Microbundles on Topological Manifolds

Florian Burger

April 24, 2024

1 Introduction to Microbundles

Definition 1.1. (microbundle)

A microbundle $\mathfrak b$ is hallo a tuple $\mathfrak b := (B, E, i, j)$ satisfying the following properties:

- B is a topological space called the base space
- E is a topological space called the total space
- $i: B \to E$ (injection) and $j: E \to B$ (projection) are continuous maps with $id_B = j \circ i$
- Every $b \in B$ is locally trivializable, i.e there exist open neighborhoods $U \subseteq B$ of b and $V \subseteq E$ of i(U) such that the following diagram commutes:

We call n the fibre dimension of \mathfrak{b} .

Definition 1.2. (isomorphic microbundles)

Two microbundles $\mathfrak{b}_1 := (B, E_1, i_1, j_2)$ and $\mathfrak{b}_2 := (B, E_2, i_2, j_2)$ are said to be isomorphic if there exist neighborhoods $V_1 \subseteq E_1$ of $i_1(B)$ and $V_2 \subseteq E_2$ of $i_2(B)$ with an homeomorphism $\phi : V_1 \xrightarrow{\sim} V_2$, so that the following diagram commutes:

Example 1.3. (trivial microbundle)

Let B be a topological space and $n \in \mathbb{N}$. The diagram $\mathfrak{e}_B^n : B \xrightarrow{\iota} B \times \mathbb{R}^n \xrightarrow{\pi} B$ constitutes a microbundle, where $\iota(b) := (b,0)$ and $\pi(b,x) := b$. We call \mathfrak{e}_B^n the standard microbundle and every microbundle isomorphic to \mathfrak{b}_B^n trival.

Lemma 1.4. (criteria for triviality)

A microbundle \mathfrak{b} of B is trivial if and only if there exists a open subset $B \subseteq U$ with $U \cong B \times \mathbb{R}^n$.

Proof. \Box

Example 1.5. (tangent microbundle)

Let M be a topological manifold. We derive the tangent microbundle $\mathfrak{t}_M: M \xrightarrow{\Delta} M \times M \xrightarrow{\pi_1} M$, where Δ is the diagonal map and π_1 ist the projection map on the first component.

Proof. Let $p \in M$ and (U, ϕ) a chart over p:

 (id, ϕ) is a homeomorphism since $\phi: U \xrightarrow{\sim} \mathbb{R}^n$ is a homeomorphism.

Proposition 1.6. (restricting the total space)

Let $\mathfrak{b}: B \xrightarrow{i} E \xrightarrow{j} B$ be a microbundle and E' an arbitray neighborhood of i(B). The restriction $\mathfrak{b}': B \xrightarrow{i} E' \xrightarrow{j|_{E'}} B$ is a microbundle isomorphic to \mathfrak{b} .

Proof. Let $b \in B$.

Choose an arbitray trivialization (U, V, ϕ) over \mathfrak{b} of b. We restrict $\phi : V \to U \times \mathbb{R}^n$ to $V \cap E'$. Since $i(b) \in V$ is open and E' is a neighborhood of i(B), it follows that $\phi(V \cap E')$ is a neighborhood of (b, 0).

$$\implies \exists (b,0) \in U' \times X \subseteq \phi(V \cap E')$$
, where $U' \subseteq U$ and $X \subseteq R^n$ are open $\implies \exists \varepsilon > 0 : U' \times B_{\varepsilon}(0) \subseteq \phi(V \cap E')$

Since $B_{\varepsilon}(0) \cong \mathbb{R}^n$, it follows that $U' \times \mathbb{R}^n \cong U' \times B_{\varepsilon}(0) \cong \phi^{-1}(U' \times B_{\varepsilon}(0))$. Choosing $V' := \phi^{-1}(U' \times B_{\varepsilon}(0)) \subseteq V$, we see that \mathfrak{b}' is a microbundle. We easily see, that \mathfrak{b} is isomorphic to \mathfrak{b}' via the identity.

2 Induced Microbundles

Definition 2.1. (induced microbundle)

Let $\mathfrak{b}: B \xrightarrow{i} E \xrightarrow{j} B$ be a microbundle and $f: A \to B$ a continuous map. We can construct a microbundle $f^*\mathfrak{b}: A \xrightarrow{i'} E' \xrightarrow{j'} A$ defined as follows:

- $E' := \{(a, e) \in A \times E \mid f(a) = j(e)\}$
- $i': A \to E'$ with $i'(a) := (a, (i \circ f)(a))$
- $j': E' \to A$ with j'(a, e) := a

We call $f^*\mathfrak{b}$ the *induced microbundle* of \mathfrak{b} over f.

