

Intro/motivation: population vs. stikprøve Statistisk Dataanalyse 1, Kursusuge 2. onsdag Dias 3/37

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

I dag

Dagens emne: Analyse af en enkelt stikprøve (one sample).

Dagens forelæsninger dækkes primært af Kap. 4.2, 4.4 og 5.3.1-5.3.3 i lærebogen.

Formiddag:

- Intro/motivation
- Egenskaber ved gennemsnit, CLT
- Statistisk model, estimation og standard error
- Konfidensinterval

Eftermiddag: Analyse af transformeret stikprøve illustreret ved gæt på punktplot (opfølgning på HS.11 mm).

Statistisk Dataanalyse 1, Kursusuge 2, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

En enkelt stikprøve (one sample)

Data: y_1, \ldots, y_n fra uafhængige individer som antages at være trukket tilfældigt fra den **samme population**.

Eksempel:

- Højdemålinger fra n = 104 kvinder
- Kun kvinder (eller kun mænd, men ikke begge dele)

Ingen forklarende variable!

Analysen baseres på at data er normalfordelte: Vigtigt at kunne checke det. (Det lærte vi i mandags!)

KØBENHAVNS UNIVERSITET DET NATURVIDENSKABELIGE FAKULTET

Spørgsmål

Lad os kalde **populationsgennemsnittet** μ . Interesseret i at bruge data (stikprøven) til at sige noget begavet om μ :

- Estimat (punktestimat) for populationsgennemsnittet. Naturligt at bruge stikprøvegennemsnittet: $\hat{\mu} = \bar{y}$
- Usikkerhed på estimatet: Standard error
- Et interval af μ -værdier der passer med data: konfidensinterval (intervalestimat)

Ingredienser i analysen:

Statistisk Dataanalyse 1, Kursusuge 2, onsdag

Dias 7/37

- Antager at data er **normalfordelte** \rightarrow skal checkes
- Estimat $\hat{\mu} = \bar{y} \rightarrow$ egenskaberne for **gennemsnittet** er vigtige

KØBENHAVNS UNIVERSITET DET NATURVIDENSKABELIGE FAKULTET Population vs stikprøve • Vi er interesserede i populationen (alle unge kvinder) • Vi har kun målinger på en repræsentativ stikprøve (n = 104) • Særligt interesseret i populationegennemsnittet μ (ukendt). Statistisk Dataanalyse 1, Kursusuge 2, onsdag

KØBENHAVNS UNIVERSITET DET NATURVIDENSKABELIGE FAKULTET Populations- og stikprøvestørrelser Population Stikprøve (data) Pop.-gennemsnit μ Stikprøvegennemsnit \bar{y} Pop.-spredning σ Stikprøvespredning s Histogram Tæthed Ret linie QQ-plot Statistisk Dataanalyse 1, Kursusuge 2, onsdag Dias 11/37

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Er data normalfordelt?

Hvis data y_1, \ldots, y_n er normalfordelt, så vil...

- tæthed for $N(\bar{y}, s^2)$ være en god approks. til histogrammet
- punkterne i QQ-plottet ligge omkring den rette linie med skæring \bar{y} og hældning s

Systematiske afvigelser er tegn på at data ikke er normalfordelte.

- Jo mindre n, jo større afvigelser kan vi acceptere
- Histogrammet dur kun for *n* nogenlunde stor

Statistisk Dataanalyse 1, Kursusuge 2, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Egenskaber ved gennemsnittet

Dias 12/37

Gennemsnit af normalfordelte variable

Infobox 4.3 Hvis Y_1, \ldots, Y_n er uafhængige og alle $Y_i \sim N(\mu, \sigma^2)$, så er gennemsnittet \bar{Y} også normalfordelt:

$$\bar{Y} = \frac{1}{n}(Y_1 + \cdots + Y_n) \sim N(\mu, \sigma^2/n)$$

Specielt gælder:

$$\operatorname{sd}(\bar{Y}) = \frac{\sigma}{\sqrt{n}}$$

Lad os prøve at illustrere det...

Statistisk Dataanalyse 1, Kursusuge 2, onsdag Dias 13/37

KØBENHAVNS UNIVERSITET DET NATURVIDENSKABELIGE FAKULTET

Fordeling af gennemsnit

Histogrammer over 1000 gennemsnit af n stk. N(0,1) variable.

