Laboratory of Computational Physics 2022-2023 Astrophysics Project

The Formation of Binary Black Holes

Bhatti Roben

Bedin Veronica

Bonato Diego

Sapkas Michail

Binary black holes and gravitational waves

90 events of gravitational waves

80 mergers of **binary** black holes

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Masses in the stellar graveyard

Goal of the project

Goal of the project:

finding what features have the highest impact on the evolution of a binary system into a Binary Black Hole

Credits: ESO/M. Kornmesser/S.E. de Mink

Roche Lobe: region where orbiting material is gravitationally bound

Credits: Cengage Learning (2016)

Roche Lobe: region where orbiting material is gravitationally bound

Credits: Cengage Learning (2016)

Roche lobe overflow

Roche Lobe: region where orbiting material is gravitationally bound

Credits: Cengage Learning (2016)

Roche Lobe: region where orbiting material is gravitationally bound

Credits: Cengage Learning (2016)

Unstable mass transfer

Binary system with stars in main sequence

Roche lobe overflow

→ Black hole - main sequence star

Common envelope phase

Unstable mass transfer

Credits: Mapelli (2021)

The α formalism

The α formalism describes the energy balance during the common envelope phase.

$$\Delta E = \alpha (E_{b,f} - E_{b,i}) = \alpha \frac{Gm_{c,1}m_{c,2}}{2} \left(\frac{1}{a_f} - \frac{1}{a_i} \right)$$

The α formalism

The α formalism describes the energy balance during the common envelope phase.

$$\Delta E = \alpha (E_{b,f} - E_{b,i}) = \alpha \frac{Gm_{c,1}m_{c,2}}{2} \left(\frac{1}{a_f} - \frac{1}{a_i} \right)$$

Encodes the **efficiency** of the conversion between **gravitational energy** and **internal energy** of the envelope.

Dataset: set of simulated binary black holes formations.

	Binary ID	ZAMS Mass 1 [Msun]	ZAMS Mass 2 [Msun]	Black Hole Mass 1 [Msun]	Black Hole Mass 2 [Msun]	Formation Delay Time [Myrs]	Semi Major Axis [Rsun]	Orbital Eccentricity	Formation by Common Envelope	Alpha	Metallicity	Q	Q_BH
1878045	1_1339891	27.795000	27.720300	4.737200	4.619000	11795.084000	11.461000	0.174990	True	3.000000	0.001600	1.002695	1.025590
1589326	1_1272522	26.738100	20.396400	5.877000	11.986900	915.528200	9.288200	0.114790	True	3.000000	0.000400	1.310923	0.490285
835409	1_1434130	25.979100	25.630200	5.908600	5.208300	8001.689900	17.491000	0.617170	True	1.000000	0.000400	1.013613	1.134458
1091111	4_1581057	21.064600	18.994800	3.024900	7.702200	185.318000	4.539100	0.347010	True	1.000000	0.001200	1.108967	0.392732
1325494	0_1915046	46.360100	35.359700	18.162200	24.748700	432.073700	15.031000	0.011652	True	3.000000	0.000200	1.311100	0.733865
332780	2_65743	67.952300	42.653100	25.226800	30.465300	183.218100	14.739000	0.008978	True	0.500000	0.001200	1.593139	0.828050
1339656	1_537277	43.895600	25.066100	16.281300	19.313400	145.338200	9.888200	0.014047	True	3.000000	0.000200	1.751194	0.843005
2022989	1_1307248	24.482000	17.403100	4.418400	9.325700	861.019600	7.704200	0.209460	True	5.000000	0.000200	1.406761	0.473787
952697	4_1973207	66.332400	48.536300	26.816900	33.535400	173.236400	15.426000	0.019395	True	1.000000	0.000400	1.366655	0.799659
1712477	4_1088638	36.890900	22.139700	13.769600	16.231300	8287.779300	24.353000	0.016666	True	3.000000	0.000400	1.666278	0.848336

Dataset: set of simulated binary black holes formations.

