

Very low drop voltage regulator with inhibit function

Datasheet - production data

Features

- Very low-dropout voltage (0.45 V)
- Very low quiescent current (typ. 50 μA in OFF mode, 500 μA in ON mode)
- Output current up to 500 mA
- Logic-controlled electronic shutdown
- Output voltages of 1.5; 1.8; 2.5; 3.3; 4.7; 5; 6; 8; 8.5; 9; 12 V
- Automotive grade product: 1.8 V, 2.5 V, 3.3 V, 5.0 V, 8.0 V, 8.5 V V_{OUT} in DPAK and PPAK packages
- · Internal current and thermal limit
- Only 2.2 µF for stability
- Available in ± 1% (AB) or ± 2% (C) selection at 25 °C
- Supply voltage rejection: 80 db (typ.)
 Temperature range: from -40 to 125 °C

Description

The LFXX is a very low drop regulator available in TO-220, TO-220FP, DPAK and PPAK packages and in a wide range of output voltages. The low drop voltage (0.45 V) and low quiescent current make it particularly suitable for low-noise, lowpower applications and especially in batterypowered systems. In the 5 pin configuration (PPAK) a shutdown logic control function is available (pin 2, TTL compatible). This means that when the device is used as a local regulator, a part of the board can be put in standby, decreasing the total power consumption. In the three terminal configuration, the device has the same electrical performance, but it is fixed in ON state. It requires a capacitor of only 2.2 µF for stability, saving board space and costs. The LFXX is available as automotive grade in DPAK and PPAK packages, for the options of output voltages whose commercial part numbers are shown in the order codes. These devices are qualified according to the specification AEC-Q100 of the automotive market, in the temperature range - 40 °C to 125 °C, and the statistical tests PAT, SYL, SBL are performed.

Contents

Contents

1	Diagram 5
2	Pin configuration 6
3	Maximum ratings
4	Electrical characteristics 8
5	Typical performance characteristics
6	Package mechanical data
7	Packaging mechanical data48
8	Ordering information51
9	Revision history 52

LFXX List of tables

List of tables

Table 1.	Absolute maximum ratings	. 7
Table 2.	Thermal data	. 7
Table 3.	LF15AB electrical characteristics	. 8
Table 4.	LF18AB electrical characteristics	. 9
Table 5.	LF18C electrical characteristics	
Table 6.	LF18C (automotive grade) electrical characteristics	11
Table 7.	LF25AB electrical characteristics	12
Table 8.	LF25AB (automotive grade) electrical characteristics	13
Table 9.	LF25C electrical characteristics	
Table 10.	LF25C (automotive grade) electrical characteristics	15
Table 11.	LF33AB electrical characteristics	16
Table 12.	LF33C electrical characteristics	
Table 13.	LF33C (automotive grade) electrical characteristics	
Table 14.	LF50AB electrical characteristics	
Table 15.	LF50AB (automotive grade) electrical characteristics	
Table 16.	LF50C electrical characteristics	
Table 17.	LF50C (automotive grade) electrical characteristics	
Table 18.	LF60AB electrical characteristics	
Table 19.	LF60C electrical characteristics	
Table 20.	LF80AB electrical characteristics	
Table 21.	LF80C electrical characteristics	
Table 22.	LF80C (automotive grade) electrical characteristics	
Table 23.	LF85AB electrical characteristics	
Table 24.	LF85C electrical characteristics	
Table 25.	LF85C (automotive grade) electrical characteristics	
Table 26.	LF90C electrical characteristics	
Table 27.	LF120AB electrical characteristics	
Table 28.	LF120C electrical characteristics	
Table 29.	TO-220 mechanical data	
Table 30.	TO-220FP mechanical data	
Table 31.	DPAK mechanical data	
Table 32.	PPAK mechanical data	
Table 33.	DPAK and PPAK tape and reel mechanical data	
Table 34.	Order codes	
Table 35.	Document revision history	52

List of figures LFXX

List of figures

Figure 1.	Block diagram	. 5
Figure 2.	Pin connections (top view)	. 6
Figure 3.	Test circuit	. 7
Figure 4.	Dropout voltage vs. output current	34
Figure 5.	Dropout voltage vs. temperature	34
Figure 6.	Supply current vs. input voltage	
Figure 7.	Supply current vs. input voltage (no load)	34
Figure 8.	Short-circuit current vs. input voltage	35
Figure 9.	Supply current vs. temperature	35
Figure 10.	Logic-controlled precision 3.3/5.0 V selectable output	36
Figure 11.	Sequential multi-output supply	36
Figure 12.	Multiple supply with ON/OFF toggle switch	37
Figure 13.	Basic inhibit functions	37
Figure 14.	Delayed turn-on	38
Figure 15.	Low voltage bulb blinker	38
Figure 16.	TO-220 drawings (STD-ST dual gauge)	39
Figure 17.	TO-220 drawings (STD-ST single gauge)	40
Figure 18.	TO-220FP drawings	42
Figure 19.	DPAK drawings	44
Figure 20.	DPAK recommended footprint	45
Figure 21.	PPAK drawings	46
Figure 22.	Tape for DPAK and PPAK	48
Figure 23.	Reel for DPAK and PPAK	49
Figure 24.	TO-220 dual gauge tube drawings (dimensions in mm)	50
Figure 25	TO-220 single gauge tube drawings (dimensions in mm)	50

LFXX Diagram

1 Diagram

V_{out} —○ $\overset{\text{V}_{\text{in}}}{\bigcirc}$ CURRENT LIMIT INHIBIT CONTROL START REFERENCE 0-DRIVER INHIBIT VOLTAGE ERROR AMPLIFIER DUMP PROTECTION TERM. PROTEC. O-GND SC08350

Figure 1. Block diagram

Pin configuration LFXX

2 Pin configuration

OUTPUT
GROUND
INPUT

CS05710

CS05700

TO-220FP

TO-220FP

OUTPUT
GND
GND
OUTPUT
OUTPUT
OUTPUT
GROUND
INPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT
OUTPUT

Figure 2. Pin connections (top view)

Note: TAB is electrically connected to GND on TO-220, PPAK and DPAK packages

INHIBIT

 V_{IN}

SC08530

PPAK

INPUT

SC07770

DPAK

LFXX Maximum ratings

3 Maximum ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _I	DC input voltage	-0.5 to 40 ⁽¹⁾	V	
I _O	Output current	Internally limited	А	
P _{TOT}	Power dissipation	Internally limited	W	
T _{STG}	Storage temperature range	-40 to 150	°C	
T _{OP}	Operating junction temperature range	-40 to 125	°C	

^{1.} For $18 < V_1 < 40$ the regulator is in shutdown.

