G-structures and other dense/codense expansions

Yevgeniy Vasilyev

Memorial University of Newfoundland Grenfell Campus, Corner Brook, NL, Canada

Joint work with Alexander Berenstein

Workshop on Tame Expansions of O-minimal Structures Konstanz, October 1-4, 2018

Outline

- geometric theories
- dense/codense expansions
- axiomatization
- Q-independent sets and back-and-forth
- basic properties of dense/codense expansions
- "Q-bases"
- effect on acl
- effect on forking and SU-rank (SU-rank 1 case)
- effect on one-basedness (SU-rank 1 case)
- effect on NIP-like conditions
- application: linearity
- separating "geometry" and "random noise"

Geometric theories

Definition

A first order theory T is called **geometric** if

- ▶ in any model of *T*, *acl* satisfies the exchange property
- ► T eliminates quantifier \exists^{∞} (i.e. for any $\phi(x, \bar{y})$ there is $n \in \omega$ such that whenever $|\phi(M, \bar{a})| > n$, $\phi(M, \bar{a})$ is infinite)

By **geometric structures** we mean models of geometric theories.

In any geometric structure, acl induces a pregeometry, with the natural notion of independence (denoted \bigcup) and dimension.

We can also define $\dim(\phi(\bar{x}, \bar{b})) = \max\{\dim(\bar{a}/\bar{b}) \mid \models \phi(\bar{a}, \bar{b})\}.$

	GEOMETRIC STRUCTURES					
	SU-rank 1			o-minimal		
	strongly minimal trivial struct		ures			
	(X,=)	random graph		(R,<)		
	(V,+, \(\lambda\cdot\),0)			(R,<,+,0)		
	(C, +, · , 0, 1)	pseudofinite fields		(R,<,+, . ,0,1)		
	Hrushovski constructions		p-adics	(R,<,+, . ,0,1, exp)		
L						

	GEOMETRIC STRUCTURES					
	SU-rank 1			o-minimal		
	strongly minimal					
	(X,=)	random graph linear stru	tures	(R,<)		
	(V,+, λ·,0)			(R,<,+,0)		
	(C, +, · , 0, 1)	pseudofinite fields		(R,<,+, . ,0,1)		
	Hrushovski constructions		p-adics	(R,<,+, . ,0,1, exp)		
L						

GEOMETRIC STRUCTURES					
SU-rank 1			o-minimal		
strongly minimal					
(X,=)	random graph		(R,<)		
(V,+, λ ·,0)	pure fiel	ds	(R,<,+,0)		
(C, +, · , 0, 1)	pseudofinite fields		(R,<,+,.,0,1)		
Hrushovski constructions		p-adics	(R,<,+, . ,0,1, exp)		

Unary expansions

Add a new unary predicate symbol Q to the language L = L(T) and consider models (M, Q) in the expanded language $L_Q = L \cup \{Q\}$, where $M \models T$.

Unary expansions: examples

- elementary pairs
 - belles paires (Poizat 1983) stable case
 - dense pairs (van den Dries 1998) o-minimal case
 - generic/lovely pairs (V. 2001; Ben Yaacov, Pillay, V. 2003) supersimple SU-rank 1 and simple cases
 - ▶ lovely pairs of geometric structures (Berenstein, V., 2010)
- generic predicate (Chatzidakis, Pillay 1998)
- ▶ indiscernible sequence (Baldwin, Benedikt 2000)
- multiplicative subgroup of a field (Gunaydin, van de Dries 2005)
- independent dense subsets of o-minimal structures (Dolich, Miller, Steinhorn 2016)
- independent dense subsets of geometric structures (Berenstein, V. 2016)

Dense/codense subsets

Definition

Let T be a geometric theory, $M \models T$.

A unary expansion (M, Q) of M is **dense/codense**, if any nonalgebraic 1-type p(x, A) (in T) over a finite-dimensional $A \subset M$ has realizations in

- ▶ Q(M) ("density" property)
- ▶ $M \setminus acl(A \cup Q(M))$ ("codensity" or extension property).

