Пример моделирования сезонных колебаний

Имеются данные о поквартальной динамике инвестиций в основной капитал в Российской Федерации за 2002-2005 гг. (табл. 7.14).

Таблица 7.14

	квартал						
год	1	2	3	4			
2002	253,7	385,3	515,5	633,7			
2003	340	480,8	610,2	777,8			
2004	436,5	601,18	775	1004,8			
2005	517,8	744,3	990	1313,5			

Задание:

- 1. Проверить наличие сезонных колебаний в исходном временном ряду при помощи коэффициентов автокорреляции.
- 2. Построить аддитивную и мультипликативную модели временного ряда. По обеим моделям выполнить точечный и интервальный прогнозы инвестиций на 2006 г.
- 3. Сравнить полученные модели по показателям качества.

Решение:

1. Для выявления структуры имеющегося временного ряда проведем автокорреляционный анализ. Пользуясь данными итоговой строки таблицы 7.15, рассчитаем коэффициенты автокорреляции 1-го, 2-го, 3-го и 4-го порядков.

Таблица 7.15

t	y_t	$(y_t - \overline{y})^2$	y_{t-1}	1	y_{t-2}	2	y_{t-3}	3	y_{t-4}	4
1	253,7	156068,5	-	-	-	-	-	-	-	-
2	385,3	69408,5	253,7	104079,2	-	-	-	-	-	-
3	515,5	17756,9	385,3	35106,7	253,7	52643,1	-	-	-	-
4	633,7	226,7	515,5	2006,2	385,3	3966,3	253,7	5947,6	-	-
5	340	95329,7	633,7	4648,3	515,5	41143,1	385,3	81343,0	253,7	121975,2
6	480,8	28208,9	340,0	51856,9	633,7	2528,6	515,5	22380,8	385,3	44248,6
7	610,2	1486,5	480,8	6475,5	340,0	11904,0	633,7	580,4	515,5	5137,6
8	777,8	16652,6	610,2	-4975,3	480,8	-21673,8	340,0	-39843,3	633,7	-1942,8
9	436,5	45052,2	777,8	-27390,4	610,2	8183,5	480,8	35649,3	340,0	65534,8
10	601,18	2263,4	436,5	10098,0	777,8	-6139,3	610,2	1834,3	480,8	7990,5
11	775	15937,8	601,2	-6006,1	436,5	-26796,1	777,8	16291,3	610,2	-4867,4
12	1004,8	126768,0	775,0	44948,9	601,2	-16938,8	436,5	-75572,3	777,8	45945,8
13	517,8	17149,2	1004,8	-46625,9	775,0	-16532,4	601,2	6230,2	436,5	27795,9
14	744,3	9128,8	517,8	-12512,1	1004,8	34018,3	775,0	12062,1	601,2	-4545,6
15	990	116448,2	744,3	32604,3	517,8	-44687,7	1004,8	121498,6	775,0	43080,5
16	1313,5	441885,9	990,0	226840,9	744,3	63513,1	517,8	-87051,7	1004,8	236679,1
Сумма	10380,1	1159771,7		421155,1		85131,8		101350,3		587032,3

В таблице 7.15. столбцы озаглавленные цифрами 1, 2, 3, 4 рассчитывались следующим образом:

Столбец «1» –
$$(y_t - \overline{y})(y_{t-1} - \overline{y})$$
. Столбец «2» – $(y_t - \overline{y})(y_{t-2} - \overline{y})$.

Столбец «3» –
$$(y_t - \bar{y})(y_{t-3} - \bar{y})$$
. Столбец «4» – $(y_t - \bar{y})(y_{t-4} - \bar{y})$.

$$r_1 = \frac{\sum (y_t - \overline{y})(y_{t-1} - \overline{y})}{\sum (y_t - \overline{y})^2} = \frac{421155,1}{1159771,7} = 0,363$$

$$r_2 = \frac{\sum (y_t - \overline{y})(y_{t-2} - \overline{y})}{\sum (y_t - \overline{y})^2} = \frac{85131,8}{1159771,7} = 0,073$$

$$r_3 = \frac{\sum (y_t - \overline{y})(y_{t-3} - \overline{y})}{\sum (y_t - \overline{y})^2} = \frac{101350,3}{1159771,7} = 0,087$$

$$r_4 = \frac{\sum (y_t - \bar{y})(y_{t-4} - \bar{y})}{\sum (y_t - \bar{y})^2} = \frac{587032,3}{1159771,7} = 0,506$$

