Training Farmers through A Mobile App

Evidence from A Randomized Controlled Trial in China

Kenn Chua University of Minnesota

University of Minnesota

Xiaoli Yang

Khandker Wahedur Rahman University of Oxford

Shenyang Agricultural University

Qingxiao Li

April 16, 2022

Topics to Cover

Motivation

Research Question

Study Design

Empirical Framework

Data and Sample

Results

Take Away

Motivation

Research Question

Study Design

Empirical Framework

Data and Sample

Results

Take Away

- Information and knowledge are critical constraints of adoption of farming technology (Foster and Rosenzweig, 1995, 2010; Magruder, 2018)
- Agricultural extension services are important to overcome these barriers
- Extension services can improve technology adoption and farmer productivity (Bellemare, 2010; Davis et al., 2012; Godtland et al., 2004; Grimm and Luck, 2020; Magnan et al., 2021; Pan, Smith, and Sulaiman, 2018).
- It can reduce poverty by providing information and transferring knowledge to farmers (Anderson and Feder, 2004; Nakasone, Torero, and Minten, 2014).
- If agriculture extension service is absent, information transfer can be scant or ineffective (Takahashi, Muraoka, and Otsuka, 2020).

- Information and knowledge are critical constraints of adoption of farming technology (Foster and Rosenzweig, 1995, 2010; Magruder, 2018)
- Agricultural extension services are important to overcome these barriers
- Extension services can improve technology adoption and farmer productivity (Bellemare, 2010; Davis et al., 2012; Godtland et al., 2004; Grimm and Luck, 2020; Magnan et al., 2021; Pan, Smith, and Sulaiman, 2018).
- It can reduce poverty by providing information and transferring knowledge to farmers (Anderson and Feder, 2004; Nakasone, Torero, and Minten, 2014).
- If agriculture extension service is absent, information transfer can be scant or ineffective (Takahashi, Muraoka, and Otsuka, 2020).

- Information and knowledge are critical constraints of adoption of farming technology (Foster and Rosenzweig, 1995, 2010; Magruder, 2018)
- Agricultural extension services are important to overcome these barriers
- Extension services can improve technology adoption and farmer productivity (Bellemare, 2010; Davis et al., 2012; Godtland et al., 2004; Grimm and Luck, 2020; Magnan et al., 2021; Pan, Smith, and Sulaiman, 2018).
- It can reduce poverty by providing information and transferring knowledge to farmers (Anderson and Feder, 2004; Nakasone, Torero, and Minten, 2014).
- If agriculture extension service is absent, information transfer can be scant or ineffective (Takahashi, Muraoka, and Otsuka, 2020).

- Information and knowledge are critical constraints of adoption of farming technology (Foster and Rosenzweig, 1995, 2010; Magruder, 2018)
- Agricultural extension services are important to overcome these barriers
- Extension services can improve technology adoption and farmer productivity (Bellemare, 2010; Davis et al., 2012; Godtland et al., 2004; Grimm and Luck, 2020; Magnan et al., 2021; Pan, Smith, and Sulaiman, 2018).
- It can reduce poverty by providing information and transferring knowledge to farmers (Anderson and Feder, 2004; Nakasone, Torero, and Minten, 2014).
- If agriculture extension service is absent, information transfer can be scant or ineffective (Takahashi, Muraoka, and Otsuka, 2020).

- Information and knowledge are critical constraints of adoption of farming technology (Foster and Rosenzweig, 1995, 2010; Magruder, 2018)
- Agricultural extension services are important to overcome these barriers
- Extension services can improve technology adoption and farmer productivity (Bellemare, 2010; Davis et al., 2012; Godtland et al., 2004; Grimm and Luck, 2020; Magnan et al., 2021; Pan, Smith, and Sulaiman, 2018).
- It can reduce poverty by providing information and transferring knowledge to farmers (Anderson and Feder, 2004; Nakasone, Torero, and Minten, 2014).
- If agriculture extension service is absent, information transfer can be scant or ineffective (Takahashi, Muraoka, and Otsuka, 2020).

- Traditional extension services have high fixed and recurrent financial costs (Quizon, Feder, and Murgai, 2001)
- Farmers often have limited access to timely and quality information (Ferroni and Zhou, 2012)
- In-person training involves low-frequency visits outside season due to distance and time (Cole and Fernando, 2021).
- These limit scalability and efficiency of extension service

- Traditional extension services have high fixed and recurrent financial costs (Quizon, Feder, and Murgai, 2001)
- Farmers often have limited access to timely and quality information (Ferroni and Zhou, 2012).
- In-person training involves low-frequency visits outside season due to distance and time (Cole and Fernando, 2021).
- These limit scalability and efficiency of extension service.

- Traditional extension services have high fixed and recurrent financial costs (Quizon, Feder, and Murgai, 2001)
- Farmers often have limited access to timely and quality information (Ferroni and Zhou, 2012).
- In-person training involves low-frequency visits outside season due to distance and time (Cole and Fernando, 2021).
- These limit scalability and efficiency of extension service.

- Traditional extension services have high fixed and recurrent financial costs (Quizon, Feder, and Murgai, 2001)
- Farmers often have limited access to timely and quality information (Ferroni and Zhou, 2012).
- In-person training involves low-frequency visits outside season due to distance and time (Cole and Fernando, 2021).
- These limit scalability and efficiency of extension service.

- ICT-based solutions may be an effective way of knowledge delivery rural setting (Aker, 2011; Fabregas, Kremer, and Schilbach, 2019).
 - Radio, television, computer, mobile phones, etc.
 - May help increase farmers' awareness of improved practices
- ICT can affect agriculture through information provision (Aker, Ghosh, and Burrell, 2016).
- Mobile phone can be a vital instrument in delivering information
 - Mobile phones are one of the fastest-growing and most widespread forms of ICT
 - 83% of adults in developing counties have a mobile phone (Klapper, 2019)

- ICT-based solutions may be an effective way of knowledge delivery rural setting (Aker, 2011; Fabregas, Kremer, and Schilbach, 2019).
 - Radio, television, computer, mobile phones, etc.
 - May help increase farmers' awareness of improved practices
- ICT can affect agriculture through information provision (Aker, Ghosh, and Burrell, 2016).
- Mobile phone can be a vital instrument in delivering information
 - Mobile phones are one of the fastest-growing and most widespread forms of ICT
 - 83% of adults in developing counties have a mobile phone (Klapper, 2019)

- ICT-based solutions may be an effective way of knowledge delivery rural setting (Aker, 2011; Fabregas, Kremer, and Schilbach, 2019).
 - Radio, television, computer, mobile phones, etc.
 - May help increase farmers' awareness of improved practices
- ICT can affect agriculture through information provision (Aker, Ghosh, and Burrell, 2016)
- Mobile phone can be a vital instrument in delivering information
 - Mobile phones are one of the fastest-growing and most widespread forms of ICT
 - 83% of adults in developing counties have a mobile phone (Klapper, 2019)

