

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 58 100.2

REC'D 0'6 FEB 2004

PCT

WIPO

Anmeldetag:

11. Dezember 2002

Anmelder/Inhaber:

Priamus System Technologies AG,

8200 Schaffhausen/CH

Bezeichnung:

Vorrichtung zum Messen, Überwachen und/oder

Regeln einer Temperatur

IPC:

G 01 K, G 05 D

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 15. Januar 2004 Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Wallner

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

25

30

Priamus System Technologies AG Bahnhofstrasse 36 CH-8200 Schaffhausen

15 Vorrichtung zum Messen, Überwachen und/oder Regeln einer Temperatur

Die Erfindung betrifft eine Vorrichtung zum Messen, Überwachen und/oder Regeln einer Temperatur, insbesondere der Temperatur der Werkzeugwand eines Spritzgiesswerkzeugs, mittels zumindest einem Messelement, welches einen Sensorkörper in einer entsprechenden Bohrung zumindest bis zu dessen Aussenwandung durchzieht.

Stand der Technik

Das Messen, Überwachen und Regeln einer Temperatur ist in vielen Fertigungsbereichen wichtig und notwendig. Nur beispielhaft wird die Überwachung der Temperatur eines Spritzgiesswerkzeuges erwähnt, wie dies beispielsweise in der DE 101 14 228 A1 aufgeführt wird. Über entsprechende

Thermomesselemente, welche die Werkzeugwandtemperatur ermitteln, wird der gesamte Spritzvorgang gesteuert. Aus diesem Grunde sind diese Thermomesselemente von höchster Wichtigkeit.

Bei bekannten Thermomesselementen befindet sich die entsprechende 5 Zuleitung lose in einem Sensorkörper, wobei die Messelemente aus der dort mit einem Sensorkörpers herausragen und des Stimfläche ergibt sich eine dgl. festgelegt sind. Schweisstropfen od. Daraus Unregelmässigkeit der Stirnfläche durch die Schicht des Schweissbuckels zwischen zu messendem Medium und Messelement, was zu erheblichen 10 Ungenauigkeiten des Sensors führt.

Ferner ist auf der Ausgleichsleitung eine dicke Fassungshülse vorgesehen, welche den Übergang von einem Metallrohr zwischen Fassungshülse und Sensorkörper zu einem flexiblen Kabel bildet. Diese Fassungshülse dient auch der Zugentlastung der Messelemente im Sensorkörper. Sie hat aber den Nachteil, dass für sie im Spritzgiesswerkzeug ein Raum freigelassen werden muss, der eine Schwächung des Werkzeugs darstellt.

Aufgabe

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung und ein Verfahren zum Herstellen dieser Vorrichtung zu schaffen, wodurch diese Nachteile vermieden werden. Es soll eine gesicherte Festlegung der Messelemente erfolgen, ohne dass die Genauigkeit beeinträchtigt ist. Ferner soll die Vorrichtung so dünn wie möglich gehalten werden, damit eine geringst mögliche Schwächung des Spritzgiesswerkzeuges stattfindet (Kabelkanal).

25

15

20

Lösung der Aufgabe

10

20

25

30

Zur Lösung dieser Aufgabe führt, dass das Messelement im Sensorkörper und/oder in einer dem Sensorkörper vorgeschalteten Krimphülse festgeklemmt ist.

Hierdurch wird gewährleistet, dass die Messelemente in ihrer gewünschten Lage verbleiben, ohne dass sie durch Schweissstellen festgelegt werden müssen. Durch das Krimpen findet eine Zugentlastung der Messelemente statt. Es bedarf keiner dicken Fassungshülse, so dass die gesamte Ausgleichsleitung dünner gehalten werden kann.

15 Vom Erfindungsgedanken wird umfasst, dass die Messelemente im Sensorkörper bzw. in entsprechenden Bohrungen durch das Krimpen festgelegt werden. Das Krimpen geschieht dann möglichst nahe an der Spitze des Sensorkörpers, so dass die Messelemente nicht die Möglichkeit haben, aus ihrer gewünschten Gebrauchslage auszuweichen.

In manchen Fällen kann es auch genügen, wenn nur die Ausgleichsleitung in der Krimphülse festgelegt wird. Allerdings könnten dann die Messelemente in den Bohrungen im Sensorkörper noch zurückweichen, wenn beispielsweise ein Druck von der Stirnfläche her ausgeübt wird. Deshalb wird in einem bevorzugten Ausführungsbeispiel sowohl der Sensorkörper als auch die Krimphülse gekrimpt.

Sollte es möglich sein, die Messelemente so in die Bohrungen im Sensorkörper einzuführen, dass ihre Stirnflächen exakt in der Ebene der Stirnfläche des Sensorkörpers liegen, so genügt es, wenn sie nur in die Bohrungen eingeschoben werden und dann der Krimpvorgang durchgeführt wird. Um aber ein exaktes Positionieren der Stirnflächen der Messelemente in der Ebene der

Stirnfläche des Sensorkörpers zu erreichen, hat es sich als ratsam erwiesen, die Messelemente geringfügig über die Stirnfläche des Sensorkörpers hinausschauen zu lassen und sie dort mit einem Schweiss- oder Löttropfen festzulegen. Nunmehr kann der Krimpvorgang vollzogen werden, danach wird der Schweiss- oder Löttropfen zusammen mit den Enden der Messelemente abgeschliffen, so dass sicher gewährleistet ist, dass die Stirnflächen der Messelemente schlussendlich in der Ebene der Stirnfläche des Sensorkörpers liegen.

5

15

In einem bevorzugten Ausführungsbeispiel weist die Ausgleichsleitung eine Aussenisolation aus Glasseide/Kapton auf. Diese Aussenisolation isoliert die Ausgleichsleitung gegenüber dem heissen Spritzgiesswerkzeug.

Ferner ist vorgesehen, dass an die Krimphülse ein Auszugsgewinde anschliesst, wodurch mit einem entsprechenden Werkzeug ein einfaches Ausziehen des Sensorkörpers aus beispielsweise einer Bohrung in dem Spritzgiesswerkzeug erfolgt.

Figurenbeschreibung

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand de Zeichnung; diese zeigt in

Figur 1 eine Draufsicht auf eine erfindungsgemässe Vorrichtung zum Überwachen einer Temperatur;

10 Figur 2 einen vergrössert dargestellten Querschnitt des vorderen Bereichs der Vorrichtung gemäss Figur 1;

Figur 3 einen nochmals vergrösserten Querschnitt aus dem Bereich der Spitze der Vorrichtung gemäss Figur 1 in einer Vorstufe ihrer Herstellung.

Figur 4 einen schematisch dargestellten Querschnitt durch ein weiteres Ausführungsbeispiel eine Spitze einer Vorrichtung gemäss Figur 1.

Eine erfindungsgemässe Vorrichtung R zum Messen der Temperatur beispielsweise der Werkzeugwand eines Spritzgiesswerkzeuges weist gemäss den Figuren 1 und 2 einen Sensorkörper 1 auf, in welchem zwei Längsbohrungen 2 und 3 vorgesehen sind. In jeder Längsbohrung 2 und 3 befindet sich ein Messelement4 bzw. 5, die mit ihren Spitzen in der Ebene der Stirnfläche 6 des Sensorkörpers 1 liegen.

25

15

20

5

An den Sensorkörper 1 schliesst eine Krimphülse 7 an, auf die ein Auszugstück 8 mit einem Auszuggewinde 9 aufgesteckt ist. Krimphülse 7 und Auszugstück 8 umfangen eine Ausgleichsleitung 10, wobei zwischen Ausgleichsleitung 10 und Krimphülse 7 noch eine Isolierhülse 11 vorgesehen ist.

Aus der Ausgleichsleitung 10 ragen die beiden Messelemente 4 und 5 heraus und greifen in die Längsbohrungen 2 und 3 ein.

Am anderen Ende endet die Ausgleichleitung 10 in einer Hülse 12 und zweigt sich dort in die Anschlussleitungen 13 und 14 auf.

5

10

15

20

25

Die Herstellungsweise für die erfindungsgemässe Vorrichtung wird nachfolgend u. a. auch anhand der Figuren 3 und 4 näher beschrieben:

Auf das freie Ende der Ausgleichsleitung 10 jenseits der Hülse 12 werden das Auszugsstück 8, die Krimphülse 7 und der Sensorkörper 1 aufgeschoben. Dabei ist darauf zu achten, dass die Messelemente 4 und 5 ihre Längsbohrungen 2 und 3 finden. Die Messelemente 4 und 5 können dabei, wie in Figur 3 gezeigt, aus der Stimfläche 6 des Sensorkörpers herausragen.

Auf die Stirnfläche 6 wird nun eine definierte Schweissstelle 15 mit grossen Toleranzen aufgebracht. Danach erfolgt ein Abschleifen dieser Schweissstelle 15 bzw. des Schweissbuckels auf die Höhe der planen Stirnfläche 6.

In Figur 4 ist dagegen angedeutet, dass die Messelemente 4 und 5 in der Ebene der Stimfläche 6 enden. Danach wird der vordere Bereich, wie durch die Pfeile angedeutet, zusammengepresst bzw. gekrimpt, wodurch sich die Möglichkeit einer klar definierten Temperaturmessung ergibt. Noch besser als beim Schweissen sind die Messelemente 4 und 5 durch das Krimpen ortsfest in den Längsbohrungen 2 und 3 festgelegt, so dass sie nicht aus den Längsbohrungen 2 und 3 herausgezogen werden können. Dieses Verfahren ermöglicht die nachträgliche Bearbeitung der Sensorfront durch den Anwender, um diese an die Oberfläche der Kavität anzupassen.

In einem bevorzugten Ausführungsbeispiel findet ferner auch ein Krimpen der Krimphülse 7 statt, wodurch die Ausgleichsleitung 10 bzw. deren vorderer

Bereich in der Krimphülse 7 festgelegt wird. Auch dies dient der Zugentlastung der Ausgleichsleitung 10. Das Krimpen der Krimphülse 7 geschieht natürlich erst dann, wenn die Krimphülse 7 auf den Sensorkörper 1 aufgesteckt ist.

