Midterm 1 practice 3

UCLA: Math 115A, Spring 2020

Instructor: Noah White Date:

- This exam has 4 questions, for a total of 20 points.
- Please print your working and answers neatly.
- Write your solutions in the space provided showing working.
- Indicate your final answer clearly.
- You may write on the reverse of a page or on the blank pages found at the back of the booklet however these will not be graded unless very clearly indicated.
- Non programmable and non graphing calculators are allowed.

Name:			
ID number:			

Discussion section (please circle):

Question	Points	Score
1	5	
2	5	
3	5	
4	5	
Total:	20	

Question 1 is multiple choice. Indicate your answers in the table below. The following three pages will not be graded, your answers must be indicated here.

Part	A	В	С	D
(a)				
(b)				
(c)				
(d)				
(e)				

 \square I wish to opt out of having my exam graded using Gradescope.

- 1. Each of the following questions has exactly one correct answer. Choose from the four options presented in each case. No partial points will be given.
 - (a) (1 point) If V is a vector space over the field $\mathbb C$ and $v \in V$ then

$$(2-3) \cdot (v+w) + (5-3) \cdot v + w$$

equals

- A. 1
- **B.** *v*
- C. 0
- D. 2v

The following two questions concern the subsets

$$A = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \middle| \lambda a^2 + 2(c - a^2) = 0 \right\} \subseteq \mathbb{R}^3$$

$$B = \{ p \in \mathbb{R}[x] \mid p' = \lambda \} \subseteq \mathbb{R}[x]$$

for some $\lambda \in \mathbb{R}$.

- (b) (1 point) Which of the following is a true statement.
 - A. Both A and B are subspaces regardless of the value of $\lambda \in \mathbb{R}$.
 - B. A is not a subspace for any λ and B is a subspace when $\lambda = 0$.
 - C. Both are subspaces when $\lambda = 0$.
 - **D.** A is a subspace when $\lambda = 2$.

- (c) (1 point) When $\lambda = 0$, the subspace B has dimension
 - **A.** 1
 - B. 2
 - C. 3
 - D. 4

(d) (1 point) Let \mathbb{F} be one of the fields \mathbb{Z}_p for p=2,3,5,7. Consider the vectors

$$\begin{pmatrix} [1] \\ [1] \end{pmatrix}$$
 and $\begin{pmatrix} [-1] \\ [5] \end{pmatrix}$.

For which fields are the two vectors linearly dependent?

- A. Only for \mathbb{Z}_2 .
- B. Only for \mathbb{Z}_5
- C. For \mathbb{Z}_2 and \mathbb{Z}_3 .
- D. For \mathbb{Z}_2 and \mathbb{Z}_5 .

(e) (1 point) Fix $\lambda \in \mathbb{R}$. Consider the subspaces

$$U = \left\{ \begin{pmatrix} -a \\ \lambda a \end{pmatrix} \middle| a \in \mathbb{R} \right\} \subset \mathbb{R}^2$$

$$W = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} \mid a + b = 0 \right\} \subset \mathbb{R}^2$$

When is $U \oplus W = \mathbb{R}^2$? (i.e. when is \mathbb{R}^2 a direct sum of these two subspaces).

- A. For any $\lambda \in \mathbb{R}$.
- B. Never.
- C. When $\lambda \neq 1$.
- D. When $\lambda \neq 0$.

- 2. Give (simple) examples of all of the following situations.
 - (a) (2 points) An infinite dimensional vector space V over $\mathbb C$ and an infinite dimensional subspace W such that $W \neq V$.

Solution:
$$V = \mathbb{C}[x]$$
 and $W = \operatorname{span}\{x^{2n} \mid n \geq 0\}$

(b) (2 points) A linearly dependant subset $\{v_1, v_2, v_3\} \subseteq V$ consisting of 3 elements such that no element is a scalar multiple of another (i.e. $v_i \neq \lambda v_j$ for any $\lambda \in \mathbb{C}$ and $i \neq j$).

Solution:
$$v_1 = 1, v_2 = x, v_3 = 1 + x$$

(c) (1 point) A basis for W.

Solution:
$$\{x^{2n} \mid n \ge 0\}.$$

3. (5 points) Let $\mathbb{C}_3[x]$ be the vector space consisting of polynomials of degree less than 3 (i.e constant, linear and quadratic polynomials only). Let $S = \{1 + x, x - x^2, 1 + x + x^2\} \subset \mathbb{C}_3[x]$. Prove or disprove that S is a basis of $\mathbb{C}_3[x]$.