Ser faktisk ud til at være **normalfordelt** som Infobox 4.3 forudsagde. Passer middelværdi og spredning?

Statistisk Dataanalyse 1, Kursusuge 2, onsdag Dias 15/37

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Fordeling af gennemsnit

Vi forestiller os at vi ser **mange datasæt** der hver især består af n observationer. For hvert datasæt beregner vi gennemsnittet.

Stikprøve 1 (
$$n$$
 observationer) \rightarrow $\overline{\mathbf{y}}_1$
Stikprøve 2 (n observationer) \rightarrow $\overline{\mathbf{y}}_2$
 \vdots \vdots Stikprøve 1000 (n observationer) \rightarrow $\overline{\mathbf{y}}_{100}$

Hvordan ser histogrammet for $\bar{y}_1, \ldots, \bar{y}_{1000}$ ud?

Statistisk Dataanalyse 1, Kursusuge 2, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Live

Lad os lege lidt med en shiny app: https://ihstevenson.shinyapps.io/sample_means/

- Kan skrue på n =antal obs. i hvert datasæt =Sample size
- Kan skrue på antal datasæt = Number of repetitions
- Kan prøve andre fordelinger end normalfordelingen

KØBENHAVNS UNIVERSITET

Den centrale grænseværdisætning

Overraskende: Gennemsnittet så ud til være normalfordelt uanset om "basisfordelingen" var en normalfordeling eller ej.

Det er præcis det den centrale grænseværdisætning (CLT) siger:

- Hvis: y_1, \ldots, y_n er uafhængige og har den samme fordeling, med middelværdi μ og spredning σ
- Så: \bar{y} approksimativt normalfordelt med middelværdi μ og spredning σ/\sqrt{n}

Gælder (næsten) uanset hvordan den bagvedliggende fordeling ser ud.

Statistisk Dataanalyse 1, Kursusuge 2, onsdag Dias 17/37

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Statistisk model

Data: y_1, \ldots, y_n . Målinger på repræsentativ stikprøve.

Statistisk model: y_1, \ldots, y_n er uafhængige og alle normalfordelte med samme middelværdi μ og samme spredning σ .

En statistisk model angiver de antagelser vi gør os om hvordan "de mekanismer" der har genereret data.

Hvad betyder uafhængighed?

- \bullet Løst: Ingen information i én observation om nogle af de andre
- Eksempler på ikke-uafhængige data?

To ukendte **parametre** i modellen: Populationsgennemsnittet μ og populationsspredningen σ .

Model, estimation, standard error

Statistisk Dataanalyse 1, Kursusuge 2, onsdag Dias 18/37

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Estimation

To ukendte **parametre** i modellen: Populationsgennemsnittet μ og populationsspredningen σ .

Vores bedste gæt på parametrene er de tilhørende stikprøvestørrelser.

Estimation:

$$\hat{\mu} = \bar{y}, \quad \hat{\sigma} = s$$

Husk at \bar{y} er normalford. med middelværdi μ og spredning σ/\sqrt{n} .

 \bar{y} normalfordelt med middelværdi μ og spredning σ/\sqrt{n}

Standard error for $\hat{\mu} = \bar{y}$ er den estimerede spredning:

$$\operatorname{SE}(\hat{\mu}) = \operatorname{SE}(\bar{y}) = \frac{s}{\sqrt{n}}$$

Vores gæt på spredningen af \bar{y} .

For data vedr. kvinders højde:

$$\hat{\mu} = \bar{\mu} = 168.52, \quad \text{SE}(\hat{\mu}) = \text{SE}(\bar{y}) = \frac{6.64}{\sqrt{104}} = 0.65$$

Statistisk Dataanalyse 1, Kursusuge 2, onsdag Dias 21/37

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Konfidensinterval

Evt.: Mindste kvadraters metode

Husk at vi fandt "den bedste rette linie" i lineær regression med mindste kvadraters metode.

Vi kan også bruge **mindste kvadraters metode** for en enkelt stikprøve: Vælg μ så residualkvadratsummen er så lille som mulig:

$$Minimér \sum_{i=1}^{n} (y_i - \mu)^2$$

Residualkvadratsummen viser sig at være mindst mulig for $\mu = \bar{y}$.

