IV.

Lors d'une transformation nucléaire, les éléments ne se conservent pas mais il y a conservation du nombre de masse A et du nombre de charge Z avant et après la transformation : lois de soddy

1. Désintégration nucléaire spontanée (radioactivité)

C'est une réaction nucléaire spontanée : un noyau se divise spontanément en deux plus petits. On parle de radioactivité alpha (α) lorsque l'un des deux noyaux produits est un noyau d'hélium (appelé aussi particule α)

Exemple : désintégration du radium en radon + hélium, c'est une radioactivité alpha (production d'un noyau d'hélium)

$$^{226}_{88} Ra \rightarrow ^{222}_{86} Rn + ^{4}_{2} He$$
Noyau père Noyaux fils particule α

(lois de soddy : 226 = 222 + 4 et 88 = 86 + 2)

2. Fission nucléaire

Un noyau se divise en deux plus petits, elle peut être provoquée par action d'une particule :

Exemple: fission nucléaire dans une centrale nucléaire
1_0
n + $^{235}_{92}$ U \rightarrow $^{140}_{54}$ Xe + $^{94}_{38}$ Sr + 2 1_0 n Noyau père Noyaux fils (lois de soddy : 1 + 235 = 140 + 94 + 2×1 et 92 = 54 + 38)

3. Fusion nucléaire

Deux noyaux fusionnent pour en former un plus grand.

Exemple: réactions au cœur du Soleil
$${}^2_1H + {}^3_1H \rightarrow {}^4_2He + {}^1_0n$$

(lois de soddy : 3 + 2 = 4 + 1 = 5 et 1 + 1 = 2 + 0)

4. Energie de transformation nucléaire

Lors d'une réaction nucléaire, il y a libération dans le milieu extérieur d'une partie de l'énergie contenue dans les noyaux réactifs.