задачи, так как функция f(x) может быть выбрана неоднозначно, причем в случае неверного выбора указанной функции метод расходится.

Описание метода

Начальное приближение корня: $x_0 = (a + b) / 2$.

Итерационный процесс: $x_{k+1} = f(x_k)$.

Условие окончания: $|x_k - x_{k-1}| < \varepsilon$.

Приближенное значение корня: $x^* \approx x_{\text{конечное}}$.

Метод Ньютона

Метод Ньютона, алгоритм **Ньютона** (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643—1727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью.

Метод Ньютона является частным случаем метода итераций.

Условие сходимости метода:

$$|F(x) \cdot F''(x)| < (F'(x))^2$$
 на отрезке [a, b].

Итерационный процесс:

$$x_{k+1} = x_k - F(x_k)/F'(x_k)$$
.

Практическая часть

Исследование первого уравнения F1 (вариант 22)

1)Построим график функции F1(x):

График функции $arccos(x)-sqrt(1-0.3*x^3)$

По графику функции F1 видно, что условие $f(a) \cdot \dot{f(b)} < 0$ на отрезке [a,b], где a=0,b=1 выполняется, следовательно, метод дихотомии применим к этой функции.

2) Выразим х из F1 для метода итераций:

$$arccos(x) - sqrt(1-0.3*x^3)=0$$
 $cos(arccos(x)) = cos(sqrt(1-0.3*x^3))$
 $x = cos(sqrt(1-0.3*x^3))$

Таким образом, $f1(x) = \cos(\text{sqrt}(1-0.3*x^3))$

Построим график функции f1(x):

По графику мы видим, что функция f1(x) непрерывная, возрастает на отрезке [a,b], где a=0,b=1.

График функции $cos(sqrt(1-0.3*x^3))$

Проверим условие сходимости метода итераций:

Для этого необходимо посчитать первую производную f1'(x) функции f1(x):

derivative of cos(sqrt(1-0.3*x^3))

$$\frac{d}{dx} \left(\cos \left(\sqrt{1 - 0.3 \, x^3} \, \right) \right) = \frac{0.45 \, x^2 \, \sin \left(\sqrt{1 - 0.3 \, x^3} \, \right)}{\sqrt{1 - 0.3 \, x^3}}$$

Построим в одной плоскости графики |f1' (x)| и y=1:

Графики функций 0.45*x^2*sin(sqrt(1-0.3* x^3))/sqrt(1-0.3*x^3), y=1

По графикам видно, что условие |f1'(x)| < 1, $x \in [a,b]$, a=0,b=1 выполняется, следовательно метод итераций для этого уравнения сходится.

3) Найдем первую F1' (х) и вторую F1" (х) производные функции F1(х):

F1'(x)

derivative of arccos(x)-sqrt(1-0.3*x^3)

Derivative:

$$\frac{d}{dx} \left(\cos^{-1}(x) - \sqrt{1 - 0.3 \, x^3} \right) = \frac{0.45 \, x^2}{\sqrt{1 - 0.3 \, x^3}} - \frac{1}{\sqrt{1 - x^2}}$$

F1''(x)

derivative of (0.45*x^2)/(sqrt(1-0.3*x^3)) - 1/(sqrt(1-x^2))

Derivative:
$$\frac{d}{dx} \left(\frac{0.45 \, x^2}{\sqrt{1 - 0.3 \, x^3}} - \frac{1}{\sqrt{1 - x^2}} \right) = \frac{0.9 \, x}{\sqrt{1 - 0.3 \, x^3}} - \frac{x}{(1 - x^2)^{3/2}} + \frac{0.2025 \, x^4}{(1 - 0.3 \, x^3)^{3/2}}$$

Проверим условие сходимости метода Ньютона:

Для этого построим в одной плоскости два графика $y1=|F1(x)\cdot F1''(x)|$ и $y2=(F1'(x))^2$:

По графику видно, что условие $|F1(x) \cdot F1''(x)| < (F1'(x))^2$ выполняется не на всем отрезке [a,b], a=0,b=1. В точке X0 графики у1 и у2 пересекаются, точка X0 \approx 0.9, следовательно, метод сходится на отрезке [0,X0), а корень уравнения $x \approx 0.5629 \in [0,X0)$, тогда мы соответственно можем найти этот корень.

Исследование первого уравнения F2 (вариант 23)

1)Построим график функции F2(х):

График функции 3*x-4*ln(x)-5

По графику функции F2 видно, что условие $f(a) \cdot \dot{f}(b) < 0$ на отрезке [a,b], где a=2,b=4 выполняется, следовательно, метод дихотомии применим к этой функции.

