Parte 1:

1-

a) i)

1.	Α
2.	В
3.	С
4.	G

ii)

1.	Α
2.	В
3.	G

iii)

1.	Α
2.	С
3.	D
4.	E
5.	D
6.	F
7.	G

iv)

<u>h2:</u>

1.	Α
2.	В
3.	С
4.	G

<u>h3:</u>

1.	Α
2.	В
3.	С
4.	Α
5.	D
6.	Ш
7.	O
8.	D
9.	F
10.	Е
11.	G

NOTA:

Azul -> Nós a serem considerados

Vermelho -> Nós expandidos

Neste caso apenas se considerou os nós que nunca foram visitados, chegando assim à solução, para o algoritmo ser realmente ganancioso todos os nós seriam considerados e assim entraria-se num loop infinito. Baseado nestes

slides: http://cee.uma.pt/edu/iia/acetatos/iia-Procura%20Informada.pdf

b)

h1: Solução: ABG

<u>h2:</u>

Solução: ACDG

<u>h3:</u>

Solução: ACDG

<u>h4:</u>

Solução: ACDG

c)

PLargura: Não é óptimo.

PProfundidade: Não é óptimo.

Custo Uniforme: Óptimo.

A*: Óptimo.

2-

3-

Parte 2:

a)

r - factor de ramicação médio;

p - profundidade máxima;

	Complexidade Temporal	Complexidade Espacial	Completo	Óptimo
Primeiro em Profundidade	rp	r*p	Não	Não
Primeiro em Largura	r ^{p+1}	r ^{p+1}	Sim	Sim
Aprofundamento Progressivo	rp	r*p	Sim	Sim

Exemplo: r=10 p(solução)=12 Nó=byte

	Complexidade Temporal	Complexidade Espacial	Vantagens	Situação a Utilizar
Primeiro em Profundidade	10 ¹² 10000000000000	10*12=120	- Requer pouca memória - O nó objectivo pode vir a ser encontrado sem examinar a árvore por completo.	- No caso de haver pouca margem para armazenamento de memória
Primeiro em Largura	r ^{p+1}	r ^{p+1}	-Encontra sempre a solução se existirEncontra a melhor em comprimento do passo.	- Para grandes profundidades e àrvores desconhecidas.
Aprofundamento Progressivo	10 ¹² 1000000000000	10*12=120		- É uma excelente opção para problemas em que somos

				obrigados a recorrer a um método cego.
--	--	--	--	--

b) (retirado da resolução do exercício 2.1 das aulas práticas (exercício dos baldes))

```
%% primeiro em profundidade
resolve_pp:-
     inicio(Ei),
     primeiro_prof(Ei, L, [Ei]),
          reverse(L,L2),
     nl, escreve(L2).
primeiro_prof(Ea, [Ea],_):- objectivo(Ea).
primeiro_prof(Ea, [Ea|R], Eants):-
         sucessor(Ea, Eseg, Accao),
     not(member(Eseg, Eants)),
     primeiro_prof(Eseg, R, [Eseg|Eants]).
escreve(L):- L=[Ei|_],
    write('estado inicial: '), write(Ei),nl,
    escreve1(L).
escreve1([_]):-!.
escreve1([Ea,Eseg|R]):-
    sucessor(Ea,Eseg,Accao),write(Accao),write(':'),
    write(Eseg), nl,
     escreve1([Eseg|R]).
Predicado sucessor é a lista de nós da árvore a percorrer.
// Meu
primeiro_profundidade(Objectivo;Lista_Dados;Profundidade;Solução):-
        pp_aux(Objectivo;Lista_Dados;Profundidade;0;Solução;[]).
pp_aux(Obj;[Obj|Tail];Prof;Prof_actual;Solução;Sol):-
        Prof actual<=Prof,
       append(Sol,Obj,Solução).
pp_aux(Obj;[Head|Tail];Prof;Solução;Sol):-
// Meu
```

%:-use_module(library(lists)). %Sicstus

c) Considerando "c" o custo real, as heurísticas só são admissíveis se:

$$i) h3 = h1 + h2;$$

É admissível se h1 < c e h2 < c e h1+h2 < c. SIM

ii) h4 = min(h1; h2);

É admissível se h1 < c e h2 < c, logo min(h1;h2) < c. SIM

iii) h5 = max(h1; h2);

É admissível se h1 < c e h2 < c, logo max(h1;h2) < c. SIM

iv) h6 = h1 * h2;

É admissível se h1 < c e h2 < c e h1*h2 < c. SIM

v) h7 = $w*h1 + (1-w)*h2 \text{ com } w \in [0, 1].$

É admissível se:

- h1 < c;
- h2 < c;
- w < 1;
- w > 0;
- w*h1 + (1-w)*h2 < c; SIM

d) Sem cortes:

Com cortes:

e)

Idade	Tempo	Duração	Vai_Teatro
Criança	Sol	Curto	Sim
Criança	Chuva	Curto	Sım
Criança	Sol	Longo	Não
Criança	Núvens	Longo	Não
Adulto	Sol	Longo	Não
Adulto	Chuva	Curto	Sim
Adulto	Chuva	Longo	Não
Adulto	Núvens	Curto	Sim
Adulto	Núvens	Longo	Sim
Adulto	Sol	Curto	Sim

Sem efectuar cálculos, é possível afirmar que o "nó raíz" da árvore é o atributo <u>duração</u>, pois a sua entropia é a menor. Quando a duração é *curta*, *Vai_Teatro=SIM* sempre, quando a duração é *longa* não se pode afirmar nada, mas apenas um em cinco afirma *Vai_Teatro=NÃO*.

f)

g)

h) Regras:

- R1: Se tempo está mau ou disposição é má então Sr X não vai ao jogo (FC=0.9)
- R2: Se Sr X acha que vai chover então tempo está mau (FC=0.7)
- R3: Se Sr X acha que vai chover e meteorologia diz que vai chover então disposição é má (FC=0.8)

• R4: Se tempo está mau então disposição é má (FC=0.9)

Sabendo que a meteorologia diz que vai chover (FC=0.8) e o Sr.X acha que vai chover (FC=0.9), qual a conclusão que o Sistema Pericial retira sobre a ida do Sr.X ao jogo?

- **1. TM** ou **DM** -> FC(**NV**)=0.9
- **2. AC** -> FC(**TM**)=0.7
- **3. AC** e **MC** -> FC(**DM**)=0.8
- **4. TM** -> FC(**DM**)=0.9

FC(**MC**)=0.8 FC(**AC**)=0.9

3;2;4;1

- 3. FC[Disposição Má] = 0.8*min(AC;MC) = 0.8*min(0.9;0.8) = 0.8*0.8 = 0.64
- 2. FC[**T**empo **M**au] = 0.7*0.9= 0.63
- **1.** FC[Nao Vai ao Jogo] = 0.9*max(TM;DM) = 0.9*max(0.63;0.64) = 0.9*0.64 = 0.576

FC[Vai ao Jogo]= 1-0.576 = 0.424