When Does Regulation Distort Costs? Lessons from Fuel Procurement in US Electricity Generation

Cicala (2015), AER

Environmental Reading Group session 16

Dec 8, 2023

Introduction

 Model
 Estimation Strategy
 Empirical Results

 ○○○○○○
 ○○
 ○○○○○○

Context

Introduction

• **Cost of Service:** Producers submit their cost information. The regulator audits these cost, determines price for variable cost, and pays capital cost + fair rate of return.

Distortions:

- Averch-Johnson effect: pure profit incents over-investment.
- Moral Hazard Problem: less incentive to exert effort to reduce production cost.
- Lobbying: special interest groups influence the regulator's decision.

Context

Introduction

Electricity Deregulation: price is determined by centralized auction.

- Transmission line is controlled by independent system operator.
- integrated utilities divest their generation units.

Research Question

Introduction

- How does divestiture reduce coal procurement cost in electricity market?
 - Generation costs
 - Trade gains
- DID, Treatment: Deregulation.
 - Fuel procurement cost between Regulated vs. unregulated firms.
 - Close geographical proximity.

Setup

Introduction

- Production function: G(F,K); F: fuel, K: capital
- inverse demand function: p = p[G(F, K)]. constant electricity of demand: $\eta = -\frac{G(F,K)}{p[G(F,K)]}\frac{dp}{dG} < 1$
- Firms can exert effort to reduce input cost. $c = \beta e$, with convex cost function $\psi(e)$.
- \bullet $\theta(c)$ is the probability that cost pasts audit.
- s is rate of return on capital investment, r is the cost of capital. s > r.

Maximization Problem

$$\max_{e,F,K} R(F,K) - (\beta - e)F - rK - \psi(e) \tag{1}$$

$$s.t.R(F,K) \le \theta(\beta - e)[\beta - e]F + sK \tag{2}$$

First Order Conditions

$$[e]: \psi'(e) = F\{1 - \lambda[\theta(\beta - e) + [\beta - e]\theta'(\beta - e)]\}$$
(3)

- Shirk because of non-observable effort;
- Shirk because of market power

First Order Conditions

$$[F]: (1-\eta)\rho G_F = \frac{1-\lambda\,\theta(\beta-e)}{1-\lambda}(\beta-e) \tag{4}$$

$$[K]: (1-\eta)pG_K = r - \frac{\lambda}{1-\lambda}(s-r)$$
(5)

$$\frac{G_K}{G_F} = \frac{r}{\beta - e} \left[1 - \frac{\lambda}{1 - \lambda} \frac{s - r}{r} \right] / \left[\frac{1 - \lambda \theta(\beta - e)}{1 - \lambda} \right] < \frac{r}{\beta - e}$$
 (6)

- Capital-bias because of excess rate of return s > r.
- Capital-bias because of non-observability.
- Capital-bias because of binding revenue constraint. (yardstick competition)

Regulator's Problem

$$[e]: \psi'(e) = F\{1 - \lambda[\theta(\beta - e) + [\beta - e]\theta'(\beta - e)]\}$$
 (7)

- If β is public information, to design θ such that $\theta(\beta e^*) + [\beta e^*]\theta'(\beta e^*) = 0$
- Otherwise, if $\beta \in [\underline{\beta}, \overline{\beta}], \theta(c) + c\theta'(c) = 0. \Rightarrow$ Screening + no information rent.
- However, pooling might happen if $\bar{\beta}$ - β is too large. \Rightarrow information rent.

Lobbying

probability of being approved is a function of influence $\theta(c,b)$,

$$\frac{de^*}{db} = -\frac{F\lambda \left[\frac{\partial \theta}{\partial b} + (\beta - e^*)\frac{\partial^2 \theta}{\partial c \partial b}\right]}{\psi''(e^*) + \frac{\partial F}{\partial c}} < 0$$
 (8)

Testable Implications

Regulation leads to

- asymmetric information
- political influence
- capital over-investment

While deregulation can induce inefficiency by:

market power

Close Proximity

To find the m closest facilities of treatment firm i by:

$$\sum_{j|D_j \neq D_i} \{||X_j - X_i|| \le ||X_l - X_i||\} = m \tag{9}$$

m = 10.

Regression Equation

$$Y_{it} = \gamma_i + \delta_t + \tau_t(X_i)D_{it} + \varepsilon_{it}$$
 (10)

ATE:
$$\tau = E[\tau_t(X_i)|D=1]$$
.

