Part-of-Speech Tagging

- Assign grammatical tags to words
- Basic task in the analysis of natural language data
- Phrase identification, entity extraction, etc.
- Ambiguity: "tag" could be a noun or a verb
- "a tag is a part-of-speech label" context resolves the ambiguity

The Penn Treebank POS Tag Set

Tag	Description	Example	Tag	Description	Example
CC	Coordin, Conjunction	and, but, or	SYM	Symbol	+,%,&
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-∞nj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1, 2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	#	Pound sign	#
PDT	Predeterminer	all, both	Ç6	Left quote	(" or ")
POS	Possessive ending	Ś	"	Right quote	(' or ")
PP	Personal pronoun	I, you, he	(Left parenthesis	([, (, {, <)
PP\$	Possessive pronoun	your, one's)	Right parenthesis	(],),],>)
RB	Adverb	quickly, never	,	Comma	50.modave#es .o.
RBR	Adverb, comparative	faster	**	Sentence-final punc	(. ! ?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(:;)
RP	Particle	up, off		170	250 16 53 1

POS Tagging Process

POS Tagging Algorithms

- Rule-based taggers: large numbers of hand-crafted rules
- Probabilistic tagger: used a tagged corpus to train some sort of model, e.g. HMM.

The Brown Corpus

- Comprises about 1 million English words
- HMM's first used for tagging on the Brown Corpus
- 1967. Somewhat dated now.
- British National Corpus has 100 million words

Simple Charniak Model

- •What about words that have never been seen before?
- •Clever tricks for smoothing the number of parameters (aka priors)

some details...

$$P(t^i \mid w^j) \stackrel{\text{est}}{=} \lambda_1(w^j) \frac{C(t^i, w^j)}{C(w^j)} + \lambda_2(w^j) \frac{C_n(t^i)}{C_n()}$$

 $C(t^i, w^j)$ number of times word j appears with tag i

- $C(w^j)$ number of times word j appears
- $C_n(t^i)$ number of times a word that had never been seen with tag i gets tag i
 - $C_n()$ number of such occurrences in total

$$\lambda_1(w^j) = \begin{cases} 1 & \text{if } C(w^j) \ge 1\\ 0 & \text{otherwise.} \end{cases}$$

Test data accuracy on Brown Corpus = 91.51%

HMM

$$\mathcal{T}(w_{1,n}) = \arg\max_{t_{1,n}} \prod_{i=1}^{n} P(t_i \mid t_{i-1}) P(w_i \mid t_i)$$

$$= \arg\max_{t_{1,n}} \prod_{i=1}^{n} P(t_i \mid t_{i-1}) \frac{P(t_i \mid w_i)}{P(t_i)}$$

$$P(t_i \mid t_{i-1}) \stackrel{\text{est}}{=} (1 - \epsilon) \frac{C(t_{i-1}, t_i)}{C(t_{i-1})} + \epsilon$$
•Brown test set accuracy = 95.97%

Morphological Features

- Knowledge that "quickly" ends in "ly" should help identify the word as an adverb
- "randomizing" -> "ing"
- Split each word into a root ("quick") and a suffix ("ly")

Morphological Features

- Typical morphological analyzers produce multiple possible splits
- "Gastroenteritis"???

$$\mathcal{T}(w_{1,n}) = \arg \max_{t_{1,n}} \sum_{r_{1,n},s_{1,n}} \prod_{i=1}^{n} P(t_i \mid t_{i-1})$$

$$= \arg \max_{t_{1,n}} \sum_{r_{1,n},s_{1,n}} \prod_{i=1}^{n} P(t_i \mid t_{i-1}) P(s_i \mid t_i)$$

$$\frac{P(r_i)P(t_i \mid r_i)}{P(t_i)}$$
 (36)

• Achieves 96.45% on the Brown Corpus

Inference in an HMM

- Compute the probability of a given observation sequence
- Given an observation sequence, compute the most likely hidden state sequence
- Given an observation sequence and set of possible models, which model most closely fits the data?

