ROUTO TERADA SALA 204C TEL.: 3091 5918

E-MAIL rt@ime.usp.br

MAC0336/5723 - Criptografia e Segurança de Dados Primeiro Semestre de 2018

Exercício-Programa 1

Data de entrega: veja no paca.ime.usp.br.

Observações

- Este exercício é para ser feito individualmente.
- Entregue no sistema Panda UM ÚNICO arquivo contendo os arquivos seguintes, comprimidose um único arquivo:
 - um arquivo chamado LEIA.ME (em formato .txt) com:
 - * seu nome completo, e número USP,
 - * os nomes dos arquivos inclusos com uma breve descrição de cada arquivo,
 - * uma descrição sucinta de como usar o programa executável, necessariamente na linha-de-comando, i.e., SEM interface gráfica,
 - * qual computador, compilador e sistema operacional foi usado (modelo, versão, etc..),
 - * instruções de como compilar o(s) arquivo(s) fonte(s).
 - o arquivo MAKE, se for o caso
 - -os arquivos do programa-fonte, necessariamente em $\it linguagem~C$ ou $\it Java$
 - o programa compilado, i.e.,

incluir o código executável (se não incluir, a nota será zero!)

- se for o caso, alguns arquivos de entrada e saída usados nos testes: arquivos com os dados de *entrada* chamados ENT1, ENT2, etc., e arquivos com os dados de *saída* correspondentes, chamados SAI1, SAI2, etc.
- Coloque comentários em seu programa explicando o que cada etapa do programa significa! Isso será levado em conta na sua nota.

- Faça uma saída clara! Isso será levado em conta na sua nota.
- Não deixe para a última hora. Planeje investir 70 porcento do tempo total de dedicação em escrever o seu programa todo e simular o programa SEM computador (eliminando erros de lógica) ANTES de digitar e compilar no computador. Isso economiza muito tempo e energia.
- A nota será diminuida de um ponto a cada dia "corrido" de atraso na entrega.

Este exercício-programa consiste em:

- 1. Elaborar um programa para criptografar e decriptografar um arquivo de qualquer comprimento, com o Algoritmo K128 descrito na Seção 1. Esse arquivo pode ser QUALQUER sequência de bits, qualquer tipo digital: um texto, uma imagem, uma música, programa-fonte, etc.
- 2. O programa deve também medir a aleatoridade do algoritmo, conforme descrito a partir da página 7.

A chave principal K de 128 bits é derivada de uma senha, como descrito a seguir (Seção 2, página 3).

Notação:

- A||B denota concatenação de A e B.
- |A| denota comprimento de A.
- ullet \oplus denota ou-exclusivo.
- << denota rotação circular.
- \Box denota subtração mod 2^{32} .
- \coprod denota soma mod 2^{32} .

1 Definição do Algoritmo K128

Implementar o Algoritmo criptográfico K128, com chave de 128 bits, e com entrada e saída de 128 bits. Você deve **deduzir** o algoritmo inverso do K128.

O número N de iterações (rounds) é variável, mas N=12 neste projeto. As subchaves KR5(i,.), KM32(i,.) são definidas na Seção 4 na página 4. UmaIteracao é definida na Seção 7 na página 4.

Algoritmo K128 de N iterações

Entrada: X de 128 bits é um bloco; subchaves KR5(i,.), KM32(i,.). Observ.: X pode ser qualquer sequência de bits.

Saída: Y de 128 bits de bloco criptografado é a saída

- 1. para i = 0, 1, 2...N 1 faça sequencialmente
- 2. $X \leftarrow UmaIteracao(i, X, KR5(i, .), KM32(i, .))$ }
- 3. $Y \leftarrow X$

2 Senha e chave principal K

A senha A a ser digitada deve conter pelo menos 8 caracteres, com pelo menos 2 letras e 2 algarismos decimais;

Geração da chave K de 128 bits a partir da senha: se a senha A digitada possuir menos que 16 caracteres (i.e., 16 bytes), a chave principal K de 128 bits deve ser derivada de A concatenando-se A com ela própria até completar 16 bytes (128 bits).

3 Chaves intermediárias K_i

Para j = 1, 2, 3, as funções $f_j()$, usadas nesta Seção, estão definidas na Seção 6 na página 5. As **chaves intermediárias** K_i para a iteração i = 0, 1, 2, ... são geradas a partir da chave principal K, e são utilizadas para gerar as subchaves KR5(i, .) e KM32(i, .), definidas na Seção 4, página 4. O seu programa pode gerar cada K_i só no momento da execução da i-ésima iteração, para economizar memória.

Algoritmo de geração de chave intermediária K_i para iteração i = 0, 1, 2, ... 11.

Entrada: 128 bits $K_i = X||Y||Z||W$, onde |X| = |Y| = |Z| = |W| = 32 bits, e constantes $ConstR = (10011)_2$ de 5 bits, e $ConstM = (CB3725F7)_{16}$ de 32 bits.

