Semaine 18

Suites récurrentes, dénombrement

Sujet 1: Damien Longechamp

Soit u une suite telle que $u_{n+1} = \sqrt{2 - u_n}$.

- 1) Donner une condition nécessaire et suffisante sur u_0 pour que u_1 soit défini.
- 2) Donner une condition nécessaire et suffisante sur u_0 pour que u_1 et u_2 soient définis.
- 3) Montrer que si u_0 vérifie la condition de la question précédente, alors la suite u est bien définie.
- 4) On suppose que la suite est bien définie. Montrer que les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont monotones et convergent vers une même limite.
- 5) Montrer que u converge et donner sa limite.

Sujet 2: Lucile Plaidy

Soit $r \in \mathbb{R}$ et u la suite définie par $u_0 = 0$ et $u_{n+1} = u_n^2 + r$. $\mathbf{Ex.}\ 18.2$

- 1) Quel est le comportement de la suite u pour r = 0?
- 2) Quel est le comportement de la suite u pour $r > \frac{1}{4}$?
- 3) Quel est le comportement de la suite u pour r < -2?
- 4) On suppose maintenant que $r \in [0; \frac{1}{4}]$. Étudier la suite, notamment son sens de variation et son éventuelle limite.

Sujet 3 : Géraud de Béjarry

Soit u la suite définie par $u_0 \in \mathbb{R} \setminus \left\{ \frac{-1}{2} \right\}$ et $u_{n+1} = u_n + \frac{1}{2} + \frac{1}{2(1+2u_n)}$. Ex. 18.3

- 1) Montrer que la suite u est bien définie.
- 2) On suppose que $u_0 > \frac{-1}{2}$. Montrer que u diverge vers $+\infty$.
- 3) On suppose que $u_0 < \frac{-1}{2}$. Étudier la convergence de la suite u.

Lycée Lafayette Colles 2018/2019

Sujet 4: Exos supplémentaires

Ex. 18.4 Soit $r \in \mathbb{K}^*$ (ici $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$).

On pose $R = r + \frac{1}{r}$ et pour tout entier $n \in \mathbb{N}$, $U_n = r^n + \frac{1}{r^n}$.

- 1) Montrer que si $R \in \mathbb{N}$ alors, pour tout entier $n \in \mathbb{N}$, $U_n \in \mathbb{N}$.
- 2) Soit $n \in \mathbb{N}$. Exprimer U_{n+2} en fonction de R, U_n et U_{n+1} .
- 3) Refaire la question 1) par récurrence double.
- 4) Montrer que pour tout entier $n, U_n = P_n(R)$ où P_n est un polynôme.
- 5) Donner un exemple d'*irrationnel (réel)* r tel que $R = r + \frac{1}{r}$ est entier. Écrire la propriété de la question 1) pour ce réel.
- 6) Même question mais on veut r complexe non réel (et $r \neq \pm i$).

Ex. 18.5 (Cor.) De combien de façons peut-on paver un rectangle $n \times 2$ à l'aide de dominos 2×1 ?