DLS11 Geteway User Manual (LTE-LoRA)

(Document version V1.0.1)

- UART←→UART/LoRA/LTE
- Lora←→Lora/Uart/Lte
- LTE←→UART/LoRA

- Repeater, Gateway
- Data Recorder
- Wireless Sensor

HEBEI WINCOM TECHNOLOGY CO., LTD 2021-10

目录

COVER	
OVERVIEW	4
APPLICATION	4
PRODUCT SELECTION	4
PARAMETERS/SPECIFICATIONS	5
STRUCTURE/MOUNTING DIMENSIONS	6
Structure	6
Mounting Dimensions	6
INDICATOR LEDs	7
INTERFACE DEFINITION	7
Functional Block Diagram	7
1. START To USE	8
1.1 Install Batteries/Connect External Power	8
1.2 Digital Interface	8
1.3 Device Information	8
1.4 Use \$SETPTool read and write parameters	8
1.5 DLSx0 Work Mode	9
1.5.1 Work Mode	9
1.5.2 Working mechanism of timeout sending mode	9
1.5.3 Working mode related register (parameter)	10
2.1 Registers (parameters) summary	10
2.1.1 Registers (read/write)	10
2.1.2 Registers (only read)	
2.2 Parameter read and write protocol	
2.2.1 MODBUS Protocols	
2.2.2 AABB Protocols	14
2.2.3 Device address-based string protocol	
2.2.4 Other Instruction	
2.3 Data sending and packet protocol	
2.3.1 DLS11 Data sending	

	2.3.2 Packet structure	16
	2.3.3 UART/ RF LoRA data send	17
	2.3.4 LTE (4G)-SMS	17
	2. 3. 5 LTE (4G)-TCP	17
	2.3.6 LTE (4G)-EMail	18
	2. 3. 7 LTE (4G)-FTP	18
3.	DLS APPLICATION EXAMPLE	19
	3.1 Use DLS11 to send multiple VSxxx monitoring data	19
	3. 2 Use DLS11 to receive data from LoRA repeater	19

OVERVIEW

The DLS11 is a low-power data gateway with built-in batteries and LoRA and LTE (4G) wireless. The "real-time online" LoRA transceiver is used to collect and store the data sent by other LoRA devices, and the stored data is periodically repackaged into standard data packets and sent to the remote server through LTE network. The data sending methods include SMS, TCP, email, FTP, etc. Using a SINGLE SIM card can realize the remote data transmission function of multiple devices.

Note: This manual applies to DLS11_xxxx (see "Product Selection" for details).

APPLICATION

- ◆ Automatic measurement and control LoRA-4G workstation
- ◆ LoRA repeater and frequency changer
- ◆ Wireless data recorder

- ◆ Serial interface device to wireless
- Match different LoRAs
- ♦ LoRA 4G gateway

PRODUCT SELECTION

Model: DLS-AB_xUXX

- DLS: Product type identifier, fixed as DLS (Double L System), L is LoRA and LTE.
- A: The number of built-in LoRA, can be 0, 1, or 2.
- B: The number of built-in LTE, can be 0, 1, or 2.
- xUXX: UART port definition code. Example: 2UT2 indicates two UART interfaces, TTL and RS232.
 - ◆ xU: The number of UART interfaces, can be 1 or 2.
 - ◆ XX: UART port type. 2 RS232, 4 RS485, and T TTL.

Recommended model

Model	Number of	Number of digital interface		Sensor interface			Built-in	
Model	UART	LoRA	LTE					Battery
DLS10_1U2	1	1	0					2400mAH*3
DLS10_2UT2								
DLS11_1U2	1	1	1					2400mAH*3
DLS11V_1U2				4				
DLS21T_1U2	1	2	1				4	850mAH*3
DLS21VI_1U2	1	2	1	2		2		850mAH*3

This table does not list all models

Internal battery refers to the maximum capacity of the internal battery that can be installed. A built-in battery is not a standard option.

PARAMETERS/SPECIFICATIONS

Test conditions and environment: Unless otherwise specified, the following indicators are measured at room temperature of 25° C.

