Dylan Liesenfelt

Z23688417 COT2000 - Foundations of Computing Exam 1 - Solution Key

Questions

1. (15 points) Given the sets: $A = \{2, 3, \{4\}\}$

```
\begin{split} B &= \{3,2,\{4\}\} \\ C &= \{\{4\}, +\sqrt{9}, 2\} \\ D &= \{3,2,4\} \\ E &= \{\text{``apple''}, \text{``banana''}, \{\text{``cherry''}\}\} \\ F &= \{x \in \mathbb{Z} \mid 1 < x < 5\} \end{split}
```

A = B = C because the +sqrt(9) =3 and order does not matter. D=F because 1<x<5 is 2,3,4

- (a) Specify which of the given sets are equal to each other.
- (b) For each set, determine the number of elements it contains. All sets contain 3 elements
- (c) Determine if the following statements are true or false:

```
i. \{4\} \subseteq A False, true would be, \{\{4\}\} \subseteq A
```

- ii. $\{4\} \subseteq D$ True
- iii. $\{"cherry"\} \subseteq E$ False, true would be, $\{\{"cherry"\}\} \subseteq E$
- iv. $\{\{4\}\}\subseteq C$ True
- v. $\{2,3\} \subseteq B$ True
- 2. (15 points) Use the set-roster notation to write the following sets, and indicate the number of elements: (\mathbb{Z} means the integers)
 - (a) $V = \{t \in \mathbb{Z} \mid t > -3 \text{ and } t < 7\}$. $V = \{-2, -1, 0, 1, 2, 3, 4, 5, 6\}$, elements 9
 - (b) $V = \{t \in \mathbb{Z} \mid t < -3 \text{ or } t > 7\}$. V={ infinity to -4, 8 to infinity}, infinite elements
 - (c) Let $A = \{p, q, r\}$ and $B = \{x, y\}$, Find $B \times A = \{(x,p),(x,q),(x,r),(y,p),(y,q),(y,r)\}$, 6 elements
- 3. (15 points) Let $A = \{m, n, o, p\}$ and $B = \{g, h\}$.

Use the set-roster notation to write each of the following sets, and indicate the number of elements that are in each set:

- (a) $A \times B = \{(m,g),(m,h),(n,g),(n,h),(o,g),(o,h),(p,g),(p,h)\}$, 8 elements
- (b) $B \times A = \{(g,m),(g,n),(g,o),(g,p),(h,m),(h,n),(h,o),(h,p)\}$, 8 elements
- (c) $A \times A = \{(m,m),(m,n),(m,o),(m,p),(n,m),(n,n),(n,o),(n,p),(o,m),(o,$
- (d) $B \times B$ (o,n),(o,o),(o,p),(p,m),(p,n),(p,o),(p,p)} 16 elements

$$\mathcal{Y}$$
 B×B={(g,g),(g,h),(h,g),(h,h)} , 4 elements

4. (20 points) Answer each of the following:

Let $A = \{10, 11, 12\}$ and $B = \{2, 3, 4\}$. Define a relation R from A to B as follows:

For all
$$(x,y) \in A \times B, (x,y) \in R$$
 if and only if $\frac{x}{y+1}$ is an integer.

- (a) Write $A \times B$ in set-roster notation $A \times B = \{(10,2), (10,3), (10,4), (11,2), (11,3), (11,4), (12,2), (12,3), (12,4)\}$
- (b) Determine the validity of the following:
 - i. Is 12 R 3? Yes, 12/3+1=3, 3 is an integer
 - ii. Is $(11, 4) \in R$? no, 11/4+1=2.2 not an integer
- (c) Write R as a set of ordered pairs.

Domain: {10,12} Co-Domain: {2,3,4}

- (d) Identify the domain and co-domain of R.
- (e) Is R a function, explain. Yes, each element in the domain is related to one element in the co-domain
- 5. (15 points) Write each statement in symbolic form.

Let p = "I enjoy programming", q = "I will graduate", and r = "I will complete my project." Express each of the following propositions in symbolic form:

- (a) i. I enjoy programming and I will graduate. P ^ Q
 - ii. I will complete my project or I will not graduate. r v ~p
 - iii. It is not true that I both enjoy programming and will complete my project. $\sim (p \land r)$
 - iv. I will not complete my project and I will not graduate. $\sim r ^ \sim q$
- (b) For each of the following propositions, identify simple propositions, express the compound proposition in symbolic form, and determine whether it is true or false:
 - i. The moon is made of cheese or one plus one equals two. p v q, false neither statement is true, need one
 - ii. If 1,000,000 is a multiple of 5, then 1,000,000 is even. p -> q, True, both are true
 - iii. 7 is a prime number and 9 is not divisible by 3. p ^ q, False, p=true q=false, both need to be true to = true
 - iv. $4 \in \mathbb{Z}$ and $4 \in \mathbb{Q}$. p ^ q, True, both are true
 - $v. \ \frac{3}{4} \in \mathbb{Z} \ and \ \frac{3}{4} \in \mathbb{Q}. \ (Note: \ Q \ is the \ rational \ numbers \ and \ Z \ is the \ integer \ numbers.) \\ p \ ^q \ , \ \textit{Flase}, \ p \textit{=} \textit{false} \ q \textit{=} \textit{true} \)$
 - vi. The product of two odd integers is odd and the product of two even integers is even. p ^ q, True both are true
- 6. (20 points) Write the truth table for the following statement forms:
 - (a) $p \vee (\neg q \wedge r)$
 - (b) $(p \lor q) \land (\neg p \lor (q \land \neg r))$ _____
 - (c) Determine whether the statement forms are logically equivalent. Explain. $p \wedge (p \vee q)$ equivalent to the statement p
- 7. (Bonus 5 points) Expand the compound statement $(p \oplus q) \wedge r$ using the definition of Exclusive OR? Explain.

V					
P	9	Y	~9	ng Mr	1 P V (~g,1r)
77	エ	T F	F	F	7- T
T	Ē	Ţ	丁	T	<i>T</i>
エ	+	T	T ≠	F F	T 1F
トコヤコ	7 F	下工	F	=	F
F	F	F	7 7	T (F

マーマーマーマーマーマーマーマーマーマーマーマーマーマーマーマーマーマーマー	9	9	~	~ 9	~r	PVq	q1~r	(~pv(q1~r))	(PV9) 1 (~PV(91 ~r))
	T T T	ててせ	トキト	4-4-4	4-4	アケ	F 7 H	F	t 7
	τ F	トドト	しなて	4	, 	TT	F	F	+ + + +
	F	てを	チャ	てて	+ F	, F	ナナ	- 4 +	F

6. C) No truth tables do not match