- ICT-based solutions may be an effective way of knowledge delivery rural setting (Aker, 2011; Fabregas, Kremer, and Schilbach, 2019).
 - Radio, television, computer, mobile phones, etc.
 - May help increase farmers' awareness of improved practices
- ICT can affect agriculture through information provision (Aker, Ghosh, and Burrell, 2016).
- Mobile phone can be a vital instrument in delivering information
 - Mobile phones are one of the fastest-growing and most widespread forms of ICT
 - 83% of adults in developing counties have a mobile phone (Klapper, 2019)

- ICT-based solutions may be an effective way of knowledge delivery rural setting (Aker, 2011; Fabregas, Kremer, and Schilbach, 2019).
 - Radio, television, computer, mobile phones, etc.
 - May help increase farmers' awareness of improved practices
- ICT can affect agriculture through information provision (Aker, Ghosh, and Burrell, 2016).
- Mobile phone can be a vital instrument in delivering information
 - Mobile phones are one of the fastest-growing and most widespread forms of ICT
 - 83% of adults in developing counties have a mobile phone (Klapper, 2019)

- ICT-based solutions may be an effective way of knowledge delivery rural setting (Aker, 2011; Fabregas, Kremer, and Schilbach, 2019).
 - Radio, television, computer, mobile phones, etc.
 - May help increase farmers' awareness of improved practices
- ICT can affect agriculture through information provision (Aker, Ghosh, and Burrell, 2016).
- Mobile phone can be a vital instrument in delivering information
 - Mobile phones are one of the fastest-growing and most widespread forms of ICT
 - 83% of adults in developing counties have a mobile phone (Klapper, 2019)

- ICT-based solutions may be an effective way of knowledge delivery rural setting (Aker, 2011; Fabregas, Kremer, and Schilbach, 2019).
 - Radio, television, computer, mobile phones, etc.
 - May help increase farmers' awareness of improved practices
- ICT can affect agriculture through information provision (Aker, Ghosh, and Burrell, 2016).
- Mobile phone can be a vital instrument in delivering information
 - Mobile phones are one of the fastest-growing and most widespread forms of ICT
 - 83% of adults in developing counties have a mobile phone (Klapper, 2019)

- ICT-based solutions may be an effective way of knowledge delivery rural setting (Aker, 2011; Fabregas, Kremer, and Schilbach, 2019).
 - Radio, television, computer, mobile phones, etc.
 - May help increase farmers' awareness of improved practices
- ICT can affect agriculture through information provision (Aker, Ghosh, and Burrell, 2016).
- Mobile phone can be a vital instrument in delivering information
 - Mobile phones are one of the fastest-growing and most widespread forms of ICT
 - 83% of adults in developing counties have a mobile phone (Klapper, 2019)

- Use of ICT needs to consider providing proper information, digital literacy, and proper monitoring of actual usage (Lele and Goswami, 2017).
- An appropriate mode of delivering information is important for its effectiveness.
- Voice messages and SMS messages are the popular methods that have been studied in the literature (Casaburi et al., 2019; Cole and Fernando, 2021; Fafchamps and Minten, 2012; Fu and Akter, 2016; Larochelle et al., 2019; Walter et al., 2021).
- However, certain kinds of information may be too complicated to convey by text or voice (Fabregas, Kremer, and Schilbach, 2019)

- Use of ICT needs to consider providing proper information, digital literacy, and proper monitoring of actual usage (Lele and Goswami, 2017).
- An appropriate mode of delivering information is important for its effectiveness.
- Voice messages and SMS messages are the popular methods that have been studied in the literature (Casaburi et al., 2019; Cole and Fernando, 2021; Fafchamps and Minten, 2012; Fu and Akter, 2016; Larochelle et al., 2019; Walter et al., 2021).
- However, certain kinds of information may be too complicated to convey by text or voice (Fabregas, Kremer, and Schilbach, 2019)

- Use of ICT needs to consider providing proper information, digital literacy, and proper monitoring of actual usage (Lele and Goswami, 2017).
- An appropriate mode of delivering information is important for its effectiveness.
- Voice messages and SMS messages are the popular methods that have been studied in the literature (Casaburi et al., 2019; Cole and Fernando, 2021; Fafchamps and Minten, 2012; Fu and Akter, 2016; Larochelle et al., 2019; Walter et al., 2021).
- However, certain kinds of information may be too complicated to convey by text or voice (Fabregas, Kremer, and Schilbach, 2019)

- Use of ICT needs to consider providing proper information, digital literacy, and proper monitoring of actual usage (Lele and Goswami, 2017).
- An appropriate mode of delivering information is important for its effectiveness.
- Voice messages and SMS messages are the popular methods that have been studied in the literature (Casaburi et al., 2019; Cole and Fernando, 2021; Fafchamps and Minten, 2012; Fu and Akter, 2016; Larochelle et al., 2019; Walter et al., 2021).
- However, certain kinds of information may be too complicated to convey by text or voice (Fabregas, Kremer, and Schilbach, 2019)

Motivation

Research Question

Study Design

Empirical Framework

Data and Sample

Results

Take Away

- We provide farmers technical training through an easy-to-use mobile application
 - Mobile app delivers complicated information through videos
 - The app records what, when, and how long a farmer watched each video in our app
- We also provided aspirational videos via the same app
 - Aspiration videos may enhance farmers' psychological well-being (Ridley et al., 2020)
 - Could also facilitate learning among farmers (Fabregas, Kremer, and Schilbach, 2019)
- We do an experiment to examine whether the training improves farmers' knowledge and grape quality

- We provide farmers technical training through an easy-to-use mobile application
 - Mobile app delivers complicated information through videos
 - The app records what, when, and how long a farmer watched each video in our app
- We also provided aspirational videos via the same app
 - Aspiration videos may enhance farmers' psychological well-being (Ridley et al., 2020)
 - Could also facilitate learning among farmers (Fabregas, Kremer, and Schilbach, 2019)
- We do an experiment to examine whether the training improves farmers' knowledge and grape quality

- We provide farmers technical training through an easy-to-use mobile application
 - Mobile app delivers complicated information through videos
 - The app records what, when, and how long a farmer watched each video in our app
- We also provided aspirational videos via the same app
 - Aspiration videos may enhance farmers' psychological well-being (Ridley et al., 2020)
 - Could also facilitate learning among farmers (Fabregas, Kremer, and Schilbach, 2019)
- We do an experiment to examine whether the training improves farmers' knowledge and grape quality

- We provide farmers technical training through an easy-to-use mobile application
 - Mobile app delivers complicated information through videos
 - The app records what, when, and how long a farmer watched each video in our app
- We also provided aspirational videos via the same app
 - Aspiration videos may enhance farmers' psychological well-being (Ridley et al., 2020)
 - Could also facilitate learning among farmers (Fabregas, Kremer, and Schilbach, 2019)
- We do an experiment to examine whether the training improves farmers' knowledge and grape quality

