EE 5561: Image Processing and Applications

Lecture 8

Mehmet Akçakaya

Recap of Last Lecture

Linear algebra review

- Vector spaces, bases
- Norms, inner products
- Matrix representation of linear transformations
- Matrix transpose/Hermitian, inverse, null space, range space, rank
- Diagonal, symmetric, unitary, circulant matrices; diagonalization
- Least squares

Today

- Use linear algebra to derive a new transform (wavelets)
- Energy compaction + another transform (DCT)
- Random vectors review

- Yet another linear transform
 - Leads to good "energy compaction" for images
 - i.e. good compressibility
- We will do this using linear algebra
 - We will do Haar wavelets
 - Now how it is normally derived
 - Deeper theory: EE 5551

Start with a simple averaging filter

$$\mathbf{h} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$\mathbf{y} = \mathbf{h} * \mathbf{x} \quad \Rightarrow \quad \frac{1}{2} x_n + \frac{1}{2} x_{n-1} = y_n$$

Write this as a matrix

$$\mathbf{H} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & \cdots & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 & \cdots \\ & \ddots & & \end{bmatrix}$$

- Invertible?
 - No, we only have the average

But if we also have convolution with

$$\mathbf{g} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

$$\mathbf{z} = \mathbf{g} * \mathbf{x} \implies \frac{1}{2} x_n - \frac{1}{2} x_{n-1} = z_n$$

then the whole system is invertible

since we have

$$x_n = y_n + z_n$$
 or $x_{n-1} = y_{n-1} + z_{n-1}$

In matrix form

$$\mathbf{G} = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & 0 & \cdots & 0 \\ 0 & -\frac{1}{2} & \frac{1}{2} & 0 & \cdots \\ & & \ddots & & \end{bmatrix}$$

Overall system becomes

$$\left[egin{array}{c} \mathbf{H} \ \mathbf{G} \end{array}
ight]\mathbf{x}=\left[egin{array}{c} \mathbf{y} \ \mathbf{z} \end{array}
ight]$$

- How do we get **x** back?
 - Going with the first approach from earlier

$$x_1 = y_2 - z_2$$

$$x_2 = y_2 + z_2$$

$$x_3 = y_4 - z_4$$

$$x_4 = y_4 + z_4$$

Only need two rows i.e. we don't need y_1 , z_1 , y_3 , z_3 , ...

So we can truncate the matrix by "downsampling"

$$\tilde{\mathbf{W}}_{N} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 & \cdots \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} & \cdots \\ & \ddots & & \\ -\frac{1}{2} & \frac{1}{2} & 0 & 0 & \cdots \\ 0 & 0 & -\frac{1}{2} & \frac{1}{2} & \cdots \end{bmatrix} = \begin{bmatrix} \mathbf{H}_{D} \\ \mathbf{G}_{D} \end{bmatrix}$$

Note

$$\tilde{\mathbf{W}}_{N}^{-1} = \begin{bmatrix} 1 & 0 & & -1 & 0 \\ 1 & 0 & & 1 & 0 \\ 0 & 1 & \cdots & 0 & -1 & \cdots \\ 0 & 1 & \cdots & 0 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Note
$$\tilde{\mathbf{W}}_N^H = \frac{1}{2}\tilde{\mathbf{W}}_N^{-1}$$

i.e. "almost" unitary/orthogonal

- lacktriangle Thus if we set $\mathbf{W}_N = \sqrt{2} \tilde{\mathbf{W}}_N$, it'll be unitary
- Corresponding filter is

$$\mathbf{h} = \left[\begin{array}{cc} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{array} \right]$$

$$H(w) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}e^{iw} \qquad \Rightarrow \qquad H(\pi) = 0$$
$$H(0) = \sqrt{2}$$

Low-pass as

expected

- Wavelet ↔ "wave-like" oscillation
 - ~integrate to zero
- Wavelets are usually derived in continuous-space first (like we did in Fourier analysis)
 - In this case the Haar wavelet in continuous space is

(this is **g** in discrete-space)

And the other function (Haar scaling function) is

(this is **h** in discrete-space)

- X: N×N image
 - We apply **W**_N to row & columns, i.e.

or
$$\mathbf{W}_{N}\mathbf{X}\mathbf{W}_{N}^{T}$$
 or
$$\mathcal{W}\{\operatorname{vec}(\mathbf{X})\}$$
 linear operator

