POWERED BY Dialog

Image observation appts. for e.g. liquid crystal panel - has transparent light quantity controller provided in optical projection side outside overlap unit, which controls transparent quantity of light according to intensity a light incidence

Patent Assignee: CANON KK

Patent Family

Patent Number	Kind	Date	Application Number	Kind	Date	Week	Туре
JP 8160340	Α	19960621	JP 94329981	A	19941205	199635	В

Priority Applications (Number Kind Date): JP 94329981 A (19941205)

Patent Details

Patent	Kind	Language	Page	Main IPC	Filing Notes
JP+8160340	A		15	G02B-027/02	

Abstract:

JP 8160340 A

The appts. has an image display (2) which exhibits the image. The image displaying in the device is managed by a controller (3). An optical device forms a virtual image of the image displayed in the display.

An overlap unit does the overlap display of the external video wherein the observing person can see the virtual image. A transparent light quantity controller (4) provided in the optical projection side outside the unit, controls the transparent quantity of light according to the intensity of light incidence.

ADVANTAGE - Maintains brightness variation of video thus, keeping constant brightness. Prevents virtual image display from looking needless bright. Offers handy compsn. which enables changing of transmission and reflection rat depending on intensity of light incidence.

Dwg.1/14

Derwent World Patents Index © 2004 Derwent Information Ltd. All rights reserved. Dialog® File Number 351 Accession Number 10848661

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

庁内整理番号

(11)特許出願公開番号

特開平8-160340

(43)公開日 平成8年(1996)6月21日

(51) Int.Cl.6

識別記号

FΙ

技術表示箇所

G 0 2 B 27/02

Α

審査請求 未請求 請求項の数15 FD (全 15 頁)

(21)出願番号

特願平6-329981

(71)出願人 000001007

キヤノン株式会社

(22)出願日 平成6年(1994)12月5日

東京都大田区下丸子3丁目30番2号

(72)発明者 為国 靖宏

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(74)代理人 弁理士 高梨 幸雄

(54) 【発明の名称】 画像観察装置

(57)【要約】

【目的】 シースルー映像の一部に表示素子の虚像をオーパーラップ表示する画像観察装置において、色々な条件の下で、シースルー映像及びこれにオーパーラップされる表示素子の虚像が共に良好に観察できるものを得ること。

【構成】 画像を表示する画像表示手段と、該画像表示手段に画像を表示せしめる表示制御手段と、該画像表示手段に表示された画像の虚像を形成する光学手段と、該虚像を観察者が観察する外界の映像の一部にオーバーラップ表示するオーバーラップ手段と、外界もしくは外界の映像の明るさを検知する入射光量検知手段と、該オーバーラップ手段の外界からの光入射側に設けて、電気的に透過率を制御する透過光量制御手段とを有し、該透過光量制御手段の透過率を該入射光量検知手段からの出力を用いて制御している。

【特許請求の範囲】

【請求項1】 画像を表示する画像表示手段と、該画像表示手段に画像を表示せしめる表示制御手段と、該画像表示手段に表示された画像の虚像を形成する光学手段と、該虚像を観察者が観察する外界の映像の一部にオーバーラップ表示するオーバーラップ手段と、

オーバーラップ手段の外界からの光入射側に設けて、入 射光の強度に応じて透過光量を制御する透過光量制御手 段とを有することを特徴とする画像観察装置。

【請求項2】 前記透過光量制御手段は、光束が通過す 10 る少なくとも2つの領域を有し、その内の1つの領域は前記虚像と重なる外界の映像から観察者の瞳に達する光束が透過する領域であり、該2つの領域の透過率が各々独立に制御可能であることを特徴とする請求項1の画像観察装置。

【請求項3】 前記表示制御手段は、前記画像表示手段の表示面を構成する複数の表示領域の中から任意の表示領域に、画像を表示することを特徴とする請求項1の画像観察装置。

【請求項4】 画像を表示する画像表示手段と、該画像 表示手段に画像を表示せしめる表示制御手段と、該画像 表示手段に表示された画像の虚像を形成する光学手段 と、該虚像を観察者が観察する外界の映像の一部にオーバーラップ表示するオーバーラップ手段と、外界もしくは外界の映像の明るさを検知する入射光量検知手段と、該オーバーラップ手段の外界からの光入射側に設けて、電気的に透過率を制御する透過光量制御手段とを有し、該透過光量制御手段の透過率を該入射光量検知手段からの出力を用いて制御していることを特徴とする画像観察 装置。 30

【請求項5】 前記透過光量制御手段は光束が通過する 少なくとも2つの領域を有し、その内の1つの領域は前 記虚像と重なる外界の映像から観察者の瞳に達する光束 が透過する領域であり、該2つの領域を透過光量が各々 独立で、かつ電気的に制御可能な透過率制御案子より構 成していることを特徴とする請求項4の画像観察装置。

【請求項6】 前記表示制御手段は、前記画像表示手段の表示面を構成する複数の表示領域の中から任意の表示領域に、画像を表示することを特徴とする請求項4の画像観察装置。

【請求項7】 前記入射光量検知手段はオーバーラップ 表示されたオーバーラップ映像部分の明るさとそれ以外 の映像部分の明るさを検知し、

前記透過光量制御手段は該入射光量検知手段からの信号 に基づいてオーバーラップ映像部分の明るさと、それ以 外の映像部分の明るさが略等しくなるように制御してい ることを特徴とする請求項4又は5の画像観察装置。

【請求項8】 画像を表示する画像表示手段と、該画像表示手段に画像を表示せしめる表示制御手段と、該画像表示手段に表示された画像の虚像を形成する光学手段 50

と、該虚像を観察者が観察する外界の映像の一部にオーバーラップ表示するオーバーラップ手段と、外界もしくは外界の映像の明るさを検知する入射光量検知手段と、 該オーバーラップ手段の外界からの光入射側に設けた透 過光量制御手段とを有し、

該透過光量制御手段は光束が通過する少なくとも2つの 領域を有し、その内の1つの領域は該虚像と重なる外界 の映像から観察者の瞳に達する光束が透過する領域であ り、この領域を一定透過率の光学部材で構成しており、 その他の領域を透過率を電気的に制御可能な透過率制御 素子より構成しており、該透過率制御素子の透過率を該 入射光量検知手段からの出力を用いて制御していること を特徴とする画像観察装置。

