## WHAT IS CLAIMED IS:

| 1  | 1. A method of forming a semiconductor non-volatile memory cell,                                 |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------|--|--|--|--|
| 2  | comprising:                                                                                      |  |  |  |  |
| 3  | forming a first insulating layer over a substrate region;                                        |  |  |  |  |
| 4  | forming a first doped polysilicon layer over the first insulating layer;                         |  |  |  |  |
| 5  | forming a first undoped polysilicon layer over and in contact with the first                     |  |  |  |  |
| 6  | doped polysilicon layer, the first doped and first undoped polysilicon layers forming a          |  |  |  |  |
| 7  | floating gate;                                                                                   |  |  |  |  |
| 8  | forming a second insulating layer over and in contact with the first undoped                     |  |  |  |  |
| 9  | polysilicon layer;                                                                               |  |  |  |  |
| .0 | forming a second updoped polysilicon layer over and in contact with the                          |  |  |  |  |
| 1  | second insulating layer; and                                                                     |  |  |  |  |
| 2  | forming a second doped polysilicon layer over and in contact with the second                     |  |  |  |  |
| 3  | undoped polysilicon layer, the second doped and undoped polysilicon layers forming a             |  |  |  |  |
| 4  | control gate.                                                                                    |  |  |  |  |
| 1  | 2 1. The weather the claims 1 fourthern communications                                           |  |  |  |  |
| 1  | 2. Let The method of claim 1 further comprising:                                                 |  |  |  |  |
| 2  | before said first doped polysilicon forming act, forming a third undoped                         |  |  |  |  |
| 3  | polysilicon layer over and in contact with the first insulating layer wherein the first doped    |  |  |  |  |
| 4  | polysilicon layer overlies and is in contact with the third undoped polysilicon layer, the third |  |  |  |  |
| 5  | undoped polysilicon layer forming part of the floating gate.                                     |  |  |  |  |
| 1  | 3. U The method of claim 1 wherein the first insulating layer is a tunnel                        |  |  |  |  |
| 2  | oxide layer and the second insulting layer is one of composite oxide-nitride-oxide dielectric    |  |  |  |  |
| 3  | layer and composite oxide-nitride-oxide-nitride dielectric layer.                                |  |  |  |  |
|    |                                                                                                  |  |  |  |  |
| 1  | 4. The method of claim 1 wherein a thickness of each doped polysilicon                           |  |  |  |  |
| 2  | layer is greater than a thickness of a corresponding undoped polysilicon layer by a factor in    |  |  |  |  |
| 3  | the range of two to four.                                                                        |  |  |  |  |
| 1  | 5.4 The method of claim 1 further comprising:                                                    |  |  |  |  |
| 2  | forming insulating spacers along sidewalls of the stack made up of the first                     |  |  |  |  |
| 3  | insulting layer, the floating gate, the second insulating layer, and the control gate; and       |  |  |  |  |
| 4  | forming source and drain regions in the substrate.                                               |  |  |  |  |
|    |                                                                                                  |  |  |  |  |

1 2



transistor, PMOS transistor, enhancement transistor, and depletion transistor.

The method of claim 10 wherein the transistor is any one of a NMOS

15.

