Introduction to Information Retrieval

Lecture 9: Index Compression

This lecture

- Collection statistics in more detail
 - How big are the dictionary and postings likely to be, for a given text documents collection?
- Dictionary compression
- Postings compression

Why compression (in general)?

- Use less disk space
 - Saves a little money
- Keep more stuff in memory
 - Increases speed due to caching of more data
- Increase speed of data transfer from disk to memory
 - [read compressed data, decompress] is faster than reading uncompressed data
 - Premise: Decompression algorithms are fast
 - True of the decompression algorithms we use

Why compression for inverted indexes?

- Dictionary
 - Make it small enough to keep in main memory
 - Make it so small that you can keep some postings lists in main memory too
- Postings file(s)
 - Reduce disk space needed
 - Decrease time needed to read postings lists from disk
 - Large search engines keep a significant part of the postings in memory (compression lets you keep more in memory)
- We will devise various IR-specific compression schemes

Sample text collection: Reuters RCV1

symbol	statistic	value
• N	documents	800,000
• L	avg. # tokens per doc	200
M	terms (= word types)	~400,000
•	avg. # bytes per token	6
	(incl. spaces/punct.)	
•	avg. # bytes per token	4.5
	(without spaces/punct.)	
•	avg. # bytes per term	7.5
•	non-positional postings	100,000,000

Observations

- Preprocessing greatly affects the size of dictionary and number of postings
 - Stemming, case folding, stop word removal
- Percentage reduction can be different based on properties of the collections
 - E.g., lemmatizer for French reduces dictionary size much more than Porter stemmer for English

Index parameters vs. what we index

(details in IIR book (Manning et al) Table 5.1)

size of	word types (terms)			non-posit postings		positional postings			
	dictionary			non-position	ndex	positional index			
	Size (K)	Δ %	cumul %	Size (K)	Δ %	cumul %	Size (K)	Δ %	cumul %
Unfiltered	484			109,971			197,879		
No numbers	474	-2	-2	100,680	-8	-8	179,158	-9	-9
Case folding	392	-17	-19	96,969	-3	-12	179,158	0	-9
30 stopwords	391	-0	-19	83,390	-14	-24	121,858	-31	-38
150 stopwords	391	-0	-19	67,002	-30	-39	94,517	-47	-52
stemming	322	-17	-33	63,812	-4	-42	94,517	0	-52

Exercise: give intuitions for all the '0' entries. Why do some zero entries correspond to big deltas in other columns?

Lossless vs. lossy compression

- Lossless compression: All information is preserved.
- Lossy compression: Discard some information
 - Makes sense when the discarded information is unlikely to be ever used by the IR system
- Several of the preprocessing steps can be viewed as lossy compression: case folding, stop words, stemming, number elimination.

Vocabulary vs. collection size

- How big is the term vocabulary?
 - That is, how many distinct words are likely to be present in a corpus / document collection?
- Can we assume an upper bound?
- In practice, the vocabulary will keep growing with the collection size

Vocabulary vs. collection size

- Heaps' law: $M = kT^b$
- M is the size of the vocabulary (# distinct terms)
- T is the total number of tokens in the collection
- Typical values: $30 \le k \le 100$ and $b \approx 0.5$
- In a log-log plot of vocabulary size M vs. T, Heaps' law predicts a line with slope about ½
 - It is the simplest possible relationship between the two in log-log space
 - An empirical finding ("empirical law")

Heaps' Law

For RCV1, the dashed line

 $log_{10}M = 0.49 log_{10}T + 1.64$ is the best least squares fit. Thus, $M = 10^{1.64}T^{0.49}$ so $k = 10^{1.64}T^{0.49}$

Thus, $M = 10^{1.64} I^{0.49}$ so $K = 10^{1.64} \approx 44$ and b = 0.49.

Good empirical fit for Reuters RCV1!

For first 1,000,020 tokens, law predicts 38,323 terms; actually, 38,365 terms

Fig 5.1 in Manning book

Heap's Law suggests that

 The size of the dictionary is quite large for large collections

 The dictionary continues to increase with more documents in the collection, rather than a maximum vocabulary size being reached

Zipf's law

- Heaps' law gives the vocabulary size in collections.
- We also study the relative frequencies of terms.
- In natural language, there are a few very frequent terms and many very rare terms.
- Zipf's law: The i-th most frequent term has frequency proportional to 1/i.
- $cf_i \propto 1/i = K/i$ where K is a normalizing constant
- cf_i is <u>collection frequency</u>: the number of occurrences of the term t_i in the collection.