【請求項9】 前記入射光量検知手段はオーパーラップ表示されたオーパーラップ映像部分の明るさとそれ以外の部分の明るさを検知し、前記透過光量制御手段は該入射光量検知手段からの信号に基づいて、オーパーラップ映像部分の明るさと、それ以外の映像部分の明るさが略等しくなるように制御していることを特徴とする請求項8の画像観察装置。

【請求項10】 画像を表示する画像表示手段と、該画像表示手段に画像を表示せしめる表示制御手段と、該画像表示手段に表示された画像の虚像を形成する光学手段と、該虚像を観察者が観察する外界の映像の一部にオーバーラップ表示するオーバーラップ手段と、外界もしくは外界の映像の明るさを検知する入射光量検知手段と、該オーバーラップ手段の外界からの光入射側に設けた透過光量制御手段とを有し、

該透過光量制御手段は光束が通過する少なくとも2つの30 領域を有し、その内の1つの領域は該虚像と重なる外界の映像から観察者の瞳に達する光束が透過する領域であり、この部分を透過率を電気的に制御可能な透過率制御案子より構成しており、その他の領域を一定透過率の光学部材で構成しており、該透過率制御素子の透過率を該入射光量検知手段からの出力を用いて、制御していることを特徴とする画像観察装置。

【請求項11】 前記入射光量検知手段はオーバーラップ表示されたオーバーラップ映像部分の明るさと、それ以外の部分の明るさを検知し、前記透過光量制御手段は該入射光量検知手段からの信号に基づいて、オーバーラップ映像部分の明るさと、それ以外の映像部分の明るさが略等しくなるように制御していることを特徴とする請求項10の画像観察装置。

【請求項12】 画像を表示する画像表示手段と、該画像表示手段の表示面を構成する複数の表示領域の中から任意の表示領域に画像を表示する表示制御手段と、該画像表示手段に表示された画像の虚像を形成する光学手段と、該虚像を観察者が観察する外界の映像の一部にオーバーラップ表示するオーバーラップ手段と、外界もしくは外界の映像の明るさを検知する入射光量検知手段と、

該オーバーラップ手段の外界からの光入射側に設けた透 過光量制御手段とを有し、

該透過光量制御手段は該表示面を構成する複数の表示領域に対応する領域と、表示面に対応しない領域とを有し、各領域は夫々個別に透過率を電気的に制御できるように構成しており、該入射光量検知手段からの出力を用いて、該虚像と重なる外界の映像から観察者の瞳に達する光東が透過する領域と、その他の領域とで異なる透過光量制御を行っていることを特徴とする画像観察装置。

【請求項13】 表示制御手段からの信号により画像表 10 示手段に表示した画像を光学手段で虚像として形成し、該虚像をオーバーラップ手段で外界の映像の一部に空間的に重畳して双方を同一の観察視野内で観察する際、該観察視野内の少なくとも一部の領域の明るさを外界からの入射光の強度に応じて制御する透過光量制御手段を観察光路中に設けたことを特徴とする画像観察装置。

【請求項14】 前記透過光量制御手段は入射光の強度により透過率が変わる調光ガラスであることを特徴とする請求項13の画像観察装置。

【請求項15】 前記透過光量制御手段は外界からの入 20 射光を検出する入射光量検知手段からの信号に基づいて 透過光を制御していることを特徴とする請求項13の画 像観察装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は画像観察装置に関し、特に画像表示手段(表示素子)に表示される画像を光学手段(光学系)を介して観察者の前方に虚像として表示し、観察者が前方に観察する外界の映像の一部に空間的にオーバーラップ表示して、双方を同一の観察視野内で 30 観察するようにした画像観察装置に関する。

[0002]

【従来の技術】従来より表示素子に表示される画像を光学系を介して、観察者が観察する外界の映像に空間的にオーパーラップして表示する画像観察装置として図14(A)に示す構成のものが知られている。図中、110は表示素子であり、例えば液晶パネルが使用される。111は表示素子観察レンズ(光学系)であり、表示素子110に表示された画像を観察者5の眼の方向へ反射すると共に、レンズ作用により該画像の虚像114を観察40者5の前方に形成する。112はハーフミラーである。

【0003】表示素子110に表示される画像は表示素子観察レンズ111を介して、観察者5の瞳に入射し、虚像114として観察者5に観察される。一方、観察者5はハーフミラー112を通して外界の映像115をも観察する。従って観察者5の見る視野は、図14(B)に示すように、ハーフミラー112を通して観察される外界の映像115と、その一部分に空間的にオーバーラップして表示した表示素子110の虚像114(H)である。

[0004]

【発明が解決しようとする課題】従来の画像観察装置では外界の映像(以後シースルー映像Sと呼ぶ)が暗いと、観察者にはオーバーラップされる表示素子の虚像が相対的に明るくなりすぎ、一方シースルー映像Sが明るい場合には、オーバーラップされる表示素子の虚像Hが暗くなり、見にくくなる等の問題があった。

【0005】本発明は、シースルー映像Sの一部に表示 素子の虚像Hをオーバーラップ表示する画像観察装置に おいて、色々な条件の下で、シースルー映像S及びこれ にオーバーラップされる表示素子の虚像Hが共に良好に 観察することのできる画像観察装置を提供することを目 的とする。

【0006】特に本発明では、

(1-1) 外界からの入射光の強さによって透過率が変化する透過光量制御手段を用いることにより、シースルー映像Sの明るさの変動を抑えて、明るさが略一定に保たれる画像観察装置を提供すること。

(1-2) 電気的に透過光量を制御可能な透過光量制 御手段を設け、入射光量検知手段からの出力を用いて、 透過光量制御手段を制御することにより、シースルー映 像Sの明るさを一定に保つことにより、外的変化があっ ても常に見易い映像の状態が保たれる画像観察装置を提 供すること。

(1-3) 透過光量制御手段を光束が通過する少なくとも2つの領域を有するようにし、表示素子の虚像のオーパーラップ領域と、非オーパーラップ領域のうちの一方の領域の透過率をその領域の映像が見易い状態に設定し、他方を電気的に透過光量を制御できる透過率制御素子で構成し、入射光量検知手段からの出力を用いて透過率制御素子を制御することにより、シースルー映像S及び表示素子の虚像Hとも見易い状態を保つ画像観察装置を提供すること。