Proof. It is clear that i' and j' are continuous and that $id_A = j' \circ i'$. So it remains to be shown that $f^*\mathfrak{b}$ is locally trivial for every $a \in A$:

- $U' := f^{-1}(U) \subseteq A$ is an open neighborhood of a.
- $V' := j'^{-1}(U') \subseteq E'$ is an open neighborhood of i'(U').
- $\phi': V' \xrightarrow{\sim} U' \times \mathbb{R}^n, \phi'(a,e) := (a, \pi_2(\phi(e)))$ is a homeomorphism.
 - $-\phi'$ is well defined because $(a,e) \in V' : j(e) = f(a) \in U \implies e \in V$.

- $-\phi'$ is bijective with $\phi'^{-1}(a,v)=(a,\phi^{-1}(f(a),v)).$
- $-\phi'$ and ϕ'^{-1} are continuous because it's components are.

Example 2.2. (restricted microbundle)

Let $\mathfrak{b}: B \xrightarrow{i} E \xrightarrow{j} B$ be a microbundle and $A \subseteq B$: The induced microbundle $\iota^*\mathfrak{b}$ with $\iota: A \hookrightarrow B$ being the inclusion map is called the *restricted microbundle* and we write $\mathfrak{b}|_A := \iota^*\mathfrak{b}$.

Remark 2.3. In the following, we'll consider $E(\mathfrak{b}|_A)$ a subset of $E(\mathfrak{b})$. This is justified because $E(\mathfrak{b}|_A) = \{(a,e) \in A \times E(\mathfrak{b}) \mid a = j(e)\} \cong \{e \in E(\mathfrak{b}) \mid j(e) \in A\} \subseteq E(\mathfrak{b})$.

Lemma 2.4. (induced trivial microbundle)

The induced microbundle $f^*\mathfrak{b}$ is trivial for every map $f:A\to B$, if \mathfrak{b} is already trivial.

Proof. Let (V, ϕ) be a global trivialization of \mathfrak{b} , i.e $V \cong_{\phi} B \times \mathbb{R}^n$. Now define $V' := (A \times V) \cap E'$ and $\phi'(a, e) := (a, \phi^{(2)}(e))$. Obviously, V' is a neighborhood of i'(A) and also ϕ' is a homeomorphism with inverse $\phi'^{(-1)}(a, x) = (a, \phi^{-1}(f(a), x))$.

Proposition 2.5. (composition)

Let $A \xrightarrow{f} B \xrightarrow{g} C$ be topological spaces and $\mathfrak{c}: C \xrightarrow{i} E \xrightarrow{j} C$ be a microbundle:

$$(g \circ f)^* \mathfrak{c} \cong f^*(g^* \mathfrak{c})$$

Proof. We'll compare the two total spaces and conclude that they are homeomorphic.

- 1. $E((g \circ f)^*\mathfrak{c}) = \{(a, e) \in A \times E(\mathfrak{c}) \mid g(f(a)) = j(e)\}\$
- 2. $E(f^*(g^*\mathfrak{c})) = \{(a, (b, e)) \in A \times (B \times E(\mathfrak{c})) \mid f(a) = b \text{ and } g(b) = j(e)\}.$

We have the bijection $\phi: E((g \circ f)^*\mathfrak{c}) \xrightarrow{\sim} E(f^*(g^*\mathfrak{c}))$ with $\phi(a, e) := (a, (f(a), e))$ and $\phi^{-1}(a, (b, e)) = (a, e)$. Additionally, ϕ is a homeomorphism because ϕ and ϕ^{-1} are componentwise continuous. It's easy to see that ϕ respects both injection and projection, which concludes the proof.

For a topological space X, we define the cone of X as

$$CX := X \times [0,1]/X \times \{1\}$$

and for a map $f: A \to B$ the mapping cone of f as

$$B \sqcup_f CA := B \sqcup CA / \sim$$

where $(a,0) \sim b : \iff f(a) = b$.

Lemma 2.6. (extending over a mapping cone)

A microbundle \mathfrak{b} over B can be extended to a microbundle over the mapping cone $B \sqcup_f CA$ if and only if $f^*\mathfrak{b}$ is trivial.

Proof. We show both implications.

