History

Author	Datum	Änderung	Version
Lienhard Menzi	21.8.2021	Erste Version	1.0

Quadratische Funktionen

History	1
Quadratische Funktionen	
Tools und Hilfsmittel	
Lernziele	1
Quadratische Funktionen	2
Quadratische Funktionen $f(x) = x2$	2
Quadratische Funktionen fx = ax2	3
Quadratische Funktionen $fx = ax2 + c$	3
Quadratische Funktionen $fx = (x + e)2$	4
Quadratische Funktionen $fx = x + e^2 + c$	5
Allgemeine quadratische Funktion $f(x) = ax^2 + bx + c$ mit $a \neq 0$	
Die Diskriminante	
Der Scheitelpunkt (Maximum oder Minimum)	

Tools und Hilfsmittel

Die Graphiken sind entweder mit Grapher, einem Macintosh Standard Tool erstellt, oder mit GeoGebra (https://www.geogebra.org/) einem Open Source Mathematik Programm. Formeln sind mit dem in Word integriertem Formel-Editor geschrieben

Weitere Quellen sind:

Lernziele

- Sie ermitteln die Nullstellen einer quadratischen Funktion
- Sie können die Diskriminante berechnen und interpretieren sie korrekt
- Sie können die Wertetabelle einer quadratischen Funktion berechnen
- Sie erkennen ob die Funktion ein Maximum oder ein Minimum hat und können den Scheitelpunk berechnen

Quadratische Funktionen

Die allgemeine Form einer quadratischen Funktion sieht folgendermassen aus.

$$f(x) = ax^2 + bx + c$$
 mit $a \neq 0$

Sie heisst quadratisch, will der höchste Exponent von x 2 ist, daher darf auch a nicht Null sein, ansonsten diese Aussage nicht stimmen würde.

Doch zuvor wollen wir ein paar Spezialfälle betrachten

Quadratische Funktionen $f(x) = x^2$

Die Wertetabelle

X	-3	-2	-1	0	1	2	3	4
f(x)	9	4	1	0	1	4	9	16

Der Definitionbereich $D = \mathbb{R}$

Der Wertebereich $W = \{x \in \mathbb{R} \text{ mit } x \ge 0\}$

Bei x=0 haben wir ein Minimum, die Kurve ist symmetrisch zur y-Achse.

Die Kurve berührt bei x=0 die x-Achse, durchstösst sie aber nicht.

Das Extremum wir auch Scheitelpunkt genannt und ist im Punkt S = (0|0)

Uns interessieren immer die Durchstösse durch die Achsen, dazu

a) Durch y-Achse, also x=0

$$f(0) = 0^2 = 0$$

b) Durch x-Achse, also die Nullstelle

$$x^2 = 0$$
 $x = \sqrt{0} = 0$

Quadratische Funktionen $f(x) = ax^2$

Was erkennen wir?

- 1. Scheitelpunkt ist wie oben S=(0|0)
- 2. Ist a negativ, so haben wir kein Minimum, sondern ein Maximum
- 3. Je grösser a, desto steiler verläuft die Kurve
- 4. ax^2 ist $zu ax^2$ an der x Achse gespiegelt
- 5. Der Definitionbereich $D = \mathbb{R}$
- 6. Der Wertebereich $W = \{x \in \mathbb{R} \text{ mit } x \ge 0\}$ oder $W = \{x \in \mathbb{R} \text{ mit } x \le 0\}$

Quadratische Funktionen $f(x) = ax^2 + c$

Das c bewirkt, dass die ganze Kurve nach unten (c<0) oder nach oben (c>0) verschoben wird. Ist c>0, so gibt es keine Nullstellen doch wie berechnen wir diese? Wir setzen f(x)=0.

$$x^2 + 4 = 0$$
 $x^2 = -4$ $x = \sqrt{-4}$ das geht nicht, also keine Nullstelle

$$x^2 - 4 = 0$$
 $x^2 = 4$ $x = \sqrt{4}$ Wir haben zwei Lösungen $x_1 = 2$ $x_2 = -2$

Der Scheitelpunk verschiebt sich um c S=(0|c)

Quadratische Funktionen $f(x) = (x + e)^2$

Offenbar bewirkt der Koeffizient innerhalb des Quadrate eine Verschiebung nach links(negativ) oder nach rechts (positiv).

Der Scheitelpunkt befindet sich bei (-e|0)Nullstelle- ebenfals bei (-e|0) Quadratische Funktionen $f(x) = (x + e)^2 + c$

Jetzt haben wir eine Verschiebung nach rechts oder links (kommt vom e), wie auch eine von oben nach unten (kommt vom c).

Allgemeine quadratische Funktion $f(x) = ax^2 + bx + c$ mit $a \neq 0$

Hier kann eigentlich alles passieren.

