EE 160 SIST, Shanghai Tech

Nonlinear Control Systems

- Nonlinear Differential Equations
- Existence and uniqueness of solutions
- Taylor-Model Based Integrators
- Runge-Kutta Integrators
- Linear Approximation of Nonlinear Control Systems

Boris Houska 10-1

Contents

- Nonlinear Differential Equations
- Existence and uniqueness of solutions
- Taylor-Model Based Integrators
- Runge-Kutta Integrators
- Linear Approximation of Nonlinear Control Systems

Problem Formulation

The focus of this lecture is on scalar ordinary differential equations (ODEs),

$$\forall t \in [0,T], \qquad \dot{x}(t) = f(t,x(t)) \quad \text{with} \quad x(0) = x_0 \; .$$

Here, $x:[0,T]\to\mathbb{R}$ is the state trajectory.

Assumptions

• The function $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ may be nonlinear.

• The initial value $x_0 \in \mathbb{R}$ is given

Problem Formulation

The focus of this lecture is on scalar ordinary differential equations (ODEs),

$$\forall t \in [0, T], \quad \dot{x}(t) = f(t, x(t)) \quad \text{with} \quad x(0) = x_0.$$

Here, $x:[0,T]\to\mathbb{R}$ is the state trajectory.

Assumptions:

- The function $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ may be nonlinear.
- ullet The initial value $x_0\in\mathbb{R}$ is given.

Problem Formulation

The focus of this lecture is on scalar ordinary differential equations (ODEs),

$$\forall t \in [0, T], \quad \dot{x}(t) = f(t, x(t)) \quad \text{with} \quad x(0) = x_0.$$

Here, $x:[0,T]\to\mathbb{R}$ is the state trajectory.

Assumptions:

- The function $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ may be nonlinear.
- The initial value $x_0 \in \mathbb{R}$ is given.

Explicit solution

- In general: no explicit solution possible
- But it some special cases, we can solve the nonlinear differential equation by using the concept of separation of variables.

Seperation of variables:

Assumption: f is separable, i.e.,

$$f(t,x) = f_1(x)f_2(t) .$$

Strategy: integrate the equation

$$\frac{\dot{x}(t)}{f_1(x(t))} = f_2(t)$$

with respect to t on both sides and eliminate x(t)

Explicit solution

- In general: no explicit solution possible
- But it some special cases, we can solve the nonlinear differential equation by using the concept of separation of variables.

Seperation of variables:

Assumption: f is separable, i.e.,

$$f(t,x) = f_1(x)f_2(t) .$$

Strategy: integrate the equation

$$\frac{\dot{x}(t)}{f_1(x(t))} = f_2(t) ,$$

with respect to t on both sides and eliminate x(t).

Example: quadratic differential equation

Nonlinear ODE:

$$\dot{x}(t) = -x^2(t) \quad \text{with} \quad x(0) = 1 \ .$$

Separation of variables:

$$-\frac{\dot{x}(t)}{x(t)^2} = 1 \qquad \stackrel{\text{integrate}}{\Longrightarrow} \qquad \frac{1}{x(t)} - \frac{1}{x(0)} = t$$

$$x(t) = rac{1}{1+t}$$
 for all $t \ge 0$.

Example: quadratic differential equation

Nonlinear ODE:

$$\dot{x}(t) = -x^2(t) \quad \text{with} \quad x(0) = 1 \ .$$

Separation of variables:

$$-\frac{\dot{x}(t)}{x(t)^2} = 1 \qquad \stackrel{\text{integrate}}{\Longrightarrow} \qquad \frac{1}{x(t)} - \frac{1}{x(0)} = t$$

$$x(t) = \frac{1}{1+t}$$
 for all $t \ge 0$

Example: quadratic differential equation

Nonlinear ODE:

$$\dot{x}(t) = -x^2(t) \quad \text{with} \quad x(0) = 1 \ .$$

Separation of variables:

$$-\frac{\dot{x}(t)}{x(t)^2} = 1 \qquad \stackrel{\text{integrate}}{\Longrightarrow} \qquad \frac{1}{x(t)} - \frac{1}{x(0)} = t$$

$$x(t) = \frac{1}{1+t}$$
 for all $t \ge 0$.

Example: Gauss' differential equation

ODE:

$$\dot{x}(t) = -tx(t)$$
 with $x(0) = 1$.

Separation of variables:

$$\frac{\dot{x}(t)}{x(t)} = -t \qquad \Longrightarrow \qquad \log(x(t)) = -\frac{1}{2}t^2$$

$$x(t) = e^{-\frac{t^2}{2}} ,$$

Example: Gauss' differential equation

ODE:

$$\dot{x}(t) = -tx(t) \quad \text{with} \quad x(0) = 1 \ .$$

Separation of variables:

$$\frac{\dot{x}(t)}{x(t)} = -t$$
 \Longrightarrow $\log(x(t)) = -\frac{1}{2}t^2$

$$x(t) = e^{-\frac{t^2}{2}}$$

Example: Gauss' differential equation

ODE:

$$\dot{x}(t) = -tx(t)$$
 with $x(0) = 1$.

