# Single point methods for finding the Pareto front



# Single point methods

Strategy 1: Sum up function values by means of an utility function

$$f_{eq}(\mathbf{x}) = \sum_{i=1}^{m} w_i f_i(\mathbf{x})$$

Strategy 2: Add constraints to the problem (e.g. transform objectives into constraints)





#### Learning goals

- What are different ways to solve multiobjective optimization problems by formulating them as single objective optimization problems (with constraints)?
- Can we use linear weighting functions to find all Pareto optimal points?
- Which points (on the Pareto front) do we find for different scalarization functions?
- How and when can we use single point methods to find all points on a Pareto front?



# Weighted sum scalarization

$$f_{eq}(\mathbf{x}) = \sum_{i=1}^{m} w_i f_i(\mathbf{x}) \quad w_i > 0, i = 1, ..., m \quad \sum_{i=1}^{m} w_i = 1$$

Regardless of the choice of weights, the weighted sum minimization will always result in an efficient solution  $\mathbf{x}^*$ 

Proof: 
$$f_i(\mathbf{x}) \leq f_i(\mathbf{x}')$$
 for  $i = 1, ..., m$  and  $f_j(\mathbf{x}) < f_j(\mathbf{x}')$  for some  $j \in \{1, ..., m\} \Rightarrow \sum w_i f_i(\mathbf{x}) < \sum w_i f_i(\mathbf{x}')$ 

Not all Pareto optimal solutions can be obtained with the weighted sum scalarization

- (1) Efficient solutions obtained with the weighted sum approach are Pareto optimal in the Geoffrion sense.
- (2) Solutions that belong to concave parts of the Pareto front cannot be obtained

# Proper efficiency

**Definition:** Domination in the Geoffrion sense: A solution  $\mathbf{x}^* \in S$  is called a proper Pareto optimal solution iff:

- (a) it is efficient
- (b) there exists a number M > 0 such that  $\forall i = 1, ..., m$  and  $\forall x \in \mathcal{X}$  satisfying  $f_i(\mathbf{x}) < f_i(\mathbf{x}^*)$ , there exists an index j such that  $f_j(\mathbf{x}^*) < f_j(\mathbf{x})$  and:

$$\frac{f_i(\mathbf{x}^*) - f_i(\mathbf{x})}{f_j(\mathbf{x}) - f_j(\mathbf{x}^*)} \le M$$

**Definition:** Proper efficient solutions are optimal due to Geoffrion's domination criterion. They have a bounded tradeoff considering their objectives.

#### **Convex Pareto front**

Linear scalarization  $f_{eq}(y) = w_1 y_1 + w_2 y_2, w_1 > 0, w_2 > 0$ 

•:  $\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \in \mathcal{Y}$  with minimal value for  $w_1y_1(\mathbf{x}) + w_2y_2(\mathbf{x})$ 



#### Concave Pareto front



Only extremal points can be obtained in case of concave Pareto fronts

# Example: Schaffer problem

$$f_1(x) = x^2$$
,  $f_2(x) = (x-2)^2$   $x \in \mathcal{X} = [0, 2]$ 

$$f_{eq} = w_1 x^2 + w_2 (x - 2)^2 \to \min$$

Ansatz: Find all x with  $\frac{\partial f_{eq}}{\partial x}=0$ ,  $\frac{\partial^2 f_{eq}}{\partial x^2}>0$ 

$$\frac{\partial f_{eq}}{\partial x} = 2x(w_1 + w_2) - 4w_2 = 0$$
 (a),  $\frac{\partial^2 f_{eq}}{\partial x^2} = 2(w_1 + w_2) > 0$ 

(b) is always fulfilled, since  $w_i > 0$ 

(a) 
$$\Leftrightarrow x^* = 2w_2/(w_1 + w_2) \underbrace{=}_{w_1 + w_2 = 1} 2w_2$$



# Example: Schaffer problem

Table 2.1. Recapitulatory table.

| $w_1$                 | 0.2  | 0.4  | 0.6  | 0.8  |
|-----------------------|------|------|------|------|
| $w_2$                 | 0.8  | 0.6  | 0.4  | 0.2  |
| $x^*$                 | 1.6  | 1.2  | 0.8  | 0.4  |
| $f_1(x^*)$            | 2.56 | 1.44 | 0.64 | 0.16 |
| $f_2\left(x^*\right)$ | 0.16 | 0.64 | 1.44 | 2.56 |



Source: Siarry et al. Multiobjective Optimization, Springer, Berlin



# Utility functions

Once a (proper) utility function is given the tangential points of the iso-utility curves with the Pareto front are the obtained non-dominated points.



