Extreme Value Theory & Time Series Analysis

Study year 2023/24, Q3/4

Fabian Mies

Delft University of Technology f.mies@tudelft.nl

1/24

TU Delft, 2024

Structure of the course

- ➤ Part I: Extreme Value Theory in Q3
- > Part II: Time Series Analysis in Q4
- > each part has two mandatory assignments and an exam
- Lectures slides are put on Brightspace prior to the lecture

Structure of the course: assessment

Important dates:

- Extreme Value Theory, Assignment 1: hand in by March 05, 2024 (7.5% of overall grade)
- ➤ Extreme Value Theory, Assignment 2: hand in by March 26, 2024 (7.5% of overall grade)
- ➤ Extreme Value Theory, Exam: April 16, 2024 (30% of overall grade)
- ➤ Time Series Analysis, Assignment 1: hand in by May 14, 2024 (7.5% of overall grade)
- > Time Series Analysis, Assignment 2: hand in by June 04, 2024 (7.5% of overall grade)
- ➤ Time Series Analysis, Exam: June 25, 2024 (30% of overall grade)

About the assignments

- Exercise sheet is published two weeks earlier
- ➤ Proofs and some programming / data analysis
- ➤ Hand-in via Brightspace as a group of 2

About the exam

- ➤ Written exam, 2h duration
- Contents: Proofs, routine calculations, interpretation
- You may bring 1 handwritten page as cheatsheet (A4, one side blank)

Extreme Value Theory & Time Series Analysis

Part I: Extreme Value Theory Study year 2023/24, Q3

Fabian Mies

Delft University of Technology f.mies@tudelft.nl

Outline

2	Generalized	extreme value	(GEV)) distributions and	the extreme	value limit theorem

Lecture 1+2 Lecture 2+3

Sestimation of GEV parameters

Introduction: Estimating the tail of a distribution

Lecture 3+4

4 Assessing m-year returns

Lecture 4

6 Bivariate extremes

Lecture 5+6

Recommended literature:

de Haan & Ferreira (2006) Extreme value theory: an introduction (ebook)

Outline

2	Generalized	extreme	value ((GFV)	distributions	and th	ne extreme	value	limit	theorem

Lecture 2+3

Lecture 1+2

Estimation of GEV parameters Assessing m-year returns

Introduction: Estimating the tail of a distribution

Lecture 4

Bivariate extremes

Lecture 5+6

Recommended literature:

de Haan & Ferreira (2006) Extreme value theory: an introduction (ebook)

Historical sea levels at Hoek van Holland

- Records of water levels during storms at Hoek van Holland, 1887-2009
- ➤ Measurements $x_1, ..., x_{1965}$ (multiple storms per year)

- How often should we expect a sea level above 400 cm, say?
- How high should the dike be to prevent 99.99% of all floods?

Peak stream flow of Potomac river

- Yearly maximum stream flow of Potomac river, from 1895-2000, measured at Point of Rocks, Maryland US
- Higher stream flow implies higher speeds and higher water levels

Estimating probabilities of rare events

For random variables $X_1, \ldots, X_n \stackrel{iid}{\sim} F$ with cdf F, we may estimate $F(x) = P(X \le x)$ by the empirical cdf (ecdf)

$$\widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \le x).$$

Analogously, the exceedance probability $P(X > x) = 1 - F(x) = \overline{F}(x)$ can be estimated by the empirical survival function

$$\widehat{\overline{F}}_n(x) = 1 - \widehat{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i > x).$$

Relative error of the ECDF

For any $x \in \mathbb{R}$ such that $F(x) \in (0,1)$, we have

$$\frac{\left|\overline{\widehat{F}}_n(x) - \overline{F}(x)\right|}{\overline{F}(x)} \; = \; \mathcal{O}_P\left(\frac{1}{\sqrt{n\overline{F}(x)}}\right).$$

Not reasonable for large x, i.e. small $\overline{F}(x)$.

For $\overline{F}(x) \ll \frac{1}{n}$, we probably will not see ANY data point exceeding x.

TU Delft, 2024

Example 1.1

The tail estimate can be better in parametric models:

- ▶ For some mean parameter $\mu \in \mathbb{R}$, we suppose that $X_1, \dots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, 1)$.
- ▶ Estimate parameters by $\widehat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i$ such that

$$|\widehat{\mu}_n - \mu| = \mathcal{O}_P(1/\sqrt{n}).$$

Plug in the estimator to approximate the tail probability

$$P(X > x) = \overline{\Phi}(x - \mu) \approx \overline{\Phi}(x - \widehat{\mu}_n)$$

➤ How does this approximation perform for large x?