Table 2. Thermal data

Symbol	Parameter	TO-220	TO-220FP	DPAK/PPAK	Unit
R _{thJC}	Thermal resistance junction-case	5	5	8	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	60	100	°C/W

Figure 3. Test circuit

4 Electrical characteristics

Table 3. LF15AB electrical characteristics

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit	
V.	Output voltage	$I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}$		1.485	1.5	1.515	V	
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}, T_a =$	-25 to 85 °C	1.470		1.530	V	
VI	Operating input voltage	I _O = 500 mA		2.5		16	V	
Io	Output current limit				1		Α	
ΔV_{O}	Line regulation	$V_{I} = 2.5 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$			2	10	mV	
ΔV_{O}	Load regulation	$V_I = 2.8 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$	\		2	10	mV	
		$V_I = 2.5 \text{ to } 16 \text{ V}, I_O = 0 \text{ mA}$			0.5	1		
I _d	Quiescent current	$V_I = 2.8$ to 16 V, ON mode $I_O = 500$ mA	ON mode	ON mode			12	mA
		V _I = 6 V OFF	V _I = 6 V OFF mode			50	100	μA
			f = 120 Hz		82			
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 3.5 \pm 1 \text{ V}$	f = 1 kHz		77		dB	
			f = 10 kHz		65			
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV	
V _d	Dropout voltage	I _O = 200 mA			1		V	
V _{IL}	Control input logic low	T _a = -40 to 125 °C				0.8	V	
V _{IH}	Control input logic high	$T_a = -40 \text{ to } 125 ^{\circ}\text{C}$		2			V	
I	Control input current	V _I = 6 V, V _C = 6 V			10		μA	
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_O = 0$ to	500 mA	2	10		μF	

Table 4. LF18AB electrical characteristics

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
M	Output voltage	$I_O = 50 \text{ mA}, V_I = 3.3 \text{ V}$		1.782	1.8	1.818	V
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 3.3 \text{ V}, T_a =$	$I_O = 50 \text{ mA}, V_I = 3.3 \text{ V}, T_a = -25 \text{ to } 85 \text{ °C}$			1.836	V
VI	Operating input voltage	I _O = 500 mA		3		16	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_I = 2.8 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$			2	12	mV
ΔV_{O}	Load regulation	$V_1 = 3.3 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$	1		2	10	mV
		$V_1 = 2.5 \text{ to } 16 \text{ V}, I_0 = 0 \text{ mA}$			0.5	1	
I _d Quiescent	Quiescent current	V _I = 3.1 to 16 V, ON mode I _O = 500 mA			12	mA	
		V _I = 6 V	OFF mode		50	100	μA
			f = 120 Hz		82		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 3.5 \pm 1 \text{ V}$ $f = 1 \text{ kHz}$ $f = 10 \text{ kHz}$	f = 1 kHz		77		dB
				60			
eN	Output noise voltage	B = 10 Hz to 100 kHz	1		50		μV
V _d	Dropout voltage	I _O = 200 mA			0.7		V
V _{IL}	Control input logic low	T _a = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125 °C		2			V
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_0 = 0$ to	500 mA	2	10		μF

Table 5. LF18C electrical characteristics

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}$	$I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}$		1.8	1.836	V
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}, T_a = -25 \text{ to } 85 \text{ °C}$		1.728		1.872	V
VI	Operating input voltage	I _O = 500 mA		3		16	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_I = 2.8 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$			2	12	mV
ΔV_{O}	Load regulation	$V_I = 3.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$	1		2	10	mV
		$V_{I} = 2.5 \text{ to } 16 \text{ V}, I_{O} = 0 \text{ mA}$			0.5	1	
I _d	Quiescent current	V _I = 3.1 to 16 V, I _O = 500 mA	ON mode			12	mA
		V _I = 6 V	V _I = 6 V OFF mode		50	100	μΑ
			f = 120 Hz		82		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 3.5 \pm 1 \text{ V}$	f = 1 kHz		77		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
V _d	Dropout voltage	I _O = 200 mA			0.7		V
V _{IL}	Control input logic low	T _a = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	$T_a = -40 \text{ to } 125 ^{\circ}\text{C}$		2			V
I _I	Control input current	V _I = 6 V, V _C = 6 V			10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω, I_0 = 0 to	500 mA	2	10		μF

Table 6. LF18C (automotive grade) electrical characteristics

Symbol	Parameter	Test condition	ns	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}, T_a =$	$I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}, T_a = 25 \text{ °C}$ $I_O = 50 \text{ mA}, V_I = 3.5 \text{ V}$		1.8	1.836	V
Vo	Output voltage	I _O = 50 mA, V _I = 3.5 V				1.887	V
VI	Operating input voltage	I _O = 500 mA		3		16	V
Io	Output current limit	T _a = 25 °C			1		Α
ΔV_{O}	Line regulation	$V_I = 2.8 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$			2	15	mV
ΔV_{O}	Load regulation	$V_1 = 3.3 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$	1		2	15	mV
		$V_{I} = 2.5 \text{ to } 16 \text{ V}, I_{O} = 0 \text{ mA}$			0.5	2	
I _d	Quiescent current	V _I = 3.1 to 16 V, I _O = 500 mA	ON mode			12	mA
		V _I = 6 V	OFF mode		50	120	μΑ
			f = 120 Hz		82		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 3.5 \pm 1 \text{ V}$ $T_a = 25 \text{ °C}$	f = 1 kHz		77	dB	dB
		a	f = 10 kHz		60		
eN	Output noise voltage	$B = 10 \text{ Hz to } 100 \text{ kHz}, T_a =$	25 °C		50		μV
V _d	Dropout voltage	I _O = 200 mA			0.2	1.3	V
V d	Diopout voltage	I _O = 500 mA			0.4	1.3	v
V _{IL}	Control input logic low					0.8	V
V _{IH}	Control input logic high			2			V
I ₁	Control input current	V _I = 6 V, V _C = 6 V, T _a = 25 °C			10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_O = 0$ to	500 mA	2	10		μF

Table 7. LF25AB electrical characteristics

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V.	Output voltage	$I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}$	$I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}$ $I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}, T_a = -25 \text{ to } 85 ^{\circ}\text{C}$		2.5	2.525	V
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}, T_a =$				2.550	V
VI	Operating input voltage	I _O = 500 mA				16	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_I = 3.5 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$			2	12	mV
ΔV_{O}	Load regulation	$V_I = 3.8 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$	1		2	12	mV
		$V_{I} = 3.5 \text{ to } 16 \text{ V}, I_{O} = 0 \text{ mA}$			0.5	1	
I _d	Quiescent current	V _I = 3.8 to 16 V, I _O = 500 mA	ON mode			12	mA
		V _I = 6 V	OFF mode		50	100	μΑ
			f = 120 Hz		82		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 4.5 \pm 1 \text{ V}$	f = 1 kHz		77		dB
			f = 10 kHz		65		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
\/	Dropout voltage	I _O = 200 mA			0.2	0.35	V
V _d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	T _a = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	$T_a = -40 \text{ to } 125 ^{\circ}\text{C}$		2			V
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$			10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω, I_0 = 0 to	500 mA	2	10		μF

