Devoir surveillé n°11

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

Problème 1 –

Partie I – Polynômes de Bernoulli

On admet l'existence et l'unicité d'une suite de polynômes $(B_n)_{n\in\mathbb{N}}$ de $\mathbb{R}[X]$ vérifiant les trois conditions suivantes :

$$B_0 = 1 \qquad \forall n \in \mathbb{N}^*, B'_n = B_{n-1} \qquad \forall n \in \mathbb{N}^*, \int_0^1 B_n(t) dt = 0$$

On pose également $b_n = B_n(0)$ pour tout $n \in \mathbb{N}$.

- **1.** Calculer B_1 et B_2 . En déduire b_1 et b_2 .
- 2. Montrer que pour tout entier $n \ge 2$, $B_n(0) = B_n(1)$.
- 3. On pose pour $n \in \mathbb{N}$, $A_n = (-1)^n B_n (1-X)$. Montrer que la suite $(A_n)_{n \in \mathbb{N}}$ vérifie les trois mêmes conditions que celles définissant la suite $(B_n)_{n \in \mathbb{N}}$. En déduire que pour tout $n \in \mathbb{N}$, $B_n = (-1)^n B_n (1-X)$.
- **4.** Montrer que pour tout $n \in \mathbb{N}^*$, $B_{2n+1}(0) = B_{2n+1}(1) = 0$.
- 5. A l'aide de la formule de Taylor, montrer que pour tout $n \in \mathbb{N}$, $\mathbf{B}_n = \sum_{k=0}^n \frac{b_{n-k}}{k!} \mathbf{X}^k$.
- **6.** En déduire que

$$\forall n \in \mathbb{N}, \ b_{2n+2} = \sum_{k=0}^{2n+2} \frac{b_k}{(2n+2-k)!}$$

puis que

$$\forall n \in \mathbb{N}^*, \ b_{2n} = \frac{1}{(2n+1)!} - 2 \sum_{k=0}^{n-1} \frac{b_{2k}}{(2n+2-2k)!}$$

7. Calculer b_4 .

Partie II - Lemme de Riemann-Lebesgue et noyau de Dirichlet

8. Soit f une fonction de classe \mathscr{C}^1 sur [0,1]. A l'aide d'une intégration par parties, montrer que

$$\lim_{\lambda \to +\infty} \int_0^1 f(t) \sin(\lambda t) = 0$$

- 9. Montrer que $\varphi: t \in]0,1[\mapsto \frac{t(1-t)}{\sin(\pi t)}$ peut se prolonger en une fonction de classe \mathscr{C}^1 sur [0,1].
- **10.** Soit $p \in \mathbb{N}^*$. Montrer que

$$\forall t \in]0,1[, \sum_{k=1}^{p} \cos(2k\pi t) = \frac{\sin((2p+1)\pi t)}{2\sin(\pi t)} - \frac{1}{2}$$

11. Soit $P \in \mathbb{R}[X]$ tel que P(0) = P(1) = 0. Montrer que

$$\lim_{p \to +\infty} \sum_{k=1}^{p} \int_{0}^{1} P(t) \cos(2k\pi t) dt = -\frac{1}{2} \int_{0}^{1} P(t) dt$$

Partie III – Fonction ζ de Riemann

On note pour tout réel $\alpha > 1$, $\zeta(\alpha) = \sum_{k=1}^{+\infty} \frac{1}{k^{\alpha}}$.

On pose pour $(k, n) \in (\mathbb{N}^*)^2$,

$$I_{k,n} = \int_0^1 B_{2n}(t) \cos(2k\pi t) dt$$

- **12.** Calculer $I_{k,1}$.
- **13.** Déterminer une relation entre $I_{k,n}$ et $I_{k,n-1}$ valide pour tout entier $n \ge 2$. En déduire que

$$\forall (k, n) \in (\mathbb{N}^*)^2, \ I_{k,n} = \frac{(-1)^{n-1}}{(2k\pi)^{2n}}$$

14. Montrer que pour tout $n \in \mathbb{N}^*$,

$$\zeta(2n) = \frac{(-1)^{n-1}}{2} \cdot (2\pi)^{2n} b_{2n}$$

15. Calculer $\zeta(2)$ et $\zeta(4)$.

EXERCICE 1.

