```
In [1]:
```

```
#Importing the libraries
import pandas as pd
from matplotlib import pyplot as plt
from sklearn import linear_model
```

In [2]:

```
#Read a csv file
df1=pd.read_csv("canada_per_capita_income.csv")
df1
```

Out[2]:

	year	per capita income (US\$)
0	1970	3399.299037
1	1971	3768.297935
2	1972	4251.175484
3	1973	4804.463248
4	1974	5576.514583
5	1975	5998.144346
6	1976	7062.131392
7	1977	7100.126170
8	1978	7247.967035
9	1979	7602.912681
10	1980	8355.968120
11	1981	9434.390652
12	1982	9619.438377
13	1983	10416.536590
14	1984	10790.328720
15	1985	11018.955850
16	1986	11482.891530
17	1987	12974.806620
18	1988	15080.283450
19	1989	16426.725480
20	1990	16838.673200
21	1991	17266.097690
22	1992	16412.083090
23	1993	15875.586730
24	1994	15755.820270
25	1995	16369.317250
26	1996	16699.826680
27	1997	17310.757750
28	1998	16622.671870
29	1999	17581.024140
30	2000	18987.382410
31	2001	18601.397240
32	2002	19232.175560
33	2003	22739.426280
34	2004	25719.147150
35	2005	29198.055690

36	3/6/36	per <u>capita income</u> (US\$)
37	2007	36144.481220
38	2008	37446.486090
39	2009	32755.176820
40	2010	38420.522890
41	2011	42334.711210
42	2012	42665.255970
43	2013	42676.468370
44	2014	41039.893600
45	2015	35175.188980
46	2016	34229.193630

In [3]:

```
#changing column name
df=df1.rename(columns={'per capita income (US$)':'income'})
df.head(5)
```

Out[3]:

	year	income
0	1970	3399.299037
1	1971	3768.297935
2	1972	4251.175484
3	1973	4804.463248
4	1974	5576.514583

In [4]:

```
#visualizing
%matplotlib inline
plt.xlabel('year')
plt.ylabel('income')
plt.scatter(df.year,df.income,marker='+',color='blue')
plt.show()
```


In [5]:

```
#train the data
reg=linear_model.LinearRegression()
reg.fit(df[['year']],df['income'])
```

Out[5]:

LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

```
In [6]:
#predicting the value
reg.predict([[2017]])
Out[6]:
array([38803.29886875])
In [7]:
#coefficient or slope value
reg.coef
Out[7]:
array([828.46507522])
In [8]:
#intercept value
reg.intercept_
Out[8]:
-1632210.7578554575
In [9]:
#m=coefficient
#c=intercept
#x=year
#y=income
\#y=m*x+c
828.46507522*2018+-1632210.7578554575
Out[9]:
39631.76393850264
In [10]:
#regresion line
%matplotlib inline
plt.xlabel('year')
plt.ylabel('income')
plt.scatter(df.year,df.income,marker='+',color='blue')
plt.plot(df.year,reg.predict(df[['year']]),color='red')
plt.show()
  40000
  30000
                          *++++++
  20000
  10000
     0
```

2010

In [13]:

1980

1990

year

2000

1970

```
co=pd.read csv("Book1.csv")
CO
Out[13]:
     year
 0 2018
  1 2019
 2 2020
  3 2021
 4 2022
 5 2023
 6 2024
 7 2025
 8 2026
  9 2027
 10 2028
In [16]:
#predicting the income of given years
p=reg.predict(co)
Out[16]:
array([39631.76394397, 40460.22901919, 41288.69409442, 42117.15916964, 42945.62424486, 43774.08932009, 44602.55439531, 45431.01947053, 46259.48454575, 47087.94962098, 47916.4146962])
In [17]:
#creating new columns
co['income']=p
Out[17]:
     year
                income
  0 2018 39631.763944
  1 2019 40460.229019
 2 2020 41288.694094
  3 2021 42117.159170
 4 2022 42945.624245
  5 2023 43774.089320
  6 2024 44602.554395
 7 2025 45431.019471
 8 2026 46259.484546
  9 2027 47087.949621
 10 2028 47916.414696
In [18]:
#saving in new csv file
co.to_csv("book2.csv",index=False)
СО
Out[18]:
```

	year	income
0	2018	39631.763944
1	2019	40460.229019
2	2020	41288.694094
3	2021	42117.159170
4	2022	42945.624245
5	2023	43774.089320
6	2024	44602.554395
7	2025	45431.019471
8	2026	46259.484546
9	2027	47087.949621
10	2028	47916.414696

In []: