Dernière mise à jour	MECA1	Denis DEFAUCHY
17/10/2022	Intégrales	Résumé

Mécanique MECA1 - Intégrales

Résumé

Dernière mise à jour	MECA1	Denis DEFAUCHY
17/10/2022	Intégrales	Résumé

Eléments d'intégration et notations			
Intégrales sur une ligne $arGamma$	Intégrales sur une surface ${\cal S}$	Intégrale sur un volume \emph{V}	
$\int\limits_{\Gamma}\vec{f}\;dl$	$\int\limits_{S}\vec{f}~dS$	$\int\limits_V \vec{f} \ dV$	
En cartésien, cela donne :			
$\int_{\Gamma} \vec{f} dl = \int_{x_1}^{x_2} \vec{f} dx$	$\int_{S} \vec{f} dS = \int_{y_1}^{y_2} \int_{x_1}^{x_2} \vec{f} dx dy$	$\int_{V} \vec{f} dV = \int_{z_{1}}^{z_{2}} \int_{y_{1}}^{y_{2}} \int_{x_{1}}^{x_{2}} \vec{f} dx dy dz$	

	Cartésien	Cylindrique	Sphérique
	dl = dx	$dl = Rd\theta$	$dl = Rd\psi$
Ligne	dl = dy	dl = dr	$dl = R \sin \psi d\theta$
	dl = dz	dl = dz	dl = dr
	dS = dxdy	$dS = Rd\theta dz$	
Surface	dS = dxdz	$dS = rdrd\theta$	$dS = R^2 \sin \psi d\theta d\psi$
	dS = dydz	dS = drdz	
Volume	dV = dxdydz	$dV = r dr d\theta dz$	$dV = r^2 \sin \psi dr d\theta d\psi$

Points de méthode

Toute intégration demande un choix de repère pour définir les bornes

Les bornes de l'intégrale doivent être définies de manière à décrire entièrement ce sur quoi on intègre

On utilise le principe de séparation des variables :

$$\int_{z_1}^{z_2} \int_{y_1}^{y_2} \int_{x_1}^{x_2} f(x)g(y)h(z)dxdydz = \int_{x_1}^{x_2} f(x)dx \int_{y_1}^{y_2} g(y)dy \int_{z_1}^{z_2} h(z)dz$$

Pour trouver une longueur, surface ou volume :

Longueur	Surface	Volume
$L = \int_{\Gamma} dl$	$S = \int_{S} d$	$S \mid V = \int_{V} dV$

Il faut toujours intégrer de la plus petite borne à la plus grande, sinon des erreurs de signe apparaissent

Dernière mise à jour	MECA1	Denis DEFAUCHY
17/10/2022	Intégrales	Résumé

On notera que $\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$, ce qui s'avèrera très utile pour certaines intégrations. $x^2 + y^2 = r^2$

Dernière mise à jour	MECA1	Denis DEFAUCHY
17/10/2022	Intégrales	Résumé

