

An End-to-End Deep Learning Architecture for Graph Classification

—— Muhan Zhang et al. Washington University in St. Louis

DGCNN Model

Outline

- Background & Introduction
- Challenges
- Problem Definition
- O DGCNN Model Explanation
- Experiments
- **Omments**

Background & Introduction

Growing prevalence of Neural Networks on application domains:

- → Image classification (Alex, Sutskever, and Hinton 2012)
- → Natural language processing (Mikolov et al. 2013)
- → Reinforcement learning (Mnih et al. 2013)
- → Time series analysis (Cui, Chen, and Chen 2016)

Cornerstone of existing methods:

Using fixed input order to extract higher-level features

Original image

Shuffled image

Challenges & Problem Definition

Problems of past Neural Network applications:

- 1) The lack of ordered tensor representations limits the applicability of neural networks on graph
- 2) After extracting localized vertex features, these features are directly summed up as a graph-level feature→ performance on graph data is not satisfactory

Challenges: Given a dataset containing graphs (G, y)

- 1) How to extract useful features characterizing the rich information encoded in a graph for classification purpose
- 2) How to sequentially read a graph in a meaningful and consistent order

Design a localized graph convolution model

Design a SortPooling layer which sorts graph vertices in a consistent order so that traditional neural networks can be trained on the graphs

DGCNN Model Basic Idea

Creating three stages:

- → **Graph convolution layers** extract vertices' local substructure features and define a consistent vertex ordering
- → A SortPooling layer sorts the vertex features under the previously defined order and unifies input sizes
- → Traditional convolutional and dense layers read the sorted graph representations and make predictions

DGCNN Model -- Graph Convolution Layers

Local Substructure Information

Proposed form Given a graph **A** and its node information matrix $\mathbf{X} \in \mathbb{R}^{n \times c}$, our graph convolution layer takes the following form:

$$\mathbf{Z} = f(\tilde{\mathbf{D}}^{-1}\tilde{\mathbf{A}}\mathbf{X}\mathbf{W}),\tag{1}$$

where $\tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}$ is the adjacency matrix of the graph with added self-loops, $\tilde{\mathbf{D}}$ is its diagonal degree matrix with $\tilde{\mathbf{D}}_{ii} = \sum_j \tilde{\mathbf{A}}_{ij}$, $\mathbf{W} \in \mathbb{R}^{c \times c'}$ is a matrix of trainable graph convolution parameters, f is a nonlinear activation function, and $\mathbf{Z} \in \mathbb{R}^{n \times c'}$ is the output activation matrix.

Output:

$$\mathbf{Z}^{1:h} := [\mathbf{Z}^1, \dots, \mathbf{Z}^h]$$

Each row can be regarded as a "feature descriptor" of a vertex

Multi-scale Substructure Features

$$\mathbf{Z}^{t+1} = f(\tilde{\mathbf{D}}^{-1}\tilde{\mathbf{A}}\mathbf{Z}^t\mathbf{W}^t)$$

	Input	1st layer	2nd layer	3rd layer (Final)	Output	
Shape	n*15	Z ₁ (n*5)	Z ₂ (n*3)	z ₃ (n*2)	n*(5+2+3)	

DGCNN Model -- Graph Convolution Layers

Connection with Weisfeiler-Lehman Graph Kernel

$$\mathbf{Z}_i = f([\tilde{\mathbf{D}}^{-1}\tilde{\mathbf{A}}]_i\mathbf{Y}) = f(\tilde{\mathbf{D}}_{ii}^{-1}(\mathbf{Y}_i + \sum_{j \in \Gamma(i)}\mathbf{Y}_j)).$$

View Y_i as a continuous color of vertex i

"soft" version of the WL

DGCNN Model--The SortPooling Layer

By what order should we sort the vertices?

Use graph's structural role, the continuous **WL colors Zt,** t = 1, ..., h to sort vertices.

Order:

First sorting vertices using the last channel of Z_h in a descending order

Output: \mathbf{Z}^{sp} of size $k \times \sum_{1}^{h} c_t$ (k*10)

k: user-defined integer so that m% of graphs have nodes more than this integer k

Unify: delete the last n – k rows if n > k, or adding k – n zero rows if n < k

DGCNN Model--Remaining layers

- → Reshape
- → Add a 1-D convolutional layer
- → Add a MaxPooling layers
- → Add a 1-D convolutional layer
- → Add a dense layer

Reimplementation Result

	MUTAG	PTC	NCI1	PROTEINS	D&D	COLLAB	IMDB-B	IMDB-M
Paper Result	85.83 ±1.66	58.59±2.47	74.44 ±0.47	75.54 ±0.94	79.37±0.94	73.76 ±0.49	70.03 ±0.86	47.83±0.85
Reimplementation	83.89± 0.08	58.82±0.08	73.34± 0.02	74.20± 0.48	81.20±0.53	72.97±0.96	68.7± 0.03	48.2±0.37

^{*} Bioinformatics datasets: MUTAG, PTC, NCI1, PROTEINS, D&D; social network datasets: COLLAB, IMDB-B, IMDB-M.

Our Ideas

- → Use 2-hop neighbors or BFS and DFS methods to extract vertices' local substructure features in graph convolution layers
- → Deeper CNN or 2-D convolution
- → SortingPooling based on last *m* channels giving higher weights to later channels
- → Hyperparameter tuning on k

Paper's & Our Modeling Process

Paper's Model

Our Model

Our Model Result

	MUTAG	PTC	NCI1	PROTEINS	D&D	COLLAB	IMDB-B	IMDB-M
Paper Result	85.83 ±1.66	58.59±2.47	74.44 ±0.47	75.54 ±0.94	79.37±0.94	73.76±0.49	70.03 ±0.86	47.83 ±0.85
Our Model	82.49± 0.07	58.90±0.04	73.34± 0.02	74.20± 0.48	80.70±0.43	72.97±0.96	67.65± 0.03	45.2± 0.47
Best K	0.6	0.55	0.6	0.6	0.65	0.9	0.9	0.9

^{*} Bioinformatics datasets: MUTAG, PTC, NCI1, PROTEINS, D&D; social network datasets: COLLAB, IMDB-B, IMDB-M.

Comments

→ Advantages

- Standard deviations of experiment results are included
- Clear explanation on math equations
- Accepts graphs as input without the need of any preprocessing

→ Disadvantages

- A visualization on experiment results could be more intuitive
- No detailed codes of model selection
- Running time is not included
- Unclear explanations on connections with WL kernel

Thank you!