Modeling attractive and repulsive forces between semantic structures D. Gueorguiev 6/6/2022

Initial Notes

The attractive / repulsive force between semantic structures (SARF) acts on different (larger) scales compared to the attractive / repulsive force between properties (PARF).

Discovery of mutual attraction happens through regional exploration. Let us have a new semantic structure S constructed from recently parsed data. The chances are that all semantic structures which are attracted to S are in the vicinity of S.

Let us consider a newly formed semantic structure A^{new} . The closest already formed semantic structure will be denoted with B. On an aggregation level l_1 the nearby semantic structure B can be represented as a graph of n_{l_1} substructures all of which belong to the set $\{B\}_{l_1}$. With $2^{\{B\}_{l_1}}$ we denote the power set of $\{B\}_{l_1}$. We want to compute the attractive force between A^{new} and B.

Case 1). There are already formed instances of *substructures* from B which are close to some of the already formed instances of A.

Let us assume that there are other structures involving previous instances of A - A^{old_1} , A^{old_2} , ..., A^{old_k} . For brevity we will denote the set $\{A^{old_1}, A^{old_2}, ..., A^{old_k}\}$ with \mathcal{A}^{old} . Let us assume that in the neighborhoods of the elements of \mathcal{A}^{old} there are instances of elements in $2^{\{B\}_{l_1}}$.

Let us denote with $\left\{\{B\}_{l_1}\right\}_i$ the instances of the elements from $2^{\{B\}_{l_1}}$ which are in the neighborhood of A^{old_i} . Let us denote with $n_i(l_1)$ the number of those instances $n_i = \left|\left\{\{B\}_{l_1}\right\}_i\right|$. We will denote each element of $\left\{\{B\}_{l_1}\right\}_i$ by $B_j^{old_i}$ where $j=1...n_i(l_1)$.

Obviously, we know masses, energy signatures and the semantic distances between A^{old_i} and the elements of $\left\{\{B\}_{l_1}\right\}_i$.

We would like to estimate the attractive force between A^{new} and B by using the information stored in the pairs A^{old_i} and $B^{old_i}_j$ for i=1...k and $j=1...n_i(l_1)$. Let us assume that we know the attractive / repulsive force for each of those pairs $f_{i,j}=f^{\mathrm{SARF}}\left(A^{old_i},B^{old_i}_j\right)$ for the current moment in time t. Let us denote the masses of those two sets of structures with m_{A_i} and $\mathrm{m}_{B_{i,j}}$ accordingly for i=1...k and $j=0...n_i(l_1)$. Let us denote with $d_{i,j}=\mathrm{sdist}\left(A^{old_i},B^{old_i}_j\right)$ the semantic distance between the pair A^{old_i} and $B^{old_i}_i$ for the current moment in time t.

Case 2) There are already formed instances of *substructures* from A which are close to some of the already formed instances of B.

Case 3) There are already formed instances of *substructures* from A which are close to some of the already formed instances of *substructures* of B.

Case 4) There are neither previously formed instances nor instances of substructures for both A and B.

In this case we will look for similarity and assess the degree of similarity.

Estimation of the attractive force between two structures

Let us have two structures S_1 and S_2 which are in bound positions. We will denote with \vec{r}_1 the position of the centroid of S_1 in general. Similarly, with \vec{r}_2 we denote the position of the centroid of S_2 in general. The centroid of the compound structure $S_1 \cup S_2$ is given with \vec{r}_c . We denote with $\vec{x}_{1,b} = \vec{r}_{1,b} - \vec{r}_c$ and $\vec{x}_{2,b} = \vec{r}_{2,b} - \vec{r}_c$ the semantic distances from the bound positions of S_1 and S_2 to the centroid of the compound structure $S_1 \cup S_2$. Let us denote with $E(\vec{r}_{1,b})$ and $E(\vec{r}_{2,b})$ the semantic energies of S_1 and S_2 in bound state. With m_1 and m_2 we denote the semantic masses of S_1 and S_2 .

Let us denote by S_i' the set of structures which are already assigned force particles such that $S_i' \subset S_1$. With S_i'' we denote the set of structures which are already assigned force particles such that $S_i'' \supset S_1$