材料力学 III 重考试卷

考试时间: 90 分钟 (考试日期: 2005.8)

学院:

	选			择			题			计			算		总	
题号	1-1	1-2	1-3	1-4	1-5	1-6	1-7	1-8	1-9	1-10	2-1	2-2	2-3	2-4	2-5	分
分数																

说明:(1)考试时,考生允许携带一张 A4 纸,纸上可以是手书的任何内容。(2)答选择题 时,请选择一个最适合的答案,并将相应的字母填写在题中空格处。(3)答计算题时,得数 如果有量纲,请注明,否则扣1分。(4)除题中已给出的量不需说明外,答计算题时使用的 各量必须明确说明其含义。

1 选择题(每题 3 分, 共 10 题, 共 30 分)

题1-1: 关于铸铁力学性能有以下两个结论: ①抗剪能力比抗拉能力差; ②压缩强度比拉伸 强度高。其中, 。

A. ①正确、②不正确;

B. ①不正确、②正确:

C. ①、②都正确;

D. ①、②都不正确。

题 1-2:图示单向均匀拉伸的板条。若受力前在其表面画上两个正方形 a 和 b,则受力后正 方形 a、b 分别变为。

- A. 正方形、正方形; B. 正方形、菱形;

- C. 矩形、菱形; D. 矩形、正方形。

题 1-3: 图示为某材料单向拉伸时的应力应变关系 曲线。已知曲线上一点 A 的应力为 σ_{A} , 应变为 ε_{A} , 材料的弹性模量为 E,则当加载到 A 点时的塑性应变 为____。

A.
$$\varepsilon_p = 0$$
; B. $\varepsilon_p = \varepsilon_A$; C. $\varepsilon_p = \frac{\sigma_A}{E}$; D.
$$\varepsilon_p = \varepsilon_A - \frac{\sigma_A}{E}$$
.

题 1-4: 设图示悬臂梁的挠曲轴方程为 $EIw = \iint M(x) dx dx + Cx + D$, 则积分

A. C = 0, $D \neq 0$; B. C = 0, D = 0;

C. $C \neq 0$, $D \neq 0$; D. $C \neq 0$, D = 0

题 1-5:图示等腰直角三角形微体,已知两个直边截面上只有切应力,且等于 τ_0 ,则斜边

截面上的正应力 σ 和切应力 τ 分别为 _____。

- A. $\sigma=\tau_0$, $\tau=\tau_0$; B. $\sigma=\tau_0$, $\tau=0$;
- C. $\sigma = \sqrt{\tau_0^2 + \tau_0^2} = \sqrt{2}\tau_0$, $\tau = \tau_0$;
- D. $\sigma = \sqrt{2}\tau_0$, $\tau = 0$.

题 1-6: 在图示十字形截面上,剪力为 F_S ,欲求m-m线上的切 应力,则公式 $\tau = \frac{F_S S_z(\omega)}{I_b}$ 中,_____。

- A. $S_{\tau}(\omega)$ 为截面的阴影部分对 z' 轴的静矩, $b = 4\delta$;
- B. $S_z(\omega)$ 为截面的阴影部分对 z' 轴的静矩, $b = \delta$;
- C. $S_z(\omega)$ 为截面的阴影部分对 z 轴的静矩, $b = 4\delta$;
- D. $S_{z}(\omega)$ 为截面的阴影部分对 z 轴的静矩, $b = \delta$ 。

题 1-6 图

题1-7:图中铆钉的挤压应力为 _____。

- A. $\frac{F}{2d\delta}$; B. $\frac{F}{d\delta}$;
- C. $\frac{4F}{\pi d^2}$; D. $\frac{8F}{\pi d^2}$.

题 1-7 图

题 1-8: 任意图形的面积为 A, z_0 轴通过形心 O, z_1 轴和 z_0 轴平行,并相距 a,已知图形对 z_1 轴的惯性矩是 I_1 ,则对 z_0 轴的惯性矩为 _____。

- A. $I_{z0} = 0$; B. $I_{z0} = I_1 Aa^2$;
- C. $I_{z0} = I_1 + Aa^2$; D. $I_{z0} = I_1 + Aa$.

题 1-9: 脆性材料中若某点的最大拉应力 $\sigma_{\max} = \sigma_{b}$,则该点

一定会产生断裂。该结论是根据 _____ 强度理论得出的。

- A. 第一;
- B. 第二;
- C. 第三:
- D. 第四。

题 1-10: 在以下措施中, 将会降低构件的疲劳极限。

- A. 降低构件表面粗糙度;
- B. 增强构件表层硬度;
- C. 加大构件的几何尺寸;
- D. 减缓构件的应力集中。

2计算题(共5题,共70分)

题 2-1:图示结构,杆 1 与杆 2 的弹性模量均为 E,横截面面积均为 A,梁 BC 为刚体,载 荷 F=20 kN,许用拉应力[$\sigma_{\rm t}$]=160 MPa,许用压应力[$\sigma_{\rm c}$]=110 MPa。试确定各杆的横 截面面积。(15分)

题 2-2: 作图示梁的剪力图和弯矩图。(本题 15 分,可以不写计算过程)

题 2-3: 图示实心圆轴受轴向外力 F 和外力偶矩 M 作用,且 M=Fd/10,d 为圆轴直径。设圆轴材料为低碳钢,其许用应力为 $[\sigma]$,弹性模量和泊松比分别为 E 和 ν 。试根据第三强度理论确定圆轴的许可载荷 [F]。(15 分)

题 2-4: 图示结构中,分布载荷 q=20 kN/m。AD 为刚性梁。柱 BC 的截面为圆形,直径 d=80 mm。已知柱 BC 为 Q235 钢,其弹性模量为 E=200GPa,[σ] =160 MPa, $\lambda_p=100$,稳定 安全因数 $n_{st}=3$ 。试校核结构的安全。(15 分)

题 2-5: 图示有一具有初曲率的钢条 AB,当两端加力后成一直线,刚性平面的反力均匀分布如图 b 所示,已知钢条的弹性模量 E=200 GPa,l=0.5m,钢条的横截面为 25 mm×25 mm的正方形,试求使钢条呈一直线时的压力 F。

