Задача 1: Намерете асимптотичната сложност на всеки от следните три фрагмента от програми като функция на n.

```
int f(int n) {
                        int g(int n) {
                                                      int h(int n) {
                         if (n < 10) return 1;
 int i, s=2, m=n*n;
                                                       int i, t=0;
 for(i=0; i<m*n; i++)</pre>
                         int j=6, s=0;
                                                       if(n < 2) return 2;
 s += s;
                         while(j > 8) {
                                                       t += h(n/3);
                                                       for(i = 2; i < n; i *= 2)
                          s += g(n-2);
return s; }
                          j --;}
                                                        t ++;
                         while(n-j > 1) {
                                                       t *= h(n/3);
                           j = n;
                                                       return t; }
                          s += g(n-1) + g(n-2);
                         while(j >= n) {
                          j = 2;
                          s += g(n-j);}
                         return s;}
```

Решения: Сложността на f() е тривиално $\Theta(n^3)$.

Сложността на g() се намира чрез следните разсъждения: първият while не се изпълнява изобщо, вторият while се изпълнява точно веднъж, оттам имаме по едно викане g(n-1) и g(n-2), третият while се изпълнява точно веднъж и имаме още едно викане на g(n-2); следователно, рекурентното уравнение за сложността е T(n) = T(n-1) + 2T(n-2) + 1, което има решение $T(n) = \Theta(2^n)$.

Сложността на h() се намира чрез следните разсъждения: имаме точно две викания $h\left(\frac{n}{3}\right)$ и освен това логаритмична работа (цикълът for); следователно, рекурентното уравнение за сложността е $T(n) = 2T\left(\frac{n}{3}\right) + \lg n$, което има решение $T(n) = \Theta\left(n^{\lg_3 2}\right)$.

- **Задача 2:** Нека $a_1 \ a_2 \ \cdots \ a_n$ е пермутация на множеството $\{1, 2, \ldots, n\}$. Инверсия в тази пермутация се нарича всяка наредена двойка (i, j), такава че $1 \le i < j \le n$ и $a_i > a_j$. Инверсниям вектор на пермутацията $a_1 \ a_2 \ \cdots \ a_n$ е векторът (b_1, b_2, \ldots, b_n) , където $\forall i, 1 \le i \le n, b_i$ е броят на елементите в $a_1 \ a_2 \cdots \ a_n$, които са вляво от i и са по-големи от i.
- 5 т. а) Напишете инверсния вектор на пермутацията 4 2 3 7 1 8 5 9 6.
- 25 т. **б)** Предложете колкото може по-ефикасен алгоритъм, който по зададен инверсен вектор извежда оригиналната пермутация. Допуснете, че входът (b_1, b_2, \ldots, b_n) на алгоритъма е коректен инверсен вектор на някоя пермутация на числата $\{1, 2, \ldots, n\}$. Дайте кратка обосновка на коректността на Вашия алгоритъм (не се иска строго доказателство по индукция или с инвариант) и изследвайте сложността му по време.

Решение, а) (4,1,1,0,2,3,0,0,0).

Решение, **б**) Да разсъждаваме така. Елемент k от пермутацията, която искаме да построим, може да има между 0 и n-k числа вляво от себе си и по-големи от себе си в тази пермутация.

- Знаем, че числото n е елемент на пермутацията (която искаме да построим). За b_n има само една възможност да бъде нула. Записваме n в списък.
- За b_{n-1} има две възможности. Ако b_{n-1} е нула, слагаме n-1 вляво от n в списъка. В противен случай, вдясно от n в списъка.
- За b_{n-2} има три възможности. Ако b_{n-2} е нула, слагаме n-2 вляво от вече сложените два елемента в списъка. Тоест, в началото. Ако b_{n-2} е единица, слагаме n-2 между първи и втория елемент. Ако е двойка, слагаме n-2 вдясно от първи и втория.
- И така нататък.
- Накрая разглеждаме b_1 . Слагаме 1 на такава позиция в списъка, че точно b_1 елемента са вляво от него.

И изобщо, k бива сложен в списъка след като числата $n, n-1, \ldots, k+1$ вече са в списъка, и то по такъв начин, че точно b_k вече сложени числа са вляво от него. Следният алгоритъм имплементира тази идея.

GENERATE PERMUTATION $((b_1, b_2, \dots, b_n))$: inversion vector)

- 1 нека X е списък от числа
- 2 for $k \leftarrow n$ downto 1
- 3 сложи k в X така, че b_k елемента да са вляво от него
- 4 return X

Коректността на алгоритъма следва от горните разсъждения. Сложността му по време е квадратична, тъй като външният ${\bf for}$ -цикъл се изпълнява точно n пъти, а

вътрешният (имплицитен) цикъл се изпълнява в най-лошия случай k пъти, така че в най-лошия случай сложността е пропорционална на

$$\sum_{k=1}^{n} \sum_{j=1}^{k} 1 = \sum_{k=1}^{n} k = \Theta(n^{2})$$

Задача 3: Нека M[1..n,1..m] е масив от естествени числа. За целите на тази задача ще казваме, че M е *интересен*, ако е изпълнено

$$M[p,q] + M[s,t] \leq M[p,t] + M[s,q]$$

за $1 \le p < s \le n$ и $1 \le q < t \le m$. Ето пример за масив 7×5 , който е интересен:

- 1. Предложете алгоритъм с **линейна** сложност по време, чийто вход е масив M[1..n,1..m] и чийто изход е или 1, ако M е интересен, или 0, ако M не е интересен. Докажете коректността и сложността по време на този алгоритъм. Забележка: сложността по време е функция от големината на входа.
- 5 т. 2. За $i \in \{1, 2, ..., n\}$, нека $\phi(i)$ е номерът на колоната, съдържаща най-левия минимален елемент в ред i на интересен масив M[1...n, 1...m]. Докажете, че

$$\phi(1) < \phi(2) < \dots < \phi(n)$$

5 т. 3. Нека

$$n_e = \{x \in \{1, 2, \dots, n\} \mid x \text{ е четно}\}$$

 $n_o = \{x \in \{1, 2, \dots, n\} \mid x \text{ е нечетно}\}$

Допуснете, че са дадени $\phi(i)$ за всички $i \in n_e$. Обяснете как да намерим $\phi(i)$ за всички $i \in n_o$ във време O(n+m).

4. Предложете алгоритъм със сложност по време $O(n+m\lg n)$, изграден по схемата **Разделяй-и-Владей**, който има вход интересен масив M[1...n,1...m] и който изчислява $\phi(i)$ за $i\in\{1,2,...,n\}$. Не е необходимо да пишете псевдокод, но трябва да обясните ясно и недвусмислено какво имате предвид. Накратко обосновете коректността и асимптотичната горна граница за сложността по време на Вашия алгоритъм.

Упътване: Вашето решение на 3) е добра отправна точка за конструиране на такъв алгоритъм.

Решение: Такъв масив се нарича *масив на Монж* (*Monge array*). Алгоритъм, който проверява дали даден масив е масив на Монж и е базиран директно на дефиницията " $M[p,q]+M[s,t] \leq M[p,t]+M[s,q]$ за $1\leq p < s \leq n$ и $1\leq q < t \leq m$ ", е следният.

TEST MONGENESS 1(M[1...n, 1...m])1 for $p \leftarrow 1$ to n-12 for $s \leftarrow p+1$ to n-13 for $q \leftarrow 1$ to m-14 for $t \leftarrow q+1$ to m5 if M[p,q] + M[s,t] > M[p,t] + M[s,q]6 return 0
7 return 1

За съжаление, неговата сложност по време е $\Theta(n^2m^2)$. По-бърз алгоритъм се конструира въз основа на следния факт.

Лема 1 M[1...n,1...m] е масив на Монж тогава и само тогава, когато

$$M[p,q] + M[p+1,q+1] \le M[p+1,q] + M[p,q+1]$$

 $за \ 1 \le p < n \ u \ 1 \le q < m.$

Доказателство: В едната посока доказателството е тривиално. Нека

$$X = \{ ((p,q),(s,t)), ((p,t),(s,q)) \mid 1 \le p < s \le n, 1 \le q < t \le m \}$$

$$Y = \{ ((p,q),(p+1,q+1)), ((p,q+1),(p+1,q)) \mid 1 \le p < n, 1 \le q < m \}$$

Очевидно $Y \subseteq X$. Тогава

$$M[p,q] + M[s,t] \le M[p,t] + M[s,q]$$
, за $1 \le p < s \le n$ и $1 \le q < t \le m$

влече

$$M[p,q] + M[p+1,q+1] \le M[p,q+1] + M[p+1,q],$$
 за $1 \le p < n$ и $1 \le q < m$

В обратната посока доказателството е по-триково. Допускаме, че

$$M[p,q] + M[p+1,q+1] \le M[p,q+1] + M[p+1,q]$$
, за $1 \le p < n$ и $1 \le q < m$ (1)

Ще покажем, че

$$M[p,q] + M[s,t] \le M[p,t] + M[s,q]$$
, за $1 \le p < s \le n$ и $1 \le q < t \le m$ (2)

Първо фиксираме броя на редовете така: n = 2. Ще докажем, че

$$M[1,q] + M[2,q+1] \le M[2,q] + M[1,q+1]$$
, as $1 \le q \le m$ (3)

влече

$$M[1,q] + M[2,t] \le M[2,q] + M[1,t], \text{ sa } 1 \le q < t \le m$$
 (4)

Това ще направим по индукция по m. Базата е m=2. Тогава (3) и (4) стават едно и също неравенство, а именно

$$M[1,1] + M[2,2] \le M[2,1] + M[1,2] \tag{5}$$

Базата е доказана. Да допуснем, че за някое $m \geq 2$ е изпълнено, че за **всяка** матрица A с два реда и m колони:

$$(A[1,q] + A[2,q+1] \le A[2,q] + A[1,q+1], \text{ as } 1 \le q < m) \to (A[1,q] + A[2,t] \le A[2,q] + A[1,t], \text{ as } 1 \le q < t \le m)$$
(6)

Разглеждаме произволна матрица M с два реда и $m\!+\!1$ колони, за която е изпълнено

$$M[1,1] + M[2,2] \le M[2,1] + M[1,2]$$

$$M[1,2] + M[2,3] \le M[2,2] + M[1,3]$$

$$M[1,3] + M[2,4] \le M[2,3] + M[1,4]$$
...
$$M[1,m-1] + M[2,m] \le M[2,m-1] + M[1,m]$$

$$M[1,m] + M[2,m+1] \le M[2,m] + M[1,m+1]$$
(7)

Прилагаме индуктивното предположение за подматрицата на M от първите m колони и получаваме

$$M[1,q] + M[2,t] \le M[2,q] + M[1,t], \text{ sa } 1 \le q < t \le m$$
 (8)

Прилагаме индуктивното предположение за подматрицата на M от последните m колони и получаваме

$$M[1,q] + M[2,t] \le M[2,q] + M[1,t], \text{ sa } 2 \le q < t \le m+1$$
 (9)

Забележете, че всяко неравенствата в (8) или (9) касае две колони в M. Примерно, $M[1,1]+M[2,2] \leq M[2,1]+M[1,2]$ в (8) касае колони 1 и 2. Ето кои двойки колони са "покрити" от (8):

$$(1,2), \qquad (1,3), \qquad (1,4), \qquad \dots, \qquad (1,m-1), \qquad (1,m)$$

$$(2,3), \qquad (2,4), \qquad \dots, \qquad (2,m-1), \qquad (2,m)$$

$$(3,4), \qquad \dots, \qquad (3,m-1), \qquad (3,m)$$

$$\dots$$

$$(m-2,m-1), \qquad (m-2,m)$$

$$(m-1,m)$$

Ето кои двойки колони са "покрити" от (9):

$$(2,3), \qquad (2,4), \qquad (2,5), \qquad \dots, \qquad (2,m), \qquad (2,m+1)$$

$$(3,4), \qquad (3,5), \qquad \dots, \qquad (3,m), \qquad (3,m+1)$$

$$(4,5), \qquad \dots, \qquad (4,m), \qquad (4,m+1)$$

$$\dots$$

$$(m-1,m), \qquad (m-1,m+1)$$

$$(m,m+1)$$

По отношение на доказателството в индуктивната стъпка, единствената двойка колони, която остава "непокрита" от (8) или (9), е (1, m+1). С други думи, съвкупността на (8) и (9) не ни дава $M[1,1]+M[2,m+1] \leq M[2,1]+M[1,m+1]$. Сега ще изведем и него. Имаме

$$M[1,m] + M[2,m+1] \le M[2,m] + M[1,m+1]$$
 // or (7)

$$M[1,1] + M[2,m] \le M[2,1] + M[1,m]$$
 // от (8) при $q=1,\,t=m$ (11)

Сумираме (7) и (8) и получаваме

$$M[1,1] + M[2,m+1] \le M[2,1] + M[1,m+1] \tag{12}$$

 $O_{T}(8), (9)$ и (12) заключаваме, че

$$M[1,q] + M[2,t] \le M[2,q] + M[1,t]$$
, sa $1 \le q < t \le m+1$

Това е краят на доказателството за n=2.