Keeney and Raiffa: Decisions with Multiple Objectives: Preferences and Value Tradeoff, Cambridge Univ. Press, 1993

# Cobbs Douglas utility functions

Cobbs Douglas Utility:  $f_{eq}(\mathbf{x}) = \prod_{i=1}^m (1 + \mathbf{f}_i(\mathbf{x}))^{\alpha_i}, \alpha_i > 0$ 

Note:  $\log f_{eq}(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i \log f_i(\mathbf{x}), \alpha_i > 0$  can be used for drawing iso utility lines!



# Distance to a reference point (DRP) method

- These methods aim for minimizing the distance to an ideal point
- The ideal point has multiple components and these are the objective function values to be minimized
- Examples:
  - In a machine learning problem the false positive rate fp and false negative fn rate should be simultaneously minimized. The ideal point is fn=(0,0)<sup>T</sup>
  - In a control problem the pressure should be kept close to  $p^*$  and the temperature close to  $T^*$ . The ideal point is  $(T,p)^T=(p^*, T^*)^T$ .
  - In an building optimization problem the fuel consumption EC should be ideally 0 and the annual operation cost AC and investment cost IC, too. The ideal point is (EC,AC,IC)<sup>T</sup>=(0,0,0)<sup>T</sup>



# Minkowsky distance functions

General distance to reference point  $\mathbf{f}^* \in \mathbb{R}^m$ 

$$f_{eq}(\mathbf{x}) = \left(\sum_{i=1}^{m} |f_i(\mathbf{x}) - f_i^*|^p\right)^{1/p}$$

Example p = 1:

$$f_{eq}(\mathbf{x}) = \sum_{i=1}^{m} |f_i(\mathbf{x}) - f_i^*|$$

Example p = 2:

$$f_{eq}(\mathbf{x}) = \left(\sum_{i=1}^{m} |f_i(\mathbf{x}) - f_i^*|^2\right)^{1/2}$$

Example  $p = \infty$ : Tschebyscheff Distance

$$f_{eq}(\mathbf{x}) = \max_{i=1,\dots,m} |f_i(\mathbf{x}) - f_i^*|$$



# View of DRP as a utility function:



#### View of DRP as a utility function:

$$f_{eq}(\mathbf{x}) = \sum_{i=1}^{m} |f_i(\mathbf{x}) - f_i^*|^2$$
 $f_{eq}(\mathbf{y}) \equiv C$ 
 $f^* \nabla f_{eq}(\mathbf{y})$ 
Pareto front

# View of DRP as a utility function: Weighted euclidian distance function

$$f_{eq}(\mathbf{x}) = (\sum_{i=1}^{m} w_i | f_i(\mathbf{x}) - f_i^*|^2)^{1/2}$$

$$f_{eq}(\mathbf{y}) \equiv C$$

$$C/w_2$$

$$f^* \qquad C/w_1$$
Pareto front

#### Tschebychev DRP:

$$f_{eq}(\mathbf{x}) = \max_{i=1,\dots m} w_i |f_i(\mathbf{x}) - f_i^*|$$



#### Tschebychev DRP:

Let  $\mathbf{f}^* \leq \mathbf{f}^I$  (reference point is dominated by ideal point). For every properly efficient point  $\mathbf{y} \in \mathcal{Y}_N$  we can find a combination of weights, such that the minimization of Tschebytscheff utility  $f_{eq}$  leads to  $\mathbf{x}$  with  $\mathbf{f}(\mathbf{x}) = \mathbf{y}$ .



# Tschebychev DRP:

Weakly efficient solutions may be among the results!





# Choice of reference point

Reference point should be dominated by ideal point  $y^{I}$ !



Pessimistic choice of  $\mathbf{f}^* \Rightarrow$  not all points on Pareto surface can be obtained, or even dominated point result in the minimization of  $f_{eq}$ .

#### ε-Constraint method

$$f_m(\mathbf{x}) \to \min, \text{ s.t.} f_i(\mathbf{x}) \le \epsilon_i, i = 1, \dots, m$$



With the dimension the number of  $\epsilon$  combinations grows exponentially.

# Goal programming

- (1) Choose reference point!
- (2) Choose positive direction  $\lambda \in \mathbf{R}^m_>!$
- (3) Find minimal t s.t.  $\mathbf{f}^* + t\vec{\lambda} \in \mathcal{Y}$





# Goal programming

If  $\lambda_i > 0$  goal programming can obtain all properly efficient points!



Goal programming might result in dominated solutions!

This is also possible if reference point dominates ideal point!

# Summary: Scalarization methods

Scalarization methods can obtain Pareto optimal solutions.

Except Tschebyscheff scalarization the methods cannot find all proper efficient solutions, , in particular concave parts are easily overseen!

The goal attainment method may even find non-efficient points

The weights  $w_i$  and  $\epsilon$ -constants have different meaning, the understanding of which is essential to the understanding of the respective method.

Finding tangential points of the  $f_{eq} \equiv C$  isolines gives us a practical means for geometrically determining the solution of the monocriterial functions.

