Índex

- Lògica i fonamentació
- Teoria de Conjunts
- Aritmètica
 - Aritmètica entera bàsica
 - Algoritme d'Euclides
 - Nombres primers
 - Aritmètica modular
 - Teorema xinès dels residus
 - Aplicacions a criptografia
- 4 Combinatòria
- Teoria de Grafs

Biel Cardona (UIB)

Maternatica Dis

Curs 2011/12

Aritmètica Aritmètica entera bàsica

Aritmètica entera bàsica

Enters com a anell

Els enters $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ amb $+ i \cdot forma un anell:$

- $(\mathbb{Z}, +)$ és un grup abelià:
 - ► $\forall a, b, c: a + (b + c) = (a + b) + c$ (associativa)
 - ► $\exists 0 \text{ t.q. } \forall a \text{: } a + 0 = 0 + a = a \text{ (el. neutre)}$
 - $\forall a, \exists -a: a + (-a) = (-a) + a = 0$ (el. oposat)
 - $\forall a, b: a + b = b + a \text{ (commutativa)}$
- ▶ (ℤ, ·) compleix:
 - $\forall a, b, c: a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (associativa)
 - ► $\exists 1 \text{ t.q. } \forall a : a \cdot 1 = 1 \cdot a = a \text{ (el. neutre)}$
 - $\forall a, b: a \cdot b = b \cdot a \text{ (commutativa)}$
- $(\mathbb{Z}, +, \cdot)$ compleix:
 - $\forall a, b, c: a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ (distributiva)

Biel Cardona (UIB)

Curs 2011/12

Enters com a conjunt ordenat

Enters amb ≤ habitual és conjunt totalment ordenat:

- ∀a: a ≤ a
- $\forall a, b, c: a \le b \mid b \le c \implies a \le c$
- $\forall a, b: a \le b \ i \ b \le a \implies a = b$
- $ightharpoonup \forall a, b$: o bé a < b, o bé a > b, o bé a = b

A més:

► Tot subconjunt $S \subset \mathbb{Z}$ fitat inferiorment té mínim: Si $\exists f$ t.q. $\forall a \in S, f \leq a$, aleshores $\exists b \in S$ t.q. $\forall a \in S, b \leq a$

A més, es comporta bé respecte operacions:

- ▶ Si $a \le b$, aleshores $a + c \le b + c$ ($\forall c \in \mathbb{Z}$)
- ▶ Si $a \le b$, aleshores $a \cdot c \le b \cdot c$ ($\forall c \in \mathbb{N}$)

Teorema: Divisió euclidiana

Donats $a,b\in\mathbb{Z}$, $(b\neq 0)$, existeixen únics q (quocient) i r (resta o residu), t.q.

$$a = b \cdot q + r$$
, $0 \le r < b$

Demostració

Suposem b > 0. Sigui $R = \{a - bx \mid x \in \mathbb{Z}\} \cap \mathbb{Z}_{\geq 0}$.

- ▶ *R* fitat inf. per 0
- ▶ *R* no buid (si $a \ge 0$, $a \in S$; altrament $a ba = a(1 b) \in R$)
- Sigui r mínim de R. $r \ge 0$ per definició. Si $r \ge b$, $r b \in R$ i r no mínim. A més, r = a bq per a cert q. (existència)
- Suposem no únics $((q,r) \mid (q',r'))$. Si q=q', r=r' i hem acabat. Si q' < q,

$$r' = a - |b|q' = (a - |b|q) + |b|(q - q') \ge (a - |b|q) + |b| = r + |b| \ge |b|,$$

contradicció.

Biel Cardona (UIB)

Curs 2011/12

Aritmètica Aritmètica ente

Divisibilitat

- "a mod b" indica residu de divisió euclidiana de a entre b
- ► Si residu 0 ($a = q \cdot b$):
 - ► a és múltiple de b
 - ▶ b divideix a, b|a
- Relació amb operacions:
 - ► Si a|b i $c \in \mathbb{Z}$ qualsevol: $a|b \cdot c$
 - Si a|b i a|c: a|b+c

Biel Cardona (UIB)

Matemàtica Discre

Curs 2011/12

5 / 45

Algoritme d'Euclides

Màxim comú divisor

Donats $a, b \in Z$:

- ightharpoonup CD(a,b) divisors comuns positius de a i b
- $ightharpoonup \operatorname{mcd}(a,b)$ major divisor comú positiu de a i b
- Definició alternativa:

$$x \mid a, \quad x \mid b \implies x \mid \operatorname{mcd}(a, b).$$

• a i b son relativament primers (o coprimers) si <math>mcd(a, b) = 1.

