TD 1: Stabilisateur vertical pour appareil photo - Sujet

L'utilisation du mode vidéo, en haute définition sur les appareils photo réflex et légers, pose aux photographes le problème de la stabilisation de l'image.

Les nacelles gyrostabilisées, installées sur une perche portée par les deux mains de l'utilisateur et sur lesquelles se fixe l'appareil photographique permettent de corriger les perturbations dues aux mouvements de l'utilisateur selon trois axes de rotations. Néanmoins, elles ne permettent pas de réduire les perturbations verticales dues à la marche ou à la course de l'utilisateur.

Pour résoudre ce problème, un constructeur commercialise un stabilisateur vertical à installer entre la perche et la nacelle gyrostabilisée.

C1-05 C2-07 Appareil photo (4) Nacelle gyrostabilisée trois axes (3) Bras (2') Bras (2)

Concours Centrale Supelec 2021 - PSI.

Vérification du respect de l'exigence relative à la position d'équilibre

Le cahier des charges précise que le stabilisateur peut être utilisé avec des appareils photo de masse comprise entre 0,350 kg et 1,550 kg¹.

Objectif

L'objectif de cette partie est de vérifier que la conception est assez robuste vis-à-vis du facteur de masse de l'appareil photo pour satisfaire l'exigence 1.1 relative à la position d'équilibre du système.

Le mécanisme étudié dont la modélisation retenue est donnée (figure 1.2). La nacelle gyrostabilisée est schématisée par la barre (3). Le support (1), faisant l'objet d'une liaison encastrement avec la perche, est supposé être en mouvement de translation par rapport au sol (0) autorisé par une glissière fictive. Ce modèle est paramétré par :

- ▶ le repère terrestre \mathcal{R}_0 (O, \vec{x}_0 , \vec{y}_0 , \vec{z}_0) supposé galiléen avec \vec{z}_0 vertical ascendant;
- ▶ le repère \Re_1 (A, \vec{x}_0 , \vec{y}_0 , \vec{z}_0) lié au support (1) avec $\overrightarrow{OA} = y_A \vec{y}_0 + z_{pert} \vec{z}_0$; ▶ le repère \Re_2 (A, \vec{x}_0 , \vec{y}_2 , \vec{z}_2) lié au bras (2) avec $\alpha = (\vec{y}_0, \vec{y}_2) = (\vec{z}_0, \vec{z}_2)$;
- ▶ le repère $\Re'_2(A', \vec{x}_0, \vec{y}_2, \vec{z}_2)$ lié au bras (2') avec $\overrightarrow{AA'} = l\vec{z}_0$;

1: Exigence 1

B2-14

FIGURE 1.1 - Exigence 1.1

FIGURE 1.2 – Schéma cinématique plan et paramétrage du mécanisme

La plage de fonctionnement du mécanisme est limitée par la géométrie des bras (2) et (2') avec $\alpha \in [-35^{\circ}, 45^{\circ}]$, $l = 25 \text{ mm}, L = 52 \text{ mm}, y_G = 5 \text{ mm et}$ $z_G = 200 \text{ mm}.$

▶ le repère \Re_3 (B, \vec{x}_0 , \vec{y}_0 , \vec{z}_0) lié à la nacelle gyrostabilisée (3) et à l'appareil photo (4) liés rigidement entre eux avec $\overrightarrow{AB} = L\vec{y}_2$. Le centre d'inertie de l'ensemble $\{(3) + (4)\}\$ est noté G, avec $\overrightarrow{BG} = y_G \vec{y}_0 + z_G \vec{z}_0;$

▶ le repère \Re_5 (A', \vec{x}_0 , \vec{y}_5 , \vec{z}_5) est défini tel que $\overrightarrow{A'B} = L_r \vec{y}_5$ avec $\beta = (\vec{y}_0, \vec{y}_5) =$

Le ressort de traction (5) de raideur K_r et de longueur à vide L_{r0} possède une tension initiale F_{r0} lorsque $L_r = L_{r0}$. Il est relié d'une part au support (1) et d'autre part au solide (3) aux points d'ancrage respectivement A' et B.

Pour cette étude la nacelle gyrostabilisée (3) et l'appareil photo (4) sont considérés comme formant un seul solide de masse $m_{34} = m_3 + m_4$ avec $m_3 = 1,250$ kg. La masse et l'inertie des autres solides sont négligés.

En utilisant une fermeture géométrique, on peut montrer que tan $\beta = \frac{L \sin \alpha - l}{L \cos \alpha}$ et que la longueur du ressort L_r peut s'exprimer sous la forme $L_r = \sqrt{L^2 + l^2 - 2Ll \sin \alpha}$.