Statistisk Dataanalyse 1, Kursusuge 2, onsdag Dias 22/37

KØBENHAVNS UNIVERSITET

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Konfidensinterval

Har estimat \bar{y} — den værdi der "passer bedst" med vores data. Kaldes sommetider et **punktestimat**.

Ønsker et **intervalestimat** — et interval af μ -værdier der er "i overensstemmelse" med vores data. **Konfidensinterval.**

"Løsningen" viser sig at være

$$\hat{\mu} \pm noget \cdot SE(\hat{\mu})$$

Hvad er dette noget?

Konfidensinterval for μ

$$ar{y} \sim \textit{N}(\mu, \sigma^2/\textit{n})$$
, så

$$P\left(\mu - 1.96 \frac{\sigma}{\sqrt{n}} < \bar{y} < \mu + 1.96 \frac{\sigma}{\sqrt{n}}\right) = 0.95$$

Eller — hvis vi omorganiserer så μ står i midten:

$$P\Big(\bar{y} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \bar{y} + 1.96 \frac{\sigma}{\sqrt{n}}\Big) = 0.95$$

Hvis vi kendte populationsspredningen σ , så ville vi kunne beregne endepunkterne $\bar{y} \pm 1.96 \frac{\sigma}{\sqrt{n}}$.

Men: Vi kender ikke populationsspredningen σ . Oplagt at erstatte σ med s, men så skal 1.96 erstattes med et lidt større tal.

Statistisk Dataanalyse 1, Kursusuge 2, onsdag Dias 25/37

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

DET NATURVIDENSKABELIGE FAKULTET

Konfidensinterval for μ

For kendt σ :

$$P\left(-1.96 < \frac{\sqrt{n}(\bar{y} - \mu)}{\sigma} < 1.96\right) = 0.95$$

Husk at 1.96 er 97.5% fraktilen i N(0,1).

Hvis vi i stedet indsætter estimatet s, så skal vi bruge 97.5% fraktilen i t fordelingen med n-1 frihedsgrader:

$$P\left(-t_{0.975,n-1} < \frac{\sqrt{n}(\bar{y} - \mu)}{s} < t_{0.975,n-1}\right) = 0.95$$

Vi flytter rundt så μ står i midten:

$$P\left(\bar{y} - t_{0.975, n-1} \cdot \frac{s}{\sqrt{n}} < \mu < \bar{y} + t_{0.975, n-1} \cdot \frac{s}{\sqrt{n}}\right) = 0.95$$

t-fordelingen

Standardisering

$$Z = rac{\sqrt{n}(ar{y} - \mu)}{\sigma} \sim N(0, 1)$$

Fordelingen ændres hvis σ erstattes med s:

$$T=rac{\sqrt{n}(ar{y}-\mu)}{\mathbf{s}}\sim t_{n-1}$$

- **t-fordelingen** med n-1 frihedsgrader (df = n-1)
- Bredere haler end N(0,1).
- Ligner N(0,1) mere og mere når df vokser.

Statistisk Dataanalyse 1, Kursusuge 2, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Konfidensinterval for μ

Foregående slide:

$$P\left(\bar{y} - t_{0.975, n-1} \cdot \frac{s}{\sqrt{n}} < \mu < \bar{y} + t_{0.975, n-1} \cdot \frac{s}{\sqrt{n}}\right) = 0.95$$

Altså: Intervallet

$$\bar{y} \pm t_{0.975,n-1} \cdot \frac{s}{\sqrt{n}}$$
 eller $\hat{\mu} \pm t_{0.975,n-1} \cdot SE(\hat{\mu})$

indeholder populationsmiddelværdien med 95% sandsynlighed.

Intervallet kaldes et 95% konfidensinterval for μ .

Konfidensinterval for gennemsnitshøjde

95% KI for den populationsgennemsnittet for **kvinder**:

$$168.52 \pm 1.983 \cdot \frac{6.64}{\sqrt{104}} = 168.52 \pm 1.29 = (167.23, 169.82)$$

Værdier mellem 167.2~og~169.8~for~populationsgennemsnittet~er~i~overensstemmelse~med~data~på~95%~konfidensniveau.

