#### Add WeChat edu\_assist\_pro COT5405 Analys orithms

**LECTURE 14-15 Dynamic Programming vs** Assignment Greedy Exalgorithms n Multiplication https://eduassistpro.github.jo/Proble Add WeChat edu\_assistrateure

• Greedy Selection Knapsack Problem

Prof. Alper Üngör



### Add WeChat edu\_assist\_pro Matrix Chai tiplication

Given a sequence (chain) of n matrices  $A_1, A_2, ..., A_n$ , where Assispancent Project Exam Help

Compute their https://eduassistpro.github.io/using the minimum numbed of chatedu\_assistcations

Find a parenthesization that minimizes the number of multiplications



### Add WeChat edu\_assist\_pro Optimal Su ure

#### **Notation**. Let $A_{i,j} = A_i \cdot ... \cdot A_j$ for $i \le j$

- Consider an optimal parenthesization for  $A_{i,j}$ Say it splits AtskigstonAnt=PrAject.  $Exant(Atelp...A_j)$
- Then, the pare https://eduassistpro.github.io/  $fA_{i,j}$  must be an optimal parenthesization of



### Add WeChat edu\_assist\_pro Optimal Su ure

#### **Notation**. Let $A_{i,j} = A_i \cdot ... \cdot A_j$ for $i \le j$

- Consider an optimal parenthesization for  $A_{i,j}$ Say it splits AtskigstonAnt=PrAject. Exam(Alelp...A<sub>j</sub>)
- Then, the pare https://eduassistpro.github.io/  $fA_{i,j}$  must be an optimal parenthesization of

(**Proof**. Suppose it is not optimal, then there exists a better parenthesization for  $A_{i,k}$ . Copy and paste this parenthesization into the parenthesization for  $A_{i,j}$ . This yields a better parenthesization for  $A_{i,j}$ . Contradiction.)



# Add WeChat edu\_assist\_pro Dynamic pr ming

m[i,j] = minimum number of scalar multiplications to compute  $A_{ij}$ . We want to compute m[1,n]Assignment Project Exam Help

 $A_{i,j}$  https://eduassistpro.github.io/

Add WeChat edu\_assist\_pro Recurrence for optimal substructure:

- m[i,i] = 0 for i=1,2,...,n
- $m[i,j] = \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1} p_k p_j \}$



## Add WeChat edu\_assist\_pro Naive or Re Approach

- Enumerate all possible paranthesizations
- Implement the described recursion directly

Assignment Project Exam Help

The runtime https://eduassistpro.github?io/

Add WeChat edu\_assist\_pro

- Overlapping subproblems!

There are only  $O(n^2)$  different problems



# Dynamic Pr ming

Fill the 2 dimensional m[i,j]-table bottom-up

Assignment Project Exam Help
For the constru arenthesization, use an addition https://eduassistpro.github in that value of k for which the drifting han edu\_assist\_and stored in m[i,j]

• m[1,n] is the desired value



### Add WeChat edu\_assist\_pro MatrixChai . Example

 $A_1, \dots A_6$  with sizes 8x10, 10x4, 4x1, 1x8, 8x4, 4x6

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu\_assist\_pro

Nice Visualization/Animaiton of this Algorithm:

http://www.brian-borowski.com/Software/Matrix/

http://www.cs.auckland.ac.nz/software/AlgAnim/mat\_chain.html#mat\_chain\_anim



#### Add WeChat edu\_assist\_pro Activity Sel roblem

- Input: Set S of n activities,  $a_1, a_2, ..., a_n$ .
- »  $s_i$  = start time of activity i.
- »  $f_i$  = finish ti**mesogaetivity** Project Exam Help
- Output: Subs activities. https://eduassistpro.github.io/
- » Two activities are compared hat edu\_assists plon't overlap.

#### Example:





### Add WeChat edu\_assist\_pro Optimal Su ure

Assume activities are sorted by finishing times.

$$f_1 \le f_2 \le \dots \le f_n$$
.

