150 Polynômes d'endomorphisme en dimension finie. Réduction d'un endomorphisme en dimension finie. Applications.

Soit *E* un espace vectoriel de dimension finie *n* sur un corps commutatif \mathbb{K} . Soit $u \in \mathcal{L}(E)$.

I - Polynômes d'endomorphismes

1. L'algèbre $\mathbb{K}[u]$

Notation 1. On note $u^0 = id_E$ et

$$u^k = \underbrace{u \circ \dots \circ u}_{k \text{ fois}}$$

[ROM21] p. 603

Définition 2. À tout polynôme $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$ on fait correspondre l'endomorphisme $P(u) = \sum_{k=1}^{n} a_k u^k$.

Proposition 3. L'ensemble,

$$\mathbb{K}[u] = \{ P(u) \mid P \in \mathbb{K}[X] \}$$

est une sous-algèbre commutative de $\mathcal{L}(E)$, de dimension inférieure ou égale à n^2 .

Remarque 4. Au vu de l'isomorphisme entre $\mathcal{L}(E)$ et $\mathcal{M}_n(\mathbb{K})$, on définit de même $\mathbb{K}[A]$ pour une matrice $A \in \mathcal{M}_n(\mathbb{K})$. Si A est la matrice de u dans une base de E, alors pour tout $P \in \mathbb{K}[X]$, P(A) est la matrice de P(u) dans cette même base. Toute les propriétés énoncées pour les endomorphismes sont vraies pour les matrices, et réciproquement.

Proposition 5. Soient $M \in \mathcal{M}_n(\mathbb{K})$ triangulaire de la forme

[**GOU21**] p. 184

$$M = \begin{pmatrix} \alpha_1 & * & \dots & * \\ 0 & \alpha_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \dots & 0 & \alpha_n \end{pmatrix}$$

et $P \in \mathbb{K}[X]$. Alors, P(M) est de la forme

$$P(M) = \begin{pmatrix} P(\alpha_1) & * & \dots & * \\ 0 & P(\alpha_2) & \ddots & \vdots \\ \vdots & \ddots & \ddots & * \\ 0 & \dots & 0 & P(\alpha_n) \end{pmatrix}$$

2. Polynôme caractéristique de u

Définition 6. Soit $\lambda \in \mathbb{K}$.

- [**ROM21**] p. 643
- On dit que λ est **valeur propre** de u si $E_{\lambda} = \operatorname{Ker}(u \lambda \operatorname{id}_{E})$ n'est pas réduit à $\{0\}$.
- Un vecteur $x \neq 0$ tel que $u(x) = \lambda x$ est un **vecteur propre** de u associé à la valeur propre λ .
- E_{λ} est le **sous-espace propre** associé à la valeur propre λ .
- L'ensemble des valeurs propres de u est appelé **spectre** de u. On le note Sp(u).

Proposition 7. En notant $\chi_u = \det(X \operatorname{id}_E - u)$,

$$\mathrm{Sp}(u) = \{ \lambda \in \mathbb{K} \mid \chi_u(\lambda) = 0 \}$$

p. 604

Théorème 8. Soit $P \in \mathbb{K}[X]$. Pour tout valeur propre λ de u (voir Définition 6), $P(\lambda)$ est une valeur propre de P(u). Si le corps \mathbb{K} est algébriquement clos, on a alors

$$\operatorname{Sp}(P(u)) = \{P(\lambda) \mid \lambda \in \operatorname{Sp}(u)\}\$$

Contre-exemple 9. Pour $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ et $P = X^2$, on a $A^2 = -I_2$ et $Sp(A) = \emptyset$.

Définition 10. Le polynôme χ_u précédent est appelé **polynôme caractéristique** de u.

p. 644

Remarque 11. On peut définir de la même manière les mêmes notions pour une matrice de $\mathcal{M}_n(\mathbb{K})$ (une valeur est propre pour une matrice si et seulement si elle l'est pour l'endomorphisme associé). On reprendra les mêmes notations.

Exemple 12. Pour
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$$
, on a $\chi_A = X^2 - \operatorname{trace}(A)X + \det(A)$.

Proposition 13. Soit λ une valeur propre de u de multiplicité α en tant que racine de χ_u . Alors,

$$\dim(E_{\lambda}) \in [1, \alpha]$$

Proposition 14. (i) Le polynôme caractéristique est un invariant de similitude.

