Ministère de l'Enseignement supérieur et de la recherche scientifique Université Abderrahmane Mira de Bejaïa Faculté des Sciences Evactes

Faculté des Sciences Exactes Département de Mathématiques

Module: Data Mining Année: 2022-2023

Nature de document: TD1-Solution

Niveau: L3-STID N.BERMAD

Exercice 3:

- 1. Déroulement de l'algorithme ID3 :
- > L'entropie de la population:

$$E(C_{\text{Jouer= Oui}}, C_{\text{Jouer= Non}}) = -\left(\frac{9}{14}\log_2\left(\frac{9}{14}\right) + \frac{5}{14}\log_2\left(\frac{5}{14}\right)\right)$$
$$= -\left(0.64 \frac{\ln\left(\frac{9}{14}\right)}{\ln(2)} + 0.35 \frac{\ln\left(\frac{5}{14}\right)}{\ln(2)}\right) = 0.92$$

- > Calcul du gain de chaque attribut:
 - A. Calcul de gain du Ciel:
 - 1. Ciel= Ensoleillé:

$$\begin{cases}
C_{Jouer=\ Oui} = \frac{2}{5} \\
C_{Jouer=\ Non} = \frac{3}{5}
\end{cases} = \frac{\left| \text{Ciel= Ensoleill\'e} \right|}{\left| C_{Jouer=\ Oui}, C_{Jouer=\ Non} \right|} = \frac{5}{14}$$

$$E(Ciel = Ensoleill\acute{e}) = -\left(\frac{2}{5}\log_2\left(\frac{2}{5}\right) + \frac{3}{5}\log_2\left(\frac{3}{5}\right)\right) = 0.96$$
 /* Entropie de l'attribut

2. Ciel= Pluie:

$$\begin{cases}
C_{\text{Jouer= Oui}} = \frac{3}{5} \\
C_{\text{Jouer= Non}} = \frac{2}{5}
\end{cases}$$

$$\begin{vmatrix}
C_{\text{Iole}} = \text{Pluie} \\
C_{\text{Jouer= Oui}}, C_{\text{Jouer= Non}}
\end{vmatrix} = \frac{5}{14}$$

$$E(Ciel = Pluie) = -\left(\frac{3}{5}\log_2\left(\frac{3}{5}\right) + \frac{2}{5}\log_2\left(\frac{2}{5}\right)\right) = 0.96$$

3. Ciel=Couvert:

$$E(Ciel = Couvert) = 0$$

Gain(Ciel) =
$$0.92 - (0.96 * \frac{5}{14} + 0.96 * \frac{5}{14} + 0 * \frac{5}{14})$$

= 0.24

- B. Calcul de gain de la Température:
 - 1. Température= Chaude:

$$\begin{bmatrix} C_{Jouer=\ Oui} = \frac{2}{4} \\ C_{Jouer=\ Non} = \frac{2}{4} \end{bmatrix}$$

$$\begin{bmatrix} Temp\'erature = Chaude \\ C_{Jouer=\ Oui}, C_{Jouer=\ Non} \end{bmatrix} = \frac{4}{14}$$

Faculté des Sciences Exactes Département de Mathématiques

Module: Data Mining Année: 2022-2023

Nature de document: TD1-Solution

Niveau: L3-STID N.BERMAD

$$E(Temp\'erature = Chaude) = -\left(\frac{1}{2}\log_2\left(\frac{1}{2}\right) + \frac{1}{2}\log_2\left(\frac{1}{2}\right)\right) = 1$$

2. Température = Tiède:

$$\begin{bmatrix}
C_{\text{Jouer= Oui}} = \frac{4}{6} \\
C_{\text{Jouer= Non}} = \frac{2}{6}
\end{bmatrix}$$

$$\boxed{\begin{array}{c}
\text{Température= Tiède} \\
C_{\text{Jouer= Oui}}, C_{\text{Jouer= Non}}
\end{bmatrix}} = \frac{6}{14}$$

$$E(Temp\'erature = Ti\`ede) = -\left(\frac{4}{6}\log_2\left(\frac{4}{6}\right) + \frac{2}{6}\log_2\left(\frac{2}{6}\right)\right) = 0.92$$

3. Température = Fraîche:

$$E(Temp\'erature = Fra\^{i}che) = -\left(\frac{3}{4}\log_2\left(\frac{3}{4}\right) + \frac{1}{4}\log_2\left(\frac{1}{4}\right)\right) = 0.8$$

D'où

Gain(Température) =
$$0.92 - (1 * \frac{4}{14} + 0.92 * \frac{6}{14} + 0.8 * \frac{4}{14})$$

= 0.03

C. Calcule de gain d'Humidité:

1. Humidité = Elevée:

$$\begin{bmatrix} C_{Jouer=\ Oui} = \frac{3}{7} \\ C_{Jouer=\ Non} = \frac{4}{7} \end{bmatrix}$$

$$\frac{ | \text{Humidit\'e} = \text{Elev\'ee} |}{ | C_{Jouer=\ Oui}, C_{Jouer=\ Non} |} = \frac{7}{14}$$

$$E(Humidit\acute{e} = Elev\acute{e}e) = -\left(\frac{3}{7}\log_2\left(\frac{3}{7}\right) + \frac{4}{7}\log_2\left(\frac{4}{7}\right)\right) = 0.98$$

2. Humidité =Normale:

$$E(Humidit\acute{e} = Normle) = -\left(\frac{6}{7}\log_2\left(\frac{6}{7}\right) + \frac{1}{7}\log_2\left(\frac{1}{7}\right)\right) = 0.58$$

Ministère de l'Enseignement supérieur et de la recherche scientifique Université Abderrahmane Mira de Bejaïa Faculté des Sciences Exactes

Département de Mathématiques

Module: Data Mining Année: 2022-2023

Nature de document: TD1-Solution

Niveau: L3-STID **N.BERMAD**

Gain(Humidité) =
$$0.92 - (0.98 * \frac{7}{14} + 0.58 * \frac{7}{14})$$

= 0.14

D. Calcule de gain du Vent:

1. Vent = Faible:

$$\begin{cases} C_{Jouer=\ Oui} = \frac{6}{8} \\ C_{Jouer=\ Non} = \frac{2}{8} \end{cases}$$

$$\frac{\left| \text{ Vent = Faible } \right|}{\left| \text{ C}_{\text{Jouer= Oui}}, \text{ C}_{\text{Jouer= Non}} \right|} = \frac{8}{14}$$

$$E(Vent = faible) = -\left(\frac{6}{8}\log_2\left(\frac{6}{8}\right) + \frac{2}{8}\log_2\left(\frac{2}{8}\right)\right) = 0.8$$

$$\begin{cases} C_{Jouer=Oui} = \frac{3}{6} \\ C_{Jouer=Non} = \frac{3}{6} \end{cases}$$

$$\begin{cases}
C_{\text{Jouer= Oui}} = \frac{3}{6} \\
C_{\text{Jouer= Non}} = \frac{3}{6}
\end{cases}$$

$$\begin{vmatrix}
V_{\text{ent}} = \text{Fort} \\
C_{\text{Jouer= Oui}}, C_{\text{Jouer= Non}}
\end{vmatrix} = \frac{8}{14}$$

$$E(Vent = Fort) = -\left(\frac{3}{6}\log_2\left(\frac{3}{6}\right) + \frac{3}{6}\log_2\left(\frac{3}{6}\right)\right) = 1$$

