Conteúdo Programático e Cronograma

1º Semestre

Organização e estrutura de compiladores

Análise Léxica

Análise Sintática

Ferramentas de geração automática de compiladores

2º Semestre

Análise Semântica

Geração de código

Análise de fluxo de dados

Otimização de código

Alocação de registradores

Análise Sintática

Fluxo do Compilador

 Recebe uma seqüência de tokens do analisador léxico e determina se a string pode ser gerada através da gramática da linguagem fonte.

• É esperado que ele reporte os erros de uma maneira inteligível.

Deve se recuperar de erros comuns, continuando a processar a entrada.

 ERs são boas para definir a estrutura léxica de maneira declarativa.

 Será que são "poderosas" o suficiente para conseguir definir declarativamente a estrutura sintática de linguagens de programação ???

- As ERs devem ser capazes de expressar a sintaxe de linguagens de programação.
- E se forem dados nomes para abreviar as ERs?

EXPR =
$$ab(c|d)e$$

EXPR =
$$a b AUX e$$

AUX = $c \mid d$

Exemplo de ER usando abreviações:

```
digits = [0-9]<sup>+</sup>
sum = (digits "+")* digits
definem somas da forma 28+301+9
```

- Como isso é implementado?
 - O analisador léxico substitui as abreviações antes de traduzir para um autômato finito
 - $sum = ([0-9]^+ "+")^* [0-9]^+$

• É possível usar a mesma idéia para definir uma linguagem para expressões que tenham parênteses balanceados?

```
(1+(245+2))
```

Tentativa:

```
digits = [0-9]^+

sum = expr "+" expr

expr = "(" sum ")" | digits
```

```
digits = [0-9]<sup>+</sup>
sum = expr "+" expr
expr = "(" sum ")" | digits
```

O analisador léxico substituiria sum em expr:

Depois substituiria expr no próprio expr:

Continua tendo expr's do lado direito!

 As abreviações não acrescentam a ERs o poder de expressar recursão.

 É isso que se precisa para expressar a recursão mútua entre sum e expr e também expressar a sintaxe de linguagens de programação.

O que está faltando?

É possível contar 4 "1"s com um DFA?

É possível contar k "1"s com um DFA?

É possível contar k "1"s com um DFA?

Como então casar ((...)) para um k qualquer?

Como então casar ((...)) para um k qualquer?

Contando com uma Pilha

Contando com uma Pilha

Context-Free Grammar (Gramática Livre de Contexto)

Descrevem uma linguagem através de um conjunto de produções da forma:

onde existem zero ou mais símbolos no lado direito.

Produções funcionam como regras de substituição:

Símbolos:

- terminais: pertencem ao alfabeto da linguagem
- não-terminais: aparecem do lado esquerdo de alguma produção
- Nenhum terminal aparece do lado esquerdo de uma produção
- Existe um não-terminal definido como símbolo inicial.
 Normalmente é o da primeira regra

- Gerar cadeias da linguagem:
 - 1. Escreva a variável inicial.
 - 2. Encontre uma variável escrita e uma regra para essa variável. Substitua essa variável pelo lado direito da regra.
 - 3. Repita 2 até não restar variáveis

1.
$$A \rightarrow 0A1$$

$$2. A \rightarrow B$$

$$3. B \rightarrow \#$$

A sequência de substituições é chamada de derivação.

Ex:

- $A \rightarrow 0A1$
- $A \rightarrow B$
- $B \rightarrow \#$
 - 000#111
 - $A \rightarrow 0A1 \rightarrow 00A11 \rightarrow 000A111 \rightarrow 000B111 \rightarrow 000#111$

Linguagem: O conjunto de todas as cadeias que podem ser geradas dessa maneira

```
1. SENTENCE → NOUN-PHRASE VERB-PHRASE
2. NOUN-PHRASE → CMPLX-NOUN | CMPLX-NOUN PREP-PHRASE
3. VERB-PHRASE → CMPLX-VERB | CMPLX-VERB PREP-PHRASE
4. PREP-PHRASE → PREP CMPLX-NOUN
5. CMPLX-NOUN → ARTICLE NOUN
6. CMPLX-VERB → VERB | VERB NOUN-PHRASE
7. ARTICLE → a | the
8. NOUN → boy | girl | flower
9. VERB → touches | likes | sees
10. PREP → with
```

