ME951 - Estatística e Probabilidade I

Parte 12

Notas de aula de ME414 produzidas pelos professores **Samara Kiihl**, **Tatiana Benaglia** e **Benilton Carvalho** modificadas e alteradas pela Profa. **Larissa Avila Matos**

Distribuições Contínuas

Distribuição Uniforme

Uniforme

Dizemos que a v.a. X tem distribuição Uniforme no intervalo [a, b], a < b se a função de densidade de probabilidade f_X é dada por:

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{caso contrário} \end{cases}$$

Notação: $X \sim U[a,b]$ ou $X \sim U(a,b)$.

Cálculo da função de distribuição acumulada:

$$F_X(x) = \begin{cases} 0, & x < a \\ \int_a^x \frac{1}{b-a} dt = \frac{x-a}{b-a}, & a \le x \le b \\ 1, & x > b \end{cases}$$

4/45

Uniforme

Gráficos da função de densidade de probabilidade e da função de distribuição acumulada:

Esperança de Variância

 \blacksquare Cálculo da E(X):

$$E(X) = \int_{a}^{b} x \frac{1}{(b-a)} dx = \frac{(b+a)}{2}$$

 \blacksquare Cálculo da Var(X):

$$E(X^{2}) = \int_{a}^{b} x^{2} \frac{1}{(b-a)} dx = \frac{(a^{2} + ab + b^{2})}{3}$$

$$Var(X) = E(X^{2}) - [E(X)]^{2} = \frac{(a^{2} + ab + b^{2})}{3} - \frac{(b+a)^{2}}{4} = \frac{(b-a)^{2}}{12}$$

Exemplo: peça de aço

A dureza H de uma peça de aço pode ser pensada como uma v.a. com distribuição uniforme no intervalo [50,70] da escala de Rockwel.

Calcule a probabilidade de que uma peça tenha dureza entre 55 e 60.

$$f_H(h) = \begin{cases} \frac{1}{70-50} = \frac{1}{20}, & 50 \le x \le 70\\ 0, & \text{caso contrário} \end{cases}$$

$$P(55 < H < 60) = \int_{55}^{60} \frac{1}{20} dh = \frac{1}{20} (60 - 55) = \frac{1}{4}.$$

Seja X uma variável aleatória distribuída uniformemente, com média 15 e variância 25/3.

- \blacksquare Encontre a função de densidade de X.
- \blacksquare Qual é a probabilidade que X>14?

Lembre-se que a esperança de uma v.a. uniforme em [a, b] é dada por

$$E(X) = \frac{a+b}{2}$$

e sua variância por

$$Var(X) = \frac{(b-a)^2}{12}$$

Temos o seguinte sistema, portanto:

$$\begin{cases} \frac{a+b}{2} &= 15\\ \frac{(b-a)^2}{12} &= \frac{25}{3} \end{cases}$$

$$\begin{cases} a+b &= 30\\ (b-a)^2 &= 100 \end{cases}$$

Ou simplesmente (você é capaz de dizer por que tomamos a raiz positiva apenas, neste sistema não-linear?)

$$\begin{cases} a+b &= 30 \\ b-a &= 10 \end{cases}$$

O sistema tem solução $a=10,\,b=20,$ o que nos mostra que $X\sim U[10,20]$ e

$$f_X(x) = \begin{cases} \frac{1}{10}, & 10 \le x \le 20\\ 0, & \text{caso contrário} \end{cases}$$

A probabilidade de que X > 14 é dada por

$$P(X > 14) = \int_{14}^{20} \frac{1}{10} dx = \frac{(20 - 14)}{10} = 0.6$$

Distribuição Exponencial

Exponencial

Dizemos que uma v.a. X possui distribuição exponencial com parâmetro λ ($\lambda > 0$) se a função de densidade de probabilidade f_X é dada por:

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & \text{caso contrário} \end{cases}$$

Notação: $X \sim exp(\lambda)$.

Cálculo da função de distribuição acumulada:

$$F_X(x) = \begin{cases} \int_0^x \lambda e^{-\lambda t} dt = 1 - e^{-\lambda x}, & x \ge 0\\ 0, & \text{caso contrário} \end{cases}$$

Distribuição Exponencial

Gráficos da função de densidade de probabilidade (esquerda) e da função de distribuição acumulada (direita) de $X \sim Exp(0.5)$:

Função de Distribuição Acumulada

Esperança de Variância

 \blacksquare Cálculo da E(X):

$$E(X) = \int_0^\infty x \lambda e^{-\lambda x} dx = \frac{1}{\lambda}$$

 \blacksquare Cálculo da Var(X):

$$E(X^2) = \int_0^\infty x^2 \lambda e^{-\lambda x} dx = \frac{2}{\lambda^2}$$

$$Var(X) = E(X^2) - [E(X)]^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}$$

Exemplo: componente eletrônico

O tempo de vida, X, em horas, de um componente eletrônico segue uma distribuição exponencial de tal forma que $P(X \le 1000) = 0.75$.