D'où

Gain(Vent) =
$$0.92 - (0.8 * \frac{8}{14} + 1 * \frac{6}{14})$$

= 0.05

On a:

Gain(Température) =
$$0.03$$

Gain(Ciel) = 0.24
Gain(Humidité) = 0.14
Gain(Vent) = 0.05

Donc:

Gain(Ciel) > Gain(Humidité) > Gain(Vent) > Gain(Température)

Faculté des Sciences Exactes

Département de Mathématiques

Module: Data Mining Année: 2022-2023

Nature de document: TD1-Solution

Niveau: L3-STID N.BERMAD

Raffinement de la branche « Ensoleillé »:

$$E(C_{\text{Jouer= Oui}}, C_{\text{Jouer= Non}}) = -\left(\frac{2}{5}\log_2\left(\frac{2}{5}\right) + \frac{3}{5}\log_2\left(\frac{3}{5}\right)\right) = 0.96$$

Calcule du gain pour chaque attribut:

A. Calcule de gain de la Température:

1. Température = Chaude:

$$\begin{cases} C_{Jouer=\ Oui} = \frac{2}{2} = 0 \\ C_{Jouer=\ Non} = 1 \end{cases}$$

$$\frac{\left| \text{ Température= Chaude} \right|}{\left| C_{Jouer= Oui}, C_{Jouer= Non} \right|} = \frac{2}{5}$$

E(Temp'erature = Chaude) = 0

2. <u>Température = Tiède:</u>

$$\begin{cases} C_{Jouer=\ Oui} = \frac{1}{2} \\ C_{Jouer=\ Non} = \frac{1}{2} \end{cases}$$

$$\frac{\left|\begin{array}{c|c} Temp\'erature=Ti\`ede \end{array}\right|}{\left|\begin{array}{c|c} C_{Jouer=\ Non} \end{array}\right|} \quad = \frac{2}{5}$$

 $E(Temp\'erature = Ti\`ede) = 1$

3. <u>Température = Fraîche:</u>

$$\begin{cases} C_{Jouer=\,Oui} = 1 \\ C_{Jouer=\,Non} = 0 \end{cases}$$

$$\frac{\left| \text{ Température= Fraîche } \right|}{\left| \text{ C}_{\text{Jouer= Oui}}, \text{ C}_{\text{Jouer= Non}} \right|} = \frac{1}{5}$$

 $E(Temp\'erature = Fra\^iche) = 0$

Gain(Température) =
$$0.96 - (0 * \frac{2}{5} + 1 * \frac{2}{5} + 0 * \frac{1}{5}) = 0.56$$

Faculté des Sciences Exactes Département de Mathématiques

Année: 2022-2023 **Module: Data Mining**

Nature de document: TD1-Solution

Niveau: L3-STID **N.BERMAD**

B. Calcule de gain d'Humidité:

1. Humidité= Elevée:

$$C_{\text{Jouer= Oui}} = 0$$

$$C_{\text{Jouer= Non}} = \frac{3}{3} = 1$$

$$\frac{\left| \text{ Humidit\'e} = \text{Elev\'ee} \right|}{\left| C_{\text{Jouer}= \text{ Oui}}, C_{\text{Jouer}= \text{ Non}} \right|} = \frac{3}{5}$$

E(Humidité = Elevée) = 0

2. Humidité= Normale:

$$\begin{cases} C_{Jouer=\ Oui} = \frac{2}{2} = 1 \\ C_{Jouer=\ Non} = 0 \end{cases}$$

$$\frac{\left| \text{ Humidit\'e} = \text{Normale} \right|}{\left| C_{\text{Jouer}= \text{Oui}}, C_{\text{Jouer}= \text{Non}} \right|} = \frac{2}{5}$$

E(Humidité = Normale) = 0

D'où

Gain(Humidité) =
$$0.96 - (0 * \frac{3}{5} + 0 * \frac{2}{5})$$

= 0.96

C. Calcule de gain du Vent:

1. Vent = Faible:

$$C_{\text{Jouer=Oui}} = \frac{1}{3}$$

$$C_{\text{Jouer=Non}} = \frac{2}{3}$$

$$\frac{\left| \text{ Vent = Faible } \right|}{\left| \text{ C}_{\text{Jouer= Oui}}, \text{ C}_{\text{Jouer= Non }} \right|} = \frac{3}{5}$$

$$E(Vent = faible) = -\left(\frac{1}{3}\log_2\left(\frac{1}{3}\right) + \frac{2}{3}\log_2\left(\frac{2}{3}\right)\right) = 0.92$$

2. **Vent =Fort:**

$$\begin{cases} C_{Jouer=\ Oui} = \frac{1}{2} \\ C_{Jouer=\ Non} = \frac{1}{2} \end{cases}$$

$$\begin{cases}
C_{Jouer= Oui} = \frac{1}{2} \\
C_{Jouer= Non} = \frac{1}{2}
\end{cases}$$

$$\begin{vmatrix}
Vent = Fort \\
C_{Jouer= Oui}, C_{Jouer= Non}
\end{vmatrix} = \frac{2}{5}$$

$$E(Vent = Fort) = -\left(\frac{1}{2}\log_2\left(\frac{1}{2}\right) + \frac{1}{2}\log_2\left(\frac{1}{2}\right)\right) = 1$$

Gain(Vent) =
$$0.96 - (0.92 * \frac{3}{5} + 1 * \frac{2}{5})$$

= 0.008

Faculté des Sciences Exactes Département de Mathématiques

Module: Data Mining Année: 2022-2023

Nature de document: TD1-Solution

Niveau: L3-STID N.BERMAD

On a:

⇔ Gain maximal est de l'humidité

> Raffinement de la branche « Pluie »:

$$E(C_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}}) = -\left(\frac{3}{5}\log_2\left(\frac{3}{5}\right) + \frac{2}{5}\log_2\left(\frac{2}{5}\right)\right) = 0.96$$

Calcul du gain pour chaque attribut:

A. Calcul de gain de la Température :

1. <u>Température = Tiède:</u>

$$\begin{cases} C_{Jouer=\,Oui} = \frac{2}{3} \\ C_{Jouer=\,Non} = \frac{1}{3} \end{cases}$$

$$\frac{\left| \text{ Température= Tiède} \right|}{\left| C_{\text{Jouer= Oui}}, C_{\text{Jouer= Non}} \right|} = \frac{3}{5}$$

$$E(Temp\'erature = Ti\`ede) = 0.92$$

2. <u>Température = Fraîche:</u>

$$\begin{cases} C_{Jouer=\ Oui} = \frac{1}{2} \\ C_{Jouer=\ Non} = \frac{1}{2} \end{cases}$$

$$\frac{\left|\begin{array}{c} Temp\'erature=Fra\^{i}che \end{array}\right|}{\left|\begin{array}{c} C_{Jouer=\,Non} \end{array}\right|} = \frac{2}{5}$$

