BIOS 835: Model Assessment

Alexander McLain

October 10, 2023

Outline

Measuring loss

Measuring optimism

Cross-validation

Introduction

Recall two of our goals in subset selection of linear models

- 1. Prediction accuracy: to make reasonable predictions or estimations, we need
 - **accuracy** \rightarrow on average, what we estimate is equal to what we expect (e.g., \hat{Y} in the long run is equal to the population mean of Y)
 - **▶ precision** → small variation in prediction/estimation
- 2. *Interpretation:* if we can limit the number of variables, we can get a better idea of what are the "main factors" that are driving the outcome.

So far we've been using (rather blindly) validation and cross-validation measure prediction accuracy.

Figure: From ESL (online version) page 225.

Loss and expected loss

- Assume we have an outcome Y which we are predicted with $\hat{f}(X)$ which has been fitted with a training set T.
- ▶ The loss function measures the error in $\hat{f}(X)$ when predicting Y.
- Common loss function are:

$$L\{Y, \hat{f}(X)\} = \left\{ egin{array}{ll} (Y - \hat{f}(X))^2 & ext{squared error} \ |Y - \hat{f}(X)| & ext{absolute error} \end{array}
ight.$$

Loss and expected loss

► Test error, also referred to as generalization error, is the prediction error over an independent test sample

$$\mathsf{Err}_{\mathcal{T}} = E[L\{Y, \hat{f}(X)\}|\mathcal{T}]$$

where X and Y are considered to be random.

▶ A related (but different) quantity is the expected prediction (or test) error

$$\mathsf{Err} = E[L\{Y, \hat{f}(X)\}] = E(\mathsf{Err}_{\mathcal{T}})$$

where we don't condition on \mathcal{T} .

Loss and expected loss

Training error, as we have discussed, is a less desirable quantity defined as

$$\overline{\mathsf{err}} = \frac{1}{N} \sum_{i=1}^{N} L\{y_i, \hat{f}(x_i)\}.$$

▶ Training error will under estimate both Err_T and Err, and will choose overly complex models.

Bias-Variance Tradeoff

Loss and expected loss for categorical outcomes

- ▶ Suppose our outcome G takes one of K values in a set G labeled 1, 2, ..., K.
- Some common loss functions for categorical outcomes are:

$$L\{G, \hat{G}(X)\} = I\{G = \hat{G}(X)\}$$
 0-1 loss $L\{G, \hat{p}(X)\} = -2 \log \hat{p}_G(X)$ $-2 \times \log$ -likelihood

where
$$p_k(X) = \Pr(G = k|X)$$
.

- ightharpoonup Err $_{\mathcal{T}}$, Err and $\overline{\text{err}}$ are all defined analogously.
- ▶ The bias-variance tradoff behaves differently for 0-1 loss versus squared error loss.

In-sample error

- ▶ The $\overline{\text{err}}$ will underestimate $\text{Err}_{\mathcal{T}}$ or Err, but by how much and can we estimate it?
- ► For the moment let's consider the x values as fixed, and the observed x's are the only ones of interest.
- ightharpoonup In this case, $Err_{\mathcal{T}}$ is known as the **in-sample error** defined as

$$\mathsf{Err}_{\mathsf{in}} = \frac{1}{N} \sum_{i=1}^{N} E_{Y_0} [L\{Y_i^0, \hat{f}(x_i)\} | \mathcal{T}]$$

where Y^0 is used to denote that we observe new y values at each of the training points x_i .

Optimism

▶ Optimism is then defined as

$$op = Err_{in} - \overline{err}$$

which is estimated with the average optimism $\omega = E_y(op)$ that is averaged over all training sets (though X is still fixed).

▶ For squared error, 0–1, and other loss functions, one can show that

$$\omega = \frac{2}{N} \sum_{i=1}^{N} \operatorname{Cov}(\hat{y}_i, y_i).$$

When would this be large?

Optimism

► Summarizing the above, we have

$$E_y(\mathsf{Err}_{\mathsf{in}}) = E_y(\overline{\mathsf{err}}) + \frac{2}{N} \sum_{i=1}^N \mathsf{Cov}(\hat{y}_i, y_i).$$

lacktriangle If \hat{y}_i can be expressed as a function of d linear inputs we can simplify ω to

$$\omega = \frac{2}{N} \sum_{i=1}^{N} \text{Cov}(\hat{y}_i, y_i) = \frac{2d\sigma_{\epsilon}^2}{N},$$

where
$$Y = f(X) + \epsilon$$

► Further, $E_y(\text{Err}_{in}) = E_y(\overline{\text{err}}) + 2\frac{d}{N}\sigma_{\epsilon}^2$.

