Introduction to ${\cal R}$

Session 6: GLMs

Dag Tanneberg¹

Potsdam Center for Quantitative Research University of Potsdam, Germany October 11/12, 2018

¹Chair of Comparative Politics, UP, dag.tanneberg@uni-potsdam.de

Introduction

Before we start...

- Quit & reopen RStudio.
- Load "./06/dta/asoiaf.csv" from the course material.
 - Remember: Uncheck the option "Strings as factors"
- Open a new script file.
- Execute the following code:

```
asoiaf[, "died"] <- !is.na(asoiaf[, "book_of_death"])</pre>
```

■ Install the "car" package.

What do we intent to do?

- Question: What's the chance that Jon Snow is going to die?
- **Means**: Regression on a linear combination of predictors

$$p(Death = 1|\mathbf{X}, \beta) = \beta_0 + \sum_{\mathbf{K}} \beta_{\mathbf{k}} \mathbf{x_k}$$

- **Problem**: Chance of death is not a well-behaved response.
 - a. We don't obseverve probabilities but discrete events.
 - **b.** Probabilities are restricted to [0,1], but $\mathbf{X}\beta$ can take any value.
- Challenge: Map the linear combination $X\beta$ into a domain which fits our response.

Some Intuition on GLMs

- Applies to many quantities of interest, e.g.,
 - Household income
 - Satisfaction with democracy
 - Number of bills per session of parliament
 - **.** . . .

Outline

- 1 Introduction
- 2 The Basics of Running GLMs in ${\cal R}$
- 3 Working With Regression Results
- 4 Testing Assumptions

The Basics of Running GLMs in ${\cal R}$

Generic Format of Fitting GLMs

```
fit <- glm(
formula = <formula>.
family = <family>(link = "<link>"),
# Defaults to gaussian(link = "identity"). Therefore
# we skip the lm() function and OLS.
data = <data>,
weights = <weights>, # Be careful! Meaning changes
                     # depending on <family>.
subset = <subset>,
na.action = na.omit, # Retains only complete cases.
<...> # Options to tweak the optimizer.
```

\mathcal{R} 's Formula Interface²

Generic Example

$$y \sim x_1 + x_2 + \dots + x_k$$

Formula Creation

Symbol	Meaning	Example
:	Specify an interaction	$y \sim x : z \Rightarrow y = xz$
*	Specify all possible interactions	$y \sim x * z \Rightarrow y = x + z + xz$
^	Specify interactions up to some degree	$y \sim (x+z)^2 \Rightarrow y = x+z+xz$
	Wildcard for all other variables	$y \sim . \Rightarrow y = x + z + w + \dots$
-	Remove variable(s)	$y \sim (x+z)^2 \tilde{x}: z \Rightarrow y = x+z$
-1 OR 0+	Remove the intercept	$y \sim x - 1 \text{ OR } y \sim 0 + x$
I()	Arithmetical transformation	$y \sim I(x^2) \Rightarrow y = x^2$
function	Other mathematical transformations	$\log 10(y) \sim x \Rightarrow log_{10}(y) = x$

 $^{^2}$ Adapted from Kabacoff, R. 2011. R in Action. Shelter Island: Manning Publications, p. 178.

\mathcal{R} 's Formula Interface, contd.

Exercise How would you write the following formulas?

$$y = x + z + xz$$

$$y = x + x^2 + x^3$$

$$\log_e(y) = x + z + w + xz + xw + wz$$

f y as a function of variables in the data but k

Family Generators and Link Functions in $glm()^3$

A Practical Example

	link = " <arg>"</arg>							
family	μ identity	μ^{-1} inverse	$ln(\mu)\\\log$	$ln(\frac{\mu}{1-\mu})$ logit	$\Phi(\mu)$ probit	$ln[-ln(1-\mu)]$ cloglog	$\begin{array}{c} \sqrt{\mu} \\ \text{sqrt} \end{array}$	$1/\text{mu}^2$
gaussian()	•	0	0					
binomial()			0	•	0	0		
poisson()	0		•				0	
Gamma()	0	•	0					
inverse.gaussian()	0	0	0					•
quasi()	•	0	0	0	0	0	0	0
quasibinomial()				•	0	0		
quasi()	0		•				0	

Legend: • default, ∘ possible

³Adapted from Fox, J. and S. Weisberg. 2011. An R Companion to Applied Regression. 2nd ed. London: SAGE, pp. 231, 233.

Get Your Hands Dirty

Now it's your turn. Fit a

- logistic regression model which
- predicts died
- from allegiances,
- the full interaction of **gender** and **nobility**,
- a cubic polynomial on age_in_chapters,
- and save it to an object called myfit.

Working With Regression Results

Testing Assumptions