Y) reflexive = $\chi_1 + \chi_1 = \chi_1 + \chi_2 \Rightarrow (\chi_1, \chi_1) \mathcal{R}(\chi_1, \chi_2) \Rightarrow (\chi_2, \chi_1) \mathcal{R}(\chi_1, \chi_2) \Rightarrow (\chi_1, \chi_2) \mathcal{R}(\chi_1, \chi_2) \mathcal{R}(\chi_1, \chi_2) \mathcal{R}(\chi_2, \chi_2) \mathcal{R}(\chi_1, \chi_2) \mathcal{R$ Symmetric = $(\chi_1, y_1) \mathcal{R}(\chi_2, y_2) \Rightarrow \chi(+y_1 = \chi_2 + y_2)$ $\Rightarrow \chi_{2}+y_{2}=\chi_{1}+y_{1}=\chi_{2},y_{2})R(\chi_{1},y_{1})$ transitive: (x, ,y,) R (x2, y) and (x1, y2) R (x3, y3) $\Rightarrow (\chi_1 + \chi_1 = \chi_2 + \chi_2)$ and $(\chi_2 + \chi_2 = \chi_3 + \chi_3)$ ⇒ Xify1= X3+y3 ⇒ (X1,y1) R (x3, y3) & reflexive symmetric . transitive => R is an equivalence relation. b) [(1,3)] = {(1,3). (2,2). (3,1)} $[(2,4)] = \{(2,4),(3,3),(4,2)\}$

 $\{(1,1)\}=\{(1,1)\}$

(2,1) $A = \{(1,1)\} \cup \{(1,2)(2,1)\} \cup \{(1,3),(2,2),(3,1)\}$ $U\{(1,4),(2,3),(3,2),(4,1)\}$ $U\{(2,4),(3,3),(4,2)\}\cup\{(3,4),(4,3)\}$ $U \{ (4,4) \}$

- (a) is a lattice, Because (A,R) has greatest element {1,2,3} and least element \$, so/lub {x, y} will not greater than {1,2,3} and glb will not less than &, which are in A ib) is NOT a lattice. Because glb {2,3} = 1 € A
- c) is a lattice. Because for x, y & Z . x Ry => x ≤ y the lub {x, y} and glb {x, y} will also be integers, which are in Z.

$$\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1$$

(a)
$$2^{\frac{5(5-1)}{2}} = 2^{10}$$

(b)
$$2^{\frac{5\times6}{2}-1} = 2^{14}$$

(c)
$$25 \times 3^{10-1} = 25 \times 3^{9} \times 3^{10} \times 3^{1$$

$$(d) 2^{5}$$

(f)
$$\geq S(5,i) = 1 + 4i(4^5 - 4\times3^5 + 6\times2^5 - 4)$$

 $+\frac{1}{3!}(3^5 - 3\times2^5 + 3) + \frac{1}{2!}(2^5 - 2) + 1$
 $= 1 + 10 + 25 + 15 + 1 = 52$

$$(9)$$
 $\underset{i=1}{\overset{8}{>}} S(3,i) = |+ \frac{1}{2!}(2^{3}-2)+| = |+3+|=5$

$$G = \{V, E\} . |V| = N . |E| = e$$

$$8 = \min_{v \in V} \{ \deg(v) \} \Delta = \max_{v \in V} \{ \deg(v) \}$$

$$N \times S \leq \sum_{i=1}^{n} \deg(V_i) \leq N \times \Delta$$

$$\therefore \sum_{i=1}^{n} \deg(V_i) = 2|E| = 2e$$

$$\therefore NS \leq 2e \leq N\Delta$$

$$\Rightarrow S \leq 2e \leq \Delta \approx$$

$$M(R) = \begin{cases} 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{cases} + 1$$

$$M(R^{2}) = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$M(R^{3}) = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} = M(R_{2})$$

$$- M(R^{11}) = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad R^{11} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

19 8 上下顛倒

- 9. Ris an equivalence relation
 - => R is reflexive. symmetric. transitive
 - (a) \mathcal{R} is reflexive $\Rightarrow (x,x) \in \mathcal{R} \Rightarrow x \mathcal{R} x \Rightarrow x \in [x]_{\mathcal{R}}$
 - (b) If [x]=[y], by part (a) $x \in [x]$, so also $x \in [y] \neq x R y$
 - (C) Let $W \in [x]$, so $W \mathcal{R} \times$,

 if $x \mathcal{R} y \Rightarrow W \mathcal{R} y$ (transitive) $\Rightarrow [x] \subseteq [y]$ Let $t \in [y]$, so $t \mathcal{R} y$ if $x \mathcal{R} y \Rightarrow y \mathcal{R} \times (\text{symmetric}) \Rightarrow t \mathcal{R} \times (\text{transitive})$ $\Rightarrow [y] \subseteq [x]$ $\therefore [x] = [y]$
 - (d) If $[x] \times [y]$ and $[x] \cap [y] \neq p$:

 Let $v \in [x] \cap [y] \Rightarrow v \in X$ and $v \in Y$ $v \in [x] \cap [y] \Rightarrow v \in X$ and $v \in Y$ $x \in X \Rightarrow x \in V$ (symetric) $x \in X \in X \Rightarrow x \in V$ (symetric)

 By part (c), $x \in Y \Rightarrow x \in Y$ (transitive) $x \in [x] \times [y] \Rightarrow [x] \cap [y] = 0$