EXERCICE 1 (Tous les résultats doivent être justifiés)

On considère (C_f) la courbe représentative d'une fonction f dans un repère.

Partie A

1) Déterminer son ensemble de définition D.

SOLUTION:

L'ensemble de définition est D = [-3; 4.]. [0.25 point(s)]

2) Déterminer le maximum et le minimum sur D.

SOLUTION:

Le maximum de f sur D est 10 [0.25 point(s)] Le minimum de f sur D est -6. [0.25 point(s)]

3) a. Quelle est l'image de 0 ?

SOLUTION:

L'image de 0 est f(0) = -5. [0.25 point(s)]

b. Quels sont les antécédents de 2 ?

SOLUTION:

Les antécédents de 2 sont (valeurs approchées) -1.8 et 3.7 [0.25 point(s)]

4) Résoudre graphiquement les équations

a.
$$f(x) = 1$$

SOLUTION:

$$f(x) = 1 \text{ pour } x \approx 3.6 \text{ et } x \approx -1.6 \text{ [0.25 point(s)]}$$

b.
$$f(x) = 0$$
.

SOLUTION:

$$f(x) = 0 \text{ pour } x \approx -1.5 \text{ et } x \approx 3.5 \text{ [0.25 point(s)]}$$

5) Résoudre graphiquement l'inéquation $f(x) \ge -3$.

SOLUTION:

Par lecture graphique on trouve $S = [-3; -0.7] \cup [2.7; 4]$ [0.25 point(s)]

6) Dresser la tableau de variation sur D.

SOLUTION:

x	-3		1		4.
	10				3
f(x)		\searrow		7	
			-6		

[0.5 point(s)]

Partie B

On sait maintenant, en plus, que f est définie par $f(x) = x^2 - 2x - 5$.

1) Déterminer les images de 0, -1 et $\sqrt{2}$.

SOLUTION:

On a :

$$\begin{array}{lcl} f(0) & = & 0^2 - 2 \times 0 - 5 = -5 \\ f(-1) & = & (-1)^2 - 2 \times (-1) - 5 = -2 \\ f(\sqrt{2}) & = & (\sqrt{2})^2 - 2 \times \sqrt{2} - 5 = 2 - 2 \times \sqrt{2} - 5 = -3 - 2\sqrt{2} \end{array}$$

[0.75 point(s)]

2) Montrer que $f(x) = (x-1)^2 - 6$.

SOLUTION:

$$(x-1)^{2}-6 = x^{2}-2x \times 1 + 1^{2}-6$$
$$= x^{2}-2x-5$$
$$= f(x)$$

[0.5 point(s)]

3) Déterminer les éventuels antécédents de 0 et 5 . On donnera les solutions exactes.

SOLUTION:

Il faut résoudre f(x) = 0:

$$f(x) = 0$$

$$(x-1)^2 - 6 = 0$$

$$(x-1)^2 - (\sqrt{6})^2 = 0$$

$$(x-1-\sqrt{6})(x-1+\sqrt{6}) = 0$$

Donc (propriété équation-produit), comme $1 + \sqrt{6} \in D$ et $1 - \sqrt{6} \in D$, on a l'ensemble des solutions $S = \{1 + \sqrt{6}; 1 - \sqrt{6}\}$ [0.5 point(s)]

Il faut résoudre f(x) = 5:

$$f(x) = 5$$

$$(x-1)^2 - 6 = 5$$

$$(x-1)^2 - 11 = 0$$

$$(x-1)^2 - (\sqrt{11})^2 = 0$$

$$(x-1-\sqrt{11})(x-1+\sqrt{11}) = 0$$

Donc (propriété équation-produit), comme $1 + \sqrt{11} \notin D$ et $1 - \sqrt{11} \in D$, on a l'ensemble des solutions $S = \{1 - \sqrt{11}\}[\mathbf{0.75 \ point(s)}]$

EXERCICE 2 (Tous les résultats doivent être justifiés)

On considère (C_f) la courbe représentative d'une fonction f dans un repère.

Partie A

1) Déterminer son ensemble de définition D.

SOLUTION:

L'ensemble de définition est D = [-3; 4]. [0.25 point(s)]

2) Déterminer le maximum et le minimum sur D.

SOLUTION:

Le maximum de f sur D est 13 [0.25 point(s)] Le minimum de f sur D est -3. [0.25 point(s)]

3) a. Quelle est l'image de 0 ?

SOLUTION:

L'image de 0 est f(0) = 12. [0.25 point(s)]

b. Quels sont les antécédents de 7 ?

SOLUTION:

Les antécédents de 7 sont (valeurs approchées) 3.45 et -1.45 [0.25 point(s)]

4) Résoudre graphiquement les équations

a.
$$f(x) = -1$$

SOLUTION:

$$f(x) = -1$$
 pour $x \approx 4.74$ et $x \approx -2.74$. [0.25 point(s)] b. $f(x) = 0$.

