Student(s): Long Le 2203558

Title of the work: Practical Work 1 – Mobile Device Usage and User

Behaviour Dataset

Predicting Battery Drain Using Machine Learning

Used algorithms: Random Forest Regressor, Logistic regression

Work description and analysis:

Description of the work:

- The dataset, user_behavior_dataset.csv, includes user behaviour and device data.
- The goal is to Predict daily battery drain (in mAh/day) and classify user behaviour into predefined categories based on mobile usage patterns and demographic data.
- The dataset contains features such as app usage time, screen-on time, number of apps installed, data usage, and demographic data. The goal is to develop a predictive model to estimate battery drain and identify the most influential factors contributing to battery consumption.

Data preparation for the training:

Dataset Overview:

The dataset includes:

- Numerical Features: App Usage Time, Screen On Time, Number of Apps Installed, Data Usage, Age.
- Categorical Features: Device Model, Operating System, Gender.
- Target Variables:
 - Battery Drain (Regression task).
 - User Behavior Class (Classification task).

Figure 1. First 14 rows with all columns of training data

Preprocessing steps:

- 1. Dropped Irrelevant Columns: Removed User ID as it has no predictive value.
- 2. Encoded Categorical Variables: Used mapping and OneHotEncoder for categorical features.
- 3. Normalized Numerical Features: Applied StandardScaler for consistent scaling.
- 4. Split Data: Partitioned into training (70%) and testing (30%) sets. Sample Training Data:

Арр	Screen	Number of	Data	Age	Device	Operating	Gender
Usage	On Time	Apps Installed	Usage		Model	System	
Time							
393	6.4	67	1122	40	Google	Android	Male
					Pixel 5		
268	4.7	42	944	47	OnePlus 9	Android	Female
154	4.0	32	322	42	Xiaomi Mi	Android	Male
					11		

Relevant metrics for the case(s):

Regression Metrics:

- Mean Absolute Error (MAE): Measures the average magnitude of errors in predictions.
- Mean Squared Error (MSE): Penalizes larger errors more significantly.
- Root Mean Squared Error (RMSE): Square root of MSE, easier to interpret.
- R-squared (R²): Proportion of variance explained by the model.

Classification Metrics

- Accuracy: Overall correctness of predictions.
- Confusion Matrix: Breakdown of true positives, false positives, etc.
- Precision, Recall, F1-Score: Measure of classification quality, especially for imbalanced data.

Conclusions of the results:

Random Forest Regressor (Battery Drain Prediction):

• Performance Metrics:

 \circ **R**²: 0.95

o MAE: 148.96 mAh/day

o **RMSE**: 176.77 mAh/day

```
[15 rows x 11 columns]
Mean Absolute Error (MAE): 148.95990476190477
Mean Squared Error (MSE): 31249.32521238095
Root Mean Squared Error (RMSE): 176.7747866987285
R-squared (R<sup>2</sup>): 0.9516723527485257
Predicted Battery Drain for new user: [1415.63] mAh/day
```

Figure 2. Regression (Random Forest) metrics result

Model Analysis:

The Random Forest Regressor achieved outstanding performance, explaining 95% of the variance in battery drain. Its low MAE and RMSE indicate consistent and accurate predictions.

Model Usability:

The model is practical for real-world applications, such as optimizing app usage to save battery life

Logistic Regression (User Behaviour Classification):

Performance Metrics:

Accuracy: 73.81%

Confusion Matrix:

 Precision, Recall, F1-Score: Moderate to high for most classes, with notable strength in Class 1 and Class 5.

Figure 3. Classification (Logistic Regression) result

Model Analysis:

Logistic Regression effectively distinguishes certain behaviour classes, such as Class 1 (precision: 1.00) and Class 5 (precision: 0.88). However, moderate performance for Classes 2, 3, and 4 indicates room for improvement.

Comparison of Models:

• Best Performance:

For regression tasks, the Random Forest Regressor outperformed Linear Regression with an R² of 0.95.

For classification, Logistic Regression achieved reasonable accuracy but requires enhancement to reduce misclassifications.

Model Usability:

Both models are suitable for practical applications in their respective tasks, with Random Forest providing more reliable predictions.

Potential Improvements:

- 1. Add more diverse and recent data to improve generalization.
- 2. Hyperparameter tuning for Logistic Regression and Random Forest.
- 3. Test advanced algorithms like XGBoost or Gradient Boosting.