HW Set 4. (Due day: October 12, 23:59)

- 1. Suppose $0<\delta<\pi$, f(x)=1 if $|x|\leq\delta$, f(x)=0 if $\delta<|x|\leq\pi$, and $f(x+2\pi)=f(x)$ for all x.
 - (a) Compute the Fourier coefficients of f.
 - (b) Conclude that

$$\sum_{n=1}^{\infty} \frac{\sin(n\delta)}{n} = \frac{\pi - \delta}{2}.$$

(c) Deduce from Parseval's theorem that

$$\sum_{n=1}^{\infty} \frac{\sin^2(n\delta)}{n^2 \delta} = \frac{\pi - \delta}{2}.$$

(d) Let $\delta \to 0$ and prove that

$$\int_0^\infty \left(\frac{\sin x}{x}\right)^2 dx = \frac{\pi}{2}.$$

- (e) Put $\delta=\pi/2$ in (c). What do you get?
- 2. Prove that

$$(\pi - |x|)^2 = \frac{\pi^2}{3} + \sum_{n=1}^{\infty} \frac{4}{n^2} \cos nx$$
 for all $x \in [-\pi, \pi]$

and deduce that

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}, \qquad \frac{1}{n^4} = \frac{\pi^4}{90}.$$

3. With $D_n(x) = \sum_{k=-n}^n e^{ikx} = \frac{\sin(n+\frac{1}{2})x}{\sin(x/2)}$, put

$$K_N(x) = \frac{1}{N+1} \sum_{n=0}^{N} D_n(x).$$

Prove that

$$K_N(x) = \frac{1}{N+1} \cdot \frac{1 - \cos(N+1)x}{1 - \cos x}$$

and that

- (a) $K_N > 0$,
- (b) $\frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(x) dx = 1$,
- (c) $K_N(x) \le \frac{1}{N+1} \cdot \frac{2}{1-\cos\delta}$ if $0 < \delta \le |x| \le \pi$.

If $s_N = s_N(f;x)$ is the Nth partial sum of the Fourier series of f, consider the arithmetic means

$$\sigma_N = \frac{s_0 + s_1 + \dots + s_N}{N+1}.$$

Prove that

$$\sigma_N(f;x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x-t) K_N(t) dt,$$

and hence prove Fejer's theorem: If f is continuous, with period 2π , then $\sigma_N(f;x) \to f(x)$ uniformly on $[-\pi,\pi]$.

Hint: Use properties (a), (b), (c) to proceed as in Theorem 7.26.

Note. σ_N defined above is the Cesàro mean. So if $s_N(f;x)$ converges, then $\sigma_N(f;x)$ also converges to the same value. The fact that there exists a continuous function whose fourier series doesn't converge to itself suggests that converse is not true.

4. In this problem we generalize the theorem 8.14. Let f be a Riemann-integrable function with period 2π . Define $f(a\pm):=\lim_{x\to a\pm}f(x)$ if it exists. Assume that both $f(a\pm)$ exist and there exists a positive number $\varepsilon,\ \delta,\ M>0$ s.t.

$$|t| < \delta \implies \left| \frac{f(a+t) + f(a-t)}{2} - \frac{f(a+t) + f(a-t)}{2} \right| \le M|t|^{\varepsilon}.$$

In these conditions we will show that $s_N(f;a)$ converges to $\frac{f(a+)+f(a-)}{2}$.

(a) Show that $s_N(f;x)$ can be written as

$$\frac{1}{2\pi} \int_0^{\pi} \{f(x+t) + f(x-t)\} \frac{\sin(N+\frac{1}{2})t}{\sin\frac{t}{2}} dt$$

(b) Prove that

$$\lim_{N\to\infty}\frac{1}{2\pi}\int_0^\pi\{f(x+t)+f(x-t)\}\left(\frac{1}{\sin\frac{t}{2}}-\frac{2}{t}\right)\sin\left(N+\frac{1}{2}\right)tdt=0.$$

(c) Now we only have to show that the below limit

$$\lim_{N \to \infty} \left(s_N(f; a) - \frac{f(a+) + f(a-)}{2} \right)$$

$$=\lim_{N\to\infty}\frac{1}{\pi}\int_0^\pi\left(\frac{f(a+t)+f(a-t)}{t}-\frac{f(a+)+f(a-)}{t}\right)\sin\left(N+\frac{1}{2}\right)tdt$$

converges to zero. However, this time we cannot do as we did in the proof of theorem 8.14, because $\frac{f(a+t)+f(a-t)-f(a+)-f(a-t)}{t}$ is no longer Riemann-integrable on $[-\pi,\,\pi]$ (don't confuse it with the integrability of whole integrand). Although we won't deal with improper integral, there is a breakthrough.

Define $f_n: \{\frac{1}{n} \mid p \in \mathbb{N}\} \to \mathbb{C}$ by

$$f_n\left(\frac{1}{m}\right) = \frac{1}{\pi} \int_{\frac{1}{n}}^{\pi} \frac{f(a+t) + f(a-t) - f(a+) - f(a-)}{t} \sin\left(m + \frac{1}{2}\right) t dt.$$

Prove that f_n uniformly converges.

(d) Use theorem 7.11(limit interchange theorem) to conclude that $s_N(f;a)$ converges to $\frac{f(a+)+f(a-)}{2}$.

Note. This theorem is a generalization of theorem 8.14 in two aspects. f can be a discontinuous function and ε can be less than 1.