Tilastollinen päättely

2. kurssikoe 28.2.2013

Tentissä saa olla mukana kirjoitusvälineet ja laskin.

1. Oletetaan, että havaintoja vastaavat satunnaismuuttujat Y_1, \ldots, Y_n ovat riippumattomia ja noudattavat kukin jatkuvaa jakaumaa, jonka tiheysfunktio on

$$f(y; \theta) = \begin{cases} \theta y^{\theta - 1}, & \text{kun } 0 \le y \le 1\\ 0, & \text{muulloin} \end{cases}$$

jossa $\theta > 0$. Etsi parametrille θ yksiulotteinen tyhjentävä tunnusluku.

2. Tilastollisen mallin parametri on $\boldsymbol{\theta}$ ja estimoitavana on sen reaalinen funktio eli muunnos $g(\boldsymbol{\theta})$. Selosta lyhyesti miten määritellään estimaattorin T (a) harhattomuus, (b) asymptoottinen harhattomuus ja (c) tarkentuvuus. Oletetaan, että t_1, \ldots, t_n ovat tunnettuja positiivisia reaalilukuja ja havaintoja vastaavat satunnaismuuttujat ovat $Y_1, \ldots, Y_n \perp$, jossa $Y_i \sim Exp(t_i/\theta)$. Parametrin θ estimointiin käytetään estimaattoria

$$T = \frac{1}{n} \sum_{i=1}^{n} t_i Y_i.$$

Näytä, että tämä estimaattori on harhaton ja laske sen varianssi. Onko se tarkentuva?

3. Oletetaan, että havaintoja vastaavat satunnaismuuttujat Y_1, \ldots, Y_n ovat riippumattomia ja noudattavat kukin jatkuvaa jakaumaa, jonka tiheysfunktio on

$$f(y;\theta) = \theta^{-2}y \exp(-y/\theta), \quad y > 0,$$

jossa θ on positiivinen parametri. Kysymyksessä on gammajakauman erikoistapaus. Integroimalla nähdään, että $E(Y_i) = 2\theta$. Johda Raon testisuure nollahypoteesille $H_0: \theta = \theta_0$ kaksisuuntaista vaihtoehtoa $H_1: \theta \neq \theta_0$ vastaan. Mitä jakaumaa testisuure noudattaa approksimatiivisesti?

4. a) Olkoon Y_1, \ldots, Y_n satunnaisotos jakaumasta, joka riippuu reaaliarvoisesta parametrista θ . Miten määritellään parametrin θ luottamusväli luottamustasolla $1 - \alpha$ (eli $100(1 - \alpha)\%$ luottamusväli)?

1

b) Olkoot $Y_1, \ldots, Y_n \sim Exp(1/\theta) \perp \!\!\! \perp$. Johda odotusarvolle θ luottamusväli luottamustasolla $1 - \alpha$.

Vihje:
$$\sum_{i=1}^{n} Y_i \sim G(n, 1/\theta)$$
 ja $\frac{2}{\theta} \sum_{i=1}^{n} Y_i \sim \chi^2(2n)$.

Muistin tueksi

- Jos satunnaismuuttuja Y noudattaa eksponenttijakaumaa parametrina λ (eli $Y \sim Exp(\lambda)$), niin sen tiheysfunktio on $f(y;\lambda) = \lambda e^{-\lambda y}$ ja kertymäfunktio on $F(y;\lambda) = 1 e^{-\lambda y}$, y > 0. Lisäksi $E(Y) = 1/\lambda$ ja $var(Y) = 1/\lambda^2$.
- \bullet Satunnaismuuttuja Y noudattaa gammajakaumaa parametrein κ ja λ , jos sen tiheysfunktio on muotoa

$$f_Y(y;\kappa,\lambda) = \begin{cases} \frac{\lambda^{\kappa}}{\Gamma(\kappa)} y^{\kappa-1} e^{-\lambda y}, & \text{kun } y > 0, \\ \\ 0, & \text{muulloin.} \end{cases}$$

Tällöin merkitään $Y \sim G(\kappa, \lambda)$, jossa $\kappa > 0$ ja $\lambda > 0$. Gammajakauman odotusarvo on κ/λ ja varianssi κ/λ^2 . Kun $Y_1, \ldots, Y_k \perp \!\!\!\perp$ ja $Y_i \sim G(\kappa_i, \lambda)$, niin $\sum_{i=1}^k Y_i \sim G(\sum_{i=1}^k \kappa_i, \lambda)$.

• Gamma-funktion $\Gamma(x)$ ominaisuuksia:

(a)
$$\Gamma(x+1) = x\Gamma(x), \ x > 0.$$

(b)
$$\Gamma(n) = \prod_{i=1}^{n-1} i = (n-1)!, \quad n = 1, 2, 3, \dots.$$