Viterbi Algorithm

$$\delta_{j}(t) = \max_{x_{1}...x_{t-1}} P(x_{1}...x_{t-1}, o_{1}...o_{t-1}, x_{t} = j, o_{t})$$

The state sequence which maximizes the probability of seeing the observations to time t-1, landing in state j, and seeing the observation at time t

Viterbi Algorithm

$$\delta_{j}(t+1) = \max_{i} \delta_{i}(t) a_{ij} b_{jo_{t+1}}$$

$$\psi_{j}(t+1) = \arg\max_{i} \delta_{i}(t) a_{ij} b_{jo_{t+1}}$$

Recursive Computation

Viterbi Algorithm

$$\hat{X}_{T} = \underset{j}{\operatorname{argmax}} \delta_{j}(T)$$

$$\hat{X}_{t} = \psi_{\hat{X}_{t+1}}(t+1)$$

$$P(\hat{X}) = \underset{i}{\operatorname{max}} \delta_{i}(T)$$

Compute the most likely state sequence by working backwards

Viterbi Small Example

$$Pr(x_1=T) = 0.2$$

$$Pr(x_2=T|x_1=T) = 0.7$$

$$Pr(x_2=T|x_1=F) = 0.1$$

$$Pr(o=T|x=T) = 0.4$$

$$Pr(o=T|x=F) = 0.9$$

$$o_1=T; o_2=F$$

Brute Force

$$Pr(x_1=T,x_2=T, o_1=T,o_2=F) = 0.2 \times 0.4 \times 0.7 \times 0.6 = 0.0336$$

$$Pr(x_1=T,x_2=F, o_1=T,o_2=F) = 0.2 \times 0.4 \times 0.3 \times 0.1 = 0.0024$$

$$Pr(x_1=F,x_2=T, o_1=T,o_2=F) = 0.8 \times 0.9 \times 0.1 \times 0.6 = 0.0432$$

$$Pr(x_1=F,x_2=F, o_1=T,o_2=F) = 0.8 \times 0.9 \times 0.9 \times 0.1 = 0.0648$$

$$Pr(X_1, X_2 \mid o_1 = T, o_2 = F) \propto Pr(X_1, X_2, o_1 = T, o_2 = F)$$

Viterbi Small Example

$$\hat{X}_2 = \operatorname*{arg\,max}_{j} \delta_{j}(2)$$

$$\delta_j(2) = \max_i \delta_i(1) a_{ij} b_{jo_2}$$

$$\delta_T(1) = \Pr(x_1 = T) \Pr(o_1 = T \mid x_1 = T) = 0.2 \times 0.4 = 0.08$$

 $\delta_F(1) = \Pr(x_1 = F) \Pr(o_1 = T \mid x_1 = F) = 0.8 \times 0.9 = 0.72$

$$\begin{split} & \delta_{T}(2) = \max \left(\delta_{F}(1) \times \Pr(x_{2} = T \mid x_{1} = F) \Pr(o_{2} = F \mid x_{2} = T), \delta_{T}(1) \times \Pr(x_{2} = T \mid x_{1} = T) \Pr(o_{2} = F \mid x_{2} = T) \right) \\ &= \max \left(\underbrace{0.72 \times 0.1 \times 0.6}_{0.08 \times 0.7 \times 0.6}, 0.08 \times 0.7 \times 0.6 \right) = 0.0432 \\ & \delta_{F}(2) = \max \left(\delta_{F}(1) \times \Pr(x_{2} = F \mid x_{1} = F) \Pr(o_{2} = F \mid x_{2} = F), \delta_{T}(1) \times \Pr(x_{2} = F \mid x_{1} = T) \Pr(o_{2} = F \mid x_{2} = F) \right) \\ &= \max \left(\underbrace{0.72 \times 0.9 \times 0.1}_{0.008 \times 0.3 \times 0.1}, 0.0.08 \times 0.3 \times 0.1 \right) = 0.0648 \end{split}$$

