RECEIVED **CENTRAL FAX CENTER** OCT 1 1 2006

AMENDMENTS In the Claims

Status of Claims

1	1.(currently amended) An apparatus for condensing multi-component fluids comprising:	
2	a plurality of heat exchange stages,	
3	at least one scrubber is adapted to receive at least one input liquid stream and at least on	
4	input vapor stream and produce at least one output liquid stream and at least one output vapo	
5	stream, and	
6	a plurality of mixers and splitters,	
7	where the heat exchange stages and the at least one scrubber and the mixers and the splitte	
8	are configured to form are interconnected in such a way that streams are split and mixed so that	
9	mixed partially condensed stream derived from a vapor multi-component feed stream for enters each	
10	heat exchange stage, where each partially condensed stream has parameters adapted to increase	
11	increasing a heat transfer coefficient in each of the heat exchange stages, where the heat exchange	
12	stages are adapted to fully condense its partially condensed stream, and where a last heat exchange	
13	stage is adapted to produce a fully condensed multi-component output stream.	
1	2.(original) The apparatus of claim 1, where the plurality of heat exchange stages is two.	
1	3.(original) The apparatus of claim 1, where the plurality of heat exchange stages is three.	
1	4.(original) The apparatus of claim 1, where the plurality of heat exchange stages is four.	
1	5.(original) The apparatus of claim 1, where the plurality of heat exchange stages is more than	
2	four.	
1	6.(currently amended) The apparatus of claim 1, further comprising a plurality of scrubbers,	
2	where the scrubber plurality is equal to or one less than the plurality of heat exchanger exchange	
3	stages.	
1	7.(currently amended) The apparatus of claim 6, where the heat exchange stage plurality is	
2	three and the scrubber plurality is two.	

8.(original)

1

1	8.(original) The appara	tus of claim 1, wherein the exchange stages are heat exchangers.		
1	9.(currently amended)	An apparatus for condensing multi-component fluids comprising:		
2	a first plurality of h	eat exchange stages,		
3	a second plurality o	f scrubbers are adapted to receive at least one input liquid stream and at		
4	least one input vapor stream and produce at least one output liquid stream and at least one output			
5	vapor stream,			
6	a third plurality of a	a third plurality of mixers, and		
7	a fourth plurality of	f splitters,		
8	where the heat exc	hange stages and the scrubbers are interconnected in such a way that		
9		so that a mixed stream enters each heat exchange stage increasing a heat		
10		of the heat exchange stages the scrubbers, the mixers and the splitter are		
11		ly condensed stream derived from a vapor multi-component feed stream		
12		ge, where each partially condensed stream has parameters adapted to		
13		efficient in each of the heat exchange stages, where the heat exchange		
14		condense its partially condensed stream, and where a last heat exchange		
15		a fully condensed multi-component output stream.		
1	10.(currently amended)	The apparatus of claim 19, where the plurality of heat exchange stages		
2	is two.			
1	11 (annual de la la la la			
1 2	<pre>! 1.(currently amended) is three.</pre>	The apparatus of claim 19, where the plurality of heat exchange stages		
2	is three,			
1	12.(currently amended)	The apparatus of claim +9, where the plurality of heat exchange stages		
2	is four.			
1	13.(currently amended)	The apparatus of claim 12, where the plurality of heat exchange stages		
2	is more than four.			
1	14.(currently amended)	The apparatus of claim 19, further comprising a plurality of scrubbers		
	(care and among the			