| 1        |                                         | 16. ·                                                                             | The method of claim 10 wherein the doped polysilicon layer has a           |  |  |
|----------|-----------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|
| 2        | doping concer                           | concentration and a thickness greater than a thickness of the undoped polysilicon |                                                                            |  |  |
| 3        | layer so as to p                        | prevent                                                                           | polysilicon depletion in the gate.                                         |  |  |
| 1        |                                         | 17.                                                                               | A semiconductor non-volatile memory cell comprising:                       |  |  |
| ر<br>م 2 | UB)                                     | a first                                                                           | insulating layer over a substrate region;                                  |  |  |
| 3        | ` /                                     | a first                                                                           | doped polysilicon layer over the first insulating layer;                   |  |  |
| 4        |                                         | a first                                                                           | undoped polysilicon layer over and in contact with the first doped         |  |  |
| 5        | polysilicon lay                         | yer, the                                                                          | first doped and first undoped polysilicon layers forming a floating gate;  |  |  |
| 6        |                                         | a secon                                                                           | nd insulating layer over and in contact with the first undoped polysilicon |  |  |
| 7        | layer;                                  |                                                                                   |                                                                            |  |  |
| 8        |                                         | a seco                                                                            | nd updoped polysilicon layer over and in contact with the second           |  |  |
| 9        | insulating laye                         | er; and                                                                           |                                                                            |  |  |
| 0        |                                         | a secon                                                                           | nd doped polysilicon layer over and in contact with the second undoped     |  |  |
| 1        | polysilicon la                          | yer, the                                                                          | second doped and undoped polysilican layers forming a control gate.        |  |  |
| 110      | <b>\</b>                                | <b>1</b> 8.                                                                       | The memory cell of claim 17 further comprising a third undoped             |  |  |
|          | polysilicon lay                         | yer over                                                                          | and in contact with the first insulating layer wherein the first doped     |  |  |
| 3        | polysilicon la                          | yer over                                                                          | lies and is in contact with the third undoped polysilicon layer, the third |  |  |
| 4        | undoped polys                           | silicon l                                                                         | ayer forming part of the floating gate.                                    |  |  |
| 1        |                                         | 19.                                                                               | The memory cell of claim 17 wherein the first insulating layer is a        |  |  |
| 2        | tunnel oxide l                          | ayer and                                                                          | d the second insulting layer is one of a composite oxide-nitride-oxide     |  |  |
| 3        | dielectric laye                         | er and a                                                                          | composite oxide-nitride-oxide-nitride dielectric layer.                    |  |  |
| 1        |                                         | 20.                                                                               | The memory cell of claim 17 wherein a thickness of each doped              |  |  |
| 2        | polysilicon la                          | yer is gr                                                                         | reater than a thickness of a corresponding undoped polysilicon layer by a  |  |  |
| 3        | factor in the range of two to four.     |                                                                                   |                                                                            |  |  |
| 1        |                                         | 21.                                                                               | The memory cell of claim IV further comprising:                            |  |  |
| 2        |                                         |                                                                                   | ting spacers along sidewalls of the stack made up of the first insulting   |  |  |
| 3        | layer, the floa                         |                                                                                   | e, the second insulating layer, and the control gate; and                  |  |  |
| 4        | • • • • • • • • • • • • • • • • • • • • |                                                                                   | and drain regions in the substrate.                                        |  |  |
| 1S!      | UB<br>2                                 | 22.                                                                               | The memory cell of claim 17 wherein each of said first and second          |  |  |

doped polysilicon layers comprises are in-situ doped with impurities.

