

Ministère de l'Education Nationale Université de Montpellier II Place Eugène Bataillon 34095 Montpellier Cedex 5

TP FMIN105 Algorithmique / Complexité / Calculabilité

RAPPORT (DÉCEMBRE 2011)

Travail préparé par :

Thibaut MARMIN Clément SIPIETER William DYCE

https://github.com/marminthibaut/acc-tp

Table des matières

1	Par	tie thé	orique	5
	1.1	Algoria	thmique	5
		1.1.1	Fonction chromatique $P_G(k)$	5
		1.1.2	Nombre chromatique $\chi(G)$	5
		1.1.3	Décomposition de P_G	6
		1.1.4	Polynôme chromatique?	6
		1.1.5	Application de la décomposition	7
		1.1.6	Coefficients alternatifs	8
		1.1.7	Polynôme chromatique de $K_{1,5}$	8
		1.1.8	Coloration de graphes non-connexes	8
		1.1.9	Coloration d'arbres	8
		1.1.10	$k^5 - 4k^4 + 6k^3 - 4k^2 + k$	9
		1.1.11	Polynôme chromatique de $K_{2,5}$	9
		1.1.12	Polynômes chromatiques de C_4 et C_5	9
		1.1.13	Coloration de cycles	9
		1.1.14	Coloration de graphes bipartis complets	10
	1.2	Compl	exité	11
		1.2.1	$SAT \propto 3SAT $	11
		1.2.2	$3\text{-SAT} \propto 2\text{-SAT}$?	14
		1.2.3	2–SAT, un problème polynomial \dots	15
	1.3	Calcul	abilité	18
		1.3.1	Énumération des couples d'entiers	18
		1.3.2	Codons et décodons	18
		1.3.3	Énumération des triplets d'entiers	19
		134	Énumération de l'ensemble [0:1]	10

2	Par	tie pra	atique	21
	2.1	Objec	tifs	21
	2.2	Spécif	ication fonctionnelles	21
	2.3	Spécif	ication technique	21
		2.3.1	Programmation C++	21
		2.3.2	Structures de données	21
		2.3.3	XXXXReprésentation d'un graphe	22
		2.3.4	AdjacencyListGraph	23
		2.3.5	MatrixGraph	25
		2.3.6	Génération aléatoire d'un graphe	26
		2.3.7	Dinic	28

Chapitre 1

Partie théorique

1.1 Algorithmique

1.1.1 Fonction chromatique $P_G(k)$

Le nombre de manières de colorier un graphe est le produit des nombres de façons de colorier chaque arc.

– Si le graphe G est complet, on aura k couleurs possibles pour le premier sommet, (k-1) pour le deuxième, etc... (Le graphe G étant complet, la couleur du premier sommet est nécessairement exclu des autres sommets). Le $n\hat{i}$ sommet pourra être colorié de k-(n-1) manières. D'où :

$$P_{K_n}(k) = \prod_{i=0}^{n-1} (k-i)$$

- Si G est vide, la coloration d'un sommet ne contraint pas la coloration des autres sommets. On obtient alors :

$$P_{\overline{K_n}}(k) = k^n$$

1.1.2 Nombre chromatique $\chi(G)$

On l'appelle "nombre chromatique" de $G:\chi(G)$ étant, par définition, le nombre minimum de couleurs nécessaires pour colorier G, si $k<\chi(G)$ alors le graphe G ne peut pas être colorié par k couleurs. Si $k\geq\chi(G)$ alors il doit y avoir au moins une manière de colorier G, celui utilisant $\chi(G)$ couleurs.

On a donc:

$$P_G(k) \left\{ \begin{array}{ll} = 0 & \text{si } k < \chi(G) \\ \ge 1 & \text{sinon} \end{array} \right.$$

1.1.3 Décomposition de P_G

Montrons d'abord que la propriété est vraie pour tout graphe complet K_n . Pour commencer on remarque que, pour tout arrête e:

- $K_{n \setminus e}$ est exactement K_{n-1} , et donc :

$$P_{K_n \setminus e}(k) = P_{K_{n-1}} = \prod_{i=0}^{n-2} (k-i)$$

– Soit e = (a, b). On peut supposer (sans perte de généralité) que b est considéré en dernier lors de la coloration de K_n , donc qu'il lui reste k - (n-1) couleurs. Pour colorier K_{n-e} on aura un choix de plus pour lui, à savoir la couleur de a, donc k - (n-2) en totale. De ce fait :

$$P_{K_n-e}(k) = P_{K_{n-1}}(k)(k - (n-2)) = (\prod_{i=0}^{n-2} (k-i))(k - (n-2))$$

On a donc très clairement :

$$\begin{split} P_{K_n-e}(k) - P_{K_n \setminus e}(k) &= (\prod_{i=0}^{n-2} (k-i))(k-(n-2)) - \prod_{i=0}^{n-2} (k-i) \\ &= \prod_{i=0}^{n-2} (k-i)(k-(n-1)) \\ &= \prod_{i=0}^{n-1} (k-i) \\ &= P_{K_n}(k) \end{split}$$

Tout graphe de rang n pouvant se générer à partir de K_n (en enlevant des arrêtes) on cherchera à prouver que la suppression d'arrête conserve notre propriété. Autrement dit on aimerait montrer que pour tout graphe G et tout arrête a de celui-ci :

$$P_G(k) = P_{G-e}(k) - P_{G \setminus e}(k)$$

$$\Rightarrow P_{G-a}(k) = P_{G-e-a}(k) - P_{G \setminus e-a}(k)$$

On supposera évidemment que a et e sont distinctes.