Table 8. LF25AB (automotive grade) electrical characteristics

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
W	Output voltage	$I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}, T_a =$	$I_{O} = 50 \text{ mA}, V_{I} = 4.5 \text{ V}, T_{a} = 25 \text{ °C}$		2.5	2.525	V
Vo	Output voltage	I _O = 50 mA, V _I = 4.5 V		2.435		2.565	V
VI	Operating input voltage	I _O = 500 mA				16	V
Io	Output current limit	T _a = 25 °C			1		Α
ΔV_{O}	Line regulation	$V_I = 3.5 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$			2	15	mV
ΔV_{O}	Load regulation	$V_I = 3.8 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$			2	15	mV
		$V_1 = 3.5 \text{ to } 16 \text{ V}, I_0 = 0 \text{ mA}$			0.5	2	
I _d	Quiescent current	V _I = 3.8 to 16 V, I _O = 500 mA	ON mode			12	mA
		V _I = 6 V OFF mo	OFF mode		50	120	μA
			f = 120 Hz		82		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 4.5 \pm 1 \text{ V}$ $T_a = 25 \text{ °C}$	f = 1 kHz		77	dB	dB
		'a	f = 10 kHz		65		
eN	Output noise voltage	$B = 10 \text{ Hz to } 100 \text{ kHz}, T_a =$	25 °C		50		μV
\/	Dropout voltage	I _O = 200 mA			0.2	1.3	V
V _d	Dropout voltage	I _O = 500 mA			0.4	1.3	V
V _{IL}	Control input logic low					0.8	V
V _{IH}	Control input logic high			2			V
I _I	Control input current	$V_1 = 6 \text{ V}, V_C = 6 \text{ V}, T_a = 25 \text{ G}$	V _I = 6 V, V _C = 6 V, T _a = 25 °C		10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω, I_0 = 0 to	500 mA	2	10		μF

Table 9. LF25C electrical characteristics

Symbol	Parameter	Test condition	ns	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}$	$I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}$ $I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}, T_a = -25 \text{ to } 85 \text{ °C}$		2.5	2.55	V
Vo	Output voltage	$I_{O} = 50 \text{ mA}, V_{I} = 4.5 \text{ V}, T_{a} = -25 \text{ to } 8$				2.6	V
VI	Operating input voltage	I _O = 500 mA				16	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_{I} = 3.5 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$			2	12	mV
ΔV_{O}	Load regulation	$V_{I} = 3.8 \text{ V}, I_{O} = 5 \text{ to } 500 \text{ mA}$	1		2	12	mV
		$V_{I} = 3.5 \text{ to } 16 \text{ V}, I_{O} = 0 \text{ mA}$			0.5	1	
I _d	Quiescent current	$V_I = 3.8 \text{ to } 16 \text{ V},$ $I_O = 500 \text{ mA}$	ON mode			12	mA
		V _I = 6 V	OFF mode		50	100	μΑ
	Supply voltage rejection		f = 120 Hz		82		
SVR		$I_O = 5 \text{ mA}, V_I = 4.5 \pm 1 \text{ V}$	f = 1 kHz		77		dB
			f = 10 kHz		65		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
V	Dropout voltage	I _O = 200 mA			0.2	0.35	V
V _d	Diopout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	T _a = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	$T_a = -40 \text{ to } 125 ^{\circ}\text{C}$		2			V
II	Control input current	V _I = 6 V, V _C = 6 V			10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_O = 0$ to	500 mA	2	10		μF

Table 10. LF25C (automotive grade) electrical characteristics

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
W	Output voltage	$I_O = 50 \text{ mA}, V_I = 4.5 \text{ V}, T_a =$: 25 °C	2.45	2.5	2.55	V
Vo	Output voltage	I _O = 50 mA, V _I = 4.5 V		2.385		2.615	V
V _I	Operating input voltage	I _O = 500 mA	_O = 500 mA			16	V
I _O	Output current limit	T _a = 25 °C			1		Α
ΔV_{O}	Line regulation	$V_I = 3.5 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$			2	15	mV
ΔV_{O}	Load regulation	$V_1 = 3.8 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$	L		2	15	mV
		$V_1 = 3.5 \text{ to } 16 \text{ V}, I_0 = 0 \text{ mA}$			0.5	2	
I _d	Quiescent current	$V_1 = 3.8 \text{ to } 16 \text{ V},$ $I_0 = 500 \text{ mA}$	ON mode			12	mA
		V _I = 6 V OFF mod	OFF mode		50	120	μΑ
			f = 120 Hz		82		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 4.5 \pm 1 \text{ V}$ $T_a = 25 \text{ °C}$	f = 1 kHz		77		dB
		.a = 5 0	f = 10 kHz		65		
eN	Output noise voltage	B = 10 Hz to 100 kHz, $T_a =$	25 °C		50		μV
	Drangut valtage	I _O = 200 mA			0.2	1.3	V
V _d	Dropout voltage	I _O = 500 mA			0.4	1.3	V
V _{IL}	Control input logic low					0.8	V
V _{IH}	Control input logic high			2			V
I _I	Control input current	$V_1 = 6 \text{ V}, V_C = 6 \text{ V}, T_a = 25 \text{ C}$	V _I = 6 V, V _C = 6 V, T _a = 25 °C		10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω, I_0 = 0 to	500 mA	2	10		μF

Table 11. LF33AB electrical characteristics

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
W	Output voltage	$I_O = 50 \text{ mA}, V_I = 5.3 \text{ V}$		3.267	3.3	3.333	V
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 5.3 \text{ V}, T_a =$	-25 to 85 °C	3.234		3.366	V
VI	Operating input voltage	I _O = 500 mA	O = 500 mA			16	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_1 = 4.3 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$			3	16	mV
ΔV_{O}	Load regulation	$V_{I} = 4.6 \text{ V}, I_{O} = 5 \text{ to } 500 \text{ mA}$			3	16	mV
		$V_{I} = 4.3 \text{ to } 16 \text{ V}, I_{O} = 0 \text{ mA}$			0.5	1	
I _d	Quiescent current	$V_1 = 4.6 \text{ to } 16 \text{ V},$ $I_0 = 500 \text{ mA}$	ON mode			12	mA
		V _I = 6 V	OFF mode		50	100	μA
			f = 120 Hz		80		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 5.3 \pm 1 \text{ V}$	f = 1 kHz		75		dB
			f = 10 kHz		65		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
\/	Dropout voltage	I _O = 200 mA			0.2	0.35	V
V _d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	T _a = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125 °C		2			V
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$	$V_1 = 6 \text{ V}, V_C = 6 \text{ V}$		10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_O = 0$ to	500 mA	2	10		μF

Table 12. LF33C electrical characteristics

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit	
V	Output valtage	$I_O = 50 \text{ mA}, V_I = 5.3 \text{ V}$		3.234	3.3	3.366	V	
Vo	Output voltage	$I_0 = 50 \text{ mA}, V_1 = 5.3 \text{ V}, T_a =$	-25 to 85 °C	3.168		3.432	V	
VI	Operating input voltage	I _O = 500 mA	O = 500 mA			16	V	
Io	Output current limit				1		Α	
ΔV_{O}	Line regulation	$V_{I} = 4.3 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$			3	16	mV	
ΔV_{O}	Load regulation	$V_1 = 4.6 \text{ V}, I_0 = 5 \text{ to } 500 \text{ mA}$			3	16	mV	
		$V_{I} = 4.3 \text{ to } 16 \text{ V}, I_{O} = 0 \text{ mA}$			0.5	1		
I _d	Quiescent current	$V_{\rm I}$ = 4.6 to 16 V, $I_{\rm O}$ = 500 mA	ON mode	ON mode			12	mA
		V _I = 6 V OFF mode			50	100	μΑ	
			f = 120 Hz		80			
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 5.3 \pm 1 \text{ V}$	f = 1 kHz		75		dB	
			f = 10 kHz		65			
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV	
\/	Dropout voltage	I _O = 200 mA			0.2	0.35	V	
V _d	Dropout voltage	I _O = 500 mA			0.4	0.7	V	
V _{IL}	Control input logic low	T _a = -40 to 125 °C				0.8	V	
V _{IH}	Control input logic high	$T_a = -40 \text{ to } 125 ^{\circ}\text{C}$		2			V	
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$		10		μA	
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω, I_0 = 0 to	500 mA	2	10		μF	

Table 13. LF33C (automotive grade) electrical characteristics

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 5.3 \text{ V}, T_a =$: 25 °C	3.234	3.3	3.366	V
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 5.3 \text{ V},$		3.153		3.447	V
VI	Operating input voltage	I _O = 500 mA) = 500 mA			16	V
I _O	Output current limit	T _a = 25 °C			1		Α
ΔV_{O}	Line regulation	$V_I = 4.3 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$			3	19	mV
ΔV_{O}	Load regulation	$V_I = 4.6 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$	1		3	19	mV
		$V_I = 4.3 \text{ to } 16 \text{ V}, I_O = 0 \text{ mA}$			0.5	2	
I _d	Quiescent current	V _I = 4.6 to 16 V, I _O = 500 mA	ON mode			12	mA
		V _I = 6 V	OFF mode		50	120	μΑ
			f = 120 Hz		80		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 5.3 \pm 1 \text{ V}$ $T_a = 25 \text{ °C}$	f = 1 kHz		75		dB
		'a	f = 10 kHz		65		
eN	Output noise voltage	$B = 10 \text{ Hz to } 100 \text{ kHz}, T_a =$	25 °C		50		μV
\/	Drangut voltage	I _O = 200 mA			0.2	1.3	V
V _d	Dropout voltage	I _O = 500 mA			0.4	1.3	V
V _{IL}	Control input logic low					0.8	V
V _{IH}	Control input logic high			2			V
I _I	Control input current	$V_1 = 6 \text{ V}, V_C = 6 \text{ V}, T_a = 25 \text{ C}$	V _I = 6 V, V _C = 6 V, T _a = 25 °C		10		μΑ
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω, I_0 = 0 to	500 mA	2	10		μF

Table 14. LF50AB electrical characteristics

Symbol	Parameter	Test condition	ns	Min.	Тур.	Max.	Unit	
V	Output valtage	$I_{O} = 50 \text{ mA}, V_{I} = 7 \text{ V}$		4.95	5	5.05	V	
Vo	Output voltage	$I_0 = 50 \text{ mA}, V_1 = 7 \text{ V}, T_a = -100 \text{ M}$	·25 to 85 °C	4.9		5.1	V	
VI	Operating input voltage	I _O = 500 mA	O = 500 mA			16	V	
Io	Output current limit				1		Α	
ΔV_{O}	Line regulation	$V_{I} = 6 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$			5	25	mV	
ΔV_{O}	Load regulation	$V_I = 6.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ m/s}$	4		5	25	mV	
		$V_{I} = 6 \text{ to } 16 \text{ V}, I_{O} = 0 \text{ mA}$			0.5	1		
I _d	Quiescent current	$V_I = 6.3 \text{ to } 16 \text{ V},$ $I_O = 500 \text{ mA}$	ON mode	ON mode			12	mA
		V _I = 6 V	OFF mode		50	100	μΑ	
			f = 120 Hz		76			
SVR	Supply voltage rejection	$I_0 = 5 \text{ mA}, V_1 = 7 \pm 1 \text{ V}$	f = 1 kHz		71		dB	
			f = 10 kHz		60			
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV	
\/	Dropout voltage	I _O = 200 mA			0.2	0.35	V	
V _d	Dropout voltage	I _O = 500 mA			0.4	0.7	V	
V _{IL}	Control input logic low	T _a = -40 to 125 °C				0.8	V	
V _{IH}	Control input logic high	$T_a = -40 \text{ to } 125 ^{\circ}\text{C}$		2			V	
I _I	Control input current	V _I = 6 V, V _C = 6 V	V _I = 6 V, V _C = 6 V		10		μA	
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_0 = 0$ to	o 500 mA	2	10		μF	

Table 15. LF50AB (automotive grade) electrical characteristics

Symbol	Parameter	Test condition	ns	Min.	Тур.	Max.	Unit
Vo	Output voltage	$I_0 = 50 \text{ mA}, V_1 = 7 \text{ V}, T_a = 2$	$_{O}$ = 50 mA, V_{I} = 7 V, T_{a} = 25 °C 4		5	5.05	V
v _O	Output voltage	$I_O = 50 \text{ mA}, V_I = 7 \text{ V}$		4.885		5.115	V
VI	Operating input voltage	I _O = 500 mA				16	V
Io	Output current limit	T _a = 25 °C			1		Α
ΔV_{O}	Line regulation	$V_{I} = 6 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$			5	28	mV
ΔV_{O}	Load regulation	$V_1 = 6.3 \text{ V}, I_0 = 5 \text{ to } 500 \text{ m/s}$	4		5	28	mV
		$V_1 = 6 \text{ to } 16 \text{ V}, I_0 = 0 \text{ mA}$			0.5	2	
I _d	Quiescent current	$V_I = 6.3 \text{ to } 16 \text{ V},$ $I_O = 500 \text{ mA}$	ON mode			12	mA
		V _I = 6 V	OFF mode		50	120	μΑ
			f = 120 Hz		76		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 7 \pm 1 \text{ V}$ $T_a = 25 \text{ °C}$	f = 1 kHz		71		dB
		1a - 20 0	f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 kHz, $T_a =$: 25 °C		50		μV
\/	Dropout voltage	I _O = 200 mA			0.2	1.3	V
V _d	Dropout voltage	I _O = 500 mA			0.4	1.3	V
V _{IL}	Control input logic low					0.8	V
V _{IH}	Control input logic high						V
I _I	Control input current	V _I = 6 V, V _C = 6 V, T _a = 25 °C			10		μΑ
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_0 = 0$ to	o 500 mA	2	10		μF

Table 16. LF50C electrical characteristics

Symbol	Parameter	Test condition	ns	Min.	Тур.	Max.	Unit
W	Output voltage	$I_O = 50 \text{ mA}, V_I = 7 \text{ V}$		4.9	5	5.1	V
Vo	Output voltage	$I_0 = 50 \text{ mA}, V_1 = 7 \text{ V}, T_a = -100 \text{ mA}$	·25 to 85 °C	4.8		5.2	V
VI	Operating input voltage	I _O = 500 mA	_O = 500 mA			16	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_{I} = 6 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$			5	25	mV
ΔV_{O}	Load regulation	$V_{I} = 6.3 \text{ V}, I_{O} = 5 \text{ to } 500 \text{ m/s}$	4		5	25	mV
		$V_{I} = 6 \text{ to } 16 \text{ V}, I_{O} = 0 \text{ mA}$			0.5	1	
I _d	Quiescent current	$V_1 = 6.3 \text{ to } 16 \text{ V},$ $I_0 = 500 \text{ mA}$	ON mode			12	mA
		V _I = 6 V	OFF mode		50	100	μΑ
			f = 120 Hz		76		
SVR	Supply voltage rejection	$I_0 = 5 \text{ mA}, V_1 = 7 \pm 1 \text{ V}$	f = 1 kHz		71		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 kHz	•		50		μV
	Drangust valtage	I _O = 200 mA			0.2	0.35	V
V _d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	T _a = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125 °C	T _a = -40 to 125 °C				V
I _I	Control input current	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$	$V_{I} = 6 \text{ V}, V_{C} = 6 \text{ V}$		10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_0 = 0$ to	o 500 mA	2	10		μF

Table 17. LF50C (automotive grade) electrical characteristics

Symbol	Parameter	Test condition	ns	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 7 \text{ V}, T_a = 20 \text{ mA}$	25 °C	4.9	5	5.1	V
Vo	Output voltage	I _O = 50 mA, V _I = 7 V		4.785		5.215	V
VI	Operating input voltage	I _O = 500 mA				16	V
Io	Output current limit	T _a = 25 °C			1		Α
ΔV_{O}	Line regulation	$V_{I} = 6 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$			5	28	mV
ΔV_{O}	Load regulation	$V_I = 6.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ m/s}$	4		5	28	mV
		$V_{I} = 6 \text{ to } 16 \text{ V}, I_{O} = 0 \text{ mA}$			0.5	2	
I _d	Quiescent current	$V_1 = 6.3 \text{ to } 16 \text{ V},$ $I_0 = 500 \text{ mA}$	ON mode			12	mA
		V _I = 6 V	V _I = 6 V OFF mode		50	120	μA
			f = 120 Hz		76		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 7 \pm 1 \text{ V}$ $T_a = 25 \text{ °C}$	f = 1 kHz		71		dB
		1a - 20 0	f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 kHz, $T_a =$	= 25 °C		50		μV
\/	Dronout voltage	I _O = 200 mA			0.2	1.3	V
V _d	Dropout voltage	I _O = 500 mA			0.4	1.3	V
V _{IL}	Control input logic low					0.8	V
V _{IH}	Control input logic high			2			V
II	Control input current	$V_I = 6 \text{ V}, V_C = 6 \text{ V}, T_a = 25$	V _I = 6 V, V _C = 6 V, T _a = 25 °C		10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω, $I_0 = 0$ t	o 500 mA	2	10		μF

Table 18. LF60AB electrical characteristics

Symbol	Parameter	Test condition	Test conditions		Тур.	Max.	Unit
V.	Output voltage	$I_{O} = 50 \text{ mA}, V_{I} = 8 \text{ V}$		5.94	6	6.06	V
Vo	Output voltage	$I_0 = 50 \text{ mA}, V_1 = 8 \text{ V}, T_a = 0$	-25 to 85 °C	5.88		6.12	V
VI	Operating input voltage	I _O = 500 mA	I _O = 500 mA			16	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_{I} = 7 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$			6	30	mV
ΔV_{O}	Load regulation	$V_I = 7.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ m/s}$	4		6	30	mV
		$V_{I} = 7 \text{ to } 16 \text{ V}, I_{O} = 0 \text{ mA}$			0.7	1.5	
I _d	Quiescent current	$V_I = 7.3 \text{ to } 16 \text{ V},$ $I_O = 500 \text{ mA}$	ON mode			12	mA
		V _I = 9 V	9 V OFF mode		70	140	μΑ
			f = 120 Hz		75		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 8 \pm 1 \text{ V}$	f = 1 kHz		70		dB
			f = 10 kHz		60		1
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
\/	Dropout voltage	I _O = 200 mA			0.2	0.35	V
V _d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	T _a = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125 °C		2			V
I _I	Control input current	V _I = 9 V, V _C = 6 V			10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω, $I_0 = 0$ t	o 500 mA	2	10		μF

Table 19. LF60C electrical characteristics

Symbol	Parameter	Test condition	Test conditions		Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 8 \text{ V}$		5.88	6	6.12	V
Vo	Output voltage	$I_0 = 50 \text{ mA}, V_1 = 8 \text{ V}, T_a = 60 \text{ mA}$	-25 to 85 °C	5.76		6.24	\ \ \
VI	Operating input voltage	I _O = 500 mA	O = 500 mA			16	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_{I} = 7 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$			6	30	mV
ΔV_{O}	Load regulation	$V_I = 7.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ m/s}$	4		6	30	mV
		$V_{I} = 7 \text{ to } 16 \text{ V}, I_{O} = 0 \text{ mA}$			0.7	1.5	
I _d	Quiescent current	$V_I = 7.3 \text{ to } 16 \text{ V},$ $I_O = 500 \text{ mA}$	ON mode			12	mA
		V _I = 9 V	OFF mode		70	140	μA
			f = 120 Hz		75		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 8 \pm 1 \text{ V}$	f = 1 kHz		70		dB
			f = 10 kHz		60		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
\/	Dropout voltage	I _O = 200 mA			0.2	0.35	V
V _d	Dropout voltage	I _O = 500 mA			0.4	0.7	v
V _{IL}	Control input logic low	T _a = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	$T_a = -40 \text{ to } 125 ^{\circ}\text{C}$		2			V
I _I	Control input current	V _I = 9 V, V _C = 6 V	$V_{I} = 9 \text{ V}, V_{C} = 6 \text{ V}$		10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω, I_0 = 0 t	o 500 mA	2	10		μF

Table 20. LF80AB electrical characteristics

Symbol	Parameter	Test condition	Test conditions		Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 10 \text{ V}$		7.92	8	8.08	V
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 10 \text{ V}, T_a = 10 \text{ V}$	-25 to 85 °C	7.84		8.16	V
VI	Operating input voltage	I _O = 500 mA	_O = 500 mA			16	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_1 = 9 \text{ to } 16 \text{ V}, I_0 = 5 \text{ mA}$			8	40	mV
ΔV_{O}	Load regulation	$V_I = 9.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ m/s}$	4		8	40	mV
		$V_{I} = 9 \text{ to } 16 \text{ V}, I_{O} = 0 \text{ mA}$			0.7	1.5	
I _d	Quiescent current	$V_I = 9.3 \text{ to } 16 \text{ V},$ $I_O = 500 \text{ mA}$	ON mode			12	mA
		V _I = 9 V OFF mode			70	140	μA
			f = 120 Hz		72		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 10 \pm 1 \text{ V}$	f = 1 kHz		67		dB
			f = 10 kHz		57		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
\/	Dropout voltage	I _O = 200 mA			0.2	0.35	V
V _d	Diopout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	$T_a = -40 \text{ to } 125 ^{\circ}\text{C}$				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125 °C		2			V
I ₁	Control input current	$V_{I} = 9 \text{ V}, V_{C} = 6 \text{ V}$	$V_{I} = 9 \text{ V}, V_{C} = 6 \text{ V}$		10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω, $I_0 = 0$ to	o 500 mA	2	10		μF

Table 21. LF80C electrical characteristics

Symbol	Parameter	Test condition	ns	Min.	Тур.	Max.	Unit
W	Output voltage	$I_{O} = 50 \text{ mA}, V_{I} = 10 \text{ V}$		7.84	8	8.16	V
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 10 \text{ V}, T_a = 10 \text{ V}$	-25 to 85 °C	7.68		8.32	\ \ \
VI	Operating input voltage	I _O = 500 mA	_O = 500 mA			16	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_{I} = 9 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$			8	40	mV
ΔV_{O}	Load regulation	$V_I = 9.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ m/s}$	4		8	40	mV
		$V_{I} = 9 \text{ to } 16 \text{ V}, I_{O} = 0 \text{ mA}$			0.7	1.5	
I _d	Quiescent current	V _I = 9.3 to 16 V, I _O = 500 mA	ON mode			12	mA
		V _I = 9 V	OFF mode		70	140	μA
			f = 120 Hz		72		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 10 \pm 1 \text{ V}$	f = 1 kHz		67		dB
			f = 10 kHz		57		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
	Drangut voltage	I _O = 200 mA			0.2	0.35	V
V _d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	T _a = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125 °C	$T_a = -40 \text{ to } 125 ^{\circ}\text{C}$				V
I _I	Control input current	V _I = 9 V, V _C = 6 V	$V_{I} = 9 \text{ V}, V_{C} = 6 \text{ V}$		10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω, I_0 = 0 t	o 500 mA	2	10		μF

