Calcolo Numerico

Metodi per equazioni e sistemi non lineari

Simone Rebegoldi

Corso di Laurea in Informatica Dipartimento di Scienze Fisiche, Informatiche e Matematiche

Optimization Algorithms and Software for Inverse problemS

www.oasis.unimore.it

1. Metodi per equazioni non lineari

Equazioni non lineari

Definizione

Sia $f:[a,b]\to\mathbb{R}$ una funzione. Il punto $x_*\in[a,b]$ si dice radice (o zero) della funzione f se

$$f(x_*) = 0.$$

Teorema di esistenza degli zeri

Sia $f:[a,b]\to\mathbb{R}$ una funzione continua tale che

$$f(a)f(b) < 0.$$

Allora esiste almeno uno zero di f nell'intervallo [a,b], ossia esiste $x_* \in [a,b]$ tale che

$$f(x_*) = 0.$$

• Le ipotesi del teorema precedente non garantiscono l'unicità della soluzione. Una condizione sufficiente per avere l'unicità è, ad esempio, la stretta monotonia della funzione

Condizionamento del problema della ricerca degli zeri di una funzione

Problema del condizionamento

Sia x_* una radice di $f:[a,b]\to\mathbb{R}$, ossia $f(x_*)=0$.

Sia \tilde{x} una soluzione del problema perturbato $f(x) = \delta$ con δ "piccolo".

Sotto quali condizioni possiamo concludere che $|x_* - \tilde{x}|$ è altrettanto "piccolo"?

 Per semplicità, assumiamo che la funzione f di cui vogliamo calcolare le radici sia derivabile. Dalla definizione di derivata, si ha

$$f'(x_*) = \lim_{x \to x_*} \frac{f(x) - f(x_*)}{x - x_*}.$$

Dunque, in un intorno di x_* , si può operare la seguente approssimazione

$$f'(x_*) \simeq \frac{f(x) - f(x_*)}{x - x_*}.$$
 (1)

 \bullet Valutando l'approssimazione (1) in $x=\tilde{x}$ e passando ai valori assoluti, si ha

$$|x_* - \tilde{x}| \simeq \frac{|f(x_*) - f(\tilde{x})|}{|f'(x_*)|} = \frac{\delta}{|f'(x_*)|}.$$

 \Rightarrow Se $f'(x_*) \simeq 0$, allora la soluzione \tilde{x} del problema perturbato potrebbe essere distante dalla radice x_* , ossia $|\tilde{x}-x_*|$ potrebbe essere grande, anche se δ è piccolo.

Condizionamento del problema della ricerca degli zeri di una funzione

- Il problema f(x) = 0 è mal condizionato quando $f'(x_*) \simeq 0$.
- La condizione $f'(x_*) \simeq 0$ implica che il grafico di f risulti "appiattito" sull'asse orizzontale in un intorno di x_* .

Problema ben condizionato

Problema mal condizionato

Metodi iterativi per equazioni non lineari

• Se f è non lineare, ovvero f(x) non è esprimibile come combinazione lineare delle componenti di x, allora gli zeri di f non sono generalmente esprimibili in forma chiusa.

Esempio: $f(x)=xe^x$ ammette almeno una soluzione in [-1,1], ma non esiste una formula analitica per calcolarla.

- Di conseguenza, è necessario fare ricorso ai metodi iterativi.
- Studieremo i seguenti metodi:
 - 1. Metodo di bisezione
 - 2. Metodo di Newton
 - 3. Metodo delle secanti
 - 4. Metodo del punto fisso (o delle approssimazioni successive).

Dati

Intervallo di ricerca [a, b].

Ipotesi

Funzione continua che assume segno discorde agli estremi dell'intervallo: f(a)f(b)<0.

Descrizione

Si applica ripetutamente il teorema di esistenza degli zeri, generando una successione di intervalli di ampiezza decrescente i cui punti medi convergono ad uno zero di f.

Passo 1

- Si calcola il punto medio c_1 dell'intervallo di ricerca $[a_1, b_1] \equiv [a, b]$.
- Si definisce il nuovo intervallo di ricerca $[a_2,b_2]$ come quello tra i due sottointervalli $[a_1,c_1]$, $[c_1,b_1]$ in cui sono soddisfatte le ipotesi del teorema di esistenza degli zeri:

$$[a_2,b_2] = \begin{cases} [a_1,c_1], & \text{se } f(c_1)f(a_1) < 0 \\ [c_1,b_1], & \text{se } f(c_1)f(b_1) < 0. \end{cases}$$

Passo 2

- Si calcola il punto medio c_2 dell'intervallo di ricerca $[a_2, b_2]$.
- Si definisce il nuovo intervallo di ricerca $[a_3,b_3]$ come quello tra i due sottointervalli $[a_2,c_2]$, $[c_2,b_2]$ in cui sono soddisfatte le ipotesi del teorema di esistenza degli zeri:

$$[a_3,b_3] = \begin{cases} [a_2,c_2], & \text{se } f(c_2)f(a_2) < 0 \\ [c_2,b_2], & \text{se } f(c_2)f(b_2) < 0. \end{cases}$$

Passo k

- Si calcola il punto medio c_k dell'intervallo di ricerca $[a_k, b_k]$.
- Si definisce il nuovo intervallo di ricerca $[a_{k+1},b_{k+1}]$ come quello tra i due sottointervalli $[a_k,c_k]$, $[c_k,b_k]$ in cui sono soddisfatte le ipotesi del teorema di esistenza degli zeri:

$$[a_{k+1},b_{k+1}] = \begin{cases} [a_k,c_k], & \text{se } f(c_k)f(a_k) < 0 \\ [c_k,b_k], & \text{se } f(c_k)f(b_k) < 0. \end{cases}$$

Proprietà degli intervalli di ricerca

- 1. Per ogni k, le ipotesi del teorema di esistenza degli zeri sono verificate, dunque esiste almeno una radice di f in $[a_k, b_k]$.
- 2. Per ogni k, l'ampiezza del k-esimo intervallo di ricerca è data da

$$b_k - a_k = \frac{b - a}{2^{k-1}}.$$

Teorema (convergenza del metodo di bisezione)

Sia $x_* \in [a, b]$ uno zero di f.

