Matemática atuarial

Anuidade Vitalícia - Aula 12

Danilo Machado Pires danilo.pires@unifal-mg.edu.br Leonardo Henrique Costa leonardo.costa@unifal-mg.edu.br

Anuidades (rendas)

- > Sucessão de pagamentos equidistantes (termos), efetuados por uma dada entidade a outrem.
- > IMEDIATAS

Os termos são exigíveis a partir do primeiro período.

> DIFERIDAS

Os termos são exigíveis após um diferimento

> ANTECIPADA (Quando os termos ocorrem no início de cada período)

$$VP = \ddot{a}_{\bar{n}|} = \frac{1 - v^n}{1 - v}, n \ge 1$$

> POSTECIPADA (Quando os termos ocorrem ao final de cada período)

$$VP = a_{\bar{n}|} = v\left(\frac{1-v^n}{1-v}\right)$$
, $n \ge 1$

>Fluxo Antecipado

$$\ddot{a}_{\overline{n|}} = 1 + v + v^2 + v^3 + \dots + v^{n-1}$$

$$\ddot{a}_{\bar{n}|} = \frac{1 - v^n}{1 - n}, n \ge 1$$

$$a_{\overline{n!}} = v + v^2 + v^3 + \dots + v^n$$

$$a_{ar{n}|} = v\left(rac{1-v^n}{1-v}
ight)$$
, $n \geq 1$

Anuidades (rendas)

$$\ddot{a}_{\overline{n|}} = 1 + \nu + \nu^2 + \nu^3 + \dots + \nu^{n-1}$$

$$a_{\overline{n-1}|} = v + v^2 + v^3 + \dots + v^{n-1}$$

$$\ddot{a}_{\overline{n|}}-a_{\overline{n-1|}}=1$$

- Estamos trabalhando com o valor presente de uma série de pagamentos.
- ➤ De fato, as anuidades apresentadas são anuidades certas. Uma série de pagamentos sendo realizados ao longo do tempo.
- ➤ É preciso o reconhecimento da "natureza" aleatória do número de termos.

- ➤ No processo de compra de um produto atuarial ou de concessão de benefício, existe risco.
 - A seguradora não sabe se vai receber todos os prêmios do segurado (este pode morrer antes do período de cobertura).
 - A seguradora não sabe ao certo quanto irá gastar com previdência uma vez que uma pessoa se aposentou e entrou em gozo de benefício.

- Reconhecer a anuidade como um produto atuarial é reconhecer que:
 - \triangleright A seguradora (ou fundo de pensão) não saberá ao certo quando x irá falecer.

Anuidades (Rendas)

- > Anuidade é um produto atuarial ligado a previdência.
 - ▶ Plano de previdência: A ideia é formar uma reserva financeira para lidar com situações futuras (previdência privada-complementar).
- ➤ Anuidade (renda sobre a vida)
 - > Aposentadoria: pagamentos até o momento da morte.
 - > Cobertura: por período determinado.
- > São interrompidos em caso de morte...

Anuidades imediatas

Pagamentos Antecipados (Os pagamentos começam no primeiro período).

$$F_0 = b \left(\frac{1}{1+i} \right)^t$$

Pagamentos **Postecipados** (Os pagamentos começam no final de cada período).

Seja T_x a variável aleatória discreta associada **ao maior inteiro contido** na sobrevida de x logo:

> Antecipada (benefício unitário)

$$\ddot{a}_{\overline{T_x+1}|} = \frac{1-v^{T_x+1}}{1-v}, T_x \ge 0$$

> Postecipada (benefício unitário)

$$a_{\overline{T_{\mathcal{X}}}|} = v \frac{1 - v^{T_{\mathcal{X}}}}{1 - v}, T_{\mathcal{X}} \ge 0$$

 \triangleright O valor atuarial de anuidade imediata vitalícia e com pagamento **ANTECIPADO** para uma pessoa de idade x corresponde a:

$$E(\ddot{a}_{\overline{T_{x}+1|}}) = \ddot{a}_{x}$$

 \triangleright O valor atuarial de anuidade imediata vitalícia e com pagamento **POSTECIPADO** para uma pessoa de idade x corresponde a:

$$E(a_{\overline{T_x|}}) = a_x$$

> Anuidade vitalícia antecipada

$$E(\ddot{a}_{\overline{T_x+1|}}) = \sum_{t=0}^{\omega-x} \ddot{a}_{\overline{t+1}|} P(T_x = t)$$

$$\ddot{a}_{x} = \sum_{t=0}^{\omega - x} \ddot{a}_{\overline{t+1}|} t p_{x} q_{x+t}$$

