LICENCIATURA EN SISTEMAS

DEPARTAMENTO DE DESARROLLO PRODUCTIVO Y TECNOLÓGICO

MATEMÁTICA 2

(TRABAJO PRÁCTICO N° 2)

Docente a cargo:

Vanesa Plaul

Año 2023

Trabajo Práctico Nº 2

(Continuidad-Teorema del valor intermedio-Teorema de Bolzano)

1. Estudiar la continuidad de las siguientes funciones en los puntos indicados. Cuando corresponda clasificar el tipo de discontinuidad.

a)
$$f(x) = |x| \text{ en } x = 0$$

b)
$$f(x) = \frac{1}{x} \text{ en } x = 0$$

c)
$$f(x) = sen \frac{\pi}{x}$$
 en $x = 0$

d)
$$f(x) = xsen \frac{\pi}{x}$$
 en $x = 0$

e)
$$f(x) = Entx = [x]$$
 en $x = 3$

f)
$$f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{Si } x \neq 1 \\ 0 & \text{Si } x = 1 \end{cases}$$
 en $x = 1$

g)
$$f(x) = \frac{x^3 - 8}{x - 2}$$
 en $x = 2$

Resolución punto c): $f(x) = sen \frac{\pi}{x}$ en x = 0

1°) No existe f(0), (la función no está definida en x = 0)

2°) No existe $\lim_{x\to 0} \frac{\pi}{x}$ pues cuando $x\to 0$; $\frac{\pi}{x}\to \pm\infty$ y el seno varía entre -1 y 1; por lo tanto no existe límite en x = 0. Por no tener límite se trata de una discontinuidad esencial.

Encontrar y clasificar los puntos de discontinuidad de

a)
$$f(x) = \frac{x^2 - x - 2}{x^2 + x - 6}$$

b)
$$f(x) = \frac{x^2 + x - 6}{x^2 + 4x + 3}$$

b)
$$f(x) = \frac{x^2 + x - 6}{x^2 + 4x + 3}$$
 c) $f(x) = \frac{x^3 + x^2 - 16x - 16}{x^3 - 16x}$

d)
$$f(x) = \frac{x^2 - 3x + 2}{x^3 + 3x^2 + 2x}$$

e)
$$f(x) = \frac{1}{senx}$$

d)
$$f(x) = \frac{x^2 - 3x + 2}{x^3 + 3x^2 + 2x}$$
 e) $f(x) = \begin{cases} 1 & \text{Si } x < 1 \\ 2 & \text{Si } x = 1 \\ 2x & \text{Si } x > 1 \end{cases}$

g)
$$f(x) = \sqrt{\frac{1 + senx}{1 - senx}}$$
 en $[0; 2\pi]$ h) $f(x) = \frac{x^2}{8} + \frac{1}{x}$

h)
$$f(x) = \frac{x^2}{8} + \frac{1}{x}$$

$$f(x) = \frac{x^3 + x^2 - 16x - 16}{x^3 - 16x}$$

Puntos de discontinuidad: $x^3 - 16x = 0 \Rightarrow x(x^2 - 16) = 0$, de donde: $x_1 = -4$; $x_2 = 0$; $x_3 = 4$

$$\lim_{x \to -4} \frac{x^3 + x^2 - 16x - 16}{x^3 - 16x} = \frac{0}{0} = \lim_{x \to -4} \frac{(x - 4)(x + 4)(x + 1)}{x(x - 4)(x + 4)} = \lim_{x \to -4} \frac{x + 1}{x} = \frac{3}{4}$$

Por tener límite se trata de una disc. evitable en $x_1 = -4$

$$\lim_{x \to 0} \frac{(x-4)(x+4)(x+1)}{x(x-4)(x+4)} = \lim_{x \to 0} \frac{x+1}{x} = \pm \infty$$
, no tiene límite. Se trata de una

disc. esencial en $x_2 = 0$

$$\lim_{x \to 4} \frac{(x-4)(x+4)(x+1)}{x(x-4)(x+4)} = \lim_{x \to 4} \frac{x+1}{x} = \frac{5}{4}$$
 Disc. evitable en $x_3 = 4$

