Versuchsbericht zu

W2 - Adiabatenexponent c_p/c_v von Gasen

Gruppe 14Mo

Alexander Neuwirth (E-Mail: a_neuw01@wwu.de) Leonhard Segger (E-Mail: l_segg03@uni-muenster.de)

> durchgeführt am 28.05.2018 betreut von Pascal Grenz

Inhaltsverzeichnis

1	Kurzfassung	
2	Methoden	3
3	Ergebnisse und Diskussion 3.1 Beobachtungen und Datenanalyse	3
	3.1.1 Unsicherheiten	3
	3.2 Diskussion	
4	Schlussfolgerung	4

1 Kurzfassung

2 Methoden

3 Ergebnisse und Diskussion

3.1 Beobachtungen und Datenanalyse

3.1.1 Unsicherheiten

Die Unsicherheiten wurden gemäß GUM ermittelt. Außerdem wurde für Unsicherheitsrechnungen die Python Bibliothek "uncertainties" verwendet.

Waage: Die Waage zeigt das Gewicht mit einer Nachkommaselle an, woraus eine Unsicherheit von 0,03 g folgt (rechteckige WDF).

Stoppuhr: Die Zeit wurde in Sekunden mit zwei Nachkommastellen gemessen. Folglich ist die Unsicherheit 0,003 s (rechteckige WDF), jedochat die Reaktionszeit einen größeren Einfluss, wesshalb eine Unsicherheit von 0,1 s angenommen wird.

Messschieber: Die Unsicherheit des Messschiebers wurde auf 0,06 mm abgeschätzt (dreieckige WDF).

Maßstäbe: Ebenfalls eine analoge Messung, wobei die Unsicherheit 0,04 cm beträgt.

Schwingungszählung: Beim Zählen der 100 Schwingungen wird von maximal einer Schwingung zu viel bzw. zu wenig ausgegangen, sodass die Unsicherheit 0,6 beträgt (rechteckige WDF).

3.1.2 Bestimmung von κ_{Luft} nach Clément-Desormes

In der Einführung wurde folgende Formel zur Bestimmung es Adiabtenexponenten ergeleitet:

$$\kappa = \frac{h_1}{h_1 - h_3} \tag{1}$$

$$u(\kappa) = \kappa^2 \cdot \sqrt{\left(\frac{h_3}{h_1}\right)^2 + 1} \cdot \frac{u(h)}{h_1} \tag{2}$$

Dabei ist h_1 die Höhe der Flüssigkeitssäule im Manometer nach der Erhöhung des Drucks im Gefäß und dessen folgender Temperaturausgleich mit der Umgebung. h_3 ist die Höhe, die sich ergibt, wenn man den Druck im Gefäß an den der Umgebung anpasst und sich, unter Druckänderung, ein (adiabatischer) Temperaturgleichgewicht einstellt.

In Tabelle 1 sind die Messwerte sowie folgende Adiabatenkoeffizienten aufgeführt. Es folgt ein Mittelwert für κ_{Luft} von $(1,355\pm0,004)$

Tabelle 1: Gemessene Höhe der Flüssigkeitssäule im Manometer und nach Gleichung (1) berechnete Adiabtenexponenten $\kappa_{\rm Luft}$ von Luft.

h_3 in cm	$\kappa_{ m Luft}$
$4,35 \pm 0,06$	$1,354 \pm 0,007$
$5,52 \pm 0,06$	$1,365 \pm 0,006$
$6,72 \pm 0.06$	$1,361 \pm 0,005$
$9,41 \pm 0,06$	$1,345 \pm 0,003$
$2,84 \pm 0,06$	$1,349 \pm 0,010$
	$4,35 \pm 0,06$ $5,52 \pm 0,06$ $6,72 \pm 0,06$ $9,41 \pm 0,06$

3.2 Diskussion

4 Schlussfolgerung