# ML-101: Classification, Random Forest Algorithm

BY SARTHAK CONSUL

### Classification

- ❖Y={0,1} Binary
- **♦** Y={0,1,...k} Multiclass

Eg. Spam filters, Image Recognition, Tumour type





### Attempt 1:

# Linear Regression



Source: Coursera - Machine Learning by Andrew Ng

#### A Better Way:

# Logistic Regression

The sigmoid Function:

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$



- $\bullet$ Classification on the basis of  $h_{\theta}(x)$  compared to 0.5
- Multiclass extension: One-vs-All

# Cost Function for Logistic Regression

Loss should be of the form that penalizes wring sign of prediction and actual value i.e.

$$L(y\hat{y}) = (1 - sign(y\hat{y}))/2$$

- ◆MSE wont work → non convex
- Instead objective function (to minimize) is:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} -y^{(i)} \log h_{\theta}(x^{(i)}) - (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)}))$$

$$\bullet$$
 Gradient Descent  $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$ 

### Multiclass Classification: One-vs-All



### Decision Tree

- Used a lot 2-3 decades ago
- Fell out of fashion as they tend to not generalize well
- Trees have large variance, averaging out many trees reduces the varies
- Modified to make very powerful algorithms (eg. Random Forest/ Decision Forest)



Source: MSR Tutorial on decision forests by Criminisi et al, 2011

Is top

part blue?

Is bottom part blue?

# Constructing a Decision Tree

| Example  | Attributes |     |     |     |      |        |      |     |         |       | Target   |
|----------|------------|-----|-----|-----|------|--------|------|-----|---------|-------|----------|
|          | Alt        | Bar | Fri | Hun | Pat  | Price  | Rain | Res | Type    | Est   | WillWait |
| $X_1$    | T          | F   | F   | T   | Some | \$\$\$ | F    | T   | French  | 0-10  | T        |
| $X_2$    | T          | F   | F   | T   | Full | \$     | F    | F   | Thai    | 30-60 | F        |
| $X_3$    | F          | T   | F   | F   | Some | \$     | F    | F   | Burger  | 0-10  | T        |
| $X_4$    | T          | F   | T   | T   | Full | \$     | F    | F   | Thai    | 10-30 | T        |
| $X_5$    | T          | F.  | Τ   | F   | Full | \$\$\$ | F    | T   | French  | >60   | F        |
| $X_6$    | F          | T   | F   | T   | Some | \$\$   | T    | T   | Italian | 0-10  | T        |
| $X_7$    | F          | T   | F   | F   | None | \$     | T    | F   | Burger  | 0-10  | F        |
| $X_8$    | F          | F   | F   | T   | Some | \$\$   | T    | T   | Thai    | 0-10  | T        |
| $X_9$    | F          | T   | Τ   | F   | Full | \$     | T    | F   | Burger  | >60   | F        |
| $X_{10}$ | T          | T   | T   | T   | Full | \$\$\$ | F    | T   | Italian | 10-30 | F        |
| $X_{11}$ | F          | F   | F   | F   | None | \$     | F    | F   | Thai    | 0-10  | F        |
| $X_{12}$ | T          | T   | T   | T   | Full | \$     | F    | F   | Burger  | 30-60 | T        |

Source: Artificial Intelligence: A Modern Approach by Stuart Russel and Peter Norvig

### Entropy and Information Gain

For a training set containing p positive and n negative examples,

$$H(\frac{p}{p+n}, \frac{n}{p+n}) = -\frac{p}{p+n} \log_2 \frac{p}{p+n} - \frac{n}{p+n} \log_2 \frac{n}{p+n}$$

- Attribute A divides the training set into K sunsets
  - Expected Entropy remaining after A, EH

$$EH(A) = \sum_{i=1}^{K} \frac{p_i + n_i}{p+n} H\left(\frac{p_i}{p_i + n_i}\right)$$

Information Gain (reduction in entropy), I

$$I(A) = H(\frac{p}{p+n}, \frac{n}{p+n}) - EH(A)$$

Advanced Idea: Gaussians to decide



# Choosing the attributes

$$I(Patrons) = 1 - \left[\frac{2}{12}H(0,1) + \frac{4}{12}H(1,0) + \frac{6}{12}H(\frac{2}{6}, \frac{4}{6})\right] = .0541 \text{ bits}$$

$$I(Type) = 1 - \left[\frac{2}{12}H(\frac{1}{2}, \frac{1}{2}) + \frac{2}{12}H(\frac{1}{2}, \frac{1}{2}) + \frac{4}{12}H(\frac{2}{4}, \frac{2}{4}) + \frac{4}{12}H(\frac{2}{4}, \frac{2}{4})\right] = 0 \text{ bits}$$





## Random Forest Algorithm

- One of the most popular powerful supervised learning algorithm
- Can perform both regression and classification tasks
- It builds multiple decision trees and merges them together to get a more accurate and stable prediction
- Uses:

Stock Behaviour Fraud Detection Customer Ratings Medicine Components Medical History



## Growing a Forest from Trees

- ❖d=#of Features, n=#of data points
- ❖ Pick any 2 features at **RANDOM**, split according to it-> RANDOM TREE
  - Reduces computation time
  - Randomness in introduced
- Take trees and average them to make a FOREST

SARTHAK CONSUL ML 101 : CLASSIFICATION 13

# Growing a Forest from Trees: the Algo

#### (Bagging) Bootstrap Aggregating

#### For b=1 to T:

- a. Draw a bootstrap sample, Z\* of size N from training data
- b. Grow a random-forest tree, T<sub>b</sub> from Z\* (via recursion till min node size is reached)

Ensemble of trees {T<sub>b</sub>}

Word of the day: Bootstrap Sample Sampling uniformly at random, with replacement

#### During testing,

- i. each point is passed through all trees
- ii. Average out the result (AM or GM), Max votes, etc.

Source: The Elements of Statistical Learning by Friedman, Tibshirani, and Hastie



$$p(c|\mathbf{v}) = \frac{1}{T} \sum_{t=1}^{T} p_t(c|v)$$

Source: Criminisi et al, 2011