Systemy uczące się - laboratorium

Mateusz Lango

Zakład Inteligentnych Systemów Wspomagania Decyzji Wydział Informatyki i Telekomunikacji Politechnika Poznańska

"Akademia Innowacyjnych Zastosowań Technologii Cyfrowych (Al Tech)", projekt finansowany ze środków Programu Operacyjnego Polska Cyfrowa POPC.03.02.00-00-0001/20

Z ostatnich zajęć...

Problem

Zdefiniuj zadanie grupowania.

Problem

Jakie są typy algorytmów analizy skupień?

Problem

Jak działa algorytm k-średnich?

Problem

Jakie są wady algorytmu k-średnich?

Klasyfikatory generatywne

 Na jednych z pierwszych zajęć wprowadziliśmy różnicę pomiędzy klasyfikatorami dyskryminacyjnymi i generatywnymi.

$$\max \sum_{i=1}^{n} \ln P(x_i, y_i) \qquad \text{vs.} \qquad \max \sum_{i=1}^{n} \ln P(y_i | x_i)$$

- Jedną z zalet algorytmów generatywnych jest m.in. możliwość stosunkowo łatwego(*) radzenia sobie z brakującymi danymi
- Czy jednak można skorzystać z klasyfikatorów generatywnych kiedy brakuje wszystkich etykiet klas?

Wielowymiarowy rozkład normalny

 Funkcja gęstości 1-wymiarowego rozkładu normalnego

$$N_{\mu,\sigma}(x) = rac{1}{\sigma\sqrt{2\pi}} \, \exp\left(rac{-(x-\mu)^2}{2\sigma^2}
ight).$$

 Funkcja gęstości d-wymiarowego rozkładu normalnego

$$N_{ec{\mu},\Sigma}(ec{x}) = rac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \ \cdot \exp\left(-rac{1}{2}(ec{x}-ec{\mu})^{ op}\Sigma^{-1}(ec{x}-ec{\mu})
ight)$$

parametryzowana wektorem średnich $\vec{\mu}$ oraz macierzą wariancji-kowariancji Σ

Powtórka: Liniowa analiza dyskryminacyjne

ullet Rozkład łączny $P(ec{x},y)$ możemy rozbić na dwie składowe korzystając z reguły łańcuchowej

$$P(\vec{x}, y) = P(\vec{x}|y)P(y)$$

Zakładając rozkład normalny cech pod warunkiem klasy:

$$P(\vec{x}, y) = N(\vec{x}|\vec{\mu}_y, \Sigma_y)P(y)$$

$$\mathcal{N}_{ec{\mu},\Sigma}(ec{x}) = rac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp\left(-rac{1}{2}(ec{x}-ec{\mu})^{ op}\Sigma^{-1}(ec{x}-ec{\mu})
ight)$$

ullet Dla każdej klasy potrzebujemy d średnich (dla każdej cechy) oraz kowariancje między parami cech (rzędu d^2)

Liniowa analiza dyskryminacyjna - estymacja

Zgodnie z założeniami LDA:

$$P(\vec{x}, y) = N(\vec{x}|\vec{\mu}_y, \Sigma)P(y)$$

• Zgodnie z zasadą maksymalnej wiarygodności:

$$\max \sum_{i=1}^n \ln P(\vec{x}_i, y_i) = \sum_{i=1}^n \ln N(\vec{x}|\vec{\mu}_y, \Sigma) P(y)$$

- Przyrównując pochodną do 0 otrzymujemy:
 - $P(y) = \frac{n_y}{n}$ liczba przykładów z klasy y podzielić przez liczbę wszystkich przykładów
 - $\mu_k = \frac{1}{n_k} \sum_{v_i=k} x_i$ dla każdej klasy k
 - $\Sigma = \frac{1}{n} \sum_{i=1}^{n} (x_i \mu_{y_i})(x_i \mu_{y_i})^T$ (tylko 1, współdzielony między klasami) ¹

¹Zwykle korzystamy z nieobciążonych estymatorów $\Sigma = \frac{1}{n-|C|} \sum_{k=1}^{|C|} \sum_{y_i=k} (x_i - \mu_{y_i}) (x_i - \mu_{y_i})^T$ gdzie |C| oznacza liczbę klas

$$P(\vec{x}, y) = N(\vec{x}|\vec{\mu}_y, \Sigma)P(y)$$

 $P(x) = ?$

$$P(\vec{x}, y) = N(\vec{x}|\vec{\mu}_{y}, \Sigma_{y})P(y)$$
 $P(x) = N(\vec{x}|\vec{\mu}_{1}, \Sigma_{1})P(y = 1)$
 $+ N(\vec{x}|\vec{\mu}_{0}, \Sigma_{0})P(y = 0)$
 $P(y = 1) = ?$
(1

