We Claim:

1. Compounds having the structure of Formula I:

5 Formula I

and their pharmaceutically acceptable salts, pharmaceutically acceptable solvates, esters, polymorphs, enantiomers, diastereomers, N-oxides, prodrugs or metabolites, wherein

T is a five to seven membered heterocyclic ring, substituted heterocyclic ring, aryl, substituted aryl, bound to the ring C with a linker W, and further substituted by a group represented by \mathbf{R} , wherein R is H, C_{1-6} alkyl, F, Cl, Br, I, -CN, COR_5 , $COOR_5$, $N(R_6,R_7)$, $NHCOC(R_8,R_9,R_{10})$, $CON(R_6,R_7)$, CH_2NO_2 , NO_2 , CH_2R_8 , CHR_9 , $-CH=N-OR_{10}$, $-C=CH-R_5$, OR_5 , SR_5 , $-C(R_9)=C(R_9)NO_2$, C_{1-12} alkyl substituted with one or more F, Cl, Br, I, OR_4 , SR_4 , wherein R_4 is hydrogen, C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, aryl, heteroaryl, C_{1-6} alkoxycarbonyl or C_{1-6} alkyl substituted with one or more of F, Cl, Br, I or OH; R_5 is H, C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl substituted with one or more of F, Cl, Br, I or OH, aryl or heteroaryl; R_6 and R_7 are independently H, optionally substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy; R_8 and R_9 are independently H, C_{1-6} alkyl, F, Cl, Br, I, C_{1-12} alkyl substituted with one or more of F, Cl, Br and I, OR_5 , SR_4 , $N(R_6,R_7)$; $R_{10}=H$, optionally substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkoxy, and

n is an integer in the range from 0 to 3;

X is CH, CH-S, CH-O, N or CHNR₁₁, wherein R₁₁ is hydrogen, optionally substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl, C_{1-6} alkylcarboxy, aryl or heteroaryl;

1 E is hydrogen, hydroxy or lower alkyl (C_1-C_4) ;

- Y and Z are independently hydrogen, C_{1-6} alkyl, C_{3-12} cycloalkyl or C_{0-3} bridging
- 3 groups;
- 4 U and V are independently hydrogen, optionally substituted C₁₋₆ alkyl, F, Cl, Br, I,
- 5 C₁₋₁₂ alkyl substituted with one or more of F, Cl, Br, I;
- 6 W is (CH₂)_{0-n'}, CO, CH₂NH, -NHCH₂, -CH₂NHCH₂, -CH₂-N(R₁₁)CH₂-,
- 7 $CH_2(R_{11})N$ -, $CH(R_{11})$, S, $CH_2(CO)$, NH, O, NR_{11} , $(CO)CH_2$, $N(R_{11})CON(R_{11})$,
- 8 $N(R_{11})C(=S)N(R_{11})$, SO₂, SO, wherein n' is an integer in the range from 0 to 3; R_{11}
- is hydrogen, optionally substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6}
- alkyl, C₁₋₆ alkylcarbonyl, C₁₋₆ alkylcarboxy, aryl or heteroaryl; and
- 11 R_1 is -NHC(=O)R₂, N(R₃,R₄), OR₃, -NR₂C(=S)R₃, -NR₂C(=S)SR₃, wherein R₂ is
- hydrogen, C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl substituted with one
- or more of F, Cl, Br, I, OH; R₃, R₄ are independently hydrogen, C₁₋₁₂ alkyl, C₃₋₁₂
- cycloalkyl, C₁₋₆ alkoxy, aryl, heteroaryl, C₁₋₆ alkoxycarbonyl or C₁₋₆ alkyl
- substituted with one or more of F, Cl, Br, I or OH.
- 1 2. Compounds having the structure of Formula II:

