Working with LMPL Interpretations

Philosophy 12A April 8, 2010

1 Working with Given LMPL Interpretations

Consider the following (*given*) LMPL interpretation I_1 :

In other words, the interpretation \mathcal{I}_1 has the following features: $\mathcal{D} = \{\alpha, \beta, \gamma\}$, $\operatorname{Ext}(F) = \{\alpha, \gamma\}$, $\operatorname{Ext}(G) = \{\alpha\}$, $\operatorname{Ext}(H) = \emptyset$ (where, \emptyset is *the null set*), $\operatorname{Ext}(I) = \{\alpha, \beta\}$, and $\operatorname{Ext}(J) = \{\beta, \gamma\}$.

Question: What are the \mathcal{I}_1 -truth-values of \mathbb{O} - \mathbb{G} ?

Solutions:

- ① '~Ja' is true on I_1 . This is because 'Ja' is false on I_1 , since $\alpha \notin \text{Ext}(J)$.
- ② 'Fc \rightarrow Ic' is false on \mathcal{I}_1 . This is because its antecedent 'Fc' is true on \mathcal{I}_1 , since $\gamma \in \operatorname{Ext}(F)$; but its consequent 'Ic' is false on \mathcal{I}_1 , since $\gamma \notin \operatorname{Ext}(I)$.
- ③ ' $(\exists x)(Jx \leftrightarrow Hx)$ ' is true on \mathcal{I}_1 . The instances of ' $(\exists x)(Jx \leftrightarrow Hx)$ ' on \mathcal{I}_1 are: (i) ' $Ja \leftrightarrow Ha$ ', (ii) ' $Jb \leftrightarrow Hb$ ', and (iii) ' $Jc \leftrightarrow Hc$ '. Instances (ii) and (iii) are false on \mathcal{I}_1 (why?). But, instance (i) is true on \mathcal{I}_1 , because 'Ja' and 'Ha' are both false on \mathcal{I}_1 , since $\alpha \notin \text{Ext}(J)$ and $\alpha \notin \text{Ext}(H)$. 1
- **④** '(∀x)[Jx → (Gx ∨ Fx)]' is *false* on \mathcal{I}_1 . The *instances* of '(∀x)[Jx → (Gx ∨ Fx)]' on \mathcal{I}_1 are as follows: (i) 'Ja → (Ga ∨ Fa)', (ii) 'Jb → (Gb ∨ Fb)', and (iii) 'Jc → (Gc ∨ Fc)'. Instances (i) and (iii) are *true* on \mathcal{I}_1 (*why*?). But, instance (ii) is *false* on \mathcal{I}_1 . This is because 'Jb' is *true* on \mathcal{I}_1 , since β ∈ Ext(J); but 'Gb ∨ Fb' is *false* on \mathcal{I}_1 , since β ∉ Ext(G) and β ∉ Ext(F).²
- ⑤ ' $(\exists x)Gx \rightarrow (\forall y)(Fy \lor Gy)$ ' is \bot on \mathcal{I}_1 . The *antecedent* ' $(\exists x)Gx$ ' of this conditional is \top on \mathcal{I}_1 , because its *instance* 'Ga' is \top on \mathcal{I}_1 , since $\alpha \in \text{Ext}(G)$. But, the *consequent* ' $(\forall y)(Fy \lor Gy)$ ' of this conditional is *false* on \mathcal{I}_1 , because its *instance* ' $Fb \lor Gb$ ' is false on \mathcal{I}_1 , since $\beta \notin \text{Ext}(G)$ and $\beta \notin \text{Ext}(F)$.
- **(§** ' $(\exists y)(\forall x)[Gy \& (Jx \rightarrow (Ix \lor Fx))]$ ' is *true* on \mathcal{I}_1 . The three *instances* of **(®** on \mathcal{I}_1 are as follows:
 - (i) ' $(\forall x)[Ga \& (Jx \rightarrow (Ix \lor Fx))]$ '. This instance of ⑥ is \top on \mathcal{I}_1 . The *instances* of (i) are as follows: (i.1) ' $Ga \& (Ja \rightarrow (Ia \lor Fa))$ ', (i.2) ' $Ga \& (Jb \rightarrow (Ib \lor Fb))$ ', and (i.3) ' $Ga \& (Jc \rightarrow (Ic \lor Fc))$ '. (i.1) is \top on \mathcal{I}_1 since both 'Ga' [$\alpha \in \operatorname{Ext}(G)$], and ' $Ja \rightarrow (Ia \lor Fa)$ ' [$\alpha \notin \operatorname{Ext}(J)$] are \top on \mathcal{I}_1 . (i.2) is \top on \mathcal{I}_1 since both 'Ga' and ' $Jb \rightarrow (Ib \lor Fb)$ ' [$\beta \in \operatorname{Ext}(J)$] and $\beta \in \operatorname{Ext}(I)$] are \top on \mathcal{I}_1 . (i.3) is \top on \mathcal{I}_1 since both 'Ga' and ' $Jc \rightarrow (Ic \lor Fc)$ ' [$\gamma \in \operatorname{Ext}(J)$] and $\gamma \in \operatorname{Ext}(F)$] are \top on \mathcal{I}_1 .
 - (ii) $(\forall x)[Gb \& (Jx \to (Ix \lor Fx))]$. This instance of (6) is \bot on \mathcal{I}_1 , because 'Gb' is false on \mathcal{I}_1 , since $\beta \notin \text{Ext}(G)$. So, *none* of the three instances of $(\forall x)[Gb \& (Jx \to (Ix \lor Fx))]$ ' is true on \mathcal{I}_1 (*why*?).
 - (iii) ' $(\forall x)[Gc \& (Jx \to (Ix \lor Fx))]$ '. This instance of ® is \bot on \mathcal{I}_1 , because 'Gc' is false on \mathcal{I}_1 , since $y \notin Ext(G)$. So, *none* of the three instances of ' $(\forall x)[Gc \& (Jx \to (Ix \lor Fx))]$ ' is true on \mathcal{I}_1 (*why*?).

All instances of (i) are \top on \mathcal{I}_1 . \therefore (i) is \top on \mathcal{I}_1 . \therefore One instance of 6 is true on \mathcal{I}_1 . \therefore 6 is \top on \mathcal{I}_1 .

¹Remember, it only takes *one true instance* (on 1) of the *existential* claim $(\exists v) \phi v$ to make $(\exists v) \phi v$ true on 1.

²Remember, it only takes *one false instance* (on 1) of the *universal* claim $(\forall v)\phi v$ to make $(\forall v)\phi v$ *false* on 1.

2 *Constructing* LMPL Interpretations to Prove ⊭ Claims

Problem #1. Show that:

(1)
$$(\forall x)(Fx \to Gx), (\forall x)(Fx \to Hx) \not\models (\forall x)(Gx \to Hx).$$

Solution. In order to prove (1), we need to construct an interpretation \mathcal{I} on which ' $(\forall x)(Fx \to Gx)$ ' and ' $(\forall x)(Fx \to Hx)$ ' are both true, but ' $(\forall x)(Gx \to Hx)$ ' is false. We proceed in several steps.

- **Step 1**: We begin *provisionally* with the smallest possible domain $\mathcal{D} = \{\alpha\}$.
- **Step 2**: We make sure that the object α is a *counterexample* to the conclusion ' $(\forall x)(Gx \rightarrow Hx)$ '. That is, we make sure that the *instance* ' $Ga \rightarrow Ha$ ' of the conclusion is *false* on \mathcal{I} . So, we must have $\alpha \in \operatorname{Ext}(G)$, but $\alpha \notin \operatorname{Ext}(H)$. We can achieve this by making $\operatorname{Ext}(G) = \{\alpha\}$, and $\operatorname{Ext}(H) = \emptyset$.
- **Step 3**: At the same time, we try to make *both* of the premises ' $(\forall x)(Fx \rightarrow Gx)$ ' *and* ' $(\forall x)(Fx \rightarrow Hx)$ ' *true* on \mathcal{I} . In this case, we can make both premises true simply by ensuring that $\alpha \notin \operatorname{Ext}(F)$. The simplest way to do this is to stipulate that $\operatorname{Ext}(F) = \emptyset$ which yields the following interpretation:

$$(I_2) \qquad \frac{F \quad G \quad H}{\alpha \quad - \quad + \quad -}$$

We have discovered an interpretation I_2 on which ' $(\forall x)(Fx \to Gx)$ ' and ' $(\forall x)(Fx \to Hx)$ ' are both true, but ' $(\forall x)(Gx \to Hx)$ ' is false (*demonstrate this!*). Therefore, claim (1) is true.³

Problem #2. Show that:

$$(2) \qquad (\exists x)(Fx \& Gx), (\exists x)(Fx \& Hx), (\forall x)(Gx \to \sim Hx) \not\models (\forall x)[Fx \leftrightarrow (Gx \lor Hx)].$$

Solution. In order to prove (2), we need to construct an interpretation \mathcal{I} on which ' $(\exists x)(Fx\&Gx)$ ', ' $(\exists x)(Fx\&Hx)$ ', and ' $(\forall x)(Gx \to \sim Hx)$ ' are all true, but ' $(\forall x)[Fx \leftrightarrow (Gx \lor Hx)]$ ' is false.

- **Step 1**: We begin *provisionally* with the smallest possible domain $\mathcal{D} = \{\alpha\}$.
- **Step 2**: We make sure that the object α is a *counterexample* to the conclusion ' $(\forall x)[Fx \leftrightarrow (Gx \lor Hx)]$ '. So, we make its *instance* ' $Fa \leftrightarrow (Ga \lor Ha)$ ' *false* on A. There are several ways to do this. One way: $\alpha \in \text{Ext}(F)$, $\alpha \notin \text{Ext}(G)$, and $\alpha \notin \text{Ext}(H)$. So far, we have $\text{Ext}(F) = \{\alpha\}$, and $\text{Ext}(G) = \text{Ext}(H) = \emptyset$.
- Step 3: Now, we must try to make *all three* of the premises (i) ' $(\exists x)(Fx \& Gx)$ ', (ii) ' $(\exists x)(Fx \& Hx)$ ', and (iii) ' $(\forall x)(Gx \to \sim Hx)$ ' true on \mathcal{I} . In order to make (i) true on \mathcal{I} , we must ensure that there is some object in the domain \mathcal{D} which satisfies *both* predicates 'F' and 'G'. But, since α must *not* satisfy both 'F' and 'G', this means we will need to *add another object* β to our domain \mathcal{D} , such that: $\beta \in \text{Ext}(F)$, and $\beta \in \text{Ext}(G)$. Now, we have $\text{Ext}(F) = \{\alpha, \beta\}$, $\text{Ext}(G) = \{\beta\}$, and $\text{Ext}(H) = \emptyset$. All that remains is to ensure that premises (ii) and (iii) are also true on \mathcal{I} . In order to make (ii) true on \mathcal{I} , we'll need to make sure that there is some object in \mathcal{D} which satisfies *both* predicates 'F' and 'H'. We could *try* to make β satisfy *all three* predicates 'F', 'G', and 'H'. But, if we were to do this, then premise (iii) would become *false* on \mathcal{I} , since its *instance* ' $Gb \to \sim Hb$ ' would then be false on \mathcal{I} . Thus, we'll need to *add a third object* γ to \mathcal{D} such that: $\gamma \in \text{Ext}(F)$, $\gamma \notin \text{Ext}(G)$, and $\gamma \in \text{Ext}(H)$ success:

We have discovered an interpretation \mathcal{I}_3 on which ' $(\exists x)(Fx\&Gx)$ ', ' $(\exists x)(Fx\&Hx)$ ', and ' $(\forall x)(Gx \to \sim Hx)$ ' are all true, but ' $(\forall x)[Fx \leftrightarrow (Gx \lor Hx)]$ ' is false (*demonstrate this!*). Therefore, claim (2) is true.

³When you're asked to prove a claim like (1), you must do *two* things: (*i*) *Report* an interpretation (like I_2) which serves as a counterexample to the validity of the LMPL argument-form, *and* (*ii*) *Demonstrate* that your interpretation *really is* a counterexample — *i.e.*, *show* that your interpretation makes all the premises true and the conclusion false, using the methods on the front page of this handout. You do *not* need to explain the process which led to the *discovery* of the interpretation.