CSC165 Mathematical Expression and Reasoning for Computer Science

Module 5

Universally Quantified Implication

© Abdallah Farraj, University of Toronto

Mathematical Statements

- A universal statement says that a certain property is true for all elements in a set
 - For example: All positive numbers are greater than zero
- A conditional/implication statement says that if one thing is true then some other thing also has to be true
 - For example: If 378 is divisible by 18 then 378 is divisible by 6

© Abdallah Farraj, University of Toronto

3

Universally Quantified Implication

- It is a frequent logical form for claims (Boolean statements: true or false)
- Here is such a claim, which we'll name Co:
- (C_o): Every (real) number larger than seven has the property such that its square is larger than sixteen
- Notice: Co is a complete English sentence
- Is it a claim?
- Is C₀ true? What precisely does it claim?
 - Co claims something about every number larger than seven

© Abdallah Farraj, University of Toronto

About Co

- Since one-hundred-sixty-five is larger than seven:
 - Co claims that the square of one-hundred-sixty-five is larger than sixteen
- Since ten is larger than seven:
 - Co claims that the square of ten is larger than sixteen
- Since eight is larger than seven:
 - Co claims that the square of eight is larger than sixteen
- Since seven-and-a-half is larger than seven:
 - Co claims that the square of seven-and-a-half is larger than sixteen
- ... and many other such claims

© Abdallah Farraj, University of Toronto

5

About Co

- But the number six is NOT larger than seven:
 - Co does not DIRECTLY make a claim about six
 - Although the square of six IS larger than sixteen, that is IRRELEVANT for determining whether C_0 is true
- The number three is NOT larger than seven:
 - Co does not directly make a claim about three
 - Although the square of three is NOT larger than sixteen, that is IRRELEVANT for determining whether Co is true
- The number negative-one-hundred-sixty-five is NOT larger than seven:
 - C_0 doesn't directly make a claim about -165
 - Although the square of −165 IS larger than sixteen, that is IRRELEVANT for determining whether C₀ is true

© Abdallah Farraj, University of Toronto

About Co

• Let us put some of that information into a table:

Number	larger thar	n seven?	square	square larger th	nan 16?	
10	10 > 7?	True	$10^2 = 100$	$10^2 > 16$?	True	Okay
6	6 > 7?	False	$6^2 = 36$	$6^2 > 16$?	True	Irrelevant
3	3 > 7?	False	$3^2 = 9$	$3^2 > 16$?	False	Irrelevant
-165	-165 > 7	? False	$(-165)^2 = 27225$	$(-165)^2 > 163$	True	Irrelevant

© Abdallah Farraj, University of Toronto

-

About Co

- Consider two "sets" (bunches) of numbers:
 - A: The set of all numbers larger than seven
 - B: The set of all numbers that when squared are larger than sixteen
- Look at these sets on a number line:

© Abdallah Farraj, University of Toronto

About Co: Venn Diagram

- What does C₀ claim about A vs B?
- To be able to illustrate relationships between sets of things that are not numbers there is a common type of general diagram: a "Venn Diagram"

 The relationship between A and B is represented by this Venn Diagram

© Abdallah Farraj, University of Toronto

۵

About Co: Venn Diagram

- The enclosing rectangle in a Venn Diagram represents the "Universe":
 - · The type of the things being discussed
- For C_0 it is the set of real numbers, called " \mathbb{R} ", and also called "the Reals"
- The things in a set are called its "elements" or its "members"
 - What are some numbers inside the A circle (i.e., elements of A)?
 - What are some numbers inside the B circle (i.e., elements of B) that are not inside the A circle (i.e., not elements of A)?
 - What are some numbers outside the B circle (i.e., not elements of B nor A)?

© Abdallah Farraj, University of Toronto

About Co: Venn Diagram

- Is every element of A an element of B?
- Is every element of B an element of A?
- Is Co true?
 - A has to be "completely contained" in B
 - All elements of A are elements of B
 - Yes, Co is true

© Abdallah Farraj, University of Toronto

11

Converse of Co

- (C₁): The numbers whose squares are larger than sixteen have the property of being larger than seven
- Is that a claim?
 - Is it a "complete English Sentence"?
 - Is it Boolean?
- Is C₁ true?
 - Let us check

