Homework Assignment 7

Matthew Tiger

April 25, 2016

Problem 1. State all of the KKT conditions for (N-max). More precisely state all of the following results for (N-max): KKT-FONC, KKT-FOSC, KKT-SONC, KKT-SOSC.

Solution. For the following theorems, we assume $(N-\max)$ has the following form

$$(N ext{-}\max)$$
 maximize $f(oldsymbol{x})$ subject to $oldsymbol{h}(oldsymbol{x}) = oldsymbol{0}$ $oldsymbol{g}(oldsymbol{x}) \leq oldsymbol{0}$

where $f: \mathbb{R}^n \to \mathbb{R}$, $h: \mathbb{R}^n \to \mathbb{R}^m$, and $g: \mathbb{R}^n \to \mathbb{R}^p$ with $m \le n$. Additionally, define the following Lagrangian function to be $L(x, \lambda, \mu) := -f(x) + \lambda^{\mathsf{T}} h(x) + \mu^{\mathsf{T}} g(x)$.

Theorem 1 (KKT-FONC for $(N\text{-}\max)$). Let $f, g, h \in C^1$ and let x^* be a regular point and local maximizer for the problem $(N\text{-}\max)$. Then, there exist $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ such that:

i.
$$\mu^* \geq 0$$
.

ii.
$$D_{\boldsymbol{x}}\boldsymbol{L}(\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = -Df(\boldsymbol{x}^*) + \boldsymbol{\lambda}^{*\mathsf{T}}D\boldsymbol{h}(\boldsymbol{x}^*) + \boldsymbol{\mu}^{*\mathsf{T}}D\boldsymbol{g}(\boldsymbol{x}^*) = \boldsymbol{0}^{\mathsf{T}}.$$

iii.
$$\mu^{*\mathsf{T}} \boldsymbol{g}(\boldsymbol{x}^*) = 0.$$

Note that there are no explicit first-order conditions that are sufficient in general to show optimality.

Theorem 2 (KKT-SONC for (N-max)). Let $f, g, h \in C^2$ and let x^* be a regular point and local maximizer for the problem (N-max). Then, there exist $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ such that:

i.
$$\mu^* \geq 0$$
, $D_x L(x^*, \lambda^*, \mu^*) = 0^{\mathsf{T}}$, $\mu^{*\mathsf{T}} g(x^*) = 0$.

ii. For all
$$\boldsymbol{y} \in T(\boldsymbol{x}^*) = \{\boldsymbol{y} \mid D\boldsymbol{h}(\boldsymbol{x}^*)\boldsymbol{y} = \boldsymbol{0}, Dg_j(\boldsymbol{x}^*)\boldsymbol{y} = 0, j \in J(\boldsymbol{x}^*)\},$$
 we have that $\boldsymbol{y}^\mathsf{T} D_{\boldsymbol{x}}^2 \boldsymbol{L}(\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)\boldsymbol{y} \leq 0.$

Theorem 3 (KKT-SOSC for $(N-\max)$). Let $f, g, h \in C^2$ and suppose there exists a feasible point x^* and vectors $\lambda^* \in \mathbb{R}^m$ and $\mu^* \in \mathbb{R}^p$ such that:

i.
$$\mu^* > 0$$
, $D_x L(x^*, \lambda^*, \mu^*) = 0^T$, $\mu^{*T} g(x^*) = 0$.

ii. For all

$$\boldsymbol{y} \in \widetilde{T}(\boldsymbol{x}^*, \boldsymbol{\mu}^*) = \{ \boldsymbol{y} \mid D\boldsymbol{h}(\boldsymbol{x}^*)\boldsymbol{y} = \boldsymbol{0}, Dg_i(\boldsymbol{x}^*)\boldsymbol{y} = 0, \text{ for } i \in \{i \mid g_i(\boldsymbol{x}^*) = 0, \mu_i^* > 0 \} \},$$
 with $\boldsymbol{y} \neq \boldsymbol{0}$, we have that $\boldsymbol{y}^\mathsf{T} D_{\boldsymbol{x}}^2 \boldsymbol{L}(\boldsymbol{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) \boldsymbol{y} < 0.$

Then \boldsymbol{x}^* is a strict local maximizer for the problem $(N\text{-}\max)$.

Problem 2. Find local minimizers for

(N-min) minimize
$$x_1^2 + 6x_1x_2 - 4x_1 - 2x_2$$

subject to $x_1^2 + 2x_2 \le 1$
 $2x_1 - 2x_2 \le 1$.