Observação: $K_0 = K \oplus (5A827999874AA67D657B7C8EBD070242)_{16}$, onde K é a chave principal de 128 bits do Algoritmo K128 - ver Seção 2 na página 3.

Saída: $K_{i+1} = W||Z||Y||X$ de 128 bits, onde |X| = |Y| = |Z| = |W| = 32 bits.

```
1. para i = 0, 1, 2, ...11 faça sequencialmente
```

- 2. $W := W \oplus f_2(X, ConstR << [(i+2)^2] \mod 3), ConstM << [(i+3)^2] \mod 7));$
- 3. $Z := Z \oplus f_1(W, ConstR << (i+2) \mod 3), ConstM << (i+3) \mod 7));$
- 4. $Y := Y \oplus f_3(Z, ConstR << [(i+2)^3] \mod 3), ConstM << [(i+3)^3] \mod 7));$
- 5. $X := X \oplus f_2(Y, ConstR << [(i+2)^2] \mod 3), ConstM << [(i+3)^2] \mod 7));$
- 6.

4 Geração de subchaves KR5, KM32

A seguir o algoritmo para gerar as subchaves KR5(i,j) e KM32(i,j), para iteração i=0,1,2,... e j=0,1,2,3, a partir das subchaves K_i para i=0,1,2,... O seu programa pode gerar cada KR5(i,j) e KM32(i,j) só no momento da execução da i-ésima iteração.

Algoritmo de geração de subchaves KR5(i,j) e KM32(i,j) para iteração i=0,1,2,...11, e j=0,1,2,3.

Entrada: 128 bits de chave intermediária $K_i = X||Y||Z||W$, onde |X| = |Y| = |Z| = |W| = 32 bits

Saída: para j = 0, 1, 2, 3, KR5(i, j) de 5 bits e KM32(i, j) de 32 bits.

```
1. para i = 0, 1, 2, ... 11 faça sequencialmente
```

- 2. KR5(i,0) := 5BitsDaDireita(X); KR5(i,1) := 5BitsDaDireita(Y);
- 3. KR5(i,2) := 5BitsDaDireita(Z); KR5(i,3) := 5BitsDaDireita(W);
- 4. KM32(i,0) := W; KM32(i,1) := Z; KM32(i,2) := Y; KM32(i,3) = X;
- 5.

5 S-boxes

As quatro S-boxes $S_j: \{0,1\}^8 \to \{0,1\}^{32}$ são funções não-lineares, definidas e pré-calculadas em forma de tabela. As S-boxes estão no Anexo, página 11. Elas são usadas nas definições na Seção 6.

6 Funções f_1, f_2, f_3

As funções f_1, f_2, f_3 , definidas a seguir são usadas na Seção 7, na página 6. Para $j = 1, 2, 3, 4, S_j : \{0, 1\}^8 \rightarrow \{0, 1\}^{32}$ são as S-boxes definidas na Seção 5 na página 5.

Definição de $f_1: \{0,1\}^{32} \times \{0,1\}^5 \times \{0,1\}^{32} \rightarrow \{0,1\}^{32}$

Para X de 32 bits, K5 de 5 bits, e K32 de 32 bits, $f_1(X, K5, K32) = Y$ de 32 bits é da seguinte forma:

- (1) calcular $I := [(K32 \oplus X) \mod 2^{32} << K5]$
- (2) dividir $I = I_1 ||I_2||I_3||I_4$, cada I_t de 8 bits
- (3) calcular $Y : = [(S_1(I_1) \boxplus S_2(I_2)) \boxminus S_3(I_3)] \oplus S_4(I_4)$

Definição de $f_2: \{0,1\}^{32} \times \{0,1\}^5 \times \{0,1\}^{32} \rightarrow \{0,1\}^{32}$

Para X de 32 bits, K5 de 5 bits, e K32 de 32 bits, $f_2(X, K5, K32) = Y$ de 32 bits é da seguinte forma:

- (1) calcular $I := [(K32 \oplus X) \mod 2^{32} << K5].$
- (2) dividir $I = I_1 ||I_2||I_3||I_4$, cada I_t de 8 bits
- (3) calcular $Y := [(S_1(I_1) \boxminus S_2(I_2)) \oplus S_3(I_3)] \boxplus S_4(I_4)$

Definição de $f_3: \{0,1\}^{32} \times \{0,1\}^5 \times \{0,1\}^{32} \rightarrow \{0,1\}^{32}$

Para X de 32 bits, K5 de 5 bits, e K32 de 32 bits, $f_3(X, K5, K32) = Y$ de 32 bits é da seguinte forma:

- (1) calcular $I := [(K32 \oplus X) \mod 2^{32} << K5],$
- (2) dividir $I = I_1 ||I_2||I_3||I_4$, cada I_t de 8 bits
- (3) calcular $Y := [(S_1(I_1) \oplus S_2(I_2)) \boxplus S_3(I_3)] \boxminus S_4(I_4)$

7 Definição de UmaIteracao(i, X, KR5(i, .), KM32(i, .))

A seguir, a definição de UmaIteracao(i, X, KR5(i, .), KM32(i, .)), na qual são usadas as funções f_1, f_2, f_3 , definidas na Seção 6 na página 5, e KR5(i, .), KM32(i, .), definidas na Seção 4 na página 4.

Algoritmo $UmaIteracao: \{0,1,2,...11\} \times \{0,1\}^{128} \times \{0,1\}^5 \times \{0,1\}^{32} \rightarrow \{0,1\}^{128}$ Entrada X = A||B||C||D de 128 bits, sendo |A| = |B| = |C| = |D| = 32 bits; KR5(i,.), KM32(i,.)Saída C||B||A||D de 128 bits

- 1. $C := C \oplus f_2(D, KR5(i, 0), KM32(i, 0));$
- 2. $B := B \oplus f_1(C, KR5(i, 1), KM32(i, 1));$
- 3. $A := A \oplus f_3(B, KR5(i, 2), KM32(i, 2));$
- 4. $D := D \oplus f_2(A, KR5(i, 3), KM32(i, 3));$

8 Execução na linha de comando

O seu programa deve ser executado na linha de comando, com parâmetros relevantes, em um dos seguintes modos: (se houver a opção -a após a senha, o programa deve gravar **brancos** no lugar do arquivo de entrada e deletá-lo, o default é não efetuar o apagamento)

- Modo (1) Para criptografar arquivos: programa -c -i <arquivo de entrada> -o <arquivo de saída> -p <senha> -a
- Modo (2) Para decriptografar arquivos: programa -d -i <arquivo de entrada> -o <arquivo de saída> -p <senha>
- Modo (3) Para calcular aleatoriedade pelo método 1 (item 1 abaixo, Seção 11, na página 7. programa -1 -i <arquivo de entrada> -p <senha>
- Modo (4) Para calcular aleatoriedade pelo método 2 (item 2 abaixo, Seção 11, na página 7.): programa -2 -i <arquivo de entrada> -p <senha>

9 O que o programa deve fazer

O seu programa deve ler do disco o arquivo de entrada Entra, que pode ser QUALQUER sequência de bits (música, figura, texto, etc.), e deve gravar o arquivo de saída Sai correspondente a Entra criptografado ou decriptografado com a senha A, no modo CBC (Cipher Block Chaining, veja Seção 10), que consiste em encadear um bloco de 128 bits com o bloco anterior criptografado da maneira vista em aula, e também descrito no livro-texto Segurança de Dados (RT).

O seu programa deve também efetuar os itens 1 e 2 descritos no final deste enunciado, Seção 11, na página 7.

10 Modo CBC e testes

As regras a seguir devem ser satisfeitas:

- 1. No modo CBC, utilizar bits iguais a UM como Valor Inicial.
- 2. V. deve testar o programa com pelo menos dois arquivos Entra. Por exemplo, o seu próprio programa-fonte. Teste não só com arquivos-texto como com arquivos binários; por exemplo, com algum código executável, ou MP3, ou JPEG, etc..
- 3. Um programa-exemplo de leitura e gravação de arquivo em HD/disco rígido estará disponível na página da disciplina.
- 4. Se o último bloco a ser criptografado não possuir comprimento igual a 128 bits, completá-lo com bits iguais a UM, seguido pelo comprimento do arquivo original Entra. Se for o caso, um *último* bloco extra criptografado de Sai deve conter o comprimento do arquivo original Entra.
- 5. Verifique se o arquivo decriptografado Sai possui o mesmo comprimento que o arquivo original Entra.

11 Medidas de aleatoridade - entropia

Seja VetEntra um vetor lido de um arquivo de entrada para a memória principal com pelo menos 512 bits (i.e., pelo menos 4 blocos de 128 bits, de modo que

$$VetEntra = Bl(1)||Bl(2)||Bl(3)||Bl(4)||...,$$

sendo cada bloco Bl() de 128 bits e $|VetEntra| \ge 4 * 128 = 512$).

Para j = 1, 2, ..., |VetEntra| fazer o seguinte:

1. alterar apenas na memória interna (RAM) só o j-ésimo bit do vetor VetEntra de cada vez, obtendo um **outro vetor** na memória interna, chamado VetAlter, para j=1,2,3,... tal que |VetEntra|=|VetAlter|; isto é, VetEntra e VetAlter só diferem no j-ésimo bit, mas são de igual comprimento. No caso de apenas 4 blocos, tem-se j=1,2,3,...512. Por exemplo, no caso de 8 bits em cada bloco, um único bit alterado na posição j=2, tem-se Bl(1)=01110101, BlAlter(1)=00110101, ... e

$$VetEntra = BlAlter(1)||BlAlter(2)||... = 01110101||...$$

$$VetAlter = BlAlter(1)||BlAlter(2)||... = 00110101||...$$

ou seja, os blocos diferem só no bit na posição 2, e então Hamming(VetEntra, VetAlter) = 1.