$$P(x) = \pi N(\vec{x}|\vec{\mu}_1 = 0, \sigma_1 = 1) + (1 - \pi)N(\vec{x}|\vec{\mu}_0 = 6, \sigma_0 = 1)$$

$$\pi = P(y = 1) = 0.5$$
(2)

$$P(x) = \pi N(x|\mu_1 = 0, \sigma_1 = 1) + (1 - \pi)N(x|\mu_0 = 6, \sigma_0 = 1)$$

$$\pi = P(y = 1) = 0.7$$
(3)

$$P(x) = \pi N(x|\mu_1 = 0, \sigma_1 = 1) + (1 - \pi)N(x|\mu_0 = 2, \sigma_0 = 1)$$

$$\pi = P(y = 1) = 0.7$$
(4)

$$P(x) = \pi N(x|\mu_1 = 0, \sigma_1 = 1) + (1 - \pi)N(x|\mu_0 = 2, \sigma_0 = 1)$$

$$\pi = P(y = 1) = 0.7$$
(5)

$$P(x) = \pi_4 N(x | \mu_4 = -3, \Sigma_4 = 0.4)$$

$$+ ...$$

$$+ \pi_1 N(x | \mu_1 = 0, \sigma_1 = 1)$$

$$+ \pi_0 N(x | \mu_0 = 2, \sigma_0 = 1)$$
(6)

$$P(x) = \pi_4 N(x | \mu_4 = -3\Sigma_4 = 0.4)$$
+ ...
+ $\pi_1 N(x | \mu_1 = 0, \sigma_1 = 1)$
+ $\pi_0 N(x | \mu_0 = 2, \sigma_0 = 1)$

$$(7)$$

Mieszaniny rozkładów

$$P(x) = \sum_{i=1}^{K} \pi_i P_i(x)$$

przy założeniu $\sum_{i=1}^K \pi_i = 1$, $\pi_i \geq 0$

- statystyczna paralela do modeli addytywnych
- ullet zwyczajowo P_i są rozkładami z tej samej rodziny
- "Gaussian mixture model is a universal approximator of densities, in the sense that any smooth density can be approximated with any specific nonzero amount of error by a Gaussian mixture model with enough components."
- problem identyfikowalności (ang. identifiability) (co najmniej K! rozwiązań)

$$P(x) = \sum_{i=1}^{K} \pi_i P_i(x)$$

przy założeniu $\sum_{i=1}^K \pi_i = 1$, $\pi_i \geq 0$

- zakładamy, że każdy komponent mieszaniny to jedno skupienie (grupa danych)
- jak uzyskać przypisanie do grupy (komponentu) dla obiektu?

$$P(z = 1|x) = \frac{\pi_1 P_i(x)}{\sum_{i=1}^{K} \pi_i P_i(x)}$$

$$P(x) = \sum_{i=1}^{K} \pi_i P_i(x)$$

przy założeniu $\sum_{i=1}^{K} \pi_i = 1$, $\pi_i \geq 0$

- zakładamy, że każdy komponent mieszaniny to jedno skupienie (grupa danych)
- jak uzyskać przypisanie do grupy (komponentu) dla obiektu?

$$P(z = 1|x) = \frac{\pi_1 P_i(x)}{\sum_{i=1}^{K} \pi_i P_i(x)}$$

Jeśli $P_i(x)$ to rozkład normalny, a K=2...

$$P(z = 1 | x) = \frac{\pi N(x; \mu_1, \Sigma_1)}{(1 - \pi) N(x; \mu_0, \Sigma_0) + \pi N(x; \mu_1, \Sigma_1)}$$

$$P(x) = \sum_{i=1}^{K} \pi_i P_i(x)$$

przy założeniu $\sum_{i=1}^{K} \pi_i = 1$, $\pi_i \geq 0$

- zakładamy, że każdy komponent mieszaniny to jedno skupienie (grupa danych)
- jak uzyskać przypisanie do grupy (komponentu) dla obiektu?

$$P(z = 1|x) = \frac{\pi_1 P_i(x)}{\sum_{i=1}^{K} \pi_i P_i(x)}$$

Jeśli $P_i(x)$ to rozkład normalny, a K=2...

$$P(z=1|x) = \frac{P(z=1)N(x; \mu_1, \Sigma_1)}{(1 - P(z=1))N(x; \mu_0, \Sigma_0) + P(z=1)N(x; \mu_1, \Sigma_1)}$$

$$P(x) = \sum_{i=1}^{K} \pi_i P_i(x)$$

przy założeniu $\sum_{i=1}^{K} \pi_i = 1, \ \pi_i \geq 0$

- zakładamy, że każdy komponent mieszaniny to jedno skupienie (grupa danych)
- jak uzyskać przypisanie do grupy (komponentu) dla obiektu?