TODO FINISH

1.1.4 Polynôme chromatique?

Soit H un prédicat tel que :

 $H(m) = \left\{ \begin{array}{ll} \top & \text{si } \forall \ G \text{, graphe de } m \text{ arrêtes ou moins, } P_G(k) \text{ est polynomiale.} \\ \bot & \text{sinon.} \end{array} \right.$

- Nous rappellons que $P_{\overline{K_n}}(k) = k^n$, donc H(0) est vraie.
- Supposons $\exists m \in \mathbb{N} \mid H(m)$ l'est également. Ajoutons l'arc a à G. G_{m+e} est un graphe à (m+1) arrêtes :

$$P_{G_{m+z}} = P_{G_{m+e}-e} - P_{G_{m+e} \setminus e}$$

Clairement $P_{G_{m+1}-e}$ et $P_{G_{m+1}\setminus e}$ ont (m+1)-1=m arrêtes. Or par hypothèse de recurrence H(m) est vraie, $P_{G_{m+1}}$ est la différence entre deux polynomiales, donc est polynomiale lui-même. On a donc H(m+1).

– On vient de montrer $(H(0) \wedge (H(m) \Rightarrow H(m+1)))$. Par récurrence on a donc H(m) vrai $\forall m \in \mathbb{N}$.

1.1.5 Application de la décomposition

Utilisons la formule trouvée au point précédent, et admettons que pour P_n une chaîne de taille n on a :

$$P_{P_n}(k) = k(k-1)^{n-1}$$

Prenons A le graphe initial :

$$\begin{split} P_A(k) &= P_B(k) - P_C(k) \\ &= \left(P_D(k) - P_E(k)\right) - \left(P_F(k) - P_{P_3}(k)\right) \\ &= \left[\left(P_{P_5}(k) - P_{P_4}(k)\right) - \left(P_{P_4}(k) - P_{P_3}(k)\right)\right] - \left[\left(P_{P_4}(k) - P_{K_3}(k)\right) - P_{P_3}(k)\right] \\ &= P_{P_5}(k) + 2P_{P_3}(k) - P_{K_3}(k) + 3P_{P_4}(k) \\ &= k(k-1)^4 + 2k(k-1)^2 + k(k-1)(k-2) - 3(k-1)^3 \\ &= k(k-1)\left[(k-1)^3 + z(k-1) + (k-z) - 3(k-1)^2\right] \\ &= (k^2 - k)\left[(k-1)^2\left((k-1) - 3\right) + 3k - 4\right] \\ &= (k^2 - k)[k^3 - 6k^2 + 12k - 8] \\ &= k^5 - 7k^4 + 18k^3 - 20k^3 + 8k \end{split}$$

Où:

$$A: {\sf a} \bigoplus_{\sf e} {\sf b} {\sf d}$$

1.1.6 Coefficients alternatifs

TODO coéfficient de k^n est 1, alternating - and + etc

1.1.7 Polynôme chromatique de $K_{1,5}$

 $K_{1,5}$ étant un arbre, on aura k choix de coloration pour la racine, peu importe le choix de celle-ci, et k-1 pour les autres, car chacun qu'on considère sera relié à exactement une autre déjà colorié. En totale ça nous fait donc :

$$P_{K_{1,5}}(k) = k(k-1)^{5}$$

$$= k((k-1)^{2})^{2}(k-1)$$

$$= k(k^{2} - (2k-1))^{2}(k-1)$$

$$= (k^{5} - 4k^{4} + 6k^{3} - 4k^{2} + k)(k-1)$$

$$= k^{6} - 5k^{5} + 10k^{4} - 10k^{3} + 5k^{2} - k$$

1.1.8 Coloration de graphes non-connexes

La coloration de chaque composante connexe C_i n'influx pas sur celui des autres. Du coup le nombre de manières de colorier un graphe entier est le produit des polynômes chromatiques de ses composantes connexes :

$$G = \bigcup_{i=0}^{n} C_i \quad \Rightarrow \quad P_G(k) = \prod_{i=0}^{n} P_{C_i}(k)$$

1.1.9 Coloration d'arbres

arbre

1.1.10 $k^5 - 4k^4 + 6k^3 - 4k^2 + k$

Grace aux dévelopments précédentes (questions 7 et 12) on reconnait :

$$k^{5} - 4k^{4} + 6k^{3} - 4k^{2} + k$$

$$= k(k-1)^{4}$$

$$= P_{P_{5}}(k)$$

Notre premier exemple sera donc P_5 le chemin de taille 5. Ensuite d'après la propriété de la question 6 nous ne cherchions que des graphes aillant 5 sommets et 4 arrêtes, et d'après celle de la question 9 ils doivent en plus être arbres. Nous proposons donc le graphe étoile $S_5=K_{1,4}$ ainsi que l'arbre à 5 sommets dont la particularité est d'être sans particularité :

1.1.11 Polynôme chromatique de $K_{2,5}$

polychrome of K2,5

1.1.12 Polynômes chromatiques de C_4 et C_5

– Pour calculer P_{C_4} , commençons par constater que $C_3=K_3$:

$$\begin{split} P_{C_4}(k) &= P_{P_4}(k) - P_{K_3}(k) \\ &= k(k-1)^3 - k(k-1)(k-2) \\ &= (k^2 - k)((k-1)^2 - (k-2)) \\ &= (k^2 - k)(k^2 - 3k + 3) \\ &= k^4 - 4k^3 + 6k^2 - 3k \end{split}$$

– On peut alors utiliser P_{C_4} pour calculer P_{C_5} :

$$P_{C_5}(k) = P_{P_5}(k) - P_{C_4}(k)$$

$$= k(k-1)^4 - k^4 - 4k^3 + 6k^2 - 3k$$

$$= k^5 - 5k^4 + 10k^3 - 10k^2 + 4k$$

1.1.13 Coloration de cycles

cycles générales

1.1.14 Coloration de graphes bipartis complets

graphe bipartie générale

1.2 Complexité

1.2.1 SAT $\propto 3$ -SAT

(a) Énoncé de SAT :

$$\begin{array}{lll} \text{Donn\'ees}: & \mathcal{V} = \{v_1, v_2 \dots v_n\} & \textit{Ensemble de n variables} \\ & \mathcal{C} = \{c_1, c_2, c_3 \dots c_m\} & \textit{Ensemble de m clauses} \\ & \text{où} & c_i = (l_{i1} \vee l_{i2} \vee \dots \vee l_{ik}) & \textit{Clauses de k litt\'eraux} \\ & \text{avec} & l_{ij} = v \text{ ou } \neg v & \textit{avec } v \in U \end{array}$$

Problème : existe-il au moins une affectation des variables telle que chaque clause de $\mathcal C$ soit vrai.

Énoncé de 3-SAT:

3–SAT est identique au problème SAT avec k=3.

Données:
$$\mathcal{V} = \{v_1, v_2, v_3 \dots v_n\}$$

 $\mathcal{C} = \{c_1, c_2, c_3 \dots c_m\}$
où $c_i = (l_{i1} \lor l_{i2} \lor l_{i3})$
avec $l_{ij} = v$ ou $\neg v$

(b) La réduction du problème SAT peut être définit en montrant que chaque clause c de \mathcal{C} peut-être transformée en un ensemble de clauses \mathcal{C}' tel que pour toute affectation rendant vrai l'ensemble des clauses de \mathcal{C} , on peut trouver une affectation rendant vrai chaque clause de \mathcal{C}' . Chaque clause de \mathcal{C}' devant être de taille exactement 3. La réciproque doit également être montrée.

Définissons les réductions :

$$k = 1$$

Soit ci_1 une clause de taille 1, on a $ci_1 = (l)$. Ajoutons deux variables $v_1, v_2 \notin \mathcal{V}$ et transformons la clause c en quatre clauses. On obtient l'ensemble $\mathcal{C}_1 = \{c_1, c_2, c_3, c_4\}$ avec :

$$c_1 = (l \lor v_1 \lor v_2)$$

$$c_2 = (l \lor v_1 \lor \neg v_2)$$

$$c_3 = (l \lor \neg v_1 \lor v_2)$$

$$c_4 = (l \lor \neg v_1 \lor \neg v_2)$$

k = 2

Soit ci_2 une clause de taille 2, on a $ci_2 = (l_1 \vee l_2)$. Ajoutons une variable $v \notin \mathcal{V}$ et transformons la clause c en deux clauses. On obtient l'ensemble $\mathcal{C}_2 = \{c_1, c_2\}$ avec :

$$c_1 = (l_1 \lor l_2 \lor v)$$
$$c_2 = (l_1 \lor l_2 \lor \neg v)$$

k = 3

La clause ci_3 ne subit pas de transformation.

$$\mathcal{C}_3 = \{ci_3\}$$

k > 3

Soit la clause $ci_k = (l_1 \vee l_2 \vee \cdots \vee l_k)$. On ajoute (k-3) nouvelles variables $(v_1, v_2 \dots v_{k-3})$.

$$\mathcal{C}_k = \underbrace{(l_1 \vee l_2 \vee v_1)}_{c_1} \bigwedge_{i=1}^{k-4} \left[\underbrace{(\neg v_i \vee l_{i+2} \vee v_{i+1})}_{c_{i+1}} \right] \wedge \underbrace{(\neg v_{k-3} \vee l_{k-1} \vee l_k)}_{c_{k-2}}$$

Montrons que SAT est vrai si et seulement si 3-SAT est vrai :

$\mathbf{SAT}\,\rightarrow\,\mathbf{3}\text{-}\mathbf{SAT}$

- Soit une interprétation I_1 qui satisfasse la clause ci_1 :

$$val(I_1, ci_1) = val(I_1, l) = vrai$$

Prenons une interprétation I_1' avec $val(I_1, l) = val(I_1', l)$, peu importe les affectations de v_1 et v_2 , l étant présent dans toutes les clauses de \mathcal{C}_1 :

$$val(I_1', \mathcal{C}) = \top$$

- Soit une interprétation I_2 qui satisfasse la clause ci_2 :

$$\exists i, val(I_2, l_i) = \top$$

Prenons une interprétation I_2^\prime avec :

$$val(I_2, l_1) = val(I_2', l_1)$$

$$val(I_2, l_2) = val(I_2', l_2)$$

Peu importe l'affectation de v dans I'_2 , on a $val(I'_2, \mathcal{C}_2) = \top$.

