The Risks of Recourse in Binary Classification

Hidde Fokkema*, Damien Garreau† and Tim van Erven*.

*: University of Amsterdam, Korteweg-de Vries Institute for Mathematics, †:University of Würzburg, CAIDAS

Summary

Algorithmic recourse provides explanations that help users overturn an unfavorable decision by a machine learning system, e.g. a rejected bank loan. But we prove (mathematically) that this is often harmful when applied at scale to a whole population. Results:

- 1. For optimal deterministic classifiers, providing recourse **always increases** the risk = average population loss.
- 2. For (near-)optimal probabilistic classifiers, the risk will also increase.
- 3. The party deploying the classifier has a **strate- gic incentive** to **undo the effect of recourse**to prevent risk increase.

Setting

We are given data $(X_0, Y) \sim P$ and a classifier:

$$f \colon \mathcal{X} \subseteq \mathbb{R}^d \to \{-1, +1\},$$

which should have small **risk** measured by:

$$R_P(f) := \underset{(X_0,Y)\sim P}{\mathbb{E}} \left[\ell(f(X_0),Y) \right] = P(f(X_0) \neq Y).$$

A counterfactual for X_0 is

For
$$\ell = 0/1$$
-loss

$$\varphi(X_0) = X^{\text{CF}} \in \underset{z: f(z)=+1}{\operatorname{argmin}} c(X_0, z).$$

The point $\varphi(X_0)$ gives **recourse** to the user. The user accepts or rejects the counterfactual with some probability $r(X_0)$:

$$X = BX^{CF} + (1 - B)X_0, \quad B \sim Ber(r(X_0)).$$

This induces a joint distribution Q on (X, X_0) .

How Do Users Implement Recourse?

For the conditional distribution of $Y \mid X, X_0$ we are faced with a choice. We define 2 extreme cases:

- Compliant: $Q(Y \mid X_0, X) = P(Y \mid X)$, The new features faithfully represent a change.
- Defiant: $Q(Y \mid X_0, X) = P(Y \mid X_0)$ The change in features is only cosmetic.

Main Results

Let $f_P^* = \operatorname{argmin}_f R_P(f)$ be the Bayes-optimal classifier, and let $R_Q(f) = \mathbb{E}_{(X,Y)\sim Q}\left[\ell(f(X),Y)\right]$ denote the risk under recourse.

Theorem 1 (Bayes-Optimal Classifier Risk Increase). Suppose that $P(Y = 1 \mid X_0 = x) = \frac{1}{2}$ for all x on the decision boundary of f_P^* . Then, in both the **defiant** and **compliant** settings, **recourse always** increases the **risk**:

$$R_Q(f_P^*) \ge R_P(f_P^*).$$

The inequality is strict if recourse happens with positive probability: $P(B = 1, f_P^*(X_0) = -1) > 0$.

Alternatively, suppose we have a continuous probabilistic classifier $g: \mathcal{X} \to [0, 1]$.

Theorem 2 (Probabilistic Classifier Risk Increase). Let $f(x) = sign(g(x) - \frac{1}{2})$. Then,

(a) For the defiant case: the risk increases if the classifier is better than random guessing:

$$R_Q(f) \ge R_P(f)$$
 if and only if $P(Y = -1 \mid B = 1, f(X_0) = -1) \ge \frac{1}{2}$.

And, suppose that the decision boundary of g is close to the optimal decision boundary: $|P(Y=1 \mid X_0=x) - \frac{1}{2}| \le \varepsilon$ for all x such that $g(x) = \frac{1}{2}$. Then

(b) For the compliant case: the risk increases if the classifier is ε -better than random guessing:

$$R_Q(f) \ge R_P(f)$$
 if $P(Y = -1 \mid B = 1, f(X_0) = -1) \ge \frac{1}{2} + \varepsilon$.

Experiments

The increase in risk can be observed in synthetic examples as well as on real data:

	Census data	
	R_P	R_Q
LR	$\textbf{0.21} \pm \textbf{0.03}$	0.30 ± 0.02
GBT	0.15 ± 0.01	$\textbf{0.05}\pm\textbf{0.01}$
DT	$\textbf{0.25} \pm \textbf{0.04}$	$\textbf{0.23}\pm\textbf{0.05}$
NB	$\textbf{0.18} \pm \textbf{0.02}$	0.76 ± 0.02
QDA	$\textbf{0.21} \pm \textbf{0.02}$	0.76 ± 0.03
NN 1	$\textbf{0.16} \pm \textbf{0.01}$	$\textbf{0.27} \pm \textbf{0.11}$
NN 2	$\textbf{0.16} \pm \textbf{0.02}$	
, 1	' . • 1	O 1

Here, we plot the dependence of the risk difference on $r(x_0)$ with different synthetic examples. On the y-axis, the difference $R_Q(f) - R_P(f)$ is plotted.

Strategizing

Call a function class \mathcal{F} invariant under recourse if any $f \in \mathcal{F}$ has a unique f' such that $f = f' \circ \varphi$. NB the effect of recourse, Q_f , depends on f.

Theorem 4 (Defiant Case). If $r(x_0) \in \{0, 1\}$ and \mathcal{F} is invariant under recourse. Then,

$$\min_{f \in \mathcal{F}} R_{Q_f}(f) = \min_{f \in \mathcal{F}} R_P(f).$$

In the Compliant case, the situation is a bit more difficult.

Theorem 5 (Compliant Case). If $r(x_0) \in \{0, 1\}$ and \mathcal{F} is invariant under recourse. Then,

$$\min_{f \in \mathcal{F}} R_{Q_f}(f) \le \min_{f \in \mathcal{F}} R_P(f) - \Delta,$$

where Δ is given by

$$\Delta := \underset{(X_0,Y) \sim P}{\mathbb{E}} [\ell(f(X_0),Y)] - \underset{(X_0,Y) \sim Q_{f'}}{\mathbb{E}} [\ell(f(X_0),Y)].$$

Is Algorithmic Recourse a Dead End?

Yes:

- Worse classification accuracy is bad: For instance, many more customers cannot repay their bank loan after receiving recourse.
- Counterfactuals are still useful explanations for other purposes
- Provide 'contestability' instead of recourse?

No: Recourse might still be valuable in situations where

• Accuracy (for the party deploying the classifier) is not that important.

The field must change its motivating examples.

Rest of the Paper

Read our paper online!

- Surrogate losses: we show conditions for when risk increases when a surrogate loss is used.
- More Experiments

