CMIR-NET: A Deep Learning Based Model For Cross-Modal Data Retrieval

Ushasi Chaudhuri

Ph.D. student, Under the guidance of Avik Bhattacharya, Biplab Banerjee & Mihai Datcu (DLR, Germany)

Indian Institute of Technology, Bombay (IIT-B)

December 2020 IEEE GRSS Young Researchers Conclave.

Content Based Image Retrieval:

- Availability of wide range of satellite sensors: accumulation of an unprecedented volume of data.
- Necessity of sophisticated information extraction strategies.
- Image retrieval aims to retrieve a number of visually coherent images from a query.
- Uni-modal retrieval is a relatively easy work. Cross-modal is challenging.

A network learned for a particular modality may not give good performance on different data.

Definition (No free lunch theorem)

^a If an algorithm performs well on a certain class of problems then it necessarily pays for that with degraded performance on the set of all remaining problems.

 $^{^{}a}$ Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization", IEEE Transactions on Evolutionary Computation 1, 67.

Motivation - TPAMI 2020

Why limit CBIR to just one data stream?

Advantages of each modality:

- PAN images: High spatial resolution.
- Multi-spectral images: high spectral resolution.
- SAR images: Polarization information. No cloud clutter.
- VHR optical image: High spatial resolution, 3 spectral channels.

Can be an ill-posed problem.

- 1. 1m pan IKONOS image of Valparaiso, Chile, 2. multispectral-imaging-sensors
- ${\it 3. Sentinel-1 SAR \ dataset \ with \ C \ band, \ 4. \ sparsers idential area \ from \ PatternNet \ dataset.}$

Motivation

Why not try this in RS with so many available sensors?

- Important problems:
 - Panchromatic ⇔ Multispectral.
 - Optical ⇔ Synthetic Aperture Radar (SAR).
 - RGB ⇔ Digital elevation maps/LiDAR point clouds.
 - Image \Leftrightarrow text.
 - Image \Leftrightarrow audio.

Upcoming: VideoSAR: text and audio annotation

Introduction CBIR Methodology Objective function Algorithm Results

Overall Block Diagram

Pre-training

- Train 2 separate classification n/w for **A** and **B** data.
- Extracted features (\mathbf{Z}_a and \mathbf{Z}_b) are made highly non-redundant by adding a soft orthogonality constrained.

$$\mathcal{L}_{\mathbf{A}/\mathbf{B}} = \mathsf{CE}(\tilde{\mathbf{Z}}_{a/b}) + ||\tilde{\mathbf{Z}}_{a/b}^T \tilde{\mathbf{Z}}_{a/b} - \mathsf{I}||_\mathsf{F}^2$$

Construction of V

To construct $\{V_{a_i}\}$ and $\{V_{b_i}\}$ from $\{Z_{a_i}\}$ and $\{Z_{b_i}\}$, we use a neural network based discriminative encoder-decoder architecture which minimizes:

• 1. **Difference** between each pair of corresponding i^{th} samples in V_a and V_b :

$$\mathcal{L}_2 = ||\mathbf{V}_a - \mathbf{V}_b||_F^2$$

• 2. Classification loss on $V_{ab} = [V_a, V_b]$:

$$\mathcal{L}_3 = \mathsf{CE}(\mathbf{V}_{ab})$$

Construction of V

• 3. Separate **feature norm** loss measures on both V_a and V_b (Since the range of values of raw data features varies widely):

$$\mathcal{L}_4 = ||\mathbf{V}_a||_F^2 + ||\mathbf{V}_b||_F^2$$

• 4. **Decoder** loss which is deemed to reconstruct cross-domain samples given the latent representations:

$$\mathcal{L}_5 = ||w_{ab}\mathbf{V}_a - \mathbf{Z}_b||_F^2 + ||w_{ba}\mathbf{V}_b - \mathbf{Z}_a||_F^2$$

where $\mathbf{Z}_{a/b} = \{Z_{a_i/b_i}\}.$

Overall equation:

$$\mathcal{L} = \lambda_1 \mathcal{L}_2 + \lambda_2 \mathcal{L}_3 + \lambda_3 \mathcal{L}_4 + \lambda_4 \mathcal{L}_5 + \lambda_5 \mathcal{R}$$