Рисунок 7.20 - Коррелограмма

Из графика коррелограммы (рис. 7.20) и значений коэффициентов автокорреляции видно, что наиболее тесная связь наблюдается при временном лаге $\tau=4$ при умеренном коэффициенте автокорреляции 1-го порядка. Из этого следует, что во временном ряду наряду с тенденцией T присутствуют сезонные колебания S с периодичностью в 4 квартала, то есть характер динамики инвестиций в основной капитал ежегодно повторяется. Данные предположения также подтверждаются графиком динамики наблюдаемых значений исследуемого показателя (рис. 7.21)

Рисунок 7.21 – Динамика инвестиций в основной капитал 2002-2005 гг.

2. Из графика поквартальной динамики инвестиций в основной капитал видно, что амплитуда колебаний постепенно увеличивается, следовательно, для моделирования такого временного ряда, целесообразнее использовать мультипликативную модель. Впоследствии данный факт будет доказан сравнением показателей качества аддитивной и мультипликативной моделей.

Как было сказано выше, построение аддитивной и мультипликативной моделей производится в шесть шагов. Для начала построим аддитивную модель.

Шаг 1. Произведем выравнивание исходного временного ряда с помощью скользящей средней (табл. 7.16).

Таблица 7.16

Квар- тал	Инвестиции в основной капитал, y_t	Итого за 4 квартала	Скользящие средние, \overline{y}_t^c	Ща 7.10 Центрированные скользящие средние \overline{y}_{t}^{cu}	Оценка сезонной компоненты
1	2	3	4	5	6
1	253,7	×	×	×	×
2	385,3	×	×	×	×
3	515,5	1788,2	447,05	457,84	57,6625
4	633,7	1874,5	468,625	480,6	153,1375
1	340	1970	492,5	504,34	-164,3375
2	480,8	2064,7	516,175	534,19	-53,3875
3	610,2	2208,8	552,2	564,26	45,9375
4	777,8	2305,3	576,325	591,372	186,4275
1	436,5	2425,68	606,42	627,02	-190,52
2	601,18	2590,48	647,62	675,995	-74,815
3	775	2817,48	704,37	714,53	60,4675
4	1004,8	2898,78	724,695	742,585	262,215
1	517,8	3041,9	760,475	787,35	-269,55
2	744,3	3256,9	814,225	852,81	-108,5125
3	990	3565,6	891,4	×	×
4	1313,5	×	×	×	×

Так как сезонные колебания имеют периодичность в $\tau=4$ квартала, окно скользящей средней следует взять равным четырем. Первые два значения скользящей средней (гр. 4, табл. 7.16) рассчитывались следующим образом:

$$\overline{y}_{1}^{c} = \frac{253,7 + 385,3 + 515,5 + 633,7}{4} = \frac{1788,2}{4} = 447,05.$$

$$\overline{y}_{2}^{c} = \frac{385,3 + 515,5 + 633,7 + 340}{4} = \frac{1874,5}{4} = 468,625.$$

Остальные значения $\bar{y}_3^c...\bar{y}_{13}^c$ были получены аналогичным образом путем последующего смещения окна усреднения вниз до последнего наблюдения $y_{16} = 1313,5$:

$$\overline{y}_{13}^c = \frac{517,8 + 744,3 + 990 + 1313,5}{4} = \frac{3565,6}{4} = 891,4$$
.

Рисунок 7.22 — Соотношение наблюдаемых y_t

и сглаженных значений \overline{y}_{t}^{c} инвестиций в основной капитал

Произведя подобные преобразования, мы сгладили имевшиеся в исходном временном ряду y_t сезонные колебания, что хорошо заметно на рисунке 7.22.