> Anuidade vitalícia postecipada

$$E(a_{\overline{T_x|}}) = \sum_{t=1}^{\omega - x} a_{\overline{t}|} P(T_x = t)$$

$$a_{x} = \sum_{t=1}^{\omega-x} a_{\bar{t}|\ t} p_{x} q_{x+t}$$

EXEMPLO 1: Considere uma pessoa de 40 anos que queira comprar uma anuidade que paga 1 *u.m.* em fluxo de caixa **antecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% ao ano, calcule o prêmio puro único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

$$\ddot{a}_{40} = E(\ddot{a}_{\overline{T+1|}}) = \sum_{t=0}^{\omega-x} \ddot{a}_{\overline{t+1|}\ t} p_{40} q_{40+t} = \ddot{a}_{\overline{1|}\ 0} p_{40} q_{40} + \ddot{a}_{\overline{2|}\ p_{40}} q_{41} + \ddot{a}_{\overline{3|}\ 2} p_{40} q_{42} + \cdots$$

$$\ddot{a}_{40} = \frac{1 - v^1}{1 - v} {}_{0}p_{40}q_{40} + \frac{1 - v^2}{1 - v} p_{40}q_{41} + \frac{1 - v^3}{1 - v} {}_{2}p_{40}q_{42} + \cdots$$

$$\ddot{a}_{40} \approx 17,67$$

EXEMPLO 2: Seja uma pessoa de 40 anos que queira comprar uma anuidade que paga 1 u.m. em fluxo de caixa **postecipado**. Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% ao ano, calcule o prêmio puro único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

$$a_{40} = \sum_{t=1}^{\omega - x} a_{t|t} p_{40} q_{40+t} = a_{1|t} p_{40} q_{41} + a_{2|t} p_{40} q_{42} + a_{3|t} p_{40} q_{43} + \cdots$$

$$a_{40} = \frac{v(1-v^1)}{1-v} p_{40}q_{41} + \frac{v(1-v^2)}{1-v} p_{40}q_{42} + \frac{v(1-v^3)}{1-v} p_{40}q_{43} + \cdots$$

$$a_{40} \approx 16,67$$

> Outras alternativas para o calculo do VPA serão:

$$\ddot{a}_{x} = \sum_{t=0}^{\omega - x} v^{t} _{t} p_{x} = \sum_{t=0}^{\omega - x} \ddot{a}_{\overline{t+1}| t} p_{x} q_{x+t}$$

е

$$a_x = \sum_{t=1}^{\omega - x} v^t p_x = \sum_{t=1}^{\omega - x} a_{t|t} p_x q_{x+t}$$

Demonstração

$$\ddot{a}_{x} = \sum_{t=0}^{\omega - x} \ddot{a}_{\overline{t+1}|t} p_{x} q_{x+t} = \sum_{t=0}^{\omega - x} \frac{1 - v^{t+1}}{1 - v} p_{x} (1 - p_{x+t})$$

$$\ddot{a}_{x} = \sum_{t=0}^{\omega-x} \frac{1-v^{t+1}}{1-v} \left({}_{t}p_{x} - {}_{t}p_{x}p_{x+t} \right) = \sum_{t=0}^{\omega-x} \frac{1-v^{t+1}}{1-v} \left({}_{t}p_{x} - {}_{t+1}p_{x} \right)$$

$$\ddot{a}_{x} = v^{0}(_{0}p_{x} - _{1}p_{x}) + (v^{0} + v)(_{1}p_{x} - _{2}p_{x}) + (v^{0} + v + v^{2})(_{2}p_{x} - _{3}p_{x}) + \cdots$$

