Faculty of Health Sciences

Correlated data

Count variables

Lene Theil Skovgaard

December 8, 2015

Non-normal outcomes

- ▶ The Poisson distribution for counts
- ► Poisson models, log-linear models
- ► Overdispersion
- ► Generalized linear mixed models
 - ► Population average models (PA)
 - ► Subject specific models (SS)
- ► Examples:
 - Leprosy
 - Seizures (briefly)

2/88

-

1/88

EPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGE

DEPARTMENT OF BIOSTATISTIC

Study on epilepsy

Controlled clinical trial, with 58 epileptic patients:

- ▶ 28 treated with placebo
- ▶ 31 treated with pragabide=active

Recording of the number of epileptic seizures during

- ▶ an 8-week interval before treatment
- ▶ 4 2-weeks intervals after treatment

Reference: Thall, P.F. and Vail, S.C. (1990). Some covariance models for longitudinal count data with overdispersion. Biometrics.

Spaghettiplot - the epilepsy example

Number af seizures per week (rates):

Legends:

Progabide

Placebo

3/88

Baseline measurements, total number of seizures

Note the skew distributions

Do we see a difference between the groups at baseline?

5/88

Number of seizures at baseline

The MEANS Procedure

Analysis Variable : baseline

	N					
treat	Obs	N	Mean	Std Dev	Minimum	Maximum
active	31	31	31.6451613	27.9935092	7.0000000	151.0000000
placebo	28	28	30.7857143	26.1042882	6.0000000	111.0000000
		active 31	active 31 31	active 31 31 31.6451613	active 31 31 31.6451613 27.9935092	active 31 31 31.6451613 27.9935092 7.0000000

Note:

- ► The variance is obviously bigger than the average (overdispersion, to be discussed later)
- ▶ We obviously do *not* have normal distributions here
- ▶ Maybe on log-scale? But we have zeroes at later times.....

6/88

RSILY OF COPENHAGEN

PARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGE

DEPARTMENT OF BIOSTATISTIC

Binary data

Examples of binary outcomes:

- ► infection after surgery
- ► smoking among school children
- seizures on a single day (or hour)

A binary variable X has a Bernoulli distribution, meaning that

- ▶ P(U = 1) = p
- P(U=0)=1-p

For such an outcome, the mean value is $\mathsf{E}(U) = p$, and the variance is $\mathsf{Var}(U) = p(1-p)$

Binomial data

If we sum up n binary observations,

$$Y = \sum_{i=1}^{n} U_i = U_1 + \dots + U_n$$

e.g.

- number of infections for each hospital
- number of smokers in each school class
- number of seizures in a specific interval

we get a Binomial distribution, $Y \sim \text{Bin}(n, p)$, with

$$\mathsf{E}(Y) = np, \quad \mathsf{Var}(Y) = np(1-p)$$

Examples of Binomial distributions

n=10, 50; np=1, 2, 5 or 20 (mean value)

Approximations to the Binomial distribution

The Binomial variable Y has point probabilities

$$P(Y=m) = \binom{n}{m} p^m (1-p)^{n-m}$$

Its mean is $\mu = np$ and its variance V = np(1-p)

When n is large, this distribution is very intractable, so we use approximations

- ▶ p moderate (not too close to 0 or 1) and np > 5: Normal distribution
- ▶ p close to 0: Poisson distribution

9 / 88

•

10/88

•

RSITY OF COPENHAGEN

ARTMENT OF BIOSTATISTICS UNIVERSITY OF COPI

DEPARTMENT OF BIOSTATISTIC

Poisson distribution

Counts with no well-defined upper limit:

- ► the number of cancer cases in a specific community during a specific year
- ▶ the number of positive swabs over a certain period of time

Law of rare events:

As the count parameter n in a Binomial distribution gets larger and the parameter p gets close to 0, the Binomial distribution is approximately equal to the Poisson distribution

$$P(Y = m) = \frac{\mu^m}{m!} \exp(-\mu)$$

where $\mu=np$ is the mean value, as well as the variance, i.e. V=np as well.

Poisson distribution

Poisson distribution with mean value: μ =1,2,5 and 20

Important note:

In a Poisson distribution, the mean and variance are equal:

$$\mathsf{E}(\mathit{Y}) = \mu = \mathit{V} = \mathsf{Var}(\mathit{Y})$$

This fact is unfortunately often overlooked....

Models for non-normal data

Generalized linear models

are just like Multiple regression models, but on a scale that *corresponds* to the data:

- ► Normal (link=identity), traditional linear models
- ► Binomial (link=logit), logistic regression (next lecture)
- ▶ Poisson (link=log), Log-linear models, Poisson regression

Generalized linear models, for count data

Outcome variable Y_i , following a Poisson distribution, with

- ▶ Mean value: $E(Y_i) = \mu_i$
- ► Link funktion: log, the *natural* logarithm. On this scale, we assume linearity in the covariates, i.e.

$$\log(\mu_i) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} (= X_i^T \beta)$$

where x_{i1}, \ldots, x_{ik} denote the covariate values for individual i.

The log-link ensures that $\mu_i = E(Y_i)$ will always be positive

NIVERSITY OF COPENHAGEN

13/88

EPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGE

DEPARTMENT OF BIOSTATISTIC

Comparing two distributions of counts

Comparison of distributions from p. 5:

Do we see a difference in mean number of seizures at baseline in the two groups?

- ► This problem corresponds to a T-test (in case of Normal distributions)
- ► We do not expect any difference, since we are dealing with a randomized study

Model: $Y_i \sim \text{Poisson}(\mu_i)$, $\log(\mu_i) = \beta_t$ where the subscript t denotes **t**reatment, which can be either active (=progabide) or placebo.