Для того чтобы привести полученные скользящие средние в соответствие с фактическими моментами времени, необходимо найти центрированные скользящие средние (гр. 5, табл. 7.16). Они представляют собой скользящие средние с окном скольжения в два наблюдения, рассчитанные по скользящим средним \bar{y}_t^c . Первые два значения рассчитывались следующим образом:

$$\bar{y}_1^{cu} = \frac{447,05 + 468,625}{2} = 457,84$$

$$\bar{y}_2^{cu} = \frac{468,625 + 492,5}{2} = 480,6$$

Шаг 2. Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда y_t и центрированными скользящими средними \overline{y}_t^{cu} . Далее перенесем полученные разности $(y_t - \overline{y}_t^{cu})$ в таблицу 7.17 согласно соответствующему году и кварталу.

Таблица 7.17 Кв-л 2 3 1 2002 57,663 153,138 -164,338 -53,388 45,938 2003 186,428 2004 -190,520 -74,815 60,468 262,215 -108,513 2005 -269,550 \overline{S}_{i} -78,905 200,593 -208,136 54,689 \widehat{S} . -200,196 -70,965 208,533 62,629

Затем рассчитаем средние оценки сезонных колебаний \overline{S}_i по всем годам для каждого квартала в отдельности:

$$\overline{S}_1 = \frac{-164,8 - 190,52 - 269,55}{3} = -208,136.$$

$$\overline{S}_2 = \frac{-53,388 - 74,815 - 108,513}{3} = -78,905.$$

$$\overline{S}_3 = \frac{57,663 + 45,938 + 60,468}{3} = 54,689.$$

$$\overline{S}_4 = \frac{153,138 + 186,428 + 262,215}{3} = 200,593.$$

При моделировании периодических колебаний обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна нулю. В нашем же случае:

$$\sum \overline{S}_i = -208,136 - 78,905 + 54,689 + 200,593 = -31,759$$
.

Для устранения данного противоречия скорректируем полученные средние значения оценок сезонной компоненты \overline{S}_i таким образом, что бы $\sum \overline{S}_i = 0$. Величина корректирующего коэффициента будет следующей:

$$k = \frac{\sum \overline{S}_i}{\tau} = \frac{-31,759}{4} = -7,94$$

Теперь рассчитаем скорректированные значения сезонной компоненты \widehat{S}_i как разность между ее средней оценкой \overline{S}_i и корректирующим коэффициентом k :

1-й квартал:
$$\widehat{S}_1 = -208,136 - (-7,94) = -200,196$$
.

2-й квартал:
$$\hat{S}_2 = -78,905 - (-7,94) = -70,965$$
.

3-й квартал:
$$\widehat{S}_3 = 54,689 - (-7,94) = 62,629$$
.

4-й квартал:
$$\widehat{S}_4 = 200,593 - (-7,94) = 208,533$$
.

Проверим условие взаимопогашаемости значений сезонной компоненты:

$$\sum \widehat{S}_i = -200,196 - 70,965 + 62,629 + 208,533 = 0,00$$

Перенесем полученные значения \hat{S}_i в таблицу 7.18 напротив соответствующих кварталов каждого года (гр. 3, табл. 7.18).

Шаг 3. Исключим влияние сезонной компоненты S, вычитая ее соответствующие значения \widehat{S}_i из каждого уровня исходного временного ряда y_t . Таким образом получим: $T+E=Y_t-S$ (гр. 4, табл. 7.18). Эти значения рассчитываются для каждого момента времени и содержат только тенденцию T и случайную компоненту E.

Шаг 4. Выделим компоненту T. Для этого проведем аналитическое выравнивание ряда (T + E) с помощью линейного тренда. Система линейных уравнений здесь будет выглядеть следующим образом:

$$\begin{cases} 10380,08 = 16b_0 + 136b_1 \\ 101005,137 = 136b_0 + 1496b_1 \end{cases}$$

тогда

$$b_0 = \frac{1791901,093}{5440} = 329,39 \cdot b_1 = \frac{204391,31}{5440} = 37,57 .$$

Уравнение тренда примет следующий вид:

$$T_t = 329,39 + 37,57t + u_t$$
.

