പള്ളി A

$$OI$$
 $n=1$ $9.15 \Rightarrow fc1) = 7^3 + 8^3$
= 855 $= 15 \times 57$

ட். n = 1 ந்த டுடிவு உண்மையாகும் .

$$n=p$$
 pig graph 2 with $p \in \mathbb{Z}^+$] $= 57K$ (5) [2 mig $k \in \mathbb{Z}^+$]

$$\begin{array}{ll}
n=1 & 8565 \Rightarrow \\
7 & +8 & =7 & (p+3) & (2p+3) & (5) \\
& =7 & 7 & (p+2) & +64 & (2p+1) \\
& =7 & 7 & (p+2) & +8 & (2p+1) & (2p+1) \\
& =7 & 7 & (p+2) & 8 & (2p+1) & (2p+1) \\
& =7 & 7 & (p+2) & 8 & (2p+1) & (2p+1) & (2p+1) \\
& =57 & [7K + 8 & (2p+1)]
\end{array}$$

்.n=p+1 ம்கு முடிவு உண்மையாகம்

். கணிதத்தெறைக்குறிவு முறைப்படி எல்லா நடி கூர் நகும் முடிவு 2ண்மையாகும்

$$y = |2x - 1|$$

 $x > \frac{1}{2} \Rightarrow y = 2x - 1$
 $x < \frac{1}{2} \Rightarrow y = 1 - 2x$

(5)

04>

K = 3

05) L.H.S =
$$\lim_{\theta \to \overline{y}_{A}} \frac{\sqrt{\tan \theta} - 1}{(2J\theta - J\pi)}$$

= $\lim_{\theta \to \overline{y}_{A}} \frac{\tan \theta - 1}{11\theta - \pi} \times \left[\frac{J_{A}\theta + \sqrt{\pi}}{J_{A}\tan \theta + 1} \right]$

= $\lim_{A \to \overline{y}_{A}} \frac{\sin \theta \cos y_{A} - \cos \theta \sin \overline{y}_{A} \times CJ_{A}\theta + J\pi}{(\theta - \overline{y}_{A})} \times \lim_{A \to \overline{y}_{A}} \frac{1}{(\theta - \overline{y}_{A})} \times \lim_{A \to \overline{y}_{A}} \frac{1}$

= $[e^{\alpha} - \alpha]_0^1$ - $[2\ln 2 - 1]$ = $(e - 1) - (1 - 0)_0 - (2\ln 2 - 1)$ = $e - (2\ln 2 + 1)$

 $= \int (e^{\alpha} - 1) d\alpha - \int \ln (n + 1) d\alpha = 2 \ln 2 - 1$

$$\begin{aligned}
\pi &= t - Sint & y &= 1 - Cost \\
\frac{dx}{dt} &= 1 - Cost & \frac{dy}{dt} &= Sin t \\
\frac{dy}{dx} &= \frac{dy}{dt} \times \frac{dt}{dx} \\
&= Sint \cdot \frac{1}{C1 - (ost)}
\end{aligned}$$

$$\begin{aligned}
\left(\frac{dy}{dx}\right)_{t=\sqrt{1}} &= \frac{\sqrt{12}}{1 - \sqrt{12}} \\
&= \frac{1}{(\sqrt{2} - 1)}
\end{aligned}$$

$$\begin{aligned}
t &= \sqrt{1} \times \frac{1}{\sqrt{2}} \\
&= \sqrt{1} \times \frac{1}{\sqrt{2}}
\end{aligned}$$

$$\begin{aligned}
t &= \sqrt{1} \times \frac{1}{\sqrt{2}} \\
&= \sqrt{1} \times \frac{1}{\sqrt{2}}
\end{aligned}$$

$$\begin{aligned}
t &= \sqrt{1} \times \frac{1}{\sqrt{2}} \\
&= \sqrt{1} \times \frac{1}{\sqrt{2}}
\end{aligned}$$

$$\begin{aligned}
t &= \sqrt{1} \times \frac{1}{\sqrt{2}} \\
&= \sqrt{1} \times \frac{1}{\sqrt{2}}
\end{aligned}$$

$$\begin{aligned}
t &= \sqrt{1} \times \frac{1}{\sqrt{2}} \\
&= \sqrt{1} \times \frac{1}{\sqrt{2}}
\end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned}
t &= \sqrt{1} \times \frac{1}{\sqrt{2}} \\
&= \sqrt{1} \times \frac{1}{\sqrt{2}}
\end{aligned}$$

$$\end{aligned}$$

 $4(\sqrt{2}-1)y - 4x - 2(3\sqrt{2}-4) - 2\sqrt{2} + \overline{\Lambda} = 0$

4(12-1)4-42-8(12-1)+7

$$P = \left[\frac{2 \times 10 \cos \theta + 3 \times 5}{5}, \frac{2 \times 10 \sin \theta}{5} + 3 \times 0\right]$$

$$= \left[\frac{2 \times 10 \cos \theta + 3}{5}, \frac{3 \times 10 \sin \theta}{5} + \frac{3 \times 0}{5}\right]$$

$$y = 4 \sin \theta - 2$$

$$0^{2} + 0^{2} \Rightarrow x^{2} + y^{2} - bx + 9 = 16 [Sin^{2}\theta + Cos^{2}\theta]$$

$$x^{2} + y^{2} - bx - x = 0$$

் P இன் அமேடி வரா நம்

$$ωωω\dot{ω} \equiv (+3,0) - - \boxed{5}$$

$$90007 = \sqrt{9+0-(-7)}$$

09) ประเท ชิย์ยกาม அமையும்
$$S = x^2 + y^2 + 2gx + 2fy + c = 0$$

$$29(-3a) + 2f(0) = c + 5a^2 - 0 - 5$$

$$29(0) + 2f(-30) = c + 50^{2}$$

$$-baf = c + 5a^2 - 2$$

$$= c + 5a^{2}$$
 $= c + 5a^{2}$ $= c + 5a^{2}$ $= c + 5a^{2}$ $= c + 5a^{2}$

$$c = -bag - 5a^2 - 6$$

$$5 = x^2 + y^2 + 2gx + 2gy + (-6ag - 5a^2) = 0$$

$$S = x^2 + y^2 - 5\alpha^2 + 2g(x + y - 3a) = 0$$

$$S = x^2 + y^2 - 5a^2 + 2K(x + y - 3a) = 0$$
 [$2 = 6 K = 9$]

10> (i) 25. Smo

$$= 2 \sin^2 40 - 6$$

(ii) L

<u>S</u> L

$$= \frac{(1-\cos 2\theta)}{2\sin \theta}$$

$$= \frac{1}{4\cos \theta \cos 2\theta \cos 4\theta}$$

 $= 2 \sin^2 40$ 4 x 2 Sino Coso Cos20 Cos40

$$= \frac{\sin^2 4\theta}{4 \times \sin 2\theta \cos 2\theta \cos 4\theta}$$

$$= \frac{\sin^2 40}{\sin 40 \cos 40}$$

= tan 40

70

11) a)
$$L(x) = x^3 + ax^2 + bx - 12$$

() A partie of the second seco

$$L(-2) = -150$$

$$-8 + 40 - 2b - 12 = -150$$

$$4a - 2b = -130$$

$$2a - b = -65$$

$$2a - b = -bb$$

2a-b+65=0 ------ (C

िं १ ५००० । १००

27 +9a +3b -12=0

3a+b+ 5 = 0-

a = -14

a = -14 200

$$0 \Rightarrow 2x - 14 - b + 65 = 0$$

$$2.10x) = x^3 - 14x^2 + 37x - 12$$

 $P(2^3 - 14(2^2) + 37(2) - 12] + 289 = 0$

$$(\chi = -1)$$
 35 $S(-1) = -15b$ $S(-1)$

$$SCND = P \cdot LCND + 289$$

(b)
$$x^2 - 2(\alpha - 2)x + 2\alpha - 10 = 0$$

$$\Delta = 4(\alpha - 2)^2 - 4(1)(2\alpha - 10)$$

$$= 4(\alpha^2 - 4\alpha + 4 - 2\alpha + 10)$$

$$= 4(\alpha^2 - 6\alpha + 14)$$

$$= 4[\alpha - 3)^2 + 5]$$

$$(a-3)^2 > 0$$
 ——6)

