Расширенный конспект по теории оптимизации

1. Общая формулировка задачи оптимизации и аналитическая сложность минимизации невыпуклых липшицевых функций

Формулировка задачи оптимизации:

$$\min_{x \in \mathbb{R}^n} f(x),$$

где f(x) — целевая функция, заданная на \mathbb{R}^n , и может быть выпуклой/невыпуклой, гладкой/негладкой. Нижняя граница сложности для невыпуклых L-липшицевых функций:

Теорема 1. Для функций f(x), имеющих L-липшицев градиент ($\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$), методам первого порядка требуется $\Omega(\epsilon^{-2})$ итераций для нахождения ϵ -оптимального решения ($\|\nabla f(x)\| \le \epsilon$).

Доказательство: Строится контрпример на основе квадратичной функции $f(x) = \frac{L}{2}x^2$, где вычисление градиентов показывает невозможность достижения точности за меньшее число итераций. Полное доказательство опускается в виду сложности.

2. Выпуклая оптимизация и примеры в машинном обучении

Определение выпуклой функции: Функция f(x) выпукла, если:

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y), \quad \forall x, y$$
 и $\lambda \in [0, 1].$

Примеры выпуклых задач:

• Регрессия (Lasso):

$$\min_{x,y} \|Xw - y\|_2^2 + \lambda \|w\|_1.$$

Здесь $||w||_1$ является выпуклой, но негладкой нормой.

• Логистическая регрессия:

$$\min_{w} \frac{1}{N} \sum_{i=1}^{N} \log(1 + e^{-y_i w^{\top} x_i}) + \lambda ||w||_2^2.$$

• Поддерживающие векторы (SVM):

$$\min_{w} \frac{1}{2} \|w\|_{2}^{2} + C \sum_{i=1}^{N} \max(0, 1 - y_{i} w^{\top} x_{i}).$$

3. Адаптивный градиентный спуск и наискорейший спуск

Адаптивный градиентный спуск: Методы семейства AdaGrad, RMSProp и Adam используют информацию о предыдущих градиентах для масштабирования шагов:

$$t_t \propto \frac{1}{\sqrt{\sum_{i=1}^t g_i^2}}.$$

Наискорейший спуск:

Определение 1. На каждом шаге выбирается t_k , минимизирующий $f(x_k - t\nabla f(x_k))$ по t.

Теорема 2. При L-липшицевом градиенте наискорейший спуск обладает линейной скоростью сходимости для строго выпуклых функций.

4. Градиентный метод при условии градиентного доминирования (Поляка-Лоясиевича)

Определение условия Поляка-Лоясиевича:

$$\|\nabla f(x)\|^2 \ge 2\mu(f(x) - f^*), \quad \mu > 0.$$

Теорема 3. Градиентный метод для функций, удовлетворяющих условию Поляка-Лоясиевича, сходится со скоростью:

 $f(x_k) - f^* \le \frac{C}{k^2}.$

Пример: Обучение глубокой нейронной сети, где перепараметризация вводит скрытую регуляризацию, улучшая поведение градиентов.

5. Стохастический градиентный метод (SGD)

Идея: Вместо вычисления полного градиента используется приближенный градиент на случайной выборке:

$$\nabla f_i(x)$$
.

Теорема 4. При уменьшении шага по правилу $t_k = O(1/\sqrt{k})$, SGD достигает сходимости:

$$\mathbb{E}[f(x_k)] - f^* = O(1/\sqrt{k}).$$

Применение: Эффективен для обучения больших моделей.

6. Неточный оракул и минибатчинг

Неточный оракул: Приближает градиенты с заданной точностью:

$$\|\nabla f(x) - g(x)\| \le \epsilon.$$

Минибатчинг: Выбирается подмножество данных, что снижает шум, но сохраняет стохастичность.

7. Ускоренные градиентные методы

Метод Нестерова:

$$y_{k+1} = x_k + \frac{k-1}{k+2}(x_k - x_{k-1}).$$

Теорема 5. Скорость сходимости для выпуклых функций:

$$f(x_k) - f^* \le O(1/k^2).$$

8. Метод сопряжённых градиентов

Для задач:

$$\min_{x} \frac{1}{2} x^{\top} Q x - b^{\top} x.$$

Используется структура матрицы Q для ускорения сходимости.

9. Метод Франк-Вульфа

Теорема 6. Скорость сходимости метода:

$$f(x_k) - f^* \le O(1/k).$$

10. Субградиентный метод

Теорема 7. Для выпуклых задач:

$$f(x_k) - f^* \le O(1/\sqrt{k}).$$

11. Универсальные методы

Методы, работающие как для гладких, так и для негладких задач. Пример: ускоренные универсальные схемы Нестерова.

12. Стохастический субградиентный метод

Работает аналогично SGD, но применим для негладких задач.

13. AdaGrad

$$t_t \propto \frac{1}{\sqrt{\sum_{i=1}^t g_i^2}}.$$

14. Метод Ньютона

Использует гессиан для квадратичной сходимости.

15. Квазиньютоновские методы

Meтод BFGS: аппроксимирует гессиан с помощью информации о градиентах.