- Suppose an Aspitamales of Participatine Elvades Hetipvity  $a_k$ .
  - » This generate https://eduassistpro.github.io/
  - » Selecting fro patible with one another, and that the chat edu\_assist patible with  $a_k$ ).
  - » Selecting from  $a_{k+1}$ , ...,  $a_n$ , activities compatible with one another, and that start after  $a_k$  finishes.
  - » The solutions to the two subproblems must be optimal.
    - Prove using the cut-and-paste approach.



### Add WeChat edu\_assist\_pro Recursive fo tion

- Let  $S_{ij}$  = subset of activities in S that start after  $a_i$  finishes and finish before  $a_i$  starts.

  Assignment Project Exam Help
- Subproblems: mber of mutually compatible actihttps://eduassistpro.github.io/
- Let  $c[i, j] = \text{size-ordinaries in } S_{ij}$ .

$$c[i,j] = \begin{cases} 0 & \text{if } S_{ij} = \emptyset \\ \max\{c[i,k] + c[k,j] + 1\} & \text{if } S_{ij} \neq \emptyset \end{cases}$$



#### $\begin{array}{c} \text{Add WeChat edu\_assist\_pro} \\ \textbf{Can we do b} \end{array}$

Theorem. Consider any non-empty subproblem S<sub>ij</sub>, and a<sub>m</sub> be the activity in S<sub>ij</sub> with earliest finish time. Then, i) Activity and signed onts Braie maximum Islae subset of mutually compa https://eduassistpro.github.io/
ii) The first sub m

Add WeChat edu\_assist\_pro



#### Add WeChat edu\_assist\_pro Can we do b

**Theorem.** Consider any non-empty subproblem  $S_{ii}$ , and  $a_{\rm m}$  be the activity in  $S_{ij}$  with earliest finish time. Then, i) Activity a Aisigs ed ints Braje at a xia unhi size subset of mutually compa https://eduassistpro.github.io/ ii) The first sub Proof. (ii) Suppose Sim is non edu\_assist\_pro exists some activity  $a_k$  such that  $f_i \le s_k < f_k \le s_m < f_m$ . Then  $a_k$  is also in  $S_{ij}$  and it has earlier finish time than  $a_m$ . Contradiction.



### Add WeChat edu\_assist\_pro Can we do b

**Theorem.** Consider any non-empty subproblem  $S_{ij}$ , and  $a_{m}$  be the activity in  $S_{ij}$  with earliest finish time. Then,

i) Activity a Aisigs entire that is a subset of mutually compa https://eduassistpro.github.io/

ii) The first sub

**Proof.** (i) Let A<sub>ii</sub> be an opt soledu\_assist\_pro a<sub>k</sub> be the activity with earliest finish in  $A_{ij}$ . If  $a_{k}=a_{m}$ , we are done.

Otherwise, construct a new solution

$$A'_{ij} = A_{ij} - \{a_k\} + \{a_m\}$$

which is also an optimum feasible solution.



# Add WeChat edu\_assist\_pro Implication

**Theorem.** Consider any non-empty subproblem  $S_{ij}$ , and  $a_m$  be the activity in  $S_{ij}$  with earliest finish time. Then,

i) Activity a sissigned ints Braje at a sign and the subset of mutually compa https://eduassistpro.github.io/

ii) The first sub

Implication Add WeChat edu\_assist\_pro

- ii) solve only one of the two of subproblems.
- i) a simple top-down approach. pick the job with the earliest finish time. **Greedy Algorithm!**



## Add WeChat edu\_assist\_pro Recursive G Algorithm

#### Recursive-Activity-Selector (s, f, i, j)

- 1.  $m \leftarrow AistsIgnment Project Exam Help$
- 2. while *m* https://eduassistpro.github.io/
- 3. dom
- 4. if m < j Add WeChat edu\_assist\_pro
- 5. then return  $\{a_{\rm m}\} \cup$

Recursive-Activity-Selector(s, f, m, j)

6. **else** return φ



# Add WeChat edu\_assist\_pro Iterative Gr Igorithm

#### **Greedy-Activity-Selector** (s, f)

- 1.  $n \leftarrow \text{length}[s]$
- 2. A ←A[ssi]gnment Project Exam Help
- $3. \quad i \leftarrow 1$
- https://eduassistpro.github.io/
- 5. do if Add WeChat edu\_assist\_pro
- 6. then  $A \leftarrow A \cup \{a_{\mathsf{m}}\}$
- 7.  $i \leftarrow m$
- 8. return A



# Add WeChat edu\_assist\_pro Recap of Gr trategy

- Cast the optimization problem as one in which we make a choice and are left with one subproblem to solve.
- Prove that there's always an optimal solution that makes the greehttps://eduassistpro.gareedy.choice is always safe.
- ◆ Show that greedydeh Wie Chattedu\_assist Liption to subproblem ⇒ optimal solution to the problem.
- Make the greedy choice and solve top-down.
- May have to preprocess input to put it into greedy order.
  - » Example: Sorting activities by finish time.



