

《现代密码学》第十章

身份鉴别

上讲内容回顾

北京郵電大學 BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS

- ●密钥管理简介
- ●密钥分配
- ●密钥协商
- ●PKI及数字证书简介

本讲主要内容

- ●身份鉴别的定义
- ●口令身份鉴别
 - ▶ 固定口令
 - > 一次口令
- ●身份鉴别协议
 - > 挑战应答协议
 - > 零知识证明协议

本讲主要内容

- ●身份鉴别的定义
- 口令身份鉴别
 - > 固定口令
 - > 一次口令
- 身份鉴别协议
 - > 挑战应答协议
 - > 零知识证明协议

身份鉴别的定义

定义:身份鉴别,又称为身份识别、身份认证。它是证实客户的真实身份与其所声称的身份是否相符的过程。

身份鉴别手段:

- ▶已拥有的事物:通常是物理配件。如,磁卡、智能卡(或IC卡)、证件。
- ▶固有事物(对某个人): 利用人类物理特征和无意行为。如, 手写签名、指纹、声音、视网膜模式、手的几何形状等。
- ▶已知事物:口令、个人识别码(PIN)、挑战-应答协议中已被证实的秘密或私钥。

本讲主要内容

- 身份鉴别的定义
- ●口令身份鉴别
 - ▶ 固定口令
 - > 一次口令
- 身份鉴别协议
 - > 挑战应答协议
 - > 零知识证明协议

- 口令生成
- 口令分配(注册)
- 口令保存
- 口令使用(登录)
- 口令备份/恢复(忘记口令)
- 口令撤销/更新(修改密码)

• 用户的脆弱口令行为

表 1 本文使用口令集的基本信息

Password Dataset	Service Type	Language	Leaked Time	Total Passwords	Unique Password	Personal Info	Typical Reference
Dodonew	Gaming, Ecommerce	Chinese	2011-12	16 258 891	10 135 260		Ref [23-26]
CSDN	Programmer Forum	Chinese	2011-12	6428277	4 037 605		Ref [23-26]
126	Email	Chinese	2011-12	6392568	3778168		Ref [28]
12306	Train Ticketing	Chinese	2014-12	129 303	117 808	√ *	Ref [29]
Rockyou	Social Networks	English	2009-12	32 581 870	14326970		Ref[23-24,30]
000webhost	Web Hosting	English	2015-10	15 251 073	10 583 709		Ref [28]
Yahoo	Web Portal	English	2012-07	442834	342510		Ref [23-25]
Rootkit	Hacker Forum	English	2011-02	69 419	56 900	√ **	Ref [27]

Notes: * The 12306 dataset includes five types of personal information; name, birthday, email, phone number and national identity card number.

^{**} The Rootkit dataset includes four types of personal information: name, birthday, user name and email.

• 口令构造的偏好性选择

1. 国民口令

表 2 各个网络服务中最流行的 10 个口令

Rank	Dodonew	CSDN	126	12306	Rockyou	000 webhost	Yahoo	Rootkit
1	123456	123456789	123456	123456	123456	abc123	123456	123456
2	a123456	12345678	123456789	a123456	12345	123456a	password	password
3	123456789	11111111	111111	5201314	123456789	12qw23we	welcome	rootkit
4	111111	dearbook	password	123456a	password	123abc	ninja	111111
5	5201314	00000000	000000	111111	iloveyou	a123456	abc123	12345678
6	123123	123123123	123123	woaini1314	princess	123qwe	123456789	qwerty
7	a321654	1234567890	12345678	123123	1234567	secret666	12345678	12345678
8	12345	8888888	5201314	000000	rockyou	YfDbUfNjH10305070	sunshine	123123
9	000000	111111111	18881888	qq123456	12345678	asd123	princess	qwertyui
10	123456a	147258369	1234567	$1 \\ qaz \\ 2 \\ ws \\ x$	abc123	qwerty123	qwerty	12345
ercetage/%	3. 28	10.44	3.52	1.28	2.05	0.79	1.01	3.94

• 口令构造的偏好性选择

1. 国民口令

- ✓ 除了选择单词作口 令,用户常常将单词进行简单变换,以满足网站口令 设置策略的要求. 比如"123456a"可以满足"字母+数字"的 策 略 要求.
- ✔ 中文国民口令多为纯数字,而英文 国民口令多含字母
- ✔ 爱情这一主题在国民口令中占据了重 要地位.
- ✓ 高 达 1 . 0 1 % \sim 1 0 . 4 4 % 的 用 户 选 择 最 流 行 的 1 0 个 \Box \Diamond