 \Longrightarrow

Let \mathfrak{b}' be an extension of \mathfrak{b} over $B \sqcup_f CA$. Considering $A \xrightarrow{f} B \hookrightarrow B \sqcup_f CA$, the composition $\iota \circ f$ is null-homotopic with homotopy

$$H_t(a) := [(a,t)]$$

Note that $H_0(a) = [(a, 0)] = [f(a)] = (\iota \circ f)(a)$ and $H_1(a) = [(a, 1)] = [(\tilde{a}, 1)] = H_1(\tilde{a})$.

 $\Longrightarrow_{Hom.Thm.} (\iota \circ f)^* \mathfrak{b}'$ is trivial

Since $(\iota \circ f)^*\mathfrak{b}' = f^*(\iota^*\mathfrak{b}') = f^*\mathfrak{b}$, it follows that $f^*\mathfrak{b}$ is trivial. $\Leftarrow=:$ Let $f^*\mathfrak{b}$ be trivial. Analogous to the cone, we define the *cylinder* of X as

$$MX := X \times [0,1]$$

and for a map $f: A \to B$ the mapping cylinder of f as

$$B \sqcup_f MA := B \sqcup MA / \sim$$

where $(a,0) \sim b : \iff f(a) = b$. In contrast to the mapping cone, there exists a natural retraction from the mapping cylinder to the attached space

$$\pi: B \sqcup_f MA \to B; \pi([(a,t)]) := f(a)$$

and therefore the induced microbundle $\pi^*\mathfrak{b}$ over $B \sqcup_f MA$. Considering $A \times \{1\} \hookrightarrow B \sqcup_f MA \xrightarrow{\pi} B$, we see that $\pi \circ \iota \cong f$ and therefore

$$\pi^* \mathfrak{b}|_{A \times \{1\}} = (\pi \circ \iota)^* \mathfrak{b} \cong f^* \mathfrak{b} = \mathfrak{e}_A^n$$

is trivial. From the lemma of induced trivial microbundles and $(a,t)\mapsto (a,1)$ it follows that $\pi^*\mathfrak{b}|_{A\times \left[\frac{1}{2},1\right]}$ is trivial.

$$\implies \exists \phi : E(\mathfrak{b}|_{A \times \left[\frac{1}{2},1\right]}) \xrightarrow{\sim} A \times \left[\frac{1}{2},1\right] \times \mathbb{R}^n$$

Now we explicitly construct the desired extended microbundle $\mathfrak{b}': B \sqcup_f CA \xrightarrow{i'} E' \xrightarrow{j'} B \sqcup_f CA$

- $E' := E(\mathfrak{b}|_{A \times [\frac{1}{2},1]})/\phi^{-1}(A \times [\frac{1}{2},1] \times \{x\})$ (for every $x \in \mathbb{R}^n$)
- $i' := \pi \circ i$ the projection i to E'
- j'([e]) := [j(e)] is well defined, because $[e] = [\tilde{e}] \implies [j(e)] = [j(e')]$

Now that we have constructed \mathfrak{b}' , this proves the claim.

Corollary 2.7. (extending over a d-simplex)

Let B be a (d+1)-simplicial complex, B' it's d-skeleton and $\Delta^{d+1} \cong \sigma \subseteq B$. A microbundle \mathfrak{b} over B' can be extended to a microbundle over B' $\cup \sigma$ if and only if $\mathfrak{b}|_{\partial \sigma}$ is trivial.

Proof. The statement follows from the last lemma:

There exists a $\phi: C\partial\sigma \xrightarrow{\sim} \sigma$ such that $\phi(\partial\sigma \times \{0\}) = \partial\sigma$. We explicitly construct $\phi((t_1, \ldots, t_{d+1}), \lambda) := (1 - \lambda)(t_1, \ldots, t_{d+1}) + \frac{\lambda}{d+1}(1, \ldots, 1)$. It's easy to see that ϕ suffices all our requirements. By choosing $f: \partial\sigma \hookrightarrow B'$ and applying the last lemma, the statement is proven.

3 Whitney sums

Definition 3.1. (whitney sum)

Let \mathfrak{b}_1 and \mathfrak{b}_1 be two microbundles over a topological space B. We define the whitney sum $\mathfrak{b}_1 \oplus \mathfrak{b}_2$ as follows:

- $E := \{(e_1, e_2) \in E(\mathfrak{b}_1) \times E(\mathfrak{b}_2) \mid j_1(e_1) = j_2(e_2)\}$
- $i(b) := (i_1(b), i_2(b))$
- $j(e_1, e_2) := j_1(e_1) = j_2(e_2)$

Proof. Let $b \in B$.