Table 22. LF80C (automotive grade) electrical characteristics

Symbol	Parameter	Test condition	ns	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 10 \text{ V}, T_a = 10 \text{ V}$: 25 °C	7.84	8	8.16	V
Vo	Output voltage	I _O = 50 mA, V _I = 10 V		7.665		8.335	V
VI	Operating input voltage	I _O = 500 mA				16	V
Io	Output current limit	T _a = 25 °C			1		Α
ΔV_{O}	Line regulation	$V_{I} = 9 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$			8	44	mV
ΔV_{O}	Load regulation	$V_I = 9.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ m/s}$	4		8	44	mV
		$V_{I} = 9 \text{ to } 16 \text{ V}, I_{O} = 0 \text{ mA}$			0.7	2.5	
I _d	Quiescent current	$V_I = 9.3 \text{ to } 16 \text{ V},$ $I_O = 500 \text{ mA}$	ON mode			12	mA
		V _I = 9 V	OFF mode		70	160	μΑ
			f = 120 Hz		72		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 10 \pm 1 \text{ V}$ $T_a = 25 \text{ °C}$	f = 1 kHz		67		dB
		1a - 20 0	f = 10 kHz		57		
eN	Output noise voltage	B = 10 Hz to 100 kHz, T_a =	: 25 °C		50		μV
\/	Dropout voltage	I _O = 200 mA			0.2	1.3	V
V _d	Dropout voltage	I _O = 500 mA			0.4	1.3	V
V _{IL}	Control input logic low					0.8	V
V _{IH}	Control input logic high			2			V
I _I	Control input current	V _I = 9 V, V _C = 6 V, T _a = 25 °C			10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω, $I_0 = 0$ to	o 500 mA	2	10		μF

Table 23. LF85AB electrical characteristics

Symbol	Parameter	Test condition	Test conditions		Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 10.5 \text{ V}$		8.415	8.5	8.585	V
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 10.5 \text{ V}, T_a$	= -25 to 85 °C	8.33		8.67	V
VI	Operating input voltage	I _O = 500 mA	I _O = 500 mA			16	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_I = 9.5 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$			8	42	mV
ΔV_{O}	Load regulation	$V_I = 9.8 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$	1		8	42	mV
		$V_{I} = 9.5 \text{ to } 16 \text{ V}, I_{O} = 0 \text{ mA}$			0.7	1.5	
I _d	Quiescent current	$V_I = 9.8 \text{ to } 16 \text{ V},$ $I_O = 500 \text{ mA}$	ON mode			12	mA
	V _I = 9 V OFF mode	OFF mode		70	140	μA	
			f = 120 Hz		72		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 10.5 \pm 1 \text{ V}$	f = 1 kHz		67		dB
			f = 10 kHz		57		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
\/	Dropout voltage	I _O = 200 mA			0.2	0.35	V
V _d	Diopout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	$T_a = -40 \text{ to } 125 ^{\circ}\text{C}$				0.8	V
V _{IH}	Control input logic high	$T_a = -40 \text{ to } 125 ^{\circ}\text{C}$		2			V
I	Control input current	V _I = 9 V, V _C = 6 V			10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω, I_0 = 0 to	500 mA	2	10		μF

Table 24. LF85C electrical characteristics

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Output voltage	$I_O = 50 \text{ mA}, V_I = 10.5 \text{ V}$		8.33	8.5	8.67	V
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 10.5 \text{ V}, T_a$	= -25 to 85 °C	8.16		8.84	V
V _I	Operating input voltage	I _O = 500 mA				16	V
I _O	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_{I} = 9.5 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$			8	42	mV
ΔV_{O}	Load regulation	$V_I = 9.8 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$			8	42	mV
		$V_{I} = 9.5 \text{ to } 16 \text{ V}, I_{O} = 0 \text{ mA}$			0.7	1.5	
I _d	Quiescent current	$V_I = 9.8 \text{ to } 16 \text{ V},$ $I_O = 500 \text{ mA}$	ON mode			12	mA
		V _I = 9 V	OFF mode		70	140	μΑ
			f = 120 Hz		72		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 10.5 \pm 1 \text{ V}$	f = 1 kHz		67		dB
			f = 10 kHz		57		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
V	Dranaut voltage	I _O = 200 mA			0.2	0.35	V
V_d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V_{IL}	Control input logic low	T _a = -40 to 125 °C				0.8	V
V_{IH}	Control input logic high	T _a = -40 to 125 °C		2			V
I _I	Control input current	V _I = 9 V, V _C = 6 V			10		μΑ
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω, $I_0 = 0$ to	500 mA	2	10		μF

Table 25. LF85C (automotive grade) electrical characteristics

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V.	Output voltage	$I_O = 50 \text{ mA}, V_I = 10.5 \text{ V}, T_a$	= 25 °C	8.33	8.5	8.67	V
Vo	Output voltage	I _O = 50 mA, V _I = 10.5 V		8.145		8.855	V
V _I	Operating input voltage	I _O = 500 mA				16	V
I _O	Output current limit	T _a = 25 °C			1		Α
ΔV_{O}	Line regulation	$V_I = 9.5 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$			8	44	mV
ΔV_{O}	Load regulation	$V_I = 9.8 \text{ V}, I_O = 5 \text{ to } 500 \text{ mA}$	1		8	44	mV
		$V_{I} = 9.5 \text{ to } 16 \text{ V}, I_{O} = 0 \text{ mA}$			0.7	2.5	
I _d	Quiescent current	V _I = 9.8 to 16 V, I _O = 500 mA	ON mode			12	mA
		V _I = 9 V	OFF mode		70	12 160 μ	μΑ
			f = 120 Hz		72		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 10.5 \pm 1 \text{ V}$ $T_a = 25 \text{ °C}$	f = 1 kHz		67		dB
		- a	f = 10 kHz		57		
eN	Output noise voltage	$B = 10 \text{ Hz to } 100 \text{ kHz}, T_a =$	25 °C		50		μV
V _d	Dropout voltage	I _O = 200 mA			0.2	1.3	V
V d	Dropout voltage	I _O = 500 mA			0.4	1.3	v
V _{IL}	Control input logic low					0.8	V
V _{IH}	Control input logic high			2			V
I _I	Control input current	V _I = 9 V, V _C = 6 V, T _a = 25 °C			10		μΑ
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_O = 0$ to	500 mA	2	10		μF