Qual é o tempo médio de vida do componente?

Exemplo: componente eletrônico

Sabemos que se $X \sim exp(\lambda)$, então

$$F(x) = P(X \le x) = 1 - e^{-\lambda x}$$

e
$$E(X) = \lambda^{-1}$$
.

Basta então observarmos que

$$P(X \le 1000) = 1 - e^{-\lambda 1000} = 0.75 \quad \Leftrightarrow \quad \lambda = \frac{\ln(4)}{1000} = 0.0013863$$

Concluimos então que o tempo médio de vida, E(X), é igual a 1/0.0013863=721.3475 horas, e que 75% dos componentes duram 1000 horas ou menos.

Exemplo: tubos de TV

Um antiga fábrica de tubos de TV determinou que a vida média dos tubos de sua fabricação é de 800 horas de uso contínuo e segue uma distribuição exponencial.

Qual a probabilidade de que a fábrica tenha que substituir um tubo gratuitamente, se oferece uma garantia de 300 horas de uso?

Exemplo: tubos de TV

X: vida útil do tubo de TV.

E[X]=800. Como Xtem distribuição exponencial com parâmetro $\lambda,$ $E[X]=\frac{1}{\lambda}=800,$ portanto $\lambda=\frac{1}{800}.$

$$f_X(x) = \left\{ \begin{array}{ll} \lambda e^{-\lambda x}, & x \geq 0 \\ 0, & \text{caso contrário} \end{array} \right.$$

$$f_X(x) = \begin{cases} \frac{1}{800} e^{-\frac{x}{800}}, & x \ge 0\\ 0, & \text{caso contrário} \end{cases}$$

Se X < 300, a fábrica tem que substituir gratuitamente.

$$P(X < 300) = \int_0^{300} \frac{1}{800} e^{-\frac{x}{800}} dx = \left[-e^{-\frac{x}{800}} \right]_0^{300} = 0.3127.$$

Exemplo: produto alimentício

A f.d.p.

$$f_X(x) = \begin{cases} 2e^{-2x}, & x \ge 0 \\ 0, & \text{caso contrário} \end{cases}$$

representa a distribuição do índice de acidez (X) de um determinado produto alimentício.

O produto é consumível se este índice for menor do que 2.

O setor de fiscalização apreendeu 30 unidades do produto. Qual a probabilidade de que pelo menos 10% da amostra seja imprópria para consumo?

Exemplo: produto alimentício

Produto liberado para consumo se:

$$P(X < 2) = \int_0^2 2e^{-2x} dx = \left[-e^{-2x} \right]_0^2 = 0.98.$$

Produto não consumível com probabilidade 1 - P(X < 2) = 0.02 = p.

Y: número de unidades impróprias para consumo na amostra de 30.

$$Y \sim \text{Bin}(30, 0.02).$$

Probabilidade de que pelo menos 10% de uma amostra de 30 unidades seja imprópria:

$$\begin{split} P(Y \ge 3) &= 1 - P(Y < 3) = 1 - \left[P(Y = 0) + P(Y = 1) + P(Y = 2) \right] \\ &= 1 - \left[{30 \choose 0} (0.02)^0 (0.98)^{30} + {30 \choose 1} (0.02)^1 (0.98)^{29} + {30 \choose 2} (0.02)^2 (0.98)^{28} \right] \\ &= 0.022 \,. \end{split}$$

Distribuição Gama

Distribuição Gama

Dizemos que uma v.a. X tem distribuição Gama com parâmetros $\alpha>0$ (também denominado parâmetro de forma) e $\beta>0$ (parâmetro de taxa), se sua função densidade é dada por

$$f(x) = \begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \text{ se } x \ge 0\\ 0, \text{ caso contrário} \end{cases}$$

Notação: $X \sim \text{Gama}(\alpha, \beta)$.

A distribuição gama é uma das mais gerais distribuições, pois diversas distribuições são caso particular dela como por exemplo a exponencial, a qui-quadrado, entre outras. Essa distribuição tem como suas principais aplicações à análise de tempo de vida de produtos.

Função Gama

A função gama é definida por

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$$
, para $\alpha > 0$

Distribuição Gama

Gráficos da função de densidade de probabilidade:

Distribuição Gama - distribuição acumulada

A função de distribuição acumulada é a função gama regularizada:

$$F(x; \alpha, \beta) = \int_0^x f(u; \alpha, \beta) du = \frac{\gamma(\alpha, \beta x)}{\Gamma(\alpha)},$$

onde $\gamma(\alpha, \beta x)$ é a função gama incompleta inferior.

