I. SIMULATION OF IONS IN A PENNING TRAP

Ions are confined radially by a magnetic field \mathbf{B} , with an ideal quadrupolar trapping potential of V_T . The potential and field near the centre of the trap is approximated as

$$\Phi_T(x,y,z) = V_T(\gamma' - \frac{\alpha'}{2l^2}(x^2 + y^2 - 2z^2)) \qquad \mathbf{E} = -\nabla\Phi_T(x,y,z) = \frac{\alpha}{l^2}(-x\mathbf{i} - y\mathbf{j} + 2z\mathbf{k})$$
(1)

where $\gamma' = 1/3$ and $\alpha' = 2.77373$ are geometric factors for the cubic trap, and l is the edge length[1]. The force experienced by an ion in the trap is

$$\mathbf{F} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \tag{2}$$

Charges and mass are simulated in atomic units, lengths in nm and time in ns.

A. Integration scheme

The code uses the Boris integrator[2] as formulated in Birdsall and Langdon[3]. This is a modified leapfrog scheme in which positions are calculated at times ..., n - 1, n, n + 1, ... and velocities at times ..., $n^{-1/2}$, $n^{+1/2}$,

$$\mathbf{v}^{-} = \mathbf{v}^{n-1/2} + \frac{q\mathbf{E}}{m} \frac{\Delta t}{2} \tag{3}$$

$$\mathbf{v}' = \mathbf{v}^- + \mathbf{v}^- \times \mathbf{t}$$

$$\mathbf{t} = \frac{q\mathbf{B}}{m} \frac{\Delta t}{2}$$
 (4)

$$\mathbf{v}^{+} = \mathbf{v}^{-} + \mathbf{v}' \times \mathbf{s} \qquad \qquad \mathbf{s} = \frac{2\mathbf{t}}{1 + t^{2}}$$
 (5)

$$\mathbf{v}^{n+1/2} = \mathbf{v}^+ + \frac{q\mathbf{E}}{m} \frac{\Delta t}{2} \tag{6}$$

B. Ion motion

The cyclotron frequency ω_c is predicted by $\omega_c=\frac{qB}{m}[1]$ (S.I. units - see Table V). To achieve 1% phase error in simulated cyclotron frequency requires $\Omega\Delta t\lesssim 0.3[3]$, [4]. The cyclotron radius r is predicted by $r=\frac{mv}{|q|B}$ and is measured in simulation for a single particle by the distance between maxima in the x dimension.

The electric field gives rise to a magnetron motion of a lower frequency ω_z . In a quadrupolar trapping potential of V_T , the modified cyclotron frequency ω_+ is predicted by

$$\omega_{+} = \frac{\omega_{c}}{2} + \sqrt{\frac{\omega_{c}^{2}}{4} - \frac{\omega_{z}^{2}}{2}} \qquad \qquad \omega_{z} = \left(\frac{2\alpha q V_{T}}{m l^{2}}\right)^{1/2} \tag{7}$$

The modified cyclotron frequency is measured by peaks in the Fourier transform of the induced current time signal.

C. Induced current

FTICR-MS measures the current induced between detector plates on opposite walls of the cube parallel to the magnetic field. In the simulation, current is induced by the movement of the 'image' $\mathbf{E}_{image}(\mathbf{r})$ associated with each ion, that is, the difference in the electric field generated by the ion at each of the two detector plates[1].

$$I = \sum_{i=1}^{N} q_i \mathbf{v}_i \cdot \mathbf{E}_{image}(\mathbf{r}_i) \qquad \qquad \mathbf{E}_{image}(\mathbf{r}) = -\frac{\beta'}{l} r_j \qquad \qquad \beta' = 0.72167$$
 (8)

D. Evaluation of electrostatic potential and forces

In addition to the influence of the trapping field and the ion-image interaction, each ion experiences a repulsive Coulomb force from every other ion in the packet. The calculation of these forces is nominally $O(N^2)$, which makes it infeasible for simulation of large ion packets unless some approximation is used to reduce the computational complexity.