© Abdallah Farraj, University of Toronto

About C₁

- Since the square of one-hundred-sixty-five IS larger than sixteen:
 - C₁ claims that one-hundred-sixty-five IS larger than seven
- Since the square of eight IS larger than sixteen:
 - C₁ claims that eight IS larger than seven
- Since the square of three IS NOT larger than sixteen:
 - C₁ DOES NOT directly make a claim about three
- Since the square of six IS larger than sixteen:
 - C₁ claims that six IS larger than seven!
 - That is false, which violates the "universal" aspect of C₁, so C₁ is false
- The number six is called a "counter-example" to the Universally Quantified Implication C₁
- One counter-example is enough to disprove C₁

© Abdallah Farraj, University of Toronto

13

About C₁

- How is this reflected in:
 - The table?
 - The number line diagram?
 - The Venn Diagram?

number	square	square larger tha	n 16?	number large	er than 7?	
10	$10^2 = 100$	$10^2 > 16$?	True	10 > 7?	True	Still okay
6	$6^2 = 36$	$6^2 > 16$?	True	6 > 7?	False	Counter example
3	$3^2 = 9$	$3^2 > 16$?	False	3 > 7?	False	Irrelevant
-165	$(-165)^2 = 27225$	$(-165)^2 > 16$?	True	-165 > 7?	False	Counter example

© Abdallah Farraj, University of Toronto

About C₁

B
6
-165
A
165 8
10 7.5

© Abdallah Farraj, University of Toronto

15

Example

© Abdallah Farraj, University of Toronto

Example

- Determine explicitly all the numbers x such that $x + \sqrt{x} = 2$
 - Note: "numbers" here mean "real numbers"
 - Later we might use "natural numbers", "integers", "rational numbers", etc.
- Discussing the "manipulating equations" approach to solving an equation will continue to illuminate Universally Quantified Implications
- OK, from your pre-UofT experience, how to solve it?

© Abdallah Farraj, University of Toronto

17

Pre-UofT Solution?

$$x + \sqrt{x} = 2$$

$$\sqrt{x} = 2 - x$$

$$x = (2 - x)^{2}$$

$$x = 4 - 4x + x^{2}$$

$$0 = 4 - 5x + x^{2}$$

$$0 = (x - 1)(x - 4)$$

$$x = 1 \text{ or } x = 4$$

- Alright!
 - Are these complete Boolean English sentences? Read out loud!
 - Are these "connected" statements?
 - So what is your solution?

© Abdallah Farraj, University of Toronto

Trace the Solution

	If $x = 1$		If $x = 4$	
$x + \sqrt{x} = 2$	$1+\sqrt{1}=2?$	True	$4+\sqrt{4}=2?$	False!!!
$\sqrt{x} = 2 - x$	$\sqrt{1} = 2 - 1?$	True	$\sqrt{4} = 2 - 4?$	False!!!
$x = (2 - x)^2$	$1 = (2-1)^2$?	True	$4 = (2-4)^2$?	True
$x = 4 - 4x + x^2$	$1 = 4 - 4(1) + (1)^2$?	True	$4 = 4 - 4(4) + (4)^{2}$?	True
$0 = 4 - 5x + x^2$	$0 = 4 - 5(1) + (1)^2?$	True	$0 = 4 - 5(4) + (4)^2$?	True
0 = (x-1)(x-4)	0 = (1-1)(1-4)?	True	0 = (4-1)(4-4)?	True
x = 1 or $x = 4$	1 = 1 or 1 = 4?	True	4 = 1 or 4 = 4?	True

© Abdallah Farraj, University of Toronto

19

Comments

- Did we make an algebraic error or typo?
 - No, but tracing our proofs helps catch those
- Solving an equation is creating a proof... of what?
- Is squaring both sides of an equality 'wrong'?
 - Cannot we 'do' the same 'thing' to both sides of an equation?
 - Example: For all numbers x: if x < 2 then $x^2 < 4$. (this is False)

© Abdallah Farraj, University of Toronto

Comments

- Do we have to check every result of a 'solution', not just to catch typos and algebraic errors?
- If we are worried that 'solving' an equation can produce extra results, should we be worried that it can miss some results?
- The main source of the problem is much more general:
 - The 'solution' was not a paragraph. It was an unconnected sequence of claims
- Let us fix that

© Abdallah Farraj, University of Toronto

21

Solution

```
Let x be a real number.
```

```
Assume x + \sqrt{x} = 2.
```

Then
$$\sqrt{x} = 2 - x$$
.

Then
$$(\sqrt{x})^2 = (2 - x)^2$$
.

