Econometría

Diplomado Banco Central de Honduras

Instituto de Economía

Pontificia Universidad Católica de Chile

Juan Ignacio Urquiza — Junio 2022

Repaso de Estadística

- □ Propiedades de los Estimadores:
 - Insesgamiento, eficiencia, consistencia
 - Teorema Central del Límite
- Inferencia:
 - Test de hipótesis
 - Intervalo de confianza

Estimadores como VA

- Un estimador t es una variable aleatoria que es función de los datos muestrales.
- Para evaluar a un estimador debemos analizar distintas propiedades de su distribución de probabilidades.
- Comenzaremos con el estudio de propiedades de muestra pequeña o finita, y luego analizaremos propiedades asintóticas que tienen que ver con el comportamiento de los estimadores a medida que aumenta el tamaño de la muestra.

Propiedades de Estimadores

- Muestras Repetidas de Igual Tamaño
 - Insesgamiento:
 - Sea t(x) estimador de un parámetro θ , y sea $f(t,\theta)$ la función de densidad de probabilidad de t.
 - Entonces, t es insesgado si $E(t) = \theta$.
 - En palabras, el valor esperado del estimador coincide con el del parámetro a estimar.
 - Importante: el insesgamiento es una propiedad para todo tamaño de muestra; no sólo para las grandes.

Media Muestral

- □ Sea Y_1 , Y_2 , ..., Y_n una muestra aleatoria de una población con media μ_Y .
- Entonces,

$$\bar{Y} = \frac{1}{n}(Y_1 + Y_2 + \dots + Y_n) = \frac{1}{n}\sum_{i=1}^n Y_i$$

Valor Esperado:

$$E(\overline{Y}) = E(\frac{1}{n} \sum_{i=1}^{n} Y_i) = \frac{1}{n} \sum_{i=1}^{n} E(Y_i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \mu_Y = \mu_Y$$

Insesgamiento

Propiedades de Estimadores

Muestras Repetidas de Igual Tamaño

Eficiencia Relativa:

- Sean t_1 y t_2 estimadores insesgados.
- Entonces, t_1 es más eficiente que t_2 si Var(t1) < Var(t2).
- En palabras, el estimador t_1 es más eficiente si su varianza es más pequeña.

Propiedades de Estimadores

Muestras Repetidas de Igual Tamaño

■ Eficiencia Relativa:

- Sean t_1 y t_2 estimadores sesgados.
- Entonces, t_1 es más eficiente que t_2 si ECM₁<ECM₂.
- $ECM_i = E[(t_i \theta)^2]$: Error Cuadrático Medio.

$$ECM = Var(t) + sesgo^2$$

Muestras Grandes

□ Se denomina teoría asintótica al estudio de los estimadores para muestras grandes (n→∞).

- Se revisarán dos temas:
 - Convergencia en probabilidad.
 - Consistencia
 - Convergencia en distribución.
 - Teorema Central del Límite

Convergencia en Probabilidad

Definición:

■ Una secuencia de variables aleatorias $\{x_n\}$ converge en probabilidad a una constante c si

$$\lim_{n\to\infty} \Pr(|\mathbf{x}_n - \mathbf{c}| > \varepsilon) = 0$$

para cualquier $\varepsilon > 0$.

Alternativamente,

$$\lim_{n\to\infty} \Pr(|\mathbf{x}_n - \mathbf{c}| < \varepsilon) = 1$$

Intuición: a medida que aumenta el tamaño de la muestra,
 la distribución de x_n se concentra cada vez más alrededor de la constante c.

Convergencia en Probabilidad

 \square En general, si x_n converge en probabilidad a una constante c, entonces escribimos:

$$plim x_n = c$$

□ Propiedades del operador plim:

- \square plim (x + y) = plim x + plim y
- \square plim (x * y) = plim x * plim y
- \square plim $(x / y) = plim x / plim y , si plim <math>y \neq 0$

Propiedades de Estimadores

□ Consistencia:

 \blacksquare El estimador t(x) es consistente para θ si:

$$\lim_{n\to\infty} \Pr(|t-\theta| > \varepsilon) = 0$$

Es decir, t es consistente si converge en probabilidad al parámetro θ.

