Cheng Zhang

Curriculum vitae

⊠ czhang03@bu.edu

© cs-people.bu.edu/czhang03/
 © chantisnake
 curriculum vitae

Education

2018 — Now Computer Science, Doctor of Philosophy, Boston University, Boston, MA

Primary Interest: Algebra Method in Program Analysis

I am broadly interested in application of mathematics in computer science, especially in programming languages. I have worked on Kleene algebra, program logics, semantics, type systems, and category theories.

2021 Oregon Programming Language Summer School (OPLSS), University of Oregon, Eugene, OR

I have attended courses involving verification of probabilistic programs, session type for concurrent programming, and categorical semantics of advanced type systems, etc.

2014 — 2018 Mathematics, Bachelor of Art, with department honor, magna cum laude, Wheaton College, Norton, MA

Honor Thesis: King in Generalized Tournaments.

Minors: Computer Science, Economics.

2016 — 2017 Economics, Study Aboard, London School Of Economics, London, United Kingdom

Publications And Preprints

- 2022 Mark Lemay, Qiancheng Fu, Cheng Zhang, William Blair, Hongwei Xi, Gradual Correctness: a Dependently Typed Language with Dynamic Equality, Submitted to Certified Programs and Proofs (CPP)
- 2022 Cheng Zhang, Arthur Azevedo de Amorim, Marco Gaboardi, On Incorrectness Logic and Kleene Algebra With Top and Tests, Principle Of Programming Language (POPL)
- 2020 Mark Lemay, Cheng Zhang, William Blair, Developing a Dependently Typed Language with Runtime Proof Search (Extended Abstract), Workshop on Type-Driven Development (TyDe)
- 2018 Cheng Zhang, King in Generalized Tournaments, Wheaton College Honor Thesis

2018 Cheng Zhang, Weiqi Feng, Emma Steffens, Alvaro de Landaluce, Scott Kleinman, Mark D. LeBlanc, Lexos 2017: Building Reliable Software in Python, Journal of Computing Sciences in Colleges

Research Talks

- 2018 Cheng Zhang, Mark D. LeBlanc, Lexos 2017: Building Reliable Software in Python, Journal of Computing Sciences in Colleges
- 2018 **Cheng Zhang**, Kings in Quasi-transitive Oriented Graph, Wheaton Summit For Woman In STEM

Research Projects

2021 — Now **Probabilistic Kleene Algebra**, Boston University, Boston, MA

Examine the mathematical foundation of probabilistic Kleene Algebra and its potential application in analysis of probabilistic programs. This work may give rise to a unified approach to analysis probabilistic programs, provide ways to prove program correctness, and identify the probability to encounter bugs in probabilistic programs.

2020 — Now Algebraic Formulation Of Incorrectness Logic, Boston University, Boston, MA Provide a algebraic formulation of Incorrectness Logic in TopKAT. Our work leads to simpler proofs for program incorrectness, and demonstrates ways to automatically certify bugs in programs. We showed that TopKAT is a minimal framework to model incorrectness, as it is impossible to encode incorrectness logic in KAT. After that, we proved many meta-theoretical property of TopKAT, including incompleteness with relational model, completeness of general relational model and language model, complexity of deciding equality, and expressivity of general relational model.

2017 — 2018 Mathematics Honor Thesis, Wheaton College, Norton, MA

Studied kings in generalizations of tournament, with a special focus on quasi-transitive oriented graphs. I have shown that all the quasi-transitive oriented graphs can be condensed into a tournament via tie component condensation, and tie component condensation of quasi-transitive oriented graphs is the most efficient condensation to tournament.

2015 — 2018 Software Lead, Lexomics Research Group, Wheaton College, Norton, MA Led a group of undergraduate engineers through a major factorization of the natrual language processing (NLP) software Lexos. In the process, I have designed a new architecture for side-effect management, transitioned the code base to a scalable functional-first paradigm, implemented industry-standard software development workflows, and provided detailed documentations and guides for the entire system.

Honors And Fellowships

2018 — Now $\,$ Phi Beta Kappa Honor Society Member.

- 2018 Boston University Dean's Fellowship.
- 2018 Phi Beta Kappa Graduate Scholarship.
- 2018 Madeleine F. Clark Wallace Mathematics Prize.
- 2018 Fred Kollett Prize in Mathematics & Computer Science.
- 2017 Weaton College Faculty-Student Research Awards.
- 2016 Wheaton Fellows.
- 2014 2018 Wheaton College International Scholarship.
- 2014 2018 Wheaton College Dean's Lists.

Technical Skills

Programming: Haskell, Ocaml, ATS, Python, TypeScript.

Formal Methods: Coq, Lean, MathComp Z3, EasyCrypt, Agda.

Data Processing: Panda, Scikit-Learn, Numpy, R.

Tools: Git, LATEX, SSH, Jupyter Notebook.

Professional Experiences

2019 — Now Graduate Researcher, Boston University, Boston, MA

Study various extensions of Kleene Algebra, and their use in program analysis of imperative/functional programs, probabilistic programs, distributed systems, networks, etc. My researches provide easier, even automated, proofs for program analysis.

2019 — 2021 **Teaching Fellow**, Boston University, Boston, MA

Taught Principle of Programming Language, Introduction to Computer Science, Algebra Algorithm, Geometric Algorithm, etc.

2021 — Now **Organizer**, Principle of Programming and Verification Seminar, Boston University, Boston, MA

Invite seminar speakers and coordinate time of the talks; maintain seminar webpage, mailing list, and calendar; distribute details of the seminar to participants every week; and host speakers during the seminars.

- 2020 Now **Organizer**, Programming Language Reading Group, Boston University, Boston, MA Identify and distribute weekly reading materials; host and schedule the weekly discussions.
 - 2019 Grader, Boston University CS 511 Formal Method, Boston, MA

Provided solutions to homework problems, graded the homework, organize useful statistics for the professor, and provided hints and answered questions piazza when necessary. 2017 — 2018 Grader, Wheaton College MATH 241 Theory of Probability, Norton, MA Graded homework, gave feedback to students on each individual homework, and provide informative statistics to the professor on the homework.

Selected Coursework

2018 — Now Computer Science, Doctor of Philosophy, Boston University

Computer Network

Cryptography

• Formal Method

- Compilers
- Overview On Type Systems
- Complexity Theory

2014 — 2018 Mathematics, Bachelor of Art, Wheaton College

Complex Analysis

• Real Analysis

• Graph Thoery

- Theory Of Computation
- Mathematical Statistics
- Advanced Cryptography

2016 — 2017 Economics, Study Aboard, London School Of Economics

• Game Thoery

• Economatrics

o Abstract Algebra I

• Abstract Algebra II