Wall Crossings of Stability Functions of Root Systems S. Moore

Background

Let L be a finite dimensional semisimple Lie algebra. A subset $H \subset L$ is said to be a $Cartan\ subalgebra$ if H is a maximal toral subalgebra (a subalgebra in which all elements are addiagonalizable). In particular, H will be abelian, implying that every $h \in H$ is simultaneously ad-diagonalizable. We call $\alpha \in H^*$ a root of L if $\alpha \neq 0$ and there exists nonzero $v \in L$ such that $[h,v]=\alpha(h)v \ \forall \ h \in H$. The set of roots, R_{ϕ} , is finite. Let $S_{\phi}=\{\alpha_1,\alpha_2,...,\alpha_n\} \subset R_{\phi}$ be a basis of H^* such that any $\alpha \in R_{\phi}$ can be written as $\alpha = \sum_{i=1}^n c_i \alpha_i$ with all c_i either nonpositive or nonnegative integers. We call elements of $S_{\phi}\ simple\ roots$. If $\alpha \in R_{\phi}$ has all c_i nonnegative, then α is said to be a $positive\ root$. We denote the set of positive roots by P_{ϕ} . These sets $S_{\phi} \subset P_{\phi} \subset R_{\phi}$ (together with some more data) are called the $root\ system\ \phi$ of L. For example, the root system of $sl_3(\mathbb{C})$ (denoted sl_2) has simple roots sl_2 and positive roots sl_2 and positive roots sl_2 and positive roots sl_2 and positive roots sl_2 and sl_2 an

A (Bridgeland) stability function on a root system is a map

$$Z: P_{\phi} \to \mathbb{H} = \{ z = x + iy \in \mathbb{C} \mid y > 0 \}$$

satisfying $Z(\alpha + \beta) = Z(\alpha) + Z(\beta)$ for all $\alpha, \beta \in P_{\phi}$. As such, Z is uniquely determined by $Z \mid_{S_{\phi}}$. We also typically require that Z be *generic*, meaning that $Z(\alpha) \neq cZ(\beta)$ for any $c \in \mathbb{R}$ whenever $\alpha \neq \beta \in P_{\phi}$. See Fig. 1 for examples of stability functions on A_2 .

Figure 1: Two stability functions on A_2 .

For $\alpha \in P_{\phi}$, the phase of α under Z is the angle from the positive real axis to $Z(\alpha)$. For generic Z, this induces a combinatorial ordering of the elements of P_{ϕ} via decreasing phase. Two stability functions $Z, Y: P_{\phi} \to \mathbb{H}$ are said to be *combinatorially different* if Z and Y induce different orderings of P_{ϕ} . In particular, Z_1 and Z_2 (see Fig. 1) are combinatorially different stability functions on A_2 .

Our goal is to understand simple wall crossings of stability functions, which are defined as follows: Let Z and Y be stability functions of a root system ϕ . If the induced combinatorial orderings of P_{ϕ} under Z and Y are the same except that a consecutive triple $\tau, \tau + \omega, \omega$ under Z is rearranged to $\omega, \tau + \omega, \tau$ under Y, then Y is said to be obtained from Z by a simple wall crossing. For example, Z_2 is obtained from Z_1 by a simple wall crossing. Intuitively, a simple wall crossing arises from taking a path that connects Z and Y in the space of stability functions. Such a path will necessarily cross through a non-generic stability function in which τ, ω , and $\tau + \omega$ have the same phase. Note that the space of stability functions is simply connected, so any two stability functions may be obtained from one another via a finite number of wall crossings.

The aim of this project can be broken into two main goals: First, given a root system ϕ , we aim to combinatorially describe the graph of cells of stability functions on ϕ separated by simple wall crossings. Second, we wish to determine the related identities among motivic characteristic classes of geometrically relevant spaces (see below). To accomplish these aims, we will use a

combination of methods from combinatorics and rational function identities for neighboring cells (see [RR]).

Intellectual Merit

Such wall crossings have impacts beyond the study of Lie algebras. In particular, to a root system ϕ , we may associate a Cohomological Hall Algebra C_{ϕ} (defined by [KS]). This will be an infinite-dimensional, non-commutative, associative algebra whose product is denoted by *. Such algebras are motivated by string theory. To each $\alpha \in P_{\phi}$, [RR] assigns a motivic characteristic class $c_{\alpha}^{0} \in C_{\phi}$. The element c_{α}^{0} is a class in an equivariant cohomology (K-theory) algebra of a geometrically relevant space (such as the Grassmannian, or flag manifold). Such c_{α}^{0} have various interesting interpretations, such as motivic Chern classes, Chern-Schwartz-MacPherson classes, or stable envelopes in Okounkov's new theory relating geometry to physics (see [MO]).

Suppose that we have a simple wall crossing which permutes $\tau, \omega + \tau$, and ω . By [RR], this gives rise to an identity $c_{\omega + \tau}^0 = [c_{\tau}^0, c_{\omega}^0]$ in the Cohomological Hall Algebra. Note that this result is similar in nature to wall-crossing formulas (also known as quantum dilogarithm identities) in Donaldson-Thomas theory [KS]. Such an identity gives a convenient way to calculate c_{α}^0 for $\alpha \in P_{\phi} \setminus S_{\phi}$, as the commutator $[c_{\tau}^0, c_{\omega}^0]$ is well understood for $\tau, \omega \in S_{\phi}$. For example, in A_2 we can calculate $c_{\alpha_2 + \alpha_1}^0 = [c_{\alpha_1}^0, c_{\alpha_2}^0] = c_{\alpha_1}^0 * c_{\alpha_2}^0 - c_{\alpha_2}^0 * c_{\alpha_1}^0 = \left(1 + \frac{yb}{a}\right) - \left(1 - \frac{b}{a}\right) = (1 + y)\frac{b}{a}$. That is, the class $c_{\alpha_2 + \alpha_1}^0$ is obtained as the difference of the K-theoretic total Chern class $\left(1 + \frac{yb}{a}\right)$ and the K-theoretic Euler class $\left(1 - \frac{b}{a}\right)$.

Dissemination of Results

I will present the results of this project in a variety of settings. Locally, I plan to present at the Triangle's annual Assocation for Women in Mathematics conference (established last year) and at UNC's Graduate Student Seminar. On a larger level, I plan to return to a national conference to present as well. Furthermore, results will be published in a relevant mathematical journal.

Broader Impacts

After graduating, I plan to become a professor. As described in my personal statement, a large focus of my career will be in mentoring undergraduates in research projects. I have previously mentored a high school student in a research project where she explored various non-Euclidean geometries. If awarded the NSF GRFP, I will continue building my mentoring capabilities by creating a project for UNC's Directed Reading Program. This program allows graduate students to mentor undergraduates through a semester-long reading project. My project would be based in Lie algebra, culminating in an understanding of the root systems associated to each $sl_n(\mathbb{C})$. I will also become involved in the McNair Scholars Program at UNC by helping with their research program over a summer. This will allow me the opportunity to help minority undergraduate researchers in a variety of fields (not just mathematics) by providing them with critical feedback at various stages in the research process.

References

- [RR] R. Rimanyi. Motivic characteristic classes in cohomological Hall algebras (Preprint). Available at http://rimanyi.web.unc.edu/research1/, 2018.
- [KS] M. Kontsevich and Y. Soibelman. Stability structures, motivic Donaldson-Thomas invariants and cluster transformations. Available at https://arxiv.org/abs/0811.2435, 2008.
- [MO] D. Maulik and A. Okounkov. Quantum Groups and Quantum Cohomology. Available at https://arxiv.org/abs/1211.1287, 2018.