Лекция 4Линейные модели классификации. Часть 1.

Кантонистова Е.О.

ОБУЧЕНИЕ ЛИНЕЙНОЙ РЕГРЕССИИ (НАПОМИНАНИЕ)

Обучающая выборка $\{(x_i,y_i)\}, x_i \in \mathbb{R}^n, y_i \in \mathbb{R}$

• Модель линейной регрессии:

$$a(x,w) = (x,w) = \sum_{i=1}^{n} w_i x_i$$

• Функция потерь – квадратичная:

$$L(a, y) = (a - y)^2$$

• Метод обучения – метод наименьших квадратов:

$$Q(w) = \sum_{i=1}^{n} (a(x_i, w) - y_i)^2 \to min$$

БИНАРНАЯ КЛАССИФИКАЦИЯ

Обучающая выборка $\{(x_i, y_i)\}, x_i \in \mathbb{R}^n, y_i \in \{-1, +1\}$

• Модель линейного классификатора:

$$a(x,w) = sign(x,w) = sign(\sum_{j=1}^{n} w_j x_j)$$

Уравнение

$$(x,w) = \sum_{j=1}^n w_j x_j = 0$$

- уравнение гиперплоскости с нормалью w.

ОБУЧЕНИЕ КЛАССИФИКАТОРА

• Обучение - минимизация доли ошибок классификатора:

$$Q(a,X) = \frac{1}{l} \sum_{i=1}^{l} [a(x_i) \neq y_i] = \frac{1}{l} \sum_{i=1}^{l} [sign(w, x_i) \neq y_i] \to min$$

Функционал Q можно переписать в виде:

$$Q(a,X) = \frac{1}{l} \sum_{i=1}^{l} [y_i \cdot (w, x_i) < 0] = \frac{1}{l} \sum_{i=1}^{l} [M_i < 0] \to min$$

• $M_i = y_i \cdot (w, x_i)$ - отступ

OTCTУП (MARGIN)

- Знак отступа М говорит о корректности классификации
 (М>0 объект классифицирован верно, М<0 неверно)
- Абсолютная величина отступа М обозначает степень уверенности классификатора в ответе (чем ближе М к нулю, тем меньше уверенность в ответе)

ъ OTCTУП (MARGIN)

Ранжирование объектов по возрастанию отступа:

обучение классификатора

Обучающая выборка $\{(x_i,y_i)\}, x_i \in \mathbb{R}^n, y_i \in \{-1,+1\}$

• Модель линейного классификатора:

$$a(x,w) = sign(x,w) = sign(\sum_{j=1}^{n} w_j x_j)$$

• Функция потерь – бинарная:

$$L(a, y) = [a \neq y] = [a \cdot y < 0]$$

• Метод обучения – минимизация эмпирического риска:

$$Q(a, X) = \frac{1}{l} \sum_{i=1}^{l} [y_i \cdot (w, x_i) < 0] \to min$$

ВЕРХНИЕ ОЦЕНКИ ЭМПИРИЧЕСКОГО РИСКА

 \bullet L(a,y) = L(M) = [M < 0] — разрывная функция потерь

Оценим

 $L(\pmb{M}) \leq \tilde{\pmb{L}}(\pmb{M})$, где $\tilde{L}(\pmb{M})$ - непрерывная или гладкая функция потерь.

• Тогда

$$Q(a,X) = \frac{1}{l} \sum_{i=1}^{l} L(y_i \cdot (w,x_i)) \le \frac{1}{l} \sum_{i=1}^{l} \tilde{L}(y_i \cdot (w,x_i)) \to min_{0}$$

ФУНКЦИИ ПОТЕРЬ

- $L(M) = \log(1 + e^{-M})$ логистическая функция потерь
- $V(M) = (1 M)_{+} = \max(0, 1 M)$ кусочно-линейная функция потерь (SVM)
- $H(M) = (-M)_{+} = \max(0, -M)$ кусочно-линейная функция потерь (персептрон)
- $E(M) = e^{-M}$ экспоненциальная функция потерь
- $S(M) = \frac{2}{1 + e^{-M}}$ сигмоидная функция потерь
- [M < 0] пороговая функция потерь

р функции потерь

ОПТИМИЗАЦИЯ ФУНКЦИОНАЛА ПОТЕРЬ

• Нахождение минимума функции потерь происходит с помощью метода градиентного спуска:

$$w^{(k)} = w^{(k-1)} - \eta_k \nabla Q(w^{(k-1)})$$

МЕТРИКИ КАЧЕСТВА КЛАССИФИКАЦИИ

• Accuracy – доля правильных ответов:

$$accuracy(a, X) = \frac{1}{l} \sum_{i=1}^{l} [a(x_i) = y_i]$$

МЕТРИКИ КАЧЕСТВА КЛАССИФИКАЦИИ

• Accuracy – доля правильных ответов:

$$accuracy(a, X) = \frac{1}{l} \sum_{i=1}^{l} [a(x_i) = y_i]$$

Недостаток: при сильно несбалансированной выборке не отражает качество работы алгоритма

