Properties Sparse of Circulant Matrices

Brendan Whitaker

Ohio State University

whitaker.213@osu.edu

March 20, 2019

Overview

Preliminaries

2 Two Insights

3 The Main Proof

Objective

We wish to study the coefficients and signs of the terms of the following polynomial:

$$\Theta_{p,q_1,q_2}(x,y) = \prod_{j=0}^{p-1} (1 - x\omega^{q_1j} - y\omega^{q_2j}).$$
 (1)

where ω is a primitive p-th root of unity, i.e. $\omega=e^{\frac{2k\pi i}{p}}$ where $k\nmid p$, and $1\leqslant q_1,q_2\leqslant p-1.$

Motivation

- These polynomials arise in the study of CR maps from balls in \mathbb{C}^n to balls in \mathbb{C}^N .
- ullet The polynomial Θ generates an associated group-invariant CR map given a finite subgroup, but this is beyond the scope of this work.
- ullet For Θ , we wish to study when the coefficients are nonzero, positive or negative, and determine their magnitude.

Previous Work

- The case where $q_1 = 1$ has already been treated in [1].
- The cases where (p,q_1) or (p,q_2) are coprime are equivalent to the $q_1=1$ case under

$$(x,y) \mapsto (x\omega^{q_1}, y\omega^{q_2}). \tag{2}$$

• Let $\gamma(x,y)=(x\omega^{q_1},y\omega^{q_2})$. Note

$$(\Theta_{p,q_1,q_2} \circ \gamma)(x,y) = \Theta_{p,q_1,q_2},\tag{3}$$

which is proven in [2]. So the polynomial is **invariant under** γ .

5/82

Example Polynomial

Previous work proves we always have integer coefficients.

$$\Theta_{9,4,6}(x,y) = 1 - x^9 - 9x^3y + 9x^6y^2 - 3y^3 - 18x^3y^4 + 3y^6 - y^9.$$
 (4)

Definitions

Definition

We define $l=\frac{rq_1+sq_2}{p}$ as the **weight** of the monomial $a_{p,q_1,q_2}(r,s)x^ry^s$.

L.W.W.'s Result (previous work)

Theorem

In the polynomial

$$\Phi_{p,q}(x,y) = \prod_{j=0}^{p-1} (1 - x\omega^j - y\omega^{qj}),$$

the monomials x^ry^s which appear are exactly those for which p|(r+sq), and the coefficients a(r,s) of these monomials are positive if and only if $\gcd\left(r,s,\frac{r+sq}{p}\right)$ is even.

Context

- Loehr, Warrington, and Wilf prove the above for $\Theta_{p,1,q}$, i.e. in the case where $q_1=1$.
- We know the generalization of their theorem does not hold in general (for all values of p, q_1 , q_2).

Question

So for which values of p, q_1 , q_2 does their result generalize?

Generalizing [1]

Answer

We claim that the set of all parameters $p,\,q_1,\,q_2$ for which the generalization holds is exactly

$$\{(p, q_1, q_2) : \gcd(p, q_1, q_2) = 1\}.$$
 (5)

Main Result

Theorem

Suppose $gcd(p, q_1, q_2) = 1$. In the polynomial

$$\Theta_{p,q_1,q_2}(x,y) = \prod_{j=0}^{p-1} (1 - x\omega^{q_1j} - y\omega^{q_2j}), \tag{6}$$

the monomials x^ry^s which appear are exactly those for which $p|(rq_1 + sq_2)$, and the coefficients a(r,s) of these monomials are positive if and only if $\gcd(r,s,l)$ is even.

- We can't completely prove the first bit (this will take far too long).
- Instead, in this presentation, we give a formula for computing the coefficients.
- We also prove the second bit of the above theorem about the signs.

Two Insights from [1]

- We can write Θ as the determinant of a sparse square circulant matrix.
- 2 Computing this determinant via a sum over the permutations of the rows (Leibniz's Formula) allows us to use combinatorial techniques to determine the coefficients.

Circulant Matrix?

