Algebra I

Lecture Notes

Syllabus

Definition of an abstract vector space over an arbitrary field. Examples. Linear maps. Division Algorithm in F[x]. Characteristic polynomials and minimal polynomials. Coincidence of roots. [2]

Quotient vector spaces. The first isomorphism theorem for vector spaces and rank-nullity. Induced linear maps. Applications: Triangular form for matrices over \mathbb{C} . Cayley-Hamilton Theorem. [2.5]

Bezout's Lemma in F[x]. Primary Decomposition Theorem. Diagonalizability and Triangularizability in terms of minimal polynomials. Proof of existence of Jordan canonical form over \mathbb{C} (using primary decomposition and inductive proof of form for nilpotent linear maps). [3.5]

Dual spaces of finite-dimensional vector spaces. Dual bases. Dual of a linear map and description of matrix with respect to dual basis. Natural isomorphism between a finite-dimensional vector space and its second dual. Annihilators of subspaces, dimension formula. Isomorphism between U^* and V^*/U° . [3]

Recap on real inner product spaces. Definition of non-degenerate symmetric bilinear forms and description as isomorphism between V and V^* . Hermitian forms on complex vector spaces. Review of Gram-Schmidt. Orthogonal Complements. [2]

Adjoints for linear maps of inner product spaces. Uniqueness. Concrete construction via matrices [1] Definition of orthogonal/unitary maps. Definition of the groups O_n , SO_n , U_n , SU_n . Diagonalizability of self-adjoint and unitary maps. [2]

Lecturer: Prof Ulrike Tillmann

Stephen Thatcher
Ed. Sam Adam-Day

Contents

1	Vector Spaces	2
2	Polynomials	5
3	Quotient Spaces	9
4	Triangular Form and Cayley-Hamilton Theorem	13
5	The Primary Decomposition Theorem	16
6	Jordan Canonical Form	22
7	Dual Spaces	27
8	Bilinear Forms and Inner Products	35
	8.1 Duals of Inner Product Spaces	38
	8.2 Adjoint Maps	41
	8.3 Orthogonal and Unitary Transformations	44
	8.4 Normal Transformations	49
	8.5 Simultaneous Diagonalization	51

Vector Spaces

Let \mathbb{F} be a field, then both $(\mathbb{F}, +, 0)$ and $(\mathbb{F}\setminus\{0\}, \times, 1)$ are abelian groups and the distribution law holds:

$$\forall a, b, c \in \mathbb{F} : a(b+c) = ab + ac$$

The smallest integer p such that

$$\underbrace{1+1+\cdots+1}_{p \text{ times}} = 0$$

is called the **characteristic** of \mathbb{F} .

If no such p exists, then \mathbb{F} is said to have **characteristic zero**.

Example 1.1. Characteristic zero: $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Q} \cup \{i\}$

Example 1.2. Characteristic p: $\{0, 1, \ldots, p\}$

A vector space V over a field \mathbb{F} is an abelian group $(V, +, \underline{0})$ together with scalar multiplication $\mathbb{F} \times V \to V$ such that for all $a, b \in \mathbb{F}$, $v, w \in V$:

- $(1) \quad a(v+w) = av + aw$
- $(2) \quad (a+b)v = av + bv$
- (3) (ab)v = a(bv)
- (4) 1v = v

Definition 1.1. A set $S \subset V$ is **Linearly Independent** if for all $a_i \in \mathbb{F}, s_i \in S$:

$$a_1s_1 + a_2s_2 + \dots + a_ns_n = 0 \Rightarrow a_i = 0 \forall i$$

Definition 1.2. A set $S \subset V$ is **Spanning** if for all $v \in V$ there exists $a_i \in \mathbb{F}$ and $S_i \in S$ such that

$$v = a_1 s_1 + a_2 s_2 + \dots + a_n s_n$$

Definition 1.3. S is a basis of V if S is spanning and linearly independent

Definition 1.4. The span of S is the smallest vector space containing S

Example 1.3.

 $V = \mathbb{F}^n$ with standard basis $\{(1,0,\ldots,0),\ldots,(0,0,\ldots,1)\}$

 $V = \mathbb{F}[x]$ with standard basis $\{1, x, x^2, \dots, x^n, \dots\}$

$$V = \mathbb{N}^{\mathbb{R}} = \{(a_0, a_1, \ldots) : a_i \in \mathbb{R}\}\$$

$$V \supset S = \{(1,0,\ldots),(0,1,0,\ldots),\ldots,(0,\ldots,0,1,0,\ldots),\ldots\}$$

S is an infinite linearly independent subset

Note that $\operatorname{Span}(S) \neq V$ as $(1, 1, \dots, 1) \notin \operatorname{Span}(S)$ - no finite sum

Suppose V and W are vector spaces over \mathbb{F}

Definition 1.5. A map $T: V \to W$ is a linear transformation if for all $a \in \mathbb{F}, v, v' \in V$

$$T(av + v') = aTv + Tv'$$

Definition 1.6. A bijective linear transformation is a linear isomorphism of vector spaces

Example 1.4. $T: \mathbb{R}[x] \to \mathbb{R}[x]$ given by $f(x) \mapsto xf(x)$

$$T(af(x) + g(x)) = x(af(x) + g(x))$$
$$= axf(x) + xq(x)$$
$$= aT(f(x)) + T(q(x))$$

T is **injective** and defines a **linear isomorphism** from $\mathbb{R}[x]$ to $x\mathbb{R}[x]$ the subspace of polynomials with zero constant term: $x\mathbb{R}[x] \leq \mathbb{R}[x]$

$$W \leq \mathbb{N}^{\mathbb{R}} \to \mathbb{R}[x]$$
 given by $e_i = \underbrace{(0,0,\ldots,1,0,\ldots)}_{1 \text{ in the i}^{\text{th}} \text{ place}} \mapsto x^i$ defines a linear isomorphism

Challenge 1. Prove that there is no isomorphism $T:W\to V=\mathbb{N}^{\mathbb{R}}$. Hence, V has no countable basis

Remark. Every linear map $T: V \to W$ is determined by its values on a basis \mathcal{B} of V (since \mathcal{B} is a spanning set of V). Indeed, can be determined by any spanning set. Given any map $T: \mathcal{B} \to W$ we can extend to a linear transformation $T: V \to W$.

Let $\operatorname{Hom}(V,W)$ be the set of linear transformations from V to W. For $a\in\mathbb{F}^n,v\in V,T,S\in\operatorname{Hom}(V,W)$ define

$$(aT)(v) = a(Tv)$$
$$(S+T)(v) = Sv + Tv$$

Lemma 1.1. With these operations, $\operatorname{Hom}(V,W)$ is a **vector space** over \mathbb{F}

Proof. Assume V and W are finite dimensional and let $\mathcal{B} = \{e_1, \dots, e_m\}$ and $\mathcal{B}' = \{e'_1, \dots, e'_n\}$ be bases for V and W respectively

Denote by $_{\mathcal{B}'}[T]_{\mathcal{B}}$ the matrix (a_{ij}) such that

$$Te_i = a_{i1}e_1' + \dots + a_{in}e_n'$$

Note:

$$\beta[aT]_{\mathcal{B}} = a_{\mathcal{B}'}[T]_{\mathcal{B}'}$$
$$\beta'[T + S]_{\mathcal{B}} = \beta'[T]_{\mathcal{B}} + \beta'[S]_{\mathcal{B}}$$

Theorem 1.2.

The map that takes T to $_{\mathcal{B}'}[T]_{\mathcal{B}}$ is an **isomorphism** of **vector spaces** from Hom(V,W) to the $n \times m$ matrices over \mathbb{F} . Furthermore, this correspondence is compatible with composition, taking composition to multiplication of matrices:

Proof. If $T: V \to W$, $S: W \to U$ with $\mathcal{B}, \mathcal{B}', \mathcal{B}''$ bases for V, W, U respectively then

$$_{\mathcal{B}''}[S \circ T]_{\mathcal{B}} =_{\mathcal{B}''} [S]_{\mathcal{B}'\mathcal{B}'}[T]_{\mathcal{B}}$$

Polynomials

Definition 2.1. $\mathbb{F}[x]$ is the space of polynomials over a field \mathbb{F}

Example 2.1.

$$(2x^{3} + 4x^{2} + 9x + 7) \div (x^{2} - 2x) = 2x + 8 + \frac{25x + 7}{x^{2} - 2x}$$

$$-2x^{3} + 4x^{2}$$

$$-8x^{2} + 9x$$

$$-8x^{2} + 16x$$

$$25x$$

Proposition 2.1. (Division Algorithm for Polynomials)

Let f(x), g(x) be polynomials over a field \mathbb{F} such that $g(x) \neq 0$ Then, $\exists g(x), r(x) \in \mathbb{F}[x]$ with

$$f(x) = q(x)g(x) + r(x)$$
 (with deg $r(x) < \deg g(x)$)

Proof. If $\deg(f) < \deg(g)$ then we take q(x) = 0, r(x) = f(x) and we are done.

Hence we can now assume that $deg(g) \leq deg(f)$, then

$$f(x) = a_n x^n + \dots + a_1 x + a_0$$

$$g(x) = b_m x^m + \dots + b_1 x + b_0$$

with $n \le m$. Then $\deg \left(f(x) - \frac{a_n}{b_m} x^{n-m} g(x) \right) < \deg f(x)$.

Then by induction on $\deg f$ we have that

$$\exists s,r \in \mathbb{F}[x]: s(x)g(x) + r(x) = f(x) - \frac{a_n}{b_m}x^{n-m}g(x) \text{ and } \deg r < \deg g$$

Now setting $q(x) = \frac{a_n}{b_m} x^{n-m} + s(x)$ the result follows.

Corollary 2.2. For $f(x) \in \mathbb{F}[x], a \in \mathbb{F}$, if f(a) = 0 then (x - a)|f(x)

Proof. By the division algorithm there exist $q, r \in \mathbb{F}[x]$ with $\deg r < \deg(x - a) = 1$ with f(x) = q(x)(x - a) + r(x). Since $\deg r < 1$, we must have that $r \in \mathbb{F}$, that is r is constant, then:

$$f(x) = q(x)(x - a) + r$$

$$f(a) = q(a)(a-a) + r$$

By assumption f(a) = 0, hence

$$0 = r$$

Thus f(x) = q(x)(x-a) and thus (x-a)|f(x) as required

Corollary 2.3. If deg $f(x) \leq n$ then f has, at most n roots

Proof. From the above by induction

Definition 2.2. A field \mathbb{F} is algebraically closed if every polynomial in $\mathbb{F}[x]$ has a root in \mathbb{F}

Example 2.2. By the fundamental theorem of algebra, \mathbb{C} is an algebraically closed field

Theorem 2.4. Any field \mathbb{F} has an algebraic closure $\overline{\mathbb{F}}$, which, by definition, is the smallest algebraically closed field containing \mathbb{F} .

Example 2.3.

 \mathbb{R} - not algebraically closed since $x^2 + 1$ has no real solutions - $\overline{\mathbb{R}} = \mathbb{R} \cup \{i\}$

 $\overline{\mathbb{Q}} \leq \mathbb{C}$ - does not require anything from $\mathbb{R} \setminus \mathbb{Q}$, e.g. $\pi \notin \overline{\mathbb{Q}}$

Challenge 2. Prove that no finite field is algebraically closed

Let $A \in M_{n \times n}(\mathbb{F})$ - the set of $n \times n$ matrices over \mathbb{F}

Let
$$f(x) = a_m x^m + \ldots + a_0 \in \mathbb{F}[x]$$

Define
$$f(A) = a_m A^m + \ldots + a_1 A + a_0 I \in M_{n \times n}(\mathbb{F})$$

Remark. For $f(x), g(x) \in \mathbb{F}[x]$ we have $f(A)g(A) = g(A)f(A)^{-1}$

Remark. If for $v \in \mathbb{F}^n$ we have $Av = \lambda v$ for some $\lambda \in \mathbb{F}$ then $f(A)v = f(\lambda)v^2$

Lemma 2.5. For all $A \in M_{n^2}(\mathbb{F})$ there exists a polynomial $f(x) \in \mathbb{F}[x]$ such that $f(A) = 0 \in M_{n^2}(\mathbb{F})$

Proof. dim $(M_{n^2}(\mathbb{F})) = n^2 < \infty$, hence I, A, A^2, \dots, A^k must be linearly dependent for $k > n^2$. So there exists $a_i \in \mathbb{F}$ such that

$$a_0I + a_1A + \dots + a_kA^k = 0$$

Hence we can set $f(x) = \sum_{i=0}^{k} a_i x^i$ and we are done

 ${}^{1}A^{k}A^{l} = A^{l}A^{k} = A^{k+l}$ and A(aI) = (aI)A

 $^{^{2}}a_{k}A^{k}(v) = a_{k}(\lambda^{k}v) = (a_{k}\lambda^{k})v$

Definition 2.3. A minimal polynomial is a monic polynomial of least degree with $m_A(A) = 0$ **Theorem 2.6.** If f(A) = 0 for $f(x) \in \mathbb{F}[x]$, then $m_A(x)|f(x)$. Furthermore, $m_A(x)$ is unique.

Proof. Suppose f(A) = 0 for some $f(x) \in \mathbb{F}[x]$.

Applying polynomial long division to $f(x) \div m_A(x)$ we have that there exists $q(x), r(x) \in \mathbb{F}[x]$ such that $f(x) = q(x)m_A(x) + r(x)$ with $\deg r(x) < \deg m_A(x)$. Now, evaluating at A we obtain r(A) = 0. Since r has degree less than m_A , it must be identically zero, else it would contradict the choice of m_A as a minimal polynomial. Thus $f(x) = q(x)m_A(x)$ and so $m_A(x)|f(x)$ as required.

It follows that if there were two monic polynomials m_A, m'_A such that $m_A(A) = m'_A(A) = 0$ then as they must both divide each other they must be equal, hence m_A is unique.

