Análisis de Supervivencia

Estimación no paramétrica

Sergio M. Nava Muñoz

2025-06-01

Table of contents

1	Est	imación no paramétrica	2
	1.1	Temario de la Sesión	2
	1.2	La función de distribución acumulada empírica (FDAE)	2
	1.3	Ejemplo en R: FDAE	3
	1.4	Estimador de Kaplan-Meier	4
2	Cál	culo e interpretación de KM	5
	2.1	Esquema General de Datos	5
	2.2	III. Características Generales de las Curvas de Kaplan-Meier	11
	2.3	Justificación Matemática de la Fórmula KM	12
	2.4	Ejemplo en R: Kaplan-Meier	13
3	Apl	icación	14
	3.1		14
4	Inte	ervalo de Confianza en Kaplan-Meier	17
	4.1	Intervalo de Confianza en Kaplan-Meier	17
	4.2	Fórmula general del IC	17
	4.3	Fórmula de Greenwood para la Varianza	17
	4.4	Ejemplo de cálculo	17
	4.5	Visualización en R	18
	4.6	Consideraciones finales de los intervalos de confianza	19
5	Sup	pervivencia Mediana	20
	5.1	¿Qué es la supervivencia mediana?	20
	5.2	Ejemplo visual	20
	5.3	Por qué es útil?	20
	5.4	Cálculo en R	21
	5.5	Conjunto de datos gastricXelox de la biblioteca asaur	21
	5.6	Ejercicio	22

6	Con	nparación entre grupos (Log-Rank Test)	24
	6.1	Objetivo	24
	6.2	Hipótesis	24
	6.3	Fundamento de la prueba	24
	6.4	Estadístico de prueba	25
	6.5	Tabla Expandida (Datos de Remisión)	26
	6.6	Ejemplo (Grupo Tratamiento vs Placebo)	28
	6.7	Interpretación de la salida	29
	6.8	Generalización de la prueba de log-rank (k grupos)	29
	6.9	Estadístico de prueba para k grupos	29
	6.10	Consideraciones	30
	6.11	Visualización	30
	6.12	Conclusión	30
	6.13	Actividad práctica guiada	31
7	Refe	erencias	31

1 Estimación no paramétrica

1.1 Temario de la Sesión

- Fundamentos: ¿Qué es el análisis de supervivencia y cómo se estructuran los datos (tiempo, evento y censura)?
- El Estimador Kaplan-Meier: Introducción al método no paramétrico fundamental para estimar la función de supervivencia cuando hay datos censurados.
- Cálculo e Interpretación: Un ejemplo paso a paso para calcular e interpretar una curva de Kaplan-Meier.
- Comparación entre Grupos: Uso de la prueba Log-Rank para determinar si existen diferencias significativas entre las curvas de supervivencia.
- Aplicación Práctica en R: Implementación de estas técnicas utilizando paquetes como survival y survminer.

1.2 La función de distribución acumulada empírica (FDAE)

Dada una muestra de tiempos de falla sin censura:

$$\hat{F}(t) = \frac{\#\{T_i \leq t\}}{n}$$

Es un estimador escalonado, que da saltos en cada observación. La función de supervivencia empírica se define como:

$$\hat{S}(t) = 1 - \hat{F}(t)$$

 ${\bf Limitaci\'on}: \ {\bf no} \ {\bf puede} \ {\bf manejar} \ {\bf adecuadamente} \ {\bf datos} \ {\bf censurados}.$

FDAE y supervivencia empírica sin censura 1.00 0.75 0.50 0.25 0.00 0.00 2.5 5.0 7.5 10.0

F^(t): verde sólido | S^(t): azul discontinua

F^(t): verde sólido | S^(t): azul discontinua

1.3 Ejemplo en R: FDAE

t	F_hat	S_hat
0.0	0.0000000	1.0000000
2.0	0.1428571	0.8571429
3.0	0.2857143	0.7142857
4.0	0.4285714	0.5714286
4.5	0.5714286	0.4285714
6.0	0.7142857	0.2857143
7.0	0.8571429	0.1428571
9.0	1.0000000	0.0000000
10.0	1.0000000	0.0000000

FDAE y supervivencia empírica sin censura

F^(t): verde sólido | S^(t): azul discontinua

1.4 Estimador de Kaplan-Meier

Cuando hay censura, la FDAE no es válida. Kaplan-Meier estima la función de supervivencia como:

$$\hat{S}(t) = \prod_{t_i \leq t} \left(1 - \frac{m_i}{n_i}\right)$$

donde:

- $n_i \colon$ número de individuos en riesgo justo antes de t_i

Es un estimador escalonado que **ajusta el denominador** cuando hay censura.

i Ejemplo

Table 2: Comparación entre FDAE, Supervivencia Empírica y Kaplan-Meier

tiempo	status	FDAE	S_empirica	Kaplan_Meier
2.0	1	0.1667	0.8333	0.8750
3.0	1	0.3333	0.6667	0.7500
4.0	1	0.5000	0.5000	0.6250
4.5	0	0.5000	0.5000	0.6250
6.0	1	0.6667	0.3333	0.4688
7.0	1	0.8333	0.1667	0.3125
9.0	0	0.8333	0.1667	0.3125
10.0	1	1.0000	0.0000	0.0000

