Data Conversion Techniques (DAT115)

Hand-in Report

Second Order Sigma-Delta Modulator with Interleaving Scheme

Group 14N - Remzi Yagiz Mungan, Christoffer Holmström

Contents

1. Task Description	3
Task Description	3
2.a First Order Sigma/Delta	3
2.b Second Order Sigma/Delta	3
2.c Interleaved Second Order Sigma/Delta	4
3. Filters	4
3.a Anti-aliasing filter	4
3.b Notch filter	4
3.c Noise shaping filter	4
3.d Recombination filter	4
4. Simulink Setup	5
5. Simulink Results	8
5.a MONTE CARLO	8
5.b Frequency Spectrum	16
5.c Time Domain	
6. Area and Power Estimations	20
7 Conclusion	20

1. Task Description

The task is to design an ADC which fulfils the following requirements:

- SNDR > 70 dB
- SFDR > 64 dB a
- Band of interest 0 < f < 500 KHz.

In addition to these, area and power estimates should be given. The converter should be described to some detail (including for example resolutions and component values). Specifications should be provided for the necessary filters. AMS 0.35 process will be used for designing the circuitry.

Delimitations

Actual filter design is not necessary, just the specifications.

2. Choosing Converter Type/Our solution

To reach our solution, we have used an iterative process consisting of three major steps: Sigma/delta, second order sigma/delta and interleaved second order sigma/delta. This was done to fulfil the design requirements.

2.a First Order Sigma/Delta

Our first design was a first order sigma/delta converter. This was chosen because of it's good tolerances and relatively low area requirements.

In the ideal case a first order sigma/delta gains 9.03 dB of SNR per doubling of OSR:

$$SNR_{\Sigma\Delta,1} = \frac{12}{8} \cdot k^2 \cdot \frac{3}{\pi^2} \cdot OSR^3$$

Above equation shows that to fulfil our goals we have to use an OSR of 2⁸, or 256 times. With the minimum necessary sampling frequency of 1 MHz due to Nyquist limit, this leads to an actual sampling frequency of 256 MHz.

Rough simulations with Simulink have shown that an even higher OSR was needed to fulfil the goals even though simulations are done with a less than complete set of degrading influences. This quickly leads to an operating frequency much too high to cope with the given technology where each op-amp has a settling time of 7ns.

2.b Second Order Sigma/Delta

To improve performance another stage was added to the sigma/delta converter, making it a second-order.

$$SNR_{\Sigma\Delta_2} = \frac{12}{8} \cdot k^2 \cdot \frac{5}{\pi^4} \cdot OSR^5$$

This improves the SNR to 15 dB per OSR doubling in theory. The needed OSR will then be 2^5 in the ideal case. This was shown to be a viable option since the OSR could be reduced to 2^5 . However Simulink simulations have shown that with the non-idealities and worst case input the required oversampling rate was 2^7 .

In a Sigma/Delta modulator with switch capacitor circuits there will be a minimum of 2 op-amps and a comparator. This gives a delay of 7ns+7ns+0.3ns = 14.3ns. When the oversampling rate is 2^7 , the circuit samples at 128MHz (Nyquist limit x OSR) which gives a clock period of 7.81ns. Thus at least the oversampling rate should be reduced to 2^6 which gives a clock period of 15.62ns, yet that is still very close

to circuit delay which is 14.3ns.

Possible solutions included pipelinening, yet instead of delving into timing schemes to fulfil our targets, a different approach is taken.

2.c Interleaved Second Order Sigma/Delta

If more converters are run in parallel but off of every other sample and the result is combined afterwards, an improvement in SNR can be shown. For each doubling of the number of parallel converters the SNR should in theory improve by 3 dB. Using 4 second order Sigma/Delta converters to use 2^5 times oversampling, providing a better margin in speed constraints as the clock period is increased to 31.25ns while keeping the circuit delay approximately same around 14.3ns and more than enough time to complete digital reconstruction circuitry.