Choose U_1, V_1, ϕ_1 and U_2, V_2, ϕ_2 accordingly from the local trivialization of b over \mathfrak{b}_1 and \mathfrak{b}_2 :

- $U := U_1 \cap U_2$
- $V := (V_1 \times V_2) \cap E$
- $\phi: V \to U \times \mathbb{R}^{n_1+n_2}; \phi(e_1, e_2) := (\phi_1^{(1)}(e_1), \phi_1^{(2)}(e_1) \times \phi_2^{(2)}(e_2))$

Note that $\phi_1^{(1)}(e_1) = \phi_2^{(1)}(e_2)$. Local triviality follows directly from it's components.

Lemma 3.2. (compatibility)

Let \mathfrak{b}_1 and \mathfrak{b}_1 be two microbundles over B and $f: A \to B$ a map. Induced microbundle and whitney sum are compatible, i.e. $f^*(\mathfrak{b}_1 \oplus \mathfrak{b}_2) \cong f^*\mathfrak{b}_1 \oplus f^*\mathfrak{b}_2$

Proof. From the definition of the induced microbundle and the whitney sum, we can derive the total spaces:

- 1. $E(f^*(\mathfrak{b}_1 \oplus \mathfrak{b}_2)) = \{(a, (e_1, e_2)) \in A \times (E_1 \times E_2) \mid j_1(e_1) = j_2(e_2) = f(a)\}$
- 2. $E(f^*\mathfrak{b}_1 \oplus f^*\mathfrak{b}_2) = \{((a_1, e_1), (a_2, e_2)) \in (A \times E_1) \times (A \times E_2) \mid j(a_1, e_1) = j(a_2, e_2) \text{ and } f(a_i) = j(e_i)\}$

Those two total spaces are homeomorphic via $\phi(a, (e_1, e_2)) := ((a, e_1), (a, e_2))$ and $\phi^{-1}((a, e_1), (a, e_2)) = (a, (e_1, e_2))$. ϕ and ϕ^{-1} are continuous because they are componentwise continuous. Obviously, $\phi \circ i = i$ and $\phi \circ j = j$, which concludes the proof.

Theorem 3.3. (inverse microbundles)

Let \mathfrak{b} be a microbundle over a d-dimensional simplicial complex B.

Then there exists a microbundle $\mathfrak n$ over B so that the Whitney sum $\mathfrak b \oplus \mathfrak n$ is trivial.

Proof. We prove this theorem by induction over d.

(Start of induction)

A 1-dimensional simplicial complex is just a bouquet of circles, therefore the start of induction follows directly from the bouquet lemma. (Inductive Step)

Let B' be the (d-1)-skeleton of B and \mathfrak{n}' it's corresponding microbundle so that $\mathfrak{b}|_{B'} \oplus \mathfrak{n}'$ is trivial.

4 Normal Microbundles

Definition 4.1. (normal microbundle)

Let M and N be two topological manifolds with $N\subseteq M$. We call a microbundle of the form

$$\mathfrak{n}: N \xrightarrow{\iota} U \xrightarrow{r} N$$

where $U \subseteq M$ is a neighborhood of N, a normal microbundle of N in M.

Definition 4.2. (product neighborhood)

Again, let M and N be two topological manifolds with $N \subseteq M$. We say that N has a *product neighborhood* in M if there exists a trivial normal microbundle of N in M.

Lemma 4.3. (criteria for product neighborhoods)

A submanifold $N \subseteq M$ has a product neighborhood if and only if there exists a neighborhood U of N with $(U, M) \cong (M \times \mathbb{R}^n, M \times 0)$.

Proof. This follows directly from the definition of normal microbundles and the criteria for trivial microbundles. \Box

Definition 4.4. (composition microbundle)

Let $\mathfrak{b}: B \xrightarrow{i_{\mathfrak{b}}} E \xrightarrow{j_{\mathfrak{b}}} B$ and $\mathfrak{c}: E \xrightarrow{i_{\mathfrak{c}}} E' \xrightarrow{j_{\mathfrak{c}}} E$ be two microbundles. We define

the composition microbundle $\mathfrak{b} \circ \mathfrak{c} : B \xrightarrow{i} E' \xrightarrow{j} B$ with $i(b) := (i_{\mathfrak{c}} \circ i_{\mathfrak{b}})(b)$ and $j(e') := (j_{\mathfrak{b}} \circ j_{\mathfrak{c}})(e')$

Proof. Let $b \in B$.

