Software for Estuarine Circulation Modelling

The Estuarine Circulation Modeling software is a desktop software written to simulate and analyze estuarine hydrodynamics, stratification, turbulence, sediment transport, tidal dynamics, and wave-current interactions. It integrates numerical solvers, turbulence models, and visualization tools to model complex estuarine processes. The software supports both structured and unstructured grids, multiple coordinate systems (sigma and z-level), and advanced numerical schemes like Total Variation Diminishing (TVD).

Functionalities

1. Core Estuarine Model:

- Manages parameters: estuary length (1000 m), depth (10 m), tidal amplitude (1 m), tidal period (12 hours), salinity (river: 0 PSU, ocean: 35 PSU), temperature (river: 25°C, ocean: 20°C).
- Supports hydrostatic and non-hydrostatic modes with a Reynolds-Averaged Navier-Stokes (RANS) solver.
- Tracks salt wedge position and provides methods to retrieve salinity, temperature, and velocity profiles.

2. Hydrodynamic Solver:

- Solves 2D shallow water dynamics on a 100×100 grid for water level and velocities.
- Incorporates tidal forcing, wind stress, Coriolis force, and bottom friction.
- Applies river (x=0) and ocean (x=1000 m) boundary conditions.
- Handles wet/dry dynamics and wave-current interactions.

3. 2D Shallow Water Equations:

- Implements a 2D shallow water model with UI visualization of water level, velocity, and salinity.
- Allows control over tidal amplitude, period, wind speed, wind direction, wave height, and grid size.
- Supports wet/dry transitions and wave-enhanced friction.

4. Total Variation Diminishing:

- Uses TVD scheme with Harten-Lax-van Leer (HLL) flux to advect salinity, temperature, turbulent kinetic energy (k), and dissipation rate (ϵ) or specific dissipation rate (ω) .
- Supports structured (200×100) and unstructured (triangular mesh, 40×25 nodes) grids with bathymetry (shallower near river, x < 200 m).

- Provides UI visualization: plan view, cross-section, contour, and quiver plots.
- Tracks fields: salinity, temperature, velocity, density, k, ϵ/ω , eddy viscosity, and diffusivity.

5. Stratification:

- Models 1D vertical stratification of density, salinity, temperature, and passive scalars on a 100-point grid.
- Computes gradient Richardson number and adjusts eddy viscosity using k- ϵ , k- ω , or constant turbulence models.
- UI controls mixing coefficient, critical Richardson number, and river scalar concentration.

6. Baroclinic Flow:

- Simulates buoyancy-driven flows due to density gradients.
- Updates velocity fields using finite differences, incorporating buoyancy effects.

7. Passive Scalar Transport:

- Solves 1D advection-diffusion for passive scalars (e.g., pollutants).
- Integrates with baroclinic flow for consistent transport.

8. Comprehensive Forcing:

- Combines tidal, wind, and wave forcing.
- UI adjusts tidal amplitude, wind speed, wave height, and visualizes velocity and water level fields.

9. Wave-Current Interaction:

- Computes Stokes drift velocities using linear wave theory.
- Calculates wave-enhanced bottom friction via a simplified Grant-Madsen model.
- Supports dynamic updates of wave height, direction, period, and depth.

10. Wind Forcing:

- Computes wind drag coefficient and stress components (τ_x, τ_y) .
- Parameterizes drag coefficient based on wind speed and wave height.

11. Wet & Dry Algorithm:

- Manages wet/dry transitions for tidal flats using a minimum depth threshold (D_{\min}).
- Sets velocities, water level, and salinity to zero in dry cells.
- Ensures mass conservation via flux divergence corrections.

12. Simpson-Hunter Mechanism:

- Models tidal straining and internal tide effects in a sigma-coordinate system.
- Computes Stokes drift, vertical velocity, and turbulent kinetic energy (TKE) production.

