Hidden Markov Chains

Marco, Nicolás, Sebastián and César

November 1, 2019

Index

- Smoothing
- 2 Likelihood
- Most likely state path/Decoding
- 4 Continuous-state Hidden Markov Models
- 5 An example for LGSSM

Notations:

- $p(x_{t+1}|x_t) = P(X_{t+1} = x_{t+1}|X_t = x_t)$
- $p(y_t|x_t) = P(Y_t = y_t|X_t = x_t)$
- $p(x_t|y_{1:t}) = P(X_t = x_t|Y_1 = y_1, ..., Y_t = y_t)$
- $p(y_{1:t}) = P(Y_1 = y_1, ..., Y_t = y_t)$

Inference problems:

- $p(x_t|y_{1:t})$
- $p(x_t|y_{1:s})$, with s < t
- $p(x_t|y_{1:s})$, with s > t
- $p(y_{1:T})$
- $arg \max_{x_{0:t}} p(x_{0:T}|y_{1:T})$

Forward Algorithm initialization equation

$$\alpha_1(i) = \pi_i \cdot b_i(O)$$

Forward Algorithm recursion equation

$$\alpha_{t+1}(j) = \sum_{i=1}^{N} \alpha_t(i) \alpha_{ij} b_{ij}(O)$$

Termination

$$P(O|\lambda) = \sum_{i=1}^{N} \alpha_{T}(i)$$

$$p(x_t|y_{1:t}) = \frac{p(x_t, y_{1:t})}{\sum_{x_t' \in \mathcal{X}} p(x_t', y_{1:t})}$$

$$\begin{aligned}
p(x_t, y_{t:T}) &= \sum_{x_{t-1} \in \mathcal{X}} p(x_t, x_{t-1}, y_t, y_{1:t-1}) \\
&= \sum_{x_t \in \mathcal{X}} p(y_t | x_t, x_{t-1}, y_{1:t-1}) p(x_t | x_{t-1}, y_{1:t-1}) p(x_{t-1}, y_{1:t-1}) \\
&= p(y_t | x_t) \sum_{x_t \in \mathcal{X}} p(x_t | x_{t-1}) p(x_{t-1}, y_{1:t-1})
\end{aligned}$$

If we define $\alpha(t) := p(x_t, y_{1:t})$, then we have a forward recursion for t = 1, ..., T, $x_t \in \mathcal{X}$:

$$\alpha_t(x_t) = p(y_t|x_t) \sum_{x_t \in \Upsilon} p(x_t|x_{t-1}) \alpha_{t-1}(x_{t-1}); \ \alpha_0(x_0) = 0$$

$$p(x_t|y_{1:t}) = \frac{p(x_t, y_{1:t})}{p(y_{1:t})} = \frac{\alpha_t(x_t)}{\sum_{x \in \mathcal{X}} \alpha_t(x)}$$
$$p(y_{1:T}) = \sum_{x \in \mathcal{X}} \alpha_T(x)$$

Predict

$$p(x_t|y_{1:t-1}) = \sum_{x_{t-1} \in \mathcal{X}} p(x_t|x_{t-1})p(x_{t-1}|y_{1:t-1})$$

Update

$$p(x_t|y_{1:t}) = \frac{g_{x_t}(y_t)p(x_t|y_{1:t})}{\sum_{x_t' \in \mathcal{X}} g_{x_t'}(y_t)p(x_t'|y_{1:t})}$$

7 / 42

Example: Hidden Mark-frog Chains

Example: Hidden Mark-frog Chains

- Our frog is jumping on a ladder with K = 6 levels.
- From position X_t level at which the frog is at time t is not observed.
- Frog's detector at the lowest level of the ladder sends a signal Y_t

$$Y_t = 1$$
 non $-$ detection

$$Y_t = 2$$
 detection

Observations

$$y_{1:14} = (1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 2)$$

Example: Hidden Mark-frog Chains

Transition matrix p = 0.4

$$A_{1,2} = 1 - p, A_{K,1} = \frac{1 - p}{2}$$

$$A_{i,i+1} = \frac{1-p}{2}$$
 for $i = 1, ..., K-1$
 $A_{i,i} = p$ for $i = 1, ..., K$

$$A_{i,i-1} = \frac{1-p}{2}$$
 for $i = 2, \dots, K$

Probability of detection

$$P(Y_{t} = 2 | X_{t} = k)$$

$$= \begin{cases} 0.9 & \text{if } k = 1 \\ 0.5 & \text{if } k = 1 \\ 0.1 & \text{if } k = 2 \\ 0 & \text{otherwise} \end{cases}$$

Problems: From frog's observations of position at each time t, infer 1) filtering and 2) smoothing and 3) MAP estimate of pmf's.

Example: Hidden Mark-frog Chains - Filtering pmf

Smoothing

General problem of smoothing:

Given: observations up to time s (i.e. $y_{1:s}$ known),

Problem: compute $p(x_t|y_{1:s})$ distribution of X_t , for t < s.

A particular case is when we know all history of observations:

Smoothing with all history of observations

Given: observations up to time T (i.e. $y_{1:T}$ known),

Problem: compute $p(x_t|y_{1:T})$ distribution of X_t , for t < T.

This case can be solved using a recursive algorithm **Forward-backward Smoothing**.

Forward-backward Smoothing I

Ideas:

• $p(x_t|y_{1:T})$ can be split as:

$$p(x_t|y_{1:T}) = \frac{p(x_t, y_{1:t}) \cdot p(y_{t+1:T}|x_t)}{p(y_{1:T})}$$

- $p(y_{1:T})$ normalization constant (calculation explained later).
- Algorithm 1 Forward α -recursion can estimate $\alpha_t(x_t) = p(x_t, y_{1:t})$.
- We can approach HMM structure to generate a recursion rule for

$$\beta_t(x_t) := p(y_{t+1:T}|x_t)$$

Forward-backward Smoothing II

$$\begin{aligned}
\rho(y_{t:T}|x_{t-1}) &= \sum_{x_t \in \mathcal{X}} \rho(y_{t:T}, x_t|x_{t-1}) \\
&= \sum_{x_t \in \mathcal{X}} \rho(y_t|y_{t+1:T}, x_t, x_{t-1}) \rho(y_{t+1:T}, x_t|x_{t-1}) \\
&= \sum_{x_t \in \mathcal{X}} \rho(y_t|x_t) \rho(y_{t+1:T}|x_t, x_{t-1}) \rho(x_t|x_{t-1}) \\
&= \sum_{x_t \in \mathcal{X}} \rho(y_t|x_t) \rho(y_{t+1:T}|x_t) \rho(x_t|x_{t-1})
\end{aligned}$$

We have a backward recursion for t = T, ..., 2

$$\beta_{t-1}(x_{t-1}) = \sum_{x_t \in \mathcal{X}} p(y_t|x_t) p(x_t|x_{t-1}) \beta_t(x_t), \ \beta_T(x_T) = 1$$

Forward-backward Smoothing III

If
$$\mathfrak{X} = \{1, \dots, K\}$$
:

Algorithm 2 Backward β -recursion

- For i = 1, ..., K, set $\beta_T(i) = 1$
- For $t = 1, \ldots, T$
 - For $i = 1, \ldots, K$, set

$$\beta_{t-1}(i) = \sum_{j=1}^{K} g_j(y_t) A_{i,j} \beta_t(j)$$

Figure: Backward β -recursion Algorithm

Forward-backward Smoothing IV

Backward and Forward Algorithm for smoothing:

