CAPÍTULO 3: ORTOGONALIDAD (1ERA. PARTE).

Facultad de Cs. Exactas, Ingeniería y Agrimensura Universidad Nacional de Rosario

OUTLINE

- 1 Introducción
- 2 ESPACIOS VECTORIALES CON PRODUCTO INTERNO
- BASES ORTOGONALES
- ESPACIOS ORTOGONALES
- **5** COMPLEMENTOS ORTOGONALES

VECTORES ORTOGONALES

En cualquier espacio vectorial de dimensión n, una base nos permite pensar sus elementos como una n-upla de escalares, a partir de su representación en la base dada.

En los primero cursos de matemática, aprendimos a expresar entes geométricos (curvas, superficies, volúmenes) en \mathbb{R}^2 o \mathbb{R}^3 en términos algebraicos. Esto fue posible a partir de la relación 1-1 entre un punto del plano (o del espacio) y un elemento de \mathbb{R}^2 (o de \mathbb{R}^3) ordenado, correspondientes a la descomposición de su **vector posición** en términos de los los **versores canónicos** \vec{i}, \vec{j} (y \vec{k}).

En la terminología de espacios vectoriales, los **versores canónicos** $\vec{i}=(1,0,0), \vec{j}=(0,1,0)$ y $\vec{k}=(0,0,1)$ son una base de \mathbb{R}^3 y cualquier punto P tiene asociado su representación (x,y,z) en esta base.

Pero sabemos que \mathbb{R}^3 tiene infinitas bases. Por ejemplo, (1,1,1), (1,1,0) y (1,0,0) también forman una base de \mathbb{R}^3 . Nos preguntamos por qué trabajamos siempre con la base de versores canónicos y no con cualquier otra

VECTORES ORTOGONALES

La base de los versores canónicos en \mathbb{R}^n tiene dos virtudes: sus vectores son perpendiculares y su longitud es 1. Esto es lo que se denomina una *base ortonormal* (vectores ortogonales y de norma 1).

Las ideas de ortogonalidad y ortonormalidad de las bases son parte de los conceptos fundacionales del Álgebra Lineal: necesitamos poder hacer los cálculos más sencillos (sic Strang).

Queremos extender esta idea de *perpendicularidad entre vectores* y *longitud de un vector* a cualquier espacio vectorial.

¿Cómo determinamos que dos vectores son perpendiculares en \mathbb{R}^3 ?.¿Cómo calculamos la longitud de un vector en \mathbb{R}^3 ? (Idem \mathbb{R}^2).

Ambas respuestas pueden ser dadas en función del producto escalar entre vectores.

VECTORES ORTOGONALES

Recordemos:

Dados \vec{u}, \vec{v} son dos vectores ("geométricos") en el espacio, su producto escalar es

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos(\vec{u}^{\wedge} \vec{v}).$$

Así, si \vec{u} y \vec{v} son no nulos, son perpendiculares si y solo si su producto escalar es cero.

Sabemos además que si $u=(u_1,u_2,u_3)$ y $v=(v_1,v_2,v_3)$ son las representaciones de \vec{u},\vec{v} en la base canónica, entonces

$$\vec{u} \cdot \vec{v} = u^T v = u_1 v_1 + u_2 v_2 + u_3 v_3,$$

lo cual es mucho más sencillo de calcular.

Por otro lado, gracias a Pitágoras, sabemos que $|\vec{u}|^2=u_1^2+u_2^2+u_3^2$ o, equivalentemente, $|\vec{u}|^2=\vec{u}\cdot\vec{u}=u^Tu$.

Para poder extender entonces las ideas de *ortogonalidad* y *norma* a cualquier espacio vectorial, deberemos definir un producto escalar o *producto interno*.

