MSBA7003 Decision Analytics

02 Probability & Bayesian Learning II

Agenda

- Bayesian Inference
 - Classification Models
 - Naïve Bayes
- Application
 - Classification: The Authorship Problem
 - Decision Support: New Product Pricing

Bayesian Inference

• We are interested in knowing the "state of the world Y" (e.g., demand is high or low or the true type of a subject), and there are K possible states, which we call the *Alternative Hypotheses*.

• The alternative hypotheses are mutually exclusive and collectively exhaustive. We have a prior subjective belief on each state (i.e., a marginal distribution of Y).

Bayesian Inference

- Under each hypothesis, a random variable X will follow a known, distinct distribution.
- We wish to infer the state Y by collecting a sample of X given the unknown state.

Dominant Pic Color			*	Ä	Marginal
Red	0.3	0.5	0.3	0.2	0.37
Green	0.6	0.5	0.4	0.4	0.48
Blue	0.1	0.0	0.3	0.4	0.15
Prior Belief	0.2	0.4	0.3	0.1	Sum = 1

- After observing the value of X, our subjective belief (marginal distribution) of Y can be updated according to the Bayes' rule. The posterior becomes the new belief.
- If multiple samples of X can be obtained, the marginal distribution of X will converge to the conditional distribution given the "true" state Y with enough data points.

Bayesian Inference

- What if X follows a continuous distribution under each hypothesis and only a specific value of X is observed?
- P(X = x | Y) = 0.
- We use the conditional density to approximate the conditional probability:
- $F(x | Y) = P(X \le x | Y)$; f(x | Y) = F'(x | Y).
- $P(X = x \mid Y) \approx f(x \mid Y)^*d$.
- d is a very small positive number.

• If Y = 0 or 1, then
$$\Pr(Y = 0 | X = x) = \frac{\Pr(Y = 0) * f(x | Y = 0) * d}{\Pr(Y = 0) * f(x | Y = 0) * d + \Pr(Y = 1) * f(x | Y = 1) * d}$$
.

- Consider a binary classification problem.
- Suppose we have data as shown on the right.
 - The data has correct labels
 - There are two features
- We compare three different classification models.
 - Linear regression
 - Decision tree
 - Bayesian inference
- For a new subject with features (3,2), what should be the label?

Υ	X1	X2
0	6	2
1	3	4
1	4	8
0	7	5

- Linear Regression
 - Assume the model structure: $Y = \alpha + \beta X_1 + \gamma X_2 + \epsilon$
 - Prediction/classification: $\hat{Y} = \alpha + \beta X_1 + \gamma X_2$
 - Given data set $\{Y_i, X_{1i}, X_{2i}, \}_{i=1}^n$, generate predictions $\widehat{Y}_i = \alpha + \beta X_{1i} + \gamma X_{2i}$ for all i
 - Optimize $\{\alpha, \beta, \gamma\}$ to minimize $\sum_i (\widehat{Y}_i Y_i)^2$

Decision Tree

- The algorithm finds a progressive classification rule that maximizes the information gain (or reduction of entropy) at each classification step.
- Some other rules may be used.
- Step 1:
 - Try thresholds $a_1, a_2, ..., a_K$ for X_1 and compute the corresponding entropy values.
 - Try thresholds b_1 , b_2 , ..., b_K for X_2 and compute the corresponding entropy values.
 - Find the division that minimizes the entropy.
- Step 2:
 - Try thresholds for the feature left and compute the corresponding entropy values.
 - Find the division that minimizes the total entropy.

- Bayesian Inference
 - Define Y = 0 and 1 as two hypotheses.
 - Obtain the prior: Compute the proportion of each hypothesis in the data set.
 - Obtain the conditional distributions of X: Compute the relative frequency of observing each possible combination (X_1, X_2) in the data under each hypothesis.
 - Given the feature values (3,2) of the new subject, compute the posterior probability of each hypothesis.
 - Compare and predict the value of Y.

(X_1, X_2)	Y = 0	Y = 1
6, 2	0. 70	0. 10
3, 4	0. 05	0. 20
4, 8	0. 00	0. 20
7, 5	0. 25	0. 10
1, 2	0. 00	0. 10
2, 3	0. 00	0. 15
•••	•••	•••
Prior	0. 35	0. 65

Advantage over linear regression: it can obtain the probability of correct/wrong prediction. Advantage over decision tree: it requires less computation.