Data

1990-2019, plant level

- Coal sources
- Fuel costs
- Generating unit configurations
- Plant operations
- Regulatory Status

 Introduction
 Model
 Estimation Strategy
 Empirical Results

 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 ○○
 <t

Deregulation on coal purchase cost: weighted matched DID

TABLE 2—COAL: MATCHED DID ESTIMATES OF LOG(Price) AND DIVESTITURE

	(1)	(2)	(3)	(4)	(5)	(6)
Post-divest	-0.124*** (0.044)	-0.188*** (0.058)	-0.152* (0.077)	-0.124*** (0.045)	-0.128*** (0.046)	-0.136** (0.064)
m nearest neighbors				10	5	1
Proximity threshold (mi.)	200	100	50			
Year-month FE	Yes	Yes	Yes	Yes	Yes	Yes
Facility FE	Yes	Yes	Yes	Yes	Yes	Yes
R^2	0.721	0.712	0.668	0.723	0.726	0.738
Facilities	230	146	69	198	166	121
Divested facilities	87	74	39	87	87	87
Observations	47,024	28,449	12,682	37,495	32,958	23,336

Deregulation on coal purchase cost: unweighted standard DID

TABLE 3—COAL: DID ESTIMATES OF LOG(Price) AND DIVESTITURE

	(1)	(2)	(3)	(4)	(5)	(6)
Post-divest	-0.051 (0.035)	-0.054 (0.035)	-0.131*** (0.041)	-0.055 (0.036)	$\frac{-0.069}{(0.040)}$	-0.137** (0.055)
Divest Facilities	0.145*** (0.030)					
Proximity threshold (mi) Year-month FE Facility FE Division-year FE	Yes	Yes Yes	Yes Yes Yes	Yes Yes	100 Yes Yes	Yes Yes
R ² Facilities Divested facilities Observations	0.252 397 88 86,225	0.772 397 88 86,225	0.803 397 333 88 86,225	0.733 221 88 71,569	0.700 123 78 47,324	0.712 47 26,483

IntroductionModelEstimation StrategyEmpirical Results○○○○○○○○

Deregulation on gas purchase cost: weighted matched DID

TABLE 4—GAS: MATCHED DID ESTIMATES OF LOG(Price) AND DIVESTITURE

	(1)	(2)	(3)	(4)	(5)	(6)
Post-divest	0.012 (0.026)	0.027 (0.029)	0.010 (0.036)	0.012 (0.027)	0.005 (0.027)	0.038 (0.038)
m nearest neighbors Proximity threshold (mi.)	200	100	50	10	5	1
Year-month FE	Yes	Yes	Yes	Yes	Yes	Yes
Facility FE	Yes	Yes	Yes	Yes	Yes	Yes
R^2	0.853	0.852	0.861	0.855	0.857	0.854
Facilities	276	198	111	254	224	165
Divested facilities	109	99	59	109	109	109
Observations	46,828	33,465	17,631	41,089	36,727	26,510

Gas procurement is more transparent compared to coal procurement. \Rightarrow **No asymmetric information**, so less effect of deregulation.

IntroductionModelEstimation StrategyEmpirical Results○○○○○○○○

Capital Investment

TABLE 5—MATCHED DID ESTIMATES OF SULFUR COMPLIANCE STRATEGY

	Scrubber	Low sulfur	Uncontrolled
Post-divest	-0.072***	0.100***	-0.032
	(0.024)	(0.031)	(0.038)
Divested unit	0.014 (0.040)	0.010 (0.034)	-0.023 (0.047)
m nearest neighbors R ² Units Divested units Observations	10	10	10
	0.017	0.049	0.056
	384	384	384
	197	197	197
	7,145	7,145	7,145

 Introduction
 Model
 Estimation Strategy
 Empirical Results occorded

Lobbying

TABLE 7—MATCHED DID ESTIMATES OF PERCENT OF IN-STATE COAL AMONG PLANTS BURNING IN-STATE COAL IN 1997

	(1)	(2)	(3)	(4)	(5)	(6)
Post-divest	-0.093 (0.058)	-0.114 (0.073)	-0.111 (0.072)	-0.102 (0.065)	-0.107 (0.065)	-0.160*** (0.055)
Post-divest x	-0.374***	-0.351***	-0.342***	-0.374***	-0.373***	-0.377***
Switching plant	(0.059)	(0.057)	(0.092)	(0.059)	(0.059)	(0.059)
m nearest neighbors				10	5	1
Proximity threshold (mi.)	200	100	50			
Year-month FE	Yes	Yes	Yes	Yes	Yes	Yes
Facility FE	Yes	Yes	Yes	Yes	Yes	Yes
R^2	0.687	0.667	0.689	0.682	0.679	0.718
Facilities	82	68	30	81	74	57
Divested facilities	40	33	15	40	40	40
Observations	17,433	13,745	5,858	16,802	14,707	10,820

 Introduction
 Model
 Estimation Strategy
 Empirical Results oooooo●

Reference

Cicala, S. (2015). When Does Regulation Distort Costs? Lessons from Fuel Procurement in US Electricity Generation. American Economic Review, 105(1), 411-444.

