Feedback MTurk Study

Dahler Battle, Guy El Khoury, Jane Hung, and Julian Tsang

15 Dec 2020

Introduction

Load Data

```
# ?register_google
# register_google(key = "AIzaSyCTk2a5vIEqcvqz9KmQmItoNF7J8_hiMMk")
# #uses Google API to obtain location data based on longitude and latitude....dont use unless necessary
# d_respondents_only[ , c("housenumber", "street", "city", "county", "state", "zip", "country") := revq
# head(d_respondents_only)
# #
# fwrite(d_respondents_only, file='datatable_clean_survey_responses_v2.dta')
d_respondents <- fread('datatable_clean_survey_responses_v2.dta')</pre>
setnames(d_respondents,
         old = c('Duration (in seconds)'),
         new = c('Survey_Duration'))
kable(t(head(d_respondents[, names(d_respondents)[!names(d_respondents) %in% c(
    "Q70_First Click","Q70_Last Click","Q70_Page Submit","Q70_Click Count",
    "Q90_First Click","Q90_Last Click","Q90_Page Submit","Q90_Click Count",
    "Q61_First Click", "Q61_Last Click", "Q61_Page Submit", "Q61_Click Count",
    "Q62_First Click", "Q62_Last Click", "Q62_Page Submit", "Q62_Click Count",
    "Q63_First Click","Q63_Last Click","Q63_Page Submit","Q63_Click Count",
    "Q64_First Click","Q64_Last Click","Q64_Page Submit","Q64_Click Count",
    "Q65_First Click","Q65_Last Click","Q65_Page Submit","Q65_Click Count",
    "Q66_First Click", "Q66_Last Click", "Q66_Page Submit", "Q66_Click Count",
    "Q67_First Click","Q67_Last Click","Q67_Page Submit","Q67_Click Count",
    "Q68_First Click", "Q68_Last Click", "Q68_Page Submit", "Q68_Click Count",
    "housenumber", "street", "zip")], with=FALSE], 3)))
```

StartDate	2020-11-09 20:46:55	2020-11-09 20:47:33	2020-11-09 20:47:23
EndDate	2020-11-09 20:50:39	2020-11-09 20:51:24	2020-11-09 20:51:35
Status	IP Address	IP Address	IP Address
IPAddress	174.88.123.135	172.93.166.91	68.36.215.223
Progress	100	100	100
Survey_Duration	223	231	251
Finished	TRUE	TRUE	TRUE
RecordedDate	2020-11-09 20:50:39	2020-11-09 20:51:25	2020-11-09 20:51:35

D I1	D. VI. HOAGODDOHEL	D 00 C/7D1VI/11 IV	D 917/NOE I C 37
ResponseId	R_VLuUQ4C82PP9HEd	R_29cCZD1XK1dpmdY	R_3lVN8EncJofnqnV
RecipientLastName	NA	NA	NA
RecipientFirstName	NA	NA	NA
RecipientEmail	NA NA	NA NA	NA
ExternalReference	NA	NA	NA
LocationLatitude	43.68	33.75	42.66
LocationLongitude	-79.29	-84.39	-83.12
DistributionChannel	anonymous	anonymous	anonymous
UserLanguage	EN	EN	EN
Amazon_Turk_ID	A4D99Y82KOLC8	A1AC47WJLNW4G7	A77K8W55MJEKX
Gender	Male	Male	Female
Q82_3_TEXT	NA	NA	NA
Age_Range	35-44	25-34	45-54
Education_Level	Trade school	Master's degree and above	Bachelor's degree
Q1	Pneumonia	Pneumonia	Pneumonia
Q2	Normal	Normal	Pneumonia
Q3	Normal	Normal	Pneumonia
Q4	Pneumonia	Pneumonia	Pneumonia
Q5	Normal	Normal	Pneumonia
Q6	Pneumonia	Normal	Pneumonia
Q7	Pneumonia	Normal	Normal
Q8	Normal	Normal	Normal
Q9	Pneumonia	Normal	Pneumonia
Q10	Pneumonia	Pneumonia	Pneumonia
$Control_Q1$			
Q11	Normal	Normal	Pneumonia
Q12	Normal	Normal	Normal
Q13	Pnuemonia	Pnuemonia	Pnuemonia
Q14	Pneumonia	Normal	Pneumonia
Q15	Pneumonia	Normal	Pneumonia
Q16	Normal	Pneumonia	Pneumonia
Q17	Normal	Normal	Pneumonia
Q18	Pneumonia	Pneumonia	Pneumonia
Q19	Pneumonia	Normal	Pneumonia
Q20	Normal	Pneumonia	Pneumonia
$Control_Q2$			
Q21	Pneumonia	Normal	Pneumonia
Q22	Pneumonia	Pneumonia	Pneumonia
Q23	Normal	Pneumonia	Normal
Q24	Pneumonia	Normal	Pneumonia
Q25	Normal	Normal	Pneumonia
Q26	Pneumonia	Normal	Pneumonia
Q27	Pneumonia	Pneumonia	Pneumonia
Q28	Normal	Normal	Pneumonia
Q29	Normal	Pneumonia	Pneumonia
Q30	Pneumonia	Normal	Pneumonia
Q36			
$Self_Reflect_Q1$			
Q41			
$Self_Reflect_Q2$			
Q38			
Q43			
Q45	NA	NA	NA

Q47	NA	NA	NA
Q46	NA	NA	NA
Q48	NA	NA	NA
Total_Score	16	12	15
Random ID	14409	58508	96075
Assignment	FL_41	FL_16	FL_41
Q1_Score	0	0	0
Q2_Score	1	1	0
Q3 Score	0	0	1
Q4_Score	1	1	1
Q5_Score	1	1	0
Q6_Score	1	0	1
Q7_Score	1	0	0
Q8_Score	1	1	1
Q9_Score	1	0	1
Q10_Score	0	0	0
Q11_Score	0	0	1
Q12_Score	1	1	1
Q13 Score	0	0	0
Q14_Score	1	0	1
Q15_Score	0	1	0
Q16_Score	1	0	0
Q17_Score	0	0	1
Q18_Score	0	0	0
Q19_Score	1	0	1
Q20_Score	1	0	0
Q21_Score	0	1	0
Q22_Score	0	0	0
Q23_Score	0	1	0
Q24_Score	0	1	0
Q25_Score	0	0	1
Q26_Score	1	0	1
Q27_Score	1	1	1
Q28_Score	0	0	1
Q29_Score	1	0	0
Q30_Score	0	1	0
Assignment_Group	Negative Images	Positive Images	Negative Images
TaskPhase1_Score	0.7	0.4	0.5
TaskPhase2_Score	0.5	0.2	$0.5 \\ 0.5$
TaskPhase3 Score	0.3	0.5	$0.3 \\ 0.4$
city	Toronto	Atlanta	Rochester Hills
county	Canada	United States	United States
state	Ontario	Georgia	Michigan
country	Canada	United States	United States
LOUIDITY	Canada	omied States	United States

nrow(d_respondents)

[1] 350

#remove duplicate Amazon Turk IDs
nrow(d_respondents) #350 rows

[1] 350

```
d_respondents <- d_respondents[!duplicated(d_respondents$Amazon_Turk_ID) , ] #350 rows</pre>
```

EDA

Helper Functions

```
create heatmap <- function(var1, var2) {</pre>
  ### Create a heatmap for a table of frequencies between two variables ###
  df <- data.frame(table(var1,var2))</pre>
  ggplot(df,aes(x=var1,y=var2)) +
    geom_tile(aes(fill=Freq,color=Freq),show.legend=FALSE,alpha=.8) +
    geom_text(aes(label=Freq)) +
    scale_fill_continuous(high = "darkslategray4", low = "powderblue")
}
g_legend<-function(a.gplot){</pre>
  #extract legend from a gaplot object
  \#https://stackoverflow.com/questions/13649473/add-a-common-legend-for-combined-ggplots
  \#https://github.com/hadley/ggplot2/wiki/Share-a-legend-between-two-ggplot2-graphs
  tmp <- ggplot_gtable(ggplot_build(a.gplot))</pre>
  leg <- which(sapply(tmp$grobs, function(x) x$name) == "guide-box")</pre>
  legend <- tmp$grobs[[leg]]</pre>
  return(legend)}
#some EDA
#d_respondents[ , table(state, country)]
table(d_respondents$state, d_respondents$country) %>%
        as.data.frame() %>%
        arrange(desc(Freq)) %>%
        filter(Freq>0)
```

```
##
                           Var1
                                          Var2 Freq
## 1
                     Tamil Nadu
                                         India 107
                     California United States
## 2
                       New York United States
## 3
                                                 22
## 4
                         Kansas United States 21
                          Texas United States 15
## 5
## 6
                        Florida United States
## 7
                  Massachusetts United States
                                                  7
## 8
                       Missouri United States
## 9
                    Connecticut United States
                                                  5
                        Georgia United States
                                                  5
## 10
## 11
                        Indiana United States
                                                  5
## 12
                       Michigan United States
                                                  5
## 13
                     New Jersey United States
                                                  5
## 14
                       Illinois United States
                                                  4
## 15
                       Virginia United States
## 16
                         Kerala
                                         India
                                                  3
## 17
                    Maharashtra
                                         India
```

```
## 18
                         Colorado United States
## 19
                         Kentucky
                                    United States
                                                      3
## 20
                                    United States
                         Maryland
                                                      3
## 21
                   North Carolina
                                                      3
                                    United States
## 22
                            Oregon
                                    United States
                                                      3
## 23
                          Ontario
                                            Canada
                                                      2
## 24
                          Alabama
                                   United States
                                                      2
## 25
                                    United States
                                                      2
                            Idaho
##
  26
                        Minnesota
                                   United States
                                                      2
## 27
                                                      2
                      Mississippi
                                    United States
## 28
                           Nevada
                                    United States
                                                      2
                                                      2
## 29
                              Ohio
                                    United States
                                                      2
##
   30
                     Pennsylvania
                                    United States
                                                      2
## 31
                                    United States
                       Washington
## 32
                  Qarku i Tiranës
                                           Albania
                                                      1
## 33
                  Khulna Division
                                       Bangladesh
                                                      1
##
  34
                                            Brazil
                            Bahia
                                                      1
##
   35
                          Atacama
                                            Chile
                                                      1
##
      Provence-Alpes-Côte d'Azur
                                           France
   36
                                                      1
##
   37
         Departamento de Olancho
                                         Honduras
                                                      1
##
  38
                   Andhra Pradesh
                                             India
                                                      1
## 39
                        Karnataka
                                             India
                                                      1
## 40
                         Sardegna
                                             Italy
                                                      1
                          England United Kingdom
## 41
                                                      1
## 42
                                    United States
                          Arizona
                                                      1
## 43
                              Iowa
                                    United States
                                                      1
## 44
                        Louisiana
                                    United States
                                                      1
## 45
                                    United States
                                                      1
                            Maine
## 46
                         Nebraska
                                    United States
                                                      1
                                    United States
## 47
                         Oklahoma
                                                      1
## 48
                   South Carolina
                                    United States
                                                      1
## 49
                     South Dakota
                                    United States
                                                      1
## 50
                        Tennessee
                                    United States
table(d_respondents$country) %>%
        as.data.frame() %>%
        arrange(desc(Freq))
##
                 Var1 Freq
## 1
       United States
## 2
                India
                       115
## 3
               Canada
                         2
## 4
              Albania
## 5
          Bangladesh
                         1
## 6
               Brazil
                         1
## 7
                Chile
                         1
## 8
               France
## 9
             Honduras
                         1
## 10
                Italy
                         1
## 11 United Kingdom
                         1
table(d_respondents$Total_Score) %>%
  as.data.frame() %>%
  arrange(desc(Var1))
```

```
Var1 Freq
##
## 1
        27
## 2
        26
              1
## 3
        25
              4
## 4
        24
             12
## 5
        23
             15
## 6
        22
             16
## 7
        21
             22
## 8
        20
             27
## 9
        19
             21
## 10
        18
             31
## 11
        17
             40
## 12
        16
             40
## 13
        15
             30
## 14
        14
             30
## 15
        13
             19
## 16
        12
             18
## 17
        11
             13
## 18
        10
              6
## 19
              3
         9
## 20
         8
              1
d_respondents %>%
  group_by(Assignment_Group) %>%
  summarise(mean = mean(Total_Score),
            count = n(),
            time_duration = mean(Survey_Duration))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 5 x 4
##
     Assignment_Group mean count time_duration
##
     <chr>
                       <dbl> <int>
                                            <dbl>
## 1 Control
                        16.7
                                             638.
                                69
## 2 Medical Feedback 17.8
                                70
                                             656.
                                             783
## 3 Negative Images
                        16.5
                                72
## 4 Positive Images
                                70
                                             505.
                        17.3
## 5 Self-Reflect
                        17.2
                                69
                                             612.
#d_respondents[ , .(count = .N, avg = mean(Total_Score)), by=Assignment_Group] #same thing
d_respondents[ , hist(Total_Score)]
```

Histogram of Total_Score


```
## $breaks
   [1] 8 10 12 14 16 18 20 22 24 26 28
##
## $counts
   [1] 10 31 49 70 71 48 38 27 5 1
##
##
## $density
   [1] 0.014286 0.044286 0.070000 0.100000 0.101429 0.068571 0.054286 0.038571
##
   [9] 0.007143 0.001429
##
##
## $mids
##
   [1] 9 11 13 15 17 19 21 23 25 27
##
## $xname
## [1] "Total_Score"
##
## $equidist
## [1] TRUE
## attr(,"class")
## [1] "histogram"
tapply(d_respondents$Total_Score, d_respondents$Assignment_Group, summary)
## $Control
##
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
       8.0
                                              24.0
##
              14.0
                      16.0
                              16.7
                                      19.0
##
## $`Medical Feedback`
     Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
```

```
10.0
            16.0
                              17.8
##
                      17.5
                                      20.0
                                              24.0
##
## $`Negative Images`
     Min. 1st Qu. Median
##
                              Mean 3rd Qu.
                                              Max.
##
       9.0
             13.0
                      16.0
                              16.5
                                      19.2
                                              25.0
##
## $'Positive Images'
     Min. 1st Qu. Median
##
                              Mean 3rd Qu.
                                              Max.
##
       9.0
              15.0
                      17.0
                              17.3
                                      20.0
                                              27.0
##
## $`Self-Reflect`
     Min. 1st Qu. Median
                              Mean 3rd Qu.
##
                                              Max.
       9.0
             14.0
                      17.0
                              17.2
                                      20.0
                                              25.0
##
tapply(d_respondents$Total_Score, d_respondents$Assignment_Group, sd)
##
            Control Medical Feedback Negative Images Positive Images
##
              3.659
                               3.279
                                                3.996
                                                                  3.817
##
       Self-Reflect
##
              3.882
d_respondents[ , sd(Total_Score)]
## [1] 3.743
library(ggmap)
?register_google
register_google(key = "AIzaSyCTk2a5vIEqcvgz9KmQmItoNF7J8_hiMMk")
# ggmap_show_api_key()
us_map<-get_map(location='united states', zoom=4, maptype = "terrain",</pre>
             source='google',color='color')
## Source : https://maps.googleapis.com/maps/api/staticmap?center=united%20states&zoom=4&size=640x640&s
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=united+states&key=xxx
ggmap(us_map) + geom_point(x=d_respondents$LocationLongitude, y = d_respondents$LocationLatitude, show_
## Warning: `show_guide` has been deprecated. Please use `show.legend` instead.
```

```
TO SASKATCHEWAN

ONTARIO

ONTARIO

ONTARIO

OUEBEC

ONTARIO

OUEBEC

ONTARIO

ONTARIO

OUEBEC

ONTARIO

ONTARIO

OUEBEC

ONTARIO

OUEBEC

ONTARIO

OUEBEC

ONTARIO

OUEBEC

ONTARIO

OUEBEC

ONTARIO

OUEBEC

OUEBEC
```

```
## Source : https://maps.googleapis.com/maps/api/staticmap?center=india&zoom=5&size=640x640&scale=2&map
## Source : https://maps.googleapis.com/maps/api/geocode/json?address=india&key=xxx
ggmap(india_map) + geom_point(x=d_respondents$LocationLongitude, y = d_respondents$LocationLatitude, sh
## Warning: `show_guide` has been deprecated. Please use `show.legend` instead.
```


Randomization Check

```
#http://www.sthda.com/english/wiki/chi-square-goodness-of-fit-test-in-r
respondent_counts <- d_respondents[ , .(.N), keyby=Assignment_Group]
respondent_counts_chisq_test <- chisq.test(respondent_counts[,2], p=c(1/5, 1/5, 1/5, 1/5))
pander(respondent_counts_chisq_test,style ='rmarkdown')</pre>
```

Table 2: Chi-squared test for given probabilities: respondent_counts[, 2]

Test statistic	df	P value
0.08571	4	0.9991

', suggesting that the observed proportions are not significantly different from theme(plot.caption = element_text(hjust = 0))

Randomization check among assignment groups

Assuming equal distribution among assignment groups, a chi–squared goodness of fit test wit freedom yields p=0.9991, suggesting that the observed proportions are not significantly differe expected proportions at a significance level of 0.05.

#p-value = 0.9991, which is greater than significance level of 0.05.
#We can conclude that the observed proportions are not significantly different from the expected propor

Covariate Balance Check

```
#let's consider adding age bins and education bins

d_respondents[ Age_Range == "18-24", age_bin := 1]
d_respondents[ Age_Range == "25-34", age_bin := 2]
d_respondents[ Age_Range == "35-44", age_bin := 3]
d_respondents[ Age_Range == "45-54", age_bin := 4]
d_respondents[ Age_Range == "55-64", age_bin := 5]
d_respondents[ Age_Range == "Above 65", age_bin := 6]

d_respondents[ Education_Level == "Associate's degree", edu_bin := 1]
d_respondents[ Education_Level == "Bachelor's degree", edu_bin := 2]
d_respondents[ Education_Level == "High school", edu_bin := 3]
d_respondents[ Education_Level == "Master's degree and above", edu_bin := 4]
d_respondents[ Education_Level == "Some high school", edu_bin := 5]
d_respondents[ Education_Level == "Trade school", edu_bin := 6]

d_respondents[ Assignment_Group == "Control", assign_bin := 1]
d_respondents[ Assignment_Group == "Medical Feedback", assign_bin := 2]
```

```
d_respondents[ Assignment_Group == "Negative Images", assign_bin := 3]
d_respondents[ Assignment_Group == "Positive Images", assign_bin := 4]
d_respondents[ Assignment_Group == "Self-Reflect", assign_bin := 5]
d_respondents[ , US_Dummy := ifelse(country == "United States", 1, 0)]
d_respondents[ , Male_Dummy := ifelse(Gender == "Male", 1, 0)]
#add treatment dummy
d_respondents[ , Treatment_Dummy := ifelse(Assignment_Group != "Control", 1, 0)]
#head(d_respondents)
d_respondents %>%
  group_by(Assignment_Group) %>%
  summarise(num_respondents = n(),
            pre_treatment_avg = mean(TaskPhase1_Score),
            taskphase2_avg = mean(TaskPhase2_Score),
            taskphase3_avg = mean(TaskPhase3_Score))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 5 x 5
     Assignment_Group num_respondents pre_treatment_a~ taskphase2_avg
##
##
                                <int>
                                                  dbl>
## 1 Control
                                   69
                                                  0.607
                                                                 0.461
## 2 Medical Feedback
                                   70
                                                  0.634
                                                                 0.523
## 3 Negative Images
                                   72
                                                  0.578
                                                                 0.494
## 4 Positive Images
                                   70
                                                                 0.514
                                                  0.614
## 5 Self-Reflect
                                   69
                                                                 0.526
                                                  0.599
## # ... with 1 more variable: taskphase3_avg <dbl>
d respondents %>%
  group_by(Assignment_Group) %>%
  summarise(num_respondents = n(),
            avg_age_bin = mean(age_bin),
            avg_edu_bin = mean(edu_bin),
            male = mean(Male_Dummy),
            US = mean(US_Dummy))
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 5 x 6
     Assignment_Group num_respondents avg_age_bin avg_edu_bin male
     <chr>>
##
                                <int>
                                             <dbl>
                                                        <dbl> <dbl> <dbl>
## 1 Control
                                             2.68
                                                          2.61 0.609 0.652
                                   69
## 2 Medical Feedback
                                   70
                                             2.63
                                                          2.47 0.586 0.529
                                   72
                                             2.62
                                                          2.58 0.583 0.625
## 3 Negative Images
## 4 Positive Images
                                   70
                                              2.86
                                                          2.6 0.586 0.714
## 5 Self-Reflect
                                   69
                                             2.83
                                                          2.42 0.594 0.696
d_respondents %>%
  group_by(Assignment_Group) %>%
  summarise(num_respondents = n(),
```

```
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 5 x 2
##
     Assignment_Group num_respondents
     <chr>
##
## 1 Control
                                   69
                                   70
## 2 Medical Feedback
## 3 Negative Images
                                   72
## 4 Positive Images
                                   70
## 5 Self-Reflect
                                   69
```

Visuals

```
#Density distribution of Survey Duration
ggplot(d_respondents, aes(x=Survey_Duration, colour=as.factor(Assignment_Group), fill = as.factor(Assignment_Group), fill = as.f
```

Warning: Removed 6 rows containing non-finite values (stat_density).

Survey Duration Distribution

#Comparing pretreatment values
ggplot(d_respondents, aes(x=TaskPhase1_Score, fill = as.factor(Treatment_Dummy), colour=as.factor(Treatment_Dummy)

ggplot(d_respondents, aes(x=TaskPhase1_Score, fill = as.factor(Assignment_Group), colour=as.factor(Assignment_Group)

#Comparing taskphase2 values
ggplot(d_respondents, aes(x=TaskPhase2_Score, fill = as.factor(Assignment_Group), colour=as.factor(Assignment_Group)

#Comparing taskphase3 values
ggplot(d_respondents, aes(x=TaskPhase3_Score, fill = as.factor(Assignment_Group), colour=as.factor(Assignment_Group)

TaskPhase3 Scores by Group

Warning: `fun.y` is deprecated. Use `fun` instead.

```
task2b_bp <- ggplot(d_respondents, aes(x = Treatment_Dummy, y=TaskPhase2_Score, colour=as.factor(Treatm geom_boxplot() +
    stat_summary(fun.y = mean, geom = "errorbar", aes(ymax = ..y.., ymin = ..y..), width = .75, linetype = xlab('') +
    ylab('') +
    ggtitle("Task Phase 2 Scores") +
    scale_y_continuous(labels = scales::percent,limits = c(0,1)) +
    theme(axis.text.x = element_blank(),
        axis.ticks = element_blank(),
        plot.title = element_text(hjust = 0.5,size=10),
        legend.position = "none")</pre>
```

```
## Warning: `fun.y` is deprecated. Use `fun` instead.
task2c_bp <- ggplot(d_respondents, aes(x = Treatment_Dummy, y=TaskPhase3_Score, colour=as.factor(Treatm
  geom_boxplot() +
  stat_summary(fun.y = mean, geom = "errorbar", aes(ymax = ..y.., ymin = ..y..), width = .75, linetype
  xlab('') +
 ylab('') +
  ggtitle("Task Phase 3 Scores") +
  scale_y_continuous(labels = scales::percent,limits = c(0,1)) +
  theme(axis.text.x = element_blank(),
        axis.ticks = element_blank(),
        plot.title = element_text(hjust = 0.5, size=10),
        legend.position = "none")
## Warning: `fun.y` is deprecated. Use `fun` instead.
mylegend_2<-g_legend(task2a_bp)
grid.arrange(arrangeGrob(task2a_bp + theme(legend.position="none"),task2b_bp,task2c_bp,ncol=3),
             mylegend_2,
             nrow=2,
             heights=c(10,1),
             top = textGrob("Compare task scores in different phases\n", just='right', gp=gpar(fontsize=1
```

impare task scores in different phases


```
# boxplots for multiple treatment groups
task1a_bp <- ggplot(d_respondents, aes(x = Assignment_Group, y=TaskPhase1_Score, colour=as.factor(Assigneom_boxplot() +</pre>
```

```
stat_summary(fun.y = mean, geom = "errorbar", aes(ymax = ..y.., ymin = ..y..), width = .75, linetype
  xlab('') +
  ylab('Task Score (%)') +
  ggtitle("Pre Treatment Scores") +
  scale_y_continuous(labels = scales::percent,limits = c(0,1)) +
  theme(axis.text.x = element_blank(),
       axis.ticks = element_blank(),
        plot.title = element text(hjust = 0.5, size=10),
        legend.position = "bottom",
        legend.title = element_blank())
## Warning: `fun.y` is deprecated. Use `fun` instead.
task1b_bp <- ggplot(d_respondents, aes(x = Assignment_Group, y=TaskPhase2_Score, colour=as.factor(Assig
  geom_boxplot() +
  stat_summary(fun.y = mean, geom = "errorbar", aes(ymax = ..y.., ymin = ..y..), width = .75, linetype
 xlab('') +
 ylab('') +
  ggtitle("Task Phase 2 Scores") +
  scale_y_continuous(labels = scales::percent,limits = c(0,1)) +
  theme(axis.text.x = element_blank(),
       axis.ticks = element_blank(),
        plot.title = element_text(hjust = 0.5, size=10),
        legend.position = "none")
## Warning: `fun.y` is deprecated. Use `fun` instead.
task1c_bp <- ggplot(d_respondents, aes(x = Assignment_Group, y=TaskPhase3_Score, colour=as.factor(Assig
  geom_boxplot() +
  stat_summary(fun.y = mean, geom = "errorbar", aes(ymax = ..y.., ymin = ..y..), width = .75, linetype
  xlab('') +
 ylab('') +
  ggtitle("Task Phase 3 Scores") +
  scale_y_continuous(labels = scales::percent,limits = c(0,1)) +
 theme(axis.text.x = element_blank(),
        axis.ticks = element_blank(),
        plot.title = element_text(hjust = 0.5,size=10),
        legend.position = "none")
## Warning: `fun.y` is deprecated. Use `fun` instead.
mylegend 1<-g legend(task1a bp)</pre>
grid.arrange(arrangeGrob(task1a_bp + theme(legend.position="none"),task1b_bp,task1c_bp,ncol=3),
             mylegend_1,
             nrow=2,
             heights=c(10,1),
             top = textGrob("Compare task scores in different phases\n",just='right',gp=gpar(fontsize=1)
```

impare task scores in different phases

Average score across task phases

TODO add this to the appendix
kable(summary_task_score)

Assignment_Group	variable	avg_score	sd_score	obs	se
Control	TaskPhase1_Score	0.6072	0.1912	69	0.0451
Control	$TaskPhase2_Score$	0.4609	0.1620	69	0.0382
Control	$TaskPhase3_Score$	0.5377	0.1394	69	0.0329
Medical Feedback	$TaskPhase1_Score$	0.6343	0.1667	70	0.0391
Medical Feedback	$TaskPhase2_Score$	0.5229	0.1608	70	0.0377
Medical Feedback	$TaskPhase3_Score$	0.5600	0.1610	70	0.0377
Negative Images	$TaskPhase1_Score$	0.5778	0.1973	72	0.0456
Negative Images	$TaskPhase2_Score$	0.4944	0.1546	72	0.0357
Negative Images	$TaskPhase3_Score$	0.5222	0.1754	72	0.0405
Positive Images	$TaskPhase1_Score$	0.6143	0.1796	70	0.0421
Positive Images	$TaskPhase2_Score$	0.5143	0.1755	70	0.0411
Positive Images	$TaskPhase3_Score$	0.5371	0.1571	70	0.0368
Self-Reflect	$TaskPhase1_Score$	0.5986	0.2047	69	0.0483
Self-Reflect	$TaskPhase2_Score$	0.5261	0.1651	69	0.0390
Self-Reflect	TaskPhase3_Score	0.5478	0.1632	69	0.0385

Gender

```
# TODO format figures and captions
#check balance between gender
gender_chiqq <- chisq.test(d_respondents[ , table(Assignment_Group, Gender)])</pre>
```

```
pander(gender_chiq,style='rmarkdown')
```

Quitting from lines 582-598 (EDA.Rmd) Error in pander(gender_chiq, style = "rmarkdown") : object 'gender_chiq' not found Calls: . . . with Calling Handlers -> with Visible -> eval -> eval -> pander

Contingency table between gender and assignment group

Assuming gender distributions are the same among assignment groups, a chi–squared test for independence with 4 degrees of freedom yields p=0.9981, suggesting that there is no relationship between gender and assignment groups at a significance level of 0.05.

Age Range

```
# TODO format figures and captions
#check balance between age-range

# expected frequency count for each cell of the contingency table should be at least 5. Since this is n
# https://stats.stackexchange.com/questions/81483/warning-in-r-chi-squared-approximation-may-be-incorre
age_chisq <- chisq.test(d_respondents[ , table(Assignment_Group, Age_Range)], simulate.p.value = TRUE)
pander(age_chisq,style='rmarkdown')</pre>
```

Table 4: Pearson's Chi-squared test with simulated p-value (based on 2000 replicates): d_respondents[, table(Assignment_Group, Age_Range)]

Test statistic	df	P value
19.22	NA	0.5157

Contingency table between age range and assignment group

Assuming age distributions are the same among assignment groups, a chi–squared test for independence with Monte Carlo simulation yields p=0.5157, suggesting that there is no relationship between age and assignment groups at a significance level of 0.05.

Education Level

```
# TODO format figures and captions
#check balance between education levels
edu_chisq <- chisq.test(d_respondents[ , table(Assignment_Group, Education_Level)],simulate.p.value = Topander(edu_chisq,style='rmarkdown')</pre>
```

Table 5: Pearson's Chi-squared test with simulated p-value (based on 2000 replicates): d_respondents[, table(Assignment_Group, Education_Level)]

Test statistic	df	P value
28.7	NA	0.07146

Contingency table between education and assignment group

Assuming education distributions are the same among assignment groups, a chi–squared test for independence with Monte Carlo simulation yields p=0.0715, suggesting that there is no relationship between education and assignment groups at a significance level of 0.05.

