B.Tech. (Computer Engg.) VIIIth Semester Examination, 2021 Network Security Paper No. CEN-805

Time: Three Hours Maximum Marks: 60

Write your roll no. immediately on receipt of this question paper

Note: Attempt all question. All questions carry equal marks. Assume suitable missing data, if any.

Q.No./C	Content of Questions	Mark
O's No.		S
1. (a)/	Using the Extended Euclidean algorithm, find the greatest common	6
CO1	divisor and the value of s and t for the given values 84 and 320.	
1. (b)/	Find the solutions for the following linear equations:	6
CO1	i. 256x≡442 (mod 60)	
	ii. $232x+42 \equiv 248 \pmod{50}$	
	OR	
1'. (a)/ CO1	For a defined Galois Field over GF (2^8) having 8 elements. Using Extended Euclidean algorithm, find the inverse of (x^5) modulo $x^8 + x^4 + x^3 + x + 1$.	6
1'. (b)/ CO1	Find the determinant and multiplicative invers of the following residue matrix over Z_{10} .	6
2. (a)/ CO2	Show the following hexadecimal data: AAAABBB CCCC DDDD after passing it through initial permutation and inverse initial permutation in DES.	6
2. (b)/ CO2	Find the value of RCon [11] and RCon[12] constants for the AES-192 and the value of RCon [13] and RCon[14] for AES-256 implementations. Use X^{11-1} mod prime and X^{12-1} mod prime, in which the prime is the irreducible polynomial ($X^8 + X^4 + X^3 + X + 1$) for AES 192 and use X^{13-1} mod prime and X^{14-1} mod prime, in which the prime is the irreducible polynomial ($X^8 + X^4 + X^3 + X + 1$) for AES 256	6
OR		
2'. (a)/ CO2	Find the order of elements and primitive roots of $a^i \equiv x \pmod{7}$ defined for the group $G = \langle Z_7^*, x \rangle$.	6
2'. (b)/ CO2	Find the value of x for the following sets of congruence using the Chinese remainder Theorem. $X \equiv 6 \pmod{11}$ $X \equiv 13 \pmod{16}$	6
	$X \equiv 9 \pmod{21}$ $Y = 10 \pmod{25}$	
	$X \equiv 19 \pmod{25}$	

3. (a)/	Assume an attacker knows that m=3, he has intercepted three plain	6
CO3	text/cipher text blocks from the same message as shown below:	
	[05 07 10] <> [03 06 00]	
	[13 17 07] <> [14 16 09]	
	[05 00 04] <> [03 17 11]	
	Find the value of matrix for key k using Hill ciphering technique.	
3. (b)/	Assume an attacker intercepts the cipher text "	6
CO3	EEMYNTAACTTKONSHITZG" using Brute-Force attack. Find the	
	original message using Transposition ciphering method.	
4. (a)/	Using the value of p=23 and q=29, for RSA:	6
CO4	i. Find the value of public key.	
	ii. Find the value of private key.	
	iii. Encrypt the message "attack" using the key pair calculated in	
	part i.	
4. (b)/	Two points on the elliptical curve $E_{23}(1,1)$ is defines as $P=(3,10)$ and $Q=$	6
CO4	(9,7), find the value of:	
	(i) P+Q (ii) 4P	
5. (a)/	If the ASCII Character "COMPUTERENGINEERING" is passed as a	6
CO5	message to the SHA-512 as input, find the values in HEX assigned to the	
	words W0, W1, W2,W15 for the defined message. (Use	
	ASCII code for A: 01000001, B: 01000010, C: 01000011	
	-).	
5. (b)/	i. If the size of the message is 1000 bits in MD5, What will be the size of	6
CO5	padding bits?	
	ii. Write the value of chaining variables used in MD5.	