La successione dei punti medi $\{c_k\}_{k\in\mathbb{N}}$ generata dal metodo di bisezione converge ad uno zero di f nell'intervallo [a,b] e soddisfa la disuguaglianza

$$|c_k - x_*| \le \frac{b-a}{2^{k-1}}, \quad k = 0, 1, \dots$$

Dimostrazione

Per costruzione $f(a_k)f(b_k)<0$ per ogni k, quindi $x_*\in[a_k,b_k]$ per ogni k. Di conseguenza c_k e x_* stanno nello stesso intervallo, il che implica che

$$|c_k - x_*| \le b_k - a_k = \frac{b-a}{2^{k-1}} \underset{k \to \infty}{\longrightarrow} 0.$$

Per il teorema dei carabinieri, concludiamo che

$$\lim_{k \to \infty} |c_k - x_*| = 0,$$

dunque il metodo converge.

Osservazioni sulla convergenza

- La convergenza del metodo di bisezione è globale, nel senso che il metodo converge qualunque sia la scelta dell'intervallo [a,b] tale che f(a)f(b) < 0.
- Fissata una tolleranza au>0, è possibile ricavare il numero di passi sufficiente per ottenere un'approssimazione di uno zero di f entro la tolleranza au. Infatti

$$\frac{b-a}{2^{k-1}} \le \tau \quad \Leftrightarrow \quad k \ge 1 + \log_2\left(\frac{b-a}{\tau}\right).$$

Pertanto, usando il teorema precedente, per ogni $k \geq \lceil 1 + \log_2\left(\frac{b-a}{\tau}\right) \rceil$ si ha

$$|c_k - x_*| \le \frac{b-a}{2^{k-1}} \le \tau,$$

ossia c_k approssima uno zero di f entro la tolleranza τ .

Formula stabile per il calcolo del punto medio

Per calcolare il punto medio di [a, b], esistono due possibili algoritmi:

$$\frac{a+b}{2}$$
, $a+\frac{b-a}{2}$.

Operando in aritmetica finita, il primo algoritmo è meno stabile del secondo quando $a \in b$ sono vicini tra loro.

Esempio

Dati: $a=0.983,\,b=0.986,$ aritmetica decimale con 3 cifre di precisione e troncamento.

Primo algoritmo

Secondo algoritmo

$$\begin{split} fl(b-a) &= 0.3\ 10^{-2} \\ fl\left(\frac{b-a}{2}\right) &= 0.15\ 10^{-2} \\ fl\left(a+fl\left(\frac{b-a}{2}\right)\right) &= fl(0.983+0.0015) = fl(0.9845) = 0.984. \end{split}$$

Algoritmo basato sul metodo di bisezione

Complessità computazionale

- Si misura in numero di valutazioni di funzione per iterazione, ossia quante volte nella singola iterazione di un metodo viene calcolata la funzione f.
- Si assume infatti che il calcolo (approssimato!) di una qualsiasi funzione non lineare (trigonometrica, esponenziale,...) si ottenga con algoritmo numerico basato su una successione di operazioni aritmetiche fondamentali.
- Ogni valutazione di funzione equivale ad un "pacchetto" di operazioni fondamentali. Il costo computazionale di una iterazione si ottiene contando i "pacchetti" invece delle singole operazioni.
- Dunque il costo del metodo di bisezione è pari ad una valutazione di funzione per iterazione.

• Si può assumere che, per ogni k, valga l'approssimazione

$$|c_k - x_*| \simeq \frac{b-a}{2^{k-1}}.$$

Di conseguenza

$$|c_{k+1} - x_*| \simeq \frac{1}{2} |c_k - x_*|.$$

Dunque l'errore commesso si dimezza ad ogni iterazione.

- Ciò significa che, nel metodo di bisezione, si guadagna meno di una cifra decimale di precisione ogni 3 iterazioni.
- Quantifichiamo questo fatto con il concetto di ordine di convergenza.

Definizione

Sia $\{x_k\}_{k\in\mathbb{N}}\subseteq\mathbb{R}$ una successione che converge ad un punto $x_*\in\mathbb{R}$. Si dice che la successione $\{x_k\}_{k\in\mathbb{N}}$ ha ordine di convergenza p se

$$\lim_{k \to \infty} \frac{|x_{k+1} - x_*|}{|x_k - x_*|^p} = C,$$

per qualche $p \geq 1$, $C \in \mathbb{R}$.

Se la successione è generata da un metodo iterativo, si dice che il metodo ha ordine p.

- L'ordine di convergenza permette di valutare il guadagno che si ottiene in termini di riduzione dell'errore ad ogni iterazione di un metodo iterativo.
- ullet Se un metodo iterativo ha ordine p, applicando la definizione di limite, per k grande si ha

$$|x_{k+1} - x_*| \simeq C|x_k - x_*|^p$$
.

Dunque più p è grande, maggiore sarà la riduzione dell'errore da una iterazione all'altra.