Dense/codense in the geometric setting

Lovely pairs vs. *H*-structures

Definition

Given a geometric T, $M \models T$ and a dense/codense expansion (M, Q) of M,

- ▶ if Q(M) is algebraically closed, we call (M, Q) a **lovely pair** (in this case $Q(M) \leq M$);
- if Q(M) is algebraically independent, we call (M, Q) an **H-structure**

Notation: we use (M, P) for lovely pairs and (M, H) for H-structures.

Lovely pairs vs. *H*-structures

In fact, for any H-structure (M, H), $(M, \operatorname{acl}(H(M)))$ is a lovely pair (in particular, $\operatorname{acl}(H(M)) \leq M$).

The field case: *G*-structures

We can consider an "intermediate" construction between lovely pairs and H-structures:

- Let T be the theory of an algebraically closed or real closed field $(K, +, \cdot, 0, 1)$, and let (K, H) be its H-structure.
- ▶ Let G(K) = the multiplicative group generated by H(K).
- ▶ (K, G) is dense-codense (we call it a G-structure), and $H(K) \subset G(K) \subset \operatorname{acl}(H(K))$.
- ightharpoonup G(K) is a free abelian group.
- G(K) is linearly independent in K.
 This is an example of a group with the Mann property.
 Expansions of fields with multiplicative subgroups with the Mann property were studied by van den Dries and Gunaydin.

Axiomatizing density/codensity

Let T be a geometric theory (assume QE for convenience). Then a sufficiently saturated model of the following axioms in the langauge $L_Q = L \cup \{Q\}$ is a dense/codense expansion of T:

- T
- **density:** for any *L*-formula $\phi(x, \bar{y})$,

$$\forall \bar{y} \ (\exists^{\infty} x \ \phi(x, \bar{y}) \to \exists x \in Q \ \phi(x, \bar{y}))$$

• extension (codensity): for any L-formulas $\phi(x, \bar{y})$ and $\psi(x, \bar{y}, \bar{w})$ where ψ witnesses $x \in \operatorname{acl}(\bar{y}, \bar{w})$,

$$\forall \bar{y} \ (\exists^{\infty} x \ \phi(x, \bar{y}) \to \exists x \ (\phi(x, \bar{y}) \land \forall \bar{w} \in Q \ \neg \psi(x, \bar{y}, \bar{w})))$$

Theories T_P , T_H

Theories T_P and T_H can be obtained by adding axioms saying

- ▶ acl(P(M)) = P(M) (for T_P)
- \blacktriangleright H(M) is acl-independent (for T_H)

Sufficiently saturated models of T_P/T_H are again lovely pairs/ H-structures.

Note: extension (codensity) axioms are not needed for T_H if T is "strongly non-trivial".

What does a sufficiently saturated model (K^*, G) of $Th(K, +, \cdot, 0, 1, G)$ look like, for a G-structure generated by an H-structure?

Note that (K^*, G) is no longer generated by an H-structure: $G(K^*)$ will have divisible elements.

But $G(K^*)$ is still linearly independent, dense and codense.

From the work of Gunaydin and van den Dries on fields with multiplicative subgroups having the Mann property, one gets that $Th(K,+,\cdot,0,1,G)$ can be axiomatized as follows:

For ACF:

- K is an algebraically closed field (of fixed characteristic)
- G(K) is a subgroup of K^{\times}
- ▶ G(K) is linearly independent over \mathbb{Q} and satisfies the theory of free abelian groups (of infinite rank)

For RCF:

- K is a real closed field
- G(K) is a subgroup of $K^{>0}$
- G(K) is dense in $K^{>0}$
- ▶ for any n > 1, $G^{[n]}$ (subgroup of nth powers) has infinite index in G
- ▶ G(K) is linearly independent over \mathbb{Q}

Thus, in both cases we get a complete theory T^G .

From now on, by a G-structure we will mean a sufficiently saturated model of T^G .

Q-independence

For any unary expansion (M,Q) of a geometric structure M and a subset $A \subset M$, we say that A is Q-independent, if $A \perp_{Q(A)} Q(M)$, i.e. for any finite \bar{a} in A $\dim(\bar{a}/Q(M)) = \dim(\bar{a}/Q(A))$.