– Soit une interprétation I_k qui satisfasse la clause ci_k :

$$\exists i, val(I_k, l_i) = \top$$

Prenons une interprétation I_k' telle que :

$$val(I_k, l_i) = val(I'_k, l_i)$$

$$\forall j \in \mathbb{N}^* \mid j \leq (i - 2), val(I'_k, v_j) = \top$$

$$\forall j \in \mathbb{N}^* \mid (i - 1) \leq j \leq (k - 3), val(I'_k, v_j) = \bot$$

On obtient:

$$val(I'_k, \mathcal{C}_k) = \top$$

$3\text{--}SAT\,\to\,SAT$

– Prenons une interprétation I_1 telle que $val(I_1, \mathcal{C}_1) = \top$. Sans perte de généralité, on suppose que :

$$val(I_1, v_1) = val(I_1, v_2) = \top$$

La clause c_4 de C_1 ne peut être satisfaite que si $val(I_1, l) = \top$. On a donc :

$$val(I_1, ci_1) = \top$$

> - Prenons une interprétation I_2 telle que $val(I_2, \mathcal{C}_2) = \top$. Sans perte de généralité on suppose que :

$$val(I_2, v) = \top$$

La clause c_2 de C_2 ne peut être satisfaire que si $val(I_2, (l_1 \vee l_2)) =$

On a donc :

$$val(I_2, ci_2) = \top$$

Prenons une interprétation I_k telle que $val(I_k, \mathcal{C}_k) = \top$ et montrons qu'il existe forcément un i tel que $val(I_k, l_i) = \top$. Supposons que l'interprétation I_k est modèle de \mathcal{C}_k avec

$$\forall i \in \mathbb{N}^* \mid i \le k, val(I_k, l_i) = \bot$$

$$\Rightarrow val(I_k, v_1) = \top \text{ (dans } c_1)$$

Donc:
$$\forall i \in \mathbb{N}^* \mid i \leq (k-4), val(I_k, v_{i+1}) = \top$$

$$\Rightarrow val(I_k, v_{k-3}) = \top$$

$$\Rightarrow val(I_k, c_{k-2}) = \bot$$

$$\Rightarrow val(I_k, C_k) = \bot$$

Pour que l'interprétation I_k satisfasse C_k , il doit exister un $i \in$ \mathbb{N}^* tel que $i \leq k$ et que $val(I_k, l_i) = \top$.

On a donc :

$$val(I_k, ci_k) = \top$$

(c) Le point (b) définit la réduction de SAT vers 3-SAT. Afin de montrer la NP-Complétude de 3-SAT, montrons que la réduction s'effectue en un temps polynomial.

Soit:

k la taille de la clause initiale,

 v_k le nombre de variables à ajouter pour obtenir des clauses de taille 3, w_k le nombre de clauses de taille 3 obtenues à partir de la clause initiale.

$$v_3 = 0$$
 $w_3 = 1$
 $v_4 = 1$ $w_4 = 2$
 $v_5 = 2$ $w_5 = 3$
: :

Pour tout k > 3:

$$v_k = v_{\left\lceil \frac{k}{2} \right\rceil + 1} + v_{\left\lfloor \frac{k}{2} \right\rfloor + 1} + 1$$
$$w_k = w_{\left\lceil \frac{k}{2} \right\rceil + 1} + w_{\left\lfloor \frac{k}{2} \right\rfloor + 1}$$

 $v_k = \theta(k)$, donc borné par la taille de F. La réduction s'effectue donc en un temps polynomial.

Il est possible de réduire le problème SAT à 3-SAT en un temps polynomial, SAT étant NP-complet, 3-SAT l'est aussi.

(d) Soit C un ensemble de clause à n_v variables avec n_1 clauses de taille 1, n_2 clauses de taille 2, n_3 clauses de taille 3, n_4 clauses de taille 4 et n_5 clauses de taille 5. Calculons le nombre de variables et le nombre de clauses obtenues après réduction (respectivement n'_v et n'_c).

Les points (b) et (c) permettent de déterminer pour une clause de taille k, le nombre de clause obtenues et le nombre de variables ajoutées après réduction. On peut donc en déduire la tableau suivant :

Taille de la clause dans $\mathcal C$	1	2	3	4	5
Nombre de clauses	n_1	n_2	n_3	n_4	n_5
Nombre de variables ajoutées par clause	2	1	0	1	2
Nombre de variables ajoutées au total	$2n_1$	n_2	0	n_4	$2n_5$
Nombre de clauses obtenues par clause	4	2	1	2	3
Nombre de clauses obtenues au total	$4n_1$	$2n_2$	n_3	$2n_4$	$3n_5$

On a donc:

$$n'_v = n_v + 2n_1 + n_2 + n_4 + 2n_5$$

$$n'_c = 4n_1 + 2n_2 + n_3 + 2n_4 + 3n_5$$

1.2.2 $3-SAT \propto 2-SAT$?

