core-periphery structure

introduction to network analysis (ina)

Lovro Šubelj University of Ljubljana spring 2024/25

core-periphery block model

^{*}origin of core-periphery structure in international relations

core-periphery structure

- core/periphery nodes have higher/lower degrees k
- $core/periphery\ nodes$ are on $shorter/longer\ distances\ \ell$
- core/periphery nodes have higher/lower clustering C

core-periphery *stochastic*

- $G(\{C_1, C_2\}, \{p_{11}, p_{12}, p_{22}\})$ stochastic block model [HLL83] — n_i is size of cluster C_i & p_{ij} is link density between C_i and C_j
- density-based core-periphery structure when $p_{11} \gg p_{12} \gg p_{22}$
- lookalike core-periph. when $n_1p_{11}\gg 1$, $n_1p_{12}\ll 1$, $n_2p_{22}\approx 1$

non-corrected block model $p_{11} > p_{12} > p_{22}$

degree-corrected block model $p_{11} \approx p_{22} > p_{12}$

core-periphery discrete/continuos

- discrete core-periphery division $\delta \in \{0,1\}$ [BE00]
 - $-\delta_i=1$ for core nodes i & $\delta_i=0$ for peripheral nodes i

$$\rho_{\{0,1\}} = \sum_{ij} A_{ij} \Delta_{ij} \qquad \Delta_{ij} = \begin{cases} 1 & \text{if } \delta_i = \delta_j = 1 \\ 0 & \text{if } \delta_i = \delta_j = 0 \\ \in [0,1] & \text{if } \delta_i - \delta_j \neq 0 \end{cases}$$

- continuos core-periphery centrality $\delta \in [0, 1]$
 - $-\delta_i \approx 1$ for core nodes $i \& \delta_i \approx 0$ for peripheral nodes i

$$\rho_{[0,1]} = \sum_{ij} A_{ij} \delta_i \delta_j$$

$$\Delta^{1} = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \quad \Delta^{\alpha} = \begin{bmatrix} 0 & 1 & 1 & \alpha & \alpha & \alpha & \alpha \\ 1 & 0 & 1 & \alpha & \alpha & \alpha & \alpha \\ \frac{1}{\alpha} & 1 & 0 & \alpha & \alpha & \alpha & \alpha \\ \alpha & \alpha & \alpha & 0 & 0 & 0 & 0 \\ \alpha & \alpha & \alpha & \alpha & 0 & 0 & 0 & 0 \end{bmatrix} \quad \delta = \begin{bmatrix} 1 \\ 0.8 \\ 0.7 \\ 0.4 \\ 0.2 \\ 0.1 \end{bmatrix}$$

core-periphery *k-cores*

- k-cores are subgraphs of nodes with $\geq k$ neighbors [Sei83] remove nodes with degree < k until no such node remains [BZ11]
- k-shells are nodes of k-cores that are not in k+1-cores
- *k-cores* are *nested* while *k-shells* form *decomposition*

1-cores are connected components w/o isolates & k-cores can be disconnected

core-periphery k^* -core

- Holme's k^* -core maximizes closeness centrality ℓ^{-1} [Hol05]
 - d_{ij} is distance between i and j & ℓ_i is farness centrality of i
 - $-\ell_C^{-1}$ is closeness centrality of cluster C & n_c is size of C

$$\ell_i = \frac{1}{n-1} \sum_{j \neq i} d_{ij}$$

$$\ell_C^{-1} = \left(\frac{1}{n_c} \sum_{i \in C} \ell_i\right)^{-1}$$

- Holme's core-periphery coefficient c_{cp} for k^* -core
 - N is set of *nodes* & N_k are nodes in k-core
 - $-\langle \ldots \rangle_{G'}$ is expectation in random graph G'

$$c_{cp} = \ell_{N_k*}^{-1} / \ell_N^{-1} - \left\langle \ell_{N_k'*}^{-1} / \ell_{N'}^{-1} \right\rangle_{G'}$$

