PROGRAMMING ASSIGNMENT 4: RLC CIRCUITS

Write a program to solve the RLC circuit problem for arbitrary q_0 , i_0 , R, L, C, \mathcal{E}_0 , and ω_d using the Verlet algorithm.

- Show that
 - it demonstrates simple harmonic behavior if $R = \mathcal{E}_0 = 0$.
 - it demonstrates overdamping/underdamping/critical damping for appropriate values of R, L, and C if $\mathcal{E}_0 = 0$.
 - it demonstrates both transient and steady-state behavior.
 - it demonstrates inductive, capacitative, and resonance behavior for appropriate values of R, L, and C.
- Generate plots of: q(t) (charge), i(t) (current), $V_R(t)$ (voltage drop across the resistor), $V_{RLC}(t)$ (voltage drop across the whole circuit), $E_C(t)$ (energy stored in the capacitor), $E_L(t)$ (energy stored in the inductor), and E(t) (total energy).