Choose local trivializations $(U_{\mathfrak{b}}, V_{\mathfrak{b}}, \phi_{\mathfrak{b}})$ of b and $(U_{\mathfrak{c}}, V_{\mathfrak{c}}, \phi_{\mathfrak{c}})$ of $j_{\mathfrak{b}}(b)$. From this, we construct our local trivialization over $\mathfrak{b} \circ \mathfrak{c}$. Consider $\phi_{\mathfrak{b}}(V_{\mathfrak{b}} \cap U_{\mathfrak{c}})$, which is a neighborhood of (b, 0). Therefore, there exist open neighborhoods $b \in U \subseteq U_{\mathfrak{b}}$ and $0 \in X \subseteq \mathbb{R}^n$ such that $U \times X \subseteq \phi_{\mathfrak{b}}(V_{\mathfrak{b}} \cap U_{\mathfrak{c}})$. Analoguous to the proof of restricting the total space in Chapter 1, it follows that

$$\exists \varepsilon > 0 : U \times B_{\varepsilon}(0) \subseteq \phi_{\mathfrak{b}}(V_{\mathfrak{b}} \cap U_{\mathfrak{c}})$$

$$\Longrightarrow U \times \mathbb{R}^n \cong U \times B_{\varepsilon}(0) \cong \phi_{\mathfrak{h}}^{-1}(U \times B_{\varepsilon}(0)) \cong \phi_{\mathfrak{s}}^{-1}(\phi_{\mathfrak{h}}^{-1}(U \times B_{\varepsilon}(0)))$$

which is an open neighborhood of i(U) and therefore a valid candidate for V. This concludes local triviality and the proof.

Lemma 4.5. (transitivity of normal microbundles)

Let M, N and P be topological manifolds with $P \subseteq N \subseteq M$. There exists a normal microbundle \mathfrak{n} of P in M, if there exist normal microbundles $\mathfrak{n}_p : P \xrightarrow{i_P} U_N \xrightarrow{j_P} P$ in N and $\mathfrak{n}_n : N \xrightarrow{i_N} U_M \xrightarrow{j_N} N$ in M.

Proof. We simply form the composition $\mathfrak{n}_p \circ \mathfrak{n}_n|_{U_N} : P \xrightarrow{i_N \circ i_P} U_M \xrightarrow{j_P \circ j_N} P$. Since $i_N \circ i_P$ is just the inclusion of $P \hookrightarrow U_M \subseteq M$, we found a normal microbundle \mathfrak{n} of P in M.

Every topological manifold is an absolute neighborhood retract (ANR).

It follows that by restricting M, if necessary, to an open neighborhood of N, there exists a retraction $r: M \to N$ which we will take advantage of in the following.

Lemma 4.6. (homeomorphism of total spaces)

Let \mathfrak{t}_N and \mathfrak{t}_M be the tangent microbundles of N and M. The total space $E(\iota^*\mathfrak{t}_M)$ and $E(r^*\mathfrak{t}_N)$ are homeomorphic.

Proof. We explicitly construct a homeomorphism:

- 1. $E(\iota^*\mathfrak{t}_M) = \{(n, (m_1, m_2)) \in N \times (M \times M) \mid \iota(n) = m_1\}$
- 2. $E(r^*\mathfrak{t}_N) = \{(m, (n_1, n_2)) \in M \times (N \times N) \mid r(m) = n_1\}$

Now, we have the homeomorphism $\phi: E(\iota^*\mathfrak{t}_M) \to E(r^*\mathfrak{t}_N)$ with $\phi(n, (m_1, m_2)) = (m_2, (r(m_2), n))$ and $\phi^{-1}(m, (n_1, n_2)) = (n_2, (n_2, m))$. We easily see that ϕ suffices all requirements of $E(\iota^*\mathfrak{t}_M)$ and $E(r^*\mathfrak{t}_N)$.

Remark 4.7. Note that the following diagram commutes

$$\begin{array}{ccc}
N & \longrightarrow & E(\iota^* \mathfrak{t}_M) \\
\downarrow & & \downarrow^{\phi} \\
M & \longrightarrow & E(r^* \mathfrak{t}_N)
\end{array}$$

Lemma 4.8. (normal microbundle on total space) There exists a normal microbundle \mathfrak{n} of N in $E(r^*\mathfrak{t}_N)$ with $\mathfrak{n} \cong \iota^*\mathfrak{t}_M$.

Proof. Obviously, $\mathfrak{n} := r^*\mathfrak{t}_N|_N$ is a normal microbundle of N in $E(r^*\mathfrak{t}_N)$. Since $E(r^*\mathfrak{t}_N|_N) \subseteq E(r^*\mathfrak{t}_N)$, isomorphy follows from the previous lemma and remark.

