

Dekompozycja szeregu czasowego

Natalia Nehrebecka

2

Plan zajęć

- Dekompozycja szeregu czasowego
 - Metody wyrównania sezonowego
 - X-12-ARIMA
 - TRAMO/SEATS

Czemu służy dekompozycja szeregu?

- Analiza szeregów nieskorygowanych sezonowo mogłaby pokazać nieistniejące w rzeczywistości zależności wynikające jedynie z sezonowości, np.:
 - wielkość zużycia energii elektrycznej
 - wartość sprzedaży detalicznej

Interesująca jest analiza samych wahań sezonowych w danych i ich relacji na obserwowane zjawiska.

Składowe szeregów czasowych

- Składowa systematyczna:
 - efekt oddziaływań stałego zestawu czynników na zmienną prognozowaną
- Składowa przypadkowa (składnik losowy, wahania przypadkowe)

Składowe szeregów czasowych

Trend

Szereg czasowy

Szereg czasowy i jego trend

Szereg czasowy

Szereg czasowy i jego trend

Trend

Sezonowość

- O sezonowości mówimy, gdy zmienna zmienia się w pewnym cyklu, zwykle związanym z cyklem kalendarzowym.
 - Np.: zmienne kwartalne zwykle mają sezonowość kwartalną, natomiast miesięczne miesięczną.
- Często spowodowana jest czynnikami klimatycznymi (rolnictwo, budownictwo)
 - Rolnictwo w Polsce
 - Rolnictwo w Egipcie
- lub kulturowymi (sprzedaż detaliczna Boże Narodzenie),
- lub prawno-księgowymi dochody ludności i trzynastki.
- Dlaczego trzeba uważać na sezonowość?

- sezonowość multiplikatywna:
 - wahania sezonowe silniejsze przy wzroście poziomu szeregu
- sezonowość addytywna:
 - amplituda niezależna od poziomu szeregu

Rozróżnia się dwa rodzaje sezonowości:

Deterministyczną

- Wartości obserwacji szeregu cechującego się sezonowością deterministyczną wahają się z amplitudą względnie stałą.
- Proces, którego bezwarunkowa średnia zależy od podokresu roku (np. miesiąca, kwartału)
- Ten rodzaj sezonowości jest modelowany za pomocą zmiennych zerojedynkowych, których liczba jest równa liczbie okresów w roku.

Stochastyczną

Sezonowość stochastyczna charakteryzuje się zmiennym w czasie wzorcem sezonowości.

Sezonowość deterministyczna

Sezonowość deterministyczna

Uwaga!

- W praktyce czynniki sezonowe nie są stałe w czasie, z uwagi na występowanie:
 - czynników losowych
 - efektów kalendarzowych (ruchome weekendy, święta)
 - decyzji ekonomicznych

Sezonowość stochastyczna

Sezonowość stochastyczna

Wykres szeregu czasowego

- obserwacje nietypowe / błędy w danych?
- wzorzec wahań sezonowych i ich amplituda?
- trend?
- zmiany strukturalne w poziomie / trendzie / charakterze

- Punktem wyjścia jest założenie, ze szereg czasowy można zdekomponować na elementy:
- cykl i trend C_t

- długookresowy trend, cykl biznesowy i inne składniki cykliczne;
- czynnik sezonowy S₁ regularne fluktuacje sezonowe;
- trading-day TD,
- kształt kalendarza korekta ze względu na rożną długość miesięcy, liczba dni roboczych itp.;
 - nie liczony dla danych kwartalnych
- składnik losowy I_t

Postać addytywna – gdy amplituda wahań sezonowych i losowych jest stała:

Postać multiplikatywna – gdy amplituda wahań sezonowych i losowych zmienia się wraz z trendem:

Transformacja danych

- Przed rozpoczęciem właściwego modelowania należy podjąć decyzję odnośnie tego czy przedmiotem dekompozycji będą nieprzekształcone dane, czy też wcześniej należy dokonać ich odpowiedniej transformacji.
 - Możliwość przekształcenia danych dotyczy jedynie szeregów, w których nie występują obserwacje ujemne.

$$y(\lambda) = \begin{cases} \frac{x^{\lambda} - 1}{\lambda}, & \lambda \neq 0 \\ \ln(y), & \lambda = 0 \end{cases}$$

 Transformacji wyjściowego szeregu można dokonać za pomocą funkcji, nazywanej przekształceniem Boxa – Coxa.