Table 26. LF90C electrical characteristics

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Output valtage	$I_O = 50 \text{ mA}, V_I = 11 \text{ V}$		8.82	9	9.18	V
Vo	Output voltage	$I_0 = 50 \text{ mA}, V_1 = 11 \text{ V}, T_a =$	-25 to 85 °C	8.64		9.36	
VI	Operating input voltage	I _O = 500 mA				16	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_I = 10 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$			9	45	mV
ΔV_{O}	Load regulation	$V_I = 10.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ m}$	Α		9	45	mV
		$V_{I} = 10 \text{ to } 16 \text{ V}, I_{O} = 0 \text{ mA}$			0.7	1.5	
I _d	Quiescent current	$V_1 = 10.3 \text{ to } 16V,$ $I_0 = 500 \text{ mA}$	ON mode			12	mA
		V _I = 10 V	OFF mode		70	140	μΑ
			f = 120 Hz		71		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 11 \pm 1 \text{ V}$	f = 1 kHz		66		dB
			f = 10 kHz		56		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
\/	Dropout voltage	I _O = 200 mA			0.2	0.35	\/
V _d	Dropout voltage	I _O = 500 mA			0.4	9.18 9.36 V 9.36 16 V A 45 MV 1.5 12 140 μA dB 0.35 0.7 0.8 V μA	V
V _{IL}	Control input logic low	T _a = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125 °C		2			V
I _I	Control input current	V _I = 10 V, V _C = 6 V			10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω, $I_0 = 0$ to	500 mA	2	10		μF

Table 27. LF120AB electrical characteristics

Symbol	Parameter	Test condition	Test conditions		Тур.	Max.	Unit
V.	Output voltage	$I_O = 50 \text{ mA}, V_I = 15 \text{ V}$		11.88	12	12.12	V
Vo	Output voltage	$I_O = 50 \text{ mA}, V_I = 15 \text{ V}, T_a =$	-25 to 85 °C	11.76		12.24	V
VI	Operating input voltage	I _O = 500 mA				16	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_{I} = 13 \text{ to } 16 \text{ V}, I_{O} = 5 \text{ mA}$			12	60	mV
ΔV_{O}	Load regulation	$V_I = 13.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ m}$	A		12	60	mV
		$V_{I} = 13 \text{ to } 16 \text{ V}, I_{O} = 0 \text{ mA}$			0.7	1.5	
I _d	Quiescent current	V _I = 13.3 to 16 V, I _O = 500 mA	ON mode			12	mA
		V _I = 13 V	OFF mode		70	140	μA
			f = 120 Hz		69		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 14 \pm 1 \text{ V}$	f = 1 kHz		64		dB
			f = 10 kHz		54		
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
\/	Dropout voltage	I _O = 200 mA			0.2	0.35	V
V _d	Dropout voltage	I _O = 500 mA			0.4	0.7	V
V _{IL}	Control input logic low	$T_a = -40 \text{ to } 125 ^{\circ}\text{C}$				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125 °C		2			V
I _I	Control input current	V _I = 13 V, V _C = 6 V			10		μA
Co	Output bypass capacitance	ESR = 0.1 to 10 Ω , $I_O = 0$ to	500 mA	2	10		μF

Table 28. LF120C electrical characteristics

Symbol	Parameter	Test condition	ıs	Min.	Тур.	Max.	Unit
V	Output valtage	$I_O = 50 \text{ mA}, V_I = 14 \text{ V}$		11.76	12	12.24	V
Vo	Output voltage	$I_0 = 50 \text{ mA}, V_1 = 14 \text{ V}, T_a =$	-25 to 85 °C	11.52		12.48	\ \ \ \ \
VI	Operating input voltage	I _O = 500 mA				16	V
Io	Output current limit				1		Α
ΔV_{O}	Line regulation	$V_I = 13 \text{ to } 16 \text{ V}, I_O = 5 \text{ mA}$			12	60	mV
ΔV_{O}	Load regulation	$V_I = 13.3 \text{ V}, I_O = 5 \text{ to } 500 \text{ m}$	A		12	60	mV
		$V_{I} = 13 \text{ to } 16 \text{ V}, I_{O} = 0 \text{ mA}$			0.7	1.5	
I _d	Quiescent current	V _I = 13.3 to 16 V, I _O = 500 mA	ON mode			12	mA
		V _I = 13 V	OFF mode		70	12 mA	μΑ
			f = 120 Hz		69		
SVR	Supply voltage rejection	$I_O = 5 \text{ mA}, V_I = 14 \pm 1 \text{ V}$	f = 1 kHz		64		dB
			f = 10 kHz		54	140 μ d	
eN	Output noise voltage	B = 10 Hz to 100 kHz			50		μV
\/	Dropout voltage	I _O = 200 mA			0.2	0.35	
V _d	Dropout voltage	I _O = 500 mA			0.4	16 V A 60 mV 60 mV 1.5 12 140 μA 0.35 V 0.7 0.8 V μΑ	V
V _{IL}	Control input logic low	T _a = -40 to 125 °C				0.8	V
V _{IH}	Control input logic high	T _a = -40 to 125 °C		2			V
I _I	Control input current	V _I = 13 V, V _C = 6 V			10		μA
C _O	Output bypass capacitance	ESR = 0.1 to 10 Ω, $I_0 = 0$ to	500 mA	2	10		μF

5 Typical performance characteristics

Figure 4. Dropout voltage vs. output current

V_d(V)
1.0
0.8
0.6
0.4
0.2
0 200 400 600 800 l_{out}(mA)

Figure 5. Dropout voltage vs. temperature

Figure 6. Supply current vs. input voltage

Figure 7. Supply current vs. input voltage (no load)

34/53 DocID2574 Rev 27

Figure 8. Short-circuit current vs. input voltage

Figure 9. Supply current vs. temperature

Note: Unless otherwise specified $V_{O(NOM)} = 3.3 \text{ V}$

6<VIN<16 V LF50 VIN VIN VOUT 5 INH 3.3V OR 5.0V +/- 1% 0.5 A MAX VOUT LF33 VIN $0.22 \mu F$ VOUT 5 L: VOUT=3.3V H: VOUT=5.0V CTRL INH CMOS OR TTL INVERTERS SC08660

Figure 10. Logic-controlled precision 3.3/5.0 V selectable output

57/

Figure 12. Multiple supply with ON/OFF toggle switch

Figure 13. Basic inhibit functions

Figure 14. Delayed turn-on

Figure 15. Low voltage bulb blinker

Package mechanical data 6

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

Figure 16. TO-220 drawings (STD-ST dual gauge)

Figure 17. TO-220 drawings (STD-ST single gauge)

Table 29. TO-220 mechanical data

	Type STD - ST dual gauge			Type STD - ST single gauge		
Dim.		mm			mm	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	4.40		4.60	4.40		4.60
b	0.61		0.88	0.61		0.88
b1	1.14		1.70	1.14		1.70
С	0.48		0.70	0.48		0.70
D	15.25		15.75	15.25		15.75
D1		1.27				
E	10.00		10.40	10.00		10.40
е	2.40		2.70	2.40		2.70
e1	4.95		5.15	4.95		5.15
F	1.23		1.32	0.51		0.60
H1	6.20		6.60	6.20		6.60
J1	2.40		2.72	2.40		2.72
L	13.00		14.00	13.00		14.00
L1	3.50		3.93	3.50		3.93
L20		16.40			16.40	
L30		28.90			28.90	
ØP	3.75		3.85	3.75		3.85
Q	2.65		2.95	2.65		2.95