PRODUCTO INTERNO

(recordar: $\bar{z} = \text{conjugado de } z$)

Definición: Sea V un espacio vectorial sobre \mathbb{K} (\mathbb{R} o \mathbb{C}). Un producto interno sobre V es una función $\langle .,. \rangle$ que a cada par de vectores $u,v \in V$ le asigna un escalar $\langle u,v \rangle \in \mathbb{K}$ tal que para todo $\alpha \in \mathbb{K}$, $u,v,w \in V$ se verifica:

- (1) $\langle u, v \rangle = \overline{\langle v, u \rangle}$,
- (2) $\langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle$,
- (3) $\langle \alpha u, v \rangle = \alpha \langle u, v \rangle$,
- $(4) \langle u, u \rangle \ge 0,$
- (5) $\langle u, u \rangle = 0 \iff u = 0$

Ejercicio: Probar que todo producto interno satisface:

- $(u, v + w) = \langle u, v \rangle + \langle u, w \rangle.$

PRODUCTO INTERNO

Ejemplos:

- Recordemos que $\mathbb C$ es un espacio vectorial sobre $\mathbb C$. Definiendo $\langle z,w\rangle=z\bar w$ para todo $z,w\in\mathbb C$ ($\bar w=$ conjugado de w), es fácil probar que $\langle .,.\rangle$ es un producto interno en $\mathbb C$.
 - Más aún, si pensamos en el espacio vectorial \mathbb{C}^n y con \bar{z} indicamos la n-upla de números complejos correspondientes a los conjugados de las componentes de $z \in \mathbb{C}^n$, se puede verificar que $\langle z,w \rangle = z\bar{w}$ es un producto interno en \mathbb{C}^n . Se conoce como *producto interno canónico*.
- ② Ya conocemos el producto interno *canónico* en \mathbb{R}^2 . Sin embargo, podemos definir otros.
 - Definimos $\langle u,v\rangle=u_1v_1-u_2v_1-u_1v_2+4u_2v_2$, con $u=(u_1,u_2)$ y $v=(v_1,v_2)$. Probemos que $\langle .\,,\,.\rangle$ es realmente un producto interno:
 - ▶ Las condiciones (1), (2), (3) Son sencillas de verificar (ejercicio).
 - (4) $\langle u, u \rangle = u_1^2 2u_2u_1 + 4u_2^2 = (u_1 u_2)^2 + 3u_2^2 \ge 0.$
 - (5) $\langle u, u \rangle = 0 \iff (u_1 u_2)^2 + 3u_2^2 = 0 \iff (u_1 u_2)^2 = 0 \land u_2^2 = 0 \iff u_2 = 0 \land u_1^2 = 0 \iff u = 0.$

PRODUCTO INTERNO

Ejemplos:(continuación)

③ Sea V el espacio vectorial de los polinomios sobre \mathbb{C} o \mathbb{R} , de grado a lo sumo n y t_0, t_1, \ldots, t_n escalares distintos. Para $p; q \in V$ definimos

$$\langle p,q\rangle = \sum_{i=0}^n p(t_i)\,\bar{q}(t_i).$$

Ejercicio: Probar que es un producto interno. (Ayuda: recordar que si un polinomio de grado a lo sumo n tiene n+1 raíces distintas, ese polinomio es el polinomio nulo.)

③ Sea V el espacio vectorial de las funciones reales continuas en el intervalo [0,1]. Para f; g ∈ V sea

$$\langle f, g \rangle = \int_0^1 f(x)g(x)dx.$$

Ejercicio: Probar que es un producto interno. (Ayuda: recordar que si una función continua es positiva en un punto x_0 , por el teorema de conservación de signo será positiva en un todo un entorno de x_0 .)

NORMA

En un espacio vectorial con producto interno podemos definir el concepto de vectores *perpendiculares u ortogonales* y también el concepto de *norma* de un vector:

Definición: Sea V un espacio vectorial con un producto interno $\langle .,. \rangle$. Para todo $u,v \in V$:

- decimos que u es *perpendicular u ortogonal a v*, y lo notamos $u \perp v$, si $\langle u, v \rangle = 0$.
- ② La *norma de u* (inducida por $\langle .,. \rangle$) se denota ||u|| y su valor es $||u|| = \sqrt{\langle u,u \rangle}$. Equivalentemente, $||u||^2 = \langle u,u \rangle$ y $||u|| \ge 0$.