SOLUTION:

$$f(x) = -5 \text{ pour } x \approx 5.24 \text{ et } x \approx -3.24. \text{ [0.25 point(s)]}$$

5) Résoudre graphiquement l'inéquation $f(x) \geq 6$.

SOLUTION:

Par lecture graphique on trouve S = [-1.65; 3.65] [0.25 point(s)]

6) Dresser la tableau de variation sur D .

SOLUTION:

x	-3		1		4
			13		
f(x)		7		\searrow	
	-3				4

[0.5 point(s)]

Partie B

On sait maintenant, en plus, que f est définie par $f(x) = -x^2 + 2x + 12$.

1) Déterminer les images de 0, -1 et $\sqrt{2}$.

SOLUTION:

On a :

$$f(0) = 12$$

$$f(-1) = 2(-1) - (-1)^{2} + 12 = 9$$

$$f(\sqrt{2}) = -\left(\sqrt{2}\right)^{2} + 2\sqrt{2} + 12 = 2\sqrt{2} + 10$$

[0.75 point(s)]

2) Montrer que $f(x) = 13 - (x - 1)^2$.

SOLUTION:

$$13 - (x - 1)^{2} = -x^{2} + 2x + 12$$
$$= -x^{2} + 2x + 12$$
$$= f(x)$$

[0.5 point(s)]

3) Déterminer les éventuels antécédents de 5 et -2. On donnera les solutions exactes.

SOLUTION:

Il faut résoudre f(x) = 5:

$$f(x) = 5 8 - (x - 1)^{2} = 0 - (x - 1 + 2\sqrt{2}) (x - 2\sqrt{2} - 1) = 0$$

Donc (propriété équation-produit), comme $1 - 2\sqrt{2} \in D$ et $1 + 2\sqrt{2} \in D$, on a l'ensemble des solutions $S = \{1 - 2\sqrt{2}; 1 + 2\sqrt{2}\}$ [0.5 point(s)]

Il faut résoudre f(x) = -2:

$$f(x) = -2$$

$$15 - (x - 1)^{2} = 0$$

$$- (x - 1 + \sqrt{15}) (x - \sqrt{15} - 1) = 0$$

Donc (propriété équation-produit), comme $1 - \sqrt{15} \in D$ et $1 + \sqrt{15} \notin D$, on a l'ensemble des solutions $S = \{1 - \sqrt{15}\}$ [0.75 point(s)]

EXERCICE 3 (Tous les résultats doivent être justifiés)

On considère (C_f) la courbe représentative d'une fonction f dans un repère.

Partie A

1) Déterminer son ensemble de définition D.

SOLUTION:

L'ensemble de définition est D = [-3; 4]. [0.25 point(s)]

2) Déterminer le maximum et le minimum sur D.

SOLUTION:

Le maximum de f sur D est 13 [0.25 point(s)] Le minimum de f sur D est -3. [0.25 point(s)]

3) a. Quelle est l'image de 0 ?

SOLUTION:

L'image de 0 est f(0) = 12. [0.25 point(s)]

b. Quels sont les antécédents de 7 ?

SOLUTION:

Les antécédents de 7 sont (valeurs approchées) 3.45 et -1.45 [0.25 point(s)]

4) Résoudre graphiquement les équations

a.
$$f(x) = -1$$

SOLUTION:

$$f(x) = -1$$
 pour $x \approx 4.74$ et $x \approx -2.74$. [0.25 point(s)]

b.
$$f(x) = 0$$
.

SOLUTION:

$$f(x) = -5 \text{ pour } x \approx 5.24 \text{ et } x \approx -3.24. \text{ [0.25 point(s)]}$$

5) Résoudre graphiquement l'inéquation $f(x) \ge 6$.

SOLUTION:

Par lecture graphique on trouve S = [-1.65; 3.65] [0.25 point(s)]

6) Dresser la tableau de variation sur D.

SOLUTION:

x	-3		1		4
			13		
f(x)		7		\searrow	
	-3				4

[0.5 point(s)]

Partie B

On sait maintenant, en plus, que f est définie par $f(x) = -x^2 + 2x + 12$.

1) Déterminer les images de 0, -1 et $\sqrt{2}$.

SOLUTION:

On a:

$$f(0) = 12$$

$$f(-1) = 2(-1) - (-1)^{2} + 12 = 9$$

$$f(\sqrt{2}) = -(\sqrt{2})^{2} + 2\sqrt{2} + 12 = 2\sqrt{2} + 10$$

[0.75 point(s)]

2) Montrer que $f(x) = 13 - (x - 1)^2$.

