Geometria Differenziale (senza pretese)

Questo documento è nato per ammazzare il tempo durante una serie di pomeriggi svuotati di impegni. Era da tempo che progettavo un riordino di certi concetti, che è culminato nella riscrittura (e in una certa "sistemazione formale", che adeguasse i concetti al mio modo di intuire i fatti che leggevo) di un manoscritto che mi è stato gentilmente regalato da un compagno di corso. Restano, è ovvio, validi tutti gli avvertimenti che mi premuro di allegare ai frutti delle mie elucubrazioni: nulla di tutto questo è originale, quasi tutto è impreciso, inelegante, laddove non sia irrecuperabilmente, integralmente errato. Tanto più che le interpolazioni completamente dovute alla mia mano sono afflitte da un grosso difetto di disomogeneità: a volte le carte vanno da un aperto alla varietà, a volte viceversa. Ho cercato di unificare notazione e concetto per qualche giorno, ma altri impegni mi hanno poi distolto dall'impresa. Esiste sicuramente un modo di evitare certe sconcezze grafico-concettuali, che nel contempo metta al riparo dal rischio di perdersi in un nebuloso non-sense fatto di definizioni di cui poi non si vede nessuna incarnazione: esiste, ma io non l'ho (per ora) trovato.

Un punto imprecisato di \mathbb{S}^2 , 1 gennaio 2010.

♦ 2 ______**♦**

0 Richiami e notazioni

Introduzione. Dato un insieme X indichiamo con $\mathcal{P}(X)$ la collezione di tutti i sottoinsiemi di X. Chiamiamo $\mathcal{P}(X)$ insieme delle parti oppure insieme potenza di X. Le operazioni insiemistiche di unione e intersezione inducono sull'insieme delle parti una struttura di reticolo, oppure (è equivalente) di insieme ordinato, con la relazione di inclusione. E' ad una sottofamiglia di $\mathcal{P}(X)$ che chiederemo alcune proprietà di stabilità, al fine di costruire una struttura topologica su X.

Definizione 0.1 [TOPOLOGIA]: Una topologia sull'insieme X è una sottofamiglia $\mathcal{O} \subseteq \mathcal{P}(X)$ tale che

- $\varnothing, X \in \mathcal{O}$;
- Se Λ è un insieme arbitrario che indicizza una successione $\lambda \mapsto A_{\lambda}$ di elementi di 0, si ha $\bigcup_{\lambda \in \Lambda} A_{\lambda} \in 0$ (stabilità per unioni arbitrarie);
- Se (A_n) è una famiglia finita di elementi di \mathbb{O} si ha $\bigcap_{j=1}^n A_j \in \mathbb{O}$ (stabilità per intersezioni finite).

Gli elementi di \mathfrak{O} si dicono aperti, e si dice che un aperto è intorno di ogni suo punto $a \in A$.

Osservazione. L'operazione di complementazione induce su $\mathcal{P}(X)$ un antiautomorfismo di reticoli (dualità di De Morgan) che rende possibile una definizione alternativa di topologia: si tratta di una sottofamiglia $\mathcal{C} \subset \mathcal{P}(X)$ tale che

- $\varnothing, X \in \mathcal{C}$;
- $\bigcap_{\lambda \in \Lambda} A_{\lambda} \in \mathcal{O}$ per ogni famiglia di indici $(A_{\lambda})_{\lambda \in \Lambda}$;
- $\bigcup_{j=1}^n A_j \in \mathcal{O}$ per ogni famiglia *finita* di indici $(A_j)_{j=1}^n$.

L'equivalenza delle due definizioni è facile da provare, alla luce della sunnominata dualità di De Morgan.

Una topologia su un insieme è univocamente determinata dall'assegnazione dei suoi aperti o dei suoi chiusi. Uno spazio topologico è una coppia (X, \mathcal{O}_X) , dove \mathcal{O}_X è una topologia su X. Dato un insieme X, la collezione di tutte le topologie su X è un insieme, parzialmente ordinato dalla relazione \leq di finezza: $\mathcal{O} \leq \mathcal{Q}$ se \mathcal{Q} se tutti gli aperti di \mathcal{O} sono aperti di \mathcal{Q} .

3 �

Definizione 0.2 [BASE]: Una base di una topologia è un sottoinsieme B della topologia O tale che ogni elemento di O sia unione arbitraria di elementi di B.

Uno spazio topologico si dice a base numerabile se esiste una base B di $\mathbb O$ che è un insieme di cardinalità numerabile.

Definizione 0.3 [Funzione Continua]: Dati due spazi topologici (X, \mathcal{O}_X) , (Y, \mathcal{O}_Y) è ben nota¹ la definizione di morfismo di spazi topologici (o funzione continua): $f: X \to Y$ è continua se per ogni aperto $V \in \mathcal{O}_Y$ si ha $f^{\leftarrow}(V) \in \mathcal{O}_X$ (la controimmagine di un aperto mediante f è ancora un aperto).

Spesso si scrive che f è continua quando $f^{\leftarrow}(\mathcal{O}_Y) \subseteq \mathcal{O}_X$, con ovvio significato della notazione.

Definizione 0.4 [TOPOLOGIA INDOTTA]: Dato uno spazio topologico (X, \mathcal{O}_X) e un sottoinsieme $S \subset X$, si può dotare naturalmente S di una topologia $\mathcal{O}_S = \{S \cap U \mid U \in \mathcal{O}_X\}$, fatta dalle tracce di aperti di X su S: la topologia così ottenuta si dice topologia indotta da X su S.

La topologia indotta da X su S è la più piccola che rende continua la funzione di inclusione $\iota \colon S \hookrightarrow X$.

Definizione 0.5 [TOPOLOGIA PRODOTTO]: Consideriamo due spazi topologici (X, \mathcal{O}_X) , (Y, \mathcal{O}_Y) : il prodotto cartesiano $X \times Y$ può essere dotato in modo canonico di una struttura topologica, ponendo $\mathcal{O}_{X \times Y} = \{A \times B \mid A \in \mathcal{O}_X, B \in \mathcal{O}_Y\}$.

Su $X \times Y$ vi sono delle ovvie mappe canoniche di proiezione $\pi_X \colon X \times Y \to X, \pi_Y \colon X \times Y \to Y, (x,y) \mapsto x, (x,y) \mapsto y$: la topologia prodotto è la topologia meno fine a rendere continue le proiezioni. Se $f \colon X \to Y_1 \times Y_2$ è una funzione, essa è continua se e solo se lo sono le sue proiezioni²: deve commutare il diagramma

$$\begin{array}{c}
X \\
\downarrow f \\
Y_1 & \xrightarrow{\pi_1} Y_1 \times Y_2 \xrightarrow{\pi_2} Y_2
\end{array}$$
(1)

¹Pur se a prima vista non molto naturale: a questo proposito...

²L'insieme di questi fatti equivale a dire che il prodotto di spazi topologici così definito è un *prodotto* in **Top**, la categoria degli spazi topologici.

Non è difficile osservare che, se $f\colon X\to Y$ è funzione tra spazi topologici, e tanto più difficile per f essere continua quanto più fine è la topologia sull'insieme di arrivo, e tanto meno fine è quella sull'insieme di partenza. Non è banale allora quando, raffinando la topologia su Y, f resta continua: studiamo in particolare la topologia più fine su Y che rende continua f.

Definizione 0.6 [TOPOLOGIA QUOZIENTE]: La topologia quoziente su Y rispetto a $f: (X, \mathcal{O}_X) \to Y$ è data da

$$\mathcal{O}_f = \{ U \subset Y \mid f^{\leftarrow}(U) \in \mathcal{O}_X \}$$

E' chiara la proprietà di massimalità: se \mathcal{A} è un'altra topologia che rende f continua, \mathcal{O}_f la contiene.

Esauriti questi preliminari (volti per lo più a fissare le notazioni del seguito, anche se forse perderemo in fretta questa abitudine), partiamo con il discorso introduttivo principale.

1 Teoria delle Superfici Reali.

Raccogliamo alcune definizioni di partenza, e risultati di base, relativi alla teoria delle superficie in \mathbb{R}^3 .

Definizione 1.1 [SUPERFICIE REGOLARE]: Un sottoinsieme $S \subset \mathbb{R}^3$ si dice superficie regolare se, per ogni $p \in S$, esistono un intorno $V \subset \mathbb{R}^3$ e una mappa $\varphi(\cdot) \colon U \to V \cap S$ da un aperto U di \mathbb{R}^2 in $V \cap S$ (che, nella topologia indotta su S, è aperto) tale che

1. $\varphi(\cdot)$ sia (infinitamente) differenziabile, ossia se scriviamo

$$\varphi(u,v) = (x(u,v), y(u,v), z(u,v)),$$

le funzioni $x(\cdot), y(\cdot), z(\cdot) \colon U \to \mathbb{R}$ sono (infinitamente) differenziabili in U;

2. φ sia un omeomorfismo con l'immagine $\varphi(U)$;

♦_____5 **♦**

3. per ogni $q \in U$ il differenziale $d\varphi_q \colon \mathbb{R}^2 \to \mathbb{R}^3$ sia iniettivo. Ciò equivale a chiedere che il rango dello jacobiano di $\varphi(\cdot)$,

$$\operatorname{rk} \begin{pmatrix} x_u & x_v \\ y_u & y_v \\ z_u & z_v \end{pmatrix}$$

sia uguale a 2. Ancora, è equivalente chiedere che in ogni punto di U si abbia $\|\varphi_u \wedge \varphi_v\| \neq 0$.

La mappa $\varphi(\cdot)$ si chiama parametrizzazione locale di S. L'intorno $V \cap S$ di p in S si chiama intorno coordinato.

Si mostra che la definizione è ben posta a meno di \mathfrak{C}^{∞} -diffeomorfismi, nel senso che se $p \in S$ superficie regolare, e $\varphi(\cdot) \colon U \to S, \ \psi(\cdot) \colon V \to S,$ tali che $p \in W = \varphi(U) \cap \psi(V)$, allora la mappa $\eta = \varphi^{-1} \circ \psi \colon \psi^{-1}(W) \to \varphi^{-1}(W)$ è un diffeormorfismo.

Funzioni differenziabili. Se $f: V \subset S \to \mathbb{R}$ è una funzione definita su un aperto V di S, superficie regolare in \mathbb{R}^3 , essa si dice differenziabile in $p \in V$ se esiste una parametrizzazione locale $\varphi: U \subset \mathbb{R}^2 \to S$, con $p \in \varphi(U) \subset V$ tale che la composizione $f \circ \varphi: U \subset \mathbb{R}^2 \to \mathbb{R}$ sia differenziabile in (un intorno di) $\varphi^{-1}(p) \in U$. La definizione è ben posta (non dipende da $\varphi(\cdot)$), infatti presa un'altra parametrizzazione $\psi(\cdot)$, il cambio di coordinate è diffeomorfismo: $f \circ \psi = f \circ \varphi \circ \eta$ (che è ancora \mathbb{C}^{∞} -differenziabile).

Questa definizione si riesce a estendere facilmente al caso di una mappa tra due superfici regolari: $f: S_1 \to S_2$ si dice differenziabile in $p \in S_1$ se esistono due parametrizzazioni $\varphi_1: U_1 \to S_1$, $\varphi_2: U_2 \to S_2$, con $p \in \varphi_1(U_1), f(\varphi_1(U_1)) \subset \varphi_2(U_2)$, tali che $\varphi_2^{-1} \circ f \circ \varphi_1 \colon U_1 \to U_2$ sia differenziabile come usuale mappa di aperti in $q = \varphi_1^{-1}(p)$. In sostanza, si impone la commutazione a

$$S_{1} \xrightarrow{f} S_{2} \qquad (2)$$

$$\downarrow^{\varphi_{1}} \qquad \downarrow^{\varphi_{2}} \qquad U_{1} \xrightarrow{\varphi_{2}^{-1} \circ f \circ \varphi_{1}} U_{2}$$

La mappa di aperti $\tilde{f} = \varphi_2^{-1} \circ f \circ \varphi_1$ si dice espressione locale di f.

Due superfici regolari S_1, S_2 si dicono diffeomorfe se esiste una biiezione differenziabile in entrambi i versi da S_1 a S_2 .

Piano tangente a S. Ricordando la condizione 3 di (1.1), data una superficie regolare S e una sua parametrizzazione $\varphi(\cdot): U \to S$ ha senso definire il *piano tangente* in p a S come

$$T_p S := \mathrm{d}\varphi_q(\mathbb{R}^2)$$

ove al solito $q = \varphi^{-1}(p)$. Data l'iniettività di d φ_q infatti T_pS è un piano affine in \mathbb{R}^3 , ed è facile mostrare che esso non dipende dalla parametrizzazione scelta. Se $p = \varphi(q)$ i due vettori $\{\partial_u \varphi(q), \partial_v \varphi(q)\}$ formano una base di T_pS . La nozione di piano tangente è intimamente connessa a quella di curva differenziabile con sostegno su S, nel senso che segue.

Una curva $\alpha \colon I \subset \mathbb{R} \to S$ si dice differenziabile in t_0 se esiste una parametrizzazione $\varphi \colon U \to S$ tale che $\alpha(t_0) \in \varphi(U)$ e $\alpha(t) = \varphi(u(t), v(t))$, dove $u(\cdot), v(\cdot) \colon I \to \mathbb{R}$ sono differenziabili in t_0 (la funzione $\bar{\alpha}(t) = (u(t), v(t))$ è detta pull-back di α , ed è definita in modo tale che $\varphi \circ \bar{\alpha} = \alpha$).