Como é a derivação para:

a boy sees

```
1. S \rightarrow S; S

2. S \rightarrow id := E

3. S \rightarrow print(L)

4. E \rightarrow id

5. E \rightarrow num

6. E \rightarrow E + E

7. E \rightarrow (S, E)

8. L \rightarrow E

9. L \rightarrow L, E
```

Possível código fonte:

$$a := 7; b := c + (d := 5 + 6, d)$$

Derivações

```
a := 7; b := c + (d := 5 + 6, d)
<u>S</u>; id := E
id := E; id := E
id := num ; id := E
id := num ; id := E + E
id := num ; id := \underline{E} + (S, E)
id := num ; id := id + (\underline{S}, E)
id := num ; id := id + (id := \underline{E}, E)
id := num ; id := id + (id := E + E, E)
id := num ; id := id + (id := \underline{E} + E, id)
id := num ; id := id + (id := num + <math>\underline{E}, id)
id := num ; id := id + (id := num + num, id)
```

1.
$$S \rightarrow S$$
; S
2. $S \rightarrow id := E$
3. $S \rightarrow print(L)$
4. $E \rightarrow id$
5. $E \rightarrow num$
6. $E \rightarrow E + E$
7. $E \rightarrow (S, E)$
8. $L \rightarrow E$
9. $L \rightarrow L$, E

Derivações

left-most: o não terminal mais a esquerda é sempre o expandido;

• *right-most*: idem para o mais a direita.

• Qual é o caso do exemplo anterior?

Parse Trees

 Constrói-se uma árvore conectando-se cada símbolo em uma derivação; da qual ele foi derivado.

Duas derivações diferentes podem levar a uma mesma parse tree.

Parse Trees

$$a := 7; b := c + (d := 5 + 6, d)$$

num

num

Gramáticas Ambíguas

Gramáticas Ambíguas: Podem derivar uma sentença com duas parse trees diferentes

id := id+id+id

É ambígua?

$$E
ightharpoonup \mathrm{id}$$
 $E
ightharpoonup \mathrm{num}$
 $E
ightharpoonup E * E$
 $E
ightharpoonup E / E$
 $E
ightharpoonup E + E$
 $E
ightharpoonup E - E$
 $E
ightharpoonup (E)$

Construa *Parse Trees* para as seguintes expressões:

Exemplo: 1-2-3

Ambígua!

$$(1-2)-3=-4$$
 e $1-(2-3)=2$

$$1-(2-3)=2$$

Exemplo: 1+2*3

Ambígua!

$$(1+2)*3 = 9$$
 e $1+(2*3) = 7$

$$1+(2*3)=7$$

Gramáticas Ambíguas

- Gera uma mesma cadeia com duas árvores sintáticas diferentes
- Pode-se formalizar assim:
 - Gramáticas ambíguas geram alguma cadeia ambiguamente
 - Uma cadeia é gerada ambiguamente se possui duas ou mais derivações mais à esquerda diferentes.
- Os compiladores usam as parse trees para extrair o significado das expressões
- A ambigüidade se torna um problema
- Pode-se, geralmente, mudar a gramática de maneira a retirar a ambigüidade

Gramáticas Ambíguas

Alterando o exemplo anterior:

- Deseja-se colocar uma precedência maior para * em relação a + e –
- Também deseja-se que cada operador seja associativo à esquerda:

Consegue-se isso introduzindo novos não-terminais

Gramáticas para Expressões

$$E \rightarrow E + T$$
 $T \rightarrow T^*F$ $F \rightarrow id$
 $E \rightarrow E - T$ $T \rightarrow T/F$ $F \rightarrow num$
 $E \rightarrow T$ $T \rightarrow F$ $F \rightarrow (E)$

Construa as derivações e *Parse Trees* para as seguintes expressões:

Gramáticas para Expressões

$$E \rightarrow E + T$$
 $T \rightarrow T^*F$ $F \rightarrow id$
 $E \rightarrow E - T$ $T \rightarrow T/F$ $F \rightarrow num$
 $E \rightarrow T$ $T \rightarrow F$ $F \rightarrow (E)$

Essa gramática pode gerar as árvores abaixo?

Gramáticas Ambíguas

 Geralmente pode-se transformar uma gramática para retirar a ambigüidade

Algumas linguagens não possuem gramáticas não ambíguas

Mas elas não seriam apropriadas como linguagens de programação

Parsing

CFG's geram as linguagens.

Parsers são reconhecedores das linguagens.

