Slip Flow Regimes and Induced Fluid Structure in Nanoscale Polymer Films: Recent Results from Molecular Dynamics Simulations

Nikolai V. Priezjev

Department of Mechanical Engineering

Michigan State University

Movies, preprints @ http://www.egr.msu.edu/~priezjev

Acknowledgement: NSF, ACS, MSU

N. V. Priezjev, "Fluid structure and boundary slippage in nanoscale liquid films", Chapter 16 "Detection of Pathogens in Water Using Micro and Nano-Technology", IWA Publishing (2012).

Motivation: Nano- and Microfluidics

- Control and manipulation of fluids at submicron scales
- The behavior of fluids at the microscale is different from 'macrofluidic' behavior (low Re, high S/V ratio)
- Lab-on-a-chip devices allow automation of complex biological and chemical reactions (wikipedia)

"Microflows & Nanoflows" Karniadakis (2005)

Microchip system performs hundreds of parallel chemical reactions

Lab. Chip. 9, 2281-2285 (2009)

Splitting of a droplet

Appl. Phys. Lett. 82, 657 (2003)

A micromixer for rapid mixing of two or three fluid streams

The Dolomite Center Ltd.

Motivation for investigation of slip phenomena at liquid/solid interfaces

- What is the boundary condition for liquid-on-solid flows in the presence of slip?
 - Still no fundamental understanding of slip or what is proper BC for continuum studies. Issue very important to micro- and nanofluidics. Contact line motion.
- Navier slip boundary condition assumes constant slip length. Recent MD simulations and experiments report ratedependent slip length $L_s = L_s(\dot{\gamma})$. Shear rate threshold? Thompson and Troian, *Nature* **389**, 360 (1997)
- Combined effect of surface roughness, wettability and rate-dependency on the slip length L_s : e.g., surface roughness reduces the degree of slip but shear rate might increase L_s

Niavarani and Priezjev, Phys. Rev. E 81, 011606 (2010)

• Rate-dependence of the slip length in the shear flow of polymer melts past atomically smooth solid surfaces

What molecular parameters (fluid structure, wall lattice type, wall-fluid interaction energy) determine the degree of slip?

Thompson and Robbins, *Phys. Rev. A* **41**, 6830 (1990) Barrat and Bocquet, *Faraday Disc.* **112**, 109 (1999) Priezjev, *Phys. Rev. E* **82**, 051603 (2010), *MFNF* (2013)

Experimental measurements of the slip length L_s

- Typically slip length of water over hydrophobic surfaces is about 10-50 nm
- Possible presence of nanobubbles at hydrophobic surfaces: $L_s \sim 10 \ \mu m$

Flow rate versus pressure

Surface Force Apparatus

Particle Image Velocimetry (PIV)

SFA: J. Israelachvili (UCSB) Quantum Dots: M. Koochesfahani

• Factors that affect slip:

- 1) Surface roughness
- 2) Shear rate (= slope of the velocity profile)
- 3) Poor interfacial wettability (weak surface energy)
- 4) Nucleation of nanobubbles at hydrophobic surfaces
- 5) Superhydrophobic surfaces $(L_s \sim 100 \ \mu \text{m})$

Rothstein, Review on slip flows over Superhydrophobic surfaces (2010).

Molecular dynamics simulations: polymer melt with chains N=20 beads

Lennard-Jones potential:
$$V_{LJ}(r) = 4\varepsilon \left[\left(\frac{r}{\sigma} \right)^{-12} - \left(\frac{r}{\sigma} \right)^{-6} \right]$$

Fluid monomer density: $\rho = 0.86-1.11 \, \sigma^{-3}$

$$m\ddot{y}_i + m\Gamma\dot{y}_i = -\sum_{i\neq j} \frac{\partial V_{ij}}{\partial y_i} + f_i$$

 $\Gamma = \tau^{-1}$ friction coefficient
 $f_i = \text{Gaussian random force}$
Langevin thermostat: $T=1.1\varepsilon/k_B$