2 Cálculo e interpretación de KM

2.1 Esquema General de Datos

Table 3: Esquema General de Datos con Subíndices

No. Indiv.	t	D	X_1	X_2	•••	X_p
1	t_1	D_1	X_{11}	X_{12}		X_{1p}
2	t_2	D_2	X_{21}	X_{22}		X_{2p}
	•••	•••	•••	•••	•••	•••
n	t_n	D_n	X_{n1}	X_{n2}	•••	X_{np}

Table 4: Disposición alternativa de los datos ordenados

Tiempos de fallo ordenados $t_{(f)}$	Núm. de fallos m_f	Censurados en $[t_{(f)},t_{(f+1)}),q_f$	Conjunto de riesgo $R(t_{(f)})$
$\overline{t_{(0)}}$	m_0	q_0	$R(t_{(0)})$
$t_{(1)}$	m_1	q_1	$R(t_{(1)})$
$t_{(2)}$	m_2	q_2	$R(t_{(2)})$
	•••		
$t_{(k)}$	m_k	q_k	$R(t_{(k)})$

i Disposición alternativa de los datos ordenados

Una disposición alternativa de los datos se muestra a continuación. Esta organización es la base sobre la cual se derivan las curvas de supervivencia de Kaplan-Meier.

- La primera columna de la tabla presenta los tiempos de supervivencia ordenados de menor a mayor. $t_{(f)}$
- La segunda columna muestra el conte
o de fallos en cada uno de los tiempos de fallo distintos.
 m_f
- La tercera columna presenta los conteos de censura, denotados por q_f , correspondientes a las personas censuradas en el intervalo de tiempo que inicia en el tiempo de fallo $t_{(f)}$ y termina justo antes del siguiente tiempo de fallo, $t_{(f+1)}$. q_f
- La última columna muestra el conjunto de riesgo, que representa el grupo de individuos que han sobrevivido al menos hasta el tiempo $t_{(f)}$. $R(t_{(f)})$

Ejemplo: Tiempos de remisión (semanas) para dos grupos de pacientes con leucemia

```
Grupo 1 (n = 21) — Tratamiento 6, 6, 6, 7, 10, 13, 16, 22, 23, 6^+, 9^+, 10^+, 11^+, 17^+, 19^+, 20^+, 25^+, 32^+, 32^+, 34^+, 35^+ Grupo 2 (n = 21) — Placebo 1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 13, 15, 17, 22, 23
```

Nota: el símbolo $^{+}$ denota observaciones censuradas.

Grupo	# Fallos	# Censurados	Total
Grupo 1	9	12	21
Grupo 2	21	0	21

- Estadísticos descriptivos: \bar{T}_1 (ignorando censuras): 17.1
 - \bar{T}_2 : 8.6

Table 6: Grupo 1 (tratamiento): Tiempos de fallo ordenados

$\overline{t_{(f)}}$	n_f	m_f	q_f
0	21	0	0
6	21	3	1
7	18	1	1
10	17	1	2
13	15	1	0
16	11	1	3
22	7	1	0
23	2	1	5
> 23	_		_

Table 7: Grupo 2 (placebo): Tiempos de fallo ordenados

$\overline{t_{(f)}}$	n_f	m_f	q_f
0	21	0	0
1	21	2	0
2	19	2	0
3	17	1	0
4	16	2	0
5	14	2	0
8	12	4	0
11	8	2	0
12	6	2	0
13	4	1	0
15	3	1	0
17	2	1	0
22	1	1	0
23	1	1	0

Table 8: Grupo 2 (placebo): Estimación de la función de supervivencia empírica (Kaplan-Meier)

$t_{(f)}$	n_f	m_f	q_f	$\hat{S}(t_{(f)})$
0	21	0	0	1.00
1	21	2	0	0.90
2	19	2	0	0.81
3	17	1	0	0.76
4	16	2	0	0.67
5	14	2	0	0.57
8	12	4	0	0.48
11	8	2	0	0.29
12	6	2	0	0.19
13	4	1	0	0.14
15	3	1	0	0.10
17	2	1	0	0.05
22	1	1	0	0.00
23	1	1	0	0.00

Curva de Kaplan-Meier para Grupo 2 (Placebo)

i Interpretación

- $\hat{S}(t_{(f)}) = \frac{\text{Número de sujetos sobrevivientes después de } t_{(f)}}{21}$ No hay censura en el Grupo 2.