Bayesian Analysis of a Markov Chain

$$y_i$$
 take values in $\{0,1\}, i = 1, ..., 5$
 $\pi = p(y_1 = 1)$
 $-n(y_1 = 1|y_1 = 0), \pi_1 = n(y_1 = 1|y_1)$

$$\pi_0 = p(y_i = 1 | y_{i-1} = 0) \quad \pi_1 = p(y_i = 1 | y_{i-1} = 1)$$
 $\pi, \pi_0, \pi_1 \stackrel{\text{iid}}{\sim} \text{Beta}(1, 1)$

Suppose we observe $\{1, 1, 1, 1, 1\}$.

Then $\pi \sim \text{Beta}(2,1)$, $\pi_0 \sim \text{Beta}(1,1)$ and $\pi_1 \sim \text{Beta}(5,1)$

Bayesian Analysis of a HMM

- Widely used in speech recognition, finance, bioinformatics, etc.
- The *y*'s are observed but the *z*'s (discrete) are not
- Combines a first-order dependence structure with a mixture model.

Bayesian HMM (continued)

Suppose z_i take values in $\{0, 1\}, i = 1, \dots, n$ $y_i \sim N(\mu_{z_i}, 1)$

$$[\theta|y] \propto [\mu_0][\mu_1][\pi_0][\pi_1][y_1|1] \times \left(\sum_{i_2=0}^1 \sum_{i_3=0}^1 \dots \sum_{i_n=0}^1 \pi_{1 \to i_2}[y_2|i_2]\pi_{i_2 \to i_3}[y_3|i_3] \dots \pi_{i_{n-1} \to i_n}[y_n|i_n]\right)$$

this is generally intractable but the conditionals are OK:

$$[\theta|y,z] \propto \underline{\text{depends on the priors...}}$$

$$[z_i|y, \theta, z_{-i}] \propto [z_i|z_{i-1}, z_{i+1}, y_i, \theta]$$

 $\propto [y_i|z_i, \theta][z_{i+1}|z_i, \theta][z_i|z_{i-1}, \theta]$

Figure 3: The French ILI data. The upper figure (a) shows the incidence rates per 1,000 inhabitants. The lower figure (b) shows the posterior mean of the hidden state from a Gaussian two-state HMM. The horizontal line segments in the upper figure correspond to time periods where the posterior mean of the hidden state exceeds 0.5.

Serfling's method

$$\mu_j(t) = \gamma_j + \beta_j t + \delta_j \cos\left(\frac{2\pi t}{r}\right) + \epsilon_j \left(\frac{2\pi t}{r}\right)$$

(b) Posterior Mean of Hidden State, Three State Model

Figure 7: The French ILI data. The upper figure (a) shows the incidence rates per 1,000 inhabitants. The lower figure (b) shows the posterior mean of the hidden state from a Gaussian three-state HMM. The horizontal line segments in the upper figure correspond to the three different states.

(b) Posterior Mean of Hidden State

Figure 6: The US Poliomyelitis data. The upper figure (a) shows the total reported monthly cases. The lower figure (b) shows the posterior mean of the hidden state from a Poisson two-state HMM. The horizontal line segments in the upper figure correspond to time periods where the posterior mean of the hidden state exceeds 0.5.

Bayesian HMM for High-Frequency Data

- Observations may not arrive regularly
- Elapsed time between observations may be related to state
- Finance: tick-level stock data
- Molecular biology: single molecule experiments
- Assume now that z's follow a continuous-time first-order Markov chain

HF-HMM

$$[y_t|z_t = i] \sim \mathcal{N}(0, \sigma_i^2), i = 0, \dots, K-1.$$

$$[\delta_t|z_{t-1}=i] \sim geometric(p_i), i=0,\ldots,K-1$$

For K=2, suppose the time z stays in state i is $\exp(\lambda_i)$. Then:

$$p(z_t = 0 | z_{t-1} = 0, \delta_t = t) = \frac{\lambda_1}{\lambda_0 + \lambda_1} + \frac{\lambda_0}{\lambda_0 + \lambda_1} \exp^{-(\lambda_0 + \lambda_1)t}$$

For K>2, from state i, z transitions to state i+1 with probability βi and state i-1 with probability $1-\beta i$ (i.e. birth & death, reflecting boundaries)

eigendecomposition...

