

# «Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

# «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

| ФАКУЛЬТЕТ            | ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ |                             |                     |  |
|----------------------|----------------------------------|-----------------------------|---------------------|--|
| КАФЕДРА              | КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ      |                             |                     |  |
|                      |                                  |                             |                     |  |
|                      |                                  |                             |                     |  |
|                      |                                  |                             |                     |  |
|                      |                                  |                             |                     |  |
|                      |                                  |                             |                     |  |
|                      |                                  | ОТЧЕТ                       |                     |  |
|                      | по лабој                         | раторной работе № 2         |                     |  |
|                      |                                  |                             |                     |  |
| Дисциплина: <u>(</u> | Схемотехника                     |                             |                     |  |
|                      |                                  |                             |                     |  |
| Название лаборат     |                                  | и: <u>Проектирование ци</u> | фровых устройств на |  |
|                      | <u>(</u>                         | основе ПЛИС                 |                     |  |
|                      |                                  |                             |                     |  |
|                      |                                  |                             |                     |  |
|                      | I                                | Вариант № 68                |                     |  |
|                      |                                  |                             |                     |  |
| Студент гр. <u>И</u> | <u> ИУ6-53Б</u>                  |                             | В.К. Залыгин        |  |
| •                    |                                  | (Подпись, дата)             | (И.О. Фамилия)      |  |
|                      |                                  |                             |                     |  |
| Преподаватель        |                                  |                             | <u>М. Гейне</u>     |  |

(Подпись, дата)

(И.О. Фамилия)

#### Цель работы

Закрепление на практике теоретических знаний о способах реализации устройств управления, исследование способов организации узлов ЭВМ, освоение принципов проектирования цифровых устройств на основе ПЛИС.

#### Выполнение работы

На рисунке 1 приведена функциональная схема устройства.



Рисунок 1 – Функциональная схема устройства

На рисунке 2 приведена схема переходов автомата.

Домашнее задание по дисциплине "Основы проектирования устройств ЭВМ" Вариант 68

Отладочная плата: Spartan 3 Starter Kit ПЛИС: Xilinx Spartan 3 XC3S200

Разработать устройство управления схемного типа, принимающее входное командное слово U[7:0] и выдающее сигналы управления C[7:0] операционному блоку в соответствии с приведенной ниже диаграммой переходов. Разработать модуль для тестирования работы устройства, покрывающий все переходы. Выполнить моделирование устройства



Рисунок 2 – Схема переходов автомата

Был открыт проект домашнего задания, в него были добавлены модули из первой ЛР. В первой ЛР, файл main.v был изменен.

Листинг 1 – Описание модуля подавления дребезга

```
module main (
     input clk,
     input count,
     input [7:0] U,
     input rst,
     output [3:0] a,
     output [7:0] led,
     output [7:0] C to print,
     output [1:0] state,
     output [2:0] state to print
);
     //cnt -
    wire cnt;
    lab2 example lab2 example inst (
        .clk(clk),
        .rst(rst),
        .count (count),
        .cnt(cnt)
        //.s out(state)
    );
      //reg [7:0] C;
      //wire [2:0] state to print = 3'b000;
      lab3 lab3 inst(
      .clk(clk),
      .rst(rst),
      .en(en),
      .U(U),
      .C(C to print),
      .state(state to print)
      );
     //
     reg [16:0] counter;
     wire counter ovf = (counter == 2**20);
     always @(posedge clk)
          if(rst || counter ovf)
                counter <= 0;</pre>
          else
               counter <= counter + 1;</pre>
      // CNT - CNT ( )
    reg cnt ff;
    wire cnt rise = (cnt==1'b1) && (cnt ff==1'b0);
    always @(posedge clk)
        if(rst)
            cnt ff <= 1'b0;
        else begin
            cnt ff <= cnt;</pre>
```

```
end
    //
      assign en = cnt rise;
    reg [15:0] main counter;
    always @(posedge clk)
        if(rst)
            main counter <= 1'b0;</pre>
        else
            if(cnt rise) begin
                 //main counter <= main counter + 1;</pre>
                           main counter
                                                                       <=
{13'b0000000000000, state to print};
                     end
    /*
             */
    wire [3:0] driver to decoder;
      seven segment driver ssd inst (
        .clk(clk),
        .rst(rst),
        .q(state to print),
        .clk div(counter ovf),
        .d(driver to decoder),
        .a(a)
    );
    led decode led decode inst (
        .dh(driver to decoder),
        .seg data(led)
    );
endmodule
```

