

U.B.A. FACULTAD DE INGENIERÍA

Departamento de Computación

Modelos y Simulación 7526 - 9519 TRABAJO PRÁCTICO #1

Números al azar y Test estadísticos

Curso: 2019 - 1er Cuatrimestre

Turno: Miércoles

GRUPO N° 1			
Integrantes	Padrón		
Amurrio, Gastón	93584		
Gamarra Silva, Cynthia Marlene	92702		
Pinto, Tomás	98757		
Fecha de Entrega:	24-04-2019		
Fecha de aprobación:			
Calificación:			
Firma de aprobación:			

Observaciones:					

${\rm \acute{I}ndice}$

In	dice	1
1.	Enunciado del trabajo práctico	2
2.	Introducción	4
3.	Conceptos téoricos	4
4.	Implementación y resultados	4
	4.1. Ejercicio 1	4
	4.2. Ejercicio 2	4
	4.3. Ejercicio 3	5
	4.4. Ejercicio 4	7
	4.5. Ejercicio 5	7
	4.6. Ejercicio 6	7
	4.7. Ejercicio 7	8
	4.8. Ejercicio 8	8
	4.9. Ejercicio 9	8
	4.10. Ejercicio 10	8
5 .	Conclusiones	9
Re	eferencias	9
Α.	Código fuente	10
	A.1. Resolución ejercicio 1	10
	A.2. Resolución ejercicio 2	11
	A.3. Resolución ejercicio 3	12
	A.4. Resolución ejercicio 4	13
	A.5. Resolución ejercicio 5	14
	A.6. Resolución ejercicio 6	15
	A.7. Resolución ejercicio 7	16
	A.8. Resolución ejercicio 8	17
	A.9. Resolución ejercicio 9	18
	A.10.Resolución ejercicio 10	20

1. Enunciado del trabajo práctico

Trabajo Práctico 1

Modelos y Simulación - 75.26 - 95.19

Consideraciones generales

Debe entregarse un informe explicando el procedimiento utilizado para resolver cada ejercicio, detallando las conclusiones que se solicitan en cada punto, e integrando el código fuente utilizado.

Números al azar

Ejercicio 1

Utilizando Matlab, Octave o Python implementar un Generador Congruencial Lineal (GCL) de módulo 2^{32} , multiplicador 1013904223, incremento de 1664525 y semilla igual a la parte entera de la suma ponderada (0,15-0,25-0,6) de los números de padrón de los integrantes del grupo, ordenados ascendentemente.

- Informar los primeros 5 números de la secuencia.
- Modificar el GCL para que devuelva números al azar entre 0 y 1, y realizar un histograma sobre 100.000 valores generados.

Ejercicio 2

Utilizando el generador de números aleatorios con distribución uniforme [0,1] implementado en el ejercicio 1 y utilizando el método de la transformada inversa genere números pseudoaleatorios con distribución exponencial negativa de media 20.

- Realizar un histograma de 100.000 valores obtenidos.
- Calcular la media y varianza de la distribución obtenida y compararlos con los valores teóricos.

Ejercicio 3

Utilizando el método de Box-Muller genere de números aleatorios con distribución normal standard.

- Realizar un histograma de 100.000 valores obtenidos.
- Calcular la media y varianza de la distribución obtenida y compararlos con los valores teóricos.

Ejercicio 4

Genere 100.000 número aleatorios con distribución Normal de media 40 y desvío estándar 6 utilizando el algoritmo de Aceptación y Rechazo.

- Realizar un histograma de frecuencias relativas con todos los valores obtenidos.
- Comparar, en el mismo gráfico, el histograma realizado en el punto anterior con la distribución normal brindada por Matlab, Octave o Python.
- Calcular la media y la varianza de la distribución obtenida y compararlos con los valores teóricos.

Trabajo Práctico 1

Modelos y Simulación - 75.26 - 95.19

Ejercicio 5

Utilizando el método de la transformada inversa y utilizando el generador de números aleatorios implementado en el ejercicio 1 genere números aleatorios siguiendo la siguiente función de distribución de probabilidad empírica.

