Contents

Clase 5: Generación de Variables Aleatorias - Técnica de Aceptación y Rechazo]
Graficar Histograma	3
Graficar la Densidad Teórica (Normal Truncada)	9

Clase 5: Generación de Variables Aleatorias - Técnica de Aceptación y Rechazo

Objetivos:

- Comprender los fundamentos de la técnica de aceptación y rechazo para la generación de variables aleatorias.
- Identificar cuándo es apropiado utilizar la técnica de aceptación y rechazo en lugar de la transformada inversa.
- Aplicar la técnica de aceptación y rechazo para generar variables aleatorias de distribuciones continuas y discretas.
- Calcular la eficiencia de la técnica de aceptación y rechazo.

Contenido Teórico:

La técnica de aceptación y rechazo (también conocida como método de aceptación-rechazo) es un método general para generar variables aleatorias a partir de una distribución de probabilidad arbitraria, especialmente útil cuando la transformada inversa es difícil de derivar o computacionalmente costosa. Este método se basa en generar valores a partir de una distribución de probabilidad auxiliar (más simple) y luego aceptar o rechazar estos valores según un criterio definido.

Fundamentos:

- 1. Distribución Objetivo f(x): Es la distribución de probabilidad de la variable aleatoria que deseamos generar. Debe ser conocida (al menos hasta una constante de normalización).
- 2. **Distribución Propuesta** g(x): Es una distribución de probabilidad auxiliar, más fácil de generar, que "cubre" a la distribución objetivo. Formalmente, existe una constante c tal que f(x) c g(x) para todo x. La elección de g(x) es crucial para la eficiencia del método.
- 3. Constante c: Es un factor de escala que asegura que la curva c g(x) envuelva completamente la curva f(x). El valor de c debe ser lo más pequeño posible para maximizar la eficiencia.

Algoritmo General:

- 1. Generar un valor x de la distribución propuesta g(x).
- 2. Generar un número aleatorio uniforme u entre 0 y 1.
- 3. Si u = f(x) / (c * g(x)), entonces aceptar x como un valor de la distribución objetivo f(x).
- 4. Si u > f(x) / (c * g(x)), entonces rechazar x y volver al paso 1.

Eficiencia:

La eficiencia de la técnica de aceptación y rechazo se define como la probabilidad de aceptar un valor generado, que es igual a 1/c. Por lo tanto, minimizar c maximiza la eficiencia. Una alta eficiencia implica que se requiere un menor número de iteraciones para obtener una muestra de tamaño dado de la distribución objetivo.

Ejemplo: Generación de una Variable Aleatoria con Densidad Triangular

Supongamos que queremos generar valores de una variable aleatoria con la siguiente función de densidad triangular:

- f(x) = 2x para 0 x 1
- $f(x) = \theta$ en otro caso.

Pasos:

- 1. Distribución Propuesta: Elegimos una distribución uniforme g(x) = 1 para 0 x 1.
- 2. Constante c: Necesitamos encontrar c tal que f(x) c g(x) para todo x. El máximo de f(x) es 2 (en x=1), por lo tanto, c=2.

3. Algoritmo:

a. Generar $x \sim \mathrm{U}(0, 1)$. b. Generar $u \sim \mathrm{U}(0, 1)$. c. Si u - f(x) / (c * g(x)) = (2x) / (2 * 1) = x, entonces aceptar x. d. Sino, rechazar x y volver al paso a.

Caso de Estudio: Generación de una Distribución Beta

La distribución Beta es utilizada frecuentemente para modelar probabilidades. Su función de densidad es:

$$f(x)=x^{-1}(1-x)^{-1}$$
 / $B(\ ,\)$ para 0 $\ x$ 1, donde B(,) es la función Beta.

Cuando y no son enteros, la transformada inversa es muy complicada. Aceptación y rechazo puede ser una buena opción. Usaremos una distribución uniforme [0,1] como distribución propuesta.

Problemas Prácticos y Ejercicios:

Problema 1: Generación de una Distribución Normal Truncada $(0, \infty)$

Diseñar un algoritmo de aceptación y rechazo para generar valores de una distribución normal estándar truncada en el intervalo $(0, \infty)$. Utilizar una distribución exponencial como distribución propuesta.

