《微积分A2》第1周第3课

教师 杨利军

清华大学数学科学系

2020年02月17-21日

函数极限的性质

Theorem

- (i) 唯一性. 若函数 f(z) 在点 z₀ 处有极限, 则极限值唯一.
- (ii) 保号性. 若函数 f(z) 在点 z_0 处有极限, 且极限值大于零, 则存在 $\delta>0$, 使得 f(z)>0, $\forall z\in B^\circ(z_0,\delta)$.
- (iii) 保序性. 若 $f(z) \leq g(z)$, $\forall z \in B^{\circ}(z_0, r)$, 且 $f(z) \rightarrow A$,
- g(z) o B, $(z o z_0)$, 则 A \leq B.
- (iv) 有界性. 若函数 f(z) 在点 z_0 处有极限,则 f(z) 在 z_0 的某个去心邻域有界,即存在 M>0, $\delta>0$,使得 $|f(z)| \leq M$, $\forall z \in B^{\circ}(z_0,\delta)$.

证明同一元函数情形. 略.

函数极限的四则运算

Theorem

设 $f(z) \rightarrow A$, $g(z) \rightarrow B$, $(z \rightarrow z_0)$, 则当 $z \rightarrow z_0$ 时,

- (i) $[f(z) \pm g(z)] \rightarrow A \pm B$;
- (ii) $[f(z)g(z)] \rightarrow AB$;
- (iii) $\frac{f(z)}{g(z)} o \frac{A}{B}$ (补充假设 $B \neq 0$).

证明同一元函数情形, 略,

复合函数极限

Theorem

<u>定理</u>: 设 (i) f: $B^{\circ}(x_0,r) \subset IR^n \to IR^p$, 且 $f(x) \to y_0$, $(x \to x_0)$,

(ii) g: $B^{\circ}(y_0,r) \subset IR^p \to IR^m$, $\text{$\mathbb{H}$ } g(y) \to L$, $(y \to y_0)$,

(iii) $f(x) \neq y_0$, $\forall x \in B^{\circ}(x_0, r)$,

则当 $x \to x_0$ 时, $g(f(x)) \to L$.

证明同一元函数情形. 略.

 \underline{i} : 条件 (iii) 是为了为了保证复合函数 g(f(x)) 在 x_0 的去心邻域有意义.

例: 课本第16页例1.3.5. 判断函数

$$f(x,y) = \frac{e^{x^3+y^3}-1}{x^2+y^2}$$

在原点(0,0)处极限的存在性. 极限存在时, 求这个极限值.

 $\underline{\underline{\mathit{H}}}$: 记 $h=h(\mathsf{x},\mathsf{y})=\mathsf{x}^3+\mathsf{y}^3$,则 $h(\mathsf{x},\mathsf{y})\to 0$, $(\mathsf{x},\mathsf{y})\to (0,0)$,

并且函数f可写作

$$f(x,y) = \frac{e^h - 1}{h} \frac{x^3 + y^3}{x^2 + y^2}.$$

熟知 $\lim_{h\to 0} \frac{e^h-1}{h} = 1$. 进一步由不等式

$$\left|\frac{x^3+y^3}{x^2+y^2}\right| \leq |x|\frac{x^2}{x^2+y^2} + |y|\frac{y^2}{x^2+y^2} \leq |x|+|y|,$$

例一续

由此可知

$$\lim_{(x,y)\to(0,0)}\frac{x^3+y^3}{x^2+y^2}=0.$$

因此

$$\underset{(x,y)\rightarrow (0,0)}{\text{lim}} f(x,y) = \left[\underset{h\rightarrow 0}{\text{lim}} \frac{e^h-1}{h}\right] \left[\underset{(x,y)\rightarrow (0,0)}{\text{lim}} \frac{x^3+y^3}{x^2+y^2}\right]$$

$$= 1 \cdot 0 = 0.$$

解答完毕.

