Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application.

Listing of Claims:

- 1. (Original) A combinatorial library comprising a predetermined collection of nucleoside peptide molecules for inhibiting the transfer of a sugar from a selected sugar nucleotide donor to a selected acceptor by a carbohydrate processing enzyme wherein a nucleoside peptide molecule comprises (a) a nucleoside monomer; (b) a spacer monomer coupled to the nucleoside monomer wherein the spacer monomer comprises one or more amide linked amino acid residues or mimetics thereof; and (c) cap monomers attached to the spacer monomer; wherein the nucleoside peptide molecules differ from each other as to the identity of at least one element of the nucleoside monomer, spacer monomer or cap monomers.
- 2. (Original) A combinatorial library as claimed in claim 1 wherein the carbohydrate processing enzyme is a glycosyltransferase involved in the biosynthesis of glycoproteins, glycolipids, or glycosyl phosphatidyl inositols.
- 3. (Original) A combinatorial library as claimed in claim 2 wherein the carbohydrate processing enzyme is an N-acetylglucosaminyltransferase I, II, II, IV or V, or β -1,3-galactosyl-O-glycosyl-glycoprotein β 1,6-N-acetylglucosaminyl transferase (core 2 GlcNAc).
- 4. (Previously presented) A combinatorial library as claimed in claim 1 wherein the nucleoside monomer is uridyl, 2'-deoxyuridyl, or 5'-amino-5'deoxy-2',3'-O-isopropylidine uridyl.
- 5 (Previously presented) A combinatorial library as claimed in claim 1 wherein the cap monomer is methyl (Me), formyl (CHO), ethyl (Et), acetyl (Ac), t-butyl (t-bu),

anisyl, trifluoroacetyl (Tfa), benzoyl (Bz), 4-methylbenzyl (Meb), thioanizyl, thiocresyl, benzyloxymethyl, 4-nitrophenyl (Pnp), benzyloxycarbonyl (Z), 2-nitrobenzoyl (NBz), 2-nitrophenylsulphenyl (Nps), 4-toluenesulphonyl (Tosyl, Tos), pentafluorophenyl (Pfp), diphenylmethyl (Dpm), 2-chlorobenzyloxycarbonyl (Cl-Z), 2,4,5-trichlorophenyl, 2-bromobenzyloxycarbonyl (Br-Z), triphenylmethyl (Trityl, Trt), 2,2,5,7,8-pentamethyl-chroman-6-sulphonyl (Pmc), t-butyloxycarbonyl (Boc), benzyl (Bzl), benzyloxymethyl (Bom), and 9-fluorenylmethyloxycarbonyl (Fmoc).

- 6. (Previously presented) A combinatorial library as claimed in claim 1 wherein the spacer monomer is a single amide lined amino acid, an amide linked dipeptide, or an amide linked tripeptide, or a mimetic thereof.
- 7. (Withdrawn) A nucleoside peptide molecule comprising a nucleoside monomer; a spacer monomer coupled to a nucleoside monomer, wherein the spacer monomer comprises one or more amide linked amino acid residues, or a mimetic thereof; and cap monomers attached to the spacer monomer.
- 8. (Withdrawn) A nucleoside peptide molecule of the formula 1:

where X is H, -COOH, -OSO₃H, or (CH₂)qSO₃H where q is 0 or 1, and R represents (Y)_m where Y is an amide linked amino acid residue and m is 1-3, Z' and Z are the same or different and represent hydroxyl or alkoxy, or Z' and Z together form an acetonide group, and wherein free NH₂ groups in the compound of the formula 1 are capped with a cap monomer.

