Непрерывность функции в точке

Напомним, что производной функции f в точке x_0 называется предел $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0}$, если он существует. Поскольку знаменатель стремится к нулю, то для существования предела числитель тоже должен стремиться к нулю, т.е. при приближении аргумента x к x_0 , значения функции f(x) приближаются к значению в этой точке, т.е. к числу $f(x_0)$. Равенство $\lim_{x\to x_0} f(x) = f(x_0)$ определяет понятие "функция f непрерывна в точке x_0 ".

Из соответствующих свойств предела функции следует, что сумма, разность, произведение и отношение (если знаменатель в точке не обращается в нуль) непрерывных функций является непрерывной функцией.

- 1. Докажите, что дробно-рациональная функция (отношение многочленов) непрерывна во всех точках, не являющихся корнями знаменателя.
- 2. Докажите, что f непрерывна в точке x_0 если и только если из равенства $\lim_{n\to\infty} x_n = x_0$ следует равенство $\lim_{n\to\infty} f(x_n) = f(x_0)$.

Свойства непрерывных функций

Функция, непрерывная в каждой точке области $D \subset \mathbb{R}$, называется непрерывной на D, функция непрерывная на всей области определения называется непрерывной.

- 3. Докажите, что, если функция f(x) непрерывна в точке x_0 , а функция g(x) непрерывна в точке $f(x_0)$, то их композиция g(f(x)) непрерывна в точке x_0 .
- 4. Докажите, что непрерывная на отрезке функция ограничена на нём.
- 5. Докажите, что непрерывная на отрезке функция достигает на нём наибольшее и наименьшее значения.
- 6. Докажите, что непрерывная функция принимает все свои промежуточные значения, иными словами, если $f(x_1) = A$ и $f(x_2) = B$, то для любого числа C между A и B найдётся точка x между a и b такая, что f(x) = C.
- 7. Докажите, что непрерывная инъективная функция является монотонной.
- 8. Докажите, что, если функция $f(x)\colon [x_1,x_2]\to [A,B]$ непрерывна и строго монотонна, причём [A,B] её множество значений, то у f существует непрерывная обратная функция $f^{-1}\colon [A,B]\to [a,b]$

Непрерывные функции

Почти все функции, изучаемые в школе непрерывны на своей области определения.

- 9. Докажите, что функция $\sqrt[n]{x}$ непрерывна на $(0, +\infty)$ при всех $n \in \mathbb{N}$.
- 10. Докажите, что степенная функция x^n непрерывна $(0, +\infty)$ при всех $n \in \mathbb{Q}$.
- 11. Докажите непрерывность функций $\sin x$, $\cos x$, $\operatorname{tg} x$, $\operatorname{ctg} x$, $\operatorname{arccos} x$, $\operatorname{arcsin} x$, $\operatorname{arctg} x$ и $\operatorname{arcctg} x$ во всех точках их определения.

Равномерная непрерывность

Функция f называется pавномерно непрерывной на отрезке [a,b], если

$$\forall \varepsilon > 0 \ \exists \delta > 0 : (x_1, x_2 \in [a, b]) \ \& \ (|x_1 - x_2| < \delta) \Rightarrow |f(x_1) - f(x_2)| < \varepsilon.$$

- 12. Докажите, что равномерно непрерывная на отрезке функция непрерывна на нём.
- 13. Приведите пример непрерывной на интервале (0,1) функции, которая не является равномерно непрерывной на нём.
- 14. Докажите, что непрерывная на отрезке функция равномерно непрерывна на нём.

 $Mo\partial y$ лем непрерывности функции f на отрезке [a,b] называется функция $\omega_f(\delta)$ аргумента $\delta \in (0,b-a]$, заданная равенством

$$\omega_f(\delta) = \sup\{|f(x_1) - f(x_2)| : (x_1, x_2 \in [a, b]) \& (|x_1 - x_2| < \delta)\}.$$

- 15. Докажите, что $\omega_f(\delta_1 + \delta_2) \leqslant \omega_f(\delta_1) + \omega_f(\delta_2)$ для всех $\delta_1, \delta_2 \in (0, b-a], \ \delta_1 + \delta_2 \leqslant b-a$.
- 16. Приведите пример функции, для которой неравенство из предыдущей задачи является строгим при всех допустимых δ_1 и δ_2 .
- 17. Докажите равенство $\lim_{\delta \to +0} \omega_f(\delta) = 0$ для любой непрерывной на отрезке функции f.

Упражнения

- 18. Вычислите пределы: **a)** $\lim_{x\to 0} \frac{\sin 10x}{\sin 2x}$; **b)** $\lim_{x\to 0} \frac{1-\cos 4x}{x\sin 3x}$; **c)** $\lim_{x\to \pi} \frac{x-\pi}{\operatorname{tg} 2x}$; **d)** $\lim_{x\to 0} \frac{1-\cos x}{x^2}$.
- 19. Известно, что последовательности $a_n = x_n + y_n$ и $b_n = x_n \cdot y_n$ сходятся. Обязательно ли последовательности (x_n) и (y_n) тоже сходятся?
- 20. Дана последовательность (x_n) такая, что $\lim_{n\to\infty} x_{n+1} x_n = 0$. Обязательно ли последовательность (x_n) имеет предел?
- 21. Докажите, что для любых непрерывных на [0,1] функций f и g, удовлетворяющих неравенствам f(0) < g(0) и f(1) > g(1), есть такое число $a \in [0,1]$, что f(a) = g(a).
- 22. Докажите, что у любой непрерывной функции $f \colon [0,1] \to [0,1]$ есть неподвижная точка, т. е. такое число $a \in [0,1]$, что f(a) = a.

Задачи

- 23. Приведите пример функции $[0,1] \to [0,1]$, разрывной в каждой точке отрезка [0;1].
- 24. Приведите пример функции $[0,1] \to [0,1]$, непрерывной во всех иррациональных точках и разрывной во всех рациональных точках этого отрезка 1 .

¹Оказывается, в этом примере нельзя поменять местами множества рациональных и иррациональных чисел, однако, мы пока не готовы это доказать.