Note: Any $A \subset M$ can be extended to an Q-independent set by adding a subset of Q(M).

Any structure $M \models T$ with an independent subset H(M) can be extended to an H-structure (N, H) of T in such a way that M is H-independent in (N, H).

Given (M, H) ...

M

H(M)

Given (M, H), take a saturated extension of M:

M	
H(M)	

Choose two independent sets of independent realizations of all non-algebraic 1-types over M:

Include one of them in *H*:

M	•	•	•	•	•
H(M)	•	•	•	•	•

Iterate ω times:

M		
H(M)		

Take the union:

M	N
H(M)	H(N)

QE for *Q*-independent tuples

Given any two H-structures of T, (M, H) and (N, H), and H-independent tuples $\bar{a} \in M$, $\bar{b} \in N$, we have

$$\operatorname{\mathsf{tp}}(\bar{a}, H(\bar{a})) = \operatorname{\mathsf{tp}}(\bar{b}, H(\bar{b})) \Rightarrow \operatorname{\mathsf{tp}}_H(\bar{a}) = \operatorname{\mathsf{tp}}_H(\bar{b}).$$

Same is true for *P*-independent tuples in lovely pairs.

In the case of G-structures, we need to add equality of (ordered) group types of G-parts of the tuples.

Given $c \in \operatorname{acl}(\bar{a})$...

... find $d \in \operatorname{acl}(\bar{b})$, $\bar{b}d \equiv_L \bar{a}c$, with $c \in H \iff d \in H$.

Tuples are still *H*-independent.

Given $c \in H(M)$ non-algebraic over \bar{a} ...

... find $d \in H(N)$ such that $\bar{b}d \equiv_L \bar{a}c$ (using density).

Tuples are still *H*-independent.

Given $c \in \operatorname{acl}(\bar{a}H(M)) \backslash H(M)$...

... find $\bar{h} \in H(M)$ such that $c \in \operatorname{acl}(\bar{a}\bar{h})$

... then find $\bar{h}' \in H(N)$ such that $\bar{b}\bar{h}' \equiv_L \bar{a}\bar{h}...$

... then take $d \in N$ such that $\bar{b}\bar{h}'d \equiv_L \bar{a}\bar{h}c$.

 $d \in \operatorname{acl}(\bar{b}\bar{h}') \Rightarrow d \notin H(N)$. Tuples are still *H*-independent.

Given $c \in M \setminus \operatorname{acl}(\bar{a}H(M))$

... find $d \in N \setminus acl(\bar{b}H(N))$ with $\bar{b}d \equiv_L \bar{a}c$ (using extension).

Tuples are still *H*-independent.

Theory T_Q

As a consequence of QE for Q-independent tuples, we get:

- ▶ all lovely pairs / H-structures / G-structures are elementarily equivalent
- this gives rise to the complete theories
 - ► T_P (lovely pairs)
 - ► *T_H* (*H*-structures)
 - ightharpoonup or (in the cases of ACF or RCF) T_G (G-structures)
- each of T_Q has an explicit axiomatization

Quantifier elimination

 T_Q has QE down to boolean combination of formulas of the form $\exists \bar{y} \in Q \ \phi(\bar{x}, \bar{y})$, where ϕ is an *L*-formula.

Small and Large

We work in a sufficiently saturated $(M, Q) \models T_Q$.

- ▶ **Small closure** of $A \subset M$ is given by $scl(A) = acl(A \cup Q(M))$.
- ▶ An L_Q -definable subset X of M is **small** if $X \subset scl(\bar{a})$ for a finite tuple $\bar{a} \in M$.
- Otherwise, we call X large.
- ▶ For any L_Q -definable set $X \subset M$, there is an L-definable set $Y \subset M$ such that $X \triangle Y$ is small.

Some properties of T_Q (T_P^1 , T_H^2 , T_G)

- ▶ When passing from T to T_Q the following properties are preserved:
 - stability (superstability, except for T_G)
 - ightharpoonup simplicity (supersimplicity, except for T_G)
 - NIP
- ▶ In SU-rank 1 case:
 - one gets a reasonable description of forking in T_Q (in terms of forking over Q and forking of "Q-bases")
 - ▶ The SU-rank of T_Q reflects the "geometric complexity" of T.

¹A. Berenstein, E. Vassiliev, On lovely pairs of geometric structures, Ann. Pure Appl. Logic, 161 (7), 2010, 866-878

²A. Berenstein, E. Vassiliev, Geometric structures with a dense independent subset, Selecta Mathematica - N.S., 22(1), 2016, 191-225 ⋅ ⊘ → ⋅ □ → ⋅

"Q-bases"

Suppose $C \subset M$ is Q-independent, $\bar{a} \in M$ a tuple.

We can split \bar{a} into \bar{a}' and \bar{a}'' where \bar{a} is independent over $C \cup Q(M)$ and $\bar{a}'' \in \operatorname{acl}(\bar{a}'C \ Q(M))$.

We can find a finite $\bar{b} \in Q(M)$ such that $\bar{a}'' \in \operatorname{acl}(\bar{a}'\bar{b}C)$. Thus, $\bar{a}\bar{b}C$ is Q-independent.

Question: can we choose a minimal such \bar{b} "canonically"?

"Q-bases"

H-structures: There is a unique minimal $\bar{b} \in H(M)$, call it the **H-basis** of \bar{a} over $C: \bar{b} = HB(\bar{a}/C)$.

G-structures: There is no unique minimal $\bar{b} \in G(K)$, but all minimal \bar{b} are interdefinable, in the group language, over G(C). We call $dcl_{gr}(\bar{b})$ the **G-basis** of \bar{a} over C, $\mathbf{GB}(\bar{a}/C)$.

Lovely pairs: if M is supersimple of SU-rank 1 with EI/WEI/ GEI (e.g. ACF) we can take $Cb(\bar{a}/C)$.

What happens to acl?

Three closure operators in (M, Q): acl, acl_Q and scl.

Clearly, $acl(A) \subset acl_Q(A)$.

Any Q-independent acl-closed set is acl_Q closed. Thus, we have:

- ▶ $\operatorname{acl}_Q(A) \subset \operatorname{acl}(A \cup Q(M)) = \operatorname{scl}(A)$
- ▶ $acl_Q(A) = \bigcap \{B | A \subset B, B = acl(B) \text{ and is } Q \text{independent}\}$

Question: when $acl_Q = acl$?

What happens to acl: *H*-structures

- ► HB(ā) ∈ acl_H(ā)
- ▶ acl_H-closed sets are always H-independent.
- ▶ If $a \in acl(H(M))$, then a is interalgebraic with HB(a) (in the sense of acl_H).

▶ $acl_H = acl \iff acl \text{ is disintegrated, i.e.}$ $acl(A) = \bigcup_{a \in A} acl(a).$

What happens to acl: *G*-structures

Similar to *H*-structures:

$$\operatorname{acl}_G(\bar{a}) = \operatorname{acl}(\bar{a}\mathbf{GB}(\bar{a}))$$

 acl_G -closed sets are G-independent.

What happens to acl: lovely pair case

- In a pair (V, P) of vector spaces, any acl-closed set (subspace of V) is P-independent (by modularity), hence, acl_P = acl.
- ▶ In a pair (K, P) of algebraically closed fields, $acl_P \neq acl$:

Take $a, b, c \in K$ algebraically independent, so that $b, c \in P(K)$ and $a \notin P(K)$. Let d = ab + c. Then $acl_P(a, d) = acl(a, b, c) \neq acl(a, d)$.

К	a •	d=ab+c •	
Р	b.	C •	

▶ $acl = acl_P$ iff T is **linear**... More on this later in the talk.

Forking in (M, Q) in supersimple SU-rank 1 case

Let
$$C \subset B \subset M$$
, $\bar{a} \in M$.