:. A>0

அகவே வெல்யான மூலங்களைக் கொண்டிக்கை கட்ட கு

① कीळां श्विणाकां क्यां प्राप्ति । प्रार्थाक

$$\alpha_1 + \beta_1 = 2(a-2)$$
 β
 $\alpha_1 \beta_1 = 2a-10$ β

$$\alpha_1 = -\beta_1$$
 (FID)

$$2(a-2)=0$$
 $a=2$

$$(\alpha_1 - \beta_1)^2 = 36$$

$$(\alpha_1 + \beta_1)^2 - 4\alpha_1\beta_1 = 36$$

$$[2(a-2)]^2 - 4(2a-10)=36$$

$$a^2 - 6a + 5 = 0$$

$$(a-5)(a-1) = 0$$

$$a=5$$
 or $a=1-6$

$$(a+2b)x^2 + 2(a-b)x + (a-4b) = 0$$

$$\Delta = 4(a-b)^{2} - 4(a+2b)(a-4b)$$

$$= 4[a^{2}-2ab+b^{2}-a^{2}+2ab+8b^{2}]$$

$$= 36b^{2}$$

 $=(6b)^2$

Open with the part of the par

டுலாற்கள் சமமானனை எனின் $\Delta = 0$ ஆகும் \mathcal{J} \mathcal{G} :. $(bb)^2 = 0$ b = 0

$$2x^{2}+x+5=0$$
 Sovi Boursies oit α,β or or α , β or or β or α , β or or β or β

 $2\pi^2 - 3\pi + 2k = 0$ Door Georgiasori ($\alpha+1$), ($\beta+1$) or contains or $(\alpha+1)(\beta+1) = k$ $\alpha\beta + \alpha+\beta+1 = k$ $\frac{5}{2} - \frac{1}{2} + 1 = k$

12) (a)
$$A-5$$
, $B-5$, $\ell-5$

$$(i)^{5} \left[\frac{.5}{2} \right]_{2}^{.5} \left[\frac{.5}{2} \right]_{2}^{.5} = 10 \times 10 \times 10$$

$$(iii)$$
 $^{15}\begin{bmatrix} 6 - 3 \\ 2 \end{bmatrix}$ $= 5005 - 630$ $= 4375$

$$(iv)$$
 $^{15}[_{6}^{-3}[_{1}^{.5}[_{5}^{.10}[_{1}=5005-30]$
 $= 4975$

(b)
$$8x^3 + 2x^2 + 1 = Ax^2(2x+1) + B(x+1)^2(2x-1)$$

$$n^{3}$$
 6000 600 => $8 = 2A + 2B$

$$A + B = 4$$

$$8x^3 + 2x^2 + 1 = 5x^2(2x+1) - (x+1)^2(2x-1)$$

$$Ur = 8r^{3} + 4r^{2} + 1$$

$$5^{(r+1)}(2r+1)(2r-1)$$

$$= 5r^{2}(2r+1) - (r+1)^{2}(2r-1)$$

$$5^{(r+1)}(2r+1)(2r-1)$$

$$Ur = \frac{r^2}{5^r(2r-1)} - \frac{(r+1)^2}{5^{(r+1)}(2r+1)}$$

26
$$6 \text{ Fcr} = \frac{r^2}{5^r \text{ C2r-1}}$$

$$r=1 \Rightarrow U_1 = f_1 - f_2$$

 $r=2 \Rightarrow U_2 = f_2 - f_3$

$$r=cn+1 \Rightarrow Ucn+1 = Fcn+1 - Fcn+1$$

$$r=n \Rightarrow Un = Fn - Fcn+1$$

$$\sum_{r=1}^{n} U_r = f_1 - f_{cn+1}$$

$$= \frac{1}{5} - \frac{(n+1)^2}{5^{(n+1)}(2n+1)}$$

$$\lim_{n\to\infty} \frac{1}{\sum_{r=1}^{n} u_r} = \lim_{n\to\infty} \left[\frac{1}{5} - \frac{(n+1)^2}{5^{(n+1)}(2n+1)} \right]$$

$$= \frac{1}{5}$$

$$= \frac{1}{5}$$

13) a) (i)
$$A \times B = \begin{pmatrix} 2 & 3 \\ 1 & 6 \end{pmatrix} \times \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 4 & 9 \\ 2 & 3 \end{pmatrix}$$

$$B \times A = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 7 & 6 \\ 1 & 0 \end{pmatrix}$$

$$A^{2} = \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} 3 & 5 \\ -5 & 8 \end{pmatrix}$$

$$fcA) = \begin{pmatrix} 3 & 5 \\ -5 & 8 \end{pmatrix} - 5 \begin{pmatrix} 2 & 1 \\ -1 & 3 \end{pmatrix} + 7 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 10 & 5 \\ -5 & 15 \end{pmatrix} - \begin{pmatrix} 10 & 5 \\ 5 & 15 \end{pmatrix}$$

$$=\begin{pmatrix}0&0\\0&0\end{pmatrix}$$

$$A^{2}-5A+7I=0$$

$$5A-A^{2}=7I$$

$$A\left(\frac{1}{7}\right)(5I-A)=I$$

$$=\frac{1}{7}\left(5I-A\right)$$

$$=\frac{1}{7}\left[5\left(\frac{10}{01}\right)-\left(\frac{2}{-1}\frac{1}{3}\right)\right]$$

$$=\frac{1}{7}\left[\left(\frac{50}{05}\right)-\left(\frac{2}{-1}\frac{1}{3}\right)\right]$$

$$=\frac{1}{7}\left(\frac{3}{1}\frac{1}{2}\right)$$

(b) (i)
$$\frac{1}{1-7} = \frac{1}{C1-(oso-iSino)} \times \frac{(1-(oso)+iSino)}{C1-(oso+iSino)}$$

$$= \frac{(1-\cos\phi) + i\sin\phi}{(1-\cos\phi)^2 - i^2\sin^2\theta}$$

$$= \frac{1 - \cos \theta + i \sin \theta}{1 - 2\cos \theta + \cos^2 \theta + \sin^2 \theta} \qquad (::i^2 = -1) - 5$$

$$= \frac{1 - \cos 0 + i \sin \theta}{2(1 - \cos \theta)}$$

$$= \frac{1}{2} + \frac{1}{2} \times \frac{15 \text{ ine}}{\text{C1-(oso)}} \times \frac{\text{C1+(oso)}}{\text{C1+(oso)}}$$

$$=\frac{1}{2}+\frac{1}{2} \underbrace{\text{CiSino-C1+caso}}_{\text{Sin}^2\Theta}$$

$$= \frac{1}{2} \left[1 + \frac{12\cos^2\theta_2}{2\sin\theta_2 \cos\theta_2} \right]$$

$$= \frac{1}{2} \left[1 + i \cot \theta_2 \right] - 6$$

$$Z = \cos \theta + i \sin \theta - 0$$

$$\frac{1}{Z} = \frac{1}{(\cos \theta + i \sin \theta)} \times \frac{(\cos \theta - i \sin \theta)}{(\cos \theta - i \sin \theta)}$$

$$= \frac{\cos \phi - i \sin \phi}{(\cos^2 \phi + \sin^2 \phi)} \qquad c : i^2 = -1)$$

