# A Macroeconomic Model of the Cross-section of Currencies October 2025

Aleksei Oskolkov

alekseioskolkov@princeton.edu

Diego Perez

diego.perez@nyu.edu

October 20, 2025

#### motivation

#### What drives the cross section of bilateral exchange rates?

- ▶ Finance view: Verdelhan (2018), Lustig, Roussanov, and Verdelhan (2011, 2014), ...
  - two factors account for most of variation
  - countries heterogeneously exposed to factors

#### ► This paper:

- ▶ bottom-up approach: a macro model with fundamental shocks to construct factors
- ► fundamental heterogeneity between countries to generate exposure to factors
- ▶ build on recent advances (Itskhoki and Mukhin (2021), Kekre and Lenel (2024))
- ▶ offer a structural interpretation of the factor structure of exchange rates

#### what we do

#### **Empirical analysis:**

- ▶ "dollar factor" and "commodity factor" explain more than 50% of variation in  $\Delta XR$
- ▶ dollar-denominated assets explain country loadings on "dollar factor"
- ► commodity share of exports explains country loadings on "commodity factor"

#### Macro model of the cross-section of currencies:

- ▶ global economy with heterogeneous countries, imperfect capital mobility
- lacksquare fundamental shocks to asset intermediation, output  $\longrightarrow$  global financial and business cycles
- ► countries heterogeneous in dollar assets and exposure to commodity prices

#### Model interpretation of factor structure of exchange rates:

- ► factors reflect combination of global risk premium and economic activity fluctuations
- country loadings explained by the two sources of heterogeneity

#### related literature

- ► <u>factor structure in exchange rates</u>: Verdelhan (2018), Lustig, Roussanov, and Verdelhan (2011), Lustig, Roussanov, and Verdelhan (2014), Lettau, Maggiori, and Weber (2014)
- cross-country heterogeneity: Hassan (2013), Ready, Roussanov, and Ward (2017), Richmond (2019), Lustig and Richmond (2020), Koijen and Yogo (2020)
- ► macroeconomic models of exchange rates: Gabaix and Maggiori (2015), Kekre and Lenel (2024), Kekre and Lenel (2025), Itskhoki and Mukhin (2021), Itskhoki and Mukhin (2025), Engel and Wu (2024), Chahrour, Cormun, De Leo, Guerrón-Quintana, and Valchev (2024)

#### model overview

Global economy with heterogeneous countries, global financial intermediaries

Small open economies with traded and non-traded endowments, segmented asset markets

Fluctuations come from

- ► risk aversion of global intermediaries (global financial cycle)
- ▶ tradable or "commodity" endowments, non-tradable endowments (global business cycle)

Countries are permanently heterogeneous in

- exposure to commodity cycle;
- accumulated dollar assets

# households: preferences and endowments

Continuum of small open economies indexed by  $i \in [0,1]$ , household + central bank

$$\max \mathbb{E}_0 \sum_{t=0}^{t=\infty} \beta^t u(\mathcal{C}(C_{it}^N, C_{it}^T))$$

$$P_{it}^N C_{it}^N + C_{it}^T = P_{it}^N Y_{it}^N + Y_{it}^T + Q_{it} B_{it} - R_{it}^{-1} Q_{it} B_{i,t+1} + T_{it} + \Pi_{it}$$

- $ightharpoonup P_{it}^N$  price of non-traded good,  $Q_{it}$  price of consumption basket  $\mathcal{C}(C_{it}^N, C_{it}^T) = (C_{it}^N)^{\alpha} (C_{it}^T)^{1-\alpha}$
- ▶ save in local currency bond  $B_{i,t+1}$  at  $R_{it}$ , get fiscal rebate  $T_{it}$ , profits of intermedirales  $\Pi_{it}$
- ▶ non-traded endowment:  $N_{it} = N(1 + x_{it})$ , individual shocks  $x_{it}$
- ▶ tradable endowment  $Y_{it}^T = 1 + e_i z_t$ : country-specific exposure  $e_i$  to global shock  $z_t$
- lacktriangleright microfoundation: raw materials and tradable final goods, high raw endowment  $\longrightarrow$  high  $e_i$

