Machine Learning Stanford Coursera Online Course Equations

Week 1.

Linear Regression With Two Variables

$$h(x) = \theta_0 + \theta_1 x$$

Function to minimize

$$\min(J(\theta_0, \theta_1)) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

Gradient descent algorithm for 2 paramaters θ_i

Repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

Repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h(x^{(i)}) - y^{(i)}) x^{(i)}$$

Week 2.

}

Linear Regression With Multiple Variables

n – number of feature

$$x^{(i)}$$
 – input (features) of i^{th} training example

 $x_i^{(i)}$ - value of feature j in i^{th} training example

$$h(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$
 (for convenience of notation we define $x_0 = 1$)

Vector notation

$$X = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix}$$
$$h(x) = \theta^T X$$

Function to minimize

$$\min(J(\theta_0, \theta_1, \dots, \theta_n)) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2$$

Gradient descent algorithm for n paramaters θ_i

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1, \dots, \theta_n)$$

Repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h(x^{(i)}) - y^{(i)}) x_j^{(i)} \qquad \text{(simultaneously update } \theta_j \text{ for } j = 0,, n)}$$
}

Feature scaling (normalization)

$$x_{normalized(i)} := \frac{x_i - \mu}{\sigma}$$

Vectorization

$$\theta := \theta - \alpha \delta$$

}

$$\delta = \frac{1}{m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)}) x^{(i)} \qquad \delta = \begin{bmatrix} \delta_0 \\ \delta_1 \\ \delta_2 \\ \vdots \\ \delta_n \end{bmatrix}$$

Normal Equation

$$\theta = (X^T X)^{-1} X^T y$$

Week 3.

Binary Classification Problem (Logistic Regression)

Condition

$$0 \le h(x) \le 1$$

$$h(x) = g(\theta^T X)$$

 $g(z) = \frac{1}{1+e^{-z}}$ Sigmoid Function

Explanation

$$h(x) = p(y = 1 \mid x_i \theta)$$
 probability that $y=1$, given x, parameterized by θ

If
$$h(x) \ge 0.5$$
 then $y = 1$, else $y = 0$
If $z \ge 0$ then $y = 1$, else $y = 0$

Cost Function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h(x^{(i)}), y^{(i)})$$

$$Cost(h(x), y) = \begin{cases} -\log(h(x)) & \text{if } y = 1\\ -\log(1 - h(x)) & \text{if } y = 0 \end{cases}$$
$$Cost(h(x), y) = -ylog(h(x)) - (1 - y)log(1 - h(x))$$

$$Cost(h(x), y) = -ylog(h(x)) - (1 - y)log(1 - h(x))$$

θ minimization

Repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
 (simultaneously update θ_j for $j = 0, ..., n$) }

Vectorized Implementation

$$\theta := \theta - \alpha \frac{1}{m} \left[\sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)}) x^{(i)} \right]$$

Overfitting

If we have to many features, the learned hypothesis may fit the training set very well, but fail to generalize to new examples (predict prices on new examples)

Regularization

Small values for parameters θ_0 , θ_1 , θ_2 ... θ_n

- Simple hypothesis
- Less prone to overfitting

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

Repeat until convergence {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j := \theta_j (1 - \alpha \frac{\lambda}{m}) - \alpha \frac{1}{m} \sum_{i=1}^m (h(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

$$\theta = (X^T X + \lambda \begin{bmatrix} 0 & & \\ & 1 & \\ & & 1 \end{bmatrix})^{-1} X^T y$$

For logistic regression

}

}

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Cost(h(x^{(i)}), y^{(i)}) + \frac{\lambda}{2m} \sum_{i=1}^{n} \theta_j^2$$

Repeat until convergence {

$$\theta_{0} := \theta_{0} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)}) x_{0}^{(i)}$$

$$\theta_{j} := \theta_{j} - \alpha \left[\frac{1}{m} \sum_{i=1}^{m} (h(x^{(i)}) - y^{(i)}) x_{j}^{(i)} + \frac{\lambda}{n} \theta_{j} \right]$$
 (simultaneously update θ_{j} for $j = 0, ..., n$)

Week 4.

Neural networks

 $a_i^{(j)}$: activation of unit i in layer j

 $\Theta^{(j)}$: matrix of weights controlling function mapping from layer j to layer j+1

If network has s_i units in layer j, s_{i+1} units in layer j+1, then $\Theta^{(j)}$ will be of dimension $s_{i+1} \times (s_i+1)$

Vectorized implementation

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \qquad z^{(2)} = \begin{bmatrix} z_1^{(2)} \\ z_2^{(2)} \\ z_2^{(2)} \end{bmatrix}$$

$$z^{(2)} = \Theta^{(1)}a^{(1)}$$

$$a^{(2)} = g(z^{(2)})$$

Week 5.

Cost function and backpropagation

Cost function for neural networks

$$J(\theta) = \frac{-1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} log(h(x^{(i)})) + (1 + y_k^{(i)}) log(1 - (h(x^{(i)}))_k) \right] + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{S_l} \sum_{j=1}^{S_{l+1}} (\theta_{ji}^{(l)})^2$$

Algorithm for minimizing cost function

$$\delta_j^{(L)}=a_j^{(L)}-y_j$$
 - error of node j in layer L
$$\delta^{(L-1)}=(\theta^{(L-1)})^T\delta^{(L)}.*g'(z^{(L-1)}) \text{ - error vector for level } L\text{-}1$$

Backpropagation algorithm

Training set
$$\{\left(x^{(1)},y^{(1)}\right),\ldots,\left(x^{(m)},y^{(m)}\right)\}$$

Set
$$\Delta_{ij}^{(l)} = 0$$
 (for all l, i, j).

For
$$i = 1$$
 to m :

$$Set \ a^{(1)} = x^{(i)}$$

Perform forward propagation to compute $a^{(l)}$ for $l=2,3,\ldots,L$

Using
$$y^{(i)}$$
, compute $\delta^{(i)} = a^L - y^{(i)}$

Compute $\delta^{(L-1)}$, $\delta^{(L-2)}$, $\delta^{(L-3)}$, ..., $\delta^{(2)}$

$$\Delta_{ij}^{(l)} = \Delta_{ij}^{(l)} + a_j^{(l)} \delta_i^{(l+1)}$$