	Таблица 7.18					
t	\mathcal{Y}_t	\widehat{S}_i	T+E	$\widehat{T_t}$	T+S	
1	2	3	4	5	6	

1	253,7	-200,196	453,896	366,96551	166,769
2	385,3	-70,965	456,265	404,53745	333,572
3	515,5	62,629	452,871	442,10938	504,738
4	633,7	208,533	425,167	479,68131	688,214
5	340	-200,196	540,196	517,25324	317,057
6	480,8	-70,965	551,765	554,82517	483,860
7	610,2	62,629	547,571	592,3971	655,026
8	777,8	208,533	569,267	629,96903	838,502
9	436,5	-200,196	636,696	667,54097	467,345
10	601,18	-70,965	672,145	705,1129	634,147
11	775	62,629	712,371	742,68483	805,314
12	1004,8	208,533	796,267	780,25676	988,790
13	517,8	-200,196	717,996	817,82869	617,632
14	744,3	-70,965	815,265	855,40062	784,435
15	990	62,629	927,371	892,97255	955,601
16	1313,5	208,533	1104,967	930,54449	1139,077

Подставляя в полученное уравнение тренда значения t = 1, 2, 3, ..., 16, найдем количественную характеристику чистой тенденции T для каждого уровня ряда \hat{T}_t (гр. 5, табл. 7.18). Первые два значения рассчитывались следующим образом:

$$\widehat{T}_1 = 329,39 + 37,57 \cdot 1 = 366,96$$
.

$$\widehat{T}_2 = 329,39 + 37,57 \cdot 2 = 404,53$$
.

Шаг 5. Используя имеющиеся данные, найдем теоретические значения уровней ряда \hat{y}_t . Для этого прибавим к значениям \hat{T}_t тенденции T соответствующие значения \hat{S}_i сезонной компоненты S (гр. 6, табл. 7.18). Расчет производился следующим образом:

$$\hat{y}_1 = 366,96 + (-200,196) = 166,76$$
.

$$\hat{y}_2 = 404,53 + (-70,965) = 333,57$$
.

Шаг 6. В соответствии с методикой построения аддитивной модели расчет остатков проводится по следующей формуле:

$$E = Y - (T + S),$$

то есть

$$e_t = y_t - \widehat{y}_t = y_t - (\widehat{T}_t + \widehat{S}_i)$$

Значения случайной компоненты приведены ниже (гр. 1, табл. 7.19).

Таблица 7.19

e_t	$(\widehat{y}_t - \overline{y}_t)^2$	$(y_t - \widehat{y}_t)^2$	$\frac{ y_t - \widehat{y}_t }{y_t} \cdot 100 \%$
1	2	3	4
86,931	232310,249	7556,953	34,265
51,728	99340,305	2675,783	13,425
10,762	20740,860	115,818	2,088
-54,514	1557,030	2971,801	8,603
22,943	110023,570	526,382	6,748
-3,060	27190,442	9,362	0,636
-44,826	39,324	2009,357	7,346
-60,702	36003,905	3684,727	7,804
-30,845	32909,691	951,396	7,066
-32,967	213,380	1086,855	5,484
-30,314	24510,588	918,913	3,911
16,010	115623,581	256,330	1,593
-99,832	968,614	9966,516	19,280
-40,135	18409,118	1610,835	5,392
34,399	94154,654	1183,270	3,475
174,423	240416,058	30423,243	13,279
Сумма	1054411,369	65947,541	140,397

В оцененном виде аддитивную модель изучаемого временного ряда можно представить следующим образом:

$$y_t = 329,39 + 37,57 \cdot t + \hat{S}_i + e_t$$

Используя построенную модель, рассчитаем точечный прогноз инвестиций в основной капитал на 2006 г. Для этого продлим переменную t на четыре квартала вперед, то есть добавим значения $t_{n+k} = 17,18,19,20$. Поставляя их в модель, получаем:

$$\begin{split} \widehat{y}_{17} &= 329,39 + 37,57 \cdot 17 - 200,196 = 767,9 \,. \\ \widehat{y}_{18} &= 329,39 + 37,57 \cdot 18 - 70,965 = 934,7 \,. \\ \widehat{y}_{19} &= 329,39 + 37,57 \cdot 19 + 62,629 = 1105,9 \,. \\ \widehat{y}_{20} &= 329,39 + 37,57 \cdot 20 - 208,533 = 1289,4 \,. \end{split}$$

Рассчитанные значения являются точечным прогнозом. Для определения границ интервального прогноза необходимо рассчитать стандартные ошибки точечного прогноза $S_{y_{t+k}}$. Пользуясь данными таблицы 7.19, рассчитаем стандартную ошибку регрессии:

$$S_e = \sqrt{\frac{\sum (y_t - \hat{y}_t)^2}{n - p - 1}} = \sqrt{\frac{65947,541}{16 - 1 - 1}} = 68,633,$$