E' facile mostrare che T_pS coincide con l'insieme dei vettori tangenti in p alle curve differenziabili tracciate su S e passanti per p: si ha infatti che

$$\dot{\alpha}(t_0) = \dot{u}(t_0)\partial_u \varphi(q) + \dot{v}(t_0)\partial_v \varphi(q) \in T_p S$$

(è il vettore di coordinate $(\dot{u}(t_0), \dot{v}(t_0)) = \dot{\bar{\alpha}}(t_0)$ nella base naturale indotta dalla parametrizzazione) e viceversa se $w \in T_pS$ si ha $w = \lambda \partial_u \varphi(q) + \mu \partial_v \varphi(q)$, ove $q = (u_0, v_0)$, posto $\alpha(t) = \varphi(u_0 + \lambda t, v_0 + \mu t)$, si ha $\alpha(0) = p$, $\dot{\alpha}(0) = w$.

Differenziale di una applicazione tra superfici. Sia $f: S_1 \to S_2$ un'applicazione differenziabile tra due superfici regolari. Sia $p \in S_1$. Per quanto osservato sopra, ogni vettore $w \in T_pS_1$ è il vettore tangente $\dot{\alpha}(t_0)$ di una qualche curva differenziabile α che ha sostegno su S, tale che $\alpha(t_0) = p$. Se definiamo la curva $\beta(t) := f(\alpha(t))$, abbiamo $\beta(t_0) = f(p)$ e $\dot{\beta}(t_0) \in T_{f(p)}S_2$. Potendosi mostrare che $\dot{\beta}(t_0)$ è un vettore indipendente dalla scelta di α , si definisce una mappa

$$df_p \colon T_p S_1 \to T_{f(p)} S_2$$

$$df_p(w) = \dot{\beta}(t_0) = df(\alpha(t_0))\dot{\alpha}(t_0)$$
(3)

Si mostra direttamente che tale mappa è lineare: $df_p(\cdot)$ si dice differenziale di f in p.

Osservazione. Siano S_1, S_2 superfici regolari, $f: S_1 \to S_2, p \in S_1$, $\varphi: U_1 \to S_1, \psi: U_2 \to S_2$ due parametrizzazioni locali di S_1, S_2 tali che $\varphi(U_1) \ni p, \psi(U_2) \ni f(p)$. Sia poi $q = (q_1, q_2)$ tale che $\varphi(q) = p$, e $\tilde{f}(u, v)$ l'espressione locale di f. Allora d $f_p: T_pS_1 \to T_{f(p)}S_2$ ha matrice

$$\operatorname{Jac} \widetilde{f}(q) = \begin{pmatrix} \partial_u \widetilde{f}_1(q) & \partial_v \widetilde{f}_1(q) \\ \partial_u \widetilde{f}_2(q) & \partial_v \widetilde{f}_2(q) \end{pmatrix}$$
(4)

nelle basi $\{\partial_u \varphi, \partial_v \varphi\}$ su $T_p S_1$, $\{\partial_u \psi, \partial_v \psi\}$ su $T_{f(p)} S_2$.

Prima forma fondamentale. La restrizione dell'applicazione bilineare standard (di matrice identica nella base canonica di \mathbb{R}^3) induce su ogni piano tangente un prodotto scalare denotato con $\langle \cdot | \cdot \rangle_p$. Questo induce a sua volta in modo naturale una norma su T_pS , definita da

$$\mathbf{I}_p(w) := \langle w | w \rangle_p = \|w\|_p^2 \tag{5}$$

questa applicazione bilineare si dice prima forma fondamentale di S.

La prima forma fondamentale ha una naturale espressione in coordinate locali: se $\varphi \colon U \to S$ è una parametrizzazione, e $p \in varphi(U)$, $p = \varphi(q)$, ogni $w \in T_pS$ è combinazione lineare dei vettori di base $\{\partial_u \varphi(q), \partial_v \varphi(q)\}$: $w = \lambda \partial_u \varphi(q) + \mu \partial_v \varphi(q)$, pertanto

$$\mathbf{I}_{p}(w) = \langle \lambda \partial_{u} \varphi(q) + \mu \partial_{v} \varphi(q) | \lambda \partial_{u} \varphi(q) + \mu \partial_{v} \varphi(q) \rangle_{p} =
= \langle \partial_{u} \varphi(q) | \partial_{u} \varphi(q) \rangle \lambda^{2} + 2 \langle \partial_{u} \varphi(q) | \partial_{v} \varphi(q) \rangle \lambda \mu + \langle \partial_{v} \varphi(q) | \partial_{v} \varphi(q) \rangle \mu^{2} :=
:= E \lambda^{2} + 2F \lambda \mu + G \mu^{2} \quad (6)$$

❖8_____❖

dove $E(u,v) = \langle \partial_u \varphi(q) | \partial_u \varphi(q) \rangle$, $F(u,v) = \langle \partial_u \varphi(q) | \partial_v \varphi(q) \rangle$, $G(u,v) = \langle \partial_v \varphi(q) | \partial_v \varphi(q) \rangle$. Le funzioni (differenziabili al variare di $p \in \varphi(U)$) $E(\cdot), F(\cdot), G(\cdot)$ sono i *coefficienti metrici* della prima forma fondamentale di S. Si osservi che $\mathbf{I}_p(w)$ si può anche esprimere come

$$\left(\lambda \quad \mu \right) \begin{pmatrix} E & F \\ F & G \end{pmatrix} \begin{pmatrix} \lambda \\ \mu \end{pmatrix}.$$
 (7)

Notiamo che la matrice della prima forma fondamentale (che è, per inciso la matrice di Grahm del prodotto scalare canonico nella base naturale di T_pS) è definita positiva grazie alla disuguaglianza di Cauchy-Schwarz.

Lunghezze, Angoli, Aree. La prima forma fondamentale di S permette di calcolare, in modo intrinseco (cioè senza far ricorso ad argomenti coinvolgenti l'immersione di S in \mathbb{R} i3) la lunghezza di curve su S, l'angolo tra due curve su S e di misurare l'area di una regione di S:

• Prendiamo come al solito una parametrizzazione $\varphi \colon U \to S$, e sia $\alpha(t) = \varphi(\bar{\alpha}(t)) \colon [a,b] \to S$ ($\bar{\alpha} = (u(t),v(t))$ è il pull-back di α) una curva differenziabile di estremi p_1, p_2 su S. La lunghezza di α è definita dal funzionale $\mathcal{L} \colon \mathscr{C}^{\infty}(p) \to \mathbb{R}$ ($\mathscr{C}^{\infty}(p)$) è definito informalmente come l'insieme delle curve differenziabili a supporto contenuto in S),

$$\mathcal{L}(\alpha) = \int_{a}^{b} \|\dot{\alpha}(t)\| \, dt;$$

poiché si ha $\dot{\alpha}(t) = \partial_u \varphi \dot{u} + \partial_v \varphi \dot{v}$ abbiamo che

$$\mathcal{L}(\alpha) = \int_{a}^{b} \sqrt{E\dot{u}^2 + 2F\dot{u}\dot{v} + G\dot{v}^2} \,dt.$$
 (8)

• L'angolo ϑ tra due curve regolari in $\mathscr{C}^{\infty}(p)$, $\alpha \colon I \to S$, $\beta \colon J \to S$, che si intersecano in t_0 si definisce intuitivamente come l'angolo formato su T_pS dai rispettivi vettori tangenti:

$$\cos \vartheta = \frac{\left\langle \dot{\alpha}(t_0) \,|\, \dot{\beta}(t_0) \right\rangle_p}{\left\| \dot{\alpha}(t_0) \right\| \left\| \dot{\beta}(t_0) \right\|}$$

http://killingbuddha.altervista.org

in particolare l'angolo tra due curve coordinate di una parametrizzazione locale φ^3 è dato da

$$\cos \vartheta_{c} = \frac{\langle \partial_{u} \varphi \, | \, \partial_{v} \varphi \rangle}{\|\partial_{u} \varphi \| \, \|\partial_{v} \varphi \|} = \frac{F}{\sqrt{EG}}$$

Da ciò segue immediatamente che una superficie ha curve coordinate tra loro ortogonali se e solo se $F \equiv 0$ (ossia se la matrice di \mathbf{I}_p nella base naturale è diagonale).

• Diciamo dominio su S un sottoinsieme D di S aperto e connesso nella topologia indotta, tale che esista un omeomorfismo $h\colon \mathbb{S}^1\to \partial D$, differenziabile almeno a tratti. Se D è un dominio su S, diremo regione di S la chiusura di D, \overline{D} . Siamo ora interessati al calcolo dell'area di una regione di S.

Sia $\varphi \colon U \to S$ una parametrizzazione di $S, R \subset \varphi(U)$ una regione di S. Diciamo $Q = \varphi^{\leftarrow}(R)$: allora l'area di R è data (grazie ad una formula analoga in Analisi Matematica e alla formula del cambio di variabili: l'integrale si suppone alla Lebesgue per evitare fastidi) da

$$\mu(R) := \iint_{\varphi^{\leftarrow}(R)} \|\partial_u \varphi \wedge \partial_v \varphi\| \, du dv \tag{9}$$

e poiché $\|\partial_u \varphi \wedge \partial_v \varphi\|^2 = \|\partial_u \varphi\|^2 \|\partial_v \varphi\|^2 - \langle \partial_u \varphi | \partial_v \varphi \rangle^2$, si ha anche

$$\mu(R) = \iint_{Q} \sqrt{EG - F^2} \, \mathrm{d}u \mathrm{d}v$$

 $^{^3}$ Le curve coordinate sono definite come le curve in $\mathscr{C}^{\infty}(p)$ che hanno per pull-back una delle rette coordinate $u=\cos t$, $v=\cos t$.

◆ 10______

Il calcolo di lunghezze, angoli e aree si risolve dunque completamente $tornando\ indietro\ (pulling-back...)$ all'aperto coordinato che parametrizza S.

Seconda Forma Fondamentale. Sia S una superficie regolare, $\varphi \colon U \to S$ una parametrizzazione locale. Per ogni $p = \varphi(q) \in \varphi(U)$ il vettore

$$N(p) := \frac{\partial_u \varphi \wedge \partial_v \varphi}{\|\partial_u \varphi \wedge \partial_v \varphi\|}$$
(10)

è normale a T_pS e di norma unitaria. Abbiamo allora una mappa differenziabile N: $\varphi(U) \to \mathbb{R}^3$ che associa ad ogni $p \in \varphi(U)$ un versore N(p).

Se la superficie S ammette in ogni punto un campo di versori normali, e se tale campo vettoriale è differenziabile su tutto il dominio, S si dice orientabile. La scelta di una orientazione su S è la scelta di un tale campo differenziabile. Esistono superfici non orientabili: quella di dimensione minima è il nastro di Möbius in \mathbb{R}^3 .

Definizione 1.2 [MAPPA DI GAUSS]: Sia S una superficie dotata dell'orientazione N: quest'applicazione, vista come N: $S \to \mathbb{S}^2$, si dice mappa di Gauss di S.

Il differenziale dN_p di N in $p \in S$ è lineare da T_pS a $T_{N(p)}\mathbb{S}^2 = T_pS$ (visto come piano parallelo), e quindi possiamo pensare che $dN_p \in End(T_pS)$. Si mostra direttamente che dN_p è autoaggiunto: ossia

$$\langle dN_p(x) | y \rangle_p = \langle x | dN_p(y) \rangle_p, \quad \forall x, y \in T_p S$$

Definizione 1.3 [SECONDA FORMA FONDAMENTALE]: La seconda forma fondamentale \mathbf{II}_p in T_pS è definita da

$$\mathbf{II}_{p}(w, w) := -\langle dN_{p}(w) | w \rangle, \qquad \forall w \in T_{p}S$$
(11)

Anche la seconda forma fondamentale di S ha un'espressione in coordinate locali: se φ è una parametrizzazione di S abbiamo

$$\mathbf{II}_{p}(\partial_{u}\varphi, \partial_{u}\varphi) = -\langle \operatorname{dN}_{p}(\partial_{u}\varphi) | \partial_{u}\varphi \rangle = -\langle \partial_{u} \operatorname{N} | \partial_{u}\varphi \rangle = \langle \operatorname{N} | \partial_{uu}\varphi \rangle \\
\mathbf{II}_{p}(\partial_{u}\varphi, \partial_{v}\varphi) = -\langle \operatorname{dN}_{p}(\partial_{u}\varphi) | \partial_{v}\varphi \rangle = -\langle \partial_{u} \operatorname{N} | \partial_{v}\varphi \rangle = \langle \operatorname{N} | \partial_{uv}\varphi \rangle \\
\mathbf{II}_{p}(\partial_{v}\varphi, \partial_{u}\varphi) = -\langle \operatorname{dN}_{p}(\partial_{v}\varphi) | \partial_{v}\varphi \rangle = -\langle \partial_{v} \operatorname{N} | \partial_{v}\varphi \rangle = \langle \operatorname{N} | \partial_{vv}\varphi \rangle$$

<u>11</u> *****

Se allora poniamo $e = \langle N | \partial_{uu} \varphi \rangle$, $f = \langle N | \partial_{uv} \varphi \rangle$, $g = \langle N | \partial_{vv} \varphi \rangle$, otteniamo i coefficienti metrici della seconda forma fondamentale di S (rispetto alla base naturale su $T_p S$).