Faculté des Sciences Exactes Département de Mathématiques

Module: Data Mining Année: 2022-2023

Nature de document: TD1-Solution

Niveau: L3-STID N.BERMAD

$$E(Temp\'erature = Fra\^iche) = 1$$

D'où

Gain(Température) =
$$0.96 - (0.92 * \frac{3}{5} + 1 * \frac{2}{5})$$

= 0.01

B. Calcule de gain d'Humidité:

1. Humidité= Elevée:

$$\begin{cases} C_{Jouer=Oui} = \frac{1}{2} \\ C_{Jouer=Non} = \frac{1}{2} \end{cases}$$

$$\frac{\left| \text{ Humidit\'e} = \text{Elev\'ee} \right|}{\left| \text{ C}_{\text{Jouer= Oui}}, \text{ C}_{\text{Jouer= Non}} \right|} = \frac{2}{5}$$

E(Humidité = Elevée) = 1

2. Humidité= Normale:

$$\begin{cases} C_{\text{Jouer=Oui}} = \frac{2}{3} \\ C_{\text{Jouer=Non}} = \frac{1}{3} \end{cases}$$

$$\frac{\left| \text{ Humidit\'e} = \text{Normale} \right|}{\left| C_{\text{Jouer}= \text{Oui}}, C_{\text{Jouer}= \text{Non}} \right|} = \frac{3}{5}$$

$$E(Humidité = Normale) = 0.92$$

D'où

Gain(Humidité) =
$$0.96 - (1 * \frac{2}{5} + 0.92 * \frac{3}{5})$$

= 0.008

C. Calcule de gain du Vent:

1. Vent = Faible:

$$\begin{cases} C_{Jouer=\ Oui} = \frac{3}{3} = 1 \\ C_{Jouer=\ Non} = 0 \end{cases}$$

$$\frac{\left| \text{ Vent = Faible } \right|}{\left| \text{ C}_{\text{Jouer= Oui}}, \text{ C}_{\text{Jouer= Non}} \right|} = \frac{3}{5}$$

$$E(Vent = faible) = 0$$

2. Vent =Fort:

$$\begin{cases}
C_{\text{Jouer= Oui}} = 0 \\
C_{\text{Jouer= Non}} = \frac{2}{2} = 1
\end{cases}$$

$$E(Vent = Fort) = 0$$

Ministère de l'Enseignement supérieur et de la recherche scientifique Université Abderrahmane Mira de Bejaïa Faculté des Sciences Exactes

Département de Mathématiques

Année: 2022-2023 **Module: Data Mining**

Nature de document: TD1-Solution

Niveau: L3-STID **N.BERMAD**

Gain(Vent) =
$$0.96 - (0 * \frac{3}{5} + 0 * \frac{2}{5})$$

= 0.96

On a:

Gain(Température) =
$$0.01$$

Gain(Humidité) = 0.008
Gain(Vent) = 0.96

⇒ Vent a un gain maximal

Arbre final

2. Déroulement de l'Algorithme KNN

> Distance euclidienne

$$\begin{cases} d(A,A)=0 \\ d(A,B)=1 \end{cases}$$

➤ Le paramètre K=4+1=5

$$\rightarrow$$
 d(y, x_i)/ i ∈ {1..14}=
$$\begin{cases} 0 \text{ si y=x_i} \\ 1 \text{ Sinor} \end{cases}$$

Ministère de l'Enseignement supérieur et de la recherche scientifique Université Abderrahmane Mira de Bejaïa Faculté des Sciences Exactes Département de Mathématiques

Module: Data Mining Année: 2022-2023

Nature de document: TD1-Solution

Niveau: L3-STID N.BERMAD

N°	Ciel	Température	Humidité	Vent	Résultat	Classe
1	0	1	0	0	$\sqrt{\sum_{i=1}^{n}(xi-yi)^2}=1$	Non
2	0	1	0	1	1.41	Non
3	1	1	0	0	1.41	Oui
4	1	1	0	0	1.41	Oui
5	1	0	1	0	1.41	Oui
6	1	0	1	1	1.73	Non
7	1	0	1	1	1.73	Oui
8	0	1	0	0	1	Non
9	0	0	1	0	1	Oui
10	1	1	1	0	1.73	Oui
11	0	1	1	1	1.73	Oui
12	1	1	0	1	1.73	Oui
13	1	1	1	0	1.73	Oui
14	1	1	0	1	1.73	Non
У	Ensoleillé	Fraîche	Elevée	Faible	Choisir 5 voisins	Non

Exercice 4:

1. e est un nouvel individu avec (Ciel=Ensoleillé, Vent = Faible)

La règle de décision est de classer l'individu e dans la classe jouer au tennis = oui SSI

En appliquant la règle de Bayes, la règle devient:

$$\mathbf{P}(Ciel=Ensoleill\acute{e}, Vent=Faible \mid Jouer au tennis = Non) \mathbf{P}(Jouer au tennis = Non)$$

$$P(Jouer\ au\ tennis = Oui) = \frac{9}{14}$$

$$P(Jouer\ au\ tennis = Non) = \frac{5}{14}$$

* P(Ciel=Ensoleillé, Vent=Faible | Jouer au tennis = Oui) =

P(Ciel=Ensoleillé | Jouer au tennis = Oui) P(Vent=Faible | Jouer au tennis = Oui)

$$= \frac{2}{9} * \frac{6}{9} = \frac{12}{81}$$

$$= 0.14 * \frac{9}{14} = 0.09$$

Faculté des Sciences Exactes Département de Mathématiques

Module: Data Mining Année: 2022-2023

Nature de document: TD1-Solution

Niveau: L3-STID N.BERMAD

P(*Ciel=Ensoleillé*, *Vent=Faible* | *Jouer au tennis* = *Non*) =

P(Ciel=Ensoleillé | Jouer au tennis = Non) P(Vent=Faible | Jouer au tennis = Non)

$$= \frac{3}{5} * \frac{2}{5} = \frac{6}{25}$$

$$=0.24+\frac{5}{14}=0.08$$

On a:

Donc:

e∈ jouer au tennis= oui.