2. seja VetEntraC = BlC(1)||BlC(2)||BlC(3)||BlC(4)||... o vetor VetEntra criptografado pelo K128 no modo CBC. E seja

$$VetAlterC = BlAlterC(1)||BlAlterC(2)||BlAlterC(3)||BlAlterC(4)||...$$

o vetor *VetAlter* criptografado pelo K128 no modo CBC.

- 3. para k = 1, 2, 3, ..., medir a distância de Hamming, **separadamente**, entre **cada** bloco BlC(k) e BlAlterC(k), sendo ambos de 128 bits, BlC(k) do vetor VetEntraC e o correspondente bloco BlAlterC(k) do vetor VetAlterC. Para 4 blocos de 128 bits, tem-se 4 medidas de distância, para cada j = 1, 2, 3, ..., sendo cada medida chamada, digamos, H(k), para cada par de blocos BlC(k), BlAlterC(k). Ou seja, para 4 blocos tem-se k = 1, 2, 3, 4, e para cada j = 1, 2, 3, ..., H(k) = Hamming(BlC(k), BlAlterC(k)). Veja ilustração na página 9.
- 4. estas medidas de distância de Hamming H(k) devem ser acumuladas em somas chamadas, digamos, SomaH(k). Para 4 blocos de 128 bits, tem-se 4 somas cumulativas, sendo que:
 - (a) SomaH(1) acumula 128 valores de H(1) correspondentes a $j = \underbrace{1, 2, 3..., 128}_{bloco\ 1}$ (para $j > 128\ H(1) = 0$ pois BlC(1) = BlAlterC(1)). Veja ilustração na página 9.
 - (b) SomaH(2) acumula 2*128 = 256 valores de H(2) correspondentes a $j = \underbrace{1, 2, 3..., 128}_{bloco\ 1}, \underbrace{129..., 256}_{bloco\ 2}$ (para $j > 2*128\ H(2) = 0$ pois BlC(2) = BlAlterC(2) e H(1) = 0 pois BlC(1) = BlAlterC(1)). Veja ilustração na página 10.
 - (c) SomaH(3) acumula 3*128 = 384 valores de H(3) correspondentes a $j = 1, 2, 3, \ldots, 384$
 - (d) SomaH(4), acumula 4*128 = 512 valores de H(4) correspondentes a j = 1, 2, 3..., 512.
- 5. de forma análoga às somas SomaH(k), o programa deve calcular os valores mínimo e máximo de H(1), H(2), ...

VetEntra =	Bl(1)	Bl(2)	Bl(3)	Bl(4)	
Aplica algoritmo em CBC	K128(K)	K128(K)	(/	K128(K)	
VetEntraC (criptografado)= BlC(1) = A	BlC(2) = B	BlC(3) = C	BlC(4) = D	
VetAlter =	BlAlter(1)	BlAlter(2)	BlAlter(3)	BlAlter(4)	
Aplica algoritmo em CBC	K128(K)	K128(K)	()	K128(K)	
VetAlterC (criptografado):	()	BlAlterC(2) = B'	()	BlAlterC(4) = D' j = 385,512	
Posição do único bit altera		j = 129,256	` '		
Distância de Hamming Núm.de valores de $H(k)$	H(1) = Ham(A, A') 128	H(2) = Ham(B, B') 256	H(3)Ham(C,C') 384	H(4)Ham(D,D') 512	
Soma acumulada de $H(k)$	SomaH(1)	SomaH(2)	SomaH(3)	SomaH(4)	
Máximo e Mínimo de $H(k)$	· /	Max(2), Min(2)	* *	Max(4), $Min(4)$	
Tabela	geral de valores para as n	nedidas de aleatoridade	do algoritmo K128		
VetEntra =	Bl(1)	Bl(2)	Bl(3)	Bl(4)	
Aplica algoritmo em CBC	K128(K)	K128(K)	K128(K)	K128(K)	
VetEntraC (criptografado)=	BlC(1) = A	BlC(2) = B	BlC(3) = C	BlC(4) = D	
VetAlter =	BlAlter(1) = Bl(1)	BlAlter(2)	BlAlter(3)	BlAlter(4)	
Aplica algoritmo em CBC	K128(K)	K128(K)	K128(K)	K128(K)	
VetAlterC (criptografado)=	BlAlterC(1) = A' = A	BlAlterC(2) = B'	BlAlterC(3) = C'	BlAlterC(4) = D'	
Posição do único bit alterado	, ,	$j = 129, \dots 256$, ,	` ,	
Distância de Hamming	H(1) = Ham(A, A') = 0	H(2) = Ham(B, B')	H(3) = Ham(C, C')	H(4) = Ham(D, D')	
Núm.de valores de $H(k)$	128	256	384	512	
Soma acumulada de $H(k)$	SomaH(1)	SomaH(2)	SomaH(3)	SomaH(4)	
Máximo e Mínimo de $H(k)$	Max(1), Min(1)	Max(2), Min(2)	Max(3), Min(3)	Max(4), Min(4)	
Tabela, para j	=129,256, de valores p	ara as medidas de alea	toridade do algoritmo	K128	