Finally, we gathered all the tools to prove Milnor's theorem.

Theorem 4.9. (Milnor) For a sufficiently large $q \in \mathbb{N}$, $N = N \times \{0\}$ has a normal microbundle in $M \times \mathbb{R}^q$.

Proof.

5 Homotopy and Microbundles

Definition 5.1. (map-germ)

Let (X,A) and (Y,B) be two topological pairs. A map-germ $F:(X,A)\Rightarrow (Y,B)$ is an equivalence class of maps $f:(X,A)\to (Y,B)$, where $f\sim g:\iff f|_U=g|_U$ for some neighborhood $U\subseteq X$ of A.

ad

Remark 5.2. The composition of two map-germs $(X,A) \stackrel{F}{\Rightarrow} (Y,B) \stackrel{G}{\Rightarrow} (Z,C)$ is well defined.

Definition 5.3. (isomorphism-germ)

Definition 5.4. (bundle map-germ)

Lemma 5.5. (closed balls under homeomorphism) For a homeomorphism $\phi : \mathbb{R}^n \xrightarrow{\sim} R^n$ applies:

$$|\phi(x) - x| < 1, \forall x \in \overline{B_2} \implies \overline{B_1} \subseteq \phi(\overline{B_2})$$

Proof. Consider the two points $x_0 := 0$ and $x_1 := 3e_1$. Obviously, there is no path between x_0 and x_1 in $\mathbb{R}^n - S^n$. Therefore, since ϕ is a homeomorphism, there is no path between $\phi(x_0)$ and $\phi(x_1)$ in $\mathbb{R}^n - \phi(S^n)$. Since 1 < |x| for every $x \in \phi(S^n)$, there is a path between every $x \in \overline{B_1}$ and $\phi(x_1)$ in $\mathbb{R}^n - \phi(S^n)$ (e.g

a straight line). It follows that there is also no path between any $x \in \overline{B_1}$ and x_1 in $\mathbb{R}^n - \phi(S^n)$. Since $R^n - \overline{B_2}$ is path-connected, $R^n - \phi(\overline{B_2})$ is as well. From $x_1 \in R^n - \phi(\overline{B_2})$, we know that $\overline{B_1} \subseteq \phi(\overline{B_2})$.

Lemma 5.6. (Williamson)

A bundle map-germ $F: \mathfrak{b} \Rightarrow \mathfrak{b}'$ on the same base space B covering the identity map is an isomorphism-germ.

Proof. We prove the statement locally, then glue the function together for the prove.

1. First, we consider the case that \mathfrak{b} and \mathfrak{b}' are trivial. This means, that $F: B \times \mathbb{R}^n \to B \times \mathbb{R}^n$ is of the form

$$F(b,x) = (b, g_b(x))$$

where $g_b: \mathbb{R}^n \to \mathbb{R}^n$ are individual maps. In particular, the g_b are even homeomorphisms due to the domain invariance theorem. Now we show that F is a homeomorphism. Let $(b_0, x_0) \in B \times \mathbb{R}^n$ and $\varepsilon > 0$. Since g_{b_0} is a homeomorphism, there exists a $\delta > 0$ so that $\overline{B_{2\delta}(x_1)} \subseteq g_{b_0}(\overline{B_{\varepsilon}(x_0)})$ where $x_1 := g_{b_0}(x_0)$.

There exists a neighborhood $V \subseteq B$ of b_0 , such that

$$|g_b(x) - g_{b_0}(x)| < \delta, \forall x \in \overline{B_{\varepsilon}(x_0)}$$

To show that, consider $\phi_b(b,x) := g_b(x) - g_{b_0}(x)$. The closed set $\phi^{-1}(\overline{B_{\varepsilon}(x_0)})$ is a neighborhood of $\{b_0\} \times \mathbb{R}^n$ since $\phi(b_0,x) = 0, \forall x \in \mathbb{R}^n$. Therefore, for every $x \in \overline{B_{\delta}(x_1)}$ exist $V_x \subseteq B$ and $U_x \subseteq \mathbb{R}^n$ open with $x \in U_x$ and $V_x \times U_x \subseteq \phi^{-1}(\overline{B_{\varepsilon}(x_0)})$. Obviously, $\bigcup_{x \in \overline{B_{\delta}(x_1)}} U_x$ is an open covering of $\overline{B_{\delta}(x_1)}$ and because of compactness of $\overline{B_{\delta}(x_1)}$, there exist $x_1, \ldots, x_n \in \overline{B_{\delta}(x_1)}$ with $\overline{B_{\delta}(x_1)} \subseteq \bigcup_{i=1}^n U_{x_i}$. The claim follows via $V := V_{x_1} \cap \cdots \cap V_{x_n}$.