5 Formula II

- and their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,
- 7 esters, enantiomers, diastereomers, N-oxides, polymorphs, prodrugs or
- 8 metabolites, wherein
- 9 \mathbf{R}_1 is $-NHC(=O)R_2$, $-N(R_3,R_4)$, $-NR_2C(=S)R_3$, $-NR_2C(=S)SR_3$ or $-OR_3$, wherein
- 10 R₂, R₃, R₄ are independently hydrogen, C₁₋₁₂ alkyl, C₃₋₁₂ cycloalkyl, C₁₋₆ alkoxy,

11	aryl, heteroaryl, C_{1-6} alkoxycarbonyl or C_{1-6} alkyl substituted with one or more of
12	F, Cl, Br, I or OH;
13	U and V are independently hydrogen, optionally substituted C ₁₋₆ alkyl, F, Cl, Br,
14	C_{1-12} alkyl substituted with one or more of F, Cl, Br, I;
15	Y and Z are independently hydrogen, C_{1-6} alkyl, C_{3-12} cycloalkyl, C_{0-3} bridging
16	group;
17	X is CH, CH-S, CH-O, N or CHNR ₁₁ , wherein R_{11} is hydrogen, optionally
18	substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl carbonyl, C_{1-6}
19	alkylcarboxy, aryl or heteroaryl;
20	E is hydrogen, hydroxy or lower alkyl (C ₁ -C ₄);
21	W is (CH ₂) _{0-n'} , C=O, CH ₂ NH, NHCH ₂ , CH ₂ NHCH ₂ , CH ₂ N(R ₁₁)CH ₂ , CH ₂ N(R ₁₁),
22	CH(R ₁₁), S, CH ₂ (C=O), NH, O, (CO)CH ₂ , N(R ₁₁)CON(R ₁₁), SO ₂ , SO, NR ₁₁ ,
23	$N(R_{11})C(=S)N(R_{11})$, wherein n' is an integer in the range from 0 to 3; R_{11} is
24	hydrogen, optionally substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6}
25	alkyl carbonyl, C_{1-6} alkylcarboxy, aryl or heteroaryl;
26	Q_1 is O, S or NR ₁₁ , wherein R ₁₁ is as defined above;
27	G, J, L are independently H, C ₁₋₆ alkyl, F, Cl, Br, I, -CN, COR ₅ ,COOR ₅ ,
28	N(R ₆ ,R ₇), NHCOC(R ₈ , R ₉ , R ₁₀), CON (R ₆ , R ₇), CH ₂ NO ₂ , NO ₂ , CH ₂ R ₈ , CHR ₉ , -CH
29	= N-OR ₁₀ , -C=CH-R ₅ , OR ₅ , SR ₅ , -C(R ₉)=C(R ₉)NO ₂ , C_{1-12} alkyl substituted with
30	one or more of F, Cl, Br and I, OR ₄ , SR ₄ , wherein R ₄ is as defined above; R ₅ is H,
31	C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl substituted with one or more of
32	F, Cl, Br, I or OH, aryl or heteroaryl; R ₆ and R ₇ are independently H, optionally
33	substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy; R_8 and R_9 are independently
34	H, C ₁₋₆ alkyl, F, Cl, Br, I, C ₁₋₁₂ alkyl substituted with one or more of F, Cl, Br, I,
35	OR ₅ , SR ₄ , N(R ₆ ,R ₇); R ₁₀ = H, optionally substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-1}
36	6 alkoxy, C ₁₋₆ alkyl, aryl or heteroaryl; and
37	n is an integer in the range from 0 to 3.

5

6

5

6

7

8

4

A compound according to claim 2, wherein in Formula II, ring C is 6-8 membered 1 3. in size and the ring may have either two or three carbon atoms between each 2 3 nitrogen atom, comprising:

and the ring C may be bridged to form a bicyclic system as shown below: 7

8 9 10

A compound according to claim 2, wherein in Formula II, ring C is substituted 1 4. at positions Y and Z with alkyl groups, cycloalkyl groups, fluoro group, 2 carboxylic and corresponding esters, amides, substituted alkyls or bridging 3 4 alkyl groups as shown below:

- 5. 1 A compound according to claim 2, wherein in Formula II, ring C is 6-2 membered in size and X is -CH-(NHR), or -CHCH₂NHR-, the ring C is selected form the group consisting of the following rings wherein R_{11} is as 3 defined earlier,
- 5 6

7 R11 R11 N

9 or in addition to the above, the ring C also includes the following structures:

10
11 -x $(CH_2)n$ -x $(CH_2)n$ $(CH_2)n$

wherein n is as defined earlier.