Definition 2.4. The characteristic polynomial of $A \in M_{n^2}(\mathbb{F})$ is given by:

$$\mathcal{X}_A(x) = \det(A - xI)$$

Lemma 2.7. $\mathcal{X}_A(x) = (-1)^n x^n + \text{tr} A(-1)^{n-1} x^{n-1} + \dots + \det A$

Proof. We prove this result by showing that

$$\mathcal{X}_A(x) = \det \begin{pmatrix} a_{11} - x & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} - x \end{pmatrix} = (a_{11} - x) \cdots (a_{nn} - x) + f(x)$$

For some f(x), a polynomial of degree at most n-2. We proceed by induction.

Base case: n=2

When n = 2 we have $\mathcal{X}_A(x) = (a_{11} - x)(a_{22} - x) - a_{12}a_{21}$, with $f(x) = a_{12}a_{21}$ the result follows.

Inductive case: n = k

We suppose that the result holds for all n < k then we can calculate $\mathcal{X}_A(x)$ by expanding by minors along the first row:

$$\mathcal{X}_A(x) = (a_{11} - x) \det(A - x)_{11} - a_{12} \det(A - x)_{12} + \dots + (-1)^{n-1} a_{1n} \det(A - x)_{1n}$$

The first term $(a_{11} - x) \det(A - x)_{11}$ is just the characteristic polynomial of some $n - 1 \times n - 1$ matrix and hence by the induction hypothesis we have

$$(a_{11}-x)\det(A-x)_{11}=(a_{11}-x)(a_{22}-x)\cdots(a_{nn}-x)+g(x)$$

where g(x) is some polynomial of degree at most n-2.

For $i \neq 1$ we see that $\det(A - x)_{1i}$ is a polynomial of degree at most n - 2 and hence setting $f(x) = g(x) - a_{12} \det(A - x)_{12} + \dots + (-1)^{n-1} a_{1n} \det(A - x)_{1n}$ we have

$$\mathcal{X}_A(x) = (a_{11} - x) \cdots (a_{nn} - x) + f(x)$$

with $\deg f(x) \leq n-2$ as required.

Now, returning to our general case, we note that expanding out we obtain

$$\mathcal{X}_A(x) = (-1)^n x^n + (-1)^{n-1} x^{n-1} (a_{11} + \dots + a_{nn}) + a_{n-2} x^{n-2} + \dots + a_0$$

Hence $a_n = (-1)^n$, $a_{n-1} = (-1)^{n-1}(a_{11} + \dots + a_{nn}) = (-1)^{n-1} \operatorname{tr} A$ and $a_0 = \mathcal{X}_A(0) = \det A$

Theorem 2.8. The following are equivalent:

- (a) λ is an eigenvalue of A
- (b) λ is a root of $\mathcal{X}_A(x)$
- (c) λ is a root of $m_A(x)$

Proof. a \iff b

$$\mathcal{X}_A(\lambda) = 0 \iff \det(A - \lambda I) = 0$$

$$\iff (A - \lambda I) \text{ is singular}$$

$$\iff \exists v \in \mathbb{F}^n : (A - \lambda I)v = 0, v \neq 0$$

$$\iff \exists v \in \mathbb{F}^n : Av = \lambda v, v \neq 0$$

 $c \Rightarrow a$

First we note that by a corollary to the division algorithm $m_A(\lambda) = 0 \Rightarrow m_A(x) = (x - \lambda)g(x)$ for some $g(x) \in \mathbb{F}[x]$ with deg $g < \deg m_A$. Then by the minimality of m_A it must hold that $g(A) \neq 0$. Hence there exists some $w \in \mathbb{F}^n$ such that $g(A)w \neq 0$, putting v = g(A)w we have

$$(A - \lambda I)v = (A - \lambda I)(g(A)w)$$
$$= m_A(A)w$$
$$= 0$$

Hence $Av = \lambda v$, i.e. λ is an eigenvalue.

 $a \Rightarrow c$

Assume λ is an eigenvalue. Then there exists a non-zero vector $v \in \mathbb{F}^n$ such that $Av = \lambda v$. Then

$$m_A(\lambda)v = m_A(A)v = 0 \cdot v = 0$$

and since $v \neq 0$ we have that $m_A(\lambda) = 0$ and hence λ is a root of $m_A(x)$

Quotient Spaces

Let V be a vector space over a field \mathbb{F} Let U be a subspace of V

Definition 3.1. The set of cosets $V/U = \{v + U : v \in V\}$ is a vector space, the **quotient space**, with operations:

$$(v+U) + (w+U) = (v+w) + U \qquad (\forall v, w \in V)$$
$$a(v+U) = av + U \qquad (\forall a \in \mathbb{F}, v \in V)$$

Proof. (V/U,+) is just the quotient group associated to V and U, hence we need only check well-definedness of scalar multiplication: first we note that v+U=v'+U if and only if v=v'+u for some element $u \in U$. Then,

$$a(v+U) = av + U$$

$$= a(v'+u) + U$$

$$= av' + au + U$$

$$= av' + U \qquad \text{(since U is a vector space it is closed under linear multipication)}$$

$$= a(v'+U)$$

Thus all the vector space axioms are satisfied as they hold for V and U

Let \mathcal{E} be a basis for U and let \mathcal{B} be a basis for V containing \mathcal{E}

Define
$$\overline{\mathcal{B}} = \{e + U : e \in \mathcal{B} \setminus \mathcal{E}\}$$

Proposition 3.1. $\overline{\mathcal{B}}$ is a basis for V/U

Proof. Take $v + U \in V/U$

As $v \in V$ there exist $a_i \in \mathbb{F}$, $e_1, \ldots, e_k \in \mathcal{E}$ and $e_{k+1}, \ldots, e_n \in \mathcal{B} \setminus \mathcal{E}$ such that

$$v = a_1 e_1 + \dots + a_k e_k + a_{k+1} e_{k+1} + \dots + a_n e_n$$

Then

$$v + U = a_1 e_1 + \dots + a_n e_n + U$$

$$= a_{k+1} e_{k+1} + \dots + a_n e_n + U \qquad (a_1 e_1 + \dots + a_k e_k \in U)$$

$$= a_{k+1} (e_{k+1} + U) + \dots + a_n (e_n + U) \in \operatorname{Sp}(\overline{\mathcal{B}})$$

Hence $\overline{\mathcal{B}}$ spans V/U, it remains to show that $\overline{\mathcal{B}}$ is linearly independent Suppose that we have $a_1(e_1+U)+\cdots+a_n(e_n+U)=0$ with $e_1+U,\ldots,e_n+U\in\overline{\mathcal{B}}$ and $e_1,\ldots,e_n\in\mathcal{B}\setminus\mathcal{E}$. Then

$$a_1e_1 + \ldots + a_ne_n + U = U$$

$$\Rightarrow a_1e_1 + \ldots + a_ne_n \in U$$

$$\Rightarrow a_1e_1 + \ldots + a_ne_n = b_1e'_1 + \ldots + b_ke'_k \qquad (b_i \in \mathbb{F}, e'_i \in \mathcal{E})$$

$$\Rightarrow a_1 = \cdots = a_n = b_1 = \cdots = b_k = 0 \qquad (\mathcal{E} \text{ is linearly independent})$$

Hence $\overline{\mathcal{B}}$ is linearly independent

Example 3.1.

$$V = \mathbb{F}[x]$$
: $\mathcal{B} = \{1, x, x^2, \ldots\}$
 $U = \text{even polynomials}$: $\mathcal{E} = \{1, x^2, x^4, \ldots\}$
 $V/U = \text{odd polynomials}$: $\overline{\mathcal{B}} = \{x + U, x^3 + U, \ldots\}$

Corollary 3.2. If V is finite dimensional, then

$$\dim V = \dim U + \dim V/U$$

Theorem 3.3. First Isomorphism Theorem (For Vector Spaces)

Let $T: V \to W$ be a linear transformation of vector spaces. Then,

$$\overline{T}: V/\ker T \to Im \ T$$

$$v + \ker T \mapsto T(v)$$

 $is\ a\ linear\ isomorphism$

Proof. We first show that \overline{T} is well defined.

Suppose $v + \ker T = v' + \ker T$, then v = v' + k for some $k \in \ker T$ and hence:

$$\overline{T}(v + \ker T) = T(v)$$

$$= T(v' + k)$$

$$= T(v') + T(k)$$

$$= T(v')$$

$$= \overline{T}(v' + \ker T)$$

Moreover, \overline{T} is a homomorphism since

$$\overline{T}(a(v + \ker T) + (v' + \ker T)) = \overline{T}(av + v' + \ker T)$$

$$= T(av + v')$$

$$= aT(v) + T(v')$$

$$= a\overline{T}(v + \ker T) + \overline{T}(v' + \ker T)$$

Now, \overline{T} is injective as it has a trivial kernel:

$$\overline{T}(v+\ker T)=0\iff T(v)=0$$

$$\iff v\in\ker T$$

$$\iff v+\ker T=\ker T \qquad \qquad \text{(Since $\ker T$ is a vector subspace)}$$

Finally, \overline{T} is surjective as its image is Im T.

Corollary 3.4. Rank-Nullity Theorem

If $T:V\to W$ is a linear map and V is a finite dimensional vector space then

$$\dim V = \dim \ker T + \dim \operatorname{Im} T$$

Proof. We take $U = \ker T$ and apply Corollary 3.2.

$$\dim V = \dim U + \dim V/U$$

$$= \dim \ker T + \dim V/\ker T$$

$$= \dim \ker T + \dim \operatorname{Im} T \qquad \text{(By First Isomorphism Theorem)}$$

Example 3.2. Let $V = \mathbb{R}^3$ and $U = \left\langle \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\rangle$, then

$$\dim V/U = \dim V - \dim U = 3 - 1 = 2$$

A basis for V/U is given by $\mathcal{B} = \left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + U, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + U \right\}$

We can visualise V/U as the space of lines parallel to U.

Let $T: V \to W$ be a linear map and let $A \subset V$ and $B \subset W$ be subspaces.

Lemma 3.5. The formula $\overline{T}(v+A) := T(v) + B$ defines a linear map $\overline{T} : V/A \to W/B$ if and only if $T(A) \subseteq B$

Proof. Assume $T(A) \subset B$. Then \overline{T} will be linear if well defined.

Let
$$v + A = v' + A$$

Then v = v' + a for some $a \in A$

$$\overline{T}(v+a) = T(v) + B$$

$$= T(v'+a) + B$$

$$= T(v') + T(a) + B$$

$$= T(v') + B$$

$$= \overline{T}(v'+A)$$

$$(T(a) \in B)$$

Conversely, assume $\exists a \in A : T(a) \notin B$, then:

$$B = \overline{T}(A) = \overline{T}(a + A)$$

$$= T(a) + B$$

$$\Rightarrow T(a) \in B \qquad (CONTRADICTION)$$

Let $\mathcal{B} = \{e_1, \dots, e_n\}$ be a basis for V containing $\mathcal{E} = \{e_1, \dots, e_k\}$, a basis for A. Let $\mathcal{B}' = \{e'_1, \dots, e'_m\}$ be a basis for W containing $\mathcal{E}' = \{e'_1, \dots, e'_l\}$ a basis for B.

Proposition 3.6. Assume $T: V \to W$ satisfies $T(A) \subset B$, then T can be restricted to a linear map $T|_A: A \to B$ by $a \mapsto T(a)$.

Then we have the following block matrix composition of T:

$$_{\mathcal{B}'}[T]_{\mathcal{B}} = \begin{pmatrix} \varepsilon'[T|_{A}]_{\mathcal{E}} & \star \\ 0 & \overline{\mathcal{B}'}[\overline{T}]_{\overline{\mathcal{B}}} \end{pmatrix}$$

Remark.

$$\overline{T}(e_j + A) = T(e_j) + B$$

$$= a_{1j}e'_1 + \dots + a_{mj}e'_m + B$$

$$= a_{l+1,j}e'_{l+1} + \dots + a_{mj}e'_m + B$$

$$= (a_{l+1,j}e_{l+1,j} + B) + \dots + (a_{mj}e'_m + B)$$

$$(a_{1j}e'_j + \dots + a_{lj}e_l \in B)$$

Triangular Form and Cayley-Hamilton Theorem

Let $T:V\to V$ be a linear transformation. A subspace $U\subseteq V$ is called **T-invariant** if $T(U)\subseteq U$. Let $S:V\to V$ be another transformation.

Lemma 4.1. If U is T- and S- invariant, then it is also invariant in the following:

- (1) **zero map**, since $U \leq V$ we have $0 \in U$
- (2) **identity map**, clearly $U \subseteq U$
- (3) aT for any $a \in \mathbb{F}$, U subspace \rightarrow closed under scalar multiplication
- (4) S + T, S(U), $T(U) \in U$, U closed under addition
- (5) $T \circ S$, $S(U) \in U \Rightarrow T(S(U)) \subseteq T(U) \subseteq U$

In particular, U in invariant for any $\rho(T)$ where $\rho(x) \in \mathbb{F}[x]$. Moreover, $\rho(T)$ restricts to a map $U \to U$ and also induces a linear map of quotient spaces:

$$\overline{\rho(T)}: V/U \to V/U$$

Example 4.1. If λ is a root of characteristic polynomial, $\mathcal{X}_T(x)$, then $\exists v \in V$ with $v \neq 0$ such that $Tv = \lambda v$. Then $\langle v \rangle$ is T-invariant.