Poisson analysis in SAS

```
proc genmod data=seizures; where week=0;
    class treat;
    model baseline = treat / dist=poisson link=log;
estimate "active vs. placebo" treat 1 -1;
run;
```

with output

14/88

The GENMOD Procedure

Model Information

Data Set WORK.SEIZURES
Distribution Poisson
Link Function Log
Dependent Variable baseline

Number of Observations Read
Number of Observations Used
5

Output, II

Class Level Information
Class Levels Values
treat 2 active placebo

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DF
Deviance	57	1059.5228	18.5881
Scaled Deviance	57	1059.5228	18.5881
Pearson Chi-Square	57	1340.5348	23.5182
Scaled Pearson X2	57	1340.5348	23.5182

Algorithm converged.

The values above 1 in the last column indicates a misfit, see p. 28-29 and p. 37

17 / 88

Output, III

Analysis Of Maximum Likelihood Parameter Estimates

				Standard	Wald 9	5%	Wald
Parameter		DF	Estimate	Error	Confidence	Limits	Chi-Square
Intercept		1	3.4271	0.0341	3.3603	3.4938	10123.9
treat	active	1	0.0275	0.0467	-0.0640	0.1190	0.35
treat	placebo	0	0.0000	0.0000	0.0000	0.0000	
Scale		0	1.0000	0.0000	1.0000	1.0000	

Parameter Intercept		Pr > ChiSq <.0001
treat	active	0.5553
treat	placebo	
Scale		

NOTE: The scale parameter was held fixed.

Estimate of $\beta_{\text{active}} - \beta_{\text{placebo}} = 0.0275$

This is on log-scale

18 / 88

VERSITY OF COPENHAGEN

PARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGE

DEPARTMENT OF BIOSTATISTICS

Output, IV

Output from Estimate statement:

Contrast Estimate Results

Label active vs. placebo	Mean Estimate 1.0279		ce Limit	s Estin	nate	
		L'Beta	a.	Chi-		
Label	Alpha	Confidence	Limits	Square	Pr	> ChiSq
active vs. placebo	0.05	-0.0640	0.1190	0.35		0.5553

Estimated ratio:

$$\exp(\beta_{\text{active}} - \beta_{\text{placebo}}) = \frac{\exp(\beta_{\text{active}})}{\exp(\beta_{\text{placebo}})} = 1.028$$

with CI=(0.938, 1.126)

The active group starts off a little worse than the placebo group.

New example: Counts of leprosy bacilli

Controlled clinical trial:

- ▶ 10 patients treated with placebo P
- ▶ 10 patients treated with antibiotic A
- ▶ 10 patients treated with antibiotic B

Recording of the number of bacilli at six sites of the body, i.e. a count variable

- ▶ before treatment (baseline, time=0)
- ► several months after treatment, (time=1)

Reference: Snedecor, G.W. and Cochran, W.G. (1967). Statistical Methods, (6th edn). Iowa State University Press

Averages for the leprosy example

Analysis Variable : bacilli

drug	time	N Obs	N	Median	Mean	Variance
A	0	10 10	10 10	9.0000000 5.0000000	9.3000000 5.3000000	22.6777778 21.5666667
В	0 1	10 10	10 10	8.0000000 3.5000000	10.0000000 6.1000000	27.555556 37.8777778
P	0 1	10 10	10 10	12.0000000 12.5000000	12.9000000 12.3000000	15.655556 51.1222222
	time	N Obs	N	Median	Mean	Variance
All	0	30	30	10.5000000	10.7333333	22.9609195

Note: The variance is obviously bigger than the average.....overdispersion

21/88

Charles of the control of the contro

Baseline measurements

Do we see a difference between the baseline counts?

22 / 88

NIVERSITY OF COPENHAGEN

EPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGE

DEPARTMENT OF BIOSTATISTIC

Poisson analysis in SAS

Code just like as on p. 16 except for the option type3, which compares all 3 drugs simultaneously, like an ANOVA

The estimate Antibiotic effect evaluates $\frac{A+B}{2}-P$, i.e. the average effect of the two active drugs.

Output

The GENMOD Procedure

Model Information

Data Set WORK.LEPROSY
Distribution Poisson
Link Function Log
Dependent Variable baseline

Number of Observations Read
Number of Observations Used

Class Level Information

Class Levels Values drug 3 A B P

Criteria For Assessing Goodness Of Fit

Criterion	DF	Value	Value/DI
Deviance	27	55.0366	2.0384
Scaled Deviance	27	55.0366	2.0384
Pearson Chi-Square	27	57.6687	2.1359
Scaled Pearson X2	27	57.6687	2.1359

Output, II

Analysis Of Maximum Likelihood Parameter Estimates

				Standard	Wald 95% C	onfidence	Wald
Parameter		DF	Estimate	Error	Lim	its	Chi-Square
Intercept		1	2.5572	0.0880	2.3847	2.7298	843.58
drug	Α	1	-0.3272	0.1360	-0.5938	-0.0606	5.79
drug	В	1	-0.2546	0.1332	-0.5158	0.0065	3.65
drug	P	0	0.0000	0.0000	0.0000	0.0000	
Scale		0	1 0000	0.000	1 0000	1 0000	

 Parameter
 Pr > ChiSq

 Intercept
 < .0001</td>

 drug
 A
 0 .0162

 drug
 B
 0 .0560

 drug
 P
 .

NOTE: The scale parameter was held fixed.

LR Statistics For Type 3 Analysis

Source DF Chi-Square Pr > ChiSq drug 2 6.62 0.0364

Unfortunately, we have a significant difference already at baseline

25 / 88

Output, III

Contrast Estimate Results

Label Effect B minu Antibiotic ef		Mean Confidence 0.8108 0.5982	Limits E 1.4261	L'Beta stimate 0.0726 -0.2909	Standard Error 0.1441 0.1138	Alpha 0.05 0.05
Label Effect B minu	Confider	Seta nce Limits 0.3549	Chi- Square 0.25		ChiSq	
Antibiotic ef	fect -0.5139	-0.0680	6.54	C	.0105	
	Contr	rast Results				
		Chi-				
Contrast	DF	Square	Pr > Ch	iSq I	уре	
Antibiotic ef	fect? 1	6.40	0.0	114 I	.R	

The two active drugs have a somewhat lower level of bacilli, estimated to be 75% of that of placebo patients, with CI=60-93% and P=0.01.