Assim

$$\ddot{a}_{x} = \sum_{t=0}^{\infty} v^{t} p_{x}$$

EXEMPLO 3: Seja uma pessoa de 40 anos que queira comprar uma anuidade que paga 1 u.m. em fluxo de caixa **antecipado** (**postecipado**). Considerando a tábua de mortalidade AT-2000 masculina e uma taxa de juros de 5% ao ano, calcule o prêmio puro único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

$$\ddot{a}_{40} = \sum_{t=0}^{\omega - x} v^t \,_t p_{40} = 1 + v \,_t p_{40} + v^2 \,_2 p_{40} + v^3 \,_3 p_{40} + \cdots$$

$$\ddot{a}_{40} = 1 + v \ p_{40} + v^2 \ p_{40} p_{41} + v^3 p_{40} p_{41} p_{42} + \dots \approx 17,67.$$

Postecipado,

$$a_{40} = \sum_{t=1}^{\omega - x} v^t \,_t p_{40} = v \,_t p_{40} + v^2 \,_2 p_{40} + v^3 \,_3 p_{40} + \cdots$$

$$a_{40} = v p_{40} + v^2 p_{40}p_{41} + v^3p_{40}p_{41}p_{42} + \dots \approx 16,67.$$

 $\ddot{a}_{x} = a_{x} + 1$

Valor atuarial de uma anuidade vitalícia antecipada.

Valor atuarial de uma anuidade vitalícia postecipada.

Então, para o caso discreto, o VPA será dado por:

> Anuidade Antecipada (Variável aleatória discreta)

$$\ddot{a}_{x} = \sum_{t=0}^{\omega - x} {}_{t}E_{x} = \sum_{t=0}^{\omega - x} v^{t} {}_{t}p_{x} = \sum_{t=0}^{\omega - x} \ddot{a}_{\overline{t+1}|} {}_{t}p_{x}q_{x+t} = \sum_{t=0}^{\omega - x} \frac{1 - v^{t+1}}{1 - v} {}_{t}p_{x}q_{x+t}$$

> Anuidade Postecipada (Variável aleatória discreta)

$$a_{x} = \sum_{t=1}^{\omega - x} {}_{t}E_{x} = \sum_{t=1}^{\omega - x} v^{t} {}_{t}p_{x} = \sum_{t=1}^{\omega - x} a_{\overline{t}|} {}_{t}p_{x}q_{x+t} = \sum_{t=1}^{\omega - x} v\left(\frac{1 - v^{t}}{1 - v}\right) {}_{t}p_{x}q_{x+t}$$

A variância da variável aleatória, referente a anuidade antecipada, pode ser obtida da seguinte forma:

$$var(\ddot{a}_{T_{\chi}+1|}) = var\left(\frac{1-v^{T+1}}{1-v}\right),$$

$$var(\ddot{a}_{T_x+1|}) = \frac{1}{(1-v)^2}var(1-v^{T+1}) = \frac{var(v^{T+1})}{(1-v)^2}$$

$$var(\ddot{a}_{T_x+1|}) = \frac{{}^2A_x - (A_x)^2}{(1-v)^2}$$

A variância de $a_{\overline{T_r}|}$ será:

$$var(a_{\overline{T_x|}}) = var\left(v\frac{1-v^T}{1-v}\right) = \left(\frac{v}{1-v}\right)^2 var(1-v^T),$$

$$var(a_{\overline{T_x|}}) = \left(\frac{v}{1-v}\right)^2 \frac{1}{v^2} var(v^{T+1}),$$

$$var(a_{\overline{T_x|}}) = \frac{var(v^{T+1})}{(1-v)^2} = \frac{{}^2A_x - (A_x)^2}{(1-v)^2}$$

Logo,
$$var(a_{\overline{T_x|}}) = var(\ddot{a}_{\overline{T_x+1|}}).$$

$$\ddot{a}_{x} = \sum_{t=0}^{\omega - x} \ddot{a}_{t+1|t} p_{x} q_{x+t} = \sum_{t=0}^{\omega - x} v^{t} p_{x}$$

$$\ddot{a}_{x} = a_{x} + 1$$

$$\ddot{a}_{x} = \sum_{t=1}^{\omega - x} a_{t|t} p_{x} q_{x+t} = \sum_{t=1}^{\omega - x} v^{t} p_{x}$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. Actuarial Mathematics, 2ª edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.

- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- GARCIA, J. A.; SIMÕES, O. A. **Matemática** actuarial Vida e pensões. 2. ed. Coimbra: Almedina, 2010.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES, R. Fundamentos da matemática atuarial: vida e pensões. Curitiba :CRV,2022.

Matemática atuarial

Anuidade temporária – Aula 13

Danilo Machado Pires danilo.pires@unifal-mg.edu.br Leonardo Henrique Costa leonardo.costa@unifal-mg.edu.br

Anuidades temporárias imediatas

- \triangleright No caso de anuidades temporárias, essas são válidas enquanto a pessoa de idade x for viva até no máximo n anos.
 - > Então, para o caso discreto, o VPA de anuidades temporárias temos:

VPA de uma anuidade antecipada.

$$Y = \begin{cases} \ddot{a}_{\overline{T+1|}} & 0 \le T < n \\ \ddot{a}_{\overline{n|}} & T \ge n \end{cases}$$

$$\ddot{a}_{x:\overline{n|}} = \left(\sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}} \, t \, p_x q_{x+t}\right) + \ddot{a}_{\overline{n|}} \, {}_{n} p_x$$

$$Y = \begin{cases} \ddot{a}_{\overline{T+1|}} \text{ , } 0 < T < n \\ \ddot{a}_{\overline{n|}} \text{ , } T \ge n \end{cases}$$

$$E(Y) = \ddot{a}_{x:\overline{n|}} = \sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}} P(T_x = t) + \sum_{t=n}^{\infty} \ddot{a}_{\overline{n|}} P(T_x = t)$$

$$\ddot{a}_{x:\overline{n|}} = \sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}} P(T_x = t) + \ddot{a}_{\overline{n|}} \sum_{t=n}^{\infty} P(T_x = t)$$

$$\ddot{a}_{x:\overline{n|}} = \sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}} P(T_x = t) + \ddot{a}_{\overline{n|}} P(T_x \ge n)$$

$$\ddot{a}_{x:\overline{n|}} = \left(\sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}} p_x q_{x+t}\right) + \ddot{a}_{\overline{n|}} p_x$$

Anuidades temporárias imediatas

> VPA de uma anuidade postecipada.

$$Y = \begin{cases} a_{\overline{T|}}, & 0 \le T < n \\ a_{\overline{n|}}, & T \ge n \end{cases}$$

$$a_{x:\overline{n|}} = \left(\sum_{t=1}^{n-1} a_{\overline{t|}} t p_x q_{x+t}\right) + a_{\overline{n|}} p_x$$

EXEMPLO 1: Pense em uma pessoa de 25 anos que queira comprar uma anuidade que paga 1 u.m. em fluxo de caixa **antecipado** por um período de 40 anos. Considerando a tábua de mortalidade AT-2000 feminina e uma taxa de juros de 5% ao ano, calcule o prêmio puro único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

$$\ddot{a}_{25:\overline{40|}} = \left(\sum_{t=0}^{39} \frac{1 - v^{t+1}}{1 - v} t^{t+1} p_{25} q_{25+t}\right) + \left(\frac{1 - v^{40}}{1 - v}\right) q_{25}$$

$$\ddot{a}_{25:\overline{401}} = 1,0584 + 16,78173 \approx 17,8402$$

Considere o produto atuarial $\ddot{a}_{x:\overline{2}|}$:

$$\ddot{a}_{x:\bar{2}|} = \left(\sum_{t=0}^{1} \frac{1 - v^{t+1}}{1 - v} {}_{t} p_{x} q_{x+t}\right) + \left(\frac{1 - v^{2}}{1 - v}\right) {}_{2} p_{x}$$

$$\ddot{a}_{x:\overline{2}|} = \left| \sum_{t=0}^{1} \frac{1 - v^{t+1}}{1 - v} \left({}_{t} p_{x} - {}_{t+1} p_{x} \right) \right| + \left(\frac{1 - v^{2}}{1 - v} \right) {}_{2} p_{x}$$

$$\ddot{a}_{x:\overline{2}|} = [(1 - p_x) + (1 + v)(p_x - p_x)] + (1 + v) p_x$$

$$\ddot{a}_{x:\overline{2}|} = 1 - p_x + p_x - {}_{2}p_x + vp_x - v_{2}p_x + {}_{2}p_x + v_{2}p_x$$

$$\ddot{a}_{x:\overline{2}|} = 1 + vp_x$$

$$\ddot{a}_{x:\overline{2}|} = \sum_{t=0}^{1} v^t p_x$$

Para $a_{x:\overline{2}|}$, temos:

$$a_{x:\overline{2}|} = \left(\sum_{t=1}^{1} a_{\overline{t}|} t p_{x} q_{x+t}\right) + a_{\overline{2}|2} p_{x},$$

$$a_{x:\overline{2}|} = \left[v\frac{1-v}{1-v}(p_x - {}_2p_x)\right] + (v+v^2)_2p_x,$$

$$a_{x:\overline{2}|} = vp_x - v_2p_x + v_2p_x + v^2_2p_x,$$

$$a_{x:\overline{2}|} = vp_x + v^2 \,_2 p_{x,}$$

$$a_{x:\overline{2}|} = \sum_{t=1}^{2} v^t _t p_{x.}$$

Anuidades temporárias imediatas- Tempo discreto

> VPA de uma anuidade antecipada.

$$Y = \begin{cases} \ddot{a}_{\overline{T+1|}} & 0 \le T < n \\ \ddot{a}_{\overline{n|}} & T \ge n \end{cases}$$

$$\ddot{a}_{x:\overline{n|}} = \left(\sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}} \,_t p_x q_{x+t}\right) + \ddot{a}_{\overline{n|}} \,_n p_x$$

$$\ddot{a}_{x:\overline{n|}} = E(Y) = \sum_{t=0}^{n-1} {}_{t}E_{x} = \sum_{t=0}^{n-1} v^{t} {}_{t}p_{x}$$

> VPA de uma anuidade postecipada.

$$Y = \begin{cases} a_{\overline{T|}} & 0 \le T < n \\ a_{\overline{n|}} & T \ge n \end{cases}$$

$$a_{x:\overline{n|}} = \left(\sum_{t=1}^{n-1} a_{\overline{t|}} \, _t p_x q_{x+t}\right) + a_{\overline{n|}} \, _n p_x$$

$$a_{x:\overline{n|}} = E(Y) = \sum_{t=1}^{n} {}_{t}E_{x} = \sum_{t=1}^{n} v^{t} {}_{t}p_{x}$$

EXEMPLO 2: Seja uma pessoa de 30 anos que queira comprar uma anuidade que paga 1 com pagamento **antecipado** por um período de 4 anos. Considerando a tábua de mortalidade dada e uma taxa de juros de 5% ao ano, calcule o prêmio puro único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

				4-1 3
Idade	q_X	p_X	l_x	$\ddot{a}_{30:\bar{4} } = \sum_{t} E_{30} = \sum_{t} v^{t}_{t} p_{30}$
25	0,00077	0,99923	100000	$ u_{30:4} - \sum_{t=0}^{t} t^{L_{30}} - \sum_{t=0}^{t} v t^{L_{30}} $
26	0,00081	0,99919	99923	
27	0,00085	0,99915	99842	$\ddot{a}_{30:\overline{4} } = 1 + vp_{30} + v^2 _2p_{30} + v^3 _3p_{30}$
28	0,00090	0,99910	99757	30.4
29	0,00095	0,99905	99667	
30	0,00100	0,99900	99572	$\ddot{a}_{30:\overline{4} } = 1 + \frac{1}{1,05}p_{30} + \left(\frac{1}{1,05}\right)^2 p_{30}p_{31} + \left(\frac{1}{1,05}\right)^3 p_{30}p_{31}p_{32}$
31	0,00107	0,99893	99472	$ a_{30:4} = 1 + 1,05^{p_{30}} + (1,05)^{p_{30}p_{31}} + (1,05)^{p_{30}p_{31}p_{32}}$
32	0,00114	0,99886	99365	$p_{30}p_{31}p_{32}=\frac{l_{33}}{l_{30}}$
33	0,00121	0,99879	99251	$p_{30}p_{31}p_{32} = \frac{1}{l_{30}}$
34	0,00130	0,99870	99131	
35	0,00139	0,99861	99002	$\ddot{a}_{30:\overline{4 }} \approx 3,71$

EXEMPLO 3: Seja uma pessoa de 30 anos que queira comprar uma anuidade que paga 1 com pagamento **postecipado** por um período de 4 anos. Considerando a tábua de mortalidade dada e uma taxa de juros de 5% ao ano, calcule o prêmio puro único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

