Задачи 2 сет, 1.10.2021

- 1. Докажите, что следующие утверждения эквивалентны:
 - а) Квадратная $n \times n$ -матрица A – стохастическая.
 - б) 1. $Af \ge 0$ для всех неотрицательных векторов-столбцов. 2. $A\mathbf{1} = \mathbf{1}$, где $\mathbf{1} = (1, \dots, 1)^t$, а t обозначает транспонирование.
 - в) Если вектор-строка μ распределение, то μA тоже распределение.
- 2. Докажите, что произведение стохастических матриц одинакового размера также является стохастической матрицей.
- 3. Пусть последовательность случайных величин ξ_0, \dots, ξ_T образует МЦ. Всегда ли последовательность ξ_T, \dots, ξ_0 образует МЦ?
- 4. Пусть ξ_0,\dots,ξ_T однородная МЦ с множеством состояний $\{1,2,3\}$, матрицей переходных вероятностей $\Pi=\begin{pmatrix}0&3/4&1/4\\2/3&0&1/3\\1&0&0\end{pmatrix}$ и начальным распределением $p^{(0)}=(1/3,1/6,1/2)$. Найдите а) $p^{(2)}$ б) $\mathbb{P}(\xi_1=3,\xi_3=2)$.
- 5. Метро в городе Марковбурге устроено очень странным образом: там есть m+1 станция, одна из которых называется Центральной. Каждая станция соединена линией с Центральной, но никакие другие станции (отличные от Центральной) не соединены между собой. Прогуливающий школу старшеклассник Вася заходит в метро на станции Центральная и отправляется на любую другую станцию (все они могут быть выбраны с одинаковой вероятностью), гуляет там и возвращается домой поздно вечером, а утром снова переживает аналогичное приключение. При этом выбор станции назначения никак не зависит от того, какие станции Вася посещал в предыдущие дни. Обозначим через ξ_n число посещенных Васей станций за n дней, начиная с нулевого (за исключением центральной) ($\xi_0 = 1$, ξ_1 может оказаться 1 или 2).
 - проверьте, что $\{\xi_n\}$ цепь Маркова для некоторого множества состояний X и найдите ее переходные вероятности.
 - обозначим через τ_m момент, когда Вася посетит все станции метро Марковбурга: $\tau_m = \min\{n: \xi_n = m\}$. Найдите τ_m для m=1 и m=2.
 - Посчитайте математическое ожидание $\mathbb{E}[au_m]$ для произвольного $m\in\mathbb{N}.$