Treść zadań

a, b to liczby 2 bitowe

a + b = c

Zbudować układ, że jeżeli c ≠ 0 oraz c podzielne przez 2 lub 3, to wyjście równe 1 ojitub.com/k/Iszthutk/polst-sprawozdania-tuc

Zadanie 1

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$= \sum (2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 15)_{a_1 a_0 b_1 b_0}$ $= \prod (0, 1, 4, 11, 14)_{a_1 a_0 b_1 b_0}$
$= \sum (2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 15)_{a_1 a_0 b_1 b_0}$ $= \prod (0, 1, 4, 11, 14)_{a_1 a_0 b_1 b_0}$
ojihilo colulita

$$Z = \sum (2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 15)_{a_1 a_0 b_1 b_0}$$

$$Z = \prod (0, 1, 4, 11, 14)_{a_1 a_0 b_1 b_0}$$

Schemat układu:

Zadanie 2

 $a_{1}a_{0}b_{1}$

$$D_0 = 0$$

$$D_1 = D_3 = D_4 = D_6 = 1$$

$$D_2 = D_7 = b_0$$

$$D_5 = \overline{b_0}$$

Wyjście z multipleksera jest zanegowane, więc wartości odczytane z tablicy również musieliśmy zanegować. Ostatecznie do wejść demultipleksera podpięliśmy następujące funkcje:

$$\overline{D_0} = 1$$

$$\overline{D_1} = \overline{D_3} = \overline{D_4} = \overline{D_6} = 0$$

$$\overline{D_2} = \overline{D_7} = \overline{b_0}$$

$$\overline{D_5} = b_0$$

Schemat układu:

Zadanie 3

$$Z = \sum (2, 3, 5, 6, 7, 8, 9, 10, 12, 13, 15)_{a_1 a_0 b_1 b_0}$$

$$Z = \prod (0, 1, 4, 11, 14)_{a_1 a_0 b_1 b_0}$$

Schemat układu:

Wnioski

Podczas laboratorium zbudowaliśmy, uruchomiliśmy i przetestowaliśmy wszystkie opisane układy. Działały poprawnie. Zaletą komutatorów jest to, że w układzie zbudowanych przy ich pomocy łatwo można zmienić wyjście dla określonych wejść niż w przypadku układów zbudowanych na bramkach logicznych. Na przykład, żeby zmienić wyjście multipleksera dla określonych wejść adresowych wystarczy dostosować stan odpowiedniego wejścia informacyjnego. W przypadku bramek, natomiast, konieczne byłoby ponowne wyznaczenie funkcji i przeprojektowanie układu.