Object	Conditions	Value			Unit		
		MIN	STD	MAX			
Size	148x98x43 (BxCxD)				mm ³		
IP Grade	IP65	IP65					
Power	1~3 18650 lithium + ext	ternal char	ging interf	ace			
Battery capacity	3*2500mAH						
ExPower		5. 5	12	24	V		
Power consumption	Sleep State		10		uA		
(Battery powered)	Working		150	250	mA		
(battery powered)	Transient peak		2.0		A		
Battery life [®]	Built-in battery (3)		4		Months		
battery life	sent every hour						
Temperature	Operating temperature	-20		80	\mathbb{C}		
remperature	Storage temperature	-60		120			
Flash		4			MByte		
	433MHz	420		450	MHz		
	868MHz	854		884	MHz		
LoRA	915MHz	901		931	MHz		
	number of channels		15				
	Air rate	300	2604	37500	bps		
LTE	LTE-TDD B38/B39/B40/B41 LTE-FDDB1/B3/B8 TD-SCDMA B34/B39 UMTS/HSDPA/HSPA+ B1/B8 CDMA 1X/EVDO BCO GSM/GPRS/EDGE900/1800 MHz						
UART Baud rate		1200	115200	460800	bps		

Note ①: Power loss caused by battery self-discharge and frequent wake up in complex networks is not considered.

STRUCTURE/MOUNTING DIMENSIONS

Structure

- antenna
 Test key
- ②Indicator leds
- **6**SIM Socked
- $\ensuremath{ \textcircled{3} \ Power\&Communication}$
- 7 Compartment
- ④Fixing screw
- ®Button battery

Mounting Dimensions

Mounting Dimensions (Bottom)

INDICATOR LEDs

Indicator Function

Symbo1	Name	Status	Description	Node
CHG	Charging	ON	Be Charging	
DON	Charging done	ON	Charging completed	
POW	Power	ON	Be Working	
POW	rower	OFF	Has Sleep	
RUN	Dunning state	1Hz	Be Working…	
KUN	Running state	OFF	Has Sleep	
		ON	Searching the network	
SIG	ITE gignel	0.6Hz	Registered network	
210	LTE signal	2.5Hz	The data link is established	
		OFF	LTE not working	
		1Hz	Not sleep	
LDT	LoRA datas	Flash	Receiving data	
		Short	Detecting wake-up signal	

INTERFACE DEFINITION

Pin	Symbol	Name	Descr
1	VIN	External power input +	DC5. 5V~24V
2	GND	Power input -	
3	GND		
4	TXD/A	RS232 Send Pin /RS485(D+)	
5	RXD/B	RS232 Receiv pin /RS485(D-)	

Functional Block Diagram

DLS11 Function block diagram

1. START To USE

As shown in the functional block diagram, DLS11 is built-in with DLS10 (LoRA real-time online relay and transceifer), which is responsible for receiving and storing data packets from LoRA. Under the control of program-controlled timing switch, DLS11 automatically starts at a predetermined time interval, reads the data stored by DLS10 and sends it to the remote data server through LTE.

For a detailed description of DLS10, see "DLSx0 Data Repeater User Manual.pdf".

1.1 Install Batteries/Connect External Power

The DLS11 operates using a built-in battery and/or an external power supply. When connected to an external power supply, the DLSxx is powered entirely by the external power supply, which also charges the built-in battery.

The methods and steps for installing the built-in battery are as follows: Open the cover of the DLSxx device, install the battery in the battery holder, and pay attention to the positive and negative of the battery.

1.2 Digital Interface

The DLS11 connects to the upper computer (usually a computer) through a UART digital interface (RS232, RS485, and TTL) to complete data and parameter communication.

Note that the communication is possible only when the interface parameters are the same.UART interface parameters include Baud Rate, Data bit, Parity bit, and Stop bit.

DLS communication interface default parameters

Interface	Parameter Name	Default	Unit
UART	Baud Rate	115200	bps
	Parity bit	N	
	Data bit	8	bits
	Stop bit	1	bits

1.3 Device Information

When the device is powered on and started, DLS11 automatically outputs the basic device information through UART. When the device is running, Used "\$INFO" to get the device information. The basic information is as follows:

type: DLS11_1U2 Device Model
hwVer: 1.00 Hardware version
sfVer: 1.00 Firmware version

UDID=3A0858812345600 Device serial number (UNIQUE IDENTIFIER)

1.4 Use \$SETPTool read and write parameters

\$SETPTool is a general equipment testing, parameter reading and writing tools, suitable for most of our company's equipment. If you want to write your own test tool, refer to the section "2. Communication Protocols".

The home screen of "\$SETPTool for DLS11" is as shown in the following figure.

Parameters can be read and modified as prompted in the lower left corner of the main interface, and real-time data of the device can be read automatically. For more detailed instructions on how to use \$SETPTool, see the "General parameter configuration Tool SETPTool Instructions.pdf" file.