Definition

An $n \times n$ circulant matrix is a matrix of the form

$$\begin{bmatrix} c_0 & c_1 & c_2 & \dots & c_{n-1} \\ c_{n-1} & c_0 & c_1 & \dots & c_{n-2} \\ c_{n-2} & c_{n-1} & c_0 & \dots & c_{n-3} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ c_1 & c_2 & c_3 & \dots & c_0 \end{bmatrix}.$$
 (7)

• So along each diagonal, all the values are identical.

Circulant Matrix

We can uniquely specify any $n \times n$ circulant matrix C by the n-tuple given by its first row, denoted $C = \mathrm{circ}(c_0, c_1, ..., c_{n-2}, c_{n-1})$.

Proposition

The following equality holds:

$$\Theta_{p,q_1,q_2}(x,y) = \prod_{j=0}^{p-1} (1 - x\omega^{q_1j} - y\omega^{q_2j}) = \det(C_{\Theta})$$
 (8)

where $C_{\Theta} = \text{circ}(1, 0, \dots, -x, 0, \dots, -y, 0, \dots)$, -x is in the $(q_1 + 1)$ -th position, and -y is in the $(q_2 + 1)$ -th position.

 We state without proof for brevity. The proof is available in the accompanying paper.

Computing the Determinant

Leibniz's Formula for the Determinant

Let C be an $n \times n$ matrix with entries $c_{i,j}$. Then we have

$$\det(C) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) c_{1,\sigma(1)} c_{2,\sigma(2)} \cdots c_{n,\sigma(n)}.$$
 (9)

Example Matrix

Note

$$C_{\Theta_{6,2,3}} = \begin{bmatrix} 1 & 0 & -x & -y & 0 & 0\\ 0 & 1 & 0 & -x & -y & 0\\ 0 & 0 & 1 & 0 & -x & -y\\ -y & 0 & 0 & 1 & 0 & -x\\ -x & -y & 0 & 0 & 1 & 0\\ 0 & -x & -y & 0 & 0 & 1 \end{bmatrix}.$$
(10)

 In computing the determinant via Leibniz's Formula, we move down the rows and "pick" one element from each row, multiplying them together as we go.

Example Determinant

Claim

The coefficient of $(-1)^{r+s}x^ry^s$ in Θ is the sum of the signs of those permutations in S_p that "hit" r of the -x's in the matrix and s of the -y's, the remaining values being fixed points.

- ullet To see this, ask when is a term in Leibniz's formula of the form ax^ry^s ?
- If $c_{i,\sigma(i)}$ in the formula is 0, the whole term is zero. So all factors must be 1, -x, or -y.
- In particular, we must have r instances of -x, and s instances of -y to get something of the form ax^ry^s .

Example Determinant

Let's compute the term in the sum for the permutation $(2\ 4\ 6\ 3\ 5)\in S_6$ in the case where $(p,q_1,q_2)=(6,2,3)$.

Note

$$\sigma(1) = 1, \sigma(2) = 4, \sigma(3) = 5, \sigma(4) = 6, \sigma(5) = 2, \sigma(6) = 3.$$
 (11)

So we wish to compute

$$sgn((2 4 6 3 5))c_{1,1}c_{2,4}c_{3,5}c_{4,6}c_{5,2}c_{6,3}$$
(12)

by multiplying the circled terms in

$$\begin{bmatrix}
1 & 0 & -x & -y & 0 & 0 \\
0 & 1 & 0 & -x & -y & 0 \\
0 & 0 & 1 & 0 & -x & -y \\
-y & 0 & 0 & 1 & 0 & -x \\
-x & -y & 0 & 0 & 1 & 0 \\
0 & -x & -y & 0 & 0 & 1
\end{bmatrix}.$$
(13)

Example Determinant

Since each factor (apart from the 1's) contributes a $\left(-1\right)$ to the product, we have

$$c_{1,1}c_{2,4}c_{3,5}c_{4,6}c_{5,2}c_{6,3} = 1(-x)(-x)(-x)(-y)(-y)$$

$$= (-1)^{3+2}x^{3}y^{2}$$

$$= (-1)^{r+s}x^{r}y^{s}.$$
(14)

The sign of $(2\ 4\ 6\ 3\ 5)$ is 1, so the term is $(-1)^{3+2}x^3y^2$.