Probabilidad	Valor generado
.4	1
.3	2
.12	3
.1	4
0.08	5

Muestre los resultados obtenidos en un histograma.

Ejercicio 6

Utilizando 2 generadores de números al azar, provistos por el lenguaje elegido para resolver el tp, con distribuciones uniformes en [-1,1] genere números aleatorios en un círculo de radio 1 centrado en el origen.

Muestre el resultado en un gráfico de 2 dimensiones.

Test estadísticos

Ejercicio 7

Realizar, sólo gráficamente, un test espectral en 2 y 3 dimensiones al generador conguencial lineal implementado en el ejercicio 1. ¿Cómo se distribuyen espacialmente los puntos obtenidos?

Ejercicio 8

Realizar un test Chi 2 a la distribución empírica implementada en el Ej 5, analizar el resultado indicando si la distribución puede o no ser aceptada.

Ejercicio 9

Al generador congruencial lineal implementado en el ejercicio 1 realizarle un gap test para el intervalo [0,2 - 0,5], analizar el resultado indicando si pasa el test.

Ejercicio 10

Aplicar el test de Kolmogorov-Smirnov al generador de números al azar con distribución normal generado en el ejercicio 3, y analizar el resultado del mismo.

Graficar la distribución acumulada real versus la distribución empírica.

2. Introducción

El trabajo práctico consiste en aplicar conceptos teóricos explicados en clase sobre generación de números aleatorios aplicado a distintos métodos estadísticos utilizados en el medio ciéntifico como ser Box Muller, Generador Congruencial Lineal (GCL), Tranformada inversa y tests como Test espectral y Kolmogorov-Smirnov. Los ejercicios están simulados en lenguaje Python.

3. Conceptos téoricos

4. Implementación y resultados

Para cada uno de los ejercicios pedidos se realiza una explicación de cada uno de ellos. Se toma como base teórica lo explicado en la sección anterior.

4.1. Ejercicio 1

El resultado de los primeros 5 números de la secuencia: [62978, 383030987L, 2740587618L, 1650525291L, 2470812354L]

El histograma pedido utilizando el método Generador Congruencial Lineal (GCL) donde se grafica para números al azar entre 0 y 1,es el siguiente:

4.2. Ejercicio 2

El histograma pedido utilizando el método de la transformada inversa generado con números pseudoaleatorios con distribución exponencial negativa de media 20 es el siguiente:

Comparando los resultados simulados y teóricos:

- El valor simulado de la media es 0.0501097366318
- El valor teórico de la media es 0.05
- El valor simulado de la varianza es 0.00250751904958
- El valor teórico de la varianza es 0.0025

Por lo tanto podemos observar que los valores simulados y teóricos son bastantes parecidos.

4.3. Ejercicio 3

Los resultados que obtenemos son los siguientes:

- \blacksquare El valor simulado de la media z1 es 0.000743926097041
- \blacksquare El valor simulado de la media z2 es -0.0016462929471
- El valor teórico de la media es 0
- El valor simulado de la varianza z1 es 0.998271254875
- El valor simulado de la varianza z2 es 0.996519878651
- El valor teórico de la varianza es 1

El histograma pedido utilizando Box Muller es el siguiente:

Si comparamos con una distribución Normal estándar obtenemos:

Por lo tanto podemos observar que se comprueba que el método de Box Muller es una distribución normal estándar.

4.4. Ejercicio 4

4.5. Ejercicio 5

El histograma pedido utilizando la función de distribución de probabilidad empírica dada por el enunciado:

4.6. Ejercicio 6

El gráfico pedido utilizando una distribucion uniforme entre [-1,1] generado con números aleatorios en un círculo de radio 1 centrado en el origen.

- 4.7. Ejercicio 7
- 4.8. Ejercicio 8
- 4.9. Ejercicio 9
- 4.10. Ejercicio 10

5. Conclusiones

El trabajo práctico nos permitió conocer y realizar simulaciones teniendo como base teórica los conceptos explicados en clase . Además, nos permitió conocer herramientas que permiten realizar simulaciones que son muy utilizadas en el campo científico.