3. Filters

In the design four different filters are being used: An anti-aliasing filter at the input, a notch filter to ensure removal of the interferer, a noise shaping filter in each converter and finally a recombination filter.

3.a Anti-aliasing filter

The anti-aliasing filter is an analog second order butterworth filter with a corner frequency of 2 MHz. This frequency was chosen because it is some way off the highest information frequency, which means that the signal band will be less attenuated. The normal concern of aliasing won't occur around 500 kHz in our design since we are oversampling — oversampling means that aliasing occurs around a much higher frequency. A butterworth filter was chosen to keep the spectra as flat as possible.

3.b Notch filter

The notch filter is an analog second order Chebychev-II filter centered at 1 MHz. It was deemed necessary to provide adequate rejection of the interferer – it improves SNDR and SFDR by 1.5 dB.

3.c Noise shaping filter

To remove the shaped noise in the converters, a digital fourth order butterworth filter was used, with a corner frequency of 500 kHz. This will give a maximum of 3 dB attenuation to the passband signal. However, this was deemed necessary to reject as much of the noise as possible. Using a fourth order filter also means that it will be closer to ideal filter.

3.d Recombination filter

The recombination of our interleaved signal causes several high-frequency artifacts, as well as some near signal band artifacts. The spectra of the filtered and unfiltered combined output can be observed in figure 1.

To compensate for this, another fourth order digital butterworth filter is used, again with a corner frequency of 500 kHz. This negates the effects of the recombination nicely.

Figure 1: Spectra of the Output Signal (Input Amplitude = 0.9)

4. Simulink Setup

Simulink setup which is controlled by a Matlab file is designed. Constants and design variables are inserted to the m-file which modifies all the values to the correct values in Simulink setup. The Matlab files can be found in appendix.

In the below figure, the overall simulation setup can be observed. Number of scopes and sinks are used for debugging and extracting the simulation results. The interleaving architecture is realized by using two ideal pulses which are made of 4 samples that have a period of ¼ of the desired sampling rate. The two pulses have a phase difference of 180°. Thus within a sample time two raising and two falling edges are created. However it should be noted that these clocks are ideal and do not suffer from jitter.

The combinations of the interleaving arms are done with 4 step counter that has a sampling time ¼ of the system so that data from all four arms can be collected within one sampling time. It should be noted that this switch is also ideal

Figure 2: Overall Simulink Setup

Figure 3: Source Sub-Block

Figure 4: Dither, Jitter and kT/C Sub-Block

Figure 5: Interleaving Sub-Block

As it can be seen in figure, there are 2 sample&hold circuitries in the design. The first one is used first one is used for implementing the rounding architecture of the interleaving and the second is used for sampling with correct intervals. The filter here is used as the noise shaping filter as described in 3.c.

Figure 6: Second Order Sigma/Delta Sub-Block

In circuit wise switched capacitor circuits are planned to be used so that sampling, integration and addition can be implemented with same op-amp within different phases. kT/C noise is added as input referred before the op-amps. 1 bit ADC and DAC are used. Comparator offset is the process dependent offset value in the comparators.

Figure 7: Integrator Sub-Block

While defining the gain, the accuracy of the capacitors and finite open loop gain of the op-amp is used for each block individually. Thus all 8 integrators have different amount of closed loop gain that are around the ideal value of 0.5.

The block gain offset refers to the offset of the op-amps. This process dependent non-ideality when enabled has the ability to make the system suffer up to 40dB of SNR.

5. Simulink Results

5.a MONTE CARLO

Since the introduced non-idealities are random, multiple simulations are necessary to observe their effect correctly. For the system the maximum input amplitude is defined as 0.9, where it is 0.45 in the worst case. The simulations show that the system satisfies the specifications in the worst cases.

