HW 4 Discrete

Bayard Walsh

October 2022

1 Number Theory

a) If p is prime, and a is any integer not divisible by p, then $a^{p-1} \equiv_p 1$

By theorem 10.2, For any prime p, $\varphi(p) = p - 1$. Therefore, $a^{p-1} \equiv_p 1$ equals $a^{\varphi(p)} \equiv_p 1$

As p is prime, and a is any integer not divisible by p, then p>1 and p and a are co-prime. By Euler's Theorem, $a^{\varphi(p)}\equiv_p 1$. As $a^{p-1}\equiv_p 1$ equals $a^{\varphi(p)}\equiv_p 1$, $a^{p-1}\equiv_p 1$

Therefore, $a^{p-1} \equiv_{p} 1$

b) If p is prime, and a is any integer not divisible by p, then a? is an inverse of a modulo p.

Let ? = p - 2, so a^{p-2} is an inverse of a modulo p

Consider $a * a^{p-2}$. This simplifies to a^{p-2+1} or a^{p-1}

By 1)a, $a^{p-1} \equiv_p 1$, meaning that $a * a^{p-2} \equiv_p 1$, or a^{p-2} is an inverse of a modulo p

c) Calculate $7^{66} \mod 15$ by hand.

By Corollary 10.6, as 7 and 15 are co-prime, 15 > 1, and 66 \geq 0, $7^{66} \equiv_{15} 7^{66mod\varphi(15)}$

By Theorem 10.3, consider 5,3, as distinct primes.

Therefore, as $\varphi(15) = \varphi(5*3), \ \varphi(15) = (5-1)(3-1)$

Therefore, $\varphi(15) = 8$

Consider $7^{66mod8} \mod 15$

 $(66 \mod 8) = 2 \text{ as } 8 * 8 = 64$

Therefore $7^{66mod8} \equiv_{15} 7^2$

Therefore, $49 \equiv_{15} 4$

Therefore $7^{66} \mod 15$ equals 4

d) Calculate $3^{3^{103}} \mod 11$ by hand.

As 3 and 11 are co-prime, by Corollary 10.6, $3^{3^{103}} \equiv_{11} 3^{3^{103} mod \varphi 11}$

Consider $3^{103} mod \varphi 11$. As 11 is prime, $\varphi 11 = 11 - 1$, or 10

Consider 3¹⁰³ mod 10. By Corollary 10.6, as 3 and 10 are co-prime, 3¹⁰³ mod

```
10 \text{ equals } 3^{103mod\varphi 10} \text{ mod } 10
```

Consider $103mod\varphi 10$. By Theorem 10.3, consider 5,2, as distinct primes.

Therefore, as $\varphi 10 = \varphi(5*2)$, $\varphi 10 = (5-1)(2-1)$, or 4

Therefore $103mod\varphi10$ equals 103mod4, which mods down to 3.

Therefore, we have $3^{103} \mod 10$ equals $3^3 \mod 10$. 27 mod 10 is 7.

Therefore, $3^{3^{103}}$ mod 11 equals 3^7 mod 11.

27*27*3 mod 11 equals 6*6*3 mod 11, by modding down. 36*3 mod 11 equals 3*3 mod 11, or 9.

Therefore $3^{3^{103}} \mod 11$ is 9.

e)

If N=35, E=5, C=11, and assume that N and M are relatively prime Consider $\varphi(35)$.Consider 7,5, as distinct primes and factors of 35. By Theorem 10.3, $\varphi(35)=(7-1)(5-1)$, or 28

Let D be some integer, such that D is the inverse of E modulo $\varphi(35)$.

Consider $ED \equiv_{\varphi(35)} 1$, by definition of inverse

Substitution for E and $\varphi(35)$, so that $5D \equiv_{24} 1$

Therefore 24|(5D-1), meaning that D=5

Using the Decryption formula, $M = (C^D \mod N)$

Substitution, $M = (11^5 \mod 35)$

Therefore, $M = (121 * 121 * 11 \mod 35)$

Therefore, $M = (16 * 16 * 11 \mod 35)$, by modding down multiplication rule

Therefore, $M = (16 * 176 \mod 35)$

Therefore, $M = (16 * 1 \mod 35)$

Therefore, M = 16

2 Induction

a) For all positive integers N there exists some integer M where $M^2 \le N < (M+1)^2$.

Proof by induction:

Statement: Let there be a positive integer N such that there exists some integer M where $M^2 \leq N < (M+1)^2$.

Base case:

$$N = 0, 0^2 \le 0 < (0+1)^2$$

M=0 is a solution. Therefore, true.

Inductive hypothesis: $M^2 \leq N < (M+1)^2$

Let K be an integer, such that $K^2 \leq N+1 < (K+1)^2$

Let K = M. As $M^2 \le N$, $K^2 \le N + 1$.

Also, as
$$N < (M+1)^2$$
, $N+1 \le (K+1)^2$

Therefore, we have $K^2 \leq N+1 \leq (K+1)^2$ for some integer K

Consider case where $N+1 < (K+1)^2$. This holds for inductive hypothesis, so we are done.

Consider case where $N+1=(k+1)^2$. Let k=m+1. As we know $N<(M+1)^2$, we have $N+1<(M+2)^2$

Therefore, For all positive integers N there exists some integer M where $M^2 \leq$ $N < (M+1)^2$.

b) For the statement, Let there be a positive integer N such that there exists some integer M where $M^2 \leq N < (M+1)^2$, prove that M is unique

First, assume that there exists a k such that k is less than m.

Therefore, $k^2 \leq N < (k+1)^2$

Smallest possible k element is k = M-1, which means that $(M-1)^2 \le N < M^2$, which contradicts $M^2 \leq N$

Second, assume that there exists a k such that k is greater than m.

Therefore, $k^2 \le N \le (k+1)^2$

Greatest possible k element is k = M + 1, which means that $(M + 1)^2 \le N < 1$ $(M+2)^2$, which contradicts $N < (M+1)^2$

As M cannot be a greater or smaller element, M is unique.

c)**Prove** $\sum_{i=1}^{n} (-1)^{i} * i^{2} = (-1)^{n} * (n(n+1))/2$ Statement: $\sum_{i=1}^{n} (-1)^{i} * i^{2} = (-1)^{n} * (n(n+1))/2$ holds for all positive integers

Base case: n = 1

$$(-1)^1 * (1(1+1))/2$$

This reduces to -1*2/2, or -1, which equals $\sum_{i=1}^{1} (-1)^1*1^2$

Therefore, the base is true

Inductive step: Consider $\sum_{i=1}^{k+1} (-1)^i * i^2$ Therefore, $(\sum_{i=1}^k (-1)^i * i^2) + ((-1)^{k+1} * (k+1)^2)$ By inductive hypothesis, $((-1)^k * (k(k+1))/2) + ((-1)^{k+1} * (k+1)^2)$ Rewrite $(-1)^k * (k(k+1))/2$ as $-1((-1)^k * (k(k+1))/2)$, or $(-1)^{k+1} * -(k(k+1))/2$

Therefore, $(-1)^{k+1}((k+1))/2$ as $1((-1)^{k}(k(k+1))/2)$ Expand to $(-1)^{k+1}(k^2+2k+1-(k(k+1))/2)$ Which is $(-1)^{k+1}((2k^2+4k+2-k^2-k)/2)$

This simplifies to $(-1)^{k+1}((k^2+3k+2)/2)$

Rewrite as $(-1)^{k+1}((k+1)(k+2)/2)$

Thus we have shown that $\sum_{i=1}^{n} (-1)^i * i^2 = (-1)^n * (n(n+1))/2$ holds for n = k+1. Therefore $\sum_{i=1}^{n} (-1)^i * i^2 = (-1)^n * (n(n+1))/2$ holds for all $n \in \mathbb{N}$

3 Squaring Up

b)

20 squares. Currently 17 squares, - 1 (square to be divided up) + 4 (added amount of squares)

c)

Prove that for all n>5 , there exist integers $a\in\{6,7,8\}$ and $m\leq 0$ such that n=a+3m.