- Algorithm 1 Forward α -recursion to get $\alpha_t(x_t) = p(x_t, y_{1:t})$.
- Algorithm 2 Backward β -recursion to get $\beta_t(x_t) = p(y_{t+1:T}|x_t)$.
- Smoothing probability mass function is estimated as:

$$p(x_t|y_{1:T}) = \frac{p(x_t, y_{1:T})}{p(y_{1:T})} = \frac{\alpha_t(x_t)\beta_t(x_t)}{\sum_{x_t \in \mathcal{X}} \alpha_t(x_t)\beta_t(x_t)}$$

Notes: 1) Algorithms 1 y 2 can be run independently, 2) Backward and Forward Algorithm is from order $\mathcal{O}(\mathcal{T}\cdot|\mathcal{X}|^2)$

Likelihood

Given: all observations (i.e. $y_{1:T}$ known),

Problem: compute $p(y_{1:T})$ likelihood function of observations.

Ideas:

Notice

$$p(y_{1:T}) = \sum_{x_t \in \mathcal{X}} p(x_t, y_{1:t}) \cdot p(y_{t+1:T}|x_t)$$

This implies

$$p(y_{1:T}) = \sum_{x_t \in \mathcal{X}} \alpha_t(x_t) \beta_t(x_t)$$

• $p(y_{1:T})$ can be estimated using algorithm 1 Forward α -recursion and algorithm 2 Backward β -recursion.

Example: Hidden Mark-frog Chains - Smoothing pmf

Most likely state path/Decoding

Given: history of observations (i.e. $y_{1:T}$ known), **Problem:** Find the most likely state history $x_{0:T}$.

For fixed $y_{1:T}$, solve MAP problem with **conditional distribution**:

$$\hat{x}_0 = \operatorname{argmax}_{x_{0:T}} \ p(x_{0:T}|y_{1:T})$$

Or equivalently with **joint distribution**:

$$\hat{x}_0 = \operatorname{argmax}_{\mathsf{x}_{0:T}} \ p(\mathsf{x}_{0:T}, \mathsf{y}_{1:T})$$

Note: unfeasible if number of different state paths $|\mathcal{X}|^{T+1}$ is large from optimization point of view!!.

Most likely state path - Viterbi algorithm

However, we can use **Viterbi algorithm** to do MAP estimation. **Ideas:**

- Explote structure of HMM do estimations based on backward-forward or forward-backward recursions.
- Compute messages from time t to t-1 $(m_{t-1}(x_{t-1}) \leftarrow m_t(x_t))$
- Use messages to estimate feasible points t-1 to t $(\hat{x}_{t-1} \to \hat{x}_t)$

Figure: Scheme of Vitterbi algorithm recursions

What do you mean by messages $m_t(x_t)$? Part I

Factorizing $p(x_{0:T}, y_{1:T})$:

$$p(x_{0:T}, y_{1:T}) = p(x_0) \prod_{t=1}^{I} p(x_t|x_{t-1}) p(y_t|x_t)$$

We can split our optimization problem in different optimization problems:

$$\Rightarrow \max_{x_0:x_T} p(x_{0:T}, y_{1:T}) =$$

$$\max_{\mathbf{x}_{0}:\mathbf{x}_{T-1}} \left\{ \left\{ p(x_{0}) \prod_{t=1}^{T-1} p(x_{t}|x_{t-1}) p(y_{t}|x_{t}) \right\} \max_{\mathbf{x}_{T}} p(x_{T}|x_{T-1}) p(y_{T}|x_{T}) \right\}$$

$$= \max_{\mathbf{x}_{0}:\mathbf{x}_{T-1}} \left\{ \left\{ p(x_{0}) \prod_{t=1}^{T-1} p(x_{t}|x_{t-1}) p(y_{t}|x_{t}) \right\} m_{T-1}(x_{T-1}) \right\}$$

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - からぐ

What do you mean by messages $m_t(x_t)$? Part II

Continuing this process we can define a set of messages based on iterative optimization problems:

$$m_{t-1}(x_{t-1}) = \max_{x_{t:T}} \left\{ \prod_{k=t}^{T} p(x_k|x_{k-1}) p(y_k|x_k) \right\} \text{ for } t = T-1, \dots, 1$$
 $m_T(x_T) = 1$