Observemos que el producto escalar de dos vectores x,y en \mathbb{R}^2 o en \mathbb{R}^3 , (definido en asignaturas anteriores) puede ser expresado como x^Ty . Es fácil ver que el producto escalar es un producto interno en estos espacios vectoriales. Con este producto interno la norma de un vector (en \mathbb{R}^2 y \mathbb{R}^3) es *su longitud* según la geometría euclídea y el Teorema de Pitágoras.

En efecto, si
$$x = (x_1, x_2, x_3) \in \mathbb{R}^3$$
, $||x|| = \sqrt{x_1^2 + x_2^2 + x_3^2}$.

NORMA

Es sabido que la norma euclídea en \mathbb{R}^2 y \mathbb{R}^3 , verifica las siguientes propiedades:

- $\|x\| \ge 0$
- $||x|| = 0 \Longleftrightarrow x = 0$
- $||x+y|| \le ||x|| + ||y||$ (designaldad triangular).

Otra propiedad muy importante que satisface esta norma es

Si recordamos que en \mathbb{R}^2 y \mathbb{R}^3 el producto escalar verificaba $\langle x,y\rangle=\|x\|\,\|y\|\cos(x^\wedge y)$, la desigualdad de Cauchy-Swartz es claramente válida.

Lo interesante es que toda norma proveniente de un producto escalar en cualquier espacio vectorial cumple con estas cuatro propiedades.

NORMA

Lema: En todo espacio vectorial con un producto interno la norma por él definida satisface las 5 propiedades presentadas anteriormente.

Prueba: Las propiedades (1), (2) y (3) son inmediatas. Para las dos restantes, precisamos probar primero la (5) y después la (4).

1 Debemos probar $|\langle x,y\rangle| \le ||x|| \, ||y||$. Claramente, la desigualdad vale si x=0.

Sea $x \neq 0$. Construimos $z = y - \frac{\langle x, y \rangle}{\|x\|^2} x$. Es fácil verificar (ejercicio) que

$$||z||^2 = ||y||^2 - \frac{\langle x, y \rangle^2}{||x||^2}.$$

Como $||z||^2 \ge 0$, resulta $||y||^2 ||x||^2 \ge \langle x, y \rangle^2$. Por lo tanto,

$$|\langle x, y \rangle| \le ||y|| \, ||x||.$$

PROPIEDADES DE LA NORMA

Prueba (continuación)

① Debemos probar $||x+y|| \le ||x|| + ||y||$. Tenemos

$$||x+y||^2 = ||x||^2 + 2\langle x, y\rangle + ||y||^2 \le ||x||^2 + 2|\langle x, y\rangle| + ||y||^2 \le$$

$$\leq ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2.$$

Por lo tanto, $||x+y|| \le ||x|| + ||y||$.

ÁNGULOS EN ESPACIOS VECTORIALES

En espacios vectoriales de funciones o matrices, y tampoco en \mathbb{R}^n con $n \geq 4$, no tenemos el concepto de *ángulo* entre dos vectores no nulos. Sin embargo, la desigualdad de Cauchy-Swartz nos permite definir este concepto en cualquier espacio vectorial con producto interno (sobre \mathbb{R}).

Sea V un espacio vectorial sobre \mathbb{R} , $x,y\in V$, $x\neq 0$, $y\neq 0$. Por Cauchy-Swartz sabemos que $-1\leq \frac{\langle x,y\rangle}{\|x\|\|y\|}\leq 1$. Por lo tanto, podemos definir el ángulo entre x e y como

$$\hat{xy} = \arccos \frac{\langle x, y \rangle}{\|x\| \|y\|}.$$

Observar que, con esta definición, tenemos que en cualquier espacio vectorial sobre \mathbb{R} con producto interno se verifica $\langle x,y\rangle = \|x\| \|y\| \cos(x\hat{y})$.