Then
$$\bar{a} \downarrow_B^Q C \iff$$

$$\bar{a} \downarrow_{B \ Q(M)} C$$
 and Q – base of $\bar{a} \ C \downarrow_{Q$ -base of C Q -base of C .

Lovely pairs:
$$\bar{a} \bigcup_{R}^{P} C \iff$$

$$\bar{a} \downarrow_{B P(M)} C$$
 and $Cb(\bar{a} C/P(M)) \downarrow_{Cb(C/P(M))} Cb(B/P(M))$.

H-structures: (
$$B, C$$
 H -independent) $\bar{a} \bigcup_{B}^{H} C \iff$

$$\bar{a} \perp_{B \ H(M)} C$$
 and $HB(\bar{a} \ C) \perp_{HB(C)} HB(B)$

G-structures: (
$$B, C$$
 G-independent) $\bar{a} \downarrow_B^Q C \iff$

$$\bar{a} \downarrow_{B Q(M)} C$$
 and $GB(\bar{a} C) \downarrow_{GB(C)} GB(B)$

Description of forking in T_H for T supersimple of SU-rank 1:

Let $C \subset D$ be acl_H -closed, then tp(a/D) forks over C iff

- ▶ $a \in D \setminus C$ (becoming algebraic), or
- ▶ $a \in \operatorname{acl}(D \cup H) \setminus \operatorname{acl}(C \cup H)$ (becoming small), or
- ▶ $HB(a/D) \subseteq HB(a/C)$ (reduction of H-basis)

It follows that H(x) has SU-rank 1.

SU-rank of 1-types in T_H : Suppose $C = \operatorname{acl}_H(C)$, a a single element.

- ► T trivial:
 - \triangleright $SU(a/C) = 0 \iff a \in C$
 - ▶ $a \in \operatorname{scl}(C) \setminus C \Rightarrow SU(a/C) = 1$
 - ▶ $a \notin \operatorname{acl}(C) \Rightarrow SU(a/C) = 1$
- T nontrivial:
 - \triangleright $SU(a/C) = 0 \iff a \in C$
 - $a \in \operatorname{scl}(C) \backslash C \Rightarrow SU(a/C) = |HB(a/C)|$
 - ▶ $a \notin scl(C) \Rightarrow SU(a/C) = \omega$ (unless a is a "trivial" element)

Proposition

Let T be supersimple of SU-rank 1. Then T_H is supersimple

and has
$$\mathsf{SU}-\mathsf{rank}\ = \left\{ egin{array}{ll} 1, & T \text{ is trivial} \\ \omega, & T \text{ nontrivial} \end{array} \right.$$

Canonical bases in T_H :

▶ T SU-rank 1, $B = \operatorname{acl}_H(B) \Rightarrow Cb_H(\bar{a}/B)$ is interalgebraic with $Cb(\bar{a}HB(\bar{a}/B)/B)$.

▶ In particular, we have geometric elimination of imaginaries in $(T_H)^{eq}$ down to T^{eq} .

Recall: A theory is 1-based if $Cb(\bar{a}/B) \in acl^{eq}(\bar{a})$.

1-basedness is not preserved when passing to T_H .

- Let T be the theory of infinite vector spaces over \mathbb{F}_2 . Let (V, H) be an H-structure of T. Take $v \in H(V)$, $u \in V \setminus H(V)$, t = u + v.
- ► Then $Cb_H(t/u)$ is interalgebraic with Cb(tHB(t/u)/u) = Cb(tv/u) = u. However, $u \notin \operatorname{acl}_H(t) = \operatorname{span}(t) = \{0, t\}$.

▶ But two independent realizations of $tp_H(t/u)$ are enough: $u \in acl_H(t, t')$. Thus T_H is "2-based" (true in general).

