Exercice 1.1 [Constante d'Euler] Pour tout entier n > 0, on note $S_n = \sum_{k=1}^n \frac{1}{k}$.

- (1) Montrer que S_n tend vers l'infini quand n tend vers l'infini.
- (2) Donner un équivalent de S_n (on pourra utiliser le théorème des accroissements finis ou des comparaisons avec des intégrales).
- (3) Pour n > 1, on note $u_n = S_n \ln(n)$. Montrer que la suite converge . On note γ cette limite : c'est la constante d'Euler.

Exercice 1.2

(1) On considère les suites de réels positifs (u_n) et (v_n) définies par

$$u_0 = a, v_0 = b \text{ et } \forall n \in \mathbb{N}, u_{n+1} = \sqrt{u_n v_n}, v_{n+1} = \frac{u_n + v_n}{2}$$

Montrer que, pour tout $n \ge 1$, $u_n \le v_n$, $u_n \le u_{n+1}$ et $v_{n+1} \le v_n$.

- (2) Établir que (u_n) et (v_n) convergent vers une même limite. Cette limite commune est la moyenne arithmético-géométrique de a et b et est notée M(a,b).
- (3) Calculer M(a, a) et M(a, 0) pour $a \in \mathbf{R}_+$.
- (4) Exprimer $M(\lambda a, \lambda b)$ en fonction de M(a, b) pour $\lambda \in \mathbf{R}_{+}$.

Exercice 1.3 Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites réelles telles que

- $-(b_n)$ est strictement positive et strictement croissante;
- $-\lim_{n\to\infty}b_n=+\infty.$
 - (1) Montrer que si la suite de terme général

$$\frac{a_{n+1} - a_n}{b_{n+1} - b_n}$$

converge vers une limite ℓ , alors, la suite $\left(\frac{a_n}{b_n}\right)_{n\in\mathbb{N}}$ converge vers ℓ .

(2) Donner un cas particulier d'application de ce résultat.

Exercice 1.4 Soit a un réel strictement positif. Étudier la convergence de la série de terme général $a^{\sum \frac{1}{k}}$

Exercice 1.5 Étudier la suite $(z_n)_{n\geq 0}$ définie par $z_0\in \mathbf{C}$ et

$$\forall n \in \mathbf{N}, z_{n+1} = \frac{z_n + |z_n|}{2}$$

Exercice 1.6 Soient I = [a, b] un intervalle de \mathbf{R} et f une application de I dans I. On suppose que f est contractante ie qu'il existe $0 \le c < 1$ tel que pour tout $x \in I$ et tout $y \in I$,

$$|f(x) - f(y)| \le c|x - y|.$$

- (1) Soit $\alpha \in I$. Montrer que la suite (x_n) définie par $x_0 = \alpha$ et, pour tout $n \in \mathbb{N}$, $x_{n+1} = f(x_n)$ converge dans I et que sa limite ℓ est un point fixe de f.
- (2) Montrer que ce point fixe est unique.
- (3) Donner des exemples de fonctions contractantes.
- (4) Généraliser au cas où E est un espace de Banach et f est une application de E dans E.
- (5) Utiliser cette méthode pour déterminer l'unique racine réelle positive de l'équation $e^x x 2 = 0$.

Exercice 1.7 Soit I = [a, b] un intervalle de \mathbf{R} et soit f une application de classe \mathscr{C}^2 sur I. On suppose que f' ne s'annule pas sur I et que l'équation f(x) = 0 admet une solution dans I.

- (1) Montrer que cette solution est unique. On la note α .
- (2) Montrer que $g: x \mapsto x \frac{f(x)}{f'(x)}$ est définie sur I et calculer $g'(\alpha)$.
- (3) En déduire qu'il existe un intervalle J inclus dans I contenant α et stable par g. Soit $c \in J$ et soit (x_n) la suite définie par $x_0 = c$ et, pour tout $n \in \mathbb{N}$, $x_{n+1} = g(x_n)$. Montrer que cette suite converge vers α . Majorer $|x_{n+1} - \alpha|$ en fonction de $|x_n - \alpha|$ à l'aide de la formule de Taylor à l'ordre 2.

2. Séries

Exercice 2.8 Soit $(a_n)_{n\in\mathbb{N}}$ une suite de réels positifs décroissante.

