Exercise:

A 6 DOF robot has to lift a square section object from a specific position and then place it in a <u>square</u> slot which is located on the same surface at a fixed position.

The dimensions and frames of the object and slot, as well as the initial set up of the workspace, are shown in the Figure below. The base frame $\{R\}$ of the manipulator is considered as the inertial (world) frame. $\{O\}$ is the frame at the centre of the square slot's <u>top</u> surface. Note, also in the Figure, the relation between the frame of the gripper $\{E\}$ of the manipulator and frame $\{H\}$ of the robot's wrist.

a. Find the homogeneous transformation matrices T_{he} , T_{rc} , T_{fo} and T_{rf} .

b. In order to complete the task of placing the object in the slot, the manipulator has to go through 4 basic positions.

Position (1): the gripper is near the object

Position (2): the gripper has grasped the object

Position (3): the object and the gripper are near the slot

Position (4): the object is placed in the slot

To accomplish these subtasks, the motion commands given to the robot are in the form of transformations matrices $T_{rh}\left(i\right)$, where i=1,2,3,4, for each position. Find an equation of homogeneous transformation matrices that contains $T_{rh}\left(i\right)$ as the only unknown, and calculate it for <u>each</u> position.