VetEntra =	Bl(1)	Bl(2)	Bl(3)	Bl(4)				
Aplica algoritmo em CBC	K128(K)	K128(K)	K128(K)	K128(K)				
VetEntraC (criptografado)=	BlC(1) = A	BlC(2) = B	BlC(3) = C	BlC(4) = D				
T7 , A1,	DI 411 (1) DI(1)	D1411 (a) D1(a)	D1 411 (9)	D1 414 (4)				
VetAlter =	BlAlter(1) = Bl(1)	BlAlter(2) = Bl(2)	BlAlter(3)	BlAlter(4)				
Aplica algoritmo em CBC	K128(K)	K128(K)	K128(K)	K128(K)				
VetAlterC (criptografado)=	BlAlterC(1) = A' = A	BlAlterC(2) = B' = B	BlAlterC(3) = C'	BlAlterC(4) = D'				
Posição do único bit alterado	,	` '	j = 257,384	,				
Distância de Herraria e	$II(1)$ $II_{}(A A)$ 0	$II(0) \qquad II \dots (D, D!) \qquad 0$	$H(2)$ $H_{\text{max}}(C,C')$	$H(A) = H_{\text{max}}(D, D')$				
Distância de Hamming		H(2) = Ham(B, B') = 0		H(4) = Ham(D, D')				
Núm.de valores de $H(k)$	128	256	384	512				
Soma acumulada de $H(k)$	SomaH(1)	SomaH(2)	SomaH(3)	SomaH(4)				
Máximo e Mínimo de $H(k)$	Max(1), Min(1)	Max(2), Min(2)	Max(3), Min(3)	Max(4), Min(4)				
Tabela, para $j = 257,384$, de valores para as medidas de aleatoridade do algoritmo K128								

No final o programa deve imprimir uma tabela contendo os valores **máximos**, **mínimos e médios** das distâncias de Hamming entre **cada** bloco criptografado de 128 bits BlC(k) e BlAlterC(k), conforme o Algoritmo K128, no modo CBC. Para 4 blocos de 128 bits, o programa deve imprimir 4 valores máximos, 4 mínimos, e 4 médios.

O seu programa deve também efetuar os itens seguintes:

Item 1: Medir a aleatoriedade (entropia) do K128 na forma descrita acima.

Item 2: Efetuar o Item 1 uma outra vez, mas trocando a alteração do j-ésimo bit por alteração simultânea do j-ésimo e do (j+8)-ésimo bits. Isso detetaria uma provável compensação de bits na saída, devido a dois bytes consecutivos alterados na entrada.

Anexo: Quatro S-boxes

A seguir as quatro S-Boxes não-lineares, com entrada de 8 bits (i.e., cada S-Box contém $2^8 = 256$ elementos, 8 colunas e 32 linhas) e saída de 32 bits (em notação hexadecimal). A tabelas devem ser lidas da esquerda para a direita, de cima para baixo.

```
S-Box S1

30fb40d4 9fa0ff0b 6beccd2f 3f258c7a 1e213f2f 9c004dd3 6003e540 cf9fc949
bfd4af27 88bbbdb5 e2034090 98d09675 6e63a0e0 15c361d2 c2e7661d 22d4ff8e
28683b6f c07fd059 ff2379c8 775f50e2 43c340d3 df2f8656 887ca41a a2d2bd2d
a1c9e0d6 346c4819 61b76d87 22540f2f 2abe32e1 aa54166b 22568e3a a2d341d0
66db40c8 a784392f 004dff2f 2db9d2de 97943fac 4a97c1d8 527644b7 b5f437a7
```