□ *Nota*: si $E(t_n) = \theta$ y $V(t_n) \rightarrow 0$ cuando $n \rightarrow \infty$, entonces t_n es consistente.

Media Muestral

Varianza:

$$\operatorname{var}(\bar{Y}) = E[\bar{Y} - E(\bar{Y})]^{2}$$

$$= E[\bar{Y} - \mu_{Y}]^{2}$$

$$= E\left[\left(\frac{1}{n}\sum_{i=1}^{n}Y_{i}\right) - \mu_{Y}\right]^{2} = E\left[\frac{1}{n}\sum_{i=1}^{n}(Y_{i} - \mu_{Y})\right]^{2}$$

$$= E\left[\left(\frac{1}{n}\sum_{i=1}^{n}(Y_{i} - \mu_{Y})\right) \times \left(\frac{1}{n}\sum_{j=1}^{n}(Y_{j} - \mu_{Y})\right)\right]$$

Media Muestral

Varianza:

$$\operatorname{var}(\bar{Y}) = E\left\{ \left[\frac{1}{n} \sum_{i=1}^{n} (Y_i - \mu_Y) \right] \times \left[\frac{1}{n} \sum_{j=1}^{n} (Y_j - \mu_Y) \right] \right\}$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} E\left[(Y_i - \mu_Y)(Y_j - \mu_Y) \right]$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{cov}(Y_i, Y_j)$$

$$= \frac{1}{n^2} \sum_{i=1}^{n} \sigma_Y^2 = \frac{\sigma_Y^2}{n}$$
Consistencial

Consistencia

Convergencia en Distribución

□ Teorema Central del Límite:

□ <u>Definición</u>: Sea Y_1 , Y_2 , ..., Y_n una muestra aleatoria de una población con media μ y varianza σ^2 . Entonces,

$$\sqrt{n}(\bar{Y}_n - \mu) \xrightarrow{d} N(0, \sigma^2)$$

donde d significa que la expresión converge en distribución a una Normal cuando n tiende a infinito.

Alternativamente,

$$Z_n = \frac{\overline{Y}_n - \mu}{\sigma/\sqrt{n}} \xrightarrow{d} N(0,1)$$

- Esta técnica de inferencia estadística nos permite evaluar si la información contenida en los datos avala o no una conjetura sobre la población que se está estudiando.
- Nociones básicas:
 - □ Hipótesis nula e hipótesis alternativa
 - **□** Estadístico de contraste
 - **■** Nivel de significancia
 - □ Valor crítico
 - Región de aceptación/rechazo

Planteamiento de Hipótesis

- El punto de partida consiste en establecer la hipótesis a evaluar; es decir, la hipótesis nula (H₀), cuya validez queremos contrastar.
- □ Frente a esta hipótesis, se plantea una hipótesis alternativa (H_1) que se cumple cuando la nula es falsa.
- □ Por ejemplo:
 - $\blacksquare H_0: E(Y) = \mu_{Y,0}$
 - $\blacksquare H_1: E(Y) \neq \mu_{Y,0}$ (test bilateral o "de dos colas")
 - $\blacksquare H_1: E(Y) > \mu_{Y,0} \circ H_1: E(Y) < \mu_{Y,0}$

(test unilateral o "de una cola")

Estadístico de Contraste

- Una vez definidas H₀ y H₁, hay que determinar un estadístico de contraste que mida la discrepancia entre la información muestral y la hipótesis nula.
 - □ <u>Idea</u>: si la discrepancia es grande, el valor del estadístico estará dentro de valores poco probables cuando H_0 sea verdadera, lo que indica evidencia contraria a H_0 , y viceversa.
- El estadístico de contraste es una variable aleatoria puesto que depende de los datos muestrales.
- Deberá tener una distribución conocida (exacta o aproximada) bajo la hipótesis nula.

