摩亭电助力智能锁 网络通讯协议规范

V1.6.6

文档作者:日期:审核者:日期:文档管理员:日期:技术总监:日期:

上海摩亭网络科技有限公司

版权所有 不得复制

版本历史

版本号	修改人	修改内容	时间
V1.6.6		加密方式	2017.12.01

目 录

1.	. 引	吉	.5
	1.1	目的	. 5
	1.2	范围	. 5
	1.3	目标读者	. 5
	1.4	概要介绍	. 5
		术语	
		参考资料	
2	. 1	协议格式	6
	2 1	业务交互协议格式	6
		业务流程	
•		议内容	
3.		· · · · · · · · · · · · · · · · · · ·	
		智能锁登陆	
		.1.1 请求数据	
		.1.2 应答数据	
		远程开锁	
		.2.1 请求数据	
		.2.2 应答数据	
		状态上报	
		.3.1 请求数据	
		3.2 应答数据	
		锁固件升级指令	
		.4.1 項氷剱据	
		. <i>4.2 应合蚁垢</i>	
		.5.1 <i>请求数据</i>	
		.5.2 应答数据	
		心率包	
		控制器读取开关锁命令(透传)	
		.7.1 请求数据	
		控制器状态发送命令(透传)1	
		.8.1 发送数据	
		.8.1 应答数据	
		BMS 状态发送命令 (透传)	
		.9.1 发送数据1	
		.9.2 应答数据	
	3.10	0 BMS 及蓝牙锁查询 (透传)1	4
			C 1

3.10.1 发送数据	14
3.10.1 应答数据	14
3.11 控制器固件升级锁指令	14
3.11.1 发送数据	14
3.12 控制器固件升级指令(透传)	
3.12.1 发送数据	14
3.12.1 应答数据	14
3.13 控制器指令(透传)(预留)	
3.13.1 发送数据	
3.13.2 应答数据	15
3.14 控制器指令(透传)(预留)	15
3.14.1 发送数据	
3.14.2 应答数据	15
3.15 控制器指令 (透传) (预留)	15
3.15.1 发送数据	
3.15.2 应答数据	
3.16 网络模块(GPRS) 关机指令	15
3.16.1 发送数据	15
3.16.2 应答数据	
付录:应答码定义	10

1. 引言

1.1 目的

本文档主要针对后台开发人员,让后台开发人员了解智能锁的基本工作原理,实现智能锁的打开,获取开锁、上锁信息,锁的电量,车辆位置信息等。

1.2 范围

GPRS 智能锁与服务器间通信

1.3 目标读者

GPRS 智能锁嵌入式开发和服务器端开发人员

- 1.4 概要介绍
- 1.5 术语
- 1.6 参考资料

2. 协议格式

2.1 业务交互协议格式

◆ 原始业务数据采用文本格式, 每条业务数据分两行:

第一行: 业务类型 + 消息 ID

第二行: 业务数据

- ◆ 采用请求-应答形式通信,应答消息 ID 需要和请求消息 ID 一致,每次请求-应 答使用唯一的消息 ID
- ◆ 秘钥生成规则:前 6 位 MAC 地址+68 位随机(大写字母+小写字母+数字)字符+后 6 位 MAC 地址

2.2 业务流程

3. 协议内容

- 3.1 智能锁登陆
- 3.1.1 请求数据
- ♦ 格式

 $LOGIN < MsgId > \r\n$

<DeviceId> <EncryptData> <Index> <IMEI> <控制器序列> <BMS 序列号>

 $r\n$

- ◆ 字段说明
 - <MsgId>

请求消息 ID, 标识一次请求应答

<DeviceId>

设备唯一 ID,6 个字节 mac 地址转化的 12 个字节字符串; 设备 ID 为 D43639B816C8 则 mac 地址为 D4:36:39:B8:16:C8;

<EncryptData>

原始数据使用 AES(ECB 模式)加密后产生的加密数据;

原始数据为 12 个字节设备 ID 加上 4 个字节的字符 0 组成的 16 字节字符串, 比如设备 ID 是 D43639B816C8 加密原始数据为 D43639B816C8000 <Index>

密钥索引

<IMEI>

设备中SIM卡的唯一身份码

版本号

- <控制器序列>
- <BMS 序列号>
- <VerionCode>
- ◆ 示例

LOGIN 0

- 3.1.2 应答数据
- ♦ 格式

 $LOGIN < MsgId > \r\n$

<ResCode> OK \setminus r \setminus n

◆ 字段说明

<MsgId>

应答消息 ID,需要和请求消息 ID 一致

<ResCode>

应答码, 见应答码定义

◆ 示例

LOGIN 0

0 OK

- 3.2 远程开锁
- 3.2.1 请求数据
- ♦ 格式

 $OPEN < MsgId > \r\n$

<Date>,<UserID>,<TradeNo>,<EncryptData>,< IndexKey>r\n

◆ 字段说明

<MsgId>

请求消息 ID, 标识一次请求应答

<Date>

交易记录产生时间,10位时间戳(20秒不开锁待定)

