Module 3: R

Introduction

Data Sciences Institute, University of Toronto

2022-06-22

Why R?

R is open source and free

R has a community

With R, you can share your data analysis methods in a reproducible way

Packages (more than 18 thousand on CRAN!) extend R's capabilities to provide easy ways to accomplish a wide variety of tasks

R is one of the standard language recommendations for data science

RStudio makes it easier to do more with R

What can you do with R?

Load data

```
## # A tibble: 9,113 × 5
     YEAR BUILT YEAR EVALUATED LONGITUDE LATITUDE SCORE
##
##
          <dbl>
                         <dbl>
                                  <dbl>
                                           <dbl> <dbl>
           1950
                          2021
                                   -79.5
                                            43.7
                                                    64
## 1
           1960
                          2021
                                  -79.5
                                            43.7
                                                    60
##
   3
                          2021
                                  -79.4
                                            43.7
##
           1969
                                                    64
                          2021
                                  -79.5
                                            43.7
##
           1960
                                                    91
   5
##
           1973
                          2021
                                  -79.5
                                            43.7
                                                    91
           1960
                          2021
                                  -79.3
                                            43.7
                                                    88
##
                          2021
                                  -79.5
                                            43.6
##
           1962
                                                    84
                          2021
                                  -79.4
                                            43.7
                                                    83
##
           1993
           1995
                          2021
                                  -79.3
                                            43.7
                                                    89
##
## 10
           1964
                          2021
                                   -79.3
                                            43.7
                                                    74
## # ... with 9,103 more rows
```

Clean data

```
## # A tibble: 9,113 × 5
##
     year built year evaluated longitude latitude score
                         <dbl>
##
          <dbl>
                                   <dbl>
                                            <dbl> <dbl>
           1950
                          2021
                                   -79.5
                                             43.7
                                                     64
##
   1
           1960
                          2021
                                   -79.5
                                             43.7
                                                     60
##
                                   -79.4
   3
           1969
                          2021
                                             43.7
##
                                                     64
           1960
                          2021
                                   -79.5
                                             43.7
                                                     91
##
                                   -79.5
##
   5
           1973
                          2021
                                             43.7
                                                     91
           1960
                          2021
                                   -79.3
                                             43.7
                                                     88
##
           1962
                          2021
                                   -79.5
                                             43.6
##
                                                    84
                                   -79.4
                          2021
                                             43.7
                                                     83
##
           1993
           1995
                          2021
                                   -79.3
                                             43.7
                                                     89
##
## 10
           1964
                          2021
                                   -79.3
                                             43.7
                                                     74
## # ... with 9,103 more rows
```

Manipulate and combine data

```
## # A tibble: 8,291 × 6
     year built property type confirmed units score
##
##
           <dbl> <chr>
                                         <dbl> <dbl> <dbl>
                                            12
                                                  73
                                                      2020
## 1
            1960 PRTVATE
## 2
           1960 PRTVATE
                                            12
                                                  81 2020
## 3
           1962 PRTVATE
                                            10
                                                  73 2020
                                                  81 2020
##
            1968 PRTVATE
                                           174
  5
##
           1965 PRTVATE
                                            27
                                                  73 2020
## 6
            1950 PRIVATE
                                            10
                                                  77 2020
## 7
                                                  82 2020
           1974 TCHC
                                           350
## 8
            1928 PRIVATE
                                            15
                                                  73 2020
                                            32
                                                  74 2020
##
            1938 PRTVATE
## 10
            1958 PRIVATE
                                            55
                                                  72 2020
## # ... with 8,281 more rows, and 1 more variable: count <int>
```

Summarize Data

ward	Count	Average Score	Median Year Built	Median Number of Storeys	Median Number of Units
7	221	69.28507	1967	7	97
2	336	71.46131	1965	7	68
3	597	70.47906	1957	4	32
4	483	68.05797	1960	5	42
5	597	69.00000	1960	4	37
6	581	70.80379	1960	4	39
7	277	68.07942	1970	11	135
8	617	71.26580	1958	4	31
9	210	68.00476	1959	4	27
10	93	74.16129	1987	7	103

Visualize Data

Write Reports

Pa	per title*	
S	Subtitle	
	Author	
	Data	
	Date	
	Abstract	
An abstract		
Contents		
1 Introduction		1
2 Literature review		2
3 Methodology		2
4 Data		2
5 Model		2
Conclusion		2
1 Introduction		
T TILL OUGOVIOII		

Build Interactive Applications

Apartment Evaluation Scores by Building Type and Ward

And more:

- Data collection
- Statistical analysis
- Data modeling
- Presentations
- Websites

Content

Learning Outcomes

By the end of this module, you will be able to:

- Set up and use R and RStudio.
- Manipulate and visualize data.
- Fix errors.
- Understand consent in data-based studies.
- Make presentations and manage projects.

Prerequisite knowledge

- The parts of a data table/spreadsheet
- Basics of file folder structure
- Summary statistics (mean, median, proportion, etc.)
- Basic data visualization types (bar charts, histograms, scatter plots)
- GitHub account

Submodules

- Hello World!
- Errors
- Reproducibility
- Data in R
- Manipulation
- Wrangling
- Programming
- Visualization
- Shiny
- Ethics
- Inequity
- Professional Skills
- Industry Case Study

Key Texts

General reference:

R for Data Science by Wickham and Grolemund (2017) https://r4ds.had.co.nz/index.html

DoSS Toolkit (2021) https://rohanalexander.github.io/doss_toolkit_book/.