Mínim comú múltiple

- ► mcm(a, b) menor múltiple comú positiu de a i b
- Definició alternativa:

$$a \mid x$$
, $b \mid x \implies \text{mcm}(a, b) \mid x$,

4□ > 4∰ > 4 ½ > 4 ½ > ½ 9 Q

Lema

Siguin $a, b \in \mathbb{Z}_{>0}$, i $r = a \mod b$. Aleshores mcd(a, b) = mcd(b, r).

Demostració

Sigui $a = b \cdot q + r$ la divisió euclidiana. Vegem que CD(a, b) = CD(b, r):

- ► Sigui $d \in CD(a, b)$. Com r = a bq, d és divisor de r i de b: $d \in CD(b, r)$.
- ▶ Sigui $d \in CD(b,r)$. Com a = bq + r, d és divisor de a i de b: $d \in CD(a,b)$.

Per tant, CD(a, b) = CD(b, r) i mcd(a, b) = mcd(b, r).

Aritmètica Algoritme d'Euclides

Teorema (algorisme d'Euclides)

Donats enters positius $a, b \in \mathbb{Z}_{>0}$, posem $r_0 = a$, $r_1 = b$ i considerem la successió de divisions euclidianes:

$$r_0 = r_1 q_1 + r_2 \qquad (0 \le r_2 < r_1)$$

$$r_1 = r_2 q_3 + r_3 \qquad (0 \le r_3 < r_2)$$

$$r_2 = r_3 q_4 + r_4 \qquad (0 \le r_4 < r_3)$$

$$r_{i-1} = r_i q_{i+1} + r_{i+1} \qquad (0 \le r_{i+1} < r_i)$$

$$r_{k-3} = r_{k-2}q_{k-1} + r_{k-1} \quad (0 \le r_{k-1} < r_{k-2})$$

$$r_{k-2} = r_{k-1}q_k + r_k$$
 $(r_k = 0)$

Aleshores r_{k-1} (l'últim residu no nul) és igual a mcd(a, b).

Demostració

- L'algorisme acaba: Els residus són enters positius i formen successió estrictament decreixent.
- Al principi: $mcd(a, b) = mcd(r_0, r_1)$
- A cada pas, pel lema: $mcd(r_{i-1}, r_i) = mcd(r_i, r_{i+1})$
- Al final: $mcd(r_{k-2}, r_{k-1}) = r_{k-1}$

Per tant, $mcd(a, b) = r_{k-1}$

Calculem mcd(4864, 3458) donant la seqüència de divisions euclidianes que s'obtenen:

i	r	q
0	4864	_
1	3458	_
2	1406	1
3	646	2
4	114	2
5	76	5
6	38	1
7	0	2

Per tant, mcd(4864, 3458) = 38.

Aritmètica Algoritme d'Euclide

Identitat de Bezout

Donats enters positius $a,b\in\mathbb{Z}_{>0}$, posem

$$r_0 = a$$
, $x_0 = 1$, $y_0 = 0$, $r_1 = b$, $x_1 = 0$, $y_1 = 1$

i considerem la successió de divisions euclidianes:

$$r_0 = r_1 q_2 + r_2$$
 $x_2 = x_0 - q_2 x_1$, $y_2 = y_0 - q_2 y_1$,

$$x_1 = x_2 q_3 + x_3$$
 $x_3 = x_1 - q_3 x_2,$ $y_3 = y_1 - q_3 y_2,$

$$r_0 = r_1 q_2 + r_2$$
 $x_2 = x_0 - q_2 x_1,$ $y_2 = y_0 - q_2 y_1,$ $r_1 = r_2 q_3 + r_3$ $x_3 = x_1 - q_3 x_2,$ $y_3 = y_1 - q_3 y_2,$ $r_2 = r_3 q_4 + r_4$ $x_4 = x_2 - q_4 x_3,$ $y_4 = y_2 - q_4 y_3,$ \vdots

