TD1

Exercice 1. Déterminer (sous la forme d'intervalles ou de réunions d'intervalles) les sous-ensembles de \mathbb{R} définis par les conditions suivantes sur x:

a)
$$5x + 2 > -3$$
 b) $2x - 1 < 4x + 3 < -x + 6$ c) $|x - 1| < 4$ d) $|x - 2| > 3$

e)
$$|x-2| \le |x|$$
 f) $|x-2| + |x+2| > 3$ g) $\sqrt{x+1} < 2$ h) $x^2 + 1 \le 3$
i) $x^2 + 3x < 4$ j) $x^3 - 3x^2 + 2x \ge 0$ k) $|x| + |x-1| \le 2$

Exercice 2. Soit $f: x \mapsto ax + b$ une fonction affine. On suppose que |f(-1)| = 3 et |f(2)| = 2. Déterminer toutes les valeurs possibles du couple (a, b) et tracer les courbes représentatives correspondantes de f.

Exercice 3. a) Tracer la courbe représentative de la fonction $f: x \mapsto |x| + |2x - 4|$.

- b) A quoi est égal l'ensemble $f(\mathbb{R})$? La fonction f est-elle minorée? Est-elle majorée?
- c) Déterminer l'ensemble f([-2,3]).
- d) Déterminer tous les antécédents par f de 1; de 2; de 3.

Exercice 4. On donne ci-dessous la courbe représentative d'une fonction f d'ensemble de définition [-1,2].

a) Donner l'ensemble de définition et tracer la courbe représentative des fonctions suivantes :

$$i) \ x \mapsto -f(x)$$
 $ii) \ x \mapsto f(-x)$ $iii) \ x \mapsto f(x) + 2$ $iv) \ x \mapsto f(x+2)$

b) Sachant que f est la restriction à [-1,2] d'une fonction polynomiale de degré 2, expliciter f(x).

Exercice 5. Déterminer les ensembles de définition de f, g, $g \circ f$, $f \circ g$ et calculer $g \circ f(x)$ et $f \circ g(x)$ dans chacun des exemples suivants.

a)
$$f: x \mapsto x^2 + 2 \ , \ g: x \mapsto \frac{1}{x} \ ;$$

b)
$$f: x \mapsto \sqrt{x+1}$$
, $g: x \mapsto x^2 - 1$.

Exercice 6. a) Soit f, g, h, des fonctions d'ensemble de définition \mathbb{R} . Montrer l'égalité $(f+g) \circ h = f \circ h + g \circ h$.

b) Peut-on affirmer qu'on a aussi $h \circ (f+g) = h \circ f + h \circ g$? En cas de réponse négative, donner un contre-exemple.

Exercice 7. a) On considère une fonction paire $u: \mathbb{R} \to \mathbb{R}$, une fonction impaire $v: \mathbb{R} \to \mathbb{R}$, et on pose f = u + v. Déterminer, pour tout $x \in \mathbb{R}$, une expression de u(x) et v(x) en fonction de f(x) et f(-x).

- b) Montrer que toute fonction $f: \mathbb{R} \to \mathbb{R}$ peut s'écrire comme la somme d'une fonction paire et d'une fonction impaire, et que cette décomposition est unique.
- c) Déterminer cette décomposition dans les cas suivants : $f(x) = 2x^5 3x^4 + x^2 2x + 4$, $f(x) = \frac{1}{2 + \sin x}$.

Exercice 8. Donner l'ensemble de définition de la fonction $u: x \mapsto \sqrt{1-x^3}$ et déterminer (sans calculer de dérivée!) son sens de variation.

Exercice 9. a) Pour $a \in [2, 4]$, trouver un encadrement de a^2 ; de a^3 ; de $\frac{1}{a}$.

b) Pour $a \in [-3, 2]$, que peut-on dire de a^2 ; de a^3 ; de $\frac{1}{a}$?

On pourra utiliser les tableaux de variations des fonctions carré, cube et inverse pour justifier les réponses.

Exercice 10. Soit $a, b \in \mathbb{R}_+$. Comparer $\sqrt{a+b}$ et $\sqrt{a} + \sqrt{b}$. Dans quels cas a-t-on égalité?

Exercice 11. Que peut-on dire d'une fonction $f: \mathbb{R} \to \mathbb{R}$ qui est à la fois 3-périodique et 5-périodique?

Exercice 12. Justifier que les fonctions suivantes définies sur \mathbb{R} sont périodiques et en donner une période.

$$i) x \mapsto \sin(3x)$$
 $ii) x \mapsto [\cos(\pi x)]^2 \sin(\pi x/2)$ $iii) x \mapsto \cos(x/2) + \cos(x/3) + \cos(x/5)$

Exercice 13. Donner l'ensemble de définition des fonctions rationnelles suivantes, puis simplifier leur expression (si c'est possible).

a)
$$x \mapsto \frac{x + x^7}{x^4 - 2x^5 + 3x^6}$$
 b) $x \mapsto \frac{x^3 - 2x + 1}{x^3 - 2x^2 - x + 2}$ c) $x \mapsto \frac{x^3 + 2x}{x^4 + 4x^2 + 4}$

Exercice 14. i) Déterminer tous les antécédents de $-\frac{1}{\sqrt{2}}$ par la fonction cosinus.

ii) Déterminer tous les antécédents de $-\frac{1}{\sqrt{2}}$ par la fonction sinus.