	Binary ID	ZAMS Mass 1 [Msun]	ZAMS Mass 2 [Msun]	Black Hole Mass 1 [Msun]	Black Hole Mass 2 [Msun]	Formation Delay Time [Myrs]	Semi Major Axis [Rsun]	Orbital Eccentricity	Formation by Common Envelope	Alpha	Metallicity	Q	Q_BH
1878045	1_1339891	27.795000	27.720300	4.737200	4.619000	11795.084000	11.461000	0.174990	True	3.000000	0.001600	1.002695	1.025590
1589326	1_1272522	26.738100	20.396400	5.877000	11.986900	915.528200	9.288200	0.114790	True	3.000000	0.000400	1.310923	0.490285
835409	1_1434130	25.979100	25.630200	5.908600	5.208300	8001.689900	17.491000	0.617170	True	1.000000	0.000400	1.013613	1.134458
1091111	4_1581057	21.064600	18.994800	3.024900	7.702200	185.318000	4.539100	0.347010	True	1.000000	0.001200	1.108967	0.392732
1325494	0_1915046	46.360100	35.359700	18.162200	24.748700	432.073700	15.031000	0.011652	True	3.000000	0.000200	1.311100	0.733865
332780	2_65743	67.952300	42.653100	25.226800	30.465300	183.218100	14.739000	0.008978	True	0.500000	0.001200	1.593139	0.828050
1339656	1_537277	43.895600	25.066100	16.281300	19.313400	145.338200	9.888200	0.014047	True	3.000000	0.000200	1.751194	0.843005
2022989	1_1307248	24.482000	17.403100	4.418400	9.325700	861.019600	7.704200	0.209460	True	5.000000	0.000200	1.406761	0.473787
952697	4_1973207	66.332400	48.536300	26.816900	33.535400	173.236400	15.426000	0.019395	True	1.000000	0.000400	1.366655	0.799659
1712477	4_1088638	36.890900	22.139700	13.769600	16.231300	8287.779300	24.353000	0.016666	True	3.000000	0.000400	1.666278	0.848336

$$Q = \frac{ZAMS \ Mass \ 1}{ZAMS \ Mass \ 2} \qquad BHQ = \frac{Black \ Hole \ Mass \ 1}{Black \ Hole \ Mass \ 2}$$

these features were added for **physical** and **computational** reasons

■Features

1878045 1_133988 1589326 1_127252 835409 1_143413	27.795000 2 26.738100	27.720300 20.396400	Black Hole Mass 1 [Msun] 4.737200 5.877000	Black Hole Mass 2 [Msun] 4.619000 11.986900	Formation Delay Time [Myrs] 11795.084000	Semi Major Axis [Rsun] 11.461000	Orbital Eccentricity 0.174990	Formation by Common Envelope True	Alpha 3.000000	Metallicity 0.001600		Q_BH
1589326 1_127252	26.738100	20.396400			11795.084000	11.461000	0.174990	True	3.000000	0.001600	1.002695	1 005500
			5.877000	11.986900				i				1.025590
835409 1_143413	25.979100				915.528200	9.288200	0.114790	True	3.000000	0.000400	1.310923	0.490285
		25.630200	5.908600	5.208300	8001.689900	17.491000	0.617170	True	1.000000	0.000400	1.013613	1.134458
1091111 4_158105	7 21.064600	18.994800	3.024900	7.702200	185.318000	4.539100	0.347010	True	1.000000	0.001200	1.108967	0.392732
1325494 0_191504	6 46.360100	35.359700	18.162200	24.748700	432.073700	15.031000	0.011652	True	3.000000	0.000200	1.311100	0.733865
332780 2_65743	67.952300	42.653100	25.226800	30.465300	183.218100	14.739000	0.008978	True	0.500000	0.001200	1.593139	0.828050
1339656 1_53727	43.895600	25.066100	16.281300	19.313400	145.338200	9.888200	0.014047	True	3.000000	0.000200	1.751194	0.843005
2022989 1_130724	8 24.482000	17.403100	4.418400	9.325700	861.019600	7.704200	0.209460	True	5.000000	0.000200	1.406761	0.473787
952697 4_197320	7 66.332400	48.536300	26.816900	33.535400	173.236400	15.426000	0.019395	True	1.000000	0.000400	1.366655	0.799659
1712477 4_108863	36.890900	22.139700	13.769600	16.231300	8287.779300	24.353000	0.016666	True	3.000000	0.000400	1.666278	0.848336

