## **Theorem 2.4.19**



**Theorem 2.4.19** (Crossbar Theorem). If a ray  $\overrightarrow{BP}$  in an ordered geometry is between two rays  $\overrightarrow{BA}$  and

 $\overrightarrow{BC}$ , then  $\overrightarrow{BP}$  intersects  $\overrightarrow{AC}$  at D between A and C.



Proof. By Extension, there exists a point C' such that C - B - C'. By construction, C and C' are on opposite sides of  $\ell = \overrightarrow{BP}$ . By the previous theorem,  $A \in \angle^{()}PBC'$ . Therefore,  $\overline{AC'} \subseteq \angle^{()}PBC'$  (a fact left to be proven by the reader). Therefore,  $\overline{AC'}$  does not intersect  $\ell$ . This shows that A and C' are on the same side of  $\ell$ . By Plane Separation, we conclude that A and C are on opposite sides of  $\ell$ . Thus  $\overline{AC}$  intersects  $\ell$  at a point D. Since A, B, and C are non-collinear, we know that B is not between A and C. In particular,  $B \neq D$ . The opposite ray to  $\overrightarrow{BP}$  only intersects  $\angle ABC$  at B, which means that it does not intersect D. Since  $\ell$  is the union of  $\overrightarrow{BP}$  and its opposite ray, we conclude that  $\overrightarrow{BP}$  intersects  $\overrightarrow{AC}$  at D.

## **Theorem 2.4.19**

**Theorem 2.4.19** (Crossbar Theorem). If a ray  $\overrightarrow{BP}$  in an ordered geometry is between two rays  $\overrightarrow{BA}$  and  $\overrightarrow{BC}$ , then  $\overrightarrow{BP}$  intersects  $\overrightarrow{AC}$  at D between A and C.