Universidade Federal de Viçosa

Curso de Ciência da Computação

Igor Lucas Dos Santos Braz - 3865 Otávio Santos Gomes - 3890 Pedro Cardoso De Carvalho Mundim - 3877

Exercício Prático 3 - Pesquisa Operacional (CCF 280)

Terceiro Exercício Prático (Questão 5) da disciplina Pesquisa Operacional - CCF 280, do curso de Ciência da Computação da Universidade Federal de Viçosa - Campus Florestal

Professor: Marcus Henrique Soares Mendes

Florestal

2022

SUMÁRIO

Questão 5

Questão 5

A questão 5 consiste em encontrar a solução ótima para a situação da tabela dada a seguir. Nela, as colunas representam as tarefas enquanto as linhas representam as máquinas, e o custo para uma máquina resolver uma tarefa é representado na interseção entre máquinas e tarefas.

Máquinas\Tarefas	T1	T2	ТЗ	T4
M1	9	14	19	15
M2	7	17	20	19
M3	9	18	21	18
M4	10	12	18	19
M5	10	15	21	16

Tabela 1: Dados do problema.

Para a solução desse problema vamos utilizar o Método Húngaro, visto que trata-se de um problema de alocação. Porém, a matriz de tarefas apresentada não é quadrada. Dessa forma é necessário fazer um pré-processamento, no qual é feito a inclusão de zeros, para tornar a matriz quadrada, como mostrado abaixo.

9	14	19	15	0
7	17	20	19	0
9	18	21	18	0
10	12	18	19	0
10	15	21	16	0

Tabela 2: Matriz atualizada.

Em seguida, podemos começar o processamento do algoritmo. O primeiro passo é subtrair de cada linha o menor elemento dessa linha, porém como todas contém zeros, ignoramos esse passo.

O segundo passo é subtrair de cada coluna o menor elemento dessa coluna. A matriz atualizada é mostrada abaixo.

3	-12	-18	-15	0 X
2	3	3	1	^
3	0	0	4	0
2	6	3	3	0
0	5	2	4	0
2	2	1	0	0

Tabela 3: Matriz atualizada - passo 2.

O terceiro passo consiste em riscar as linhas e colunas em que algum dos elementos vale zero usando o menor número de riscos. No entanto, ao fazer os riscos notamos que a quantidade será menor que 5 (o tamanho da matriz).

2	2	1	0	0
0	5	2	4	0
2	6	3	3	0
3	0	0	4	0
3	3	3	1	0

Tabela 4: Matriz atualizada - passo 3.

Dessa forma é necessário subtrair o menor valor que não está riscado (sendo nesse caso 1) nos elementos não riscados, e somá-lo nos elementos que foram riscados duas vezes (cor vermelha escura). O resultado é mostrado abaixo.

2	2	1	0	1
0	5	2	4	1
1	5	2	2	0
3	0	0	4	1
2	2	2	0	0

Tabela 5: Matriz atualizada - passo 5.

Ao fazer os riscos, novamente notamos que a quantidade é menor que 5 (o tamanho da matriz).

2	2	1	0	1
0	5	2	4	1
1	5	2	2	0
3	0	0	4	1
2	2	2	0	0

Tabela 6: Matriz atualizada - passo 3.

Dessa forma é necessário subtrair o menor valor que não está riscado (sendo nesse caso 1) nos elementos não riscados, e somá-lo nos elementos que foram riscados duas vezes (cor vermelha escura). O resultado é mostrado abaixo.

2	1	0	0	1
0	4	1	4	1
1	4	1	2	0
4	0	0	5	2
2	1	1	0	0

Tabela 7: Matriz atualizada - passo 5.

Ao fazer os riscos, notamos agora, que a quantidade é igual a 5 (o tamanho da matriz), como dado abaixo.

2	1	0	0	1
0	4	1	4	1
1	4	1	2	0
4	0	0	5	2
2	1	1	0	0

Tabela 8: Matriz atualizada - passos 3 e 4.

Dessa vez, é possível então, fazer a alocação ótima das tarefas. Abaixo mostramos tanto a alocação na matriz gerada, quanto na matriz original.

2	1	0	0	1
0	4	1	4	1
1	4	1	2	0
4	0	0	5	2
2	1	1	0	0

Tabela 9: Seleção dos zeros independentes.

9	14	19	15	0
7	17	20	19	0
9	18	21	18	0
10	12	18	19	0
10	15	21	16	0

Tabela 10: Seleção dos valores na matriz original.

Portanto, o valor ótimo, desconsiderando-se a última coluna que foi adicionada apenas para o cálculo, é 19 + 7 + 12 + 16 = 54.