2) Выразим х из F2 для метода итераций:

$$3*x-4*ln(x)-5=0$$

$$3*x-4*ln(x)=5$$

$$x=(4*ln(x)+5)/3$$

Таким образом, f2(x)=(4*ln(x)+5)/3

Построим график функции f(x):

По графику мы видим, что функция f(x) непрерывная, возрастает на отрезке [a,b], где a=2,b=4.

График функции (4*ln(x)+5)/3

Проверим условие сходимости метода итераций:

Для этого необходимо посчитать первую производную f2' (x) функции f2(x):

derivative of (4*ln(x)+5)/3

Derivative:

$$\frac{d}{dx}\left(\frac{1}{3}\left(4\log(x)+5\right)\right) = \frac{4}{3x}$$

Построим в одной плоскости графики |f2' (x)| и y=1:

По графикам видно, что условие |f2'(x)| < 1, $x \in [a,b]$, a=2,b=4 выполняется, следовательно, метод итераций для этого уравнения сходится.

3) Найдем первую F2'(x) и вторую F2''(x) производные функции F2(x):

F2'(x):

derivative of 3*x-ln(x)-5

Derivative:

$$\frac{d}{dx}(3x - 4\log(x) - 5) = 3 - \frac{4}{x}$$

F2" (x):

derivative of 3-4/x

Derivative:

$$\frac{d}{dx}\left(3-\frac{4}{x}\right) = \frac{4}{x^2}$$

Проверим условие сходимости метода Ньютона:

Для этого построим в одной плоскости два графика $y1=|F2(x)\cdot F2''(x)|$ и $y2=(F2'(x))^2$:

X1

По графику видно, что условие $|F2(x) \cdot F2''(x)| < (F2'(x))^2$ выполняется не на всем отрезке [a,b], a=0,b=1. В точке X0 графики у1 и у2 пересекаются, точка X1 \approx 2.2, следовательно, метод сходится на отрезке (X1,4], а корень уравнения $x \approx 3.23 \in (X1,4]$, тогда мы соответственно можем найти этот корень.

Программа на СИ

Описание

Функция double eps вычисляет машинный эпсилон.

Функции double F1, double F2, double f2 возвращают значение функций F1(x), f1(x), F2(x), f2(x) соответственно в произвольной точке $x \in [a,b]$.

Программа сама вычисляет первую и вторую производные заданных функций в произвольной точке $x \in [a,b]$:

Функция double der1 вычисляет первую производную функции;

Функция double der2 вычисляет вторую производную функции.

Функции double dih, double itter, double newton вычисляют корень уравнения методами дихотомии, итераций, Ньютона, если метод сходится.

Программа сама проверяет условия схождения метода в теле функции, отвечающей за него.

Также программа высчитывает количество итераций, за которое был найден корень тем или иным методом – переменная count.