Gráficos da função de distribuição acumulada:

Distribuição Gama

Como dito anteriormente, há uma relação estreita entre a distribuição exponencial e a distribuição gama. Temos que, se $\alpha=1$ a distribuição gama se reduz à distribuição exponencial.

Se a variável aleatória X é a soma de α variáveis aleatórias independentes, distribuídas exponencialmente cada uma com parâmetro β , então X tem uma densidade Gama com parâmetros α e β . Seja

$$Y_i \sim \text{Exp}(\beta)$$
, com $i = 1, \dots, \alpha$ e α sendo um inteiro positivo.

Então,

$$X = \sum_{i=1}^{\alpha} Y_i \sim \operatorname{Gama}(\alpha, \beta)$$

Esperança de Variância

$$E(X) = \frac{\alpha}{\beta}$$

$$Var(X) = E(X^2) - [E(X)]^2 = \frac{\alpha(\alpha+1)}{\beta^2} - \frac{\alpha^2}{\beta^2} = \frac{\alpha}{\beta^2}$$

Demontração: Seja $Y_i \sim \text{Exp}(\beta)$, com $i = 1, \dots, \alpha$ e α um inteiro positivo.

$$E(X) = E(\sum_{i=1}^{\alpha} Y_i) = \sum_{i=1}^{\alpha} E(Y_i) = \sum_{i=1}^{\alpha} \frac{1}{\beta} = \frac{\alpha}{\beta}$$

$$Var(X) = Var(\sum_{i=1}^{\alpha} Y_i) = \sum_{i=1}^{\alpha} Var(Y_i) = \sum_{i=1}^{\alpha} \frac{1}{\beta^2} = \frac{\alpha}{\beta^2}$$

Suponha que o tempo gasto por um funcionário selecionado aleatoriamente para realizar uma tarefa em uma empresa tem uma distribuição gama com média 20 minutos e variância de 80 minutos².

Quais são os parâmetros da distribuição gama utilizada?

Qual é a probabilidade de um funcionário realizar a tarefa em no máximo 24 minutos?

Qual é a probabilidade de um funcionário passar entre 20 e 40 minutos realizando a tarefa?

Seja $T = \text{tempo gasto para realizar a tarefa}, T \sim \text{Gama}(\alpha, \beta).$

Lembre-se que a esperança de uma v.a. Gama é dada por $E(T) = \frac{\alpha}{\beta}$ e sua variância por $Var(T) = \frac{\alpha}{\beta^2}$.

Temos o seguinte sistema,

$$\begin{cases} \frac{\alpha}{\beta} &= 20\\ \frac{\alpha}{\beta^2} &= 80 \end{cases}$$

Portanto:

$$\begin{cases} \alpha = 20\beta \\ \frac{20\beta}{\beta^2} = 80 \end{cases}$$

$$\Rightarrow 20 = 80\beta$$

$$\Rightarrow \beta = \frac{20}{80} = \frac{1}{4} = 0, 25$$

$$\Rightarrow \alpha = 20\beta = 20 * 0, 25 = 5$$

$$\Rightarrow T \sim \mathrm{Gama}(5,0,25)$$

A probabilidade de um funcionário realizar a tarefa em no máximo 24 minutos, é dada por

$$P(X \le 24) = \int_0^{24} \frac{0.25^5}{\Gamma(5)} x^4 e^{-0.25x} dx$$

$$= \frac{0.25^5}{4!} \left[e^{-\frac{x}{4}} \left(-4x^4 - 64x^3 - 768x^2 - 6144x - 24576 \right) \right]_0^{24}$$

$$= \frac{0.25^5}{4!} \left[-7005, 549 - (-24576) \right] = 0,7149434$$

A probabilidade de um funcionário passar entre 20 e 40 minutos realizando a tarefa é dada por

$$\begin{split} P(20 < X < 40) &= \int_{20}^{40} \frac{0,25^5}{\Gamma(5)} x^4 e^{-0,25x} dx \\ &= \frac{0,25^5}{4!} \left[e^{-\frac{x}{4}} \left(-4x^4 - 64x^3 - 768x^2 - 6144x - 24576 \right) \right] \Big|_{20}^{40} \\ &= \frac{0,25^5}{4!} \left[-718,9141 - (-10825,56) \right] = 0,4112406 \end{split}$$

Exercício

Para cada cliente que entra na fila do caixa de uma loja de roupas:

- O tempo de espera na fila segue uma distribuição de probabilidade exponencial com média de 5 minutos;
- O tempo de atendimento segue uma distribuição de probabilidade exponencial com média de 3 minutos;

Sabendo que esses dois tempos são v.a.'s independentes.