For specific topics:

Advanced R 4 Data Programming and the Cloud Using PostgreSQL, AWS, and Shiny by Wiley and Wiley (2020), Chapters 7 and 10

Data Visualization: A Practical Introduction by Healy (2018), Chapter 3

Managing Your Data Science Projects: Learn Salesmanship, Presentation, and Maintenance of Completed Models by de Graaf (2019), Chapters 2 and 6

Mastering Shiny by Wickham (2021) https://mastering-shiny.org/index.html, Chapter 1

Hello World!

(Beginner)

How can we start using R?

Goals:

- a fully-functional R and RStudio setup
- understanding and using parts of the RStudio IDE
- run basic commands in R
- creating and using different R file types for different purposes

Hello World!

Getting set up

- R
- RStudio

R basics

```
(27 / 52) * 100
object_name <- value
function(arguments)</pre>
```

File types

- scripts
- RMarkdown

Errors

(Beginner)

How can we avoid getting stuck on errors while using R?

Goal:

• Functional problem-solving abilities for learning and using R

Errors

Getting help

Using Stack Overflow

Making reproducible examples

Reproducibility

How does R help us work reproducibly?

Goal:

- Use an RProject and GitHub to make your data analysis project reproducible
- Understand coding conventions

Data in R

(Beginner)

What does data look like in R?

Goals:

- Know what data.frames, tibbles, and tidyverse are
- Understand key types of data, including strings, ordered factors, and dates and times
- Understand how R handles missing values

Data in R

Tidyverse

```
library(tidyverse)

Tibbles

tibble()

Strings
```

"This is a string"

Factors

factor(vector, levels)

Data in R

Dates and times

library(lubridate)

Missing values

NA

Manipulation

(Beginner)

How can we manipulate data tables in R?

Goals:

- View subsets of data tables
- Pick specific variables
- Create new variables
- Group observations by traits
- Summarise groups of observations
- Order data tables

Manipulation

Filtering filter() Arranging arrange() Selecting select() Mutating mutate()

Manipulation

The pipe

%>%

Grouping

group_by()

Summarizing

summarise()

- Counting
- Proportions

Wrangling

(Intermediate)

How can we work with real data sets in R?

Goals:

- Load data tables into R
- Connect related but separate data tables
- Load data from an external database
- Work efficiently with larger data sets

Wrangling

Importing data

```
read_csv()
```

Interacting with databases

```
library(RPostgreSQL)
```

Cleaning

```
library(janitor)
```

Pivot

```
pivot_longer(), pivot_wider()
```

Wrangling

Joining data

```
left_join(), right_join(), full_join(), inner_join()
```

data.table

library(data.table)

Programming

(Intermediate)

How can we use programming concepts like iterators to enhance our work in R?

Goals:

- Write functions in R to perform custom operations
- Perform operations iteratively
- Perform operations given specific conditions
- Understand and use vectors in functions and loops
- Make data sets for simulation studies

Programming

Functions

```
name <- function(x) {
}</pre>
```

Vectors

```
c(), list()
```

Loops

```
for (i in 1:10) {
}
while (i < 10) {
}</pre>
```

Programming

If/else logic

```
if (x = 3) {
} else {
}
```

Simulation

```
set.seed(), runif(), rnorm(), sample()
```

Visualization

(Intermediate)

What kinds of visualizations can we make in R?

Goals:

 Make communicative and visually-pleasing bar graphs, histograms, and scatterplots

Visualization

Essentials

```
ggplot(aes())
```

Bar charts and histograms

```
geom_bar(), geom_histogram()
```

Scatter plots

```
geom_point(), geom_smooth()
```

Shiny

(Advanced)

How can we make interactive applications using R?

Goal:

• Make a basic functional Shiny application to display a data visualization

Shiny

```
library(shiny)
ui <- fluidPage(
   "Hello, world!"
)
server <- function(input, output, session) {
}
shinyApp(ui, server)</pre>
```

Ethics

Why does consent matter in data-based studies?

Goal:

• Understand the necessity and complexity of consent for data-based studies

Ethics

James H. Ware, 1989, 'Investigating Therapies of Potentially Great Benefit: ECMO', Statistical Science.

Donald A. Berry, 1989, 'Comment: Ethics and ECMO', Statistical Science.

Inequity

How can we undertake is Equity, Diversity, and Inclusion training?

Goal:

• Understand Equity, Diversity, and Inclusion (EDI) training

Professional skills

Goals:

- Presenting data analysis results
- Managing data projects
- Data security

Industry case study

Delivery

For technical sections:

- Short lectures
- Examples

For non-technical sections:

- Readings
- Discussions

Assessment

Formative

For technical sections:

- In-class independent exercises & solution discussion
- Problem solving exercises (individual solution and small group discussion)

For non-technical sections:

Group activities

Summative

For technical sections:

• Multi-stage project using data sets chosen from a provided selection

For non-technical sections:

Written reflections