Dans cette partie, l'étude est conduite avec les hypothèses suivantes :

- ▶ les liaisons sont parfaites;
- la modélisation est plane;
- il n'y pas de perturbation $(z_{\text{pert}} = 0).$

Vérification de l'exigence relative à la plage de fonctionnement

L'action mécanique du ressort de traction (5) sur la nacelle gyrostabilisée (3) est $\text{modélisée par le torseur } \{\mathcal{F}_{5\to3}\} : \{\mathcal{F}_{5\to3}\} = \left\{ \begin{array}{c} F_r \vec{y}_5 \\ \overrightarrow{0} \end{array} \right\}_{\sim}.$

Question 1 Exprimer la composante de résultante d'action mécanique F_r en fonction de l'angle α , des paramètres géométriques du système et des paramètres du ressort.

Question 2 Déterminer la direction des actions mécaniques de liaison exercées par le bras (2) sur la nacelle (3) et par le bras (2') sur la nacelle (3) On pourra raisonner en statique).

Question 3 Afin de déterminer la position d'équilibre de l'ensemble $\{(3) + (4)\}$, proposer sans calcul, une démarche claire qui permette d'exprimer l'effort nécessaire du ressort de traction (5) sur la nacelle gyrostabilisée (3) On pourra raisonner en statique).

Question 4 Exprimer l'équation scalaire traduisant l'équilibre du mécanisme en fonction des angles α , β , de la masse m_{34} et de la composante de résultante d'action mécanique F_r .

Dès lors, il est posible de tracer l'angle d'équilibre α_0 en fonction de la masse de l'appareil photo m_4 (figure 1.3).

Question 5 En donnant les valeurs des angles d'équilibre pour les deux valeurs extrêmes de masse, vérifier le respect de l'exigence 1.1.1. relative à la plage de fonctionnement.

Éléments de correction

1.
$$F_r = -F_{r0} - K_r \left(\sqrt{L^2 + l^2 - 2Ll \sin \alpha} - L_{r0}\right)$$
.

2.
$$\overrightarrow{F}_{23} = F_{23} \overrightarrow{y_2}$$

 $\overrightarrow{F}_{2'3} = F_{2'3} \overrightarrow{y_2}$.

3. .
4.
$$ZF_r = -m_{34}g \frac{\cos \alpha}{\sin(\alpha - \beta)}$$

FIGURE 1.3 – Angle d'équilibre α_0 en fonction de la masse de l'appareil photo

TD 1: Stabilisateur vertical pour appareil photo – Corrigé

Vérification du respect de l'exigence relative à la position d'équilibre

Objectif

L'objectif de cette partie est de vérifier que la conception est assez robuste vis-à-vis du facteur de masse de l'appareil photo pour satisfaire l'exigence 1.1 relative à la position d'équilibre du système.

Vérification de l'exigence relative à la plage de fonctionnement

Question 1 Exprimer la composante de résultante d'action mécanique F_r en fonction de l'angle α , des paramètres géométriques du système et des paramètres du ressort.

Correction

En utilisant la définition de la force de rappel du ressort de traction (en tension ici) et avec L_{r0} la longueur à vide du ressort on a $F_r \overrightarrow{y_5} = -K_r (L_r - L_{r0}) \overrightarrow{y_5}$. En utilisant l'expression

précédente : $F_r = -K_r \left(\sqrt{L^2 + l^2 - 2Ll \sin \alpha} - L_{r0} \right)$

Avec la définition de l'effort de traction donnée par l'énoncé, on peut aussi être tenté d'écrire $F_r \overrightarrow{y_5} = -[F_{r0} + K_r (L_r - L_{r0})] \overrightarrow{y_5}$. En utilisant l'expression précédente : $F_r = -\left[F_{r0} + K_r \left(\sqrt{L^2 + l^2 - 2Ll \sin \alpha} - L_{r0}\right)\right].$

Question 2 Déterminer la direction des actions mécaniques de liaison exercées par le bras (2) sur la nacelle (3) et par le bras (2') sur la nacelle (3) **On pourra raisonner en statique)**.

