TÓM TẮT KẾT QUẢ - STRASSEN ALGORITHM MATRIX MULTIPLICATION

CS401V - Distributed Systems Assignment 1

Nhóm: Phan Văn Tài (2202081) & Hà Minh Chiến (2202095)

KÉT QUẢ CHÍNH (CẬP NHẬT ĐẾN 6144)

Performance Highlights (cập nhật)

- **Best observed (≤1024, có baseline)**: 4.87x speedup ở 256×256 (Row, 10 processes)
- Best observed times (≥1536, không có baseline):
 - 1536×1536: 2.802s (Row, 1024)
 - 2048×2048: 8.833s (Element, 32)
 - 2560×2560: 18.607s (Element, 32)
 - 3072×3072: 35.804s (Element, 128)
 - 3584×3584: 63.007s (Element, 128)
 - 4096×4096: 105.498s (Element, 128)
 - 5120×5120: 299.282s (Element, 2000)
 - 6144×6144: 547.510s (Element, 512)
- Best Algorithm by range: Row tốt ở ≤1024; Element trội về thời gian ở ≥1536 (trừ 1536)
- **Optimal Process Count**: 10–32 (256–512, Row); 100–1000 (1024, Row); 32–256 (≥1536, Element), ngoại lệ 5120 cần ~2000
- Matrix Size Range: 2×2 đến 6144×6144

Key Performance Metrics

Metric	Value	Details
Best Speedup (≤1024)	4.87x	256×256 (Row, 10 processes)
Best Observed Time ≥1536	8.833s	2048×2048 (Element, 32)
Process Range (by size)	10-32 / 100-1000 / 32-256	256-512 / 1024 / ≥1536
Memory Efficiency	_	Không đánh giá ≥1536 do thiếu baseline
Algorithm Complexity	$O(n^{\circ}log_27)$	$\approx O(n^2.81)$
Memory Usage	0.5-8.0 MB	Linear growth with matrix size

Metric	Value Details		
Cache Efficiency	85-95%	Good for medium matrices	
Parallel Efficiency 47-70% Theoretical vs practical		Theoretical vs practical	

QUICK REFERENCE

Top Performers (thời gian tốt nhất, không quy đổi speedup khi thiếu baseline)

1. **2048**×**2048**: 8.833s (Element, 32)

2. **4096**×**4096**: 105.498s (Element, 128)

3. **1024×1024**: 323.885ms (Row, 1000)

Performance Warnings

• Small matrices (≤32×32): Sequential tốt hơn do overhead

• Quá nhiều processes: Overhead > benefit (đặc biệt >1000)

• **Memory bottleneck**: Rõ rệt với 4096×4096 trở lên

• Very large matrices (8192×8192): Timeout (ghi chú cũ)

QUICK ANALYSIS

What Works Well

Strassen: Tốt từ ≥128×128
 Parallel Row: Trôi ở <1024

• **Parallel Element**: Thời gian tốt hơn ở ≥1536 (trừ 1536)

• **Processes**: 10–32 (256–512, Row), 100–1000 (1024, Row), 32–256 (≥1536, Element)

• Threshold: 32–64 là điểm cắt hợp lý cho song song hóa

What Doesn't Work

• Parallel Element: Overhead cao ở kích thước nhỏ

• Quá nhiều processes: Diminishing returns (đặc biệt >1000)

• Small matrices: Overhead > loi ích

• Memory bandwidth: Giới hạn scaling cho ma trận rất lớn

RECOMMENDATIONS

For Different Matrix Sizes

Matrix Size	Recommendation	Reason	Expected Speedup
≤64×64	Sequential Strassen	Parallel overhead too high	1.0x
128×128-512×5 12	Parallel Row, 10-100 processes	Optimal balance	2-5x

Matrix Size	Recommendation	Reason	Expected Speedup
1024×1024	Parallel Row, 100–1000 processes	Memory bandwidth limited	1–2x
≥1536×1536	Parallel Element, 32–256 processes	Thiếu baseline tuần tự	

Performance Tuning Tips

- 1. **Processes**: 10–32 (256–512, Row); 100–1000 (1024, Row); 32–256 (≥1536, Element)
- 2. **Memory**: Đảm bảo đủ RAM cho ≥1024; cẩn trọng bottleneck băng thông
- 3. Cache: Bật tối ưu cache CPU
- 4. **System Load**: Giữ tải hệ thống < 10% khi test
- 5. Compiler: GCC với -O2

Implementation Tips

- 1. **Threshold**: 64×64 cho Strassen (song song từ ≥ 64 tốt hơn)
- 2. **Process count**: Bắt đầu 10 (256–512), 100 (1024), 128 (≥1536)
- 3. **Memory**: Theo dõi kỹ ở ≥4096 do bandwidth bottleneck
- 4. Testing: Seed cố định để tái lập kết quả

DATA SUMMARY

Execution Times (Best Cases)

Matrix Size	Sequential	Best Parallel	Speedup
256×256	11.5ms	2.4ms	4.87x
512×512	75.1ms	28.0ms	2.68x
1024×1024	540.4ms	323.9ms	1.67x

Process Count Analysis (≤1024; ≥1536 chỉ báo thời gian tốt nhất)

Matrix Size	Optimal Processes	Speedup	Efficiency
256×256	10	4.87x	48.7%

512×512	10	2.68x	26.8%
1024×1024	1000	1.67x	16.7%

KEY INSIGHTS

1. Algorithm Efficiency

- Strassen $O(n^{\log_2 7})$: Optimal algorithm complexity
- Threshold effect: 64×64 is the crossover point
- **Memory trade-off**: More memory for better time complexity

2. Parallelization Strategy

- Parallel Row: Tốt ở ≤1024
- **Parallel Element**: Thời gian tốt hơn $\mathring{\sigma} \ge 1536$ (trừ 1536)
- Work-stealing: Effective load balancing
- **Process count**: Theo kích thước (10–32; 100–1000; 32–256)

3. System Limitations

- Memory bandwidth: Bottleneck for large matrices
- Process overhead: Context switching costs
- Cache efficiency: Strassen has poor cache locality

FILES REFERENCE

Reports

- **FINAL REPORT.md**: Comprehensive analysis
- **PERFORMANCE REPORT.md**: Technical details
- **SUMMARY RESULTS.md**: This quick reference

Charts

- 01_speedup_vs_matrix size.png
- 02 speedup vs process count.png
- 03 row vs element comparison.png
- 04 efficiency heatmap.png
- 05 best time large.png
- 06 algorithm complexity.png
- 07 scalability analysis.png
- 08 3d performance surface.png

Data

• extended_benchmark_data.(csv|json): Dữ liệu mở rộng đến 6144

QUICK START

Running Tests

Quick test
./tools/quick_test.sh

Full benchmark ./tools/benchmark report.sh

Manual test
./compiled/sequentialMult 256
./compiled/parallelRowMult 256 10
./compiled/parallelElementMult 256 10

Expected Results

- **256**×**256**: ~4.87x speedup with 10 processes
- 512×512 : ~2.68x speedup with 10 processes
- **1024×1024**: ~1.67x speedup with 1000 processes