1.5 DLSx0 Work Mode

1.5.1 Work Mode

DLSx0 has two working modes: Timeout sending and parameter setting. By default, the device works in the timeout sending mode. To enter the parameter setting mode, send @setm to the device.

- Timeout Sending Mode: Default working mode of the device. In this mode, the device is in a low-power timing state, and LoRA receives and stores data packets from other devices. When it starts automatically after a predetermined time interval, DLS11 checks the stored data and sends it to the server through LTE after startup, and enters the low-power state again after the work is completed. User buttons can also start the device immediately.
- Parameter Setting Mode: When the device starts and receives the "@setm" command, the parameter setting mode is entered. In this mode, the device never shuts down, waiting for the user's command. This mode is generally used for parameter access.

1.5.2 Working mechanism of timeout sending mode

DLS11 starts periodically under the control of the two time parameters.

Time SCAN interval INTE SCAN: The device checks the time every INTE SCAN minutes. If the preset sending interval is reached (INTE SEND), the device is started and data is sent. If not, the device continues to wait.

Data sending interval INTE SEND: This parameter determines how many minutes to send data at intervals.

1.5.3 Working mode related register (parameter)

Working mode related register (parameter) WKMOD: A value of 0 indicates that the register is working in timeout send mode and a value of 1 indicates that the register is working in parameter setting mode. WKMOD is automatically 0 at each power-on.

Next startup mode NEXT_SET: Sets the working mode that the device automatically enters during the next startup.0: normal. 1: Data is forcibly sent once, and then the parameter automatically reset to 0. 2: Parameter setting mode is entered.3: Always send data.4: Always enter parameter setting mode.

2. COMMUNICATION PROTOCOL

2.1 Registers (parameters) summary

2.1.1 Registers (read/write)

Register summary Table (read/write)

Reg Addr	Symbol	Name	Value Range	Default	Unit Descr
0	DEV_ADDR	Device Address	1~255	0x01	
1	DEV_ID	Device identification	1~255	0x01	
2	BAUDRATE	UART Baud rate	12~4608	1152	100bps
281	UART_PARS	UART parameters [©]			
3	RTC_SYNC	Sync RTC	0: Never 1:From the LTE service provider 2:From the NTP service 3:From the TCP server	0	
262	NTP_SEV	NTPserver addr		www.zoyobj.	com
278	NTP_PORT	NTPPort Num	0~65535	6701	
13	WKMOD	Work mode	0: Timeout 1: Setting	0	
4	WKMOD NEXT_SET	Work mode State of the next startup	1: Setting 0:Normal 1:Send once		
		State of the next	1: Setting 0:Normal 1:Send once 2: Configuration Mode(once) 3: Send		minutes
4	NEXT_SET	State of the next startup	1: Setting 0:Normal 1:Send once 2: Configuration Mode(once) 3: Send 4:Configuration	0	minutes minutes

9	RTC_DH					
10	RTC_BH					
10	_	Register for network	0:Smart			
11	TIM_RNET	timeout values	1~65535	0	Seconds	
			O: UART			
			1: SMS			
			2: TCP			
14	SEND_WAY	data sending methods	3: Email	2		
			4: FTP			
			5: RF (LoRA)			
			O: HEX			
15	DAT_PRO	Send Protocol	1: STR1.0	1		
			2: STR2.0			
259	DEBUG_MSG	Debug messages ^②		1		
		SMS (Short Me	ssage Service) par	rameters		
38	RDC_PH1	Data center number	cell phone number			
44	RDC_PH2	Data center number	cell phone number			
50	SMSC	SMS Centre Number				
		SMS Centre Number	0:Read from SIM	0		
51	USR_SMSC	source	card			
			1: User Settings			
	I	LTE APN (Acce	ss Point Name) par	rameters		
60	APN	Access Point Name		CMNET		
	I		server parameters	I		
72	TCP_SEV	TCP Servdr addr	a .	www.zoyobj.	com	
88	TCP_PORT	TCP Port	1~65535	8000		
89	TCP_ONLINE	online time	1~65535	0	seconds	
0=	CHEED CONT		parameters(sender)	I .		
95	SMTP_SEV	SMTP Server		smtp. 126. co	n	
111	SMTP_PORT	SMTP Port		25		
112	POP3_SEV	POP3 Server		pop. 126. com		
128	POP3_PORT	POP3 Port		110		
129	MAIL_USER	SMTP User				
137	MAIL_PASS	SMTP Pass				
149 165	MAIL_SOUC SUBJECT	Email addr Subject Title		VS4XXDatas		
100	SODJECI	-	server parameters	votandatas		
179	MAIL TGET	Email addr	server haramerers			
113	MITTE_TOLT		TP 服务器参数			
195	FTP SEV	FTP Server addr	NN 74 HH 2/ 3%	www.zoyobj.	com	
211	FTP PORT	FTP Port		8021		
212	FTP USER	FTP User		VS4XX		
	FTP PASS	FTP Pass		VS4XX000		
228	I'I F F H. J. J					

