

planetmath.org

Math for the people, by the people.

Ascoli-Arzelà theorem

Canonical name AscoliArzelaTheorem
Date of creation 2013-03-22 12:41:00
Last modified on 2013-03-22 12:41:00
Owner paolini (1187)

Owner paolini (1187) Last modified by paolini (1187)

Numerical id 13

Author paolini (1187) Entry type Theorem Classification msc 46E15

Synonym Arzelà-Ascoli theorem Related topic MontelsTheorem Let Ω be a bounded subset of \mathbb{R}^n and (f_k) a sequence of functions $f_k \colon \Omega \to \mathbb{R}^m$. If $\{f_k\}$ is equibounded and uniformly equicontinuous then there exists a uniformly convergent subsequence (f_{k_j}) .

A more abstract (and more general) version is the following.

Let X and Y be totally bounded metric spaces and let $F \subset \mathcal{C}(X,Y)$ be an uniformly equicontinuous family of continuous mappings from X to Y. Then F is totally bounded (with respect to the uniform convergence metric induced by $\mathcal{C}(X,Y)$).

Notice that the first version is a consequence of the second. Recall, in fact, that a subset of a complete metric space is totally bounded if and only if its closure is compact (or sequentially compact). Hence Ω is totally bounded and all the functions f_k have image in a totally bounded set. Being $F = \{f_k\}$ totally bounded means that \overline{F} is sequentially compact and hence (f_k) has a convergent subsequence.