Casi particolari

• Convergenza quadratica (p = 2)

$$\lim_{k \to \infty} \frac{|x_{k+1} - x_*|}{|x_k - x_*|^2} = C.$$

• Convergenza lineare $(p = 1, C \in (0, 1))$

$$\lim_{k \to \infty} \frac{|x_{k+1} - x_*|}{|x_k - x_*|} = C.$$

• Convergenza superlineare (p = 1, C = 0)

$$\lim_{k \to \infty} \frac{|x_{k+1} - x_*|}{|x_k - x_*|} = 0.$$

Ordine di convergenza del metodo di bisezione

Assumendo che valga l'approssimazione $|c_k - x_*| \simeq \frac{b-a}{2^k}$, si può mostrare che il metodo di bisezione ha convergenza lineare, infatti:

$$\lim_{k \to \infty} \frac{|c_{k+1} - x_*|}{|c_k - x_*|} \simeq \lim_{k \to \infty} \frac{\frac{b-a}{2k}}{\frac{b-a}{2k-1}} = \frac{1}{2}.$$

Vantaggi del metodo di bisezione

- Converge globalmente (qualunque sia la scelta dell'intervallo iniziale).
- Richiede come ipotesi soltanto la continuità della funzione.
- Ha una bassa complessità computazionale (1 valutazione di funzione per iterazione).

Svantaggi del metodo di bisezione

- Converge lentamente (linearmente) ad una soluzione
- Non si può estendere al caso di sistemi di equazioni non lineari.

Dati

Punto iniziale $x_0 \in [a, b]$.

Ipotesi

Funzione f derivabile in [a, b].

Descrizione

Al passo k, si considera la retta tangente al grafico di f nel punto $(x_k, f(x_k))$ e se ne calcola il punto di intersezione con l'asse delle ascisse, ottenendo così x_{k+1} .

Passo k

A partire dall'iterata corrente x_k , l'iterata successiva x_{k+1} viene calcolata come l'intersezione tra l'asse delle ascisse e la retta tangente al grafico di f nel punto $(x_k, f(x_k))$.

$$\begin{cases} y = 0 \\ y = f(x_k) + f'(x_k)(x - x_k) \end{cases} \Rightarrow x = x_k - \frac{f(x_k)}{f'(x_k)}.$$

Definizione del metodo

Dato il punto iniziale $x_0 \in [a,b]$, il metodo di Newton genera una successione di iterate $\{x_k\}_{k\in\mathbb{N}}$ della forma

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \text{ dove } f'(x_k) \neq 0.$$

Osservazioni sul metodo e sua complessità

- Affinché il metodo sia ben posto, deve essere $f'(x_k) \neq 0$ per ogni k. Dal punto di vista geometrico, ciò significa che non è possibile eseguire il passo di Newton se l'iterata corrente è un punto a tangente orizzontale.
- Sia data la formula di Taylor del prim'ordine con resto di Peano centrata in x_k :

$$f(x) = \underbrace{f(x_k) + f'(x_k)(x - x_k)}_{r(x) = \text{ retta tangente}} + o(|x - x_k|), \quad \forall \ x \in \mathbb{R}.$$

Tale formula implica che la retta tangente al grafico di f in $(x_k, f(x_k))$ è una "buona" approssimazione di f in un intorno I di x_k , ossia

$$f(x) \simeq f(x_k) + f'(x_k)(x - x_k), \quad \text{per } x, x_k \in I.$$

Quindi il passo k del metodo di Newton può essere interpretato come segue: l'equazione non lineare f(x)=0 (difficile) viene sostituita con l'equazione lineare $f(x_k)+f'(x_k)(x-x_k)=0$ (facile), ottenuta approssimando f con il suo sviluppo di Taylor centrato in x_k e troncato al primo ordine.

• Il costo computazionale per iterazione è di 2 valutazioni di funzione ($f(x_k)$ e $f'(x_k)$). Quindi il metodo di Newton è più costoso del metodo di bisezione.

Osservazione

Il metodo di Newton può oscillare senza convergere ad uno zero di f se il punto x_0 non è "sufficientemente vicino" alla soluzione del problema.

Controesempio

Sia $f(x) = x^3 - 2x + 2$ il cui unico zero è $x_* = -1.7693...$ e f'(x) = 3x - 2. Se prendiamo $x_0 = 0$, risulta che

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0 - \frac{2}{-2} = 1$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = 1 - \frac{1}{1} = \underbrace{0}_{x_0}$$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} = x_0 - \frac{f(x_0)}{f'(x_0)} = 1$$

Equazioni e sistemi non lineari

Dunque la successione $\{x_k\}_{k\in\mathbb{N}}$ oscilla tra 0 e 1 senza mai convergere a x_* .

Teorema di convergenza del metodo di Newton

Supponiamo che $f \in C^2([a,b])$, ossia f derivabile due volte con continuità. Sia $x_* \in (a,b)$ con $f(x_*) = 0$ e $f''(x_*) \neq 0$.

Allora si può provare che:

- 1. esiste $\delta > 0$ tale che se $|x_0 x_*| < \delta$, la successione $\{x_k\}_{k \in \mathbb{N}}$ generata dal metodo di Newton converge a x_* :
- 2 se il metodo converge a x_* , allora

$$\lim_{k\to\infty}\frac{|x_{k+1}-x_*|}{|x_k-x_*|^2}=C,\quad C\in\mathbb{R}.$$

- Il punto 1 ci dice che il metodo di Newton ha convergenza locale, ossia converge soltanto se x_0 è "sufficientemente vicino" ad uno zero di f.
- Il punto 2 ci dice che il metodo di Newton, se converge, ha convergenza quadratica (di un ordine superiore a quella di bisezione).

