Alliance Participation and Military Spending

Joshua Alley

January 27, 2019

Texas A&M University

Whether alliance treaty participation increases or decreases military spending depends on alliance treaty strength and state capability.

1: Strong alliance treaties decrease growth in

military spending from alliance participation

for major powers.

2: Strong alliance treaties increase growth in military spending from alliance participation for non-major powers.

Expectations:

Expectations: Force Multiplier

Expectations: Force Multiplier or Foreign Entanglement?

Expectations: Force Multiplier or Foreign Entanglement?

	Decrease	Increase	Null
Most & Siverson 1987			Χ
Conybeare 1994	X		
Diehl 1994		X	
Goldsmith 2003			X
Morgan & Palmer 2006		X	
Quiroz-Flores 2011		X	
Digiuseppe & Poast 2016	X		
Horowitz et al 2017		X	

Alliance Heterogeneity

Relevance

Outline

I make my claim about alliance participation and military spending in two ways:

Outline

I make my claim about alliance participation and military spending in two ways:

1. Argument: Treaty Strength and State Capability

Outline

I make my claim about alliance participation and military spending in two ways:

- 1. Argument: Treaty Strength and State Capability
- 2. Statistical Analysis

Argument

Not all alliances are equally deep and costly. Strength depends on costs an ally incurs or would incur.

• Potential Costs: honoring or breaking promises of support.

- Potential Costs: honoring or breaking promises of support.
- Sunk costs promises: commitment to take costly action.

- Potential Costs: honoring or breaking promises of support.
- Sunk costs promises: commitment to take costly action.
- Strong/deep formal commitments increase foreign policy gains from alliance participation.

- Potential Costs: honoring or breaking promises of support.
- Sunk costs promises: commitment to take costly action.
- Strong/deep formal commitments increase foreign policy gains from alliance participation.
- But the same hands tying limits freedom of action for members.

Major Powers

Major Powers

 Alliances & Spending: External Influence

Major Powers

- Alliances & Spending:
 External Influence
- Influence =
 Probability Intervention ×
 Capability

Major Powers

- Alliances & Spending: External Influence
- Influence =
 Probability Intervention ×
 Capability
- Strong treaties

 influence

 without

 spending

Major Powers

- Alliances & Spending: External Influence
- Influence =
 Probability Intervention ×
 Capability
- Strong treaties

 influence

 without

 spending

Non-Major Powers

 Alliances & Spending: Territorial Security

Major Powers

- Alliances & Spending: External Influence
- $\begin{tabular}{ll} \bullet & Influence = \\ Probability & Intervention \times \\ Capability \\ \end{tabular}$
- Strong treaties

 influence

 without

 spending

- Alliances & Spending: Territorial Security
- Replace domestic expenditure with allied capability.

Major Powers

- Alliances & Spending: External Influence
- $\begin{tabular}{ll} \bullet & Influence = \\ Probability & Intervention \times \\ Capability \\ \end{tabular}$
- Strong treaties

 influence

 without

 spending

- Alliances & Spending: Territorial Security
- Replace domestic expenditure with allied capability.
- Strong treaties restrict freedom of action: alliance value and allied influence.

Hypothesis 1: As alliance treaty strength increases, growth in major power military spending from alliance

participation will decrease.

Hypothesis 1: As alliance treaty strength increases, growth in major power military spending from alliance participation will decrease.

Hypothesis 2: As alliance treaty strength increases, growth in non-major power military spending from alliance participation will increase.

Empirical Analysis

Research Design

To test these predictions, I need two things:

Research Design

To test these predictions, I need two things:

1. Measure of treaty strength— Measurement Model.

Research Design

To test these predictions, I need two things:

- 1. Measure of treaty strength— Measurement Model.
- 2. Connect alliance-level variation with state-level outcomes— Multilevel Analysis.

Measuring Treaty Strength

I use a latent variable model (semiparametric mixed factor analysis) to infer formal treaty strength from observed promises.

Measuring Treaty Strength

I use a latent variable model (semiparametric mixed factor analysis) to infer formal treaty strength from observed promises.

For each alliance, the posterior mean of the latent factor is my measure of strength.

Empirical Analysis: Multilevel Model

• Link alliance-level variation with state-level outcomes.

Empirical Analysis: Multilevel Model

- Link alliance-level variation with state-level outcomes.
- Two connected regressions: alliance and state-level.

Empirical Analysis: Multilevel Model

- Link alliance-level variation with state-level outcomes.
- Two connected regressions: alliance and state-level.
- Alliance characteristics modify the association between alliance membership and spending growth.

