SIA 2024 - 2C

Aprendizaje no supevisado

Grupo 4

SIA 2024 - 2C

EJERCICIO 1

Datos

- Datos de diversos países europeos:
 - Country
 - Area
 - GDP
 - Inflation
 - Life expect
 - Military
 - Population growth
 - Unemployment

Estos datos son de distintos órdenes de magnitud. **ESTANDARIZAR**. Nosotros vamos a utilizar Z-Score.

$$Z=rac{x-\mu}{\sigma}$$

Datos - Estandarización

Datos - Estandarización

SIA 2024 - 2C

Red de Kohonen

Parámetros iniciales

- Learning rate = 0.1
- Sigma = 3
- K = 4

Grilla rectangular

Selección de mejor learning rate

Buscaremos obtener un learning rate que agrupe de manera eficiente los países.

- Learning rate = 0.1
- Learning rate = 0.01
- Learning rate = 0.001

Selección de mejor learning rate

Selección de mejor learning rate

No se notaron diferencias por lo que nos quedamos con un learning rate de 0.1

- Learning rate = 0.1
- Learning rate = 0.01
- Learning rate = 0.001

Buscaremos obtener un radio de vecindad que agrupe de manera eficiente los países.

- Sigma = 1
- Sigma = 2
- Sigma = 3

5

- Sigma = 1 (5 grupos con solo un elemento)
- Sigma = 2 (4 grupos con solo un elemento)
- Sigma = 3 (2 grupos con solo un elemento)

Selección de mejor K

Buscaremos obtener un K que agrupe de manera eficiente los países.

- K=3
- K=4
- K=5

Selección de mejor K

Seleccion de mejor K

- K=3 (Muy pocos grupos distinguibles)
- K=4 (Ideal)
- K=5 (Demasiados grupos, varios con solo un elemento)

Parámetros establecidos

- Learning rate = 0.1
- Sigma = 3
- K = 4

Bulgaria Estonia Ukraine	Poland	Greece Portugal	Spain United Kingdom
Hungary Latvia Lithuania			Finland Germany Italy Sweden
Croatia Slovakia			Norway
Czech Republic Slovenia	Belgium Denmark	Austria Netherlands	lceland Ireland Luxembourg Switzerland

Kohonen - Frecuencia de Selección de BMU

- 20000 - 15000 10000 - 5000

Bulgaria Estonia Ukraine	Poland	Greece Portugal	Spain United Kingdom
Hungary Latvia Lithuania			Finland Germany Italy Sweden
Croatia Slovakia			Norway
Czech Republic Slovenia	Belgium Denmark	Austria Netherlands	lceland Ireland Luxembourg Switzerland

Análisis de variables independientes

Veamos qué conclusiones podemos tener si aislamos las variables socioeconómicas para cada grupo y nos fijamos su respectivo peso aprovechando la salida matricial de Kohonen.

GDP - Pop.growth - Life.expect

Inflation - Unemployment

Area - Military

Analisis de variables

- El GDP, crecimiento poblacional y expectativa de vida de un país crecen y disminuyen simultáneamente
- La inflación y desempleo de un país crecen y disminuyen simultáneamente
- GDP Pop.growth Life.expect son inversas a Inflation Unemployment
 - Países con un gran Área territorial tienden a tener más gasto Militar

SIA 2024 - 2C

Modelo de Oja

Ejercicio 1.2

Implementación

train

```
for epoch in range (epochs)
for i=1 to N
  y = inner(xi, w)
  w += n * y * (xi - y * w)
```

<u>test</u>

```
for i=1 to N
  y = inner(xi, w)
  pc1 list.append(y)
```

- Pesos inicializados de manera random.
- Se utilizó una seed fija a lo largo de las ejecuciones.
- Se optó por 10k épocas.
- Se estudian distintos learning rate.

Preguntas disparadoras del análisis

- ¿Qué obtenemos del cálculo de la primer componente (PC1) para el conjunto de datos?
- ¿Qué representa la PC1?
- ¿Qué diferencias encontramos entre PCA y Oja?

10k épocas y $\eta = 0.1$

Area	GDP	Inflation	Life Expectancy	Military	Pop Growth	Unemployme nt
-0.978	0.419	-0.598	1.039	0.528	-0.009	0.985

10k épocas y $\eta = 0.01$

Area	GDP	Inflation	Life Expectancy	Military	Pop Growth	Unemployme nt
-0.203	0.500	-0.480	0.500	-0.131	0.457	-0.232

10k épocas y $\eta = 0.001$

Area	GDP	Inflation	Life Expectancy	Military	Pop Growth	Unemployme nt
-0.132	0.500	-0.414	0.484	-0.182	0.474	-0.268

PCA (sklearn)

PCA-PC1 Loadings (sklearn)

Comparacion OJA-PCA

	Area	GDP	Inflation	Life Expectan	Military	Pop Growth	Unemploym ent	MSE vs PCA
PCA	-0.125	0.501	-0.407	0.483	-0.188	0.476	-0.272	-
Oja (0.1)	-0.978	0.419	-0.598	1.039	0.528	-0.009	0.985	0.487
Oja (0.01)	-0.203	0.500	-0.480	0.500	-0.131	0.457	-0.232	2.435e-03
Oja (0.001)	-0.132	0.500	-0.414	0.484	-0.182	0.474	-0.268	2.214e-05

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y}_i)^2$$

n : cantidad de columnas

Countries by PC1 with Oja

Country

Learning Rate: 0.001

Fields by PC1 with Oja

Epochs: 10k Learning Rate: 0.001

Conclusiones

- Se puede inferir que el learning rate utilizado debe ser bajo así se logra la convergencia a la PC1.
- Se interpreta PC1 como un indicador del desarrollo socioeconómico de los países.
- Con Oja se puede hacer una buena aproximación del primer componente principal, con error muy bajo en comparación a PCA (sklearn)
- Como el dataset no posee muchas variables, el Oja funciona bien ya que no se pierde mucha información al reducir la dimensión.