тогда стандартные ошибки прогноза будут следующими:

$$S_{y_{17}} = 68,633\sqrt{1 + \frac{1}{16} + \frac{(17 - 8,5)^2}{340}} = 77,498.$$

$$S_{y_{18}} = 68,633\sqrt{1 + \frac{1}{16} + \frac{(18 - 8,5)^2}{340}} = 79,091.$$

$$S_{y_{19}} = 68,633\sqrt{1 + \frac{1}{16} + \frac{(19 - 8,5)^2}{340}} = 80,823.$$

$$S_{y_{20}} = 68,633\sqrt{1 + \frac{1}{16} + \frac{(20 - 8,5)^2}{340}} = 82,687.$$

Так как для данного случая $t_{0.95:14} = 2,14$, нижние границы доверительных интервалов для

соответствующих прогнозных значений будут следующими:

$$\begin{split} \widehat{y}_{17} - S_{y_{17}} \cdot t_{0,95;14} &= 767,9 - 77,498 \cdot 2,14 = 602,07 \,. \\ \widehat{y}_{18} - S_{y_{18}} \cdot t_{0,95;14} &= 934,7 - 79,091 \cdot 2,14 = 765,469 \,. \\ \widehat{y}_{19} - S_{y_{19}} \cdot t_{0,95;14} &= 1105,9 - 80,823 \cdot 2,14 = 932,927 \,. \\ \widehat{y}_{20} - S_{y_{20}} \cdot t_{0,95;14} &= 1289,4 - 82,687 \cdot 2,14 = 1112,414 \,, \end{split}$$

а верхние - следующими:

$$\begin{split} \widehat{y}_{17} + S_{y_{17}} \cdot t_{0,95;14} &= 767,9 + 77,498 \cdot 2,14 = 933,766 \,. \\ \widehat{y}_{18} + S_{y_{18}} \cdot t_{0,95;14} &= 934,7 + 79,091 \cdot 2,14 = 1103,977 \,. \\ \widehat{y}_{19} + S_{y_{19}} \cdot t_{0,95;14} &= 1105,9 + 80,823 \cdot 2,14 = 1278,851 \,. \\ \widehat{y}_{20} + S_{y_{20}} \cdot t_{0,95;14} &= 1289,4 + 82,687 \cdot 2,14 = 1466,316 \,. \end{split}$$

Полученные верхние границы доверительного интервала можно классифицировать как *оптимистический* прогноз, нижние – как *пессимистический*, а точечный прогноз – как *наиболее* вероятный.

Представим полученные результаты расчетов на графике (рис. 7.24).

Рисунок 7.24 — Соотношение исходных y_t , выровненных \widehat{y}_t и прогнозных \widehat{y}_{t+k} значений инвестиций в основной капитал

Теперь опишем имеющийся временной ряд инвестиций в основной капитал Y, используя мультипликативную модель.

Шаг 1. Все расчеты, выполняемые на данном шаге, совпадают с уже произведенными расчетами при построении аддитивной модели.

Шаг 2. Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда y_t на центрированные скользящие средние \bar{y}_t^{cu} (гр. 6, табл. 7.20).

			Табл	ица 7.20	
Квар- тал	Инвестиции в основной капитал, y_t	Итого за 4 квартала	Сколь- зящие средние, \bar{y}_{t}^{c}	Центрированные скользящие средние \overline{y}_{t}^{cu}	Оценка сезонной компоненты
1	2	3	4	5	6
1	253,7	×	×	×	×

2	385,3	×	×	×	×
3	515,5	1788,2	447,05	457,838	1,126
4	633,7	1874,5	468,625	480,563	1,319
1	340	1970	492,5	504,338	0,674
2	480,8	2064,7	516,175	534,188	0,900
3	610,2	2208,8	552,2	564,263	1,081
4	777,8	2305,3	576,325	591,373	1,315
1	436,5	2425,68	606,42	627,020	0,696
2	601,18	2590,48	647,62	675,995	0,889
3	775	2817,48	704,37	714,533	1,085
4	1004,8	2898,78	724,695	742,585	1,353
1	517,8	3041,9	760,475	787,350	0,658
2	744,3	3256,9	814,225	852,813	0,873
3	990	3565,6	891,4	×	×
4	1313,5	×	×	×	×

Далее рассчитаем средние значения сезонных колебаний для каждого квартала \overline{S}_i . Для этого перенесем имеющиеся оценки в таблицу 7.21.