b82cbaef	d751d159	6ff7f0ed	5a097a1f	827b68d0	90ecf52e	22b0c054	bc8e5935	
4b6d2f7f	50bb64a2	d2664910	bee5812d	b7332290	e93b159f	b48ee411	4bff345d	
fd45c240	ad31973f	c4f6d02e	55fc8165	d5b1caad	a1ac2dae	a2d4b76d	c19b0c50	
882240f2	0c6e4f38	a4e4bfd7	4f5ba272	564c1d2f	c59c5319	b949e354	b04669fe	
b1b6ab8a	c71358dd	6385c545	110f935d	57538ad5	6a390493	e63d37e0	2a54f6b3	
3a787d5f	6276a0b5	19a6fcdf	7a42206a	29f9d4d5	f61b1891	bb72275e	aa508167	
38901091	c6b505eb	84c7cb8c	2ad75a0f	874a1427	a2d1936b	2ad286af	aa56d291	
d7894360	425c750d	93b39e26	187184c9	6c00b32d	73e2bb14	a0bebc3c	54623779	
64459eab	3f328b82	7718cf82	59a2cea6	04ee002e	89fe78e6	3fab0950	325ff6c2	
81383f05	6963c5c8	76cb5ad6	d49974c9	ca180dcf	380782d5	c7fa5cf6	8ac31511	
35e79e13	47da91d0	f40f9086	a7e2419e	31366241	051ef495	aa573b04	4a805d8d	
548300d0	00322a3c	bf64cddf	ba57a68e	75c6372b	50afd341	a7c13275	915a0bf5	
6b54bfab	2b0b1426	ab4cc9d7	449ccd82	f7fbf265	ab85c5f3	1b55db94	aad4e324	
cfa4bd3f	2deaa3e2	9e204d02	c8bd25ac	$\verb eadf55b3 $	d5bd9e98	e31231b2	2ad5ad6c	
954329de	adbe4528	d8710f69	aa51c90f	aa786bf6	22513f1e	aa51a79b	2ad344cc	
7b5a41f0	${\tt d37cfbad}$	1b069505	41ece491	b4c332e6	032268d4	c9600acc	ce387e6d	
bf6bb16c	6a70fb78	0d03d9c9	$\mathtt{d} \mathtt{d} \mathtt{f} \mathtt{3} \mathtt{9} \mathtt{d} \mathtt{e}$	e01063da	4736f464	$5\mathtt{ad}328\mathtt{d}8$	b347cc96	
75bb0fc3	98511bfb	$4 {\tt ffbcc} 35$	b58bcf6a	e11f0abc	${\tt bfc5fe4a}$	a70aec10	ac39570a	
3f04442f	6188b153	e0397a2e	5727cb79	9ceb418f	1cacd68d	2ad37c96	0175cb9d	
c69dff09	c75b65f0	$\tt d9db40d8$	ec0e7779	4744ead 4	b11c3274	dd24cb9e	7e1c54bd	
f01144f9	d2240eb1	9675b3fd	a3ac3755	$\mathtt{d47c27af}$	51c85f4d	56907596	a5bb15e6	
580304f0	ca042cf1	011a37ea	${\tt 8dbfaadb}$	35ba3e4a	3526ffa0	c37b4d09	bc306ed9	
98a52666	5648f725	${\tt ff5e569d}$	$0 \\ \text{ced63d0}$	7c63b2cf	700b45e1	${\tt d5ea50f1}$	85a92872	
af1fbda7	d4234870	a7870bf3	2d3b4d79	42e04198	0cd0ede7	26470db8	f881814c	
474d6ad7	7c0c5e5c	d1231959	381b7298	${\tt f5d2f4db}$	ab838653	6e2f1e23	83719c9e	
bd91e046	9a56456e	dc39200c	20c8c571	962bda1c	e1e696ff	b141ab08	7cca89b9	
1a69e783	02cc4843	a2f7c579	429ef47d	427b169c	5ac9f049	${\tt dd8f0f00}$	5c8165bf	
S-Box S2								
1f201094	ef0ba75b	69e3cf7e	393f4380	fe61cf7a	eec5207a	55889c94	72fc0651	
ada7ef79	4e1d7235	d55a63ce	de0436ba	99c430ef	5f0c0794	18dcdb7d	a1d6eff3	
	59e83605							
d1da4181	3b092ab1	f997f1c1	a5e6cf7b	01420ddb	e4e7ef5b	25a1ff41	e180f806	
1fc41080	179bee7a	d37ac6a9	fe5830a4	98de8b7f	77e83f4e	79929269	24fa9f7b	
e113c85b	acc40083	d7503525	f7ea615f	62143154	0d554b63	5d681121	c866c359	

