Quantum Computation

November 6, 2018

CONTENTS	Ç
CONTENTS	4

Contents

0	Introduction	3
1	1	4
	1.1 The quantum algorithm	4
2	The hidden subgroup problem (HSP)	7
3	Amplitude Amplification	19
4	Quantum Counting	23
5	Example Class 1	24
	5.1 Question 1	24
	5.2 Quarties 2	24

3

0 Introduction

 ${\it asdasd}$

Exercise classes: Sat 3 Nov 11am MR4, Sat 24 Nov 11am MR4, early next term

Thursday 8 November lecture is moved to Saturday 10 November 11am (still MR4).

—Lecture 2—

1 1

Recall that we have an oracle U_f for $f: \mathbb{Z}_M \to \mathbb{Z}_N$ periodic, with period r, A = M/r. We want to find r in O(poly(m)) time where $m = \log M$.

The quantum algorithm

Work on state space $\mathcal{H}_M \otimes \mathcal{N}$ with basis $\{|i\rangle|k\rangle\}_{i\in\mathbb{Z}_M,k\in\mathbb{Z}_N}$.

- Step 1. Make state $\frac{1}{\sqrt{M}}\sum_{i=0}^{M-1}|i\rangle|0\rangle$. Step 2. Apply U_f to get $\frac{1}{\sqrt{M}}\sum_{i=0}^{M-1}|i\rangle|f(i)\rangle$. Step 3. Measure the 2nd register to get a result y. By Born rule, the first register collapses to all those i's (and only those) with f(i) equal to the seen y, i.e. $i = x_0, x_0 + r, ..., x_0 + (A-1)r$, where $0 \le x_0 < r$ in 1st period has f(m) = y. Discard 2nd register to get $|per\rangle = \frac{1}{\sqrt{A}} \sum_{j=0}^{A-1} |x_0 + jr\rangle$.

Note: each of the r possible function values y occurs with same probability 1/r, so $0 \le x_0 < r$ has been chosen uniformly at random.

If we now measure $|per\rangle$, we'd get a value $x_0 + jr$ for uniformly random j, i.e. random element (x_0^{th}) of a random period (j^{th}) , i.e. random element of \mathbb{Z}_m , so we could get no information about r.

• Step 4. Apply quantum Fourier transform mod M (QFT) to $|per\rangle$. Recall the definition of QFT: $QFT: |x\rangle \to \sum_{y=0}^{M-1} \omega^{xy} |y\rangle$ for all $x \in \mathbb{Z}_M$ where $\omega = e^{2\pi i/M}$ is the Mth root of unity. The existing result is that QFT mod M can be implemented in $O(M^2)$ time.

Then we get

$$QFT|per\rangle = \frac{1}{\sqrt{MA}} \sum_{j=0}^{A-1} \left(\sum_{y=0}^{M-1} \omega^{(x_0+jr)y} |y\rangle \right)$$
$$= \frac{1}{\sqrt{MA}} \sum_{y=0}^{M-1} \omega^{x_0y} \left[\sum_{j=0}^{A-1} \omega^{jry} \right] |y\rangle \ (*)$$

where we group all the terms with the same $|y\rangle$ together. One good thing is that the sum inside the square bracket is a geometric series, with ratio $\alpha = \omega^{ry} = e^{2\pi i r y/M} = (e^{2\pi i/A})^{y}.$

Hence term inside bracket = A if $\alpha = 1$, i.e. $y = kA = k\frac{M}{r}$, k = 0, 1, ..., (r - 1), and equals 0 otherwise when $\alpha \neq 1$. Now

$$QFT|per\rangle = \sqrt{\frac{A}{M}} \sum_{k=0}^{r-1} \omega^{x_0 k \frac{M}{r}} |k \frac{M}{r}\rangle$$

The random shift x_0 now appears only in phase, so measurement probabilities are now independent of $x_0!$

Measuring $QFT|per\rangle$ gives a value c, where $c=k_0\frac{M}{r}$ with $0 \le k_0 \le r-1$ chosen uniformly at random. Thus $\frac{k_0}{r} = \frac{c}{M}$, note that c, M are known, r is unknown (what we want), and k_0 is unknown but uniformly random.

So note that if we are lucky and get a k_0 that is coprime to r then we could just simplify $\frac{c}{M}$ to get r. Obviously we cannot be always lucky every time, but by theorem in number theory, the number of integers < r coprime to rgrows as $O(r/\log\log r)$ for large r, so we know probability of k_0 coprime to r is $O(\frac{1}{\log\log r}).$

Then by some probability calculation we know that O(1/p) trials are enough to achieve $1 - \varepsilon$ probability of success.

So after Step 4, cancel c/M to the lowest terms a/b, giving r as denominator b (if k_0 is coprime to r). Check b value by computing f(0) and f(b), since b=r iff f(0) = f(b).

Repeating $K = O(\log \log r)$ times gives r with any desired probability.

Further insights into utility of QFT here:

Write $R = \{0, r, 2r, ..., (A-1)r\} \subseteq \mathbb{Z}_M$. $|R\rangle = \frac{1}{\sqrt{A}} \sum_{k=0}^{A-1} |kr\rangle$, and $|per\rangle =$ $|x_0+R\rangle=\frac{1}{\sqrt{A}}\sum_{k=0}^{A-1}|x_0+br\rangle$ where x_0 is the random shift that caused problem

For each $x_0 \in \mathbb{Z}_M$, consider mapping $k \to k + x_0$ (shift by x_0) on \mathbb{Z}_M , which is a 1-1 invertible map.

So linear map $U(x_0)$ on \mathcal{H}_M defined by $U(x_0): |k\rangle \to |k+x_0\rangle$ is unitary, and $|x_0 + R\rangle = U(x_0)|R\rangle.$

Since $(\mathbb{Z}_M, +)$ is abelian, $U(x_0)U(x_1) = U(x_0 + x_1) = U(x_1)U(x_0)$ i.e. all $U(x_0)$'s commute as operators on \mathcal{H}_M .

So we have orthonormal basis of common eigenvectors $|\chi_k\rangle_{k\in\mathbb{Z}_M}$, called *shift* invariant states.

 $U(x_0)|\chi_k\rangle = \omega(x_0,k)|\chi_k\rangle$ for all $x_0,k\in\mathbb{Z}_M$ with $|\omega(x_0,k)|=1$. Now consider

 $|R\rangle$ written in $|\chi\rangle$ basis, $|R\rangle = \sum_{k=0}^{M-1} a_k |\chi_k\rangle$ where a_k 's depending on r (not x_0). Then $|per\rangle = U(x_0)|R\rangle = \sum_{k=0}^{M-1} a_k \omega(x_0, k)|\chi_k\rangle$, and measurement in the χ -basis has $prob(k) = |a_k \omega(x_0, k)|^2 = |a_k|^2$ which is independent of x_0 , i.e. giving information about r!

—Lecture 3—

Recall last time we had \mathcal{H}_M : shift operations $U(x_0)|y\rangle = |y+x_0\rangle$ for $x_0,y\in$

 \mathbb{Z}_M , which all permute, so have a common eigenbasis (shift invariant states)

 $\{|\chi_k\rangle\}_{k\in\mathbb{Z}_M},\ U(x_0)|x_k\rangle=\omega(x_0,k)|\chi_k\rangle.$ Measurement of $|x_0+R\rangle=\frac{1}{\sqrt{A}}\sum_{l=0}^{A-1}|x_0+l_r\rangle=U(x_0)|R\rangle$ in $|\chi\rangle$ basis has output distribution independent of x_0 , therefore gives information about r.

Introduce QFT as the unitary mapping that rotates χ -basis to standard basis, i.e. define $QFT|\chi_k\rangle = |k\rangle$. So QFT followed by measurement implements χ -basis

Explicit form of $|\chi_k\rangle$ eigenspaces (!): consider

$$|\chi_k\rangle = \frac{1}{\sqrt{M}} \sum_{l=0}^{M-1} e^{-2\pi i k l/M} |l\rangle$$

Then

$$\begin{split} U(x_0)|\chi_k\rangle &= \frac{1}{\sqrt{M}} \sum_{l=0}^{M-1} e^{-2\pi i k l/M} |l+x_0\rangle \\ &= \frac{1}{\sqrt{M}} \sum_{\tilde{l}=0}^{M-1} e^{-2\pi i k (\tilde{l}-x_0)/M} |\tilde{l}\rangle \text{ where } \tilde{l} = l+x_0 \\ &= e^{2\pi i k x_0/M} \cdot |\chi_k\rangle \end{split}$$

i.e. these are the shift invariant staets, eigenvalues $\omega(x_0,k)=e^{2\pi i k x_0/M}$.

Matrix of QFT: So

$$[QFT^{-1}]_{lk} = \frac{1}{\sqrt{M}}e^{-2\pi i lk/M}$$

(componets of $|\chi_k\rangle = QFT^{-1}|k\rangle$ as k^{th} column). So

$$[QFT]_{kl} = \frac{1}{\sqrt{M}}e^{2\pi i lk/M}$$

as expected.

2 The hidden subgroup problem (HSP)

Let G be a finite group of size |G|. Given (oracle for) function $f: G \to X$ (X is some set), and promise that there is a subgroup K < G such that f is constant on (left) cosets of K in G, and f is distinct on distinct cosets.

The problem: determine the *hidden subgroup* K (e.g. output a set of generators, or sample uniformly from K).

We want to solve in time $O(poly(\log |G|))$ (an efficient algorithm) with any constant probability $1 - \varepsilon$.

Examples of problems that can be cast(?) as HSPs:

(i) periodicity: $f: \mathbb{Z}_M \to X$, periodic with period r. Let $G = (\mathbb{Z}_m, +)$, the hidden subgroup is $K = \{0, r, 2r, ...\} < G$, cosets $x_0 + K = \{x_0, x_0 + r, x_0 + 2r, ...\}$. The period r is generator of K.

(ii) discrete logarithm: for prime p, $\mathbb{Z}_p^* = \{1, 2, ..., p-1\}$ with multiplication mod p. $g \in \mathbb{Z}_p^*$ is a generator (or primitive root mod p). If powers generate all of \mathbb{Z}_p^* , $\mathbb{Z}_p^* = \{g^0 = 1, g^1, ..., g^{p-2}\}$, then also $g^{p-1} \equiv 1 \pmod{p}$ (easy number theory). Fact: the generator always exists if p is prime. So any $x \in \mathbb{Z}_p^*$ can be written $x = g^y$ for some $y \in \mathbb{Z}_{p-1}$, write $y = \log_q x$ called the discrete log of x to base g.

Discrete log problem: given a generator g and $x \in \mathbb{Z}_p^*$, compute $y = \log_g x$ (classically hard).

To express as HSP, consider $f: \mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1} \to \mathbb{Z}_p^*$: $f(a,b) = g^a x^{-b} \mod p = g^{a-yb} \mod p$.

Then check: $f(a_1, b_1) = f(a_2, b_2)$ iff $(a_2, b_2) = (a_1, b_1) + \lambda(y, 1)$ where $\lambda \in \mathbb{Z}_{p-1}$.

So if $G = \mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1}$, $K = \{\lambda(y,1) : \lambda \in \mathbb{Z}_{p-1}\} < G$. Then f is constant and distinct on the cosets of K in G, and generator (y,1) gives $y = \log_a x$.

(iii) graph problems (G non-abelian now): consider undirected graph $A = \{V, E\}$, |V| = n, with at most one edge between any two vertices. Label vertices by $[n] = \{1, 2, ..., n\}$.

Introduce the permutation group \mathcal{P}_n of [n]. Define Aut(A) to be the group of automorphisms of A, which is a subgroup of \mathcal{P}_n , containing exactly the permutations $\pi \in \mathcal{P}_n$ such that for all $i, j \in [n]$, $(i, j) \in E \iff (\pi(i), \pi(j)) \in E$, i.e. the labelled graph $\pi(A)$ obtained by permuting labels of A by π is the same labelled graph as A.

Associated HSP: Take $G = \mathcal{P}_n$. Let X be set of all labelled graphs on n vertices. Given A, consider $f_A : \mathcal{P}_n \to X$ by $f_A(\pi) = \pi(A)$, A with labels permuted by π . The associated hiiden subroup is Aut(A) = K.

Application: if we can sample uniformly from this K, then we can solve graph isomorphism problem (GI): two labelled graphs A, B are isomorphic if there is 1-1 map $\pi: [n] \to [n]$ such that for all $i, j \in [n]$, i, j is an edge in A iff $\pi(i), \pi(j)$ is an edge in B, i.e. A and B are the same graph but just labelled differently.

Let's come back to the graph isomorphism problem.

Problem: given A, B, decide if $A \cong B$ or not. This can be expressed as a non-abelian HSP (on example sheet), no known classical polynomial time algorithm. However it is in NP, but it is not believed to be NP-complete.

Recent result (2017): a quasi-poly time classical algorithm (L.Babai).

Quantum algorithm for finite abelian HSP: Write group (G, +) additively.

Construction of shift invariant states and FT for G:

Let's introduce some representation theory for abelian group G. Consider mapping $\chi: G \to \mathbb{C}^* = (\mathbb{C} \setminus \{0\}, \cdot)$ satisfying $\chi(g_1 + g_2) = \chi(g_1)\chi(g_2)$, i.e. χ is a group homomorphism. Such χ 's are called *irreducible* representations of G. We have the following properties (without proof), which we'll call Theorem A later when we refer to it:

(i) any value $\chi(g)$ is a $|G|^{th}$ root of unity (so $\chi: G \to S^1 = \text{unit circle in } \mathbb{C}$);

(ii) (Schur's lemma, orthogonality): If χ_i and χ_j are representations, then $\sum_{g \in G} \chi_i(g) \bar{\chi}_j(g) = \delta_{ij} |G|$;

(iii) there are always exactly |G| different representations χ (well, this is a special case of general representation theory).

By (iii), we can label χ 's as χ_g for $g \in G$. For example, $\chi(g) = 1$ for all $g \in G$ is always an irreducible representation (the trivial representation), labelled χ_0 ; Then by orthogonality (ii) for any $\chi \neq \chi_0$ gives $\sum_{g \in G} \chi(g) = 0$.

Shift invariant states: in space $\mathcal{H}_{|G|}$ with basis $\{|g\rangle\}_{g\in G}$, introduce *shift operators* U(k) for $k\in G$ defined by $U(k):|g\rangle\to|g+k\rangle$. Clearly these all commute, so there is simultaneous eigenbasis:

For each χ_k , $k \in G$, consider state $|\chi_k\rangle = \frac{1}{\sqrt{|G|}} \sum_{g \in G} \bar{\chi}_k(g) |g\rangle$. Then theorem A(ii) implies these form orthonormal basis, and $U(g)|\chi_k\rangle = \chi_k(g)|\chi_k\rangle$.

Proof.

$$U(g)|\chi_k\rangle = \frac{1}{\sqrt{|G|}} \sum_{h \in G} \chi_k (h)|h + g\rangle$$

$$\stackrel{h' = h + g}{=} \frac{1}{\sqrt{|G|}} \sum_{h' \in G} \chi_k (h^{\bar{i}} - g)|h'\rangle$$

This implies that

$$\chi_k * -g) = (\chi_k(g))^{-1} = \chi_k(g),$$

 $\chi_k(h^{-1} - g) = \chi_k(h')\chi_k(-g) = \chi_k(h')\chi_k(g)$

So

$$U(g)|\chi_k\rangle = \frac{1}{\sqrt{|G|}} = \sum_{h' \in G} \chi_k(g)\bar{\chi}_k(h')|h'\rangle = \chi_k(g)|\chi_k\rangle$$

So $|\chi_k\rangle$'s are common eigenspaces, called *shift-invariant states*. Introduce (define) Fourier transform QFT for group G as the unitary that

 $QFT|\chi_g\rangle = |g\rangle$ for all $g \in G$. In $|g\rangle$ —basis matrices, k^{th} column of (QFT^{-1}) =components of $|\chi_k\rangle$, i.e. $\frac{1}{\sqrt{|G|}}\bar{\chi}_k(g) =$ So $[QFT]_{kg}^{\dagger} = \frac{1}{\sqrt{|G|}} \chi_k(g)$, and so $QFT|g\rangle = \frac{1}{\sqrt{|G|}} \sum_{k \in G} \chi_k(g)|k\rangle$.

