PUBH 526

Topic 1, Part 2: Introduction and Review

Prof. Nilupa Gunaratna

Department of Public Health

Let's Design a Study...

You want to test a new drug for its efficacy in reducing systolic blood pressure

- How would you design such a study? Trt V.S. Control
- . What would be your hypothesis? Trt lowering SBP compared to control
- What would data consistent with your hypothesis look like? Trf | Green | CRP
- What would data inconsistent with your hypothesis look / favorable like? Trt increasing SBP (not favorable)
- What kind of statistical test would you use?

 ** (**D two-sample t-test (Comparing mean SBP between groups)

 ** ANOVA if >2 groups if adjusting for covariates

Design of Experiments

- Different disciplines have different applications, approaches, vocabulary, methods, history, literature
- Origins in agriculture
- Industry and engineering
- Health sciences
- Social sciences, including economics

Fundamental Principles

Randomization

[Insures fair comparisons by:

(I) distributing known / anknown factors across groups.

(2) † validity of causal inference

- What is randomized? -- unit of randomization Ex) subjects, population, and ividuals, groups
 - Individual people
 - Classrooms at a school
 - Villages in a rural area
 - Counties in Indiana
- Measurement and analysis may occur at the unit of

randomization or at higher or lower levels

• Units of randomization, units of measurement/analysis, context

- Why randomize?
 - Balance out effects of "lurking" variables confounders, effect modifiers, mediators...
 - Many of these may be unknown
 - Does "balance out" mean "eliminate"? No. Goal: Make Trt v.s. Control Comparable on average

Treatments

- In public health:
 - Treatment effects take time
 - The control treatment may not be obvious
- Counterfactual: what would have happened if there were no intervention?
 - Changes over time? secular? seasonal? Ex) Measuring depression? Seasonal in winter
- Often difficult to separate the intended treatment from the delivery method
 - New drug vs. placebo
 - How about a health informational session?

Estimating Treatment Effects

- Accuracy is about hitting the target
- Precision is about spread

 What exactly is the target here? And what is an estimate?

Replication 1 Power Replication

- Sample size probability of detecting a true (1 Type 2 error: false neg.)
 Source of statistical power
- A greater sample size improves the **precision** of your $\psi \subseteq$ estimates, including your estimate of the error or 1 stability, I sensitivity to random fluctuations background noise
- Consider sample size at all levels of measurement, particularly at the level of randomization

Blocking 1 precision Blocking

- A way of dealing with "nuisance" factors
- Stratification
- Different blocks have different levels of the nuisance factor, but within a block, participants are more similar

Examples?

- Agriculture: Fields differ in soil fertility → block by field, randomize treatments within each field.
- Clinical trial: Patients differ by sex or baseline health → block by sex/health category, randomize treatment within each block.
- Education: Schools differ by size → block by school, randomize classrooms within each.

Blinding 1 bias

• Why?

```
• Who?

Don't know if they particularly are in which subjects

ore in which group.

Participants, researchers (many roles here), both (double blinding)

Everyone knows the Irt.

Triple blinding

(+ analysts, reviewed)
```

• When? Ex) Place to looks some as Trt pills

Blinding

- How do you randomize while maintaining double blinding?
 - Roles: Pl, senior personnel, pharmacists, physicians, nurses, data collectors, specimen collectors, data managers/cleaners/analysts, participants, ... (blind at different levels at different times)
 - Trf must look and feel the same (identical placeto pills/precedures)
 How to ensure consistency of treatments for the study duration? O Blinding must be broken if safety concern How do you maintain participant safety?

 - Anticipate adverse outcomes, collect data equally in all study arms
- When is blinding not possible?

Internal and External Validity

- Internal validity: The degree to which the results are attributable to the experimental treatment and not some other explanation within stuly sample
- External validity: The extent to which the results of a study can be generalized outside the study

Feature	Internal Validity	External Validity
Concern	Is the causal relationship true inside the study?	Can results be applied <i>outside</i> the study?
Threatened by	Bias, confounding, measurement error	Lack of representativeness, artificial setting
Goal	Correct inference about cause & effect	Generalizability to real-world populations
Improved by	Randomization, blinding, replication	Diverse samples, pragmatic study design, replication across contexts

- Internal validity allows us to make statements about causality
 - However, mechanisms may not be clear
- Randomization aims to balance "explanations" across treatment arms
 - At start of study and before
 - During the study (assuming "explanations" affect both groups similarly)
 - Implementation should be balanced as much as possible and monitored
- (Double) blinding -- to minimize biases of researchers and participants
- Attrition and missing data
 - Differential across treatments?
 - If attrition is the similar across treatments, is everything ok?

External Validity

- How representative is this sample of the larger population?
 - Did participants elect to participate?
 - What was the burden of participation?
 - Context
- Is the larger population clearly defined?
- How will the larger / other populations react to the specific treatment / intervention?
- Will the treatment remain the same when scaled up? How about the quality of implementation?

Designs to Be Covered in This Course

- Completely randomized design
- Randomized complete block design
- Crossover design
- Cluster randomized design
- Factorial design
- Other topics...