Data Visualization HWK 6

Isaiah Thompson Ocansey

2023-04-12

df<-read.csv(file = "serialdat.csv",sep=",", header = TRUE)
head(df);dim(df)</pre>

SUMOvar <chr></chr>	X10.x.copies <int></int>	Replicate.1 <dbl></dbl>	Replicate.2 <dbl></dbl>	Replicate.3 <dbl></dbl>	Average.Cq <dbl></dbl>
1 S1V1	6	16.27132	16.19231	16.36603	16.27655
2 S1V1	5	20.14263	20.12184	20.05466	20.10638
3 S1V1	4	23.07819	23.10269	22.86079	23.01389
4 S1V1	3	25.53921	25.51511	25.41548	25.48993
5 S1V1	2	26.05758	25.99988	26.04024	26.03257
6 S1V1	1	26.23620	26.03428	26.19077	26.15375
6 rows					

[1] 42 6

The data contains information about gene variant transcriptions. There were three replicates of the variant transcriptions and a final column where the three replicates were averaged. The categorical variable included is SUMOver-this has seven classes of genes labelled in the format S1V1, S1V2, S1V3, S2V1, S2V2, S3V1,S3V2. In all, the data has 42 observations and 6 variables. For the purposes of visualizing associations, we take two continuous variables which are Replicate 1 and Replicate 2 and observe their associations within the different classes of genes.

dat<-df[,c(1,3,4)]
head(dat)</pre>

Replicate.1 <dbl></dbl>	Replicate.2 <dbl></dbl>
16.27132	16.19231
20.14263	20.12184
23.07819	23.10269
25.53921	25.51511
26.05758	25.99988
26.23620	26.03428
	<dbl> 20.14263 <dd>23.07819 25.53921 <dd>26.05758</dd></dd></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl></dbl>

6 rows

The above data set is a subset of the original serial data with only two Replicates;1 and 2 and the categorical variable SUMOvar.

```
library(ggplot2)

ggplot(df, aes(x = Replicate.1, y = Replicate.2, color=SUMOvar)) +
  geom_point() +
  #scale_color_manual(values = df$SUMOvar[1:6]) +
  theme(legend.position=c(0,1), legend.justification=c(0,1))
```


It can be observed from the above scatter plot that overall, all the different gene classes has linear associations with replicate 1 and replicate 2 except for some potential outlier of the gene class S2V1.Particularly, We can observe that the different gene classes tend to cluster together more as both replicates increase.

```
rules <- apriori(dat, parameter = list(support = 0.01, confidence = 0.5))
```

```
## Warning: Column(s) 1, 2, 3 not logical or factor. Applying default
## discretization (see '? discretizeDF').
```

```
## Apriori
##
## Parameter specification:
   confidence minval smax arem aval originalSupport maxtime support minlen
##
                  0.1
                         1 none FALSE
                                                 TRUE
                                                                 0.01
##
   maxlen target ext
##
##
        10 rules TRUE
##
## Algorithmic control:
##
   filter tree heap memopt load sort verbose
       0.1 TRUE TRUE FALSE TRUE
##
##
## Absolute minimum support count: 0
##
## set item appearances ...[0 item(s)] done [0.00s].
## set transactions ...[13 item(s), 42 transaction(s)] done [0.00s].
## sorting and recoding items ... [13 item(s)] done [0.00s].
## creating transaction tree ... done [0.00s].
## checking subsets of size 1 2 3 done [0.00s].
## writing ... [71 rule(s)] done [0.00s].
## creating S4 object ... done [0.00s].
```

rules

```
## set of 71 rules
```

we proceed to observe the association rules in both replicates characterized by the gene classes. From the above, we have 71 different association rules

```
plot(rules, method = "graph", engine = "htmlwidget")
```

Select by id

From the above plot, we could view the association rules using either the replicates or the classes of genes.

```
plot(rules, method="graph", control=list(type="itemsets"))
```

```
## Warning: Unknown control parameters: type
```

```
## Available control parameters (with default values):
## layout
            = stress
## circular = FALSE
## ggraphdots
                = NULL
## edges
            = <environment>
## nodes
            = <environment>
## nodetext = <environment>
## colors
            = c("#EE0000FF", "#EEEEEEFF")
## engine
               ggplot2
## max
           100
## verbose
            = FALSE
```