- (1) Montrer que la série $\sum_{n \in \mathbb{N}} a_n$ converge si, et seulement si, la série $\sum_{n \in \mathbb{N}} 2^n a_{2^n}$ converge.
- (2) Soit α un réel strictement positif. Déduire de ce qui précède que la série de terme général $u_n = \frac{1}{n^{\alpha}}$ converge si, et seulement si, $\alpha > 1$.
- (3) Étudier de même la convergence de la série de terme général $\frac{1}{n(\ln(n))^{\alpha}}$.

Exercice 2.9 Soit a un réel strictement supérieur à 1.

(1) Montrer que, pour tout $n \geq 2$,

$$\frac{1}{n^a} \le \frac{1}{1-a} \left(\frac{1}{n^{a-1}} - \frac{1}{(n-1)^{a-1}} \right).$$

- (2) En déduire que la série de terme général $\frac{1}{n^a}$ converge.
- (3) Donner un équivalent de $\sum_{n=1}^{N} \frac{1}{n^a}$.

Exercice 2.10 [Convergence commutative]

- (1) Soit $\sum a_n$ une série absolument convergente (dans **R**, **C**, un Banach). Montrer qu'elle est commutativement convergente (pour toute permutation σ de N, la série $\sum a_{\sigma(n)}$ converge et sa somme ne dépend pas de σ .
- (2) Soit $\sum a_n$ une série de réels semi-convergente. En remarquant que les séries $\sum_n \max(a_n, 0)$ et $\sum \max(-a_n, 0)$ divergent, montrer qu'il existe une permutation σ de N telle que $\sum a_{\sigma(n)} = +\infty$.
- (3) Soit $\ell \in \overline{R}$. Montrer plus généralement que si la série de réels $\sum a_n$ est semi-convergente, il existe une permutation σ de N telle que la série $\sum a_{\sigma(n)}$ ait pour somme ℓ .
- (4) Soit E un espace vectoriel de dimension finie sur R. Montrer qu'une série est commutativement convergente si et seulement si elle est absolument convergente.

Exercice 2.11 On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et, pour $n\in\mathbb{N}$, $u_{n+1}=\frac{1}{n}e^{-u_n}$.

- (1) Étudier la nature de la série de terme général u_n .
- (2) Étudier la nature de la série de terme général $(-1)^n u_n$.

Exercice 2.12 [Théorème d'Abel] Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites de nombres complexes et $A_n=$

- (1) Soit N un entier et n > N, exprimer $\sum_{k=N}^{n} a_k b_k$ en fonction de des suites (A_n) et (b_n) .
- (2) En déduire que si
 - b_n tend vers 0 quand n tend vers l'infini, $\sum_{n\geq 0} |b_{n+1} b_n|$ converge, la suite (A_n) est bornée,

alors la série $\sum_{n \in \mathbb{N}} a_n b_n$ converge.

3. Familles sommables

Exercice 3.13 Dans ce qui suit, I désigne un ensemble. Soit $(u_i)_{i\in I}$ une famille de réels *positifs*. On dit que la famille (u_i) est sommable s'il existe un réel M tel que pour toute partie $finie\ J\subset I$, $\sum_{j\in J}u_i\leq M$. On pose alors

$$\sum_{I} u_{i} = \sup_{J \text{ partie finie de } I} \left\{ \sum_{J} u_{i} \right\}.$$

- (1) Soit (u_n) une suite de réels positifs. Montrer que (u_n) est sommable si, et seulement si, la série $\sum u_n$ converge (absolument). Dans ce cas, montrer que $\sum_{\mathbf{N}} u_n = \sum_{n=0}^{\infty} u_n$.
- (2) Soit $q \in [0,1[$, montrer que la famille $\left(q^{|n|}\right)_{n \in \mathbb{Z}}$ est sommable et déterminer sa somme.
- (3) Soit $(u_i)_{i\in I}$ une famille $d\acute{e}nombrable$ de réels. Soit $(I_k)_{k\in \mathbb{N}}$ une partition de I. Montrer que les assertions suivantes sont équivalentes :
 - (a) la famille $(u_i)_{i \in I}$ est sommable;
 - (b) pour tout $k \in \mathbb{N}$ la famille $(u_j)_{j \in I_k}$ est sommable et la série $\sum_{k \in \mathbb{N}} (\sum_{I_k} u_j)$ converge. Dans ce cas.