Where, given the non-negative weights λ_{1-5} and \mathcal{R} defines the standard ℓ_2 regularizer on w_a and w_b .

$$\mathcal{R} = ||\mathbf{w}_{\mathsf{a}} - \alpha||_{\mathsf{F}}^2 + ||\mathbf{w}_{\mathsf{b}} - \alpha||_{\mathsf{F}}^2$$

for $\alpha \geq 0$. (**To avoid:** Trivial solution)

Algorithm 1 The proposed training and inference stage

Input: $\{(a_k, l_k)\}, \{(b_j, l_j)\}, \text{ and } X$

Output: Unified representations $V_{a/b}$ ($w_a Z_a$ and $w_b Z_b$).

- Normalize A and B.
- \longrightarrow 2: Generate intermediate representations $\{\mathbf{Z}_{a_i}\}$ and $\{\mathbf{Z}_{b_i}\}$ by minimizing $\mathcal{L}_{A/B}$.
 - 3: Train the network to obtain V by optimizing \mathcal{L} . The optimization follows the following stages:
 - 4: **do**

5:

$$\min_{w_a, w_b} \lambda_1 \mathcal{L}_2 + \lambda_2 \mathcal{L}_3 + \lambda_3 \mathcal{L}_4 + \lambda_4 \mathcal{L}_5 + \lambda_5 \mathcal{R}$$
 (8)

- →6: while until convergence
 - 7: **return** w_a and w_b (for projecting data onto V)

Input: $a \in \mathbf{A}$ or $b \in \mathbf{B}$

Output: Top-K retrieved data.

- 8: Uni-modal retrieval using K-NN from $w_a \mathbf{Z}_a$ or $w_b \mathbf{Z}_b$.
- →9: Cross-modal retrieval using K-NN from $w_a \mathbf{Z}_a$ and $w_b \mathbf{Z}_b$.

Datasets used:

- DSRSID: Panchromatic Multi-spectral (GF-1 satellite).
 (Single-label, paired).
- UCMerced: VHR RS images (RGB) speech. (Multi-label, un-paired).

Results

Figure: Top-3 retrieval instances from cross-modal query samples.

1. Results on DSRSID dataset

Table: Performance on the DSRSID dataset, under different embedding vector code lengths (d_v) .

Task	$d_v=16$		$d_{v} = 32$		$d_{v} = 64$	
	mAP	P@10	mAP	P@10	mAP	P@10
Pan→Mul	95.52	97.10	98.96	98.99	99.05	99.40
Mul→Pan	98.77	99.00	97.95	97.99	98.93	98.60
Pan→Pan	99.41	99.82	98.11	98.40	98.69	99.40
Mul→Mul	99.55	99.69	98.18	98.60	98.25	98.40

Table: Performance of the CMIR-NET framework on UC Merced-Audio dataset, with variation in embedding vector code length (d_v) .

Model	$d_{v} = 32$		$d_{v} = 64$		$d_{v} = 128$	
	mAP	P@10	mAP	P@10	mAP	P@10
Img→Aud	29.67	60.91	41.60	63.15	62.11	64.81
Aud→Img	21.60	40.11	42.36	51.29	54.21	56.00

$$\mathcal{R} = ||w_a - \alpha||_F^2 + ||w_b - \alpha||_F^2$$

Table: Sensitivity to critical parameter α for the UC-Merced \leftrightarrow Audio.

Model	$\alpha = 0$		$\alpha = 1$		$\alpha = 2$	
	mAP	P@10	mAP	P@10	mAP	P@10
$Img{ o}Aud$	0	0	62.11	64.81	32.09	52.77
Aud→Img	0	0	54.21	56.00	33.64	45.01

Conclusions

- Novel framework for cross-modal information retrieval.
- Framework focuses on learning a unified and discriminative embedding space from different input modalities.
- Generic enough to handle both uni-modal and cross-modal retrieval.
- Future work: Self-supervised CMIR or zero-shot CMIR or Sketch-based IR?

U. Chaudhuri, B. Banerjee, A. Bhattacharya, M. Datcu, CMIR-NET: A Deep Learning Based Model For Cross-Modal Retrieval In Remote Sensing, Pattern Recognition Letters 131 (2020): 456-462.