2. e = (Ciel=Ensoleillé, temps= 23°C, Humidité= 70%, Vent=Faible)

$$(0^{\circ}\text{C} * \frac{9}{5}) + 32 = ?? \text{ F}^{\circ}$$

$$(23^{\circ}\text{C} * \frac{9}{5}) + 32 = 73.4 \text{ F}^{\circ}$$

e∈ jouer au tennis= Oui SSI

P(Ciel=Ensoleillé, Température= 73.4 F°, Humidité= 70%, Vent= Faible |Jouer au tennis = Oui) **P**(Jouer au tennis = Oui) *

P(Ciel=Ensoleillé, Température= 73.4 F°, Humidité= 70%, Vent= Faible |Jouer au tennis = Non) **P**(Jouer au tennis = Non) (**)

* \(\infty\)\(\mathbb{P}(Ciel= Ensoleillé/ Jouer au tennis= Oui)\(\mathbb{P}(Température=73.4 F^\circ\)/Jouer au tennis = Oui)

P(Humidité= 70%/Jouer au tennis= Oui)**P**(Vent=faible /Jouer au tennis = Oui) = $\frac{2}{9} * 0 * \frac{2}{9} * \frac{5}{9} = 0 * \frac{9}{14} = 0$

- ** = 0 > e est un outlier (bruit)
 - 3. **P**($Temp\'{e}rature = 23°C \mid Jouer au tennis = Oui) = 0$
 - 4. **P**(60%<*Humidité*<75%|*Jouer au tennis*= Oui)= $\frac{3}{9}$ = 0.33

Exercice 5:

- > Déroulement de l'algorithme C4.5
 - > L'entropie de la population:

Ministère de l'Enseignement supérieur et de la recherche scientifique Université Abderrahmane Mira de Bejaïa Faculté des Sciences Exactes

Département de Mathématiques

Module: Data Mining Année: 2022-2023

Nature de document: TD1-Solution

Niveau: L3-STID N.BERMAD

$$E(C_{Jouer=Oui}, C_{Jouer=Non}) = -\left(\frac{5}{14}\log_2\left(\frac{5}{14}\right) + \frac{9}{14}\log_2\left(\frac{9}{14}\right)\right)$$
= **0.94**

A. Calcul de gain d'ensoleillement

1. Ensoleillement = Soleil

$$\begin{cases}
C_{\text{Jouer=Oui}} = \frac{2}{5} \\
C_{\text{Jouer=Non}} = \frac{3}{5}
\end{cases} = \frac{|\text{Soleil}|}{|C_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}}|} = \frac{5}{14}$$

$$E(\text{Ensoleill\'e}) = -\left(\frac{2}{5}\log_2\left(\frac{2}{5}\right) + \frac{3}{5}\log_2\left(\frac{3}{5}\right)\right) = 0.97$$

2. Ensoleillement = Couvert

$$\begin{cases}
C_{Jouer=Oui} = 1 \\
C_{Jouer=Non} = 0
\end{cases} = \frac{4}{14}$$

$$E(Couvert) = 0$$

3. Ensoleillement = Pluie

$$\begin{cases}
C_{Jouer=Oui} = \frac{3}{5} \\
C_{Jouer=Non} = \frac{2}{5}
\end{cases} = \frac{|Pluie|}{|C_{Jouer=Oui}, C_{Jouer=Non}|} = \frac{5}{14}$$

$$E(\text{Pluie}) = -\left(\frac{3}{5}\log_2\left(\frac{3}{5}\right) + \frac{2}{5}\log_2\left(\frac{2}{5}\right)\right) = 0.97$$

D'où

Gain(Ensoleillement) =
$$0.94 - (0.97 * \frac{5}{14} + 0 * \frac{4}{14} + 0.97 * \frac{5}{14})$$

= 0.24

B. Calcul de gain d'Humidité

Trier les exemples dans l'ordre croissant (ou décroissant)

Humidité	65	70	70	70	75	78	80	80	80	85	90	90	95	96
N°	8	1	5	11	9	7	10	12	13	3	2	6	4	14
Jouer	Oui	Oui	Oui	Non	Oui	Oui	Non	Oui	Oui	Non	Non	Oui	Non	Oui

Nous coupons entre les exemples:

Ministère de l'Enseignement supérieur et de la recherche scientifique Université Abderrahmane Mira de Bejaïa Faculté des Sciences Exactes

Département de Mathématiques

Année: 2022-2023 **Module: Data Mining**

Nature de document: TD1-Solution Niveau: L3-STID **N.BERMAD**

$$\begin{cases} x_5 \text{ et } x_{11} \rightarrow S_1 = 70 \\ x_{11} \text{ et } x_9 \rightarrow S_2 = 75 \\ x_7 \text{ et } x_{10} \rightarrow S_3 = 80 \\ x_{10} \text{ et } x_{12} \rightarrow S_4 = 80 \\ x_{13} \text{ et } x_3 \rightarrow S_5 = 85 \\ x_2 \text{ et } x_6 \rightarrow S_6 = 90 \\ x_6 \text{ et } x_4 \rightarrow S_7 = 95 \\ x_4 \text{ et } x_{14} \rightarrow S_8 = 96 \end{cases}$$

$$E \text{ (Humidit\'e} <= 70) = -\left(\frac{3}{4}\log_2\left(\frac{3}{4}\right) + \frac{1}{4}\log_2\left(\frac{1}{4}\right)\right)$$

$$= 0.81$$

$$\frac{\left| \text{ Humidité} <=70 \right|}{\left| C_{\text{Jouer}=\text{Oui}}, C_{\text{Jouer}=\text{Non}} \right|} = \frac{4}{14}$$

$$E \text{ (Humidité} > 70) = -\left(\frac{6}{10}\log_2\left(\frac{6}{10}\right) + \frac{4}{10}\log_2\left(\frac{4}{10}\right)\right)$$

$$= 0.97$$

$$\frac{\left| \text{ Humidité > 70} \right|}{\left| C_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}} \right|} = \frac{10}{14}$$

Gain(Humidité,
$$S_1$$
= 70) = 0.94 - $(0.81 * \frac{4}{14} + 0.97 * \frac{10}{14})$
= 0.94 - 0.92
=0.02

E (Humidité <= 75) =
$$-\left(\frac{4}{5}\log_2\left(\frac{4}{5}\right) + \frac{1}{5}\log_2\left(\frac{1}{5}\right)\right)$$

=0.72

$$\frac{\left| \text{ Humidité} <=75 \right|}{\left| C_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}} \right|} = \frac{5}{14}$$

$$E \text{ (Humidité} > 75) = -\left(\frac{5}{9}\log_2\left(\frac{5}{9}\right) + \frac{4}{9}\log_2\left(\frac{4}{9}\right)\right)$$

$$= 0.99$$

$$\frac{\left| \text{ Humidit\'e} > 75 \right|}{\left| C_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}} \right|} = \frac{9}{14}$$

Faculté des Sciences Exactes Département de Mathématiques

Module: Data Mining Année: 2022-2023

Nature de document: TD1-Solution

Niveau: L3-STID N.BERMAD

D'où

Gain(Humidité,
$$S_2 = 75$$
) = $0.94 - (0.72 * \frac{5}{14} + 0.99 * \frac{9}{14})$
= $0.94 - 0.89$
= 0.05

$$E \text{ (Humidité} \le 80) = -\left(\frac{7}{9}\log_2\left(\frac{7}{9}\right) + \frac{2}{9}\log_2\left(\frac{2}{9}\right)\right) \qquad \frac{\left|\text{Humidité} \le 80\right|}{\left|\text{C}_{\text{Jouer=Oui}}, \text{C}_{\text{Jouer=Non}}\right|} = \frac{9}{14}$$

$$= 0.76$$

$$E \text{ (Humidité > 80)} = -\left(\frac{2}{5}\log_2\left(\frac{2}{5}\right) + \frac{3}{5}\log_2\left(\frac{3}{5}\right)\right) \qquad \frac{\left|\text{Humidité > 80}\right|}{\left|\text{C}_{\text{Jouer=Oui}}, \text{C}_{\text{Jouer=Non}}\right|} = \frac{5}{14}$$

$$= 0.97$$

D'où

Gain(Humidité,
$$S_3$$
= 80) = 0.94 - $(0.76 * \frac{9}{14} + 0.97 * \frac{5}{14})$
= 0.94-0.83
=0.11

$$E \text{ (Humidité <= 85)} = -\left(\frac{7}{10}\log_2\left(\frac{7}{10}\right) + \frac{3}{10}\log_2\left(\frac{3}{10}\right)\right)$$

$$= 0.88$$

$$| \text{Humidité <= 85} |$$

$$| C_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}} |$$

$$E \text{ (Humidité > 85)} = -\left(\frac{2}{4}\log_2\left(\frac{2}{4}\right) + \frac{2}{4}\log_2\left(\frac{2}{4}\right)\right) \qquad \frac{\left|\text{Humidité} > 85\right|}{\left|\text{C}_{\text{Jouer=Oui}}, \text{C}_{\text{Jouer=Non}}\right|} = \frac{4}{14}$$

Gain(Humidité,
$$S_5 = 85$$
) = $0.94 - (0.88 * \frac{10}{14} + 1 * \frac{4}{14})$
= $0.94 - 0.91$
= 0.03

$$E \text{ (Humidité <= 90)} = -\left(\frac{8}{12}\log_2\left(\frac{8}{12}\right) + \frac{4}{12}\log_2\left(\frac{4}{12}\right)\right) \qquad \frac{\left|\text{Humidité <= 90}\right|}{\left|\text{C}_{\text{Jouer=Oui}}, \text{C}_{\text{Jouer=Non}}\right|} = \frac{12}{14}$$

$$= 0.92$$

Faculté des Sciences Exactes Département de Mathématiques

Module: Data Mining Année: 2022-2023

Nature de document: TD1-Solution

Niveau: L3-STID N.BERMAD

$$E \text{ (Humidité > 90)} = -\left(\frac{1}{2}\log_2\left(\frac{1}{2}\right) + \frac{1}{2}\log_2\left(\frac{1}{2}\right)\right)$$

$$= 1$$

$$\frac{\left| \text{Humidit\'e} > 90 \right|}{\left| C_{\text{Jouer=Non}} \right|} = \frac{2}{14}$$

D'où

Figure 3.1. Gain(Humidité,
$$S_6 = 90$$
) = $0.94 - (0.92 * \frac{12}{14} + 1 * \frac{2}{14})$
= $0.94 - 0.92$
= 0.02

Figure 3.1. Gain(Humidité,
$$S_7 = 95$$
) = $0.94 - (0.96 * \frac{13}{14} + 0 * \frac{1}{14})$
= $0.94 - 0.89$
= 0.05

Figure 3.2. Gain(Humidité,
$$S_8 = 96$$
) = 0.94 - (0.94 * 1 + 0 * 0)
= 0.94 - 0.94
=0

Le gain maximal d'humidité et avec le seuil S3=80

C. Calcul de gain de la Température

Trier les exemples dans l'ordre croissant

Température	64	65	68	69	70	71	72	72	75	75	80	81	83	85
N°	8	11	13	5	14	10	4	6	1	12	2	9	7	3
Jouer	Oui	Non	Oui	Oui	Oui	Non	Non	Oui	Oui	Oui	Non	Oui	Oui	Non

Nous coupons entre les exemples :

$$\begin{cases} x_8 \text{ et } x_{11} & \xrightarrow{S_1} & S_1 = 65 \\ x_{11} \text{ et } x_{13} & \xrightarrow{S_2} & S_2 = 68 \\ x_{14} \text{ et } x_{10} & \xrightarrow{S_3} & S_3 = 71 \\ x_4 \text{ et } x_6 & \xrightarrow{S_4} & S_4 = 72 \\ x_{12} \text{ et } x_2 & \xrightarrow{S_5} & S_5 = 80 \\ x_2 \text{ et } x_9 & \xrightarrow{S_6} & S_6 = 81 \\ x_7 \text{ et } x_3 & \xrightarrow{S_7} & S_7 = 85 \end{cases}$$

Faculté des Sciences Exactes Département de Mathématiques

Module: Data Mining Année: 2022-2023

Nature de document: TD1-Solution

Niveau: L3-STID N.BERMAD

$$E \text{ (Température <= 65)} = -\left(\frac{1}{2}\log_2\left(\frac{1}{2}\right) + \frac{1}{2}\log_2\left(\frac{1}{2}\right)\right) \qquad \frac{\left|\text{Température <=65}\right|}{\left|\text{C}_{\text{Jouer=Oui}}, \text{C}_{\text{Jouer=Non}}\right|} = \frac{2}{14}$$

$$E \text{ (Température>65)} = -\left(\frac{8}{12}\log_2\left(\frac{8}{12}\right) + \frac{4}{12}\log_2\left(\frac{4}{12}\right)\right) \qquad \frac{\left|\text{Température>65}\right|}{\left|\text{C}_{\text{Jouer=Oui}}, \text{C}_{\text{Jouer=Non}}\right|} = \frac{12}{14}$$

$$= 0.92$$

D'où

Gain(Température,
$$S_1 = 65$$
) = $0.94 - (1 * \frac{2}{14} + 0.92 * \frac{12}{14})$
= 0

$$E \text{ (Température <= 68)} = -\left(\frac{2}{3}\log_2\left(\frac{2}{3}\right) + \frac{1}{3}\log_2\left(\frac{1}{3}\right)\right) \qquad \frac{\left|\text{Température <=68}\right|}{\left|\text{C}_{\text{Jouer=Oui}}, \text{C}_{\text{Jouer=Non}}\right|} = \frac{3}{14}$$

$$= 0.92$$

$$E \text{ (Température > 68)} = -\left(\frac{7}{11}\log_2\left(\frac{7}{11}\right) + \frac{4}{11}\log_2\left(\frac{4}{11}\right)\right) \qquad \frac{\left|\text{Température > 68}\right|}{\left|\text{C}_{\text{Jouer=Oui}}, \text{C}_{\text{Jouer=Non}}\right|} = \frac{11}{14}$$

$$= 0.93$$

Gain(Température,
$$S_2 = 68$$
) = $0.94 - (0.92 * \frac{3}{14} + 0.93 * \frac{11}{14})$
= 0.03

$$E \text{ (Température <= 71)} = -\left(\frac{4}{6}\log_2\left(\frac{4}{6}\right) + \frac{2}{6}\log_2\left(\frac{2}{6}\right)\right) \qquad \frac{\left|\text{Température <= 71}\right|}{\left|\text{C}_{\text{Jouer=Oui}}, \text{C}_{\text{Jouer=Non}}\right|} = \frac{6}{14}$$

$$= 0.92$$

$$E \text{ (Température > 71)} = -\left(\frac{5}{8}\log_2\left(\frac{5}{8}\right) + \frac{3}{8}\log_2\left(\frac{3}{8}\right)\right) \qquad \frac{|\text{Température > 71}|}{\left|C_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}}\right|} = \frac{8}{14}$$

