Tóm tắt nội dung

Quy hoạch tuyến tính và cơ sở lý thuyết

Nguyễn Chí Bằng, Đỗ Ngọc Minh Thư, Lê Đức Anh, Nguyễn Thành Nam Ngày 11 tháng 11 năm 2023

Mục lục

1	Thu	ıật toán đơn hình	3
	1.1	Thuật toán M và 2 pha	3
		1.1.1 Bài toán M	3
		1.1.2 Bài toán 2 pha	7
	1.2	Thuật toán cải biên	9
		1.2.1 Phương pháp đơn hình cải biên	9
		1.2.2 Phương pháp đơn hình đối ngẫu	17
2	Bài	toán đối ngẫu	20
	2.1	Giới thiệu	20
	2.2	Cơ sở lý thuyết	20
		2.2.1 Ví dụ hướng đến bài toán đối ngẫu	20
		2.2.2 Qui tắc đối ngẫu (trang 33 chương 2 quy hoạch	
		tuyến tính)	22
		2.2.3 Bài toán đối ngẫu dạng chuẩn tắc	23
		2.2.4 Bài toán đối ngẫu dạng chính tắc	25
	2.3	Ví dụ minh hoạ	26
3	Tài	liệu tham khảo	28
1	\mathbf{T}	huật toán đơn hình	
1.	1 T	huật toán M và 2 pha	
1.1	.1 E	Bài toán M	
Gi	ới thi	iên	

Đối với các bài toán quy hoạch tuyến tính nhưng không đủ số vector cơ sở. Ta thêm vào 1 ẩn giả ở ràng buộc và Mx_4 vào hàm mục tiêu với

M là số dương rất lớn (đối với bài toán Min). Từ đó ta dẫn đến được dạng bài toán quy hoạch tuyến tính M.

Nội dung

Giả sử ta có bài toán có ma trận A chưa xác định được hệ cơ sở

$$Min \sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, i = \overline{1, m}$$

$$x_j \ge 0, j = \overline{1, n}$$
(1)

Từ đó ta xét BT có ẩn giả tạo sau (gọi là Bài toán M) (2)

$$Min \sum_{j=1}^{n} c_{j}x_{j} + M(\sum_{i=1}^{m} x_{n+i})$$

$$\sum_{j=1}^{n} a_{ij}x_{j} + x_{n+i} = b_{i}, i = \overline{1, m}$$

$$x_{j} \ge 0, j = \overline{1, n+m}$$
(2)

Với M là số thực dương lớn tuỳ ý, các ẩn x_{n+i} , $i = \overline{1, m}$ là các ẩn giả tạo. Việc đưa các ẩn giả tạo nhằm tạo ra 1 cơ sở. Vì vậy, không nhất thiết phải có đủ m ẩn giả tạo.

Định lý 1 Với M đủ lớn thì

BT (1) có PATU X khi và chỉ khi <math>BT (2) có $PATU \overline{X} = (X, 0)$.

Nếu BT (2) có PATU \overline{X} mà trong đó có chứa $x_{m+i} > 0$ thì tập PATU của BT (1) là rỗng.

Ví dụ minh hoạ

Xét bài toán QHTT $Min - x_1 + 3x_2 + 5x_3 + x_4$

$$\begin{cases} x_1 + 4x_2 + 4x_3 + x_4 = 5 \\ x_1 + 7x_2 + 8x_3 + 2x_4 = 9 \\ x_i \ge 0, i = 1, 2, 3, 4 \end{cases}$$

Ta thấy bài toán trên chưa có véc tơ đơn vị, nên ta thêm vào hai ẩn giả tạo để tạo ra hai véc tơ đơn vị. Xét bài toán M như sau:

$$\begin{aligned}
Min - x_1 + 3x_2 + 5x_3 + x_4 + M(x_5 + x_6) \\
x_1 + 4x_2 + 4x_3 + x_4 + x_5 &= 5 \\
x_1 + 7x_2 + 8x_3 + 2x_4 + x_6 &= 9 \\
x_i \ge 0, i = 1, 2, 3, 4, 5, 6
\end{aligned}$$

Ta có phương án cực biên xuất phát là (0,0,0,0,0,5,9)