#### central banks

Issue local currency bonds  $D_{i,t+1}$ , buy foreign reserves  $M_{i,t+1}$  denominated in USD

$$T_{it} = R_{it}^{-1} Q_{it} D_{i,t+1} - Q_{it} D_{it} + Q_{ut} M_{it} - R_{ut}^{-1} Q_{ut} M_{i,t+1}$$

Country resource constraint:

$$Q_{it}C_{it} + Q_{it}(D_{it} - B_{it}) = P_{it}^{N}Y_{it}^{N} + Y_{it}^{T} + R_{it}^{-1}Q_{it}(D_{i,t+1} - B_{i,t+1}) + Q_{ut}(M_{it} - R_{ut}^{-1}M_{i,t+1}) + \Pi_{it}$$

Reserve policy (dollar bonds):

- ▶ here  $Q_t \equiv \int_0^1 Q_{it}$  and  $R_t^{-1} \equiv \int_0^1 R_{it}^{-1} di$ , reaction parameter  $\tau$
- ightharpoonup exogenous heterogeneity in reserve level  $m_i$
- ► US is the same, except no government

## global financial intermediaries

Borrow in dollars from all countries, invest in local currency in all countries + the US

- ▶ liabilities  $L_{t+1}$ : dollar reserves, taken as given
- ▶ USD value of local currency bonds  $L_{i,t+1}$
- ightharpoonup care about dollar returns  $X_{i,t+1} \equiv \frac{R_{it}}{R_{it}} \frac{Q_{i,t+1}}{Q_{i,t+1}} \frac{Q_{it}}{Q_{it}} 1$
- ightharpoonup rebate profits  $\Pi_{it} = Q_{ut} L_{it} X_{it}$

Choose portfolio of bonds  $\{L_{i,t+1}\}$  and  $L_{u,t+1}$  in different currencies: maximize

$$\mathbb{E}_{t}\left[\int L_{i,t+1}X_{i,t+1}di\right] - \frac{\Gamma_{t}}{2}\mathbb{V}_{t}\left[\int L_{i,t+1}X_{i,t+1}di\right] \underbrace{-\frac{1}{2\chi}\int\left(L_{i,t+1} - \int L_{j,t+1}dj\right)^{2}di - \frac{1}{2\chi}L_{u,t+1}^{2}}_{\text{portfolio management cost}}$$

s.t. 
$$L_{t+1} = \int L_{i,t+1} di + L_{u,t+1}$$

Here  $\Gamma_t \equiv \Gamma(1 + \gamma_t)$  is risk aversion

# intermediary portfolio choice

Optimal portfolio:

$$L_{i,t+1} = L_{t+1} + \chi \left( \mathbb{E}_t[X_{i,t+1}] - \Gamma_t \mathbb{C}_t \left[ X_{i,t+1}, \underbrace{\int X_{j,t+1} L_{j,t+1} dj}_{\text{total profit}} \right] \right)$$

Dollar bonds  $L_{u,t+1}$ : no excess returns, chosen residually purely for risk-management

$$L_{u,t+1} = \chi \left( \Gamma_t \mathbb{C}_t \left[ \underbrace{\int X_{j,t+1} dj}_{\text{global ret.}}, \underbrace{\int X_{j,t+1} L_{j,t+1} dj}_{\text{total profit}} \right] - \mathbb{E}_t \left[ \underbrace{\int X_{j,t+1} dj}_{\text{global ret.}} \right] \right)$$

## equilibrium

Given  $\{D_{it}\}$ , equilibrium is a set of processes  $\{P_{it}^N, Q_{it}, R_{it}\}$  and  $\{C_{it}^N, C_{it}^T, B_{i,t+1}, L_{i,t+1}, M_{i,t+1}\}$  such that the quantities solve the optimization problems and the following markets clear:

$$C_{it}^{N} = Y_{it}^{N}$$

$$\int C_{it}^{T} di = \int Y_{it}^{T} di$$

$$\int L_{i,t+1} + L_{u,t+1} = \int M_{i,t+1}$$

$$\frac{R_{ut}^{-1} Q_{ut}}{R_{it}^{-1} Q_{it}} L_{i,t+1} + B_{i,t+1} = D_{i,t+1}$$