- Every term in the sum which contributes to ax^ry^s in Θ is of the form $\operatorname{sgn}(\sigma)(-1)^{r+s}x^ry^s$.
- When we sum them all, we get that the sum of the signs of the relevant permutations is the coefficient of $(-1)^{r+s}x^ry^s$, just as claimed.

Examining the Permutations

- We wish to characterize all permutations $\sigma \in S_p$ which contribute to ax^ry^s .
- Recall we needed to "hit" r of the -x's, s of the -y's, and all remaining factors had to be 1's.
- The 1's are fixed points of the permutation, and since we have p rows, we need p-r-s of them.

Question

What do the locations of the -x's and -y's tell us about the permutation?

Examining the Permutations

- Recall -x is in the $(q_1 + 1)$ -th position in the first row, and -y is in the $(q_2 + 1)$ -th position in the first row.
- Observe:

$$\begin{bmatrix}
1 & 0 & -x & -y & 0 & 0 \\
0 & 1 & 0 & (-x) & -y & 0 \\
0 & 0 & 1 & 0 & (-x) & -y \\
-y & 0 & 0 & 1 & 0 & (-x) \\
-x & (-y) & 0 & 0 & 1 & 0 \\
0 & -x & (-y) & 0 & 0 & 1
\end{bmatrix}.$$
(15)

- Note that in the *i*-th row, -x is always in the $(i+q_1 \mod p)$ -th position, and -y is in the $(i+q_2 \mod p)$ -th position.
- **NOTE:** Our $\mod p$ operation in this work is taken on $\{1, 2, \ldots, p\}$ instead of on $\{0, 1, \ldots, p-1\}$.

Characterizing the Permutations

Definition

Let $\sigma \in S_p$. Call $k \in \{1, 2, \dots, p\}$ a q_1 -step of σ if

$$\sigma(k) = k + q_1 \mod p.$$

- We define q_2 -steps analogously. So 5 is a q_2 -step (3-step) of $(2\ 4\ 6\ 3\ 5)$, since $5\mapsto 2$ and $2=5+3\mod 6$.
- So we want exactly those permutations which have r q_1 -steps, s q_2 -steps, and p-r-s fixed points (0-steps).

(16)

Characterizing the Permutations

Definition

We define $T_{p,q_1,q_2}(r,s)\subseteq S_p$ to be the set of all permutations with

- r q₁-steps;
- s q₂-steps;
- p r s fixed points (0-steps).

Example Permutation Set

Example

As an example, the set $T_{6,2,3}(3,2)$ contains

(24635)

(13524)

(13624)

(13625)

(14635)

(1 4 6 2 5).

Cycle Structure

Intuition

We wish to show that all the permutations in $T_{p,q_1,q_2}(r,s)$, i.e. all the permutations corresponding to a monomial x^ry^s , have identical cycle structure, and thus the same sign, so that we can say

$$|a(r,s)| = |T_{p,q_1,q_2}(r,s)|.$$
(17)

Cycle Structure

Cycle Decomposition

We decompose $\sigma \in T_{p,q_1,q_2}(r,s)$ into k disjoint cycles of length greater than 1 (to exclude fixed points):

$$\sigma = C_1 C_2 \cdots C_k. \tag{18}$$

Definition

Permutations in S_p permute the set $\{1, 2, \ldots, p\}$.

Cycle Example

Figure: Nontrivial cycles for a permutation in $T_{24,3,16}(16,6)$.

Cycle Notation

Definition

We define

- r_i to be the number of q_1 steps in cycle C_i ;
- s_i to be the number of q_2 steps in cycle C_i ;
- l_i to be the weight of cycle C_i , given by

$$l_i = \frac{r_i q_1 + s_i q_2}{p}. (19)$$

Cycle Notation

- We represent each cycle C_i by a **starting point** x_i and a word w_i (an $(r_i + s_i)$ -tuple) specifying the **cycle steps** from the starting point which define the cycle.
- We write $C_i = (x_i; w_i)$.

