

Digitalizzazione

Informazione

«Notizia, dato o elemento che consente di avere conoscenza più o meno esatta di fatti, situazioni, modi di essere. In senso più generale, anche la <u>trasmissione dei dati</u> e l'insieme delle strutture che la consentono»

(da https://www.treccani.it/enciclopedia/informazione)

Informazione

Trasferimento di contenuti (che si trasformeranno dentro di noi in concetti)

Per trasferire e memorizzare questi contenuti in un supporto serve una grandezza fisica che abbia almeno due stati. Es:

- Pressione
- Tensione
- Colore
- •

Esempio

Informazione Digitale

Digitalizzare un'informazione: rappresentarla come una sequenza di numeri (dall'inglese *digit* – cifra – che deriva dal latino *digitus* – dito)

«Digitalizzazione: Nella tecnica, conversione di grandezze analogiche in informazioni digitali, effettuata mediante un dispositivo, detto digitalizzatore o convertitore analogico-digitale.»

(Da https://www.treccani.it/enciclopedia/ricerca/digitalizzare/)

Digitalizzazione

Un elaboratore digitale rappresenta i numeri con solo due cifre, 0 e 1 (codifica binaria)

Possiamo digitalizzare

- Testi
- Suoni
- Immagini
- Filmati
- E ovviamente qualsiasi tipo di numero

Informatica

«Scienza che studia l'elaborazione delle informazioni e le sue applicazioni; più precisamente l'informatica si occupa della <u>rappresentazione</u>, dell'organizzazione e del <u>trattamento automatico</u> della informazione.»

(Da https://www.treccani.it/enciclopedia/ricerca/digitalizzare/)

Informatica

<u>Codificare</u> informazione multimediale in forma <u>digitale</u>

Concepire <u>algoritmi</u> per elaborarla al fine di risolvere problemi dati

Algoritmo

Insieme di regole volte a risolvere un determinato problema in un numero finito di passi (operazioni, istruzioni)

Esempio – Carbonara

- 1. Prendere un uovo per commensale
- 2. Aggiungere pecorino q.b.
- 3. Sbattere le uova
- 4. Unire guanciale
- 5. Portare dell'acqua ad ebollizione
- 6. Salare l'acqua
- 7. Immergere la pasta nell'acqua
- 8. Scolare dopo 10 minuti
- 9. Versare la pasta in una terrina
- 10. Mescolare

Programmare

Predisporre un elaboratore ad eseguire una <u>sequenza di azioni</u>
(algoritmo) su un'<u>informazione digitale</u> presa in ingresso (*input*) al fine di produrre in uscita (*output*) un'informazione digitale, funzione di quella presa in ingresso, che risolva un problema dato

Esempio – Riconoscimento Facciale

ARCHIVIO

OUTPUT

0000010

00010001

11000111

11110101

Sistema numerico decimale

Sistema di numerazione posizionale in base 10. Usa 10 cifre per rappresentare i numeri {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

$$250 = 2 \times 10^2 + 5 \times 10^1 + 0 \times 10^0$$

Sistema numerico binario

Sistema di numerazione posizionale in base 2. Usa due cifre per rappresentare i numeri {0, 1}

$$11111010 = 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

= 128 + 64 + 32 + 16 + 8 + 0 + 2 + 0
= 250

Codifica binaria

Bit (**B**inary Dig**it**): unità elementare dell'informazione trattata da un elaboratore. Può assumere due (2^1) valori: **0** oppure **1**.

- Due bit (2 b): quattro (2²) possibili valori {00, 01, 10, 11}
- Tre bit (3 b): otto (2³) possibili valori {000, 001, 010, 011, 100, 101, 110, 111}
- Quattro bit (4 b): sedici (2⁴) possibili valori
- ...
- Otto bit (8 b): 256 (2⁸) possibili valori

8 bit (8 b) = 1 Byte (1 B)

Codifica Binaria – Esempio

Qual è il numero minimo di bit necessario per rappresentare i mesi dell'anno?