$$\frac{1}{7} = \cos \theta - i \sin \theta - \Theta = \Theta$$

$$0+2) \Rightarrow z + \frac{1}{z} = 2\cos\theta - \frac{1}{2}$$

$$\frac{\cos \alpha + i \sin \alpha}{\cos \beta + i \sin \beta} = \frac{(\cos \alpha + i \sin \alpha)}{(\cos \beta + i \sin \beta)} \times \frac{(\cos \beta - i \sin \beta)}{(\cos \beta - i \sin \beta)}$$

$$= (\cos \alpha \cos \beta + \sin \alpha \sin \beta)$$

$$\frac{-(Sinalos)}{+(Sinalos)} - (OsasinB)$$

$$Os^2\beta + Sin^2\beta$$

$$= \cos(\alpha - \beta) + i \sin(\alpha - \beta) - (5)$$

$$= \sqrt{2} \left[-\frac{1}{\sqrt{2}} + i \left(\frac{1}{\sqrt{2}} \right) \right]$$

$$= \sqrt{2} \left[\cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} \right]$$

$$|Z_1| = \sqrt{2}$$

$$arg(Z_1) = 3\pi$$

$$\frac{7}{2} = 1 + \sqrt{3} i$$

$$= 2 \left[\frac{1}{2} + \sqrt{3} \right] - \sqrt{5}$$

$$= 2 \left[\cos \pi_{3} + i \sin \pi_{3} \right]$$

$$\left[\frac{7}{2} \right] = 2$$

$$\frac{|Z_1|}{|Z_2|} = \frac{|Z_1|}{|Z_2|}$$

$$= \sqrt{2}$$

$$= \frac{1}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}}$$

$$\arg\left(\frac{z_1}{z_2}\right) = \arg\left(z_1\right) - \arg\left(z_2\right)$$

$$= \left(\frac{3K}{4} - \frac{K}{3}\right)$$

$$\frac{\overline{Z}_{1}}{\overline{Z}_{2}} = \frac{1}{\sqrt{2}} \left[\cos \left(\frac{3\overline{h}}{4} - \frac{\overline{h}}{3} \right) + i \sin \left(\frac{3\overline{h}}{4} - \frac{\overline{h}}{3} \right) \right]$$

$$\operatorname{Re}\left(\frac{\overline{Z}_{1}}{\overline{Z}_{2}}\right) = \frac{1}{\sqrt{2}} \left(\operatorname{os}\left(\frac{3\overline{\Lambda}}{4} - \frac{\overline{\Lambda}}{3}\right)\right)$$

$$= \frac{1}{\sqrt{2}} \left[\operatorname{os}\frac{3\overline{\Lambda}}{4} \operatorname{cos}\frac{\overline{\Lambda}}{3} + \operatorname{Sin}\frac{3\overline{\Lambda}}{4} \operatorname{Sin}\frac{\overline{\Lambda}}{3}\right]$$

$$= \frac{1}{\sqrt{2}} \left[-\frac{1}{\sqrt{2}} \times \frac{1}{2} + \frac{1}{\sqrt{2}} \times \frac{\overline{3}}{2}\right]$$

$$= \frac{\overline{3}-1}{\sqrt{2}}$$

$$\operatorname{Im}\left(\frac{Z_{1}}{Z_{2}}\right) = \frac{1}{\sqrt{2}} \operatorname{Sin}\left(\frac{3\overline{h}}{4} - \frac{\overline{h}}{3}\right)$$

$$= \frac{1}{\sqrt{2}} \left(\operatorname{Sin}\frac{3\overline{h}}{4} \cdot \operatorname{Os}\frac{\overline{h}}{3} - \operatorname{Os}\frac{3\overline{h}}{3}\operatorname{Sin}\overline{h}\right) = \frac{1}{\sqrt{2}} \left[\frac{1}{\sqrt{2}} \times \frac{1}{2} + \frac{1}{\sqrt{2}} + \sqrt{3}\right]$$

$$= \frac{1}{\sqrt{2}} \left[\frac{1}{\sqrt{2}} \times \frac{1}{2} + \frac{1}{\sqrt{2}} + \sqrt{3}\right]$$

$$= \frac{3+1}{4}$$

$$\gamma^{2} = 1^{2} - 3/4$$
 $x = 1/2 (x > 0)$

$$\tan \theta = \frac{\sqrt{3}}{2}$$

$$= \frac{\sqrt{3}}{2}$$

$$Z = \sqrt{3} \left(\cos \pi / b + k \sin \pi / b \right)$$

$$= \sqrt{3} \left(\frac{\sqrt{3}}{2} + i \left(\frac{1}{2} \right) \right)$$

$$= \frac{3}{2} + i \left(\frac{\sqrt{3}}{2} \right)$$

(4) a) I
$$y = \frac{1}{2} (e^{\alpha} + e^{-\alpha})$$

$$\frac{dy}{d\alpha} = \frac{1}{2} [e^{\alpha} - e^{-\alpha}]$$

$$(\frac{dy}{d\alpha})^{2} = \frac{1}{4} (e^{\alpha} - e^{-\alpha})^{2}$$

$$y^{2} = \frac{1}{4} (e^{\alpha} + e^{-\alpha})^{2}$$
2

II
$$d\left(\frac{\tan \alpha}{1+\sin \alpha}\right) = \frac{(1+\sin \alpha)\sec^2\alpha - \tan \alpha \cos \alpha}{1+\sin \alpha}$$

$$= \frac{(1+\sin \alpha)^2}{\cos^2\alpha (1+\sin \alpha)^2}$$

$$= \frac{(1+\sin \alpha)^2}{\cos^2\alpha (1+\sin \alpha)^2}$$

$$= \frac{(1+\sin \alpha)^2}{\cos^2\alpha (1+\sin \alpha)^2}$$

$$(os^{2} \times C_{1} + S_{1} \times x)^{2}$$

$$= \frac{S_{1}n^{2} \times - S_{1}n \times H}{(os^{2} \times C_{1} + S_{1}n \times x)}$$

= CI+ SIMO (SIN2x - SIMX+1)

III
$$\frac{d(e^{\pm} \ln t \cos t)}{dt} = \cos t \times \frac{de^{\pm} \sin t}{dt} + e^{\pm} \ln t \frac{d\omega s}{dt}$$

$$= \cos t \left[e^{\pm} \frac{d}{dt} + \ln t \frac{de^{\pm}}{dt} + e^{\pm} \ln t \times (-\sin t) \right]$$

$$= \cos t \left[e^{\pm} \frac{d}{dt} + \ln t \frac{de^{\pm}}{dt} + e^{\pm} \ln t \times (-\sin t) \right]$$

$$= e^{\pm} \left[\cos t \left(\ln t + \frac{1}{t}\right) - \ln t \sin t\right]$$
b) $f(x) = \frac{x}{(x+1)(x+2)}$

$$x = 0 \Rightarrow b = y = 0$$

$$\therefore \text{ sometime} (0,0) \text{ degree of proposes the form } \text{ sometime} \text{ sometime}$$

$$K(x-1)(x-2)-x=0$$
 [& B_{1}^{2} A_{1}^{2} A_{2}^{2} A_{3}^{2} A_{4}^{2} A_{5}^{2} $A_{5}^$

(a) (i)

$$t = (1+x)^{1/6}$$

 $\frac{dt}{dx} = \frac{1}{6}(1+x)^{5/6}$
 $dx = 6(1+x)^{5/6}dt$
 $= 6t^{5}dt$

$$\int \frac{\alpha}{3 + n^{2} - \sqrt{1 + n^{2}}} dn = \int \frac{\alpha}{[(1 + n^{2})^{1/6}]^{2} - [(1 + n^{2})^{1/6}]^{3}} dn$$

$$= \int \frac{t^{b} - 1}{t^{2} - t^{3}} \cdot 6t^{5} dt$$

$$= 6 \int \frac{(t - 1)(t + 5 + t^{4} + t^{3} + t^{2} + t + 1)}{t^{2}(1 - t)} dt$$

$$= -6 \int (t^{5} + t^{4} + t^{3} + t^{2} + t + 1) t^{3} dt$$

$$= -6 \int (t^{8} + t^{7} + t^{6} + t^{5} + t^{4} + t^{3}) dt$$

$$= -6 \int \frac{t^{9}}{9} + \frac{t^{8}}{8} + \frac{t^{7}}{7} + \frac{t^{6}}{6} + \frac{t^{5}}{5} + \frac{t^{4}}{4} + c$$

$$= -6 \int \frac{t^{9}}{9} + \frac{t^{8}}{8} + \frac{t^{7}}{7} + \frac{t^{6}}{6} + \frac{t^{5}}{5} + \frac{t^{4}}{4} + c$$

$$= -6 \int \frac{t^{9}}{9} + \frac{t^{8}}{8} + \frac{t^{7}}{7} + \frac{t^{6}}{6} + \frac{t^{5}}{5} + \frac{t^{4}}{4} + c$$

$$= -6 \int \frac{t^{9}}{9} + \frac{t^{8}}{8} + \frac{t^{7}}{7} + \frac{t^{6}}{6} + \frac{t^{5}}{5} + \frac{t^{4}}{4} + c$$

$$(ii) y = (i+x^2) \text{ or or } \text{Ing blub}$$

$$\frac{dy}{dx} = 2x$$

$$\frac{1}{2} dy = x dx$$

$$x = i \iff y = 2$$

$$x = 0 \iff y = 1$$

$$\int \frac{x}{(i+x^2)^{\frac{3}{2}}} dx = \int \frac{1}{y^{\frac{3}{2}}} \frac{1}{2} dy$$

$$= \frac{1}{2} \int y^{-\frac{3}{2}} dy$$

$$= \frac{1}{2} \left[\frac{y^{-\frac{1}{2}}}{-\frac{1}{2}} \right]^2$$

$$= -1 \left[\frac{1}{\sqrt{2}} \right]^2$$

$$= 1 - \left[\frac{1}{\sqrt{2}} \right]$$

= 1 (12-1)

(b)
$$y = a - \alpha$$
 arongo
 $\frac{dy}{d\alpha} = c + 1$
 $d\alpha = -dy$
 $\alpha = 0$ (=) $y = a$
 $\alpha = a$ (=) $y = 0$

$$= \int_{0}^{a} f(a - \alpha) d\alpha = \int_{0}^{a} f(a - \alpha) d\alpha$$

$$= \int_{0}^{a} f(a - \alpha) d\alpha = \int_{0}^{a} f(a - \alpha) d\alpha$$

$$= \int_{0}^{a} f(a - \alpha) d\alpha = \int_{0}^{a} f(a - \alpha) d\alpha$$

$$= \int_{0}^{a} f(a - \alpha) d\alpha = \int_{0}^{a} f(a - \alpha) d\alpha$$

$$= \int_{0}^{a} f(a - \alpha) d\alpha = \int_{0}^{a} f(a - \alpha) d\alpha = \int_{0}^{a} f(a - \alpha) d\alpha$$

$$= \int_{0}^{a} f(a - \alpha) d\alpha = \int_{0}^{a} f(a$$

$$= \frac{\pi}{4} \left[\pi - \frac{\sin 2\pi}{2} \right]^{\pi}$$

$$= \frac{\pi^{2}}{4} \left[\pi - 0 \right]$$

$$= \frac{\pi^{2}}{4} \quad \text{S}$$

$$(c) t = \tan \frac{\pi}{2}$$

$$\pi = 0 \quad (=) \quad t = 0 \quad \text{S}$$

$$\pi = \frac{\pi}{2} \quad (=) \quad t = 1 \quad \text{S}$$

$$\frac{dt}{d\pi} = \left(\frac{\sec^{2} x}{2} \right) \left(\frac{1}{2} \right)$$

$$= \frac{1}{2} \left(1 + \tan^{2} \frac{\pi}{2} \right)$$

$$= \frac{1}{2} \left(1 + t^{2} \right)$$

$$d\pi = \frac{2}{(1 + t^{2})} dt \quad \text{S}$$

$$\cos \pi = \frac{\cos^{2} \pi}{\cos^{2} \pi} - \frac{\sin^{2} \pi}{2}$$

$$= \frac{1 - \tan^{2} \frac{\pi}{2}}{1 + \tan^{2} \frac{\pi}{2}} \left[\cos^{2} \frac{\pi}{2} \neq 0 \right]$$

$$= \frac{1 - t^{2}}{1 + t^{2}} \quad \text{S}$$

$$\frac{7}{2} \int_{0}^{1} \frac{1}{3+5(\cos \alpha)} d\alpha = \int_{0}^{1} \frac{1}{3+\frac{5(1-t^{2})}{(1+t^{2})}} \cdot \frac{2}{(1+t^{2})} dt$$

$$= \int_{0}^{1} \frac{2}{3+3t^{2}+5-5t^{2}} dt$$

$$= \int_{0}^{1} \frac{2}{8-2t^{2}} dt$$

$$= \int_{0}^{1} \frac{1}{4-t^{2}} dt$$

$$= -\int_{1}^{1} \frac{1}{(t-2)(t+2)} dt$$

$$= -\frac{1}{4} \left[\ln |t-2| - \ln |t+2| \right]_{0}^{1}$$

$$= -\frac{1}{4} \left[\ln \frac{1}{3} - \ln 1 \right]$$

$$= -\frac{1}{4} \ln \left(\frac{1}{3} \right)$$

(d) (i)
$$\cos 3\pi = 4 \cos^3 x - 3 \cos x$$

$$= \frac{\cos 3\pi + 3 \cos \pi}{4}$$

$$\int_{4}^{2} \cos^3 x \, d\pi = \int_{4}^{2} \frac{\cos 3\pi + 3 \cos \pi}{4} \int_{4}^{2} \cos \pi x \, d\pi$$

$$= \frac{1}{4} \int_{4}^{2} \cos 3\pi \, d\pi + \frac{3}{4} \int_{4}^{2} \sin \pi \, d\pi$$

$$= \frac{1}{4} \int_{4}^{2} \frac{\cos 3\pi}{3} \, d\pi + \frac{3}{4} \int_{4}^{2} \frac{\sin 3\pi}{3} \, d\pi + \frac{3}{4} \int_{4}^{2} \frac{\sin \pi}{3} \, d\pi$$

$$= \frac{\pi \sin 3\pi}{12} + \frac{1}{12} \times \frac{\cos 3\pi}{3} + \frac{3\pi \sin \pi}{4} + \frac{3\cos \pi}{4} = \frac{3\cos \pi}{4}$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\ln \sin \pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\ln \sin \pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\ln \sin \pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\ln \sin \pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi \cos \pi + \int_{4}^{2} \cos \pi \, d\pi \, d\pi$$

$$= -\sin \pi$$

$$= -\frac{\sin 2\alpha}{2} - \ln|\cos ec\alpha + \cot \alpha| + \cos \alpha + c$$

