

Goal sequence RL Robot arm pick-and-place

By Phuc Nguyen

Motivation

- Automation and Robot become more and more popular
- Reinforcement learning is the main momentum of Robot control
- A simple solution with encapsulated production-ready modules

CNBC

History

- 1. Standard two-step approach: object recognition and pose estimation followed by model-based grasp planning
- 2. HER can resolve sparse reward problem; shaped reward function might be detrimental to the algorithm and requires lots effort
- 3. Offline RL, the accuracy of the value estimates depends on the richness of the dataset in terms of its state and action space coverage

Some related work in the area

- 1. Data-driven Deep semantic segmentation (Wong et al.)
 - a. ConvNets to provide bounding box proposals or segmentations, followed by geometric registration to estimate object poses
- 2. Transporter network (Zeng et al.)
 - a. A simple model which can rearrange deep features to infer spatial displacements from visual input, which can parameterize robot actions

Slide on High level idea for method

- Stable-baseline Truncated Quantile Critics
 - Production ready, huge community support
 - Replay buffer with offline learning capacity
- Offline learning and gradient step
 - Provide warm start
- Transfer learning and domain randomization
 - Support Sim2Real and multi-object

Procedure

Guided learning Semi-online RL

Hierarchical Reinforcement Learning

- 1. Avoid goal-conditioned RL due to complexity in deployment
- 2. Options framework to get better generalization
- 3. Guided online PPO
 - 1. Alternate training procedure
 - 2. Enforce option complexity
 - 3. Dealing with gradient explosion

Doina Precup

Experiment

- 1. Single object
 - a. Guided learning and advanced HER
- 2. Multi-object
 - a. Transfer learning
 - b. Inverse RL/shaped reward engineer
 - c. Massive expert data

Algorithm 3 Advanced HER algorithm

- 1: Initialize θ to a random network and $D \leftarrow \{\}$
- 2: Initialize $R(ob) \leftarrow \{Rshaping, InverseRL\}$
- 2: while true do
- 3: Choose a goal $r \sim R(ob)$
- 3: **for** $t \in \{0, ..., T\}$ **do**
- 4: Get state s_t from environment
- 5: Select action $a_t = \pi(\cdot|s_t, r, \theta)$
- 6: Get experience $\{s_t, a_t, r_t, s_{t+1}\}$ and add to β
- 6: end for
- 6: end while=0

Training process

- 1. Agent can learn single object pick-andplace easily
- 2. Multi-object and domain randomization require transfer learning
- 3. Hierarchical RL approach can form options

Metric	reward	ratio	option_duration
Epoch 823	-67	1.0	[44, 122, 60, 53, 20, 72, 35, 1341]
Epoch 824	-15	2.0	[37, 30, 27, 46, 18, 48, 21, 80]

Table 1: Option combination

Result

- 1. Good single object pick-and-place
- 2. Mediocre performance in case of multi-object and domain randomization
- 3. Hierarchical RL online training pipeline

Conclusion

- 1. Robot object pick-and-place
- 2. Simple end-to-end goal sequence RL
- 3. Advanced HER version with reward goal
- 4. Hierarchical Reinforcement Learning for more complicated problem

Other Discussion items

- 1. Testing on real robot
 - a. Can conduct online inference
 - b. Wrong axis setting
 - 2. Hierarchical RL may provide better performance