This satisfies the following recursion:

$$m_{t-1}(x_{t-1}) = \max_{x_t} p(y_t|x_t)p(x_t|x_{t-1})m_t(x_t)$$

What do you mean by messages $m_t(x_t)$? Part III

Definitions of messages is good for our problem because:

$$p(x_0)m_0(x_0) = \max_{x_{1:T}} p(x_{0:T}, y_{1:T})$$

$$\Rightarrow \hat{x_0} = \arg\max_{x_0} \left(\max_{x_{1:T}} p(x_{0:T}, y_{1:T}) \right) = \arg\max_{x_0} m_0(x_0)p(x_0)$$

And also

$$\hat{x_t} = \arg \max_{x_t} p(\hat{x}_{0:t-1}, x_t, x_{t+1:T}, y_{1:T})
= \arg \max_{x_t} p(\hat{x}_{t-1}, x_t, x_{t+1:T}, y_{1:T})
= \arg \max_{x_t} (m_t(x_t)p(y_t|x_t)p(x_t|\hat{x}_{t-1}))$$

Most likely state path - Viterbi algorithm

Algorithm 3 Viterbi algorithm for maximum a posteriori estimation

- For i = 1, ..., K, set $m_T(i) = 1$.
- For t = T, ..., 1- For i = 1, ..., K, let

$$m_{t-1}(i) = \max_{j=1,...,K} g_j(y_t) A_{i,j} m_t(j)$$

- Set $\hat{x}_0 = \underset{i=1}{\operatorname{arg max}} m_0(i)\mu(i)$
- For $t = 1, \dots, T$ Set

$$\hat{x}_t = \underset{i=1...,K}{\operatorname{arg max}} \ m_t(i)g_i(y_t)A_{\hat{x}_{t-1},i}.$$

Figure: Vitterbi algorithm

Notes: 1) Viterbi algorithm has order $\mathcal{O}(T|\mathcal{X}|^2)$, 2) In practice logarithms are computed to assure numerical stability.

Example: Hidden Mark-frog Chains - MAP pmf

Note: Image shows Smoothing pmf over time *t* and MAP estimate

Continuous-state Hidden Markov Models

In many problems often hidden parameters of interest are continuous.

Figure: GPS object tracking; hidden parameters: position + velocity

Continuous-state Hidden Markov Models

- Ideas developed for discrete case can be generalized to aboard problems with hidden continuous parameters of interest.
- We call these Continuous-state Hidden Markov Models (CS-HMM), also named as state-space models or dynamical systems.
- Let's focus on a particular subset of CS-HMM: linear Gaussian state-space model (LGSSM).

Linear Gaussian state-space model (LGSSM)

Hidden states: (X_0, \ldots, X_T) continuous r.v. taking values in \mathbb{R}^{d_x} **Observations:** (Y_1, \ldots, Y_T) continuous r.v. taking values in \mathbb{R}^{d_y}

 $(X_0,\ldots,X_T,Y_1,\ldots,Y_T)$ is LGSSM if has two components such as:

- state model: X_t is a linear transformation of X_{t-1} plus a linear combination of Gaussian noise.
- **observation model:** Y_t is a linear transformation of X_t plus Gaussian noise.

Linear Gaussian state-space model (LGSSM)

Definition (LGSSM - State model)

$$X_t = F_t X_{t-1} + G_t V_t \text{ for } t = 1, \dots, T \text{ State model}$$
 (1)

- $X_t \in \mathbb{R}^{d_x}$ hidden state at time t,
- $F_t \in \mathbb{R}^{d_x \times d_x}$ transition state matrix at time t,
- $G_t \in \mathbb{R}^{d_x \times d_v}$ noise transfer matrix,
- $V_t \in \mathbb{R}^{d_v}$ state noise matrix, $V_t \sim \mathcal{N}(0, Q_t)$.