95% KI for den populationsgennemsnittet for mænd:

$$182.70 \pm 2.010 \cdot \frac{5.54}{\sqrt{50}} = 182.70 \pm 1.57 = (181.13, 184.27)$$

Statistisk Dataanalyse 1, Kursusuge 2, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

R: "Manuelt"

Gennemsnit og stikprøvespredning

> mean(kData\$hojde, na.rm=TRUE)

[1] 168.524

> sd(kData\$hojde, na.rm=TRUE)

[1] 6.639972

Den relevante t-fraktil

> qt(0.975, df=103)

[1] 1.983264

Nedre grænse

> 168.524 - 1.9833 * 6.639972/sqrt(104)

[1] 167.2327

Øvre grænse

> 168.524 + 1.9833 * 6.639972/sqrt(104)

[1] 169.8153

DET NATURVIDENSKABELIGE FAKULTET

R: Kommentarer

Flere metoder til bestemmelse af konfidensintervallet i situationen med en stikprøve:

- "Manuelt". Brug qt til at finde t-fraktilen
- Funktionen t.test
- Med lm og confint

Bemærk: 1m og summary giver flere ting: \bar{y} , $SE(\bar{y})$, s mm.

Statistisk Dataanalyse 1, Kursusuge 2, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

R: t.test

> t.test(kData\$hojde)

One Sample t-test

```
data: kData$hojde
t = 258.83, df = 103, p-value < 2.2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
   167.2327 169.8153
sample estimates:
mean of x
   168.524</pre>
```

Statistisk Dataanalyse 1, Kursusuge 2, onsdag Dias 32/37

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

R: Im

- > model <- lm(hojde ~ 1, data=kData)
 > summary(model)
- > Builliary (moder

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 168.5240 0.6511 258.8 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 6.64 on 103 degrees of freedom (1 observation deleted due to missingness)

> confint(model)

Statistisk Dataanalyse 1, Kursusuge 2, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

50 simulerede datasæt (per scenarie)

Hvad sker der med konfidensintervallerne når vi ændrer n, σ^2 , konfidensgraden?

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

Hvad betyder de 95% egentlig?

Vi forestiller os at vi ser **mange datasæt**. Alle observationer er normalfordelt med middelværdi μ og spredning σ .

For hvert datasæt beregner vi KI: $\bar{y} \pm t_{0.975,n-1} \cdot \frac{s}{\sqrt{n}}$

Stikprøve 1 \rightarrow KI
Stikprøve 2 \rightarrow KI \vdots \vdots Stikprøve 1000 \rightarrow KI

95% af KI'erne vil indeholde populationsgennemsnittet μ .

- For "typiske datasæt" indeholder KI altså μ
- KI består af de værdier der "passer med data" på 95% niveau

Statistisk Dataanalyse 1, Kursusuge 2, onsdag

KØBENHAVNS UNIVERSITET

DET NATURVIDENSKABELIGE FAKULTET

En enkelt stikprøve, opsummering

Modelfiguren: Kontinuert respons, ingen forklarende variable.

Data: y_1, \ldots, y_n

Statistisk model: y_1, \ldots, y_n er uafhængige og alle normalfordelte med samme middelværdi μ og samme spredning σ .

Estimation: $\hat{\mu} = \bar{y}$ og $\hat{\sigma} = s$

Standard error for $\hat{\mu}$: $SE(\hat{\mu}) = \frac{s}{\sqrt{n}}$

95% konfidensinterval for μ : $\bar{y} \pm t_{0.975,n-1} \cdot \frac{s}{\sqrt{n}}$. De værdier af μ der er i overensstemmelse med data.

Bemærk struktur af KI:

estimat
$$\pm t$$
-fraktil · SE(estimat).

KØBENHAVNS UNIVERSITE

DET NATURVIDENSKABELIGE FAKULTET

Opsummering — til eget brug

- Hvad er antagelserne i den statistiske model for en enkelt stikprøve?
- Hvordan estimeres populationsparametrene?
- Hvad er formlen for $SE(\bar{y})$?
- Hvad er formlen for 95% konfidensintervallet for μ ?
- Hvad er fortolkningen af konfidensintervallet?
- Kan du indlæse data fra en Excel og/eller tekstfil?

Statistisk Dataanalyse 1, Kursusuge 2, onsdag