Dimostrazione (punto 2)

Applichiamo la formula di Taylor del secondo ordine con resto di Lagrange:

$$f(x_*) = f(x_k) + f'(x_k)(x_* - x_k) + \frac{1}{2}f''(\xi_k)(x_* - x_k)^2, \quad \xi_k \in [x_k, x_*].$$

Siccome $f(x_*) = 0$, dividendo entrambi i membri della precedente uguaglianza per $f'(x_k)$ si ottiene

$$0 = \underbrace{\frac{f(x_k)}{f'(x_k)} - x_k}_{=-x_{k+1}} + x_* + \underbrace{\frac{f''(\xi_k)}{2f'(x_k)}}_{=(x_k - x_k)^2} (x_* - x_k)^2$$

 $0 = x_* - x_{k+1} + \frac{f''(\xi_k)}{2f'(x_k)} (x_* - x_k)^2.$

Dividendo entrambi i membri per $(x_* - x_k)^2$ si ottiene

$$\frac{x_* - x_{k+1}}{(x_* - x_k)^2} = -\frac{f''(\xi_k)}{2f'(x_k)}.$$

Infine, passando al limite e applicando la continuità di f' e f'', si ottiene

$$\lim_{k \to \infty} \frac{|x_* - x_{k+1}|}{|x_* - x_k|^2} = \frac{|f''(x_*)|}{|2f'(x_*)|}. \quad \Box$$

Condizioni sufficienti per la convergenza del metodo di Newton

Sia $f \in C^2([a,b])$ tale che f(a)f(b) < 0. Siano soddisfatte le seguenti ipotesi:

- il segno di f'(x) è costante su [a, b] (f'(x) > 0 o f'(x) < 0 per ogni $x \in [a, b]$);
- il segno di f''(x) è costante su [a,b] (f''(x) > 0 o f''(x) < 0 per ogni $x \in [a,b]$).

Allora se $x_0 \in [a,b]$ è tale che $f(x_0)f''(x_0) > 0$, la successione $\{x_k\}_{k \in \mathbb{N}}$ generata dal metodo di Newton converge all'unico zero di f in [a,b].

Criteri di arresto

- Ad eccezione del metodo di bisezione, nei metodi iterativi non si conosce a priori il numero di iterazioni sufficiente ad ottenere un'approssimazione della soluzione entro una tolleranza fissata.
- Solitamente si adotta una combinazione di criteri di arresto, analoghi a quelli usati per i metodi iterativi per sistemi lineari, basati su due quantità:
 - la differenza tra due iterate successive;
 - il residuo del problema, definito come una quantità che si annulla in corrispondenza della soluzione.
- Fissata una tolleranza $\tau > 0$, i metodi per la ricerca degli zeri di funzione si arrestano alla prima iterazione k in cui sono soddisfatte le disuguaglianze

$$\frac{|x_{k+1} - x_k|}{|x_{k+1}|} \le \tau \quad \mathbf{e} \quad |f(x_k)| \le \tau.$$

Notare che la condizione $f(x_k) \le \tau$ è poco affidabile quando il grafico di f è molto schiacciato sull'asse x.

Algoritmo basato sul metodo di Newton

```
INPUT: f, f', x, \tau, N_{\text{max}}
FOR k = 1, 2, ..., N_{\text{max}}
  print warning and return
END
OUTPUT: x
```

Vantaggi del metodo di Newton

- Se converge, ha convergenza quadratica (più veloce della bisezione).
- Si può estendere al caso di sistemi di equazioni non lineari.

Svantaggi del metodo di Newton

- Converge soltanto localmente (se x_0 è abbastanza vicino ad una soluzione).
- Ha una maggiore complessità computazionale rispetto alla bisezione (2 valutazioni di funzione per iterazione).

Metodo delle secanti

È una variante del metodo di Newton in cui la derivata prima viene approssimata con un rapporto incrementale:

$$x_{k+1} = x_k - \frac{f(x_k)}{\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}}, \quad k = 0, 1, \dots$$

L'iterata successiva x_{k+1} è l'intersezione tra l'asse delle ascisse e la retta passante per i punti $(x_{k-1}, f(x_{k-1}))$ e $(x_k, f(x_k))$.

- Non richiede il calcolo della derivata prima.
- Se ne può dimostrare, sotto opportune ipotesi, la convergenza superlineare.
- Ne esiste un'estensione per sistemi non lineari, detto metodo Quasi-Newton.

Metodo del punto fisso (o delle approssimazioni successive)

Il metodo del punto fisso (o metodo delle approssimazioni successive) può essere ricavato operando un'analogia con i metodi iterativi per i sistemi lineari.

Sistema lineare

$$Ax = b \iff b - Ax = 0$$

$$0 = -M^{-1}(Ax - b)$$

dove M è non singolare

$$x = x - M^{-1}(Ax - b)$$

$$x = \underbrace{(I - M^{-1}A)}_{G} x + \underbrace{M^{-1}b}_{c}$$

$$x = Gx + c$$

Equazione non lineare

$$f(x) = 0$$

$$\begin{aligned} -\phi(x)f(x) &= 0\\ \text{dove } \phi: \mathbb{R} \to \mathbb{R}, \ \phi(x) \neq 0 \ \forall \ x \end{aligned}$$

$$x = x - \phi(x)f(x)$$

$$x = \underbrace{x - \phi(x)f(x)}_{g(x)}$$

$$x = g(x)$$

Metodo iterativo per Ax = b

$$x^{(k+1)} = Gx^{(k)} + c$$

Metodo del punto fisso per f(x) = 0

$$x_{k+1} = g(x_k)$$

Metodo del punto fisso (o delle approssimazioni successive)

Definizione

Data una funzione $g:[a,b]\to\mathbb{R}$, un punto $x_*\in[a,b]$ è detto punto fisso della funzione g se

$$g(x_*) = x_*.$$

• Dal punto di vista geometrico, un punto fisso di g corrisponde ad un punto in cui il grafico della funzione g interseca la bisettrice del primo e del terzo quadrante, avente equazione y=x.