Example. $G = \mathbb{Z}_M$. Check $\chi_a(b) = e^{2\pi i a b/M}$, $a, b \in \mathbb{Z}_M$ is a representation. Similarly, for $G = \mathbb{Z}_{M_1} \times ... \times \mathbb{Z}_{M_r}, (a_1, ..., a_r) = g_1, (b_1, ..., b_r) = g_2$ where $g_1, g_2 \in G$,

$$\chi_{g_1}(g_2) \stackrel{def}{=} e^{2\pi i \left(\frac{a_1 b_1}{M_1} + \dots + \frac{a_r b_r}{M_r}\right)}$$

is a representation of G. And we get

$$QFT_G = QFT_{M_1} \otimes ... \otimes QFT_{M_r}$$

on $\mathcal{H}_{|G|} = \mathcal{H}_{M_1} \otimes ... \otimes \mathcal{H}_{M_r}$.

This is exhaustive, since by classification theorem, every finite abelian group Gis isomorphic to a direct product of the form $G \cong \mathbb{Z}_{M_1} \times ... \times \mathbb{Z}_{M_r}$. Furthermore, we can insist that M_i are prime powers $p_i^{s_i}$, where p_i are not necessarily distinct.

Quantum algorithm for finite abelian HSP:

Let $f: G \to X$, hidden subgroup K < G. We have cosets $K = 0 + K, g_2 + G$ $K,...,g_m+K,$ where m=|G|/|K|. State space as usual, with basis $\{|g\rangle,|x\rangle\}_{g\in G,x\in X}.$ • make the state $\frac{1}{\sqrt{|G|}}\sum_{g\in G}|g\rangle|0\rangle;$

• Apply oracle U_f , get $\frac{1}{\sqrt{|G|}} \sum_{g \in G} |g\rangle |f(g)\rangle$;

measure second register to see a value $f(g_0)$.

Then first register gives coset state (remember the function is constant on each coset). $|g_0 + K\rangle = \frac{1}{\sqrt{|K|}} \sum_{k \in K} |g_0 + K\rangle = U(g_0)|K\rangle$.

Apply QFT and measure to obtain result $g \in G$.

—Lecture 5—

Last time we discussed how to solve the abelian HSP problem. Now how does the output g related to K?

• the output distribution of g is independent of g_0 , so same as that obtained from $QFT|K\rangle$ (i.e. $g_0=0$) since:

write
$$|K\rangle$$
 in shift invariant basis $|\chi_g\rangle$'s, $|K\rangle = \sum_g a_g |\chi_g\rangle$, then $|g_0 + K\rangle = U(g_0)|K\rangle = \sum_g a_g \underbrace{\chi_g(g_0)|\chi_g\rangle}_{=U(g_0)|\chi_g\rangle}$; but $QFT|\chi_g\rangle = |g\rangle$, so $Prob(g) = |a_g\chi_g(g_0)|^2 = \underbrace{U(g_0)|\chi_g\rangle}_{=U(g_0)|\chi_g\rangle}$

$$|a_g|^2$$
 as $\chi_g(g_0)| = 1$.

Thus look at $QFT|K\rangle$. Recall $QFT|k\rangle = \frac{1}{\sqrt{|G|}} \sum_{l \in G} \chi_l(k)|l\rangle$, so $QFT|K\rangle = \frac{1}{\sqrt{|G|}} \sum_{l \in G} \chi_l(k)|l\rangle$, so $QFT|K\rangle = \frac{1}{\sqrt{|G|}} \sum_{l \in G} \chi_l(k)|l\rangle$, so $QFT|K\rangle = \frac{1}{\sqrt{|G|}} \sum_{l \in G} \chi_l(k)|l\rangle$, so $QFT|K\rangle = \frac{1}{\sqrt{|G|}} \sum_{l \in G} \chi_l(k)|l\rangle$, so $QFT|K\rangle = \frac{1}{\sqrt{|G|}} \sum_{l \in G} \chi_l(k)|l\rangle$, so $QFT|K\rangle = \frac{1}{\sqrt{|G|}} \sum_{l \in G} \chi_l(k)|l\rangle$, so $QFT|K\rangle = \frac{1}{\sqrt{|G|}} \sum_{l \in G} \chi_l(k)|l\rangle$, so $QFT|K\rangle = \frac{1}{\sqrt{|G|}} \sum_{l \in G} \chi_l(k)|l\rangle$, so $QFT|K\rangle = \frac{1}{\sqrt{|G|}} \sum_{l \in G} \chi_l(k)|l\rangle$, so $QFT|K\rangle = \frac{1}{\sqrt{|G|}} \sum_{l \in G} \chi_l(k)|l\rangle$, so $QFT|K\rangle = \frac{1}{\sqrt{|G|}} \sum_{l \in G} \chi_l(k)|l\rangle$, so $QFT|K\rangle = \frac{1}{\sqrt{|G|}} \sum_{l \in G} \chi_l(k)|l\rangle$, so $QFT|K\rangle = \frac{1}{\sqrt{|G|}} \sum_{l \in G} \chi_l(k)|l\rangle$. $\frac{1}{\sqrt{|G|}}\frac{1}{\sqrt{|K|}}\sum_{l\in G}\left[\sum_{k\in K}\chi_l(k)\right]|l\rangle.$

The terms in [...] involves irreducible representation χ_l of G restricted to subgroup K < G, which is an irreducible representation of K. Hence

$$\sum_{k \in K} \chi_l(k) = \left\{ \begin{array}{ll} |K| & \chi_l \text{ restricts to trivial irreducible representation on } K \\ 0 & \text{otherwise} \end{array} \right.$$

and

$$QFT|K\rangle = \sqrt{\frac{|K|}{|G|}} \sum_{l \in G \text{ with } \chi_l \text{ reducing to trivial irreducible representation of } K} |l\rangle$$

So measurement gives a uniformly random choice of l such that $\chi_l(k) = 1$ for all $k \in K$.

e.g. If K has generators $k_1, k_2, ..., k_M, M = O(\log |K|) = O(\log |G|)$, then output has $\chi_l(k_i) = 1$ for all i.

It can be shown that if $O(\log |G|)$ such l's are chosen uniformly at random, then with probability > 2/3 they suffice to determine a generating set for K via equations $\chi_l(k) = 1$.

(see example sheet 1 for particular examples).

Example. If $G = \mathbb{Z}_{M_1} \times ... \times \mathbb{Z}_{M_q}$. We had for $l = (l_1, ..., l_q), g \in (b_1, ..., b_q) \in G$,

$$\chi_l(g) = e^{2\pi i(\frac{l_1 k_1}{M_1} + \dots + \frac{l_q b_q}{M_q})}$$

So for $k = (k_1, ..., k_q), \chi_l(k) = 1$ becomes

$$\frac{l_1k_1}{M_1}+\ldots+\frac{l_qk_q}{M_q}\equiv 0\pmod 1$$

(i.e. is an integer), a homogeneous linear equation on K, and $O(\log |K|)$ is independent such that equations determine K as null space.

