F	,	~ ~	_
ı	INTERROGATION ÉCRITE	T O	T I
,	IN LUK KUUTAT LUN BUKILU		D

NOM: Prénom: Note:

1. Montrer que $SO_2(\mathbb{R})$ est connexe par arcs.

Notons $R: \theta \in \mathbb{R} \mapsto \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. L'application R est continue car cos et sin le sont. Ainsi $SO_2(\mathbb{R})$ est connexe par arcs en tant qu'image du connexe par arcs \mathbb{R} par l'application continue R.

2. Soient \mathcal{B} une base orthonormée d'un espace euclidien E de dimension 3 ainsi que $u \in \mathcal{L}(E)$ tel que $\max_{\mathcal{B}}(u) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.

Montrer que u est une rotation. On ne demande ni son axe, ni son angle.

Posons $A = \operatorname{mat}_{\mathcal{B}}(u)$. On vérifie que $A^TA = I_3$ et $\operatorname{det}(A) = 1$. Ainsi $A \in \operatorname{SO}(3)$ puis $u \in \operatorname{SO}(E)$ car \mathcal{B} est une base orthonormée de E. Comme dim E = 3, u est une rotation.

3. Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$. Montrer que A^TA est une matrice symétrique positive.

Tout d'abord, $(A^TA)^T = A^T(A^T)^T = A^TA$ donc $A^TA \in \mathcal{S}_p(\mathbb{R})$. De plus, pour tout $X \in \mathcal{M}_{p,1}(\mathbb{R})$, $X^T(A^TA)X = (AX)^T(AX) = \|AX\|^2 \ge 0$ en notant $\|\cdot\|$ la norme euclidienne usuelle sur $\mathcal{M}_{p,1}(\mathbb{R})$. Ainsi $A^TA \in \mathcal{S}_p^+(\mathbb{R})$.

4. On pose $a_n = \frac{n}{3} - \left\lfloor \frac{n}{3} \right\rfloor$. Déterminer le rayon de convergence R de la série entière $\sum a_n z^n$.

On sait que pour tout $x \in \mathbb{R}$, $\lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$ donc (a_n) est à valeurs dans [0,1[. Notamment (a_n) est bornée et $R \geq 1$. De plus, $a_{3n+1} = \frac{1}{3}$ pour tout $n \in \mathbb{N}$ donc (a_n) ne converge pas vers 0 de sorte que $R \leq 1$. Finalement, R = 1.

5. Déterminer le rayon de convergence de la série entière $\sum \binom{2n}{n} z^{2n}$.

On applique la règle de d'Alembert. Pour tout $z \in \mathbb{C}^*$,

$$\frac{\left| \binom{2(n+1)}{n+1} z^{2(n+1)} \right|}{\left| \binom{2n}{n} z^{2n} \right|} = \frac{(2n+2)(2n+1)}{(n+1)^2} |z|^2 \underset{n \to +\infty}{\longrightarrow} 4|z|^2$$

 $Si |z| < \frac{1}{2}$, alors $4|z|^2 < 1$ et $\sum {2n \choose n} z^{2n}$ converge. $Si |z| > \frac{1}{2}$, alors $4|z|^2 > 1$ et $\sum {2n \choose n} z^{2n}$ diverge. Le rayon de convergence recherché est donc $\frac{1}{2}$.