TRCLE

Exercise-1: Single Choice Problems

1. The locus of mid-points of the chords of the circle $x^2 - 2x + y^2 - 2y + 1 = 0$ which are of unit length is:

(a)
$$(x-1)^2 + (y-1)^2 = \frac{3}{4}$$

(b)
$$(x-1)^2 + (y-1)^2 = 2$$

(c)
$$(x-1)^2 + (y-1)^2 = \frac{1}{4}$$

(d)
$$(x-1)^2 + (y-1)^2 = \frac{2}{3}$$

2. The length of a common internal tangent to two circles is 5 and a common external tangent is 15, then the product of the radii of the two circles is:

3. A circle with center (2, 2) touches the coordinate axes and a straight line AB where A and B lie on positive direction of coordinate axes such that the circle lies between origin and the line AB. If O be the origin then the locus of circumcenter of $\triangle OAB$ will be:

(a)
$$xy = x + y + \sqrt{x^2 + y^2}$$

(b)
$$xy = x + y - \sqrt{x^2 + y^2}$$

(c)
$$xy + x + y = \sqrt{x^2 + y^2}$$

(d)
$$xy + x + y + \sqrt{x^2 + y^2} = 0$$

4. Length of chord of contact of point (4, 4) with respect to the circle $x^2 + y^2 - 2x - 2y - 7 = 0$ is:

(a)
$$\frac{3}{\sqrt{2}}$$

(b)
$$3\sqrt{2}$$

5. Let P, Q, R, S be the feet of the perpendiculars drawn from a point (1, 1) upon the lines x + 4y = 12; x - 4y + 4 = 0 and their angle bisectors respectively; then equation of the circle which passes through Q, R, S is:

(a)
$$x^2 + y^2 - 5x + 3y - 6 = 0$$

(b)
$$x^2 + y^2 - 5x - 3y + 6 = 0$$

(c)
$$x^2 + y^2 - 5x - 3y - 6 = 0$$

(d) None of these

(a) 8

(a) $3\sqrt{5}$

(c) 2√5

circle and PA & PB are the tangents.) is:

on x - 2y = 4. The radius of the circle is:

(b) $\sqrt{110}$

locus of centroid of the ΔABC is a circle whose radius is :

	(a)	$\frac{2\sqrt{2}}{3}$ (b)	$\sqrt{\frac{4}{3}}$	(c)	$\frac{2}{3}$	(d)	$\sqrt{\frac{2}{9}}$						
9	. Tan	gents drawn to circle	$(x-1)^2 + (y-1)^2 =$	= 5 at	point P mee	ts the line 2.	x + y + 6 = 0 at Q on						
		x-axis. Length PQ is e			F								
	(a)	$\sqrt{12}$ (b	$\sqrt{10}$	(c)	4	(d)	$\sqrt{15}$						
10	. ABC	CD is square in which A	lies on positive y-az	xis an	dB lies on th	e positive x-	axis. If D is the point						
	(12,	17), then co-ordinate	of <i>C</i> is :			5	-						
) (17, 5)		(17, 16)		(15, 3)						
11.	x^2	tement-1: The line $y^2 - 2x - 2y = 0$.	s y = mx + 1 - m f	or al	l values of	m is a no	ormal to the circle						
		tement-2: The line I											
		Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.											
	(b)	Statement-1 is true, statement-2 is true and statement-2 is not the correct explanation for statement-1.											
	(c)	Statement-1 is true, statement-2 is false.											
	(d)	Statement-1 is false,	statement-2 is true.										
12.	A(1,	0) and B(0, 1) are two	fixed points on th	e circ	$le x^2 + y^2 =$	= 1. C is a va	ariable point on this						
	circl	e. As C moves, the loc	us of the orthocent	re of	the triangle	ABC is	mable point on this						
	(a)	$x^2 + y^2 - 2x - 2y + 1$	= 0	(b)	$x^2 + y^2 - y$	c - v = 0							
		$x^2 + y^2 = 4$		(d)	$x^2 + y^2 + 2$	2x-2y+1	- 0						
13.	Equa	ation of a circle passing	through (1, 2) and	l (2, 1) and for wh	1 + 2y + 1 = 1 $1 + 1 + 1 = 1$ $1 + 1 =$	y = 2 is a diameter;						
	(a)	$x^2 + y^2 + 2x + 2y - 1$	1 = 0	(b)	$x^2 + y^2 - 2$	2x-2y-1=	- 0						
	(c)	$x^2 + y^2 - 2x - 2y + 1$	= 0	(d)	None of the	ese	- 0						