This is a nuisance.... but is it real?

26 / 88

NIVERSITY OF COPENHAGEN

PARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGE

DEPARTMENT OF BIOSTATISTICS

Overdispersion

Overdispersion:

The variance has been noted to be larger than expected for a Poisson distribution.

This may be caused by

- omitted covariates (isn't that always the case?)
- unrecognized clusters
- ► heterogeneity, e.g. a "zero"-group (non-susceptibles)

Traditional solution:

An over-dispersion parameter ϕ can be estimated and multiplied onto the standard errors

Overdispersion, II

When overdispersion is disregarded

- ► The standard errors are erroneously small
- ► The P-values are erroneously small
- ► We get type I errors

Multiplying with the over-dispersion parameter $\hat{\phi}$ yields

- ► Larger standard errors
- ► Larger P-values

 ϕ is estimated from either Pearson Chi-Square Value/DF or Pearson Chi-Square Value/DF (see p. 24), by taking square roots.

Use options scale=p or scale=d.

Overdispersion in PROC GENMOD, scale=pearson

```
proc genmod data=leprosy; where time=0;
      class drug;
      model baseline = drug /
                      d=poisson link=log type3 scale=pearson;
      estimate 'Effect B minus A' drug -1 1 0;
      estimate 'Antibiotic effect' drug 0.5 0.5 -1;
      contrast 'Antibiotic effect?' drug 1 1 -2;
run:
          Analysis Of Maximum Likelihood Parameter Estimates
                      Standard Wald 95% Confidence Wald Pr>ChiSq
            DF Estimate Error Limits Chi-Square
Parameter
             1 2.5572 0.1287 2.3050 2.8094
               -0.3272 0.1988 -0.7169 0.0624
                        0.1947 -0.6363 0.1270
                0.0000
                        0.0000 0.0000 0.0000
                1.4615 0.0000 1.4615 1.4615
NOTE: The scale parameter was estimated by the square root of Pearson's
     Chi-Square/DOF
           LR Statistics For Type 3 Analysis
           Num DF Den DF F Value Pr > F
Source
                                              Square
                                                       Pr > ChiSa
drug
                                                3.10
                                                          0.2121
```


Contrast Estimate Results

	Mean	Mean		L'Beta	Standard		
Label	Estimate	Confidence	Limits	Estimate	Error	Alpha	
Effect B minus A	1.0753	0.7117	1.6245	0.0726	0.2105	0.05	
Antibiotic effect	0.7476	0.5397	1.0355	-0.2909	0.1662	0.05	
	L'B	eta	Chi	-			
Label	Confiden	ce Limits	Squar	e Pr >	ChiSq		
Effect B minus A	-0.3401	0.4852	0.1	2 0	.7303		
Antibiotic effect	-0.6168	0.0349	3.0	6 0	.0801		

Contrast Results

Contrast Num DF Den DF F Value Pr > F Square Pr > ChiSq Type Antibiotic effect? 1 27 2.99 0.0950 2.99 0.0835 LR

The two active drugs are still estimated to be only 75% of that of placebo patients, but now with CI=54-104% and P=0.08, i.e. not significant any more.

30 / 88

NIVERSITY OF COPENHAGEN

29 / 88

EPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHA

DEPARTMENT OF BIOSTATISTIC

Problems with overdispersion

Overdispersion is *unnatural*:

- ► The distribution does not exist
- lacktriangle The multiplication factor $\hat{\phi}$ is defined ad-hoc

If we believe the over-dispersion to be caused by omitted covariates, it would be more natural to include an extra random variation, e.g.

$$\log(\mu_i) = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + b_i$$

with some assumption on the distribution of the b_i 's, i.e. with $\exp(b_i)$ multiplied on the mean value

Additional random variation

Possible models for b_i :

- ▶ $b_i \sim N(0, \omega_b^2)$: leads to a complicated model, which changes the level of the mean, since $E(\exp(b_i)) = \exp(\omega_b^2/2) > 1$
- ▶ $b_i \sim \log$ Gamma: leads to Y_i being distributed as a Negative binomial distribution:
 - Overdispersed counts
 - Unbounded positive range
 - Variance varies independent of mean
 - ightharpoonup $\mathsf{E}(Y_i) = \mu_i$
 - $\operatorname{Var}(Y_i) = \mu_i + \theta \mu_i^2$

Negative binomial distributions, with mean 10

Poisson distribution, followed by 3 negative binomial distributions, with variance 30, 110 and 210:

Negative binomial analysis in SAS

The code is identical to that on p. 23, except for dist=negbin.

Analysis Of Maximum Likelihood Parameter Estimates

				Standard	Wald 9	5%	Wald
Parameter		DF	Estimate	Error	Confidence	Limits	Chi-Square
Intercept		1	2.5572	0.1250	2.3122	2.8022	418.43
drug	Α	1	-0.3272	0.1851	-0.6900	0.0356	3.13
drug	В	1	-0.2546	0.1830	-0.6134	0.1041	1.94
drug	P	0	0.0000	0.0000	0.0000	0.0000	
Dispersion		1	0.0788	0.0450	0.0257	0.2412	

Parameter		Pr >	ChiSq
Intercept	;		<.0001
drug	A	(0.0771
drug	В	(0.1642
drug	P		
D:			

34 / 88

NOTE: The negative binomial dispersion parameter was estimated by maximum

DEPARTMENT OF BIOSTATISTIC

33 / 88

Output, continued

LR Statistics For Type 3 Analysis

 Chi

 Source
 DF
 Square
 Pr > ChiSq

 drug
 2
 3.35
 0.1874

Contrast Estimate Results

	Mean	Mean		L'Beta	Standard	
Label	Estimate	Confidence	Limits	Estimate	Error	Alpha
Effect B minus A	1.0753	0.7394	1.5637	0.0726	0.1911	0.05
Antibiotic effect	0.7476	0.5492	1.0176	-0.2909	0.1573	0.05
	L'B	eta	Chi	_		
Label	Confiden	ce Limits	Squar	e Pr >	ChiSq	
Effect B minus A	-0.3019	0.4470	0.1	4 0	.7041	
Antibiotic effect	-0.5993	0.0174	3.4	2 0	.0644	
	Contr	ast Results				

Square

3.23

Pr > ChiSq

0.0722

Pass

Effect of overdispersion

Leprosy example, baseline comparison:

LR test,	$\chi^{2}(2)$	P-value
Drug difference?		
Poisson	6.62	0.036
- with overdispersion	3.10	0.21
Negative Binomial	3.35	0.19

Effect	Ratio (CI)	P-value
(A and B) vs. P		Wald
Poisson	0.75 (0.60, 0.93)	0.011
- with overdispersion	0.75 (0.54, 1.04)	0.080
Negative Binomial	0.75 (0.55, 1.02)	0.064

Contrast

Antibiotic effect?

