Gov 50: 14. More Regression and Model Fit

Matthew Blackwell

Harvard University

Roadmap

- 1. Model fit
- 2. Multiple regression

1/ Model fit

Presidential popularity and the midterms

 Does popularity of the president or recent changes in the economy better predict midterm election outcomes?

Presidential popularity and the midterms

 Does popularity of the president or recent changes in the economy better predict midterm election outcomes?

Name	Description
year	midterm election year
president	name of president
party	Democrat or Republican
approval	Gallup approval rating at midterms
rdi_change	% change in real disposable income over the year
	before midterms
seat_change	change in the number of House seats for the pres-
	ident's party

library(gov50data) midterms

##	# 4	tibb	le: 20 x 6				
##		year	president	party	approval	seat_change	rdi_change
##		<dbl></dbl>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	1946	Truman	D	33	-55	NA
##	2	1950	Truman	D	39	-29	8.2
##	3	1954	Eisenhower	R	61	-4	1
##	4	1958	Eisenhower	R	57	-47	1.1
##	5	1962	Kennedy	D	61	-4	5
##	6	1966	Johnson	D	44	-47	5.3
##	7	1970	Nixon	R	58	-8	6.6
##	8	1974	Ford	R	54	-43	6.4
##	9	1978	Carter	D	49	-11	7.7
##	10	1982	Reagan	R	42	-28	4.8
##	11	1986	Reagan	R	63	-5	5.1
##	12	1990	H.W. Bush	R	58	-8	5.6
##	13	1994	Clinton	D	46	-53	3.9
##	14	1998	Clinton	D	66	5	5.6
##	15	2002	W. Bush	R	63	6	2.6
##	16	2006	W. Bush	R	38	-30	5.7
##	17	2010	Obama	D	45	-63	3.5
##	18	2014	Obama	D	40	-13	4.6
##	19	2018	Trump	R	38	-42	4.1
##	20	2022	Biden	D	42	NA	-0.003

Fitting the approval model

```
fit.app <- lm(seat_change ~ approval, data = midterms)
fit.app</pre>
```

Fitting the approval model

Fitting the approval model

```
fit.app <- lm(seat_change ~ approval, data = midterms)
fit.app</pre>
```

```
##
## Call:
## lm(formula = seat_change ~ approval, data = midterms)
##
## Coefficients:
## (Intercept) approval
## -96.58 1.42
```

For a one-point increase in presidential approval, the predicted seat change increases by 1.42

Fitting the income model

```
fit.rdi <- lm(seat_change ~ rdi_change, data = midterms)
fit.rdi</pre>
```

Fitting the income model

-29.41 1.21

```
fit.rdi <- lm(seat_change ~ rdi_change, data = midterms)
fit.rdi

##
## Call:
## lm(formula = seat_change ~ rdi_change, data = midterms)
##
## Coefficients:
## (Intercept) rdi_change</pre>
```

Fitting the income model

```
fit.rdi <- lm(seat_change ~ rdi_change, data = midterms)
fit.rdi</pre>
```

```
##
## Call:
## lm(formula = seat_change ~ rdi_change, data = midterms)
##
## Coefficients:
## (Intercept) rdi_change
## -29.41 1.21
```

For a one-point increase in the change in real disposable income, the predicted seat change increases by 1.21

Comparing models

· How well do the models "fit the data"?

Comparing models

- · How well do the models "fit the data"?
 - How well does the model predict the outcome variable in the data?

Model fit

Model prediction error:

$$prediction error = \sum_{i=1}^{n} (actual_i - predicted_i)^2$$

Model fit

Model prediction error:

$$prediction error = \sum_{i=1}^{n} (actual_i - predicted_i)^2$$

Prediction error for regression: Sum of squared residuals

$$SSR = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

Model fit

Model prediction error:

$$prediction error = \sum_{i=1}^{n} (actual_i - predicted_i)^2$$

Prediction error for regression: Sum of squared residuals

$$SSR = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

Lower SSR is better, right?

These two regression lines have approximately the same SSR:

Benchmarking model fit

Benchmarking our predictions using the **proportional reduction in error**:

reduction in prediction error using model baseline prediction error

Benchmarking model fit

Benchmarking our predictions using the **proportional reduction in error**:

reduction in prediction error using model baseline prediction error

Baseline prediction error without a regression is using the mean of Y to predict. This is called the **Total sum of squares**:

$$TSS = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

Benchmarking model fit

Benchmarking our predictions using the **proportional reduction in error**:

reduction in prediction error using model baseline prediction error

Baseline prediction error without a regression is using the mean of Y to predict. This is called the **Total sum of squares**:

$$TSS = \sum_{i=1}^{n} (Y_i - \overline{Y})^2$$

Leads to the **coefficient of determination**, R^2 , one summary of LS model fit:

$$R^2 = \frac{TSS - SSR}{TSS} = \frac{\text{how much smaller LS prediction errors are vs mean}}{\text{prediction error using the mean}}$$