13. Asymmetric Tidal Mixing:

- Simulates asymmetric tidal mixing effects on salinity and velocity fields.
- Uses a Cell class to manage local properties (salinity, velocity, TKE).

14. Bifurcated Estuary Model:

 Models circulation in bifurcated channels, accounting for branching flow dynamics.

15. Equations of State:

• Computes water density based on salinity and temperature.

16. Vertical Discretization (Vertical Discretization):

- Supports sigma (terrain-following) and z-level (fixed layers) coordinate systems.
- Computes metric terms (z_{ξ}, z_{η}) for grid transformations.

17. Richardson Number and SSI Mixing:

- Computes gradient Richardson number and strain-induced mixing for turbulence closure.
- Supports k- ϵ and k- ω models.

18. Large Eddy Simulation:

- Implements LES with a Smagorinsky subgrid model.
- UI controls Smagorinsky coefficient and visualizes velocity/vorticity fields.

19. Lattice Boltzmann LES:

- Uses Lattice Boltzmann Method (LBM) with a D3Q19 lattice for LES.
- UI adjusts grid size and relaxation time, visualizing vorticity contours.

20. Spectral Analyzer:

- Performs spectral analysis (Welch's method) and EOF/POD analysis on variables like Richardson number, velocity, and salinity.
- UI controls variable selection, window type (Hanning, Hamming, Blackman, Rectangular), and visualization (PSD, heatmaps, modes).

21. Multi-Fraction Sediment Transport:

• Models bedload and suspended load for multiple grain sizes.

• UI adjusts sediment properties (grain size, settling velocity) and visualizes concentration profiles.

22. Adaptive Mesh Refinement:

- Refines grid based on velocity gradients or water level changes.
- Dynamically adjusts resolution to capture fine-scale features.

23. Visualization Renderer:

• Renders 2D visualizations of water level, salt wedge, salinity, temperature, passive scalar, and velocity profiles.

Simulation Logic

1. Grid and Field Initialization:

- Structured grids (e.g., 200×100 in TotalVariationDiminishing, 100×100 in HydrodynamicSolver) or unstructured triangular meshes (40×25 nodes).
- Sigma or z-level coordinates account for bathymetry (shallower near river, $x < 200 \, \mathrm{m}$).
- Fields (salinity, temperature, velocity, density, TKE, ϵ/ω) initialized with profiles (e.g., salinity: 0 PSU at river to 35 PSU at ocean).

2. Forcing and Boundary Conditions:

- Tidal forcing via sinusoidal water level variations.
- Wind forcing (WindForcing) and wave-current interactions (WaveCurrentInteractions add stresses.
- River (x=0, low salinity/temperature) and ocean ($x=1000\,\mathrm{m}$, high salinity/temperature) boundaries.

3. Numerical Solvers:

- HydrodynamicSolver and ShallowWaterEq2D: Semi-implicit finite differences for shallow water dynamics ($\Delta t = 0.1$ s).
- TotalVariationDiminishing: TVD scheme with HLL flux for stable advection.
- LargeEddySim: Smagorinsky subgrid model for LES.
- LatticeBoltzmannLES: LBM with D3Q19 lattice for turbulence.
- PassiveScalarTransportEq and Stratification: Finite differences for advection-diffusion.

4. Turbulence Modeling:

• k- ϵ and k- ω models compute TKE and dissipation/specific dissipation.

• Eddy viscosity modulated by gradient Richardson number.

5. Transport and Stratification:

- Scalars (e.g., pollutants) advected/diffused using velocity fields from BaroclinicFlow or HydrodynamicSolver.
- Density gradients drive baroclinic flows in BaroclinicFlow.

6. Wet/Dry Dynamics:

- WetAndDryAlgo updates cell status based on depth threshold (D_{min}).
- Adjusts fluxes to prevent flow into dry cells and ensures mass conservation.

7. Visualization and Analysis:

- VisualizationRenderer plots plan views, cross-sections, contours, and quiver plots.
- SpectralAnalyzer computes PSD and EOF/POD modes.