Das Auszugsstück 8 kann schon vorher mit der Krimphülse 7, beispielsweise durch Schweissen oder Kleben, verbunden sein, es könnte aber auch eine Gewindeverbindung vorgesehen werden. Auf das Auszugsgewinde 9 des Auszugstücks 8 kann ein entsprechendes Werkzeug aufgeschraubt werden, um Krimphülse 7 und Sensorkörper 1 aus einer Gebrauchslage in der Werkzeugwand eines Spritzgiesswerkzeuges zu ziehen.

Patentansprüche

Vorrichtung zum Messen, Überwachen und/oder Regeln einer Temperatur, insbesondere der Temperatur der Werkzeugwand eines Spritzgiesswerkzeuges mittels zumindest einem Messelement (4, 5), welches einen Sensorkörper (1) in einer entsprechenden Bohrung (2, 3) zumindest bis zu dessen Aussenwandungen (6) durchzieht,

10 dadurch gekennzeichnet,

15

20

25

30

dass das Messelement (4, 5) im Sensorkörper (1) und/oder in einer dem Sensorkörper vorgeschalteten Krimphülse (7) festgeklemmt ist.

- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass in der Krimphülse (7) eine Ausgleichsleitung (10) angeordnet ist, aus der das Messelement (4, 5) in den Sensorkörper (1) ragt.
- Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die Ausgleichsleitung (10) eine Aussenisolation aus Glasseide/Kapton aufweist.
 - 4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass an die Krimphülse (7) ein Auszugsgewinde (9) anschliesst.
 - Verfahren zum Herstellen einer Vorrichtung zum Überwachen einer Temperatur, insbesondere der Temperatur der Werkzeugwand eines Spritzgiesswerkzeuges, mittels zumindest einem Messelement (4, 5), welches einen Sensorkörper (1) in einer entsprechenden Bohrung (2, 3) zumindest bis zu dessen Aussenwandungen (6) durchzieht,

dadurch gekennzeichnet, dass das Messelement (4, 5) im Sensorkörper (1) durch Verringerung des Querschnitts der Bohrung (2, 3) festgeklemmt wird.

Verfahren zum Herstellen einer Vorrichtung zum Überwachen einer 6. 5 Temperatur, insbesondere der Temperatur der Werkzeugwand eines Spritzgiesswerkzeuges mittels zumindest einem Messelement (4, 5), welches einen Sensorkörper (1) in einer entsprechenden Bohrung (2, 3) zumindest bis zu dessen Aussenwandungen (6) durchzieht, dass dem Sensorkörper (1) eine dadurch gekennzeichnet, · 10 Krimphülse (7) angesetzt wird, deren Innenraum von Ausgleichsleitung (20) mit dem Messelement (4, 5) durchzogen wird, wobei der Querschnitt des Innenraumes der Krimphülse (7) zumindest teilweise verringert und damit die Ausgleichsleitung (10) in dem Innenraum festgelegt wird. 15

7. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass das Messelement (4, 5) etwas aus der Bohrung (2, 3) herausschaut und nach dem Festklemmen abgeschliffen wird.

8. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass das Messelement (4, 5) etwas aus der Bohrung (2, 3) herausschaut, mit einem Schweiss- oder Löttropfen überzogen und dieser zusammen mit dem Messelement (4, 5) abgeschliffen wird.

20

25

Zusammenfassung

Bei einer Vorrichtung zum Messen, Überwachen und/oder Regeln einer Temperatur, insbesondere der Temperatur der Werkzeugwand eines Spritzgiesswerkzeuges mittels zumindest einem Messelement (4, 5); welches einen Sensorkörper (1) in einer entsprechenden Bohrung (2, 3) zumindest bis zu dessen Aussenwandungen (6) durchzieht, soll das Messelement (4, 5) im Sensorkörper (1) und/oder in einer dem Sensorkörper vorgeschalteten Krimphülse (7) festgeklemmt sein.

(Figur 2)

10

5

∵ ₩-

DR. PETER WEISS & DIPL.-ING. A. BRECHT

Patentanwälte European Patent Attomey

5

Aktenzeichen: P 2898/DE

Datum: 7.11.2002

W/GE

Positionszahlenliste

1	Sensorkörper	34	67	<u>,</u>
	Längsbohrung	35	 68	
2 3	Längsbohrung	36	 69	•
4	Messelement	37	 70_	·
5	Messelement	38	71_	
6	Stirnfläche	39	72	
7	Krimphülse	40	 73	
8	Auszugstück	41	 74	
9	Auszuggewinde	42	 75_	
10	Ausgleichsleitung	43	76	
11	Isolierhülse	44	77	
12	Hülse	45	78	
13	Anschlussleitung	46	 79	
14	Anschlussleitung	47		
15	Schweissstelle	48		
16		49		
17		50		
18		51		
19		52		
20		53		
21		54		
22		55		
23		56	R	Vorrichtung
24		57		
25		58		
26		59		
27		60		
28		61		
29		62		
30		63		
31		64		
32		65		
33		66		

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.