Linear Algebra

Examples:

Check whether the set of all ordered pairs of real numbers (x, y) form a vector space over \mathbb{R} with vector addition and scalar multiplication given by

$$(i)(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$
$$(ii) k(x_1, y_1) = (2kx_1, 2ky_1)$$

I. Abelian group under addition **Proof:**

1. Closure property: Let
$$u, v \in V = \mathbb{R}^2$$
, where $u = (x_1, y_1), \& v = (x_2, y_2),$

we need to prove that $u + v \in \mathbb{R}^2$

Now

$$u + v = (x_1, y_1) + (x_2, y_2)$$

$$u + v = (x_1 + x_2, y_1 + y_2) \in \mathbb{R}^2$$

$$u, v \in \mathbb{R}^2$$
 implies $u + v \in \mathbb{R}^2$

2. Associativity property:

Let
$$u, v, w \in V = \mathbb{R}^2$$
, where $u = (x_1, y_1), \quad v = (x_2, y_2) \& w = (x_3, y_3)$, we need to prove that $u + (v + w) = (u + v) + w$

Now
$$u + (v + w) = (x_1, y_1) + \{(x_2, y_2) + (x_3, y_3)\}$$

$$= (x_1, y_1) + (x_2 + x_3, y_2 + y_3)$$

$$= (x_1 + x_2 + x_3, y_1 + y_2 + y_3)$$

 $=(x_1+x_2+x_3,y_1+y_2+y_3)$

$$= (x_1 + x_2, y_1 + y_2) + (x_3, y_3)$$

$$u + (v + w) = (u + v) + w$$

3. Identity Property:

We need to prove that, there exists an element $e \in \mathbb{R}^2$, such that

$$u + e = e + u = u$$
 for all $u \in \mathbb{R}^2$

Let e = (0,0) such that

$$u + e = (x_1, y_1) + (0,0)$$

$$= (x_1 + 0, y_1 + 0)$$

$$= (x_1, y_1)$$

$$= (x_1, y_1)$$

$$= (x_1, y_1)$$

$$u + e = u$$

$$e + u = (0,0) + (x_1, y_1)$$

$$= (0 + x_1, 0 + y_1)$$

$$= (x_1, y_1)$$

$$e + u = u$$

$$u + e = e + u = u$$
 for all $u \in \mathbb{R}^2$

4. Inverse Property:

We need to prove that, for every element $u \in \mathbb{R}^2$, there exists $-u \in \mathbb{R}^2$ such that

$$u + (-u) = (-u) + u = e$$

Let
$$-u = (-x_1, -y_1)$$
 such that

$$u + (-u) = (x_1, y_1) + (-x_1, -y_1)$$

$$=(0,0)$$

$$u + (-u) = e$$

$$u + (-u) = (x_1, y_1) + (-x_1, -y_1)$$

$$= (0, 0)$$

$$= (0, 0)$$

$$(-u) + u = (-x_1, -y_1) + (x_1, y_1)$$

$$= (0, 0)$$

$$(-u) + u = e$$

$$u + (-u) = (-u) + u = e$$

5. Commutative Property:

We need to prove that,

$$u + v = v + u$$
 for all $u, v \in \mathbb{R}^2$

Now,

$$u + v = (x_1, y_1) + (x_2, y_2)$$

$$= (x_1 + x_2, y_1 + y_2)$$

$$= (x_2 + x_1, y_2 + y_1)$$

$$= (x_2, y_2) + (x_1, y_1)$$

$$u + v = v + u$$

$$u + v = v + u$$
 for all $u, v \in \mathbb{R}^2$

II Scalar Multiplication

6. Closure Property:

We need to prove that,

$$u \in V = \mathbb{R}^2 \& \alpha \in K \text{ such that } \alpha u \in V = \mathbb{R}^2$$