Relative error:

Lemma 1.2

For any x > 1, it holds $\frac{3}{4x} \le \frac{\overline{\Phi(x)}}{\varphi(x)} \le \frac{1}{x}$

Parametric vs Nonparametric approach

Nonparametric estimate:

- ▶ Estimate P(X > x) by $\widehat{\overline{F}}_n(x)$.
- ightharpoonup Relative error for Gaussian observations $(\mu=0)$

$$\frac{\left|\widehat{\overline{F}}_{n}(x) - \overline{F}(x)\right|}{\overline{F}(x)} = \mathcal{O}_{P}\left(\frac{1}{\sqrt{n\overline{\Phi}(x)}}\right)$$
$$= \mathcal{O}\left(\frac{x}{\sqrt{n}}\exp(\frac{x^{2}}{2})\right)$$

Parametric estimate:

- ▶ Estimate P(X > x) by $\overline{\Phi}(x \widehat{\mu}_n)$.
- Relative error for Gaussian observations $(\mu = 0)$

$$\frac{\left|\overline{\Phi}(x-\widehat{\mu}_n)-\overline{F}(x)\right|}{\overline{F}(x)}=\mathcal{O}_P\left(\frac{x}{\sqrt{n}}\right)$$

10 / 24

Discuss

Which approach to use?

Log-log plot of empirical survival function ņ

peak stream flow (log)

Global size distribution of cities

Log-log plot of empirical survival function

Findings

- > log-log plot is approximately linear in the tail
- this suggests

$$\overline{F}(x) \approx ax^{-\alpha}, \quad x \to \infty$$

for some a > 0 and $\alpha > 0$.

- > The exponent $\gamma=1/\alpha$ is referred to as the extreme value index of F
- ▶ Central idea: Use the data to find a and γ to extrapolate $\widehat{\overline{F}}_n(x)$ for large values of x

Extreme value theory makes this extrapolation mathematically **rigorous**.

Making the log-log plot rigorous

Definition 1.3 (Regularly varying functions)

A function $f:(0,\infty)\to\mathbb{R}$ is regularly varying with index $\alpha\in\mathbb{R}$ if

$$\lim_{t\to\infty}\frac{f(tx)}{f(t)}=x^{\alpha},\quad\forall x>0.$$

If $\alpha = 0$, we say that f is slowly varying.

Exercise

Which functions are regularly varying?

14 / 24

$$f(x) = x^{\alpha}$$

$$f(x) = \log(x)$$

$$f(x) = x^{\alpha} \log(\log(x))$$

$$f(x) = \exp(x)$$

Lemma 1.4

Suppose that a function $f:(0,\infty)\to\mathbb{R}$ satisfies

$$\lim_{t\to\infty}\frac{f(tx)}{f(t)}=g(x),\quad\forall x>0.$$

Then there exists some $\alpha \in \mathbb{R}$ such that $g(x) = x^{\alpha}$.

Proof:

Claim:

If
$$\lim_{t \to \infty} \frac{f(tx)}{f(t)} = g(x)$$

then $g(x) = x^{\alpha}$

Proposition 1.5

Let X be a random variable with cdf F such that \overline{F} is regularly varying with exponent $-\frac{1}{\gamma}$ for some $\gamma>0$. Then

$$P(X > tx \mid X > t) \stackrel{t \to \infty}{\longrightarrow} \begin{cases} x^{-1/\gamma}, & x > 1, \\ 1, & x \le 1. \end{cases}$$

That is, the conditional distribution of X/t given X>t converges towards a Pareto distribution as $t\to\infty$.

We refer to γ as the extreme value index of F.

Definition 1.6 (Pareto distribution)

A random variable X has a Pareto distribution $X \sim \text{Par}(\alpha)$ with parameter $\alpha > 0$, if

$$P(X \le x) = \max(0, 1 - x^{-\alpha}).$$

Different distributions with the same tail behavior

Definition 1.6 (Pareto distribution)

A random variable X has a Pareto distribution $X \sim \text{Par}(\alpha)$ with parameter $\alpha > 0$, if

$$P(X \le x) = \max(0, 1 - x^{-\alpha}).$$

Definition 1.7 (Frechet distribution)

A random variable X has a Frechet distribution $X \sim \operatorname{Frechet}(\alpha)$ with parameter $\alpha > 0$, if

$$P(X \le x) = \exp(-x^{-\alpha}), \quad x > 0.$$

Figure 1: Theoretical log-log plot of the Pareto and Frechet distribution, with shape parameter $\gamma = 1$.

Exercise

Show that the Frechet distribution is regularly varying.

MLE for pareto distribution

How to estimate the extreme value index γ of a distribution?

Example 1 (MLE for the Pareto distribution)

Let $X_1, \ldots, X_n \stackrel{iid}{\sim} Par(1/\gamma)$ with unknown parameter γ .