Remark. More generally, $V_{\lambda} := \ker(T - \lambda I)$, the λ -eigenspace of T is T-invariant

Recall: \mathcal{E} basis for U, \mathcal{B} basis for V, with $\mathcal{E} \subseteq \mathcal{B}$. The $\overline{\mathcal{B}} = \{v + U : v \in \mathcal{B}/\mathcal{E}\}$ is a basis for V/U with

$$_{\mathcal{B}}[T]_{\mathcal{B}} = \begin{pmatrix} \varepsilon[T|_{U}]_{\mathcal{E}} & \star \\ 0 & \overline{\mathcal{B}}[\overline{T}]_{\overline{\mathcal{B}}} \end{pmatrix}$$

Remark. Determinant is independent of basis:

Say $P^{-1}AP = B$, then

$$\det(B - xI) = \det(P^{-1}AP - xI)$$

$$= \det(P^{-1}(A - xI)P)$$

$$= \det(P^{-1})\det(A - xI)\det(P)$$

$$= \frac{\det(A - xI)\det(P)}{\det(P)}$$

$$= \det(A - xI)$$

Proposition 4.2.

$$\mathcal{X}_{T}(x) = \det (_{\mathcal{B}}[T]_{\mathcal{B}} - xI)$$

$$= \det (_{\mathcal{E}}[T|_{U}]_{\mathcal{E}} - xI) \cdot \det (_{\overline{\mathcal{B}}}[\overline{T}]_{\overline{\mathcal{B}}})$$

$$= \mathcal{X}_{T|_{U}}(x) \cdot \mathcal{X}_{\overline{T}}(x)$$

Remark. The relation between the minimal polynomials is not so straight forward!

Definition 4.1. $A = (a_{ij}) \in M_{n \times n}(\mathbb{F})$ is upper triangular if $a_{ij} = 0$ for all i > j

Theorem 4.3. Let V be a finite vector space and $T: V \to V$ a linear transformation. Assume that $\mathcal{X}_T(x)$ is a product of linear factors. Then there exists a basis \mathcal{B} for V such that $\mathcal{B}[T]_{\mathcal{B}}$ is upper triangular

Remark. If our field \mathbb{F} is algebraically closed, such as \mathbb{C} , then the characteristic polynomial is always a product of linear factors

Proof. We proceed by induction on dim V = n

If n = 1, then clearly $\beta[T]_{\mathcal{B}}$ is upper triangular for any basis \mathcal{B}

In general, \mathcal{X}_T has a root λ and hence $\exists v_1 \in V$ such that $Tv_1 = \lambda v_1$.

Now, let $U = \langle v_1 \rangle$, then U is T-invariant. Consider $\overline{T} : V/U \to V/U$; by proposition, $\mathcal{X}_{\overline{T}}(x)$ is also a product of linear factors. By the induction hypothesis, $\exists \overline{\mathcal{B}} = \{v_2 + U, \dots, v_n + U\}$ such that $\overline{\mathcal{B}}[\overline{T}]_{\overline{\mathcal{B}}}$ is upper-triangular. We can now put $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$, so \mathcal{B} is a basis for V and

$$_{\mathcal{B}}[T]_{\mathcal{B}} = \begin{pmatrix} \lambda & \star \\ 0 & \overline{_{\mathcal{B}}}[\overline{T}]_{\overline{\mathcal{B}}} \end{pmatrix}$$

Since $\overline{{}_{\mathcal{B}}}[\overline{T}]_{\overline{\mathcal{B}}}$ is upper triangular then so is ${}_{\mathcal{B}}[T]_{\mathcal{B}}$.

Corollary 4.4. If $A \in M_{n \times n}(\mathbb{F})$ with characteristic polynomial a product of linear factors, then there exists P such that $P^{-1}AP$ is upper-triangular

Proposition 4.5. Let A be an upper-triangular matrix with diagonal entries $\lambda_1, \ldots, \lambda_n$.

Then $(A - \lambda_1 I) \cdots (A - \lambda_n I) = 0$

Proof. Let e_1, \ldots, e_n be the standard basis for \mathbb{F}^n .

$$(A - \lambda_n I)v \in \langle e_1, \dots, e_{n-1} \rangle$$
 for all $v \in V$

More generally,

$$(A - \lambda_i I)w \in \langle e_1, \dots, e_{i-1} \rangle$$
 for all $w \in \langle e_1, \dots, e_i \rangle$

Why... more explanation required here

Hence,

$$\underbrace{(A - \lambda_1 I)}_{\in \langle e_1 \rangle} \underbrace{\cdots \cdots}_{\in \langle e_1, \dots, e_{n-2} \rangle} \underbrace{(A - \lambda_{n-1} I)}_{\in \langle e_1, \dots, e_{n-1} \rangle} (A - \lambda_n I) v$$

Theorem 4.6. Cayley-Hamilton Theorem

If $T:V\to V$ is a linear transformation and V finite dimensional, then $\mathcal{X}_T(T)=0$ and hence $m_T(x)\div\mathcal{X}_T(x)$

Proof. We work over the algebraic closure $\overline{\mathbb{F}} \supseteq \mathbb{F}$

Now,
$$\mathcal{X}_T(x) = (x - \lambda_1) \cdots (x - \lambda_n)$$
 for some $\lambda_i \in \overline{\mathbb{F}}$.

By the above theorem, for some basis \mathcal{B} , $A = \mathcal{B}[T]\mathcal{B}$ is upper-triangular.

Hence
$$\mathcal{X}_T(T) = \mathcal{X}_T(A) = (A - \lambda_1 I) \cdots (A - \lambda_n I) = 0$$

As the minimal polynomial divides any annihilating polynomial it must divide $\mathcal{X}_T(x)$.

Example 4.2.

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix} \implies \mathcal{X}_A(x) = (1-x)^2 (2-x)^2$$

Possible minimal polynomials:

$$(x-1)(x-2)$$
 $(A-I)(A-2I) \neq 0$
 $(x-1)(x-2)^2$ $(A-I)(A-2I)^2 \neq 0$
 $(x-1)^2(x-2)$ $(A-I)^2(A-2I) = 0$

Hence $m_A(x) = (x-1)^2(x-2)$

The Primary Decomposition Theorem

Proposition 5.1. Let $a, b \in \mathbb{F}[x]$ be non-zero polynomials. Assume that $gcd(a, b) = c \in \mathbb{F}[x]$. Then $\exists s, t \in \mathbb{F}[x]$ such that

$$a(x)s(x) + b(x)t(x) = c(x)$$

Proof. Without loss of generality, assume that $\deg a \ge \deg b$ and $\gcd(a,b) = 1$

Proceed by induction on $\deg a + \deg b$

By the division algorithm for polynomials we have that there exist $q, r \in \mathbb{F}[x]$ such that

$$a(x) = q(x)b(x) + r(x)$$
 and $\deg r < \deg b$ (*)

Now, if r(x) = 0, then we have that $b(x) = \lambda \in \mathbb{F}$, some constant (since $\gcd(a, b) = 1$) and hence

$$a(x) + b(x)\left(\frac{1}{\lambda}\right)(1 - a(x)) = 1$$

and then we are done. So, assume now that $r \neq 0$, note:

 $\bullet \ \deg r + \deg b < \deg a + \deg b$

(since $\deg r < \deg b \le \deg a$)

• $gcd(a, b) = 1 \Longrightarrow gcd(r, b) = 1$

Hence, by the induction hypothesis, there exists $s', t' \in \mathbb{F}[x]$ such that

$$b(x)s'(x) + r(x)t'(x) = 1$$

Then, by (*) we have

$$b(x)s'(x) + (a(x) - q(x)b(x))t'(x) = 1$$

$$a(x)t'(x) + b(x)(s'(x) - q(x)t'(x)) = 1$$

Hence setting s = t' and t = s' - qt we are done.

Remark. Direct Sum Decompositions:

- $V = W_1 \oplus \cdots \oplus W_r$ is the direct sum of subspaces W_i if every $v \in V$ can be written as $v = w_1 + \cdots + w_r$ with $w_i \in W_i$ in a unique way
- Let \mathcal{B}_i be a basis for W_i for i = 1, ..., rThen $\bigcup_i \mathcal{B}_i = \mathcal{B}$ is a basis for $V = \bigoplus_i W_i$

From now on we assume that $\dim V < \infty$

Let $T: V \to V$ be a linear transformation such that W_i is T-invariant: $T(W_i) \subseteq W_i$ for all i. Then,

$$\mathcal{B}[T]_{\mathcal{B}} = \begin{pmatrix} A_1 & & & \\ & A_2 & & \\ & & \ddots & \\ & & & A_r \end{pmatrix} \text{ where } A_i = \mathcal{B}_i[T|_{W_i}]_{\mathcal{B}_i}$$

Also note that:

$$\mathcal{X}_T(x) = \mathcal{X}_{T|_{W_1}}(x) \times \cdots \times \mathcal{X}_{T|_{W_r}}(x)$$

Proposition 5.2. Assume f(x) = a(x)b(x) with gcd(a, b) = 1 and f(T) = 0.

Then $V = \ker a(T) \oplus \ker b(T)$ is a T-invariant direct sum decomposition

Proof. Suppose that $v \in \ker a(T)$

Then

$$a(T)(Tv) = (a(T)T)(v)$$

$$= (Ta(T))(v)$$

$$= T(a(T)(v))$$

$$= T(\mathbf{0}) = \mathbf{0}$$

Hence $Tv \in \ker a(T)$ and so $\ker a(T)$ (and similarly $\ker b(T)$) is T-invariant.

By Proposition 5.1. there exist $s, t \in \mathbb{F}[x]$ with as + bt = 1

$$\Rightarrow a(T)s(T) + b(T)t(T) = \mathrm{Id}_{v}$$

$$\Rightarrow v = \mathrm{Id}_{v}(v) = a(T)s(T)v + b(T)t(T)v \tag{*}$$

Moreover, for all $v \in V$ we have

$$\begin{split} b(T)[(a(T)s(T))(v)] &= s(T)[a(T)b(T)(v)] \\ &= s(T)f(T)(v) & (ab = f) \\ &= s(T) \cdot \mathbf{0} & (f(T) = 0) \\ &= \mathbf{0} \end{split}$$

Hence $a(T)s(T)v \in \ker b(T)$, and similarly $b(T)t(T)v \in \ker a(T)$ so $V = \ker a(T) + \ker b(T)$.

It remains to show that $\ker a(T) \cap \ker b(T) = \{0\}$

Suppose that $v \in \ker a(T) \cap \ker b(T)$, then

$$v = a(T)s(T)v + b(T)t(T)v$$
 (by *)
 $= \mathbf{0} + b(T)t(T)v$ ($v \in \ker a(T)$)
 $= \mathbf{0} + \mathbf{0}$ ($v \in \ker b(T)$)
 $= \mathbf{0}$

Thus $V = \ker a(T) \oplus \ker b(T)$ as required

Remark. If $f(x) = m_T(x)$ is the minimal polynomial of T in the above proposition, then we obtain:

$$m_{T|_{\ker a(T)}}(x) = a(x)$$
 $m_{T|_{\ker b(T)}}(x) = b(x)$

and

$$m_T(x) = m_{T|_{\ker a(T)}}(x) \cdot m_{T|_{\ker b(T)}}(x) = a(x)b(x)$$

Proof. Call $m_1(x) = m_{T|_{\ker a(T)}}(x)$ and $m_2(x) = m_{T|_{\ker b(T)}}(x)$.

By definition a is annihilating for ker a(T) so $m_1|a$, similarly $m_2|b$

Further, for any $v \in V$ there exists $w_1 \in \ker a(T), w_2 \in \ker b(T)$ with $v = w_1 + w_2$, thus:

$$m_1(T)m_2(T)v = m_1(T)m_2(T)w_1 + m_1(T)m_2(T)w_2$$

= 0 + $m_1(T)m_2(T)w_2$ $(m_1(T) \text{ annihilates ker } a(T))$
= 0 + 0 $(m_2(T) \text{ annihilates ker } b(T))$

Hence $m_1(T)m_2(T) = 0$ and so $m|m_1m_2|$

By degree and minimality we have $m = m_1 \cdot m_2 = ab$ with $m_1 = a$ and $m_2 = b$.

Theorem 5.3. Primary Decomposition Theorem

Assume that the minimal polynomial has the form

$$m_T(x) = f_1(x)^{m_1} \cdots f_r(x)^{m_r}$$

Where the f_i are distinct irreducible monic polynomials Put $W_i = \ker f_i(T)^{m_i}$, then

- W_i is T-invariant
- $V = W_1 \oplus \cdots \oplus W_r$
- $m_{T|_{W_i}} = f_i(x)^{m_i}$

Proof. Put $a = f_1 \cdots f_{r-1}$ and $b = f_r$ and proceed by induction using Proposition 5.2.

Remark.

• Given $m_T(x) = f_1(x)^{m_1} \cdots f_r(x)^{m_r}$ as in the theorem,

$$\mathcal{X}(x) = f_1(x)^{n_1} \cdots f_r(x)^{n_r} \text{ with } n_i \ge m_i$$

Proof.

- \bullet T is triagonalizable
 - $\Leftrightarrow \mathcal{X}_T$ factors as a product of linear polynomials
 - \Leftrightarrow each f_i is linear
 - $\Leftrightarrow m_T$ factors as a product of linear polynomials

Let $T: V \to V$ be a linear map on a finite dimensional vector space

Theorem 5.4. T is diagonalizable $\iff m_T$ factors as a product of distinct linear polynomials *Proof.*

 \Leftarrow Assume $m_T(x) = (x - \lambda_1) \cdots (x - \lambda_n)$ for some $\lambda_i \neq \lambda_j$ By Primary Decomposition Theorem we have

$$V = \ker(T - \lambda_1 I) \oplus \cdots \oplus \ker(T - \lambda_n I)$$
$$= E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_n}$$

is the direct sum of the eigenspaces

Let \mathcal{B}_i be a basis for E_{λ_i} : $\mathcal{B} = \cup_i \mathcal{B}_i$ is a basis for V and $\mathcal{B}[T]_{\mathcal{B}} = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$ is diagonal

Note that the λ_i may be repeated many times

 \Rightarrow T is diagonal $\rightarrow \exists \mathcal{B}$ a basis of eigenvectors and every $v \in V$ is $v = \sum_i a_i v_i$ for these eigenvectors v_i .

Define $f(x) = (x - \lambda_1) \cdots (x - \lambda_n)$, with λ_i the distinct eigenvalues of the v_i . Then f(T) = 0 since f(T) annihilates every element of \mathcal{B} . Now, since we must have $m_T | f$ then $m_T = f$, a product of distinct linear factors.