Total SS vs SSR

Total SS vs SSR

• To access R^2 from the lm() output, use the summary() function:

• To access R^2 from the lm() output, use the summary() function:

```
fit.app.sum <- summary(fit.app)
fit.app.sum$r.squared</pre>
```

• To access R^2 from the lm() output, use the summary() function:

```
fit.app.sum <- summary(fit.app)
fit.app.sum$r.squared</pre>
```

```
## [1] 0.45
```

• To access R² from the lm() output, use the summary() function:

```
fit.app.sum <- summary(fit.app)
fit.app.sum$r.squared</pre>
```

```
## [1] 0.45
```

· Compare to the fit using change in income:

• To access R^2 from the lm() output, use the summary() function:

```
fit.app.sum <- summary(fit.app)
fit.app.sum$r.squared</pre>
```

```
## [1] 0.45
```

· Compare to the fit using change in income:

```
fit.rdi.sum <- summary(fit.rdi)
fit.rdi.sum$r.squared</pre>
```

• To access R^2 from the lm() output, use the summary() function:

```
fit.app.sum <- summary(fit.app)
fit.app.sum$r.squared</pre>
```

```
## [1] 0.45
```

· Compare to the fit using change in income:

```
fit.rdi.sum <- summary(fit.rdi)
fit.rdi.sum$r.squared</pre>
```

```
## [1] 0.012
```

Which does a better job predicting midterm election outcomes?

Accessing model fit via broom package

We can also access summary statistics like model fit using the glance() function from broom:

```
library(broom)
glance(fit.app)
```

```
## # A tibble: 1 x 12
## r.squared adj.r.squared sigma statistic p.value df
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 13.9 0.00167 1
## # i 6 more variables: logLik <dbl>, AIC <dbl>, BIC <dbl>,
## # deviance <dbl>, df.residual <int>, nobs <int>
```

• Little hard to see what's happening in that example.

- Little hard to see what's happening in that example.
- Let's look at fake variables x and y:

- Little hard to see what's happening in that example.
- Let's look at fake variables x and y:

```
fit.x <- lm(y \sim x)
```

- Little hard to see what's happening in that example.
- Let's look at fake variables x and y:

fit.x <-
$$lm(y \sim x)$$

• Very good model fit: $R^2 \approx 0.95$

Fake data, better fit

Fake data, better fit

Is R-squared useful?

• Can be very misleading. Each of these samples have the same R^2 even though they are vastly different:

• In-sample fit: how well your model predicts the data used to estimate it.

- In-sample fit: how well your model predicts the data used to estimate it.
 - R^2 is a measure of in-sample fit.

- In-sample fit: how well your model predicts the data used to estimate
 it.
 - R^2 is a measure of in-sample fit.
- Out-of-sample fit: how well your model predicts new data.

- In-sample fit: how well your model predicts the data used to estimate
 it.
 - R^2 is a measure of in-sample fit.
- Out-of-sample fit: how well your model predicts new data.
- Overfitting: OLS optimizes in-sample fit; may do poorly out of sample.

- In-sample fit: how well your model predicts the data used to estimate
 it.
 - R^2 is a measure of in-sample fit.
- Out-of-sample fit: how well your model predicts new data.
- Overfitting: OLS optimizes in-sample fit; may do poorly out of sample.
 - Example: predicting winner of Democratic presidential primary with gender of the candidate.

- In-sample fit: how well your model predicts the data used to estimate
 it.
 - R^2 is a measure of in-sample fit.
- Out-of-sample fit: how well your model predicts new data.
- Overfitting: OLS optimizes in-sample fit; may do poorly out of sample.
 - Example: predicting winner of Democratic presidential primary with gender of the candidate.
 - Until 2016, gender was a **perfect** predictor of who wins the primary.

- In-sample fit: how well your model predicts the data used to estimate
 it.
 - R^2 is a measure of in-sample fit.
- Out-of-sample fit: how well your model predicts new data.
- Overfitting: OLS optimizes in-sample fit; may do poorly out of sample.
 - Example: predicting winner of Democratic presidential primary with gender of the candidate.
 - Until 2016, gender was a **perfect** predictor of who wins the primary.
 - · Prediction for 2016 based on this: Bernie Sanders as Dem. nominee.

- In-sample fit: how well your model predicts the data used to estimate
 it.
 - R^2 is a measure of in-sample fit.
- Out-of-sample fit: how well your model predicts new data.
- Overfitting: OLS optimizes in-sample fit; may do poorly out of sample.
 - Example: predicting winner of Democratic presidential primary with gender of the candidate.
 - Until 2016, gender was a **perfect** predictor of who wins the primary.
 - · Prediction for 2016 based on this: Bernie Sanders as Dem. nominee.
 - · Bad out-of-sample prediction due to overfitting!

