```
In [1]: import os
    from tqdm import tqdm

import pandas as pd
import numpy as np

import cv2
    from PIL import Image
import warnings

import numpy as np
import pandas as pd

from PIL import Image

import torch
import torch
import torch
import torch
import torch.nn.functional as F
```

device cuda:0

image processing

load test sets

```
In [6]:
    dataset_dir = '/home/featurize/data'
    test_path = os.path.join(dataset_dir, 'val')
    from torchvision import datasets

    test_dataset = datasets.ImageFolder(test_path, test_transform)
    print('Number of test set images', len(test_dataset))
    print('Number of categories', len(test_dataset.classes))
    print('Name of each category', test_dataset.classes)
```

```
idx_to_labels = np.load('idx_to_labels.npy', allow_pickle=True).item()

classes = list(idx_to_labels.values())
print(classes)

Number of test set images 898
Number of categories 25
Name of each category ['Cherrytomatoes', 'Mangosteen', 'MomordicaCharantia', 'Nav
elOrange', 'Sandsugaroranges', 'apple', 'banana', 'carrot', 'cherries', 'cucumbe
r', 'durian', 'grape', 'hamimelon', 'kiwi', 'lemon', 'lichee', 'longan', 'mango',
'pear', 'pineapple', 'pitaya', 'pomegranate', 'strawberry', 'tomato', 'watermelo
n']
  ['CherryTomatoes', 'Mangosteen', 'MomordicaCharantia', 'NavelOrange', 'Sandsugaro
ranges', 'apple', 'banana', 'carrot', 'cherries', 'cucumber', 'durian', 'grape',
'hamimelon', 'kiwi', 'lemon', 'lichee', 'longan', 'mango', 'pear', 'pineapple',
'pitaya', 'pomegranate', 'strawberry', 'tomato', 'watermelon']

In [7]: model = torch.load('/home/featurize/fruit25_pytorch.pth')
model = model.eval().to(device)
```

Form A - Test Set Image Path and Annotation

```
In [8]: test_dataset.imgs[:10]
Out[8]: [('/home/featurize/data/val/Cherrytomatoes/100.jpeg', 0),
           ('/home/featurize/data/val/Cherrytomatoes/102.jpeg', 0),
           ('/home/featurize/data/val/Cherrytomatoes/114.jpg', 0),
           ('/home/featurize/data/val/Cherrytomatoes/12.jpg', 0),
           ('/home/featurize/data/val/Cherrytomatoes/132.png', 0),
           ('/home/featurize/data/val/Cherrytomatoes/135.jpeg', 0),
           ('/home/featurize/data/val/Cherrytomatoes/138.jpeg', 0),
           ('/home/featurize/data/val/Cherrytomatoes/144.jpeg', 0),
           ('/home/featurize/data/val/Cherrytomatoes/150.jpg', 0),
           ('/home/featurize/data/val/Cherrytomatoes/151.jpg', 0)]
In [9]: img_paths = [each[0] for each in test_dataset.imgs]
In [10]: df = pd.DataFrame()
         df['image path'] = img paths
         df['Labelled category ID'] = test_dataset.targets
         df['Name of labelling category'] = [idx_to_labels[ID] for ID in test_dataset.tan
In [11]: df
```

0	image path	Labelled category ID	Name of labelling category
0	/home/featurize/data/val/Cherrytomatoes/100.jpeg	0	CherryTomatoes
1	/home/featurize/data/val/Cherrytomatoes/102.jpeg	0	CherryTomatoes
2	/home/featurize/data/val/Cherrytomatoes/114.jpg	0	CherryTomatoes
3	/home/featurize/data/val/Cherrytomatoes/12.jpg	0	CherryTomatoes
4	/home/featurize/data/val/Cherrytomatoes/132.png	0	CherryTomatoes
•••			
893	/home/featurize/data/val/watermelon/60.jpg	24	watermelon
894	/home/featurize/data/val/watermelon/69.jpg	24	watermelon
895	/home/featurize/data/val/watermelon/72.jpg	24	watermelon
896	/home/featurize/data/val/watermelon/87.jpg	24	watermelon
897	/home/featurize/data/val/watermelon/9.jpg	24	watermelon

898 rows × 3 columns

Out[11]:

Table B - Image classification prediction results for each image in the test set, and confidence levels for each category

```
In [82]: n = 3
In [25]: df_pred = pd.DataFrame()
         for idx, row in tqdm(df.iterrows()):
             img_path = row['image path']
             img_pil = Image.open(img_path).convert('RGB')
             input_img = test_transform(img_pil).unsqueeze(0).to(device)
             pred_logits = model(input_img)
             pred_softmax = F.softmax(pred_logits, dim=1)
             pred_dict = {}
             top_n = torch.topk(pred_softmax, n)
             pred_ids = top_n[1].cpu().detach().numpy().squeeze()
             for i in range(1, n+1):
                 pred_dict['top-{}-anticipateID'.format(i)] = pred_ids[i-1]
                 pred_dict['top-{}-Forecast name'.format(i)] = idx_to_labels[pred_ids[i-1
             pred_dict['top-nThe prediction is correct.'] = row['Labelled category ID'] i
             for idx, each in enumerate(classes):
                 pred_dict['{}-predictive confidence'.format(each)] = pred_softmax[0][idx
             df_pred = df_pred._append(pred_dict, ignore_index=True)
        898it [00:14, 62.65it/s]
```

In [26]:	df_pred	

Out[26]:

	top-1- anticipateID	top-1-Forecast name	top-2- anticipateID	top-2-Forecast name	top-3- anticipateID	
0	23	tomato	0	CherryTomatoes	4	Sa
1	0	CherryTomatoes	23	tomato	21	
2	0	CherryTomatoes	23	tomato	22	
3	0	CherryTomatoes	23	tomato	22	
4	23	tomato	0	CherryTomatoes	22	
•••						
893	24	watermelon	23	tomato	21	
894	23	tomato	0	CherryTomatoes	24	
895	24	watermelon	17	mango	21	
896	9	cucumber	24	watermelon	2	Mon
897	23	tomato	0	CherryTomatoes	24	

898 rows × 32 columns

Splice the two AB forms

```
In [27]: df = pd.concat([df, df_pred], axis=1)
```

In [28]: **df**

ıt[28]:		image path	Labelled category ID	Name of labelling category	ar
	0	/home/featurize/data/val/Cherrytomatoes/100.jpeg	0	CherryTomatoes	
	1	/home/featurize/data/val/Cherrytomatoes/102.jpeg	0	CherryTomatoes	
	2	/home/featurize/data/val/Cherrytomatoes/114.jpg	0	CherryTomatoes	
	3	/home/featurize/data/val/Cherrytomatoes/12.jpg	0	CherryTomatoes	
	4	/home/featurize/data/val/Cherrytomatoes/132.png	0	CherryTomatoes	
	•••				
	893	/home/featurize/data/val/watermelon/60.jpg	24	watermelon	
	894	/home/featurize/data/val/watermelon/69.jpg	24	watermelon	
	895	/home/featurize/data/val/watermelon/72.jpg	24	watermelon	
	896	/home/featurize/data/val/watermelon/87.jpg	24	watermelon	
	897	/home/featurize/data/val/watermelon/9.jpg	24	watermelon	
	898 r	ows × 35 columns			

Export complete table

```
In [29]: df.to_csv('Test sets prediction results.csv', index=False)
In [30]: idx_to_labels = np.load('idx_to_labels.npy', allow_pickle=True).item()
    classes = list(idx_to_labels.values())
    print(classes)
    ['CherryTomatoes', 'Mangosteen', 'MomordicaCharantia', 'NavelOrange', 'Sandsugaro
    ranges', 'apple', 'banana', 'carrot', 'cherries', 'cucumber', 'durian', 'grape',
    'hamimelon', 'kiwi', 'lemon', 'lichee', 'longan', 'mango', 'pear', 'pineapple',
    'pitaya', 'pomegranate', 'strawberry', 'tomato', 'watermelon']
In [31]: sum(df['Name of labelling category'] == df['top-1-Forecast name']) / len(df)
Out[31]: 0.6269487750556793
In [32]: from sklearn.metrics import classification_report
In [33]: print(classification_report(df['Name of labelling category'], df['top-1-Forecast
```

	precision	recall	f1-score	support	
CherryTomatoes	0.42	0.71	0.52	38	
Mangosteen	0.78	0.80	0.79	35	
mordicaCharantia	0.55	0.80	0.65	35	
NavelOrange	0.51	0.51	0.51	37	
Sandsugaroranges	0.53	0.83	0.64	35	
apple	0.84	0.74	0.79	35	
banana	0.67	0.11	0.19	36	
carrot	0.73	0.53	0.61	36	
cherries	0.68	0.59	0.63	32	
cucumber	0.54	0.63	0.58	35	
durian	0.94	0.47	0.63	36	
grape	0.86	0.84	0.85	38	
hamimelon	0.65	0.59	0.62	37	
kiwi	0.80	0.43	0.56	37	
lemon	0.51	0.83	0.63	29	
lichee	0.78	0.47	0.59	38	
longan	0.77	0.71	0.74	38	
mango	0.45	0.61	0.52	33	
pear	0.40	0.68	0.51	37	
pineapple	0.74	0.70	0.72	37	
pitaya	0.79	0.94	0.86	36	
pomegranate	0.53	0.73	0.61	37	
strawberry	0.82	0.47	0.60	38	
tomato	0.63	0.47	0.54	36	
watermelon	0.79	0.51	0.62	37	
accuracy			0.63	898	
macro avg	0.67	0.63	0.62	898	
weighted avg	0.67	0.63	0.62	898	

```
In [34]: report = classification_report(df['Name of labelling category'], df['top-1-Fored
    del report['accuracy']
    df_report = pd.DataFrame(report).transpose()
```

