Variant annotation

Variant Effect Predictor (VEP)

Edinburgh Genomics

Edinburgh, UK 23rd October 2015

Marta Bleda Latorre

mb2033@cam.ac.uk

Research Assistant at the Department of Medicine University of Cambridge Cambridge, UK

The pipeline

What is functional annotation?

Why we do that? PRIORITIZATION!

- Each individual exome carries between 25,000 and 50,000 variants
- A whole genome can carry 3.5 million variants on average
- After annotating there will be hundreds of deleterious variants

CAUTION!

On average, each *normal* person is found to carry:

- ~11,000 synonymous variants
- ~11,000 non-synonymous variants

250 to 300 los-of-function variants in annotated genes

50 to 100 variants previously implicated in inherited disorders

1000 Genomes Project Consortium. *A map of human genome variation from population-scale sequencing.* **Nature**. 2010 Oct 28;467(7319):1061-73. PubMed PMID: 20981092

Sources of functional information

Table 1 Publicly available tools and databases for varie	tasks of genetic variant annotation and prioritization
--	--

Category Database/tool/project		Description	URL	
Genetic variant data	dbSNP ⁶⁸	Comprehensive, curated SNP and short indel database	http://www.ncbi.nlm.nih.gov/projects/	SNI
sources	DbVar ⁶⁹	Comprehensive, curated database for structural variants	http://www.ncbi.nlm.nih.gov/dbvar	
	DGV ⁷⁰	Human structural variants from samples with no phenotype	http://projects.tcag.ca/variation	
Functional characterization of	ENCODE ⁷¹	High-throughput functional characterization of DNA elements, including noncoding regions	http://www.genome.gov/10005107	
genomic elements	SIFT ⁷² , PolyPhen ⁷³	Prioritization of nonsynonymous SNPs	http://sift.jcvi.org, http://genetics.bwh. harvard.edu/pph2	
Public gene–trait associations	dbGaP ³⁴	Comprehensive listing of genotype-to-phenotype mappings	http://www.ncbi.nlm.nih.gov/gap	
	EGA ⁷⁴	Genotype–phenotype experiment archive	http://www.ebi.ac.uk/ega	
Disease-associated	HGMD ³⁵	Database for human disease mutations	http://www.hgmd.org	
mutations	OMIM ³⁶	Mendelian disease gene associations	http://www.ncbi.nlm.nih.gov/omim	
	SwissVar ⁷⁶	Variant catalog of the UniProt knowledge bases	http://swissvar.expasy.org	
	GAD ⁷⁷	NCBI source for genotype – disease associations	http://geneticassociationdb.nih.gov	
	GWAS catalog from NHGRI ⁷⁸	SNP-phenotype associations found by GWAS	http://www.genome.gov/gwastudies	
Whole-genome repositories	Complete genomics public genomes ⁷⁹	Complete genomics for 69 genomes from multiple ancestries (includes samples from the NHGRI and NIGMS repositories)	http://www.completegenomics.com/ sequence-data/download-data	
	1,000 Genomes ⁸⁰	Expanding resource currently housing three low-coverage whole genomes of multiple ancestries	http://www.1000genomes.org	
Ancestry-focused	HapMap ²⁶	Haplo-block mapping for diverse populations	http://www.hapmap.org	
variant data sources	HGDP ²⁷	SNP profiles of samples from several endogenous populations	http://hagsc.org/hgdp	
Pharmacogenomic associations and data sources	PharmGKB ⁵⁶	Variant–pharmacokinetic/pharmacodynamic trait associations and gene–drug interactions	http://www.pharmgkb.org	
	DrugBank ⁸¹	Drug-target database with biochemical properties	http://drugbank.ca	C

Cordero P, Ashley EA. *Whole-genome sequencing in personalized therapeutics*. **Clin Pharmacol Ther**. 2012 Jun ;91(6):1001-9. PubMed PMID: 22549284

Computational method and tools

- Annotated information is sometimes limited, particularly for rare and complex traits
- Computational methods can measure deleteriousness by using comparative genomics and knowledge of protein biochemistry and structure

Comparative Genomics

Focus on sequences that have not been remove by **natural selection**.

Quantify evolutionary changes in genes or genomes and define conserved and neutral regions.

