ARQUITECTURAS COGNITIVAS

Luís Morgado
ISEL-ADEETC

SISTEMA AUTÓNOMO INTELIGENTE

AGENTE INTELIGENTE

AUTONOMIA

REACTIVIDADE

PRÓ-ACTIVIDADE

SOCIABILIDADE

FINALIDADE

ARQUITECTURAS DE AGENTE

Três tipos base de arquitecturas

- REACTIVAS (COMPORTAMENTAIS)
 - Ênfase no acoplamento com o ambiente
- DELIBERATIVAS (COGNITIVAS)
 - Ênfase nas **representações internas** do *mundo*
- HÍBRIDAS
 - Integração de abordagens reactivas e deliberativas

ARQUITECTURAS DE AGENTE

FINALIDADE

MODELO REACTIVO

Paradigma Comportamental

Objectivos implícitos

MODELO DELIBERATIVO

Paradigma Cognitivo

MODELO HÍBRIDO

ARQUITECTURAS COGNITIVAS

INTEGRAÇÃO DE NÍVEIS COGNITIVOS

NÍVEL COGNITIVO

TIPO DE PROCESSO

TIPO DE OBJECTIVO

DELIBERATIVO

ADAPTATIVO

REACTIVO

TEMPO E COMPORTAMENTO

PRESENTE

Sistemas reactivos sem estado **Reagir**

PASSADO – PRESENTE

Sistemas reactivos com estado (memória)

Repetir / Evitar

PASSADO – PRESENTE – FUTURO

Sistemas deliberativos (simulação)

Antecipar / Optimizar

TIPOS DE COMPORTAMENTO

SEQUÊNCIAS DE ACTIVAÇÃO FIXA (LOCK-STEP SEQUENCES)

Sequência não variável de acções

REGRAS ESTÍMULO - RESPOSTA (SE - ENTÃO)

 Acções específicas mas variáveis de acordo com a percepção do ambiente

TENTATIVA E ERRO

Repetir o que teve sucesso, cessar o que n\u00e3o teve sucesso

PLANEAMENTO

- Antecipação de consequências das acções
- Simulação interna de situações e acções
- Requer modelo interno

MEMÓRIA E COMPORTAMENTO

MECANISMOS DE MEMÓRIA

environmental **FUNÇÃO / ORGANIZAÇÃO ESCALA TEMPORAL** input sensory registers visual **Transiente Sensorial** auditory haptic short-term store (STS) Memória temporary working memory high-level **Curto-prazo** control processes: response de trabalho cognitive output rehearsal processes coding decision retrieval strategies **Episódica Procedimental** long-term store Longo-prazo (LTS) Semântica Permanent memory store

ARQUITECTURAS COGNITIVAS

NÍVEL REACTIVO

ARQUITECTURA REACTIVA NÍVEL SUB-SIMBÓLICO

ARQUITECTURA DE AGENTES REACTIVOS REACÇÃO

• REGRA ESTÍMULO - RESPOSTA

Numa arquitectura reactiva simples **não são mantidas representações internas** do estado do mundo, as acções são activadas **directamente** em **função das percepções**

MECANISMOS DE REACÇÃO

DETECÇÃO DE ESTÍMULOS POR RECONHECIMENTO DE PADRÕES

TIPOS DE REACÇÃO

REFLEXOS

Respostas descontínuas a estímulos não direccionais

TAXIAS

- Respostas contínuas a estímulos direccionais
- Exemplos:
 - Fototaxia
 - Quimiotaxia

MECANISMOS DE TAXIA

TAXIA POR DIFERENÇA TEMPORAL

[J. Staddon, 2001]

MECANISMOS DE TAXIA

TAXIA POR DIFERENÇA ESPACIAL


```
// Decidir acção
\Delta \epsilon = \epsilon_{\rm esq} - \epsilon_{\rm dir}
IF \Delta \epsilon > 0 THEN
      rodar esq(\Delta \varepsilon)
ELSE IF \Delta\epsilon < 0 THEN
      rodar_dir(-\Delta\epsilon)
ELSE
      avançar()
```


Exemplo: campo mágnético

- Campo de potencial
- Campo de força
 - Vector de acção:
 - **Gradiente** do campo de potencial P(x,y):

$$(\Delta x, \Delta y) = \nabla P(x, y) = \left(\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y}\right)$$

- Informação local detectada através dos sensores
- Comportamento seguir o gradiente

TIPOS DE CAMPOS DE POTENCIAL

Atractivo

Repulsivo

Tangencial

$$V_{direction} = 0^{o}$$

$$V_{direction} = 180^{\circ}$$

Referencial – Direcção da fonte de potencial

INTENSIDADE DE CAMPO

CAMPO COM DECAIMENTO LINEAR

$$V_{magnitude} = \begin{cases} \frac{(D-d)}{D} & \text{for } d \le D \\ 0 & \text{for } d > D \end{cases}$$

Linear Dropoff

CAMPO COM DECAIMENTO EXPONENCIAL

$$V_{magnitude} = \gamma^D, \, \gamma \in [0, 1]$$

Exponential dropoff

[Murphy, 2000]

