UFV- CCE - DET EST 105 - 3ª avaliação (UPI) - 1º/2022 - 30/7/22

Nome:	Matrícula:
Assinatura:	Favor apresentar documento com foto.

- São 5 questões, formulário e tabelas em páginas numeradas de 1 a 9, total de 40 pontos, FAVOR CONFERIR ANTES DE INICIAR.
- ATENÇÃO: informe a seguir, assinale (X), em qual turma está matriculado (sua nota será divulgada no sistema SAPIENS).

TURMA	HORÁRIO e	SALA	PROFESSOR
() T2 - 3 () T3 - 3 () T4 - 2 () T5 - 3 () T6 - 4 () T7 - 2 () T8 - 2	3ª 10-12 e 3ª 14-16 e 2ª 14-16 PVI 3ª 20:30-22 1ª 14-16 e 2ª 16-18 e [2ª 18:30-20]	5ª 16-18 PVB 100 6 3 102 e 4ª 16-18 1 10 e 6ª 18:30-20 6ª 16-18 PVA 361 6 5ª 14-16 PVB 307 - 6 10 e 20:30-22:10	Carlos Henrique(chos) - Ana Carolina PVB 106 - Moysés :10 PVB 203 - Eduardo - Camila/Ana Carolina Camila

- Interpretar corretamente as questões é parte da avaliação, portanto não é permitido questionamentos durante a prova!
- É OBRIGATÓRIO APRESENTAR OS CÁLCULOS organizadamente, para ter direito à revisão. Recomenda-se apresentar as fórmulas e os respectivos valores utilizados nos cálculos.
- BOA SORTE e BOA PROVA!!!.

FORMULÁRIO

Para
$$k = 1, 2, \dots, n < \infty$$
 $E(X^k) = \sum_{x} x^k P(x)$ ou $E(X^k) = \int x^k f(x) dx$

$$E(XY) = \sum_{x} \sum_{y} xyP(x,y)$$
 ou $E(XY) = \int \int xyf(x,y)dxdy$

$$COV(X,Y) = E(XY) - E(X)E(Y), \qquad V(X) = E(X^2) - [E(X)]^2$$

Para $a, b \in c$ constantes finitas, $X, Y \in Z$ variáveis aleatórias,

$$E(aX \pm bY \pm c) = aE(X) \pm bE(Y) \pm c$$

$$V(aX \pm bY \pm c) = a^{2}V(X) + b^{2}V(Y) \pm 2abCOV(X, Y)$$

$$COV(aX, bY) = abCOV(X, Y)$$

$$COV(X \pm Y, Z) = COV(X, Z) \pm COV(Y, Z)$$

$$P(X = x) = \binom{N}{x} p^x (1 - p)^{N - x} \quad E(X) = Np \quad V(X) = Np(1 - p) \quad \binom{N}{x} = \frac{N!}{x!(N - x)!}$$

$$P(X = x) = \frac{e^{-m}m^x}{x!} \qquad E(X) = V(X) = m$$

$$X \sim N(\mu; \sigma^2) \implies Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

$$\overline{X} \sim N\left(\mu; \frac{\sigma^2}{n}\right) \implies Z = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$\chi_{\nu}^{2} = \sum_{i=1}^{h} \sum_{j=1}^{k} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$
 $E_{ij} = \frac{n_{i.} n_{.j}}{n_{..}}$ $\nu = (h-1)(k-1)$

Tabela 1: Áreas de uma distribuição normal padrão entre z=0 e um valor positivo de z. As áreas para os valores de z negativos são obtidas por simetria.