Observación: El *ángulo* (en particular, la ortogonalidad) entre dos vectores no depende de su norma. En efecto, si $x,y\in V$ y $\alpha,\beta\in\mathbb{R}$, entonces, $|\cos(\hat{xy})|=|\cos((\alpha x)(\beta y))|$. (Ejercicio).

ORTOGONALIDAD Y LINEAL INDEPENDENCIA

Lema: Sea V un espacio vectorial con producto interno y $W \subset V$ un conjunto vectores no nulos mutuamente ortogonales. Entonces, los vectores de W son vectores l.i..

Prueba: Consideremos una combinación lineal nula de los vectores v^1, \ldots, v^k de W: $\sum_{i=1}^k \alpha_i v^i = 0$. Para $j \in \{1, \ldots, k\}$, realizamos el producto escalar

$$\left\langle v^{j}, \sum_{i=1}^{k} \alpha_{i} v^{i} \right\rangle = \sum_{i=1}^{k} \overline{\alpha_{i}} \left\langle v^{j}, v^{i} \right\rangle = 0.$$

Como $v^j \perp v^i$ para todo $i \neq j$, resulta

$$\left\langle v^{j}, \sum_{i=1}^{k} \alpha_{i} v^{i} \right\rangle = \overline{\alpha_{j}} \left\langle v^{j}, v^{j} \right\rangle = 0.$$

Considerando que $v^j \neq 0$, tenemos que $\alpha_j = 0$ para todo $j \in \{1, \dots, k\}$. Por lo tanto, los vectores W son l.i..

Ejercicio: La recíproca del lema anterior no es válida.

ORTOGONALIDAD Y LINEAL INDEPENDENCIA

Observación: En el lema anterior, V puede ser un espacio de dimensión infinita y W un conjunto infinito de vectores ortogonales.

Ejemplo:

Sea V el espacio vectorial de las funciones reales continuas en el intervalo [0,1] con el producto interno $\langle f,g\rangle=\int_0^1 f(t)g(t)dt$.

Para cada $n \in \mathbb{N}$, consideremos las funciones

$$f_n(x) = \sqrt{2}\cos(2\pi nx)$$
, $g_n(x) = \sqrt{2}\sin(2\pi nx)$.

Puede probarse que el conjunto $\{f_n : n \in \mathbb{N}\} \cup \{g_n : n \in \mathbb{N}\}$ es un conjunto infinito de vectores ortogonales de V.

Más aún, para todo $n \in \mathbb{N}$, $||f_n|| = ||g_n|| = 1$.

Este tipo de espacios serán motivo de estudio en las asignaturas de análisis matemático.

BASES ORTONORMALES

Sea V es un espacio vectorial con producto interno $\langle .,. \rangle$ y $\mathscr{B} = \{u^1, ..., u^k\}$ una base de vectores mutuamente ortogonales (l.i.). Veremos que en este caso, es muy sencillo calcular la representación de cualquier vector en \mathscr{B} .

Sea $v \in V$. Buscamos $\alpha_i, i=1,\ldots,k$ tales que $v=\sum_{i=1}^k \alpha_i u^i$. Para todo $u^j \in \mathcal{B}$, tenemos:

$$\langle v, u^j \rangle = \sum_{i=1}^k \alpha_i \langle u^j, u^i \rangle = \alpha_j \langle u^j, u^j \rangle = \alpha_j \|u^j\|^2.$$

Por lo tanto, para $j = 1, \dots, k$,

$$\alpha_j = \frac{\left\langle v, u^j \right\rangle}{\left\| u^j \right\|^2}.$$

Observemos que si $||u^j|| = 1$ para todo j = 1, ..., k, tenemos

$$v = \sum_{i=1}^{k} \left\langle v, u^{i} \right\rangle u^{i}.$$

BASES ORTONORMALES

Como la ortogonalidad no se afecta *escalando* los vectores, si los vectores no tienen norma 1, podemos definir $\mathscr{B}'=\{w^j:w^j=\frac{u^j}{\|u^j\|};j=1,\ldots,k\}$, la cual resulta también base de V. (Justificar)

Claramente, los cálculos se simplifican cuando trabajamos con bases cuyos vectores, además de ser mutuamente ortogonales tienen todos norma 1.