Proposizione

Sia $f:[a,b]\to\mathbb{R}$. Data una funzione $\phi:[a,b]\to\mathbb{R}$ con $\phi(x)\neq 0\ \forall\ x\in[a,b]$, si ha che gli zeri di f sono tutti e soli i punti fissi della funzione

$$g(x) = x - \phi(x)f(x).$$

Definizione

Data una funzione $g:[a,b]\to\mathbb{R}$ e dato un punto iniziale $x_0\in[a,b]$, il metodo del punto fisso, detto anche metodo delle approssimazioni successive, è definito dalla seguente iterazione

$$x_{k+1} = g(x_k), \quad k = 0, 1, \dots$$

- Come nel caso dei sistemi lineari, in cui la scelta di M corrisponde ad un diverso metodo, la scelta della funzione $\phi(x)$ nella definizione di $g(x) = x \phi(x) f(x)$ determina diversi metodi delle approssimazioni successive che sono anche metodi per la ricerca degli zeri di f.
- Sotto opportune ipotesi, scegliendo

$$\phi(x) = \frac{1}{f'(x)}$$

il metodo delle approssimazioni successive per la ricerca dei punti fissi di $g(x)=x-\phi(x)f(x)$ corrisponde al metodo di Newton applicato alla ricerca degli zeri di f.

Teorema della mappa contrattiva

Sia $g:[a.b] \to \mathbb{R}$ con $g(x) \in [a,b] \ \forall \ x \in [a,b]$.

Supponiamo che g sia una contrazione in [a,b], ossia esiste $L \in (0,1)$ tale che

$$|g(x) - g(y)| \le L|x - y|, \quad \forall \ x, y \in [a, b].$$

Allora si ha che:

- 1. esiste un unico punto fisso x_* di g in [a, b];
- 2. la successione $x_{k+1} = g(x_k)$ generata dal metodo del punto fisso converge ad x_* per ogni punto iniziale $x_0 \in [a,b]$;
- 3. per ogni iterata del metodo si ha

$$|x_k - x_*| \le \frac{L^k}{1 - L} |x_1 - x_0|.$$

Dimostrazione (Punto 2)

• Dall'ipotesi $g(x) \in [a,b] \ \forall \ x \in [a,b]$ segue che $x_k \in [a,b], \ \forall \ k \geq 0$. Dimostriamo inoltre che la successione $\{x_k\}_{k \in \mathbb{N}}$ è di Cauchy, ossia:

$$\lim_{k \to \infty} |x_{k+p} - x_k| = 0, \ \forall p > 0.$$

Infatti per la disuguaglianza triangolare si ha

$$|x_k - x_{k+p}| = |x_k \pm x_{k+1} \pm \dots \pm x_{k+p-1} - x_{k+p}| \le \sum_{j=0}^{p-1} |x_{k+j} - x_{k+j+1}|.$$

Inoltre si ha

$$|x_{k+j} - x_{k+j+1}| = |g(x_{k+j-1}) - g(x_{k+j})|$$

$$\leq L|x_{k+j-1} - x_{k+j}| \leq \ldots \leq L^{j}|x_k - x_{k+1}|.$$

Segue che

$$|x_k - x_{k+p}| \le \sum_{j=0}^{p-1} L^j |x_k - x_{k+1}| = \frac{1 - L^p}{1 - L} |x_k - x_{k+1}|$$

$$\le \frac{1}{1 - L} |x_k - x_{k+1}| \le \frac{L^k}{1 - L} |x_0 - x_1| \stackrel{k \to \infty}{\longrightarrow} 0.$$

Se $\{x_k\}_{k\in\mathbb{N}}$ è di Cauchy, allora converge ad un punto $x_*\in[a,b]$.

Dimostrazione (Punto 2)

Per continuità di g, si ha

$$g(x_*) = g(\lim_{k \to \infty} x_k) = \lim_{k \to \infty} g(x_k) = \lim_{k \to \infty} x_{k+1} = x_*,$$

da cui segue che x_* è un punto fisso di g.

Dimostrazione (Punto 1)

• Se per assurdo supponiamo che g ammetta un altro punto fisso $y_* \in [a,b]$, ovvero se

$$g(y_*) = y_* \neq x_*,$$

allora dall'ipotesi di contrattività si avrebbe

$$L|x_* - y_*| \ge |g(x_*) - g(y_*)| = |x_* - y_*|, \quad \text{con } L < 1,$$

il che è assurdo.

Dimostrazione (Punto 3)

Dalla dimostrazione del punto 2, abbiamo ottenuto che

$$|x_k - x_{k+p}| \le \frac{L^k}{1 - L} |x_0 - x_1|.$$

Prendendo il limite per $p \to \infty$ di entrambi i membri di tale disuguaglianza e osservando che il secondo membro non dipende da p, si ottiene

$$|x_k - x_*| \le \frac{L^k}{1 - L} |x_0 - x_1|.$$

Osservazioni

- Se viene a mancare una delle ipotesi del metodo, l'esistenza e/o l'unicità del punto fisso non sono più garantite.
- Una condizione sufficiente affinché una funzione differenziabile g sia contrattiva in [a,b] è che $|g'(x)| \leq L < 1, \forall x \in [a,b].$
- L'ipotesi di contrattività è analoga alla condizione necessaria e sufficiente per la convergenza di un metodo iterativo per sistemi lineari:

$$\begin{split} x^{(k+1)} &= Gx^{(k)} + c \quad \text{converge se} \quad \rho(G) < 1 \\ x_{k+1} &= g(x_k) \quad \text{converge se} \quad |g'(x)| < 1. \end{split}$$

Dalla maggiorazione dell'errore

$$|x_k - x_*| \le \frac{L^k}{1 - L} |x_0 - x_1|.$$

segue che

$$|x_k - x_*| = \mathcal{O}(L^k),$$

per cui tanto più L è piccolo, tanto più veloce sarà la convergenza (si noti l'analogia con $\rho(G)$).

Teorema

Se le ipotesi del teorema della mappa contrattiva sono soddisfatte ed inoltre di ha $g \in C^p([a,b])$, con $g^{(k)}(x_*) = 0$, $k = 1, \ldots, p-1$ e $g^{(p)}(x_*) \neq 0$, allora il metodo del punto fisso associato a g ha ordine p.

