Analisi delle corrispondenze

Giovanna Jona Lasinio giovanna.jonalasinio@uniroma1.it

Dipartimento di Scienze Statistiche - Università Sapienza Roma

GJL (DSS) CA Statistica 1 / 1

- Oggetto dell'analisi delle corrispondenze (AC) sono insiemi di dati qualitativi (matrici faunistiche ad esempio).
- Il principio su cui si basa l'AC è lo stesso su cui si basa l'analisi in componenti principali. La PCA usa come misura di variabilità la correlazione o la covarianza, l'AC utilizza una distanza tra righe (o colonne) della matrice dei dati, basata sulla statistica χ^2 .
- Fine dell'analisi è spiegare perché la matrice dei dati si scosta da una situazione di omogeneità (righe o colonne proporzionali).

Matrice dei dati X

Siti/Specie	X_1		X_k	Tot
S_1	n ₁₁		n_{1k}	$n_{1.}$
:	:	:	:	:
S_p	n_{p1}		n _{pk}	n _{p.}
Tot	n _{.1}		n _{.k}	n

- Possiamo estrarre informazione in diversi modi da questa matrice tenendo conto di diversi aspetti
 - a) **confrontiamo i siti tra loro** e per farlo dobbiamo tener conto della diversa numerosità nei siti
 - b) **confrontiamo le specie nei siti**, dobbiamo considerare l'effetto della diversa numerosità delle specie

a) Matrice dei profili riga

Siti/Specie	X_1		X_k	Tot
S_1	$pr_{11} = \frac{n_{11}}{n_{1.}}$		$pr_{1k} = \frac{n_{1k}}{n_{1.}}$	1
:	• • •	:	:	:
S_p	$pr_{p1} = \frac{n_{p1}}{n_{p.}}$		$pr_{pk} = \frac{n_{pk}}{n_{p.}}$	1
Tot	$pr_{.1} = \frac{n_{.1}}{n}$		$pr_{.k} = \frac{n_{.k}}{n}$	-

Questa matrice corrisponde ad una ponderazione delle righe di \mathbf{X} con l'abbondanza totale di individui nei siti campionati. Indicheremo con \mathbf{pr}_i la riga i-esima della matrice dei profili riga (il profilo riga i-esimo).

b) Matrice dei profili colonna

Siti/Specie	X_1		X_k	Tot
S_1	$pc_{11} = \frac{n_{11}}{n_{.1}}$		$pc_{1k} = \frac{n_{1k}}{n_{.1}}$	$pc_{.1} = \frac{n_{1.}}{n}$
:	:	:	:	:
S_p	$pc_{p1}=rac{n_{p1}}{n_{.1}}$		$pc_{pk} = \frac{n_{pk}}{n_{.k}}$	$pc_{.p} = \frac{n_{p.}}{n}$
Tot	1		1	-

Questa matrice corrisponde ad una ponderazione delle colonne di \mathbf{X} con l'abbondanza totale di individui di ciascuna specie osservati nell'area di studio. Indicheremo con \mathbf{pc}_j la colonna j-esima della matrice dei profili colonna (il profilo colonna j-esimo)

Come valutare correttamente la distanza, nello spazio delle specie, tra due specie o due siti?

Distanza del χ^2

In particolare:

$$d(\mathbf{pr}_{i}, \mathbf{pr}_{h}) = \sum_{j=1}^{k} \frac{1}{pr_{.j}} (pr_{ij} - pr_{hj})^{2}$$

$$= \sum_{j=1}^{k} \frac{1}{\frac{n_{.j}}{n}} \left(\frac{n_{ij}}{n_{.i}} - \frac{n_{hj}}{n_{.h}} \right)^{2}$$

$$d(\mathbf{pc}_{j}, \mathbf{pc}_{h}) = \sum_{i=1}^{p} \frac{1}{pc_{.i}} (pc_{ij} - pc_{ih})^{2}$$

$$= \sum_{i=1}^{p} \frac{1}{\frac{n_{i}}{n}} \left(\frac{n_{ij}}{n_{j}} - \frac{n_{ih}}{n_{h}} \right)^{2}$$

$$(2)$$

L'espressione (1) è la distanza tra due profili riga mentre l'espressione (2) è la distanza tra due profili colonna.

Statistica

7 / 1

GJL (DSS)

- A questo punto si può condurre una PCA sulla matrice dei profili riga o dei profili colonna.
- Otterremo di solito dei risultati più dispersi ma interpretabili nello stesso modo della PCA

ESEMPI SU R