8. Dynamic Updates:

- AdaptiveMeshRef refines grids based on gradients.
- User inputs (e.g., tidal period, wind speed) updated via UI or programmatic methods.

Algorithms

1. Initialization:

- Initialize grids: structured (200×100 or 100×100) or unstructured (40×25 nodes).
- Set bathymetry: shallower near river ($x < 200 \,\mathrm{m}$).
- Initialize fields: salinity ($S(x) = 35 \cdot x/1000$), temperature ($T(x) = 25 5 \cdot x/1000$), velocity, TKE, ϵ/ω .

2. Hydrodynamic Solver:

- Solve continuity: $\frac{\partial \eta}{\partial t} + \frac{\partial (Hu)}{\partial x} = 0$.
- Solve momentum: $\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = -g \frac{\partial \eta}{\partial x} + \frac{1}{H} \frac{\partial (H\tau)}{\partial x} \frac{C_f |u| u}{H} + F$.
- Apply boundaries: river ($u = Q_r/(BH)$), ocean ($\eta = A\sin(\omega t)$).
- Use semi-implicit finite differences, $\Delta t = 0.1 \, \mathrm{s}$.

3. TVD Advection:

- Compute HLL flux: $F_{\text{HLL}} = \begin{cases} F_L, & s_L \geq 0 \\ F_R, & s_R \leq 0 \\ \frac{s_R F_L s_L F_R + s_L s_R (U_R U_L)}{s_R s_L}, & \text{otherwise} \end{cases}$, where $s_L = \min(u_L c_L, u_R c_R, 0), s_R = \max(u_L + c_L, u_R + c_R, 0).$
- Apply Superbee limiter: $\psi(r) = \max(0, \min(2r, (1+r)/2, 2))$, $r = \frac{C_i C_{i-1}}{C_{i+1} C_i}$.
- Update salinity, temperature, k, ϵ/ω .

4. Turbulence Modeling:

• k- ϵ model:

$$-\frac{\partial k}{\partial t} + u \cdot \nabla k = \nabla \cdot \left[\left(\nu + \frac{\nu_t}{\sigma_k} \right) \nabla k \right] + P_k - \epsilon.$$

$$-\frac{\partial \epsilon}{\partial t} + u \cdot \nabla \epsilon = \nabla \cdot \left[\left(\nu + \frac{\nu_t}{\sigma_\epsilon} \right) \nabla \epsilon \right] + C_{1\epsilon} \frac{\epsilon}{k} P_k - C_{2\epsilon} \frac{\epsilon^2}{k}.$$

$$-\nu_t = C_\mu \frac{k^2}{\epsilon}, P_k = \nu_t \left(\frac{\partial u}{\partial x} \right)^2.$$

• k- ω model:

$$-\frac{\partial k}{\partial t} + u \cdot \nabla k = \nabla \cdot \left[\left(\nu + \frac{\nu_t}{\sigma_k} \right) \nabla k \right] + P_k - \beta^* k \omega.$$

$$-\frac{\partial \omega}{\partial t} + u \cdot \nabla \omega = \nabla \cdot \left[\left(\nu + \frac{\nu_t}{\sigma_\omega} \right) \nabla \omega \right] + \alpha_\omega \frac{\omega}{k} P_k - \beta \omega^2.$$

$$-\nu_t = \frac{k}{\omega}.$$

- Richardson number: $Ri = \frac{N^2}{S^2}$, $N^2 = -\frac{g}{\rho_0} \frac{\partial \rho}{\partial z}$, $S^2 = \left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2$.
- Adjust ν_t : $\nu_t=\frac{\nu_0}{1+10Ri}$ (k- ϵ) or $\nu_t=\nu_0\frac{1+0.5\min(Ri,Ri_{\rm crit})}{1+Ri}$ (k- ω).

