Comunicação de Dados - 2007/2008, Licenciatura em Engenharia Informática, Teste de Avaliação - 12 de Novembro de 2007

1º Teste de Avaliação Periódica-Enunciado v1

Comunicação de Dados, 12/11/2007

NOILE	
Número	
A	Assinale com um (X) nas opções seguintes que pretenda seleccionar:
Estc	Estou inscrito à disciplina de Comunicação de Dados: Estou inscrito à disciplina de Fundamentos das Telecomunicações:
	Pretendo desistir do teste de avaliação: 🔲

Informações

- O teste tem 2 páginas com 6 questões, para uma duração de 2 horas.
- Os testes sem nome/número não serão corrigidos.
- O teste é de consulta, pode consultar a bibliografia que achar necessária.
- Não serão toleradas cooperações entre alunos na resolução do teste nem permitidos empréstimos de bibliografia, material de escrita e de equipamentos de qualquer tipo.
- Não é autorizada a utilização de qualquer equipamento com capacidades de comunicação (telemóveis, etc...)
 - Escreva somente nas zonas assinaladas a cinzento.

Questões de escolha múltipla

- Cada questão de escolha múltipla tem cinco opções (A1,B2,C3,D4 e Z9)
 das quais uma ou mais opções poderão estar correctas. Poderá assinalar
 a(s) alternativa(s) que considere correcta(s) ou optar por não assinalar
 nenhuma opção deixando a grelha vazia.
- Cada opção correcta tem associada uma cotação positiva (de 1 a 100%) por forma a que se for(em) assinalada(s) a(s) alternativa(s) correctas(s) a pontuação total na questão seja 100%.
- Cada opção incorrecta tem associada uma cotação negativa, dependendo da gravidade da afirmação.
- A pontuação de cada questão é obtida somando a pontuação associada a todas as opções assinaladas. Se tentar assinalar todas as opções numa questão terá sempre uma pontuação negativa. As pontuações negativas são acumuladas à pontuação do teste.
- Indique apenas por extenso as respostas que quer assinalar, nos quadrados a cinzento no final da questão. A ordem é irrelevante. Exemplo:

	Alguns dos problemas fundamentais estudados pela Teoria da
	Informação relacionam-se com a medida da informação produzida por
Č	uma fonte e com a codificação (sem perda de informação) dessa fonte
- 3	com o menor número possível de símbolos. Neste contexto, considere
	as seguintes afirmações:
	A entropia de uma fonte discreta sem memória é uma grandeza que
7	representa a quantidade média de informação gerada por segundo por
(uma fonte e permite perceber qual o rendimento de uma determinada
	codificação.
	Pretende-se codificar uma fonte de informação com códigos de
G	huffman mas sem utilizar codificações por blocos. Neste contexto, se a
70	fonte gerar unicamente dois símbolos A e B com probabilidades P _A =1/5
	e P _B =4/5 então nunca será possível comprimir a fonte.
	Assuma que a codificação huffman de símbolos individuais de uma
	fonte de informação gerou um código_a cujo rendimento é superior a
ဌ	zero e inferior a um. Neste caso, através de codificação huffman por
	blocos é sempre possível encontrar um <i>código_b</i> com rendimento
	superior ao obtido pelo código_a.
	Suponha que desenvolve um software de compressão/descompressão
	de ficheiros baseado em códigos de huffman e pretende aplicar esse
2	software a um ficheiro de 10 Kbytes. Podemos afirmar que existe
ָל ב	sempre um valor de N (1≤N<∞) de tal forma que aplicando o <i>software</i>
	de compressão N vezes consecutivas consegue obter um ficheiro
	resultante com um tamanho inferior a 10 Kbytes.
6 Z	Nenhuma das opções anteriores está correcta.
Indiq	Indique a(s) referência(s) da(s) alternativa(s) que considere correcta(s):