In [35]: df_report

	Mangosteen	0.777778	0.800000	0.788732	35.0		
M	Iomordica Charantia	0.549020	0.800000	0.651163	35.0		
	NavelOrange	0.513514	0.513514	0.513514	37.0		
	Sandsugaroranges	0.527273	0.828571	0.644444	35.0		
	apple	0.838710	0.742857	0.787879	35.0		
	banana	0.666667	0.111111	0.190476	36.0		
	carrot	0.730769	0.527778	0.612903	36.0		
	cherries	0.678571	0.593750	0.633333	32.0		
	cucumber	0.536585	0.628571	0.578947	35.0		
	durian	0.944444	0.472222	0.629630	36.0		
	grape	0.864865	0.842105	0.853333	38.0		
	hamimelon	0.647059	0.594595	0.619718	37.0		
	kiwi	0.800000	0.432432	0.561404	37.0		
	lemon	0.510638	0.827586	0.631579	29.0		
	lichee	0.782609	0.473684	0.590164	38.0		
	longan	0.771429	0.710526	0.739726	38.0		
	mango	0.454545	0.606061	0.519481	33.0		
	pear	0.403226	0.675676	0.505051	37.0		
	pineapple	0.742857	0.702703	0.722222	37.0		
	pitaya	0.790698	0.944444	0.860759	36.0		
	pomegranate	0.529412	0.729730	0.613636	37.0		
	strawberry	0.818182	0.473684	0.600000	38.0		
	tomato	0.629630	0.472222	0.539683	36.0		
	watermelon	0.791667	0.513514	0.622951	37.0		
	macro avg	0.668621	0.629115	0.621400	898.0		
	weighted avg	0.671058	0.626949	0.621458	898.0		
<pre>In [36]: accuracy_list = [] for fruit in tqdm(classes): df_temp = df[df['Name of labelling category']==fruit] accuracy = sum(df_temp['Name of labelling category'] == df_temp['top-1-Forec accuracy_list.append(accuracy)</pre>							
100% 25/25 [00:00<00:00, 1104.71it/s]							
ac	Calculate macro-ave cc_macro = np.mean(a cc_weighted = sum(ac	ccuracy_li	lst)			ort'] / len(df))	

Out[35]: precision recall f1-score support

CherryTomatoes 0.415385 0.710526 0.524272 38.0

accuracy_list.append(acc_macro)
accuracy_list.append(acc_weighted)

df_report['accuracy'] = accuracy_list

In [38]: df_report

Out[38]:

	precision	recall	f1-score	support	accuracy
CherryTomatoes	0.415385	0.710526	0.524272	38.0	0.710526
Mangosteen	0.777778	0.800000	0.788732	35.0	0.800000
MomordicaCharantia	0.549020	0.800000	0.651163	35.0	0.800000
NavelOrange	0.513514	0.513514	0.513514	37.0	0.513514
Sandsugaroranges	0.527273	0.828571	0.644444	35.0	0.828571
apple	0.838710	0.742857	0.787879	35.0	0.742857
banana	0.666667	0.111111	0.190476	36.0	0.111111
carrot	0.730769	0.527778	0.612903	36.0	0.527778
cherries	0.678571	0.593750	0.633333	32.0	0.593750
cucumber	0.536585	0.628571	0.578947	35.0	0.628571
durian	0.944444	0.472222	0.629630	36.0	0.472222
grape	0.864865	0.842105	0.853333	38.0	0.842105
hamimelon	0.647059	0.594595	0.619718	37.0	0.594595
kiwi	0.800000	0.432432	0.561404	37.0	0.432432
lemon	0.510638	0.827586	0.631579	29.0	0.827586
lichee	0.782609	0.473684	0.590164	38.0	0.473684
longan	0.771429	0.710526	0.739726	38.0	0.710526
mango	0.454545	0.606061	0.519481	33.0	0.606061
pear	0.403226	0.675676	0.505051	37.0	0.675676
pineapple	0.742857	0.702703	0.722222	37.0	0.702703
pitaya	0.790698	0.944444	0.860759	36.0	0.944444
pomegranate	0.529412	0.729730	0.613636	37.0	0.729730
strawberry	0.818182	0.473684	0.600000	38.0	0.473684
tomato	0.629630	0.472222	0.539683	36.0	0.472222
watermelon	0.791667	0.513514	0.622951	37.0	0.513514
macro avg	0.668621	0.629115	0.621400	898.0	0.629115
weighted avg	0.671058	0.626949	0.621458	898.0	0.626949

```
In [44]: model = torch.load('/home/featurize/fruit25 pytorch.pth')
         model = model.eval().to(device)
In [45]: from torchvision.models.feature_extraction import create_feature_extractor
In [46]: model_trunc = create_feature_extractor(model, return_nodes={'avgpool': 'semantic
In [47]: img_path = '/home/featurize/data/val/kiwi/167.png'
         img_pil = Image.open(img_path)
         input_img = test_transform(img_pil)
         input_img = input_img.unsqueeze(0).to(device)
         pred_logits = model_trunc(input_img)
In [48]: | pred_logits['semantic_feature'].squeeze().detach().cpu().numpy().shape
Out[48]: (512,)
In [49]: | df = pd.read_csv('/home/featurize/Test sets prediction results.csv')
In [50]: df.head()
                                                                             Name of
Out[50]:
                                                             Labelled
                                                image path category
                                                                             labelling
                                                                                       antic
                                                                             category
          0 /home/featurize/data/val/Cherrytomatoes/100.jpeg
                                                                   0 CherryTomatoes
            /home/featurize/data/val/Cherrytomatoes/102.jpeg
                                                                   0 CherryTomatoes
             /home/featurize/data/val/Cherrytomatoes/114.jpg
                                                                   0 CherryTomatoes
          2
          3
               /home/featurize/data/val/Cherrytomatoes/12.jpg
                                                                      CherryTomatoes
            /home/featurize/data/val/Cherrytomatoes/132.png
                                                                   0 CherryTomatoes
         5 rows × 35 columns
```

Calculate the semantic features of each image in the test set

```
In [51]: encoding_array = []
    img_path_list = []

for img_path in tqdm(df['image path']):
    img_path_list.append(img_path)
    img_pil = Image.open(img_path).convert('RGB')
    input_img = test_transform(img_pil).unsqueeze(0).to(device)
    feature = model_trunc(input_img)['semantic_feature'].squeeze().detach().cpu(
    encoding_array.append(feature)
    encoding_array = np.array(encoding_array)
```

```
| 898/898 [00:10<00:00, 87.61it/s]
In [52]: encoding_array.shape
Out[52]: (898, 512)
In [53]: np.save('Test set semantic features.npy', encoding_array)
In [54]: import seaborn as sns
         marker_list = ['.', ',', 'o', 'v', '^', '<', '>', '1', '2', '3', '4', '8', 's'
In [55]: | class_list = np.unique(df['Name of labelling category'])
In [56]: class_list
Out[56]: array(['CherryTomatoes', 'Mangosteen', 'MomordicaCharantia',
                 'NavelOrange', 'Sandsugaroranges', 'apple', 'banana', 'carrot',
                 'cherries', 'cucumber', 'durian', 'grape', 'hamimelon', 'kiwi',
                 'lemon', 'lichee', 'longan', 'mango', 'pear', 'pineapple',
                 'pitaya', 'pomegranate', 'strawberry', 'tomato', 'watermelon'],
               dtype=object)
In [57]: n_class = len(class_list) # Number of test set label categories
         palette = sns.hls_palette(n_class)
         sns.palplot(palette)
In [58]: import random
         random.seed(1234)
         random.shuffle(marker list)
         random.shuffle(palette)
In [59]: from sklearn.manifold import TSNE
         tsne = TSNE(n components=2, n iter=20000)
         X_tsne_2d = tsne.fit_transform(encoding_array)
In [60]: X_tsne_2d.shape
Out[60]: (898, 2)
In [ ]:
In [61]: show_feature = 'Name of labelling category'
In [63]: import matplotlib
         import matplotlib.pyplot as plt
In [64]: plt.figure(figsize=(14, 14))
         for idx, fruit in enumerate(class_list):
             # Getting colours and point types
             color = palette[idx]
             marker = marker_list[idx%len(marker_list)]
             # Find the index numbers of all images labelled with the category as the cur
```

```
indices = np.where(df[show_feature]==fruit)
   plt.scatter(X_tsne_2d[indices, 0], X_tsne_2d[indices, 1], color=color, marke

plt.legend(fontsize=16, markerscale=1, bbox_to_anchor=(1, 1))
plt.xticks([])
plt.yticks([])
plt.savefig('Two-dimensional downscaling visualisation of semantic features t-SN
plt.show()
```

