GG estava pensando em um problema para a Maratona Mineira de Programação. Ele pensou no seguinte problema: é dado uma árvore (grafo não direcionado conexo acícilo) enraizada no vértice 1, e cada vértice pode estar ligado ou desligado. Inicialmente, todos estão desligados. Existem 3 tipos de operações:

- 1. Pintar uma sub-ávore.
- 2. Despintar uma sub-árvore.
- 3. Quantos vértices pintados existem em uma dada sub-árvore?

Além disso, após as operações 1 e 2, devem ser respectivamente pintados ou despintados a quantidade mínima de vértices para que a seguinte propriedade seja satisfeita: **todo vérice não folha está pintado se, e somente se, todos os seus filhos estão pintados**.

Você, como setter da Maratona Mineira, ficou intrigado ao ouvir sobre o problema. Porém, GG ainda não sabe como resolvê-lo eficientemente. Ajude GG e bole uma solução para o problema.

Input

A primeira linha contém um inteiro $1 \le N \le 10^5$. As próximas N-1 linhas contém as arestas $1 \le a_i, b_i \le N$ da árvore. É garantido que o grafo é uma árvore, e a raiz é o vértice 1. A próxima linha contém o número de operações $1 \le Q \le 10^5$. As próximas Q linhas contém 2 inteiros cada, t, v_i , em que $t \in \{1, 2, 3\}$ define a operação e $1 \le v_i \le N$ o vértice que define a sub-árvore em questão.

Output

Para cada operação do tipo 3, imprima o número de vértices pintados na sub-árvore definida pelo vértice da consulta.

Sample input 1	Sample output 1
4	1
3 1	2
1 2	1
2 4	
8	
1 1	
2 4	
3 1	
1 4	
2 3	
3 1	
1 1	
3 3	