추천시스템의 이해와 문서 유사도

추천시스템이란

개인 맞춤형 서비스 제공 위해 구매패턴 등 과거 데이터를 분석하여 상품을 추천하는 시스템

고객 선택 및 구매 적중률을 높이기 위해 데이터에 대한 메타 정보 관리와 분석 알고리즘이 중요해지고 있다.

롱테일 문제를 해결할 수 있다

■ 80:20 법칙: 매출의 80퍼센트는 20퍼센트의 핵심 고객/주력 상품에서 나오며, 그 핵심 고객 20퍼센트를 찾아내 이들에게 오는 역량을 집중 ■ 롱테일 법칙: 80:20 법칙에서 소외된 80퍼센트의 고객에서도 상당한 영업기회가 존재한다는 현상

고객, 기업 양측 모두에게 이익이 된다

여러가지 방식의 추천시스템들이 존재한다.

- 1. 사용자 프로파일링 기반
- 2. Segment 기반
- 3. 상품 연관규칙 기반
- 4. CF(협업 필터링) 기반
- 5. CBF(컨텐츠 베이스 필터링) 기반
- 6. 딥러닝 기반

개인화 콘텐츠 추천 알고리즘 유형

구분	알고리즘	알고리즘 상세 설명	한계		한계 극복 방안	
전통적 알고리즘	CF(협업 필터링)	– 사용자 행동 분석 – 아이템기반, 사용자기반 CF - 행렬분해(MF) 잠재요인 CF	콜드 스타트	초기 정보 부족의 문제점새로운 항목 추천 한계	- CBF - 딥러닝 기반 필터링	– 항목 자체 내용 분석 기반 – KNN, DBSCAN 등 AI기술
			계산 효율 저하	다수 사용자의 경우 비효율행렬 분해 시 장기간 계산	- 병렬 컴퓨팅	– 행렬 계산 최적화 컴퓨팅 사용 – GPGPU, Grid Computing 등
			롱테일 문제	비대칭적 쏠림현상 발생관심 저조 항목 정보 부족	- CBF	– 자료 내 사용자 패턴기반 추천 – LDA, 베이지안 네트워크
	CBF(콘텐츠기반 필터링)	- 콘텐츠 내용 분석 - 유클리디언 거리, 코사인 유사도 측정	메타 정보 함축 한계	– 한정된 메타정보로 사용자와 상품의 프로파일 함축 불가	– CF	– 서로 다른 분야 수치 계산 – 피어슨, 자카드 유사도 측정
최신 알고 리즘	딥러닝 기반 필터링	– 구글 Text 자동 생성 기술 – 지도/비지도학습 기반 알고 리즘	블랙박스	– 딥러닝이 가진 태생적 한계 로 내부 알고리즘 해석이 어렵 다.	– 설명 가능한 AI - 컴퓨팅 파워 증대	

문서 유사도 거리 계산 방법

$$\mathrm{d_{L1}}(w,v) = \sum_{i=1}^d |w_i - v_i|$$

where $w,v\in\mathbb{R}^d$

$$\mathrm{d}_{\mathrm{L2}}(w,v) = \sqrt{\sum_{i=1}^d \left(w_i - v_i
ight)^2}$$

where $w,v\in\mathbb{R}^d$

Euclidean distance

Cosine Similarity

Cosine Similarity는 벡터의 방향을 중요시 함

- Feature vector의 각 차원의 상대적인 크기가 중요할 때 사용

$$\text{similarity} = \cos\theta = \frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

코사인 유사도는 벡터 크기의 비교가 아닌 벡터 방향성의 비교에 중점

	머신러닝	부스팅	책팝니다
D0	50	5	
D1	45		10
D2	10	2	

