Relatório de Data Mining

Trabalho de conclusão da disciplina

Professora Manoela Kohler Kickstarter Projects

Mayta S. Custódio

Matrícula: 192.671.147

Sumário

Análise exploratória	3
Atributos Desnecessários:	4
Missing Values:	5
Separação de base em treino e teste	8
Normalização de Dados	8
Modelagem	9
k-NN	10
Random Forest	11
Decision Tree	12
Naive Bayes	13
Conclusão	14
Considerações finais	14

Análise exploratória

Na primeira análise realizada verificamos que o database possui 369.669 linhas e 17 colunas, e contém informações sobre projetos cadastrados no site kickstarter.com de 2009 a 2018. Link: https://www.kaggle.com/kemical/kickstarter-projects

Demonstra sua classificação na coluna 'state', informando se foi bem-sucedido ou não, nomeando-os como successful, failed, live, canceled, suspended, undefined;

Como possuo a licença de estudante concedida pelo Rapidminer, trabalharemos com a base completa sem limitação de *rows*.

O primeiro passo no Rapidminer foi abrir o operador 'Read csv' e importar a base de dados, colocando a primeira linha como 'header row', mantendo o separador default da vírgula; e trocando o papel da segunda coluna de ID com o mesmo nome('id'), e da coluna 'state' que será considerada o 'label' de tipo polynominal.

As datas contidas em deadline e launched foram reconhecidas como 'date' e o formado em dd/MM/yyyy pelo Rapidminer em 77% dos registros desses atributos.

As três primeiras linhas estão em conflito com a ordem das demais, então no *wizard* de importação de data, selecionei em 'start row – 5', pois assim, essas linhas serão desconsideradas.

Marquei também 'Replace erros with missings values', porque notei que diversas colunas possuem valores e strings com caracteres que podem dar erro no carregamento.

ExampleSet (369,665 examples, 2 special attributes, 15 regular attributes)

Atributos Desnecessários:

Temos uma grande quantidade missings em duas colunas, sendo necessária a retirada do database, pois atrapalha o modelo. É o caso dos atributos 'att1' e 'att17', com 350.610 e 369.666 valores faltantes respectivamente.

Foi aplicado o operador 'Select Attributes'. No campo de 'filter type', selecionamos 'subset' e no 'Select attributes', colocamos as colunas 'att1' e 'att17', marcando por fim, 'invert selection', pois dessa forma irá selecionar esses atributos, excluindo-os.

Como a quantidade de atributos é relativamente pequena, a consulta de sua importância é de fácil identificação, sendo assim, não se faz necessária a remoção de mais nenhuma coluna, pois todas contribuem com informações relevantes à composição do sucesso ou falha de cada projeto.

Missing Values:

Apliquei o operador 'Replace All Missings' marcando 'include special attribute', pois também existem valores faltantes em 'ID' e 'state'.

Identifiquei três linhas que estão com números ao invés de classificações, assim como os missings que serão levados em consideração na modelagem.

Como essa é uma coluna de grande importância, apliquei o operador 'Filter Exemples', criando os filtros 'State – equals –0; 34; 109; MISSING', para os rows discrepantes. Marquei 'Match any' e 'invert filter', ficando então com os dados que o operador identificou como relevantes de acordo com as condições apresentadas no filtro.

Em seguida, apliquei o operador 'Guess type'. Em 'attribute filter type', selecionei 'single', e em 'attribute', nosso label. Marquei 'include special attribute', porque a coluna 'state' se enquadra.

Finalizamos o tratamento de missings values e erros no label.

Separação de base em treino e teste

Apliquei o operador 'split data'. Em 'partitions', separei a base em treino (0.7%) e teste (0.3%). Tipo de sampling no automático ou stratified por default, pois é um problema de classificação com base já rotulada. Dessa forma irá manter a proporção das classes nas bases separadas.

Base treino: 256.181 examples

Base teste: 109.790 examples

Normalização de Dados

Foi aplicado o operador '*Normalize*' para a normalização da base de treino tendo em vista que os valores dos dados tem grandezas discrepantes. Método: Z-transformation.

Em seguida, o operador 'apply model' foi inserido para aplicar a normalização na base de teste. Ligando a saída do 'Normalize – pre' ao 'mod' do operador e a saída da base de teste ao 'unl' do 'apply model'.

Modelagem

Modelos de classificação utilizados: k-NN, Random Forest, Decision Tree e Naive Bayes, com suas acurácias e kappa.

