R的闭包是最小的包含 定理21: 设 R_1,R_2 Í $A\times A$ 且 $A\neq\emptyset$,则 关系R具有性质P的关系 (1) $r(R_1 \cup R_2) = r(R_1) \cup r(R_2)$; 自反闭包,对称闭包,传 (2) $s(R_1 \cup R_2) = s(R_1) \cup s(R_2)$; 递闭包分别记为 (3) $t(R_1 \cup R_2) \supseteq t(R_1) \cup t(R_2)$. r(R),s(R),t(R)(1) R'是自反的(对称 定义:设 的、传递的); A≠∅,R⊆A×A,R的自反 (2) R⊆R'; 闭包(对称闭包、传 递 (3)∀S((R⊆S∧S自反)→ 闭包)R'满足如下条件: $R'\subseteq S$). n 自反闭包r(R) C G(r(R)) bn 对称闭包s(R) $G(s(R))^{b}$ 定理 设 $R \mid A \times A \perp A \mid A \mid = n$,则 $\exists k \leq n$,使 得 $t(R) = R \cup R^2 \cup R^3 \cup ... \cup R^k$; Warshall算法描述1 Algorithm2 Warshall Algorithm **Procedure** Warshall (M_R : zero-one $n \times n$ matrix) $W:=M_R$ n传递闭包t(R) for k:=1 to nfor i=1 to nfor j:=1 to nG(t(R)) \bar{b} $w_{ij}^{(k)=}w_{ij}^{(k-1)}\bigvee(w_{ik}^{(k-1)}\wedge w_{kj}^{(k-1)})$ end end end $\{W=[w_{ij}] \text{ is } M_{R^*}\}$ Warshall 算法计算传递闭包用需要 2n³ 位运算。 定理19: 设 $R \subseteq A \times A$ 且 $A \neq \emptyset$,则 (1) R自反 $\Leftrightarrow r(R) = R$; (2) R对称 $\Leftrightarrow s(R) = R$; (3) R传递 $\Leftrightarrow t(R) = R$; 证明: (1) $R \subseteq R \land R$ 自反 $\Rightarrow r(R) \subseteq R$ $\nabla R \subseteq r(R), \therefore r(R) = R.$ (2)(3) 完全类似. 关系的闭包 定理20: 设 $R_1 \subseteq R_2$, $R_1 \subseteq A \times A$, $R_2 \subseteq A \times A$, 且 $A \neq \emptyset$, 则 $(1) r(R_1) \subseteq r(R_2);$ $(2) s(R_1) \subseteq s(R_2);$ $(3) t(R_1) \subseteq t(R_2);$ 证明: (1) $R_1 \subseteq R_2$, $R_2 \subseteq r(R_2)$ $\therefore R_1 \subseteq r(R_2)$ 又: $r(R_2)$ 是自反的,即 $r(R_2)$ 是包含 R_1 的自反关系 $\therefore r(R_1) \subseteq r(R_2)$ (2)(3) 类似可证. 定理21: 设 $R_1,R_2 \subseteq A \times A$ 且 $A \neq \emptyset$, 则 (1) $r(R_1 \cup R_2) = r(R_1) \cup r(R_2)$; (2) $s(R_1 \cup R_2) = s(R_1) \cup s(R_2)$; $(3) t(R_1 \cup R_2) \supseteq t(R_1) \cup t(R_2).$ n 闭包的性质, 求法, 相 证明: (1) $: R_1 \subseteq R_1 \cup R_2, R_2 \subseteq R_1 \cup R_2$,由定理2.20得 互关系 $\therefore r(R_1) \subseteq r(R_1 \cup R_2), r(R_2) \subseteq r(R_1 \cup R_2)$ $\therefore r(R_1 \cup R_2) \supseteq r(R_1) \cup r(R_2)$ $R_1 \subseteq r(R_1), R_2 \subseteq r(R_2), R_1 \cup R_2 \subseteq r(R_1) \cup r(R_2)$

> $r(R_1 \cup R_2) \subseteq r(R_1) \cup r(R_2)$, $\therefore r(R_1 \cup R_2) = r(R_1) \cup r(R_2)$ (2)同理可证.

> > 定理22~24: 设 $R \subseteq A \times A$ 且 $A \neq \emptyset$, 则 $(1) \nu(R) = R \cup I_A$

又 $:r(R_1)\cup r(R_2)$ 是自反的, :由自反闭包的定义得

 $(1) r(R) = R \cup I_A;$

(2) $s(R) = R \cup R^{-1};$

(3) $t(R) = R \cup R^2 \cup R^3 \cup$

对比: R自反 $\leftrightarrow I_A \subseteq R$ R对称 $\leftrightarrow R = R^{-1}$

R传递 $\leftrightarrow R^2 \subseteq R$

■ 定理2.25: 设 $R \subseteq A \times A$ 且 $A \neq \emptyset$,则

证明了闭包的正确性

(1) R自反 \Rightarrow s(R)和t(R)自反;

(2) R对称 $\Rightarrow r(R)$ 和t(R)对称;

(3) *R*传递⇒ *r*(*R*)传递;

"最小":任何包含同样对象,具有同样性质的集合,都包含这个闭包集合.

增加的最小的有序对

n <mark>闭包(closure): R是A上</mark>的关系,最小的包含R 具有 性质P的关系S

总结:闭包运算保持下列关系性质.

	自反性	对称性	传递性
r(R)	√(定义)	√(定理25(2))	√(定理25(3))
s(R)	√(定理25(1))	√(定义)	×(反例)
t(R)	√(定理25(1))	√(定理25(2))	√(定义)

定理26: 设 $R \subseteq A \times A$ 且 $A \neq \emptyset$, 则

- (1) rs(R) = sr(R);
- (2) rt(R) = tr(R);
- (3) $st(R) \subseteq ts(R)$;(s(R)不能保持R的传递性)

定理2.24: 设 $R \subseteq A \times A$ 且 $A \neq \emptyset$, 则

 $\Leftrightarrow R \cup R^2 \cup R^3 \cup ...$ 传递

 $R\subseteq t(R) \wedge t(R)$ 传递

 $\Rightarrow R \cup R^2 \cup R^3 \cup ... \subseteq t(R)$

 $\therefore t(R) = R \cup R^2 \cup R^3 \cup \dots$

证明: 先证明R∪R2∪R3∪...是传递的

再证明 $R'' \subseteq t(R)$ (证明过程自学)

 $t(R) = R \cup R^2 \cup R^3 \cup ...;$

 $R \subseteq R \cup R^2 \cup R^3 \cup ... \Rightarrow t(R) \subseteq R \cup R^2 \cup R^3 \cup ...;$

 $\Rightarrow R \subseteq t(R) \land R^2 \subseteq t(R) \land R^3 \subseteq t(R) \land ...$

 $(R \cup R^2 \cup R^3 \cup \ldots)^2 = R^2 \cup R^3 \cup \ldots \subseteq R \cup R^2 \cup R^3 \cup \ldots$