

DATA SCIENCE

PROJECT

VEHICLE IMAGE RECOGNITION

PROCEDURE:

- → small dataset images vehicles
- → preparing the data set
- → plots Jupyter Notebook
- → functional models
- → sequential model CNN

DATA SET:

PRELIMINARY CONSIDERATIONS:

- → Image recognition is an important area that enables image analysis and processing. Deep learning algorithms that can recognize complex patterns and structures in images play a central role here.
- → These algorithms use artificial neural networks that are based on the structure of the human brain and can independently recognize patterns and connections in large amounts of data.

AIM:

→ This project is about predicting images using neural models from the Tensorflow framework with sequential and functional models.

FUNCTIONAL MODEL:

> PREPARING DATASET:

```
from pathlib import Path
import os.path
from PIL import Image
import tensorflow as tf
Create a list with the filepaths for training and testing:
dloadpaths = Path('./data vehicle recognition/vehicles')
imagepaths = list(dloadpaths.rglob('**/*.jpg'))
```

• <u>creating a data frame:</u>

```
def images(imagepath):
       Create a DataFrame with the imagepath and the labels of the pictures
    ....
    labels = [str(imagepath[i]).split("\\")[-2] for i in range(len(imagepath))]
   # samples (pd.Series)
    imagepath = pd.Series(imagepath, name='Imagepath').astype(str)
    labels = pd.Series(labels, name='Label')
   # Concatenate imagepath and labels
    df01 = pd.concat([imagepath, labels], axis=1)
   # Shuffle the DataFrame and reset index
    df01 = df01.sample(frac=1,random state=42).reset index(drop = True)
    return df01
```

details about the data frame:

```
Dataframe with imagepaths:

df01 = images(imagepaths)

print(f'Number of pictures: {df01.shape[0]}\n')

print(f'Number of different labels: {len(df01.Label.unique())}\n')

print(f'Labels: {df01.Label.unique()}')

Number of pictures: 522

Number of different labels: 9

Labels: ['scooty' 'bike' 'car' 'boat' 'helicopter' 'truck' 'bus' 'plane' 'cycle']
```

	lmagepath	Label
0	data_vehicle_recognition\vehicles\scooty\images (15).jpg	scooty
1	data_vehicle_recognition\vehicles\scooty\images (20).jpg	scooty
2	data_vehicle_recognition\vehicles\bike\2Q (6).jpg	bike
3	data_vehicle_recognition\vehicles\car\images (10).jpg	car
4	data_vehicle_recognition\vehicles\boat\images (12).jpg	boat

• for a better training data set --> all categories with the same size:

```
list_indizes = []
for i in df01.Label.unique():
    if len(df01[df01.Label==f'{i}']) > 52:
        [list_indizes.append(i) for i in df01[df01.Label == f'{i}'].iloc[:(len(df01[df01.Label==f'{i}']) - 52),:].
        index]
```

original size

df01.Label.value counts() Label car 65 cycle 65 scooty 63 helicopter 57 bike 55 boat 55 truck 55 bus 55 plane 52

resized

```
df01.drop(index=list indizes,inplace=True)
 4
    df01.Label.value counts()
Label
truck
              52
bus
               52
plane
               52
bike
               52
boat
              52
helicopter
              52
car
              52
scooty
              52
cycle
              52
```

> PLOTS:

Shows some images from the dataset:

```
fig, axes = plt.subplots(nrows=3, ncols=10, figsize=(15, 7), subplot_kw={'xticks': [], 'yticks': []})
for i, ax in enumerate(axes.flat):
    ax.imshow(plt.imread(df01.Imagepath[i]))
    ax.set_title(df01.Label[i], fontsize = 12)

# distance between the pictures
plt.tight_layout(pad=2)
plt.show()
```


each category with 52 samples

<u>preparing images:</u>

```
TRAIN TEST SPLIT:
from sklearn.model_selection import train_test_split
train_df01, test_df01 = train_test_split(df01, test_size=0.2, random_state=42)
```