Codifica Binaria – Esempio

Qual è il numero minimo di bit necessario per rappresentare i mesi dell'anno? **4 bit**

Gennaio	0001	Luglio	0111
Febbraio	0010	Agosto	1000
Marzo	0011	Settembre	1001
Aprile	0100	Ottobre	1010
Maggio	0101	Novembre	1011
Giugno	0110	Dicembre	1100

Codifica Binaria – Esempio

Qual è il numero minimo di bit necessario per rappresentare i mesi dell'anno? **4 bit**

- 3 bit non sono sufficienti. Ci sono infatti 8 possibili combinazioni (2^3) , ma i mesi sono 12
- 4 bit offrono 16 possibili combinazioni (2⁴)

Byte – Unità di misura

Valore (in Byte)	Nome	Abbreviazione	Potenza
1	Byte	В	20
1 024	Kilobyte	kB	2 ¹⁰
1 048 576	Megabyte	MB	2 ²⁰
1 073 741 824	Gigabyte	GB	2 ³⁰
1 099 511 627 776	Terabyte	ТВ	2 ⁴⁰
1 125 899 906 842 624	Petabyte	PB	2 ⁵⁰

Byte – Unità di misura

Spesso i multipli del byte vengono arrotondati a potenze di 10 invece che di 2, sebbene questo sia formalmente sbagliato. Tale ambiguità ha portato l'*International Electrotechnical Commission* (IEC) a definire nuovi prefissi per multipli binari (che non sono entrati comunque nell'uso comune)

Nome (Simbolo)	Potenza	Nome (Simbolo)	Potenza
Kilobyte (kB)	$10^3 (= 1000)$	Kibibyte (KiB)	$2^{10} (= 1024)$
Megabyte (MB)	$10^6 (= 1000000)$	Mebibyte (MiB)	2^{20} (= 1048756)
Gibabyte (GB)	109	Gibibyte (GiB)	2 ³⁰
Terabyte (TB)	10 ¹²	Tebibyte (TiB)	2 ⁴⁰
Petabyte (PB)	10 ¹⁵	Pebibyte (PiB)	2 ⁵⁰

Digitalizzazione di testi

Codifica ASCII

American Standard Code for Information Interchange

- Sviluppato da una commissione dell'American Standard Association
- Prima versione 1963, revisionato nel 1967
- Caratteri su 7 bit
- Cifre e simboli di punteggiatura prima delle lettere
- Lettere maiuscole prima delle minuscole

Codifica ASCII

La tabella si legge prendendo prima i 3 bit dell'intestazione di colonna, poi i 4 bit dell'intestazione di riga.

Ad esempio il codice ASCII della lettera 'A' è 100 0001 (equivalente a 65 in base 10)

Il carattere composto solamente da 0 (000 0000) corrisponde al concetto di «niente», «nessun carattere».

_	3/3/							
000	001	010	011	100	101	110	111	
NUL \0	DLE	SP	0	@	Р	`	р	0000
SOH	XON	!	1	Α	Q	а	q	0001
STX	DC2	П	2	В	R	b	r	0010
ETX	XOFF	#	3	С	S	С	S	0011
EQT	DC4	\$	4	D	T	d	†	0100
ENQ	NAK	%	5	Е	U	е	u	0101
ACK	SYN	&	6	F	V	f	V	0110
BEL \a	ETB	ı	7	G	W	g	W	0111
BS \b	CAN	(8	Н	Χ	h	Χ	1000
HT \†	EM)	9	-	Υ	i	У	1001
LF \n	SUB	*	:	J	Z	j	Z	1010
VF\v	ESC	+	;	Κ	(k	{	1011
FF \f	FS	,	<	L	\	1	1	1100
CR \r	GS	-	=	М)	m	}	1101
SO	RS		>	Ν	٨	n	~	1110
SI	US	/	?	0	_	0	DEL	1111

Codifica ASCII

L'ASCII nasce nel mondo anglosassone. E' sufficiente per lo scambio di caratteri in <u>lingua inglese</u>.

