Introduction to Natural Language Processing

Vitalii Duk

Agenda

- NLP tasks
- Basics of Computational Linguistics
- Raw text pre-processing
- Text classification
- Topic modelling and text clustering
- Vector representation of words
- Python examples

Major NLP tasks

- Machine translation
- Sentiment analysis
- Text summarization
- Topic segmentation
- Named Entity Recognition
- Text-to-speech

NLP problematics

- Context-free grammar
- Different linguistic typologies (subject, object, verb): *SOV, SVO, VSO, VOS, others*
- Different writing systems: Arabic, Latin, Cyrillic, Chinese, others

Word order	Example in English	Languages
sov	She him loves.	Sanskrit, Hindi, Ancient Greek, Latin, Japanese
svo	She loves him.	English, French, Indonesian, Malay, Mandarin, Russian
vso	Loves she him.	Arabic, Irish, Filipino, Welsh

Corpora

- **Brown Corpus**: 500 examples, 15 genres, 2000 words with POS tags.
- **Quranic Arabic Corpus**: 77 430 words present in Quran with morphological and syntactic annotations.
- **WordNet**: 155 287 words organized into 117 659 synsets and 206 941 word-sense pairs.

Treebank

- text corpus with annotated syntactic and semantic structure
- based on top of corpus with annotated POS tags
- in practice usually used to determine relations between objects in a sentence
- more than 20 treebanks for majority of languages wikipedia.org/wiki/Treebank

Pre-processing: stop words

- most common words in a language
- bring a little value to the sense of a text
- there is no universal list of stop words
- typical examples: a, the, of, it, as, in, at

Pre-processing: tokenization

- Word tokenization split raw text into a set of words, typically using white space.
- Sentence tokenization split raw text in to a set of sentences, typically using period.

Typical problems:

- word tokenization: Let's visit New $York. \rightarrow [Let's, visit, New, York]$
- sentence tokenization: It was $Mr. Holmes. \rightarrow ['It was Mr.'], ['Holmes.']$

Pre-processing: stemming & lemmatization

 Stem – part of the word that never changes even when morphologically inflected.

```
swimming \rightarrow swim
university \rightarrow univers
```

Lemma – the base form of the word.

```
went \rightarrow go
```

- Python NLTK stemmers: PorterStemmer, SnowballStemmer
- Python NLTK lemmatization: WordNetLemmatizer

Pre-processing: n-grams

- Example: It was raining in Dubai yesterday.
- 1-grams or unigrams:

```
[(It,),(was,),(raining,),(in,),(Dubai,),(yesterday,)]
```

• 2-grams or **bigrams**:

```
[(It, was), (was, raining), (raining, in), (in, Dubai), (Dubai, yesterday)]
```

Part-of-speech tagging

- Verb show an action or a state of being: go, write, exist, be
- Noun refer to people, animals, objects, states, events: John, lion, table, freedom, love
- Adjective used to describe or specify a noun or pronoun: good, beautiful, nice, my
- Adverb used to modify a verb, adjective and other adverbs: completely, never, there
- Others: Pronoun, Preposition, Conjunction, Interjection.

Part-of-speech tagging workflow

- Get manually annotated corpus with POS tags for each word.
- Derive features which will be used to predict POS tag for word ω_i :
 - previous k words: ω_{i-1} ... ω_{i-k}
 - POS tags of previous k words: t_{i-1} ... t_{i-k}
 - next k words: ω_{i+1} ... ω_{i+k}
 - POS tags of previous k words: t_{i+1} ... t_{i+k}
- Use one of the classification algorithms to train mode:
 Hidden Markov Models, Neural Network, etc.

Bag-of-words

- Main idea: use word frequencies as features to classify text.
- Go through N documents in our dataset and build a dictionary of words used in a dataset
- Build matrix of frequencies with size N x M
- Run classifier using frequencies matrix

Bag-of-words: matrix example

- 1. Place was really good.
- 2. We had a good time.
- 3. Spent a great time there.

/	/place	was	really	good	we	had	time	spent	great	$there \setminus$
	1	1	1	1	0	0	0	0	0	0
	0	0	0	1	1	1	1	0	0	0
	\ 0	0	0	0	0	0	1	1	1	1 /

tf-idf

- term frequency-inverse document frequency
- one of the most popular term-weighting algorithms
- increases proportionally along with the word frequency
- adjusted to reduce importance of frequent words in general

$$tfidf(t,d,D) = f_{t,d} \cdot \log \frac{N}{n_t}$$

Bayes theorem

$$P(B \mid A) = \frac{P(A \mid B) \cdot P(A)}{P(B)}$$

- P(A) and P(B) are the probabilities to observe events A and B in our overall data
- $P(A \mid B)$ is a probability of observing event A given the fact that B is true
- $P(B \mid A)$ is a probability of observing event B given that A is true

Naïve Bayes

- assume independence between predictors
- suitable for a large datasets

Posterior probability

Evidence prior probability

Latent Dirichlet allocation

- unsupervised statistical model
- represents documents as mixtures of topics
- each topic is represented by a set of weighted words

Topic 1

Topic 2

Topic 3

word	weight	word	weight	word	weight
politics	3245	university	5443	environment	4554
government	2334	education	4435 pollution		3442
affairs	1545	degree	4322	ecosystem	1245

Latent Dirichlet allocation

- Assume that documents are produced from a mixture of topics. Topics generate words based on their probability distribution.
- Determine the number of words in a document. Let's say our document has 50 words.
- Determine the mixture of topics in that document. For example, the document might contain 1/2 the topic education and 1/2 the topic politics.
- Using each topic's multinomial distribution, output words to fill the document's word slots.

Vector representation of words

build a vector for each word taking in account context in which particular word occurs

don't require labeled data

simple feedforward neural network under the hood

popular implementations: word2vec, GloVe

Vector representation of words

CBOWContinuous Bag-of-Words

Common NLP tools

- NLTK <u>nltk.org</u>
- gensim <u>radimrehurek.com/gensim</u>
- SpaCy <u>spacy.io</u>
- OpenNLP <u>opennlp.apache.orq</u>
- Stanford CoreNLP <u>stanfordnlp.github.io/CoreNLP</u>

Python examples

github.com/root-ua/nlp-intro-meetup

Thanks!