An toàn và toàn vẹn dữ liệu

Vũ Tuyết Trinh trinhvt@it-hut.edu.vn

Bộ môn Các hệ thống thông tin, Khoa Công nghệ thông tin Đại học Bách Khoa Hà Nội

GIAO_VIEN (<u>maGV</u>, hoten, ngaysinh, gioitinh, diachi, hocham, hocvi, bacluong)

LOP (malop, tenlop, khoa, maloptruong, maGVCN,TSSV)

SINH_VIEN(<u>maSV</u>, hoten, ngaysinh, tuoi, gioitinh, diachi, malop)

MON_HOC(mamon, tenmon, soHT)

DIEM_THI(maSV, mamon, lanthi, diem)

3

Đặt vấn đề

- Muc đích của CSDL
 - Lưu trữ lâu dài
 - Khai thác hiệu quả
- Yêu cầu đ/v thiết kế CSDL
 - Đảm bảo tính đúng đắn của DL

 - Tránh sai sót trong quá trình thao tác với DL ⇒ kiểm tra tính toàn ven của các thao tác với DL
 - Đảm bảo tính an toàn của DL
 - Tránh truy nhập DL không hợp lệ từ phía người dùng ⇒ phân quyền và kiểm tra quyền hạn người sử dụng

Nội dung

- o An toàn dữ liệu
- o Ràng buộc dữ liệu
- o Toàn vẹn dữ liệu

5

An toàn dữ liệu

- Bảo vệ CSDL chống lại sự truy nhập bất hợp pháp
- > Cần các cơ chế cho phép
 - Nhận biết người dùng
 - Xác định các thao tác hợp lệ với từng (nhóm) người dùng

Phân quyền người dùng

- Đ/v người khai thác CSDL
 - Quyền đọc dữ liệu
 - Quyền sửa đổi dữ liệu
 - Quyền bổ sung dữ liệu
 - Quyền xoá dữ liệu
 - •
- Đ/v người quản trị CSDL
 - Quyền tạo chỉ dẫn
 - Quyền quản lý tài nguyên: thêm/xoá các quan hệ
 - Quyền thay đổi cấu trúc DL: thêm/sửa/xoá các thuộc tính của các quan hệ
 - ...
- 0 ...

7

Xác minh người dùng

- Sử dụng tài khoản của người dùng
 - Tên truy nhập
 - Mật khẩu
- Sử dụng hàm kiểm tra F(x)
 - Cho 1 giá trị ngẫu nhiên x
 - Người dùng phải biết hàm F để tính giá trị của nó
- Sử dụng thẻ điện tử, thẻ thông minh
- Sử dụng nhận dạng tiếng nói, vân tay, ...

Lệnh tạo (nhóm) người dùng

- Cú pháp
 - Tạo người dùng
 CREATE USER username
 IDENTIFIED {BY password | EXTERNALLY | GLOBALLY AS 'external_name'};
 - Xoá người dùng
 DROP USER name [CASCADE];
- Ví dụ

CREATE USER tin123K47 IDENTIFIED BY nmcsdl

9

Kiểm tra quyền của người dùng

- Xác định quyền hạn của (nhóm) người dùng
- Xác định các khung nhìn để hạn chế truy nhập đến DL
- Xác định và kiểm soát sự lưu chuyển dữ liệu

Lệnh phân quyền cho người dùng

Cú pháp

Grant <privilege> On <Object> To <user> [With Grant Option]

REVOKE <privilege> ON <Object> FROM <user> [RESTRICT | CASCADE]

Privilege = {Insert | Update | Delete | Select | Create Alter | Drop | Read | Write} Object = {Table | View}

O VÍ dụ:
GRANT SELECT ON DIEM_THI TO tin123K47

GRANT SELECT, UPDATE ON DIEM_THI TO vutrinh WITH GRANT OPTION

11

Ràng buộc dữ liệu

- Mục đích: định nghĩa tính đúng đắn của DL trong toàn bộ CSDL
- o Phân Ioai
 - Ràng buộc về miền giá trị
 - o Trên 1 thuộc tính
 - o Trên nhiều thuộc tính (cùng 1 bản ghi)
 - Trên nhiều bản ghi
 - Ràng buộc về khoá
 - o Trên 1 quan hệ: khoá chính
 - Trên nhiều quan hệ: khoá ngoài

