von Neumann Algebras

Hoyan Mok

December 11, 2023

Preface

 $\mathcal H$ means a Hilbert space by default. If not specified, the base field is $\mathbb K=\mathbb R$ or $\mathbb C.$

Contents

Preface Contents		i ii
2	Von Neumann Algebras	3 3
A	Appendix	4
Bi	ibliography	5
In	Index	

Chapter 1

Operators on Hilbert Spaces

§1 Topologies on Spaces of Operators

Definition 1.1: Topology generated by semi-norms Let V be a vector space over \mathbb{K} . If $\{\|-\|_i\}_{i\in I}$ is a family of seperated seminorms on V, where ``seperated'' means that

$$\forall v \in V, \ \exists i_0 \in I, \ v \neq 0 \to ||v||_{i_0} \neq 0,$$
 (1-1)

then the **topology generated by** $\{\|-\|_i\}_{i\in I}$ is the unique Hausdorff topology on V s.t.

$$\forall \langle v_n \rangle \in V^{\mathbb{N}}, \quad v_n \to v \in V \iff \forall i \in I, \ \|v_n - v\|_i \to 0.$$
 (1-2)

The locally convexity is given by the the balanced local base

$$\left\{ \left\{ v \in V \middle| \bigwedge_{k \in n} \|v\|_{i_k} < \varepsilon_k \right\} \middle| n \in \mathbb{N}_+, \ \forall k \in n, \ \varepsilon_k \in \mathbb{R}_+ \right\}. \tag{1-3}$$

Theorem 1.1 (Continuous linear functionals on a locally convex space). Let V be locally convex, with topology generated by $\{\|-\|_i \mid i \in I\}$. A linear functional $f \in V^*$ is continuous iff

$$\exists C \in \mathbb{R}_+, \ \exists n \in \mathbb{N}_+, \ \exists \{i_k \mid k \in n\} \subset I, \ \forall v \in V, \\ |f(v)| \le C \max_{k \in n} \|v\|_{i_k}.$$
 (1-4)

Definition 1.2: Strong-operator topology

Let \mathcal{H} be a Hilbert space. The **strong-operator topology** (SO) on the space of all bounded operators $B(\mathcal{H})$ is the locally convex topology generated by the seminorms $\|-\|_x$ $(x \in \mathcal{H})$, defined as

$$\|\|_x \colon B(\mathcal{H}) \to \mathbb{R}$$

$$T \mapsto \|Tx\|. \tag{1-5}$$

In SO topology, $T_n \to T$ iff $\forall x \in \mathcal{H}$, $||T_n x - Tx|| \to 0$.

Definition 1.3: Weak-operator topology

The **weak-operator topology** (**WO**) on the space $B(\mathcal{H})$ is the locally convex topology generated by the seminorms $\|-\|_{x,y}$ ($x, y \in \mathcal{H}$), defined as

$$\|\|_{x,y} \colon B(\mathcal{H}) \to \mathbb{R}$$

$$T \mapsto |\langle Tx, y \rangle|. \tag{1-6}$$

In WO topology, $T_n \to T$ iff $\forall x, y \in H$, $\langle T_n x, y \rangle \to \langle Tx, y \rangle$. If $T_n \to T$ in SO topology, then it is true also in WO topology.

Theorem 1.2. Let $\mathscr S$ be a convex subset of $B(\mathcal H)$. The WO closure of $\mathscr S$ coincides with the SO closure of $\mathscr S$.

Chapter 2

Von Neumann Algebras

§2 Von Neumann Algebras

Definition 2.1: Von Neumann algebra A C^* -subalgebra $\mathscr A$ of $B(\mathcal H)$ is called a **von Neumann algebra** if $\mathscr A$ is closed in the SO topology.

By Theorem 1.2, a C^* -subalgebra $\mathscr A$ is a von Neumann algebra iff $\mathscr A$ is closed in the WO topology.

§3 Existence of Projections

Recall that a projection is an element $p\in\mathscr{A}$ s.t. $p^2=p=p^*,$ where \mathscr{A} is a C^* -algebra.

Appendix A Appendix

Bibliography

- [1] Jonah Kudler-Flam, Samuel Leutheusser, and Gautam Satishchandran. Generalized Black Hole Entropy is von Neumann Entropy.
 Oct. 24, 2023. DOI: 10.48550/arXiv.2309.15897. arXiv: 2309.
 15897 [gr-qc, physics: hep-th, physics: quant-ph]. URL: http://arxiv.org/abs/2309.15897 (visited on 12/07/2023).
- [2] Roberto Longo. ``Von Neumann Algebras and Quantum Field Theory''. In: Proceedings of the International Congress of Mathematicians. Ed. by S. D. Chatterji. Basel: Birkhäuser, 1995, pp. 1281–1291. ISBN: 978-3-0348-9078-6. DOI: 10.1007/978-3-0348-9078-6 123.
- [3] Jonathan Sorce. Notes on the type classification of von Neumann algebras. Apr. 11, 2023. DOI: 10.48550/arXiv.2302.01958.arXiv:2302.01958[hep-th,physics:math-ph,physics:quant-ph]. URL: http://arxiv.org/abs/2302.01958 (visited on 12/07/2023).
- [4] Serban-Valentin Stratila and Laszlo Zsido. Lectures on von Neumann Algebras. 2nd ed. Cambridge IISc Series. Cambridge: Cambridge University Press, 2019. ISBN: 978-1-108-49684-1. DOI: 10.1017/9781108654975. URL: https://www.cambridge.org/core/books/lectures-on-von-neumann-algebras/FF81722EEEA998BB51FF0F4A976ABFE8 (visited on 11/29/2023).

6 Bibliography

[5] Robert M. Wald. Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. Chicago Lectures in Physics. Chicago, IL: University of Chicago Press, Nov. 1994. 220 pp. ISBN: 978-0-226-87027-4. URL: https://press.uchicago.edu/ucp/books/book/chicago/Q/bo3684008.html (visited on 12/07/2023).

Index

Here listed the important symbols used in this notes.

SO, $\frac{2}{2}$ strong-operator topology, $\frac{2}{2}$

von Neumann algebra, ${\color{red}3}$

weak-operator topology, $\frac{2}{WO}$, $\frac{2}{2}$