\mathbf{Z}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	$0,\!1026$	$0,\!1064$	$0,\!1103$	0,1141
0,3	0,1179	$0,\!1217$	$0,\!1255$	$0,\!1293$	$0,\!1331$	$0,\!1368$	$0,\!1406$	0,1443	$0,\!1480$	0,1517
0,4	0,1554	$0,\!1591$	0,1628	$0,\!1664$	$0,\!1700$	$0,\!1736$	$0,\!1772$	$0,\!1808$	$0,\!1844$	$0,\!1879$
0,5	0,1915	$0,\!1950$	$0,\!1985$	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	$0,\!2257$	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	$0,\!2517$	0,2549
0,7	$0,\!2580$	$0,\!2611$	0,2642	0,2673	$0,\!2703$	$0,\!2734$	$0,\!2764$	$0,\!2794$	0,2823	0,2852
0,8	$0,\!2881$	$0,\!2910$	0,2939	$0,\!2967$	$0,\!2995$	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	$0,\!3264$	$0,\!3289$	0,3315	0,3340	$0,\!3365$	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	$0,\!3508$	$0,\!3531$	$0,\!3554$	$0,\!3577$	$0,\!3599$	0,3621
1,1	0,3643	$0,\!3665$	$0,\!3686$	$0,\!3708$	$0,\!3729$	$0,\!3749$	$0,\!3770$	$0,\!3790$	$0,\!3810$	0,3830
1,2	0,3849	$0,\!3869$	$0,\!3888$	$0,\!3907$	0,3925	0,3944	$0,\!3962$	$0,\!3980$	$0,\!3997$	0,4015
1,3	0,4032	0,4049	$0,\!4066$	0,4082	0,4099	0,4115	$0,\!4131$	$0,\!4147$	$0,\!4162$	0,4177
1,4	0,4192	$0,\!4207$	$0,\!4222$	$0,\!4236$	$0,\!4251$	$0,\!4265$	$0,\!4279$	$0,\!4292$	0,4006	0,4319
1,5	0,4332	$0,\!4345$	$0,\!4357$	$0,\!4370$	$0,\!4382$	$0,\!4394$	$0,\!4406$	0,4418	$0,\!4429$	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	$0,\!4505$	$0,\!4515$	$0,\!4525$	$0,\!4535$	0,4545
1,7	$0,\!4554$	$0,\!4564$	$0,\!4573$	$0,\!4582$	$0,\!4591$	$0,\!4599$	$0,\!4608$	0,4616	$0,\!4625$	0,4633
1,8	0,4641	0,4649	$0,\!4656$	$0,\!4664$	0,4671	0,4678	$0,\!4686$	0,4693	0,4699	0,4706
1,9	0,4713	$0,\!4719$	$0,\!4726$	$0,\!4732$	$0,\!4738$	$0,\!4744$	$0,\!4750$	$0,\!4756$	$0,\!4761$	0,4767
2,0	0,4772	0,4778	$0,\!4783$	$0,\!4788$	$0,\!4793$	$0,\!4798$	$0,\!4803$	$0,\!4808$	$0,\!4812$	0,4817
2,1	$0,\!4821$	$0,\!4826$	$0,\!4830$	$0,\!4834$	$0,\!4838$	$0,\!4842$	$0,\!4846$	$0,\!4850$	$0,\!4854$	0,4857
2,2	$0,\!4861$	$0,\!4864$	$0,\!4868$	$0,\!4871$	$0,\!4875$	$0,\!4878$	$0,\!4881$	$0,\!4884$	$0,\!4887$	$0,\!4890$
2,3	$0,\!4893$	$0,\!4896$	$0,\!4898$	0,4901	0,4904	$0,\!4906$	$0,\!4909$	$0,\!4911$	0,4913	0,4916
2,4	0,4918	0,4920	$0,\!4922$	$0,\!4925$	$0,\!4927$	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	$0,\!4956$	0,4957	0,4959	$0,\!4960$	$0,\!4961$	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990

Adaptada de Costa Neto, P. L. O. Estatística, Editora Edgard Blucher.

Tabela 2: Valores χ^2 na distribuição de qui-quadrado com n graus de liberdade tais que $P\left(\chi_n^2 \geq \chi^2\right) = p \times 100\%$.