Some remarks on HSP for non-abelian groups G (write multiplicatively): As before, can easily generate coset states

$$|g_0K\rangle = \frac{1}{\sqrt{|K|}} \sum_{k \in K} |g_0K\rangle$$

where g_0 's are randomly chosen. But problems arise with QFT construction, because now there's no basis of shift-invariant states exists! (this is since $U(g_0)$'s don't commute anymore, so no common full eigenbasis).

Construction of non-abelian Fourier Transform (some more representation theory):

- d-dimensional representation of G is a group homomorphism $\chi: G \to U(d)$ where U(d) is the space of $d \times d$ unitary matrices acting on \mathbb{C}^d , by $\chi(g_1g_2)\chi(g_1)\chi(g_2)$. (see part II representation theory for the general form)
- χ is irreducible representation if no subspace of \mathbb{C}^d is left invariant under $\chi(g)$ for all $g \in G$ (i.e. cannot simultaneously block diagonalise all $\chi(g)$'s by a basis change).
- a complete set of irreducible representation: set $\chi_1, ..., \chi_m$ such that any irreducible representation is unitarily equivalent to one of them (equivalence $\chi \to \chi' = V \chi V^T$).

Theorem. (non-abelian version of theorem A – properties of representations) If $d_1, ..., d_m$ are dimensions of a complete set of irreducible representations

 $\chi_1,...,\chi_m$, then:

(i) $d_1^2 + \dots + d_m^2 = |G|$;

(ii) Write $\chi_i(g)_{jk}$ for the $(j,k)^{th}$ entry of matrix $\chi_i(g)$, where $j,k=1,...,d_i$. Then (Schur orthogonality):

$$\sum_{g} \chi_{i}(g)_{jk} \bar{\chi}_{i'}(g)_{j'k'} = |G| \delta_{ii'} \delta_{jj'} \delta_{kk'}$$

Hence states

$$|\chi_{i,jk}\rangle \equiv \frac{1}{\sqrt{|G|}} \sum_{g \in G} \bar{\chi}_i(g)_{jk} |g\rangle$$

is an orthonomal basis.

• QFT on G defined to be the unitary that rotates $\{|\chi_{ijk}\rangle\}$ basis into standard basis $\{|g\rangle\}$. However, $|\chi_{ijk}\rangle$ are not shift invariant for all $U(g_0)$'s, and consequently measurement of coset state $|g_0K\rangle$ in $|\chi\rangle$ -basis gives an output distribution *not* independent of g_0 .

However, partial shift invariance survives: Consider the incomplete measurement M_{rep} on $|g_0K\rangle$ that distinguishes only the irreducible representations (i.e. i values) and not all (i, j, k)'s.

i.e. with measurement outcome i associated to d_i^2 -dimensional orthogonal subspaces spanned by $\{|\chi_{(i),jk}\rangle\}_{j,k=1,...,d_i}$.

Then $\chi_i(g_1, g_2) = \chi_i(g_1)\chi_i(g_2)$ implies output distribution of i values is independent of g_0 , giving direct, albeit imcomplete, information about K. E.g. conjugate subgroups K and $= g_0 K g_0^{-1}$ for some $g_0 \in G$ give same output

distribution.

—Lecture 6—

Non-abelian $\operatorname{HSP}/\operatorname{FT}$ remarks:

For efficient HSP algorithm, we also need QFT to be efficiently implementable, i.e. $poly(\log |G|)$ -time.

This is true for any abelian G and some non-ablien G's (such as \mathcal{P}_n), but even in latter case there's no known efficient HSP algorithm.

Some known result:

for normal subgroups, i.e. gK = Kg for all $g \in G$:

Theorem. (Hallgrer, Russell, Tashma, SIAM J.Comp 32 p916-934 (2003)) Suppose G has efficient QFT. Then if hidden subgroup K is normal, then there is an efficient HSP quantum algorithm.

(Construct coset state $|g_0K\rangle$, perform M_{rep} on it.)

Repeat $O(\log |G|)$ times. Then K normal implies outputs suffice to determine K.

Theorem. (Ettinger, Hoyer, Knill)

For general non-abelian HSP, $M = O(poly(\log |G|))$ random coset states $|g_1K\rangle,...,g_MK\rangle$ suffice to determine K from M coset states, but it's not efficient.

See example sheet for a proof – construct a measurement procedure on $|g_1K\rangle \otimes$... $\otimes g_M K$ to determine K, but it takes exponential time in $\log |G|$.

The phase estimation algorithm:

- a unifying principle for quantum algorithms, uses QFT_{2^n} again.
- many applications, e.g. an alternative efficient factoring algorithm (A.Kitaev).

Given unitary operator \mathcal{U} and eigenstate $|v_{\phi}\rangle \cdot \mathcal{U}|v_{\phi}\rangle = e^{2\pi i \phi}|v_{\phi}\rangle$, we want to estimate phase ϕ , where $0 \le \phi < 1$ (to some precision, say to n binary digits).

We'll need controlled- U^k for integers k, writte $C-U^k$, which satisfies $c-U^k|0\rangle|\xi\rangle=|0\rangle|\xi\rangle$, $C-U^k|1\rangle|\xi\rangle=|1\rangle U^k|\xi\rangle$, where $|\xi\rangle$ in general has dimension d

Note $U^k|v_{\phi}\rangle = e^{2\pi i k \phi}|v_{\phi}\rangle$, $C - (U^k) = (C - U)^k$.

Remark. Given U as a formula or (arant?) description, we can readily implement C-U, e.g. just control each gate of U's circuit.

However, if U is given as a black box, we need further info:

• it suffices to have an eigenstate $|\alpha\rangle$ with known eigenvalue $U|\alpha\rangle=e^{i\alpha}|\alpha\rangle$: We can consider

Where we get $CU|a\rangle|\xi\rangle$ at the first two row and the third row $|\alpha\rangle$ is always unchanged.

To see how it works, just check circuit action. (...)

We'll actually want generalised controlled-U with $|x\rangle|\xi\rangle \to |x\rangle U^x|\xi\rangle$, where $|x\rangle$ has n qubits, i.e. $x \in \mathbb{Z}_{2^n}$.

We can make this thing from $C - (U^k)$ as follows:

We get $|x\rangle U^x|\xi\rangle$, where $x=x_{n-1}...x_1x_0$ binary, $U^x=U^{2^{x_{n-1}}}...U^{2^{x_1}}U^{2^{x_0}}$. Note: if input $|\xi\rangle=|v_\phi\rangle$, then get $e^{2\pi i\phi x}|v_\phi\rangle$.

Now suppose over all $x=0,1,...,2^{n-1}$ and use $|\xi\rangle=|v_{\phi}\rangle,$

Where the output is $\frac{1}{\sqrt{2^n}} \sum_x e^{2\pi i \phi x} |x\rangle$, we call this state $|A\rangle$.

Finally apply $QFT_{2^n}^{-1}$ to $|A\rangle$ and measure to see $y_0,...,y_{n-1}$ on lines 0,1,...,n-1. Then output $0.y_0...y_{n-1}=\frac{y_0}{2}+...+\frac{y_{n-1}}{2^{n-1}}$, as the estimate of ϕ . That's the phase estimation algorithm (for given U and $V_{\phi}\rangle$).

Suppose ϕ actually had only n binary digits, i.e. ϕ exactly equals $0.z_0z_1...z_{n-1}$ for some $z_k=0,1$ for all k.

Then $\phi = \frac{z_0...z_{n-1}}{2^n} = \frac{z}{2^n}$ where z is n-bit integer in \mathbb{Z}_{2^n} , and

$$|A\rangle = \frac{1}{\sqrt{2^n}} \sum_{x} e^{2\pi i x z/2^n} |x\rangle$$

is QFT_{2^n} of $|z\rangle$.

So $QFT^{-1}|A\rangle = |z\rangle$ and get ϕ exactly, with certainty.

In this case the algorithm up to (not including) final measurements is a unitary operation, mapping $|0\rangle...|0\rangle|v_{\phi}\rangle \rightarrow |z_0\rangle...|z_{n-1}\rangle|v_{\phi}\rangle$.

