Data preprocessing

Дубликаты

- 1. Выбрасывать
- 2. Группировать

```
data = data.drop_duplicates()
```

Пропущенные значения

- 1. Константное значение
- 2. Среднее
- 3. Предсказания другого алгоритма(knn, линейка, матрицы)
- 4. Удалить столбец

```
data[num_cols] = data[num_cols].fillna(data[num_cols].mean())
```

Выбросы

Чаще всего стоит удалять ориентируюсь на распределения признаков, ошибки, целевой переменной

Категориальные

- 1. LabelEncoding
- 2. OHE
- 3. TargetEncoding

original dataset

X ₁	X ₂	у		X ₁	X ₂	у
5	8	calabar		5	8	0
9	3	uyo	LabelEncoder { "calabar"> 0 "owerri"> 1 "uyo> 2 }	9	3	2
8	6	owerri		8	6	1
0	5	uyo		0	5	2
2	3	calabar		2	3	0
0	8	calabar		0	8	0
1	8	owerri		1	8	1

dataset with encoded labels

original dataset

X ₁	X ₂	у
5	8	calabar
9	3	uyo
8	6	owerri
0	5	uyo
2	3	calabar
0	8	calabar
1	8	owerri

dataset with encoded labels

X ₁	X ₂	у
5	8	0
9	3	2
8	6	1
0	5	2
2	3	0
0	8	0
1	8	1

Числовые

- 1. Нормировка
- 2. Логарифмирование
- 3. Бинаризация


```
num_cols = data.select_dtypes([np.number]).columns
cat_cols = data.select_dtypes(object).columns
```

```
mask = (error < np.quantile(error, 0.95))

X_train = X_train[mask]

y_train = y_train[mask]</pre>
```

print("Test RMSE = %.4f" % mean squared error(y test, y pred, squared=False))

model = pipeline.fit(X train, y train)

y pred = model.predict(X test)

Какие признаки оставлять?

- 1. Корреляция
- 2. Beca
- 3. Feature_imporance
- 4. Удалять признаки и обучать модель
- 5. Методы фильтрации

Как придумать новые признаки?

- 1. Посмотреть на интересные признаки(pickup_datetime)
- 2. AutoFeat

Все зависит от модели и метрики