Definición: Dado un espacio vectorial V con producto interno, una base de V es ortogonal si sus vectores son mutuamente ortogonales y es ortonormal si es base ortogonal y sus vectores tienen norma 1.

Los versores canónicos $e^i, i=1,\dots,n$ son la base ortonormal de \mathbb{R}^n más utilizada. Sin embargo, cualquier rotación de estos vectores configura una nueva base ortonormal. Así, dado cualquier ángulo θ , los vectores $v^1=(\cos\theta, sen\,\theta)$ y $v^2=(-sen\,\theta, \cos\theta)$ definen una base ortonormal de \mathbb{R}^2 .

Convenio: Salvo mención en contrario, el producto interno en \mathbb{R}^n es $\langle u, v \rangle = u^T v$.

La noción de ortogonalidad entre vectores puede ser extendido a ortogonalidad entre subespacios vectoriales.

Definición: Sean un espacio vectorial V con producto interno y dos subespacios W_1 y W_2 de V. Decimos que W_1 y W_2 son ortogonales si, para todo $u \in W_1$ y todo $v \in W_2$, se verifica $u \perp v$.

Observaciones:

- El subespacio nulo es ortogonal a cualquier otro subespacio.
- En \mathbb{R}^2 , la recta de ecuación y = x y la recta de ecuación y = -x son subespacios ortogonales.
- En \mathbb{R}^3 : el eje x y el eje z son subespacios ortogonales. El plano coordenado xy y el eje z son subespacios ortogonales. Los planos coordenados xy e yz, ¿son subespacios ortogonales?. No. Los vectores u=(1,1,0) (en el plano xy) y v=(0,1,1) (en el plano yz) no son ortogonales. Tampoco lo son u=(0,1,0) (en el plano xy) y u=(0,1,0) (en el plano yz).

Tenemos la siguiente condición necesaria para la ortogonalidad de subespacios:

Lema: Sea V un espacio vectorial con producto interno y W_1 , W_2 dos subespacios ortogonales de V. Entonces $W_1 \cap W_2 = \{0\}$.

Prueba: Sea $u \in W_1 \cap W_2$. Como W_1 y W_2 son ortogonales, $v \perp w$ para todo $v \in W_1$ y $w \in W_2$. En particular, tomando $v = u \in W_1$ y $w = u \in W_2$, resulta $u \perp u$ o, equivalentemente, $\langle u, u \rangle = \|u\|^2 = 0$. Por lo tanto, u = 0. **Ejercicio**: La condición del lema anterior no es suficiente.

Para decidir sobre la ortogonalidad de dos subespacios, sólo debemos chequear la ortogonalidad de sus vectores generadores.

Lema: Sea V un espacio vectorial con producto interno, $W_1=\langle U_1\rangle$ y $W_2=\langle U_2\rangle$ dos subespacios de V. Entonces, W_1 y W_2 son subespacios ortogonales si y solo si $u\bot w$ para todo $u\in U_1$ y todo $w\in U_2$. **Prueba**: Ejercicio.

El resultado anterior nos ayuda a descubrir que ya conocemos importantes pares de subespacios ortogonales.

Teorema:

Sea A una matriz de tamaño $m \times n$. Entonces:

- **①** El espacio fila y el espacio nulo de A son subespacios ortogonales de \mathbb{R}^n .
- ② El espacio columna y el espacio nulo a izquierda de A son subespacios ortogonales de \mathbb{R}^m .

Prueba:

- Sea $v \in N(A)$. Como Av = 0, para todo $i = 1, \ldots, m, A_iv = 0$. Por lo tanto, para todo $i = 1, \ldots, m, A_i \bot v$. Como las filas de A generan al espacio fila, los espacios son ortogonales.
- ② Ejercicio.