(1-4) 透過光量制御手段を表示素子の虚像Hのオーパーラップ領域と非オーパーラップ領域に分け、夫々の領域を電気的に透過光量を制御できる透過率制御素子で構成し、夫々を個別に透過光量が異なるよう構成することにより、見易い映像が得られる画像観察装置を提供すること。

の (1-5) 画像観察装置の使用者が状況に応じて視野中の好みの位置に表示素子の虚像Hを表示でき、しかも好みの位置に表示した表示素子の虚像Hが見易く、シースルー映像Sの明るさが略一定になり、双方とも良好に観察することができる画像観察装置を提供すること。

(1-6) 表示素子の虚像Hの明るさと、シースルー映像Sの明るさが概ね等しくなるようにシースルー映像Sの明るさを調整し、視野全体の明るさを略一様にする画像観察装置を提供すること。

を目的とする。

50 [0007]

ている。

5

【課題を解決するための手段】本発明の画像観察装置 は、

(2-1)画像を表示する画像表示手段と、該画像表 示手段に画像を表示せしめる表示制御手段と、該画像表 示手段に表示された画像の虚像を形成する光学手段と、 該虚像を観察者が観察する外界の映像の一部にオーバー ラップ表示するオーパーラップ手段と、オーパーラップ 手段の外界からの光入射側に設けて、入射光の強度に応 じて透過光量を制御する透過光量制御手段とを有するこ と等を特徴としている。

【0008】特に、(2-1-1) 前記透過光量制御 手段は、光束が通過する少なくとも2つの領域を有し、 その内の1つの領域は前記虚像と重なる外界の映像から 観察者の瞳に達する光束が透過する領域であり、該2つ の領域の透過率が各々独立に制御可能であること。

(2-1-2) 前記表示制御手段は、前記画像表示手 段の表示面を構成する複数の表示領域の中から任意の表 示領域に、画像を表示すること。等を特徴としている。

【0009】又、(2-2) 画像を表示する画像表示 手段と、該画像表示手段に表示された画像の虚像を形成 する光学手段と、該虚像を観察者が観察する外界の映像 の一部にオーバーラップ表示するオーバーラップ手段 と、外界もしくは外界の映像の明るさを検知する入射光 量検知手段と、該オーバーラップ手段の外界からの光入 射側に設けて、電気的に透過率を制御する透過光量制御 手段とを有し、該透過光量制御手段の透過率を該入射光 量検知手段からの出力を用いて制御していること等を特 徴としている。

【0010】特に、(2-2-1) 前記透過光量制御 手段は光束が通過する少なくとも2つの領域を有し、そ の内の1つの領域は前記虚像と重なる外界の映像から観 察者の瞳に達する光束が透過する領域であり、該2つの 領域を透過光量が各々独立で、かつ電気的に制御可能な 透過率制御素子より構成していること。

(2-2-2)前記表示制御手段は、前記画像表示手 段の表示面を構成する複数の表示領域の中から任意の表 示領域に、画像を表示すること。

(2-2-3) 前記入射光量検知手段はオーパーラッ プ表示されたオーバーラップ映像部分の明るさとそれ以 40 外の映像部分の明るさを検知し、前記透過光量制御手段 は該入射光量検知手段からの信号に基づいてオーバーラ ップ映像部分の明るさと、それ以外の映像部分の明るさ が略等しくなるように制御していること。 等を特徴としている。

【0011】又、(2-3) 画像を表示する画像表示 手段と、該画像表示手段に画像を表示せしめる表示制御 手段と、該画像表示手段に表示された画像の虚像を形成 する光学手段と、該虚像を観察者が観察する外界の映像 の一部にオーパーラップ表示するオーパーラップ手段 50

と、外界もしくは外界の映像の明るさを検知する入射光 量検知手段と、該オーバーラップ手段の外界からの光入 射側に設けた透過光量制御手段とを有し、該透過光量制 御手段は光束が通過する少なくとも2つの領域を有し、 その内の1つの領域は該虚像と重なる外界の映像から観

察者の瞳に達する光束が透過する領域であり、この領域 を一定透過率の光学部材で構成しており、その他の領域 を透過率を電気的に制御可能な透過率制御素子より構成 しており、該透過率制御素子の透過率を該入射光量検知 10 手段からの出力を用いて制御していること等を特徴とし

【0012】特に、(2-3-1) 前記入射光量検知 手段はオーバーラップ表示されたオーバーラップ映像部 分の明るさとそれ以外の部分の明るさを検知し、前記透 過光量制御手段は該入射光量検知手段からの信号に基づ いて、オーバーラップ映像部分の明るさと、それ以外の 映像部分の明るさが略等しくなるように制御しているこ と等を特徴としている。

【0013】又、(2-4) 画像を表示する画像表示 手段と、該画像表示手段に画像を表示せしめる表示制御 20 手段と、該画像表示手段に画像を表示せしめる表示制御 手段と、該画像表示手段に表示された画像の虚像を形成 する光学手段と、該虚像を観察者が観察する外界の映像 の一部にオーパーラップ表示するオーパーラップ手段 と、外界もしくは外界の映像の明るさを検知する入射光 量検知手段と、該オーバーラップ手段の外界からの光入 射側に設けた透過光量制御手段とを有し、該透過光量制 御手段は光束が通過する少なくとも2つの領域を有し、 その内の1つの領域は眩虚像と重なる外界の映像から観 察者の瞳に達する光束が透過する領域であり、この部分 を透過率を電気的に制御可能な透過率制御素子より構成 しており、その他の領域を一定透過率の光学部材で構成 しており、該透過率制御素子の透過率を該入射光量検知 手段からの出力を用いて、制御していること等を特徴と している。

> 【0014】特に、(2-4-1) 前記入射光量検知 手段はオーバーラップ表示されたオーバーラップ映像部 分の明るさと、それ以外の部分の明るさを検知し、前記 透過光量制御手段は該入射光量検知手段からの信号に基 づいて、オーパーラップ映像部分の明るさと、それ以外 の映像部分の明るさが略等しくなるように制御している こと等を特徴としている。