Application

$$\mathbf{W}_{N}\mathbf{X}\mathbf{W}_{N}^{T} = \begin{bmatrix} \mathbf{H}_{D}\mathbf{X}\mathbf{H}_{D}^{T} & \mathbf{H}_{D}\mathbf{X}\mathbf{G}_{D}^{T} \\ \mathbf{G}_{D}\mathbf{X}\mathbf{H}_{D}^{T} & \mathbf{G}_{D}\mathbf{X}\mathbf{G}_{D}^{T} \end{bmatrix} \triangleq \begin{bmatrix} \mathbf{B} & \mathbf{V} \\ \mathbf{H} & \mathbf{D} \end{bmatrix}$$
horizontal diagonal

X $\mathbf{W}_{\mathsf{N}} \mathbf{X}$

 \mathbf{X} $\mathbf{W}_{\mathsf{N}} \mathbf{X}$

window-leveled to show details

- Energy Compaction
 - Idea: Few of the wavelet coefficients capture most of the energy of the image
 - In Fourier domain, we saw that the central frequencies contain most of the energy
 - But those frequencies do not contain sharp image structures
 - Wavelets offer an alternative

Energy "compaction": sorted (abs value) image (red) vs. wavelet (blue) coefficients across the image

Not really "very" compact here...

- Energy Compaction
 - How to get more compaction?
 - Iterate! → Extract blur component (averaged image) & compute its wavelet transform

 \mathbf{X} 2-levels: $\mathbf{W}_{N} \mathbf{X} \mathbf{W}_{N}^{\mathsf{T}}$

 \mathbf{X} 3-levels: $\mathbf{W}_{N} \mathbf{X} \mathbf{W}_{N}^{\mathsf{T}}$

 \mathbf{X} 3-levels: $\mathbf{W}_{N} \mathbf{X} \mathbf{W}_{N}^{\mathsf{T}}$

Energy "compaction": sorted (abs value) image (red) vs. wavelet 1-level (blue), 2-level (green), 3-level(magenta) coefficients across the image

- Energy compaction
 - Wavelets are good
 - Wavelets are used in the JPEG2000 standard for compression
 - But a more complicated wavelet than Haar...

- How to design more complicated wavelets?
 - Vanish more moments
 - i.e. $\int \psi(x) dx = 0$ and $\int x \psi(x) dx = 0$ etc.
 - Fourier analysis can help us:
 - n^{th} moment = 0 \rightarrow n^{th} derivative of FT at ω = 0 is 0
 - Smoother decay from mid-frequencies to 0 in frequency domain
 - Beyond our scope
 - We won't derive them, but we will use them

More Energy Compaction

- We saw energy compaction is important
- Other transforms?
- Recall when we talked about boundaries in convolutions
 - Circular extension
 - Corresponds to what was done in DFT
 - We noted that this creates a sharp transition
 - Mirroring extension was another option
 - Better continuity at the boundary
 - This will be the idea behind our new transform

- Useful for compression
 - Images are real, but DFT is complex → not good for storage
 - In image processing, we do a lot of block processing
 - DFT works on periodic extension → discontinuities at the border
 - "Slow" decay of coefficients → poor energy compaction
 - DCT addresses these concerns
 - Real-valued
 - Eliminates discontinuities at block borders

Mirror extension example

$$N = 4$$
 $x[n] = \{2, 4, 6, 8\}$

periodic extension would be $\tilde{x}[n] = \{\ldots, 2, 4, 6, 8, 2, 4, 6, 8, \ldots\}$

Instead consider

$$y[n] = \begin{cases} x[n] & 0 \le n \le N - 1 \\ x[2N - 1 - n] & N \le n \le 2N - 1 \\ 0 & \text{otherwise} \end{cases}$$