Now,

$$\alpha u = \alpha(x_1, y_1)$$

$$\alpha u = (2\alpha x_1, 2\alpha y_1) \in \mathbb{R}^2$$

$$(ii) k(x_1, y_1) = (2kx_1, 2ky_1)$$

$$\alpha u = (2\alpha x_1, 2\alpha y_1) \in \mathbb{R}^2$$

Therefore

for any $u \in \mathbb{R}^2 \& \alpha \in K$ we have $\alpha u \in \mathbb{R}^2$

7. Distributive property of scalar multiplication over vector addition:

We need to prove that, for all $u, v \in V = \mathbb{R}^2 \& \alpha \in K$

$$\alpha(u+v) = \alpha u + \alpha v$$

Now,

$$\alpha(u+v) = \alpha\{(x_1, y_1) + (x_2, y_2)\}$$

$$= \alpha(x_1 + x_2, y_1 + y_2)$$

$$= (2\alpha x_1 + 2\alpha x_2, 2\alpha y_1 + 2\alpha y_2)$$

$$= (2\alpha x_1, 2\alpha y_1) + (2\alpha x_2, 2\alpha y_2)$$

$$= \alpha(x_1, y_1) + \alpha(x_2, y_2)$$

$$\alpha(u+v) = \alpha u + \alpha v$$

$$(i)(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2)$$

$$(ii) k(x_1, y_1) = (2kx_1, 2ky_1)$$

$$= (2\alpha x_1, 2\alpha y_1) + (2\alpha x_2, 2\alpha y_2)$$

$$\alpha(u+v) = \alpha u + \alpha v$$
 for all $u, v \in V = \mathbb{R}^2 \& \alpha \in K$

8. Distributive property of vector addition over scalar multiplication :

We need to prove that, for all $u \in V = \mathbb{R}^2 \& \alpha, \beta \in K$

$$(\alpha + \beta)u = \alpha u + \beta u$$

Now,
$$(\alpha + \beta)u = (\alpha + \beta)(x_1, y_1)$$

$$= (2(\alpha + \beta)x_1, 2(\alpha + \beta)y_1)$$

$$= (2\alpha x_1 + 2\beta x_1, 2\alpha y_1 + 2\beta y_1)$$

$$= (2\alpha x_1, 2\alpha y_1) + (2\beta x_1, 2\beta y_1)$$

$$= \alpha(x_1, y_1) + \beta(x_1, y_1)$$

$$(\alpha + \beta)u = \alpha u + \beta u$$

$$(\alpha + \beta)u = \alpha u + \beta u$$
 for all $u \in V = \mathbb{R}^2 \& \alpha, \beta \in K$

9. Associative property of vector with scalar multiplication :

We need to prove that, for all
$$u \in V = \mathbb{R}^2 \& \alpha, \beta \in K$$

$$\alpha(\beta u) = (\alpha \beta) u$$

Now,
$$\alpha(\beta u) = \alpha(2\beta x_1, 2\beta y_1)$$
$$= (4\alpha\beta x_1, 4\alpha\beta y_1)$$
$$\neq \alpha\beta(x_1, y_1)$$

$$\alpha(\beta u) \neq (\alpha \beta) u$$

Axiom (9) fails

10. Property 10:

$$1(u) = 1(x_1, y_1)$$

$$1(u) = (2x_1, 2y_1)$$

$$1(u) \neq u$$

Axiom (10) fails

The set of all order pairs $V = \mathbb{R}^2$ with the vector addition and scalar multiplication

$$(i)(x_1, y_1) + (x_2, y_2) = (x_1 + y_1, x_2 + y_2)$$

$$(ii) k(x_1, y_1) = (2kx_1, 2ky_1)$$

is not a vector space, since Axioms (9) and (10) are failed.

4.10

3. Examples:

Is the set $V = \mathbb{R}^3$ with vector addition and scalar multiplication given below form a vector space

$$(i) (x_1, y_1, z_1) + (x_2, y_2 + z_3) = (x_1 + x_2, y_1 + y_2, z_1 + z_3)$$
$$(ii) k(x_1, y_1, z_1) = (kx_1, y_1, z_1)$$

Proof: I. Abelian group under addition

1. Closure property:

Let
$$u, v \in V = \mathbb{R}^3$$
, where $u = (x_1, y_1, z_1) \& v = (x_2, y_2, z_2)$,

we need to prove that $u + v \in \mathbb{R}^3$

Now

$$u + v = (x_1, y_1, z_1) + (x_2, y_2, z_2)$$

$$u + v = (x_1 + x_2, y_1 + y_2, z_1 + z_2) \in \mathbb{R}^3$$

$$u, v \in \mathbb{R}^3$$
 implies $u + v \in \mathbb{R}^3$

2. Associativity property:

Let $u, v, w \in V = \mathbb{R}^3$, where $u = (x_1, y_1, z_1), v = (x_2, y_2, z_2) \& w = (x_3, y_3, z_3),$ we need to prove that u + (v + w) = (u + v) + w