➤ The Pareto pdf is

$$f_{\gamma}(x)=\frac{1}{\gamma}x^{-\frac{1}{\gamma}-1}\mathbb{1}(x>1).$$

➤ Maximize the log-likelihood

$$I_n(X_1, \dots, X_n) = -n \log(\gamma) - \left(\frac{1}{\gamma} + 1\right) \sum_{i=1}^n \log(X_i)$$

$$\stackrel{\text{max}}{\Longrightarrow} \quad \widehat{\gamma}_n = \frac{1}{n} \sum_{i=1}^n \log(X_i)$$

Exercise

Show that $\widehat{\gamma}_n$ is consistent.

Semiparametric tail index estimation

Now let $X_1, \ldots, X_n \stackrel{iid}{\sim} F$ for some cdf F with extreme value index $\gamma > 0$.

- ightharpoonup Choose a threshold value t>0 and only use data larger than t
- > Treat those observations as if they were Pareto distributed with parameter $\frac{1}{\gamma}$:

$$\widehat{\gamma}_n = \widehat{\gamma}_n(t) = rac{1}{n(t)} \sum_{i=1}^n \mathbb{1}_{X_i > t} \log\left(rac{X_i}{t}
ight),$$

$$n(t) = \sum_{i=1}^n \mathbb{1}_{X_i > t}.$$

Theorem 1.8

Suppose that \overline{F} has extreme value index $\gamma>0$, and choose the threshold $t=t_n$ such that $t_n\ll n^{\frac{1}{\gamma}}$. Then

$$\widehat{\gamma}_n = \widehat{\gamma}_n(t_n) \xrightarrow{P} \gamma, \quad n \to \infty.$$

Proof of Theorem 1.8 (1/3)

ightharpoonup For any $\epsilon>0$, we have

$$\begin{aligned} & P(|\widehat{\gamma}_n - \gamma| > \epsilon) \\ &= \sum_{k=0}^{\infty} P(|\widehat{\gamma}_n - \gamma| > \epsilon | n(t) = k) \cdot P(n(t) = k) \end{aligned}$$

- > It thus suffices to show that

 - ② conditionally on n(t) = k, $\widehat{\gamma}_n \xrightarrow{P} \gamma$ as $k \to \infty$.

Proof of (1):

Proof of Theorem 1.8 (2/3)

$$\widehat{\gamma}_n = \widehat{\gamma}_n(t) = \frac{1}{n(t)} \sum_{i=1}^n \mathbb{1}_{X_i > t} \log \left(\frac{X_i}{t} \right)$$

- ② Conditionally on n(t) = k, $\widehat{\gamma}_n \xrightarrow{P} \gamma$ as $k \to \infty$.

Proof of (2):

Proof of Theorem 1.8 (3/3)

$$E\left(\log \frac{X}{t} \mid X > t\right) = \int_0^\infty \frac{\overline{F}(t \exp(s))}{\overline{F}(t)} ds$$
$$\to \int_0^\infty \exp(s)^{-1/\gamma} ds = \gamma$$

Theorem 1.9 (Karamata's representation, dHF B.1.6)

Let $f:[0,\infty)\to\mathbb{R}$ be regularly varying with index α , then there exist funtions a(t) and c(t) with

$$c(t) \stackrel{t \to \infty}{\longrightarrow} c_0 \in (0, \infty), \qquad a(t) \stackrel{t \to \infty}{\longrightarrow} \alpha$$

and a $t_0 > 0$ such that

$$f(t) = c(t) \exp\left(\int_{t_0}^t \frac{a(s)}{s} ds\right), \quad t > t_0.$$

Corollary 1.10

Let f be regularly varying with index α . Then for any $\epsilon > 0$, there exists some $C = C(\epsilon)$ such that

$$f(t) \leq C(\epsilon)t^{\alpha+\epsilon}$$
.

Application to the water levels at Hoek van Holland

Log-log plot of empirical survival function

ightharpoonup if F has extreme value index $\gamma > 0$, then

$$\overline{F}(tx) \approx \overline{F}(t)x^{-1/\gamma}, \quad x \to \infty$$

- ▶ Estimate the extreme value index by $\widehat{\gamma}_n$ as above, with some suitable threshold $t = t_n$.
- > Extrapolate the tail of the distribution as

$$\widetilde{\overline{F}}(y) = \widehat{\overline{F}}(t) \left(\frac{y}{t}\right)^{-1/\widehat{\gamma}_n}$$

23 / 24

Exercise

Find a corresponding estimate for a large quantile $F^{-1}(1-\alpha)$, for $\alpha\approx 0$.

Exercise (optional)

- Choose a continuous distribution F that has a regularly varying tail with extreme value index $\gamma > 0$. In particular, prove this regular variation for your choice of F.
- Simulate data from this distribution.
- **3** Pretend that you don't know the real value of γ , and use $\widehat{\gamma}_n$ to estimate γ . Choose a suitable value of t. Compute the error $e = \widehat{\gamma}^H \gamma$.
- **3** Repeat steps (2) and (3) for 500 times. You collect $\{e_1, \ldots, e_{500}\}$. Make a boxplot and histogram on the errors. Comment.