Package 'NLRoot'

October 12, 2022

Type Pac	kage				
Title sear	Title searching for the root of equation Version 1.0				
Version					
Date 201	2-07-05				
Author 2	Zheng Sengui,Lu Xufen,Hou Qiongchen,Zheng Jianhui				
Maintain	er Zheng Sengui<1225620446@qq.com>				
Description This is a package which can help you search for the root of a equation.					
License (GPL (>= 2)				
Repositor	Repository CRAN				
Date/Pub	lication 2012-07-06 16:21:52				
NeedsCo	mpilation no				
- 1 1	CS documented: BFfzero NDHfzero NIMfzero SMfzero				
BFfzer	o Bisection Method				
Usage	tion Method to Find the Root of Nonlinear Equation				
DETZ	ero(f, a, b, num = 10, eps = 1e-05)				

BFfzero

Arguments

f	the objective function which we will use to solve for the root
a	mininum of the interval which cantains the root from Bisection Method
b	maxinum of the interval which cantains the root from Bisection Method
num	the number of sections that the interval which from Bisection Method
eps	the level of precision that $ x(k+1)-x(k) $ should be satisfied in order to get the
	idear real root. eps=1e-5 when it is default

Details

Be careful to choose a & b. If not we maybe fail to find the root

Value

a root of the objective function which between the interwal from a to b

Note

Maintainer: Zheng Sengui < 1225620446@qq.com>

Author(s)

Zheng Sengui,Lu Xufen,Hou Qiongchen,Zheng Jianhui

References

Luis Torgo (2003) Data Mining with R:learning by case studies. LIACC-FEP, University of Porto

See Also

NDHfzero,NIMfzero,SMfzero

```
f<-function(x){x^3-x-1};f1<-function(x){3*x^2-1};

BFfzero(f,0,2)
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.

## The function is currently defined as
function (f, a, b, num = 10, eps = 1e-05)
{
    h = abs(b - a)/num
    i = 0
    j = 0
    a1 = b1 = 0
    while (i <= num) {
        a1 = a + i * h</pre>
```

NDHfzero 3

```
b1 = a1 + h
      if (f(a1) == 0) {
          print(a1)
          print(f(a1))
      }
      else if (f(b1) == 0) {
          print(b1)
          print(f(b1))
     else if (f(a1) * f(b1) < 0) {
          repeat {
              if (abs(b1 - a1) < eps)
               break
              x <- (a1 + b1)/2
              if (f(a1) * f(x) < 0)
               b1 <- x
              else a1 <- x
          }
          print(j + 1)
          j = j + 1
          print((a1 + b1)/2)
          print(f((a1 + b1)/2))
     }
     i = i + 1
 }
  if (j == 0)
     print("finding root is fail")
 else print("finding root is successful")
}
```

NDHfzero

Newton Downhill Method

Description

Newton Downhill Method to Find the Root of Nonlinear Equation

Usage

```
NDHfzero(f, f1, x0 = 0, num = 1000, eps = 1e-05, eps1 = 1e-05)
```

Arguments

Ť	the objective function which we will use to solve for the root
f1	the derivative of the objective function (say f)
x0	the initial value of Newton iteration method or Newton downhill method
num	num the number of sections that the interval which from Brent's method devide into. num=1000 when it is default

4 NDHfzero

eps	the level of precision that $ x(k+1)-x(k) $ should be satisfied in order to get the idear real root. eps=1e-5 when it is default
eps1	the level of precision that $ f(x) $ should be satisfied, where x comes from the program, when it is not satisfied we will fail to get the root

Details

eps1 of precision that |f(x)| should be satisfied, where x comes from the program. when it is not satisfied we will fail to get the root

Value

a root of the objective function

Note

Maintainer:Zheng Sengui<1225620446@qq.com>

Author(s)

Zheng Sengui, Lu Xufen, Hou Qiongchen, Zheng Jianhui

References

Luis Torgo (2003) Data Mining with R:learning by case studies. LIACC-FEP, University of Porto

See Also

BFfzero,NIMfzero,SMfzero

```
f < -function(x)\{x^3-x-1\}; f1 < -function(x)\{3*x^2-1\};
NDHfzero(f, f1, 2)
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (f, f1, x0 = 0, num = 1000, eps = 1e-05, eps1 = 1e-05)
   a = x0
   b = a - f(a)/f1(a)
    i = 0
   while ((abs(b - a) > eps)) {
       c = 1
        j = 0
        while (abs(f(b)) \ge abs(f(a))) {
            b = a - c * f(a)/f1(a)
            j = j + 1
```

