Subcategory-aware Convolutional Neural Networks for Object Proposals and Detection

Yu Xiang¹, Wongun Choi², Yuanqing Lin³ and Silvio Savarese⁴

¹University of Washington, ²NEC Laboratories America, Inc., ³Baidu, Inc., ⁴Stanford University

Region proposals

- How to handle large scale change, occlusion and truncation?
- How to estimate detailed properties of objects (3D pose, 3D shape, 3D location)?
- We use subcategory information to help object proposal and detection in this work.
- ☐ Related Work
- CNN-based object detection

Fast RCNN. R. Girshick., ICCV'15. Faster RCNN. Ren et al., NIPS'15. YOLO. Redmon, et al., CVPR'16. SSD. Liu et al., ECCV'16.

Subcategory in object detection

DPM. Felzenszwalb et al., TPAMI'10. Gu & Ren, ECCV'10.
Ohn-Bar & Trivedi, ITS'15.
3DVP. Xiang et al., CVPR'15.

Experiments

Region proposal performance on KITTI [16]

Method	Easy	Moderate	Hard	Easy	Moderate	Hard	Easy	Moderate	Hard
		Car			Pedestrian			Cyclist	
SelectiveSearch [1]	58.17	42.12	37.62	68.95	57.65	52.57	57.05	49.59	49.44
EdgeBoxes [2]	81.40	61.84	55.68	86.15	71.88	65.39	56.11	46.52	45.72
RPN [3]	98.84	97.37	95.31	98.88	91.69	88.64	96.55	91.80	89.41
SubCNN	99.27	96.28	93.14	99.44	93.46	91.02	99.67	93.03	91.64

Detection and Orientation Estimation on KITTI car

	Object Detection (AP)			Orientation Estimation (AOS)		
Method	Easy	Moderate	Hard	Easy	Moderate	Hard
ACF [4]	55.89	54.74	42.98	N/A	N/A	N/A
DPM [5]	68.02	56.48	44.18	67.27	55.77	43.59
DPM-VOC+VP [6]	74.59	64.71	48.76	72.28	61.84	46.54
OC-DPM [7]	74.94	65.95	53.86	73.50	64.42	52.40
SubCat [8]	84.14	75.46	59.71	83.41	74.42	58.83
Regionlets [9]	84.75	76.45	59.70	N/A	N/A	N/A
AOG [10]	84.80	75.94	60.70	33.79	30.77	24.75
Faster R-CNN [3]	86.71	81.84	71.12	N/A	N/A	N/A
3DVP [11]	87.46	75.77	65.38	86.92	74.59	64.11
3DOP [12]	93.04	88.64	79.10	91.44	86.10	76.52
Mono3D [13]	92.33	88.66	78.96	91.01	86.62	76.84
SDP+RPN [14]	90.14	88.85	78.38	N/A	N/A	N/A
MS-CNN [15]	90.03	89.02	76.11	N/A	N/A	N/A
SubCNN-VGG16	90.74	88.55	77.95	90.49	87.88	77.10
SubCNN-GoogleNet	90.81	89.04	79.27	90.67	88.62	78.68

Detection and Pose Estimation on PASCAL3D+ [17]

Method	DPM [5]	DPM-VOC+VP [6]	Ours w/o extra	Ours Full	
Detection AP	29.6	28.3	58.8	60.7	
Pose 4 views AVP	19.5	24.5	45.2	47.5	
Pose 8 views AVP	18.7	22.2	28.6	31.9	
Pose 16 views AVP	15.6	17.9	22.3	24.5	
Pose 24 views AVP	12.1	14.4	17.9	19.3	

Cabler and D. Cabiela Multivianus and 2d defermental and translated TDAMI 2015	CVPR, 2016.
Gehler, and B. Schiele. Multi-view and 3d deformable part models. TPAMI, 2015.	[15] Z. Cai, Q. Fan, R. Feris, and N. Vasconcelos. A unified multi-scale deep convolutional neural network for fast object detection. In ECCV, 201
. Gehler, and B. Schiele. Occlusion patterns for object class detection. In CVPR, 2013	
Trivadi Lagraing to datact vahicles by clustering appearance patterns, T. ITS, 2015	[16] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In CVPR, 2012.
. Trivedi. Learning to detect vehicles by clustering appearance patterns. T-ITS, 2015.	[17] Y. Xiang, R. Mottaghi, and S. Savarese, Beyond pascal: A benchmark for 3d object detection in the wild, In WACV, 2014.

[13] X. Chen, K. Kundu, Z. Zhang, H. Ma, S. Fidler and R. Urtasun: Monocular 3D Object Detection for Autonomous Driving. In CVPR, 2016.

[14] F. Yang, W. Choi, and Y. Lin. Exploit all the layers: Fast and accurate cnn object detector with scale dependent pooling and cascaded rejection classifiers. In

[4] P. Doll'ar, R. Appel, S. Belongie, and P. Perona. Fast feature pyramids for object detection. TPAMI, 2014.

[6] B. Pepik, M. Stark, P. Ge

[7] B. Pepikj, M. Stark, P. G. [8] E. Ohn-Bar and M. M. T

[5] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models.