例二

例: 课本第16页例1.3.6. 求极限 $\lim_{(x,y)\to(1,0)} f(x,y)$, 其中

$$f(x,y) = (x+y)^{\frac{x+y+1}{x+y-1}}.$$

 $\underline{\mathbf{M}}$: 记 $\delta=\mathbf{x}+\mathbf{y}-\mathbf{1}$, 则当 $(\mathbf{x},\mathbf{y})\to(\mathbf{1},\mathbf{0})$ 时, $\delta\to\mathbf{0}$. 进一步函数 f 可写作 $\mathbf{f}(\mathbf{x},\mathbf{y})=(\mathbf{1}+\delta)^{\frac{\delta+2}{\delta}}$. 于是

$$\lim_{(\mathbf{x},\mathbf{y})\to(\mathbf{1},\mathbf{0})} \mathbf{f}(\mathbf{x},\mathbf{y}) = \lim_{\delta\to 0} \left[(1+\delta)^{\frac{1}{\delta}} \right]^{\delta+2} = \mathbf{e}^2.$$

解答完毕.

其他类型极限, 例一

例一: 求极限

$$\lim_{\mathsf{x}\to 0, |\mathsf{y}|\to +\infty} (1+\mathsf{x})^{\frac{1+\mathsf{y}}{\mathsf{x}\mathsf{y}}}.$$

解: 由于

$$(1+x)^{\frac{1+y}{xy}} = \left[(1+x)^{\frac{1}{x}} \right]^{\frac{1+y}{y}},$$

且 $(1+x)^{\frac{1}{x}} \to e$, $(x \to 0)$ 以及 $\frac{1+y}{y} \to 1$, $(|y| \to +\infty)$, 因此所求极限存在, 且等于 e. 也通过取对数的方法证明. 记

$$f(x,y) = (1+x)^{\frac{1+y}{xy}}.$$

例一续

取对数得

$$\ln f(x,y) = \frac{1+y}{y} \frac{1}{x} \ln (1+x).$$

于是

$$\begin{split} \lim_{\mathsf{x}\to 0, |\mathsf{y}|\to +\infty} \ln f(\mathsf{x},\mathsf{y}) &= \left[\lim_{|\mathsf{y}|\to +\infty} \frac{1+\mathsf{y}}{\mathsf{y}}\right] \left[\lim_{\mathsf{x}\to 0} \frac{1}{\mathsf{x}} \ln \left(1+\mathsf{x}\right)\right] \\ &= 1\cdot 1 = 1. \end{split}$$

故

$$\lim_{x\to 0, |y|\to +\infty} f(x,y) = \lim e^{\ln f(x,y)} = e^{\lim \ln f(x,y)} = e^1 = e.$$

解答完毕.

极限概念的推广

回忆极限 $\lim_{z\to z_0} f(z)$ 的定义中,要求函数 f(z) 的定义域 D 包含点 z_0 的某个去心邻域. 这个要求可以减弱为,仅要求 z_0 是 D 的聚点 (accumulation points),即 D 中存在点列 $z_k\in D$ 收敛于 z_0 ,即 $z_k\to z_0$.聚点也称为极限点.注意聚点 z_0 不必属于 D.

Definition

定义: 设函数 f(z) 的定义域为 D, z_0 是 D 的一个聚点. 若存在数 L, 使得对任意正数 $\varepsilon > 0$, 存在 $\delta > 0$, 使得 $|f(z) - L| < \varepsilon$, $\forall z \in B^\circ(z_0,\delta) \cap D$, 则同样称函数 f(z) 当 $z \to z_0$ 时有极限值 L, 记作 $f(z) \to L$, 当 $z \to z_0$, 或 $\lim_{z \to z_0, z \in D} f(z) = L$.

例子

例: 课本第23页习题1.3题1(10). 设

$$f(x,y) = \frac{xy - \sin(xy)}{xy - xy\cos(xy)}.$$

判断函数 f(x,y) 在原点 (0,0) 处是否存在极限. 若存在, 试求出极限值.

解: 易见函数 f(x,y) 的定义域 D 可表为

 $D \stackrel{\triangle}{=} \{(x,y) \in \mathbb{R}^2, xy \neq 2k\pi, k = 0, \pm 1, \pm 2, \cdots\}$. 显然 D 不包含原点的任何去心邻域, 但原点是 D 的聚点. 下面考虑函数 f 在原点极限的存在性. 记 $g(u) = \frac{u-\sin u}{u-u\cos u}$, 则 f(x,y) = g(xy).

