Lichtenbergstr. 4 85747 Garching

03. Juli 2009

Beispielklausur "Chemie für Physiker"

NAN	ИЕ:	VOR	NAME:	
MA	TRNR.:	PUNKTZAHL:	NO	TE:
Bea Wich	rbeitungszeit: 90 Minut ntig: Nicht mit Bleistift sch	-	Seiten (bitte überprüfen) - pen! Falls erforderlich, Rückse	` ,
1)	Skizzieren Sie die Struf fachbindungen (falls von 2-Pentanon	_	erbindungen, einschließ Essigsäurepropy	
				[3]
2)	•		e Umsetzung von Lithium e sind paramagnetisch?	ı, Natrium und
	b) Welche dieser Eleme	ente reagieren auch mit	Stickstoff?	
				[5]

3)	Erläutern Sie folgende Begriffe: Elektronenaffinität								
	Elektronegativität								
	Lewis-Säure (Definition und 1 Beispiel)								
	[3]								
4)	Erklären Sie anhand eines MO-Schemas die Bindungsordnung (mit Berechnungsformel) im Stickstoffmolekül und leiten Sie daraus eine Aussage über die Reaktivität von Luftstickstoff ab.								

5) Schreiben Sie für jede der genannten Spezies eine Lewis-Formel auf (Valenzstrich-Formel einschließlich der nicht bindenden Elektronenpaare, nur eine Grenzformel). Geben Sie die Oxidationszahl (OZ) des unterstrichenen Elements, die formalen Ladungen und gegebenenfalls die Gesamtladung des Molekülions an. Machen Sie eine Aussage zur geometrischen Anordnung (VSEPR-Modell) der Atome im Molekül bzw. Molekülion.

Verbindung	Lewis- (Valenzstrich-) formel	OZ	Geometrie
H ₃ PO ₃			
<u>N</u> O ₂			
<u>Xe</u> F ₄			
<u>S</u> F ₄			

6) Wie groß ist die Konzentration von F $^-$ -Ionen in einer gesättigten Calciumfluorid-Lösung? $K_L=3.9\times10^{-11}~mol^3~l^{-3}$

[12]

7)	Beschreiben Sie mit Hilfe von Reaktionsgleichungen die Gewinnung von elementarem Schwefel aus Schwefelwasserstoff. Wie heißt das Verfahren?
	[3]
	<u>[O]</u>
8)	Formulieren Sie die vollständigen stöchiometrischen Gleichungen für folgende Vorgänge.
	Kalkbrennen:
	Löschen von gebranntem Kalk:
	Abbinden von gelöschtem Kalk:
	[3]
9)	Erklären Sie anhand des Bändermodells (Skizze!) folgende Begriffe und geben Sie jeweils ein Beispiel an.
	a) Leiter

h') Eiger	halh	ıleiter
~	Ligor	HIGH	

[6]

10) Beurteilen Sie durch eine Rechnung, ob PH₃ unter Standardbedingungen aus den Elementen entstehen kann:

$$\Delta H_{f}^{0}(PH_{3}, g) = 9,25 \text{ kJ/mol};$$

$$S^{0}(PH_{3}, g) = 210,0 J/(mol K);$$

$$S^{0}(P_{4}, s) = 177,6 J;$$

$$S^{0}(H_{2}, g) = 130,5 \text{ J/(mol K)}.$$

[3]

11) Welche Valenzelektronenkonfiguration haben folgende Atome bzw Ionen im Grundzustand?

Ti:

F⁻:

Pb²⁺:

12)	und Summenformel deren Anhydride an.								
	HCIO ₄	H_4SiO_4	H_3PO_4	H ₂ SO ₄					
				[:	<u>5]</u>				
13)	Nennen und zeich nisch sind!	nen Sie die Lewis-Fo	ormeln zweier Molek	xüle, die zu CO ₂ isoelektr	·0-				
				[2	<u>2]</u>				
14)	Welche Molekülfor relativen Molekülm	mel hat die Verbindunasse?	ung mit der folgende	n Zusammensetzung un	d				
	45,9 % C, 2,75 %	H, 26,2 % O, 17,5 %	S, 7,65 % N; $M_r = 7$	183,18 g/mol.					

[5]

15)	a) Formulieren Sie die Reaktionsgleichung für die Darstellung von Chlor durch Oxidation von Salzsäure mit KMnO ₄ (mit Teilgleichungen für Oxidation und Reduktion).
	h) Kann man mit der anglegen Beaktion auch E. und I. deretellen (Pegründung)?
	b) Kann man mit der analogen Reaktion auch F ₂ und I ₂ darstellen (Begründung)?
	[6]
16)	Zu 50ml einer 0.5M Essigsäure-Lösung (pKs 4.67) werden 500mg festes NaOH (M = 40 g/mol) gegeben. Welchen pH hat die Lösung?

