

Synthetic Biology

Modeling Genetic Circuits

Content

- 1. Law of Mass Action
- 2. The central dogma of molecular biology
- 3. Examples of dynamic models in biology

1. Reminder: Law of Mass Action and kinetic equations

Example: Reaction of Water

Stoichiometric coefficients

I. Reaction of Water – Kinetics of H_2

$$2 H_2 + O_2 \xrightarrow{k} 2 H_2O$$

Rate of change for [H] over time:

$$[\dot{H}_2] = -2k[H_2]^2[O_2]$$

Stoichiometric coefficient of $[H_2]$ times the reaction rate k

product of the concentrations of the reactants ($[H_2] \times [H_2] \times [O_2] = [H_2]^2 [O_2]$)

II. Reaction of Water – Kinetics of O₂

$$2 H_2 + O_2 \xrightarrow{k} 2 H_2O$$

Rate of change for [0] over time:

$$[\dot{O}_2] = -k[H_2]^2[O_2]$$

Stoichiometric coefficient of [0] times the reaction rate k

product of the concentrations of the reactants ($[H_2] \times [H_2] \times [O_2] = [H_2]^2 [O_2]$)

III. Reaction of Water – Kinetics of H_2O

$$2 H_2 + O_2 \xrightarrow{k} 2 H_2O$$

Rate of change of $[H_2O]$ over time:

$$[H_2O] = +2k[H_2]^2[O_2]$$

Stoichiometric coefficient of $[H_2O]$ times the reaction rate k

product of the concentrations of the reactants $([H_2] \times [H_2] \times [O_2] = [H_2]^2 [O_2])$

Summing up

1. Biochemical reactions

$$2 H_2 + O_2 \longrightarrow 2 H_2O$$

2. Kinetic model (ODEs)

$$\begin{cases} [\dot{H}_2] = -2k[H_2]^2[O_2] \\ [\dot{O}_2] = -k[H_2]^2[O_2] \\ [\dot{H}_2\dot{O}] = 2k[H_2]^2[O_2] \end{cases}$$

3. Temporal dynamic simulation

Modelling in SynBio

/

The central dogma of molecular biology

The central dogma of molecular biology

To produce a protein:

The transcriptional unit

A transcriptional unit encodes one protein*

*SBOL diagram (Synthetic Biology Open Language) https://sbolstandard.org

2 ways of produce a protein (gene expression)

A transcriptional unit produces a protein when several biochemical reactions occur:

1. Constitutive gene expression

- No regulation of protein production
- No external inductors

2. Regulated gene expression

- Activation or repression of production
- Other inductors needed
- The inductor is called transcription factor (TF)

Modelling constitutive gene expression (simplified version)

$$[m\dot{R}NA] = k_1[Gene]$$

$$[mRNA] = k_1[Gene] - d_1[mRNA]$$

$$[mRNA] = k_1[Gene] - d_1[mRNA]$$

 $[Protein] = k_2[mRNA]$

$$[mRNA] = k_1[Gene] - d_1[mRNA]$$

 $[Protein] = k_2[mRNA] - d_2[Protein]$

Transcription

Translation

Gene
$$\xrightarrow{k_1}$$
 $\xrightarrow{k_2}$ $\xrightarrow{\text{Protein}}$ Degradation $d_1 \downarrow \qquad \qquad \emptyset$

$$\begin{bmatrix} [mRNA] = k_1[Gene] - d_1[mRNA] \\ [Protein] = k_2[mRNA] - d_2[Protein] \end{bmatrix}$$

Remarks

$$\begin{cases} [mRNA] = k_1[Gene] - d_1[mRNA] \\ [Protein] = k_2[mRNA] - d_2[Protein] \end{cases}$$

- [Gene] is considered a constant value and depends on:
 - the Origin of Replication and
 - the Plasmid Copy Number (C_N) where the Gene is cloned.
- We are considering:
 - a. RNA polymerase and Ribosomes are in **sufficiently enough** amount so that they are not limiting the kinetics.
 - b. Binding/Unbinding processes are much faster than transcription and translation.

