Lecture 4: Data Encoding (2)

Node-Link Diagrams

- * work for network and trees
- * suited for path-related tasks
 - * Could also see neighbourhood, but if you have lots of intersecting nodes and a very dense note-link diagrams, it's hidden by all these edges that across each other
- * Three Layouts:
 - * Free: freely position the nodes
 - * **Styled**: position all the nodes along the circle or along any other kind of helper structure that you must in the background
 - * Fixed: can't control the position of the nodes

* Force Directed Layouts

- * Physics model
 - * edges = springs, vertices = repulsive magnets
- * Notes that have connections attract each other, notes that do not have connections repulse each other
- * Aim: minimisation of the overall summed-up forces
- * Downsides: High running time
- * Over-plotting Problem: edge clutter
 - * Solution: hierarchical edge bundling:
 - * Make a bundle by applying a force between edges

Adjacency Matrix

- * work for networks and trees
- * Show the same information for node-link diagrams
- * Loops along diagonal
- * Direction can also be encoded
- * Well suited for neighbourhood-related tasks: if you want to know which characters are heavily interacting in the play, or which company have a heavily close relationship to each other
- * Not suited for path-related tasks
- * Like heat-map, which only makes sense if you apply a meaningful order to the rows and to the columns

Enclosure

- * work for trees
- * Scale well to large hierarchies
- * Draw the area, use the space within the area to encode the topology
- * It only works with Tree
- * Tree maps:
 - * Have some kind of hierarchy that drives the layout and it drives the partitioning of the space in the tree map
 - * Starting from the root node, subdivided by all children, and further subdivided along the hierarchy

Geospatial Data | Maps

- * Shape of items
- * Explicit spatial positions
 - * Points, lines, curves, surfaces, regions, volumes

Bipartite Graph

Network

Hypergraph

- * Not a core visualisation topic
 - * Important in cartography, computer graphics, CAD, ...
 - * Only interesting for visualisation if data is encoded

Map Projections

- * Cylinder projection
 - * Allow entire surface to be visible
 - * Mercator Projection
 - * Projection onto a cylinder wrapped around the globe
 - * Conformal map projection —> angles are preserved
 - * Pro: all lines of constant bearing are straight lines
 - * Constant compass heading for sailors
- * Plane projection
 - * Tangent point corresponds to center point in projection
- * Cone projection
 - * Lat = circles around projection, long = straight lines

Mecator Puzzle

* Traditional map used to teach geography have massive distortion of area distant from equator

Dot Map: a dot for every data Item

* it can lies, because it always look like a population map

Choropleth Map

- * Greek: chore = area, pleth = value
- * Area uniformly coloured/shaded proportional to attribute
- * It could be misleading, as larger areas appear more important.
 - * Solution:
 - * Proportional Symbol Map: Scale size of point by population

Isarithmic Map

* Color coding continuous phenomena

Cartograms

* take the size of the region and descale it to some attributes

Flow map:

* show network or graph data on top of a map

Tag Cloud / Word Cloud / Wordle

* Change word size/color by frequency