MAT 201B Homework 7 Winter 2020

Professor Qinglan Xia Due Date: Friday, February 28 at 9:00am

1. Let (x_n) and (y_n) be two sequences in a Hilbert space \mathcal{H} . If $x_n \rightharpoonup x_0$ and $y_n \to y_0$ in \mathcal{H} , show that

$$\langle x_n, y_n \rangle \to \langle x_0, y_0 \rangle.$$

- 2. Exercise 8.19 in the textbook "Applied Analysis", page 214.
- 3. Exercise 8.20 in the textbook "Applied Analysis", page 214.
- 4. Let $\{e_k\}_{k=1}^{\infty}$ be an orthonormal set in a Hilbert space \mathcal{H} .
 - (a) Show that this gives an example of a bounded and closed set which is not compact.
 - (b) If $\{c_k\}_{k=1}^{\infty}$ is a sequence of positive real numbers with $\sum (c_k)^2 < \infty$, show that the set

$$Q = \left\{ \sum_{k=1}^{\infty} a_k e_k : |a_k| \le c_k \right\}$$

is compact in \mathcal{H} . The set Q is called the Hilbert cube when $c_k = \frac{1}{k}$.

- 5. Let \mathcal{H} be a Hilbert space.
 - (a) Let S be a weakly dense subset of a Hilbert space \mathcal{H} . Show that the span of S is \mathcal{H} .
 - (b) Show that a Hilbert space is (strongly) separable if and only if it is weakly separable.