Solution: To show S is a basis we need to show it is linearly independent and that it spans $\mathbb{C}_3[x]$. To see that it is linearly independent, consider a linear combination

$$\lambda_1(1+x) + \lambda_2(x-x^2) + \lambda_3(1+x+x^2) = 0,$$

for some $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{C}$. Expanding the LHS we get

$$(\lambda_1 + \lambda_3) + (\lambda_1 + \lambda_2 + \lambda_3)x + (\lambda_3 - \lambda_2)x^2 = 0.$$

From the constant term we see that $\lambda_3 = -\lambda_1$. From the coefficient of x^2 we see that $\lambda_2 = \lambda_3 = -\lambda_1$. Thus the coefficient of x gives the equation $-\lambda_1 = 0$. Thus we see that $\lambda_1 = \lambda_2 = \lambda_3 = 0$ and so S must be linearly independent.

To see that S spans $\mathbb{C}_3[x]$ we could simply observe that $\mathbb{C}_3[x]$ is a 3 dimensional space, so any linearly independent set (such as S) with three elements must be a basis.

We can also show S spans $\mathbb{C}_3[x]$ directly. Suppose $p \in \mathbb{C}_3[x]$. Then $p = a + bx + cx^2$ for some $a, b, c \in \mathbb{C}$. In order for S to span we need to be able to find $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{C}$ such that

$$a + bx + cx^{2} = \lambda_{1}(1+x) + \lambda_{2}(x-x^{2}) + \lambda_{3}(1+x+x^{2})$$
$$= (\lambda_{1} + \lambda_{3}) + (\lambda_{1} + \lambda_{2} + \lambda_{3})x + (\lambda_{3} - \lambda_{2})x^{2}.$$

We get the equations

$$a = \lambda_1 + \lambda_3$$

$$b = \lambda_1 + \lambda_2 + \lambda_3$$

$$c = \lambda_3 - \lambda_2.$$

We could write these as a linear system and invert a matrix to solve, but its small enough to do manually. $\lambda_1 = a - \lambda_3$, and $\lambda_2 = \lambda_3 - c$. We also have

$$\lambda_3 = b - \lambda_1 - \lambda_2$$

$$= b - (a - \lambda_3) - (\lambda_3 - c)$$

$$= b - a + c.$$

Thus $\lambda_1 = 2a - b - c$ and $\lambda_2 = b - a$. Since there is a solution S spans $\mathbb{C}_3[x]$.

- 4. Let V be a vector space over a field \mathbb{F} and W be a subspace.
 - (a) (2 points) Consider the map $\pi: V \longrightarrow V/W$ given by $\pi(v) = v + W$. Show that π is a linear map.

Solution: First we check that $\pi(u+v) = \pi(u) + \pi(v)$ if $u, v \in V$:

$$\pi(u+v) = (u+v) + V = (u+V) + (v+V) = \pi(u) + \pi(v)$$

where the second equality follows by the definition of V/W. Now we show that $\pi(\lambda v) = \lambda \pi(v)$ for $\lambda \in \mathbb{F}$ and $v \in V$:

$$\pi(\lambda v) = (\lambda v) + V = \lambda(v + V) = \lambda \pi(v)$$

where, again, the second equality follows by the definition of V/W.

(b) (3 points) Let $V = \mathbb{R}^3$ and

$$W = \left\{ \begin{pmatrix} a \\ b \\ c \end{pmatrix} \in V \mid a - b = 0, b - c = 0, c - a = 0 \right\}$$

Find the dimension of W and V/W.

Solution: Note that if a-b=0, b-c=0, c-a=0 this is the same as b=a, c=b=a. Thus

$$W = \left\{ \begin{pmatrix} a \\ a \\ a \end{pmatrix} \in V \middle| a \in \mathbb{R} \right\} = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$

and so dim W = 1.

Consider the set

$$S = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + W, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + W \right\} \subset V/W.$$

We claim this is a basis (and thus dim V/W=2). To see they are linearly independent note that if

$$\lambda_1 \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + W \right) + \lambda_2 \left(\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + W \right) = 0 = W$$

This would mean that

$$\begin{pmatrix} \lambda_1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \lambda_2 \\ 0 \end{pmatrix} = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ 0 \end{pmatrix} \in W$$

but this is clearly not true unless $\lambda_1 = \lambda_2 = 0$.

To see that this set spans V/W, observe that if

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} + W \in V/W$$

then

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} + W = \begin{pmatrix} a - c \\ b - c \\ 0 \end{pmatrix} + W$$

which is clearly in the span of S. Thus S is a basis.

This page has been left intentionally blank. You may use it as scratch paper. It will not be graded unless indicated very clearly here and next to the relevant question.