ภาคผนวก จ

เอกสารแสดงขั้นตอนการออกแบบระบบ

เอกสารแสดงขั้นตอนการออกแบบและพัฒนาระบบ สิ่งประดิษฐ์ของคนรุ่นใหม่ ประจำปีการศึกษา 2564

ผลงานสิ่งประดิษฐ์ประเภทที่ 6 สิ่งประดิษฐ์ด้านนวัตกรรมซอฟต์แวร์และระบบสมองกลฝังตัว

> กล้องคัดกรองอุณหภูมิจับใบหน้า Face temperature Screening camera

วิทยาลัยเทคโนโลยีโปลิเทคนิคลานนา เชียงใหม่ อาชีวศึกษาจังหวัดเชียงใหม่ สำนักงานคณะกรรมการการอาชีวศึกษา กระทรวงศึกษาธิการ

เอกสารแสดงขั้นตอนการออกแบบและพัฒนาระบบ

ประเภทที่ 6 สิ่งประดิษฐ์ด้านนวัตกรรมซอฟต์แวร์และระบบสมองกลฝังตัว

- 1. วิเคราะห์ปัญหาและความต้องการระบบ (Problem Analysis) โครงสร้างของกล้องคัดกรอง อุณหภูมิจับใบหน้า
 - Raspberry Pi ควบคุมการทำงานทั้งหมดของระบบกล้องคัดกรองอุณหภูมิจับใบหน้า
 - ตรวจสอบอุณหภูมิที่มีความใกล้เคียงกับผู้ใช้งานมาที่สุด
 - ศึกษาการใช้ภาษา Python ในระบบ Raspberry Pi os

2. การออกแบบระบบ (System Design)

2.1 รายละเอียดการออกแบบระบบ

ภาพที่ จ-1 บล็อกไดอะแกรมฮาร์ดแวร์ของกล้องคัด
กรองอุณหภูมิจับใบหน้า

2.2 แบบร่างการออกแบบโครง

ภาพที่ จ-2 แสดงการออกแบบโครงสร้างชิ้นงาน

2.3 รายละเอียดการออกแบบโปรแกรม

ภาพที่ จ-3 แสดงผังงานหลักของโปรแกรมสำหรับควบคุมการทำงานของ กล้องคัดกรองอุณหภูมิจับใบหน้า

2.4 แผนผังการทำงาน

ภาพที่ จ-4 ผังการทำงานของกล้องคัดกรองอุณหภูมิจับใบหน้า

ภาพที่ จ-5 แบบจำลองการทำงานของกรองอุณหภูมิจับใบหน้า

2.5 วงจรไวริ่งไดอะแกรมของระบบ

ภาพที่ จ-6 วงจรไวริ่งไดอะแกรมของกรองอุณหภูมิจับใบหน้า

3. เครื่องมือและอุปกรณ์ที่ใช้ในการพัฒนา

ภาพที่ จ-7 Raspberry Pi

ภาพที่ จ-8 Buzzer Module

ภาพที่ จ-9 โปรแกรม Atom

4. 4. การทดสอบและแก้ไขระบบ

การทดสอบผลงานกล้องคัดกรองอุณหภูมิจับใบหน้า (Face temperature Screening camera)ใช้ระยะในการทดสอบ ตั้งแต่ วันที่ **4** ธันวาคม 2564 ถึงวันที่ 2**8** กุมภาพันธ์ 256**5** ทั้งนี้ ได้ทำการทดสอบจำนวน 2ครั้ง โดยมีวิธีการและขั้นตอนในการทดสอบและแก้ไข ดั้งนี้

4.1 แผนการทดสอบผลงาน มีวิธีการทดสอบผลงาน ดังนี้ ตารางที่ จ.1 กำหนดการทดสอบผลงานกล้องคัดกรองอุณหภูมิจับใบหน้า

(Face temperature Screening camera)

ลำดับ	กำหนดการ	วันที่	หมายเหตุ
1.	ติดตั้งผลงาน	1 ธ.ค. 64	
2.	ทดสอบการใช้งานรอบที่ 1	2 – 10 ธ.ค. 64	
3.	บันทึกผลการทดสอบ	10 ธ.ค. 64	
4.	นำผลการทดสอบเข้าพบที่ปรึกษางานวิจัย	10 - 13 ธ.ค. 64	
5.	ปรับปรุงผลงานตามข้อเสนอแนะจากที่ปรึกษางานวิจัย	13 - 15 ธ.ค. 64	
6.	ทดสอบการใช้งานรอบที่ 2	16 - 20 ธ.ค. 64	
7.	บันทึกผลการทดสอบ	16 - 20 ธ.ค. 64	
8.	เขียนรายงานสรุปผลการทดสอบและนำเสนอต่อที่ปรึกษางานวิจัย	22 – 25 ก.พ. 65	