C- OF BEE OF LONDON

(e)
$$\frac{2-\chi+\chi^2}{(1+\chi)(1-\chi)^2} = \frac{A}{(1+\chi)} + \frac{B}{(1-\chi)^2} + \frac{C}{(1-\chi)^2}$$

$$(x^2-x+2) = A(1-x)^2 + B(1+x)(1-x) + C(1+x)$$

= $A(x^2+1-2x) + B(1-x^2) + C(1+x)$

$$9^{0} \Rightarrow 2 = A + B + C - 0$$

 $9^{2} \Rightarrow 1 = A - B - 0$
 $9^{2} \Rightarrow -1 = -2A + C - 3$
 $9^{3} \Rightarrow 3 = 3A + B - 0$

$$2+4=3$$
 4 = 4A
 $A=1$ 7 - 100
 $B=0$ $C=1$

$$\frac{2-x+x^2}{4\pi(1-x)^2} = \frac{1}{(1+x)} + \frac{1}{(1-x)^2}$$

$$\int_{0}^{\frac{2-x+x^{2}}{(1+x)(1-x)^{2}}} dx = \int_{0}^{\frac{1}{2}} \left[\frac{1}{(1+x)} + \frac{1}{(1-x)^{2}} \right] dx$$

$$= \int_{0}^{\frac{1}{2}} \frac{1}{(1+x)} dx - \int_{0}^{\frac{1}{2}} \frac{1}{(1-x)^{2}} dc (1-x)$$

$$= \left[\ln 1 + 2 \right]_{0}^{1/2} - \left[\frac{(1-2)^{-1}}{-1}\right]_{0}^{1/2}$$

$$= \ln (\frac{3}{2}) + \left[\frac{1}{1-2}\right]_{0}^{1/2}$$

$$= \ln (\frac{3}{2}) + \left[\frac{1}{2} - 1\right]_{0}^{1/2}$$

$$= \ln (\frac{3}{2}) + 1$$

$$\frac{\cancel{2}(x_2,y_2)}{\cancel{2}(x_1-x_2)} = \frac{\cancel{y}-\cancel{y}_1}{\cancel{2}(x_1-x_1)} = \frac{\cancel{y}-\cancel{y}_1}{\cancel{2}(x_1-x_1)}$$

$$\frac{y-y_1}{y_1-y_2} = \frac{x-x_1}{x_1-x_2} = 8 \text{ or order}$$

$$\frac{y-y_1}{y_1-y_2}=8$$

$$y = 841 + (1-8)42 - 6$$

$$\frac{\chi - \chi_1}{\chi_1 - \chi_2} = \chi$$

$$\chi = \chi \chi_1 + (1 - \chi)\chi_2$$

$$\rho = (-2,3)$$

 $Q = (2,3)$ or of σ

$$911 = -2$$
 $92 = 2$ 900000 (R) (R)

$$y = 3c\delta + (1-\delta)3$$

= 3

$$\chi = \delta(-2) + (1-\delta)^2$$

= 2-48 - (5)

$$x,y$$
 என்பன $x+y=0$ இல் அமைந்திருப்புதால் , $2-4\delta+3=0$ $\delta=5/4$

$$\frac{|a \times a + b y_0 + c|}{\sqrt{a^2 + b^2}} = R - 5$$

$$(a\pi_0 + by_0 + c)^2 = R^2(a^2 + b^2)$$
 R3

$$(4\%0-3)^{2} = 25$$

$$16\%0^{2} - 24\%0 + 9 = 25$$

$$16\%0^{2} - 24\%0 - 16 = 0$$

$$2\%0^{2} - 3\%0 - 2 = 0$$

$$(\%0-2)(2\%0+1) = 0$$

$$200 = 2$$
 $200 + 1 \neq 0$ ့ [ညေး L တို့ တြင်း ပြင်း တွင်း တွင်း တွင်း တွင်း ပြင်း ကို တွင်း ပြင်း တွင်း တွင်း တွင်း ပြင်း တွင်း တွင်း တွင်း ပြင်း ပြင်း တွင်း ပြင်း ပြင်း တွင်း ပြင်း ပြင်

(4)
$$x_1 - 3y_1$$
) $x_1 - 3y_1$ $x_2 = 25R^2$

(3) Soi
$$a=3$$
, $b=4$, $c=15$ Solution (3) $a=3$, a

$$0 \Rightarrow (4x_1 - 3R)^2 = (5R)^2$$

$$4x_1 - 3R = 5R$$

$$x_1 = 2R$$

$$52 = (b-x)^2 + (3-y)^2 = 9$$

$$x^2 + y^2 - 12x - by + 3b = 0$$

 $S_1 = 0$, $S_2 = 0$ இன் താഥധന്തിന്നെന്ന ഉപ്പെധ വാപ്പർ $S_3 = 0$ என்ற

$$S_3 = \frac{(y-3)}{(x-b)} \times \frac{(y-1)}{(y-2)} = (-1)$$

$$(y^2 - 4y + 3) = -1 (x^2 - 8x + 12)$$

$$x^2 + y^2 - 8x - 4y + 15 = 0$$

$$(a) (i) L \cdot H \cdot S = \tan \alpha - 2\tan (\alpha + \frac{\pi}{4}) + \tan (\alpha + \frac{\pi}{4})$$

$$= \tan \alpha - 2 \left[\frac{\tan \alpha + \tan \frac{\pi}{4}}{1 - \tan \alpha \tan \frac{\pi}{4}} \right] - \frac{1}{\tan \alpha}$$

$$= \frac{\tan^2 \alpha - 1}{\tan \alpha} - \frac{2 \cot \alpha + 1}{(1 - \tan \alpha)}$$

$$= \frac{(\tan \alpha - 1)(\tan \alpha + 1)}{\tan \alpha} + \frac{2 \cot \alpha + 1}{(\tan \alpha - 1)}$$

$$= \frac{(\tan \alpha + 1)(\tan^2 \alpha - 2\tan \alpha + 1 + 2\tan \alpha)}{\tan \alpha (\tan \alpha - 1)}$$

$$= \frac{(\tan \alpha + 1)(\cot \alpha + 1)}{\tan \alpha (\cot \alpha + 1)}$$

(ii)
$$tan\theta = \frac{4}{3}$$
 $0<\theta<2\pi$

$$\frac{2tan\theta/2}{1-tan^2\theta/2} = \frac{4}{3}$$

$$tan\theta/2 = a \text{ origination}$$

$$\frac{2a}{1-a^2} = \frac{4}{3}$$

$$6a = 4-4a^2$$

$$2a^2 + 3a - 2 = 0$$

$$(2a-1)(a+2) = 0$$

$$a = \frac{1}{2} \text{ or } a = -2$$

$$\tan \frac{\theta}{2} = \frac{1}{2}$$
 or $\tan \frac{\theta}{2} = -2$

ஃ இற்றிரண்கு பெறுமாணமும் பொ<u>ச</u>ூ

tan
$$\frac{1}{2} = \frac{1}{2}$$
 or ordinary $\frac{1}{2} = \frac{1}{\sqrt{5}}$ tan $\frac{1}{2} = -2$ or ordinary $\frac{1}{2} = \frac{1}{\sqrt{5}}$

b) (i) L·H·S =
$$4 \sin 60 - \theta \cos 6 \sin 6 \cos 6 \theta$$

= $2 \sin \theta \left[2 \sin 6 \cos - \theta \cos 6 \cos 2 \pi \right]$
= $2 \sin \theta \left[\cos 2 \theta - \cos 2 \pi \right]$
= $2 \sin \theta \left[\cos 2 \theta + \frac{1}{2} \right]$
= $2 \sin \theta \left[1 - 2 \sin^2 \theta + \frac{1}{2} \right]$ = $2 \sin \theta - 4 \sin^3 \theta + \sin \theta$
= $3 \sin \theta - 4 \sin^3 \theta$

= Sin30-

(iii) L.H.S =
$$Sin \alpha + Sin \beta + Sin \delta - Sin(\alpha + \beta + \delta)$$

= $2Sin(\alpha + \beta)(os(\alpha - \beta) + 2(os(\alpha + \beta + 2\delta)Sin(-\alpha - \beta))$
= $2Sin(\alpha + \beta)[os(\alpha - \beta) - (os(\alpha + \beta + 2\delta)]$
= $2Sin(\alpha + \beta)[2Sin(\alpha + \delta)Sin(\beta + \delta)]$
= $2Sin(\alpha + \beta)[2Sin(\alpha + \delta)Sin(\beta + \delta)]$
= $4Sin(\alpha + \beta)Sin(\alpha + \delta)Sin(\delta + \beta)$

$$tan^{-1}(1/4) = A$$
 $tan^{-1}(1/4) = B$
 $tan^{-1}(1/4) = C$
 $tan^{-1}(1/4) = C$

:
$$tan R = \frac{1}{4}$$

 $tan B = \frac{1}{3}$
 $tan c = \frac{2}{9}$

$$tanca+B) = tan A + tanB$$

$$1 - tanA tanB$$

$$= \frac{1}{7} + \frac{1}{13}$$

$$1 - (\frac{1}{7})(\frac{1}{13})$$

$$90$$

$$= \frac{2}{9}$$

$$= \tan C$$

:.
$$A + B = C$$

 $tan^{-1}(1/4) + tan^{-1}(1/3) = tan^{-1}(1/4)$

$$\frac{b}{\sin \alpha} = \frac{CD}{\sin(n_{\delta})} - \frac{CD}{\sin(n_{\delta})}$$

$$CD = \frac{bSin(\frac{\pi}{2})}{Sin\alpha}$$

A ABD क्षेक SIN श्रीकिएंग्रि

$$\frac{C}{Sin(\pi-\alpha)} = \frac{BD}{Sin \frac{\pi}{2}}$$

$$BD = \frac{c \sin \frac{A}{2}}{\sin \alpha}$$

$$\frac{AD}{SINB} = \frac{C}{SIN(\pi-\alpha)}$$

$$Sin a = \frac{c Sin B}{AD}$$

$$0+0=) c0+BD = \frac{Cb+C)Sin(\frac{4}{2})}{Sin \alpha}$$

$$\frac{\text{acSinB}}{AD} = \text{Cb+c)} Sin(\frac{\theta_2}{2}) : 3$$

A AB C Soid cos substituto

$$a^2 = b^2 + c^2 - 2bc \cos A$$
 $a^2 = b^2 + c^2 - 2bc [2\cos^2 \frac{1}{2} - 1]$
 $a^2 = (b+c)^2 - 4bc \cos^2(\frac{1}{2})$

$$(P_1)^2 \Rightarrow AD^2 (D+C)^2 = 4(DC)^2 Gos^2 \frac{1}{2}$$

 $4 DC Gos^2 \frac{1}{2} = AD^2 (D+C)^2 Gos^2 \frac{1}{2}$

$$Q = a^{2} = Cb + C)^{2} - AD^{2}Cb + C)^{2}$$

$$a^{2} = (b + c)^{2} \left[1 - \frac{AD^{2}}{bc}\right]$$

$$a = Cb + C \left[1 - \frac{AD^{2}}{bc}\right]^{\frac{1}{2}}$$

$$Q_{2} = Q_{2}$$

$$AB = 9$$
 $AC = 5$
 $AD = 6$
 $AD = 6$

$$\begin{array}{c}
(P_1) \Rightarrow 6(5+9) = 2\times 5 \times 9 \left(\cos\left(\frac{4}{12}\right)\right) \\
(\cos\frac{4}{12}) = \frac{14}{15} \\
\frac{4}{12} = \cos^{-1}\left(\frac{14}{15}\right) \\
A = 2\cos^{-1}\left(\frac{14}{15}\right)
\end{array}$$

$$\cos(4/2) = \frac{14}{15}$$

$$A/2 = \cos^{-1}(14/5)$$

$$A = 2\cos^{-1}(\frac{14}{15})$$

$$\begin{array}{c}
(R_2) \Rightarrow a = (5+9) \left[1 - \frac{b^2}{5x^9} \right]^{\frac{1}{2}} \\
a = 14 \left[1 - \frac{3b}{45} \right]^{\frac{1}{2}} \\
a = \frac{14}{5} \\
= \frac{14\sqrt{5}}{5}
\end{array}$$

[50]

410

OBREGERO I = AMV

$$(mu + me^{2}u) - (mVa + emVb) = 0$$

 $Va + eVb = u(1+e^{2}) - 0$ (5)

நீயுப்டனின் பரிகளுகளை உடுப்பு $e = \frac{VB - VA}{u - eu}$

B BB I = D mV em (VB-eu) = 6 mu 6

$$25e^{2} - 25e + b = 0$$

$$(5e - 3)(5e - 2) = 0$$

$$e = 3/5$$
 or $e = 2/5$

02>

சால்லாப்புள்ளிகளிலும் கிடைம் மகம் கூன்.

$$\frac{1}{2} = \frac{1}{2} \frac{\sqrt{5}}{2}$$
 $\frac{1}{2} = \frac{1}{2} \frac{\sqrt{5}}{2}$

A இல் நிலைக்குத் கு கவகம் = vsin m/b

O anongist A uning 1 v2= u2+ 205

$$(u/3)^2 = (u \sin \pi/3)^2 - 29h$$

$$u^{2}/2 = 3u^{2}/2 - 29h$$

$$h = u^2 / 5$$

$$2mV + 0 = 3mV' = 3mV' = 2V/3$$

$$= \frac{2}{3} \sqrt{3} \sqrt{2 - \sqrt{2}} = \frac{2}{3} \sqrt{3} \sqrt{3} \sqrt{3} = \frac{2}{3} \sqrt{3} = \frac{2}$$

$$|b|^{2} = 4|a|^{2} + k^{2}|c|^{2} + 4k \cdot 0. c$$

$$|b|^{2} = 4|a|^{2} + k^{2}|c|^{2} + 4k \cdot 0. c$$

$$|b| = 4 + k^{2} + 4k|a||c|\cos\theta$$

$$|a| = k^{2} + 4k \times 1 \times 1 \times \frac{1}{4}$$

$$|c|^{2} + k - 12 = 0$$

$$k^{2}+k-12 = 0$$
 (k+4) (k-3) = 0
 $k=-4$ or $k=3$ (5)

റ ജർ ജരാസ്ഥിധാര് കുറുന്നുവ്വം

$$\frac{W}{\sin(\theta+60^{\circ})} = \frac{W_0}{\sin(180-\theta^{\circ})}$$

$$\frac{1}{(\sin 200560 + \cos 2\sin 60)} = \frac{1}{2\sin 9}$$

$$1+\cot\theta \times 53 = 4$$

$$\cot\theta = 53 \quad \text{(o)}$$

$$\theta = \pi/6 \quad \text{(o)} < \theta < \pi/6$$

25

08)

FURMON BO

9 < 7 அது குறின்டும். இ

n - உராய்வுக் குணகம்,

$$tan \theta = \frac{\alpha}{3a/2} = \frac{\Omega}{3}$$

tane
$$\leq \tan n \otimes$$

$$\frac{9}{3} \leq \gamma$$

: p < 2/3 orosposi ferforos Bejogio. ©

097 'Y - இக்டிய வாடுளாவு இம்மிறிழ் 18

В - சுணாக கைத்தல் டு

11)
$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$

= $\frac{7}{30}$
= $\frac{13}{30}$

$$S \times^{2} = \frac{{}^{n} \mathcal{E} \times {}^{2}}{{}^{n} \mathcal{E}} - (\overline{\chi})^{2}$$

$$36 = \frac{1620}{0} - \left(\frac{r}{5} \times 1\right)^{2}$$

$$36 = \frac{1620}{0} - \left(\frac{108}{0}\right)^2$$

$$1 = \frac{45}{n} - \frac{324}{n^2}$$

$$n^2 - 45n + 324 = 0$$
 (n - 36) (n - 9) = 0

(1)
$$\triangle RST \otimes n \hat{o} \hat{o}$$

$$g = \frac{u}{(u/2g + ti)}$$

$$t_1 = u/2g \otimes 5$$

$$SLMN & & & \\
9 = \frac{V - V_1}{t_1} \\
V - V_1 = \frac{U}{2} \\
V_1 = \frac{(V - U_2)}{(V + U_2)}$$

$$V = 11 \frac{1}{12}$$

$$V_1 = 11 \frac{1}{12} - \frac{1}{12} = 5\frac{1}{12}$$

AB = 0A - 0B
=
$$\triangle RST$$
 USUY - EMDIBIO LMWTN USUY
= $\frac{1}{2} \times \frac{1}{9} \times \frac{1}{9} - \frac{1}{2} \times (\frac{11}{12} + \frac{5}{12}) \times \frac{1}{29}$
= $\frac{1}{69}$ (5)