Separation of variables:

$$\frac{\dot{x}(t)}{x(t)} = -t$$
 \Longrightarrow $\log(x(t)) = -\frac{1}{2}t^2$

$$x(t) = e^{-\frac{t^2}{2}} ,$$

Contents

- Nonlinear Differential Equations
- Existence and uniqueness of solutions
- Taylor-Model Based Integrators
- Runge-Kutta Integrators
- Linear Approximation of Nonlinear Control Systems

Integral Form

The ordinary differential equation (ODE)

$$\forall t \in [0, T], \quad \dot{x}(t) = f(t, x(t)) \quad \text{with} \quad x(0) = x_0.$$

can be equivalently be written in its integral form

$$\forall t \in [0, T], \quad x(t) = x_0 + \int_0^t f(s, x(s)) \, ds.$$

Lipschitz continuity

Definition:

 \bullet The function f is called (globally) Lipschitz continuous, if there exist a constant $L<\infty$ with

$$\forall x, y \in \mathbb{R}, \qquad |f(x) - f(y)| \le L|x - y|.$$

Theorem (Picard-Lindelöf):

ullet If f is globally Lipschitz continuous, the ODE has a unique solution.

Proof: (main idea, rough sketch only)

1) Start with any continuous function $y_1:[0,T] o\mathbb{R}$ and iterate

$$y_{i+1}(t) = x_0 + \int_0^t f(y_i(s)) \, \mathrm{d}s$$
 [Picard iteration]

- 2) Show that y_1,y_2,y_3,\ldots is a Cauchy sequence, $y^*=\lim_{k o\infty}y_i$
- 3) Conclude that the (unique) limit point y^st satisfies the ODE

Theorem (Picard-Lindelöf):

ullet If f is globally Lipschitz continuous, the ODE has a unique solution.

Proof: (main idea, rough sketch only)

1) Start with $\underline{\mathsf{any}}$ continuous function $y_1:[0,T]\to\mathbb{R}$ and iterate

$$y_{i+1}(t) = x_0 + \int_0^t f(y_i(s)) ds$$
 [Picard iteration]

- 2) Show that y_1, y_2, y_3, \ldots is a Cauchy sequence, $y^* = \lim_{k \to \infty} y_i$.
- 3) Conclude that the (unique) limit point y^* satisfies the ODE

Theorem (Picard-Lindelöf):

ullet If f is globally Lipschitz continuous, the ODE has a unique solution.

Proof: (main idea, rough sketch only)

1) Start with $\underline{\mathsf{any}}$ continuous function $y_1:[0,T]\to\mathbb{R}$ and iterate

$$y_{i+1}(t) = x_0 + \int_0^t f(y_i(s)) ds$$
 [Picard iteration]

- 2) Show that y_1, y_2, y_3, \ldots is a Cauchy sequence, $y^* = \lim_{k \to \infty} y_i$.
- 3) Conclude that the (unique) limit point y^st satisfies the ODE

Theorem (Picard-Lindelöf):

• If f is globally Lipschitz continuous, the ODE has a unique solution.

Proof: (main idea, rough sketch only)

1) Start with $\underline{\mathsf{any}}$ continuous function $y_1:[0,T]\to\mathbb{R}$ and iterate

$$y_{i+1}(t) = x_0 + \int_0^t f(y_i(s)) ds$$
 [Picard iteration]

- 2) Show that y_1, y_2, y_3, \ldots is a Cauchy sequence, $y^* = \lim_{k \to \infty} y_i$.
- 3) Conclude that the (unique) limit point y^* satisfies the ODE.

• Define $\Delta(t) = \max_{s \in [0,t]} |y_2(s) - y_1(s)|$.

• If
$$|y_{i+1}(t)-y_i(t)| \leq \frac{(tL)^{i-1}}{(i-1)!}\Delta(t)$$
, then

$$|y_{i+2}(t) - y_{i+1}(t)| \le L \left| \int_0^t [y_{i+1}(\tau) - y_i(\tau)] d\tau \right|$$

$$\leq \int_0^t L \frac{(\tau L)^{i-1}}{(i-1)!} \Delta(t) d\tau = \frac{(tL)^i}{i!} \Delta(t) d\tau$$

Thus, we have

$$|y_n(t) - y_m(t)| \leq \sum_{i=n}^{m-1} |y_{i+1}(t) - y_i(t)| \leq \sum_{i=n}^{m-1} \frac{(tL)^{i-1}}{(i-1)!} \Delta(t)$$

$$\leq \frac{(tL)^{n-1}}{(n-1)!} e^{L|t|} \Delta(t) ,$$

i.e., (y_k) is a Cauchy sequence

• Define
$$\Delta(t) = \max_{s \in [0,t]} |y_2(s) - y_1(s)|$$
.

