Seminar 7

- 1. Take $f: GL_n(\mathbb{R}) \to \mathbb{R}^*$, with f(A) = det(A), which is a homomorphism between multiplicative groups, $Ker f = SL_n(\mathbb{R})$ and $Im f = \mathbb{R}^*$. Then use the first isomorphism theorem.
- 2. Take $f: \mathbb{C} \to \mathbb{R}$, with f(z) = Re(z). So, if z = a + bi, then f(a + bi) = a. It is easy to see that f is a homomorphism between additive groups, $Ker f = \mathbb{R}$ and $Im f = \mathbb{R}$. Then use the first isomorphism theorem.
- 3. Take $f: \mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$, with $f(x \mod mn) = (x \mod m, x \mod n)$. One shows first that f is a function. This means that if $x \mod mn = y \mod mn$, then $(x \mod m, x \mod n) = (y \mod m, y \mod n)$. As $(x+y) \mod m = (x \mod m) + (y \mod m)$, it is easy to see that f is a group homomorphism. Also, $Ker f = \{0 \mod mn\}$, which means that f is an injective function. But the domain and the codomain have the same number of elements, so f must be bijective. Hence, f is an isomorphism.

Alternatively, one may take $f: \mathbb{Z} \to \mathbb{Z}_m \times \mathbb{Z}_n$, with $f(x) = (x \mod m, x \mod n)$, and show that f is a group homomorphism, $Ker f = mn\mathbb{Z}$ and $Im f = \mathbb{Z}_m \times \mathbb{Z}_n$. Then the conclusion follows by the first isomorphism theorem.

Or, one may notice that the element $(1 \mod m, 1 \mod n) \in \mathbb{Z}_m \times \mathbb{Z}_n$ has order $mn = |\mathbb{Z}_m \times \mathbb{Z}_n|$. This means that the group $\mathbb{Z}_m \times \mathbb{Z}_n$ must be cyclic. But being a cyclic group of order mn, we must have the isomorphism $\mathbb{Z}_m \times \mathbb{Z}_n \simeq \mathbb{Z}_{mn}$.

4.

$$H = \{\hat{0}, \hat{4}, \hat{8}, \widehat{12}, \widehat{16}, \widehat{20}\} \leq \mathbb{Z}_{24}$$

$$N = \{\hat{0}, \hat{6}, \widehat{12}, \widehat{18}\} \leq \mathbb{Z}_{24}$$

$$H \cap N = \{\hat{0}, \widehat{12}\} (\preceq H)$$

$$H + N = \{\hat{0}, \hat{2}, \hat{4}, \hat{6}, \hat{8}, \widehat{10}, \widehat{12}, \widehat{14}, \widehat{16}, \widehat{18}, \widehat{20}, \widehat{22}\}$$

$$H \cup N = \{\hat{0}, \hat{4}, \hat{6}, \hat{8}, \widehat{12}, \widehat{16}, \widehat{18}, \widehat{20}\}$$

We can see that $\langle H \cup N \rangle = H + N$, so $N \leq \langle H \cup N \rangle$. And, as "+" is commutative, we can apply the second isomorphism theorem.

5. The subgroups of $\mathbb{Z}_{12} = \mathbb{Z}/12\mathbb{Z}$ are of the form $d\mathbb{Z}/12\mathbb{Z}$ with $12\mathbb{Z} \subseteq d\mathbb{Z}$, that is, d|12. Hence they are $\mathbb{Z}/12\mathbb{Z}$, $2\mathbb{Z}/12\mathbb{Z}$, $3\mathbb{Z}/12\mathbb{Z}$, $4\mathbb{Z}/12\mathbb{Z}$, $6\mathbb{Z}/12\mathbb{Z}$ and $12\mathbb{Z}/12\mathbb{Z}$. Alternatively, one may use the fact that the group $(\mathbb{Z}_{12}, +)$ is cyclic, hence all its subgroups are cyclic. So, they can be computed as $\langle x \rangle$ with $x \in \mathbb{Z}_{12}$.

Let $d \mid 12 \Rightarrow d\mathbb{Z}/12\mathbb{Z} \leq \mathbb{Z}_{12}$. Then the factor groups of \mathbb{Z}_{12} are, for every divisor d of 12: $\mathbb{Z}_{12}/(d\mathbb{Z}/12\mathbb{Z}) \simeq (\mathbb{Z}/12\mathbb{Z})/(d\mathbb{Z}/12\mathbb{Z}) \simeq \mathbb{Z}/d\mathbb{Z} = \mathbb{Z}_d$.

6. For n prime $\Rightarrow n \in \{2, 3, 5, 7, 11\}$ and $\forall x \in \mathbb{Z}_n$, we have $\langle \hat{x} \rangle = \mathbb{Z}_n \iff \mathbb{Z}_n$ has only 2 subgroups $\{\hat{0}\}$ and \mathbb{Z}_n .

For
$$n = 1 \Rightarrow \mathbb{Z}_1 = {\hat{0}} \le \mathbb{Z}_1$$
.

Now, for the others, we will use Lagrange's theorem to find the subgroups.

For
$$n = 4 \Rightarrow \langle \hat{0} \rangle, \langle \hat{1} \rangle, \langle \hat{2} \rangle \leq \mathbb{Z}_4$$
.

For
$$n = 6 \Rightarrow <\hat{0}>, <\hat{1}>, <\hat{2}>, <\hat{3}> \leq \mathbb{Z}_6$$
.

For
$$n = 8 \Rightarrow <\hat{0}>, <\hat{1}>, <\hat{2}>, <\hat{4}> \leq \mathbb{Z}_8$$
.

For
$$n = 9 \Rightarrow <\hat{0}>, <\hat{1}>, <\hat{3}>, <\hat{6}> \leq \mathbb{Z}_9$$
.

For
$$n = 10 \Rightarrow <\hat{0}>, <\hat{1}>, <\hat{2}>, <\hat{5}> \leq \mathbb{Z}_{10}$$
.

For
$$n = 12 \Rightarrow <\hat{0}>, <\hat{1}>, <\hat{2}>, <\hat{3}>, <\hat{4}>, <\hat{6}> \leq \mathbb{Z}_{12}$$
.

The Hasse diagram of \mathbb{Z}_n , with n prime is: $\mathbb{Z}_n \to \{\hat{0}\}$.

Now, let's take the exemples for \mathbb{Z}_{12} . The Hasse diagram of the subgroup lattice is:

And if we talk about \mathbb{Z}_8 , we have the next Hasse diagram:

$$\mathbb{Z}_8$$
 ψ $< \hat{2} > \rightarrow < \hat{4} > \rightarrow < \hat{0} >$

7. We know the subgroups of $\mathbb{Z}_2 \times \mathbb{Z}_2$ from last seminar. So we have the next Hasse diagram:

8. We know the subgroups of Q from last seminar.

