가상 진동 렌더링을 통한 모바일 디바이스의 벡터 정보 전달

김연욱¹ · 황재호² · 박재영^{1*} 1 홍익대학교 컴퓨터공학과 2 홍익대학교 기계 · 시스템디자인공학과

e-mail: kimyeonuk@g.hongik.ac.kr, hjh1305@g.hongik.ac.kr, jypdeca@hongik.ac.kr

Vector Information Transfer through a Mobile Device Using Virtual Vibration Rendering

Yeonuk Kim, Jaeho Hwang, and Jaeyoung Park

1. 서 론

스마트폰 등의 모바일 디바이스가 대중화되고 성능이 고도화 됨에 따라, 사용자 인터페이스(UI)와 사용자 경험(UX)을 개선 하기 위한 연구가 꾸준히 진행되고 있다. 일반적인 모바일 디 바이스에서의 사용자 경험은 시각과 청각 정보 전달을 통해 구현된다. 또한 사용자 경험의 사실감 보완과 인터페이스의 효율 향상을 위해서 촉각 피드백이 적극적으로 사용되고 있 다[1]. 그러나 대부분의 모바일 디바이스가 단일 진동 액추에 이터만을 사용하기 때문에, 1차원적인 촉각 정보만을 전달할 수 있다는 한계가 있다. 이를 보완하기 위해 다중 진동 액추 에이터 사용을 통해 다차원의 정보를 표현하기도 한다[2]. 특 히, 다중 진동 액추에이터의 신호 제어를 통해 가상 촉각 (phantom sensation)을 생성할 경우 상대적으로 적은 수의 진 동 액추에이터로도 다양한 촉각을 구현할 수 있다는 장점이 있다. 다만, 가상 촉각으로 2차워 벡터와 같이 복잡한 정보를 전달하기 위해 최적화된 진동 액추에이터 배열에 대한 연구 는 현재까지 찾기 어려운 실정이다. 이를 감안하여 본 연구에 서는 모바일 디바이스 크기의 햅틱 인터페이스에 다양한 개 수의 진동 액추에이터가 배치될 때, 가상 진동 햅틱 렌더링으 로 구현되는 2차원 벡터 정보의 전달 정도를 평가한다.

2. 가상 진동 렌더링 시스템2.1 벡터 정보전달을 위한 햅틱 인터페이스

(그림 1) 벡터 정보전달을 위한 햅틱 인터페이스 전개도

모바일 디바이스에서 2차원 벡터 정보를 표현하는 것을 목표로 본 연구에서는 iPhone13Pro(세로 147mm, 가로 73mm)와 동일한 크기의 핸드헬드 햅틱 인터페이스 목업을 제작하였고 내부에 3×3 배열(총 9개)의 진동 액추에이터를 배치하였다(그림 1). 각 진동 액추에이터 제어를 위해 햅틱 드라이버 모듈(DRV2605L, Texas Instruments, USA)가 연결되었으며 총 9개의 햅틱 드라이버 제어를 I²C 통신으로 제어하기 위해서 멀티플렉서(TCA9548A)를 설치하였다.

(그림 2) 전체 햅틱 시스템

그림 2는 실험에 사용되기 위해 구성된 전체 햅틱 시스템을 나타낸다.

2.2 가상 진동 햅틱 렌더링을 통한 2차원 벡터 표현

본 섹션에서는 모바일 디바이스에서 가상 렌더링을 통해 벡터를 구현하는 과정을 설명한다. 전체 시스템의 파이프라인은 그림 3과 같이 (1) 벡터 선택 \rightarrow (2) 벡터 경로 생성 \rightarrow (3) 진동 액추에이터 선택 \rightarrow (4) 진동 액추에이터 강도 계산 \rightarrow (5) I^2 C 통신을 통한 구동의 순서로 진행된다. 알고리즘의 핵심 아이디어는 다음과 같다.

(그림 3) 가상 진동 렌더링 파이프라인

- 1. 샘플 포인트 추출
- 사용자가 선택한 벡터(시작점→끝점)를 일정 시간 간격으로 샘플링하여, 연속적인 '가상의 진동 이동 경로'를 생성한다.
- 2. 진동 액추에이터 선택 및 강도 계산
- 각 샘플 포인트가 3×3 그리드 상에서 존재하고 있는 구역을 찾고 그 구역에 해당하는 3개의 진동 액추에이터를 찾는다.
- 각 진동 액추에이터와 샘플 포인트 간의 거리를 통해, 진동 액추에이터의 진동 강도(amplitude)를 계산한다[3].
- 3. 신호 지속 시간(duration)과 시작 시간 간격(SOA) 결정
- 신호 지속 시간은 70ms 이내로 설정하여, 다음 진동 액추에이터의 신호와 겹치지 않게 한다.
- 기존 연구[4]에서 제시된 식 "0.32×duration + 0.0473"을 적용하여, 신호가 연속적으로 렌더링되도록 SOA를 결정한다.