Variants observed in conserved sites are highly likely to be **deleterious**.

A C G A T G A C A A C A A T A A G A A C A

Effects in protein-coding variants

Can combine **evolutionary** and **biochemical** information

Use alignments of homologous proteins to estimate mutational deleteriousness

Use **biochemical data** such as amino acid properties, binding information and structural information to estimate the impact.

Effects in non-coding variants

The majority of the human genetic variation is in non-coding regions.

No detectable conservation outside vertebrates.

Main strategy for estimation is testing the **mammalian conservation** of the non-coding variants.

Cooper GM, Shendure J. *Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data.* **Nature Reviews Genetics**. 2011 Aug 18;12(9):628-40. Pubmed PMID: 21850043

Computational methods and tools

Prediction scores for non-synonymous variants

Kircher M. et al. *A general framework for estimating the relative pathogenicity of human genetic variants.* **Nature Genetics**. 2014; Pubmed PMID: 24487276.

Shihab H. A.. et al. *An integrative approach to predicting the functional effects of non-coding and coding sequence variation.* **Bioinformatics**. 2014; Pubmed PMID: 25583119.

Table 1 | Tools for protein-sequence-based prediction of deleteriousness

Name	Туре	Information	URL	Refs
MAPP	Constraint-based predictor	Evolutionary and biochemical	http://mendel.stanford.edu/SidowLab/downloads/MAPP/index.html	27
SIFT	Constraint-based predictor	Evolutionary and biochemical (indirect)	http://sift.bii.a-star.edu.sg/	39
PANTHER	Constraint-based predictor	Evolutionary and biochemical (indirect)	http://www.pantherdb.org/	41
MutationTaster*	Trained classifier	Evolutionary, biochemical and structural	http://www.mutationtaster.org/	40
nsSNP Analyzer	Trained classifier	Evolutionary, biochemical and structural	http://snpanalyzer.uthsc.edu/	44
PMUT	Trained classifier	Evolutionary, biochemical and structural	http://mmb2.pcb.ub.es:8080/PMut/	38
polyPhen	Trained classifier	Evolutionary, biochemical and structural	http://genetics.bwh.harvard.edu/pph2/	35
SAPRED	Trained classifier	Evolutionary, biochemical and structural	http://sapred.cbi.pku.edu.cn/	42
SNAP	Trained classifier	Evolutionary, biochemical and structural	http://www.rostlab.org/services/SNAP/	36
SNPs3D	Trained classifier	Evolutionary, biochemical and structural	http://www.snps3d.org/	51
PhD-SNP	Trained classifier	Evolutionary and biochemical (indirect)	http://gpcr2.biocomp.unibo.it/~emidio/ PhD-SNP/PhD-SNP_Help.html	37

^{*}Also makes predictions for synonymous and non-coding variant effects: for example, splicing. MAPP, Multivariate Analysis of Protein Polymorphism; polyPhen, polymorphism phenotyping.

Cooper GM, Shendure J. *Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data.* **Nature Reviews Genetics.** 2011 Aug 18;12(9):628-40. Pubmed PMID: 21850043

Computational methods and tools

Prediction scores for non-coding variation

Table 2 | Tools for nucleotide-sequence-based prediction of deleteriousness

Name	Туре	Information	URL	Refs
phastCons	Phylogenetic HMM	Evolutionary	http://compgen.bscb.cornell.edu/phast/	60
GERP	Single-site scoring	Evolutionary	http://mendel.stanford.edu/SidowLab/ downloads/gerp/index.html	67
Gumby	Single-site scoring	Evolutionary	http://pga.jgi-psf.org/gumby/	21
phyloP	Single-site scoring	Evolutionary	http://compgen.bscb.cornell.edu/phast/	66
SCONE	Single-site scoring	Evolutionary	http://genetics.bwh.harvard.edu/scone/	68
binCons	Sliding-window scoring	Evolutionary	http://zoo.nhgri.nih.gov/binCons/index.cgi	69
Chai Cons	Sliding-window scoring	Evolutionary and structural	http://research.nhgri.nih.gov/software/chai	71
VISTA	Visualization tool (various scores)	Evolutionary	http://genome.lbl.gov/vista/index.shtml	70

GERP, Genomic Evolutionary Rate Profiling; HMM, hidden Markov model; SCONE, Sequence Conservation Evaluation.