	1					I	1	
HS	CS	PA	-1	3	5	1	M	M
			x_1	x_2	x_3	x_4	x_5	x_6
M	A_5	5	1	4	4	1	1	0
M	A_6	9	1	7	8	2	0	1
		$\Delta \rightarrow$	2M+1	11M - 3	12M - 5	3M-1	0	0
M	A_5	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{2}$	0	0	1	$\frac{-1}{2}$
5	A_3	$\frac{9}{8}$	$\frac{1}{8}$	$\frac{7}{8}$	1	$\frac{1}{4}$	0	$\frac{1}{8}$
		$\Delta \rightarrow$	$\frac{1}{2}M + \frac{13}{8}$	$12M + \frac{11}{8}$	0	$\frac{1}{4}$	0	$\frac{-3}{2}M$
-1	A_1	1	1	1	0	0	2	-1
5	A_3	1	0	$\frac{3}{4}$	1	$\frac{1}{4}$	$\frac{-1}{4}$	$\frac{1}{4}$
		$\Delta \rightarrow$	0	$\frac{-1}{4}$	0	$\frac{1}{4}$		7
-1	A_1	1	1	1	0	0		
1	A_4	4	0	3	4	1		
		$\Delta \rightarrow$	0	-1	-1	0		

Vậy phương án tối ưu của bài toán gốc là (1,0,0,4)

1.1.2 Bài toán 2 pha

1. Nội dung

Nếu một bài toán quy hoạch tuyến tính có hệ ràng buộc theo dạng

$$\begin{array}{l}
Ax \le b \\
x \ge c
\end{array} \tag{3}$$

Mà $b \ge 0$ thì có thể biến đổi hệ ràng buộc của bài toán dạng chính tắc bằng cách thêm vào hàng thứ i của hệ nói trên ẩn y_i . Hệ được viết lai:

$$Ax + y = b$$

$$x, y > 0$$
(4)

Khi đó ta có ngay một phương án xuất phát $(0, \overline{y})$ với $\overline{y_i} = b_i; i = 1, 2, \dots, m$.

Thực chất các ẩn y_i là các ẩn giả tạo, bởi lẽ trong miền xác định của bài toán không cần đến các biến này. Ý tưởng này được áp dụng cho bài toán dạng chính tặc để tìm phương án cực biên ban đầu như sau:

Từ bài toán dạng chính tắc

$$Min f(x) = \langle c, x \rangle$$

$$Ax = b$$

$$x > 0$$
(5)

Ta xét
$$Min \sum_{i=1}^{m} y$$

$$Ax + y = b$$

$$x, y \ge 0$$
 (6)

Nếu bài toán (5) có x_0 chấp nhận được thì bài toán (6) đạt giá trị tối ưu với $u_0 y = 0$

- Nếu bài toán (5) ta có u_0 chấp nhận được tức là $A_x \neq 0$ với mọi $x \geq 0$ thì bài toán (6) sẽ có u_0 chấp nhận được với $y \neq 0$ tức là giá trị tối ưu của bài toán (6) là số dương.
- \blacksquare Dùng thuật toán đơn hình cho bài toán (6) ở mỗi bước của thuật giải ta nhận được u_0 chấp nhận được.
- Nếu đến bước mà bài toán có giá trị tối ưu = 0 thì ta sẽ nhận được u_0 cơ bản chấp nhận được cuối cùng với các ẩn $y_i = 0, i = 1, 2, ..., m$.

Từ đây, bài toán (5) được giải với u_0 cơ sở chấp nhận được vừa tìm.

2. Ví dụ minh hoạ

Ta xét bài toán sau

$$\begin{cases} Min - x_1 + 3x_2 + 5x_3 + x_4 \\ x_1 + 4x_2 + 4x_3 + x_4 = 5 \\ x_1 + 7x_2 + 8x_3 + 2x_4 = 9 \end{cases}$$
 Đây là bài toán chưa có hệ cơ sở.
$$x_i \ge 0, i = 1, 2, 3, 4$$

Do đó ta có thể dùng phương pháp hai pha để giải bài toán. Ta có pha I, với các ẩn giả là x_5, x_6

Min
$$x_5 + x_6$$

$$\begin{cases} x_1 + 4x_2 + 4x_3 + x_4 + x_5 = 5 \\ x_1 + 7x_2 + 8x_3 + 2x_4 + x_6 = 9 \end{cases}$$

$$x_i \ge 0, i = 1, 2, 3, 4, 5, 6$$
To ask hall respect to a $x_i \ge 0$.

1.2 Thuật toán cải biên

1.2.1 Phương pháp đơn hình cải biên

1. Giới thiệu

Xét bài toán quy hoạch tuyến tính ở dạng chính tắc

$$\langle c, x \rangle \to Max, \quad Ax = b, \qquad x \ge 0$$

Trong đó A là ma trận $m \times n$ và giả sử rằng hạng của ma trận A là m. Ta đã nghiên cứu phương pháp đơn hình để giải bài toán này. Giả sử ta có phương án cực biên $x = (x_1, x_2, \ldots, x_m, 0, \ldots, 0)$ với $x_j > 0, j = 1, \ldots, m$ và cơ sở $A_j, j \in J = \{1, 2, \ldots, m\}$. Ta đã có các công thức:

$$A_k = \sum_{j \in J} z_{jk} A_j, \quad \sum_{j \in J} x_j A_j = b, \quad \Delta_k = \sum_{j \in J} z_{jk} c_j - c_k$$

Và ta đã chứng minh rằng phương án cực biên x là tối ưu khi và chỉ khi $\Delta_k \geq 0, \forall k \notin J$.

