智能数据挖掘作业3

19200300004 黄铭瑞

一、 实验目的

知道数据预处理的原理,掌握数据预处理的方法。重点掌握如插值、去 噪、缺失值、离群值处理方法。

二、实验原理

数据预处理一般包含数据清洗,数据转换,数据描述,特征选择或特征组合,特征抽取这五个步骤。

数据清洗阶段,主要是处理缺失值,重复值,离群值。

缺失值可以通过删除数据或者比较相邻值来填补数据。

重复值一般采用删除法来处理但有些重复值不能删除,例如订单明细 数据或交易明细数据等。

对离群值的甄别,一般使用 3 ° 准则或者箱型图,如果样本是正态分布或近似正态分布,可以考虑使用 3 ° 方法,认为 99%以上的数据集中在均值上下 3 个标准差的范围内;箱型图一般用于统计数据分散情况而做的,超出上下限的值定位离群值。

三、 实验过程

1. 导入数据集

通 过 pd. read_csv() 来 导 入 mini_chart_events.csv 与 mini_label_events.csv 文件,并把他们转为N维数组的形式。

	ROW_ID	SUBJECT_ID	HADM_ID	ICUSTAY_ID	ITEMID	CHARTTIME	STORETIME	CGID	VALUE	VALUENUM	VALUEUOM	WARNING	ERROF
0	304858	3379	142774	238507.000	220046	2162-05-27 20:00:00	2162-05-27 20:48:00	17574.000	120.000	120.000	bpm	0.000	0.000
1	304859	3379	142774	238507.000	220047	2162-05-27 20:00:00	2162-05-27 20:48:00	17574.000	60.000	60.000	bpm	0.000	0.000
2	304860	3379	142774	238507.000	223751	2162-05-27 20:00:00	2162-05-27 20:49:00	17574.000	160.000	160.000	mmHg	0.000	0.000
3	304861	3379	142774	238507.000	223752	2162-05-27 20:00:00	2162-05-27 20:49:00	17574.000	90.000	90.000	mmHg	0.000	0.000
4	304862	3379	142774	238507.000	223761	2162-05-27 20:00:00	2162-05-27 20:49:00	17574.000	99.400	99.400	?F	0.000	0.000
3388374	330605881	99863	100749	216757.000	224370	2142-04-26 21:00:00	2142-04-26 21:17:00	16351.000	White	NaN	NaN	0.000	0.000
3388375	330605882	99863	100749	216757.000	224372	2142-04-26 21:00:00	2142-04-26 21:17:00	16351.000	Suctioned	NaN	NaN	0.000	0.000
3388376	330605883	99863	100749	216757.000	224373	2142-04-26 21:00:00	2142-04-26 21:17:00	16351.000	Scant	NaN	NaN	0.000	0.000
3388377	330605884	99863	100749	216757.000	224642	2142-04-26 21:00:00	2142-04-26 21:43:00	20061.000	Oral	NaN	NaN	0.000	0.000
3388378	330605885	99863	100749	216757.000	224650	2142-04-26 21:00:00	2142-04-26 21:12:00	20061.000	None	NaN	NaN	0.000	0.000

3388379 rows × 15 columns

(df1,mini_chart_events.csv 原始数据)

	ROW_ID	SUBJECT_ID	HADM_ID	ITEMID	CHARTTIME	VALUE	VALUENUM	VALUEUOM	FLAG
0	71572	127	NaN	50861	2183-08-08 13:23:00	14	14.000	IU/L	NaN
1	71573	127	NaN	50862	2183-08-08 13:23:00	3.4	3.400	g/dL	abnormal
2	71574	127	NaN	50863	2183-08-08 13:23:00	91	91.000	IU/L	NaN
3	71575	127	NaN	50878	2183-08-08 13:23:00	24	24.000	IU/L	NaN
4	71576	127	NaN	50893	2183-08-08 13:23:00	9.1	9.100	mg/dL	NaN
290660	27777211	99085	147862.000	51200	2130-06-11 05:15:00	0.1	0.100	%	NaN
290661	27777212	99085	147862.000	51221	2130-06-11 05:15:00	37.2	37.200	%	NaN
290662	27777213	99085	147862.000	51222	2130-06-11 05:15:00	12.7	12.700	g/dL	NaN
290663	27777214	99085	147862.000	51237	2130-06-11 05:15:00	1.2	1.200	NaN	abnormal
290664	27777215	99085	147862.000	51244	2130-06-11 05:15:00	16.7	16.700	%	abnormal

290665 rows × 9 columns

(df2, mini label events. csv 原始数据)

```
| dfl_narray |
| executed in 18ms, finished 22:06:10 2022-05-02 |
| array([[304858, 3379, 142774, ..., 0.0, nan, nan], [304850, 3379, 142774, ..., 0.0, nan, nan], [304860, 3379, 142774, ..., 0.0, nan, nan], [330605883, 99863, 100749, ..., 0.0, nan, nan], [330605884, 99863, 100749, ..., 0.0, nan, nan], [330605885, 99863, 100749, ..., 0.0, nan, nan], [330605885, 99863, 100749, ..., 0.0, nan, nan]], dtype=object)
```

(df1_narray, ndarray 类型的数据)

(df2_narray, ndarray 类型的 label events)

2. 提取出需要的 p02, pC02 数据。

依次把两个文件里的 ITEMID 为[490, 3785, 3837, 50821]之一, [3784, 3835, 50818]之一的数据提取出来,并放入一个空列表中。

(o2co2data, 提取出有用数据的列表)