Код на СИ

```
#include <stdio.h>
#include <math.h>

int count;

double eps(){
    double a=1;
    while (1+a/2>1){
        a=a/2;
    }
    return(a);
}

double F1 (double x){
    return(acos(x)-sqrt(1-0.3*pow(x,3)));
}
```

```
double f1 (double x){
    return(cos(sqrt(1-0.3*pow(x,3))));
}
double F2 (double x){
    return(3*x-4*log(x)-5);
}
double f2 (double x){
    return((4*log(x)+5)/3);
}
double der1 (double(*F)(double),double x){
     double dx = pow(2,-26);
    return(((*F)(x+dx)-(*F)(x-dx))/(2*dx));
}
double der2 (double(*F)(double),double x){
    double dx = pow(2,-13);
       return(((*F)(x+dx)-2*(*F)(x)+(*F)(x-dx))/(pow(dx,2)));
}
double dih (double(*F)(double),double a, double b){
     double x,e=eps();
    int f,k=0;
       if ((*F)(a)*(*F)(b)<0){
              f=0;
       while (fabs(a-b)>e){
              x=(a+b)/2.0;
              if ((*F)(a)*(*F)(x)<0){
                     b=x;
               }
              else{
                     a=x;
```

```
}
               k++;
       }
       }
       else{
               f=1;
       }
       if (f==0){
               count=k;
       return(x);
       }
       else{
               return(a-1);
       }
}
double itter (double(*F)(double),double a, double b){
     double x,x2,e=eps();
     int f,k=0;
     x=(a+b)/2.0;
     x2=a;
     while (fabs(x-x2)>e){
              if (fabs(der1((*F),x))<1){
                      f=0;
              x2=x;
              x = (*F)(x);
                      k++;
               }
              else{
                      f=1;
                      break;
               }
     }
       if (f==0){
               count=k;
```

```
return(x);
       }
       else{
              return(a-1);
       }
}
double newton (double(*F)(double),double a,double b){
     double x,x2,e=eps(),dr1,dr2;
    int f,k=0;
     x=(a+b)/2.0;
     x2=a;
     while (fabs(x-x2)>e){
              dr1=der1((*F),x);
              dr2=der2((*F),x);
              if (fabs((*F)(x)*dr2)< pow(dr1,2)){
                      f=0;
              x2=x;
                      x=x-(*F)(x)/dr1;
              k++;
               }
              else{
                      f=1;
                      break;
               }
     }
       if (f==0){
              count=k;
              return(x);
       }
       else{
              return(a-1);
       }
}
```

```
int main(){
       double a1,b1,a2,b2;
       printf("Mashinnoe eps = ");
       printf("%e\n",eps());
       printf("vvedite otrezok var22\n");
       scanf("%lf%lf",&a1,&b1);
       printf("vvedite otrezok var23\n");
       scanf("%lf%lf",&a2,&b2);
       printf("
                              Tablica znacheniy
                                                                n";
       printf("|var| metod dihotomii | metod itteraciy | metod newtona |\n");
       printf("|___| koren' | itter|shojd| koren' | itter|shojd| koren' | itter|\n");
       printf("|22 |");
       if (dih(F1,a1,b1)==a1-1){
          printf(" no | - |");
     }
     else{
          printf(" %lf |",dih(F1,a1,b1));
          printf(" %d |",count);
     }
       if (itter(f1,a1,b1)==a1-1){
              printf(" no | - | - |");
       }
       else{
              printf(" yes |");
              printf("%lf|",itter(f1,a1,b1));
              printf(" %d |",count);
       }
       if (newton(F1,a1,b1)==a1-1){
          printf(" no | - | - |\n");
     }
     else{
          printf(" yes |");
          printf("%lf|",newton(F1,a1,b1));
          printf(" %d |\n",count);
     }
```

```
printf("|23 |");
    if (dih(F2,a1,b1)==a2-1){
          printf(" no | - |");
     }
    else{
         printf("\ \%lf\ |",dih(F2,a2,b2));
         printf(" %d |",count);
     }
    if (itter(f2,a2,b2)==a2-1){
         printf(" no | - | - |");
     }
    else{
         printf(" yes |");
         printf("%lf|",itter(f2,a2,b2));
         printf(" %d |",count);
     }
    if (newton(F2,a2,b2)==a2-1){
         printf(" no | - | - |\n");
     }
    else{
         printf(" yes |");
         printf("%lf|",newton(F2,a2,b2));
         printf(" %d |\n",count);
     }
}
```

Результаты

```
Mashinnoe eps = 2.220446e-16
```

vvedite otrezok var22

0.1

vvedite otrezok var23

24

Tablica znacheniy

```
|var| metod dihotomii | metod itteraciy | metod newtona | | | | | |
|__| koren' |itter |shojd| koren' |itter|shojd| koren' |itter|
|22 | 0.562926 | 52 | yes |0.562926| 17 | yes |0.562926| 5 |
|23 | 3.229959 | 53 | yes |3.229959| 39 | yes |3.229959| 5 |
```

Заключение

Нахождение корней трансцендентных уравнений является зачастую сложной задачей, не решаемой аналитически с помощью конечных формул. На практике уравнение содержит коэффициенты, значения которых заданы приблизительно, так что говорить о точном решении уравнений в таких случаях некорректно. Поэтому задачи приближенного определения корней уравнения и соответствующей оценки их точности имеют большое значение.

По полученным данным можно сделать вывод, что наиболее быстрым по вычислениям является метод Ньютона, так как в обоих вариантах этим методом корень был найден всего за 5 итераций.

Корни, полученные разными методами, совпали для каждого варианта и совпали с корнями, данными в условии, что говорит о правильности вычислений.

Список информационных ресурсов

- https://prog-cpp.ru/digital-find/ (Численные методы решения нелинейных уравнений)
- https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%B8%D1%82%D0%B5%D1%80%D0%B0%D1%86%D0%B8%D0%B8 (Метод итераций)
- https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%9
 D%D1%8C%D1%8E%D1%82%D0%BE%D0%BD%D0%B0 (Метод Ньютона)
- https://www.wolframalpha.com (Построение графиков. вычисление производных)
- https://www.google.ru (Построение графиков)
- Методические материалы к КП4 Кичинский К.А. под рук. проф. Ревизникова Д.Л. (информация о методах решения трансцендентных алгебраических уравнений)