Type	Author	History Citation	Literature Cutoff Date
Update	Balraj Singh		20-Sep-2006

 $Q(\beta^{-})=-4.03\times10^{3} 5$; $S(n)=9.55\times10^{3} 5$; $S(p)=3.19\times10^{3} 4$; $Q(\alpha)=2.80\times10^{3} 4$ 2012Wa38

Note: Current evaluation has used the following Q record.

 $\Delta Q(\beta) = 230 (1995 \text{Au} 04).$

 $Q(\beta^{-}) = -4000 \text{ SY}; S(n) = 9.43 \times 10^{3} \text{ } 19; S(p) = 3.16 \times 10^{3} \text{ } 10; Q(\alpha) = 2.85 \times 10^{3} \text{ } 10$ 1995Au04

Additional information 1.

Detailed publications of normal-deformed bands and lifetimes in Triaxial SD bands are in progress (as per references 11 and 12 in 2005Am02).

See 1998Ge13 for isotope shift measurements.

For discussion of triaxiality of yrast states of odd-A Lu isotopes, see 1999Li39.

167 Lu Levels

Cross Reference (XREF) Flags

- A 167 Hf ε decay
- B 169 Tm(3 He,5n γ), (α ,6n γ),
- c 123Sb(48Ca,4n γ),
- D 123 Sb(48 Ca, $^{4n}\gamma$):SD

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0@	7/2+	51.5 min <i>10</i>	ABC	$ ω$ ε+ $%β$ ⁺ =100 $ μ$ =+2.325 4 (1998Ge13); Q=3.275 24 (1998Ge13) $ Δ < r^2 > (^{170}Lu,^{167}Lu) = -0.269 (1998Ge13); 10% systematic uncertainty. μ,Q: from collinear fast beam laser spectroscopy (1998Ge13). Jπ: spin from atomic beam (1972Ek01). Parity from agreement between measured μ and that expected for configuration=7/2[404]; supported by log ft=7.4 (log f^{1u}t=8.8) to (11/2)- (1.1% 7 to 571.5 level). Also, the g.s. rotational-band structure is fully consistent with a 7/2[404] assignment, as for ^{169}Lu, ^{171}Lu, ^{173}Lu, ^{175}Lu, and ^{177}Lu. Conflicting evidence for π=− (from log ft=7.1 (log f^{1u}t=8.5) to (11/2)+ (apparent 4.1% branch to 125.9 level)) might be attributable to the incomplete decay scheme (≈15% unplaced γ-ray intensity). T_{1/2}: from 1976Me06. Other values: 55 min 3 (1958Ar59), 55 min 5 (1960Ba30); others: 1959Ha09, 1960Bu27, 1960Bo29, 1960Ba32, 1972Ek01 (53 min).$
$0.0+x^d$	1/2+	≥1 min	В	%ε+%β ⁺ =?; %IT=? μ =-0.0999 <i>13</i> (1998Ge13) Additional information 2. $\Delta < r^2 > (^{170}\text{Lu},^{167}\text{Lu})$ =-0.291 (1998Ge13); 10% systematic uncertainty. J, μ : from collinear fast beam laser spectroscopy (1998Ge13). π based on proximity of μ to value expected for 1/2[411] orbital (-0.05) cf. that for the only other nearby J=1/2 orbital (viz. 1/2[541], μ ≈+0.7). T _{1/2} : estimated by 1998Ge13; based on known rare-earth diffusion time from Ta spallation target and on their observation that J=1/2 line intensity (cf. J=7/2 g.s. line intensity) did not appear to have been reduced due to decay during diffusion out of the terrest.
19.6+x ^c 5	$(3/2^+)$		BCD	out of the target.
38.6+x ⁸ 11	$(5/2^+)$		BCD	
107.3+x ^e 4	$(1/2^{-})$		В	
122.0+x ^e 6 140.04 [#] 8	$(5/2^{-})$		BCD	
140.04" 8 149.6+x ^d 10	$(9/2^+)$		ABC	
149.0+X° 10	$(5/2^+)$		D	

¹⁶⁷Lu Levels (continued)

```
J^{\pi \ddagger}
   E(level)
                                       XREF
                                                                                                                   Comments
  155.3+x<sup>h</sup> 11
                        (7/2^+)
                                        BCD
  189.6+x<sup>c</sup> 10
                        (7/2^+)
                                          CD
 233.9+x<sup>e</sup> 7
                        (9/2^{-})
                                        BCD
 243.9+x?^{f} 6
                        (3/2^{-})
                                        В
 300.5+x<sup>8</sup> 11
                        (9/2^+)
                                        BCD
 305.30<sup>@</sup> 8
                        (11/2^+)
                                        BC
 315.28 8 9
                        (7/2)^{-}
                                                    J^{\pi}: E1 \gamma to 7/2^{+}; tentative 7/2[523] bandhead assignment from B(315.2\gamma)/B(175.4\gamma)=3.0
                                       Α
                                                        (exp) cf. 3.5 from Alaga rule.
 331.83<sup>a</sup> 9
                        (9/2^{-})
                                        BC
 400.5 + x^f 6
                        (7/2^{-})
                                        В
 403.6+x<sup>d</sup> 10
                        (9/2^+)
                                           D
 433.6<sup>b</sup> 3
                        (11/2^{-})
                                        BC
 446.7+x<sup>e</sup> 7
                        (13/2^{-})
                                        BCD
 470.2+x<sup>h</sup> 11
                        (11/2^+)
                                        BCD
 478.9+x<sup>c</sup> 10
                        (11/2^+)
                                          CD
 494.18<sup>#</sup> 10
                        (13/2^+)
                                        BC
 577.0<sup>a</sup> 3
                        (13/2^{-})
                                        BC
 658.8 + x^{f} 7
                        (11/2^{-})
                                        В
 664.9+x<sup>8</sup> 11
                        (13/2^+)
                                        BCD
 704.27<sup>@</sup> 11
                        (15/2^+)
                                        BC
 744.3<sup>b</sup> 3
                        (15/2^{-})
                                        BC
 755.0+x<sup>d</sup> 11
                        (13/2^+)
                                            D
 761.6+x<sup>e</sup> 7
858.5+x<sup>c</sup> 11
                        (17/2^{-})
                                        BCD
                        (15/2^+)
                                          CD
 887.4+x<sup>h</sup> 11
                        (15/2^+)
                                        BCD
 934.11# 12
                        (17/2^+)
                                        BC
 947.8<sup>a</sup> 3
                        (17/2^{-})
                                        BC
1000.4 + x^{f} 7
                        (15/2^{-})
                                        В
1112.6+x<sup>8</sup> 11
                        (17/2^+)
                                          CD
1159.5<sup>b</sup> 4
                        (19/2^{-})
                                        BC
1172.8+x<sup>e</sup> 7
                        (21/2^{-})
                                        BCD
1181.20<sup>@</sup> 13
                        (19/2^+)
                                         BC
1188.1+x<sup>d</sup> 12
                        (17/2^+)
                                           D
                        (19/2^+)
1318.0+x<sup>c</sup> 11
                                          CD
1377.7+x<sup>h</sup> 12
                        (19/2^+)
                                          CD
1411.6<sup>a</sup> 4
                        (21/2^{-})
                                        BC
1425.2 + x^f 7
                        (19/2^{-})
                                        В
1444.31<sup>#</sup> 14
                        (21/2^+)
                                        BC
1621.4+x<sup>8</sup> 13
                        (21/2^+)
                                          CD
1656.0<sup>b</sup> 4
                        (23/2^{-})
                                        BC
1671.0+x<sup>e</sup> 7
                        (25/2^-)
                                        BCD
1687.9+x<sup>d</sup> 12
                        (21/2^+)
                                           D
1720.23<sup>@</sup> 14
                        (23/2^+)
                                        BC
1828.5+x<sup>c</sup> 13
                        (23/2^+)
                                          CD
1926.0+x<sup>h</sup> 12
                        (23/2^+)
                                          CD
1947.6<sup>a</sup> 4
                        (25/2^{-})
                                        BC
2007.96<sup>#</sup> 17
                        (25/2^+)
                                        BC
```

167Lu Levels (continued)

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2299.40 $^{\textcircled{@}}$ 17 (27/2+) BC 2370.0+ \mathbf{x}^{C} 14 (27/2+) CD 2477.9+ \mathbf{x}^{h} 13 (27/2+) D 2532.1 a 4 (29/2-) BC 2580.58 $^{\#}$ 19 (29/2+) BC 2632.0+ \mathbf{x}^{m} 12 (27/2-) D 2665.0+ \mathbf{x} 10 (27/2-) D 2665.9+ \mathbf{x}^{g} 14 (29/2+) D 2694.1+ \mathbf{x} 15 C E(level): level May Be suspect; it is not reported by 2003Am01 In 123 Sb(48 Ca,4n γ):SD.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2532.1 ^a 4 (29/2 ⁻) BC 2580.58 [#] 19 (29/2 ⁺) BC 2632.0+x ^m 12 (27/2 ⁻) D 2665.0+x 10 (27/2 ⁻) D 2665.9+x ^g 14 (29/2 ⁺) D 2694.1+x 15 C E(level): level May Be suspect; it is not reported by 2003Am01 In 123 Sb(48 Ca,4n γ):SD.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2665.0+x 10 (27/2 ⁻) D 2665.9+x ⁸ 14 (29/2 ⁺) D 2694.1+x 15 C E(level): level May Be suspect; it is not reported by 2003Am01 In 123 Sb(48 Ca,4n γ):SD.	
2665.9+ x^g 14 (29/2 ⁺) D 2694.1+ x 15 C E(level): level May Be suspect; it is not reported by 2003Am01 In 123 Sb(48 Ca,4n γ):SD.	
2694.1+x 15 C E(level): level May Be suspect; it is not reported by 2003Am01 In 123 Sb(48 Ca,4n γ):SD.	
$2720.5+x^k$ 13 (29/2 ⁺) D	
$2800.7^{b} 4$ (31/2 ⁻) C	
2823.18 [@] 20 (31/2 ⁺) C	
$2886.9+x^{\varrho}$ 7 $(33/2^{-})$ BCD	
$2911.0+x^{C}$ 17 (31/2+) D	
2930.0+x ^h 15 (31/2 ⁺) D 3044.1 [#] 3 (33/2 ⁺) C	
$3070.2^d \ 4 \qquad (33/2^-) \qquad C 3089.0+x^m \ 10 \qquad (31/2^-) \qquad D$	
$3104.8+x^g$ 15 $(33/2^+)$ D	
$3225.6+x^{k}$ 15 $(33/2^{+})$ D	
$3285.48^{@}$ 22 $(35/2^{+})$ C	
$3289.0^b 4$ $(35/2^-)$ C	
$3408.5 + x^h 16 (35/2^+)$ D	
$3523.4^{a} 4 (37/2^{-}) C$	
$3532.4^{\#} 3$ $(37/2^{+})$ C	
$3582.3+x^{\varrho}$ 7 (37/2 ⁻) CD	
$3594.0+x^{m}$ 14 (35/2 ⁻) D	
$3599.8 + x^g 17 (37/2^+)$ D	
$3774.3^b 4 \qquad (39/2^-) \qquad C$	
$3786.5 + x^{k} 17 (37/2^{+})$ CD	
$3812.98^{\textcircled{0}}$ 24 $(39/2^+)$ C	
$3945.6+x^{l}$ 17 (35/2 ⁺) D	
$4046.0^{a} 4$ $(41/2^{-})$ C	
4096.4 [#] 4 (41/2 ⁺) C	
$4162.0+x^{m}$ 17 (39/2 ⁻) D	
$4176.9+x^g 19 (41/2^+) D$ $4273.9+x^e 9 (41/2^-) CD$	
$4273.9+x^{\ell} 9$ $(41/2^{-})$ CD $4339.6^{b} 4$ $(43/2^{-})$ C	
$4492.6+x^{l}$ 17 (39/2 ⁺) D 4656.2^{d} 4 (45/2 ⁻) C	
T030.2 T (T3/2) C	

¹⁶⁷Lu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
4735.5 [#] 4	$(45/2^+)$	С	6935.0+x ^m 26	$(55/2^{-})$	D	9374.1 ^j 13	$(67/2^+)$	С
4785.0+x ^m 20	$(43/2^{-})$	D	6952.2 ^a 7	$(57/2^{-})$	C	9541+x ^m 3	$(67/2^{-})$	D
4832.1+x ⁸ 20	$(45/2^+)$	D	7036.3 [#] 8	$(57/2^+)$	C	9841+x ^l 3	$(67/2^+)$	D
4910.2+x ^e 10	$(45/2^{-})$	CD	7183.1+x ^e 13	$(57/2^{-})$	CD	9941.8+x ⁸ 25	$(69/2^+)$	D
4986.2 ^b 4	$(47/2^{-})$	C	7213.7+x ⁸ 21	$(57/2^+)$	D	9962.7+x ^e 21	$(69/2^{-})$	D
5048.0+x ^k 19	$(45/2^+)$	CD	7231.8+x ^l 21	$(55/2^+)$	D	10040+x ^k 3	$(69/2^+)$	D
5093.5 [@] 6	$(47/2^+)$	C	7300.4+x ^k 21	$(57/2^+)$	CD	10195.9? ^b 14	$(71/2^{-})$	C
5097.6+x ^l 18	$(43/2^+)$	D	7333.6 ^b 7	$(59/2^{-})$	C	10245.1? [@] <i>14</i>	$(71/2^+)$	C
5107.3+x ⁱ 16	$(45/2^{-})$	C	7471.0 [@] 11	$(59/2^+)$	C	10521+x ^m 3	$(71/2^{-})$	D
5349.1 ^a 5	$(49/2^{-})$	C	7523.3+x ⁱ 24	$(57/2^{-})$	C	10817+x ^l 3	$(71/2^+)$	D
5443.1 [#] 4	$(49/2^+)$	С	7745.0+x ^m 28	$(59/2^{-})$	D	10930+x ^g 3	$(73/2^+)$	D
5456.0+x ^m 22	$(47/2^{-})$	D	7854.1 ^a 8	$(61/2^{-})$	C	10995.7+x ^e 23	$(73/2^{-})$	D
5557.3+x ⁸ 21	$(49/2^+)$	D	7876.1 [#] <i>10</i>	$(61/2^+)$	C	11056+x ^k 3	$(73/2^+)$	D
5606.4+x ^e 11	$(49/2^{-})$	CD	8047.8+x ^l 23	$(59/2^+)$	D	11558+x ^m 4	$(75/2^{-})$	D
5705.5 ^b 4	$(51/2^{-})$	C	8056.7+x ^e 14	$(61/2^{-})$	CD	11849+x ^l 3	$(75/2^+)$	D
5749.8+x ^k 20	$(49/2^+)$	CD	8115.6+x ^g 22	$(61/2^+)$	D	11984+x ^g 3	$(77/2^+)$	D
5755.7+x ^l 19	$(47/2^+)$	D	8154.9+x ^k 22	$(61/2^+)$	CD	12132+x ^k 3	$(77/2^+)$	D
5833.8 [@] 8	$(51/2^+)$	С	8200+x?	$(61/2^+)$	D	12657+x ^m 4	$(79/2^{-})$	D
5872.3+x ⁱ 19	$(49/2^{-})$	C	8232.9 ^b 9	$(63/2^{-})$	C	12933+x ^l 4	$(79/2^+)$	D
6116.8 ^a 5	$(53/2^{-})$	С	8341.6 [@] 12	$(63/2^+)$	C	13104+x ^g 3	$(81/2^+)$	D
6172.0+x ^m 24	$(51/2^{-})$	D	8382.5 ^j 12	$(63/2^+)$	С	13267+x ^k 3	$(81/2^+)$	D
6213.3 [#] 6	$(53/2^+)$	С	8616+x ^m 3	$(63/2^{-})$	D	13821+x ^m 4	$(83/2^{-})$	D
6359.5+x ⁸ 21	$(53/2^+)$	D	8747.1 [#] <i>14</i>	$(65/2^+)$	С	14082+x ^l 4	$(83/2^+)$	D
6365.6+x ^e 12	$(53/2^{-})$	CD	8917.8+x ^l 25	$(63/2^+)$	D	14287+x ⁸ 4	$(85/2^+)$	D
6466.7+x ^l 20	$(51/2^+)$	D	8982.7+x ^e 18	$(65/2^{-})$	CD	14459+x ^k 4	$(85/2^+)$	D
6490.3 ^b 6	$(55/2^{-})$	С	9009.8+x ⁸ 23	$(65/2^+)$	D	15282+x ^l 4	$(87/2^+)$	D
6501.5+x ^k 20	$(53/2^+)$	CD	9080.9+x ^k 24	$(65/2^+)$	D	15530+x ⁸ 4	$(89/2^+)$	D
6631.5 [@] 9	$(55/2^+)$	C	9187.9? b 10	$(67/2^{-})$	С	15706+x ^k 4	$(89/2^+)$	D
6689.3+x ⁱ 22	$(53/2^{-})$	C	9266.1 [@] 13	$(67/2^+)$	C	16821+x ^g 4	$(93/2^+)$	D

[†] From least-squares adjustment of adopted Eγ, allowing Δ E_γ=1 keV in Eγ values for which authors gave no uncertainty. See 169 Tm(3 He,5nγ), (α ,6nγ) for estimate of "x" (\approx 30 keV).