Referencias

- [1] Python, Generación de números con distintas distribuciones de probabilidad, https://docs.python.org/3/library/random.html.
- [2] Método de Box Muller, https://es.wikipedia.org/wiki/Método_de_Box-Muller.

A. Código fuente

A.1. Resolución ejercicio 1

```
#/usr/bin/env/ python
   # -*- coding: utf-8 -*-
   import matplotlib.pyplot as plt
4
   modulo = 2**32
6
   multiplicador = 1013904223
7
   incremento = 1664525
8
   semilla = int(92702 * 0.15 + 93584 * 0.25 + 98757 * 0.26)
9
   secuencia = [ semilla ]
10
   def GCL( valor ):
12
           return ( multiplicador * valor + incremento ) % modulo
14
   def cargarSecuencia(secuencia,inicio, fin):
           for i in range(inicio,fin):
16
                    secuencia.append( GCL( secuencia[ i-1 ] ) )
17
18
   cargarSecuencia(secuencia,1, 5)
19
   print("Primeros 5 numeros de la secuencia: {}".format(secuencia))
20
21
   #Para que de números entre 0 y 1, divido por su módulo
22
   #Hipótesis: utilizo como semilla el valor: 0.9
23
   secuenciaRango01 = [0.9]
24
25
   #Cargo la lista de secuencias
26
   cargarSecuencia(secuenciaRango01,1, 100000)
27
28
   #divido los valores de la lista de secuencias por su modulo
29
   for i in range(0,100000):
30
           secuenciaRango01[i] = secuenciaRango01[i]/modulo
31
32
33
   #histograma
34
   plt.title('Histograma')
35
   plt.xlabel('SecuenciaDeValores')
   plt.ylabel('Frecuencia')
   plt.hist(secuenciaRango01, bins =60, alpha=0.5, ec='black')
   plt.grid(True)
   plt.show()
39
   plt.clf()
40
```


A.2. Resolución ejercicio 2

```
#/usr/bin/env/ python
   # -*- coding: utf-8 -*-
2
4
   import math
   import matplotlib.pyplot as plt
5
   import numpy as np
   #Datos del ejercicio anterior
8
   modulo = 2**32
   multiplicador = 1013904223
10
   incremento = 1664525
   semilla = int(92702 * 0.15 + 93584 * 0.25 + 98757 * 0.26)
12
13
14
   secuencia = [semilla]
   \#Generador\ del\ ejercicio\ anterior, para este en un rango[0,1] se debe dividir por
15
       modulo
   def GCL( valor ):
16
           return ( multiplicador * valor + incremento ) % modulo
17
18
   #Transformada inversa
19
   def transformadaInversa(u):
20
           return -(float(1)/float(20)) * math.log(1-u)
21
22
   #Creamos la secuencia utilizando el generador GCL
23
   for i in range(1,100000):
2.4
           secuencia.append( GCL( secuencia[ i-1 ] ) )
25
26
   #Divido los valores de la lista de secuencias por su modulo
27
   for i in range(0,100000):
28
           secuencia[i] = float(secuencia[i])/float(modulo)
29
30
   #Aplicamos transformada inversa a la secuencia
31
   for i in range(0,100000):
32
           secuencia[i] = transformadaInversa(secuencia[i])
33
34
  #Histograma
35
  plt.title('Histograma Metodo de la transformada inversa')
36
   plt.xlabel('SecuenciaDeValores')
37
   plt.ylabel('Frecuencia')
38
   plt.hist(secuencia, bins =60, alpha=0.5, ec='black')
39
40
   plt.grid(True)
41
   plt.show()
42
43
   #Calculo de media
44
   media = np.mean(secuencia)
   \#Valor simulado de la media
45
   print("El valor simulado de la media es {}".format(media))
46
   #Valor teorico de la media
47
   print("El valor teórico de la media es {}".format(float(1)/float(20)))
48
49
   #Calculo de varianza
50
   varianza = np.var(secuencia)
  print("El valor simulado de la varianza es {}".format(varianza))
  print("El valor teórico de la varianza es {}".format(float(1)/float((20))**2))
```