*Effect of overdispersion, II

Recall the Seizure example, from p. 3:

Baseline comparison:

Effect:	Ratio (CI)	P-value
Active vs. Placebo		LR
"as usual"	1.028 (0.938, 1.126)	0.56
with overdispersion	1.028 (0.660, 1.602)	0.90
Negative Binomial	1.028 (0.708, 1.493)	0.89

Spaghettiplot - the leprosy example

Now including both time points (0 and 1):

A — B P —

38 / 88

37 / 88

PARTMENT OF BIOSTATISTICS UNIVE

DEPARTMENT OF BIOSTATISTIC

Average plot - the leprosy example

Note: New scaling, different from p. 38

Legends: A —— B P ——

Possible purposes of the investigation

- 1. Evaluate the efficiency of antibiotics: red lines vs green line
- 2. Compare the two drugs, A and B: solid vs dotted red line
- 3. Quantify the effects of each of the two antibiotic drugs separately

Randomization:

At baseline, all patients have the same expected mean count (mean value), but *by chance*, the placebo individuals have somewhat larger values than the remaining groups.

Model reflections

This is just a before-after study....but

- ► We are dealing with counts, so it is natural to consider a Poisson distribution, with log-link (natural log)
- ► Because it is a randomized study, the mean values at baseline should be identical for the three groups
- ▶ We are prepared to see 3 different changes over time but some of these may be identical (this is actually the main scientific question)
- Baseline and follow-up measurement are correlated within individuals (just like a random effect of individual)

Model reflections. II

- ► Can't we just take logarithms? No. because we have zeroes
- ► Some other transformation then? Yes, square roots, or arcsine, but the interpretation would suffer a lot
- ► Could we just condition on the baseline value?
 Yes, we could do that.....but
 it becomes more tricky when we have multiple time points
- ► Could we analyze differences? Or rather, ratios? Hmm....
- ► Could we build a Constrained Model, forcing mean values to be equal at baseline?

41 / 88

42 / 88

RSITY OF COPENHAGEN

EPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGE

Model reflections, III

Parametrization of mean values (on the log-scale):

Treatment	Period	Mean (on log scale)
Р	Baseline	β_1
Р	Follow-up	$\beta_1 + \beta_2$
Α	Baseline	β_1
A	Follow-up	$\beta_1 + \beta_2 + \beta_3$
В	Baseline	β_1
В	Follow-up	$\beta_1 + \beta_2 + \beta_4$

 β_3 resp. β_4 denote additional effects of A and B, when compared to placebo

Generalized linear MIXED models

Outcome variable Y_{ij} , e.g. j'th measurement time for individual i:

Mean value: μ_{ij}

Link funktion $g: g(\mu_{ij})$ is assumed linear in covariate vector X_{ij} .

Two kinds of models:

- Population average models (PA): $g(\mu_{ij}) = \beta_0 + \beta_1 x_{ij1} + \cdots + \beta_k x_{ijk} = X_{ij}^T \beta$ and (Y_{ij_1}, Y_{ij_2}) are associated (correlated), with som (patterned) covariance
- ▶ Subject-specific models (SS): $g(\mu_{ij}) = \beta_0 + \beta_1 x_{ij1} + \cdots + \beta_k x_{ijk} + b_i$ $b_i \sim N(0, \omega_b^2)$, random intercepts (levels) may be generalized to other random effects: slopes,...

The two model types

Marginal models: or Population average (PA):

Describe covariate effects on the population mean, e.g. expected difference between the effects of two treatments $\frac{1}{2}$

(corresponds to the repeated statement)

Mixed effects model: or Subject specific (SS):

Describe covariate effects on specific individuals (or clusters), e.g. expected change over time, or differences between boys and girls in the same school class

(corresponds to the random statement)

Pass

45 / 88

For traditional linear models (Normality)

with *identity* link:

Subject-specific model with random intercept/level is equal to

Marginal model with compound symmetry covariance structure (type=CS)

More generally:

The interpretation of the parameters β does not depend on the way that we model the covariance/correlation (although the estimate may change somewhat depending on the assumed structure)

46 / 88

EPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGE

DEPARTMENT OF BIOSTATISTICS

For non-normal outcomes

The above is no longer true in general, due to non-linearity of the link-function

This means:

The interpretation of the parameters β does depend on the way that we model the covariance/correlation.

...with some important exceptions (in this lecture)

This implies that effects may either be interpreted cross-sectionally (marginally, for comparison of different populations, say, of different age) or subject-specific (effect of ageing for a single individual)

Marginal models = Population Average (PA)

We specify only

- ▶ Marginal mean, $E(Y_{ij}|X_{ij}) = \mu_{ij}$, where $\log(\mu_{ij}) = X_{ij}^T \beta$, i.e. covariate effects as usual
- ▶ Distribution..... Poisson (in a way), but...
- ▶ Marginal variance, $\phi V(\mu_{ij}) = \phi \mu_{ij}$ (overdispersion)
- ► Some measure of association for Y's belonging to the same individual/unit, $V_i = Cov(Y_i)$

This creates problems:

- ► Multivariate Poisson distribution does not exist
- ▶ It is more of an estimation procedure rather than a model

* Marginal models, technicalities

Since we do not actually have a model,

we cannot use a maximum likelihood approach.