2. **Nội dung**

Ochard và Hays lợi dụng tính chất là cơ sở bước lặp sau $A_j, j \in J' = J \setminus \{r\} \cup \{s\}$ chỉ khác cơ sở ở bước trước $A_j, j \in J$ bằng việc thay thế một vector cơ sở, đã đưa ra thuật toán đơn hình cải biên để giám bớt khối lượng tính toán và các thông tin cần lưu trữ trong mỗi bước lặp.

Ta đưa vào các ký hiệu sau:

 $A_J = (A_1, A_2, \dots, A_m)$ - ma trận cơ sở.

 $\overline{\mathbf{Z}}_k = (z_{1k}, z_{2k}, \dots, z_{mk})^T$ - vector cột, khai triển của A_k theo cơ sở $c_J = (c_1, c_2, \dots, c_m)$ - vector hàng, hệ số hàm mục tiêu ứng với cơ sở.

 $x_J = (x_1, x_2, \dots, x_m)^T$ - vector cột, các biến cơ sở.

Sử dụng các ký hiệu đó ta có thể viết:

$$A_k = A_J \overline{Z}_k \to \overline{Z}_k = A_J^{-1} A_k \tag{7}$$

$$\Delta_k = c_J \overline{Z}_k - c_k = c_J A_J^{-1} A_k - c_k \tag{8}$$

$$A_J x_J = b \to x_J = A_J^{-1} b \tag{9}$$

Như vậy tất cả các đại lượng cần tính toán đều có thể biễu diễn qua ma trận nghịch đảo A_J^{-1} . Tuy nhiên ở mỗi bước lặp không cần phải tính nghịch đảo lại toàn bộ ma trận A_J , vì nó chỉ khác ma trận nghịch đảo ở bước trước bởi sự thay thế một vector cột. Giả sử ở bước lặp trước ta có x, J, A_J^{-1} và bây giờ ta có $x', J', A_{J'}^{-1}$. Ta xét ma trận đơn vị V cấp m

Ta ký hiệu:

$$Q = A_J^{-1} = (q_{ij})_{m \times m}$$
 , $Q' = A_{J'}^{-1} = (q'_{ij})_{m \times m}$

Ta có:

$$A_J A_J^{-1} = V \Rightarrow \sum_{j \in J} a_{ij} q_{jk} = v_{ik} \Rightarrow \sum_{j \in J} q_{jk} A_j = V_k$$
 (10)

Tương tự

$$A_{J'}A_{J'}^{-1} = V \Rightarrow \sum_{j \in J'} q'_{jk}A_j = V_k$$
 (11)

Do
$$J'=J\setminus\{r\}\cup\{s\}$$
 và $A_s=\sum_{j\in J}z_{js}A_j$ với $z_{rk}\neq 0$

nên ta có đẳng thức

$$A_r = \frac{1}{z_{rs}} A_s - \frac{1}{z_{rs}} \sum_{j \in J \setminus \{r\}} z_{js} A_j$$

Thay biểu thức này vào (10) ta được

$$V_k = \sum_{j \in J \setminus \{r\}} q_{jk} A_j + \left(\frac{q_{rk}}{z_{rs}} A_s - \frac{q_{rk}}{z_{rs}} \sum_{j \in J \setminus \{r\}} z_{js} A_j\right) = \sum_{j \in J \setminus \{r\}} \left(q_{jk} - \frac{q_{rk}}{z_{rs}} z_{js}\right) A_j + \frac{q_{rk}}{z_{rs}} a_{js} A_j + \frac{q_{rk}}{z_{r$$

Từ hệ thức này và (11) ta suy ra

$$q_{jk}^{'} = \begin{cases} q_{jk} - (\frac{q_{rk}}{z_{rs}}) z_{js} & \text{n\'eu} \quad j \in J \quad \text{và} \quad j \neq r \\ \frac{q_{rk}}{z_{rs}} & \text{n\'eu} \quad j = s \end{cases}$$

Thuật toán đơn hình cải biên

Xét bài toán quy hoạch tuyến tính ở dạng chính tắc, quá trình tính toán theo phương pháp đơn hình cải biên được bố trí trong hai bảng sau.

