Modelos y Simulación: Práctica

Guarnier Facundo 2024

Calentador de agua

Objetivo

El propósito de este documento es proporcionar una descripción detallada del proceso de calentamiento de agua utilizando un sistema específico compuesto por un recipiente cilíndrico con aislamiento térmico y un calentador eléctrico controlado. Los temas se desarrollarán en el contexto de la preparación de infusiones.

Contexto

En el ámbito de la gastronomía y las bebidas, la preparación de infusiones requiere un control preciso de la temperatura del agua para extraer los sabores y aromas deseados de las hierbas, especias o té. Para garantizar la calidad del resultado final, es fundamental mantener la temperatura del agua dentro de un rango específico durante todo el proceso de infusionado.

Equipo Utilizado:

Recipiente Cilíndrico:

Material: Telgopor

• Dimensiones: Diámetro = 10 cm, Altura = 6.36619 cm

Espesor del Aislante: 0.01 cm

Capacidad: 500 cm³

Calentador Eléctrico:

Potencia: 488.37 wattsResistencia: 99.11 ohms

Tensión: 220V

Tiempo Objetivo: 300 segundos (5 minutos)

Líquido:

Nombre: Agua

Temperatura Inicial: 30°C

Temperatura Final Deseada: 100°C

Densidad: 1 g/cm³

Calor Específico: 4.186 J/g°C

Procedimiento:

Preparación del Recipiente:

Se utiliza un recipiente cilíndrico diseñado específicamente con material de telgopor, conocido por su excelente capacidad de aislamiento térmico. El recipiente tiene un diámetro de 10 cm y una altura de 6.4 cm, con un espesor adicional de aislante de 0.01 cm para minimizar la pérdida de calor.

Inicio del Proceso de Calentamiento:

Se vierte agua en el recipiente cilíndrico hasta alcanzar una cantidad de 500 cm³.

El calentador se coloca dentro del recipiente cilíndrico y se enciende, se inicia el proceso de calentamiento con el agua a una temperatura inicial de 30°C y una temperatura ambiente constante de 30°C también.

Control de la Temperatura:

Se monitorea continuamente la temperatura del agua utilizando un termómetro preciso.

Finalización del Proceso:

Una consideración importante en el proceso de calentamiento es la influencia del aislamiento térmico proporcionado por el material de telgopor en el recipiente cilíndrico. Debido a la capacidad de este material para minimizar la pérdida de calor, la temperatura del agua no alcanzará los 100°C previstos inicialmente.

Dadas las características del sistema y la potencia del calentador, se estima que la temperatura final del agua será de aproximadamente 88.86°C a los 300 segundos de haber encendido el calentador. A pesar de la eficiencia del calentador eléctrico, la pérdida de calor a través del telgopor limita la capacidad de alcanzar la temperatura objetivo.

Consignas

TP1 A: ¿Qué valor de resistencia eléctrica debemos emplear?

 $=> R = 99.11 \Omega$

Se requiere una resistencia eléctrica de 99.25 ohms para cumplir con los requisitos del sistema.

TP1 B: Calcular el aumento de temperatura luego de 1s de conectar la alimentación, suponiendo que no existe pérdida de calor.

 $=> \Delta T = 0.233^{\circ} C$

El aumento de temperatura después de 1 segundo de conectar la alimentación es de 0.233° C. Esta cifra se obtiene sin considerar la pérdida de calor.

TP2: Graficar el aumento de temperatura del agua en el recipiente sin pérdida de calor.

TP3: Calcular la pérdida de calor de nuestro dispositivo, según las especificaciones de diseño.

=> Cantidad de calor perdido = 23311.61 J

La cantidad de calor perdido es de 23311.61 J, según las especificaciones de diseño, tomando en cuenta la pérdida de calor a través del aislante de telgopor con un espesor de 0.01 centímetros.

TP4: Gráfico de la temperatura del fluido dentro del calentador

Se puede observar que considerando la pérdida de calor, el fluido no alcanza a calentarse a la temperatura deseada (100°C) en el tiempo propuesto (300 segundos). En 300 segundos el fluido alcanzará una temperatura aproximada de 88.86°C considerando la pérdida de calor.

TP5 A: Generar familias de curvas con distribuciones normales y uniformes con distribución uniforme de 5 valores próximos de resistencias

TP5 B: Generar familias de curvas con distribuciones normales y uniformes con distribución normal de 5 temperaturas iniciales del agua. Media 10, desvío standard=5.

TP5 C: Generar familias de curvas con distribuciones normales y uniformes con distribución uniforme de 8 temperaturas iniciales del ambiente, entre -20 y 50 grados.

TP5 D: Generar familias de curvas con distribuciones normales y uniformes con distribución normal de 5 valores de tensión de alimentación Media 220, SD 40.

TP5 E: Generar familias de curvas con distribuciones normales y uniformes con simulaciones que contengan todas las familias de curvas previas.

Curva 1: - Resistencia: 104.48 Ω - Temperatura inicial: 14.11 °C - Temperatura ambiente: 14.07 °C - Tensión: 118.46 V	Curva 2: - Resistencia: 102.47 Ω - Temperatura inicial: 14.96 °C - Temperatura ambiente: 27.03 °C - Tensión: 199.17 V	Curva 3: - Resistencia: 101.25 Ω - Temperatura inicial: 7.13 °C - Temperatura ambiente: 48.61 °C - Tensión: 261.86 V
Curva 4: - Resistencia: 101.75 Ω - Temperatura inicial: 18.89 °C - Temperatura ambiente: -4.12 °C - Tensión: 240.74 V	Curva 5: - Resistencia: 103.98 Ω - Temperatura inicial: 11.92 °C - Temperatura ambiente: 18.96 °C - Tensión: 225.21 V	

TP6: Simulación de un fenómeno estocástico que tiene una probabilidad de ocurrencia de 1/300 en cada tick de tiempo. Con variables aleatorias: si el fenómeno tiene lugar, ocurre un descenso de X grados, durante Y segundos. Variación máxima 50 grados en descenso. Rehacer el gráfico de temperaturas del TP 4.

Evento estocástico de reducción de la temperatura ambiente:

- Probabilidad de ocurrencia: 1/300
 Rango de reducción: [20, 50] °C
- Rango de duración: [20, 120] segundos

Ocurrieron 2 eventos:

- Evento 1: Temperatura ambiente de -19°C durante 80s (Inicio: 66s, Fin: 145s)
- Evento 2: Temperatura ambiente de -20°C durante 62s (Inicio: 166s, Fin: 227s)

Se puede observar que al momento de ocurrir los eventos, debido a la reducción de la temperatura ambiente, el aumento de la temperatura del agua dentro del envase se ralentiza. Estos eventos provocan que la temperatura máxima alcanzada sea menor a la del TP4 (88.86°C vs 81.87°C).