This has implications for the handling of missing values (lecture 4).

Instead, we use a socalled

GEE: Generalized estimating equation,

(written in vector notation)

$$\sum D^T V_i^{-1} (y_i - \mu_i) = 0$$

where V_i is the (working) covariance matrix for Y_i , and D_i is the matrix of derivatives of the mean value μ_i with respect to β

49 / 88

51/88

*Marginal models, technicalities II

The GFF-method

- requires an iterative procedure,
- ightharpoonup gives consistent estimates of eta (they have the correct mean when the sample size is large), even if $V_i \neq \operatorname{Cov}(Y_i)$ is incorrectly specified
- lacktriangleright standard error of \hat{eta} should be based on the empirical sandwich estimator, to allow for possible overdispersion and general misspecification of $\operatorname{Cov}(Y_i)$ (only possible for balanced designs)
- ▶ the estimates are asymptotically Normal (i.e for large samle size, we can construct confidence intervals with plus/minus 2 standard errors)

50 / 88

ARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGE

DEPARTMENT OF BIOSTATISTIC

Marginal model (PA) for leprosy

With the variable definitions:

A_effect=(drug='A')*time; B_effect=(drug='B')*time;

we write the code, including a repeated-statement:

Comments to code

- ▶ time indicates the change over time for the placebo group (the parameter β_2)
- ▶ A_effect indicates the additional change over time for drug A (the parameter β_3)
- ▶ B_effect indicates the additional change over time for drug B (the parameter β_4)
- ► d=poisson: specifies the link-function as log, and the working correlation matrix as (proportional to) the mean
- ► link=log: may overrule the link-function from dist=poisson, if so needed
- ► repeated: specifies an unstructured (type=un) association between measurements on the same id (corrw requests printing)

52 / 88

Comments to code, II

• estimate statements: Estimate combinations of the β 's, here

> ► Effect of B-A: $\beta_4 - \beta_3$ ► Changes for A: $\beta_2 + \beta_3$ ► Changes for B: $\beta_2 + \beta_4$

contrast statements:
 Useful for testing several parameters simultaneously, here the tests

 $\beta_3 = \beta_4 = 0$: No (extra) effect of either A nor B

Output data set, with predicted values pred_pa, for illustration purposes

53 / 88

Output

The GENMOD Procedure

Model Information

Data Set WORK.LEPROSY
Distribution Poisson
Link Function Log
Dependent Variable bacilli

Number of Observations Read 6 Number of Observations Used 6

Class Level Information

21 22 23 24 25 26 27 28 29 30

Class Levels Values id 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Parameter Information

 Parameter
 Effect

 Prm1
 Intercept

 Prm2
 time

 Prm3
 A_effect

 Prm4
 B_effect

54 / 88

NIVERSITY OF COPENHAGES

PARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGE

DEPARTMENT OF BIOSTATISTICS

Output, II

GEE Model Information

Correlation Structure	Unstructured	
Subject Effect	id (30 levels)	
Number of Clusters	30	
Correlation Matrix Dimension	2	
Maximum Cluster Size	2	
Minimum Cluster Size	2	

Algorithm converged.

Working Correlation Matrix

	Col1	Col2
Row1	1.0000	0.7966
Row2	0.7966	1.0000

Output, III: Estimation

The GENMOD Procedure

Analysis Of GEE Parameter Estimates Empirical Standard Error Estimates

		Standard	95% Con	fidence		
Parameter	Estimate	Error	Lim	its	Z	Pr > Z
Intercept	2.3734	0.0801	2.2163	2.5304	29.62	<.0001
time	-0.0138	0.1573	-0.3222	0.2946	-0.09	0.9300
A_effect	-0.5406	0.2186	-0.9690	-0.1122	-2.47	0.0134
B_effect	-0.4791	0.2279	-0.9257	-0.0325	-2.10	0.0355

Here, the covariance between repeated measurements on the same subject is accounted for, even if it is misspecified (Empirical Standard Error)

*Output, IV: Estimation results without overdispersion

Not reasonable:, from option modelse:

Analysis Of GEE Parameter Estimates
Model-Based Standard Error Estimates

Parameter	Estimate	Standard Error			ZI	Pr > Z
Intercept	2.3734	0.1035	2.1704	2.5763	22.92	<.0001
time	-0.0138	0.1111	-0.2315	0.2039	-0.12	0.9010
A_effect	-0.5406	0.1818	-0.8969	-0.1843	-2.97	0.0029
B_effect	-0.4791	0.1779	-0.8278	-0.1303	-2.69	0.0071
Scale	1.8578					

Here, the covariance between repeated measurements on the same subject is only accounted for if it is correctly specified (Model-Based Standard Error, with no additional overdispersion)

57/88

Output, V (additional statements)

Contrast Estimate Results

	Mean	Me	ean	L'Be	ta Standard
Label	Estimate	Confidence	ce Limits	Estima	te Error
Effect B minus A	0.9403	0.6148	1.4381	-0.06	15 0.2168
changes for A	0.5744	0.4281	0.7707	-0.554	44 0.1499
changes for B	0.6109	0.4478	0.8333	-0.492	29 0.1585
changes (A,B) vs. P	0.6006	0.4097	0.880	5 -0.50	0.1952
		L'Be	ta	Chi-	
Label	Alpha	Confidence	Limits	Square	Pr > ChiSq
Effect B minus A	0.05	-0.4864	0.3633	0.08	0.7765
changes for A	0.05	-0.8483	-0.2605	13.67	0.0002
changes for B	0.05	-0.8035	-0.1823	9.68	0.0019
changes (A,B) vs. P	0.05	-0.8924	-0.1273	6.82	0.0090

Contrast Results for GEE Analysis

		Chi-		
Contrast	DF	Square	Pr > ChiSq	Type
Antibiotic effect	2	4.56	0.1024	Score
Antibiotic effect?	2	6.99	0.0303	Wald

