MATH 537, Fall 2020 Ordinary Differential Equations

Lecture #16: Part II

Chapter 5
Higher-Dimensional Linear Algebra

Instructor: Dr. Bo-Wen Shen*

Department of Mathematics and Statistics
San Diego State University

Section 5.2

A Summary For Section 5.2: Eigenvalues

Eigenvalue Problems

$$AV = \lambda V \quad \Rightarrow \quad (A - \lambda I)V = 0 \quad \Rightarrow \quad |A - \lambda I| = 0$$

 Linearly Independent eigenvectors associated with real and distinct eigenvalues

 $|det|B| \neq 0$

B consists of linearly independent vectors

Diagonalization

$$T = (V_1, V_2, \dots, V_n), V_j$$
 are eigenvectors

$$T^{-1}AT = D$$

5.2 Eigenvalue Problem and LI Eigenvectors

Definition

A vector V is an eigenvector of an $n \times n$ matrix A if V is a nonzero solution to the system of linear equations $(A - \lambda I)V = 0$. The quantity λ is called an eigenvalue of A, and V is an eigenvector associated to λ .

$$AV = \lambda V \quad \Rightarrow \quad (A - \lambda I)V = 0 \quad \Rightarrow \quad |A - \lambda I| = 0$$

Proposition. Suppose $\lambda_1, \ldots, \lambda_\ell$ are real and distinct eigenvalues for A with associated eigenvectors V_1, \ldots, V_ℓ . Then the V_i are linearly independent.

 V_i are Linearly Independent

Sect 5.2 Diagonalization

Corollary. Suppose A is an $n \times n$ matrix with real, distinct eigenvalues. Then there is a matrix T such that

$$T^{-1}AT = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} = D$$

where all of the entries off the diagonal are 0.

For example,

 $T = (V_1, V_2, \dots, V_n), V_j$ are eigenvectors

Sect 5.2 Eigenvalues and Eigenvectors

Example. Let

$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 3 & -2 \\ 0 & 2 & -2 \end{pmatrix}.$$

$$AV = \lambda V$$

$$A - \lambda I = \begin{pmatrix} 1 - \lambda & 2 & -1 \\ 0 & 3 - \lambda & -2 \\ 0 & 2 & -2 - \lambda \end{pmatrix}$$

$$|A - \lambda I = 0|$$

$$(1 - \lambda)(\lambda^2 - \lambda - 2) = 0$$

$$\lambda = 2, 1, -1$$

$$\lambda_1 = 2$$

$$\lambda_2 = 1$$

$$\lambda_3 = -1$$

$$V_1 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

$$V_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$V_3 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$

Construct T and D

Let
$$D = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix}$$
 λ_j are eigenvalues of the matrix A

Let $T = (V_1, V_2, V_3)$, V_i are the eigenvectors corresponding to λ_i

$$\lambda_1 = 2$$

$$\lambda_2 = 1$$

$$\lambda_3 = -1$$

$$V_1 = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

$$V_2 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$V_3 = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$$

$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \qquad T = (V_1, V_2, V_3) = \begin{pmatrix} 3 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix}$$

Diagnoalization using $T^{-1}AT$

Compute
$$AT = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 3 & -2 \\ 0 & 2 & -2 \end{pmatrix} \begin{pmatrix} 3 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

- Pick one and compute
- During the difficult time, the following is added to make our life easier:
 - you will receive additional 10 points for your next homework if your selection matches the one I preselected (to appear later) and your answer is correct.
- Send your results via "chat" (e.g., a21=???)
- You have 2 minutes
- You are a winner if you select a_{33} and compute it correctly.

$$AT = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 3 & -2 \\ 0 & 2 & -2 \end{pmatrix} \begin{pmatrix} 3 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 6 & 1 & 0 \\ 4 & 0 & -1 \\ 2 & 0 & -2 \end{pmatrix}$$

Diagnoalization using $T^{-1}AT$

$$AT = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 3 & -2 \\ 0 & 2 & -2 \end{pmatrix} \begin{pmatrix} 3 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} 6 & 1 & 0 \\ 4 & 0 & -1 \\ 2 & 0 & -2 \end{pmatrix}$$

What we have done is called "parallel computing":

- Compute each of a_{ij} in parallel
- Load imbalance may appear, e.g., $a_{12} = 1 + 2 * 0 * + (-1) * 0$
- The last element determines the timing for the entire task.