•Label: value we want to predict

	Binary ID	ZAMS Mass 1 [Msun]	ZAMS Mass 2 [Msun]	Black Hole Mass 1 [Msun]	Black Hole Mass 2 [Msun]	Formation Delay Time [Myrs]	Semi Major Axis [Rsun]	Orbital Eccentricity	Formation by Common Envelope	Alpha	Metallicity	Q	Q_BH
1878045	1_1339891	27.795000	27.720300	4.737200	4.619000	11795.084000	11.461000	0.174990	True	3.000000	0.001600	1.002695	1.025590
1589326	1_1272522	26.738100	20.396400	5.877000	11.986900	915.528200	9.288200	0.114790	True	3.000000	0.000400	1.310923	0.490285
835409	1_1434130	25.979100	25.630200	5.908600	5.208300	8001.689900	17.491000	0.617170	True	1.000000	0.000400	1.013613	1.134458
1091111	4_1581057	21.064600	18.994800	3.024900	7.702200	185.318000	4.539100	0.347010	True	1.000000	0.001200	1.108967	0.392732
1325494	0_1915046	46.360100	35.359700	18.162200	24.748700	432.073700	15.031000	0.011652	True	3.000000	0.000200	1.311100	0.733865
332780	2_65743	67.952300	42.653100	25.226800	30.465300	183.218100	14.739000	0.008978	True	0.500000	0.001200	1.593139	0.828050
1339656	1_537277	43.895600	25.066100	16.281300	19.313400	145.338200	9.888200	0.014047	True	3.000000	0.000200	1.751194	0.843005
2022989	1_1307248	24.482000	17.403100	4.418400	9.325700	861.019600	7.704200	0.209460	True	5.000000	0.000200	1.406761	0.473787
952697	4_1973207	66.332400	48.536300	26.816900	33.535400	173.236400	15.426000	0.019395	True	1.000000	0.000400	1.366655	0.799659
1712477	4_1088638	36.890900	22.139700	13.769600	16.231300	8287.779300	24.353000	0.016666	True	3.000000	0.000400	1.666278	0.848336

Dataset imbalance

Imbalanced dataset:

- 86 % Common envelope
- 14 % Stable mass transfer

Solution: under-sampling to

obtain 50/50 dataset

Dataset imbalance

Imbalanced dataset:

- 86 % Common envelope
- 14 % Stable mass transfer

Solution: under-sampling to obtain 50/50 dataset

- Alphas well distributed
- Mainly low metallicities → merger is more likely

Removing the outliers

High stds and extreme outliers makes it difficult to cluster our data

			₁ — — — –	-				
	count	mean	std	min	1%	50%	99%	max
Orbital Eccentricity	692008.0	0.074763	0.139523	0.000015	0.007946	0.01602	0.686288	1.0
Semi Major Axis [Rsun]	692008.0	26.397353	607.786604	0.664170	3.389100	19.46700	53.129650	329100.0
								

Removing the outliers

High stds and extreme outliers makes it difficult to cluster our data

Normalization

Normalization is important for distance-based algorithms

Alpha

Alpha parameters are well distributed between the two evolution cases

Metallicities

The metallicities are imbalanced

For **higher** metallicities only Common envelope

Metallicities

The metallicities are imbalanced

For higher metallicities only Common envelope

Small number of instances, **negligible**

ZAMS Mass 1 > ZAMS Mass2 by **construction**

ZAMS Mass 1 > ZAMS Mass2 by **construction**

Introduces a bias

ZAMS Mass 1 > ZAMS Mass2 by **construction**

Introduces a bias

Problems with Machine Learning algorithms

Primary mass

- Clear pattern
- CE SMT boundary at around 40[Msun]