Naïve Bayes

- When there are multiple features, Naïve Bayes method assumes that the features are independent under a given hypothesis.
- The features may be correlated without a condition.

•
$$\Pr\{Y = a | X_1 = b, X_2 = c\} = \frac{\Pr\{X_1 = b, X_2 = c | Y = a\} \times \Pr\{Y = a\}}{\Pr\{X_1 = b, X_2 = c\}} = \frac{\Pr\{X_1 = b | Y = a\} \times \Pr\{X_2 = c | Y = a\} \times \Pr\{Y = a\}}{\Pr\{X_1 = b, X_2 = c\}}$$

• Without knowing $\Pr\{X_1 = b, X_2 = c\}$, we can compare the posteriors of different hypotheses by computing the ratio:

$$\frac{\Pr\{Y=a_1|X_1=b,X_2=c\}}{\Pr\{Y=a_2|X_1=b,X_2=c\}} = \frac{\Pr\{X_1=b|Y=a_1\} \times \Pr\{X_2=c|Y=a_1\} \times \Pr\{Y=a_1\}}{\Pr\{X_1=b|Y=a_2\} \times \Pr\{X_2=c|Y=a_2\} \times \Pr\{Y=a_2\}}$$

Naïve Bayes

• For the binary classification problem, we create two separate distribution tables:

X_1	Y = 0	Y=1	X_2	Y = 0
6	0. 45	0. 10	2	0. 60
3	0. 05	0. 20	4	0. 05
4	0. 05	0. 20	8	0. 00
7	0. 25	0. 10	5	0. 15
1	0. 05	0. 10	1	0. 00
2	0. 05	0. 15	3	0. 10
***	•••	•••	•••	***
Prior	0. 35	0. 65	Prior	0. 35

•
$$\frac{\Pr\{Y=0|X_1=3,X_2=2\}}{\Pr\{Y=1|X_1=3,X_2=2\}} = \frac{0.05\times0.60\times0.35}{0.20\times0.15\times0.65} = 0.54 < 1$$
. Hence, predict Y = 1.

0.15

0. 20

0.15

0.10

0.10

0.15

0.65

- Federalist Papers (Published anonymously during 1787 1788)
 - Total: 77 papers
 - John Jay: 5
 - Alexander Hamilton: 43
 - James Madison: 14
 - Unknown: 12 + 3
- Bayesian Inference
 - Establish hypotheses: H_h vs. H_m
 - Determine the prior belief: 0.5 vs. 0.5 (or 0.75 vs. 0.25)
 - Collect data (the wording pattern in each paper)
 - Compute the probability of observing the data under each hypothesis
 - Using the papers with a known author
 - Compute the posterior of each hypothesis (for the papers in question)

James Madison (1751 - 1836)

Alexander Hamilton (1757 - 1840)

- Focus on non-contextual words
 - Rate of use is nearly invariant under change of topic.
 - Focus on the word [upon]
 - In paper 54, occurrence rate PTW = 0.996

•
$$\frac{\Pr(H_h|data)}{\Pr(H_m|data)} = \frac{\Pr(data|H_h) \cdot \Pr(H_h)}{\Pr(data|H_m) \cdot \Pr(H_m)}$$

TABLE 2.3. FREQUENCY DISTRIBUTION FOR upon

Rate/1000	Н	M
0 (exactly)		41
$0 + \!$	1	7
1 -2	10	2
2 $^{-3}$	11	
3 -4	11	
4 -5	10	
5 -6	3	
6 -7	1	
7 -8	1	
	_	
Totals	48	50

TABLE 2.5. FUNCTION WORDS AND THEIR CODE NUMBERS FOR THE FEDERALIST STUDY

1 a	8 as	15 do	22 has	29 is	36 no	43 or	50 than	57 this	64 when
2 all	9 at	16 down	23 have	30 it	37 not	44 our	51 that	58 to	65 which
3 also	10 be	17 even	24 her	31 its	38 now	45 shall	52 the	59 up	66 who
4 an	11 been	18 every	25 his	32 may	39 of	46 should	53 their	60 upon	67 will
5 and	12 but	19 for	26 if	33 more	40 on	47 so	54 then	61 was	68 with
5 and	12 but	19 for	26 if	33 more		47 so	54 then	61 was	68 with
6 any	13 by	20 from	27 in	34 must		48 some	55 there	62 were	69 would
7 are	14 can	21 had	28 into	35 my		49 such	56 thing	63 what	70 your