Modelling gene expression regulated by Transcription Factors (TF)

Gene expression regulated by Transcription Factors (TF)

We will obtain a model: 5 Equations with 7 parameters

- 1. k_1, k_2, d_1 and d_2 become indistinguishable when we measure only the protein amount.
- 2. k_{on} , k_{off} , are very difficult to measure.

Simplifying the regulation of gene expression

To obtain a model to relate with experimental data:

Part I. Getting the model with TF

Part II. Model reduction

Part III. Modelling gene expression + Hill function

Schematic diagram SBOL

$$[Prom. TF] = k_{on} [Prom][TF]$$

$$[Prom. TF] = k_{on} [Prom][TF]$$

$$[Prom] = -k_{on} [Prom][TF]$$

$$[Prom. TF] = k_{on} [Prom][TF]$$

$$[\overrightarrow{Prom}] = -k_{on} [\overrightarrow{Prom}][\overrightarrow{TF}]$$

$$[TF] = -k_{on} [Prom][TF]$$

$$[Prom. TF] = k_{on} [Prom][TF]$$

$$[Prom] = -k_{on} [Prom][TF]$$

$$[\dot{TF}] = -k_{on} [Prom][TF] + k_{off}[Prom.TF]$$

$$[Prom. TF] = k_{on} [Prom][TF]$$

$$[Prom] = -k_{on} [Prom][TF] + k_{off} [Prom.TF]$$

$$[TF] = -k_{on} [Prom][TF] + k_{off} [Prom.TF]$$

$$[Prom. TF] = k_{on} [Prom][TF] - k_{off} [Prom. TF]$$

$$[Prom] = -k_{on} [Prom][TF] + k_{off} [Prom.TF]$$

$$[TF] = -k_{on} [Prom][TF] + k_{off} [Prom.TF]$$

Temporal simulations MATLAB

$$[Prom] = -k_{on} [Prom][TF] + k_{off} [Prom. TF]$$

$$[T\dot{F}] = -k_{on} [Prom][TF] + k_{off} [Prom. TF]$$

$$[Prom. TF] = k_{on} [Prom][TF] - k_{off} [Prom. TF]$$

Starting with:

17 Promoters (Plasmid copy number)

25 molecules of Transcription Factor (TF)

$$k_{on} = 0.5 \text{ molecules}^{-1} \text{ min}^{-1}$$

$$k_{\rm off} = 1 \, \rm min^{-1}$$

Genetic_circuit_model_simple.mlx

SciPy Simulation_Gene_Expression_pyLab.ipynb

Temporal simulations MATLAB

$$[Prom] = -k_{on} [Prom][TF] + k_{off} [Prom.TF]$$

$$[T\dot{F}] = -k_{on} [Prom][TF] + k_{off} [Prom.TF]$$

$$[Prom.TF] = k_{on} [Prom][TF] - k_{off} [Prom.TF]$$

Remarks

- First two equations are equal (Blue and Orange)!
- The sum of the first ODE and the third one is identically zero (Blue and Yellow)!
- Use this fact (promoter invariance) to simplify the equations and reduce the model.

Part II: Model reduction

Promoter invariance (Plasmid Copy Number) because DNA is a constant

$$[Prom] = -k_{on} [Prom][TF] + k_{off} [Prom.TF]$$

$$[Prom.TF] = k_{on} [Prom][TF] - k_{off} [Prom.TF]$$

$$[Prom.TF] + [Prom] = 0$$

Integrating this:
$$[Prom. TF] + [Prom] = C_N$$
 Plasmid Copy Number

$$[Prom] = C_N - [Prom. TF]$$
 Save this one, we will use it later.

Part II: Model reduction

$$[Prom] = C_N - [Prom. TF]$$
 Save this one, we will use it later.