$$r_{i-1} = r_i q_{i+1} + r_{i+1}$$
 $x_{i+1} = x_{i-1} - q_{i+1} x_i$, $y_{i+1} = y_{i-1} - q_{i+1} y_i$,

$$\vdots \\ r_{k-2} = r_{k-1}q_k + r_k \qquad x_k = x_{k-2} - q_k x_{k-1}, \qquad y_k = y_{k-2} - q_k y_{k-1},$$

Aleshores $x = x_{k-1}$ i $y = y_{k-1}$ compleixen que $mcd(a, b) = x \cdot a + y \cdot b$.

Demostració

A cada pas: $r_i = x_i a + y_i b$.

- i = 0, 1: es compleix trivialment a partir de la definició.
- $i-1, i \Rightarrow i+1$:

$$\begin{aligned} x_{i+1} \cdot a + y_{i+1} \cdot b &= (x_{i-1} - q_{i+1}x_i) \cdot a + (y_{i-1} - q_{i+1}y_i) \cdot b \\ &= (x_{i-1} \cdot a + y_{i-1} \cdot b) - q_{i+1}(x_i \cdot a + y_i \cdot b) \\ &= r_{i-1} - q_{i+1}r_i \\ &= r_{i+1}. \end{aligned}$$

Al pas k - 1: $mcd(a, b) = r_{k-1} = x_{i-1}a + y_{i-1}b = x \cdot a + y \cdot b$.

Calculem mcd(4864,3458) i els coeficients que compleixen la identitat de Bezout.

i	r	q	X	y
0	4864	_	1	0
1	3458	_	0	1
2	1406	1	1	-1
3	646	2	-2	3
4	114	2	5	-7
5	76	5	-27	38
6	38	1	32	-45
7	0	2	-91	128

Per tant, $mcd(4864, 3458) = 38 = 32 \cdot 4864 + (-45) \cdot 3458$.

Aritmètica Algoritme d'Euclides

Proposició

Fixats enters positius $a, b \in \mathbb{Z}_{>0}$, i un enter arbitrari k, existeixen enters $x, y \in \mathbb{Z}$ tals que $x \cdot a + y \cdot b = k$ ssi k és un múltiple de mcd(a, b).

Demostració

- ► Si k és múltiple de mcd(a,b), diguem $k = k' \cdot mcd(a,b)$, per la identitat de bezout tenim que existeixen enters x', y' amb mcd(a,b) = x'a + y'b, d'on k = k'(x'a + y'b) = (k'x')a + (k'y')b.
- Recíprocament, si k és de la forma $x \cdot a + y \cdot b$, donat d un divisor comú de a i b, es té que d és un divisor de $x \cdot a + y \cdot b$, d'on k és múltiple de d. En particular, k és múltiple de mcd(a, b).

Nombres primers

Primers i irreductibles

▶ Un nombre p (positiu) és primer si:

$$p \mid x \cdot y \implies p \mid x \circ p \mid y$$
.

▶ Un nombre *p* (positiu) és *irreductible* si:

$$p = x \cdot y \ (x, y > 0) \implies x = p \ ó \ y = p.$$

Proposició

Donat p enter positiu, són equivalents que sigui primer i que sigui irreductible.

Demostració

- (primer \Rightarrow irreductible): Suposem p primer i sigui p = xyfactorització. Com p|xy tenim p|x (o p|y); aleshores x=pq (per a cert q) i p = xy = pqy d'on qy = 1. Així y = 1 i x = p.
- (irreductible \Rightarrow primer): Suposem p irreductible i suposem p|xy. Si p|x, hem acabat. Si $p\nmid x$ tenim mcd(p,x)=1, d'on

$$1 = pr + xs \implies y = pry + xsy \implies pry = y - xsy$$

i per tant:

$$p|y - sxy \Rightarrow p|y$$

Aritmètica Nombres prime

Proposició

Tot nombre major que 1 es divideix per algun nombre primer.

Demostració.

Suposem que no. Sigui n més petit positiu que no es divideix per cap

- ▶ *n* no és primer (altrament es divideix per ell mateix, un primer)
- Sigui n = ab factorització (1 < a, b < n). Ara a sí es divideix per nombre primer (n és el més petit que no ho fa). Per tant, n també. Contradicció.

Aritmètica Nombres primer

Teorema

Hi ha infinits nombres primers.

Demostració.

Suposem que no, i sigui n una fita superior per als nombres primers. Considerem m = n! + 1; aquest nombre no és divisible per cap enter $k \le n$, ja que $m \mod k = 1 \ne 0$. Per tant, no és divisible per cap nombre primer, cosa que és una contradicció.

Teorema fonamental de l'aritmètica

Els nombres enters tenen factorització única. És a dir, donat un enter no nul, aquest es descomposa de forma única (llevat de signe i permutacions) en producte de primers.

Demostració

Existència: Vist a lògica.

Unicitat: Si $n = \pm 1p_1 \cdots p_k = \pm 1q_1 \cdots q_l$ són factoritzacions:

- ▶ signe ± 1 : determinat pel fet que n sigui positiu o negatiu; és igual en totes dues descomposicions
- $ightharpoonup p_1 | q_1 \cdots q_l$, d'on $p_1 | q_i$ (per algun i); per tant, $p_1 = q_i$.
- lterem amb $n/p_1 = n/q_i$.

p-components

Donat p primer i n enter:

$$\operatorname{ord}_{p}(n) = \operatorname{major} k \operatorname{t.q.} p^{k} | n$$

En termes de descomposició:

$$n = \pm 1 \cdot p_1^{\operatorname{ord}_{p_1}(n)} p_2^{\operatorname{ord}_{p_2}(n)} \cdots p_k^{\operatorname{ord}_{p_k}(n)}$$

amb p_i primers diferents 2 a 2.

Aplicació a mcd i mcm:

$$mcd(a,b) = \prod_{p} p^{\min(ord_{p}(a), ord_{p}(b))}$$

$$\mathrm{mcm}(a,b) = \prod_{p} p^{\max(\mathrm{ord}_{p}(a),\mathrm{ord}_{p}(b))}$$

► En particular: ab = mcd(a, b) mcm(a, b)

Exemple

Tenim $4864 = 2^8 \cdot 19$ d'on:

$$\operatorname{ord}_p(4864) = \begin{cases} 8 & \text{si } p = 2 \\ 1 & \text{si } p = 19 \\ 0 & \text{altrament} \end{cases}$$

Tenim $3458 = 2 \cdot 7 \cdot 13 \cdot 19$ d'on

$$\operatorname{ord}_p(3458) = \begin{cases} 1 & \text{si } p = 2,7,13,19 \\ 0 & \text{altrament} \end{cases}$$

Per tant:

$$mcd(4864, 3458) = 2 \cdot 19$$

$$mcm(4864, 3458) = 2^8 \cdot 7 \cdot 13 \cdot 19$$

Aritmètica modular

Congruències

Fixem enter N > 1:

- $a,b \in \mathbb{Z}$ congruent mòdul N si N|a-b|
- Notació: $a \equiv b \pmod{N}$
- Equivalent: $a \mod N = b \mod N$

Classes de congruències

- La relació "ser congruents mòdul N" és d'equivalència
- ▶ Classe d'equivalència de $a \in \mathbb{Z}$: $[a]_N$ ó [a]:

$$[a]_N = {\ldots, a-2N, a-N, a, a+N, a+2N, \ldots}.$$

► Conjunt de classes d'equivalència: \mathbb{Z}_N :

$$\mathbb{Z}_N = \{[0], [1], \dots, [N-1]\}$$

40.49.4

Biel Cardona (UIB)

Curs 2011/1

22 / 45

Aritmètica

Aritmètica modula

Exemple

Prenem N = 6; aleshores \mathbb{Z}_6 té 6 elements:

$$[0] = \{\ldots, -6, 0, 6, 12, \ldots\}$$

$$[1] = \{\ldots, -5, 1, 7, 13, \ldots\}$$

$$[2] = {\ldots, -4, 2, 8, 14, \ldots}$$

$$[3] = {\ldots, -3, 3, 9, 15, \ldots}$$

$$[4] = \{\ldots, -2, 4, 10, 16, \ldots\}$$

$$[5] = \{\ldots, -1, 5, 11, 17, \ldots\}$$

Piol Cardona (IIIP

Matamàtica Discret

Curs 2011/1:

23 / 45

bici cardona (oib)

. . .

Aritmètica modu

Operacions amb classes de congruència

Sobre \mathbb{Z}_N : operacions de suma i de producte:

$$[a] + [b] = [a+b]$$

$$[a] \cdot [b] = [a \cdot b]$$

Lema

L'operació està ben definida:

$$a \equiv a' \pmod{N} \\ b \equiv b' \pmod{N} \\ \Longrightarrow \begin{cases} a+b \equiv a'+b' \pmod{N} \\ a \cdot b \equiv a' \cdot b' \pmod{N} \end{cases}$$

Demostració

Sigui k, l t.q kN = a - a' i lN = b - b'. Ara:

►
$$(k+l)N = (a+b) - (a'+b') \implies N | (a+b) - (a'+b')$$

 $\implies a+b \equiv a'+b' \pmod{N} \implies [a+b] = [a'+b']$

▶
$$ab = a'b' + N(la' + kb' + klN) \implies N | ab - a'b'$$

⇒ $ab \equiv a'b' \pmod{N} \implies [ab] = [a'b']$

Biel Cardona (UIB

Matemàtica Discre

Curs 2011/12

/12 24

La taula de la suma i el producte a \mathbb{Z}_6 és:

+	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[1]	[2]	[3]	[4]	[5]
[1]	[1]	[2]	[3]	[4]	[5]	[0]
[2]	[2]	[3]	[4]	[5]	[0]	[1]
[3]	[3]	[4]	[5]	[0]	[1]	[2]
[4]	[4]	[5]	[0]	[1]	[2]	[3]
[5]	[5]	[0]	[1]	[2]	[3]	[4]

	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]
[2]	[0]	[2]	[4]	[0]	[2]	[4]
[3]	[0]	[3]	[0]	[3]	[0]	[3]
[4]	[0]	[4]	[2]	[0]	[4]	[2]
[5]	[0]	[5]	[4]	[3]	[2]	[1]

Piol Cardona (IIIP)

Matemati

Curs 2011/12

25 / 45

Aritmètic

Aritmètica modula

\mathbb{Z}_N com a anell

 $(\mathbb{Z}_N,+,\cdot)$ és anell:

- ▶ $(\mathbb{Z}_N, +)$ grup abelià; element neutre: [0]; el. oposat de [a]: [-a].
- (\mathbb{Z}_N, \cdot) propietat associativa; element neutre, [1].
- $(\mathbb{Z}_N, +, \cdot)$ propietat distributiva del producte respecte de la suma

Invertibles

- ▶ $[a] \in \mathbb{Z}_N$ invertible (o a invertible mòdul N) si $\exists [b] \in \mathbb{Z}_N : [a] \cdot [b] = [1]$
- ▶ Elements invertibles: \mathbb{Z}_N^* (grup amb el producte)

Piol Cardona (IIIP)

Matemàtica Discreta

Aritmètica Aritmètica modu

Curs 2011/12

26 / 45

Proposició

 $[a] \in \mathbb{Z}_N \text{ invertible } \iff \operatorname{mcd}(a, N) = 1.$

Demostració

- Si [a] invertible, sigui [b] amb $[a] \cdot [b] = [ab] = [1]$ $\Rightarrow N \mid 1 - ab \Rightarrow \exists k : 1 = kN + ab \Rightarrow \operatorname{mcd}(a, N) = 1$ (Bezout)
- ► Si $mcd(a, N) = 1 \implies \exists r, s \in \mathbb{Z}$: $1 = ra + sN \implies 1 \equiv ra \pmod{N}$ $\implies [1] = [r] \cdot [a]$.

