Ch 8.1: Decision Trees

Lecture 23 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Fri, Nov 11, 2022

Announcements

Last time:

Cubic Splines

This lecture:

• 8.1 Decision Trees

Announcements:

- HW #7 Due tonight
- •

Section 1

Decision Trees

Big idea

Image: https://marekbennett.com/2014/02/14/decision-tree/

Dr. Munch (MSU-CMSE) Fri, Nov 11, 2022

Subset of Hitters data

	Hits	Years	Salary	LogSalary
1	81	14	475.0	6.163315
2	130	3	480.0	6.173786
3	141	11	500.0	6.214608
4	87	2	91.5	4.516339
5	169	11	750.0	6.620073
317	127	5	700.0	6.551080
318	136	12	875.0	6.774224
319	126	6	385.0	5.953243
320	144	8	960.0	6.866933
321	170	11	1000.0	6.907755

First decision tree example

	Hits	Years	LogSalary
1	81	14	6.163315
2	130	3	6.173786
3	141	11	6.214608
4	87	2	4.516339
5	169	11	6.620073
317	127	5	6.551080
318	136	12	6.774224
319	126	6	5.953243
320	144	8	6.866933
321	170	11	6.907755

Interpretation of example

Coding a regression decision tree

Dr. Munch (MSU-CMSE) Fri, Nov 11, 2022

Regions defined by the tree

Viewing Regions Defined by Tree

10 / 29

Dr. Munch (MSU-CMSE) Fri, Nov 11, 2022

How do we actually get the tree? Two steps

- We divide the predictor space that is, the set of possible values for X₁, X₂, · · · , X_p — into J distinct and non-overlapping regions, R₁, R₂, · · · , R_J.
- ② For every observation that falls into the region R_j , we make the same prediction = the mean of the response values for the training observations in R_j .

11 / 29

Nunch (MSU-CMSE) Fri, Nov 11, 2022

Step 1: How do we decide on R_j s?

Goal:

Find boxes R_1, \dots, R_J that minimize

$$\sum_{j=1}^J \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

 $\hat{y}_{R_j} = \text{mean response for training}$ observations in jth box

Recursive Binary Splitting

- Pick X_i
- Pick s so that splitting into $\{X \mid X_j < s\}$ and $\{X \mid X_j \geq s\}$ results in largest possible reduction in RSS

$$R_1(j,s) = \{X \mid X_j < s\}$$

 $R_2(j,s) = \{X \mid X_j \ge s\}$

$$\sum_{i|x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i|x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

Rinse and repeat

14 / 29

r. Munch (MSU-CMSE) Fri, Nov 11, 2022

Pruning

Munch (MSU-CMSE) Fri, Nov 11, 2022

Weakest Link Pruning

Also called Cost complexity pruning

For every α , there is a subtree T that minimizes:

$$\sum_{m=1}^{|T|} \sum_{i|x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T|$$

- |T| = number of terminal nodes of T
- R_m is rectangle for mth terminal node
- \hat{y}_{R_m} is mean of training observations in R_m

Algorithm version

Algorithm 8.1 Building a Regression Tree

- Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations.
- 2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α .
- 3. Use K-fold cross-validation to choose α . That is, divide the training observations into K folds. For each $k = 1, \ldots, K$:
 - (a) Repeat Steps 1 and 2 on all but the kth fold of the training data.
 - (b) Evaluate the mean squared prediction error on the data in the left-out kth fold, as a function of α .
 - Average the results for each value of α , and pick α to minimize the average error.
- 4. Return the subtree from Step 2 that corresponds to the chosen value of α .

Dr. Munch (MSU-CMSE) Fri, Nov 11, 2022 17/29

Messing with α

18 / 29

. Munch (MSU-CMSE) Fri, Nov 11, 2022

Section 2

Classification Decision Tree

r. Munch (MSU-CMSE) Fri, Nov 11, 2022

Basic idea

• \hat{p}_{mk} = proportion of training observations in R_m from the kth class

20 / 29

• $E = 1 - \max_k(\hat{p}_{mk})$

Munch (MSU-CMSE) Fri, Nov 11, 2022

Gini index

$$G = \sum_{k=1}^K \hat{
ho}_{mk} (1-\hat{
ho}_{mk})$$

Entropy

$$D = -\sum_{k=1}^{K} \hat{p}_{mk} \log \hat{p}_{mk}$$

Example

Dr. Munch (MSU-CMSE) Fri, Nov 11, 2022

Pruning the example

Munch (MSU-CMSE) Fri, Nov 11, 2022 24/29

More coding!

Dr. Munch (MSU-CMSE)

Linear models vs trees

26 / 29

Dr. Munch (MSU-CMSE) Fri, Nov 11, 2022

$\mathsf{Pros}/\mathsf{Cons}$

Pros: Cons:

TL:DR

- Split into regions by greedily decreasing RSS
- Prune tree by using cost complexity
- Not robust Next time, figure out how to aggregate trees

28 / 29

Dr. Munch (MSU-CMSE) Fri, Nov 11, 2022

Next time

20	F	Nov 4	Polynomial & Step Functions. 7.1,7.2		
21	М	Nov 7	Step Functions	7.2	
22	W	Nov 9	Basis functions, Regression Splines	7.3,7.4	
23	F	Nov 11	Decision Trees	8.1	HW #7 Due
24	М	Nov 14	Ensemble methods	8.2	
25	W	Nov 16	Maximal Margin Classifier	9.1	
26	F	Nov 18	SVC	9.2	HW #8 Due
27	М	Nov 21	SVM	9.3, 9.4, 9.5	
28	W	Nov 23	Single layer NN	10.1	
	F	Nov 25	No class - Thanksgiving		
29	М	Nov 28	Multi Layer NN	10.2	HW #9 Due
30	W	Nov 30	CNN	10.3	
31	F	Dec 2	Unsupervised Learning & Clustering	12.1, 12.4	
32	М	Dec 5	More Clustering	12.4	HW #10 Due
	W	Dec 7	Review		
	F	Dec 9	Midterm #3	Bring your cheat sheet and a non-internet-connected calculator	

Pr. Munch (MSU-CMSE) Fri, Nov 11, 2022