Quiz 2.1 - Internal energy

O1 1	7 1	(1 .7 1		
 Give the constant vo following geometries: 	lume heat capacitie	s (in the low tempera	ture limit) for perfect	t gases with the
ı. Monoatomic	1 3 R			
2. Linear Diatomic	5 R			
3. Non-linear Polyat	tomic 3 R			
o Describe qualitatively why They would	• •	,		
activated.	17(0,90)	es Villiaile	DECOM	1 Nermina
o Explain why we must	designate constant	pressure or constant v	olume for heat capaci	ities
Some heat is	Converted	to work as	a gus expun	ds at constan
essure. This en				
	0 /	pare to C_p for a gas at a		

Because some heat is spent on work at constant pressure, more heat is required to change the temperature

 $C_{\rho} > C_{v}$

Work

+307.15 K

One mole of gas at $34^{\circ}C$ undergoes an isothermal expansion in two stages:

1. From $5.0\,L$ to $7.5\,L$

2. From 7.5 L to 10.0 L

 \circ Find the work (w_{sys}) at each stage

o Explain why the work done is not equal, even though the volume changes are the same

The pressure is lower throughout Stage 2

o The gas then undergoes an isothermal compression where $w_{sys}=5500\ J.$ What is the final volume?

Heat

of He gas at $20.0^{\circ}C$ are heated by 315~J at constant volume. What is the final temperature of the gas? $\rightarrow 2.498~\text{moves}$

 $\circ 10.0~g$ of N₂ gas at $20.0^{\circ}C$ are heated by 315~J at constant volume. What is the final temperature of the gas? 0.3570 mules $C_V = \frac{5}{2}R$

 \circ Find the heat (q_{sys}) required to cool (10.0 g) of methane gas by $5 \circ C$ at constant volume