SOLUTION:

$$13 - (x - 1)^{2} = -x^{2} + 2x + 12$$
$$= -x^{2} + 2x + 12$$
$$= f(x)$$

[0.5 point(s)]

3) Déterminer les éventuels antécédents de 5 et -2. On donnera les solutions exactes.

SOLUTION:

Il faut résoudre f(x) = 5:

$$f(x) = 5 8 - (x - 1)^{2} = 0 - (x - 1 + 2\sqrt{2}) (x - 2\sqrt{2} - 1) = 0$$

Donc (propriété équation-produit), comme $1 - 2\sqrt{2} \in D$ et $1 + 2\sqrt{2} \in D$, on a l'ensemble des solutions $S = \{1 - 2\sqrt{2}; 1 + 2\sqrt{2}\}$ [0.5 point(s)]

Il faut résoudre f(x) = -2:

$$f(x) = -2$$

$$15 - (x - 1)^{2} = 0$$

$$- (x - 1 + \sqrt{15}) (x - \sqrt{15} - 1) = 0$$

Donc (propriété équation-produit), comme $1 - \sqrt{15} \in D$ et $1 + \sqrt{15} \notin D$, on a l'ensemble des solutions $S = \{1 - \sqrt{15}\}$ [0.75 point(s)]

EXERCICE 4 (Tous les résultats doivent être justifiés)

On considère (C_f) la courbe représentative d'une fonction f dans un repère.

Partie A

1) Déterminer son ensemble de définition D.

SOLUTION:

L'ensemble de définition est D = [-3; 4]. [0.25 point(s)]

2) Déterminer le maximum et le minimum sur D.

SOLUTION:

Le maximum de f sur D est 13 [0.25 point(s)] Le minimum de f sur D est -3. [0.25 point(s)]

3) a. Quelle est l'image de 0 ?

SOLUTION:

L'image de 0 est f(0) = 12. [0.25 point(s)]

b. Quels sont les antécédents de 7 ?

SOLUTION:

Les antécédents de 7 sont (valeurs approchées) 3.45 et -1.45 [0.25 point(s)]

4) Résoudre graphiquement les équations

a.
$$f(x) = -1$$

SOLUTION:

$$f(x) = -1 \text{ pour } x \approx 4.74 \text{ et } x \approx -2.74. \text{ [0.25 point(s)]}$$

b.
$$f(x) = 0$$
.

SOLUTION:

$$f(x) = -5$$
 pour $x \approx 5.24$ et $x \approx -3.24$. [0.25 point(s)]

5) Résoudre graphiquement l'inéquation $f(x) \ge 6$.

SOLUTION:

Par lecture graphique on trouve S = [-1.65; 3.65] [0.25 point(s)]

6) Dresser la tableau de variation sur D.

SOLUTION:

$$\begin{array}{c|ccccc}
x & -3 & 1 & 4 \\
\hline
f(x) & & & 13 \\
-3 & & & 4
\end{array}$$

[0.5 point(s)]

Partie B

On sait maintenant, en plus, que f est définie par $f(x) = -x^2 + 2x + 12$.

1) Déterminer les images de 0, -1 et $\sqrt{2}$.

SOLUTION:

On a:

$$f(0) = 12$$

$$f(-1) = 2(-1) - (-1)^{2} + 12 = 9$$

$$f(\sqrt{2}) = -(\sqrt{2})^{2} + 2\sqrt{2} + 12 = 2\sqrt{2} + 10$$

[0.75 point(s)]

2) Montrer que $f(x) = 13 - (x - 1)^2$.

SOLUTION:

$$13 - (x - 1)^{2} = -x^{2} + 2x + 12$$
$$= -x^{2} + 2x + 12$$
$$= f(x)$$

[0.5 point(s)]

3) Déterminer les éventuels antécédents de 5 et -2. On donnera les solutions exactes.

SOLUTION:

Il faut résoudre f(x) = 5:

$$f(x) = 5 8 - (x - 1)^{2} = 0 - (x - 1 + 2\sqrt{2}) (x - 2\sqrt{2} - 1) = 0$$

Donc (propriété équation-produit), comme $1-2\sqrt{2}\in D$ et $1+2\sqrt{2}\in D$, on a l'ensemble des solutions $S=\{1-2\sqrt{2}\,;\,1+2\sqrt{2}\}$ [0.5 point(s)]

Il faut résoudre f(x) = -2:

$$\begin{array}{lcl} f(x) & = & -2 \\ 15 - (x - 1)^2 & = & 0 \\ - \left(x - 1 + \sqrt{15} \right) \left(x - \sqrt{15} - 1 \right) & = & 0 \end{array}$$

Donc (propriété équation-produit), comme $1 - \sqrt{15} \in D$ et $1 + \sqrt{15} \notin D$, on a l'ensemble des solutions $S = \{1 - \sqrt{15}\}[\mathbf{0.75 \ point(s)}]$