Zipf's Law consequences

- If the most frequent term (the) occurs cf₁ times
 - then the second most frequent term (of) occurs $cf_1/2$ times
 - the third most frequent term (and) occurs cf₁/3 times ...
- Equivalent: cf_i = K/i where K is a normalizing factor, so
 - $\log \operatorname{cf}_i = \log K \log i$
 - Linear relationship between log cf_i and log i

Another power law relationship

Zipf's law for Reuters RCV1

Compression

- Now, we will consider compressing the space for the dictionary and postings
 - Basic Boolean index only
 - No study of positional indexes, etc.

- We will consider compression schemes
 - Dictionary compression
 - Postings list compression

DICTIONARY COMPRESSION

Why compress the dictionary?

- Search begins with the dictionary
- We want to keep it in memory
- Memory footprint: competition with other applications
- Embedded/mobile devices may have very little memory
- Even if the dictionary isn't in memory, we want it to be small for a fast search startup time
- So, compressing the dictionary is important

Sample text collection: Reuters RCV1

symbol	statistic	value
• N	documents	800,000
• L	avg. # tokens per doc	200
M	terms (= word types)	~400,000
•	avg. # bytes per token	6
	(incl. spaces/punct.)	
•	avg. # bytes per token	4.5
	(without spaces/punct.)	
•	avg. # bytes per term	7.5 ~ 8
•	non-positional postings	100,000,000

Dictionary storage - first cut

- Array of fixed-width entries (e.g., array of structures)
 - ~400,000 terms; 28 bytes/term = 11.2 MB.

Fixed-width terms are wasteful

- Most of the bytes in the **Term** column are wasted we allot 20 bytes even for 1 letter terms.
 - And we still can't handle terms with more than 20 chars

- Written English averages ~4.5 characters/word
- Ave. dictionary word in English: ~8 characters

Compressing the term list: Approach 1: Dictionary-as-a-String

- Store dictionary as a (long) string of characters:
 - Pointer to next word shows end of current word
 - Hope to save up to 60% of dictionary space.

Space for dictionary as a string

- 4 bytes per term for Freq.
- 4 bytes per term for pointer to Postings.
- Now avg. 11 bytes/term, not 20.

- 3 bytes per term pointer
- Avg. 8 bytes per term in term string
- 400K terms x 19 \Rightarrow 7.6 MB (against 11.2MB for fixed width)

Approach 2: Blocking

- Store pointers to every k-th term string
 - Example below: k=4
- Need to store term lengths (1 extra byte)

Blocking

- Group terms into blocks, each having k terms
- Store a term pointer only for first term of each block
- Store the length of each term as one additional byte at the beginning of each term
- Search for terms in the compressed dictionary
 - Locate the term's block by binary search
 - Then locate term's position within the block by linear search within the block
- By increasing block size k: tradeoff between better compression and speed of term lookup

Net saving

- Example for block size k = 4
- Where we used 3 bytes/pointer without blocking
 - 3 x 4 = 12 bytes,

now we use 3 + 4 = 7 bytes.

Saved another \sim 0.5MB. This reduces the size of the dictionary from 7.6 MB to 7.1 MB. We can save more with larger k.

Why not go with larger block size *k*?

Tradeoff around value of *k*

- By increasing block size k
 - Better compression, i.e., less space needed
 - But, more time required for term lookup
- How do we search for a term?
 - In an uncompressed dictionary by binary search
 - In a compressed dictionary locate the term's block by binary search, then find its position within the block by linear search
- Block size k controls the time taken by binary search vs. linear search

Dictionary search without blocking

Assuming each dictionary term equally likely in query (not really so in practice!), average number of comparisons = (1+2·2+4·3+4)/8 ~2.6

Dictionary search with blocking

- Binary search down to 4-term block;
 - Then linear search through terms in block.
- Blocks of 4 (binary tree), avg. = $(1+2\cdot2+2\cdot3+2\cdot4+5)/8 = 3$ compares

Exercise

- Estimate the impact on search performance (and slowdown compared to k=1) with blocking, for block sizes of k=4, 8 and 16.
- If the frequencies of query terms were non-uniform but known, how would you structure the dictionary search tree?

Approach 3: Front coding

- Front-coding:
 - Sorted words commonly have long common prefix store differences only
 - (for last k-1 in a block of k)

8automata8automate9automatic10automation

Begins to resemble general string compression. 31

RCV1 dictionary compression summary

Technique	Size in MB
Fixed width	11.2
Dictionary-as-String with pointers to every term	7.6
Also, blocking $k = 4$	7.1
Also, Blocking + front coding	5.9

POSTINGS COMPRESSION

Postings compression

- The postings file is much larger than the dictionary, factor of at least 10.
- Key desideratum: store each posting compactly.
- A posting for our purposes is a docID.
- For Reuters (800,000 documents), we would use 32 bits per docID when using 4-byte integers.
- Alternatively, we can use log₂ 800,000 ≈ 20 bits per docID.
- Our goal: use far fewer than 20 bits per docID.

