

Revisar envio do teste: EXAME MEIO SEMESTRE (26 NOV 2020)

Pergunta 1

0 em 10 pontos

Considere o seguinte problema de determinar a mistura óptima de rações para galinha, com 3 nutrientes, identificados por nut1, nut2 e nut 3, respectivamente, com 5 rações à venda no mercado, em que a variável de decisão x_j é a quantidade de ração j da mistura.

A solução óptima do modelo é $x_1 = x_2 = x_3 = 1$ e $x_4 = x_5 = 0$, e os relatórios de análise de sensibilidade são:

Objective	-		_	
Variables	from	till	from value	till value
objective	16	16	16	16
x1	5	7	$-\infty$	0
x2	6	9	$-\infty$	0
x3	2.2E-16	3	$-\infty$	0
x4	0.66666	$+\infty$	3	0
x5	8	$+\infty$	1	0

Duals			
Variables	value	from	till
objective	16	16	16
nut1	2	2	+∞
nut2	0.66666	2	8
nut3	1.66666	2.5	6
x1	0	$-\infty$	$+\infty$
x2	0	$-\infty$	$+\infty$
x3	0	$-\infty$	$+\infty$
x4	0.33333	-3	3
x5	1	$-\infty$	1

Seleccione as opções correctas.

Respostas

Selecionadas: Considere que o custo da ração 2 aumenta de 8 para 10. A intornação disponível não permite determinar qual seria o novo custo óptimo da

alimentação das galinhas.

Ø

Considere que a DDR (dose diária recomendada) do nut2 passa a ser 6 (em vez dos 5 actuais). A informação disponível não permite

determinar o custo óptimo da alimentação das galinhas.

Respostas: Considere que o custo da ração 2 aumenta de 8 para 10. Então, o custo óptimo da alimentação das galinhas seria 18.

3

Considere que o custo da ração 2 aumenta de 8 para 10. A informação disponível não permite determinar qual seria o novo custo óptimo da alimentação das galinhas.

Ø

Considere que a DDR (dose diária recomendada) do nut2 passa a ser 6 (em vez dos 5 actuais). Então o custo óptimo da alimentação das galinhas seria cerca de 16.66.

Considere que a DDR (dose diária recomendada) do nut2 passa a ser 6 (em vez dos 5 actuais). A informação disponível não permite determinar o custo óptimo da alimentação das galinhas.

Pergunta 2 0 em 10 pontos

Considere o mapa das Pontes de Königsberg e a sua representação esquemática num grafo onde são indicadas as distâncias entre os pontos assinalados no mapa. A soma dos comprimentos das arestas do grafo totaliza 45.

No modelo do problema de emparelhamento perfeito de custo mínimo para identificar a solução óptima do problema do carteiro chinês deste exemplo, qual das seguintes é a função objectivo?

Resposta Selecionada: 10 xab + 10 xac + 5 xad + 10 xbc + 10 xbd + 10 xcd

0

Respostas: 5 xab + 5 xac + 5 xad + 10 xbc + 10 xbd + 10 xcd

nenhuma das outras

10 xab + 10 xac + 5 xad + 10 xbc + 10 xbd + 10 xcd

5 xab + 5 xac + 5 xad + 1000 xbc + 10 xbd + 10 xcd

Pergunta 3 10 em 10 pontos

Um problema de programação linear pode ter exatamente duas soluções óptimas.

🕜 Falso

Pergunta 4

10 em 10 pontos

Considere o seguinte problema de programação linear.

Qual é o problema dual deste problema de maximização?

Resposta Selecionada: min 4 y1 - 6 y2 + 10 y3

Respostas:

min
$$4 y1 - 6 y2 + 10 y3$$

s.a $+1 y1 + 1 y3 >= 1$
 $-1 y1 - 1 y2 + 1 y3 >= 2$
 $y1, y2, y3 >= 0$

min
$$4 y1 - 6 y2 + 10 y3$$

s.a $-1 y1 + 1 y3 >= 1$
 $+1 y1 - 1 y2 + 1 y3 >= 2$
 $y1, y2, y3 >= 0$

Pergunta 5

6,66666 em 10 pontos

Copiar de

Preencha os espaços em branco. É atribuída uma cotação a cada uma das alíneas. Considere o seguinte problema de programação linear e os respectivos quadro óptimo e relatório de sensibilidade.