1 6. A compound according to claim 2 having the structure of Formula III,

Formula III

6 wherein R, U, V, Y, Z, E, X, W, G, J, L and n are as defined earlier.

1 7. A compound according to claim 2 having the structure of Formula IV,

$$G \xrightarrow{D} W \xrightarrow{(CH_2)n} U \xrightarrow{D} O \xrightarrow{(CH_2)n} R_1$$

Formula IV

2

wherein R₁, U, V, X, Y, Z, E, W, G, J, L and n are as defined earlier.

1	8.	A compound selected from the	group consisting of:
---	----	------------------------------	----------------------

- 2 (S)-N-[[3-[3-Fluoro-4-[N-1-{2-furyl(5-nitro)methyl}],2,5,6-tetrahydropyrid-4-yl]
- phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide (Compound No. 1)
- 4 (S)-N-[[3-[3-Fluoro- 4-[N-1-{2-thienyl (5-nitro) methyl)}]1,2,5,6-tetrahydropyrid-
- 5 4-yl]phenyl]-2-oxo-5-oxazolidinyl]methyl]acetamide (Compound No. 2)
- 6 (S)-N-[[3-[3-Fluoro-4-[N-1-{2-thienoyl(5-nitro)}-1,2,5,6-tetrahydropyrid-4-
- 7 yl]phenyl]-2-oxo-5-oxazolidinyl]methyl] acetamide (Compound No. 3)
- 8 5(S)-Isoxazol-3-yl-amino-(N-t-butoxycarbonyl)-N-methyl-3-[3-Fluoro-4-[N-1-(5-
- 9 nitro-2-furyl)methyl]1,2,5,6-tetrahydropyrid-4-yl]phenyl]oxazolidin-2-one
- 10 (Compound No. 4)
- 11 5(S)-Isoxazol-3-yl-aminomethyl-3-[3-Fluoro-4-[N-1-(5-nitro-2-
- furyl)methyl]1,2,5,6-tetrahydropyrid-4-yl]phenyl]oxazolidin-2-one (Compound
- 13 No. 5).
- 1 9. A pharmaceutical composition comprising a compound of claims 1, 2, or 8 and a
- 2 pharmaceutical acceptable carrier.
- 1 10. A pharmaceutical compositon comprising a pharmaceutically effective amount of a
- 2 compound according to claims 1, 2 or 8 or a physiologically acceptable acid
- addition salt thereof with a pharmaceutically acceptable carrier for treating
- 4 microbial infections.
- 1 11. A method of treating or preventing microbial infections in a mammal comprising
- 2 administering to said mammal, the pharmaceutical composition according to claim
- 3 9.
- 1 12. The method according to claim 11, wherein the microbial infections are caused by
- 2 gram-positive and gram-negative bacteria.
- 1 13. The method according to claim 12, wherein the gram-positive bacteria are selected
- 2 from the group consisting of staphylococcus spp., streptococcus spp., enterococci

spp., bacillus spp., corynebacterium spp., clostridia spp., peptostreptococcus spp.,
 listeria spp. and legionella spp.