—Lecture 7— Phase Estimation (continued):

U is a $d \times d$ unitary operation/matrix with eigenstate $U|v_{\phi}\rangle = 2^{2\pi i \phi}|v_{\phi}\rangle$, and we want to estimate ϕ .

U as a quantum physical operation is equivalent to $\tilde{U} = e^{i\alpha}U$ for any α and \tilde{U} has $\phi \to \phi + \alpha/2\pi$.

So if U given as quantum physical operation alone, we cannot determine ϕ . But controlled versions different: C-U and C-U are different as physical operations (set $\{e^{i\alpha}C-U\}_{\alpha}\neq\{e^{i\alpha}C-\tilde{U}\}_{\alpha}$), and $C-U/\tilde{U}$ does fix ϕ associatied to choice of phase α .

So quantum phase estimation algorithm use C-U $(C-U^{2^k})$ physical operations (not just U's).

We had
$$\underbrace{|0\rangle...|0\rangle}_{r} |v_{\phi}\rangle \xrightarrow[C-U's]{\text{unitary}}_{r} |A\rangle = \frac{1}{\sqrt{2^{n}}} \sum_{x=0}^{2^{n}-1} e^{2\pi i \phi x} |x\rangle$$
 (*n* qubits).

Apply QFT^{-1} we get $QFT^{-1}|A\rangle$, measure to see $y_0,...,y_{n-1}$; output $\phi=\frac{(y_0y_1...y_{n-1})}{2^n},\ 0\leq y<2^{n-1}$, where the numerator is a n-bit integer.

If $\phi = \frac{z}{2^n}$ for integer $0 \le z < 2^n$, i.e. ϕ has exactly n binary digits, then $|A\rangle = QFT|z\rangle$, so we get z with certainty in the measurement.

Now suppose ϕ has more than n bits, say $\phi = 0.z_0 z_1 z_2 ... z_{n-1} | z_n z_{n+1} ...$ Then we have:

Theorem. (PE) If measurement in above algorithm give $y_0,...y_{n-1}$ (so output is $\theta = 0.y_0...y_{n-1}$), then

(a) $\mathbb{P}(\theta \text{ is closet } n \text{ binary digit approximate to } \phi) \geq 4\pi^2;$ (b) $\mathbb{P}(|\theta - \phi| \geq \varepsilon)$ is at most $P(\frac{1}{2^n\varepsilon})$ (we'll show it's at most $\frac{1}{2^{n+1}\varepsilon}$).

Remark. In (a), we have probability $\frac{4}{\pi^2}$ that all n lines of n-line QPE process

But, if we want ϕ accurate to m bits with probability $1-\eta$, then we use theorem (PE) (b) with $\varepsilon = 1/2^m$. Then we'll use n > m lines with

$$\frac{1}{2^{n+1}}\varepsilon=\eta, \varepsilon=\frac{1}{2^m}$$

i.e. $n = m + \log(1/\eta) + 1$. In words, number of lines needed is only number of bits wanted with good probability $1 - \eta$ plus a modest polynomial increase for exponetial reduction in η .

Proof. We have

$$QFT^{-1}|x\rangle = \frac{1}{\sqrt{2^n}} \sum_{y=0}^{2^n - 1} e^{-2\pi i y x/2^n} |y\rangle$$

So

$$QFT^{-1}|A\rangle = \frac{1}{2^n} \sum_{y} \left[\sum_{x} e^{2\pi i (\phi - y/2^n)x} \right] |y\rangle$$

So for measurement,

$$\mathbb{P}(\text{see } n - \text{ bit integer } y = y_0 y_1 ... y_{n-1}) = \frac{1}{2^{2n}} \left| \sum_{x=0}^{2^{n-1}} e^{2\pi i \underbrace{\left(\phi - \frac{y}{2^n}\right)_x}_{:=\delta(y)}} \right|^2$$

Note that this is a geometric series $e^{2\pi i\delta(y)}$, so

$$\mathbb{P}(\text{see } y) = \frac{1}{2^{2n}} \left| \frac{1 - e^{2^n 2\pi i \delta(y)}}{1 - e^{2\pi i \delta(y)}} \right|^2$$

Let's call this equation (P) (maybe for *phase*).

We want to bound/estimate this expression.

For (a): Let $y = a = a_0 a_1 ... a_{n-1}$ give closest n-bit approximation to ϕ , i.e. $|\phi - \frac{a'}{2^n}| \le \frac{1}{2^{n+1}}$, i.e. $\delta(a) \le \frac{1}{2^{n+1}}$. Now we bounds:

 $\begin{array}{l} \text{(i) } |1-e^{i\alpha}|=|2\sin\frac{\alpha}{2}|\geq\frac{2}{\pi}|\alpha| \text{ if } |\alpha|<\pi; \\ \text{(ii) } |1-e^{2\pi i\beta}|\leq 2\pi\beta. \end{array}$

In equation (P), use (i) with $\alpha = 2^n \cdot 2\pi \delta(a) \le 2^n 2\pi \frac{1}{2^{n+1}} \le \pi$ to lower bound top line, and (ii) with $\beta = \delta(a)$ to upper bound bottom line, get

$$\mathbb{P}(\text{see } a) \ge \frac{1}{2^{2n}} \left(\frac{2^{n+1}\delta(a)}{2\pi\delta(a)} \right)^2 = \frac{4}{\pi^2}$$

For (b), we want to upper bound equaiton (P): for top line, $|1 - e^{i\alpha}| \le 2$ for any α ; for bottom, use (i) get $|1 - e^{2\pi i \delta(y)}| \ge 4\delta(y)$. So

$$\mathbb{P}(y) \le \frac{1}{2^{2n}} \left(\frac{2}{4\delta(y)}\right)^2 = \frac{1}{2^{2n+2}} \delta(y)^2$$

Now sum this for all $|\delta(y)| > \varepsilon$, $\delta(y)$ values spaced by $1/2^n$'s. Let δ_+ be first $\begin{array}{l} \delta(y) \text{ (jumps?) with } \delta(y) \geq \varepsilon, \ \delta_- \text{ be that with } \delta(y) \leq -\varepsilon. \text{ So } |\delta_+|, |\delta_-| \geq \varepsilon. \\ \text{Then if } |\delta(y)| \geq \varepsilon, \text{ we have } \delta(y) = \delta_+ + \frac{k}{2^n}, \ k = 0, 1, ..., \text{ or } = \delta_- - \frac{k}{2^n}, \ k = 0, 1, \end{array}$ So $|\delta(y)| \ge \varepsilon + \frac{k}{2^n}$ with k = 0, 1, 2, ... in each case.

So

$$\begin{split} \mathbb{P}(|\delta(y)| > \varepsilon) &\leq 2 \sum_{k=0}^{\infty} \frac{1}{2^{2n+2}} \frac{1}{(\varepsilon + \frac{k}{2^n})^2} \\ &\leq \frac{1}{2} \int_0^{\infty} \frac{1}{(2^n \varepsilon + k)^2} dk \\ &= \int_{2^n \varepsilon}^{\infty} \frac{dk}{k^2} \\ &= \frac{1}{2^{n+1} \varepsilon} \end{split}$$

Further remarks on QPE algorithm:

(1) If $C-U^{2^k}$ is implemented as $(C-U)^{2^k}$, the QPE algorithm needs exponential time in n as we have $1+2+\ldots+2^{n-1}=2^n-1$ (C-U) gates.

However, for some special U's, $C - U^{2^k}$ can be implemented in poly(k) time, so we get a poly time QPE algorithm.

It can be used to provide alternative facoring (order finding) algorithm (due to A. Kitaev) using PE.

—Lecture 8—

First exercise class: Saturday 3 Nov 11am MR4.