Example 5.1. P is a projection $\iff P^2 = P \iff P^2 - P = P(P - I) = 0$

$$\implies m_P(x) = \begin{cases} x(x-1) & V = E_0 + E_1, \exists \mathcal{B} : {}_{\mathcal{B}}[P]_{\mathcal{B}} = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix} \\ x & P = 0 \\ (x-1) & P = I \end{cases}$$

Example 5.2. Suppose $A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ and $\mathcal{X}_A = (1-x)^2 + 1 = x^2 - 2x + 2$, then:

(1)
$$\mathbb{F} = \mathbb{R} \Longrightarrow \text{no roots}$$

 $\Longrightarrow \mathcal{X}_A(x) = m_A(x)$
 $\Longrightarrow \text{not triangulizable}$

(2)
$$\mathbb{F} = \mathbb{C} \Longrightarrow \mathcal{X}_A(x) = (x - (1+i))(x - (1-i))$$

 $\Longrightarrow \mathcal{X}_A(x) = m_A(x)$ (distinct roots)
 \Longrightarrow triangulizable and diagonalizable

(3)
$$\mathbb{F} = \mathbb{F}_5 \Longrightarrow \mathcal{X}_A(x) = (x-3)(x-4)$$

$$\Longrightarrow \mathcal{X}_A(x) = m_A(x) \qquad \text{(distinct roots)}$$

$$\Longrightarrow \text{triangulizable and diagonalizable}$$

Challenge 3. Find a basis of eigenvectors in $(\mathbb{F}_5)^2$

Jordan Canonical Form

Let V be finite dimensional and $T: V \to V$ a linear map

Definition 6.1. If $T^m = 0$ for some m > 0 then T is **nilpotent**

Theorem 6.1. If T is nilpotent and $m_T(x) = x^m$ for some m > 0, then there exists a basis \mathcal{B} of V such that

$$_{\mathcal{B}}[T]_{\mathcal{B}} = \begin{pmatrix} 0 & * & & & \\ & \ddots & \ddots & & \\ & & 0 & * & \\ & & & 0 \end{pmatrix} \text{ where } * = 0, 1$$

Proof.

Note that $0 \subset \ker T \subset \ker T^2 \subset \cdots \subset \ker T^{m-1} \subset \ker T^m = V$

Let \mathcal{B}_i be such that $\overline{\mathcal{B}_i} = \{w + \ker T^{i-1} : w \in \mathcal{B}_i\}$ is a basis for $\ker T^i / \ker T^{i-1}$

CLAIM₁: $\mathcal{B} = \bigcup_i \mathcal{B}_i$ is a basis for V

Proof. Since V is finite dimensional we have dim $V = \dim U + \dim V/U$

$$\dim V = \dim T^{m} = \dim(\ker T^{m} / \ker T^{m-1}) + \dim(\ker T^{m-1})$$

$$= \dim(\ker T^{m} / \ker T^{m-1}) + \dim(\ker T^{m-1} / \ker T^{m-2}) + \dim(\ker T^{m-2})$$

$$\cdots$$

$$= \dim(\ker T^{m} / \ker T^{m-1}) + \dots + \dim(\ker T^{2} / \ker T) + \dim(\ker T / \{0\})$$

$$= |\overline{\mathcal{B}_{m}}| + \dots + |\overline{\mathcal{B}_{2}}| + |\overline{\mathcal{B}_{1}}|$$

$$= |\mathcal{B}_{m}| + \dots + |\mathcal{B}_{2}| + |\mathcal{B}_{1}|$$

$$\underbrace{\mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \dots \cup \mathcal{B}_{m}}_{\ker T^{m} - V}$$

CLAIM₂: $\{Tw + \ker T^{i-1} : w \in \mathcal{B}_{i+1}\} \subset \ker T^i / \ker T^{i-1}$ is linearly independent

Proof.
Assume
$$\sum_{s} a_{s}(Tw_{s} + \ker T^{i-1}) = \ker T^{i-1}$$

$$\implies \sum_{s} a_{s}Tw_{s} \in \ker T^{i-1}$$

$$\implies T \sum_{s} a_{s}w_{s} \in \ker T^{i-1}$$

$$\implies \sum_{s} a_{s}w_{s} \in \ker T^{i}$$

 $\implies \sum_{s} a_{s}(w_{s} + \ker T^{i}) = \ker T^{i}$ $\implies a_{s} = 0 \text{ for all } s \text{ as } \overline{\mathcal{B}_{i+1}} \text{ is a basis for } \ker T^{i+1} / \ker T^{i}$

Now, we can inductively find $\mathcal{E}_i = \{w_1^i, \dots, w_k^i\}$ such that $\mathcal{B}_i = \mathcal{E}_i \sqcup T(\mathcal{B}_{i+1})$ with $\overline{\mathcal{B}_i}$ a basis for $\ker T^i / \ker T^{i+1}$ as above. Such \mathcal{E}_i exist as, by CLAIM₂, $T(\mathcal{B}_{i+1})$ is linearly independent.

Then, by CLAIM₁, we have that $\mathcal{B} = \bigcup_i \mathcal{B}_i$ is a basis for V and furthermore:

$$_{\mathcal{B}}[T]_{\mathcal{B}} = \begin{pmatrix} A_1 & & \\ & \ddots & \\ & & A_s \end{pmatrix}$$

is a block diagonal matrix with $|\mathcal{E}_i|$ Jordan blocks of size i with the form:

$$\mathcal{J}_i = \underbrace{\begin{pmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ & & & 0 \end{pmatrix}}_{i}$$

Theorem 6.2. If T is nilpotent and $m_T(x) = x^m$ for some m then there exists a basis \mathcal{B} such that $\mathcal{B}[T]_{\mathcal{B}}$ is block diagonal with blocks equal to

$$\mathcal{J}_i = \underbrace{\begin{pmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ & & & 0 \end{pmatrix}}_{i}$$

of size $i \leq m$, with at least one block of size m.

Proof. Follows from above that we can write the matrix in block diagonal form, since the minimal polynomial is x^m it is clear that $\ker T^m/\ker T^{m-1}$ has dimension at least one, which is to say $|\mathcal{E}_m| \geq 1$ and so there must be at least Jordan block of size m.

Example 6.1. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by:

$$A = \begin{pmatrix} -2 & -1 & 1\\ 14 & 7 & -7\\ 10 & 5 & -5 \end{pmatrix}$$

Note that $A^2 = 0$ and hence $\mathcal{X}_A(x) = x^3$ and $m_A(x) = x^2$.

We also have: $0 \subsetneq \ker T \subsetneq \ker T^2 = \mathbb{R}^3$

We can observe that $\ker T = \left\langle \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\rangle$ and so $\dim \ker T = 2$

Further, dim ker $T^2/\ker T=3-2=1$ and thus, since $w=\begin{pmatrix} 1\\0\\0 \end{pmatrix} \not\in \ker T$, we have

$$\ker T^2 / \ker T = \left\langle \left(\begin{smallmatrix} 1 \\ 0 \\ 0 \end{smallmatrix} \right) + \ker T \right\rangle$$

So we have $\mathcal{B}_2 = \mathcal{E}_2 = \{w\} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$

Then with $\mathcal{B}_1 = \mathcal{E}_1 \cup T(\mathcal{B}_2)$ we have $T(\mathcal{B}_2) = \{Tw\} = \left\{ \begin{pmatrix} -2\\14\\10 \end{pmatrix} \right\}$ and letting $\mathcal{E}_1 = \{u\} = \left\{ \begin{pmatrix} 0\\1\\1 \end{pmatrix} \right\}$ we see that $\mathcal{B}_1 = \overline{\mathcal{B}_1}$ is a basis for $\ker T/\{0\} = \ker T$.

Hence $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2 = \{Tw, w, u\}$ is a basis for \mathbb{R}^3 and

$$_{\mathcal{B}}[T]_{\mathcal{B}} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Corollary 6.3. If $m_T(x) = (x - \lambda)^m$ for some m then there is a basis \mathcal{B} for V such that $\mathcal{B}[T]_{\mathcal{B}}$ is block diagonal with blocks:

$$\mathcal{J}_i(\lambda) = \begin{pmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \lambda & 1 \\ & & & \lambda \end{pmatrix}$$

of size $i \leq m$ with at least one block of size m.

Proof. $T - \lambda I$ is nilpotent with $m_{T-\lambda I}(x) = x^m$

Apply theorem to get a basis \mathcal{B} for V such that

$$_{\mathcal{B}}[T-\lambda I]_{\mathcal{B}}=\left(egin{matrix} \mathcal{J}_{m} & & \\ & \ddots & \\ & & \mathcal{J}_{i} \end{matrix}\right)$$

Then

$$\begin{split} \mathbf{g}[T]\mathbf{g} &= \mathbf{g}[T - \lambda I + \lambda I]\mathbf{g} \\ &= \mathbf{g}[T - \lambda I]\mathbf{g} + \mathbf{g}[\lambda I]\mathbf{g} \\ &= \mathbf{g}[T - \lambda I]\mathbf{g} + \lambda I \end{split}$$

Which is the form required

Definition 6.2. The \mathcal{J}_i are called **Jordan Blocks**

Example 6.2. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by $A = \begin{pmatrix} 3 & 0 & 1 \\ -1 & 1 & -1 \\ 0 & 1 & 2 \end{pmatrix}$

$$\mathcal{X}_A(x) = \begin{vmatrix} 3-x & 0 & 1 \\ -1 & 1-x & -1 \\ 0 & 1 & 2-x \end{vmatrix} = (2-x)^3$$

We consider A - 2I:

$$A - 2I = \begin{pmatrix} 1 & 0 & 1 \\ -1 & -1 & -1 \\ 0 & 1 & 0 \end{pmatrix}$$
$$(A - 2I)^2 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{pmatrix}$$
$$(A - 2I)^3 = 0$$

So $m_A = (x-2)^3$ and we can read off the Jordan Form: $\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$

To construct the basis \mathcal{B} we first note that for S = A - 2I

$$0 \subsetneq \ker S \subsetneq \ker S^2 \subsetneq \ker S^3 = \mathbb{R}^3$$

Thus dim $\ker S^3 / \ker S^2 = 1$ and as $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \not\in \ker T^2$ we can set $\mathcal{B}_3 = \mathcal{E}_3 = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$

Further, dim ker T^2 / ker T = 1 and hence $B_2 = S(\mathcal{B}_3) = \left\{ \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\}$

Finally we have dim ker $T/\{0\} = 1$ and hence $B_1 = S(\mathcal{B}_2) = \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\}$

Hence for $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \right\}$ we have

$${}_{\mathcal{B}}[T-2I]_{\mathcal{B}} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \Longrightarrow {}_{\mathcal{B}}[T]_{\mathcal{B}} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Lemma 6.4. Consider
$$\mathcal{J}_k(\lambda) = \begin{pmatrix} \lambda & 1 & & \\ & \ddots & \ddots & \\ & & \lambda & 1 \\ & & & \lambda \end{pmatrix}$$
 and put $V_n = (v_n^1, \dots, v_n^k)$

Suppose $V_n = \mathcal{J}_k(\lambda)V_{n-1} = (\mathcal{J}_k(\lambda))^n V_0$

Then
$$v_n^{k-i} = \lambda^n v_0^{k-i} + \binom{n}{1} \lambda^{n-1} v_0^{k-i+1} + \dots + \binom{n}{i} \lambda^{n-i} v_0^k$$

Proof. By induction on n

Base case: n = 0

 $\binom{0}{n}=0$ thus, for any i, we have: $v_0^{k-i}=\lambda^0 v_0^{k-i}=v_0^{k-i}$ which is clearly true

Case n:

$$v_n^{k-i} = \lambda v_{n-1}^{k-i} + v_{n-1}^{k-i+1}$$

By induction hypothesis the lemma holds for n-1

$$\begin{split} &= \lambda \left[\lambda^{n-1} v_0^{k-i} + \binom{n-1}{1} \lambda^{n-2} v_0^{k-i+1} + \dots + \binom{n-1}{i} \lambda^{n-1-i} v_0^k \right] \\ &\quad + \left[\lambda^{n-1} v_0^{k-i+1} + \binom{n-1}{1} \lambda^{n-2} v_0^{k-i+2} + \dots + \binom{n-1}{i-1} \lambda^{n-i} v_0^k \right] \\ &= \lambda^n v_0^{k-i} + \left[\binom{n-1}{0} + \binom{n-1}{1} \right] \lambda^{n-1} v_0^{k-i+1} + \dots + \left[\binom{n-1}{i-1} + \binom{n-1}{i} \right] \lambda^{n-i} v_0^k \end{split}$$

We now use the identity $\binom{n-1}{j-1} + \binom{n-1}{j} = \binom{n}{j}$

$$=\lambda^n v_0^{k-i} + \binom{n}{1} \lambda^{n-1} v_0^{k-i+1} + \dots + \binom{n}{i} \lambda^{n-i} v_0^k$$

Which is the desired identity

Dual Spaces

Definition 7.1. Let V be a vector space over \mathbb{F} , then its **dual**, V', is the vector space of maps from V to \mathbb{F} . i.e. $V' = \text{hom}(V, \mathbb{F})$

Definition 7.2. The elements of V' are called **linear functionals**

Example 7.1. Let $V = \mathcal{C}([0,1])$ be the vector space of continuous functions on [0,1]

Then $\int : V \to \mathbb{R}$ given by $f \mapsto \int_0^1 f(t)dt$ is a linear functional

Proof.

$$\int (f + \lambda g) = \int_0^1 (f + \lambda g)(t)dt$$
$$= \int_0^1 (f(t) + \lambda g(t))dt$$
$$= \int_0^1 f(t)dt + \lambda \int_0^1 g(t)dt$$
$$= \int (f) + \lambda \int (g)$$

Example 7.2. Let V be the vector space of finite sequences: $V = \{(a_0, a_1, \ldots) : \text{finitely many } a_i \neq 0\}$ Let $\bar{b} = (b_0, b_1, \ldots)$ be any sequence, then $\bar{b}((a_0, a_1, \ldots)) = \sum_{1}^{\infty} a_i b_i$ defines a linear functional *Proof.*

$$\bar{b}((a_0, a_1, \dots) + \lambda(a'_0, a'_1, \dots)) = \sum_i (a_i + \lambda a'_i)b_i$$

$$= \sum_i a_i b_i + \lambda \sum_i a'_i b_i$$

$$= \bar{b}((a_0, a_1, \dots)) + \lambda \bar{b}((a'_0, a'_1, \dots))$$

Theorem 7.1. Let V be a finite dimensional vector space and let $\mathcal{B} = \{e_1, \ldots, e_n\}$ be a basis for VFor each i define the dual of e_i (with respect to \mathcal{B}) to be the linear functional

$$e'_{i}(e_{j}) = \delta_{ij} = \begin{cases} 1 & j = i \\ 0 & j \neq i \end{cases}$$

Then $\mathcal{B}' = \{e'_1, \dots, e'_n\}$ is a basis for V' called the **dual basis** of \mathcal{B}

Remark. In particular $e_i \mapsto e'_i$ defines an isomorphism from V to V'

Proof. We first show linear independence. Assume that $\sum a_i e_i' = 0$, then

$$\sum a_i e_i' = 0 \implies \forall j : \left(\sum a_i e_i'\right)(e_j) = 0$$

$$\iff \forall j : \sum a_i e_i'(e_j) = 0$$

$$\iff \forall j : a_j = 0$$

Next we show that \mathcal{B}' spans V'. Suppose $f \in V'$

We put $a_i = f(e_i)$ for each i.