> 【0015】又、(2-5) 画像を表示する画像表示 手段と、該画像表示手段の表示面を構成する複数の表示 領域の中から任意の表示領域に画像を表示する表示制御 手段と、該画像表示手段に表示された画像の虚像を形成 する光学手段と、該虚像を観察者が観察する外界の映像 の一部にオーバーラップ表示するオーバーラップ手段 と、外界もしくは外界の映像の明るさを検知する入射光 量検知手段と、該オーパーラップ手段の外界からの光入 射側に設けた透過光量制御手段とを有し、該透過光量制

御手段は該表示面を構成する複数の表示領域に対応する 領域と、表示面に対応しない領域とを有し、各領域は夫 々個別に透過率を電気的に制御できるように構成してお り、該入射光量検知手段からの出力を用いて、該虚像と 重なる外界の映像から観察者の瞳に達する光束が透過す る領域と、その他の領域とで異なる透過光量制御を行っ ていること等を特徴としている。

【0016】又、(2-6) 表示制御手段からの信号 により画像表示手段に表示した画像を光学手段で虚像と して形成し、該虚像をオーバーラップ手段で外界の映像 10 の一部に空間的に重畳して双方を同一の観察視野内で観 察する際、該観察視野内の少なくとも一部の領域の明る さを外界からの入射光の強度に応じて制御する透過光量 制御手段を観察光路中に設けたこと等を特徴としてい

【0017】特に、(2-6-1) 前記透過光量制御 手段は入射光の強度により透過率が変わる調光ガラスで あること。

(2-6-2) 前記透過光量制御手段は外界からの入 射光を検出する入射光量検知手段からの信号に基づいて 20 透過光を制御していること。等を特徴としている。

[0018]

【実施例】図1 (A) は本発明の実施例1の要部概略図 である。図中、1はプリズムプロックであり、光学部材 1-1と光学部材1-2を接合しており、接合面1-1 aは凹面ハーフミラー(50%の反射率、50%の透過 率)を形成している。2は表示素子(画像表示手段)で あり、例えば液晶パネルあるいはCRT等である。3は 表示制御手段であり、ビデオ信号を取り込んで表示素子 2を制御してその表示面の上に画像として表示する。4 30 は透過光量制御器(透過光量制御手段)であり、図1

(B) はその正面図である。これは例えばフォトクロミ ックガラス等の所謂調光ガラス等により構成し、光学部 材1-1の平面部に接して配置している。調光ガラスは これへ入射する光の強度に比例して透過率が低下する特 性を持っている。本実施例では透過光量制御器4の有効 面が観察視野に相当している。

【0019】図2は表示制御手段3のプロック図であ る。これについて説明する。外部から入力される映像信 号はY/C分離回路301によりY信号とC信号に分離 40 し、分離されたY信号は、同期分離回路303に送ら れ、Y信号から同期信号が分離されタイミングコントロ ール回路310に送られる。一方、同期信号が抜き取ら れたY信号はマトリクス回路311に送る。

【0020】一方、Y/C分離回路301で分離された C信号は色復調回路302に送られ、R-Y, B-Y信 号が復調されマトリクス回路311に送る。マトリクス 回路311では、入力されるY、R-Y、B-Yより R, G、B信号を生成しA/D変換器304に送る。A

られる。フィールドメモリ305に蓄えられた信号は、 D/A変換器306によりアナログ信号に変換され、信 号処理回路307により表示素子に適した信号に変換さ れH-ドライバ308に送られる。また、表示を制御す る水平、垂直同期信号がタイミングコントロール回路3 10よりHードライパ308、Vードライバ309に送 られ、表示素子2に画像が表示される。

【0021】表示制御手段3に入力する信号として、Y /C分離信号や色差信号、あるいはRGB信号に対応す るよう構成することも可能である。

【0022】本実施例の作用を説明する。表示制御手段 3により表示素子2に表示された画像からの光束は、プ リズムプロック1の面1-2 aを通って光学部材1-2 に入射し、ついで面1-2bに臨界角以上の入射角で入 射し、ここで全反射した後、凹面ハーフミラー1-1a に向かい、ここで反射されると同時に収束作用を受け、 観察者5の前方に虚像Hを形成する光束となって面1-2 bに入射し、面1-2 bを透過した後、観察者5の瞳 に入射する。そして観察者5は図1 (C) に示すように 表示素子2に表示された画像の虚像Hを前方視野の一部 に観察する。この虚像Hを以後"表示素子2の虚像H" と呼ぶことにする。又、光学部材1-2等は表示素子2 に表示された画像の虚像Hを形成する光学手段の一要素 を構成している。

【0023】一方、外界からの光束は透過光量制御器4 を通ってプリズムプロック1に入射し、凹面ハーフミラ -1-1aを透過後、面1-2bを透過して観察者5の 瞳にとどき、結果的に図1(C)に示すようにプリズム プロック1を透過して観察される外界の映像S (以後" シースルー映像S"と呼ぶこととする)中に、表示素子 2の虚像Hがオーバーラップされて表示される。

【0024】なお、凹面ハーフミラー1-1aは表示素 子2に表示された画像の虚像を、シースルー映像の一部 にオーパーラップ表示するオーパーラップ手段の一要素 である。

【0025】従来のかかる画像観察装置においては表示 制御手段3により、表示素子2の虚像Hをシースルー映 像Sにオーバーラップ表示をおこなうと、シースル一映 像Sの明るさ、即ち外界の明るさによってオーバーラッ プレた表示索子2の虚像Hの見え具合が変化し、観察者 5には見にくい場合が生じる。例えば、シースルー映像 S(外界)が明るいと表示素子2の虚像Hが暗く見え、 またシースルー映像S(外界)が暗いと表示素子2の虚 像Hが明るくなりすぎるという問題点があった。

【0026】本実施例ではプリズムプロック1の入射側 に配置している透過光量制御器4によって以上の問題点 を解決している。即ち、透過光量制御器4はシースルー 映像Sを構成する外界からの光の強度に応じてその透過 率が変化する。従って外界からの入射光の強度が大きい /D変換された各信号はフィールドメモリ305に蓄え 50 場合には透過光量制御器4の透過率は自動的に低下す