3d63cf73	cee234c0	d4d87e87	5c672b21	071f6181	39f7627f	361e3084	e4eb573b
602f64a4	d63acd9c	1bbc4635	9e81032d	2701f50c	99847ab4	a0e3df79	ba6cf38c
10843094	2537a95e	f46f6ffe	a1ff3b1f	208cfb6a	8f458c74	d9e0a227	4ec73a34
fc884f69	3e4de8df	ef0e0088	3559648d	8a45388c	1d804366	721d9bfd	a58684bb
e8256333	844e8212	128d8098	fed33fb4	ce280ae1	27e19ba5	d5a6c252	e49754bd
c5d655dd	eb667064	77840b4d	a1b6a801	84db26a9	e0b56714	21f043b7	e5d05860
54f03084	066ff472	a31aa153	dadc4755	b5625dbf	68561be6	83ca6b94	2d6ed23b
eccf01db	a6d3d0ba	b6803d5c	af77a709	33b4a34c	397bc8d6	5ee22b95	5f0e5304
81ed6f61	20e74364	b45e1378	de18639b	881ca122	b96726d1	8049a7e8	22b7da7b
5e552d25	5272d237	79d2951c	c60d894c	488cb402	1ba4fe5b	a4b09f6b	1ca815cf
a20c3005	8871df63	b9de2fcb	0cc6c9e9	Obeeff53	e3214517	b4542835	9f63293c
ee41e729	6e1d2d7c	50045286	1e6685f3	f33401c6	30a22c95	31a70850	60930f13
73f98417	a1269859	ec645c44	52c877a9	cdff33a6	a02b1741	7cbad9a2	2180036f
50d99c08	cb3f4861	c26bd765	64a3f6ab	80342676	25a75e7b	e4e6d1fc	20c710e6
cdf0b680	17844d3b	31eef84d	7e0824e4	2ccb49eb	846a3bae	8ff77888	ee5d60f6
7af75673	2fdd5cdb	a11631c1	30f66f43	b3faec54	157fd7fa	ef8579cc	d152de58
${\tt db2ffd5e}$	8f32ce19	306af97a	02f03ef8	99319ad5	c242fa0f	a7e3ebb0	c68e4906
b8da230c	80823028	dcdef3c8	d35fb171	088a1bc8	bec0c560	61a3c9e8	bca8f54d
c72feffa	22822e99	82c570b4	d8d94e89	8b1c34bc	301e16e6	273be979	b0ffeaa6
61d9b8c6	00b24869	b7ffce3f	08dc283b	43daf65a	f7e19798	7619b72f	8f1c9ba4
dc8637a0	16a7d3b1	9fc393b7	a7136eeb	c6bcc63e	1a513742	ef6828bc	520365d6
2d6a77ab	3527ed4b	821fd216	095c6e2e	${\tt db92f2fb}$	5eea29cb	145892f5	91584f7f
5483697b	2667a8cc	85196048	8c4bacea	833860d4	0d23e0f9	6c387e8a	0ae6d249
b284600c	d835731d	dcb1c647	ac4c56ea	3ebd81b3	230eabb0	6438bc87	f0b5b1fa
8f5ea2b3	fc184642	0a036b7a	$4 {\tt fb089bd}$	649da589	a345415e	5c038323	3e5d3bb9
43d79572	7e6dd07c	06dfdf1e	6c6cc4ef	7160a539	73bfbe70	83877605	4523ecf1
S-Box S3							
$8 {\tt defc} 240$	25fa5d9f	${\tt eb903dbf}$	e810c907	47607fff	369fe44b	8c1fc644	aececa90
beb1f9bf	$\tt eefbcaea$	e8cf1950	51df07ae	920e8806	f0ad0548	e13c8d83	927010d5
11107d9f	07647db9	${\tt b2e3e4d4}$	3d4f285e	b9afa820	fade82e0	a067268b	8272792e
553fb2c0	489ae22b	d4ef9794	125e3fbc	21fffcee	825b1bfd	9255c5ed	1257a240
4e1a8302	bae07fff	528246e7	8e57140e	3373f7bf	8c9f8188	a6fc4ee8	c982b5a5
a8c01db7	579fc264	67094f31	f2bd3f5f	40 fff7c1	1fb78dfc	8e6bd2c1	437be59b
99b03dbf	b5dbc64b	638dc0e6	55819d99	a197c81c	4a012d6e	c5884a28	ccc36f71

b843c213	6c0743f1	8309893c	Ofeddd5f	2f7fe850	d7c07f7e	02507fbf	5afb9a04
a747d2d0	1651192e	af70bf3e	58c31380	5f98302e	727cc3c4	0a0fb402	0f7fef82
8c96fdad	5d2c2aae	8ee99a49	50da88b8	8427f4a0	1eac5790	796fb449	8252dc15
efbd7d9b	a672597d	ada840d8	45f54504	fa5d7403	e83ec305	4f91751a	925669c2
23efe941	a903f12e	60270df2	0276e4b6	94fd6574	927985b2	8276dbcb	02778176
f8af918d	4e48f79e	8f616ddf	e29d840e	842f7d83	340ce5c8	96bbb682	93b4b148
ef303cab	984faf28	779faf9b	92dc560d	224d1e20	8437aa88	7d29dc96	2756d3dc
8b907cee	b51fd240	e7c07ce3	e566b4a1	c3e9615e	3cf8209d	6094d1e3	cd9ca341
5c76460e	00ea983b	d4d67881	fd47572c	f76cedd9	bda8229c	127dadaa	438a074e
1f97c090	081bdb8a	93a07ebe	b938ca15	97b03cff	3dc2c0f8	8d1ab2ec	64380e51
68cc7bfb	d90f2788	12490181	5 de 5 ff d 4	dd7ef86a	76a2e214	b9a40368	925d958f
4b39fffa	ba39aee9	a4ffd30b	faf7933b	6d498623	193cbcfa	27627545	825cf47a
61bd8ba0	d11e42d1	cead04f4	127ea392	10428db7	8272a972	9270c4a8	127de50b
285ba1c8	3c62f44f	35c0eaa5	e805d231	428929fb	b4fcdf82	4fb66a53	0e7dc15b
1f081fab	108618ae	fcfd086d	f9ff2889	694bcc11	236a5cae	12deca4d	2c3f8cc5
d2d02dfe	f8ef5896	e4cf52da	95155b67	494a488c	b9b6a80c	5c8f82bc	89d36b45
3a609437	ec00c9a9	44715253	0a874b49	d773bc40	7c34671c	02717ef6	4feb5536
a2d02fff	d2bf60c4	d43f03c0	50b4ef6d	07478cd1	006e1888	a2e53f55	b9e6d4bc
a2048016	97573833	d7207d67	de0f8f3d	72f87b33	abcc4f33	7688c55d	7b00a6b0
947b0001	570075d2	f9bb88f8	8942019e	4264a5ff	856302e0	72dbd92b	ee971b69
6ea22fde	5f08ae2b	af7a616d	e5c98767	cf1febd2	61efc8c2	f1ac2571	cc8239c2
67214cb8	b1e583d1	b7dc3e62	7f10bdce	f90a5c38	0ff0443d	606e6dc6	60543a49
5727c148	2be98a1d	8ab41738	20e1be24	af96da0f	68458425	99833be5	600d457d
282f9350	8334b362	d91d1120	2b6d8da0	642b1e31	9c305a00	52bce688	1b03588a
f7baefd5	4142ed9c	a4315c11	83323ec5	dfef4636	a133c501	e9d3531c	ee353783
S-Box S4							
					64ad8c57		
					6497b7b1		
28147f5f	4fa2b8cd	c9430040	0cc32220	fdd30b30	c0a5374f	1d2d00d9	24147b15
ee4d111a	0fca5167	71ff904c	2d195ffe	1a05645f	Oc13fefe	081b08ca	05170121
					06df4261		
ce84ffdf	f5718801	3dd64b04	a26f263b	7ed48400	547eebe6	446d4ca0	6cf3d6f5
2649abdf	aea0c7f5	36338cc1	503f7e93	d3772061	11b638e1	72500e03	f80eb2bb
abe0502e	ec8d77de	57971e81	e14f6746	c9335400	6920318f	081dbb99	ffc304a5