[‡] Unless noted to the contrary, J^{π} is based on energy and intensity fits of coincident transitions into rotational bands consistent with expected Nilsson states, and supported by DCO-ratio data from ¹²³Sb(⁴⁸Ca,4n γ), ¹⁵²Sm(¹⁹F,4n γ).

[#] Band(A): 7/2[404], $\alpha = +1/2$ band (1990Yu01). Rotational band parameters: A=15.8, B=-21 (7/2, 11/2, 15/2 members).

[@] Band(a): 7/2[404], $\alpha = -1/2$ (1990Yu01). Rotational band parameters: A=15.6, B=-18 (9/2, 13/2, 17/2 members).

[&]amp; Band(B): Possible 7/2[523] band (1973Me09). Bandhead assignment based on B(315.2 γ)/B(175.4 γ)=3.0 (exp) cf. 3.5 from Alaga rule. However, there is no evidence for this band in (HI,xn γ), (He,xn γ) or (p,xn γ) studies, so evaluator considers assignment to be very doubtful.

^a Band(C): 9/2[514], $\alpha = +1/2$ band (1990Yu01).

^b Band(c): 9/2[514], $\alpha = -1/2$ (1990Yu01).

^c Band(D): 1/2[411] band, $\alpha = -1/2$ (2003Am01,1998Ya04).

^d Band(d): 1/2[411] band, $\alpha = +1/2$ (2003Am01).

^e Band(E): 1/2[541], $\alpha = +1/2$ band (1990Yu01). Rotational band parameters: A=12.2, a=+3.4 (1/2, 5/2, 9/2 levels); strongly coupled to other bands.

^f Band(e): 1/2[541], $\alpha = -1/2$ (1977Ba40). Rotational band parameters: A=10.4, a=+2.4 (7/2, 11/2, 15/2 levels); however, a is

¹⁶⁷Lu Levels (continued)

grossly inconsistent with that for signature partner band if J=3/2 member is included in fit.

- ^g Band(F): 5/2[402], $\alpha = +1/2$ band (2003Am01,1998Ya04). Rotational band parameters: A=16.7, B=-31 (5/2, 9/2, 13/2 members).
- ^h Band(f): 5/2[402], $\alpha = -1/2$ (2003Am01,1998Ya04). Rotational band parameters: A=16.5, B=-18 (7/2, 11/2, 15/2 members).
- ⁱ Band(G): α =+1/2 sideband (1990Yu01).
- ^j Band(H): $\alpha = -1/2$ sideband (1990Yu01).
- ^k Band(I): Triaxial SD-1 band (2003Am01,2005Am02,2005Gu28). Q(transition)=6.9 3 (2005Gu28, preliminary value). The uncertainty does not include systematic error of ≈10-15% due to stopping power. Population≈8% relative to yrast band. The transitions (interband as well as intraband) and J^π/s in this band are adopted from 2003Am01. 1998Ya04 proposed a cascade of eight transitions (904-854-804-753-705-653-601-551) in an SD band connected via 547 and 561 transitions to normal bands. Only six transitions in the cascade seem to be common with those reported by 2003Am01, and the connecting transitions given by 2003Am01 are different from those in 1998Ya04. Corresponding spins are also higher by 2 units in 2003Am01 than those proposed by 1998Ya04.
- ¹ Band(J): Wobbling-mode Triaxial SD-2 band (2003Am01,2005Am02). Population≈2% relative to yrast band.
- ^m Band(K): Triaxial SD-3 band (2005Am02). Population≈4% relative to yrast band. Multi-quasiparticle excitation.

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{c}	Comments
19.6+x	$(3/2^+)$	(19.6 5)	100	0.0+x	1/2+			E_{γ} : from level energy difference.
107.3 + x	$(1/2^{-})$	87.7 ^{&} 1	<290 <mark>&</mark>	19.6+x	$(3/2^+)$,
		107.3 ^{&} 5	100 <mark>&</mark> <i>10</i>	0.0+x	1/2+			
122.0+x	$(5/2^{-})$	(14.7 9)		107.3+x	$(1/2^{-})$			E_{γ} : from level energy difference.
		102.6 ^{&} 5		19.6 + x	$(3/2^+)$			
140.04	$(9/2^+)$	139.9 [@] 2	100 [@]	0.0	7/2+	[M1,E2]	1.21 24	
149.6+x	$(5/2^+)$	130		19.6+x	$(3/2^+)$			
155.3+x	$(7/2^+)$	116.7 ^{&} 1	100	38.6+x	$(5/2^+)$			
189.6+x	$(7/2^+)$	170 <i>I</i>	100	19.6+x	$(3/2^+)$			
233.9+x	$(9/2^{-})$	111.7 <i>5</i> 122.1 ^{&} <i>e 5</i>	100 60 ^{&} 10	122.0+x 122.0+x	$(5/2^{-})$			
243.9+x?	$(3/2^{-})$	122.1 ³ 5 224.2 ^{&e} 5	81 ^{&} 14		$(5/2^{-})$			
		≈243.3 &e	100 & 10	19.6+x	$(3/2^+)$			
200.5	(0/2±)	≈243.3 & 5	<540 ^{&}	0.0+x	1/2+			
300.5+x	$(9/2^+)$	144.7 5 261.7 5	<540 ^{&} 10	155.3+x	$(7/2^+)$			
305.30	$(11/2^+)$	261.7° 3 165.3 <i>I</i>	91 <i>10</i>	38.6+x 140.04	$(5/2^+)$ $(9/2^+)$			I_{γ} : weighted average from (⁴⁸ Ca,4n γ) and (He,xn γ).
303.30	(11/2)	305.3 <i>I</i>	100	0.0	7/2+			1_{γ} . weighted average from (Ca,4 π y) and (He,x π y).
315.28	$(7/2)^{-}$	175.4 [@] 2	6 [@] 1	140.04	$(9/2^+)$	[E1]	0.0809	
313.20	(1/2)	315.24 [@] 10	100@	0.0	7/2+	E1@	0.0184	
331.83	$(9/2^{-})$	191.7 ^{&} <i>1</i>	<71 <mark>&</mark>	140.04	$(9/2^+)$	D	0.010.	
331.03	(>/2)	331.9 ^{&} 1	100 & 10	0.0	7/2+	D		
400.5+x	$(7/2^{-})$	156.5 <mark>&e</mark>	100 10	243.9+x?				E_{γ} : 156.5 <i>I</i> for contaminated transition.
100.5 TX	(1/2)	167.2 ^{&} e 1		233.9+x	$(9/2^{-})$			E_{γ} : for doubly-placed γ .
		278.5 <i>I</i>		122.0+x	$(5/2^{-})$			by. for dodory placed y.
403.6+x	$(9/2^+)$	214		189.6+x	$(7/2^+)$			
		248		155.3+x	$(7/2^+)$			
122 ((11/0-)	254	100% 10	149.6+x	$(5/2^+)$			
433.6	$(11/2^{-})$	101.7 ^{&} 5 294.0 ^{&} 5	100 <mark>&</mark> 10 71 <mark>&</mark> 7	331.83	(9/2 ⁻)			
446.7+x	$(13/2^{-})$	294.0 5 212.8 <i>I</i>	71 ^{&} 7	140.04 233.9+x	$(9/2^+)$ $(9/2^-)$	Q		
470.2+x	$(13/2)$ $(11/2^+)$	169.7 ^{&} 1	100 & 10	255.9+x 300.5+x	$(9/2)$ $(9/2^+)$	Ų		
4/U.Z+X	(11/2)	314.9 ^d & 1	$<326\frac{d\&}{}$	300.3+x 155.3+x	$(9/2^+)$ $(7/2^+)$			
478.9+x	$(11/2^+)$	178.2 <i>5</i>	<320	300.5+x	$(9/2^+)$			
	(/-)	289.4 5		189.6+x	$(7/2^+)$			
494.18	$(13/2^+)$	188.9 <i>1</i>	38 5	305.30	$(11/2^+)$			
577.0	(12/2-)	354.1 <i>I</i>	100 9	140.04	$(9/2^+)$			
577.0	$(13/2^{-})$	143.4 <i>I</i> 244.8 <i>5</i>	100 7 32 5	433.6 331.83	$(11/2^{-})$ $(9/2^{-})$			

6

$\gamma(\frac{167}{\text{Lu}})$ (continued)

E_i (level)	J_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^π	Mult.#	Comments
658.8+x	$(11/2^{-})$	212.3 ^{&} 5		446.7+x	$(13/2^{-})$		E_{γ} : for doubly-placed, contaminated γ in (He,xn γ).
		258.5 & 5		400.5+x			
		424.8 <i>1</i>		233.9+x			E_{γ} : for doubly-placed γ ; from (He,xn γ).
664.9+x	$(13/2^+)$	185		478.9+x	$(11/2^+)$		
		196 ^a 365 ^a		470.2+x			
704.27	$(15/2^+)$	210.3 <i>I</i>	29 3	300.5+x 494.18	$(9/2^+)$ $(13/2^+)$		
104.21	(13/2)	399.0 <i>I</i>	100 8	305.30	$(13/2^+)$ $(11/2^+)$		
744.3	$(15/2^{-})$	167.3 <i>I</i>	100 9	577.0	$(13/2^{-})$		
		310.7 <i>1</i>	52 4	433.6	$(11/2^{-})$		
755.0+x	$(13/2^+)$	276		478.9+x			
		285		470.2+x			
561.5	(4.7.12-)	351	1000	403.6+x			
761.6+x 858.5+x	$(17/2^{-})$ $(15/2^{+})$	314.9 ^d 1 194	100 ^d	446.7+x 664.9+x			
636.3+X	(13/2)	379.6 <i>5</i>	81 <i>13</i>	478.9+x			
		388.3 1	100 13	470.2+x			
887.4+x	$(15/2^+)$	222.6 5	100 <mark>&</mark>	664.9+x			
00711111	(10/2)	408 ^a	100	478.9+x			
		417 <mark>a</mark>		470.2+x			
934.11	$(17/2^+)$	230.0 <i>1</i>	14.6 15	704.27	$(15/2^+)$		I_{γ} : from (He,xn γ); other I_{γ} : $I_{\gamma}(440)=23\ 3:100\ 13$ in (48 Ca, 4 n γ).
		439.7 <i>1</i>	100 9	494.18	$(13/2^+)$		I_{γ} : from (He,xn γ).
0.4= 0	(4=10-)		100 =	=		_	Other Ey: 440.1 <i>I</i> from (He,xny).
947.8	$(17/2^{-})$	203.6 1	100 5	744.3	$(15/2^{-})$	D	I_{γ} : weighted average from (He,xn γ) and (48 Ca,4n γ).
		370.8 1	66 5	577.0	$(13/2^{-})$	Q	I_{γ} : weighted average from (He,xn γ) and (⁴⁸ Ca,4n γ).
1000.4+x	$(15/2^{-})$	341.7 ^{&} 1	100 & 10	658.8+x			
1110 ((17/0±)	553.8 ^{&} 5	38 <mark>&</mark> 19	446.7+x			
1112.6+x	$(17/2^+)$	225 <i>1</i> 254		887.4+x 858.5+x			
		448 <i>1</i>		664.9+x			
1159.5	$(19/2^{-})$	211.7 <i>I</i>	96 8	947.8	$(17/2^{-})$		
		415.2 <i>I</i>	100 6	744.3	$(15/2^{-})$		
1172.8+x	$(21/2^{-})$	411.2 <i>1</i>	100	761.6+x		Q	
1181.20	$(19/2^+)$	247.0 & 1	<31	934.11	$(17/2^+)$		
44004	(4 = 15 L)	477.0 <i>1</i>	100 8	704.27	$(15/2^+)$		
1188.1+x	$(17/2^+)$	301		887.4+x			
		330 433		858.5+x 755.0+x			
1318.0+x	$(19/2^+)$	205		1112.6+x			
1010101A	(17/2)	459.5 <i>1</i>	100 15	858.5+x		Q	
1377.7+x	$(19/2^+)$	190		1188.1+x			

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	Comments
1377.7+x	$(19/2^+)$	265		1112.6+x	$(17/2^+)$		
		490		887.4 + x	$(15/2^+)$		
1411.6	$(21/2^{-})$	252.1 <i>I</i>	93 7	1159.5	$(19/2^{-})$		Other Iy: 67 7 from (He,xny).
		463.8 <i>1</i>	100 6	947.8	$(17/2^{-})$		
1425.2+x	$(19/2^{-})$	424.8 <i>1</i>	100	1000.4 + x			E_{γ} : for doubly-placed γ ; from (He,xn γ).
1444.31	$(21/2^{+})$	263.6 5	14.4 11	1181.20	$(19/2^+)$		
	, , ,	510.2 <i>1</i>	100 7		$(17/2^{+})$		
1621.4+x	$(21/2^+)$	244 ^a		1377.7+x			
	(/ /	509 ^a		1112.6+x			
1656.0	$(23/2^{-})$	244.4 <i>1</i>	66 6	1411.6	$(21/2^{-})$		
1000.0	(20/2)	496.5 <i>1</i>	100 6	1159.5	$(19/2^{-})$		
1671.0+x	$(25/2^{-})$	498.2 1	100 0	1172.8+x		Q	
1687.9+x	$(23/2^+)$ $(21/2^+)$	310	100	1377.7+x		Q	
1007.71X	(21/2)	370		1377.7+x $1318.0+x$			
		500		1188.1+x			
1720.22	(00 /0±)		15.0.13				
1720.23	$(23/2^+)$	276.0 ^{&} 1	15.8 13	1444.31	$(21/2^+)$		
	(00/04)	539.0 <i>1</i>	100 8		$(19/2^+)$		
1828.5+x	$(23/2^+)$	510 <i>I</i>	100	1318.0+x		(Q)	
1926.0+x	$(23/2^+)$	238 ^a		1687.9+x			
		305		1621.4+x			
		548 ^a		1377.7+x			
1947.6	$(25/2^{-})$	291.6 <i>1</i>	59 <i>4</i>	1656.0	$(23/2^{-})$		
		535.9 <i>1</i>	100 7	1411.6	$(21/2^{-})$	Q	
2007.96	$(25/2^+)$	288.3 <i>5</i>	17.0 <i>14</i>	1720.23	$(23/2^+)$		
		563.6 <i>1</i>	100 9	1444.31	$(21/2^+)$		
2158.1+x	$(25/2^+)$	232		1926.0+x			
		537		1621.4+x	$(21/2^+)$		
2214.8	$(27/2^{-})$	267.6 5	31 5	1947.6	$(25/2^{-})$		
		558.9 <i>1</i>	100 6	1656.0	$(23/2^{-})$	Q	
2231.8+x	$(25/2^+)$	306		1926.0+x			
	•	544		1687.9+x			
2246.0+x	$(29/2^{-})$	575.0 <i>1</i>	100	1671.0+x		(Q)	
2249.7+x	$(25/2^+)$	562		1687.9+x			
2299.40	$(27/2^+)$	291.2 5	12.8 <i>13</i>	2007.96	$(25/2^+)$		
		579.2 1	100 8	1720.23	$(23/2^+)$		
2370.0+x	$(27/2^+)$	541 ^a	100	1828.5+x			
2477.9+x	$(27/2^+)$	246		2231.8+x			
	()	319		2158.1+x			
		552		1926.0+x			
2532.1	$(29/2^{-})$	316 <i>I</i>	66 10	2214.8	$(27/2^{-})$		
	(2)/2)	584.4 <i>1</i>	100 12	1947.6	$(25/2^{-})$		
2580.58	$(29/2^+)$	281.0 5	19 3	2299.40	$(23/2^+)$ $(27/2^+)$		
/ 7XU 7X							

 ∞

$\gamma(\frac{167}{Lu})$ (continued)

