1992 年全国硕士研究生招生考试试题

(试卷 Ⅲ)

一、填空题(本题共5小题,每小题3分,满分15分)

(1)
$$\mathcal{U}$$
 $\begin{cases} x = f(t) - \pi, \\ y = f(e^{3t} - 1), \end{cases}$ $\sharp + f \, \Pi \, \mathcal{P}, \, \exists f'(0) \neq 0, \, \bigcup \frac{\mathrm{d}y}{\mathrm{d}x} \Big|_{t=0} = \underline{\qquad}.$

(2) 函数
$$y = x + 2\cos x$$
 在 $\left[0, \frac{\pi}{2}\right]$ 上的最大值为_____.

(3)
$$\lim_{x\to 0} \frac{1-\sqrt{1-x^2}}{e^x-\cos x} = \underline{\hspace{1cm}}$$
.

$$(4)\int_{1}^{+\infty} \frac{\mathrm{d}x}{x(x^2+1)} = \underline{\hspace{1cm}}.$$

(5) 由曲线 $y = xe^x$ 与直线 y = ex 所围成的图形的面积 $S = ____$.

二、选择题(本题共5小题,每小题3分,满分15分)

- (1) 当 $x \to 0$ 时, $x \sin x \neq x^2$ 的()
 - (A) 低阶无穷小.

(B) 高阶无穷小.

(C) 等价无穷小.

(D) 同阶但非等价的无穷小.

$$(A)f(-x) = \begin{cases} -x^2, & x \le 0, \\ -(x^2 + x), & x > 0. \end{cases}$$

$$(C)f(-x) = \begin{cases} x^2, & x \leq 0, \\ x^2 - x, & x > 0. \end{cases}$$

(B)
$$f(-x) = \begin{cases} -(x^2 + x), & x < 0, \\ -x^2, & x \ge 0. \end{cases}$$

$$(D)f(-x) = \begin{cases} x^2 - x, & x < 0, \\ x^2, & x \ge 0. \end{cases}$$

(3) 当
$$x \to 1$$
 时,函数 $\frac{x^2 - 1}{x - 1} e^{\frac{1}{x-1}}$ 的极限()

(A) 等于2.

(B) 等于 0.

(C) 为∞.

(D) 不存在但不为 ∞.

(4) 设
$$f(x)$$
 连续, $F(x) = \int_0^{x^2} f(t^2) dt$,则 $F'(x)$ 等于()

- $(A) f(x^4).$
- $(B)x^2f(x^4).$
- $(C)2xf(x^4).$
- $(D)2xf(x^2).$
- (5) 若f(x) 的导函数是 $\sin x$,则f(x) 有一个原函数为()
 - $(A)1 + \sin x$.
- $(B)1 \sin x$.
- $(C)1 + \cos x$.
- (D)1 $\cos x$.

三、(本题共5小题,每小题5分,满分25分)

- (1) $\lim_{x\to\infty} \left(\frac{3+x}{6+x}\right)^{\frac{x-1}{2}}$.
- (2) 设函数 y = y(x) 由方程 $y xe^{y} = 1$ 所确定,求 $\frac{d^{2}y}{dx^{2}}\Big|_{x=0}$ 的值.

历年考研数学真题解析及复习思路(数学二)

$$(3) \Re \int \frac{x^3}{\sqrt{1+x^2}} \mathrm{d}x.$$

$$(4) \Re \int_0^\pi \sqrt{1-\sin x} \mathrm{d}x.$$

(5) 求微分方程 $(y-x^3)dx-2xdy=0$ 的通解.

四、(本题满分9分)

五、(本题满分9分)

求微分方程 $y'' - 3y' + 2y = xe^x$ 的通解.

六、(本题满分9分)

计算曲线 $y = \ln(1 - x^2)$ 上相应于 $0 \le x \le \frac{1}{2}$ 的一段弧的长度.

七、(本题满分9分)

求曲线 $y = \sqrt{x}$ 的一条切线 l, 使该曲线与切线 l 及直线 x = 0, x = 2 所围成的平面图形面积最小.

八、(本题满分9分)

已知f''(x) < 0, f(0) = 0,证明对任何 $x_1 > 0$, $x_2 > 0$, 有 $f(x_1 + x_2) < f(x_1) + f(x_2)$.