Error Tipo I / Error Tipo II

- Cuando realizamos un contraste, podemos cometer dos tipos de errores:
 - \blacksquare Podemos rechazar H_0 cuando es cierta (error tipo I)
 - \square Podemos no rechazar H_0 cuando es falsa (error tipo II)
- En la práctica, no es posible determinar si hemos cometido o no un error.
- Sin embargo, es posible especificar la probabilidad α de cometer un error del tipo l.

$$\alpha = \Pr (\text{error tipo I}) = \Pr (\text{rechazar } H_0 \mid H_0 \text{ verdadero})$$

Valor Crítico / Región de Rechazo

- Entonces, se fija un valor para α tan pequeño como uno desee en general: $\alpha = 0.1$; 0.05; 0.01.
 - Interpretación:
 - $\alpha = 0.05$ implica que el investigador estaría dispuesto a rechazar H_0 incorrectamente un 5% de las veces tolerancia.
- Una vez establecido el nivel de significancia, es posible hallar un valor crítico contra el cual contrastar el valor del estadístico.
- Los valores del estadístico T que resulten en el rechazo de H₀
 conforman la región de rechazo.

Región de Aceptación/Rechazo

Test Bilateral:

Región de Aceptación/Rechazo

Test Unilateral:

Región de Aceptación/Rechazo

□ <u>Test Unilateral</u>:

$$\square Y \sim N(\mu_Y, \sigma_Y^2) - \sigma_Y^2$$
 conocido.

Caso 1

 \square Entonces, bajo H_0 :

$$|\bar{Y} \sim N\left(\mu_0, \frac{\sigma_Y^2}{n}\right)|$$

Por lo tanto,

$$T = \frac{\overline{Y} - \mu_0}{\sigma_Y / \sqrt{n}} \sim N(0,1)$$

 \square Y $\sim N(\mu_Y, \sigma_Y^2) - \sigma_Y^2$ desconocido.

Caso 2

Hay que estimarlo:

$$s_Y^2 = \frac{1}{n-1} \sum_{i=1}^n (Y_i - \bar{Y})^2$$

$$\sqrt{s_Y^2/n} \equiv SE(\overline{Y}) = error\ estandar\ de\ \overline{Y}$$

Por lo tanto,

$$T = \frac{\overline{Y} - \mu_0}{s_Y / \sqrt{n}} \sim t_{n-1}$$

- Si desconocemos tanto la distribución de Y como su varianza σ_Y²?
- Teorema Central del Límite!

Caso 3

□ Por lo tanto,

$$T = \frac{\overline{Y} - \mu_0}{S_Y / \sqrt{n}} \xrightarrow{a} N(0,1)$$

P-value

Probabilidad de obtener un estadístico tanto o más adverso para la hipótesis nula como el computado, asumiendo que H_0 es verdadera.

- \square P-value = $Pr(T > t \mid H_0)$
- \square P-value = $Pr(T < t \mid H_0)$
- □ P-value = $Pr(|T| > |t| | H_0) = 2*Pr(T > |t| | H_0)$
- Cuanto menor sea el p-value, menos probable es que la distribución obtenida para el estadístico bajo la nula sea correcta y, por lo tanto, es menos probable que estemos bajo la nula.
- \square Es decir, un p-value chico es evidencia en contra de H_0 .

Intervalo de Confianza

- Debido al error de muestreo, es imposible conocer el valor exacto de la media poblacional a partir de la información contenida en los datos muestrales.
- Sin embargo, es posible construir un set de valores que contenga al verdadero valor poblacional para un nivel de probabilidad dado.
- Intervalo de Confianza (test bilateral al 95%):

$$\{\bar{Y} \pm 1.96 * (\sigma_Y/\sqrt{n})\}$$

Caso 1

$$\left\{ \bar{Y} \pm t_{\propto/2}^{n-1} * SE(\bar{Y}) \right\}$$

Caso 2

$$\{\bar{Y} \pm 1.96 * SE(\bar{Y})\}$$

Caso 3