(11)
$$\triangle$$
 NTC and $9 = \frac{1}{2}$

$$42 = \frac{5}{129}$$

ANTC = ATCD

ATCD UBY =
$$\frac{1}{2} \times \frac{54}{29} \times \frac{54}{2889} \times \frac{54}{29} \times \frac{54$$

$$Θ$$
 an $Θ$ εξυμυς μπησου εκσισσευιου $Θ$ αν $Θ$ α

B あのです チェレー・ B S C d NB の V B I

ись инывитиль оборов R < BIN R < COS R < COS

 $R > d \sqrt{W^2 - U^2}$ or whom use sink bound , 6

ись вирвой врой = PA (5) $= 2 \int R^2 - d^2 \cos^2 \theta$ $= 2 \int R^2 - d^2 \left(\frac{\omega^2 - u^2}{\omega^2} \right)$ $= 2 \int R^2 \omega^2 - d^2 (\frac{\omega^2 - u^2}{\omega^2})$ $= 2 \int R^2 \omega^2 - d^2 \omega^2 + d^2 u^2$ $= 2 \int R^2 \omega^2 - d^2 \omega^2 + d^2 u^2$ $= 2 \int R^2 \omega^2 - d^2 \omega^2 + d^2 u^2$ $= 2 \int R^2 \omega^2 - d^2 \omega^2 + d^2 u^2$ $= 2 \int R^2 \omega^2 - d^2 \omega^2 + d^2 u^2$ $= 2 \int R^2 \omega^2 - d^2 \omega^2 + d^2 u^2$ $= 2 \int R^2 \omega^2 - d^2 \omega^2 + d^2 u^2$ $= 2 \int R^2 \omega^2 - d^2 \omega^2 + d^2 u^2$

$$\rightarrow$$
 Fi Sonfúlleó — 5 \rightarrow 92 200 FÚLÓ — 5

(M)
$$\frac{1}{4}R_{1}-R_{2}-M_{9}=0$$

 $R_{1}=CM+m^{2}g^{6}$

$$Qm_{1}M = \overline{a_{2}}$$

$$Qm_{1}E = \overline{a_{1}}$$

$$Qm_{2}E = Qm_{2}M + Qm_{2}E$$

$$= \overline{a_{1}} + \overline{a_{2}}$$

 \mathcal{M}

(5)

$$(m) \rightarrow F = ma$$
 $-F_1 = m(a_1 + a_2) \bigcirc G$
 $-Ju_2 mg = m(a_1 + a_2)$
 $(a_1 + a_2) = -Ju_2 g$
 $a_1 = -Ju_2 g - a_2$

M/ Soir FLLESON (5)
cm)
$$\rightarrow$$
 S=ut+1/2 a,t²
 $\alpha = ut-1/2 \left\{ \mu_2 g + \left[(\mu_2 - \mu_1)m - \mu_1 M \right] g \right\}_{t^2}$

(M)
$$\rightarrow s = ut + \frac{1}{2}at^{2}$$

 $y = 0 + \frac{1}{2}a_{2}t^{2}$
 $y = \frac{1}{2}t^{2}[Cu_{2}-u_{1})m - u_{1}MJ_{9}$

பாறிகுறை சுழ்திற்காப்பு கொட்ரமா முன் படி;

$$\frac{1}{2}mu^{2}+0 = \frac{1}{2}mv^{2} + mg(a - a(oso))$$

$$u^{2} = v^{2} + 2ag(1 - coso)$$

$$v^{2} = u^{2} - 2ag(1 - coso)$$

F=ma

R-mg($\cos \theta = \frac{mv^2}{a}$ P-mg($\cos \theta = \frac{m}{a}$ ($u^2 - 2ag(1-\cos \theta)$)

$$R = \frac{m}{\alpha} \left[u^2 - (2-3\cos\theta) ag \right] = \frac{6}{3}$$

0 கில் 0= த ஆக Vi² = u² - 4ag த u² < 4ag V² < 0த : நணிக்கை BC கிறுள் செல்ல கியலாது -

$$u = \sqrt{1209}$$
 ். நணிற்றை BC இனுள் $Ol F \hat{n}$ வுயம் .

$$Vc^{2} = 8ag - 4ag$$

= $4ag$

$$c \otimes \dot{\omega} \rightarrow I = \Delta m v$$

$$m \sqrt{4ag} + 0 = 2mV_2$$

$$V_2 = \sqrt{aq}$$

வன்கை மணிக்கை மே இதை கொரம் இயக்கியது

$$c \rightarrow D$$
 Sweets of BLILIO = 2 milliples of substant constraint $= 2mg \times \frac{1}{5}dg$

ag = $\frac{1}{3}dg$
 $3a = dG$

D D v
$$\sqrt{V^2 = U^2 + 205}$$

 $V_E^2 = 29(00)$
 $V_E = \sqrt{409}$

கம் நிலைவிற்

$$T_1 = T_2 \quad \textcircled{5}$$

$$\frac{2\lambda}{3a} (a-\ell) = \frac{\lambda}{2a} (2a+\ell) \quad \textcircled{5}$$

$$8a - 8l = 6a + 3l$$

$$l = 2a$$

$$M0 = 20 \text{ G}$$

$$\rightarrow \cancel{x}$$

$$\rightarrow \cancel$$

$$\rightarrow$$
 $F = ma$

$$\frac{2\lambda}{6a}(2a-112) = m \dot{n}$$

$$\dot{n} = -\frac{112}{6am}(2a-2911) \odot$$

:. துணிக்கை S.H.M ஐ ஆற்றும் (§

$$T = 2\pi \sqrt{\frac{bma}{112}}$$
 (5)

Acompa anowin
$$X = 0$$

$$91 = 20 (: 40 \text{ for for } 0)$$

தணிற்றை M இல் பில்திலிஞந்து திடப்பட்டறால் , S.H.M. தின் தீச்சம் c=Mo =2a (10)

$$\chi = \frac{5\alpha}{22}$$
 and $V = Vc$ ordina -1 : $\chi = \frac{\alpha}{22}$

$$Vc^2 = \frac{112}{6ma} \left[\left(\frac{2a}{11} \right)^2 - \left(-\frac{a}{22} \right)^2 \right]$$
 (5).

$$Vc = \frac{1}{2}\sqrt{\frac{529}{22m}}$$

$$\begin{array}{l}
\cos \theta = \frac{9/22}{29/11} \\
= \frac{1}{4} \\
\theta = \cos^{-1}(\frac{1}{4}) \\
0 & (0 < \theta < \frac{\pi}{2})
\end{array}$$

[150]

$$\overrightarrow{AB} = \overrightarrow{A0} + \overrightarrow{OB}$$

$$= -\overrightarrow{A0} + \overrightarrow{OB}$$

$$= -\overrightarrow{P} + \cancel{Q} + \cancel{O}$$

$$\overrightarrow{AB} = (\cancel{Q} - \cancel{P}) - \cancel{O}$$

$$\frac{AC}{AB} = \frac{m}{(m+n)}$$

$$AB = \frac{(m+n)}{AB} = \frac{3}{2}$$

$$AC = \frac{m}{(m+n)} (9-p) G$$

$$\frac{\partial}{\partial C} = \frac{\partial}{\partial A} + \frac{\partial}{\partial C} \left(\frac{\partial}{\partial C} - \frac{P}{C} \right)$$

$$= \frac{P}{C} + \frac{M}{M+n} \left(\frac{\partial}{\partial C} - \frac{P}{C} \right)$$

