```
import numpy as np
import statistics as st
import random
from array import *
import matplotlib.pyplot as plt
import math
D = 3 #Banyak Variabel
maxIterasi = 100 #Iterasi
HMS = 7 #Harmony Memory Search
BB = 0 #Batas bawah
BA = 1 \#Batas atas
HMCR = 0.9 #Harmony Memory Consideration Rate
PAR = 0.5 #Pitch Adjustment Rate
BW = HMCR*(1-PAR) #Bandwidth
def HarmonyMemory(HMS, D, BA, BB):
  HM = np.empty((HMS,D)) #Nilai didalam Harmony Memory
  for i in range(HMS):
    for j in range(D):
      #Membangkitkan nilai acak
 ·····HM[i][i]·=·(random_random()·*·(RA·-·RR))·+·RR·
 Penyimpanan dokumen otomatis telah tertunda selama 2 menit. Memuat ulang halaman mungkin
 dapat memperbaiki masalahnya. Simpan dan muat ulang halaman.
HM = HarmonyMemory(HMS, D, BA,BB)
print(HM)
    [0.05526352 0.23495672 0.03662776]
     [0.33765971 0.73243532 0.24154105]
     [0.71330956 0.4668491 0.06536853]
     [0.89189186 0.08509817 0.30169944]
     [0.53517705 0.76209457 0.66499882]
     [0.31728848 0.33079549 0.64880331]]
def Fitness(populasi):
  sz = populasi.shape
  HMS = sz[0]
  dimensi = sz[1]
  #Menyimpan nilai Objective tiap individu pada inisialisasi Fit
  Fit = np.empty(HMS)
  for i in range(HMS):
```

```
#Mencari nilai variabel dan disimpan dalam inisialiasi d
    for j in range(dimensi):
        \#Permasalahan linear = 15x-x^2
      d = np.sum((15*(populasi[i][j])) - ((populasi[i][j])**2))
    Fit[i] = d #menyimpan nilai d didalam HM
  return Fit
F = Fitness(HM)
print(F)
    [5.18736965 0.5480748 3.56477374 0.97625486 4.43446898 9.53275892
     9.31110385]
def NewHarmony(populasi, PAR, j):
  sz = populasi.shape
  HMS = sz[0]
  dimensi = sz[1]
  #Memilih 3 individu dari populasi secara acak
  r1 = random.randint(0,HMS - 1)
  r2 = random.randint(0,HMS - 1)
  r3 = random.randint(0,HMS - 1)
```

#Untuk mengantisinasi nilai error maka setian hasil di modulo HMS

Penyimpanan dokumen otomatis telah tertunda selama 2 menit. Memuat ulang halaman mungkin dapat memperbaiki masalahnya. <u>Simpan dan muat ulang halaman</u>.

```
while r3 == r1 or r3 == r2:
    r3 = (r3 + 1) % HMS

v = HM[r3][j] + PAR*(HM[r1][j]-HM[r2][j]) #Nilai koordinat baru return v

v = NewHarmony(HM,PAR,1)
print(v)
    0.19800237253949965

def ImprovisasiHarmony(HMS, D, BA,BB)
    print("Inisialiasi Harmony Memory :\n",HM)
F = Fitness(HM)
    print("\nNilai Fitness per-Individu :\n",F)
#v = NewHarmony(HM,PAR,1)
    newHM = np.empty((1,D))
    FitBest = np.empty((maxIterasi+1))
```

```
FitBest[0] = F.min()
  t = 0
  while t < maxIterasi:
    for i in range(HMS):
      for j in range(D):
        #Pemilihan Acak
        randHMS = random.randint(0,HMS)
        #Harmony Memory Consideration Rate
        if randHMS < HMCR:
           #HMrand = random.randint(0,HM)
           newHM[0][j] = HM[i][j]
           #Pitch Adjustment
           if randHMS < PAR:
             newHM[0][j] = newHM[0][j] - (randHMS*BW)
             \#newHM[0][j] = newHM[0][j] * (1-PAR)
           else :
             newHM[0][j] = newHM[0][j] + (randHMS*BW)
        else:
           newHM[0][j] = HM[i][j]
    #Replacement
    FitU = Fitness(newHM)
    if FitU < F[i]:</pre>
      F[i] = FitU
      for j in range(D):
 Penyimpanan dokumen otomatis telah tertunda selama 2 menit. Memuat ulang halaman mungkin
 dapat memperbaiki masalahnya. <u>Simpan dan muat ulang halaman</u>.
    t+=1
    return FitBest
IndBest = ImprovisasiHarmony(HM)
    Inisialiasi Harmony Memory :
     [0.05526352 0.23495672 0.03662776]
     [0.33765971 0.73243532 0.24154105]
     [0.71330956 0.4668491 0.06536853]
     [0.89189186 0.08509817 0.30169944]
     [0.53517705 0.76209457 0.66499882]
     [0.31728848 0.33079549 0.64880331]]
    Nilai Fitness per-Individu :
     [5.18736965 0.5480748 3.56477374 0.97625486 4.43446898 9.53275892
     9.31110385]
print("\nIndividu Terbaik :\n",IndBest)
    Individu Terbaik :
                                                             0.06
     [0.5480748 0.01
                        0.02
                                  0.03
                                           0.04
                                                    0.05
     9.97
              0.08
                       0.09
                                 0.1
                                          0.11
                                                   0.12
                                                             0.13
```

0.14	0.15	0.16	0.17	0.18	0.19	0.2
0.21	0.22	0.23	0.24	0.25	0.26	0.27
0.28	0.29	0.3	0.31	0.32	0.33	0.34
0.35	0.36	0.37	0.38	0.39	0.4	0.41
0.42	0.43	0.44	0.45	0.46	0.47	0.48
0.49	0.5	0.51	0.52	0.53	0.54	0.55
0.56	0.57	0.58	0.59	0.6	0.61	0.62
0.63	0.64	0.65	0.66	0.67	0.68	0.69
0.7	0.71	0.72	0.73	0.74	0.75	0.76
0.77	0.78	0.79	0.8	0.81	0.82	0.83
0.84	0.85	0.86	0.87	0.88	0.89	0.9
0.91	0.92	0.93	0.94	0.95	0.96	0.97
0.98	0.99	1.]			

```
x = np.linspace(0,1,maxIterasi + 1)
plt.plot(x, IndBest, label='f=F')
plt.show()
```


Penyimpanan dokumen otomatis telah tertunda selama 2 menit. Memuat ulang halaman mungkin dapat memperbaiki masalahnya. <u>Simpan dan muat ulang halaman</u>.

X

Tidak dapat terhubung ke layanan reCAPTCHA. Periksa koneksi internet Anda, lalu muat ulang untuk mendapatkan tantangan reCAPTCHA.

Penyimpanan dokumen otomatis telah tertunda selama 2 menit. Memuat ulang halaman mungkin dapat memperbaiki masalahnya. <u>Simpan dan muat ulang halaman</u>.