Simon Kurgan Homework 5

1 Assigned Problems

Problem 1.1. For each integer n, if n is odd, then $8|(n^2-1)$

Lemma 1: For every integer n, $n^2 + n$ is even

Proof: By theorem 16, we assert that an integer n is be either even or odd. Thus we have two cases.

Case 1: n is odd.

By definition, n = 2k + 1, where $k \in \mathbb{Z}$

Substituting, $(n^2 + n)$ becomes $((2k + 1)^2 + (2k + 1))$

Expanding and simplifying, $4k^2 + 6k + 2 = 2(2k^2 + 3k + 1)$

By closure, $2k^2 + 3k + 1$ is an integer.

By definition, $2(2k^2 + 3k + 1)$ is even.

Case 2: n is even.

By definition, n = 2k, where $k \in \mathbb{Z}$

Substituting, $(n^2 + n)$ becomes $((2k)^2 + (2k))$

Expanding, $((2k)^2 + (2k)) = (4k^2 + 2k)$

Simplifying, $(4k^2 + 2k) = 2(k^2 + k)$

By definition, $2(k^2 + k)$ is even.

Thus for every integer n, $n^2 + n$ is even.

Proof: Suppose n is odd.

By definition, n = 2k + 1, where $k \in \mathbb{Z}$

We can write $8|((2k+1)^2-1)|$

By definition, $((2k+1)^2-1)=8*b, b,k\in\mathbb{Z}$

Expanding, $4k^2 + 4k = 8 * b, b, k \in \mathbb{Z}$

 $4k^2 + 4k = 8b, b, k \in \mathbb{Z}$

By Lemma 1, $k^2 + k = 2p$, $p, k \in \mathbb{Z}$

Rewriting, we have $4(2p) = 8b, p, b \in \mathbb{Z}$

Simplifying, $8p = 8b, p, b \in \mathbb{Z}$

By defn, p is divisible by 8.

Thus, we can write $((2k+1)^2-1)=8*b$, $b,k\in\mathbb{Z}$

Rewritten, $(n^2 - 1) = 8 * b, b \in \mathbb{Z}$

From this we can conclude that if n is odd, then $8|(n^2-1)$

Simon Kurgan Homework 5 2

Problem 1.2. For each integer n, if n is odd, then $8|(n^2-1)$

Proof: Suppose n is odd.

By definition, n = 2L + 1, where $L \in \mathbb{Z}$

By trichotomy we have 3 possible cases for L.

1.
$$L > 0$$

2.
$$L = 0$$

3.
$$L < 0$$

Because we are only considering integers,

1.
$$L \ge 1$$

2.
$$L = 0$$

3.
$$L \le -1$$

We proceed with proof by induction in the case where $L \geq 1$

Base Case: Suppose L = 1.

$$n = 2(1) + 1 = 3$$

$$8|((3)^2 - 1) = 8|(9 - 1) = 8|8$$

By Theorem 10, 8|8

Induction Step: Suppose $8|((2L+1)^2-1)$

By definition, $((2L+1)^2-1)=8*b, b\in\mathbb{Z}$

Expanding, $4L^2 + 4L = 8 * b$

$$4L^2 + 4L = 8b$$

Goal: Prove $8|((2(L+1)+1)^2-1)$

Simplifying $((2(L+1)+1)^2-1)$, we have $((2L+3)^2-1)$

Expanding, $4L^2 + 12L + 8$

By additive identity, $4L^2 + 12L + 8 = 4L^2 + 12L + 8 + 0$

By additive inverse, (4L - 4L) = 0

$$4L^2 + 12L + 8 + (4L - 4L) = 4L^2 + 4L + 8L + 8$$

Substituting, 8b + 8L + 8, $b, L \in \mathbb{Z}$

$$8(b + L + 1), b, L \in \mathbb{Z}$$

By integer closure, (b+L+1) is equal to some $k \in \mathbb{Z}$

Rewriting, we have 8|8k

By definition, this presumes that 8k = 8b for $k, b \in \mathbb{Z}$

By theorem 1, k = b for $k, b \in \mathbb{Z}$

In any case where k = b, 8|8k

Simon Kurgan Homework 5

By definition, $8|((2(L+1)+1)^2-1)$

```
We now evaluate the case where L = 0
By substitution, n = 2(0) + 1 = 1
Goal: Show 8|((1)^2 - 1)|
Simplifying, (1*1) = 1 and 1-1=0
Thus, we have 8|0
Rewriting, 0 = 8 * k, k \in \mathbb{Z}
By E8, there exists k = 0 such that 8 * 0 = 0
Therefore, 8|0 and that when L = 0, n|0
We now evaluate the case where L \leq -1 using induction
Base Case: Suppose L = -1.
n = 2(-1) + 1 = -2 + 1 = -1
Substituting, 8|((-1)^2-1)
Simplifying, 8|0
By definition, 0 = 8 * k
By E8, there exists k = 0 such that 8 * 0 = 0
Therefore, 8|0 and also 8|(n^2-1) when L=-1
Induction Step: Suppose 8|((2L+1)^2-1)|
By definition, ((2L+1)^2-1)=8*b, b\in\mathbb{Z}
Expanding, 4L^2 + 4L = 8 * b
4L^2 + 4L = 8b
Goal: Prove 8|((2(L+1)+1)^2-1)
Simplifying ((2(L+1)+1)^2-1), we have ((2L+3)^2-1)
Expanding, 4L^2 + 12L + 8
By additive identity, 4L^2 + 12L + 8 = 4L^2 + 12L + 8 + 0
By additive inverse, (4L - 4L) = 0
4L^2 + 12L + 8 + (4L - 4L) = 4L^2 + 4L + 8L + 8
Substituting, 8b + 8L + 8, b, L \in \mathbb{Z}
8(b + L + 1), b, L \in \mathbb{Z}
By integer closure, (b+L+1) is equal to some k \in \mathbb{Z}
Rewriting, we have 8|8k
By definition, this presumes that 8k = 8b for k, b \in \mathbb{Z}
By theorem 1, k = b for k, b \in \mathbb{Z}
In any case where k = b, 8|8k
By definition, 8|((2(L+1)+1)^2-1)
```