3

|        | 2          | stacked-gate co                                     | ell and s                                                                                     | plit gate cell.                                                           |  |  |  |  |
|--------|------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--|--|--|--|
|        | 1          |                                                     | 24.                                                                                           | The memory cell of claim 17 wherein each of the first and second          |  |  |  |  |
|        | 2          | doped polysilio                                     | con laye                                                                                      | ers has a doping concentration and a thickness greater than a thickness   |  |  |  |  |
|        | 3          | of the correspo                                     | of the corresponding first and second undoped polysilicon layers so as to prevent polysilicon |                                                                           |  |  |  |  |
|        | 4          | depletion in ea                                     | te floating gate and the control gate.                                                        |                                                                           |  |  |  |  |
|        |            | •                                                   |                                                                                               |                                                                           |  |  |  |  |
|        | 1          |                                                     | 25.                                                                                           | The memory cell of claim 17 wherein the non-volatile memory cell is       |  |  |  |  |
|        | 2          | any one of ROM, flash EPROM, and EEPROM.            |                                                                                               |                                                                           |  |  |  |  |
| e inte | 150        | UB                                                  | 26.                                                                                           | A semiconductor transistor comprising:                                    |  |  |  |  |
| , tud  | 150<br>2 A | 3                                                   | an insu                                                                                       | lating layer over a substrate region;                                     |  |  |  |  |
| turi t | 3          | •                                                   | an und                                                                                        | oped polysilicon layer over and in contact with the insulating layer; and |  |  |  |  |
|        | 4          |                                                     | a dope                                                                                        | d polysilicon layer over and in contact with the undoped polysilicon      |  |  |  |  |
| G<br>E | 5          | layer, the dope                                     | the doped and undoped polysilicon layers forming a gate of the transistor.                    |                                                                           |  |  |  |  |
|        | ,          |                                                     | \                                                                                             |                                                                           |  |  |  |  |
| -<br>- | 1          |                                                     | 27.                                                                                           | The transistor of claim 26 wherein the insulating layer is a gate oxide   |  |  |  |  |
|        | 2          | layer.                                              | `                                                                                             |                                                                           |  |  |  |  |
|        | 1          |                                                     | 28.                                                                                           | The transistor of claim 26 wherein a thickness of the doped polysilicon   |  |  |  |  |
|        | 2          | layer is greater                                    | than a                                                                                        | thickness of the undoped polysilicon layer by a factor in the range of    |  |  |  |  |
|        | 3          | two to four.                                        |                                                                                               |                                                                           |  |  |  |  |
|        |            | ,                                                   | 20                                                                                            | The transition of alaim 26 foother commissions:                           |  |  |  |  |
|        | 1          |                                                     | 29.                                                                                           | The transistor of claim 26 further comprising:                            |  |  |  |  |
|        | 2          | insulating spacers along sidewalls of the gate; and |                                                                                               |                                                                           |  |  |  |  |
|        | 3          |                                                     | source                                                                                        | and drain regions in the substrate.                                       |  |  |  |  |
|        | 1          |                                                     | 30.                                                                                           | The transistor of claim 26 wherein the doped polysilicon layer is in-     |  |  |  |  |
|        | 2          | situ doped with                                     | h impur                                                                                       | ities.                                                                    |  |  |  |  |
|        | 1          |                                                     | 31.                                                                                           | The transistor of claim 26 wherein the transistor is any one of a NMOS    |  |  |  |  |
|        | 2          | transistor PM                                       |                                                                                               | sistor, enhancement MOS transistor, and depletion MOS transistor.         |  |  |  |  |
|        | _          |                                                     | oo nan                                                                                        | bibliot, cilimicoment 11200 translator, and depretion 11200 translator.   |  |  |  |  |
|        | 1          |                                                     | 32.                                                                                           | The transistor of claim 26 wherein the doped polysilicon layer has a      |  |  |  |  |
|        | 2          | doping concen                                       | tration                                                                                       | and a thickness greater than a thickness of the undoped polysilicon       |  |  |  |  |

The memory cell of claim 17 wherein the memory cell is any one of a

layer so as to prevent polysilicon depletion in the gate.

|   | 15  | 33. A semiconductor structure comprising:                                                      |
|---|-----|------------------------------------------------------------------------------------------------|
|   | 2 F | an undoped polysilicon layer;                                                                  |
|   | 3   | a doped polysilicon layer in contact with the undoped polysilicon layer; and                   |
|   | 4   | an insulating layer in contact with the undoped polysilicon layer, wherein the                 |
|   | 5   | undoped polysilicon layer is sandwiched between the doped polysilicon layer and the            |
|   | 6   | insulating layer.                                                                              |
|   |     |                                                                                                |
|   | 1   | 34. The structure of claim 33 wherein a thickness of the doped polysilicon                     |
|   | 2   | layer is greater than a thickness of the undoped polysilicon layer by a factor in the range of |
|   | 3   | two to four.                                                                                   |
| 1 | 1   | 35. The structure of claim 33 wherein the structure is one of a ROM cell, a                    |
|   | 2   | flash EPROM cell, an EEPROM cell, a DRAM cell, and a SRAM cell, a NMOS transistor, a           |
|   | 3   | PMOS transistor, an enhancement MOS transistor, and a depletion MOS transistor.                |
|   |     |                                                                                                |
|   |     |                                                                                                |
|   |     |                                                                                                |
|   |     |                                                                                                |
|   |     |                                                                                                |