E i caratteri accentati?

E simboli monetari diversi dal dollaro?

Codifiche ISO 8859

ISO 8859 – <u>Serie di standard</u> promossi dall'International Standard Organization (ISO) e dall'International Elechtrotechnical Commision (IEC) per la codifica di caratteri su 8 bit.

- Nasce per rimediare al problema della necessità di caratteri addizionali
- Aggiunge un ulteriore bit a sinistra, passando dai 7 bit dell'ASCII a 8 bit e raddoppiando i posti disponibili, da 128 (2^7) a 256 (2^8)

Codifiche ISO 8859

- ISO 8859-1 west European languages (Latin-1)
- ISO 8859-2 east European languages (Latin-2)
- ISO 8859-3 southeast European languages (Latin-3)
- ISO 8859-4 Scandinavian/Baltic languages (Latin-4)
- ISO 8859-5 Latin/Cyrillic
- ISO 8859-6 Latin/Arabic
- ISO 8859-7 Latin/Greek
- ISO 8859-8 Latin/Hebrew
- ISO 8859-9 Latin-1 modification for Turkish (Latin-5)
- ISO 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
- ISO 8859-11 Latin/Thai
- ISO 8859-12 Latin/Devanagari
- ISO 8859-13 Baltic Rim languages (Latin-7)
- ISO 8859-14 Celtic (Latin-8)
- ISO 8859-15 west European languages (Latin-9)

ISO 8859-1

0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111	
NUL \0	DLE	SP	0	@	Р	`	р			NBS	o	À	Ð	à	ð	0000
SOH	XON	ļ.	1	Α	Q	a	q			i	±	Á	Ñ	á	ñ	0001
STX	DC2	П	2	В	R	b	r			¢	2	Â	Ò	â	Ò	0010
ETX	XOFF	#	3	С	S	С	S			£	3	Ã	Ó	ã	Ó	0011
EQT	DC4	\$	4	D	Т	d	†			a	1	Ä	Ô	ä	Ô	0100
ENQ	NAK	%	5	Е	U	е	u			¥	μ	Å	Õ	å	Õ	0101
ACK	SYN	&	6	F	\vee	f	V			- 1	¶	Æ	Ö	æ	Ö	0110
BEL\a	ETB	ı	7	G	W	g	W			§	*	Ç	×	Ç	÷	0111
BS \b	CAN	(8	Н	Χ	h	Χ				5	È	Ø	è	Ø	1000
HT \†	EM)	9		Υ	i	У			©	1	É	Ù	é	ù	1001
LF \n	SUB	*	:	J	Z	j	Z			₫	9	Ê	Ú	ê	ú	1010
VF\v	ESC	+	;	K	(k	{			«	>>	Ë	Û	ë	û	1011
FF \f	FS	,	<	L	\					7	1/4	Ì	Ü	Ì	ü	1100
CR \r	GS	-	=	M)	m	}			SH	1/2	ĺ	Ý	ĺ	ý	1101
SO	RS		>	Ν	Λ	n	~			®	3/4	Î	Þ	î	þ	1110
SI	US	/	?	0		0	DEL			-	ડે	Ϊ	β	Ϊ	ÿ	1111

ISO 8859-15

L'ISO 8859-15 è un <u>aggiornamento dell'ISO 8859-1</u> per aggiungere il simbolo dell'Euro e completare la copertura di francese, finnico e estone.