Then $f = \sum_{i} a_i e'_i$ as both evaluate to the same on the basis elements:

$$f(e_j) = a_j; \quad (\sum a_i e_i') (e_j) = \sum a_i e_i' e_j = a_j$$

Example 7.3. Let $V = \mathbb{R}^n$ with basis $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} \right\}$

Then the dual basis is given by:

$$\mathcal{B}' = \{(1, 0, \dots, 0), \dots, (0, \dots, 1)\} \in V' = M_{1 \times n}(\mathbb{R})$$

Remark. If V is the vector space of finite sequences then V' is the vector space of infinite sequences.

Since any linear functional is uniquely determined by its values on the basis elements $e_i = (0, \dots, 0, 1, 0, \dots)$

i.e. f is determined by $\bar{b} = (b_0, b_1, ...)$ where $b_i = f(e_i)$

Remark. In this case V is **not isomorphic** to V'

Though the dual basis elements $\{e'_0, e'_1, \ldots\}$ are linearly independent, they do not span: $(1, 1, \ldots) \notin \langle e_i \rangle$

Definition 7.3. A **natural** linear map is independent of choice of basis (in contrast to the dual map: $v \mapsto v'$)

Theorem 7.2. Let V be a finite dimensional vector space, then $V \to (V')' = V''$ defined by $v \mapsto E_v$ where $E_v : V' \to \mathbb{F}$ is defined by $f \mapsto f(v)$, taking a vector v to it's evaluation map E_v is a natural linear isomorphism.

Proof.

• E_v is a linear map:

$$E_v(f + \lambda g) = (f + \lambda g)(v)$$
$$= f(v) + \lambda g(v)$$
$$= E_v(f) + \lambda E_v(g)$$

• $v \mapsto E_v$ is injective:

Assume $E_v = 0$, then $\forall f \in V'$ we have $E_v(f) = f(v) = 0$. We want to show that this obtains iff v = 0

Assume that $v \neq 0$, then we can extend to a basis $\mathcal{B} = \{v, e_2, \dots, e_n\}$ for V. Then for f = v' with respect to \mathcal{B} we get $E_v(f) = E_v(v') = v'(v) = 1 \neq 0$ which is a contradiction. Hence v = 0 and thus the map is injective.

• $v \mapsto E_v$ is surjective:

Observe that $\dim V = \dim V' = \dim V''$. Then by injectivity and the rank-nullity theorem the map must be surjective.

Definition 7.4. Let $U \leq V$. The we define the **annihilator** of U to be

$$U^0 = \{ f \in V' : f|_U \equiv 0 \}$$

Proposition 7.3. Let $U \leq V$. Then the annihilator of U is a subspace of V'

Proof. First note that $f \equiv 0 \in U^0$, so that $U^0 \neq \emptyset$ Now, suppose $f, g \in U^0$ and $\lambda \in \mathbb{F}$, then

$$(f + \lambda g)(U) = f(U) + \lambda g(U)$$

$$= 0 + \lambda 0 \qquad (f, g \in U^0)$$

$$= 0$$

Thus $f + \lambda g \in U^0$ and hence $U^0 \leq V'$

Theorem 7.4. If V is finite dimensional and $U \leq V$ then $\dim U^0 = \dim V - \dim U$

Proof. Let $\mathcal{B}_U = \{e_1, \dots, e_m\}$ be a basis for U and extend to a basis $\mathcal{B}_V = \{e_1, \dots, e_m, \dots, e_n\}$ for V. If we consider the dual basis $B'_V = \{e'_1, \dots, e'_n\}$ then the theorem follows from the claim that $\{e'_{m+1}, \dots, e'_n\}$ is a basis for U^0 .

Proof. $\mathcal{B}'_U=\{e'_{m+1},\ldots,e'_n\}\subset\mathcal{B}'_V$ hence \mathcal{B}'_U is linearly independent

For $j=m+1,\ldots,n$ and $i=1,\ldots,m$ we have $e'_j(e_i)=0$, thus $\langle \mathcal{B}'_U \rangle \subset U^0$

Now, let $f \in U^0 \leq V'$, then there exist $a_i \in \mathbb{F}$ such that $f = \sum_i a_i e_i'$ and, since \mathcal{B}_U is a basis for U, we have that for $i = 1, \ldots, m$:

$$f(e_i) = 0 = \sum_{j=1}^{n} a_j e'_j e_i = a_i$$

Hence we must have $a_i = 0$ for i = 1, ..., m and hence \mathcal{B}'_U is also spanning

Theorem 7.5. If $U, W \leq V$ then:

(1) $U < W \Longrightarrow W^0 < U^0$

(2)
$$(U+W)^0 = U^0 \cap W^0$$

(3)
$$(U \cap W)^0 = U^0 + W^0$$
 if dim $V < \infty$

Proof.

(1)
$$f \in W^0 \iff \forall w \in W : f(w) = 0$$
$$\implies \forall u \in U \le W : f(u) = 0$$
$$\iff f \in U^0$$

(2) $f \in (U+W)^0 \iff \forall u \in U : f(u) = 0, \forall w \in W : f(w) = 0$

$$\iff f \in U^0, f \in W^0$$

$$\iff f \in U^0 \cap W^0$$

$$(3) \quad \underline{U^0 + W^0 \le (U \cap W)^0}$$

$$f \in U^0 + W^0 \iff \exists g \in U^0, \exists h \in W^0 : f = g + h$$

$$\implies \forall x \in U \cap W : f(x) = g(x) + h(x) = 0$$

$$\iff f \in (U \cap W)^0$$

$$\underline{(U \cap W)^0 = U^0 + W^0}$$

$$\dim(U^0 + W^0) = \dim U^0 + \dim W^0 - \dim(U^0 \cap W^0)$$

$$= \dim V - \dim U + \dim V - \dim W - \dim(U + W)^0$$

$$= \dim V - \dim U + \dim V - \dim W - \dim V + \dim(U + W)$$

$$= \dim V - \dim U - \dim W + \dim V + \dim W - \dim(U \cap W)$$

$$= \dim V - \dim(U \cap W)$$

$$= \dim V - \dim(U \cap W)^0$$

Theorem 7.6. Suppose V is finite dimensional and $U \leq V$.

Then, under the isomorphism $\tau: V \xrightarrow{\sim} V''$ given by $v \mapsto E_v$ we have that $U \cong U^{00}$

Proof.

$$E_x \in U^{00} \iff \forall f \in U^0 : E_x(f) = f(x) = 0$$

 $\implies x \in U \to E_x \in U^{00}$
 $\implies \tau(U) \subseteq U^{00}$

Further we have that

$$\dim U^{00} = \dim V - \dim U^{0}$$

$$= \dim V - (\dim V - \dim U)$$

$$= \dim U$$

Thus $U \cong U^{00}$ as required

Theorem 7.7. Let $U \leq V$ with V finite dimensional. Then there exists an isomorphism such that

$$U' \cong V'/U^0$$

Proof. Consider $\Phi: V' \to U'$ given by $f \mapsto f|_U$

Then Φ is linear as for all $f, g \in V'$, $\lambda \in \mathbb{F}$ we have

$$\Phi(f + \lambda g) = (f + \lambda g)|_{U} = f|_{U} + \lambda g|_{U} = \Phi(f) + \lambda \Phi(g)$$

Furthermore, we have

$$f \in \ker \Phi \iff f|_U = 0$$

 $\iff f \in U^0$

Hence $\ker \Phi = U^0$ and so we can apply the first isomorphism theorem to get

$$\tilde{\Phi}: V'/U^0 \xrightarrow{\sim} \operatorname{Im} \Phi \subseteq U'$$

Now, since V is finite dimensional, any basis $\mathcal{B}_U = \{e_1, \dots e_k\}$ of U can be extended to a basis $\mathcal{B}_V = \{e_1, \dots, e_n\}$. Then any $g \in U'$ is the image under Φ of $\tilde{g} \in V'$, defined by

$$\tilde{g}(e_i) = \begin{cases} g(e_i) & i = 1, \dots, m \\ 0 & i = m + 1, \dots, n \end{cases}$$

Thus Im $\Phi = U'$ and so we are done.

Moreover, $\{e'_{m+1},\ldots,e'_n\}$ is a basis for U^0 and $\{e'_1+U^0,\ldots,e'_m+U^0\}$ is a basis for V'/U^0 such that $\tilde{\Phi}:U'\to V'/U^0$ defined by $e'_i\mapsto e'_i+U^0$ is an isomorphism as required.

Remark. This result is also true in infinite dimensional case

Definition 7.5. Let $T: V \to W$ be a linear transformation. We define the **dual map** by:

$$T': W' \to V'$$
$$f \mapsto f \circ T$$

Remark. Since $f \circ T$ is linear T' is well defined

Proposition 7.8. T' is linear

Proof. Let $f, g \in W'$, $\lambda \in \mathbb{F}$ and $v \in V$

$$T'(f + \lambda g)(v) = ((f + \lambda g) \circ T)(v)$$

$$= (f + \lambda g)(Tv)$$

$$= f(Tv) + \lambda g(Tv)$$

$$= (f \circ T)(v) + \lambda (g \circ T)(v)$$

$$= T'(f)(v) + \lambda T'(g)(v)$$

Proposition 7.9. The map $hom(V, W) \to hom(W', V')$ given by $T \mapsto T'$ is linear

Proof. Let $S, T \in \text{hom}(V, W), \lambda \in \mathbb{F}, f \in W'$ and $v \in V$, then

$$(T + \lambda S)'(f)(v) = (f \circ (T + \lambda S))(v)$$

$$= f((T + \lambda S)(v))$$

$$= f(T(v)) + \lambda f(S(v))$$

$$= T'(f)(v) + \lambda S'(f)(v)$$

$$= (T' + \lambda S')(f)(v)$$

Theorem 7.10. Suppose V and W are finite dimensional, then $T \mapsto T'$ defines a natural isomorphism between hom(V, W) and hom(W', V')

Proof. Assume T'=0

But now, T'(f)(v) = 0 for all $f \in W'$, $v \in V$ if and only if f(T(v)) = 0 for all f and v.

Suppose $T(v) \neq 0$, then we can extend T(v) to a basis \mathcal{B}_W of W.

Then the corresponding element of the dual basis \mathcal{B}'_W satisfies (T(v))'(T(v)) = 1 contradicting that f(T(v)) = 0 for all f. Thus T(v) = 0 for all $v \in V$, or $T \equiv 0$, and hence $T \mapsto T'$ is injective.

As

$$\dim \hom(V, W) = \dim V \cdot \dim W$$
$$= \dim W' \cdot \dim V'$$
$$= \dim \hom(W', V')$$

We have that $T \mapsto T'$ is also surjective and hence is the isomorphism required.

Theorem 7.11. Let V, W be finite dimensional vector spaces

Let $\mathcal{B}_V, \mathcal{B}_W$ be bases of V and W respectively

Let $\mathcal{B}'_V, \mathcal{B}'_W$ be the corresponding dual bases of V' and W'

Then, for any linear map $T:V\to W$

$$\left(\mathcal{B}_W[T]_{\mathcal{B}_V}\right)^t = \mathcal{B}_V'[T']_{\mathcal{B}_W'}$$

where A^t denotes the transpose of A.