Solution. We begin by rewriting the above problem as follows:

(N-min) minimize
$$f(\mathbf{x}) = x_1^2 + 6x_1x_2 - 4x_1 - 2x_2$$

subject to $g_1(\mathbf{x}) = x_1^2 + 2x_2 - 1 \le 0$
 $g_2(\mathbf{x}) = 2x_1 - 2x_2 - 1 \le 0$.

We proceed by using the KKT-FONC to determine the possible local minimizers for this problem. The Lagrangian associated to this problem is given by

$$L(\mathbf{x}, \boldsymbol{\mu}) = f(\mathbf{x}) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{g}(\mathbf{x})$$

$$= f(\mathbf{x}) + \mu_1 g_1(\mathbf{x}) + \mu_2 g_2(\mathbf{x})$$

$$= x_1^2 + 6x_1 x_2 - 4x_1 - 2x_2 + \mu_1 (x_1^2 + 2x_2 - 1) + \mu_2 (2x_1 - 2x_2 - 1).$$

This implies that

$$D_{\mathbf{x}}L(\mathbf{x}, \boldsymbol{\mu}) = \begin{bmatrix} 2x_1 + 6x_2 - 4 + 2\mu_1 x_1 + 2\mu_2 \\ 6x_1 - 2 + 2\mu_1 - 2\mu_2 \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}^{\mathsf{T}}.$$
 (1)

Thus, the KKT-FONC are then written as

i.
$$\mu_1, \mu_2 \ge 0$$
.

ii.
$$2x_1 + 6x_2 - 4 + 2\mu_1 x_1 + 2\mu_2 = 0$$
.

iii.
$$6x_1 - 2 + 2\mu_1 - 2\mu_2 = 0$$
.

iv.
$$\mu_1 g_1(\mathbf{x}) + \mu_2 g_2(\mathbf{x}) = \mu_1 (x_1^2 + 2x_2 - 1) + \mu_2 (2x_1 - 2x_2 - 1) = 0.$$

v.
$$q_1(\mathbf{x}) = x_1^2 + 2x_2 - 1 < 0$$
.

vi.
$$g_2(\mathbf{x}) = 2x_1 - 2x_2 - 1 \le 0$$
.

Solving the system (1) for x_1, x_2 yields that

$$x_1 = \frac{\mu_2 - \mu_1 + 1}{3}$$

$$x_2 = \frac{\mu_1^2 - \mu_1 \mu_2 - 4\mu_2 + 5}{9}$$
(2)

with $\mu_1, \mu_2 \geq 0$. Using these representations of x_1, x_2 we see that condition iv. yields three possible solutions in terms of μ_1, μ_2 :

Case 1:
$$\mu_2 = \frac{13 + 12\mu_1 + 6\mu_1^2 - \sqrt{169 + 200\mu_1 + 388\mu_1^2}}{2(14 + 3\mu_1)}$$

Case 2: $\mu_2 = \frac{13 + 12\mu_1 + 6\mu_1^2 + \sqrt{169 + 200\mu_1 + 388\mu_1^2}}{2(14 + 3\mu_1)}$
Case 3: $\mu_1 = -\frac{14}{3}$, $\mu_2 = -\frac{3220}{789}$

We readily see that Case 3 cannot happen in light of condition i.

Assuming Case 1 is true and using the representations of x_1, x_2 in (2), we see that $g_1(\mathbf{x}) < 0$ for $\mu_1, \mu_2 \ge 0$ implying that this constraint is inactive and that $\mu_1 = 0$. This implies that $\mu_2 = 0$ which in turn implies that $x_1 = 1/3, x_2 = 5/9$. However, $g_1(x_1, x_2) = 2/9 \nleq 0$ violating condition v. Thus, Case 1 cannot happen.

Assuming Case 2 is true and using the representations of x_1, x_2 in (2), we again see that $g_1(\mathbf{x}) < 0$ for $\mu_1, \mu_2 \ge 0$ implying that this constraint is inactive and that $\mu_1 = 0$. This implies that $\mu_2 = 13/14$ which in turn implies that $x_1 = 9/14$, $x_2 = 1/7$. These values of x_1, x_2 satisfy conditions v. and vi.

