Matrix Analysis

Part. 3

Chang Jae Ho jaehochang@konkuk.ac.kr

February 8, 2020

- Systems of Linear Equations
 - Consistency of a System of Equations
 - Systems of Linear Equations
 - Examples: LS Estimation for Rank Deficient Models
- 2 Special Matrices and Matrix Operators
 - Partitioned Matrices
 - The Kronecker Product
 - The vec Operator
 - Hadamard Product
- 3 Matrix Derivatives and Related Topics
 - Multivariable Differential Calculus

- 1 Systems of Linear Equations
 - Consistency of a System of Equations
 - Systems of Linear Equations
 - Examples: LS Estimation for Rank Deficient Models
- Special Matrices and Matrix Operators
 - Partitioned Matrices
 - The Kronecker Product
 - The vec Operator
 - Hadamard Product
- 3 Matrix Derivatives and Related Topics
 - Multivariable Differential Calculus

Consistency of a System of Equations I

Theorem

$$X\beta = c$$
 is consistent iff $rank(X) = rank(X)$.

Theorem

$$X\beta = c$$
 is consistent iff $XX^-c = c$.

Proof.

Suppose that $X\beta^*=c$ for some solution β^* . Then, $XX^-c=XX^-X\beta^*=X\beta^*=c$. Conversely, if $XX^-c=c$, then $\beta=X^-c$.

Systems of Linear Equations

Consistency of a System of Equations

Consistency of a System of Equations II

Corollary

If the $n \times p$ matrix X has a full row rank, then $X\beta = c$ is consistent.

Proof.

Since $XX^- = I_n$, $XX^-c = c$ so this equation is consistent.

- 1 Systems of Linear Equations
 - Consistency of a System of Equations
 - Systems of Linear Equations
 - Examples: LS Estimation for Rank Deficient Models
- Special Matrices and Matrix Operators
 - Partitioned Matrices
 - The Kronecker Product
 - The vec Operator
 - Hadamard Product
- 3 Matrix Derivatives and Related Topics
 - Multivariable Differential Calculus

Systems of Linear Equations

Systems of Linear Equations I

Theorem

Suppose that $X'X\beta=X'y$ is a consistent system of equations. Then,

$$\beta = (X'X)^{-}X'y.$$

is a solution.

Proof.

Since $X'X(X'X)^-X'y=X'y$ because of the consistency of the equation,

$$X'X\beta = X'X(X'X)^{-}X'y = X'y$$

so β is a solution.

- 1 Systems of Linear Equations
 - Consistency of a System of Equations
 - Systems of Linear Equations
 - Examples: LS Estimation for Rank Deficient Models
- Special Matrices and Matrix Operators
 - Partitioned Matrices
 - The Kronecker Product
 - The vec Operator
 - Hadamard Product
- 3 Matrix Derivatives and Related Topics
 - Multivariable Differential Calculus

One-way Anova I

Consider a model $y_{ij} = \mu + \tau_i + \varepsilon_{ij}$ where $i = 1, \dots, k$ and $j = 1, \dots, n_i$. We can reformat this model as $\beta = (\mu, \tau_1, \dots, \tau_k)'$ and

$$X = \begin{bmatrix} 1_{n_1} & 1_{n_1} & 0 & \cdots & 0 \\ 1_{n_2} & 0 & 1_{n_2} & \cdots & 0 \\ 1_{n_3} & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1_{n_k} & 0 & 0 & \cdots & 1_{n_k} \end{bmatrix}; \ n \times (k+1).$$

Here, rank(X) = k so is not full rank. Now, Let us solve a minimization equation $(X'X)\beta = X'y$ with the generalized inverse. Since X is a full row rank, we know that $\beta = (X'X)^-X'y$. Therefore, we can pick $\beta = (X'X)^+X'y = X^+y$ or $\beta = (X'X)^-X'y = X^Ly$.

Rank Deficient Generalized LS Models I

Consider the regression model

$$y = X\beta + \varepsilon$$
,

where $\varepsilon|X\sim N_n(0,\sigma^2C)$ and C is p.d.. Suppose that X is not full column rank. Then, the GLS estimator is given by

$$\hat{\beta} = (X'C^{-1}X)^{-}X'C^{-1}y$$

since the solution equation is given as $X'C^{-1}X\beta = X'C^{-1}y$.

