AcF305:

International Financial and Risk Management Week 7

Dr. Mykola Babiak Lancaster University Management School

Outline of Lecture 7

- Essential reading: Chapters 12 & 13 of Sercu (2009).
- Topics:
 - Why hedging may have an effect on firm value?
 - How can adding a zero-value contract increase the value of the company?
 - What are the different forms of economic risk exposure? How are they defined?
 - Is exposure always linear? How do non-linear exposures arise? How can we hedge non-linear exposures? Are these hedges effective?

Why Hedging Might Have an Impact on Firm Value

- What we know from empirical research:
 - 1. Purchasing power parity does not hold in the real world: Example: A U.K. firm buys steel from a U.S. firm on a regular basis. What happens if USD appreciates and
 - ... PPP holds: no exposure to real exchange-rate risk.
 - ... PPP does not hold: exposure to real exchange-rate risk.
 - 2. Exchange rates are notoriously difficult to predict.
- The failure of the purchasing power parity creates exchange rate risk for companies, which can be hedged.

Why Hedging Might Have an Impact on Firm Value

- BUT: How can a zero-value contract (like a forward contract) increase shareholder value?
 - A company should only accept positive NPV projects.
 - A forward contract seems initially like a zero NPV project.
- It ignores the impact that hedging has on the other cash flows of the firm.
- We will now discuss how hedging may reduce:
 - the expected cost of financial distress
 - the firm's reliance on (costly) external financing
 - the expected compensation to corporate stakeholders
 - the expected tax liability

Bankruptcy and financial distress costs

- Hedging reduces the expected cost of financial distress
- The expected cost of financial distress is
 the actual cost of financial distress × the probability of financial distress
- Hedging lowers the probability of financial distress
- Example: UBISOFT needs to repay USD 140m in debt at time T.
 - At time T, the market value depends on 2 scenarios of S_T and equals:

$$\widetilde{MV_{\tau}} = \begin{cases} USD 200m \text{ with prob} = 0.50 \\ USD 100m \text{ with prob} = 0.50 \end{cases}$$

- When bankrupt, the company pays USD 50m in fees \rightarrow expected time-T market value equals 0.5 * 200 + 0.5 * (100 − 50) = USD 125m.
- Assume now that UBISOFT hedges, so that market value at T = USD
 150m (i.e. company never goes bankrupt).

A firm is distressed when income does not cover fixed expenses

(Costly) external financing

- Hedging makes a firm less reliant on costly external financing, which leads to a more efficient investment policy
 - External financing can be costly
 - Managers may skip value-enhancing investment opportunities if there are insufficient internal funds
 - Hedging can ensure availability of internal funds

Compensation to corporate stakeholders

- Hedging reduces expected compensation to corporate stakeholders
 - Remember: Managers act as agents on behalf of the firm shareholders
 - There can be a conflict of interests: wages and bonus plans make managers wealth depend on firm performance
 - Managers can then...
 - 1. Reject risky, but potentially positive NPV projects
 - 2. Demand higher wages to compensate for risk
 - 3. Hedge away the excess risk of the firm

Expected tax liability

- Hedging lowers the expected tax bill
 - In most cases, the amount of tax paid is a convex function of the profit (due to progressive tax regime)
 - Hedging lowers pre-tax income volatility
 - Therefore, risk management adds value by ensuring that taxable income falls within the optimal tax rate band
 - Furthermore, hedging increases debt capacity and allows for exploiting the tax shield more heavily

Expected tax liability

• Whenever tax schedules are convex, hedging reduces the tax burden:

Interaction between hedging and other cashflows

- Other (more minor) reasons:
 - Might enhance the quality of internal decision-making. Cashflows are less uncertain, and manager can make better decisions
 - By eliminating uncertainties, we can better see the quality of decisions made by the firm
 - *Underlying argument:* Non-core risks (e.g. exchange or interest rate risk) make it hard to assess how well the firm performs in its core business.

Currency risk: definitions

- Distinction between exchange rate risk and exposure:
 - Exchange risk: Uncertainty about future spot exchange rate.
 - **Exposure**: Change in HC value of asset or cash flow scaled by change in the exchange rate, i.e. $B_{t,T} = \Delta V_T / \Delta S_T$
 - \rightarrow By which percentage does V_T change for a change in S_T ?
- What does V_T stand for? It is the home currency value of 3 types of exposure
 - 1. Net contractual cash flows in FC maturing at T (contractual exposure).
 - 2. Future (= not yet contracted) cash flows (operating exposure).
 - 3. Accounting exposure (translation exposure).

Currency risk: definitions

- Economic exposure = contractual + operating exposure
 - Economic exposure affect firm HC cashflows
- Each type of exposure can be hedged.
- How can we hedge economic exposure?

