Лабораторная работа 1.4.8

Измерение модуля Юнга методом акустического резонанса

Татаурова Юлия Романовна

13 декабря 2023 г.

Аннотация

В работе необходимо исследовать явление вкустического резонанса в тонком стержне; измерить скорость распространения продольных звуковых колебаний в тонких стержнях из различных материалов и различных размеров; измерить модули Юнга различных материалов.

Оборудование

- Частотомер
- Осциллограф
- Электромагнитные излучатель и приемник колебаний
- Набор стержней из различных материалов

Теоретические сведения и экспериментальная установка

Скорость u распространения продольной акустической волны в случае тонкого длинного стержня определяется как:

$$u = \sqrt{\frac{E}{\rho}},\tag{1}$$

где ρ - плотнотсь среды, E - модуль Юнга.

В работе мы рассматриваем наиболее простой случай распространения звуковой волны в твердом теле - в длинном тонком стержне. С точки зрения распространения волн стержень считается тонким при условии $\lambda \gg R$, где λ - длина звуковой волны в стержне; R - радиус стержня. Акустическая волна, распространяясь в стержне конечной длины L, испытывает отражение от торцов и если при этом на длине стержня укладываестя целое число полуволн, то отраженные волны будут складываться в фазе с падающими, что пирведет к резкому усилению амплитудыих колебаний и возникновению акустического резонанса в стержне. При частотах гармонического возбуждения, совпадающих с собственными частотами колебаний

стрежня, резко увеличивается амплитуда колебаний и в стержне образуется стоячая волна. Тогда для *n*-ой гармоники можно записать:

$$u = 2L \frac{f_n}{n} \tag{2}$$

Схема установки приведена ниже.

Исследуемый стержень 5 размещается на стойке 10. Возбуждение и приём колебаний в стержне осуществляются электромагнитными преобразователями 4 и 6, расположенными рядом с торцами стержня. Крепления 9, 11 электромагнитов дают возможность регулировать их расположение повысоте, а также перемещать вправо-влево по столу 12. Электромагнит 4 служит для возбуждения упругих механических продольных колебаний в стержне. На него с генератора звуковой частоты 1 подаётся сигнал синусоидальной формы: протекающий в катушке электромагнита ток создаёт пропорциональное ему магнитное поле, вызывающее ериодическое воздействие заданной частоты на торец стержня (к торцам стержней из немагнитных материалов прикреплены тонкие стальные шайбы). Рядом с другим торцом стержня находится аналогичный электромагнитный датчик 6, который служит для преобразования механических колебаний в электрические. Принцип работы электромагнитных датчиков описан подробнее ниже. Сигнал с выхода генератора поступает на частотомер 2 и на вход канала Х осциллографа 3. ЭДС, возбуждаемая в регистрирующем электромагните 6, пропорциональная амплитуде колебаний торца стержня, усиливается усилителем 7 и подаётся на вход канала У осциллографа. Изменяя частоту генератора и наблюдая за амплитудой сигнала с регистрирующего датчика, можно определить частоту акустического резонанса в стержне.

Рис. 1: Схема установки: 1 — генератор звуковой частоты, 2 — частотомер, 3 — осциллограф, 4 — электромагнит-возбудитель, 5 — образец, 6 — электромагнитприёмник, 7 — усилитель звуковой частоты, 8 — блок питания усилителя, 9, 11 — стойки крепления электромагнитов, 10 — стойка крепления образца, 12 — направляющая

Экспериментальные данные

материал	d mm	l, mm	m, гр	$ ho$, k $\Gamma/{ m M}^3$
медь	12.34	29.7	29.109	8195
дюралюминий	12.15	41.2	13.312	2786.79
сталь	12.38	41.2	37.084	7377.53

Таблица 1: Плотность стрежней

N	1	2	3	4	5
$\nu_{\scriptscriptstyle \mathrm{M}}$, к Γ ц	3.2182	6.4717	9.6619	12.884	16.106
$ u_{\rm a}$, к Γ ц	4.2438	8.4857	12.6295	16.8745	21.21163
$ u_{\rm c}$, к Γ ц	4.1278	8.2581	12.387	16.511	20.635