Exemple

$$\mathbb{Z}_6^* = \{[1], [5]\}$$

Corol·lari

Si p és primer, $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{[0]\}$

Càlcul d'inversos

Si [a] invertible, es pot trobar l'invers $[a]^{-1}$ amb algorisme d'Euclides estès:

 $\operatorname{mcd}(a,N) = 1 \implies \exists r,s \colon ra + sN = 1 \implies [r][a] = 1 \implies [a]^{-1} = [r]$

Exemple

Invers de 35 mòdul 2452

$$mcd(2452,35) = 1,$$
 $1 = (-17) \cdot 2452 + 1191 \cdot 35,$ $[35]_{2452}^{-1} = [1191]_{2452}.$

Piol Cardona (IIIP)

Matemàtica Discreta

Curs 2011/12

28 / 45

Aritmètica A

Nombre d'invertibles

- ► Equiv.: $\phi(N) = |\{k \mid 1 \le N < k, \text{mcd}(k, N) = 1\}|$

Teorema d'Euler

Si $y \in \mathbb{Z}$ té gcd(y, N) = 1, aleshores $y^{\phi(N)} \equiv 1 \pmod{N}$.

Lema

Si $\mathbb{Z}_N^* = \{[x_1], \dots, [x_k]\}$ i $[y] \in \mathbb{Z}_N^*$ quals., $\{[y][x_1], \dots, [y][x_k]\} = \mathbb{Z}_N^*$.

Demostració (Lema)

Per a cada $[x_i]$, $[y][x_i] = [x_{\sigma(i)}]$ (certa permutació $\sigma \in S_k$):

- $[y][x_i] \text{ t\'e invers } [x_i]^{-1}[y]^{-1} \Rightarrow [y][x_i] = [x_{\sigma(i)}]$
- $\bullet \ \sigma(i) = \sigma(j) \implies [y][x_i] = [y][x_j] \implies [x_i] = [x_j]$

Biel Cardona (UIB)

No.

Curc 2011/12 20

Teorema d'Euler

Si $y \in \mathbb{Z}$ té gcd(y, N) = 1, aleshores $y^{\phi(N)} \equiv 1 \pmod{N}$.

Demostració

S'ha de provar: $[y] \in \mathbb{Z}_N^* \implies [y]^{\phi(N)} = [1]$:

- ► Sigui $\mathbb{Z}_N = \{[x_1], ..., [x_k]\}$ $(k = \phi(N))$
- ► Sigui $u = [x_1] \dots [x_k] \in \mathbb{Z}_N^*$
- ▶ Lema anterior: $u = [x_1] \cdots [x_k] = ([y][x_1]) \cdots ([y][x_k]) = [y]^k u$
- Per tant: $[y]^k = [1]$.

Corol·lari: Teorema petit de Fermat

Si p és primer, $n^p \equiv n \pmod{p}$ per a tot enter n.

Teorema xinès dels residus

Equacions lineals amb congruències

Equació $x \equiv a \pmod{M}$ (x: variable; a, M: dades) Solucions: x = ..., a - 2M, a - M, a, a + M, a + 2M, ...

Teorema xinès dels residus

El sistema

$$x \equiv a \pmod{M}$$

$$x \equiv b \pmod{N}$$

té solució si, i només si,

$$mcd(M, N) | b - a$$
.

En tal cas, i donada una solució x_0 , totes les solucions del sistema són les de la congruència

$$x \equiv x_0 \pmod{\operatorname{mcm}(M, N)}$$
.

Demostració

- Si hi ha solució, siguin y, z amb x = a + My = b + Nz $\iff My - Nz = b - a \implies (Bezout) \operatorname{mcd}(M, N) | b - a$
- ► Si mcd(M, N) | b a, sigui y, z amb My Nz = b a. Ara x = a + My = b + Nz és solució
- ► Si x_0, x_1 són solucions, $x_1 x_0$ és solució de

$$x \equiv 0 \pmod{M}$$

$$x \equiv 0 \pmod{N}$$

equivalent a: $x \equiv 0 \pmod{\operatorname{mcm}(M, N)}$

Aritmètica Teorema xinès dels residu

Demostració Considerem el sistema:

$$x \equiv 11 \pmod{74}$$

$$x \equiv 13 \pmod{63}$$

Les solucions compleixen que existeixen y, z amb

$$x = 11 + 74y = 13 + 63z$$
,

d'on tenim que

$$74y - 63z = 2$$
.