6. From a point 'P' on the line 2x + y + 4 = 0; which is nearest to the circle $x^2 + y^2 - 12y + 35 = 0$, tangents are drawn to given circle. The area of quadrilateral PACB (where 'C' is the center of

7. The line 2x - y + 1 = 0 is tangent to the circle at the point (2, 5) and the centre of the circles lies

8. If $A(\cos \alpha, \sin \alpha)$, $B(\sin \alpha, -\cos \alpha)$, C(1, 2) are the vertices of a triangle, then as α varies the

(c) $\sqrt{19}$

(b) $5\sqrt{3}$

(d) $5\sqrt{2}$

14.	The	area of an equilate	ral tria	angle inscribed in	a ci	rcle of radius 4 cm	, is:				
	(a)	12 cm ²				$9\sqrt{3}$ cm ²					
	(c)	$8\sqrt{3}$ cm ²		1	(d)	$12\sqrt{3}$ cm ²					
15.	Let	all the points on th	ne cur	ve $x^2 + y^2 - 10x$	= 0 a	are reflected about	t the line $y = x + 3$. The				
	locu	s of the reflected p	oints is	s in the form x^2 +	y 2	+gx + fy + c = 0. T	The value of $(g + f + c)$ is				
		al to :				0 ,3	* *				
	(a)	28	(b) -	-28	(c)	38	(d) -38				
16.	The	shortest distance f	rom th	e line 3x + 4y = 2	25 to	the circle $x^2 + y^2$	= 6x - 8y is equal to:				
	(a)	7/5	(b) 9	9/5	(c)	11/5	(d) 32/5				
17.	In th	ne xy-plane, the ler	ngth of	f the shortest path	fro	m (0, 0) to (12, 16) that does not go inside				
		circle $(x-6)^2 + (y$	$-8)^{2}$	= 25 is:							
		10√3			(b)	10√5					
	(c)	$10\sqrt{3} + \frac{5\pi}{3}$			(d)	$10 + 5\pi$					
18.	A ci	rcle is inscribed in	an equ	uilateral triangle v	vith	side lengths 6 unit	. Another circle is drawn	į.			
	3. A circle is inscribed in an equilateral triangle with side lengths 6 unit. Another circle is draw inside the triangle (but outside the first circle), tangent to the first circle and two of the sides										
		triangle. The radiu	s of th	ne smaller circle is							
		$1/\sqrt{3}$			30.5	2/3					
		1/2			(d)						
19.					-	4x = 0 which is per	pendicular to the norma	l			
		wn through the ori			(-)		(1)				
•	55.55	x = 1	(b) ;			x + y = 2					
20.			ie para	allel to the line 3x	. + 4	y = 0 and touching	g the circle $x^2 + y^2 = 9$ in	1			
		first quadrant is:			(b)	3x + 4y = 45					
		3x + 4y = 15 $3x + 4y = 9$				3x + 4y = 12					
21	The	3x + 4y = 9	- thr				$+y^2-6x+2y+1=0,$				
21.		$y^2 - 9x - 4y + 2$,	, , ,					
	(a)	lie on the straight	line x	c-2y=5	(b)	lie on circle x^2 +	$y^2 = 25$				
	(c)	do not lie on strai	ght lin	ne	(d)	lie on circle x^2 +	$y^2 + x + y - 17 = 0$				
22.	The	equation of the di	amete	r of the circle x^2	$+y^{2}$	$^2 + 2x - 4y = 4 $ tha	t is parallel to $3x + 5y =$	4			
	is:	•									
		3x + 5y = -7			(b)	3x + 5y = 7					
		3x + 5y = 9			(d)	3x + 5y = 1					
		recent to the					<u>*</u>				

23. There are two circles passing through points A(-1, 2) and B(2, 3) having radius $\sqrt{5}$. Then the length of intercept on x-axis of the circle intersecting x-axis is:

(a) 2

(b) 3

(d) 5

24. A square OABC is formed by line pairs xy = 0 and xy + 1 = x + y where 'O'is the origin. A circle with centre C_1 inside the square is drawn to touch the line pair xy = 0 and another circle with centre C_2 and radius twice that of C_1 , is drawn to touch the circle C_1 and the other line pair. The radius of the circle with centre C_1 is:

(a) $\frac{\sqrt{2}}{\sqrt{3}(\sqrt{2}+1)}$

(b) $\frac{2\sqrt{2}}{3(\sqrt{2}+1)}$

(c) $\frac{\sqrt{2}}{3(\sqrt{2}+1)}$

(d) $\frac{\sqrt{2}+1}{3\sqrt{2}}$

25. The equation of the circle circumscribing the triangle formed by the points (3, 4), (1, 4) and

(a) $8x^2 + 8y^2 - 16x - 13y = 0$

(b) $x^2 + y^2 - 4x - 8y + 19 = 0$

(c) $x^2 + y^2 - 4x - 6y + 11 = 0$

(d) $x^2 + y^2 - 6x - 6y + 17 = 0$

26. The equation of the tangent to circle $x^2 + y^2 + 2gx + 2fy = 0$ at the origin is:

(a) fx + gy = 0

(b) gx + fy = 0(c) x = 0

27. The line y = x is tangent at (0, 0) to a circle of radius 1. The centre of the circle is :

(a) either $\left(-\frac{1}{2}, \frac{1}{2}\right)$ or $\left(\frac{1}{2}, -\frac{1}{2}\right)$

(b) either $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ or $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$

(c) either $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ or $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ (d) either (1, 0) or (-1, 0)

28. The circles $x^2 + y^2 + 6x + 6y = 0$ and $x^2 + y^2 - 12x - 12y = 0$:

(a) cut orthogonally

(b) touch each other internally

(c) intersect in two points

(d) touch each other externally

29. In a right triangle ABC, right angled at A, on the leg AC as diameter, a semicircle is described. The chord joining A with the point of intersection D of the hypotenuse and the semicircle, then the length AC equals to:

 $AB \cdot AD$ $\frac{AB^2 + AD^2}{\sqrt{AB^2 + AD^2}}$ (b) $\frac{AB \cdot AD}{AB + AD}$

(c) $\sqrt{AB \cdot AD}$

(d) $\frac{AB \cdot AD}{\sqrt{AB^2 - AD^2}}$

30. Radical centre of the circles drawn on the sides as a diameter of triangle formed by the lines 3x - 4y + 6 = 0, x - y + 2 = 0 and 4x + 3y - 17 = 0 is:

(a) (3, 2)

(b) (3, -2)

(c) (2, -3)

(d) (2, 3)

31. Statement-1: A circle can be inscribed in a quadrilateral whose sides are 3x - 4y = 0, 3x-4y=5, 3x+4y=0 and 3x+4y=7.

Statement-2: A circle can be inscribed in a parallelogram if and only if it is a rhombus.