2/ Multiple regression

What if we want to predict Y as a function of many variables?

$$seat_change_i = \alpha + \beta_1 approval_i + \beta_2 rdi_change_i + \epsilon_i$$

What if we want to predict Y as a function of many variables?

$$\mathtt{seat_change}_i = \alpha + \beta_1 \mathtt{approval}_i + \beta_2 \mathtt{rdi_change}_i + \epsilon_i$$

Why?

• Better predictions (at least in-sample).

What if we want to predict Y as a function of many variables?

$$\mathtt{seat_change}_i = \alpha + \beta_1 \mathtt{approval}_i + \beta_2 \mathtt{rdi_change}_i + \epsilon_i$$

Why?

- Better predictions (at least in-sample).
- Better interpretation as **ceteris paribus** relationships:

What if we want to predict Y as a function of many variables?

$$seat_change_i = \alpha + \beta_1 approval_i + \beta_2 rdi_change_i + \epsilon_i$$

Why?

- Better predictions (at least in-sample).
- Better interpretation as ceteris paribus relationships:
 - β_1 is the relationship between approval and seat_change holding rdi_change constant.

What if we want to predict Y as a function of many variables?

$$seat_change_i = \alpha + \beta_1 approval_i + \beta_2 rdi_change_i + \epsilon_i$$

Why?

- Better predictions (at least in-sample).
- Better interpretation as ceteris paribus relationships:
 - β_1 is the relationship between approval and seat_change holding rdi_change constant.
 - Statistical control in a cross-sectional study.

• $\hat{\alpha}=$ -117.2: average seat change president has 0% approval and no change in income levels.

- $\hat{\alpha}=$ -117.2: average seat change president has 0% approval and no change in income levels.
- $\hat{\beta}_1 =$ 1.53: average increase in seat change for additional percentage point of approval, **holding RDI change fixed**

- $\hat{\alpha}=$ -117.2: average seat change president has 0% approval and no change in income levels.
- $\hat{\beta}_1 =$ 1.53: average increase in seat change for additional percentage point of approval, **holding RDI change fixed**
- $\hat{\beta}_2=$ 3.217: average increase in seat change for each additional percentage point increase of RDI, **holding approval fixed**

· How do we estimate the coefficients?

- How do we estimate the coefficients?
- The same exact way as before: minimize prediction error!

- · How do we estimate the coefficients?
- The same exact way as before: minimize prediction error!
- Residuals (aka prediction error) with multiple predictors:

$$\mathbf{Y}_i - \widehat{\mathbf{Y}}_i = \mathtt{seat_change}_i - \widehat{\alpha} - \widehat{\beta}_1 \mathtt{approval}_i - \widehat{\beta}_2 \mathtt{rdi_change}_i$$

- · How do we estimate the coefficients?
- The same exact way as before: minimize prediction error!
- Residuals (aka prediction error) with multiple predictors:

$$\mathbf{Y}_i - \widehat{\mathbf{Y}}_i = \mathtt{seat_change}_i - \widehat{\alpha} - \widehat{\beta}_1 \mathtt{approval}_i - \widehat{\beta}_2 \mathtt{rdi_change}_i$$

Find the coefficients that minimizes the sum of the squared residuals:

$$SSR = \sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} = (Y_{i} - \hat{\alpha} - \hat{\beta}_{1}X_{i1} - \hat{\beta}_{2}X_{i2})^{2}$$

• R^2 mechanically increases when you add a variables to the regression.

- R^2 mechanically increases when you add a variables to the regression.
 - But this could be overfitting!!

- R^2 mechanically increases when you add a variables to the regression.
 - · But this could be overfitting!!
- · Solution: penalize regression models with more variables.

- R^2 mechanically increases when you add a variables to the regression.
 - · But this could be overfitting!!
- · Solution: penalize regression models with more variables.
 - · Occam's razor: simpler models are preferred

- R^2 mechanically increases when you add a variables to the regression.
 - · But this could be overfitting!!
- · Solution: penalize regression models with more variables.
 - · Occam's razor: simpler models are preferred
- Adjusted R^2 : lowers regular R^2 for each additional covariate.

- R^2 mechanically increases when you add a variables to the regression.
 - · But this could be overfitting!!
- · Solution: penalize regression models with more variables.
 - · Occam's razor: simpler models are preferred
- Adjusted R^2 : lowers regular R^2 for each additional covariate.
 - If the added covariates doesn't help predict, adjusted R² goes down!

Comparing model fits

r.squared adj.r.squared sigma

<dh1> <dh1>

0.397 16.7

< fdb>

0.468

##

##

1