Particolare importanza acquistano gli invarianti di similitudine di dN_n : definiamo allora

Definizione 1.4 [Curvatura Media, Curvatura Gaussiana]: Sia $p \in S$ superficie regolare, $dN_p : T_pS \to T_pS$ il differenziale della mappa di Gauss. Si definiscono la curvatura gaussiana K e la curvatura media H come

$$K(p) := \det dN_p \qquad H(p) := -\frac{1}{2} \operatorname{tr} dN_p$$

Le curvature di S si scrivono in funzione dei coefficienti metrici della prima e seconda forma fondamentale di S:

$$K = \frac{eg - f^2}{EG - F^2}$$
 $H = \frac{1}{2} \frac{eG - 2fF + Eg}{EG - F^2}$

Si ha però un risultato non banale, dovuto a Gauss:

Teorema 1.1 [EGREGIUM DI GAUSS]: La curvatura gaussiana di S è intrinseca, si esprime cioè in funzione dei coefficienti metrici della sola prima forma fondamentale, e delle loro derivate prime e seconde⁴.

Dimostrazione. Per brevità cominceremo ad indicare $\varphi_w = \partial_w \varphi$. Se S è una superficie liscia con una carta (U, φ) , la terna $\{\varphi_u, \varphi_v, N\}$ è in ogni punto una base di \mathbb{R}^3 : dunque le derivate dei vettori del riferimento si devono poter esprimere come combinazioni lineari dei vettori del riferimento stesso: supponiamo $S \subset \mathbb{R}^3$ e $N = \frac{\varphi_u \times \varphi_v}{\|\varphi_u \times \varphi_v\|}$, e cambiamo notazioni intendendo $(u, v) = (u_1, u_2)$ e con φ_j la derivata rispetto a u_j . Allora devono esistere delle funzioni $\Gamma_{ij}^h, \eta_{ij}, \alpha_{ij} \in \mathcal{C}^{\infty}(U)$ tali che

$$\begin{cases}
\frac{\partial^2 \varphi}{\partial x_i \partial x_j} = \Gamma_{ij}^1 \varphi_1 + \Gamma_{ij}^2 \varphi_2 + \eta_{ij} \mathbf{N} \\
\frac{\partial (\mathbf{N} \circ \varphi)}{\partial x_j} = \alpha_{1j} \varphi_1 + \alpha_{2j} \varphi_2
\end{cases} (\star)$$

⁴Vale la pena di riportare il testo come enunciato dallo stesso Gauss nelle *Disquisitiones generales circa superficies curvas*: "Formula itaque [...] sponte perducit ad egregium theorema: si superficies curva in quamcumque aliam superficiem explicantur, mensura curvaturae in singulis punctis invariata manet."

♦ 12_______

in particolare le α_{ij} devono coincidere con le entrate della matrice dell'applicazione di Weingarten, e le η_{ij} sono i coefficienti della seconda forma fondamentale. Le funzioni $\Gamma_{ij}^k \colon U \to \mathbb{R}$ sono dette coefficienti di Christoffel della carta φ : grazie alla regola di Schwarz per le derivate di ordine superiore al primo ne otteniamo la simmetria rispetto agli indici in basso.

Lemma 1.1 : Sia $S \subset \mathbb{R}^3$ una superficie liscia e sia $\varphi \colon U \to S$ una sua carta. Per ogni i, j = 1, 2 si ha

$$\begin{pmatrix} \Gamma_{ij}^1 \\ \Gamma_{ij}^2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix}^{-1} \begin{pmatrix} \frac{\partial g_{j1}}{\partial u_i} + \frac{\partial g_{i1}}{\partial u_j} - \frac{\partial g_{ij}}{\partial u_1} \\ \frac{\partial g_{j2}}{\partial u_i} + \frac{\partial g_{i2}}{\partial u_i} - \frac{\partial g_{ij}}{\partial u_2} \end{pmatrix}$$

ove con g_{ij} si sono indicate le entrate della prima forma fondamentale: $E = g_{11}, F = g_{12} = g_{21}, G = g_{22}$. Esplicitando queste relazioni con le notazioni di Gauss si ha

$$\begin{pmatrix}
\Gamma_{11}^{1} \\
\Gamma_{21}^{1}
\end{pmatrix} = \begin{pmatrix}
E & F \\
F & G
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{1}{2} \frac{\partial E}{\partial u_{1}} \\
\frac{\partial F}{\partial u_{1}} - \frac{1}{2} \frac{\partial E}{\partial u_{2}}
\end{pmatrix}$$

$$\begin{pmatrix}
\Gamma_{12}^{1} \\
\Gamma_{12}^{2}
\end{pmatrix} = \begin{pmatrix}
E & F \\
F & G
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{1}{2} \frac{\partial E}{\partial u_{2}} \\
\frac{1}{2} \frac{\partial G}{\partial u_{1}}
\end{pmatrix}$$

$$\begin{pmatrix}
\Gamma_{22}^{1} \\
\Gamma_{22}^{2}
\end{pmatrix} = \begin{pmatrix}
E & F \\
F & G
\end{pmatrix}^{-1} \begin{pmatrix}
\frac{\partial F}{\partial u_{2}} - \frac{1}{2} \frac{\partial G}{\partial u_{1}} \\
\frac{1}{2} \frac{\partial G}{\partial u_{2}}
\end{pmatrix}$$
(12)

La dimostrazione si ottiene moltiplicando scalarmente le (\star) per φ_1, φ_2 : ad esempio se fissiamo i = j = 1 otteniamo

$$\begin{cases} E\Gamma_{11}^{1} + F\Gamma_{11}^{2} = \langle \varphi_{11} | \varphi_{1} \rangle = \frac{1}{2} \frac{\partial}{\partial u_{1}} \langle \varphi_{1} | \varphi_{1} \rangle = \frac{1}{2} \frac{\partial E}{\partial u_{1}} \\ F\Gamma_{11}^{1} + G\Gamma_{11}^{2} = \langle \varphi_{11} | \varphi_{2} \rangle = \frac{\partial}{\partial u_{1}} \langle \varphi_{1} | \varphi_{2} \rangle - \langle \varphi_{1} | \varphi_{12} \rangle = \frac{\partial F}{\partial u_{1}} - \frac{1}{2} \frac{\partial E}{\partial u_{2}} \end{cases}$$

In maniera analoga si giunge a determinare le altre.

Corollario. I coefficienti di Christoffel si riescono ad esprimere come quantità relate ai soli coefficienti metrici g_{ij} e alle loro derivate del primo e secondo ordine. Risulta allora immediato che ogni altra quantità che si riesca a scrivere con i soli simboli di Christoffel è intrinseca alla superficie. Proprio questa sarà la strada che seguiremo, mostrando che i coefficienti della seconda forma fondamentale si riescono a scrivere con i coefficienti di Christoffel.

•<u>13</u> ••

Teorema 1.2 [Gauss-Codazzi-Mainardi]: Sia $S \subset \mathbb{R}^3$ una superficie liscia, (U, φ) una sua carta, allora vale

$$\eta_{11}\eta_{22} - \eta_{12}^2 = \sum_{r=1}^2 g_{1r} \left[\frac{\partial \Gamma_{22}^r}{\partial u_1} - \frac{\partial \Gamma_{21}^r}{\partial u_2} + \sum_{m=1}^2 (\Gamma_{22}^m \Gamma_{m1}^r - \Gamma_{21}^m \Gamma_{m2}^r) \right]$$
 (G)

$$\frac{\partial \eta_{12}}{\partial u_1} - \frac{\partial \eta_{11}}{\partial u_2} + \sum_{r=1}^{2} (\Gamma_{12}^r \eta_{r1} - \Gamma_{11}^r \eta_{r2}) = 0$$
 (CM1)

$$\frac{\partial \eta_{22}}{\partial u_1} - \frac{\partial \eta_{21}}{\partial u_2} + \sum_{r=1}^{2} (\Gamma_{22}^r \eta_{r1} - \Gamma_{21}^r \eta_{r2}) = 0$$
 (CM2)

La dimostrazione procede derivando le (\star) rispetto a u_k :

$$\varphi_{ijk} = \frac{\partial \Gamma_{ij}^{1}}{\partial u_k} \varphi_1 + \Gamma_{ij}^{1} \varphi_{1k} + \frac{\partial \Gamma_{ij}^{2}}{\partial u_k} \varphi_2 + \Gamma_{ij}^{2} \varphi_{2k} + \frac{\partial \eta_{ij}}{\partial u_k} \mathbf{N} + \eta_{ij} \mathbf{N}_k$$

che per le stesse (\star) è uguale a

$$\varphi_{ijk} = \frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} \varphi_{1} + \Gamma_{ij}^{1} (\Gamma_{1k}^{1} \varphi_{1} + \Gamma_{1k}^{2} \varphi_{2} + \eta_{1k} N) + \frac{\partial \Gamma_{ij}^{2}}{\partial u_{k}} \varphi_{2} + \Gamma_{ij}^{2} (\Gamma_{1k}^{1} \varphi_{1} + \Gamma_{1k}^{2} \varphi_{2} + \eta_{2k} N) +$$

$$+ \frac{\partial \eta_{ij}}{\partial u_{k}} N - \eta_{ij} (\alpha_{1k} \varphi_{1} + \alpha_{2k} \varphi_{2}) = \left[\frac{\partial \Gamma_{ij}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{1} + \Gamma_{ij}^{2} \Gamma_{2k}^{1} - \eta_{ij} \alpha_{1k} \right] \varphi_{1} +$$

$$+ \left[\frac{\partial \Gamma_{ij}^{1}}{\partial u_{k}} + \Gamma_{ij}^{1} \Gamma_{1k}^{2} + \Gamma_{ij}^{2} \Gamma_{2k}^{2} - \eta_{ij} \alpha_{2k} \right] \varphi_{2} + \left[\Gamma_{ij}^{1} \eta_{1k} + \Gamma_{ij}^{2} \eta_{2k} + \frac{\partial \eta_{ij}}{\partial u_{k}} \right] N$$

ora scambiando j e k otteniamo

$$\varphi_{ikj} = \left[\frac{\partial \Gamma_{ik}}{\partial u_j} + \Gamma_{ik}^1 \Gamma_{1j}^1 + \Gamma_{ik}^2 \Gamma_{2j}^1 - \eta_{ik} \alpha_{1j} \right] \varphi_1 + \left[\frac{\partial \Gamma_{ik}^1}{\partial u_j} + \Gamma_{ik}^1 \Gamma_{1j}^2 + \Gamma_{ik}^2 \Gamma_{2j}^2 - \eta_{ik} \alpha_{2j} \right] \varphi_2 + \left[\Gamma_{ik}^1 \eta_{1j} + \Gamma_{ik}^2 \eta_{2j} + \frac{\partial \eta_{ik}}{\partial u_j} \right] N$$

e invocando il teorema di Schwarz già usato prima, abbiamo che i coefficienti di φ_{ijk} e φ_{ikj} devono essere funzionalmente coincidenti. Ma allora

♦ 14______

otteniamo tre uguaglianze

$$\frac{\partial \Gamma_{ij}}{\partial u_k} + \Gamma_{ij}^1 \Gamma_{1k}^1 + \Gamma_{ij}^2 \Gamma_{2k}^1 - \eta_{ij} \alpha_{1k} = \frac{\partial \Gamma_{ik}}{\partial u_j} + \Gamma_{ik}^1 \Gamma_{1j}^1 + \Gamma_{ik}^2 \Gamma_{2j}^1 - \eta_{ik} \alpha_{1j}
\frac{\partial \Gamma_{ij}^1}{\partial u_k} + \Gamma_{ij}^1 \Gamma_{1k}^2 + \Gamma_{ij}^2 \Gamma_{2k}^2 - \eta_{ij} \alpha_{2k} = \frac{\partial \Gamma_{ik}^1}{\partial u_j} + \Gamma_{ik}^1 \Gamma_{1j}^2 + \Gamma_{ik}^2 \Gamma_{2j}^2 - \eta_{ik} \alpha_{2j}
\frac{\partial \Gamma_{ij}^1}{\partial u_k} + \Gamma_{ij}^1 \Gamma_{1k}^2 + \Gamma_{ij}^2 \Gamma_{2k}^2 - \eta_{ij} \alpha_{2k} = \Gamma_{ik}^1 \eta_{1j} + \Gamma_{ik}^2 \eta_{2j} + \frac{\partial \eta_{ik}}{\partial u_j}$$

riordinando i termini dell'ultima, si ottengono le relazioni di Codazzi-Mainardi scritte in (CM). Le altre due, con manipolazioni simili, porgono

$$\eta_{22}\alpha_{11} - \eta_{12}\alpha_{12} = \frac{\partial \Gamma_{22}^{1}}{\partial u_{1}} - \frac{\partial \Gamma_{21}^{1}}{\partial u_{2}} + \sum_{m=1}^{2} (\Gamma_{22}^{m}\Gamma_{m1}^{1} - \Gamma_{21}^{m}\Gamma_{m2}^{1})$$
$$\eta_{22}\alpha_{21} - \eta_{21}\alpha_{22} = \frac{\partial \Gamma_{22}^{2}}{\partial u_{1}} - \frac{\partial \Gamma_{21}^{2}}{\partial u_{2}} + \sum_{m=1}^{2} (\Gamma_{22}^{m}\Gamma_{m1}^{2} - \Gamma_{21}^{m}\Gamma_{m2}^{2})$$

se ora definiamo

$$T_r = \frac{\partial \Gamma_{22}^r}{\partial u_1} - \frac{\partial \Gamma_{21}^r}{\partial u_2} + \sum_{m=1}^2 (\Gamma_{22}^m \Gamma_{m1}^r - \Gamma_{21}^m \Gamma_{m2}^r)$$

abbiamo la forma matriciale

$$\begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \eta_{22} \\ -\eta_{21} \end{pmatrix} = \begin{pmatrix} T_1 \\ T_2 \end{pmatrix}$$

cioè

$$\begin{pmatrix} \eta_{11} & \eta_{12} \\ \eta_{21} & \eta_{22} \end{pmatrix} \begin{pmatrix} \eta_{22} \\ -\eta_{21} \end{pmatrix} = \begin{pmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \end{pmatrix}$$

ricordando la relazione tra le matrici delle forme fondamentali e quella dell'applicazione di Weingarten. Poi, prendendo la prima entrata, si ottengono le relazioni di (G). A questo punto segue la tesi originaria, perché $K = \frac{\eta_{11}\eta_{22} - \eta_{12}^2}{g_{11}g_{22} - g_{12}^2}$, e il numeratore det $\mathbf{II}\varphi_p$ si può esprimere con i soli coefficienti di Christoffel.

