Topics

- Heap
- Heapify
- Heap Sort

Heap

- Not what it sounds like []
 - i.e. not a disordered pile of items
- Partially ordered data structure
- Specifically, a heap is a complete binary tree where:
 - The element value of each parent node is greater than or equal to the element values its children (max heap)
 - Or, the element value of each parent node is less than or equal to the element values its children (<u>min heap</u>)

Complete Binary Tree?

- A binary tree of height h is complete if:
 - Levels 0 through h-1 are fully occupied
 - There are no gaps to the left of a node in level h

Why complete binary tree?

- Has simple array representation
- Nodes are stored in the order visited
 - Top to bottom
 - Left to right

Examples:

Nodes and Index Positions

- Root node is A[0]
- Given node at A[i]
 - Left child A[2*i + 1]
 - Right child A[2*i + 2]
 - Parent A[floor((i 1) / 2)]

- Examples
 - Left child of A[1]: A[2*1+1] = A[3]
 - Right child of A[3]: A[2*3+2] = A[8]
 - Parent of A[4]: A[floor((4-1)/2)] = A[1]

Max Heap Examples

- Largest value is always root node of tree
- Smallest value can be any leaf node
 - No guarantee which one it will be ...

Examples:

Min Heap?

- Opposite of Max Heap
 - Smallest value is always root node of tree
 - Largest value can be any leaf node
 - No guarantee which one it will be ...

Max Heapify

- Convert an ordinary list of items to a heap
- Bottom up approach

Max Heapify Pseudocode

```
ALGORITHM maxHeapify(H[0 ... n-1])
// Constructs a heap from an existing list of values
// Input: list H
// Output: heap H
for i = floor((n-2)/2) downto 0 do
   k = i, v = H[k]
   heap = false
   while not heap and 2*k+2 <= n do
       i = 2*k+1
       if j+1 < n // two children</pre>
           if H[i] < H[i+1], i = i + 1
       if v >= H[j]
           heap = true
       else
           H[k] = H[j] // swap parent and largest child
           k = i
   H[k] = v
```

(_	_	3	•	5	6
	5	16	8	14	20	1	26


```
k = 2, v = 8, heap=false

while 2*k+2 <= 7 and not heap

j = 5 (5+1 < 7 -> two children)

j = 6 ( 26 > 1 )

H[2] < H[6] -> H[2] = H[6]

k = 6
```


$$H[k] = 8$$

0	1	2	3	4	5	6
5	16	26	14	20	1	8

0	1	2	3	4	5	6
5	20	26	14	16	1	8

0	1	2	3	4	5	6
26	20	5	14	16	1	8

```
k = 0, v = 5, heap=false

while 2*k+2 <= 7 and not heap

j = 5 (5+1 < 7 -> two children)

j = 6 ( 8 > 1 )

H[2] < H[6] -> H[2] = H[6]

k = 6

H[k] = 5
```


Done

Heap Sort

- Use heap to sort a list of values
- Neat little algorithm
 - Bonus very simple!

Heap Sort

- Algorithm
 - 1. Heapify the array (see below).
 - 2. Swap the first element in the heap with the last element in the heap.
 - 3. Reduce the size of heap by 1.
 - 4. Repeat Step 1 while size of heap is greater than 1.
- Step 1 in algorithm
 - Max heapify: values are sorted in increasing order
 - Min heapify: values are sorted in decreasing order