- Systems of Linear Equations
 - Consistency of a System of Equations
 - Systems of Linear Equations
 - Examples: LS Estimation for Rank Deficient Models
- 2 Special Matrices and Matrix Operators
 - Partitioned Matrices
 - The Kronecker Product
 - The vec Operator
 - Hadamard Product
- 3 Matrix Derivatives and Related Topics
 - Multivariable Differential Calculus

Partitioned Matrices, Kim(2018) pp.191~ I

Theorem

Partitioned Matrices

Let $p \times p$ matrix $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ and suppose that A, A_{11} and A_{22} are nonsingular.

$$A^{-1} = \begin{bmatrix} (A^{-1})_{11} & (A^{-1})_{12} \\ (A^{-1})_{21} & (A^{-1})_{22} \end{bmatrix} = \begin{bmatrix} (A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1} & -A_{11}^{-1}A_{12}(A^{-1})_{22} \\ -A_{22}^{-1}A_{21}(A^{-1})_{11} & (A_{22} - A_{21}A_{11}^{-1}A_{12})^{-1} \end{bmatrix}.$$

Here,
$$(A_{11} - A_{12}A_{22}^{-1}A_{21})^{-1} = A_{11}^{-1} + A_{11}^{-1}A_{12}(A^{-1})_{22}A_{21}A_{11}^{-1}$$
 and $(A_{22} - A_{21}A_{11}^{-1}A_{12})^{-1} = A_{22}^{-1} + A_{22}^{-1}A_{21}(A^{-1})_{11}A_{12}A_{22}^{-1}$.

Proof.

Solve

$$AA^{-1} = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} (A^{-1})_{11} & (A^{-1})_{12} \\ (A^{-1})_{21} & (A^{-1})_{22} \end{bmatrix} = \begin{bmatrix} I_{\rho_1} & (0) \\ (0) & I_{\rho_2} \end{bmatrix} = I_{\rho}.$$

Schur's Identity I

- Partitioned Matrices

Define a block lower triangular matrix L and an arbitrary matrix M as

$$L = \begin{bmatrix} I_p & 0 \\ -D^{-1}C & I_q \end{bmatrix}, M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}.$$

After multiplication with the matrix $\it L$ the Schur complement appears in the upper $\it p \times \it p$ block. The product matrix is

$$ML = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} I_p & 0 \\ -D^{-1}C & I_q \end{bmatrix} = \begin{bmatrix} A - BD^{-1}C & B \\ 0 & D \end{bmatrix}$$
$$= \begin{bmatrix} I_p & BD^{-1} \\ 0 & I_q \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix}.$$

Schur's Identity II

Partitioned Matrices

That is, we have effected a Gaussian decomposition

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I_p & BD^{-1} \\ 0 & I_q \end{bmatrix} \begin{bmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{bmatrix} \begin{bmatrix} I_p & 0 \\ D^{-1}C & I_q \end{bmatrix},$$

The first and last matrices on the RHS have determinant unity.

Theorem

If $\exists D^{-1}$, then

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |D| \times |A - BD^{-1}C|.$$

- Systems of Linear Equations
 - Consistency of a System of Equations
 - Systems of Linear Equations
 - Examples: LS Estimation for Rank Deficient Models
- 2 Special Matrices and Matrix Operators
 - Partitioned Matrices
 - The Kronecker Product
 - The vec Operator
 - Hadamard Product
- 3 Matrix Derivatives and Related Topics
 - Multivariable Differential Calculus

The Kronecker Product I

Definition

For $m \times n$ matrix A and $p \times q$ matrix B, define \otimes as

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{bmatrix}; mp \times nq.$$

The Kronecker Product II

Theorem

Let A, B, C be any matrices and a, b be any two vectors. Then,

- $a \otimes A = A \otimes a = aA$ for any scalar a
- **b** $(aA) \otimes (\beta B) = a\beta (A \otimes B)$ for any scalars a, β
- $(A \otimes B) \otimes C = A \otimes (B \otimes C)$

- $g ab' = a \otimes b' = b' \otimes a$

Prove for exercises.

