Theorie der Programmierung Wintersemester 2006/07

Übungsblatt 3

Aufgabe 1

Bestimmen Sie die small step Semantik für die folgenden Ausdrücke. Versuchen Sie auch intuitiv zu verstehen, welche Funktionen hier berechnet werden und warum die Funktionen korrekt implementiert sind.

```
a. let rec gcd x y = if x = 0 then y else gcd (y \mod x) x in gcd 10 15
```

b. let rec
$$exp x y = if y = 0$$
 then 1 else $x * exp x (y - 1)$ in $exp 5 3$

```
c. let rec fast\_exp\ x\ y =
if y = 0
then 1
else (if y \mod 2 = 0 then 1 else x) * fast\_exp\ (x*x)\ (y/2)
in fast\_exp\ 10\ 6
```

- d. let rec sum a b f = if a > b then 0 else f a + sum (a + 1) b f in $sum 1 10 (\lambda x. x * x)$
- e. let $compose\ f\ g = \lambda x.\ f\ (g\ x)$ in let $rec\ iter\ n\ f =$ if n = 0 then $\lambda x.\ x$ else $compose\ f\ (iter\ (n-1)\ f)$ in $iter\ 3\ (\lambda x.\ x*x)\ 10$

Aufgabe 2

Beweisen Sie, dass die in Aufgabe 1 a. deklarierte Funktion gcd tatsächlich den ggT berechnet (für Argumente $m, n \in \mathbb{N}$). Gehen Sie analog zur Vorlesung vor, d.h.

- Definieren Sie den Ausdruck GCD analog zu FACT.
- Stellen Sie eine geeignete Behauptung über GCD auf.
- Beweisen Sie diese Behauptung durch Induktion (worüber?).

Aufgabe 3

Für die in Aufgabe **1 d.** deklarierte Funktion sum gilt: sum a b f berechnet (für Argumente $a, b \in \mathbb{Z}$ und $f : \mathbb{Z} \to \mathbb{Z}$) die Summe $\sum_{i=a}^{b} f(i)$.

Deklarieren Sie ähnliche Funktionen prod, exists und forall, für die gilt:

- **a.** $\operatorname{prod} a \, b \, f$ berechnet das Produkt $\prod_{i=a}^b f(i)$
- **b.** exists $a \, b \, p$ überprüft (für Argumente $a, b \in \mathbb{Z}$ und $p : \mathbb{Z} \to Bool$), ob p(i) für mindestens ein $i \in \mathbb{Z}$ mit $a \leq i \leq b$ gilt
- **c.** for all a b p überprüft, ob p(i) für alle $i \in \mathbb{N}$ mit $a \leq i \leq b$ gilt

Aufgabe 4

Bestimmen Sie die small step Semantik für die folgenden Ausdrücke. In welchen Fällen findet eine gebundene Umbenennung statt?

a.
$$(\lambda f. \lambda x. f(x+1)) (\lambda x. x*x) 3$$

b.
$$(\lambda f. \lambda x. f(x+1)) (\lambda y. x * x) 3$$

c.
$$(\lambda f. \lambda x. f(x+1)) (\lambda y. fy) 3$$

d.
$$(\lambda f. \lambda x. f(x+1)) (\lambda y. fx) 3$$

e.
$$(\lambda f. \lambda x. x + 1) (\lambda y. fx) 3$$