HF-HMM Priors

$$\left[\sigma_{i}^{2}\right] \sim \operatorname{Inv}-\chi^{2}(\nu_{0}, \sigma_{0}^{2}), i = 0, \dots, K-1$$

$$[p_i] \sim \operatorname{Beta}(\alpha_p, \beta_p), i = 0, \dots, K-1$$

$$[\lambda_i] \sim \Gamma(\alpha_\lambda, \beta_\lambda), i = 0, \dots, K-1$$

$$[\beta_i] \sim \operatorname{Beta}(\alpha_{\beta}, \beta_{\beta}), i = 1, \dots, K-2$$

Posteriors not available in closed-form...

HF-HMM Gibbs Sampler

$$[z_{t}|-] \propto [z_{t}|z_{t-1}, \delta_{t}, \lambda_{0}, \lambda_{1}] [z_{t+1}|z_{t}, \delta_{t+1}, \lambda_{0}, \lambda_{1}] [\delta_{t+1}|z_{t}, p_{0}, p_{1}] [y_{t}|z_{t}, \sigma_{0}, \sigma_{1}]$$

$$[\sigma_{i}^{2}|-] \propto [\sigma_{i}] \prod_{\substack{t=1\\z_{t}=i}}^{n} [y_{t}|z_{t}, \sigma_{i}]$$

$$[p_{i}|-] \propto [p_{i}] \sum_{\substack{t=2\\z_{t-1}=i}}^{n} [\delta_{t}|z_{t-1}, p_{i}]$$

$$[\boldsymbol{\lambda}, \boldsymbol{\beta}|-] \propto [\boldsymbol{\lambda}] [\boldsymbol{\beta}] \prod_{t=2}^{n} [z_{t}|z_{t-1}, \delta_{t}, \boldsymbol{\lambda}, \boldsymbol{\beta}]$$

Use a Metropolis step for this one

Metropolis Within Gibbs

Let
$$\Lambda \equiv (\lambda, \beta)$$

Generate a candidate from: $J(\Lambda, \Lambda')$

Accept with probability:

$$\alpha(\mathbf{\Lambda}, \mathbf{\Lambda}' | \mathbf{z}, \boldsymbol{\delta}) = \min\{1, \frac{[\mathbf{\Lambda}'] \prod_{t=2}^{n} [z_t | z_{t-1}, \delta_t, \mathbf{\Lambda}']}{[\mathbf{\Lambda}] \prod_{t=2}^{n} [z_t | z_{t-1}, \delta_t, \mathbf{\Lambda}]} \times \frac{J(\mathbf{\Lambda}', \mathbf{\Lambda})}{J(\mathbf{\Lambda}, \mathbf{\Lambda}')} \}.$$

HMM

MEMM

maximum entropy markov model

MEMM

•MEMM learns a single multiclass Logistic regression model for $y_i \mid y_{i-1}, x_i$

•Predict y1 from x1, then y2 from y1 and x2, etc.