Postings: two conflicting forces

- A term like arachnocentric occurs in maybe one doc out of a million – we would like to store this posting using log₂ 1M ~ 20 bits.
- A term like *the* occurs in virtually every doc, so 20 bits/posting is too expensive.

Postings file entry

- We store the list of docs containing a term in increasing order of docID.
 - **computer**: 33,47,154,159,202 ...
- Consequence: it suffices to store gaps.
 - **33,14,107,5,43** ...
- Hope: most gaps can be encoded/stored with far fewer than 20 bits.

Three postings entries

	encoding	postings	list								
THE	docIDs			283042		283043		283044		283045	
	gaps				1		1		1		
COMPUTER	docIDs			283047		283154		283159		283202	
	gaps				107		5		43		
ARACHNOCENTRIC	docIDs	252000		500100							53
	gaps	252000	248100								

Variable length encoding

- Aim:
 - For *arachnocentric*, we will use ~20 bits/gap entry.
 - For *the*, we will use ~1 bit/gap entry.
- If the average gap for a term is G, we want to use $\sim \log_2 G$ bits/gap entry.
- Key challenge: encode every integer (gap) with about as few bits as needed for that integer.
- This requires a variable length encoding
- Variable length codes achieve this by using short codes for small numbers

Variable Byte (VB) codes

- For a gap value G, we want to use close to the fewest bytes needed to hold log₂ G bits
- Begin with one byte to store G and dedicate 1 bit in it to be a continuation bit c
- If $G \le 127$, binary-encode it in the 7 available bits and set c = 1
- Else encode G's lower-order 7 bits and then use additional bytes to encode the higher order bits using the same algorithm
- At the end set the continuation bit of the last byte to 1 (c = 1) and for the other bytes c = 0.

Example (left-most bit is continuation bit)

docIDs	824	829	215406
gaps		5	214577
VB code	00000110 10111000	10000101	00001101 00001100 10110001

Key property: VB-encoded postings are uniquely prefix-decodable.

For a small gap (5), VB uses a whole byte.

Other variable unit codes

- Instead of bytes, we can also use a different "unit of alignment": 32 bits (words), 16 bits, 4 bits (nibbles).
- Variable byte alignment wastes space if you have many small gaps – nibbles do better in such cases.
- Variable byte codes:
 - Used by many commercial/research systems
 - Good low-tech blend of variable-length coding and sensitivity to computer memory alignment matches (vs. bit-level codes, which we look at next).

Variable bit-level codes: Unary code

- Represent n as n 1s with a final 0.
- Unary code for 3 is 1110.
- Unary code for 40 is

Unary code for 80 is:

This doesn't look promising, but....

Gamma codes

- We can compress better with <u>bit-level</u> codes
 - The Gamma code is the best known of these.
- Represent a gap G as a pair length and offset
- offset is G in binary, with the leading bit cut off
 - For example $13 \rightarrow 1101 \rightarrow 101$
- length is the length of offset
 - For 13 (offset 101), this is 3.
- We encode length with unary code: 1110.
- Gamma code of 13 is the concatenation of length and offset: 1110101

Gamma code examples

number	length	offset	γ-code
0			none
1	0		0
2	10	0	10,0
3	10	1	10,1
4	110	00	110,00
9	1110	001	1110,001
13	1110	101	1110,101
24	11110	1000	11110,1000
511	111111110	11111111	11111110,1111111
1025	11111111110	000000001	11111111110,0000000001

Gamma code properties

- G is encoded using $2 \lfloor \log G \rfloor + 1$ bits
 - Length of offset is log G bits
 - Length of length is $\lfloor \log G \rfloor + 1$ bits
- All gamma codes have an odd number of bits
- Almost within a factor of 2 of best possible, log₂ G
- Gamma code is uniquely prefix-decodable, like VB
- Gamma code can be used for any distribution
- Gamma code is parameter-free

RCV1 compression

Data structure	Size in MB
dictionary, fixed-width	11.2
dictionary, term pointers into string	7.6
with blocking, k = 4	7.1
with blocking & front coding	5.9
collection (text, xml markup etc)	3,600.0
collection (text)	960.0
Term-doc incidence matrix	40,000.0
postings, uncompressed (32-bit words)	400.0
postings, uncompressed (20 bits)	250.0
postings, variable byte encoded	116.0
postings, γ–encoded	101.0

Index compression summary

- We can now create an index for highly efficient
 Boolean retrieval that is very space efficient
- Only 4% of the total size of the collection
- Only 10-15% of the total size of the text in the collection
- However, we've ignored positional information
- Hence, space savings are less for indexes used in practice
 - But techniques substantially the same.