Ion excitation and detection is typically performed in a vacuum, or in an environment of low-pressure neutral gas particles. To produce a detectable ICR signal, it is necessary to excite the ions so as to produce a highly coherent circular motion. Thus the distribution of charged particles within the FT-ICR chamber is highly non-uniform. Previous simulations have either used the particle-in-cell approximation[5] or virtual particles to reduce the number of interactions to be simulated[6]. However, particle-in-cell simulations are best suited to uniform particle distributions with a low required accuracy[7]. In contrast, the adaptive fast multipole algorithm[8] provides guaranteed error bounds for non-uniform distributions.

E. Fast multipole method

The cubic simulation space is divided into an octree of s levels according to a desired mean number of particles per lowest level box N_0 such that $s = \lceil log_8(N/N_0) \rceil$. The side length of a leaf box at the lowest level is therefore $a/8^s$. Tree parameters are given for sample problem sizes where $N_0 = 100$ in table I-E.

N	S	leaf box size (m)
10^{4}	3	1.95×10^{-6}
10^{5}	4	2.44×10^{-7}
10^{6}	5	3.10×10^{-8}

F. Simulation results

 $\begin{array}{c} \text{TABLE I} \\ \text{Octree parameters, } N_0 = 100 \end{array}$

TABLE II REPLICATING: HAN AND SHIN[9]. INPUT, PREDICTED AND MEASURED SIMULATION PARAMETERS

	$B = 0.7646T, V_T = 1.0V, l = 0.047, \Delta t = 25ns$										
				predicted		measured		error: timestep			
species	charge	mass	v_0 (m/s)	$\omega_+/2\Pi$ (Hz)	r (mm)	$\omega'_+/2\Pi$ (Hz)	r' (mm)	Δt (ns)	$\epsilon : \Delta t$	ϵ : Δt / 10	$\epsilon : \Delta t * 10$
HCO+	1	29.0182	10^{4}	394,022	3.933	404,220	3.933	118			
CH_3CO^+	1	43.04462	10^{4}	262,028	5.835	272,460	5.835	175			

TABLE III REPLICATING: LEACH ET AL.[5]. INPUT, PREDICTED AND MEASURED SIMULATION PARAMETERS

	$B = 7.0T, V_T = 1.0V, l = 0.0508, \Delta t = 25ns$										
			predicted		measured		error: timestep				
species	charge	mass	v_0 (m/s)	$\omega_+/2\Pi$ (Hz)	r (mm)	$\omega'_+/2\Pi$ (Hz)	r' (mm)	Δt (ns)	$\epsilon : \Delta t$	ϵ : Δt / 10	$\epsilon : \Delta t * 10$
Cs ⁺	1	132.9054	2.7×10^{4}	807,826	5.313	807,680	5.319	59			
$Xx^+(\frac{m}{q} = 150)$	1	150.0	2.7×10^4	715,652	5.996	715,840	5.997	67			

B 4.7 V 1.0 edgeLength 0.01 radius 0.003 dt 25.0 steps 2097152 logSteps 2097152 fmmDensity 60 fmmTerms 10 species glutamine 147.07698 1 1 species lysine 147.11336 1 1

G. Comparison with experiment: amino acids

We performed a scan of a [TODO mole/volume fraction?] mixture of lysine and glutamine on a Bruker Apex 4.7T FT-ICR mass spectrometer at the ANU. The core of this machine is a Penning trap of 4.7T / 1.0V of side length 1cm. We performed a molecular dynamics simulation for an equimolar mixture of N singly-charged ions in total. The simulation parameters and results are in table IV.

