# Robust Artificial Intelligence

Reading Seminar; Tsinghua University
Thomas G. Dietterich, Oregon State University
tgd@cs.orst.edu

### Lecture 2: Rejection

#### • Given:

- Training data  $(x_1, y_1), ..., (x_N, y_N)$
- Target accuracy level  $1 \epsilon$
- Learn a classifier f and a rejection rule r

#### At run time

- Given query  $x_q$
- If  $r(x_q) < 0$ , REJECT
- Else classify  $f(x_q)$

### Papers for Today

- Cortes, C., DeSalvo, G., & Mohri, M. (2016). Learning with rejection.
   Lecture Notes in Artificial Intelligence, 9925 LNAI, 67–82.
   <a href="http://doi.org/10.1007/978-3-319-46379-7">http://doi.org/10.1007/978-3-319-46379-7</a>
- Shafer, G., & Vovk, V. (2008). A tutorial on conformal prediction.
   Journal of Machine Learning Research, 9, 371–421. Retrieved from <a href="http://arxiv.org/abs/0706.3188">http://arxiv.org/abs/0706.3188</a>
- Papadopoulos, H. (2008). Inductive Conformal Prediction: Theory and Application to Neural Networks. Book chapter.
   <a href="https://www.researchgate.net/publication/221787122">https://www.researchgate.net/publication/221787122</a> Inductive Conformal Prediction Theory and Application to Neural Networks

### Basic Theory

- Suppose  $f^*(x, y) = P(y|x)$  is the optimal probabilistic classifier
- Best prediction is  $\hat{y} = \arg \max_{y} f^*(x, y)$
- Then the optimal rejection rule is to REJECT if  $f^*(x,\hat{y}) < 1 \epsilon$
- (Chow 1970)



### Non-Optimal Case

- If f is not optimal, we can still determine a threshold with performance guarantees
- Let  $(f(x_i, \hat{y}_i), I[\hat{y}_i = y_i])$  be a set of calibration data points i = 1, ..., N
- Sort them by  $\hat{p}(\hat{y}_i|x_i) = f(x_i, \hat{y}_i)$
- Choose the smallest threshold  $\tau$  such that if  $f(x_i, \hat{y}_i) > \tau$  then the fraction of correct predictions is  $1 \epsilon$



# Finite Sample (PAC) Guarantee

- $P\left(\sqrt{n}\sup_{x}\left|\hat{F}_{n}(x) F(x)\right| > \lambda\right) \le 2\exp(-2\lambda^{2})$  Massart (1990)
- Set  $x \coloneqq \tau$

• 
$$P\left(\eta > \frac{\lambda}{\sqrt{n}}\right) = 2\exp(-2\lambda^2)$$

- Set  $\frac{\lambda}{\sqrt{n}} = \eta$  and  $\delta = 2 \exp(-2\lambda^2)$ ; solve for n
- $\lambda = \eta \sqrt{n}$
- $\delta = 2 \exp(-2\eta^2 n)$
- $\log \frac{\delta}{2} = -\eta^2 n$
- $n = \frac{1}{\eta^2} \log \frac{2}{\delta}$
- If  $n > \frac{1}{\eta^2} \log \frac{2}{\delta}$  then w.p.  $1 \delta$ , the true error rate will be bounded by  $1 (\epsilon + \eta)$



### Related Work

- Geifman & El Yaniv (2017)
  - Develop confidence scores based on either the softmax ("SR") or Monte Carlo dropout ("MC-dropout")
  - Binary search for the threshold
  - Use an exact Binomial confidence interval instead of Massart's bound
  - Union bound over the binary search queries



(c) Image-Net

### Cost-Sensitive Rejection

- Cost Matrix
- Optimal Classifier
  - For  $\hat{p}(y=1|x) \geq \tau_1$ , predict 1
  - For  $\hat{p}(y=2|x) \ge \tau_2$ , predict 2
  - Else REJECT
- Search all pairs  $(\tau_1, \tau_2)$  to minimize expected cost
- Pietraszek (2005) provides a fast algorithm based on (a) isotonic regression and (b) computing the slopes on the ROC curve corresponding to  $\tau_1$  and  $\tau_2$

|               | Actions   |                        |          |  |
|---------------|-----------|------------------------|----------|--|
| Probabilities | Predict 1 | Predict 2              | Reject   |  |
| P(y=1 x)      | 0         | <i>c</i> <sub>12</sub> | $c_{1r}$ |  |
| P(y=2 x)      | $c_{21}$  | 0                      | $c_{2r}$ |  |