loading images with subset split to X-Train and X-Test (80 % / 20 %)

```
def create gen():
# X-Train
    train img = train gen.flow from dataframe(dataframe=train df01, x col="Imagepath", y col="Label",
            target size=(224, 224), color mode='rgb', class mode='categorical', batch size=32, shuffle=True,
            seed=0, subset='training', rotation range=30, zoom range=0.15, width shift range=0.2,
            height shift range=0.2, shear range=0.15, horizontal flip=True, fill mode="nearest")
# y-Train
    val img = train gen.flow from dataframe(dataframe=train df01, x col="Imagepath", y col="Label",
          target size=(224, 224), color mode='rgb', class mode='categorical', batch size=32, shuffle=True,
          seed=0, subset='validation', rotation range=30, zoom range=0.15, width shift range=0.2,
          height shift range=0.2, shear range=0.15, horizontal flip=True, fill mode="nearest")
# X-Test
    test img = test gen.flow from dataframe(dataframe=test df01, x col="Imagepath", y col="Label",
           target size=(224, 224), color mode='rgb', class mode='categorical', batch size=32, shuffle=False)
    return train gen, test gen, train img, val img, test img
```

• <u>creating 10 functional models:</u>

```
def get model(model):
    # Loading model:
    kwargs = {'input shape':(224, 224, 3),'include top':False,'weights':'imagenet','pooling':'avg'}
    pretrained model = model(**kwargs)
    pretrained model.trainable = False
    inputs = pretrained model.input
    x = tf.keras.layers.Dense(128, activation='relu')(pretrained model.output)
    x = tf.keras.layers.Dense(128, activation='relu')(x)
    outputs = tf.keras.layers.Dense(9, activation='softmax')(x)
    model = tf.keras.Model(inputs=inputs, outputs=outputs)
    model.compile(optimizer='adam',loss='categorical crossentropy',metrics=['accuracy'])
    return model
```

```
Dictionary with the models
models = {"ResNet101V2": {"model":tf.keras.applications.ResNet101V2, "perf":0},
          "Xception": {"model":tf.keras.applications.Xception, "perf":0},
          "InceptionResNetV2": {"model":tf.keras.applications.InceptionResNetV2, "perf":0},
          "DenseNet169": {"model":tf.keras.applications.DenseNet169, "perf":0},
          "DenseNet201": {"model":tf.keras.applications.DenseNet201, "perf":0},
          "NASNetMobile": {"model":tf.keras.applications.NASNetMobile, "perf":0},
          "MobileNet": {"model":tf.keras.applications.MobileNet, "perf":0},
          "MobileNetV2": {"model":tf.keras.applications.MobileNetV2, "perf":0},
          "ResNet152V2": {"model":tf.keras.applications.ResNet152V2, "perf":0},
          "VGG16": {"model":tf.keras.applications.VGG16, "perf":0}}
```

creating the generators and training 10 models with 3 epochs:

```
from time import perf_counter

train_gen,test_gen,train_img,val_img,test_img = create_gen()
```

```
# Fit the models
   for name, model in models.items():
 8
        # Get the model.
 9
        m = get model(model['model'])
10
        models[name]['model'] = m
11
12
        start = perf counter()
13
14
15
        # Fit the model
        history = m.fit(train img, validation data=val img,epochs=3,verbose=0)
16
17
        # Save the duration and the val accuracy
18
        duration = perf counter() - start
19
        duration = round(duration,2)
20
        models[name]['perf'] = duration
21
        print(f"{name:20} trained in {duration} sec")
22
23
24
        val acc = history.history['val accuracy']
        models[name]['val acc'] = [round(v,4) for v in val acc]
25
Found 300 validated image filenames belonging to 9 classes.
Found 74 validated image filenames belonging to 9 classes.
Found 94 validated image filenames belonging to 9 classes.
```

predicting the 10 models:

```
for name, model in models.items():
   # Predict the label of the test images
    pred = models[name]['model'].predict(test img)
    pred = np.argmax(pred,axis=1)
    # Map the label
    labels = (train img.class indices)
    labels = dict((v,k) for k,v in labels.items())
    pred = [labels[k] for k in pred]
    y_test = list(test_df01.Label)
    acc = accuracy score(y test,pred)
    models[name]['acc'] = round(acc,4)
```

data frame with the results:

```
models_result = []
for name, v in models.items():
    models_result.append([ name, models[name]['val_acc'][-1], models[name]['acc'], models[name]['perf']])

df_results = pd.DataFrame(models_result, columns = ['model','val_accuracy','accuracy','Training time (sec)'])
df_results.sort_values(by='accuracy', ascending=False, inplace=True)
df_results.reset_index(inplace=True,drop=True)
df_results
```