For the example above $y[n] = \{2, 4, 6, 8, 8, 6, 4, 2\}$

- Take y[n] above and compute its DFT

$$y[n] = \begin{cases} x[n] & 0 \le n \le N - 1 \\ x[2N - 1 - n] & N \le n \le 2N - 1 \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{split} Y[k] &= \sum_{n=0}^{2N-1} y[n] e^{-i\frac{2\pi}{2N}kn} = \sum_{n=0}^{2N-1} y[n] W_{2N}^{kn} \quad \text{where} \quad W_{2N} = e^{-i\frac{2\pi}{2N}} \\ &= \sum_{n=0}^{N-1} x[n] W_{2N}^{kn} + \sum_{n=N}^{2N-1} x[2N-1-n] W_{2N}^{kn} \\ &= \sum_{n=0}^{N-1} x[n] W_{2N}^{kn} + \sum_{n=0}^{N-1} x[n] W_{2N}^{k(2N-1-n)} \\ &= \sum_{n=0}^{N-1} x[n] \left[W_{2N}^{kn} + W_{2N}^{-kn-k} \right] \\ &= W_{2N}^{-k/2} \sum_{n=0}^{N-1} x[n] \left(W_{2N}^{k(n+\frac{1}{2})} + W_{2N}^{-k(n+\frac{1}{2})} \right) = W_{2N}^{-k/2} \sum_{n=0}^{N-1} x[n] 2 \cos \left(\frac{2\pi k(2n+1)}{4} \right) \end{split}$$

Take y[n] above and compute its DFT

$$Y[k] = 2W_{2N}^{-k/2} \sum_{n=0}^{N-1} x[n] \cos \left(\frac{2\pi k(2n+1)}{4}\right)$$

$$y[n] = \begin{cases} x[n] & 0 \le n \le N - 1 \\ x[2N - 1 - n] & N \le n \le 2N - 1 \\ 0 & \text{otherwise} \end{cases}$$

- N point $x[n] \rightarrow 2N$ complex Y[0], ... Y[2N-1]
- How is this compression?
 - Note $Y[N] = \sum_{n=0}^{2N-1} y[n] e^{-i\frac{2\pi}{2N}Nn} = \sum_{n=0}^{2N-1} y[n] (-1)^n = 0$ since y[n] is symmetric
 - $x[n] real \rightarrow W_{2N}^{k/2} Y[k]$ is real
 - $W_{2N}^{(2N-k)/2}Y[2N-k]=W_{2N}^{k/2}Y[k]$ \rightarrow Only need to save half of Y[k]

- Take y[n] above and compute its DFT

$$Y[k] = 2W_{2N}^{-k/2} \sum_{n=0}^{N-1} x[n] \cos \left(\frac{2\pi k(2n+1)}{4}\right)$$

$$y[n] = \begin{cases} x[n] & 0 \le n \le N - 1 \\ x[2N - 1 - n] & N \le n \le 2N - 1 \\ 0 & \text{otherwise} \end{cases}$$

1D DCT is defined as

$$C_x[k] = \begin{cases} W_{2N}^{k/2} Y[k] & 0 \le k \le N - 1 \\ 0 & \text{otherwise} \end{cases} = \sum_{n=0}^{N-1} 2x[n] \cos\left(\frac{\pi k(2n+1)}{2N}\right) \qquad k = 0, \dots, N-1$$

- N-point → N-point
- DCT is real if x[n] is real
- DC component $C_x[0] = 2Y[0]$

- 2D DCT is defined analogously with 2D mirroring/symmetrizing extension

Energy "compaction": sorted (abs value) DCT (red) vs. DFT (blue) coefficients in an example 8×8 block

Compression: DCT vs. DFT

Original Compression with DFT Compression with DCT

Compression: DCT vs. Wavelet

Original

Compression with DCT

Compression with Wavelet

Used in JPEG standard

Used in JPEG2000 standard

Last bit of math to review before starting image restoration

- Probability space
 - 1. Sample space, Ω
 - 2. Set of events, \mathcal{F} (collection of subsets of Ω)
 - 3. Probability measure, $\mathbb{P}: \mathcal{F} \to [0,1]$
- Random variable is a mapping from sample space (of a probability space) to real (or complex) numbers (in this course)

$$X:\Omega\to E$$

 Ω has an underlying probability space (with associated \mathbb{P} and \mathcal{F}) E is a measureable space (for us, \mathbb{R} or \mathbb{C})

- Technically, we will consider $\omega \in \Omega$ and evaluate $X(\omega)$
- Thus when we say $\ \mathbb{P}(X\in B)$ for $B\subseteq \mathbb{R}$, we mean $\ \mathbb{P}\Big(\{\omega\in\Omega:X(\omega)\in B\}\Big)$
- Hence $\mu(B) = \mathbb{P}(X \in B)$ is a probability measure & called the distribution of X
- Often times the dependence on $\,\omega\in\Omega\,$ will be implicit, and dropped in notation