58 / 88

LIVERSITY OF COPENHAGEN

EPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGE

DEPARTMENT OF BIOSTATISTIC

Interpretations

- ► There is a significant effect of antibiotics: Score test: $4.56 \sim \chi^2(2) \Rightarrow P = 0.10$ Walds test: $6.99 \sim \chi^2(2) \Rightarrow P = 0.03$
- ► The effect of placebo is estimated to $\exp(\hat{\beta}_2) = \exp(-0.0138) = 0.986$, i.e a decrease of 1.4%
- ► The additional effect of drug A is estimated to $\exp(\hat{\beta}_3) = 0.58$, and the total effect to $\exp(\hat{\beta}_2 + \hat{\beta}_3) = \exp(-0.5544) = 0.574$, i.e a decrease of 42.6%
- ▶ The two antibiotics are not significantly different: $0.08 \sim \chi^2(1) \Rightarrow P = 0.78$ (although the estimated effect is a tiny bit larger for drug A)

Predicted means from Population Average model (PA)

Legends:

Comments to estimates time profiles

in comparison to the simple averages (p. 39):

- ► Treatment B starts off at a higher level
- ▶ Due to *Regression to the mean*, we therefore expect this group to have the steepest decline
- ▶ Since they are close to parallel in the averages (so that B is not steeper than A), this leads us to conclude that B is not as effective as A, and therefore, we see a difference in slope in the predicted means
- ► Same type of argument concerning P, which would decrease the most *if it was equally effective*

Mixed effects models = Subject Specific models (SS)

New type of model, see p. 45:

Observations: Y_{ij} , covariate vector X_{ij}

We specify Y_{ij} to be Poisson distributed, with

- ▶ Mean, $E(Y_{ij}|X_{ij}, \boldsymbol{b_i}) = \mu_{ij}$, where $\log(\mu_{ij}) = X_{ij}^T \beta + Z_{ij}^T \boldsymbol{b_i}$
- ► Conditional variance, $\text{Var}(Y_{ij}|X_{ij}, \pmb{b_i}) = V(\mu_{ij})$ Additional overdispersion? Then $\text{Var}(Y_{ij}|X_{ij}, b_i) = \phi V(\mu_{ij})$
- ▶ Distribution of random effects, e.g. $b_i \sim N_p(0, G)$, where G is the matrix (and software) notation for ω_b^2
- ► Conditional indepence, given the covariates and the random effects

61/88

•

62 / 88

DEPARTMENT OF BIOSTATISTICS

Interpretation of SS

This is a real model (except for possible overdispersion), but

- ► Inference is *conditional* on random effects and therefore specific to the subject
- ► The effect of a covariate is interpreted as being for "fixed value of all other covariates", including for fixed *value* of the individual

For models with a log-link, however, the interpretation of covariate effects are still "as usual", except for

- ► The intercept
- ► Covariates that also enter as random effects e.g. random slope = random effect of time

A very simple example of random slope

A population consisting of two individuals (e.g. mean number of bacilli:)

Individual	Baseline	Follow up	Ratio
1	12	8	0.667
2	8	7	0.875
Average	10	7.5	0.771

but for the population, the ratio is

$$\frac{7.5}{10} = 0.75 \neq 0.771$$

The "average" of individual ratios is not equal to the ratio of the averages

Mixed effects model (SS)

We now assume random intercepts, $b_i \sim N(0, \omega_b^2)$ by specifying a random level for each individual:

Comments to glimmix code

- method=quad(qpoints=50):
 maximizes the likelihood function
- ▶ qpoints=50: the more quadrature points, the better accuracy
- ► random: here we have only one random intercept, so type=... is unimportant
- ▶ g: prints the estimate of ω_b^2 (In glimmix, the parameter ω_b^2 is generally denoted G)
- ▶ The output data set contains ... see p. 69

Pas

65 / 88

66 / 88

NIVERSITY OF COPENHAGE

PARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGE

DEPARTMENT OF BIOSTATISTIC

Output from glimmix analysis

Estimated G Matrix

Effect Row Col1 Intercept 1 0.2814

Covariance Parameter Estimates

Cov Parm Subject Estimate Error
Intercept id 0.2814 0.09557

Solutions for Fixed Effects

		Standard			
Effect	Estimate	Error	DF	t Value	Pr > t
Intercept	2.2412	0.1148	29	19.53	<.0001
time	0.003088	0.1235	27	0.03	0.9802
A_effect	-0.6055	0.2036	27	-2.97	0.0061
B_effect	-0.5228	0.1963	27	-2.66	0.0129

Note: Somewhat steeper lines than for PA-model

		Standard				
Label	Estimate	Error	DF	t Value	Pr > t	Alpha
Effect B minus A	-0.08271	0.2242	27	-0.37	0.7151	0.05
changes for A	-0.6024	0.1657	27	-3.64	0.0012	0.05
changes for B	-0.5197	0.1567	27	-3.32	0.0026	0.05
changes (A,B) vs. P	-0.5641	0.1656	27	-3.41	0.0021	0.05
			Evr	ponentiat	od	
T - 1 3	T	TT	ĽA	1		
Label	Lower	Upper		Estima		
Effect B minus A	-0.5427	0.3773		0.92	06	
changes for A	-0.9425	-0.2624		0.54	75	
changes for B	-0.8412	-0.1982		0.59	47	
changes (A,B) vs. P	-0.9039	-0.2244		0.56	88	
	Eumanantia	tad Erman		a to d		
	Exponentia	1				
Label	Lo	ower		pper		
Effect B minus A	0.5	812	1.	4583		
changes for A	0.3	3897	0.	7692		
changes for B	0.4	1312	0.	8202		
changes (A,B) vs. P	0.4	1050	0.	7990		

	Num	Den		
Label	DF	DF	F Value	Pr > F
Antibiotic effect	2	27	5.83	0.0079

Note again:

Some differences to PA-analysis, but overall same conclusion 68 / 88

Output dataset from GLIMMIX analysis

The data set ss, created p. 65, contains 4 different predicted values:

output out=ss pred=Pred pred(noblup)=PredPA
pred(ilink)=PredMu pred(ilink noblup)=PredMuPA;