Fent servir l'algorisme estès d'Euclides obtenim la solució

$$74 \cdot (-17) + 63 \cdot 20 = 2$$

i, per tant, podem prendre y = -17 i z = -20. Aleshores

$$x = 13 - 63 \cdot 20 = -1247$$

és una solució.

Corol·lari: Forma clàssica de TXR

Siguin M, N nombres positius relativament primers. Aleshores el sistema de congruències

$$x \equiv a \pmod{M}$$

$$x \equiv b \pmod{N}$$

té sempre solució.

Corol·lari: Forma general de TXR

Siguin M_1, \ldots, M_k nombres positius relativament primers dos a dos. Aleshores el sistema de congruències

$$x \equiv a_i \pmod{M_i}$$
 $(i = 1, ..., k)$

té sempre solució.

Proposició: càlcul de $\phi(n)$

▶ Si m, n > 0 relativament primers:

$$\phi(m\cdot n)=\phi(m)\phi(n).$$

► Si p és primer i $r \ge 1$:

$$\phi(p^r) = p^r - p^{r-1} = p^{r-1}(p-1) = p^r \left(1 - \frac{1}{p}\right).$$

▶ Si $n = \prod_{i=1}^k p_i^{r_i}$ (p_i primers diferents):

$$\phi(n) = \prod_{i=1}^k p_i^{r_i-1}(p_i-1) = n \prod_{i=1}^k \left(1-\frac{1}{p_i}\right).$$

Demostració

Considerem

$$\mathbb{Z}_{mn} \to \mathbb{Z}_m \times \mathbb{Z}_n$$
$$[a]_{mn} \mapsto ([a]_m, [a]_n)$$

Per TXR: a invertible mòd. mn ssi inv. mòdul n i mòdul m.

- \Rightarrow Aplicació és bijecció entre \mathbb{Z}_{mn}^* i $\mathbb{Z}_m^* \times \mathbb{Z}_n^*$
- $\Rightarrow \phi(mn) = \phi(m)\phi(n)$
- **3** Hi ha $p^r/p = p^{r-1}$ múltiples de p a $\{0, \dots, p^r\}$ \Rightarrow hi ha $p^r p^{r-1}$ no múltiples de p \Rightarrow hi ha $p^r p^{r-1}$ rel. primers amb p^r .
- Immediat a partir dels anteriors

Aplicacions a criptografia

Criptografia

Criptografia: Mètodes per a modificar missatges a enviar de manera que capturant el missatge modificat no es pugui recuperar el missatge original

Codificació

- Codificació: Mètodes per a transformar missatges en números, de manera que es puguin tractar matemàticament
- Blocs i codis: Els missatges es divideixen en blocs de longitud fixada, i cada bloc es codifica en un únic número.

Codificacions simples

Alfabet llatí:

Codificació ASCII:

► Codificació UNICODE: estén ASCII amb caràcters extra (accents,...)

Codis per blocs

- ▶ Considerar blocs de k caràcters, codificats entre 0 i N-1.
- ▶ El bloc $(c_{k-1}, c_{k-2}, ..., c_1, c_0)$ es codifica per:

$$C = c_{k-1} \cdot N^{k-1} + c_{k-2}N^{k-2} + \cdots + c_1N + c_0$$

El codi anterior es decodifica per:

$$c_0 = C \mod N$$

$$c_1 = \frac{C - c_0}{N} \mod N$$

$$c_i = \frac{C - c_0 - \dots - c_{i-1}N^{i-1}}{N^i} \mod N$$

Missatge: Criptografia.

Blocs de longitud 4 i codifiquem els caracters pel seu codi ASCII.