3. 数据变换,保存数据

把 p02, pC02 作为其所含值的列名,构造新的列表。List 转为dataframe 并以 csv 形式储存到本地。

```
[[907, '2155-08-21 19:00:00', '257.20001220703125', ''],
[946, '2120-05-05 05:00:00', '308.5', ''],
[946, '2120-05-10 10:59:00', '247.19999694824219', ''],
[4033, '2159-06-15 01:00:00', '50', '58'],
[4033, '2159-06-20 17:00:00', nan, nan],
[4033, '2159-06-20 17:00:00', nan, nan],
[4367, '2120-09-30 16:00:00', '657', ''],
[6843, '2142-06-15 03:15:00', '88', '40'],
[6843, '2142-06-14 12:00:00', '73', '45'],
[6843, '2142-06-14 11:50:00', '73', '45'],
[6843, '2142-06-14 11:50:00', '73', '45'],
[6843, '2142-06-14 17:00:00', '82', '22'],
[6843, '2142-06-14 17:00:00', '82', '22'],
[6843, '2142-06-14 17:00:00', '82', '22'],
[6843, '2142-06-14 17:07:00', '82', '22'],
[6843, '2142-06-14 17:07:00', '82', '22'],
[6843, '2142-06-14 17:07:00', '82', '22'],
[6843, '2142-06-14 17:07:00', '82', '22'],
[6843, '2142-06-18 14:00:00', nan, nan],
[6843, '2142-06-18 14:00:00', nan, nan],
```

(o2co2data, 各列表示为 subject_id, charttime, p02, pC02)

4. 读取新保存的 csv 文件

	subject_id	charttime	pO2	pCO2
0	907	2155-08-21 19:00:00	257.20001220703125	28
1	946	2120-05-05 05:00:00	308.5	48
2	946	2120-05-10 10:59:00	247.19999694824219	38
3	4033	2159-06-15 01:00:00	50	58
4	4033	2159-06-15 01:00:00	50	58
9608	99085	2130-12-08 14:19:00	180	42
9609	99085	2130-12-14 20:22:00	69	46
9610	99085	2130-12-14 20:22:00	69	46
9611	99085	2131-02-08 21:04:00	68	47
9612	99085	2131-02-08 21:04:00	68	47

(df,o2co2data.csv 数据文件)

5. 查找并处理重复值

```
df. duplicated(keep='first')
```

executed in 22ms, finished 22:38:02 2022-05-02

- 0 False 1 False
- 2 False
- 3 False
- 1 True

9608 True

9609 False

9610 True

9611 False 9612 True

Length: 9613, dtype: bool

df = df.drop_duplicates()

executed in 15ms, finished 22:38:04 2022-05-02

6. 查找并处理空缺值

df.isnull().sum()

executed in 13ms, finished 22:40:07 2022-05-02

df = df.dropna()

executed in 9ms, finished 20:55:01 2022-05-02

7. 数据类型转换

把 p02, pC02 数据转为 float 类型

df.info()

executed in 25ms, finished 22:42:22 2022-05-02

<class 'pandas.core.frame.DataFrame'>
Int64Index: 4730 entries, 0 to 9611
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	subject_id	4730 non-null	int64
1	charttime	4730 non-null	object
2	p02	4715 non-null	object
3	pCO2	4715 non-null	object
1+	an + GA(1)	object(2)	

dtypes: int64(1), object(3) memory usage: 184.8+ KB

(df 原始数据类型)

```
df["p02"] = pd. to_numeric(df["p02"], errors='coerce')
df["pC02"] = pd. to_numeric(df["pC02"], errors='coerce')
df. info()
```

executed in 34ms, finished 22:42:32 2022-05-02

<class 'pandas.core.frame.DataFrame'>
Int64Index: 4730 entries, 0 to 9611
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	subject_id	4730 non-null	int64
1	charttime	4730 non-null	object
2	p02	4714 non-null	float64
3	pCO2	4714 non-null	float64
dtyp	es: float64(2), int64(1), ob	ject(1)

memory usage: 184.8+ KB

(转换后的 df 数据类型)

8. 查找离群值

df. describe()查看最大最小值是否是异常值。

	subject_id	pO2	pCO2
count	4712.000	4711.000	4711.000
mean	27821.661	146.186	42.435
std	25809.511	102.330	10.513
min	127.000	19.000	8.000
25%	9978.000	81.000	36.000
50%	20280.000	114.000	41.000
75%	32476.000	171.500	47.000
max	99863.000	689.000	121.000

绘制 p02, pC02 两列数据的箱型图,列出离群数据。

(p02 和 pC02 的箱型图)

9. 离群值的处理 用平均值代替离群值,做出新的箱型图

(平均值代替离群值后的箱型图)

df. describe(),看出离群值平滑了很多

	subject_id	pO2	pCO2
count	4712.000	4711.000	4711.000
mean	27821.661	118.803	41.148
std	25809.511	55.685	7.695
min	127.000	19.000	20.000
25%	9978.000	81.000	36.000
50%	20280.000	114.000	41.000
75%	32476.000	144.000	46.000
max	99863.000	307.000	63.000

10. 时间换算

把 charttime 换成小时的形式,并以小时作为时间轴,第一次采集时间为 0 小时。

11. 插值计算

选取三个不同的病人,分别对他们的 p02,pC02 进行拉格朗日插值计算,计算前 10 个插值。

病人1:

(病人1的 pC02 插值)

病人 2:

(病人2的p02插值)

病人 3:

(病人3的pC02插值)

四、实验结果与分析

在对 pC02 和 p02 进行数据提取的时候,其中一个有值另一个必为空,在对他们两进行合并的时候就会出现大量的重复值,所以采用删除的方式进行去重。

在去重,去缺失值之后,数据中还存在大量的离群值,在对 p02 和 pC02 统一数据类型后,对他们的离群值平滑处理,采用均值替代的方式,大大的缩小了极差。

五、 附录

MIMIC 数据预处理. html