# Spatial Effects in the Analysis of Regional Income Convergence and Inequality

Sergio J. Rey

Department of Geography San Diego State University rey@typhoon.sdsu.edu

and

Regional Economics Applications Laboratory
University of Illinois

October 12, 2001

Space Time Information Systems, 2002

1. Regional Convergence Studies

- 1. Regional Convergence Studies
- 2. Spatially Explicit Approaches

- 1. Regional Convergence Studies
- 2. Spatially Explicit Approaches
  - Spatial Markov Matrix

- 1. Regional Convergence Studies
- 2. Spatially Explicit Approaches
  - Spatial Markov Matrix
  - Spatial Dependence in Distributional Mixing

- 1. Regional Convergence Studies
- 2. Spatially Explicit Approaches
  - Spatial Markov Matrix
  - Spatial Dependence in Distributional Mixing
- 3. Demo: Space Time Analysis of Regional Systems (STARS)

## **Background**

**empiric** (ĕm-pîr' ĭk) n. 1. That depending upon the observation of phenomena. 2. An unqualified or dishonest practitioner; a charlatan.

## **Background**

**empiric** (ĕm-pîr' ĭk) n. 1. That depending upon the observation of phenomena. 2. An unqualified or dishonest practitioner; a charlatan.

**Theoretical Basis** 

## Background

**empiric** (ĕm-pîr' ĭk) n. 1. That depending upon the observation of phenomena. 2. An unqualified or dishonest practitioner; a charlatan.

#### **Theoretical Basis**

The rich are not like us. F. Scott Fitzgerald

Yes, they have more money. Ernest Hemingway

## **Regional Convergence Studies**

- $\sigma$  Convergence (?)
  - measures dispersion = income gap
  - 2nd moment of distribution
  - ignores mixing
  - ignores geographical distribution

## **Regional Convergence Studies**

- $\sigma$  Convergence (?)
  - measures dispersion = income gap
  - 2nd moment of distribution
  - ignores mixing
  - ignores geographical distribution
- $\beta$  Convergence (?)

$$\frac{1}{k} \cdot \ln \left( \frac{y_{i,t+k}}{y_{i,t}} \right) = \alpha - \beta \cdot \ln \left( y_{i,t} \right) + \psi X_{i,t} + \epsilon_{i,t} \tag{1}$$

- conditional vs. unconditional
- neoclassical basis

- "Newer Approaches"
  - Stochastic convergence (?)
  - Markov Chains (???)
  - Mixture Models (?)

- "Newer Approaches"
  - Stochastic convergence (?)
  - Markov Chains (???)
  - Mixture Models (?)
- Treatment of Space?
  - Spatial dependence
    - $\beta$ : (??)
  - Spatial heterogeneity
    - $\beta$ : (??)
  - Spatial scale



#### **Markov Chains**

- focus on transitional dynamics
- higher order moments of distribution
- accommodates shocks, discontinuities and turbulence

$$P_{t+b} = P_t M^b \tag{2}$$

$$P_{t+b} = P_t M^b$$

$$P_t = [p_{1,t}, p_{2,t} \dots p_{k,t}], \sum_{i=1}^k p_{i,t} = 1$$
(3)

$$M = \begin{bmatrix} m_{1,1} & m_{1,2} & \dots & m_{1,k} \\ m_{2,1} & m_{2,2} & \dots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ m_{k,1} & m_{k,2} & \dots & m_{k,k} \end{bmatrix}$$
(4)

$$\sum_{j=1}^{k} m_{i,j} = 1 \ \forall i$$

## **Space and Markov Chains**

- spatial effects
  - dependence
    - \* chains based on independence assumption
    - \* + dependence = inflated deviance
  - heterogeneity?
- Quah's regional conditioning
  - national-relative distribution
  - regional-relative distribution
  - results
    - \* regional conditioning = less dispersion
    - \* accounts for variation in (national )distribution

- national-regional relative
- the two should be identical under spatial independence assumption