Country: US, non-US

```
# TODO format figures and captions
# out.width = "80%"
# check balance between US and non-US respondents

us_chisq <- chisq.test(d_respondents[ , table(Assignment_Group, US_Dummy)])
pander(us_chisq,style='rmarkdown')</pre>
```

Table 6: Pearson's Chi-squared test: d_respondents[, table(Assignment_Group, US_Dummy)]

Test statistic	df	P value
6.502	4	0.1647

Contingency table between country and assignment group

Assuming country distributions are the same among assignment groups, a chi–squared test for independence with 4 degrees of freedom yields p=0.1647, suggesting that there is no relationship between country and assignment groups at a significance level of 0.05.

```
# ATE of treatment on Total Score
d_respondents[ Treatment_Dummy == 1, mean(Total_Score)] - d_respondents[ Treatment_Dummy == 0, mean(Tot
## [1] 0.5143
sd(d_respondents$Total_Score)
## [1] 3.743
# ATE of treatment on TaskPhase2 Score
d_respondents[ Treatment_Dummy == 1, mean(TaskPhase2_Score)] - d_respondents[ Treatment_Dummy == 0, mean
## [1] 0.05337
sd(d_respondents$TaskPhase2_Score)
## [1] 0.1645
#trying 2SLS...but dont think it applies here
# d respondents[ , lm(Total Score ~ Education Level)]
# d_respondents[ , ivreg(Total_Score ~ Education_Level | Assignment_Group)]
power.t.test( delta = .05, sd=.16, sig.level = 0.05, power=0.8)
##
##
        Two-sample t test power calculation
##
##
                 n = 161.7
##
             delta = 0.05
##
                sd = 0.16
##
         sig.level = 0.05
##
             power = 0.8
##
       alternative = two.sided
##
```

NOTE: n is number in *each* group

Analysis

Helper Functions

```
get_robust_se <- function(model){
    # Get robust SE for use in stargazer
    vcov <- vcovHC(model, type = "HC1")
    return(sqrt(diag(vcov)))
}</pre>
```

Task Phase 2 Analysis

```
# does any treatment have an effect on task phase 2 score?
mod_task2_a <- d_respondents[, lm(TaskPhase2_Score ~ Treatment_Dummy)]</pre>
mod_task2_b <- d_respondents[, lm(TaskPhase2_Score ~ Treatment_Dummy +</pre>
                                                      TaskPhase1 Score +
                                                       as.factor(Gender) +
                                                       as.factor(Education_Level) +
                                                       as.factor(Age_Range))]
stargazer(mod_task2_a,
          mod_task2_b,
          se = list(get_robust_se(mod_task2_a),get_robust_se(mod_task2_b)),
          omit = c("Education_Level", "Age_Range"),
          add.lines = list(c('Education Fixed Effects', 'No', 'Yes'),
                            c('Age Fixed Effects','No','Yes')),
          header=FALSE,
          type='latex')
#add an F test to compare
pander(anova(mod_task2_a, mod_task2_b, test='F'),stle='rmarkdown')
```

Table 8: Analysis of Variance Table

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
348	9.287	NA	NA	NA	NA
336	8.338	12	0.9498	3.19	0.0002426

Table 7:

	Dependent variable:			
	TaskPha	ase2_Score		
	(1)	(2)		
Treatment_Dummy	0.053**	0.051**		
	(0.022)	(0.022)		
TaskPhase1_Score		0.240***		
		(0.047)		
as.factor(Gender)Male		-0.010		
		(0.017)		
Constant	0.461***	0.281***		
	(0.019)	(0.072)		
Education Fixed Effects	No	Yes		
Age Fixed Effects	No	Yes		
Observations	350	350		
\mathbb{R}^2	0.017	0.117		
Adjusted R^2	0.014	0.083		
Residual Std. Error	0.163 (df = 348)	0.158 (df = 336)		
F Statistic	$5.911^{**} (df = 1; 348)$	3.433^{***} (df = 13; 336)		

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 9:

	Dependent variable:		
	$TaskPhase2_Score$		
	(1)	(2)	
as.factor(Assignment_Group)Medical Feedback	0.062**	0.055*	
· · · · · · · · · · · · · · · · · · ·	(0.027)	(0.029)	
as.factor(Assignment_Group)Negative Images	0.034	0.039	
	(0.027)	(0.027)	
as.factor(Assignment_Group)Positive Images	0.053*	0.050^{*}	
	(0.029)	(0.027)	
$as.factor (Assignment_Group) Self-Reflect$	0.065**	0.058**	
	(0.028)	(0.029)	
TaskPhase1_Score		0.238***	
		(0.048)	
as.factor(Gender)Male		-0.010	
		(0.017)	
Constant	0.461***	0.282***	
	(0.019)	(0.073)	
Education Fixed Effects	No	Yes	
Age Fixed Effects	No	Yes	
Observations	350	350	
\mathbb{R}^2	0.021	0.119	
Adjusted R^2	0.010	0.076	
Residual Std. Error	0.164 (df = 345)	0.158 (df = 333)	
F Statistic	1.874 (df = 4; 345)	$2.805^{***} (df = 16; 333)$	

Note: *p<0.1; **p<0.05; ***p<0.01

```
pander(anova(mod_task2_c, mod_task2_d, test='F'),style='rmarkdown')
```

Table 10: Analysis of Variance Table

Res.Df	RSS	Df	Sum of Sq	F	$\Pr(>F)$
345	9.244	NA	NA	NA	NA

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
333	8.323	12	0.921	3.071	0.0003943

Task Phase 3 Analysis

```
# test final task and any treatment
mod_task3_a <- d_respondents[, lm(TaskPhase3_Score ~ Treatment_Dummy)]</pre>
mod_task3_b <- d_respondents[, lm(TaskPhase3_Score ~ Treatment_Dummy +</pre>
                                                       TaskPhase1_Score +
                                                       as.factor(Gender) +
                                                       as.factor(Education_Level) +
                                                       as.factor(Age_Range))]
stargazer(mod_task3_a,
          mod_task3_b,
          se = list(get robust se(mod task3 a),get robust se(mod task3 b)),
          omit = c("Education_Level", "Age_Range"),
          add.lines = list(c('Education Fixed Effects', 'No', 'Yes'),
                            c('Age Fixed Effects','No','Yes')),
          header=FALSE,
          type='latex')
pander(anova(mod_task3_a, mod_task3_b, test='F'),style='rmarkdown')
```

Table 12: Analysis of Variance Table

Res.Df	RSS	Df	Sum of Sq	\mathbf{F}	$\Pr(>F)$
348	8.865	NA	NA	NA	NA
336	8.117	12	0.7479	2.58	0.002743

```
# test final task and specific treatment
mod_task3_c <- d_respondents[, lm(TaskPhase3_Score ~ as.factor(Assignment_Group))]</pre>
mod_task3_d <- d_respondents[, lm(TaskPhase3_Score ~ as.factor(Assignment_Group) +</pre>
                                                      TaskPhase1 Score +
                                                       as.factor(Gender) +
                                                       as.factor(Education_Level) +
                                                       as.factor(Age_Range))]
stargazer(mod_task3_c,
          mod_task3_d,
          se = list(get_robust_se(mod_task3_c),get_robust_se(mod_task3_d)),
          omit = c("Education_Level", "Age_Range"),
          add.lines = list(c('Education Fixed Effects', 'No', 'Yes'),
                            c('Age Fixed Effects','No','Yes')),
          header=FALSE,
          type='latex')
pander(anova(mod_task3_c, mod_task3_d, test='F'),style='rmarkdown')
```

Table 11:

	Dependent variable: TaskPhase3_Score				
	(1)	(2)			
Treatment_Dummy	0.004	0.002			
	(0.019)	(0.019)			
TaskPhase1_Score		0.161***			
		(0.047)			
as.factor(Gender)Male		-0.004			
,		(0.017)			
Constant	0.538***	0.515***			
	(0.017)	(0.064)			
Education Fixed Effects	No	Yes			
Age Fixed Effects	No	Yes			
Observations	350	350			
\mathbb{R}^2	0.0001	0.084			
Adjusted R^2	-0.003	0.049			
Residual Std. Error	0.160 (df = 348)	0.155 (df = 336)			
F Statistic	0.034 (df = 1; 348)	$2.384^{***} (df = 13; 336)$			

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 13:

	Depende	ent variable:
	TaskPh	ase3_Score
	(1)	(2)
as.factor(Assignment_Group)Medical Feedback	0.022	0.011
	(0.026)	(0.026)
as.factor(Assignment_Group)Negative Images	-0.015	-0.011
	(0.027)	(0.026)
as.factor(Assignment_Group)Positive Images	-0.001	0.004
	(0.025)	(0.025)
as.factor(Assignment_Group)Self-Reflect	0.010	0.005
· · · · · · · · · · · · · · · · · · ·	(0.026)	(0.026)
TaskPhase1 Score		0.157***
-		(0.047)
as.factor(Gender)Male		-0.004
,		(0.017)
Constant	0.538***	0.518***
	(0.017)	(0.064)
Education Fixed Effects	No	Yes
Age Fixed Effects	No	Yes
Observations	350	350
\mathbb{R}^2	0.006	0.087
Adjusted R^2	-0.005	0.043
Residual Std. Error	0.160 (df = 345)	0.156 (df = 333)
F Statistic	0.545 (df = 4; 345)	$1.971^{**} (df = 16; 333)$