Após a separação das bases, normalização do treino, aplicação dessa normalização na base teste, foram incluídos os operadores dos modelos na base de treino e com o 'apply model' ligado na porta de 'mod' de ambos operadores. A base de teste foi ligada à segunda porta do apply model 'unl' (unlabeled data), a partir do 'apply model' anterior da normalização, na saída 'lab'. Por fim, foi acrescentado, o operador de 'Performance (classification)' para avaliar a o desempenho.

k-NN

ассигасу: 56.97%

	true live	true canceled	true success	true failed	true suspen	true undefined	class precisi
pred. live	805	67	4	8	5	0	90.55%
pred. canceled	1	527	1223	2267	30	25	12.94%
pred. succes	3	2626	18865	12959	121	230	54.20%
pred. failed	7	8089	18551	42144	389	572	60.42%
pred. suspen	0	2	2	8	1	0	7.69%
pred. undefin	0	9	19	24	1	206	79.54%
class recall	98.65%	4.66%	48.79%	73.41%	0.18%	19.94%	

k-NN	acc	kappa
5	56,97%	0.221
30	57,48%	0.188

Random Forest

ассигасу: 79.18%

	true live	true canceled	true success	true failed	true suspen	true undefined	class precisi
pred. live	807	68	1	7	5	0	90.88%
pred. canceled	0	5	0	0	0	0	100.00%
pred. succes	5	2387	37782	10099	153	0	74.93%
pred. failed	4	8860	879	47304	389	0	82.36%
pred. suspen	0	0	0	0	0	0	0.00%
pred. undefin	0	0	2	0	0	1033	99.81%
class recall	98.90%	0.04%	97.72%	82.40%	0.00%	100.00%	

RF	acc	kappa
100	79,18%	0.631
300	79,09%	0.630

Decision Tree

ассигасу: 86.33%

	true live	true canceled	true successful	true failed	true suspended	true undefined	class precision
pred. live	807	69	4	9	5	0	90.27%
pred. canceled	5	40	53	133	5	0	16.95%
pred. successful	2	565	38567	2928	119	1	91.43%
pred. failed	2	10646	37	54338	418	0	83.03%
pred. suspended	0	0	2	2	0	0	0.00%
pred. undefined	0	0	1	0	0	1032	99.90%
class recall	98.90%	0.35%	99.75%	94.65%	0.00%	99.90%	

DT	acc	kappa
10	76,83%	0.592
20	85,96%	0.746
40	86,33%	0.753

Naive Bayes

ассигасу: 61.92%

	true live	true canceled	true successful	true failed	true suspended	true undefined	class precision
pred. live	786	316	842	1067	16	0	25.97%
pred. canceled	5	537	2396	1174	23	1	12.98%
pred. successful	10	204	11297	587	51	1	92.98%
pred. failed	11	10158	23803	54331	449	6	61.21%
pred. suspended	4	97	294	219	7	0	1.13%
pred. undefined	0	8	32	32	1	1025	93.35%
class recall	96.32%	4.74%	29.22%	94.64%	1.28%	99.23%	

NB	acc	61,92%
IND	kappa	0.287

Conclusão

O modelo que apresentou melhor performance foi o Decision Tree, com acurácia de 86,33%. Kappa de 0.753, com *maximal depth* de 40, mesmo tendo baixo rendimento nos *'canceled'* e *'suspended'*.

O modelo que apresentou pior performance foi o k-NN = 5, tendo acc = 56,97%e kappa = 0.221.

Considerações finais

É muito interessante ser capaz de executar toda a linha de desenvolvimento do trabalho e observar um resultado muito próximo ao que se faria em sala. Procurei a minha base de dados no site kaggle.com/ e encontrei diversos temas interessantes. Apesar de gostar da sugestão da base 'horses', queria trabalhar com uma do 'zero' e explorar a database sozinha.

Comecei realizando os primeiros passos no 'R', porém a base necessitava de inúmeros tratamentos que ainda não domino completamente na linguem, então, passei para o Rapidminer afim de conseguir visualizar melhor por quais etapas precisava passar.

Na etapa do pré-processamento, testei incluir o operador 'Nominal to Numerical' para a transformação dos atributos nominais em dados numéricos e ser capaz de aplicar o modelo SVM. Porém, o programa não rodou devido ao grande volume de dados e falta de memória. Considerei realizar um downsampling, porém teria o risco de deletar dados importantes da base. O modelo aprenderia padrões em cima desses dados que não representariam tão bem as classes. Sendo assim, optei por não usar o SVM.

Agradeço muito a Professora Manoela Kohler pela paciência e explicações durante a diciplina. Irei continuar praticando em 'R' para saber desenvolver em vários estilos.