- 9. (Withdrawn) A nucleoside peptide molecule of the formula 1 as claimed in claim 8 wherein X is H, -COOH, -OSO₃H, or $(CH_2)qSO_3H$ where q is 0 or 1, Z and Z' are both hydroxyl or together form an acetonide group, R represents -NHCOR¹, wherein R^1 represents
- (a) $-C(CH_3)(NH_2)CH_2$ wherein \mathbb{R}^2 is alkoxy; or
- (b) -CHR³R⁴ wherein R³ is hydrogen or -NH₂, and R⁴ is R⁵ wherein R⁵ is

halogen, alkyl, or alkoxy,

.-CH₂N(CH₃)CH₂CH₂R⁶ or - N(CH₃)CH₂CH₂R⁶ wherein R⁶ is halogen,

-CH₂N(CH₃)CO . -CH₂N(C₂H₅)CH₂CH(CH₃)OH, or -CH₂NHCOCH(CH₃)₂, or \mathbb{R}^4 represents (CH₂)_n \mathbb{R}^4 wherein $\mathbb{R}=0$ to 5, \mathbb{R}^4 is halogen, \mathbb{R}^4 wherein \mathbb{R}^6 is alkoxy, \mathbb{R}^4 wherein \mathbb{R}^6 is

- -N(CH₃)CH₂CH₂R¹⁰ wherein R¹⁰ is halogen, -N(C₂H₅)CH₂CH(CH₃)OH, or -NHCOCH(CH₃)₂ and wherein free amino groups are protected with a cap monomer.
- 10. (Withdrawn) A nucleoside peptide molecule of the formula I as claimed in claim 8 wherein X is -COOH, and R represents -NHCOR 1 wherein R 1 represents -CHR 3 R 4 wherein R 3 is hydrogen, and R 4 is $(CH_2)_n$ R 8 wherein n = 0 to 5, preferably 1 to 4, R 8 is

halogen, R* wherein R* is alkoxy, halogen, or alkyl

or $-N(CH_3)CH_2CH_2R^{10}$ wherein R^{10} is halogen, $-N(C_2H_5)CH_2CH(CH_3)OH$, or $-NHCOCH(CH_3)_2$.

11. (Withdrawn) A nucleoside peptide molecule of the formula I as claimed in claim 8 wherein X is -COOH, and R represents -NHCOR 1 wherein R 1 represents -CHR 3 R 4 wherein R 3 represents -NH $_2$, and R 4 is

-CH₂N(CH₃)CH₂CH₂R⁶ wherein R⁶ is halogen, -CH₂N(C₂H₅)CH₂CH(CH₃)OH, CH₂NHCOCH(CH₃)₂ or -CH₂N(CH₃)CO- \bigcirc .

- 12. (Withdrawn) A nucleoside peptide molecule of the formula I as claimed in claim 8 wherein X is $-OSO_3H$, or $(CH_2)qSO_3H$ where q is 0 or 1, R represents $-NHCOR^1$ wherein R^1 represents $-CHR^3R^4$ wherein R^3 represents $-NH_2$ and R^4 is $-R^5$ wherein R^5 is halogen, alkyl, or alkoxy, $-CH_2N(C_2H_5)CH_2CH(CH_3)OH$, or $-CH_2NHCOCH(CH_3)_2$.
- 13. (Withdrawn) A process for preparing a combinatorial library containing a predetermined collection of nucleoside peptide molecules for inhibiting the transfer of a sugar from a selected sugar nucleotide donor having a heterocyclic amine base, to a selected acceptor by a carbohydrate processing enzyme comprising:
 - (a) coupling one or more amino acids, or mimetics thereof to a nucleoside monomer unit which comprises a heterocyclic amine base coupled to a sugar wherein the base corresponds to the heterocyclic amine base of the sugar nucleotide donor, or a modified form or analogue of the base; and

5

- (b) capping any free functional groups or amine groups with a cap monomer unit.
- 14. (Withdrawn) A method of using a combinatorial library as claimed in claim 1 for screening for pharmacologically active molecules.
- 15. (Withdrawn) A solid-phase bioassay for identifying a compound having inhibitory activity against a carbohydrate processing enzyme which comprises (a) coupling an acceptor for the carbohydrate processing enzyme to a polymer and coating onto a carrier; (b) adding a carbohydrate processing enzyme, a sugar nucleotide donor labeled with a detectable substance, and a test compound; (c) measuring the detectable change produced by the detectable substance; and (d) comparing to a control in the absence of the test compound wherein a decrease in the amount of detectable substance with the test compound indicates that the test compound has inhibitory activity against the enzyme.
- 16. (Withdrawn) A method for identifying a compound that inhibits N-linked oligosaccharide processing comprising (a) reacting a test compound with cells expressing N-linked oligosaccharides in the presence of L-PHA and measuring alkaline phosphatase activity; and (b) comparing to a control in the absence of the compound wherein an increase in alkaline phosphatase activity indicates that the compound inhibits N-linked oligosaccharide processing.
- 17. (Withdrawn) A pharmaceutical composition containing a compound identified by a method as claimed in claim 1.
- 18. (New) A combinatorial library as claimed in claim 1 wherein the nucleoside peptide molecule is a compound of the formula I:

