CAP

Согласованность обновлений

- Конфликт "запись-запись"
 - Пессимистичный подход транзакции
 - Медленная работа
 - Deadlock
 - Распределенные блокировки
 - Оптимистичный
 - Обновлять не всегда
 - Разрешение конфликтов
- Репликация повышает вероятность конфликтов "запись-запись"

Согласованность "чтениезапись"

- Когда возникает?
- B NoSQL нет транзакций не совсем правда
- Есть атомарность операций с конкретным "агрегатом"
 - Как помогает денормализация?
- Окно несогласованности

Согласованность репликаций

- При чтении с разных реплик значение будет одним и тем же
- Как добиться?
 - Согласованность в рамках своей сессии.

Eventual Consistency

- Есть много серверов.
- В любой момент времени данные могут быть не согласованными, но, если нет новых обновлений, в конце концов все узлы получат одно и то же значение

Quorum

- Нужен для повышения вероятности правильного ответа
- Не обязательно "все или ничего"
 - Кворум записи (W > N/2)
 - Кворум чтения (R + W > N)

CAP

- Consistency
 - Записи атомарны
 - Все запросы после записи получают новое значение
- Availability
 - Должно возвращаться значение до тех пор, пока хотя бы один сервер работает
- Partition tolerance
 - Система продолжает функционировать, если распадается на части

Как выбирать?

- 1. Можно только 2 из 3
- 2. Выбираем, распределенная или нет
- 3. Выбираем, от чего отказываться (А или С)

Пример САР

- CA не выдерживают Partition Tolerance
- CP должен ответить только если знает правильный ответ
- АР должен всегда ответить, если спрашивают
 - Ответ может быть "не знаю"
 - Eventual Consistency

Примеры

- CA PostgreSQL, Redis, Neo4J
- CP MongoDB, HBase
- AP CouchDB, ElasticSearch

Как выбирать БД?

- Смотреть на пары букв? Слишком просто!
- В некоторых БД можно выбирать интересующие буквы:
 - Cassandra Replication Factor
 - MongoDB количество узлов в Replica Set
- Настраивать часто можно еще и драйвер:
 - Cassandra
 - MongoDB