				_ 4 4
Idade	q_X	p_X	l_{x}	$a_{30:\overline{4} } = \sum_{t} E_{30} = \sum_{t} v^{t}_{t} p_{30}$
25	0,00077	0,99923	100000	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
26	0,00081	0,99919	99923	
27	0,00085	0,99915	99842	$a_{30:\overline{4} } = vp_{30} + v^2 _2p_{30} + v^3 _3p_{30} + v^4 _2$
28	0,00090	0,99910	99757	
29	0,00095	0,99905	99667	$a_{30:\overline{4} } = \frac{1}{1,05}p_{30} + \left(\frac{1}{1,05}\right)^2 p_{30}p_{31} + \left(\frac{1}{1,05}\right)^3 p_{30}p_{30}$
30	0,00100	0,99900	99572	
31	0,00107	0,99893	99472	$\left(\frac{1}{1,05}\right)^4 p_{30} p_{31} p_{32} p_{33}$
32	0,00114	0,99886	99365	
33	0,00121	0,99879	99251	$a_{30:\overline{4 }} \approx 3.52$
34	0,00130	0,99870	99131	
35	0,00139	0,99861	99002	

EXEMPLO 4: Seja uma pessoa de 25 anos que queira comprar uma anuidade que paga 1 com pagamento **antecipado** por um período de 5 anos. Considerando a tábua de mortalidade dada e uma taxa de juros de 5% ao ano, calcule o prêmio puro único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

Idade	q_X	p_X	l_x
25	0,00077	0,99923	100000
26	0,00081	0,99919	99923
27	0,00085	0,99915	99842
28	0,00090	0,99910	99757
29	0,00095	0,99905	99667
30	0,00100	0,99900	99572
31	0,00107	0,99893	99472
32	0,00114	0,99886	99365
33	0,00121	0,99879	99251
34	0,00130	0,99870	99131
35	0,00139	0,99861	99002

EXEMPLO 5: Seja uma pessoa de 25 anos que queira comprar uma anuidade que paga 1 com pagamento **postecipado** por um período de 4 anos. Considerando a tábua de mortalidade dada e uma taxa de juros de 5% ao ano, calcule o prêmio puro único a ser pago pelo segurado para comprar essa anuidade com pagamento imediato.

				. 4 4
Idade	q_X	p_X	l_{x}	$a_{25:\overline{4} } = \sum_{t} E_{25} = \sum_{t} v^{t}_{t} p_{2}$
25	0,00077	0,99923	100000	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
26	0,00081	0,99919	99923	
27	0,00085	0,99915	99842	$a_{25:\overline{4} } = vp_{25} + v^2 {}_{2}p_{25} + v^3 {}_{3}p_{25} + v^4 {}_{4}$
28	0,00090	0,99910	99757	
29	0,00095	0,99905	99667	(1) $(1)^2 l_{27}$ $(1)^3 l_{28}$
30	0,00100	0,99900	99572	$a_{25:\overline{4} } = \left(\frac{1}{1,05}\right)p_{25} + \left(\frac{1}{1,05}\right)^2 \frac{l_{27}}{l_{25}} + \left(\frac{1}{1,05}\right)^3 \frac{l_{28}}{l_{25}} +$
31	0,00107	0,99893	99472	
32	0,00114	0,99886	99365	
33	0,00121	0,99879	99251	$a_{25:\overline{4} } \approx 3.53$
34	0,00130	0,99870	99131	
35	0,00139	0,99861	99002	

Anuidades temporárias imediatas

$$\ddot{a}_{x:\overline{n|}} = 1 + vp_x + v^2 {}_2p_x + v^3 {}_3p_x + v^4 {}_4p_x + \dots + v^{n-1} {}_{n-1}p_x$$

$$a_{x:\overline{n-1}|} = vp_x + v^2 {}_2p_x + v^3 {}_3p_x + v^4 {}_4p_x + \dots + v^{n-1} {}_{n-1}p_x$$

$$\ddot{a}_{x:\overline{n|}} = 1 + a_{x:\overline{n-1|}}$$

$$\ddot{a}_x = 1 + a_x$$

Anuidades temporárias imediatas- Tempo discreto

VPA de uma anuidade antecipada.

► VPA de uma anuidade postecipada.