# **Nationally Conditioned Distributions**



# **Regionally Conditioned Distributions**



Table 1: US Markov Matrices (Annual) 1929-94

|       |     | $t_1$ | US-Relative       |          |           |       |  |
|-------|-----|-------|-------------------|----------|-----------|-------|--|
| $t_0$ | Ν   | Р     | L                 | М        | U         | R     |  |
| Р     | 335 | 0.919 | 0.072             | 0.006    | 0.003     | 0.000 |  |
| L     | 597 | 0.022 | 0.889             | 0.085    | 0.003     | 0.000 |  |
| М     | 667 | 0.000 | 0.070             | 0.813    | 0.112     | 0.004 |  |
| U     | 881 | 0.000 | 0.001             | 0.091    | 0.873     | 0.035 |  |
| R     | 640 | 0.000 | 0.000             | 0.000    | 0.067     | 0.933 |  |
|       |     | $t_1$ | Neighbor-Relative |          |           |       |  |
| $t_0$ | Ν   | Р     | L                 | М        | U         | R     |  |
| Р     | 103 | 0.786 | 0.194             | 0.019    | 0.000     | 0.000 |  |
| L     | 600 | 0.028 | 0.870             | 0.098    | 0.003     | 0.000 |  |
| М     | 908 | 0.000 | 0.061             | 0.872    | 0.066     | 0.001 |  |
| U     | 947 | 0.000 | 0.000             | 0.062    | 0.886     | 0.052 |  |
| R     | 562 | 0.000 | 0.000             | 0.000    | 0.103     | 0.897 |  |
| US    |     | $t_0$ | US                | to Neigh | bor-Relat | ive   |  |
| $t_0$ | Ν   | Р     | L                 | М        | U         | R     |  |
| Р     | 335 | 0.221 | 0.439             | 0.269    | 0.039     | 0.033 |  |
| L     | 597 | 0.028 | 0.387             | 0.422    | 0.124     | 0.039 |  |
| М     | 667 | 0.009 | 0.234             | 0.390    | 0.256     | 0.111 |  |
| U     | 881 | 0.007 | 0.072             | 0.285    | 0.460     | 0.177 |  |
| Р     | 640 | 0.000 | 0.005             | 0.086    | 0.444     | 0.466 |  |

Space Time Information Systems, 2002

#### **Issues**

- Problem
  - Quah's national-regional transition is static but spatial
  - dynamics?
- Solution
  - Local Indicators of Spatial Association (LISAs) (?)
  - Integrate into Markov Chain framework

## **LISA**s

$$I_i = z_i \sum_{i=1}^n w_{i,j} z_j \tag{5}$$

Table 2: LISA Classifications

| Class | Own Value     | Neighbors' Value |
|-------|---------------|------------------|
| HH    | Above Average | Above Average    |
| HL    | Above Average | Below Average    |
| LH    | Below Average | Above Average    |
| LL    | Below Average | Below Average    |

# **Moran Scatterplot**



Table 3: Spatial Transitions

|            | State | State |           |      |
|------------|-------|-------|-----------|------|
| Transition | $t_0$ | $t_1$ | Mover     | Туре |
| 1          | НН    | HL    | Neighbors | Ш    |
| 2          | НН    | LH    | State     | I    |
| 3          | НН    | LL    | Both      | Ш    |
| 4          | HL    | НН    | Neighbors | l II |
| 5          | HL    | LH    | Both      | III  |
| 6          | HL    | LL    | State     | ı    |
| 7          | LH    | НН    | State     | I    |
| 8          | LH    | HL    | Both      | III  |
| 9          | LH    | LL    | Neighbors | l II |
| 10         | LL    | LH    | Neighbors | II   |
| 11         | LL    | HL    | State     |      |
| 12         | LL    | НН    | Both      | Ш    |

## Spatial Flux:

$$n = F_{0,t} + F_{I,t} + F_{II,t} + F_{III,t}. (6)$$

$$RF_0 < RF_I < RF_{II} < RF_{III} \tag{7}$$

Spatial Stability:

$$S_t = \frac{F_{0,t}}{n}.$$
(8)

**Spatial Cohesion** 

$$C_t = \frac{F_{IIIA,t}}{n} \tag{9}$$

$$C_t^* = \frac{F_{IIIA,t} + F_{0,t}}{n} \tag{10}$$

Table 4: A Spatial Markov Matrix

|      | State | $t_1$      |               |               |
|------|-------|------------|---------------|---------------|
| Lag  | $t_0$ | Low        | Med.          | High          |
|      | Low   | $m_{LL L}$ | $m_{LM L}$    | $m_{LH L}$    |
| Low  | Med.  | $m_{ML L}$ | $m_{MM} _{L}$ | $m_{MH L}$    |
|      | High  | $m_{HL L}$ | $m_{HM L}$    | $m_{HH} _{L}$ |
|      | Low   | $m_{LL M}$ | $m_{LM M}$    | $m_{LH M}$    |
| Med. | Med.  | $m_{ML M}$ | $m_{MM M}$    | $m_{MH M}$    |
|      | High  | $m_{HL M}$ | $m_{HM M}$    | $m_{HH M}$    |
|      | Low   | $m_{LL H}$ | $m_{LM H}$    | $m_{LH H}$    |
| High | Med.  | $m_{ML H}$ | $m_{MM} _{H}$ | $m_{MH H}$    |
|      | High  | $m_{HL H}$ | $m_{HM H}$    | $m_{HH H}$    |
|      | Low   | $m_{LL}$   | $m_{LM}$      | $m_{LH}$      |
|      | Med.  | $m_{ML}$   | $m_{MM}$      | $m_{MH}$      |
|      | High  | $m_{HL}$   | $m_{HM}$      | $m_{HH}$      |

### Under the Null:

$$m_{ij|1} = m_{ij|2} = \ldots = m_{ij|k} = m_{ij} \ \forall \ i, j.$$
 (11)

Table 5: Classification of US Spatial Transitions 1929-94

| Interval | TYPE 0 | I     | П     | IIIA  | IIIB  | Cohesion | Flux  |
|----------|--------|-------|-------|-------|-------|----------|-------|
| 1-year   | 0.822  | 0.115 | 0.058 | 0.004 | 0.000 | 0.826    | 0.178 |
|          | UP     | 0.058 | 0.030 | 0.002 | 0.000 |          |       |
|          | DOWN   | 0.057 | 0.028 | 0.002 | 0.000 |          |       |
| 5-year   | 0.643  | 0.231 | 0.107 | 0.017 | 0.002 | 0.660    | 0.357 |
|          | UP     | 0.123 | 0.053 | 0.009 | 0.000 |          |       |
|          | DOWN   | 0.108 | 0.054 | 0.009 | 0.002 |          |       |
| 10-year  | 0.547  | 0.297 | 0.114 | 0.041 | 0.003 | 0.587    | 0.453 |
|          | UP     | 0.166 | 0.060 | 0.017 | 0.000 |          |       |
|          | DOWN   | 0.131 | 0.054 | 0.023 | 0.003 |          |       |
| 15-year  | 0.475  | 0.351 | 0.117 | 0.049 | 0.007 | 0.524    | 0.525 |
|          | UP     | 0.210 | 0.057 | 0.020 | 0.000 |          |       |
|          | DOWN   | 0.142 | 0.060 | 0.029 | 0.007 |          |       |
| 25-year  | 0.384  | 0.458 | 0.115 | 0.031 | 0.012 | 0.415    | 0.616 |
|          | UP     | 0.288 | 0.057 | 0.007 | 0.000 |          |       |
|          | DOWN   | 0.170 | 0.058 | 0.024 | 0.012 |          |       |

Table 6: US Spatial Markov Matrix

|     | State   |     | $t_1$ |       |       |       |       |
|-----|---------|-----|-------|-------|-------|-------|-------|
| LAG | $t_{O}$ | Ν   | P     | L     | М     | U     | R     |
|     | Р       | 150 | 0.960 | 0.040 | 0.000 | 0.000 | 0.000 |
|     | L       | 40  | 0.050 | 0.775 | 0.175 | 0.000 | 0.000 |
| P   | M       | 27  | 0.000 | 0.148 | 0.741 | 0.111 | 0.000 |
|     | U       | 3   | 0.000 | 0.000 | 0.667 | 0.333 | 0.000 |
|     | R       | 0   | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|     | Р       | 136 | 0.912 | 0.081 | 0.007 | 0.000 | 0.000 |
|     | L       | 171 | 0.035 | 0.936 | 0.029 | 0.000 | 0.000 |
| L   | M       | 108 | 0.000 | 0.028 | 0.907 | 0.065 | 0.000 |
|     | U       | 48  | 0.000 | 0.000 | 0.146 | 0.854 | 0.000 |
|     | R       | 3   | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 |
|     | Р       | 45  | 0.867 | 0.111 | 0.022 | 0.000 | 0.000 |
|     | L       | 266 | 0.004 | 0.898 | 0.090 | 0.008 | 0.000 |
| M   | M       | 220 | 0.000 | 0.086 | 0.755 | 0.155 | 0.005 |
|     | U       | 364 | 0.000 | 0.000 | 0.085 | 0.882 | 0.033 |
|     | R       | 85  | 0.000 | 0.000 | 0.000 | 0.165 | 0.835 |
|     | Р       | 4   | 0.250 | 0.500 | 0.000 | 0.250 | 0.000 |
|     | L       | 116 | 0.034 | 0.862 | 0.103 | 0.000 | 0.000 |
| U   | M       | 253 | 0.000 | 0.067 | 0.818 | 0.107 | 0.008 |
|     | U       | 346 | 0.000 | 0.003 | 0.092 | 0.861 | 0.043 |
|     | R       | 269 | 0.000 | 0.000 | 0.000 | 0.082 | 0.918 |
|     | Р       | 0   | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
|     | L       | 4   | 0.000 | 0.250 | 0.750 | 0.000 | 0.000 |
| R   | M       | 59  | 0.000 | 0.068 | 0.864 | 0.068 | 0.000 |
|     | U       | 120 | 0.000 | 0.000 | 0.067 | 0.900 | 0.033 |
|     | R       | 283 | 0.000 | 0.000 | 0.000 | 0.025 | 0.975 |

Table 7: Transition Probabilities Conditioned on Neighbors Income

|        |      | MOVE   |        |        |
|--------|------|--------|--------|--------|
| LAG    | Ν    | Down   | None   | Up     |
| Poorer | 1249 | 0.0697 | 0.9047 | 0.0256 |
| Same   | 723  | 0.0858 | 0.8465 | 0.0678 |
| Richer | 1148 | 0.0348 | 0.8676 | 0.0976 |

Table 8: Ergodic Income Distributions

| Lag        | Р     | L     | М     | U     | R     |
|------------|-------|-------|-------|-------|-------|
| Р          | 0.345 | 0.276 | 0.326 | 0.054 | 0.000 |
| L          | 0.130 | 0.326 | 0.377 | 0.168 | 0.000 |
| M          | 0.006 | 0.206 | 0.234 | 0.456 | 0.098 |
| U          | 800.0 | 0.167 | 0.271 | 0.345 | 0.209 |
| R          | 0.000 | 0.026 | 0.288 | 0.292 | 0.394 |
| Below Avg. | 0.187 | 0.311 | 0.354 | 0.148 | 0.000 |
| Above Avg. | 0.006 | 0.132 | 0.256 | 0.324 | 0.283 |

## Mobility

- 1. Regional Income Mobility
  - Class Mobility
  - Mixing (Rank Mobility)
- 2. Spatial Issues
- 3. New Measures
  - (a) Trace = Spatial Dependence (Static)
  - (b) External Regional Cohesion = Dependence (Dynamic)
  - (c) Internal Regional Cohesion = Dependence (Dynamic)
- 4. Illustration: Lower 48 States 1929-99

## **Why Mobility Matters**

- Class Mobility
  - $\sigma$  convergence
  - twin peaks (?)
  - mixtures?
- Rank Mobility
  - Leap-frogging
  - Cohesion versus flux



### **Spatial Issues**

- Income distributions vs. Spatial distributions
- Moments robust spatial pattern?
- Modality robust to spatial pattern?
  - at one point in time
  - changes in moments vs. changes in pattern?
  - $\rightarrow dynamics$

- Inference and spatial dependence
  - stochastic kernels
  - mixture modeling
  - *i.i.d* versus space?

