1.

Problem 1

Let $A = \{4, \{4\}, \{2\}\}$. Indicate whether each of the following statements is true or false.

- a) $1 \in A$
- b) $1 \notin A$
- c) $4 \in A$
- d) $\{2\} \in A$
- e) $\{2\} \subseteq A$
- f) $\{4\}\subseteq A$
- g) $\{4\} \in A$
- h) $\{4\} \subseteq A$
- i) $\{\{2\}\}\subseteq A$
- $\mathsf{j)} \quad \big\{ \{2\} \big\} \subset A$
- a) False
- b) True
- c) True
- d) True
- e) False
- f) True
- g) True
- h) True
- i) True
- j) True

2. If $A \subseteq B$ and $B \not\subseteq C$, then $A \not\subseteq C$

Let $x \in A$.

a)	1.	$A \subseteq B$
	2.	B⊈C
	3.	$\forall x \ (x \ \epsilon \ A \rightarrow x \ \epsilon \ B)$
	4.	$x \varepsilon A \rightarrow x \varepsilon B$
	5.	$\forall x (x \in B \rightarrow \neg x \in C))$
	6.	$x \in B \rightarrow \neg x \in C$
	7.	$x \in A \rightarrow \neg x \in C$
	8.	$\forall x (x \in A \rightarrow \neg x \in C)$

5.
$$\forall x \ (x \in B \rightarrow \neg x \in C)$$
)

6. $x \in B \rightarrow \neg x \in C$

7. $x \in A \rightarrow \neg x \in C$

8. $\forall x \ (x \in A \rightarrow \neg x \in C)$

9. $A \not\subseteq C$

Definition of Subsets (2)

Universal Instantiation (5)

Law of Syllogism (4)(6)

Universal Generalization (7)

Definition of Subsets (8)

Premise Premise

Definition of Subsets (1) Universal Instantiation (3)

Q.E.D

Therefore, the statement is true.

b)

Prove or Disprove:

$$A - B = \neg(B - A)$$

$$A - B = \{\}$$

$$B - A = \{\}$$

Since A and B both equal the null set, $A - B = \neg(B - A)$ is not true.

Therefore, the statement is false.

c) 1. $(A \cap B \cap C) \subseteq (A \cap B)$

- Given
- 2. $\forall x (x \in A \land x \in B \land x \in C \rightarrow x \in A \land x \in B)$ Definition of Subsets(1)
- 3. $x \in A \land x \in B \land x \in C \rightarrow x \in A \land x \in B$ Universal Instantiation (3)
- 4. $x \in A \land x \in B \rightarrow x \in A \land x \in B$ Conjunctive Simplification(4)
- 5. Q.E.D.

Therefore, the statement must be true.

d)

Prove or Disprove:

$$A \subseteq B \land A \subseteq C \rightarrow B \cap C \neq \emptyset$$

A: {8}

$$B \cap C = \{8\}$$

Therefore, the statement above is false.

e) $(A \cup B) \subseteq A$

$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8\}.$$

Since this is not a subset of A, the statement must be false.

Assignment 3 Discrete Structures

f)
$$(A \cap C) = (B \cap C) \Rightarrow (A = B)$$
 A: $\{1, 2, 3\}$ B: $\{1, 2, 3, 4\}$ C: $\{1, 2, 3\}$ A \cap C = $\{1, 2, 3\}$ and A \cap B = $\{1, 2, 3\}$, but A does not equal B.

Therefore, the statement is false.

g)
$$A \cup (B-A)=(A \cup B)$$

1.
$$A \cup (B - A) = (A \cup B)$$
 Given
2. $\forall x (x \in A \lor (\forall x (x \in B \land x \in A)) = A \lor B$ Definition of Subsets (1)
3. $x \in A \lor (x \in B \land x \in A)) = A \lor B$ Universal Instantiation (2)
4. $x \in A \lor x \in B$ Conjunctive Simplification (3)
5. $\forall x (x \in A \lor x \in B)$ Universal Generalization (4)
6. $A \cup B$ Definition of Union (5)

Q.E.D

Therefore, the statement is true.

h)
1.
$$(A \subseteq B) \Leftrightarrow (\neg B \subseteq \neg A)$$
 Given
2. $\forall x(x \in A \to x \in B) \Leftrightarrow \forall x (\neg x \in B \to \neg x \in A)$ Definition of Subsets (1)
3. $x \in A \to x \in B \Leftrightarrow \neg x \in B \to \neg x \in A$ Universal Instantiation (2)
4. $\neg x \in B \to \neg x \in A \Leftrightarrow \neg x \in B \to \neg x \in A$ Definition of Contraposition(3)

Q.E.D

Therefore, the statement is true.

Assignment 3 Discrete Structures

5.
$$(\neg x \in A \land x \in B) \lor (\neg x \in A \land \neg x \in C)$$

7.
$$\neg x \in A \land x \in A = False$$

Q.E.D

Distribution (4) Absorption (5) Complementation(6)

Therefore, the statement is true.

$$j) (A - C = B - C) \Longrightarrow (A = B)$$

True prove it

A: {2, 8}

B: {3, 8}

C: {2, 3, 4, 5, 6}

The set $A - C = \{8\}$, and the set B - C also equals $\{8\}$.

However, {2, 8} does not equal {3, 8}, therefore the statement above is false.

k)

Prove or Disprove:

$$A \subseteq B \land A \subseteq C \Rightarrow A = \emptyset \lor (B \cap C \neq \emptyset)$$

A: {1, 2, 4, 6}

B: {1, 2, 4, 6, 8}

C: {1, 2, 4, 6, 7}

Since the set A is not null, and $B \cap C = \{1, 2, 4, 6\}$, the above statement must be false.

3. Find the sets A and B if $A - B = \{1, 5, 7, 8\}$, $B - A = \{2, 10\}$, and $A \cap B = \{3, 6, 9\}$.

Since $A \cap B = \{3,6,9\}$ that means they both have 3, 6, and 9.

A: {3, 6, 9}

B: {3, 6, 9}

Assignment 3 Discrete Structures

Since
$$B - A = \{2, 10\}$$

This means that B has the elements of 2 and 10 that A does not have.

B: {2, 3, 6, 9, 10}

Since
$$A - B = \{1,5,7,8\}$$

A must have the elements 1,5,7 and 8 that B does not have.

A: {1, 3, 5, 6, 7, 8, 9}

B: {2, 3, 6, 9, 10}

Q.E.D.

a)

$$P = \{ \phi, 1, \{1, 1\}, \{1, 2\}, \{1, 6\}, \{1, 9\}, 2, \{2, 1\}, \{2, 2\}, \{2, 6\}, \{2, 9\}, 6, \{6, 1\}, \{6, 2\}, \{6, 6\}, \{6, 9\}, 9, \{9, 1\}, \{9, 2\}, \{9, 6\}, \{9, 9\}, \{1, 2, 6\}, \{1, 2, 6, 9\}, \{2, 6, 9\} \}$$

b)
$$S \times S = \{\{1, 1\}, \{1, 2\}, \{1, 6\}, \{1, 9\}, \{2, 1\}, \{2, 2\}, \{2, 6\}, \{2, 9\}, \{6, 1\}, \{6, 2\}, \{6, 6\}, \{6, 9\}, \{9, 1\}, \{9, 2\}, \{9, 6\}, \{9, 9\}\}$$

a)

$$S = \{x \in Z \mid 2^x \text{ and } x \ge 0\}$$

b)

$$S = \{2x + 1 \mid x \in Z\}$$

c)

$$S = \{4n + 42 \mid x \in Z \text{ and } x \ge 0\}$$