Sinais e Sistemas 1 - Atividade P6

Prof. Igor Peretta

Entrega: 28/jun/2018

1 Recursos computacionais

O curso terá como base o software multi-plataforma wxMaxima:

http://andrejv.github.io/wxmaxima/

Um tutorial em português:

http://maxima.sourceforge.net/docs/tutorial/pt/max.pdf

Outros softwares poderão compor os recursos do curso, mas serão anunciados a seu tempo.

2 Instruções

2.1 Constantes

As constantes que serão utilizadas nessa etapa avaliativa $(M_1, M_2, M_3 e M_4)$ tem relação direta com a sua matrícula. Para encontrar seus valores, utilize o seguinte procedimento:

- Sua matrícula tem o formato 00000 EEE000, onde θ é um dígito e E um caractere alfabético.
- A constante M_1 é igual ao número representado pelos 3 primeiros dígitos dos 5 primeiros dígitos de sua matrícula.
- A constante M_2 é igual ao número representado pelos 2 últimos dígitos dos 5 primeiros dígitos de sua matrícula.
- A constante M_3 depende do curso no qual você está matriculado, de acordo com a seguinte tabela:

Curso	M_3
EAU	1
ECP	5
EEL	10
ETE	15
Outros	20

• A constante M_4 é igual ao número representado pelos 3 últimos dígitos de sua matrícula.

Considere o exemplo de uma matrícula 11112ECP029. Logo, para a matrícula exemplo, $M_1=111,\ M_2=12,\ M_3=5$ e $M_4=29.$

2.2 Entrega da atividade

A entrega da presente atividade avaliativa será feita através de envio pelo Moodle, em local indicado.

3 Calcule usando o wxMaxima:

3.1 Cálculo de função de transferência

3.1.1 Questão única

Considere K_1 a soma recursiva dos dígitos de M_1 (ex. $M_1 = 119$, $K_1 = \sum_{digitos} 119 = 1 + 1 + 9 = \sum_{digitos} 11 = 1 + 1 = 2$); K_2 a soma recursiva dos dígitos de M_2 ; K_3 a soma recursiva dos dígitos de M_3 ; e K_4 a soma recursiva dos dígitos de M_4 .

Para os blocos do diagrama desta questão, considere as seguintes funções de transferência $(i=1\dots 4)$:

K_i	B_1	B_2	B_3	B_4
1	$\frac{1}{s}$	$\frac{1}{s+1}$	$s^2 + s$	s-1
2	$\frac{1}{s+1}$	$s^2 + s$	s	$\frac{1}{s^2 + s + 1}$
3	s	$\frac{1}{s}$	$\frac{1}{2s+3}$	s+4
4	$\frac{1}{2s+3}$	$\frac{1}{s^2+s+1}$	$\frac{1}{s+1}$	$s^2 + s$
5	$s^2 + s$	s	s-1	$\frac{1}{2s+3}$
6	s-1	$\frac{1}{s-5}$	s+4	$\frac{1}{s+1}$
7	$\frac{1}{s-5}$	s+4	$\frac{1}{s}$	$\frac{1}{s}$
8	s+4	s-1	$s^2 + s$	$\frac{1}{s-5}$
9	$\frac{1}{s^2 + s + 1}$	$\frac{1}{2s+3}$	$\frac{1}{s^2 + s + 1}$	s

Para o sistema abaixo:

Figura 1: Representação de sistema em blocos

Calcule:

- Calcule: a. A função de transferência $H(s) = \frac{Y(s)}{X(s)}$;
- b. Identifique os polos da função;
- c. Faça o gráfico da resposta do sistema para uma entrada em degrau;
- c. Use disp() para indicar se o sistema é LIT, causal e BIBO estável.