► Predicions on log-scale:

Pred: Individual predictions (pred=)

▶ Predictions on original scale:

69 / 88

Individual predicted curves, SS

pred(ilink)=PredMu

Legends: A — B I

VERSITY OF COPENHAGEN

PARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAG

DEPARTMENT OF BIOSTATISTICS

Average individual predictions, SS

Averages from p. 70

Legends:

71 / 88

Predicted means from PA and SS

Legends:

A —— B

Thick lines: PA, thin lines: SS

72 / 88

UNIVERSITY OF COPENHAGEN DEPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGEN DEPARTMENT OF BIOSTATISTICS

Additional overdispersion in GLIMMIX

Add the line random _residual_; to the code from p. 65. Output:

			Standard
Cov Parm	Subject	Estimate	Error
Intercept	id	0.2522	0.09656
Residual (VC)		1.3292	0.3738

Solutions for Fixed Effects

		Standard			
Effect	Estimate	Error	DF	t Value	Pr > t
Intercept	2.2842	0.1136	29	20.11	<.0001
time	0.01617	0.1402	27	0.12	0.9090
A_effect	-0.6285	0.2293	27	-2.74	0.0107
B effect	-0.5420	0.2213	27	-2.45	0.0211

Estimates

		Standard			
Label	Estimate	Error	DF	t Value	Pr > t
Effect B minus A	-0.08657	0.2540	27	-0.34	0.7359
changes for A	-0.6124	0.1885	27	-3.25	0.0031
changes for B	-0.5258	0.1784	27	-2.95	0.0065

73 / 88

Output, continued

Contrasts

Label Antibiotic effect	Num DF 2		alue 1.97	Pr > F 0.0146		
		Estimates				
		Standard				
Label	Estimate	Error	DF ·	t Value	Pr > t	Alpha
Effect B minus A	-0.08657	0.2540	27	-0.34	0.7359	0.05
changes for A	-0.6124	0.1885	27	-3.25	0.0031	0.05
changes for B	-0.5258	0.1784	27	-2.95	0.0065	0.05
changes (A,B) vs. P	-0.5853	0.1862	27	-3.14	0.0040	0.05
			Expon	entiated	l Exp	Exp
Label	Lower	Upper	Estima		Lower	Upper
Effect B minus A	-0.6078	0.4346	0.9	171	0.5446	1.5444
changes for A	-0.9992	-0.2255	0.5	421	0.3682	0.7981
changes for B	-0.8919	-0.1597	0.59	911	0.4099	0.8524

-0.2033

0.5570

0.3801

74 / 88

changes (A,B) vs. P -0.9672

NIVERSITY OF COPENHAGE

EPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGE

DEPARTMENT OF BIOSTATISTIC

0.8160

Overdispersion using Negative Binomial, SS

Change to dist=negbin on p.65, and get output

Estimates

EST1M2	ates					
		Standard				
Label	Estimate	Error	DF	t Value	Pr > t	Alpha
Effect B minus A	-0.08199	0.2261	27	-0.36	0.7196	0.0
changes for A	-0.6040	0.1719	27	-3.51	0.0016	0.0
changes for B	-0.5220	0.1694	27	-3.08	0.0047	0.0
changes (A,B) vs. P	-0.5654	0.1703	27	-3.32	0.0026	0.0
			Ex	ponentiat	ed	
Label	Lower	Upper	r.	Estima	te	
Effect B minus A	-0.5458	0.3818	3	0.92	13	
changes for A	-0.9567	-0.251	2	0.54	:66	
changes for B			1	0.59	133	
changes (A,B) vs. P	-0.9149	-0.2160)	0.56	81	
	Exponenti		onenti			
Label		ower		pper		
Effect B minus A		5794		4650		
changes for A		3841		7778		
changes for B		4191		8399		
changes (A,B) vs. P	0.	4006	0.	8058		
Contrasts						
	Num	Den				
Label	DF	DF F	/alue	Pr > F		
Antibiotic effect	2	27	5.55	0.0095		
75 / 88						

Overview of results for Leprosy

Decrease (A,B) vs. P	Ratio (CI)	P-value
No correlation	0.46 (0.36, 0.60)	< 0.0001
No corr., overdispersion	0.46 (0.29, 0.74)	0.0014
No corr., Negative Binomial	0.46 (0.28, 0.75)	0.0020
PA		
PA, Poisson	0.60 (0.41, 0.88)	0.0090
PA, Negative Binomial	0.58 (0.39, 0.86)	0.0073
SS, Poisson	0.57 (0.41, 0.80)	0.0021
SS, Poisson, overdispersion	0.56 (0.38, 0.82)	0.0040
SS, Negative Binomial	0.57 (0.40, 0.81)	0.0026

Back to: the Seizure example

Mean value plot

Legends:

Progabide

Placebo

Not linear...but for illustration....

77 / 88

Purpose of investigation

- 1. Investigate what happens over time, does the number of seizures decrease?
- 2. Compare the decrease for a patient treated with pragabide to the decrease for a *similar* patient in the placebo group
- 3. Compare the decrease for a population treated with pragabide to the decrease for a population treated with placebo

Notation:

 $ightharpoonup T_{ii}$ denotes the time span corresponding to the number of seizures, Y_{ii} , so T_{ij} is either 2 or 8 weeks

78 / 88

Model building

Model (in principle, not reasonable here) for the number of seizures:

- Poisson outcome
- ► Random regression, i.e. linear effect of week, with individual intercepts and slopes
- ▶ Mean value proportional to length of period (8 or 2 weeks) log(8) and log(2) used as offsets This ensures that we model the ratio $\frac{Y_{ij}}{T_{ii}}$, on log-scale, i.e.

$$\log\left(\frac{\mathsf{E}(Y_{ij})}{T_{ij}}\right) = \alpha_{treat} + \beta_{time} + \gamma_{treat*time}$$

or

$$\log(\mathsf{E}(Y_{ij})) = \alpha_{treat} + \beta_{time} + \gamma_{treat*time} + \log(T_{ij})$$

