Project Design Phase - II

Technology Stack (Architecture and Stack)

SMART FARMER – IOT ENABLED SMART FARMING APPLICATION

Team ID PNT2022TMID12911

Technical Architecture:

The deliverable will include the architectural diagram as below and the information as per the table 1 and table 2.

Guidelines:

- 1. Include all the processes (As an application logic/Technology Block)
- 2. Provide Infrastructural demarcation (Local/Cloud)
- 3. Indicate external interfaces (third party API's etc.,)
- 4. Indicate Data Storage components/services
- 5. Indicate interface to machine learning models (if applicable).

Description:

- The parameters from the farming environment such as temperature, humidity, soil moisture is sensed using different sensors and the obtained value is stored in the IBM cloud.
- Arduino UNO board is used as a processing unit that processes the data obtained from sensors and weather data from weather API.

- Node-Red is used as a programming tool to wire the hardware, software, and API's.
- The MQTT protocol is used for communication.
- The data collected from the sensors is given to the mobile application through IBM IoT Cloud. The mobile application was developed using MIT app inventor.
- User can take decisions based on the parameters displayed in the mobile application.
- User can monitor and control the process of their field/plant through the mobile application itself.

Table -1: Components and Technologies

S.No	Component	Description	Technology
1.	User Interface	User interaction with application such as UI and Mobile app	HTML, CSS, JavaScript/ Angular Js/React Js etc.
2.	Application Logic -1	Logic for a process in the application	Python
3.	Application Logic -2	Logic for a process in the application	IBM Watson IoT service
4.	Application Logic -3	Logic for a process in the application	IBM Watson Assistant
5.	Database	Data Type, Configurations etc.	MySQL, NoSQL, etc.
6.	Cloud Database	Database Service on Cloud	IBM Cloud
7.	File Storage	File storage requirements	IBM Block storage or other storage service or local filesystem
8.	External API – 1	Purpose of External API used in the application	IBM Weather API, etc.,
9.	Machine Learning Model	Purpose of Machine learning model	Object recognition model, etc.,
10.	Infrastructure (Server/Cloud)	Application Deployment on Local system/Cloud local server configuration	Local, Cloud Foundry, Kubernetes, etc.,

Table -2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source	List the open-source	Technology of
	Frameworks	frameworks used	Opensource
			framework
2.	Security	Sensitive and private data	e.g. Node-Red,
	Implementation	must be protected from	Open weather App
	•	their production until the	API, MIT App
		decision-making and	Inventor, etc.
2	Caalabla Avabitaatuwa	storage stages	Tachnologyusad
3.	Scalable Architecture	scalability is a major concern for IoT platforms.	Technology used
		It has been shown that	
		different architectural	
		choices of IoT platforms	
		affect system scalability	
		and that automatic real	
		time decision-making is	
		feasible in an	
		environment composed	
		of dozens of thousand	Tarker land and
4.	Availability	Automatic adjustment of farming equipment made	Technology used
		possible by linking	
		information like	
		crops/weather and	
		equipment to auto-adjust	
		temperature, humidity,	
		etc.	
5.	Performance	The idea of implementing	Technology used
		integrated sensors with	
		sensing soil and	
		environmental or ambient parameters in	
		farming will be more	
		efficient for overall	
		monitoring.	