Paul Gustafson

Texas A&M University - Math 608

Instructor: Grigoris Paouris

HW 4

6.3 If $1 \le p < r \le \infty$, $L^p \cap L^r$ is a Banach space with norm $||f|| = ||f||_p + ||f||_r$, and if p < q < r, the inclusion map $L^p \cap L^r \to L^q$ is continuous.

Proof. The restrictions of $\|\cdot\|_p$ and $\|\cdot\|_r$ to $L^p \cap L^r$ are norms, so their sum is a norm.

To see that $L^p \cap L^r$ is complete, suppose a sequence (f_n) is Cauchy in $L^p \cap L^r$. Then (f_n) is Cauchy in L^p , and hence converges to some $f \in L^p$. Moreover f is the pointwise a.e. limit of f_n , for otherwise there exists $\epsilon > 0$ and a set E of positive measure where $\limsup_n \chi_E |f - f_n| \ge \epsilon$. This implies $\limsup_n \|f - f_n\|_p^p \ge \limsup_n \int_E |f - f_n|^p \ge \mu(E)\epsilon^p$, a contradiction. Similarly, f is the limit of (f_n) in L^q . Thus, $f \in L^p \cap L^q$, and $\|f_n - f\| \le \|f_n - f\|_p + \|f_n - f\|_q \to 0$.

of (f_n) in L^q . Thus, $f \in L^p \cap L^q$, and $||f_n - f|| \le ||f_n - f||_p + ||f_n - f||_q \to 0$. To see that the inclusion map $L^p \cap L^r \to L^q$ is continuous, let $f \in L^p \cap L^r$ and pick λ as in Prop. 6.10. Then $||f||_q \le ||f||_p^{\lambda} ||f||_{r-\lambda}^{1-\lambda} \le ||f||^{\lambda} ||f||_{r-\lambda}^{1-\lambda} = ||f||$. \square

4 If $1 \le p < r \le \infty$, $L^p + L^r$ is a Banach space with norm $||f|| = \inf\{||g||_p + ||h||_r : f = g + h\}$, and if p < q < r, the inclusion map $L^q \to L^p + L^r$ is continuous.

Proof. To see that $\|\cdot\|$ is positive definite, we must show that $\|f\|=0$ implies f=0 a.e. Suppose that $\mu(\{f>0\})>0$. Then there exist a measurable set E and $\delta>0$ such that $0<\mu(E)<\infty$ and $f_{|E}\geq\delta$. Suppose f=g+h for $g\in L^p$ and $h\in L^q$. Then

$$||g||_{p} + ||h||_{r} \ge ||g||_{E} + ||h||_{E} + ||g||_{q}$$

$$\ge ||g||_{E} + \mu(E)^{1/p - 1/q} ||h||_{E} + ||p||_{p}$$

$$\ge \min(\mu(E)^{1/p - 1/q}, 1) (||g||_{E} + ||h||_{E} + ||p||_{p})$$

$$\ge \min(\mu(E)^{1/p - 1/q}, 1) ||f||_{E} + ||p||_{p}$$

$$\ge \min(\mu(E)^{1/p - 1/q}, 1) \delta^{1/p}$$

This implies that $||f|| \ge \min(\mu(E)^{1/p-1/q}, 1)\delta^{1/p} > 0$.

The function $\|\cdot\|$ satisfies the homogeneity condition of a norm. For the triangle inequality, suppose $f_1, f_2 \in L^p + L^r$. Suppose $f_1 = g_1 + h_1$ and $f_2 = g_1 + h_2$ for some $g_1, g_2 \in L^p$ and $h_1, h_2 \in L^r$. Then $\|g_1\|_p + \|h_1\|_q + \|g_2\|_p + \|h_2\|_q \ge \|g_1 + g_2\|_p + \|h_1 + h_2\|_q \ge \|f_1 + f_2\|$. Thus, $\|f_1\| + \|f_2\| \ge \|f_1 + f_2\|$. To see that $L^p + L^r$ is complete, suppose $f_n \in L^p + L^r$ and $\sum_n f_n$ converges

To see that $L^p + L^r$ is complete, suppose $f_n \in L^p + L^r$ and $\sum_n f_n$ converges absolutely. Pick $g_n \in L^p$ and $h_n \in L^r$ such that $||g_n||_p + ||h_n||_r \leq ||f|| + 2^{-n}$. Then $\sum_n g_n$ and $\sum_n h_n$ converge absolutely in L^p and L^r respectively. Let

 $g = \sum_{n} g_n$ and $h = \sum_{n} h_n$. Then $\sum_{n} f_n = g + h$ pointwise a.e. Moreover,

$$\|\sum_{n\geq N} f_n\| \leq \sum_{n\geq N} \|f_n\|$$

$$\leq \sum_{n\geq N} \|g_n\|_p + \|h_n\|_r$$

$$\underset{N\to\infty}{\to} 0,$$

so $\sum_n f_n = g + h$ in $L^p + L^r$. Hence $L^p + L^r$ is complete.

