Numerical Problems on DC Networks

1. Find Thevenin's voltage across a-b terminal in the circuit given below. Also find the internal resistance across the open circuited a-b terminal, where R1 = 10ohm, R2 = 20ohm, V1 = 10volt, V2 = 20volt, V3 = 5A.

2. Determine the current through the 3 ohm resistance by Superposition Theorem & verify using nodal analysis.

3. In the network, calculate the resistance R which will allow maximum power dissipated in it. Also calculate the maximum power.

4. Determine the value of R in the following Figure such that the 4 Ω resistance consumes maximum power.

5. Find the value of load resistance (R_L) for which the power source will supply maximum power. Also find the value of maximum power for the network shown below:

6. Determine the current I₁ through the 15 ohm resistor in the network given by Norton's Theorem.

7. Find the currents through $R_{BC},\,R_{CD},\,R_{BD}$ in the following circuit:

8. Calculate the current flowing through the 6Ω resistor with the help of superposition theorem.

9. Find the current through 5 Ω Resistor using Thevenin's Theorem in the fig. Below

10. For the circuit shown below, determine the currents i_1 , i_2 , i_3 using nodal analysis:

11. Find the Thevenin's equivalent circuit of the following figure between the terminals X-Y.

12. For the circuit shown in Figure determine equivalent source current and source resistance across A-B.

13. For the circuit shown below, find the potential difference between a and d:

Answers:

- 1. 60 V, 30 ohm
- 2. 2.153 A
- 3. 6 ohm, 0.667 W
- 4. 0 ohm
- 5. 2.67 ohm, 24 W
- 6. 0.25 A
- 7. $I_{BC} = 160/3 \text{ mA}$, $I_{DC} = 140/3 \text{ mA}$, $I_{BD} = -20/3 \text{ mA}$
- 8. 1.42 A
- 9. 1.05 A
- 10. i1 = 6 A, i2 = 2 A, i3 = 1 A
- 11. $V_{th} = 16 \text{ V}$, $R_{th} = 6.67 \text{ ohm}$
- 12. $I_N = 2 A$, $R_N = 4.5 ohm$
- 13. 2 V