Linear Gaussian state-space model (LGSSM)

Definition (Observation model)

$$Y_t = H_t X_t + W_t$$
 for $t = 1, \dots, T$

Observation model

(2)

- $Y_t \in \mathbb{R}^{d_y}$ observation at time t,
- $H_t \in \mathbb{R}^{d_x \times d_x}$ observation matrix at time t,
- $W_t \in \mathbb{R}^{d_v}$ observation noise, $W_t \sim \mathbb{N}(0, R_t)$.

Definition (Other conditions)

- $X_0 \sim \mathcal{N}(\mu_0, \Sigma_0)$,
- $V_t \sim \mathcal{N}(0, Q_t), W_t \sim \mathcal{N}(0, R_t)$, for t = 1, ... T,
- $X_0, V_1, \ldots V_T, W_1, \ldots W_T$ are independent.

LGSSM and parametrization of joint pdf

As in discrete case, joint pdf of hidden variables and observation can be described as:

$$p(X_{0:T}, Y_{1:T}) = \prod_{t=1}^{T} p(y_t|x_t) \cdot p(x_{t-1}|x_t)$$
 (3)

Using LGSSM structure and properties of multivariate normal distributions it can be shown that if $G_tQ_TG_T \in \mathbb{R}^{d_x \times d_x}$ has full rank then:

$$p(y_t|x_t) = \mathcal{N}(H_t x_t, R_t) \tag{4}$$

$$p(x_t|x_{t-1}) = \mathcal{N}(F_t x_{t-1}, G_t Q_T G_T)$$
 (5)

Inference in dynamic LGSSM

Let's consider the following inference problem:

P1: Given observations up to time t find $Y_1 = y_1, \ldots, Y_t = y_t$, find joint pdf $p(x_t|y_{1:t})$.

P2: Given all observations $Y_1 = y_1, ..., Y_T = y_T$, find joint pdf $p(x_t|y_{1:T})$

Both can be solve by **sequentially computation of means and covariance matrices of conditionally distributions**: 1) P1 is called **Kallman filter**, and in 2) P2 is named **Kallman smoother**.

Inference LGSSM - Kallman filter

P1: Determine $p(x_t|y_{1:t})$ of the hidden state X_t given t observations $y_{1:t}$.

$$\mu_{t|t-1} := E[X_t|Y_{1:t} = y_{1:t-1}] \tag{6}$$

$$\mu_{t|t} := E[X_t|Y_{1:t} = y_{1:t}] \tag{7}$$

$$\Sigma_{t|t-1} := E[(X_t - \mu_{t|t-1})(X_t - \mu_{t|t-1})^T | Y_{1:t} = y_{1:t-1}]$$
 (8)

$$\Sigma_{t|t} := E[(X_t - \mu_{t|t})(X_t - \mu_{t|t})^T | Y_{1:t} = y_{1:t}]$$
 (9)

Kallman filter ideas - Prediction

Structure of LGSSM implies $p(x_t|y_{1:t-1}) = \mathcal{N}(\mu_{t|t-1}, \Sigma_{t|t-1})$ and the existence of recursive rules:

Prediction $(\mu_{t-1|t-1} \to \mu_{t|t-1})$ and $(\Sigma_{t-1|t-1} \to \Sigma_{t|t-1})$:

- $\bullet \ \mu_{t|t-1} = F_t \mu_{t-1|t-1},$
- $\Sigma_{t|t-1} = F_t \Sigma_{t-1|t-1} F_t^T + G_t Q_t G_t^T$

Kallman filter ideas - Update/correction

Again, structure of LGSSM implies $p(x_t|y_{1:t}) = \mathcal{N}(\mu_{t|t}, \Sigma_{t|t})$ and following recursion rule:

Update/correction $(\mu_{t|t-1} \to \mu_{t|t})$ and $(\Sigma_{t|t-1} \to \Sigma_{t|t})$:

$$\bullet \ \mu_{t|t} = \mu_{t|t-1} + K_t \nu_t,$$

$$\bullet \ \Sigma_{t|t-1} = (I - K_t H_t) \Sigma_{t-1|t-1}$$

Where
$$\nu_t = y_t - \hat{y}_t$$
, $\hat{y}_t = E[Y_t | Y_{1:t-1} = y_{1:t-1}] = H_t \mu_{t|t-1}$
 $K_t = \Sigma_{t|t-1} H^T S_t^{-1}$,
 $S_t = E[(Y_t - \hat{y}_t)(Y_t - \hat{y}_t)^T | Y_{1:t-1} = y_{1:t-1}] = H_t \Sigma_{t|t-1} H_t^T + R_t$
 K_t is called **Kallman gain**

Kallman filter ideas

Recursive strategy of Kallman filter

 $p(x_t|y_{1:t})$ can be determined estimating parameters for $s \in \mathbb{N}$ of:

•
$$p(x_s|y_{1:s-1}) = \mathcal{N}(\mu_{s|s-1}, \Sigma_{s|s-1})$$

as follows:

$$\begin{array}{c} (\mu_0, \Sigma_0) \xrightarrow{\mathsf{Predict.}} (\mu_{1|0}, \Sigma_{1|0}) \xrightarrow{\mathsf{Update}} \dots \\ \\ \dots \xrightarrow{\mathsf{Predict.}} (\mu_{t-1|t-1}, \Sigma_{t-1|t-1}) \xrightarrow{\mathsf{Update}} \\ (\mu_{t|t-1}, \Sigma_{t|t-1}) \xrightarrow{\mathsf{Predict.}} (\mu_{t|t}, \Sigma_{t|t}) \to \dots \end{array}$$

Inference LGSSM - Kallman Smoother

P2: Determine $p(x_t|y_{1:T})$ of the hidden state X_t given all the observations $y_{1:T}$.

$$\mu_{t|T} := E[X_t|Y_{1:T} = y_{1:T}] \tag{10}$$

$$\Sigma_{t|T} := E[(X_t - \mu_{t|T})(X_t - \mu_{t|T})^T | Y_{1:T} = t_{1:T}]$$
 (11)

Kallman Smoother ideas

Structure of LGSSM implies $p(x_t|y_{1:T}) = \mathcal{N}(\mu_{t|T}, \Sigma_{t|T})$ and the existence of recursive rules:

Backward recursion:

$$\bullet \ \mu_{t|T} = \mu_{t|t} + J_t(\mu_{t+1|T} - \mu_{t+1|t}),$$

$$\bullet \ \Sigma_{t|T} = \Sigma_{t|t} + J_t(\Sigma_{t+1|T} - \Sigma_{t+1|t})J_t^T$$

Where $J_t = \sum_{t|t} F_{t+1}^T \sum_{t+1|t}^{-1}$ is called **Backwards Kallman gain**.

Recursive strategy of Kallman Smoother

 $p(x_t|y_{1:T})$ can be determined estimating parameters as follows:

- Compute $(\mu_{t|t}, \Sigma_{t|t})$ and $(\mu_{t+1|t}, \Sigma_{t+1|t})$ for $t, t+1 \leq T$ using Kallman filter.
- Use backward recursion until obtain $(\mu_{t|T}, \Sigma_{t|T})$.

A example for LGSSM

Let's consider a toy example for a random walk given by:

$$X_t = X_{t-1} + V_t$$

$$Y_t = X_t + W_t$$

Where

- X_t : trigonometric function plus gaussian noise, for $t = 1, \dots, 50$.
- $X_0 = \mathcal{N}(0,1)$, $V_t \sim \mathcal{N}(0,Q)$, $W_t \sim \mathcal{N}(0,R)$, with Q = 0.02 and R = 0.2

Filtering

Figure: Observations and filtering mean and 99% credible intervals over time.

Smoothing

Figure: Observations and smoothing mean and 99% credible intervals over time