

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	«Информатика и системы управления»
КАФЕЛРА «П	рограммное обеспечение ЭВМ и информационные технологии»

ОТЧЕТ

по лабораторной работе № 2 по курсу «Анализ алгоритмов» на тему: «Алгоритмы умножения матриц»

Студент	ИУ7-54Б (Группа)	(Подпись	., дата)	Разин А. (И. О. Фамилия)
Преподава	атель	(Подпис	ь, дата)	Волкова Л. Л. (И. О. Фамилия)

СОДЕРЖАНИЕ

B	ВЕД	ЕНИЕ,	2															3
1	Ана	алитич	іеская ча	сть														4
	1.1	Сорти	іровка пер	емеши	вани	ıем												4
	1.2	Пораз	врядная со	ртиро	вка													4
	1.3	Блочі	ная сортир	овка														5
2	Koı	нструк	торская	часть														6
		2.0.1	Схемы ал	торит	MOB													6
		2.0.2	Структур	оы дан	ных													6
3	Исс	следов	ательская	я част	ГЬ												-	10
	3.1	Техни	ческие хар	оактер	исти	КИ												10
34	4К Л	ЮЧЕ	ниЕ															11
\mathbf{C}	пис	сок и	СПОЛЬЗ	BOBA	НН	ЫΧ	И	CT	'O	ЧЕ	Ш	Κ(ЭΒ				-	13

ВВЕДЕНИЕ

Упорядочение данных чрезвычайно важно в программировании. Практически сортировка и поиск в той или иной мере присутствуют во всех приложениях; в частности, при обработке больших объемов данных эффективность именно этих операций определяет эффективность, а иногда и работоспособность всей системы. Под сортировкой понимается упорядочивание элементов последовательности по какому-либо признаку [1]. Можно сказать, что достаточно четкие представления об этой области нужны при решении любой задачи на ЭВМ как обязательные элементы искусства программирования [2].

Целью данной лабораторной работы является описание и исследование трудоемкости алгоритмов сортировки.

Для поставленной цели необходимо выполнить следующие задачи.

- 1. Описать расстояния Левенштейна и Дамерау-Левенштейна;
- 2. создать программное обеспечение, реализующее следующие алгоритмы сортировки
 - перемешиванием;
 - блочная;
 - поразрядная;
- 3. оценить трудоемкости сортировок.
- 4. замерить время реализации.
- 5. провести анализ затрат работы программы по времени, выяснить влияющие на них характеристики.

1 Аналитическая часть

В данной части работы будут рассмотрены алгоритмы сортировок: перемешиванием, блочная и поразрядная. Также будет определена решаемая задача.

1.1 Сортировка перемешиванием

Алгоритм состоит из последовательных про проходов по массиву в 2 направлениях (от начала массива к его концу и наоборот). При каждом проходе происходит попарное сравнение ближайших значений, в случае если их порядок противоречит возрастающему, значения меняются местами и позиция, после которой произошло изменение порядка запоминается в переменной left в случае прохода от начала до конца массива и в переменной right иначе. Все следующие проходы по массиву происходят от позиции left до right пока данные позиции не равны. Таким образом при каждом проходе устанавливается наибольшее и наименьшее значения в индексах массива от left до right [3; 4].

1.2 Поразрядная сортировка

Смысл данной сортировки в том, что данные делятся сначала по разрядам и сортируются внутри каждого разряда. Сам алгоритм происходит в несколько этапов.

- 1. Алгоритм инициализирует индекс рассматриваемого разряда в числах;
- 2. после чего получает значение данного разряда каждого из чисел с помощью остатка деления на основание системы счисления;
- 3. затем полученные цифры сортируются;
- 4. элементы расставляются в соответствии со своими цифрами.

Данный алгоритм повторяется пока индекс рассматриваемого разряда не будет больше числа всех разрядов в числе [2; 4].

1.3 Блочная сортировка

Идея заключается в разбиении входных данных на «блоки» одинакового размера, после чего данные в блоках сортируются и результаты сортировок объединяются. Отсортированная последовательность получается путём последовательного перечисления элементов каждого блока. Для деления данных на блоки, алгоритм предполагает, что значения распределены равномерно, и распределяет элементы по блокам равномерно. Например, предположим, что данные имеют значения в диапазоне от 1 до 100 и алгоритм использует 10 блоков. Алгоритм помещает элементы со значениями 1-10 в первый блок, со значениями 11-20 — во второй, и т.д. Если элементы распределены равномерно, в каждый блок попадает примерно одинаковое число элементов. Если в списке N элементов, и алгоритм использует N блоков, в каждый блок попадает всего один или два элемента, поэтому возможно отсортировать элементы за конечное число шагов [4].

