Hints on Q2 and Q3 of Deep Learning Quiz

Philip Cho

It came to our attention that many students had trouble with Q2 and Q3 of Deep Learning Quiz. So we decided to provide some helpful hints.

* **Q2**: (paraphrasing <u>a forum post</u> posted 2 months ago)

For this one, you want to visualize a unit cube where each vertex represents a possible value of (x_1,x_2,x_3) . For instance, say we want a linear classifier for x1 AND x2 AND NOT x3.

First we list all combinations of (x1,x2,x3) and corresponding outputs:

```
х3
                | x1 AND x2 AND (NOT x3)
x1
     x2
          0
                0
0
     0
     0
          1
                0
                0
     1
          1
               | 0
0
     1
     0
          0
               | 0
1
     0
          1
              | 0
                | 1
     1
```

Now think of (x_1,x_2,x_3) as coordinates in 3D space, and think of x_1 AND x_2 AND x_3 as +/- label:

```
    (x1,x2,x3) | label

    (0,0,0) | -

    (0,0,1) | -

    (0,1,0) | -

    (1,0,0) | -

    (1,0,1) | -
```

```
(1,1,0) | +
(1,1,1) | -
```

Now visualize the 3D space with x1,x2,x3 axis. The 8 points would be vertices of a unit cube. Let us mark +/- near each vertex to indicate its label:

Now we ask: "can we make a plane that separates (+)'s from (-)'s?" That plane represents the linear classifier. It turns out we can:

This plane is obtained by connecting midpoints between (1,0,0), (1,1,0), and (0,1,0).

Repeat this analysis for all choices in Q2.

* Q3: First break down the Boolean expression into two subexpressions:

```
(x1 \text{ AND } x2) \text{ OR } (\text{NOT } x1 \text{ AND } \text{NOT } x2) = z1 \text{ OR } z2
```

where

```
z1 = x1 AND x2

z2 = NOT x1 AND NOT x2
```

Then check two things:

- Are z1 and z2 correctly implemented by the units in the middle layer?
- Does the last layer implement (z1 OR z2)?

For instance, let us look at this two-layer neural network:

Thresholded to 0 or 1

Truth table for z1:

x1	x2	z1	z1 thresholded	(x1 AND x2)
0	0	-1.5	0	0
0	1	-0.5	0	0
1	0	-0.5	0	0
1	1	0.5	1	1

So yes, first unit in the middle layer correctly implements z1.

How about z2?

x1	x2	z2	z2 thresholded	NOT x1 AND NOT x2
0	0	1.5	1	1
0	1	0.5	1	0
1	0	0.5	1	0
1	1	-0.5	0	0

No, second unit in the middle layer does not implement z2.

How about the second layer? Does it implement (z1 OR z2)?

z1	z2	У	y thresholded	(z1 OR z2)

0	0	-1.5	0	0	
0	1	-0.5	0	1	
1	0	-0.5	0	1	
1	1	0.5	1	1	

So no, second layer does not implement (z1 OR z2).

Now repeat this line of reasoning for all other choices of Q3.