Para qualquer CFG é possível obter um *parser* que roda em $O(n^3) \rightarrow \text{Algoritmos}$ de Early[70] e CYK (Cocke-Younger-Kasami).

 $O(n^3)$ é muito lento para programas grandes.

Existem classes de gramáticas para as quais podemos construir *parsers* que rodam em tempo linear. Exemplo:

LL: Left-to-right, Left-most derivation

LR: Left-to-right, Right-most derivation

Também chamada de recursive-descent ou top-down

É um algoritmo simples, capaz de fazer o parsing de gramáticas LL

Cada produção se torna uma cláusula em uma função recursiva

Tem-se uma função para cada não-terminal

A análise descendente produz uma derivação à esquerda

Ela precisa determinar a produção a ser usada para expandir o não-terminal corrente

$$E \rightarrow +EE$$

$$E \rightarrow *EE$$

$$E \rightarrow a$$

$$E \rightarrow b$$

Expressões pré-fixas

Considere a cadeia +b*ab

Como é sua derivação mais à esquerda?

```
S \rightarrow if E then S else S
```

$$S \rightarrow begin S L$$

$$S \rightarrow print E$$

$$L \rightarrow end$$

$$L \rightarrow SL$$

$$E \rightarrow num = num$$

Como seria um *parser* para essa gramática?

```
int IF=1, THEN=2, ELSE=3, BEGIN=4, END=5, PRINT=6, SEMI=7, NUM=8, EQ=9;
int token = getToken();
void advance() {token=getToken();}
void eat(int t) {if (token==t) advance(); else error();}
void S(){
    switch(token) {
         case IF: eat(IF); E(); eat(THEN); S(); eat(ELSE); S(); break;
         case BEGIN: eat(BEGIN); S(); L(); break;
         case PRINT: eat(PRINT); E(); break;
         default: error(); }
                                                                       S \rightarrow if E then S else S
void L(){
                                                                       S \rightarrow begin S L
    switch(token) {
                                                                       S \rightarrow print E
         case END: eat(END); break;
                                                                       L \rightarrow end
         case SEMI: eat(SEMI); S(); L(); break;
                                                                       L \rightarrow : SL
         default: error(); }
                                                                       E \rightarrow num = num
void E(){ eat(NUM); eat(EQ); eat(NUM); }
```

Fim de Arquivo

Criar um novo não terminal como símbolo inicial

$$E \rightarrow E + T$$

$$E \rightarrow E - T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow \text{id}$$

$$F \rightarrow \text{(E)}$$

$$S \rightarrow E \$$$

$$E \rightarrow E + T$$

$$E \rightarrow E - T$$

$$E \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow T / T$$

$$T \rightarrow T$$

$$S \rightarrow E \$$$

 $E \rightarrow E + T$
 $E \rightarrow E - T$
 $E \rightarrow T$
 $T \rightarrow T / F$
 $T \rightarrow F$
 $T \rightarrow F$
 $F \rightarrow id$
 $F \rightarrow num$
 $F \rightarrow (E)$

Vamos aplicar a mesma técnica para essa outra gramática ...

```
void S() { E(); eat(EOF); }

void E() {
    switch (tok) {
        case ?: E(); eat(PLUS); T(); break;
        case ?: E(); eat(MINUS); T(); break;
        case ?: T(); break;
        default: error(); }
}

void T() {
    switch (tok) {
        case ?: T(); eat(TIMES); F(); break;
        case ?: T(); eat(DIV); F(); break;
        case ?: F(); break;
        default: error(); }
}
```

- Como seria a execução para 1*2-3+4 ?
- E para 1*2-3?

Funciona ???

```
S \rightarrow E \$
E \rightarrow E + T
E \rightarrow E - T
E \rightarrow T
T \rightarrow T * F
T \rightarrow T / F
T \rightarrow F
F \rightarrow id
F \rightarrow num
F \rightarrow (E)
```

Como decidir entre E+T, E-T e T na função que implementa o não-terminal E?

- Tanto E como T podem derivar cadeias começando com id, num ou (
- E se fosse possível olhar um número k>1 de símbolos para frente na entrada?

Como decidir entre E+T, E-T e T na função que implementa o não-terminal E?

- Tanto E como T podem derivar cadeias começando com id, num ou (
- E se fosse possível olhar um número k>1 de símbolos para frente na entrada?