				,,		,	1 1		O				- (/(/	$i - \lambda$	1				
n	p=99%	98%	97,5%	95%	90%	80%	70%	50%	30%	20%	10%	5%	4%	2,5%	2%	1%	0,2%	0,1%	n
1	$0.0^3 16$	$0.0^3 63$	0,001	0,004	0,016	0,064	0,148	0,455	1,074	1,642	2,706	3,841	4,218	5,024	5,412	6,635	9,550	10,827	1
2	0,020	0,040	0,051	$0,\!103$	0,211	0,446	0,713	1,386	2,408	3,219	4,605	5,991	6,438	7,378	7,824	9,210	$12,\!429$	13,815	2
3	0,115	$0,\!185$	$0,\!216$	$0,\!352$	0,584	1,005	1,424	2,366	$3,\!665$	4,642	$6,\!251$	7,815	8,311	9,348	9,837	11,345	14,796	16,266	3
4	0,297	0,429	0,484	0,711	1,064	1,649	2,195	3,357	4,878	5,989	7,779	$9,\!488$	10,026	11,143	11,668	$13,\!277$	16,924	18,467	4
5	0,554	0,752	0,831	1,145	1,610	2,343	3,000	4,351	6,064	7,289	9,236	11,070	$11,\!644$	$12,\!832$	13,388	15,086	18,907	20,515	5
6	0,872	$1,\!134$	1,237	1,635	2,204	3,070	3,828	5,348	7,231	$8,\!558$	10,645	$12,\!592$	13,198	14,449	15,033	$16,\!812$	20,791	22,457	6
7	1,239	$1,\!564$	1,690	2,167	2,833	3,822	4,671	6,346	8,383	9,803	12,017	14,067	14,703	16,013	16,622	$18,\!475$	22,601	24,322	7
8	1,646	2,032	$2,\!180$	2,733	3,490	4,594	$5,\!527$	7,344	9,524	11,030	13,362	$15,\!507$	16,171	$17,\!534$	18,168	20,090	24,352	26,125	8
9	2,088	$2,\!532$	2,700	3,325	4,168	$5,\!380$	6,393	8,343	10,656	12,242	14,684	16,919	17,608	19,023	19,679	21,666	26,056	27,877	9
10	2,558	3,059	3,247	3,940	4,865	$6,\!179$	7,267	9,342	11,781	$13,\!442$	15,987	$18,\!307$	19,021	$20,\!483$	$21,\!161$	23,209	27,722	29,588	10
11	3,053	3,609	3,816	4,575	$5,\!578$	6,989	8,148	10,341	$12,\!899$	14,631	$17,\!275$	19,675	$20,\!412$	21,920	22,618	24,725	$29,\!354$	31,264	11
12	3,571	$4,\!178$	4,404	$5,\!226$	6,304	7,807	9,034	$11,\!340$	14,011	$15,\!812$	$18,\!549$	21,026	21,785	$23,\!337$	24,054	26,217	30,957	32,909	12
13	4,107	4,765	5,009	$5,\!892$	7,042	8,634	9,926	12,340	15,119	16,985	$19,\!812$	$22,\!362$	23,142	24,736	$25,\!472$	$27,\!688$	$32,\!535$	34,528	13
14	4,660	$5,\!368$	5,629	$6,\!571$	7,790	9,467	10,821	13,339	16,222	18,151	21,064	$23,\!685$	$24,\!485$	26,119	26,873	29,141	34,091	36,123	14
15	5,229	5,985	$6,\!262$	$7,\!261$	$8,\!547$	$10,\!307$	11,721	14,339	17,322	19,311	$22,\!307$	24,996	$25,\!816$	$27,\!488$	$28,\!259$	$30,\!578$	35,628	37,697	15
16	5,812	6,614	6,908	7,962	9,312	$11,\!152$	12,624	$15,\!338$	18,418	$20,\!465$	$23,\!542$	$26,\!296$	27,136	$28,\!845$	29,633	32,000	37,146	39,252	16