- We provide farmers technical training through an easy-to-use mobile application
 - Mobile app delivers complicated information through videos
 - The app records what, when, and how long a farmer watched each video in our app
- We also provided aspirational videos via the same app
 - Aspiration videos may enhance farmers' psychological well-being (Ridley et al., 2020)
 - Could also facilitate learning among farmers (Fabregas, Kremer, and Schilbach, 2019)
- We do an experiment to examine whether the training improves farmers' knowledge and grape quality

- We provide farmers technical training through an easy-to-use mobile application
 - Mobile app delivers complicated information through videos
 - The app records what, when, and how long a farmer watched each video in our app
- We also provided aspirational videos via the same app
 - Aspiration videos may enhance farmers' psychological well-being (Ridley et al., 2020)
 - Could also facilitate learning among farmers (Fabregas, Kremer, and Schilbach, 2019)
- We do an experiment to examine whether the training improves farmers' knowledge and grape quality

- Our study takes place in the city of Beizhen in Liaoning, China
 - China has a 67 percent internet penetration and 99 percent of its netizens access the internet using a mobile phone (CNNIC, 2020)
 - More than 98 percent of rural villages in China have internet coverage, and the cost of accessing the internet is low (Speakman, 2020)
- We partner with the Beizhen government
 - Beizhen is a famous grape town and the largest grape fresh storage base in China
 - The Government is interested in improving the price small grape farmers receive
 - Commissioned Shenyang Agricultural University to find ways to improve the grape quality
- SAU developed training modules that would help farmers improve grape sweetness
 - But delivery is a challenge because of time and money cost
- We developed a mobile-app to deliver the training distantly

- Our study takes place in the city of Beizhen in Liaoning, China
 - China has a 67 percent internet penetration and 99 percent of its netizens access the internet using a mobile phone (CNNIC, 2020)
 - More than 98 percent of rural villages in China have internet coverage, and the cost of accessing the internet is low (Speakman, 2020)
- We partner with the Beizhen government
 - Beizhen is a famous grape town and the largest grape fresh storage base in China
 - The Government is interested in improving the price small grape farmers received
 - Commissioned Shenyang Agricultural University to find ways to improve the grape quality
- SAU developed training modules that would help farmers improve grape sweetness
 - But delivery is a challenge because of time and money cost
- We developed a mobile-app to deliver the training distantly

- Our study takes place in the city of Beizhen in Liaoning, China
 - China has a 67 percent internet penetration and 99 percent of its netizens access the internet using a mobile phone (CNNIC, 2020)
 - More than 98 percent of rural villages in China have internet coverage, and the cost of accessing the internet is low (Speakman, 2020)
- We partner with the Beizhen government
 - Beizhen is a famous grape town and the largest grape fresh storage base in China
 - The Government is interested in improving the price small grape farmers receive
 - Commissioned Shenyang Agricultural University to find ways to improve the grape quality
- SAU developed training modules that would help farmers improve grape sweetness
 - But delivery is a challenge because of time and money cost
- We developed a mobile-app to deliver the training distantly

- Our study takes place in the city of Beizhen in Liaoning, China
 - China has a 67 percent internet penetration and 99 percent of its netizens access the internet using a mobile phone (CNNIC, 2020)
 - More than 98 percent of rural villages in China have internet coverage, and the cost of accessing the internet is low (Speakman, 2020)
- We partner with the Beizhen government
 - Beizhen is a famous grape town and the largest grape fresh storage base in China
 - The Government is interested in improving the price small grape farmers receive
 - Commissioned Shenyang Agricultural University to find ways to improve the grape quality
- SAU developed training modules that would help farmers improve grape sweetness
 - But delivery is a challenge because of time and money cost
- We developed a mobile-app to deliver the training distantly

- Our study takes place in the city of Beizhen in Liaoning, China
 - China has a 67 percent internet penetration and 99 percent of its netizens access the internet using a mobile phone (CNNIC, 2020)
 - More than 98 percent of rural villages in China have internet coverage, and the cost of accessing the internet is low (Speakman, 2020)
- We partner with the Beizhen government
 - Beizhen is a famous grape town and the largest grape fresh storage base in China
 - The Government is interested in improving the price small grape farmers receive
 - Commissioned Shenyang Agricultural University to find ways to improve the grape quality
- SAU developed training modules that would help farmers improve grape sweetness
 - But delivery is a challenge because of time and money cost
- We developed a mobile-app to deliver the training distantly

- Our study takes place in the city of Beizhen in Liaoning, China
 - China has a 67 percent internet penetration and 99 percent of its netizens access the internet using a mobile phone (CNNIC, 2020)
 - More than 98 percent of rural villages in China have internet coverage, and the cost of accessing the internet is low (Speakman, 2020)
- We partner with the Beizhen government
 - Beizhen is a famous grape town and the largest grape fresh storage base in China
 - The Government is interested in improving the price small grape farmers receive
 - Commissioned Shenyang Agricultural University to find ways to improve the grape quality
- SAU developed training modules that would help farmers improve grape sweetness
 - But delivery is a challenge because of time and money cost
- We developed a mobile-app to deliver the training distantly

- Our study takes place in the city of Beizhen in Liaoning, China
 - China has a 67 percent internet penetration and 99 percent of its netizens access the internet using a mobile phone (CNNIC, 2020)
 - More than 98 percent of rural villages in China have internet coverage, and the cost of accessing the internet is low (Speakman, 2020)
- We partner with the Beizhen government
 - Beizhen is a famous grape town and the largest grape fresh storage base in China
 - The Government is interested in improving the price small grape farmers receive
 - Commissioned Shenyang Agricultural University to find ways to improve the grape quality
- SAU developed training modules that would help farmers improve grape sweetness
 - But delivery is a challenge because of time and money cost
- We developed a mobile-app to deliver the training distantly

- Our study takes place in the city of Beizhen in Liaoning, China
 - China has a 67 percent internet penetration and 99 percent of its netizens access the internet using a mobile phone (CNNIC, 2020)
 - More than 98 percent of rural villages in China have internet coverage, and the cost of accessing the internet is low (Speakman, 2020)
- We partner with the Beizhen government
 - Beizhen is a famous grape town and the largest grape fresh storage base in China
 - The Government is interested in improving the price small grape farmers receive
 - Commissioned Shenyang Agricultural University to find ways to improve the grape quality
- SAU developed training modules that would help farmers improve grape sweetness
 - But delivery is a challenge because of time and money cost
- We developed a mobile-app to deliver the training distantly

- Our study takes place in the city of Beizhen in Liaoning, China
 - China has a 67 percent internet penetration and 99 percent of its netizens access the internet using a mobile phone (CNNIC, 2020)
 - More than 98 percent of rural villages in China have internet coverage, and the cost of accessing the internet is low (Speakman, 2020)
- We partner with the Beizhen government
 - Beizhen is a famous grape town and the largest grape fresh storage base in China
 - The Government is interested in improving the price small grape farmers receive
 - Commissioned Shenyang Agricultural University to find ways to improve the grape quality
- SAU developed training modules that would help farmers improve grape sweetness
 - But delivery is a challenge because of time and money cost
- We developed a mobile-app to deliver the training distantly