Then
$$x = (2 - x)^2$$
.

Then
$$x = 4 - 4x + x^2$$
.

Then
$$0 = 4 - 5x + x^2$$
.

Then
$$0 = (x - 1)(x - 4)$$
.

Then
$$x = 1$$
 or $x = 4$.

Therefore, for any real number x: if $x + \sqrt{x} = 2$ then [x = 1 or x = 4].

© Abdallah Farraj, University of Toronto

Solution

- This conclusion is a Universally Quantified Implication
 - Can we take the course's standard approach to exploring it?
 - Is it true?
 - Can it miss any solutions to the equation?
 - Can it generate extra solutions to the equation?

© Abdallah Farraj, University of Toronto

23

Trace the Solution

	If $x = 1$		If $x = 4$		Solution Set
$x + \sqrt{x} = 2$	$1+\sqrt{1}=2?$	True	$4+\sqrt{4}=2?$	False	1
$\sqrt{x} = 2 - x$	$\sqrt{1} = 2 - 1?$	True	$\sqrt{4} = 2 - 4?$	False	1
$x = (2 - x)^2$	$1 = (2-1)^2$?	True	$4 = (2-4)^2$?	True	1 or 4
$x = 4 - 4x + x^2$	$1 = 4 - 4(1) + (1)^2$?	True	$4 = 4 - 4(4) + (4)^{2}$?	True	1 or 4
$0 = 4 - 5x + x^2$	$0 = 4 - 5(1) + (1)^2?$	True	$0 = 4 - 5(4) + (4)^2$?	True	1 or 4
0 = (x-1)(x-4)	0 = (1-1)(1-4)?	True	0 = (4-1)(4-4)?	True	1 or 4
x = 1 or x = 4	1 = 1 or 1 = 4?	True	4 = 1 or 4 = 4?	True	1 or 4

- Solution set stays the same or gets bigger
- This is consistent with consecutive pairs of lines representing TRUE Universally Quantified Implications!
- That is consistent with the use of "Then" to connect them!

© Abdallah Farraj, University of Toronto

Proof Process

x	$x + \sqrt{x} = 2?$	[x = 1 or x = 4]?	
1	True	True	Okay
4	False	True	Irrelevant
0	False	False	Irrelevant

A: The set of all numbers such that $x + \sqrt{x} = 2$

B: The set of all numbers such that x = 1 or x = 4

A:

B:

© Abdallah Farraj, University of Toronto

25

Understanding the Solution

• The first "Then" is part of the following Universally Quantified Implication:

For all numbers
$$x$$
: if $x + \sqrt{x} = 2$ then $\sqrt{x} = 2 - x$

• It uses a known true Universally Quantified Implication:

For all numbers a and b and c: if a = b then a - c = b - c

• From that known one, we can deduce:

For all numbers
$$x$$
: if $x + \sqrt{x} = 2$ then $x + \sqrt{x} - x = 2 - x$

• There is some basic arithmetic on the LHS, which could be justified by using other known Universally Quantified Implications

© Abdallah Farraj, University of Toronto

Introducing "for all"

- Now that we are writing lots of them, we will allow the abbreviations:
 - "∀" to mean "for all"
 - " $\forall x \in \mathbb{R}$ " to mean "for all real numbers x"
 - " $\forall x, y \in \mathbb{R}$ " to mean "for all numbers x and y"
 - And so on...

© Abdallah Farraj, University of Toronto

27

If... Then

Solution	If Then representation
Let x be a real number.	
Assume $x + \sqrt{x} = 2$.	
Then $\sqrt{x} = 2 - x$.	$\forall x \in \mathbb{R}$: if $x + \sqrt{x} = 2$ then $\sqrt{x} = 2 - x$
Then $(\sqrt{x})^2 = (2-x)^2$.	$\forall x \in \mathbb{R}$: if $\sqrt{x} = 2 - x$ then $(\sqrt{x})^2 = (2 - x)^2$
Then $x = (2 - x)^2$.	$\forall x \in \mathbb{R}$: if $(\sqrt{x})^2 = (2-x)^2$ Then $x = (2-x)^2$.
Then $x = 4 - 4x + x^2$.	$\forall x \in \mathbb{R}$: if $x = (2 - x)^2$ then $x = 4 - 4x + x^2$.
Then $0 = 4 - 5x + x^2$.	$\forall x \in \mathbb{R}$: if $x = 4 - 4x + x^2$ then $0 = 4 - 5x + x^2$.
Then $0 = (x - 1)(x - 4)$.	$\forall x \in \mathbb{R}$: if $0 = 4 - 5x + x^2$ then $0 = (x - 1)(x - 4)$.
Then $x = 1$ or $x = 4$.	$\forall x \in \mathbb{R}$: if $0 = (x - 1)(x - 4)$ then $[x = 1 \text{ or } x = 4]$.
Therefore, for any real number x : if $x + \sqrt{x} = 2$ then $[x = 1 \text{ or } x = 4]$.	