Cette réduction repose sur un principe qui consiste à décomposer une clause de taille k en plusieurs clauses de tailles inférieures.

Soit une clause $c = (l_1 \vee l_2 \vee l_3)$ une clause de taille 3 et I une interprétation qui satisfait c.

Cas 1 : décomposons cette clause en deux clauses c_1 et c_2 de tailles 1 et 2 :

$$c_1 = (l_1)$$

$$c_2 = (l_2 \lor l_3)$$

Pour montrer l'équivalence 3–SAT \leftrightarrow 2–SAT, il faut ajouter une variable v aux deux clauses créées :

$$c_1 = (l_1 \lor v)$$

$$c_2 = (l_2 \lor l_3 \lor \neg v)$$

On a donc la clause c_2 de taille 3.

Cas 2 : décomposons cette clause en trois clauses $c_1,\,c_2$ et c_3 de taille 1 :

$$c_1 = (l_1)$$

 $c_2 = (l_2)$
 $c_3 = (l_3)$

Pour montrer l'équivalence 3–SAT \leftrightarrow 2–SAT, il faut ajouter deux variables v_1 et v_2 aux trois clauses créées :

$$c_1 = (l_1 \lor v_1 \lor \neg v_2)$$

$$c_2 = (l_2 \lor \neg v_1 \lor v_2)$$

$$c_3 = (l_3 \lor v_1 \lor v_2)$$

On a donc également des clauses de taille 3. La réduction définie ci-avant ne permet donc pas la réduction de 3–SAT vers 2–SAT.

1.2.3 2-SAT, un problème polynomial

(a) Systèmes de deux clauses à deux littéraux :

Contingent : $(x \lor x) \land (x \lor x)$

Insaisissabilité du premier ensemble de clauses est clairement visible sur le graphe car les sommets x et $\neg x$ sont dans la même composante fortement connexe.

Le deux autres ensembles sont satisfiables, les deux sommets ne sont pas dans la même composante fortement connexe.

(b) L'algorithme suivant permet la génération du graphe correspondant à l'ensemble de clauses passé en paramètres, que nous appellerons graphe de satisfaction :

Algorithme 1: GrapheSatisfaction(C, V)

```
Données:
   \mathcal{C} // Ensemble de clauses
    V // Ensemble des variables
   début
 1
        Graphe. S = \emptyset; // Ensemble des sommets du graphe
 3
        Graphe.\mathcal{A} = \emptyset; // Ensemble des arcs du graphe
        // Initialisation des sommets
 4
        pour tous les v \in \mathcal{V} faire
 5
            ajouter(Graphe.\mathcal{S}, v);
 6
            ajouter(Graphe.\mathcal{S}, \neg v);
 7
        // Parcours des clauses
 8
        pour tous les c \in \mathcal{C} faire
 9
            ajouter(Graphe.\mathcal{A},(\neg c.x, c.y));
10
            ajouter(Graphe.\mathcal{A},(\neg c.y, c.x));
11
        retourner Graphe;
12
```

Cet algorithme effectue un parcours de \mathcal{V} et un parcours de \mathcal{C} , sa complexité est donc $O(|\mathcal{C}| + |\mathcal{V}|)$.

(d) Les composantes fortement connexes du graphe de satisfaction généré, ainsi

11

que leur ordre topologique, peuvent être calculées par l'algorithme de Tarjan.

Algorithme 2: $Tarjan_Main(G)$ **Données** : $G // Le \ graphe$ 1 début 2 date $\leftarrow 0$; pour tous les $s \in G.S$ faire 3 $DEBUT[s] \leftarrow 0;$ 4 $CFC[s] \leftarrow 0;$ 5 Pile $\leftarrow \emptyset$; 6 numCFC $\leftarrow 0$; 7 pour tous les $s \in G.S$ faire 8 $\mathbf{si} \ DEBUT/s/=0 \ \mathbf{alors}$ 9 $Tarjan_Rec(s, date, DEBUT, Pile, numCFC, CFC);$ 10

Algorithme 3: Tarjan_Rec(s,date,DEBUT,Pile,numCFC,CFC)

retourner Comp;

```
Données :
   s // Le sommet
   date // Date de visite du sommet courant
   DEBUT // Tableau de dates de visites pour chaque sommet
   Pile // Pile de sommets
   numCFC // Numéro de la CFC
   CFC // Liste des CFC
 1 début
       date \leftarrow date+1;
 \mathbf{2}
       DEBUT[s] \leftarrow date;
3
       \min \leftarrow \text{DEBUT}[s];
 4
       Empiler(Pile,s);
 5
       pour tous les v \in Adj/s/ faire
 6
           si DEBUT/v = 0 alors
 8
               \min \leftarrow
               MIN(min, Tarjan\_Rec(v, date, DEBUT, Pile, numCFC, CFC)));
           sinon si CFC/v = 0 alors
9
            \min \leftarrow \text{MIN}(\min, \text{DEBUT}[v]);
10
       si min=DEBUT/s/ alors
11
          Ncfc \leftarrow numCFC + 1;
12
13
           k \leftarrow \text{Depiler(Pile)};
14
           CFC[k] \leftarrow numCFC;
15
       jusqu'à k \neq s;
16
       retourner Comp;
17
```

L'algorithme Tarjan_Main initialise la date de visite de chaque sommet à zéro. On constate que les deux algorithmes exécutent Tarjan_Rec uniquement sur des sommet dont la date de première visite est nulle. Or chaque

appel à Tarjan_Rec affecte une date de visite supérieure à zéro au sommet courant. Tarjan_Rec est donc appelé exactement une fois par sommet.

