1. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
170	-4	4
187	13	13
168	-6	6
173	-1	1
172	-2	2
174	0	0
======	=======	======
$\sum x = 1044$		$\sum x - \bar{x} = 26$
$\bar{x} = 174$		

We are ready for the formula.

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{26}{6}$$

2. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$(x-\bar{x})^2$
192	-7	49
191	-8	64
206	7	49
204	5	25
202	3	9
======	======	======
$\sum_{\bar{X}} x = 995$ $\bar{x} = 199$		$\sum (x - \bar{x})^2 = 196$

We are ready for the formula.

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{196}{5 - 1}}$$
$$= \sqrt{49}$$
$$= \boxed{7}$$