ML Model

ML Model

ML Model

• **Split Sample**: major and non-major power states— 1816-2007. Alliances with military support.

- **Split Sample**: major and non-major power states—1816-2007. Alliances with military support.
- **DV**: Growth in Military Spending = $\frac{\text{Change Mil. Expend}_{t}}{\text{Mil. Expend}_{t-1}}$

- **Split Sample**: major and non-major power states— 1816-2007. Alliances with military support.
- **DV**: Growth in Military Spending = $\frac{\text{Change Mil. Expend}_{t-1}}{\text{Mil. Expend}_{t-1}}$
- Alliance-Level IV: Mean Treaty Strength

- **Split Sample**: major and non-major power states— 1816-2007. Alliances with military support.
- **DV**: Growth in Military Spending = $\frac{\text{Change Mil. Expend}_{t-1}}{\text{Mil. Expend}_{t-1}}$
- Alliance-Level IV: Mean Treaty Strength
- State-Level Controls: Interstate war, Civil War, Annual MIDs, GDP growth, POLITY, Cold War, Rival military expenditures.

- **Split Sample**: major and non-major power states—1816-2007. Alliances with military support.
- **DV**: Growth in Military Spending = $\frac{\text{Change Mil. Expend}_{t-1}}{\text{Mil. Expend}_{t-1}}$
- Alliance-Level IV: Mean Treaty Strength
- State-Level Controls: Interstate war, Civil War, Annual MIDs, GDP growth, POLITY, Cold War, Rival military expenditures.
- Alliance-Level Controls: Share of Democracies, Number of Members, wartime, asymmetric obligations, US member (Cold War), USSR member.

Results

Association Between Treaty Strength and Growth in Military Spending

Conclusion

Conclusion

Whether alliance treaty participation increases or decreases military spending depends on state capability and alliance treaty strength.

Thank you! jkalley14@tamu.edu

Limitations

1. Domestic political economy of military spending.

Limitations

- 1. Domestic political economy of military spending.
- 2. Measurement error and missing data.

Limitations

- 1. Domestic political economy of military spending.
- 2. Measurement error and missing data.
- 3. Strategic alliance design

Importance

Sample	Posterior Mean	Median Ex.	Growth				
Major	-0.05	0.04					
Non-major	0.03	0.06					
US spent \$36.0 billion on NATO in 2018, or							
5.5% of the total defense spending.							

Alliance-Level Regression Table: Major Powers

930 observations, with 130 alliances.

	mean	S.D.	5%	95%	n_eff	Ŕ
Constant	0.038	0.038	-0.025	0.102	3380.954	1.000
Latent Str.	-0.054	0.031	-0.107	-0.005	3278.923	1.000
Number Members	0.000	0.002	-0.003	0.003	4000.000	0.999
Democratic Membership	-0.009	0.033	-0.065	0.042	4000.000	1.000
Wartime	-0.057	0.035	-0.115	-0.001	4000.000	1.001
Asymmetric	0.053	0.035	0.001	0.115	2218.509	1.000
US Member	0.002	0.031	-0.051	0.051	4000.000	1.000
USSR Member	0.023	0.033	-0.028	0.079	4000.000	1.000
σ Alliances	0.066	0.029	0.019	0.117	599.081	1.007

Alliance-Level Regression Table: Non-Major Powers

8,668 observations and 192 alliances.

	mean	sd	5%	95%	n_eff	Ŕ
Constant	-0.018	0.018	-0.047	0.012	2211.374	1.000
Latent Str.	0.026	0.017	-0.002	0.054	2191.382	1.000
Number Members	0.000	0.001	-0.001	0.001	4000.000	1.000
Democratic Membership	-0.031	0.015	-0.056	-0.009	3213.621	1.000
Wartime	0.041	0.023	0.002	0.078	4000.000	1.000
Asymmetric	-0.031	0.021	-0.065	0.003	4000.000	0.999
US Member	0.013	0.018	-0.016	0.042	2895.419	1.000
USSR Member	0.011	0.031	-0.041	0.062	4000.000	1.000
σ Alliances	0.014	0.009	0.002	0.030	1254.268	1.001

ML Model Specification

$$y \sim student_t(\mu, \nu, \sigma)$$
 (1)

$$\mu = \alpha + \alpha^{st} + \alpha^{yr} + \mathbf{W}\gamma + \mathbf{Z}\lambda \tag{2}$$

$$\lambda \sim N(\theta, \sigma_{all})$$
 (3)

$$\theta = \alpha_{\textit{all}} + \beta_1 \text{Treaty Strength} + \mathbf{X}\beta \tag{4}$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + W_{it}\gamma + Z_{it}\lambda$$

