Exercise Sheet 1

Lionel Tondji Strong convexity and smoothness

July 17, 2024

Notation: For every $x, y \in \mathbb{R}^d$, let $\langle x, y \rangle = x^\top y$ and $||x||_2 = \sqrt{\langle x, x \rangle}$. Let $\sigma_{min}(A)$ and $\sigma_{max}(A)$ be the smallest and largest singular values of A defined by

$$\sigma_{min}(A) = \min_{x \in \mathbb{R}^d} \frac{\|Ax\|_2}{\|x\|_2} \quad \text{and} \quad \sigma_{max}(A) = \max_{x \in \mathbb{R}^d} \frac{\|Ax\|_2}{\|x\|_2}.$$
 (1)

Thus clearly

$$\frac{\|Ax\|_2^2}{\|x\|_2^2} \le \sigma_{max}(A)^2, \quad \forall \ x \in \mathbb{R}^d.$$

Let $||A||_F^2 = \text{Trace}(A^{\top}A)$ denote the Frobenius norm of A. Finally, a result you will need, for every symmetric matrix G the L2 induced matrix norm can be equivalently defined by

$$||G||_2 = \sigma_{max}(G) = \sup_{x \in \mathbb{R}^d, x \neq 0} \frac{|\langle Gx, x \rangle|}{||x||_2^2} = \max_{x \in \mathbb{R}^d, x \neq 0} \frac{||Gx||_2}{||x||_2}$$
(3)

1 The Prox Operator

Let $f: \mathbb{R}^d \to \mathbb{R}$ be convex and lower semi-continuous and define, for $\lambda > 0$ the proximal mapping $prox_{\lambda f}: \mathbb{R}^d \to \mathbb{R}^d$

$$prox_{\lambda f}(x) = arg \min_{y \in \mathbb{R}^d} \left\{ \frac{1}{2} \|y - x\|_2^2 + \lambda f(y) \right\}$$
 (4)

- 1. Show that $prox_{\lambda f}$ is well defined, i.e. that the minimization problem has a unique solution for all x.
- 2. Prove that $prox_{\lambda f}$ is non-expansive, i.e. that for every $x, y \in \mathbb{R}^d$ it holds that

$$||prox_{\lambda f}(x) - prox_{\lambda f}(y)||_2 \le ||x - y||_2, \quad \forall x, y \in \mathbb{R}^d$$

2 Convexity

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a twice continuously differentiable function.

- (i) Show that the following assertions are equivalent:
 - a) $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$, $\forall x, y \in \mathbb{R}^d$, $\lambda \in [0, 1]$.
 - b) $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle$, $\forall x, y \in \mathbb{R}^d$.
 - c) $\langle \nabla^2 f(x)v, v \rangle \ge 0$, $\forall x, v \in \mathbb{R}^d$

When f verifies one of the above inequalities we say that f is convex.

- (ii) a) Let $g: \mathbb{R}^d \to \mathbb{R}$ be convex and $f: \mathbb{R} \to \mathbb{R}$ a convex nondecreasing function. Show that $f \circ g$ is a convex function.
 - b) Is the composition of 2 convex functions itself a convex function?
- (iii) Are the following applications convex functions? Justify your answer.
 - a) $x \mapsto ||x||$
 - b) $x \mapsto ||x||^2$
 - c) $x \mapsto x^2$
 - d) $x \mapsto e^{-e^{-x}}, x \in [0, +\infty)$
 - e) $x \mapsto (-x^{\frac{1}{3}})^2, x \in [0, +\infty)$
 - f) $x \mapsto (-log(x))^2$
- (iv) For every convex function $f: y \in \mathbb{R}^m \mapsto f(y)$, prove that $g: x \in \mathbb{R}^d \mapsto f(Ax b)$ is a convex function, where $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^n$.
- (v) Let $f_i : \mathbb{R}^d \to \mathbb{R}$ be convex for $i = \{1, \dots, n\}$. Prove that $\sum_{i=1}^n f_i$ is convex.
- (vi) For a given scalars $y_i \in \mathbb{R}$ and vectors $a_i \in \mathbb{R}^d$ for $i = \{1, \dots, m\}$ prove that the logistic regression function $f(x) = \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y_i \langle x, a_i \rangle})$ is convex.
- (vii) Let $A \in \mathbb{R}^{n \times d}$ have full column rank. Prove that $f(x) = \frac{1}{2} ||Ax b||_2^2$ is $\sigma_{min}^2(A)$ -strongly convex.
- (viii) Now suppose that the function f(x) is μ -strongly convex, that is, it satisfies

