```
! pip install kaggle
! mkdir ~/.kaggle
! cp kaggle.json ~/.kaggle/
! chmod 600 ~/.kaggle/kaggle.json
! kaggle competitions download loan-default-prediction
     Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/public/simple</a>
     Requirement already satisfied: kaggle in /usr/local/lib/python3.7/dist-packages (1.5.12)
     Requirement already satisfied: certifi in /usr/local/lib/python3.7/dist-packages (from kaggle)
     Requirement already satisfied: tqdm in /usr/local/lib/python3.7/dist-packages (from kaggle) (4
     Requirement already satisfied: python-dateutil in /usr/local/lib/python3.7/dist-packages (from
     Requirement already satisfied: six>=1.10 in /usr/local/lib/python3.7/dist-packages (from kaggl
     Requirement already satisfied: python-slugify in /usr/local/lib/python3.7/dist-packages (from I
     Requirement already satisfied: urllib3 in /usr/local/lib/python3.7/dist-packages (from kaggle)
     Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from kaggle
     Requirement already satisfied: text-unidecode>=1.3 in /usr/local/lib/python3.7/dist-packages (
     Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-packages (from really satisfied)
     Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/dist-packages (from
     mkdir: cannot create directory '/root/.kaggle': File exists
     loan-default-prediction.zip: Skipping, found more recently modified local copy (use --force to
! unzip /content/loan-default-prediction.zip
     Archive: /content/loan-default-prediction.zip
     replace sampleSubmission.csv? [y]es, [n]o, [A]ll, [N]one, [r]ename: N
import pandas as pd
```

```
import numpy as np
from sklearn.model_selection import train_test_split
data = pd.read_csv('/content/train_v2.csv.zip')
data.head()
```

/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py:3326: DtypeWarning: Co. exec(code\_obj, self.user\_global\_ns, self.user\_ns)

|   | id | f1  | f2 | f3       | f4   | f5 | f6    | f7     | f8     | f9     | • • • | f770 | f771 | f772          | f773 |   |
|---|----|-----|----|----------|------|----|-------|--------|--------|--------|-------|------|------|---------------|------|---|
| 0 | 1  | 126 | 10 | 0.686842 | 1100 | 3  | 13699 | 7201.0 | 4949.0 | 126.75 |       | 5    | 2.14 | -1.54         | 1.18 | 0 |
| 1 | 2  | 121 | 10 | 0.782776 | 1100 | 3  | 84645 | 240.0  | 1625.0 | 123.52 |       | 6    | 0.54 | -0.24         | 0.13 | 0 |
| 2 | 3  | 126 | 10 | 0.500080 | 1100 | 3  | 83607 | 1800.0 | 1527.0 | 127.76 |       | 13   | 2.89 | -1.73         | 1.04 | 0 |
| 3 | 4  | 134 | 10 | 0.439874 | 1100 | 3  | 82642 | 7542.0 | 1730.0 | 132.94 |       | 4    | 1.29 | -0.89         | 0.66 | 0 |
| 4 | 5  | 109 | 9  | 0.502749 | 2900 | 4  | 79124 | 89.0   | 491.0  | 122.72 |       | 26   | 6.11 | <b>-</b> 3.82 | 2.51 | 0 |

