Differential Rules (Part 2)

Section 3.4-3.5

Outline

- ▶ The Chain Rule
- ▶ The Implicit Differentiation
 - ▶ The Implicit Functions
 - ▶ The Implicit Differentiation

- Implicit Functions:
- Two variables x and y may be related in an "implicit" way. For example, x and y satisfy the equation f(x,y)=0. Locally, this relation defines y as an implicit function of x or x as an implicit function of y.

Ex:
$$\chi^2 + y^2 = 1$$

Sol:

 $x^2 + y^2 = 1$
 $x^2 + y^2 = 1$

Q: Explore
$$\chi^{2n} + y^{2n} = 1$$
, $n \in \mathbb{N}$.

 $\frac{\chi^{2}}{a^{2}} + \frac{y^{2}}{h^{2}} = 1$

▶ Example: The **folium of Descartes**

▶ Example: The folium of Descartes

Ex: for $x^2 + y^2 = 4$, find $\frac{dy}{dx}$ at (1, $\sqrt{3}$).

- Compute $\frac{dy}{dx}$ given f(x,y)=0:
 Differentiate both sides of the equation
- Differentiate both sides of the equation f(x,y)=0 with respect to x. When you encounter terms involving y, use the chain rule to calculate the differentiation.
- Solve the resulting equation for $\frac{dy}{dx}$.

Ex: For $x^3+y^3=6xy$, find the tangent line at (3,3).

At what point in the first quadrant is the tangent line horizontal (vertical)?

Ex: Find
$$\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ if $x^4 + y^4 = 1$.

Ex: Find an equation of the tangent line to the curve $\int x + \sqrt{y} = \int c$ at (x_0, y_0) where c > 0 is a constant. Show that the sum of the x- and y-intercept of any tangent line is equal to c.

Derivatives of Inverse Functions

Ex:
$$y = f(x)$$
 if and only if $f(y) = x$. Find $\frac{dy}{dx}$.

Ex:
$$f(x) = x + e^{2(x-1)}$$
 is one-to-one. Find $\frac{d}{dx} f^{-1}\Big|_{x=2}$
and $\frac{d^2}{dx^2} f^{-1}\Big|_{x=2}$.

Review

- State the Chain Rule for differentiation.
- ▶ Describe the process of implicit differentiation.