Example

Consider the blue cycle in the figure. It is

$$C_1 = (20\ 23\ 2\ 18\ 21\ 24\ 3\ 19\ 22\ 1\ 4).$$
 (20)

We write

$$C_1 = (20; q_1, q_1, q_2, q_1, q_1, q_1, q_2, q_1, q_1, q_1, q_2)$$

= (20; 3, 3, 16, 3, 3, 3, 16, 3, 3, 3, 16). (21)

Cycle Example

Figure: Nontrivial cycles for a permutation in $T_{24,3,16}(16,6)$.

$$C_1 = (20\ 23\ 2\ 18\ 21\ 24\ 3\ 19\ 22\ 1\ 4)$$

= $(20; 3, 3, 16, 3, 3, 3, 16, 3, 3, 3, 16)$. (22)

Permutation/Cycle Image Notation

Definition

We write $\sigma^t(i)$ to denote the t-th image of $i \in \{1, 2, \dots, p\}$ under the permutation σ .

Similarly, we write $C_i^t(i)$ to denote the t-th image of i under the cycle C_i .

Two Lemmas

Lemma

If $T_{p,q_1,q_2}(r,s)$ is nonempty, and C_i is a cycle in $\sigma \in T_{p,q_1,q_2}(r,s)$ then $p \mid (r_iq_1 + s_iq_2)$. and $p \mid (rq_1 + sq_2)$.

Lemma

If $T_{p,q_1,q_2}(r,s)$ is nonempty, then $\gcd(r_i,s_i,l_i)=1$ for all $1\leqslant i\leqslant k$, for all $\sigma\in T_{p,q_1,q_2}(r,s)$.

- We state these without proof for brevity.
- They will be used later on.

- Recall we are considering everything $\mod p$, since all our permutations live in S_p .
- We can consider our permutations as acting on elements of the set $\{1, 2, \dots, p\}$.

Definition

Let $x_1, x_2, \ldots, x_n \in \{1, 2, \ldots, p\}$, and let $m \in \mathbb{N}$ such that $1 \leqslant m \leqslant p-1$. We say the sequence (x_1, x_2, \ldots, x_n) is m-ordered on $\{1, 2, \ldots, p\}$ if

- 2 $x_i \equiv x_j \pmod{\gcd(p, m)}$ for all i, j;
- **1** In the clockwise traversal of $\{1, 2, ..., p\}$ by m-steps, starting with x_1 , we hit x_i before x_j if and only if i < j.

This is an opaque definition. Let's break it down.

Condition 1

$$3 \leqslant n \leqslant \frac{\mathrm{lcm}(p, m)}{m} \tag{23}$$

- We require that $n \geqslant 3$ since our definition is not meaningful with less than 3 points.
- Otherwise, any two point sequence which satisfies condition #2 would be *m*-ordered.

35 / 82

Condition 1

$$3 \leqslant n \leqslant \frac{\operatorname{lcm}(p, m)}{m} \tag{24}$$

• Note that ${
m lcm}(p,m)$ is the maximum "distance" you can move around the circle when traversing by m-steps before coming back to the same point.

- Note that ${
 m lcm}(p,m)$ is the maximum "distance" you can move around the circle when traversing by m-steps before coming back to the same point.
- If p and m are coprime, then lcm(p, m) = pm.

Figure: Note 10 and 3 are coprime, so we cover $\operatorname{lcm}(10,3)=30$ points, or three full rotations before coming back to the starting point.

• Note that ${
m lcm}(p,m)$ is the maximum "distance" you can move around the circle when traversing by m-steps before coming back to the same point.

Figure: When p=10, and m=4, we pass lcm(10,4)=20 points before coming back to the starting point.

• If we want to know the maximum number of m-steps we can take before coming back to the starting point (i.e. the longest possible sequence which makes sense), we just divide the number of points we pass $\operatorname{lcm}(p,m)$ by the size of each step m.

Figure: Note lcm(10,4)=20. So we pass 20 points taking size 4 steps, so we can take at most 20/4=5 steps before coming back to the same spot.

Hence:

Condition 1

$$3 \leqslant n \leqslant \frac{\operatorname{lcm}(p, m)}{m} \tag{25}$$

Condition 2

$$x_i \equiv x_j \mod \gcd(p, m) \text{ for all } i, j$$
 (26)

- Condition 2 tells us nothing if gcd(p, m) = 1.
- When the \gcd is greater than 1, Condition 2 simply tells us that all elements in the sequence are in the same equivalence class $\mod p$ generated by m-steps.