Note: Despite of some differences in tolerances, packages are compatible

Dia L6 *L2 L7* L3 F1 **L4** F2 Ε -G1_ 7012510_Rev_K_B

Figure 18. TO-220FP drawings

Table 30. TO-220FP mechanical data

Dim	mm				
Dim.	Min.	Тур.	Max.		
А	4.4		4.6		
В	2.5		2.7		
D	2.5		2.75		
E	0.45		0.7		
F	0.75		1		
F1	1.15		1.70		
F2	1.15		1.70		
G	4.95		5.2		
G1	2.4		2.7		
Н	10		10.4		
L2		16			
L3	28.6		30.6		
L4	9.8		10.6		
L5	2.9		3.6		
L6	15.9		16.4		
L7	9		9.3		
Dia	3		3.2		

THERMAL PAD c2 - *E1* L2 D1 D Н <u>A</u>1 <u>b(</u>2x) R С SEATING PLANE (L1) *V2* 0,25 0068772_M_type_A

Figure 19. DPAK drawings

Table 31. DPAK mechanical data

	mm				
Dim.	Min.	Тур.	Max.		
А	2.20		2.40		
A1	0.90		1.10		
A2	0.03		0.23		
b	0.64		0.90		
b4	5.20		5.40		
С	0.45		0.60		
c2	0.48		0.60		
D	6.00		6.20		
D1		5.10			
E	6.40		6.60		
E1		4.70			
е		2.28			
e1	4.40		4.60		
Н	9.35		10.10		
L	1.00		1.50		
(L1)		2.80			
L2		0.80			
L4	0.60		1.00		
R		0.20			
V2	0°		8°		

Figure 20. DPAK recommended footprint

"GATE" Note 6 Ε-THERMAL PAD *C2 B2* -*L2* Ď1 Н <u>L4</u> <u>A</u>1 B (4x) Note 7 R С G SEATING PLANE Ľ6 GAUGE PLANE 0078180_F

Figure 21. PPAK drawings

Table 32. PPAK mechanical data

Dim.	mm				
	Min.	Тур.	Max.		
А	2.2		2.4		
A1	0.9		1.1		
A2	0.03		0.23		
В	0.4		0.6		
B2	5.2		5.4		
С	0.45		0.6		
C2	0.48		0.6		
D	6		6.2		
D1		5.1			
Е	6.4		6.6		
E1		4.7			
е		1.27			
G	4.9		5.25		
G1	2.38		2.7		
Н	9.35		10.1		
L2		0.8	1		
L4	0.6		1		
L5	1				
L6		2.8			
R		0.20			
V2	0°		8°		

7 Packaging mechanical data

Top cover tolerance on tape +/- 0.2 mm

Top cover Top co

Figure 22. Tape for DPAK and PPAK

Figure 23. Reel for DPAK and PPAK

Table 33. DPAK and PPAK tape and reel mechanical data

Таре				Reel		
Dim.	mm		Dim.	mm		
	Min.	Max.	— Dim.	Min.	Max.	
A0	6.8	7	А		330	
В0	10.4	10.6	В	1.5		
B1		12.1	С	12.8	13.2	
D	1.5	1.6	D	20.2		
D1	1.5		G	16.4	18.4	
Е	1.65	1.85	N	50		
F	7.4	7.6	Т		22.4	
K0	2.55	2.75				
P0	3.9	4.1		Base qty.	2500	
P1	7.9	8.1		Bulk qty.	2500	
P2	1.9	2.1			•	
R	40					
Т	0.25	0.35				
W	15.7	16.3				

Figure 24. TO-220 dual gauge tube drawings (dimensions in mm)

50/53 DocID2574 Rev 27

LFXX Ordering information

8 Ordering information

Table 34. Order codes

Packages					
TO-220 (dual gauge)		TO-220FP DPAK (tape and reel)		PPAK (tape and reel)	Output voltages
			LF15ABDT-TR		1.5 V
			LF18CDT-TR	LF18CPT-TR	1.8 V
			LF18CDT-TRY ⁽¹⁾		1.8 V
			LF18ABDT-TR	LF18ABPT-TR	1.8 V
			LF25CDT-TR	LF25CPT-TR	2.5 V
			LF25CDT-TRY ⁽¹⁾		2.5 V
			LF25ABDT-TR		2.5 V
			LF25ABDT-TRY ⁽¹⁾		2.5 V
LF33CV	LF33CV-DG		LF33CDT-TR	LF33CPT-TR	3.3 V
			LF33CDT-TRY ⁽¹⁾	LF33CPT-TRY ⁽¹⁾	3.3 V
LF33ABV	LF33ABV-DG		LF33ABDT-TR		3.3 V
LF50CV			LF50CDT-TR	LF50CPT-TR	5 V
			LF50CDT-TRY ⁽¹⁾	LF50CPT-TRY ⁽¹⁾	5 V
LF50ABV	LF50ABV-DG	LF50ABP	LF50ABDT-TR	LF50ABPT-TR	5 V
			LF50ABDT-TRY ⁽¹⁾		5 V
LF60CV			LF60CDT-TR		6 V
LF60ABV			LF60ABDT-TR		6 V
			LF80CDT-TR		8 V
			LF80CDT-TRY ⁽¹⁾		8 V
			LF80ABDT-TR		8 V
			LF85CDT-TR	LF85CPT-TR	8.5 V
			LF85CDT-TRY ⁽¹⁾	LF85CPT-TRY ⁽¹⁾	8.5 V
LF90CV				LF90CPT-TR	9 V
			LF120CDT-TR		12 V
LF120ABV			LF120ABDT-TR		12 V

^{1.} Automotive grade products.

Revision history LFXX

9 Revision history

Table 35. Document revision history

Date	Revision	Changes
21-Jun-2004	14	Document updating.
24-May-2006	15	Order codes updated.
02-Apr-2007	16	Order codes updated.
14-May-2007	17	Order codes updated.
26-Jul-2007	18	Add table 1 in cover page.
26-Nov-2007	19	Modified: Table 34.
16-Jan-2008	20	Added new order codes for automotive grade products see <i>Table 34 on</i> page 51.
12-Feb-2008	21	Modified: Table 34 on page 51.
10-Jul-2008	22	Modified: Table 34 on page 51.
05-May-2010	23	Added: <i>Table 29 on page 41</i> , fig 16, fig 17, fig 18 and fig 19.
16-Nov-2010	24	Modified: R _{thJC} value for TO-220 <i>Table 2 on page 7</i> .
10-Feb-2012	25	Added: order code LF33CV-DG and LF33ABV-DG Table 34 on page 51.
09-Mar-2012	26	Added: order code LF50ABV-DG Table 34 on page 51.
28-Feb-2014	27	Changed the part numbers LFxxAB and LFxxC to LFXX. Changed the title. Removed table from cover page. Removed PENTAWATT package from the figure in cover page, the <i>Description</i> and <i>Figure 2</i> . Updated the <i>Description</i> . Updated: <i>Table 2</i> , <i>Table 6</i> , <i>Table 8</i> , <i>Table 10</i> , <i>Table 13</i> , <i>Table 15</i> , <i>Table 17</i> , <i>Table 22</i> , <i>Table 25</i> and <i>Table 34</i> . Changed title of <i>Figure 7</i> . Updated mechanical data.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