17	6,408	$7,\!255$	$7,\!564$	8,672	10,085	12,002	$13,\!531$	16,338	19,511	21,615	24,769	27,587	28,445	30,191	30,995	33,409	38,648	40,790	17
18	7,015	7,906	8,231	$9,\!390$	10,865	$12,\!857$	14,440	17,338	20,601	22,760	25,989	$28,\!869$	29,745	$31,\!526$	$32,\!346$	$34,\!805$	40,136	42,312	18
19	7,633	8,567	8,906	10,117	$11,\!651$	13,716	$15,\!352$	$18,\!338$	$21,\!689$	23,900	27,204	30,144	31,037	$32,\!852$	$33,\!687$	36,191	41,610	43,820	19
20	8,260	9,237	$9,\!591$	10,851	12,443	$14,\!578$	$16,\!266$	19,337	22,775	25,038	$28,\!412$	$31,\!410$	$32,\!321$	$34,\!170$	35,020	$37,\!566$	43,072	45,315	20
21	8,897	9,915	10,283	$11,\!591$	13,240	15,445	17,182	20,337	23,858	26,171	29,615	$32,\!671$	$33,\!597$	$35,\!479$	36,343	38,932	44,522	46,797	21
22	9,542	10,600	10,982	12,338	14,041	$16,\!314$	18,101	21,337	24,939	$27,\!301$	30,813	33,924	$34,\!867$	36,781	37,659	40,289	45,962	48,268	22
23	10,196	$11,\!293$	11,688	13,091	14,848	17,187	19,021	22,337	26,018	28,429	32,007	35,172	36,131	38,076	38,968	41,638	47,391	49,728	23
24	10,856	11,992	$12,\!401$	13,848	$15,\!659$	18,062	19,943	23,337	27,096	$29,\!553$	33,196	36,415	$37,\!389$	39,364	$40,\!270$	42,980	$48,\!812$	51,179	24
25	11,524	12,697	13,120	14,611	$16,\!473$	18,940	20,867	24,337	28,172	30,675	$34,\!382$	$37,\!652$	$38,\!642$	40,646	$41,\!566$	$44,\!314$	50,223	52,620	25
26	12,198	13,409	$13,\!844$	$15,\!379$	17,292	19,820	21,792	25,336	29,246	31,795	$35,\!563$	$38,\!885$	$39,\!889$	41,923	42,856	$45,\!642$	$51,\!627$	54,052	26
27	12,879	14,125	$14,\!573$	16,151	18,114	20,703	22,719	26,336	30,319	32,912	36,741	40,113	41,132	43,194	44,140	46,963	53,022	55,476	27
28	13,565	$14,\!847$	$15,\!308$	16,928	18,939	$21,\!588$	23,647	27,336	31,319	34,027	37,916	41,337	$42,\!370$	44,461	45,419	$48,\!278$	54,411	56,893	28
29	14,256	$15,\!574$	16,047	17,708	19,768	$22,\!475$	24,577	28,336	$32,\!461$	35,139	39,087	$42,\!557$	$43,\!604$	45,722	46,693	$49,\!588$	55,792	58,302	29
_30	14,953	16,306	16,791	18,493	20,599	23,364	25,508	29,336	33,530	36,250	40,256	43,773	44,834	46,979	47,962	50,892	57,167	59,703	30
n	p=99%	98%	$97,\!5\%$	95%	90%	80%	70%	50%	30%	20%	10%	5%	4%	$2,\!5\%$	2%	1%	$0,\!2\%$	0,1%	n
	I																		i .

