МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения» Тема: «Оценка параметров надежности программ по временным моделям обнаружения ошибок»

Студент гр. 8304	Чешуин Д. И.
Преподаватель	Кирьянчиков В. А

Цель работы.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.

Задание.

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение интервала между соседними (i-1) –ой и i –ой ошибками (i=[1,30]), в соответствии с:
 - а. Равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\rm paвh}=10$, СКО $s_{\rm paвh}=20/(2*sqrt(3))=5.8;$
 - b. Экспоненциальным законом распределения, W(y) = b * exp(-b * y), $y \ge 0$, с параметром b = 0.1 и соответственно $m_{\rm эксп} = s_{\rm эксп} = 1/b = 10$. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = -ln(t)/b;
 - с. Релеевским законом распределения $W(y) = (y/c^2) * exp(-y^2/(2*c^2)),$ y>=0, с параметром c=8.0 и соответственно $m_{\rm pen}=c*sqrt(\pi/2),$ $s_{\rm pen}=c*sqrt(2-\pi/2).$ Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y=c*sqrt(-2*ln(t)).
- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать n=30, 24 и 18 элементов).

- 4. Если B > n, оценить значения средних времен X_j , $j = n + 1, n + 2 \dots, n + k$ до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы.

1. Равномерный закон распределения.

а) 100% входных данных.

Был сгенерирован массив из 30-ти элементов, распределенных по равномерному закону в интервале [0,20]. Массив был отсортирован по возрастанию. Результаты представлены в таблице 1.

Таблица 1 – Равномерное распределение (100%).

i	1	2	3	4	5	6	7	8	9	10
X_i	0.417	0.569	3.33	3.382	4.036	4.218	4.507	6.025	6.121	7.677
i	11	12	13	14	15	16	17	18	19	20
X_i	8.562	11.008	11.54	11.583	11.834	12.618	12.783	13.043	14.596	15.13
i	21	22	23	24	25	26	27	28	29	30
X_i	15.227	15.241	15.68	16.99	17.366	17.466	17.645	17.812	18.113	18.76

Проверка существования максимума. Коэффициент $A = \frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i} = 19.82.$ Условие $A > \frac{n+1}{2}$ выполнено: 19.82 > 15.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 2.

Таблица 2 – Значения функций для равномерного распределения (100%).

m	31	32	33	34	35	36	37
$f_n(m)$	3.9949	3.0273	2.5585	2.2555	2.0349	1.8635	1.7245
g(m,A)	2.6844	2.4639	2.2769	2.1163	1.9768	1.8546	1.7467
$ f_n(m) $	1.3105	0.5634	0.2816	0.1392	0.0581	0.0089	0.0222
-g(m,A)							

Минимум при m=36. Первоначальное число ошибок B=m-1=35. $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.0055648.$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \ \text{где } j=n+1, n+2\dots, n+k. \ \text{Результат представлен в таблице 3}.$

Таблица 3 – Время обнаружения ошибок для равн. распределения (100%).

j	31	32	33	34	35
X_j (дней)	35.94	44.93	59.9	89.85	179.7

Было рассчитано время до завершения тестирования $t_k = 410.32$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 743.6$ дней.

b) 80% входных данных.

Был сгенерирован массив из 24-ти элементов, распределенных по равномерному закону в интервале [0,20]. Массив был отсортирован по возрастанию. Результаты представлены в таблице 4.

Таблица 4 – Равномерное распределение (80%).

i	1	2	3	4	5	6	7	8
X_i	0.197	2.823	2.877	4.007	4.193	7.303	8.222	8.629
i	9	10	11	12	13	14	15	16
X_i	9.144	9.52	10.101	11.851	11.862	13.728	13.753	14.116
i	17	18	19	20	21	22	23	24
X_i	14.189	14.658	15.361	15.502	16.827	19.16	19.329	19.432

Проверка существования максимума. Коэффициент $A = \frac{\sum_{i=1}^{n} i X_i}{\sum_{i=1}^{n} X_i} = 15.83.$ Условие $A > \frac{n+1}{2}$ выполнено: 15.83 > 12.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 5.

