2022년 한국소프트웨어종합학술대회(KSC2022) 발표

#### 순환 구조 인코더를 활용한 상식 기반 QA 모델의 개선 방법

Improving Commonsense-based QA Model through a Cycle-Encoder

정지원1 이소영2 박호건12

<sup>1</sup>성균관대학교 인공지능학과, <sup>2</sup>성균관대학교 전기전자컴퓨터공학과 jwjw9603@g.skku.edu, lsy7451@g.skku.edu, hogunpark@g.skku.edu





#### Contents

01

서론

- 사전 지식
- 연구 배경
- 관련 연구
- 연구 목표

02

│ **본**론

- 문제 정의
- 수식 정의
- 모델 설명

03 실험

- 데이터 세트
- 실험 결과

04

결론

- 요약 및 기여
- 향후 연구

## 01 서론

- 사전 지식
- 연구 배경
- 관련 연구
- 연구 개요



#### MPNN

- 그래프 신경망(GNN)의 가장 기본이 되는 프레임 워크
- 노드의 이웃들의 정보를 이용해서 해당 노드의 상태를 업데이트하는 형태
- 구조
  - Message function

    > ms 过量 aggregate(bt-th\*)
  - Update function
    - > 보면 바다는 예약 시간 등 업데이트하는 역할

#### MPNN(GNN)

#### **Target Node**





#### 순환 그래프 in GNN

Original graph





[A] Rooted Computational Graph (Original GNN)

Length 3- cycle count = 2

[B] Rooted Computational Graph (Circular specific GNN)

#### 상식추론

- 사람의 상식이 요구되는 질의응답 문제로 CommonsenseQA, OpenBookQA 데이터 세트가 있음
- 문장의 문맥(정보)만으로 정답을 도출하기 힘듦
- 지식 그래프(ConceptNet)를 활용한 질의응답 시스템 연구에 많이 사용됨



Figure 1 \_ConceptNet

#### 순환 그래프 in 상식

- 지식 그래프 기반 질의응답 시스템은 그래프 신경망의 입력으로 하위 그래프(Subgraph)가 입력으로 들어감
- 하위 그래프를 구성하는 노드는 네 가지의 타입이 있음
  - Question node, Answer node, Other node, Context node
- Context node는 질문과 정답을 한 문장으로 나타낸 후 언어 모델을 거친 문장을 노드로 변환시킨 것임
- Context node의 도입으로 성능 향상을 이뤄냈지만 필연적으로 순환 그래프가 발생함
  - > 그래프 신경망의 문제점이 발생함
  - > <mark>상식</mark>에 관한 질의응답은 단어 간의 **연결 관계**가 중요한 정보임
  - > 연결 관계가 순환 논법에 빠질 수 있다는 가설을 가지게 됨

#### Q. Where could a personal ficus live?

A. Front yard B. Cabin in the wood C. California D. conservatory E. tropical forest



Figure 2 \_컨텍스트 노드가 도입된 그래프 구조(In paper)

#### GNN in 질의응답



Figure 3 \_컨텍스트 노드가 도입된 그래프 구조

- 1. 질의응답 시스템은 인간이 제시하는 질문에 대하여 스스로 답변을 제공하고자 하고, 나아가 인간 수준의 추론 능력을 가지는 것에 목표를 두고 있음
- 2. 질의응답 시스템은 인간이 제기한 질문에 기계가 얼마나 자연스러운 대답을 생성하는지 알아보기 위한 연구로 크게 정보기반 시스템과 **지식 그래프 기반 질의응답 시스템**으로 나눠짐

#### 배경

- 지식 그래프 기반 질의응답 시스템은 추론을 위하여 질문/선택지를 지식 그래프와 통합하는 과정에서 많은 순환 구조(Cycle)를 생성하게 됨
- 그래프 데이터 구조를 학습하기 위해 그래 프 신경망(GNN)을 사용하는데 그래프 신 경망은 순환 구조를 포함한 서로 다른 그 래프를 구분할 수 없는 문제가 있음

