Introduction to Exterior Calculus

Professor David Barrett

Transcribed by Thomas Cohn

The previous 3 lectures have covered exterior algebra. Our key object is $\mathcal{A}^k(V) = \operatorname{Alt}^k(V)$. If dim V = n, then dim $\mathcal{A}^k(V) = \binom{n}{k}$. We can bijectively map a basis of $\mathcal{A}^k(V)$ with ascending k-tuples in $\{1, \ldots, n\}$, and with size-k subsets of $\{1, \ldots, n\}$. Now, we are ready to move on to exterior calculus.

Defn: Let $U \subseteq \mathbb{R}^n$ be open. (Later, we will consider an n-manifold.) A $\underline{k\text{-form}}$ on U is a continuous map $\omega: U \to \mathcal{A}^k(\mathbb{R}^n)$.

$$\omega(\vec{x}) = \sum_{\substack{I \text{ asc} \\ k \text{-tuple}}} b_I(\vec{x}) \Psi_I = \sum_{\substack{I \text{ asc} \\ k \text{-tuple}}} b_I(\vec{x}) \Psi_{i_1} \wedge \dots \wedge \Psi_{i_k} = \sum_{\substack{I \text{ asc} \\ k \text{-tuple}}} b_I(\vec{x}) dx_{i_1} \wedge \dots dx_{i_k}$$

Defn: $\underline{\omega \in C^r} \stackrel{\text{def}}{\Leftrightarrow} b_I \in C^r$ for all b_I .

Let ω, ν be k-forms on U, ϖ be an ℓ -form on U, and g a scalar function on U. Then

- $\omega + \nu$ is a k-form on U,
- $g\omega$ is a k-form on U, and
- $\omega \wedge \overline{\omega}$ is a $(k + \ell)$ -form on U.

Given $\Phi \in C^1(U, V)$, ω k-form on V, we get $\Phi^*\omega$ k-form on U defined by $\Phi^*\omega(\vec{x}) = (D\Phi(\vec{x}))^*\omega(\Phi(\vec{x}))$.

Consider the case where k=1. Then $\mathcal{A}^1(V)=\mathcal{L}^1(V)=V^*=\mathbb{R}^n_{\text{row}}$. We have the basis $\Psi_j=\phi_j:\sum c_k\vec{a_k}\mapsto c_j$, where $\vec{a_j}=\vec{e_j}^T=dx_j$.

Thus, we can define the exterior derivative d, which maps a k-form on U to a (k+1)-basis on U.

Our goal is rule 19: $\int_{M} d\omega = \int_{\partial M} \omega$.

Some words about k = 0: our original definition for $\mathcal{A}^0(V)$ doesn't make much sense, but reverse engineering from last week, we find $\dim(\mathcal{A}^0(\mathbb{R}^n)) = 1$. $\mathcal{A}^0(\mathbb{R}^n)$ has basis Ψ_{\emptyset} .

Defn: $\mathcal{A}^0(\mathbb{R}^n) = \mathbb{R}, \ \Psi_{\emptyset} = 1.$

From the last 395 lecture, rule 19 plus the fact that $\partial \partial M = \emptyset$ leads us to expect $dd\omega = 0$ (rule 17). We also expect some sort of product rule. This suggests we define

$$d\left(\sum_{I \text{ asc}} b_I(\vec{x}) \, dx_{i_1} \wedge \dots \wedge dx_{i_k}\right) = \sum_{I \text{ asc}} db_I \wedge dx_{i_1} \wedge \dots \wedge dx_{i_k}$$

In \mathbb{R}^2 , this gives us

$$\begin{split} d(\alpha \, dx + \beta \, dy) &= d(\alpha \, dx) + d(\beta \, dy) \\ &= d\alpha \wedge dx + d\beta \wedge dy \\ &= \left(\frac{\partial \alpha}{\partial x} dx + \frac{\partial \alpha}{\partial y} dy\right) \wedge dx + \left(\frac{\partial \beta}{\partial x} dx + \frac{\partial \beta}{\partial y} dy\right) \wedge dy \\ &= \frac{\partial \alpha}{\partial y} dy \wedge dx + \frac{\partial \beta}{\partial x} dx \wedge dy \\ &= -\frac{\partial \alpha}{\partial y} dx \wedge dy + \frac{\partial \beta}{\partial x} dx \wedge dy \\ &= \left(\frac{\partial \beta}{\partial x} - \frac{\partial \alpha}{\partial y}\right) dx \wedge dy \end{split}$$