TRANSLATOR: A TRANSlator from LAnguage TO Rules

David Hirtle

Faculty of Computer Science University of New Brunswick

March 24, 2006

Outline

- Introduction
- Input: Attempto Controlled English
- Translation
- Output: Rule Markup Language
- Future Work
- Conclusion

Introduction

- Semantic Web
 - machine understandability
 - standards: RDF, OWL ... RIF
 - hasn't quite caught on
 - barrier to entry too high?

Users are expected to work with tools or rule languages which are transformed to and from this format.

- RIF Working Group Charter

Introduction

- "people axis"
 - vast majority are non-experts
 - user-friendly format needed
 - natural language, e.g., English
 - easy
 - familiar
 - expressive
 - ambiguous
 - controlled natural language to the rescue
 - formal, yet natural

Introduction

TRANSLATOR

- translates (controlled) English sentences into a formal representation for the Semantic Web
 - input: Attempto Controlled English (ACE)
 - output: Rule Markup Language (RuleML)
- Java (Web Start)
- uses Prolog-based APE web service

Attempto

- research project for past 10+ years
 - Dept. of Informatics, University of Zurich
 - still highly active
 - EU Network of Excellence REWERSE
- ACE, APE, RACE (Reasoning in ACE)
- more information
 - http://www.ifi.unizh.ch/attempto

- seems like English
- actually a formal language, like RDF
 - tractable subset of English
 - all ACE sentences are English, but not vice versa
 - unambiguously translatable into logic

- handling ambiguity
 - exclude imprecise phrasings
 - e.g., Students hate annoying professors.
 - interpretation rules
 - e.g., The student brings a friend who is an alumnus and receives a discount.
 - Who receives the discount?
 - » in ACE, student does (by default)
 - » repeat relative pronoun for other interpretation i.e., The student brings a friend who is an alumnus and **who** receives a discount.

- what kind of rules can be expressed?
 - what is a rule?
 - facts
 - e.g., John is human.» Prolog representation: human(John).
 - rules
 - e.g., All humans are mortal.
 - » Prolog: mortal(X) :- human(X).
 - "X is mortal if X is human"
 - allows inferring new facts
 - » e.g., mortal(John).

- what kind of rules can be expressed?
 - in natural language, many different forms
 - e.g., Everyone is mortal.

 All humanity is mortal.

 Every human being is mortal.

 For each person the person is mortal.

 If there is a member of the human race then he/she is mortal.
 - all above are valid ACE
 - further embellishment
 - negation, relative clauses, etc.

- what kind of rules can be expressed?
 - not "infix" implication
 - e.g., The student is happy if there is no class.
 - but, TRANSLATOR supports it
 - swap condition(s) and conclusion(s) before sending to APE
 - » result: If there is no class then the student is happy.
 - mostly derivation rules
 - not yet reaction rules, integrity constraints, etc.
 - same with RuleML

Discourse Representation Structures

- basis: Discourse Representation Theory
 - formal method of dealing with contextual meaning across multiple sentences
 - Hans Kamp (1981)
- DRS is syntactic variant of first-order logic
- APE outputs extended form of DRS
 - e.g., relations as arguments
- required for translation to RuleML

(ACE)

Every honest student who does not procrastinate receives a good mark and easily passes the course.


```
[]
   [A, B]
  object(A, student, person)-1
  quantity(A, cardinality, count_unit, B, eq, 1)-1
  structure(A, atomic)-1
  property(A, honest)-1
     NOT
      [C]
     predicate(C, unspecified, procrastinate, A)-1
   =>
   [D, E, F, G, H, I]
  structure(H, atomic)-1
  quantity(H, cardinality, count unit, I, eq, 1)-1
  object(H, course, object)-1
  object(D, mark, object)-1
  quantity(D, cardinality, count unit, E, eq, 1)-1
  structure(D, atomic)-1
  property(D, good)-1
  predicate(F, unspecified, receive, A, D)-1
  predicate(G, unspecified, pass, A, H)-1
  modifier(G, manner, none, easily)-1
```