To see that the inclusion $L^q \to L^p + L^r$ is continuous, let $f \in L^q$ with $\|f\|_q = 1$.

Case f is simple. Let $E = \{x : f(x) \le 1\}$. Then

$$||f|| \le ||f\chi_{E^c}||_p + ||f\chi_E||_r$$

$$= \left(\int_{E^c} |f|^p d\mu\right)^{1/p} + \left(\int_E |f|^r d\mu\right)^{1/r}$$

$$\le \left(\int_{E^c} |f|^q d\mu\right)^{1/p} + \left(\int_E |f|^q d\mu\right)^{1/r}$$

$$\le \left(\int |f|^q d\mu\right)^{1/p} + \left(\int |f|^q d\mu\right)^{1/r}$$

$$= 2$$

General case. Let $E = \{x : f(x) \le 1\}$, $g = f\chi_{E^c} \in L^p$, and $h = f\chi_E \in L^r$. Pick simple functions ϕ_n, ψ_n with $\phi_n \to g$ and $\psi_n \to h$ pointwise a.e., $|\phi_n| \le |g|$, and $|\psi_n| \le |h|$. Let $\theta_n = \phi_n + \psi_n$. We have

$$||f - \theta_n|| = ||g + h - \phi_n - \psi_n||$$

$$\leq ||g - \phi_n||_p + ||h - \psi_n||_r$$

$$\to 0$$

Hence $||f|| \le \liminf_n ||\theta_n|| + ||\theta_n - f|| \le 2$.

5 Suppose $0 . Then <math>L^p \not\subset L^q$ iff X contains sets of arbitrarily small positive measure, and $L^q \not\subset L^p$ iff X contains sets of arbitrarily large finite measure. What about the case $q = \infty$? (Hint in book).

Proof. Fix $r \in \mathbb{R}$ with p < r < q.

Suppose X contains sets of arbitrarily small positive measure. Pick F_n with $0 < m(F_n) \le 2^{-n}$. Let $E_n = F_n \setminus \bigcup_{j>n} F_j$. Then $0 < \mu(E_n) \le 2^{-n}$ and the (E_n) are disjoint. Let $f = \sum_n (\mu(E_n))^{-1/r} \chi_{E_n}$. Then $\|f\|_p^p = \sum_n \mu(E_n)^{-p/r} \mu(E_n) \le \sum_n \mu(E_n)^{1-p/r} \le \sum_n 2^{-n(1-p/r)} < \infty$, but $\|f\|_q^q = \sum_n \mu(E_n)^{1-q/r} \ge \sum_n 2^{n(q/r-1)} = \infty$.

Conversely, suppose that there exists $\delta>0$ such that if $\mu(E)>0$ then $\mu(E)\geq \delta$. Suppose $f\in L^p$. Since $\int_{f\leq 1}|f|^q\leq \int_{f\leq 1}|f|^p$, WLOG $f\geq 1$. Then the support of f has finite measure.

I claim that there are only finitely many integers $n \geq 1$ such that $E_n :=$ $\{x:n\leq |f|^p< n+1\}$ has nonzero measure. Suppose not. Then $\int |f|^p=$ $\sum_{n} \int_{E_n} |f|^p \ge \sum_{\mu(E_n) \ne 0} \delta n = \infty, \text{ a contradiction.}$ Thus $\int |f|^q = \sum_{n} \int_{E_n} |f|^q$ is a finite sum. By definition $\mu(E_n)$ must be finite

for all n, and |f| is bounded on each E_n . Hence $f \in L^q$.

Now suppose X contains sets of arbitrarily large finite measure. Then, by disjointifying, it must contain a sequence of disjoint subsets $E_n \in \mathcal{M}$ with $1 \le \mu(E_n) < \infty$. Let $f = \sum_n (n\mu(E_n))^{-1/r} \chi_{E_n}$. Then $||f||_q^q = \sum_n (n\mu(E_n))^{-q/r} \mu(E_n) \le \sum_n n^{-q/r} < \infty$, but $||f||_p^p = \sum_n (n\mu(E_n))^{-p/r} \mu(E_n) \ge \sum_n n^{-p/r} = \infty$. Hence

Conversely, suppose there exists K > 0 such that every set $E \in \mathcal{M}$ of finite measure has $\mu(E) \leq K$. Let $f \in L^q$. Let $E = \{f \leq 1\}$. We have

$$\begin{split} \|f\|_p^p &= \int_E |f|^p d\mu + \int_{E^c} |f|^p d\mu \leq \int_E |f|^p d\mu + \int_{E^c} |f|^q d\mu. \\ \text{Thus it suffices to show } \int_E |f|^p d\mu < \infty. \text{ Let } \phi = \sum_{i=1}^n a_i \chi_{E_i} \text{ be a simple function with } 0 \leq \phi \leq \chi_E |f|^p. \text{ Then } \int \phi d\mu \leq \sum_i \mu(E_i) = \mu(\bigcup_i E_i) \leq K. \end{split}$$
Hence $\int_E |f|^p d\mu \leq K$.

