Assignment 5; MA353; Term: S19

Leo Livshits

Last modified at 15:25 on April 10, 2019

Problem 1

Suppose that $\mathfrak F$ is a commutative collection of linear operators on a (not necessarily finite-dimensional) vector space V. Suppose that λ is an eigenvalue for some $\mathcal A \in \mathfrak F$, and let $E_{_{\mathcal A}}(\lambda)$ be the corresponding eigenspace of $\mathcal A$. Argue that this $E_{_{\mathcal A}}(\lambda)$ is an invariant subspace for every operator in $\mathfrak F$.

Fact 0.1 🖒 All subspaces are complemented

For every subspace $m{Z}$ of a (not necessarily finite-dimensional) vector space $m{V}$, there exists a subspace $m{W}$ of $m{V}$ such that

$$oldsymbol{V} = oldsymbol{Z} \; \oplus \; oldsymbol{W} \; .$$

Problem 2

Let us use the same set-up as in Problem 1, and let $oldsymbol{W}$ be a subspace of $oldsymbol{V}$ such that

$$V = E_{\Lambda}(\lambda) \oplus W$$
.

Argue that with respect to this decomposition, operators in $\ensuremath{\mathfrak{F}}$ have block matrix representation of the form

$$\begin{bmatrix} \mathcal{L} & \mathcal{M} \\ \mathcal{O} & \mathcal{K} \end{bmatrix},$$

where the \mathcal{L} 's form a commutative family in $\mathfrak{L}\left(\boldsymbol{E}_{\boldsymbol{A}}(\lambda),\boldsymbol{E}_{\boldsymbol{A}}(\lambda)\right)$, and the \mathcal{K} 's form a commutative family in $\mathfrak{L}\left(\boldsymbol{W},\boldsymbol{W}\right)$.

Argue that every commutative family of operators on a finite-dimensional vector space over the complex numbers is simultaneously upper-triangularizable, and simultaneously lower-triangularizable.

Definition 0.2 Conjugate transpose

For every matrix $A \in \mathbb{M}_k(\mathbb{C})$, let us write \overline{A} for the $k \times k$ matrix obtained by conjugating all entries of A; in other words

$$\overline{\mathcal{A}}\llbracket i,j\rrbracket = \overline{\mathcal{A}\llbracket i,j\rrbracket}.$$

We shall write \mathcal{A}^* for the matrix $\left(\overline{\mathcal{A}}\right)^T$. The reader should check that

$$\mathcal{A}^* = \overline{\mathcal{A}^T}$$
.

Matrix \mathcal{A}^* is said to be the **conjugate transpose** of \mathcal{A} , or the **adjoint** of \mathcal{A} .

Use Jordan Cannonical Form Theorem to argue that the transpose $\mathcal{J}_{\lambda,n}^{\mathsf{T}}$ of a Jordan block $\mathcal{J}_{\lambda,n}$ is similar to $\mathcal{J}_{\lambda,n}$, and then use this fact to argue that every $k \times k$ complex matrix is similar to its transpose.

For each matrix $\mathcal{A} \in \mathbb{M}_{\scriptscriptstyle n \times m}$ let $\left\|\mathcal{A}\right\|_{\scriptscriptstyle 2}$ stand for the Euclidean norm of \mathcal{A} interpreted as a folded element of $\mathbb{C}^{^{nm}}$. In other words,

$$\|\mathcal{A}\|_{_{2}}\coloneqq\sqrt{\sum_{_{i,j}}\left(\mathcal{A}\llbracket i,j
rbracket^{2}
ight)^{2}}.$$

 $\|\mathcal{A}\|_{_{2}}$ is said to be a **Hilbert-Schmidt norm** or a **Frobenius norm** of \mathcal{A} .

Test Your Comprehension 0.4

Argue that

$$\|A\|_{2} = \sqrt{\operatorname{Trace}(A^{*}A)} = \sqrt{\operatorname{Trace}(AA^{*})}$$
.