Bloc: Crip. Codis ASCII: (67,114,105,112)

$$C = 67 \cdot 128^3 + 114 \cdot 128^2 + 105 \cdot 128 + 112 = 142390512.$$

Seqüencia de codis:

142 390 512, 245 101 554, 205 108 449.

Piol Cardona (IIIP)

Maternatica L

Curs 2011/12

40 / 45

Aritmètic

ica Aplicacions a criptogra

Criptografia

Ara missatges són enters (entre 0 i N-1):

$$m \in \mathcal{M} = \{0, \dots, N-1\} \simeq \mathbb{Z}_N$$

Processos de xifrat i desxifrat:

$$E: \mathcal{M} \to C$$
 $D: C \to \mathcal{M}$

C conjunt de criptogrames

► Condició:

$$D(E(m)) = m$$
 per a tot $m \in \mathcal{M}$

Processos sovint depenen de paràmetre k (clau): E_k i D_k

Biel Cardona (UIB)

Matemàtica Discret

Curs 2011/12

41 / 4

Aritmètica Aplicacions a criptografia

Xifrat de Cesar

- ► Missatges: $\mathcal{M} = \mathbb{Z}_{26}$ (blocs de 1 caracter llatí)
- ▶ Criptogrames: $C = \mathbb{Z}_{26}$
- Funcions d'encriptació i desencriptació:

$$E(m) = m + 3 \mod 26$$
, $D(c) = c - 3 \mod 26$

Exemple

ATAQUEU s'encripta en DWDTXHX

Generalització: xifrat afí

- ▶ Paràmetres: $a \in \mathbb{Z}_N^*$, $b \in \mathbb{Z}_N$
- Funcions d'encriptació i desencriptació:

$$E_{a,b}(x) = ax + b,$$
 $D_{a,b}(x) = a^{-1}(x - b)$

Xifrat de clau pública

- ldea: Tot usuari pot xifrar missatges per a qualsevol usuari. Únicament el destinatari el pot desxifrar.
- Procés de xifrat E_{k_p} : Depèn de k_p (clau pública del destinatari)
- Procés de desxifrat D_{k_s} : Depèn de k_s (clau privada del destinatari)
- Condició: Per a tot usuari (amb claus k_p, k_s) i tot missatge m:

$$D_{k_s}(E_{k_p}(m))=m$$

▶ Condició de seguretat: Donat k_p és molt difícil trobar k_s

Biel Cardona (UIB)

.

Curs 2011/12

43 / 45

Aritmètic

ca Aplicacions a criptogra

Xifrat RSA

- Primer i més emprat sistema de clau pública
- p, q primers "grans" (200 xifres)
- $n = p \cdot q$
- $\phi(n) = (p-1)(q-1)$
- $e \text{ amb } 1 < e < \phi(n) \text{ i } mcd(e, \phi(n)) = 1$
- d invers de e mòdul $\phi(n)$
- $k_p = (n, e)$
- $k_s = (n, d)$
- $E_{k_v}(m) = m^e \mod n$
- $D_{k_s}(c) = c^d \bmod n$

tial Cardona (IIIR)

Matemàtica Discreta

Curs 2011/1

44 / 45

Exemple____

Exemple de codificar CRIPTOGRAFIA. Missatges amb $4\cdot 7=28$ bits. Cal p i q amb $p\cdot q>2^{28}$:

- Prenem p = 16381 i q = 17011.
- Calculem n = pq = 278657191.
- ► Calculem $\phi(n) = (p-1)(q-1) = 278623800$.
- ► Triem l'exponent $e = 155\,327$, que és relativament primer amb $\phi(n)$.
- ► Calculem l'invers de e mòdul $\phi(n)$, d = 233323463.
- Claus pública i privada:

 $k_p = (278\,657\,191, 155\,327), \qquad k_s = (278\,657\,191, 233\,323\,463).$

- Xifrat de m = 142390512:
 - $c = m^e \mod n = (142390512)^{155327} \mod 278657191 = 229531282.$
- Desxifrat del criptograma:

 $m = c^d \mod n = (229531282)^{233323463} \mod 278657191 = 142390512.$