In the supercomputing world, we may additionally perform the following:

- Decompose data (domain or tasks) into smaller pieces of data;
- Assign sub-tasks (e.g., broadcast data) to different CPUs;
- Gather all of sub-tasks and put them together

Ch 5. Medium-grained Loop Parallelism


```
x1 = np.linspace(0, 10, N, endpoint=True)
x2 = np.linspace(0, 10, N, endpoint=False)
```

real x(15)

P1 P2 P3

real x(15)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Parallel Code

Figure 1.5 Basic structure of a SPMD program.

A Minimal Set for MPI

A minimal set of routines that most parallel codes run with are:

MPI_INIT:

Initialization. MPI spawns an identical copy of my_proc when mpirun -np N my_proc is issued.

MPI_COMM_SIZE:

returns the size or number (i.e., N) of processes in the application.

MPI_COMM_RANK:

returns the rank ("id", $0\sim N-1$) of the calling process.

- MPI_SEND
- MPI_RECV
- MPI_WAIT
- MPI_FINALIZE:

terminates all MPI processing

A Minimal Set for MPI in Python

A minimal set of routines that most parallel codes run with are:

Fortran	MPI4PY	
MPI_INIT		comm = MPI.COMM_WORLD
MPI_COMM_SIZE	comm.Get_size()	
MPI_COMM_RANK	comm.Get_rank()	
MPI_SEND	comm.send()	comm.Send()
MPI_RECV	comm.recv()	comm.Recv()
MPI_WAIT	obj.wait()	
MPI_FINALIZE		

Diagnoalization using $T^{-1}AT$

$$AT = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 3 & -2 \\ 0 & 2 & -2 \end{pmatrix} \begin{pmatrix} 3 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 6 & 1 & 0 \\ 4 & 0 & -1 \\ 2 & 0 & -2 \end{pmatrix}$$

$$TD = \begin{pmatrix} 3 & 1 & 0 \\ 2 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} = \begin{pmatrix} 6 & 1 & 0 \\ 4 & 0 & -1 \\ 2 & 0 & -2 \end{pmatrix}$$

$$TD = AT$$

$$T^{-1}TD = T^{-1}AT$$

$$ID = T^{-1}AT$$

$$D = T^{-1}AT$$

Section 5.3 Complex Eigenvalues

if
$$AV = (\alpha + i\beta)V$$
, we have $A\overline{V} = (\alpha - i\beta)\overline{V}$

- Let V be the eigenvector associated with the complex eigenvalue $\alpha + i\beta$
- Show that \overline{V} is an eigenvector associated with the complex eigenvalue $\alpha i\beta$
- *V* and \bar{V} are linearly independent, i.e., $cV + d\bar{V} = 0 \iff c = d = 0$
 - c & d are complex numbers.
- Note that V and \bar{V} yield the same indepdent real functions, because $\text{Re}(V) = Re(\bar{V})$ and $\text{Im}(V) = -Im(\bar{V})$.
- From the first bullet, we have $AV = (\alpha + i\beta)V$.
- \succ To prove the statement in the 2nd bullet, we consider $A\overline{V}$:

$$A\overline{V} = \overline{AV} = \overline{(\alpha + i\beta)V} = (\alpha - i\beta)\overline{V}$$

Re(V) and Im(V) Are Linearly Independent

Supp

$$V = u + i w$$

Show that *u* and *w* are LI

Assume
$$w = cu$$
, $c \in R$

$$\lambda = \alpha + i\beta$$

$$AV = A(u + iw) = A(u + icu)$$
 (1)

$$\lambda V = (\alpha + i\beta)(u + icu) = (\alpha u - c\beta u) + i(\beta u + c\alpha u)$$
 (2)

Eq.
$$(1) = (2)$$
:

real part:
$$Au = \alpha u - c\beta u$$
 (3)

imaginary part:
$$Acu = \beta u + c\alpha u$$
 (4)

$$(3)*c = (4),$$

$$-c^2\beta u = \beta u \qquad c^2 = -1, \qquad c = \pm i$$

contradiction

Construct a Linear Map, T, using Real and Imaginary Parts

Assume A to be a $(2n \times 2n)$ matrix that has the following eigenvalues and eigenvectors:

- $\alpha_j \pm \beta_j$ and $V_j, \overline{V}_j, j = 1,2;$
- $AV_j = (\alpha_j + i\beta)V_j$ and $A\overline{V}_j = (\alpha_j i\beta)\overline{V}_j$

Define the following

$$W_{2j-1} = \frac{1}{2} \left(V_j + \overline{V}_j \right) = Re(V_j)$$

$$W_{2j} = \frac{-i}{2} \left(V_j - \overline{V}_j \right) = Im(V_j)$$

Show that (TBD in the next slide)

$$AW_{2j-1} = \alpha_j W_{2j-1} - \beta_j W_{2j}$$

$$AW_{2j} = \beta_j W_{2j-1} + \alpha_j W_{2j}$$

Construct *T* as follows:

$$T = [W_1, W_2, \cdots W_{2j-1}, W_{2j} \cdots W_{2n-1}, W_{2n}]$$

Obtain Y' = BY, X = TY, and B is defined as follows:

$$B = T^{-1}AT$$

Find AW_{2j-1} and AW_{2j}

Show that

$$AW_{2j-1} = \alpha_j W_{2j-1} - \beta_j W_{2j}$$
 $AW_{2j} = \beta_j W_{2j-1} + \alpha_j W_{2j}$

$$AW_{2j-1} = \frac{1}{2} \left(AV_j + A\bar{V}_j \right) = \frac{1}{2} \left(\left(\alpha_j + i\beta \right) V_j + \left(\alpha_j - i\beta \right) \bar{V}_j \right)$$

$$= \frac{1}{2} \left(\alpha_j (V_j + \bar{V}_j) + i\beta_j (V_j - \bar{V}_j) \right) = \alpha_j W_{2j-1} - \beta_j W_{2j}$$

$$AW_{2j} = \frac{-i}{2} \left(AV_j - A\bar{V}_j \right) = \frac{-i}{2} \left(\left(\alpha_j + i\beta \right) V_j - \left(\alpha_j - i\beta \right) \bar{V}_j \right)$$

$$= \frac{-i}{2} \left(\alpha_j (V_j - \bar{V}_j) + i\beta_j (V_j + \bar{V}_j) \right) = \beta_j W_{2j-1} + \alpha_j W_{2j}$$

$W_1, W_2, \cdots W_{2j-1}, W_{2j} \cdots W_{2n-1}, W_{2n}$ are LI

$$W_{2j-1} = \frac{1}{2} \left(V_j + \overline{V}_j \right) = Re(V_j)$$

$$W_{2j} = \frac{-i}{2} \left(V_j - \overline{V}_j \right) = Im(V_j)$$

Proposition. The vectors W_1, \ldots, W_{2n} are linearly independent.

Form a linear combination:

$$\sum_{j=1}^{n} (c_j W_{2j-1} + d_j W_{2j}) = 0$$

They are LD for some non-zero $c_i, d_i \in R$

Plug the Eqs. on the top into the above Eq.:

$$\frac{1}{2} \sum_{j=1}^{n} (c_j - id_j) V_j + (c_j + id_j) \overline{V}_j = 0$$

Since the V_i and the $\overline{V_i}$ are LI, we have

$$(c_j - id_j) = 0 = (c_j + id_j)$$
 $\implies c_j = d_j = 0$ contradiction

$$\implies c_i = d_i = 0$$

Construct
$$T = [W_1, W_2, \cdots W_{2j-1}, W_{2j}] \qquad AW_{2j} = \beta_j W_{2j-1} + \alpha_j W_{2j}$$

$$T = [W_1, W_2, \cdots W_{2j-1}, W_{2j} \cdots W_{2n-1}, W_{2n}]$$
Obtain
$$TE_j = W_j, \quad j = 1 \sim 2n, \qquad T^{-1}W_j = E_j, \quad j = 1 \sim 2n,$$