De même, un sommet n'est empilé qu'à l'exécution de Tarjan_Rec, donc chaque sommet ne sera empilé (et donc dépilé) qu'une seule fois. La boucle de l'algorithme Tarjan_Rec (ligne 13) a une complexité globale en $O(|\mathcal{V}|)$. En revanche, la bouche ligne 6 est effectuée une fois pour chaque voisin du sommet courant, donc $|\mathcal{V}|$ fois au pire pour chaque appelle. Tarjan_Rec n'étant appelée que $|\mathcal{V}|$ fois en totale on arrive donc à une complexité de $O(|\mathcal{V}|^2)$.

Dans le pire des cas le nombre de variables d'une instance de 2–SAT est égale à deux fois le nombre de clauses (chaque clause comportant dans ce cas deux variables uniques). Or notre conversion génère deux sommets par variable. La complexité de l'algorithme en fonction du nombre de clauses est donc de $O(|\mathcal{C}|^2)$.

(e) Nous passerons par la double-implication pour montrer l'équivalence entre le problème 2–SAT et le tri topologique dans notre graphe de satisfaction. Avant de commencer, notons que les arcs dans le graphe de satisfaction correspondent à des implications. En effet on ajoute un arc de x vers !x ... blah blah

– Tri topologique \Rightarrow 2–SAT

Étant donnée les composantes fortement connexes (CFC) du graphe étiqueté on peut vérifier linéairement en le nombre de sommets du graphe qu'on a une variable ensemble avec sa négation.

Dans un tel cas

donc un instance 2–SAT insatisfiable. Si par contre n'a pas de variables ensembles avec leurs négative dans le même CFC il suffit de prendre l'ordre topologique calculée dans l'ordre inverse et d'affecter les variables de chaque composant comme précisée dans l'article. Nous finissions alors ou une affection modèle, ou l'affirmation de l'insatisfiabilité de la forme normale conjonctive. Un tri topologique de notre graphe étiqueté permet donc de résoudre le problème 2–SAT.

- 2–SAT \Rightarrow Tri topologique

1.3 Calculabilité

1.3.1 Énumération des couples d'entiers

La stratégie d'énumération des couples d'entiers peut être visualisée sur un graphique en suivant les diagonales successives comme sur l'image 1 suivante :

FIGURE 1.1 – La fonction de couplage de Cantor établit une bijection de $\mathbb{N} * \mathbb{N}$ dans \mathbb{N} .

Soit $(x,y) \in \mathbb{N} * \mathbb{N}$ un couple. On trie par ordre lexicographique (x+y). Ainsi on obtient le tableau suivant :

(x,y)	(0,0)	(1,0)	(0,1)	(2,0)	(1,1)	(0,2)	(3,0)	(2,1)	(1, 2)	(0,3)	
(x+y)	0	1	1	2	2	2	3	3	3	3	
$c_2(x+y)$	0	1	2	3	4	5	6	7	8	9	

1.3.2 Codons et décodons...

Fonction de codage

$$c_2(x,y) = \frac{(x+y)(x+y+1)}{2} + y$$

Fonctions de décodage Les fonctions de décodage ne peuvent pas être décrites sous la forme de formules arithmétiques. Elles nécessitent l'algorithme

^{1.} Image provenant de Wikipedia, ce fichier est disponible selon les termes de la licence Creative Commons.

suivant:

```
Algorithme 4: CalculXY(z)
    Données: z // Rang du couple (x,y)
 1 début
         s \leftarrow 0;
 \mathbf{2}
         t \leftarrow 0;
 3
         tant que s \leq z faire
 4
             s \leftarrow \frac{t*(t+1)}{2};
 5
             t \leftarrow t + 1;
 6
         t \leftarrow t - 2;
         s \leftarrow \tfrac{t*(t+1)}{2};
 8
         y \leftarrow z - s;
 9
         x \leftarrow t - y;
10
         retourner Couple(x,y);
```

1.3.3 Énumération des triplets d'entiers

Codage des triplets : il peut avoir lieu de manière récursive :

$$c_3(x, y, z) = c_2(x, c_2(y, z))$$

Généralisation au codage des k-uplets :

$$c_k(x_1, x_2, \dots, x_k) = c_2(x_1, c_{k-1}(x_2, \dots, x_k))$$
Avec:
$$c_2(x, y) = \frac{(x+y)(x+y+1)}{2} + y$$

1.3.4 Énumération de l'ensemble [0; 1]

Prenons une suite $r=(r_1,r_2,r_3,\ldots)$ qui énumère les réels de l'intervalle [0;1], puis créons un réel x compris dans cet intervalle, tel que si la n^{ième} décimale de r_n est égale à 1, la n^{ième} décimale de x est égale à 2. Dans la cas contraire, la n^{ième} décimale de x est égale à 1.