	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	J_f^π	Mult.#	Comments
	2632.0+x	$(27/2^{-})$	961.0		1671.0+x	(25/2-)		I _γ : %branching≈60 5. Mult.,δ: ΔJ=1 transition; δ (E2/M1)=-1.9 +11-200 or -0.5 +5-8.
	2665.0+x	$(27/2^{-})$	994		1671.0+x	$(25/2^{-})$		11411,01 20 1 1441511011, 0(22/111)
	2665.9+x	$(29/2^+)$	188		2477.9+x			
			508		2158.1+x			
	2694.1+x		323		2370.0+x			
		(00/04)	537		2158.1+x			
	2720.5+x	$(29/2^+)$	242		2477.9+x			
			351 471		2370.0+x			
			489		2249.7+x 2231.8+x			
			562		2158.1+x			
	2800.7	$(31/2^{-})$	268.5 1	73 13	2532.1	$(29/2^{-})$		
		(/-)	585.9 <i>1</i>	100 11	2214.8	$(27/2^{-})$		
	2823.18	$(31/2^+)$	242.1 5	30 <i>3</i>	2580.58	$(29/2^+)$		
			523.8 <i>1</i>	100 9	2299.40	$(27/2^+)$		
	2886.9+x	$(33/2^{-})$	640.9 <i>1</i>	100	2246.0+x			
	2911.0+x	$(31/2^+)$	541		2370.0+x			
	2930.0+x	$(31/2^+)$	264		2665.9+x			
	3044.1	$(33/2^+)$	452 221.1 <i>5</i>	31.2 25	2477.9+x 2823.18	$(21/2^+)$ $(31/2^+)$		
	3044.1	(33/2)	463 <i>I</i>	100 14	2580.58	(31/2) $(29/2^+)$		
	3070.2	$(33/2^{-})$	269.6 <i>1</i>	100 14	2800.7	$(31/2^{-})$		
	3070.2	(33/2)	538.2 1	68 5	2532.1	$(29/2^{-})$	Q	
	3089.0+x	$(31/2^{-})$	424		2665.0+x			
			457		2632.0+x	$(27/2^{-})$		
			843.1		2246.0+x	$(29/2^{-})$		I_{γ} : %branching=27 5.
	21010	(00/01)				(24/21)		Mult., δ : expected to Be the same As for 961.0 γ from 2632.0+x, (27/2 ⁻) level.
	3104.8+x	$(33/2^+)$	175		2930.0+x			
I	2225 6 1	(22/2+)	439		2665.9+x			
	3225.6+x	$(33/2^+)$	505 560		2720.5+x 2665.9+x			
	3285.48	$(35/2^+)$	241.2 5	59 6	3044.1	$(29/2)$ $(33/2^+)$		
	5205.10	(33/2)	462.3 1	100 19	2823.18	$(31/2^+)$		
	3289.0	$(35/2^{-})$	218.8 <i>I</i>	100 6	3070.2	$(33/2^{-})$	D	
			488.3 <i>1</i>	91 6	2800.7	$(31/2^{-})$		
	3408.5+x	$(35/2^+)$	304		3104.8+x	$(33/2^+)$		
			478		2930.0+x			
	3523.4	$(37/2^{-})$	234.4 1	100 6	3289.0	$(35/2^{-})$	D	
	2522.4	(27/2+)	453.1 <i>I</i>	70 5	3070.2	$(33/2^{-})$		
	3532.4	$(37/2^+)$	246.6 5	<59	3285.48	$(35/2^+)$		
	3582.3+x	(37/2-)	488.4 <i>1</i> 695.4 <i>1</i>	100 8 100	3044.1 2886.9+x	$(33/2^+)$		
- 1	JJ04.J±X	(31/4)	U7J.4 I	100	∠000.9±X	(33/4)		

9

$\gamma(\frac{167}{\text{Lu}})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	δ		Comments	
3594.0+x	$(35/2^{-})$	505		3089.0+x	$\overline{(31/2^{-})}$					
3599.8+x	$(37/2^+)$	191		3408.5 + x	$(35/2^+)$					
		495		3104.8+x						
3774.3	$(39/2^{-})$	251.0 5	100 10	3523.4	$(37/2^{-})$					
		485.3 <i>5</i>	93 7	3289.0	$(35/2^{-})$	Q				
3786.5 + x	$(37/2^+)$	561		3225.6+x						
3812.98	$(39/2^+)$	280.7 5	23 4	3532.4	$(37/2^+)$					
		527.5 1	100 9	3285.48	$(35/2^+)$					
3945.6+x	$(35/2^+)$	720		3225.6+x						
4046.0	$(41/2^{-})$	271.7 <i>1</i>	100 <i>6</i>	3774.3	$(39/2^{-})$	D				
		522.6 <i>1</i>	100 7	3523.4	$(37/2^{-})$	Q				
4096.4	$(41/2^+)$	283.6 5	23.5 24	3812.98	$(39/2^+)$					
		563.9 1	100 <i>16</i>	3532.4	$(37/2^+)$					
4162.0+x	$(39/2^{-})$	568		3594.0+x						
4176.9+x	$(41/2^+)$	577		3599.8+x						
4273.9+x	$(41/2^{-})$	691.6 5	100	3582.3+x						
4339.6	$(43/2^{-})$	293.9 5	87 9	4046.0	$(41/2^{-})$					
	(44.0-)	565.2 5	100 7	3774.3	$(39/2^{-})$	Q				
4347.3+x	$(41/2^{-})$	765 1	100	3582.3+x						
4393.3+x	$(41/2^+)$	607		3786.5+x						
4417.5	$(43/2^+)$	321.5 ^e 5	<13.5	4096.4	$(41/2^+)$					
4402 ((20 (2±)	604.5 <i>1</i>	100 8	3812.98	$(39/2^+)$					
4492.6+x	$(39/2^+)$	547	100	3945.6+x		1.	1.			
		706.1	91 <i>4</i>	3786.5 + x		(E2+M1) ^b	$-3.1^{b} + 11 - 34$			
4656.2	$(45/2^{-})$	316.9 5	65 12	4339.6	$(43/2^{-})$	D				
		610.2 <i>1</i>	100 7	4046.0	$(41/2^{-})$					
4735.5	$(45/2^+)$	317 ^e 1	<18	4417.5	$(43/2^+)$					
		639.1 <i>1</i>	100 9	4096.4	$(41/2^+)$					
4785.0+x	$(43/2^{-})$	623		4162.0+x						
4832.1+x	$(45/2^+)$	655		4176.9+x						
4910.2+x	$(45/2^{-})$	636.3 5	100	4273.9+x						
4986.2	$(47/2^{-})$	330.0 <i>1</i>	76 7	4656.2	$(45/2^{-})$			Ratio(DCO)=0.68 9.		
		646.5 <i>1</i>	100 8	4339.6	$(43/2^{-})$					
5048.0+x	$(45/2^+)$	655		4393.3+x						
5093.5	$(47/2^+)$	359 ^e 1	<14	4735.5	$(45/2^+)$					
		676.0 5	100 9	4417.5	$(43/2^+)$					
5097.6+x	$(43/2^+)$	605	100	4492.6+x						
		704.2	41 6	4393.3+x						
5107.3+x	$(45/2^{-})$	760 <i>1</i>	100	4347.3+x						
5349.1	$(49/2^{-})$	363.0 5	52 10	4986.2	$(47/2^{-})$					
		692.8 5	100 14	4656.2	$(45/2^{-})$	(Q)				
5443.1	$(49/2^+)$	707.6 1	100	4735.5	$(45/2^+)$					
5456.0+x	$(47/2^{-})$	671		4785.0+x						

10

$\gamma(\frac{167}{Lu})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}^{π}_f	Mult.#	δ
5557.3+x	$(49/2^+)$	725		4832.1+x	$(45/2^+)$		
5606.4+x	$(49/2^{-})$	696.2 5	100	4910.2+x		(Q)	
5705.5	$(51/2^{-})$	356.5 <i>5</i>	47 <i>4</i>	5349.1	$(49/2^{-})$		
		719.3 <i>1</i>	100 <i>13</i>	4986.2	$(47/2^{-})$		
5749.8 + x	$(49/2^+)$	702		5048.0+x			
5755.7+x	$(47/2^+)$	658	100	5097.6+x	$(43/2^+)$		
		707.7	39 <i>4</i>	5048.0+x		(E2+M1) 	$-5.1^{b} + 16 - 25$
5833.8	$(51/2^+)$	740.3 5	100	5093.5	$(47/2^+)$	(==::::)	
5872.3+x	$(49/2^{-})$	765 1	100	5107.3+x	. , ,		
6116.8	$(53/2^{-})$	411.8 5	32 5	5705.5	$(51/2^{-})$		
	` ' '	767.5 5	100 8	5349.1	$(49/2^{-})$	Q	
6172.0+x	$(51/2^{-})$	716		5456.0+x			
6213.3	$(53/2^+)$	770.2 5	100	5443.1	$(49/2^+)$		
6359.5 + x	$(53/2^+)$	802		5557.3+x	$(49/2^+)$		
6365.6+x	$(53/2^{-})$	759.2 5	100	5606.4+x	$(49/2^{-})$		
6466.7 + x	$(51/2^+)$	711	100	5755.7+x	$(47/2^+)$		
		716.9	30 8	5749.8+x		(E2+M1) 	$-4^{b} + 3 - 8$
6490.3	$(55/2^{-})$	373.8 5	32 4	6116.8	$(53/2^{-})$	(==::::)	
	(/-)	784.5 <i>5</i>	100 9	5705.5	$(51/2^{-})$	(Q)	
6501.5+x	$(53/2^+)$	752		5749.8+x	` ' . '	(0)	
6631.5	$(55/2^{+})$	797.7 5	100	5833.8	$(51/2^+)$		
6689.3+x	$(53/2^{-})$	817 <i>1</i>	100	5872.3+x			
6935.0+x	$(55/2^{-})$	763		6172.0+x			
6952.2	$(57/2^{-})$	462 <i>1</i>	33 4	6490.3	$(55/2^{-})$		
		835.4 5	100 10	6116.8	$(53/2^{-})$	(Q)	
7036.3	$(57/2^+)$	823.0 5	100	6213.3	$(53/2^+)$		
7183.1+x	$(57/2^{-})$	817.5 5	100	6365.6+x	$(53/2^{-})$		
7213.7+x	$(57/2^+)$	854		6359.5 + x	$(53/2^+)$		
7231.8+x	$(55/2^+)$	730.3	32 7	6501.5+x	. , ,		
		765	100	6466.7 + x			
7300.4+x	$(57/2^+)$	799		6501.5+x			
7333.6	$(59/2^{-})$	381.3 5	33 4	6952.2	$(57/2^{-})$		
		843.4 5	100 14	6490.3	$(55/2^{-})$	Q	
7471.0	$(59/2^+)$	839.5 5	100	6631.5	$(55/2^+)$		
7523.3+x	$(57/2^{-})$	834 <i>1</i>	100	6689.3 + x			
7745.0+x	$(59/2^{-})$	810		6935.0+x			
7854.1	$(61/2^{-})$	901.9 5	100	6952.2	$(57/2^{-})$		
7876.1	$(61/2^+)$	839.8 5	100	7036.3	$(57/2^+)$		
8047.8+x	$(59/2^+)$	816	100	7231.8+x	\ / /		
8056.7+x	$(61/2^{-})$	873.6 5	100	7183.1+x			
8115.6+x	$(61/2^+)$	815		7300.4+x			
8154.9+x	(61/2+)	902 855		7213.7+x 7300.4+x			

γ (167Lu) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	E_i (level)	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	J_f^π
8154.9+x	$(61/2^+)$	941		7213.7+x	$(57/2^+)$	10245.1?	$\overline{(71/2^+)}$	979.0 ^e 5	100	9266.1	$(67/2^+)$
8232.9	$(63/2^{-})$	899.3 5	100	7333.6	$(59/2^{-})$	10521+x	$(71/2^{-})$	980		9541+x	$(67/2^{-})$
8341.6	$(63/2^+)$	870.6 <i>5</i>	100	7471.0	$(59/2^+)$	10817+x	$(71/2^+)$	976		9841 + x	$(67/2^+)$
8382.5	$(63/2^+)$	911.5 5	100	7471.0	$(59/2^+)$	10930+x	$(73/2^+)$	988		9941.8+x	$(69/2^+)$
8616+x	$(63/2^{-})$	871		7745.0+x	$(59/2^{-})$	10995.7+x	$(73/2^{-})$	1033		9962.7+x	$(69/2^{-})$
8747.1	$(65/2^+)$	871 <i>I</i>	100	7876.1	$(61/2^+)$	11056+x	$(73/2^+)$	1016		10040+x	$(69/2^+)$
8917.8 + x	$(63/2^+)$	870		8047.8 + x	$(59/2^+)$	11558+x	$(75/2^{-})$	1037		10521+x	$(71/2^{-})$
8982.7 + x	$(65/2^{-})$	926 <i>1</i>	100	8056.7 + x	$(61/2^{-})$	11849+x	$(75/2^+)$	1032		10817 + x	$(71/2^+)$
9009.8 + x	$(65/2^+)$	810 ^e		8200+x?	$(61/2^+)$	11984+x	$(77/2^+)$	1054		10930 + x	$(73/2^+)$
		855		8154.9+x	$(61/2^+)$	12132+x	$(77/2^+)$	1076		11056+x	$(73/2^+)$
		894		8115.6+x	$(61/2^+)$	12657+x	$(79/2^{-})$	1099		11558+x	$(75/2^{-})$
9080.9 + x	$(65/2^+)$	881 ^e		8200+x?	$(61/2^+)$	12933+x	$(79/2^+)$	1084		11849+x	$(75/2^+)$
		926		8154.9+x	$(61/2^+)$	13104+x	$(81/2^+)$	1120		11984+x	$(77/2^+)$
9187.9?	$(67/2^{-})$	955.0 ^e 5		8232.9	$(63/2^{-})$	13267+x	$(81/2^+)$	1135		12132+x	$(77/2^+)$
9266.1	$(67/2^+)$	924.5 5	100	8341.6	$(63/2^+)$	13821+x	$(83/2^{-})$	1164		12657+x	$(79/2^{-})$
9374.1	$(67/2^+)$	991.6 5	100	8382.5	$(63/2^+)$	14082+x	$(83/2^+)$	1149		12933+x	$(79/2^+)$
9541+x	$(67/2^{-})$	925		8616+x	$(63/2^{-})$	14287+x	$(85/2^+)$	1183		13104 + x	$(81/2^+)$
9841 + x	$(67/2^+)$	923		8917.8+x	$(63/2^+)$	14459+x	$(85/2^+)$	1192		13267+x	$(81/2^+)$
9941.8+x	$(69/2^+)$	932		9009.8 + x	$(65/2^+)$	15282+x	$(87/2^+)$	1200		14082+x	$(83/2^+)$
9962.7 + x	$(69/2^{-})$	980		8982.7+x	$(65/2^{-})$	15530+x	$(89/2^+)$	1243		14287 + x	$(85/2^+)$
10040+x	$(69/2^+)$	959		9080.9 + x	$(65/2^+)$	15706+x	$(89/2^+)$	1247		14459+x	$(85/2^+)$
10195.9?	$(71/2^{-})$	1008 ^e 1		9187.9?	$(67/2^{-})$	16821+x	$(93/2^+)$	1291		15530+x	$(89/2^+)$

12

[†] From 123 Sb(48 Ca, $^{4n}\gamma$), 123 Sb(48 Ca, $^{4n}\gamma$):SD and 152 Sm(19 F, $^{4n}\gamma$), except where noted. [‡] Relative photon branching from each level; values are from 123 Sb(48 Ca, $^{4n}\gamma$), 152 Sm(19 F, $^{4n}\gamma$), except where noted.

[#] From DCO ratios measured in ¹²³Sb(⁴⁸Ca,4n γ), ¹⁵²Sm(¹⁹F,4n γ), except as noted.

 $^{^{@}}$ From 167 Hf ε decay.

[&]amp; From (3 He,5n γ), (α ,6n γ), (p,4n γ) data set.

^a From ¹²³Sb(⁴⁸Ca,4n γ):SD. ^b From $\gamma\gamma(\theta)$ and $\gamma(\theta)$ In ¹²³Sb(⁴⁸Ca,4n γ):SD.

^c Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^d Multiply placed with undivided intensity.

^e Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{167}_{\ 71}Lu_{96}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

 $^{167}_{71} Lu_{96}$

 $^{167}_{71}\mathrm{Lu}_{96}$ -17

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{167}_{71} Lu_{96}$

Level Scheme (continued)

Intensities: Relative photon branching from each level

 $^{167}_{\ 71}Lu_{96}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

---- γ Decay (Uncertain)

≥1 min 51.5 min *10*

 $^{167}_{\,71}Lu_{96}$

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given

Legend

---- γ Decay (Uncertain)

$$^{167}_{71} Lu_{96}$$

Band(d): 1/2[411] band, α=+1/2 (2003Am01)

¹⁶⁷Hf ε decay 1973Me09

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 90, 431 (2000)	5-Jul-2000

Parent: 167 Hf: E=0.0; $J^{\pi}=(5/2)^{-}$; $T_{1/2}=2.05 \text{ min } 5$; $Q(\varepsilon)=4000 \text{ SY}$; $\%\varepsilon+\%\beta^{+}$ decay=100.0

Others: 1969Ar23, 1970At01, 1987Es08, 1989Br19.

