

LEARN TO PLAY GO

Albert Liu (albertpl@stanford.edu)

MOTIVATION & CHALLENGES

- simple rules but mastering requires many years of study by human
- considered hardest classic board game and grand challenge for AI
- AlphaGo and AlphaGoZero have rocked the Go and AI world
- Challenges
 - state based search is intractable due enormous search space ($\sim 10^{170}$), large number of legal move per state(~ 250)
 - massive computational requirements for MCTS and training DNN
 - lack of domain expertise

PROBLEM DEFINITION

- Pachi built-in *UCT* engine as our oracle which is said to achieve highest amateur expect level (KGS 7 dan) on 9×9 board.
- To learn playing Go without incorporating lots of heuristics and predefined patterns beyond basic Go rules
- To understand pro and con of various approaches.

SYSTEM ARCHITECTURE

- $\pi_{\theta}(A_t|S_t)$ A probability vector for taking each action A_t for S_t .
- $v_w(S_t) \in [-1, +1]$

MONTE CARLO TREE SEARCH

• Tree policy: UCB1

$$a \leftarrow \arg\max_{a} q(s, a) + c\sqrt{\frac{\log \sum_{a'} n(s, a')}{n(s, a)}}$$

Select best within tree.

• Rollout policy: random Sampling breaks curse of dimensionality

Improve: tree policy

Evaluation: Monte Carlo or DNN approximation

DEEP REINFORCEMENT LEARNING

• REINFORCE with Baseline $\pi_{\theta}(s,a)$ to approximate police. $v_w(s)$ as baseline to reduce variance.

$$\theta_{t+1} \leftarrow \theta_t + \alpha(r_t - v_w(s_t)) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

$$w_{t+1} \leftarrow w_t + \alpha(r - v_w(s_t)) \nabla_w v_w(s_t)$$

Actor-critic with Baseline
 TD error as approximation of advantage.

$$\theta_{t+1} \leftarrow \theta_t + \alpha(r + v_w(s_{t+1}) - v_w(s_t)) \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

- combining DNN and MCTS
 - $\pi_{\theta}(s, a)$ as priors for expansion
 - $v_w(s)$ as estimated value, no rollout
 - supervised training, i.e. as close as possible to statistics from tree search.

$$a \leftarrow \arg\max_{a} q(s, a) + c\pi_{\theta}(s, a) \frac{\sqrt{\sum_{a'} n(s, a')}}{n(s, a) + 1}$$

$$1(\theta, w) = \sum_{i} (v_w(s_t) - r_t)^2 - \frac{\sum_{a} n(s_t, a) \log \pi_{\theta}(s_t, a)}{\sum_{a'} n(s_t, a')}$$

PRELIMINARY RESULTS

All results are averaged over 1000 games of 9×9 board.

MCTS

	random	random	oracle
rollouts	100	1000	1000
win rate	0.92	0.99	0.16
time	2.4	29.3	35.1

• REINFORCE with baseline v.s. oracle iteration | win rate

win rate	
0.025	-
0.0265	
0.0375	
0.055	
	0.025 0.0265 0.0375

ANALYSIS

- MCTS pachi uses **heavy** rollout policy, which entails rule based pattern, such as, if the last move has put its own group in *atari* we capture it; *Nakade*a move is played inside the eyeshape to prevent the opponent from splitting it into two eyes. Also Pachi applies heuristics based priors when expanding new node.
- Our MCTS uses random rollout policy and not as strong as it could be.
- Self-played based DRL approaches require