DESIGN GRADE DE BRAGG

SEMANA

ESTUDO DE REFERENCIAS

Ref: T. Erdogan, "Fiber grating spectra," in Journal of Lightwave Technology, vol. 15, no. 8, pp. 1277-1294, Aug. 1997, doi: 10.1109/50.618322.

Para uma grade do tipo FBG, é interessante calcular analiticamente sua transmissão e refletância teorica

Para um caso mais simples as variáveis que podemos controlar são:

Neff, Comprimento da grade, refletância maxima

Podemos calcular a através da seguinte equação:

$$r = rac{\sinh^2\!\left(\sqrt{\kappa^2 - \hat{\sigma}^2} L
ight)}{\cosh^2\!\left(\sqrt{\kappa^2 - \hat{\sigma}^2} L
ight) - rac{\hat{\sigma}^2}{\kappa^2}}.$$

Logo, so precisamos definir k e $\hat{\sigma}$

K pode ser calculado a partir da reflexão maxima:

$$r_{
m max} = anh^2(\kappa L)$$

$$k = \frac{arctang(\sqrt{r_{max}})}{L}$$

E sabendo que:

$$\hat{\sigma} \equiv \delta + \sigma - \frac{1}{2} \frac{d\phi}{dz}$$

Dado que a grade é uniforme: $\frac{d\phi}{dz} = 0$

Desprezando o self-coupling: $\sigma = 0$

Logo:
$$\hat{\sigma} \equiv \delta = 2\pi n_{\rm eff} \left(\frac{1}{\lambda} - \frac{1}{\lambda_D}\right)$$

E sabendo que:

$$\hat{\sigma} \equiv \delta + \sigma - \frac{1}{2} \frac{d\phi}{dz}$$

Dado que a grade é uniforme: $\frac{d\phi}{dz} = 0$

Desprezando o self-coupling: $\sigma = 0$

Logo:
$$\hat{\sigma} \equiv \delta = 2\pi n_{\rm eff} \left(\frac{1}{\lambda} - \frac{1}{\lambda_D}\right)$$

```
L = 1 \; mm \; , r \; max = 0.8 , Comprimento \; central = 1550 \; nm
```


Simulação interconect Exemplo 1

SEMANA 2

DESIGN DE FILTRO COM GRADE DE BRAGG

SEMANA 2

Design de filtro com Grade de Bragg

Parametros

Comprimento central = 1540 nm

Fwhm = 20 nm

Guia: 450 x 220 nm, SOI

Neff = 2.2875

Ng = 4.5878

Parametros

Simulação do guia

mode # ▼	effective index	wavelength (μm)	loss (dB/cm)	group index	TE polarization fraction (Ey)	waveguide TE/TM fraction (%)
1	2.287553-6.070278e-18i	1.54	-2.1512e-12	4.587824-8.341346e-16i	97	68.69 / 82.03
2	1.553599-2.755374e-07i	1.54	-0.097646	3.383983+2.583202e-05i	8	73.55 / 87.94

Parametros:

Para neff = 2.287: Periodo da grade = 336.612 nm Para Numero de periodos = 100: L = 33.6612 um Para L = 336.612 um, deltaNeff = 0.09331

Calculo do Delta W

Simulação no EME

# *	Name	Туре	Value	Unit
1	[1] W	Length	0.45	um
2	[1] altura	Length	0.22	um
3	[1] deltaW	Length	0.0354	um
4	1 periodo	Length	0.336612	um
5	material material	Material	Si (Silicon)	
6	substrato	Material	SiO2 (Glass)	

Simulação no EME

Resultados Iniciais

DESIGN
Calculando novo periodo ideal P = 0.3534426 nm (x1.05)

DESIGN
Calculando novo periodo ideal

P = 0.3702732 nm (x1.1)

Calculando novo periodo ideal

Novo periodo teorico

P = 0.337118 um (E = 0.15%)