The Kronecker Product III

Theorem

Pick any A, B, C, D so that AC, BD exist. Then,

$$(A \otimes B)(C \otimes D) = AC \otimes BD$$

Proof.

$$\Gamma := \left[\begin{array}{ccc} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{array} \right] \left[\begin{array}{ccc} c_{11}D & \cdots & c_{1c}D \\ \vdots & \ddots & \vdots \\ c_{n1}D & \cdots & c_{nc}D \end{array} \right]$$

where $\Gamma_{ij} = \sum_{k=1}^{n} a_{ik} c_{kj} BD$ for $i = 1, \dots, m$ and $j = 1, \dots, c$.

The Kronecker Product IV

Proof.

Here,
$$\Gamma_{ij} = (AC)_{ij}BD$$
 so

$$\Gamma = \begin{bmatrix} (AC)_{11}D & \cdots & (AC)_{1c}D \\ \vdots & \ddots & \vdots \\ (AC)_{m1}D & \cdots & (AC)_{mc}D \end{bmatrix} = AC \otimes BD.$$

Theorem

For square matrices A, B, $tr(A \otimes B) = tr(A)tr(B)$.

Proof is easy for this one.

The Kronecker Product V

Theorem

Let A, B be $m \times n$, $p \times q$ matrices. Then, $(A \otimes B)^- = A^- \otimes B^-$ for any generalized inverses A^- , B^- .

Proof.

$$(A \otimes B)(A^- \otimes B^-)(A \otimes B) = (AA^- \otimes BB^-)(A \otimes B) = AA^- A \otimes BB^- B = A \otimes B.$$

The Kronecker Product VI

Theorem

Let $\{\jmath_i\}_{i\in I}$, $\{\partial_j\}_{j\in J}$ be eigenvalues of the m \times m matrix A and p \times p matrix B. Then the eigenvalues of A \otimes B is given by $\{\jmath_i\partial_j\}_{(j,i)\in I\times J}$.

Theorem

$$|A\otimes B|=|A|^p|B|^m$$

Proof.

$$|A \otimes B| = \prod_{i \in I} \prod_{j \in J} (\beta_i \partial_j) = \prod_{i \in I} \left(\beta_i^p \prod_{j \in J} \partial_j \right) = \prod_{i \in I} (\beta_i^p |B|) = |A|^p |B|^m.$$

The Kronecker Product VII

Theorem

Let A, B be $m \times n$, $p \times q$ matrices. Then,

$$rank(A \otimes B) = rank(A)rank(B)$$
.

Proof.

Let $\{\beta_i\}_{i\in I}$, $\{\partial_j\}_{j\in J}$ be eigenvalues of AA', BB'. Since $(A\otimes B)(A\otimes B)'$ is symmetric,

$$rank(A \otimes B) = rank\{(A \otimes B)(A \otimes B)'\} = rank(AA' \otimes BB').$$

Since AA', BB', and their Kronecker product are all symmetric, $rank(AA' \otimes BB') = \#\{\hat{\jmath}_i\partial_j \neq 0; i \in I, j \in J\} = \#\{\hat{\jmath}_i \neq 0; i \in I\} \times \#\{\partial_j \neq 0; j \in J\} = rank(AA')rank(BB') = rank(A)rank(B).$

An Example: Balanced One-way ANOVA I

For the balanced One-way ANOVA model with an intercept, we can find an LS estimator as

$$\hat{\beta} = (X'X)^{-}X'y = \left\{ \begin{bmatrix} 1'_{k} \otimes 1'_{n} \\ I_{k} \otimes 1'_{n} \end{bmatrix} \begin{bmatrix} 1_{k} \otimes 1_{n} & I_{k} \otimes 1_{n} \end{bmatrix} \right\}^{-} \begin{bmatrix} 1'_{k} \otimes 1'_{n} \\ I_{k} \otimes 1'_{n} \end{bmatrix} y$$

