Let V be a vector space with dimension 2 with a linear transformation $T:V\to V$. Furthermore, we will associate $V\to A^2(V)$, the space of antisymmetric bilinear forms on V and $T\to A^2(T):A^2(V)\to A^2(V)$.

By theorem, since dim V=2, dim $A^2(V)=1$, which implies that $A^2(T)$ is a scalar multiplication by the identity: $A^2(Tv)=\lambda_T\operatorname{Id}$. Furthermore, if $A^2(S):A^2(V)\to A^2(V)$ and $A^2(T):A^2(V)\to A^2(V)$, $A^2(S\circ T)=A^2(T)\circ A^2(S)$; then for dim V=2, $\lambda_{S\circ T}=\lambda_S\cdot\lambda_T$.

We have therefore just created a "recipe"

$$\lambda_{(-)}: \operatorname{Hom}(V, V) \to F$$

such that

$$T \mapsto \lambda_T$$
.

This map λ is the **determinant** of T. Note that as above, it satisfies multiplicativity; moreover, this definition is *basis-free* or *invariant*.

Choose a basis of $V \{v_1, v_2\}$. Then

$$v_1^* \wedge v_2^* = v_1^* \bigoplus v_2^* - v_2^* \bigoplus v_1^*$$

is a basis of $A^2(V)$ by theorem. Applying $A^2(T)$ to the basis of $A^2(V)$,

$$A^{2}(T)(v_{1}^{*} \wedge v_{2}^{*}) = \lambda_{T}v_{1}^{*} \wedge v_{2}^{*}.$$

Then applying the basis of V to both sides of this result,

$$A^{2}(T)(v_{1}^{*} \wedge v_{2}^{*})(v_{1}, v_{2}) = \lambda_{T}v_{1}^{*} \wedge v_{2}^{*}(v_{1}, v_{2})$$

$$= \lambda_{T}$$

$$A^{2}(T)(v_{1}^{*} \wedge v_{2}^{*})(v_{1}, v_{2}) = (v_{1}^{*} \wedge v_{2}^{*})(Tv_{1}, Tv_{2})$$

$$Tv_{1} = av_{1} + cv_{2}$$

$$Tv_{2} = bv_{1} + dv_{2}$$

$$(v_{1}^{*} \wedge v_{2}^{*})(av_{1} + cv_{2}, bv_{1} + dv_{2}) = abv_{1}^{*} \wedge v_{2}^{*}(v_{1}, v_{1}) + adv_{1}^{*} \wedge v_{2}^{*}(v_{1}, v_{2})$$

$$+ cbv_{1}^{*} \wedge v_{2}^{*}(v_{2}, v_{1}) + cdv_{1}^{*} \wedge v_{2}^{*}(v_{2}, v_{2})$$

$$= ad - bc$$

$$\therefore \lambda_{T} = ad - bc$$

THE KRONECKER PRODUCT

The **Kronecker product** of a matrix $A \in \operatorname{Mat}_{n \times n}(F)$ is

$$kron(A, A) = A \bigoplus A = \begin{bmatrix} a_{11}A & a_{12}A & \dots & a_{1n}A \\ a_{21}A & a_{22}A & \dots & a_{2n}A \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}A & a_{n2}A & \dots & a_{nn}A \end{bmatrix}$$

with dimension $(n \times n) \cdot (n \times n)$.

Let V be a vector space with dimension n, let $T: V \to V$ be a linear transformation, and let $v_1, ..., v_n$ be a basis of V. Then $v_1^*, ..., v_n^*$ is the dual basis of V. Denote T by a matrix A, such that $T^* \mapsto A^T$.

Consider the space $\operatorname{Bil}(V)$, the space of bilinear forms on V, and construct a map $\tilde{T} = \operatorname{Bil}(T) : \operatorname{Bil}(V) \to \operatorname{Bil}(V)$. We are going to introduce the **lexicographic order** on $v_1, ..., v_n$, such that $B = (v_1^* \bigoplus v_1^*, ..., v_1^* \bigoplus v_n^*, v_2^* \bigoplus v_1^*, ..., v_2^* \bigoplus v_n^*, ..., v_n^* \bigoplus v_1^*, ..., v_n^* \bigoplus v_n^*)$.

In the original matrix A, note that $a_{ij} = (Tv_j)_i = v_i^*(Tv_j)$. Consider the matrix \tilde{A} corresponding to \tilde{T} ; then the rows and columns are indexed by the lexicographic order (1,1),...,(1,n),...,(n,1),...,(n,n). Then every element in \tilde{A} is indexed by two pairs (i,j) and (k,l); then

$$\tilde{a}_{(i,j),(k,l)} = (\tilde{T}(v_k^* \bigoplus v_l^*))_{(i,j)}$$

$$= \tilde{T}(v_k^* \bigoplus v_l^*)(v_i, v_j)$$

$$= v_k^* \bigoplus v_l^*(Tv_i, Tv_j)$$

$$= v_k^*(Tv_i)v_l^*(Tv_j)$$

$$= a_{ki}a_{lj}$$

This matrix is exactly $A^T \bigoplus A^T$.

For $S^2(V)$, consider the basis $v_i^* \odot v_j^*$, $1 \le i \le j \le n$. However, since this space is symmetric, (1,2)=(2,1), so there are only $\frac{1}{2}n(n+1)$ elements. Again, every element of \tilde{A} is indexed by two pairs (i,j),(k,l), where $i \le j$ and $k \le l$. Then

$$a_{(i,j),(k,l)} = a_{ki}a_{lj} + a_{li}a_{kj},$$

and if we are considering the antisymmetric space,

$$a_{(i,j),(k,l)} = a_{ki}a_{lj} - a_{li}a_{kj}.$$