F16T1A4

a) Sei $f: \mathbb{R} \to \mathbb{R}$ stetig differenzierbar. Zeige, dass für jede Lösung der Differentialgleichung

$$\dot{x} = f(x)$$

genau eine der folgenden Aussagen zutrifft:

- (i) x ist streng monoton wachsend.
- (ii) x ist streng monoton fallend.
- (iii) x ist konstant.
- b) Bleibt die Aussage a) richtig, wenn $f: \mathbb{R} \to \mathbb{R}$ nur als stetig vorausgesetzt wird?

zu a):

Vorbemerkung: Gemeint ist, dass die Lösung x auf einem offenen Intervall definiert werden soll. Würden auch nicht zusammenhängende offene Teilmengen von \mathbb{R} als Definitionsbereich der Lösung x zugelassen, so könnte nämlich die Behauptung falsch werden, wie das Gegenbeispiel $\dot{x} = x$ mit der Lösung $x : \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $x(t) = sign(t)e^t$, zeigt, wobei, sign die Vorzeichenfunktion bezeichnet.

Es sei eine Lösung $x: I \to \mathbb{R}$ gegeben, definiert auf einem offenen Intervall I. Offensichtlich kann nur höchstens eine der Aussagen (i), (ii) und (iii) gelten, denn für alle $a, b \in I$ mit a < b können nicht zwei der drei Aussagen x(a) < x(b), x(a) > x(b) und x(a) = x(b) gleichzeitig gelten.

Um zu zeigen, dass *mindestens* eine der Aussagen (i), (ii) und (iii) gilt, nehmen wir an, dass weder (i) noch (ii) gelte. Zu zeigen ist dann (iii). Weil (i) nach Annahme falsch ist, gibt es $a, b \in I$ mit a < b und $x(a) \ge x(b)$. Nach dem Mittelwertsatz der Differentialrechnung gibt es dann ein $t \in [a, b] \subseteq I$ mit $\dot{x}(t) (= f(x(t))) \le 0$.

Ebenso gibt es, weil (ii) nach Annahme falsch ist, $c, d \in I$ mit c < d und $x(c) \le x(d)$. Nach dem Mittelwertsatz der Differentialrechnung gibt es dann ein $s \in [c, d] \subseteq I$ mit $\dot{x}(s) (= f(x(s))) \ge 0$.

Da $f \circ x$ als Komposition stetiger Funktionen stetig ist und der Definitionsbereich I von x ein Intervall ist (siehe Vorbemerkung), nimmt $f \circ x$ nach dem Zwischenwertsatz alle Zahlen zwischen f(x(t)) und f(x(s)) als Werte an. Insbesondere nimmt $f \circ x$ den Wert 0 an, sagen wir an einer Stelle $u \in I : f(x(u)) = 0$. Nun betrachten

wir das Anfangswertproblem $\dot{y} = f(y), y(u) = x(u)$. Es besitzt offensichtlich sowohl die Lösung $x: I \to \mathbb{R}$, aber auch die auf dem gleichen Intervall definierte konstante Lösung $c_{x(u)}: I \to \mathbb{R}$ mit dem Wert x(u).

Wir verwenden den Eindeutigkeitssatz ¹ für Lösungen gewöhnlicher Differentialgleichungen. Dieser ist anwendbar, da die rechte Seite der DGL

$$\mathbb{R} \times \mathbb{R} \ni (t, x) \mapsto f(x)$$

stetig differenzierbar, also insbesondere stetig und im zweiten Argument lokal Lipschitzstetig ist. Es folgt $x = c_{x(u)}$; also ist x konstant, d.h. (iii) gilt, wie zu zeigen war.

zu b):

Nein, die Aussage bleibt i.A. nicht richtig. Hierzu ein Gegenbeispiel: Es sei $f(x) = 2\sqrt{|x|}$. Als Komposition der stetigen Abbildungen $2\sqrt{\cdot}$ und $|\cdot|$ ist f stetig. Diese zugehörige Differentialgleichung $\dot{x} = 2\sqrt{|x|}$ besitzt die folgende Funktion als eine Lösung:

$$x(t) = \begin{cases} t^2 & \text{für } t > 0 \\ 0 & \text{für } t \le 0 \end{cases}$$

Sie ist nicht streng monoton wachsend oder streng monoton fallend, weil x(-1) = 0 = x(0), aber auch nicht (überall) konstant, weil $x(1) = 1 \neq 0 = x(0)$. Man beachte, dass $t \mapsto x(t)$ auch bei t = 0 differenzierbar mit der Ableitung $\dot{x}(0) = 0$ ist.

$$x' = F(t, x), \quad x(t_0) = x_0$$

Dann stimmen die Lösungen überein: $\varphi_1 = \varphi_2$. Hier wird der Satz auf $n = 1, U = \mathbb{R} \times \mathbb{R}, F(t, x) = f(x)$ angewandt.

¹Formulierung des Satzes: Es seien $n \in \mathbb{N}, U \subseteq \mathbb{R} \times \mathbb{R}^n$ eine offene Menge und $F : U \to \mathbb{R}^n$ eine stetige, in den letzten n Komponenten lokal Lipschitz-stetige Abbildung. Weiter sei $(t_0, x_0) \in U$. Es sei $I \ni t_0$ ein offenes Intervall und $\varphi_1, \varphi_2 : I \to \mathbb{R}^n$ zwei Lösungen des Anfangswertproblems