Hydraulic Fracturing & Water Use

Dr. Ion Ispas

Bob L. Heard Petroleum Engineering Department Texas Tech University

July 30, 2018

Onshore Wells

BP's biggest onshore UK oil well at Wytch Farm, Poole Harbour. Photo: BNPS

Offshore Wells

Courtesy: Magnific.biz

What Is Hydraulic Fracturing?

Is a well stimulation technique through which the rock is fractured by injecting a pressurized fluid to optimize oil and gas production.

Fracturing History

- 1947 Klepper Gas Unit No. 1, Hugoton Field, Kansas. The first well fractured to increase production
- 1949 First & Second Commercial Fracturing Treatments, Stephens County, OK and, Archer County, TX

SPE Monograph Vol. 2

Hydraulic Fracturing Process

- Fluid injection through a wellbore into the formation at a pressure higher than the formation parting pressure (minimum stress also known as the closure stress)
- The *fluid must be pumped well faster* than it can escape (*leak off*) into the formation

Well & Fracture Orientation

Fracture Complexity - Tectonic Regime/Well Productivity

Complexity increase due to tectonic activity (in-situ stress regimes)

Productivity decrease

Fracture Mapping [SPE 77441]

- Geology: Mississippian age
- Extremely low permeability (7e-5 5e-3 md) Barnett shale (North Texas)
- Formation height \sim 200-300ft (500 ft in the core area)
- Understanding the fracture geometry critical to the stimulation effectiveness and infill drilling program
- New method of Micro-seismic (MS) evaluation combined with surface and downhole tilt mapping
- Abnormally pressure formation

Fracture Mapping [SPE 119896]

Primary frac direction (red) roughly N45°E, secondary (blue) is N 45°W plane.

Up to 3 frac directions have been recorded.

Contact Area > 10 million ft².

Acoustic Emissions (AE) & Fracture Geometry

SPE 159262

Experimental Results

Effect of Wellbore Inclination with Isotropic Horizontal Stress

$$\sigma_v = 1,200 \text{ psi}; \ \sigma_H = 780 \text{ psi}; \ \sigma_h = 780 \text{ psi}$$

 $\alpha = 30^\circ, \ 45^\circ, \ 60^\circ; \ \beta = 0^\circ$

In a stress state with equal horizontal stresses:

- the fracture initiates and propagates along the wellbore axis
- It is possible to produce bi-wing fractures

SPE 159262

Modelling Results

Example 4

Figure 17 - Small Block Test ($\alpha = 60^{\circ} \beta = 45^{\circ}$, σ_x [NS] = 260 psi, σ_x [EW] = 1,200 psi, σ_z [TB] = 780 psi)

Frac System Components

- Frac Fluid Most fracs fluids are water based.
- Proppant natural sand and a man made

Water = 95.1% Sand = 4.8% Chemicals = 0.13%

Total chemicals on location is usually 1300 gallons, much of it water based.

Fracturing Fluids Systems

WATER

Gelling agents

Cellulose

- Hydroxy Ethyl
- Carboxy Methyl

Guar

- Natural
- Modified
- Improved
- ...

Cross linking agents

- Titanium
- Zirconium
- Aluminum
- Chromium
- Antimony
- Boron

50.0

Additives

- Antifoaming
- Defoamers
- Buffers
- Breakers
- Bacteria control
- Clay stabilizing
- Demulsifiers
- Fluid loss
- Friction reducing
- Scale inhibitors
- pH Control
- Surfactants
- Temperature stabilizers
- •

Most Common Additives

Additives	Composition	Alternate Use
Friction reducer	Polyacrylamide	Adsorbent in baby diapers
		Flocculent in drinking water preparation
Biocide	Glutaraldehyde	Medical disinfectant
Alternate Biocide	Ozone	Disinfectant in municipal water supplies
	Dioxide UV	
	Chlorine	
Gellants	Cellulose	Thickening ice cream and soups
	Guar	
Surfactants	Various	Cleaners, dish soaps
Scale Inhibitor	Polymers	Some cleaners and medical treatment for
	Phosphonate	bone issues

Fracturing Fluids Characteristics

- Capable to transport the <u>propping agent</u> in the fracture
- Compatibility with the formation rock and fluid
- Capable to generate sufficient pressure drop along the fracture to create fracture width
- Minimize friction pressure losses during injection
- Use approved chemical additives to comply with environmental regulations
- Capable to control-breakdown to a low-viscosity fluid for cleanup (backflow) post treatment
- Cost-effective