Therefore, the only vector \boldsymbol{x}^* that satisfies conditions i. - vi., i.e. the only possible local minimizer for this problem is

$$oldsymbol{x}^* = egin{bmatrix} 9/14 \ 1/7 \end{bmatrix}$$

with associated KKT multiplier

$$\mu^* = \begin{bmatrix} 0 \\ 13/14 \end{bmatrix}$$
.

To verify whether or not this vector is a strict local minimizer, we check the KKT-SOSC. For the vectors \mathbf{x}^* and $\boldsymbol{\mu}^*$ defined above, we see that $\{i \mid g_i(\mathbf{x}^*) = 0, \mu_i^* > 0\} = \{2\}$ and that

$$\widetilde{T}(\boldsymbol{x}^*, \boldsymbol{\mu}^*) = \{ \boldsymbol{y} \in \mathbb{R}^2 \mid Dg_2(\boldsymbol{x}^*)\boldsymbol{y} = 0 \}$$

$$= \{ \boldsymbol{y} \in \mathbb{R}^2 \mid [2, -2]\boldsymbol{y} = 0 \}$$

$$= \{ \boldsymbol{y} = [y_1, y_2]^\mathsf{T} \in \mathbb{R}^2 \mid y_1 = y_2 \}.$$

Further, we have, for these vectors, that

$$D_{\boldsymbol{x}}^2 L(\boldsymbol{x}^*, \boldsymbol{\mu}^*) = \begin{bmatrix} 2 + 2\mu_1 & 6 \\ 6 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ 6 & 0 \end{bmatrix}.$$

Combining we see that for $\mathbf{0} \neq \mathbf{y} \in \widetilde{T}(\mathbf{x}^*, \boldsymbol{\mu}^*)$, we have that

$$\boldsymbol{y}^\mathsf{T} D_{\boldsymbol{x}}^2 L(\boldsymbol{x}^*, \boldsymbol{\mu}^*) \boldsymbol{y} = \begin{bmatrix} y_1 \\ y_1 \end{bmatrix}^\mathsf{T} \begin{bmatrix} 2 & 6 \\ 6 & 0 \end{bmatrix} \begin{bmatrix} y_1 \\ y_1 \end{bmatrix} = 14y_1^2 > 0$$

for $y_1 \neq 0$. Therefore, $\boldsymbol{x}^* = [9/14, 1/7]^\mathsf{T}$ is a strict local minimizer.

Problem 3. Consider the problem of optimizing

(N) minimize (maximize)
$$(x_1 - 2)^2 + (x_2 - 1)^2$$

 $x_2 - x_1^2 \ge 0$
subject to $2 - x_1 - x_2 \ge 0$
 $x_1 \ge 0$.

Let $\mathbf{x}^* = [0, 0]^{\mathsf{T}}$.

- a. Does \boldsymbol{x}^* satisfy the KKT-FONC for minimization or maximization? What are the KKT multipliers?
- b. Does x^* satisfy the KKT-SOSC? Justify your answer.

Solution. We begin by rewriting the problem (N) as

(N₁) minimize (maximize)
$$f(\mathbf{x}) = (x_1 - 2)^2 + (x_2 - 1)^2$$

 $g_1(\mathbf{x}) = -x_2 + x_1^2 \leq 0$
subject to $g_2(\mathbf{x}) = -2 + x_1 + x_2 \leq 0$
 $g_3(\mathbf{x}) = -x_1 \leq 0$.

For both problems, the vector $\mathbf{x}^* = [0, 0]^\mathsf{T}$ is a regular point. To see this, we note that \mathbf{x}^* is feasible and the constraints $g_1(\mathbf{x}^*) \leq 0$ and $g_3(\mathbf{x}^*) \leq 0$ are both active for this vector. Since $\nabla g_1(\mathbf{x}^*) = [0, -1]^\mathsf{T}$ and $\nabla g_3(\mathbf{x}^*) = [-1, 0]^\mathsf{T}$ are linearly independent, we have that \mathbf{x}^* is a regular point as desired.