Exercice 15. Calculer les limites suivantes.

$$a) \lim_{x \to +\infty} \frac{x^2 + 2x - 2}{x^3 - 1} \qquad b) \lim_{x \to 0} \frac{x^3 - x^2 + x}{3x^3 + 2x} \qquad c) \lim_{x \to +\infty} \frac{x^3 - x^2 + x}{3x^3 + 2x}$$

$$d) \lim_{x \to -\infty} \frac{2x^2 - 5x + 7}{3x + 1} \qquad e) \lim_{t \to 3} \frac{t - 3}{t^2 - 9} \qquad f) \lim_{x \to +\infty} \sqrt{x^2 + x} - x$$

$$g) \lim_{t \to 2} \frac{1}{t^2 - 2t} \qquad h) \lim_{x \to 1, x > 1} \frac{x^2 - 1}{\sqrt{x - 1}} \qquad i) \lim_{x \to 1} \frac{x^3 - 2x^2 + x}{x^2 - 3x + 2} \qquad j) \lim_{x \to 0} \frac{\sqrt{x^3 + x^2} - x}{x^2}$$

Exercice 16. a) On considère une fonction f dont l'ensemble de définition contient un intervalle $[a, +\infty[$. On suppose que la fonction $x \mapsto f(x) + x$ est bornée sur l'intervalle $[a, +\infty[$. Montrer que $\lim_{x \to +\infty} f(x) = -\infty$.

b) Déterminer $\lim_{x \to +\infty} \frac{f(x)}{x}$.

Exercice 17. Résoudre les équations suivantes.

a)
$$\sqrt{2x+3} = x$$
 b) $\sqrt{x} = x-1$ c) $x^{\frac{1}{3}} = 3x$ d) $\sqrt{x} - 2x^{\frac{1}{4}} = 1$

Exercice 18. a) En utilisant les formules qui expriment $\cos(a+b)$ et $\sin(a+b)$ en fonction de $\cos a$, $\sin a$, $\cos b$, $\sin b$, trouver une expression de $\cos(3a)$ et de $\sin(3a)$ en fonction de $\cos a$ et $\sin a$.

En déduire que

$$\cos(3a) = 4(\cos a)^3 - 3\cos a$$
 et $\sin(3a) = 3\sin a - 4(\sin a)^3$.

b) Trouver une simplification de $\cos(3\arccos(x))$ et de $\sin(3\arcsin(x))$ pour $x \in [-1, 1]$.

3

Exercice 19. Combien l'équation $\tan x = 2$ a-t-elle de solutions dans l'intervalle $[-3\pi/2, 3\pi/2]$? Exprimer ces solutions en fonction du réel $\alpha := \arctan(2)$.

Exercice 20. On considère la fonction f définie sur \mathbb{R} par $f(t) = \arccos(\cos(2t))$.

- a) Montrer que f est paire, et π -périodique.
- b) Pour $t \in [0, \pi/2]$, simplifier f(t) (justifier la réponse).
- c) Tracer la courbe représentative de f.

Indication. Utiliser b) pour tracer la courbe représentative restreinte à l'intervalle $[0, \pi/2]$. Utiliser ensuite a) pour obtenir la courbe représentative restreinte à $[-\pi/2, \pi/2]$, puis la courbe représentative entière.

Exercices complémentaires

Exercice 21. On considère la fonction $f: x \mapsto \frac{1}{1-x}$.

- a) Quel est l'ensemble de définition de f?
- b) Quel est l'ensemble de définition de $f \circ f$? Calculer $f \circ f(x)$.
- c) Quel est l'ensemble de définition de $f \circ f \circ f$? Calculer $f \circ f \circ f(x)$.

Exercice 22. a) Factoriser la fonction polynomiale $x \mapsto P(x) = x^3 - 3x^2 + x$.

- b) Factoriser la fonction polynomiale $x \mapsto Q(x) = 2x^3 x^2 2x + 1$.
- c) Quel est l'ensemble de définition de la fonction $x \mapsto \sqrt{2x^3 x^2 2x + 1}$?

Exercice 23. Déterminer $\lim_{x\to 0} \frac{\sqrt{x+1} - \sqrt{1-x}}{x}$.

Exercice 24. Tracer la courbe représentative de la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par

$$\begin{cases} \forall x \in]-\infty, 1[, \ f(x) = 2x + 3 \\ \forall x \in [1, 2[, \ f(x) = -x + 6 \\ \forall x \in [2, +\infty[, \ f(x) = 2\sqrt{x - 1}] \end{cases}$$

En quels points la fonction f est-elle continue?

Exercice 25. On considère la fonction f définie sur \mathbb{R} par $f(x) = \begin{cases} 2x & \text{si } x \leq 1 \\ x^2 + 1 & \text{si } x > 1 \end{cases}$

- a) Tracer la courbe représentative de f. Vérifier que f est continue et strictement croissante. Etudier ses limites en $+\infty$ et $-\infty$. En déduire que f est une bijection de $\mathbb R$ sur $\mathbb R$.
- b) Déterminer $f^{-1}(x)$ pour tout $x \in \mathbb{R}$.

Exercice 26. Simplifier, pour tout $x \in [-1, 1]$, $\cos(\arcsin(x))$, $\sin(\arccos(x))$, $\sin(2\arccos(x))$.

4