Cross-Linked Fluids

Frac Types – Fluid System Trends

Frac Type	Definition
Conventional	Treatment type that uses a gelling agent and one or more crosslinkers in order to transport proppant into a hydraulic fracture.
Water Frac	Treatment type that uses a friction reducer, a gelling agent or a viscoelastic surfactant in order to transport proppant into a hydraulic fracture.
Hybrid	Treatment type that uses a combination of a friction reducer, gelling agent, acid gelling agent, or one or more crosslinkers in order to transport proppant into a hydraulic fracture.
Energized	Treatment type that incorporates an energizer, normally nitrogen or carbon dioxide, into the base fluid in order to generate foam that transports proppant into a hydraulic fracture.
Other/Unknown	Treatment type category that includes the following less common treatment types: Acid Frac, Gas Frac, Matrix Acidizing. This category also includes records for which a classification was unknown or unavailable generally due to incomplete data

Fluid System Trends

Hydraulic Fracturing Proppant (Sand)

Source: Shutterstock.com

Fracturing Proppant

Fracturing Proppant

Typical Proppant Size

- 20-40 mesh (840 μm -420 μm)
- $30-50 \text{ mesh} (590 \mu m 300 \mu m)$
- 40-70 mesh (420 μm 210 μm)
- 70-140 mesh (210 μm 105 μm)
- 100 mesh (149 μm)

Proppant Transport

Fracturing Conventional vs Unconventional

Fracture Monitoring

- Downhole gauges
 - Pressure/Rate
- Fiber optics
 - Flow rate/Temperature (every foot along the well) even when the well is being frac'd
- Radioactive tracers are selected to have
 - the readily detectable radiation
 - appropriate chemical properties
 - and a half life and toxicity level that will minimize initial and residual contamination
 - radioactive isotopes chemically bonded to glass (sand) and/or resin beads may also be injected to track fractures
- Microseismic monitoring
 - Estimate fracture size and orientation (geophones placed in monitoring well) mapping of seismic events locations approximate fracture geometry
- Tiltmeteres (arrays placed on the surface or downhole)
 - Monitoring formation strain during fracturing

Other Use of Hydraulic Fracturing

- To stimulate groundwater wells
- To dispose waste by injection deep into rock
- To measure stress in the Earth
- To increase injection rates for geologic sequestration of CO₂

Challenges and Opportunities

- Surface handling of water & solids
- Slurry additives (food grades)
- HF treatment monitoring
- Cementing QC/QA
- Induced seismicity
- New technologies
 - Energized fractures
 - Reduced stimulation rate
 - Thermal treatments
- Reduction of treatment volume:
 - Increase fracturing efficiency
 - Flowback and forecasting improvement

Categories of Water Use

Source: https://water.usgs.gov/watuse/

Source: https://water.usgs.gov/watuse/

Source and use of freshwater in the United States, 2010

230,000 Surface water 76,000 Groundwater

306,000 Total water use Data are in million gallons per day (Data are rounded)

Total Water Withdrawals in the United States, by Category, 2010

Water Use Trends

Trends in population and freshwater withdrawals by source, 1950-2010.

Typical Hydraulic Fracturing Fluid System

Source: https://water.usgs.gov/watuse/

How Much Water Does US Fracturing Really Use?

Study finds that Water used in fracking makes up less than one percent of total industrial water use nationwide

Energy companies used nearly 250 billion gallons of water to extract shale gas and oil from hydraulically fractured wells in the US between 2005 and 2014, a new study finds. During the same period, the fracked wells generated about 210 billion gallons of wastewater. As large as those numbers seem, the study calculates that the water used in fracking makes up less than one percent of total industrial water use nationwide

Tracking Flow Back

Produced & Brine Water Sources

Water Type	Total Dissolved Solids (TDS)
	PPM
Fresh	< 1000
Brackish (can be used)	1000 - 3000
Brackish High	5000 - 15000
Saline	15000 - 30000
Sea water	30000 - 50000
Brine	40000 - 300000 +

Water Management: Quantities Flowed Back in Shale Reservoirs (Ranges)