1 14. A method of treating or preventing aerobic and anaerobic bacterial infections in a
2 mammal comprising administering to said mammal, a therapeutically effective
3 amount of a compound having the structure of Formula I

4
5
$$R^{-1}$$
 V
 V
 C
 $CH_2)n$
 CH_2
 C

7 Formula I

and its pharmaceutically acceptable salts, pharmaceutically acceptable solvates, esters, enantiomers, diastereomers, N-oxides, polymorphs, prodrugs or metabolites, wherein

T is a five to seven membered heterocyclic ring, substituted heterocyclic ring, aryl, substituted aryl, bound to the ring C with a linker W, and are further substituted by a group represented by \mathbf{R} , wherein R is H, C_{1-6} alkyl, F, Cl, Br, I, -CN, COR_5 , $COOR_5$, $N(R_6,R_7)$, $NHCOC(R_8,R_9,R_{10})$, $CON(R_6,R_7)$, CH_2NO_2 , NO_2 , CH_2R_8 , CHR_9 , $-CH=N-OR_{10}$, $-C=CH-R_5$, OR_5 , SR_5 , $-C(R_9)=C(R_9)NO_2$, C_{1-12} alkyl substituted with one or more of F, Cl, Br, I, OR_4 , SR_4 , wherein R_4 is hydrogen, C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, aryl, heteroaryl, C_{1-6} alkoxycarbonyl or C_{1-6} alkyl substituted with one or more of F, Cl, Br, I or OH; R_5 is H, C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl substituted with one or more of F, Cl, Br, I or OH, aryl or heteroaryl; R_6 and R_7 are independently H, optionally substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy; R_8 and R_9 are independently H, C_{1-6} alkyl, F, Cl, Br, I, C_{1-12} alkyl substituted with one or more of F, Cl, Br and I, OR_5 , SR_4 , $N(R_6,R_7)$; $R_{10}=H$, optionally substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkoxy, and

n is an integer in the range from 0 to 3;

26 X is CH, CH-S, CH-O, N or CHNR₁₁, wherein R₁₁ is hydrogen, optionally

substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl, C_{1-6} alkylcarbonyl,

- 28 C₁₋₆ alkylcarboxy, aryl or heteroaryl;
- E is hydrogen, hydroxy or lower alkyl (C_1-C_4) ;
- Y and Z are independently hydrogen, C_{1-6} alkyl, C_{3-12} cycloalkyl or C_{0-3} bridging
- 31 groups;
- 32 U and V are independently hydrogen, optionally substituted C₁₋₆ alkyl, F, Cl, Br, I,
- C_{1-12} alkyl substituted with one or more of F, Cl, Br, I;
- 34 W is $(CH_2)_{0-n'}$, CO, CH_2NH , $-NHCH_2$, $-CH_2NHCH_2$, $-CH_2-N(R_{11})CH_2$ -,
- 35 CH₂(R₁₁)N-, CH(R₁₁), S, CH₂(CO), NH, O, NR₁₁, (CO)CH₂, N(R₁₁)CON(R₁₁),
- $N(R_{11})C(=S)N(R_{11})$, SO₂, SO, wherein n' is an integer in the range from 0 to 3; R_{11}
- is hydrogen, optionally substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6}
- alkyl, C₁₋₆ alkylcarbonyl, C₁₋₆ alkylcarboxy, aryl or heteroaryl; and
- 39 R_1 is NHC(=0) R_2 , N(R_3 , R_4), OR₃, -NR₂C(=S) R_3 , -NR₂C(=S)SR₃, wherein R₂ is
- hydrogen, C₁₋₁₂ alkyl, C₃₋₁₂ cycloalkyl, C₁₋₆ alkoxy, C₁₋₆ alkyl substituted with one
- or more of F, Cl, Br, I, OH; R₃, R₄ are independently hydrogen, C₁₋₁₂ alkyl, C₃₋₁₂
- 42 cycloalkyl, C_{1-6} alkoxy, aryl, heteroaryl, C_{1-6} alkoxycarbonyl or C_{1-6} alkyl
- substituted with one or more of F, Cl, Br, I or OH.
- 1 15. A method of treating or preventing aerobic and anaerobic bacterial infections in
- 2 mammal comprising administering to said mammal, a therapeutically effective
- amount of a compound having the structure of Formula II