Lệnh đ/n ràng buộc miền giá trị

- Cú phápCONSTRAINT < ten-rang-buoc > CHECK < dieu-kien >
- O Ví dụ:
 - Trong bảng DIEM
 CONSTRAINT gtdiem CHECK ((diem>=0) and (diem<=10))
 - Trong bảng SINH_VIEN
 CONSTRAINT gttuoi CHECK (tuoi = year(date()) year(ngaysinh))

13

Lệnh đ/n ràng buộc khoá chính

- Cú pháp
 - CONSTRAINT <ten-rang-buoc>
 PRIMARY KEY <cac-thuoc-tinh-khoa>
- o Ví dụ
 - Trong bång SINH_VIEN CONSTRAINT SV-khoa
 PRIMARY KEY maSV
 - Trong bång DIEM
 CONSTRAINT diemthi-khoa
 PRIMARY KEY maSV, mamon

Lệnh đ/n ràng buộc khoá ngoài

Cú pháp

CONSTRAINT <ten-rang-buoc>
FOREIGN KEY <cac-thuoc-tinh-khoa>
REFERENCES <ten-bang>[khoa-tham-chieu]

Ví dụ: Trong bảng DIEM
 CONSTRAINT diem-SV FOREIGN KEY maSV
 REFERENCES SINH_VIEN[maSV]

CONSTRAINT diem-mon FOREIGN KEY maSV REFERENCES SINH_VIEN[maSV]

15

Toàn ven dữ liệu

- Mục đích: đảm bảo tính đúng đắn của DL trong quá trình thao tác (thêm, sửa, xoá DL)
- Yêu cầu
 - Kiểm tra các ràng buộc toàn vẹn DL khi thực hiện các thao tác thêm, sửa, xoá
 - sử dụng các triggers
 - Kiểm tra tính đúng đắn của các thao tác trên CSDL
 - Quản trị giao dịch
 - > Điều khiển tương tranh

Trigger

- \circ Đ/n
 - Là các xử lý được gắn với các bảng DL
 - Được tự động kích hoạt khi thực hiện các thao tác thêm, sửa, xoá bản ghi
- o Cú pháp

17

Ví dụ

LOP (malop, tenlop, khoa, maloptruong, maGVCN,TSSV) SINH_VIEN(maSV, hoten, ngaysinh, tuoi, gioitinh, diachi, malop)

```
CREATE TRIGGER tang_TSSV

AFTER INSERT ON SINH_VIEN

FOR EACH ROW

BEGIN

update LOP

set TSSV= TSSV+1

where malop = :new.malop

END:
```

Ví dụ

LOP (malop, tenlop, khoa, maloptruong, maGVCN,TSSV) SINH_VIEN(maSV, hoten, ngaysinh, tuoi, gioitinh, diachi, malop)

```
CREATE TRIGGER giam_TSSV

AFTER DELETE ON SINH_VIEN

FOR EACH ROW

BEGIN

update LOP

set TSSV= TSSV-1

where malop = :old.malop

END;
```

19

Giao dịch - ví dụ

Tài khoản A Tài khoản B Đọc số dư của tài khoản A Kiểm tra (số dư > số tiền cần rút) Tăng số dư của tài khoản B Giảm số dư của tài khoản A Ngân hàng chịu lỗ ???

Giao dịch

- Đ/n: một tập các thao tác được xử lý như một đơn vị không chia cắt được
 - Cho phép đảm bảo tính nhất quán và tính đúng đắn của dữ liệu
- Tính chất ACID
 - Nguyên tố (Atomicity)
 - Tính nhất quán (Consistency)
 - Tính cô lập (Isolation)
 - Tính bền vững (Durability)

Điều khiển tương tranh

Phục hồi dữ liệu

2.

Tính nguyên tố

- Đ/n: Hoặc là toàn bộ hành động của giao dịch được thực hiện hoặc không có hành động nào được thực hiện
- O Ví dụ:

```
T: Read(A,t1);

If t1 > 500 {

    Read(B,t2);

    t2:=t2+500;

    Write(B,t2);

    t1:=t1-500;

    Write(A,t1);

}
```

Tính nhất quán

- Đ/n: Tính nhất quán của dữ liệu trước khi bắt đầu và sau khi kết thúc giao dịch
- o Ví du

```
T: Read(A,t1);
If t1 > 500 {
    Read(B,t2);
    t2:=t2+500;
    Write(B,t2);
    t1:=t1-500;
    Write(A,t1);
}

A+B = C
```

