

Class 11 Solutions Chapter 2 Relations Ex 2.3 Q16

We have,

$$A = \{1, 2, 3, 5\}$$
 and $B = \{4, 6, 9\}$

It is given that,

$$R = \{(x,y): \text{ the difference between } x \text{ and } y \text{ is odd, } x \in A, y \in B\}$$

For the elements of the given sets A and B, we find that

$$(1,4) \in R$$
, $(1,6) \in R$, $(2,9) \in R$, $(3,4) \in R$, $(3,6) \in R$, $(5,4) \in R$ and $(5,6) \in R$

$$R = \{(1,4), (1,6), (2,9), (3,4), (3,6), (5,4), (5,6)\}$$

Hence, relation R in roster form is $\{(1,4), (1,6), (2,9), (3,4), (3,6), (5,4), (5,6)\}$

Class 11 Solutions Chapter 2 Relations Ex 2.3 Q17

We have,

$$R = \{(x, x^3) : x \text{ is a prime number less than } 10\}$$

For the elements of the given sets, we find that

$$x = 2, 3, 5, 7$$

Class 11 Solutions Chapter 2 Relations Ex 2.3 Q18

We have,

 $A = \{1, 2, 3, 4, 5, 6\}$

and, $R = \{(a,b): a, b \in A, b \text{ is exactly divisible by } a\}$

- (i) Now, a/b stands for 'a divides b'. For the elements of the given sets A and A, we find that 1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 2/2, 2/4, 2/6, 3/3, 3/6, 4/4, 5/5, 6/6

$$R = \left\{ \begin{bmatrix} 1,1 \end{bmatrix}, \; \begin{bmatrix} 1,2 \end{bmatrix}, \; \begin{bmatrix} 1,3 \end{bmatrix}, \; \begin{bmatrix} 1,4 \end{bmatrix}, \; \begin{bmatrix} 1,5 \end{bmatrix}, \; \begin{bmatrix} 1,6 \end{bmatrix}, \; \begin{bmatrix} 2,2 \end{bmatrix}, \; \begin{bmatrix} 2,4 \end{bmatrix}, \; \begin{bmatrix} 2,6 \end{bmatrix}, \; \begin{bmatrix} 3,3 \end{bmatrix}, \; \begin{bmatrix} 3,6 \end{bmatrix}, \; \begin{bmatrix} 4,4 \end{bmatrix}, \; \begin{bmatrix} 5,5 \end{bmatrix}, \; \begin{bmatrix} 6,6 \end{bmatrix} \right\}$$

- (ii) Domain (R) = {1, 2, 3, 4, 5, 6}
- (iii) Range (R) = $\{1, 2, 3, 4, 5, 6\}$

Class 11 Solutions Chapter 2 Relations Ex 2.3 Q19

(i) Set builder form of the relation from P to Q is

$$R = \{(x, y) : y = x - 2, x \in P, y \in Q\}$$

(ii) Roster form of the relation from P to Q is

$$R = \{(5,3), (6,4), (7,5)\}$$

Domain $(R) = \{5, 6, 7\}$

Range
$$(R) = \{3, 4, 5\}$$