Correction

Il est fait l'hypothèse que le problème est plan dans le plan $(0, \overrightarrow{y_0}, \overrightarrow{z_0})$. Les torseurs d'actions mécaniques associés aux liaisons pivot d'axe $\overrightarrow{z_0}$ sont donc des glisseurs. Les solides (2) et (2') sont tous soumis à deux glisseurs :

- ▶ d'une part, $\{\mathscr{F}(1 \to 2)\}$ (pivot d'axe $(A, \overrightarrow{x_0})$) et $\{\mathscr{F}(3 \to 2)\}$ (pivot d'axe $(B, \overrightarrow{x_0})$) sont des glisseurs;
- ▶ d'autre part, $\{\mathscr{F}(1 \to 2')\}$ (pivot d'axe $(A', \overrightarrow{x_0})$)et $\{\mathscr{F}(3 \to 2')\}$ (pivot d'axe $(B', \overrightarrow{x_0})$) sont des glisseurs.

D'après le PFS appliqué successivement à (2) et (2'), solides soumis à deux glisseurs, alors on a $\{\mathscr{F}(3\to 2)\} + \{\mathscr{F}(1\to 2)\} = \{0\}$ et $\{\mathscr{F}(3\to 2')\} + \{\mathscr{F}(1\to 2')\} = \{0\}$. Les actions mécaniques sont de même norme, de même direction (droites (AB) et (A'B') soit vecteur $\overrightarrow{y_2}$).

De plus,
$$\overrightarrow{F}_{23} = F_{23}\overrightarrow{y_2}$$
 et $\overrightarrow{F}_{2'3} = F_{2'3}\overrightarrow{y_2}$

Question 3 Afin de déterminer la position d'équilibre de l'ensemble $\{(3) + (4)\}$, proposer sans calcul, une démarche claire qui permette d'exprimer l'effort nécessaire

Concours Centrale Supelec 2021 - PSI.

B2-14

C1-05

C2-07

FIGURE 1.4 – Rappel – Schéma cinématique plan et paramétrage du mécanisme

du ressort de traction (5) sur la nacelle gyrostabilisée (3) **On pourra raisonner en statique)**.

Correction

On isole l'ensemble $\{(3)+(4)\}$.

On réalise le bilan des actions mécaniques :

- ▶ action mécanique de (2') sur (3), de direction $\overrightarrow{y_2}$;
- ▶ action mécanique de (2) sur (3), de direction $\overrightarrow{y_2}$;
- ▶ action mécanique de la pesanteur sur {(3)+(4)};
- \blacktriangleright action du ressort sur $\{(3)+(4)\}$.

Il faut écrire une équation du PFS permettant de ne pas faire apparaître les actions dans les deux liaisons pivot. Il faut donc réaliser un théorème de la résultante statique en projection sur $\overrightarrow{z_2}$ (perpendiculaire à $\overrightarrow{y_2}$).

Question 4 Exprimer l'équation scalaire traduisant l'équilibre du mécanisme en fonction des angles α , β , de la masse m_{34} et de la composante de résultante d'action mécanique F_r .

Correction

- ▶ la projection de l'action du ressort sur $\overrightarrow{z_2}$: $F_r \overrightarrow{y_5} \cdot \overrightarrow{z_2} = F_r \cos \left(-\beta + \frac{\pi}{2} + \alpha\right) = -F_r \sin (\alpha \beta);$
- ▶ la projection de l'action de pesanteur sur $\overrightarrow{z_2}$: $-m_{34}g\overrightarrow{z_0} \cdot \overrightarrow{z_2} = -m_{34}g\cos\alpha$.

On applique le TRS en projection sur $\overrightarrow{z_2}$ et on a :

$$\underbrace{\overline{R\left(2^{\prime}\rightarrow3\right)}\cdot\overrightarrow{z_{2}}}_{\overrightarrow{0}}+\underbrace{\overline{R\left(2\rightarrow3\right)}\cdot\overrightarrow{z_{2}}}_{\overrightarrow{0}}+\overline{R\left(\mathrm{Pes}\rightarrow3\right)}\cdot\overrightarrow{z_{2}}+\overline{R\left(\mathrm{Res}\rightarrow3\right)}\cdot\overrightarrow{z_{2}}=0.$$

On a donc $-m_{34}g\cos\alpha - F_r\sin(\alpha - \beta) = 0$ et $F_r = -m_{34}g\frac{\cos\alpha}{\sin(\alpha - \beta)}$

Question 5 En donnant les valeurs des angles d'équilibre pour les deux valeurs extrêmes de masse, vérifier le respect de l'exigence 1.1.1. relative à la plage de fonctionnement.

Correction

On peut lire en figure 1.3 que pour une masse d'appareil comprise entre 0,35 et 1,55 kg, l'angle d'équilibre varie de 18 à -9° . Cet intervalle est compris dans l'intervalle [-35° , 45°]. L'exigence 1.1.1 est donc satisfaite.