る。これによって瞳への入射光量は減少して、シースルー映像Sと表示素子2の虚像Hの明るさ比は略一定に保たれる。また外界からの入射光の強度が小さくなると透過光量制御器4の透過率は自動的に増加して、これによってシースルー映像Sは明るくなり、シースルー映像Sと表示素子2の虚像Hの明るさ比は略一定に保たれ、オーバーラップ表示される画面が見易くなるよう制御される。ただし、透過率の増加には限界があるので、透過率の増加が限界に達するまで制御できるのである。つまり本実施例では外界の明るさがある範囲内で変動しても、シースルー映像Sの明るさの変動を抑え、常に略一定に保つことでシースルー映像S及び表示素子2の虚像Hの見易さを維持している。

【0027】又、透過光量制御器4は反射率が入射光の 強度に比例して増減する素子で構成しても良い。

【0028】又、実施例1は極めて簡単な構成でシースルー映像Sの明るさを略一定に保つ画像観察装置を達成している。

【0029】透過光量制御器4は、図3(A)に示すように光束が通過する領域を2つの領域に分けて構成して 20 も良い。図3において領域4aは観察者の瞳が表示素子2の虚像Hとオーバーラップしている外界を観察する領域である。以後、透過光量制御器4上のこの領域を"オーバーラップ領域"と呼び、それ以外の領域4bを"非オーバーラップ領域"と呼ぶこととする。

【0030】そして、オーパーラップ領域4aと非オー パーラップ領域4bを透過率や反射率が異なる材質で構 成する。例えば、オーパーラップ領域4aを低透過率の 材料で、非オーパーラップ領域4bを調光ガラスで構成 する。そしてオーバーラップ領域4 a の表示素子2の虚 像Hを見易く表示しておく。このようにすると、非オー パーラップ領域4bの部分は外界が明るくなると透過率 が下がり、外界が暗くなると透過率が上がり、結果とし てシースルー映像Sの明るさの変動が抑えられ、明るさ が略一定に保たれる。オーバーラップ領域4aの部分の シースルー映像は外界の明るさに応じて変化するが、こ の部分の透過率は落としているので明るさの変化は小さ くなる。これによって表示素子2の虚像Hも見易く、シ ースルー映像Sもある範囲内で明るさが変化しないので 全体の見易さが保持される。図3 (B) はこの実施例の 視野の説明図である。なお、オーバーラップ領域4aの 部分だけを透過率0の材質で構成しても良い。

【0031】又、表示制御手段3が表示案子2へ画像を表示する際、表示面を複数の表示領域に分割してその中の1つの表示領域に表示するようにしても良い。このように構成すればシースルー映像S中にオーバーラップする表示案子2の虚像Hの位置を外界の状況に応じて任意の位置に設定できるので、例えば上部が非常に明るい空である場合はシースルー映像Sの下部を選んでそこに表示して、見易い映像とできる。

【0032】図4(A)は本発明の実施例2の要部概略図である。図中、実施例1と同じ機能を有する要素は同じ符号を記してある。実施例1との差異は、本実施例ではプリズムプロック1を透過する外界又は外界の映像からの光の強度を検知する入射光量検知手段6を設けており、且つ透過光量制御器14(透過光量制御弄子、例えばエレクトロクロミー素子や液晶素子で構成しており、入射光量検知手段6からの信号によって透過光量制御器14の透過率が制御されている点である。その他の点は同じである。なお、図4(B)は透過光量制御器14の正面図である。

10

【0033】図5は入射光量検知手段6の要部プロック図である。図中、501は光量検知素子であり、例えばシリコン・ホト・ダイオードで構成しており、シースルー映像Sの明るさを検知している。502は電流一電圧変換回路、503は増幅器、504は駆動回路である。

【0034】入射光量検知手段6の作用を説明する。光量検知素子501に入射する光量に応じて出力される電流を、電流-電圧変換回路502にて電圧に変換し、増幅器503にて電圧を増幅し、駆動回路504にて透過光量制御器14を制御する。

【0035】つまり光量検知素子501の検知レベルに 応じて、例えばシースルー映像Sの明るさが明るければ 透過光量制御器14全体の透過率を減ずる方向に、シースルー映像Sの明るさが暗ければ透過率を増加するよう 透過光量制御器14を制御する。

【0036】そして不図示の制御回路によって光量検知 素子501からの出力が所定の値になれば、その時点で 透過光量制御器14の透過率をホールドする。これによ ってシースルー映像Sの明るさは常に略一定に保たれ

【0037】なお、光量検知素子501は、シリコン・ホト・ダイオードのみならず、CCD等他のPN接合型の素子や、CdSなどの光導電型の素子等で構成してもよい。

【0038】本実施例の透過光量制御器14はシースルー映像Sの明るさに応じてその透過率を変化させる。即ち、シースルー映像Sが明るい場合には透過光量制御器4014の透過率は低下する。これによって瞳への入射光量は減少して、シースルー映像Sと表示素子2の虚像Hの明るさ比は略一定に保たれる。またシースルー映像Sが暗いと透過光量制御器14の透過率は増加する。これによってシースルー映像Sは明るくなり、シースルー映像Sと表示素子2の虚像Hの明るさ比は略一定に保たれ、オーバーラップ表示される画面が見易くなるよう制御される。ただし、透過率の増加には限界があるので、透過率の増加が限界に達するまで制御できるのである。つまり本実施例ではシースルー映像Sの明るさをある範囲内で常に略一定に保つことで両映像の見易さを維持してい

る。

【0039】なお、光量検知素子501は図4(A)に 点線で示すように透過光量制御器14の入射面側に設置 して、外界の明るさを検知するようにしても良い。この 時、不図示の制御回路は光量検知素子501からの出力 に応じて所定の駆動電圧で透過光量制御器14を制御す るようにする。

【0040】図6(A)は本発明の実施例3の要部概略 図である。図7は実施例3の入射光量検知手段6と、透 過光量制御器24(透過光量制御手段)の制御説明図で 10 ある。本実施例が図4の実施例2と異なる点は図6

(B) に示すように透過光量制御器24をオーバーラップ領域4aと非オーバーラップ領域4bに分けて、オーバーラップ領域4aは一定の透過率(低透過率、例えば50%)の材料で構成し、非オーバーラップ領域4bのみを電気的にその透過率を制御できる透過率制御素子、例えばエレクトロクロミー素子や液晶素子で構成し、入射光量検知手段6からの信号によって非オーバーラップ領域4bのみの透過率を制御するようにしている点である。その他の点は同じである。