We now consider the case $q = \infty$. I claim $L_{\infty} \subset L_p$ iff $\mu(X) < \infty$. Suppose $\mu(X) < \infty$ and $f \in L_{\infty}$. Then $||f||_p^p = \int |f|^p \le \mu(X) ||f|^p ||_{\infty} = \mu(X) ||f|_{\infty}^p$. Conversely, suppose $\mu(X) = \infty$. Then $\chi_X \in L_\infty \setminus L_p$.

10 Suppose $1 \leq p < \infty$. If $f_n, f \in L^p$ and $f_n \to f$ a.e., then $||f_n - f||_p \to 0$ iff $||f_n||_p \to ||f||_p$. (Use Exercise 20 in 2.3)

Proof. Since $|||f_n||_p - ||f||_p| \le ||f_n - f||_p$, one implication is clear.

For the converse, suppose $||f_n||_p \to ||f||_p$. We have $|f_n - f|^p \le (|f_n| + |f|)^p \le$ $2^{p}(|f_{n}|^{p}+|f|^{p})$. Letting $g_{n}=2^{p}(|f_{n}|^{p}+|f|^{p})$ and $g=2^{p+1}|f|^{p}$, we have $g_{n}\to g$ a.e. and $\int g_n \to \int g$ since $||f_n||_p^p \to ||f||_p^p$. Thus by the Generalized DCT, we have $\int |f_n - f|^p \to 0$. Hence $||f_n - f||_p \to 0$.

12 If $p \neq 2$, the L^p norm does not arise from an inner product on $L^p(X, \mathcal{M}, \mu)$, except in trivial cases when $\dim(L^p) < 1$.

Proof. Since dim(L^p) > 1, there exist $E, F \in \mathcal{M}$ with $0 < \mu(E) < \infty, 0 < \infty$ $\mu(F) < \infty$, and $E \cap F = \emptyset$. Then $\|\chi_E + \chi_F\|^2 + \|\chi_E - \chi_F\|^2 = 2(\mu(E) + \mu(F))^{2/p}$, whereas $2\|\chi_E\|^2 + 2\|\chi_F\|^2 = 2\mu(E)^{2/p} + 2\mu(F)^{2/p}$.

Let s = 2/p and $\alpha = \mu(E)/(\mu(E) + \mu(F))$. Then we have $\frac{2\|\chi_E\|^2 + 2\|\chi_F\|^2}{\|\chi_E + \chi_F\|^2 + \|\chi_E - \chi_F\|^2} = \alpha^s + (1 - \alpha)^s =: f(\alpha)$. We have $f''(\alpha) = s(s - 1)(\alpha^s + (1 - \alpha)^s)$, which has no roots in [0,1] since $s \neq 0,1$.

Suppose $f(\alpha_0) = 1$ for some $\alpha_0 \in (0,1)$. Since f(0) = 1 = f(1), the mean value theorem implies there exist $\beta_1 \in (0, \alpha_0)$ and $\beta_2 \in (\alpha_0, 1)$ with $f'(\beta_1) = 0 = f'(\beta_2)$. Applying the MVT again implies that f'' has a root, a contradiction.

Thus $f(\alpha) \neq 1$ for $\alpha \in (0,1)$. Thus, $2\|\chi_E\|^2 + 2\|\chi_F\|^2 \neq \|\chi_E + \chi_F\|^2 + \|\chi_E + \chi_F\|^2$ $\|\chi_E - \chi_F\|^2$, so the parallelogram law fails.

13 $L^p(\mathbb{R}^n, m)$ is separable for $1 \leq p < \infty$. However, $L^\infty(\mathbb{R}^n, m)$ is not separable.

Proof. To see that $L^p(\mathbb{R}^n, m)$ is separable for $1 \leq p < \infty$, first recall that the simple functions are dense in L^p . Let $\phi = \sum_{i=1}^j a_i \chi_{E_i} \in L^p$ be simple. By the DCT and picking rational sequences converging to each a_i , WLOG $a_i \in \mathbb{Q}$ for all i (the set of such functions ϕ remains dense in L^p).

Since ϕ is bounded and supported on a set of finite measure, it suffices to approximate ϕ in measure. We have

$$m(E_i) = \inf\{\sum_{k=1}^{\infty} m(R_k) : l \in \mathbb{N}, R_k \text{ a rectangle with rational vertices}, E_i \subset \bigcup_k R_k\}.$$

Hence, WLOG $E_i = \bigcup_{k=1}^l R_k$ for a rational rectangle. The set of such functions ϕ is countable.

To see that $L^{\infty}(R^n, m)$ is not separable, for $i = \prod_k i_k \in \{0, 1\}^{\mathbb{N}}$ let $E_i = \bigcup_{i_k=1} [i_k, i_k+1] \times \prod_{i=2}^n [0, 1]$. Then if $i \neq j$, we have $\|\chi_{E_i} - \chi_{E_j}\|_{\infty} = 1$. Since $|\{0, 1\}^{\mathbb{N}}| > \mathbb{N}$ it follows that $L^{\infty}(\mathbb{R}^n, m)$ is not separable.