core-periphery *coefficient*

Network		N	M	$c_{ m cp}$
Geographical networks	Interstate highways	935	1315	0.231(1)
	Pipelines	2999	3079	0.180(2)
	Streets, Stockholm	3325	5100	0.255(1)
	Streets, Göteborg	1258	1516	0.040(3)
	Airport	449	2795	0.0523(3)
	Internet	1968(66)	4051(121)	0.045(2)
One-mode projections of	arXiv	48561	287570	-0.08(3)
affiliation networks	Board of directors	6193	43074	-0.037(2)
	Ajou University students	7285(128)	75898(6566)	-0.08(1)
Acquaintance networks	High School friendship	571(43)	1078(85)	0.006(7)
	Prisoners	58	83	-0.043(2)
	Social scientists	34	265(35)	-0.002(4)
Electronic communication	e-mail, Ebel et al.	39592	57703	-0.229(4)
	e-mail, Eckmann et al.	3186	31856	-0.091(2)
	Internet community, nioki.com	49801	239265	-0.014(2)
	Internet community, pussokram.com	28295	115335	-0.183(5)
Reference networks	WWW, nd.edu	325729	1090108	-0.027(3)
	HEP citations	27400	352021	-0.10(1)
Software dependencies	GNU / Linux	504	793	-0.155(1)
Food webs	Little Rock Lake	92	960	0.005(6)
	Ythan Estuary	134	593	-0.020(1)
Neural network	C. elegans	280	1973	0.040(6)
Biochemical networks	Drosophila protein	2915	4121	-0.035(2)
	S. cervisiae protein	3898	7283	-0.249(1)
	S. cervisiae genetic	1503	5043	-0.0646(7)
	Metabolic networks	427(27)	1257(88)	-0.002(6)
	Whole cellular networks	623(32)	1752(103)	-0.004(6)

core-periphery *nestedness*

nested cores & whiskers communities [LLDM09, YL13]

core-periphery references

A.-L. Barabási.

Network Science.

Cambridge University Press, Cambridge, 2016.

Stephen P. Borgatti and Martin G. Everett.

Models of core/periphery structures. Soc. Networks, 21(4):375–395, 2000.

V. Batagelj and M. Zaveršnik.

An O(m) algorithm for cores decomposition of networks.

Adv. Data Anal. Classif., 5(2):129-145, 2011.

Wouter de Nooy, Andrej Mrvar, and Vladimir Batagelj.

Exploratory Social Network Analysis with Pajek: Expanded and Revised Second Edition.

Cambridge University Press, Cambridge, 2011.

David Easley and Jon Kleinberg.

Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge, 2010.

Ernesto Estrada and Philip A. Knight.

A First Course in Network Theory. Oxford University Press, 2015.

P. Erdős and A. Rényi.

On random graphs I. Publ. Math. Debrecen. 6:290-297, 1959.

M. Girvan and M. E. J Newman.

Community structure in social and biological networks. *P. Natl. Acad. Sci. USA*, 99(12):7821–7826, 2002.

core-periphery references

Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt.

Stochastic blockmodels: First steps. Soc. Networks, 5(2):109–137, 1983.

Petter Holme

Core-periphery organization of complex networks.

Phys. Rev. E, 72(4):046111, 2005.

Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney.

Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Math., 6(1):29–123, 2009.

Tilen Marc and Lovro Šubelj.

Convexity in complex networks. Netw. Sci., 6(2):176–203, 2018.

Mark E. J. Newman.

Networks.

Oxford University Press, Oxford, 2nd edition, 2018.

M. E. J Newman and E. A Leicht.

Mixture models and exploratory analysis in networks. P. Natl. Acad. Sci. USA, 104(23):9564–9569, 2007.

Stephen B. Seidman.

Network structure and minimum degree.

Soc. Networks, 5(3):269-287, 1983.

core-periphery *references*

J. Yang and Jure Leskovec.

Overlapping community detection at scale: A nonnegative matrix factorization approach. In Proceedings of the ACM International Conference on Web Search and Data Mining, pages 587–596, Rome, Italy, 2013.