Considere o seguinte problema de determinar a mistura óptima de rações para galinha, com 3 nutrientes, identificados por nut1, nut2 e nut 3, respectivamente, com 5 rações à venda no mercado, em que a variável de decisão x_i é a quantidade de ração j da mistura.

A solução óptima do modelo é $x_1 = x_2 = x_3 = 1$ e $x_4 = x_5 = 0$, e os relatórios de análise de sensibilidade são:

Objective				
Variables	from	till	from value	till value
objective	16	16	16	16
x1	5	7	$-\infty$	0
x2	6	9	$-\infty$	0
x3	2.2E-16	3	$-\infty$	0
x4	0.66666	+∞	3	0
x5	8	$+\infty$	1	0

Duals			
Variables	value	from	till
objective	16	16	16
nut1	2	2	$+\infty$
nut2	0.66666	2	8
nut3	1.66666	2.5	6
x1	0	$-\infty$	$+\infty$
x2	0	$-\infty$	$+\infty$
x3	0	$-\infty$	$+\infty$
x4	0.33333	-3	3
x5	1	$-\infty$	1

Complete as seguintes afirmações, considerando que são independentes.

- i) Seria atractivo adquirir a ração 5 se o seu custo fosse inferior a [A400].
- ii) Deixaria de ser atractivo adquirir a ração 3 se o seu custo fosse superior a [B400].
- iii) Se as necessidades do nutriente 1 diminuíssem de uma unidade, o custo da dieta diminuiria de [C400].

Resposta Especificada para A400 👩 8

Resposta Especificada para B400 👩 3

Resposta Especificada para C400 🔞 16

Respostas Corretas para A400							
Respostas Corretas para A400							
Método de avaliação	Resposta Correta Diferenciação de maiúsculas e minúsculas						
🕜 Correspondência Exata	8						
Respostas Corretas para B400							
Método de avaliação	Resposta Correta Diferenciação de maiúsculas e minúsculas						
🕜 Correspondência Exata	3						
Respostas Corretas para C	2400						
Método de avaliação	Resposta Correta Diferenciação de maiúsculas e minúsculas						
Correspondência Exata	2						

Pergunta 6 0 em 10 pontos

Seleccione a opçao correcta. Considere o seguinte quadro simplex de um problema 🌠 de MINIMIZAÇÃO.

							s_3	
x_2	0	2	1	0	0	0	1	20
x_3	0	-1/2	0	1	1/2	0	-1/2	10
s_2	0	-3/2	0	0	-1/2	1	1 - 1/2 - 3/2	70
z	1	-10	0	0	0	0	10	600

Quais os valores de x1 e de z (função objectivo) da solução obtida no quadro simplex seguint e, após efectuar o pivô?

Resposta Selecionada: (3) x1= 10 e z=700

Respostas: x1=10 e z=800

x1= 10 e z=700

y x1= 0 e z=400

x1= 0 e z=500

Pergunta 7 0 em 10 pontos

Uma empresa produz 2 tipos de artigos: artigo 1 e artigo 2, cuja produção requer 3 tipos de recursos: material, mão de obra e tempo-máquina, e pretende determinar o plano de produção diário que maximiza o lucro total. Após seleccionar as variáveis de decisão:

- x_1 : quantidade de artigos de tipo 1 a fabricar diariamente [art./dia]
- x_2 : quantidade de artigos de tipo 2 a fabricar diariamente [art./dia],

a análise do problema permitiu desenvolver o seguinte modelo:

$$\max z = 12x_1 + 10x_2$$
$$3x_1 + 2x_2 \le 120$$
$$1x_1 + 2x_2 \le 80$$
$$1x_1 \le 30$$
$$x_1, x_2 > 0$$

Considere agora que a empresa pretende que, pelo menos, 2/3 dos artigos produzidos sejam do tipo 1.

Qual das seguintes opções descreve essa restrição? (Seleccione uma opção)

Resposta Selecionada: 2/3 x1 >= 1/3 x2

Respostas: 2/3 x1 <= 1/3 x2

2/3 x1 >= 1/3 x2 1/3 x1 <= 2/3 x2

√ 1/3 x1 >= 2/3 x2

Pergunta 8 10 em 10 pontos

Na resolução de um problema de programação linear de maximização com o método simplex primal, o valor da função objectivo aumenta a cada iteração, podendo haver excepções quando há um quadro simplex correspondente a um vértice degenerado (com um 0 no lado direito).

Resposta Selecionada: 🚫 Verdadeiro

Respostas:

Verdadeiro

Falso

Pergunta 9

6,66666 em 10 pontos

Preencha os espaços em branco. Considere o seguinte problema de programação linear e os respectivos quadro óptimo e relatório de sensibilidade.

Duals	1.00	-0.5	900
Variables	value	from	till
objective	400	400	400
R1	2	60	100
R2	0	$-\infty$	+∞
R3	4	40	80
x1	0	$-\infty$	+∞
x2	0	$-\infty$	+∞
x3	-1	-20	+20

A quantidade do recurso disponível relativo à terceira restrição pode descer [A4001] unidades, até ao valor mínimo de [B4001], sem haver alteração das variáveis da solução básica óptima, x1, s2 e x2, sendo nesse caso o valor da solução óptima igual a [C4001].

Resposta Especificada para A4001 👩 20

Resposta Especificada para B4001 6 40

Resposta Especificada para C4001 🔞 360

Respostas Corretas para A4001

Método de avaliação Resposta Correta Diferenciação de maiúsculas e minúsculas

🧭 Correspondência Exata

Respostas Corretas para B4001

Método de avaliação Resposta Correta Diferenciação de maiúsculas e minúsculas

🕜 Correspondência Exata

Respostas Corretas para C4001

Método de avaliação Resposta Correta Diferenciação de maiúsculas e minúsculas

🕜 Correspondência Exata

320

Pergunta 10

0 em 10 pontos

Considere o mapa das Pontes de Königsberg e a sua representação esquemática num grafo onde são indicadas as distâncias entre os pontos assinalados no mapa. A soma dos comprimentos das arestas do grafo totaliza 45.

Qual o comprimento do percurso mais curto que atravessa todos as pontes pelo menos uma vez e volta ao ponto de partida?

Resposta Selecionada: (3) 45

Respostas:

45 55

59

60

Pergunta 11 10 em 10 pontos

Seleccione a opção correcta. Considere o modelo e o quadro apresentados de seguida.

$$\begin{array}{lll} \max & 10x_1 + 30x_2 + 20x3 \\ \text{suj.} & 2x_1 + x_2 + 2x_3 & \leq 80 \\ & x_1 & \leq 40 \\ & x_1 + x_2 + x_3 & \leq 60 \\ & x_1, \ x_2, \ x_3 \geq 0 \end{array}$$

	x_1	x_2	x_3	s_1	s_2	s_3	
x_3	1	0	1	1	0	-1	20
x_3 s_2 x_2	1	0	0	0	1	0	20 20 40
x_2	0	1	0	-1	0	2	40
	α_1	α_2	α_3	α_4	α_{5}	α_6	β

Qual o conjunto correcto de valores de alfa1, alfa2, alfa3, alfa4, alfa5, alfa6 e beta?

Resposta

Selecionada:

| alfa1 alfa2 alfa3 alfa4 alfa5 alfa6 | beta = | 10 0 0 -10 0 40 | 1600

Respostas:

| alfa1 alfa2 alfa3 alfa4 alfa5 alfa6 | beta = | -10 0 0 10 0 40 |

| alfa1 alfa2 alfa3 alfa4 alfa5 alfa6 | beta = | 10 0 0 -10 0 0 | -800

| alfa1 alfa2 alfa3 alfa4 alfa5 alfa6 | beta = | -10 0 0 10 0 0 | 800

| alfa1 alfa2 alfa3 alfa4 alfa5 alfa6 | beta = | 10 0 0 -10 0 40 | 1600

Considere o seguinte quadro relativo à resolução de um problema de maximização.

	z	x_1	x_2	x_3	x_4	x_5	s_1	s_2	
x_3	0	0	-1	1	-1	1	1	$-1 \\ 1$	$\overline{-1}$
x_1	0	1	2	0	1	1	0	1	1
z	1	0	8	0	2	8	4	4	8

Qual das seguintes afirmações é a correcta?