МАТРИЦА ОШИБОК

Матрица ошибок (confusion matrix):

	Actual Value						
		positives	negatives				
Predicted Value	positives	TP True Positive	FP False Positive				
Predicte	negatives	FN False Negative	TN True Negative				

accuracy = (TP + TN)/(TP + FP + FN + TN)

МЕТРИКИ КАЧЕСТВА КЛАССИФИКАЦИИ: PRECISION, RECALL

• Precision (точность):

$$Precision(a, X) = \frac{TP}{TP + FP}$$

Показывает, насколько можно доверять классификатору при a(x)=1

PRECISION: ПРИМЕР

Модель $a_1(x)$:

 $precision(a_1, X) = 0.8$

Модель $a_2(x)$:

 $precision(a_2, X) = 0.96$

	y = 1 Могут вернуть	y = -1 Не могут вернуть
a(x) = 1 Получили кредит	80	20
a(x) = -1 Не получили кредит	20	80

	y = 1 Могут вернуть	y = -1 Не могут вернуть
a (x) = 1 Получили кредит	48	2
a (x) = - 1 Не получили кредит	52	98

МЕТРИКИ КАЧЕСТВА КЛАССИФИКАЦИИ: PRECISION, RECALL

• Precision (точность):

$$Precision(a, X) = \frac{TP}{TP + FP}$$

Показывает, насколько можно доверять классификатору при a(x)=1

• **Recall** (полнота):

$$Recall(a, X) = \frac{TP}{TP + FN}$$

Показывает, как много объектов положительного класса находит классификатор

◦ RECALL: ПРИМЕР

Модель $a_1(x)$:

 $recall(a_1, X) = 0.8$

Модель $a_2(x)$:

 $recall(a_2, X) = 0.48$

	y=1 Могут вернуть	y=-1 Не могут вернуть
a (x) = 1 Получили кредит	80	20
a (x) = - 1 Не получили кредит	20	80

	y=1 Могут вернуть	y=-1 Не могут вернуть
a (x) = 1 Получили кредит	48	2
a (x) = - 1 Не получили кредит	52	98

ТОЧНОСТЬ И ПОЛНОТА

F-MEPA

F-мера — это метрика качества, учитывающая и точность, и полноту

$$F(a, X) = \frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$$

КАК РЕГУЛИРОВАТЬ ТОЧНОСТЬ И ПОЛНОТУ

Обобщенная форма записи классификатора:

$$a(x) = [b(x) > t], t \in \mathbb{R}$$

В случае линейного классификатора

$$a(x) = [(w, x) > 0],$$

 $b(x) = (w, x), t = 0$

ullet Регулировать точность и полноту можно путем изменения порога t.

УИНТЕГРАЛЬНАЯ МЕТРИКА: ROC-AUC

Хотим измерить качество всего семейства классификаторов

$$a(x) = [b(x) > t], t \in \mathbb{R}$$

(без фиксации порога t).

Для этого будем использовать метрику AUC

AUC – Area Under ROC Curve (площадь под ROC-кривой)

ROC-КРИВАЯ

Для каждого значения порога t вычислим:

• False Positive Rate (доля неверно принятых объектов):

$$FPR = \frac{FP}{FP+TN} = \frac{\sum_{i} [y_i = -1][a(x_i) = +1]}{\sum_{i} [y_i = -1]}$$

• True Positive Rate (доля верно принятых объектов):

Predicted Value:

$$TPR = \frac{TP}{TP + FN} =$$

$$\frac{\sum_{i}[y_{i}=+1][a(x_{i})=+1]}{\sum_{i}[y_{i}=+1]}$$

Actual Values

Positive (1)	Negative ((0)	
--------------	------------	-----	--

Positive (1)	TP	FP
Negative (0)	FN	TN

ROC-КРИВАЯ

ROC-КРИВАЯ. AUC.

- ullet Каждая точка на ROC-кривой соответствует классификатору ullet с фиксированным значением порога t.
- ullet Всего различных порогов l+1, где l- количество объектов.

AUC – площадь под ROC-кривой. $AUC \in [0; 1]$

• AUC = 1 -

идеальная классификация

• AUC = 0.5 -

случайная классификация

 Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
У	-1	+1	-1	+1	+1

 Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
У	-1	+1	-1	+1	+1

Упорядочим объекты по убыванию предсказаний:
 (0.7,0.4,0.2,0.1,0.05)

1 шаг: t = 0.7, то есть

$$TPR = \frac{TP}{TP+FN}$$

$$a(x) = [b(x) > 0.7]$$

$$FPR = \frac{FP}{FP+TN}$$

 Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

Упорядочим объекты по убыванию предсказаний:
 (0.7,0.4,0.2,0.1,0.05)

1 шаг: t = 0.7, то есть

$$TPR = \frac{TP}{TP+FN}$$

$$a(x) = [b(x) > 0.7]$$

$$FPR = \frac{FP}{FP + TN}$$

$$TPR = \frac{0}{0+3} = 0$$
, $FPR = \frac{0}{0+2} = 0$.