A.3. Resolución ejercicio 3

```
#/usr/bin/env/ python
   # -*- coding: utf-8 -*-
   from numpy import random, sqrt, log, sin, cos, pi, mean, var
   {\color{red} {\tt import}} \ {\color{blue} {\tt matplotlib.pyplot}} \ {\color{blue} {\tt as}} \ {\color{blue} {\tt plt}}
5
   #Distribución normal
   u1 = random.uniform(0,1, 100000)
   u2 = random.uniform(0,1, 100000)
10
   #Box muller
11
   z1 = sqrt(-2*log(u1))*cos(2*pi*u2)
   z2 = sqrt(-2*log(u1))*sin(2*pi*u2)
13
14
   #Histogramas
15
   fig, ax = plt.subplots(1,2, figsize=(20, 10))
16
   ax[0].hist(z1, bins =60, alpha=0.5, ec='black', label = "z1")
17
   ax[0].hist(z2, bins =60, alpha=0.5, ec='green', label = "z2")
18
   ax[1].hist(random.normal(0, 1, 100000), bins =60, alpha=0.5, ec='red')
19
   ax[0].title.set_text('Histograma Box Muller')
20
   ax[1].title.set_text('Histograma Normal estandar')
21
22
   plt.show()
   #Calculo de media
24
   #Valor simulado de la media
25
   print("El valor simulado de la media z1 es {}".format(mean(z1)))
   print("El valor simulado de la media z2 es {}".format(mean(z2)))
   #Valor teorico de la media
   print("El valor teórico de la media es {}".format(0))
29
30
   #Calculo de varianza
31
32 print("El valor simulado de la varianza z1 es {}".format(var(z1)))
print("El valor simulado de la varianza z2 es {}".format(var(z2)))
34 print("El valor teórico de la varianza es {}".format(1))
```


A.4. Resolución ejercicio 4

```
#/usr/bin/env/ python
   from numpy import random, sqrt, log, sin, cos, pi
   import matplotlib.pyplot as plt
   from scipy.stats import norm
   \#Distribución normal estandar x de T, la que queremos generar
6
   x = random.normal(40,6, 100000)
   #Distribución normal y de T. función conocida
   y = random.normal(0,1, 100000)
10
11
   valores= x/y
12
   t=max(valores)
13
   print(t)
14
15
16
17
  #Histograma
18
  #plt.hist(u1, bins =60, normed=1, alpha=0.5, ec='black')
19
  #plt.hist(u2, bins =60, alpha=0.5, ec='green')
21
  #plt.grid(True)
22 #plt.show()
```


A.5. Resolución ejercicio 5

```
#/usr/bin/env/ python
   # -*- coding: utf-8 -*-
   import math
   import numpy as np
   import matplotlib.pyplot as plt
   ## datos y GCL del ejercicio 1
   modulo = 2**32
8
   multiplicador = 1013904223
   incremento = 1664525
10
   semilla = int(92702 * 0.15 + 93584 * 0.25 + 98757 * 0.26)
11
   secuencia = [ semilla ]
13
   def GCL( valor ):
14
           return ( multiplicador * valor + incremento ) % modulo
15
16
   ## genero 100000 valores
17
   for i in range(1,100000):
18
            secuencia.append( GCL( secuencia[ i-1 ] ) )
19
20
   ## divido por su modulo para tener valores (0,1)
21
   for i in range(1,100000):
22
23
            secuencia[i] = secuencia[i]/modulo
24
   valoresFuncion = []
25
   #La función inversa de la Función de distribución Empírica es:
26
   for nro in secuencia:
27
       if (nro >= 0 \text{ and } nro < 0.4):
28
29
            valoresFuncion.append(1)
       elif (nro \geq= 0.4 and nro < 0.7):
30
           valoresFuncion.append(2)
31
       elif (nro \geq= 0.7 and nro < 0.82):
32
            valoresFuncion.append(3)
33
34
       elif (nro >= 0.82 and nro < 0.92):
           valoresFuncion.append(4)
35
36
       else:
37
            valoresFuncion.append(5)
38
   #histograma
39
  plt.title('Histograma')
40
   plt.xlabel('Valores de la funcion')
41
42
   plt.ylabel('Frecuencia')
   plt.hist(valoresFuncion, bins = 10, alpha=0.5, ec='black')
   plt.grid(True)
   plt.show()
```