Да се върнем на основното твърдение. Фиксираме произволно $m \ge 2$. Ще докажем импликацията $(1) \to (2)$ по индукция по n. По-подробно, ще докажем, че

$$(M[p,q] + M[p+1,q+1] \le M[p,q+1] + M[p+1,q],$$
 за $1 \le p < n$ и $1 \le q < m) \to$
 $(M[p,q] + M[s,t] \le M[p,t] + M[s,q],$ за $1 \le p < s \le n$ и $1 \le q < t \le m)$ (13)

за всяко $n \ge 2$, за същото m, което фиксирахме.

Базата е n=2. Но ние вече доказахме (13) за n=2. Сега да допуснем, че за всяка матрица A с размери $n \times m$, за същото m, което вече фиксирахме, е изпълнено

$$(M[p,q] + M[p+1,q+1] \le M[p,q+1] + M[p+1,q],$$
 за $1 \le p < n$ и $1 \le q < m) \to$
 $(M[p,q] + M[s,t] \le M[p,t] + M[s,q],$ за $1 \le p < s \le n$ и $1 \le q < t \le m)$ (14)

Разглеждаме произволна матрица M с размери $(n+1) \times m$, такава че

$$M[p,q]+M[p+1,q+1] \leq M[p,q+1]+M[p+1,q],$$
 за $1 \leq p < n+1$ и $1 \leq q < m$

Ще докажем, че

$$M[p,q] + M[s,t] \le M[p,t] + M[s,q]$$
, за $1 \le p < s \le n+1$ и $1 \le q < t \le m$ (15)

Нека M' е подматрицата на M от първите n реда. Нека M'' е подматрицата на M от последните n реда. Индуктивното предположение е в сила за M', така че

$$M[p,q] + M[s,t] \le M[p,t] + M[s,q]$$
, за $1 \le p < s \le n$ и $1 \le q < t \le m$ (16)

Индуктивното предположение е в сила и за M'', така че

$$M[p,q] + M[s,t] \le M[p,t] + M[s,q]$$
, за $2 \le p < s \le n+1$ и $1 \le q < t \le m$ (17)

За да довършим доказателството в индуктивната стъпка, остава да покажем, че

$$M[1,q] + M[n+1,t] \le M[1,t] + M[n+1,q], \text{ as } 1 \le q < t \le m$$
 (18)

Разглеждаме произволни q и t, такива че $1 \le q < t \le m$. От индуктивното предположение знаем, че

$$M[1,q] + M[n,t] \le M[1,t] + M[n,q] \tag{19}$$

понеже тези четири елемента се намират в M'. От индуктивното предположение също така знаем, че

$$M[n,q] + M[n+1,t] < M[n,t] + M[n+1,q]$$
(20)

понеже тези четири елемента се намират в M''. Събирайки (19) и (20), получаваме именно (18).

Съвкупността от (16), (17) и (18) е точно (15). Това е и края на доказателството на лемата.

Използвайки Лема 1, можем с лекота да верифицираме следния алгоритъм, който проверява дали даден масив е масив на Монж.

```
TEST MONGENESS 2(M[1..n, 1..m])
1 for p \leftarrow 1 to n-1
2 for q \leftarrow 1 to m-1
3 if M[p,q] + M[p+1,q+1] > M[p,q+1] + M[p+1,q]
4 return 0
5 return 1
```

Коректността следва (почти) директно от лемата. Инвариант за външния цикъл (какъвто не се иска) може да е: при всяко достигане на ред 1, M[1..p, 1..m] е масив на Монж. Забележете, че това е истина при първото достигане: тогава p=1, въпросният масив има само един ред и е масив на Монж в празния смисъл (vacuously), понеже неравенствата, дефиниращи масив на Монж (според Лема 1, но и според "каноничната" дефиниция), са такива, че променливите вземат стойности от празното множество, ако коя да е от дименсиите на матрицата е единица.

Сложността по време е очевидно $\Theta(nm)$. Това е линеен алгоритъм в текущия контекст, понеже големината на входа е nm.