Table 14: Analysis of Variance Table

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
345	8.81	NA	NA	NA	NA
333	8.099	12	0.7113	2.437	0.004751

Wearing Off Effects

```
# TODO add within subjects design
\# TODO d_respondents[ , lm(mean(TaskPhase3\_Score, TaskPhase2\_Score) ~ Assignment\_Group + TaskPhase1\_Score, TaskPhase2\_Score) ~ Assignment_Group + TaskPhase1\_Score, TaskPhase3\_Score, Task
# TODO d_respondents[ , lm(TaskPhaseB ~ Assignment_Group + TaskPhaseA + as.factor(AmazonTurk_ID))] whe
mod_task3_e <- d_respondents[ , lm(TaskPhase3_Score ~ TaskPhase2_Score)]</pre>
mod_task3_f <- d_respondents[ , lm(TaskPhase3_Score ~ TaskPhase2_Score + Treatment_Dummy)]</pre>
mod_task3_g <- d_respondents[ , lm(TaskPhase3_Score ~ TaskPhase2_Score + as.factor(Assignment_Group))]</pre>
mod_task3_h <- d_respondents[ , lm(TaskPhase3_Score ~ TaskPhase2_Score +</pre>
                                                                                                                                                                  as.factor(Assignment_Group) +
                                                                                                                                                                  as.factor(Gender) +
                                                                                                                                                                  as.factor(Education Level) +
                                                                                                                                                                   as.factor(Age_Range))]
stargazer(mod_task3_e,
                             mod_task3_f,
                             mod_task3_g,
                             mod_task3_h,
                             se = list(get_robust_se(mod_task3_e),
                                                            get_robust_se(mod_task3_f),
                                                            get_robust_se(mod_task3_h)),
                                                            get_robust_se(mod_task3_g),
                             omit = c("Education_Level", "Age_Range"),
                              add.lines = list(c('Education Fixed Effects', 'No', 'No', 'No', 'Yes'),
                                                                                 c('Age Fixed Effects','No','No','No','Yes')),
                             header=FALSE,
                              type='text')
```

Dependent variable:

```
TaskPhase2_Score 0.239*** 0.242*** 0.238*** 0.241*** (0.050) (0.051) (0.052) (0.051)

Treatment_Dummy -0.009 (0.019)

as.factor(Assignment_Group)Medical Feedback 0.008 0.001 (0.027) (0.027)

as.factor(Assignment_Group)Negative Images -0.023 -0.023 (0.026) (0.026)

as.factor(Assignment_Group)Positive Images -0.013 -0.007 (0.025) (0.026)

as.factor(Assignment_Group)Positive Images -0.013 -0.007 (0.025) (0.026)
```

```
(0.025) (0.027)
as.factor(Gender)Male -0.003
(0.017)
Constant 0.420*** 0.426*** 0.428*** 0.520***
(0.026) (0.028) (0.062) (0.062)
```

Education Fixed Effects No No No Yes Age Fixed Effects No No No Yes Observations 350 350 350 350 R2 $0.061\ 0.061\ 0.065\ 0.113$ Adjusted R2 $0.058\ 0.056\ 0.052\ 0.070$ Residual Std. Error $0.155\ (df=348)\ 0.155$ (df = 347) 0.155 (df = 344) 0.154 (df = 333) F Statistic 22.540*** (df = 1; 348) 11.330*** (df = 2; 347)

 4.815^{***} (df = 5; 344) 2.654^{***} (df = 16; 333) ______

Note: p < 0.1; p < 0.05; p < 0.01

(Intercept) TaskPhase2 Score as.factor(Assignment Group)Medical Feedback as.factor(Assignment Group)Negative Images as.factor(Assignment Group)Positive Images as.factor(Assignment Group)Self-Reflect

$0.028 \ 0.051 \ 0.026 \ 0.026 \ 0.025 \ 0.024$

```
pander(anova(mod_task3_e, mod_task3_f, test='F'),style='rmarkdown')
```

Table 16: Analysis of Variance Table

Res.Df	RSS	Df	Sum of Sq	\mathbf{F}	Pr(>F)
348	8.326	NA	NA	NA	NA
347	8.322	1	0.004358	0.1817	0.6702

```
pander(anova(mod_task3_g, mod_task3_h, test='F'),style='rmarkdown')
```

Table 17: Analysis of Variance Table

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
344	8.286	NA	NA	NA	NA
333	7.863	11	0.4227	1.627	0.08955

```
mod_task3_i <- d_respondents[ , lm(TaskPhase3_Score ~ TaskPhase1_Score + TaskPhase2_Score)]</pre>
mod_task3_j <- d_respondents[ , lm(TaskPhase3_Score ~ TaskPhase1_Score + TaskPhase2_Score + Treatment_D
mod_task3_k <- d_respondents[ , lm(TaskPhase3_Score ~ TaskPhase1_Score + TaskPhase2_Score + as.factor(A</pre>
mod_task3_1 <- d_respondents[, lm(TaskPhase3_Score ~ TaskPhase1_Score + TaskPhase2_Score +</pre>
                                                        as.factor(Assignment Group) +
                                                        as.factor(Gender) +
                                                        as.factor(Education_Level) +
                                                        as.factor(Age_Range))]
stargazer(mod_task3_i,
          mod_task3_j,
          mod_task3_k,
          mod_task3_1,
```

```
Dependent variable:
```

(0.036)

- TaskPhase3 Score

```
(1)(2)(3)(4)
—- TaskPhase1_Score 0.113** 0.113** 0.109** 0.108**
(0.046) (0.046) (0.046) (0.048)
TaskPhase2 Score 0.202*** 0.204*** 0.202*** 0.208***
(0.053) (0.054) (0.053) (0.054)
Treatment Dummy -0.007
(0.019)
as.factor(Assignment Group)Medical Feedback 0.007 -0.001
(0.026) (0.026)
as.factor(Assignment_Group)Negative Images -0.019 -0.019
(0.026) (0.026)
as.factor(Assignment Group)Positive Images -0.012 -0.007
(0.024) (0.025)
as.factor(Assignment_Group)Self-Reflect -0.002 -0.007
(0.024) (0.025)
as.factor(Gender)Male -0.002
(0.016)
as.factor(Education Level)Bachelor's degree -0.043
(0.046)
as.factor(Education_Level)High school -0.058
(0.054)
as.factor(Education Level)Master's degree and above -0.065
(0.047)
as.factor(Education Level)Some high school 0.133***
(0.051)
as.factor(Education Level)Trade school -0.131**
(0.062)
as.factor(Age_Range)25-34 -0.021
(0.033)
as.factor(Age\_Range)35-44 -0.062*
(0.036)
as.factor(Age Range)45-54 -0.049
(0.043)
as.factor(Age\_Range)55-64-0.056
```

```
as.factor(Age_Range)Above 65 0.201*** (0.050) Constant 0.370*** 0.375*** 0.378*** 0.460*** (0.032)\ (0.034)\ (0.034)\ (0.067)
```

```
Observations 350 350 350 350 R2 0.077 0.078 0.081 0.127
```

Adjusted R2 0.072 0.070 0.064 0.082

Residual Std. Error 0.154 (df = 347) 0.154 (df = 346) 0.154 (df = 343) 0.153 (df = 332) F Statistic 14.520*** (df = 2; 347) 9.693*** (df = 3; 346) 5.010*** (df = 6; 343) 2.844*** (df = 17; 332)