 Пусть есть выборка из 5 объектов и следующие предсказания классификатора оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по убыванию предсказаний:

1 шаг:
$$t = 0.7$$
, то есть

$$a(x) = [b(x) > 0.7]$$

$$TPR = \frac{0}{0+3} = 0$$
,

$$FPR = \frac{0}{0+2} = 0.$$

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

2 шаг: t = 0.4, то есть

$$a(x) = [b(x) > 0.4]$$

$$TPR = \frac{1}{1+2} = \frac{1}{3}$$
,

$$FPR = \frac{0}{0+2} = 0.$$

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

3 шаг: t = 0.2, то есть

$$a(x) = [b(x) > 0.2]$$

$$TPR = \frac{2}{2+1} = \frac{2}{3}$$
,

$$FPR = \frac{0}{0+2} = 0.$$

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
у	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

4 шаг: t = 0.1, то есть

$$a(x) = [b(x) > 0.1]$$

$$TPR = \frac{2}{2+1} = \frac{2}{3}$$
,

$$FPR = \frac{1}{1+1} = \frac{1}{2}$$

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
У	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

5 шаг: t = 0.05, то есть

$$a(x) = [b(x) > 0.05]$$

$$TPR = \frac{2}{2+1} = \frac{2}{3}$$
,

$$FPR = \frac{2}{2+0} = 1.$$

• Оценки принадлежности к классу +1:

b(x)	0.2	0.4	0.1	0.7	0.05
У	-1	+1	-1	+1	+1

• Упорядочим объекты по

убыванию предсказаний:

5 шаг: t = 0, то есть

$$a(x) = [b(x) > 0]$$

$$TPR = \frac{3}{3+0} = 1$$
,

$$FPR = \frac{2}{2+0} = 1.$$

индекс джини

Индекс Джини:

$$Gini = 2 \cdot AUC - 1$$

 Индекс Джини – это удвоенная площадь между главной диагональю и ROC-кривой.

PRECISION-RECALL КРИВАЯ

• В случае малой доли объектов положительного класса AUC-ROC может давать неадекватно хороший результат Precision-Recall кривая:

Precision-Recall example: AUC=0.79

AUC-PR

AUC-PR — площадь под PR-кривой

Precision-Recall example: AUC=0.79

ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

Хотим предсказывать не классы, а вероятности классов.

- Линейная регрессия: $a(x, w) = (x, w) = w^T x \in \mathbb{R}$
- ullet Логистическая регрессия: $a(x,w)=g(w^Tx)$,

где
$$g(z) = \frac{1}{1+e^{-z}}$$
 - сигмоида (логистическая функция)

ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ

Хотим предсказывать не классы, а вероятности классов.

- Линейная регрессия: $a(x, w) = (x, w) = w^T x \in \mathbb{R}$
- Логистическая регрессия: $a(x, w) = g(w^T x)$,

где $g(z) = \frac{1}{1+e^{-z}}$ - сигмоида (логистическая функция),

$$g(z) \in (0;1)$$
.

Логистическая регрессия:
$$a(x, w) = \frac{1}{1+e^{-wT}}$$

вероятностный смысл

• a(x,w) – вероятность того, что y=+1 на объекте x (см. следующую лекцию), т.е.

$$a(x, w) = P(y = +1|x; w)$$

РАЗДЕЛЯЮЩАЯ ГРАНИЦА

Предсказываем y = +1, если $a(x, w) \ge 0.5$.

$$a(x, w) = g(w^T x) \ge 0.5$$
, если $w^T x \ge 0$.

Получаем, что

•
$$y = +1$$
 при $w^T x \ge 0$

•
$$y = -1$$
 при $w^T x < 0$,

т.е. $w^T x = 0$ — разделяющая гиперплоскость.

о логистическая регрессия

Логистическая регрессия - это линейный классификатор!

ФУНКЦИЯ ПОТЕРЬ ЛОГИСТИЧЕСКОЙ РЕГРЕССИИ

Если взять квадратичную функцию потерь $L(a,y)=(a-y)^2$,

то возникнут проблемы:

- $Q(a,X)=rac{1}{l}\sum_{i=1}^{l}\left(rac{1}{1+e^{-w^Tx}}-y
 ight)^2$ не выпуклая функция (можем не попасть в глобальный минимум при оптимизации)
- На совсем неправильном предсказании маленький штраф (пусть предсказали вероятность 0% на объекте класса y=+1, тогда штраф всего $(1-0)^2=1$)

ФУНКЦИЯ ПОТЕРЬ ЛОГИСТИЧЕСКОЙ РЕГРЕССИИ

Возьмем логистическую функцию потерь (log-loss):

$$Q(w) = -\sum_{i=1}^{l} ([y_i = +1] \cdot \log(a(x_i, w)) + [y_i = -1] \cdot \log(1 - a(x_i, w)))$$

ЛОГИСТИЧЕСКАЯ ФУНКЦИЯ ПОТЕРЬ

- если a(x,w) = 1 и y = +1, то штраф L(a,y) = 0
- ullet если a(x,w) o 0, а y=+1, то штраф $L(a,y) o +\infty$