	Uma fonte de informação emite oito símbolos independentes entre si
S	de um alfabeto X, com X={A,B,C,D,E,F,G,H}, gerando 1800 simbolos
) 1	por minuto. Sabe-se que o débito de informação desta fonte é de 75
	bits/seg.
A1	Com os dados apresentados podemos afirmar que os oito símbolos
	gerados pela fonte não são equiprováveis.
B 2	O valor máximo de compressão que se poderia obter por codificação
	da fonte é superior a 20%.
	Usando códigos binários de comprimento fixo, para uma codificação
ဌ	por blocos de 2 símbolos (K=2) necessitávamos de um código com
	comprimento de 6 dígitos binários por par de símbolos,.
	Aplicando uma codificação huffman por blocos de 4 símbolos (K=4)
D 4	obtínhamos um comprimento médio de código inferior a 2.8 dígitos
	binários por símbolo $_{x}$.
6Z	Nenhuma das opções anteriores está correcta.

Indique a(s) referência(s) da(s) alternativa(s) que considere correcta(s)

	A digitalização é um processo pelo qual se transformam sinais		As técnicas de m
Ċ	analógicos, contínuos no tempo, em sequências de números com um	Q.5	determinado canal
3	número limitado de dígitos. Neste contexto considere as seguintes		informação. Neste cor
	afirmações:		As técnicas de mi
	A fase de amostragem consiste na recolha de amostras do sinal	A1	apropriadas para fonte
A1	analógico a uma determinada frequência com o objectivo de mais		ritmo de emissão variá
	tarde ser possível recuperar o espectro do sinal original.		Em TDM síncrono, as
	O processo de quantização é um processo de discretização das	B 2	microsegundos poden
			digitalizados a 8 KHz
B2	esse facto, existem, por vezes, vantagens em utilizar frequências de		Um sistema de mul
	amostragem superiores a duas vezes a banda do sinal (> 2xB),	3	modelo M/D/1, tem u
	apesar de, teoricamente, ser suficiente um valor igual a 2xB.	3	tempo médio de
	O número de dígitos usados para representar uma amostra num		aproximadamente três
ຮ	C3 processo de digitalização não uniforme é geralmente superior ao		Um multiplexador est
	número de dígitos usados no caso das quantizações uniformes.		linha de saída. As lii
2	A aplicação da Lei-A a um sinal analógico pode originar um sinal com	2	entrada iguais, e a lir
5	menor entropia que o sinal original.	5	vezes inferior ao ritm
6Z	Z9 Nenhuma das opções anteriores está correcta.		média das linhas de e
Indian	Indique a(s) referência(s) da(s) alternativa(s) que considere correcta(s):		a linha de saída tem u
-		í	-

	Um sinal analógico com uma largura de banda de 10 KHz foi
Č	digitalizado através de um processo de amostragem e quantização
t S	uniforme, e transmitido num canal com uma largura de banda de
	transmissão de 30 KHz.
	O sinal poderia ser amostrado a 30 KHz e transmitido em PCM
Ą	binário, apesar disso implicar a utilização obrigatória de dois níveis
	quânticos na fase de quantização.
B 2	Nunca se poderia transmitir este sinal se fossem usados 512 níveis
	de quantização.
ξ	Usando PCM-quaternário na transmissão do sinal o ruído de
3	quantização mínimo seria inferior a 0,1 miliWatts.
2	Independentemente da entropia do sinal analógico a digitalizar seria
5	vantajoso aplicar uma quantização não uniforme.
6Z	Z9 Nenhuma das opções anteriores está correcta.
Indique	Indique a(s) referência(s) da(s) alternativa(s) que considere correcta(s):

