Fiche du chapitre II - Équations différentielles linéaires

En vue d'une utilisation lors de l'examen, ne pas annoter (surligneur et encadrement autorisés).

Dans les différentes équations proposées, les grandeurs a, b et c sont des constantes données et $f : \mathbb{R} \to \mathbb{R}$ est une fonction donnée. Les solutions sont exprimées en utilisant la variable réelle x. En général les solutions sont multiples, elles seront paramétrées par les nombres réels notés K, K_1 ou K_2 (ou R et φ).

Équations d'ordre 1

équations	solutions
y' + ay = 0	$y(x) = K e^{-ax}$
(équation homogéne)	
y' + ay = f	Etape 1 : $K e^{-ax}$ est solution de l'équation homogéne (avec $f=0$)
	Etape 2 : on détermine une solution particulière y_p
	soit en reconnaissant une solution "évidente"soit en utilisant la variation de la constante (voir ci-dessous)
	Etape 3 : toutes les solutions sont de la forme $y(x) = K e^{-ax} + y_p(x)$.

La méthode de variation de la constante permet de déterminer une solution de l'équation complète en utilisant la forme de la solution de l'équation homogène : on cherche une solution de l'équation complète sous la forme $y_p(x) = g(x)e^{-ax}$ (on trouve que g doit être une primitive de la fonction $x \mapsto f(x)e^{ax}$).

Remarque : si on doit résoudre une équation de la forme y'(x) + a(x)y(x) = f(x) où a est une **fonction** de la variable x, alors on reprend les différentes étapes ci-dessus en remplaçant les solutions de l'équation homogène (dans l'étape 1 et pour la méthode de variation de la constante) par $y(x) = Ke^{-A(x)}$, $K \in \mathbb{R}$ où A est une primitive de la fonction a.

Équations d'ordre 2

équations	solutions
ay'' + by' + cy = 0	On note λ_1 et λ_2 les deux solutions réelles de $aX^2+bX+c=0$
avec $\Delta = b^2 - 4ac > 0$	$y(x) = K_1 e^{\lambda_1 x} + K_2 e^{\lambda_2 x}$
ay'' + by' + cy = 0	On note λ l'unique solution réelle de $aX^2 + bX + c = 0$
avec $\Delta = b^2 - 4ac = 0$	$y(x) = (K_1 + K_2 x)e^{\lambda x}$
$ay'' + by' + cy = 0$ $avec \Delta = b^2 - 4ac < 0$	On note $u \pm iv$ les deux solutions complexes de $aX^2 + bX + c = 0$ (on a $u = \frac{-b}{2a} \in \mathbb{R}$ et $v = \frac{\sqrt{-\Delta}}{2a} \in \mathbb{R}$) $y(x) = (K_1 \cos(vx) + K_2 \sin(vx))e^{ux}$
	ou de façon équivalente (voir ci-dessous) : $y(x) = R \cos(vx + \varphi)e^{ux}$

Dans le dernier cas, $R\geqslant 0$ et $\varphi\in [0,2\pi[$ sont déterminés en fonction des constantes K_1 et K_2 :

$$R = \sqrt{K_1^2 + K_2^2}, \quad \cos \varphi = \frac{K_1}{R} \quad \text{et} \quad \sin \varphi = -\frac{K_2}{R}.$$