Strong Induction Proof:

Base case: n = 6, 7, 8, 9

6 = 6 + 3 * 0

7 = 7 + 3 * 0

8 = 8 + 3 * 0

9 = 6 + 3 * 1

Inductive case: Let $k \in \mathbf{N}$ be arbitrary with $k \geq 9$ and assume for all $6 \leq j \leq k$ that j = a + 3m for some $a, b \in \mathbf{N}$. Consider n = k + 1 Since $k \geq 9$, we have that $k - 3 \geq 6$ and k - 3 = a + 3m with $a, b \in \mathbf{N}$. Then k + 1 = a + 3(m + 1).

Prove that for any n > 5, a square can be divided into n smaller non-overlapping squares.

Strong Induction Proof: Base case: n = 6, 7, 8

Consider the following squares:

n = 4 While the squares is stable.	his is not in raightforwa	the base case	e, it indicates that given a square, add

n = 6

n = 8

Therefore, propose the formula n=a+3m, where $a\in\{6,7,8\}$. As shown by n=4, any square can be divided into 4 smaller squares (or adding increments of 3 to an amount of already non-overlapping squares will be always cause there to be n non-overlapping squares), hence a+3m, where a is the base set and 3m is amount of squares one can add

By 4)c, For all n>5 , there exist integers $a\in\{6,7,8\}$ and $m\geq 0$ such that n=a+3m.

Therefore, for any n > 5, a square can be divided into n smaller non-overlapping squares.

4 Irreducibility

a)

The following set is T-irreducible, from the set of $\{1, 2, ..., 20\}$

The set of $\{4, 7, 10, 13, 19\}$

This set is all intersections between $\{1, 2, ..., 20\}$ and T-set, excluding values with a factor other than itself in the set. In this case, that only removes 16, as 4 is also a factor, so 16 is not T-irreducible

b) Prove that for all $a, b \in T$ and $c \in N$, if a = bc, then $c \in T$.

By definition of set T all numbers in the set can be reduced to 3K + 1. Therefore, $[a]_3 = 1$ and $[b]_3 = 1$

As, a = bc, consider $[a]_3 = [bc]_3$

By modding down, $[1]_3 = [c]_3$

By modular rules, $[c]_3 = 1$.

Therefore, for some positive integer K, c = 3K + 1, so $c \in T$

c) Prove that every element of T greater than 1 can be written as a product of T-irreducible integers.

Base case: Smallest element of T greater than 1 is 4. 4 is T-irreducible, therefore, it is T-irreducible with itself.

Statement: Let N be an element of T, and assume that there is some integer k such that $k < N, k \in T$ and k > 1. Assume that k can be written as the product of smaller T-irreducible factors.

Inductive Hypothesis:

Consider if N is prime or if N is T-irreducible. Therefore, $Div(N) \cap T$ will always be $\{1, N\}$. Therefore, if N is prime or T-irreducible, it's T-irreducible with itself, and proof is complete.

Assume it isn't. By definition of an element of T which is not T-irreducible, Div(N) has one or more factors in common with T. Let c be integer such that c|N, and a be an integer such that ca = N. By 4b), because $c \in T$ and $N \in T$, then $a \in T$. Therefore, if Div(N) has one or more factors in common with T it can be written as smaller T-irreducible factors, which meets the induction hypothesis.

Therefore, every element of T greater than 1 can be written as a product of T-irreducible integers

d) Prove, via a counterexample, that factorization into T -irreducible integers is not unique up to reordering.

100 is a counterexample.

10*10 is a factorization of 100. As Div(10)= $\{1,2,5,10\}$, and $Div(10)\cap T=\{1,10\}$, it is T -irreducible

4*25 is also a factorization of 100. As $Div(4) = \{1,2,4\}$, and $Div(4) \cap T = \{1,4\}$, it is T-irreducible. As $Div(25) = \{1,5,25\}$, and $Div(25) \cap T = \{1,25\}$, it is also T-irreducible.

Therefore, 100 has can be factorized into T-irreducible integers in 2 ways which aren't unique to up reordering. Therefore, factorization into T -irreducible integers is not unique up to reordering.

5 Collaborators List

Hunter Smith, Grey Sign, Nafis Khan