Proof. Let
$$\mathcal{B}_V = \{e_1, \dots, e_n\}$$
 and $\mathcal{B}_W = \{x_1, \dots, x_m\}$

Put
$$_{\mathcal{B}_W}[T]_{\mathcal{B}_V} = A = (a_{ij})_{m \times n}$$

Then
$$T(e_j) = \sum_{i=1}^{m} a_{ij}x_i$$
 and $x'_i(T(e_j)) = a_{ij}$

Put
$$\mathcal{B}'_{v}[T']_{\mathcal{B}'_{W}} = B = (b_{ij})_{n \times m}$$

Then
$$T'(x_i') = \sum_{j=1}^n b_{ji}e_j'$$
 and $T'(x_i')(e_j) = b_{ji}$

Hence
$$b_{ji} = T'(x'_i)(e_j) = x'_i(T(e_j)) = a_{ij}$$
 thus $B = A^t$

Remark. The above theorem is the isomorphism from $M_{n\times m}(\mathbb{F})\to M_{m\times n}(\mathbb{F})$ given by $A\mapsto A^t$

Bilinear Forms and Inner Products

Definition 8.1. Let V be a vector space over \mathbb{F}

A bilinear form on V is a map $\mathcal{F}: V \times V \to \mathbb{F}$ such that for all $u, v, w \in V, \lambda \in \mathbb{F}$

- (1) $\mathcal{F}(u+v,w) = \mathcal{F}(u,w) + \mathcal{F}(v,w)$
- (2) $\mathcal{F}(u, v + w) = \mathcal{F}(u, v) + \mathcal{F}(u, w)$
- (3) $\mathcal{F}(\lambda v, w) = \lambda \mathcal{F}(v, w) = \mathcal{F}(v, \lambda w)$

 \mathcal{F} is called **symmetrical** if F(v, w) = F(w, v) for all $v, w \in V$

 \mathcal{F} is called **non-degenerate** if $(\forall w \in V : F(v, w) = 0) \Rightarrow v = 0$

 \mathcal{F} is called **positive definite** if for all $v \in V : v \neq 0 \Rightarrow F(v, v) > 0$

Remark. Positive Definite \Rightarrow Non-Degenerate: $\mathcal{F}(v,v) = 0 \Rightarrow v = 0$

Example 8.1. Minkowski Space: $V = \mathbb{R}^3 \times \mathbb{R}$

$$\mathcal{F}[((x,y,z),t),((x',y',z'),t')] = xx' + yy' + zz' - c^2tt'$$

 \mathcal{F} is bilinear, symmetric, non-degenerate, NOT positive definite

Example 8.2. $V = \mathbb{R}^3$

$$\mathcal{F}((x, y, z), (x', y', z')) = xx' + yy' + zz'$$

 \mathcal{F} is bilinear, symmetric and positive definite

Example 8.3. V = C([0, 1])

$$\mathcal{F}(f,g) = \int_0^1 f(x)g(x)dx$$

 ${\mathcal F}$ is bilinear, symmetric and positive definite

Definition 8.2. Let V be a vector space over \mathbb{C}

A sesquilinear form on V is a map $\mathcal{F}: V \times V \to \mathbb{C}$ such that for all $u, v, w \in V, \lambda \in \mathbb{C}$

- (1) $\mathcal{F}(u+v,w) = \mathcal{F}(u,w) + \mathcal{F}(v,w)$
- (2) $\mathcal{F}(u, v + w) = \mathcal{F}(u, v) + \mathcal{F}(u, w)$
- (3) $\mathcal{F}(\bar{\lambda}v, w) = \lambda \mathcal{F}(v, w) = \mathcal{F}(v, \lambda w)$

 \mathcal{F} is **conjugate symmetric** if $\mathcal{F}(v,w) = \mathcal{F}(\bar{w},v)$ for all $v,w \in V$

 \mathcal{F} is non-degenerate if $(\forall w \in V : \mathcal{F}(v, w) = 0) \Rightarrow v = 0$

 \mathcal{F} is **positive definite** if $\mathcal{F}(v,v) \in \mathbb{R}$, $\mathcal{F}(v,v) > 0$ for all $v \in V$

Example 8.4. $V = \mathbb{C}^n$

 $\mathcal{F}(v,w) = \bar{v}^t A w \text{ for some } A \in M_{n \times n}(\mathbb{C})$

- \mathcal{F} is sesquilinear, conjugate symmetric iff $A = \overline{A}^t$ Observe that $\mathcal{F}(e_i, e_j) = \overline{e_i}^t A e_j = a_{ij}$ and $\overline{\mathcal{F}(e_j, e_i)} = \overline{e_j}^t A e_i = \overline{a_{ji}}$. Thus \mathcal{F} is conjugate symmetric iff $a_{ij} = \overline{a_{ji}}$ for all i, j, that is $A = \overline{A}^t$
- \mathcal{F} is non-degenerate \iff A is non-singular

A singular
$$\iff \exists w \neq 0 \in V : Aw = 0$$
 $\iff \exists w \neq 0 \in V : \forall v \in V : \bar{v}^t Aw = 0$ $\iff \mathcal{F} \text{ degenerate}$

Definition 8.3. A real (complex) vector space V with a positive definite, symmetric (conjugate symmetric), bilinear (sesquilinear) form $\mathcal{F} = \langle \ , \ \rangle$ is called an **inner product space**

Definition 8.4. $\{w_1, \ldots, w_n\}$ are mutually **orthogonal** if $\langle w_i, w_j \rangle = 0$ for all $i \neq j$

Definition 8.5. $\{w_1, \ldots, w_n\}$ are mutually **orthonormal** if $\langle w_i, w_j \rangle = \delta_{ij}$ for all i, j

Proposition 8.1. Suppose V is an inner product space over \mathbb{R} or \mathbb{C} and $\{w_1, \ldots, w_n\}$ are orthogonal with $w_i \neq 0$ for all i. Then $\{w_1, \ldots, w_n\}$ is linearly independent.

Proof. Assume $\sum_{i} \lambda_{i} w_{i} = 0$ for some $\lambda_{i} \in \mathbb{F}$

$$\Rightarrow \left\langle w_j, \sum_i \lambda_i w_i \right\rangle = 0 \qquad \forall j$$

$$\Rightarrow \sum_i \lambda_i \left\langle w_j, w_i \right\rangle = 0 \qquad \forall j$$

$$\Rightarrow \lambda_j \left\langle w_j, w_j \right\rangle = 0 \qquad \forall j$$

$$\Rightarrow \lambda_j = 0 \qquad \forall j$$

Theorem 8.2. Gram-Schmidt Process

Let $\{v_1, \ldots, v_n\}$ be a basis of the inner product space V

$$Put \ w_1 = v_1$$

$$w_2 = v_2 - \frac{\langle w_1, v_2 \rangle}{\langle w_1, w_1 \rangle} w_1$$

$$\vdots$$

$$w_k = v_k - \sum_{i=1}^{k-1} \frac{\langle w_i, v_k \rangle}{\langle w_i, w_i \rangle} w_i \qquad (*)$$

Clearly $\langle w_i \rangle = \langle v_i \rangle$

Editor's note: need to show that $w_k \neq 0$

Assuming $\langle w_1, \dots, w_{k-1} \rangle = \langle v_1, \dots, v_{k-1} \rangle$ we have by (*)

$$\langle w_1, \dots, w_k \rangle = \langle w_1, \dots, w_{k-1}, v_k \rangle$$

Then by the inductive hypothesis we have

$$\langle w_1, \dots, w_k \rangle = \langle w_1, \dots, w_{k-1}, v_k \rangle = \langle v_1, \dots, v_k \rangle$$

Now, if we assume that $\{w_1, \ldots, w_{k-1}\}$ is orthogonal then for j < k we have from (*) that

$$\langle w_k, w_j \rangle = \langle v_k, w_j \rangle - \sum_{i=1}^{k-1} \frac{\langle w_i, v_k \rangle}{\langle w_i, w_i \rangle} \langle w_i, w_j \rangle$$
$$= \langle v_k, w_j \rangle - \frac{\langle w_j, v_k \rangle}{\langle w_j, w_j \rangle} \langle w_j, w_j \rangle$$
$$= 0$$

Hence by induction we have that $\{w_1, \ldots, w_n\}$ is an orthogonal basis for V

Now we put $u_i = \frac{w_i}{||w_i||}$ where $||w_i|| = \sqrt{\langle w_i, w_i \rangle} \in \mathbb{R}$ for each i

Then $\{u_1, \ldots, u_n\}$ is an **orthonormal basis** of V

Remark. The change of basis matrix from $\{v_i\}$ to $\{u_i\}$ is upper-triangular with positive entries on the diagonal.

Theorem 8.3. Bessel's Inequality

Let dim $V < \infty$ and $\{u_1, \ldots, u_n\}$ be an orthonormal basis

Then $\forall v \in V$:

$$||v||^2 \ge \sum_{i=1}^k \left| \left\langle v, u_i \right\rangle \right|^2$$

With equality holding iff $k = \dim V$

8.1 Duals of Inner Product Spaces

Let V be an inner product space over \mathbb{F} (\mathbb{R} or \mathbb{C})

Then for all $v \in V$

$$\langle v, _ \rangle : V \to \mathbb{F}$$

$$w \mapsto \langle v, w \rangle$$

Is a linear functional on V as \langle , \rangle is linear in the second co-ordinate

Theorem 8.4. For $\mathbb{F} = \mathbb{R}$, the map $v \mapsto \langle v, _ \rangle$ is a **natural** injective linear map $\Phi : V \to V'$ which is an isomorphism when dim $V < \infty$

Proof. Φ is linear as for all $v, w \in V, \lambda \in \mathbb{R}$

$$\langle v + \lambda w, _ \rangle = \langle v, _ \rangle + \lambda \langle w, _ \rangle$$

Since \langle , \rangle is non-degenerate we have that $\langle v, _ \rangle = \langle _ , v \rangle$ is the zero function iff v = 0 Hence Φ is injective.

If dim $V < \infty$ then we have dim $V = \dim V'$, therefore Im $\Phi = V'$ and so Φ is an isomorphism in the finite dimensional case

Remark. For $\mathbb{F} = \mathbb{C}$, Φ defines a conjugate linear map: $\Phi(\lambda v) = \overline{\lambda}\Phi(v)$

Definition 8.6. Let $U \leq V$ be a finite dimensional subspace of V

The **orthogonal complement** of U is defined as

$$U^{\perp}:=\{v\in V: \langle u,v\rangle=0 \text{ for all } u\in U\}$$

Proposition 8.5. U^{\perp} is a linear subspace

Proof. For all $v, w \in U^{\perp}, \lambda \in \mathbb{F}$ and for all $u \in U$:

$$\langle u, v + \lambda w \rangle = \langle u, v \rangle + \lambda \langle u, w \rangle = 0$$

Thus $v + \lambda w \in U^{\perp}$

Proposition 8.6. Let U, W be finite dimensional subspaces of an inner product space V

(1) $U \cap U^{\perp} = \{0\}$

Proof. If $u \in U \cap U^{\perp}$ then $\langle u, u \rangle = 0$. By positive definiteness of \langle , \rangle we have u = 0

(2) $\dim V < \infty \Rightarrow U \oplus U^{\perp} = V$

Proof. Take $\{e_1, \ldots, e_k\}$ an orthonormal basis of U and let $\{e_1, \ldots, e_k, \ldots, e_n\}$ be an orthonormal basis for V.

Now, assume $v = \sum_i a_i e_i \in U^{\perp}$. Then,

$$\langle e_j, v \rangle = \langle e_j, \sum_i a_i e_i \rangle = \langle e_j, a_j e_j \rangle = a_j$$

By definition of U^{\perp} we have $\langle e_j, v \rangle = a_j = 0$ for j = 1, ..., k, thus $v \in \langle e_{k+1}, ..., e_n \rangle$ Vice versa, if $v \in \langle e_{k+1}, ..., e_n \rangle$ then for all $u \in U$ clearly $\langle u, v \rangle = 0$ that is $v \in U^{\perp}$ Thus $U^{\perp} = \langle e_{k+1}, ..., e_n \rangle$ and hence $V = U \oplus U^{\perp}$

 $(3) \quad (U+W)^{\perp} = U^{\perp} \cap W^{\perp}$

Proof. Take $v \in (U+W)^{\perp}$. Since U and W are subspaces of V they both contain 0. Then for all $u \in U$ and all $w \in W$ we have $u+0=u, 0+w=w \in U+W$ and hence $\langle v,u \rangle = 0 = \langle v,w \rangle$ and so $v \in U^{\perp} \cap W^{\perp}$ as required.

Conversely, take $v \in U^{\perp} \cap W^{\perp}$. Then for all $\omega \in U + W$ we have $\omega = u + w$ for some $u \in U, w \in W$ and hence $\langle v, \omega \rangle = \langle v, u + w \rangle = \langle v, u \rangle + \langle v, w \rangle = 0 + 0 = 0$ and so $v \in (U + W)^{\perp}$.

(4) $(U \cap W)^{\perp} \geq U^{\perp} + W^{\perp}$ with equality if dim $V < \infty$

Proof. Take $v \in U^{\perp} + W^{\perp}$, then there exist $u \in U^{\perp}, w \in W^{\perp}$ such that v = u + w. Now, for $\omega \in U \cap W$ we have $\omega \in U$ and $\omega \in W$, therefore

$$\langle v, \omega \rangle = \langle u + w, \omega \rangle = \langle u, \omega \rangle + \langle w, \omega \rangle = 0 + 0 = 0$$

Hence $v \in (U \cap W)^{\perp}$ as required.

Further, if dim $V < \infty$ then we can apply the dimension formula to obtain

$$\dim(U \cap W)^{\perp} = \dim V - \dim(U \cap W)$$

$$= \dim V - \dim U + \dim V - \dim W$$

$$= \dim U^{\perp} + \dim W^{\perp}$$

$$= \dim(U^{\perp} + W^{\perp})$$

Hence, by dimensionality, we have $(U \cap W)^{\perp} = U^{\perp} + W^{\perp}$ when dim $V < \infty$

(5) $U \leq (U^{\perp})^{\perp}$ with equality if dim $V < \infty$

Proof. Let $u \in U$

Then for all $w \in U^{\perp}$: $\langle u, w \rangle = \overline{\langle w, u \rangle} = 0$ and hence $\langle w, u \rangle = 0$ and thus $u \in (U^{\perp})^{\perp}$ If dim $V < \infty$ then

$$\dim(U^{\perp})^{\perp} = \dim V - \dim U^{\perp} = \dim V - \dim V + \dim U = \dim U$$

Thus, by dimensionality, equality holds when $\dim V < \infty$

Example 8.5. Let $U, W \leq \mathbb{R}^3$ be defined

$$U := \left\{ \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix} \right\}_{x \in \mathbb{R}} \qquad W := \left\{ \begin{pmatrix} 0 \\ y \\ 0 \end{pmatrix} \right\}_{y \in \mathbb{R}}$$

$$U^{\perp} = yz\text{-plane} = \left\{ \begin{pmatrix} 0 \\ y \\ z \end{pmatrix} \right\}_{y,z \in \mathbb{R}}$$

$$W^{\perp} = xz$$
-plane = $\left\{ \begin{pmatrix} x \\ 0 \\ z \end{pmatrix} \right\}_{x,z \in \mathbb{R}}$

$$U^{\perp} \cap W^{\perp} = z\text{-axis} = \left\{ \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix} \right\}_{z \in \mathbb{R}}$$

$$(U+W)^{\perp}=(xy\text{-plane})^{\perp}=z\text{-axis}=\left\{\left(egin{array}{c} 0 \ 0 \ z \end{array}\right)
ight\}_{z\in\mathbb{R}}$$

$$(U \cap W)^{\perp} = \{0\}^{\perp} = \mathbb{R}^3$$

$$U^{\perp} + W^{\perp} = \{yz\text{-plane} + xz\text{-plane}\} = \mathbb{R}^3$$

Proposition 8.7. Let dim $V < \infty$ and $\mathbb{F} = \mathbb{R}$

Then, under the isomorphism $\Phi: V \to V'$ given by $v \mapsto \langle v, \rangle$

$$U^{\perp} \simeq U^0$$

Proof. Let $v \in U^{\perp}$, then for all $u \in U$ we have

$$\langle v, u \rangle = 0 = \langle u, v \rangle$$

Thus $\Phi(v) = \langle v, _ \rangle \in U^0$

Moreover, $\dim U^{\perp} = \dim V - \dim U = \dim U^0$, giving $U^{\perp} \cong U^0$ as required.

