| Classes | Devoir surveillé n°2 de | Nom:    | Note: |  |
|---------|-------------------------|---------|-------|--|
| de 4°   | Sciences physiques      | Prénom: |       |  |

Ce devoir est sur **25 points** : 5 points de cours (cette note sera ramenée sur 20 ) et 20 points d'exercices.

## Cours (5 points):

| 1)      | Quels sont les noms et formules des 2 principaux gaz constituant l'atmosphère ?<br>En quelles proportions approximatives sont-ils présents ? |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                                                                              |
|         |                                                                                                                                              |
|         |                                                                                                                                              |
| •••     |                                                                                                                                              |
| •••     |                                                                                                                                              |
| 2)      | Qu'est-ce qu'une molécule ?                                                                                                                  |
|         |                                                                                                                                              |
|         |                                                                                                                                              |
| • • •   |                                                                                                                                              |
| 3)      | Que se passe-t-il concernant la masse au cours d'une transformation chimique ?                                                               |
| ••••    |                                                                                                                                              |
| ••••    |                                                                                                                                              |
| ••••    |                                                                                                                                              |
| •••     |                                                                                                                                              |
| 4)      | Donne 2 qualificatifs décrivant un solide.                                                                                                   |
|         |                                                                                                                                              |
| • • • • |                                                                                                                                              |
| •••     |                                                                                                                                              |
| 5)      | Comment sont les molécules dans un gaz ? Quelle propriété des gaz cela explique-t-il ?                                                       |
| ••••    |                                                                                                                                              |
|         |                                                                                                                                              |
|         |                                                                                                                                              |
| •••     |                                                                                                                                              |
|         |                                                                                                                                              |

## Partie exercices : (20 points)

Exercice n°1: Capacité de 1,5 L? Pas de problème. (4 points)



Nathan se lamente : « Comment vais-je pouvoir déterminer la masse de 1 L d'air, alors que je n'ai trouvé qu'une bouteille de 1,5 L pour récupérer l'air enlevé du ballon ? » Aide Nathan à trouver le résultat cherché en utilisant les mesures données dans le schéma.

1) Quelle est la masse  $m_1$  du ballon gonflé ?

2) Quelle est la masse  $m_2$  du ballon dégonflé d'où l'on a prélevé 1,5 L d'air ?

3) Quelle est la masse  $m_3$  de 1,5 L d'air ?

Exercice n°2: Propriété de l'air (4,5 points)

Compétence : Exploiter des documents scientifiques.

Le piston est placé à mi-course, puis on bouche l'extrémité avec l'index.



On appuie sur le piston.



On tire sur le piston.



Une masse d'air est enfermée dans une seringue. Lucas a commencé à noter ses observations dans le tableau ci-dessous.

| Etat du<br>piston | Compression ou détente | L'air<br>enfermé<br>est | Volume      | Pression de<br>l'air dans la<br>seringue | Masse de<br>l'air |
|-------------------|------------------------|-------------------------|-------------|------------------------------------------|-------------------|
| libre             | air à P <sub>atm</sub> | à P <sub>atm</sub>      | $V_1$       |                                          | m                 |
| poussé            |                        |                         | $V_2 < V_1$ |                                          |                   |
| tiré              |                        | détendu                 |             | $P_3 < P_{atm}$                          |                   |

Indication :  $P_{atm}$  = pression atmosphérique

1) Complète le tableau

2) Dans chaque cas, schématise les molécules dans les seringues en faisant attention aux proportions de chacun des principaux constituants de l'air. Donnée : tu représenteras dans la première seringue 10 molécules au total et tu mettras une légende pour chaque type de molécules.

## Exercice 3: Mes glaçons ont du volume (3 points)

Compétence : Mobiliser ses connaissances

Dans un congélateur, on a fabriqué 12 glaçons. Chaque glaçon a une masse de 10 g et un volume de 11 mL.

|    | e de 11 mL.                                                                             |
|----|-----------------------------------------------------------------------------------------|
| 1) | Indique la masse d'eau liquide obtenue lorsque les 12 glaçons ont fondu en justifiant   |
|    | la réponse.                                                                             |
|    |                                                                                         |
|    |                                                                                         |
|    |                                                                                         |
| 2) | Sachant que 1 mL d'eau liquide a une masse de 1 g, calculer le volume de l'eau liquide. |
|    |                                                                                         |
|    |                                                                                         |
|    |                                                                                         |
|    |                                                                                         |

| 3)      | Comparer le volume des 12 glaçons au volume de l'eau liquide lorsqu'ils ont fondu.                                                                                                                                          |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                                                                                                                                                                                                                             |
|         | ce 4 : combustible alternatif (4,5 points)                                                                                                                                                                                  |
| bioétha | jours, il existe des brûleurs au bioéthanol qui s'insèrent dans la cheminée. Le unol (alcool de betterave, constitué de molécules d'éthanol) remplace alors le bois e combustible. L'équation de cette combustion s'écrit : |
|         | $C_2H_6O + 3O_2 + 3H_2O$                                                                                                                                                                                                    |
| 1)      | Donner le nombre de molécules de dioxygène consommées et le nombre de molécules de dioxyde de carbone et d'eau produites lors de la combustion d'une molécule d'éthanol.                                                    |
|         |                                                                                                                                                                                                                             |
| 2)      | Calculer la masse de dioxygène nécessaire pour faire brûler 1180 g d'éthanol, sachant qu'il se forme 2257 g de dioxyde de carbone et 1305 g d'eau. Justifie ton calcul.                                                     |
|         |                                                                                                                                                                                                                             |
| 3)      | Sachant qu'il y a proportionnalité entre le volume d'un gaz et son nombre de molécules, calculer le volume de dioxyde de carbone produit lorsque 6 L de dioxygène sont consommés.                                           |
|         |                                                                                                                                                                                                                             |

## Exercice 5: Combustion du fer (4 points)

La paille de fer brûle facilement dans l'air. Il se forme alors de petites boules d'oxyde magnétique de fer, de formule  $Fe_3O_4$ .

| 1) | Quelle est la constitution en atomes de l'oxyde magnétique de fer ? Précise le nom et le nombre de chaque type d'atomes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2) | Ecris le bilan littéral de la transformation chimique entre le fer et le dioxygène de l'air                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    | The same of the distribution of the same o |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3) | Complète l'équation de réaction ci-dessous et cite la propriété utilisée.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | Fe + $O_2$ $Fe_3O_4$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |