Лабораторная работа №2

Простейший шаблон

Легиньких Г.А.

Российский университет дружбы народов, Москва, Россия

Информация

Докладчик

- Легиньких Галина Андреевна
- НФИбд-02-21
- Российский университет дружбы народов
- 1032216447@pfur.ru
- https://github.com/galeginkikh

Задача о погоне

Цель работы

Изучить основы языков программирования Julia и OpenModelica. Освоить библиотеки этих языков, которые используются для построения графиков и решения дифференциальных уравнений. Решить задачу о погоне.

Теоретическое введение

Julia

Julia — высокоуровневый высокопроизводительный свободный язык программирования с динамической типизацией, созданный для математических вычислений. Эффективен также и для написания программ общего назначения. Синтаксис языка схож с синтаксисом других математических языков (например, MATLAB и Octave), однако имеет некоторые существенные отличия. Julia написан на Си, С++ и Scheme. Имеет встроенную поддержку многопоточности и распределённых вычислений, реализованные в том числе в стандартных конструкциях.

OpenModelica

OpenModelica — свободное открытое программное обеспечение для моделирования, симуляции, оптимизации и анализа сложных динамических систем. Основано на языке Modelica. Активно развивается Open Source Modelica Consortium, некоммерческой неправительственной организацией. Open Source Modelica Consortium является совместным проектом RISE SICS East AB и Линчёпингского университета. По своим возможностям приближается к таким вычислительным средам как Matlab Simulink, Scilab xCos, имея при этом значительно более удобное представление системы уравнений исследуемого блока.

Задание

Задания лабораторной работы разделены по вариантам. Мой вариант 18

На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 7,7 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 3,3 раза больше скорости браконьерской лодки. 1. Запишите уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени). 2. Постройте траекторию движения катера и лодки для двух случаев. З. Найдите точку пересечения траектории катера и лодки

Выполнение работы

Все расчеты и формулы приведены в отчете

Код на Julia

Установила Julia: (рис. (fig:001?))

Рис. 1: Julia

Установим нужные библиотеки, проверим их установку:

```
import Pkg
Pkg.add("Plots")
Using Plots
Pkg.add("Differential Equations")
using Differential Equations
```

Код приведен в отчете

Скомпилируем файл командной в PShell: (рис. (fig:002?))

```
Windows PowerShell
(C) Корпорация Майкрософт (Microsoft Corporation). Все права защищены.
Установите последнюю версию PowerShell для новых функций и улучшения! https://aka.ms/PSWindows
PS C:\Users\galin\study_2023-2024_mathmod\labs\lab02\Julia> julia lab2.jl
```

Рис. 2: PShell

Результат для первого случая: (рис. (fig:003?))

Рис. 3: 1 случай

Результат для второго случая: (рис. (fig:004?))

Рис. 4: 2 случай

OpenModelica

К сожалению, OpenModelica не адаптирована к использованию полярных координат, поэтому адекватное отображение результатов данный задачи там невозможно.

Вывод

Были изучены основы языков программирования Julia и OpenModelica. Освоены библиотеки этих языков, которые используются для построения графиков и решения дифференциальных уравнений. Поскольку OpenModelica не работает с полярными координатами, она пока что не была использована в данной лабораторной работе.