Unit IV

Introduction to Sequential Logic Circuits

by

Dr. Krishan Arora
Associate Professor and Head
Lovely Professional University

FLIP FLOP CONVERSIONS

- SR to D
- SR to JK
- SR to T
- JK to T
- JK to D
- JK to SR
- D to T
- D to SR
- T to D

PROCEDURE FOR CONVERSION

- 1. Draw the block diagram of the target flip flop from the given problem.
- 2. Write truth table for the target flip-flop.
- 3. Write excitation table for the available flipflop.
- 4. Draw k-map for target flip-flop.
- 5. Draw the block diagram.

SR to D Flip flop Conversion

Conversion Table

Input	Present state	Next state	Flip flop Inputs		
D	Qn	Qn+1	S	R	
0	0	0	0	X	
0	1	0	0	1	
1	0	1	1	0	
1	1	1	X	0	

K- MAP SIMPLIFICATIO N

Truth Table

CLK	S	R	Q	$\overline{\mathcal{Q}}$
0	X	×	Memory state	
1	0	0	Memory state	
1	0	1	0	1
1	1	0	1	0
1	1	1	Invalid	

Characteristics Table

S	R	Qn	Q_{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	×
1	1	1	×

Excitation Table

Q _n	Q _{n+1}	S	R
0	0	0	X
0	1	1	0
1	0	0	1
1	1	×	0

SR(Available) to JK(Target) Flip-

Conversion Table

Flop

Input		Present State	Next State	Flip-Flop Inputs	
J	К	Qn	Qn+1	S	R
0	0	0	0	0	х
0	0	1	1	Х	0
0	1	0	0	0	Х
0	1	1	0	0	1
1	0	0	1	1	0
1	0	1	1	х	0
1	1	0	1	1	0
1	1	1	0	0	1

SR to JK

K-map Simplification

Logic Diagram (SR to JK)

SR(Available) to T(Target)

Conversion Table

Input	Present state	Next state	Flip flop Inputs		
т	Qn	Qn+1	S	R	
0	0	0	0	X	
0	1	1	X	0	
1	0	1	1	0	
1	1	0	0	1	

K- MAP SIMPLIFICATION

Logic Diagram (SR to T)

A T flip-flop using S-R flip-flop.

Quick Quiz

Whose operations are more faster among the following?

- a) Combinational circuits
- b) Sequential circuits
- c) Latches
- d) Flip-flops

Quick Quiz

• In S-R flip-flop, if Q = 0 the output is said to be

- a) Set
- b) Reset
- c) Previous state
- d) Current state

Quick Quiz

 What does the triangle on the clock input of a J-K flip-flop mean?

- a) Level enabled
- b) Edge triggered
- c) Both Level enabled & Edge triggered
- d) Level triggered