Fact 0.5 Some fundamental limits

For any $\alpha > 1$,

$$\lim_{n\to\infty}\frac{n^{\text{fixed power}}}{\alpha^{^n}}=0\ .$$

For example,

$$\lim_{n\to\infty}\frac{n^{10357}}{\alpha^n}=0,$$

and

$$\lim_{n\to\infty}\frac{n^{10357\pi}}{\alpha^n}=0.$$

Problem 5

1. Argue that

$$\lim_{n\to\infty} \left(5\alpha^n + 4n\alpha^{n-1} + 3\frac{n(n-1)}{2!}\alpha^{n-2} + 2\frac{n(n-1)(n-2)}{3!}\alpha^{n-3} + \frac{n(n-1)(n-2)(n-3)}{4!}\alpha^{n-4}\right) = \begin{cases} 0, & \text{if } 0 \le \alpha < 1\\ \\ \infty, & \text{if } \alpha \ge 1 \end{cases}.$$

2. Argue that for $m \ge 2$

$$\lim_{n\to\infty} \left\| \left(\mathcal{J}_{\lambda,m} \right)^n \right\|_2 = \begin{cases} 0, & \text{if } |\lambda| < 1 \\ \\ \infty, & \text{if } |\lambda| \ge 1 \end{cases}$$

Note that $\mathcal{J}_{_{\lambda,m}}=\lambda\mathcal{I}+\mathcal{N}$, where \mathcal{N} is a nice cyclic nilpotent of order m, so that

$$\left(\mathcal{J}_{\lambda,m}\right)^n = \left(\lambda \mathcal{I} + \mathcal{N}\right)^n = \lambda^n \mathcal{I} + \binom{n}{1} \lambda^{n-1} \mathcal{N} + \binom{n}{2} \lambda^{n-2} \mathcal{N}^2 + \cdots$$

You may want to start with small m first, and calculate some $\left(\mathcal{J}_{\lambda,m}\right)^n$'s using Mathematica...

Problem 6

1. Use logarithms and L'Hopital's Rule to argue that for any $\alpha > 0$,

$$\lim_{x\to\infty} \left(5+4x\alpha^{-1}+3\tfrac{x(x-1)}{2!}\alpha^{-2}+2\tfrac{x(x-1)(x-2)}{3!}\alpha^{-3}+\tfrac{x(x-1)(x-2)(x-3)}{4!}\alpha^{-4}\right)^{\frac{1}{x}}\!=\!\mathbf{1}\ .$$

2. Argue that

$$\lim_{n\to\infty} \left(\left\| \left(\mathcal{J}_{\lambda,m} \right)^n \right\|_2 \right)^{\frac{1}{n}} = |\lambda|.$$

Extra Credit Problem 1

1. Suppose that $[x_n]$, $[y_n]$, $[z_n]$, $[u_n]$ are sequences of positive numbers such that

$$\begin{bmatrix} (x_n)^{\frac{1}{n}} \end{bmatrix} \longrightarrow \alpha$$

$$\begin{bmatrix} (y_n)^{\frac{1}{n}} \end{bmatrix} \longrightarrow \beta$$

$$\begin{bmatrix} (z_n)^{\frac{1}{n}} \end{bmatrix} \longrightarrow \gamma$$

$$\begin{bmatrix} (u_n)^{\frac{1}{n}} \end{bmatrix} \longrightarrow \delta$$

(a) Evaluate the limit of

$$\left[\left(\alpha^n+\beta^n+\gamma^n+\delta^n\right)^{\frac{1}{n}}\right].$$

(b) Evaluate the limit of

$$\left[\left(x_{n}+y_{n}+z_{n}+u_{n}\right)^{\frac{1}{n}}\right].$$

2. Suppose that $\mathcal{A}=\mathcal{J}_{\lambda_1,m_1}\oplus\mathcal{J}_{\lambda_2,m_2}\oplus\cdots\oplus\mathcal{J}_{\lambda_{23},m_{23}}.$ Evaluate the limit

$$\lim_{n\to\infty} \left(\left\| \mathcal{A}^n \right\|_2 \right)^{\frac{1}{n}} \ .$$