B

$$\overrightarrow{oc} = \left(\frac{mq + np}{m+n}\right)$$

$$\Gamma = \left(\frac{mq + np}{m+n}\right) \bigcirc \bigcirc \bigcirc$$

(F) said
$$Y = OP \quad M \rightarrow 1 \quad N \longrightarrow 2$$

$$\begin{array}{ccc} P \longrightarrow Q & B \rightarrow B & B \rightarrow B$$

(P) mas
$$r \longrightarrow 00 \text{ m} \rightarrow 2 \text{ n} \longrightarrow 1$$

$$P \longrightarrow \underline{a}$$

$$\frac{\partial P}{\partial P} = \frac{(a_1 a + 1/3 b)}{(a_1 a + 1/3 b)} \left(\frac{2/3 a + 1/3 b}{a} b \right) \left(\frac{1}{2} a + \frac{1}{3} b \right) \left(\frac{$$

$$n) \forall \neq 4$$

$$\beta = \mu = 6$$

$$\uparrow \gamma = (\delta - 4) P$$

$$\rightarrow \chi = 0$$

$$0 > NP(A) - PP(A) = -Y(AN)$$

$$0 = -Y(AN)$$

$$Y \neq 0 = 0 : AN = 0 : G$$

். தாக்கக்கொடு விறைகு வசல்கிறது.

(111)
$$\nabla = 2$$
 $9 = y = 6$
 $4 y = (2-4)P = -2P$

-> x =0 6 :: வதாகத் தண்ஹைசக்க வருவகம்.

Busifies and beits but obtains AP = AP AP = AP AP = AP AF = AP

AC கொணுகு வசல்லும் நீனைக்குது கொடு சலர்சிர்க்குகாடு என்பதாஸ் புடுமு C இல் நீனைக்குத்து மாழுதாக்கம் பூச்செயம், (5)

BC annilo BC annilo BC annilo W($\frac{1}{2}$)cos 45 = x($\frac{1}{2}$)sin 45 W/ $\frac{1}{2}$ = x tan 45 x = W/ $\frac{1}{2}$.

$$W(\frac{1}{2})$$
 00545 + $W(\frac{1}{2})$ C0545 + \times (21) Sin45
+ $T(1)$ Sin 45 = 0

கையற்கை மினம் ட என்க.

$$R_2 - P_{=0}$$

 $R_2 = (1 + J_3)W$

$$R = \int R_1^2 + R_2^2$$

$$= \int W^2 + (1+53)^2 W^2$$

$$= \int 5 + 2\sqrt{3} \quad W(5)$$

$$R = \frac{R}{R^2} = \frac{1}{(1+\sqrt{3})}$$

		·
குள்ளல்	മതങ്ങൾ	മ്മൂത്രത്ത
AB	W	_
BC		W
CE		
AE	(1+53)W	. - ,
BE	_	12 W
СФ		53 W
DE	2W	_

26000	किल्काच	a strengise	ப் தடித்துரும் நடித்துரும்	
2000 0▲	T 160	- 2/2	2/m	(O)
മാത 08	112/2 P	1/2	- 2/ n	(10)
கோல் BC	15	e e	2/2	(10)
BE now CD	٩۶	2/2	l	(10)
86ால் DE	29	0	31/2	(10)
D CO	(n+3)pp	घु	N	(1)

a steer)

$$(3+\pi) lg \ddot{y} = \frac{\pi lg}{2} (-l/2) + \frac{\pi lg}{2} (l/2) + lg (l/2) = \frac{3l}{2(\pi l+3)} = \frac{l}{2(\pi l/3+1)} = \frac{l}{2(\pi l/3+1)}$$

y 28 8 0 2

$$(3+\pi) 19\pi = \pi \frac{19}{2} (1/4) + \pi \frac{19}{2} (1/4) + 19 (1)$$

$$+ Pl(1/2) + 9l(31/2) = 19$$

$$\overline{N} = \frac{3l}{(\pi+3)}$$

$$= \frac{l}{(\pi/3+1)} = \frac{l}{k} = \frac{5}{1}$$

25

O தலைக்குத்துடன் கைக்கும் கொணம் வ என்க.

$$tan \theta = \frac{\pi}{y} = \frac{1/\kappa}{2/\kappa} = 2$$

10]

பு அத்து எலத்து த்து ் ் லாடுணின் முற்றை வையும் பு அத்தலடுத்தும் ,

വത്രസാറ്റായവള് തുട്ടുന്നുള്ള തരുന്നുള്ള വരുന്നുള്ള വരു

கனமாவு அடர்த்த நான்க.

உடுலம்	क्रिकर्ज व्य	N SHE PURCHER	
1/2 BERMUS	2/37 (5/2)39	58/16 2	⑤
	m(S/2)289,	3/2 + 2/2	⑤
கை மடு உடல்	KS2P (31+S)	8/2	6

 $\rightarrow \infty$

$$\frac{\pi s^{2}P}{12}(3l+5) \cdot \frac{8}{2} = \frac{\pi s^{3}P}{12}(5s/6) + \frac{\pi s^{2}JP}{4}(s+1)$$

$$\frac{(s/1)^{2}}{12} = 8$$

$$\frac{(s/1)^{2}}{12} = 8$$

$$\frac{(s/1)^{2}}{12} = 8$$

$$\frac{(s/1)^{2}}{12} = 8$$

$$\begin{array}{c}
B \Rightarrow W-2 \\
B-1 \\
R-1
\end{array}$$

$$C = W - 4$$
 $B - 5$
 $R - 3$
 12

$$P(w) = P(w/A) \cdot P(A) + P(w/B) \cdot P(B) + P(w/C) \cdot P(C)$$

$$= \frac{1}{6} \times \frac{1}{3} + \frac{2}{4} \times \frac{1}{3} + \frac{4}{12} \times \frac{1}{3}$$

$$= \frac{1}{3} \times \frac{1}{3}$$

Bayes Theorm

1.					
മരുന്നതാത്ര	क्षिण्यक्षेत्र (५)	(A) (A)	2700 800 (d)	fd	fd2
5.6-5.8	2	5.7	-3	-6	18
5.8 - 6.0	7	5.9	-2	-14	28
6.0 -6.2	ь	6.1		-16	16
6.2 - 6.4	21	6.3	0	0	0
6.4 - 6.6	12	6.5	1	12	12
6.6-6.8	2	6.7	2	4	8
				Efd = (-20)	Efd2 = 82

Alternate method ;-

•		6	6	6
உருப்பாயண்ட	(f)	ნ დე (ყ)	fy	fy ²
5.6-5.8	ع	5 . 7	11.4	64.98
5.8 -6.0	7	£.9	41.3	243.67
6.0-6.2	¢ b	6.1	97.6	595.36
6.2 -6.4	21	6.3	132.3	833.49
6.4-6.6	12	6.5	78	507
6.6-6.8	.2	b · 7	13.4	89.78

(1)
$$\overline{N} = A + 2 \frac{\mathcal{E}fd}{n}$$

= $6.3 + 0.2 \times \left(-\frac{20}{60}\right)$
= 6.23

(III)
$$Sx = \lambda \int \frac{z f d^2}{n} - \left(\frac{z f d}{n}\right)^2$$

$$= 0.2 \int \frac{82}{60} - \frac{1}{4}$$

$$= 0.224$$

Efy=374 Efy2 = 2334.28

$$Sx = \int \frac{E f y^{2} - \pi^{2}}{E f}$$

$$= \int \frac{233 \, 4 \cdot 28}{60} - (b \cdot 23)^{2} \, 6$$

$$= 0.294 \, 6$$

(III) Mo = Lo + & [f_1-f_2] (10)
$$\frac{f_1-f_2}{f_1-f_2} + \frac{f_1-f_2}{f_1-f_2}$$
= 6.2 + 0.2 x 5 (5+9)
$$= 6.27$$

