1. RINGS AND IDEALS

1.1 Rings and ring homomorphisms

Definition 1 (Ring): A $ring\ A$ is a set with two binary operations called addition and multiplication such that

- 1. A is an abelian group with respect to addition.
- 2. Multiplication is associative.
- 3. Multiplication is commutative, and distributive over addition.
- 4. There is a multiplicative identity.

Definition 2 (Ring homomorphism): A ring homomorphism is a map $f: A \to B$ such that

- 1. f(a+b)=f(a)+f(b) for all $a,b\in A$ (that is f is a group homomorphism over the additive structure).
- 2. f(ab) = f(a)f(b) for all $a, b \in A$.
- 3. f(1) = 1.

Definition 3 (Subring): A subset S of a ring A is a *subring* if S is additively and multiplicatively closed, and contains the multiplicative identity.

1.2 Ideals and quotient rings

Definition 4 (Ideal): An ideal $\mathfrak a$ of a ring A is an additive subgroup such that $A\mathfrak a \subseteq \mathfrak a$ (that is, $x \in A \land y \in \mathfrak a \Rightarrow xy \in \mathfrak a$).

The multiples ax of an element $x \in A$ form a *principal ideal* which we denote by (x). By convention, we denote (0) by (0).

Result 5: There is a one-to-one, order-preserving correspondence between the ideals \mathfrak{b} of A which contain \mathfrak{a} , and the ideals $\overline{\mathfrak{b}}$ of A/\mathfrak{a} given by $\mathfrak{b} = \varphi^{-1}(\overline{\mathfrak{b}})$.

Proof.

Definition 6 (Kernel): The *kernel* of a ring homomorphism $f: A \to B$ is the pre-image of $0 \in B$; notatively $\ker(f) = f^{-1}(0)$.

RESULT 7: For any ring homomorphism $f: A \to B$, $\ker(f)$ is an ideal $\mathfrak a$ of A, $\operatorname{im}(f)$ is a subring C of B, and f induces a ring isomorphism $A/\mathfrak a \cong C$.

1.3 Zero divisors, nilpotent elements and units

DEFINITION 8 (Zero divisor): An element $x \in A$ is a zero divisor if there exists an element $0 \neq y \in A$ such that xy = 0.

Definition 9 (Integral domain): A ring without zero divisors is called an *integral domain*.

DEFINITION 10 (Nilpotent): An element $x \in A$ is nilpotent if $x^n = 0$ for some n > 0.

DEFINITION 11 (Unit): An element $x \in A$ is a *unit* if there exists an element $y \in A$ such that xy = 1. If it exists, this y is unique, and denoted by x^{-1} .

RESULT 12: An element $x \in A$ is a unit if and only if (x) = A.

Proof. Let x be a unit, and $x^{-1} \in A$ it's multiplicative inverse. Then $1 = x^{-1}x \in (x)$, hence (x) = A. If (x) = A, $1 \in (x)$, and hence there exists an element $y \in A$ such that yx = 1.

Definition 13 (Field): A field is a ring in which $0 \neq 1$ and every non-zero element is a unit.

RESULT 14: A field is an integral domain.

Proof. Let $x \in A$ be a unit, and suppose that it is also a zero divisor. Then, there exists an element $y \in A$ such that xy = 0. But $0 = x^{-1}0 = x^{-1}xy = 1$.

Result 15: Let A be a non-zero ring. The following are equivalent,

- i) A is a field;
- ii) the only ideals in A are (1) and 0;
- iii) every homomorphism of A into a non-zero ring B is injective.

Proof. ($i \Leftrightarrow ii$) is a direct consequence of RESULT 12.

(ii \iff iii): Let $\varphi:A\to B$ be a homomorphism. Then $\ker(\varphi)$ is an ideal by Result 7. If $\ker(\varphi)=0$, φ is injective. If $\ker(\varphi)=A$, B is trivial.

1.4 Prime and maximal ideals

Definition 16 (Prime ideal): An ideal \mathfrak{p} is *prime* if $\mathfrak{p} \neq (1)$ and $xy \in \mathfrak{p} \Rightarrow x \in \mathfrak{p} \vee y \in \mathfrak{p}$.

DEFINITION 17 (Maximal ideal): An ideal \mathfrak{m} is *maximal* if there is no ideal \mathfrak{a} such that $\mathfrak{m} \subset \mathfrak{a} \subset (1)$.

RESULT 18: Equivalent formulations of primality and maximality are,

 \mathfrak{p} is prime $\iff A/\mathfrak{p}$ is an integral domain \mathfrak{m} is maximal $\iff A/\mathfrak{m}$ is a field.

RESULT 19: Every ring has at least one maximal ideal.

RESULT 20: If $\mathfrak{a} \neq (1)$ is an ideal in A, there exists a maximal ideal of A containing \mathfrak{a} .

Proof. This is a direct consequence of RESULT 19

Result 21: Every non-unit of A is contained in a maximal ideal.

Proof. This is a direct consequence of RESULT 19 together with RESULT 12.

Definition 22 (Local ring): A ring A with exactly one maximal ideal \mathfrak{m} is called a *local ring*. A ring with a finite number of maximal ideals is called a *semi-local ring*.