Вывод В данной части были рассмотрены идеи поразрядной, блочной сортировки и сортировки перемешиванием.

2 Конструкторская часть

В данной части работы будут рассмотрены схемы алгоритмов сортировок, а также приведен расчет их трудоемкости.

2.0.1 Схемы алгоритмов

2.0.2 Структуры данных

Для реализации выбранных алгоритмов были использованы следующие структуры данных:

- 1. Матрица массив векторов типа int;
- 2. Строка массив типа wchar;
- 3. Длина строки целое значение типа size_t.

Вывод

В данной части работы были описаны и разработаны алгоритмы поиска расстояний Левенштейна и Дамерау-Левенштейна.

Рисунок 2.1 – Схема алгоритма сортировки перемешиванием

Рисунок 2.2 – Схема алгоритма блочной сортировки

Рисунок 2.3 – Схема алгоритма поразрядной сортировки

- 3 Исследовательская часть
- 3.1 Технические характеристики

ЗАКЛЮЧЕНИЕ

В результате исследования было определено, что время алгоритмов нахождения расстояний Левенштейна и Дамерау-Левенштейна растет с ускорением при увеличении длин строк. Лучшие показатели по времени дает реализация алгоритма нахождения расстояния Дамерау-Левенштейна с использованием матрицы. При анализе таблицы ??, было установлено, что данная реализация требует в 294.662 раз меньше времени для получения расстояния, чем реализация с использованием рекурсии без мемоизации и в 1.4 раз меньше времени при использовании рекурсии с мемоизацией, при длине слов в 12 символов. При этом требования к памяти в итеративной реализации с использованием матрицы растут пропорционально произведению длин введенных строк. Из таблицы ??, можно сделать выводы, что при длине строк в 100 символов, реализации с использованием матрицы необходимо в 1.7 раз больше памяти чем реализации с помощью рекурсии без мемоизации, реализации с помощью рекурсии с мемоизацией необходимо в 1.7 больше памяти чем реализации с помощью матрицы.

Цели данной лабораторной работы были достигнуты, а именно описание и исследование особенностей задач динамического программирования на алгоритмах Левенштейна и Дамерау-Левенштейна.

Для достижения поставленной целей были выполнены следующие задачи.

- Описаны алгоритмы поиска расстояния Левенштейна и Дамерау-Левенштейна.
- 2) Создано программное обеспечение, реализующее следующие алгоритмы.
 - нерекурсивный метод поиска расстояния Левенштейна;
 - нерекурсивный метод поиска расстояния Дамерау-Левенштейна;
 - рекурсивный метод поиска расстояния Дамерау-Левенштейна;
 - рекурсивный с кешированием метод поиска расстояния Дамерау-Левенштейна.
- 3) Выбраны инструменты для замера процессорного времени выполнения реализаций алгоритмов.

выяснены влияющие на них характеристики.	4)	Проведены анализ затрат работы программы по времени и по памяти,
		выяснены влияющие на них характеристики.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Шагбазян., Д. В. Алгоритмы сортировки. Анализ, реализация, применение: учебное пособие / Д.В. Шагбазян, А.А. Штанюк, Е.В. Малкина. Нижний Новгород: Нижегородский госуниверситет, 2019. 42 с.
- 2. Д. К. Искусство программирования для ЭВМ. Том 3. Сортировка ипоиск. //. М.: ООО «И.Д. Вильямс», 2014. С. 824.
- 3. A comparative Study of Sorting Algorithms Comb, Cocktail and Counting Sorting [Электронный ресурс]. Режим доступа: https://www.researchgate.net/profile/Ashraf-Maghari/publication/314753240_A_comparative_Study_of_Sorting_Algorithms_Comb_Cocktail_and_Counting_Sorting/links/58c57219aca272e36dda981b/A-comparative—Study-of-Sorting-Algorithms-Comb-Cocktail-and-Counting-Sorting.pdf (дата обращения: 09.11.2023).
- 4. Тема 3. Компьютерный анализ данных. Лекция 10. Методы и алгоритмы обработки и анализа данных [Электронный ресурс]. Режим доступа: http://imamod.ru/~polyakov/arc/stud/mmca/lecture_10.pdf (дата обращения: 09.11.2023).