(2) If instead of $|v_{\phi}\rangle$, use general input state $|\xi\rangle$:

$$|\xi\rangle = \sum_{j} c_{j} |v_{\phi_{j}}\rangle$$

$$U|v_{\phi_i}\rangle = e^{2\pi i \phi_j}|v_{\phi_i}\rangle$$

Then we get in QPE (before final measurement) a unitary process U_{PE} with (lecturer had that) effect

$$|0...0\rangle|\xi\rangle \xrightarrow{U_{PE}} \sum_{j} c_{j}|\phi_{j}\rangle|v_{\phi_{j}}\rangle$$

and final measurement will give a choice of ϕ_j 's (or approximation) chosen with probabilities $|c_j|^2$.

Example. Implement $QFT_{\mathcal{Q}}$ for \mathcal{Q} not a power of 2, with a quantum curcuit of 1– and 2– qubit gates of circuit size $O(poly(\log \mathcal{Q}))$ (Kitaev's method).

Remark. For $Q = 2^m$, we have explicit known circuit of $O(m^2)$. H and C-phase gate to implement QFT_{2^m} exactly (cf part II QIC Notes).

For $QFT_{\mathcal{Q}}$: Introduce

$$|\eta_a\rangle = QFT_{\mathcal{Q}}|a\rangle = \frac{1}{\sqrt{\mathcal{Q}}} \sum_{b=0}^{\mathcal{Q}-1} \omega^{ab}|b\rangle, a \in \mathbb{Z}_{\mathcal{Q}}, \omega = e^{2\pi i/\mathcal{Q}}$$

It suffices to make circuit hat does $|a\rangle \rightarrow |\eta_a\rangle$ (*).

Let $2^{m-1} < \mathcal{Q} < 2^m$, and set $M = 2^m$, view $\mathcal{H}_{\mathcal{Q}}$ as subspace of m qubits (spanned by $|a\rangle : 0 \le a < \mathcal{Q} - 1 < 2^m$).

To achieve (*), consider instead on $\mathcal{H}_{\mathcal{Q}} \otimes \mathcal{H}_{\mathcal{Q}}$

$$|a\rangle|0\rangle \xrightarrow{(1)} |a\rangle|\eta_a\rangle \xrightarrow{(2)} |0\rangle|\eta_a\rangle$$

(1): get η_a from $|a\rangle$ while remembering $|a\rangle$;

(2): $erase/forget |a\rangle$.

For (1), first do $|0\rangle \to |\xi\rangle = \frac{1}{\sqrt{\mathcal{Q}}} \sum_{b=0}^{\mathcal{Q}-1} |b\rangle$ as follows:

on m qubits $\mathcal{H}^{\otimes m}$ gives $\frac{1}{\sqrt{M}} \sum_{x=0}^{2^m-1} |x\rangle$. Then consider the step function f(x) = 0 if $x < \mathcal{Q}$ and 1 if $x \ge \mathcal{Q}$. It's classically efficiently computable, so can efficiently implement U_f on (m+1) qubits.

So applying U_{ρ} to $(H^{\otimes m}|0\rangle)|0\rangle$ and measure output $(m+1^{st})$ qubit to get $|\xi\rangle$

on first n qubits if measurement result is 0. Note that prob(0) > 1/2 as $Q > 2^{m-1} = 2^m/2$, so we can use multiple trials to

We can do offline: failures/re-tries do not affect state to which we want to apply $QFT_{\mathcal{Q}}$. So now we have $|\tilde{\xi} = |a\rangle \left(\frac{1}{\sqrt{\mathcal{Q}}} \sum_{b=0}^{\mathcal{Q}-1} |b\rangle\right)$.

Next consider $V|a\rangle|b\rangle = \omega^{ab}|a\rangle|b\rangle$.

Then $V|\tilde{\xi}\rangle = |a\rangle|\eta_a\rangle$ as we want for (1).

To implement V, consider

$$U:|b\rangle o \omega^b|b\rangle$$

If $|b\rangle$ in m qubits given by $|b_{m-1}\rangle...|b_0\rangle$, i.e. $b=b_{m-1}...b_0$ in binary, then $\omega^b = \omega^{b_{m-1}2^{m-1}}...\omega^{b_02^0}$. So U is product of 1-qubit phase gates

$$P(\omega^{2^{m-1}}) \otimes ... \otimes \mathbb{P}(\omega^{2^0})$$

where $P(\xi) = Diag(1, \xi), |\xi| = 1$ is a phase gate.

Similarly, for $C - U^{2^k}$ (starting with $U \to U^{2^k}$ i.e. $\omega^b \to \omega^{2^k b}$), and V =generalised C-U:

$$|a\rangle|b\rangle \xrightarrow{V} |a\rangle U^a|b\rangle$$

which is constructed as before, from $C - U^{2^k}$'s.

So now we have $|a\rangle|0\rangle \xrightarrow{(1)} |a\rangle|\eta_a\rangle$.

For (2), i.e. $|a\rangle|\eta_a\rangle \xrightarrow{(2)} |0\rangle|\eta_a\rangle$, if we had U with eigenstates $|\eta_a\rangle$, eigenvalues $\omega^a = e^{2\pi i a/\mathcal{Q}}$, then U_{PE} would give

$$|0\rangle|\eta_a\rangle \xrightarrow{U_{PE}} |a\rangle|\eta_a\rangle$$

(we are a bit loose on how information is presented – writing eigenvalue output as a, and note we are assuming that PE works exactly)

Hence U_{PE}^{-1} (inverse gates taken in reverse order) would give desired (2)!

Consider $U: |x\rangle \to |x-1 \mod \mathcal{Q}\rangle$, and check that $U|\eta_a\rangle = \omega^a|\eta_a\rangle$ as wanted. Now note $x \to x - k \mod \mathcal{Q}$ for $k \in \mathbb{Z}_{\mathcal{Q}}$ is classically computable in $poly(\log \mathcal{Q})$ time, thus we also have $U^k: |x\rangle \to |x-k \mod \mathcal{Q}\rangle$, and PE algorithm with

 $m = O(\log(Q))$ lines.

Then implementing (1) then (2) gives $poly(\log Q)$ sized circuit for QFT_Q .

But PE is not exact. However, using more qubit lines $(O(\log 1/\varepsilon) \text{ lines})$, we can achieve (by theorem PE(b))

$$|0\rangle|\eta_a\rangle \xrightarrow{U_{PE}} (\sqrt{1-\varepsilon}|a\rangle + \sqrt{\varepsilon}|a^{\perp}\rangle)|\eta_a\rangle$$

(where a^{\perp} is a state orthogonal to $|a\rangle$) for any (small) deserved ε . Then

$$|| |a\rangle - \sqrt{1-\varepsilon}|a\rangle + \sqrt{\varepsilon}|a^{\perp}\rangle || = O(\sqrt{\varepsilon})$$

So

$$||U_{PE}^{-1}|a\rangle|\eta_a\rangle - |0\rangle|\eta_a\rangle|| = O(\sqrt{\varepsilon})$$

(as unitaries preserve lengths). So we can approximate $QFT_{\mathcal{Q}}$ to any desired precision (omit details).

$\mathbf{3}$ Amplitude Amplification

Note that this is a very good name – a fifth order literation (both starting with

Apothesis of technique in Grover's algorithm.

Some background:

We'll make much use of reflection operators.

—Lecture 9—

A reminder that we don't have lecture next thursday.

Reflection operators:

• State $|\alpha\rangle$ in $\mathcal{H}_d \to 1$ -dimensional subspace L_α and (d-1)-dimensional orthogonal complement L_{α}^{\perp}

$$I_{|\alpha\rangle} \stackrel{def}{=} I - 2|\alpha \times \alpha|$$

has $I_{|\alpha\rangle}|\alpha\rangle = -|\alpha\rangle$, $I_{|\alpha\rangle}|\beta\rangle = |\beta\rangle$ for any $|\beta\rangle \perp |\alpha\rangle$. So $I_{|\alpha\rangle}$ is reflection in (d-1)-dimensional subspace L_{α}^{\perp} .