【0041】本実施例では、透過光量制御器24のオーパーラップ領域4aの部分の透過率を落とし、表示素子2の虚像Hの明るさを上げてオーパーラップ領域4aの映像が概ね見やすい映像になるように設定し、入射光量検知手段6からの出力に応じて、非オーパーラップ領域4bの透過率を制御する。

【0042】そして不図示の制御回路によって光量検知素子501からの出力が所定の値になれば、その時点で透過光量制御器24の透過率をホールドする。これによってシースルー映像Sの明るさは常に略一定に保たれる。

【0043】図6(C)は本実施例の視野の説明図である。本実施例によれば、シースルー映像Sが明るくなると、透過光量制御器24の非オーバーラップ領域4b部分の透過光量が減少するよう制御し、また、シースルー映像Sが暗くなれば、非オーバーラップ領域4b部分の透過光量が増加するよう制御する。ただし、透過率の増加にはある限度がある。一方、オーバーラップ領域4aの部分のシースルー映像の明るさは外界の明るさの変化に応じて変動するが、もともと透過率を落としているので、この部分のシースルー映像の明るさの変動は小さくなる。つまり本実施例においては、表示素子2の虚像Hの明るさを見易い状態に設定し、シースルー映像Sの明るさをある範囲内で略一定に制御することにより、表示素子2の虚像Hとシースルー映像Sの輝度差を少なくし、両映像とも見易い状態を保っている。

【0044】なお、透過光量制御器24のオーパーラッ 映像を与えて領域4aを電気的にその透過率を制御できる透過率制 (005) 御素子、例えばエレクトロクロミー素子や液晶素子で構 知素子50 成しても良い。この場合は、これを駆動する回路を別に 50 ても良い。

12 設け、これによってオーバーラップ領域 4 a の透過率を 適切に設定すれば良い。

【0045】またこの場合、入射光量検知手段6の検知レベルに応じてオーバーラップ領域4aの透過率を制御し、非オーバーラップ領域4bの透過光量をオーバーラップ領域4aと異なる透過光量となるように制御してもよい。例えば、外界からの入射光量に関係づけてオーバーラップ領域4aの透過率を非オーバーラップ領域4bの透過率より常に下げて設定する。これによって表示素子2の虚像Hとシースルー映像Sの明るさ比をきめ細かく適切に設定でき、両映像とも常に見易い状態が維持される。

【0046】図8(A)は本発明の実施例4の要部概略図である。又、図9は実施例4の入射光量検知手段6と、透過光量制御器34の制御説明図である。本実施例が図6の実施例3と異なる点は透過光量制御器34をオーパーラップ領域4aと非オーパーラップ領域4bに分けて、実施例3とは逆に非オーパーラップ領域4bは透過率が変化しない材料(例えば透過率80%)で構成し、オーパーラップ領域4aのみを電気的にその透過率を制御できる透過率制御素子、例えばエレクトロクロミー素子や液晶素子で構成し、入射光量検知手段6からの信号によってオーパーラップ領域4aのみの透過率を制御するようにしている点である。その他の点は同じである。

【0047】本実施例では、シースルー映像Sの明るさを検知している入射光量検知手段6からの出力に応じて、オーバーラップ領域4aの透過率を制御する。

【0048】そして不図示の制御回路によって光量検知 30 素子501からの出力に応じて、透過光量制御器34の 駆動電圧を適切に設定する。これによって表示素子2の 虚像Hは常に見易く保たれる。

【0049】例えば、シースルー映像Sが明るくなると、透過光量制御器34のオーバーラップ領域4a部分の透過光量が減少するよう制御し、これによってこの部分のシースルー映像Sの明るさが変わらないようにし、また、シースルー映像Sが暗くなれば、オーバーラップ領域4a部分の透過光量が増加するよう制御し、これによってこの部分のシースルー映像Sの映像の明るさが変わらないようにし、表示素子2の虚像Hの見易さを維持する。ただし、オーバーラップ領域4aの部分の透過率の増加には限度がある。

【0050】つまり本実施例においては、表示素子2の虚像Hと重なる部分のシースルー映像Sの明るさを制御し、シースルー映像Sの明るさがある範囲内で変わっても表示素子2の虚像H部分の明るさが変化しない見易い映像を与える。

【0051】又、実施例2の箇所で触れたように光量検 知素子501を透過光量制御器34の入射面側に設置し ても良い。

【0052】図10(A)は本発明の実施例5の要部概略図である。また、図11は実施例5の表示制御手段3と、入射光量検知手段46と、透過光量制御器44(透過光量制御手段)の要部概略図である。本実施例は実施例2と比べて表示素子2上へ表示する画面構成を選択できる点と、透過光量制御器44の制御が領域を選んで行える点が異なっている。図10中、実施例2と同じ機能の要素は同じ符合を付してある。本実施例の場合、表示制御手段3は表示素子2の画面を構成する複数の部分画面(表示領域)D1~D9(図10(B),図11)の10中から、任意の部分画面D1を選んでその部分のみに画像を表示する。また透過光量制御器44も図10

(C),図11に示すように表示素子2の複数の部分画面に対応する複数の部分オーバーラップ領域C1~C9とそれ以外の領域に分割しており、これらの領域は個別に電気的に透過率を制御可能なよう構成している。即ち、透過光量制御器44は全体を例えばエレクトロクロミー素子や液晶素子等で構成している。

【0053】そして表示素子2の画面中の選択して表示した部分画面Diに応じて、透過光量制御器44は対応 20 する部分オーバーラップ領域Ci(=4a)以外の領域、即ち非オーバーラップ領域4bのみ光量検知手段46の検知レベルに応じて透過率を制御するのである。

【0054】本実施例の作用を説明する。図11において外部から入力される映像信号はY/C分離回路301によりY信号とC信号に分離し、分離されたY信号は、同期分離回路303に送られ、Y信号から同期信号が分離されタイミングコントロール回路310に送られる。一方、同期信号が抜き取られたY信号はマトリクス回路311に送られる。