5 rows × 771 columns

```
data.shape
```

```
# Remove all classes which have only 3 or less observations
for i in data.loss.unique():
  if data.loc[data['loss'] == i].shape[0] <= 3:</pre>
    index_names = data[data['loss'] == i ].index
    data.drop(index_names, inplace = True)
len(data.loss.unique())
     63
data.shape
     (105430, 771)
data.info()
     <class 'pandas.core.frame.DataFrame'>
     Int64Index: 105430 entries, 0 to 105470
     Columns: 771 entries, id to loss
     dtypes: float64(653), int64(99), object(19)
     memory usage: 621.0+ MB
# Select columns with 'object' datatype
data.select_dtypes(include=['object']).head()
                       f137
                                                 f138
                                                                 f206
                                                                                      f207
      0
          8090000000000000
                               754485076006959972352
                                                        3200000000000
                                                                         38600000000000000
                                                                                            7900000000
      1
             2250000000000
                                   15300000000000000
                                                         392000000000
                                                                          1690000000000000
                                                                                              92300000
      2
           186000000000000
                                 6910365323840000000
                                                       23700000000000
                                                                       389000000000000000
                                                                                              10300000
      3
         44500000000000000
                             11225194901267999096832
                                                          16098514954
                                                                            35000000000000
                                                                                              22200000
      4
               52152926246
                                     108000000000000
                                                         442000000000
                                                                          1870000000000000
                                                                                               3630000
# Drop all coulmns with 'object' datatype
for i in data.select_dtypes(include=['object']).columns:
    data.drop(labels=i, axis=1, inplace=True)
data.shape
     (105430, 752)
data.describe()
```

len(data.loss.unique())

89

| count                                                                   | 105430.000000 | 105430.000000 | 105430.000000 | 105430.000000 | 105430.000000 | 105430.000000 |  |
|-------------------------------------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|--|
| mean                                                                    | 52737.898075  | 134.603102    | 8.246846      | 0.499089      | 2678.440672   | 7.354975      |  |
| std                                                                     | 30447.038488  | 14.725194     | 1.691596      | 0.288746      | 1400.917228   | 5.151324      |  |
| min                                                                     | 1.000000      | 103.000000    | 1.000000      | 0.000006      | 1100.000000   | 1.000000      |  |
| 25%                                                                     | 26371.250000  | 124.000000    | 8.000000      | 0.249000      | 1500.000000   | 4.000000      |  |
| 50%                                                                     | 52736.500000  | 129.000000    | 9.000000      | 0.498298      | 2200.000000   | 4.000000      |  |
| 75%                                                                     | 79105.750000  | 148.000000    | 9.000000      | 0.749513      | 3700.000000   | 10.000000     |  |
| max                                                                     | 105471.000000 | 176.000000    | 11.000000     | 0.999994      | 7900.000000   | 17.000000     |  |
| 8 rows × 752 columns                                                    |               |               |               |               |               |               |  |
| unction to calculate missing values by column missing values table(df): |               |               |               |               |               |               |  |

f2

f3

f4

f5

```
# Fui
def missing_values_table(a+):
       # Total missing values
       mis_val = df.isnull().sum()
        # Percentage of missing values
        mis_val_percent = 100 * df.isnull().sum() / len(df)
        # Make a table with the results
        mis_val_table = pd.concat([mis_val, mis_val_percent], axis=1)
        mis_val_table_ren_columns = mis_val_table.rename(
        columns = {0 : 'Missing Values', 1 : '% of Total Values'})
        # Sort the table by percentage of missing descending
        mis_val_table_ren_columns = mis_val_table_ren_columns[
            mis_val_table_ren_columns.iloc[:,1] != 0].sort_values(
        '% of Total Values', ascending=False).round(1)
        print ("Your selected dataframe has " + str(df.shape[1]) + " columns.\n"
            "There are " + str(mis_val_table_ren_columns.shape[0]) +
              " columns that have missing values.")
        return mis_val_table_ren_columns
```

```
missing_values_table(data).head(50)
```