- Our study takes place in the city of Beizhen in Liaoning, China
 - China has a 67 percent internet penetration and 99 percent of its netizens access the internet using a mobile phone (CNNIC, 2020)
 - More than 98 percent of rural villages in China have internet coverage, and the cost of accessing the internet is low (Speakman, 2020)
- We partner with the Beizhen government
 - Beizhen is a famous grape town and the largest grape fresh storage base in China
 - The Government is interested in improving the price small grape farmers receive
 - Commissioned Shenyang Agricultural University to find ways to improve the grape quality
- SAU developed training modules that would help farmers improve grape sweetness
 - But delivery is a challenge because of time and money cost
- We developed a mobile-app to deliver the training distantly

Mobile App Interface

- Technical training through our mobile app
 - Improves farmers' knowledge
 - Technical test score ↑ 0.45-0.52 SDs
 - A 9.4 to 10.8 percent increase in raw means
 - Farmers believe that their grapes are sweeter
 - Sweetness assessment ↑ 0.51 SDs
 - Helps them enhance the quality of their produce
 - Intent-to-treat (ITT): Grape sweetness ↑ 0.297 SDs
- Weak evidence of aspiration increasing
 - 2 percent increase in raw control mean (statistically significant at 10 percent level)
- While yield does not change, we find weak evidence of change in sale volume and revenue

- Technical training through our mobile app
 - Improves farmers' knowledge
 - Technical test score ↑ 0.45-0.52 SDs
 - A 9.4 to 10.8 percent increase in raw means
 - Farmers believe that their grapes are sweeter
 - Sweetness assessment ↑ 0.51 SDs
 - Helps them enhance the quality of their produce
 - Intent-to-treat (ITT): Grape sweetness ↑ 0.297 SDs
- Weak evidence of aspiration increasing
 - 2 percent increase in raw control mean (statistically significant at 10 percent level)
- While yield does not change, we find weak evidence of change in sale volume and revenue

- Technical training through our mobile app
 - Improves farmers' knowledge
 - Technical test score ↑ 0.45-0.52 SDs
 - A 9.4 to 10.8 percent increase in raw means
 - Farmers believe that their grapes are sweeter
 - Sweetness assessment ↑ 0.51 SDs
 - Helps them enhance the quality of their produce
 - Intent-to-treat (ITT): Grape sweetness ↑ 0.297 SDs
- Weak evidence of aspiration increasing
 - 2 percent increase in raw control mean (statistically significant at 10 percent level)
- While yield does not change, we find weak evidence of change in sale volume and revenue

- Technical training through our mobile app
 - Improves farmers' knowledge
 - Technical test score ↑ 0.45-0.52 SDs
 - A 9.4 to 10.8 percent increase in raw means
 - Farmers believe that their grapes are sweeter
 - Sweetness assessment ↑ 0.51 SDs
 - Helps them enhance the quality of their produce
 - Intent-to-treat (ITT): Grape sweetness ↑ 0.297 SDs
- Weak evidence of aspiration increasing
 - 2 percent increase in raw control mean (statistically significant at 10 percent level)
- While yield does not change, we find weak evidence of change in sale volume and revenue

- Technical training through our mobile app
 - Improves farmers' knowledge
 - Technical test score ↑ 0.45-0.52 SDs
 - A 9.4 to 10.8 percent increase in raw means
 - Farmers believe that their grapes are sweeter
 - Sweetness assessment ↑ 0.51 SDs
 - Helps them enhance the quality of their produce
 - Intent-to-treat (ITT): Grape sweetness ↑ 0.297 SDs
- Weak evidence of aspiration increasing
 - 2 percent increase in raw control mean (statistically significant at 10 percent level)
- While yield does not change, we find weak evidence of change in sale volume and revenue

- Technical training through our mobile app
 - Improves farmers' knowledge
 - Technical test score ↑ 0.45-0.52 SDs
 - A 9.4 to 10.8 percent increase in raw means
 - Farmers believe that their grapes are sweeter
 - Sweetness assessment ↑ 0.51 SDs
 - Helps them enhance the quality of their produce
 - Intent-to-treat (ITT): Grape sweetness ↑ 0.297 SDs
- Weak evidence of aspiration increasing
 - 2 percent increase in raw control mean (statistically significant at 10 percent level)
- While yield does not change, we find weak evidence of change in sale volume and revenue

- Technical training through our mobile app
 - Improves farmers' knowledge
 - Technical test score ↑ 0.45-0.52 SDs
 - A 9.4 to 10.8 percent increase in raw means
 - Farmers believe that their grapes are sweeter
 - Sweetness assessment ↑ 0.51 SDs
 - Helps them enhance the quality of their produce
 - Intent-to-treat (ITT): Grape sweetness ↑ 0.297 SDs
- Weak evidence of aspiration increasing
 - 2 percent increase in raw control mean (statistically significant at 10 percent level)
- While yield does not change, we find weak evidence of change in sale volume and revenue

- Technical training through our mobile app
 - Improves farmers' knowledge
 - Technical test score ↑ 0.45-0.52 SDs
 - A 9.4 to 10.8 percent increase in raw means
 - Farmers believe that their grapes are sweeter
 - Sweetness assessment ↑ 0.51 SDs
 - Helps them enhance the quality of their produce
 - Intent-to-treat (ITT): Grape sweetness ↑ 0.297 SDs
- Weak evidence of aspiration increasing
 - 2 percent increase in raw control mean (statistically significant at 10 percent level)
- While yield does not change, we find weak evidence of change in sale volume and revenue

- Technical training through our mobile app
 - Improves farmers' knowledge
 - Technical test score ↑ 0.45-0.52 SDs
 - A 9.4 to 10.8 percent increase in raw means
 - Farmers believe that their grapes are sweeter
 - Sweetness assessment ↑ 0.51 SDs
 - Helps them enhance the quality of their produce
 - Intent-to-treat (ITT): Grape sweetness ↑ 0.297 SDs
- Weak evidence of aspiration increasing
 - 2 percent increase in raw control mean (statistically significant at 10 percent level)
- While yield does not change, we find weak evidence of change in sale volume and revenue

- Technical training through our mobile app
 - Improves farmers' knowledge
 - Technical test score ↑ 0.45-0.52 SDs
 - A 9.4 to 10.8 percent increase in raw means
 - Farmers believe that their grapes are sweeter
 - Sweetness assessment ↑ 0.51 SDs
 - Helps them enhance the quality of their produce
 - Intent-to-treat (ITT): Grape sweetness ↑ 0.297 SDs
- Weak evidence of aspiration increasing
 - 2 percent increase in raw control mean (statistically significant at 10 percent level)
- While yield does not change, we find weak evidence of change in sale volume and revenue