COMPOSIÇÃO DE ACÇÕES ATRAVÉS DE FUSÃO

OBJECTIVOS

Fontes de potencial atractivo

OBSTÁCULOS

Fontes de potencial repulsivo

Comportamento esperado

Movimentação para um objectivo evitando os obstáculos

Problema

- Óptimos locais
 - Forças atractivas e repulsivas anulam-se
 - Bloqueios

ÓPTIMOS LOCAIS

ÓPTIMOS LOCAIS

- Detecção de óptimos locais
 - Posição
 - Distância
 - Velocidade
- Resolução de óptimos locais
 - Exploração aleatória
 - Mecanismos de Retrocesso
 - Mecanismos de Memória

AGENTES REACTIVOS SEM MEMÓRIA

- Problemas na implementação de comportamentos sem memória
 - Exploração
 - Necessidade de evitar o passado
 - Óptimos locais
 - Por exemplo, comportamento cíclico perante determinadas configurações de alvos e obstáculos
- Necessidade de manutenção de estado

ARQUITECTURA DE AGENTES REACTIVOS

ARQUITECTURA REACTIVA COM MEMÓRIA

AGENTES REACTIVOS COM MEMÓRIA

- Reacções podem envolver não apenas percepções mas também estado interno (memória)
- Manipulação de estado
 - Regras e acções para alteração do estado interno
- Comportamentos com memória

AGENTES REACTIVOS COM ESTADO

Exemplo

Comportamento "Evitar o Passado"

- Representação interna de percepções anteriores
- Geração de forças repulsivas para áreas recentemente visitadas

COORDENAÇÃO DE COMPORTAMENTOS

SELECÇÃO DE ACÇÃO

HIERARQUIA

 Os comportamentos estão organizados numa hierarquia fixa de supressão

SELECÇÃO POR PRIORIDADE

 As respostas são seleccionadas de acordo com uma prioridade associada que varia ao longo da execução

FUSÃO

 As respostas são combinadas numa única resposta por composição (e.g. soma vectorial)

- Comportamentos organizados em camadas (níveis de competência) e responsáveis pela concretização independente de um objectivo
- Resultado do comportamento pode ser a entrada de outro comportamento
- Possibilidade de comportamentos das camadas superiores assumirem o controlo sobre comportamentos das camadas inferiores
- Camadas inferiores **não têm conhecimento** das camadas superiores
 - Hierarquia de comportamentos

- Saídas das camadas inferiores podem ser utilizadas por camadas superiores
- Camadas superiores controlam as camadas inferiores
 - Inibição
 - Desactivação de comunicação entre módulos
 - Supressão
 - Desactivação de comportamento
 - Reinício (Reset)
 - Reposição do estado inicial de um comportamento

MÓDULOS COMPORTAMENTAIS

[Brooks, 1991]

EXEMPLO

Figure 4.6 Level 0 in the subsumption architecture.

EXEMPLO

Figure 4.9 Level 1: wander.

EXEMPLO

Figure 4.11 Level 2: follow corridors.

- Proposta como alternativa a abordagens simbólicas
- Arquitectura definida por conjuntos de comportamentos
- Comportamentos organizados em camadas (níveis de competência)
- Desenvolvimento incremental
- Robustez
- Simplicidade relativa
- Problemas de escala

ARQUITECTURA REACTIVA

VANTAGENS

- Reactividade
 - Resposta rápida a estímulos do ambiente
 - Operação em tempo-real
- Robustez
- Desenvolvimento modular

DESVANTAGENS

- Comportamentos limitados
 - Impossibilidade de planear comportamentos óptimos
- Comportamento condicionado por óptimos locais
- Escalabilidade limitada
 - Desenvolvimento incremental pode levar a grande complexidade
- Forte acoplamento com o ambiente

ARQUITECTURAS COGNITIVAS

INTEGRAÇÃO DE NÍVEIS DE ARQUITECTURA

NÍVEL ADAPTATIVO

ACOPLAMENTO INDIRECTO AO AMBIENTE

- Memórias associativas de carácter valorativo (afectivo), e.g. Q(s,a)
- Mecanismos valorativos de natureza motivacional, e.g. R(s,a,s')
- Operação em modo discreto (representação discreta de estado e acção)
- Comportamento com base em reacções formadas dinamicamente a partir da interacção com o ambiente
- Resposta rápida
- Utilização de modelos para redução do tempo de aprendizagem

LIMITAÇÕES

- Tempo de aprendizagem (dependente da complexidade do ambiente)
- Ausência de pro-actividade
- Complexidade computacional

BIBLIOGRAFIA

[Murphy, 2000]

R. Murphy, An Introduction to AI Robotics, MIT Press, 2000

[Wooldridge, 2002]

M. Wooldridge, An Introduction to Multi-Agent Systems, John Wiley & Sons, 2002

[Pfeifer & Scheier, 2002]

R. Pfeifer, C. Scheier, *Understanding Intelligence*, MIT Press, 2000

[Brooks, 1985]

R. Brooks, A Robust Layered Control System for a Mobile Robot, A. I. Memo 864, MIT Al-Lab, 1985

[Hoagland et al., 2001]

M. Hoagland, B. Dodson, J. Hauck, *Exploring The Way Life Works: The Science of Biology*, Jones & Bartlett Learning, 2001

[J. Staddon, 2001]

J. Staddon, Adaptive Dynamics: The Theoretical Analysis of Behavior, MIT Press, 2001

[Logan, 2001]

B. Logan, Designing Intelligent Agents, School of Computer Science, University of Nottingham, 2001

[Mainzer, 1990]

K. Mainzer, Thinking in Complexity: The Computational Dynamics of Matter, Mind and Mankind (4th ed.), Springer, 2004