Figure: The two equivalence classes $\mod 10$ generated by taking 4-steps in $\{\,1,2,\ldots,10\,\}.$

Condition 3

In the clockwise traversal of $\{1, 2, \dots, p\}$ by m-steps, starting with x_1 , we hit x_i before x_j if and only if i < j.

• We give some intuition for this notion with a few examples.

Consider sequences of elements in $\{1, 2, \dots, 10\}$.

Question

Is (1, 2, 3, 4) 1-ordered?

Consider sequences of elements in $\{1, 2, \dots, 10\}$.

Question

Is (1, 2, 3, 5) 1-ordered?

Consider sequences of elements in $\{1, 2, \dots, 10\}$.

Question

Is (1, 2, 4, 3) 1-ordered?

Consider sequences of elements in $\{1, 2, \dots, 32\}$.

Question

Is (3, 8, 13) 5-ordered?

Consider sequences of elements in $\{1, 2, \dots, 32\}$.

Question

ls (3, 13, 18) 5-ordered?

Consider sequences of elements in $\{1, 2, \dots, 10\}$.

Question

Is (1, 4, 2, 5) 3-ordered?

Consider sequences of elements in $\{1, 2, \dots, 10\}$.

Question

Is (2, 5, 6, 3) 3-ordered?

Consider sequences of elements in $\{1, 2, \dots, 10\}$.

Question

Is (1,5,3) 4-ordered? Is it 2-ordered?

Definition

Let $x_1, x_2, \ldots, x_n \in \{1, 2, \ldots, p\}$, and let $m \in \mathbb{N}$ such that $1 \leqslant m \leqslant p-1$. We say the sequence (x_1, x_2, \ldots, x_n) is m-ordered on $\{1, 2, \ldots, p\}$ if

- $x_i \equiv x_j \pmod{\gcd(p,m)}$ for all i, j;
- **1** In the clockwise traversal of $\{1, 2, ..., p\}$ by m-steps, starting with x_1 , we hit x_i before x_j if and only if i < j.

Lemma

If
$$\sigma \in T_{p,q_1,q_2}(r,s)$$
, and $\gcd(p,q_1,q_2)=1$, we must have $r_1=r_2=\cdots=r_k$ and $s_1=s_2=\cdots=s_k$.

• "All cycles in a permutation from $T_{p,q_1,q_2}(r,s)$ have the same number of q_1 -steps and the same number of q_2 -steps."

- Let C_k , C_l be two distinct, nontrivial cycles in $\sigma \in T_{p,q_1,q_2}(r,s)$.
- We write $C_k = (x_k; w_k)$ using our **starting-point/step-vector** notation.
- And we group all q_1 -steps together which precede each q_2 -step, so we have

$$w_k = (q_1^{\rho_1}, q_2, \dots, q_1^{\rho_{s_k}}, q_2)$$
(27)

where $\sum \rho_i = r_k$, the number of q_1 steps in the cycle.

Grouping q_1 -steps example

Recall our example cycle from a permutation in $T_{24,3,16}(16,6)$:

$$C_1 = (20\ 23\ 2\ 18\ 21\ 24\ 3\ 19\ 22\ 1\ 4).$$
 (28)

We write

$$C_{1} = (20; q_{1}, q_{1}, q_{2}, q_{1}, q_{1}, q_{2}, q_{1}, q_{1}, q_{1}, q_{2})$$

$$= (20; 3, 3, 16, 3, 3, 3, 16, 3, 3, 3, 16)$$

$$= (20; 3^{2}, 16, 3^{3}, 16, 3^{3}, 16)$$

$$= (x_{i}; q_{1}^{\rho_{1}}, q_{2}, q_{1}^{\rho_{2}} q_{2}, q_{1}^{\rho_{3}}, q_{2}).$$
(29)

Figure: q_2 -steps from C_1 are in dark blue, and q_2 -steps from C_2 are in red.

Identical Number of q_2 -steps

We proceed to show $s_k=s_l$, i.e. the number of q_2 -steps in C_k is the same as the number of q_2 -steps in C_l .