$$= 0.95$$

Faculté des Sciences Exactes Département de Mathématiques

Module: Data Mining Année: 2022-2023

Nature de document: TD1-Solution

Niveau: L3-STID N.BERMAD

D'où

Gain(Température,
$$S_3 = 71$$
) = $0.94 - (0.92 * \frac{6}{14} + 0.95 * \frac{8}{14})$
= 0.01

$$E \text{ (Température} <= 72) = -\left(\frac{5}{8}\log_2\left(\frac{5}{8}\right) + \frac{3}{8}\log_2\left(\frac{3}{8}\right)\right) \qquad \frac{\left|\text{Température} <= 72\right|}{\left|\text{C}_{\text{Jouer}=\text{Oui}}, \text{C}_{\text{Jouer}=\text{Non}}\right|} = \frac{8}{14}$$

$$= 0.95$$

$$E \text{ (Température>72)} = -\left(\frac{4}{6}\log_2\left(\frac{4}{6}\right) + \frac{2}{6}\log_2\left(\frac{2}{6}\right)\right) \qquad \frac{\left|\text{Température}>72\right|}{\left|\text{C}_{\text{Jouer=Oui}}, \text{C}_{\text{Jouer=Non}}\right|} = \frac{6}{14}$$

$$= 0.92$$

D'où

Gain(Température,
$$S_4 = 72$$
) = $0.94 - (0.95 * \frac{8}{14} + 0.92 * \frac{6}{14})$
= 0.01

$$E \text{ (Température} <= 80) = -\left(\frac{7}{11}\log_2\left(\frac{7}{11}\right) + \frac{4}{11}\log_2\left(\frac{4}{11}\right)\right) \qquad \frac{\left|\text{Température} <= 80\right|}{\left|\text{C}_{\text{Jouer}=\text{Oui}}, \text{C}_{\text{Jouer}=\text{Non}}\right|} = \frac{11}{14}$$

$$= 0.93$$

$$E \text{ (Température > 80)} = -\left(\frac{2}{3}\log_2\left(\frac{2}{3}\right) + \frac{1}{3}\log_2\left(\frac{1}{3}\right)\right) \qquad \frac{\left|\text{Température > 80}\right|}{\left|\text{C}_{\text{Jouer=Oui}}, \text{C}_{\text{Jouer=Non}}\right|} = \frac{3}{14}$$

$$= 0.92$$

Gain(Température,
$$S_5 = 80$$
) = $0.94 - (0.93 * \frac{11}{14} + 0.92 * \frac{3}{14})$
= 0.03

$$E \text{ (Température <= 81)} = -\left(\frac{8}{12}\log_2\left(\frac{8}{12}\right) + \frac{4}{12}\log_2\left(\frac{4}{12}\right)\right) \qquad \frac{\left|\text{Température <=81}\right|}{\left|\text{C}_{\text{Jouer=Oui}},\text{ C}_{\text{Jouer=Non}}\right|} = \frac{12}{14}$$

$$= 0.92$$

Faculté des Sciences Exactes Département de Mathématiques

Année: 2022-2023 **Module: Data Mining**

Nature de document: TD1-Solution

Niveau: L3-STID N.BERMAD

$$E \text{ (Température > 81)} = -\left(\frac{1}{2}\log_2\left(\frac{1}{2}\right) + \frac{1}{2}\log_2\left(\frac{1}{2}\right)\right) \qquad \frac{\left|\text{Température > 81}\right|}{\left|\text{C}_{\text{Jouer=Oui}}, \text{C}_{\text{Jouer=Non}}\right|} = \frac{2}{14}$$

$$\frac{\left| \text{ Température > 81} \right|}{\left| C_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}} \right|} = \frac{2}{14}$$

D'où

Gain(Température,
$$S_6 = 81$$
) = 0.94 - $(1 * \frac{2}{14} + 0.92 * \frac{12}{14})$
= 0.01

$$E \text{ (Température} <= 85) = -\left(\frac{9}{14}\log_2\left(\frac{9}{14}\right) + \frac{5}{14}\log_2\left(\frac{5}{14}\right)\right) \qquad \frac{\left|\text{Température} <= 85\right|}{\left|\text{C}_{\text{Jouer}=\text{Oui}}, \text{C}_{\text{Jouer}=\text{Non}}\right|} = 1$$

$$\frac{\left| \text{Température} <=85 \right|}{\left| C_{Jouer=Oui}, C_{Jouer=Non} \right|} = 1$$

$$\triangleright$$
 E (Température>85) = 0

$$\frac{\left| \text{Température} > 85 \right|}{\left| C_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}} \right|} = 0$$

D'où

Gain(Température,
$$S_7 = 80$$
) = $0.94 - (0 * 0 + 0.94 * \frac{14}{14})$
=00

D. Calcul de gain du Vent

1. Vent = Oui

$$\begin{cases}
C_{\text{Jouer=Oui}} = \frac{3}{6} \\
C_{\text{Jouer=Non}} = \frac{3}{6}
\end{cases} \qquad \frac{|\text{Vent = Oui}|}{|C_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}}|} = \frac{6}{14}$$

$$E(\text{Vent} = \text{Oui}) = -\left(\frac{3}{6}\log_2\left(\frac{3}{6}\right) + \frac{3}{6}\log_2\left(\frac{3}{6}\right)\right) = 1$$

2. Vent = Non

$$\begin{cases}
C_{\text{Jouer=Oui}} = \frac{6}{8} \\
C_{\text{Jouer=Non}} = \frac{2}{8}
\end{cases} \qquad \frac{|\text{Vent} = \text{Non}|}{|C_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}}|} = \frac{8}{14}$$

$$E(\text{Vent} = \text{Non}) = -\left(\frac{6}{8}\log_2\left(\frac{6}{8}\right) + \frac{2}{8}\log_2\left(\frac{2}{8}\right)\right) = 0.81$$

Faculté des Sciences Exactes Département de Mathématiques

Module: Data Mining Année: 2022-2023

Nature de document: TD1-Solution

Niveau: L3-STID N.BERMAD

D'où

Gain(Vent) =
$$0.94 - (1 * \frac{6}{14} + 0.81 * \frac{8}{14})$$

=0.05

L'attribut ensoleillement a la plus grande valeur du gain en information. Donc, c'est le nœud racine de l'arbre:

ı	N°	Température	Humidité	Veut	Jouer
ı	1	75	70	Oui	Oui
ı	2	80	90	Oui	Non
ı	3	85	85	Non	Non
ı	4	72	95	Non	Non
ı	5	69	70	Non	Oui

N°	Température	Humidité	Veut	Jouer
6	72	90	Oui	Oui
7	83	78	Non	Oui
8	64	65	Oui	Oui
9	81	75	Non	Oui

Ν°	Température	Humidité	Veut	Jouer
10	71	80	Oui	Non
11	65	70	Oui	Non
12	75	80	Non	Oui
13	68	80	Non	Oui
14	70	96	Non	Oui

?????? Jouer ??????