Adaptada de Bussab, W. O. e Morettin, P. A. Estatística Básica - Métodos Quantitativos, Editora Atual.

1.(6 pts) Sejam X, Y, Z e W variáveis aleatórias tais que,

$$E(X) = 1, 2$$
 $E(Y) = 2, 2$ $E(Z) = 0, 75$ $E(W) = 1, 1$
$$V(X) = 3, 36$$
 $V(Y) = 0, 96$ $V(Z) = 0, 1875$ $V(W) = 0, 99$
$$COV(X, Y) = 0, 16$$
 $COV(Z, W) = 0, 175$
$$COV(X, W) = COV(X, Z) = COV(Y, W) = COV(Y, Z) = 0$$

Utilize as propriedades do valor esperado, da variância e da covariância para calcular:

a.(2 pts)
$$COV(X + Z, Y + W)$$
.

$$= COV(X,Y) + COV(X,W) + COV(Z,Y) + COV(Z,W)$$

= 0, 16 + 0 + 0 + 0, 175
= 0, 335

b.(2 pts) COV(2X, -3Y).

$$= 2 \cdot (-3)COV(X, Y)$$

= -6 \cdot 0, 16
= -0, 96

c.(2 pts)
$$V(5W - 6Z + 2)$$
.

$$= 5^{2}V(W) + (-6)^{2}V(Z) + 2 \cdot 5 \cdot (-6)COV(W, Z)$$

$$= 25 \cdot 0,99 + 36 \cdot 0,1875 - 60 \cdot 0,175$$

$$= 24,75 + 6,75 - 10,50$$

$$= 21$$

2.(4 pts) Um elevador possui o seguinte aviso: Capacidade máxima de 9 pessoas ou 630 kg de carga. Admita que os pesos das pessoas que entram no elevador sejam variáveis aleatórias independentes e normalmente distribuídas com média $\mu=62,8$ kg e desvio padrão $\sigma=9$ kg. Pede-se: Utilize o teorema da combinação linear para calcular a probabilidade de haver sobrecarga (carga exceder 630 kg), quando uma amostra aleatória de 9 pessoas está no elevador.

Seja W = Carga (Peso total), então:

$$W = \sum_{i=1}^{9} X_i$$
 : $X_i \sim N(\mu = 62, 8; \sigma^2 = 9^2)$

Portanto,

$$E(W) = \sum_{i=1}^{9} E(X_i) = 9 \cdot 62, 8 = 565, 2$$

$$V(W) = \sum_{i=1}^{9} V(X_i) = 9 \cdot 9^2 = 729$$

Logo,

$$P(Sobrecarga) = P(W \ge 630)$$

$$= P\left(Z \ge \frac{630 - 565, 20}{\sqrt{729}}\right)$$

$$= P\left(Z \ge \frac{65, 8}{27} \cong 2, 437 \cong 2, 44\right)$$

$$= 0, 5 - 0, 4927 = 0,0073$$

3.(10 pts) Admita que com probabilidade p=0,01 uma tempestade que se aproxima será um evento com severas inundações, equivalente a um evento que ocorre em média uma vez a cada 100 anos, evento denominado de *one-hundred-year flood (100YF)* em inglês, ou simplesmente evento 100YF, um conceito importante utilizado na engenharia de rios para definir medidas a serem tomadas no controle de inundações. Considere que N tempestades serão monitoradas num período de tempo, pede-se: Calcule a probabilidade de ocorrerem 3 ou mais eventos 100YF quando N=300.

a.(5 pts) Utilize o modelo binomial.

Sendo $X=n^{\circ}$ eventos $100>F\sim Binomial~(N=300,~p=0,01),$ então:

$$P(X \ge 3) = 1 - P(X < 3) = 1 - P(X = 0) - P(X = 1) - P(X = 2)$$

$$= 1 - {300 \choose 0} \cdot 0,01^{0} \cdot 0,99^{300} - {300 \choose 1} \cdot 0,01^{1} \cdot 0,99^{299}$$

$$- {300 \choose 2} \cdot 0,01^{2} \cdot 0,99^{298}$$

$$= 1 - 0,0490 - 0,1486 - 0,2244$$

$$\cong 0.578$$

b.(5 pts) Utilize o modelo Poisson.