Corrigindo o FWHM, calculo de ΔW $\Delta W = 0.03894 (x1.1)$

Corrigindo o FWHM, calculo de ΔW $\Delta W = 0.04956 (x1.5)$

Corrigindo o FWHM, calculo de ΔW ΔW teorico = 0.0660727 um (E = 87.6%)

DESIGN Correção do FWHMW

DESIGNCorreção do FWHMW

DESIGN 2º correção do periodo

DESIGN 2º correção do periodo

DESIGN Design Final

1	[1] W	Length	0,45	um
2	[1] altura	Length	0,22	um
3	[1] deltaW	Length	0,0734068	um
4	[1] periodo	Length	0,338535	um
5	■ N	Number	100	
6	material	Material	Si (Silicon) - P	alik
7	substrato	Material	SiO2 (Glass) -	P

Analise variação de temperatura

Ref: Handbook of Thermo-optic Coefficients of Optical Materials With Applications

Material	Wavelength	Refractive	dn/dT [()	0 ^{- 4} //K]	Differ-	Av. RMS
[Ref.]	[µm]	index	Recom. C	Computed	ence	Dev. Dev.
[]	(,)			This work)	1	<-[10 ⁻⁶]->
			values (illis work,	,	(10)>
	16.00	3.9999	4.016	4.036	-0.0202	
	17.00	3.9997	4.015	4.035	-0.0198	
	18.00	3.9996	4.013	4.034	-0.0206	
Si	1.20	3.5167	1.983	2.000	-0.0168	0.71 0.80
at 20°C	1.22	3.5133	1.970	1.983	-0.0131	
[144]	1.24	3.5102	1.957	1.967	-0.0103	
	1.26	3.5072	1.945	1.953	-0.0075	
	1.30	3.5016	1.923	1.925	-0.0024	
	1.32	3.4990	1.912	1.913	-0.0009	
	1.34	3.4965	1.902	1.901	0.0009	
	1.36	3.4941	1.892	1.890	0.0020	
	1.38	3.4918	1.883	1.879	0.0036	
	1.40	3.4896	1.874	1.869	0.0046	
	1.50	3.4799	1.835	1.826	0.0089	
	1.55	3.4757	1.818	1.808	0.0099	
	1.65	3.4684	1.789	1.777	0.0116	
	1.70	3.4653	1.776	1.764	0.0117	
	1.90	3.4550	1.734	1.723	0.0110	
	2.00	3.4510	1.717	1.707	0.0098	Note:
	2.25	3.4431	1.685	1.677	0.0077	The comput-
	2.50	3.4375	1.662	1.656	0.0056	
	2.75	3.4334	1.645	1.641	0.0038	superior to
	3.00	3.4302	1.632	1.630	0.0022	the estimated
	4.00	3.4229	1.602	1.604	-0.0020	uncertainty
	5.00	3.4195	1.588	1.592	-0.0043	in the
	6.00	3.4177	1.581	1.586	-0.0050	
	7.00	3.4165	1.576	1.582	-0.0063	value of
	8.00	3.4158	1.573	1.580	-0.0068	15 X 10 ⁻⁶ .
	9.00	3.4153	1.571	1.578	-0.0071	
	10.00	3.4150	1.570	1.577	-0.0069	
	11.00	3.4147	1.569	1.576	-0.0070	
	12.00	3.4145	1.568	1.575	-0.0074	
	13.00	3.4144	1.567	1.575	-0.0078	
	14.00	3.4142	1.567	1.574	-0.0075	

T base = 293.1

Analise variação de temperatura

T = 234.5 (x 0.8)

DESIGN Analise variação de temperatura

T = 263.8 (x 0.9)

DESIGN Analise variação de temperatura

T = 322.4 (x 1.1)

DESIGN Analise variação de temperatura

T = 351.72 (x 1.2)