Note that for any unitary U, $UI_{|\alpha\rangle}U^{\dagger} = I_{U|\alpha\rangle}$, since $U|\alpha \times \alpha|Y^{\dagger} = |\xi \times \xi|$ of $\xi = U|\alpha\rangle$ (basically a change of basis).

• Take k-dimensional subspace $A \subseteq \mathcal{H}_d$, and any orthonormal basis $|a_1\rangle, ..., |a_k\rangle$.

Then $P_A = \sum_{i=1}^k |a_i \times a_i|$ is projection operator into A. Define $I_A = I - 2P_A$. Then we have $I_A |\xi\rangle = |\xi\rangle$ if $|\xi\rangle \in A^{\perp}$, and $I_A |\xi\rangle = -|\xi\rangle$ if

So I_A is reflection in (d-k) dimensional mirror A^{\perp} .

Recap of Grover's algorithm (part II notes page 68-73):

• search for unique good item in unstructured database of $N=2^n$ items for malised as: (write B_n to be the set of all n-bit strings, $N=2^n$): Given oracle for $f: B_n \to B$, promised that there is unique $x_0 \in B_n$ with $f(x_0) = 1$, and we wish to find x_0 .

This is closely related to class NP and Boolean satisfiability problem (see part II notes p 67-68).

Using one query to (n+1)-qubit \mathcal{U}_f , we can implement reflection operator $I_{|x_0\rangle}: |x\rangle \to |x\rangle$ if $x \neq x_0$, and to $-|x\rangle$ if $x = x_0$.

(viz. apply \mathcal{U}_f to $|x\rangle(\frac{|0\rangle-|1\rangle}{\sqrt{2}}$) and discard the last qubit.) Then consider *Grover iteration operator* on n qubits:

$$Q \stackrel{def}{=} -H_n I_{|0...0\rangle} H_n I_{|x_0\rangle} = -I_{|\psi_0\rangle} I_{|x_0\rangle}$$

here $H_n = H \otimes H \otimes ... \otimes H = H_n^{\dagger}$, and $|\psi_0\rangle = H^n |0...0\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in B_n} |x\rangle$. So one application of Q uses 1 query to \mathcal{U}_f .

Theorem. (Grover, 1996)

In 2-dimensional span of $|\psi_0\rangle$ and (unknown) $|x_0\rangle$, the action of Q is rotation by angle 2α where $\sin \alpha = \frac{1}{\sqrt{N}}$.

Hence (Grover's algorithm) to find x_0 given U_f :

- 1. Make $|\psi_0\rangle$;
- 2. Apply Q m times where $m = \frac{\arccos(\frac{1}{\sqrt{N}})}{2\arctan(frac1\sqrt{N})}$ to rotate $|\psi_0\rangle$ very close to $|x_0\rangle$.
- 3. Measure to see x_0 with high probability $\sim 1 \frac{1}{N}$.

For large N, $\arccos(\frac{1}{\sqrt{N}}) \approx \pi/2$, $\arcsin(\frac{1}{\sqrt{N}}) \approx \frac{1}{\sqrt{N}}$ so $m = \frac{\pi}{4}\sqrt{N}$ iterations/queries to U_f suffice.

Classically we need O(N) queries to see x_0 with any *constant* probability (independent of N), so get *square-root* speed up quantumly.

Amplitude Amplification:

Let G be any subspace (good subspace) of state space \mathcal{H} , and G^{\perp} is orthogonal complement (bad subspace) $\mathcal{J} = G \oplus G^{\perp}$.

Given any $|\psi\rangle \in \mathcal{H}$, we have unique decomposition with real positive coefficients

$$|\psi\rangle = \sin\theta |g\rangle + \cos\theta |b\rangle$$

where $|g\rangle \in G$, $|b\rangle \in G^{\perp}$ normalised. Introduce reflections: flip $|\psi\rangle$ and good vectors: $I_{|\psi\rangle} = I - 2|\psi \times \psi|$, $I_G = I - 2P_G$ (projection into G), so $\sin\theta = ||P_G|\psi\rangle||$ is the length of good projection.

Introduce
$$Q \stackrel{def}{=} -I_{|\psi\rangle}I_G$$
.

Theorem. (Amplitude Amplification)

In the 2-dimensional subspace spanned by $|g\rangle$ and $|\psi\rangle$ (or equivalently by orthonormal vectors $|g\rangle$ and $|b\rangle$), Q is rotation by 2θ where $\sin\theta$ is the length of good projection of $|\psi\rangle$.

Proof. We have $I_G|g\rangle = -|g\rangle$, $I_G|b\rangle = |b\rangle$. So $Q|g\rangle = +I_{|\psi\rangle}|g\rangle$, $Q|b\rangle = -I_{|\psi\rangle}|b\rangle$. Now

$$\begin{split} I_{|\psi\rangle} &= I - 2(\sin\theta|g\rangle + \cos\theta|b\rangle)(\sin\theta\langle g| + \cos\theta\langle b|) \\ &= I - 2[\sin^2\theta|g\times g| + \sin\theta\cos\theta|g\times b| + \sin\theta\cos\theta|b\times g| + \cos^2\theta|b\times b|]|b\rangle \end{split}$$

And direct calculation (using $\langle g|b\rangle=0,\,\langle g|g\rangle=\langle b|b\rangle=1$) gives

$$Q|b\rangle = I_{|\psi\rangle}|b\rangle$$

$$= 2\sin\theta\cos\theta|g\rangle - (1 - 2\cos^2\theta)|b\rangle$$

$$= \cos 2\theta|b\rangle + \sin 2\theta|g\rangle$$

and
$$Q|g\rangle = +I_{|\psi\rangle}|g\rangle = -\sin 2\theta|b\rangle + \cos 2\theta|g\rangle$$
.
So in $\{|b\rangle, |g\rangle\}$ basis, matrix of Q is exactly the matrix of rotation by 2θ .

—Lecture 10—

Let's continue on Amplitude Amplification.

Last time we showed that $Q = -I_{|\psi\rangle}I_g$ is the rotation through 2θ in the plane of $|\psi\rangle$ and $|g\rangle$, i.e. in $|b\rangle$ and $|g\rangle$ (orthonormal).

So $Q^n|\psi\rangle = \sin(2n+1)\theta|g\rangle + \cos(2n+1)\theta|b\rangle$, and if we measure $Q^n|\psi\rangle$ for good vs bad, we get $prob(good) = \sin^2(2n+1)\theta$.

We want to maximize this: it is maximised when $(2n+1)\theta = \pi/2$, i.e. $n = \frac{\pi^2}{4\theta} - \frac{1}{2}$.

Example. If we had $\theta = 4/6$, then $n = \frac{\pi}{4\theta} - \frac{1}{2} = 1$ is an exact integer. So Q^1 rotates $|\psi\rangle$ exactly onto $|g\rangle$, so we see good result with certainty!

Generally, for given θ , n is not an integer. So we use n to be the nearest integer to $(\frac{\pi}{4\theta} - \frac{1}{2}) \approx \frac{\pi}{4\theta}$ (for small θ), which equals $O(\frac{1}{\theta} = O(\frac{1}{\sin \theta}) = O(\frac{1}{||good\ proj\ of\ ||\psi||})$), and $Q^n|\psi\rangle$ will be within angle $\pm\theta$ of $|g\rangle$, so probability of good result is at least $\cos^2\theta \approx 1 - O(\theta^2)$.

All this can be implemented oif $I_{|\psi\rangle}$ and I_G can be implemented. See example sheet – for I_G , suffices for G to be spanned by computational basis states $|x\rangle$'s, and indicator function f(x)=1 for x good and 0 for x bad efficiently computable. For $I_{|\psi\rangle}$, usally have $|\psi\rangle=H_n|00...0\rangle$ (H is the Hadamard gate). Then $I_{|\psi\rangle}$ can be implemented in linear O(n) time.

