CSP-S 2019 模拟赛

2019年10月22日

题目概况

中文题目名称	数学题	城市	好き朋き友
英文题目名称	number	city	friend
题目类型	传统	传统	传统
每个测试点时限	1s	2s	4s
内存限制	512MB	512MB	512MB
结果比较方式	全文比较(过滤行末空格及文末回车)		
测试点数目	10	20	20
每个测试点分值	10	5	5
编译选项	-lm -02 -std=c++11 -Wl,stack=2147483647		

注意事项

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. 提交的程序请直接存放在自己的文件夹根目录下,无需建立子文件夹。
- 3. C++ 中函数 main() 的返回值类型必须是 int, 返回值必须是 0。
- 4. 评测环境为 Windows 下的 Lemon。

数学题 (number)

【题目描述】

小 Z 在做数学作业。他有道题不会做。因为小 Y 不在,所以他跑过来找你了。

这道题是这样的: 给定一个正整数 n,保证 n 形如 p^kq^k ,其中 p,q 是不同的质数,k 为正整数。

显然 n 能被拆分成若干个大于 1 的正整数相乘的形式,即 $n = \prod_{i=1}^m a_i$,为简便起见,我们规定 m > 1,并且对于 $1 \le i < m$,有 $a_i \le a_{i+1}$ 。求 n 有多少种不同的拆分的方法。

换句话说,题目要求: 有多少个长度大于 1 的**不下降**序列 $\{a_1, a_2, \cdots, a_m\}$ 满足 $a_1 > 1, n = \prod_{i=1}^m a_i$ 。

【输入格式】

输入文件名为 number.in。

输入包含多组数据。第一行一个正整数 T,表示数据组数。

接下来T行,每行一个正整数n,表示一组数据。

【输出格式】

输出文件名为 number.out。

输出T行,每行一个整数,表示这组数据的答案。

【样例输入】

2

6

100

【样例输出】

1

8

【样例解释】

当 n = 6 时,只有一个序列: $\{2,3\}$ 。

当 $n = 100 = 2^25^2$ 时,有这 8 种: $\{2,50\}$, $\{2,2,25\}$, $\{2,2,5,5\}$, $\{2,5,10\}$, $\{4,25\}$, $\{4,5,5\}$, $\{5,20\}$, $\{10,10\}$ 。

【数据规模与约定】

对于 10% 的数据, $1 \le n \le 10^3$ 。

对于 20% 的数据, $1 \le n \le 10^7$ 。

对于另外 10% 的数据,保证【题目描述】中的 $k \le 4$ 。

对于另外 20% 的数据, $T \le 5$ 。

对于 100% 的数据, $1 \le n \le 10^{18}, 1 \le T \le 10^5$,保证 n 能被表示成 $p^k q^k$ 的形式,其中 p,q 是不同的质数,k 为正整数。

城市 (city)

【题目描述】

这天小 Z 来到一个王国,王国里有 n 座城市,其中第 i 座城市有一个评估值 a_i ,其中 a_i 都是正整数。

城市之间可能会有道路连接,走过每条道路都要付出一定的代价。具体来说,对于城市 i 和城市 j ($i \neq j$),如果 a_i and $a_j = 0$,那么它们之间没有道路连接,否则它们之间有一条**双向道路**,其代价为 lowbit(a_i and a_j)。其中 and 表示二进制下的按位与,例如 5 and 6 = 4。lowbit(x)表示 x 在二进制下最低是 x 的位的位权,例如 lowbit(x) = lowbi

小 Z 现在在城市 1,但他身上没多少钱了,因此他想用最少的代价赶到城市 n,求这个最少代价。

【输入格式】

输入文件名为 city.in。

第一行一个正整数 T,表示数据组数。

接下来,对于每组数据:

第一行一个正整数 n, 表示城市数量。

第二行 n 个正整数 a_1, a_2, \dots, a_n ,表示每个城市的评估值。

【输出格式】

输出文件名为 city.out。

输出共 T 行, 每组数据一行。

对于每组数据,如果从城市 1 不可能到达城市 n,输出 Impossible; 否则输出一个整数,表示最少的代价。

【样例 1 输入】

2

4

22 21 50 41

3

1 2 4

【样例 1 输出】

5

Impossible

【样例 1 解释】

用 (u, v, w) 表示城市 u 与城市 v 之间有一条代价为 w 的双向道路。那么对于第一组数据,所有道路为:

- (1, 2, 4)
- (1,3,2)
- (2, 3, 16)
- (2,4,1)
- (3,4,32)

容易发现代价最少的路径为 $1 \rightarrow 2 \rightarrow 4$,代价为 5。

对于第二组数据,城市之间没有任何道路相通,不可能从城市 1 到城市 n。

【样例 2】

见选手目录下的 city/city2.in 与 city/city2.ans。

【数据规模与约定】

对于 30% 的数据, $1 < n < 10^3$ 。

对于另外 10% 的数据, 保证 a_i 形如 2^k , 其中 0 < k < 32。

对于 100% 的数据, $1 < T < 5, 1 < n < 10^5, 1 < a_i < 2^{32}$ 。

好 ð 朋 ð 友 (friend)

【题目描述】

小 Y 是小 Z 的好 δ 朋 δ 友。在情(给)人(给)节,小 Y 送给了小 Z 一个长度为 n 的序列 a_1, a_2, \dots, a_n 。

小 Z 认为,一段序列是**给给**的,当且仅当其所有元素的按位或值在十进制表示下的个位数 \in S。其中 S 是给定的非空集合且保证 $S \subseteq \{0,1,2,\cdots,9\}$ 。

例如,当 $S = \{0,7\}$ 时,序列 $\{1,4,3\}$ 和序列 $\{14,18\}$ 都是给给的,因为 1 or 4 or 3 = 7,14 or 18 = 30,它们十进制表示下的个位数都在集合 S 中;但 序列 $\{1,3,13\}$ 不是给给的,因为 1 or 3 or 13 = 15 个位数为 5,不在 S 中。

现在对于小 Y 送的这段序列,小 Z 提出了 m 个问题。每个问题形如 l, r,求序列 $\{a_l, a_{l+1}, \cdots, a_r\}$ 中有多少非空连续子序列是给给的。

【输入格式】

输入文件名为 friend.in。

第一行包含了三个整数 n, m, k, n 表示序列的长度, m 表示问题的个数, k 表示集合 S 的大小, 集合 S 的意义见【题目描述】。

第二行包含了 k 个**互不相同**的非负整数 s_1, s_2, \dots, s_k ,表示集合 S 内的元素,保证 $0 \le s_i \le 9$ 。

第三行包含了 n 个非负整数 a_1, a_2, \cdots, a_n ,表示这个序列。

接下来m行,每行包含两个正整数l,r,表示一个问题。

【输出格式】

输出文件名为 friend.out。

输出一共 m 行,每行一个非负整数,表示对应问题的答案。

【样例 1 输入】

5 3 2

0 7

1 4 3 14 18

1 5

1 3

4 5

【样例 1 输出】

3

2

1

【样例 2】

见选手目录下的 friend/friend2.in 与 friend/friend2.ans。

【数据规模与约定】

对于全部数据,满足

- $1 \le n \le 10^5, 1 \le m \le 10^6, 1 \le k \le 10$;
- $0 \le s_i \le 9$ 且 s_i 互不相同;
- $0 \le a_i < 2^{30}$;
- 每个问题中 $1 \le l \le r \le n$ 。

每个测试点的具体限制见下表:

测试点编号	$n \leq$	$m \leq$	特殊限制	
$1 \sim 2$	10^{3}		无	
3		10^{6}	k = 10	
$4 \sim 5$	10^{5}	10"	k = 5	
$6 \sim 7$			k = 5	
$8 \sim 15$	5×10^4	10^{5}	无	
$16 \sim 20$	10^{5}	10^{6}	无	

【提示】

输入、输出量较大,建议使用快速的输入、输出方法。