Se utilizó el método de Kaplan-Meier para estimar la función de supervivencia.

i Ejemplo: Cálculo de la función de supervivencia empírica

Table 9: Grupo 2 (placebo): Estimación de la función de supervivencia empírica (Kaplan-Meier)

$t_{(f)}$	n_f	m_f	q_f	$\hat{S}(t_{(f)})$
0	21	0	0	1.00
1	21	2	0	0.90
2	19	2	0	0.81
3	17	1	0	0.76
4	16	2	0	0.67
5	14	2	0	0.57
8	12	4	0	0.48
11	8	2	0	0.29
12	6	2	0	0.19
13	4	1	0	0.14
15	3	1	0	0.10
17	2	1	0	0.05
22	1	1	0	0.00
23	1	1	0	0.00

Sea $\hat{S}(4)$ la probabilidad estimada de supervivencia más allá de la semana

$$\hat{S}(4) = 1 \times \frac{19}{21} \times \frac{17}{19} \times \frac{16}{17} \times \frac{14}{16} = \frac{14}{21} = 0.67$$

Esto equivale a:

Esto equivale a: $\begin{array}{l} \bullet \ \Pr(T>t_{(0)}) = \frac{21}{21} = 1 \\ \bullet \ \Pr(T>t_{(1)} \mid T \geq t_{(1)}) = \frac{19}{21} \\ \bullet \ \Pr(T>t_{(1)} \mid T \geq t_{(2)}) = \frac{19}{19} \\ \bullet \ \Pr(T>t_{(3)} \mid T \geq t_{(2)}) = \frac{16}{17} \\ \bullet \ \Pr(T>t_{(4)} \mid T \geq t_{(4)}) = \frac{14}{16} \\ \text{Donde 16 es el número de individuos en riesgo en la semana 4.} \\ \end{array}$ Para t = 8:

$$\hat{S}(8) = 1 \times \frac{19}{21} \times \frac{17}{19} \times \frac{16}{17} \times \frac{14}{16} \times \frac{12}{14} \times \frac{8}{12} = \frac{8}{21}$$

Fórmula KM:

$$\hat{S}(t) = \prod_{t_{(j)} \leq t} \left(1 - \frac{m_j}{n_j}\right)$$

donde m_j es el número de eventos (fallos) en $t_{(j)}$ y n_j el número en riesgo.

Table 10: Grupo 1 (tratamiento): Estimación paso a paso de la función de supervivencia ${\rm KM}$

$\overline{t_{(f)}}$	n_f	m_f	q_f	$\hat{S}(t_{(f)})$
0	21	0	0	1
6	21	3	1	18/21 = 0.8571
7	17	1	1	$0.8571 \times 16/17 = 0.8067$
10	15	1	2	$0.8067 \times 14/15 = 0.7529$
13	12	1	1	$0.7529 \times 11/12 = 0.6902$
16	11	1	2	$0.6902 \times 10/11 = 0.6275$
22	7	1	1	$0.6275 \times 6/7 = 0.5378$
23	6	1	1	$0.5378 \times 5/6 = 0.4482$

i Cálculo de otras estimaciones de supervivencia

Las demás estimaciones de supervivencia se calculan multiplicando la estimación en el tiempo de fallo inmediatamente anterior por una fracción. Por ejemplo:

- La fracción es $\frac{18}{21}$ para sobrevivir más allá de la semana 6, porque 21 sujetos permanecen hasta la semana 6 y 3 de ellos no sobreviven más allá de esa semana.
- La fracción es $\frac{16}{17}$ para sobrevivir más allá de la semana 7, ya que 17 personas permanecen hasta la semana 7 y 1 de ellas no sobrevive más allá de esa semana.

Las demás fracciones se calculan de manera similar.

Curvas de Kaplan-Meier para los Grupos de Tratamiento

2.2 III. Características Generales de las Curvas de Kaplan-Meier

2.2.1 Fórmula general de KM

$$\hat{S}(t_{(f)}) = \hat{S}(t_{(f-1)}) \times \Pr(T > t_{(f)} \mid T \geq t_{(f)})$$

2.2.2 Fórmula producto-límite (KM)

$$\hat{S}(t_{(f)}) = \prod_{i=1}^f \Pr(T > t_{(i)} \mid T \geq t_{(i)})$$

2.2.3 Ejemplo

Table 11: Grupo 1 (tratamiento): Estimación paso a paso de la función de supervivencia KM

$\overline{t_{(f)}}$	n_f	m_f	q_f	$\hat{S}(t_{(f)})$
0	21	0	0	1
6	21	3	1	18/21 = 0.8571
7	17	1	1	$0.8571 \times 16/17 = 0.8067$
10	15	1	2	$0.8067 \times 14/15 = 0.7529$
13	12	1	1	$0.7529 \times 11/12 = 0.6902$
16	11	1	2	$0.6902 \times 10/11 = 0.6275$

$t_{(f)}$	n_f	m_f	q_f	$\hat{S}(t_{(f)})$
22	7	1	1	$0.6275 \times 6/7 = 0.5378$
23	6	1	1	$0.5378 \times 5/6 = 0.4482$

2.2.3.1 Para t = 10:

$$\hat{S}(10) = 0.8067 \times \frac{14}{15} = 0.7529$$

También se puede expresar como:

$$\hat{S}(10) = \frac{18}{21} \times \frac{16}{17} \times \frac{14}{15}$$

2.2.3.2 Para t = 16:

$$\hat{S}(16) = 0.6902 \times \frac{10}{11} = 0.6274$$

O bien:

$$\hat{S}(16) = \frac{18}{21} \times \frac{16}{17} \times \frac{14}{15} \times \frac{11}{12} \times \frac{10}{11}$$

2.3 Justificación Matemática de la Fórmula KM

Sea:

$$\begin{array}{ll} \bullet & A = \{T \geq t_{(f)}\} \\ \bullet & B = \{T > t_{(f)}\} \end{array}$$