Para a variável T= tempo total do cliente no caixa (incluindo a espera na fila e o atendimento), determine a densidade, a esperança e o desvio padrão.

Distribuição Gama

Relação entre a distribuição Poisson e a distribuição Gamma:

Teorema: Se o número de ocorrências de um processo de contagem segue distribuição de Poisson(λ), então a variável aleatória "Tempo até a n-ésima ocorrência" do referido processo tem distribuição Gama(n,λ).

As falhas em CPU's de computadores usualmente são modeladas por processos de Poisson. Isso porque, tipicamente, as falhas não são causadas por desgaste, mas por eventos externos ao sistema. Assuma que as unidades que falham sejam imediatamente reparadas e que o número médio de falhas por hora seja 0,0001. Determine a probabilidade de que:

■ o tempo até a quarta falha exceda 40.000 horas.

Dizemos que uma v.a. X tem distribuição Beta com parâmetros $\alpha>0$ e $\beta>0$, se sua função densidade é dada por

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, \quad x \in (0, 1) \text{ e } \alpha, \beta > 0$$

Notação: $X \sim \text{Beta}(\alpha, \beta)$.

Os parâmetros α e β definem a forma da distribuição. Se $\alpha=\beta,$ a distribuição é simétrica, se $\alpha>\beta,$ a assimetria é negativa e, no caso de $\alpha<\beta,$ sua assimetria é positiva.

A distribuição Beta é frequentemente usada para modelarmos a proporção, ou modelagem de objetos que pertenceção ao intervalo (0,1), pois essa distribuição está definida neste intervalo.

A função distribuição acumulada é

$$F(x;\alpha,\beta) = \frac{\mathrm{B}(x;\alpha,\beta)}{\mathrm{B}(\alpha,\beta)} = \frac{\int_0^x t^{a-1} \, (1-t)^{b-1} \, dt}{B(\alpha,\beta)} = I_x(\alpha,\beta)$$

onde $B(x; \alpha, \beta)$ é a função beta incompleta e $I_x(\alpha, \beta)$ é a função beta incompleta regularizada.

■ Esperança de Variância

$$E(X) = \frac{\alpha}{\alpha + \beta}$$

$$Var(X) = E(X^2) - [E(X)]^2 = \frac{\alpha(\alpha+1)}{(\alpha+\beta)(\alpha+\beta+1)} - \frac{\alpha^2}{(\alpha+\beta)^2} = \frac{\alpha\beta}{(\alpha+\beta+1)(\alpha+\beta)^2}$$

Gráficos da função de densidade de probabilidade e da função de distribuição acumulada:

■ Caso paticular: se $\alpha = \beta = 1$, a densidade de Beta se reduz à Uniforme no intervalo (0,1).

A percentagem de impurezas por lote, em um determinado produto químico, é uma variável aleatória com distribuição Beta de parâmetros $\alpha=3$ e $\beta=2$. Um lote com mais de 40% de impurezas não pode ser vendido.

- Qual é a probabilidade de que um lote selecionado ao acaso não poder ser vendidos por causa do excesso de impurezas?
- Quantos lotes em média são selecionados ao acaso até que se encontre um que não pode ser vendidos por causa do excesso de impurezas?
- Qual a porcentagem média de impurezas nos lotes desse produto químico?

■ Seja X=percentagem de impurezas em um lote. Queremos encontrar P(X > 0, 4).

Pelo enunciado temos que $X \sim \text{Beta}(3,2)$. Então, a função densidade de X, para 0 < x < 1, é dada por:

$$f(x) = \frac{\Gamma(5)}{\Gamma(3)\Gamma(2)}x^2(1-x), \quad x \in (0,1)$$

$$\Rightarrow f(x) = 12x^2(1-x), \quad x \in (0,1)$$

Então,

$$P(X > 0, 4) = \int_{0,4}^{1} 12x^{2}(1 - x)dx = 12 \int_{0,4}^{1} x^{2} - x^{3}dx = 0,8208$$

 ${f 2}$ Seja Y= números de lotes selecionados ao acaso até que se encontre um que não pode ser vendido por excesso de impureza.

Queremos E(Y).

Temos que Y tem distribuição geométrica, ou seja, $Y \sim G(p = 0, 8208)$.

Então, $E(Y) = \frac{1}{2} = \frac{1}{0.8208} = 1,218.$

 \blacksquare Queremos calcular E(X).

Como $X \sim \text{Beta}(3,2)$, sabemos que $E(X) = \frac{\alpha}{\alpha + \beta} = \frac{3}{5} = 0, 6$.

Ou seja, a porcentagem média de impurezas nos lotes desse produto químico é de 60%.

Leituras

- \blacksquare Ross: seções 6.1 e 6.2.
- Magalhães: capítulo 6.