236	FTP_PATH	Relative path		/	
244	FTP_FNAME	File Name		VS4XXDATA	
280	FTP_PFILE	Check the FTP parameters file		0	
		Lo	ora parameters		
283	RF_SF	Spreading Factor®	6~12	8	
284	RF_CR	Encoding Rate [®]	1~4	2	
285	RF_BW	Bandwidth [®]	0~9	7	
286	RF_CH	ChNum [®]	0~15	7	
287	RF_POW	Sending Power [®]	0~15	10	

(1) UART Communication parameter register

bits	Name	Value	Unit
		00B/11B: 1	
bit5:4	Stop bit	01B: 1.5	bits
		10B: 2.0	
		00B/11B: None	
bit3:2	Parity bit	01B: 0dd	
		10B: Even	
L:+1.0	December 1		hita
bit1:0	Data bit	01B/10B/11B: 9	bits

(2) Debug Message register

Whether to output the running and debugging information of the device.

bits	Name	Value	Unit
bit1	Details Tips		
bit0	Basic Process Tips		

(3) 射频(LoRA)参数

射频参数包括 LoRA 扩频因子、编码率、信道带宽、频道号、发射功率。

当 LoRA 设备之间通讯时,通讯双方的扩频因子、编码率、信道带宽、频道号必须完全一致。

DLS11 会将上述 5 个参数同步设置到内嵌的 DLS10,关于 DLS10 的使用说明以及更多参数说明,请参阅 "DLSx0数传中继器用户手册.pdf"。

Rf parameters include LoRA Spreading Factor, coding rate, bandwidth, channel number, and transmission power.

When LoRA devices communicate with each other, the Spreading Factor, coding rate, channel bandwidth, and channel number must be identical.

DLS11 synchronizes the preceding five parameters to the embedded DLS10. For details about how to use DLS10 and more parameters, see "DLSx0 Digital Repeater User Manual.pdf".

2.1.2 Registers (only read)

Register Summary Table (read only)

Reg addr	Symbol	Name	Value Range	Unit
			<15: Poor	
355	SINGAL	ITE signal strongth	>=15	
อออ	SINGAL	LTE signal strength	>25: Very good	
			>31: Abnormal	
357	VOL_EX	External supply voltage		mV
358	VOL_VCC	Work Supply voltage [©]		mV
359	VOL_BBAT	Button battery voltage [©]		mV
360	TMP_CORE	MCU temperature		0.1℃
363	VOL_SEN	Sensor voltage (reserved)		mV

- (1) Working voltage: When there is no external power supply, the working voltage refers to the voltage of the built-in battery; when there is an external power supply, the working voltage refers to the voltage generated by the external power supply (constant about 4.3V).
- (2) Clock battery voltage: built-in button battery voltage, when lower than 2.0V should be replaced with a new button battery.

2.2 Parameter read and write protocol

DLSx0 supports device address-based MODBUS, custom AABB, and string instruction set protocols.

2.2.1 MODBUS Protocols

DLSxx supports MODBUS 03, 04, and 06 instruction codes.

(1) 03 (0x03) /04 (0x04) instruction code: read multiple consecutive registers. The instruction format is as follows

Instruction data frame structure

Dev Addr	Function Code 0x03	Start Addr	Regs Count	CRC
1 Bytes	1 Bytes	2 Bytes	2 Bytes	2 Bytes

The returned data frame structure

Dev Addr	Function Code 0x03	Datas Lenth	Datas	CRC
1 Bytes	1 Bytes	2 Bytes	n Bytes	2 Bytes

Example: read the register whose device address is 1, register start address is 0, and read 10 registers continuously

Host sending instruction (HEX): 01 03 00 00 00 0A C5 CD

DLSxx return: 01 03 14 00 01 00 01 04 80 00 00 00 00 3C 00 00 00 3C 21 08 21 21 4F 1A When reading multiple registers, do not read more than 32 registers at a time. Do not attempt to read a register that does not exist.

