Department of ECE

Assignment –I

Part - A

PART-A

- 1. State and prove convolution property of z transform?
- 2. What are energy and power signals?
- 3.Differentiate: Linear and Nonlinear system.
- 4. Differentiate time variant from time invariant system.
- 5. State the necessary and sufficient condition for stability of LTI systems
- 6. Determine whether the following signal is periodic. If periodic, then compute their fundamental period $x(n) = \cos(0.01\pi n)$
- 7. State sampling theorem
- 8. A discrete time signal $x(n) = \{0,0,1,1,2,0,0,...\}$. Sketch the x(n) and x(-n+2) signals

PART-B

- 1. Check whether the systems described by the following equations are Linear, Shift invariant, Causal and Stable.
 - (i) $y(n) = x(n) \cos \omega n$ (ii) y(n) = x(n) (iii) $y(n) = \operatorname{sgn}(x(x))$
- 2. Compute the linear convolution of the following sequences $x(n) = \{0,2,2,3\}$ and $h(n) = \sin(3\pi n/8)$ with n = (0-4) using all possible methods
- 3.a) What is Nyquist rate? Explain its significance while sampling the analog signal. **1b -24**
 - b) Determine the Z transform and ROC of $x(t) = \cos \omega t$ u(t)
- 4.i)Determine the Z Transform and ROC of the signal

$$x(n) = 7\left(\frac{1}{3}\right)^n u(n) - 6\left(\frac{1}{2}\right)^n u(n)$$

ii)Determine x(n) of

$$X(z) = \frac{1+2z^{-1}}{1-2z^{-1}+z^{-2}}$$
 1b -16

using long division and partial fraction method with the following conditions.

a)
$$|Z| > 1$$

b)
$$|Z| < 1$$