From

$$V \times \overline{B_{\delta}(x_1)} \subseteq g(V \times \overline{B_{\varepsilon}(x_0)})$$

it follows that g is open.

2. Since \mathfrak{b} and \mathfrak{b}' are locally trivial, $F|_{U_b}$ are homeomorphisms on their image for every trivialization $b \in U_b$. It follows that also F is a homeomorphism on its image which completes the proof.

Corollary 5.7. (induced microbundles)

If a map $g: B \to B'$ is covered by a bundle germ $\mathfrak{b} \Rightarrow \mathfrak{b}'$ then \mathfrak{b} is isomorphic to the induced bundle $g^*\mathfrak{b}'$.

Proof. \Box

Lemma 5.8. (glueing together bundle map-germs)

Let \mathfrak{b} be a microbundle over B and $\{B_{\alpha}\}$ a locally finite collection of closed sets covering B. Additionally, we are given $F_{\alpha}: \mathfrak{b}|_{B_{\alpha}} \Rightarrow \mathfrak{b}'$, a collection of bundle map-germs with $F_{\alpha} = F_{\beta}$ on $\mathfrak{b}|_{B_{\alpha} \cap B_{\beta}}$ Then there exists a bundle map-germ $F: \mathfrak{b} \Rightarrow \mathfrak{b}'$ extending F_{α} .

Proof. Choose representative maps $f_{\alpha}: U_{\alpha} \to E'$ for F_{α} with U_{α} open. Since $F_{\alpha} = F_{\beta}$ on $\mathfrak{b}|_{B_{\alpha} \cap B_{\beta}}$, $f_{\alpha} = f_{\beta}$ for an open neighborhood $U_{\alpha\beta}$ of $B_{\alpha} \cap B_{\beta}$. We define

$$U := \{ e \in E \mid j(e) \in B_{\alpha} \cap B_{\beta} \implies e \in U_{\alpha\beta} \}$$

1. U is open:

Let $e \in U$ and $j(e) \in B_{\alpha} \cap B_{\beta}$. From local finiteness there exists an open neighborhood $V \subseteq B$ of j(e) with $V \subseteq B_{\alpha_1} \cap \ldots \cap B_{\alpha_n}$. W.l.o.g. $V \subseteq B_{\alpha} \cap B_{\beta}$ by excluding a finite number of closed sets if necessary. Now $V_{\alpha\beta} := j^{-1}(V) \cap U_{\alpha\beta}$ is an open neighborhood of e. Since j(e) can only be contained in finitely many B_{α} we can form the intersection of all these $V_{\alpha'\beta'}$ which, by construction, is contained in U and is open.

2. $B \subseteq U$ considering the cases $U_{\alpha\alpha}$.

Now we can define $f: U \to E'$ in the obvious way

$$f(u \in U_{\alpha\beta}) := f_{\alpha}(u) = f_{\beta}(u)$$

which is a representative map for our desired F.

Lemma 5.9. (piecewise triviality)

Let \mathfrak{b} be a microbundle over $B \times [0,1]$ such that both $\mathfrak{b}|_{B \times [0,\frac{1}{2}]}$ and $\mathfrak{b}|_{B \times [\frac{1}{2},1]}$ are trivial. Then \mathfrak{b} itself is already trivial.

Proof. Since $\mathfrak{b}|_{B\times[\frac{1}{2},1]}$ is trivial, we can extend the identity bundle map-germ on $\mathfrak{b}|_{B\times\{\frac{1}{2}\}}$ to $\mathfrak{b}|_{B\times[\frac{1}{2},1]}\Rightarrow \mathfrak{b}|_{B\times\{\frac{1}{2}\}}$. Using the previous lemma, we can piece this together with the identity bundle map-germ on $\mathfrak{b}|_{B\times[0,\frac{1}{2}]}$ to

$$\mathfrak{b}\Rightarrow\mathfrak{b}|_{B\times[0,\frac{1}{2}]}$$

From the corollary it follows that $\mathfrak{b} \cong \mathfrak{b}|_{B \times [0, \frac{1}{2}]}$.

Lemma 5.10. ()

Let \mathfrak{b} be a microbundle over $B \times [0,1]$. Every $b \in B$ has a neighborhood V where $\mathfrak{b}|_{V \times [0,1]}$ is trivial.

Proof. Let $b \in B$. For every $t \in [0,1]$, choose a neighborhood $U_t := V_t \times (t - \varepsilon_t, t + \varepsilon_t)$ of (b,t) such that $\mathfrak{b}|_{U_t}$ is trivial. Since $\{b\} \times [0,1]$ is compact, we can choose a finite covering of the U_t and define V to be the intersection of the corresponding V_t . Then there exists a subdivision $0 = t_0 < \cdots < t_k = 1$ where

the $\mathfrak{b}|_{V \times [t_i, t_{i+1}]}$ are trivial. Iteratively applying the previous lemma, it follows that $\mathfrak{b}|_{V \times [0,1]}$ is trivial.

Lemma 5.11. ()

Let \mathfrak{b} be a microbundle over $B \times [0,1]$ where B is paracompact. Then there exists a bundle map-germ $F: \mathfrak{b} \to \mathfrak{b}|_{B \times \{1\}}$ covering the standard retraction $r: B \times [0,1] \to B \times \{1\}$.

Proof. First, we assume a locally finite covering $\{V_{\alpha}\}$ of closed sets where $\mathfrak{b}|_{V_{\alpha}\times[0,1]}$ is trivial. The existence of such a covering is justified by the previous lemmas. Since B is paracompact, we can choose bump functions

$$\lambda_{\alpha}: B \to [0,1]$$

with supp $(\lambda_{\alpha}) \subseteq V_{\alpha}$. Additionally, we assume that

$$\max_{\alpha}(\lambda_{\alpha}(b)) = 1, \forall b \in B$$

Now we define a retraction $r_{\alpha}: B \times [0,1] \to B \times [0,1]$ with

$$r_{\alpha}(b,t) := (b, \max(t, \lambda_{\alpha}(b)))$$

We construct bundle map-germs $R_{\alpha}: \mathfrak{b} \to \mathfrak{b}$ covering r_{α} . We can divide $B \times [0,1]$ into $A_{\alpha} := \operatorname{supp}(\lambda_{\alpha}) \times [0,1]$ and $A'_{\alpha} := \{(b,t) \mid t \geq \lambda_{\alpha}(b)\}$. Since $A_{\alpha} \subseteq V_{\alpha} \times [0,1]$, $\mathfrak{b}|_{A_{\alpha}}$ is trivial. It follow that the identity bundle germ on $\mathfrak{b}|_{A_{\alpha} \cap A'_{\alpha}}$ can be extended to a bundle germ $\mathfrak{b}|_{A_{\alpha}} \to \mathfrak{b}|_{A_{\alpha} \cap A'_{\alpha}}$. Piecing this together with the identity bundle germ $\mathfrak{b}|_{A'_{\alpha}}$, we obtain the desired bundle germ R_{α} .

Applying the well-ordering theorem, which is equivalent to the axiom of choice, we can assume an ordering of $\{V_{\alpha}\}$. Let $\{B_{\beta}\}$ be a locally finite covering of B with closed sets where B_{β} intersects only $V_{\alpha_1} < \cdots < V_{\alpha_k}$ a finite collection. Now the composition $R_{\alpha_1} \circ \ldots \circ R_{\alpha_k}$ restricts to a bundle germ $R(\beta) : \mathfrak{b}|_{B_{\beta}} \times [0,1] \Rightarrow \mathfrak{b}|_{B_{\beta}} \times [1]$. Pieced together with the previous lemma, we obtain $R : \mathfrak{b} \times [0,1] \to \mathfrak{b} \times [1]$ which concludes the proof.

Theorem 5.12. (Homotopy Theorem)

Let \mathfrak{b} be a microbundle of B and $f, g: A \to B$ be two maps.

$$f \simeq g \implies f^* \mathfrak{b} \cong g^* \mathfrak{b}$$

Proof. Let $H: A \times [0,1] \to B$ be a homtopy between f and g. By the previous lemma, there exists a bundle germ $R: H^*\mathfrak{b} \Rightarrow H^*\mathfrak{b}|_{B \times [1]}$ covering the standard retraction $B \times [0,1] \to B \times [1]$. From the composition

$$f^*\mathfrak{b} \subseteq H^*\mathfrak{b} \Rightarrow_R H^*\mathfrak{b}|_{B\times[1]} = g^*\mathfrak{b}$$

we obtain an isomorphism germ $f^*\mathfrak{b} \Rightarrow g^*\mathfrak{b}$. It follow that $f^*\mathfrak{b} \cong g^*\mathfrak{b}$.