(2) 06 (0x06) instruction code: modify the value of a single register, the instruction format is as follows

Instruction data frame structure

Dev Addr Function Code 0x06 Reg Address Reg Value CRC	Dev Addr	Function Code 0x06	Reg Address	Reg Value	CRC	
---	----------	--------------------	-------------	-----------	-----	--

```
1 Bytes
                1 Bytes
                                        2 Bytes
                                                          2 Bytes
                                                                           2 Bytes
The returned data frame structure
                 Function Code 0x06
Dev Addr
                                        Reg Address
                                                          Reg Value
                                                                           CRC
     1 Bytes
                                        2 Bytes
                                                                           2 Bytes
                 1 Bytes
                                                          2 Bytes
Example: Example: change the value of register 2 in device address 1 to 1152
Host sending instruction (HEX): 01 06 00 02 04 80 2B 6A
DLSxx return: 01 06 00 02 04 80 2B 6A
(3) Check code calculation
CRC16 - MODBUS algorithm:
unsigned int crc16(unsigned char *dat, unsigned int len)
unsigned int crc=0xffff;
unsigned char i;
while(len!=0)
crc^=*dat;
for (i=0; i<8; i++)
if((crc&0x0001) == 0)
crc=crc>>1;
else
{
crc=crc>>1;
crc^=0xa001;
1en=1:
dat++;
return crc;
```

2.2.2 AABB Protocols

Read register

	Frame head	Dev Addr	Reg Address	Checksum
HEX	AA BB	1 Bytes	1 Bytes	1 Bytes

Return

	Frame head	Dev Addr	Reg Address	Reg value	checksum
HEX	AA BB	1 Bytes	1 Bytes	2 Bytes	1 Bytes

For example, read the value of register 7 on the DLS device whose address is 1.

Send (HEX): AA BB 01 07 6D

Device returns (HEX): AA BB 01 07 00 3C A9, 0x003C is 60 in decimal.

Modify register

	Frame head	Dev Addr	Reg Address	Reg Value	checksum
HEX	AA BB	1 Bytes	1 Bytes 0x80	2 Bytes	1 Bytes

Return

	Frame head	Dev Addr	Reg Address	Reg Value	checksum
HEX	AA BB	1 Bytes	1 Bytes	2 Bytes	1 Bytes

For example, change the value of register 2 of the DLS device with address 1 to 1152 (0x0480).

Send (HEX): AA BB 01 82 04 80 6C Device returns: AA BB 01 02 04 80 EC

Note: The AABB protocol can only access registers with addresses 0 to 127.

Note: in AABB protocol, OxFF is a universal address.

2.2.3 Device address-based string protocol

(1) Read register

Instruction	Reg Address	End
\$GETP=	XXX	\r\n

Instruction: fixed as "\$GETP=".

Reg Address: The register address represented by a numeric characters.

For example, read the value of register 2 in DLS11 whose device address is 1

Send to DLS: \$GETP=2 DLS return: \$REG[2]=01152

(2) Modify register

Instruction	Reg Address	Reg Values	End
\$SETP=	XXX	, XXX	\r\n

Instruction: fixed as "\$SETP=".

Reg Address: The register address represented by a numeric characters. Reg Values: The register value represented by numeric characters.

For example, change the value of register 2 in DLS11 of device address 1 to 1152.

Send to DLS: \$SETP=10, 1152

DLS return: OK

2.2.4 Other Instruction

Instruction	Functional Description	
@SETM	Enter the parameter setting mode	
@STTN=x	Transparently transmits data to a submodule in the device	
\$SAVE	Save parameters	
\$INFO	Read basic device information	
\$REST	REST Restart	
\$STDN	Shutdown	
\$RSTP Restore factory parameters		
\$STFC	Writes the current parameters to the factory area	

\$STDF	Restore the default parameters		
\$STDT=xxxx	Set the date and time. Example: \$STDT=2015/12/21 18:37:05		

2.3 Data sending and packet protocol

2.3.1 DLS11 Data sending

DLS11 is a LORa-LTE gateway device dedicated to receiving data packets from other LoRA devices, storing them and sending them centrally to the server after a predetermined time interval (currently only the LoRA data packet format for VSxxx devices is supported). The sending mode can be UART, SMS, TCP, EMAIL, FTP, and RF. (Set the value of register SEND_WAY to select).

When sending data, you can also change the register DAT_PRO to select the format of the data packet. If the sending mode is UART, TCP, or RF, HEX or STR1.0 format is recommended. If the sending mode is EMAIL or FTP, only STR2.0 format can be used.

