Module 5, Part 1

Mark Peever mpeever@gmail.com

October 24, 2025

Objectives

Refer to Module 5 Notes.pdf.

By the end of this class, the students should be able to...

- differentiate between several different types of chemical reaction:
 - decomposition reactions
 - formation reactions
 - complete combustion reactions
 - incomplete combustion reactions
- describe molecular mass
- give a succinct description of a mole

Welcome & Devotion

• have one student read Psalm 107:33–42

Types of Chemical Reactions

- work through definitions of:
 - decomposition reactions
 - formation reactions
 - complete combustion reactions
 - incomplete combustion reactions
- classify the following reactions after balancing them:
 - how do we classify $H_2 + O_2 \longrightarrow H_2O$?
 - how do we classify $C_3H_8 + O_2 \longrightarrow CO_2 + H_2O$?
 - how do we classify $C_8H_{18} + O_2 \longrightarrow CO + H_2O$?

0 minutes

5 minutes

20 minutes

Molecular Mass

20 minutes

20 minutes

- work out on the board:
 - molecular mass of ${\rm H_2O}$
 - molecular mass of NaOH
 - molecular mass of $\mathrm{H}_2\mathrm{SO}_4$
 - molecular mass of CH_4 (methane)
 - molecular mass of C_4H_{10} (butane)
 - molecular mass of C₃H₈ (propane)
 - molecular mass of C_6H_{14} (hectane)
 - molecular mass of $\mathrm{C_{8}H_{18}}$ (octane)
 - molecular mass of $\mathrm{C}_{12}\mathrm{H}_{22}\mathrm{O}_{11}$ (sucrose)

The marvelous Mole

- what is a mole? $1mol = 6.02214076 \times 10^{23} objects$
- Avagadro's number: $N_A = 6.02214076 \times 10^{23} objects$

Name	Number
pair	2
trio	3
half-dozen	6
dozen	12
baker's dozen	13
score	20
gross	144
\mathbf{mole}	6.022×10^{23}

Questions for me

10 minutes

Assignment

- Review Problems: p. 161 # 1–10 (not to be turned in)
- \bullet Practice Problems: p. 162 # 1–10 (due 2025-11-07)
- Experiment 5.1, p. 149 (due 2025-11-07)

5 minutes