VLSI Lab4

I. Design a 4-bit carry-ripple adder.

A. You can use your 1-bit full adder in Lab2 to realize a 4-bit carry-ripple adder. (You need to add inverter as loading.)

B. Show a waveform to verify your design (set the input as below).

Measure	Pattern	C_{IN}	A_3	A_2	A_1	A_0	B_3	B_2	B_1	B_0
nicasure	1	0	0	1	0	1	1	0	0	1
Delay _{CinToCout}	2	1	0	0	0	0	1	1	1	1

Rise time = 1ns Fall time = 1ns

C. Measure Area, DelayCin to Cout of the circuit.

II. Design a 4-bit carry-skip adder.

A. Add skip logic to your 4-bit carry-ripple adder to realize a 4-bit carry skip adder. (You need to add inverter as loading.)

B. Show a waveform to verify your design (set the input as below).

Measure	Pattern	C_{IN}	A_3	A_2	A_1	A_0	B_3	B_2	B_1	$\boldsymbol{B_0}$
Tricusure	1	0	0	1	0	1	1	0	0	1
Delay _{CinToCout}	2	1	0	0	0	0	1	1	1	1

Rise time = 1ns Fall time = 1ns

C. Measure Area, Delay_{Cin to Cout} of the circuit.

III. Design a 4:1 MUX using transmission gates.

A. Use transmission gates to realize a 4:1 MUX as figure below. (You need to add inverter as loading.)

- B. Show a waveform to verify your design
- C. Measure Area, $Delay_{D0_b to Y}$ of the circuit.

IV. Design a dynamic inverter

A. Design a dynamic footed inverter. (You need to add inverter as loading.)

B. Show a waveform to verify your design (set the input as below)

System on Chip Laboratory, NCTU

- C. Measure Area, Delay_{to Y} of the circuit.
 - Φ toggle every 50 ns
 - > Rise time and fall time are 1 ns
 - Set A to 1.8V

V. Questions of the lab

- A. Compare the Delay_{Cin To Cout} between 4-bit carry-ripple adder and 4-bit carry-skip adder, and explain the reason of the difference.
- B. Discuss what are the benefits using transmission gates to realize a 4:1 MUX, and explain the reasons.
- C. What is "Monotonicity Problem" and how can we resolve this problem?

VI. Grading policy

Graun	ig policy	
A. Pr	e-sim waveform: 16%	
i.	4-bit carry-ripple adder	4%
ii.	4-bit carry-skip adder	4%
iii.	4:1 MUX	4%
iv.	Dynamic inverter	4%
B. Di	RC & LVS: 32%	
i.	4-bit carry-ripple adder	8%
ii.	4-bit carry-skip adder	8%

ii.	4-bit carry-skip adder	8%
iii.	4:1 MUX	8%
iv.	Dynamic inverter	8%

C. Post-sim waveform: 16%

i.	4-bit carry-ripple adder	4%
ii.	4-bit carry-skip adder	4%
iii.	4:1 MUX	4%
iv.	Dynamic inverter	4%

D. Performance: 16%

i. 4-bit carry-ripple adder 5%

Figure of Merit (FoM) =
$$Delay_{CinToCout} \times Area$$

ii. 4-bit carry-skip adder 5%

Figure of Merit (FoM) =
$$Delay_{CinToCout} \times Area$$

iii. 4:1 MUX 3%

Figure of Merit (FoM) = $Delay_{D0\ hToY} \times Area$

iv. Dynamic inverter 3%

System on Chip Laboratory, NCTU

Figure of Merit (FoM) = $t_{\phi \to Y} \times Area$

E. Report: 20%

Layout screenshot with ruler: 4%

4-bit carry-ripple adder 1% 2. 4-bit carry-skip adder 1% 3. 4:1 MUX 1% Dynamic inverter 1%

ii. Post-sim waveform: 4%

4-bit carry-ripple adder 1% 2. 4-bit carry-skip adder 1% 3. 4:1 MUX 1% 4. 1% Dynamic inverter

Questions of the lab: 12% iii.

VII. Demo time

12/9 (Wed.) 15:30 ~ 18:30

You only have "one" chance to demo!

After deadline, any requests for demo are denied.

VIII. Report hand-in deadline

12/9 (Wed.) 23:59 on New E3

After deadline, any requests for handing in report are denied.

IX. Appendix

Power measurement by Hspice

.tran 0.1n 200n

.meas tran total_cur integ par('-i(vvdd)')

.meas tran total_pwr param='1.8*total_cur'