[**GOU21**] p. 172

(ii) Soit $A \in \mathcal{M}_n(\mathbb{K})$. On note $\chi_A = \sum_{k=0}^n a_k X^k$. Alors, $a_0 = \det(A)$ et $a_{n-1} = \operatorname{trace}(A)$ (à un signe près).

3. Polynôme minimal de u

Lemme 15. (i) Ann $(u) = \{P \in \mathbb{K}[X] \mid P(u) = 0\}$ est un sous-ensemble de $\mathbb{K}[u]$ non réduit au polynôme nul.

[ROM21] p. 604

- (ii) Ann(u) est le noyau de $P \rightarrow P(u)$: c'est un idéal de $\mathbb{K}[u]$.
- (iii) Il existe un unique polynôme unitaire engendrant cet idéal.

Définition 16. On appelle **idéal annulateur** de u l'idéal $\mathrm{Ann}(u)$. Le polynôme unitaire générateur est noté π_u et est appelé **polynôme minimal** de u.

Remarque 17. — π_u est le polynôme unitaire de plus petit degré annulant u.

— Si $A \in \mathcal{M}_n(\mathbb{K})$ est la matrice de u dans une base de E, on a Ann(u) = Ann(A) et $\pi_u = \pi_A$.

Exemple 18. Un endomorphisme est nilpotent d'indice q si et seulement si son polynôme minimal est X^q .

Proposition 19. Soit F un sous-espace vectoriel de E stable par u. Alors, le polynôme minimal de l'endomorphisme $u_{|F}: F \to F$ divise π_u .

Proposition 20. (i) Les valeurs propres de u sont racines de tout polynôme annulateur.

(ii) Les valeurs propres de u sont exactement les racines de π_u .

Remarque 21. π_u et χ_u partagent dont les mêmes racines.

[**GOU21**] p. 186

Théorème 22. $P \mapsto P(u)$ induit un isomorphisme :

[ROM21] p. 606

$$\mathbb{K}[X]/(\pi_u) \cong \mathbb{K}[u]$$

Corollaire 23. L'espace vectoriel $\mathbb{K}[u]$ est de dimension égale à $p_u = \deg(\pi_u)$, une base étant donnée par $(u^k)_{k \in [\![1,p_u]\!]}$.

Corollaire 24.

 $\mathbb{K}[u]$ est un corps $\iff \mathbb{K}[u]$ est intègre $\iff u$ est irréductible

Théorème 25 (Cayley-Hamilton).

$$\pi_u \mid \chi_u$$

Corollaire 26.

$$\dim(\mathbb{K}[u]) \leq n$$

Corollaire 27. Si *u* est inversible,

$$u^{-1} = -\frac{1}{\det(u)} \sum_{k=1}^{n} a_k u^{k-1}$$

En particulier, $u^{-1} \in \mathbb{K}[u]$.

Corollaire 28. u est nilpotent si et seulement si $\chi_u = X^n$.

II - Réduction d'endomorphismes

1. Diagonalisation

Définition 29. — On dit que u est **diagonalisable** s'il existe une base de E dans laquelle la matrice de u est diagonale.

— On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est **diagonalisable** si elle est semblable à une matrice diagonale.

 $Remarque\ 30.\ u$ est diagonalisable si et seulement si sa matrice dans n'importe quelle base de E l'est.

Exemple 31. — Les projecteurs (ie. les endomorphismes $p \in \mathcal{L}(E)$ tels que $p^2 = p$) sont toujours diagonalisables, à valeurs propres dans $\{0, 1\}$.

— Les symétries (ie. les endomorphismes $s \in \mathcal{L}(E)$ tels que $s^2 = \mathrm{id}_E$) sont toujours diagonalisables, à valeurs propres dans $\{\pm 1\}$. Par exemple, l'endomorphisme de trans-

p. 683

[**BMP**] p. 166

position $A \rightarrow {}^{t}A$ est diagonalisable.

Proposition 32. Si u a n valeurs propres distinctes dans \mathbb{K} , alors il est diagonalisable.

[ROM21] p. 683

Théorème 33 (Lemme des noyaux). Soit $P = P_1 \dots P_k \in \mathbb{K}[X]$ où les polynômes P_1, \dots, P_k sont premiers entre eux deux à deux. Alors,

p. 609

$$\operatorname{Ker}(P(u)) = \bigoplus_{i=1}^{k} \operatorname{Ker}(P_i(u))$$

p. 683

Théorème 34. Soit $Sp(u) = {\lambda_1, ..., \lambda_p}$. Les assertions suivantes sont équivalentes :

- (i) u est diagonalisable sur \mathbb{K} .
- (ii) $E = \bigoplus_{k=1}^{p} E_{\lambda_k}$.
- (iii) $\sum_{k=1}^{p} \dim(E_{\lambda_k}) = n$.
- (iv) χ_n est scindé sur \mathbb{K} et pour tout $k \in [1, p]$, la dimension de E_{λ_k} est égale à la multiplicité de λ_k dans χ_u .
- (v) $\exists P \in \text{Ann}(u)$ scindé à racines simples.
- (vi) π_u est scindé à racines simples.

