#### **Structural Bioinformatics**

#### Machine learning for RING contact classification

Andrea Auletta Marco Bernardi Niccolò Zenaro





### Introduction



- Predictive model which classifies contacts between atoms
- The classification of the contacts refers to the RING classification
- Machine learning models were used instead of looking at geometrical and physical properties of atoms



# Dataset



#### **Dataset distribution**





# Challenges



- Imbalanced Dataset
- The data are not easily separable





Scatter plot of the subsampled dataset



# Pre-processing



- Undersampling:
  - Fast but may result in the model's inability to fully learn the distinguishes features of the majority classes
- Class merging:
  - Fast but the sizes are still too unbalanced
- Oversampling with SMOTE:
  - Slower method but more effective



### SMOTE - Synthetic Minority Over-sampling TEchinque



- Data augmentation technique
- Generates new samples interpolating between the samples of the minority class taken into account
- It uses the k-nn to choose a set of points from which the algorithm will interpolates for new sample



# Pre-processing



- Maintaining one type of interaction for each contact
- Data can fit different definition of contacts
- RING can return all the types of contacts which the data fit





Histogram of the dataset maintaining one type of interaction for each sample



### Neural Network



- The model consists of four fully connected layers
- The hidden layers use ReLU activation functions
- The final output layer uses a softmax activation function to produce probability distributions across the target classes, suitable for multi-class classification



#### Neural Network



- Dropout layers are applied after each hidden layer to prevent overfitting
- Mini-batch algorithm has been used for the training of the model



### XGBoost



- Gradient Boosting algorithm
- Uses decision trees as weak learners ensemble method
- The training algorithm uses a gradient descent with Cross-Entropy Loss
- Parameter selection:
  - max depth, learning rate, num\_boost\_round, early stopping



#### Feature selection



- XGBoost is capable of providing the importance of the features
- It has three different methods to calculate it:
  - Weight: total number of times a feature is used to split data across all trees
  - Gain: average loss reduction gained when using feature for splitting
  - Cover: the number of times a feature is used to split data across trees weighted by training data points



### **Evaluation and metrics**



The following metric have been used to evaluate our models:

- Balanced Accuracy
- Matthews Correlation Coefficient
- ROC-AUC Score
- Average precision

The data set has been splitted in the following way:

- 80% SMOTE Dataset as Training set
- 20% SMOTE Dataset as Validation set
- 20% Initial Dataset as Test set



# Results



| Model                                | Bal_Acc | MCC    | AUC-ROC | AVG_Prec |
|--------------------------------------|---------|--------|---------|----------|
| XGBoost<br>(Initial Dataset)         | 0.3669  | 0.2956 | 0.8741  | 0.5193   |
| XGBoost<br>(SMOTE)                   | 0.5610  | 0.4752 | 0.9228  | 0.6704   |
| XGBoost<br>(SMOTE, No<br>duplicates) | 0.7045  | 0.3923 | 0.9195  | 0.6651   |
| XGBoost<br>(Feature<br>selection)    | 0.5161  | 0.3554 | 0.8516  | 0.5080   |
| SimpleNN<br>(SMOTE)                  | 0.4043  | 0.2321 | 0.7388  | 0.4432   |



### Results





Confusion matrix of the XGBoost model with SMOTE



### Results





Confusion matrix of the XGBoost model with SMOTE and no duplicated lines



# Examples



- Correct prediction:
  - Real: 5mt2 A 238 K E 0.244 4 25 -1.423 2.492 H 1.831 -0.561 0.533
  - -0.277 1.648 A 267 D T 0.62 3 20 -1.169 2.155 H 1.05 0.302 -3.656 -0.259
  - -3.242 **HBOND**
  - Prediction: 5mt2 A 238 K E 0.244 4 25 -1.423 2.492 H 1.831 -0.561
  - 0.533 -0.277 1.648 A 267 D T 0.62 3 20 -1.169 2.155 H 1.05 0.302 -3.656
  - -0.259 -3.242 **HBOND**
- Wrong prediction:
  - Real: 5mt2 A 116 K S 0.366 16 4 -2.01 2.937 H 1.831 -0.561 0.533
  - -0.277 1.648 A 186 D S 0.564 3 16 -1.573 0.215 H 1.05 0.302 -3.656
  - -0.259 -3.242 **IONIC**
  - Prediction: 5mt2 A 116 K S 0.366 16 4 -2.01 2.937 H 1.831 -0.561 0.533
  - -0.277 1.648 A 186 D S 0.564 3 16 -1.573 0.215 H 1.05 0.302 -3.656
  - -0.259 -3.242 *Unclassified*



#### Conclusions



- The best approach tested is the one that utilizes XGBoost with SMOTE applied to the dataset
- The feature selection did not yield better results
- The main problem were the resources: time or computational power
- Idea for improving the project with more resources: try to project data into higher-dimensional space to achieve better separation between data





#### Thanks for your attention!

