План лекции

- 1 Смесь Гауссовских распределений
- 2 ЕМ-алгоритм
- 3 Информационные методы

Смешанные модели

- ullet Пусть \mathbb{W} подмножество Евклидового пространства \mathbb{R}^d и $|\mathbb{W}|=\mathit{N}<\infty$
- Рассмотрим модель, в которой распределение $\mathrm{P}(\mathbb{W})$ множества \mathbb{W} задается смесью распределений: $\mathrm{P}(\mathbb{W}) = \sum_{i=1}^k p_i \mathrm{P}(\mathbb{X}_i)$, где p_i вероятности кластеров и $\mathrm{P}(\mathbb{X}_i)$ распределение кластера для всех $i \in 1..k$
- Распределения кластеров $\mathrm{P}(\mathbb{X}_i)$ могут быть разного вида: Бернулли, Пуассона, Нормальное и т.д.
- Для решения задачи кластеризации необходимо построить оценки параметров распределений смеси на основе входных данных $\mathbf{w} = (w_1, \ldots, w_N)$. Для этого обычно применяют техники, основанные на скрытых параметрах, такие как алгоритмы Expectation Maximization (EM) и Gibbs sampling

Смесь Гауссовских распределений

- Смесь Гауссовских распределений, Gaussian Mixture Model (GMM) $f(\mathcal{X}^k,\mathbf{w}) = \sum_{i=1}^k p_i \mathcal{G}(\mathbf{w}|\mathbf{x}_i,\Gamma_i), \text{ где } \mathcal{G}(\mathbf{w}|\mathbf{x}_i,\Gamma_i) \text{плотность}$ Гауссовского распределения со средним \mathbf{x}_i и ковариационной матрицей Γ_i , $i \in 1...k$
- $\Gamma_i = \beta_i \mathbf{U}_i \mathbf{D}_i \mathbf{U}_i^\mathrm{T}, \ i \in 1..k,$ где β_i константа объема ковариационной матрицы, \mathbf{U}_i матрица собственных векторов, определяющая ориентацию кластера, $\mathbf{D}_i = \mathrm{diag}(\lambda_{1,i},\dots,\lambda_{d,i})$ матрица собственных чисел, определяющая форму ковариационной матрицы, $\lambda_{d,i} \leq \lambda_{d-1,i} \leq \dots \leq \lambda_{1,i} = 1$

Виды ковариационных матриц

	Γί	Форма	Ориентация	Объем
1	β I	Сферическая	N/A	Одинаковый
2	β_i I	Сферическая	N/A	Разный
3	Γ	Одинаковая	Одинаковая	Одинаковый
4	$\beta_i\Gamma$	Одинаковая	Одинаковая	Разный
5	eta U $_i$ DU $_i^{ m T}$	Одинаковая	Разная	Одинаковый
6	$\beta_i U_i D U_i^{\mathrm{T}}$	Одинаковая	Разная	Разный
7	$oxed{eta_i U D_i U^\mathrm{T}}$	Разная	Одинаковая	Разный
8	Γ _i	Разная	Разная	Разный

Таблица: Виды кластеров в зависимости от ковариационной матрицы.

Применение GMM

- Финансовые модели
- Определение тем текстовых документов
- Распознавание рукописных символов
- Распознавание речи, вместе с НММ
- Машинный перевод, модель IBM 2
- Сегментация изображения
- Радиально-базисные функции (RBF)
- •

Пример GMM

Пусть
$$d=2$$
, $k=2$, $\mathbf{x}_1=(0,0)$, $\Gamma_1=\begin{pmatrix} 0.7 & 0.5 \\ 0.5 & 0.7 \end{pmatrix}$, $\mathbf{x}_2=\begin{pmatrix} 3,3 \end{pmatrix}$, $\Gamma_2=\begin{pmatrix} 1 & 0.7 \\ 0.7 & 1 \end{pmatrix}$

Рис.: Моделирование GMM

Рис. : Гистограмма одной компоненты входных данных

Метод максимума правдоподобия

- Построим оценку параметров на основе ММП
- Функция правдоподобия:

$$L(\{p_i, \mathbf{x}_i, \Gamma_i\}_{i \in 1...k}) = \prod_{\mathbf{w} \in \mathbb{W}} \left(\sum_{i=1}^k p_i \mathcal{G}\left(\mathbf{w} | \mathbf{x}_i, \Gamma_i\right) \right)$$

• Прологарифмируем:

$$F(\mathcal{X}^k) = -l(\{p_i, \mathbf{x}_i, \Gamma_i\}_{i \in 1...k}) = -\sum_{\mathbf{w} \in \mathbb{W}} \ln \left(\sum_{i=1}^k p_i \mathcal{G}(\mathbf{w} | \mathbf{x}_i, \Gamma_i) \right)$$