Basin or Area	% Frac Water Recovered	Typical Frac Volume Used (Gal.)	Typical Chemical % in Frac	Chemical % in Flowback (Gross Est.)
Barnett	30 to 50%	4 to 5 mm	0.2%	<0.05%
Devonian	40 to 50%	4 to 5 mm	0.2%	<0.1%
Eagle Ford	5 to 10%	4 to 5 mm	0.3 to 0.4% (Hybrid Frac)	<0.2% (polymer dominated)
Fayetteville	30 to 60%	3 to 4 mm	0.2%	<0.05%
Haynesville	5 to 15%	4 to 6mm	0.3% (Hybrid Frac)	<0.1% (polymer dominated)
Horn River	30 to 50%	10 to 12mm (95% from salt water supply wells)	<0.1% (Apache)	<0.05%
Woodford	30 to 50%	4 to 5 mm	0.2%	<0.05%

Sources: SPE 133456, SPE 152596, George E. King's communication with operators in these basins. Also SPE papers on produced water treating.

Water Use and Management

Where Are We Fracturing?

Number of Disclosures for Top 10 Plays Jan 2011 – Oct 2013

Water Usage (Processed) – Permian Basin

Typical Water and Fracture Tops From > 4000 fracs

Fracture Height-Growth Limits in Four Major U.S. Shale Plays (<i>Fisher, 2011</i>)					
Shale	Number of	Primary Pay	Typical	Typical	Closest
	fracs with	Zone Depth	Water	Distance	Approach of Top
	micro-	Range	Depth and	Between Top of	of Frac in
	seismic		(Deepest)	Fracture and	Shallowest Pay
	data			Deepest Water	to Deepest Water
Barnett	3000+	4700' to	500'	4800'	2800'
(TX)		8000'	(1200')		
Eagle Ford	300+	8000' –	200' (400')	7000'	6000'
(TX)		13,000'			
Marcellus	300+	5000' to	600 (1000)	3800'	3800'
(PA)		8500'			
Woodford	200+	4400' –	200 (600)	7500'	4000'
(OK)		10,000'			

Drilling, Fracturing and Injection

Treating the Water

Treating the produced water consists on the removal of:

- Suspended solids,
- Gas and liquid hydrocarbons,
- Treating H₂S and CO₂ in a few areas
- Bacteria

Water Recycling

Recycled Water - Quality Standards

TABLE 2—QUALITY STANDARDS FOR RECYCLE WATER		
Parameter	Range	
TDS at 180°C, mg/l	9,000–16,000	
Turbidity, NTU	0–5	
рН	6.5–8	
Iron, mg/l	1–10	
Chloride, mg/l	5,000–10,000	
Potassium, mg/I	100-500	
Calcium, mg/l	50-250	
Magnesium, mg/l	10–100	
Sodium, mg/l	2,000–5,000	
Boron, mg/l	0–20	

Water Processing

Fig. 1—Simplified fracture water process used in the

Fig. 2—Discharge water process used in the Pinedale Anticline field.

Water Processing/Treatment – Electro Coagulation (EC)

Water Handling Costs

TABLE 1—BAKKEN FIELD WATER-HANDLING COSTS		
Acquisition Costs	Cost, USD/bbl	
Raw Water	0.25–1.75	
Transportation	0.63-5.00	
Disposal Costs		
Transportation	0.63–9.00	
Deep-well Injection	0.50-1.75	

Water Treatment Costs

Salt Water (Oilfield Brine) Disposal Wells

- Even recycling, which involves some type of evaporation or distillation, can't give 100% return so disposal of salt water and solids needs to be injected in the disposal wells
- Underground injection in porous rock sealed above and below by unfractured impermeable layers
- Regulated by the Texas Railroad Commission which implements certain rules to protect groundwater
- Construction of multiple layers (3: surface casing, production casing, injection tubing) of casing and cement
- Injection at depths over 1 mi (2mi in the Barnett shale)
- ~ 50000 SWD's in Teaxas
- No ground water contamination recorded in Barnett, the state's largest natural shale gas producing formation (since 1997)

Permian Basin Water Demand & Salt Water Disposal Wells

Fig. 1—An east-west cross section along the southern margin of the Permian Basin shows thicker reservoirs in the Delaware than in the Midland. Operators in the Midland may seek to drill deeper SWD wells into the Ellenburger unit, requiring further capital investment. PW=produced water, HF=hydraulic fracturing, EORI=enhanced oil recovery injection, SWD=saltwater disposal. Source: Scanlon and Reedy et al. (2017).