4. úkol z předmětu Složitost

Petr Zemek

xzemek02@stud.fit.vutbr.cz

Fakulta Informačních Technologií, Brno

Příklad 1

Bez újmy na obecnosti lze předpokládat, že velikost formule je dána počtem proměnných (pro n proměnných nedává od určité hranice, závislé pouze na n, smysl formuli dále zvětšovat).

- (a) Nechť n označuje počet proměnných v předané formuli. Vygenerování náhodného čísla lze udělat v O(1) (složitost nezávisí na délce formule), takže cyklus for má časovou složitost $\Theta(n)$. Otestování pravdivosti zabere O(n). Celková časová složitost funkce SAT je tedy O(n).
- (b) Ano, lze. Libovolný NTS lze převést na NTS, který má v každém okamžiku přesně dvě nedeterministické volby. To, aby každý výpočet skončil po přesně daném počtu kroků, který je závislý jen od velikosti vstupu, lze u implementace funkce SAT na NTS zřejmě také docílit.
- (c) Ne, nemůžeme. NTS z bodu (b) není Monte Carlo TS, protože počet přijímajících výpočtů je závislý na velikosti a tvaru formule (přesněji: neexistuje konstanta $0 < k \le 1$ taková, že pokud $w \in SAT$, tak poměr mezi počtem zamítajících a akceptujících výpočtů NTS z bodu (b) na w je alespoň k, a to nezávisle na velikosti a tvaru formule). Nicméně, pouze na základě této konkrétní funkce ještě nelze říci, že problém SAT nepatří do \mathbf{RP} čistě teoreticky totiž může existovat Monte Carlo TS, který rozhoduje SAT.

Příklad 2

Věta 1. Algoritmus popsaný funkcí klika ze zadání není ε -aproximační pro žádné $0 \le \varepsilon < 1$.

Důkaz. Sporem. Předpokládejme, že algoritmus je ε -aproximační pro nějaké $0 \le \varepsilon < 1$.

Nechť G_k , kde $k \geq 4$, označuje neorientovaný graf daný následovně. G_k je sám o sobě nesouvislý a obsahuje dva souvislé grafy, G_k^1 a G_k^2 . G_k^1 je graf ve tvaru hvězdy o k+1 vrcholech (obsahuje tedy jeden vrchol stupně k a k vrcholů stupně 1). G_k^2 je úplný graf o k-1 vrcholech, tedy tvoří kliku o velikosti k-1. Všimněte si, že maximální stupeň vrcholu v G_k^2 je k-1, tedy méně, než v G_k^1 .

Pokud dáme G_k na vstup funkci klika, dostaneme vždy jako výsledek kliku o velikosti 2, nezávisle na hodnotě k (v inicializaci se do max se přiřadí uzel s největším stupněm, tj. k, který je z G_k^1 , a po jednom kroku cyklu se funkce ukončí). Optimální velikost kliky v G_k je ale k-1, kterou dává G_k^2 . Jelikož předpokládáme $k \ge 4$, tak optimální řešení se od nalezeného liší vždy o k-3.

Pokud tedy budeme zvyšovat k, tak nám bude růst relativní chyba, což je spor s předpokladem, že algoritmus je ε -aproximační pro nějaké $0 \le \varepsilon < 1$ (pokud je algoritmus ε -aproximační, tak nesmí růst relativní chyba při zvyšování velikosti vstupu). Tudíž, algoritmus není ε -aproximační pro žádné $0 \le \varepsilon < 1$.