The Lagrangian function associated to problem $(N_1$ -min) is given by

$$L_{\min}(\boldsymbol{x}, \boldsymbol{\mu}) = f(\boldsymbol{x}) + \mu_1 g_1(\boldsymbol{x}) + \mu_2 g_2(\boldsymbol{x}) + \mu_3 g_3(\boldsymbol{x})$$

= $(x_1 - 2)^2 + (x_2 - 1)^2 + \mu_1 (-x_2 + x_1^2) + \mu_2 (-2 + x_1 + x_2) + \mu_3 (-x_1)$

while the Lagrangian associated to the problem $(N_1$ -max) is given by

$$L_{\max}(\boldsymbol{x}, \boldsymbol{\mu}) = -f(\boldsymbol{x}) + \mu_1 g_1(\boldsymbol{x}) + \mu_2 g_2(\boldsymbol{x}) + \mu_3 g_3(\boldsymbol{x})$$

= $-(x_1 - 2)^2 - (x_2 - 1)^2 + \mu_1 (-x_2 + x_1^2) + \mu_2 (-2 + x_1 + x_2) + \mu_3 (-x_1).$

a. Note that for problem $(N_1$ -min), we have that

$$D_{\mathbf{x}}L_{\min}(\mathbf{x}, \boldsymbol{\mu}) = \begin{bmatrix} 2(x_1 - 2) + 2\mu_1 x_1 + \mu_2 - \mu_3 \\ 2(x_2 - 1) + \mu_2 - \mu_1 \end{bmatrix}^{\mathsf{T}},$$

while for the problem $(N_1\text{-max})$, we have that

$$D_{\boldsymbol{x}}L_{\max}(\boldsymbol{x},\boldsymbol{\mu}) = \begin{bmatrix} -2(x_1-2) + 2\mu_1x_1 + \mu_2 - \mu_3 \\ -2(x_2-1) + \mu_2 - \mu_1 \end{bmatrix}^{\mathsf{T}}.$$

The KKT-FONC for problem $(N_1$ -min) then require that the following conditions hold i.a. $\mu_1, \mu_2, \mu_3 \geq 0$.

ii a.
$$2(x_1 - 2) + 2\mu_1 x_1 + \mu_2 - \mu_3 = 0$$
.

iii a.
$$2(x_2-1) + \mu_2 - \mu_1 = 0$$
.

iv a.
$$\mu_1 g_1(\mathbf{x}) + \mu_2 g_2(\mathbf{x}) + \mu_3 g_3(\mathbf{x}) = \mu_1 (-x_2 + x_1^2) + \mu_2 (-2 + x_1 + x_2) + \mu_3 (-x_1) = 0.$$

v a.
$$g_1(\mathbf{x}) = -x_2 + x_1^2 \le 0$$
.

vi a.
$$g_2(\mathbf{x}) = -2 + x_1 + x_2 \le 0$$
.

vii a.
$$g_2(\mathbf{x}) = -x_1 \le 0$$
.

while the KKT-FONC for problem $(N_1$ -max) require that the following similar conditions hold

i b.
$$\mu_1, \mu_2, \mu_3 \geq 0$$
.

ii b.
$$-2(x_1-2)+2\mu_1x_1+\mu_2-\mu_3=0$$
.

iii b.
$$-2(x_2-1) + \mu_2 - \mu_1 = 0$$
.

iv b.
$$\mu_1 g_1(\mathbf{x}) + \mu_2 g_2(\mathbf{x}) + \mu_3 g_3(\mathbf{x}) = \mu_1 (-x_2 + x_1^2) + \mu_2 (-2 + x_1 + x_2) + \mu_3 (-x_1) = 0.$$

v b.
$$g_1(\mathbf{x}) = -x_2 + x_1^2 \le 0$$
.

vi b.
$$g_2(\mathbf{x}) = -2 + x_1 + x_2 \le 0$$
.

vii b.
$$g_2(\mathbf{x}) = -x_1 \le 0$$
.

Now suppose that $\mathbf{x}^* = [0, 0]^\mathsf{T}$. For both problems, since \mathbf{x}^* is a regular point, conditions v a. - vii a. and v b. - vii b. are satisfied. Also, for both problems, since the constraint $g_2(\mathbf{x}^*)$ is inactive we have that by condition iv a. and iv b. that $\mu_2 = 0$.

For the problem $(N_1\text{-min})$, conditions ii a. and iii a. imply that $\mu_2 - \mu_3 = -\mu_3 = 4$ and $\mu_2 - \mu_1 = -\mu_1 = 2$ or that $\mu_1 = -2$, $\mu_2 = 0$, and $\mu_3 = -4$. However, this violates condition i a. so the point \boldsymbol{x}^* does not satisfy the KKT-FONC for the problem $(N_1\text{-min})$.