Motivation

Research Question

Study Design

Empirical Framework

Data and Sample

Results

Take Away

- Placebo videos

- Featuring the local history of the grape industry and natural landscapes of the region

Technical videos

- 60 videos on grape farming techniques to increase grape quality
- One to three minutes in length
- Curated to be relevant to the farmers' particular needs at each stage of the grape-growing period

- 15 aspirational videos promoting the practice of growing of high-quality grapes
- Aspiration videos feature established farmers
- Stories of their successful experience raising the quality of their grapes
- They also get placebo videos

- Placebo videos

- Featuring the local history of the grape industry and natural landscapes of the region

- Technical videos

- 60 videos on grape farming techniques to increase grape quality
- One to three minutes in length
- Curated to be relevant to the farmers' particular needs at each stage of the grape-growing period

- 15 aspirational videos promoting the practice of growing of high-quality grapes
- Aspiration videos feature established farmers
- Stories of their successful experience raising the quality of their grapes
- They also get placebo videos

- Placebo videos

- Featuring the local history of the grape industry and natural landscapes of the region

Technical videos

- 60 videos on grape farming techniques to increase grape quality
- One to three minutes in length
- Curated to be relevant to the farmers' particular needs at each stage of the grape-growing period

- 15 aspirational videos promoting the practice of growing of high-quality grapes
- Aspiration videos feature established farmers
- Stories of their successful experience raising the quality of their grapes
- They also get placebo videos

- Placebo videos
 - Featuring the local history of the grape industry and natural landscapes of the region
- Technical videos
 - 60 videos on grape farming techniques to increase grape quality
 - One to three minutes in length
 - Curated to be relevant to the farmers' particular needs at each stage of the grape-growing period
- Aspiration videos
 - 15 aspirational videos promoting the practice of growing of high-quality grapes
 - Aspiration videos feature established farmers
 - Stories of their successful experience raising the quality of their grapes
 - They also get placebo videos

- Placebo videos
 - Featuring the local history of the grape industry and natural landscapes of the region
- Technical videos
 - 60 videos on grape farming techniques to increase grape quality
 - One to three minutes in length
 - Curated to be relevant to the farmers' particular needs at each stage of the grape-growing period
- Aspiration videos
 - 15 aspirational videos promoting the practice of growing of high-quality grapes
 - Aspiration videos feature established farmers
 - Stories of their successful experience raising the quality of their grapes
 - They also get placebo videos

- Placebo videos
 - Featuring the local history of the grape industry and natural landscapes of the region
- Technical videos
 - 60 videos on grape farming techniques to increase grape quality
 - One to three minutes in length
 - Curated to be relevant to the farmers' particular needs at each stage of the grape-growing period
- Aspiration videos
 - 15 aspirational videos promoting the practice of growing of high-quality grapes
 - Aspiration videos feature established farmers
 - Stories of their successful experience raising the quality of their grapes
 - They also get placebo videos

- Placebo videos

- Featuring the local history of the grape industry and natural landscapes of the region

- Technical videos

- 60 videos on grape farming techniques to increase grape quality
- One to three minutes in length
- Curated to be relevant to the farmers' particular needs at each stage of the grape-growing period

- 15 aspirational videos promoting the practice of growing of high-quality grapes
- Aspiration videos feature established farmers
- Stories of their successful experience raising the quality of their grapes
- They also get placebo videos

- Placebo videos
 - Featuring the local history of the grape industry and natural landscapes of the region
- Technical videos
 - 60 videos on grape farming techniques to increase grape quality
 - One to three minutes in length
 - Curated to be relevant to the farmers' particular needs at each stage of the grape-growing period
- Aspiration videos
 - 15 aspirational videos promoting the practice of growing of high-quality grapes
 - Aspiration videos feature established farmer
 - Stories of their successful experience raising the quality of their grapes
 - They also get placebo videos

- Placebo videos
 - Featuring the local history of the grape industry and natural landscapes of the region
- Technical videos
 - 60 videos on grape farming techniques to increase grape quality
 - One to three minutes in length
 - Curated to be relevant to the farmers' particular needs at each stage of the grape-growing period
- Aspiration videos
 - 15 aspirational videos promoting the practice of growing of high-quality grapes
 - Aspiration videos feature established farmers
 - Stories of their successful experience raising the quality of their grapes
 - They also get placebo videos

- Placebo videos
 - Featuring the local history of the grape industry and natural landscapes of the region
- Technical videos
 - 60 videos on grape farming techniques to increase grape quality
 - One to three minutes in length
 - Curated to be relevant to the farmers' particular needs at each stage of the grape-growing period
- Aspiration videos
 - 15 aspirational videos promoting the practice of growing of high-quality grapes
 - Aspiration videos feature established farmers
 - Stories of their successful experience raising the quality of their grapes
 - They also get placebo videos

Placebo videos

- Featuring the local history of the grape industry and natural landscapes of the region

- Technical videos

- 60 videos on grape farming techniques to increase grape quality
- One to three minutes in length
- Curated to be relevant to the farmers' particular needs at each stage of the grape-growing period

- 15 aspirational videos promoting the practice of growing of high-quality grapes
- Aspiration videos feature established farmers
- Stories of their successful experience raising the quality of their grapes
- They also get placebo videos

- Grape production has 5 stages:
 - Budding and leafing period (May)
 - Flowering and fruiting period (June)
 - Fruit expansion period (July
 - Fruit coloring period (August)
 - Ripening and harvesting period (September)
- Training module contains content required for each of the four types of technologies with different technical contents required for each month:
 - Water management
 - Fertilizer management
 - Pest and disease management
 - Fruit pruning techniques, .

- Grape production has 5 stages:
 - Budding and leafing period (May)
 - Flowering and fruiting period (June
 - Fruit expansion period (July
 - Fruit coloring period (August)
 - Ripening and harvesting period (September)
- Training module contains content required for each of the four types of technologies with different technical contents required for each month:
 - Water management
 - Fertilizer management
 - Pest and disease management
 - Fruit pruning techniques, .

- Grape production has 5 stages:
 - Budding and leafing period (May)
 - Flowering and fruiting period (June)
 - Fruit expansion period (July)
 - Fruit coloring period (August)
 - Ripening and harvesting period (September)
- Training module contains content required for each of the four types of technologies with different technical contents required for each month:
 - Water management
 - Fertilizer management
 - Pest and disease management
 - Fruit pruning techniques, .

- Grape production has 5 stages:
 - Budding and leafing period (May)
 - Flowering and fruiting period (June)
 - Fruit expansion period (July)
 - Fruit coloring period (August
 - Ripening and harvesting period (September)
- Training module contains content required for each of the four types of technologies with different technical contents required for each month:
 - Water management
 - Fertilizer management
 - Pest and disease management
 - Fruit pruning techniques, .