Entonces:

$$\Pr(A\cap B)=\Pr(B)=\hat{S}(t_{(f)})$$

Dado que no hay fallos en $t_{(f-1)} < T < t_{(f)}\colon$

$$\Pr(A) = \Pr(T \ge t_{(f-1)}) = \hat{S}(t_{(f-1)})$$

Y por la regla de la probabilidad condicional:

$$\Pr(B \mid A) = \Pr(T > t_{(f)} \mid T \geq t_{(f)})$$

Por lo tanto, usando $Pr(A \cap B) = Pr(A) \cdot Pr(B \mid A)$:

$$\hat{S}(t_{(f)}) = \hat{S}(t_{(f-1)}) \cdot \Pr(T > t_{(f)} \mid T \geq t_{(f)})$$

2.4 Ejemplo en R: Kaplan-Meier

Table 12: Tabla de tiempos y estatus de censura

ID	tiempo	evento
Ind 1	2.0	1
$\mathrm{Ind}\ 2$	3.0	1
$\mathrm{Ind}\ 3$	4.0	1
${\rm Ind}\ 4$	4.5	0
$\mathrm{Ind}\ 5$	6.0	1
Ind 6	7.0	1
$\mathrm{Ind}\ 7$	9.0	0
Ind 8	10.0	1

Estimación de Kaplan-Meier

Strata + All

Call: survfit(formula = surv_obj ~ 1, data = datos)

time n.risk n.event survival std.err lower 95% CI upper 95% CI 0.875 0.117 0.673 1.000 3 7 1 0.153 0.503 1.000 0.750 1 0.625 0.171 0.365 1.000 0.469 0.187 0.215 1.000

```
7 3 1 0.312 0.178 0.102 0.955
10 1 1 0.000 NaN NA NA
```

3 Aplicación

3.1 Uso en R

• Librería survival:

```
library(survival)
Surv(tiempo, status)
```

- Este objeto puede usarse en:
 - Surv() codifica la información de tiempo y censura.
 - survfit() ajusta curvas de supervivencia (Kaplan-Meier).
 - coxph() para modelos de Cox

3.1.1 La función Surv() de survival

```
library(survival)

# Censura derecha
tiempos <- c(5, 8, 12, 3, 10)
evento <- c(1, 0, 1, 1, 0) # 1 = evento, 0 = censurado

datos <- Surv(tiempos, evento)
datos</pre>
```

- [1] 5 8+ 12 3 10+
 - Crea un objeto de clase Surv.
 - Es la base para ajustar modelos de supervivencia.

3.1.2 Visualizando Surv() con tipos de censura

```
# Censura izquierda
tiempos <- c(5, 8, 12, 3, 10)
evento <- c(1, 0, 1, 1, 0)
Surv(tiempos, evento, type = "left")</pre>
```

```
[1] 5 8- 12 3 10-

# Censura por intervalo

inferior <- c(2, 6, 7, 5, 1)

superior <- c(4, 6, 9, 6, 3)
```

3.1.3 Ajuste con survfit()

```
library(survival)

# Datos con censura derecha
tiempos <- c(5, 8, 12, 3, 10)
evento <- c(1, 0, 1, 1, 0)
datos <- Surv(tiempos, evento)
print(datos)</pre>
```

```
[1] 5 8+ 12 3 10+
```

```
modelo <- survfit(datos ~ 1) # sin covariables
summary(modelo)</pre>
```

```
Call: survfit(formula = datos ~ 1)
```

```
time n.risk n.event survival std.err lower 95% CI upper 95% CI
                                              0.516
   3
          5
                  1
                          0.8
                                0.179
                                                                1
   5
          4
                   1
                          0.6
                                0.219
                                              0.293
                                                                1
  12
          1
                   1
                          0.0
                                                 NA
                                                               NA
                                  {\tt NaN}
```

• survfit() ajusta una curva de Kaplan-Meier.

3.1.4 Graficando la curva de supervivencia

Puedes usar $\operatorname{ggsurvplot}()$ del paquete $\operatorname{survminer}$ para una mejor presentación visual.

Curva de Kaplan-Meier

4 Intervalo de Confianza en Kaplan-Meier

4.1 Intervalo de Confianza en Kaplan-Meier

- La estimación de la supervivencia mediante Kaplan-Meier es una curva escalonada.
- Cada punto de la curva tiene asociado un intervalo de confianza (IC).
- El IC refleja la **incertidumbre** de la estimación en cada tiempo debido a datos censurados y al tamaño muestral.

4.2 Fórmula general del IC

Para una estimación de la probabilidad de supervivencia $\hat{S}_{KM}(t)$ en un tiempo 't' dado, el IC del 95% se calcula como:

$$\hat{S}_{KM}(t) \pm 1.96 \cdot \sqrt{\mathrm{Var}(\hat{S}_{KM}(t))}$$

- ${\rm Var}(\hat{S}_{KM}(t))$: varianza estimada con la fórmula de Greenwood, Ver sección 4.4 de Klein & Moeschberger (2003) para detalles sobre la fórmula de Greenwood.
- 1.96: cuantil de la normal estándar para un 95% de confianza

4.3 Fórmula de Greenwood para la Varianza

$$\operatorname{Var}(\hat{S}(t)) = [\hat{S}(t)]^2 \cdot \sum_{j: t_j \leq t} \frac{m_j}{n_j(n_j - m_j)}$$

Donde:

- m_i : número de fallas en el tiempo t_i
- n_j : número de sujetos en riesgo justo antes de t_j

4.4 Ejemplo de cálculo

Table 13: Tabla completa con eventos y censuras para los 21 casos

t	n_f	m_f	q_f	$\hat{S}(t)$	Error estándar	Límite inferior	Límite superior
6	21	3	1	0.857	0.0764	0.72	1
7	17	1	0	0.807	0.0869	0.653	0.996

t	n_f	m_f	q_f	$\hat{S}(t)$	Error estándar	Límite inferior	Límite superior
9		0	1				
10	15	1	1	0.753	0.0963	0.586	0.968
11		0	1				
13	12	1	0	0.69	0.1068	0.51	0.935
16	11	1	0	0.627	0.1141	0.439	0.896
17		0	1				
19		0	1				
20		0	1				
22	7	1	0	0.538	0.1282	0.337	0.858
23	6	1	0	0.448	0.1346	0.249	0.807
25		0	1				
32		0	2				
34		0	1				
35		0	1				

• A las 10 semanas,

$$\hat{S}(10) = 0.753$$

- Eventos y riesgos previos:

$$\begin{array}{l} \text{- Semana 6: } m_f = 3, n_f = 21 \rightarrow \frac{3}{21 \cdot 18} = 0.0079 \\ \text{- Semana 7: } m_f = 1, n_f = 18 \rightarrow \frac{1}{18 \cdot 17} = 0.0033 \\ \text{- Semana 10: } m_f = 1, n_f = 17 \rightarrow \frac{1}{17 \cdot 16} = 0.0037 \\ \end{array}$$

$$\sum = 0.0079 + 0.0033 + 0.0037 = 0.0149$$

$$Var(\hat{S}(10)) = (0.753)^2 \cdot 0.0149 = 0.0084$$

IC del 95%:

$$0.753 \pm 1.96 \cdot \sqrt{0.0084} = (0.570, 0.936)$$

4.5 Visualización en R

```
library(survival)
tratamiento <- data.frame(tiempo = c(6, 6, 6, 7, 10, 13, 16, 22, 23,
                               6, 9, 10, 11, 17, 19, 20, 25, 32, 32, 34, 35),
                    status = c(rep(1,9), rep(0,12)))
```

```
ajuste <- survfit(Surv(tiempo, status) ~ 1, data = tratamiento)</pre>
summary(ajuste)
```

Call: survfit(formula = Surv(tiempo, status) ~ 1, data = tratamiento)

time	n.risk	${\tt n.event}$	survival	std.err	lower 95% CI	upper 95% CI
6	21	3	0.857	0.0764	0.720	1.000
7	17	1	0.807	0.0869	0.653	0.996
10	15	1	0.753	0.0963	0.586	0.968
13	12	1	0.690	0.1068	0.510	0.935
16	11	1	0.627	0.1141	0.439	0.896
22	7	1	0.538	0.1282	0.337	0.858
23	6	1	0.448	0.1346	0.249	0.807

ggsurvplot(fit=ajuste,data=tratamiento)

Consideraciones finales de los intervalos de confianza

- Los IC permiten visualizar la precisión de las curvas de supervivencia.
- Son especialmente útiles para comparar entre grupos.

5 Supervivencia Mediana

5.1 ¿Qué es la supervivencia mediana?

- Es el tiempo en el cual la probabilidad de supervivencia se reduce al 50%.
- También se define como el tiempo t tal que

$$S(t) = 0.5$$

• Es preferida sobre la **media** cuando hay datos **censurados**, ya que la media puede no estar bien definida si la cola derecha no está completamente observada.

5.2 Ejemplo visual

Curva de Kaplan–Meier S(t) = 0.5 Supervivencia mediana 0 20 40 60 Tiempo

5.3 ¿Por qué es útil?

- Es **robusta** frente a valores extremos.
- Resume la distribución del tiempo hasta el evento.
- Tiene una **interpretación clara**: la mitad de los individuos han experimentado el evento para ese tiempo.

5.4 Cálculo en R

```
summary(ajuste)$table["median"]
```

median 11.00339

print(ajuste)

Call: survfit(formula = surv_obj ~ 1)

n events median 0.95LCL 0.95UCL [1,] 50 36 11 7.91 15.6

Este valor representa la $\mathbf{supervivencia}$ mediana estimada a partir de los datos.

5.5 Conjunto de datos gastricXelox de la biblioteca asaur

library(asaur)
data("gastricXelox")

Table 14: Ejemplo

paciente	tiempo	status
1	8	1
2	64	1
3	76	1
4	57	0
5	8	1
6	66	1

- Tiempo: semanas hasta progresión o muerte
- delta = 1 si hubo evento, 0 si censurado
- Los datos se desordenaron para este ejemplo

5.6 Ejercicio

- Usar R para:
 - Estimar la curva de supervivencia de gastricXelox
 - Obtener la mediana de supervivencia
 - Graficar con intervalo de confianza

Call: survfit(formula = Surv(timeMonths, delta) ~ 1, data = gastricXelox)

n.risk	n.event	survival	std.err	lower 95% CI	upper 95% CI
48	1	0.979	0.0206	0.940	1.000
47	3	0.917	0.0399	0.842	0.998
44	1	0.896	0.0441	0.813	0.987
43	1	0.875	0.0477	0.786	0.974
42	1	0.854	0.0509	0.760	0.960
41	1	0.833	0.0538	0.734	0.946
40	2	0.792	0.0586	0.685	0.915
38	2	0.750	0.0625	0.637	0.883
36	1	0.729	0.0641	0.614	0.866
35	1	0.708	0.0656	0.591	0.849
34	2	0.667	0.0680	0.546	0.814
32	1	0.646	0.0690	0.524	0.796
31	2	0.604	0.0706	0.481	0.760
29	1	0.583	0.0712	0.459	0.741
28	2	0.542	0.0719	0.418	0.703
26	1	0.521	0.0721	0.397	0.683
25	1	0.500	0.0722	0.377	0.663
23	1	0.478	0.0722	0.356	0.643
19	1	0.453	0.0727	0.331	0.620
16	1	0.425	0.0735	0.303	0.596
14	1	0.394	0.0742	0.273	0.570
13	1	0.364	0.0744	0.244	0.544
12	1	0.334	0.0742	0.216	0.516
11	1	0.303	0.0734	0.189	0.487
10	1	0.273	0.0720	0.163	0.458
	48 47 44 43 42 41 40 38 36 35 34 32 31 29 28 26 25 23 19 16 14 13 12 11	48	48 1 0.979 47 3 0.917 44 1 0.896 43 1 0.875 42 1 0.854 41 1 0.833 40 2 0.792 38 2 0.750 36 1 0.729 35 1 0.708 34 2 0.667 32 1 0.646 31 2 0.604 29 1 0.583 28 2 0.542 26 1 0.521 25 1 0.500 23 1 0.478 19 1 0.453 16 1 0.425 14 1 0.394 13 1 0.364 12 1 0.334 11 1 0.303	48 1 0.979 0.0206 47 3 0.917 0.0399 44 1 0.896 0.0441 43 1 0.875 0.0477 42 1 0.854 0.0509 41 1 0.833 0.0538 40 2 0.792 0.0586 38 2 0.750 0.0625 36 1 0.729 0.0641 35 1 0.708 0.0656 34 2 0.667 0.0680 32 1 0.646 0.0690 31 2 0.604 0.0706 29 1 0.583 0.0712 28 2 0.542 0.0719 26 1 0.521 0.0721 25 1 0.500 0.0722 23 1 0.478 0.0727 16 1 0.425 0.0735 14 1 0.394 0.0742 13 1 0.364 0.0744 <td>47 3 0.917 0.0399 0.842 44 1 0.896 0.0441 0.813 43 1 0.875 0.0477 0.786 42 1 0.854 0.0509 0.760 41 1 0.833 0.0538 0.734 40 2 0.792 0.0586 0.685 38 2 0.750 0.0625 0.637 36 1 0.729 0.0641 0.614 35 1 0.708 0.0656 0.591 34 2 0.667 0.0680 0.546 32 1 0.646 0.0690 0.524 31 2 0.604 0.0706 0.481 29 1 0.583 0.0712 0.459 28 2 0.542 0.0719 0.418 26 1 0.521 0.0721 0.397 25 1 0.500 0.0722 0.356 19 1 0.453 0.0727 0.331 16</td>	47 3 0.917 0.0399 0.842 44 1 0.896 0.0441 0.813 43 1 0.875 0.0477 0.786 42 1 0.854 0.0509 0.760 41 1 0.833 0.0538 0.734 40 2 0.792 0.0586 0.685 38 2 0.750 0.0625 0.637 36 1 0.729 0.0641 0.614 35 1 0.708 0.0656 0.591 34 2 0.667 0.0680 0.546 32 1 0.646 0.0690 0.524 31 2 0.604 0.0706 0.481 29 1 0.583 0.0712 0.459 28 2 0.542 0.0719 0.418 26 1 0.521 0.0721 0.397 25 1 0.500 0.0722 0.356 19 1 0.453 0.0727 0.331 16

6 Comparación entre grupos (Log-Rank Test)

6.1 Objetivo

- Comparar curvas de supervivencia entre dos o más grupos.
- Detectar diferencias globales en el riesgo de eventos a lo largo del tiempo.

6.2 Hipótesis

$$H_0: S_1(t) = S_2(t) \quad \forall t H_A: S_1(t) \neq S_2(t) \quad \text{para al menos un valor de } t$$

- Prueba no paramétrica
- Se basa en la comparación entre observados y esperados

6.3 Fundamento de la prueba

En cada tiempo de fallo:

- Se registra el número de eventos observados $(O_{1j},\,O_{2j})$
- Se calcula el número esperado bajo H_0 (E_{1j}, E_{2j})

Se acumulan a lo largo del tiempo:

$$Z = \sum_j (O_{1j} - E_{1j})$$

y la varianza:

$$\operatorname{Var}(Z) = \sum_{i} V_{j}$$

${f i}$ Cálculo del número esperado bajo H_0

En la prueba de log-rank, bajo la hipótesis nula $H_0: S_1(t) = S_2(t)$, se asume que las tasas de fallo son iguales en ambos grupos. Por tanto, el número esperado de fallos para cada grupo en el tiempo de fallo $t_{(f)}$ se calcula como:

• Número total de fallos en $t_{(f)}$:

$$m_f = m_{1f} + m_{2f}$$

• Número total en riesgo en $t_{(f)}$:

$$n_f = n_{1f} + n_{2f}$$

• Esperado en el grupo 1:

$$e_{1f} = \frac{n_{1f}}{n_f} \cdot m_f$$

• Esperado en el grupo 2:

$$e_{2f} = \frac{n_{2f}}{n_f} \cdot m_f$$

Este cálculo se repite en cada tiempo de fallo $t_{(f)}$ y los valores se acumulan para calcular el estadístico de prueba:

$$Z = \sum_f (m_{1f} - e_{1f}), \quad \text{Var}(Z) = \sum_f \frac{n_{1f} n_{2f} m_f (n_f - m_f)}{n_f^2 (n_f - 1)}$$

6.4 Estadístico de prueba

$$\chi^2 = \frac{(O_1 - E_1)^2}{{\rm Var}(Z)} \sim \chi^2_{(1)}$$

Se compara con la distribución χ^2 con 1 grado de libertad (para dos grupos).

6.5 Tabla Expandida (Datos de Remisión)

Table 15: Tabla expandida completa: cálculo detallado para prueba de log-rank

											$m_{1f}-$	$m_{2f}-$
$t_{(f)}$	m_{1f}	m_{2f}	n_{1f}	n_{2f}	m_f	n_f	e_{1f}	e_{2f}	e_{1f}	e_{2f}	e_{1f}	e_{2f}
1	0	2	21	21	2	42	1.00	1.00			-1.00	1.00
										(21/42)		
									\times 2)	$\times 2)$		
2	0	2	21	19	2	40	1.05	0.95	(01 /40	(10 /40	-1.05	1.05
									$(21/40 \times 2)$	(19/40)		
3	0	1	21	17	1	38	0.55	0.45	× 2)	\times 2)	-0.55	0.55
0	U	1	21	11	1	30	0.00	0.40	(21/38	(17/38)		0.55
									× 1)			
4	0	2	21	16	2	37	1.14	0.86	,	,	-1.14	1.14
									(21/37)	(16/37)		
									\times 2)	× 2)		
5	0	2	21	14	2	35	1.20	0.80			-1.20	1.20
										(14/35)		
c	9	0	01	10	9	22	1 01	1 00	\times 2)	\times 2)	1.00	1.00
6	3	0	21	12	3	33	1.91	1.09	(91/22	(12/33)	1.09	-1.09
									$\times 3)$			
7	1	0	17	12	1	29	0.59	0.41	× 0)	× 0)	0.41	-0.41
•	-	Ü			•	_0	0.00	0.11	(17/29)	(12/29)		0.11
									× 1)			
8	0	4	16	12	4	28	2.29	1.71	,	,	-2.29	2.29
									` '	(12/28)		
				_					\times 4)	\times 4)		
10	1	0	15	8	1	23	0.65	0.35	(1 = 100	(0.100	0.35	-0.35
									(15/23)			
11	0	2	13	8	2	21	1 94	0.76	× 1)	× 1)	-1.24	1.24
11	U	2	10	O	2	21	1.24	0.70	(13/21)	(8/21	-1.24	1.24
									$\times 2)$			
12	0	1	12	6	1	18	0.67	0.33	,	,	-0.67	0.67
									(12/18)	(6/18)		
									\times 1)	\times 1)		
13	1	1	12	5	2	17	1.41	0.59			-0.41	0.41
									(12/17)			
15	0	1	11	4	1	1 5	0.79	0.07	\times 2)	\times 2)	0.79	0.79
15	0	1	11	4	1	15	0.73	0.27	(11 /15	(4/15	-0.73	0.73
									$(11/15 \times 1)$			
									^ 1)	^ 1)		

											m	
$t_{(f)}$	m_{1f}	m_{2f}	n_{1f}	n_{2f}	m_f	n_f	e_{1f}	e_{2f}	e_{1f}	e_{2f}	$m_{1f}-\ e_{1f}$	$\begin{array}{c} m_{2f} - \\ e_{2f} \end{array}$
16	1	0	11	3	1	14	0.79	0.21			0.21	-0.21
									` '	4(3/14)		
									$\times 1)$	$\times 1)$		
17	0	1	10	3	1	13	0.77	0.23			-0.77	0.77
										3(3/13)		
									\times 1)	$\times 1)$		
22	1	1	7	2	2	9	1.56	0.44			-0.56	0.56
									(7/9)	(2/9)		
									\times 2)	$\times 2)$		
23	1	1	6	1	2	7	1.71	0.29			-0.71	0.71
									(6/7)	(1/7)		
									\times 2)	$\times 2)$		
Tota	les 9	21					19.26	$6\ 10.74$	1		-	10.26
											10.26	