	de recilicas de maniplezagem permitem a partina de am
O.	determinado canal de comunicação por diversas fontes de
=	intormaçao. Neste contexto considere as seguintes atirmaçoes:
_	As técnicas de multiplexagem de TDM síncrono são mais
A1	apropriadas para fontes que geram dados de tamanho fixo e com um
-	ritmo de emissão variavei.
<u> </u>	Em TDM síncrono, as tramas PCM primárias com duração de 125
B2	microsegundos podem ser utilizadas na transmissão de sinais de voz
	digitalizados a 8 KHz (t̪) com 256 níveis quânticos.
<u></u>	Um sistema de multiplexagem estatística, modelado através do
3	modelo M/D/1, tem um ponto de funcionamento óptimo quando o
	tempo médio de espera de um cliente no sistema é
ιυ	aproximadamente três vezes o tempo de serviço.
<u> </u>	Um multiplexador estatístico possui duas linhas de entrada e uma
	linha de saída. As linhas de entrada possuem ritmos binários de
2	entrada iguais, e a linha de saída tem um ritmo binário que é oito
	vezes inferior ao ritmo de cada uma das entradas. Se a ocupação
	média das linhas de entrada for de 5% então poderemos afirmar que
10	a linha de saída tem uma ocupação média de 80%.
ار 62	Z9 Nenhuma das opções anteriores está correcta.
Indique a	Indique a(s) referência(s) da(s) alternativa(s) que considere correcta(s):

	Um router encaminha pacotes de dados de 1500 bits de 6 linhas de
	entrada com ritmos binários de entrada de 1 Mbps cada uma, para
9	uma linha de saída também a 1 Mbps. O número médio de chegadas
9	de pacotes a cada linha de entrada é de 500 pacotes cada 5
	segundos. Pretende-se estudar o comportamento deste router
	recorrendo ao modelo M/D/1.
	Pode-se afirmar que este sistema está em equilíbrio o que implica
A1	que o número de pacotes em fila de espera é constante ao longo
	do tempo.
B2	O tempo médio de atraso dos pacotes no router é de 8.25
	milisegundos.
	Se o router tivesse uma fila de espera com capacidade para
ပ္	armazenar 30 pacotes seria perdido, aproximadamente, um pacote
	por cada cem mil recebidos.
D4	A ocupação média de cada linha de entrada é inferior a 20%.
6Z	Nenhuma das opções anteriores está correcta.
Indique	Indique a(s) referência(s) da(s) alternativa(s) que considere correcta(s):

1º Teste de Avaliação Periódica- Correcção v1

Q.1	Q.1 Ver enunciado do teste.
A 1	Falso. A entropia representa a informação média por símbolo e não por
	segundo (isso seria o débito de informação)
S	Verdadeiro. Como são só dois símbolos, usando huffman sem
7	codificação por blocos teríamos sempre um código com comprimento
	médio igual a 1.
	Verdadeiro. Se a codificação huffman de símbolos individuais gerou um
	código com rendimento < 1, então o comprimento médio do código ainda
ຮ	não atingiu o valor da entropia. Com codificação por blocos poderemos
	então melhorar o rendimento do código tal como um dos teoremas
	fundamentais da Teoria da Informação confirma:
	$H(x) \le comprimento_médio_código < H(x) + 1/K$
	Falso. Se isto fosse verdade poderíamos sempre comprimir qualquer
	ficheiro (neste caso de 10Kbytes). Na realidade existem situações onde
D 4	não é possível comprimir um ficheiro (ex. quando a entropia é máxima ou
	muito próxima desse valor), e a aplicação consecutiva de um compressor
	até pode aumentar progressivamente o tamanho do ficheiro (devido à
	tabela de huffman anexa).
6Z	Falso.
Indiq	Indique a(s) referência(s) da(s) alternativa(s) que considere correcta(s):
	B2 C3
1	

