

VVCPy: Um Framework para Análise e Visualização de dados para o padrão Versatile Video Coding

Luís Eduardo Pereira Mendes Aluno de Engenharia de Computação - UFRGS Cláudio Machado Diniz Orientador

Crescimento da demanda por processamento de vídeo

- Aumento do número de dispositivos de vídeo
- Aumento da resolução dos vídeos produzidos

Codificação de Vídeo

- Uso de técnicas de redução de redundância para diminuir a quantidade de dados enviada para representar informação de vídeo;
- Possibilita o armazenamento e transmissão de vídeo;

Figure 1.1 Video coding scenarios, one-way

Figure 3.4 Frame 1

Figure 3.5 Frame 2

Figure 3.6 Difference

Versatile Video Coding (VVC/H.266)

- Padrão de codificação de vídeo;
- Sucessor do padrão High Efficiency Video Coding (HEVC/H.265);
- Realiza compressões de até 50% mais do que o HEVC;
- Possui um custo computacional de até 30x o seu antecessor

FIGURE 2. PSNR RD curves. (a) *RitualDance* (1920 \times 1080). (b) *Tango* (4096 \times 2160). (*) The actual AI coding rate is eight times as high due to sequence subsampling.

Rate (Mbps)
(b)

Aumento da complexidade do codificador

- Predição Intra e Inter quadros, Estimação de movimento e outras técnicas são muito custosas computacionalmente
- Exige o desenvolvimento de Hardware especializado

Cenário para possibilidade de implementação do VVC

- Aceleração de hardware usando módulos especializados em computar funções de codificação
- Aplicação de técnicas de computação aproximada

Demanda por agilidade no processo de desenvolvimento

 Para que seja possível realizar mudanças substanciais que tragam melhorias para o VVC, é necessário o uso de ferramentas de automação de processos

Demanda por uma grande quantidades de dados

 A aplicação de alterações voltadas para o software do codificador necessitam de testagem e validação

Framework para automatizar o processamento de vídeos para o VVC

- Surge a necessidade de um software que seja capaz de automatizar:
 - O processo de obtenção de dados do VVC para um determinado conjunto de vídeos
 - O processo de manipulação e obtenção de métricas a partir dos dados gerados
 - A geração de gráficos, tabelas e informações visuais sobre o conjunto de vídeos
 - O A comparação de diferentes execuções do codificador
- Ferramenta código-aberto (open-source) livre para modificação e incrementação pela comunidade

Estudo da Arquitetura do Sistema

- A partir da análise de trabalhos recentemente publicados se estabeleceu os requisitos para o desenvolvimento do framework
- Escolha das ferramentas utilizadas para o desenvolvimento da aplicação baseada no ambiente científico
 Python
 - O Pandas, Numpy, Matplotlib, Scipy

Fig. 1: Data Structures of VVCPy

Fig. 2: VVCPy Framework System Diagram

Implementação e validação

- Implementação realizada em Python usando herança e polimorfismo de classes do framework Pandas
- Verificação realizada por meio de testes unitários e testes de sistema
- Validação realizada pela utilização pelo grupo de pesquisa

Uso do VVCPy

- O framework pode ser usado em diferentes níveis de abstração
 - provê uma interface de funções de alto nível, que realiza as operações mais comuns de obtenção de dados e métricas gerais
 - provê uma interface de baixo nível, com métodos mais simples que podem ser usados para construir extensões para usos específico
- Foco na realização de simulações automatizadas de execuções do codificador VVC

```
vvcpy.Simulation()
vvcpy.Output.plot()
 vvcpy.calc_bdr()
  vvcpy.run_vtm()
    vvcpy.find_file()
```

Explorando caso de estudo: Descrição do experimento

- O experimento conta com a redução de camadas de somador no hardware dedicado à transformação de Hadamard para unidades de codificação 8x8
- A remoção é simulada no software do codificador, testando funcionalmente o resultado

$$SATD = \sum_{i,j} |HT_{(i,j)}| \tag{1}$$

$$HT = H \cdot W \cdot H^T \tag{2}$$

Explorando caso de estudo: avaliação de um modelo de computação aproximada

- Para avaliar a utilização do framework, o cálculo da transformação de Hadamard foi aproximado no software do VVC, com a redução de até 80% as operações de soma realizadas durante esse método.
- Usando o script ao lado, foi possível testar um conjunto de 10 vídeos e gerar um gráfico a partir do conjunto de métricas obtido.

```
import vvcpy as vp

sim = vp.Simulation(
    n_frames = 32,
    encoder = ["RA", "AI", "LB"],
    qps = [22,27,32,37]
)
sim.set_environment("setup.yaml")
sim.change_version(
    new_file = "RdCost-8x8-SAD.cpp"
    old_file = "CommonLib/RdCost.cpp"
    version = "RdCost-8x8-SAD"
)
sim.run_exec()
```

Fig. 4: Running the experiment using a new version of VTM

```
vp.set_environment("setup.yaml")
bdr = prof.calc_bdr(
  output = vp.env.output,
  cfgs = ["AI", "LB", "RA"],
  qps = [22, 27, 32, 37]
)
bdr.plot_bdr_video("RaceHorses")
```

Fig. 5: Script to calculate BD-Rate.

Explorando caso de estudo: Resultados obtidos da execução dos scripts

- Ao fim da execução do script, o seguinte gráfico foi gerado, possibilitando uma análise sobre o impacto da aproximação na codificação do vídeo.
- O gráfico representa a comparação da métrica Bjontegaard-Delta Rate (BD-Rate), quanto menor, menos o vídeo aproximado foi distorcido.

Fig. 7: BD-Rate comparison between different versions.

Version	Video	Config.	BD-rate
RdCostModif	BasketballPass	AI	0.028333
		RA	-0.131668
	RaceHorses	AI	0.027436
	9	RA	0.274682

TABLE VIII: BD-Rate comparison between the modified version and the precise version of VTM

Quando o Framework é útil?

• Após a avaliação feita pelo grupo de pesquisa, foi elencado os principais usos para o framework

Métodos de computação aproximada

- Avaliar quais mudanças ocasionam uma perda de qualidade significativa
- Avaliar diferentes versões de aproximações

Avaliação de complexidade de software

- Encontrar dentro do software as funções mais custosas
- Analisar o impacto de diferentes funções em diferentes tipos de vídeo

Obtenção de dados para treinamento de Inteligência Artificial

 Obter dados estruturados que podem ser utilizados como entrada para redes neurais

Próximos passos

- A utilização de um framework automatizado para realizar as tarefas de execução de simulações do codificador se mostrou eficaz para acelerar e facilitar o desenvolvimento de experimentos
- Entretanto existem aspectos a serem melhor trabalhados e características a serem adicionadas

Adição de suporte à outras métricas menos utilizadas. porém relevantes

Adição de suporte à outros codificadores, como o HEVC e o visualização de dados AVC

Adição de outros métodos de

Obrigado!

Instituto de Informática Universidade Federal do Rio Grande do Sul -UFRGS