id

f1

| f160 | 18724 | 17.8 |
|------|-------|------|
| f159 | 18724 | 17.8 |
| f169 | 18406 | 17.5 |
| f170 | 18406 | 17.5 |
| f619 | 18398 | 17.5 |
| f618 | 18398 | 17.5 |
| f331 | 18055 | 17.1 |
| f330 | 18055 | 17.1 |
| f179 | 17152 | 16.3 |
| f180 | 17152 | 16.3 |
| f422 | 14226 | 13.5 |
| f653 | 13198 | 12.5 |
| f190 | 12225 | 11.6 |
| f189 | 12225 | 11.6 |
| f341 | 11905 | 11.3 |
| f340 | 11905 | 11.3 |
| f726 | 11275 | 10.7 |
| f664 | 11275 | 10.7 |
| f665 | 11275 | 10.7 |
| f666 | 11275 | 10.7 |
| f667 | 11275 | 10.7 |
| f668 | 11275 | 10.7 |
| f669 | 11275 | 10.7 |
| f640 | 9694  | 9.2  |
| f200 | 9062  | 8.6  |
| f199 | 9062  | 8.6  |
| f650 | 8998  | 8.5  |
| f651 | 8998  | 8.5  |
| f72  | 8997  | 8.5  |
| f586 | 8960  | 8.5  |
| f587 | 8960  | 8.5  |
| f649 | 8710  | 8.3  |
| f648 | 8651  | 8.2  |
| f588 | 8427  | 8.0  |
| f621 | 8175  | 7.8  |
| f620 | 8175  | 7.8  |

```
7.0
      f673
                      7338
      f672
                      7338
                                            7.0
      f210
                      6859
                                            6.5
                                            6.5
      f209
                      6859
      f679
                      6391
                                            6.1
      f150
                      2859
                                            2.7
      f149
                                            2.7
                      2859
      f32
                      2571
                                            2.4
# Fill the missing values using 'mean'
data.fillna(data.mean(), inplace=True)
      f202
                      2561
                                            24
missing_values_table(data).head(50)
     Your selected dataframe has 752 columns.
     There are 0 columns that have missing values.
        Missing Values % of Total Values
data.shape
     (105430, 752)
# Find all correlations and sort
correlations_data = data.corr()['loss'].sort_values()
# Print the most negative correlations
print(correlations_data.head(15), '\n')
# Print the most positive correlations
print(correlations_data.tail(15))
            -0.017798
     f612
     f776
            -0.016705
     f631
            -0.012730
     f70
            -0.010294
     f69
            -0.009963
     f200
            -0.009431
     f629
            -0.009031
     f315
            -0.008507
     f1
            -0.008291
     f734
            -0.008233
     f270
            -0.008216
     f425
            -0.008071
     f428
            -0.007876
     f10
            -0.007861
     f190
            -0.007687
     Name: loss, dtype: float64
     f674
             0.020680
     f536
             0.026068
     f471
             0.042021
     loss
             1.000000
     f33
                  NaN
```

```
f34
                  NaN
     f35
                  NaN
     f37
                  NaN
     f38
                  NaN
     f678
                  NaN
     f700
                  NaN
                  NaN
     f701
     f702
                  NaN
     f736
                  NaN
     f764
                  NaN
     Name: loss, dtype: float64
# Remove all columns with 'NaN' correlation
for i in data.columns:
    if len(set(data[i]))==1:
        data.drop(labels=[i], axis=1, inplace=True)
# Find all correlations and sort
correlations_data = data.corr()['loss'].sort_values()
# Print the most negative correlations
print(correlations_data.head(15), '\n')
# Print the most positive correlations
print(correlations_data.tail(15))
     f612
            -0.017798
     f776
            -0.016705
     f631
            -0.012730
     f70
            -0.010294
     f69
            -0.009963
     f200
            -0.009431
     f629
            -0.009031
     f315
            -0.008507
     f1
            -0.008291
     f734
          -0.008233
     f270
            -0.008216
     f425
            -0.008071
     f428
            -0.007876
     f10
            -0.007861
     f190
            -0.007687
     Name: loss, dtype: float64
     f599
             0.012236
     f597
             0.012236
     f47
             0.012529
     f61
             0.012678
     f370
             0.012863
     f353
             0.012875
     f65
             0.013357
     f67
             0.013623
     f670
             0.013734
```