Obserwacje nietypowe

- o charakterze jednorazowym (ang. additive outlier (AO)) powodujące zmianę wartości zmiennej zależnej tylko w jednym okresie.
- AO: Additive Outlier, [0 0 0 0 1 0 0 0]

$$AO_t^{(t_0)} = \begin{cases} 1 & \text{dla } t = t_0 \\ 0 & \text{dla } t \neq t_0 \end{cases}$$

Obserwacje nietypowe

- o charakterze przejściowym (ang. temporary change (TC)), powodujące tymczasowe przesunięcie poziomu zmiennej zależnej, przy czym powrót ze skokowej zmiany wartości zmiennej zależnej w do poziomu pierwotnego następuje zgodnie z funkcją wykładniczą w postaci.
- ► TC: Transitory Change, $[0\ 0\ 0\ 1\ \alpha\ \alpha^2\ \alpha^3\ ...\ \approx 0]$
 - gdy α = 1 efekt skrajnie uporczywy (LS),
 - gdy $\alpha = 0$ natychmiast przemija (AO)

$$TC_{t}^{(t_{0})} = \begin{cases} 0 & \text{dla } t < t_{0} \\ \alpha^{t-t_{0}} & \text{dla } t \ge t_{0} \end{cases}$$

Obserwacje nietypowe

o charakterze długotrwałym (ang. level shift (LS)), powodujące długotrwałe przesunięcie poziomu zmiennej zależnej. Wpływ zdarzenia takiego rodzaju, jest modelowany za pomocą podstawienia:

$$LS_t^{(t_0)} = \begin{cases} 0 & \text{dla } t < t_0 \\ 1 & \text{dla } t \ge t_0 \end{cases}$$

LS: Level Shift, [0 0 0 0 1 1 1 1 1]

Przykładowe obserwacje nietypowe

Przykład – Depozyty bieżące niemonetarnych instytucji finansowych

Calendar effects

- efekt liczby dni roboczych:
 - brak
 - td1 = weekendy,
 - td2 =td1 + rok przestępny,
 - td6 = 6 zmiennych 0-1 dla różnych dni tygodnia,
 - td7 = td6 + rok przestępny
 - kalendarz (zmienne td? oraz święta z kalendarza)
 - zdefiniowane przez użytkownika (na podstawie samodzielnie stworzonych zmiennych)
- efekt Wielkanocy:
 - ile dni przed trwa? (duration)
- możliwość testowania istotności wprowadzonych zmiennych td? oraz włączenia / wyłączenia / testowania występowania i długości efektu Wielkanocy (1 / 8 / 15) zwykle od 3 do 8 dni, jeżeli zadawane przez użytkownika

Święta

X-12-ARIMA

- Adaptacja programu X-12-ARIMA Seasonal Adjustment amerykanskiego Biura Statystycznego (US Census Bureau, http://www.census.gov)
- Korygowanie danych kwartalnych lub miesięcznych ze względu na sezonowość.
- Metoda X-12-ARIMA polega na dekompozycji szeregu czasowego przy wykorzystaniu średnich ruchomych.
 - Zalicza się ona do metod ad hoc, gdyż dobór odpowiedniego zestawu filtrów nie jest uzależniony od statystycznych własności analizowanego szeregu czasowego.
- Model ARIMA jest w niej wykorzystywany jedynie do estymacji wartości prognozowanych.
- Prognozy te są obliczane na danych pozbawionych komponentu sezonowego oraz oczyszczonych z wpływu efektów kalendarzowych oraz obserwacji nietypowych.

TRAMO/SEATS

- Alternatywną metodą wygładzania szeregów czasowych jest TRAMO/SEATS, która wykorzystuje model ARIMA do estymacji komponentu sezonowego, nieregularnego oraz trendu-cyklu.
- Bank of Spain (Tramo/Seats) http://www.bde.es/servicio/software/econome.htm
- Procedura dekompozycji sezonowej składa się z dwóch etapów: TRAMO i SEATS.
 - Pierwszy z nich jest określany jako etap estymacji wstępnej,
 - w drugim dokonuje się właściwa dekompozycja i eliminowanie wpływów sezonowych.

Przykład – TRAMO/SEATS

Przykład – X-12-ARIMA

DEMETRA

DEKOMPOZYCJA SZEREGÓW CZASOWYCH

- money.xls
- z danymi na temat podaży pieniądza M1 (w przeliczeniu na mln euro) w 6ciu krajach europejskich dla okresu 01.1980 - 12.1998 (w przypadku Grecji do 12.2000)
 - Źródło: Eurostat
- wstępna analiza danych w postaci graficznej:
 - Portugalia
 - Belgia
 - w obu przypadkach właściwy wydaje się model multiplikatywny -> dekompozycja szeregu czasowego - model multiplikatywny

DEMETRA

- Prezentacja graficzna:
 - oryginalny szereg i szereg skorygowany sezonowo
 - oryginalny szereg i trend/cykl
 - wahania sezonowe
 - składnik losowy

Dziękuję za uwagę