For the problem $(N_1\text{-max})$, conditions ii b. and iii b. imply that $\mu_2 - \mu_3 = -\mu_3 = -4$ and $\mu_2 - \mu_1 = -\mu_1 = -2$ or that $\mu_1 = 2$, $\mu_2 = 0$, and $\mu_3 = 4$. Therefore, the vector $\boldsymbol{x}^* = [0, 0]^\mathsf{T}$ satisfies the KKT-FONC for the problem $(N_1\text{-max})$ with associated KKT multiplier $\boldsymbol{\mu}^* = [2, 0, 4]^\mathsf{T}$.

b. We now check to see if $\mathbf{x}^* = [0, 0]^\mathsf{T}$ satisfies the KKT-SOSC for the problem $(N_1\text{-max})$. Note that for $\mathbf{x}^* = [0, 0]^\mathsf{T}$, we have that

$$D_{\boldsymbol{x}}^2 L_{\max}(\boldsymbol{x}^*, \boldsymbol{\mu}^*) = \begin{bmatrix} -2 + 2\mu_1 & 0 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}.$$

We also see that for the vectors \mathbf{x}^* and $\boldsymbol{\mu}^*$ defined above, $\{i \mid g_i(\mathbf{x}^*) = 0, \mu_i^* > 0\} = \{1, 3\}$, and that

$$\widetilde{T}(\boldsymbol{x}^*, \boldsymbol{\mu}^*) = \{ \boldsymbol{y} \in \mathbb{R}^2 \mid Dg_1(\boldsymbol{x}^*)\boldsymbol{y} = 0, Dg_3(\boldsymbol{x}^*)\boldsymbol{y} = 0 \}$$

= $\{ \boldsymbol{y} \in \mathbb{R}^2 \mid [0, -1]\boldsymbol{y} = 0, [-1, 0]\boldsymbol{y} = 0 \}$
= $\{ \boldsymbol{0} \in \mathbb{R}^2 \}.$

Therefore, we trivially have that the second condition in the KKT-SOSC is satisfied and $\mathbf{x}^* = [0, 0]^\mathsf{T}$ is a strict local maximizer.

Problem 4. Consider the problem with equality constraint

minimize
$$f(x)$$

subject to $h(x) = 0$.

We can convert the above into the equivalent optimization problem

minimize
$$f(\mathbf{x})$$

subject to $\frac{1}{2} \|\mathbf{h}(\mathbf{x})\|^2 \le 0$.

Write down the KKT condition for the equivalent problem and explain why the KKT theorem cannot be applied in this case.

Solution. Assume $f: \mathbb{R}^n \to \mathbb{R}$ and $h: \mathbb{R}^n \to \mathbb{R}^m$ with $m \leq n$. The Lagrangian associated to the equivalent problem is given by

$$L(\boldsymbol{x}, \boldsymbol{\mu}) = f(\boldsymbol{x}) + \frac{1}{2} \boldsymbol{\mu}^{\mathsf{T}} \|\boldsymbol{h}(\boldsymbol{x})\|^{2}$$
$$= f(\boldsymbol{x}) + \frac{\mu_{1}}{2} h_{1}(\boldsymbol{x})^{2} + \dots + \frac{\mu_{m}}{2} h_{m}(\boldsymbol{x})^{2}.$$