TABLE 2.6. ADDITIONAL WORDS AND CODE NUMBERS FOR THE FEDERALIST STUDY

*71 affect	
------------	--

TABLE 2.7. NEW WORDS FROM THE WORD INDEX STUDY TOGETHER WITH THEIR CODE NUMBERS

118 about	130 choice	142 intrust +s +ed +ing	154 proper
119 according	131 common	143 kind	155 propriety
120 adversaries	132 danger	144 large	156 provision+s
121 after	133 decide +s+ed+ing	145 likely	157 requisite
122 aid	134 degree	146 matter+s	158 substance
123 always	135 during	147 moreover	159 they
124 apt	136 expence+s	148 necessary	160 though
125 asserted	137 expense+s	149 necessity+ies	161 truth+s
126 before	138 extent	150 others	162 us
127 being	139 follow+s+ed+ing	151 particularly	163 usage + s
128 better	140 I	152 principle	164 we
129 care	141 imagine +s+ed+ing	153 probability	165 work+s

- $Pr(data|H_h) = 1/48$; $Pr(data|H_m) = 7/50$
- Hence, if $Pr(H_h) : Pr(H_m) = 1:1$, then
 - $Pr(H_h|data) / Pr(H_m|data) = (1/48)/(7/50) = 0.15 < 1$
 - Because $Pr(H_h|data) + Pr(H_m|data) = 1$, we get
 - $Pr(H_h|data) = 0.13$; $Pr(H_m|data) = 0.87$.
- If $Pr(H_h): Pr(H_m) = 0.75:0.25$, then
 - $Pr(H_h|data) / Pr(H_m|data) = 3*50/7/48 = 0.4464 < 1$
 - Because $Pr(H_h|data) + Pr(H_m|data) = 1$, we get
 - $Pr(H_h|data) = 0.31$; $Pr(H_m|data) = 0.69$.
- Conclusion: the author is more likely to be Madison.

- Assume the use of different words are independent for a given author.
- Consider three more non-contextual words: by, from, and to. Their conditional distributions (in terms of rate PTW) are given in the below table:

Data	b	by from		1 , (1 7		t	0
Rate	Н	M	Rate	Н	M	Rate	Н	M	
1- 3	2		1- 3	3	3	20-25		3	
3- 5	7		3- 5	15	19	25-30	2	5	
5- 7	12	5	5- 7	21	17	30-35	6	19	
7-9	18	7	7- 9	9	6	35–40	14	12	
9-11	4	8	9–11		1	40-45	15	9	
11-13	5	16	11-13	ļ	3	45-50	8	2	
13-15		6	13-15		1	50-55	2		
15-17		5				55-60	1		
17 - 19		3	Totals	48	50		-		
	-					Totals	48	50	
Totals	48	50							

• Suppose, in paper 54, occurrence rates PTW for them are: 5.5, 3.7, and 46.

- How should we update the posterior probabilities of the two hypotheses?
- $\frac{\Pr(H_h|data)}{\Pr(H_m|data)} = \frac{\Pr(data|H_h) \cdot \Pr(H_h)}{\Pr(data|H_m) \cdot \Pr(H_m)}$
- = $\frac{\Pr(upon|H_h) \cdot \Pr(by|H_h) \cdot \Pr(from|H_h) \cdot \Pr(to|H_h) \cdot \Pr(H_h)}{\Pr(upon|H_m) \cdot \Pr(by|H_m) \cdot \Pr(from|H_m) \cdot \Pr(to|H_m) \cdot \Pr(H_m)}$
- If $Pr(H_h): Pr(H_m) = 1:1$, then

•
$$\frac{\Pr(H_h|data)}{\Pr(H_m|data)} = \frac{\left(\frac{1}{48}\right)\left(\frac{12}{48}\right)\left(\frac{15}{48}\right)\left(\frac{8}{48}\right)}{\left(\frac{7}{50}\right)\left(\frac{5}{50}\right)\left(\frac{19}{50}\right)\left(\frac{2}{50}\right)} = 1.275 > 1; \Pr(H_h|data) = 0.56$$