<UserId>

用户 ID

<TradeNo>

交易序列号

<EncryptData>

原始数据和秘钥索引指向的秘钥 AES(ECB)加密产生的加密数据; 原始数据为 6 字节 mac 地址+8 字节 CheckInKey+2 字节字符 0; 设备秘钥信息和 CheckInKey 在设备出厂时配置;

<IndexKey>

设备秘钥索引

- 3.2.2 应答数据
- ♦ 格式

 $OPEN < MsgId > \r\n$

<ResCode> OK \r

◆ 字段说明

<MsgId>

应答消息 ID, 需要和请求消息 ID 一致

<ResCode>

应答码, 见应答码定义

3.3 状态上报

3.3.1 请求数据

♦ 格式

 $REPORT < MsgId > \r\n$

<TradeDate>,<UserId>,<TradeNo>,<TradeType>,<EncryptData>,<IndexKey>,

<Longitude>,<Latitude>,<LocationType>,<Vibrate>\r\n

◆ 字段说明

<MsgId>

请求消息 ID, 标识一次请求应答

<TradeDate>

交易记录产生时间戳 10位, 开锁时传的

<UserId>

用户 ID

<TradeNo>

交易序列号

<TradeType>

- 0 蓝牙记录
- 1 还车记录[废弃]
- 2 刷卡租车记录
- 3 远程开锁租车记录

<EncryptData>

原始数据和秘钥索引指向的秘钥 AES(ECB)加密产生的加密数据; 原始数据为 6 字节 mac 地址+8 字节 CheckInKey+2 字节字符 0; 设备秘钥信息和 CheckInKey 在设备出厂时配置

<IndexKey>

设备秘钥索引

<Longitude>

经度, 格式 ddd.mmmmm,如: 116.33533

<Latitude>

纬度, 格式 dd.mmmm, 如: 39.20567

<LocationType>

坐标类型

- 1 GPS 定位坐标
- 2 基站辅助定位坐标

<Vibrate>

是否是震动产生的坐标 0 否 1 是

3.3.2 应答数据

♦ 格式

- <Type>,<ResCode> OK \setminus r \setminus n
- ◆ 字段说明
 - <MsgId>

应答消息 ID,需要和请求消息 ID 一致

<Type>

0: 控制器状态

<ResCode>

应答码, 见应答码定义

- 3.4 锁固件升级指令
- 3.4.1 请求数据
- ♦ 格式

UPGRADE <MsgId>\r\n

<Version>,<CustomerID>,<Host>,<port>,<path>,<apn>\r\n

- ◆ 字段说明
 - <MsgId>

请求消息 ID, 标识一次请求

<Version>

新固件的版本号,如 2.0.0

<CustomerID>

客户编号

<Host>

服务器 IP(或域名) 例如 api.mintbike.com

<port>

端口地址 例如 8082

<path>

升级文件路径 例如 /1152.bin

<apn>

CMNET

3.4.2 应答数据

♦ 格式

<ResCode> OK \r

◆ 字段说明

<MsgId>

应答消息 ID,需要和请求消息 ID 一致

<ResCode>

应答码, 见应答码定义

3.5 设置/获取配置参数

3.5.1 请求数据

♦ 格式

 $CONFIG < \!\! MsgId \!\! > \!\! \backslash r \backslash n$

 $\label{lem:cond} $$\scriptstyle \end{\colored} $$\scriptstyle \end{\col$

◆ 字段说明

<ping period>

保活周期,单位秒,默认:50

<gps period>

Gps 定位周期, 单位 h, 默认: 4h

<bVibrate>

震动检测使能,1启用,0禁用,默认:启用

<hSMS

短信功能使能,1启用,0禁用,默认:禁用

<IP>

"IP 地址"

<PORT>

IP 端口

<alive>

是否保持长连接 1 是, 0 否

<pinlv>

传输间隔时间 小时单位 正整数

<contrlbotely>

控制器波特率设置 eg: 9600

<EncryptData>

原始数据和秘钥索引指向的秘钥 AES(ECB)加密产生的加密数据; 原始数据为 6 字节 mac 地址+8 字节 CheckInKey+2 字节字符 0; 设备秘钥信息和 CheckInKey 在设备出厂时配置;

<IndexKey>

设备秘钥索引

- <reserver1>
- <reserver2>
- <reserver3>
- <reserver4>
- <reserver5>
- <reserver6>

预留参数,默认为0

3.5.2 应答数据

♦ 格式

 $CONFIG < \!\! MsgId \!\! > \!\! \backslash r \backslash n$

<pingperiod>,<gpsperiod>,<bVibrate>,<bSMS>,<IP>,<PORT>,<EncryptData>,<I</pre> ndexKey>\r\n