The results below are achieved with all the non-idealities except op-amp offset are on with 10 runs. The input amplitude is 0.45:

SNR						
OSR	1	2	3	4	5	6
	24.5318	40.5992	54.9335	65.8360	70.5211	73.0125
	24.4731	40.5869	54.6939	65.7670	70.5706	73.0191
	24.5927	40.5890	55.1940	65.7093	70.4673	73.0149
	24.3646	40.5748	55.1931	65.7669	70.5170	73.0028
	24.3967	40.5843	55.2934	65.7852	70.5288	73.0185
	24.4405	40.3010	54.7985	65.9071	70.5521	73.0306
	24.5446	40.4083	54.9620	65.8928	70.5141	73.0041
	24.5233	40.6073	55.1489	65.8914	70.5076	73.0198
	24.6385	40.6284	54.8711	65.7040	70.5092	73.0037
	24.5728	40.6178	54.3924	65.8422	70.5726	73.0150

SNR with Ideal Filter

OSR	1	2	3	4	5	6
	25.9773	41.8199	56.2026	66.2780	70.6787	73.1102
	25.7138	41.8979	55.8229	66.1520	70.7154	73.1194
	26.0377	41.8434	56.4583	66.1817	70.6294	73.1163
	25.8541	41.8473	56.3955	66.2230	70.6641	73.1023
	25.7897	41.8912	56.6171	66.2122	70.6696	73.1175
	25.7990	41.6849	55.9562	66.3690	70.7182	73.1338
	25.9698	41.6018	56.2545	66.3920	70.6771	73.1010
	25.9181	41.8417	56.3329	66.3715	70.6666	73.1221
	26.1093	41.9988	56.0399	66.1848	70.6738	73.1004

SFDR						
OSR	1	2	3	4	5	6
	39.8685	54.2002	69.0905	83.3111	87.6825	82.4932
	39.8835	53.6815	68.4476	81.6502	87.3899	82.4930
	41.0310	54.5694	69.7130	81.1601	87.1043	82.4932
	40.7414	54.8125	69.5937	82.5575	87.2504	82.4930
	39.7745	55.0554	70.2331	82.5321	86.7773	82.4926
	40.5548	55.1850	69.7354	82.7084	86.9505	82.4925
	39.8584	55.2289	69.7225	82.6281	87.3584	82.4941
	40.2247	54.5025	69.1691	81.6782	87.2078	82.4932
	40.5985	53.9116	68.6830	82.2701	87.3966	82.4946
	39.7941	53.1246	66.7151	81.2478	87.2637	82.4936

Figure 8: Results without Op-amp Offset Value, Input Amplitude=0.45, 10 Number of Simulations

The results below are achieved with all the non-idealities except op-amp offset are on with 10 runs. The input amplitude is 0.9:

SNR						
OSR	1	2	3	4	5	6
	-0.5182	7.9865	52.4858	66.7447	76.1245	78.8008
	-0.7513	13.3387	52.5710	66.6355	75.7817	78.7789
	-0.6915	9.2986	52.8119	65.9695	76.0400	78.7450
	-0.9766	8.5775	53.0351	66.9270	76.1272	78.8099
	-1.1089	9.1612	53.1485	66.1244	76.0474	78.7304
	-0.4246	9.4504	52.2472	66.5360	76.0372	78.7584
	-1.4916	8.3499	52.4765	66.6468	75.7944	78.7567
	-0.3416	13.3561	52.9750	66.4789	75.9872	78.7773

-0.6421 8.6433 52.9573 66.0740 75.8399 78.7757 -0.4234 8.8089 52.2722 66.2135 76.0389 78.7772

SNR with Ideal Filter

OSR	1	2	3	4	5	6
	0.0910	8.0821	53.9414	67.9501	76.3607	78.9085
	-0.1041	13.4319	53.9966	67.7420	76.0202	78.8835
	-0.1292	9.4244	54.0710	67.2158	76.3704	78.8430
	-0.3080	8.6745	54.4551	68.0978	76.4281	78.9204
	-0.6658	9.2792	54.5015	67.4070	76.3150	78.8319
	0.1520	9.5463	53.5776	67.4473	76.3232	78.8622
	-0.7275	8.4442	53.9144	67.9406	76.0590	78.8571
	0.4998	13.4772	54.2837	67.6472	76.2471	78.8783
	0.0651	8.7525	54.2172	67.1786	76.0910	78.8852
	0.1282	8.8916	53.6763	67.4269	76.2852	78.8752

