

15V, 1.5W buck converter based on VIPER26K

Introduction

The STEVAL-VP26K01B is a 15 V - 1.5 W power supply in buck topology featuring the VIPER265KDTR offline high voltage converter, specifically developed for ultra-wide input range solutions.

The evaluation board has the following characteristics:

- Ultra-wide range: 90–600 V_{AC} or 60–870 V_{DC}
- Meets IEC55022 Class B conducted EMI even with a reduced EMI filter, thanks to the frequency jittering feature
- RoHS compliant

Some of the main features of the VIPER265KDTR include:

- 1050 V avalanche rugged Power MOSFET
- Embedded HV start-up
- 60 kHz fixed switching frequency with jittering
- Embedded error amplifier internally referenced to 3.3 V
- · Current mode PWM controller with drain current limit protection for easy compensation
- Several protection mechanisms:
 - delayed overload protection (OLP)
 - open loop failure protection
 - thermal shutdown with hysteresis

All protections are in auto restart mode

Figure 1. STEVAL-VP26K01B evaluation board top and bottom

Table 6. Supply section

		io di Gappi, coccion				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
High voltage st	art-up current source					
V _{VDSS_SU}	Startup breakdown drain- source voltage	$I_D = 1 \text{ mA},$ $V_{COMP} = GND,$ $T_J = 25^{\circ}C$	1.05			kV
V _{HV_START}	Drain-source start voltage		38		60	V
I _{DDch1}	Charging current during startup	V _{DRAIN} = 50 V to 1.05 kV, V _{DD} = 4 V	-0.6		-1.8	mA
I _{DDch2}	Charging current in self- supply	V _{DRAIN} = 50 V to 1.05 kV, V _{DD} = 9 V falling edge	-7		-13	mA
IC supply and consumptions						
V_{DD}	Operating voltage range		11.5		23.5	V
V _{DDclamp}	V _{DD} clamp voltage	I _{DD} = 15 mA	23.5			V
V_{DDon}	V _{DD} start up threshold		12	13	14	V

(T_J = -40 to 125°C, VDD = 14V; unless otherwise specified.)

Table 5. Power section

	Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit.
	V _{BVDSS}	Breakdown voltage	I_D = 1 mA, V_{COMP} = GND, T_J = 25°C	1.05			kV
	I _{DSS}	Drain-source leakage current	$V_{DRAIN} = 1050V,$ $V_{COMP} = GND,$ $T_{J} = 25^{\circ}C$			29	μА
	D	Drain-Source ON state resistance	I _{DRAIN} = 0.2 A; T _J = 25 °C			7	
	R _{DS(on)}		I _{DRAIN} = 0.2 A; T _J = 125 °C			14	Ω

15V-0.1A D3 STTH110A හි ᅾ 82 33K C7 150µF - 25V R5 100k 27k R6 3 5 1mH R7 20 Figure 2. STEVAL-VP26K01B schematic diagram <u>5</u> -||ı· D4 STTH110A GND DRAIN VIPer265KD COMP 680nF 8 15k CONTROL 1.5nF 8 -{|-BAT41ZFILM QQ/ 10uF - 50V 15µF - 500V 15µF - 500V コ 1mH 100nF 5 ∰ D2 1N4007 5 ₹ |

Schematic diagrams

7: