12/25/2020 Задачи - Codeforces

Динамическое программирование

А. Рюкзак

1 секунда, 256 мегабайт

Дано N предметов массой m_1,\ldots,m_N и стоимостью c_1,\ldots,c_N соответственно.

Ими наполняют рюкзак, который выдерживает вес не более M. Определите набор предметов, который можно унести в рюкзаке, имеющий наибольшую стоимость.

Входные данные

В первой строке вводится натуральное число N, не превышающее 100 и натуральное число M, не превышающее 10^4 .

Во второй строке вводятся N натуральных чисел m_i , не превышающих 100.

В третьей строке вводятся N натуральных чисел c_i , не превышающих 100.

Выходные данные

В первой строчке выходных данных выведите одно целое число: количество предметов в рюкзаке наибольшей стоимости.

Во второй строчке выведите номера этих предметов (числа от 1 до N)ю

При наличии нескольких оптимальных наборов, разрешается вывести любой из них.

входные данные	
4 6	
4 6 2 4 1 2	
7 2 5 1	
выходные данные	
3	
1 3 4	

В. Почти палиндромы

1 секунда, 64 мегабайта

Слово называется палиндромом, если его первая буква совпадает с последней, вторая – с предпоследней и т.д. Например: "abba", "madam", "x"

Для заданного числа K слово называется почти палиндромом, если в нем можно изменить не более K любых букв так, чтобы получился палиндром. Например, при K=2 слова "reactor", "kolobok", "madam" являются почти палиндромами.

Подсловом данного слова являются все слова, получающиеся путем вычеркивания из данного нескольких (возможно нуля) первых букв и нескольких последних. Например, подсловами слова "cat" являются слова "c", "a", "t", "ca", "at" и само слово "cat" (a "ct" подсловом слова "cat" не является).

Требуется для данного числа K определить, сколько подслов данного слова S являются почти палиндромами.

Входные данные

В первой строке вводятся два натуральных числа: N $(1 \leq N \leq 5 \cdot 10^3)$ - длина слова и K $(0 \leq K \leq N)$.

Во второй строке содержится слово S, состоящее из N строчных латинских букв.

Выходные данные

Требуется вывести одно число - количество подслов слова S, являющихся почти палиндромами (для данного K).

рдные данные		
de		
кодные данные		
рдные данные		
выходные данные		

С. Опять сжимаешь, шакал...

1 секунда, 256 мегабайт

Петя хочет сократить запись последовательности, состоящей из заглавных латинских букв. Для этого он может свернуть ее повторяющиеся подпоследовательности. Например, последовательность ААААААААААААВАВВССD может быть записана как 10 (A) 2 (BA) B2 (C) D.

Формальной определение свернутой последовательности и соответствующей ей операции развертки дается следующим образом:

- Последовательность, которая содержит единственный символ от 'A' до 'Z' представляет из себя свернутую последовательность. При развертке такой последовательности получается она сама.
- Если S и Q свернутые последовательности, то SQ также свернутая последовательность. Если при развертке строки S получается строка S', а при развертке Q получается Q', то при развертке SQ получается строка S'Q'.
- Если S свернутая последовательность, то X(S) также свернутая последовательность, где X это десятичное представление целого числа большего единицы. Если при развертке строки S получается строка S', то при развертке X(S) получается строка S', повторенная X раз.

Петя хочет свернуть заданную последовательность таким образом, чтобы результат содержал наименьшее число символов.

Входные данные

Входной файл содержит непустую строку, состоящую из заглавных латинских букв. Длина строки не превышает 1000 символов.

Выходные данные

В выходной файл выведите одну строку, содержащую наименьшую последовательность развертка которой даст строку, заданную во входном файле.

Если ответов несколько - выведите любой из них.

входные данные		
AAAAAAAAABABABCCD		
выходные данные		
9(A)3(AB)CCD		
входные данные		
NEERCYESYESYESNEERCYESYES		
выходные данные		

D. Здоровье Графа

1 секунда, 256 мегабайт

Этично ли удалять рёбра у связанного графа?

Граф Безциклов решил проверить своё здоровье. Он хочет проверить, что все его рёбра достаточно крепко держатся в нём. Для этого он хочет посчитать *устойчивость* некоторых из них. *Устойчивостью* ребра называется количество простых путей, проходящих через это ребро.

Входные данные

2(NEERC3(YES))

Все числа в файле целые.

 $0 \leq N \leq 10^5$, $0 \leq M \leq 10^5$ — количество вершин и рёбер.

Затем M пар чисел $1 \leq v_i, u_i \leq N - i$ -ое ребро соединяет вершины v_i и u_i .

 $0 < Q < 10^5$ — количество запросов.

Затем Q чисел $1 \leq e_i \leq M$.

Граф неориентирован. Гарантируется, что Граф ацикличен.

Выходные данные

Для i-ого запроса вывести устойчивость e_i -ого ребра.

```
3 1
1 2
1
1
1
Выходные данные
```

```
Входные данные

3 2
1 2
2 3
2
1 1
2
2
Bыходные данные
2
2
```

Е. Коммивояжёр возвращается!

1 секунда, 256 мегабайт

Коммивояжёр возвращается в систему Альфы Центавра! Население системы с нетерпением ждёт его прибытия — каждый хочет приобрести что-нибудь с далёких планет!

Как обычно, коммивояжёр хочет минимизировать транспортные расходы. Он выбирает начальную планету, прилетает туда на межгалактическом корабле, после чего посещает все остальные планеты системы в порядке, минимизирующем суммарную стоимость посещения, и на другом межгалактическом корабле улетает обратно. Естественно, коммивояжёр не хочет летать ни на какую планету дважды.

Найдите оптимальный маршрут для коммивояжёра. Массы больше не могут ждать!

Входные данные

В системе Альфы Центавра n планет. Это число записано в первой строке входного файла ($1 \le n \le 19$). Следующие n строк содержат по n чисел каждая: j-ое число на i-ой из этих строк — стоимость перемещения a_{ij} от i-ой планеты до j-ой. Числа в каждой строке разделены пробелами. Числа a_{ii} не несут полезной информации. Все числа во входном файле положительны и не превосходят 10^8 .

Выходные данные

В первой строке выходного файла выведите минимальную суммарную стоимость посещения всех планет. Во второй строке выведите n чисел через пробел — номера планет системы в порядке их посещения. Если оптимальных маршрутов несколько, можно вывести любой из них.

```
Входные данные

3
8 1 6
3 5 7
4 9 2

Выходные данные

5
3 1 2

Входные данные

1
1
```

```
1
1
Выходные данные
0
1
```

```
ВХОДНЫЕ ДАННЫЕ

5
1 5 2 3 8
6 6 10 6 10
1 2 6 2 5
6 8 7 2 1
1 10 1 10 3

Выходные данные

6
4 5 1 3 2
```

F. Гвоздики

0.5 секунд, 256 мегабайт

На прямой дощечке вбиты гвоздики. Любые два гвоздика можно соединить ниточкой. Требуется соединить какие-то пары гвоздиков ниточками так, чтобы к каждому гвоздику была привязана хотя бы одна ниточка, а суммарная длина всех ниточек была минимальна.

Входные данные

В первой строке входного файла записано число N — количество гвоздиков ($2 \le N \le 100$). В следующей строке записано N чисел — координаты всех гвоздиков (неотрицательные целые числа, не превосходящие 10^4).

Выходные данные

В выходной файл нужно вывести единственное число — минимальную суммарную длину всех ниточек.

12/25/2020 Задачи - Codeforces

входные данные	
5	
4 10 0 12 2	
выходные данные	
6	

<u>Codeforces</u> (c) Copyright 2010-2020 Михаил Мирзаянов Соревнования по программированию 2.0

Условие недоступно на русском языке