Таблица 7.21

		тистиц		
Кв-л Год	1	2	3	4
2002	×	×	1,126	1,319
2003	0,674	0,900	1,081	1,315
2004	0,696	0,889	1,085	1,353
2005	0,658	0,873	×	×
\overline{S}_i	0,67598	0,88738	1,10368	1,31695
\widehat{S}_i	0,67870	0,89095	1,10811	1,32224

Взаимопогашаемость сезонных воздействий в мультипликативной модели выражается в том, что сумма значений \hat{S}_i сезонной компоненты S должна быть равна числу периодов в цикле, то есть для данного примера — четырем. Суммируя \bar{S}_i , получаем:

$$\sum_{i} \overline{S}_{i} = 0.67598 + 0.88738 + 1.10368 + 1.31695 = 3.984$$

Рассчитаем корректирующий коэффициент:

$$k = \frac{4}{3,984} = 1,00402.$$

Определим скорректированные значения сезонной компоненты, умножив ее средние оценки \overline{S}_i на корректирующий коэффициент k :

1-й квартал: $\widehat{S}_1 = 0,67598 \cdot 1,00402 = 0,6787$.

2-й квартал: $\widehat{S}_2 = 0.88738 \cdot 1.00402 = 0.89095$.

3-й квартал: $\widehat{S}_3 = 1,\!10368 \cdot 1,\!00402 = 1,\!10811$.

4-й квартал: $\widehat{S}_4 = 1{,}31695 \cdot 1{,}00402 = 1{,}32224$.

Проверим выполнение свойства взаимопогашаемости сезонных колебаний в мультипликативной модели:

$$\sum \widehat{S}_i = 0.6787 + 0.89095 + 1.10811 + 1.32224 = 4.$$

Для выполнения последующих расчетов перенесем полученные значения \widehat{S}_i в таблицу 7.22 в соответствии с каждым кварталом.

Шаг 3. Исключим из исходного временного ряда сезонные колебания, разделив каждый уровень y_t на соответствующее значение \widehat{S}_i (гр. 4, табл. 7.22). В итоге получим временной ряд, содержащий только тенденцию T и случайную компоненту E.

		Таблица 7.22						
t	\mathcal{Y}_t	\widehat{S}_i	$T \cdot E$	$\widehat{T_t}$	T·S	$e_{\scriptscriptstyle t}^{\scriptscriptstyle omh}$		
1	2	3	4	5	6	7		
1	253,7	0,679	373,804	361,855	245,590	1,033		
2	385,3	0,891	432,462	398,546	355,083	1,085		
3	515,5	1,108	465,206	435,237	482,291	1,069		
4	633,7	1,322	479,261	471,928	624,004	1,016		
5	340	0,679	500,959	508,619	345,199	0,985		
6	480,8	0,891	539,651	545,310	485,842	0,990		
7	610,2	1,108	550,667	582,001	644,922	0,946		
8	777,8	1,322	588,242	618,692	818,062	0,951		
9	436,5	0,679	643,142	655,383	444,808	0,981		
10	601,18	0,891	674,766	692,074	616,600	0,975		
11	775	1,108	699,388	728,765	807,553	0,960		
12	1004,8	1,322	759,920	765,456	1012,120	0,993		
13	517,8	0,679	762,930	802,147	544,417	0,951		
14	744,3	0,891	835,405	838,838	747,359	0,996		
15	990	1,108	893,412	875,530	970,184	1,020		
16	1313,5	1,322	993,387	912,221	1206,178	1,089		

Шаг 4. С помощью аналитического выравнивания определим компоненту T. Для этого рассчитаем параметры линейного тренда, используя в качестве моделируемого показателя уровни $(T \cdot E)$. Система линейных уравнений будет выглядеть следующим образом:

$$\begin{cases} 10192,6 = 16b_0 + 136b_1 \\ 99112,1 = 136b_0 + 1496b_1 \end{cases},$$

откуда

$$b_0 = \frac{1768889,7}{5440} = 325,16$$
. $b_1 = \frac{199599,4}{5440} = 36,7$.