•<u>\$</u>______15 *****

Osservazione (Formula di Brioschi per il calcolo di K). Vale la relazione esplicita

$$K = \frac{1}{(EG - F^{2})^{2}} \left[(F_{uv} - \frac{1}{2}E_{vv} - \frac{1}{2}G_{uu} \det \begin{pmatrix} E & F \\ F & G \end{pmatrix} + \det \begin{pmatrix} 0 & \frac{1}{2}E_{u} & F_{u} - \frac{1}{2}E_{v} \\ F_{v} - \frac{1}{2}G_{u} & E & E \\ \frac{1}{2}G_{v} & F & G \end{pmatrix} - \det \begin{pmatrix} 0 & \frac{1}{2}E_{v} & \frac{1}{2}G_{u} \\ \frac{1}{2}E_{v} & E & F \\ \frac{1}{2}G_{u} & F & G \end{pmatrix} \right]$$
(13)

Dimostrazione. E' un conto diretto (parecchio tedioso).

2 Superfici Astratte

Se $U, V \stackrel{\text{ap}}{\subset} \mathbb{R}^n$ è nota la definizione di applicazione $\mathfrak{C}^k(U, V)$. Sono di facile dimostrazione i risultati seguenti:

- Se $F: U \to \mathbb{R}^m$ è di classe \mathbb{C}^k , ogni sua restrizione a $V \subset U$, $F|_V: V \to \mathbb{R}^m$ resta di classe \mathbb{C}^k . In particolare l'identità di \mathbb{R}^n in sè è di classe \mathbb{C}^{∞} , e dunque tutte le inclusioni $\iota_S: S \subset \mathbb{R}^n$ sono di classe \mathbb{C}^{∞} .
- La composizione di applicazioni $\mathcal{C}^h, \mathcal{C}^k$ è una applicazione di classe $\rho^{\min(h,k)}$

Un diffeomorfismo di classe \mathbb{C}^k è una biiezione $F: U \to V$ ove $U, V \subset \mathbb{R}^n$ tale che sia F sia la sua inversa siano di classe \mathbb{C}^k .

Questa nozione si estende naturalmente al caso in cui $F\colon X\to Y$ sia una generica funzione di insiemi: se $X\subset\mathbb{R}^n$

- $F: X \to \mathbb{R}^m$ si dice *di classe* \mathbb{C}^k se per ogni $x \in X$ esistono un intorno aperto U_x di x e una mappa tra aperti $\phi_x: U_x \to \mathbb{R}^m$ che sia \mathbb{C}^k nel senso usuale.
- se $X, Y \subset \mathbb{R}^m$, $F: X \to Y$ si dice \mathbb{C}^k se la composizione di F con l'inclusione canonica è di classe \mathbb{C}^k nel senso sopra detto.
- $F: X \to Y$ si dirà diffeomorfismo di classe \mathbb{C}^k se è biiettiva e di classe \mathbb{C}^k in entrambi i versi.

◆ 16 _____

• Composizione/restrizione di applicazioni \mathbb{C}^k è \mathbb{C}^k .

Definizione 2.1 [Carta Locale]: $Sia(X, \mathcal{O}_X)$ uno spazio topologico di Hausdorff a base numerabile. Una carta locale o n-sistema di coordinate locali è una coppia (U, ϕ_U) ove U è un aperto di X e ϕ_U è un omeomorfismo da U in un aperto di \mathbb{R}^n . Due carte $(U, \phi_U), (V, \phi_V)$ si dicono differenzialmente \mathbb{C}^k -compatibili se la funzione

$$\phi_V \circ \phi_u^{-1} \colon \phi_U(U \cap V) \to \phi_V(U \cap V)$$

è un diffeomorfismo di classe \mathbb{C}^k .

Le funzioni componenti di una carta $\phi_U(p) = (x^1(p), \dots, x^n(p))$ si dicono coordinate locali in U. Talvolta U si dirà aperto coordinatizzato da ϕ_U .

Osservazione. Ovviamente se due carte sono \mathcal{C}^k -compatibili sono anche \mathcal{C}^h -compatibili per ogni $h \leq k$.

Definizione 2.2 : La funzione $\phi_V \circ \phi_U^{-1}$ si dice mappa di transizione dalle coordinate di U a quelle di V. Quel che si chiede a due carte compatibili è di essere uguali a meno di un diffeomorfismo di classe \mathbb{C}^k .

Definizione 2.3 [ATLANTE]: Un n-atlante differenziabile di classe \mathfrak{C}^k nello spazio topologico X è una famiglia fi n-carte locali $\{(U_\lambda, \phi_\lambda)\}_{\lambda \in \Lambda}$ tale che $\mathfrak{U} = \{U_\lambda\}_{\lambda \in \Lambda}$ sia un ricoprimento di X e che le carte locali siano tutte a due a due differenzialmente \mathfrak{C}^k compatibili.

Definizione 2.4 [Varietà differenziale di classe \mathbb{C}^k]: Una varietà differenziale di classe \mathbb{C}^k è uno spazio topologico di Hausdorff (X, \mathbb{O}_X) a base numerabile dotato di un n-atlante differenziabile di classe \mathbb{C}^k . Si dice anche che tale atlante definisce su X una struttura di varietà differenziabile di classe \mathbb{C}^k .

La dimensione della varietà è la dimensione di un qualunque aperto nel quale una carta mappa aperti della varietà X. Tale nozione è ben posta perché se $(U, \phi), (V, \psi)$ sono due carte la mappa di transizione è un diffeomorfismo tra aperti dello stesso \mathbb{R}^n e dunque conserva la dimensione: la funzione $x \mapsto \dim_x X$ che manda x nella dimensione di X in un intorno di x è costante su ogni componente connessa di X (e dunque su tutto X se ci limitiamo a studiare varietà connesse).

Osservazione. Da ora in poi "differenziabile" e "di classe \mathfrak{C}^{∞} " diventano sinonimi: le diversità col caso \mathfrak{C}^k sono minime, e costituiscono un facile esercizio di interpolazione vigile.

Definizione 2.5 [ATLANTI EQUIVALENTI]: Due atlanti $\{(U_{\lambda}, \phi_{\lambda})\}_{\lambda \in \Lambda}$, $\{(V_{\mu}, \psi_{\mu})\}_{\mu \in M}$ si dicono equivalenti se la loro unione

$$\{(U_{\lambda}, V_{\mu}; \phi_{\lambda}, \psi_{\mu})\}_{(\lambda, \mu) \in \Lambda \times M}$$

è ancora un atlante differenziabile. Equivalentemente due atlanti sono equivalenti se ciascuna carta dell'uno è differenzialmente compatibile con ciascuna carta dell'altro. L'unione di tutti gli n-atlanti equivalenti di una varietà data si dice il suo atlante massimale.

Facciamo alcuni esempi:

- 1. \mathbb{R}^n stesso è una varietà differenziabile di dimensione n: un suo atlante è dato dall'unica carta (\mathbb{R}^n , id).
- 2. Ogni $U \subset \mathbb{R}^n$ è una varietà differenziabile di dimensione n: un suo atlante è dato dall'unica carta (U, ι) , ove ι è l'inclusione canonica id $|_U$.
- 3. Più in generale ogni aperto di X nella topologia indotta dall'ambiente è una varietà differenziabile della stessa dimensione. Se $\{(U_{\lambda},\phi_{\lambda})\}_{\lambda\in\Lambda}$ è un atlante di X, un atlante della sottovarietà $S\subset X$ è dato da

$$\{(U_\lambda\cap S,\phi_\lambda|_{U_\lambda\cap S})\}_{\lambda\in\Lambda_S}$$
 ove $\Lambda_S=\{\lambda\in\Lambda\mid U_\lambda\cap S\neq\varnothing\}.$

4. Ogni sottoinsieme D discreto in uno spazio topologico X è una varietà di dimensione 0, e ha come atlante la famiglia $\{(\{p_i\}, \phi_i)\}_{i \in I}$, ove $\{p_i\}_i$ è una enumerazione degli elementi di D e $\phi_i : \{p_i\} \to \{0\}$ manda p_i in 0.

L'importanza della definizione data è la possibilità di estendere gli strumenti del Calcolo a funzioni tra sottoinsiemi qualunque (purchè abbastanza regolari) dei vari spazi euclidei.

Definizione 2.6 [Varietà Diffeomorfe – Morfismo di Varietà]: Siano X,Y due varietà differenziabile di dimensioni n,m. Una applicazione $F\colon X\to Y$ si dice differenziabile o morfismo di varietà se nel diagramma commutativo

$$\begin{array}{c|c}
\mathbb{R}^n & \xrightarrow{\bullet} & \mathbb{R}^m \\
\phi_{\lambda} & & & & \downarrow \psi_{\mu} \\
X \cap U_{\lambda} & \xrightarrow{F} & Y \cap V_{\mu}
\end{array}$$

l'applicazione $\psi_{\mu} \circ F \circ \phi_{\lambda}^{-1}$ è differenziabile come mappa di aperti usuali. Se tale funzione è un diffeomorfismo, F, F^{-1} sono diffeomorfismi di varietà.

Alcune costruzioni che generalizzano le definizioni appena date:

• Se $\{M_{\beta}\}_{{\beta}\in B}$ è una famiglia di varietà differenziabile, l'unione disgiunta $\coprod_{{\beta}\in B} M_{\beta}$ ha una naturale struttura di varietà differenziabile indotta dall'atlante

$$\mathcal{A} = \bigsqcup_{\beta \in B} A_{\beta}$$

ove gli A_{β} sono atlanti degli M_{β} .

• Se M,N sono varietà differenziabile possiamo porre sul prodotto cartesiano $M \times N$ una naturale struttura di varietà differenziabile. Siano $\{(U_{\lambda},\phi_{\lambda})\}$ e $\{(V_{\mu},\psi_{\mu})\}$ atlanti di M ed N rispettivamente. Allora un atlante di $M \times N$ è definito da

$$\{(U_{\lambda} \times V_{\mu}, \phi_{\lambda} \times \psi_{\mu})\}$$

ove $\phi_{\lambda} \times \psi_{\mu} : U_{\lambda} \times V_{\mu} \to \mathbb{R}^{m+n}$ manda $(p,q) \in U_{\lambda} \times V_{\mu}$ in $\phi_{\lambda}(p), \psi_{\mu}(q)$) (con questa definizione di "prodotto", se $(U', \phi'_{U}), (V'; \psi'_{V})$ sono carte locali su X, Y diverse da $(U, \phi_{U}), (V; \psi_{V})$ esse sono compatibili).

• Sia M una varietà differenziabile, e G un gruppo che agisce su M in modo liscio (cioè per ogni $g \in G$ la mappa $m \mapsto g \star m$ è differenziabile), propriamente discontinuo e senza punti fissi (i.e. per ogni $m \in M$ esiste un intorno aperto A di m tale che $(g \star A) \cap A \neq \emptyset \Longrightarrow g = \mathrm{id}_G$, tale aperto viene detto aperto buono). Allora il quoziente dato dall'insieme delle orbite sotto l'azione di G ha una naturale struttura di varietà differenziabile: un atlante

>_______19 **<-**______

di X = M/G è dato da tutte le carte del tipo $(\pi(U), \phi_U \circ \pi|_U^{-1})$ al variare di U tra gli aperti buoni $(\pi$ è la proiezione sul quoziente).

Per mostrare ciò bisogna mostrare che nel diagramma

l'applicazione $\phi \circ \pi|_U^{-1} \circ \pi|_V \circ \psi^{-1}$. ove $(U,\phi), (V,\psi)$ sono due carte date, è differenziabile. A sua volta ciò equivale a mostrare che $\pi|_U^{-1} \circ \pi|_V$ è differenziabile. Se $u \in U, v \in V$ sono tali che $\pi|_U^{-1} \circ \pi|_V(v) = u$, cioè $\pi|_V(v) = \pi|_U(u)$, allora $u \in [v]$, cioè esiste $g \in G$ tale che $u = g \star v$. Per continuità dell'azione di gruppo esiste tutto un intorno W di v tale che $g \star W \subset U$, e $\pi|_U^{-1} \circ \pi|_V(W) \subseteq U$. Per ogni altro $w \in W$ si ha $\pi(g \star w) = \pi(w) = \pi|_U(\pi|_U^{-1} \circ \pi|_V(w))$, ed essendo $\pi|_U$ biiettiva, in particolare iniettiva, su W si ha $\pi|_U^{-1} \circ \pi|_V \equiv g \star \#$, moltiplicazione per g, liscia per ipotesi.

