CHANDAN KUMAR

ID: GO_STP_13267

- 1 import pandas as pd
- 2 import numpy as np
- 3 import sklearn
- 4 from sklearn.neighbors import KNeighborsClassifier
- 5 from sklearn.preprocessing import StandardScaler
- 6 from sklearn.model_selection import train_test_split
- 7 from sklearn.metrics import accuracy_score, confusion_matrix
- 1 df1=pd.read_csv("/content/User_Data.csv")
- 2 df2=df1[['Purchased']]
- 3 df1.drop(labels=['Purchased','User ID','Gender'],
- 4 axis=1, inplace=True)

1 df1.describe()

	Age	EstimatedSalary
count	400.000000	400.000000
mean	37.655000	69742.500000
std	10.482877	34096.960282
min	18.000000	15000.000000
25%	29.750000	43000.000000
50%	37.000000	70000.000000
75%	46.000000	88000.000000
max	60.000000	150000.000000

1 011.COLL()

	Age	EstimatedSalary
Age	1.000000	0.155238
EstimatedSalary	0.155238	1.000000

1 df1.boxplot()

```
<matplotlib.axes._subplots.AxesSubplot at 0x7f611423b910>

140000
120000
80000
40000
20000
0
```

Age

```
1 ss=StandardScaler()
2 df1=ss.fit_transform(df1)
```

EstimatedSalary

```
1 knn=KNeighborsClassifier(n_neighbors=5)
2 knn.fit(x_train, y_train)
```

```
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:2:
```

- 1 y_pred=knn.predict(x_test)
- 1 accuracy_score(y_test, y_pred)*100
 91.25