Summary of Master Method (CLRS 4th Ed.)

Case	Ratio check	Inequality that must be checked	Theorem 4.1 text page 102	Notes (see pages 103-104)
1	$\frac{f(n)}{n^{\log_b a}} = n^{-\varepsilon}, \varepsilon > 0$	$f(n) \le c n^{\log_b a}$	If $f(n) \in O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$, then $T(n) \in O(n^{\log_b a})$ [Total cost dominated by cost of the recursion tree leaves.]	Not only $\mathrm{must} f(n)$ be smaller than $n^{\log_b a}$, it must be polynomially smaller
2	$\frac{f(n)}{n^{\log_b a}} = \lg^k n, k \ge 0$	$c_1 n^{\log_b a} \le f(n) \le c_2 n^{\log_b a}$	If $f(n) \in \Theta(n^{\log_b a} \lg^k n)$ where $k \ge 0$, then $T(n) \in \Theta(n^{\log_b a} \lg^{k+1} n)$ [Total cost evenly distributed over recursion tree levels.]	Most common situation occurs when $k=0$ then $T(n)\in\Theta\big(n^{\log_b a}\log n\big)$
3	$\frac{f(n)}{n^{\log_b a}} = n^{\varepsilon}, \varepsilon > 0$	$cn^{\log_b a} \le f(n)$	If $f(n) \in \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$, and $af\left(\frac{n}{b}\right) \le cf(n)$ for some constant $c < 1$ and all sufficiently large n , then $T(n) \in \Theta(f(n))$ [Total cost dominated by cost of the recursion tree root.]	Not only must $f(n)$ be larger than $n^{\log_b a}$, it must be polynomially larger and satisfy the "regularity" condition $af\left(\frac{n}{b}\right) \leq cf(n)$ If $f(n)$ has the form n^i $c = \left(\frac{a}{b^i}\right) \text{ which is } < 1$

Notes:

Applies only to recurrences T(n) on $n \in \mathbb{N}$ by T(n) = aT(n/b) + f(n), where a > 0 and b > 1 are constants, and f(n) is a driving function that is defined and nonnegative on all sufficiently large reals.

See page 66 for definition $lg^k n \equiv (lg n)^k$

The Critical Exponent, $E = \frac{\log a}{\log b} = \log_b a$, and the Watershed function $n^E = n^{\log_b a}$.

If f(n) is smaller than $n^{\log_b a}$ but not polynomially smaller, or

if f(n) is larger than $n^{\log_b a}$ but not polynomially larger, or

if the "regularity" condition $af\left(\frac{n}{h}\right) \le cf(n)$ is not satisfied,

the Master method cannot be used to solve the recurrence.