 $Y = \begin{cases} a_{\overline{T|}} & 0 \le T < n \\ a_{\overline{n|}} & T \ge n \end{cases}$

$$Y = \begin{cases} \ddot{a}_{\overline{T+1|}} & 0 \le T < n \\ \ddot{a}_{\overline{n|}} & T \ge n \end{cases}$$

$$\ddot{a}_{x:\overline{n|}} = 1 + a_{x:\overline{n-1|}}$$

$$\ddot{a}_{x:\overline{n|}} = 1 + a_{x:\overline{n-1|}}$$

$$\ddot{a}_{x:\overline{n|}} = E(Y) = \sum_{t=0}^{n-1} {}_{t}E_{x} = \sum_{t=0}^{n-1} v^{t} {}_{t}p_{x}$$

$$\ddot{a}_{x:\overline{n|}} = \left(\sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|}} p_x q_{x+t}\right) + \ddot{a}_{\overline{n|}} p_x$$

$$a_{x:\overline{n|}} = E(Y) = \sum_{t=1}^{n} {}_{t}E_{x} = \sum_{t=1}^{n} v^{t} {}_{t}p_{x}$$

$$a_{x:\overline{n|}} = \left(\sum_{t=1}^{n-1} a_{\overline{t|}} p_x q_{x+t}\right) + a_{\overline{n|}} p_x$$

Anuidades temporárias imediatas- variância

$$Y = \begin{cases} \ddot{a}_{\overline{T+1|}} & 0 \le T < n \\ \ddot{a}_{\overline{n|}} & T \ge n \end{cases}$$

$$var(Y) = \frac{{}^{2}A_{x:\overline{n|}} - (A_{x:\overline{n|}})^{2}}{(1-v)^{2}}$$

$$Y = \begin{cases} a_{\overline{T|}} & 0 \le T < n \\ a_{\overline{n|}} & T \ge n \end{cases}$$

$$var(Y) = \frac{(1+i)^2 \left[{}^2A_{x^1:\overline{n}|} - \left(A_{x^1:\overline{n}|}\right)^2 \right] - 2(1+i)A_{x^1:\overline{n}|}A_{x:\overline{n}|}A_{x:\overline{n}|^1} + \left[v^{2n}_n p_x (1-_n p_x) \right]}{i^2}$$

$$\ddot{a}_{x} = \sum_{t=0}^{\omega - x} \ddot{a}_{\overline{t+1}|\ t} p_{x} q_{x+t} = \sum_{t=0}^{\omega - x} v^{t} p_{x}$$

$$\ddot{a}_{x:\overline{n|}} = \left(\sum_{t=0}^{n-1} \ddot{a}_{\overline{t+1|} \ t} p_x q_{x+t}\right) + \ddot{a}_{\overline{n|} \ n} p_x$$

$$\ddot{a}_{x:\overline{n|}} = \sum_{t=0}^{n-1} {}_{t} E_x = \sum_{t=0}^{n-1} v^t {}_{t} p_x$$

$$\ddot{a}_x = a_x + 1$$

$$\ddot{a}_{x:\overline{n|}} = 1 + a_{x:\overline{n-1|}}$$

$$a_{x} = \sum_{t=1}^{\omega - x} a_{\bar{t}|\ t} p_{x} q_{x+t} = \sum_{t=1}^{\omega - x} v^{t} {}_{t} p_{x}$$

$$a_{x:\overline{n|}} = \left(\sum_{t=1}^{n-1} a_{\overline{t|}} t p_x q_{x+t}\right) + a_{\overline{n|}} p_x$$

$$a_{x:\overline{n|}} = \sum_{t=1}^{n} t E_x = \sum_{t=1}^{n} v^t p_x$$

- Portal Halley: https://atuaria.github.io/portalhalley/
- Bowers et al. **Actuarial Mathematics**, 2ª edição. SOA, 1997.
- D. C. M. Dickson, M. R. Hardy and H. R. Waters. Actuarial Mathematics for Life Contingent Risks. Cambridge University Press, 2019.
- CORDEIRO FILHO, Antônio. Cálculo Atuarial Aplicado: teoria e aplicações, exercícios resolvidos e propostos. São Paulo: Atlas, 2009.
- GARCIA, J. A.; SIMÕES, O. A. **Matemática** actuarial Vida e pensões. 2. ed. Coimbra: Almedina, 2010.
- PIRES,M.D.;COSTA,L.H.;FERREIRA,L.;MARQUES, R. Fundamentos da matemática atuarial: vida e pensões. Curitiba :CRV,2022.