- (a) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for
- (b) Statement-1 is true, statement-2 is true and statement-2 is not the correct explanation for statement-1.
- (c) Statement-1 is true, statement-2 is false.
- (d) Statement-1 is false, statement-2 is true.
- 32. If x = 3 is the chord of contact of the circle $x^2 + y^2 = 81$, then the equation of the corresponding pair of tangents, is:
 - (a) $x^2 8y^2 + 54x + 729 = 0$
- (b) $x^2 8y^2 54x + 729 = 0$
- (c) $x^2 8y^2 54x 729 = 0$
- (d) $x^2 8y^2 = 729$
- 33. The shortest distance from the line 3x + 4y = 25 to the circle $x^2 + y^2 = 6x 8y$ is equal to:
 - (a) $\frac{7}{3}$
- (b) $\frac{9}{5}$
- (c) $\frac{11}{5}$ (d) $\frac{7}{5}$
- **34.** The circle with equation $x^2 + y^2 = 1$ intersects the line y = 7x + 5 at two distinct points A and B. Let C be the point at which the positive x-axis intersects the circle. The angle ACB is:
 - (a) $\tan^{-1} \frac{4}{3}$
- (b) $\cot^{-1}(-1)$
- (c) tan⁻¹ 1
- **35.** The abscissae of two points A and B are the roots of the equation $x^2 + 2ax b^2 = 0$ and their ordinates are the roots of the equation $x^2 + 2px - q^2 = 0$. The radius of the circle with AB as
 - (a) $\sqrt{a^2+b^2+p^2+q^2}$

(b) $\sqrt{a^2 + p^2}$

(c) $\sqrt{b^2 + a^2}$

- (d) $\sqrt{a^2+b^2+p^2+1}$
- **36.** Let C be the circle of radius unity centred at the origin. If two positive numbers x_1 and x_2 are such that the line passing through $(x_1,-1)$ and $(x_2,1)$ is tangent to C then:
 - (a) $x_1 x_2 = 1$

(b) $x_1x_2 = -1$

(c) $x_1 + x_2 = 1$

- (d) $4x_1x_2 = 1$
- 37. A circle bisects the circumference of the circle $x^2 + y^2 + 2y 3 = 0$ and touches the line x = yat the point (1, 1). Its radius is:
- (b) $\frac{9}{\sqrt{2}}$
- (c) $4\sqrt{2}$
- (d) $3\sqrt{2}$
- **38.** The distance between the chords of contact of tangents to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ from the origin and the point (g, f) is:

286				Advanced Proble	ms in Mathem	atics for JEE
	(a) $\sqrt{g^2 + f^2}$		(b)	$\frac{\sqrt{g^2+f^2-c}}{2}$		2.
	(c) $\frac{g^2 + f^2 - c}{2\sqrt{g^2 + f^2}}$		(d)	$\frac{\sqrt{g^2 + f^2 + c}}{2\sqrt{g^2 + f^2}}$		
39.	If the tangents AP $x^2 + y^2 - 3x + 2y - 7$	and AQ are $= 0$ and C is the $c \in C$	e drawn fr entre of circle	om the point e, then the area o	A(3, -1) to f quadrilaters	o the circle al <i>APCQ</i> is :
	(a) 9	(b) 4	(c)	2	(d) non-ex	xistent
40.	Number of integral val the circle $x^2 + y^2 = 4$	ue(s) of k for wh is:	ich no tanger	nt can be drawn	from the poir	t (k, k+2) to
	(a) 0	(b) 1	(c) :	2	(d) 3	
41.	If the length of the norr	nal for each poin			lius vector, th	en the curve :
	(a) is a circle passing			-		
	(b) is a circle having	centre at origin a	nd radius >	0		

(c) is a circle having centre on x-axis and touching y-axis (d) is a circle having centre on y-axis and touching x-axis

42. A circle of radius unity is centred at origin. Two particles start moving at the same time from the point (1, 0) and move around the circle in opposite direction. One of the particle moves counter clockwise with constant speed v and the other moves clockwise with constant speed 3v. After leaving (1, 0), the two particles meet first at a point P, and continue until they meet next at point Q. The coordinates of the point Q are:

(a) (1,0) (b) (0, 1) (c) (0,-1)(d) (-1,0)