7 Formula II

8	and its pharmaceutically acceptable salts, pharmaceutically acceptable solvates,
9	esters, enantiomers, diastereomers, N-oxides, polymorphs, prodrugs or metabolites,
10	wherein wherein
11	R_1 is -NHC(=O) R_2 , -N(R_3 , R_4), -NR ₂ C(=S) R_3 , -NR ₂ C(=S)SR ₃ or -OR ₃ , wherein
12	R_2 , R_3 , R_4 are independently hydrogen, C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy,
13	aryl, heteroaryl, C ₁₋₆ alkoxycarbonyl or C ₁₋₆ alkyl substituted with one or more of
14	F, Cl, Br, I or OH;
15	U and V are independently hydrogen, optionally substituted C_{1-6} alkyl, F, Cl, Br,
16	C ₁₋₁₂ alkyl substituted with one or more of F, Cl, Br, I;
17	Y and Z are independently hydrogen, C_{1-6} alkyl, C_{3-12} cycloalkyl, C_{0-3} bridging
18	group;
19	X is CH, CH-S, CH-O, N or CHNR ₁₁ , wherein R ₁₁ is hydrogen, optionally
20	substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl carbonyl, C_{1-6}
21	alkylcarboxy, aryl or heteroaryl;
22	E is hydrogen, hydroxy or lower alkyl (C ₁ -C ₄);
23	W is (CH ₂) _{0-n'} , C=O, CH ₂ NH, NHCH ₂ , CH ₂ NHCH ₂ , CH ₂ N(R ₁₁)CH ₂ , CH ₂ N(R ₁₁),
24	CH(R ₁₁), S, CH ₂ (C=O), NH, O, (CO)CH ₂ , N(R ₁₁)CON(R ₁₁), SO ₂ , SO, NR ₁₁ ,
25	$N(R_{11})C(=S)N(R_{11})$, wherein n' is an integer in the range from 0 to 3; R_{11} is
26	hydrogen, optionally substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6}
27	alkyl carbonyl, C_{1-6} alkylcarboxy, aryl or heteroaryl;
28	Q_1 is O, S or NR ₁₁ , wherein R ₁₁ is as defined above;
29	G, J, L are independently H, C ₁₋₆ alkyl, F, Cl, Br, I, -CN, COR ₅ , COOR ₅ ,
30	$N(R_6,R_7)$, $NHCOC(R_8,R_9,R_{10})$, $CON(R_6,R_7)$, CH_2NO_2 , NO_2 , CH_2R_8 , CHR_9 ,
31	-CH=N-OR ₁₀ , -C=CH-R ₅ , OR ₅ , SR ₅ , -C(R ₉)=C(R ₉)NO ₂ , C ₁₋₁₂ alkyl substituted
32	with one or more of F, Cl, Br and I, OR ₄ , SR ₄ , wherein R ₄ is as defined above; R ₅ is
33	H, C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl substituted with one or more
34	of F, Cl, Br, I or OH, aryl or heteroaryl; R ₆ and R ₇ are independently H, optionally
35	substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy; R_8 and R_9 are independently

5

6

7

11

5

6

7

8

- 36 H, C₁₋₆ alkyl, F, Cl, Br, I, C₁₋₁₂ alkyl substituted with one or more of F, Cl, Br, I,
- OR₅, SR₄, N(R₆,R₇); R_{10} = H, optionally substituted C_{1-12} alkyl, C_{3-12} cycloalkyl,
- 38 C₁₋₆ alkoxy, C₁₋₆ alkyl, aryl or heteroaryl; and
- n is an integer in the range from 0 to 3.
- 1 16. The method according to claim 15 wherein in Formula II, the ring C is 6-8
 2 membered in size and the ring may have either two or three carbon atoms between
 3 each nitrogen atom, comprising

and the ring C may be bridged to form a bicyclic system as shown below:

1 17. The method according to claim 15, wherein in Formula II, the ring C is substituted at positions Y and Z with alkyl groups, cycloalkyl groups, fluoro group, carboxylic and corresponding esters, amides, substituted alkyls or bridging alkyl groups as shown below:

- 1 18. The method according to claim 15, wherein in Formula II, the ring C is
 6-membered in size and X is -CH-(NHR), or -CHCH₂NHR-, the ring C is selected
 from the group consisting of the following rings wherein R₁₁ is as defined earlier,
- 8 or in addition to the above, the ring C also includes the following structures:
- 9
 10
 -x
 (CH₂)n
 -x
 (CH₂)n
 (CH₂)n
- 1 19. The method according to claim 15 having the structure of Formula III,
- 5 Formula III 6 wherein R₁, U, V, E, Y, Z, X, W, G, J, L and n are as defined earlier.
- 1 20. The method according to claim 15 having the structure of Formula IV

3 Formula IV

wherein R₁, U, V, X, Y, Z, W, G, J, L, E and n are as defined earlier.

21. A process for preparing compounds of Formula I:

Formula I

and their pharmaceutically acceptable salts, pharmaceutically acceptable solvates, esters, enantiomers, diastereomers, N-oxides, polymorphs, prodrugs or metabolites, wherein

T is a five to seven membered heterocyclic ring, substituted heterocyclic ring, aryl, substituted aryl, bound to the ring C with a linker W, and further substituted by a group represented by \mathbf{R} , wherein R is H, C_{1-6} alkyl, F, C_{1} , Br, I, $-C_{1}$, C_{1} , C

22	$N(R_6,R_7)$; $R_{10}=H$, optionally substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl, aryl or heteroaryl;
23	n is an integer in the range from 0 to 3;
24	X is CH, CH-S, CH-O, N or CHNR ₁₁ , wherein R ₁₁ is hydrogen, optionally
25	substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl, C_{1-6} alkylcarbonyl,
26	C_{1-6} alkylcarboxy, aryl or heteroaryl;
27	E is hydrogen, hydroxy or lower alkyl (C ₁ -C ₄);
28	\mathbf{Y} and \mathbf{Z} are independently hydrogen, C_{1-6} alkyl, C_{3-12} cycloalkyl or C_{0-3} bridging
29	groups;
30	${f U}$ and ${f V}$ are independently hydrogen, optionally substituted ${f C}_{1-6}$ alkyl, F, Cl, Br, I
31	C ₁₋₁₂ alkyl substituted with one or more of F, Cl, Br, I;
32	W is $(CH_2)_{0-n'}$, CO, CH_2NH , $-NHCH_2$, $-CH_2NHCH_2$, $-CH_2-N(R_{11})CH_2$ -,
33	CH ₂ (R ₁₁)N-, CH(R ₁₁), S, CH ₂ (CO), NH, O, NR ₁₁ , (CO)CH ₂ , N(R ₁₁)CON(R ₁₁),
34	$N(R_{11})C(=S)N(R_{11})$, SO ₂ , SO, wherein n' is an integer in the range from 0 to 3; R_{11}
35	is hydrogen, optionally substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6}
36	alkyl, C_{1-6} alkylcarbonyl, C_{1-6} alkylcarboxy, aryl or heteroaryl; and
37	\mathbf{R}_1 is -NHC(=O) \mathbf{R}_2 , N(\mathbf{R}_3 , \mathbf{R}_4), OR ₃ , -NR ₂ C(=S) \mathbf{R}_3 , -NR ₂ C(=S)SR ₃ , wherein R ₂ is
38	hydrogen, C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl substituted with one
39	or more of F, Cl, Br, I, OH; R ₃ , R ₄ are independently hydrogen, C ₁₋₁₂ alkyl, C ₃₋₁₂
40	cycloalkyl, C_{1-6} alkoxy, aryl, heteroaryl, C_{1-6} alkoxycarbonyl or C_{1-6} alkyl
41	substituted with one or more of F, Cl, Br, I or OH;
42	comprising reacting an amine compound of Formula V
43	$(CH_2)n$
44	M_1 C B N A R_1
45	ŻĘ ✓