$$P(z = 1|x) = \frac{\pi_1 P_i(x)}{\sum_{i=1}^{K} \pi_i P_i(x)}$$

Jeśli $P_i(x)$ zakłada niezależność warunkową, a K=2...

$$P(z=1|x) = \frac{\pi \prod_{j=1}^{d} P(x_j|z=1)}{(1-\pi) \prod_{j=1}^{d} P(x_j|z=0) + \pi \prod_{j=1}^{d} P(x_j|z=1)}$$

$$P(x) = \sum_{i=1}^{K} \pi_i P_i(x)$$

przy założeniu $\sum_{i=1}^K \pi_i = 1$, $\pi_i \geq 0$

- zakładamy, że każdy komponent mieszaniny to jedno skupienie (grupa danych)
- jak uzyskać przypisanie do grupy (komponentu) dla obiektu?

$$P(z = 1|x) = \frac{\pi_1 P_i(x)}{\sum_{i=1}^{K} \pi_i P_i(x)}$$

• przypisanie do grup jest probabilistyczne (tak jak klasyfikacja) tj. dany przykład może należeć do różnych komponentów (grup) z różnymi prawdopodobieństwami

Mieszanina rozkładów - wystarczy wysetymować?

$$\max \sum_{i=1}^{n} P(x_i) = \sum_{i=1}^{n} \sum_{k=1}^{K} \pi_k P_k(x_i)$$

- LDA/QDA ma bardzo proste rozwiązanie, więc tutaj na pewno też?
- problem składający się gaussów

- brak "closed-form solution"
- brak unikalnego maksimum globalnego

$$\max_{\theta} \ell(\theta) = \sum_{j=1}^{n} \log P(\vec{x}^{(j)}; \theta) = \sum_{j=1}^{n} \log \left[\sum_{y \in Y} P(\vec{x}^{(j)}, y; \theta) \right]$$

Algorytm oczekiwanie-maksymalizacja pomaga nam w optymalizacji wiarygodności zmarginalizowanego rozkładu $P(\vec{x};\theta)$ o ile potrafimy efektywnie obliczyć dwa rozkłady: $P(y|\vec{x};\theta)$ oraz $P(\vec{x},y;\theta)$.

- lacktriangle Algorytm rozpoczyna od pewnych (losowych) parametrów heta
- **②** Zastępujemy zmienne ukryte y ich wartościami oczekiwanymi $(P(y|ec{x}; heta))$
- lacktriangle Mając wartości oczekiwane y możemy wstawić je do $P(x,y;\theta)$ i zmaksymalizować
- Skocz do kroku 2

- **1** Zainicjalizuj t = 0 oraz parametry modelu $\theta^{(t)}$
- 2 Dopóki nie jest spełniony warunek stopu:
 - Wyznacz WARTOŚĆ OCZEKIWANĄ logarytmu funkcji wiarygodności po zmiennych ukrytych przy znajomości $P(Y|\vec{X};\theta^{(t)})$.

$$\mathbb{E}_{y \sim P(Y | \vec{X}; \theta^{(t)})} \log P(\vec{x}, y; \theta)$$

$$\theta^{(t+1)} = \arg\max_{\theta} \mathbb{E}_{y \sim P(y|\vec{x}; \theta^{(t)})} \log P(\vec{x}, y; \theta)$$

Co tak naprawdę oznacza krok E?

$$\mathbb{E}_{y \sim P(y|\vec{x};\theta^{(t)})} \log P(\vec{x}, y; \theta) = \sum_{y \in Y} P(y|\vec{x}; \theta^{(t)}) \log P(\vec{x}, y; \theta)$$

- **1** Zainicjalizuj t = 0 oraz parametry modelu $\theta^{(t)}$
- Opóki nie jest spełniony warunek stopu:
 - Wyznacz WARTOŚĆ OCZEKIWANĄ logarytmu funkcji wiarygodności po zmiennych ukrytych przy znajomości $P(Y|\vec{X};\theta^{(t)})$.

$$\mathbb{E}_{y \sim P(Y | \vec{X}; \theta^{(t)})} \log P(\vec{x}, y; \theta)$$

$$\theta^{(t+1)} = \arg\max_{\theta} \mathbb{E}_{y \sim P(y|\vec{x};\theta^{(t)})} \log P(\vec{x}, y; \theta)$$

Co tak naprawdę oznacza krok E?

$$\mathbb{E}_{y \sim P(y|\vec{x};\theta^{(t)})} \log P(\vec{x}, y; \theta) = \sum_{y \in Y} P(y|\vec{x}; \theta^{(t)}) \log P(\vec{x}, y; \theta)$$

EM dla GMM

Krok E

$$\widetilde{z_i} = \mathbb{E}[z_i] = P(z_i = 1|x_i) = \frac{\pi N(x_i; \mu_1, \Sigma_1)}{(1-\pi)N(x_i; \mu_0, \Sigma_0) + \pi N(x_i; \mu_1, \Sigma_1)}$$

Krok M

$$\pi = \frac{\sum_{i=1}^{n} z_i}{n}$$

$$\mu_1 = \frac{\sum_{i=1}^{n} z_i x_i}{\sum_{i=1}^{n} z_i}$$
...