•No reason for the features not to include x_{i-1} , x_{i+1} , etc.

t _i	<i>t</i> _{<i>i</i>-1}	<i>f</i> ₁	f_2	<i>f</i> ₃	 f_d
PER	LOC	Т	1	2.7	0

Dependency Network

• Toutanova et al., 2003, use a "dependency network" and richer feature set

- •Idea: using the "next" tag as well as the "previous" tag should improve tagging performance
- •Need modified Viterbi to find most likely sequence

ti	<i>t</i> _{i-1}	t_{i+1}	<i>f</i> ₁	f ₂	 f_d
PER	LOC	PER	1	2.7	0

Conditional Random Fields

- •Dependency network does consider the tag sequence in its entirety
- •CRF's optimize model parameters with respect to the entire sequence
- •More expensive optimization; increased flexibility and accuracy

From Logistic Regression to CRF

scalar

•Logistic regression:

 \bullet Or

$$p(y|\mathbf{x}) = \frac{1}{Z(\mathbf{x})} \exp \left\{ \sum_{k=1}^{K} \lambda_k f_k(y, \mathbf{x}) \right\}$$

•Linear chain CRF:

$$p(y \mid x) = \frac{1}{Z(x)} \prod_{t} \exp \left\{ \sum_{k=1}^{K} \lambda_k f_k(y_t, y_{t-1}, x) \right\}$$
vector

CRF Parameter Estimation

•Conditional log likelihood:

$$\ell(\theta) = \sum_{i=1}^{N} \log p(\mathbf{y}^{(i)}|\mathbf{x}^{(i)})$$

$$= \sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \lambda_k f_k(y_t^{(i)}, y_{t-1}^{(i)}, \mathbf{x}_t^{(i)}) - \sum_{i=1}^{N} \log Z(\mathbf{x}^{(i)}),$$

•Regularized log likelihood:

$$\sum_{i=1}^{N} \sum_{t=1}^{T} \sum_{k=1}^{K} \lambda_k f_k(y_t^{(i)}, y_{t-1}^{(i)}, \mathbf{x}_t^{(i)}) - \sum_{i=1}^{N} \log Z(\mathbf{x}^{(i)}) - \sum_{k=1}^{K} \frac{\lambda_k^2}{2\sigma^2}$$

- •Conjugate gradient, BFGS, etc.
- •POS Tagging, 45 tags, 10⁶ words = 1 week

Sutton and McCallum (2006)

Skip-Chain CRF's

Bock's Results: POS Tagging

Foature Description		Edge
Feature Description	Feature	Feature
Current word	X	X
Previous word	X	X
Previous word and current word	X	X
Next word	X	X
Current word and next word	X	
Current word shape	X	
Previous word shape	X	
Previous word shape and current word shape	X	
Next word shape	X	
Current word shape and next word shape	X	
Previous word shape, current word shape, and next word shape	X	
Word contains a digit	X	
Two letter word prefix	X	
Three letter word prefix	X	
Four letter word prefix	X	
Five letter word prefix	X	
Two letter word suffix	X	
Three letter word suffix	X	
Four letter word suffix	X	
Five letter word suffix	X	
Word contains a capital letter	X	
Word is followed within three words by Co/Inc/Ltd/Corp	X	
Word contains a hyphen	X	

Model	Tag Accuracy	LBFGS Iterations	Training Time (h:mm)
ME Classifier	96.71%	128	2:09
MEMM	96.81%	194	2:56
CRF	97.00%	207	5:56

Penn Treebank

Bock's Results: Named Entity

Fasture Description		Edge
Feature Description	Feature	Feature
Current word	X	X
Previous word	X	X
Previous word and current word	X	X
Next word	X	X
Current word and next word	X	
Current word shape	X	
Previous word shape	X	
Previous word shape and current word shape	X	
Next word shape	X	
Current word shape and next word shape	X	
Previous word shape, current word shape, and next word shape	X	
Word contains a digit	X	
Two letter word prefix	X	
Three letter word prefix	X	
Four letter word prefix	X	
Five letter word prefix	X	
Two letter word suffix	X	
Three letter word suffix	X	
Four letter word suffix	X	
Five letter word suffix	X	
Word contains a capital letter	X	
Word is followed within three words by Co/Inc/Ltd/Corp	X	
Word contains a hyphen	X	

Model	F1	LBFGS Iterations	Training Time (h:mm)
ME Classifier	84.68%	114	0:08
MEMM	88.03%	106	0:07
CRF	89.38%	166	0:26