Lecture 5: Noise

Prof. Deniz Gunduz

Department of Electrical & Electronic Engineering Imperial College London

Outline

- What is noise?
- White noise and Gaussian noise
- Lowpass noise
- Bandpass noise
 - ✓ In-phase/quadrature representation
 - √ Phasor representation
- Reference
 - ✓ [Haykin] Chapter 5

Noise

Noise: unwanted waves disturbing the transmission of signals.

- Where does noise come from?
 - ✓ External sources: e.g., atmospheric, galactic noise, interference.
 - ✓ Internal sources: generated by communication devices themselves.
 - A basic limitaion on communication systems
 - Shot noise: usually in vacuum tubes or transistors
 - Thermal noise: caused by rapid and random motion of electrons due to thermal agitation
- Stationary and zero-mean Gaussian distributions.

White Noise

- The additive noise channel
 - \checkmark n(t) models all types of noise
 - ✓ Zero mean

$$s(t) \xrightarrow{\qquad \qquad } x(t) = s(t) + n(t)$$

- White noise
 - √ Flat PSD over all frequencies

- Half the power $\frac{N_0}{2}$ associated with positive frequencies and half with negative
- The term white analogous to white light, indicating the shape of the PSD!
- Defined for stationary noise
- There are also non-stationary noises, but definitions are complicated
- *Infinite* bandwidth: a purely theoretic assumption, valid for flat PSD over the bandwidth of interest

White and Gaussian Noise

- White noise: shape of PSD is flat!
 - \checkmark Autocorrelation function of n(t): $R_N(\tau) = \mathcal{F}^{-1}\{S_N(f)\} = \frac{N_0}{2}\delta(\tau)$
 - √ Uncorrelated samples at different time instants
 - √ Also colored noise
 - √ White noise: either Gaussian or non-Gaussian

- Gaussian noise:
 - ✓ Gaussian distribution for a sample at any time instant
 - ✓ Colored or white Gaussian noise

White noise (shape of PSD) and Gaussian noise (distribution) are different concepts

Ideal Low-pass White Noise

 \bullet White noise passing through an ideal low-pass filter of bandwidth B (counting only positive part!)

$$S_N(f) = egin{cases} rac{N_0}{2}, & |f| \leq B, \ 0, & ext{otherwise} \end{cases}$$

• By Einstein-Wiener-Khinchine relation, autocorrelation function

$$R_N(\tau) = \mathcal{F}^{-1}\{S_N(f)\} = N_0 B \operatorname{sinc}(2B\tau), \quad \operatorname{sinc}(x) = \frac{\sin \pi x}{\pi x}$$
 (Normalized definition)

 \bullet Samples at Nyquist frequency 2B are uncorrelated, also independent if it is Gaussian

WSS Bandpass Noise

Noise in a communication system with a bandpass filter of bandwidth 2B (counting only positive frequency, but both sides of f_c)

Autocorrelation

Example

White noise with PSD of $N_0/2$ passing through an ideal band-pass filter

$$S_N(f) = \begin{cases} \frac{N_0}{2}, & |f-f_c| \leq B \text{ or } |f+f_c| \leq B, \\ 0, & \text{otherwise} \end{cases}$$

Bandpass Noise

• n(t) in canonical form:

$$n(t) = \underbrace{n_{\rm I}(t)}_{\rm real} \cos(2\pi f_c t) - \underbrace{n_{\rm Q}(t)}_{\rm real} \sin(2\pi f_c t)$$

where
$$\mathbb{E}\{n_{\mathsf{I}}(t)\} = \mathbb{E}\{n_{\mathsf{Q}}(t)\} = 0$$
, $R_{N_{\mathsf{I}}}(\tau) = R_{N_{\mathsf{Q}}}(\tau)$, $R_{N_{\mathsf{I}}N_{\mathsf{Q}}}(\tau) = -R_{N_{\mathsf{I}}N_{\mathsf{Q}}}(-\tau)$

- $n_{\rm I}(t)$ and $n_{\rm Q}(t)$: fully representative of the band-pass noise
 - ✓ Given band-pass noise, one may extract in-phase and quadrature components (using LPF of bandwidth B).
 - √ Given the two components, one may generate band-pass noise. This is useful in computer simulation.

Properties of Baseband Noise

- $R_N(\tau) = R_{N_{\rm I}}(\tau)\cos(2\pi f_c \tau) + R_{N_{\rm Q}}(\tau)\sin(2\pi f_c \tau)$ $\checkmark R_N(\tau) = R_{N_{\rm I}}(\tau)\cos(2\pi f_c \tau)$ if $n_{\rm I}(t)$ and $n_{\rm Q}(t)$ are uncorrelated
- $n_{\rm I}(t)$ and $n_{\rm Q}(t)$ have the same variance (i.e., same power) as n(t)
- Both in-phase and quadrature components have the same PSD:

$$S_{N_I}(f) = S_{N_Q}(f) = \begin{cases} S_N(f - f_c) + S_N(f + f_c), & |f| \le B \\ 0, & \text{otherwise} \end{cases}$$

 \bullet If noise n(t) is Gaussian, then so are $n_{\rm I}(t)$ and $n_{\rm Q}(t)$

Noise Power: Narrowband White Noise

• For ideally filtered narrowband white noise, the PSDs of $n_{\rm I}(t)$ and $n_{\rm Q}(t)$:

$$S_{N_I}(f) = S_{N_Q}(f) = \begin{cases} N_0, & |f| \le B, \\ 0, & \text{otherwise} \end{cases}$$

- The average power in each of the baseband waveforms $n_{\rm I}(t)$ and $n_{\rm Q}(t)$ is identical to the average power in the bandpass noise waveform n(t).
- For ideally filtered narrowband noise, the variance of $n_{\rm I}(t)$ and $n_{\rm Q}(t)$:

$$P_{N_I} = P_{N_Q} = 2N_0B$$

Phasor Representation

Bandpass noise in alternative form:

$$n(t) = n_{\mathsf{I}}(t)\cos(2\pi f_c t) - n_{\mathsf{Q}}(t)\sin(2\pi f_c t) = r(t)\cos(2\pi f_c t + \phi(t))$$

• $r(t) = \sqrt{n_{\rm I}^2(t) + n_{\rm Q}^2(t)}$: the envelope of the noise following Rayleigh distribution

$$f(r) = \frac{r}{\sigma^2} \exp(-\frac{r^2}{2\sigma^2})$$

• $\phi(t) = \arg(n_{\rm I}(t) + jn_{\rm Q}(t))$: the phase of the noise following uniform distribution

$$f(\theta) = \begin{cases} \frac{1}{2\pi}, & 0 \le x < 2\pi, \\ 0, & \text{otherwise} \end{cases}$$

Summary

- White noise: constant PSD over an infinite bandwidth
- Gaussian noise: Gaussian distribution for any sample
- Bandpass noise:
 - \checkmark In-phase and quadrature components $n_{
 m I}(t)$ and $n_{
 m Q}(t)$ are low-pass random processes.
 - ✓ The same PSD for $n_{\rm I}(t)$ and $n_{\rm Q}(t)$
 - $\checkmark \mathbb{E}\left\{n_{\mathsf{I}}^{2}(t)\right\} = \mathbb{E}\left\{n_{\mathsf{Q}}^{2}(t)\right\} = \mathbb{E}\left\{n_{\mathsf{Q}}^{2}(t)\right\}$

Note