Bảng 1

b_1	a_{11}	 a_{1s}	 a_{1n}
b_m	a_{m1}	 a_{ms}	 a_{mn}
	c_1	 c_s	 c_n
$\Delta_{(1)}$	Δ_1	 Δ_s	 Δ_n
$\Delta_{(2)}$	Δ_1	 Δ_s	 Δ_n

Bảng 2

c_J	A_J	q_0	q_1	 q_m	A_s	θ
c_{j1}	A_{j1}	q_{10}	q_{11}	 q_{1m}	z_{1s}	
c_{jr}	A_{jr}	q_{r0}	q_{r1}	 q_{rm}	z_{rs}	
c_{jm}	A_{jm}	q_{m0}	q_{m1}	 q_{mm}	z_{ms}	
		$q_{m+1,0}$	$q_{m+1,1}$	 $q_{m+1,m}$	Δ_s	

Dòng cuối cùng chứa phương án của bài toán đối ngẫu được tính theo công thức:

$$(q_{m+1,1}, \dots, q_{m+1,m}) = c_J A_J^{-1}$$
 (13)

Thuật toán đơn hình gồm các bước sau: Bước 1 (xây dựng bản đơn hình xuất phát)

Giả sử ta có cơ sở $A_j, j \in J$ và phương án cực biên x. Tính ma trận nghịch đảo A_J^{-1} rồi điền vào m phần tử đầu tiên của các cột q_1, \ldots, q_m . Tính m phần tử đầu của cột q_0 theo (9) và $q_{m+1,0} = \langle c_J, x_J \rangle$. Tính dòng m+1 ứng với các cột q_1, \ldots, q_m theo công thức (13): phần tử $q_{m+1,j}$ là tích vô hướng của cột q_j với vector c_J .

Bước 2 (Tìm cột quay và kiểm tra tối ưu)

Tính ước lượng các cột theo công thức (8): Δ_j là tích vô hướng của dòng m+1 thuộc Bảng 2 với cột j của Bảng 1 rồi trừ đi c_J . Nếu $\Delta_j \geq 0$ với mọi j thì phương án cực biên đang xét là tối ưu. Trái lại, ta xác định vector A_s đưa vào cơ sở theo công thức.

$$\Delta_s = \min\{\Delta_j \mid \Delta_j < 0, j \notin J\}$$
 (14)

Bước 3 (tìm dòng quay)

Trước tiên tính cột quay, tức là cột A_s của Bảng 2 theo công thức (7): lấy cột A_s của Bảng 1 nhân vô hướng với từng dòng của ma trận nghịch đảo A_J^{-1} ta sẽ được từng phần tử của cột A_s thuộc Bảng 2. Phần từ cuối của cột A_s thuộc Bảng 2 lấy là Δ_s . Nếu $z_{js} \leq 0, \forall j \in J$ thì hàm mục tiêu bài toán quy hoạch tuyến tính không bị chặn trên. Nếu trái lại ta xác định vector A_r loại khỏi cơ cở theo công thức

$$\theta_r = \frac{q_{r0}}{z_{rs}} = min\left\{\frac{q_{j0}}{z_{js}} \mid z_{js} > 0, j \in J\right\}$$
 (15)

Cột θ trong Bảng 2 để lưu $q_{j0}/q_{js}, j \in J$.

Bước 4 (Biến đổi ma trận nghịch đảo mở rộng)

Đưa A_s vào cơ sở thay cho A_r và biến đổi toàn bộ các cột q_0, q_1, \ldots, q_m theo công thức (12) (quy tắc hình chữ nhật), phần tử chính của phép biến đổi biến là z_{rs} . Quay lên Bước 2.

Ví dụ minh hoạ

1. Cho bài toán quy hoạch tuyến tính như sau:

(P)
$$f(x) = 50x_1 + 60x_2 \longrightarrow Max$$

$$\begin{cases} x_1 + 2x_2 \le 8 \\ x_1 + x_2 \le 5 \\ 9x_1 + 4x_2 \le 36 \\ x_i \ge 0, \forall i = 1, 2 \end{cases}$$

⇒ Đưa bài toán về dạng chính tắc :

$$\begin{cases} x_1 + 2x_2 + x_3 &= 8 \\ x_1 + x_2 &+ x_4 &= 5 \\ 9x_1 + 4x_2 &+ x_5 &= 36 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

Số liệu ban đầu của bài toán và các ước lượng ở mỗi bước lặp lưu trong bảng sau:

b	A_1	A_2	A_3	A_4	A_5
8	1	2	1	0	0
5	1	1	0	1	0
C	50	60	0	0	0
Δ_1	-50	-60	0	0	0
Δ_2	-20	0	30	0	0
Δ_3	0	0	10	40	0

Việc giải bài toán qua ba bảng đơn hình.

Bước Lặp 1: Cơ sở xuất phát là ma trận đơn vị $A_J=\{A_3,A_4,A_5\}$, do đó ma trận nghịch đảo A_J^{-1} cũng vẫn chính là ma trận đơn vị.

c_J	A_J	q_0	q_1	q_2	q_3	A_1	θ
0	A_3	8	1	0	0	2	4
0	A_4	5	0	1	0	1	5
0	A_5	36	0	0	1	4	9
		0	0	0	0	-60	

Bước Lặp 2:

c_J	A_J	q_0	q_1	q_2	q_3	A_1	θ
60	A_2	4	0.5	0	0	20.5	8
0	A_4	1	-0.5	1	0	0.5	2
0	A_5	20	-2	0	1	7	20/7
		240	30	0	0	-20	

Bước Lặp 3:

c_J	A_J	q_0	q_1	q_2	q_3
60	A_2	3	1	-1	0
50	A_1	2	-1	2	0
0	A_5	6	5	-14	1
		280	10	40	0

1.2.2 Phương pháp đơn hình đối ngẫu

1. Giới thiệu

Trong thực tế, việc giải một bài toán bằng thuật toán đơn hình ban đầu cho ta mội giải pháp tối ưu nhưng không khả thi. Trong trường hợp này, thuật toán đơn hình đối ngẫu cung cấp cho ta một giải pháp khả thi bằng cách điều chỉnh phương án thông qua \overline{b}_r sao cho $\overline{b}_r \geq 0$ trong khi đó với thuật toán đơn hình, ta tập trung vào \overline{c}_s sao cho $\overline{c}_s < 0$. Trong khi vẫn giữ được tính khả thi.

2. **Nội dung**

Cho bài toán dạng chính tắc

$$Min c^{T} x = z$$

$$Ax = b,$$

$$x \ge 0,$$
(16)

Như ta thấy, sau quá trình biến đổi với thuật toán đơn hình ta luôn nhận được một hệ phương trình với các biến cơ sở $-z, x_1, x_2, \ldots, x_m$.

Với $x_B = (x_1, x_2, \dots, x_m)^T$ và $x_N = (x_{m+1}, x_{m+2}, \dots, x_n)^T$, Hệ phương trình được viết lại dưới dạng:

$$(-z) + \overline{c}x_N = -\overline{z}_0$$

$$Ix_B + \overline{A}x_N = \overline{b},$$
(17)

Hoặc dưới dạng ma trận, hệ có thể viết lại thành:

$$\begin{pmatrix} 1 & 0 & \overline{c} \\ 0 & I & \overline{A} \end{pmatrix} \begin{pmatrix} -z \\ x_B \\ x_N \end{pmatrix} = \begin{pmatrix} -\overline{z}_0 \\ \overline{b} \end{pmatrix}, \tag{18}$$

Từ đây, ta xét dạng đối ngẫu của bài toán

$$Max b^{T} \pi = v$$

$$A^{T} \pi \le c,$$
(19)

Với các ẩn giả được thêm vào ta viết lại

$$Max b^{T} \pi = v$$

$$A^{T} \pi + Iy = c,$$

$$y \ge 0$$
(20)

Hình 1: Mối quan hệ giữa bài toán gốc và bài toán đối ngẫu

	Bài toán gốc	Bài toán đối ngẫu
Cơ sở	В	$\overline{\mathbf{B}} = \begin{pmatrix} B^T & 0 \\ N^T & I_{n-m} \end{pmatrix}$
Biến cơ sở	x_B	$\pi, y_N = \overline{\mathbf{c}}_N$
Biến không cơ sở	x_N	$y_B = \overline{\mathrm{c}}_B$
Điều kiện	$Ax = b, x \ge 0$	$\overline{c} \ge 0$

Xét mối quan hệ giữ bài toán dạng chính tắc và dạng đối ngẫu của nó ta có cái mối tương quan như bảng trên.

Ta có thể thấy cột cơ sở và không cơ sở của bài toán dạng đối ngẫu lần lượt được ký hiệu là \overline{B} và \overline{N} .

$$\overline{\mathbf{B}} = \begin{pmatrix} B^T & 0\\ N^T & I_{n-m} \end{pmatrix},\tag{21}$$

$$\overline{\mathbf{N}} = \begin{pmatrix} I_m \\ 0 \end{pmatrix}, \tag{22}$$

Thuật toán đơn hình đối ngẫu gồm các bước sau:

Bước 1 (Chọn cơ sở vào)

Nếu $\overline{b}_r = min \overline{b}_i < 0$, chọn x_r tương đương với hàng r.

Bước 2 (Chọn cơ sở ra)

Nếu $\frac{\overline{c}_s}{-\overline{a}_{rs}} = min \frac{\overline{c}_j}{-\overline{a}_{rj}} \ge 0$ trong đó $\overline{a}_{rj} > 0$, loại bỏ x_s tương ứng với cột s.

Bước 3 (Kiểm tra)

Xoay vòng theo \overline{a}_{rs} để xác định một giải pháp khả thi mới, đặt $j_r = s$ và quay lại bước 1.

2 Bài toán đối ngẫu

2.1 Giới thiệu

Trong Lý thuyết tối ưu, với một bài toán tối ưu cho trước, người ta quan tâm làm sao thiết lập được bài toán liên kết với bài toán đã cho mà khi giải bài toán này ta thu được thông tin về bài toán ban đầu. Đó chíng là bài toán đối ngẫu.

Việc giải và tìm hiểu hai bài toán song song rất có ý nghĩa về mặt thực tiễn. Đôi khi ta giả bài toán đối ngẫu lại dễ dàng hơn so với bài toán gốc. Vì sao lại dễ dàng hơn thì mục dưới đây chính là trình bày và nghiên cứu bài toán đối ngẫu của bài toán quy hoạch tuyến tính.

2.2 Cơ sở lý thuyết

2.2.1 Ví dụ hướng đến bài toán đối ngẫu

Một công ty A sản xuất 4 mặt hàng, sử dụng hai loại vật liệu loại I và II với số lượng là b_1,b_2 . Để sản xuất mặt hàng thứ j (j=1,2,3,4) cần có a_{1j} đơn vị nguyên liệu loại I và a_{2j} đơn vị nguyên liệu loại II. Mặt hàng thứ j, được bán tương ứng với giá cj. Hãy lập kế hoạch để công ty sản xuất có tổng giá trị sản phẩm cao nhất.

Giải

Gọi x_1 , x_2 , x_4 lần lượt là số lượng mặt hàng cần sản xuất ($x_i \ge 0$, i = 1, 2, 3, 4). Bài toán đặt ra là ta cần làm cực đại hàm mục tiêu số lượng như sau:

$$f(x) = c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4 \to Max \tag{23}$$

Số lượng vật tư b_1 được phân bố cho 4 mặt hàng trên :

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 \le b_1 \tag{24}$$

Số lượng vật tư b_2 được phân bố cho 4 mặt hàng trên :

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 \le b_2 \tag{25}$$

Vậy ta thu được thông tin của bài toán với các điều kiện được ghi lại như sau:

$$f(x) = c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4 \to Max$$

$$a_{11} x_1 + a_{12} x_2 + a_{13} x_3 + a_{14} x_4 \le b_1$$

$$a_{21} x_1 + a_{22} x_2 + a_{23} x_3 + a_{24} x_4 \le b_2$$

$$x_i \ge 0$$

$$i = 1, 2, 3, 4$$

$$(26)$$

Dĩ nhiên rằng công ty muốn đầu tư làm sao cho chi phí thấp nhất. Do đó công ty mua vật liệu của công ty khác. Giá bán vật liệu loại I và loại II tương ứng là y_1, y_2 . Công ty phải làm cực tiểu chi phí đầu tư vào, hiển nhiên ta có hàm mục tiêu như sau:

$$g(y) = b_1 y_1 + b_2 y_2 \to Min \tag{27}$$

Ta có thêm các ràng buộc tương ứng về giá cả thương lượng hợp lí của bên bán vật liệu:

$$a_{11}y_{1} + a_{21}y_{2} \ge c_{1}$$

$$a_{12}y_{1} + a_{22}y_{2} \ge c_{2}$$

$$a_{13}y_{1} + a_{23}y_{2} \ge c_{3}$$

$$a_{14}y_{1} + a_{24}y_{2} \ge c_{4}$$

$$y_{i} \ge 0$$

$$i = 1, 2, 3, 4$$

$$(28)$$

Hai bài toán trên viết lại dưới dạng ma trận ta sẽ có thông tin ngắn gọn như sau:

$$f(x) = \langle c.x \rangle = c^T x \longrightarrow \text{Max}$$
 $g(y) = \langle b, y \rangle = b^T y \longrightarrow \text{Min}$ $Ax \le b$ $A^T y \ge c$ $y \ge 0$

Hai bài toán trên chính là đối ngẫu của nhau, giải quyết cực đại của bài toán gốc (P) và cực tiểu của bài toán liên kết $(P^*)/(D)$ và tìm phương án tối ưu thông qua đó.

2.2.2 Qui tắc đối ngẫu (trang 33 chương 2 quy hoạch tuyến tính)

Khảo sát đối ngẫu cho các dạng tổng quát, ta có các qui tắc sau:

$$M = \{1, 2, 3, \dots, m\}, M_1 = \{1, 2, 3, \dots, m_1\}, m_1 \le m$$

$$N = \{1, 2, 3, \dots, n\}, N_1 = \{1, 2, 3, \dots, n_1\}, n_1 \le n$$
(29)