On obtient sur cet exemple:

```
6
         2
            7
               3
                  2
                     9
                       4
        6
= 0
           4
              1
                 1
= 0 , 3 0 5
                 9 0 4
= 0 , 9 1 3 3 1 8 2
= 0 , 0 2 0 8 3 2 7 ...
= 0 , 2 5 7 3 6 4 0 \dots
              \stackrel{\downarrow}{2}
                     \downarrow
         1
```

Le réel x ne peut pas être énuméré par la suite r car il diffère de sa première décimale dans r_1 , de sa deuxième décimale dans r_2 , ... de sa n^{ième} décimale dans r_n . Pourtant le réel x est clairement dans l'intervalle [0;1].

L'ensemble des éléments de l'intervalle [0;1] n'est donc pas dénombrable, donc pas énumérable. On ne peut donc pas trouver de fonction de codage pour cet ensemble.

On peu généraliser à l'ensemble $\mathbb{R}:[0;1]$ étant inclus dans $\mathbb{R},$ et [0;1] n'étant pas dénombrable, l'ensemble \mathbb{R} n'est pas dénombrable.

Chapitre 2

Partie pratique

2.1 Objectifs

Le but de ce projet est de réaliser un solveur du problème de flot maximum. Pour cela, il nous est proposé d'implémenter l'algorithme d'Edmonds-Karp ainsi que l'algorithme de Dinic.

2.2 Spécification fonctionnelles

Le programme devra être capable de générer aléatoirement des graphes de type réseau de transport comportant un nombre de sommets et d'arêtes défini. Il devra aussi proposer deux fonctions de résolution du problème de flots sur un tel réseau, l'une implémentant l'algorithme d'Edmonds-Karp et l'autre celui de Dinic. Ces deux fonctions devront générer et retourner le graphe d'écart final. Enfin le programme devra disposer d'une fonction d'affichage de la valeur du flot maximum ainsi que de la valeur du flot sur chaque arc.

2.3 Spécification technique

2.3.1 Programmation C++

Le programme sera réaliser en C++ afin de bénéficier des performances en termes de rapidité d'execution du langage ainsi que de l'aspect objet permettant d'abstraire la représentation d'une graphe.

2.3.2 Structures de données

```
typedef int weight_t;
typedef uint vertex_t;
```

```
typedef struct
{
   vertex_t u;
   vertex_t v;
} edge;

typedef struct
{
   vertex_t vertex_src;
   vertex_t vertex_dest;
   weight_t weight;
} arc_t;

typedef struct
{
   vertex_t vertex;
   weight_t weight;
} neighbor_t;

typedef list<vertex_t> path_t;
```

2.3.3 XXXXReprésentation d'un graphe

Nous avons choisi d'abstraire la représentation d'un graphe via une classe abstraite que nous avons nommé AbstractGraph dont nous proposerons deux implémentations une par liste d'adjacence AdjacencyListGraph et une par matrice MatrixGraph

Partie pratique 23

```
virtual void
 rmAllArc() = 0;
 virtual void
  updateArc(const arc_t &arc) = 0;
  virtual weight_t
  increaseWeight(vertex_t src, vertex_t dest, weight_t w) = 0;
  virtual uint
  getNbrVertices() const = 0;
 virtual string
 toString() const;
 virtual list<neighbor_t>
  getSuccessors(vertex_t vertex) const = 0;
 virtual list<neighbor_t>
 getPredecessors(vertex_t vertex) const = 0;
 virtual weight_t
  getWeight(vertex_t src, vertex_t dest) const = 0;
};
```

2.3.4 AdjacencyListGraph

La classes Adjacency ListGraph devra représenter un graphe sous forme de deux liste d'adjacence une liste d'adjacence représentant les successeur d'un sommet et l'autre représentant les prédécesseur d'un sommet.

Ce doublon de l'information permet d'accéléré l'accès au voisin d'un sommet, notament à ces prédécesseur. En effet en sauvegardant une liste des prédécesseurs de chaque arcs nous accédons a un prédécesseur d'un sommet en O(m) alors que si nous avions qu'une liste des successeur cette accès ce ferait en O(nm).

Ce gain de performance en terme de rapidité ce fait au détriment de la quantité de mémoire utilisé, mais celle-ci n'augmente que d'une valeur constante par rapport au nombre d'arcs.

```
AdjacencyListGraph(uint nbr_vertices);
  AdjacencyListGraph(const AbstractGraph& graph);
  AdjacencyListGraph(const AdjacencyListGraph& graph);
  AdjacencyListGraph &
  operator=(const AbstractGraph& graph);
  AdjacencyListGraph &
  operator=(const AdjacencyListGraph& graph);
  ~AdjacencyListGraph();
  virtual bool
  addArc(const arc_t &arc);
  virtual bool
  addArc(vertex_t src, vertex_t dest, weight_t w);
  virtual void
 rmArc(const arc_t &arc);
  virtual void
 rmArc(vertex_t src, vertex_t dest);
  virtual void
  rmAllArc();
  virtual void
  updateArc(const arc_t &arc);
  virtual weight_t
  increaseWeight(vertex_t src, vertex_t dest, weight_t w);
  virtual uint
  getNbrVertices() const;
  virtual list<neighbor_t>
  getSuccessors(vertex_t vertex) const;
  virtual list<neighbor_t>
  getPredecessors(vertex_t vertex) const;
  virtual weight_t
  getWeight(vertex_t src, vertex_t dest) const;
private:
  list<neighbor_t> *successors, *predecessors;
  uint nbr_vertices;
```