Section 3: Derivation of the Hill function

Part III: Derivation of the Hill function

$$[m\dot{R}NA] = k_1[Prom. TF]$$

$$[m\dot{R}NA] = k_1[Prom. TF]$$

Difference in time scales: Binding in seconds, transcription/translation from minutes to hours.

Quasi Steady State Approximation (QSSA)

TF rapidly binds to the promoter and this reaction reaches equilibrium very fast.

[Prom. TF]
$$\approx 0$$

In the 3rd equation

$$[Prom.TF] = k_{on} [Prom][TF] - k_{off}[Prom.TF]$$

$$0 = k_{on} [Prom][TF] - k_{off}[Prom.TF]$$

From invariance (previous slide):

$$[Prom] = C_N - [Prom. TF]$$
 — Using these two,

Using these two, we will derive the **Hill function**

Replacing the free promoter equation into the TF bound Promoter one:

$$[Prom] = C_N - [Prom. TF]$$

$$0 = k_{on} [Prom] [TF] - k_{off} [Prom. TF]$$

$$0 = k_{on} (C_N - [Prom. TF]) [TF] - k_{off} [Prom. TF]$$

Solving for the TF bound Promoter [Prom. *TF*]:

Solving for the TF bound Promoter [Prom. TF]:

$$k_{on} (C_N - [Prom.TF])[TF] = k_{off}[Prom.TF]$$

$$k_{on}$$
 [TF] $C_N - k_{on}$ [TF][Prom. TF] = k_{off} [Prom. TF]

$$k_{on}$$
 [TF] $C_N = k_{on}$ [TF][Prom. TF] + k_{off} [Prom. TF]

A bit of algebra...

$$k_{on} [TF]C_N = (k_{on} [TF] + k_{off}) [Prom. TF]$$

[Prom. TF] =
$$C_N \frac{k_{on}[TF]}{k_{on}[TF]+k_{off}} = C_N \frac{[TF]}{\frac{k_{off}}{k_{on}}+[TF]} = C_N \frac{[TF]}{K_d+[TF]}$$

The Hill function represents how protein production depends on the transcription factor (TF)

[Prom. TF] =
$$C_N \frac{[TF]^n}{K_d^n + [TF]^n}$$

$$K_d = \frac{K_{off}}{K_{on}}$$
 dissociation constant

n Hill coefficient

Two types of TFs for production:

Hill function of an activator

[Prom. TF] =
$$C_N \frac{[TF]^n}{K_d^n + [TF]^n}$$

 $C_N = 1$ molecule of DNA

 K_d = 500 molecules

n = 1 molecules of TF bound themselves
 (sensitivity)

Hill function of a repressor

[Prom. TF] =
$$C_N \frac{K_d^n}{K_d^n + [TF]^n}$$

 $C_N = 1$ molecule of DNA

 $K_d = 50$ molecules

n = 3 molecules of TF bound themselves
 (sensitivity)

[TF]

$$[mRNA] = k_1[Prom.TF]$$

[Prom. TF] =
$$C_N \frac{[TF]}{K_d + [TF]}$$

The complete equation of the mRNA (activator with n=1):

$$[\dot{mRNA}] = k_1 C_N \frac{[TF]}{K_d + [TF]} - d_1[mRNA]$$

Promoter + Transcription Factor (TF)

Binding/Unbinding
$$k_{on}$$
 \downarrow \downarrow

Dynamic Model
$$\begin{cases} \frac{d[\text{mRNA}]}{dt} = [\text{mRNA}] = k_1 \ C_N \frac{[\text{TF}]}{K_d + [\text{TF}]} - d_1[\text{mRNA}] \\ \frac{d[\text{Protein}]}{dt} = [\text{Protein}] = k_2[\text{mRNA}] - d_2[\text{Protein}] \end{cases}$$

Temporal simulations

$$\begin{cases} [m\dot{R}NA] = k_1 C_N \frac{[TF]}{K_d + [TF]} - d_1[mRNA] \\ \vdots \\ [Protein] = k_2[mRNA] - d_2[Protein] \end{cases}$$

