energy-data-PCA-SVR

September 28, 2020

1 PCA and SVR Analysis

1.1 Using the data on electricity production in Denmark

Figure out the largest contributing factors to CO2 emissions using PCA

```
[1]: import pandas as pd
     from pandas import DataFrame
                    # start of header names, inclusive
[2]: h start = 0
     h end = 20
                   # end of header names, exclusive
     d_start = 22  # start of data values,
     dates = [0,]
                  # Column zero is a date and Pandas must interpret it as a date
[3]: with open("20161208_onlinedata.csv", encoding="latin1") as f:
         data_fields = f.readlines()[h_start:h_end]
         f.seek(0,0)
         data_values = pd.read_csv(f, skiprows=d_start-1, sep=';',__
      →infer_datetime_format=True, parse_dates=dates)
[4]: # Clean leading and trailing spaces, tabs, newlines
     # split on first space only, and then only take the text field \rightarrow ['first_{\sqcup}]
     →header name', 'second header name']
     headers = [d.strip() for d in data_fields]
     headers = [h.split(" ", maxsplit=1)[1] for h in headers]
[5]: # Insert the name of the time column
     headers.insert(0, "Dato og tid")
[6]: # Drop the last empty column
     data_values = data_values.drop('Unnamed: 21', axis=1) # We drop column with_
      → name 21, on the 1st axis (columns)
[7]: # Make a new final object
     df = data_values.copy(deep=True)
     # Set the header names
```

```
df.columns = headers

# Set the Date to be the index
df = df.set_index(df.columns[0])
```

1.2 We now have a final dataset

Now, begin to make it ready for PCA

```
[8]: # Create a df to do PCA on df2 = df.copy(deep=True)
```

```
[9]: # Pop out the CO2 column and save it
CO2 = df2.pop('CO2 udledning')
```

```
[10]: # Pop off and discard the two unusable columns
    df2.pop('Vindhastighed i Malling');
    df2.pop('Temperatur i Malling');
```

1.2.1 Import PCA model

```
[11]: import numpy as np from sklearn.decomposition import PCA
```

```
[12]: pca_model = PCA(n_components=1)
```

Attempt to make a model with just one component, i.e. make 1 new variable by combining the 20 old variables into 1 new variable

```
[13]: pca_model.fit(df2)
```

[13]: PCA(n_components=1)

Show how many percent of total variance in the data can be explained with just the 1 component

```
[14]: print(pca_model.explained_variance_ratio_)
```

[0.79257213]

```
[15]: z = zip(pca_model.components_.T[:,0], df2.columns.T)
list(z)
```

```
(-0.44167102846258777, 'Vindmøller DK1'),
(-0.07026999074319044, 'Vindmøller DK2'),
(0.6743662578385146, 'Udveksling Jylland-Norge'),
(-0.06515162528706121, 'Udveksling Jylland-Sverige'),
(-0.15354756286331547, 'Udveksling Jylland-Tyskland'),
(0.3009366106917083, 'Udveksling Sjælland-Sverige'),
(-0.07732449721545338, 'Udveksling Sjælland-Tyskland'),
(0.001093797833095818, 'Udveksling Bornholm-Sverige'),
(0.009799592537681373, 'Udveksling Fyn-Sjaelland'),
(-0.06904898350365901, 'Havmøller DK'),
(-0.4428941383377205, 'Landmøller DK'),
(-0.00042083450054026346, 'Solceller DK1'),
(-3.396703926453231e-05, 'Solceller DK2')]
```

Perform the transformation, i.e. make the new variable by applying weights to each column and taking sum

```
[16]: x = pca_model.fit(df2).transform(df2)
```

Make a small new dataset with the CO2 data and the new PCA variable

```
[17]: cmp = CO2.to_frame() # Make the Series object into a DataFrame cmp["PCA"] = x[:,0] # Make a new column with the PCA variable
```

```
[18]: cmp
```