5. Wet/Dry Algorithm:

- Check depth: cell is wet if $H = \eta + h \ge D_{\min}$, else dry.
- Set dry cell values: $u=v=\eta=S=0$.
- Limit fluxes: $u_{i,j} = \min(u_{i,j}, 0)$ if eastern neighbor is dry, etc.
- Update water level: $\Delta \eta = \frac{\mathrm{Flux_{in}} \mathrm{Flux_{out}}}{\Delta x \Delta y}$

6. Spectral Analysis:

- Welch's method for PSD:
 - Window: Hanning ($w_i = 0.5(1-\cos(2\pi i/(N-1)))$), Hamming, Blackman, or Rectangular.
 - Segment: segmentData_i = data_{start+i} · w_i .
 - PSD: $PSD_i = \frac{1}{windowPower\cdot samplingRate} \cdot |FFT(segmentData)_i|^2 / numSegments.$
 - Frequencies: $f_i = \frac{i}{\text{samplingRate-segmentLength}}$
- EOF/POD via SVD:
 - Data matrix: $dataMatrix_{s,t} = data_t[s, 0] mean_t$.

- Power iteration: iterate $u_i=\sum_j {\sf dataMatrix}_{i,j} v_j$, normalize u; $v_j=\sum_i {\sf dataMatrix}_{i,j} u_i$, normalize v.
- Singular value: $\sigma = \sqrt{\sum_i (Av_i)^2}$.
- Explained variance: variance_m = $\frac{\sigma_m^2}{\sum_i \sigma_i^2} \cdot 100$.

7. Sediment Transport:

- Update concentrations: $\frac{\partial C_f}{\partial t} = -u \frac{\partial C_f}{\partial x} + D_f \frac{\partial^2 C_f}{\partial x^2} w_{s,f} C_f$.
- Compute bedload flux: $q_b = 8(\theta \theta_c)^{1.5} \sqrt{\left(\frac{\rho_s}{\rho_0} 1\right)gd^3}$ if $\theta > \theta_c$, else 0.

8. Adaptive Mesh Refinement:

- Compute gradients: $G_{i,j} = \sqrt{\sum (\frac{\partial \phi}{\partial x})^2 + (\frac{\partial \phi}{\partial z})^2}$ for $\phi = S, T, u$.
- Flag top 10% gradient cells.
- Initialize 2×2 subgrids with bilinear interpolation.

Physical and Mathematical Models

Shallow Water Dynamics

• Continuity:

$$\frac{\partial \eta}{\partial t} + \frac{\partial (Hu)}{\partial x} = 0 \tag{1}$$

• Momentum:

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = -g \frac{\partial \eta}{\partial x} + \frac{1}{H} \frac{\partial (H\tau)}{\partial x} - \frac{C_f |u| u}{H} + F$$
 (2)

where η is water surface elevation, $H=h+\eta$, h is bathymetry, u is velocity, $\tau=\nu_{\text{eff}}\frac{\partial u}{\partial x}$, $C_f=0.002-0.005$, F includes Coriolis, wind, and baroclinic terms.

Baroclinic Flow

• Density:

$$\rho = \rho_0 [1 - \alpha (T - T_0) + \beta_S (S - S_0)]$$
(3)

where $\rho_0=1000\,{\rm kg/m^3}$, $\alpha=2\times 10^{-4}\,/^{\circ}{\rm C}$, $\beta_S=8\times 10^{-4}\,/{\rm PSU}$, $T_0=20^{\circ}{\rm C}$, $S_0=35\,{\rm PSU}$.

• Baroclinic pressure gradient:

$$\frac{\partial p_b}{\partial x} = -g \int_{\eta}^{-h} \frac{\partial \rho}{\partial x} dz \tag{4}$$

Passive Scalar Transport

• Advection-diffusion:

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} = \frac{\partial}{\partial x} \left(K \frac{\partial C}{\partial x} \right) \tag{5}$$

where $K=K_m+\frac{\nu_t}{\mathrm{Sc}_t}$, $K_m\approx 10^{-9}\,\mathrm{m}^2/\mathrm{s}$, $\mathrm{Sc}_t\approx 0.7$.