45

46 Formula V

with a heteroaromatic compound of Formula R-T-W-R₁₂, wherein M₁ is selected from the group consisting of NH, NHR₁₃, -CH₂NR₁₃, wherein R₁₃ is H, ethyl, methyl, isopropyl, acetyl, cyclopropyl, alkoxy and R, T, W, R₁,U, V, Y, Z and E are as defined earlier and R₁₂ is a suitable leaving group selected from the group consisting of fluoro, chloro, bromo, SCH₃, -SO₂CH₃, -SO₂CF₃, Tos, OC₆H₅, -COOH or -CHO.

- The process according to claim 21 for preparing compounds of Formula I, wherein

 W=CH₂ and R-T-W-R₁₂ is a heteroaromatic compound with an aldehyde group and

 the compound of Formula I is produced by reductive amination.
- The process according to claim 21 for preparing compounds of Formula I, wherein W=CO and the amine compound of Formula V is acylated with activated esters in the presence of condensing agents selected from the group consisting of 1,3-dicylohexylcarbodiimide (DCC) and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC).
 - 24. A process for preparing compounds of Formula II

1

Formula II

and their pharmaceutically acceptable salts, pharmaceutically acceptable solvates,
esters, enantiomers, diastereomers, N-oxides, polymorphs, prodrugs or metabolites,
wherein

R₁ is -NHC(=O)R₂, -N(R₃,R₄), -NR₂C(=S)R₃, -NR₂C(=S)SR₃ or -OR₃, wherein

R₂, R₃, R₄ are independently hydrogen, C₁₋₁₂ alkyl, C₃₋₁₂ cycloalkyl, C₁₋₆ alkoxy,

aryl, heteroaryl, C₁₋₆ alkoxycarbonyl or C₁₋₆ alkyl substituted with one or more of F,

Cl, Br, I or OH;

12	U and V are independently hydrogen, optionally substituted C_{1-6} alkyl, F, Cl, Br,
13	C ₁₋₁₂ alkyl substituted with one or more of F, Cl, Br, I;
14	Y and Z are independently hydrogen, C_{1-6} alkyl, C_{3-12} cycloalkyl, C_{0-3} bridging
15	group;
16	X is CH, CH-S, CH-O, N or CHNR ₁₁ , wherein R ₁₁ is hydrogen, optionally
17	substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl carbonyl, C_{1-6}
18	alkylcarboxy, aryl or heteroaryl;
19	E is hydrogen, hydroxy or lower alkyl (C_1-C_4) ;
20	W is (CH ₂) _{0-n} , C=O, CH ₂ NH, NHCH ₂ , CH ₂ NHCH ₂ , CH ₂ N(R ₁₁)CH ₂ , CH ₂ N(R ₁₁),
21	CH(R ₁₁), S, CH ₂ (C=O), NH, O, (CO)CH ₂ , N(R ₁₁)CON(R ₁₁), SO ₂ , SO, NR ₁₁ ,
22 .	$N(R_{11})C(=S)N(R_{11})$, wherein n' is an integer in the range from 0 to 3; R_{11} is
23	hydrogen, optionally substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl
24	carbonyl, C_{1-6} alkylcarboxy, aryl or heteroaryl;
25	Q_1 is O, S or NR ₁₁ , wherein R ₁₁ is as defined above;
26	G, J, L are independently H, C ₁₋₆ alkyl, F, Cl, Br, I, -CN, COR ₅ , COOR ₅ ,
27	$N(R_6,R_7)$, $NHCOC(R_8,R_9,R_{10})$, $CON(R_6,R_7)$, CH_2NO_2 , NO_2 , CH_2R_8 , CHR_9 ,
28	-CH=N-OR ₁₀ , -C=CH-R ₅ , OR ₅ , SR ₅ , -C(R ₉)=C(R ₉)NO ₂ , C ₁₋₁₂ alkyl substituted with
29	one or more of F, Cl, Br and I, OR ₄ , SR ₄ ; wherein R ₄ is the same as above; R ₅ is H,
30	C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy, C_{1-6} alkyl substituted with one or more of
31	F, Cl, Br, I or OH, aryl or heteroaryl; R ₆ and R ₇ are independently H, optionally
32	substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6} alkoxy; R_8 and R_9 are independently H,
33	C ₁₋₆ alkyl, F, Cl, Br, I, C ₁₋₁₂ alkyl substituted with one or more of F, Cl, Br, I, OR ₅ ,
34	SR ₄ , N(R ₆ ,R ₇); R ₁₀ = H, optionally substituted C_{1-12} alkyl, C_{3-12} cycloalkyl, C_{1-6}
35	alkoxy, C_{1-6} alkyl, aryl or heteroaryl; and
36	n is an integer in the range from 0 to 3;