The Effectiveness of Hedging Contractual Exposures

- Example: An Italian firm, Viticola, which exports its fine wines to the U.S. Viticola extends 3 months credit to its U.S. customers. To reduce its exchange rate exposure, it can:
 - 1. Sell in U.S. dollars and immediately hedge with a forward, which implies zero exposure to changes in *St* over *these* 3 months on *this* contract.

BUT: Cash flows negotiated in 3-month time (i.e. next time) depend on changes in *S* over initial three months. Even perfect hedging of contractual exposure does not reduce the long-run variability of cash flows

2. Invoice in EUR: Alleviates contractual exposure, but will lead to changes in demand

Hedging "Likely" Cash Flows

- An implication: Exposure is no longer linear in the exchange rate:
 - $V_T = B_{t,T} S_T$ has to be replaced with $V_T = f_{t,T}(S_T)$
- Example: VW exports cars to the United States:
 - 1. At the prevailing exchange rate, VW asks USD 2,000 for each car.
 - 2. When exchange rate (DEM/USD) \uparrow , VW could decrease USD prices to steal business from U.S. competitors *if this is better than the status quo*.
 - 3. When exchange rate (DEM/USD) \downarrow , VW could increase USD prices to stabilize its DEM profit if this is better than the status quo.

Operating Exposure Comes in All Forms

- Operating exposure arises from the effect of exchange rate changes on future cash flows which are not yet contracted.
- Contrary to intuition, operating exposure also impacts:
 - Companies which invoice only in their HC (through quantity demanded).
 - Companies without any foreign business (through other firms); these
 other firms could be foreign exporters (see DanskWool from Week 6)

Technical Details

• Let asset value ($V_{T,s}$) depends on (a) the exchange rate and (b) other factors (e.g. business conditions):

$$\widetilde{V}_{T,s} = A_{t,T} + B_{t,T} \widetilde{S}_{T,s} + \widetilde{\varepsilon}_{t,T,s}$$

$$= \underbrace{A_{t,T} + \widetilde{\varepsilon}_{t,T,s}}_{uncorrelated with \widetilde{S}} + \underbrace{B_{t,T} \widetilde{S}_{T,s}}_{linear in \widetilde{S}}$$

- Hedging exchange rate risk eliminates $B_{t,T}S_{T,s}$, but it cannot eliminate $A_{t,T} + \varepsilon_{t,T,s}$: it's hard to hedge against broad economic conditions.
- We will learn how to hedge exchange rate risk but no economic conditions

Simple Case

- Example without noise:
 - In 1992, a Belgian firm had a subsidiary in the United Kingdom.

$$\tilde{S}_{\tau}$$
 * cash flow_{UK subsidiary} =
$$\begin{cases} 60 * 1.55m \text{ if deflationary U.K. policy} \\ 55 * 1.8m \text{ if expansionary U.K. policy} \end{cases}$$

- → Profits are thus either BEF 93m or BEF 99m.
- In terms of the above formula:

$$93 = A_{t,T} + B_{t,T} 60$$
 and $99 = A_{t,T} + B_{t,T} 55$,

which means that $B_{t,T} = -1.2$.

• The firm's exposure is **NEGATIVE**.

Simple Case

• The Belgian firm now wants to hedge with a forward contract:

 $\widetilde{V}_{\tau}^{\textit{Hedged}} = A_{t,\tau} + B_{t,\tau} \widetilde{S}_{\tau} + \widetilde{\varepsilon}_{t,\tau} + \delta[\widetilde{S}_{\tau} - F_{t,\tau}]$ where δ is the number = $165 - 1.2\widetilde{S}_{\tau} + \delta[\widetilde{S}_{\tau} - F_{t,\tau}]$ (positive) or sells (negative) and $[S_T - F_{t,\tau}]$ is the expiration value of a long forward.

- Question: How many forwards should the firm buy or sell?
- Assume the company would buy 1.2 forwards:

$$V_T^{Hedged} = 165-1.2 S_T + 1.2[S_T - F_{t,T}] = 165-1.2 F_{t,T}$$

- \rightarrow V_T^{Hedged} does now no longer vary at time *T*: the company is perfectly hedged against exchange rate risk.
- General rule: Set δ to $-B_{t,T}$ to eliminate linear FC risk.