- ◆ 字段说明
 - <MsgId>

应答消息 ID,需要和请求消息 ID 一致

- <ResCode>
- ◆ 字段说明
 - <ping period>

保活周期,单位秒,默认:50

<gps period>

Gps 定位周期, 单位 h, 默认: 4h

<bVibrate>

震动检测使能,1启用,0禁用,默认:启用

<bSMS>

短信功能使能,1启用,0禁用,默认:禁用

<IP>

"IP 地址"

<PORT>

IP 端口

3.6 心率包

◆ 格式 BREATH <MsgId>\r\n

3.7 控制器读取开关锁命令(透传)

3.7.1 请求数据

◆ 格式

 $CONTROL1 < \!\! MsgId \!\! > \!\! \backslash r \backslash n$

 $<\!\!return_rowdata\!\!>\!\! \backslash r\backslash n$

Rowdata: 控制器协议 0x10 蓝牙锁返回

3.7.2 应答数据

◆ 格式

 $CONTROL1 < \!\! MsgId \!\! > \!\! \backslash r \backslash n$

<return rowdata>\r\n

Rowdata: 控制器协议 0x10 控制器协议

3.8 控制器状态发送命令(透传)

- 3.8.1 发送数据
- ◆ 格式

CONTROL2<MsgId>\r\n

<rowdata>\r\n

Rowdata: 控制器协议 0x11 蓝牙锁返回

- 3.8.1 应答数据
- ◆ 格式

 $CONTROL2 < \!\! MsgId \!\! > \!\! \backslash r \backslash n$

<return rowdata>\r\n

Rowdata: 控制器协议 0x11

3.9 BMS 状态发送命令 (透传)

3.9.1 发送数据

 $<\!\!rowdata\!\!>\!\!\backslash r\backslash n$

Rowdata: 控制器协议 0x12 蓝牙锁返回

- 3.9.2 应答数据
- ◆ 格式

<return rowdata>\r\n

Rowdata: 控制器协议 0x12

3.10 BMS 及蓝牙锁查询 (透传)

- 3.10.1 发送数据
- ♦ 格式

 $< rowdata > \r \n$

RowData: 控制器协议 0x14 蓝牙锁返回

- 3.10.1 应答数据
- ◆ 格式

 $CONTROL4 < \!\! MsgId \!\! > \!\! \backslash r \backslash n$

<return rowdata>\r\n

Rowdata: 控制器协议 0x14

3.11 控制器固件升级锁指令

- 3.11.1 发送数据
- ♦ 格式

CONTROL5 < MsgId>\n

<state >,<contrlbotelv>\r\n

state: 1 开始升级(锁设置波特率 19200,锁给控制器断电再上电) 2 升级结束 (锁给控制器断电,锁设置波特率为 4800)。

Contribotely,控制器波特率设置 eg: 19200 or 4800

后台要判断控制器在未使用(关锁)的情况下,并且软件版本不是最新的情况下才能下发升级指令。

3.12 控制器固件升级指令(透传)

- 3.12.1 发送数据
- ◆ 格式

<rowdata>\r\n

RowData: 控制器 OTA 升级协议,第一次 ROwdata 为空,,服务器收到 FC 后, 开始执行 OTA 升级。

- 3.12.1 应答数据
- ◆ 格式

$CONTRL6 < \!\! MsgId \!\! > \!\! \backslash r \backslash n$

<return rowdata>\r\n

Rowdata: 控制器 OTA 升级协议

3.13 控制器指令(透传)(预留)

3.13.1 发送数据

◆ 格式

 $< rowdata > \r \n$

3.13.2 应答数据

♦ 格式

 $CONTRL7 < \! MsgId \! > \! \backslash r \backslash n$

<return rowdata>\r\n

3.14 控制器指令(透传)(预留)

3.14.1 发送数据

◆ 格式

<rowdata>\r\n

3.14.2 应答数据

◆ 格式

 $CONTRL8 < \!\! MsgId \!\! > \!\! \backslash r \backslash n$

<return_rowdata>\r\n

3.15 控制器指令 (透传) (预留)

3.15.1 发送数据

◆ 格式

<rowdata>\r\n

3.15.2 应答数据

◆ 格式

 $CONTRL9 < \!\! MsgId \!\! > \!\! \backslash r \backslash n$

<return_rowdata>\r\n

3.16 网络模块 (GPRS) 关机指令

3.16.1 发送数据

♦ 格式

 $POWERDOWN < \!\! MsgId \!\! > \!\! \backslash r \backslash n$

 $< rowdata > \r \n$

RowData: POWERDOWN

3.16.2 应答数据

◆ 格式

 $POWERDOWN < \!\! MsgId \!\! > \!\! \backslash r \backslash n$

 $<\!\!return_rowdata\!\!>\!\! \backslash r\backslash n$

Rowdata: POWERDOWN

锁先返回 Rowdata 以后再关机,服务器判断设备此时离线则默认关机成功。

附录:应答码定义

- 0 成功
- 1 格式错误
- 2 设备不存在
- 3 加密数据验证失败
- 4 数据空
- 5 非新固件版本
- 6 加密验证错误