Parameters:

 $C_N = 17$ molecules (Plasmid copy number)

Kd = 2 molecules

TF = 25 molecules (Transcription Factor)

The other parameters same than constitutive

Genetic_circuit_model_TF.mlx

Difference in time scales: transcription (mRNA) in minutes

translation (Protein) takes ~2 hours

Remarks: Transcription is faster than Translation

mRNA is much faster than Protein production, we use the same trick than before (QSSA):

$$\frac{d[\text{mRNA}]}{dt} = [\text{mRNA}] \approx 0$$

$$0 = k_1 C_N \frac{[\text{TF}]^n}{K_d^n + [\text{TF}]^n} - d_1[\text{mRNA}] \rightarrow [mRNA] = \frac{k_1}{d_1} C_N \frac{[\text{TF}]^n}{K_d^n + [\text{TF}]^n}$$

$$\frac{d[\text{Protein}]}{dt} = [\text{Protein}] = k_2[\text{mRNA}] - d_2[\text{Protein}]$$

[Protein] =
$$\alpha \frac{[TF]^n}{K_d^n + [TF]^n} - d_2[Protein]$$

Where
$$\alpha = k_2 \frac{k_1}{d_1} C_N$$

Simulating only translation

[Protein] =
$$\alpha \frac{[TF]^n}{K_d^n + [TF]^n} - d_2$$
[Protein]

$$\alpha = k_2 \frac{k_1}{d_1} C_N$$

With:

 $\alpha = 720 \text{ molecules min}^{-1}$

 $K_d = 2$ molecules

 $d_2 = 0.02 \text{ min}^{-1}$

(this means 34 min of doubling time)

[TF]: from 0.1 molecule to 25 molecules of Transcription Factor

Experimental data of translation

To analise the final protein production, we use the **same trick (QSSA)**:

(equilibrium expression of protein — → data at the end of the experiment)

$$\frac{d[\text{Protein}]}{dt} = [\text{Protein}] \approx 0$$

[Protein] =
$$\frac{\alpha}{d_2} \frac{[TF]^n}{K_d^n + [TF]^n}$$

with
$$\alpha = k_2 \frac{k_1}{d_1} C_N$$

Protein concentration is an algebraic equation

How do I relate my model to the lab parts?

Use of the Matlab Apps varying the slides in the simulations

Measurements Calibration

We need to get experimental data

Protein measurement

Calibrated measurement to validate our model with experiments

Fluorescein Sodium Salt

Silica Beads

Multicolor plate reader fluorescence calibration, Synthetic Biology, Oxford 2022.

Calibration of protein expression: Fluorescein Sodium Salt to Molecules of equivalent Fluorophore (MEFL)

frontiers Frontiers in Bioengineering and Biotechnology

TYPE Original Research
PUBLISHED 20 January 2023
DOI 10.3389/fbioe.2023.1104445

Check for updates

OPEN ACCESS

Si-Yu Li,

SI-ชน ผ, National Chung Hsing University, Taiwan

Grrace Ng, University of Cyberjaya, Malaysia Helena Maria Rodrigues Gonçalves, Chemistry and Technology Network (REQUIMTE), Portugal

*CORRESPONDENCE Alejandro Vignoni, ☑ vignoni@isa.upv.es

PLATERO: A calibration protocol for plate reader green fluorescence measurements

Alba González-Cebrián¹, Joan Borràs-Ferrís¹, Yadira Boada², Alejandro Vignoni²*, Alberto Ferrer¹ and Jesús Picó²

¹Multivariate Statistical Engineering Group, Department of Applied Statistics and O.R. and Quality, Universitat Politècnica de València, València, Spain, ²Synthetic Biology and Biosystems Control Lab, Instituto de Automàtica e Informàtica Industrial, Universitat Politècnica de València, València, Spain

MEFL/Particle unit is equivalent to number of molecules/cell from the dynamic model (ODE)