Dimostrazione

Dal teorema di Taylor e dalla definizione di punto fisso, per qualche ξ_k compreso tra x_* e x_k , si ha

$$x_{k+1} = g(x_k)$$

$$= g(x_*) + g'(x_*)(x_k - x_*) + \frac{1}{2}g''(x_*)(x_k - x_*)^2 + \dots$$

$$\dots + \frac{1}{(p-1)!}g^{(p-1)}(x_*)(x_k - x_*)^{p-1} + \frac{1}{p!}g^{(p)}(\xi_k)(x_k - x_*)^p$$

$$= x_* + \frac{1}{p!}g^{(p)}(\xi_k)(x_k - x_*)^p$$

da cui si ricava

$$\frac{|x_{k+1} - x_*|}{|x_k - x_*|^p} = \frac{1}{p!} |g^{(p)}(\xi_k)| \stackrel{k \to \infty}{\longrightarrow} \frac{1}{p} |g^{(p)}(x_*)|$$

per continuità di g e perché ξ_k è compreso tra x_* e x_k .

• La convergenza quadratica del metodo di Newton si può ottenere come caso particolare del risultato precedente, dato che il metodo di Newton può essere visto come un metodo del punto fisso $x_{k+1} = g(x_k)$ con

$$g(x) = x - \frac{f(x)}{f'(x)}$$

$$g'(x) = 1 - \frac{f'(x)^2 - f(x)f''(x)}{f'(x)^2} = \frac{f(x)f''(x)}{f'(x)},$$

ed essendo x_{\ast} una radice di f segue che

$$g'(x_*) = \frac{f(x_*)f''(x_*)}{f'(x_*)} = 0.$$

2. Metodi per sistemi di equazioni non lineari

Definizione

- Una funzione scalare in n variabili $f: \mathbb{R}^n \to \mathbb{R}$ è una funzione che ad ogni vettore $x \in \mathbb{R}^n$ associa uno scalare $f(x) \in \mathbb{R}$.
- Una funzione vettoriale in n variabili $F: \mathbb{R}^n \to \mathbb{R}^n$ è una funzione che ad ogni vettore $x \in \mathbb{R}^n$ associa un vettore $F(x) \in \mathbb{R}^n$, dove

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad F(x) = \begin{pmatrix} f_1(x_1, \dots, x_n) \\ f_2(x_1, \dots, x_n) \\ \vdots \\ f_n(x_1, \dots, x_n) \end{pmatrix},$$

con $f_i: \mathbb{R}^n \to \mathbb{R}$, $i = 1, \dots, n$ funzioni scalari di n variabili.

Esempi

- $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sin(x)$ è una funzione scalare di 1 variabile;
- $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = \sin(x)\cos(y)$ è una funzione scalare di 2 variabili;
- $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (xy,y) è una funzione vettoriale di 2 variabili.

Definizione (derivata prima per funzioni scalari di 1 variabile)

Dato $D\subseteq\mathbb{R}$ aperto, una funzione $f:D\to\mathbb{R}$ si dice derivabile in $x_0\in D$ se esiste ed è finito il limite

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

e il valore di questo limite è la derivata prima di f in x_0 .

Definizione (derivate parziali per funzioni scalari di 2 variabili)

Dato $D\subseteq\mathbb{R}^2$ aperto e una funzione $f:D\to\mathbb{R}$, si definisce la derivata parziale di f rispetto ad x in un punto (x_0,y_0) il limite (se esiste) dato da

$$\frac{\partial f}{\partial x}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h},$$

mentre la derivata parziale di f rispetto ad y in un punto (x_0,y_0) è il limite (se esiste) dato da

$$\frac{\partial f}{\partial y}(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}.$$

Richiami di analisi matematica

- La derivata prima f'(x) rappresenta la pendenza della retta tangente al grafico di f nel punto (x, f(x)).
- La derivata parziale $\frac{\partial f}{\partial x}$ (risp. $\frac{\partial f}{\partial y}$) rappresenta la pendenza della retta tangente alla curva ottenuta intersecando il grafico di f (una superficie di \mathbb{R}^3) con un piano passante per (x_0, y_0) e parallelo al piano y = 0 (risp. x = 0).

Richiami di analisi matematica

Definizione (derivate parziali per funzioni scalari di n variabili)

Dato $D \subseteq \mathbb{R}^n$ aperto e una funzione $f: D \to \mathbb{R}$, si definisce la derivata parziale di f rispetto ad x_j in un punto (x_1, x_2, \dots, x_n) il limite (se esiste) dato da

$$\frac{\partial f}{\partial x_j}(x_1, x_2, \dots, x_n) = \lim_{h \to 0} \frac{f(x_1, x_2, \dots, x_j + h, \dots, x_n) - f(x_1, x_2, \dots, x_n)}{h}.$$

Il vettore che ha per componenti le derivate parziali di f, ovvero

$$\nabla f(x_1, \dots, x_n) = \left(\frac{\partial f}{\partial x_1}(x_1, \dots, x_n), \dots, \frac{\partial f}{\partial x_n}(x_1, \dots, x_n)\right)^T$$

è detto gradiente di f.

Richiami di analisi matematica

Proposizione (caso n = 1)

Sia $f:D\subseteq\mathbb{R}\to\mathbb{R}$ una funzione derivabile su D aperto.

• Se x_0 è un punto di minimo su D per f, ovvero $f(x_0) \leq f(x)$ per ogni $x \in D$, allora

$$f'(x_0) = 0.$$

Se f è convessa, allora

 x_0 è un punto di minimo per f su $D \Leftrightarrow f'(x_0) = 0$.

Proposizione (caso n > 1)

Sia $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ una funzione differenziabile su D aperto.