0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111	
NUL \0	DLE	SP	0	@	Р	*	р			NBS	0	À	Ð	à	ð	0000
SOH	XON	Į.	1	Α	Q	a	q			i	±	Á	Ñ	á	ñ	0001
STX	DC2	Ш	2	В	R	b	r			¢	2	Â	Ò	â	Ò	0010
ETX	XOFF	#	3	С	S	С	S			£	3	Ã	Ó	ã	Ó	0011
EQT	DC4	\$	4	D	T	d	†			€	Ž	Ä	Ô	ä	Ô	0100
ENQ	NAK	%	5	Е	U	е	u			¥	μ	Å	Õ	å	Õ	0101
ACK	SYN	&	6	F	\vee	f	V			Š	¶	Æ	Ö	æ	Ö	0110
BEL\a	ETB	ı	7	G	W	g	W			§	*	Ç	×	Ç	÷	0111
BS \b	CAN	(8	Н	Χ	h	Χ			Š	Ž	È	Ø	è	Ø	1000
HT \†	EM)	9		Υ	i	У			©	1	É	Ù	é	ù	1001
LF \n	SUB	*	:	J	Z	j	Z			₫	<u>o</u>	Ê	Ú	ê	ú	1010
VF\v	ESC	+	;	K	(k	{			«	>>	Ë	Û	ë	û	1011
FF \f	FS	,	<	L	\					7	Œ	Ì	Ü	Ì	ü	1100
CR \r	GS	-	=	M)	m	}			SH	œ	ĺ	Ý	ĺ	ý	1101
SO	RS		>	Ν	Λ	n	~			®	Ϋ	Î	Þ	î	þ	1110
SI	US	/	?	0	_	0	DEL			-	خ	Ϊ	ß	Ϊ	ÿ	1111

Codifiche ISO 8859

E se un documento dovesse contenere sia caratteri in greco che parole in italiano?

E cinese, giapponese, coreano...?

Standard Unicode (ISO 10646)

Obiettivo: sistema di codifica che assegni un <u>numero univoco a</u> <u>ciascun carattere</u> in modo da gestire testi scritti nella maggior parte delle sistemi di scrittura del mondo.

- Caratteri su 31 bit (quindi ci sono 2 147 483 648 slot disponibili)
- I primi 16 bit (65 536 caratteri) costituiscono il <u>Basic Multilingual</u>
 <u>Plane</u> che contiene la maggior parte dei caratteri usati nelle lingue moderne

Standard Unicode (ISO 10646)

- Latin, Greek, Cyrillic, Hebrew, Arabic, Armenian, Georgian
- Chinese, Japanese and Korean Han
- Hiragana, Katakana, Hangul, Devanagari, Bengali, Gurmukhi, Gujarati,
 Oriya, Tamil, Telugu, Kannada, Malayalam, Thai, Lao, Khmer, Bopomofo,
 Tibetan, Runic, Ethiopic, Canadian Syllabics, Cherokee, Mongolian, Ogham,
 Myanmar, Sinhala, Thaana, Yi, ..
- Hieroglyphs, historic Indo-European languages, Tengwar, Cirth, Klingon
- graphical, typographical, mathematical and scientific symbols, (TeX, Postscript, APL, MS-DOS, MS-Windows, Macintosh, OCR fonts, as well as many word processing and publishing systems

Standard Unicode (ISO 10646)

Di fatto, con lo standard Unicode servono 4 byte per memorizzare ogni carattere.

Un testo scritto <u>in inglese</u> e codificato in Unicode <u>quadruplica</u> la sua dimensione rispetto ad un file ASCII

Anche un testo scritto in italiano (o in qualsiasi delle altre lingue degli standard ISO 8859) <u>quadruplica</u> la propria dimensione rispetto ad un file con codifica appartenente alla famiglia ISO 8859

Unicode Transfer Format (UTF-8)

L'UTF-8 è una transcodifica a lunghezza variabile per codificare in maniera consistente

- I caratteri ASCII che in Unicode occuperebbero 4 byte ciascuno, restano su un byte
- I caratteri aggiuntivi di ISO-8859 (ad esempio «è») occupano 2 byte
- I caratteri che occuperebbero da 12 a 16 bit (cioè tutti quelli del Basic Multilingual Plane) vanno su 3 byte