- Grape production has 5 stages:
 - Budding and leafing period (May)
 - Flowering and fruiting period (June)
 - Fruit expansion period (July)
 - Fruit coloring period (August)
 - Ripening and harvesting period (September)
- Training module contains content required for each of the four types of technologies with different technical contents required for each month:
 - Water management
 - Fertilizer management
 - Pest and disease management
 - Fruit pruning techniques, .

- Grape production has 5 stages:
 - Budding and leafing period (May)
 - Flowering and fruiting period (June)
 - Fruit expansion period (July)
 - Fruit coloring period (August)
 - Ripening and harvesting period (September)
- Training module contains content required for each of the four types of technologies with different technical contents required for each month:
 - Water management
 - Fertilizer management
 - Pest and disease management
 - Fruit pruning techniques, .

- Grape production has 5 stages:
 - Budding and leafing period (May)
 - Flowering and fruiting period (June)
 - Fruit expansion period (July)
 - Fruit coloring period (August)
 - Ripening and harvesting period (September)
- Training module contains content required for each of the four types of technologies with different technical contents required for each month:
 - Water management
 - Fertilizer management
 - Pest and disease management
 - Fruit pruning techniques, .

- Grape production has 5 stages:
 - Budding and leafing period (May)
 - Flowering and fruiting period (June)
 - Fruit expansion period (July)
 - Fruit coloring period (August)
 - Ripening and harvesting period (September)
- Training module contains content required for each of the four types of technologies with different technical contents required for each month:
 - Water management
 - Fertilizer management
 - Pest and disease management
 - Fruit pruning techniques, .

Technical Video Covers Grape Production Techniques

- Grape production has 5 stages:
 - Budding and leafing period (May)
 - Flowering and fruiting period (June)
 - Fruit expansion period (July)
 - Fruit coloring period (August)
 - Ripening and harvesting period (September)
- Training module contains content required for each of the four types of technologies with different technical contents required for each month:
 - Water management
 - Fertilizer management
 - Pest and disease management
 - Fruit pruning techniques, .

Technical Video Covers Grape Production Techniques

- Grape production has 5 stages:
 - Budding and leafing period (May)
 - Flowering and fruiting period (June)
 - Fruit expansion period (July)
 - Fruit coloring period (August)
 - Ripening and harvesting period (September)
- Training module contains content required for each of the four types of technologies with different technical contents required for each month:
 - Water management
 - Fertilizer management
 - Pest and disease management
 - Fruit pruning techniques, .

Technical Video Covers Grape Production Techniques

- Grape production has 5 stages:
 - Budding and leafing period (May)
 - Flowering and fruiting period (June)
 - Fruit expansion period (July)
 - Fruit coloring period (August)
 - Ripening and harvesting period (September)
- Training module contains content required for each of the four types of technologies with different technical contents required for each month:
 - Water management
 - Fertilizer management
 - Pest and disease management
 - Fruit pruning techniques, .

- Random treatment assignment happened before the grape planting season
- Unit of randomization is the zu (sub-village) of residence
- 1,026 farmers from 116 zus at the baseline
 - All have mobile phones with access to the internet
 - All have experience using mobile video app
- Randomly assigned into three groups
 - Control group (C): They only see placebo videos (C); 38 clusters, N = 370
 - Technical only arm (T1): They see technical videos and placebo videos; 39 clusters, N = 324
 - Technical and aspirational arm (T2): They see technical, aspiration, and placebo videos; 39 clusters, N = 332

- Random treatment assignment happened before the grape planting season
- Unit of randomization is the zu (sub-village) of residence
- 1,026 farmers from 116 zus at the baseline
 - All have mobile phones with access to the internet
 - All have experience using mobile video app
- Randomly assigned into three groups
 - Control group (C): They only see placebo videos (C); 38 clusters, N = 370
 - Technical only arm (T1): They see technical videos and placebo videos; 39 clusters, N = 324
 - Technical and aspirational arm (T2): They see technical, aspiration, and placebo videos; 39 clusters, N = 332

- Random treatment assignment happened before the grape planting season
- Unit of randomization is the zu (sub-village) of residence
- 1,026 farmers from 116 zus at the baseline
 - All have mobile phones with access to the internet
 - All have experience using mobile video app
- Randomly assigned into three groups
 - Control group (C): They only see placebo videos (C); 38 clusters, N = 370
 - Technical only arm (T1): They see technical videos and placebo videos; 39 clusters, N = 324
 - Technical and aspirational arm (T2): They see technical, aspiration, and placebo videos; 39 clusters, N = 332

- Random treatment assignment happened before the grape planting season
- Unit of randomization is the zu (sub-village) of residence
- 1,026 farmers from 116 zus at the baseline
 - All have mobile phones with access to the internet
 - All have experience using mobile video app
- Randomly assigned into three groups
 - Control group (C): They only see placebo videos (C); 38 clusters, N = 370
 - Technical only arm (T1): They see technical videos and placebo videos; 39 clusters, N = 324
 - Technical and aspirational arm (T2): They see technical, aspiration, and placebo videos; 39 clusters, N = 332

- Random treatment assignment happened before the grape planting season
- Unit of randomization is the zu (sub-village) of residence
- 1,026 farmers from 116 zus at the baseline
 - All have mobile phones with access to the internet
 - All have experience using mobile video app
- Randomly assigned into three groups
 - Control group (C): They only see placebo videos (C); 38 clusters, N = 370
 - Technical only arm (T1): They see technical videos and placebo videos; 39 clusters, N = 324
 - Technical and aspirational arm (T2): They see technical, aspiration, and placebo videos; 39 clusters, N = 332

- Random treatment assignment happened before the grape planting season
- Unit of randomization is the zu (sub-village) of residence
- 1,026 farmers from 116 zus at the baseline
 - All have mobile phones with access to the internet
 - All have experience using mobile video app
- Randomly assigned into three groups
 - Control group (C): They only see placebo videos (C); 38 clusters, N = 370
 - Technical only arm (T1): They see technical videos and placebo videos; 39 clusters, N = 324
 - Technical and aspirational arm (T2): They see technical, aspiration, and placebo videos; 39 clusters, N = 332

- Random treatment assignment happened before the grape planting season
- Unit of randomization is the zu (sub-village) of residence
- 1,026 farmers from 116 zus at the baseline
 - All have mobile phones with access to the internet
 - All have experience using mobile video app
- Randomly assigned into three groups
 - Control group (C): They only see placebo videos (C); 38 clusters, N = 370
 - Technical only arm (T1): They see technical videos and placebo videos; 39 clusters, N = 324
 - Technical and aspirational arm (T2): They see technical, aspiration, and placebo videos; 39 clusters, N = 332

- Random treatment assignment happened before the grape planting season
- Unit of randomization is the zu (sub-village) of residence
- 1,026 farmers from 116 zus at the baseline
 - All have mobile phones with access to the internet
 - All have experience using mobile video app
- Randomly assigned into three groups
 - Control group (C): They only see placebo videos (C); 38 clusters, N = 370
 - Technical only arm (T1): They see technical videos and placebo videos; 39 clusters, N = 324
 - Technical and aspirational arm (T2): They see technical, aspiration, and placebo videos; 39 clusters, N = 332