- if $Pr(H_h): Pr(H_m) = 3:1$, then
- $\frac{\Pr(H_h|data)}{\Pr(H_m|data)} = 1.275*3 = 3.82 > 1; \Pr(H_h|data) = 0.79$

- Suppose Chow Tai Fook introduced a new gold ring. Historical sales data of similar rings suggest that customers' willingness to pay (WTP) follows a normal distribution with a standard deviation of \$1,000. However, the mean WTP of this new ring is uncertain. It could be \$2,000, \$3,500, or \$5,000. They are equally likely.
- The introductory price for this ring is \$4,000. The cost for this ring is \$2,000. There is sufficient inventory.
- If the first five customers who showed interested in this ring did not buy it, how should the price be adjusted afterwards?

Mathematical foundations:

- *w*: the willingness to pay for a randomly sampled customer
- p: the price of the product
- A customer will purchase the product if and only if $w \ge p$
- If w follows cumulative distribution function F, then $\Pr\{w \ge p\} = 1 F(p)$
- If there are three equally likely distributions: F_1 , F_2 , and F_3 , then for a given price p we can build the following probability table:

	H1: <i>F</i> ₁	H2: F ₂	H3: <i>F</i> ₃
Purchase	$1 - F_1(p)$	$1 - F_2(p)$	$1 - F_3(p)$
Walk away	$F_1(p)$	$F_2(p)$	$F_3(p)$
Prior	1/3	1/3	1/3

Mathematical foundations (Cont'd)

• Given the posterior probabilities: β_1 , β_2 , and β_3 , the estimated WTP CDF becomes

$$\hat{F}(v) = \Pr\{w \le v\} = \beta_1 \cdot F_1(v) + \beta_2 \cdot F_2(v) + \beta_3 \cdot F_3(v)$$

ullet Given the estimated WTP CDF, the expected profit from a random customer under price p and unit cost c is

$$\pi(p) = (p - c) \times \left[1 - \hat{F}(p)\right]$$

• The firm's problem is to find optimal price p that maximizes $\pi(p)$.

- For Chow Tai Fook's new gold ring, the three possible WTP distributions are
- $N(2000, 1000^2)$, $N(3500, 1000^2)$, and $N(5000, 1000^2)$
- We can build the probability table in Excel and perform the belief updating:

	А	В	C	D	E
1	St. Dev.	1000			
2	Price	4000			
3	Hypothesis	1	2	3	
4	Mean	2000	3500	5000	Marginal
5	Purchase	0.02275	0.308538	0.841345	0.080447
6	Walk Away	0.97725	0.691462	0.158655	0.919553
7	Prior	0.799146	0.200299	0.000555	
8	Posterior	0.849289	0.150616	9.58E-05	

• The final posterior probabilities are 0.85, 0.15, and 0.

• Use numerical method to search for the optimal price given the current belief:

- Is \$3,000 really the optimal price? Why?
- Exploration vs. Exploitation
- Reinforcement Learning

More on Bayesian Inference & Machine Learning

- Bayesian Conjugates
- Markov Chain Monte Carlo (MCMC)
 - Metropolis algorithm
 - Metropolis-Hastings algorithm
 - Gibbs Sampling
- Bayesian Network
- Applications

Takeaways

- To do Bayesian inference, you need to
 - 1) construct MECE hypotheses,
 - 2) collect data to compute conditional probabilities about a feature under each hypothesis,
 - 3) form a prior belief, and
 - 4) sample the feature to get posterior beliefs.
- Your decision may affect the effectiveness of learning and payoff at the same time. In this case, you have a trade-off between exploitation and exploration.

Quiz

- This picture was taken from either Thailand or southern Vietnam. Based on the following information, we can conclude that it was taken from Thailand. True or False?
 - Motorbike ownership rate:
 - Southern Vietnam: 70%
 - Thailand: 35%
 - Sunny day rate:
 - Southern Vietnam: 53%
 - Thailand: 75%
 - Palm tree rate in vegetation:
 - Southern Vietnam: 7.5%
 - Thailand: 12.5%