【0055】一方、Y/C分離回路301で分離された C信号は色復調回路302に送られ、R-Y,B-Y信号が復調されマトリクス回路311に送る。マトリクス311では、入力されるY,R-Y、B-YよりR,G,B信号を生成しA/D変換器304に送る。A/D変換された各信号はフィールドメモリ305に蓄えられる。フィールドメモリ305に蓄えられた信号は、D/A変換器306によりアナログ信号に変換され、信号処理回路307により表示素子に適した信号に変換されH-ドライバ308に送られる。また、表示を制御する水 40平、垂直同期信号がタイミングコントロール回路310よりH-ドライバ308、V-ドライバ309に送られ、表示素子(液晶パネル)2に画像が表示される。

間引いた映像を縦、横1/3の画面に表示するよう制御すれば良い。このようにして表示素子2の画面を分割して所定配置の複数の部分画面(表示領域) $D1\sim D9$ のいずれかに画像を表示可能なように構成している。

【0057】一方、光量検知索子501に入射する光量に応じて出力される電流は電流一電圧変換回路502にて電圧に変換され、増幅器503にて電圧を増幅し、駆動回路504にて透過光量制御器44を制御する駆動信号が得られる。駆動信号はセレクタ505に入力され、タイミングコントロール回路310から表示素子2のどの部分画面に表示したかの情報を得、対応する部分オーバーラップ領域C1以外の領域、即ち非オーバーラップ領域4bに駆動信号を供給し、透過光量制御器44を制御する。

【0058】例えば、表示素子2の部分画面(表示領域)D4に画像が表示されたとすると、部分画面D4に対応するオーバーラップ領域C4(=4a)部分の透過率を下げて(例えば50%~0%)表示素子2の虚像Hの部分のオーバーラップ映像が概ね見やすい映像になるよう設定する。そしてシースルー映像S(外界)の明るさの変化に応じてC4以外の領域、即ち非オーバーラップ領域4bに制御信号を供給して透過光量を制御する。

【0059】そして不図示の制御回路によって光量検知 素子501からの出力が所定の値になれば、その時点で 透過光量制御器44の透過率をホールドする。これによ ってシースルー映像Sの明るさはある範囲内で常に略一 定に保たれる。

【0060】例えばシースルー映像S(外界)が明るくなると、非オーパーラップ領域4bの透過光量を減じてシースルー映像Sを暗くする方向に制御して、シースルー映像Sの明るさを略一定に保持する。又、シースルー映像Sが暗くなると、非オーパーラップ領域4bの透過光量を増加してシースルー映像Sを明るくする方向に制御して、シースルー映像Sの明るさを略一定に保持する。ただし、透過率の増加には限度があるので透過率の増加が限界に達するまで制御するのである。

【0061】又、オーバーラップ領域4aも外界の明るさに応じて変化させても良い。

【0062】本発明によれば、外界の状況等に応じて表示案子2の画面を構成する部分画面を選ぶことにより、シースルー映像S中の任意の位置に部分画面の映像を表示可能であり、しかもシースルー映像Sの明るさが略一定に保たれる、シースルー映像及び任意の位置に表示した表示案子2の虚像Hが、ともに見易い状態が保持される。

【0063】なお、光量検知素子501は透過光量制御器44の入射面側に設置しても良い。この時、不図示の制御回路は光量検知素子501からの出力に応じて所定の駆動電圧で透過光量制御器44を制御するようにす

30

15

【0064】また、これとは逆に部分オーバーラップ領 域Ci (=4a) のみに駆動信号を供給し、その部分の 透過光量を制御するよう構成しても良い。

【0065】例えば、表示素子2の部分画面D4に画像 が表示されたとすると、部分画面D4に対応するオーバ ーラップ領域C4 (=4a)以外の領域、すなわち非オ ーパーラップ領域4b部分の透過率を下げてシースルー 映像Sの明るさを少し低下させ概ね見やすい映像に設定 する。そしてシースルー映像S(外界)の明るさの変化 に応じてオーバーラップ領域C4(=4a)に制御信号 10 を供給して透過光量を制御する。

【0066】シースルー映像S(外界)が明るくなる と、オーパーラップ領域C4の透過光量を減じて表示素 子2の虚像Hの明るさを相対的に明るくし、見易くす る。又、シースルー映像S(外界)が暗くなると、オー バーラップ領域 C 4 の透過光量を増加して表示素子 2 の 虚像Hの明るさを相対的に暗くし、見易くする。ただ し、透過光量を増加させるには限度がある。

【0067】図12 (A) は本発明の実施例6の要部概 略図である。実施例6が実施例2と比べて異なる点は、 実施例6の入射光量検知手段26が2つの入射光量検知 ユニット16-aと16-bと、入射光量比較制御器1 7から構成されている点である。図12 (B) は観察者 側から2つの光量検知素子501-a, 501-bの配 置を見た図である。2つの入射光量検知ユニット16aと16-bは夫々シースルー映像S(非オーーパラッ プ領域4b) 及び表示素子2の虚像H(オーパーラップ 領域4a)の明るさを検知する。なお、透過光量制御器 54 (透過光量制御手段) は図12 (C) にその正面図 を示すが、全体をオーパーラップ領域4aと非オーバー 30 ラップ領域4bに分けて、オーバーラップ領域4aは一 定の透過率(低透過率、例えば50%)の材料で構成 し、非オーバーラップ領域4bのみを電気的にその透過 率を制御できる透過率制御素子、例えばエレクトロクロ ミー素子や液晶素子で構成している。

【0068】図13は実施例6の入射光量検知手段26 の要部概略図である。501a, 501bは光量検知素 子であり、例えばシリコン・ホト・ダイオードで構成 し、夫々、図12(B)に示す如くオーパーラップ領域 4 a と非オーパーラップ領域 4 b に対応するよう配置し 40 ている。

【0069】入射光量比較制御器17は2つの入射光量 検知ユニット16-a,16-bからの出力を比較し て、2つの入射光量検知ユニットの検知レベルが概ね等 しくなるよう非オーパーラップ領域4bの透過率を制御 する。

【0070】 実施例6の作用について説明する。2つの 光量検知素子501-a,501-bに入射する光量に 応じて出力される電流は電流-電圧変換回路502a, 502-bで電圧に変換され、増幅器503-a,

16

503-bにて増幅されA/D変換器506を通してマ イコン507に入力される。マイコン507は両者のレ ベルが概ね等しくなるよう非オーバーラップ領域4bを 制御するための信号をD/A変換508に出力し、駆動 回路504を通して透過光量制御器54を制御する。