### Support Vector Machines

- Key insight: Maximize the Margin around the Decision Boundary
- Three strategies:
  - Fit standard SVM, then calibrate or threshold
  - Fit a double-hinge loss (DHL) SVM that maximizes margin around the rejection thresholds
  - Fit two separate functions (classifier and rejection function) that maximize margins around the rejection thresholds

### Reminder: Standard SVM

- Linear classifier that maximizes the margin between positive and negative examples
- $y \in \{+1, -1\}$  so  $y_i f(x_i) > 0$  means  $x_i$  is classified correctly

$$\min_{w,b,\xi} C \|w\|^2 + \sum_i \xi_i \text{ subject to}$$
 
$$y_i(w^\top x_i + b) + \xi_i \ge 1 \ \forall i$$

- The  $\xi_i$  are "slack variables" the measure how "wrong" we are classifying  $x_i$
- *C* is the regularization parameter



### Double Hinge Loss

(Herbei & Wegkamp, 2006; Bartlett & Wegkamp, 2008)

- Assume cost of rejection is c
- Reject if  $|f(x)| < \delta$
- Loss function  $\ell_c(yf(x))$ 
  - if  $yf(x) < -\delta$   $\ell_c = 1$
  - if  $yf(x) \in [-\delta, +\delta] \ell_c = c$
  - if  $yf(x) > +\delta$   $\ell_c = 0$
- ullet Convex upper bound  $\phi_c$ 
  - if yf(x) < 0  $\phi_c = 1 ayf(x)$
  - if  $yf(x) \in [0,1)$   $\phi_c = 1 yf(x)$
  - if yf(x) > 1  $\phi_c = 0$



### DHL Optimization Problem

- $\min_{w,b,\xi,\gamma} \sum_{i} \xi_{i} + \frac{1-2c}{c} \gamma_{i}$  subject to
- $y_i(w^Tx_i + b) + \xi_i \ge 1$
- $y_i(w^{\mathsf{T}}x_i + b) + \gamma_i \ge 0$
- $\xi_i \geq 0$ ;  $\gamma_i \geq 0$
- $\sum_{i,j} \alpha_i \alpha_j (x_i \cdot x_j) \le r^2$  (regularization constraint)
- This is a quadratically-constrained quadratic program, so it can be solved, but it is not easy

# Non-Optimal Case (2)

- Defining the rejection function in terms of h assumes that the probability of error is monotonically related to  $\hat{p}(y|x)$ .
- We saw last lecture that this is not necessarily true
- We can try to fix h or we can learn a more complex r function
- Unlikely to be a problem for flexible models, but could be a problem for linear and SVM methods



# Method 3: Learn (f, r) pair

(Cortes, DeSalvo & Mohri, 2016)

- Two-dimensional loss function
- If  $r(x) \ge 0$  and  $yf(x) \ge 0$  loss = 0
- If  $r(x) \ge 0$  and yf(x) < 0 loss = 1
- If r(x) < 0 loss = c



### Convex Upper Bound

• 
$$L_{MH}(r, f, x, y) = \max\left(1 + \frac{1}{2}(r(x) - yf(x)), c\left(1 - \frac{1}{1 - 2c}r(x)\right), 0\right)$$





### CHR Optimization Problem

- $\bullet f(x) = w^{\mathsf{T}}x + b$
- $\bullet r(x) = u^{\mathsf{T}}x + b'$
- $\min_{w,u,\xi} \frac{\lambda}{2} ||w||^2 + \frac{\lambda'}{2} ||u||^2 + \sum_i \xi_i$  subject to
  - $\bullet \ c\left(1 \frac{1}{1 2c}(u^{\mathsf{T}}x_i + b')\right) \le \xi_i$
  - $\frac{1}{2}(u^{\mathsf{T}}x_i + b' y_i w^{\mathsf{T}}x_i b) \le 1 + \xi_i$
  - $0 \le \xi_i$
- By minimizing  $\xi_i$  we are minimize the max of these three terms

# **Experimental Tests**



### Error on Non-Rejected Points

Note: DHL modified to reject the same number of points as CHR



### Reject Option Conclusions

- Basic thresholding is easy and gives PAC guarantees
- 2-class thresholding with differential costs is easy
- *K*-class thresholding?
- Thresholding SVMs is interesting
  - Focus the "margin" on the reject boundaries
  - Learning a (f,r) pair is better than optimizing the double hinge loss
- Open question: How to jointly train DNNs and a rejection function

### Conformal Prediction (online version)

#### • Given:

- Training data  $[x_1, ..., x_{n-1}]$  where  $x_i = (x_i, y_i)$
- Classifier f trained on the training data
- Nonconformity measure  $A_n: \mathbb{Z}^{n-1} \times \mathbb{Z} \to \mathbb{R}$
- Query  $x_n$
- Accuracy level  $\delta$

#### • Find:

- A set  $C(x_q) \subseteq \{1, ..., K\}$  such that  $y_q \in C(x_q)$  with probability  $1 \delta$
- Method:
  - For each k, let  $z_n^k = (x_q, k)$ 
    - $\forall i \ \alpha_i^k \coloneqq A(\llbracket z_1, \dots, z_{i-1}, z_{i+1}, \dots, z_n \rrbracket, z_i)$  "how different is  $z_i$  from the rest of the z values?
    - Let  $p^k = \text{fraction of } [\![\alpha_1^k, \dots, \alpha_n^k]\!]$  that are  $\geq \alpha_n^k$
  - $C(x_q) = \{k | p^k \ge \delta\}$
  - Output  $C(x_q)$

### Examples of Nonconformity Measures

- Conditional probability method:
  - Train a probabilistic classifier f on  $[x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n]$
  - Then compute  $A([[z_1, ..., z_{i-1}, z_{i+1}, ..., z_n]], z_i) = -\log f(z_i)$
- Nearest neighbor nonconformity
  - $A(B, z) = \frac{\text{distance to nearest } z' \in B \text{ in same class}}{\text{distance to nearest } z' \in B \text{ in different class}}$

### Additional Information

- In addition to outputting  $C(x_q)$ , we can output
  - $\hat{y}_q = \arg \max_k p^k$  (the best prediction)
  - $p_q = \max_k p^k$  (the p-value of the best prediction)
  - $1 \max_{k; k \neq \hat{y}_q} p^k$  (the "confidence". We have more confidence if the second-best p-value is small)

# Batch ("inductive") Conformal Prediction

- Divide data into training and calibration
- Train f on the training data
- Let  $[z_1, ..., z_n]$  be the validation data
- Let  $\alpha_1, \dots, \alpha_n$  be the non-conformity scores of the validation data
  - $\alpha_i \coloneqq A(\llbracket z_1, \dots, z_{i-1}, z_{i+1}, \dots, z_n \rrbracket, z_i)$
- Given query  $x_q$ 
  - For k = 1, ..., K
    - Let  $z_q^k = (x_q, k)$
    - let  $\alpha_q^{k} = A([x_1, \dots, x_n], z_q^k)$
    - Let  $p^k = \text{fraction of } [\![\alpha_1, \dots, \alpha_n, \alpha_q^k]\!]$  that are  $\geq \alpha_q^k$
  - $C(x_q) = \{k | p^k \ge \delta\}$
- Key difference:  $z_q^k$  does not affect the other non-conformity scores

# Almost Equivalent to Learning a Threshold

- Let  $\tau =$  the  $\delta$  quantile of  $[\![\alpha_1,\ldots,\alpha_n]\!]$
- Given query  $x_q$ 
  - For k = 1, ..., K
    - Let  $z_q^k = (x_q, k)$
    - let  $\alpha_q^k = A(\llbracket z_1, \dots, z_n \rrbracket, z_q^k)$
  - $C(x_q) = \{k \mid \alpha_q^k \ge \tau\}$
- ullet Additional difference: au is computed without considering  $lpha_q^k$
- IF *n* is large enough, this does not matter