[18]:			C02	udledn	ing	PCA
	Dato og tid	i				
	2016-12-08	00:00:00			190	-1771.556285
	2016-12-08	00:05:00			184	-1815.747534
	2016-12-08	00:10:00			180	-1823.303024
	2016-12-08	00:15:00			175	-1813.974267
	2016-12-08	00:20:00			170	-1833.460103
				•••		•••
	2016-12-08	23:35:00			292	33.259697
	2016-12-08	23:40:00			294	46.548923
	2016-12-08	23:45:00			297	66.868377
	2016-12-08	23:50:00			299	66.033229
	2016-12-08	23:55:00			299	73.095850

1.2.2 Look at the results

[288 rows x 2 columns]

Compare the CO2 value to the 1 new variable. We plot on different axes, as the two series are not equally scaled

Use seaborn to make it look nicer

```
[19]: import matplotlib.pyplot as plt
import seaborn as sns
sns.set_theme()

[20]: plt.figure(figsize=(10,5))
sns.lineplot(data=cmp['CO2 udledning'], color="g");
ax2 = plt.twinx()
```

sns.lineplot(data=cmp['PCA'], color="b", ax=ax2);

This shows how the new single variable explains most of the variation in CO2 emissions.

2 SVR Regression model

```
[72]: from sklearn.svm import SVR

[56]: SVR?

[73]: svr_rbf = SVR(kernel='rbf')
    svr_lin = SVR(kernel='linear')
    svr_poly = SVR(kernel='poly')
```

2.0.1 Set up independent variable matrix

2.0.2 Set up dependent variable

```
[75]: y = X.pop('CO2 udledning')
```

2.0.3 Fit the models on the energy production data

```
[76]: svr_rbf.fit(X,y)
svr_lin.fit(X,y)
svr_poly.fit(X,y)
```

[76]: SVR(kernel='poly')

2.0.4 Set up DataFrame to store comparisons

```
[77]: y_data = y.to_frame()
```

2.0.5 In-sample prediction

```
[78]: yhat_rbf = svr_rbf.predict(X)
yhat_lin = svr_lin.predict(X)
yhat_poly = svr_poly.predict(X)
```

Save the predicted values in the pandas array

```
[79]: y_data["y rbf fit"] = yhat_rbf  # Make a new column with the SVR variable y_data["y lin fit"] = yhat_lin y_data["y poly fit"] = yhat_poly
```

```
[80]: y_data
```

```
[80]:
                           CO2 udledning
                                            y rbf fit
                                                        y lin fit y poly fit
     Dato og tid
      2016-12-08 00:00:00
                                      190
                                           171.481458
                                                       194.922431
                                                                   171.326255
      2016-12-08 00:05:00
                                           173.604700
                                                       190.030728
                                                                   175.392295
                                      184
      2016-12-08 00:10:00
                                      180
                                           174.732142
                                                       183.697624
                                                                   177.409074
      2016-12-08 00:15:00
                                           174.900000
                                                       178.719788
                                                                   178.879199
                                      175
      2016-12-08 00:20:00
                                      170
                                           174.725156
                                                       172.615635 179.008417
      2016-12-08 23:35:00
                                           188.507406
                                     292
                                                       293.616533 193.710268
      2016-12-08 23:40:00
                                     294
                                           188.516874
                                                       294.100272 193.730870
      2016-12-08 23:45:00
                                     297
                                           188.063583
                                                       288.452679
                                                                   193.108591
      2016-12-08 23:50:00
                                     299
                                           188.415553
                                                       293.055310
                                                                   193.323640
      2016-12-08 23:55:00
                                      299
                                           190.923278
                                                       302.098764
                                                                   195.447846
```

[288 rows x 4 columns]

```
[81]: plt.figure(figsize=(10,5))
sns.lineplot(data=y_data);
```


The plot shows that a linear model fits the data best. Possibly, the one large outlier affects the RBF and Poly models more than the linear model.

2.0.6 Find out something more about the linear model

Regression coefficients

```
[88]: svr_lin.coef_
```

```
[88]: array([[ 1.56649847e-01, 1.08930240e-01, 1.28524788e-01, -1.67562331e-02, 3.40426721e-02, 5.98768504e-02, 2.09232413e-04, -9.67824319e-02, -9.70612859e-02, 7.22001177e-01, 1.17920562e-01]])
```

[89]: svr_lin.score?

The score is the R²: 96% of the variance in the data is explained by the model.

[90]: svr_lin.score(X,y)

[90]: 0.9602532734483797