Nome: Mattia data inizio: 23/1/2021

Cognome: Bracco data consegna: 2/2/2021

Classe: 2A data assenza /

TITOLO: Dilatazione Lineare.

OBBIETTIVO: determinare il λ di 3 tubi di materiale diverso e identificare i

materiali.

TEORIA ED ASPETTATIVE:

 $\lambda = \Delta I / IO \Delta T$

mi aspetto che i 3 tubi siano di materiali diversi e di conseguenza abbiano un λ diverso tra di loro.

MATERIALI E SCHEMI DI MONTAGGIO USATI:

dinamometro, fornello elettrico, termometro, caldaia a vapore, 3 tubi di materiale diverso.

MISURE, DATI E GRAFICI:

10	Т	Tf	ΔΤ	ΔΙ	λ	λ teorico	MATERIALE
m	°C	°C	ô	m	m	K	
0,5	25	98	83	0,96/1000	2,6 x 10 ^{^-5}	24 x 10^-6	alluminio
0,5	25	100	75	0,78/1000	2,08 x 10^-5	20 x 10^-6	ottone
0,5	25	100	75	0,44/1000	1,17 x 10^-5	11,7 x 10^-6	ferro

PROCEDIMENTO:

abbiamo calcolato il λ dei 3 tubi di materiale diverso conoscendo il Δ I e la differenza di temperatura (Δ T) misurata grazie ad un termometro a mercurio.

CONCLUSIONE:

I 3 valori calcolati sono molto vicini a quelli teorici per i 3 materiali (alluminio, ottone e ferro), questo significa che l'esperienza è stata eseguita bene.

Osservando la tabella si nota che il ferro ha un λ pari alla metà di quello dell' alluminio.

Nella prima misurazione si è ricavata una temperatura di 98 °C a differenza dei 100 °C della seconda e della terza a causa della lettura della lettura sul termometro dopo averlo rimosso.