TABLE IV
AMINO ACIDS IN ANU MASS SPECTROMETER. INPUT, PREDICTED AND MEASURED SIMULATION PARAMETERS

	$B = 4.7T, V_T = 1.0V, l = 0.01, \Delta t = 25ns$										
			predicted		measured		error: timestep				
species	charge	mass	v_0 (m/s)	$\omega_+/2\Pi$ (Hz)	r (mm)	$\omega'_+/2\Pi$ (Hz)	r' (mm)	Δt (ns)	$\epsilon : \Delta t$	ϵ : Δt / 10	$\epsilon : \Delta t * 10$
glutamine	1	147.07698	9.25×10^{3}	450,313	3.0	489,407	3.0	106			
lysine	1	147.11336	9.25×10^{3}	450,190	3.0	489540	3.0	106			

H. Peak coalescence

Vladimirov et al.[10] give an expression for the minimum number of ions required for coalescence of two clouds of (singly-charged) ions of similar masses m_1 and m_2 :

$$N = 4.87 \times 10^8 \frac{a^2 R B^2 (m_2 - m_1)}{m^2} \tag{9}$$

(For a, R in mm, m_1, m_2, m in Da, B in Tesla.)

Applying this formula to the experiment described in section I-G, where ion cloud major axis a=1 mm, ion cyclotron radius $R\approx 3$ mm, and average mass m=147.09517, we find the minimum number of ions required for coalescence is ≈ 55000 .

TABLE V CONVERSION FACTORS

property	unit	SI unit
mass	amu	$1.660538921 \times 10^{-27} kg$
charge	e	$1.60217653 \times 10^{-19}C$

REFERENCES

- [1] S. Guan and A. G. Marshall, "Ion traps for Fourier transform ion cyclotron resonance mass spectrometry: principles and design of geometric and electric configurations," *Int. J. Mass Spectrometry and Ion Processes*, vol. 146/147, pp. 261–296, 1995.
- [2] J. Boris, "Relativistic plasma simulation-optimization of a hybrid code," in Proc. 4th Conf. Num. Sim. Plasmas, 1970, pp. 3-67.
- [3] C. Birdsall and A. Langdon, Plasma Physics via Computer Simulation. McGraw-Hill, New York, 1985.
- [4] L. Patacchini and I. Hutchinson, "Explicit time-reversible orbit integration in Particle In Cell codes with static homogeneous magnetic field," *J. Comp. Phys.*, vol. 228, p. 2604, 2009, 10.1016/j.jcp.2008.12.021.
- [5] F. Leach, A. Kharchenko, R. Heeren, E. Nikolaev, and I. Amster, "Comparison of particle-in-cell simulations with experimentally observed frequency shifts between ions of the same mass-to-charge in Fourier transform ion cyclotron resonance mass spectrometry," *J. Am. Soc. Mass Spectrometry*, vol. 21, pp. 203–208, Oct 2009, 10.1016/j.jasms.2009.10.001.
- [6] M. Fujiwara, N. Happo, and K. Tanaka, "Influence of ion-ion coulomb interactions on ft-icr mass spectra at a high magnetic field: A many-particle simulation using a special-purpose computer," J. Mass Spectrometry Soc. Japan, vol. 58, pp. 169–173, 2010.
- [7] L. Greengard and V. Rokhlin, "On the evaluation of electrostatic interactions in molecular modeling," Chemica Scripta, vol. 29A, pp. 139-144, 1989.
- [8] H. Cheng, L. Greengard, and V. Rokhlin, "A fast adaptive multipole algorithm in three dimensions," J. Comp. Phys., vol. 155, p. 468, 1999.
- [9] S.-J. Han and S. Shin, "Space-charge effects on Fourier transform ion cyclotron resonance signals: Experimental observations and three-dimensional trajectory simulations," *J. Am. Soc. Mass Spectrometry*, vol. 8, pp. 319–326, Mar 1997.
- [10] G. Vladimirov, C. Hendrickson, G. Blakney, A. Marshall, R. Heeren, and E. Nikolaev, "Fourier transform ion cyclotron resonance mass resolution and dynamic range limits calculated by computer modeling of ion cloud motion," *J. Am. Soc. Mass Spectrometry*, vol. 23, p. 375, Dec 2011, 10.1007/s13361-011-0268-8.