 The distribution can be described by the cumulative distribution function (CDF) for real-valued X

$$F_X(x) = \mathbb{P}(X \le x)$$

 As we already saw, we often talk about the probability density function (PDF) for continuous random variables (e.g. Gaussian, uniform)

$$f_X(x) = \frac{dF_X(x)}{dx}$$

and probability mass function (PMF) for discrete random variables (e.g. Bernoulli, binomial, Poisson)

$$p_X(k) = \mathbb{P}(X = k)$$

- Examples
 - Gaussian PDF $f_X(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
 - Poisson PMF $p_X(k) = e^{-\lambda} \frac{\lambda^k}{k!}$

- 2nd order properties of random variables
 - Mean $\mathbb{E}[X] = \int x f_X(x) dx$
 - Expectation of a function of a random variable

$$\mathbb{E}[g(X)] = \int g(x)f_X(x)dx$$

- Variance $\operatorname{Var}\{X\} = \mathbb{E}\big[X \mathbb{E}[X]\big]^2 = \mathbb{E}[X^2] \mathbb{E}[X]^2$
- Correlation $\mathbb{E}[XY] = \int \int xy f_{XY}(x,y) dx \, dy$ joint PDF of X and Y
- Covariance $\operatorname{Cov}\{X,Y\} = \mathbb{E}\Big[\big(X \mathbb{E}[X]\big)\big(Y \mathbb{E}[Y]\big)\Big]$

A finite collection of random variables over a common probability space

$$\underline{\mathbf{X}} = (X_1, \dots, X_n)$$
 where each X_i is a random variable

We can define the CDF

$$F_{\underline{\mathbf{X}}}(x_1,\ldots,x_n) = \mathbb{P}(X_1 \le x_1, X_2 \le x_2,\ldots,X_n \le x_n)$$

Corresponding PDF is

$$f_{\underline{\mathbf{X}}}(\mathbf{x}) = \frac{\partial^n}{\partial x_1 \dots \partial x_n} F_{\underline{\mathbf{X}}}(x_1, \dots, x_n)$$

Similarly

$$\mathbb{P}(\underline{\mathbf{X}} \in B) = \int_{B} f_{\underline{\mathbf{X}}}(\mathbf{x}) d\mathbf{x} \qquad B \subseteq \mathbb{R}^{n}$$

- 2nd order properties
 - $\mathbb{E}[\underline{\mathbf{X}}] = \int_{\mathbb{R}^n} \mathbf{x} f_{\underline{\mathbf{X}}}(\mathbf{x}) d\mathbf{x} = \begin{bmatrix} \mathbb{E}[X_1] \\ \mathbb{E}[X_2] \\ \vdots \\ \mathbb{E}[X_n] \end{bmatrix}$
 - Expectation of a function of a random vector

$$\mathbb{E}[g(\underline{\mathbf{X}})] = \int_{\mathbb{R}^n} g(\mathbf{x}) f_{\underline{\mathbf{X}}}(\mathbf{x}) d\mathbf{x}$$

■ *n*×*n* correlation matrix

$$\mathbf{R}_{\mathbf{\underline{X}}} = \mathbb{E}ig[\mathbf{\underline{X}}\,\mathbf{\underline{X}}^Hig]$$

i.e.
$$(\mathbf{R}_{\underline{\mathbf{X}}})_{ij} = \mathbb{E}[X_i X_j] = \int_{\mathbb{R}^n} x_i x_j f_{\underline{\mathbf{X}}}(x_1, \dots, x_n) d\mathbf{x}$$

- 2nd order properties
 - *n*×*n* covariance matrix

$$\mathbf{K}_{\underline{\mathbf{X}}} = \operatorname{Cov}\{\underline{\mathbf{X}}\} = \mathbb{E}\left[\left(\underline{\mathbf{X}} - \mathbb{E}[\underline{\mathbf{X}}]\right)\left(\underline{\mathbf{X}} - \mathbb{E}[\underline{\mathbf{X}}]\right)^{H}\right]$$
$$= \mathbf{R}_{\underline{\mathbf{X}}} - \mathbb{E}[\underline{\mathbf{X}}]\mathbb{E}[\underline{\mathbf{X}}]^{H}$$

i.e.
$$(\mathbf{K}_{\underline{\mathbf{X}}})_{ij} = \operatorname{Cov}\{X_i, X_j\}$$

Example: Gaussian random vector

$$oldsymbol{\mu} = \mathbb{E}[\underline{\mathbf{X}}]$$
 $\mathbf{K} = \operatorname{Cov}\{\underline{\mathbf{X}}\}$

PDF is given as

$$f_{\underline{\mathbf{X}}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n |\det(\mathbf{K})|}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{K}^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$