Unicode Transfer Format-8 (UTF-8)

UNICODE UTF-8

0000000 00000000 00000	000 0xxxxxx	0xxxxxx	X
0000000 00000000 00000	ххх ххуууууу	110xxxxx 10yyyyy	Y
0000000 000000000 xxxxy	yyy yyzzzzz	1110xxxx 10yyyyyy 10zzzzz	Z
0000000 000xxxyy yyyyz		10yyyyyy 10zzzzzz 10kkkkk	k
00000xx yyyyyyzz zzzzk		10zzzzzz 10kkkkk 10vvvvv	V
xyyyyyy zzzzzkk kkkv 11111:		10kkkkk 10vvvvv 10hhhhhh	h

Unicode Transfer Format (UTF-8)

- Quando un editor di testo interpreta un file con codifica UTF-8, se incontra un byte che inizia per 1 <u>conta quanti altri 1</u> seguono prima di arrivare ad uno 0. Per esempio, nel byte 110xxxxx, un solo 1 segue l'1 iniziale. Sia *n* il numero di 1 tra l'1 iniziale e il primo 0. I bit restanti di questo byte e I sei bit finali di ognuno degli *n* byte che <u>seguono rappresentano il carattere Unicode da</u> visualizzare.
- Dunque un byte 110xxxxx informa che i primi cinque bit di un carattere Unicode sono alla fine di questo byte (xxxxx) e i restanti sei sono contenuti nel byte 10yyyyyy che segue (yyyyyy).
- Un byte 1110xxxx includerà quindi i primi quattro bit di un carattere Unicode. I bit restanti saranno nei due byte seguenti (10yyyyyy 10zzzzzz).
- Un byte 11110xxx includerà i primi tre bit di un carattere Unicode, informandoci che il resto dei bit saranno nei tre byte seguenti.
- Si noti che in UTF-8 solo il primo byte del "treno" di byte che compongono un carattere UTF-8 comincia con degli uno consecutivi ad indicare quanti "vagoni" compongono il treno. I byte successivu sono nella forma 10yyyyyy, mentre un carattere originariamente esprimibile in ASCII è l'unico che inizia con uno 0 e non ha "vagoni". In questo modo viene evitata qualunque ambiguità.

Digitalizzazione di suoni

Digitalizzazione di suoni

Tradurre il segnale in una <u>sequenza</u> <u>di numeri</u> rappresentanti la sua ampiezza ad istanti successivi.

> 10001101 10001101 11111101 10001101 11010001 10001101

• • •

10001101 10001101

Digitalizzazione di suoni

Campionamento

Quantizzazione

Codifica Binaria

Campionamento

Conversione di un <u>segnale continuo</u> in un <u>segnale discreto</u> valutandone l'ampiezza a intervalli regolari

Campionamento

Teorema di Shannon-Nyquist. Se digitalizziamo un segnale periodico con una frequenza di campionamento superiore al <u>doppio della</u> <u>frequenza della sua armonica più alta</u>, allora la sequenza di numeri ottenuta <u>contiene tutta l'informazione</u> del segnale originario

L'orecchio umano non può percepire componenti armoniche di frequenza superiore a 22 KHz

Se campioniamo il segnale a 44,1 KHz siamo sicuri che non perdiamo contenuto informativo apprezzabile dall'orecchio umano

Quantizzazione

Il processo di <u>mappare valori di input</u> da un insieme grande ad un insieme più piccolo, numerabile e spesso <u>finito</u>

- Introduce un <u>errore di</u> <u>quantizzazione</u> (differenza tra valore di input e il valore quantizzato
- CD Audio usano 16 bit (65536 possibili livelli)

Esempio

Quanto spazio occupa un'ora di musica, registrata su con due microfoni, campionata a 44,1 KHz e quantizzata su 16 bit?