Да си припомним, че по условие $\phi(i)$ е номерът на колоната, съдържаща най-левия минимален елемент в ред i на масив на Монж M[1..n,1..m]. Нека M е масив на Монж. Иска се да се докаже, че

$$\phi(1) \le \phi(2) \le \dots \le \phi(n) \tag{21}$$

Твърдението е вярно за примера от условието:

```
25
15
     19
              4
          8
16
          5
              1
                   20
     18
         22
              10
50
     35
                  24
91
         21
              9
     64
                   5
90
     60
         16
              4
                   0
100
     70
         20
              4
                   0
         22
                   1
120
     75
```

Да докажем (21) за общия случай. Да допуснем противното: съществува масив на Монж M[1..n,1..m], такъв че за някое $p \in \{1,\ldots,n-1\}$, най-левият минимален елемент на ред p е в колона t, най-левият минимален елемент на ред p+1 е в колона q, и q < t. Тогава очевидно

$$M[p,t] + M[p+1,q] = \min \{M[p,j] + M[p+1,k] \mid 1 \le j, k \le m\}$$
(22)

Да разгледаме елементите M[p,q] и M[p+1,t]. По дефиниция на масив на Монж, трябва да е изпълнено

$$M[p,q] + M[p+1,t] \le M[p+1,q] + M[p,t]$$

Но сумата M[p,q] + M[p+1,t] е една от сумите в дясната страна на (22). Тогава трябва да е изпълнено

$$M[p,t] + M[p+1,q] = M[p,q] + M[p+1,t]$$

Да допуснем, че M[p,t] < M[p,q]. Веднага следва, че M[p+1,q] > M[p+1,t]. Последното обаче е невъзможно, понеже M[p+1,q] е минимален елемент в ред p+1. Тогава $M[p,t] \ge M[p,q]$. Но M[p,t] е минимален елемент в ред p. Тогава M[p,q] = M[p,t]. Освен това, q < t по конструкция. Тогава не е вярно, че M[p,t] е най-левият минимален елемент в ред p, противно на първоначалното допускане. Полученото противоречие показва, че първоначалното допускане е грешно. С което твърдението е доказано.

Вече знаем, че $1 \le \phi(1) \le \phi(2) \le \cdots \le \phi(n) \le m$. Допускаме, че са дадени

$$\phi(2), \ \phi(4), \ \phi(6), \ \dots, \ \phi\left(2\left\lfloor\frac{n}{2}\right\rfloor\right)$$

Искаме да намерим

$$\phi(1), \ \phi(3), \ \phi(5), \ \dots, \ \phi\left(2\left\lceil\frac{n}{2}\right\rceil-1\right)$$

Предвид $1 \le \phi(1) \le \phi(2) \le \cdots \le \phi(n) \le m$, очевидно $\phi(2) \le \phi(4) \le \cdots \le \phi\left(2\left\lfloor \frac{n}{2}\right\rfloor\right)$, а също така

ако
$$n$$
 е четно:
$$1 \le \phi(1) \le \phi(2) \\ \phi(2) \le \phi(3) \le \phi(4) \\ \phi(4) \le \phi(5) \le \phi(6) \\ \dots \\ \phi(n-2) \le \phi(n-1) \le \phi(n)$$
 ако n е нечетно:
$$1 \le \phi(1) \le \phi(2) \\ \phi(2) \le \phi(3) \le \phi(4) \\ \phi(4) \le \phi(5) \le \phi(6) \\ \dots \\ \phi(n-1) \le \phi(n) \le n$$

Следният алгоритъм решава задачата. Нека функцията ϕ е реализирана чрез масив $\phi[1...n]$. Дадени са стойностите на ϕ на четните позиции. Алгоритъмът попълва останалите позиции. Нека findmin(M[p,q],M[p,t]) е функция, която намира

$$\min \{M[p,q], M[p,q+1], \dots, M[p,t]\}$$

```
където p \in \{1, ..., n\} и 1 \le q \le t \le m.
```

```
СОМРИТЕ ОDD(M[1 ... n, 1 ... m], \phi[1 ... n])

1 (* Дадени са \phi[2], \phi[4], ..., \phi\left[2\left\lfloor\frac{n}{2}\right\rfloor\right] *)

2 \phi[1] \leftarrow findmin(M[1,1], M[1,\phi[2]])

3 for k \leftarrow 1 to \left\lfloor\frac{n}{2}\right\rfloor - 1

4 \phi[2k+1] \leftarrow findmin(M[2k+1,\phi[2k]], M[2k+1,\phi[2k+2]])

5 if isodd(n)

6 \phi[n] \leftarrow findmin(M[n,\phi[n-1],M[n,m])
```