Random regression, SS model in glimmix

Important: The model is not reasonable here (see figure on p. 77), and is *only* showed to hint at possible extensions....

```
proc glimmix data=seizures method=quad(qpoints=50);
     class id trt visit;
     model seizures = weeks trt trt*weeks /
       dist=poisson offset=lweeks link=log solution;
     random intercept weeks / subject=id type=un g;
     estimate 'weekly decline trt=0' weeks 1 weeks*trt 1 0;
     estimate 'weekly decline trt=1' weeks 1 weeks*trt 0 1;
     estimate 'slope, active vs. placebo??' week*trt -1 1 / exp cl;
output out=ss pred=Pred pred(noblup)=PredPA
              pred(ilink)=PredMu pred(ilink noblup)=PredMuPA;
run;
```

Since time (weeks) here enter as a random effect, the interpreation of time effects have to be conditional on the specific subject.

Output from random regression

Remember: All the results to follow are only to show possible extensions, model is not reasonable, and results should not be trusted

The GLIMMIX Procedure

Class		

Class	Levels	Values							
id	59	1 2 3 4 5 6	7 8 9 10	11 12	13 14	15	16	17	18
		19 20 21 22 3	23 24 25	26 27	28 29	30	31	32	33
		34 35 36 37 3	38 39 40	41 42	43 44	45	46	47	48
		49 50 51 52 5	53 54 55	56 57	58 59	9			
trt	2	0 1							
visit	5	0 1 2 3 4							
Number	of Observat:	ions Read	295						
Number	of Observat:	lons Used	295						
	ъ.								
	Dimens	lons							
G-side	Cov. Paramet	ers	3						
Columns			6						
	in Z per Si	biect	2						
	s (Blocks in		59						
Max Obs	per Subject	;	5						

Output II

Estimated G Matrix

Effect	Row	Col1	Col2
Intercept	1	0.5277	0.01120
week	2	0.01120	0.005060

Solutions for Fixed Effects

			Standard			
Effect	trt	Estimate	Error	DF	t Value	Pr > t
Intercept		1.1214	0.1356	57	8.27	<.0001
week		-0.05809	0.01697	57	-3.42	0.0012
trt	0	-0.01754	0.1966	177	-0.09	0.9290
trt	1	0				
week*trt	0	0.04676	0.02351	177	1.99	0.0482
week*trt	1	0				

The slopes of the two lines are both negative, and the difference in slopes is borderline significant (P=0.048).

82 / 88

NIVERSITY OF COPENHAGE

81/88

EPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGE

DEPARTMENT OF BIOSTATISTIC

Output III

Estimates

		Standard			
Label	Estimate	Error	DF	t Value	Pr > t
weekly decline, placebo	-0.01133	0.01692	177	-0.67	0.5040
weekly decline, active	-0.05809	0.01697	177	-3.42	0.0008
slope, active vs. placebo??	-0.04676	0.02351	177	-1.99	0.0482
				Expo	nentiated
Label	Alpha	Lower	Uppe	er	Estimate
weekly decline, placebo	0.05	-0.04472	0.0220)6	0.9887
weekly decline, active	0.05	-0.09157	-0.0246	31	0.9436
slope, active vs. placebo??	0.05	-0.09314	-0.0003	37	0.9543
	Exponent	iated Ex	rponentia	ited	
Label		Lower	Up	per	
weekly decline, placebo	0.9563		1.0223		
weekly decline, active	0	.9125	0.9	757	

0.9111

0.9996

Results from random regression, Seizures

- ► Expected decline for a specific patient (taken from p. 83):
 - ▶ Placebo: 0.9887 (0.9563, 1.0223), i.a a weekly decline of 1.1%
 - ► Active: 0.9436 (0.9125, 0.9757), i.a a weekly decline of 5.6%
- ► The difference between the slopes, which can be translated to the expected ratio of decline for active vs. placebo patients: This should not be estimated from this model, since it refers to a Population Average comparison.

slope, active vs. placebo??

PA model for random regression

In the sense that the working covariance is specified by a random regression structure, Use

proc glimmix data=seizures method=rmpl;

85 / 88					
slope, active vs. placebo	0.	. 9220	1.0	0439	
weekly decline, active??	0.9490		1.0339		
weekly decline, placebo??	0.9653		1.0560		
Label	1	Lower		pper	
	Exponenti	inted Ev	ponentia	n+od	
slope, active vs. placebo	0.05	-0.08122	0.0429	95	0.9810
weekly decline, active??	0.05	-0.05239	0.0333	33	0.9905
weekly decline, placebo??	0.05	-0.03531	0.054		1.0096
Label	Alpha	Lower	Uppe		Estimate
				Expo	nentiated
slope, active vs. placebo	-0.01913	0.03146	177	-0.61	0.5438
weekly decline, active??	-0.00953	0.02172	177	-0.44	0.6614
weekly decline, placebo??	0.009604	0.02276	177	0.42	0.6736
Label	Estimate	Standard Error	DF	t Value	Pr > t
Estimates		C+ 1 1			
Eatimates					

Results from random regression, Seizures, II

- ► Expected decline for a specific patient: This should not be estimated from this model, since it refers to a Subject Specific comparison.
- Expected ratio of decline for active vs. placebo patients (taken from p. 85):
 0.9810 (0.9220, 1.0439), corresponding to the phrase:
 Patients treated with Pragabide are expected to decrease in seizures with approximately 2% more than if treated with Placebo.

However, the difference is not significant, and might as well turn out to be an increased rate of approximately 4% compared to Placebo treatment.

86 / 88

88 / 88

NIVERSITY OF COPENHAGE

EPARTMENT OF BIOSTATISTICS UNIVERSITY OF COPENHAGE

DEPARTMENT OF BIOSTATISTIC

Predictions from SS, random regression

Individual predictions of rates

Legends: Progabide Placebo

Predictions from PA, (random regression)

Population predictions of rates (Note the scale!!)

Legends: Progabide Placebo

87 / 88