> Raffinement de la branche « Soleil »:

L'entropie de la population:

E(C_{Jouer=Oui}, C_{Jouer=Non}) =
$$-\left(\frac{2}{5}\log_2\left(\frac{2}{5}\right) + \frac{3}{5}\log_2\left(\frac{3}{5}\right)\right)$$

= **0.97**

A. Calcul de gain de la Température :

Température	69	72	75	80	85
N°	5	4	1	2	3
Jouer	Oui	Non	Oui	Oui	Non

Nous coupons entre les exemples :

$$\begin{cases} x_5 \text{ et } x_4 & \longrightarrow S_1 = 72 \\ x_4 \text{ et } x_1 & \longrightarrow S_2 = 75 \\ x_2 \text{ et } x_3 & \longrightarrow S_3 = 85 \end{cases}$$

Faculté des Sciences Exactes Département de Mathématiques

Module: Data Mining

Nature de document: TD1-Solution

Niveau: L3-STID

Année: 2022-2023

N.BERMAD

$$E \text{ (Température} <= 72) = -\left(\frac{1}{2}\log_2\left(\frac{1}{2}\right) + \frac{1}{2}\log_2\left(\frac{1}{2}\right)\right)$$

$$\frac{\left| \text{Température} <=72 \right|}{\left| C_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}} \right|} = \frac{2}{5}$$

$$E \text{ (Température>72)} = -\left(\frac{2}{3}\log_2\left(\frac{2}{3}\right) + \frac{1}{3}\log_2\left(\frac{1}{3}\right)\right)$$
$$= 0.92$$

$$\frac{\left| \text{Température} > 72 \right|}{\left| C_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}} \right|} = \frac{3}{5}$$

D'où

Gain(Température,
$$S_1 = 72$$
) = $0.97 - (1 * \frac{2}{5} + 0.92 * \frac{3}{5})$
= 0.018

$$E \text{ (Température} <= 75) = -\left(\frac{2}{3}\log_2\left(\frac{2}{3}\right) + \frac{1}{3}\log_2\left(\frac{1}{3}\right)\right)$$

$$= 0.92.$$

$$\frac{\left| \text{Température} <=75 \right|}{\left| C_{Jouer=Oui}, C_{Jouer=Non} \right|} = \frac{3}{5}$$

$$E \text{ (Température>75)} = -\left(\frac{1}{2}\log_2\left(\frac{1}{2}\right) + \frac{1}{2}\log_2\left(\frac{1}{2}\right)\right)$$

$$= 1$$

$$\frac{\left| \frac{\text{Température}}{\text{C}_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}} \right|}{\left| \frac{2}{5} \right|} = \frac{2}{5}$$

D'où

Gain(Température,
$$S_2 = 75$$
) = $0.97 - (0.92 * \frac{3}{5} + 1 * \frac{2}{5})$
= 0.018

$$E \text{ (Température} <= 85) = -\left(\frac{3}{5}\log_2\left(\frac{3}{5}\right) + \frac{2}{5}\log_2\left(\frac{2}{5}\right)\right)$$

$$= 0.97$$

$$\frac{\left| \text{ Température} <=85 \right|}{\left| C_{Jouer=Oui}, C_{Jouer=Non} \right|} = 1$$

$$\triangleright$$
 E (Température>85) = 0

$$\frac{\left| \text{Température} > 85 \right|}{\left| C_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}} \right|} = 0$$

Gain(Température,
$$S_3 = 85$$
) = 0.97 - (0.97 * 1 + 0 * 0)
=0

Faculté des Sciences Exactes Département de Mathématiques

Module: Data Mining Année: 2022-2023

Nature de document: TD1-Solution

Niveau: L3-STID **N.BERMAD**

B. Calcul de gain d'Humidité:

Humidité	70	70	85	90	95
N°	1	5	3	2	4
Jouer	Oui	Oui	Non	Non	Non

Nous coupons entre les exemples: x_5 et x_3 \Rightarrow $S = \frac{85+70}{2} = 77.5$ (Car l'écart est grand)

$$E \text{ (Humidité} \le 77.5) = -\left(\frac{2}{2}\log_2\left(\frac{2}{2}\right) + 0\log_2(0)\right) \qquad \frac{\left|\text{ Humidité} \le 77.5\right|}{\left|\text{C}_{\text{Jouer}=\text{Oui}}, \text{C}_{\text{Jouer}=\text{Non}}\right|} = \frac{2}{5}$$

$$\frac{\left| \frac{\text{Humidité} <=77.5}{\left| C_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}} \right|} = \frac{2}{5}$$

$$ightharpoonup$$
 E (Humidité >77.5) = -(0 log₂(0) + 1 log₂(1))
=0

$$\frac{\left| \text{ Humidité>77.5} \right|}{\left| C_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}} \right|} = \frac{3}{5}$$

D'où

Gain(Humidité, S= 77.5) = 0.97 -
$$\left(0 * \frac{2}{5} + 0 * \frac{3}{5}\right)$$

= 0.97

C. Calcul de gain du Vent

1. **Vent = Oui**

$$\begin{cases}
C_{Jouer=Oui} = \frac{1}{2} \\
C_{Jouer=Non} = \frac{1}{2}
\end{cases}$$

$$\frac{|Vent = Oui|}{|C_{Jouer=Oui}, C_{Jouer=Non}|} = \frac{2}{5}$$

$$E(\text{Vent} = \text{Oui}) = -\left(\frac{1}{2}\log_2\left(\frac{1}{2}\right) + \frac{1}{2}\log_2\left(\frac{1}{2}\right)\right) = 1$$

2. $\underline{\text{Vent} = \text{Non}}$

$$\begin{cases}
C_{Jouer=Oui} = \frac{1}{3} \\
C_{Jouer=Non} = \frac{2}{3}
\end{cases} \qquad \frac{|Veut = Non|}{|C_{Jouer=Oui}, C_{Jouer=Non}|} = \frac{3}{5}$$

$$E(\text{Vent} = \text{Non}) = -\left(\frac{1}{3}\log_2\left(\frac{1}{3}\right) + \frac{2}{3}\log_2\left(\frac{2}{3}\right)\right) = 0.92$$

Faculté des Sciences Exactes Département de Mathématiques

Module: Data Mining Année: 2022-2023

Nature de document: TD1-Solution

Niveau: L3-STID N.BERMAD

D'où

Gain(Vent) =
$$0.97 - (1 * \frac{2}{5} + 0.92 * \frac{3}{5})$$

= 0.018

Nous choisissons l'attribut humidité ayant un gain maximal. Donc, l'arbre de décision est:

> Raffinement de la branche « Pluie »:

L'entropie de la population:

E(C_{Jouer=Oui}, C_{Jouer=Non}) =
$$-\left(\frac{3}{5}\log_2\left(\frac{3}{5}\right) + \frac{2}{5}\log_2\left(\frac{2}{5}\right)\right)$$

= **0.97**

A. Calcul de gain de la Température :

Température	65	68	70	71	75
N°	11	13	14	10	12
Jouer	Non	Oui	Oui	Non	Oui

Nous coupons entre:

$$\begin{cases} x_{11} \text{ et } x_{13} & \longrightarrow & S_1 = 68 \\ x_{14} \text{ et } x_{10} & \longrightarrow & S_2 = 71 \\ x_{10} \text{ et } x_{12} & \longrightarrow & S_3 = 75 \end{cases}$$

