第三部分代数结构

第九章 代数系统

定义 设°为S上的二元运算,如果对任意的x,y∈S都有

$$x^{\circ}y=y^{\circ}x$$

则称运算°在S上是可交换的,或者说运算°在S上适合交换律。

例, 实数集R上: +, ×, -

幂集P(S)上: ∪, ∩, ⊕, -

n(n≥2)阶实矩阵的集合M_n(R)上: +,×

定义 设°为S上的二元运算,如果对任意的 x,y,z∈S都有

$$(x^{\circ}y)^{\circ}z = x^{\circ}(y^{\circ}z)$$

则称运算°在S上是可结合的,或者说°在S上适合结合律。

例, N,Z,Q,R上: +,× 幂集P(S)上: ∪,∩,⊕ n(n≥2)阶实矩阵的集合M_n(R)上: +,× 函数集S^S上: 复合运算°

- **例** 实数集R上的二元运算*定义为: x*y=x+y-xy, x,y∈R 对任意的x,y,z∈R,
- **1.** X*y = X+y-xy = y+x-yx = y*x 所以运算*在R上满足交换律。
- (x*y)*z = x+y+z-xy-yz-zx+xyz = x*(y*z)
 所以运算*在R上满足结合律。

定义设°为S上的二元运算,如果某x∈S,满足x°x=x,则称x是运算°的幂等元。

定义设°为S上的二元运算,如果对任意的x∈S 都有

$$X^{\circ}X = X$$

则称该运算°在S上适合幂等律。

例,

1. 幂等律

- □ 命题公式集上: ∨, ∧
- □ 幂集P(S)上: ∪, ∩, -, ⊕

2. 幂等元

- □ 实数集R上: 0(+, -, ×), 1(×, ÷)
- 幂集P(S)上: Ø(⊕, -)
- □ 函数集S^S上: I_S(复合运算°)

两个二元运算之间的关系:

定义 设•和*是S上的两个二元运算,如果对任意的x,y,z∈S有

则称运算*对●是可分配的,也称*对●适合分配律。

- 例,两个二元运算之间的关系。
- 1. 实数集R上: ×对+(-), +(-)对×
- 2. 幂集P(S)上: ∪和○互相可分配
- 3. 命题公式集上: ∨和∧互相可分配
- 4. n阶实矩阵的集合M_n(R)上:矩阵乘法对矩阵 加法是可分配的

定义 设•和*是S上的两个可交换的二元运算, 如果对任意的x,y∈S都有

$$X*(X\bullet y)=X$$

则称•和*满足吸收律。

例,两个二元运算之间的关系。

- 1. 幂集P(S)上: ∪和○满足吸收律
- 2. 命题公式集上: \和\满足吸收律

单位元 (幺元)

定义设°为S上的二元运算,如果存在元素 e_l (或 e_r) \in S,使得对任何 $x\in$ S,都有

$$e_l^{\circ} X = X(\overline{\mathfrak{Z}} X^{\circ} e_r = X)$$

则称 $e_l($ 或 $e_r)$ 是S中关于°运算的一个左单位元(或右单位元)。

若e∈S关于°运算既是左单位元又是右单位元,则称e为S上关于°运算的单位元。

- 1. 幂集P(S)上,∪的单位元: ○的单位元:
- N上, 加法的单位元: 乘法的单位元:
- 3. M_n(R)上,矩阵加法的单位元: 矩阵乘法的单位元:
- 5. 函数集S^S上,复合运算°的单位元:

例 设A={a,b,c,d},*和●是A上的两个二元运算:

*	a b c d	•	a b c d
а b с	d a b c a b c d a b c c a b c c a b c d	а b с	a b d c b a c d c d a b d d b c

水, 左单位元? 右单位元? 单位元?

定理 设°为S上的二元运算,e_l,e_r分别为°运算的 左单位元和右单位元,则有

- 1. $e_l = e_r = e$
- 2. 且e为S上关于°运算的惟一的单位元。

证明:

- **1.** 因为 e_{l} , e_{r} 分别是°运算的左,右单位元,则有 $e_{l} = e_{l}$ ° $e_{r} = e_{r}$: $有e_{r} = e_{r} = e_{r}$ 是单位元。
- 2. 假设S中还存在单位元e',则有 e'=e'°e=e
- ::e是S中关于运算。的惟一的单位元。

定义 设°为S上的二元运算,若存在元素 θ (或 θ ,) \in S,使得对任意的 $x\in$ S,有

$$\theta_{l}^{\circ} \mathbf{X} = \theta_{l} (\vec{\mathbf{x}} \mathbf{X}^{\circ} \theta_{r} = \theta_{r})$$

则称的(或的,)是S上关于°运算的左零元(或右零元)。

若θ∈S关于°运算既是左零元又是右零元,则称θ 为S上关于°运算的零元。

- 1. 自然数集N上,乘法的零元: 加法的零元:
- 2. M_n(R)上,矩阵乘法的零元: 矩阵加法零元:
- 3. 幂集**P(S)**上,∪的零元: ○的零元:
- 4. 命题公式集上, v的零元: ^的零元:

例 设A={3,4,6,9,17,22}, 定义A上的二元运算● 为:

 $\forall a,b \in A, a \bullet b = min(a,b)$

- ∀a∈A, 3•a = a•3 = 3
 3是 零元
- 2) ∀a∈A, 22•a = a•22 = a22是单位元

定理设°为S上的二元运算,θ_I,θ_I分别为运算°的 左零元和右零元,则有

- 1. $\theta_I = \theta_r = \theta$
- 2. 且θ为S上关于°运算的惟一的零元。

元素的逆元

- 定义 设°为S上的二元运算,e∈S为°运算的单位 元,对于某x∈S,
- 1) 如果存在 $y_{l} \in S(\vec{u}y_{r} \in S)$,使得 $y_{l}^{\circ}x = e(\vec{u}x^{\circ}y_{r} = e)$ 则称 $y_{l}(\vec{u}y_{r})$ 是x的左逆元(或右逆元);
- 2) 若y∈S既是x的左逆元,又是x的右逆元,则称 y是x的逆元。
- 3) 如果x有逆元存在,则称x是可逆的。

元素的逆元

例,

- 1. 自然数集中元素关于加法运算的逆元?
- 2. 整数集关于加法运算的逆元?
- 3. M_n(R)上矩阵乘法的**逆**元?
- 4. 在幂集P(S)上U运算的逆元?