	Ver enjinciado do teste (nota: vários exercícios envolvendo os mesmos
Q.2	conceitos foram resolvidos nas TPs)
A1	Verdadeiro. O débito de informação é o produto do ritmo de símbolos (por
	segundo) pela entropia. Ou seja, $75 = 30*H(x)$ o que dá uma entropia de
	2.5 bits por símbolo. Se os símbolos fossem equiprováveis a entropia seria
	máxima (8 símbolos = 3 bits por símbolo)
B2	Falso. A compressão máxima ocorre para códigos com comprimento
	médio igual à entropia, logo compressão_max= (3 - 2.5)/3 * 100% ≈ 16.6%
č	Verdadeiro. Teríamos 8*8 = 64 combinações de pares de símbolos
3	diferentes, logo em binário precisávamos de 6
	dígitos_binários/par_símbolo
2	Verdadeiro. H(x) ≤ comprimento_médio_código < H(x) +1/K, logo
5	comprimento_médio < 2.5 + 0.25 , ou seja comprimento _médio < 2.75
	dígitos binários por símbolo.
6Z	Falsa.

Indique a(s) referência(s) da(s) alternativa(s) que considere correcta(s):

2000		
dae collolaele		
aitei ilativa(s)	D4	
:iicia(s) 4a(s)	C3	
sidne a(s) referencia(s) da(s) aremanya(s) due considere con e	A1	

20 C	O 3 Ver entinciado do fecte
3	
1	Verdadeira. A fase da amostragem corresponde efectivamente à recolha de amostras do sinal. A escolha da frequencia de amostragem é
A1	feculia de amostras do sina. A esconia da nequenção de amostragem e feita com o objectivo de não haver sobreposição das diversas replicas
	espectrais, por forma a ser possível isolar/recuperar o espectro original.
	o de quantização que há vantagem
B2	aumentar a frequência de amostragem. As duas operações são
	independentes. (nota: questão similar foi resolvida nas fichas TPs)
	Falso. Não existe nenhuma teoria/regra que justifique esta afirmação.
Č	Em algumas situações até seria o contrario: para um determinado valor
3	objectivo de erro de quantização, e provavel que seja possivel definir
	um quantizador nao unitorme com menos niveis que um quantizador uniforme (i e noccivelmente com um menor número de dígitos/amostra)
	Verdadeira. A Lei A. guando hem aplicada, isto é a sinais com valores
2	de amplitude mais frequentemente próximos do zero, gera um sinal com
5	uma maior entropia. No entanto se for aplicada a sinais analógicos com
Ì	outras características pode diminuir a entropia.
Z9	Falso.
Indique	Indique a(s) referência(s) da(s) alternativa(s) que considere correcta(s):
A	1 D4
Q.4	Ver enunciado do teste. (nota: exercício típico de digitalização)
	Falso. O número máximo de símbolos que o canal suporta é 2*30000 =
	60000 símbolos/seg. Se o sinal fosse amostrado a 30KHz seriam
Δ1	gerados para o canal (fa=30000)*K símbolos (de uma qualquer base),
ξ	logo neste caso temos 30000*k ≤ 60000, o que origina um K máximo de
	2 símbolos/amostra. Como é PCM-binário (base 2 i.e. binário) K=2
	bits/amostra daria para 4 níveis quânticos.
Í	Falso. Como nada é dito em relação à base da numeração teoricamente
B2	poderemos ter os niveis quanticos que quisermos, basta aumentar a hase da nimeracão (nota: giuestão cimilar foi recolvida nas fichas TPc)
	Verdadeiro. frequência de amostradem mínima = 20000 amostras por
ξ	segundo. 20000*k≤60000, K máximo = 3. Como é PCM-quaternário, 3
3	símbolos representam 64 níveis quânticos (4*4*4). Aplicando a formula
	do erro de quantização (1/3q²) temos um erro de 0.08 miliwatts.
	Falso. A definição básica da quantização não uniforme explica que nem
2	sempre há vantagens em aplica-la. Depende do conhecimento que
<u> </u>	temos sobre o sinal. Mal aplicada até pode piorar o ruído de
i	quantização. (nota: questão similar foi resolvida nas fichas das TPs)
7 8	Falso
Indique	Indique a(s) referência(s) da(s) alternativa(s) que considere correcta(s):
	-

¹ Mesmo para quem levasse em conta outras possíveis restrições no canal (e.g. Lei Hartley-Shannon) como nada é dito em relação à relação S/N não se poderia afirmar que "Nunca se poderia...".