SIA 2024 - 2C

EJERCICIO 2

SIA 2024 - 2C

Modelo de Hopfield

Grupo 4

Problema a resolver

Se tiene un diccionario de letras cuyas figuras se representan únicamente con 1 y -1 en matrices de 5x5

Asociar matrices ruidosas de las letras al patrón original de dicha letra a través del modelo de Hopfield

Solo se entrenará el modelo con grupos de 4 matrices para no superar la capacidad del modelo

Diccionario

<u>Aclaración</u>: Se utilizó el código provisto por la cátedra en clase para realizar los gráficos de las figuras

Preguntas disparadoras del análisis

- ¿Cómo consideramos cuáles son el mejor y el peor patrón de nuestro diccionario?
- ¿Cúal es el mejor subconjunto de patrones de nuestro diccionario? ¿Y cuál es el peor?
- ¿Cómo se comporta la función de energía a través de las épocas?
- ¿Cómo responden estos subconjuntos al ruido?

Consideraciones

Para obtener el mejor y el peor subconjunto de patrones tendremos en cuenta el producto interno entre las matrices, cuanto más cercano a 1 sea el resultado, mayor distinción tendrán los patrones entre sí.

Prod. Interno

-1	1	1	1	1
1	-1	-1	-1	-1
1	-1	-1	-1	-1
1	-1	-1	-1	-1
-1	1	1	1	1

1	1	1	1	-1
1	-1	-1	-1	1
1	-1	-1	-1	1
1	-1	-1	-1	1
1	1	1	1	-1

Para cada subconjunto hacemos una matriz con los productos internos entre los distintos pares de matrices. Luego obtenemos el promedio de los productos internos y para no perder información recopilaremos el mayor producto interno obtenido entre los pares junto a su frecuencia.

Resultados

Mejores

Combinació n	Promedio	Prod. interno máx. (PIM)	Frecuencia P.I.M
(B, Q, T, V)	1	1	6
(L, Q, T, X)	1	1	6
(B, J, T, V)	1.33	3	1
(G, L, Q, T)	1.33	3	1
(L, Q, T, V)	1.33	3	1
(O, Q, W, Z)	1.33	3	1
(B, L, Q, T)	1.66	5	1
(B, N, Q, V)	1.66	5	2

Peores

Combinació n	Promedio	Prod. interno máx. (PIM)	Frecuencia P.I.M
(H, M, N, W)	18.33	21	2
(I, M, N, W)	17.33	21	2
(A, F, P, R)	17	21	2
(E, F, P, R)	17	21	2
(H, I, M, N)	16.66	21	1
(H, I, N, W)	16.66	21	1
(B, E, F, P)	16.33	21	2
(B, F, P, R)	16.33	21	2

Mejores subconjunto

En este caso llegamos a un empate técnico ya que hay 2 subconjuntos que dieron el mejor caso posible donde el producto interno entre todas las matrices del conjunto dan 1 y por ende el promedio da 1

Subconjunto 2

Peor subconjunto

Producto interno promedio: 18.33

Máximo producto interno: 21

Frecuencia del máximo producto interno entre los pares: 2

Función de energía

- Sirve para medir el estado de estabilidad de una red
- Cada configuración de neuronas tiene un valor de energía asociado
- El modelo de Hopfield minimiza esta función durante el funcionamiento
- Los mínimos locales de esta función corresponden a estados estables de la red o atractores

Ruido

Nuestras función de ruido toma un patrón e invierte "píxeles" aleatoriamente. Esta función modifica el porcentaje de "píxeles" que le pasemos como argumento. Por ejemplo, si aplicamos ruido 0.2, se modificarán 25*0.2 = 5 posiciones del patrón.

Letra G sin ruido

Letra G con ruido 0.2

Evaluación del mejor subconjunto con ruido

noise = 0.12

Evaluación del mejor subconjunto con ruido

Evaluación del mejor subconjunto con ruido

Evaluación del peor subconjunto con ruido

El input fue una H con ruido pero converge a una N!

Evaluación del peor subconjunto con ruido

best_subset2

Evaluación del peor subconjunto con ruido

¿Qué ocurre si a uno de los mejores subconjuntos de patrones le aplicamos mucho ruido?

Fuimos aumentando el ruido hasta 0.28 donde ocurrió lo siguiente...

Producto interno promedio: 1

Producto interno promedio: 1

noise = 0.28

Conclusiones

• El modelo no puede asociar correctamente los patrones cuando se utilizan conjuntos de patrones similares para el entrenamiento

A mayor distinción entre los patrones del conjunto de entrenamiento,
 más resistente se vuelve el modelo al ruido

• El modelo no es infalible ya que puede asociar patrones ruidosos de entrada a patrones inexistentes (cae en un estado espurio)

iMUCHAS GRACIAS!