- We first argue that $s_l \geqslant s_k$.
- If $s_k=0$, there is nothing to prove, so assume $s_k\geqslant 1$, i.e. we have at least one q_2 -step in C_k .

Defining e_i points and d_i points

We enumerate the q_2 -steps (we use the term q_2 -step here to denote a point from which we jump q_2 points on the circle) as $\{e_i\}$, and the images of the q_2 -steps as $\{d_i\}$, where $1\leqslant i\leqslant s_k$.

Figure: The $\{e_i\}$ points $(q_2$ -steps) are light-green, and the $\{d_i\}$ points (images of q_2 -steps) are in dark-green.

Labeling the e_i and d_i points

Recall

$$C_k = \left(x_k; (q_1^{\rho_1}, q_2, \dots, q_1^{\rho_{s_k}}, q_2)\right).$$
 (30)

- Set $d_1 = x_k$.
- Set $e_1 = C_k^{\rho_1}(x_k)$.
- If $s_k > 1$, iteratively define

$$d_{i} = C_{k}(e_{i-1})$$

$$e_{i} = C_{k}^{\rho_{i}}(d_{i})$$
(31)

for $1 \leqslant i \leqslant s_k$.

Example

Recall

$$C_1 = (20\ 23\ 2\ 18\ 21\ 24\ 3\ 19\ 22\ 1\ 4)$$

$$= (20; 3^2, 16, 3^3, 16, 3^3, 16)$$

$$= (x_i; q_1^{\rho_1}, q_2, q_1^{\rho_2}, q_2, q_1^{\rho_3}, q_2).$$
(32)

So

$$d_1 = 20;$$
 $e_1 = 2;$
 $d_2 = 18;$ $e_2 = 3;$
 $d_3 = 19;$ $e_3 = 4.$ (33)

Claim

We assert that there exists a unique permutation $U \in S_{s_k}$ such that

- If $e_j = d_j$, then U(j) = j.
- ② If $e_j \neq d_j$, then for any $x \in \{1, 2, ..., p\}$ such that $(e_j, x, d_{U(j)})$ is q_1 -ordered, $x \notin \{d_i\}$.

Intuition

We assert that for each q_2 -step (e point), we have a d point which is "hit" first when we traverse $\{1,2,\ldots,p\}$ by q_1 -steps starting from the e point, and these are distinct for each distinct e point. If the d point is also an e point, we let U(j)=j and say that the e point itself is the first d point we hit.

Figure: Finding U(1) for cycle C_1 in a permutation in $T_{24,3,16}(16,6)$. The points in red are all $x \in \{1,2,\ldots,24\}$ for which (e_1,x,d_1) is q_1 -ordered.

Question

When could the claim be false?

- It could be false if when traversing by q_1 -steps from e_j , we never hit a d point.
- This could only be true if none of the d points are in the equivalence class $\mod \gcd(p, q_1)$ generated by traversing by q_1 -steps from e_j .
- But we know $d_j \equiv e_j \mod \gcd(p,q_1)$ by taking q_1 -steps **backwards** (counter-clockwise).
- Thus there is at least one d point in the same equivalence class as e_j , so this is impossible.

Question

When could the claim be false?

- So the only other way it could be false is if the first d point (call it d) we hit moving by q_1 -steps from e_i is the same as the one we hit first moving from e_i .
- WLOG assume (e_i, e_j, d) is q_1 -ordered.
- Then we cannot have d_j is between e_i and e_j , else we would hit that point before d traversing from e_i . So we must have that (d_j, e_i, e_j, d) is q_1 -ordered, i.e. d_j comes "before" e_i in our traversal.
- Then we can traverse by q_1 -steps **within our cycle** between d_j and e_j , so e_i must be the image of a q_1 -step, but it is the image of a q_2 -step by definition, and $q_1 \neq q_2$, so we have a contradiction.

Remark

Note we get uniqueness of the permutation of the images of the q_1 -steps (d points) because we are looking for the **first** d point hit in our traversal.

Definition

We define our *V*-sets

$$V_j = \{ x : (e_j, x, d_{U(j)}) \text{ is } q_1\text{-ordered } \}.$$
 (34)

Note we have one for each q_2 -step e_j .

