On the Subject of Forget Me No.

This one likes π , but not too much π .

- This module consists of 10 buttons numbered 0 9 each with a small LED, a small display and a large display.
- If the buttons and the background are not colored teal, you are looking at a different module.
- This is a Boss module.
- After each solved non-ignored module, and initially, a small LED next to a button will light up and the big display on the bottom displays a digit.
- The LED that lights up will correspond to a mathematical constant.
- Only the last 2 digits of the stage number will be shown.
- Once every non-ignored module has been solved the module will enter the submission state.

Step 1:

First you need to determine which LED corresponds to which constant.

The constants being used are the following:

- O_{• Π} (Pi)
- 1. e (Euler's Number)
- 2. √2 (Square Root of 2)
- 3. ln2 (Natural Logarithm of 2)
- 4. φ (Golden Ratio)
- 5. Y (Euler-Mascheroni Constant)
- 6. p (Plastic Number)
- 7. δ (Feigenbaum Constant)
- 8. λ (Conway's Constant)
- 9. W(1) (Lambert-W of 1)
- To find which LED corresponds to which constant take the first character of the serial number.
- If it is a letter take its alphabetic position mod 10.
- Index that number into the list above.
- This constant corresponds to LED 1.
- Do the same for the other serial number characters which will correspond to LEDs 2 6 in order.
- If a constant has already been assigned move down the list until you reach one that isn't.

Step 1 (continued):

To determine the remaining 4 constants use the following table to get the order on how to assign them for LEDs 7, 8, 9 and 0

1 means the first unassigned constant, 2 the second and so on...

If•••	The order is
there is a parallel port and a lit BOB indicator.	1234
there are more than 5 batteries.	4321
there are more than 3 indicators.	1432
there are no ports.	2431
there are no batteries.	3241
there are 4 digits in the serial number.	2143
the number of modules is greater than 11 but less than 47.	4123
the serial number has a vowel.	3142
there is an empty port plate.	2314
every port type* is present on the bomb.	4231
there are more lit than unlit indicators.	1423
the sixth character of the serial number is even.	3214
the third character of the serial number is odd.	3412
none of the above apply.	2134

^{*} Only includes vanilla ports.

Step 2:

For each stage, take the displayed number and add the Nth position of the constants decimal place, where N is the stage. After adding, take the least significant digit. The values are the following:

п	14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 58209 74944 59230 78164 06286 20899 86280 34825 34211 70679
е	71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 95749 66967 62772 40766 30353 54759 45713 82178 52516 64274
√2	41421 35623 73095 04880 16887 24209 69807 85696 71875 37694 80731 76679 73799 07324 78462 10703 88503 87534 32764 15727
ln2	69314 71805 59945 30941 72321 21458 17656 80755 00134 36025 52541 20680 00949 33936 21969 69471 56058 63326 99641 86875
φ	61803 39887 49894 84820 45868 34365 63811 77203 09179 80576 28621 35448 62270 52604 62818 90244 97072 07204 18939 11374
Υ	57721 56649 01532 86060 65120 90082 40243 10421 59335 93992 35988 05767 23488 48628 16133 26253 88471 53265 32133 84543
ρ	32471 79572 44746 02596 09088 54478 09734 07344 04056 90173 33647 51177 31968 49943 33045 79817 35351 41994 32274 60373
δ	66920 16091 02990 67185 32038 20466 20161 72581 85577 47576 86327 45651 34300 46430 59615 58930 79608 65831 54617 35027
λ	30357 72690 34296 39125 70991 12152 55189 07307 02504 65970 86782 99573 43582 61341 34593 57220 34301 98626 51218 43828
W(1)	56714 32904 09784 00032 94836 54588 02417 25504 39632 78957 36206 96102 34667 48606 87618 76632 52409 70183 53470 37716

If the current stage number is bigger than 100 loop back to the start of the constant (or only take the last 2 digits of the stage number). These will be the calculated digits. Once the module enters the submission state enter each of the calculated digits in order to solve the module.

Note:

- If there are no non-ignored modules on the bomb, the module will immediately solve.
- If during submission you type in a wrong digit, you will receive a strike and the digit and the LED for that stage will be shown again.