N.F	model	val_accuracy	accuracy	Training time (sec)
0	InceptionResNetV2	0.9189	0.9468	148.90
1	Xception	0.9189	0.9362	112.26
2	NASNetMobile	0.9459	0.9255	43.55
3	ResNet101V2	0.8919	0.8936	145.62
4	DenseNet201	0.9595	0.8936	142.68
5	MobileNet	0.8919	0.8936	21.23
6	ResNet152V2	0.9054	0.8936	241.04
7	DenseNet169	0.8514	0.8617	98.63
8	MobileNetV2	0.8649	0.8298	22.99
9	VGG18	0.6486	0.6277	257.95

accuracy after 3 epochs and training time:

training the best 3 models with 10 epochs:

```
MODELS:
model01 = get_model(tf.keras.applications.InceptionResNetV2)
model02 = get_model(tf.keras.applications.Xception)
model03 = get_model(tf.keras.applications.NASNetMobile)
```

```
TRAINING:
history01 = model01.fit(train_img,validation_data=val_img,epochs=10)
history02 = model02.fit(train_img,validation_data=val_img,epochs=10)
history03 = model03.fit(train_img,validation_data=val_img,epochs=10)
```

visualization accuracy and loss model "InceptionResNetV2":

visualization accuracy and loss model "Xception":

visualization accuracy and loss model "NASNetMobile":

predicting the labels of the test_images:

```
InceptionResNetV2:

predØ1 = model@1.predict(test_img)
predØ1 = np.argmax(predØ1,axis=1)

# Map the label
labels = (train_img.class_indices)
labels = dict((v,k) for k,v in labels.items())
predØ1 = [labels[k] for k in predØ1]

Xception:

predØ2 = model@2.predict(test_img)
predØ2 = np.argmax(predØ2,axis=1)

# Map the label
labels = (train_img.class_indices)
labels = dict((v,k) for k,v in labels.items())
predØ2 = [labels[k] for k in predØ2]
```

```
NASNetMobile:
pred03 = model03.predict(test_img)
pred03 = np.argmax(pred03,axis=1)

# Map the tabet
labels = (train_img.class_indices)
labels = dict((v,k) for k,v in labels.items())
pred03 = [labels[k] for k in pred03]
```

• <u>accuracies:</u>

```
Accuracy InceptionResNetV2:

3
4  y_test = list(test_df01.Label)
5  acc = accuracy_score(y_test,pred01)
6  print(f'--> Accuracy on the test set: {acc * 100:.2f}%')
--> Accuracy on the test set: 98.94%
```

```
Accuracy Xception:

y_test = list(test_df01.Label)
cc = accuracy_score(y_test,pred02)
print(f'--> Accuracy on the test set: {acc * 100:.2f}%')

--> Accuracy on the test set: 95.74%
```

```
2 Accuracy NASNetMobile:
3
4 y_test = list(test_df01.Label)
5 acc = accuracy_score(y_test,pred03)
6 print(f'--> Accuracy on the test set: {acc * 100:.2f}%')
--> Accuracy on the test set: 94.68%
```