Turbulence Models

• k- ϵ model:

$$\frac{\partial k}{\partial t} + u \cdot \nabla k = \nabla \cdot \left[\left(\nu + \frac{\nu_t}{\sigma_k} \right) \nabla k \right] + P_k - \epsilon$$
 (6)

$$\frac{\partial \epsilon}{\partial t} + u \cdot \nabla \epsilon = \nabla \cdot \left[\left(\nu + \frac{\nu_t}{\sigma_{\epsilon}} \right) \nabla \epsilon \right] + C_{1\epsilon} \frac{\epsilon}{k} P_k - C_{2\epsilon} \frac{\epsilon^2}{k}$$
 (7)

where $\nu_t = C_\mu \frac{k^2}{\epsilon}$, $P_k = \nu_t \left(\frac{\partial u}{\partial x}\right)^2$, $C_\mu = 0.09$, $\sigma_k = 1.0$, $\sigma_\epsilon = 1.3$, $C_{1\epsilon} = 1.44$, $C_{2\epsilon} = 1.92$.

• k- ω model:

$$\frac{\partial k}{\partial t} + u \cdot \nabla k = \nabla \cdot \left[\left(\nu + \frac{\nu_t}{\sigma_k} \right) \nabla k \right] + P_k - \beta^* k \omega$$
 (8)

$$\frac{\partial \omega}{\partial t} + u \cdot \nabla \omega = \nabla \cdot \left[\left(\nu + \frac{\nu_t}{\sigma_\omega} \right) \nabla \omega \right] + \alpha_\omega \frac{\omega}{k} P_k - \beta \omega^2$$
(9)

where $\nu_t = \frac{k}{\omega}$.

Wave-Current Interaction

· Stokes drift:

$$u_s = \frac{a^2 \omega k \cosh(2kz)}{2 \sinh^2(kd)} \tag{10}$$

where $L = \sqrt{gd} \cdot T$, $k = \frac{2\pi}{L}$, $\omega = \frac{2\pi}{T}$.

· Wave-enhanced friction:

$$C_d = C_{d0}(1 + \beta U_b), \quad U_b = \frac{a\omega}{\sinh(kd)}$$
(11)

where $\beta = 0.2$, $C_{d0} = 0.0025$, $C_d \le 0.01$.

Wind Forcing

• Drag coefficient:

$$C_d = (0.75 + 0.067U_{10} + 0.1H_s) \times 10^{-3}, \quad 0.001 \le C_d \le 0.003$$
 (12)

Wind stress:

$$\tau_x = \rho_{\text{air}} C_d U_{10}^2 \cos(\theta), \quad \tau_y = \rho_{\text{air}} C_d U_{10}^2 \sin(\theta)$$
(13)

where $\rho_{air} = 1.225 \text{ kg/m}^3$.

Wet/Dry Algorithm

- Depth criterion: wet if $H = \eta + h \ge D_{\min}$, else dry.
- Flux limiting: $u_{i,j} = \min(u_{i,j}, 0)$ if eastern neighbor is dry, etc.
- Mass conservation:

$$\Delta \eta = \frac{\text{Flux}_{\text{in}} - \text{Flux}_{\text{out}}}{\Delta x \Delta y}, \quad \text{Flux}_u = u(\eta + h) \Delta y \Delta t$$
(14)

Simpson-Hunter Mechanism

• Stokes drift:

$$u_s = a\omega e^{-2kz}\sin(\theta) \tag{15}$$

• Internal tide:

$$N^{2} = -\frac{g}{\rho_{0}} \frac{\partial \rho}{\partial z}, \quad w_{\text{tide}} = A \sin(\theta) \sqrt{N^{2}} \cos\left(\frac{2\pi z}{H}\right)$$
 (16)