4

5

6

comprising reacting a compound of Formula V

38
$$M_{1} C B N A$$

$$Z F N R$$

Formula V

with a heteroaromatic compound of Formula VI

45 Formula VI

wherein M₁ is NH, NHR₁₃, -CH₂NR₁₃, wherein R₁₃ is H, ethyl, methyl, isopropyl, acetyl, cyclopropyl, alkoxy and R, T, W, R₁,U, V, Y, Z, G, J, L, n, Q₁ and E are as defined earlier and R₁₂ is a suitable leaving group selected from the group consisting of fluoro, chloro, bromo, SCH₃, -SO₂CH₃, -SO₂CF₃, Tos, OC₆H₅, -COOH or -CHO.

The process according to claim 24 for preparing compounds of Formula II,
wherein ring C is 6-8 membered in size and the ring may have either two or three
carbon atoms between each nitrogen atom, comprising:

and the ring C may be bridged to form a bicyclic system as shown below:

- The process according to claim 24 for preparing compounds of Formula II,
 wherein ring C is substituted at positions Y and Z with alkyl groups, cycloalkyl
 groups, fluoro group, carboxylic and corresponding esters, amides, substituted
 alkyls or bridging alkyl groups as shown below:
- The process according to claim 24 for preparing compounds of Formula II, wherein ring C is 6-membered in size and X is -CH-(NHR), or -CHCH₂NHR-, the ring C is selected from the group consisting of the following rings wherein R₁₁ is as defined earlier;
- - or in addition to the above, the ring C also includes the following structures:
- 10 11 -x -x -x -x R_{11} N R_{11} R_{11}

WO 2004/099199

1 28. The process according to claim 24 having the structure of Formula III

Formula III

6 wherein R₁, U, V, Y, Z, E, X, W, G, J, L and n are as defined earlier.

1 29. The process according to claim 24 having the structure of Formula IV

$$G \xrightarrow{D} W \xrightarrow{C} G \xrightarrow{C(CH_2)n} Z \xrightarrow{E} W \xrightarrow{A} O \xrightarrow{R_1}$$

2

5

3 Formula IV

- wherein R₁, U, V, X, Y, Z, W, G, J, L, E and n are as defined earlier.
- 1 30. The process of claim 24, wherein the amine of Formula V reacts with a
- 2 heteroaromatic compound of Formula VI in a solvent selected from the group
- 3 consisting of dimethylformamide, dimethylacetamide, ethanol and ethylene glycol.
- 1 31. The process of claim 24, wherein the reaction of amine of Formula V with a
- 2 heteroaromatic compound of Formula VI is carried out in the presence of a base
- 3 selected from the group consisting of triethylamine, diisopropylamine, potassium
- 4 carbonate and sodium bicarbonate.
- 1 32. The process of claim 24, wherein the reaction is carried out at a temperature
- 2 ranging from about -70°C to about 180°C.

1 33. The process of claim 24, wherein the heteroaromatic compound of Formula VI is

- 2 furaldehyde.
- 1 34. The process of claim 24, wherein the heteroaromatic compound of Formula VI is
- 2 2- furoic acid.