Definizione 2.7 [SUPERFICIE]: Uno spazio topologico X tale che per ogni $x \in X$ esiste $U \subset X$, intorno di x che sia omeomorfo a un aperto di \mathbb{R}^2 si dice superficie.

Definizione 2.8: $S \subset \mathbb{R}^n$ si dice superficie se per ogni $p \in S$ esistono $U \subset \mathbb{R}^2$, $V \subset \mathbb{R}^n$ e un omeomorfismo $f: U \to S \cap V$. L'applicazione f si dice carta locale o parametrizzazione di S.

La definizione di atlante è la stessa: una famiglia di carte $\{(U_{\lambda}, f_{\lambda})\}_{{\lambda} \in \Lambda}$ tale che $\mathfrak{U} = \{U_{\lambda}\}_{{\lambda} \in \Lambda}$ sia un ricoprimento aperto di S e tale che tutte le carte siano a due a due differenzialmente compatibili (cioè

$$f_{\mu}^{-1} \circ f_{\lambda} \colon f_{\lambda}(U_{\lambda} \cap U_{\mu}) \to f_{\mu}(U_{\lambda} \cap U_{\mu})$$

è un diffeomorfismo.

Alcuni esempi geometrici

1. Un piano affine $\sigma \subset \mathbb{R}^3$ è generato da due vettori linearmente indipendenti \mathbf{a} , \mathbf{b} , che possiamo senza perdita di generalità supporre ortogonali e di norma unitaria, e passa per un dato punto p_0 . Allora σ si parametrizza con un'unica carta (\mathbb{R}^2 , f), ove

$$f: (u,v) \longmapsto p_0 + u\mathbf{a} + v\mathbf{b}$$

l'inversa si scrive facilmente come $g: p \longmapsto ((p-p_0) \cdot \mathbf{a}, (p-p_0) \cdot \mathbf{b})$. Inoltre f, g sono continue, dunque omeomorfismi.

Osservazione. Componendo queste stesse mappe con l'inclusione canonica, si trova che ogni $U\subset\sigma$ è una superficie omeomorfa al piano su cui vive.

- 2. La sfera $\mathbb{S}^2 = \{ \mathbf{x} \in \mathbb{R}^3 \mid \mathbf{x} \cdot \mathbf{x} = 1 \}$. Ne offriamo diverse parametrizzazioni:
 - Parametrizzazione geografica: presi due angoli (ϕ, ϑ) (longitudine e latitudine), costruiamo la carta

$$f(\vartheta,\phi) = \begin{pmatrix} \cos\vartheta\cos\phi \\ \cos\vartheta\sin\phi \\ \sin\vartheta \end{pmatrix}$$

che manda diffeomorficamente $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[\times]0,2\pi[$ in $\mathbb{S}^2\setminus\{(x,y,z)\in\mathbb{R}^3\mid x\geq 0,\,y=0\}$. Una seconda carta si ottiene dalla prima con la composizione di due rotazioni (quindi resta diffeomorfismo), una di π attorno all'asse z e una di $\pi/2$ attorno a x:

$$g(\vartheta,\phi) = R_{\pi/2}^x \circ R_{\pi}^z \circ f(\vartheta,\phi) = \begin{pmatrix} -\cos\vartheta\cos\phi \\ -\sin\vartheta \\ -\cos\vartheta\sin\phi \end{pmatrix}$$

- **Parametrizzazione cartesiana** Esplicitando la terza variabile in funzione delle altre due si ha $z = \pm \sqrt{1 x^2 y^2}$, due carte che parametrizzano $\mathbb{S}^2 \setminus \{z = 0\}$: allo stesso modo esplicitando x(y, z) e y(x, z) si ottengono altre 4 carte con cui ricoprire tutta \mathbb{S}^2 .
- Parametrizzazione stereografica: diamo una parametrizzazione per la generica $\mathbb{S}^n \hookrightarrow \mathbb{R}^{n+1}$. L'idea è considerare

 $\mathbb{S}^n \setminus \{N, S\}$, ove $N = \mathbf{e}_{n+1}$, $S = -\mathbf{e}_{n+1}$ sono i due *poli* della sfera, e definire le due funzioni

$$\phi_N \colon \mathbb{S}^n \setminus \{N\} \to \mathbb{R}^n$$

$$\phi_S \colon \mathbb{S}^n \setminus \{S\} \to \mathbb{R}^n \tag{14}$$

definite da $\phi_N(P) = (N \vee P) \cap \{x_{n+1} = 0\}$, $\phi_S(P) = (S \vee P) \cap \{x_{n+1} = 0\}$. Prendiamo ϕ_N : la retta $N \vee P$ è quella di equazione parametrica $(t\mathbf{x}, 1 + t(x_{n+1} - 1))$: deve essere allora $1 + t(x_{n+1} - 1) = 0$, che implica $t = \frac{1}{1 - x_{n+1}}$. Allora

$$\phi_N(\mathbf{x}, x_{n+1}) = \frac{\mathbf{x}}{1 - x_{n+1}} \stackrel{\iota_{\mathbb{R}^{n+1}}}{\longleftrightarrow} \frac{(\mathbf{x}, 0)}{1 - x_{n+1}}$$

le componenti di $\phi_{\ell}(P)$ sono funzioni razionali delle coordinate di (\mathbf{x}, x_{n+1}) , dunque continue nel loro dominio. L'inversa di ϕ_N è la funzione che manda $P' = \mathbf{x}$ in $(N \vee P') \cap \mathbb{S}^2$: si ha

$$N\vee P'=(t\mathbf{x},(1-t))\in\mathbb{S}^2\iff t^2\mathbf{x}\cdot\mathbf{x}-2t+t^2=0$$
cio
è $t=\frac{2}{1+\mathbf{x}\cdot\mathbf{x}}$: allora

$$\phi_N^{-1}(P') = \left(\frac{2\mathbf{x}}{1 + \mathbf{x} \cdot \mathbf{x}}, \frac{\mathbf{x} \cdot \mathbf{x} - 1}{1 + \mathbf{x} \cdot \mathbf{x}}\right)$$

funzione visibilmente differenziabile per ogni $\mathbf{x} \in \mathbb{R}^n$. Si noti che $\phi_N(N) = \infty_n$, nel senso che questa mappa induce una compattificazione (detta di Alexandrov) di \mathbb{R}^n . Considerazioni analoghe portano a scrivere $\phi_S(\mathbf{x}, x_{n+1}) = \frac{\mathbf{x}}{1+x_{n+1}}$ e

$$\phi_S^{-1}(P') = \left(\frac{2\mathbf{x}}{1+\mathbf{x}\cdot\mathbf{x}}, \frac{1-\mathbf{x}\cdot\mathbf{x}}{1+\mathbf{x}\cdot\mathbf{x}}\right)$$

Osservazione. Si possono dare carte geografiche e cartesiane per la sfera $\mathbb{S}^n := \{ \mathbf{x} \in \mathbb{R}^{n+1} \mid \mathbf{x} \cdot \mathbf{x} = 1 \}$?

4

Osservazione (La sfera come superficie di Riemann). Identifichiamo \mathbb{R}^2 e \mathbb{C} con l'isomorfismo usuale $j:(x,y)\mapsto x+iy$. Allora possiamo interpretare le mappe ϕ_N,ϕ_S come applicazioni da $\mathbb{S}^2\setminus\{N\},\mathbb{S}^2\setminus\{S\}$ in \mathbb{C} , ponendo

$$\phi_N(\mathbf{p}) = \frac{p_1}{1 - p_3} + i \frac{p_2}{1 - p_3} \qquad \phi_S(\mathbf{p}) = \frac{p_1}{1 + p_3} + i \frac{p_2}{1 + p_3}$$

Si trova subito che l'inversa di ϕ_N è

$$\phi_N^{-1}(z) = \frac{1}{1+|z|^2} \left(2\operatorname{Re}z, 2\operatorname{Im}z, |z|^2 - 1 \right)$$

e se $\sigma \colon \mathbb{C} \to \mathbb{C}$ è il coniugio, e poniamo $\psi = \sigma \circ \phi_S$ si ha

$$\psi^{-1}(z) = \frac{1}{1 + |z|^2} \left(2\operatorname{Re}z, -2\operatorname{Im}z, 1 - |z|^2 \right)$$

E' allora facile osservare che la composizione $\phi_N \circ \psi^{-1}$ è un biolomorfismo (involutorio) di $\mathbb{C} \setminus \{0\}$ in sè:

$$\Theta(z) = \frac{z}{|z|^2} = \frac{1}{\bar{z}}.$$

Da ciò segue che \mathbb{S}^2 è una varietà complessa di dimensione (complessa) 1, ossia una *superficie di Riemann*: prende il nome di *sfera di Riemann* (la costruzione classica del biolomorfismo si trova, tra le altre in [1]).

Tori reali. Consideriamo l'azione libera e propriamente discontinua, senza punti fissi, di \mathbb{Z}^2 su \mathbb{R}^2 . L'insieme delle orbite rispetto a questa azione può essere dotato della topologia quoziente, di modo che $\pi: \mathbb{R}^2 \to \mathbb{R}^2/\mathbb{Z}^2 =: \mathbb{T}^2$ sia continua.

Notiamo che π è una mappa aperta: se $A \subset \mathbb{R}^2$ è aperto si ha infatti

$$\pi^{\leftarrow}(\pi(A)) = \bigcup_{\zeta \in \mathbb{Z}^2} (\zeta + A)$$

e poichè $\zeta + A$ è aperto per ogni ζ , la tesi segue. Costruiamo ora su \mathbb{T}^2 una struttura di varietà differenziabile reale: sia $\epsilon > 0$ tale che $\|\zeta\| > 2\epsilon$

per ogni $\zeta \in \mathbb{Z}^2 \setminus \{(0,0)\}$. Sia $p \in \mathbb{T}^2$, $p = \pi(x)$ per qualche $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$. Sia poi $D(x,\epsilon)$ il disco aperto di centro x e raggio ϵ .

 $\pi|_{D(x,\epsilon)}$ è iniettiva, continua e aperta, dunque è un omeomorfismo sull'immagine. Se poniamo $U=\pi|_{D(x,\epsilon)}(D(x,\epsilon)), \phi=\pi|_{D(x,\epsilon)}^{-1}$, allora (U,ϕ) è una carta locale attorno a p. Sia ora $p\in U_1\cap U_2, U_1=\pi|_{D(x_1,\epsilon)}(D(x_1,\epsilon)),$ $U_2=\pi|_{D(x_2,\epsilon)}(D(x_2,\epsilon))$. Se poniamo $T(x)=(\phi_2\circ\phi_1^{-1})(x)$, abbiamo $T(x)=\phi_2(\pi(x))$, da cui $\pi(T(x))=\pi(x)$, per ogni $x\in\phi_1(U_1\cap U_2)$. Da ciò segue che

$$T(x) = x + \zeta(x), \qquad \zeta(x) \in \mathbb{Z}^2$$

Ma ora, $\zeta : \phi_1(U_1 \cap U_2) \to \mathbb{Z}^2$ è continua su un discreto, dunque è costante. Pertanto i cambi di coordinate T sono traslazioni, in particolare sono differenziabili.

Osservazione. \mathbb{T}^2 si dice toro reale di dimensione 2. Come mostrare che è compatto?

Germi di funzioni. Sia $\mathcal{C}^{\infty}(p,S)$ l'anello delle funzioni differenziabili in un intorno di $p \in S$. Diciamo che f,g hanno lo stesso germe in p se esiste un intorno V di p dove $f \equiv g$. Questa relazione è un'equivalenza (verifica diretta). Indichiamo con [f] la classe di equivalenza di f in $\mathscr{C}^{\infty}(p) = \mathcal{C}^{\infty}(p,S)/\sim$: è possibile dotare questo quoziente di una naturale struttura di \mathbb{R} -algebra, ponendo

$$[f] + [g] = [f + g]$$

$$\alpha[f] = [\alpha f]$$

$$[f][g] = [fg].$$

Definizione 2.9 [Anello Differenziale, Derivazione]: *Un* anello differenziale (commutativo) è un anello unitario $(R, +, \cdot)$ dotato di una operazione $\partial \colon R \to R$ lineare e Leibniz:

$$\partial(a+b) = \partial(a) + \partial(b)$$
$$\partial(a \cdot b) = \partial(a) \cdot b + a \cdot \partial(b)$$

L'applicazione $\partial \colon R \to R$ si dice R-derivazione.

In quanto segue però una derivazione sarà una applicazione $v: \mathscr{C}^{\infty}(p) \to \mathbb{R}$ che sia lineare e Leibniz (si può aggirare l'ostacolo mostrando che...?).

◆ 24 ______

Se a questo punto definiamo come vettore tangente in p a S una derivazione di $\mathscr{C}^{\infty}(p)$, e con T_pS l'insieme di tutti i vettori tangenti siffatti, T_pS acquista naturalmente struttura di spazio vettoriale, in quanto sottospazio del duale di $\mathscr{C}^{\infty}(p)$.

Notiamo che se $v \in T_pS$ esiste una curva differenziabile con supporto su S tale che $\alpha(t_0) = v$. Allora se poniamo

$$v([f]) := \frac{\mathrm{d}f(\alpha(t))}{\mathrm{d}t}|_{t=t_0}$$

si ottiene effettivamente una \mathbb{R} -derivazione di $\mathscr{C}^{\infty}(p)$.