43. A variable circle is drawn to touch the x-axis at the origin. The locus of the pole of the straight line lx + my + n = 0 w.r.t the variable circle has the equation:

(a) $x(my-n)-ly^2=0$ (b) $x(my+n)-ly^2=0$

(c) $x(my-n) + ly^2 = 0$ (d) none of these

44. The minimum length of the chord of the circle $x^2 + y^2 + 2x + 2y - 7 = 0$ which is passing through (1,0) is:

(c) $2\sqrt{2}$ (b) 4 (a) 2 (d) $\sqrt{5}$

45. Three concentric circles of which the biggest is $x^2 + y^2 = 1$, have their radii in A.P. If the line y = x + 1 cuts all the circles in real and distinct points. The interval in which the common difference of the A.P. will lie is:

(b) $\left(0, \frac{1}{2\sqrt{2}}\right)$ (c) $\left(0, \frac{2-\sqrt{2}}{4}\right)$ (d) none (a) $\left(0,\frac{1}{4}\right)$

46. The locus of the point of intersection of the tangent to the circle $x^2 + y^2 = a^2$, which include an angle of 45° is the curve $(x^2 + y^2)^2 = \lambda a^2(x^2 + y^2 - a^2)$. The value of λ is:

47. A circle touches the line y = x at point (4, 4) on it. The length of the chord on the line x + y = 0 is $6\sqrt{2}$. Then one of the possible equation of the circle is:

(a)
$$x^2 + y^2 + x - y + 30 = 0$$

(b)
$$x^2 + y^2 + 2x - 18y + 32 = 0$$

(c)
$$x^2 + y^2 + 2x + 18y + 32 = 0$$

(d)
$$x^2 + y^2 - 2x - 22y + 32 = 0$$

48. Point on the circle $x^2 + y^2 - 2x + 4y - 4 = 0$ which is nearest to the line y = 2x + 11 is:

(a)
$$\left(1 - \frac{6}{\sqrt{5}}, -2 + \frac{3}{\sqrt{5}}\right)$$

(b)
$$\left(1+\frac{6}{\sqrt{5}}, -2-\frac{3}{\sqrt{5}}\right)$$

(c)
$$\left(1 - \frac{6}{\sqrt{5}}, -2 - \frac{3}{\sqrt{5}}\right)$$

(d) None of these

49. A foot of the normal from the point (4, 3) to a circle is (2, 1) and a diameter of the circle has the equation 2x - y - 2 = 0. Then the equation of the circle is:

(a)
$$x^2 + y^2 - 4y + 2 = 0$$

(b)
$$x^2 + y^2 - 4y + 1 = 0$$

(c)
$$x^2 + y^2 - 2x - 1 = 0$$

(d)
$$x^2 + y^2 - 2x + 1 = 0$$

50. If $\left(a, \frac{1}{a}\right)$, $\left(b, \frac{1}{b}\right)$, $\left(c, \frac{1}{c}\right)$ and $\left(d, \frac{1}{d}\right)$ are four distinct points on a circle of radius 4 units then, *abcd* is equal to:

1	1							A	nsv	ver	S								1
1.	(a)	2.	(b)	3.	(a)	4.	(b)	5.	(b)	6.	(c)	7.	(a)	8.	(d)	9.	(a)	10.	(b)
11.	(a)	12.	(a)	13.	(c)	14.	(d)	15.	(c)	16.	(a)	17.	(c)	18.	(a)	19.	(d)	20.	(a)
21.	(c)	22.	(b)	23.	(c)	24.	(c)	25.	(c)	26.	(ъ)	27.	(c)	28.	(d)	29.	(d)	30.	(d)
31.	(d)	32.	(b)	33.	(d)	34.	(c)	35.	(a)	36.	(a)	37.	(ъ)				1	A SE	
41.	(b)	42.	(d)	43.	(a)	44.	(b)	45.	(c)	46.	(c)	47.	(b)	48.	(a)	49.	(c)	50.	(c)