A recent result of Carmona:

- ▶ for $n \ge 2$: T n-ample $\iff T_H$ n-ample
- ▶ in particular: T 1-based (not 1-ample) $\Rightarrow T_H$ is CM-trivial (not 2-ample)

Proposition (V., 2001)

Let T be supersimple of SU-rank 1. Then T_P is supersimple

$$\text{and has SU} - \text{rank } = \left\{ \begin{array}{l} 1, \quad \textit{T} \text{ is trivial} \\ 2, \quad \textit{T} \text{ one} - \text{based}, \text{nontrivial} \\ \omega, \quad \textit{T} \text{ non} - \text{one} - \text{based} \end{array} \right.$$

(generalizing Buechler's 1991 result for s.m. structures)

If T is one-based then so is T_P (Ben Yaacov, Pillay, V. 2003).

Preservation of NIP in dense/codense expansions

- ▶ Berenstein, Dolich, Onshuus (2011):
 T is (strongly) dependent ⇒ T_P is (strongly) dependent
- ▶ T is (strongly) dependent $\Rightarrow T_H$ is (strongly) dependent Idea of the proof of (T NIP $\Rightarrow T_H$ NIP):
 - Since T_H has QE down to H-bounded formulas, by a Chernikov-Simon's result, it suffices to show NIP over H;
 - ▶ Suppose T_H has IP over H: there is an L_H -formula $\phi(\bar{x}, \bar{y})$, $\bar{a} \in M$ and an indiscernible sequence $(\bar{b}_i : i < \omega)$ in H(M) such that

$$\models \phi(\bar{a}, \bar{b}_i) \iff i \text{ is even.}$$

- We can replace $\phi(\bar{a}, H(M)^n)$ with $\psi(\bar{a}', H(M)^n)$ where ψ is an L-formula. Then ψ witnesses IP in T, a contradiction.
- ▶ *RCF_G* is dependent but not strongly dependent

Application of lovely pairs: a notion of linearity

What does it mean to be a **linear** geometric theory?

Linearity is well-defined and understood in:

- Strongly minimal theories: linearity = local modularity
- Supersimple theories of SU-rank 1: linearity = one-basedness (weaker than local modularity)
- o-minimal theories: CF-property, non-interpretability of an infinite field

Comparing strongly minimal and o-minimal settings

strongly minimal:

- linearity = local modularity
- ▶ linearity \iff 1-basedness $(\bar{a} \equiv_B \bar{a}', \bar{a} \downarrow_B \bar{a}' \Rightarrow \bar{a} \downarrow_{\bar{a}'} B)$
- ▶ linearity ⇔ no interpretable pseudoplane
- ▶ linear+nontrivial ⇒ interpretability of infinite vector spaces
- ▶ non-local modularity ⇒ intepretability of an infinite field

o-minimal:

- linearity = no interpretable infinite field
- ▶ local modularity ⇒ linearity
- ▶ linearity ⇒ local modularity
- ▶ linear+nontrivial ⇒ interpretability of infinite vector spaces

In both settings, linearity \iff any normal definable families of "plane curves" has dimension ≤ 1 .

More on linearity: families of curves

Plane curve (with parameters \bar{a}) in a geometric structure \mathcal{M} is a definable one-dimensional subset of M^2 :

$$C_{\bar{a}} = \{(x,y) | \mathcal{M} \models \phi(x,y,a_1,\ldots,a_n)\}$$
 and for any $(u,v) \in C_{\bar{a}}$, $\dim(uv/\bar{a}) \leq 1$.

As we vary the parameters \bar{a} over a definable subset of M^n we get a **definable family of plane curves**.

Nonlinear example

For example, $y = ax^2 + bx + c$, where $a \neq 0$, is a definable family of plane curves in $(\mathbb{R}, +, \cdot, 0, 1, <)$.

Since we are using 3 parameters (which can be chosen algebraically independent), this family has dimension 3.

Nonlinear example

Different choices of (a, b, c) give different parabolas. Different parabolas can intersect in at most 2 different points. Such family is called normal: different curves have finite intersection.

Another nonlinear example

A simpler example: y = ax + b, a normal family of dimension 2 (two-parameter family).

Linear example

In $(\mathbb{R},+,0,<)$ we can only form normal families of dimension ≤ 1 (one-parameter families): e.g. y=(x+x)+a.

Any two-parameter family that we can create, such as

$$x = a \lor y = b$$

or

$$y = (x + x) + a \lor y = (x + x) + b$$

will not be normal.