$$for 2j - 1, \quad (T^{-1}AT)E_{2j-1} = T^{-1}ATE_{2j-1} = T^{-1}AW_{2j-1}$$

$$= T^{-1}(\alpha_j W_{2j-1} - \beta_j W_{2j})$$

$$= (\alpha_j T^{-1}W_{2j-1} - \beta_j T^{-1}W_{2j})$$

$$= (\alpha_j E_{2j-1} - \beta_j E_{2j})$$

$$for 2j, \qquad (T^{-1}AT)E_{2j} = (\beta_j E_{2j-1} + \alpha_j E_{2j})$$

$$(T^{-1}AT)E_{2j-1} = (\alpha_j E_{2j-1} - \beta_j E_{2j})$$
$$(T^{-1}AT)E_{2j} = (\beta_j E_{2j-1} + \alpha_j E_{2j})$$

j=1, we have

$$(T^{-1}AT)E_1 = (\alpha_1 E_1 - \beta_1 E_2) = \alpha_1 \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} - \beta_1 \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ -\beta_1 \\ \vdots \\ 0 \end{pmatrix}$$

$$(T^{-1}AT)E_2 = (\beta_1 E_1 + \alpha_1 E_2) = \beta_1 \begin{pmatrix} 1\\0\\\vdots\\\vdots\\0 \end{pmatrix} + \alpha_1 \begin{pmatrix} 0\\1\\\vdots\\\vdots\\0 \end{pmatrix} = \begin{pmatrix} \beta_1\\\alpha_1\\\vdots\\\vdots\\0 \end{pmatrix}$$

$$(T^{-1}AT)E_{1} = (\alpha_{1}E_{1} - \beta_{1}E_{2}) = \alpha_{1}\begin{pmatrix} 1\\0\\\vdots\\\vdots\\0 \end{pmatrix} - \beta_{1}\begin{pmatrix} 0\\1\\\vdots\\\vdots\\0 \end{pmatrix} = \begin{pmatrix} \alpha_{1}\\-\beta_{1}\\\vdots\\\vdots\\0 \end{pmatrix}$$

$$(T^{-1}AT)E_2 = (\beta_1 E_1 + \alpha_1 E_2) = \beta_1 \begin{pmatrix} 1\\0\\\vdots\\\vdots\\0 \end{pmatrix} + \alpha_1 \begin{pmatrix} 0\\1\\\vdots\\\vdots\\0 \end{pmatrix} = \begin{pmatrix} \beta_1\\\alpha_1\\\vdots\\\vdots\\0 \end{pmatrix}$$

$$(T^{-1}AT)[E_1, E_2, \cdots E_{2n-1}, E_{2n}] = \begin{pmatrix} \alpha_1 & \beta_1 \\ -\beta_1 & \alpha_1 \end{pmatrix}$$

$$(T^{-1}AT)[E_1, E_2, \cdots E_{2n-1}, E_{2n}] = \begin{pmatrix} \alpha_1 & \beta_1 \\ -\beta_1 & \alpha_1 \end{pmatrix}$$
Identity matrix I

$$T^{-1}AT = \begin{pmatrix} \alpha_1 & \beta_1 \\ -\beta_1 & \alpha_1 \end{pmatrix} \leftarrow 2j - 1 \\ -\beta_j & \alpha_j \end{pmatrix} \leftarrow 2j$$

$$D_1 = \begin{pmatrix} \alpha_1 & \beta_1 \\ -\beta_1 & \alpha_1 \end{pmatrix} \qquad D_j = \begin{pmatrix} \alpha_j & \beta_j \\ -\beta_i & \alpha_i \end{pmatrix}$$

A Summary with Complex Eigenvalues

Assume A to be a $(2n \times 2n)$ matrix that has the following eigenvalues and eigenvectors:

• $\alpha_j \pm \beta_j$ and $V_j, \overline{V}_j, j = 1,2;$

Define the following

$$W_{2j-1} = \frac{1}{2} (V_j + \overline{V}_j) = Re(V_j)$$
 $W_{2j} = \frac{-i}{2} (V_j - \overline{V}_j) = Im(V_j)$

Construct *T* as follows:

$$T = [W_1, W_2, \cdots W_{2j-1}, W_{2j} \cdots W_{2n-1}, W_{2n}]$$

Obtain Y' = BY, X = TY, and B is defined as follows:

$$B = T^{-1}AT = \begin{pmatrix} D_1 \\ \\ D_n \end{pmatrix} \qquad D_n = \begin{pmatrix} \alpha_n & \beta_n \\ -\beta_n & \alpha_n \end{pmatrix}$$