3 Strutture Riemanniane

Definizione 3.1: Sia S una superficie astratta. Una metrica (o struttura) riemanniana su S è una corrispondenza $p \mapsto \langle \cdot | \cdot \rangle_p$ che associa ad ogni punto $p \in S$ un prodotto scalare su T_pS , che dipende differenziabilmente da p nel senso che segue: se (U, φ) è una carta locale attorno a p e $\partial_1 \varphi|_q, \partial_2 \varphi|_q$ sono i campi coordinati, allora le funzioni

$$g_{ij}(p) = \langle \partial_i \varphi \, | \, \partial_j \varphi \rangle$$

sono differenziabili in U: g (che come notato prima è la matrice di Grahm del prodotto scalare nella base naturale di T_pS , dunque definita positiva in ogni punto di U) è in modo naturale assimilabile a un tensore simmetrico di rango 2, dato che si può scrivere $\mathbf{v} = v_1 \partial_1 \varphi + v_2 \partial_2 \varphi$, $\mathbf{w} = w_1 \partial_1 \varphi + w_2 \partial_2 \varphi$ e

$$g(\mathbf{v}, \mathbf{w})(p) = \sum_{i,j=1}^{2} v_i w_j g_{ij}(p)$$

Una superficie geometrica sarà invece il dato di una superficie astratta S e di una struttura riemanniana su S.

E' chiaro che questa condizione non dipende dalla carta φ . Denoteremo una struttura riemanniana su S con $\langle \cdot | \cdot \rangle$ o indifferentemente con g. Questa nozione permette di definire, analogamente a quanto visto per le superfici reali, la lunghezza di un arco di curva su S e la distanza tra due punti su S (concetto però più delicato).

$$\mathcal{L}(\alpha) = \int_{a}^{b} \sqrt{\langle \dot{\alpha}(t) | \dot{\alpha}(t) \rangle_{\alpha(t)}} \, dt \qquad d \colon S \times S \to \mathbb{R}, \ (p, q) \mapsto \inf_{\alpha \in \Gamma} \mathcal{L}(\alpha)$$

ove Γ è l'insieme degli archi di curva differenziabili almeno a tratti che uniscono p a q.

Definizione 3.2 [ISOMETRIA]: Siano (S_1, g_i) , (S_2, g_2) due superfici geometriche. Un diffeomorfismo $F: S_1 \to S_2$ si dice isometria se vale

$$g_2(dF_p(v), dF_p(w))(F(p)) = g_1(v, w)(p)$$
 (15)

per ogni $v, w \in T_pS$ e per ogni $p \in S_1$. Si dice invece isometria locale in p una $F: S_1 \to S_2$ tale che esiste U intorno di p in S_1 tale che $F: U \to F(U)$ sia un diffeomorfismo che verifica la (15).

Diamo alcuni esempi di superfici geometriche.

• Se S è il piano reale \mathbb{R}^2 , con l'unica carta (\mathbb{R}^2 , id), abbiamo

$$g_{ij}(p) = \langle \partial_i \operatorname{id} | \partial_j \operatorname{id} \rangle = \delta_{ij}$$

 $g(\cdot)$ definisce allora la struttura euclidea standard su \mathbb{R}^2 .

• Sulla sfera \mathbb{S}^2 con le carte stereografiche, chiamiamo $\mathbf{x} = (x_1, x_2)$ le coordinate locali nella carta ϕ_N e $\mathbf{y} = (y_1, y_2)$ quelle nella carta ϕ_S . Definiamo

$$g_{\mathbf{x},11}(p) = \frac{4}{(1+x_1^2+x_2^2)^2} = g_{\mathbf{x},22}(p)$$

$$g_{\mathbf{x},12}(p) = 0 = g_{\mathbf{x},21}(p)$$

$$g_{\mathbf{y},11}(p) = \frac{4}{(1+y_1^2+y_2^2)^2} = g_{\mathbf{y},22}(p)$$

$$g_{\mathbf{y},12}(p) = 0 = g_{\mathbf{y},21}(p)$$

Non è difficile controllare che le $g_{\mathbf{x},ij}, g_{\mathbf{y},hk}$ definiscono una struttura riemanniana su \mathbb{S}^2 : basta notare che lo jacobiano della mappa di transizione $\phi_N \circ \phi_S^{-1}$ è

$$\operatorname{Jac}(\operatorname{d}(\phi_N \circ \phi_S^{-1}))(u, v) = \frac{1}{(u^2 + v^2)^2} \begin{pmatrix} -u^2 + v^2 & -2uv \\ -2uv & u^2 - v^2 \end{pmatrix}$$
(16)

e che tra le $g_{\mathbf{x},hk}, g_{\mathbf{y},ij}$ sussiste la relazione

$$g_{\mathbf{y},ij} = \sum_{h,k=1}^{2} \frac{\partial x_h}{\partial y_i} \frac{\partial x_k}{\partial y_j} g_{\mathbf{x},ij},$$

ossia $g_{\mathbf{y}} = J^t g_{\mathbf{x}} J$, ove $J = \operatorname{Jac}(\operatorname{d}(\phi_N \circ \phi_S^{-1}))$. La metrica così definita su \mathbb{R}^2 si dice stereografica. Essa è dotata di alcune interessanti proprietà geometriche: osserviamo anzitutto che le antimmagini di meridiani sulla sfera sono semirette uscenti dall'origine in \mathbb{R}^2 . E' ragionevole allora che la loro lunghezza, rispetto alla metrica stereografica sul piano sia π . E infatti se $\bar{\alpha}(t) = (at, bt)$ abbiamo

4

$$\mathcal{L}(f(\bar{\alpha}(t))) = \mathcal{L}(\alpha) = \int_0^{+\infty} \sqrt{\mathbf{I}(\dot{\alpha})} \, dt = \int_0^{+\infty} \frac{2}{1+t^2} \, dt = \pi$$

Con un identico ragionamento sui pull-back la lunghezza stereografica dei paralleli parametrizzati da $\beta(t) = f(r\cos t, r\sin t)$ è

$$\mathcal{L}(\beta) = \int_0^{2\pi} \frac{2r}{1+r^2} \, \mathrm{d}t = \frac{4\pi r}{1+r^2}.$$

Il fatto che $\mathcal{L}(\beta) \xrightarrow{r \to \infty} 0$ è in accordo col fatto intuitivo per cui la lunghezza stereografica delle circonferenze, all'aumentare del raggio, diventa sempre più piccola.

Altra proprietà interessante è che la metrica stereografica è conforme (ossia rispetta gli angoli). Ciò segue dal fatto che l'angolo tra due vettori di \mathbb{R} ì2 calcolato rispetto alla metrica euclidea e rispetto alla metrica stereografica è lo stesso.

• (Semipiano di Poincaré – Piano iperbolico). Sia

$$S = \mathbb{R} \times \mathbb{R}_{>0} = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid y > 0 \right\};$$

S è un aperto del piano reale e quindi è banalmente una superficie astratta (con l'unica carta data dall'inclusione canonica). Definiamo

$$g_{11}(x,y) = \frac{1}{y^2} = g_{22}(x,y)$$
$$g_{12} = 0 = g_{21}$$

Le g_{ij} definiscono su S una struttura riemanniana. Denotiamo da ora S con \mathbf{H} (mediante la consuetudine classica). La superficie geometrica (\mathbf{H},g) si dice *semipiano di Poincaré*. Un conto diretto (usando (13)) mostra che $K_{\mathbf{H}}=-1$.

Si è visto che il piano e la sfera hanno una struttura (più o meno nascosta) di superfici di Riemann: possiamo notare infatti che $\mathbf{H} = \{z \in \mathbb{C} \mid \mathrm{Im}z > 0\}$, e pensare \mathbf{H} come aperto di \mathbb{C} , varietà di dimensione complessa 1. Sia ora

$$\Delta = \{ z \in \mathbb{C} \mid |z| < 1 \}$$

il disco di raggio 1 nel piano di Gauss. Definiamo la metrica

$$\tilde{g}(u,v) = \frac{4}{(1-u^2-v^2)^2} \mathbb{I}$$

per ogni $z = u + iv \in \Delta$. La metrica riemanniana così definita prende il nome di *metrica iperbolica*, e la superficie geometrica (Δ, \tilde{g}) si dice disco iperbolico. E' da notare che la mappa

$$f \colon \mathbb{C} \to \mathbb{C} \quad z \mapsto \frac{z-i}{z+i}$$

è un biolomorfismo tra \mathbf{H} e Δ (si mostra anche, direttamente, che $f : (\mathbf{H}, g) \to (\Delta, \tilde{g})$ è una isometria).

Strutture Complesse su Superfici. Definiamo l'operatore di Laplace-Beltrami sulla superficie geometrica (S,g) come l'analogo del laplaciano che già si conosce dalla teoria degli operatori differenziali vettoriali: lì $\Delta f = \operatorname{div}\operatorname{grad} f$, e qui, se f è una funzione differenziabile in un intorno di $p \in S$,

$$\triangle f = \frac{1}{\sqrt{|g|}} \sum_{i,j=1}^{2} \frac{\partial}{\partial x_i} \left(\sqrt{|g|} g^{ij} \frac{\partial f}{\partial x_j} \right), \tag{17}$$

dove $|g|=|\det g|$, e g^{ij} è la componente ij della matrice inversa di g. La condizione di armonicità per f è allora

$$\Delta f = 0 = \frac{\partial}{\partial x_1} \left(\sum_{j=1}^2 g^{1j} \frac{\partial f}{\partial x_j} \right) + \frac{\partial}{\partial x_2} \left(\sum_{j=1}^2 g^{2j} \frac{\partial f}{\partial x_j} \right) = 0 \tag{18}$$

Se poniamo

$$\omega_1 = -\sqrt{|g|} \sum_{j=1}^2 g^{2j} \frac{\partial f}{\partial x_j}$$
 $\omega_2 = \sqrt{|g|} \sum_{j=1}^2 g^{1j} \frac{\partial f}{\partial x_j}$

http://killingbuddha.altervista.org

◆ 28______**◆**

la condizione (18) diventa $\frac{\partial \omega_1}{\partial x_1} - \frac{\partial \omega_1}{\partial x_2} = 0$, che si traduce nella chiusura della forma differenziale $\Omega = \omega_1 dx_1 + \omega_2 dx_2$.

Supponiamo ora di avere una soluzione all'equazione $\triangle f = 0$ in un intorno convesso U di $p \in S$, tale che d $f_p \neq \underline{0}$. Poichè U è convesso e Ω è ivi chiusa, è anche esatta, ossia esiste una h tale che $\Omega = \mathrm{d}h$ su U. Se in

$$\frac{\partial h}{\partial x_1} = -\sqrt{|g|} \sum_{j=1}^2 g^{2j} \frac{\partial f}{\partial x_j} \tag{19}$$

$$\frac{\partial h}{\partial x_2} = \sqrt{|g|} \sum_{j=1}^2 g^{1j} \frac{\partial f}{\partial x_j} \tag{20}$$

esplicitiamo $\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}$ troviamo

$$\frac{\partial f}{\partial x_1} = \sqrt{|g|} \left(g^{22} \frac{\partial h}{\partial x_2} + g^{12} \frac{\partial h}{\partial x_1} \right) \tag{21}$$

$$\frac{\partial f}{\partial x_2} = -\sqrt{|g|} \left(g^{21} \frac{\partial h}{\partial x_2} + g^{11} \frac{\partial h}{\partial x_1} \right) \tag{22}$$

Ora, dalle (19,20) otteniamo

$$\frac{\partial f}{\partial x_1} \frac{\partial h}{\partial x_2} - \frac{\partial f}{\partial x_2} \frac{\partial h}{\partial x_1} = \sqrt{|g|} \sum_{i=1}^2 g^{ij} \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j}$$

Notiamo che $\sum_{i,j=1}^2 g^{ij} \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j}$ è il prodotto scalare indotto da g sul duale del piano tangente a S. Pertanto l'equazione precedente diventa

$$\frac{\partial f}{\partial x_1} \frac{\partial h}{\partial x_2} - \frac{\partial f}{\partial x_2} \frac{\partial h}{\partial x_1} = \sqrt{|g|} \langle df | df \rangle.$$

Allo stesso modo da (21,22) si trovano le

$$\frac{\partial f}{\partial x_1} \frac{\partial h}{\partial x_2} - \frac{\partial f}{\partial x_2} \frac{\partial h}{\partial x_1} = \sqrt{|g|} \langle \mathrm{d}h \, | \, \mathrm{d}h \rangle$$
$$0 = \frac{\partial h}{\partial x_2} \frac{\partial h}{\partial x_1} - \frac{\partial h}{\partial x_1} \frac{\partial h}{\partial x_2} = \sqrt{|g|} \langle \mathrm{d}f \, | \, \mathrm{d}h \rangle$$

Quindi su U si hanno le identità $\langle dh | dh \rangle = \langle df | df \rangle$ e $\langle df | dh \rangle = 0$. Poiché $df_p \neq 0$ possiamo assumere (a meno di restringere U) che df sia diverso da zero su U. Pertanto

$$\langle \mathrm{d}f \, | \, \mathrm{d}f \rangle = \langle \mathrm{d}h \, | \, \mathrm{d}h \rangle > 0, \qquad \langle \mathrm{d}f \, | \, \mathrm{d}h \rangle = 0$$

