Name:	

FINAL EXAM

Math 237 – Linear Algebra Fall 2017

Version 6

Show all work and justify all of your answers. Answers without work or sufficient reasoning will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

E1. Write a system of linear equations corresponding to the following augmented matrix.

$$\begin{bmatrix} -4 & -1 & 3 & 2 \\ 1 & 2 & -1 & 0 \\ -1 & 4 & 1 & 4 \end{bmatrix}$$

Solution:

$$-4x_1 - x_2 + 3x_3 = 2$$
$$x_1 + 2x_2 - x_3 = 0$$
$$-x_1 + 4x_2 + x_3 = 4$$

E2. Put the following matrix in reduced row echelon form.

$$\begin{bmatrix} -3 & 1 & 0 & 2 \\ -8 & 2 & -1 & 6 \\ 0 & 2 & 3 & -2 \end{bmatrix}$$

Solution:

$$\begin{bmatrix} -3 & 1 & 0 & 2 \\ -8 & 2 & -1 & 6 \\ 0 & 2 & 3 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{1}{3} & 0 & -\frac{2}{3} \\ -8 & 2 & -1 & 6 \\ 0 & 2 & 3 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{1}{3} & 0 & -\frac{2}{3} \\ 0 & 2 & 3 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{1}{3} & 0 & -\frac{2}{3} \\ 0 & 2 & 3 & -2 \end{bmatrix}$$
$$\sim \begin{bmatrix} 1 & -\frac{1}{3} & 0 & -\frac{2}{3} \\ 0 & 2 & 3 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & \frac{1}{2} & -1 \\ 0 & 2 & 3 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

E3. Find the solution set for the following system of linear equations.

$$2x_1 + 3x_2 - 5x_3 + 14x_4 = 8$$
$$x_1 + x_2 - x_3 + 5x_4 = 3$$

Solution: Let $A = \begin{bmatrix} 2 & 3 & -5 & 14 & 8 \\ 1 & 1 & -1 & 5 & 3 \end{bmatrix}$, so RREF $A = \begin{bmatrix} 1 & 0 & 2 & 1 & 1 \\ 0 & 1 & -3 & 4 & 2 \end{bmatrix}$. It follows that the solution set

is given by
$$\begin{bmatrix} 1 - 2a - b \\ 2 + 3a - 4b \\ a \\ b \end{bmatrix}$$
 for all real numbers a, b .

E4. Find a basis for the solution set to the homogeneous system of equations

$$4x_1 + 4x_2 + 3x_3 - 6x_4 = 0$$
$$-2x_3 - 4x_4 = 0$$
$$2x_1 + 2x_2 + x_3 - 4x_4 = 0$$

Solution: Let $A = \begin{bmatrix} 4 & 4 & 3 & -6 & 0 \\ 0 & 0 & -2 & -4 & 0 \\ 2 & 2 & 1 & -4 & 0 \end{bmatrix}$, so RREF $A = \begin{bmatrix} 1 & 1 & 0 & -3 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$. It follows that the basis for the solution set is given by $\left\{ \begin{bmatrix} -1 \\ 1 \\ 0 \\ -2 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix} \right\}$.

V1. Let V be the set of all polynomials with the operations, for any $f, g \in V$, $c \in \mathbb{R}$,

$$f \oplus g = f' + g'$$
$$c \odot f = cf'$$

(here f' denotes the derivative of f).

(a) Show that scalar multiplication **distributes scalars** over vector addition: $c \odot (f \oplus g) = c \odot f \oplus c \odot g$.

(b) Determine if V is a vector space or not. Justify your answer.

Solution: Let $f, g \in \mathcal{P}$, and let $c \in \mathbb{R}$.

$$c \odot (f \oplus g) = c \odot (f' + g') = c(f' + g')' = cf'' + cg'' = cf' \oplus cg' = c \odot f \oplus c \odot g.$$

However, this is not a vector space, as there is no zero vector. Additionally, $1 \odot f \neq f$ for any nonzero polynomial f.

V2. Determine if $\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix}$ can be written as a linear combination of the vectors $\begin{bmatrix} 5\\2\\-3\\2 \end{bmatrix}$, $\begin{bmatrix} 3\\1\\1\\0 \end{bmatrix}$, and $\begin{bmatrix} 8\\3\\5\\-1 \end{bmatrix}$.

Solution:

$$RREF \left(\begin{bmatrix} 8 & 5 & 3 & 0 \\ 3 & 2 & 1 & 1 \\ 5 & -3 & 1 & -2 \\ -1 & 2 & 0 & 1 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The system has no solution, so $\begin{bmatrix} 0\\1\\-2\\1 \end{bmatrix}$ is not a linear combination of the three other vectors.

