

UNIVERSIDAD AUTÓNOMA DE CHIHUAHUA Facultad de Ingeniería

Ingeniería en Ciencias de la Computación

INVESTIGACIÓN DE OPERACIONES 1 M1 - 2.6 Actividad Modelo PL con más de 2 variables

Trabajo de: ADRIAN ALEJANDRO GONZÁLEZ DOMÍNGUEZ [359834]

Asesora: OLANDA PRIETO ORDAZ

Construcción de Modelos Matemáticos con mas de dos Variables

En preparación para la temporada invernal, una compañía fabricante de ropa está manufacturando abrigos de piel con capucha y chamarras con relleno de plumas de ganso, pantalones con aislamiento y guantes. Todos los productos se elaboran en cuatro departamentos diferentes: corte, aislamiento, costura y empaque. La compañía recibió pedidos en firme de sus productos. El contrato estipula una penalización por los artículos no surtidos. Considere los siguientes datos:

Departamento					
	Chamarras	Relleno de plumas	Pantalones	Guantes	Capacidad (h)
Corte	.30	.30	.25	.15	1000
Aislamiento	.25	.35	.30	.10	1000
Costura	.45	.50	.40	.22	1000
Empaque	.15	.15	.1	.05	1000
Demanda	800	750	600	500	
Utilidad unitaria	\$30	\$40	\$20	\$10	
Penalización por unidad	\$15	\$20	\$10	\$8	

- a) Identifique función objetivo y restricciones
- b) Determinar la cantidad óptima que debe producir de cada uno de los artículos para optimizar la utilidad Neta. (Utilice Solver o AMPL)

Ejercicio A

Variables

Función Objetivo

Neto=Utilidades-Perdidas Utilidades=30X1+40X2+20X3+10X4 Perdidas=(800-X1)(15)+(750-X2)(20)+(600-X3)(10)+(500-X4)(8) MaxZ=>45X1+60X2+30X3+18X4-37000

Restricciones

R1: 0.30*X1 + 0.30*X2 + 0.25*X3 + 0.15*X4<=1000 R2: 0.25*X1 + 0.35*X2 + 0.30*X3 + 0.10*X4<=1000 R3: 0.45*X1 + 0.50*X2 + 0.40*X3 + 0.22*X4<=1000 R4: 0.15*X1 + 0.15*X2 + 0.10*X3 + 0.05*X4<=1000 R5: X1<=800

R6: X2<=750 R7: X3<=600 R8: X4<=500

Ejercicio B

Resolución

Modelo de producción de ropa

	X1	X2	Х3	X4		
	Abrigos	Chamarras	Pantalones	Guantes		Solver
Funcion Objetivo	45	60	30	18	Z	101625
R1	0.3	0.3	0.25	0.15 <=	1000 R:	1 636.875
R2	0.25	0.35	0.3	0.1 <=	1000 R2	2 628.75
R3	0.45	0.5	0.4	0.22 <=	1000 R3	3 1000
R4	0.15	0.15	0.1	0.05 <=	1000 R4	4 296.25
R5	1	0	0	0 <=	800 R	5 800
R6	0	1	0	0 <=	750 R6	5 750
R7	0	0	1	0 <=	600 R	7 387.5
R8	0	0	0	1 <=	500 R8	500
No negatividad	1	1	1	1 >=	0 R9	9

Solucion	800	750	387.5	500

No podemos producir pantalones a medias por lo que se tomará el valor de 387 paa X3.

La función Z considera un -37000 constante, por ende, se lo restamos a la solución optima.

Ejercicio C

	Exterior	Interior	•		0.1
	X1	X2			Solver
Función Objetivo	5	4		Z	0
R1	6	4	<=	24 R1	0
R2	1	2	<=	6 R2	0
R3	-1	1	<=	1 R3	0
R4	0	1	<=	2 R4	0
No negatividad	1	1	>=	0 R5	
Solución	2.99999997	1.50000001			

Redondeando los valores, la solución óptima es 3 y 1.5 lo cual resulta en una máxima Z de 21.