攻击者只要尝试 1 0 个最 流行的口令,其成功率就会达到 $1.01\% \sim 10.44\%$

- 口令构造的偏好性选择
- 2. 字符组成结构

表 3 中英文用户口令的字符组成结构

%

Datasets	-[a-z]+ \$	[a-z]	-[A-Za-z]+\$	[a-zA-Z]	-[0-9]+\$	[0-9]	^[a-zA- Z0-9]+\$	-[a-z]+ [0-9]+\$	[a-zA-Z]+ [0-9]+\$	-[a-z]+1\$
Dodonew	10.30	66.32	10.92	69.05	30. 76	88. 52	98.33	43.50	45.74	1.40
CSDN	11.64	51.39	12.35	54.33	45. 01	87.10	96.31	26.14	28.45	0.24
126	32.66	66.63	34.86	68.87	30.66	63.24	95.92	21.99	23.15	2.35
12306	5.26	72.52	5.42	72.94	27. 03	94.56	99.87	50.85	51.50	0.93
Rockyou	41.71	80.58	44.07	83.89	15.94	54.04	96.25	27.70	30.18	4. 55
000webhost	0.04	98. 04	0.26	99.57	0.02	98.41	93.08	54. 42	60.95	4. 66
Yahoo	33.09	92.83	34.64	94.06	5.89	64.74	97.15	38.27	41.85	4. 80
Rootkit	41.60	84. 64	43.84	85.84	13.88	53.97	93.90	19.19	21.55	1.81

• 口令构造的偏好性选择

2. 字符组成结构

- ✓ 当网站设置了口令生成策略时,口令的字符组成很大程度上由口 令策略所决定.
 - ✓高 达99.57%的000webhost口令由字母 和 数 字 共 同构成, 这意 味 着 该 网 站 在 运 行 不 久 后 就 执 行 了"字 母十数字"的口令策略.
 - ✓用户也显示了偏好: 54.42%的 000webhost 口 令 符 合 "一 串 小 写字母十一串数字"的结构.
- ✔ 当网站未设置口令构成策略时,用户口令的结构直接体现了用户 的偏好.
 - ✓绝大多数中文口令包含数字,且27%~45%仅由数字构成
- ✓英文口令喜欢包含字母,低于16%的口令仅由数字构成,有 相当一部分由一串小写字母后面跟1组成. FUPTISC 信息安全中心

- 口令构造的偏好性选择
- 3. 基于个人信息构造口令
 - ✓ 早在 1979 年, Morris和 Thompson就 发现 用户构造口令时喜欢使用姓名等个人信息, 在猜测 字典中加入姓名库可以显著提高口令猜测成功率.
 - ✔ 除了姓名、生 日、用 户 名、Email前 缀、身 份 证 号、电 话号码,甚至地名这些个人相关信息都可能被用户使用

用户使用个人信息构造口令的习惯严重降低了口令强度,定向攻击者可依此大大增强其效率.

- 口令构造的偏好性选择
- 3. 基于个人信息构造口令

相当比例的用户使用姓氏或"名的缩写十姓氏"作为口令的构成部分.

英 文 网 站 Root kit用户使用个人信息相较中文网站 1 2 3 0 6 较少,但这 并不能得到"中文用户更倾向于在口令中使用个人信息"的结 论,这 是 因 为 Root kit网 站 是 黑 客论 坛, 其中的用户具有比普通用户更高的安全意识。

表 6 12306 网站口令中个人信息使用频率 %

Types of Personal Info	$12306^{[29]}$	Rootkit
Name	22.35	3.12
Birthdate	24.10	1.19
Account Name	23.60	1.59
Email Prefix	12.66	0.77
ID Number	3.00	
Phone Number	2.73	

表 7 各类姓名	的使用频率
----------	-------

农, 古关江石的民历领华							
12306	Rootkit						
4.68	1.38						
11.15	2.28						
6.49	0.49						
13.64	0.15						
	12306 4. 68 11. 15 6. 49						

• 口令构造的偏好性选择

4. 口令长度

用户口令长度也直接受网站策略影响.