Таблица 5 – Значения функций для равномерного распределения (80%).

m	25	26	27	28	29	30	31
$f_n(m)$	3.7759	2.8159	2.3544	2.0581	1.8438	1.6783	1.5449
g(m,A)	2.6181	2.3606	2.1492	1.9726	1.8228	1.6941	1.5824
$ f_n(m)-g(m,A) $	1.1578	0.4553	0.2052	0.0855	0.021	0.0158	0.0375

Минимум при m=30. Первоначальное число ошибок B=m-1=29. $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00635.$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 6}.$

Таблица 6 – Время обнаружения ошибок для равн. распределения (80%).

j	25	26	27	28	29
X_j (дней)	31.5	39.37	52.49	78.74	157.48

Было рассчитано время до завершения тестирования $t_k=359.58$ дней. Было рассчитано общее время тестирования $t_{\rm общ}=626.36$ дней.

с) 60% входных данных.

Был сгенерирован массив из 18-ти элементов, распределенных по равномерному закону в интервале [0,20]. Массив был отсортирован по возрастанию. Результаты представлены в таблице 7.

Таблица 7 – Равномерное распределение (60%).

i	1	2	3	4	5	6	7	8	9
X_i	0.153	0.759	1.078	1.512	2.805	2.997	5.207	5.26	8.203
i	10	11	12	13	14	15	16	17	18
X_i	8.355	8.87	10.368	13.229	13.764	14.582	14.711	15.509	16.988

Проверка существования максимума. Коэффициент $A = \frac{\sum_{i=1}^{n} i X_i}{\sum_{i=1}^{n} X_i} = 13.09.$

Условие $A > \frac{n+1}{2}$ выполнено: 13.09 > 9.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 8.

Таблица 8 – Расчёт значений функций для равномерного распределения (60%).

m	19	20	21
$f_n(m)$	3.4951	2.5477	2.0977
g(m,A)	3.044	2.6037	2.2747
$ f_n(m) - g(m, A) $	0.4511	0.056	0.177

Минимум при m=20. Первоначальное число ошибок B=m-1=19. $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.0180373.$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 9}.$

Таблица 9 — Время обнаружения ошибок для равн. распределения (60%).

j	19
X_j (дней)	55.44

Было рассчитано время до завершения тестирования $t_k = 55.44$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 199.79$ дней.

2. Экспоненциальный закон распределения.

а) 100% входных данных.

Был сгенерирован массив из 30-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = -ln(t)/b. Массив был отсортирован по возрастанию. Результаты представлены в таблице 10.

Таблица 10 – Экспоненциальное распределение (100%).

i	1	2	3	4	5	6	7	8	9	10
X_i	0.131	0.587	0.704	0.769	1.767	2.219	2.319	2.485	2.957	3.025
i	11	12	13	14	15	16	17	18	19	20
X_i	3.216	3.96	4.62	5.888	7.052	9.014	10.161	11.147	12.31	12.983
i	21	22	23	24	25	26	27	28	29	30
X_i	13.744	14.355	17.72	19.38	20.794	20.875	22.828	35.066	40.745	47.105

Проверка существования максимума. Коэффициент $A = \frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i} = 23.42.$ Условие $A > \frac{n+1}{2}$ выполнено: 23.42 > 15.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 11.

Таблица 11-3начения функций для экспоненциального распределения (100%).

m	31	32
$f_n(m)$	3.995	3.0272
g(m,A)	3.9598	3.4981
$ f_n(m)-g(m,A) $	0.0352	0.4709

Минимум при m=31. Первоначальное число ошибок B=m-1=30. $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.01131613.$

Условие B > n не выполняется.

Было рассчитано общее время тестирования $t_{\text{общ}} = 349.93$ дней.

b) 80% входных данных.

Был сгенерирован массив из 24-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1. Массив был отсортирован по возрастанию. Результаты представлены в таблице 12.

Таблица 12 – Экспоненциальное распределение (80%).

i	1	2	3	4	5	6	7	8
X_i	0.121	0.253	0.758	0.823	2.971	3.313	3.538	3.567
i	9	10	11	12	13	14	15	16
X_i	4.05	6.972	7.963	8.074	8.651	11.907	13.168	13.471
i	17	18	19	20	21	22	23	24
X_i	15.702	15.847	16.983	21.456	28.473	37.723	39.12	48.283

Проверка существования максимума. Коэффициент $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 18.73.$

Условие $A > \frac{n+1}{2}$ выполнено: 18.73 > 12.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 13.