Конечная формула

- Обозначим $\bar{\mathbf{x}}_i,\ i\in 1..k$, как $(1+d+d^2)$ -вектор, состоящий из p_i , d-вектоа \mathbf{x}_i и элементов $d\times d$ матрицы $\Gamma_i,\ \bar{\mathbf{X}}-(1+d+d^2)\times k$ матрица, состоящая из векторов $\bar{\mathbf{x}}_i,\ i\in 1..k$.
- $\bar{q}(\bar{\mathbf{x}}, \mathbf{w}) = -\ln p + (\mathbf{w} \mathbf{x})^{\mathrm{T}} \Gamma^{-1}(\mathbf{w} \mathbf{x})$
- Тогда, правило кластеризации:

$$X_i(\overline{\mathbf{X}}) = \{ \mathbf{w} \in \mathbb{W} : \overline{q}(\overline{\mathbf{x}}_i, \mathbf{w}) < \overline{q}(\overline{\mathbf{x}}_j, \mathbf{w}), \ j = 1, 2, \dots, i - 1, \\ \overline{q}(\overline{\mathbf{x}}_i, \mathbf{w}) \leq \overline{q}(\overline{\mathbf{x}}_j, \mathbf{w}), \ j = i + 1, i + 2, \dots, k \}, \ i \in 1...k,$$

• $F(\bar{\mathbf{X}}) = \sum_{i=1}^k \sum_{\mathbf{w} \in \mathbb{X}_i(\bar{\mathbf{X}})} \bar{q}(\bar{\mathbf{x}}_i, \mathbf{w}) \to \min_{\bar{\mathbf{X}}}$

Алгоритм Expectation Maximization (EM)

- Для максимизации логарифма функции правдоподобия применяется *EM* алгоритм
- Алгоритм Expectation Maximization предложен Dempster, Laird и Rubin в 1977 году
- *EM* алгоритм итеративная оптимизационная процедура, т.ч. на каждом ее шаге функция правдоподобия не уменьшается, что гарантирует сходимость к локальному максимуму функции
- **Z** $N \times k$ матрица скрытых переменных, т.ч. для каждого $\mathbf{w}_t \in \mathbb{W}, \ t \in 1..N$ t-ый столбец вектор скрытых переменных $\mathbf{z}_n = (z_{1,t}, \dots, z_{k,t})$, представляющий вероятности того, что \mathbf{w}_t принадлежит каждому из k кластеров

Алгоритм Expectation Maximization (EM): инициализация

- $Bxog: \mathbb{W}$ множество для кластеризации размера N, k число кластеров, $\widehat{\mathcal{X}}_k(0)$ начальное разбиение (опционально)
- ullet Выход: Разбиение \mathcal{X}^k множества \mathbb{W} на k кластеров
- Инициализация: Инициализация параметров смеси. Матрица \mathbf{Z}_0 может быть инициализирована случайным присвоением 1 одному элементу в каждом столбце. В случае, если $\widehat{\mathcal{X}}_k(0)$ дано, то модель определяется этим разбиением

Алгоритм Expectation Maximization (EM): M-шаг

а. выборочный размер кластера

$$\widehat{S}_i = \sum_{t=1}^N z_{i,t}.$$

b. выборочная вероятность кластера

$$\widehat{p}_i = \frac{\widehat{S}_i}{N}.$$

с. выборочное среднее кластера

$$\widehat{\mathbf{x}}_i = \frac{1}{\widehat{S}_i} \sum_{t=1}^N z_{i,t} \mathbf{w}_t.$$

d. Выборочная ковариационная матрица $\widehat{\Gamma}_i$ вычисляется для каждого кластера.

Алгоритм Expectation Maximization (EM): Е-шаг и критерий остановки

• *E-шаг:* Вычисление постериорных вероятностей по Байесовскому правилу:

$$z_{i,t} = \frac{\widehat{p}_{i}\mathcal{G}\left(\mathbf{w}_{t}|\widehat{\mathbf{x}}_{i},\widehat{\boldsymbol{\Gamma}}_{i}\right)}{\sum_{i=1}^{k}\widehat{p}_{i}\mathcal{G}\left(\mathbf{w}_{t}|\widehat{\mathbf{x}}_{i},\widehat{\boldsymbol{\Gamma}}_{i}\right)}$$

• *Критерий остановки:* Остановка, если старая и новая модели достаточно близки, иначе — М-шаг

Кластеризация при помощи *EM*-алгоритма

• Критерий кластеризации (минус функция правдоподобия):

$$cl(\mathbf{\bar{X}}) = \sum_{t=1}^{N} \sum_{i=1}^{k} z_{i,t} \bar{q}(\mathbf{\bar{x}}_i, \mathbf{w}_t)$$

- На каждом EM-шаге критерий кластеризации уменьшается, и процесс сходится к локальному минимуму за конечное число итераций
- В случае, когда ковариационные матрицы одинаковы $\Gamma_i = \sigma^2 \mathbf{I}, \ i \in 1...k)$, алгоритм кластеризации EM является аналогом алгоритма k-Средних. Таким образом, EM алгоритм обобщение алгоритма k-Средних
- Существуют рандомизированные модификации *EM* алгоритм для кластеризации, имеющие преимущества в скорости и устойчивости к помехам в измерениях

Пример кластеризации при помощи ЕМ-алгоритма

Рис. : Оценка ковариационной матрицы

Рис. : Результат работы EM-алгоритма

Плюсы и минусы GMM

Плюсы GMM:

- Распространенность модели
- Гибкость структуры кластера, определяемой ковариационной матрицей
- Строгий статистический вывод для полной модели
- Алгоритм *k*-Средних часто является быстрым

Минусы GMM:

- Выбор модели сложен. Данные могут не являться Гауссовскими.
- Сложность оценки ковариационной матрицы
- Проблема локального минимума
- Плохо работает в случае невыпуклых кластеров

Информационные методы

- ullet Основное предположение: каждый элемент ${\mathbb W}$ принадлежит каждому кластеру с определенной вероятностью. Основной целью кластеризации является нахождение оптимальных вероятностей. Такой подход называется нечеткая кластеризация (fuzzy clustering)
- С точки зрения теории информации кластеризация методика сжатия данных с потерями
- ullet Для двух дискретных случайных величин X и Y, принимающих значения $\{x_i\}$, i = 1, 2, ... и $\{y_i\}$, j = 1, 2, ..., соответственно, рассмотрим взаимную информацию:

$$I(X,Y) = \sum_{i,j} p(x_i, y_j) \log_2 \frac{p(x_i, y_j)}{p(x_i)p(y_j)} = \sum_{i,j} p(x_i, y_j) \log_2 \frac{p(y_j|x_i)}{p(y_j)}$$

Информационные методы (кластеризация)

- Кластеризация сжимает исходные данные с помощью отбрасывания менее значимой информации. Для измерения значимости берется мера различия $q_i(\mathbf{w}', \mathbf{w}''), i \in 1...k$
- Сжатие с потерями реализуется минимизацией взаимной информации: $I(\mathcal{X}^k, \mathbb{W}) = \sum_{\mathbf{w},i} P(\mathbb{X}_j | \mathbf{w}) P(\mathbf{w}) \log_2 \frac{P(\mathbb{X}_i | \mathbf{w})}{P(\mathbb{X}_i)}$
- Минимизация ограничена фиксированной мерой различия: $F(\mathcal{X}^k, \mathbb{W}) = \sum_{\mathbf{w}, i} P(\mathbb{X}_i | \mathbf{w}) P(\mathbf{w}) q_i(\mathbf{x}_i, \mathbf{w}),$ где \mathbf{x}_i представление (центорид) кластера \mathbb{X}_i

Информационные методы (свободная энергия)

• Формальное решение задачи достигается с помощью распределения Больцмана

$$P(\mathbb{X}_i|\mathbf{w}) = \frac{P(\mathbb{X}_i)}{Z(\mathbf{w},C)} \exp\left(-\frac{q_i(\mathbf{x}_i,\mathbf{w})}{C}\right)$$
, где $Z(\mathbf{w},C) = \sum_i P(\mathbb{X}_i) \exp\left(-\frac{q_i(\mathbf{x}_i,\mathbf{w})}{C}\right)$ — нормализационная

константа и С — множитель Лагранжа

- При обычной кластеризации распределение центоридов кластеров: $P(\mathbf{X}) = \frac{e^{-\frac{F}{C}}}{\sum_{\mathbf{w}} e^{-\frac{F}{C}}}$, где $F = -C\sum_{\mathbf{w}} \ln\left(\sum_{i} \exp\left(-\frac{q_{i}(\mathbf{x}_{i},\mathbf{w})}{C}\right)\right)$
 - свободная энергия разбиения на кластеры
- Оптимальные параметры кластеризации находятся минимизацией свободной энергии

Информационные методы (частный случай)

- Пусть $q_i(\mathbf{x}_i, \mathbf{w}) = (\mathbf{w} \mathbf{x}_i)\Gamma_i^{-1}(\mathbf{w} \mathbf{x}_i)$
- ullet Тогда $F=-C\sum_{f w}\ln\left(\sum_i\exp\left(-rac{(f w-x_i)\Gamma_i^{-1}(f w-x_i)}{C}
 ight)
 ight)$
- ullet При фиксированном Γ_i из уравнений $rac{\partial F}{\partial \mathbf{x}_i} = 0, \ i \in 1..k$ получаем результат $\mathbf{x}_i = rac{\sum\limits_{\mathbf{w}} \mathbf{w} P(\mathbb{X}_j | \mathbf{w})}{\sum\limits_{\mathbf{w}} P(\mathbb{X}_j | \mathbf{w})}, \ i \in 1..k$
- Данный результат непосредственно связан с результатом, полученным по ММП с помощью *EM* алгоритма

Information bottleneck

- Information bottleneck method техника кластеризации, основанная на том, что каждый кластер отражает относительную информацию внутри данных
- $p(w_i|\mathbf{w}) = \frac{w_i}{\sum_{i=1}^d w_i}$
- Качество кластеризации определяется с помощью взаимной информации I(S;Y)/I(X;Y)
- В качестве мер различия рассматривают расстояние Кульбака-Леейблера (Kullback–Leibler divergence) $D_{KL}(p(y|x)||p(y|s))$, расстояние Йенсена-Шеннона (Jensen-Shannon divergence) $DJS(x,s)=(p(x)+p(s))*D_{JS}(p(y|x),p(y,s))$

Спасибо за внимание!