Tidal straining:

$$\frac{\partial S}{\partial t} = -Cu \frac{\partial S}{\partial x} \tag{17}$$

Asymmetric Tidal Mixing

• Navier-Stokes with Boussinesq:

$$\frac{\partial u}{\partial t} + u \cdot \nabla u = -\frac{\nabla p}{\rho_0} + \nu \nabla^2 u + \frac{g(\rho - \rho_0)}{\rho_0} + f \times u - \frac{\tau_b}{\rho_0}$$
(18)

• Tidal asymmetry: flood factor 1.2, ebb factor 0.8.

Vertical Discretization

- Sigma coordinates: $z = \sigma H$, $\sigma \in [0, 1]$.
- Z-level: $\Delta z = H/(N_z 1)$.
- Metric terms:

$$z_{\xi} \approx \frac{z_{i+1,j} - z_{i-1,j}}{2\Delta \xi}, \quad z_{\eta} \approx \frac{z_{i,j+1} - z_{i,j-1}}{2\Delta \eta}$$
 (19)

Richardson Number and SSI Mixing

· Richardson number:

$$Ri = \frac{N^2}{S^2}, \quad N^2 = -\frac{g}{\rho_0} \frac{\partial \rho}{\partial z}, \quad S^2 = \left(\frac{\partial u}{\partial z}\right)^2 + \left(\frac{\partial v}{\partial z}\right)^2$$
 (20)

• Viscosity adjustment:

$$\nu_t = \frac{\nu_0}{1 + 10Ri} \quad (\mathbf{k} - \epsilon), \quad \nu_t = \nu_0 \frac{1 + 0.5 \min(Ri, 0.25)}{1 + Ri} \quad (\mathbf{k} - \omega)$$
 (21)

• TKE production:

$$P = \nu_t \left[\left(\frac{\partial u}{\partial z} \right)^2 + \left(\frac{\partial v}{\partial z} \right)^2 \right]$$
 (22)

Lattice Boltzmann LES

• LBM:

$$f_i(x + c_i \Delta t, t + \Delta t) = f_i(x, t) + \frac{f_i^{eq}(x, t) - f_i(x, t)}{\tau}$$
(23)

• Smagorinsky:

$$\nu_t = (C_s \Delta)^2 \sqrt{2S_{ij}S_{ij}}, \quad S_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_i} + \frac{\partial u_j}{\partial x_i} \right)$$
 (24)

Spectral Analysis

- Synthetic data:
 - Richardson number: Value = $0.5+0.3\sin\left(\frac{2\pi t}{43200}\right)+0.2\sin\left(\frac{2\pi t}{17\cdot3600}\right)+$ noise.
 - Velocity: Value = $0.1 + 0.05 \sin\left(\frac{2\pi t}{43200}\right) + 0.02 \sin\left(\frac{2\pi t}{21600}\right) + \text{noise.}$
 - Salinity: $S_{x,y} = \left(30 + 2\sin\left(\frac{2\pi t}{44712}\right)\right) (1 0.1(x+y)) +$ noise.
- Welch's PSD:

$$PSD_i = \frac{1}{windowPower \cdot samplingRate} \cdot \frac{|FFT(segmentData)_i|^2}{numSegments}$$
(25)

• EOF/POD via SVD:

$$dataMatrix_{s,t} = data_t[s, 0] - mean_t$$
 (26)

Sediment Transport

• Suspended load:

$$\frac{\partial C_f}{\partial t} = -u \frac{\partial C_f}{\partial x} + D_f \frac{\partial^2 C_f}{\partial x^2} - w_{s,f} C_f$$
 (27)

• Bedload:

$$q_b = \begin{cases} 8 \left(\theta - \theta_c\right)^{1.5} \sqrt{\left(\frac{\rho_s}{\rho_0} - 1\right) g d^3}, & \theta > \theta_c \\ 0, & \text{otherwise} \end{cases}$$
 (28)