A.6. Resolución ejercicio 6

```
#/usr/bin/env/ python
   # -*- coding: utf-8 -*-
   import matplotlib.pyplot as plt
   import random
   #Generador de números aleatorios que provee PYTHON
   def aleatorio():
8
           return random.uniform(-1,1)
10
   listaDeValores1=[]
11
   listaDeValores2=[]
12
13
   #Genero 1000 valores(por ejemplo)
14
   for i in range(0,10000):
15
           x = aleatorio()
16
           y = aleatorio()
17
           if (x**2 + y**2) < 1:
18
                    listaDeValores1.append(x)
19
20
                    listaDeValores2.append(y)
21
   #Gráfico
22
   plt.title('Grafico utilizando una distribucion uniforme')
   plt.plot(listaDeValores1, listaDeValores2, 'o', markersize=1)
   plt.xlabel('Valores de X')
  plt.ylabel('Valores de Y')
26
  plt.show()
```


A.7. Resolución ejercicio 7

```
#/usr/bin/env/ python
   # -*- coding: utf-8 -*-
2
   {\color{red} {\tt import}} \ {\color{blue} {\tt matplotlib.pyplot}} \ {\color{blue} {\tt as}} \ {\color{blue} {\tt plt}}
5
   modulo = 2**32
6
   multiplicador = 1013904223
   incremento = 1664525
   semilla = int(92702 * 0.15 + 93584 * 0.25 + 98757 * 0.26)
   secuencia = [ semilla ]
10
11
   def GCL( valor ):
12
            13
14
   def cargarSecuencia(secuencia,inicio, fin):
15
            for i in range(inicio,fin):
16
                     secuencia.append( GCL( secuencia[ i-1 ] ) )
17
18
19
   #Cargo la lista de secuencias
20
21
   cargarSecuencia (secuencia, 1, 100000)
22
   #Gráfico en dos dimensiones
23
   plt.specgram(secuencia, NFFT=256, Fs=2, Fc=0,noverlap=128)
24
25
   #Gráfico en tres dimensiones
26
27
   plt.show()
28
```


A.8. Resolución ejercicio 8

```
#/usr/bin/env/ python
   # -*- coding: utf-8 -*-
2
   import matplotlib.pyplot as plt
   import numpy as np
5
   from scipy import stats
   modulo = 2**32
8
   multiplicador = 1013904223
9
   incremento = 1664525
10
   semilla = int(92702 * 0.15 + 93584 * 0.25 + 98757 * 0.26)
11
   secuencia = [ semilla ]
   #Nivel de significación del 1%
13
   alpha = 0.01
14
15
   def GCL( valor ):
16
           return ( multiplicador * valor + incremento ) % modulo
17
18
   def cargarSecuencia(secuencia, inicio, fin):
19
           for i in range(inicio,fin):
20
                    secuencia.append( GCL( secuencia[ i-1 ] ) )
21
22
   #Cargo la lista de secuencias
23
   cargarSecuencia(secuencia,1, 100000)
24
25
   #Aplicamos método de Chi-cuadrado
26
   observado = secuencia
27
   esperado = np.array([.25, .25, .25, .25])
28
  stats.chisquare(observado, esperado)
```