Partie pratique 25

```
protected:
 void
 _clear();
 void
 _construct(const AbstractGraph& graph);
};
2.3.5
     MatrixGraph
class MatrixGraph : public AbstractGraph
public:
 CONSTRUCTOR
 MatrixGraph(uint nbr_vertices);
 MatrixGraph(const AbstractGraph& graph);
 MatrixGraph(const MatrixGraph& graph);
 MatrixGraph &
 operator=(const AbstractGraph& graph);
 MatrixGraph &
 operator=(const MatrixGraph& graph);
 virtual
 ~MatrixGraph();
 virtual bool
 addArc(const arc_t &arc);
 virtual bool
 addArc(vertex_t src, vertex_t dest, weight_t w);
 virtual void
 rmArc(const arc_t &arc);
 virtual void
 rmArc(vertex_t src, vertex_t dest);
 virtual void
 rmAllArc();
```

```
virtual void
  updateArc(const arc_t &arc);
  virtual weight_t
  increaseWeight(vertex_t src, vertex_t dest, weight_t w);
  virtual uint
  getNbrVertices() const;
  virtual list<neighbor_t>
  getSuccessors(vertex_t vertex) const;
  virtual list<neighbor_t>
  getPredecessors(vertex_t vertex) const;
  virtual weight_t
  getWeight(vertex_t src, vertex_t dest) const;
private:
  weight_t **matrix;
 uint nbr_vertices;
protected:
  void
  _clear();
  _construct(int nbr_vertices);
  _construct(const AbstractGraph& graph);
};
```

2.3.6 Génération aléatoire d'un graphe

Partie pratique 27

```
\subsection{Fonctions générales}
/**
 * Cette procédure génère une chaîne de caractères représentant l'affichage
 * de la valeur total du flot sur le réseau de transport ainsi que la valeur
 * du flot sur chaque arc.
 * @param flow_network le réseau de transport
 * @param residual_network le graphe d'écart associé
 */
string
flowToString(const AbstractGraph& flow_network,
    const AbstractGraph& residual_network);
\subsection{Edmonds-Karp}
/**
 * Cette fonction retourne le plus court chemin en nombre d'arcs depuis
 \ast le sommet start jusqu'au sommet end
 * Oparam g un graphe
 * Oparam start le sommet de départ
 * Oparam end le sommet d'arriver
 * @return le plus court chemin en nombre d'arcs de start à end
 */
path_t
leastArcsPath(AbstractGraph &g, vertex_t start, vertex_t end);
/**
 * Cette fonction retourne la plus petite valuation présente sur un chemin
 * donné dans un graphe
 * Oparam g un graphe
 * Oparam path une chemin dans g
 * @return la plus petite valuation présente sur le chemin path dans g
weight_t
lightestArc(AbstractGraph& g, path_t path);
 * Cette fonction converti un chemin en chaîne de caractère dans un but d'affichage
 * Oparam path le chemin
 * Oparam g le graphe
 */
string
pathToString(path_t path, const AbstractGraph& g);
 * Mise à jour du graphe d'écart depuis un chemin et la valeur du flot à ajouter
 * sur ce chemin
```

```
* Oparam le graphe de couche
 * Oparam p le chemin
 * @param k la valeur du flot à ajouter
*/
void
updateResidualNetwork(AbstractGraph& residualNetwork, path_t p, uint k);
/**
* algorithme d'Edmonds-Karp
 * @param flow_network le réseau de transport
 * Oparam src le sommet source
 * Oparam dest le puit
 * @return le graphe d'écart final
*/
AdjacencyListGraph
edmondsKarp(const AbstractGraph& flow_network, vertex_t src, vertex_t dest);
2.3.7 Dinic
/**
* Mise à jour du graphe d'écart depuis un flot
 * @param residual_network le graphe de couche
 * @param p le flot
 */
void
updateResidualNetwork(AbstractGraph& residual_network, AbstractGraph& flow);
 * Génération du graphe de couche associé au réseau de transport
* @param residual_network le graphe d'écart
* Oparam src la source
 * @param dest le puit
 * Oreturn le graphe de couche
*/
LevelGraph
generateLevelGraph(const AbstractGraph& residual_network, vertex_t src,
   vertex_t dest);
/**
 * Calcul du flot bloquant
 * @param level_graph le graphe de couche
* Oparam src la source
 * Oparam dest le puit
 * @return un flot bloquant
 */
AdjacencyListGraph
blockingFlow(LevelGraph& level_graph, vertex_t src, vertex_t dest);
```

Partie pratique 29

```
/**
 * algorithme de Dinic
 * @param flow_network le réseau de transport
 * @param src le sommet source
 * @param dest le puit
 * @return le graphe d'écart final
 */
AdjacencyListGraph
dinic(const AbstractGraph& graph, vertex_t src, vertex_t dest);
```