- ✓ 比 如,000webhost提供建站服务,该网站34.7%的口令长度不低于11,这一比例是其他任意网站的2倍以上
- ✓ 对于普通网站来说, 90%以上口令的长度介于6-11之间.

				X T	火 入用厂!	コマ的区が	£ 73° 113				/0
Datasets	1~5	6	7	8	9	10	11	12	13	14	≥15
Dodonew	2.46	12.31	15.87	20.86	22.89	16.37	5.21	1.76	0.89	0.56	0.83
CSDN	0.63	1. 29	0. 26	36.38	24.15	14.48	9.78	5.75	2.61	2.41	2.26
126	0.00	26.16	19.33	22.67	11.26	8.17	4.60	1.76	0.90	0.68	0.12
12306	3.58	11.21	15.08	26.32	23.35	18.13	3.43	1.51	0.55	0.31	0.88
Rockyou	1.93	26.05	19.29	19.98	12.12	9.06	3.57	2.10	1.32	0.86	0.47
000webhost	0.02	5.70	7.92	21.81	15.41	14.51	10.49	7.67	4. 14	3. 14	9. 20
Rahoo	6.39	17.98	14.82	26.90	14.90	12.37	4.79	4.91	0.60	0.34	0.80
Rootkit	0.00	24.37	16.84	25.80	11.01	7.39	3.50	2.25	1.02	0.62	0.00

• 口令构造的偏好性选择

5. 口令重用

References	Year	Research Method	Direct Reuse/%	In-direct Reuse/%			
Ref [27]	2014	User survey	51	26			
Ref [27]	2014	Empirical	43	30			
Ref [46]	2014	Empirical	21	26			
Ref[28]	2016	User survey	45	33			
Our statistics	2016	Empirical	34	31			

- ✓ 面对如此多的需要管理的帐号,重用口令是用户理智的做法,关键 在于如何重用.
- ✓ 跨不同安全级(或重要程度)帐户重用口令,是应努力避免的 2014年,Das等人研究了口令间接重用时新口令和原口令间的相似度,结果表明,
- ✓ 只有约30%的用户重用口令时简单修改(即新旧口令相似度在[0.8,1]),绝大多数用户的新旧口令相似度小于0.8,表明修改幅度较大.
- ✓ 中文用户口令重用的问题要更严重:约有40%以上间接重用的中文口令相似度在[0.7,1],而英文口令仅有20%.

固定口令(一)

Α

PW

 $|ID_A,PW|$

В

PW

检查 口令和身份

固定口令 (二)

Α

PW

 $|ID_A,PW|$

攻击--Mallory找到(任意)某个用户口令

- > 假设口令是六位数(银行密码);
- ➤ Mallory可以创建一个六位数(000000~999999) 的列表:
- 然后对每一个数使用散列函数,结果就是一个一百万个散列的列表:
- 她窃取得到口令档案并搜索条目中的口令字段列,找出一个与之相匹配的;
- > 找到匹配以后, Mallory就可以再上线, 用口令来访问系统。

固定口令 (三)

注册环节:口令加盐(Salting Passwords)

- ① 接收用户提供的口令pw;
- ② 生成一个盐值: Dsalt = Arandom();
- ③ 生成口令信息: s = Agen(Dsalt, pw);
- ④ 把口令信息s和Dsalt存入数据库的口令字段中。

登录环节:

- ① 接收用户提供的帐户名Dname和口令pw;
- ② 在帐户信息数据库中检查Dname的合法性,如果合法,则找出其对应的snDsalt;
 - ③ 生成临时口令信息: sr = Agen(Dsalt, pw);

固定口令 (三)

生成口令信息s = Agen(Dsalt, pw)—例:

- ① 给口令pw撒盐: Dpw = Asalt (Dsalt, pw);
- ② 用撒盐结果做密钥: K = Dpw;
- ③ 用一个64位的全0位串构造一个数据块Dp;
- ④ 设循环次数: i = 0;
- ⑤ 对数据块加密: Dc = Acrypt(K, Dp);
- **6** Dp = Dc, i = i + 1;
- ⑦ 如果i < 25,则回到第⑤步;
- ⑧ 把数据块变换成字符串: s = Atrans(Dc);