Soient $(a_n)_{n\geqslant n_0}$ et $(B_n)_{n\geqslant n_0}$ deux suites complexes. On définit alors deux suites $(A_n)_{n\geqslant n_0}$ et $(b_n)_{n\geqslant n_0}$ de la manière suivante :

$$\forall n \ge n_0, A_n = \sum_{k=n_0}^n a_k$$
$$\forall n \ge n_0, b_n = B_{n+1} - B_n$$

- 1. Montrer que $\sum_{k=n_0}^n a_k B_k = A_n B_n \sum_{k=n_0}^{n-1} A_k b_k$ pour tout entier $n \ge n_0$.
- **2.** Dans cette question, on suppose que la suite (A_n) est bornée et que (B_n) est une suite réelle décroissante de limite nulle.

- **a.** Montrer que la série $\sum_{n \ge n_0} b_n$ converge.
- **b.** En déduire que la série $\sum_{n\geqslant n_0}a_n\mathbf{B}_n$ converge.
- c. En déduire en particulier que la série $\sum_{n \ge n_0} (-1)^n \mathbf{B}_n$ converge.
- **3.** Soient $\theta \in \mathbb{R} \setminus 2\pi\mathbb{Z}$ et $\alpha \in \mathbb{R}$.
 - a. Soit $n \in \mathbb{N}^*$. Calculer $\sum_{k=1}^n e^{ik\theta}$. On donnera le résultat sous la forme $re^{i\varphi}$ où $(r,\varphi) \in \mathbb{R}^2$.
 - **b.** Discuter en fonction du réel α la nature de la série $\sum_{n\in\mathbb{N}^*}\frac{e^{ni\theta}}{n^{\alpha}}$. On précisera notamment dans les cas de convergence s'il s'agit ou non de convergence absolue. De même, dans les cas de divergence, on précisera s'il s'agit ou non de divergence grossière.
 - c. En déduire la nature des séries $\sum_{n\in\mathbb{N}^*} \frac{\cos(n\theta)}{n^{\alpha}}$ et $\sum_{n\in\mathbb{N}^*} \frac{\sin(n\theta)}{n^{\alpha}}$.
- **4.** Montrer que si la suite (B_n) converge vers 0, si la suite (A_n) est bornée et si la série $\sum_{n \ge n_0} b_n$ est absolument convergente, alors la série $\sum_{n \ge n_0} a_n B_n$ est convergente.

EXERCICE 2.

Dans tout l'exercice, on considère \mathbb{C} comme un \mathbb{R} -espace vectoriel.

Par ailleurs, on note \mathscr{F} l'ensemble des matrices de $\mathscr{M}_2(\mathbb{R})$ de la forme $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ où $(a,b) \in \mathbb{R}^2$. On note I la matrice identité de $\mathscr{M}_2(\mathbb{R})$.

- 1. Déterminer la dimension de ℂ en tant que ℝ-espace vectoriel. On justifiera sa réponse.
- **2.** Montrer que \mathscr{F} est un sous-espace vectoriel de $\mathscr{M}_2(\mathbb{R})$. Préciser sa dimension.
- 3. On considère l'application

$$\Phi \colon \left\{ \begin{array}{ccc} \mathbb{C} & \longrightarrow & \mathscr{F} \\ & & & \left(\begin{array}{ccc} \operatorname{Re}(z) & -\operatorname{Im}(z) \\ \operatorname{Im}(z) & \operatorname{Re}(z) \end{array} \right) \end{array} \right.$$

Montrer que Φ est un isomorphisme.

- **4.** Montrer que pour tout couple $(z_1, z_2) \in \mathbb{C}^2$, $\Phi(z_1 z_2) = \Phi(z_1)\Phi(z_2)$.
- **5.** En déduire que pour tout $(z, n) \in \mathbb{C} \times \mathbb{N}$, $\Phi(z^n) = \Phi(z)^n$.
- **6.** On pose pour $\theta \in \mathbb{R}$, $R(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. Calculer $\Phi^{-1} \circ R(\theta)$.
- 7. En déduire que pour tout $\theta \in \mathbb{R}$, $R(\theta)$ est inversible et calculer son inverse. On emploiera l'application Φ .
- **8.** Calculer également $R(\theta)^n$ pour tout $n \in \mathbb{Z}$ à l'aide de l'application Φ .

EXERCICE 3.

On pose
$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 et $J = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

- **1.** Calculer J^2 . En déduire J^n pour tout $n \in \mathbb{N}$.
- **2.** Soit $(a, b, n) \in \mathbb{R}^2 \times \mathbb{N}$. On pose

$$S_n = \sum_{0 \le 2k \le n} {n \choose 2k} a^{n-2k} b^{2k}$$

$$T_n = \sum_{0 \le 2k+1 \le n} {n \choose 2k+1} a^{n-2k-1} b^{2k+1}$$

Calculer $S_n + T_n$ et $S_n - T_n$. En déduire S_n et T_n .

3. On pose
$$M = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$$
. Calculer M^n .