### Experimental Results

|                      | Satellite | Shuttle | Segment |
|----------------------|-----------|---------|---------|
| Hidden Units         | 23        | 12      | 11      |
| Hidden Learning Rate | 0.002     | 0.002   | 0.002   |
| Output Learning Rate | 0.001     | 0.001   | 0.001   |
| Momentum Rate        | 0.1       | 0       | 0.1     |

#### Non-conformity Measures

- Resubstitution:
  - Train *f* on all data
  - Let  $\hat{y}_i = f(x_i)$
  - $A([[z_1, ..., z_{i-1}, z_i, ..., z_N]], (x_i, k)) = I[\hat{y}_i = k]$
- Leave One Out:
  - Train f on  $[[z_1, ..., z_{i-1}, z_i, ..., z_N]]$
  - Let  $\hat{y}_i = f(x_i)$
  - $A([[z_1, ..., z_{i-1}, z_i, ..., z_N]], (x_i, k)) = I[\hat{y}_i = k]$

### Satellite

Error:  $y_i \notin C(x_i)$ 

| Nonconformity  | Confidence | Only one  | More than     | No        | V          |
|----------------|------------|-----------|---------------|-----------|------------|
| Measure        | Level      | Label (%) | one label (%) | Label (%) | Errors (%) |
|                | 99%        | 60.72     | 39.28         | 0.00      | 1.11       |
| Resubstitution | 95%        | 84.42     | 15.58         | 0.00      | 4.67       |
|                | 90%        | 96.16     | 3.02          | 0.82      | 9.59       |
| Leave one out  | 99%        | 61.69     | 38.31         | 0.00      | 1.10       |
|                | 95%        | 85.70     | 14.30         | 0.00      | 4.86       |
|                | 90%        | 96.11     | 3.10          | 0.79      | 9.43       |

Table 3. Results of the second mode of the Neural Networks ICP for the Satellite data set.

### Shuttle

| Nonconformity  | Confidence | Only one  | More than     | No        |            |
|----------------|------------|-----------|---------------|-----------|------------|
| Measure        | Level      | Label (%) | one label (%) | Label (%) | Errors (%) |
|                | 99%        | 99.23     | 0.00          | 0.77      | 0.77       |
| Resubstitution | 95%        | 93.52     | 0.00          | 6.48      | 6.48       |
|                | 90%        | 89.08     | 0.00          | 10.92     | 10.92      |
|                | 99%        | 99.30     | 0.00          | 0.70      | 0.70       |
| Leave one out  | 95%        | 93.86     | 0.00          | 6.14      | 6.14       |
|                | 90%        | 88.72     | 0.00          | 11.28     | 11.28      |

Table 4. Results of the second mode of the Neural Networks ICP for the Shuttle data set.

# Segmentation

| Nonconformity  | Confidence | Only one  | More than     | No        |            |
|----------------|------------|-----------|---------------|-----------|------------|
| Measure        | Level      | Label (%) | one label (%) | Label (%) | Errors (%) |
| Resubstitution | 99%        | 90.69     | 9.31          | 0.00      | 0.95       |
|                | 95%        | 97.71     | 1.25          | 1.04      | 3.68       |
|                | 90%        | 94.68     | 0.00          | 5.32      | 6.71       |
| Leave one out  | 99%        | 91.73     | 8.27          | 0.00      | 1.04       |
|                | 95%        | 97.79     | 1.21          | 1.00      | 3.55       |
|                | 90%        | 94.76     | 0.00          | 5.24      | 6.67       |

Table 5. Results of the second mode of the Neural Networks ICP for the Segment data set.

