Cognome _______ Nome ______ Numero di CFU _____ File(2)

Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di INFORMATICA TEORICA (6 CFU), 24/05/2023

Utilizzare i riquadri bianchi per le risposte. Solo se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

Nota: nelle domande da Q2 a Q6 una risposta giusta da 1 punto, una risposta sbagliata sottrae 0.25 punti. Si puó scegliere di non rispondere, nel qual caso non vengono dati né sottratti punti.

Definisci (come tupla) la macchina di Turing su alfabeto di input $\{a,b\}$ che riconosce i linguaggio delle stringhe dove appare la lettera a (per esempio: aa , aba , $bbab$,). Puoi usare un diagramma per descrivere la funzione di transizione. Per il punteggio pieno, utilizza un numero minimale di stati.

Nel seguito, sia $code(-)$ una funzione iniettiva calcolabile che codifichi maccchine di Turing come stringhe in $\{0,1\}^*$. Per ciascuno dei seguenti linguaggi, indica se \acute{e} (1) decidibile, (2)
indecidibile ma riconoscibile, (3) non riconoscibile.

	Linguaggio	Decidicible	Indecidibile ma riconoscibile	Non riconoscibile
(a)	$\{y \in \{0,1\}^* \mid y = \operatorname{code}(M) \text{ per qualche TM } M$ e M si ferma su $\operatorname{code}(M)\}$			
(b)	$\{y \in \{0,1\}^* \mid y = \text{code}(M) \text{ per qualche TM } M$ e M non si ferma sulla stringa vuota $\epsilon\}$			
(c)	$\{y \in \{0,1\}^{\star} \mid y = \text{code}(M) \text{ per qualche TM } M \text{ e} \\ M \text{ si ferma su tutte le stringhe di lunghezza pari} \}$			
(d)	$\{y \in \{0,1\}^* \mid y = \text{code}(M) \text{ per qualche TM } M$ e M ha meno di due stati $\}$			

Q3 (4 punti). Indica (con un Si o No) a quali dei linguaggi di Q2 (indicati con (a), (b), (c) e (d)) é applicabile il teorema di Rice.

	Rice?		Rice?		Rice?		Rice?
(a)		(b)		(c)		(d)	

Q4 (4 punti). Sia L un linguaggio decidibile da una macchina di Turing in tempo T(n). Per quali dei seguenti quattro possibili valori di T(n) possiamo dire che L é nella classe P?

	É in P?
(a) $n + n^3$	
(b) $3 + 2^n$	

	É in P?
(c) 2 ^{log₂ n}	
(d) n!	

Q5 (4 punti). Per ciascuno dei seguenti linguaggi, indica se é l'algoritmo noto di complessità minore é nella classe (1) P, (2) NP, (3) PSPACE. Si assume che $\langle - \rangle$ sia una codifica di un oggetto del problema (grafo, strategia, formula, etc.) come stringa del linguaggio. Come in classe, assumiamo che calcolare $\langle - \rangle$ impieghi tempo al piú polinomiale.

	Linguaggio	P	NP	PSPACE
(a)	Ricorda che un enunciato booleano é una formula della logica del prim'ordine (con connettivi \land , \lor , \neg) dove tutte le variabili sono vincolate da quantificatori. Considera: $\{\langle F \rangle \mid F \text{ \'e un enunciato booleano (con quantificatori) soddisfacibile}\}$			
(b)	$\{\langle F\rangle \mid F \text{ \'e una formula booleana } senza \ quantificatori \ \text{soddisfacibile}\}$			
(c)	$\{w \in \{a,b,c\}^{\star} \mid w \text{ \'e una stringa palindroma}\}$			
(d)	Dato un grafo indiretto G , ricorda che un k -clique in G é un sottografo G' di G con k nodi, tale che ogni coppia di nodi di G' é collegata da un arco. Considera il linguaggio			
	$\{\langle G \rangle \mid G \text{ ha un 5-clique}\}$			

	13 1 3ACA9	ic 216726 appropriac	ha muchien
Cognome		Nome	
Matricola		Numero di CFU	_ Fila(2)

1 1 avers le store lusale

Università degli Studi di Bologna, Corso di Laurea in Informatica Esame di INFORMATICA TEORICA (6 CFU), 24/05/2023

Utilizzare i riquadri bianchi per le risposte. Solo se strettamente necessario, si può allegare un foglio protocollo in coda con ulteriore testo, indicando in alto nome, cognome, fila e matricola.

Q6 (7 punti). Indica (senza dimostrazione) quali di queste affermazioni sono vere, quali sono false, e quali sono problemi aperti.

	Linguaggio	V	F	Aperto
(a)	Alcuni linguaggi decidibili non sono in P .			
(b)	Se L_1 e L_2 sono in NP , allora anche $L_1 \cup L_2$ é in NP .			
(c)	Sia $co-P$ la classe dei linguaggio il cui complemento é in P . Esiste un problema in NP che non é in $co-P$.			
(d)	Esiste un problema in PSPACE ma non in NPSPACE.			
(e)	Se L é in NP , allora $L \leq_p SAT$.			
(f)	Se $L \leq HALT$, allora L é indecidibile.			
(g)	Sia L un linguaggio $PSPACE$ -completo. Se $L \in NP,$ allora $PSPACE \subseteq NP.$			

 $L_1 = \{y \in \{0,1\}^\star \mid y = \operatorname{code}(M) \text{ per qualche TM } M, \text{ e } M \text{ si ferma sulla string vuota } \epsilon\}$ $L_2 \ = \ \{y \in \{0,1\}^\star \mid y = \operatorname{code}(M) \text{ per qualche TM } M, \in M \text{ si ferma su } \operatorname{code}(M)\}$ Dimostra che esiste una mapping reduction da L_1 a L_2 (notazione $L_1 \leq L_2$).

Q7 (5 punti). Considera i seguenti linguaggi L_1 e L_2 .