- Die Kurve hat ein Extremum (Maximum oder Minimum) im Sattelpunkt S
- Sie hat eine, zwei oder keine Nullstelle

- Der Definitionsbereich ist $\mathbb R$
- Der Wertebereich ist entweder $W = \{ x \in \mathbb{R} \ mit \ S \le x \}$ oder $W = \{ x \in \mathbb{R} \ mit \ S \ge x \}$ je =nachdem wir ein Maximum oder ein Minimum haben

Die Nullstellen von $f(x) = ax^2 + bx + c$

Bestimmen wir mit der abc-Formel, auch Mitternachtsformel genannt.

$$x_{1,2} = \frac{-b \mp \sqrt{b^2 - 4ac}}{2a}$$

Beispiel 1

+
$$f(x) = x^2 - x - 2$$

$$f(x) = x^{2} - x - 2 \qquad a = 1, b = -1, c = -2 \quad setzen \, wir \, un \, die \, Formel \, ein$$

$$x_{1,2} = \frac{1 \mp \sqrt{1^{2} - 4 * 1 * (-2)}}{2 * 1} = \frac{1 \mp \sqrt{1 + 8}}{2} = \frac{1 \mp 3}{2}$$

$$x_1 = \frac{1+3}{2} = \frac{4}{2} = 2$$
 $x_2 = \frac{1-3}{2} = \frac{-2}{2} = -1$

Dann kann man auch schreiben

$$f(x) = (x-2)(x+1) = (x-x_1)(x-x_2)$$

Beispiel 2

$$f(x) = x^2 - 6x + 9$$

$$a = 1, b = -6, c = 9 \text{ setzen wir un die Formel ein}$$

$$x_{1,2} = \frac{6 \mp \sqrt{(-6)^2 - 4 * 1 * 9}}{2 * 1} = \frac{6 \mp \sqrt{36 - 36}}{2} = \frac{6 \mp \sqrt{0}}{2} = \frac{-6}{2} = 3$$
Wir haben nur eine einzige Nullstelle (die auch der Sattelpunkt ist)

$$f(x) = x^{2} - x + 2$$

$$x_{1,2} = \frac{1 \mp \sqrt{1^{2} - 4 * 1 * 2}}{2 * 1} = \frac{a = 1, b = -1, c = 2 \text{ setzen wir un die Formel ein}}{2} = \frac{1 \mp \sqrt{1 - 8}}{2} = \frac{1 \mp \sqrt{-7}}{2}$$

Da wir die Wurzel aus -7 nicht ziehen können, haben wir keine Lösung

Die Diskriminante

Alles entscheidende, wieviele Nullstellen wir haben liegt also an dieser Wurzel $\sqrt{b^2 - 4ac}$.

Der Ausdruck $D = b^2 - 4ac$ nennt man auch Diskriminante und es gilt

- D=0 Wir haben eine einzige Lösung
- D>0 Wir haben zwei Lösungen
- D<0 Wir haben keine Lösung

Der Scheitelpunkt (Maximum oder Minimum)

Sehen wir uns die obigen Kurven an, so stellen wir fest, dass der Scheitelpunk immer genau in der Mitte der Nullstellen liegt.

Betrachten wir nochmals **Beispiel 1** mit $f(x) = x^2 - x - 2$ und den Lösungen $x_1 = 2$ $x_2 = -1$

Der Scheitelpunkt hat den x-Wert $x_S = \frac{x_1 + x_2}{2} = \frac{2 - 1}{2} = \frac{1}{2}$ Den setzen wir in f(x) ein $f(\frac{1}{2}) = (\frac{1}{2})^2 - \frac{1}{2} - 2 = \frac{1}{4} - \frac{1}{2} - 2 = \frac{1 - 2 - 8}{4} = \frac{11}{4}$ Der Scheitelpunkt ist also $S = (\frac{1}{2}, \frac{11}{4})$

Im Beispiel 2 hatten wir nur eine Lösung

$$f(x) = x^2 - 6x + 9$$
 $x_{1,2} = -3$

Der Scheitelpunkt hat den x-Wert $x_s = \frac{-3-3}{2} = \frac{-6}{2} = -3$

$$f(3) = 3^2 - 6 * 3 + 9 = 9 - 18 + 9 = 0$$

Der Scheitelpunk ist S = (-3|0)

Im Beispiel 3 hatten wir keine Lösung

$$f(x) = x^{2} - x + 2$$
$$x_{1,2} = \frac{1 \pm \sqrt{-7}}{2}$$

Ignorieren wir mal die Tatsache, dass man $\sqrt{-7}$ nicht lösen kann

Der Scheitelpunkt hat den x-Wert $x_s = \frac{\frac{1+\sqrt{-7}}{2} + \frac{-\mp\sqrt{-7}}{2}}{\frac{2}{2}} = \frac{1+\sqrt{7}+1-\sqrt{7}}{4} = \frac{2}{4} = \frac{1}{2}$

Diese leidige Wurzel fliegt einfach raus und wir haben

$$f(0.5) = 0.5^2 - 0.5 + 2 = 1,75$$

Den Scheitelpunkt $S = (\frac{1}{2}|1,75)$