

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Topología I Examen XI

Los Del DGIIM, losdeldgiim.github.io

Jesús Muñoz Velasco

Granada, 2024-2025

Asignatura Topología I.

Curso Académico 2024-25.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Antonio Alarcón.

Descripción Segundo Parcial.

Fecha 13 de diciembre de 2024.

Duración 90 minutos.

Ejercicio 1 (3 puntos). Dados espacios topológicos (X, \mathcal{T}) e (Y, \mathcal{T}') , demuestra que la proyección

$$\pi_Y:(X,Y,\mathcal{T}\times\mathcal{T}')$$

es continua y abierta. Da un ejemplo que demuestre que, en general, no es cerrada.

Veamos en primer lugar que π_Y es continua. Sea $U \in \mathcal{T}'$, tenemos que $\pi_Y^{-1}(U') = \{(x,y) \in X \times Y : y \in U'\} = X \times U' \in \mathcal{T} \times \mathcal{T}'$ por lo que es continua.

Veamos ahora que es abierta. Para ello consideramos la siguiente base de la topología producto:

$$\mathcal{B}_{\mathcal{T}\times\mathcal{T}'} = \{U \times U' : U \in \mathcal{T}, U' \in \mathcal{T}'\}$$

Sea $U \times U' \in \mathcal{B}_{\mathcal{T} \times \mathcal{T}'}$, entonces tenemos $\pi_Y(U \times U') = U' \in \mathcal{T}'$.

Veamos además que en general no es cerrada. Para ello consideramos la topología $(\mathbb{R}^2, \mathcal{T}_u)$ que es la topología producto de $(\mathbb{R}, \mathcal{T}_u)$ consigo misma. Consideramos además la función $f: \mathbb{R} \to]^{-\pi/2}$, $\pi/2$ [dada por $f(x) = \operatorname{arctg}(x)$. Consideramos ahora el grafo de f definido como $G(f) = \{(x, f(x)) : x \in \mathbb{R}\} \in \mathcal{C}_{\mathcal{T}_u}$. Sin embargo tenemos que $\pi_Y(G(f)) =]^{-\pi/2}$, $\pi/2$ [$\notin \mathcal{C}_{\mathcal{T}_u}$ por lo que en esta topología la proyección no es cerrada ya que $\exists C \in \mathcal{C}_{\mathcal{T}}$ tal que $\pi_Y(C) \notin \mathcal{C}_{\mathcal{T}}$.

Ejercicio 2 (3 puntos). Sea (X, \mathcal{T}) un espacio tologógico y supongamos que para todo espacio topológico (Y, \mathcal{T}') se tiene que toda aplicación $f: (X, \mathcal{T}) \to (Y, \mathcal{T}')$ es continua. Demuestra que \mathcal{T} es la topología discreta.

Tomamos $(Y, \mathcal{T}') = (X, \mathcal{T}_{disc})$ y $f = Id_X$. Como la aplicación $Id_X : (X, \mathcal{T}) \to (X, \mathcal{T}_{disc})$ es continua por hipótesis, entonces $\mathcal{T}_{disc} \leq \mathcal{T}$. Como siempre se da la otra inclusión $(\mathcal{T}_{disc} \geq \mathcal{T})$ tenemos que $\mathcal{T} = \mathcal{T}_{disc}$.

Ejercicio 3 (4 puntos). En la circunferencia $\mathbb{S}^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\} \subset \mathbb{R}^2$ consideramos la topología $\mathcal{T}_u|_{\mathbb{S}^1}$ inducida por la topología usual \mathcal{T}_u de \mathbb{R}^2 .

1. Sea R la relación de equivalencia en \mathbb{S}^1 dada por

$$(x,y)R(x',y') \iff x=x'.$$

Demuestra que el espacio topológico cociente $(\mathbb{S}^1/R, \mathcal{T}_u|_{\mathbb{S}^1}/R)$ es homeomorfo a $([-1,1], \mathcal{T}_u|_{[-1,1]})$, donde $\mathcal{T}_u|_{[-1,1]}$ es la topología en el intervalo $[-1,1] \subset \mathbb{R}$ inducida por la topología usual \mathcal{T}_u de \mathbb{R} .

Consideramos la siguiente aplicación

$$f: (\mathbb{S}^1, \mathcal{T}_u|_{\mathbb{S}^1}) \to ([-1, 1], \mathcal{T}_u)$$

 $(x, y) \mapsto x$

y tenemos lo siguiente:

- f sobreyectiva trivialmente.
- f continua ya que $f = \pi_X|_{\mathbb{S}^1}$ y π_X es continua y la restricción en el dominio de una función continua sigue siendo continua.¹
- f es cerrada ya que su dominio, \mathbb{S}^1 es cerrado y acotado en un espacio euclídeo y su codominio, [-1,1] es un subespacio de un espacio euclídeo. Por el lema visto en clase tenemos que f es cerrada.

Tenemos que f es sobreyectiva, continua y cerrada luego f es una identificación. Tenemos el siguiente diagrama:

$$\mathbb{S}^{1} \xrightarrow{f} [-1,1]$$

$$\downarrow^{\pi_{f}} \qquad \uparrow^{\pi_{f}} \qquad \uparrow^{\pi_{f}}$$

$$\mathbb{S}^{1}/R_{f}$$

Por tanto $\exists \tilde{f}: (\mathbb{S}^1/R_f, \mathcal{T}_u|_{\mathbb{S}^1}/R_f) \to ([-1,1], \mathcal{T}_u|_{[-1,1]})$ homeomorfismo con $f = \tilde{f} \circ \pi_f$. Nos queda comprobar que $R_f = R$.

En efecto, si $(x, y), (x', y') \in \mathbb{S}^1$, entonces

$$(x,y)R(x',y') \iff f(x,y) = f(x',y') \iff x = x' \iff (x,y)R(x',y')$$

2. Sea R' la relación de equivalencia en \mathbb{S}^1 dada por

$$(x,y)R'(x',y') \iff (x,y) = (x',y') \text{ o } x = x' \neq 0.$$

Demuestra que los espacios topológicos cociente (\mathbb{S}^1/R , $\mathcal{T}_u|_{\mathbb{S}^1}/R$) y (\mathbb{S}^1/R' , $\mathcal{T}_u|_{\mathbb{S}^1}/R'$) no son homeomorfos, donde R es la relación de equivalencia del apartado anterior.

Por el apartado anterior teníamos que $(\mathbb{S}^{\mathbb{F}}/R, \mathcal{T}_u|_{\mathbb{S}^1}/R) \cong ([-1, 1], \mathcal{T}_u|_{[-1, 1]})$ que es T2, luego $(\mathbb{S}^{\mathbb{F}}/R, \mathcal{T}_u|_{\mathbb{S}^1}/R)$ es T2. Como ser T2 es un invariante topológico, si comprobamos que $(\mathbb{S}^1/R', \mathcal{T}_u|_{\mathbb{S}^1})$ no es T2 habremos probado lo que queríamos.

Si $(x,y) \in \mathbb{S}^1$, tenemos que su clase de equivalencia es

- $[(x,y)] = \{(x,y), (x,-y)\} \text{ si } x \neq 0$
- $\bullet \ [(0,1)] = \{(0,1)\}$
- $\bullet \ [(0,-1)] = \{(0,-1)\}$

Veamos que la propiedad T2 no se cumple para los puntos [(0,-1)] y [(0,-1)] que son distintos en \mathbb{S}^1/R' . Sean \tilde{U}_1 y \tilde{U}_{-1} entornos de [(0,1)] y [(0,-1)] en \mathbb{S}^1/R' respectivamente. Entonces $\tilde{U}_1 = p_{R'}(U_1)$ con $p_{R'}: \mathbb{S}^1 \to \mathbb{S}^1/R'$ la proyección y U_1 un entorno $p_{R'}$ —saturado de (0,1) en \mathbb{S}^1 . Como U_1 es entorno de (0,1), tenemos que existe $\varepsilon > 0$ (si queremos $\varepsilon < 1$) tal que

¹También se puede ver que es continua con argumentos de análisis.

$$\{(x,\sqrt{1-x^2}):x\in(-\varepsilon,\varepsilon)\}\subset U_1.$$

Como además U_1 es $p_{R'}$ —saturado, los puntos de \mathbb{S}^1 que están R'—relacionados con esos también están en U_1 , luego $\{(x, -\sqrt{1-x^2}) : x \in (-\varepsilon, \varepsilon), x \neq 0\} \subset U_1$. De esta forma tenemos que

$$(\{x, \sqrt{1-x^2} : x \in (-\varepsilon, \varepsilon)\} \cup \{(x, -\sqrt{1-x^2}) : x \in (-\varepsilon, \varepsilon), x \neq 0\}) \subset U_1$$

Análogamente, tenemos que $\exists \varepsilon' > 0$ tal que

$$(\{x, \sqrt{1-x^2} : x \in (-\varepsilon', \varepsilon')\} \cup \{(x, -\sqrt{1-x^2}) : x \in (-\varepsilon', \varepsilon'), x \neq 0\}) \subset U_{-1}$$
luego $U_1 \cap U_{-1} \neq \emptyset$.

Esto implica que $\tilde{U}_1 \cap \tilde{U}_{-1} = p_{R'}(U_1) \cap p_{R'}(U_{-1}) \neq \emptyset$ puesto que

$$\emptyset \neq p_{R'}(U_1 \cap U_{-1}) \subset p_{R'}(U_1) \cap p_{R'}(U_{-1})$$

Hemos comprobado entonces que $(\mathbb{S}^1/R', \mathcal{T}_u|_{\mathbb{S}^1})$ no es T2, luego no puede ser homeomorfo a $(\mathbb{S}^1/R, \mathcal{T}_u|_{\mathbb{S}^1}/R)$.