Trường hợp 1: $(P) Min \rightarrow (Q) Max$

	$\operatorname{G\acute{o}c}\left(P\right)$	\Rightarrow	Đối ngẫu (Q)
1.	$c^Tx \to min$		$b^T y \to max$
2.	$\sum_{j=1}^{n} a_{ij} \ge b_i$	$i \in M_1$	$y_i \ge 0, i \in M_1$
3.	$\sum_{j=1}^{n} a_{ij} = b_i$	$i \in M \backslash M_1$	y_i tự do , $i \in M \backslash M_1$
4.	$x_j \ge 0$	$j \in N_1$	$\sum_{i=1}^{m} a_{ij} y_i \le c_j, j \in N_1$
5.	x_j có dấu tuỳ ý	$j \in N_1$	$\sum_{i=1}^{m} a_{ij} y_i = c_j, j \in N \backslash N_1$
6.	$x_j \le 0$	$j \in N_2$	$\sum_{i=1}^{m} a_{ij} y_i \ge c_j, j \in N_2$

Chú ý: Nếu có $\sum_{j=1}^{n} \leq b_i$, thì theo nguyên tắc đối ngẫu sẽ ứng với biến $y_i \leq 0$. Trong thực tế nên chuyển về trường hợp 2 bằng cách nhân cả hai vế của bđt cho -1.

Trường hợp 2: $(P) Max \rightarrow (Q) Min$

	Gốc (P)	\Rightarrow	Đối ngẫu (Q)
1.	$c^T x \to max$		$b^Ty o min$
2.	$\sum_{j=1}^{n} a_{ij} \le b_i$	$i \in M_1$	y_i tự do, $i \in M_1$
3.	$\sum_{j=1}^{n} a_{ij} = b_i$	$i \in M \backslash M_1$	y_i tự do , $i \in M \backslash M_1$
4.	$x_j \ge 0$	$j \in N_1$	$\sum_{i=1}^{m} a_{ij} y_i \ge c_j, j \in N_1$
5.	x_j có dấu tuỳ ý	$j \in N_1$	$\sum_{i=1}^{m} a_{ij} y_i = c_j, j \in N \backslash N_1$
6.	$x_j \le 0$	$j \in N_2$	$\sum_{i=1}^{m} a_{ij} y_i \le c_j, j \in N_2$

Chú ý: Nếu có $\sum_{j=1}^{n} a_{ij} \geq b_i$, thì theo nguyên tắc đối ngẫu sẽ ứng với biến $y_i \leq 0$. Trong thực tế nên chuyển về trường hợp 2 bằng cách nhân cả hai vế của bất đẳng thức cho -1. (Các ràng buộc ẩn tự do thường ta không cần ghi và bỏ qua nó).

2.2.3 Bài toán đối ngẫu dạng chuẩn tắc

Bài toán chuẩn tắc có dạng như sau, với $A \in M_{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n$

$$(P) c^{T}x \to Min$$

$$Ax \ge b$$

$$x \ge 0$$
(30)

Với bài toán như trên ta có bài toán đối ngẫu như sau với $y \in R^m$:

$$(D) b^{T} y \to Max$$

$$A^{T} y \le c$$

$$y \ge 0$$
(31)

Cặp bài toán trên được gọi là cặp bài toán đối ngẫu đối xứng vì chứa đủ ba phần : Hàm mục tiêu, ràng buộc đẳng thức (bất đẳng thức) và biến không âm.

Định lý 2 Với mọi phương án x của bài toán (P) và mọi phương án y của bài toán $(P^*)/(D)$, ta có

$$g(y) \le f(x)$$

Định lý 3

Nếu bài toán (P) có phương án tối ưu thì bài toán $(P^*)/(D)$ cũng có phương án tối ưu và ngược lại. Đồng thời $V(P) = V(P^*)$.

Nếu hàm mục tiêu của bài toán này không bị chặn thì tập các phương án của bài toán kia là rỗng.

Hệ quả 1 Nếu các bài toán (P) và (P^*) đều có các phương án khác rỗng thì chúng đều có phương án tối ưu.

Hệ quả 2 $Giả sử x^* và y^* lần lượt là các phương án tối ưu tương ứng của bài toán <math>(P)$ $và <math>(P^*)$. Ta có:

$$V(P) = f(x^*) = g(y^*) = V(P^*)$$

Hệ quả 3 Giả sử x^* và y^* tương ứng là các phương án chấp nhận được của các bài toán (P) và $(P^*)/(D)$. Nếu $f(x^*) = g(y^*)$ thì x^* và y^* lần lượt là phương án tối ưu của (P) và $(P^*)/(D)$.

