CMSC/LING/STAT 208: Machine Learning

Abhishek Chakraborty [Much of the content in these slides have been adapted from *ISLR2* by James et al. and *HOMLR* by Boehmke & Greenwell]

What is Machine Learning?

- Machine Learning is the study of tools/techniques for understanding complex datasets.
- The name machine learning was coined in 1959 by Arthur Samuel.
 - "Field of study that gives computers the ability to learn without being explicitly programmed."

What is Machine Learning?

Tom M. Mitchell (1998) defined algorithms studied in the machine learning field as

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E."

What is Machine Learning?

MNIST handwritten digits (from ISLR, James et al.)

Suppose your email program watches which emails you do or do not mark as spam, and based on that learns how to better filter spam. According to Tom Mitchell's definition, what is the task T, experience E, and performance measure P in this setting?

- The number (or fraction) of emails correctly classified as spam/ham.
- Classifying emails as spam or ham (not spam)
- Watching you label emails as spam or ham.

Statistical Learning vs Machine Learning vs Data Science

- Machine learning arose as a subfield of Artificial Intelligence.
- Statistical learning arose as a subfield of Statistics.
- There is much overlap, a great deal of "cross-fertilization".
- "Data Science" Reflects the fact that both statistical and machine learning are about data.
- "Machine learning" or "Data Science" are "fancier" terms.

Terminologies/Notations

Ames Housing dataset - Contains data on 881 houses in Ames, IA. We are interested in predicting sale price.

The first ten observations are shown below.

## # A tibble: 10 × 6								
	##		Sale_Price	Gr_Liv_Area	Garage_Type	Garage_Area	Pool_Area	Neighborhood
	##		<int></int>	<int></int>	<fct></fct>	<dbl></dbl>	<int></int>	<fct></fct>
	##	1	244000	2110	Attchd	522	0	North_Ames
	##	2	213500	1338	Attchd	582	0	Stone_Brook
	##	3	185000	1187	Attchd	420	0	Gilbert
	##	4	394432	1856	Attchd	834	0	Stone_Brook
	##	5	190000	1844	Attchd	546	0	Northwest_Ames
	##	6	149000	NA	Attchd	480	0	North_Ames
	##	7	149900	NA	Attchd	500	0	North_Ames
	##	8	127500	1069	Attchd	440	0	Northpark_Villa
	##	9	395192	1940	Attchd	606	0	Northridge_Heights
	##	10	290941	1544	Attchd	868	0	Northridge_Heights

Terminologies/Notations

Default dataset - Contains credit card default data on 10,000 individuals. We are interested in predicting whether somebody will default or not.

The first ten observations are shown below.

##		default	student	balance	income
##	1	No	No	939.0985	45519.02
##	2	No	Yes	397.5425	22710.87
##	3	Yes	No	1511.6110	53506.94
##	4	No	No	301.3194	51539.95
##	5	No	No	878.4461	29561.78
##	6	Yes	No	1673.4863	49310.33
##	7	No	No	310.1302	37697.22
##	8	No	No	1272.0539	44895.59
##	9	No	No	887.2014	41641.45
##	10	No	No	230.8689	32798.78

Terminologies/Notations

- \cdot Response/Target/Outcome variable we are interested in predicting, denoted as Y
- \cdot Features/Inputs/Predictors variables used to predict the response, denoted as X
- Feature Matrix all features taken together, denoted as ${f X}$
- · Number of data points/observations denoted as n
- · Number of features/inputs/predictors denotes as p
- Missing entries in R are denoted as NA

For each of the Ames Housing and Default datasets,

- What are the corresponding values of n and p?
- What will be the dimension of the corresponding response vector Y?
- · What is the value of the 3rd feature for the 2nd observation?

Suppose you have information about 867 cancer patients on their age, tumor size, clump thickness of the tumor, uniformity of cell size, and whether the tumor is malignant or benign. Based on these data, you are interested in building a model to predict the type of tumor (malignant or benign) for future cancer patients.

- What are the values of n and p in this dataset?
- What are the inputs/features?

Supervised vs Unsupervised

Machine Learning Tasks (from Bunker and Fayez, 2017)

Supervised Learning

- We have access to labeled data
- The objective is to learn the overall pattern of the relationship between the inputs (\mathbf{X}) and response (Y) in order to
 - Investigate the relationship between inputs and response.
 - Predict for potential unseen test cases.
 - Assess the quality of predictions.

Supervised Learning problems can be categorized into

- Regression problems (response is quantitative, continuous)
- Classification problems (response is qualitative, categorical)

Unsupervised Learning

- · No response/outcome variable, just ${f X}$.
- Understand structure within data.
 - find similar groups of observations based on features (clustering)
 - find a smaller subset of features with the most variation (dimensionality reduction)
- No gold-standard.
- · Easier to collect unlabeled data.
- Useful pre-processing step for supervised learning.

Unsupervised Learning

US Arrests dataset - Data on arrests for 50 US states.

The first ten observations are shown below.

##		Murder	Assault	UrbanPop	Rape
##	Alabama	13.2	236	58	21.2
##	Alaska	10.0	263	48	44.5
##	Arizona	8.1	294	80	31.0
##	Arkansas	8.8	190	50	19.5
##	California	9.0	276	91	40.6
##	Colorado	7.9	204	78	38.7
##	Connecticut	3.3	110	77	11.1
##	Delaware	5.9	238	72	15.8
##	Florida	15.4	335	80	31.9
##	Georgia	17.4	211	60	25.8

Some of the problems below are best addressed using a supervised learning algorithm, while others with an unsupervised learning algorithm. In each case, identify whether the problem belongs to the supervised or unsupervised learning paradigm. (Assume some appropriate dataset is available for your algorithm to "learn" from.)

- Examine the statistics of two football teams, and predict which team will win tomorrow's match (given historical data of teams' wins/losses to learn from).
- · Given genetic (DNA) data from a person, predict the probability of the person developing diabetes over the next 10 years.
- Take a collection of 1000 essays written on the US economy, and find a way to automatically group these essays into a small number of groups of essays that are somehow "similar" or "related".
- Examine data on the income and years of education of adults in a neighborhood and build a model to predict the income from years of education.