- · 攻击--Mallory找到(任意)某个用户口令
 - 如果原口令是六位数, 盐是四位数, 那么撒盐 处理的结果就是十位数。
 - Mallory需要制作一个有10,000,000,000个条目的列表,并为每一个条目创建一个s。这个列表也有10,000,000,000个条目,比较这些条目要花费很长时间。

固定口令(四)

注册环节: 双因子认证

- ① 接收用户提供的口令pw(PIN);
- ② 生成用户的其它信息(证书等), 存入磁卡(或芯片卡、门卡)等, 发放给用户;
- ③ 把口令信息pw等信息存入数据库的口令字段中。

登录环节:

- ① 接收用户提供的帐户名Dname、口令pw和证书等信息;
- ② 在帐户信息数据库中检查Dname的合法性,如果合法,则找出其对应的pw等信息;
 - ③ 如果收到信息和存储数据相等,则认证成功,否则,

固定口令(四)

例:自动取款机认证--带有PIN(个人身份号码)的卡

▶银行卡属于"拥有某事"这一类, PIN属于"知道某事"这一类。

▶使用两种认证方式,故称为双因子认证:如果卡丢失了,不知道PIN的话,也不能使用。同样,看到用户输入的PIN,拿不到银行卡,也无法通过认证。

加强固定(时不变)口令安全性的措施:

- ▶ 避免"弱"口令
- > 口令扩展为通行短语
- > 口令加盐
- > 双因子认证
- > 放慢口令映射
- > 限制口令的尝试次数

本讲主要内容

- 身份鉴别的定义
- ●口令身份鉴别
 - > 固定口令
 - > 一次口令
- 身份鉴别协议
 - > 挑战应答协议
 - > 零知识证明协议

(一) 共享列表一次口令

注册环节:

- ① 接收用户提供的口令列表 $\{pw_1, pw_2, ..., pw_t\}$;
- ② 每个口令分别生成口令信息: $\{s_i = F(pw_i) | i=1,2,...,t\}$;
- ③ 把口令信息 $\{s_i|i=1,2,...,t\}$ 存入数据库的口令字段中。

登录环节:第i次登录

- ① 接收用户提供的帐户名Dname和口令 pw_i ;
- ② 在帐户信息数据库中检查Dname的合法性,如果合法,则找出其对应的 s_i ;
 - ③ 生成临时口令信息: $sr_i = F(pw_i)$;
 - ④ 如果 sr_i 与 s_i 相等,则认证成功,从列表中删除 s_i ; 否则,

(二) 顺序更新一次口令

注册环节:

- ① 接收用户提供的初始口令 pw1;
- ② 把口令信息pw1 存入数据库的口令字段中。

登录环节:第i次登录

- ① 接收用户提供的帐户名Dname和口令 pw_i ;以及下次认证口 令的密文 $c_{i+1} = E_{pw_i}[pw_{i+1}]$;
 - ② 在帐户信息数据库中检查Dname的合法性,如果合法, 则找出其对应的pw;;
 - ③如果两个口令相等,则认证成功,执行步骤④;否则,认 证失败。
 - 4) 解密得 $pw_{i+1} = D_{pw_i}[c_{i+1}]$,覆盖数据库的口令字段中的 pw_i 。 28

Α

В

(三) Lamport一次口令

- 注册环节:用户选初始口令w和一个计数器t,算出 $h^t(w)$,这里 h^t 表示hash函数h散列t次:w,h(w),h(h(w)),..., $h^t(w)$;
 - ①接收用户提供的初始口令信息 $h_t = h^t(w)$;
 - ② 把口令信息h,存入数据库的口令字段中。

登录环节:第i次登录

- ① 接收用户提供的帐户名Dname和口令 h_{t-i} ;
- ② 在帐户信息数据库中检查Dname的合法性,如果合法,则找出其对应的口合信息的 · 计简h(h) c
- 则找出其对应的口令信息 h_{t-i+1} ; 计算 $h(h_{t-i})=s$
 - ③如果s和h, 相等,认证成功,执行步骤④;否则,认证失败。
 - ④ 令 h_{t-i} 覆盖数据库的口令字段中的 h_{t-i+1} 。

