Atty. Docket: 2003B103/2

Amendment dated December 4, 2008 Reply to OA mailed October 15, 2008

114 p. j. 10 011 11111111011 001000 11 10, 2000

Amendments to and listing of Claims:

1-35. (Cancelled)

36. (Currently Amended) A die plate comprising:

- (a) an upstream face;
- (b) a downstream face;
- (c) at least one passage having a first opening in said upstream face whereby molten resin at bulk temperature T_{melt} may be received and a second <u>exit</u> opening in said downstream face whereby molten resin may be extruded; and
- (d) a heater at the exit opening proximate said downstream face and proximate with said at least one passage at said downstream opening and capable of locally heating said molten resin to a temperature from about 245 °C to about 372°C, the local molten resin temperature being from 30-170°C above bulk temperature T_{melt}.
- 37. (Original) The die plate according to Claim 36, wherein said at least one passage is generally cylindrical and having a substantially uniform diameter from said upstream face to said downstream face.
- 38. (Original) The die plate according to Claim 36, wherein said heater is concentric with said at least one passage.
- 39. (Original) The die plate according to Claim 36, wherein said at least one passage passes through a portion of said heater, such that said portion defines the wall of said passage proximate said downstream face.
- 40. (Cancelled)
- 41. (Original) The die plate according to Claim 36, further comprising an insulation material concentric with said at least one passage proximate said downstream face and forming at

Atty. Docket: 2003B103/2

Amendment dated December 4, 2008

Reply to OA mailed October 15, 2008

least a portion of said downstream face at said second opening.

42. (Original) The die plate according to Claim 36, further comprising an insulation material

concentric with said at least one passage and contiguous with at least a portion of said

heating means, and contiguous with said at least one passage at said exit opening.

43. (Original) The die plate according to Claim 36, wherein said die plate is a monolithic die

plate.

44. (Original) The die plate according to Claim 36, wherein said die plate comprises a first

plate having said upstream face and a second plate having said downstream face and said

heater, said first and second plates fluidically connected by said at least one passage.

45. (Original) The die plate according to Claim 44, comprising a plurality of said at least one

passage and wherein said first and second plates are fluidically connected by each of said

at least one passage.

46. (Original) The die plate according to Claim 36, comprising a plurality of said at least one

passage.

47-48. (Cancelled)

49. (Original) The die plate according to Claim 41, wherein said insulation material is

selected from high temperature plastics, machineable ceramics, ceramics which may be

deposited by spray coating techniques, and ceramics which may be deposited by vapor

deposition techniques.

50. (Original) The die plate according to Claim 42, wherein said insulation material is

selected from high temperature plastics, machineable ceramics, ceramics which may be

Atty. Docket: 2003B103/2

Amendment dated December 4, 2008

Reply to OA mailed October 15, 2008

deposited by spray coating techniques, and ceramics which may be deposited by vapor

deposition techniques.

51. (Currently Amended) An extrusion die assembly comprising a die plate for preparing

pellets having at least one passage including an initial, upstream zone having an opening

for receiving a polymer melt having a bulk temperature T_{melt}, an intermediate zone for

conveying said polymer melt, and a final, downstream zone terminating said extrusion

die assembly at an exit opening whereby said polymer melt exits said extrusion die

assembly, further comprising a heating means for said downstream zone at the exit

opening whereby at least a portion of said polymer melt may be locally heated to a

temperature from about 245°C to about 372°C from 30-170°C above bulk temperature

T_{melt}.

52. (Previously Presented) The extrusion die assembly according to Claim 51, the extrusion

die further comprising a plurality of extrusion orifices forming a pattern, wherein said

heating means comprises a heater concentric with the extrusion orifice pattern.

53. (Original) The extrusion die assembly according to Claim 51, wherein said heating

means is proximate said exit opening.

54. (Original) The extrusion die assembly according to Claim 51, wherein said downstream

zone further comprising an insulation material concentric with said passage and

contiguous with at least a portion of said heating means and said die assembly.

55. (Original) The extrusion die assembly according to Claim 51, wherein said downstream

zone further comprises an insulation material concentric with said passage and

contiguous with at least a portion of said heating means, and contiguous with said

passage at said exit opening.

Page 4 of 17

Atty. Docket: 2003B103/2

Amendment dated December 4, 2008

Reply to OA mailed October 15, 2008

56. (Original) The extrusion die assembly according to Claim 51, wherein said passage is

generally cylindrical and having a substantially uniform diameter from said opening for

receiving a polymer melt to said exit opening.

57. (Original) The extrusion die assembly according to Claim 51, wherein said die plate

comprises a plurality of said at least one passage.

58. (Original) The extrusion die assembly according to Claim 51, wherein said die plate is a

monolithic die plate.

59. (Previously Presented) The extrusion die assembly according to Claim 51, wherein said

die plate comprises a first plate having an upstream face and comprising said upstream

zone and a second plate having a downstream face and wherein said heating means, said

first plate, and second plate are fluidically connected by said at least one passage.

60. (Original) The extrusion die assembly according to Claim 51, wherein said die plate

comprises a plurality of said at least one passage.

61. (Previously Presented) The extrusion die assembly according to Claim 59, comprising a

plurality of said at least one passage and wherein said first and second plates are

fluidically connected by each of said at least one passage.