In search of general notion of linearity

A notion of linearity should:

- have a definition in terms of combinatorial pregeometry (some form of modularity)
- have a definition in terms of definable sets (families of plane curves)
- be equivalent to non-(type)-definability of certain complicated structures and/or configurations (e.g. infinite fields, pseudoplanes, quasidesigns)
- be closed under reducts
- in the nontrivial case, imply certain connection with projective geometries over division rings, definability of infinite groups (vector spaces)
- should have a natural extension to non-geometric context (e.g. one-basedness in stable theories)

Main challenges in the general geometric case

- doing forking calculus without canonical bases (a strong tool in strongly minimal and SU-rank 1 cases)
- no definable topology (a strong tool in o-minimal or C-minimal cases)

Generic linearity

Call a definable family of plane curves **almost normal**, if each curve has infinite intersection with only finitely many other curves.

A geometric structure \mathcal{M} is **generically linear**, if any almost normal family of plane curves in \mathcal{M} has dimension ≤ 1 .

In the strongly minimal and o-minimal cases: generic linearity = linearity :

Theorem³

The following are equivalent for any geometric theory T:

- 1. T is **generically linear** (any almost normal definable family of plane curves has dim ≤ 1)
- 2. T is **weakly locally modular** (for any a, b, C such that $a \in \operatorname{acl}(bC)$, there exist $D \perp abC$ and $c \in \operatorname{acl}(CD)$ such that $a \in \operatorname{acl}(bcD)$)
- 3. T is **weakly 1-based** (for any \bar{a} , B there is $\bar{a}' \equiv_B a$ with $\bar{a} \downarrow_B \bar{a}'$ and $\bar{a} \downarrow_{\bar{a}'} \bar{B}$)
- 4. *T* has no complete type definable **almost quasidesign**. (a pseudoplane-like configuration)
- 5. $acl_P = acl in any (M, P) \models T_P$
- 6. scl is modular in any $(M, P) \models T_P$ $(a \in \operatorname{scl}(bC) \Rightarrow \operatorname{there} \operatorname{exists} c \in \operatorname{scl}(C) \operatorname{such} \operatorname{that} a \in \operatorname{scl}(bc))$

³A. Berenstein, E. Vassiliev, Weakly one-based geometric theories, J. Symb. Logic, 77, No. 2, June 2012

Connection with "classical" lionearity

Generic linearity (weak local modularity, weak 1-basedness) is equivalent to

- local modularity, in the strongly minimal case
- one-basedness, in the SU-rank 1 case
- ▶ linearity (CF-property), in the o-minimal case
- linearity as defined by F. Maalouf, in the geometric C-minimal case

It is also closed under reducts.

Geometry of the small closure

Moreover, for a generically linear T we have:

- ▶ the geometry of $acl(- \cup P(M))$ is either trivial or splits in a disjoint union of projective geometries over division rings;
- the geometry of acl is a disjoint union of subgeometries of projective geometries over division rings;
- if T is ω -categorical (only one countable model), nontrivial and generically linear, then T_P interprets an infinite vector space over a finite field.

Structure induced on H: generic trivialization⁴

It turns out that the structure induced on H(M) keeps the "random noise" while "forgetting" the geometry of M.

Given a sufficiently saturated H-structure (M, H), consider H(M) together with traces of definable sets of M (without parameters).

Denote such structure by $H^*(M)$, and its theory by T^* (generic trivialization of T).

⁴A. Berenstein, E. Vassiliev, Generic trivializations of geometric theories, Math. Logic Q., 60, No. 4-5, 289-303 (2014)

Structure induced on *H*: generic trivialization

- ▶ T^* is a trivial (acl(A) = A) geometric theory, with QE
- As T^* is a reduct of T_H and is trivial, we can expect T "nice" $\Rightarrow T^*$ "nice".
- ▶ More interestingly, we often have T^* "nice" \Rightarrow T "nice".
- ▶ To show this we need $H^*(M)$ to somehow "control" M.
- ▶ Can be done by working in acl(H(M)) which is a sufficiently saturated model of T.
- ▶ Easier when acl = dcl: any set definable over dcl(H(M)) is also definable over H(M).