31

A

В

- 共享口令列表一次口令
 - > 安全:口令两两独立且随机
 - 效率:注册和更新过程计算量(随机数生成)和通信量大
 - 客户端需要安全存储设备,共享口令列表需要安全存储储
- 顺序更新一次口令
 - > 安全: 不满足后向安全, 即当前口令泄露, 未来口令仍然安全;
 - 效率: 无需额外的更新环节; 每次身份鉴别计算量(随机数生成)和通信量略大;

- 顺序更新一次口令
 - 客户端或许需要安全存储设备(或计算设备),因为口令频繁更换
- Lamport一次口令
 - ▶ 安全:不满足前向安全,即当前口令泄露,历史口令仍然安全(威胁不大);
 - > 效率:注册和更新过程计算量(hash迭代)大
 - 客户端或许需要安全存储设备(或计算设备),因为口令熵要足够大

本讲主要内容

- 身份鉴别的定义
- 口令身份鉴别
 - > 固定口令
 - > 一次口令
- •身份鉴别协议
 - > 挑战应答协议
 - > 零知识证明协议

身份鉴别协议

- 协议:是一系列步骤,它包括两方和多方, 设计它的目的是要完成一项任务。
 - 协议是从开始到结束的一个序列,每步必须 依次执行
 - > 完成协议至少需要两个人
 - > 协议的目的是为了做一些事情

身份鉴别协议

• Alice通过向Bob展示与秘密相关的知识来证明自己的身份,但在协议中并没有向Bob泄露秘密本身。

• 包括:

- > 基于对称密码技术的挑战-应答身份鉴别协议
- > 基于公钥密码技术的挑战-应答身份鉴别协议

1) 对称密码技术的挑战应答协议

每对用户可预先共享一个密钥, Alice证明他知道共享密钥的方式有两种:

- ▶ Alice可以对明文挑战加密,得到正确密文(或对密文挑战解密,得到正确明文);
- > Alice可以对挑战得到正确的认证码.

◆ 基于对称加密系统的挑战-应答

$$A \leftarrow B : r_B$$
 (1)

$$A \rightarrow B : \mathbf{E}_K(r_B, B^*)$$
 (2)

◆ 基于消息认证码系统的挑战-应答

$$A \leftarrow B : r_B$$
 (1)

$$A \rightarrow B$$
: $\mathbf{h}_K(r_B, B^*)$ (2)

2) 公钥密码技术的挑战-应答协议

Alice拥有一对公钥 pk_A 和私钥 sk_A ,以及CA对其公钥的认证证书CA(A),她证明自己知道对应私钥的方法有两种:

- \triangleright Alice可以解密一个(用 pk_A 加密的)密文挑战,得到正确明文
- ightharpoonup Alice可以对一个挑战进行数字签名,使其可以通过签名验证算法 $Ver(pk_A...)$.

◆ 基于公钥加密系统的挑战-应答

$$\mathbf{A} \leftarrow \mathbf{B} : \quad \mathbf{E}_{PKA}(r_B, A^*) \tag{1}$$

$$A \rightarrow B : r_B$$
 (2)

◆ 基于数字签名系统的挑战-应答

$$A \leftarrow B: r_B$$
 (1)

$$A \rightarrow B$$
: $cert_A$, $S_{SKA}(r_B, B^*)$ (2)

例(一) 注册

例(一) 鉴别

例(二) 注册

Client

PKI

Server

 $\begin{array}{c} \text{Request Client} & \text{Request Server} \\ \\ \text{CA}(C) & \text{CA}(S) \end{array}$

例(二) 鉴别

Client

Server

Initial Client Message to Server

Server Response to Client

Client Response to Server

Server Final Response to Client

Client

Server

ClientHello ---->

ServerHello
Certificate*
ServerKeyExchange*
CertificateRequest
ServerHelloDone

北京都電大学 BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATION

Server

Client

Certificate*

ClientKeyExchange

CertificateVerify*

[ChangeCipherSpec]

Finished -----

[ChangeCipherSpec]

Finished

本讲主要内容

- 身份鉴别的定义
- 口令身份鉴别
 - > 固定口令
 - > 一次口令
- ●身份鉴别协议
 - > 挑战应答协议
 - > 零知识证明协议

• 零知识(Zero-knowledge)(ZK)证明的起源

Alice: 我知道肯德基的土豆泥的配方以及做法。

Bob: 不, 你不知道。

Alice: 我知道。

Bob: 你不知道。

Alice: 我确实知道!

Bob: 请你证实这一点!