62. (Cancelled)

63. (Previously Presented) The extrusion die assembly according to Claim 54, wherein said

insulation material is selected from high temperature plastics, machineable ceramics,

ceramics which may be deposited by spray coating techniques, and ceramics which may

be deposited by vapor deposition techniques.

Page 5 of 17

Atty. Docket: 2003B103/2

Amendment dated December 4, 2008 Reply to OA mailed October 15, 2008

64. (Previously Presented) The extrusion die assembly according to Claim 55, wherein said insulation material is selected from high temperature plastics, machineable ceramics, ceramics which may be deposited by spray coating techniques, and ceramics which may be deposited by vapor deposition techniques.

65-71. (Canceled)

72. (Previously Presented) An extrusion die assembly comprising an extrusion die for preparing pellets having a plurality of extrusion orifices and a monolithic heater for retrofitting a resin shaping apparatus having at least one extrusion die orifice, said heater having a first face to engage said at least one extrusion die orifice of said resin shaping apparatus and a second face opposite said first face, one or more passages between said first and second faces and substantially mating said at least one extrusion die orifice, whereby said orifice and said one or more passages are fluidically connected, and whereby a molten material at T_{melt} passing out of said at least one extrusion die orifice is locally heated to a temperature from about 245°C to about 372°C, the local molten material temperature being from 30-170°C above T_{melt} by passing through said one or more passages of said monolithic heater, and means to provide electrical energy to said monolithic heater, said heater comprising a plurality of said one or more passages, wherein said plurality of extrusion orifices are fluidically engaged with said plurality of said one or more passages in said monolithic heater.

73. (Currently Amended) A die plate comprising:

- (a) an upstream face;
- (b) a downstream face;
- (c) at least one passage having a first opening in said upstream face whereby molten resin at bulk temperature T_{melt} may be received and a second <u>exit</u> opening in said downstream face whereby molten resin may be extruded; and
- (d) an electrical heating element proximate said downstream face and proximate with

Atty. Docket: 2003B103/2

Amendment dated December 4, 2008 Reply to OA mailed October 15, 2008

said at least one passage and at the exit opening at said downstream opening, wherein said electrical heating element is capable of locally heating said molten resin by direct

contact of said molten resin with said electrical heating element.

74. (Previously Presented) The die plate according to Claim 73, wherein said at least one

passage passes through a portion of said heater, such that said portion defines the wall of

said passage proximate said downstream face.

75. (Cancelled)

76. (Previously Presented) The die plate according to Claim 73, wherein said die plate is a

monolithic die plate.

77. (Previously Presented) The die plate according to Claim 73, wherein said die plate

comprises a first plate having said upstream face and a second plate having said

downstream face and said heater, said first and second plates fluidically connected by

said at least one passage.

78. (Previously Presented) The die plate according to Claim 73, wherein said die plate

comprises a material selected from brass, stainless steel, and nickel steel.

79. (Cancelled)

(Currently Amended) An extrusion die assembly comprising a die plate for preparing 80.

pellets having at least one passage including an initial, upstream zone having an opening

for receiving a polymer melt having a bulk temperature T_{melt}, an intermediate zone for

conveying said polymer melt, and a final, downstream zone terminating said extrusion

die assembly at an exit opening whereby said polymer melt exits said extrusion die

assembly, further comprising an electrical heating means at the exit opening for said

Page 7 of 17

Atty. Docket: 2003B103/2

Amendment dated December 4, 2008

Reply to OA mailed October 15, 2008

downstream zone whereby at least a portion of said polymer melt would be locally heated

by direct contact of said polymer melt with said electrical heating means.

81. (Previously Presented) The extrusion die assembly according to Claim 80, wherein said

heating means is proximate said exit opening.

82. (Cancelled)

83. (Previously Presented) The extrusion die assembly according to Claim 80, wherein said

die plate is a monolithic die plate.

84. (Previously Presented) The extrusion die assembly according to Claim 80, wherein said

die plate comprises a first plate having an upstream face and comprising said upstream

zone and a second plate having a downstream face and wherein said heating means, said

first plate, and second plate are fluidically connected by said at least one passage.

85. (Previously Presented) The extrusion die assembly according to Claim 80, wherein said

die plate comprises a material selected from brass, stainless steel, and nickel steel.

86. (Cancelled)

87. (Previously Presented) The extrusion die of claims 36 and 51, wherein said die plate

comprises a material selected from brass, stainless steel, and nickel steel.

88. (Previously Presented) The extrusion die of claims 36, 51 and 73, further comprising an

insulation material contiguous with said heater and said die plate and concentric with said

heater about said at least one passage proximate said downstream opening.

Atty. Docket: 2003B103/2

Amendment dated December 4, 2008 Reply to OA mailed October 15, 2008

89. (Previously Presented) The extrusion die of claims 73 and 80, wherein said insulation material is selected from high temperature plastics, machineable ceramics, ceramics which may be deposited by spray coating techniques, and ceramics which may be deposited by vapor deposition techniques.

90. (Previously Presented) The extrusion die of claim 80, wherein said downstream zone further comprises an insulation material concentric with said passage and contiguous with at least a portion of said heating means and said die assembly.