Nos enfocamos ahora en las dimensiones de subespacios ortogonales. Esto es, si V es un espacio de dimensión n y W_1, W_2 dos subespacios ortogonales de V, ¿qué podemos decir respecto a las dimensiones de W_1 y W_2 ?

Ejemplo: Sean $v^1=(1,0,0,0), v^2=(1,1,0,0), w=(0,0,4,5), V=\langle \{v^1,v^2\}\rangle$ y $W=\langle w\rangle$. Es fácil ver que V y W son subespacios ortogonales de \mathbb{R}^4 .

Observemos que dim(V) + dim(W) = 3. O sea, *queda espacio* en \mathbb{R}^4 , por fuera del espacio generado por v^1, v^2 y w.

En efecto, tenemos lugar para un espacio de dimensión 1, por ejemplo, el espacio L generado por z=(0,0,5,-4). Es fácil probar que L es ortogonal a V y a W. (Ejercicio)

Pregunta: ¿Existe algún subespacio de \mathbb{R}^4 que sea ortogonal con V, W y L?

Veamos primero el siguiente resultado técnico:

Lema: Sea V un espacio vectorial con producto interno y W_1,W_2 dos subespacios ortogonales. Sean U_1 y U_2 conjuntos de vectores l.i de W_1 y W_2 , respectivamente. Entonces, $U=U_1\cup U_2$ es un conjunto de vectores l.i. de V.

Prueba:

Sean $U_1 = \{u_1^i : i = 1, ..., k\}$ y $U_2 = \{u_2^j : j = 1, ..., t\}$ y consideremos una combinación lineal nula de vectores de $U = U_1 \cup U_2$:

$$\sum_{i=1}^{k} \alpha_{i} u_{1}^{i} + \sum_{j=1}^{t} \beta_{j} u_{2}^{j} = 0.$$

Sea $w=\sum_{i=1}^k \alpha_i u_1^i=\sum_{j=1}^t (-\beta_j) u_2^j$. Observemos que $w\in \langle U_1\rangle\cap \langle U_2\rangle$ Por lo tanto (justificar)

$$w = \sum_{i=1}^{k} \alpha_i u_1^i = \sum_{j=1}^{t} (-\beta_j) u_2^j = 0.$$

Como los vectores de U_1 y de U_2 son l.i., resulta $\alpha_i = 0$ para todo i = 1, ..., k y $\beta_i = 0$ para todo j = 1, ..., t.

Podemos ahora probar:

Teorema: Sea V un espacio vectorial con producto interno y sean W_1, W_2 subespacios ortogonales de V. Entonces,

$$dim(W_1) + dim(W_2) \le dim(V).$$

Prueba: Para i=1,2, sea \mathcal{B}_i una base de W_i . Como son espacios ortogonales, $\mathcal{B}_1\cap\mathcal{B}_2=\emptyset$ (justificar). Por el lema anterior, $\mathcal{B}_1\cup\mathcal{B}_2$ es un conjunto de vectores l.i. Por lo tanto,

$$\dim(V) \geq |\mathscr{B}_1 \cup \mathscr{B}_2| = |\mathscr{B}_1| + |\mathscr{B}_2| = \dim(W_1) + \dim(W_2)$$

¿En qué casos $dim(W_1) + dim(W_2) = dim(V)$? Cuando son complemetarios (respecto a la ortogonalidad).

Lema: Sea V un espacio vectorial de dimensión n, con producto interno, y W_1, W_2 subespacios ortogonales de V tales que $dim(W_1) + dim(W_2) = n$. Entonces,

$$W_2 = \{u \in V : u \perp v \text{ para todo } v \in W_1\}.$$

Prueba: Sea $U=\{u\in V: u\perp v \text{ para todo } v\in W_1\}$. Como $W_2\perp W_1$, claramente, $W_2\subset U$. Debemos sólo probar $U\subset W_2$. Supongamos lo contrario, esto es, existe $u\in U\setminus W_2$. Entonces, $u\neq 0$. (justificar). Sean \mathscr{B}^1 y \mathscr{B}^2 bases de W_1 y W_2 , respectivamente. Entonces, $\mathscr{B}^1\cup \mathscr{B}^2\cup \{u\}$ es un conjunto de n+1 vectores l.i. de V, una contradicción.