### Pendigits + Random Forest

(Dietterich, unpublished)

- Train a random forest on half of UCI Training Set
- Use the predicted class probability P(y=k|x) as the (non)conformity score
- ullet Compute au values using other half of Training Set
- Compute *C* on the Test Set

### Cumulative Distribution Function for Class "9"



### Pendigits Results

- All  $\tau$  values were 0 (for  $\epsilon = 0.001$ )
- Probability  $y \in \Gamma(x) = 0.9997$
- Abstention rate = 0.72
- Sizes of prediction sets Γ:



# Simple Thresholding of $\max_{k} \hat{p}(y = k|x)$



### Zoomed In: $\tau = 0.87$ for $\delta = 0.05$



### Test Set Results

- Probability of correct classification: 0.9987
- Rejection rate: 33.4%
  - [Conformal prediction was 72%]

### Another Use Case: Lexicon Reduction

- US Postal Service Address Reading Task
  - (Madhvanath, Kleinberg, Govindaraju, 1997)
- Two classifiers
  - Method 1: Fast but not always accurate
  - Method 2: Slower but more accurate
    - Can only afford to run on 1/3 of envelopes
    - Faster if it can be focused on a subset of the classes
- Apply conformal prediction using Method 1
  - Eliminate as many classes as possible
  - Apply Method 2 if |C(x)| > 1

### Summary

- Lecture 1: Calibration
- Lecture 2: Rejection
  - Method 1: Threshold *f* with single or multiple thresholds
    - Multiple thresholds requires a change in the SVM methodology
  - Method 2: Learn a separate rejection function and threshold it
  - Method 3: Conformal: Use thresholding to construct a confidence set
    - Reject if  $|C(x_q)| \neq 1$
    - Can perform "lexicon reduction"
  - In my experience, Conformal Prediction is not good for Rejection, but more experiments are needed

### Next Lecture

- All of these methods assume a closed world
- What happens when queries may belong to "alien" classes not observed during training?
- Papers:
  - Bendale, A., & Boult, T. (2016). Towards Open Set Deep Networks. In CVPR 2016 (pp. 1563–1572). http://doi.org/10.1109/CVPR.2016.173
  - Liu, S., Garrepalli, R., Dietterich, T. G., Fern, A., & Hendrycks, D. (2018). Open Category Detection with PAC Guarantees. *Proceedings of the 35th International Conference on Machine Learning, PMLR, 80,* 3169–3178. http://proceedings.mlr.press/v80/liu18e.html

### Citations

- Bartlett, P., Wegkamp, M. (2008). Classification with a reject option using a hinge loss. JMLR, 2008.
- Chow (1970). On optimum recognition error and reject trade-off. IEEE Transactions on Computing.
- Cortes, C., DeSalvo, G., & Mohri, M. (2016). Learning with rejection. *Lecture Notes in Artificial Intelligence*, 9925 LNAI, 67–82. <a href="http://doi.org/10.1007/978-3-319-46379-7">http://doi.org/10.1007/978-3-319-46379-7</a> 5
- Geifman, Y., El Yaniv, R. (2017) Selective Classification for Deep Neural Networks. NIPS 2017. arXiv: 1705.08500
- Herbei, R., Wegkamp, M. (2005). Classification with reject option. Canadian Journal of Statistics.
- Madhvanath, S., Kleinberg, E., Govindaraju, V. (1997). Empirical Design of a Multi-Classifier
   Thresholding/Control Strategy for Recognition of Handwritten Street Names. *International Journal of Pattern Recognition and Artificial Intelligence*, 11(6):933-946. <a href="https://doi.org/10.1142/S0218001497000421">https://doi.org/10.1142/S0218001497000421</a>
- Papadopoulos, H. (2008). Inductive Conformal Prediction: Theory and Application to Neural Networks. Book chapter.
   <a href="https://www.researchgate.net/publication/221787122">https://www.researchgate.net/publication/221787122</a> Inductive Conformal Prediction Theory and Application to Neural Networks
- Pietraszek, T. (2005). Optimizing abstaining classifiers using ROC analysis. In ICML, 2005
- Shafer, G., & Vovk, V. (2008). A tutorial on conformal prediction. Journal of Machine Learning Research, 9, 371–421. Retrieved from <a href="http://arxiv.org/abs/0706.3188">http://arxiv.org/abs/0706.3188</a>