元素的逆元

定理 设°为S上可结合的二元运算,e为该运算的单位元,对于x∈S,如果存在左逆元y_r和右逆元y_r,则有

- 1. $y_1 = y_r = y$
- 2. 且y是x的惟一的逆元。

逆元

证明:

- 1. $y_l = y_l^\circ e = y_l^\circ (x^\circ y_r) = (y_l^\circ x)^\circ y_r = e^\circ y_r = y_r$ 所以, $y_r = y_r = y$
- 2. 假设y'∈S也是x的逆元,则有
 y'=y'°e=y'°(x°y)=(y'°x)°y=e°y=y

说明:由这个定理可知,对于**可结合**的二元运算来说,元素**x**的逆元**如果存在则是惟一的**。通常把这个惟一的逆元记作**x**-1。

消去律

定义 设°为S上的二元运算,如果对任意的 x,y,z∈S满足以下条件:

- 1. 若x°y=x°z且x≠θ,则y=z; (左消去律)
- z. 若y°x=z°x且x≠θ,则y=z,(右消去律)

就称运算°满足消去律。

消去律

例,以下运算是否满足消去律?

- 1. 实数集R上: +, -, ×
- 2. 幂集P(S)上: ∪, ∩, -, ⊕
- 3. n阶实矩阵的集合M_n(R)上: +, ×

实例

1. 设A上的二元运算°由下表所确定,求A中关于° 运算的单位元、零元和所有可逆元素的逆元。

解,

单位元:a

零元: d

逆元:a⁻¹=a,b⁻¹=b,c⁻¹=c

可逆元素

幂等元: a,d

D	а	b	Ċ	d
a	a b	b	c	d
b	ь	a	d	d
¢	ç d	a	а	d
d	d	ď	d	d

说明

- 设*为S上的一个二元运算,那么该运算的有些性质可以从运算表中直接看出。即:
- 1)运算*具有**封闭性**,当且仅当运算表中每个元素都属于**S**。
- 2) 运算*具有**可交换性**,当且仅当运算表关于主 对角线是对称的。
- 3)运算*具有幂等性,当且仅当运算表的主对角线上每一个元素与它所在行(列)的表头元素相同。

说明

- 4) S关于*有零元,当且仅当该元素所对应的行和 列中的元素都与该元素相同。
- 5) **S**中关于*有**单位元**,当且仅当该元素所对应的行和列依次与运算表的表头元素相一致。

6) 设S中有单位元,a和b互逆,当且仅当位于a所在行,b所在列的元素以及b所在行,a所在列的元素以及b所在行,a所在列的元素都是单位元。

实例

- 2. 设A={a,b,c}, A上的二元运算*,°,●如下表所示
- 1) 这些运算是否满足交换律,结合律,幂等律和消去律。
- 2) 求关于这些运算的单位元、零元和所有可逆元素的逆元。

*	а	ь	c	_	D	а	ь	c	•	a	ь	c
<u> </u>	a	<i>b</i>	c		a	à	b	Ċ	a	a	b	c
b	b	c	а		b	6	b	b	ь	а	b	Ċ
ť	c	a	b	_	с	c	b	c	c	. a	b	c

1) *运算:

交換律结合律幂等律消去律

单位元:a

零元:无

逆元:a⁻¹=a,b⁻¹=c,c⁻¹=b

*	а	ь	с
ū	<u>a</u>	ь	ť.
ь	ь	c	а
Ľ	Ç	a	b

2) °运算:

交換律结合律幂等律消去律

单位元: a

零元: b

逆元: a⁻¹=a

	σ	ь	c
a	å	ь	د
Ь	6	Ь	b
С .	•	ь	c

3) ●运算:

交換律结合律幂等律消去律

单位元: 无

零元: 无

逆元: 无可逆元素

实例

3. 对于下面给定的集合和集合上的二元运算,指出运算的性质,并求出它的单位元、零元和所有可逆元素的逆元。

1) Z+, ∀x,y∈Z+,x*y=lcm(x,y),即求最小公倍数;

解: 性质:交换律,结合律,幂等律,消去律

单位元:1

零元:无

逆元: 1⁻¹=1

- 2) Q, $\forall x,y \in Q$, x*y=x+y-xy
- ①交换律: ∀x,y∈Q, x*y=x+y-xy=y+x-yx=y*x 所以运算*在Q上满足交换律。
- ②满足结合律:

 $\forall x,y,z \in Q,(x*y)*z=x*(y*z)=x+y+z-xy-yz-zx+xyz$

- ③幂等律:不满足幂等律。幂等元?
- 4 单位元:0

零元:1

逆元: $x^{-1} = \frac{x}{x-1} (x \neq 1)$

⑤消去律: 满足消去律。

作业 (习题十p178)

- , 4,
- , 8, 9