Definición: Dado un espacio vectorial V con producto interno y W un subespacio de V, llamamos *complemento ortogonal de* W, y lo notamos W^{\perp} , al subespacio de V determinado por todos los vectores que son ortogonales a todos los vectores de W. Esto es,

$$W^{\perp} = \{ u \in V : u \perp v \text{ para todo } v \in W \}$$

Ejercicio: Probar:

- $lackbox{0} \ W^{\perp}$ es un subespacio vectorial de V y $W \perp W^{\perp}$.
- $(W^{\perp})^{\perp} = W$

Con esta nueva definición y notación el lema anterior puede ser reescrito así:

Lema: Sea V un espacio vectorial con producto interno de dimensión n y W_1, W_2 dos subespacios ortogonales de V tales que $dim(W_1) + dim(W_2) = n$. Entonces, $W_2 = W_1^{\perp}$.

Como un corolario de este resultado obtenemos:

Teorema Fundamental del Álgebra Lineal (Parte II): Śea A una matriz $m \times n$. Entonces,

- \bullet El espacio fila y el espacio nulo de A son complementos ortogonales en \mathbb{R}^n
- ② El espacio columna y el espacio nulo a izquierda de A son complementos ortogonales en \mathbb{R}^m .

Observación: Veremos más adelante que la recíproca del lema anterior es cierta. Esto es, el siguiente resultado es válido:

Teorema: Sea V un espacio vectorial con producto interno de dimensión n y W_1, W_2 dos subespacios ortogonales de V. Entonces,

$$dim(W_1) + dim(W_2) = n \iff W_2 = W_1^{\perp}.$$

Como consecuencia del teorema anterior tenemos que un par de los subespacios complementos ortogonales *descomponen el espacio vectorial* en el siguiente sentido:

Teorema: Sea V un espacio vectorial con producto interno, de dimensión finita, y W un subespacio de V. Entonces, para todo $v \in V$ existen únicos $w \in W$ y $w^{\perp} \in W^{\perp}$ tales que $v = w + w^{\perp}$.

COMPLEMENTOS ORTOGONALES

Prueba:

Sea $\{v^1,\ldots,v^k\}$ una base de W y $\{w^1,\ldots,w^{n-k}\}$ una base de W^\perp . Por lo tanto, $\{v^1,\ldots,v^k\}\cup\{w^1,\ldots,w^{n-k}\}$ es una base de V (justificar).

Sea
$$v \in V$$
 tal que $v = \sum_{i=1}^k \alpha_i v^i + \sum_{j=1}^{n-k} \beta_j w^j$. Si $w = \sum_{i=1}^k \alpha_i v^i$ y $w^\perp = \sum_{j=1}^{n-k} \beta_j w^j$ tenemos $w \in W$, $w^\perp \in W^\perp$ y $v = w + w^\perp$.

Para probar que w y w^{\perp} son únicos, sean $z \in W$ y $z^{\perp} \in W^{\perp}$ tales que $v = z + z^{\perp} = w + w^{\perp}$. Entonces, $w - z = z^{\perp} - w^{\perp}$.

$$v = z + z^{\perp} = w + w^{\perp}$$
. Entonces, $w - z = z^{\perp} - w^{\perp}$.

Como
$$w-z\in W$$
 y $z^\perp-w^\perp\in W^\perp$, resulta $w-z=z^\perp-w^\perp=0$ y por lo tanto, $z=w$ y $z^\perp=w^\perp$.

Corolario: Sea A una matriz $m \times n$. Entonces:

- Para todo $x \in \mathbb{R}^n$ existen únicos $x_F \in C(A^T)$ y $x_N \in N(A)$ tales que $x = x_F + x_N$.
- ② Para todo $y \in \mathbb{R}^m$ existen únicos $y_C \in C(A)$ y $y_I \in N(A^T)$ tales que $y = y_C + y_I$.