Routing

- Routers are devices that sit at the intersections between two or more networks – shown as cylinder with arrows pointing to center
 - Act to interconnect those networks
 - Forward packets from one network to another
 - Can connect networks of same or different types
- A group of mutually interconnected networks forms an internetwork, or internet
 - Routing is the process of moving data from its source to its destination across an internet

Internet Protocol (IP)

- Layer 3 protocol defines internet addressing and rules for routing
 - IP addresses
 - Defined to simplify routing
 - 32-bits canonical (or dotted quad) notation 4 decimal octets
 - 132.177.4.208 is IP address of wcit.cs.unh.edu
 - 132.177.137.6 is IP address of newton.unh.edu
 - Every network interface must have its own unique IP address
 - Most computers have only one
 - Routers have many
 - Host any device with a functioning network interface that can send and receive IP packets

IP packets

- ◆ IP header + data payload = IP packet
 - Packet is a Layer 3 term (datagram is also common)
 - Segment is a Layer 4 term
 - Frame is a Layer 2 term
 - IP header is 20-bytes long
 - Includes source and destination IP addresses
 - Data payload is often a TCP segment
 - IP provides for the end-to-end delivery of TCP segments
 - Connectionless, best-effort system

IP addresses

- All IP addresses on the same physical network have an initial portion in common
 - IP network number similar to a Zip code
 - Written like an IP address, but only shared portion is indicated, rest zeroes
 - Shared portion is called network portion, remainder is host portion
 - Simplifies routing
 - Routers don't need to know where each individual address is, just where each network is
- Class A
 - 1 octet specified (1st is 0-127)
 - 128 networks
 - 16,777,216 addresses each
- Class B
 - 2 octets specified (1st is 128-191)
 - 16,384 networks
 - 65,536 addresses each
- Class C
 - 3 octets specified (1st is 192-223)
 - 2,097,152 networks
 - 256 addresses each

4

Limitations of IP addresses

- Routers only work with network portion of IP addresses
 - Cannot distinguish individual hosts on a single IP network
 - So we need one IP network per physical network
 - But few physical networks need all their IP addresses
 - Many IP addresses are wasted
- IPv4 provides at most 4,294,967,296 unique addresses
 - Over 20,000,000,000 devices on the Internet as of March 2016
 - Not enough, so wasted addresses should be minimized
 - Migrating to IPv6 which provides up to about 3.402 x 10³⁸ addresses
 - More than 7 addresses for every atom in every human body on the planet

IP subnetting

- Most LANs connect at most a couple hundred hosts
 - Using a class A or class B network for such a LAN would waste most of its addresses
- Avoids wasting IP addresses by relaxing the rules
 - Allows IP networks to be subdivided into subnets
 - Each subnet gets treated as a separate network
 - Devices in same subnet cannot be separated by a router
 - Devices in different subnets must be separated by a router
 - Works by extending network portion of IP addresses into host portion
 - Each IP address on the subnet begins with the extended network portion

