

Lecture 01 Number Systems

CSE115: Computing

Concepts

Introduction to Numbering Systems

 Base: The number of fundamental symbols in a numbering system (e.g. 0, 1, 2 etc.)

We are all familiar with the decimal number system (Base 10). Some other number systems that we will work with are:

- Binary → Base 2
- Octal \rightarrow Base 8
- Hexadecimal → Base 16

Common Number Systems

System	Base	Symbols	Used by humans?	Used in computers?
Decimal	10	0, 1, 9	Yes	No
Binary	2	0, 1	No	Yes
Octal	8	0, 1, 7	No	No
Hexa- decimal	16	0, 1, 9, A, B, F	No	No

Lets do some counting (1 of 3)

Decimal	Binary	Octal	Hexa- decimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7

Lets do some counting (2 of 3)

Decimal	Binary	Octal	Hexa- decimal
8	1000	10	8
9	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	C
13	1101	15	D
14	1110	16	E
15	1111	17	F

Lets do some counting (3 of 3)

Binary	Octal	Hexa- decimal	
10000	20	10	
10001	21	11	
10010	22	12	
10011	23	13	
10100	24	14	
10101	25	15	
10110	26	16	
10111	27	17	
	10000 10001 10010 10011 10100 10101 10110	10000 20 10001 21 10010 22 10011 23 10100 24 10101 25 10110 26	Binary Octal decimal 10000 20 10 10001 21 11 10010 22 12 10011 23 13 10100 24 14 10101 25 15 10110 26 16

Etc.

Bits and Bytes

A single binary digit is called a **bit**. A collection of 8 bits is called a **byte**.

There are 10 fundamental digits in the binary number system. One of them is 0 and the other is 1.

Write the base as subscript

$$2510 = 110012 = 318$$

= 1916

Base

Conversion Among Bases

The possibilities:

A closer look at a decimal number weight

Base

Binary to Decimal

Binary to Decimal

- Technique
 - Multiply each bit by $2\mathbf{n}$, where n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results

Bit "0"

Octal to Decimal

Decimal

Binary

Hexadecimal

Octal to Decimal

- Technique
 - Multiply each bit by 8n, where n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results

```
7248 \Rightarrow 4 \times 80 = 4
2 \times 81 = 16
7 \times 82 = 448
46810
```

Hexadecimal to Decimal

Hexadecimal to Decimal

- Technique
 - Multiply each bit by 16n, where n is the "weight" of the bit
 - The weight is the position of the bit, starting from 0 on the right
 - Add the results

```
ABC16 => C x 160 = 12 x 1 = 12

B x 161 = 11 x 16 = 176

A x 162 = 10 x 256 = 2560

274810
```

Decimal to Binary

Decimal to Binary

- Technique
 - Divide by two, keep track of the remainder
 - First remainder is bit 0 (LSB, least-significant bit)
 - Second remainder is bit 1
 - Etc.

```
2 125
12510 = ?2
                         62
                                0
                         31
                         15
                      2
                                1
```

12510 = 11111012

Decimal to Octal

Decimal Octal

Binary

Hexadecimal

Decimal to Octal

- Technique
 - Divide by 8
 - Keep track of the remainder

```
123410 = ?
```

```
8 1<u>234</u>
8 <u>154</u> 2
8 <u>19</u> 2
8 <u>2</u> 3
0 2
```


123410 = 23228

Decimal to Hexadecimal

Decimal to Hexadecimal

- Technique
 - Divide by 16
 - Keep track of the remainder

$$123410 = ?16$$

Octal to Binary

Octal to Binary

- Technique
 - Convert each octal digit to a 3-bit equivalent binary representation

7058 = ?2

7058 = 1110001012

Binary to Octal

Binary to Octal

- Technique
 - Group bits in threes, starting on right
 - Convert to octal digits

10110101112 = ?8

Hexadecimal to Binary

Decimal Octal

Binary

Hexadecimal

Hexadecimal to Binary

- Technique
 - Convert each hexadecimal digit to a 4-bit equivalent binary representation

$$10AF16 = ?$$

10AF16 = 000100001011112

Binary to Hexadecimal

Decimal Octal

Binary Hexadecimal

Binary to Hexadecimal

- Technique
 - Group bits in fours, starting on right
 - Convert to hexadecimal digits

10101110112 = ?16

Octal to Hexadecimal

Decimal Octal

Binary

Hexadecimal

Octal to Hexadecimal

- Technique
 - Use binary as an intermediary

10768 = ?16

Hexadecimal to Octal

Decimal Octal

Binary

Hexadecimal

Hexadecimal to Octal

- Technique
 - Use binary as an intermediary

1F0C16 = ?8

Conversion Exercise

Decimal	Binary	Octal	Hexa- decimal
33			
	1110101		
		703	
			1AF

Try not to use a calculator!