FENE bead-
spring model:
$$V_{\text{FENE}}(r) = \frac{1}{2} k r_o^2 \ln \left(1 - \frac{r^2}{r_o^2} \right)$$

 $k = 30 \epsilon \sigma^{-2} \text{ and } r_o = 1.5 \sigma$

Kremer and Grest, J. Chem. Phys. 92, 5057 (1990)

Thermal FCC walls with density $\rho_{\rm w}$ = 1.40 σ^{-3} Weak wall-fluid interactions: $\epsilon_{\rm wf}$ = 0.9 ϵ

Thompson and Robbins, *Phys. Rev. A* **41**, 6830 (1990)

Fluid density and velocity profiles for selected values of top wall speed U

Density profiles near the lower wall:

 ρ_c = contact density (max first fluid peak)

The amplitude of density oscillations ρ_c is reduced at higher values of the top wall speed U (by about 10%)

Velocity profiles are linear throughout:

The scaled slip velocity is smaller at the intermediate speed of the upper wall U!?

Shear rate $\dot{\gamma}$ = slope of the velocity profiles

Niavarani and Priezjev, Phys. Rev. E 77, 041606 (2008)

Shear rate dependence of the slip length L_s and polymer viscosity μ

Shear-thinning μ with the slope -0.37

Shear stress: $\sigma_{xz} = \dot{\gamma} \mu$

$$\sigma_{XZ}V = \sum_{i} m v_{\alpha}^{i} v_{\beta}^{i} + \sum_{i} \sum_{j>i} r_{\alpha}^{ij} F_{\beta}(r^{ij})$$

Microscopic pressure-stress tensor

N = 20 polymer chains; $\rho = \text{polymer melt density}$

Slip length L_s passes through a minimum as a function of shear rate and then increases rapidly at higher shear rates

Niavarani and Priezjev, Phys. Rev. E 77, 041606 (2008)

A relation between the slip length L_s and friction coefficient at the interface

Shear stress in steady flow:

In the bulk fluid $\sigma_{xz} = \mu \dot{\gamma}$ At the interface $\sigma_{xz} = k V_{\text{slip}}$

Friction coefficient: $k = \mu / L_s$

For simple fluids and weak surface energy: Thompson and Troian, Nature **389**, 360 (1997)

$$L_s(\dot{\gamma}) = L_s^o \left(1 - \dot{\gamma} / \dot{\gamma}_c\right)^{-0.5}$$

$$k(V_s) = C_1 \left(\sqrt{C_2 + V_s^2} - V_s \right)$$

Viscosity
$$\mu$$
 is rate-independent for simple fluids (N=1) where $C_1 = \mu/2\dot{\gamma}_c(L_s^o)^2$, $C_2 = (2L_s^o\dot{\gamma}_c)^2$

Friction coefficient at the liquid-solid interface as a function of slip velocity

Friction coefficient: $k = \mu / L_s$

Master curve: $k/k^* = [1 + (V_s/V_s^*)^2]^{-0.35}$

$$k(V_s) = C_1 \left(\sqrt{C_2 + V_s^2} - V_s \right)$$
 Thompson and Troian (1997) Friction coeff. for simple fluids

Friction coefficient undergoes a gradual transition from a nearly constant value to the power law decay as function of V_s

 ρ = polymer melt density

The transition point approximately corresponds to the location of the minimum in the shear-rate-dependence of L_s

Niavarani and Priezjev, *Phys. Rev. E* **77**, 041606 (2008)

Friction coefficient at the liquid-solid interface as a function of slip velocity

<u>Parameters varied</u>: wall type FCC and BCC, lattice orientation, wall density, thermal or frozen walls, fluid density, wall-fluid interaction energy, fluid structure: polymers *N*=10, *N*=20 and simple fluids *N*=1.