例子续

对函数 g(u) 的分子分母在 u = 0 处作 Taylor 展开

$$u-\sin u = u - \left(u - \frac{u^3}{3!} + O(u^5)\right) = \frac{u^3}{3!} + O(u^5),$$

$$u - u \cos u = u - u \left(1 - \frac{u^2}{2!} + O(u^4)\right) = \frac{u^3}{2!} + O(u^5).$$

于是

$$g(u) = \frac{\frac{u^3}{3!} + O(u^5)}{\frac{u^3}{2!} + O(u^5)} = \frac{\frac{1}{3!} + O(u^2)}{\frac{1}{2!} + O(u^2)} \to \frac{1}{3}, \quad u \to 0.$$

由此可见 $f(x,y) = g(xy) \rightarrow \frac{1}{3}$, 当 $(x,y) \rightarrow (0,0)$. 解答完毕.

二元函数的累次极限

Definition

定义:设二元函数 f(x,y) 在点 (x_0,y_0) 的一个去心邻域有定义. 若任意固定 $y \neq y_0$, 且 $|y - y_0|$ 很小, 极限 $\lim_{x \to x_0} f(x, y)$ 存在, 其极限值是 y 的函数, 记作 $\phi(y)$. 进一步假设 $\lim_{y\to y_0} \phi(y)$ 存 在. 极限值记作 A, 则称函数 f(x,y) 在点 (x_0,y_0) 处先 x 后 y 的 累次极限存在且等于 A, 记作 $\lim_{y\to y_0}\lim_{x\to x_0}f(x,y)=A$. 类似 可定义先y 后x 的极限 $\lim_{x\to x_0}\lim_{y\to y_0}f(x,y)=B$, 假设它存 在.

重极限, 累次极限个数

Definition

为区别计, 之前定义的极限 $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ 称为重极限或全面极限.

注: 类似可以定义三元函数的累次极限, 以及更多变元的累次极限. 显然

2元函数有2! 个累次极限;

3元函数有3! 个累次极限;

:

n 元函数有 n! 个累次极限.

累次极限例一

Example

例一:设

$$f(x,y) = \begin{cases} x\sin\frac{1}{y}, & y \neq 0, \\ 0, & y = 0. \end{cases}$$

不难证明累次极限 $\lim_{y\to 0}\lim_{x\to 0}x\sin\frac{1}{y}$ 存在且极限值为零. 但 另一累次极限 $\lim_{x\to 0}\lim_{y\to 0}x\sin\frac{1}{y}$ 不存在. 进一步全面极限 $\lim_{(x,y)\to(0,0)}f(x,y)$ 存在且为零. 这个例子表明, 一个累次极限存在 \Rightarrow 其他累次极限存在.

累次极限例二

例二: 设 $f(x,y) = \frac{x^2-y^2}{x^2+y^2}$, 其定义域为 $D = IR^2 \setminus \{(0,0)\}$. 之前已证, 函数 f(x,y) 在点 (0,0) 处的全面极限不存在. 现考察累次极限. 不难证明

$$\lim_{y \to 0} \lim_{x \to 0} f(x, y) = \lim_{y \to 0} \frac{-y^2}{y^2} = -1.$$

$$\lim_{x\to 0}\lim_{y\to 0}f(x,y)=\lim_{x\to 0}\frac{x^2}{x^2}=1.$$

这个例子表明

两个累次极限都存在 ⇒ 它们的极限值相等,

≠ 重极限存在.

累次极限例三

例三:设

$$f(x,y) = \left\{ \begin{array}{ll} x sin\frac{1}{y} + y sin\frac{1}{x}, & xy \neq 0, \\ \\ 0, & xy = 0. \end{array} \right.$$

易证函数 f(x,y) 在原点 (0,0) 处, 两个累次极限都不存在, 但重极限存在. 这不难根据估计式 $|f(x,y)| \le |x| + |y|$ 看出. 这个例子表明, 重极限存在 \Rightarrow 累次极限存在.

重极限与累次极限的关系

Theorem

定理: (i) 若以下三个极限均存在

$$\lim_{y\to y_0}\lim_{x\to x_0}f(x,y),\ \lim_{x\to x_0}\lim_{y\to y_0}f(x,y),\ \lim_{(x,y)\to (x_0,y_0)}f(x,y),$$

则它们的极限值均相等:

(ii) 若两个累次极限存在, 但极限值不等, 则重极限不存在.

结论(i)的证明留作习题,见课本第23页习题1.3题4(2).

结论(ii)显然是结论(i)的直接推论.