Remark

The points in V_j are the points we hit between e_j and the first d point we hit in our traversal from e_j by q_1 -steps.

Figure: The points in red are the points in V_1 .

• Also note that all points in V_j are fixed by the cycle C_k , since any points in C_k are in a sequence of q_1 -steps starting from some d point.

Definition

Next we define functions to specify the previous element when traversing by q_1 -steps, the next element when traversing by q_1 -steps, and the image of a q_2 -step from an arbitrary point:

$$\operatorname{Prev}_{q_1}(x) = x - q_1 \mod p;$$

$$\operatorname{Next}_{q_1}(x) = x + q_1 \mod p;$$

$$\operatorname{Jump}_{q_2}(x) = x + q_2 \mod p.$$
(35)

Definition

Then we define the *W*-sets

$$W_{j} = \{ y : (\operatorname{Prev}_{q_{1}}(\operatorname{Jump}_{q_{2}}(e_{j})), y, \operatorname{Next}_{q_{1}}(e_{j+1}) \text{ is } q_{1}\text{-ordered } \}$$

$$= \{ y : (\operatorname{Prev}_{q_{1}}(d_{j+1}), y, \operatorname{Next}_{q_{1}}(e_{j+1}) \text{ is } q_{1}\text{-ordered } \}.$$
(36)

• Intuitively, these are the points hit in a string of q_1 -steps within a cycle C_k , starting with some d point.

Figure: The points in W_1 are pink.

Proposition

We claim that for each $x \in V_j$, if $\operatorname{Jump}_{q_2}(x) \in C_k$, then $\operatorname{Jump}_{q_2}(x) \in W_j$, and if $\operatorname{Jump}_{q_2}(x) \notin C_k$, then $\operatorname{Jump}_{q_2}(x) \in V_{j+1}$.

 We state this without proof for brevity, and instead give visual intuition.

Figure: Illustration of $\operatorname{Jump}_{q_1}(x)$ (orange arrows) for each $x\in V_1.$

Claim

We also claim that each fixed point of C_k is contained in V_j for some j.

Claim

We also claim that each fixed point of C_k is contained in V_j for some j.

- We first prove that there is an e point in each equivalence class $\mod \gcd(p, q_1)$.
- Case 1: If $\gcd(q_1,q_2)=1$, then we have a q_2 -step (e point) in each equivalence class $\mod \gcd(p,q_1)$, since each q_2 -step takes us to a new equivalence class.
- Case 2: If $gcd(q_1, q_2) = \psi > 1$, then $gcd(\psi, p) = gcd(p, q_1, q_2) = 1$. So we must still visit every equivalence class to complete a cycle, and so we have an e point in each.

Claim

We also claim that each fixed point of C_k is contained in V_j for some j.

- So pick a fixed point x of C_k .
- Traverse backwards by q_1 -steps.
- We have just proven you will hit a q_2 -step e_j eventually, and before you hit any other point of C_k .
- So $x \in V_j$.

Remark

It is easily proven that the $\,V_{j}$ sets do not overlap, so x lies within a unique $\,V_{j}.$

- So let $C_l(x) = x$, so x must be a fixed point of C_k , since the cycles are disjoint.
- We proved that x must be in a unique V_j .
- Case 1: x is a q_1 -step of C_l . Then $C_l(x) \in V_j$ as well, since then $C_l(x) = x + q_1$ can only be in V_j or in C_k .
- Case 2: x is a q_2 -step of C_l . Then $C_l(x) = x + q_2$ is a fixed point of C_k . So $C_l(x) = \operatorname{Jump}_{q_2}(x)$ for $x \in V_j$, so $C_l(x) \in V_{j+1}$.
- Taking $C_l^t(x)$ and iterating on t, i.e. following the orbit of x along the cycle C_l , we see it must visit each V_j set.
- So we have at least s_k q_2 -steps in C_l .
- Arguing with roles switched, we have at least s_l q_2 -steps in C_k , so $s_l = s_k$.

Lemma

If $T_{p,q_1,q_2}(r,s)$ is nonempty, and C_i is a cycle in $\sigma \in T_{p,q_1,q_2}(r,s)$ then $p \mid (r_iq_1 + s_iq_2)$. and $p \mid (rq_1 + sq_2)$.