f468

f514

f674

f536

f471

loss

0.013822

0.014402

0.020680

0.026068

0.042021

1.000000 Name: loss, dtype: float64

```
data.shape
     (105430, 741)
def remove_collinear_features(x, threshold):
   # Dont want to remove correlations between loss
   y = x['loss']
   x = x.drop(columns = ['loss'])
   # Calculate the correlation matrix
   corr_matrix = x.corr()
    iters = range(len(corr_matrix.columns) - 1)
    drop_cols = []
   # Iterate through the correlation matrix and compare correlations
   for i in iters:
        for j in range(i):
            item = corr_matrix.iloc[j:(j+1), (i+1):(i+2)]
            col = item.columns
            row = item.index
            val = abs(item.values)
            # If correlation exceeds the threshold
            if val >= threshold:
                # Append all columns to the drop columns list
                drop_cols.append(col.values[0])
   # Drop one of each pair of correlated columns
    drops = set(drop_cols)
   x = x.drop(columns = drops)
   # Add the score back in to the data
   x['loss'] = y
    return x
data = remove_collinear_features(data, 0.6)
data.shape
     (105430, 155)
# Separate out the features and targets
features = data.drop(columns='loss')
targets = pd.DataFrame(data['loss'])
X_train, X_test, y_train, y_test = train_test_split(features, targets, test_size = 0.2, random_state
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
     (84344, 154)
     (21086, 154)
     (84344, 1)
     (21086, 1)
```

```
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X test = sc.transform(X test)
X_train
     array([[ 0.24453522, 1.38717327, -3.10669127, ..., -1.36421995,
              0.68832925, -0.670937 ],
            [0.94822841, -0.99089651, 1.03877486, ..., -1.34515216,
              0.80952148, 1.4904529],
            [1.55203642, 0.0962211, 1.03877486, ..., 0.68400886,
             -0.63282046, -0.670937 ],
            . . . ,
            [1.67240413, -0.65117226, 1.03877486, ..., -0.1909905]
             -0.6210486 , -0.670937 ],
            [-1.70439095, -0.311448, 1.03877486, ..., -0.96105474,
              0.43668168, -0.670937 ],
            [-1.21389336, -1.60240017, -1.33006293, ..., -1.17192198,
             -1.66285793, 1.4904529 ]])
# Convert y to one-dimensional array
y_train = np.array(y_train).reshape((-1, ))
y_test = np.array(y_test).reshape((-1, ))
# Function to calculate mean absolute error
def cross val(X train, y train, preds, y test, model):
    # Applying k-Fold Cross Validation
    from sklearn.model selection import cross val score
   from sklearn.metrics import accuracy score
    val_accuracies = cross_val_score(estimator = model, X = X_train, y = y_train, cv = 5)
    accuracy = accuracy_score(y_test, preds)
    return val_accuracies.mean(), accuracy
def fit_and_evaluate(model):
   # Train the model
   model.fit(X_train, y_train)
   # Make predictions and evalute
   model pred = model.predict(X test)
   model_cross = cross_val(X_train, y_train, model_pred, y_test, model)
   # Return the performance metric
    return model_cross
# Random Forest Classification
from sklearn.ensemble import RandomForestClassifier
estimators = [5,10,15]
cross_accuracies = []
test_accuracies = []
for i in estimators:
  random = RandomForestClassifier(n_estimators = i, criterion = 'entropy')
  random cross accuracy, random accuracy = fit and evaluate(random)
```

```
cross_accuracies.append(random_cross_accuracy)
test_accuracies.append(random_accuracy)
print(f'Random Forest Performance for n_estimators = {i} : Validation Accuracy - {random_cross_accuracy}
/usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_split.py:680: UserWarning: The
UserWarning,
```

Random Forest Performance for n\_estimators = 5 : Validation Accuracy - 0.9060514097298444 and /usr/local/lib/python3.7/dist-packages/sklearn/model\_selection/\_split.py:680: UserWarning: The UserWarning,
Random Forest Performance for n estimators = 10 : Validation Accuracy - 0.9070236177950266 and