$$\sum_{i \in I} u_i = \sum_{k \in \mathbf{N}} \left(\sum_{I_k} u_j \right).$$

- (4) Si $(u_i)_{i\in I}$ une famille de complexes, on dit que cette famille est sommable si la famille $(|u_i|)_{i\in I}$ l'est. Étendre aux familles sommables de complexes le résultat (3).
- (5) Soit $(u_i)_{i\in I}$ une famille sommable de réels. Montrer que $\{j\in I : u_j\neq 0\}$ est au plus dénombrable.

Exercice 3.14 Soient (u_n) et (v_m) deux familles sommables. Montrer que la famille $(u_m v_n)_{(n,m)\in\mathbb{N}^2}$ est sommable et que

$$\sum_{\mathbf{N}^2} u_n v_m = \left(\sum_{n=0}^{\infty} u_n\right) \left(\sum_{m=0}^{\infty} v_m\right).$$

- (1) Soit σ une permutation de **N**. Montrer qua la famille $\left(\frac{1}{n\sigma(n)}\right)_{n\in\mathbb{N}^*}$ est sommable.
- (2) Montrer que si |q| < 1, $\frac{1}{(1-q)^2} = \sum_{n=0}^{+\infty} (n+1)q^n$ en utilisant les famille sommables puis en utilisant des séries de fonctions.
- (3) Soient x et y deux complexes. Montrer que $\exp(x+y) = \exp(x) \exp(y)$.

Exercice 3.15 On pose

$$a_{p,q} = \frac{2p+1}{p+q+2} - \frac{p}{p+q+1} - \frac{p+1}{p+q+3}$$
$$\sum_{q=0}^{+\infty} \sum_{p=0}^{+\infty} a_{p,q} \text{ et } \sum_{p=0}^{+\infty} \sum_{q=0}^{+\infty} a_{p,q}$$

Calculer

Que peut-on en déduire?

Exercice 3.16 On note $\ell^1(\mathbf{Z})$ l'ensemble des suites complexes $u=(u_n)_{n\in\mathbf{Z}}$ sommables.

(1) Pour $u, v \in \ell^1(\mathbf{Z})$, on pose $(u * v)_n = \sum_{k \in \mathbf{Z}} u_k v_{n-k}$. Montrer que $u * v \in \ell^1(\mathbf{Z})$ et que

$$\sum_{n \in \mathbf{Z}} (u * v)_n = \sum_{n \in \mathbf{Z}} u_n \sum_{n \in \mathbf{Z}} v_n$$

(2) Montrer que la loi * ainsi définie est commutative, associative et possède un neutre.

Exercice 3.17 Pour quels $\alpha > 0$, la famille suivante est-elle sommable?

$$\left(\frac{1}{(p^2+q^2)^{\alpha}}\right)_{(p,q)\in\mathbb{N}^{\star 2}}$$

Exercice 3.18 Soit (u_n) une suite réelle telle qu'il y ait convergence de la série $\sum u_n^2$ Soit σ une bijection de \mathbb{N} et (v_n) la suite déterminée par

$$\forall n \in \mathbb{N}, v_n = u_{\sigma(n)}$$

- a) Montrer la convergence et calculer la somme de la série $\sum_{n \in \mathbf{N}} v_n^2.$
- b) Quelle est la nature de la série $\sum |u_n v_n|$?
- c) Déterminer les bornes supérieure et inférieure de

$$\sum_{n=0}^{+\infty} |u_n v_n|$$

pour σ parcourant l'ensemble des bijections de \mathbb{N} .

Exercice 3.19 Soit $(p_i)_{i\in I}$ une famille sommable de réels positifs de somme 1 et soit $(x_i)_{i\in I}$ une famille de réels.

Montrer que si la famille $(x_i^2 p_i)_{i \in I}$ est sommable, il en est de même de $(x_i p_i)$. Soit $E = \sum x_i p_i$, que

$$V = \sum (x_i - E)^2 p_i$$

est sommable et que

$$V = \sum x_i^2 p_i - E^2.$$