Using Optimism to estimate Errin

lacktriangle Thus, if we have an estimate of ω we can estimate the in-sample prediction error via

$$\widehat{\mathsf{Err}}_{\mathsf{in}} = \overline{\mathsf{err}} + \hat{\omega}.$$

Motivated by the results above, one estimate is

$$C_p = \overline{\operatorname{err}} + 2 \frac{d}{N} \hat{\sigma}_{\epsilon}^2$$

which is referred to as Mallows C_p .

Using Optimism to estimate AIC

▶ If we were to use a log-likelihood loss function, similar results to above can show that

$$-2E\{\log\Pr_{\theta}(Y)\} \approx -\frac{2}{N}E(\log \operatorname{lik}) + 2\frac{d}{N}.$$

Which motivates Akaike information criteria (AIC)

$$AIC = -\frac{2}{N} loglik + 2\frac{d}{N}$$

- lacktriangle For the Gaussian model the AIC statistics is equivalent to C_p
- ▶ AIC can be used to select tuning parameters without CV or validation.

Figure: From ESL (online version) page 232.

Introduction

- Cross-validation is a technique we've used frequently to estimate tuning parameters.
- Cross-validation typically only estimates the expected prediction error Err.
- ► The effectiveness of CV depends on the size of your data set and the relationship between Err and the training sample size.

Cross-validation

Figure: From ESL (online version) page 243.

Figure: From ESL (online version) page 244.

Generalized cross-validation

- Generalized cross-validation is an approximation to leave one out cross-validation.
- Assume that $\hat{y} = Sy$ (i.e., a linear model).
 - ▶ Note that **S** is commonly denoted by **H** and called the **Hat Matrix**.
- For many linear fitting methods,

$$\frac{1}{N}\sum_{i=1}^{N}\{y_i-\hat{f}^{-i}(x_i)\}^2=\frac{1}{N}\sum_{i=1}^{N}\left\{\frac{y_i-\hat{f}(x_i)}{1-S_{ii}}\right\}^2$$

where S_{ii} is the *i*th diagonal element of S.

Generalized cross-validation

Generalized cross-validation (GVC) approximates this quantity with

$$\mathsf{GVC}(\hat{f}) = \frac{1}{N} \sum_{i=1}^{N} \left\{ \frac{y_i - \hat{f}(x_i)}{1 - \mathsf{trace}(\mathbf{S})/N} \right\}^2.$$

Recall that trace(S) is the *effective number of parameters*.

Cross-validation done wrong

Read the following and tell me what you think. This sequence can be done in genomic or proteomic applications.

- 1. Screen the predictors: find a subset of "good" predictors that show fairly strong (univariate) correlation with the class labels
- 2. Using just this subset of predictors, build a multivariate classifier.
- 3. Use cross-validation to estimate the unknown tuning parameters and to estimate the prediction error of the final model.

Cross-validation done right

- 1. Divide the data into K samples (folds).
- 2. For each fold k:
 - 2.1 Screen the predictors: find a subset of "good" predictors that show fairly strong (univariate) correlation with the class labels (leaving out fold k)
 - 2.2 Using just this subset of predictors, build a multivariate classifier (leaving out fold k).
 - 2.3 Estimate the prediction error of the final model for fold k.

Cross-validation

Figure: From ESL (online version) page 246.

Bootstrapping

- Bootstrapping is a powerful and versatile statistical resampling technique used to estimate the distribution of a statistic (like the mean, variance, or a regression coefficient).
- ▶ It is particularly useful when the theoretical distribution of the statistic is complex or unknown, thus making it difficult to derive standard errors or confidence intervals using traditional analytical methods.
- ▶ I've used the bootstrap many times in situations where theoretical distributions were available but inaccurate.

Bootstrapping: Outline

- 1. Resampling Procedure: from your dataset of size N, randomly draw N samples with replacement.
- 2. Compute the Statistic: calculate the parameter of interest from the bootstrap sample.
- 3. Repeat: steps 1 and 2 are repeated B times (where B is a large number, often 1,000 or 10,000) to generate a distribution of the statistic of interest.
- 4. Estimate Standard Error: use the samples from step 3 to compute the standard deviation or percentiles of the distribution of your parameter of interest.

Bootstrapping

- Bootstrapping makes minimal assumptions about the distribution of the underlying data, making it non-parametric.
- ▶ It can be applied in complex statistical settings where deriving standard errors analytically is challenging.
- may not perform well with very small sample sizes, as the diversity in the resamples might be limited.
- It can be computationally intensive