Now

$$u + (v + w) = (x_1, y_1, z_1) + \{(x_2, y_2, z_2) + (x_3, y_3, z_3)\}$$

$$= (x_1, y_1, z_1) + (x_2 + x_3, y_2 + y_3, z_2 + z_3)$$

$$= (x_1 + x_2 + x_3, y_1 + y_2 + y_3, z_1 + z_2 + z_3)$$

$$= (x_1 + x_2, y_1 + y_2, z_1 + z_2) + (x_3, y_3, z_3)$$

$$u + (v + w) = (u + v) + w$$

3. Identity Property:

We need to prove that, there exists an element $e \in \mathbb{R}^3$, such that

$$u + e = e + u = u$$
 for all $u \in \mathbb{R}^3$

Let e = (0,0,0) such that

$$u + e = (x_1, y_1, z_1) + (0,0,0)$$

$$= (x_1 + 0, y_1 + 0, z_1 + 0)$$

$$= (x_1, y_1, z_1)$$

$$u + e = u$$

$$e + u = (0,0,0) + (x_1, y_1, z_1)$$
$$= (0 + x_1, 0 + y_1, 0 + z_1)$$
$$= (x_1, y_1, z_1)$$

$$u + e = e + u = u$$
 for all $u \in \mathbb{R}^3$

4. Inverse Property:

We need to prove that, for every element $u \in \mathbb{R}^3$, there exists $-u \in \mathbb{R}^3$ such that

$$u + (-u) = (-u) + u = e$$

Let
$$-u = (-x_1, -y_1, -z_1)$$
 such that

$$u + (-u) = (x_1, y_1, z_1) + (-x_1, -y_1, -z_1)$$

$$= (0,0,0)$$

$$(-u) + u = (-x_1, -y_1, -z_1) + (x_1, y_1, z_1)$$

$$= (0,0,0)$$

$$u + (-u) = e$$

$$(-u) + u = (-x_1, -y_1, -z_1) + (x_1, y_1, z_1)$$

= $(0,0,0)$

$$(-u) + u = e$$

$$u + (-u) = (-u) + u = e$$

5. Commutative Property:

We need to prove that,

$$u + v = v + u$$
 for all $u, v \in \mathbb{R}^3$

Now,

$$u + v = (x_1, y_1, z_1) + (x_2, y_2, z_2)$$

$$= (x_1 + x_2, y_1 + y_2, z_1 + z_2)$$

$$= (x_2 + x_1, y_2 + y_1, z_2 + z_1)$$

$$= (x_2, y_2, z_2) + (x_1, y_1, z_1)$$

$$u + v = v + u$$

$$u + v = v + u$$
 for all $u, v \in \mathbb{R}^3$

II Scalar Multiplication

6. Closure Property:

We need to prove that,

$$u \in V = \mathbb{R}^3 \& \alpha \in K \text{ such that } \alpha u \in V = \mathbb{R}^3$$

Now,

$$\alpha u = \alpha(x_1, y_1, z_1)$$

$$\alpha u = (\alpha x_1, y_1, z_1) \in \mathbb{R}^3$$

Therefore

for any $u \in \mathbb{R}^3$ & $\alpha \in K$ we have $\alpha u \in \mathbb{R}^3$

7. Distributive property of scalar multiplication over vector addition:

We need to prove that, for all $u, v \in V = \mathbb{R}^3 \& \alpha \in K$

$$\alpha(u+v) = \alpha u + \alpha v$$

$$\alpha(u+v) = \alpha u + \alpha v$$

$$\alpha\{(x_1, y_1, z_1) + (x_2, y_2, z_2)\} = \alpha(x_1, y_1, z_1) + \alpha(x_2, y_2, z_2)$$

$$\alpha(x_1 + x_2, y_1 + y_2, z_1 + z_2) = (\alpha x_1, y_1, z_1) + (\alpha x_2, y_2, z_2)$$

$$(\alpha x_1 + \alpha x_2, y_1 + y_2, z_1 + z_2) = (\alpha x_1 + \alpha x_2, y_1 + y_2, z_1 + z_2)$$

$$LHS = RHS$$

$$\alpha(u+v) = \alpha u + \alpha v$$
 for all $u, v \in V = \mathbb{R}^3 \& \alpha \in K$

7. Distributive property of scalar multiplication over vector addition:

We need to prove that, for all $u, v \in V = \mathbb{R}^3 \& \alpha \in K$

$$\alpha(u+v) = \alpha u + \alpha v$$

Now,
$$\alpha(u+v) = \alpha\{(x_1, y_1, z_1) + (x_2, y_2, z_2)\}$$

$$= \alpha(x_1 + x_2, y_1 + y_2, z_1 + z_2)$$

$$= (\alpha x_1 + \alpha x_2, y_1 + y_2, z_1 + z_2)$$

$$= (\alpha x_1, y_1, z_1) + (\alpha x_2, y_2, z_2)$$

$$= \alpha(x_1, y_1, z_1) + \alpha(x_2, y_2, z_2)$$

$$\alpha(u+v) = \alpha u + \alpha v$$

$$\alpha(u+v) = \alpha u + \alpha v$$
 for all $u, v \in V = \mathbb{R}^3 \& \alpha \in K$

