Show me the data!

Week07: Regular Expression

Social Analysis Big Data

Instructors: Chung-pei Pien

ZU1942001/266868001/Z23937001/ZM1941001

- Plot and Loop
- Regular Expression
- 3 Ukraine Conflict Twitter

Can loop function can help us to do data mining?

Yes! It is!

The relationship between a li's distance from nuclear power plant and ref_16_yea in 2018.

05

Plot and Loop

Let's make a plot first.

```
ntc_2018 <- ntc_2018 %>%
mutate(yea_rate = rf_16_yea / rf_16_turnout)
```

ggplot(ntc_2018, aes(closest_plant, yea_rate)) +

geom_point()

Add a regression line and a title:

```
ggplot(ntc_2018, aes(closest_plant, yea_rate)) +
  geom_point() +
  geom_smooth(method = lm) +
  ggtitle("New Taipei City")
```


How to save a ggplot plot?

```
ntc_plot <- ggplot(ntc_2018, aes(closest_plant, yea_rate)) +
  geom_point() +
  geom_smooth(method = lm) +
  ggtitle("New Taipei City")

ggsave(ntc_plot, file = "ntc_plot.png", width = 14, height =
10, units = "cm")</pre>
```


Product all districts' plots (x = closest_plant and y = yea_reat) to check individual district's results.

Could you use loop function to do this task?

If we use loop, what codes we should adjust in the loop?

```
ntc_plot <- ggplot(ntc_2018, aes(closest_plant, yea_rate)) +
   geom_point() +
   geom_smooth(method = lm) +
   ggtitle("New Taipei City")

ggsave(ntc_plot, file = "ntc_plot.png", width = 14, height =
10, units = "cm")</pre>
```


How to create single district's table and allow loop to read it?

```
dlist <- ----(ntc_2018$district)

ddf <- ntc_2018 %>%
----(---- dlist[1])
```

Fill tem out and paste the codes in Moodle (Practice 2)

05

Plot and Loop

Adjust the codes

Copy and paste the codes into the loop:

```
for (i in 1:29) {
 ddf <- ntc_2018 %>%
  filter(district == dlist[i1])
 temp_plot <- ggplot(ddf, aes(yea_rate, closest_plant)) +
  geom_point() +
  geom_smooth(method = lm) +
  ggtitle(dlist[i4])
 ggsave(temp_plot, file = paste0(dlist[i1], ".png"),
         width = 14, height = 10, units = "cm")
```


Save the plots into sub-directory:

```
for (i in 1:29) {
 ddf <- ntc_2018 %>%
  filter(district == dlist[i])
 temp_plot <- ggplot(ddf, aes(yea_rate, closest_plant)) +
  geom_point() +
  geom_smooth(method = lm) +
  ggtitle(dlist[i])
 ggsave(temp_plot, file = paste0("ntc_plot/", dlist[i], ".png"),
         width = 14, height = 10, units = "cm")
```


The plots we produced are great but not perfect for data sciencists.

Why?

The plots we produced are great but not perfect for data sciencists.

We don't know the districts' slope values and if the values' are significant.

Bali's slope of closest_plant is larger than the whole city, but it's insignificant.

We don't need to pay much attention into Bali.

05

Plot and Loop

```
lm(formula = yea_rate ~ closest_plant, data = ddf)
for (i in 1:29) {
                                         Residuals:
                                                      1Q Median
                                              Min
                                                                       3Q
                                                                               Max
                                         -0.112828 -0.014265 -0.002957 0.019903 0.069347
                                         Coefficients:
 ddf <- ntc 2018 %>%
                                                      Estimate Std. Error t value Pr(>|t|)
                                         (Intercept)
                                                     0.5656791 0.0229258
  filter(district == dlist[i])
                                         closest_plant -0.0002919 0.0007877
 yea_close <- Im(yea_rate ~ closest_plant, data = ddf)</pre>
 #summary(yea close)
 temp_plot <- ggplot(ddf, aes(closest_plant, yea_rate)) +
  geom point() +
  geom_smooth(method = lm) +
  ggtitle(paste(dlist[i], "slope:", signif(yea_close$coefficients[2], 3), "p-
value:", signif(summary(yea_close)$coef[2, 4], 3)))
 ggsave(temp_plot, file = paste0("ntc_plot/", dlist[i], ".png"), width = 14,
height = 10, units = "cm")
```

call:

