732A96/TDDE15 Advanced Machine Learning Gaussian Process Regression and Classification

Jose M. Peña IDA, Linköping University, Sweden

Lectures 12: Gaussian Process Classification

Contents

- Linear Logistic Regression
- Bayesian Linear Logistic Regression
- Gaussian Process Classification
- Laplace Approximation
- Gaussian Process Classification: Iris Data

Literature

- Main source
 - Rasmussen, C. E. and Williams, K. I. Gaussian Processes for Machine Learning. MIT Press, 2006. Chapters 3.1-3.4.1 and 3.7.
- Additional source
 - Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006. Chapters 6.4.5-6.4.6.

Linear Logistic Regression

▶ Consider a binary classification problem $y \in \{-1, +1\}$. Then,

$$p(y = +1|\mathbf{x}) = \frac{p(\mathbf{x}|y = +1)p(y = +1)}{p(\mathbf{x}|y = +1)p(y = +1) + p(\mathbf{x}|y = -1)p(y = -1)} = \sigma(s(\mathbf{x}))$$

where $s(\mathbf{x}) = \log \frac{p(\mathbf{x}|y=+1)p(y=+1)}{p(\mathbf{x}|y=-1)p(y=-1)} = \log \frac{p(y=+1|\mathbf{x})}{p(y=-1|\mathbf{x})}$ is the log odds ratio, and $\sigma(a) = \frac{1}{1+\exp(-a)}$ is the logistic sigmoid function.

- We assume that $p(\mathbf{x}|\mathbf{y})$ is a member of the exponential family (e.g., Gaussian, multinomial), which implies that $s(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$. The model $p(y = +1|\mathbf{x}, \mathbf{w}) = \sigma(\mathbf{x}^T \mathbf{w})$ is called logistic regression.
- Given some training data $\mathcal{D} = \{(x_i, y_i) | i = 1, ..., n\} = (X, y)$, we determine the parameters w by maximizing the log lik function:

$$\log p(\mathbf{y}|X,\mathbf{w}) = \sum_{i=1}^{n} \log \sigma(y_i(\mathbf{x}_i^T\mathbf{w}))$$

since
$$\sigma(-a) = 1 - \sigma(a)$$
.

- No closed form solution exists, but the log lik function is concave and thus easy to maximize via gradient ascent.
- Beware of overfitting for linearly separable datasets: Log lik maximization causes |w| to tend to infinity, i.e. the sigmoid function becomes a Heaviside step function.

Bayesian Linear Logistic Regression

- ▶ Prior distribution: $\mathbf{w} \sim \mathcal{N}(0, \Sigma_p)$, e.g. ridge regression $\Sigma_p = \alpha^{-1}I$.
- Posterior distribution:

$$\log p(\boldsymbol{w}|X,\boldsymbol{y}) \propto \sum_{i=1}^{n} \log \sigma(y_i(\boldsymbol{x}_i^T \boldsymbol{w})) - \frac{1}{2} \boldsymbol{w}^T \Sigma_p^{-1} \boldsymbol{w}.$$

- No closed form solution exists, but the penalty term is quadratic on w and thus the log posterior is concave and thus easy to maximize via gradient ascent or related methods.
- A full Bayesian approach uses the predictive distribution:

$$p(y_* = +1|\mathbf{x}_*, X, \mathbf{y}) = \int p(y_* = +1|\mathbf{x}_*, \mathbf{w}) p(\mathbf{w}|X, \mathbf{y}) d\mathbf{w}.$$

- No closed form expression for the predictive distribution exists.
- ▶ The above carries over to multi-class classification problems by using the multiple logistic function, a.k.a. softmax.

Gaussian Process Classification

- Given a test case x_* , use a GP for regression to predict a real number f_* that is then "squashed" through the logistic function to produce a class label $y_* = \sigma(f_*)$.
- However, the training data only include class labels y and, thus, f are latent variables.
- In other words, prediction occurs in two steps:
 - ▶ Compute the distribution of the latent variable f_* , i.e. $p(f_*|\mathbf{x}_*, X, \mathbf{y})$.
 - Compute the prediction y_* , since the latent variable f_* is uninteresting:

$$p(y_* = +1|x_*, X, y) = \int \sigma(f_*)p(f_*|x_*, X, y)df_*.$$

 No closed form solutions exist for these integrals. Solutions: Laplace approximation or MC sampling.

Laplace Approximation

▶ Computing the distribution of the latent variable can be rewritten as

$$p(f_*|\mathbf{x}_*,X,\mathbf{y}) = \int p(f_*,\mathbf{f}|\mathbf{x}_*,X,\mathbf{y})d\mathbf{f} = \int p(f_*|\mathbf{x}_*,X,\mathbf{f})p(\mathbf{f}|X,\mathbf{y})d\mathbf{f}$$

where

- the first term is $\mathcal{N}(K(\mathbf{x}_*,X)K(X,X)^{-1}\mathbf{f},K(\mathbf{x}_*,\mathbf{x}_*)-K(\mathbf{x}_*,X)K(X,X)^{-1}K(X,\mathbf{x}_*))$ since it is a GP for regression, and
- the second term is Gaussian around its modes as the size of the training data grows, due to the central limit theorem. Therefore, it can be approximated by a second order Taylor expansion around a mode via Laplace's method:

$$p(\mathbf{f}|X,\mathbf{y}) \approx \mathcal{N}(\mathbf{\hat{f}},A^{-1})$$

where $\hat{f} = \arg \max_{f} p(f|X, y)$ and $A = -\nabla \nabla \log p(f|X, y)|_{f=\hat{f}}$.