Q.5	Ver enunciado do teste.
	Falso. O TDM síncrono é mais apropriado para fontes com ritmos de emissão constantes. Aliás, é precisamente o facto de algumas fontes
A1	terem ritmos de emissão variável que contribui para a justificação da
	utilização de estratégias de multiplexagem estatísticas (tais como o TDM estatístico)
	Verdadeiro. A duração das tramas PCM primárias permite que cada
	canal tenha a possibilidade de colocar uma amostra digitalizada de
B2	125 em 125 microsegundos, ou seja numa frequência de 1/(125 *10°)
1	= 8000 Hz. Os oito bits por canal permitem efectivamente a
	utilização de 256 níveis na fase da quantização. (tal como explicado
	na sebenta na parte PCM)
	Falso. O ponto de funcionamento óptimo corresponde a um factor de
٢	utilização de p=0.6 (referido na sebenta). Resolvendo a equação
3	tempo_espera_sistema = 3 * tempo_serviço obtemos um valor para ρ
	acima de 0.6.
	Verdadeiro. Se a linha de saída tivesse um ritmo binário igual a cada
2	uma das linhas de entrada então a sua ocupação seria 10% (2 * 5%),
5	como tem uma capacidade oito vezes inferior a ocupação é oito
	vezes superior 80% (pelas formulas também se resolvia o problema)
6Z	Falso.

S
$\widetilde{\mathbf{z}}$
ؾڋ
ပ္က
Æ
Ξ
X
-
ā
ā
Ō
Ë
ō
Ö
Φ
ž
ਰ
_
ູທ
ă
>
₽
ā
Ξ
ā
≟
a
referência(s) da(s) alternativa(s) que considere correcta(s)
<u>s</u>
ā
7
₩
<u>s</u>
Ø
.2
Ē
(Ø
$\overline{}$
۳
Ó
=
S
$\tilde{\mathbf{x}}$
Indique a(s) referên
<u>o</u>
2
.0
$\boldsymbol{\sigma}$

0.6	Q.6 Ver enunciado do teste. (nota: exercício típico de multiplexagem)
	Falso. O facto de um sistema estar em equilíbrio (como neste caso)
<	não quer dizer que o número de pacotes em fila de espera seja
Ī	constante (é possível chegar a uma média mas ao longo do tempo o
	número de pacotes em fila vai variando)
	Verdadeiro. a) numero de chegadas por segundo = 6 * 100 = 600
B2	pacotes/seg; b) tempo de serviço = $1500/10^6$; a) * b) = factor de
	utilização = 0.9; aplicando a formula do tempo de atraso no sistema
	obtemos 8.25 * 10 seg.

Verdadeiro. Em cada linha de entrada temos 100 pacotes por segundo, ou seja, 100*1500 bits/seg (0.15*10° bits/seg) o que comparado com o ritmo da linha (1*10°) representa 15%. (também possível de resolver pelas formulas) Falso. Não é essa a conclusão observando o gráfico, o valor seria, aproximadamente, um pacote perdido em cada dez mil recebidos. Falso. ဌ 7

Indique a(s) referência(s) da(s) alternativa(s) que considere correcta(s):

6Z

B2	
Q	
4	

		Gr	Grelha v1		
	A1	B2	C3	D4	6 Z
0.1	-35%	+20%	+50%	-20%	-50%
Q.2	+34%	-35%	+34%	+34%	%0/-
0.3	%09+	-30%	-25%	+40%	-50%
Q.4	-20%	-25%	+100%	-40%	-20%
0.5	-30%	+40%	-25%	+60%	-50%
9.0	-25%	+20%	-30%	+20%	-50%