Solución:

- 1. **Distribución Objetivo:** $f(x) = (2 / \sqrt{(2)}) * exp(-x^2 / 2)$, x > 0 (Normal estándar truncada a la mitad derecha). El factor 2 viene de la normalización para que la integral de 0 a infinito sea 1.
- 2. **Distribución Propuesta:** g(x) = exp(-x), x > 0 (Exponencial con parámetro). Debemos elegir de forma inteligente.
- 3. Constante c: Encontrar el valor óptimo de c requiere un poco de cálculo. Necesitamos maximizar la razón f(x) / g(x). Derivando e igualando a cero, se puede demostrar que el valor de x que maximiza la razón es la solución de la ecuación x = c. Por lo tanto, $c = f(c) / g(c) = (2 / \sqrt{2} c) * exp(-2 / 2) / c$. Para simplificar y para asegurar que c sea finito y razonable, podemos fijar c = c (o cualquier otro valor positivo, pero c = c es común y razonable). En este caso, c = c exp(-0.5) / c(2) 0.4839. Nota: En realidad, la constante c debe ser el INVERSO de este valor. c 2.066

4. Algoritmo:

```
a. Generar x \sim \text{Exponencial}(\ ) (con =1). b. Generar u \sim \text{U}(0, 1). c. Si u = f(x) \ / \ (c * g(x)) = \exp(-x^2 / 2) \ / \ (c * exp(-x)) = \exp(x - x^2 / 2) \ / \ c, entonces aceptar x. d. Sino, rechazar x y volver al paso a.
```

Problema 2: Simulación en Python

Implementar en Python el algoritmo de aceptación y rechazo para generar 1000 valores de la distribución normal truncada del Problema 1. Calcular y mostrar la tasa de aceptación (número de valores aceptados / número total de intentos). Graficar un histograma de los valores generados y compararlo con la función de densidad teórica.

Solución (Código Python):

"'python import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm

def generar_normal_truncada(n, lambda_val=1): """Genera n valores de una normal truncada (0, inf) usando aceptación y rechazo.""" aceptados = [] intentos = 0 c = (2 / np.sqrt(2 * np.pi)) / lambda_val # Corrección: c es la INVERSA de esta cantidad while len(aceptados) < n: x = np.random.exponential(1/lambda_val) # Corregido: Parámetro de scale para np.random.exponential u = np.random.uniform(0, 1) if u <= (norm.pdf(x) / (c * (lambda_val * np.exp(-lambda_val * x)))): aceptados.append(x) intentos += 1 return aceptados, intentos

```
n_samples = 1000 \text{ samples}, \text{ total\_intentos} = \text{generar\_normal\_truncada}(n_samples) \text{ tasa\_aceptacion} = n_samples / \text{ total\_intentos}

print(f"Tasa de Aceptación: \{tasa\_aceptacion:.4f\}")
```

Graficar Histograma

plt.hist(samples, bins=30, density=True, alpha=0.7, label="Muestra Generada")

Graficar la Densidad Teórica (Normal Truncada)

```
x=np.linspace(0,\ 5,\ 100)\ pdf\_truncada=(2\ /\ np.sqrt(2\ *\ np.pi))\ *\ np.exp(-x**2\ /\ 2)\ plt.plot(x,\ pdf\_truncada,\ 'r-',\ label="Densidad Teórica Normal Truncada")
```

plt.xlabel("x") plt.ylabel("Densidad") plt.title("Generación de Normal Truncada (Aceptación y Rechazo)") plt.legend() plt.show() "'

Materiales Complementarios Recomendados:

- Libros de texto: Cualquier libro de texto de simulación estocástica o modelado estocástico cubrirá la técnica de aceptación y rechazo en detalle. Busca secciones sobre generación de números aleatorios no uniformes.
- Artículos: Busca artículos científicos sobre la optimización de la técnica de aceptación y rechazo para distribuciones específicas.
- Recursos en línea: Khan Academy (para repaso de distribuciones de probabilidad) y documentación de bibliotecas de simulación en Python (NumPy, SciPy).