### **Class Mobility**

$$M_{t,t+s} = \begin{pmatrix} m_{11} & \dots & m_{1k} \\ m_{21} & \dots & m_{2k} \\ \vdots & \vdots & \vdots \\ m_{k1} & \dots & m_{kk} \end{pmatrix}$$
(12)

where  $m_{ij}$  are the probabilities of a region making the transition from income class i to class j over the period t to t+s.

Table 9: Estimated Annual Transition Matrix, US 1929-99

|      | Class |      |      |      |          |  |  |  |  |
|------|-------|------|------|------|----------|--|--|--|--|
| n    | 0.59  | 0.79 | 0.89 | 1.10 | $\infty$ |  |  |  |  |
| 158  | 0.87  | 0.13 | 0.00 | 0.00 | 0.00     |  |  |  |  |
| 565  | 0.02  | 0.88 | 0.09 | 0.01 | 0.00     |  |  |  |  |
| 635  | 0.00  | 0.07 | 0.82 | 0.11 | 0.00     |  |  |  |  |
| 1409 | 0.00  | 0.00 | 0.05 | 0.93 | 0.02     |  |  |  |  |
| 593  | 0.00  | 0.00 | 0.00 | 0.06 | 0.94     |  |  |  |  |

Shorrock (1978) mobility index:

$$SI = \frac{k - Tr\left(M_{t,t+s}\right)}{k - 1} \tag{13}$$

where Tr indicates the trace operator.

• 
$$0 <= SI <= 1.25$$

- US: 0.141
- 1929 quintiles mapped to 1999:
  0, 5, 11, 25, 6
- upward convergence

### Role of Space

More attention needed on two fronts.

#### Substantive

- Do growth spill-overs exist?
- Is growth regionally competitive or regionally cooperative?
   Or, both?
- Interregionally competitive vs. intraregionally cooperative?
- Poverty Traps, Convergence Clubs, Regional Cohesion

#### Measures

- spatial dependence in regional income distributions.
- the role of regional context in income mobility

### **Regional Conditioning**

- ?
- one point in time
- relative incomes
  - nationally conditioned income

$$y_{r,t}^{N} = \frac{y_{r,t}}{\sum_{s} y_{s,t}/n} \tag{14}$$

- regionally conditioned income

$$y_{r,t}^{R} = \frac{y_{r,t}}{\sum_{s} w_{r,s} y_{s,t}}$$
 (15)

$$M_{R,N} = \begin{pmatrix} m_{R1,N1} & \dots & m_{R1,Nk} \\ m_{R2,N1} & \dots & m_{R2,Nk} \\ \vdots & \vdots & \vdots \\ m_{Rk,Nk} & \dots & m_{Rk,Nk} \end{pmatrix}$$
(16)

- diagonality = spatial randomness
- intuitive, no formal statistic suggested

$$\zeta = 1 - \sum_{l}^{k} M_{l,l} \tag{17}$$

$$0 \le \zeta \le 1$$

| inferen   | se based | on rando | om snati | al narmu | ıtations  |               |               |             |
|-----------|----------|----------|----------|----------|-----------|---------------|---------------|-------------|
| IIIIEIEII | Le Daseu | On rande | ли зраск | аг реппи | itations. |               |               |             |
|           |          |          |          |          |           |               |               |             |
|           |          |          |          |          |           |               |               |             |
|           |          |          |          |          |           |               |               |             |
|           |          |          |          |          |           |               |               |             |
|           |          |          |          |          |           |               |               |             |
|           |          |          |          |          |           |               |               |             |
|           |          |          |          |          |           |               |               |             |
|           |          |          |          |          |           | Space Time In | nformation Sy | stems, 2002 |