נטוט

Translation

- 1. accept ACE input from user
- 2. preprocess
 - "Y if X" → "if X then Y"; add "." if necessary
- 3. send query (input) to APE web service
 - threaded GUI remains responsive
- 4. retrieve and parse result from APE
- 5. traverse DRS to build RuleML/XML
 - simplified by JavaCC (open source tool)
- 6. display (user configurable) results

Translation

Translation

- DRS-RuleML mapping
 - direct
 - preserve "augmented" logic
 - RuleML syntax
 - positional (not "slotted")
 - compact ("role-skipped") form
 - explicit
 - e.g., quantifers: <Forall>, <Exists>
 - existential unless in the body of an implication
 - reversible
 - no loss of information
 - later: RuleML → ACE

Every honest student who does not procrastinate receives a good mark and easily passes the course.


```
[]
   [A ...]
   object(A, student, person)
   property(A, honest)
      NOT
      [C]
      predicate(C, ... procrastinate, A)
   =>
   [D, ... F, G, H ...]
   object(H, course, object)
   object(D, mark, object)
   property(D, good)
   predicate(F, ... receive, A, D)
   predicate(G, ... pass, A, H)
   modifier(G, manner, ... easily)
```

```
(DRS)
```

```
<Forall>
 <Var>A</Var> ...
 <Implies>
  <And> ...
   <Atom><Rel>object</Rel>...<Ind>student</Ind>...</Atom>
   <Atom><Rel>property</Rel>...<Ind>honest</Ind></Atom>
   <Neg>
    <Exists>
     <Var>C</Var>
     <Atom><Rel>predicate</Rel>...<Ind>procrastinate</Ind> ...
    </Exists>
   </Neq>
  </And>
  <Exists>
   <Var>D</Var>...<Var>F</Var><Var>G</Var><Var>H</Var> ...
   <And> ...
    <Atom><Rel>object</Rel>...<Ind>course</Ind>...</Atom>
    <Atom><Rel>object</Rel>...<Ind>mark</Ind>...</Atom>
    <Atom><Rel>property</Rel>...<Ind>good</Ind></Atom>
    <Atom><Rel>predicate</Rel>...<Ind>receive</Ind>...</Atom>
    <Atom><Rel>predicate</Rel>...<Ind>pass</Ind>...</Atom>
    <Atom><Rel>modifier</Rel>...<Ind>easily</Ind></Atom>
   </And>
  </Exists>
 </Implies>
                           (RuleML)
</Forall>
```

- international initiative since 2000
 - now developed at NRC-IIT, e-Business
- canonical language for interoperable rule markup
 - XSLT translators to other Semantic Web languages
- collaboration with standards bodies
 - W3C, OMG, OASIS
- more information
 - http://www.ruleml.org

- family of sublanguages
 - realized with modular XML Schemas
 - current version: 0.9
 - each represents well-known rule system
 - accommodate diverse needs of users
 - e.g., datalog, hornlog
 - TRANSLATOR uses folog (first-order logic)
 - FOL RuleML

- advantages
 - interchange (XML)
 - compatibility with RDF, OWL and SWRL
 - also major input to W3C's upcoming RIF
 - tools
 - engines
 - OO jDREW, Mandarax, NxBRE...
 - XSLT translators
 - features
 - negation-as-failure, data types, weights, etc.

Future Work

- query support
 - <Query> VS. <Assert> Currently undecidable
 - DRS of "Does the man enter a card?"
 same as that of "The man enters a card."
- verbalization
 - RuleML → DRS
 - DRS → ACE with DRACE tool
- Attempto
 - negation-as-failure, modality, ...

Conclusion

- TRANSLATOR allows anyone to write facts and rules in formal representation for use on the Semantic Web
 - critical factor in success of original Web?

- ACE → DRS → RuleML
- future collaboration with Attempto team

http://www.ruleml.org/translator
http://www.ifi.unizh.ch/attempto/tools