F Statistic 14.520 \cdots (di = 2; 347) 9.693 \cdots (di = 3; 346) 5.010 \cdots (di = 6; 343) 2.844 \cdots (di = 17; 332)

```
Note: p < 0.1; p < 0.05; p < 0.01
```

```
pander(anova(mod_task3_i, mod_task3_j, test = 'F'),style='rmarkdown')
```

Table 18: Analysis of Variance Table

Res.Df	RSS	Df	Sum of Sq	\mathbf{F}	Pr(>F)
347	8.181	NA	NA	NA	NA
346	8.178	1	0.002531	0.1071	0.7437

```
pander(anova(mod_task3_k, mod_task3_l, test = 'F'),style='rmarkdown')
```

Table 19: Analysis of Variance Table

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
343	8.151	NA	NA	NA	NA
332	7.739	11	0.4128	1.61	0.09435

lm(TaskPhase3_Score ~ TaskPhase2_Score) vs lm(TaskPhase3_Score ~ TaskPhase1_Score + TaskPhase2_Score)
pander(anova(mod_task3_e, mod_task3_i, test = 'F'),style='rmarkdown')

Table 20: Analysis of Variance Table

Res.Df	RSS	Df	Sum of Sq	F	$\Pr(>F)$
348	8.326	NA	NA	NA	NA
347	8.181	1	0.1455	6.172	0.01345

Playground

```
# compare self-reflect against medical feedback groups?
#make dummies
d_respondents[ , Self_Reflect_Dummy := ifelse(Assignment_Group == "Self-Reflect", 1, 0)]
d_respondents[ , Med_Feedback_Dummy := ifelse(Assignment_Group == "Medical Feedback", 1, 0)]
mod_test_dummies1 <- d_respondents[ , lm(TaskPhase2_Score ~ Treatment_Dummy + Self_Reflect_Dummy)]
mod_test_dummies2 <- d_respondents[ , lm(TaskPhase2_Score ~ Treatment_Dummy + Med_Feedback_Dummy)]</pre>
```

```
stargazer(mod_test_dummies1,
         mod_test_dummies2,
          se = list(get_robust_se(mod_test_dummies1),
                    get_robust_se(mod_test_dummies2)),
         header=FALSE,
          type = 'latex')
##
## \begin{table}[!htbp] \centering
##
     \caption{}
##
    \label{}
## \begin{tabular}{@{\extracolsep{5pt}}lcc}
## \\[-1.8ex]\hline
## \hline \\[-1.8ex]
## & \multicolumn{2}{c}{\textit{Dependent variable:}} \\
## \cline{2-3}
## \[-1.8ex] & \[c]{TaskPhase2\_Score} \
## \\[-1.8ex] & (1) & (2)\\
## \hline \\[-1.8ex]
## Treatment\_Dummy & 0.050$^{**}$ & 0.051$^{**}$ \\
##
   & (0.022) & (0.023) \\
##
    & & \\
## Self\_Reflect\_Dummy & 0.016 & \\
##
   & (0.023) & \\
    & & \\
##
## Med\_Feedback\_Dummy & & 0.011 \\
   & & (0.022) \\
   & & \\
##
## Constant & 0.461$^{***}$ & 0.461$^{***}$ \\
## & (0.019) & (0.019) \\
   & & \\
## \hline \\[-1.8ex]
## Observations & 350 & 350 \\
## R$^{2}$ & 0.018 & 0.017 \\
## Adjusted R$^{2}$ & 0.012 & 0.012 \\
## Residual Std. Error (df = 347) & 0.163 & 0.164 \\
## F Statistic (df = 2; 347) & 3.192$^{**}$ & 3.079$^{**}$ \\
## \hline
## \hline \\[-1.8ex]
## \textit{Note:} & \multicolumn{2}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\
## \end{tabular}
## \end{table}
# compare positive images against negative images feedback groups?
#make dummies
d_respondents[ , Positive_Images_Dummy := ifelse(Assignment_Group == "Positive Images", 1, 0)]
d respondents[ , Negative Images Dummy := ifelse(Assignment Group == "Negative Images", 1, 0)]
mod_test_dummies3 <- d_respondents[ , lm(TaskPhase2_Score ~ Treatment_Dummy + Positive_Images_Dummy)]</pre>
mod_test_dummies4 <- d_respondents[ , lm(TaskPhase2_Score ~ Treatment_Dummy + Negative_Images_Dummy)]</pre>
stargazer(mod_test_dummies3,
         mod_test_dummies4,
          se = list(get_robust_se(mod_test_dummies3),
```

```
type = 'text')
##
##
                                  Dependent variable:
##
##
                                    TaskPhase2_Score
##
                                   (1)
##
## Treatment_Dummy
                                 0.053**
                                             0.060***
##
                                 (0.022)
                                              (0.023)
##
## Positive_Images_Dummy
                                  0.0001
                                 (0.024)
##
##
## Negative_Images_Dummy
                                               -0.027
                                               (0.022)
##
                                 0.461***
                                              0.461***
## Constant
##
                                 (0.019)
                                               (0.019)
## Observations
                                   350
                                                350
## R2
                                  0.017
                                               0.021
## Adjusted R2
                                  0.011
                                               0.015
## Residual Std. Error (df = 347)
                                 0.164
                                               0.163
## F Statistic (df = 2; 347)
                                  2.947*
                                              3.670**
```

get_robust_se(mod_test_dummies4)),

Playground 2

Note:

*p<0.1; **p<0.05; ***p<0.01

```
coeftest(mod_test3, vcov = vcovHC(mod_test3,"HC1"))
##
## t test of coefficients:
##
##
                                                        Estimate Std. Error t value
## (Intercept)
                                                         0.28108
                                                                    0.07213
                                                                               3.90
## Treatment_Dummy
                                                         0.05071
                                                                    0.02217
                                                                               2.29
## TaskPhase1_Score
                                                                    0.04682
                                                         0.24027
                                                                               5.13
## as.factor(Education_Level)Bachelor's degree
                                                        -0.00683
                                                                    0.04856
                                                                              -0.14
## as.factor(Education_Level)High school
                                                         0.04068
                                                                    0.05619
                                                                               0.72
## as.factor(Education_Level)Master's degree and above -0.01698
                                                                    0.05128
                                                                              -0.33
## as.factor(Education_Level)Some high school
                                                        -0.12065
                                                                    0.05108
                                                                              -2.36
## as.factor(Education_Level)Trade school
                                                         0.02867
                                                                    0.06926
                                                                               0.41
## as.factor(Gender)Male
                                                        -0.00995
                                                                    0.01735
                                                                              -0.57
## as.factor(Age_Range)25-34
                                                         0.04469
                                                                    0.03768
                                                                              1.19
## as.factor(Age_Range)35-44
                                                                    0.03952
                                                                               1.06
                                                         0.04198
## as.factor(Age_Range)45-54
                                                         0.06975
                                                                    0.04178
                                                                               1.67
## as.factor(Age_Range)55-64
                                                                    0.04252
                                                                               1.89
                                                         0.08035
## as.factor(Age_Range)Above 65
                                                         0.12575
                                                                    0.05172
                                                                               2.43
##
                                                        Pr(>|t|)
## (Intercept)
                                                         0.00012 ***
                                                         0.02281 *
## Treatment_Dummy
## TaskPhase1 Score
                                                         4.9e-07 ***
## as.factor(Education_Level)Bachelor's degree
                                                         0.88827
## as.factor(Education_Level)High school
                                                         0.46957
## as.factor(Education_Level)Master's degree and above 0.74080
## as.factor(Education_Level)Some high school
                                                         0.01874 *
## as.factor(Education Level)Trade school
                                                         0.67922
## as.factor(Gender)Male
                                                         0.56658
## as.factor(Age_Range)25-34
                                                         0.23642
## as.factor(Age_Range)35-44
                                                         0.28890
## as.factor(Age_Range)45-54
                                                         0.09593 .
## as.factor(Age_Range)55-64
                                                         0.05968 .
## as.factor(Age_Range)Above 65
                                                         0.01556 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(d_respondents$TaskPhase1_Score)
##
      Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                              Max.
     0.200
             0.500
                     0.600
                             0.606
                                     0.700
                                              1.000
stargazer(mod_test1,
          mod_test2,
          mod_test3,
          se = list(get_robust_se(mod_test1),get_robust_se(mod_test2), get_robust_se(mod_test3)),
          type='latex')
## % Table created by stargazer v.5.2.2 by Marek Hlavac, Harvard University. E-mail: hlavac at fas.harv
## % Date and time: Sun, Dec 06, 2020 - 13:51:13
## \begin{table}[!htbp] \centering
##
     \caption{}
##
     \label{}
```

```
## \begin{tabular}{@{\extracolsep{5pt}}lccc}
## \\[-1.8ex]\hline
## \hline \\[-1.8ex]
## & \multicolumn{3}{c}{\textit{Dependent variable:}} \\
## \cline{2-4}
## \[-1.8ex] & \multicolumn{3}{c}{TaskPhase2\ Score} \\
## \\[-1.8ex] & (1) & (2) & (3)\\
## \hline \\[-1.8ex]
## TaskPhase1\_Score & 0.249\$^{***} & 0.153 & 0.240\$^{***} \\
   & (0.044) & (0.095) & (0.047) \\
##
    & & & \\
## as.factor(Education\_Level)Bachelor's degree & & & $-$0.007 \\
    & & & (0.049) \\
##
   & & & \\
## as.factor(Education\_Level)High school & & & 0.041 \\
##
   & & & (0.056) \\
##
    & & & \\
## as.factor(Education\_Level)Master's degree and above & & & $-$0.017 \\
   & & & (0.051) \\
##
##
    & & & \\
## as.factor(Education\_Level)Some high school & & & $-$0.121$^{**}$ \\
    & & & (0.051) \\
##
   & & & \\
## as.factor(Education\ Level)Trade school & & & 0.029 \\
   & & & (0.069) \\
##
    & & & \\
## as.factor(Gender)Male & & & $-$0.010 \\
    & & & (0.017) \\
##
##
    & & & \\
## as.factor(Age\_Range)25-34 & & 0.045 \\
    & & & (0.038) \\
##
##
    & & & \\
## as.factor(Age\_Range)35-44 & & & 0.042 \\
   & & & (0.040) \\
    & & & \\
## as.factor(Age\_Range)45-54 & & & 0.070$^{*}$ \\
##
   & & & (0.042) \\
##
    & & & \\
   as.factor(Age\_Range)55-64 & & 0.080^{*}
##
   & & & (0.043) \\
    & & & \\
## as.factor(Age\_Range)Above 65 & & & 0.126$^{**}$ \\
    & & & (0.052) \\
##
    & & & \\
## Treatment\_Dummy & 0.054\$^{**} & $-$0.019 & 0.051\$^{**} \\
    & (0.021) & (0.065) & (0.022) \\
##
    & & & \\
## TaskPhase1\_Score:Treatment\_Dummy & & 0.120 & \\
##
   & & (0.107) & \\
##
    & & & \\
## Constant & 0.310\$^{***} & 0.368\$^{***} & 0.281\$^{***} \\
    & (0.032) & (0.057) & (0.072) \\
##
    & & & \\
## \hline \\[-1.8ex]
```

```
## Observations & 350 & 350 \\
## R$^{2}$ & 0.098 & 0.101 & 0.117 \\
## Adjusted R$^{2}$ & 0.092 & 0.093 & 0.083 \\
## Residual Std. Error & 0.157 (df = 347) & 0.157 (df = 346) & 0.158 (df = 336) \
## F Statistic & 18.780$^{***}$ (df = 2; 347) & 12.920$^{***}$ (df = 3; 346) & 3.433$^{***}$ (df = 13;
## \hline
## \hline \\[-1.8ex]
## \textit{Note:} & \multicolumn{3}{r}{$^{*}$p$<$0.1; $^{**}$p$<$0.05; $^{***}$p$<$0.01} \\
## \end{tabular}
## \end{table}
mod_test4 <- d_test[ , lm(TaskPhase3_Score ~ TaskPhase2_Score)]</pre>
coeftest(mod_test4)
##
## t test of coefficients:
##
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      0.4205
                                0.0267 15.77 <2e-16 ***
                      0.2389
                                 0.0503
                                           4.75
                                                   3e-06 ***
## TaskPhase2_Score
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# use Robust SE
mod_test2 <- d_respondents[, lm(TaskPhase2_Score ~ Treatment_Dummy + as.factor(Education_Level) + (Tre
mod_test2$vcovHC_ <- vcovHC(mod_test2)</pre>
coeftest(mod_test2, vcov = mod_test2$vcovHC_)
## t test of coefficients:
##
##
                                                                        Estimate
## (Intercept)
                                                                        0.53333
## Treatment Dummy
                                                                        0.00667
## as.factor(Education_Level)Bachelor's degree
                                                                        -0.07424
## as.factor(Education_Level)High school
                                                                        -0.03333
## as.factor(Education_Level)Master's degree and above
                                                                        -0.07333
## as.factor(Education Level)Some high school
                                                                        -0.14000
## as.factor(Education_Level)Trade school
                                                                        -0.23333
## Treatment_Dummy:as.factor(Education_Level)Bachelor's degree
                                                                        0.04142
## Treatment_Dummy:as.factor(Education_Level)High school
                                                                         0.07515
## Treatment_Dummy:as.factor(Education_Level)Master's degree and above 0.04386
## Treatment_Dummy:as.factor(Education_Level)Trade school
                                                                         0.30762
##
                                                                        Std. Error
## (Intercept)
                                                                                NA
## Treatment_Dummy
                                                                                NA
## as.factor(Education_Level)Bachelor's degree
                                                                                NA
## as.factor(Education_Level)High school
                                                                                NA
## as.factor(Education_Level)Master's degree and above
                                                                                NA
## as.factor(Education_Level)Some high school
                                                                                ΝA
## as.factor(Education Level)Trade school
                                                                                NA
## Treatment_Dummy:as.factor(Education_Level)Bachelor's degree
                                                                               NA
## Treatment_Dummy:as.factor(Education_Level)High school
                                                                                ΝA
## Treatment_Dummy:as.factor(Education_Level)Master's degree and above
                                                                                NΔ
## Treatment_Dummy:as.factor(Education_Level)Trade school
                                                                                NΑ
```

t value

##

```
## (Intercept)
                                                                             NA
## Treatment_Dummy
                                                                             NΑ
## as.factor(Education Level)Bachelor's degree
                                                                             NA
## as.factor(Education_Level)High school
                                                                             NA
## as.factor(Education_Level)Master's degree and above
                                                                             NA
## as.factor(Education Level)Some high school
                                                                             NA
## as.factor(Education Level)Trade school
                                                                             NA
## Treatment Dummy:as.factor(Education Level)Bachelor's degree
                                                                             NA
## Treatment Dummy:as.factor(Education Level)High school
                                                                             NA
## Treatment_Dummy:as.factor(Education_Level)Master's degree and above
                                                                             NA
## Treatment_Dummy:as.factor(Education_Level)Trade school
                                                                             NA
                                                                        Pr(>|t|)
## (Intercept)
                                                                              NΑ
## Treatment_Dummy
                                                                              NA
## as.factor(Education_Level)Bachelor's degree
                                                                              NA
## as.factor(Education_Level)High school
                                                                              NA
## as.factor(Education_Level)Master's degree and above
                                                                              NA
## as.factor(Education Level)Some high school
                                                                              NA
## as.factor(Education_Level)Trade school
                                                                              NA
## Treatment Dummy:as.factor(Education Level)Bachelor's degree
                                                                              NA
## Treatment_Dummy:as.factor(Education_Level)High school
                                                                              NΔ
## Treatment_Dummy:as.factor(Education_Level)Master's degree and above
                                                                              NA
## Treatment_Dummy:as.factor(Education_Level)Trade school
                                                                              NA
```