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{\mu}{2} ||y - x||_2^2, \quad \forall \ x, y \in \mathbb{R}^d.$$
 (5)

Prove that f(x) satisfies the Polyak-Lojasiewicz condition, that is

$$\|\nabla f(x)\|_{2}^{2} \ge 2\mu(f(x) - f(x^{*})), \quad \forall x$$
 (6)

3 Smoothness

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a twice continuously differentiable function.

- (i) Show that the following assertions are equivalent:
 - a) $\|\nabla f(x) \nabla f(y)\| \le \|x y\|, \quad \forall x, y \in \mathbb{R}^d$
 - b) $f(y) \le f(x) + \langle \nabla f(x), y x \rangle + \frac{L}{2} ||y x||_2^2, \quad \forall x, y \in \mathbb{R}^d$.
 - c) $\langle \nabla^2 f(x)v, v \rangle \le L \|v\|_2^2$, $\forall x, v \in \mathbb{R}^d$

When f verifies one of the above inequalities we say that f is L-smooth or that the gradients of f are Lipschitz continuous.

- (ii) Prove that $x \mapsto \frac{1}{2} ||x||_2^2$ is 1-smooth.
- (iii) For every twice differentiable L-smooth function $f: y \in \mathbb{R}^m \mapsto f(y)$, prove that $g: x \in \mathbb{R}^d \mapsto f(Ax b)$ is a smooth function, where $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^n$. Find the smoothness constant of g.
- (iv) Let $f_i : \mathbb{R}^d \to \mathbb{R}$ be be a twice differentiable and L_i -smooth for $i = \{1, \ldots, n\}$. Prove that $\frac{1}{n} \sum_{i=1}^n f_i$ is $(\frac{1}{n} \sum_{i=1}^n L_i)$ -smooth.
- (v) For a given scalars $y_i \in \mathbb{R}$ and vectors $a_i \in \mathbb{R}^d$ for $i = \{1, \dots, m\}$ prove that the logistic regression function $f(x) = \frac{1}{n} \sum_{i=1}^n \ln(1 + e^{-y_i \langle x, a_i \rangle})$ is smooth. Find the smoothness constant!
- (vi) Let $A \in \mathbb{R}^{n \times d}$ be any matrix. Prove that $f(x) = \frac{1}{2} ||Ax b||_2^2$ is $\sigma_{max}^2(A)$ -smooth.
- (vii) Let C > 0 be a positive constant. Let $f(x) = \frac{1}{n} \sum_{i=1}^{n} \phi_i(a_i^\top x)$ where $\phi_i : \mathbb{R} \to \mathbb{R}$ is a scalar function such that $\phi_i''(t) \leq C$, $\forall t \in \mathbb{R}$. Prove that f(x) is $\frac{C}{n} \sigma_{max}^2(A)$ -smooth. With this result, can you find a better estimate of the smoothness constant of the logistic regression loss?

Hint: Show that $-\nabla f^2(x) + \frac{C}{n}A^{\top}A$ is positive semidefinite.

(viii) Co-coercivity. Let f be L-smooth, show that

$$\langle \nabla f(y) - \nabla f(x), y - x \rangle \ge \frac{1}{L} \|\nabla f(y) - \nabla f(x)\|_2^2$$

3

Hint: Show that $f(y) - f(x) \le \langle \nabla f(y), y - x \rangle - \frac{1}{2L} \nabla f(x) - \nabla f(y) \|_2^2$.