From this we readily see that

$$D_{\boldsymbol{x}}L(\boldsymbol{x},\boldsymbol{\mu}) = \begin{bmatrix} \frac{\partial f(\boldsymbol{x})}{\partial x_{1}} + \mu_{1}h_{1}(\boldsymbol{x})\frac{\partial h_{1}(\boldsymbol{x})}{\partial x_{1}} + \cdots + \mu_{m}h_{m}(\boldsymbol{x})\frac{\partial h_{m}(\boldsymbol{x})}{\partial x_{1}} \\ \frac{\partial f(\boldsymbol{x})}{\partial x_{2}} + \mu_{1}h_{1}(\boldsymbol{x})\frac{\partial h_{1}(\boldsymbol{x})}{\partial x_{2}} + \cdots + \mu_{m}h_{m}(\boldsymbol{x})\frac{\partial h_{m}(\boldsymbol{x})}{\partial x_{2}} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} \frac{\partial f(\boldsymbol{x})}{\partial x_{1}} + \sum_{i=1}^{m} \mu_{i}h_{i}(\boldsymbol{x})\frac{\partial h_{i}(\boldsymbol{x})}{\partial x_{1}} \\ \frac{\partial f(\boldsymbol{x})}{\partial x_{2}} + \sum_{i=1}^{m} \mu_{i}h_{i}(\boldsymbol{x})\frac{\partial h_{i}(\boldsymbol{x})}{\partial x_{2}} \\ \vdots \\ \frac{\partial f(\boldsymbol{x})}{\partial x_{m}} + \mu_{1}h_{1}(\boldsymbol{x})\frac{\partial h_{1}(\boldsymbol{x})}{\partial x_{m}} + \cdots + \mu_{m}h_{m}(\boldsymbol{x})\frac{\partial h_{m}(\boldsymbol{x})}{\partial x_{m}} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} \frac{\partial f(\boldsymbol{x})}{\partial x_{1}} + \sum_{i=1}^{m} \mu_{i}h_{i}(\boldsymbol{x})\frac{\partial h_{i}(\boldsymbol{x})}{\partial x_{1}} \\ \frac{\partial f(\boldsymbol{x})}{\partial x_{2}} + \sum_{i=1}^{m} \mu_{i}h_{i}(\boldsymbol{x})\frac{\partial h_{i}(\boldsymbol{x})}{\partial x_{2}} \\ \vdots \\ \frac{\partial f(\boldsymbol{x})}{\partial x_{m}} + \sum_{i=1}^{m} \mu_{i}h_{i}(\boldsymbol{x})\frac{\partial h_{i}(\boldsymbol{x})}{\partial x_{m}} \end{bmatrix}^{\mathsf{T}}.$$

Suppose that $f, h \in C^1$ and x^* is a feasible regular point and a local minimizer. Then the KKT condition for the equivalent problem can be stated as there exists $\mu^* \in \mathbb{R}^m$ such that

- i. $\mu^* \geq 0$.
- ii. $D_{x}L(x^{*}, \mu^{*}) = 0.$

iii.
$$\boldsymbol{\mu}^{*\mathsf{T}} \frac{1}{2} \|\boldsymbol{h}(\boldsymbol{x}^*)\|^2 = \mu_1 h_1(\boldsymbol{x})^2 + \dots + \mu_m h_m(\boldsymbol{x})^2 = 0.$$

The KKT condition may not be applied here since no feasible point is also a regular point. To see why this is true, assume the point \boldsymbol{x} is feasible. Then $(1/2) \|\boldsymbol{h}(\boldsymbol{x})\|^2 \leq 0$ or

$$h_1(\boldsymbol{x})^2 + \dots + h_m(\boldsymbol{x})^2 \le 0.$$

This implies that $h_i(\mathbf{x}) = 0$ for $1 \le i \le m$. Hence, the constraint is active for this problem. Note that

$$\nabla \frac{1}{2} \|\boldsymbol{h}(\boldsymbol{x})\|^2 = \begin{bmatrix} h_1(\boldsymbol{x}) \frac{\partial h_1(\boldsymbol{x})}{\partial x_1} + \dots + h_m(\boldsymbol{x}) \frac{\partial h_m(\boldsymbol{x})}{\partial x_1} \\ h_1(\boldsymbol{x}) \frac{\partial h_1(\boldsymbol{x})}{\partial x_2} + \dots + h_m(\boldsymbol{x}) \frac{\partial h_m(\boldsymbol{x})}{\partial x_2} \\ \vdots \\ h_1(\boldsymbol{x}) \frac{\partial h_1(\boldsymbol{x})}{\partial x_m} + \dots + h_m(\boldsymbol{x}) \frac{\partial h_m(\boldsymbol{x})}{\partial x_m} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^m h_i(\boldsymbol{x}) \frac{\partial h_i(\boldsymbol{x})}{\partial x_1} \\ \sum_{i=1}^m h_i(\boldsymbol{x}) \frac{\partial h_i(\boldsymbol{x})}{\partial x_2} \\ \vdots \\ \sum_{i=1}^m h_i(\boldsymbol{x}) \frac{\partial h_i(\boldsymbol{x})}{\partial x_m} \end{bmatrix}.$$

From this we clearly see that since $h_i(\boldsymbol{x}) = 0$ for $1 \le i \le m$, we have that $\nabla \frac{1}{2} \|\boldsymbol{h}(\boldsymbol{x})\|^2 = \mathbf{0}$ or that the vector $\nabla \frac{1}{2} \|\boldsymbol{h}(\boldsymbol{x})\|^2$ is linearly dependent. Therefore, no feasible point is regular and the KKT condition is not applicable.