- 3. Defina en el intervalo [-3;3], tres funciones; h(x); f(x) y g(x) tales que:
 - a) h(x) sea continua en [-3;3]
 - b) f(x) presente una disc. esencial en x = 1 y en x = 2
 - c) g(x) presente una disc. evitable en x = -2
- 4. Defina una función que presente dos discontinuidades evitables y una esencial.
- 5. Defina una función que presente una discontinuidad esencial con límite infinito y otra esencial sin límite infinito.
- 6. ¿Cómo definiría la función $f(x) = \frac{x^3 4x}{x^2 4}$ para que sea continua en \Re ?
- 7. Grafique una función que satisfaga todas las condiciones siguientes:
 - a) Su dominio es [-2; 2]
 - b) f(-2) = f(-1) = f(1) = f(2) = 1
 - c) Es discontinua en x = -1 y en x = 1.
 - d) Dar su expresión.
- 8. La tarifa para comunicaciones de larga distancia para llamados de línea, fijada por una compañía telefónica, es un ejemplo de funciones discontinuas. La siguiente tabla indica dicha tarifa:

Kilómetros	Cantidad de pulsos por minuto
Hasta 30	3
Más de 30 hasta 55	5
Más de 55 hasta 110	7
Más de 110 hasta 170	10
Más de 170 hasta 240	15
Más de 240 hasta 320	19
Más de 320 hasta 600	23
Más de 600	36

Se pide:

- a) Expresar el número de pulsos en función de la distancia.
- b) Representarla gráficamente y estudiar la continuidad
- 9. Encontrar los valores de a y de b de modo que la siguiente función sea continua en \Re .

$$f(x) = \begin{cases} x+1 & \text{Si } x < 1 \\ ax+b & \text{Si } 1 \le x < 2 \\ 3x & \text{Si } x \ge 2 \end{cases}$$

- 10. a) Sea $f(x) = x^3 2x^2 + 3$ en [-1; 2], verifique el <u>teorema del valor intermedio</u> para k = 2.
 - b) Ídem para $f(x) = x^3 2x^2$ en [-3; 0], para k = -3.

Resolución punto a):

 $f(x) = x^3 - 2x^2 + 3$ es continua en el intervalo $\begin{bmatrix} -1;2 \end{bmatrix}$ f(-1) = 0, f(2) = 3, k = 2 pertenece al intervalo (0;3)

Se cumplen las hipótesis del teorema, luego $\exists c \in (-1; 2)/f(c) = k = 2$

 $x^3-2x^2+3=2 \Longrightarrow x^3-2x^2+1=0$. Por Gauss, una de las raíces es 1 y aplicando Ruffini queda:

 $(x-1)(x^2-x-1)=0$. Las otras dos raíces son: $\frac{1+\sqrt{5}}{2}$ (El nº de oro) y $\frac{1-\sqrt{5}}{2}$, como los tres valores están dentro del intervalo (-1; 2), c toma los tres valores.

$$c_1 = \frac{1 - \sqrt{5}}{2}$$
, $c_2 = 1$, $c_3 = \frac{1 + \sqrt{5}}{2}$

11. a) Sea $f(x) = x^3 - 3x^2 + 3x - 1$ en [0;3], verifique el <u>teorema de Bolzano</u>.

b) Ídem para $f(x) = x^4 - 2x^2 - 5$ en [0; 2]

Teorema del valor intermedio.

f(x) continua en $[a;b] \Rightarrow \forall k / f(a) < k < f(b) \lor f(b) < k < f(a), \exists c \in (a;b) / f(c) = k$

Teorema de Bolzano.

f(x) continua en $[a;b] \land f(a).f(b) < 0 \Rightarrow \exists c \in (a;b)/f(c) = 0$

Respuestas

- 1. a) Cont. en x = 0
 - b) Discont. esencial en x = 0
 - c) Discont. esencial en x = 0
 - d) Discont. evitable en x = 0
 - e) Discont. esencial en x = 3
 - f) Discont. evitable en x = 1
 - g) Discont. evitable en x = 2
- 2. a) Disc. evitable en x = 2; esencial en x = -3
 - b) Disc. esencial en x = -1; evitable en x = -3
 - c) Disc. esencial en x = 0; evitable en $x = \pm 4$
 - d) Disc. esencial en x = -2; x = -1; x = 0
 - e) Disc. esencial en $x = k\pi$, con $k \in \mathbb{Z}$
 - f) Disc. esencial en x = 1
 - g) Disc. esencial en $x = \frac{\pi}{2}$
 - h) Disc. esencial en x = 0
- 9. a = 4; b = -2