Shocks: random walks  $z_{t+1} = z_t + \sigma_z \epsilon_{z,t+1}$  and  $x_{i,t+1} = x_{it} + \sigma_x \epsilon_{i,t+1}$  and

$$\gamma_{t+1} = (1 - \rho_{\gamma})\gamma_t + \sigma_{\gamma}\epsilon_{\gamma,t+1}$$

#### solution

First-order approx. around steady state in the limit of small shocks, large risk aversion

- ▶ simultaneously  $\beta \longrightarrow 1$ ,  $(\sigma_z, \sigma_x, \sigma_\gamma) \longrightarrow 0$  and  $\Gamma \longrightarrow \infty$  with  $\Gamma \cdot \overline{\sigma}_z^2 \longrightarrow \Gamma_z$  and  $\Gamma \cdot \overline{\sigma}_x^2 \longrightarrow \Gamma_x$
- ▶ steady state symmetric in prices,  $Q_i = P_i = 1$ , and consumption  $C_i = 1$
- ▶ steady-state financial inflows  $\{l_i\}_i \in [0,1]$  and  $l_u$  are pinned down and asymmetric

#### Proposition 1

Steady-state holdings of US bonds are positive:  $l_u > 0$ . Holdings in other countries are

$$l_i = L - l_u - \psi(\underline{e_i} - e) + \tau l_u(\underline{m_i} - m)$$

Here the coefficient  $\psi$  is a function of parameters and has the same sign as  $e - e_u$ .

## exchange rates and capital flows

Exchange rate determined by endowments, inflows  $\Delta l_{i,t+1}$ , and reserve accumulation  $\Delta m_{t+1}$ 

$$q_{it} = \alpha e_i z_t + \alpha x_{it} + \underbrace{\alpha l_i \Delta l_{i,t+1}}_{\text{inflows}} - \underbrace{\alpha m_i \Delta m_{i,t+1}}_{\text{reserves}} + \alpha (m_i - l_i) r_{ut}$$

Reserve accumulation  $\Delta m_{i,t+1} \equiv \Delta m_{t+1}$ :

$$\Delta m_{t+1} = \tau(\underbrace{q_t - q_{ut}}_{\text{USD}\downarrow} + r_{ut} - r_t)$$

Capital inflows:

$$\alpha l_i \Delta l_{i,t+1} = \underbrace{\alpha(l_i - L)\gamma_t}_{\text{risk aversion}} + \underbrace{\alpha L \Delta m_{t+1}}_{\text{liabilities}} + \underbrace{\chi \mathbb{E}_t [\Delta q_{i,t+1} - \Delta q_{u,t+1}]}_{\text{expected excess returns}}$$

## solving the model

Look for a linear equilibrium:

$$q_{it} = \xi_i x_{it} + \underbrace{\theta_i z_t + \theta_{iu} x_{ut} + \mu_i \gamma_t}_{\text{global exogenous shocks}} + \underbrace{\omega_i l_{it} + \delta_i l_{ut} + \zeta_i m_t}_{\text{endogenous states}}$$
$$q_{ut} = \theta_u z_t + \theta_{uu} x_{ut} + \mu_u \gamma_t + \omega_u l_{ut} + \zeta_u m_t$$

US non-traded endowment shock:

- does not affect global demand for goods
- ► affect global finance through US exchange rate

## commodity shock $z_t$



Figure: responses to a permanent innovation in the commodity shock  $z_t$ .

## **US** non-traded output shock $x_{ut}$



Figure: responses to a permanent innovation in the US non-traded output shock  $x_{ut}$ .

## risk-aversion shock $\gamma_t$



Figure: responses to a transitory risk-aversion shock  $\gamma_t$ .

