

Electronics and Communications Department

Analog Electronics

Lab 4 Notes

Direct Coupling

Name	عبدالرحمن علي موسى
Section	4
Date	2/5/2023

Part I

❖ The figure of the circuit below shows that.

$$\circ$$
 At V_{B1} = 1.5V

$$V_{RC1}$$
= 12.8V , V_{RC2} = 3.42V

$$V_{RE1} = 0.85V$$
 , $V_{RE2} = 1.56V$

$$V_{C1} = 2.23V$$
 , $V_{C2} = 11.6V$

ightharpoonup Calculate the overall voltage gain, $A_v = \frac{\Delta V_{C2}}{\Delta V_{B1}}$

$$\therefore A_{V} = \frac{14.1 - 8.7}{1.6 - 1.4} = 27 \text{ V/V}$$

. The figure below shows the circuit after connecting 10KΩ load.

ightharpoonup Calculate the overall voltage gain, $G_v = \frac{\Delta V_{C2}}{\Delta V_{B1}}$

$$\circ$$
 At V_{B1} = 1.6V V_{C2} = 11.5V

$$\therefore$$
 G_v = $\frac{11.5-7.14}{1.6-1.4}$ = 21.8 V/V

part II

❖ The figure below shows the circuit after changing the NPN transistor (Q₂) to PNP transistor and the DC voltages at each node.

ightharpoonup Calculate the overall voltage gain, $A_v = \frac{\Delta V_{C2}}{\Delta V_{B1}}$

$$\circ$$
 At V_{B1} = 1.4V V_{C2} = 4.79V

$$\circ$$
 At V_{B1} = 1.6V V_{C2} = 4.45V

$$A_{\rm V} = \frac{4.45 - 4.49}{1.6 - 1.4} = -0.2 \text{ V/V}$$