Graph Analytics Applications

17 questions

1.	A graph representing tweets would have only "one type" (e.g. label) of node.
	True
	False
2.	In a network representing the world wide web <u>nodes</u> would likely represent:
	Hyperlinks
	Webpages
	Google search terms
	O Individual computers
3.	In a network representing the world wide web <u>edges</u> (or links) would likely represent
	Hyperlinks
	Webpages
	Google search terms
	O Individual computers
4.	In an email network, which might reasonably be represented by weight on edges?
	the total number of people who sent an email in a week
	average number of emails sent from one user to another in a week
	the total number of emails sent by one user in a week
5.	A loop in a graph is where:
	when there is a edge from A->B, there is also an edge from B->A.
	where there is a path in some way from a node, through 1 or more other nodes, back to the original node.
	where there is an edge from a node to itself.
6.	An example of a loop in a graph could occur when:
	Someone emails themself

7.	When trying to represent a relationship between Maria and Julio who have more than one relationship to each other (e.g., tennis partner, co-worker, emergency contact) which of the following would be needed in a graph representing those relationships
	Separate graphs for each kind of relationship
	Multiple edges between Maria and Julio
	Multiple nodes for each of Maria and Julio, to capture the various relationships
8.	In many applications paths (where we go from one node to another without repeating nodes) are more useful than walks (where we can repeat a node when going from one node to another).
	True
	C False
9.	Trails (paths without repeated <u>edges</u>) can be interesting in which of the following problem applications?
	An email network tracing frequency of emails from one person to another.
	An email network tracing email replies.
	Routing to avoid using the same bridge or road.
	Routing to avoid visiting the same city.
10.	Suppose we have an email network where the edges of a graph represent the number of emails from one user to another.
	If I was going to ask if Maria had sent any emails that (either directly or through forwarding from others) reached Julio, I would ask if:
	Julio's node was reachable from Maria node
	Maria's node was reachable from Julio's node
11.	If I want to find the diameter of a graph, I should start by finding the shortest path between each set of nodes.
	True
	False

O 1
2
13. This question is about "best paths". To find the most discussed email in an email network, would we be looking to minimize a function or maximize a function?
Maximize
Minimize
14. Which are the two kinds of constraints on paths discussed in the video on basic path analytics? (check 2) Hint: remember the example of Amarnath needing to get to work by taking his son to school.
Directionality
Inclusion of nodes and/or edges
Exclusion of nodes and/or edges
15. What are examples of preference constraints in the Google Maps application?
Avoid roads under construction
Avoid highways
Include son's school
16. Which of the statements below is true?
Dijsktra's algorithm is computationally efficient (has low computational complexity).
Dijsktra's algorithm is computationally inefficient (has high computational complexity).
17. In the video on "Inclusion and Exclusion Constraints" we learn that adding constraints can actually make our analysis job easier. For example, when we require that a given node be included on a path, which of the following impacts now make the analysis job easier? (Choose 2)
Splitting the task into 2 independent shortest path problems
Changing the weights on the edges of the graph and/or subgraphs
Reduction of the size of the graph

Submit Quiz

