# CIRCULAR SEQUENCE COMPARISON: ALGORITHMS AND APPLICATIONS



#### Circular Sequence Comparison: Algorithms and Applications

#### Authors:

Nadia Pisanti, Roberto Grossi (University of Pisa) and 5 others (King's College London).

Soon to be published on BMC Bioinformatics.

These slides are available at:

https://github.com/robzan8/csc

#### Circular Sequences





Examples:

Bacterial chromosomes and plasmids; Mitochondrial DNA; Viral genomes; Circular proteins; And more...

#### Comparisons













AAACCTCGGGTTTT

GGTTTTAAACCTCG

#### Rotation



$$x$$
 AAACCCCGGGTTT

$$x^5$$
 C C C G G G T T T A A A A C

$$(xx)[5...n+5]$$
 A A A C C C C G G G T T T A A A A C C C C G G G T T T

#### q-gram distance

Approximation of edit distance, can be computed in linear time and space.

$$D_{q}(x,y) = \sum_{v \in \Sigma^{q}} |G_{q}(x)[v] - G_{q}(y)[v]|$$

β-blockwise q-gram distance, more accurate, linear time and  $\mathcal{O}(\frac{m+n}{\beta})$  space.

∑ for each block pair

# Circular Sequence Comparison problem (CSC)

**Input:** strings x, y of lengths m and  $n \ge m$ , integers  $\beta \ge 1$  and q < m

**Output:** i such that  $D_{\beta,q}(x^i,y)$  is minimal

Naïve algorithm (nCSC) complexity:  $\mathcal{O}(m(m+n))$ 

# Heuristic algorithm (hCSC)

**Step 1:** divide xx in  $2\beta$  blocks and y in  $\beta$  blocks.

**Step 2:** calculate  $\delta_j = D_{\beta,q}(x^{j\frac{m}{\beta}}, y)$  shifting the window block by block.

**Step 3:** starting form position with best  $\delta_j$ , refine search by moving left and right by  $m/\beta$  characters.

$$xx$$
 AAAACCTCGGGGTTTTAAAAACCCCCGGGGTTTAA $y$ 

#### Analysis of hCSC

Step 2 (block-by-block search)  $\mathcal{O}(\beta(m+n))$ 

Step 3 (char-by-char local search)  $\mathcal{O}(\frac{m}{\beta}(m+n))$ 

Total  $\mathcal{O}\left(\left(\beta + \frac{m}{\beta}\right)(m+n)\right)$ 

By letting  $\beta = \sqrt{m}$   $\mathcal{O}(\sqrt{m}(m+n))$ 

Linear additional space

Does not necessarily find global optimum!

# Exact algorithm based on suffix array (saCSC)

**Step 1:** Construct the suffix array of xxy and substitute each q-gram with its rank



| 0 |
|---|
| 1 |
| 2 |
| 3 |
| 4 |
| 5 |
| 6 |
| 7 |
|   |

 $C \Lambda$ 

#### Exact algorithm based of suffix array (saCSC)

**Step 2:** Compute the blockwise q-gram distance for the initial window position

```
x' 9 6 2 2 8 0 1 5 7 9 0 1 3 7 4 5 9 6 2 2 8 0 1 5 7 9 0 1 3 7 4 5 y' 0 1 3 7 4 5 9 6 2 2 8 0 1 5 7 9 0 1 3 7 4 5
```

**Step 3:** Slide the window char-by-char, update the distance and keep the best position

```
x' 9 6 2 2 8 0 1 5 7 9 0 1 3 7 4 5 9 6 2 2 8 0 1 5 7 9 0 1 3 7 4 5 9 6 2 2 8 0 1 5 7 9 0 1 3 7 4 5 y'
```

#### Analysis of saCSC

| Suffix array calculation | $\mathcal{O}(m+n)$ |
|--------------------------|--------------------|
|--------------------------|--------------------|

Distance with sliding window 
$$O(\beta m + n)$$

Total (for both time and space) 
$$O(\beta m + n)$$

#### saCSC refinement step (saCSCr)

Alignment of the first and last p blocks of  $x^i$  and y with Needleman-Wunsch, considering all possible rotations

Time complexity: 
$$\mathcal{O}\left((p\frac{m}{\beta})^3\right)$$

#### **Experimental results**

Algorithm tested on various real and synthetic data

#### **Applications on real data:**

Chimpanzee - human MtDNA (from GenBank) comparison: 85% similarity and ~1200 gaps with EMBOSS Needle vs 91% similarity and 77 gaps with correct rotation; Distance-based phylogenetic reconstruction: MtDNA, viroid RNA, circular proteins.

saCSCr gives the same results as cNW ("brute force" Needleman-Wunsch), but with much smaller execution times!

# Time performance

cNW

caCSC (a gram dist suffix array)

(Needleman-Wunsch, naïve)

Experimental performance is in line with theoretical expectations

 $O(Rm \perp n)$ 

 $\mathcal{O}(m^2n)$ 

| Sacsc | (q-grain dist, surnx array) | O(pm + n)                    |
|-------|-----------------------------|------------------------------|
| hCSC  | (q-gram dist, heuristic)    | $\mathcal{O}(\sqrt{m}(m+n))$ |
| hSW   | (Smith-Waterman, heuristic) | $\mathcal{O}(mn)$            |
| nCSC  | (q-gram dist, naïve)        | $\mathcal{O}(m(m+n))$        |

#### Conclusions

- β-blockwise q-gram distance can be computed efficiently and used effectively
- saCSC solves the CSC problem exactly and fast
- Refinement step bridges the gap between q-gram approximation and optimal solution
- saCSCr to be implemented in BEAR (state-of-the-art tool for multiple circular sequence alignment)

Q&A!