4.2 ผลการทดสอบผลงาน จากการทดสอบผลงานกล้องคัดกรองอุณหภูมิจับใบหน้า(Face temperature Screening camera) ได้ผลลัพธ์ ดังนี้

ตารางที่ จ.2 กล้องคัดกรองอุณหภูมิจับใบหน้า(Face temperature Screening camera)

ลำดับ	ขั้นตอนการทดสอบ เว็บไซต์สอนสร้างเว็บเบื้องต้น ด้วยภาษา CSS	สำเร็จ	พบข้อผิดพลาด
1.	ส่วนของฮาร์ดแวร์ Raspberry Pi	สำเร็จ	
2.	ทดสอบการแสดงอุณหภูมิ	สำเร็จ	
3.	ทดสอบการตรวจจับใบหน้า	สำเร็จ	
4.	ทดสอบความเร็วในการใช้งานความร้อน	สำเร็จ	

4.3 รายงานผลการทดสอบ

จากผลการทดสอบผลงาน กล้องคัดกรองอุณหภูมิจับใบหน้า (Face temperature Screening camera)ได้ผลการทดสอบดังนี้ ส่วนของฮาร์ดแวร์ ได้ทำการทดสอบการวัดอุณหภูมิ พบว่าการวัดอุณหภูมิมีความคลาดเคลื่อนเพราะเกิดจากอุณหภูมิของสภาพแวดล้อม ส่วนของ ซอฟต์แวร์ ทำการทดสอบการตรวจจับใบหน้า ไม่พบข้อผิดพลาด

5. การนำไปใช้งาน

จากการนำ กล้องคัดกรองอุณหภูมิจับใบหน้า (Face temperature Screening camera) ติดตั้งโรงแรม Chinda Boutique 41, ซอย ถนน มูลเมือง 6 ตำบลศรีภูมิ อำเภอเมืองเชียงใหม่ เชียงใหม่ 50200 ทดลองใช้งานรอบที่ 1 คือ ช่วงวันที่ 26 กุมภาพันธ์ – 28 กุมภาพันธ์ 2565 พร้อม กับสำรวจความพึงพอใจและนำความคิดเห็นไปปรับปรุงแก้ไขชิ้นงาน ได้ดังนี้

- 5.1 ผลการนำไปใช้งาน
 - กล้องคัดกรองอุณหภูมิจับใบหน้าสามารถใช้งานได้จริง
 - สามารถตรวจจับอุณหภูมิผู้ใช้ได้จริง
 - ผู้ใช้มีความสบายใจต่อการใช้งานกล้อง
- 5.2 ปัญหา/ข้อบกพร่อง ในการนำไปใช้งาน
 - การตรวจจับอุณหภูมิไม่เสถียร เท่าที่ควร
 - ไม่สามารถตรวจจับอุณหภูมิที่ละหลายบุคคลได้
 - อุณหภูมิมีการคลาดเคลื่อนตามสถานที่

6. การปรับปรุงและพัฒนาระบบ

- 6.1 พัฒนาให้เป็นระบบกล้องคัดกรองอุณหภูมิจับใบหน้าให้มีความทันสมัยมากขึ้น
- 6.2 พัฒนาให้ตรวจจับอุณหภูมิที่ละหลายบุคคลได้
- 6.3 พัฒนาให้ตรวจอุณหภูมิมีความเสถียรมากขึ้น

7. เอกสารหลักฐาน อื่นๆ ในการรับรองการใช้งานระบบ

- 7.1 สถิติที่ใช้ในการวิเคราะห์ข้อมูลในการวิเคราะห์ข้อมูลได้ใช้สถิติในการวิเคราะห์ข้อมูลดังนี้
 - ค่าสถิติร้อยละ (Percentage)
 - ค่าเฉลี่ยคะแนน ($ar{m{x}}$)
 - ค่าเบี่ยงเบนมาตรฐาน (S.D)
- 7.2 แบบรับรองการนำผลงานสิ่งประดิษฐ์ไปใช้งาน (ตามเอกสารแนบท้าย)

8. ข้อเสนอแนะในการพัฒนาต่อยอด ของผู้พัฒนาระบบ

- 8.1 ปรับปรุงแก้ไข Code ให้มีความทันสมัยมากขึ้น
- 8.2 เพิ่มจับใบหน้าในที่มืดได้
- 8.3 ใช้อุปกรณ์ที่มีความเร็วของ CPU ที่มากขึ้น