Example year:

Argentina 1955 = Overall mean

+ Argentine Intercept + 1955 Intercept

+ Argentine Characteristics

 $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$\lambda_{Rio} = \alpha_{all} + \beta_1 \text{Treaty Strength} + \text{Controls}$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + W_{it}\gamma + Z_{it}\lambda$$

Example year:

Argentina 1955 = Overall mean

- + Argentine Intercept + 1955 Intercept
- + Argentine Characteristics
- $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$\lambda_{Rio} = \alpha_{all} + \beta_1 \text{Treaty Strength} + \text{Controls}$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + W_{it}\gamma + Z_{it}\lambda$$

Example year:

${\sf Argentina}\ 1955 = {\sf Overall}\ {\sf mean}$

- + Argentine Intercept + 1955 Intercept
- + Argentine Characteristics
- $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$\lambda_{Rio} = \alpha_{all} + \beta_1 \text{Treaty Strength} + \text{Controls}$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + W_{it}\gamma + Z_{it}\lambda$$

Example year:

Argentina 1955 = Overall mean

- + Argentine Intercept + 1955 Intercept
- + Argentine Characteristics
- $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$\lambda_{Rio} = \alpha_{all} + \beta_1 \text{Treaty Strength} + \text{Controls}$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + W_{it}\gamma + Z_{it}\lambda$$

Example year:

Argentina 1955 = Overall mean

+ Argentine Intercept + 1955 Intercept

+ Argentine Characteristics

 $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$\lambda_{Rio} = \alpha_{all} + \beta_1 \text{Treaty Strength} + \text{Controls}$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + W_{it}\gamma + Z_{it}\lambda$$

Example year:

Argentina 1955 = Overall mean

- + Argentine Intercept + 1955 Intercept
- + Argentine Characteristics
- $+\lambda_{\textit{OAS}}*\mathsf{OAS}$ Expenditure $+\lambda_{\textit{Rio}}*\mathsf{Rio}$ Pact Expenditure

$$\lambda_{Rio} = \alpha_{all} + \beta_1 \text{Treaty Strength} + \text{Controls}$$

$$\mu_{it} = \alpha + \alpha^{st} + \alpha^{yr} + W_{it}\gamma + Z_{it}\lambda$$

Example year:

Argentina 1955 = Overall mean

- + Argentine Intercept + 1955 Intercept
- + Argentine Characteristics
- $+\lambda_{OAS}*$ OAS Expenditure $+\lambda_{Rio}*$ Rio Pact Expenditure

$$\lambda_{Rio} = \alpha_{\mathit{all}} + \beta_1 \mathsf{Treaty} \; \mathsf{Strength} + \mathsf{Controls}$$

State-Year	Rio Pact	Warsaw Pact	
Argentina 1954	.347	0	
Argentina 1955	.418	0	
1	:	:	

Priors

4 Chains with 2,000 samples and 1,000 warmup iterations.

$$\begin{split} & p(\alpha) \sim \textit{N}(0,1) \\ & p(\sigma) \sim \text{half-}\textit{N}(0,1) \\ & p(\alpha^{\textit{yr}}) \sim \textit{N}(0,\sigma^{\textit{yr}}) \\ & p(\sigma^{\textit{yr}}) \sim \textit{N}(0,1) \\ & p(\alpha^{\textit{st}}) \sim \textit{N}(0,\sigma^{\textit{st}}) \\ & p(\sigma^{\textit{st}}) \sim \text{half-}\textit{N}(0,1) \\ & p(\sigma^{\textit{all}}) \sim \text{half-}\textit{N}(0,1) \\ & p(\beta) \sim \textit{N}(0,1) \\ & p(\gamma) \sim \textit{N}(0,1) \\ & p(\gamma) \sim \textit{gamma}(2,0.1) \end{split}$$

Treaty Strength and λ : Major Powers

Treaty Strength and λ : Non-major Powers

Details of Measurement Model

- Bayesian Gaussian Copula Factor Model: for mixed data.
- Uses copulas to break dependence between latent factors and marginal distributions.
- Treats marginals as unknown and keeps them free of dependence.
- IMH proposal, 10,000 iteration warmup, 20,000 samples, thinned every 20 draws.
- Generalized double Pareto prior for the factor loading—
 flexible generalized Laplace distribution with a spike at zero
 and heavy tails.

Latent Measure of Treaty Strength

Latent Measure of Treaty Strength: Weak

Latent Measure of Treaty Strength: Typical

Latent Measure of Treaty Strength: Strong

Single-Level Robust Regression

