Title

by

Michael Mekonnen

B.S. EECS, Massachusetts Institute of Technology (2013) B.S. Mathematics, Massachusetts Institute of Technology (2013)

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2014

	(c)	Massachusetts	Institute	of Techr	nology 201	14. All	rights	reserved.
--	-----	---------------	-----------	----------	------------	---------	--------	-----------

	Department of Electrical Engineering and Computer Science
	September 12, 2013
Certified	by
	Dennis M. Freeman
	Title
	Thesis Supervisor
Accepted	by
_	Name
	Chairman, Department Committee on Graduate Theses

Title

by

Michael Mekonnen

Submitted to the Department of Electrical Engineering and Computer Science on September 12, 2013, in partial fulfillment of the requirements for the degree of Masters of Engineering in Electrical Engineering and Computer Science

Abstract

Abstract.

Thesis Supervisor: Dennis M. Freeman

 ${\bf Title:} \ \ Title$

Acknowledgments

Acknowledgments.

Contents

1	Introduction					
	1.1	Problem Statement	7			
1.2 Motivation						
	Goal	7				
	1.4	Outline	7			
2	Bac	kground	8			
	2.1	Technical Background	8			
	2.2	Previous Work	8			
		2.2.1 Current tools in 6.01	8			
		2.2.2 Current work in automatic protoboard layout	8			
3	luation	9				
4	Methods					
	4.1	Circuit Component Placement	10			
	4.2	Wiring	10			
5	Res	ults	11			
6	Discussion					
	6.1	Explaining the Results	12			
	6.2	Remarks	12			
\mathbf{A}	Sch	ematic Drawing GUI Features	13			

List of Figures

List of Tables

Introduction

1.1 Problem Statement

What problem are we solving?

1.2 Motivation

Why is this an interesting problem?

1.3 Goal

Precisely state the goal of this project. In particular, explain that we ultimately want to make a teaching tool for 6.01.

1.4 Outline

How is the Thesis organized?

Background

2.1 Technical Background

What is a circuit schematic? What is a protoboard? What circuit components are we working with in this project?

2.2 Previous Work

2.2.1 Current tools in 6.01

Discuss CMax and its capabilities.

2.2.2 Current work in automatic protoboard layout

What similar work has been done before?

Evaluation

How are we going to evaluate a particular solution to the problem?

Methods

How did we solve the problem? Two step process: placement then wiring.

4.1 Circuit Component Placement

How do you place the components on the protoboard? Explore various possibilities.

4.2 Wiring

Once the components are placed, how do you wire them together? Explore various possibilities.

Results

Quantitatively compare the various methods discussed in the previous section.

Discussion

6.1 Explaining the Results

Give plausible explanation for the observed results.

6.2 Remarks

Why are these results encouraging? What are their implications? Relate back to Introduction to Thesis. What could have been done differently?

Appendix A

Schematic Drawing GUI

Discuss the features and capabilities of the GUI.