4d351805 7f3d5ce3 a6c866c6 5d5bcca9 daec6fea 9f926f91 9f46222f 3991467d a5bf6d8e 1143c44f 43958302 d0214eeb 022083b8 3fb6180c 18f8931e 281658e6 26486e3e 8bd78a70 7477e4c1 b506e07c f32d0a25 79098b02 e4eabb81 28123b23 69dead38 1574ca16 df871b62 211c40b7 a51a9ef9 0014377b 041e8ac8 09114003 bd59e4d2 e3d156d5 4fe876d5 2f91a340 557be8de 00eae4a7 0ce5c2ec 4db4bba6 e756bdff dd3369ac ec17b035 06572327 99afc8b0 56c8c391 6b65811c 5e146119 6e85cb75 be07c002 c2325577 893ff4ec 5bbfc92d d0ec3b25 b7801ab7 8d6d3b24 20c763ef c366a5fc 9c382880 0ace3205 aac9548a eca1d7c7 041afa32 1d16625a 6701902c 9b757a54 31d477f7 9126b031 36cc6fdb c70b8b46 d9e66a48 56e55a79 026a4ceb 52437eff 2f8f76b4 0df980a5 8674cde3 edda04eb 17a9be04 2c18f4df b7747f9d ab2af7b4 efc34d20 2e096b7c 1741a254 e5b6a035 213d42f6 2c1c7c26 61c2f50f 6552daf9 d2c231f8 25130f69 d8167fa2 0418f2c8 001a96a6 0d1526ab 63315c21 5e0a72ec 49bafefd 187908d9 8d0dbd86 311170a7 3e9b640c cc3e10d7 d5cad3b6 0caec388 f73001e1 6c728aff 71eae2a1 1f9af36e cfcbd12f c1de8417 ac07be6b cb44a1d8 8b9b0f56 013988c3 b1c52fca b4be31cd d8782806 12a3a4e2 6f7de532 58fd7eb6 d01ee900 24adffc2 f4990fc5 9711aac5 001d7b95 82e5e7d2 109873f6 00613096 c32d9521 ada121ff 29908415 7fbb977f af9eb3db 29c9ed2a 5ce2a465 a730f32c d0aa3fe8 8a5cc091 d49e2ce7 0ce454a9 d60acd86 015f1919 77079103 dea03af6 78a8565e dee356df 21f05cbe 8b75e387 b3c50651 b8a5c3ef d8eeb6d2 e523be77 c2154529 2f69efdf afe67afb f470c4b2 f3e0eb5b d6cc9876 39e4460c 1fda8538 1987832f ca007367 a99144f8 296b299e 492fc295 9266beab b5676e69 9bd3ddda df7e052f db25701c 1b5e51ee f65324e6 6afce36c 0316cc04 8644213e b7dc59d0 7965291f ccd6fd43 41823979 932bcdf6 b657c34d 4edfd282 7ae5290c 3cb9536b 851e20fe 9833557e 13ecf0b0 d3ffb372 3f85c5c1 0aef7ed2

FIM FIM FIM FIM FIM FIM