05

Plot and Loop

```
Too many plots? Only produce
for (i in 1:29) {
                           plots that p-value is small than 0.1
 ddf <- ntc 2018 %>%
  filter(district == dlist[i])
 yea_close <- Im(yea_rate ~ closest_plant, data = ddf)
 pv <- signif(summary(yea_close)$coef[2, 4], 3)</pre>
if (pv \le 0.1)
 temp_plot <- ggplot(ddf, aes(closest_plant, yea_rate)) +
  geom_point() +
  geom_smooth(method = lm) +
  ggtitle(paste(dlist[i], "slope:", signif(yea_close$coefficients[2], 3), "p-
value:", pv))
 ggsave(temp_plot, file = paste0("ntc_plot_filter/", dlist[i], ".png"), width =
14, height = 10, units = "cm")
                                                                       18
```

Regular Expression

What is regular expression?

Regular expressions are an encoded text system for matching sets of strings.

In general, we use the skills of regular expressions to find patterns of huge set of text dataset to deal with them.

Run the codes: re1

How to separate birth into year and month?

^	id [‡]	birth [‡]
1	1	1978Y11M
2	2	1968Y1M
3	3	1828Y10M
4	4	1967Y5M
5	5	1717Y4M
6	6	1948Y12M
7	7	1952Y06M
8	8	1828Y10M
9	9	1927Y3M
10	10	1854Y6M
11	11	287Y6M
12	12	19Y10M

How to separate birth into year and month?

Y is your pattern

regexpr(pattern, x)

regexpr() produces two information:

The starting location
The length of the pattern

^	id [‡]	birth [‡]
1	1	1978Y11M
2	2	1968Y1M
3	3	1828Y10M
4	4	1967Y5M
5	5	1717Y4M
6	6	1948Y12M
7	7	1952Y06M
8	8	1828Y10M
9	9	1927Y3M
10	10	1854Y6M
11	11	287Y6M
12	12	19Y10M

yp <- regexpr("Y", re1\$birth)</pre>

re1\$year <- substr(re1\$birth, 1, yp - 1)

re1\$month <- substr(re1\$birth, yp + 1,
nchar(re1\$birth) - 1)</pre>

*	id [‡]	birth [‡]
1	1	1978Y11M
2	2	1968Y1M
3	3	1828Y10M
4	4	1967Y5M
5	5	1717Y4M
6	6	1948Y12M
7	7	1952Y06M
8	8	1828Y10M
9	9	1927Y3M
10	10	1854Y6M
11	11	287Y6M
12	12	19Y10M

Typos: re2

It always happen!!!

yp <- regexpr("Y", re2\$birth)</pre>

*	id [‡]	birth [‡]
1	1	1978Y11M
2	2	1968Y1M
3	3	1828Y10M
4	4	1967Y5M
5	5	1717Y4M
6	6	1948Y12M
7	7	1952Y06M
8	8	1828Y10M
9	9	1927Y3M
10	10	1854Y6M
11	11	287Y6M
12	12	19Y10M
13	13	1921y12M

Typos: re2

It always happen!!!

yp <- regexpr("Y", re2\$birth)</pre>

regexpr cannot identify 13th id's y.

*	id [‡]	birth [‡]
1	1	1978Y11M
2	2	1968Y1M
3	3	1828Y10M
4	4	1967Y5M
5	5	1717Y4M
6	6	1948Y12M
7	7	1952Y06M
8	8	1828Y10M
9	9	1927Y3M
10	10	1854Y6M
11	11	287Y6M
12	12	19Y10M
13	13	1921y12M

Two opinions to fix this problem:

1. Tell R the pattern is Y or y

yp <- regexpr("Y|y", re2\$birth)</pre>

yp

*	id [‡]	birth [‡]
1	1	1978Y11M
2	2	1968Y1M
3	3	1828Y10M
4	4	1967Y5M
5	5	1717Y4M
6	6	1948Y12M
7	7	1952Y06M
8	8	1828Y10M
9	9	1927Y3M
10	10	1854Y6M
11	11	287Y6M
12	12	19Y10M
13	13	1921y12M

Regular Expression

Introduction

Two opinions to fix this problems:

2. Replace Y to y

gsub(pattern, replace, x)

gsub("y", "Y", re2\$birth)

yp <- regexpr("Y", re2\$birth)</pre>

*	id [‡]	birth [‡]
1	1	1978Y11M
2	2	1968Y1M
3	3	1828Y10M
4	4	1967Y5M
5	5	1717Y4M
6	6	1948Y12M
7	7	1952Y06M
8	8	1828Y10M
9	9	1927Y3M
10	10	1854Y6M
11	11	287Y6M
12	12	19Y10M
13	13	1921y12M

Name and ID: re3

Name and id are mixed up!

You don't have a specific letter (Y) to refer.

•	nameid [‡]	birth [‡]
1	Mary001	1978Y11M
2	Ben1029	1968Y1M
3	Billy6587	1828Y10M
4	John21000	1967Y5M
5	Jane410	1717Y4M
6	Max2946	1948Y12M
7	Catherine0358	1952Y06M
8	Eva9863	1828Y10M
9	Adam212	1927Y3M
10	Tracy1215	1854Y6M

To match one of several characters in a specified set we can enclose the characters of concern with square brackets []

Anchor	Description
[aeiou]	match any specified lower case vowel
[AEIOU]	match any specified upper case vowel
[0123456789]	match any specified numeric value
[0-9]	match any range of specified numeric values
[a-z]	match any range of lower case letter
[A-Z]	match any range of upper case letter
[a-zA-Z0-9]	match any of the above
[^aeiou]	match anything other than a lowercase vowel
[^0-9]	match anything other than the specified numeric values

^{*}adapted from Handling and Processing Strings in R (Sanchez, 2013)

•	nameid [‡]	birth [‡]
1	Mary001	1978Y11M
2	Ben1029	1968Y1M
3	Billy6587	1828Y10M
4	John21000	1967Y5M
5	Jane410	1717Y4M
6	Max2946	1948Y12M
7	Catherine0358	1952Y06M
8	Eva9863	1828Y10M
9	Adam212	1927Y3M
10	Tracy1215	1854Y6M

np <- regexpr("[A-Za-z]*",
re3\$nameid)</pre>

np
attr(np, "match.length")

Quantifier	Description
?	the preceding item is optional and will be matched at most once
*	the preceding item will be matched zero or more times
+	the preceding item will be matched one or more times
{n}	the preceding item is matched exactly n times
{n,}	the preceding item is matched n or more times
{n,m}	the preceding item is matched at least n times, but not more than m times

^{*}adapted from Handling and Processing Strings in R (Sanchez, 2013)

*	nameid [‡]	birth [‡]
1	Mary001	1978Y11M
2	Ben1029	1968Y1M
3	Billy6587	1828Y10M
4	John21000	1967Y5M
5	Jane410	1717Y4M
6	Max2946	1948Y12M
7	Catherine0358	1952Y06M
8	Eva9863	1828Y10M
9	Adam212	1927Y3M
10	Tracy1215	1854Y6M

re3\$name <- substr(re3\$nameid,
np, attr(np, "match.length"))</pre>

re3\$id <- substr(re3\$nameid, attr(np, "match.length") + 1, nchar(re3\$nameid))

•	nameid [‡]	birth [‡]
1	Mary001	1978Y11M
2	Ben1029	1968Y1M
3	Billy6587	1828Y10M
4	John21000	1967Y5M
5	Jane410	1717Y4M
6	Max2946	1948Y12M
7	Catherine0358	1952Y06M
8	Eva9863	1828Y10M
9	Adam212	1927Y3M
10	Tracy1215	1854Y6M

Practice1

Run ex_re3 dataframe codes. To separate name and id.

*	nameid [‡]	birth [‡]
1	001Mary	1978Y11M
2	1029Ben	1968Y1M
3	6587Billy	1828Y10M
4	21000John	1967Y5M
5	410Jane	1717Y4M
6	2946Max	1948Y12M
7	0358Catherine	1952Y06M
8	9863Eva	1828Y10M
9	212Adam	1927Y3M
10	1215Tracy	1854Y6M

Typos II: re4

First letter: upper

Other letters: lower

*	nameid [‡]	birth [‡]
1	MaRy001	1978Y11M
2	Ben1029	1968Y1M
3	billy6587	1828Y10M
4	JoHn21000	1967Y5M
5	Jane410	1717Y4M
6	max2946	1948Y12M
7	Catherine0358	1952Y06M
8	Eva9863	1828Y10M
9	aDAm212	1927Y3M
10	Tracy1215	1854Y6M

Typos II: re4

First letter: upper

Other letters: lower

Use

- 1. toupper() for the first letter
- 2. tolower() for the other letters
- 3. Paste() them together

•	nameid [‡]	birth [‡]
1	MaRy001	1978Y11M
2	Ben1029	1968Y1M
3	billy6587	1828Y10M
4	JoHn21000	1967Y5M
5	Jane410	1717Y4M
6	max2946	1948Y12M
7	Catherine0358	1952Y06M
8	Eva9863	1828Y10M
9	aDAm212	1927Y3M
10	Tracy1215	1854Y6M

```
np <- regexpr("[A-Za-z]*", re4$nameid)</pre>
np
re4$name <- substr(re4$nameid, np, attr(np,
"match.length"))
re4$id <- substr(re4$nameid, attr(np,
"match.length") + 1, nchar(re4$nameid))
re4$name_fix <-
pasteO(toupper(substr(re4$name, 1, 1)),
tolower(substr(re4$name, 2,
nchar(re4$name))))
```

*	nameid [‡]	birth [‡]
1	MaRy001	1978Y11M
2	Ben1029	1968Y1M
3	billy6587	1828Y10M
4	JoHn21000	1967Y5M
5	Jane410	1717Y4M
6	max2946	1948Y12M
7	Catherine0358	1952Y06M
8	Eva9863	1828Y10M
9	aDAm212	1927Y3M
10	Tracy1215	1854Y6M

Specific marks

Using [to identify location

yp <- regexpr("[", re5\$birth)</pre>

yp <- regexpr("\\[", re5\$birth)</pre>

•	id [‡]	birth [‡]
1	1	1978[11]
2	2	1968[1]
3	3	1828[10]
4	4	1967[5]
5	5	1717[4]
6	6	1948[12]
7	7	1952[06]
8	8	1828[10]
9	9	1927[3]
10	10	1854[6]
11	11	287[6]
12	12	19[10]

Regular Expression Introduction

Specific marks

Using (to identify location

Run ex_re5 dataframe codes

Practice 2

*	id [‡]	birth [‡]
1	1	1978(11)
2	2	1968(1)
3	3	1828(10)
4	4	1967(5)
5	5	1717(4)
6	6	1948(12)
7	7	1952(06)
8	8	1828(10)
9	9	1927(3)
10	10	1854(6)
11	11	287(6)
12	12	19(10)

Ukraine Conflict Twitter Dataset (14.53M tweets)

Dataset of 14.53M tweets about the ongoing Ukraine Russia Conflict

Data Code (12) Discussion (6) Metadata

In Kaggle, you can download all Urkraine conflict tweets after March 25.

- WkraineCombinedTweetsDeduped_MAR25
- UkraineTweets example 🧪

You can download March 25's tweets and read the contend

I sliced 10 observations for you to do exercise.

ua_example <read_xlsx("UkraineTweets_example.xlsx")</pre>

•	userid [‡]	username [‡]	acctdesc	location [‡]	following [‡]	followers [‡]	totaltweets $^{\circ}$
1	1.235245e+18	InformazioneA	Aggiornamenti e podcast dedicati a questioni internazionali,	NA	102	919	9370
2	2.370645e+08	thecornerdoteu	#Spain and #EU economies in a global context. Exclusive ins	Global	1723	1761	51132
3	1.732126e+08	JoeMokolobetsi	Jesus Christ is the only answer Romans 10:9-17 Peace unt	Afrika Borwa	190	172	3815
4	1.471670e+08	SigaMassa	釣り好き/スポーツ観戦 MIO、レイクスを応援中/自	滋賀県守山市	3107	836	116111
5	4.050541e+09	zivstepa	NA	NA	990	955	79613
6	6.353886e+08	Fipski	UA	NA	378	44	2118
7	4.956826e+08	TigrisInvictus	Hyper joueur	Fontaine	584	22	10629
8	1.428040e+09	TravelYesPlease	Award winning travel photographer, writer. Sharing inspirati	Edmonton, AB	35399	38198	24084
9	2.848841e+09	A7_Mirza	'Islamic World News' is an independent group monitoring	NA	17	32520	16512
10	1.115875e+09	CGTNOfficial	CGTN is an international media organization. It aims to prov	Beijing, China	74	13386308	215851

10 observations and 17 columns

tweetcreatedts $^{\circ}$	retweetcount $^{\hat{\circ}}$	text	hashtags
2022-03-25 00:00:00	0	#UkraineWar #Russia #Ukraine war report #24march #Rus	[{'text': 'UkraineWar', 'indices': [0, 11]}, {'text': 'Russia', 'indice
2022-03-25 00:00:00	0	In the short term, the only way for #Europe to become less \dots	[{'text': 'Europe', 'indices': [36, 43]}, {'text': 'gas', 'indices': [72,
2022-03-25 00:00:00	0	@RevMeshoe @AfricanApostles @RhemaSA @PastorXolaN	[{'text': 'UkraineWar', 'indices': [187, 198]}, {'text': 'JesusChrist
2022-03-25 00:00:00	417	The Ukrainian flag will now officially fly over New York. This i	[{"text": "US", "indices": [96, 99]}]
2022-03-25 00:00:00	1257	23 years ago, on March 24th, 1999, #NATO launched militar	[{'text': 'NATO', 'indices': [56, 61]}, {'text': 'Yugoslavia', 'indice
2022-03-25 00:00:00	30	New mural in #Cracov #Poland #SlavaUkraini https://t.co/aF	[{'text': 'Cracov', 'indices': [32, 39]}, {'text': 'Poland', 'indices': [
2022-03-25 00:00:00	278	the NATO summit communique might be dry & Dom	О
2022-03-25 00:00:01	1	Hallstatt, Austria- A Picturesque Lakeside Alpine Village http	[{'text': 'Europe', 'indices': [82, 89]}, {'text': 'travel', 'indices': [9
2022-03-25 00:00:01	1	#Russia #Ukraine #UkraineRussia Heavy explosions in #Kiyv	[{"text": "Russia", "indices": [0, 7]}, {"text": "Ukraine", "indices": [8,
2022-03-25 00:00:01	1	#China calls U.S. claims of supporting #Russia "disinformati	[{'text': 'China', 'indices': [0, 6]}, {'text': 'Russia', 'indices': [39,

Apply regular expression to get all hashtages in text column

ua_example\$text[3]

[1] "@RevMeshoe @AfricanApostles @RhemaSA @PastorXolaNzo @Creflo_Dollar @BishopJakes @Benny_Hinn @perrystonevoe @JosephPrince @Paula_White @Israel @JustinWelby @MRCza @VP @BBC\n\nUnder cover of #UkraineWar, the diabolical efficacy of COVID vaccines is playing out in the UK\n\n#JesusChrist https://t.co/gPHib20XhI"

ht <- regexpr("#[a-zA-Z0-9]+", ua_example\$text[3])

ht

```
[1] 188
attr(,"match.length")
[1] 11
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE
```

ua_example\$text[3]