• Se x_0 è un punto di minimo su D per f, ovvero $f(x_0) \leq f(x)$ per ogni $x \in D$, allora

$$\nabla f(x_0) = 0.$$

Se f è convessa, allora

 x_0 è un punto di minimo per f su D \Leftrightarrow $\nabla f(x_0) = 0$.

Sistemi di equazioni non lineari

Definizione

Sia $F: \mathbb{R}^n \to \mathbb{R}^n$. Si vuole trovare un vettore $x \in \mathbb{R}^n$ che soddisfa l'uguaglianza

$$F(x) = 0$$

il che equivale a risolvere n equazioni non lineari nelle incognite x_1, \ldots, x_n

$$\begin{cases} f_1(x_1, \dots, x_n) = 0 \\ f_2(x_1, \dots, x_n) = 0 \\ \vdots \\ f_n(x_1, \dots, x_n) = 0 \end{cases}$$

L'uguaglianza F(x) = 0 prende il nome di sistema non lineare.

Sistemi di equazioni non lineari

- Nel caso in cui F(x) = Ax b, il sistema F(x) = 0 diventa lineare e può essere risolto facendo ricorso ai metodi già visti a lezione (fattorizzazione LU e QR, metodi iterativi di Jacobi e Gauss-Seidel, ecc.).
- Nel caso in cui F(x) non sia lineare, è possibile risolvere F(x)=0 estendendo il metodo di Newton e i metodi del punto fisso.

Metodo di Newton per sistemi non lineari

Dato $x \in \mathbb{R}^n$, si definisce la matrice Jacobiana $JF(x) \in \mathbb{R}^{n \times n}$ di F, contenente lungo le sue righe i gradienti delle funzioni f_1, \ldots, f_n nel punto $x = (x_1, \ldots, x_n)^T$:

$$JF(x) = \begin{pmatrix} \frac{\partial f_1(x)}{\partial x_1} & \frac{\partial f_1}{\partial x_2(x)} & \dots & \frac{\partial f_1(x)}{\partial x_n} \\ \frac{\partial f_2(x)}{\partial x_1} & \frac{\partial f_2(x)}{\partial x_2} & \dots & \frac{\partial f_2(x)}{\partial x_n} \\ \dots & \dots & \dots & \dots \\ \frac{\partial f_n(x)}{\partial x_1} & \frac{\partial f_n(x)}{\partial x_n} & \dots & \frac{\partial f_2(x)}{\partial x_n} \end{pmatrix}.$$

Il metodo di Newton può essere esteso da f(x) = 0 a F(x) = 0 come seque:

$$\begin{cases} f'(x_k)d_k = -f(x_k) \\ x_{k+1} = x_k + d_k \end{cases}$$

Metodo di Newton scalare Metodo di Newton vettoriale

$$\begin{cases} f'(x_k)d_k = -f(x_k) \\ x_{k+1} = x_k + d_k \end{cases} \Rightarrow \begin{cases} JF(x^{(k)})d^{(k)} = -F(x^{(k)}) \\ x^{(k+1)} = x^{(k)} + d^{(k)}. \end{cases}$$

- \Rightarrow Nel caso n-dimensionale, il metodo di Newton richiede la risoluzione di un sistema lineare di ordine n ad ogni passo
- ⇒ Costoso!

Data una funzione $g: \mathbb{R}^n \to \mathbb{R}^n$ con

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \quad g(x) = \begin{pmatrix} g_1(x_1, \dots, x_n) \\ g_2(x_1, \dots, x_n) \\ \vdots \\ g_n(x_1, \dots, x_n) \end{pmatrix}$$

il metodo del punto fisso associato a g per la risoluzione di un sistema non lineare F(x)=0 è definito esattamente come nel caso scalare, ovvero:

$$\begin{cases} x^{(0)} \in \mathbb{R}^n \\ x^{(k+1)} = g(x^{(k)}), & k = 0, 1, \dots \end{cases}$$

Affinché il metodo converga ad un punto x^* tale che $F(x^*)=0$, è necessario che g sia una contrazione, ovvero

$$||g(x) - g(y)|| \le L||x - y||, \quad \forall \ x, y \in \mathbb{R}^n, \ L \in (0, 1),$$

dove il valore assoluto è stato sostituito da una norma vettoriale $\|\cdot\|$.

3. Applicazione ai problemi di classificazione nel machine learning

Algoritmi di machine learning

Un algoritmo di apprendimento automatico (machine learning) è un algoritmo capace di "imparare" dai dati messi a disposizione.

Mitchell, Machine Learning, McGraw-Hill, New York, 97, 1997. Si dice che un programma di computer impara da un'esperienza E rispetto ad una classe di compiti (tasks) T e una misura di prestazione P, se la misura P relativamente a T migliora grazie all'esperienza E.

Esempio di problema di machine learning

- Task: classificazione degli elementi di un insieme in uno o più gruppi
- Esperienza: insieme di dati di grandi dimensioni
- Misura: percentuale di elementi correttamente classificati

Processo di machine learning supervisionato

Come fa un programma ad "imparare" dai dati messi a disposizione?

- training set: $\{(a_i,b_i)\}_{i=1,...,N}$
- testing set: $\{(a_i^{\text{test}}, b_i^{\text{test}})\}_{i=1,...,N_{\text{test}}}$
- a_i è detto esempio o vettore delle caratteristiche.
- b_i è detta etichetta associata all'esempio a_i .

Esempio di classificazione (1)

Dataset MNIST1

DATA	Training Size N	Test Size	Numero delle caratteristiche d
MNIST	60000	10000	784

Ciascun esempio consiste di 784 pixels "srotolati" dall'immagine 28×28 originale.