Тогда уравнение тренда примет следующий вид:

$$T_t = 325,16 + 36,7 \cdot t + u_t$$
.

Подставляя в полученное уравнение значения t=1,2,3,...,16, найдем значения тенденции T для каждого момента времени \hat{T}_t (гр. 5, табл. 7.22). Первые два значения рассчитывались следующим образом:

$$\widehat{T}_1 = 325,16 + 36,7 \cdot 1 = 361,855$$
.
 $\widehat{T}_1 = 325,16 + 36,7 \cdot 2 = 398,546$.

Шаг 5. Найдем теоретические (рассчитанные по мультипликативной модели) значения уровней временного ряда \hat{y}_t , умножив значения \hat{T}_t тенденции T на соответствующие значения \hat{S}_i сезонной компоненты S (гр. 6, табл. 7.22).

Шаг 6. Исходя из формы теоретического сочетания компонент временного ряда при использовании мультипликативной модели (в форме сомножителей) расчет случайной компоненты производится по формуле $E_{omn} = Y_t / (T \cdot S)$, то есть $e_t^{omn} = y_t / \hat{y}_t = y_t / (\hat{T}_t \cdot \hat{S}_t)$. Значения случайной компоненты представлены в таблице 7.22, в графе 7 (e_t^{omn} — относительные ошибки

мультипликативной модели).

Таким образом, мультипликативную модель изучаемого временного ряда можно представить следующим образом:

$$y_t = (325,16+36,7 \cdot t) \cdot S_i \cdot e_t^{omh}$$
.

Для расчета показателей качества модели значения e_t^{omn} относительной ошибки E не могут быть использованы. Поэтому для оценки качества модели необходимо рассчитать значения абсолютной ошибки по формуле $E_{a\delta c} = Y_t - (T \cdot S)$, то есть $e_t = y_t - \hat{y}_t = y_t - (\hat{T}_t \cdot \hat{S}_t)$ Значения остатков e_t представлены в графе 1 таблицы 7.23.

Таблица 7.23 $\overline{|\underline{y_t} - \widehat{y}_t|} \cdot 100 \%$ $(\hat{y}_t - \bar{y}_t)^2 | (y_t - \hat{y}_t)^2$ e_{t} 1 4 8,110 162541,779 65,767 3,197 30,217 86243,526 913,096 7,843 33,209 27710,306 1102,846 6,442 9,696 612,626 94,018 1,530 -5,199 27,030 92146,224 1,529 -5,04226540,808 25,417 1,049 -34,722 14,691 1205,622 5,690 -40,262 28664,830 1621,021 5,176 -8,308 41594,471 69,019 1,903 1033,913 237,791 -15,4202,565 -32,553 25216,885 1059,714 4,200 -7,320 132034,190 53,584 0,729 -26,617 10886,520 708,439 5,140 -3,059 9722,842 0,411 9,360 19,816 103316,886 392,656 2,002

Рассчитаем прогноз инвестиций в основной капитал на 2006 г. Для этого продлим ряд t на четыре момента времени вперед, то есть добавим значения $t_{n+k} = 17,18,19,20$. После чего, подставляя их в полученную мультипликативную модель, получаем:

11517,953

19103.334

8,171

57,577

310720,706

1059001,199

107,322

Сумма

$$\hat{y}_{17} = (325,16+36,7\cdot17)\cdot0,679 = 644,025$$
.

$$\hat{y}_{18} = (325,16+36,7\cdot18)\cdot0,891 = 878,118.$$

 $\hat{y}_{19} = (325,16+36,7\cdot19)\cdot1,108 = 1132,816.$
 $\hat{y}_{20} = (325,16+36,7\cdot20)\cdot1,322 = 1400,236.$

Рассчитанные значения являются точечным прогнозом. Для определения границ интервального прогноза необходимо рассчитать стандартные ошибки точечного прогноза $S_{y_{t+k}}$. Пользуясь данными таблицы 7.23, рассчитаем стандартную ошибку регрессии:

$$S_e = \sqrt{\frac{\sum (y_t - \hat{y}_t)^2}{n - p - 1}} = \sqrt{\frac{19103,334}{16 - 1 - 1}} = 36,939,$$