Таблица 2: Резонансная частота стержней

Рис. 2: График зависимости резонансной частоты медного стержня от номера гармоники

Рис. 3: График зависимости резонансной частоты дюралюминиего стержня от номера гармоники

Рис. 4: График зависимости резонансной частоты стального стержня от номера гармоники

величина/материал	медь	дюралюминий	сталь
u, м/с	3862.79	5078.4	4952.4
$E, \Gamma \Pi a$	122.28	71.87	183.4

Таблица 3: Резонансная частота стержней

Погрешности и результаты измерений

Погрешности вычисления плотности стержней определим по формуле:

$$\varepsilon_{\rho} = \sqrt{\left(\frac{\sigma_m}{m}\right)^2 + \left(\frac{\sigma_l}{l}\right)^2 + \left(\frac{\sigma_d}{d}\right)^2} \tag{3}$$

Погрешность вычисления скорости распределеня звуковых колебаний в стержнях определим по формуле:

$$\varepsilon_u = \sqrt{\left(\frac{\sigma_k}{k}\right)^2 + \left(\frac{\sigma_l}{L}\right)^2},\tag{4}$$

где k - наклон прямой графика зависимости $f_n(n)$, а σ_k :

$$\sigma_k = \sqrt{\frac{\langle n^2 \rangle \langle f_n^2 \rangle - \langle n f_n \rangle^2}{n \langle n^2 \rangle}} \tag{5}$$

Погрешность вычисления модуля Юнга определяется формулой:

$$\varepsilon_E = \sqrt{4\varepsilon_u^2 + \varepsilon_\rho^2} \approx \varepsilon_\rho \tag{6}$$

величина/материал	медь	дюралюминий	сталь
$\varepsilon_{ ho}$, %	4.7	5.7	4.4
ε_u , %	0.1	0.17	0.08
$\varepsilon_E,\%$	4.7	5.7	4.4

Таблица 4: Погрешность измерений плотности, скорости и модуля Юнга стержней

Получаем:

величина/материал	медь	дюралюминий	сталь
$u \pm \sigma_u$, m/c	3863 ± 4	5874 ± 9	4952 ± 4
$E \pm \sigma_E, \Gamma \Pi a$	122 ± 6	72 ± 4	183 ± 8

Таблица 5: Результаты измерений

Определение добротности колебательной системы

Добротность Q колебательной системы определяется как:

$$Q \sim \frac{\Delta f}{f_{\rm pes}},$$
 (7)

где Δf - ширина резонанса $\Delta f = 0.0008$ к Γ ц, $f_{\rm pes} = 3.2184$, тогда $Q \sim 2000$

Выводы

В работе мы с помощью метода акустического резонанса измерили скорость распространения продольных звуковых колебаний в тонких стержнях разных материалов, а так же измерили модулю Юнга для них. Сравним результаты:

величина/материал	медь	дюралюминий	сталь
$u_{ m эксп} \pm \sigma_u$, м/с	3863 ± 4	5874 ± 9	4952 ± 4
$u_{ m ra6\pi},~{ m m/c}$	3790	-	5150
$E_{\text{эксп}} \pm \sigma_E, \Gamma \Pi a$	122 ± 6	72 ± 4	183 ± 8
$E_{\text{табл}}, \Gamma \Pi a$	105-130	70.5	200-210

Таблица 6: Сравнение табличных данных с результатами эксперимента

Как можно видеть из 4 погрешность измерения модуля Юнга определяются погрешностью измерения плотности материала. Тогда сравним табличные и экспериментальные значения плотности:

величина/материал	медь	дюралюминий	сталь
ρэксп ± σρ, κг/м3	8195 ± 386	2786 ± 159	7477 ± 331
$ ho_{ ext{табл}}, ext{кг}/ ext{м}^3$	-	2800	7500-7900

Таблица 7: Сравнение табличных данных с результатами эксперимента

Плотность материалов входит в ворота погрешности. Погрешность скорости распространения продольных волн в стрежне мала, т.к относительная погрешность как измерения частоты, так и измерения длины стержня много меньше единицы. Расхождения с табличными значениями можно объяснить наличием иных примесей в сплавах стержней.