8. Distributive property of vector addition over scalar multiplication :

We need to prove that, for all $u \in V = \mathbb{R}^3 \& \alpha, \beta \in K$

$$(\alpha + \beta)u = \alpha u + \beta u$$

Now,

$$(\alpha + \beta)u = ((\alpha + \beta)x_1, y_1, z_1) \qquad \alpha u + \beta u = \alpha(x_1, y_1, z_1) + \beta(x_1, y_1, z_1)$$
$$(\alpha + \beta)u = (\alpha x_1 + \beta x_1, y_1, z_1) \qquad = (\alpha x_1, y_1, z_1) + (\beta x_1, y_1, z_1)$$
$$\alpha u + \beta u = (\alpha x_1 + \beta x_1, 2y_1, 2z_1)$$

$$(\alpha + \beta)u \neq \alpha u + \beta u$$

Axiom 8 fails

9. Associative property of vector with scalar multiplication :

We need to prove that, for all $u \in V = \mathbb{R}^3 \& \alpha, \beta \in K$

$$\alpha(\beta u) = (\alpha \beta) u$$

Now,
$$\alpha(\beta u) = \alpha(\beta x_1, y_1, z_1)$$
$$= (\alpha \beta x_1, y_1, z_1)$$
$$= \alpha \beta(x_1, y_1, z_1)$$
$$\alpha(\beta u) = (\alpha \beta)u$$

Therefore $\alpha(\beta u) = (\alpha \beta)u$ for all $u \in V = \mathbb{R}^3 \& \alpha, \beta \in K$

9. Associative property of vector addition and scalar multiplication :

We need to prove that, for all $u \in V = \mathbb{R}^3 \& \alpha, \beta \in K$

$$\alpha(\beta u) = (\alpha \beta)u$$

Now,
$$\alpha(\beta u) = \alpha(\beta x_1, y_1, z_1)$$
 $(\alpha \beta) u = (\alpha \beta x_1, y_1, z_1)$ $= (\alpha \beta x_1, y_1, z_1)$

$$\alpha(\beta u) = (\alpha \beta) u$$

10. Property 10:

$$1(u) = ((1)x_1, y_1, z_1)$$

$$= (x_1, y_1, z_1)$$

$$1(u) = u$$

The set $V = \mathbb{R}^3$ with the vector addition and scalar multiplication

$$(i) (x_1, y_1, z_1) + (x_2, y_2 + z_3) = (x_1 + x_2, y_1 + y_2, z_1 + z_3)$$
$$(ii) k(x_1, y_1, z_1) = (kx_1, y_1, z_1)$$

is not a vector space, since Axiom 8 fails.

4. Examples:

Is the set of all positive real numbers *V* with vector addition and scalar multiplication given below form a vector space ?

$$(i) x + y = xy$$
$$(ii) kx = x^k$$

Proof: I. Abelian group under addition

1. Closure property:

Let
$$u, v \in V$$
, where $u = x \& v = y$,

we need to prove that $u + v \in V$

Now

$$u + v = x + y$$
$$u + v = xy \in V$$

$$u, v \in V$$
 implies $u + v \in V$

$$(i) x + y = xy$$

2. Associativity property:

Let $u, v, w \in V$, where u = x, v = y & w = z,

we need to prove that u + (v + w) = (u + v) + w

Now

$$u + (v + w) = x + \{y + z\}$$
$$= x + yz$$

(i) x + y = xy

$$= xyz$$

$$= xy + z$$

$$u + (v + w) = (u + v) + w$$

3. Identity Property:

We need to prove that, there exists an element $e \in V$, such that

$$u + e = e + u = u$$
 for all $u \in V$

Let e = 1 such that

$$u + e = x + 1$$

$$= x. 1$$

$$= x$$

$$= x$$

$$u + e = u$$

$$e + u = 1 + x$$

$$= 1. x$$

$$= x$$

$$e + u = u$$

$$u + e = e + u = u$$
 for all $u \in V$

4. Inverse Property:

We need to prove that, for every element $u \in V$, there exists $v \in V$ such that