Коректността е очевидна предвид неравенствата, които изведохме горе. Функцията findmin може да се реализира тривиално като търсене в несортиран масив, поради което findmin(M[p,q],M[p,t]) работи във време O(t-q) (и използва точно t-q сравнения). Сумарно по всички извиквания на findmin, нейната сложност е O(m); всички изпълнения на findmin използват (общо) точно m-1 сравнения. Но "O(m)" не описва цялата сложност, защото **for**-цикълът се изпълнява $\Theta(n)$ пъти. Цялата сложност на алгоритъма е O(n+m). Това е точната асимптотична горна граница.

O(nm) също е валидна асимптотична горна граница, но в условието се иска да се покаже O(n+m).

И накрая конструираме алгоритъм, намиращ всички минимуми на редове в масив на Монж. Входът е масив на Монж M[1..n,1..m]. Генерираме подмасивите M' и M'' съответно от четните и нечетните редове. Правим рекурсивно викане върху M'. След като приключи неговото изпълнение, имаме $\phi[p]$ за четните p и оттам намираме $\phi[p]$ за нечетните p във време O(n+m) по начин, който вече видяхме.

Рекурсията има спирачка n=1: ако подмасивът, върху който изпълняваме алгоритъма, има само един ред, да кажем ред номер p, просто намираме с последователно търсене номера на колоната (между 1 и m), съдържаща най-левия минимум, и записваме този номер във $\phi[p]$. Забележете, че дъното на рекурсията не се изпълнява в константно време! Алгоритмите по схемата **Разделяй-и-Владей** от лекции бяха по правило върху едномерни масиви и дъното на рекурсията беше изпълнение върху масиви с големина $\Theta(1)$, което отнема време $\Theta(1)$. Тук обаче масивът е двумерен, а в рекурсивните викания едната дименсия—а именно m—се запазва, така че дъното на рекурсията има сложност по време $\Theta(m)$.

Нека T(n,m) е сложността по време на нашия алгоритъм. В сила е

$$T(n,m) = T(n/2,m) + n + m$$

Събираемото T(n/2, m) отразява факта, че се прави точно едно рекурсивно викане върху масив с наполовина по-малко редове, но същият брой колони. Събираемото n+m отразява факта, че извън рекурсивното викане се върши работа, която е линейна в n+m. Но ние няма да използваме това равенство, защото не се иска решение с Θ .

Тъй като се иска само (асимптотична) горна граница за сложността по време, достатъчно е да разгледаме неравенството

$$T(n,m) \leq T(n/2,m) + cn + dm$$

Няма да доказваме решението строго по индукция, това не се иска. С развиване имаме

$$T(n,m) \leq T(n/2,m) + cn + dm$$

$$\leq (T(n/4,m) + cn/2 + dm) + cn + dm$$

$$= T(n/4,m) + cn(1/2+1) + 2dm$$

$$\leq (T(n/8,m) + cn/4 + dm) + c(n/2+n) + 2dm$$

$$= T(n/8,m) + cn(1/4+1/2+1) + 3dm$$

$$\cdots$$

$$\leq T\left(\frac{n}{2^i},m\right) + cn\left(\frac{1}{2^{i-1}} + \frac{1}{2^{i-2}} + \cdots + \frac{1}{2^1} + \frac{1}{2^0}\right) + idm$$
 ограничено от константа за всяко i

Максималното i е $i_{\max} = \Theta(\lg n)$. Нека $2^{i_{\max}} = a$ за някаква константа a. Замествайки i с i_{\max} и имайки предвид, че сумата на геометричната прогресия е ограничена от константа, имаме право да кажем, че

$$T(n,m) \le T(a,m) + c_1 n + d_1 m \lg n$$

за някакви константи c_1 и d_1 . Както вече отбелязахме, T(a,m) има сложност по време $\Theta(m)$, което се "поглъща" в $d_1m\lg n$. Имаме право да кажем, че

$$T(n,m) = O(n + m \lg n)$$