© Abdallah Farraj, University of Toronto

Justify Solution

Solution	Justification
Let x be a real number.	
Assume $x + \sqrt{x} = 2$.	it implicitly assumes x is not negative.
Then $\sqrt{x} = 2 - x$.	of the same of th
Then $(\sqrt{x})^2 = (2-x)^2$.	since $\forall a, b \in \mathbb{R}$: if $a = b$ then $a^2 = b^2$.
Then $x = (2 - x)^2$.	since $\forall a \in \mathbb{R}$: if $a \ge 0$ then $(\sqrt{a})^2 = a$.
Then $x = 4 - 4x + x^2$.	since $\forall a, b \in \mathbb{R}: (a + b) \cdot (a + b) = a^2 + 2ab + b^2$.
Then $0 = 4 - 5x + x^2$.	for the same reason as $^{(1)}$, but with some basic arithmetic for the RHS.
Then $0 = (x - 1)(x - 4)$.	from some basic arithmetic for the RHS.
Then $x = 1$ or $x = 4$.	since $\forall a, b \in \mathbb{R}$: if $a \cdot b = 0$ then $[a = 0 \text{ or } b = 0]$.
Therefore, for any real number x : if $x + \sqrt{x} = 2$ then $[x = 1 \text{ or } x = 4]$.	© Abdallah Farraj, University of Toronto

29

Solution

- So now we know that at there are at MOST two solutions to the equation: x = 1 or x = 4
- We checked and found that x = 4 is NOT a solution, so the result of the proof can be strengthened:

$$\forall x \in \mathbb{R}$$
: if $x + \sqrt{x} = 2$ then $x = 1$

• We checked and found that x=1 IS a solution, which can also be summarized as a "converse" Universally Quantified Implication:

$\forall x \in \mathbb{R}$: if x = 1 then $x + \sqrt{x} = 2$

Proof: Let x be a real number. Assume x=1. Then $x+\sqrt{x}=2$. Then if x=1 then $x+\sqrt{x}=2$.

- Together, those two Universally Quantified Implications say that the x = 1 then $x + \sqrt{x} = 2$. equation has exactly one solution: when x = 1
- Solving an equation means proving a Universally Quantified Implication and its converse

© Abdallah Farraj, University of Toronto

Solution of $x + \sqrt{x} = 2$

• We found that

$$\forall x \in \mathbb{R}$$
: if $x + \sqrt{x} = 2$ then $[x = 1 \text{ or } x = 4]$ is TRUE

• We also found that

$$\forall x \in \mathbb{R}$$
: if $[x = 1 \text{ or } x = 4]$ then $x + \sqrt{x} = 2$ is False

A: The set of all numbers such that $x + \sqrt{x} = 2$

B: The set of all numbers such that x = 1 or x = 4

A:

© Abdallah Farraj, University of Toronto

31

Notes

 $\hbox{@}$ Abdallah Farraj, University of Toronto

Alternative Phrasing of UQI

- An alternative phrasing of Universally Quantified Implication (about a number):
 - "If a number ... then it"
- (C_o'): If a number is larger than seven then its square is larger than sixteen
- (C_1') : If a number's square is larger than sixteen then the number is larger than seven
 - We avoided an "it" ambiguity in C₁' by saying "the number" again

© Abdallah Farraj, University of Toronto

33

Rephrasing of Co

- For all numbers x: if x > 7 then $x^2 > 16$
- Note: it is still readable as a complete English sentence "For all numbers x: if x is larger than seven then the square of x is larger than sixteen"
- Every line you write must be readable as a complete sentence. Read every line out loud to yourself
- You are writing sentences, paragraphs, and essays, but with the convenience of some symbolic abbreviations
- So the usual standards apply: complete grammatical sentences