#### 문제점

- 기존 지식 그래프 기반 질의응답 시스템은 노드 간의 연결 관계에만 집중하고 그래프의 전체적 인 구조를 고려하지 않음
- 순환 구조가 추론에 사용 시, **순환 논법**에 해당하는 상황이 발생할 수 있음
- 순환 논법이란 화자가 어떤 주장을 펼침에 있어 근거로 그 주장을 다시 사용하는 논 리 오류에 해당함

#### QA-GNN



- Context node를 Subgraph와 연결함
- Context node와 연결된 노드 간의 relevance score을 계산함
- Graph Attention Network을 적용함

#### **Graph Soft Counter**



- 노드의 임베딩 값 설정이 불필요하다는 것을 언급하며 값을 0으로 지정함
- 출발 Node 임베딩 값을 엣지에 전파함
- 전파된 값과 기존 엣지 임베딩 값을 더해서 업데이트 함
- 에지가 향하는 노드(도착 노드)의 값을 업데이트 함

#### 한계점과 목표

#### 한계점

- ① Context 노드의 등장으로 순환 그래프가 필연적으로 생성됨
- ② 기존 message passing 그래프 신경망의 한계점을 해결하지 못함
- ③ 노드 간의 관계에만 집중하고 그래프의 전체적인 위상, 구조(특히, 순환)를 고려하지 않음

#### 목표

순환을 파악할 수 있는 Cycle Encoder를 사용하여 순환 구조를 고려한 KG기반 질 의응답 모델을 만들고자 함

- 1. YASUNAGA et al. QA-GNN: Reasoning with language models and knowledge graphs for question answering. In:NAACL. 2021.
- 2. WANG et al. GNN is a counter? revisiting GNN for question answering. In: ICLR. 2022.

## 02 본론

- 문제 정의
- 표기 정의
- 모델 설명



지식 그래프와 사전 학습 언어 모델을 질의응답 중 상식 추론 과정에 사용하는 경우 그래프의 순환 구조를 고려한 Cycle Encoder을 제안함

Cycle Encoder를 QA-GNN, Graph-Soft-Counter 두 가지 모델에 적용함

#### 1. 현재 질의응답

기존 지식 그래프 기반 질의응답 시스템은 노드 간의 관계에만 집중하고 그래프의 전체적인 위상, 구조를 고려하지 않음

#### 2. 그래프 신경망의 한계

순환 구조를 포함한 서로 다른 그래프는 그래프 신경망으로 구분할 수 없는 문제가 있고, 기존의 지식 그래프 기반 QA 모델들은 이러한 그래프 신경망을 그대로 사용하고 있음

#### 3. 순환 그래프

순환 구조가 포함된 그래프를 추론 할 때 순환 논법에 해당하는 상황이 발생할 수 있음

#### Notation

- $1. x_v : v$  노드 임베딩 벡터 초깃값
- $2. x_{v,3}^+ : v$  노드에서 3번 이동하여 v 노드로 돌아올 수 있는 경우의 수 (순환 구조 개수 벡터)
- 3. A: 인접 행렬
- 4. CONCAT : Concatenation
- 5. MLP: 2-layer Multi-Layer Perceptron

※Graph soft counter의 CommonsenseQA데이터 임베딩 shape를 예시로 설명함

Figure 2 \_ Cycle Encoder



- $x_v$ 는 노드 임베딩 초깃값으로 Graph soft counter은 0으로 지정함
- Cycle Encoder는 message passing을 수행하기전 거치는 Encoder로 노드 임베딩 초깃값을 학습하는 인코더임
- $x_{v3}^+$  는  $x_{v3}^+$   $\in \mathbb{R}^{\# node \times K}$  크기의 순환 구조 개수 벡터로 v 노드를 기준으로 한 순환 그래프의 개수를 나타내는 값.
- K는 순환 구조 개수 벡터의 차원으로 각 차원에 동일한 값을 적용하였으며 모델에 따라 차원의 크기는 다름

#### $x_v$ shape

- 4 = batch\_size(original) > 4개의 문제
- 32 = # nodes > 32개의 노드 수(max\_node)
- 5 = 오지선다 문제
- $x_v = (4, 5, 32) > (20, 32) > (640, 1)$





※Graph soft counter의 CommonsenseQA데이터 임베딩 shape를 예시로 설명함

- a : 첫번째 문제와 1번 정답으로 이루어진 subgraph의 nodes

32

32

32

b

640

- b : 첫번째 문제와 2번 정답으로 이루어진 subgraph의 nodes



※Graph soft counter의 CommonsenseQA데이터 임베딩 shape를 예시로 설명함



## 03 실험

데이터 세트실험 결과



#### ConceptNet

단어(Concept)간 관계 분석(Relation) 메커니즘을 통해 사용자로부터 입력 받은 단어와 관련된 관계 정보를 제공해주는 지식 그래프

#### CommonsenseQA

오지선다의 문제로 문맥 없이 상식에 의존하여 질의에 대한 정답을 찾는 문제

#### OpenBookQA

사지선다의 문제로 기초적인 과학 상식을 요구하는 문제

Table 1 \_ CommonsenseQA에 대한 결과

| Methods                | 1Hdev-ACC% | 1Htest-ACC% |
|------------------------|------------|-------------|
| KagNet                 | 73.47%     | 69.01%      |
| RN                     | 74.57%     | 69.08%      |
| MHGRN                  | 74.45%     | 71.11%      |
| QA-GNN                 | 76.54%     | 73.41%      |
| GSC                    | 79.11%     | 74.48%      |
| QA-GNN(+Cycle Encoder) | 78.05%     | 74.62%      |
| GSC(+Cycle Encoder)    | 79.36%     | 75.58%      |

- QA-GNN과 GSC 모델에 순환 인코더(Cycle Encoder)를 추가함
- 실험 결과 test accuracy 각 1.21%, 1.10% 향상함

Table 2 \_ OpenBookQA에 대한 결과

| Methods                | 1Htest-ACC% |  |
|------------------------|-------------|--|
| RoBERTa-large          | 64.80%      |  |
| RN                     | 65.20%      |  |
| MHGRN                  | 66.85%      |  |
| QA-GNN                 | 67.80%      |  |
| GSC                    | 70.33%      |  |
| QA-GNN(+Cycle Encoder) | 72.20%      |  |
| GSC(+Cycle Encoder)    | 72.40%      |  |

- QA-GNN과 GSC 모델에 순환 인코더(Cycle Encoder)를 추가함
- 실험 결과 test accuracy 각 4.40%, 2.07% 향상함
- OpenBookQA 데이터 세트에서 더 큰 성능 향상이 있음

# 4 결론

요약 및 기여향후 연구



- 기존 지식 그래프 기반 질의응답 시스템은 그래프내의 객체(노드)들 간의 관계에만 집중하는 경향이 있음
- 이는 순환 그래프가 형성될 경우 순환 논법에 빠질 수 있음
- 우리는 객체 간의 관계뿐만 아니라 그래프의 전체적인 위상, 특히 순환성이 질의응답을 하는데 영향이 있을 거라 생각하였기 때문에 Cycle Encoder를 제안함
- 상식 추론을 하는데 그래프의 위상(순환성)을 고려한 접근 방식은 처음

- 01 논문에서 제안한 순환 인코더를 사용한 모델의 결과에 대한 구체적인 분석
- 02 순환 그래프가 순환 논법과 같은 오류를 발생시켜 정답을 도출하는데 문제가 있는지에 대한 **정확한 증명**
- 03 순환 그래프를 파악하고 해결할 수 있는 더 **발전된 모델** 순환성 뿐만 아니라 **그래프의 구조에 따른 질의응답 결과 분석**

### 감사합니다

발표 경청해 주셔서 감사합니다

정지원 성균관대학교 인공지능학과 석사 과정 jwjw9603@g.skku.edu