$$= \begin{bmatrix} 1'_{k}1_{k} \otimes 1'_{n}1_{n} & 1'_{k} \otimes 1'_{n}1_{n} \\ 1_{k} \otimes 1'_{n}1_{n} & I_{k} \otimes 1'_{n}1_{n} \end{bmatrix}^{-} \begin{bmatrix} 1'_{k} \otimes 1'_{n} \\ I_{k} \otimes 1'_{n} \end{bmatrix} y$$

$$= \begin{bmatrix} nk & n1'_{k} \\ n1_{k} & nI_{k} \end{bmatrix}^{-} \begin{bmatrix} 1'_{k} \otimes 1'_{n} \\ I_{k} \otimes 1'_{n} \end{bmatrix} y = \begin{bmatrix} 1/(nk) & 0' \\ 0 & \frac{I_{k} - P_{1_{k}}}{n} \end{bmatrix} \begin{bmatrix} 1'_{k} \otimes 1'_{n} \\ I_{k} \otimes 1'_{n} \end{bmatrix} y$$

$$= \begin{bmatrix} (1'_{k} \otimes 1'_{k})/(nk) \\ (I_{k} \otimes 1'_{n})/n - (1_{k}1'_{k} \otimes 1'_{n})/(nk) \end{bmatrix} y.$$

- Systems of Linear Equations
 - Consistency of a System of Equations
 - Systems of Linear Equations
 - Examples: LS Estimation for Rank Deficient Models
- 2 Special Matrices and Matrix Operators
 - Partitioned Matrices
 - The Kronecker Product
 - The vec Operator
 - Hadamard Product
- 3 Matrix Derivatives and Related Topics
 - Multivariable Differential Calculus

L The vec Operator

The vec Operator I

For an $m \times n$ matrix $A = \begin{bmatrix} A_1 & A_2 & \cdots & A_n \end{bmatrix}$, define the *vec* operator as

$$vec(A) = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_n \end{bmatrix}.$$

Theorem

Let a, b be any vectors, while A, B are two matrices of the same size. Then,

- a vec(a) = vec(a') = a,
- b $vec(ab') = b \otimes a$,
- $\operatorname{col}(aA + \beta B) = \operatorname{avec}(A) + \beta \operatorname{vec}(B)$ for scalars a, β .

La The vec Operator

The vec Operator II

Theorem

Let A, B be $m \times n$, $m \times n$ matrices. Then,

$$tr(A'B) = vec(A)'vec(B).$$

Proof.

$$tr(A'B) = \sum_{i=1}^{n} a'_i b_i = \begin{bmatrix} a'_1 \cdots a'_n \end{bmatrix} \begin{vmatrix} b_1 \\ \vdots \\ b_n \end{vmatrix} = vec(A)' vec(B).$$

The vec Operator

The vec Operator III

Theorem

Let A, B, C be $m \times n$, $n \times p$, $p \times q$, respectively. Then, $vec(ABC) = (C' \otimes A)vec(B)$.

Proof.

Note that $B = \begin{bmatrix} B_1 & \cdots & B_p \end{bmatrix}$ can be written as $B = \sum_{i=1}^p B_i e_i'$. Thus,

$$vec(ABC) = vec\left\{A\left(\sum_{i=1}^{p} B_{i}e_{i}'\right)C\right\} = \sum_{i=1}^{p} vec(AB_{i}e_{i}'C)$$

$$= \sum_{i=1}^{p} vec\left\{AB_{i}(C'e_{i})'\right\} = \sum_{i=1}^{p} C'e_{i} \otimes AB_{i}$$

$$= (C' \otimes A) \sum_{i=1}^{p} (e_{i} \otimes b_{i}) = (C' \otimes A)vec(B).$$

The vec Operator IV

Theorem

The vec Operator

Let A, B, C, D be matrices of sizes such that ABCD exists and is square. Then.

$$tr(ABCD) = vec(A')'(D' \otimes B)vec(C).$$

Proof.