Sources from ¹⁷⁰Yb(³He,6n); Yb oxide targets enriched to 67% in ¹⁷⁰Yb; chemical separation; measured Εγ, Ιγ,

(Compton-suppression Ge(Li) spectrometer (FWHM=1.9 keV at 1332 keV)), K x ray (surface-barrier Ge(Li) detector (FWHM=0.8 keV at 122 keV)), Ice (Si(Li)).

The decay scheme is tentative, and most certainly very incomplete; only three γ rays were observed, although Q+=4000 suggests there might be many more.

¹⁶⁷Lu Levels

E(level)	J^{π}	T _{1/2}	Comments
0.0‡	7/2+	51.5 min <i>10</i>	$T_{1/2}$: from Adopted Levels.
139.87 [‡] <i>15</i>	$(9/2^+)$		
315.25 [#] 10	$(7/2)^{-}$		

[†] Adopted values.

ε, β^+ radiations

1973Me09 estimate>65% $\varepsilon+\beta^+$ branching to 315.2 level from I γ (K x ray)=58 29 and I(γ^\pm)=60 30, relative to I γ =100 for 315.2 γ . Intensity imbalance at 139.9 level indicates very little, if any, $\varepsilon+\beta^+$ feeding of that level (1.4% 17).

E(decay)	E(level)	$I\beta^+$ †	$I\varepsilon^{\dagger}$	Log ft	$\underline{\mathrm{I}(\varepsilon+\beta^+)^{\dagger}}$	Comments
(3684 SY)	315.25	>22	>43	<4.8	>65	av E β = 1203; ε K=0.546; ε L=0.0862; ε M+=0.0262
$(4000^{\ddagger} SY)$	0.0	<15	< 20	>5.2	<35	av E β =1347; ε K=0.481; ε L=0.0758; ε M+=0.0230

[†] Absolute intensity per 100 decays.

γ (167Lu)

Iy normalization: From K x ray intensity (corrected for internal conversion) and γ^{\pm} intensity. However, see comment concerning tentative status of decay scheme.

 $I\gamma(K \text{ x ray})=58\ 29$, $I(\gamma^{\pm})=60\ 30$, relative to $I\gamma=100$ for 315.2γ .

E_{γ}	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	α^{\ddagger}	Comments
139.9 2	3.8 8	139.87	$(9/2^+)$	0.0 7/2+	[M1,E2]	1.21 24	$\alpha(K)$ =0.8 4; $\alpha(L)$ =0.29 11; $\alpha(M)$ =0.07 3; $\alpha(N+)$ =0.019 8
175.4 2	6 1	315.25	(7/2)	139.87 (9/2+)	[E1]	0.0809	$\alpha(N+)=0.0198$ $\alpha(K)=0.0674$; $\alpha(L)=0.0105$; $\alpha(M)=0.00234$; $\alpha(N+)=0.00063$
315.24 10	100	315.25	(7/2)-	0.0 7/2+	E1	0.0184	$\alpha(K)=0.0154$; $\alpha(L)=0.00229$; $\alpha(M)=0.00051$; $\alpha(N+)=0.00016$

 $^{^{\}ddagger}$ Band(A): π 7/2[404] band.

[#] Band(B): π 7/2[523] band.

[‡] Existence of this branch is questionable.

¹⁶⁷Hf ε decay 1973Me09 (continued)

$\gamma(^{167}Lu)$ (continued)

 E_{γ} $E_{i}(level)$ Comments

Mult.: from $\alpha(K)$ exp=0.014 3, as deduced from a simultaneous measurement of Ice(315.2 γ) and I γ (315.2 γ) (detector calibration from $\alpha(L)$ =0.0823 (E2 theory) for 198.8 γ in 168 Yb).

 $^{^\}dagger$ For absolute intensity per 100 decays, multiply by 1.0 5.

 $^{^{\}ddagger}$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

¹⁶⁷Hf ε decay 1973Me09

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

 $^{167}_{71}\mathrm{Lu}_{96}\text{--}3$

¹⁶⁷Hf ε decay 1973Me09

$$^{167}_{\ 71}Lu_{96}$$

123 Sb(48 Ca,4n γ), 152 Sm(19 F,4n γ) 1990Yu01,1998Ya04

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 90, 431 (2000)	5-Jul-2000

Other: 1997Wu03.

1990Yu01: 123 Sb(48 Ca,4n γ), 206 MeV; ESSA30 detector array (29 escape-suppressed Ge detectors), θ =37°, 63°, 79°, 101°, 117°, 143°; measured E γ , I γ , $\gamma\gamma$ coin, DCO ratios (37°, 79°).

1998Ya04,1997Wu03: 152 Sm(19 F,4n γ), E=85, 87 MeV; 98.4% 152 Sm targets, six Compton-suppressed HPGe-BGO spectrometers, HPGe planar detector; measured E γ , I γ (not reported), $\gamma\gamma$ coin; observed 15 new transitions associated with previously-known 1/2[411] and 5/2[402] bands, and established a previously unknown band which may be a triaxial SD band.

167 Lu Levels

The level scheme is a combination of schemes in 1990 Yu01 and 1998 Ya04. The conclusions of 1998 Ya04 are presumed by the evaluator to supersede those of 1997 Wu03 (same authors, same experimental conditions); 1997 Wu03 propose a very different interconnection between the possible SD-band and normal-deformation levels, leading to different J^{π} for levels of the former band, and several gammas present in 1997 Wu03 are absent in 1998 Ya04 (and vice versa).

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0	7/2+	3532.4 [#] 4	37/2+
140.02 [#] <i>13</i>	9/2+	3774.3 ^b 5	39/2-
305.29 [@] 10	11/2+	3812.9 [@] 3	39/2+
332.0 ^a 4	9/2-	4046.0 ^a 5	$41/2^{-}$
433.6 ^b 4	$11/2^{-}$	4096.3 [#] 4	$41/2^{+}$
494.17 [#] <i>12</i>	$13/2^{+}$	4339.7 ^b 5	$43/2^{-}$
577.0 <mark>a</mark> 4	$13/2^{-}$	4417.4 [@] 3	$43/2^{+}$
704.26 [@] <i>13</i>	$15/2^{+}$	4656.2 ^a 5	$45/2^{-}$
744.3 <mark>b</mark> 4	$15/2^{-}$	4735.4 [#] 4	$45/2^{+}$
934.10 [#] <i>14</i>	$17/2^{+}$	4986.2 ^b 5	$47/2^{-}$
947.8 <mark>a</mark> 4	$17/2^{-}$	5093.4 [@] 6	$47/2^{+}$
1159.5 <mark>b</mark> 4	$19/2^{-}$	5349.1 <mark>a</mark> 5	$49/2^{-}$
1181.19 [@] <i>16</i>	19/2+	5443.0 [#] 4	49/2+
1411.7 <mark>a</mark> 4	$21/2^{-}$	5705.5 ^b 5	$51/2^{-}$
1444.36 [#] <i>16</i>	$21/2^{+}$	5833.7 [@] 8	$(51/2^+)$
1656.0 ^b 4	$23/2^{-}$	6116.8 <mark>a</mark> 6	53/2-
1720.16 [@] 18	$23/2^{+}$	6213.2 [#] 7	$(53/2^+)$
1947.6 <mark>a</mark> 4	$25/2^{-}$	6490.3 ^b 6	55/2-
2007.99 [#] 18	$25/2^{+}$	6631.4 [@] 9	$(55/2^+)$
2214.9 <mark>b</mark> 4	$27/2^{-}$	6952.3 <mark>a</mark> 7	57/2-
2299.34 [@] 20	$27/2^{+}$	7036.2 [#] 8	$(57/2^+)$
2532.1 ^a 4	$29/2^{-}$	7333.6 ^b 7	59/2-
2580.60 [#] 20	$29/2^{+}$	7470.9 [@] 11	$(59/2^+)$
2800.7 ^b 4	$31/2^{-}$	7854.2 <mark>a</mark> 9	$(61/2^{-})$
2823.12 [@] 22	$31/2^{+}$	7876.0 [#] <i>10</i>	$(61/2^+)$
3044.0 [#] 4	33/2+	8232.9 ^b 9	$63/2^{-}$
3070.3 ^a 4	$33/2^{-}$	8341.5 [@] <i>12</i>	$(63/2^+)$
3285.43 [@] 24	35/2+	8382.4 <mark>&</mark> <i>12</i>	$(63/2^+)$
3289.0 ^b 4	35/2-	8747.0 [#] <i>14</i>	$(65/2^+)$
3523.4 ^a 4	37/2-	9187.9? <mark>b</mark> 10	$(67/2^{-})$

$\frac{123}{\text{Sb}}(^{48}\text{Ca,4n}\gamma),^{152}\text{Sm}(^{19}\text{F,4n}\gamma) \qquad \textbf{1990Yu01,1998Ya04} \text{ (continued)}$

167 Lu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	Comments
9266.0 [@] 13	(67/2+)	
9374.0 <mark>&</mark> <i>13</i>	$(67/2^+)$	
10195.9? ^b 14	$(71/2^{-})$	
10245.0? [@] 14	$(71/2^+)$	
19.6+x ^e 5	$(3/2^+)$	E(level): from Adopted Levels.
39.4+x ^f 14	$(5/2^+)$	•
122.2+x ^c 5	5/2-	E(level): from Adopted Levels.
156.1+x ⁸ 13	$(7/2^+)$	
189.6+x ^e 10	$(7/2^+)$	
233.8+x ^c 7	9/2-	
300.7+x ^f 12 446.6+x ^c 8	$(9/2^+)$ $13/2^-$	
$470.3 + x^{g}$ 12	$(11/2^+)$	
479.0+x ^e 12	$(11/2^+)$	J^{π} : misprinted as $13/2^{+}$ in 1998Ya04 and 1997Wu03.
663.8+x ^f 13	$(13/2^+)$	
761.5+x ^c 8	$17/2^{-}$	
858.6+x ^e 12	$(15/2^+)$	
$886.2 + x^{g}$ 14	$(15/2^+)$	
$1112.0+x^f$ 13	$(17/2^+)$	
1172.7+x ^c 8 1318.1+x ^e 12	21/2 ⁻ (19/2 ⁺)	
1376.6+x ^g 14	$19/2^{+i}$	
$1619.9 + x^{f}$ 15	$21/2^{+i}$	
1670.9+x ^c 8	25/2-	
1828.3+x ^e 15	$(23/2^+)$	
1925.1+x ^g 15	$23/2^{+i}$	
2156.9+x ^f 16	$25/2^{+i}$	
2245.9+x ^c 8	29/2-	
2370.5+x ^e 17	$(27/2^+)$	
2693.8+x <i>17</i> 2703.9+x ^h <i>18</i>	$(29/2)^{+i}$	
2886.8+x ^c 8	$(29/2)^{-1}$ $33/2^{-}$	
2989.5+x ^e 19	$31/2^{+i}$	
$3254.8+x^{h}$ 18	$(33/2)^{+i}$	
3582.2+x ^c 8	37/2	
3855.8+x ^h 20	$(37/2)^{+i}$	
4273.8+x ^c 9	41/2-	
4347.2+x ^d 13	$(41/2^{-})$	
4508.8+x ^h 23	$(41/2)^{+i}$	
4910.1+x ^c 11	$45/2^{-}$	
5107.2+x ^d 16	$(45/2^{-})$	
$5213.8 + x^h 25$	$(45/2)^{+i}$	
5606.3+x ^c 12	49/2-	
5872.2+x ^d 19	(49/2 ⁻)	
5967+x ^h 3	$(49/2)^{+i}$	
6365.5+x ^c 13	53/2-	
$6689.2 + x^d 22$ $6771 + x^h 3$	$(53/2^{-})$	
0//1+x" 3	$(53/2)^{+i}$	

123 Sb(48 Ca,4n γ), 152 Sm(19 F,4n γ) 1990Yu01,1998Ya04 (continued)

¹⁶⁷Lu Levels (continued)

E(level) [†]	Jπ‡
7183.0+x ^c 14	57/2-
$7523.2 + x^d 24$	$(57/2^{-})$
7625+x ^h 3	$(57/2^+)^{i}$
8056.6+x ^c 15	61/2-
8529+x? ^h 4	$(61/2)^{+i}$
8982.6+x ^c 18	$65/2^{-}$

- [†] From least-squares adjustment of E γ , allowing Δ E $_{\gamma}$ =1 keV for E γ values to which authors did not assign uncertainty.
- [‡] From 1990Yu01, except as noted; based on measured DCO ratios, deduced band structure, γ branching and comparison with structure for lighter Lu isotopes.
- # Band(A): 7/2[404], $\alpha = +1/2$ (1990Yu01).
- [@] Band(a): 7/2[404], $\alpha = -1/2$ (1990Yu01).
- & Band(B): $\alpha = -1/2$ sideband (1990Yu01).
- ^a Band(C): 9/2[514], $\alpha = +1/2$ (1990Yu01).
- ^b Band(c): 9/2[514], $\alpha = -1/2$ (1990Yu01).
- ^c Band(D): 1/2[541], $\alpha = +1/2$ (1990Yu01).
- ^d Band(E): $\alpha = +1/2$ sideband (1990Yu01). J is taken from fig. 4 of 1990Yu01; table 1 gives values which are two units higher, requiring that this band connect to the 1/2[541] band at the J=41/2 member rather than the 37/2 member shown in fig. 4.
- ^e Band(F): 1/2[411], $\alpha = -1/2$ (1998Ya04). Signature partner band not observed, consistent with knowledge of 1/2[411] bands in neighboring odd-A Lu isotopes.
- ^f Band(G): 5/2[402], $\alpha = +1/2$ (1998Ya04).
- ^g Band(g): 5/2[402], $\alpha = -1/2$ (1998Ya04).
- ^h Band(H): SD (triaxial) band? (1998Ya04). Transition energies in the upper part of this band and dynamic moment of inertia values are very similar to those for possible 1/2[660] triaxial SD bands in ¹⁶³Lu and ¹⁶⁵Lu (1998Ya04), and ¹⁶⁴Lu (1999To08).
- ⁱ Authors' value (1998Ya04).

γ (167Lu)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_i(level)$	\mathbf{J}_i^{π}	E_f	J_f^π	Mult.#	Comments
101.5 5		433.6	11/2-	332.0	9/2-		
(102.65)		122.2+x	5/2-	19.6 + x	$(3/2^+)$		E_{γ} : from adopted gammas.
111.7 5		233.8+x	$9/2^{-}$	122.2+x	5/2-		, , ,
117 <i>I</i>		156.1+x	$(7/2^+)$	39.4 + x	$(5/2^+)$		
139.9 5		140.02	9/2+	0.0	$7/2^{+}$		
143.4 <i>1</i>	75 <i>5</i>	577.0	$13/2^{-}$	433.6	$11/2^{-}$		DCO ratio= 0.84 5.
144.8 5		300.7+x	$(9/2^+)$	156.1+x	$(7/2^+)$		DCO ratio= 1.0 4 ($\Delta J=2 \gamma$ in gate).
165.3 <i>1</i>	63 <i>6</i>	305.29	$11/2^{+}$	140.02	9/2+		
167.3 <i>1</i>	105 9	744.3	$15/2^{-}$	577.0	$13/2^{-}$		DCO ratio= 0.75 5.
170 <i>I</i>		189.6+x	$(7/2^+)$	19.6 + x	$(3/2^+)$		DCO ratio= 1.0 3 ($\Delta J=2 \gamma$ in gate).
170 <i>I</i>		470.3+x	$(11/2^+)$	300.7+x	$(9/2^+)$		DCO ratio= 1.0 3 ($\Delta J=2 \gamma$ in gate).
178.2 5		479.0+x	$(11/2^+)$	300.7+x	$(9/2^+)$		DCO ratio= 1.5 9 ($\Delta J=2 \gamma$ in gate).
185 [@]		663.8+x	$(13/2^+)$	479.0+x	$(11/2^+)$		
188.9 <i>1</i>	42 5	494.17	13/2+	305.29	11/2+		
191.7 5		332.0	9/2-	140.02	9/2+	D	DCO ratio= 0.99 9.
193 <i>1</i>		663.8 + x	$(13/2^+)$	470.3+x	$(11/2^+)$		
194 <mark>@</mark>		858.6+x	$(15/2^+)$	663.8+x	$(13/2^+)$		
203.6 1	82 5	947.8	17/2	744.3	15/2	D	DCO ratio= 0.90 5.