- By the above Lemma stated earlier, we have $r_kq_1+s_kq_2=\lambda_kp$ and $r_lq_1+s_kq_2=\lambda_lp$ for integers λ_k,λ_l , since $s_k=s_l$.
- Then $r_k r_l = (\lambda_k \lambda_l)p$. Since $s_k = s_l > 0$, we have

$$0 \leqslant r_k, r_l \leqslant p - 1$$

$$-(p - 1) \leqslant r_k - r_l \leqslant p - 1,$$
 (37)

so since $p \mid (r_k - r_l)$, we must have $r_k = r_l$.

 \bullet $(q_1, q_2 > 1$, so at most p/2 q_1 -steps.)

We just proved:

Lemma

If
$$\sigma \in T_{p,q_1,q_2}(r,s)$$
, and $\gcd(p,q_1,q_2)=1$, we must have $r_1=r_2=\cdots=r_k$ and $s_1=s_2=\cdots=s_k$.

Theorem

If k is the number of cycles in σ , then $k=\gcd(r,s,l)$, $r_i=r/k$, $s_i=s/k$, and all permutations in $T_{p,q_1,q_2}(r,s)$ have identical cycle structure. So $\operatorname{sgn}(\sigma)=(-1)^{r+s+\gcd(r,s,l)}$.

- We already know $\sum s_i = s$ and $\sum r_i = r$. So by the Lemma we just proved, $s = s_i/k$, and $r = r_i/k$.
- Then

$$l_i = \frac{r_i q_1 + s_i q_2}{p} = \frac{\frac{rq_1 + sq_2}{p}}{k} = \frac{l}{k}.$$
 (38)

Recall we also stated:

Lemma

If $T_{p,q_1,q_2}(r,s)$ is nonempty, then $\gcd(r_i,s_i,l_i)=1$ for all $1 \le i \le k$, for all $\sigma \in T_{p,q_1,q_2}(r,s).$

So

$$k = k \gcd(r_i, s_i, l_i) = \gcd(kr_i, ks_i, kl_i) = \gcd(r, s, l).$$
(39)

- So we have determined the number of cycles from only the parameters of $T_{p,q_1,q_2}(r,s)!$
- Recall the sign of σ is defined as p-c where c is the total number of cycles in σ , including 1-cycles (fixed points).
- So c = k + (p r s).
- So

$$sgn(\sigma) = (-1)^{p - (k + p - r - s)} = (-1)^{r + s + \gcd(r, s, l)}.$$
 (40)

Conclusions

- We have proved the sign of every permutation in $T_{p,q_1,q_2}(r,s)$ is the identical.
- So we know the magnitude of the coefficients:

$$|a_{p,q_1,q_2}(r,s)| = |T_{p,q_1,q_2}(r,s)|.$$
(41)

Recall we proved:

Claim

The coefficient of $(-1)^{r+s}x^ry^s$ in Θ is the sum of the signs all $\sigma \in T_{p,q_1,q_2}(r,s)$.

Conclusions

Recall we proved:

Claim

The coefficient of $(-1)^{r+s}x^ry^s$ in Θ is the sum of the signs of those permutations in S_p that "hit" r of the -x's in the matrix and s of the -y's, the remaining values being fixed points.

So we (finally) have

Formula for Coefficients

$$a_{p,q_1,q_2}(r,s) = (-1)^{r+s} |T_{p,q_1,q_2}(r,s)| (-1)^{r+s+\gcd(r,s,l)}$$

$$= (-1)^{\gcd(r,s,l)} |T_{p,q_1,q_2}(r,s)|.$$
(42)

References

Nicholas A. Loehr, Gregory S. Warrington, and Herbert S. Wilf. "The combinatorics of a three-line circulant determinant". In: *Israel Journal of Mathematics* 143.1 (2004), pp. 141–156. ISSN: 1565-8511. DOI: 10.1007/BF02803496. URL: https://doi.org/10.1007/BF02803496.

John P. D'Angelo and Daniel Lichtblau. "Spherical space forms, CR mappings, and proper maps between balls". In: *Journal of Geometric Analysis* 2 (Sept. 1992), pp. 391–415. DOI: 10.1007/BF02921298.