Essas cadeias podem ter tamanho arbitrário: O problema permanece

Análise descendente recursiva (preditiva) só funciona onde o primeiro símbolo terminal de cada sub-expressão permite escolher a produção adequada a ser utilizada na derivação

Análise Descendente

$$S \rightarrow E \$$$

 $E \rightarrow F + T$
 $E \rightarrow G + T$
 $F \rightarrow id$
 $G \rightarrow num$
 $T \rightarrow num$

Como seria a análise da cadeia num+num\$?

Análise Descendente LL(1)

Como seria a análise da cadeia num+num\$?

Conjunto FIRST

 Dada uma cadeia γ de terminais e não terminais FIRST(γ) é o conjunto de todos os terminais que podem iniciar uma cadeia derivada de γ.

• Exemplo usando gramática ao lado:

$$\gamma = T * F$$
FIRST(γ) = { id, num, (}

$$S \rightarrow E$$
 \$
 $E \rightarrow E + T$
 $E \rightarrow E - T$
 $E \rightarrow T$
 $T \rightarrow T * F$
 $T \rightarrow T / F$
 $T \rightarrow F$
 $F \rightarrow id$
 $F \rightarrow num$
 $F \rightarrow (E)$

Predictive Parsing

Se uma gramática tem produções da forma:

$$X \longrightarrow \gamma_1$$

$$X \longrightarrow \gamma_2$$

 Caso os conjuntos FIRST(γ₁) e FIRST(γ₂) tenham intersecção, então a gramática não pode ser analisada com um predictive parser

Por que?

A função recursiva não vai saber que caso executar

Calculando FIRST

$$Z \rightarrow d$$

$$Z \rightarrow X Y Z$$

$$Y \rightarrow$$

$$Y \rightarrow c$$

$$X \rightarrow Y$$

$$X \rightarrow a$$

• Como seria para $\gamma = XYZ$?

Pode-se simplesmente fazerFIRST(XYZ) = FIRST(X) ?

Nullable

Nullable(X) é verdadeiro se X pode derivar a cadeia vazia.

$$Z \rightarrow d$$

$$Z \rightarrow X Y Z$$

$$Y \rightarrow$$

$$Y \rightarrow c$$

$$X \rightarrow Y$$

$$X \rightarrow a$$

$$Nullable(Y) = yes$$

$$Nullalble(X) = yes$$

$$Nullable(Z) = no$$

Follow

FOLLOW(X) é o conjunto de terminais que podem imediatamente seguir X

 $t \in FOLLOW(X)$ se existe alguma derivação contendo Xt

Cuidado com derivações da forma XYZ*t*, *onde Y e Z* podem ser vazios

$$Z \rightarrow d$$

$$Z \rightarrow X Y Z$$

$$Y \rightarrow$$

$$Y \rightarrow c$$

$$X \rightarrow Y$$

$$X \rightarrow a$$

$$FOLLOW(Y) = \{d,a,c\}$$

$$FOLLOW(Z) = \{ \}$$

FIRST, FOLLOW e Nullable

- Nullable(X) é verdadeiro se X pode derivar a cadeia vazia
- FIRST(γ) é o conjunto de terminais que podem iniciar cadeias derivadas de γ
- FOLLOW(X) é o conjunto de terminais que podem imediatamente seguir X
 - $-t \in FOLLOW(X)$ se existe alguma derivação contendo Xt
 - Cuidado com derivações da forma XYZt, onde Y e Z podem ser vazios

FIRST, FOLLOW e Nullable

Initialize FIRST and FOLLOW to all empty sets, and Nullable to all false.

```
for each terminal symbol Z FIRST[Z] \leftarrow \{Z\}
repeat
  for each production X \rightarrow Y_1 Y_2 \dots Y_k
     if Y_1 \dots Y_k are all Nullable (or if k = 0) then Nullable[X] \leftarrow true
     for each i from 1 to k, each j from i + 1 to k
      if Y_1 \dots Y_{i-1} are all Nullable (or if i = 1)
        then FIRST[X] \leftarrow FIRST[X] \cup FIRST[Y_i]
      if Y_{i+1} \dots Y_k are all Nullable (or if i = k)
        then FOLLOW[Y_i] \leftarrow FOLLOW[Y_i] \cup FOLLOW[X]
      if Y_{i+1} \dots Y_{i-1} are all Nullable (or if i + 1 = j)
         then FOLLOW[Y_i] \leftarrow FOLLOW[Y_i] \cup FIRST[Y_i]
until FIRST, FOLLOW, and Nullable did not change in this iteration.
```