# dollar and commodity factors

Let 
$$E_L = [\underline{e}, \text{med}\{e\}]$$
 and  $E_H = [\text{med}\{e\}, \overline{e}]$ 

▶ let  $e_h$  and  $e_l$  be the averages over  $E_H$  and  $E_L$ 

Define  $\Delta s_{i,t+1} \equiv \Delta q_{i,t+1} - \Delta q_{u,t+1}$  and define the dollar and commodity factors as

$$d_{t+1} \equiv \int_{\underline{e}}^{\overline{e}} \Delta s_{i,t+1} di$$
 $f_{t+1} \equiv \int_{E_H} \Delta s_{i,t+1} di - \int_{E_L} \Delta s_{i,t+1} di$ 

## factor construction

## Proposition 2

Take limits  $\alpha \longrightarrow 1$ ,  $\chi \longrightarrow 0$ ,  $(\chi \Gamma_z, \chi \Gamma_x) \longrightarrow (\chi_z, \chi_x) > 0$ . Define  $\mathcal{D}\gamma_{t+1} \equiv \Delta \gamma_{t+1} - \Delta \gamma_t$ . The dollar and commodity factors have the following composition (here  $\psi \propto e - e_u$ ):

$$d_{t+1} = (e_u - e) \cdot \Delta z_{t+1} + \Delta z_{u,t+1} + 2l_u \cdot \mathcal{D}\gamma_{t+1}$$
  
$$f_{t+1} = (e_h - e_l) \cdot \Delta z_{t+1} - \psi(e_h - e_l) \cdot \mathcal{D}\gamma_{t+1}$$

- ▶ dollar factor decreases in  $\Delta z_{t+1}$  as long as  $e > e_u$
- ▶ dollar factor increases in  $\mathcal{D}\gamma_{t+1}$ : priced dollar risk + flight to safety
- ightharpoonup commodity factor increases in  $\Delta z_{t+1}$  by construction
- lacktriangle commodity factor decreases in  $\mathcal{D}\gamma_{t+1}$  due to priced global productivity risk

## factor loadings

## Proposition 3

Bilateral exchange rate appreciation against the dollar has the form

$$\Delta s_{i,t+1} = \beta_{i,d} \cdot d_{t+1} + \beta_{i,f} \cdot f_{t+1} + \underbrace{\epsilon_{i,t+1} - \tau l_u(\mathbf{m}_i - \mathbf{m}) \cdot \mathcal{D}\gamma_{t+1}}_{\text{residual}}$$

Here factor loadings are

$$\beta_{i,d} = \tau(m_i - m) - 1$$
$$\beta_{i,f} = \frac{e_i - e}{e_h - e_l}$$

## empirical model

Bilateral exchange rate appreciation against the USD  $\Delta s_{i,t+1}$  regressed on the factors

$$\Delta s_{i,t+1} = \beta_{i,d} d_{t+1} + \beta_{i,f} f_{t+1} + \epsilon_{i,t+1}$$

Verdelhan (2018) shows that two factors explain more than 50% of cross-sectional variation

- ▶ uses dollar factor and carry factor (based on interest differentials)
- we replace carry factor with a commodity factor, same explanatory power
- ightharpoonup correlation between carry and commodity factors  $\sim 0.5$

|                            | extended sample | baseline sample | Verdelhan (2018) sample |
|----------------------------|-----------------|-----------------|-------------------------|
| $R^2$ : dollar + commodity | 0.456           | 0.507           | 0.522                   |
| $R^2$ : two PC             | 0.558           | 0.600           | 0.619                   |
|                            |                 |                 |                         |

dollar factor loadings explanatory power

## cross-sectional determinants

Factor loadings regressed on the cross-sectional measures:

- ▶ USD portfolio assets  $u_i$  (normalized by total assets)
- ightharpoonup share of raw materials in exports  $f_i$

Two specifications:

$$\beta_{i,d} = \theta_{d,u}u_i + \theta_{d,r}f_i + \epsilon_{d,i}$$
  
$$\beta_{i,f} = \theta_{f,u}u_i + \theta_{f,r}f_i + \epsilon_{f,i}$$

## regression results

Table: cross-sectional regressions of  $\beta_{i,d}$  and  $\beta_{i,f}$  on USD assets and raw materials

|                    | $\beta_{i,d}$ | $\beta_{i,f}$ |
|--------------------|---------------|---------------|
| USD assets         | -0.22         | 0.64          |
|                    | [-2.95]       | [3.90]        |
| Raw material share | 0.54          | 1.65          |
|                    | [1.46]        | [2.03]        |
| Constant           | 0.85          | -0.41         |
|                    | [7.95]        | [-1.76]       |
| N                  | 26            | 26            |
| $R^2$              | 0.27          | 0.61          |

why USD enters commodity loadings targeting slopes in the model

## factor loadings in cross-section



(a) regression of  $\beta_{i,d}$  on USD assets (controlling for raw material share)



