Wstęp do sztucznej inteligencji Uczenie się ze wzmocnieniem

Jakub Robaczewski

Algorytm:

Podstawą algorytmu jest tablica opisująca nagrodę po wykonaniu wybranej akcji zaczynając od wybranego stanu, gdzie kolumny to akcje, a wiersze to stany. Tablica na początku działania jest inicjowana zerami.

Uczenie przebiega przez podaną w zadaniu liczbę ruchów (200), w każdym kroku wybierana jest losowa akcja z podanych. Proces realizowany jest przez metodę learn(), która przyjmuje parametry α i γ oraz liczbę iteracji.

Aktualizacja tablicy przebiega według wzoru:

$$Q_{nowe}(s_t, a_t) = Q(s_t, a_t) + \alpha \left(r_t + \gamma \cdot \max_{a} Q(s_{t+1}, a) - Q(s_t, a_t)\right)$$

Gdzie:

α – współczynnik uczenia się

γ – współczynnik dyskonta

s – przestrzeń stanów

a - przestrzeń akcji

Wyniki dla trenowania 100 000 iteracji i testowania 10 000 iteracji:

γ\α	0.01	0.1	0.5	1
0.5	0.16	0.08	0.03	0.00
1	0.47	0.84	0.00	0.00
1.5	0.00	0.00	0.00	0.00

Wyniki są najlepsze dla parametrów α = 0.5, γ = 1, jednak najlepsze rezultaty są w granicach 0.70-0.85, co jest spowodowane niedeterminizmem środowiska. Widzimy również, że parametry γ 1 i α 0.5 skrajnie zmniejszają efektywność procesu nauki.