ПОНЯТИЕ ПЕРВООБРАЗНОЙ ФУНКЦИИ. ПОНЯТИЕ НЕОПРЕДЕЛЕННОГО ИНТЕГРАЛА

1.1. Понятие первообразной

Одна из основных задач дифференциального исчисления состоит в определении производной заданной функции. Различные задачи математического анализа и разнообразное применение производной в геометрии, механике и технике приводят к обратной задаче: для заданной функции f необходимо найти такую функцию F, производная которой равна функции f.

Восстановление функции по ее производной является одной из основных задач интегрального исчисления.

пределение

Пусть I — интервал из множества \mathbb{R} и $f\colon I\to\mathbb{R}$ — некоторая функция. Функция F, определенная на интервале I, называется **первообразной** для функции f на этом интервале, если:

1) функция F дифференцируема на интервале I; 2) $F'(x) = f(x), \ \forall x \in I$.

Если интервал I замкнут слева (справа) и точка a является его ограничением слева (справа), то под производной функции F в точке a понимается правая (левая) производная функции F в точке a.

Примеры

1 Функция $F: \mathbb{R} \to \mathbb{R}$, $F(x) = x^3$, является первообразной для функции $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 3x^2$, так как $F'(x) = (x^3)' = 3x^2 = f(x)$, $\forall x \in \mathbb{R}$.

2 Функция $F: \mathbb{R} \to \mathbb{R}$, $F(x) = \sin x$, является первообразной для функции $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \cos x$, поскольку $(\sin x)' = \cos x$, $\forall x \in \mathbb{R}$.

3 Если a > 0, $a \ne 1$, то функция $F: D \to \mathbb{R}$, $F(x) = \frac{a^x}{\ln a}$, является первообразной для функции $f: \mathbb{R} \to \mathbb{R}$, $f(x) = a^x$, $\forall x \in \mathbb{R}$.

4 Функция $F(x) = \frac{1}{x}$ не является первообразной для функции $f(x) = -\frac{1}{x^2}$ на интервале $(-\infty, +\infty)$, так как равенство F'(x) = f(x) ложно в точке ноль. Однако на каждом из интервалов $(-\infty, 0)$ и $(0, +\infty)$ функция F является первообразной для функции f.

Замечание

Задача нахождения первообразной заданной функции f решается неоднозначно. Действительно, если F является первообразной для f на интервале I, то есть F'(x) = f(x), $\forall x \in I$, то функция F(x) + C, где C – произвольная постоянная, также является первообразной для функции f на интервале I, поскольку (F(x) + C)' = f(x), $\forall x \in I$.

Пример

Первообразной для функции $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \cos x$, является не только функция $F_1(x) = \sin x$, но и функция $F(x) = \sin x + C$, так как $(\sin x + C)' = \cos x$, $\forall x \in \mathbb{R}$ и $\forall C \in \mathbb{R}$.

еорема 1

Если $F\colon I\to\mathbb{R}$ является первообразной для функции $f\colon I\to\mathbb{R}$ на интервале I, то любая другая первообразная функции f на I имеет вид F+C, где C произвольная постоянная.

Доказательство:

Пусть $\Phi: I \to \mathbb{R}$ – первообразная функции f на интервале I, то есть $\Phi'(x) = f(x)$, $\forall x \in I$. Тогда $(\Phi(x) - F(x))' = \Phi'(x) - F'(x) = f(x) - f(x) = 0$, $\forall x \in I$. Получили функцию $\Phi(x) - F(x) = C$, где C – произвольная постоянная.

Таким образом, $\Phi(x) = F(x) + C$.

Графики любых двух первообразных для функции f получаются друг из друга путем параллельного переноса вдоль оси Oy (рис. 1.1).

Можно доказать следующую теорему.

еорема 2

Любая функция $f: [a, b] \to \mathbb{R}$, непрерывная на отрезке [a, b], имеет первообразные на этом отрезке.

1.2. Понятие неопределенного интеграла

Пусть $f: I \to \mathbb{R}$ (интервал $I \subseteq \mathbb{R}$) — некоторая функция, имеющая первообразные. Множество первообразных функции f называется **неопределенным интегралом от функции** f.

Обозначается $\int f(x) dx$ и читается: «Интеграл от эф от икс дэ икс».

Символ ∫ называется знаком интеграла.

Итак, $\int f(x)dx = F(x) + C$, где F – одна из первообразных для функции f на интервале I, то есть F'(x) = f(x), $\forall x \in I$, а C – произвольная постоянная.

Нахождение первообразных некоторой функции (имеющей первообразные) называется *интегрированием*. Обозначение $\int f(x) dx$ является неделимым, то есть символам \int и f(x) dx, отдельно взятым, не придают какого-либо смысла. Функция f называется *подынтегральной функцией*, переменная x – *переменной интегрирования*, а C – *постоянной интегрирования*.

Примеры

1
$$\int x^2 dx = \frac{x^3}{3} + C$$
, так как $\left(\frac{x^3}{3} + C\right)' = x^2$.

$$2$$
 $\int \cos x \, dx = \sin x + C$, τακ κακ $(\sin x + C)' = \cos x$.

$$3 \int e^{-2x} dx = -\frac{1}{2}e^{-2x} + C, \text{ так как } \left(-\frac{1}{2}e^{-2x} + C\right)' = e^{-2x}.$$

 $\frac{dx}{x} = \ln|x| + C$, так как если x > 0, то $\ln|x| = \ln x$ и производная правой части

равна $(\ln |x| + C)' = (\ln x + C)' = \frac{1}{x}$.

Следовательно, она совпадает с подынтегральной функцией.

Если x < 0, то $\ln |x| = \ln(-x)$ и производная правой части равна

$$(\ln |x| + C)' = (\ln(-x) + C)' = -\frac{1}{x}(-x)' = \frac{1}{x}.$$

Итак, формула верна для положительных и отрицательных значений x.