Odevzdání: 14.12.2015

Vypracoval(a): UČO: Skupina:

1. [2 body] Dokažte, že problém určit, zda Turingův stroj \mathcal{M} akceptuje nekonečně mnoho slov, je nerozhodnutelný. Jinými slovy, dokažte, že jazyk

$$L = \{ \langle \mathcal{M} \rangle \mid L(\mathcal{M}) \text{ je nekonečný} \}$$

není rekursivní.

Návod: Ukažte, že platí vztah $N \leq_m L$, kde N je vhodný nerekursivní jazyk. Zdůvodněte, proč tudíž jazyk L nemůže být rekursivní.

Důkaz. Ukážeme, že existuje totálně vyčíslitelná funkce f, pro kterou platí:

$$w \in ACC \Leftrightarrow f(w) \in L$$

Z existence této funkce pak plyne, že $ACC \leq_m L$, a protože ACC není rekursivní, nemůže být rekursivní ani L.

Označme Σ abecedu jazyka ACC a Φ abecedu jazyka L. Potom definujeme funkci $f \colon \Sigma^* \to \Phi^*$ pro každé $w \in \Sigma^*$ následujícím předpisem.

$$f(w) = \begin{cases} \langle \mathcal{T}_{\text{rej}} \rangle, & \text{jestliže } w \text{ není kódem žádné dvojice skládající se z TM a slova,} \\ \langle \mathcal{T}_{\mathcal{M},u} \rangle, & \text{jestliže } w = \langle \mathcal{M}, u \rangle \text{ pro nějaký TM } \mathcal{M} \text{ a nějaké slovo } u, \end{cases}$$

kde \mathcal{T}_{rej} je Turingův stroj, který zamítá každý vstup, a $\mathcal{T}_{\mathcal{M},u}$ je Turingův stroj, který nezávisle na vstupu simuluje výpočet \mathcal{M} nad slovem u. Pokud simulace \mathcal{M} nad slovem u skončí v akceptujícím stavu, stroj $\mathcal{T}_{\mathcal{M},u}$ akceptuje. Chování $\mathcal{T}_{\mathcal{M},u}$ pro libovolný vstup v můžeme popsat následovně:

- 1. smaž vstup v,
- 2. zapiš na pásku u,
- 3. simuluj Turingův stroj \mathcal{M} se vstupem u,
- 4. pokud stroj \mathcal{M} přejde do akceptujícího stavu, přejdi do akceptujícího stavu, pokud přejde do zamítacího stavu, přejdi do zamítacího stavu.

Funkce f je jistě totální. Zdůvodníme, že je také vyčíslitelná. Na Turingově stroji je možné rozpoznat, kdy je vstupní slovo kódem dvojice skládající se z Turingova stroje a slova. V případě, že není, může hledaný Turingův stroj napsat na pásku \mathcal{T}_{rej} , což je konstanta, a skončit. I druhý případ, kdy vstupem je dvojice, je možné realizovat na Turingově stroji, výpočet kódu stroje $\mathcal{T}_{\mathcal{M},u}$ je totiž algoritmicky řešitelný problém. Tudíž funkce f je vyčíslitelná.

Ukážeme, že funkce f je navíc redukce ACC na L, důkazem obou implikací v definici redukce.

" \Rightarrow ": Předpokládejme nejprve, že platí $w \in ACC$, potom jistě $w = \langle \mathcal{M}, u \rangle$ pro nějaký TM \mathcal{M} a nějaké slovo u, a navíc TM \mathcal{M} akceptuje slovo u. Tudíž podle definice funkce

${ m IB}102-{ m \acute{u}kol}\ 10,\ { m p\'r\'iklad}\ 1-{ m \check{r}e\check{s}en\'i}$	Odevzdání: 14.12.2015
Vypracoval(a):	UČO:
Skupina:	

f platí $f(w) = \langle \mathcal{T}_{M,u} \rangle$. Turingův stroj $\mathcal{T}_{M,u}$ akceptuje všechna slova, protože v kroku 3 simulace skončí a následně v kroku 4 stroj $\mathcal{T}_{M,u}$ akceptuje, protože \mathcal{M} akceptoval. Tedy platí $L(\mathcal{T}_{M,u}) = \Psi^*$, kde Ψ je vstupní abeceda stroje $\mathcal{T}_{M,u}$, a proto je jazyk $L(\mathcal{T}_{M,u})$ nekonečný¹. Z čehož plyne, že $f(w) = \langle \mathcal{T}_{M,u} \rangle \in L$.

" \Leftarrow ": Obměnou, předpokládáme tedy, že $w \notin ACC$. Pak můžou nastat dva případy.

- 1. Slovo w není kódem žádné dvojice skládající se z Turingova stroje a slova. Pak $f(w) = \langle \mathcal{T}_{rej} \rangle$ a $f(w) \notin L$, protože stroj \mathcal{T}_{rej} akceptuje prázdný, a tudíž i konečný, jazyk.
- 2. Platí $w = \langle \mathcal{M}, u \rangle$ pro nějaký TM \mathcal{M} a nějaké slovo u a TS \mathcal{M} neakceptuje slovo u. Pak podle definice funkce f platí $f(w) = \langle \mathcal{T}_{\mathcal{M},u} \rangle$. Stroj $\mathcal{T}_{\mathcal{M},u}$ pak neakceptuje žádné slovo, protože v kroku 3 zamítá nebo v simulaci cyklí. A tedy $f(w) \notin L$.

Nalezli jsme redukci ACC $\leq_m L$, a tedy jazyk L není rekursivní.

 $^{^1}$ V případě, že $\Psi=\emptyset$, kde Ψ je vstupní abeceda stroje $\mathcal{M},$ pak $|\Psi^*|=1,$ což je konečný jazyk. Jestliže $\langle \mathcal{M},u\rangle\in ACC,$ pak ale $\mathcal{T}_{\mathcal{M},u}$ musí akceptovat nekonečný jazyk, proto musíme rozšířit vstupní abecedu stroje $\mathcal{T}_{\mathcal{M},u}$ o libovolný nový znak, abychom umožnili nekonečný počet vstupů.