Conversion Exercise

Answer

Decimal	Binary	Octal	Hexa- decimal
33	100001	41	21
117	1110101	165	75
451	111000011	703	1C3
431	110101111	657	1AF

Common Powers (1 of 2)

• Base 10

Power	Preface	Symbol	Value
10-12	pico	p	.000000000001
10-9	nano	n	.000000001
10-6	micro	μ	.000001
10-3	milli	m	.001
103	kilo	k	1000
106	mega	M	1000000
109	giga	G	1000000000
1012	tera	T	1000000000000

Common Powers (2 of 2)

Base 2

Power	Preface	Symbol	Value
210	kilo	k	1024
220	mega	M	1048576
230	Giga	G	1073741824

What is the value of "k", "M", and "G"? n computing, particularly w.r.t. memory, the base-2 interpretation generally applies

Binary Addition (1 of 2)

Two 1-bit values

A	В	A + B
0	0	0
0	1	1
1	0	1
1	1	10

"two"

Binary Addition (2 of 2)

- Two *n*-bit values
 - Add individual bits
 - Propagate carries
 - E.g.,

Multiplication (1 of 3)

Decimal (just for fun)

```
    \begin{array}{r}
      35 \\
      \times 105 \\
      \hline
      175 \\
      000 \\
      \hline
      35 \\
      \hline
      3675 \\
    \end{array}
```

Multiplication (2 of 3)

Binary, two 1-bit values

A	В	$A \times B$
0	0	0
0	1	0
1	0	0
1	1	1

Multiplication (3 of 3)

- Binary, two *n*-bit values
 - As with decimal values
 - E.g.,

```
1110

x 1011

1110

1110

0000

1110

10011010
```

Complement

- Complement is the negative equivalent of a number.
- If we have a number N then complement of N will give us another number which is equivalent to -N
- So if complement of N is M, then we can say M
 = -N
- So complement of M = -M = -(-N) = N
- So complement of complement gives the original number

Types of Complement

- For a number of base r, two types of complements can be found
 - 1. r's complement
 - 2. (r-1)'s complement
- Definition:
 - If N is a number of base r having n digits then
 - r's complement of N = rn N and
 - (r-1)'s complement of N = rn-N-1

- Suppose N = (3675)10
- So we can find two complements of this number. The 10's complement and the 9's complement. Here n=4
- 10's complement of (3675) = 104 3675= 6325
- 9's complement of (3675) = 104 3675 1= 6324

Short cut way to find (r-1)'s complement on the previous example we see that 9's complement

- In the previous example we see that 9's complement of 3675 is 6324. We can get the result by subtracting each digit from 9.
- Similarly for other base, the (r-1)'s complement can be found by subtracting each digit from r-1 (the highest digit in that system).
- For binary 1's complement is even more easy. Just change 1 to 0 and 0 to 1. (Because 1-1=0 and 1-0=1)

• Find the (r-1)'s complement in short cut method.

■ (620143)8 Ans: 157634

■ (A4D7E)16 Ans: 5B281

(110100101)2 Ans: 001011010

- Find the r's complement in short cut method.
 - · (8210)10 Ans: 1790
 - · (61352)10 Ans: 38648
 - · (6201430)8 Ans: 1576350
 - (A4D7E0)16 Ans: 5B2820

Example for binary

- For binary: how to find 2's complement?
- start from rightmost bit
- Up to first 1 from right no change.
- For rest of the bits toggle (Change 1 to 0 and 0 to 1)
 - (11010010100)2 Ans: 00101101100
 - (01101001011)2 Ans: 10010110101
 - (1000000)2 Ans: 10000000

Use of Complement

- Complement is used to perform subtraction using addition
- Mathematically A-B = A + (-B)
- So we can get the result of A-B by adding complement of B with A.
- So A-B = A + Complement of (B)

Addition and Subtraction

 Two's complement addition follows the same rules as binary addition.

$$5 + (-3) = 2$$

• Two min neg $0000 0101 = +5$
 $1101 = -3$
 $0000 = +2$
 0010