- ▶ Laplace's method to approximate $p(u) = \frac{1}{2}q(u)$:
 - Find a mode u_0 of $\log q$, i.e. $\frac{\partial}{\partial u} \log q(u)|_{u=u_0} = 0$ (numerical methods are typically used).
 - Consider a second order Taylor expansion of log q centered at u₀ (second order because a Gaussian distribution is quadratic in the variables):

$$\log q(u) \approx \log q(u_0) - \frac{1}{2}A(u - u_0)^2$$

where $A = -\frac{\partial^2}{\partial u^2} \log q(u)|_{u=u_0}$ (the first order term is gone because u_0 is a mode of q).

► Then, $q(u) \approx q(u_0) \exp\left[-\frac{1}{2}A(u-u_0)^2\right]$ and thus $p(u) \approx \mathcal{N}(u_0, A^{-1})$.

Laplace Approximation

Computing the distribution of the latent variable can be rewritten as

$$p(f_*|\mathbf{x}_*,X,\mathbf{y}) = \int p(f_*,\mathbf{f}|\mathbf{x}_*,X,\mathbf{y})d\mathbf{f} = \int p(f_*|\mathbf{x}_*,X,\mathbf{f})p(\mathbf{f}|X,\mathbf{y})d\mathbf{f}$$

where

the first term is

$$\mathcal{N}(K(\mathbf{x}_*,X)K(X,X)^{-1}\mathbf{f},K(\mathbf{x}_*,\mathbf{x}_*)-K(\mathbf{x}_*,X)K(X,X)^{-1}K(X,\mathbf{x}_*))$$
 since it is a GP for regression, and

- the second term is approximated by $\mathcal{N}(\hat{f}, A^{-1})$ where $\hat{f} = \arg\max_{f} p(f|X, y)$ and $A = -\nabla\nabla\log p(f|X, y)|_{f=\hat{f}}$.
- Moreover,

$$p(\mathbf{f}|X,\mathbf{y}) = p(\mathbf{f},\mathbf{y}|X)/p(\mathbf{y}|X) \propto p(\mathbf{y}|\mathbf{f})p(\mathbf{f}|X)$$

i.e. logistic function times GP prior. Typically, numerical methods are used to maximize it.

- ► Moreover, $A = -\nabla\nabla \log p(\mathbf{f}|X, \mathbf{y})|_{\mathbf{f} = \hat{\mathbf{f}}} = -W K(X, X)^{-1}$ where W is a diagonal matrix with elements $\sigma(\hat{f}_i)(1 \sigma(\hat{f}_i))$.
- ► Then, $p(f_*|\mathbf{x}_*, X, \mathbf{y}) = \mathcal{N}(K(X, \mathbf{x}_*)^T K(X, X)^{-1} \hat{\mathbf{f}}, K(\mathbf{x}_*, \mathbf{x}_*) K(X, \mathbf{x}_*)^T (K(X, X) + W^{-1})^{-1} K(X, \mathbf{x}_*)).$
- Finally, note that the (approximate) prediction requires one-dimensional numerical integration.
- ▶ The prediction (expected sigmoid) differs from the sigmoid of the expectation $(\sigma(K(X, \mathbf{x}_*)^T K(X, X)^{-1} \hat{\mathbf{f}}))$. However, either both or none are greater than 0.5. So, the latter suffices to find the most probable class.

- Multi-class classification problems are solved similarly, i.e. latent variable + softmax + Laplace's approximation.
- Demo of KernLabDemo.R.
- ▶ SE kernel with automatic ℓ estimation and $\sigma_f = 1$.
- ► Species ~ Petal.Length + Petal.Width.
- ▶ p(Setosa|Petal.Length, Petal.Width):

- ▶ SE kernel with automatic ℓ estimation and $\sigma_f = 1$.
- ► Species ~ Petal.Length + Petal.Width.
- ▶ p(Versicolor|Petal.Length, Petal.Width):

- ▶ SE kernel with automatic ℓ estimation and $\sigma_f = 1$.
- ► Species ~ Petal.Length + Petal.Width.
- ▶ p(Virginica|Petal.Length, Petal.Width):

Petal.Length

3

- ▶ SE kernel with automatic ℓ estimation and $\sigma_f = 1$.
- ► Species ~ Petal.Length + Petal.Width.
- ► Decision boundary:

Contents

- Linear Logistic Regression
- Bayesian Linear Logistic Regression
- Gaussian Process Classification
- Laplace Approximation
- Gaussian Process Classification: Iris Data

Thank you