$$\bullet$$
 If $|y_{i+1}(t)-y_i(t)| \leq \frac{(tL)^{i-1}}{(i-1)!}\Delta(t)$, then

$$|y_{i+2}(t) - y_{i+1}(t)| \le L \left| \int_0^t [y_{i+1}(\tau) - y_i(\tau)] d\tau \right|$$

$$\leq \int_0^t L \frac{(\tau L)^{i-1}}{(i-1)!} \Delta(t) d\tau = \frac{(tL)^i}{i!} \Delta(t) .$$

Thus, we have

$$|y_n(t) - y_m(t)| \leq \sum_{i=n}^{m-1} |y_{i+1}(t) - y_i(t)| \leq \sum_{i=n}^{m-1} \frac{(tL)^{i-1}}{(i-1)!} \Delta(t)$$

$$\leq \frac{(tL)^{n-1}}{(n-1)!} e^{L|t|} \Delta(t) ,$$

i.e., (y_k) is a Cauchy sequence

• Define
$$\Delta(t) = \max_{s \in [0,t]} |y_2(s) - y_1(s)|$$
.

$$\bullet$$
 If $|y_{i+1}(t)-y_i(t)| \leq \frac{(tL)^{i-1}}{(i-1)!}\Delta(t)$, then

$$|y_{i+2}(t) - y_{i+1}(t)| \le L \left| \int_0^t [y_{i+1}(\tau) - y_i(\tau)] d\tau \right|$$

$$\leq \int_0^t L \frac{(\tau L)^{i-1}}{(i-1)!} \Delta(t) d\tau = \frac{(tL)^i}{i!} \Delta(t) .$$

Thus, we have

$$|y_n(t) - y_m(t)| \leq \sum_{i=n}^{m-1} |y_{i+1}(t) - y_i(t)| \leq \sum_{i=n}^{m-1} \frac{(tL)^{i-1}}{(i-1)!} \Delta(t)$$

$$\leq \frac{(tL)^{n-1}}{(n-1)!} e^{L|t|} \Delta(t) ,$$

i.e., (y_k) is a Cauchy sequence

- Define $\Delta(t) = \max_{s \in [0,t]} |y_2(s) y_1(s)|$.
- \bullet If $|y_{i+1}(t)-y_i(t)| \leq \frac{(tL)^{i-1}}{(i-1)!}\Delta(t)$, then

$$|y_{i+2}(t) - y_{i+1}(t)| \le L \left| \int_0^t [y_{i+1}(\tau) - y_i(\tau)] d\tau \right|$$

$$\leq \int_0^t L \frac{(\tau L)^{i-1}}{(i-1)!} \Delta(t) d\tau = \frac{(tL)^i}{i!} \Delta(t) .$$

Thus, we have

$$|y_n(t) - y_m(t)| \leq \sum_{i=n}^{m-1} |y_{i+1}(t) - y_i(t)| \leq \sum_{i=n}^{m-1} \frac{(tL)^{i-1}}{(i-1)!} \Delta(t)$$

$$\leq \frac{(tL)^{n-1}}{(n-1)!} e^{L|t|} \Delta(t) ,$$

i.e., (y_k) is a Cauchy sequence.

Example: Linear ODEs

- Linear ODE: $\dot{x}(t) = ax(t)$, $a \in \mathbb{R}$, with $x(0) = x_0$.
- Picard iteration:

$$y_{1}(t) = x_{0}$$

$$y_{2}(t) = x_{0} + tax_{0}$$

$$y_{3}(t) = x_{0} + tax_{0} + \frac{t^{2}}{2}a^{2}x_{0}$$

$$\vdots$$

Take the limit to get explicit solution

$$x(t) = e^{at}x_0 = \sum_{i=0}^{\infty} \frac{1}{i!} [ta]^i x_0 .$$

Example: Linear ODEs

- Linear ODE: $\dot{x}(t) = ax(t)$, $a \in \mathbb{R}$, with $x(0) = x_0$.
- Picard iteration:

$$y_1(t) = x_0$$

$$y_2(t) = x_0 + tax_0$$

$$y_3(t) = x_0 + tax_0 + \frac{t^2}{2}a^2x_0$$

$$\vdots$$

Take the limit to get explicit solution

$$x(t) = e^{at}x_0 = \sum_{i=0}^{\infty} \frac{1}{i!} [ta]^i x_0 .$$

Example: Linear ODEs

- Linear ODE: $\dot{x}(t) = ax(t)$, $a \in \mathbb{R}$, with $x(0) = x_0$.
- Picard iteration:

$$y_1(t) = x_0$$

$$y_2(t) = x_0 + tax_0$$

$$y_3(t) = x_0 + tax_0 + \frac{t^2}{2}a^2x_0$$

$$\vdots$$

Take the limit to get explicit solution

$$x(t) = e^{at}x_0 = \sum_{i=0}^{\infty} \frac{1}{i!} [ta]^i x_0$$
.

