HW1_Reg_lian

Jiayi Lian

September 25, 2019

P1

##

It seems to be a good fit. Because the scatter plot shows that x and y approximately have an linear relation ship and the regression line is just located at the center of y's with repect to each x.

b) Estimate the expected umber of broken ampules. When x=1

Residual standard error: 1.483 on 8 degrees of freedom
Multiple R-squared: 0.9009, Adjusted R-squared: 0.8885
F-statistic: 72.73 on 1 and 8 DF, p-value: 2.749e-05

```
Beta_est[1,1]+Beta_est[2,1]*1
## [1] 14.2
# c) Estimate the increase in the expected number of broken ampules when there are two transfers as com
Beta_est[1,1]+Beta_est[2,1]*2-Beta_est[1,1]-Beta_est[2,1]*1
## [1] 4
# Verify that your regression line goes through the point (xbar, ybar)
mean(freight$transfers)*Beta_est[2,1]+Beta_est[1,1]
## [1] 14.2
mean(freight$broken)
## [1] 14.2
Yes, the line goes throught the point.
P2
model<-lm(Y~freight$transfers)</pre>
summary(model)
##
## Call:
## lm(formula = Y ~ freight$transfers)
##
## Residuals:
##
     Min
              1Q Median
                            3Q
                                   Max
##
     -2.2
           -1.2
                    0.3
                           0.8
                                   1.8
##
## Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
##
                                  0.6633
## (Intercept)
                      10.2000
                                          15.377 3.18e-07 ***
## freight$transfers
                       4.0000
                                   0.4690
                                            8.528 2.75e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

```
anova(model)
## Analysis of Variance Table
## Response: Y
##
                     Df Sum Sq Mean Sq F value
                                                 Pr(>F)
## freight$transfers 1 160.0
                                 160.0 72.727 2.749e-05 ***
                        17.6
## Residuals
                      8
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
H= X %*% solve(t(X) %*% X) %*% t(X)
sigma2_est<- t(Y) %*% (diag(1,10)-H) %*% Y/8
Sxx<-sum((freight$transfers-mean(freight$transfers))^2)</pre>
Beta_est[2,1]+sqrt(sigma2_est/Sxx)*c(qt(0.025,8),qt(0.975,8))
## Warning in sqrt(sigma2_est/Sxx) * c(qt(0.025, 8), qt(0.975, 8)): Recycling array of length 1 in array
## Use c() or as.vector() instead.
## [1] 2.918388 5.081612
qt(0.975,8)
## [1] 2.306004
Beta_est[2,1]/sqrt(sigma2_est/10)
            [,1]
## [1,] 8.528029
(1-pt(Beta_est[2,1]/sqrt(sigma2_est/10),8))*2
##
                [,1]
## [1,] 2.748669e-05
# c
qt(0.95,8)
## [1] 1.859548
1-pt(Beta_est[2,1]/sqrt(sigma2_est/10),8)
##
                [,1]
## [1,] 1.374335e-05
Beta_est[1,1]+sqrt(sigma2_est*solve(t(X) %*% X)[1,1])*c(qt(0.025,8),qt(0.975,8))
## Warning in sqrt(sigma2_est * solve(t(X) %*% X)[1, 1]) * c(qt(0.025, 8), : Recycling array of length
   Use c() or as.vector() instead.
## [1] 8.67037 11.72963
(Beta_est[1,1]-9)/sqrt(sigma2_est*solve(t(X) %*% X)[1,1])
            [,1]
## [1,] 1.809068
```

```
1-pt((Beta_est[1,1]-9)/sqrt(sigma2_est*solve(t(X) %*% X)[1,1]),8)

## [,1]
## [1,] 0.05402227
```

```
P3
Xnew1 < -matrix(c(1,2),1,2)
Xnew2 < -matrix(c(1,4),1,2)
mid<- Xnew1 %*% solve(t(X)%*%X) %*% t(Xnew1)
Xnew1 %*% Beta_est +sqrt(sigma2_est*mid)*c(qt(0.0025,8),qt(0.9975,8))
## Warning in sqrt(sigma2_est * mid) * c(qt(0.0025, 8), qt(0.9975, 8)): Recycling array of length 1 in
           Use c() or as.vector() instead.
## Warning in Xnew1 %*% Beta_est + sqrt(sigma2_est * mid) * c(qt(0.0025, 8), : Recycling array of lengt
           Use c() or as.vector() instead.
## [1] 15.65779 20.74221
Xnew2 %*% Beta_est +sqrt(sigma2_est*mid)*c(qt(0.0025,8),qt(0.9975,8))
## Warning in sqrt(sigma2_est * mid) * c(qt(0.0025, 8), qt(0.9975, 8)): Recycling array of length 1 in
         Use c() or as.vector() instead.
## Warning in Xnew2 %*% Beta_est + sqrt(sigma2_est * mid) * c(qt(0.0025, 8), : Recycling array of lengt
           Use c() or as.vector() instead.
## [1] 23.65779 28.74221
Xnew1 %*% Beta_est +sqrt(sigma2_est*mid)*c(qt(0.005,8),qt(0.995,8))
## Warning in sqrt(sigma2_est * mid) * c(qt(0.005, 8), qt(0.995, 8)): Recycling array of length 1 in ar
           Use c() or as.vector() instead.
## Warning in Xnew1 %*% Beta_est + sqrt(sigma2_est * mid) * c(qt(0.005, 8), : Recycling array of length
         Use c() or as.vector() instead.
## [1] 15.97429 20.42571
Xnew2 \% \% Beta_est + sqrt(sigma2_est*mid)*c(qt(0.005,8),qt(0.995,8))
## Warning in sqrt(sigma2_est * mid) * c(qt(0.005, 8), qt(0.995, 8)): Recycling array of length 1 in ar
           Use c() or as.vector() instead.
## Warning in Xnew2 %*% Beta_est + sqrt(sigma2_est * mid) * c(qt(0.005, 8), : Recycling array of length
           Use c() or as.vector() instead.
## [1] 23.97429 28.42571
# b
% \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% = % \% 
## Warning in sqrt(sigma2_est * (mid + 1)) * c(qt(0.005, 8), qt(0.995, 8)): Recycling array of length 1
         Use c() or as.vector() instead.
```

Warning in Xnew1 %*% Beta_est + $sqrt(sigma2_est * (mid + 1)) * c(qt(0.005, : Recycling array of lenger use c() or as.vector() instead.$

[1] 12.74814 23.65186

```
# c
Xnew1 %*% Beta_est +sqrt(sigma2_est*(mid+1))*c(qt(0.01/6,8),qt(1-0.01/6,8))

## Warning in sqrt(sigma2_est * (mid + 1)) * c(qt(0.01/6, 8), qt(1 - 0.01/6, : Recycling array of length
## Use c() or as.vector() instead.

## Warning in Xnew1 %*% Beta_est + sqrt(sigma2_est * (mid + 1)) * c(qt(0.01/6, : Recycling array of length
## Use c() or as.vector() instead.

## [1] 11.50195 24.89805
```

P4

```
# a
SSe=8*sigma2_est
SST=sum((freight$broken-mean(freight$broken))^2)
SSr=SST-SSe
SSr/SSe*8
            [,1]
## [1,] 72.72727
# b
qf(0.95,1,8)
## [1] 5.317655
Beta_est[2,1]/sqrt(sigma2_est/10)
            [,1]
## [1,] 8.528029
# d
SSr/SST
##
             [,1]
## [1,] 0.9009009
sqrt(SSr/SST)
## [1,] 0.949158
```