Exercise Sheet 2

MAGIC009 - Category Theory

October 18th, 2024

- 1. Prove that, for functors $F: \mathbb{C} \to \mathbb{D}$ and $G: \mathbb{D} \to \mathbb{E}$, their composite $GF: \mathbb{C} \to \mathbb{E}$, as defined on page 6 of the notes for Lecture 2, is indeed a functor.
- 2. Prove that every functor preserves isomorphisms, in the sense that if $F: \mathbb{C} \to \mathbb{D}$ is a functor and if $f: X \to Y$ is an isomorphism in \mathbb{C} , then $F(f): FX \to FY$ is an isomorphism in \mathbb{D} .
- 3. Is it true or false that functors preserve terminal objects, in the sense that if $F: \mathbb{C} \to \mathbb{D}$ is a functor and T is a terminal object in \mathbb{C} , then F(T) is a terminal object in \mathbb{D} ?
- 4. Let **CRing** be the category of commutative rings and **Mon** the category of monoids. Fix $n \ge 1$.
 - (a) Check that the function mapping a commutative ring R to the monoid $M_n(R)$ of $(n \times n)$ -matrices with coefficients in R extends to a functor M_n : **CRing** \to **Mon**.
 - (b) Check that the function mapping a commutative ring R to its underlying monoid U(R) extends to a functor $U: \mathbf{CRing} \to \mathbf{Mon}$.
 - (c) Check that the functions

$$\phi_R \colon M_n(R) \to U(R)$$

where R is a commutative ring, defined by $\phi_R(A) = \det(A)$, are monoid homomorphisms and that they form a natural transformation $\phi \colon M_n \Rightarrow U$. See also page 10 of the notes for Lecture 2.

- 5. (a) Let $F: \mathbb{C} \to \mathbb{D}$, $F': \mathbb{C} \to \mathbb{D}$ be functors and $\alpha: F \Rightarrow F'$ a natural transformation between them. For a functor $G: \mathbb{D} \to \mathbb{E}$, define a family of maps $GFX \to GF'X$ in \mathbb{E} , for $X \in \mathbb{C}$, and prove that it is a natural transformation from GF to GF', which we will denote $G\alpha: GF \Rightarrow GF'$.
 - (b) Let $G: \mathbb{D} \to \mathbb{E}$, $G': \mathbb{D} \to \mathbb{E}$ be functors and $\beta: G \Rightarrow G'$ a natural transformation between them. For a functor $F: \mathbb{C} \to \mathbb{D}$, define a family of maps $GFX \to G'FX$ in \mathbb{E} , for $X \in \mathbb{C}$, and prove that it is a natural transformation from GF to G'F, which we will denote $\beta F: GF \Rightarrow G'F$.
 - (c) Let $F: \mathbb{C} \to \mathbb{D}$, $F': \mathbb{C} \to \mathbb{D}$, $G: \mathbb{D} \to \mathbb{E}$, $G': \mathbb{D} \to \mathbb{E}$ be functors, $\alpha: F \Rightarrow F'$ and $\beta: G \Rightarrow G'$ be natural transformations. By part (a), we have natural transformations

$$G\alpha: GF \Rightarrow GF', \qquad G'\alpha: G'F \Rightarrow G'F'.$$

By part (b), we also have natural transformations

$$\beta F : GF \Rightarrow G'F$$
, $\beta F' : GF' \Rightarrow G'F'$.

Prove that the following diagram in the functor category $[\mathbb{C},\mathbb{E}]$ commutes:

$$\begin{array}{c|c}
GF & \xrightarrow{G\alpha} & GF' \\
\beta F \downarrow & & \downarrow \beta F' \\
G'F & \xrightarrow{G'\alpha} & G'F' .
\end{array}$$

6. Let G be a group and consider the associated category \underline{G} . Describe explicitly the functor category

$$[\underline{G}, \mathbf{Vect}_k]$$
,

where \mathbf{Vect}_k is the category of finite-dimensional vector spaces and linear maps over a fixed field k.