Resposta Selecionada: Deve realizar-se um pivô entrando x2 na base e saindo x3

Respostas: Não é possível aplicar o método simplex dual em problemas de

maximização.

O problema é impossível.

Deve realizar-se um pivô entrando x2 na base e saindo x3

Deve realizar-se um pivô entrando x4 na base e saindo x3

Pergunta 13

10 em 10 pontos

Considere o seguinte problema de determinar a mistura óptima de rações para galinha, com 3 nutrientes, identificados por nut1, nut2 e nut 3, respectivamente, com 5 rações à venda no mercado, em que a variável de decisão x_i \acute{e} a quantidade de ração j da mistura.

A solução óptima do modelo é $x_1 = x_2 = x_3 = 1$ e $x_4 = x_5 = 0$, e os relatórios de análise de sensibilidade são:

Objective	US.			
Variables	from	till	from value	till value
objective	16	16	16	16
x1	5	7	$-\infty$	0
x2	6	9	$-\infty$	0
х3	2.2E-16	3	$-\infty$	0
x4	0.66666	$+\infty$	3	0
x5	8	$+\infty$	1	0

Duals			,
Variables	value	from	till
objective	16	16	16
nut1	2	2	$+\infty$
nut2	0.66666	2	8
nut3	1.66666	2.5	6
x1	0	$-\infty$	$+\infty$
x2	0	$-\infty$	$+\infty$
x3	0	$-\infty$	$+\infty$
x4	0.33333	-3	3
x5	1	$-\infty$	1

Identifique se a seguinte afirmação é verdadeira ou falsa. (Pergunta de maior dificuldade) Se surgisse no mercado uma nova ração com a composição de nutrientes iguais a [1; 0; 1] I, respectivamente, ao custo de 3 U.M./kg, essa ração seria atractiva, e faria parte da solução óptima.

Resposta Selecionada: 🚫 Verdadeiro

Respostas:

Pergunta 14 0 em 10 pontos

Faça a correspondência entre os quadros simplex relativos a problemas de MINIMIZAÇÃO 🔀 e as situações descritas.

\mathbf{A}	z	x_1	x_2	s_1	s_2	
x_1	0	1	0	3	-1	4
x_2	0	0	1	1	-2	2
10	1	0	0	-3	1	6
\mathbf{C}	z	x_1	x_2	s_1	s_2	
$\overline{x_1}$	0	1	0	3	-5	4
x_2	0	0	1	-1	2	2
	1	0	0	-1	0	4

	1					7
\mathbf{B}	z	x_1	x_2	s_1	s_2	
x_1	0	1	0	-1	2	4
x_2	0	0	1	-2	0	2
	1	0	0	-3	-1	6
D	z	x_1	x_2	s_1	s_2	
x_1	0	1	0	-1	1	1
x_2	0	0	1	2	-1	0
	1	0	0	-1	-1	4

Pergunta Correspondência Correta

Quadro

Espaço não limitado e solução óptima ilimitada

Quadro

Espaço não limitado e solução óptima

Quadro

D. Soluções óptimas alternativas

Quadro

🔇 A. Solução óptima degenerada

Correspondência Selecionada

Espaço não limitado e solução óptima finita

Espaço não limitado e solução óptima ilimitada

A. Solução óptima degenerada

D. Soluções óptimas alternativas

Escolhas com todas as respostas

- A. Solução óptima degenerada
- B. Espaço não limitado e solução óptima ilimitada
- C. Espaço não limitado e solução óptima finita
- D. Soluções óptimas alternativas

Pergunta 15 0 em 10 pontos

Considere o seguinte problema de programação linear.

$$\begin{array}{rcl}
\max & 2x_1 + 1x_2 \\
\text{suj. a} & 3x_1 + 2x_2 & = 24 \\
& 1x_1 - 1x_2 & \ge 3 \\
& x_1, x_2 & \ge 0
\end{array}$$

Qual seria o problema a resolver na Fase I do Método das 2 Fases?