[**GOU21**] p. 177

Exemple 35. $\begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$ est diagonalisable, semblable à $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -4 \end{pmatrix}$.

[**ROM21**] p. 684

Théorème 36 (Diagonalisation simultanée). Soit $(u_i)_{i \in I}$ une famille d'endomorphismes de E diagonalisables. Il existe une base commune de diagonalisation dans E pour $(u_i)_{i \in I}$ si et seulement si ces endomorphismes commutent deux-à-deux.

p. 734

Théorème 37 (Spectral). Tout endomorphisme symétrique se diagonalise dans une base orthonormée.

2. Trigonalisation

Définition 38. — On dit que u est **trigonalisable** s'il existe une base de E dans laquelle la matrice de u est triangulaire supérieure.

— On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est **trigonalisable** si elle est semblable à une matrice diagonale.

Remarque 39. u est trigonalisable si et seulement si sa matrice dans n'importe quelle base de E l'est.

Exemple 40. Une matrice à coefficients réels ayant des valeurs propres imaginaires pures n'est pas trigonalisable dans $\mathcal{M}_n(\mathbb{R})$.

Théorème 41. u est trigonalisable sur \mathbb{K} si et seulement si χ_u est scindé sur \mathbb{K} .

Corollaire 42. Si \mathbb{K} est algébriquement clos, tout endomorphisme de u est trigonalisable sur \mathbb{K} .

Proposition 43. Si u est trigonalisable, sa trace est la somme de ses valeurs propres et son déterminant est le produit de ses valeurs propres.

Théorème 44 (Trigonalisation simultanée). Soit $(u_i)_{i \in I}$ une famille d'endomorphismes de E diagonalisables qui commutent deux-à-deux. Alors, il existe une base commune de trigonalisation.

3. Décomposition de Dunford

[DEV]

Théorème 45 (Décomposition de Dunford). On suppose que π_u est scindé sur \mathbb{K} . Alors il existe un unique couple d'endomorphismes (d, n) tels que :

[GOU21] p. 203

p. 675

- d est diagonalisable et n est nilpotent.
- u = d + n.
- -dn = nd.

Corollaire 46. Si u vérifie les hypothèse précédentes, pour tout $k \in \mathbb{N}$, $u^k = (d+n)^k = \sum_{i=0}^m \binom{k}{i} d^i n^{k-i}$, avec $m = \min(k, l)$ où l désigne l'indice de nilpotence de n.

Remarque 47. On peut montrer de plus que d et n sont des polynômes en u.

III - Applications

1. Commutant

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

[**FGN2**] p. 160

Notation 48. On note $\mathscr{C}(A)$ le commutant de A.

Lemme 49.

$$\dim_{\mathbb{K}}(\mathcal{C}(A)) \geq n$$

[DEV]

Application 50. Soit $A \in \mathcal{M}_n(\mathbb{K})$. On note $\mathcal{C}(A)$ le commutant de A. Alors,

$$\mathbb{K}[A] = \mathcal{C}(A) \iff \pi_A = \chi_A = \det(XI_n - A)$$

2. Exponentielles de matrices

Lemme 51. (i) La série entière $\sum \frac{z^k}{k!}$ a un rayon de convergence infini.

(ii) $\sum \frac{A^k}{k!}$ est convergente pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$.

[ROM21] p. 761

Définition 52. Soit $A \in \mathcal{M}_n(\mathbb{K})$. On définit **l'exponentielle** de A par

$$\sum_{k=0}^{+\infty} \frac{A^k}{k!}$$

on la note aussi $\exp(A)$ ou e^A .

