hw1

姓名:沈澎博 班级:软件82 学号: 2017011672

第一题

(1) 正确。当搜索树各个相邻节点间的距离均相等时,UCS 退化为 BFS。如下图图 1 所示,用 UCS 算法搜索从 A 到 H 的最短路径,依次搜索的顺序是:A, B, C, D, E, F, G, H, 即为 BFS 的搜索顺序。

(2) 正确。对于连通的无向有限图 G(V,E) 使用 BFS 算法,设 $V_1\subseteq V$ 为已经搜索过的点的集合, $V_2\subseteq V$ 为未搜索过的点的集合,则 $V=V_1+V_2$ 。在 BFS 的迭代中,会不断从 V_2 中选择 $v_i\in V_1$ 的相邻结点,并转移到 V_1 中。由于 G 是连通的,故 V_1 中元素最终将全部转移到 V_2 中,当 V_2 为空时结束,即所有点都将被遍历一次。因此 BFS 算法是完备的。

(3) 正确。DFS 可能会陷入无限循环。例如,在一个有环的无向有限图中,DFS 可能会不停在一个环路中搜索。如图 2 所示,DFS 可能在 A - B - C - D - A 中循环,因此找不到从 A 到 E 的路径。

(4) 正确。 A^* 搜索相对 UCS 引入了启发式函数 h(n),如果设定 h(n)=0,则 f(n)=g(n), A^* 搜索退化为 UCS。

第二题

(1) 设该 CSP 问题为 P(X, D, C)

变量: $X=\{(X_1,Y_1),(X_2,Y_2),\ldots,(X_n,Y_n)\}$, 其中 (X_i,Y_i) 代表第 i 个马位于第 X_i 行第 Y_i 列。 值域: $D=\{(1,1),(1,2),\ldots,(1,n),(2,1),\ldots,(n,n)\}$,即变量可以取棋盘上 n^2 个位置中的一个。 C 为约束。

(2) 受到的约束有:

- 任意两个马不能放在同一位置,即: $\forall i \neq j, |X_i X_j| + |Y_i Y_i| \neq 0$;
- 任意两个马不能位于可以互相攻击的位置,即: $\forall i \neq j$,若 $|X_i X_j| \times |Y_i Y_j| \neq 2$ 。

```
FUNCTION Place-Horse(problem) returns a state that is local maximum assign a different random value for every horse current <- initial status calculate confict number of every position confict <- sum of all confict horses while true do

moved_horse <- the horse has maximum confict number (newX, newY) <- the position has minimum confict number neighbor <- set position of moved_horse be (newX, newY) calculate confict number of every position new_confict <- sum of all confict horses if new_confict > conflict return current current <- neighbor confict <- neighbor
```

第三题

为每个结点的每个元素记录一个是否可用的布尔状态,初始时均为可用。用 Q 表示二元组(节点,元素)的队列,在一次循环中,从 Q 中选择并移除一个二元组(v_i , a)。对于每个通过可用状态的元素 d 与 (v_i,a) 相容的邻居 v_j ,减少(v_j , d, v_i)的计数值 1 。如果该计数值变为 0,则将(v_j , d) 加入到 Q中,并将 v_j 结点的 元素 d 标记为不可用,进入下一次循环。