# **Trace Test for Spatial Autocorrelation**



### Results: $\zeta$

- Both tests display general downward trend
- Both tests pick up during 1980s
- Moran's I significant each year
- $\zeta$  significant 68 (0.1), 62 (0.05), 53 (0.01)

### **Spatial Rank Mobility**

Let  $\theta_{i,t}$  represent the rank of state i's per-capita income in year t. Then between any two periods, a scalar measure of spatial clustering of distributional transitions is:

$$\Theta_{t1-t0} = \frac{\sum_{R} \left| \sum_{i \in R} \theta_{i,t1} - \theta_{i,t0} \right|}{\sum_{i} \left| \theta_{i,t1} - \theta_{i,t0} \right|}$$
(18)

where R is one of a set of exhaustive and mutually exclusive groups of states.

$$0 \le \Theta_{t1-t0} \le 1$$

 $Random \iff Cohesion$ 

# Spatial Cohesion Index: 1-year Interval



**Results:**  $\Theta$ 

- $\Theta > E[\Theta]$  (56 of 70)
- Significant differences in 27, 23, 12 years
- Before 1968  $\Theta$  averages 0.54, after 0.61
- ullet Before 1968,  $E\left[\Theta\right]$  averages 0.445, after 0.451

### **Decomposition of Spatial Rank Mobility**

Kendall's  $\tau$  is given as:

$$\tau = \frac{N_c - N_d}{(n^2 - n)/2} \tag{19}$$

where  $N_c$  is the number of concordant pairs, and  $N_d$  the number of discordant pairs. If all pairs are concordant, then  $N_c=(n^2-n)/2$ ,  $N_d=0$  and  $\tau=1$ , while if all pairs are discordant, then  $\tau=-1$ .

$$N_c = N_{c,r} + N_{c,o} (20)$$

where  $N_{c,r}$  is the number of concordant pairs involving locations belonging to the same region, and  $N_{c,o}$  are the number of concordant pairs for

observations belonging to different regions. A similar decomposition holds for the discordant pairs  $N_d$ . To develop a spatial version of the  $\tau$  statistic from equation (??), define:

$$\omega = (n^2 - n)/2 \tag{21}$$

which is the denominator in the original form of the statistic. This is also equal to the number of elements above (or below) the main diagonal in the spatial weights matrix. Each element in that matrix specifies whether observations i and j are considered members of the same region (or more generally neighbors). The sum of these elements can also be decomposed:

$$\omega = \omega_r - \omega_o \tag{22}$$

where  $\omega_r$  is the number of pairs of observations that are members of the

same region. From this a spatial version of the rank mobility measure is:

$$\tau_r = \frac{N_{c,r} - N_{d,r}}{\omega_r} \tag{23}$$

A similar measure can be derived for the non-neighbor pairs of observations  $\tau_o$ . The original measure of rank mobility can then be decomposed as follows:

$$\tau = \psi \tau_r + (1 - \psi)\tau_o \tag{24}$$

with  $\psi = \omega_r/\omega$ .









# Spatial $\tau$ : 10-year interval



# Spatial $\tau$ : 25-year interval



### **Results: Spatial** $\tau$

- Mobility increases with interval length
- Early,  $\tau_r < \tau_o$
- Late,  $\tau_r > \tau_o$
- Spatial dependence and dispersion greater in beginning of period.

• Distributional Properties of Measures

- Distributional Properties of Measures
- Extension to Inequality Metrics

- Distributional Properties of Measures
- Extension to Inequality Metrics
- Comparative Studies (EU, US, Brazil, Italy, Germany, Mexico, AU?)

- Distributional Properties of Measures
- Extension to Inequality Metrics
- Comparative Studies (EU, US, Brazil, Italy, Germany, Mexico, AU?)
- Software: STARS