17)	a) Was ist der Rohstoff für die Herstellung von elementarem Silicium (Roh-Silicium)?
	Schreiben Sie die Reaktionsgleichung einschließlich Reaktionsbedingungen auf.
	b) Wie erfolgt die chemische Feinreinigung des Roh-Siliciums (Reaktionsgleichungen)?
	c) Nennen Sie die zwei wichtigsten (industriellen) Methoden zur Herstellung ("Züchtung") hochreiner Silicium-Einkristalle.
	[6]
16)	Welche Elemente sind bei Raumtemperatur flüssig?
	[1]
	Gesamt: [77]

PERIODENSYSTEM DER ELEMENTE

Schale Haupt- quan- ten- zahl n	1 іл	1			LECENDE													18 VIIIA
K n=1	1,00794 1 H 2,2	2 11A			Gruppen	IUPAC- bezeichnung =	_7 viib	CAS-Gruppe bezeichnun	g (bis 1986)				13 IIIA	14 IVA	15 va	16 via	17 VIIA	4,002602 2 He
L n=2	3 L1 4 BE				Elektr	nladungszahl ronegativität und Rochow)	54,938049 25 Mn 1,6	relative Ato					10,811 5 B	12,0107 6 C 2,5	14,0067 7 N 3,1	15,9994 8 O 3,5	18,9984032 9 F 4,1	20,1797 10 Ne
M n=3	22,989770 11 Na	24,3050 12 Mg 1,2	3 нів	4 IVB	5 vb	6 vib	7 VIIB	8 viii	9 viii	10 viii	11 в	12 IIB	26,981538 13 Al 1,5	28,0855 14 Si 1,7	30,973761 15 P 2,1	32,065 16 S 2,4	35,453 17 Cl 2,8	39,948 18 Ar
N n=4	39,0983 19 K 0,9		44,955910 21 SC 1,2	47,867 22 Ti	50,9415	51,9961 24 Cr 1,6	54,938049 25 Mn 1,6	55,845	58,933200	58,6934	63,546	65,409	69,723 31 Ga 1,8	72,64 32 Ge 2	74,92160 33 AS 2,2	78,96 34 Se 2,5	79,904 35 Br 2,7	83,798 36 Kr
O n=5	85,4678 37 Rb 0,9		88,90585 39 Y 1,1	91,224 40 Zr 1,2	41 Nb	95,94 42 MO 1,3	97,9072 43 TC 1,4	101,07 44 Ru 1,4		106,42 46 Pd		112,411 48 Cd 1,5	114,818 49 In 1,5	118,710 50 Sn	121,760 51 Sb 1,8	127,60 52 Te	126,90447 53 I 2,2	131,293 54 Xe
P n=6	132,90545 55 CS 0,9		138,9055 57 La	178,49 72 Hf 1,2	73 Ta	183,84 74 W 1,4	186,207 75 Re 1,5	190,23 76 OS 1,5	192,217 77 Ir 1,6	195,078 78 Pt	79 Au	200,59 80 Hg 1,5	204,3833 81 T 1 1,4	82 Pb	208,98038 83 Bi 1,7	208,9824 84 Po 1,8	209,9871 85 At 2	222,0176 86 Rn
Q n=7	223,0197 87 Fr 0,9		227,0277 89 AC	^{261,1088} 104Rf		^{266,1219} 106Sg	^{264,12} 107Bh	²⁷⁷ 108HS	268,1388 109Mt	²⁷¹ 110DS	²⁷² 111Rg	112Uub		114Uuq				
	s-B	lock					d-B	lock							p-B	Block		
P n=6		La	nthanoide	140,116 58 Ce 1,1	140,90765 59 Pr 1,1	144,24 60 Nd	144,9127 61 Pm 1,1	150,36 62 Sm 1,1	151,964 63 Eu 1	157,25 64 Gd 1,1	158,92534 65 Tb	162,500 66 Dy	164,93032 67 HO 1,1	167,259 68 Er 1,1	168,93421 69 Tm 1,1 2		174,967 71 Lu 1,1	
Q n=7			Actinoide	232,0381 90 Th	231,03588 91 Pa 1,1	238,02891 92 U 1,2	237,0482 93 Np 1,2	244,0642 94 Pu 1,2	243,0614 95 Am ≈1,2	96 Cm ≈1,2	247,0703 97 Bk ≈1,2	251,0796 98 Cf ≈1,2	252,0830 99 ES ≈1,2	257,0951 100Fm ≈1,2	258,0984 101 Md ≈1,2	259,1010 102NO	^{262,1097} 103Lr	