A.9. Resolución ejercicio 9

```
#Generador Ej1
   import math
4
   import numpy
5
6
   modulo = 2**32
   multiplicador = 1013904223
8
   incremento = 1664525
   semilla = int(92702 * 0.15 + 93584 * 0.25 + 98757 * 0.26)
10
   secuencia = [ semilla ]
12
   def GCL( valor ):
13
            return ( multiplicador * valor + incremento ) % modulo
14
15
   for i in range(1,5):
16
            secuencia.append( GCL( secuencia[ i-1 ] ) )
17
18
   secuenciaRango01 = [0.9]
19
20
   for i in range(1,100000):
21
            secuenciaRango01.append( GCL( secuenciaRango01[i-1]) )
22
23
   for i in range(0,100000):
24
            secuenciaRango01[i] = secuenciaRango01[i]/modulo
25
26
27
   #Gap test
   from collections import Counter
28
29
   # Intervalo (enunciado)
30
   a = 0.2
31
   b = 0.5
32
33
   # Cuento cada cuantos numeros aparece un numero de este intervalo y lo registro en un
34
   # Repito hasta recorrer todos los numeros generados
35
36
   gaps = []
37
38
   actual_gap = 0
39
40
41
   for i in range(0, len(secuenciaRango01)):
42
     numero_generado = secuenciaRango01[i]
43
     if a <= numero_generado <= b:</pre>
44
       gaps.append(actual_gap)
45
       actual_gap = 0
46
     else:
47
       actual_gap += 1
48
   frecuencias_gaps = Counter(gaps)
49
50
   #el maximo gap es 23, separo en bins de 3
51
   bins = [(0,3), (4,7), (8,11), (12,15), (16,19), (20,23)]
52
   bins_ocurrencias = \{(0,3):0,(4,7):0,(8,11):0,(12,15):0,(16,19):0,(20,23):
       0}
54
   # por cada gap en frecuencias_gap, le sumo su resultado al bin correspondiente
55
   for gap in frecuencias_gaps:
     for interval in bins:
56
       start = interval[0]
57
       finish = interval[1]
58
59
       if start <= gap <= finish:</pre>
```



```
bins_ocurrencias[interval] += frecuencias_gaps[gap]
 60
 61
       #Testeo que este for ande
 62
       assert bins_ocurrencias[(0,3)] == frecuencias_gaps[0] + frecuencias_gaps[1] +
 63
              frecuencias_gaps[2] + frecuencias_gaps[3]
       assert bins_ocurrencias[(4,7)] == frecuencias_gaps[4] + frecuencias_gaps[5] +
              frecuencias_gaps[6] + frecuencias_gaps[7]
 65
       #Ahora calculo las frecuencias relativas de cada bin de gaps
 66
 67
       total = sum(bins_ocurrencias.values())
 68
       #calculo las frecuencias relativas
 69
       bins_frecuencias_relativas = {k: v/total for k, v in bins_ocurrencias.items()}
 70
 71
 72
       #calculo las frecuencias relativas acumuladas
       bins_frecuencias_relativas_acumuladas = {}
 73
       bins_frecuencias_relativas_acumuladas[(0,3)] = bins_frecuencias_relativas[(0,3)]
 74
       bins\_frecuencias\_relativas\_acumuladas[(4,7)] = bins\_frecuencias\_relativas[(4,7)] + bins\_frecuencias\_
              bins_frecuencias_relativas_acumuladas[(0,3)]
       bins_frecuencias_relativas_acumuladas[(8,11)] = bins_frecuencias_relativas[(8,11)] +
              bins_frecuencias_relativas_acumuladas[(4,7)]
       bins_frecuencias_relativas_acumuladas[(12,15)] = bins_frecuencias_relativas[(12,15)]
              + bins_frecuencias_relativas_acumuladas[(8,11)]
       bins_frecuencias_relativas_acumuladas[(16,19)] = bins_frecuencias_relativas[(16,19)]
              + bins_frecuencias_relativas_acumuladas[(12,15)]
       bins_frecuencias_relativas_acumuladas[(20,23)] = bins_frecuencias_relativas[(20,23)]
              + bins_frecuencias_relativas_acumuladas[(16,19)]
 80
 81
       #testeo que esto este acumulando bien
       assert bins_frecuencias_relativas_acumuladas[(20,23)] == 1
 82
 83
       #Calculo FX de cada bin (1 - (0.9)**x+1) siendo x el segundo valor de la tupla (por
 84
              ej para (0,3) es 1 - (0.9)**4)
       FX_bins = {}
 85
       for interval in bins:
 86
 87
           finish = interval[1]
 88
           FX_bins[interval] = 1 - ((0.9)**(finish + 1))
 89
       #Ahora resto los valores de bins_frecuencias_relativas_acumuladas a FX_bins
 90
 91
       res = \{\}
       for k in FX_bins.keys():
92
           res[k] = bins_frecuencias_relativas_acumuladas[k] - FX_bins[k]
93
       #Falta seguir los ultimos pasos que hace este chabon: https://www.youtube.com/watch?v
94
              =xh-4i0v-0yk
 95
 96
       #Step 4
       max_value = max(res.values())
 97
 98
       #Step 5 asumo alpha 0.05
99
100
       n = 100000
       D = 1.36/math.sqrt(n)
       if max value > D:
104
           print('La muestra es rechazada por el GAP test')
106
           print('La hipotesis no es rechazada')
107
```


