Nombres complexes Partie 2. Géométrie Maths Expertes

Lycée Pierre Mendes France - Tunis

Table des matières

1	Mo	dule d'un nombre complexe	2
2	Rep	résentation géométrique d'un complexe	3
	2.1	Affixe d'un point	3
	2.2	Affixe d'un vecteur	3
	2.3	Argument et forme trigonométrique d'un complexe	4
	2.4	Notation exponentielle	6

Module d'un nombre complexe 1

Définition 1

Soit z un complexe d'écriture algébrique a + ib avec a et b réels. Le module de z est le nombre réel positif, noté |z| défini par :

$$|z| = \sqrt{a^2 + b^2}$$

Exem	ples	3
11/10/11		_

Déterminer les modules des complexes 3-7i, i et 5

Propriété 1

Soient z et z' deux nombres complexes avec $z' \neq 0$. On a alors :

$$1. |z| = z\bar{z}$$

$$4. |zz'| = \dots$$

7.
$$\left|\frac{z}{z'}\right| = \dots$$

2.
$$|\bar{z}| = \dots$$

5.
$$|z + z'|$$
...

$$|3. |-z| = \dots$$

2.
$$|\bar{z}| = \dots$$
 5. $|z + z'| \dots$ 6. $\forall n \in \mathbb{N}, |z^n| = \dots$

\mathbf{D}	émonstration 1

2 Représentation géométrique d'un complexe

Le plan est rapporté à un repère <u>orthonormé direct</u> $(O, \overrightarrow{u}, \overrightarrow{v})$.

2.1 Affixe d'un point

Définition 2

- A tout nombre complexe z = a + ib est associé le point M du plan de coordonnées (a; b) appelé image de z et noté M(z).
- A tout point M du plan de coordonnées (a;b) est associé le complexe z=a+ib appelé affixe du point M.

Exemple

- 1. Quel est l'affixe du point A?
- 2. Placer les points B et C d'affixe respective 3 + 2i et 2 i.

2.2 Affixe d'un vecteur

Définition 3

- A tout nombre complexe z = a + ib est associé le vecteur \overrightarrow{w} de coordonnées (a; b) dans le plan.
- A tout vecteur \overrightarrow{w} du plan de coordonnées (a;b) est associé le complexe z=a+ib appelé affixe du vecteur \overrightarrow{w} .

Exemple Dans l'exemple précédent, quels sont les affixes des vecteurs \overrightarrow{AB} , \overrightarrow{BC} et \overrightarrow{CA} ?

Propriété 2

- 1. Soient deux vecteurs \overrightarrow{c} et \overrightarrow{d} d'affixes respectives z_c et z_d . L'affixe du vecteur $\overrightarrow{c} + \overrightarrow{d}$ est

2.3 Argument et forme trigonométrique d'un complexe

Définition 4

Propriété 3

Tout point M distinct de l'origine peut ainsi se repérer de deux manières différentes :

- par son affixe z = a + ib;
- par ses coordonnées polaires $(|z|, \arg(z))$.

Remarques

- Un nombre complexe non nul z a une infinité d'arguments. Si θ est l'un d'entre eux, les autres sont de la forme $\theta + 2k\pi$ avec $z \in \mathbb{Z}$.
- On note $\arg(z) = \theta$ (modulo 2π) ou plus simplement $\arg(z) = \theta$.
- On ne définit les angles de vecteurs que lorsqu'ils sont non nuls. Le complexe 0 n'a donc pas d'argument!

Théorème 1 (Écriture trigonométrique)

Soit z un nombre complexe non nul d'écriture algébrique a+ib (où a et b sont réels). Un argument de z est un angle θ , exprimé en radian, noté $\arg(z)$ tel que

$$\cos(\theta) = \frac{a}{|z|} et \sin(\theta) = \frac{b}{|z|}.$$

Le nombre complexe z s'écrit alors

$$z = a + ib = |z|(\cos(\theta) + i\sin(\theta)).$$

Cette dernière écriture est appelée écriture trigonométrique du complexe z.

Exemple

Déterminer l'écriture trigonométrique de $z = \sqrt{3} + i$ et placer rigoureusement M(z) dans le plan.

Pro	priété	4
	PIICO	_

Pour tous nombres complexes z et z^\prime non nuls, on a :
1. $\arg(\bar{z}) = \dots$
$2. \arg(-z) = \dots$
3. $arg(zz') = \dots$
4. $\forall n \in \mathbb{N} , \arg(z^n) = \dots$
5. $\operatorname{arg}\left(\frac{z}{z'}\right) = \dots$

D	émonstration 3
	······································

2.4 Notation exponentielle

Propriété 5

Soit f la fonction définie sur $\mathbb R$, à valeurs dans $\mathbb C$, définie par $f(t)=\cos(t)+i\sin(t)$. Alors f(t+t')=f(t)f(t').

Démonstration 4

Remarque

On reconnaît la même équation fonctionnelle que celle trouvée dans le chapitre sur la fonction exponentielle. On peut donc adopter une notation semblable à la fonction exponentielle pour cette fonction f.

Définition 5

Pour tout réel θ , on note

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Tout nombre complexe z peut alors s'écrire sous la forme

$$z = |z|e^{i\theta}$$

Cette dernière écriture s'appelle écriture exponentielle de z.

Exemples

Théorème 2

Soient r et r' deux nombres réels strictement positifs, θ et θ' deux nombres réels et n un entier naturel. Si $z = re^{i\theta}$ et $z' = r'e^{i\theta'}$, alors :

1.
$$zz' = \dots$$

$$3. \ \frac{1}{z} = \dots$$

$$4. \ \frac{z}{z'} = \dots$$

Théorème 3

Le plan est muni d'un repère orthonormé direct $(O, \overrightarrow{u}, \overrightarrow{v})$.

 $A,\,B,\,C$ et D sont quatre points deux à deux distincts d'affixes respectives $z_A,\,z_B,\,z_C$ et $z_D.$ On a les relations :

1.
$$(\overrightarrow{u}, \overrightarrow{AB}) = \arg(z_B - z_A)$$

$$2. AB = |z_B - z_A|$$

3.
$$\frac{AB}{CD} = \frac{|z_B - z_A|}{|z_D - z_C|}$$

4.
$$(\overrightarrow{AB}, \overrightarrow{CD}) = \arg\left(\frac{z_D - z_C}{z_B - z_A}\right)$$

5.
$$\frac{z_D - z_C}{z_B - z_A} = re^{i\theta}$$
 si et seulement si $(\overrightarrow{AB}, \overrightarrow{CD}) = \theta$ (modulo 2π) et $\frac{CD}{AB} = r$

D	'n	10	r	18	st	r	a	ti	o	n	ı	5	,																																
															 		-	 						 													-						 		
						-												 						 																			 		