Sendo $X \sim Poisson \ (m = Np = 3)$, então:

$$P(X \ge 3) = 1 - P(X < 3) = 1 - P(X = 0) - P(X = 1) - P(X = 2)$$

$$= 1 - e^{-m} \left(\frac{m^0}{0!} + \frac{m^1}{1!} + \frac{m^2}{2!} \right)$$

$$= 1 - e^{-3} \cdot \frac{17}{2} \cong 1 - 0,4232 \cong 0,577$$

4.(10 pts) Um fabricante informa que o peso médio de um rolo de papel é $\mu=300$ kg, com desvio padrão $\sigma=12$ kg. Suspeita-se que o peso médio informado pelo fabricante não esteja correto, e, para testar esta hipótese tomou-se uma amostra aleatória de n=36 rolos que forneceu peso médio $\overline{X}=296,48$ kg. Pede-se: Realize um teste de hipóteses **bilateral** conforme os itens a seguir:

a. (2 pts) Hipóteses estatísticas.

$$H_0: \mu = 300 \text{ e } H_1: \mu \neq 300.$$

b. (2 pts) Valor calculado.

$$Z_0 = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{296, 48 - 300}{\frac{12}{\sqrt{36}}} = \frac{-3, 52}{2} = -1, 76$$

c. (3 pts) Valor-p, faça um desenho ilustrativo.

Sendo $P(0 \le Z \le 1,76) = 0,4608$, então:

$$valor - p = 2 \cdot (0, 5 - 0, 4608) = 2 \cdot 0,0392$$

= 0,0784

d. (3 pts) Decisão e interpretação prática para os níveis de significância 5% e 10%.

Se $\alpha=0,05$: então $p-valor>\alpha$ e deve-se não rejeitar a hipótese nula e admitir que a informação do fabricante como correta.

Se $\alpha=0,10$: então $p-valor<\alpha$ e deve-se rejeitar a hipótese nula e admitir que a informação do fabricante como incorreta.

5.(10 pts) Um estudo foi realizado com 200 jogadores de video games (jogos de computador) para se avaliar diversos fatores que motivam o jogador a comprar novos jogos e/ou novas versões do mesmo jogo. Dentre as perguntas realizadas, uma delas era a seguinte afirmação: Eu adquiro um novo jogo ou uma nova versão do jogo quando o meu escore no jogo não melhora. Os respondentes foram classificados em jogadores frequentes (jogam 5 vezes ou mais por semana) e não frequentes (jogam menos do que 2 vezes por semana); sendo as respostas classificadas em concorda com a afirmação ou não concorda. Os dados estão sumarizados na tabela a seguir.

	Classificação da resposta						
Tipo de jogador	Concorda	Não concorda	Total				
Frequente	81/71,5	19/28,5	100				
Não frequente	62/71,5	38/28,5	100				
Total	143	57	200				

Pede-se: adote 5% como nível de significância e realize um teste de qui-quadrado conforme os itens a seguir.

a.(2 pts) Hipóteses estatísticas.

 H_0 : tipo de jogador e classificação da resposta são independentes.

 H_1 : tipo de jogador e classificação da resposta não são independentes.

b.(2 pts) Valor tabelado.

$$\chi^2_{(5\%;1)} = 3,841$$

c.(4 pts) Valor Calculado.

$$\chi_0^2 = \frac{(81-71,5)^2}{71,5} + \frac{(19-28,5)^2}{28,5} + \frac{(62-71,5)^2}{71,5} + \frac{(38-28,5)^2}{28,5}$$

$$= 1,262+3,167+1,262+3,167$$

$$\cong 8.858$$

d.(2 pts) Decisão do teste e interpretação prática.

Rejeitar H_0 . Considerar que tipo de jogador e classificação da resposta não são independentes.