# Add WeChat edu\_assist\_pro Why not use e time?

• Matrix Chain Multiplication Problem.

Greedy Strategy: do the leftmost multiplication first; do the rightmost multiplication first; do the rightmost multiplication first Help do the cheapest https://eduassistpro.github.io/

Add WeChat edu\_assist\_pro

Longest Common Subsequence.
 Greedy Strategy: ???



### Add WeChat edu\_assist\_pro Knapsack P

- Given a knapsack with weight W > 0. A set S of n items with weights  $w_i > 0$  and benefits  $b_i > 0$  for i = 1, n. Assignment Project Exam Help
- $S = \{ (item_1, https://eduassistpro.gjthub.io/$ ...,  $(item_1)$  hat edu\_assist\_pro
- Find a subset of the items which does not exceed the weight W of the knapsack and maximizes the benefit.



#### Add WeChat edu\_assist\_pro 0/1 Knapsac Tem

In 0/1 knapsack a specific item is either selected or not

#### Add WeChat edu\_assist\_pro Variations of the problem

- Fractions are allowed. This applies to items such as:
  - bread, for which taking half a loaf makes sense
  - gold dust
- No fractions ignment Project Exam Help
  - 0/1 (1 bro
  - Allows puthttps://eduassistpro.githeuty.jpe/ in knapsack
    - 5 pairs of socks

      Add WeChat edu\_assist\_pro
    - 10 gold bricks
  - More than one knapsack, etc.
- First 0/1 knapsack problem will be covered then the Fractional knapsack problem.

#### Add WeChat edu\_assist\_pro Brute

- Generate all 2<sup>n</sup> subsets
- Discard all subsets whose sum of the weights exceed
   W (not feasible)nment Project Exam Help
- Select the ma

   (feasible) sub https://eduassistpro.github.io/
- What is the run time? O( $n \ 2^n$ ), Omega( $2^n$ )
- Lets try the obvious greedy strategy.

#### Add WeChat edu\_assist\_pro Example wit ce"

```
S = \{ (item_1, 5, \$70), (item_2, 10, \$90), (item_3, 25, \$140) \}, W=25 \}
  Subsets:
1. {}
2. { ( item, , 5, Assignment Project Exams Help
3. { (item<sub>2</sub>, 10, $90
4. { (item<sub>3</sub>, 25, $14 https://eduassistpro.github.io/
6. { (item<sub>2</sub>, 10, $90), (item<sub>3</sub>, 25, $140) } exceeds W
7. { ( item<sub>1</sub> , 5, $70 ), ( item<sub>3</sub>, 25, $140 ) } exceeds W
8. { ( item<sub>1</sub> , 5, $70 ), (item<sub>2</sub> ,10, $90 ), ( item<sub>3</sub>, 25, $140 ) } exceeds
   W
```

#### Greedy 1: Selection Criteriedu\_assistmpbeneficial item. Counter Example:

 $S = \{ (item_1, 5, \$70), (item_2, 10, \$90), (item_3, 25, \$140) \}$ 



#### Greedy 2: Selection crit assist pro Counter Example:

 $S = \{ (item_1, 5, \$150), (item_2, 10, \$60), (item_3, 20, \$140) \}$ 



## Greedy 3: Selection cri mum weight item Counter Example:

 $S = \{ (item_1, 5, \$150), (item_2, 10, \$60), (item_3, 20, \$140) \}$ 



#### Greedy 4: Selected North Chat edu\_assiste Per unit item Counter Example

 $S = \{ (item_1, 5, \$50), (item_2, 20, \$140) (item_3, 10, \$60), \}$ 

