Name:

Solutions

Problem 1 (4 points). For each pair (G, \cdot) , where \cdot is an operation on the set G, circle all the ones that are groups.

$$(a)$$
 $(\mathbb{Z}, +)$.

$$(d)$$
 $(\mathbb{R}_{>0}, \times)$.

b) (\mathbb{Z}, \times) . no inverses

e) $(\mathbb{R}_{\geqslant 0}, +)$. no inverses

c) (N, +). no inverses

Problem 2 (3 points). State the first isomorphism theorem for rings.

 $R \xrightarrow{+} 5$ be a suyative rung homomorphism. then R/Kenf & S.

Problem 3 (3 points). Consider the ring $R = \mathbb{Z}[x]$ and the ideal

$$I = \{p(x) \in R \text{ such that } 3 \mid p(0)\}.$$

Use the first isomorphism theorem for rings to prove that $R/I \cong \mathbb{Z}_3$.

Consider the map f: R -> Zz given by

$$f(p(x)) = [p(0)]_3$$

this is a ring howerworphism: $f(1) = [1]_3$, and for all $p(x)q(x) \in R$ $f(p(n)+q(n)) = [p(0)+q(0)]_3 = [p(0)]_3 + [q(0)]_3 = f(p(x))+f(q(n))$

 $f(p(x)q(x)) = [p(0)q(0)]_3 = [p(0)]_3[q(0)]_3 = f(p(x))f(q(x))$

Morover, f is surjective: given any element $a \in \mathbb{Z}_3$ and an integer in · with $[n]_3 = a$, $f(n) = [n]_3 = a$.

constant paymental

Notice that $p(x) \in \ker f \iff 3 \mid p(x)$, so $\ker f = I$. therefore, by the First I somorphism Theorem, $R/_{\!\!\!\!\perp}\cong Z_3$