$\frac{123}{\text{Sb}}(^{48}\text{Ca,4n}\gamma),^{152}\text{Sm}(^{19}\text{F,4n}\gamma) \qquad \frac{1990\text{Yu01,1998Ya04}}{1990\text{Yu01,1998Ya04}} \text{ (continued)}$

γ (167Lu) (continued)

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	Comments
205 [®] 210.3 <i>I</i> 211.7 <i>I</i> 212.8 <i>I</i> 218.8 <i>I</i> 221.1 5 223 <i>I</i> 230.0 <i>I</i>	40 4 77 6 114 6 40.7 25 18.4 15	1318.1+x 704.26 1159.5 446.6+x 3289.0 3044.0 886.2+x 1112.0+x 934.10	(19/2 ⁺) 15/2 ⁺ 19/2 ⁻ 13/2 ⁻ 35/2 ⁻ 33/2 ⁺ (15/2 ⁺) (17/2 ⁺) 17/2 ⁺	1112.0+x 494.17 947.8 233.8+x 3070.3 2823.12 663.8+x 886.2+x 704.26	13/2 ⁺ 17/2 ⁻ 9/2 ⁻ 33/2 ⁻ 31/2 ⁺ (13/2 ⁺)	Q D	DCO ratio= 0.77 4. DCO ratio= 1.1 I ($\Delta J=2 \gamma$ in gate). DCO ratio= 0.95 5.
232 [@] 234.4 <i>I</i> 241.2 5 242.1 5 243 [@] 244.4 <i>I</i> 244.8 5 246.6 5	41.5 25 18.2 20 13.5 12 53 5 24 4 <36	2156.9+x 3523.4 3285.43 2823.12 1619.9+x 1656.0 577.0 1181.19	25/2 ⁺ 37/2 ⁻ 35/2 ⁺ 31/2 ⁺ 21/2 ⁺ 23/2 ⁻ 13/2 ⁻ 19/2 ⁺	1925.1+x 3289.0 3044.0 2580.60 1376.6+x 1411.7 332.0 934.10	23/2 ⁺ 35/2 ⁻ 33/2 ⁺ 29/2 ⁺ 19/2 ⁺ 21/2 ⁻ 9/2 ⁻ 17/2 ⁺	D	DCO ratio= 0.97 5.
246.6 5 251.0 5 252.1 <i>I</i> 254 [@] 261 <i>I</i> 263.6 5	<23 29 3 66 5 21.4 17	3532.4 3774.3 1411.7 1112.0+x 300.7+x 1444.36	37/2 ⁺ 39/2 ⁻ 21/2 ⁻ (17/2 ⁺) (9/2 ⁺) 21/2 ⁺	3285.43 3523.4 1159.5 858.6+x 39.4+x 1181.19	(5/2 ⁺) 19/2 ⁺		DCO ratio= $0.86~4$ for $(251.0\gamma+252.1\gamma)$ doublet. DCO ratio= $0.86~4$ for $(251.0\gamma+252.1\gamma)$ doublet.
265 [@] 267.6 5 268.5 1 269.6 1	24 <i>4</i> 58 <i>10</i> 63 <i>10</i>	1376.6+x 2214.9 2800.7 3070.3	19/2 ⁺ 27/2 ⁻ 31/2 ⁻ 33/2 ⁻	1112.0+x 1947.6 2532.1 2800.7	(17/2 ⁺) 25/2 ⁻ 29/2 ⁻ 31/2 ⁻		DCO ratio= $0.83 \ 4$ for $(268.5\gamma+269.6\gamma)$ doublet. The 269γ is coincident with itself. DCO ratio= $0.83 \ 4$ for $(268.5\gamma+269.6\gamma)$ doublet.
271.7 <i>I</i> 275.8 5 280.7 5 281.0 5 283.6 5 289.4 5	34.9 22 16.7 14 8.0 14 12.6 20 8.7 9 18.4 15	4046.0 1720.16 3812.9 2580.60 4096.3 2007.99 479.0+x	41/2 ⁻ 23/2 ⁺ 39/2 ⁺ 29/2 ⁺ 41/2 ⁺ 25/2 ⁺ (11/2 ⁺)	3774.3 1444.36 3532.4 2299.34 3812.9 1720.16 189.6+x		D	The 269γ is coincident with itself. DCO ratio= 0.89 5.
291.2 <i>5</i> 291.6 <i>I</i> 293.9 <i>5</i>	11.3 <i>11</i> 42.0 26 24.2 26	2299.34 1947.6 4339.7	27/2 ⁺ 25/2 ⁻ 43/2 ⁻	2007.99 1656.0 4046.0	25/2 ⁺ 23/2 ⁻ 41/2 ⁻		DCO ratio= $0.80~6$ for $(291.6\gamma+293.9\gamma)$ double dominated by the 291.6γ . DCO ratio= $0.88~6$ for $(291.6\gamma+293.9\gamma)$ doublet dominated by 291.6γ .
294.0 5 305.3 1 310.7 1 314 1	74 6 55 4	433.6 1925.1+x 305.29 744.3 470.3+x	11/2 ⁻ 23/2 ⁺ 11/2 ⁺ 15/2 ⁻ (11/2 ⁺)	140.02 1619.9+x 0.0 433.6 156.1+x	7/2 ⁺ 11/2 ⁻		DCO ratio= 0.78 5.
314.9 <i>I</i> 316 <i>I</i> 316.9 5 317& <i>I</i> 321.5& 5 323@	104 5 33 5 22 4 <8.0 <5.0	761.5+x 2532.1 4656.2 4735.4 4417.4 2693.8+x	17/2 ⁻ 29/2 ⁻ 45/2 ⁻ 45/2 ⁺ 43/2 ⁺	446.6+x 2214.9 4339.7 4417.4 4096.3 2370.5+x	13/2 ⁻ 27/2 ⁻ 43/2 ⁻ 43/2 ⁺ 41/2 ⁺ (27/2 ⁺)	D	DCO ratio= 1.3 2 ($\Delta J=2 \gamma$ in gate). DCO ratio= 0.89 5.
330.0 1	23.0 20	4986.2	47/2-	4656.2	45/2-		DCO ratio= 0.68 9.

$\frac{123}{\text{Sb}}(^{48}\text{Ca,4n}\gamma),^{152}\text{Sm}(^{19}\text{F,4n}\gamma) \qquad \frac{1990\text{Yu01,1998Ya04}}{1990\text{Yu01,1998Ya04}} \text{ (continued)}$

γ ⁽¹⁶⁷Lu) (continued)</sup>

$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{\ddagger}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	Comments
331.9 5		332.0	9/2-	0.0	7/2+		DCO ratio= 1.24 9.
354.1 <i>I</i>	110 10	494.17	13/2+	140.02	9/2+		
356.5 5	14.5 11	5705.5	51/2-	5349.1	49/2-		DCO ratio= 0.8 1.
359& 1	<4.0	5093.4	47/2+	4735.4	45/2+		
363 <i>1</i>	15.2	663.8+x	$(13/2^+)$	300.7+x			
363.0 <i>5</i> 370.8 <i>1</i>	15 <i>3</i> 56 <i>5</i>	5349.1 947.8	49/2 ⁻ 17/2 ⁻	4986.2 577.0	47/2 ⁻ 13/2 ⁻	Q	DCO ratio= 0.70 7.
373.8 5	5.5 7	6490.3	55/2-	6116.8	53/2	Q	DCO 14110- 0.70 7.
379.6 5	25 4	858.6+x	$(15/2^+)$	479.0+x			DCO ratio= 0.89 15 ($\Delta J=2 \gamma$ in gate).
381.3 5	4.6 5	7333.6	59/2-	6952.3	57/2-		
388.3 <i>1</i>	31 4	858.6+x	$(15/2^+)$	470.3+x			DCO ratio= 0.95 15 ($\Delta J=2 \gamma$ in gate).
399.0 <i>I</i>	138 11	704.26	15/2+	305.29	11/2+	0	DCO (1.111/ALQ 1.11)
411.2 <i>I</i>	100 5	1172.7+x	21/2-	761.5+x		Q	DCO ratio= 1.1 I ($\Delta J=2 \gamma$ in gate).
411.8 <i>5</i> 414 <i>I</i>	6.3 9	6116.8 886.2+x	53/2 ⁻ (15/2 ⁺)	5705.5 470.3+x	$51/2^{-}$		
415.2 <i>I</i>	80 5	1159.5	$19/2^{-}$	744.3	$15/2^{-}$		DCO ratio= 0.76 6.
439.7 <i>1</i>	160 20	934.10	17/2+	494.17	13/2+		
448 <i>1</i>		1112.0+x	$(17/2^+)$	663.8+x	$(13/2^+)$		
453.1 <i>1</i>	29.1 19	3523.4	37/2-	3070.3	33/2-		DCO ratio= 0.77 7.
459.5 <i>1</i>	34 5	1318.1+x	$(19/2^+)$	858.6+x		Q	DCO ratio= 1.14 10 ($\Delta J=2 \gamma$ in gate).
462 1	5.5 6	6952.3	57/2 ⁻	6490.3	55/2 ⁻		
462.3 <i>1</i> 463 <i>1</i>	31 <i>6</i> 59 8	3285.43 3044.0	35/2 ⁺ 33/2 ⁺	2823.12 2580.60	31/2 ⁺ 29/2 ⁺		
463.8 1	71 <i>4</i>	1411.7	$\frac{33/2}{21/2^{-}}$	947.8	$17/2^{-}$		DCO ratio= 0.77 6.
477.0 <i>1</i>	117 9	1181.19	19/2+	704.26	15/2+		Dec lade 0.77 c.
485.3 5	26.9 20	3774.3	39/2-	3289.0	35/2-	Q	DCO ratio= 0.60 8.
488.3 <i>1</i>	36.9 24	3289.0	35/2-	2800.7	$31/2^{-}$		DCO ratio= 0.80 7.
488.4 1	39 <i>3</i>	3532.4	$37/2^{+}$	3044.0	$33/2^{+}$		
490 [@]		1376.6+x	19/2+	886.2+x			
496.5 1	80 5	1656.0	23/2-	1159.5	19/2		DCO ratio= 0.71 11.
498.2 1	91 8	1670.9+x	25/2-	1172.7+x		Q	DCO ratio= 1.0 I ($\Delta J=2 \gamma$ in gate).
508 [@]	₄ 50	1619.9+x	$21/2^{+}$	1112.0+x		(0)	DCO
510 <i>I</i> 510.2 <i>I</i>	<50 149 <i>11</i>	1828.3+x 1444.36	$(23/2^+)$ $21/2^+$	1318.1+x 934.10	(19/2 ⁺)	(Q)	DCO ratio= 0.9 I ($\Delta J=2 \gamma$ in gate).
522.6 <i>I</i>	34.9 23	4046.0	41/2	3523.4	37/2	Q	DCO ratio= 0.45 4.
523.8 1	45 <i>4</i>	2823.12	31/2+	2299.34	27/2+	V	200 Iulio 0.15 7.
527.5 1	35 <i>3</i>	3812.9	39/2+	3285.43	35/2+		
535.9 <i>1</i>	71 5	1947.6	$25/2^{-}$	1411.7	$21/2^{-}$	Q	DCO ratio= 0.57 5.
537 [@]		2156.9+x	$25/2^{+}$	1619.9+x	$21/2^{+}$		
537 [@]		2693.8+x		2156.9+x	$25/2^{+}$		
538.2 <i>1</i>	43 3	3070.3	$33/2^{-}$	2532.1	$29/2^{-}$	Q	DCO ratio= 0.47 8.
539.0 <i>1</i>	106 8	1720.16	23/2+	1181.19	19/2+		
542 1	<50	2370.5+x	(27/2+)	1828.3+x	(23/2+)		DCO ratio= 0.8 I ($\Delta J=2 \gamma$ in gate). $\gamma\gamma$ coin indicates that this is a doublet, but placement of other component could not be determined.
547 [@]		2703.9+x	$(29/2)^+$	2156.9+x	25/2 ⁺		1
549 [@]		1925.1+x	23/2+	1376.6+x			
551 [@]		3254.8+x	$(33/2)^+$	2703.9+x			
558.9 <i>1</i>	78 <i>5</i>	2214.9	$(33/2)$ $27/2^{-}$	1656.0	$(29/2)$ $23/2^-$	Q	DCO ratio= 0.64 4.
561 [@]	.00	3254.8+x	$(33/2)^+$	2693.8+x	,-	~	
563.6 <i>1</i>	108 10	2007.99	25/2 ⁺	1444.36	21/2+		
563.9 1	37 6	4096.3	41/2+	3532.4	37/2+		
565.2 5	27.7 20	4339.7	$43/2^{-}$	3774.3	39/2-	Q	DCO ratio= 0.51 5.

$\frac{123}{\text{Sb}}(^{48}\text{Ca,4n}\gamma),^{152}\text{Sm}(^{19}\text{F,4n}\gamma) \qquad \frac{1990\text{Yu01,1998Ya04}}{1990\text{Yu01,1998Ya04}} \text{ (continued)}$

γ (167Lu) (continued)

E_{γ}^{\dagger}	Ι _γ ‡	$E_i(level)$	\mathbf{J}_i^π	\mathbb{E}_f	$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Mult.#	Comments
572.6 <i>1</i> 575.0 <i>1</i> 579.2 <i>1</i>	67 <i>5</i> 62 <i>5</i> 88 <i>7</i>	2580.60 2245.9+x 2299.34	29/2 ⁺ 29/2 ⁻ 27/2 ⁺	2007.99 1670.9+x 1720.16	25/2 ⁺ 25/2 ⁻ 23/2 ⁺	(Q)	DCO ratio= 1.1 2 (ΔJ =2 γ in gate).
584.4 <i>1</i> 585.9 <i>1</i>	50 6 80 9	2532.1 2800.7	29/2 ⁻ 31/2 ⁻	1947.6 2214.9	25/2 ⁻ 25/2 ⁻ 27/2 ⁻		DCO ratio= 0.63 3 for $(584.4\gamma+585.9\gamma)$ doublet. DCO ratio= 0.63 3 for $(584.4\gamma+585.9\gamma)$ doublet.
601 [@] 604.5 <i>I</i>	37 3	3855.8+x 4417.4	$(37/2)^+$ $43/2^+$	3254.8+x 3812.9	39/2+		DCO : 0.70.7
610.2 <i>I</i> 619 [@]	33.6 23	4656.2 2989.5+x	45/2 ⁻ 31/2 ⁺	4046.0 2370.5+x	$41/2^{-}$		DCO ratio= 0.70 7.
636.3 <i>5</i> 639.1 <i>1</i> 640.9 <i>1</i>	17.0 <i>16</i> 44 <i>4</i> 49 <i>4</i>	4910.1+x 4735.4 2886.8+x	45/2 ⁻ 45/2 ⁺ 33/2 ⁻	4273.8+x 4096.3 2245.9+x	41/2 ⁻ 41/2 ⁺		DCO ratio= 1.2 2 ($\Delta J=2 \gamma$ in gate). DCO ratio= 0.8 I ($\Delta J=2 \gamma$ in gate).
646.5 <i>I</i> 653 [@]	30.1 25	4986.2 4508.8+x	47/2 ⁻ (41/2) ⁺	4339.7 3855.8+x	43/2-		DCO ratio= $0.78 \ 7$.
676.0 5	28.5 25	5093.4	47/2+	4417.4	43/2+		DCO (00.2 (AL 2) ()
691.6 <i>5</i> 692.8 <i>5</i>	19 <i>3</i> 29 <i>4</i>	4273.8+x 5349.1	41/2 ⁻ 49/2 ⁻	3582.2+x 4656.2	37/2 45/2 ⁻	(Q)	DCO ratio= $0.9\ 2\ (\Delta J=2\ \gamma \text{ in gate})$. DCO ratio= $0.70\ 10$.
695.4 <i>1</i>	32 7	3582.2+x	37/2-	2886.8+x	33/2-		DCO ratio= 0.81 9 ($\Delta J=2 \gamma$ in gate).
696.2 5	15 <i>3</i>	5606.3+x	49/2-	4910.1+x		(Q)	DCO ratio= 1.1 2 ($\Delta J=2 \gamma$ in gate).
705 [@] 707.6 <i>1</i>	36 <i>3</i>	5213.8+x 5443.0	$(45/2)^+$ $49/2^+$	4508.8+x 4735.4	$(41/2)^+$ $45/2^+$		
707.0 <i>I</i> 719.3 <i>I</i>	31 4	5705.5	51/2 ⁻	4986.2	43/2 47/2 ⁻		DCO ratio= 0.73 8.
740.3 5	25 3	5833.7	$(51/2^+)$	5093.4	47/2+		
753 [@]		5967+x	$(49/2)^+$	5213.8+x			
759.2 5	12 3	6365.5+x	53/2-	5606.3+x			DCO ratio= 0.9 2 ($\Delta J=2 \gamma$ in gate).
760 <i>1</i> 765 <i>1</i>	<10.0 <10	5107.2+x 4347.2+x	$(45/2^{-})$ $(41/2^{-})$	4347.2+x 3582.2+x			DCO ratio= 0.7 2 for doublet ($\Delta J=2 \gamma$ in gate). The 765 γ is coincident with itself.
765 1	<10	5872.2+x	(49/2-)	5107.2+x			DCO ratio= 0.7 2 for doublet ($\Delta J=2 \gamma$ in gate). The 765 γ is coincident with itself.
767.5 5	19.5 16	6116.8	53/2-	5349.1	49/2-	Q	DCO ratio= 0.68 9.
770.2 <i>5</i> 784.5 <i>5</i>	26.8 <i>24</i> 17.0 <i>15</i>	6213.2 6490.3	(53/2 ⁺) 55/2 ⁻	5443.0 5705.5	49/2 ⁺ 51/2 ⁻	(Q)	DCO ratio= 0.7 <i>I</i> .
797.7 5	16.9 18	6631.4	$(55/2^+)$	5833.7	$(51/2^+)$	(4)	200 1440 017 11
804 [@]		6771 + x	$(53/2)^+$	5967+x	$(49/2)^+$		
817 <i>I</i>	<9.0	6689.2+x	$(53/2^{-})$	5872.2+x			
817.5 <i>5</i> 823.0 <i>5</i>	11 <i>3</i> 19 <i>7</i>	7183.0+x 7036.2	57/2 ⁻ (57/2 ⁺)	6365.5+x 6213.2	53/2 (53/2 ⁺)		
834 <i>1</i>	<7.0	7523.2+x	$(57/2^{-})$	6689.2+x			
835.4 5	16.8 <i>16</i>	6952.3	57/2-	6116.8	53/2-	(Q)	DCO ratio= 0.71 9.
839.5 5	10.2 13	7470.9	$(59/2^+)$	6631.4 7036.2	$(55/2^+)$		
839.8 <i>5</i> 843.4 <i>5</i>	<9.0 14.0 20	7876.0 7333.6	$(61/2^+)$ $59/2^-$	6490.3	$(57/2^+)$ $55/2^-$	Q	DCO ratio= 0.61 9.
854 [@]	10 20	7625+x	$(57/2^+)$	6771+x	$(53/2)^+$	~	Dec imic old y.
870.6 5	< 7.0	8341.5	$(63/2^+)$	7470.9	$(59/2^+)$		
871 <i>I</i>	<6.0	8747.0	$(65/2^+)$	7876.0	$(61/2^+)$		
873.6 <i>5</i> 899.3 <i>5</i>	8.4 <i>21</i> <18.0	8056.6+x 8232.9	61/2 ⁻ 63/2 ⁻	7183.0+x 7333.6	57/2 59/2 ⁻		DCO ratio= 0.6 <i>1</i> for $(901.9\gamma + 899.3\gamma)$ doublet.
901.9 5	<15.0	7854.2	$(61/2^{-})$	6952.3	57/2 ⁻		DCO ratio= $0.62 \ 11$ for $(901.9\gamma + 899.3\gamma)$ doublet.
904 [@] &		8529+x?	$(61/2)^+$	7625+x	$(57/2^+)$, , , , , , , , , , , , , , , , , , , ,
911.5 5	<4.0	8382.4	$(63/2^+)$	7470.9	$(59/2^+)$		
924.5 <i>5</i> 926 <i>1</i>	<4.0 <6.0	9266.0 8982.6+x	$(67/2^+)$ $65/2^-$	8341.5 8056.6+x	$(63/2^+)$		
920 I	\0.0	0704.U+X	03/2	0050.0±X	01/2		