Định lý 4 Độ lệch bù trong đối ngẫu đối xứng

Cho x^* và y^* tương ứng là phương án của bài toán (P) và (P^*) . Phương án x^* và y^* tối ưu khi và chỉ khi:

$$\begin{cases} x_j^* > 0 \Longrightarrow \sum_{i=1}^n a_{ij} y_i^* = c_j \lor \sum_{i=1}^n a_{ij} y_i^* < c_j \Longrightarrow x_j^* = 0, j = \overline{1, n} \\ y_j^* > 0 \Longrightarrow \sum_{i=1}^n a_{ij} x_i^* = b_j \lor \sum_{i=1}^n a_{ij} x_i^* < b_j \Longrightarrow y_j^* = 0, j = \overline{1, m} \end{cases}$$

2.2.4 Bài toán đối ngẫu dạng chính tắc

Bài toán chính tắc có dạng như sau, với $A \in M_{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n$:

$$(P) c^{T}x \to Min$$

$$Ax = b$$

$$x > 0$$
(32)

Với bài toán như trên ta có bài toán đối ngẫu như sau với $y \in R^m$:

$$(D) b^T y \to Max$$

$$A^T y < c \tag{33}$$

"Bài toán đối ngẫu không đối xứng như trên có tất cả cá tính chất như đối ngẫu đối xứng".

Định lí về độ lệch bù trong đối ngẫu không đối xứng (hay còn gọi là độ lệch bù yếu).

Định lý 5 $Cặp (x^*, y^*)$ tướng ứng là nghiệm tối ưu của bài toán (1) và (2) khi và chỉ khi

$$N \hat{e} u \; x_j^* > 0 \; th i \; \sum_{i=1}^m a_{ij} y_i^* = c_j \; ho reve{a} c$$

$$N\hat{e}u \sum_{i=1}^{m} a_{ij} y_i^* < c_j \ thi \ x_j^* = 0$$

2.3 Ví dụ minh hoạ

1. Cho bài toán quy hoạch tuyến tính như sau:

$$(P) \quad f(x) = 2x_1 - 3x_2 + 4x_3 - 6x_4 \longrightarrow Min$$

$$\begin{cases} x_1 + 2x - 2 + 3x_3 - x_4 = 20 & (1) \\ -3x_1 - x_2 + 7x_3 + 7x_4 \le 32 & (2) \\ 2x_1 + 4x_2 + x_3 + x_4 \ge 18 & (3) \\ x_i \ge 0, \forall i = 1, 2, 3 \end{cases}$$

 \Longrightarrow Ta có bài toán đối ngẫu như sau :(D) $g(y) = 20y_1 + 32y_2 + 18y_3 \longrightarrow Max$

$$\begin{cases} y_1 - 3y_2 + 2y_3 \le 2 & (4) \\ 2y_1 - y_2 + 4y_3 \le -3 & (5) \\ 3y_1 + 7y_2 + y_3 \le 4 & (6) \\ -y_1 + 7y_2 + y_3 = -6 & (7) \\ y_2 \le 0, y_3 \ge 0 \end{cases}$$

Cặp ràng buộc :
$$x_1 \ge 0 \& (4)$$
 $y_2 \le 0 \& (2)$ $x_2 \ge 0 \& (5)$ $y_3 \le 0 \& (3)$

2.Cho bài toán quy hoạch tuyến tính như sau:

(P)
$$f(x) = 2x_1 + 2x_2 + x_3 + x_4 \longrightarrow Max$$

$$\begin{cases}
5x_1 + x_2 + x_3 + 6x_4 = 50 \\
-3x_1 + x_3 + 2x_4 \ge 16 \\
4x_1 + 3x_3 + x_4 \le 23 \\
x_i \ge 0, i = 1, 2, 3, 4
\end{cases}$$

- 1. Viết bài toán đối ngẫu (D)
- 2. Cho biết $x^*=(0,14,6,5)$ là nghiệm tối ưu của bài toán (P). Tìm nghiệm tối ưu của bài toán đối ngẫu (D)

Giải

i.Ta có bài toán đối ngẫu như sau:

(D):
$$g(y) = 50y_1 + 16y_2 + 23y_3 \longrightarrow Min$$

$$\begin{cases}
5y_1 - 3y_2 + 4y_3 \ge 2 \\
y_1 \ge 2 \\
y_1 + y_2 + 3y_3 \ge 1 \\
6y_1 + 2y_2 + y_3 \ge 1 \\
y_2 \le 0, y_3 \ge 0
\end{cases}$$

Áp dụng định lí độ lệch bù của bài toán đối ngẫu đối xứng,với ${f P}$

Ap dụng định lí độ lệch bù của bài toán đôi ngâu đôi xứng,
với PATU
$$\begin{cases} y_1 = 2 \\ y_1 + y_2 + 3y_3 = 1 \end{cases} ;$$
 của (P) là $(0, 14, 6, 5)$ có $x_2 \geq 0, x_3 \geq 0, x_4 \geq 0$ ta suy ra :
$$\begin{cases} y_1 + y_2 + 3y_3 = 1 \\ 6y_1 + 2y_2 + y_3 = 1 \end{cases} ;$$
 Vậy nghiệm tối ưu của bài toán đối ngẫu (D) là $y^* = \left(2, \frac{-32}{5}, \frac{9}{5}\right)$

3 Tài liệu tham khảo