Diffusion of fluid monomers in the first fluid layer at equilibrium (i.e. *U*=0)

Side view: polymer melt near solid wall

Top view: (111) plane of FCC wall lattice

Mean square displacement in the first layer

The diffusion time t_d was estimated from the mean square displacement of fluid monomers in the first layer at the distance between nearest minima of the periodic surface potential d_{nn} .

A correlation between the diffusion time t_d and the characteristic slip time t_s^*

$$k/k^* = [1 + (V_s/V_s^*)^2]^{-0.35}$$

The linear-response regime holds when the slip velocity of the first layer is smaller than the diffusion velocity of fluid monomers in contact with flat crystalline surfaces.

Analysis of the fluid structure in the first layer near the solid wall

Structure factor in the first fluid layer:

$$S(\mathbf{k}) = \frac{1}{N_I} \left| \sum_{i} e^{i \mathbf{k} \cdot \mathbf{r}_j} \right|^2$$

Sharp peaks in the structure factor (due to periodic surface potential) are reduced at higher slip velocities V_s or lower wall-fluid interaction energies $\varepsilon_{\rm wf}$.

N.V. Priezjev, *Phys. Rev. E* **82**, 051603 (2010)

Review of current slip models

Bocquet & Barrat (1999) Kubo relation

Faraday Disc. 112, 109 (1999)

$$\frac{1}{k} = \frac{L_s^o}{\mu} \propto \frac{D_{q_{\parallel}}}{S(q_{\parallel})\rho_c \varepsilon_{wf}^2} \qquad \text{simple fluids}$$
(N=1)

 $S(q_{\parallel})$ = in-plane structure factor

 $D_{q_{\parallel}}$ = in-plane diffusion coefficient

 q_{\parallel} = reciprocal lattice vector in the shear flow direction

 ρ_c = contact density

All parameters evaluated in first fluid layer from equilibrium simulations

low = shear rates

Priezjev & Troian (2004) polymers *N*≤16 *Phys. Rev. Lett.* **92**, 018302 (2004)

For chain length N > 10 $L_s^o(N) \propto \mu(N)$

Thompson & Robbins (1990) simple fluids

Smith et al. (1996) Friction on monolayers

Slip time
$$\tau = \frac{S_1(0)}{S_1(\mathbf{G}_1)} t_{ph}$$
 phonon lifetime

in-plane structure factor

Smith, Robbins & Cieplak, Phys. Rev. E 54, 8252 (1996)

Analysis of the fluid structure in the first layer near the solid wall

Density profiles near the lower wall:

 $\rho_c = \frac{\text{contact density (max first fluid peak)}}{\text{contact density (max first fluid peak)}}$

The amplitude of density oscillations ρ_c is reduced at higher values of the top wall speed U (by about 10%)

Structure factor in the first fluid layer:

Sharp peaks in the structure factor (due to periodic surface potential) are reduced at higher slip velocities V_s

Correlation between slip and fluid structure in the first layer near the solid wall

<u>Parameters varied</u>: wall type FCC and BCC, lattice orientation, wall density, thermal or frozen walls, fluid density, wall-fluid interaction energy, fluid structure: polymers *N*=10, *N*=20 and simple fluids *N*=1.

Important conclusions

- Molecular dynamics simulations show that the slip length L_s in sheared polymer films passes through a minimum as a function of shear rate and then increases rapidly at higher shear rates. Shear rate threshold is reported in dense polymer films.
- Friction coefficient at the polymer-solid interface *k* undergoes a transition from a constant value to the power law decay as a function of the slip velocity.

$$k/k^* = [1 + (V_s/V_s^*)^2]^{-0.35}$$

- For *linear velocity profiles*, the friction coefficient k is determined by the product of the surface-induced peak in the structure factor $S(G_1)$ and the contact density ρ_c in the first fluid layer near the solid wall. $k^* = k \left[S(0)/S(G_1) \rho_c \right]$
- The linear-response regime holds when the slip velocity of the first layer is smaller than the diffusion velocity of fluid monomers in contact with flat crystalline surfaces.

Acknowledgement: NSF, ACS, MSU