Example 8.6. Let V be the vector space of real polynomials with degree ≤ 2 , so $V = \langle 1, t, t^2 \rangle$

Define
$$\langle f, g \rangle = f(1)g(1) + f(2)g(2) + f(3)g(3)$$

Then \langle , \rangle is bilinear, symmetric and positive definite:

$$\langle f, f \rangle = f(1)^2 + f(2)^2 + f(3)^2 = 0 \iff f(1) = f(2) = f(3) = 0$$

 $\Rightarrow f \text{ has 3 roots}$

Since f has degree ≤ 2 it cannot have 3 roots, thus $f \equiv 0$

Let $U = \langle 1, t \rangle$ and take $f \in U, g \in U^{\perp}$ such that $f + g = t^2$, then for orthonormal basis $\{u_1, u_2\}$ of U

$$g = t^2 - \left(\langle t^2, u_1 \rangle u_1 + \langle t^2, u_2 \rangle u_2 \right)$$

Put

Let
$$u_1 = \frac{1}{\sqrt{\langle 1, 1 \rangle}} = \frac{1}{\sqrt{3}}$$

$$u_2 = \frac{t - \langle t, u_1 \rangle u_1}{||\uparrow||} = \frac{t - \frac{1}{\sqrt{3}} \left(\frac{1}{\sqrt{3}} + \frac{2}{\sqrt{3}} + \frac{3}{\sqrt{3}}\right)}{||\uparrow||} = \frac{t - 2}{||t - 2||} = \frac{t - 2}{\sqrt{2}}$$

Then,

$$f = \left\langle t^2, \frac{1}{\sqrt{3}} \right\rangle \frac{1}{\sqrt{3}} + \left\langle t^2, \frac{t-2}{\sqrt{2}} \right\rangle \frac{t-2}{\sqrt{2}} = \frac{14}{3} + 4(t-2) = 4t - \frac{10}{3}$$

8.2 Adjoint Maps

Let V be an inner product space over $\mathbb{F} = \mathbb{R}$ or \mathbb{C}

Definition 8.7. A linear map $T:V\to V$ has an adjoint map $T^*:V\to V$ if for all $v,w\in V$

$$\langle v, Tw \rangle = \langle T^*v, w \rangle$$

Lemma 8.8. If T^* exists, then it is unique

Proof. Suppose T' is another adjoint map, then for all $v, w \in V$

$$\langle T^*v - T'v, w \rangle = \langle T^*v, w \rangle - \langle T'v, w \rangle$$
$$= \langle v, Tw \rangle - \langle v, Tw \rangle$$
$$= 0$$

Thus $T^*v - T'v = 0$ for all $v \in V$, that is $T^* \equiv T'$

Theorem 8.9. Let $T: V \to V$ be linear and dim $V < \infty$, then T^* exists and is also linear

Proof. Fix $v \in V$ and consider the map $\phi: V \to \mathbb{F}$ by $\phi(w) = \langle v, Tw \rangle$

 ϕ is a linear functional as T is linear and \langle , \rangle is linear in its second coordinate

As dim $V < \infty$, $\Phi : V \to V'$ given by $v \mapsto \langle v, _ \rangle$ is a linear isomorphism when $\mathbb{F} = \mathbb{R}$ and is a conjugate linear bijection when $\mathbb{F} = \mathbb{C}$

Then, $\exists u \in V$ such that $\phi = \langle u, _ \rangle$ - we define $\langle T^*v, _ \rangle = \langle u, _ \rangle$

For all $v_1, v_2, w \in V, \lambda \in \mathbb{F}$:

$$\langle T^*(v_1 + \lambda v_2), w \rangle = \langle v_1 + \lambda v_2, Tw \rangle$$

$$= \langle v_1, Tw \rangle + \bar{\lambda} \langle v_2, Tw \rangle$$

$$= \langle T^*v_1, w \rangle + \bar{\lambda} \langle T^*v_2, w \rangle$$

$$= \langle T^*v_1 + \lambda T^*v_2, w \rangle$$

Proposition 8.10. Let $T: V \to V$ be linear and $\mathcal{B} = \{e_1, \dots, e_n\}$ be an orthonormal basis for V:

$$_{\mathcal{B}}[T^*]_{\mathcal{B}} = _{\mathcal{B}}[\overline{T}]_{\mathcal{B}}^{t}$$

Proof. Let $A = {}_{\mathcal{B}}[T]_{\mathcal{B}}$ and $B = {}_{\mathcal{B}}[T^*]_{\mathcal{B}}$ Then,

$$b_{ij} = \langle e_i, T^* e_j \rangle$$

$$= \overline{\langle T^* e_j, e_i \rangle}$$

$$= \overline{\langle e_j, T e_i \rangle}$$

$$= \overline{a_{ji}}$$

And hence $B = \overline{A}^t$ as required

Remark.

- (1) The theorem is false if V is not finite dimensional
- (2) The proposition is false if \mathcal{B} is not orthonormal
- (3) For $\mathbb{F} = \mathbb{R}$, under the linear isomorphism $\phi : V \to V'$ by $\phi(v) = \langle v, \rangle$, T^* is identified with T':

 An orthonormal basis \mathcal{B} is taken to its dual basis and hence

$$\beta[T']_{\mathcal{B}} = (\beta[T]_{\mathcal{B}})^t = \beta[T^*]_{\mathcal{B}}$$

Proposition 8.11. Let $S,T:V\to V$ be linear, $\lambda\in\mathbb{F}$ and dim $V<\infty$, then:

$$(1) (S+T)^* = S^* + T^*$$

$$(2) \quad (\lambda T)^* = \bar{\lambda} T^*$$

(3)
$$(ST)^* = T^*S^*$$

$$(4) (T^*)^* = T$$

(5) If m_T is the minimal polynomial of T then $m_{T^*} = \overline{m_T}$

Proof. Follow straightforwardly from Proposition 8.10 and standard properties of matrices

Definition 8.8. A linear map $T: V \to V$ is self-adjoint if $T^* = T$

Lemma 8.12. If λ is an eigenvalue of a self-adjoint linear transformation, then $\lambda \in \mathbb{R}$

Proof. Assume $w \neq 0, Tw = \lambda w$, then

$$\begin{split} \lambda \left\langle w,w\right\rangle &= \left\langle w,\lambda w\right\rangle & \text{(linearity in second coordinate)} \\ &= \left\langle w,Tw\right\rangle & (Tw=\lambda w) \\ &= \left\langle T^*w,w\right\rangle & \text{(definition of adjoint)} \\ &= \left\langle Tw,w\right\rangle & (T\text{ self-adjoint}) \\ &= \left\langle \lambda w,w\right\rangle & (Tw=\lambda w) \\ &= \bar{\lambda} \left\langle w,w\right\rangle & \text{(conjugate linearity in first coordinate)} \end{split}$$

Since $\langle w, w \rangle \neq 0$ we must have $\lambda = \bar{\lambda}$ and hence $\lambda \in \mathbb{R}$

Lemma 8.13. If $T: V \to V$ is self-adjoint and $U \leq V$ is T-invariant, then U^{\perp} is also T-invariant *Proof.* Let $w \in U^{\perp}, u \in U$, then

$$\langle u, Tw \rangle = \langle T^*u, w \rangle \qquad \qquad \text{(definition of adjoint)}$$

$$= \langle Tu, w \rangle \qquad \qquad (T \text{ self-adjoint})$$

$$= 0 \qquad \qquad (Tu \in U, w \in U^{\perp})$$

Hence $Tw \in U^{\perp}$, and thus U^{\perp} is T-invariant

Theorem 8.14. Suppose $T: V \to V$ is self-adjoint over a complex vector space with dim $V < \infty$, then there exists an orthonormal basis of eigenvectors

Proof. By Lemma 8.12 there exists $\lambda \in \mathbb{R}$ and $w \neq 0 \in V$ with $Tw = \lambda w$.

Clearly $\langle w \rangle$ is T-invariant, and hence, by Lemma 8.13., $\langle w \rangle^{\perp}$ is also T-invariant

Let $e_1 = \frac{w}{||w||}$, then $\{e_1\}$ is an orthonormal basis for $\langle w \rangle$.

This is the base case for an induction on the dimension of the subspace.

By inductive hypothesis, there is an orthonormal basis of eigenvectors, $\{e_2,\ldots,e_n\}$, for $T|_{\langle w \rangle^{\perp}}$

Now, since $V = U \oplus U^{\perp}$, $\{e_1, \dots, e_n\}$ is an orthonormal basis for V of eigenvectors of T.

Corollary 8.15. Any $n \times n$ matrix A satisfying $A = \overline{A}^t$ is diagonalizable by an orthonormal change of basis

Proof. By theorem, there exists $P = \begin{pmatrix} | & & | \\ e_1 & \cdots & e_n \\ | & & | \end{pmatrix}$ with $\{e_1, \dots, e_n\}$ an orthonormal basis for

 \mathbb{F}^n such that

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}$$

8.3 Orthogonal and Unitary Transformations

Definition 8.9. A is called **orthogonal** when $A^{-1} = \bar{A}^t$ and $\mathbb{F} = \mathbb{R}$

Definition 8.10. A is called **unitary** when $A^{-1} = \bar{A}^t$ and $\mathbb{F} = \mathbb{C}$

Example 8.7. Let $\{e_1, \ldots, e_n\}$ be an orthonormal basis for \mathbb{F}^n ($\mathbb{F} = \mathbb{R}$ or \mathbb{C}) under the normal dot product

Put
$$A = \begin{pmatrix} | & & | \\ e_1 & \cdots & e_n \\ | & & | \end{pmatrix}$$
, then $\bar{A}^t A = I$ as $\bar{A}^t = \begin{pmatrix} - & \bar{e_1} & - \\ & \vdots & \\ - & \bar{e_2} & - \end{pmatrix}$

Hence $A^{-1} = \bar{A}^t$

Definition 8.11. Let V be a finite dimensional vector space with inner product and $T:V\to V$ be a linear transformation satisfying $T^*T=I=TT^*$

Then T is **orthogonal** if $\mathbb{F} = \mathbb{R}$ or **unitary** if $\mathbb{F} = \mathbb{C}$

Theorem 8.16. The following are equivalent:

- (1) $T^* = T^{-1}$
- (2) T preserves inner products: $\langle v, w \rangle = \langle Tv, Tw \rangle \quad \forall v, w \in V$
- (3) T preserves lengths: $||v|| = ||Tv|| \quad \forall v \in V$

Proof.

$$(1) \Rightarrow (2) \quad \langle v, w \rangle = \langle v, T^*Tw \rangle = \langle Tv, Tw \rangle$$

$$(2) \Rightarrow (3) \quad ||v||^2 = \langle v, v \rangle = \langle Tv, Tv \rangle = ||Tv||^2$$

(2)
$$\Rightarrow$$
 (1) $\langle T^*Tv - v, w \rangle = \langle T^*Tv, w \rangle - \langle v, w \rangle = \langle Tv, Tw \rangle - \langle v, w \rangle = 0$
By non-degeneracy of \langle , \rangle : $T^*T = I$

 $(3) \Rightarrow (2)$ See Proposition 8.17.

Remark. Orthogonal/Unitary linear transformations are isometries:

$$d(v, w) = ||v - w|| = ||T(v - w)|| = ||Tv - Tw|| = d(Tv, Tw)$$

Remark. Let \mathcal{B} be an orthonormal basis for V and T be an orthogonal/unitary linear transformation. Then $_{\mathcal{B}}[T]_{\mathcal{B}}$ is an orthogonal/unitary matrix - the columns (and rows) form an orthonormal basis.

Proposition 8.17. The length function uniquely determines the inner product:

$$\langle v, v \rangle_1 = \langle v, v \rangle_2 \ \forall v \in V \iff \langle v, w \rangle_1 = \langle v, w \rangle_2 \ \forall v, w \in V$$

Proof. (\iff) is clear, remains to show (\implies), we have

$$\langle v+w,v+w\rangle = \langle v,v\rangle + \langle v,w\rangle + \overline{\langle v,w\rangle} + \langle w,w\rangle$$

Hence, when $\mathbb{F} = \mathbb{R}$

$$\langle v, w \rangle = \frac{1}{2} \Big(||v + w||^2 - ||v||^2 - ||w||^2 \Big)$$

Alternatively, when $\mathbb{F} = \mathbb{C}$ we also consider

$$\langle v+iw,v+iw\rangle = \langle v,v\rangle + i\,\langle v,w\rangle - i\overline{\langle v,w\rangle} + \langle w,w\rangle$$

To obtain:

$$\Re \langle v, w \rangle = \frac{1}{2} \Big(||v + w||^2 - ||v||^2 - ||w||^2 \Big)$$

$$\Im \langle v, w \rangle = \frac{1}{2} \Big(||v + iw||^2 - ||v||^2 - ||w||^2 \Big)$$

Definition 8.12. The following are groups:

$$O_{n} = \left\{ A \in M_{n \times n}(\mathbb{R}) : A^{-1} = A^{t} \right\}$$
 (Orthogonal)

$$SO_{n} = \left\{ A \in M_{n \times n}(\mathbb{R}) : A^{-1} = A^{t}, \det A = 1 \right\}$$
 (Special Orthogonal)

$$U_{n} = \left\{ A \in M_{n \times n}(\mathbb{C}) : A^{-1} = \bar{A}^{t} \right\}$$
 (Unitary)

$$SU_{n} = \left\{ A \in M_{n \times n}(\mathbb{C}) : A^{-1} = \bar{A}^{t}, \det A = 1 \right\}$$
 (Special Unitary)

Lemma 8.18. Let $T: V \to V$ be an orthogonal/unitary linear map on a finite dimensional inner product space V. If λ is an eigenvalue of T, then $|\lambda| = 1$.