3

Simon Kurgan Homework 5 4

Problem 1.3. For every integer n, $n^3 \equiv n \pmod{3}$

Lemma 1: For integers $a, b \in \mathbb{Z}$ with b > 1, there exists a unique r such that $a \equiv r \pmod{b}$ where $0 \le r < b$

Proof: By Lemma 1, we have the three following cases.

Case 1: $n \equiv 0 \pmod{3}$

By Theorem 20, $n^3 \equiv 0^3 \pmod{3}$

Simplifying, $n^3 \equiv 0 \pmod{3}$

By Problem 5 Week 4, $n^3 \equiv n \pmod{3}$

Case 2: $n \equiv 1 \pmod{3}$

By Theorem 20, $n^3 \equiv 1^3 \pmod{3}$

 $n^3 \equiv 1 \pmod{3}$

By Problem 5 Week 4, $n^3 \equiv n \pmod{3}$

Case 3: $n \equiv 2 \pmod{3}$

By Theorem 20, $n^3 \equiv 2^3 \pmod{3}$

Simplifying, $n^3 \equiv 8 \pmod{3}$

Goal: Establish that $8 \pmod{3} \equiv 2 \pmod{3}$

Calculating both, we have $8 \pmod{3} = 2$, and $2 \pmod{3} = 2$

Since they are equal, $n^3 \equiv 2 \pmod{3}$

By Problem 5 Week 4 Part, $n^3 \equiv n \pmod{3}$

We can see that regardless of the congruence class (and individual cases), we have $n^3 \equiv n \pmod{3}$ for every integer n.

Simon Kurgan Homework 5 5

Problem 1.4. Let $N = \{0, 1, 2, ...\}$ be the set of natural numbers. Prove for $n \in N$, we must have 6 divides $(n^3 - n)$.

Lemma 1: For integers $a, b \in \mathbb{Z}$ with b > 1, there exists a unique r such that $a \equiv r \pmod{b}$ where $0 \le r \le b$

Proof: By definition, $6|(n^3 - n)$ can be written as $n^3 \equiv n \pmod 6$ By Lemma 1, we have the following 6 cases

Case 1: $n \equiv 0 \pmod{6}$

By Theorem 20, $n^3 \equiv 0^3 \pmod{6}$

Simplifying, $n^3 \equiv 0 \pmod{6}$

By Problem 5 Week 4, $n^3 \equiv n \pmod{6}$

By definition, $6|(n^3-n)|$

Case 2: $n \equiv 1 \pmod{6}$

By Theorem 20, $n^3 \equiv 1^3 \pmod{6}$

Simplifying, $n^3 \equiv 1 \pmod{6}$

By Problem 5 Week 4, $n^3 \equiv n \pmod{6}$

By definition, $6|(n^3-n)$

Case 3: $n \equiv 2 \pmod{6}$

By Theorem 20, $n^3 \equiv 2^3 \pmod{6}$

Simplifying, $n^3 \equiv 8 \pmod{6}$

Calculating, we have $8 \pmod{6} = 2$, and $2 \pmod{6} = 2$

Because of this equality and problem 5 week 4 part 3, $n^3 \equiv n \pmod{6}$

By definition, $6|(n^3-n)|$

Case 4: $n \equiv 3 \pmod{6}$

By Theorem 20, $n^3 \equiv 3^3 \pmod{6}$

Simplifying, $n^3 \equiv 27 \pmod{6}$

Using the division theorem, we have 27 (mod 6) = 3 (mod 6) because 27 = (3*6) + 3

Because of this equality and problem 5 week 4 part 3, $n^3 \equiv n \pmod{6}$

By definition, $6|(n^3-n)$

Case 5: $n \equiv 4 \pmod{6}$

By Theorem 20, $n^3 \equiv 4^3 \pmod{6}$

Simplifying, $n^3 \equiv 64 \pmod{6}$

Using the division theorem, we have $64 \pmod{6} = 4 \pmod{6}$ because 64 = (10 * 6) + 4

Simon Kurgan Homework 5 6

Because of this equality and problem 5 week 4 part 3, $n^3 \equiv n \pmod{6}$ By definition, $6|(n^3-n)|$

Case 6: $n \equiv 5 \pmod{6}$ By Theorem 20, $n^3 \equiv 5^3 \pmod{6}$

Simplifying, $n^3 \equiv 125 \pmod{6}$

Using the division theorem, we have $125 \pmod{6} = 5 \pmod{6}$ because 125 = (20 * 6) + 5

Because of this equality and problem 5 week 4 part 3, $n^3 \equiv n \pmod{6}$ By definition, $6|(n^3-n)|$

We can see that regardless of the congruence class (and individual cases), we have 6 divides $(n^3 - n)$, when $n \in \mathbb{N}$.