Alice: 好吧, 我告诉你! (她悄悄说出土豆泥的秘方)

Bob: 太有趣了! 现在我也知道了。我要告诉《华

盛顿邮报》

Alice: 啊呀!

- 零知识证明的思想
 - Alice要向Bob证明她知道某些秘密:
 - ➤ Bob: 问Alice一系列问题
 - Alice: 若知道那个秘密, 她就能正确回答所有问题。如果她不知道, 她仍有50%的机会回答每一个问题。但要猜对每个问题的机会实在太小了(几乎不可能)。
 - ▶ 大约10个问题之后, Bob确信Alice是否知道那个秘密。然而所有回答都没有给Bob提供Alice所知道的秘密的任何信息。

设Alice知道咒语,可打开C和D之间的秘密门,不知道者都将走向死胡同中。

- (1)Bob站在 A 点;
- (2) Alice进入洞中任一点 C 或 D;
- (3)当Alice进洞之后, Bob走到 B 点;
- (4)Bob叫Alice: (a)从左边出来,或(b)从右边出来;
- (5) Alice按要求实现;
- (6) Alice和Bob重复执行(1)~(5)共n次。

- ▶若 Alice 不知咒语,则在 B点,只有50%的机会猜中 Bob的要求,协议执行 n次,则只有 2-n的机会完全猜中,若 n=16,则若每次均通过 Bob 的检验, B受骗机会仅为1/65536。
- ▶如果Bob用摄像机记录下他所看到的一切,他把录像给Carol看, Carol会相信这是真的吗? Carol是 不会相信这是真的。
- ▶ 这说明了两件事情: 其一, Bob不可能使第三方相信这个证明; 其二, 它证明了这个协议是零知识的。Bob在不知道咒语的情况下, 显然不能从录像中获悉任何信息。

身份鉴别协议满足条件:

- ▶ 在诚实的情况下,声称者Alice能向验证者Bob证明他确实是Alice;
- ➤ 不同于Alice的实体C以Alice的身份,让Bob相信 C是Alice的概率可忽略不计;
- ► 在声称者Alice向验证者Bob声称他的身份后,验证者Bob不能获得任何有用的信息,Bob也不能模仿Alice向其他第三方证明他就是Alice。

Fiat-Shamir身份鉴别协议

参数生成:

- ightharpoonup 可信中心T选择两个素数p和q(用完销毁),计算类似RSA的模数 $n=p\times q$ 、并公开n。
- \triangleright 证明者选择与n互素的私钥 $s(1 \le s \le n)$,计算 $v=s^2 \mod n$
- ➤ 证明者在可信中心T中注册公钥v, 私钥s秘密保存。

若t轮都成功,则Bob就接 收Alice的身份

协议执行:(连续地、独立地)迭代t轮

- (1) Alice 取随机数 *r*(<*n*), 计算*x*= *r*² mod *n*, 并发送给Bob;
- (2) Bob将一随机比特 e=0或 1 作为挑战发给 Alice;
- (3) Alice计算响应值y并发给Bob
 - \triangleright 若e=0, 则Alice 将y=r送给Bob;
 - \triangleright 若e=1, 则Alice将 $y=r\times s \mod n$ 送给Bob;
- (4) 若y=0,则Bob拒绝证明;反之,验证 $y^2 \equiv x \times v^e$ mod n?
 - \triangleright 若e=0,则Bob 证实 $y^2=x \mod n$
 - \triangleright 若e=1, 则 Bob 证实 $y^2 = x \times v \mod n$

• 完备性

▶ 如果Alice和Bob遵守协议,且Alice知道s,则 响应值 $y^2=(r\times s^e)^2 \mod n \equiv x\times v^e \mod n$,Bob 接收Alice的证明,所以协议是完备的。

• 正确性

- Alice不知道s,他也可取r,送y²=r² mod n给Bob; Bob送e 给Alice; Alice将r作为响应值; 当b=0时则Alice可通过检验使得Bob受骗,当b=1时,则Bob可发现Alice不知s。Bob受骗概率为1/2;
- ▶ 连续t轮受骗的概率将仅为2-t.

本讲主要内容

- •身份鉴别的定义
- ●口令身份鉴别
 - ▶ 固定口令
 - > 一次口令
- •身份鉴别协议
 - > 挑战应答协议
 - > 零知识证明协议

THE END!