Generalizando para cadeias: FIRST

• FIRST($X \gamma$) = FIRST[X], if not nullable[X]

• FIRST($X \gamma$) = FIRST[X] U FIRST(γ), if nullable[X]

 A cadeia γ é Nullable se cada símbolo em γ é Nullable

Generalizando para cadeias: FOLLOW

 Se houver uma produção A → αBβ, então, tudo em FIRST(β) irá para FOLLOW(B)

 Se houver uma produção A → αB, ou uma produção A → αBβ onde FIRST(β) é Nullable, então tudo em FOLLOW(A) irá para FOLLOW(B)

Exemplo

$$Z \rightarrow d$$
 $Z \rightarrow X \ Y \ Z$
 $Y \rightarrow X$
 $Y \rightarrow X \rightarrow Y$
 $X \rightarrow X \rightarrow X$
 $X \rightarrow X \rightarrow X$
 $X \rightarrow X \rightarrow X \rightarrow X$

Exemplo

$Z \rightarrow d$				
$Z \rightarrow X Y Z$		nullable	FIRST	FOLLOW
$Y \rightarrow$	X	yes	a c	a c d
V	$\frac{Y}{Z}$	yes yes no	c	a c d
$Y \rightarrow c$	Z	no	a c d	
$X \rightarrow Y$		•		
$X \rightarrow a$				

Construindo um Predictive Parser LL(1)

- Cada função relativa a um não-terminal precisa conter uma cláusula para cada produção
- A escolha da produção adequada é baseada no próximo token
- Isto é feito através da predictive parsing table
- Dada uma produção $X \to \gamma$
- Para cada terminal T ∈ FIRST(γ)
 - Coloque a produção $X \rightarrow \gamma$ na linha X, coluna T.
- Se γ é nullable:
 - Coloque a produção na linha X, coluna T para cada
 T ∈ FOLLOW[X].

Exemplo

		nullable	FIRST	FOLLOW
$Z \rightarrow d$	X Y Z	yes	a c	a c d
$Z \rightarrow U$	Y	yes	c	a c d
$Z \rightarrow X Y Z$	Z	yes yes no	a c d	
$Y \rightarrow$				
$Y \rightarrow c$				
$X \rightarrow Y$				
$X \rightarrow a$				

Exemplo

			nullable	FIR	RST	FOLLOW
7 . 4	7	Y	yes	a	c	a c d
$Z \rightarrow d$)	Y	yes	(2	a c d
$Z \rightarrow X Y Z$	2	Z	no	ac	e d	
$Y \rightarrow$						
					Fur	nciona ???
$Y \rightarrow c$			a	c		d
$X \rightarrow Y$	X		$\begin{array}{c} X \to a \\ X \to Y \end{array}$	$X \rightarrow$	<i>Y</i>	$X \to Y$
$X \rightarrow a$	Y	•	$Y \rightarrow$	Y - Y - Y - Y - Y - Y - Y - Y - Y - Y -	<i>→ → c</i>	$Y \rightarrow$
	Z	Z	$\rightarrow XYZ$	$Z \rightarrow Z$	XYZ	$Z \to d$ $Z \to XYZ$

Construindo um Predictive Parser LL(1)

Não Funciona!! Por quê?

- A gramática é ambígua
- Note que algumas células da tabela do predictive parser têm mais de uma entrada!
- Isso sempre acontece com gramáticas ambíguas!

Construindo um Predictive Parser LL(1)

- Linguagens cujas tabelas não possuam entradas duplicadas são denominadas de LL(1)
 - Left to right parsing, leftmost derivation, 1-symbol lookahead
- A definição de conjuntos FIRST pode ser generalizada para os primeiros k tokens de uma string
 - Gera-se uma tabela onde as linhas são os não-terminais e as colunas são todas as seqüências possíveis de k terminais
- Isso é raramente feito devido ao tamanho explosivo das tabelas geradas
- Gramáticas analisáveis com tabelas LL(k) são chamadas LL(k)
- Nenhuma gramática ambígua é LL(k) para nenhum k!

$$E \rightarrow TE'$$
 $E' \rightarrow +TE'$
 $E' \rightarrow$
 $T \rightarrow FT'$
 $T' \rightarrow *FT'$
 $T' \rightarrow$
 $F \rightarrow (E)$
 $F \rightarrow id$

$$S \to E$$
 inserção do fim de arquivo $E \to TE'$ $E' \to +TE'$ $E' \to T$ $T \to FT'$ $T' \to *FT'$ $T' \to F \to (E)$ $F \to id$

$$S \rightarrow E\$$$
 $E \rightarrow TE'$
 $E' \rightarrow +TE'$
 $E' \rightarrow FT'$
 $T' \rightarrow FT'$

