Première partie

Équations diophantiennes du 1^{er} degré $a \cdot x + b \cdot y = c$. Autres exemples d'équations diophantiennes.

Déf 1 On appelle équation diophantienne à n inconnues, une équation du type $P(Y_1,...,Y_n)=0$ avec

 $P \in \mathbb{Z}[X_1...X_n]$. On cherche les solutions dans \mathbb{Z}^n .

I Équations diophantiennes linéaires

a Équations diophantiennes du 1^{er} degré à 2 inconnues $a \cdot x + b \cdot y = c$

Soit (a,b,c) $\in \mathbb{Z}^3$. On cherche (x,y) $\in \mathbb{Z}^2$ tels que $a \cdot x + b \cdot y = c$ (*1) $\sqrt{x^2 + y^2}$

Prop 1 On appelle équation diophantienne à n inconnues, une équation du type $P(Y_1,....Y_n) = 0$ Une condition nécessaire et suffisanted'existence d'au moins 1 solution de (*1) est pgcd(a,b) divise c.

Théorème de Bezout

a,b sont 2 entiers. a et b sont premiers entre eux ssi il existe (u,v) $\in \mathbb{Z}^2$ tels que $a \cdot u + b \cdot v = 1$

Prop 2 Dans le cas où a et b sont premiers entre eux (breadcrumbs : chapeaux chinois congruence calculatrice HP48), une solution de (*1) est $(x_0, y_0) = (c \cdot u, c \cdot v)$ avec (u, v) dans le théorème de Bezout.

L'ensemble des solutions de (*1) est alors $S=(x_0 + \lambda \cdot b, y_0 - \lambda \cdot b), \lambda \in \mathbb{Z}$ Méthodes de résolution

- trouver (x_0, y_0) par divisions euclidiennes successives
- méthode des congruences : **exemple** : $3 \cdot x + 5 \cdot y = 1$: on cherche x tel que $3 \cdot x \equiv 1[5] \Leftrightarrow x \equiv 2[5]$. D'où $S = (2 + 5 \cdot \lambda, -1 3 \cdot \lambda), \lambda \in \mathbb{Z}$

b Systèmes d'équations diophantiennes linéaires

Soit
$$(m,n) \in \mathbb{Z}^2, (a_{11}, ..., a_{1m}, ..., a_{n1}, ..., a_{nm}) \in \mathbb{Z}^{nxm}, (b_1, ..., b_n) \in \mathbb{Z}^n$$

On cherche $(x_1, ..., x_m) \in \mathbb{Z}^m$ tel que :
$$\begin{cases} x^2 + y^2 = 2\\ n = 2 \end{cases}$$

- II Équations diophantiennes et décomposition en facteurs premiers
- III Équations diophantiennes et corps de nombres quadratiques

Équation de Fermat pour n=3

IV Équations diophantiennes et fractions continues

https://linuxconfig.org

^{1.} Written by Peter MOUEZA 2012