Examples for nonlinear ODEs

• The ODE $\dot{x}(t) = x(t)^2$, with x(0) = 1 has the explicit solution

$$x(t) = \frac{1}{1-t} \quad \text{for} \quad t < 1$$

Why does the solution not exist for t > 1?

• The ODE $\dot{x}(t)=2\sqrt{x}$, with x(0)=0 has more than one solution

for example
$$x(t) = 0$$
 and $x(t) = t^2$

Why is there more than one solution?

Examples for nonlinear ODEs

• The ODE $\dot{x}(t) = x(t)^2$, with x(0) = 1 has the explicit solution

$$x(t) = \frac{1}{1-t} \quad \text{for} \quad t < 1$$

Why does the solution not exist for $t \geq 1$?

• The ODE $\dot{x}(t)=2\sqrt{x}$, with x(0)=0 has more than one solution,

for example
$$x(t) = 0$$
 and $x(t) = t^2$.

Why is there more than one solution?

Examples for nonlinear ODEs

• The ODE $\dot{x}(t) = x(t)^2$, with x(0) = 1 has the explicit solution

$$x(t) = \frac{1}{1-t} \quad \text{for} \quad t < 1$$

Why does the solution not exist for $t \geq 1$?

• The ODE $\dot{x}(t)=2\sqrt{x}$, with x(0)=0 has more than one solution,

for example
$$x(t) = 0$$
 and $x(t) = t^2$.

Why is there more than one solution?

Contents

- Nonlinear Differential Equations
- Existence and uniqueness of solutions
- Taylor-Model Based Integrators
- Runge-Kutta Integrators
- Linear Approximation of Nonlinear Control Systems

A Taylor expansion of the solution x(t) can be constructed recursively:

•
$$x(t_0) = x_0$$

$$\dot{x}(t_0) = f(t_0, x_0)$$

$$\ddot{x}(t_0) = \frac{\partial}{\partial t} f(t, x(t)) \Big|_{t=t_0} = f_t(t_0, x_0) + f_x(t_0, x_0) f(t_0, x_0)$$

and so on ...

• Finally,
$$x(t)=$$

$$x_0+f(t_0,x_0)(t-t_0)+\frac{(t-t_0)^2}{2}\left[f_t(t_0,x_0)+f_x(t_0,x_0)f(t_0,x_0)\right]+\dots$$
 for small t .

A Taylor expansion of the solution x(t) can be constructed recursively:

•
$$x(t_0) = x_0$$

$$\bullet \ \dot{x}(t_0) = f(t_0, x_0)$$

$$\bullet \ \ddot{x}(t_0) = \frac{\partial}{\partial t} f(t, x(t)) \big|_{t=t_0} = f_t(t_0, x_0) + f_x(t_0, x_0) f(t_0, x_0)$$

and so on ...

• Finally,
$$x(t) = x_0 + f(t_0, x_0)(t - t_0) + \frac{(t - t_0)^2}{2} \left[f_t(t_0, x_0) + f_x(t_0, x_0) f(t_0, x_0) \right] + \dots$$
 for small t .

A Taylor expansion of the solution x(t) can be constructed recursively:

•
$$x(t_0) = x_0$$

$$\bullet \ \dot{x}(t_0) = f(t_0, x_0)$$

•
$$\ddot{x}(t_0) = \frac{\partial}{\partial t} f(t, x(t)) \Big|_{t=t_0} = f_t(t_0, x_0) + f_x(t_0, x_0) f(t_0, x_0)$$

and so on ...

Finally,
$$x(t) = x_0 + f(t_0, x_0)(t - t_0) + \frac{(t - t_0)^2}{2} \left[f_t(t_0, x_0) + f_x(t_0, x_0) f(t_0, x_0) \right] + \dots$$
 for small t .

A Taylor expansion of the solution x(t) can be constructed recursively:

•
$$x(t_0) = x_0$$

$$\bullet \ \dot{x}(t_0) = f(t_0, x_0)$$

$$\bullet \ \ddot{x}(t_0) = \frac{\partial}{\partial t} f(t, x(t)) \big|_{t=t_0} = f_t(t_0, x_0) + f_x(t_0, x_0) f(t_0, x_0)$$

and so on ...

Finally,
$$x(t)=$$

$$x_0+f(t_0,x_0)(t-t_0)+\frac{(t-t_0)^2}{2}\left[f_t(t_0,x_0)+f_x(t_0,x_0)f(t_0,x_0)\right]+\dots$$
 for small t .

A Taylor expansion of the solution x(t) can be constructed recursively:

•
$$x(t_0) = x_0$$

$$\bullet \ \dot{x}(t_0) = f(t_0, x_0)$$

$$\bullet \ \ddot{x}(t_0) = \frac{\partial}{\partial t} f(t, x(t)) \Big|_{t=t_0} = f_t(t_0, x_0) + f_x(t_0, x_0) f(t_0, x_0)$$

and so on ...

