TEMA Nro 2

FUNCIONES GENERATRICES

- 2.1 Introducción
- 2.2 Definiciones
- 2.3 Particiones de enteros
- 2.4 El operador Suma

2.1 Introducción

Estudiaremos el problema de hacer selecciones permitidas, como habíamos visto en el capítulo anterior, ahí tratamos de obtener por ejemplo el número de soluciones enteras de la ecuación

$$c_1 + c_2 + c_3 + c_4 = 25$$
 donde $c_i \ge 0$ para todo $1 \le i \le 4$

Como lo hemos estado observando, en muchas cuestiones combinatorias es natural especificar, aunque de forma genérica el tamaño n, de un conjunto de referencia, o el paso (n también) de un proceso de construcción combinatorio, o las veces que (n) se repite en un procedimiento. La respuesta a la cuestión de interés, que podemos nombrar, de manera genérica también, como a_n , de pende de n.

Vemos el siguiente ejemplo.

En sus compras del sábado Mónica compró 12 naranjas para sus hijos, Graciela, María y Francisco. ¿De cuántas formas puede ella distribuir las naranjas de tal forma que Graciela obtenga al menos cuatro y María y Francisco obtenga al menos dos, sin que Francisco no obtenga más de cinco?.

$$(x^4 + x^5 + x^6 + x^7 + x^8)(x^2 + x^3 + x^4 + x^5 + x^6)(x^2 + x^3 + x^4 + x^5)$$

La solución al planteamiento es

$$x^{19} + 3x^{18} + 6x^{17} + 10x^{16} + 14x^{15} + 16x^{14} + 16x^{13} + 14x^{12} + 10x^{11} + 6x^{10} + 3x^{9} + x^{8}$$
 (12 terms)