V3. Does span
$$\left\{ \begin{bmatrix} 2\\-1\\4 \end{bmatrix}, \begin{bmatrix} 3\\12\\-9 \end{bmatrix}, \begin{bmatrix} 1\\4\\-3 \end{bmatrix}, \begin{bmatrix} -4\\2\\-8 \end{bmatrix} \right\} = \mathbb{R}^3$$
?

Solution: Since

RREF
$$\begin{bmatrix} 2 & 3 & 1 & -4 \\ -1 & 12 & 4 & 2 \\ 4 & -9 & -3 & -8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -2 \\ 0 & 1 & 1/3 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

has a zero row, the vectors fail to span \mathbb{R}^3 .

V4. Let W be the set of all complex numbers a + bi satisfying a = 2b. Determine if W is a subspace of \mathbb{C} .

Solution: Yes, because $c(2b_1 + b_1i) + d(2b_2 + b_2i) = 2(cb_1 + db_2) + (cb_1 + db_2)i$ belongs to W. Alternately, yes because W is isomorphic to \mathbb{R} .

S1. Determine if the set of vectors $\left\{ \begin{bmatrix} -3\\8\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix}, \begin{bmatrix} 0\\-1\\3 \end{bmatrix} \right\}$ is linearly dependent or linearly independent

Solution:

$$RREF\left(\begin{bmatrix} -3 & 1 & 0 \\ 8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Every column is a pivot column, therefore the set is linearly independent.

S2. Determine if the set $\left\{ \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 3\\-1\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\-2 \end{bmatrix} \right\}$ is a basis of \mathbb{R}^3 .

Solution:

RREF
$$\left(\begin{bmatrix} 1 & 3 & 2 \\ 1 & -1 & 0 \\ -1 & 1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Since the resulting matrix is the identity matrix, it is a basis.

S3. Let W be the subspace of \mathcal{P}^2 given by $W = \text{span}\left(\left\{-3x^2 - 8x, x^2 + 2x + 2, -x + 3\right\}\right)$. Find a basis for W.

Solution: Let $A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$, and compute $RREF(A) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$. Since the first two columns are

pivot columns, $\{-3x^2 - 8x, x^2 + 2x + 2\}$ is a basis for W.

S4. Let
$$W = \operatorname{span}\left(\left\{\begin{bmatrix}1\\-1\\3\\-3\end{bmatrix},\begin{bmatrix}2\\0\\1\\1\end{bmatrix},\begin{bmatrix}3\\-1\\4\\-2\end{bmatrix},\begin{bmatrix}1\\1\\1\\-7\end{bmatrix}\right\}\right)$$
. Compute the dimension of W .

Solution:

$$RREF \left(\begin{bmatrix} 1 & 2 & 3 & 1 \\ -1 & 0 & -1 & 1 \\ 3 & 1 & 4 & 1 \\ -3 & 1 & -2 & -7 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

This has 3 pivot columns so dim(W) = 3.

A1. Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \\ 7x \end{bmatrix}.$$

Write the matrix for T with respect to the standard bases of \mathbb{R}^3 and \mathbb{R}^4 .

Solution:

$$\begin{bmatrix} 3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \\ 7 & 0 & 0 \end{bmatrix}$$

A2. Determine if the map $T: \mathcal{P} \to \mathcal{P}$ given by T(f) = f' - f'' is a linear transformation or not.

A3. Determine if each of the following linear transformations is injective (one-to-one) and/or surjective (onto).

(a)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 given by $T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} x+y+z \\ 2y+3z \\ x-y-2z \end{bmatrix}$

(b)
$$S: \mathbb{R}^2 \to \mathbb{R}^3$$
 given by $S\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 3x + 2y \\ x - y \\ x + 4y \end{bmatrix}$

Solution:

(a)

RREF
$$\left(\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 1 & -1 & -2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

Since there is a nonpivot column, T is not injective. Since there is a zero row, T is not surjective.

RREF
$$\begin{pmatrix} \begin{bmatrix} 3 & 2 \\ 1 & -1 \\ 1 & 4 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Since all columns are pivot columns, S is injective. Since there is a zero row, S is not surjective.

A4. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation given by

$$T\left(\begin{bmatrix} x \\ y \\ z \end{bmatrix}\right) = \begin{bmatrix} -3x + y \\ -8x + 2y - z \\ 2y + 3z \end{bmatrix}$$

Compute a basis for the kernel and a basis for the image of T.

Solution: Let $A = \begin{bmatrix} -3 & 1 & 0 \\ -8 & 2 & -1 \\ 0 & 2 & 3 \end{bmatrix}$, and compute $RREF(A) = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 0 \end{bmatrix}$. Then a basis for the image is

its columns,

$$\left\{ \begin{bmatrix} -3\\-8\\0 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix} \right\}$$

And the kernel is the solution set of AX = 0, so a basis would be

$$\left\{ \begin{bmatrix} 1\\3\\-2 \end{bmatrix} \right\}$$

M1. Let

$$A = \begin{bmatrix} 1 & 3 & -1 & -1 \\ 0 & 0 & 7 & 2 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 & 7 & 7 \\ -1 & -2 & 0 & 4 \\ 0 & 0 & 1 & 5 \end{bmatrix} \qquad C = \begin{bmatrix} 3 & 2 \\ 0 & 1 \\ -2 & -1 \end{bmatrix}$$

Exactly one of the six products AB, AC, BA, BC, CA, CB can be computed. Determine which one, and compute it.

Solution: CA is the only one that can be computed, and

$$CA = \begin{bmatrix} 3 & 9 & 11 & 1 \\ 0 & 0 & 7 & 2 \\ -2 & -6 & -5 & 0 \end{bmatrix}$$

M2. Determine if the matrix
$$\begin{bmatrix} 2 & 1 & 0 & 3 \\ 1 & -1 & 0 & 1 \\ 3 & 2 & -1 & 7 \\ 4 & 1 & 2 & 0 \end{bmatrix}$$
 is invertible.

Solution:

RREF
$$\begin{bmatrix} 2 & 1 & 0 & 3 \\ 1 & -1 & 0 & 1 \\ 3 & 2 & -1 & 7 \\ 4 & 1 & 2 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Since it is row equivalent to the identity matrix, it is invertible.

M3. Find the inverse of the matrix $\begin{bmatrix} 4 & -1 & -8 \\ 2 & 1 & 3 \\ 1 & 1 & 4 \end{bmatrix}$.

Solution: $\begin{bmatrix} 4 & -1 & -8 & 1 & 0 & 0 \\ 2 & 1 & 3 & 0 & 1 & 0 \\ 1 & 1 & 4 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & -4 & 5 \\ 0 & 1 & 0 & -5 & 24 & -28 \\ 0 & 0 & 1 & 1 & -5 & 6 \end{bmatrix} .$ Thus the inverse is $\begin{bmatrix} 1 & -4 & 5 \\ -5 & 24 & -28 \\ 1 & -5 & 6 \end{bmatrix} .$

G1. Compute the determinant of the matrix $\begin{bmatrix} 1 & 3 & 0 & -1 \\ 0 & 1 & 3 & 1 \\ 2 & 0 & 0 & -1 \\ 1 & -3 & -2 & -1 \end{bmatrix}.$

Solution:

$$\det\begin{bmatrix} 1 & 3 & 0 & -1 \\ 0 & 1 & 3 & 1 \\ 2 & 0 & 0 & -1 \\ 1 & -3 & -2 & -1 \end{bmatrix} = 2 \det\begin{bmatrix} 3 & 0 & -1 \\ 1 & 3 & 1 \\ -3 & -2 & -1 \end{bmatrix} - (-1) \det\begin{bmatrix} 1 & 3 & 0 \\ 0 & 1 & 3 \\ 1 & -3 & -2 \end{bmatrix}$$

$$= 2 \left(3 \det\begin{bmatrix} 3 & 1 \\ -2 & -1 \end{bmatrix} + (-1) \det\begin{bmatrix} 1 & 3 \\ -3 & -2 \end{bmatrix} \right) + \left(1 \det\begin{bmatrix} 1 & 3 \\ -3 & -2 \end{bmatrix} - 3 \begin{bmatrix} 0 & 3 \\ 1 & -2 \end{bmatrix} \right)$$

$$= 2 (3(-1) + (-1)(7)) + ((1)(7) - 3(-3))$$

$$= 2(-10) + 16$$

$$= -4$$

G2. Compute the eigenvalues, along with their algebraic multiplicities, of the matrix $\begin{bmatrix} 9 & -3 & 2 \\ 19 & -6 & 5 \\ -11 & 4 & -2 \end{bmatrix}$.

Solution: 1 (with algebraic multiplicity 2), and -1 (with algebraic multiplicity 1).

G3. Find the eigenspace associated to the eigenvalue -2 in the matrix $A = \begin{bmatrix} 2 & -3 & 2 \\ 8 & -9 & 5 \\ 8 & -7 & 3 \end{bmatrix}$

Solution: The eigenspace is spanned by $\begin{bmatrix} 1\\4\\1\\1 \end{bmatrix}$.

G4. Compute the geometric multiplicity of the eigenvalue 1 in the matrix $A = \begin{bmatrix} 8 & -3 & -1 \\ 21 & -8 & -3 \\ -7 & 3 & 2 \end{bmatrix}$

Solution: The eigenspace is spanned by $\begin{bmatrix} \frac{3}{7} \\ 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} \frac{1}{7} \\ 0 \\ 1 \end{bmatrix}$, so the geometric multiplicity is 2.

E1:	A1:
E2:	A2:
E3:	A3:
E4:	
V1:	A4:
V2:	M1:
V3:	M2:
	M3:
V4:	G1:
S1:	G2:
S2:	G3:
S3:	G4:
S4:	