Moving parameters into H(M): when acl \neq dcl

The main tool that allows to move parameters into H(M):

Proposition

Let (M,H) be an H-structure of a geometric theory T. Let $D\subset M$ be a set L-definable over $\operatorname{acl}(H(M))$. Then there exists $D'\subset D$ L-definable over H(M) such that $D\setminus D'$ is finite.

Idea of the Proof

- Let $D = \phi(M, \bar{a}, \bar{h})$, where $\bar{h} \in H(M)$ and $\bar{a} \in \operatorname{acl}(\bar{h})$, witnessed by an L-formula $\psi(\bar{y}, \bar{h})$.
- ▶ Consider all the conjugates of D over \bar{h} (there are finitely many).
- ► Each conjugate is cut into disjoint pieces by boolean combinations with other conjugates.

In each **infinite** disjoint piece pick an element of H, say c. Then the piece is L-definable over $\bar{h}c$ by $\forall \bar{y}(\psi(\bar{y},\bar{h}) \to (\phi(x,\bar{y},\bar{h}) \leftrightarrow \phi(c,\bar{y},\bar{a})))$.

Properties of T^* : strongly minimal case

Proposition

T is strongly minimal $\iff T^*$ is strongly minimal (and, thus, is the theory of equality)

Proof:

- \Rightarrow clear
- \Leftarrow Suppose there is an infinite co-infinite $D \subset M$ definable over $\operatorname{acl}(H(M))$. Choose $D' \subset D$, definable over H(M), with $D \setminus D'$ finite. Then $D' \cap H(M)$ is definable in $H^*(M)$ and is infinite and co-infinite.

Proposition

T is supersimple SU-rank $1 \iff T^*$ is supersimple SU-rank 1

Proof:

 \Rightarrow follows from T_H being supersimple and H(x) having SU-rank 1 in (M, H).

 \Leftarrow Assume T is not supersimple of SU-rank 1. Work over $\operatorname{acl}(H(M))$. Assume $\phi(x, \bar{a})$ is a non-algebraic formula that k-divides over \emptyset , witnessed by an indiscernible sequence $(\bar{a}_i : i < |T|^+)$.

For every $i < |T|^+$ we can find $\psi_i(x, \bar{h}_i)$ with $\bar{h}_i \in H(M)$ defining a co-finite subset of $\phi(M, \bar{a}_i)$. We may assume that $\psi_i = \psi$ are the same for each i and \bar{h}_i form an indiscernible sequence. Then $\psi(x, \bar{h}_0)$ defines an infinite subset of $H^*(M)$ that k-divides over \emptyset in T^* , a contradiction.

Properties of T^* : NIP case

Proposition

T is NIP \iff T^* is NIP

Idea of the proof:

- \Rightarrow follows from T_H being NIP.
- \Leftarrow Suppose T has IP witnessed by $\phi(x,\bar{y})$ and an indiscernible sequence $I=(\bar{b}_i:i\in\omega)$ and $a\in M$ (non-algebraic over I) such that

$$\models \phi(a, \bar{b}_i) \iff i \text{ even.}$$

As in the SU-rank 1 case, we can "pull" I into H(M).

Some questions

- If T is linear (i.e. weakly 1-based), is there a way to "recover" M from the geometry of scl and H*(M)?
- ▶ For a geometric T, does T_H have elimination of \exists^{∞} ? (true for formulas $\phi(x, \bar{y})$ that imply $\bar{y} \in H$)
- Imaginaries in T_H?
 (Dolich, Miller, Steinhorn: El holds in o-minimal case; we also have GEI in SU-rank 1 case)
- ▶ if T is nontrivial and linear, can we interpret an infinite group in T, or, at least, T_P?
- structure of weakly 1-based groups
- weak 1-basedness beyond geometric theories?
 (progress by Boxall, Bradley-Williams, Kestner, Omar Aziz, Penazzi, NDJFL 2013)

THANK YOU!