- Random treatment assignment happened before the grape planting season
- Unit of randomization is the zu (sub-village) of residence
- 1,026 farmers from 116 zus at the baseline
 - All have mobile phones with access to the internet
 - All have experience using mobile video app
- Randomly assigned into three groups
 - Control group (C): They only see placebo videos (C); 38 clusters, N = 370
 - Technical only arm (T1): They see technical videos and placebo videos; 39 clusters, N = 324
 - Technical and aspirational arm (T2): They see technical, aspiration, and placebo videos; 39 clusters, N = 332

Motivation

Research Question

Study Design

Empirical Framework

Data and Sample

Results

Take Away

Estimation Strategy

$$y_{iz} = \beta_0 + \beta_1 T 1_z + \beta_2 T 2_z + X'_{iz} \delta + \varepsilon_{iz}$$

- y_{iz} is the outcome of interest measured at endline for farmer i in zu z
- T_{1z} is technical training only arm
- $T2_z$ is technical training and aspiration arm
- X_{iz} includes baseline characteristics
- Cluster SEs by zu (level of treatment).

Motivation

Research Question

Study Design

Empirical Framework

Data and Sample

Results

Take Away

Data Collection Timeline

Baseline Sample Farmers Share Similar Characteristics...

	(1)	(2)	(3)	(4)
	С	T1	T2	p-value from test of (1)=(2)=(3)
Panel A: Farmer Characteristics				
Male (=1)	0.67	0.72	0.70	0.532
Age (in years)	47.80	46.53	47.72	0.175
Completed middle school or above (=1)	0.62	0.67	0.58	0.069*
Has a good health (=1)	0.43	0.46	0.36	0.118
Household size	3.79	3.87	3.80	0.734
Has training experience (=1)	0.31	0.35	0.30	0.583
IHS(Total household income)	11.27	11.61	11.23	0.100*
Years of grape planting	21.50	21.45	21.48	0.999
Grape planting area (acre)	1.74	1.94	1.82	0.347
IHS(Grape yield)	10.92	11.00	11.09	0.617
IHS(Revenue from grape)	9.39	10.41	9.26	0.018**
IHS(Average grape sales price)	1.34	1.34	1.28	0.418
N	370	324	332	
Cluster	38	39	39	

...and Have Similar Outcomes

	(1) C	(2) T1	(3) T2	(4) p-value from test of (1)=(2)=(3)
		11	12	p-value from test of (1)-(2)-(0)
Panel B: Outcomes Variables				
Test score (standardized)	0.00	-0.09	-0.11	0.523
Self assessed sweetness (standardized)	-0.00	0.07	0.11	0.595
Self assessed count (standardized)	-0.00	0.09	-0.01	0.552
Self assessed weight (standardized)	-0.00	0.23	-0.06	0.058*
IHS(Aspired income in 3 years)	11.37	11.78	11.91	0.119
Aspired sweetness in 3 years (standardized)	-0.00	-0.11	0.08	0.125
IHS(Aspired income in 5 years)	10.21	11.27	10.73	0.125
Aspired sweetness in 5 years (standardized)	-0.00	-0.06	0.08	0.322
N	370	324	332	
Cluster	38	39	39	
p-value from joint test of equality				
C=T1			C	0.007***
C=T2				0.148
T1=T2			(0.016**

Study Households

Relatively Large Attrition, but Similar Across Arms

	(1) Missing at Midline	(2) Missing at Endline
T1	0.053	0.016
T2	(0.037) 0.049	(0.038) 0.045
Observations	(0.039) 1,026	(0.038) 1,026
Control-group mean	0.222	0.311
T1=T2 (<i>p</i> -value)	0.931	0.515

Measurement of Sweetness

Motivation

Research Question

Study Design

Empirical Framework

Data and Sample

Results

Take Away

Treated Farmers Spent More Time on The App

Note: Average hours viewed by all farmers. Each viewing instance is topcoded at twice the length of the video. Includes farmers surveyed at endline only.

Farmers Watched Videos During Weekdays

Note: Each interaction with the app is a video click by the user.

And After Work

Note: Each interaction with the app is a video click by the user.

We Paid 2 RMB (0.3 USD) Per Videos to Increase Watching

Note: Each interaction is a video click by the user.

Still Relatively Low Share of Videos Watched

Note: Average share of videos viewed. Includes farmers surveyed at endline only.

Yet, Treatment Farmers Spent More Time on the App

	(1)	(2)	(3)
		Hours Spent Watch	ning
	Placebo Videos	Technical Videos	Aspirational Videos
T1	3.806***	22.380***	0.000
	(0.694)	(2.236)	-
T2	4.652***	23.837***	2.034***
	(0.795)	(1.826)	(0.335)
Observations	687	687	687
Control-group mean	2.478	0.102	0.008
T1=T2 (p-value)	0.365	0.614	0.000
	·	·	

Farmers Watched Videos Throughout the Study Period

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
		Te	chnical Vid	eo		Asp	irational Vi	ideo
	Overall	May	June	July	August	Overall	May	June
T1	0.222***	0.077***	0.172***	0.295***	0.253***	0.000	0.000	0.000
	(0.019)	(0.012)	(0.017)	(0.026)	(0.027)	-	-	-
T2	0.266***	0.090***	0.188***	0.356***	0.314***	0.093***	0.095***	0.091***
	(0.019)	(0.012)	(0.020)	(0.026)	(0.022)	(0.012)	(0.013)	(0.015)
Observations	687	687	687	687	687	687	687	687
Control-group mean	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
T1=T2 (p-value)	0.104	0.463	0.554	0.098	0.083	0.000	0.000	0.000

Both Interventions Increase Knowledge Test Scores

	(1) Standardized Test Score (All 10 questions)	(2) Standardized Test Score (Repeated 5 questions)
T1	0.520***	0.371***
	(0.097)	(0.095)
T2	0.451***	0.413***
	(0.102)	(0.083)
Observations	687	687
Control-group mean	0.000	0.000
Raw Control-group mean	7.380	4.388
Raw Control-group SD	1.532	0.805
T1=T2 (<i>p</i> -value)	0.492	0.572

App ↑es sweetness, but not when bundled with aspiration

	(1)	(2)	(3)
	Sweetness	Count	Weight
T1	0.297**	0.138	-0.114
T2	(0.132)	(0.117)	(0.103)
	0.099	0.010	-0.154
	(0.109)	(0.121)	(0.116)
Observations	679	679	679
Control-group mean	0.000	0.000	0.000
Raw Control-group mean	15.920	68.173	1.659
Raw Control-group SD	1.327	20.272	0.510
T1=T2 (p-value)	0.150	0.364	0.720