DESIGNAnalise variação de temperatura Fwhm

DESIGNAnalise variação de temperatura Banda central

ALTERANDO O GUIA PARA 600 NM

Alterando o guia para 600 nm

Simulação do guia

mode #	effective index	wavelength (µm)	loss (dB/cm)	group index	TE polarization fraction (Ey)	waveguide TE/TM fraction (%)
1	2.537329+8.301567e-17i	1.54	2.9419e-11	4.198189+3.531844e-17i	99	80.25 / 81.12
2	1.667813+5.340745e-11i	1.54	1.8927e-05	3.920935-4.571173e-09i	12	67.94 / 90.11

Parametros:

```
Para neff = 2.5373
Periodo da grade = 303.468 nm
Para Numero de periodos = 250: L = 75.867 um
Para L = 36.416 um, deltaNeff = 0.05405
Rmax = 0.988
```

Calculo do Delta W

DESIGN Simulação no EME

1	[1] W	Length	0,6	um
2	[t] altura	Length	0,22	um
3	[t] deltaW	Length	0,0517	um
4	[1] periodo	Length	0,303469	um
5	material material	Material	Si (Silicon) - P	alik

Material

Number

substrato

SiO2 (Glass) - P...

120

Simulação no EME

C IIIIII	in (µm) -0.5				number of cell gro	oups 4				number o	f periodic groups 3	
ener	rgy conservation make passiv	ve v	n	umber of n	nodes for all cell gr	oups 20	pe	erio	dic group definition			
				a	low custom eigens	solver settings			start cell group	end cell group	periods	
cell g	group definition						1	1	1	1	1	
	group spans (µm)	cells	subcell method	modes	custom	cell range	2	2	2	3	120	
1	0.5	2	CVCS	20	default	[1,2]	3	3	4	4	1	
2	0.151734	2	CVCS	20	default	[3,4]						_
3	0.151734	2	CVCS	20	default	[5,6]						
4	0.5	2	cvcs	20	default	[7,8]						
			'		1							
			<u>'</u>		1							
<						>						
	display cells		Clear settings for cell	group 1	Custom settings f							
			Clear settings for cell									
	y (µm) 0		Clear settings for cell	y min (µn	1) -2.5							
			Clear settings for cell		1) -2.5							
	y (µm) 0		Clear settings for cell	y min (µn	n) -2.5 n) 2.5			cell	group sequence			
	y (µm) 0 y span (µm) 5		Clear settings for cell	y min (µn y max (µn	n) -2.5 n) 2.5			cell		,(2,3)^120	,(4)^1]	

Resultados Iniciais

Correção do FWHM

 $\Delta W = 0.064625 (x1.25)$

Correção do FWHM $\Delta W = 0.07755 (x1.5)$

Correção do FWHM

 $\Delta W = 0.090475 (x1.75)$

Correção do FWHM

 $\Delta W = 0.1034 (x2)$

Correção do FWHM

 $\Delta W = 0.12925 (x2.5)$

DESIGN Analise do FWHM

Comparação com a grade anterior

ALTERANDO A GEOMETRIA DA 1 GRADE

DESIGN Gemetria triangular

Gemetria triangular

DESIGN Gemetria triangular

Variando o ΔW

 $\Delta W = 0.0550551 (x0.75)$

Variando o ΔW

 $\Delta W = 0.02752755 (x0.375)$

Comparação entre grades

ALTERANDO A GEOMETRIA DA 1 GRADE

DESIGN Gemetria Senoidal

Gemetria triangular

DESIGN Gemetria triangular

Variando o ΔW

 $\Delta W = 0.0550551 (x0.75)$

Variando o ΔW

 $\Delta W = 0.02752755 (x0.375)$

Comparação entre grades

SEMANA 3

Simulação FDTD

DESIGN Convergencia do Campo

Convergencia no tempo

DESIGN Resultados

DESIGN Resultados

DESIGN Resultados

Aplicando o filtro de litografia node size = 45nm

Aplicando o filtro de litografia node size = 100 nm

Aplicando o filtro de litografia node size = 150nm

Resultado do filtro de litografia node size = 100 nm