(b) regression of  $\beta_{i,f}$  on raw material share (controlling for USD assets)



## calibration

|                                                                                            | model                      | data  |                                     | model        | Ċ   |
|--------------------------------------------------------------------------------------------|----------------------------|-------|-------------------------------------|--------------|-----|
| $\operatorname{std}(\Delta y_{t+1})$                                                       | 1.96%                      | 1.33% | $\operatorname{std}(d_{t+1})$       | 3.50         | 2   |
| $\operatorname{std}(\Delta c_{t+1})$                                                       | 1.28%                      | 1.47% | $\operatorname{std}(f_{t+1})$       | 0.60         | 2   |
| $\operatorname{std}(\Delta s_{t+1})$                                                       | 4.03%                      | 4.82% | $\partial \beta_{i,f}/\partial r_i$ | 2.82         | 1   |
| $\operatorname{corr}(\Delta s_{t+1}, \Delta y_{t+1})$                                      | 0.14                       | 0.09  | $\partial \beta_{i,d}/\partial u_i$ | 0.19         | (   |
| $\operatorname{corr}(\Delta s_{t+1}, \Delta c_{t+1})$                                      | 0.03                       | 0.03  | factor s                            | slope target | ts. |
| $\operatorname{corr}(\Delta s_{t+1}, \Delta c_{t+1} - \Delta c_{t+1}^{\operatorname{US}})$ | -0.02                      | 0.07  |                                     |              |     |
| $\operatorname{corr}(\Delta s_{t+1}, \Delta s_t)$                                          | 0.09                       | 0.21  |                                     |              |     |
| $\operatorname{corr}(\Delta y_{t+1}, \Delta y_{t+1}^{\operatorname{US}})$                  | 0.50                       | 0.71  |                                     |              |     |
| US NFA/GDP                                                                                 | -1.11                      | -1.00 |                                     |              |     |
| macro calibration targets (s                                                               | $s_t \equiv q_t - q_t^{U}$ | JS).  |                                     |              |     |

data

2.202.371.650.22

# variance decomposition of factors and exchange rates

Table: variance decomposition (shares of  $R^2$ )

|                                   | $z_t$ | $x_{ut}$ | $\gamma_t$ | $x_{it}$ |
|-----------------------------------|-------|----------|------------|----------|
| commodity factor $f_{t+1}$        | 0.09  | 0.00     | 0.91       |          |
| dollar factor $d_{t+1}$           | 0.01  | 0.06     | 0.93       |          |
| high <i>e<sub>i</sub></i> country | 0.04  | 0.03     | 0.89       | 0.03     |
| $low e_i$ country                 | 0.06  | 0.47     | 0.00       | 0.46     |
| high $m_i$ country                | 0.00  | 0.00     | 0.60       | 0.40     |
| low $m_i$ country                 | 0.02  | 0.08     | 0.88       | 0.02     |

#### conclusion

#### Macroeconomic model:

- ▶ output + financial shocks → dollar and commodity factors
- lacktriangle heterogeneity in exposure to commodities and dollar assets  $\mapsto$  loadings on factors

Replicate factors and loadings in the model

Decompose variation in exchange rates into fundamental sources

#### references I

- Chahrour, R., V. Cormun, P. De Leo, P. A. Guerrón-Quintana, and R. Valchev (2024). Exchange rate disconnect revisited. Technical report, National Bureau of Economic Research.
- Engel, C. and S. P. Y. Wu (2024). Exchange rate models are better than you think, and why they didn't work in the old days. Technical report, National Bureau of Economic Research.
- Gabaix, X. and M. Maggiori (2015). International liquidity and exchange rate dynamics. *The Quarterly Journal of Economics* 130(3), 1369–1420.
- Hassan, T. A. (2013). Country size, currency unions, and international asset returns. *The Journal of Finance* 68(6), 2269–2308.
- Itskhoki, O. and D. Mukhin (2021). Exchange rate disconnect in general equilibrium. *Journal of Political Economy* 129(8), 2183–2232.