123 Sb(48 Ca,4n γ), 152 Sm(19 F,4n γ) 1990Yu01,1998Ya04 (continued)

$\gamma(^{167}\text{Lu})$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^π
955.0 ^{&} 5		9187.9?	(67/2-)	8232.9	63/2-
979.0 <mark>&</mark> <i>5</i>	<4.0	10245.0?	$(71/2^+)$	9266.0	$(67/2^+)$
991.6 5	<4.0	9374.0	$(67/2^+)$	8382.4	$(63/2^+)$
1008 & 1		10195.9?	$(71/2^{-})$	9187.9?	$(67/2^{-})$

[†] From 1990Yu01, except as noted. ΔE_{γ} =0.1 keV for most transitions, 0.5 or 1 keV for weak or contaminated transitions (1990Yu01). The evaluator assigns as "weak" all transitions with I γ <30; for these, ΔE_{γ} =0.5 keV is assumed except when E γ is quoted to only the nearest keV (ΔE_{γ} =1 keV is assumed for the latter).

[‡] From 1990Yu01.

[#] Based on measured DCO ratio (1990Yu01). The latter was obtained at θ =37°, 79° using stretched D gating transition(s), unless noted to the contrary; typical values for stretched Q and stretched D transitions are 0.5 and 1.0, respectively.

[@] From 1998Ya04; uncertainty unstated by authors.

[&]amp; Placement of transition in the level scheme is uncertain.

 $^{167}_{\,71}Lu_{96}$

$\frac{123}{3}Sb(^{48}Ca,4n\gamma),^{152}Sm(^{19}F,4n\gamma) \qquad 1990Yu01,1998Ya04$

Level Scheme (continued)

Intensities: Relative I γ for E(⁴⁸Ca)=206 MeV

Legend

$$^{167}_{71}Lu_{96}$$

123 Sb(48 Ca,4n γ), 152 Sm(19 F,4n γ) 1990Yu01,1998Ya04

Level Scheme (continued)

Intensities: Relative I γ for E(⁴⁸Ca)=206 MeV

Legend

123 Sb(48 Ca, $^{4n}\gamma$), 152 Sm(19 F, $^{4n}\gamma$) 1990Yu01,1998Ya04

$$^{167}_{71} Lu_{96}$$

123 Sb(48 Ca,4n γ), 152 Sm(19 F,4n γ) 1990Yu01,1998Ya04 (continued)

123 Sb(48 Ca,4n γ):SD 2005Am02

From ENSDF - Updated September 2006

Type	Author	History Citation	Literature Cutoff Date
Update	Balraj Singh		20-Sep-2006

Additional information 1.

2005Am02 (also 2003Am01): 123 Sb(48 Ca,4n γ) E=203 MeV. Measured E γ , I γ , $\gamma\gamma$ coin, $\gamma\gamma(\theta)$ (DCO) using GAMMASPHERE array consisting of 100 Compton-suppressed Ge detectors. Three triaxial superdeformed structures were found, in addition to extending normal-deformed structures based on 1/2[411], 1/2[541] and 5/2[402] Nilsson orbitals.

Detailed results for normal-deformed bands and lifetime measurements for SD bands are yet to Be published by the same group As 2005Am02 (As per references 11 and 12 In 2005Am02).

2005Gu28 (same group As 2005Am02): E=203 MeV. Measured lifetimes using DSA method, deduced transition quadrupole moment for SD-1 band. Detector system: GAMMASPHERE array with 101 Compton-suppressed HPGe detectors.

¹⁶⁷Lu <u>Levels</u>

E(level) [†]	$_J^\pi$	Comments
0+x#	(1/2+)	Additional information 2. $E(level),J^{\pi}$: from Adopted Levels.
$19.6 + x^{\ddagger} 5$	$(3/2^+)$	E(level): from Adopted Levels. Additional information 3.
38.6+x & 11	(5/2+)	E(level): from Adopted Levels. Additional information 4.
122.6+x [@] 10	$(5/2^{-})$	
149.7+x# 8	$(5/2^+)$	
155.6+x ^a 7	$(7/2^+)$	
189.7+x [‡] 8	$(7/2^+)$	
234.6+x [@] 11	$(9/2^{-})$	
300.4+x ^{&} 7	$(9/2^+)$	
403.7+x# 8	$(9/2^+)$	
447.6+x [@] 11	$(13/2^{-})$	
469.9+x ^a 8	$(11/2^+)$	
478.9+x [‡] 8	$(11/2^+)$	
664.8+x & 8	$(13/2^+)$	
754.8+x [#] 9	$(13/2^+)$	
761.6+x [@] 12	$(17/2^{-})$	
858.3+x [‡] 9	$(15/2^+)$	
887.1+x ^a 9	$(15/2^+)$	
1112.5+x & 9	$(17/2^+)$	
1172.6+x [@] 12	$(21/2^{-})$	
1187.9+x [#] 9	$(17/2^+)$	
1318.0+x [‡] 10	$(19/2^+)$	
1377.6+x ^a 10	$(19/2^+)$	
1621.4+x& 11	(21/2+)	
1670.6+x [@] 13	(25/2-)	
1687.8+x [#] 10	(21/2+)	
$1828.1 + x^{\ddagger} 13$	$(23/2^+)$	
1926.0+x ^a 11 2158.3+x ^{&} 11	$(23/2^+)$	
2158.3+x [#] 11 2231.8+x [#] 11	$(25/2^+)$	
	$(25/2^+)$	
2245.6+x [@] 13	$(29/2^{-})$	

¹⁶⁷Lu Levels (continued)

E(level) [†]	${ m J}^{\pi}$	E(level) [†]	J^{π}	E(level) [†]	J^{π}
2249.6+x ^b 13	$(25/2^+)$	5048.0+x ^b 18	$(45/2^+)$	9081.0+x ^b 23	$(65/2^+)$
2369.3+x [‡] 13	$(27/2^+)$	5097.6+x ^c 17	$(43/2^+)$	9541+x ^d 3	$(67/2^{-})$
2477.9+x ^a 12	$(27/2^+)$	5455.6+x ^d 25	$(47/2^{-})$	9841+x ^c 3	$(67/2^+)$
2631.6+x ^d 16	$(27/2^{-})$	5557.3+x& 20	$(49/2^+)$	9941.8+x& 24	$(69/2^+)$
2664.6+x 16	$(27/2^{-})$	5605.6+x [@] 19	$(49/2^{-})$	9963.6+x [@] 25	$(69/2^{-})$
2666.0+x& 12	$(29/2^+)$	5749.8+x ^b 19	$(49/2^+)$	10040.0+x ^b 25	$(69/2^+)$
2720.4+x ^b 11	$(29/2^+)$	5755.7+x ^c 18	$(47/2^+)$	$10521 + x^{d} 4$	$(71/2^{-})$
2886.6+x [@] 15	$(33/2^{-})$	6171.6+x ^d 27	$(51/2^{-})$	10817+x ^c 3	$(71/2^+)$
2910.3+x [‡] <i>17</i>	$(31/2^+)$	6359.5+x& 21	$(53/2^+)$	10930+x & 3	$(73/2^+)$
2930.1+x ^a 13	$(31/2^+)$	6365.6+x [@] 21	$(53/2^{-})$	10997+x [@] 3	$(73/2^{-})$
3088.6+x ^d 15	$(31/2^{-})$	6466.7+x ^c 19	$(51/2^+)$	11056+x b 3	$(73/2^+)$
3104.9+x& <i>14</i>	$(33/2^+)$	6501.5+x ^b 19	$(53/2^+)$	11558+x ^d 4	$(75/2^{-})$
3225.6+x ^b 13	$(33/2^+)$	6934.6+x ^d 29	$(55/2^{-})$	11849+x ^c 3	$(75/2^+)$
3408.6+x ^a 15	$(35/2^+)$	7183.6+x [@] 21	$(57/2^{-})$	11984+x& 3	$(77/2^+)$
3582.6+x [@] 15	$(37/2^{-})$	7213.7+x& <i>21</i>	$(57/2^+)$	12132+x ^b 3	$(77/2^+)$
3593.6+x ^d 18	$(35/2^{-})$	7231.8+x ^c 20	$(55/2^+)$	12657+x ^d 4	$(79/2^{-})$
3599.8+x ^{&} 15	$(37/2^+)$	$7300.4 + x^b 20$	$(57/2^+)$	12933+x ^c 4	$(79/2^+)$
3786.5+x ^b 16	$(37/2^+)$	7745+x ^d 3	$(59/2^{-})$	13104+x& 3	$(81/2^+)$
3945.6+x ^c 16	$(35/2^+)$	8047.8+x ^c 22	$(59/2^+)$	13267+x ^b 3	$(81/2^+)$
4161.6+x ^d 21	$(39/2^{-})$	8056.6+x [@] 22	$(61/2^{-})$	13821+x ^d 4	$(83/2^{-})$
4177.0+x ^{&} 18	$(41/2^+)$	8115.6+x 21	$(61/2^+)$	14082+x ^c 4	$(83/2^+)$
4273.6+x [@] 17	$(41/2^{-})$	8155.0+x ^b 21	$(61/2^+)$	14287+x & 3	$(85/2^+)$
4393.3+x ^b 17	$(41/2^+)$	8199.9+x? 22	$(61/2^+)$	14459+x ^b 4	$(85/2^+)$
4492.6+x ^c 16	$(39/2^+)$	8616+x ^d 3	$(63/2^{-})$	15282+x ^c 4	$(87/2^+)$
4784.6+x ^d 23	$(43/2^{-})$	8917.8+x ^c 24	$(63/2^+)$	15530+x& 4	$(89/2^+)$
4832.2+x ^{&} 19	$(45/2^+)$	8983.6+x [@] 22	$(65/2^{-})$	15706+x ^b 4	$(89/2^+)$
4909.6+x [@] 18	$(45/2^{-})$	9009.8+x& 22	$(65/2^+)$	16821+x& 4	$(93/2^+)$

[†] From least-squares fit to E γ 's, assuming Δ E $_{\gamma}$ =1 keV for each γ ray.

[‡] Band(A): 1/2[411], $\alpha = -1/2$.

[#] Band(a): 1/2[411], $\alpha = +1/2$.

[@] Band(B): 1/2[541], $\alpha = +1/2$.

[&]amp; Band(C): 5/2[402], $\alpha = +1/2$.

^a Band(c): 5/2[402], $\alpha = -1/2$.

^b Band(D): Triaxial SD-1 band (2003Am01,2005Am02,2005Gu28). Q(transition)=6.9 3 (2005Gu28, preliminary value). The uncertainty does not include systematic error of ≈10-15% due to stopping power. Population≈8% relative to yrast band. Only a few of the γ rays assigned to a triaxial SD band by 1998Ya04 have been confirmed by 2003Am01. The connecting transitions to the normal bands are also different in 2003Am01.

^c Band(E): Wobbling-mode, Triaxial SD-2 band (2003Am01,2005Am02). Population≈2% relative to yrast band.

^d Band(F): Triaxial SD-3 band (2005Am02). Population≈4% relative to yrast band. Multi-quasiparticle excitation.

123 Sb(48 Ca,4n γ):SD 2005Am02 (continued)

γ (167Lu)

E_i (level)	\mathtt{J}_i^{π}	E_{γ}	\mathbf{E}_f	\mathbf{J}_f^{π}
122.6+x	$(5/2^{-})$	103 [‡]	19.6+x	$(3/2^+)$
149.7+x	$(5/2^+)$	130	19.6+x	$(3/2^+)$
155.6+x	$(7/2^{+})$	117	38.6+x	$(5/2^+)$
189.7 + x	$(7/2^+)$	170	19.6+x	$(3/2^+)$
234.6+x	$(9/2^{-})$	112	122.6+x	$(5/2^{-})$
300.4+x	$(9/2^+)$	145	155.6+x	$(7/2^+)$
		262	38.6+x	$(5/2^+)$
403.7+x	$(9/2^+)$	214	189.7 + x	$(7/2^+)$
		248	155.6 + x	$(7/2^+)$
		254	149.7+x	$(5/2^+)$
447.6+x	$(13/2^{-})$	213	234.6+x	$(9/2^{-})$
469.9 + x	$(11/2^+)$	170	300.4+x	$(9/2^+)$
470 0	(11/2±)	314	155.6+x	$(7/2^+)$
478.9+x	$(11/2^+)$	178 289	300.4+x 189.7+x	$(9/2^+)$ $(7/2^+)$
664.8+x	$(13/2^+)$	289 185	478.9+x	$(1/2)$ $(11/2^+)$
00 4 .0±x	(13/2)	196	469.9+x	$(11/2^+)$
		365	300.4+x	$(9/2^+)$
754.8+x	$(13/2^+)$	276	478.9+x	$(11/2^+)$
70 110 1 11	(10/2)	285	469.9+x	$(11/2^+)$
		351	403.7 + x	$(9/2^+)$
761.6+x	$(17/2^{-})$	314	447.6+x	$(13/2^{-})$
858.3 + x	$(15/2^+)$	194	664.8 + x	$(13/2^+)$
		380	478.9 + x	$(11/2^+)$
		388	469.9 + x	$(11/2^+)$
887.1 + x	$(15/2^+)$	222	664.8 + x	$(13/2^+)$
		408	478.9 + x	$(11/2^+)$
	(4 = (5 L)	417	469.9+x	$(11/2^+)$
1112.5+x	$(17/2^+)$	225	887.1+x	$(15/2^+)$
		254	858.3+x	$(15/2^+)$
1172.6+x	$(21/2^{-})$	448 411	664.8+x 761.6+x	$(13/2^+)$ $(17/2^-)$
1172.0+x 1187.9+x	$(21/2)$ $(17/2^+)$	301	887.1+x	$(17/2)$ $(15/2^+)$
1107.9±X	(17/2)	330	858.3+x	$(15/2^+)$
		433	754.8+x	$(13/2^+)$
1318.0+x	$(19/2^+)$	205	1112.5+x	$(17/2^+)$
	. , ,	460	858.3+x	$(15/2^+)$
1377.6+x	$(19/2^+)$	190	1187.9+x	$(17/2^+)$
		265	1112.5+x	$(17/2^+)$
		490	887.1+x	$(15/2^+)$
1621.4+x	$(21/2^+)$	243.6	1377.6+x	$(19/2^+)$
		509	1112.5+x	$(17/2^+)$
1670.6+x	$(25/2^{-})$	498	1172.6+x	
1687.8 + x	$(21/2^+)$	310	1377.6+x	$(19/2^+)$
		370	1318.0+x	
1020 1	$(23/2^+)$	500 510	1187.9+x 1318.0+x	
1828.1+x 1926.0+x	$(23/2^+)$	238	1518.0+x 1687.8+x	
1920.UTX	(23/2)	305	1621.4+x	
		548	1377.6+x	$(19/2^+)$
2158.3+x	$(25/2^+)$	232	1926.0+x	$(23/2^+)$
	` ' '	537	1621.4+x	
2231.8+x	$(25/2^+)$	306	1926.0+x	$(23/2^+)$
		544	1687.8+x	$(21/2^+)$
2245.6+x	$(29/2^{-})$	575	1670.6+x	$(25/2^{-})$

γ (167Lu) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_{γ}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	δ	Comments
2249.6+x	$(25/2^+)$	562		1687.8+x	$(21/2^+)$			
2369.3+x	$(27/2^+)$	541		1828.1+x				
2477.9 + x	$(27/2^+)$	246		2231.8+x	$(25/2^+)$			
		319 [‡]		2158.3+x	$(25/2^+)$			
		552		1926.0+x				
2631.6+x	(27/2 ⁻)	961.0		1670.6+x	(25/2 ⁻)	(M1+E2)		I _y : %branching≈60 5. Mult., δ : Δ J=1 transition; δ =-1.9 +11-200 or -0.5 +5-8.
2664.6+x	$(27/2^{-})$	994		1670.6+x				
2666.0+x	$(29/2^+)$	188		2477.9+x				
2720 4	(20/2+)	508		2158.3+x				
2720.4+x	$(29/2^+)$	242 351		2477.9+x 2369.3+x				
		471		2249.6+x				
		489		2231.8+x				
		562		2158.3+x				
2886.6+x	$(33/2^{-})$	641		2245.6+x				
2910.3+x	$(31/2^+)$	541		2369.3+x	$(27/2^+)$			
2930.1+x	$(31/2^+)$	264		2666.0+x	$(29/2^+)$			
		452		2477.9 + x				
3088.6+x	$(31/2^{-})$	424		2664.6+x				
		457		2631.6+x				I (1) 1: 07.5
		843.1		2245.6+x	(29/2)			I_{γ} : %branching=27 5.
								Mult., δ : expected to Be the same As for 961.0 γ from 2631.6+ x , (27/2 ⁻) level.
3104.9+x	$(33/2^+)$	175		2930.1+x	$(31/2^{+})$			701.07 Hom 2031.01x, (21/2) level.
010119111	(22/2)	439		2666.0+x				
3225.6+x	$(33/2^+)$	505		2720.4+x				
		560		2666.0+x				
3408.6+x	$(35/2^+)$	304		3104.9+x	$(33/2^+)$			
		478		2930.1+x				
3582.6+x	$(37/2^{-})$	696		2886.6+x				
3593.6+x	$(35/2^{-})$	505		3088.6+x				
3599.8+x	$(37/2^+)$	191 495		3408.6+x 3104.9+x				
3786.5+x	$(37/2^+)$	561		3225.6+x				
3945.6+x	$(35/2^+)$	720		3225.6+x				
4161.6+x	$(39/2^{-})$	568		3593.6+x				
4177.0+x	$(41/2^+)$	577		3599.8+x	$(37/2^+)$			
4273.6+x	$(41/2^{-})$	691		3582.6+x				
4393.3+x	$(41/2^+)$	607		3786.5+x	` ' . '			
4492.6+x	$(39/2^+)$	547	100	3945.6+x			-1-	
.=0.4.5		706.1	91 <i>4</i>	3786.5+x		(E2+M1)	$-3.1^{\dagger} + 11 - 34$	
4784.6+x	$(43/2^{-})$	623		4161.6+x				
4832.2+x 4909.6+x	$(45/2^+)$	655		4177.0+x				
4909.0+x 5048.0+x	$(45/2^{-})$ $(45/2^{+})$	636 655		4273.6+x 4393.3+x				
5097.6+x	$(43/2^+)$	605	100	4492.6+x				
3077.01A	(15/2)	704.2	41 6	4393.3+x				
5455.6+x	$(47/2^{-})$	671		4784.6+x				
5557.3+x	$(49/2^{+})$	725		4832.2+x				
5605.6+x	$(49/2^{-})$	696		4909.6+x				
5749.8+x	$(49/2^+)$	702	40-	5048.0+x				
5755.7 + x	$(47/2^+)$	658	100	5097.6+x			-1-	
		707.7	39 <i>4</i>	5048.0+x	$(45/2^+)$	(E2+M1)	$-5.1^{\dagger} + 16 - 25$	

γ ⁽¹⁶⁷Lu) (continued)</sup>

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	\mathbf{E}_f	J_f^π	Mult.	δ
6171.6+x	$(51/2^{-})$	716	<u> </u>	5455.6+x	$\overline{(47/2^{-})}$		
6359.5+x	$(53/2^+)$	802		5557.3+x	$(49/2^+)$		
6365.6+x	$(53/2^{-})$	760		5605.6+x	$(49/2^{-})$		
6466.7+x	$(51/2^+)$	711	100	5755.7+x	$(47/2^+)$		
0.0017.11	(01/2)	716.9	30 8	5749.8+x	$(49/2^+)$	(E2+M1)	$-3.9^{\dagger} + 27 - 84$
6501.5+x	$(53/2^+)$	752	30 0	5749.8+x	$(49/2^+)$	(E2TWII)	-3.9 +27-04
6934.6+x	$(55/2^{-})$	763		6171.6+x	$(51/2^{-})$		
7183.6+x	$(57/2^{-})$	818		6365.6+x	$(53/2^{-})$		
7213.7+x	$(57/2^+)$	854		6359.5+x	$(53/2^+)$		
7213.7+x 7231.8+x	$(57/2^+)$	730.3	32 7	6501.5+x	$(53/2^+)$		
7231.0±X	(33/2)	765	100	6466.7+x	$(53/2^+)$ $(51/2^+)$		
7300.4+x	$(57/2^+)$	799	100	6501.5+x	$(53/2^+)$		
7745+x	$(59/2^{-})$	810		6934.6+x	$(55/2^{-})$		
8047.8+x	$(59/2^+)$	816		7231.8+x	$(55/2^+)$		
8056.6+x	$(61/2^{-})$	873		7183.6+x	$(57/2^{-})$		
8115.6+x	$(61/2^+)$	815		7300.4+x	$(57/2^+)$		
0113.0±X	(01/2)	902		7213.7+x	$(57/2^+)$		
8155.0+x	$(61/2^+)$	855		7300.4 + x	$(57/2^+)$		
0133.0±X	(01/2)	941		7213.7+x	$(57/2^+)$		
8616+x	$(63/2^{-})$	871		7745+x	$(59/2^{-})$		
8917.8+x	$(63/2^+)$	870		8047.8+x	$(59/2^+)$		
8983.6+x	$(65/2^{-})$	927		8056.6+x	$(61/2^{-})$		
		_					
9009.8+x	$(65/2^+)$	810 [‡]		8199.9+x?	. , ,		
		855		8155.0+x	$(61/2^+)$		
		894		8115.6+x	$(61/2^+)$		
9081.0+x	$(65/2^+)$	881 [‡]		8199.9+x?	$(61/2^+)$		
		926		8155.0+x	$(61/2^+)$		
9541+x	$(67/2^{-})$	925		8616+x	$(63/2^{-})$		
9841 + x	$(67/2^+)$	923		8917.8+x	$(63/2^+)$		
9941.8+x	$(69/2^+)$	932		9009.8 + x	$(65/2^+)$		
9963.6+x	$(69/2^{-})$	980		8983.6+x	$(65/2^{-})$		
10040.0+x	$(69/2^+)$	959		9081.0+x	$(65/2^+)$		
10521+x	$(71/2^{-})$	980		9541+x	$(67/2^{-})$		
10817+x	$(71/2^+)$	976		9841+x	$(67/2^+)$		
10930+x	$(73/2^+)$	988		9941.8+x	$(69/2^+)$		
10997+x	$(73/2^{-})$	1033		9963.6+x	$(69/2^{-})$		
11056+x	$(73/2^+)$	1016		10040.0+x	$(69/2^+)$		
11558+x	$(75/2^{-})$	1037		10521+x	$(71/2^{-})$		
11849+x	$(75/2^+)$	1032		10817+x	$(71/2^+)$		
11984+x	$(77/2^+)$	1054		10930+x	$(73/2^+)$		
12132+x	$(77/2^+)$	1076		11056+x	$(73/2^+)$		
12657+x	$(79/2^{-})$	1099		11558+x	$(75/2^{-})$		
12933+x	$(79/2^+)$	1084		11849+x	$(75/2^+)$		
13104+x	$(81/2^+)$	1120		11984+x	$(77/2^+)$		
13267+x	$(81/2^+)$	1135		12132+x	$(77/2^+)$		
13821+x	$(83/2^{-})$	1164		12657+x	$(79/2^{-})$		
14082+x	$(83/2^+)$	1149		12933+x	$(79/2^+)$		
14287+x	$(85/2^+)$	1183		13104+x	$(81/2^+)$		
14459+x	$(85/2^+)$	1192		13267+x	$(81/2^+)$		
15282+x	$(87/2^+)$	1200		14082+x	$(83/2^+)$		
15530+x	$(89/2^+)$	1243		14287+x	$(85/2^+)$		
15706+x	$(89/2^+)$	1247		14459+x	$(85/2^+)$		
16821+x	$(93/2^+)$	1291		15530+x	$(89/2^+)$		

γ (167Lu) (continued)

[†] Lower values of $-0.26\ 16$ for 706.1γ , $-0.07\ 7$ for 707.7γ , and $-0.35\ 65$ for 716.9γ are possible but not likely In comparison to similar transitions (of known mixing ratios) In 163 Lu SD bands.

[‡] Placement of transition in the level scheme is uncertain.

¹²³Sb(⁴⁸Ca,4nγ):SD 2005Am02

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

 $^{167}_{\ 71}Lu_{96}$

¹²³Sb(⁴⁸Ca,4nγ):SD 2005Am02

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹⁶⁷₇₁Lu₉₆

¹²³Sb(⁴⁸Ca,4nγ):SD 2005Am02

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

¹²³Sb(⁴⁸Ca,4nγ):SD 2005Am02

Level Scheme (continued)

Intensities: Relative photon branching from each level

¹²³Sb(⁴⁸Ca,4nγ):SD 2005Am02

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain)

 $^{167}_{\ 71}Lu_{96}$

123 Sb(48 Ca,4n γ):SD 2005Am02

$$^{167}_{\ 71}Lu_{96}$$

169 Tm(3 He,5nγ), (α,6nγ), 170 Yb(p,4nγ) 1977Ba40

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Coral M. Baglin	NDS 90, 431 (2000)	5-Jul-2000

Others: 1976RoYE, 1974Fo19, 1974SiZT.

1977Ba40: $E(^3He)=42-57$ MeV, $E(\alpha)=72$ MeV; metallic foil targets. Some data are from $^{170}Yb(p,4n\gamma)$ (E(p)=40 MeV, Yb oxide targets enriched to 67% in ^{170}Yb). Measured $E\gamma$, $I\gamma$ (Ge(Li)), $\gamma\gamma$ coin, Ag(t). Authors found no delayed γ rays in ^{167}Lu . See also 1974Fo19.

Extensive data, including angular-distribution results, are reported in 1976RoYE, but are not incorporated in this evaluation.

Agreement with 1977Ba40 is poor, and the many transitions of similar energy make it difficult to combine data for specific transitions.

167Lu Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0.0#	7/2+	331.82 [@] 8	9/2-	847.0+y ^b 8	15/2+	1720.72 [#] <i>16</i>	23/2+
0.0+x&	1/2+	400.5+x ^a 7	7/2-	934.29 [#] <i>13</i>	17/2+	1947.6 [@] 6	$25/2^{-}$
0.0+y <mark>b</mark>	5/2+	431.3+y ^b 4	$11/2^{+}$	947.9 [@] 4	$17/2^{-}$	2008.75 [#] 21	$25/2^{+}$
19.6+x& 5	3/2+	433.6 [@] 4	$11/2^{-}$	1000.5+x ^a 8	$15/2^{-}$	2217.0 [@] 6	$27/2^{-}$
107.3+x ^a 5	$1/2^{-}$	446.5+x ^a 9	$13/2^{-}$	1159.4 [@] 6	$19/2^{-}$	2243.7+x ^a 12	$29/2^{-}$
116.71+y ^b 10	7/2+	494.20 [#] 11	$13/2^{+}$	1172.6+x ^a 10	$21/2^{-}$	2300.12 [#] <i>19</i>	$27/2^{+}$
122.0+x ^a 7	5/2-	576.9 [@] 4	$13/2^{-}$	1181.30 [#] <i>13</i>	$19/2^{+}$	2531.9 [@] 6	$29/2^{-}$
140.02 [#] 7	$9/2^{+}$	624.4+y ^b 7	$13/2^{+}$	1411.7 [@] 6	$21/2^{-}$	2581.5 [#] 6	$29/2^{+}$
233.9+x ^a 8	$9/2^{-}$	658.8+x ^a 8	$11/2^{-}$	1425.3+x ^a 8	$19/2^{-}$	2884.7+x ^a 13	$33/2^{-}$
243.9+x? ^a 7	$3/2^{-}$	704.38 [#] <i>12</i>	$15/2^{+}$	1444.75 [#] 18	$21/2^{+}$		
261.6+y ^b 4	9/2+	744.5 [@] 5	$15/2^{-}$	1656.5 [@] 7	$23/2^{-}$		
305.27 [#] 8	$11/2^{+}$	761.4+x ^a 9	$17/2^{-}$	1671.0+x ^a 11	$25/2^{-}$		

[†] The evaluator estimates "x" to be about 30 keV based on a plot of the energies for the $1/2^+$ 1/2[411] states in 1/5Lu(=627), 1/3Lu(=425), 1/3Lu(=208), 1/6Lu(=97) (Nuclear Data Sheets), and 1/6Lu(≈0.0) (1974Ek03). It would not be possible to see a photon peak for the expected M3 transition to g.s. (α ≈2.1×10⁵). The evaluator estimates "y" to be about 75 keV based on an extrapolation of the 5/2[402] bandhead energies in 1/5Lu(=343), 1/3Lu(=357), 1/3Lu(=296), 1/6Lu(=186), 1/6Lu (≥0) (Nuclear Data Sheets); the energy for this state is expected to decrease with decreasing mass value. No candidate for a depopulating transition has been identified. From Adopted Levels, (y-x)=39.2 keV.

γ (167Lu)

E_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	Comments
	122.0+x	5/2-	107.3+x 1/2 ⁻	
(19.6 [#] 5) ^x 68.3 5	19.6+x	3/2+	$0.0+x 1/2^+$	
^x 71.0 5 ^x 72.7 5				I_{γ} : weak.

[‡] From energy and intensity fits of coincident transitions into rotational bands based on expected Nilsson states (authors' values).

[#] Band(A): 7/2[404] band.

[@] Band(B): 9/2[514] band.

[&]amp; Band(C): 1/2[411] band.

^a Band(D): 1/2[541] band.

^b Band(E): tentative 5/2[402] band.

$\frac{169}{\rm Tm}(^3{\rm He,5n}\gamma), (\alpha,6{\rm n}\gamma), ^{170}{\rm Yb(p,4n}\gamma) \qquad \textbf{1977Ba40} \; (\text{continued})$

γ ⁽¹⁶⁷Lu) (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Comments
^x 75.2 5	1.0 5					
^x 78.7 <i>1</i> ^x 80.7 <i>5</i>	20.4 <i>21</i> 10.8 [‡] <i>11</i>					
x82.5 5	3.8‡ 19					
x85.9 5	3.01 19					
87.7 <i>I</i> x90.2 <i>5</i>	129 [‡] <i>13</i>	107.3+x	1/2-	19.6+x	3/2+	
^x 90.9 5	13.3 13					Possibly a ¹⁶⁹ Yb transition (1977Ba40).
^x 91.5 5 ^x 92.5 5	6 3					
x95.5 5						
^x 97.6 5						
^x 99.8 5	4.2 <i>21</i> 27 <i>3</i>	433.6	11/2-	221.02	0/2-	
101.7 <i>5</i> 102.6 <i>5</i>	39 [‡] 4	433.6 122.0+x	11/2 ⁻ 5/2 ⁻	331.82 19.6+x	9/2 ⁻ 3/2 ⁺	
102.6 5	43 4	122.0+x 107.3+x	$\frac{3/2}{1/2^{-}}$	0.0+x	3/2 1/2 ⁺	
111.7 5	95 10	233.9+x	9/2-	122.0+x	5/2-	
116.7 <i>1</i>	44 [‡] 4	116.71+y	7/2+	0.0 + y	5/2+	
^x 119.9 5						170
122.1 ^b 5	25 4	243.9+x?	3/2-	122.0+x	5/2-	I_{γ} : deduced from $I(243\gamma)$: $I(122\gamma)$ =28.7:17.1 in 170 Yb(p,3n γ) and $I(243\gamma)$ in (3 He,5n γ).
^x 125.9 5 ^x 127.5 5	6 3					
x129.2 5	9 5					
^x 133.5 5	3.6 18					
^x 135.2 5	9 5					
^x 137.0 5 139.9 <i>I</i>	100 10	140.02	9/2+	0.0	7/2+	
^x 142.2 5	12.8 13	110.02	7/2	0.0	1/2	
143.4 5	74 [‡] 7	576.9	13/2-	433.6	$11/2^{-}$	
144.7 5	73 [‡] 7	261.6+y	9/2+	116.71+y	$7/2^{+}$	
^x 147.0 5	14.7 15					
^x 148.5 5 ^x 154.3 <i>I</i>	4.8 <i>24</i> 10.8 <i>11</i>					
156.5 ^b 1	25 [‡] 3	400.5+x	7/2-	243.9+x?	3/2-	Shown in fig 3, but attributed to 168 Lu ε decay in table 1 of 1977Ba40.
^x 159.0 5						
^x 160.6 5	13.1 13					
^x 161.5 5 165.2 <i>I</i>	5.1 <i>26</i> 61 <i>6</i>	305.27	11/2+	140.02	9/2+	
167.2 ^{ab} 1	47 ^a 5	400.5+x	7/2	233.9+x	9/2-	
167.2 ^a 1	$47^{a} \frac{5}{5}$	744.5	15/2	576.9	$13/2^{-}$	
169.7 <i>1</i>	51 5	431.3+y	11/2+	261.6+y	9/2+	
x174.8 5	+					
^x 179.0 5 ^x 186.6 5	24.1 [‡] 24					
188.8 5	55 [‡] 6	494.20	13/2+	305.27	11/2+	
191.7 <i>I</i>	67 [‡] 7	331.82	9/2-	140.02	9/2 ⁺	
191.7 1	41 4	624.4+y	9/2 13/2 ⁺	431.3+y	9/2 11/2 ⁺	
^x 197.3 5	74 <i>7</i>					
203.5 5	42 4	947.9	$17/2^{-}$	744.5	15/2-	
^x 204.6 5 210.1 5	16.0 <i>16</i> 20.9 2 <i>1</i>	704.38	15/2+	494.20	13/2+	
			-,-		- , -	

Continued on next page (footnotes at end of table)

$\frac{169}{\rm Tm}(^3{\rm He,5n}\gamma), (\alpha,6{\rm n}\gamma), ^{170}{\rm Yb(p,4n}\gamma) \qquad \textbf{1977Ba40} \; (\text{continued})$

γ ⁽¹⁶⁷Lu) (continued)

E_{γ}^{\dagger}	$_{\mathrm{I}_{\gamma}}^{\dagger}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
211.6 5	29 3	1159.4	19/2-	947.9	17/2-	
212.3 ^a 5	$138^{a\ddagger} 14$	446.5+x	13/2	233.9+x	9/2-	E_{γ} : 212.8 in table 1, but 212.3 in both places in fig. 3 and in text of 1977Ba40.
212.3 ^a 5	138 <i>a</i> ‡ <i>14</i>	658.8+x	11/2-	446.5+x	13/2-	E_{γ} : 212.8 in table 1, but 212.3 in both places in fig. 3 and in text of 1977Ba40.
^x 217.9 <i>1</i>	17.3 17					
222.6 5	49 [‡] 5	847.0+y	$15/2^{+}$	624.4+y	$13/2^{+}$	
224.2 ^b 5	34 6	243.9+x?	3/2-	19.6+x	3/2+	I _y : deduced from I(243 γ):I(224 γ)=28.7:23.3 in 170 Yb(p,3n γ) and I(243 γ) in (3 He,5n γ).
^x 225.0 5	17.6 <i>18</i>					
x228.6 5	70 7	024.20	17/0±	704.20	15/0+	
230.1 5	10.8 11	934.29	$17/2^{+}$	704.38	15/2+	
$^{x}236.1\ 5$ $\approx 243.3^{b}$	7 4	242.0 . 9	2/2-	0.0.	1./2+	
$\approx 243.3^{\circ}$ 244.8 ^a 5	42 <i>4</i> 19.2 ^{<i>a</i>} <i>19</i>	243.9+x?	3/2-	0.0+x	1/2+	
244.8 ^a 5	19.2° 19 19.2° 19	576.9 1656.5	13/2 ⁻ 23/2 ⁻	331.82 1411.7	9/2 ⁻ 21/2 ⁻	
247.0 <i>I</i>	21.9^{\ddagger} 22		19/2 ⁺		17/2+	
247.0 <i>I</i> 252.3 <i>I</i>	17.3 <i>17</i>	1181.30 1411.7	21/2	934.29 1159.4	19/2	
^x 254.5 <i>1</i>	11.8 12	1411.7	21/2	1139.4	19/2	
^x 256.7 5	<19.3					I_{γ} : 19.3 20 for 256.7 γ +258.5 γ doublet.
258.5 5	<19.3	658.8+x	$11/2^{-}$	400.5 + x	$7/2^{-}$	I_{γ} : see comment with 256.7 γ .
261.7 5	13.4 <i>13</i>	261.6+y	9/2+	0.0+y	5/2+	,
263.5 5	7 4	1444.75	$21/2^{+}$	1181.30	$19/2^{+}$	
267.9 <mark>b</mark> 5	9 5	2217.0	$27/2^{-}$	1947.6	$25/2^{-}$	
^x 270.5 5	<14.1					I_{γ} : 14.1 <i>14</i> for 270.5 γ +271.6 γ doublet.
^x 271.6 5	<14.1					I_{γ} : see comment with 270.5 γ .
276.0 <i>1</i>	12.7 13	1720.72	$23/2^{+}$	1444.75	$21/2^{+}$	
278.5 1	34 [‡] 3	400.5 + x	$7/2^{-}$	122.0+x	5/2-	
x280.6 5	8 4					
^x 284.3 5 288.1 5	8 <i>4</i> 4 2	2008.75	25/2 ⁺	1720.72	23/2+	
$291.3 \frac{\&b}{5}$	4 2					T
291.3 & 5 $291.3 & 5$		1947.6	25/2-	1656.5	23/2-	I_{γ} : weak.
	19.1 <i>19</i>	2300.12	27/2+	2008.75	25/2 ⁺ 9/2 ⁺	I_{γ} : weak.
294.0 <i>5</i> <i>x</i> 296.7 <i>5</i>	19.1 <i>19</i> 30 <i>3</i>	433.6	11/2	140.02	9/2	
305.3 <i>1</i>	57 <i>6</i>	305.27	11/2+	0.0	7/2+	
x309.9 5	<i>5</i> , ₅	202.27	11/2	0.0	.,_	
310.9 5	27 3	744.5	$15/2^{-}$	433.6	$11/2^{-}$	
314.9 ^a 1	163 ^a 16	431.3+y	$11/2^{+}$	116.71+y	$7/2^{+}$	
314.9 ^a 1	163 ^a 16	761.4+x	17/2-	446.5+x		
314.9 ^b 1	@	2531.9	29/2-	2217.0	27/2-	E_{γ} : for triply-placed G.
x321.5 <i>I</i>	14.0 14	2331.7	27/2	2217.0	21,2	Ey. for dipty placed S.
x324.4 1	17.0 <i>17</i>					
331.9 <i>1</i>	95 10	331.82	$9/2^{-}$	0.0	$7/2^{+}$	
^x 336.1 5						
341.7 <i>I</i>	22.8 23	1000.5 + x	$15/2^{-}$	658.8+x	$11/2^{-}$	
x348.4 <i>I</i>	30 3					
^x 351.6 <i>1</i> 354.2 <i>1</i>	23.5 <i>24</i> 72 <i>7</i>	494.20	13/2+	140.02	9/2+	
x357.9 1	11.4 11	T)T.20	13/4	170.02	2/4	
≈363	11.7 11	624.4+y	13/2+	261.6+y	9/2+	E_{γ} : from fig. 3 of 1977Ba40; presumed to differ from the unplaced 364.5 γ .
^x 364.5 5	22.5 23					T

169 Tm(3 He,5nγ), (α,6nγ), 170 Yb(p,4nγ) 1977Ba40 (continued)

γ (167Lu) (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments
^x 367.3 <i>1</i>	14.0 14					
371.0 <i>I</i>	27 3	947.9	$17/2^{-}$	576.9	$13/2^{-}$	
^x 377.9 5			- /		- /	
x379.8 5	24.6 25					
^x 388.3 5	24.0 24					
x391.2 5	11.9 <i>12</i>					
^x 393.5 1	12.3 12					
^x 397.0 5						
399.1 <i>I</i>	74 8	704.38	$15/2^{+}$	305.27	$11/2^{+}$	
^x 401.1 <i>I</i>	42 <i>4</i>					
^x 408.6 5	21.7 22					
^x 409.7 5						
411.2 5	78 8	1172.6+x	21/2-	761.4+x		
415.3 ^a 1	37 ^a 4	847.0+y	15/2+	431.3+y		
415.3 ^a 1	37 ^a 4	1159.4	19/2-	744.5	$15/2^{-}$	
^x 417.6 <i>I</i>	14.5 15					
^x 421.0 5	9.5	(50.0)	11/0-	222.0	0/2-	
424.8 ^a 1	26^{a} 3	658.8+x	11/2-	233.9+x		
424.8 ^a 1 x431.3 5	26 ^a 3	1425.3+x	19/2-	1000.5+x	15/2	
x431.5 5	6 3					
x433.6 5	15.2 <i>15</i>					
^x 436.5 5	13.2 13					
440.1 <i>I</i>	74 <i>7</i>	934.29	$17/2^{+}$	494.20	$13/2^{+}$	
^x 448.0 5	24.0 24	731.27	17/2	171.20	13/2	
^x 449.9 5	21.027					
^x 459.5 1	31 <i>3</i>					
^x 462.1 5						
463.8 5	26 <i>3</i>	1411.7	$21/2^{-}$	947.9	$17/2^{-}$	
^x 467.9 5	7 4		·			
476.9 <i>1</i>	51 5	1181.30	$19/2^{+}$	704.38	$15/2^{+}$	
^x 479.1 5	7 4					
^x 482.5 5	4.4 22					
^x 486.8 5	6 3					
^x 490.2 <i>1</i>	11.1 11					
496.7 5	23.2 23	1656.5	23/2-	1159.4	19/2-	
498.4 5	32 3	1671.0+x	25/2-	1172.6+x	21/2	
^x 500.8 5	9 5					
511.0 5	‡	1444.75	21/2+	934.29	17/2+	
535.9 1	21.3 21	1947.6	25/2-	1411.7	$21/2^{-}$	
539.4 1	75 [‡] 8	1720.72	$23/2^{+}$	1181.30	$19/2^{+}$	
^x 544.8 <i>I</i>	12.9 13					
^x 548.3 <i>I</i>	15.0 <i>15</i>					170
553.8 <i>5</i>	8 4	1000.5+x	$15/2^{-}$	446.5+x	$13/2^{-}$	I_{γ} : deduced from $I(342\gamma):I(554\gamma)=16.0:5.9$ in $^{170}Yb(p,3n\gamma)$ and
						$I(342\gamma)$ in $(^{3}He,5n\gamma)$.
560.0 5	10 5	2217.0	27/2-	1656.5	23/2	
564.0 <i>I</i>	27 3	2008.75	25/2+	1444.75	21/2+	F. C. C. O. C. 1077D 40. 1
572.7 5		2243.7+x	29/2-	1671.0+x	25/2	E _γ : from fig. 3 of 1977Ba40; absent from table 1, but present in
572.7.5		2501.5	29/2+	2009 75	25/2+	$\gamma\gamma$ coin.
572.7 <i>5</i> 579.4 <i>1</i>	10.6.11	2581.5 2300.12	29/2+ 27/2+	2008.75		
	10.6 <i>11</i> 38 [‡] 4			1720.72	23/2+	A 1 . 168x71 · . 11 1 1 . · · · · · · · · · · · · ·
584.3 1	38T 4	2531.9	29/2-	1947.6	25/2-	Attributed to ¹⁶⁸ Yb in table 1, but included in ¹⁶⁷ Lu level scheme
^x 610.1 <i>1</i>	11.3 11					in fig. 3 of 1977Ba40.
^x 634.4 <i>1</i>	10.1 10					
054.4 1	10.1 10					

169 Tm(3 He,5nγ), (α,6nγ), 170 Yb(p,4nγ) 1977Ba40 (continued)

$\gamma(^{167}Lu)$ (continued)

$\mathrm{E}_{\gamma}^{\dagger}$	$\mathrm{I}_{\gamma}{}^{\dagger}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
641.0 5	9 5	2884.7+x	33/2-	2243.7+x	29/2-	E_{γ} : from figs. 1 and 3 of 1977Ba40; misprinted as 614.0 in table 1.
^x 657.6 5			,		,	I_{γ} : weak.
^x 661.6 5						,
^x 718.8 <i>I</i>	28 <i>3</i>					
^x 729.3 5	10 5					
^x 780.8 1	22.0 22					
^x 803.1 5						
^x 806.8 5						
^x 820.1 5						I_{γ} : weak.
^x 823.7 5						I_{γ} : weak.
^x 829.1 5						
^x 835.1 <i>1</i>	23.1 23					
^x 837.3 5						
^x 841.5 5						
^x 844.5 1	45 5					
^x 846.6 1	35 <i>4</i>					
^x 853.3 1	26 <i>3</i>					
^x 860.0 1	27 3					

[†] From ¹⁶⁹Tm(³He,5n γ) at 45 MeV, except where noted. ΔE_{γ} =0.1 keV and $\Delta I\gamma$ =10% for strong, well-resolved peaks; ΔE_{γ} =0.5 keV for weak or barely-resolved peaks; $\Delta I\gamma$ =50% for weak peaks. Evaluator estimates weak peaks to be those with I γ ≤10. See 1977Ba40 for complete set of I γ values from ¹⁷⁰Yb(p,4n γ) at 40 MeV.

[‡] Includes component from contaminant line.

[#] From energy difference between initial and final levels.

[®] Triplet γ with I γ =163 16. Based on I(267.9 γ)=9 5 and I(291.3 γ)="weak" for the two transitions immediately below the 314.9 γ in the 9/2[514] band's Δ J=1 cascade, I(315 γ from 2532 level) can reasonably be assumed to be <10, leaving essentially all the triplet intensity to be assigned from the 761+x-level and the 431+y-level.

[&]amp; Multiply placed.

^a Multiply placed with undivided intensity.

^b Placement of transition in the level scheme is uncertain.

 $^{^{}x}$ γ ray not placed in level scheme.

¹⁶⁹Tm(³He,5nγ), (α,6nγ), ¹⁷⁰Yb(p,4nγ) **1977Ba40**

Level Scheme

Intensities: Relative I γ for E(³He)=45 MeV & Multiply placed: undivided intensity given

Legend

$$^{167}_{\ 71}Lu_{96}$$

¹⁶⁹Tm(³He,5nγ), (α,6nγ), ¹⁷⁰Yb(p,4nγ) 1977Ba40

Level Scheme (continued)

Intensities: Relative I γ for E(³He)=45 MeV & Multiply placed: undivided intensity given

Legend

¹⁶⁹Tm(³He,5nγ), (α,6nγ), ¹⁷⁰Yb(p,4nγ) 1977Ba40

Band(D): 1/2[541] band