4. 진동 제어 정보 전달 및 액추에이터 구동
- 계산된 진동 강도와 타이밍 정보를 햅틱 드라이버에 전달

- 계산된 진동 강도와 타이밍 정보를 햅틱 드라이버에 전달 하여 진동 액추에이터를 구동한다.

2.3 사용자 실험

2.3.1 실험 자극(Stimuli)

(그림 4) 실험에 사용된 2차원 벡터 자극 인간 대상 실험을 위해서 상·하·좌·우·대각선 방향, 총 5가지 2차원 벡터를 렌더링하였다.

2.3.2 실험 개요

인간 대상 실험은 총 4명의 참가자를 대상으로 진행되었다. 실험은 5개, 7개, 9개의 진동 액추에이터가 활성화된, 총 3가 지 조건에서 수행되었으며 각 조건의 순서는 무작위로 선택 되었다.

실험에 앞서 참가자는 햅틱 인터페이스를 통해 그림 4의 2차원 벡터를 충분히 체험하였다. 본 실험이 시작되면 5가지 2차원 벡터 중 하나가 무작위로 햅틱 인터페이스에 렌더링되었다. 이후 피험자는 화면에 표시된 5가지 벡터 중 자신이 느낀 것과 가장 유사한 벡터를 선택하였다. 각 조건(배열) 당전체 트라이얼의 수는 25회로 실험 트라이얼 수는 피험자 당총 75회(3 x 25)였다.

2.3.3 결과 분석 개요

(표 1) 실험 결과

참가자	5개 진동 액 추에이터	7개 진동 액 추에이터	9개 진동 액 추에이터
P1	19/25 (76%)	17/25 (68%)	17/25 (68%)
P2	13/25 (52%)	14/25 (56%)	19/25 (76%)
P3	5/25 (20%)	15/25 (60%)	16/25 (64%)
P4	9/25 (36%)	19/25 (76%)	18/25 (72%)

표 1은 실험 결과로 각 피험자, 실험 조건 별 정답 횟수와 정답률(%)을 나타낸다. 활성 진동 액추에이터의 수가 5개일 때의 평균 정확도는 약 46%였으며, 7개일 때는 평균 65%, 9개일 때는 평균 70%로 나타났다. 전체적으로 피험자 P1을 제외하면 활성 진동 액추에이터 수가 증가할수록 정확도가 증가하는 경향을 보인다는 것을 알 수 있다.

3. 결 론

본 연구는 모바일 디바이스에서 2차원 벡터 정보를 가상 진동 렌더링을 통해서 표현할 때 진동 액추에이터 배열이 미치는 영향을 인간 대상 실험을 통해서 분석하였다. 실험 결과는 액추에이터의 수가 증가할수록 피험자들이 진동 패턴을 더잘 느끼는 경향을 나타낸다. 이에 따라 액추에이터 수 증가에따른 가격 상승과 디바이스의 무게 상승에도 불구하고 보다 정확하고 사실적인 2차원 벡터 정보 전달을 위해서는 액추에이터의 수를 증가시켜야 한다는 잠정적인 결론을 내릴 수 있다

본 연구 그룹은 본 연구를 확장하여 액추에이터 레이아웃과 실험에 사용된 자극을 다변화하여 가상 진동 렌더링을 통한 2차원 벡터 정보 전달에 대한 보다 일반적인 결과를 도출하고자 한다.

후 기

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재 단의 지원을 받아 수행된 연구임 (No. RS-2024-00360062).

참고무헌

- [1] Eve Hoggan, Stephen A. Brewster, Jody Johnston, "Investigating the Effectiveness of Tactile Feedback for Mobile Touchscreens", CHI 2008 Proceedings Tactile and Haptic User Interfaces, pp.1573–1582, 2008.
- [2] Jaeha Kim, Yonghwan Oh, Jaeyoung Park, "Adaptive Vibrotactile Flow Rendering of 2.5D Surface Features on Touch Screen with Multiple Fingertip Interfaces", 2017 IEEE World Haptics Conference (WHC), pp. 316–321, 2017.
- [3] Jaeyoung Park, Jaeha Kim, Yonghwan Oh, Hong Z. Tan, "Rendering Moving Tactile Stroke on the Palm Using a Sparse 2D Array", Lecture Notes in Computer Science, pp.47–56, 2016.
- [4] Ali Israr, Ivan Poupyrev, "Tactile Brush: Drawing on Skin with a Tactile Grid Display", CHI 2011 Proceedings Tactile and Haptics, pp. 2019–2028, 2011.