We know that tr(ABCD) = vec(A')'vec(BCD). Therefore,

$$tr(ABCD) = vec(A')'(D' \otimes B)vec(C).$$

- Systems of Linear Equations
 - Consistency of a System of Equations
 - Systems of Linear Equations
 - Examples: LS Estimation for Rank Deficient Models
- 2 Special Matrices and Matrix Operators
 - Partitioned Matrices
 - The Kronecker Product
 - The vec Operator
 - Hadamard Product
- 3 Matrix Derivatives and Related Topics
 - Multivariable Differential Calculus

Hadamard Product I

Definition

Hadamard Product

For $m \times n$ matrices A, B, define \odot as

$$A \odot B = \begin{bmatrix} a_{11}b_{11} & \cdots & a_{1n}b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1}b_{m1} & \cdots & a_{mn}b_{mn} \end{bmatrix},$$

that is, an elementwise product of the identically sized matrices.

Remark In R, $A \star B$ is the Hadamard product for $m \times n$ matrices A, B.

Hadamard Product II

Theorem

For the identically sized matrices A, B, C,

$$a A \odot B = B \odot A$$

$$b (A \odot B) \odot C = A \odot (B \odot C)$$

$$(A+B) \odot C = A \odot C + B \odot C$$

$$d (A \odot B)' = A' \odot B'$$

$$A \odot (0) = (0)$$

$$g A \odot I_m = diag(a_{11}, \cdots, a_{mm})$$
 if A is square,

h
$$C(A \odot B) = (CA) \odot B = A \odot (CB)$$
 and $(A \odot B)C = (AC) \odot B = A \odot (BC)$ if A, B, C are square and C is diagonal,

i
$$ab' \odot cd' = (a \odot c)(b \odot d)'$$
 for the identically sized vectors a, c and b, d .

Hadamard Product

Hadamard Product III

pp.268 ~ of Schott(1997)

Theorem

For $m \times n$ matrices A, B, $rank(A \odot B) \leq rank(A) rank(B)$.

Theorem

For $m \times n$ matrices A, B and $m \times 1$, $n \times 1$ vectors x, y,

$$1_m'(A \odot B)1_n = tr(AB'),$$

$$2 x'(A \odot B)y = tr(D_x A D_y B')$$

where D_x denotes a diagonal matrix with $x = (x_1, \dots, x_m)$.

Theorem

Let A, B be symmetric matrices. Then,

- 1 A ⊙ B is semi-p.d. if A, B are semi-p.d..
- 2 A ⊙ B is p.d. if A, B are p.d..

Hadamard Product IV

Theorem

- Hadamard Product

Let A, B be symmetric matrices. If B is p.d. and A is semi-p.d. with positive diagonal elements, then $A \odot B$ is p.d.

Theorem

If A is an $m \times m$ p.d. matrix, then

$$|A| \leq \prod_{i=1}^{m} a_{ii}$$

with equality iff A is a diagonal matrix.

- Hadamard Product

Hadamard Product V

Proof.

By the constrained Rayleigh Quotient in $pp.105 \sim 106$ of Schott(1997), if we partition A as $A = \begin{bmatrix} A_1 & \cdots & A_i & A_{i+1} & \cdots & A_m \end{bmatrix} = \begin{bmatrix} A_{\sim i} & A_{i+1\sim} \end{bmatrix}$,

$$\beta_i = \min_{x \in S_h; ||x||_2 = 1} x' A x$$

where $S_h = \{A_{\sim i}x; x \in \mathbb{R}^i\}$ for $i = 1, \cdots, m$. So, we know that $\Im_i \leq a_{ii}$ for $x = e_i$. Therefore, $\prod_{i=1}^m \Im_i \leq \prod_{i=1}^m a_{ii}$ since A is p.d..

The extremal properties of $\Re(A \odot B)$ is given in pp.274 \sim of Schott(1997).

Hadamard Product

Hadamard Product VI

Corollary

Let B be an $m \times m$ nonsingular matrix. Then,

$$|B|^2 \leq \prod_{i=1}^m \left(\sum_{j=1}^m b_{ij}^2 \right)$$

with equality iff the rows of B are orthogonal.

This is obvious because $|BB'| = |B| \cdot |B|' = |B|^2$ and $(BB')_{ii} = \sum_{j=1}^m b_{ij}^2$.

Theorem

Let A, B be $m \times m$ semi-p.d. matrices. Then,

$$|A|\prod_{i=1}^{m}b_{ii}\leq |A\odot B|.$$