B.Tech. CSE Gurmukh Singh

Instructor: Mrs. Neha

1 Measures of Central Tendency

- 1. Mean
- 2. Median
- 3. Mode

1.1 Mean

It is the ratio of sum of all the observations to the total number of observations. let x_1, x_2, \ldots, x_n be all the observations. then:

 $\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$

1.1.1 Properties of Mean

- The sum of deviation of observations from mean is always zero
- the sum of square of deviations of observations is minimum as compared to any other measure.
- suppose there are two sequences:

then

$$\overline{x} = \frac{n_1 x_1 + n_2 x_2}{n_1 + n_2}$$

Problem 1

If there are 5 and 8 number of observations of 2 series with mean 15 and 18, find the combined mean

Solution:

We can get the solution by taking the weighted mean of the two sequences. so the required mean is :

$$\frac{5 \times 15 + 8 \times 18}{5 + 8}$$

$$= \frac{75 + 144}{13}$$

$$= \frac{219}{13}$$

Problem 2		
	Class frequency	
	0-10 3	
	10-20 5	
	20-30 7	
	30-40 4	
	40-50 1	

Solution:					
change of origin:					
	Class	frequency	X	d=X-A	$f \cdot d$
	0-10	3	5	-20	
	10-20	5	15	-10	
	20-30	7	25	0	
	30-40	4	35	10	
	40-50	1	45	20	
		$\overline{x} = A$ -	$+\frac{\sum_{n}}{n}$	$\frac{fd}{a}$	
change of scale					
	Class	frequency	X	d=X/n	$f \cdot d$
	0-10	3	1	-20	
	10-20	5	3	-10	
	20-30	7	5	0	
	30-40	4	7	10	
	40-50	1	9	20	
		$\overline{x} = A$ -	$+\frac{\sum_{n}}{n}$	$\frac{fd}{n}$	

1.2 Median

Steps to find Median in case of Discrete and continuous data:

- 1. Arrangement of data
- 2. if n is odd then the median is the $\frac{n+1}{2}$ th term
- 3. if n is even then the median is the mean of the $\frac{n}{2}$ th term and $\frac{n}{2}+1$ th term

Problem 3

find the median for the data:

- 1. 9,9,10,10,12,13,15
- 2. 9,9,10,10,12,13,14,15

Solution:

- $1.\ 9,9,10,10,12,13,15$ has 7 elements. Therefore our median will be the 4th term in the arranged order
 - $\therefore Median = 10$
- 2. 9,9,10,10,12,13,14,15 has 8 elements. Therefore our median will be the mean of the 4th and 5th terms.

$$\therefore Median = \frac{10+12}{2} = 11$$

Problem 4

Finding the median of discrete data.

X	f	cf(cumulative frequency)
1	5	5
2	8	13
3	9	22
4	12	34
5	6	40
6	7	47
7	4	51
Total	51	

find the value of x which has cumulative frequency just greater than $\frac{n}{2}$

In case of continuous data:

$$Median = l + \frac{\left(\frac{n}{2} - cf\right)}{f}$$

where cf is the cumulative frequency and f is the frequency of the chosen class

fundamentals of mathematical statistics by SC Gupta and VK Kapoor Probability and statistics by walpaul $\,$

1.3 Mode