Finally,
$$x(t)=$$

$$x_0+f(t_0,x_0)(t-t_0)+\frac{(t-t_0)^2}{2}\left[f_t(t_0,x_0)+f_x(t_0,x_0)f(t_0,x_0)\right]+\dots$$
 for small t .

A Taylor expansion of the solution x(t) can be constructed recursively:

•
$$x(t_0) = x_0$$

$$\bullet \ \dot{x}(t_0) = f(t_0, x_0)$$

•
$$\ddot{x}(t_0) = \frac{\partial}{\partial t} f(t, x(t)) \Big|_{t=t_0} = f_t(t_0, x_0) + f_x(t_0, x_0) f(t_0, x_0)$$

and so on ...

• Finally,
$$x(t)=$$

$$x_0+f(t_0,x_0)(t-t_0)+\frac{(t-t_0)^2}{2}\left[f_t(t_0,x_0)+f_x(t_0,x_0)f(t_0,x_0)\right]+\dots$$
 for small t .

A general Taylor expansion can be computed by consecutive differentiation:

- 1. Set $\phi_0(t, x) = x$.
- 2. For r=0:s-1 $\operatorname{set} \phi_{r+1}(t,x) = \left(\frac{\partial}{\partial t}\phi_r(t,x)\right) + \left(\frac{\partial}{\partial x}\phi_r(t,x)\right)f(t,x)$
- 3. Return the Taylor expansion

$$x(t) = \sum_{i=0}^{s} \frac{1}{i!} \phi_i(t_0, x_0) (t - t_0)^i + \mathbf{O}((t - t_0)^{s+1}) .$$

A general Taylor expansion can be computed by consecutive differentiation:

- 1. Set $\phi_0(t, x) = x$.
- 2. For r=0:s-1 set $\phi_{r+1}(t,x)=\left(\frac{\partial}{\partial x}\phi_r(t,x)\right)+\left(\frac{\partial}{\partial x}\phi_r(t,x)\right)f(t,x).$
- 3. Return the Taylor expansion

$$x(t) = \sum_{i=0}^{s} \frac{1}{i!} \phi_i(t_0, x_0) (t - t_0)^i + \mathbf{O}((t - t_0)^{s+1}) .$$

A general Taylor expansion can be computed by consecutive differentiation:

- 1. Set $\phi_0(t, x) = x$.
- 2. For r=0:s-1 $\operatorname{set}\ \phi_{r+1}(t,x)=\left(\tfrac{\partial}{\partial t}\phi_r(t,x)\right)+\left(\tfrac{\partial}{\partial x}\phi_r(t,x)\right)f(t,x).$
- 3. Return the Taylor expansion

$$x(t) = \sum_{i=0}^{s} \frac{1}{i!} \phi_i(t_0, x_0) (t - t_0)^i + \mathbf{O}((t - t_0)^{s+1}).$$

Integration Algorithm (Constant Step-Size)

Input:

- The right-hand side function f and an initial value x_0 .
- Order s and constant step-size h = T/N; set i = 0 and $y_0 = x_0$.

Repeat: (until i = N)

- Compute $y_{i+1} = \sum_{k=0}^{s} \frac{1}{k!} \phi_k(t_i, y_i) h^k$
- Compute $t_{i+1} = t_i + h$ and set $i \leftarrow i + 1$.

Theorem:

If f is globally Lipschitz continuous and smooth, ther

$$\forall i \in \{0,\ldots,N\}, \qquad y_i = x(t_i) + \mathbf{O}(h^s)$$

Integration Algorithm (Constant Step-Size)

Input:

- The right-hand side function f and an initial value x_0 .
- Order s and constant step-size h = T/N; set i = 0 and $y_0 = x_0$.

Repeat: (until i = N)

- Compute $y_{i+1} = \sum_{k=0}^{s} \frac{1}{k!} \phi_k(t_i, y_i) h^k$
- Compute $t_{i+1} = t_i + h$ and set $i \leftarrow i + 1$.

Theorem:

ullet If f is globally Lipschitz continuous and smooth, then

$$\forall i \in \{0,\ldots,N\}, \qquad y_i = x(t_i) + \mathbf{O}(h^s)$$

Integration Algorithm (Constant Step-Size)

Input:

- The right-hand side function f and an initial value x_0 .
- Order s and constant step-size h = T/N; set i = 0 and $y_0 = x_0$.

Repeat: (until i = N)

- Compute $y_{i+1} = \sum_{k=0}^{s} \frac{1}{k!} \phi_k(t_i, y_i) h^k$
- Compute $t_{i+1} = t_i + h$ and set $i \leftarrow i + 1$.