Poniamo

$$\begin{cases} y_1 = f(x_1, x_2) \\ y_2 = h(x_1, x_2) \end{cases};$$

le (y_1, y_2) definiscono coordinate locali su U, e si dicono coordinate isoterme. Infatti

$$\det\begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} \end{pmatrix} = \det\begin{pmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} \\ \frac{\partial h}{\partial x_1} & \frac{\partial h}{\partial x_2} \end{pmatrix} = \sqrt{|g|} \langle df | df \rangle > 0$$

Come si esprime la metrica g in queste coordinate? Non è difficile trovare che si ha

$$g_{\mathbf{y}}^{11} = \langle \mathrm{d}f \, | \, \mathrm{d}f \rangle = g_{\mathbf{y}}^{22}, \qquad g_{\mathbf{y}}^{12} = g_{\mathbf{y}}^{21} = 0$$

e ricordando che g^{ij} è la componente ij della matrice inversa di g, otteniamo che su U g ha un'espressione del tipo $\lambda(y)\mathbb{I}$, ove $\lambda(y) = \langle df | df \rangle^{-1}$, che è compatibile con il cambio di coordinate: se in U' ci sono coordinate (y'_1, y'_2) si ha

$$g' = \begin{pmatrix} \lambda'(y') & 0 \\ 0 & \lambda'(y') \end{pmatrix} = \begin{pmatrix} \frac{\partial y'_1}{\partial y_1} & \frac{\partial y'_1}{\partial y_2} \\ \frac{\partial y'_2}{\partial y_1} & \frac{\partial y'_2}{\partial y_2} \end{pmatrix}^t \begin{pmatrix} \lambda(y) & 0 \\ 0 & \lambda(y) \end{pmatrix} \begin{pmatrix} \frac{\partial y'_1}{\partial y_1} & \frac{\partial y'_1}{\partial y_2} \\ \frac{\partial y'_2}{\partial y_1} & \frac{\partial y'_2}{\partial y_2} \end{pmatrix} = J^t g J$$

se $J={\rm Jac}\, \tau,$ con τ mappa di transizione tra due carte nell'intersezione dei dominî. Esplicitando le relazioni nascoste nel prodotto di matrici lì sopra si ottiene

$$\left[\left(\frac{\partial y_1'}{\partial y_1} \right)^2 + \left(\frac{\partial y_2'}{\partial y_1} \right)^2 \right] \lambda(y) = \lambda'(y')$$

$$\left[\left(\frac{\partial y_1'}{\partial y_2} \right)^2 + \left(\frac{\partial y_2'}{\partial y_2} \right)^2 \right] \lambda(y) = \lambda'(y')$$

$$\frac{\partial y_1'}{\partial y_1} \frac{\partial y_1'}{\partial y_2} + \frac{\partial y_2'}{\partial y_1} \frac{\partial y_2'}{\partial y_2} = 0$$
(23)

ossia in ogni punto di U deve valere una (e una sola) tra le relazioni seguenti

$$\begin{cases} \frac{\partial y_1'}{\partial y_1} = \frac{\partial y_2'}{\partial y_2} \\ \frac{\partial y_1'}{\partial y_2} = -\frac{\partial y_2'}{\partial y_1} \end{cases} \qquad \begin{cases} \frac{\partial y_1'}{\partial y_1} = -\frac{\partial y_2'}{\partial y_2} \\ \frac{\partial y_1'}{\partial y_2} = \frac{\partial y_2'}{\partial y_1} \end{cases}$$

http://killingbuddha.altervista.org

che sono equivalenti alle relazioni di (anti) olomorfia per τ . Da ultimo, si usa un argomento di connessione per mostrare che in U solo una delle precedenti relazioni può sussistere. In conclusione si ha il

Teorema 3.1 : Ogni punto di una superficie geometrica (S,g) ha un intorno in cui esistono coordinate isoterme. Il legame tra due sistemi di coordinate isoterme su uno stesso intorno è espresso da una funzione olomorfa o antiolomorfa.

Corollario. Su ogni superficie geometrica orientabile (S, g) esiste una struttura di superficie di Riemann (cfr. [4] per una prova).

A Costruzione di $T^{\spadesuit}_{\bullet}(V)$

Nel seguito, ogni spazio vettoriale è di dimensione finita sul (su un) corpo \mathbb{K} . Definiamo come spazio duale di V lo spazio vettoriale delle applicazioni lineari da V su \mathbb{K} : si scrive $V^* := \operatorname{Hom}(V, \mathbb{K})$.

La dimensione (su \mathbb{K}) di V è

$$\dim_{\mathbb{K}} V^* = \dim_{\mathbb{K}} \operatorname{Hom}(V, \mathbb{K}) = \dim_{\mathbb{K}} V \cdot \dim_{\mathbb{K}} \mathbb{K} = \dim_{\mathbb{K}} V$$

Fissata una base $\mathcal{V} = \{v_1, \ldots, v_n\}$ di V, una base di V^* è fatta da $\{v_1^*, \ldots, v_n^*\}$, ove $v_j^* \colon V \to \mathbb{K}$ è definita da $v_j^*(v_i) = \delta_{ij}$, intendendo δ_{ij} come il simbolo di Kronecker.

Lo spazio V è (non canonicamente) isomorfo al suo duale, mediante la mappa che manda $u = \sum_{i=1}^{n} \alpha_i v_i$ in $u^* = \sum_{i=1}^{n} \zeta_i v_i^*$.

Definizione A.1 [APPLICAZIONE BILINEARE]: Siano U, V spazi vettoriali di dimensione finita su \mathbb{K} , in particolare sia $\dim_{\mathbb{K}} U = m, \dim_{\mathbb{K}} V = n$. Una applicazione bilineare tra U e V è una applicazione $g \colon U \times V \to \mathbb{K}$ che sia lineare in ciascuna delle due variabili. L'insieme $\mathrm{Bil}(U \times V, \mathbb{K})$ delle applicazioni bilineari da $U \times V$ in \mathbb{K} è uno spazio vettoriale di dimensione finita su \mathbb{K} e vale

$$\dim_{\mathbb{K}} \operatorname{Bil}(U \times V, \mathbb{K}) = \dim_{\mathbb{K}} U \cdot \dim_{\mathbb{K}} V = mn$$

Una sua base è costituita dall'insieme delle applicazioni ϵ_{ij} definite da

$$\epsilon_{ij}(u_r, v_s) = \begin{cases} 1 & \text{se } (i, j) = (r, s) \\ 0 & \text{altrimenti} \end{cases}$$

Una applicazione bilineare non degenere tra V e il suo duale si dice dualità: l'applicazione bilineare

$$\circ \colon V \times V^* \to \mathbb{K}$$

$$(v, \xi) \longmapsto v \circ \xi = \xi(v) \in \mathbb{K}$$

è non degenere: essa si dice dualità canonica tra $V \in V^*$. Fissato un vettore $v \in V$, essa si "fattorizza" come $\varphi_v = \circ(v, \cdot) \colon V^* \to \mathbb{K}$: è la mappa che manda ξ in $\xi(v)$ per $v \in V$ fissato. In tal modo $\varphi_v \in \text{Hom}(V^*, \mathbb{K}) =: V^{**}$. Gli spazi $V \in V^{**}$ sono allora canonicamente isomorfi mediante la mappa di "valutazione" $\text{ev}_v \colon V \to V^{**}$ che manda v in φ_v .

Osservazione. na data applicazione bilineare g non degenere induce gli isomorfismi di spazi vettoriali

$$\operatorname{Hom}(V, U^*) \cong \operatorname{Bil}(U \times V, \mathbb{K}) \cong \operatorname{Hom}(U, V^*)$$

dati dalle mappe $v \mapsto g(\cdot, v)$ e $u \mapsto g(u, \cdot)$

Dietro queste relazioni così piacevolmente simmetriche si nasconde una struttura molto più generale, chiamata prodotto tensoriale $U\otimes V$ dei due spazi U e V. Di esso esistono varie definizioni, ordinate per generalità e astrattezza crescente.

Definizione A.2 [Prodotto tensoriale di due spazi vettoriali]: Si definisce

- 1. $U \otimes V$ è lo spazio vettoriale una cui base è fatta dalle mn scritture formali $\{u_i \otimes v_j\}_{1 \leq i \leq m}^{1 \leq j \leq n}$.
- 2. $U \otimes V$ è lo spazio vettoriale $\operatorname{Bil}(U \times V, \mathbb{K})^* = \operatorname{Hom}(\operatorname{Bil}(U \times V, \mathbb{K}), \mathbb{K})$. Un elemento di $U \otimes V$ si può allora pensare come un morfismo di spazi vettoriali che manda $\alpha \in \operatorname{Bil}(U \times V, \mathbb{K})$ in $\alpha(u, v)$ per fissati $u, v \in U \times V$. Resta allora definita una mappa

$$\otimes \colon U \times V \to U \otimes V$$
$$(u, v) \mapsto u \otimes v$$

di modo che $(u \otimes v)(\alpha) = \alpha(u, v)$. Tale mappa permette di definire, dualmente, il prodotto di due elementi di U^*, V^* come $\xi \otimes \eta \in \text{Bil}(U \times V, \mathbb{K}) = U^* \otimes V^*$, di modo che $\xi \otimes \eta(u, v) = (\xi \circ u)(\eta \circ v)$

♦ 32______

3. $U \otimes V$ è l'unico spazio vettoriale che soddisfi alla proprietà universale seguente: comunque dati un terzo spazio vettoriale Z di dimensione finita e una applicazione bilineare $g: U \times V \to Z$ esiste un'unica $\phi: U \otimes V \to Z$ lineare, tale che risulti $g = \phi \circ \otimes$. Deve insomma commutare il diagramma

Delle tre definizioni date l'ultima è la più utile perchè permette di mostrare all'istante che valgono le proprietà formali di

- Associatività: $U \otimes (V \otimes W) \cong (U \otimes V) \otimes W$
- Commutatività: $U \otimes V \cong V \otimes U$

Inoltre (fatto implicitamente usato nella seconda definizione), si trova facilmente che $U \otimes V$ e $U^* \otimes V^*$ sono in dualità, i.e. $(U \otimes V)^* \cong U^* \otimes V^*$. Quest'ultimo fatto in particolare si mostra esibendo l'applicazione (bilineare non degenere, la verifica è immediata) definita da $(v \otimes u, v^* \otimes u^*) \mapsto (v \circ v^*)(u \circ u^*)$: notando poi che data una $g \colon V \times U \to Z$ bilineare non degenere l'applicazione $v \mapsto g(v,\cdot)$ mette in isomorfismo $\mathrm{Bil}(V \times U,Z)$ con $\mathrm{Hom}(V,\mathrm{Hom}(U,Z))$, la proprietà universale del prodotto tensoriale si può riscrivere

$$\operatorname{Hom}(V \otimes U, Z) \cong \operatorname{Hom}(V, \operatorname{Hom}(U, Z)) \cong \operatorname{Hom}(U, \operatorname{Hom}(V, Z))$$

Mettendo insieme questi due risultati si ha

$$V^* \otimes U^* \cong \operatorname{Hom}(V \otimes U, \mathbb{K}) \cong \operatorname{Hom}(V, \operatorname{Hom}(U, \mathbb{K})) \cong \operatorname{Hom}(V, U^*)$$

e ponendo U in luogo di U^* si conclude che $V^* \otimes U \cong \text{Hom}(V, U)$.

A $v^* \otimes w$ corrisponde l'applicazione $x \mapsto (v^* \circ x)w$. Questa corrispondenza si estende poi per linearità. Mettendo assieme tutto quanto si mostra l'associatività, di modo che

$$(V \otimes U) \otimes Z \cong \operatorname{Hom}(V^* \otimes U, Z) \cong \operatorname{Hom}(V^*, \operatorname{Hom}(U^*, Z)) \cong$$

$$\cong V \otimes \operatorname{Hom}(U^*, Z) \cong V \otimes (U \otimes Z)$$

>______33 *****

Osservazione. Lo spazio $\operatorname{Bil}(V_1 \times V_2, Z)$ coincide con $\operatorname{Hom}(V_1 \otimes V_2, Z)$, così come lo spazio delle applicazioni r-lineari da $V_1 \times \ldots V_r$ su Z coincide con $\operatorname{Hom}(V_1 \otimes \cdots \otimes V_r, Z)$: la prova si fa per induzione.