- 1 ora di musica: 3.600 secondi
- Campionamento a 44,1 KHz: 44.100 campioni al secondo, per ciascuno dei segnali dai 2 microfoni
- Ogni valore campionato finisce su 2 Byte (quantizzazione su 16 bit)
- $44.100 \times 3.600 \times 2 \times 2 = 635.040.000$ Byte ≈ 600 MB

1 ora di musica stereo su un CD Audio occupa circa 600 MB

Compressione

Ridurre i bit necessari per rappresentare un'informazione digitale

Compressione Lossless: Compressione senza perdita di informazione

Compressione Lossy: Compressione con perdita di informazione

Formati di file audio

- Non compressi
 - WAV
 - AIFF
 - AU
- Con compressione lossless
 - FLAC (Free Lossless Audio Codec)
 - Apple Lossless
 - Lossless Windows Media Audio
- Con compressione lossy
 - MP3
 - AAC
 - Ogg/Vorbis

Formati proprietari

- MP3 (MPEG-1/2 Layer-3)
 - Compressione lossy fino al 10% del PCM
 - Intuizione: un'armonica di ampiezza più grande «oscura» quelle vicine in frequenza con ampiezza più piccola
- AAC (Advanced Audio Coding)
 - Successore di MP3 (migliore qualità a parità di compressione)
 - Incluso ufficialmente nello standard MPEG-4
 - Ampiamente usato da piattaforme streaming

Formati proprietari: regolati da brevetti, possono prevedere <u>royalties</u> per la <u>distribuzione</u> di contenuti, per la <u>produzione</u> di codec... Alcuni formati proprietari includono anche strumenti per il <u>Digital Rights</u> <u>Management</u> (DRM)

Digital Rights Management (DRM)

Insieme di sistemi, meccanismi e protocolli (in sigla DRM) che permettono ai detentori dei diritti di opere (multimediali, software, ecc.) il controllo sulle operazioni effettuabili da parte dei fruitori.

Da https://www.treccani.it/enciclopedia/digital-rights-management_Lessico-del-XXI-Secolo/

Esempio: FairPlay (https://it.wikipedia.org/wiki/FairPlay)

Tecnologia Apple per <u>DRM</u>: sfrutta la crittografia per cifrare i file audio e permettere la decodifica solo a utenti autorizzati.

Ad esempio, può essere usato per <u>limitare il numero di dispositivi</u> autorizzati.

Formati aperti

unimc

- WAV
 - Non compresso
 - CD-quality (44,1 KHz, 16 bits)
- Ogg/Vorbis
 - Compressione lossy (simile a MP3)
- FLAC (lossless)
- AIFF

• ...

Digitalizzazione di immagini

Immagini digitali

Immagini raster: L'immagine è una griglia di pixel, ciascuno dei quali è di uno specifico colore. Ideali per immagini della realtà

Immagini vettoriali: Immagini definite a partire da forme geometriche definite sul piano Cartesiano come linee, curve, poligoni. Ad esempio si usano per i fonts.

Digitalizzazione di immagini (raster)

Matrice rettangolare di pixels (larghezza x altezza)

Tradurre il segnale in una sequenza di numeri rappresentanti il colore di ogni pixel in successione

Red	Green	Blue
11110111	11001101	10001101
11010001	10001101	10101101
	•••	
10101101	10001101	10101101

Digitalizzazione di immagini (raster)

- Il pixel è di colore uniforme
- Nel modello RGB (Red, Green, Blue), il colore è definito da tre componenti, rosso, verde e blu, in maniera additiva
- Con <u>24 bit</u> (3 byte) a disposizione, di cui 8 riservati al rosso, 8 al verde e 8 al blu, si possono combinare 256 diversi livelli di rosso, 256 livelli di verde e 256 di blu, per un totale di <u>16.777.216</u> (2²⁴) possibili colori
- Un quarto byte può essere usato per definire il livello di trasparenza (alfa) del pixel