Theorem:

If f is globally Lipschitz continuous and smooth, then

$$\forall i \in \{0,\ldots,N\}, \qquad y_i = x(t_i) + \mathbf{O}(h^s) .$$

- 1. Since f is globally Lipschitz, the solution x of the ODE exists.
- 2. Since f is smooth, the functions $\phi_0, \phi_1, \dots, \phi_s$ are smooth, too.
- 3. We already know that $x(t) = \sum_{k=0}^{s} \frac{1}{k!} \phi_k(x_0) h^k + \mathbf{O}(h^{s+1})$.
- 4. Show by induction that

$$y_i = x(ih) + i \cdot \mathbf{O}(h^{s+1}) = x(ih) + \frac{T}{h} \cdot \mathbf{O}(h^{s+1}) = x(ih) + \mathbf{O}(h^s).$$

The integer s is called the convergence order of the integrator.

- 1. Since f is globally Lipschitz, the solution x of the ODE exists.
- 2. Since f is smooth, the functions $\phi_0, \phi_1, \dots, \phi_s$ are smooth, too.
- 3. We already know that $x(t) = \sum_{k=0}^{s} \frac{1}{k!} \phi_k(x_0) h^k + \mathbf{O}(h^{s+1})$
- 4. Show by induction that

$$y_i = x(ih) + i \cdot \mathbf{O}(h^{s+1}) = x(ih) + \frac{T}{h} \cdot \mathbf{O}(h^{s+1}) = x(ih) + \mathbf{O}(h^s).$$

The integer s is called the convergence order of the integrator.

- 1. Since f is globally Lipschitz, the solution x of the ODE exists.
- 2. Since f is smooth, the functions $\phi_0, \phi_1, \dots, \phi_s$ are smooth, too.
- 3. We already know that $x(t) = \sum_{k=0}^{s} \frac{1}{k!} \phi_k(x_0) h^k + \mathbf{O}(h^{s+1})$.
- Show by induction that

$$y_i = x(ih) + i \cdot \mathbf{O}(h^{s+1}) = x(ih) + \frac{T}{h} \cdot \mathbf{O}(h^{s+1}) = x(ih) + \mathbf{O}(h^s).$$

The integer s is called the convergence order of the integrator.

- 1. Since f is globally Lipschitz, the solution x of the ODE exists.
- 2. Since f is smooth, the functions $\phi_0, \phi_1, \dots, \phi_s$ are smooth, too.
- 3. We already know that $x(t) = \sum_{k=0}^{s} \frac{1}{k!} \phi_k(x_0) h^k + \mathbf{O}(h^{s+1})$.
- 4. Show by induction that

$$y_i = x(ih) + i \cdot \mathbf{O}(h^{s+1}) = x(ih) + \frac{T}{h} \cdot \mathbf{O}(h^{s+1}) = x(ih) + \mathbf{O}(h^s).$$

The integer s is called the convergence order of the integrator.

- 1. Since f is globally Lipschitz, the solution x of the ODE exists.
- 2. Since f is smooth, the functions $\phi_0, \phi_1, \dots, \phi_s$ are smooth, too.
- 3. We already know that $x(t) = \sum_{k=0}^{s} \frac{1}{k!} \phi_k(x_0) h^k + \mathbf{O}(h^{s+1})$.
- 4. Show by induction that

$$y_i = x(ih) + i \cdot \mathbf{O}(h^{s+1}) = x(ih) + \frac{T}{h} \cdot \mathbf{O}(h^{s+1}) = x(ih) + \mathbf{O}(h^s).$$

The integer \boldsymbol{s} is called the convergence order of the integrator.

Contents

- Nonlinear Differential Equations
- Existence and uniqueness of solutions
- Taylor-Model Based Integrators
- Runge-Kutta Integrators
- Linear Approximation of Nonlinear Control Systems

Limitations of Taylor model based integrators

- 1. Taylor model based intgration is easy to implement, but
 - \bullet we need to evaluate derivatives of f
 - ullet it is not the most efficient scheme for obtaining convergence order s.
- 2. Runge-Kutta integrators compute an approximation $y \approx x(h)$ by evaluating f at more than one point, but don't evaluate derivatives.

Limitations of Taylor model based integrators

- 1. Taylor model based intgration is easy to implement, but
 - \bullet we need to evaluate derivatives of f
 - ullet it is not the most efficient scheme for obtaining convergence order s.
- 2. Runge-Kutta integrators compute an approximation $y \approx x(h)$ by evaluating f at more than one point, but don't evaluate derivatives.

Explicit Runge Kutta method (constant step-size)

Initialization:

• Set h = T/N, $t_0 = 0$, i = 0, and $y_0 = x_0$.

Repeat: (until i = N)

- Compute $t_{i+1} = t_i + h$.
- Compute $k_r = f(t_i + h\gamma_r, y_i + \sum_{j=1}^{r-1} h\alpha_{r,j}k_j)$ for $r = 1, \dots, s$.
- Set $y_{i+1} = y_i + h \sum_{r=1}^{s} \beta_r k_r$ and then $i \leftarrow i+1$.

Output:

• Time grid $[t_1, t_2, \dots, t_N]$ and state trajectory $y_0, y_1, y_2, \dots, y_N$.

Consistency conditions

Main idea:

• Choose the coefficients $\alpha_{r,j}$, β_r , and γ_r such that

$$\forall r \in \{1, \dots, q\}, \quad \frac{\partial^r y_{i+1}}{\partial h^r} \bigg|_{h=0} = \Phi_r(y_i) .$$

ullet For s=1, the Runge-Kutta method takes the form

$$k_1 = f(t_i, y_i)$$

 $y_{i+1} = y_i + h\beta_1 k_1 = y_i + h\beta_1 f(t_i, y_i)$ (1)

We have

$$\left. \frac{\partial y_{i+1}}{\partial h} \right|_{h=0} = \left| \frac{\partial}{\partial h} \left(y_i + h \beta_1 f(t_i, y_i) \right) \right|_{h=0} = \beta_1 f(t_i, y_i)$$
 (2)

and

$$\phi_1(t,x) = f(t,x) \tag{3}$$

ullet For s=1, the Runge-Kutta method takes the form

$$k_1 = f(t_i, y_i)$$

 $y_{i+1} = y_i + h\beta_1 k_1 = y_i + h\beta_1 f(t_i, y_i)$ (1)

We have

$$\left. \frac{\partial y_{i+1}}{\partial h} \right|_{h=0} = \left| \frac{\partial}{\partial h} \left(y_i + h \beta_1 f(t_i, y_i) \right) \right|_{h=0} = \beta_1 f(t_i, y_i)$$
 (2)

and

$$\phi_1(t,x) = f(t,x) \tag{3}$$

The equation

$$\left. \frac{\partial y_{i+1}}{\partial h} \right|_{h=0} = \phi_1(t_i, y_i) \qquad \stackrel{\text{(2),(3)}}{\Longleftrightarrow} \qquad \beta_1 f(t_i, y_i) = f(t_i, y_i)$$

is satisfied for $\beta_1 = 1$.

Result: Euler's method

$$y_{i+1} = y_i + hf(t_i, y_i)$$

The equation

$$\frac{\partial y_{i+1}}{\partial h}\bigg|_{h=0} = \phi_1(t_i, y_i) \qquad \stackrel{\text{(2),(3)}}{\Longleftrightarrow} \qquad \beta_1 f(t_i, y_i) = f(t_i, y_i)$$

is satisfied for $\beta_1 = 1$.

Result: Euler's method

$$y_{i+1} = y_i + h f(t_i, y_i) .$$

Example 2: Heun's method

Heun's method is given by the coefficient scheme

The corresponding method can be written as

$$k_1 = f(t_i, y_i)$$

$$k_2 = f(t_i + h, y_i + hk_1)$$

$$y_{i+1} = y_i + h\left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right)$$

Example 2: Heun's method

Heun's method is given by the coefficient scheme

The corresponding method can be written as

$$\begin{array}{rcl} k_1 & = & f(t_i, y_i) \\ \\ k_2 & = & f(t_i + h, y_i + hk_1) \\ \\ y_{i+1} & = & y_i + h\left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right) \ . \end{array}$$

Example 3: RK 4

A very elegant method of order 4 is given by the scheme

$$k_1 = f(t_i, y_i)$$

$$k_2 = f\left(t_i + \frac{h}{2}, y_i + \frac{h}{2}k_1\right)$$

$$k_3 = f\left(t_i + \frac{h}{2}, y_i + \frac{h}{2}k_2\right)$$

$$k_4 = f(t_i + h, y_i + hk_3)$$

$$y_{i+1} = y_i + h\left(\frac{1}{6}k_1 + \frac{1}{3}k_2 + \frac{1}{3}k_3 + \frac{1}{6}k_4\right).$$

This method is called the <u>classical</u> Runge Kutta method.

Contents

- Nonlinear Differential Equations
- Existence and uniqueness of solutions
- Taylor-Model Based Integrators
- Runge-Kutta Integrators
- Linear Approximation of Nonlinear Control Systems

Nonlinear Control Systems

A general nonlinear control system is a differential equation of the form

$$\forall t \in [0, T], \quad \dot{x}(t) = f(x(t), u(t)) \quad \text{with} \quad x(0) = x_0$$

where $f: \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$ is a nonlinear function.

- If the control input function u(t) is given, the differential equation can be computed by using the numerical integration techniques from the previous slides.
- BUT: there is often no explicit closed-form solution; nonlinear control systems are in general difficult to analyze.

Nonlinear Control Systems

A general nonlinear control system is a differential equation of the form

$$\forall t \in [0, T], \quad \dot{x}(t) = f(x(t), u(t)) \quad \text{with} \quad x(0) = x_0$$

where $f: \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$ is a nonlinear function.

- ullet If the control input function u(t) is given, the differential equation can be computed by using the numerical integration techniques from the previous slides.
- BUT: there is often no explicit closed-form solution; nonlinear control systems are in general difficult to analyze.