	Nullable	FIRST	FOLLOW
Ε	N	(id)\$
E'	S	+)\$
Т	N	(id	+)\$
T'	S	*	+)\$
F	N	(id	* +) \$
S	N	(id	

$$S \rightarrow E$$
\$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE'$$

$$E' \rightarrow$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT'$$

$$T' \rightarrow$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$

	Nullable	FIRST	FOLLOW
Е	N	(id)\$
E'	S	+)\$
Т	N	(id	+)\$
T'	S	*	+)\$
F S	N	(id	* +) \$
S	N	(id	

NON -	INPUT SYMBOL					
TERMINAL	id	+	*	()	\$
\overline{E}	$E \to TE'$			E o TE'		
E'		E' o +TE'			$E' \rightarrow$	E' ightarrow
T	$T \to FT'$			T o FT'	}	
T'		$T' \rightarrow$	T' o *FT'		$T' \rightarrow$	T' ightarrow
F	$F o \mathbf{id}$			F o (E)		
S	$S \rightarrow ES$			$S \rightarrow ES$		

Análise Sintática LL(1)

TOP-DOWN PARSING

Análise Sintática LL(1)

$$S \rightarrow E$$
\$

$$E \rightarrow TE'$$

$$E' \rightarrow +TE'$$

$$E' \rightarrow$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT'$$

$$T' \rightarrow$$

$$F \rightarrow (E)$$

$$F \rightarrow id$$

NON -	INPUT SYMBOL					
TERMINAL	id	+	*	()	- \$
\overline{E}	$E \to TE'$			$E \to TE'$,
E'		E' o +TE'			$E' \rightarrow$	E' ightarrow
T	$T \to FT'$	}		T o FT'	})
T'		$T' \rightarrow$	T' o *FT'		$T' \rightarrow$	T' ightarrow
F	$F o \mathbf{id}$			F o (E)		
S	$S \rightarrow ES$			$S \rightarrow ES$		

A cadeia abaixo pertence a linguagem gerada pela gramática?

NON -	INPUT SYMBOL					
TERMINAL	id	+	*	1)	- \$
\overline{E}	$E \to TE'$			$E \to TE'$		
E'		$E' \rightarrow +TE'$			$E' \rightarrow$	E' ightarrow
$oldsymbol{T}$	$T \to FT'$		}	T o FT'	}	
T'		$T' \rightarrow$	T' o *FT')	$T' \rightarrow$	T' ightarrow
${\pmb F}$	$F o \mathbf{id}$			F o (E)		
S	$S \rightarrow ES$			$S \rightarrow E$ \$		

MATCHED	STACK	INPUT	ACTION
	E\$	id + id * id\$	
	TE'\$	id + id * id\$	output $E \to TE'$
	FT'E'\$	id + id * id\$	output $T \to FT'$
	id $T'E'$ \$	id + id * id\$	output $F \to \mathbf{id}$
id	T'E'\$	$+\operatorname{id}*\operatorname{id}\$$	$\mathbf{match}\ \mathbf{id}$
\mathbf{id}	E'\$	+ id * id\$	output $T' \to \epsilon$
\mathbf{id}	+ TE'\$	+ id * id \$	output $E' \to + TE'$
$\mathbf{id} +\\$	TE'\$	$\mathbf{id}*\mathbf{id}\$$	match +
$\mathbf{id} \; + \;$	FT'E'\$	$\mathbf{id}*\mathbf{id}\$$	output $T \to FT'$
$\mathbf{id} +\\$	id $T'E'$ \$	$\mathbf{id}*\mathbf{id}\$$	output $F \to \mathbf{id}$
id + id	T'E'\$	*id\$	match id
id + id	*FT'E'\$	*id\$	output $T' \to *FT'$
$\mathbf{id} + \mathbf{id} \ *$	FT'E'\$	$\mathbf{id}\$$	match *
id + id *	id $T'E'$ \$	id\$	output $F \to \mathbf{id}$
id + id * id	T'E'\$	\$	$\mathbf{match}\ \mathbf{id}$
id + id * id	E'\$	\$	output $T' \to \epsilon$
id + id * id	\$	\$	output $E' \to \epsilon$