La trattazione diventa interessante nel caso particolare in cui U=V: in tal caso possiamo costruire la successione di spazi $\{V^{\otimes j}\}_{j\in\mathbb{N}}$ e $\{V^{*\otimes j}\}_{j\in\mathbb{N}}$: $\begin{cases} V^{\otimes j}:=V\otimes\cdots\otimes V & j\text{volte}\\ V^{*\otimes j}:=V^*\otimes\cdots\otimes V^* & j\text{volte} \end{cases}$ e a partire da questi definire

$$T_h(V) := V^{\otimes h}$$
 $T^k(V) := V^{*\otimes k}$ $T^k_h(V) := T_h(V) \otimes T^k(V)$

e la loro somma diretta infinita

$$T_{\bullet}(V) := \bigoplus_{h \in \mathbb{N}} T_h(V) \qquad T^{\bullet}(V) := \bigoplus_{k \in \mathbb{N}} T^k(V) \qquad T(V) := \bigoplus_{(h,k) \in \mathbb{N} \times \mathbb{N}} T_h^k(V)$$

Notiamo alcune cose:

- $\dim_{\mathbb{K}} T(V) = \infty$, dato the $\dim_{\mathbb{K}} T_h^k(V) = (\dim_{\mathbb{K}} V)^{h+k}$, successione divergente non appena $\dim_{\mathbb{K}} V > 0$.
- Resta definita una operazione binaria in T(V), tra elementi dei vari $T^k(V)$, $T_h(V)$:

$$\otimes : T^{i}(V) \times T^{j}(V) \to T^{i+j}(V)$$

 $(\alpha, \beta) \mapsto \alpha \otimes \beta$

Ora $(T(V), \otimes)$ è un'algebra associativa su \mathbb{K} : essa prende il nome di algebra tensoriale su V. A questo punto la sua struttura di anello permette di definire molti oggetti già noti come quozienti di T(V) modulo suoi opportuni ideali. Qualche esempio di particolare interesse:

• L'algebra simmetrica (covariante):

$$\bigcirc(V) := T_{\bullet}(V)/\langle v \otimes u - u \otimes v \rangle$$

Non è difficile mostrare che l'algebra simmetrica è isomorfa all'algebra dei polinomi nelle indeterminate $X_1, \ldots, X_{\dim_{\mathbb{K}} V}$; un esempio di questa corrispondenza si nota nel momento in cui a una forma

bilineare $g\colon V\times V\to \mathbb{K}$ corrisponde un polinomio (omogeneo) di secondo grado nelle variabili $X_1,\ldots,X_{\dim_{\mathbb{K}}V}$. Non è difficile definire un operazione di simmetrizzazione di modo che il prodotto simmetrico di una k-upla di vettori sia

$$v_1 \odot \cdots \odot v_k = \frac{1}{k!} \sum_{\sigma \in \mathfrak{S}(n)} v_{\sigma(1)} \otimes \cdots \otimes v_{\sigma(k)}$$

 $(\mathfrak{S}(n))$ è il gruppo delle permutazioni di n oggetti).

• L'algebra antisimmetrica (o esterna, di cui dopo segue una costruzione alternativa più "analitica"):

$$\bigwedge(V) := T_{\bullet}(V) / \langle v \otimes v \rangle$$

Tale spazio è sempre di dimensione finita, e precisamente $\dim_{\mathbb{K}} \bigwedge_k (V) = \binom{n}{k}$, ove $n = \dim_{\mathbb{K}} V$. In particolare la dimensione è 0 non appena k > n.

L'algebra simmetrica $\Lambda(V)$ può anche essere definita come spazio vettoriale delle forme r-lineari alternanti da $V \times \cdots \times V$ su \mathbb{K} . Se A è un insieme, indichiamo come di consueto con $A \times \cdots \times A = A^k$ il prodotto cartesiano di k copie di A. Ora, dati una qualunque applicazione $f \colon A^k \to B$, un elemento $\underline{x} = (x_1, \dots, x_n) \in A^n \ (k \leq n)$ e una funzione $I \colon \{1, \dots, k\} \to \{1, \dots, n\}$, scriviamo $f(\underline{x}_I)$ per indicare $f(x_{I(1)}, \dots x_{I(k)})$: chiameremo la funzione $I(\cdot)$ un multiindice di ordine k. Elenchiamo alcune proprietà dei multiindici:

• Anzitutto, se k = n ed I è biiettiva, essa coincide con una permutazione $\sigma \in \mathfrak{S}(n)$, insieme che è un gruppo rispetto all'operazione di composizione, e sugli elementi del quale resta definito un epimorfismo di gruppi detto parità:

$$\operatorname{sgn}: \mathfrak{S}(n) \to \{\pm 1\}$$
$$\operatorname{sgn}(\sigma) := \prod_{i < j} \frac{\sigma(i) - \sigma(j)}{i - j}$$

• Dati due numeri naturali $k \leq n$ indichiamo con \mathcal{I}_n^k l'insieme delle funzioni strettamente crescenti $I \colon \{1, \dots, k\} \to \{1, \dots, n\}$: se $k \leq n$

<u>35</u> ◆

 $n \leq r, \ I \in \mathcal{I}_n^k, \ J \in \mathcal{I}_r^n$ la funzione composta $J \circ I$ appartiene a \mathcal{I}_r^k , se poi I, J sono due generici multiindici (non necessariamente crescenti), definiamo il loro vee

$$I \vee J \colon \{1, \dots, h+k\} \to \{1, \dots, n\}$$
$$I \vee J(x) = \begin{cases} I(x) & \text{se} 1 \le x \le h \\ J(x-h) & \text{se} h+1 \le x \le h+k \end{cases}$$

• In particolare se $I \in \mathcal{I}_{h+k}^h$ e $J \in \mathcal{I}_{h+k}^k$ sono tali che im $I \cap \text{im } J = \emptyset$, il loro vee sta in $\mathfrak{S}(h+k)$ e possiamo calcolarne la parità: avremo in particolare una proprietà di antisimmetria, sgn $(I \vee J) = (-)^{hk} \text{sgn } (J \vee I)$ e date $I \in \mathcal{I}_{h+k}^h$, $J \in \mathcal{I}_{h+k}^k$, $I' \in \mathcal{I}_{h+k+l}^{h+k}$ e $K \in \mathcal{I}_{h+k+l}^l$, tali che im $I' \cap \text{im } K = \emptyset = \text{im } I \cap \text{im } J$, si ha

$$\mathrm{sgn}\left((I'\circ I)\vee (I'\circ J)\vee K\right)=\mathrm{sgn}\left(I\vee J\right)\mathrm{sgn}\left(I'\vee K\right)$$

• Data poi $I \in \mathcal{I}_{h+k}^h$ esiste una unica funzione $cI \in \mathcal{I}_{h+k}^k$ tale che $i \vee cI \in \mathfrak{S}(h+k)$. La corrispondenza $c: \mathcal{I}_{h+k}^h \to \mathcal{I}_{h+k}^k$ è biunivoca e involutoria (provare).

Definizione A.3 [SPAZIO DELLE k-FORME]: Sia V uno spazio vettoriale reale di dimensione n: per ogni $2 \le k \le n$ indichiamo con $\Lambda^k(V^*)$ l'insieme delle applicazioni k-lineari alternanti $\lambda \colon V^k \to \mathbb{R}$. Chiameremo gli elementi di $\Lambda^k(V^*)$ k-forme alternanti o semplicemente k-forme. Ogni $\Lambda^k(V^*)$ è uno spazio vettoriale su \mathbb{R} , e la sua dimensione è $\binom{n}{k}$: infatti fissata una base di V, $V = \{v_1, \ldots, v_n\}$, un elemento di $\Lambda^k(V^*)$ è univocamente determinato dai valori assunti sulle k-uple $v_I = (v_{I(1)}, \ldots, v_{I(k)})$, al variare di $I \in \mathcal{I}_n^k$.

Definizione A.4 [PRODOTTO ESTERNO DI k-FORME]: Date $\lambda \in \Lambda^h(V^*)$, $\mu \in \Lambda^k(V^*)$, si definisce il loro prodotto esterno ponendo

$$\lambda \wedge \mu(x_1, \dots, x_{h+k}) = \sum_{I \in \mathcal{I}_{h+k}^h} \operatorname{sgn}(I \wedge cI)\lambda(x_I)\mu(x_{cI})$$

Questa operazione gode di alcune proprietà fondamentali:

• Alternanza: $\mu \wedge \lambda = (-)^{hk} \lambda \wedge \mu$;

http://killingbuddha.altervista.org

- Linearità: $(a\lambda + b\mu) \wedge \nu = a(\lambda \wedge \nu) + b(\mu \wedge \nu);$
- Associatività: $(\lambda \wedge \mu) \wedge \nu = \lambda \wedge (\mu \wedge \nu)$.

La (tediosa) prova di questi fatti è lasciata al lettore volenteroso.

A questo punto, presa la base duale $\mathcal{V}^* = \{v_1^*, \dots, v_n^*\}$ di V, denotiamo con v_I^* la k-forma $v_{I(1)}^* \wedge \dots \wedge v_{I(k)}^*$. Si verifica che vale, per ogni k-upla di vettori $\underline{x} = (x_1, \dots, x_k) \in V^k$,

$$v_I^*(\underline{x}) = \sum_{\sigma \in \mathfrak{S}(k)} \operatorname{sgn}(\sigma) \prod_{j=1}^k (v_{I(j)}^* \circ x_{\sigma(j)})$$

Le applicazioni $v_I^* = v_{I(1)}^* \wedge \cdots \wedge v_{I(k)}^*$ formano, al variare di $I \in \mathcal{I}_n^k$, una base di $\Lambda^k(V^*)$.

Possiamo allora definire l'insieme

$$\Lambda(V^*) = \bigoplus_{i=0}^n \Lambda^i(V^*)$$

esso è detto algebra esterna sullo spazio vettoriale V^* : risulta dalla somma diretta delle *i*-esime algebre esterne, al variare di $i=1,\ldots n$. Dotata del prodotto esterno, questa struttura diventa (appunto) un'algebra associativa su \mathbb{R} . Dato l'isomorfismo canonico di bidualità, possiamo considerare anche l'algebra esterna su V, fatta dalle k-forme su V^* . Inoltre possiamo definire una applicazione k-lineare alternante $\pi_k \colon V^k \to \Lambda^k(V)$ che manda (x_1, \ldots, x_k) in $x_1 \wedge \cdots \wedge x_k$. Allora vale la

Proposizione A.1 (Proprietà Universale del prodotto esterno). Sia V uno spazio vettoriale reale di dimensione n, e $1 \le k \le n$. Per ogni spazio vettoriale W, ed ogn applicazione k-lineare alternante $\Delta \colon V^k \to W$ esiste un unico omomorfismo $\phi \colon \Lambda^k(V) \to W$ tale che $\Delta = \phi \circ \pi_k$, ovvero tale che commuti il diagramma

http://killingbuddha.altervista.org

♦_______37 **♦•**

Fissata infatti una base di V, $\mathcal{V} = \{v_1, \ldots, v_n\}$, si pone $\phi(v_{I(1)} \wedge \cdots \wedge v_{I(k)}) = \Delta(v_{I(1)}, \ldots, v_{I(k)})$ al variare del multiindice $I \in \mathcal{I}_n^k$. In tal modo $\Delta \in \phi \circ \pi_k$ coincidono sulle k-uple, dunque coincidono su tutto $V \times \cdots \times V$.

Da ciò discende che il dato di una applicazione k-lineare alternante $\lambda\colon V^k\to W$ è il dato di un omomorfismo di spazi vettoriali $\phi\in \operatorname{Hom}(\Lambda^k(V),W)$: in particolare $\Lambda^k(V^*)=\operatorname{Hom}(\Lambda^k(V),\mathbb{R})$, e quindi esiste una dualità canonica tra $\Lambda^k(V)$ e $\Lambda^k(V^*)$. In tale dualità, se $x_1^*,\ldots x_k^*$ sono vettori di V^* e y_1,\ldots,y_k sono vettori di V si ha

$$(x_1^* \wedge \dots \wedge x_k^*) \circ (y_1 \wedge \dots \wedge y_k) = \sum_{\sigma \in \mathfrak{S}(n)} \operatorname{sgn}(\sigma) \prod_{j=1}^k x_j^* \circ y_{\sigma(j)}$$

In particolare le k-forme $\{v_{I(1)} \wedge \cdots \wedge v_{I(k)}\}_{I \in \mathcal{I}_n^k}$ e $\{v_{I(1)}^* \wedge \cdots \wedge v_{I(k)}^*\}_{I \in \mathcal{I}_n^k}$ sono basi duali al variare di $I \in \mathcal{I}_n^k$. Questo fatto porge un utile criterio di indipendenza lineare: una k-upla di vettori è linearmente indipendente se e solo se la sua k-forma associata $w_1 \wedge \cdots \wedge w_k$ è diversa da zero.

Conseguenza dell'universalità della proprietà del prodotto esterno, è la seguente:

Proposizione A.2. Sia $\phi \in \text{Hom}(V, W)$. Per ogni $k = 0, \dots, v$ esiste un unico omomorfismo $\Lambda^k(V) \to \Lambda^k(W)$ tale che commuti il diagramma

 $(\phi \times \cdots \times \phi)$ è definita da $(v, \dots, v) \mapsto (\phi(v), \dots, \phi(v))$) e l'applicazione $\Lambda^k(\phi) \colon \Lambda(V) \to \Lambda(W)$, ottenuta sommando gli omomorfismi $\Lambda^0(\phi), \dots \Lambda^n(\phi)$ sia un omomorfismo di algebre.

Dimostrazione. Nel caso k=0,1 la tesi è banalmente vera: se $k\geq 2$ l'applicazione composta $V\times \cdots \times V \xrightarrow{\phi\times \cdots \times \phi} W\times \cdots \times W \xrightarrow{\pi_k} \Lambda^k(W)$ è k-lineare ed alternante. Quindi, per la proprietà universale, esiste un unico omomorfismo $\Lambda^k(\phi)$ che rende commutativo il diagramma. \square

◆ 38 ______**◆**

Bibliografia minima

- [1] Rick Miranda, "Algebraic Curves & Riemann's Surfaces", Graduate Studies in Mathematics series, 5, AMS (1995).
- [2] Otto Forster, "Lectures on Riemann's Surfaces", Graduate Texts in Mathematics 82, Springer-Verlag 1981.
- [3] William Boothby, "An introduction to differential manifolds and Riemannian Geometry", Pure and Applied Mathematics 120, 1986.
- [4] Jurgen Jost, "Compact Riemann Surfaces: An Introduction To Contemporary Mathematics", Springer–Verlag.
- [5] John Lee, "Introduction to Smooth Manifolds", Graduate Texts in Mathematics, Springer-Verlag.