

DEPARTMENT OF MECHANICAL ENGINEERING

ADVANCED DYNAMICS OF MECHANICAL SYSTEMS

Assignment 1 – Part A Cantilever beam

TARGET

Compute the **natural frequencies** and the **mode shapes** of a cantilever beam, by making reference to the standing wave solution of a slender beam in bending vibration.

Study the forced response of the system, by computing its **Frequency Response Function** (for assigned input and output positions).

Assuming the FRFs to be representative of an experimental test, apply **modal parameters identification** algorithm according to the FRF-based multi-mode curve fitting method.

Contents:

- Data of the reference structure (geometry and material properties)
- Vibration modes computation
- Frequency Response Functions computation
- Modal parameters identification: FRF-based multi-mode curve fitting method (n = 1)

DATA OF THE REFERENCE STRUCTURE

Aluminum beam with rectangular cross-section

Parameter	symbol	unit	value
Lenght	L	mm	1200
Thickness	h	mm	8
Width	b	mm	40
Density	ho	${ m kg/m^3}$	2700
Young's Modulus	E	GPa	68

VIBRATION MODES OF THE CANTILEVER BEAM

1. Standing wave solution

$$w(x,t) = [A\cos(\gamma x) + B\sin(\gamma x) + C\cosh(\gamma x) + D\sinh(\gamma x)]\cos(\omega t + \varphi)$$

- 2. Boundary conditions
- 3. Matrix formulation (*z* vector of unknown coefficients)

$$[H(\omega)] \, \underline{z} = \underline{0}$$

4. Solution of the characteristic equation (numerical solution in Matlab)

$$\det[H(\omega)] = 0 \rightarrow \omega_i$$

5. Mode shapes computation

$$\omega_i \rightarrow [H(\omega_i)] z^{(i)} = 0 \rightarrow \Phi_i(x)$$

6. Plot the mode shapes with the associated natural frequencies

VIBRATION MODES OF THE CANTILEVER BEAM MODE SHAPES

FREQUENCY RESPONSE FUNCTIONS

1. Frequency Response Function

$$G_{jk}(\Omega) = \sum_{i=1}^{n} \frac{\Phi_i(x_j) \Phi_i(x_k) / m_i}{-\Omega^2 + j2\xi_i \omega_i \Omega + \omega_i^2}$$

- 2. Choose input and output positions (x_k and x_j respectively)
- 3. Define proper damping values (in the order of 1%)
- 4. Compute the modal mass (hint: trapz Matlab function)
- 5. Plot the FRF

$$\xi_i$$

$$m_i = \int_0^L m \, \Phi_i^2(x) \, dx$$

FREQUENCY RESPONSE FUNCTIONS

FREQUENCY RESPONSE FUNCTIONS

- 1. Consider the N FRFs numerically computed (for various input locations x_k and measuring positions x_j) to be representative of an experimental test. In the following, we will refer them to as $\left[G_{jk}^{EXP}\right]$
- 2. Identify the modal parameters according to the FRF-based multi-mode curve fitting method

$$G_{jk}^{NUM}(\Omega) = \sum_{i=1}^{n} \frac{A_{jk}^{(i)}}{-\Omega^2 + j2\xi_i\omega_i\Omega + \omega_i^2} + \frac{R_{jk}^L}{\Omega^2} + R_{jk}^H$$

For lightly damped structures and well distinguished peaks, the FRF $G_{jk}^{NUM}(\Omega)$ can be approximated around a certain ω_i as:

$$G_{jk}^{NUM}(\Omega) = \frac{A_{jk}^{(i)}}{-\Omega^2 + i2\xi_i\omega_i\Omega + \omega_i^2} + \frac{R_{jk}^L}{\Omega^2} + R_{jk}^H \qquad \Omega_{min} < \omega_i < \Omega_{max}$$

For a given set of experimental FRFs $[G_{jk}^{EXP}]$, a least squares minimization procedure can be implemented for the estimation of the modal parameters $(\omega_i, \xi_i, X^{(i)})$.

- \square Considering the experimental FRFs matrix $[G_{jk}^{EXP}]$, it shows:
 - M rows, corresponding to the length of the frequency vector (with the discrete Ω_s ranging from Ω_{min} to Ω_{max})
 - N columns, corresponding to the j-k pairs (i.e., of the available FRFs)
 - $\succ G_r^{EXP}(\Omega_s)$ is the generic element of the experimental FRFs matrix $[G_{jk}^{EXP}]$, corresponding to the r column (FRF) evaluated in correspondence of the frequency Ω_s
- ☐ Considering the expression of the FRF adopted to fit the data:
 - $F_r^{NUM}(\Omega_s) = \frac{A_r^{(i)}}{-\Omega_s^2 + j2\xi_i\omega_i\Omega_s + \omega_i^2} + \frac{R_r^L}{\Omega_s^2} + R_r^H \text{ is the numerical FRF estimation around a certain } \omega_i, \text{ corresponding to the } r \text{ column (FRF) evaluated in correspondence of the frequency } \Omega_s$
- ☐ The error function to be minimized is then:

$$\epsilon = \sum_{r=1}^{N} \sum_{s=1}^{M} Re(G_r^{EXP}(\Omega_s) - G_r^{NUM}(\Omega_s))^2 + Im(G_r^{EXP}(\Omega_s) - G_r^{NUM}(\Omega_s))^2$$

Since the error function ϵ non-linearly depends on the unknown parameters, an iterative minimization procedure is needed:

 \triangleright lsqnonlin(ϵ , x_0 , [], [], []) Matlab function can be adopted

To converge to the correct solution, the vector x_0 of initial guesses is required, consisting of a preliminary estimate of:

- $\begin{array}{c} \bullet \quad \omega_i \\ \bullet \quad \xi_i \\ \bullet \quad A_r^{(i)} \end{array}$
- Modal parameters to be identified (hint: rely on the simplified methods to provide first attempt values)

- Residuals to be checked to verify the accuracy of the identification (hint: assign null initial values)

Hints for the code implementation

- Remember that FRFs are complex-valued functions
- The non-linear minimization procedure elaborates simultaneously the whole set of FRFs, leading to an estimate of $\omega_i, \xi_i, A_r^{(i)}$
- The quality of the estimates can be visually assessed comparing in a plot the identified FRFs $[G_{jk}^{NUM}]$ and the experimental ones $[G_{ik}^{EXP}]$

RESULTS OF THE IDENTIFICATION

MODAL PARAMETERS IDENTIFICATION RESULTS OF THE IDENTIFICATION

A common normalization is recommended for the visualization of the mode shapes comparison.

ASSIGNMENT 1 – PART A

Work out the following items and include the corresponding results in your report of Assignment 1.

- 1. Briefly describe the procedure followed for computing natural frequencies and mode shapes. Plot the mode shapes of the first four modes with the indication of the associated natural frequencies and provide comments to the results.
- 2. Compute the FRFs for some combinations of input and output positions. Comment the results.
- 3. Briefly describe the procedure followed for identifying the natural frequencies, damping ratios and mode shapes of the first four modes, relying on the FRF-based multi-mode curve fitting method (n = 1).
- 4. Check the quality of the identification comparing the identified FRFs and the ones numerically computed.
- 5. Compare the parameters defined at the simulation stage to the identified ones. Collect the results in table form and plot a diagram showing the comparison of the simulated and identified mode shapes.