Formati «raster» di immagini

- JPEG (Joint Photographic Experts Group)
 - 8 bit per colore (RGB), no trasparenza
 - Compressione lossy
- PNG (Portable Network Graphics)
 - 8 bit per colore (RGB) + 8 bit per trasparenza
 - Compressione lossless
- BMP (Bitmap)
 - 8 bit per colore (RGB) + 8 bit per trasparenza
 - Nessuna compressione
 - La sua diffusione è dovuta al suo uso in Microsoft Windows

Formati «vettoriali» di immagini

- SVG (Scalable Vector Graphics)
 - Formato aperto basato
 - E' un file XML che descrive l'immagine da visualizzare
- AI (Adobe Illustrator artwork)
 - Proprietario
 - Formato vettoriale nativo per Adobe Illustrator
- PDF (Portable Document Format)
 - Proprietario
 - Basato sul linguaggio di descrizione di pagina di Adobe, definisce anche immagini vettoriali, oltre alle caratteristiche del testo
- Altri: EPS (Encapsulated PostScript), AutoCAD DXC, AutoCAD DWG

Video: sequenza di immagini (*frame*), tipicamente tra 25 e 30 frame per secondo (fps), sincronizzata con un audio

<u>Un'ora di video digitale</u>, con immagini 1920 x 1080 non compresse

- 1920 x 1080 x 3B x 25 fps x 3600 s = 521,4 GB
- (a cui vanno aggiunti i 600 MB per l'audio, se non compresso)

I pixel delle immagini di un video digitale seguono il modello <u>YCbCr</u> (a volte indicato come YUV), anziché RGB dove:

- Y è la componente di <u>luminanza</u>, cioè l'intensità di luce complessiva dell'immagine (la somma dei tre colori primari)
- Cb e Cr sono le componenti di <u>crominanza</u> cioè la differenza dal colore blu (Cb) e la differenza dal colore rosso (Cr)

La luminanza (Y) porta più informazione

- Per ogni gruppo di 4 pixel si campiona integralmente la luminanza (Y), ma solo parzialmente la crominanza
 - 4:2:0 standard (es. DVD)
 - 4:2:2 per alta qualità
- Per un'ulteriore compressione si sfrutta la ridondanza temporale dei frame. Infatti, la differenza tra un frame e il successivo spesso minima

Eliminazione ridondanza temporale

- <u>Anziché trasmettere tutti i fotogrammi</u> per intero, trasmetto un fotogramma intero (I-frame) e poi <u>i fotogrammi «differenza»</u> (P-frame), che sono <u>più facilmente comprimibili</u> (molti pixel consecutivi uguali).
- Per mantenere la qualità, ogni 100-250 P-frame si ritrasmette un I-frame

<u>Per valutare la compressione</u> dei vari formati si utilizza il <u>bit-rate</u> di riferimento, cioè la quantità di informazione trasmessa nell'unità di tempo

Per un sottocampionamento 4:2:0 (che dunque riduce la dimensione della metà) il bit-rate è definito:

(width \times length) pixels \times 8 bit/canale \times 3 canali \times 25 fps \div 2

Nel caso del DVD (codifica MPEG-2) si ha:

 $720 \times 576 \times 8 \times 3 \times 25 \div 2 \cong 120 \text{ Mbit/sec}$

Formati di file video

- avi Audio Video Interleave
 - Formato contenitore sviluppato in Microsoft Windows nel 1992
 - Un flusso video, più flussi audio, nessun supporto per sottotitoli
- mp4 MPEG-4 Part 14
 - Più flussi video e audio, supporto per sottotitoli
- mkv Matroska
 - Simile a mp4, ma aperto
 - Supporta molti CODEC
- mov QuickTime File Format
 - Formato contenitore proprietario Apple