1 Lezione del 24-10-24

1.0.1 Mutua induttanza nel dominio fasoriale

Avevamo le formule per la mutua induttanza:

$$\begin{cases} v_1(t) = L_1 \frac{di_1(t)}{dt} \pm M \frac{di_2(t)}{dt} \\ v_2(t) = L_2 \frac{di_2(t)}{dt} \pm M \frac{di_1(t)}{dt} \end{cases}$$

nel dominio tempo. Portandoci nel dominio fasoriale, abbiamo:

$$\begin{cases} \dot{V}_1 = j\omega L_1 \dot{I}_1 \pm j\omega M \dot{I}_2 \\ \dot{V}_2 = j\omega L_2 \dot{I}_2 \pm j\omega M \dot{I}_1 \end{cases}$$

1.1 Circuito RLC

Poniamo di avere un circuito con un resistore, un induttore e un capacitore. disegnino del circuito con un resistore, un induttore, e un capacitore Avremo le cadute di potenziale \dot{V}_R , \dot{V}_L e \dot{V}_C sui singoli componenti, da cui:

$$\dot{V} = \dot{V}_R + \dot{V}_L + \dot{V}_C = R\dot{I} + j\omega L\dot{I} + \frac{1}{j\omega c}\dot{I} = \left(R + j\omega l + \frac{1}{j\omega C}\right)\dot{I}$$

Portando in forma cartesiana, si ha:

$$= (R + j\omega L - \frac{j}{\omega C})\dot{I} = \left(R + j\left(\omega L - \frac{1}{\omega C}\right)\right)\dot{I}$$

che possiamo riscrivere come:

$$\dot{V} = \bar{z}\dot{I}, \quad z = R + j\left(\omega L - \frac{1}{\omega C}\right)$$

1.2 Impedenza

Il numero z, un complesso, è chiamato **impedenza** del circuito. Abbiamo che l'equazione $\dot{V} = \bar{z}\dot{I}$ è un'equazione complessa, ergo che vorremo riscrivere come:

$$\Rightarrow v_M \cdot e^{j\phi_v} = z \cdot e^{j\phi_z} I_M e^{j\phi_i}$$

e quindi ridurre al sistema:

$$\begin{cases} V_M = zI_M \\ \phi_v = \phi_z + \phi_i \end{cases}$$

Spesso si indica ϕ_z come semplicemente ϕ , cioè la **fase dell'impedenza**, definita quindi come:

$$\phi = \phi_v - \phi_i$$

Possiamo scrivere l'impedenza come:

$$\bar{Z} = Z \cdot e^{j\phi} = R + jX, \quad z = |\bar{z}|$$

dove R corrisponde alla **resistenza** che già conosciamo, mentre X viene detta **reattanza**. Vediamo le reattanze dei dipoli studiati finora:

- Resistenza: da $\dot{V}=R\dot{I}$ abbiamo $X_R=0$, cioè reattanza nulla (e chiaramente $R_R=R$);
- Induttore: da $\dot{V} = j\omega L\dot{I}$, ricaviamo:

$$\begin{cases} R_L = 0 \\ X_L = \omega L \end{cases}$$

• Condensatore: da $\dot{V}=\frac{1}{j\omega C}$, ricaviamo:

$$\begin{cases} R_C = 0 \\ X_C = -\frac{1}{\omega C} \end{cases}$$

dove l'ultima X_C si è ricavata da $-\frac{j}{\omega C}$, già usato sopra nella forma cartesiana dell'RLC in serie.

Avremo che, riguardo all impededenza, avremo solitamente i valori di fase:

$$\bar{Z} = R \cdot jX = ze^{j\phi} : \begin{cases} \phi = \frac{\pi}{2} \\ \phi = 0 \\ \phi = -\frac{pi}{2} \end{cases}$$

Classifichiamo questi valori.

- $\phi = \frac{\pi}{2}$, si dice che l'impedenza è **induttiva**;
- $0 < \phi < \frac{\pi}{2}$, si dice che l'impedenza è **ohmico-induttiva**;
- $\phi = 0$, si dice che l'impedenza è **resistiva**;
- $-\frac{\pi}{2} < \phi < 0$, si dice che l'impedenza è **ohmico-capacitiva**;
- $\phi = -\frac{\pi}{2}$, si dice che l'impedenza è **capacitiva**;

1.2.1 Ammettenza

Possiamo definire l'opposto dell'impedenza:

$$\bar{Y} = \frac{1}{\hat{Z}}$$

Chiamiamo *Y* ammettenza. Possiamo dividere anche l'ammettenza in componenti cartesiane, cioè:

$$\bar{Y} = G + iB$$

dove G è la **conduttanza**, e B viene detta **suscettanza**.

Possiamo eliminare il complesso al denominatore come:

$$\bar{Y} = \frac{1}{\hat{Z}} = \frac{1}{R + jX} = \frac{R - jX}{R^2 + X^2} = \frac{R}{R^2 + X^2} + j\left(-\frac{X}{R^2 + X^2}\right)$$

da cui:

$$\begin{cases} G = \frac{R}{R^2 + X^2} \\ B = -\frac{X}{R^2 + X^2} \end{cases}$$

1.2.2 Unità di misura

Abbiamo che, essendo quantità omegenee (le abbiamo sommate fra di loro senza problemi), l'impedenza Z, la reattanza X e la resistenza R si misurano in Ohm, mentre l'ammettanza Y, la suscettanza B e la conduttanza G si misurano in Siemens.

discorso sul quadrante

1.2.3 Rappresentazione grafica dell'impedenza

Abbiamo che il vettore di Z rappresentato sul piano di Argand-Gauss rappresenta in componenti R e X (com'è ovvio), e che l'angolo che forma con l'asse delle x rappresenta ϕ .

Inoltre, si ha che l'ammettenza corrispondente è un vettore con modulo $\frac{1}{Z}$ e angolo $-\phi$, da:

$$\bar{Y} = \frac{1}{\bar{Z}} = \frac{1}{Ze^{j\phi}} = \frac{1}{Z}e^{-j\phi}$$