Cooper GM, Shendure J. *Needles in stacks of needles: finding disease-causal variants in a wealth of genomic data.* **Nature Reviews Genetics**. 2011 Aug 18;12(9):628-40. Pubmed PMID: 21850043

Tools for functional annotation

Align GVD

- We need to measure the impact of each variant in the genome
- We cannot annotate 25,000 variants manually checking more than 20 databases

Tools integrate biological information and ease the functional annotation of hundreds of thousand variants **PANTHFR** CellBase **SNPseek** Parepro SeattleSeq LS-SNP **PMUT SNPHunter** SNPs&GO Oncotator **Annotation** CandiSNPer **SNPnexus SNPeffect HSF** SCONE **PHAST PupaSNP CUPSAT** 4.0 **SNP Function FANS SNPper** SNPdbe Finder F-SNP CHASM and Portal **ABSOLUTE** SIFT **SNVBox** SCAN Auto-mute nsSNPAnalyzer MutationTaster PolyPhen-2 PhD-SNP AnnTools **FastSNP** pfSNP **FOLD-X** MAPP **SNAP** GERP++ **HOPE PESX SAPRED** ResqueESE **VEP** SegAnt **FFSD** QuikSNP SNPs3D **PolyDoms** MutaGeneSys MutPred NGS-SNP **ANNOVAR** SiPhy SVA **ESEfinder ESRSearch GSITIC** PolyMAPr dbNSFP MuD MutSIq SegProfCod Stephan Pabinger et al. A survey of tools for variant I-Mutant2.0 SNP@Domain analysis of next-generation genome sequencing MutationAssesor data, Briefings in Bioinformatics, 2013 Jan. Pubmed

PMID: 23341494

Variant Effect Predictor (VEP)

VEP documentation site: http://www.ensembl.org/info/docs/variation/vep/index.html

- Backed by Ensembl
- Free and open source
- 3 ways of functionality: web interface, standalone Perl script and REST API
- Input formats: CSV, VCF, Pileup and HGVS
- Regulatory information: TFBSs
- Filtering by coding regions and MAF
- Predictions: SIPF, PolyPhen
- 1000 genomes and dbSNP information
- Uses Sequence Ontology
- Many species

- Regulatory information does not include miRNA targets
- The standalone Perl script needs:
 - Perl and MySQL support
 - Download, install and update every ~ 2 months

McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. *Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor.* **BMC Bioinformatics** 26(16):2069-70(2010) Pubmed PMID: 20562413

Variant Effect Predictor (VEP)

VEP web interface: http://www.ensembl.org/Homo_sapiens/Tools/VEP

McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. *Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor.* **BMC Bioinformatics** 26(16):2069-70(2010) Pubmed PMID: 20562413

CellBase v3.2.0

- NoSQL database that integrates the most relevant biological information:
 - Core features: genes, transcripts, exons, proteins, genome sequence, etc.
 - Regulatory: Ensembl regulatory, TFBS, miRNA targets, CTCF, Open chromatin, etc.
 - Functional annotation: OBO ontologies (Gene Ontology, Human Disease Ontology), etc.
 - Genomic variation: Ensembl Variation, ClinVar, COSMIC, etc.
 - Systems biology: IntAct , Biogrid, Reactome, gene co-expression, etc.
 - More than 30 species available
- An exhaustive RESTful Web service API has been implemented:

http://wwwdev.ebi.ac.uk/cellbase/webservices/rest/v3/hsapiens/genomic/region/22:17449263:17449264/gene

- New features included in v3 2 0
 - New Variant Annotation functionality
 - New data:
 - RefSeq annotation
 - DisGeNET
 - Gene Expression Atlas

Bleda M, et al. *CellBase, a comprehensive collection of RESTful web services for retrieving relevant biological information from heterogeneous sources.* **Nucleic Acids Research**. 2012 Pubmed PMID: 22693220

CellBase v3.2.0 annotator

https://github.com/opencb/cellbase/

CellBase documentation site: https://github.com/opencb/cellbase/wiki

- Free and open source.
- Institutions using it: EBI EVA, GEL
- 2 ways of functionality: CLI program, Java RESTful WS API
- Cloud variant annotator. Requires no installation or updates
- Consequence type in Ensembl and RefSeq genes (Sequence Ontology)
- Regulatory regions: TFBS, miRNA target, ENCODE
- Conservation scores: phastCons and phyloP.
- Protein substitution effect scores: PolyPhen-2, SIFT
- Control studies frequencies: 1000 genomes, EVS
- Gene/Transcript Expression: Gene Expression Atlas
- Clinical phenotype information: ClinVar, COSMIC, GWAS catalog
- More than 30 species (human, mouse, rat, zebra fish, worm, fly, yeast, dog, pig, mosquito, etc.)