Proof. Take $v \neq 0$, an eigenvector for λ , then

$$||v|| = ||Tv|| = ||\lambda v|| = |\lambda| \cdot ||v|| \Rightarrow |\lambda| = 1$$

Corollary 8.19. If A is an orthogonal/unitary matrix then:

 $\det A = \pm 1 \text{ for } \mathbb{F} = \mathbb{R}$

 $\det A \in S^1 \text{ for } \mathbb{F} = \mathbb{C}$

Proof. Working over \mathbb{C} , A can be upper-triangulized with eigenvalues on the diagonal (with repetitions), that is there exists P such that

$$P^{-1}AP = \begin{pmatrix} \lambda_1 & * & * \\ & \ddots & * \\ 0 & & \lambda_n \end{pmatrix}$$

Then, $\det A = \det P^{-1}AP = \lambda_1 \cdots \lambda_n$

Now, by Lemma 8.18, $|\lambda_i| = 1$ for all i, hence $|\det A| = 1$

So det $A = \pm 1$ for $\mathbb{F} = \mathbb{R}$ or det $A \in S^1$ for $\mathbb{F} = \mathbb{C}$

Remark.

$$\det: O_n \to \{\pm 1\} \cong \mathbb{Z}_2 \qquad (\ker \det = SO_n)$$
$$\det: U_n \to S^1 \qquad (\ker \det = SU_n)$$

Lemma 8.20. Let $T:V\to V$ be a linear map on a finite dimensional inner product space V and assume $T^* = T^{-1}$. Then if $U \leq V$ is T-invariant, then U^{\perp} is also.

Proof. Let $u \in U, w \in U^{\perp}$ and let $Tu = u' \in U$. Then,

$$0 = \langle u, w \rangle = \langle Tu, Tw \rangle = \langle u', Tw \rangle$$

Now, as T is invertible it must be a bijection and thus $T(U) \subseteq U \Longrightarrow T(U) = U$.

Hence, $Tw \in U^{\perp}$ as required.

Theorem 8.21. Let $T:V\to V$ be a unitary linear transformation on a finite dimensional inner product space. Then there exists an orthonormal basis of eigenvectors.

Proof. There exists $v \neq 0$ such that $Tv = \lambda v$ for some eigenvalue λ

Then $\langle v \rangle$ is *T*-invariant and hence, by Lemma 8.20, so is $\langle v \rangle^{\perp}$

 $\dim \langle v \rangle^{\perp} < \dim V$ thus by induction $\langle v \rangle^{\perp}$ has an orthonormal basis of eigenvectors, $\{e_2, \dots, e_n\}$

Setting $e_1 = \frac{v}{||v||}$ we obtain $\{e_1, \dots, e_n\}$, an orthonormal basis of eigenvectors.

Corollary 8.22. If $A \in U_n$ then there exists $P \in U_n$ such that $P^{-1}AP$ is diagonal

Remark. If $A \in O_n$, then $A \in U_n$ but A may not be diagonalizable over \mathbb{R}

Example 8.8. Let $A \in O_2$ and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Then $A^t = A^{-1}$ and hence:

$$a^{2} + c^{2} = 1 = b^{2} + c^{2}$$
 $ab + cd = 0$ $ad - bc = \pm 1$

Solving these gives:

ROTATION
$$A = R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \text{ or } A = S_{\theta} = \begin{pmatrix} \sin \theta & \cos \theta \\ \cos \theta & -\sin \theta \end{pmatrix}$$

$$\det = 1 \qquad \qquad \det = -1$$

Further,

$$\mathcal{X}_{S_{\theta}} = x^2 - \sin^2 \theta - \cos^2 \theta = x^2 - 1 = (x+1)(x-1)$$

 $\Rightarrow S_{\theta}$ is diagonalizable (the eigenvector for 1 gives the line of reflection)

$$\mathcal{X}_{R_{\theta}} = x^2 - 2x\cos\theta + \cos^2\theta + \sin^2\theta = x^2 - 2x\cos\theta + 1 = (x - \lambda)(x - \bar{\lambda}) \qquad (\lambda = e^{2\pi i\theta})$$

 $\Rightarrow R_{\theta}$ has real eigenvalues $\iff \theta = 0, \pi$

 R_{θ} is **not** diagonalizable over \mathbb{R} for $\theta \neq 0, \pi$

Theorem 8.23. Let $T: V \to V$ be an orthogonal map over a finite dimensional, real inner product space V. Then there exists an orthonormal basis \mathcal{B} such that:

$$_{\mathcal{B}}[T]_{\mathcal{B}} = \begin{pmatrix} I & & & \\ & -I & & \\ & & R_{\theta_i} & \\ & & & \ddots \\ & & & R_{\theta_k} \end{pmatrix}$$

Proof. Let $S = T + T^*$. Then $S^* = (T + T^*)^* = T^* + T = S$, thus S is self-adjoint, and, by Theorem 8.21, there exists an orthonormal basis of eigenvectors. Accordingly we can write $V = V_{\lambda_1} \oplus V_{\lambda_2} \oplus \cdots \oplus V_{\lambda_n}$ with $\lambda_i \neq \lambda_j$ for $i \neq j$ and where V_{λ_i} is the λ_i -eigenspace of V.

Now suppose $v \in V_{\lambda}$, then:

$$S(Tv) = (T + T^*)(Tv) = T(T + T^*)(v) = T(Sv) = T(\lambda v) = \lambda Tv$$

Thus Tv is a λ eigenvector of S, that is $Tv \in V_{\lambda}$, and hence V_{λ} is T-invariant for each λ . Accordingly, we may restrict the problem to $T|_{V_{\lambda}}$

For $v \in V_{\lambda}$:

$$(T+T^{-1})v = \lambda v$$

$$\Rightarrow T(T+T^{-1})v = \lambda Tv$$

$$\Rightarrow (T^2 - \lambda T + I)v = 0$$

If $\lambda=\pm 2$, then $(T-\mu I)^2=0$ or $(T+\mu I)^2=0$ with $\mu=\pm 1$, and thus $T|_{V_\lambda}=\pm I$

If $\lambda \neq \pm 2$, then $T|_{V_{\lambda}}$ has no real eigenvalues - note: real eigenvalues = ± 1

So $\{v, Tv\}$ are linearly independent for $V \neq 0$.

Consider $W = \langle v, Tv \rangle$. W is T-invariant:

$$v\mapsto Tv\in W$$

$$Tv\mapsto T^2v=\lambda Tv-v\in W$$

Hence, W^{\perp} is also T invariant.

By induction, V_{λ} splits into two-dimensional T-invariant subspaces.

Moreover, $\mathcal{X}_{T|W}(x) = x^2 - \lambda_i x + 1$ and hence $\det T|_W = 1$.

Thus, by Example 8.8, each $T|_W$, with respect to some orthonormal basis of W, is of the form $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ for some $\theta \neq 0, \pi$

8.4 Normal Transformations

Definition 8.13. Let $T: V \to V$ be a linear transformation and V be a finite dimensional complex inner product space.

T is **normal** if it commutes with its adjoint:

$$T^*T = TT^*$$

Example 8.9.

$$T$$
 unitary $\Rightarrow T^* = T^{-1} \Rightarrow T$ is **normal** T self adjoint $\Rightarrow T^* = T \Rightarrow T$ is **normal**

Lemma 8.24. Let T be normal, then:

(1)
$$Tv = 0 \iff T^*v = 0$$

Proof.

$$Tv = 0 \iff \langle Tv, Tv \rangle = 0$$
$$\iff \langle T^*Tv, v \rangle = 0$$
$$\iff \langle TT^*v, v \rangle = 0$$
$$\iff \langle T^*v, T^*v \rangle = 0$$
$$\iff T^*v = 0$$

(2) $T - \lambda I$ is normal for all $\lambda \in \mathbb{C}$

Proof. $(T - \lambda I)^* = T^* - \bar{\lambda}I$, this commutes with $T - \lambda I$ as T commutes with T^* and both the identity matrix and scalar multiplication commute with anything

(3)
$$Tv = \lambda v \Rightarrow T^*v = \bar{\lambda}v$$

Proof.

$$Tv = \lambda v \iff (T - \lambda I)v = 0$$

 $\iff (T - \lambda I)^*v = 0$ (by (1))
 $\iff T^*v = \bar{\lambda}v$ (by (2))

(4)
$$Tv = \lambda_1 v, Tw = \lambda_2 v, \lambda_1 \neq \lambda_2 \Rightarrow \langle v, w \rangle = 0$$

Proof.

$$\lambda_{1} \langle v, w \rangle = \langle \bar{\lambda_{1}} v, w \rangle$$

$$= \langle T^{*} v, w \rangle \qquad \text{(by (3))}$$

$$= \langle v, Tw \rangle$$

$$= \langle v, \lambda_{2} w \rangle$$

$$= \lambda_{2} \langle v, w \rangle$$

Since $\lambda_1 \neq \lambda_2$ we must have $\langle v, w \rangle = 0$

Theorem 8.25. Let $T: V \to V$ be a normal linear transformation over a finite dimensional complex inner product space V. Then there is an orthonormal basis of eigenvectors for V

Proof. As V is complex there is an eigenvalue λ and corresponding normed eigenvector $v \in V$ with ||v|| = 1, such that $Tv = \lambda v$.

Consider $U = \langle v \rangle$. By Lemma 8.24(3) we have that U is both T- and T*- invariant.

Consider U^{\perp} . U^{\perp} is also T- and T*-invariant since for all $u \in U, w \in U^{\perp}$:

$$\langle u,Tw\rangle = \langle T^*u,w\rangle$$

$$= \langle u',w\rangle$$
 (for some $u'\in U$ since U is T^* invariant)
$$= 0$$

$$\langle u, T^*w \rangle = \langle Tu, w \rangle$$

= $\langle u', w \rangle$
= 0

Now we proceed by induction on the dimension of V.

We have $\dim U^{\perp} = \dim V - 1 < \dim V$ and we know $T|_{U^{\perp}}$ is normal, thus, by induction hypothesis, there exists an orthonormal basis of eigenvectors of $T|_{U^{\perp}}$ for U^{\perp} , $\mathcal{B}' = \{e_2, \dots, e_n\}$.

Then, putting $e_1 = v$ we obtain $\mathcal{B} = \{e_1, \dots, e_n\}$ is an orthonormal basis of eigenvectors of T

Theorem 8.26. Spectral Theorem

Let $T: V \to V$ be a normal (symmetric) linear transformation on a finite dimensional complex (real) inner product space.

Then there exist orthogonal projections E_1, \ldots, E_r on V and $\lambda_1, \ldots, \lambda_r \in \mathbb{C}(\mathbb{R})$ such that:

- (1) $T = \lambda_1 E_1 + \ldots + \lambda_r E_r$
- (2) $E_1 + \ldots + E_r = I$
- (3) $E_i E_j = 0$ for all $i \neq j$

Remark. This is just a reformulation of Theorem 8.23

Proof. By Theorem 8.23, $V = V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_r}$

8.5 Simultaneous Diagonalization

Remark. If \mathcal{B} is a basis wrt which both S and T are diagonal, for $S, T: V \to V$, then ST = TS

$$\beta[ST]_{\mathcal{B}} = \beta[S]_{\mathcal{B}\mathcal{B}}[T]_{\mathcal{B}} = \beta[T]_{\mathcal{B}\mathcal{B}}[S]_{\mathcal{B}} = \beta[TS]_{\mathcal{B}}$$
(diagonal matrices commute)

Theorem 8.27. If $S, T : V \to V$ are normal (symmetric) linear transformations on a finite dimensional complex (real) inner product space with ST = TS, then there exists and orthonormal basis of eigenvectors for S and T simultaneously

Proof. V decomposes to λ -eigenspaces for S: $V = V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_s}$

Let $v \in V_{\lambda}$, then

$$S(Tv) = T(Sv) = T(\lambda v) = \lambda T(v)$$

So Tv is an eigenvector of S and hence $Tv \in V_{\lambda}$

Now, there exists an orthonormal basis of eigenvectors of V_{λ} for $T|_{V_{\lambda}}$, \mathcal{B}_{λ}

Then $\mathcal{B} = \mathcal{B}_{\lambda_1} \cup \cdots \cup \mathcal{B}_{\lambda_s}$ is an orthonormal basis of eigenvectors for T and S simultaneously.

Challenge 4.

If $S_1, \ldots, S_r : V \to V$ are normal (symmetric) for dim $V < \infty$ over $\mathbb{C}(\mathbb{R})$ with $S_i S_j = S_j S_i$ for all i, j. Then there exists an orthonormal basis of eigenvectors for all S_k simultaneously.

Challenge 5.

If $A_1, \ldots, A_r \in O_n$ then there exists $P \in O_n$ such that

$$P^{-1}A_iP = \begin{pmatrix} I & & & \\ & -I & & \\ & & R_{\theta_1} & \\ & & & \ddots & \\ & & & & R_{\theta_s} \end{pmatrix}$$