where X is H, –COOH, -OSO₃H, or (CH₂)qSO₃H where q is 0 or 1, and R represents (Y)_m where Y is an amide linked amino acid residue and m is 1-3, Z' and Z are the same or different and represent hydroxyl or alkoxy, or Z' and Z together form an acetonide group, and wherein free NH₂ groups in the compound of the formula I are capped with a cap monomer.

- 19. (New) A combinatorial library as claimed in claim 18 wherein X is H, –COOH, -OSO₃H, or (CH₂)qSO₃H where q is 0 or 1, Z and Z' are both hydroxyl or together form an acetonide group, R represents –NHCOR¹, wherein R¹ represents
 - (a) $-C(CH_3)(NH_2)CH_2$ - \mathbb{R}^2 , wherein \mathbb{R}^2 is alkoxy; or
 - (b) $-CHR^3R^4$ wherein R^3 is hydrogen or $-NH_2$, and R^4 is $-R^5$ wherein R^5 is

halogen, alkyl, or alkoxy, , -CH
$$_2$$
N(CH $_3$)CH $_2$ CH $_2$ R 6 or

$$-N(CH_3)CH_2CH_2R^6$$
 wherein R^6 is halogen, $-CH_2N(CH_3)CO$,

-CH₂N(C₂H₅)CH₂CH(CH₃)OH, or -CH₂NHCOCH(CH₃)₂, or R^4 represents (CH₂)_n R^8 wherein n=0 to 5, R^8 is halogen, R^9 wherein R^9 is

- -N(CH₃)CH₂CH₂R¹⁰ wherein R¹⁰ is halogen, -N(C₂H₅)CH₂CH(CH₃)OH, or -NHCOCH(CH₃)₂ and wherein free amino groups are protected with a cap monomer.
- 20. (New) A combinatorial library as claimed in claim 18 wherein X is -COOH, and R represents -NHCOR¹ wherein R¹ represents -CHR³R⁴ wherein R³ is hydrogen, and R⁴

is $(CH_2)_n R^8$ wherein n = 0 to 5, preferably 1 to 4, R^8 is halogen, wherein

R⁹ is alkoxy, halogen, or alkyl,

or $-N(CH_3)CH_2CH_2R^{10}$ wherein R^{10} is halogen, $-N(C_2H_5)CH_2CH(CH_3)OH$, or $-NHCOCH(CH_3)_2$.

21. (New) A combinatorial library as claimed in claim 18 wherein , X is –COOH, and R represents –NHCOR 1 wherein R^1 represents –CHR 3 R 4 wherein R^3 represents – NH $_2$, and R^4 is -R 5 wherein R^5 is halogen, alkyl or alkoxy,

-CH₂N(C₂H₅)CH₂CH(CH₃)OH, -CH₂NHCOCH(CH₃)₂ or -CH₂N(CH₃)CO- \bigcirc .

22. (New) A combinatorial library as claimed in claim 18 wherein X is $-OSO_3H$, or $(CH_2)qSO_3H$ where q is 0 or 1, R represents $-NHCOR^1$ wherein R^1 represents $-CHR^3R^4$ wherein R^3 represents $-NH_2$, and R^4 is $-R^5$ wherein R^5 is halogen, alkyl, or alkoxy, $-CH_2N(C_2H_5)CH_2CH(CH_3)OH$, or $-CH_2NHCOCH(CH_3)_2$.