23

Tính cô lập

- Đ/n: 1 giao dịch được tiến hành độc lập với các giao dịch khác tiến hành đồng thời
- **Ví dụ:** A= 5000, B= 3000

```
T: Read(A,t1);

If t1 > 500 {

Read(B,t2);

t2:=t2+500;

Write(B,t2);

t1:=t1-500;

Write(A,t1);

}

T': A+B

(= 5000+3500)

(A+B = 4500+3500)
```

Tính bền vững

- o Đ/n
 - Mọi thay đổi mà giao dịch thực hiện trên CSDL phải được ghi nhận bên vững

A= 4500, B=3500

Giao diện cho giao dich

- o Giao diện chính
 - Begin Trans
 - Commit ()
 - Abort()
- Điểm ghi nhớ (save point)
 - Savepoint Save()
 - Rollback (savepoint) // savepoint = 0 ==> Abort

27

Điều khiển tương tranh

 Mục đích: tránh đụng độ giữa các giao dịch (một dãy các thao tác) trên cùng một đối tượng có thể làm mất tính nhất quán của DL

```
T0: read(A);
    A := A -50;
    write(A);
    read(B);
    B := B + 50;
    write(B);

    T1: read(A);
    temp := A *0.1;
    A := A -temp;
    write(A);
    read(B);
    B := B + temp;
    write(B);
```

Ví dụ về thực hiện giao dịch

	To	Tı
	read(A)	
ĺ	A := A - 50	
	write(A)	
	read(B)	
	B := B + 50	
	write(B)	
		read(A)
		temp := A * 0.1
		A := A - temp
		write(A)
		read(B)
		B := B + temp
		write(B)

To	T1			
	read(A)			
	temp := A * 0.1			
	A := A - temp			
	write(A)			
	read(B)			
	B := B + temp			
	write(B)			
read(A)				
A := A - 50				
write(A)				
read(B)				
B := B + 50				
write(B)				

To	Tı
read(A)	
A := A - 50	
	read(A)
	temp := A * 0.1
	A := A - temp
	write(A)
	read(B)
write(A)	
read(B)	
B := B + 50	
write(B)	
	B := B + temp
	write(B)

20

Kỹ thuật khoá

- o Mục đích
 - Đảm bảo việc truy nhập đến các DL được thực hiện theo phương pháp loại trừ nhau
- o Các kiểu khoá
 - Chia sẻ: có thể đọc nhưng không ghi DL
 - Độc quyền: đọc và ghi DL
- Ký hiệu
 - LS(D): khoá chia sẻ
 - LX(D): khoá độc quyền
 - UN(D): mở khoá
- Tính tương thích

	LS	LX
LS	true	false
LX	false	false

Ví dụ

```
T0: LX(A);
                          T1: _LX(A);
    read(A);
                                read(A);
     A := A - 50;
                                temp := A *0.1;
     write(A);
                               A := A - temp;
                               write(A)
     LX(B);
     read(B);
                               ¬LX(B);
     B := B + 50;
                                read(B);
                                B:=B+temp;
     write(B);
     UN(A);
                                write(B);
                               <sup>⊔</sup>UN(A);
     UN(B);
                              UN(B);
```

3.

Khoá chết (deadlock)

```
T0: LX(B);
                         T1: LX(A);
    read(B);
                              read(A);
                              temp := A *0.1;
    B := B + 50;
                              A := A - temp;
    write(B);
    LX(A);
                              write(A)
    read(A);
                             LX(B);
    A := A - 50;
                             read(B);
    write(A);
                              B:=B+temp;
    UN(A);
                              write(B);
    UN(B); ∡
                              UN(A);
                              UN(B);
```

Các vấn đề về quản trị giao dịch

- Các kỹ thuật điều khiển tương tranh
 - các chế độ khoá, giải quyết khoá chết
 - kỹ thuật gán nhãn
- Lập lịch
- Các kỹ thuật phục hồi (recovery)
- 0 ...

33

Kết luận

Để đảm bảo tính an toàn và toàn vẹn dữ liệu

- Đ/v người thiết kế CSDL
 - Phải định nghĩa các ràng buộc toàn vẹn về dữ liệu
- Đ/v người quản trị hệ thống
 - Phải định nghĩa các khung nhìn
 - Phải phần quyền cho (nhóm) người dùng
- o Đ/v hê CSDL
 - Phải xác minh được người dùng
 - Phải kiểm tra các ràng buộc DL một cách tự động
 - Phải đảm bảo các tính chất ACID cho giao dịch người dùng