A.10. Resolución ejercicio 10

```
#Distribucion generada en el ejercicio 3
   #/usr/bin/env/ python
3
   # -*- coding: utf-8 -*-
4
   import numpy as np
   from numpy import random, sqrt, log, sin, cos, pi
   import matplotlib.pyplot as plt
   import scipy.stats
   import statsmodels.api as sm # recommended import according to the docs
10
   #Distribución uniforme
   u1 = random.uniform(0,1, 100000)
12
   u2 = random.uniform(0,1, 100000)
13
14
   #Box muller transformation
15
   z1 = sqrt(-2*log(u1))*cos(2*pi*u2)
16
   z2 = sqrt(-2*log(u1))*sin(2*pi*u2)
17
18
   #Ejercicio 10:
19
20
   #Aplico el test a las dos distribuciones generadas
21
22
23
   test1 = scipy.stats.kstest(z1, 'norm')
24
   test2 = scipy.stats.kstest(z2, 'norm')
25
26
   #Hipotesis nula (de igualdad): Si no la rechazamos podemos decir que es igual a una
27
      normal
   #Hipotesis alternativa (de diferencias): Si rechazamos la hipotesis nula decimos que
28
      hay diferencias con la distribucion normal
   #Con un nivel de significancia del 0,05%
30
   if test1.pvalue >= 0.05:
31
           print ('La variable z1 pasa el test de kolmogorov-smirnov para un nivel de
32
       significancia del 0.05%, por lo tanto no podemos rechazar la hipotesis nula y la
       distribucion de esta variable es igual a la distribucion normal')
33
   else:
           print('La variable z1 no pasa el test de kolmogorov-smirnov y afirmamos que
34
       tiene diferencias con la distribucion normal')
   if test2.pvalue >= 0.05:
35
           print ('La variable z2 pasa el test de kolmogorov-smirnov para un nivel de
36
       significancia del 0.05%, por lo tanto no podemos rechazar la hipotesis nula y la
       distribucion de esta variable es igual a la distribucion normal')
   else:
           print ('La variable z2 no pasa el test de kolmogorov-smirnov y afirmamos que
38
       tiene diferencias con la distribucion normal')
39
40
   #Grafico de la empirica de z1
41
   sample = z1
42
   ecdf = sm.distributions.ECDF(sample)
43
   x = np.linspace(min(sample), max(sample))
44
   y = ecdf(x)
45
   plt.step(x, y, label = 'empirical cdf (z1)')
47
48
   #Grafico de la empirica de z2
49
   sample = z2
   ecdf = sm.distributions.ECDF(sample)
50
   x = np.linspace(min(sample), max(sample))
51
   y = ecdf(x)
52
   plt.step(x, y, label = 'empirical cdf (z2)')
```



```
54

55 #Grafico la acumulada de la normal

56 x = np.linspace(-5, 5, 5000)

57 mu = 0

58 sigma = 1

59 y_cdf = scipy.stats.norm.cdf(x, mu, sigma) # the normal cdf

60 plt.plot(x, y_cdf, label='normal cdf')

61

62

63 plt.legend()

64 plt.show()
```