2	where the scrubber plurality is equal to or one less than the plurality of heat exchanger exchange		
3	stages.		
1	15.(currently amended) The apparatus of claim 614, where the heat exchange stage plurali		
2	is three and the scrubber plurality is two.		
1	16.(currently amended) The apparatus of claim 19, wherein the exchange stages are he		
2	exchangers.		
1	17.(currently amended) A process for condensing multi-component fluids comprising the step		
2	of:		
3	feeding an input vapor stream comprising a multi-component fluid to a condensation system		
4	of claims 1-16 ;		
5	splitting the an input vapor stream into first and second vapor sub-streams;		
6	forwarding the first vapor sub-stream to a lower port of a scrubber;		
7	combining the second vapor sub-stream with a first scrubber liquid stream from a botton		
8	port of the scrubber to form a first mixed stream;		
9	passing the first mixed stream through a first heat exchanger where it is fully condensed		
10	forming a first condensed stream;		
11	splitting the first condensed stream into first and second condensed sub-streams;		
12	combining the second condensed sub-stream with a first scrubber vapor stream from a		
13	upper port of the first scrubber to form a second mixed stream;		
14	forwarding the first condensed sub-stream to a top port of a the scrubber;		
15	counterflow compositionally equilibrating the first vapor sub-stream and the first condense		
16	sub-stream in the scrubber, and		
17	passing the second combined stream through a second heat exchanger where it is full		
18	condensed forming a final liquid stream comprising a multi-component stream having		
19	compositions the same or substantially the same as the input stream,		
20	where the streams entering each heat exchanger are mixed streams having a composition		
21	designed to increase, optimize or maximize a heat transfer coefficient in each heat exchanger.		

18.(original) The process of claim 17, further comprising the steps of:

2	before the second splitting step, combining the first condensed stream with a second scrubber		
3	vapor stream from a port in a middle section of the scrubber to form a third mixed stream,		
4	passing the third mixed stream through a third heat exchanger where it is fully condense		
5	forming a second condensed stream.		
1	19.(original) The process of claim 17, further comprising the steps of:		
2	before the second splitting step, splitting the first condensed stream into third and forth		
3	condensed sub-streams,		
4	forwarding the forth condensed sub-stream to a port in a middle section of the scrubber;		
5	combining the third condensed sub-stream with a second scrubber vapor stream from a po		
6	in the middle section of the scrubber to form a third mixed stream,		
7	passing the third mixed stream through a third heat exchanger where it is fully condensed		
8	forming a second condensed stream.		
1	20.(original) The process of claim 17, further comprising the steps of:		
2	before the second splitting step, combining the first condensed stream into second scrubber		
3	liquid stream from a port in a middle section of the scrubber to form a third combined stream,		
4	combining the third combined stream with a second scrubber vapor stream from another port		
5	in the middle section of the scrubber to form a third mixed stream,		
6	passing the third mixed stream through a third heat exchanger where it is fully condensed		
7	forming a second condensed stream.		
1	21.(currently amended) A process for condensing multi-component fluids comprising the steps		
2	of:		
3	feeding an input vapor stream comprising a multi-component fluid to a condensation system		
4	of claims 1-16;		
5	splitting the input vapor stream into first and second vapor sub-streams;		
6	forwarding the first vapor sub-stream to a lower port of a first scrubber;		
7	combining the second vapor sub-stream with a first scrubber liquid stream from a bottom		
8	port of a second scrubber to form a first mixed stream;		
9	passing the first mixed stream through a first heat exchanger where it is fully condensed		
0	forming a first condensed stream;		