SFDR

 OSR
 1
 2
 3
 4
 5
 6

 11.8166
 19.6356
 66.6771
 80.4580
 93.3099
 88.2615

 14.0764
 23.5541
 68.4352
 78.9208
 91.0732
 88.2595

 11.6132
 20.5824
 66.2331
 78.0250
 94.0271
 88.2651

 12.3450
 17.6721
 66.6034
 81.2271
 93.6379
 88.2636

 8.1952
 19.5820
 67.1812
 78.7312
 93.2308
 88.2596

 12.0903
 20.5715
 66.3774
 79.8206
 93.1445
 88.2588

 10.2215
 19.4615
 67.3868
 78.4790
 93.1538
 88.2629

 11.5702
 22.7394
 67.7689
 78.7030
 93.8503
 88.2593

 11.4931
 18.4651
 67.3433
 79.5271
 92.9735
 88.2622

12.1414 20.3792 67.6171 78.0789 93.3985 88.2628

Figure 9: Results without Op-amp Offset Value, Input Amplitude=0.9, 10 Number of Simulations

The results below are achieved with all the non-idealities including op-amp offset are on with 10 runs. The input amplitude is 0.45:

SNR						
OSR	1	2	3	4	5	6
	23.6692	37.4494	40.4984	40.6849	40.7027	40.7589
	24.1975	34.9338	36.2651	36.3550	36.3673	36.3388
	22.0097	27.8195	28.2114	28.2560	28.2646	28.2791
	23.0941	32.3822	33.1846	33.2379	33.2476	33.2282
	23.5303	39.1187	44.4700	44.8402	44.8731	44.7981
	23.8663	39.2445	45.2199	45.7220	45.7593	45.6760
	23.2458	32.3999	33.2309	33.2862	33.2961	33.2765
	23.7675	40.3711	52.0507	54.5495	54.7889	54.5911
	23.9341	34.1639	35.3903	35.4767	35.4882	35.5194
	23.3463	33.2631	34.3230	34.3855	34.3959	34.3734
SNR with	າ Ideal Filt	er				
OSR	1	2	3	4	5	6
	25.1295	38.0011	40.5312	40.6863	40.7028	40.7590
	25.3784	35.2323	36.2815	36.3555	36.3673	36.3388
	22.6933	27.8759	28.2132	28.2561	28.2646	28.2791
	24.2900	32.5596	33.1900	33.2381	33.2477	33.2282
	24.8428	39.8339	44.5571	44.8440	44.8735	44.7983
	25.5125	40.0149	45.3478	45.7263	45.7598	45.6762
	24.3707	32.5827	33.2370	33.2865	33.2961	33.2765
			EO 4600			
	25.5123	41.4684	52.4623	54.5835	54.7934	54.5924

25.5539	34.4295	35.4015	35.4772	35.4883	35.5194
24.5563	33.4499	34.3313	34.3858	34.3959	34.3734

SFDR OSR

1	2	3	4	5	6
37.8189	40.5096	40.6566	40.6990	40.7072	40.7612
35.6822	36.2111	36.3343	36.3605	36.3689	36.3396
27.5462	28.0827	28.2208	28.2568	28.2648	28.2793
32.4761	33.0768	33.2143	33.2403	33.2484	33.2286
37.0123	44.7554	44.8604	44.8777	44.8852	44.8039
38.7325	45.6060	45.7505	45.7658	45.7734	45.6831
32.6548	33.1302	33.2605	33.2888	33.2969	33.2769
38.6302	53.5893	54.9243	54.8997	54.9067	54.6467
34.7062	35.2918	35.4388	35.4814	35.4895	35.5201
33.6638	34.2358	34.3624	34.3888	34.3969	34.3739

Figure 10: Results with Op-amp Offset Value, Input Amplitude=0.45, 10 Number of Simulations