Secondary mass:

• Overlapping distributions

Probability density of events for M ass 1 and M ass 2 $\,$

Primary mass

- Clear pattern
- CE SMT boundary at around 40[Msun]

Secondary mass:

• Overlapping distributions

Problems with **machine learning** algorithms

Probability density of events for Mass 1 and Mass 2

BBH masses considerations

Binary black holes masses

Same pattern of primary ZAMS mass

Probability density of events for BBH M ass 1 and BBH M ass 2 $\,$

Q and BHQ

$$Q = \frac{ZAMS\ Mass\ 1}{ZAMS\ Mass\ 2}$$

$$BHQ = \frac{Black \ Hole \ Mass \ 1}{Black \ Hole \ Mass \ 2}$$

these features were added for **physical** and **computational** reasons

Q and BHQ show a good separation between the two classes and a small std

Probability density of events for BBH Mass 1 and BBH Mass 2

Orbital Eccentricity

Low eccentricity • Common Envelope• Stable MT

High eccentricity——— Common Envelope

Probability density of events for orbital eccentricity

Semi Major Axis

Low orbital separation

Common envelope more likely

Probability density of events for Semi Major Axis

Expectations: from dataset visualization

	ŗ						 I		1 			ı——	
	Binary ID	ZAMS Mass 1 [Msun]	ZAMS Mass 2 [Msun]	Black Hole Mass 1 [Msun]	Black Hole Mass 2 [Msun]	Formation Delay Time [Myrs]	Semi Major Axis [Rsun]	Orbital Eccentricity	Formation by Common Envelope	Alpha	Metallicity	Q	Q_BH
1878045	1_1339891	27.795000	27.720300	4.737200	4.619000	11795.084000	11.461000	0.174990	True	3.000000	0.001600	1.002695	1.025590
1589326	1_1272522	26.738100	20.396400	5.877000	11.986900	915.528200	9.288200	0.114790	True	3.000000	0.000400	1.310923	0.490285
835409	1_1434130	25.979100	25.630200	5.908600	5.208300	8001.689900	17.491000	0.617170	True	1.000000	0.000400	1.013613	1.134458
1091111	4_1581057	21.064600	18.994800	3.024900	7.702200	185.318000	4.539100	0.347010	True	1.000000	0.001200	1.108967	0.392732
1325494	0_1915046	46.360100	35.359700	18.162200	24.748700	432.073700	15.031000	0.011652	True	3.000000	0.000200	1.311100	0.733865
332780	2_65743	67.952300	42.653100	25.226800	30.465300	183.218100	14.739000	0.008978	True	0.500000	0.001200	1.593139	0.828050
1339656	1_537277	43.895600	25.066100	16.281300	19.313400	145.338200	9.888200	0.014047	True	3.000000	0.000200	1.751194	0.843005
2022989	1_1307248	24.482000	17.403100	4.418400	9.325700	861.019600	7.704200	0.209460	True	5.000000	0.000200	1.406761	0.473787
952697	4_1973207	66.332400	48.536300	26.816900	33.535400	173.236400	15.426000	0.019395	True	1.000000	0.000400	1.366655	0.799659
1712477	4_1088638	36.890900	22.139700	13.769600	16.231300	8287.779300	24.353000	0.016666	True	3.000000	0.000400	1.666278	0.848336

Correlation matrix

Masses are highly correlated

This could **negatively affect** prediction of the feature importances

Correlation matrix

Masses are highly correlated

This could **negatively affect** prediction of the feature importances

Correlation matrix

Masses are highly correlated

This could **negatively affect** prediction of the feature importances

$$Q = \frac{ZAMZ \, Mass \, 1}{ZAMZ \, Mass \, 2}$$

$$BHQ = \frac{Black\ Hole\ Mass\ 1}{Black\ Hole\ Mass\ 2}$$

these features were added for **physical** and **computational** reasons

Feature correlation matrix

Principal Component Analysis

Without normalization:

1 PC ~ 99% variance

With normalization:

variance is distributed across more PC

Feature importance

Model in-built method:

Weight for Linear SVM

Medium
Difference in
Impurity for RFC

Model agnostic methods:

Permutation importance

Feature-dropping

Mean Decrease in Impurity for RFC

Mean Decrease Impurity (MDI): total decrease in node impurity, weighted by the probability of reaching that node (approximated by the proportion of samples reaching that node), averaged over all trees of the ensemble

Disadvantage:

• Biased toward high cardinality and continuous features

Permutation feature importance doesn't suffer from this

Feature permutation

Feature permutation: decrease in a model score when a single feature is randomly shuffled

Disadvantages:

- Misleading values on strongly correlated features
- Creates new instances that can be physically impossible

Feature-dropping could be a good fallback

Feature-dropping

Feature-dropping: change in model score when a single feature is removed

Every time the model is retrained

Disadvantage:

- Long calculation time
- Larger algorithm complexity

Linear SVM

SVM coefficients

Linear SVM

SVM coefficients

Linear SVM: ranking

Ranking	Linear SVM	Feature permutation	Feature-dropping
1	BH Mass 1	BH Mass 1	BH Mass 1
2	ZAMS Mass 2	ZAMS Mass 2	ZAMS Mass 2
3	BH Mass 2	BH Mass 2	BHQ
10	Metallicity	Metallicity	Orbital eccentricity
11	Alpha	Alpha	Alpha

Random Forest

Accuracy

Mean Decrease in Impurity

Feature permutation

Random Forest

Accuracy

Mean Decrease in Impurity

Random Forest: ranking

Ranking	MDI	Feature permutation	Feature-dropping
1	Q	Q	X
2	ВНО	BHQ	X
3	Semi-major axis	BH Mass 1	X
10	Metallicity	Formation delay time	X
11	Alpha	Orbital eccentricity	X

Neural Network

NN coefficients

Linear SVM coefficients

Neural Network

NN coefficients

Feature-permutation

Neural Network

NN coefficients

Feature-dropping

Neural Network: ranking

Ranking	NN coefficients	Feature permutation	Feature-dropping
1	Q	Q	ZAMS Mass 2
2	Orbital eccentricity	Semi-major axis	Metallicity
3	BH Mass 1	ZAMS Mass 2	BH Mass 1
10	Formation delay time	BHQ	BHQ
11	Alpha	Alpha	Alpha

Conclusion

• Goal: Infer what are the most important features for determining the evolution of binary stars into binary black holes

- Dataset preprocess:
 - Balance the possible evolution paths
 - Removal of the outliers
 - Normalization
- Data evaluation qualitative observation of 1:1 feature plots :
 - ZAMS Masses
 - BBH masses
 - Q and BHQ values
 - Orbital eccentricity
 - Semi-major axis

Expected important features

Conclusions

- Machine learning algorithm:
 - Built-in vs custom methods:
 - MDI (built-in)
 - Feature permutation (custom)
 - Feature dropping (custom)
 - Models:
 - Linear SVM
 - Random Forest
 - Neural Network
- Best model → Random Forest, it resembles expectations

■ Most important features → Masses (alone or ratios) and semi-major axis

Conclusion

- Most important features:
- Most important features --> masses (alone or ratios)
- Least important features —> Metallicity (metal-poor stars); Alpha parameter

Conclusion

- Show all results in the same slide
- Do the models agree with each other?

- If yes, do they produce the expected results?
- If no, why do we think they fail?

- -Other ways of dealing with unbalanced dataset https://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset/
- -why theory?
- -https://towardsdatascience.com/all-about-feature-scaling-bcc0ad75cb35