Таблица 13 – Значения функций для экспоненциального распределения (80%).

m	25	26
$f_n(m)$	3.7759	2.8159
g(m,A)	3.8306	3.3034
$ f_n(m) - g(m, A) $	0.0547	0.4875

Минимум при m=25. Первоначальное число ошибок B=m-1=24. $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.0122311.$

Условие B > n не выполняется.

Было рассчитано общее время тестирования $t_{\text{общ}} = 313.19$ дней.

с) 60% входных данных.

Был сгенерирован массив из 18-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1. Массив был отсортирован по возрастанию. Результаты представлены в таблице 14.

Таблица 14 – Экспоненциальное распределение (60%).

i	1	2	3	4	5	6	7	8	9
X_i	0.192	3.079	3.23	3.945	4.604	5.142	5.656	7.154	7.215
i	10	11	12	13	14	15	16	17	18
X_i	7.34	8.486	13.471	16.503	16.82	18.773	24.651	25.903	28.647

Проверка существования максимума. Коэффициент $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 13.24.$

Условие $A > \frac{n+1}{2}$ выполнено: 13.24 > 9.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 15.

Таблица 15 – Значения функций для экспоненциального распределения (60%).

m	19	20	21
$f_n(m)$	3.4951	2.5477	2.0977
g(m,A)	3.1227	2.661	2.3183
$ f_n(m) - g(m, A) $	0.3724	0.1133	0.2206

Минимум при m=20. Первоначальное число ошибок B=m-1=19. $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.01325143.$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 16}.$

Таблица 16 – Время обнаружения ошибок для эксп. распределения (60%).

j	19
X_j (дней)	75.46

Было рассчитано время до завершения тестирования $t_k = 75.46$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 276.27$ дней.

3. Релеевский закон распределения.

а) 100% входных данных.

Был сгенерирован массив из 30-ти элементов, распределенных по релеевскому закону с параметром c = 8.0. Значения случайной величины Y с релеевским законом распределения с параметром «с» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = c * sqrt(-2*ln(t)). Массив был отсортирован по возрастанию. Результаты представлены в таблице 17.

Таблица 17 – Релеевское распределение (100%).

i	1	2	3	4	5	6	7	8	9	10
X_i	1.872	3.203	3.246	3.246	3.372	3.711	4.152	5.178	5.314	5.374
i	11	12	13	14	15	16	17	18	19	20
X_i	5.969	7.439	7.452	9.028	9.583	10.11	10.152	11.576	11.592	12.747
i	21	22	23	24	25	26	27	28	29	30
X_i	12.80	13.575	14.155	14.199	14.242	16.04	17.806	19.783	21.186	24.026

Проверка существования максимума. Коэффициент $A = \frac{\overline{\sum_{i=1}^{n} i X_i}}{\sum_{i=1}^{n} X_i} = 20.38.$

Условие $A > \frac{n+1}{2}$ выполнено: 20.38 > 15.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 18.

Таблица 18 - 3начения функций для релеевского распределения (100%).

m	31	32	33	34	35	36
$f_n(m)$	3.995	3.027	2.558	2.255	2.035	1.863
g(m,A)	2.826	2.583	2.378	2.203	2.053	1.921
$ f_n(m)-g(m,A) $	1.169	0.444	0.18	0.052	0.018	0.058

Минимум при m=35. Первоначальное число ошибок B=m-1=34. $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.0067939.$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \ \text{где } j = n+1, n+2 \dots, n+k. \ \text{Результат представлен в таблице 19}.$

Таблица 19 – Время обнаружения ошибок для релеев. распределения (100%).

j	31	32	33	34
<i>X_j</i> (дней)	36.8	49.06	73.6	147.19

Было рассчитано время до завершения тестирования $t_k = 306.65$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 608.78$ дней.

b) 80% входных данных.

Был сгенерирован массив из 24-ти элементов, распределенных по релеевскому закону с параметром c=8.0. Массив был отсортирован по возрастанию. Результаты представлены в таблице 20.