classification reports:

```
Classification Report InceptionResNetV2:
 3
    class report = classification report(y test, pred01, zero division=1)
    print(class report)
              precision
                           recall f1-score
                                               support
        bike
                   1.00
                             1.00
                                        1.00
                                                    13
        boat
                   1.00
                             1.00
                                        1.00
                                                    13
         bus
                   1.00
                             1.00
                                        1.00
                                                    11
                   1.00
                             1.00
                                        1.00
                                                     8
         car
       cycle
                   1.00
                             1.00
                                        1.00
                                                    10
  helicopter
                   1.00
                             0.91
                                        0.95
                                                    11
       plane
                   0.93
                             1.00
                                        0.97
                                                    14
      scooty
                   1.00
                             1.00
                                        1.00
                                                     5
       truck
                   1.00
                             1.00
                                        1.00
                                        0.99
                                                    94
    accuracy
                   0.99
                             0.99
   macro avg
                                        0.99
                                                    94
weighted avg
                   0.99
                             0.99
                                        0.99
                                                    94
```

```
Classification Report Xception:
 3
    class report = classification report(y test, pred02, zero division=1)
    print(class report)
              precision
                           recall f1-score
                                               support
        bike
                   1.00
                             0.85
                                        0.92
                                                    13
        boat
                   1.00
                             1.00
                                        1.00
                                                    13
         bus
                   0.92
                             1.00
                                        0.96
                                                    11
                                                     8
                   1.00
         car
                             1.00
                                        1.00
       cycle
                   1.00
                             1.00
                                        1.00
                                                    10
  helicopter
                   1.00
                             0.91
                                        0.95
                                                    11
       plane
                   0.93
                             1.00
                                        0.97
                                                    14
      scooty
                                                     9
                   0.82
                             1.00
                                        0.90
                                                     5
       truck
                   1.00
                             0.80
                                        0.89
                                        0.96
                                                    94
    accuracy
                   0.96
                             0.95
                                        0.95
                                                    94
   macro avg
weighted avg
                             0.96
                                        0.96
                   0.96
                                                    94
```

```
Classification Report NASNetMobile:
 3
    class report = classification report(y test, pred03, zero division=1)
    print(class report)
              precision
                            recall
                                   f1-score
                                               support
        bike
                   1.00
                              1.00
                                        1.00
                                                    13
        boat
                   0.93
                              1.00
                                        0.96
                                                    13
         bus
                   0.91
                              0.91
                                        0.91
                                                    11
         car
                   1.00
                              1.00
                                        1.00
                                                     8
       cycle
                   1.00
                              1.00
                                        1.00
                                                    10
  helicopter
                   0.83
                              0.91
                                        0.87
                                                    11
       plane
                   1.00
                              0.93
                                        0.96
                                                     14
      scooty
                   1.00
                              0.89
                                        0.94
       truck
                                                      5
                   0.80
                              0.80
                                        0.80
                                        0.95
                                                    94
    accuracy
   macro avg
                   0.94
                              0.94
                                        0.94
                                                    94
weighted avg
                   0.95
                              0.95
                                        0.95
                                                    94
```

confusion matrix "InceptionResNetV2":

Normalized Confusion Matrix InceptionResNetV2									
scooty	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
bus	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
plane	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
boat	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
car	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
cycle	0.00	0.00	0.00	0.00	0.00	0.91	0.09	0.00	0.00
truck	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
bike	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
helicopter	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00
	scooty	bus	plane	boat	car	cycle	truck	bike	helicopter

• confusion matrix "Xception":

Normalized Confusion Matrix Xception									
scooty	0.85	0.00	0.00	0.00	0.00	0.00	0.00	0.15	0.00
bus	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
plane	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00
boat	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
car	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
cycle	0.00	0.00	0.00	0.00	0.00	0.91	0.09	0.00	0.00
truck	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00	0.00
bike	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00	0.00
helicopter	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.00	0.80
	scooty	bus	plane	boat	car	cycle	truck	bike	helicopter

confusion matrix "NASNetMobile":

Normalized Confusion Matrix NASNetMobile									
scooty	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
bus	0.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
plane	0.00	0.00	0.91	0.00	0.00	0.00	0.00	0.00	0.09
boat	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00	0.00
car	0.00	0.00	0.00	0.00	1.00	0.00	0.00	0.00	0.00
cycle	0.00	0.09	0.00	0.00	0.00	0.91	0.00	0.00	0.00
truck	0.00	0.00	0.00	0.00	0.00	0.07	0.93	0.00	0.00
bike	0.00	0.00	0.00	0.00	0.00	0.11	0.00	0.89	0.00
helicopter	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.00	0.80
	scooty	bus	plane	boat	car	cycle	truck	bike	helicopter

• some pictures of the dataset with their predicted labels - InceptionResNetV2:

True: helicopter Predicted: helicopter

True: helicopter Predicted: plane

True: plane Predicted: plane

True: car Predicted: car

True: plane Predicted: plane

True: car Predicted: car

True: bike Predicted: bike

True: bike Predicted: bike

True: truck
Predicted: truck

True: helicopter Predicted: helicopter

• some pictures of the dataset with their predicted labels - Xception:

True: helicopter Predicted: helicopter

True: helicopter Predicted: plane

True: plane Predicted: plane

True: car Predicted: car

True: plane Predicted: plane

True: car Predicted: car

True: bike Predicted: bike

True: bike Predicted: bike

True: truck
Predicted: truck

True: helicopter Predicted: helicopter

• some pictures of the dataset with their predicted labels - NASNetMobile:

True: helicopter Predicted: helicopter

True: helicopter Predicted: helicopter

True: plane Predicted: plane

True: car Predicted: car

True: plane Predicted: plane

True: car Predicted: car

True: bike Predicted: bike

True: bike Predicted: bike

True: truck
Predicted: truck

True: helicopter Predicted: helicopter

SEQUENTIAL MODEL:

> PREPARING DATASET:

```
preparing filenames:
import os

for dirname,_, filenames in os.walk('./data_vehicle_recognition/'):
    for filename in filenames:
        print(os.path.join(dirname, filename))
```

```
PREPARING PATH:
root_dir = './data_vehicle_recognition/vehicles/'
```

• data, labels and labelnames:

```
PREPARING DATA, LABELS AND LABELNAMES IN LISTS
# Reading images
import cv2
data = []
labels = []
labelnames = []
for label in os.listdir(root dir):
    path = './data vehicle recognition/vehicles/{0}/'.format(label)
    folder data = os.listdir(path)
    for image path in folder data:
        img = cv2.imread(path + image path)
        img = cv2.resize(img, (32, 32))
        data.append(img)
        labels.append(label)
        if not label in labelnames:
            labelnames.append(label)
```

transforming in a numpy array:

```
TRANSFORMING IN A NUMPY ARRAY:

data = np.array(data)
labels = np.array(labels)
```

```
1 data.shape, labels.shape
((526, 32, 32, 3), (526,))
```

```
1 labelnames

['bike',
 'boat',
 'bus',
 'car',
 'cycle',
 'helicopter',
 'plane',
 'scooty',
 'truck']
```

encoding labels and shuffle data + labels:

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
labels = le.fit_transform(labels)
```

```
MAKE CATEGORIES:
from tensorflow.keras.utils import to_categorical
labels = to_categorical(labels)
```

2 data.shape, labels.shape ((526, 32, 32, 3), (526, 9))

```
SHUFFLE DATA AND LABELS:

new = np.arange(526)

np.random.shuffle(new)

data = data[new]

labels = labels[new]
```

convolutional neural network model:

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=33)
```

```
CREATING MODEL:
from tensorflow.keras.layers import Dense, Conv2D, Flatten, MaxPool2D, Dropout, LeakyReLU
from tensorflow.keras.models import Sequential
model = Sequential([
    Conv2D(32, (3, 3), padding="same", activation='relu', input shape=(32, 32, 3)),
    Conv2D(32, (3, 3), activation='relu'),
    MaxPool2D((2, 2)),
    Conv2D(64, (3, 3), padding="same", activation=LeakyReLU(0.001)),
    Conv2D(64, (3, 3), activation=LeakyReLU(0.001)),
    MaxPool2D((2, 2)),
    Dropout(0.25),
    Flatten(),
    Dense(128, activation='relu'),
    Dropout(0.5),
    Dense(9, activation="softmax")])
```

```
MODEL COMPLING:
```

model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])

TRAINING WITH 100 EPOCHS:

history = model.fit(X_train, y_train, epochs=100, validation_split=0.25, batch_size=32)

2 3 4 5	ACCURACY AND LOSS IN A DATAFRAME: history_df = pd.DataFrame(history.historhistory_df.tail(5)									
53	loss	accuracy	val_loss	val_accuracy						
95	0.042132	0.990476	3.070535	0.466667						
96	0.036421	0.980952	3.119775	0.457143						
97	0.059176	0.990476	3.069177	0.457143						
98	0.016064	0.993651	3.328260	0.495238						
99	0.044331	0.980952	2.922155	0.485714						

visualization accuracy and loss model "CNN":

accuracy and prediction:

• transforming y test:

```
TRANSFORMING y_test:
liste_indizes = []

for i in y_test:
    a = 0
    for j in i:
        if j == 1:
            liste_indizes.append(a)
        a += 1
```

some pictures of the dataset with their predicted labels:

CONCLUSION:

	MODEL	ACCURACY	TRAINING TIME
best Results	InceptionResNetV2	98,94%	150 sec - 10 epochs
minimally worse	Xception	95,74%	110 sec - 10 epochs
	NASNetMobile	94,66%	40 sec - 10 epochs
satisfying results	Conv2D(CNN)	62,26%	60 sec - 100 epochs

OVERALL CONCLUSION:

- → A manageable number of images allowed the data set to be processed and analyzed well
- → Very good results could be achieved with the functional model
- → Satisfying results with the sequential model CNN
- → If high accuracy is required, the functional models are clearly recommended
- → For large data sets, a preselection can be made using the sequential model in order to avoid longer computing times