【0071】そして光量検知素子501-a, 501bからの出力が所定の関係になれば、その時点でマイコ ン507は透過光量制御器54の透過率をホールドす る。

【0072】本発明によれば、外界の明るさの変化によ らずオーバーラップされる表示素子2の虚像Hの部分の 明るさと、シースルー映像Sの明るさが概ね等しくなる ため両映像とも見易い状態が得られる。ただし、この場 合もオーパーラップ領域4a部分の透過率を増加させる のに限度がある。

【0073】又、透過光量制御器54をオーバーラップ 領域4aと非オーパーラップ領域4bに分けて、実施例 6とは逆に非オーパーラップ領域4bは一定の透過率 (低透過率) の材料で構成し、オーバーラップ領域4 a のみを例えばエレクトロクロミー素子や液晶素子で構成 し、入射光量比較器17からの信号によってオーバーラ ップ領域4aのみの透過率を制御するようにして、両者 の光量が概ね等しくなるよう制御しても良い。この場 合、非オーパーラップ領域4bのシースルー映像Sの明 るさは外界の明るさに応じて変動するが、ある範囲内で オーバーラップ領域4 a の表示素子2 の虚像Hの部分は シースルー映像Sの明るさと略同じ明るさに制御されて いる。従って両映像とも見易い状態が保たれる。

[0074]

【発明の効果】本発明は、以上の構成により、

(3-1) 実施例1では、入射光の強さによって透過 率が変化する透過光量制御器を用いることにより、シー スルー映像Sの明るさの変動が抑えれら、明るさが略一 定に保たれる。これによって外界が明るいときオーパー ラップさせる表示素子2の虚像Hが暗く見えたり、外界 が暗いとき、オーバーラップされる表示素子2の虚像H が不必要に明るく見えることを防止できる。

【0075】又、透過光量制御器を入射光の強度により 透過率や反射率が変化する、所謂受動的に透過光量が変 化する索子で構成しているために簡便な構成の画像観察 装置となる。

(3-2) 実施例2では、電気的に透過光量を制御可 能な透過光量制御器を設け、入射光量検知手段からの出 力を用いて、透過光量制御器を制御することにより、シ ースルー映像Sの明るさの変化を除去し、オーバーラッ プされる表示素子2の虚像Hが外界の明暗によって暗く 見えたり、不必要に明るく見えることを防止する。

(3-3)実施例3及び実施例4では、透過光量制御 器のオーパーラップ領域4aと、非オーパーラップ領域 50 4 b の一方の透過率をその領域の映像が見易い状態に設

定し、他方を電気的に透過光量を制御できる透過率制御素子で構成し、入射光量検知手段からの出力を用いて透過光量制御器を制御することにより、シースルー映像S及び表示素子2の虚像Hとも見易い状態を保っている。

(3-4) 実施例3及び実施例4の派生例では、透過 光量制御器をオーバーラップ領域4aと非オーバーラッ プ領域4bに分割し、夫々を電気的に透過光量を制御で きる透過率制御素子で構成し、夫々を個別に透過光量が 異なるよう構成することにより、シースルー映像S及び 表示素子2の虚像Hとも見易い状態を保っている。

(3-5) 実施例5では、画像観察装置の使用者が状況に応じて視野中の好みの位置に表示素子2の虚像日を表示でき、しかも好みの位置に表示した表示素子2の虚像日が見易く、シースルー映像Sの明るさが略一定になり、両映像とも見易い状態を保っている。

(3-6) 実施例6では、表示素子2の虚像Hの明る さと、シースルー映像の明るさが概ね等しくなるように シースルー映像Sの明るさを調整し、視野全体の明るさ が略一様な疲労感の少ない見やすい表示を得ている。

等の効果が得られる画像観察装置を達成している。

【図面の簡単な説明】

【図1】 本発明の実施例1の説明図

- (A) 要部概略図 (B) 透過光量制御器 4 の正面図
- (C) 視野の説明図
- 【図2】 図1の表示制御手段3のプロック図
- 【図3】 実施例1の透過光量制御器4を2つに分けて 構成した説明図
- (A) 透過光量制御器4の正面図 (B) 視野の説明図
- 【図4】 本発明の実施例2の説明図
- (A) 要部概略図 (B) 透過光量制御器 1 4 の正面図
- (C) 視野の説明図
- 【図 5 】 実施例 2 の入射光量検知手段の要部プロック 図
- 【図6】 本発明の実施例3の説明図
- (A) 要部概略図 (B) 透過光量制御器 2 4 の正面図
- (C) 視野の説明図
- 【図7】 実施例3の入射光量検知手段と、透過光量制 御器の制御説明図

【図8】 本発明の実施例4の説明図

(A) 要部概略図 (B) 透過光量制御器34の正面図

18

- (C) 視野の説明図
- 【図9】 実施例4の入射光量検知手段と、透過光量制御器の制御説明図

【図10】 本発明の実施例5の説明図

- (A) 要部概略図 (B) 表示画面の分割(複数の表示 領域)
- (C) 透過光量制御器 4 4 の正面図 (D) 視野の説明 10 図
 - 【図11】 実施例5の表示制御手段、入射光量検知手段と、透過光量制御器の要部概略図
 - 【図12】 本発明の実施例6の説明図
 - (A) 要部概略図 (B) 光量検知素子の配置図
 - (C)透過光量制御器 5 4 の正面図 (D)視野の説明 図
 - 【図13】 実施例6の入射光量検知手段26の要部概略図
 - 【図14】 画像観察装置の従来例
- 20 (A)要部概略図 (B)視野の説明図 【符号の説明】
 - 1 プリズムブロック
 - 1-1、1-2 光学部材
 - 2 表示素子
 - 3 表示制御手段
 - 4、14、24、34、44、54 透過光量制御器
 - 4 a オーパーラップ領域
 - 4 b 非オーパーラップ領域
 - 5 観察者
- 30 6、26、46 入射光量検知手段
 - 16-a, 16-b 入射光量検知ユニット
 - 17 入射光量比較器
 - H 表示素子2の虚像
 - S シースルー映像
 - 501 光量検知素子
 - 502 電流電圧変換器
 - 503 増幅器
 - 504 駆動回路

【図3】

【図1】

[図2]

【図4】

[図8]

【図9】

[図10]

【図11】

[図12]

【図13】

[図14]