Théorème 53. Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- (i) $\exp: \mathcal{M}_n(\mathbb{K}) \to \mathcal{M}_n(\mathbb{K})$ est continue.
- (ii) Si *A* est nilpotente d'indice q, $\exp(A) = \sum_{k=0}^{q-1} \frac{A^k}{k!}$.
- (iii) $\exp(A) \in \mathbb{K}[A]$. En particulier, $\exp(A)$ commute avec A.
- (iv) Si $A = \text{Diag}(\lambda_1, ..., \lambda_n)$, alors $\exp(A) = \text{Diag}(e_1^{\lambda}, ..., e_n^{\lambda})$.
- (v) Si $B = PAP^{-1}$ pour $P \in GL_n(\mathbb{K})$, alors $e^B = P^{-1}e^AP$.
- (vi) $\det(e^A) = e^{\operatorname{trace}(A)}$.
- (vii) $t \mapsto e^{tA}$ est de classe \mathscr{C}^{∞} , de dérivée $t \mapsto e^{tA}A$.

Proposition 54. Soient $A, B \in \mathcal{M}_n(\mathbb{K})$ qui commutent. Alors,

$$e^A e^B = e^{A+B} = e^B e^A$$

Corollaire 55. Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors, e^A est inversible, d'inverse e^{-A} .

Exemple 56. Soit $A \in \mathcal{M}_n(\mathbb{K})$ qui admet une décomposition de Dunford A = D + N où D est diagonalisable et N est nilpotente d'indice q. Alors,

- $-e^A = e^D e^N = e^D \sum_{k=0}^{q-1} \frac{N^k}{k!}$
- La décomposition de Dunford de e^A est $e^A=e^D+e^D(e^N-I_n)$ avec e^D diagonalisable et $e^D(e^N-I_n)$ nilpotente.

Application 57. Une équation différentielle linéaire homogène (H): Y' = AY (où A est constante en t) a ses solutions maximales définies sur \mathbb{R} et le problème de Cauchy

ales définies sur
$$\mathbb{R}$$
 et le problème de Cauchy
$$\begin{cases} Y' = AY \\ Y(0) = y_0 \end{cases}$$

a pour (unique) solution $t \mapsto e^{tA} y_0$.

Application 58 (Équation de Sylvester). Soient A et $B \in \mathcal{M}_n(\mathbb{C})$ deux matrices dont les valeurs propres sont de partie réelle strictement négative. Alors pour tout $C \in \mathcal{M}_n(\mathbb{C})$, l'équation AX + XB = C admet une unique solution X dans $\mathcal{M}_n(\mathbb{C})$.

3. Étude d'une suite de polygones

Lemme 59 (Déterminant circulant). Soient $n \in \mathbb{N}^*$ et $a_1, \dots, a_n \in \mathbb{C}$. On pose $\omega = e^{\frac{2i\pi}{n}}$. Alors

$$\begin{vmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_{n-1} & a_0 & \dots & a_{n-2} \\ \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & \dots & a_0 \end{vmatrix} = \prod_{j=0}^{n-1} P(\omega^j)$$

 $où P = \sum_{k=0}^{n-1} a_k X^k.$

Application 60 (Suite de polygones). Soit P_0 un polygone dont les sommets sont $\{z_{0,1},\ldots,z_{0,n}\}$. On définit la suite de polygones (P_k) par récurrence en disant que, pour tout $k \in \mathbb{N}^*$, les sommets de P_{k+1} sont les milieux des arêtes de P_k .

[**GOU20**] p. 380

[**GOU21**] p. 153

p. 389

[I-P]

p. 177

Alors la suite (P_k) converge vers l'isobarycentre de P_0 .

Annexes

FIGURE 1 – La suite de polygones.

[**I-P**] p. 389

Bibliographie

Objectif agrégation [BMP]

Vincent BECK, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Oraux X-ENS Mathématiques

[FGN2]

Serge Francinou, Hervé Gianella et Serge Nicolas. *Oraux X-ENS Mathématiques. Volume 2.* 2e éd. Cassini, 16 mars 2021.

https://store.cassini.fr/fr/enseignement-des-mathematiques/111-oraux-x-ens-mathematiques-nouvelle-serie-vol-2.html.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

Les maths en tête [GOU21]

Xavier Gourdon. Les maths en tête. Algèbre et probabilités. 3e éd. Ellipses, 13 juill. 2021.

 $\verb|https://www.editions-ellipses.fr/accueil/13722-25266-les-maths-en-tete-algebre-et-probabilites-3e-edition-9782340056763.html.|$

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487.html.

Mathématiques pour l'agrégation

[ROM21]

Jean-Étienne Rombaldi. *Mathématiques pour l'agrégation. Algèbre et géométrie.* 2^e éd. De Boeck Supérieur, 20 avr. 2021.

 $\verb|https://www.deboecksuperieur.com/ouvrage/9782807332201-mathematiques-pour-l-agregation-algebre-et-geometrie.|$