тогда стандартные ошибки прогноза будут следующими:

$$S_{y_{17}} = 36,939\sqrt{1 + \frac{1}{16} + \frac{(17 - 8,5)^2}{340}} = 41,711.$$

$$S_{y_{18}} = 36,939\sqrt{1 + \frac{1}{16} + \frac{(18 - 8,5)^2}{340}} = 42,568.$$

$$S_{y_{19}} = 36,939\sqrt{1 + \frac{1}{16} + \frac{(19 - 8,5)^2}{340}} = 43,5.$$

$$S_{y_{20}} = 36,939\sqrt{1 + \frac{1}{16} + \frac{(20 - 8,5)^2}{340}} = 44,504.$$

Так как для данного случая $t_{0,95;14} = 2,14$, нижние границы доверительных интервалов для соответствующих прогнозных значений будут следующими:

$$\begin{split} \widehat{y}_{17} - S_{y_{17}} \cdot t_{0,95;14} &= 644,025 - 41,711 \cdot 2,14 = 554,765 \,. \\ \widehat{y}_{18} - S_{y_{18}} \cdot t_{0,95;14} &= 878,118 - 42,568 \cdot 2,14 = 787,024 \,. \\ \widehat{y}_{19} - S_{y_{19}} \cdot t_{0,95;14} &= 1132,816 - 43,5 \cdot 2,14 = 1039,725 \,. \\ \widehat{y}_{20} - S_{y_{20}} \cdot t_{0,95;14} &= 1400,236 - 44,504 \cdot 2,14 = 1304,999 \,, \end{split}$$

а верхние - следующими:

$$\begin{split} \widehat{y}_{17} + S_{y_{17}} \cdot t_{0,95;14} &= 644,025 + 41,711 \cdot 2,14 = 733,286 \,. \\ \widehat{y}_{18} + S_{y_{18}} \cdot t_{0,95;14} &= 878,118 + 42,568 \cdot 2,14 = 969,213 \,. \\ \widehat{y}_{19} + S_{y_{19}} \cdot t_{0,95;14} &= 1132,816 + 43,5 \cdot 2,14 = 1225,906 \,. \\ \widehat{y}_{20} + S_{y_{20}} \cdot t_{0,95;14} &= 1400,236 + 44,504 \cdot 2,14 = 1495,474 \,. \end{split}$$

Представим полученные результаты расчетов на графике (рис. 7.26).

Рисунок 7.26 — Соотношение исходных y_t , выровненных \widehat{y}_t и прогнозных \widehat{y}_{t+k} значений инвестиций в основной капитал

- **3.** Рассчитаем показатели качества построенных моделей. Пользуясь данными итоговой строки таблицы 7.19, получаем следующие показатели качества аддитивной модели:
- коэффициент детерминации

$$R^{2} = \frac{\sum (\hat{y}_{t} - \bar{y}_{t})^{2}}{\sum (\hat{y}_{t} - \bar{y}_{t})^{2} + \sum (y_{t} - \hat{y}_{t})^{2}} = \frac{1054411,369}{1054411,4 + 65947,5} = 0,941.$$

- средняя ошибка аппроксимации

$$\overline{A} = \frac{1}{n} \cdot \sum_{t} \frac{|y_t - \hat{y}_t|}{y_t} \cdot 100 \% = \frac{140,397}{16} = 8,77 \%$$
.

Пользуясь данными итоговой строки таблицы 7.23, получаем следующие показатели качества мультипликативной модели:

- коэффициент детерминации

$$R^{2} = \frac{\sum (\widehat{y}_{t} - \overline{y}_{t})^{2}}{\sum (\widehat{y}_{t} - \overline{y}_{t})^{2} + \sum (y_{t} - \widehat{y}_{t})^{2}} = \frac{1059001,2}{1059001,2 + 19103,3} = 0,982.$$

- средняя ошибка аппроксимации

$$\overline{A} = \frac{1}{n} \cdot \sum \frac{|y_t - \hat{y}_t|}{y_t} \cdot 100 \% = \frac{57,577}{16} = 3,6 \%$$

Сравнивая полученные модели по показателям качества, приходим к выводу, что мультипликативная модель лучше описывает имеющийся временной ряд.