[1] "@RevMeshoe @AfricanApostles @RhemaSA @PastorXolaNzo @Creflo_Dollar @BishopJakes @Benny_Hinn @perrystonevoe @JosephPrince @Paula_White @Israel @JustinWelby @MRCza @VP @BBC\n\nUnder cover of #UkraineWar, the diabolical efficacy of COVID vaccines is playing out in the UK\n\n#JesusChrist https://t.co/gPHib20XhI"

regexpr() only gives us the first pattern's location and length.

gregexpr() can meet our requirement.

ht <- gregexpr("#[a-zA-Z0-9]+", ua_example\$text[3])

ht

```
[[1]] [1] 188 [1] 188 269

attr(,"match.length") attr(,"match.length")

[1] 11 [1] 11 12 [1] 11 12 [1] 11 12 [1] 11 12 [1] 11 12 [1] "chars" [1] "chars" [1] "chars" attr(,"useBytes")

[1] TRUE [1] TRUE
```

03

Ukraine Conflict Twitter

Introduction

```
[1] 188
attr(,"match.length")
[1] 11
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE
```

```
[[1]]
[1] 188 269
attr(,"match.length")
[1] 11 12
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE
```

```
ht[[1]][1]
```

attr(ht[[1]], "match.length")[1]

03 Introduction

```
[1] 188
attr(,"match.length")
[1] 11
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE
```

```
[[1]]
[1] 188 269
attr(,"match.length")
[1] 11 12
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE
```

```
substr(ua_example$text[3], ht[[1]][1],
ht[[1]][1] + attr(ht[[1]], "match.length")[1])
```

```
substr(ua_example$text[3], ht[[1]][1],
ht[[1]][1] + attr(ht[[1]], "match.length")[1] - 1)
```

```
[1] 188
attr(,"match.length")
[1] 11
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE
```

```
[[1]]
[1] 188 269
attr(,"match.length")
[1] 11 12
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE
```

```
substr(ua_example$text[3], ht[[1]][1],
ht[[1]][1] + attr(ht[[1]], "match.length")[1] - 1)
```

Give me the second hashtag (Practice)

ht <- gregexpr("#[a-zA-Z0-9]+", ua_example\$text[3])

ht

We can use loops to extract all hashtags in ua_example

```
[[1]]
[1] 1 14 22 42 52
attr (, "match. length")
[1] 11 7 8 8 20
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE
[[2]]
[1] 37 73 83 109
attr(,"match.length")
[1] 7 4 7 4
attr(,"index.type")
[1] "chars"
attr(,"useBytes")
[1] TRUE
[[3]]
[1] 188 269
attr(,"match.length")
[1] 11 12
attr(,"index.type")
```

```
ht df <- data.frame()</pre>
for (i in 1:length(ht)) {
 ht temp <- ht[[i]]
 df temp <- data.frame()</pre>
 for(x in 1:length(ht temp)) {
  ht_content <- substr(ua_example$text[i], ht_temp[x],</pre>
                        ht temp[x] + attr(ht temp, "match.length")[[x]] - 1)
  temp <- data.frame(tweetid = ua example$tweetid[i],
                        hashtag = ht content)
    df_temp <- rbind(df_temp, temp)</pre>
 ht df <- rbind(ht df, df temp)
```

ua_example\$text[3]

[1] "@RevMeshoe @AfricanApostles @RhemaSA @PastorXolaNzo @Creflo_Dollar @BishopJakes @Benny_Hinn @perrystonevoe @JosephPrince @Paula_White @Israel @JustinWelby @MRCza @VP @BBC\n\nUnder cover of #UkraineWar, the diabolical efficacy of COVID vaccines is playing out in the UK\n\n#JesusChrist https://t.co/gPHib20Xhl"

Apply regular expression to get all hypelinks in text column