Random Forest Performance for n\_estimators = 10 : Validation Accuracy - 0.9070236177950266 and /usr/local/lib/python3.7/dist-packages/sklearn/model\_selection/\_split.py:680: UserWarning: The UserWarning,

Random Forest Performance for n\_estimators = 15 : Validation Accuracy - 0.907035473862369 and

```
import matplotlib.pyplot as plt

plt.plot(estimators, cross_accuracies)
plt.title('Estimators vs. Validation Accuracy')
plt.xlabel('No. of Estimators')
plt.ylabel('Validation Accuracy')
plt.show()
```



```
import matplotlib.pyplot as plt

plt.plot(estimators, test_accuracies)
plt.title('Estimators vs. Test Accuracy')
plt.xlabel('No. of Estimators')
plt.ylabel('Test Accuracy')
plt.show()
```

```
# Logistic Regression
from sklearn.linear_model import LogisticRegression
LR = LogisticRegression()
LR cross accuracy, LR accuracy = fit and evaluate(LR)
print(f'Logistic Regression Performance : Validation Accuracy - {LR_cross_accuracy} and Test Accurac
     /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: ConvergenceWarnin
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
       extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,
     /usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_split.py:680: UserWarning: The
      UserWarning,
     /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: ConvergenceWarnin
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear model.html#logistic-regression
       extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,
     /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: ConvergenceWarnin
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
       extra warning msg= LOGISTIC SOLVER CONVERGENCE MSG,
     /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: ConvergenceWarnin
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
       extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,
     /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: ConvergenceWarnin
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
       extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG,
     Logistic Regression Performance: Validation Accuracy - 0.9055890132632619 and Test Accuracy -
     /usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:818: ConvergenceWarnin
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
       extra warning msg= LOGISTIC SOLVER CONVERGENCE MSG,
```

```
# KNN
from sklearn.neighbors import KNeighborsClassifier
k = [3,5,7,9,11]
cross accuracies knn = []
test_accuracies_knn = []
for i in k:
  knn = KNeighborsClassifier(n_neighbors=i)
  knn_cross_accuracy, knn_accuracy = fit_and_evaluate(knn)
  cross accuracies knn.append(knn cross accuracy)
  test_accuracies_knn.append(knn_accuracy)
  print(f'KNN Performance : Validation Accuracy - {knn_cross_accuracy} and Test Accuracy - {knn_accu
     /usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_split.py:680: UserWarning: The
       UserWarning,
     KNN Performance : Validation Accuracy - 0.9038461446547335 and Test Accuracy - 0.9064782320022
     /usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_split.py:680: UserWarning: The
       UserWarning,
     /usr/local/lib/python3.7/dist-packages/sklearn/model_selection/_split.py:680: UserWarning: The
```

KNN Performance: Validation Accuracy - 0.9066323612468652 and Test Accuracy - 0.9089443232476!

KNN Performance : Validation Accuracy - 0.9069880481872523 and Test Accuracy - 0.90970312055392 /usr/local/lib/python3.7/dist-packages/sklearn/model\_selection/\_split.py:680: UserWarning: The UserWarning,

KNN Performance : Validation Accuracy - 0.9070117603219373 and Test Accuracy - 0.90984539504884 /usr/local/lib/python3.7/dist-packages/sklearn/model\_selection/\_split.py:680: UserWarning: The UserWarning,

KNN Performance: Validation Accuracy - 0.9070117603219373 and Test Accuracy - 0.9098928198804

import matplotlib.pyplot as plt plt.plot(k, cross\_accuracies\_knn) plt.title('K vs. Validation Accuracy') plt.xlabel('Value of K') plt.ylabel('Validation Accuracy') plt.show()



```
import matplotlib.pyplot as plt
plt.plot(k, test_accuracies_knn)
plt.title('k vs. Test Accuracy')
```

```
plt.xlabel('Value of K')
plt.ylabel('Test Accuracy')
plt.show()
```



Colab paid products - Cancel contracts here