More Complicated Case with Noise

- Operating exposure is less certain than contractual exposure, as future cash flows are random (2 sources of uncertainty).
- Example: A U.K. firm has set up a subsidiary in a foreign country, Freedonia. When it comes to collecting cash:
 - The exchange rate is either 1.20 or 0.80 GBP/FC.
 - The Freedonian economy is either in an expansion or recession.

		boom: $CF^* = 150$	bust : $CF^* = 100$	$\mathrm{E}(ilde{V}_T S_T)$
probability	$S_T = 1.2$	$150 \times 1.2 = 180$ $p = 0.15$	$100 \times 1.2 = 120$ p = 0.35	$\frac{180 \times 0.15 + 120 \times 0.35}{0.15 + 0.35} = \text{GBP } 138$ p = 0.50
	$S_T = 0.8$	$150 \times 0.8 = 120$ p = 0.35	$100 \times 0.8 = 80$ p = 0.15	$\frac{120\times0.35+80\times0.15}{0.35+0.15} = GBP 108$ $p = 0.50$
		p = 0.50	p = 0.10	p = 0.50

More Complicated Case with Noise

	boom: CF*= 150	$bust: CF^* = 100$	$\mathrm{E}(\tilde{V}_T S_T)$
$S_T = 1.2$	$150 \times 1.2 = 180$ p = 0.15	$100 \times 1.2 = 120$ p = 0.35	$\frac{\frac{180 \times 0.15 + 120 \times 0.35}{0.15 + 0.35} = \text{GBP } 138}{p = 0.50}$
$S_T = 0.8$	$150 \times 0.8 = 120$ p = 0.35	$100 \times 0.8 = 80$ p = 0.15	$\frac{120 \times 0.35 + 80 \times 0.15}{0.35 + 0.15} = \text{GBP } 108$ $p = 0.50$
	p = 0.50	p = 0.50	

More Complicated Case with Noise

More Complicated Cases with Noise

- The expectation can be hedged in the same way as before:

$$\begin{split} \widetilde{V}_{T}^{Hedged} = & E[\widetilde{V}_{T} \mid S_{T}] + \widetilde{\varepsilon}_{t,T} + \delta[\widetilde{S}_{T} - F_{t,T}] \\ = & A_{t,T} + B_{t,T} \widetilde{S}_{T} + \widetilde{\varepsilon}_{t,T} + \delta[\widetilde{S}_{T} - F_{t,T}] \end{split}$$

- Find $B_{t,T}$ from: 138 = $A_{t,T}$ + $B_{t,T}$ 1.2 and 108 = $A_{t,T}$ + $B_{t,T}$ 0.8, which implies that $B_{t,T}$ must be 75, and set δ to $-B_{t,T}$.
- In this case, not all risk has been eliminated (note $F_{t,T}$ = 0.96):

$$S_T = 1.2$$
 $180 - 18 = 162$ $120 - 18 = 102$ $\frac{162 \times 0.15 + 102 \times 0.35}{0.15 + 0.35} = GBP120$ $S_T = 0.8$ $120 + 12 = 132$ $80 + 12 = 92$ $\frac{132 \times 0.35 + 92 \times 0.15}{0.35 + 0.15} = GBP120$

Minimum Variance Hedging in General

- In practice, there are often more than 2 or 4 scenarios, but still same problem remains: find the $B_{t,T}$ coefficient. How?
 - Solution: Use regression analysis, i.e. regress $V_{T,s}$ on S_T .
- In practice: EXCEL offers an easy way to implement regression analysis:
 - 1. Decide on one column which contains all V_T values and on one which contains all S_T values.
 - 2. Choose tools \rightarrow data analysis \rightarrow regression.
 - 3. Indicate in which column the $V_{T,s}$ values are and in which column the S_T values are.
 - 4. Click on OK and EXCEL will find $B_{t,T}$ for you.

Minimum Variance Hedging in General

• An example of a linear regression line with hypothetical data

Practical Problems of this Approach

- Implementation of regression analysis is easy; the complicated part is to collect the values for $V_{T,s}$ and for S_T :
 - 1. Simply download past data.
 - Several problems: (1) assumption that past is like future, (2) statistical estimation error, (3) problem of unit roots (you must run regression on returns).
 - 2. Alternative scenarios for future cash flows.
 - In principle, this makes more sense, **BUT** estimate only as good as numbers you obtain from Marketing & Operations.

Practical Problems of this Approach

- Other considerations:
 - If you use scenarios, you need to know the probability of each pair of $V_{T,s}$ and S_T combinations showing up.
 - Also consider R^2 : check how much of the variability in $V_{T,s}$ is captured by your hedge \rightarrow use non-linear hedge?
 - Hedge against other risks (oil price risk), too?
 - → If yes, then use a multiple regression equation:

$$\widetilde{V}_{T,s} = A_{t,T} + B_{t,T} \widetilde{S}_{T,s} + C_{t,T} o \widetilde{i} I_{T,s} + \widetilde{\varepsilon}_{t,T,s}$$

Summary, Homework and Additional Reading

- In this lecture, we dealt with:
 - Different forms of exposure: contractual exposure, operating exposure and translation exposure.
 - Non-linear exposures arising from cash flow uncertainty and behaving optimal. We argued that these non-linear exposures are hard to hedge in the real world.
- At home, you will need to cover:
 - Tutorials: solve exercises