Przykład

EM-GMM w praktyce

- duże podobieństwo do k-średnich (przypadek graniczny $\Sigma = I\sigma^2$ oraz $\sigma \to 0$)
- Jak wybrać liczbę komponentów K?
- Jak poradzić sobie ze składającymi się gaussami?
- Jak zainicjalizować?
- Ile parametrów ma model?

Zadanie

Problem

Dany jest zestaw danych w którym każda obserwacja zawiera wyniki 10 rzutów monetą, w których część wyników została wygenerowana przez podrzucanie monety A, a druga część wyników poprzez podrzucanie monety B. Na koniec eksperymentu okazało się, że monety nie były dobrze wyważone – zaprojektuj algorytm EM, który podzieli obserwacje na te wygenerowane monetą A i B.

Problem

Dany jest klasyfikator Naiwnego Bayesa dla cech binarnych i klasyfikacji binarnej. Zaprojektuj algorytm EM uczący "klasyfikator" na danych nienadzorowanych.

a Maximum likelihood

H	Т	Т	Т	Н	Н	Т	Н	Т	Н
---	---	---	---	---	---	---	---	---	---

	Т	Н	Н	Н	Т	Н	Н	Н	Т	Н
-						-				

5 sets, 10 tosses per set

Coin A	Coin B
	5 H, 5 T
9 H, 1 T	
8 H, 2 T	
	4 H, 6 T
7 H, 3 T	
24 H, 6 T	9 H, 11 T

$$\hat{\theta}_{A} = \frac{24}{24+6} = 0.80$$

$$\hat{\theta}_{B} = \frac{9}{9 + 11} = 0.45$$

Uczenie pół-nadzorowane

- Dempster et. all 1977 \Rightarrow Little 1977 (!)
- Teoria: z wystarczająco dużą liczbą przykładów niezaetykietowanych, znajdziemy EM bardziej prawdopodobny model niż używając tylko danych nadzorowanych
- Jednak w praktyce...

Pół-nadzorowany Naiwny Bayes

$$\max \sum_{i=1}^{n_L} \ln P(\vec{x}_i, y_i) + \sum_{i=1}^{n_U} \ln P(\vec{x}_i)$$

Algorithm 3.1 Basic EM algorithm for semi-supervised learning of a text classifier

- Inputs: Collections X_l of labeled documents and X_u of unlabeled documents.
- Build an initial naive Bayes classifier, $\hat{\theta}$, from the labeled documents, X_l , only. Use maximum a posteriori parameter estimation to find $\hat{\theta} = \arg \max_{\theta} \mathrm{P}(X_l | \theta) \mathrm{P}(\theta)$ (see Eqs. 3.5 and 3.6).
- Loop while classifier parameters improve, as measured by the change in $l(\theta|X,Y)$ (the log probability of the labeled and unlabeled data, and the prior) (see Equation 3.8):
 - (E step) Use the current classifier, $\hat{\theta}$, to estimate component membership of each unlabeled document, i.e., the probability that each mixture component (and class) generated each document, $P(c_j|x_i;\hat{\theta})$ (see Eq. 3.7).
 - (M step) Re-estimate the classifier, $\hat{\theta}$, given the estimated component membership of each document. Use maximum a posteriori parameter estimation to find $\hat{\theta} = \arg \max_{\theta} P(X, Y | \theta) P(\theta)$ (see Eqs. 3.5 and 3.6).
- \bullet Output: A classifier, $\hat{\theta},$ that takes an unlabeled document and predicts a class label.

Pół-nadzorowany Naiwny Bayes

Pół-nadzorowany Naiwny Bayes

Category	NB1	EM1	NB^*	EM^*
acq	86.9	81.3	88.0 (4)	93.1 (10)
corn	94.6	93.2	96.0 (10)	97.2 (40)
crude	94.3	94.9	95.7(13)	96.3 (10)
earn	94.9	95.2	95.9(5)	95.7(10)
grain	94.1	93.6	96.2(3)	96.9 (20)
interest	91.8	87.6	95.3(5)	95.8 (10)
money-fx	93.0	90.4	94.1(5)	95.0 (15)
ship	94.9	94.1	96.3 (3)	95.9(3)
trade	91.8	90.2	94.3(5)	95.0 (20)
wheat	94.0	94.5	96.2(4)	97.8 (40)

Dziękuję za uwagę!

Rzeczpospolita Polska