The results below are achieved with all the non-idealities including op-amp offset are on with 10 runs. The input amplitude is 0.9:

SNR OSR 1 2 3 4 5 6

5.690113.875835.857836.007235.992135.97343.363612.810441.610442.398042.400842.43095.753213.410036.691936.883736.869936.88394.699412.235339.919040.304740.294640.26636.273712.998540.238340.841640.835740.80585.209612.944748.071058.123958.912259.17734.224413.334048.211457.101157.745757.58984.42637.092639.679140.147340.139940.16215.716013.104634.220434.275234.258234.24224.772113.156444.362946.155946.176746.1256

SNR with Ideal Filter

OSR	1	2	3	4	5	6
	5.9288	13.9712	35.9305	36.0082	35.9922	35.9734
	4.1953	12.8757	41.8968	42.4032	42.4009	42.4309
	6.1761	13.4913	36.7676	36.8848	36.8699	36.8839
	5.2203	12.7004	40.0221	40.3072	40.2947	40.2664
	6.7899	13.0672	40.4394	40.8447	40.8358	40.8058
	5.7338	13.0272	49.3689	58.3004	58.9173	59.1784
	4.8580	13.4095	49.5687	57.2347	57.7491	57.5906
	4.9939	8.1036	39.8531	40.1500	40.1400	40.1621
	6.4483	13.1765	34.2586	34.2758	34.2582	34.2422
	5.2680	13.2229	44.7547	46.1664	46.1770	46.1257

SFDR OSR

12345617.347223.571936.085136.011935.992635.973614.174123.672942.486342.420942.402742.431819.042522.848636.961036.889236.870436.884118.533122.346140.396340.315840.295840.266920.185223.706740.932640.856540.837140.806419.183221.167657.722459.013959.000859.219816.614323.720957.954157.836257.812457.619317.814916.233840.226740.160240.141040.162617.016021.716434.353934.277734.258534.242318.166020.418446.282146.200446.181146.1277

Figure 11: Results without Op-amp Offset Value, Input Amplitude=0.9, 10 Number of Simulations

The results below are achieved when there are no jittering, dithering, kt/C noise and interferer. Still the gain is non-ideal and comparator has an offset. The applied input has optimum amplitude of 0.7

Figure 12: Results without Op-amp Offset Value, Jitter, Dither, kt/C and Interferer, Input Amplitude=0.7, Single Simulations

The results below are achieved from a single interleaving arm when there are no jittering, dithering, kt/C noise and interferer. Still the gain is non-ideal and comparator has an offset. The applied input has optimum amplitude of 0.7

Figure 13: Results of Single Interleaving Arm without Op-amp Offset Value, Jitter, Dither, kt/C and Interferer, Input Amplitude=0.7, Single Simulations

5.b Frequency Spectrum

Figure 14: Spectra of the Output Signal (Input Amplitude = 0.45)

Figure 15: Spectra of the Output Signal (Input Amplitude = 0.9)

Figure 16: Histogram of the Output Signal (Input Amplitude = 0.45)

Figure 17: Signal after the Modulator

Figure 18: Signal after Noise Shaping Filter

Figure 19: Signal after the Combination of Interleaving Arms

Figure 20: Final Output after Recombination Filter

6. Area and Power Estimations

A Matlab file is used for calculating the area and the power estimations. All capacitances are built with a unit capacitance of 0.5pF which gives a relative accuracy of 1%. Interleaving architecture takes more space but compensates the power dissipation by enabling the lowering of the clock frequency. Also it is assumed digital circuitry is free in both area-wise and power-wise.

Switching power: 0.0049766 W

Static power: 0.07 W

Total power: 0.074977 W

Total area: 55814 μm²

7. Conclusion

Sigma/Delta modulators are powerful with their noise shaping feature yet due to oversampling the bandwidth of the input signal should be limited. On the other hand interleaving architecture can be used to provide some extra boost to the performance parameters, as it allows lower oversampling rates. Yet here the limitation is the area. Roughly it can be said that to increase the SNR by 3dB the area should be doubled.