- Young program, many new features coming
 - UniProt, InterPro, Intact, Emory clinical data, DGIdb, GERP++ and many others
 - Large structural variants annotation

Bleda M, et al. *CellBase, a comprehensive collection of RESTful web services for retrieving relevant biological information from heterogeneous sources*. **Nucleic Acids Research**. 2012 Pubmed PMID: 22693220

CellBase v3.1.0 annotator

https://github.com/opencb/cellbase/

Download CellBase code and save it into your course/variant_annotation folder:

https://github.com/opencb/cellbase/wiki/Download-and-Installation

Extract the contents

Download and Installation

Nacho edited this page 14 hours ago · 15 revisions

This tutorial is intended to explain how to download and install CellBase and RESTful web services. To learn how to clone and build CellBase please visit README

Getting CellBase

You can get stable CellBase software in two different ways:

- You can download a built version packaged in a tar.gz from GitHub releases. This is the recommended way for using stable releases.
- or, you can download source code by cloning the repository and following the README documentation to build CellBase, this is useful for testing or trying the last features from the development branch of CellBase, notice you should not use this for production.

To download most featured Cellbase version click here CellBase v3.2.0

Usage:

cellbase.sh variant-annotation --input-file file.vcf --output-file file.vep

REST API:

http://bioinfodev.hpc.cam.ac.uk/cellbase/webservices/rest/v3/hsapiens/genomic/variant/19:45411941:T:C/full_annotation

AnnoVar

ANNOVAR web site: http://www.openbioinformatics.org/annovar/

- Free and open source
- Can annotate SNV, insertions and deletions
- Regulatory information: Conserved genomic regions, TFBSs, miRNA targets and predicted miRNA secondary structures. ENCODE DNAse I hypersensitive sites, Histone methylations, ChIP and RNA-Seq peaks
- DbSNP, 1000 genomes, SIFT and GERP filtering
- Predictions: Polyphen, LRT, MutationTaster, PhyloP
- Can handle custom annotations in GFF3
- Can handle 1 o 0-based coordinates
- 5 Species (human, mouse, worm, fly, yeast)

Accepts VCF4, GFF3-SOLiD and CSV BUT after conversion to their particular input file:

Chr	Start	End	Ref	0bs	Comments
1	161003	161003	С	T	comments: rs1000050

- Perl written program
- Installation required
- Users need to download every annotation database and save them locally (~35GB per assembly)
- Need to be run several times
- Output: several files depending on the query

Wang K, Li M, Hakonarson H. *ANNOVAR: Functional annotation of genetic variants from next-generation sequencing data.* **Nucleic Acids Research**. Sep;38(16):e164 Pubmed PMID: 20601685

AnnoVar

EXAMPLE of ANNOVAR usage

```
DOWNLOADING BIOLOGICAL DATA:
user@computer:~$ annotate variation.pl -buildver hg19 -downdb refgene humandb/
 user@computer:~$ annotate variation.pl -buildver hg19 -downdb snp135 -webfrom annovar humandb/
 user@computer:~$ annotate variation.pl -buildver hg19 -downdb phastConsElements46way humandb/
 user@computer:~$ annotate variation.pl -buildver hg19 -downdb 1000g2012apr -webfrom annovar
humandb/
 user@computer:~$ annotate variation.pl -buildver hg19 -downdb cytoBand humandb/
EXTRACTING THE EFFECT:
user@computer:~$ annotate variation.pl -geneanno example/ex1.human humandb/
 user@computer:~$ annotate variation.pl -regionanno -dbtype band example/ex1.human humandb/
 user@computer:~$ annotate variation.pl -filter -dbtype 1000g2012apr eur example/ex1.human
humandb/
```