Classificazione di cifre:

stabilire quale cifra tra 0, 1,... 9 è rappresentata da una data immagine

Esempio di classificazione (2)

Dataset Mushrooms¹

DATA	Training Size N	Test Size	Numero delle caratteristiche d
Mushrooms	5000	3124	112

Ciascun esempio consiste di 0 e 1; ognuna di queste cifre rappresenta una caratteristica del fungo dato (ad esempio se il cappello è marrone o no, liscio o no, ecc.)

Model Comparison for Mushrooms Clas... kaggle.com

Classificazione di funghi innocui e velenosi: sicuro da mangiare o mortalmente velenoso?

1 https://www.kaggle.com/uciml/mushroom-classification

61 / 68

Fase di training

Obiettivo

Determinare una funzione di predizione (modello) $h:\mathcal{A}\to\mathcal{B}$ tale che, dato un nuovo esempio $a\in\mathcal{A}$, il valore h(a) offra un'accurata predizione della vera etichetta b associata all'input a.

Training & Testing

Training

ullet Scegliere una funzione di predizione parametrizzata da un vettore $x \in \mathbb{R}^n$

$$h \in \mathcal{H} = \{h(\cdot; x) : x \in \mathbb{R}^n\}.$$

- Introdurre una funzione di loss $\ell: \mathcal{A} \times \mathcal{B} \to \mathbb{R}$ che, data una coppia input-output (a,b), restituisca l'errore (loss) $\ell(h(a;x),b)$ commesso nell'approssimare b con l'etichetta predetta h(a;x).
- Dato un insieme di esempi $\{(a_i,b_i)\}_{i=1}^N$ (training set), $a_i \in \mathbb{R}^d$ (esempio), $b_i \in \mathbb{R}^p$ (etichetta), calcolare x_* come il punto di minimo della funzione $f: \mathbb{R}^n \to \mathbb{R}$ definita come

$$f(x) = \frac{1}{N} \sum_{i=1}^{N} \underbrace{\ell(h(a_i; x), b_i)}_{\phi_i(x)}$$
 Rischio empirico

Testing

• Scegliere un testing set su cui valutare l'accuratezza della funzione di predizione $h(\cdot, x_*)$: quanti esempi del testing set vengono classificati correttamente?

Modello di classificazione logistica

Sia dato il training set $\{(a_i,b_i)\}_{i=1}^N$, $a_i \in \mathbb{R}^d$, $b_i \in \{-1,+1\}$.

ullet Si assume che la probabilità P(b|a) che b sia l'etichetta di a sia data da

$$P(b|a) = \zeta(a, b; x) = \frac{1}{1 + e^{-ba^T x}}, \qquad \zeta(a, b; x) : \mathbb{R}^n \to (0, 1)$$

dove $x\in\mathbb{R}^d$ è un vettore di parametri da determinare. La funzione $\zeta(z)=\frac{1}{1+e^{-z}}$ è detta sigmoide.

Modello di classificazione logistica

• Calcoliamo x in modo che sia massimizzato il prodotto delle probabilità degli eventi indipendenti " b_i è l'etichetta di a_i ":

$$\max_{x \in \mathbb{R}^d} \prod_{i=1}^N P(b_i|a_i) = \max_{x \in \mathbb{R}^d} \prod_{i=1}^N \frac{1}{1 + e^{-b_i a_i^T x}}.$$

Prendendo il logaritmo della funzione cambiata di segno:

$$\min_{x \in \mathbb{R}^d} f(x) = \frac{1}{N} \sum_{i=1}^{N} \log(1 + e^{-b_i a_i^T x}).$$

Modello di classificazione logistica

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{N} \sum_{i=1}^N \log(1 + e^{-b_i \boldsymbol{a_i^T} \cdot \boldsymbol{x}})$$

• Dato x_* punto di minimo della funzione f, classifichiamo un nuovo elemento $\hat{a} \in \mathbb{R}^n$ come segue

$$h(\hat{a};x_*) = \begin{cases} 1, & \text{se } P(1|\hat{a}) = \frac{1}{1 + e^{-\hat{a}^T x_*}} \geq 0.5 \\ -1, & \text{se } P(1|\hat{a}) = \frac{1}{1 + e^{-\hat{a}^T x_*}} < 0.5. \end{cases}$$

Metodi del gradiente

Siccome f è convessa, segue che

$$x_*$$
 è punto di minimo di $f \Leftrightarrow \nabla f(x_*) = 0$.

L'uguaglianza $\nabla f(x) = 0$ è a tutti gli effetti un sistema non lineare.

• Per risolvere $\nabla f(x)=0$, possiamo applicare il metodo del punto fisso associato alla funzione $g(x)=x-\phi(x)F(x)$ con $F(x)=\nabla f(x)$, ottenendo

$$x^{(k+1)} = g(x^{(k)}) = x^{(k)} - \phi(x^{(k)})\nabla f(x^{(k)}), \quad k = 0, 1, \dots$$

I metodi di questa forma sono detti metodi del gradiente e sono utilizzati diffusamente nei problemi di machine learning.

Metodi del gradiente

• Notiamo che il gradiente della funzione $f(x) = \frac{1}{N} \sum_{i=1}^{N} \log(1 + e^{-b_i a_i^T x})$ è Lipschitziano, ossia soddisfa alla seguente proprietà

$$\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|, \quad \forall \ x, y \in \mathbb{R}^n, \ L > 0.$$

ullet Dunque, affinché la funzione g sia una contrazione, si può prendere ϕ come una funzione costante del tipo

$$\phi(x) = \alpha < \frac{1}{L},$$

ottenendo così il metodo

$$x^{(k+1)} = x^{(k)} - \alpha \nabla f(x^{(k)}), \quad k = 0, 1, \dots$$

Tale metodo è

- meno costoso del metodo di Newton: richiede infatti la valutazione del gradiente ad ogni passo, ma non la risoluzione di un sistema lineare;
- più lento del metodo di Newton.

