≜SPM

Group Analysis

J. Daunizea

Institute of Empirical Research in Economics, Zurich, Switzerland
Brain and Spine Institute, Paris, France

SPM Course Edinburgh, April 2011

□ Hierarchical models □ Mixed effect models □ Random effect (RFX) models □ Components of variance ... all the same ... all alluding to multiple sources of variation (in contrast to fixed effects)

Overview *SPM
□ Group analysis: fixed versus random effects □ Two RFX methods:
arower and emclency, summary

Overview

≜SPM

☐ Group analysis: fixed versus random effects

☐ Two RFX methods:

➤ Holmes & Friston (HF) approach

> non-sphericity modelling

□ Examples

☐ Power and efficiency: summary

- ■Two sources of variation
 - > measurement errors
 - > response magnitude (over subjects)
- ☐ Response magnitude is *random*
 - > each subject/session has random magnitude
 - > but note, population mean magnitude is *fixed*

Grand GLM approach (model all subjects at once) Good: max dof simple model Bad: assumes common variance over subjects at each voxel

FFX versus RFX *SPM	
□FFX isn't "wrong", just usually isn't of interest	
□Summary: ➤ FFX inference: "I can see this effect in this cohort" ➤ RFX inference: "If I were to sample a new cohort from the same population I would get the same result"	
Overview [±] SPM	
□ Group analysis: fixed versus random effects □ Two RFX methods: ➤ Holmes & Friston (HF) approach ➤ non-sphericity modelling □ Examples □ Power and efficiency: summary	
HF approach: basics *SPM	
☐ "Summary statistics" approach	
☐ 1- or 2- sample <i>t</i> test on contrast image >intra-subject variance not used	
□ Procedure: > Fit GLM for each subject i and compute contrast estimate $c\hat{\beta}_i$ (first level) > Analyze $\left\{c\hat{\beta}_i\right\}_{i=1,\dots,n}$ (second level)	

HF approach: assumptions □ Distribution ➤ Normality ➤ Independent subjects □ Homogeneous variance: ➤ Residual error the same for all subjects ➤ Balanced designs

HF approach: robustness (III) □ In practice, validity and efficiency are excellent ➤ For 1-sample case, HF impossible to break □ In practice, validity and efficiency are excellent ► For 1-sample case, HF impossible to break □ In practice, validity and efficiency are excellent □ In practice, validity and effici

Non sphericity modelling: basics 1 effect per subject Use Holmes & Friston approach 1 effects per subject Can't use HF, must use non sphericity modelling Covariance components and ReML (c.f. "Bayesian inference" talk)

Overview □ Group analysis: fixed versus random effects □ Two RFX methods: ➤ Holmes & Friston (HF) approach ➤ non-sphericity modelling □ Examples □ Power and efficiency: summary □

≜SPM Example 2: data □Stimuli: ➤ Auditory presentation (SOA = 4 sec) ▶250 scans per subject, block design ➤Words: Motion Sound Visual Action "jump" "click" "pink" "turn" ☐ Subjects: ➤12 controls □ Question: >What regions are affected by the semantic content of the words?

Overview *SPM	
□ Group analysis: fixed versus random effects □ Two RFX methods: ➤ Holmes & Friston (HF) approach ➤ non-sphericity modelling □ Examples □ Power and efficiency: summary	
Power & efficiency: summary (II) *SPM	
 □ Efficiency = 1/ [estimator variance] ➤ goes up with n (number of subjects) ➤ c.f. "experimental design" talk 	
 Power = chance of detecting an effect ⇒ goes up with degrees of freedom (dof = n-p). ⇒ I reject the null when P<0.05. Is my risk of false positive rate (FPR) controlled at 5%? Well, not exactly, but valid control: FPR≤α. This is potentially conservative. 	
Bibliography: Bibliography: Statistical Parametric Mapping: The Analysis of Functional Brain Images. Elsevier, 2007.	
☐ Generalisability, Random Effects & Population Inference. Holmes & Friston, NeuroImage,1999.	
Classical and Bayesian inference in neuroimaging: theory. Friston et al., NeuroImage, 2002. Classical and Bayesian inference in neuroimaging: variance component estimation in fMRI.	
Friston et al., Neurolmage, 2002. Simple group fMRI modeling and inference. Mumford & Nichols, Neurolmage, 2009.	

With many thanks to G. Flandin, J.-B. Poline and Tom Nichols for slides.