11	combining the first condensed stream with a first scrubber vapor stream from a port in a	
12	middle section of the first scrubber to form a second mixed stream,	
13	passing the second mixed stream through a second heat exchanger where it is fully	
14	condensed forming a second condensed stream	
15	splitting the second condensed stream into first and second condensed sub-streams;	
16	combining the second condensed sub-stream with a second scrubber vapor stream from an	
17	upper port of the second scrubber to form a third mixed stream;	
18	forwarding the first condensed sub-stream to a top port of the first scrubber;	
19	forwarding a second scrubber liquid stream from a bottom port of the first scrubber to a top	
20	port of the second scrubber,	
21	forwarding a third scrubber vapor stream from an upper port of the first scrubber to a lower	
22	port of the second scrubber,	
23	counterflow compositionally equilibrating the first vapor sub-stream and the first condensed	
24	sub-stream in the first scrubber,	
25	counterflow compositionally equilibrating the second scrubber liquid stream and the third	
26	scrubber vapor stream in the second scrubber, and	
27	passing the third mixed stream through a third heat exchanger where it is fully condensed	
28	forming a final liquid stream comprising a multi-component stream having a compositions the same	
29	or substantially the same as the input stream,	
30	where the streams entering each heat exchanger are mixed streams having a composition	
31	designed to increase, optimize or maximize a heat transfer coefficient in each heat exchanger.	
1	22.(original) The process of claim 21, further comprising the steps of:	
2	before the second splitting step, combining the first condensed stream with a second scrubber	
3	vapor stream from a port in a middle section of the scrubber to form a third mixed stream,	
4	passing the third mixed stream through a third heat exchanger where it is fully condensed	
5	forming a second condensed stream.	
1	23.(original) The process of claim 21, further comprising the steps of:	
2	before the second splitting step, splitting the first condensed stream into third and forth	
3	condensed sub-streams,	
4	forwarding the forth condensed sub-stream to a port in a middle section of the scrubber:	

б

26.(new)

combin	ung the third condensed sub-stream with a second scrubber vapor stream from a port
in the middle s	ection of the scrubber to form a third mixed stream,
passing	the third mixed stream through a third heat exchanger where it is fully condensed
forming a seco	nd condensed stream.
24.(original)	The process of claim 21, further comprising the steps of:
before t	he second splitting step, combining the first condensed stream into second scrubber
	rom a port in a middle section of the scrubber to form a third combined stream,
combin	ing the third combined stream with a second scrubber vapor stream from another port
	ection of the scrubber to form a third mixed stream,
passing	the third mixed stream through a third heat exchanger where it is fully condensed
forming a secon	nd condensed stream.
25.(new)	An apparatus for condensing multi-component fluids comprising:
a first sp	plitter valve adapted to receive a multi-component vapor feed stream and to form a
first vapor feed	sub-stream and a second vapor feed sub-stream,
a scrubb	per apparatus adapted to receive the first vapor feed sub-stream at a lower port and
a first portion o	f a first condensed stream in a top port and to produce a liquid scrubber stream at a
bottom port and	l a vapor scrubber stream at an upper port,
a first n	nixer valve adapted to combine the second vapor feed sub-stream and the liquid
scrubber stream	to form a first combined stream,
a first he	eat exchange stage adapted to fully condense the first combined stream to form a first
condensed stream	am, where the first combined stream has parameters adapted to increase a heat
transfer coeffici	ent of the first heat exchanger,
a second	splitter valve adapted to divide the first condensed stream into two portions,
a second	mixer valve adapted to combine a second portion of the first condensed stream and
the vapor scrubt	per stream to form a second combined stream,
	heat exchanger adapted to fully condense the second combined stream to form a
	nulti-component output stream, where the second combined stream has parameters
idapted to incre	ase a heat transfer coefficient of the second heat exchanger.

The apparatus of claim 25, wherein the scrubber apparatus includes a single scrubber.

- 1 28.(new) The apparatus of claim 25, wherein the scrubber apparatus includes two scrubbers.
 - 28.(new) An apparatus for power generation comprising:
 - a vaporization unit adapted to fully vaporize a fully condensed multi-component working fluid stream into a fully vaporized multi-component working fluid stream;
 - an energy extraction unit adapted to convert a portion of thermal energy in the fully vaporized multi-component working fluid stream and to produce a spent multi-component working fluid stream,
 - a condensation unit including:
 - a plurality of heat exchange stages,
 - at least one scrubber, and
 - a plurality of mixers and splitters,

the at least one scrubber, the mixers and the splitter are configured to form a partially condensed stream derived from a vapor multi-component feed stream for each heat exchange stage, where each partially condensed stream has parameters adapted to increase a heat transfer coefficient in each of the heat exchange stages, where the heat exchange stages are adapted to fully condense its partially condensed stream, and where a last heat exchange stage is adapted to produce a fully condensed multi-component output stream.