#### references II

- Itskhoki, O. and D. Mukhin (2025). What drives the exchange rate? *IMF Economic Review 73*(1), 86–117.
- Kekre, R. and M. Lenel (2024). Exchange rates, natural rates, and the price of risk. *University of Chicago, Becker Friedman Institute for Economics Working Paper* (2024-114).
- Koijen, R. S. and M. Yogo (2020). Exchange rates and asset prices in a global demand system. Technical report, National Bureau of Economic Research.
- Lettau, M., M. Maggiori, and M. Weber (2014). Conditional risk premia in currency markets and other asset classes. *Journal of Financial Economics* 114(2), 197–225.
- Lustig, H. and R. J. Richmond (2020). Gravity in the exchange rate factor structure. *The Review of Financial Studies* 33(8), 3492–3540.

#### references III

- Lustig, H., N. Roussanov, and A. Verdelhan (2011). Common risk factors in currency markets. *The Review of Financial Studies* 24(11), 3731–3777.
- Lustig, H., N. Roussanov, and A. Verdelhan (2014). Countercyclical currency risk premia. *Journal of Financial Economics* 111(3), 527–553.
- Ready, R., N. Roussanov, and C. Ward (2017). Commodity trade and the carry trade: A tale of two countries. *The Journal of Finance* 72(6), 2629–2684.
- Richmond, R. J. (2019). Trade network centrality and currency risk premia. *The Journal of Finance* 74(3), 1315–1361.
- Verdelhan, A. (2018). The share of systematic variation in bilateral exchange rates. *The Journal of Finance* 73(1), 375–418.

## Euler equations and Backus-Smith

Consumption and exchange rate are related:

$$c_{it} = \frac{1-\alpha}{\alpha}q_{it} + x_{it}$$

Backus-Smith covariance:

$$\mathbb{C}[c_{it}-c_{ut},q_{it}-q_{ut}] = \frac{1-\alpha}{\alpha}\mathbb{V}[q_{it}-q_{ut}] + \mathbb{C}[q_{it}-q_{ut},x_{it}-x_{ut}]$$

Euler equation leads to

$$r_{it} = \frac{1-\alpha}{\alpha} \mathbb{E}_t[\Delta q_{i,t+1}] + \mathbb{E}_t[\Delta x_{i,t+1}]$$



# commodity factor loadings





## dollar factor loadings





## explanatory power



## factor loadings in cross-section (cross-partials)



(a) regression of  $\beta_{i,f}$  on USD assets (controlling for raw material share)



(b) regression of  $\beta_{i,d}$  on raw material share (controlling for USD assets)

# estimating a two-factor model

Imagine a misspecified model

$$\Delta s_{i,t+1} = \tilde{\beta}_{i,d} \cdot d_{t+1} + \tilde{\beta}_{f,i} \cdot f_{t+1} + \tilde{\epsilon}_{i,t+1}$$

Misspecification is in assuming  $\mathbb{E}[\tilde{\epsilon}_{i,t+1}d_{t+1}] = \mathbb{E}[\tilde{\epsilon}_{i,t+1}f_{t+1}] = 0$ .

#### Proposition 4

Take the population coefficients  $(\tilde{\beta}_{i,f}, \tilde{\beta}_{i,d})$  under the misspecified model. With  $\mathbb{C}[e_i, m_i] = 0$ ,

- ▶ the population coefficient  $\tilde{\beta}_{i,f}$  is increasing in  $e_i e$  and decreasing in  $m_i m$ ;
- ▶ the population coefficient  $\tilde{\beta}_{i,d}$  increases in  $m_i m$ ;
- ▶ the slope  $\partial \tilde{\beta}_{i,d} / \partial (m_i m)$  is biased downwards compared to that of the true coefficient  $\beta_{i,d}$ .