Treated Farmers' Believe Their Grapes Are Sweeter

	(1)	(2)	(3)
	Sweetness	Count	Weight
T1 T2	0.474*** (0.092) 0.510*** (0.086)	0.173* (0.103) 0.039 (0.093)	0.213** (0.105) 0.149 (0.106)
Observations	687	687	687
Control-group mean	0.000	0.000	0.000
Raw Control-group mean	17.377	81.784	1.865
Raw Control-group SD	1.897	20.617	0.439
T1=T2 (p-value)	0.666	0.202	0.576

Headline Findings Remain The Same When We Pick Controls Using ML

	(1) Standardized Test Score	(2) Standardized Test Score	(3)	(4)	(5)
	(All 10 questions)	(Repeated 5 questions)	Sweetness	Count	Weight
T1	0.463***	0.361***	0.0.301**	0.143	-0.060
	(0.093)	(0.095)	(0.131)	(0.119)	(0.119)
T2	0.486***	0.406***	0.098	0.008	-0.165
	(0.099)	(0.084)	(0.111)	(0.124)	(0.134)
Observations	687	687	679	679	679
Control-group mean	0.000	0.000	0.000	0.000	0.000
Raw Control-group mean	7.380	4.388	15.920	68.173	1.659
Raw Control-group SD	1.532	0.805	1.327	20.272	0.510
T1=T2 (p-value)	0.810	0.540	0.142	0.350	0.440

T2 Farmers Have A Slight Increase in 3-year Aspiration for Sweetness

	(1)	(2)	(3)	(4)
	3-year aspiration		5-year as	piration
	IHS(Income)	Sweetness	IHS(Income)	Sweetness
T1	0.103	0.125	0.101	0.101
	(0.080)	(0.107)	(0.089)	(0.095)
T2	0.028	0.186*	0.034	0.095
	(0.094)	(0.107)	(0.094)	(0.096)
Observations	686	684	685	684
Control-group mean	12.215	0.000	12.392	0.000
Raw Control-group mean		18.375		19.197
Raw Control-group SD		1.884		2.230
T1=T2 (<i>p</i> -value)	0.404	0.562	0.475	0.946

Intervention Does Not Have Significant Impact on Additional Outcomes

	(1) Jufeng	(2) Planting	(3)	(4)	(5)	(6)
	Variety (=1)	Area (Acre)	IHS(Yield)	IHS(Sale Volume)	IHS(Revenue)	IHS(Price)
T1	-0.004	-0.031	0.038	0.227	0.265	0.039
	(0.012)	(0.069)	(0.075)	(0.163)	(0.178)	(0.028)
T2	-0.000	0.064	0.032	-0.168	-0.135	0.035
	(0.007)	(0.068)	(0.081)	(0.214)	(0.227)	(0.027)
Observations	687	687	687	687	687	672
Control-group mean	0.988	1.790	11.10	10.74	11.63	1.646
T1=T2 (p-value)	0.742	0.252	0.944	0.015	0.019	0.857

However, Labor Expenditure Increases for T1

	(1) Fertilizer Expenditure (IHS)	(2) Biofertilizer Expenditure (IHS)	(3) Labor Expenditure (IHS)	(4) Pesticide Expenditure (IHS)
T1	0.132	-0.135	1.134**	-0.046
T2	(0.134) 0.026	(0.399) -0.326	(0.529) 0.842	(0.100) -0.039
	(0.138)	(0.382)	(0.515)	(0.125)
Observations	687	687	687	687
Control-group mean	9.225	4.923	6.098	8.736
T1=T2 (<i>p</i> -value)	0.368	0.624	0.581	0.944

Motivation

Research Question

Study Design

Empirical Framework

Data and Sample

Results

Take Away

- Technical training through mobile app improves farmers' knowledge
- Also helps them enhance the quality of their produce
 - Can be an effective alternative to traditional extension service
- Farmers find the app helpful
 - 88 percent of farmers who used the app think it is helpful.
- Cost of our whole experiment, including developing the app and watch bonuses
 - T1: \$ 27.5 and T2: \$ 31.7 per farmer
 - Average cost diminishes as the longer the farmers use the app

- Technical training through mobile app improves farmers' knowledge
- Also helps them enhance the quality of their produce
 - Can be an effective alternative to traditional extension service
- Farmers find the app helpful
 - 88 percent of farmers who used the app think it is helpful.
- Cost of our whole experiment, including developing the app and watch bonuses
 - T1: \$ 27.5 and T2: \$ 31.7 per farmer
 - Average cost diminishes as the longer the farmers use the app

- Technical training through mobile app improves farmers' knowledge
- Also helps them enhance the quality of their produce
 - Can be an effective alternative to traditional extension service
- Farmers find the app helpful
 - 88 percent of farmers who used the app think it is helpful.
- Cost of our whole experiment, including developing the app and watch bonuses
 - T1: \$ 27.5 and T2: \$ 31.7 per farmer
 - Average cost diminishes as the longer the farmers use the app

- Technical training through mobile app improves farmers' knowledge
- Also helps them enhance the quality of their produce
 - Can be an effective alternative to traditional extension service
- Farmers find the app helpful
 - 88 percent of farmers who used the app think it is helpful.
- Cost of our whole experiment, including developing the app and watch bonuses
 - T1: \$ 27.5 and T2: \$ 31.7 per farmer
 - Average cost diminishes as the longer the farmers use the app

- Technical training through mobile app improves farmers' knowledge
- Also helps them enhance the quality of their produce
 - Can be an effective alternative to traditional extension service
- Farmers find the app helpful
 - 88 percent of farmers who used the app think it is helpful.
- Cost of our whole experiment, including developing the app and watch bonuses
 - T1: \$ 27.5 and T2: \$ 31.7 per farmer
 - Average cost diminishes as the longer the farmers use the app

- Technical training through mobile app improves farmers' knowledge
- Also helps them enhance the quality of their produce
 - Can be an effective alternative to traditional extension service
- Farmers find the app helpful
 - 88 percent of farmers who used the app think it is helpful.
- Cost of our whole experiment, including developing the app and watch bonuses
 - T1: \$ 27.5 and T2: \$ 31.7 per farmer
 - Average cost diminishes as the longer the farmers use the app

But, There is a Scale vs Intensity Tension

- Bundling multiple objectives together on an ICT platform dilutes the impact
- It suggests that ICT-based delivery of training need to be targeted
- While ICT-based delivery can be easily scaled, learning intensity may have to be balanced

But, There is a Scale vs Intensity Tension

- Bundling multiple objectives together on an ICT platform dilutes the impact
- It suggests that ICT-based delivery of training need to be targeted
- While ICT-based delivery can be easily scaled, learning intensity may have to be balanced

But, There is a Scale vs Intensity Tension

- Bundling multiple objectives together on an ICT platform dilutes the impact
- It suggests that ICT-based delivery of training need to be targeted
- While ICT-based delivery can be easily scaled, learning intensity may have to be balanced

Thank You!

Appendix

Sample Coverage