© Abdallah Farraj, University of Toronto

Proving a claim

- Consider a claim "for all numbers x: if A(x) then B(x)"
- Read out as: for all real numbers x: if A(x) is True then B(x) is True
- The claim is False if there is an A(x) that is True while B(x) is False
- In the table and examples:
 - We were trying to see if there are counter examples to invalidate the claim
 - A counter example: A(x) is True and B(x) is False
 - If a counter example is found, then a claim in false
- The irrelevant cases occur when A(x) is False:
 - Remember the claim is about if A(x) being true, then B(x) is true
 - The claim does not directly "promise" anything about B(x) if A(x) is not True
 - Consequently, to disprove a claim, we cannot use the results of an irrelevant case because the claim does not (directly) promise anything about this case

© Abdallah Farraj, University of Toronto

35

Proving a claim

- In Venn Diagram:
 - The claim is True if A is completely contained in B
 - That means all members of A are members of B
 - That does not mean that all members of B have to be in A
 - The irrelevant cases occur for elements that are not contained in A

© Abdallah Farraj, University of Toronto

Writing precisely

- In this course: DO NOT USE COMMAS IN PLACE OF "and", "then", "such that", etc.
- Commas replacing words are a frequent source of ambiguity and confusion in student writing
- DO NOT WRITE: If x > 7, $x^2 > 16$
- DO NOT WRITE: If x is a number, x > 7, then $x^2 > 16$
- DO NOT WRITE: If x > 165, x + y > 148, then x + y > 200
 - Which commas are replacing an "and"?
 - Which commas are replacing a "then"?
 - Which commas are replacing "such that"?
- Remember " $\forall x, y \in \mathbb{R}$ " means "for all numbers x and y"
 - This is a violation of our "no commas replacing words" rule (replaces an "and"), but we are
 explicitly allowing that violation for this course

© Abdallah Farraj, University of Toronto

"for all" Symbol

- "∀" can be read in various synonymous ways:
 - "for all" "for any", "for each", "for every"
 "∀x ∈ ℝ" means "for all real numbers x"

 - " $\forall x, y \in \mathbb{R}$ " means "for all numbers x and y"
- "∀" is used with variables
- DO NOT use "∀" on NON-VARIABLE EXPRESSIONS
- DO NOT write things likes:
 - " $\forall x^2 \in \mathbb{R}$:...."
 - "For all numbers $x^2 : \dots$ "
- Also DO NOT write things like:
 - " $\forall x > 0 \in \mathbb{R}$:...."
 - " \forall positive $x \in \mathbb{R} :$ "
 - "For all x > y:"

© Abdallah Farraj, University of Toronto

Existential Statement

© Abdallah Farraj, University of Toronto

39

Existential Statement

- Given a property that may or may not be true, an existential statement says that there is at least one thing for which the property is true
- Example:
 - There is a prime number that is even
 - At least one of prime numbers is even
- "∃": There is at least one
- Claim: $\exists x \in \mathbb{R}: x > 10$ [True or False?]
- Claim: $\exists x \in \mathbb{R}: x^2 < 0$ [True or False?]

© Abdallah Farraj, University of Toronto

Even and Odd Numbers

- Even numbers: $\{..., -4, -2, 0, 2, ...\}$
- Odd numbers: $\{..., -3, -1, 1, 3, ...\}$
- x is even: $\exists j \in \mathbb{Z}$: x = 2(j)
- x is odd: $\exists j \in \mathbb{Z}$: x = 2(j) + 1

Even Number	Representation	
-4	-2(2)	
-2	-1(2)	
0	0(2)	
2	1(2)	
4	2(2)	
x	$\exists j \in \mathbb{Z} : x = 2(j)$	ah Farrai. U

Odd Number	Representation
-3	-2(2) + 1
-1	-1(2) + 1
1	0(2) + 1
3	1(2) + 1
5	2(2) + 1
X Jniversity of Toronto	$\exists j \in \mathbb{Z} : x = 2(j) + 1$

41

Even and Odd Numbers

- Even numbers: $\{..., -4, -2, 0, 2, ...\}$
- Odd numbers: $\{..., -3, -1, 1, 3, ...\}$
- $\forall x \in \mathbb{Z}$: if x is even then $[\exists j \in \mathbb{Z}: x = 2(j)]$
- $\forall x \in \mathbb{Z}$: if x is odd then $[\exists j \in \mathbb{Z}: x = 2(j) + 1]$

© Abdallah Farraj, University of Toronto