Resposta Selecionada: 🔞 Nenhum dos anteriores.

Respostas:

min
$$2 \times 1 + 1 \times 2$$

s.a $3 \times 1 + 2 \times 2 + a1 = 24$
 $+1 \times 1 - 1 \times 2 - 1 \times 1 + a2 = 3$
 $\times 1, \times 2, \times 1, a1, a2 >= 0$

Nenhum dos anteriores.

min 1 a1 + 1 a2
s.a
$$3 \times 1 + 2 \times 2 + a1 = 24$$

 $+1 \times 1 - 1 \times 2 - 1 \times 1 + a2 = 3$
 $\times 1, \times 2, \times 1, a1, a2 >= 0$

max 1 a1 + 1 a2
s.a
$$3 x1 + 2 x2 + a1 = 24$$

 $+1 x1 - 1 x2 - 1 s1 + a2 = 3$
 $x1, x2, s1, a1, a2 >= 0$

Pergunta 16 0 em 10 pontos

Seleccione a opção correcta. (Pergunta de maior dificuldade) Considere o problema de programação linear cuja solução óptima é o vértice c, como apresentado na figura. Os gradientes das restrições estão representados a azul e o gradiente da função objectivo está representado a vermelho.

Selecionada: Todas as bases associadas à solução básica correspondente ao vértice

c são bases óptimas.

Respostas: Todas as bases associadas à solução básica correspondente ao vértice

c são bases óptimas.

A base que tem variáveis básicas x1, x2, e s2 não é óptima.

A base que tem variáveis básicas x1, x2, e s3 não é óptima.

A base que tem variáveis básicas x1, x2, e s1 não é óptima.

Pergunta 17 0 em 10 pontos

Seleccione a opção correcta. Considere o domínio definido a duplo traço. Para o vértice c, identifique o conjunto VB de variáveis básicas e o conjunto VNB de variáveis não básicas.

Resposta Selecionada: VB = { x2, s1, s2 }, VNB = { x1, s3 }

Respostas: $VB = \{ s1, s3 \}, VNB = \{ x1, x2, s2 \}$

 $VB = \{ x1, s2, s3 \}, VNB = \{ x2, s1 \}$

VB = { x2, s1, s2 } , VNB = { x1, s3 }

VB = { x1, x2, s2 } , VNB = { s1, s3 }

Pergunta 18 10 em 10 pontos

Considere o seguinte problema e a respectiva solução óptima:

20

20

40

400

Considere agora que era proposta uma nova actividade, a actividade 4, descrita pela coluna A4 = $(1,1,0)^{T}$ e com lucro associado c_4 = 3.

Resposta

A actividade 4 seria atractiva, e iria entrar na base, saindo a actividade Selecionada:

Respostas: A actividade 4 não seria atractiva.

> A actividade 4 seria atractiva, e iria entrar na base, saindo a actividade 2.

A actividade 4 seria atractiva, e iria entrar na base, saindo a actividade

A actividade 4 seria atractiva, e a folga do recurso 2 tornar-se-ia nula.

Pergunta 19 0 em 10 pontos

Considere o seguinte problema de maximização e a respectiva solução óptima.

Uma das soluções óptimas do problema dual é (y1,y2) = (4,4), mas há soluções óptimas alternativas do problema dual. Qual das seguintes soluções é uma solução óptima alternativa do problema dual?

Resposta Selecionada: (y1,y2) = (5,3)

Respostas: (y1,y2) = (4,5)

(y1,y2) = (3,5)

(y1,y2) = (5,3)

(y1,y2) = (5,4)

Pergunta 20 10 em 10 pontos

Considere a seguinte representação gráfica de um modelo de programação linear.

A representação gráfica corresponde a qual dos seguintes modelos de programação linear?

Resposta Selecionada:

Respostas:

 $\leftarrow \mathsf{OK}$