Nonlinear Control Systems

A general nonlinear control system is a differential equation of the form

$$\forall t \in [0,T], \quad \dot{x}(t) = f(x(t), u(t)) \quad \text{with} \quad x(0) = x_0$$

where $f: \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$ is a nonlinear function.

- ullet If the control input function u(t) is given, the differential equation can be computed by using the numerical integration techniques from the previous slides.
- BUT: there is often no explicit closed-form solution; nonlinear control systems are in general difficult to analyze.

Steady States

A point $(x_{\mathrm{s}},u_{\mathrm{s}})\in\mathbb{R} imes\mathbb{R}$ is called a steady-state, if

$$f(x_{\rm s}, u_{\rm s}) = 0 .$$

Sometimes steady-states can be found by simulation of

$$\dot{x}(t) = f(x(t), u_{\rm s})$$
 with $x(0) = x_0$

if $\lim_{t\to\infty} x(t) = x_s$ (if the system is asymptotically stable).

Otherwise, we need to solve the equation

$$f(x_{\rm s}, u_{\rm s}) = 0$$

for a given $u_{
m s}$

Steady States

A point $(x_{\mathrm{s}},u_{\mathrm{s}})\in\mathbb{R} imes\mathbb{R}$ is called a steady-state, if

$$f(x_{\rm s}, u_{\rm s}) = 0 .$$

• Sometimes steady-states can be found by simulation of

$$\dot{x}(t) = f(x(t), u_{\rm s})$$
 with $x(0) = x_0$

if $\lim_{t\to\infty} x(t) = x_s$ (if the system is asymptotically stable).

Otherwise, we need to solve the equation

$$f(x_{\rm s}, u_{\rm s}) = 0$$

for a given $u_{
m s}$

Steady States

A point $(x_{\mathrm{s}},u_{\mathrm{s}})\in\mathbb{R} imes\mathbb{R}$ is called a steady-state, if

$$f(x_{\rm s}, u_{\rm s}) = 0 .$$

• Sometimes steady-states can be found by simulation of

$$\dot{x}(t) = f(x(t), u_s)$$
 with $x(0) = x_0$

if $\lim_{t\to\infty} x(t) = x_s$ (if the system is asymptotically stable).

Otherwise, we need to solve the equation

$$f(x_{\rm s}, u_{\rm s}) = 0$$

for a given $u_{\rm s}$.

If we have already a steady-state $(x_s, u_s) \in \mathbb{R} \times \mathbb{R}$ and if f is continously differentiable, we can compute the first order Taylor approximation

$$f(x, u) \approx a(x - x_s) + b(u - u_s)$$
.

with

$$f(x_{\rm s}, u_{\rm s}) = 0$$
, $a = \frac{\partial}{\partial x} f(x_{\rm s}, u_{\rm s})$, $b = \frac{\partial}{\partial u} f(x_{\rm s}, u_{\rm s})$

The solution of the linear differential equation

$$\dot{z}(t) = az(t) + bv(t) \quad \text{with} \quad \left\{ \begin{array}{l} z(0) = x(0) - x_{\rm s} \\ \\ v(t) = u(t) - u_{\rm s} \end{array} \right.$$

approximates the solution trajectory x(t) of the nonlinear system,

$$z(t) pprox x(t) - x_{
m s}$$
 for

- small $t \ge 0$ if ||z(0)|| and ||v(t)|| are small; and
- for all $t \ge 0$ if, additionally, a < 0

The solution of the linear differential equation

$$\dot{z}(t) = az(t) + bv(t) \quad \text{with} \quad \left\{ \begin{array}{l} z(0) = x(0) - x_{\rm s} \\ \\ v(t) = u(t) - u_{\rm s} \end{array} \right.$$

approximates the solution trajectory x(t) of the nonlinear system,

$$z(t) pprox x(t) - x_{
m s}$$
 for

- small $t \ge 0$ if ||z(0)|| and ||v(t)|| are small; and
- for all $t \ge 0$ if, additionally, a < 0

The solution of the linear differential equation

$$\dot{z}(t) = az(t) + bv(t) \quad \text{with} \quad \left\{ \begin{array}{l} z(0) = x(0) - x_{\rm s} \\ \\ v(t) = u(t) - u_{\rm s} \end{array} \right.$$

approximates the solution trajectory x(t) of the nonlinear system,

$$z(t) pprox x(t) - x_{
m s}$$
 for

- small $t \ge 0$ if ||z(0)|| and ||v(t)|| are small; and
- for all $t \ge 0$ if, additionally, a < 0

Summary of a "Practical Workflow"

- 1. Simulate the system for a suitable constant input $u_{\rm s}$ in order to find the corresponding steady-state $x_{\rm s}$.
- 2. Linearize the system at the steaty state and store a and b.
- 3. Design a controller for the linear system, $\dot{z}(t) = az(t) + bv(t)$.
- 4. Test whether the controller happens to work reasonably well for the original nonlinear system (by simulation).