- Esperado en el grupo 1: $e_{1f} = \frac{n_{1f}}{n_f} \cdot m_f$
- Esperado en el grupo 2: $e_{2f} = \frac{n_{2f}}{n_f} \cdot m_f$

i Significado de las columnas de la tabla expandida

Table 16: Descripción de las columnas en la tabla expandida de log-rank

Columna	Significado
$\overline{\mathbf{f}}$	Índice del tiempo de fallo ordenado
$t_{(f)}$	Tiempo observado de fallo número f
m_{1f}	Número de fallos en el grupo 1 en $t_{(f)}$
m_{2f}	Número de fallos en el grupo 2 en $t_{(f)}$
n_{1f}	Número en riesgo en el grupo 1 justo antes de $t_{(f)}$
n_{2f}	Número en riesgo en el grupo 2 justo antes de $t_{(f)}$
e_{1f}	Número esperado de fallos en el grupo 1 bajo H_0
$e_{2f}^{}$	Número esperado de fallos en el grupo 2 bajo H_0
$m_{1f} - e_{1f}$	Diferencia entre observados y esperados en el grupo 1
$m_{2f} - e_{2f}$	Diferencia entre observados y esperados en el grupo 2

6.6 Ejemplo (Grupo Tratamiento vs Placebo)

```
Ejemplo: Tiempos de remisión (semanas) para dos grupos de pacientes
  con leucemia
  Grupo 1 (n = 21) — Tratamiento
  6, 6, 6, 7, 10, 13, 16, 22, 23,
  6^+, 9^+, 10^+, 11^+,
  17^+, 19^+, 20^+,
  25^+, 32^+, 32^+, 34^+, 35^+
       Nota: el símbolo <sup>+</sup> denota observaciones censuradas.
  Grupo 2 (n = 21) — Placebo
  1, 1, 2, 2, 3,
  4, 4, 5, 5,
  8, 8, 8, 8,
  11, 11, 12, 13,
  15, 17, 22, 23
               Grupo
                          # Fallos
                                    # Censurados
                                                   Total
               Grupo 1
                         9
                                    12
                                                    21
               Grupo 2
                         21
                                    0
                                                    21
library(survival)
datos \leftarrow data.frame(tiempo = c(6, 6, 6, 7, 10, 13, 16, 22, 23,
                                  6, 9, 10, 11, 17, 19, 20, 25, 32, 32, 34, 35,
                                  1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11,
                                  11, 12, 13, 15, 17, 22, 23),
                      status = c(rep(1,9), rep(0,12), rep(1,21)),
                      grupo = factor(c(rep("Tratamiento",21),rep("Placebo",21))))
survdiff(Surv(tiempo, status) ~ grupo, data = datos)
Call:
survdiff(formula = Surv(tiempo, status) ~ grupo, data = datos)
                     N Observed Expected (O-E)^2/E (O-E)^2/V
grupo=Placebo
                                      10.8
                                                 9.76
                              21
                                                            16.8
                                      19.2
                                                            16.8
grupo=Tratamiento 21
                                                 5.45
 Chisq= 16.8 on 1 degrees of freedom, p= 4e-05
```

Interpretación de la salida

- Se obtiene un valor de χ^2 y un valor-p.
- Si $p < \alpha$, se **rechaza** H_0 : hay evidencia de que las curvas difieren.
- Si $p \ge \alpha$, no se rechaza H_0 : no hay evidencia suficiente.

Generalización de la prueba de log-rank (k grupos)

Sea k el número de grupos a comparar.

En cada tiempo de fallo $t_{(f)}$:

- m_{if} : número de fallos en el grupo i.
- n_{if} : número en riesgo en el grupo i.
- $m_f = \sum_{i=1}^k m_{if}$: total de fallos. $n_f = \sum_{i=1}^k n_{if}$: total en riesgo.

Valor esperado para el grupo i:

$$e_{if} = \frac{n_{if}}{n_f} \cdot m_f$$

Estadístico de prueba para k grupos

Sea
$$O_i = \sum_f m_{if}$$
 y $E_i = \sum_f e_{if}$

El estadístico log-rank generalizado es:

$$X^2 = (O-E)^T \Sigma^{-1} (O-E)$$

donde:

- $O = (O_1, \dots, O_{k-1})$
- $E = (E_1, \dots, E_{k-1})$
- Σ es la matriz de covarianza de O

Distribución asintótica:

$$X^2 \sim \chi^2_{k-1}$$

Se **rechaza** H_0 si el valor-p es menor al nivel de significancia.

6.10 Consideraciones

- Sensible a diferencias en tiempos largos si hay censura temprana.
- La prueba de log-rank asume riesgos proporcionales.
- No considera covariables usar modelo de Cox si se desea controlar otras variables.

6.11 Visualización

6.12 Conclusión

- La prueba de log-rank es útil para comparar curvas de supervivencia entre grupos.
- Es ampliamente usada por su simplicidad y poder bajo riesgos proporcionales.

6.13 Actividad práctica guiada

Datos: lung del paquete survival.

Pasos:

- 1. Cargar datos con data(cancer, package="survival"); head(lung)
- 2. Crear objeto Surv(time, status)
- 3. Estimar curvas por sex
- 4. Probar igualdad con log-rank

7 Referencias

Klein, J. P., & Moeschberger, M. L. (2003). Survival analysis: Techniques for censored and truncated data (2nd ed.). Springer.