When data is sent through TCP, EMAIL, or FTP, the UDID is used to identify different devices. A UDID is a string of 15 characters. Each device has a unique UDID. The last two characters of the UDID of DLS11 are always 00.

DLS11 sends packets from several VSxxx devices. In order to distinguish different VSxxx devices, DLS dynamically generates a unique UDID (UDID) based on the device ID (IDn) of the sender (a VSxxx) in the received packets. The UDID code is generated as follows: Replace the last two characters of the DLS11 UDID with the hexadecimal character string of the IDn.

Example: The UDID of The DLS11 is "123456789012300". When it reads a received data packet, it will parse out "Sender device address IDn". If IDn is 0x01, it will dynamically generate UDID "123456789012301" for this data. Send to the server using this UDID.

2.3.2 Packet structure

(1) HEX format

Hexadecimal data, data frame length 91 bytes.

Data Address	Data length	Remarks
0	1	Fixed 0x02
1~2	2	Device ID
3~6	4	Data record number
7~12	6	The time stamp
		BCD code year month day hour minute second
13	1	Reserved,
14	1	The signal strength of mobile network is 0~31
15~16	2	Temperature (unit: 0.1°C)
17~18	2	Work Supply voltage, unit: mV
19~20	2	External supply voltage, unit: mV
21~24	4	Reserved,
25~88	2*32=64	Monitoring data for 32 channels
89~90	2	CRC16 check code

(2) STR format 1.0

A hexadecimal string. The data length is 156 bytes. Every 2 characters are converted to 1 byte of data. For example, the string "1A" means 0x1A (or 26 in decimal).

Data Address	Data length	Remarks
0~1	2 characters	Device ID
2~5	4 characters	Data record number
6~7	2 characters	Reserved,
8~9	2 characters	The signal strength of mobile network is 0~31
10~11	2 characters	Temperature (unit:℃)
12~15	4 characters	Reserved,
16~19	4 characters	Work Supply voltage, unit: mV
20~23	4 characters	External supply voltage, unit: mV
24~151	128 characters	Monitoring data for 32 channels
152~155	4 characters	CRC16 check code

(3) STR format 2.0

A data set represented by a data name and a decimal string (easier to read).

Data string	Remarks		
VOL1=nnnnn	Working voltage (or internal battery voltage), in mV		
	nnnnn is a fixed number of five characters.		
VOL2=nnnnn	External supply voltage, unit: mV		
DVID=nnnnn	Device ID		
TEMP=nnnnn	Temperature (unit: 0.1°C)		
CHxx=nnnnn	Monitoring data for 32 channels		
СН•••••			

2.3.3 UART/ RF LoRA data send

The above data frames are directly sent through the device's RS232, RS485, LoRA physical interfaces without any other additional content.

When the data output protocol is selected as "STR2.0", the data items are separated by $\r.$

2. 3. 4 LTE (4G)-SMS

Send the above data frame directly to the target phone number.

When the data output protocol is selected as "STR2.0", the data items are separated by \r .

Tip: When sending and receiving data using SMS, use the sender's mobile phone number and device ID to identify different devices.

2. 3. 5 LTE (4G)-TCP

DLS11 connects to the TCP server as a TCP client and sends the following data frames after the connection is successful:

UDID of the device + ">" + above data frame.

Example: 15B87911B123401>datas

2.3.6 LTE (4G)-EMail

Using LTE (4G) network, send the data to the mailbox, the email content is as follows:

Device ID 15B87911B123456 BATV **CHGV** SIGV TEMP 10282 00000 00016 00031 GMT CHO1 CH02 CH03 CH04 CH05 CH06 CHO7 CH08 CH09 CH10... 2016-04-30 15:08:01 00000 00000 00000 00000 00000 00000 00000 00000 00000... 2016-04-30 16:08:01 00000 00000 00000 00000 00000 00000 00000 00000 00000... 00000 2016-04-30 20:08:01 00000 00000 00000 00000 00000 00000 00000 00000...

2.3.7 LTE (4G)-FTP

Using LTE (4G) network, send the data file to the FTP server, the contents of the file are the same as the above email.

3. DLS APPLICATION EXAMPLE

The following Application Example (AN) are based on the DLS default parameters.

3.1 Use DLS11 to send multiple VSxxx monitoring data

3.2 Use DLS11 to receive data from LoRA repeater

Document version V1.01 Applies to firmware version V1.00 TEL: 0316-3093523 010-61591202 Email: INFO@GEO-INS.COM