Notes:

- (1) In AA process, relative amplitudes of good labels in $|g\rangle$ stay same as they were in $|\psi\rangle = \sin\theta |g\rangle + \cos\theta |b\rangle$.
- (2) Final state is generally not exactly $|g\rangle$, but if $\sin \theta$ is known, then we can modify AA process to make it exact, i.e. giving $|g\rangle$ state exactly (see example sheet).

Applications of AA:

(1) Grover Search with one or more (k) good items in N:

$$\begin{split} |\psi\rangle &= |\psi_0\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in B_n} |x\rangle \\ &= \sqrt{\frac{k}{N}} \left(\frac{1}{\sqrt{k}} \sum_{good \ |g\rangle} |x\rangle \right) + \sqrt{\frac{N-k}{N}} \left(\frac{1}{\sqrt{N-k}} \sum_{x \ bad} |x\rangle \right) \end{split}$$

G spanned by good x's, $\sin \theta = \frac{k}{n}$ so Q is rotation through 2θ , $\theta = \arcsin \sqrt{k/N} \approx \sqrt{k/N}$, where $k \ll N$; and we only need $O(\sqrt{N/k})$ queries.

Note: for 2-bit case, N=4 with k=1 good item; we have $\theta=\arcsin(1/2)=\pi/6$, so one application of Q rotates $|\psi_0\rangle$ exactly onto $|x_{good}\rangle$, i.e. a *single* query suffices to find a unique good item in four, with certainty!

(2) Square-root sppedup of general quantum algorithms:

Let A be a quantum algorithm/circuit (sequence of unitary gates). on input, say $|0...0\rangle$. So final state is $A|0...0\rangle$.

Good labels = desired computational outcomes

$$A|0.000\rangle = \alpha|a\rangle + \beta|b\rangle, \alpha = \sin\theta$$

where $|a\rangle$ is normalised, genrally unequal superposition $\sum_{good\ x} c_x |x\rangle$. So $Prob(\text{success in 1 run}) = |\alpha|^2$, so $O(\frac{1}{|\alpha|^2})$ repetitions of A needed to succeed with any constant high probability $1 - \varepsilon$.

Instead use AA: assumed we can check if answer is good or bad (e.g. factoring). So we can then implement $I_G: |x\rangle \to -|x\rangle$ if x is good, and $\to |x\rangle$ if x is bad. Consider $|\psi\rangle = A|0...0\rangle$ and $Q = -I_{A|0...0\rangle}I_G = -(AI_{|0...0\rangle}A^{\dagger})I_G$. All parts are implementable (A is the algorithm, A^{\dagger} is inverse gate in reverse order, and $I_{|0...0\rangle}$ see example sheet).

By AA theorem, Q is rotation through 2θ , where $\sin\theta=|\alpha|$. So after $n\approx\frac{\pi}{4\theta}=$ $O(\frac{1}{\theta}) = O(\frac{1}{\sin \theta}) = O(\frac{1}{|\alpha|})$ (for small $|\alpha|$). Repetitions $A|0...0\rangle$ will be rotate very near to $|g\rangle$, and final measurement will

succeed with high probability.

Each application of Q needs one A and one A^{\dagger} ; A^{\dagger} is the inverse gate in reverse order, i.e. the time complexity is the same, i.e. $O(\frac{1}{|\alpha|})$ repetition of Q gives square root time speed up over direct method.

Also, if success probability of A (i.e. $|\alpha|^2$) is known, then *improved* modification of the AA process that is exact can be applied; we convert probabilistic algorithm A into deterministic one, giving a good outcome with certainty.

23

4 Quantum Counting

Given $f: B_n \to B$ a boolean function with an unknown number k good x's, we want ot *estimate* k (rather than just find some good x).

Recall that Grover operator Q_G for f is rotaion through 2θ in 2-dimensional space of $|\psi_0| = \frac{1}{\sqrt{2^n}} \sum_{x \in B_n} |x\rangle$ and its good projection $|g\rangle = \frac{1}{\sqrt{k}} \sum_{good\ x} |x\rangle$, with $\sin \theta = \sqrt{k/N} \approx \theta$ for $k \ll N$.

24

5 Example Class 1

5.1 Question 1

Basic representation theory exercises. For details see Part II Representation Theory.

5.2 Question 2

Let $G = (\mathbb{Z}_2^n, \oplus)$ where \oplus is componentwise-addition. Subgroup K generated by $a_1...a_k$, $K = \{b_1a_1 \oplus ... \oplus b_ka_k : b_1, ..., b_k \in \mathbb{Z}_2\}$. Note that K has size 2^k if a_i 's are LI, and so does any coset of K.

Then $f(x) = f(x \oplus a_i)$ for all a_i 's $\equiv f$ constant on cosets of K. f is 2^k -to-1: a_k 's all linearly independent and f different on different cosets.

Shift invariant states: For \mathbb{Z}_2 irreps are $\chi_a(x) = (-1)^{ax}$, $a, x \in \mathbb{Z}_2$ (-1 is the 2nd root of unity). So irreps on $(\mathbb{Z}_2)^n$ are $\chi_a(x) = (-1)^{a_1x_1}...(-1)^{a_nx_n}$ where $a = a_1...a_n$, $x = x_1...x_n$ are in \mathbb{Z}_2^n .

We also introduce a dot product $a \cdot x = a_1 x_1 \oplus ... \oplus a_n x_n \in \mathbb{Z}_2$ where \oplus here is + modulo 2.

So shift invariant states

$$|\chi\rangle = \frac{1}{\sqrt{|G|}} \sum_{q} \overline{\chi(g)} |g\rangle$$

So

$$|\chi_a\rangle = \frac{1}{\sqrt{2^n}} \sum_{b \in \mathbb{Z}_2^n} (-1)^{a \cdot b} |b\rangle$$

in n qubits. So

$$(QFT)_{alr(?)} = \frac{1}{\sqrt{2^n}} (-1)^{a \cdot b} = \frac{1}{\sqrt{2^n}} (-1)^{a_1 b_1} ... (-1)^{a_n b_n}$$

so $QFT = H \otimes H \otimes ... \otimes H$ where H is the Hadamard gate.

For second part, it's just calculation:

Probability that first string is LI is $1 - 2^{-m}$ (just exclude 0...0);

Probability that first 2 strings are LI given the first is is $1 - 2/2^m$ (i.e. as 1st string x_1 spans 2 strings, namely 0...0 and x_1).

...Probability that first j strings are LI given the first j-1 are is $1-2^{j-1}/2^m$. So by Bayes rule, probability that all of them are LI is $(1-1/2^m)...(1-2^{m-2}/2^m)(1-2^{m-1}/2^m)$. Use the hint given we get that is at least $\frac{1}{2}(1-1/2)=1/4$.

Stanrdard HSP algorithm:

1. query to f, get random coset state $|y \oplus K\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in K} |y \oplus x\rangle, y \in \mathbb{Z}_2^n$.

Apply $QFT = H^{\otimes n}$ and measure; our theory assures that output is then uniformly random $c \in (\mathbb{Z}_2)^n$ s.t. irrep χ_c of G restricted to K is trivial irrep of K, i.e. $\chi_c(a) = 1$ for all $a \in K$.

So $(-1)^{a \cdot c} = 1$ for all $a \in K$, i.e. $c \cdot a = 0 \pmod{2}$ for all a = K, i.e. $c_1 a_1 \oplus ... \oplus c_n a_n = 0$ for $a = a_1 ... a_n$.

We know K viewed as subspace of $(\mathbb{Z}_2)^n$ (n dimensional vector space over field \mathbb{Z}_2) has dimension k. So (n-k) LI c_i 's with $c_1 \cdot a = 0$ suffice to determine K as null spaceof linear system of (n-k) equations.

So run HSP algorithm (n-k) times: by (b) we'll get (n-k) LI c's with probability at least 1/4, and we can solve for elements of K.