Таблица 20 – Релеевское распределение (80%).

i	1	2	3	4	5	6	7	8
X_i	3.267	3.918	4.643	4.692	4.978	5.493	5.741	5.856
i	9	10	11	12	13	14	15	16
X_i	6.012	6.194	6.689	8.258	8.271	8.562	8.575	8.988
i	17	18	19	20	21	22	23	24
X_i	11.084	11.312	12.027	13.075	13.398	13.575	14.242	14.557

Проверка существования максимума. Коэффициент $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 15.32.$

Условие $A > \frac{n+1}{2}$ выполнено: 15.32 > 12.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 21.

Таблица 21 – Значения функций для релеевского распределения (80%).

m	25	26	27	28	29	30	31	32	33
$f_n(m)$	3.776	2.816	2.354	2.058	1.846	1.68	1.545	1.434	1.34
g(m,A)	2.479	2.247	2.055	1.893	1.754	1.635	1.53	1.439	1.357
$ f_n(m) - g(m, A) $	1.297	0.569	0.299	0.165	0.092	0.045	0.015	0.005	0.017

Минимум при m=32. Первоначальное число ошибок B=m-1=31. $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.0070738.$

Было рассчитано среднее время обнаружения следующих ошибок $X_j=rac{1}{K(B-j+1)},$ где $j=n+1,n+2\dots,n+k.$ Результат представлен в таблице 22.

Таблица 22 – Время обнаружения ошибок для релеев. распределения (80%).

j	25	26	27	28	29	30	31
X_j (дней)	20.2	23.56	28.27	35.34	47.12	70.68	141.37

Было рассчитано время до завершения тестирования $t_k = 366.54$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 569.95$ дней.

с) 60% входных данных.

Был сгенерирован массив из 18-ти элементов, распределенных по релеевскому закону с параметром c=8.0. Массив был отсортирован по возрастанию. Результаты представлены в таблице 23.

Таблица 23 – Релеевское распределение (60%).

i	1	2	3	4	5	6	7	8	9
X_i	0.948	1.763	2.104	4.708	4.993	5.254	6.797	7.426	7.875
i	10	11	12	13	14	15	16	17	18
X_i	8.205	9.284	11.389	12.5	13.859	13.901	14.864	15.395	18.116

Проверка существования максимума. Коэффициент $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 12.39.$

Условие $A > \frac{n+1}{2}$ выполнено: 12.39 > 9.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 24.

Таблица 24 – Значения функций для релеевского распределения (60%).

m	19	20	21	22
$f_n(m)$	3.495	2.548	2.098	1.812
g(m,A)	2.725	2.367	2.092	1.874
$ f_n(m) - g(m, A) $	0.77	0.181	0.006	0.062

Минимум при m=21. Первоначальное число ошибок B=m-1=20. $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.0131241.$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \ \text{где} \ j = n+1, n+2 \dots, n+k. \ \text{Результат представлен в таблице 25}.$

Таблица 25 – Время обнаружения ошибок для релеев. распределения (60%).

m	19	20
X_j (дней)	38.1	76.2

Было рассчитано время до завершения тестирования $t_k=114.3$ дней. Было рассчитано общее время тестирования $t_{
m oбщ}=273.67$ дней.

4. Результаты расчетов.

В таблицах 26 и 27 представлены сводные результаты оценки первоначального числа ошибок и полного времени проведения тестирования соответственно.

Таблица 26 – Оценка первоначального числа ошибок.

n	Входные	Распределение		
	данные, %	Равномерное	Экспоненциальное	Релеевское
30	100	35	30	34
24	80	29	24	31
18	60	19	19	20

Таблица 27 – Оценка полного времени проведения тестирования.

n	Входные	Распределение		
	данные, %	Равномерное	Экспоненциальное	Релеевское
30	100	743.6	349.9	608.8
24	80	626.4	313.2	569.9
18	60	199.8	276.3	273.7

Результаты при равномерном и релеевском распределениях, в среднем, одинаковые. При 60% и 80% данных равномерное распределение имеет меньшее число ошибок, но при 100% и 80% данных релеевское распределение имеет меньшее время проведения тестирования.

Экспоненциальный закон распределения демонстрирует лучшие результаты — это соответствует одному из предположений в модели Джелинского-Моранды, что время до следующего отказа программы распределено экспоненциально.

Выводы.

В ходе выполнения данной работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.