NIMfzero 5

```
c = 1/(2^{j})
    }
    a = b
    b = a - f(a)/f1(a)
    c = 1
    j = 0
    while (abs(f(b)) \ge abs(f(a))) {
        b = a - c * f(a)/f1(a)
        j = j + 1
        c = 1/(2^{j})
    }
    i = i + 1
print(b)
print(f(b))
if (abs(f(b)) < eps1) {
    print("finding root is successful")
else print("finding root is fail")
```

NIMfzero

Newton iteration method

Description

Newton iteration method to Find the Root of Nonlinear Equation.

Usage

```
NIMfzero(f, f1, x0 = 0, num = 100, eps = 1e-05, eps1 = 1e-05)
```

Arguments

f	the objective function which we will use to solve for the root
f1	the derivative of the objective function (say f)
x0	the initial value of Newton iteration method or Newton downhill method
num	the number of sections that the interval which from Brent's method devide into. num=100 when it is default
eps	the level of precision that $ x(k+1)-x(k) $ should be satisfied in order to get the idear real root. eps=1e-5 when it is default
eps1	the level of precision that $ f(x) $ should be satisfied, where x comes from the program. when it is not satisfied we will fail to get the root

Details

the root we found out is based on the x0. So it is better to choose x0 carefully

6 NIMfzero

Value

the root of the function

Note

Maintainer: Zheng Sengui < 1225620446@qq.com>

Author(s)

Zheng Sengui, Lu Xufen, Hou Qiongchen, Zheng Jianhui

References

Luis Torgo (2003) Data Mining with R:learning by case studies. LIACC-FEP, University of Porto

See Also

BFfzero,NDHfzero,SMfzero

```
f < -function(x)\{x^3-x-1\}; f1 < -function(x)\{3*x^2-1\};
NIMfzero(f,f1,0)
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (f, f1, x0 = 0, num = 100, eps = 1e-05, eps1 = 1e-05)
   a = x0
   b = a - f(a)/f1(a)
    i = 0
   while ((abs(b - a) > eps) & (i < num)) {
       a = b
       b = a - f(a)/f1(a)
        i = i + 1
   }
   print(b)
   print(f(b))
   if (abs(f(b)) < eps1) {
        print("finding root is successful")
    else print("finding root is fail")
```

SMfzero 7

Secant Method

Description

Secant Method to Find the Root of Nonlinear Equation.

Usage

```
SMfzero(f, x1, x2, num = 1000, eps = 1e-05, eps1 = 1e-05)
```

Arguments

f	the objective function which we will use to solve for the root
x 1	the initial value of Secant Method
x2	the initial value of Secant Method
num	the number of sections that the interval which from Brent's method devide into. num=1000 when it is default
eps	the level of precision that $ x(k+1)-x(k) $ should be satisfied in order to get the idear real root. eps=1e-5 when it is default
eps1	the level of precision that $ f(x) $ should be satisfied, where x comes from the program. when it is not satisfied we will fail to get the root

Details

Be careful to choose x1 & x2.if not we maybe fail to get the root

Value

the root of the function

Note

Maintainer:Zheng Sengui<1225620446@qq.com>

Author(s)

Zheng Sengui,Lu Xufen,Hou Qiongchen,Zheng Jianhui

References

Luis Torgo (2003) Data Mining with R:learning by case studies. LIACC-FEP, University of Porto

See Also

BFfzero,NDHfzero,NIMfzero

SMfzero SMfzero

```
f < -function(x)\{x^3-x-1\}; f1 < -function(x)\{3*x^2-1\};
SMfzero(f,0,2)
##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##--or do help(data=index) for the standard data sets.
## The function is currently defined as
function (f, x1, x2, num = 1000, eps = 1e-05, eps1 = 1e-05)
   i = 0
   while ((abs(x1 - x2) > eps) & (i < num)) {
       c = x2 - f(x2) * (x2 - x1)/(f(x2) - f(x1))
       x1 = x2
       x2 = c
       i = i + 1
   print(x2)
   print(f(x2))
   if (abs(f(x2)) < eps1) {
       print("finding root is successful")
   else print("finding root is fail")
```

Index

```
BFfzero, 1, 4, 6, 7

NDHfzero, 2, 3, 6, 7

NIMfzero, 2, 4, 5, 7

SMfzero, 2, 4, 6, 7
```