$$u + v = v + u = e$$

Let
$$v = \frac{1}{u}$$
 such that

$$u + v = x + \frac{1}{x}$$
$$= x \frac{1}{x}$$
$$= 1$$

$$v + u = \frac{1}{x} + x$$
$$= \frac{1}{x} x$$
$$= 1$$

$$u + v = e$$

$$v + u = e$$

$$u + v = v + u = e$$

5. Commutative Property:

We need to prove that,

$$u + v = v + u$$
 for all $u, v \in V$

Now,

$$u + v = x + y$$

$$= xy$$

$$= yx$$

$$= y + x$$

$$u + v = v + u$$

$$u + v = v + u$$
 for all $u, v \in V$

II Scalar Multiplication

6. Closure Property:

We need to prove that,

 $u \in V \& \alpha \in K$ such that $\alpha u \in V$

Now, $\alpha u = \alpha x$ $\alpha u = x^{\alpha} \in V$

Therefore

for any $u \in V \& \alpha \in K$ we have $\alpha u \in V$

7. Distributive property of scalar multiplication over vector addition:

We need to prove that, for all $u, v \in V \& \alpha \in K$

$$\alpha(u+v) = \alpha u + \alpha v$$

Now,

$$\alpha(u+v) = \alpha u + \alpha v$$

$$\alpha\{x+y\} = \alpha \ x + \alpha y$$

$$\alpha(x y) = x^{\alpha} + y^{\alpha}$$

$$(xy)^{\alpha} = x^{\alpha} y^{\alpha}$$

$$x^{\alpha} y^{\alpha} = x^{\alpha} y^{\alpha}$$

$$LHS = RHS$$

$$\alpha(u+v) = \alpha u + \alpha v$$
 for all $u, v \in V \& \alpha \in K$

7. Distributive property of scalar multiplication over vector addition:

We need to prove that, for all $u, v \in V \& \alpha \in K$

$$\alpha(u+v) = \alpha u + \alpha v$$

$$\alpha(u+v) = \alpha\{x+y\}$$

$$= \alpha(x y)$$

$$=(x y)^{\alpha}$$

$$= x^{\alpha}y^{\alpha}$$

$$= x^{\alpha} + y^{\alpha}$$

$$= \alpha x + \alpha y$$

$$\alpha(u+v)=\alpha u+\alpha v$$

$$\alpha(u+v) = \alpha u + \alpha v$$
 for all $u, v \in V \& \alpha \in K$

8. Distributive property of vector addition over scalar multiplication :

We need to prove that, for all $u \in V \& \alpha, \beta \in K$

$$(\alpha + \beta)u = \alpha u + \beta u$$

Now,

$$(\alpha + \beta)u = (\alpha + \beta) x$$

$$\alpha u + \beta u = \alpha x + \beta x$$

$$= x^{\alpha} + x^{\beta}$$

$$\alpha u + \beta u = x^{\alpha} x^{\beta}$$

$$\alpha u + \beta u = x^{\alpha+\beta}$$

$$(\alpha + \beta)u = \alpha u + \beta u$$

9. Associative property of vector with scalar multiplication :

We need to prove that, for all $u \in V \& \alpha, \beta \in K$

$$\alpha(\beta u) = (\alpha \beta) u$$

Now,
$$\alpha(\beta u) = \alpha(\beta x)$$
$$= \alpha x^{\beta}$$
$$= x^{\alpha\beta}$$
$$= (\alpha\beta) x$$
$$\alpha(\beta u) = (\alpha\beta) u$$

Therefore $\alpha(\beta u) =$

 $\alpha(\beta u) = (\alpha \beta)u$ for all $u \in V \& \alpha, \beta \in K$

9. Associative property of vector addition and scalar multiplication :

We need to prove that, for all $u \in V \& \alpha, \beta \in K$

$$\alpha(\beta u) = (\alpha \beta)u$$

Now,
$$\alpha(\beta u) = \alpha(\beta x)$$
 $(\alpha\beta)u = (\alpha\beta)x$ $= \alpha x^{\beta}$ $(\alpha\beta)u = x^{\alpha\beta}$ $= x^{\alpha\beta}$ $\alpha(\beta u) = (\alpha\beta)u$

10. Property 10:

$$1(u) = 1 x$$
$$= x^{1}$$
$$= x$$

$$1(u) = u$$

The set $V = \mathbb{R}^+$ with the vector addition and scalar multiplication defined as follows

$$(i) x + y = xy$$
$$(ii) kx = x^k$$

is a vector space.

THANK YOU