进度报告&论文分享

DRL与元学习、分布式相结合

范也 2021.10.27

研究进度

- 1. 使用ddpg,效果不好
- 2. 换成discrete的D3QN算法, 勉强可以

后续

- 1. 加入网络传输延迟
- 2. 设计公式、数据
- 3. 尝试与分布式、元学习等结合

Fast Adaptive Task Offloading in Edge Computing based on Meta Reinforcement Learning

期刊: TPDS 2021 Jan

作者: Jin Wang, Jia Hu, Geyong Min, Albert Y. Zomaya

机构: University of Exeter, United Kingdom.

摘要:

训练drl算法需要的时间比较长,对于不同的环境还需要分别训练。

- 1. 使用meta-rl的方法,仅需较少次数的更新,便可以适应新的环境。
- 2. 使用seq2seq编码DAG,最小化延迟,快速适应新的环境。

架构

网络

- encoder: task embeddings
- decoder: offloading decisions, value function

训练

- 1. inner loop:使用meta-policy初始化本地网络,在本地抽样训练
- 2. outer loop: 使用本地的参数更新meta-policy

元强化学习 (Meta Reinforcement Learning)

实验

Testing dataset		Heuristic Algorithms		Fine-tuning DRL		MRLCO	
	Optimal	HEFT-based	Greedy	update steps(20)	update steps(100)	update steps(20)	update steps(100)
Toploogy I	679.31	800.75	847.73	812.32	789.92	791.03	722.63
Toploogy II	555.46	802.46	848.43	688.05	636.49	651.42	601.93
Toploogy III	605.05	814.39	859.03	778.52	712.79	729.63	641.92
n = 20	689.21	838.31	893.62	818.14	802.50	802.41	743.42
n = 30	N/A	1222.93	1276.70	1185.47	1152.07	1174.55	1098.43
n = 40	N/A	1527.47	1589.66	1493.11	1432.41	1472.53	1397.63
$R_{\rm ul} = R_{\rm dl} = 5.5 \text{ Mbps}$	770.10	929.79	990.58	945.82	901.36	897.73	831.58
$R_{\rm ul} = R_{\rm dl} = 8.5 \text{ Mbps}$	628.21	757.99	763.49	736.81	701.75	703.38	674.93
$R_{\rm ul} = R_{\rm dl} = 11.5 \text{ Mbps}$	524.14	649.15	684.97	589.33	570.19	567.88	548.26

Distributed and Collective Deep Reinforcement Learning for Computation Offloading: A Practical Perspective

期刊: TPDS 2021 May

作者: Xiaoyu Qiu, Weikun Zhang, Wuhui Chen, Zibin Zheng

机构:中山大学

摘要

- 1. 使用分布式、协同方法训练,增多数据量,提升泛化性
- 2. adaptive n-step learning提升了训练的效率。
- 3. 结合deep neuroevolution和policy gradient

系统建模

- 1. 多UE(用户设备),单个ES(边缘服务器)
- 2. 目标: 最小化 latency + energy

算法

Actor Critic framework

特点

- 1. 长期来看,效果较直接学习q值更好
- 2. 训练时间较长

分布式训练

Adaptive N-Step Learning

G. Barth-Maron et al., "Distributed distributional deterministic policy gradients," 2018

$$\mathcal{T}Q\left(S_{t},A_{t}\mid heta
ight)=\!\!R_{t}+\gamma R_{t+1}+\gamma^{2}R_{t+2}+\ldots+\gamma^{n-1}R_{t+n-1} \ \gamma^{n}\cdot\mathbb{E}\left[Q\left(S_{t+n},\pi\left(S_{t+n}\mid \phi'
ight)\mid heta'
ight)
ight]$$

Deep Neuroevolution and Policy Gradient

H. Beyer, "Evolution strategies," Scholarpedia, vol. 2, no. 8, 2007, Art. no. 1965.

- 1. 与遗传算法相结合,保证收敛。
- 2. 向输出中添加噪声。
- 3. 选择其中表现较好的模型。

实验

总结

- 1. 深度强化学习训练成本较高
- 2. 不同环境共同训练一个模型,使用这个模型进行初始化
- 3. 在训练中使用一些trick (剪裁梯度、启发式等) 提高 训练效率和泛化能力

计划

- 1. 实现网络层传输
- 2. 考虑使用分布式或者迭代的方法优化