Faculté des Sciences Exactes Département de Mathématiques

Module: Data Mining

Nature de document: TD1-Solution

Niveau: L3-STID

Année: 2022-2023

N.BERMAD

$$E \text{ (Température} <= 68) = -\left(\frac{1}{2}\log_2\left(\frac{1}{2}\right) + \frac{1}{2}\log_2\left(\frac{1}{2}\right)\right)$$

$$= 1$$

$$\frac{\left| \text{Température} <=68 \right|}{\left| C_{Jouer=Oui}, C_{Jouer=Non} \right|} = \frac{2}{5}$$

$$E \text{ (Température>68)} = -\left(\frac{2}{3}\log_2\left(\frac{2}{3}\right) + \frac{1}{3}\log_2\left(\frac{1}{3}\right)\right)$$
$$= 0.92$$

$$\frac{\left| \text{Température > 68} \right|}{\left| C_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}} \right|} = \frac{3}{5}$$

D'où

Gain(Température,
$$S_1 = 68$$
) = $0.97 - (1 * \frac{2}{5} + 0.92 * \frac{3}{5})$
= 0.018

$$E \text{ (Température} <= 71) = -\left(\frac{2}{4}\log_2\left(\frac{2}{4}\right) + \frac{2}{4}\log_2\left(\frac{2}{4}\right)\right)$$

$$\frac{\left| \text{ Température} <= 71 \right|}{\left| C_{Jouer=Oui}, C_{Jouer=Non} \right|} = \frac{4}{5}$$

$$Arr$$
 E (Température>71) = -(1 log₂(1) + 0 log₂(0))
= 0

$$\frac{\left| \text{Température} > 71 \right|}{\left| C_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}} \right|} = \frac{1}{5}$$

D'où

Gain(Température,
$$S_2 = 71$$
) = 0.97 - $(1 * \frac{4}{5} + 0 * \frac{1}{5})$
= 0.17

$$E \text{ (Température <= 75)} = -\left(\frac{3}{5}\log_2\left(\frac{3}{5}\right) + \frac{2}{5}\log_2\left(\frac{2}{5}\right)\right) \frac{\left|\text{Température <=75}\right|}{\left|\text{C}_{\text{Jouer=Oui}}, \text{C}_{\text{Jouer=Non}}\right|} = \frac{5}{5} = 1$$

$$= 0.97$$

$$\frac{\left| \text{ Température} <=75 \right|}{\left| C_{Jouer=Oui}, C_{Jouer=Non} \right|} = \frac{5}{5} = 1$$

$$\triangleright$$
 E (Température>75) = 0

$$\frac{\left| \text{ Température > 75} \right|}{\left| C_{Jouer=Oui}, C_{Jouer=Non} \right|} = 0$$

Gain(Température,
$$S_3 = 75$$
) = 0.97 - (0.97 * 1 + 0 * 0)
= 0

Faculté des Sciences Exactes

Département de Mathématiques

Module: Data Mining Année: 2022-2023

Nature de document: TD1-Solution

Niveau: L3-STID N.BERMAD

B. Calcul de gain d'humidité:

Humidité	70	80	80	80	96
N°	11	10	12	13	14
Jouer	Non	Non	Oui	Oui	Oui

Nous coupons entre x_{10} et $x_{12} \rightarrow S = 80$

$$E \text{ (Humidité} <= 80) = -\left(\frac{2}{4}\log_2\left(\frac{2}{4}\right) + \frac{2}{4}\log_2\left(\frac{2}{4}\right)\right)$$

$$= 1$$

$$\frac{\left| \begin{array}{c|c} \textbf{Humidit\'e} <= \textbf{80} \end{array} \right|}{\left| C_{Jouer=Oui}, C_{Jouer=Non} \right|} \quad = \frac{4}{5}$$

E (Humidité>80) =
$$-\left(\frac{1}{1}\log_2(1) + 0\log_2(0)\right)$$

=0

$$\frac{ \left| \text{ Humidité> 80} \right| }{ \left| C_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}} \right| } = \frac{1}{5}$$

D'où

Gain(Humidité, S= 80) =
$$0.97 - (1 * \frac{4}{5} + 0 * \frac{1}{5})$$

= 0.17

C. Calcul de gain du Vent

1. $\underline{\text{Vent} = \text{Oui}}$

$$\begin{cases}
C_{\text{Jouer=Oui}} = \frac{0}{2} = 0 \\
C_{\text{Jouer=Non}} = \frac{2}{2} = 1
\end{cases}$$

$$\begin{vmatrix}
Vent = Oui \\
|C_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}}|$$

$$= \frac{2}{5}$$

$$E(Vent = Oui) = -(0 log_2(0) + 1 log_2(1)) = 0$$

2. Vent = Non

$$\begin{cases}
C_{\text{Jouer=Oui}} = \frac{3}{3} = 1 \\
C_{\text{Jouer=Non}} = 0
\end{cases} \qquad \frac{|\text{Vent = Non}|}{|C_{\text{Jouer=Oui}}, C_{\text{Jouer=Non}}|} = \frac{3}{5}$$

$$E(Vent = Non) = -(1 log_2(1) + 0 log_2(0)) = 0$$

Gain(Vent) =
$$0.97 - (0 * \frac{3}{5} + 0 * \frac{2}{5})$$

= 0.97

Ministère de l'Enseignement supérieur et de la recherche scientifique Université Abderrahmane Mira de Bejaïa Faculté des Sciences Exactes Département de Mathématiques

Module: Data Mining Année: 2022-2023

Nature de document: TD1-Solution

Niveau: L3-STID N.BERMAD

Débriefing : Nous avons:

Gain (Vent) = 0.97

Gain (Humidité, S) = 0.17 \rightarrow nous choisissons vent ayant un gain maximal

Gain (Température, S_2) = 0.17

L'arbre final est:

3. Ici la précision est calculée sur l'ensemble d'apprentissage et non pas de test. Pour cela, nous devons construire la matrice de confusion:

Classe actuelle	Classe prédite				
	Jouer=Oui	Jouer=Non			
Jouer=Oui	F11=9	F10=00			
Jouer=Non	F01=00	F00 =5			

Nb:F_{ij}=c'est le nombre des instances de la classe i prédite dans la classe j.

La prédiction de la classe des données d'apprentissages avec lesquelles on a construit l'arbre de décision.

Donc:

Ministère de l'Enseignement supérieur et de la recherche scientifique Université Abderrahmane Mira de Bejaïa Faculté des Sciences Exactes Département de Mathématiques

Module: Data Mining Année: 2022-2023

Nature de document: TD1-Solution

Niveau: L3-STID N.BERMAD

Précision =
$$\frac{\text{Nombre des prédictions correctes}}{\text{Nombre totale des prédiction}}$$

$$= \frac{F11 + F00}{F11 + F10 + F01 + F00}$$

$$= \frac{9 + 5}{9 + 0 + 0 + 5}$$

$$= \frac{14}{14}$$

$$= (1 * 100)\%$$

$$= 100\%$$

Une précision de 100% sur l'ensemble d'apprentissage illustre bien le phénomène de sur apprentissage qui ne signifie pas forcément que le modèle obtenu généralise bien sur des nouvelles données.