代数系统部分作业 (答案)

姓名:_		学号:	班级序号:	
------	--	-----	-------	--

一. 填空

1. 令 $Z_8 = \{0,1,2,3,4,5,6,7\}$, $+_8$ 表示模 8 加法,则在群 < Z_8 , $+_8$ > 中, 2 的阶数是 4 , 3 的阶数是

8 , 6 的阶数是 4 。

2. 设 *A*={a, b, c, d} , *A* 上二元运算如下:

*	a	b	c	d
a	a	b	c	d
b	b	c	d	a
c	c	d	a	b
d	d	a	b	c

那么代数系统 < A, *> 的幺元是 a , b 的逆元为 d , c 的逆元为 c .

3. 以下两个置换是 S_5 中的置换,其中

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 2 & 1 \end{pmatrix}, \quad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{pmatrix}$$

则 $\alpha = (13425)$, $\alpha \circ \beta = (15)$ (均用不交的轮换之积表示)。

- 4. 下列说法错误的是_____。(多选)
 - A. 在群中消去律成立; B. 循环群的生成元的阶数和群的阶数相同;
 - C. 素数阶群存在非平凡子群; D.阶数大于1的群中可能存在零元。
- 5. 设S是非负整数集, \times 是关于数的普通乘法运算,则_____。
 - A. $\langle S, \times \rangle$ 是群; B. $\langle S, \times \rangle$ 是有幺元的半群;
 - C. $\langle S, \times \rangle$ 是无幺元的半群; D. $\langle S, \times \rangle$ 不是群,也不是半群。
- 6. 在 3 元对称群中,元素 $a = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ 的阶数是_______。

二. 证明与解答

- 1. 证明: $\langle R \{0\}, \times \rangle$ 构成群,并且为阿贝尔群。
- 证明: (1) $\forall x, y \in R \{0\}$, $x \times y \in R \{0\}$, 即×运算在 $R \{0\}$ 上封闭,则 $\langle R \{0\}, \times \rangle$ 为代数系统:
 - (2) ×运算满足结合律,则 $\left\langle R-\left\{ 0\right\} ,\times\right\rangle$ 为半群;
 - (3) 存在幺元 $1 \in R \{0\}$;

(4)
$$\forall x \in R - \{0\}$$
,则 $x \times \frac{1}{x} = \frac{1}{x} \times x = 1$,并且 $\frac{1}{x} \in R - \{0\}$,即任何一个元素 x 均存在逆元,为 $\frac{1}{x}$;
所以 $\langle R - \{0\}, \times \rangle$ 构成群,又因为 \times 运算满足交换律,故 $\langle R - \{0\}, \times \rangle$ 为阿贝尔群。

2. 已知 R 为实数集, $S = R - \{-1\}$,在集合 S 上定义二元运算*,如下: a*b = a+b+ab

证明 < S,*> 是群。

证明: (1) $\forall a,b \in S = R - \{-1\}$, $a*b = a+b+ab \neq -1$, 所以 $a*b \in S$

反证法,若a*b=a+b+ab=-1,则 $a=\frac{-1-b}{1+b}=-1$,与前提矛盾,综上< S, *>为代数系统。

(2) $\pm (a*b)*c = (a+b+ab)*c = a+b+ab+c+ac+bc+abc$

$$a*(b*c) = a*(b+c+bc) = a+b+c+bc+ab+ac+abc$$

可得(a*b)*c=a*(b*c),则*运算在S上满足结合律。

(3) $\forall a \in S = R - \{-1\}$, 由 a * 0 = a + 0 + 0 = a; 0 * a = 0 + a + 0 = a, 故 0 为幺元且 $0 \in S$ 。

(4) $\forall a \in S = R - \{-1\}$, 由 a * b = b * a = a + b + ab = 0, 得 $b = \frac{-a}{1+a} \in S$,即 S 中任何一个元素都有逆元。由此可证 < S, *> 是群。

3. 求循环群 $< Z_{16}, +_{16} >$ 的各阶子群,这里 $Z_{16} = \{0,1,2,\cdots,15\}$, $+_{16}$ 为模 16 的加法。

解: 16 的因子有 1,2,4,8,16, 故循环群 $< Z_{16}, +_{16} >$ 有五个循环子群,表示如下:

一阶循环子群:
$$\left\langle 1^{\frac{16}{1}} \right\rangle = \left\langle \left\{ 0 \right\}, +_{16} \right\rangle$$
; 二阶循环子群: $\left\langle 1^{\frac{16}{2}} \right\rangle = \left\langle \left\{ 8, 0 \right\}, +_{16} \right\rangle$;

四阶循环子群:
$$\left\langle 1^{\frac{16}{4}} \right\rangle = \left\langle \left\{ 4,8,12,0 \right\}, +_{16} \right\rangle$$
; 八阶循环子群: $\left\langle 1^{\frac{16}{8}} \right\rangle = \left\langle \left\{ 2,4,6,8,10,12,14,0 \right\}, +_{16} \right\rangle$

十六阶循环子群:
$$\left\langle 1^{\frac{16}{16}} \right\rangle = \left\langle \left\{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 0 \right\}, +_{16} \right\rangle = \langle Z_{16}, +_{16} \rangle$$

4. 写出群 $\langle Z_9, +_9 \rangle$ 中各元素关于子群 $\langle \{0,3,6\}, +_9 \rangle$ 的陪集,其中 $+_9$ 为模 9 的加法。

解:由于 $Z_9 = \{0,1,2,3,4,5,6,7,8\}$,并 $+_9$ 满足交换律,故运算得到的左陪集等于右陪集等于陪集。则:

$$0 +_{9} \{0,3,6\} = 3 +_{9} \{0,3,6\} = 6 +_{9} \{0,3,6\} = \{0,3,6\}$$

$$1 +_{9} \{0,3,6\} = 4 +_{9} \{0,3,6\} = 7 +_{9} \{0,3,6\} = \{1,4,7\}$$

$$2 +_{9} \{0,3,6\} = 5 +_{9} \{0,3,6\} = 8 +_{9} \{0,3,6\} = \{2,5,8\}$$