### Код теста приведен в листинге 2.

#### Листинг 2 – Код теста

```
`timescale 10ns/lns
module main_tb();
    reg clk=1'b0, count=1'b0, rst=1'b1;
    wire [3:0] a;
    wire [7:0] led;
    wire [1:0] state;
    reg [7:0] U;
    wire [2:0] st_to_p;
    wire [7:0] C_to_p;
    main uut (
        .clk,
        .count,
        .rst,
        .a,
```

```
.C to print(C to p),
     .state,
       .U,
       .state to print(st to p)
);
task click();
    begin
        @(posedge clk) count = #1 1'b1;
        @(posedge clk) count = #1 1'b0;
        @(posedge clk) count = #1 1'b1;
        @(posedge clk) count = #1 1'b0;
        @(posedge clk) count = #1 1'b1;
        @(posedge clk) count = #1 1'b0;
        @(posedge clk) count = #1 1'b1;
        #1000
        @(posedge clk) count = #1 1'b0;
        @(posedge clk) count = #1 1'b1;
        @(posedge clk) count = #1 1'b0;
        @(posedge clk) count = #1 1'b1;
        @(posedge clk) count = #1 1'b0;
        @(posedge clk) count = #1 1'b1;
        @(posedge clk) count = #1 1'b0;
    end
endtask
always #10 clk = \simclk;
initial begin
    #200 \text{ rst} = 1'b0;
           #1000;
           U = 'b00000001; // N0 -> N0
           click;
           U = 'b000000000; // NO -> N2
           click;
           U = 'b10001100; // N2 -> N2
           click;
           U = 'b01000110; // N2 -> N1
           click;
           U = 'b00010000; // N1 -> N1
           click:
           U = 'b000000000; // N1 -> N3
           U = 'b00010000; // N3 -> N3
           click;
           U = 'b00110110; // N3 -> N4
           click;
           U = b00010000; // N4 -> N5 ??
           click;
           U = 'b00000000; // N5 -> N5
           click;
           U = b00001000; // N5 -> N0
           click;
```

\$finish;
end
endmodule

После создания распиновки и заливки проекта на ПЛИС работа была протестирована в соответствии с таблицей переходов из ДЗ. Переходы представлены в таблице 1.

| Таблица 1 | – Таблица | переходов |
|-----------|-----------|-----------|
|-----------|-----------|-----------|

| Дуга                  | U <sub>2</sub> [7:0] | $U_{10}$ | $C_2[7:0]$ | $C_{10}$ |
|-----------------------|----------------------|----------|------------|----------|
| $N_0 \rightarrow N_0$ | 0000001              | 1        | 00000000   | 0        |
| $N_0 \rightarrow N_2$ | 00000000             | 0        | 10000011   | 131      |
| $N_2 \rightarrow N_2$ | 10001100             | 140      | 10000100   | 132      |
| $N_2 \rightarrow N_1$ | 01000110             | 6        | 11110101   | 245      |
| $N_1 \rightarrow N_1$ | 00010000             | 16       | 00000000   | 0        |
| $N_1 \rightarrow N_3$ | 00000000             | 0        | 00101000   | 40       |
| $N_3 \rightarrow N_3$ | 00010000             | 16       | 01000000   | 64       |
| $N_3 \rightarrow N_4$ | 00110110             | 54       | 00011100   | 28       |
| $N_4 \rightarrow N_5$ | 00010000             | 16       | 01000110   | 70       |
| $N_5 \rightarrow N_5$ | 00000000             | 0        | 00000000   | 0        |
| $N_5 \rightarrow N_0$ | 00001000             | 8        | 10010101   | 149      |

Результаты тестирования были удовлетворительными – логика работы соответствует предполагаемой. Временная диаграмма представлена на рисунке 3.



Рисунок 3 — Временная диаграмма

Некоторые тесты приведены в таблице 2.

Ы

Таблица 2 – Тестирование макета

| Номер | Ожидаемый результат           | Полученный результат |
|-------|-------------------------------|----------------------|
| теста |                               |                      |
| 1     | Остались в S0 при U =00000001 | Остались в S0        |
| 2     | Перешли в S2 по U=00000000    | Перешли в S2         |
| 3     | Из S2 перешли в S1 по         | перешли в S1         |
|       | U=01000110                    |                      |

## Вывод

В ходе лабораторной работы были закреплены на практике теоретические сведения, полученных при изучении методики проектирования цифровых устройств на основе программируемых логических интегральных схем (ПЛИС).