Homework 6 Due in two weeks

Exercise 1, Grid generation

Write a code to generate a grid by the two surface method, ensuring orthogonality at the walls (see notes on BlackBoard).

a) Generate an H-grid for the geometry given in equation (1) (see figure). The grid size should be on the order of 50×50 , but you can choose the exact value to see the grid clearly.

Lower wall:
$$y = 0, -1 \le x \le 1$$

Upper wall: $y = 1 - 0.4e^{-8(0.6 - x)^2}$ $-1 \le x \le 0.6$
 $y = 0.6, 0.6 \le x \le 1.0$

$$(1)$$

$$(1)$$

$$(2)$$

$$(1)$$

$$(3)$$

$$(1)$$

$$(2)$$

$$(1)$$

$$(3)$$

$$(1)$$

$$(2)$$

$$(1)$$

$$(3)$$

$$(1)$$

$$(4)$$

$$(2)$$

$$(3)$$

$$(1)$$

$$(4)$$

$$(5)$$

$$(7)$$

$$(8)$$

$$(1)$$

$$(9)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(2)$$

$$(1)$$

$$(2)$$

$$(3)$$

$$(4)$$

$$(4)$$

$$(5)$$

$$(7)$$

$$(8)$$

$$(9)$$

$$(1)$$

$$(9)$$

$$(1)$$

$$(9)$$

$$(1)$$

$$(9)$$

$$(1)$$

$$(9)$$

$$(1)$$

$$(9)$$

$$(1)$$

$$(9)$$

$$(1)$$

$$(9)$$

$$(1)$$

$$(9)$$

$$(1)$$

$$(9)$$

$$(1)$$

$$(9)$$

$$(1)$$

$$(9)$$

$$(1)$$

$$(9)$$

$$(1)$$

$$(9)$$

$$(1)$$

$$(9)$$

$$(1)$$

$$(9)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$(1)$$

$$($$

- b) Generate an O-grid, of size $N_{\theta} = 51$, $N_r = 30$, between the surfaces (ellipse and circle) $x_{in} = \cos(\theta)$, $y_{in} = 0.3\sin(\theta)$ and $x_{out} = 3\cos(\theta)$, $y_{out} = 3\sin(\theta)$, $0 \le \theta < 2\pi$
- c) Generate a 101×51 , C-grid between the surfaces (half ellipse and airfoil)

 $x_{out} = 1.8 - 1.5\cos(\theta), \ y_{out} = 0.75\sin(\theta), \ -\pi/2 \le \theta < \pi/2$ x_{in} lies between 0.55 and 1.8(E.g. $x_{in} = 0.55 + 1.25[(2i - I - 1))/(I - 1)]^2$ where I is odd.) $y_{in} = 0$, for 0.8 < x < 1.8 $y_{in} = \pm 4(0.8 - x)^2\sqrt{x - 0.55}$, with 2 values + and -, for each 0.55 < x < 0.8

Hand in plots of each grid. Submit the algorithm part of your code, including how $(x, y)_{in}$ and $(x, y)_{out}$ are defined.

Exercise 2, Metrics

Write a code to evaluate the metrics (see lecture notes). Start the code by reading the grid as an array of x and y coordinates. To test your code, compute $u=-\partial_y\Psi$ for $\Psi=\sin(\pi y)\sin(\pi x)$ using the chain rule $\partial_y\Psi=(\partial\xi/\partial y)\partial_\xi\Psi+(\partial\eta/\partial y)\partial_\eta\Psi$.

- Illustrate your test by providing a contour plot of u(x, y) in the duct geometry of the previous problem.
- Submit your code