ALGEBRAISCHE GRUPPEN

Liberatur: T.A. Springer, Linear Algebraic Groups

J.F. Humphreys, — 4 —

W.C. Waterhouse, Introduction to Affine Group Schemes

[Borel, Linear Algebraic Groups (setzt Geometric vorans)]

O. EINLEITUNG

Algebraische Gruppen = Gruppen objekte in der Kategorie algebraischer Varietäten.

Varietäten: Nullskellenmengen von Polynomen in $A_k^h = k^h$ (oder P_k^h)

Morphismen: komponentenweise durch Polynome gegeben.

Vergleiche: topologische Gruppen = Abb. sind sletig (Grp.obj in Top)

Lie - Gruppen = Abb. sind glaff (Grp.obj. in Mfd)

Baspiel:

$$G = GL_n(k)$$
, $k = \overline{k}$ alg. abject lossen

Trick von Rabino witch: $GL_n(k) = \{(a_{ij}, d) \in k^{n^2+1} | det(a_{ij}) \cdot d = 1\}$

$$A = (a_{ij}) \text{ hat del } A \neq 0, \text{ d.h. } A \in GL_n(k)$$

$$d = \det A^{-1}, \quad A^{-1} = d \cdot A^{adj}$$

$$h_{anyt} \text{ polynomel von } (a_{ij}) \text{ ab.}$$

Beschränkt man sich auf affine Varietätur, erhält man affine algebraische Gruppen, für die gilt: $G \hookrightarrow Gl_n(k)$ Zariski-aby. Untervoum

für jeeignites n (Einbellungssatz), daher auch der Name Lineare algebraische Gruppe.

 $\frac{2 \text{ iel}}{\text{char} \ k=0}$ oder char k=p>0) untersuchen.

Strategie: G reduktiv

UI

$$U \Rightarrow T = 3$$
 'Borel - unknyvappeh

 $U \Rightarrow T = 3$ 'Borel - unknyvappeh

 $U \Rightarrow T = G_{m}$
 $U \Rightarrow T \Rightarrow G_{m}$
 $U \Rightarrow G_{m}$
 U

 $T \in G$ operior and $y = Lie G = T_e G$ (Tangenhalranm) (2.B. $GL_n(k)$ operior via Konjugation and $M_n(k) = y$)

Nicht-triviale Eigenrähme Liefern "Charaktere" T - k (die die Eigenwerte "parametrisieren"), die ein sogenanntes Wurzelsystem bilden, welche man mittels sog. Dynkin-Diagrammen klassifikieren kann.

(z.B. (oxx,) -> xi sind Nursela für 15i+j En Gln(k))

Mittwoch, 18. April 2018 12:23

Freitag, 20. April 2018 14:25

01. ALGEBRAISCHE GEOMETRIE UND FUNKTOREN

I. AFFINE VARIETÄTEN

k sei ein algebraisch objeschlossener Körper; An:= An:= kn hußt affiner n-Rann.

Def. 1. $X \subseteq \mathbb{A}^n$ heißt affine Varietät, falls ein Ideal $I = k[X_1, -, X_n] = k[X]$ existient, so dass $X = V(I) = \{P \in \mathbb{A}^n_k \mid \forall f \in I : f(P) = 0\}$

Nach dem Hilbert'schen Basissatz existieren endlich viele for, -, fr & I mit I = (for, -, fr).

Lemma 2. Für Ideale I, I, (I,) > ~ k[X] gict:

- (i) $I_{\Lambda} \subseteq I_{Z} \Rightarrow V(I_{Z}) \subseteq V(I_{\Lambda})$ (ii) $V(I_{\Lambda}) \cup V(I_{Z}) = V(I_{\Lambda} \cap I_{Z}) = V(I_{\Lambda} \cdot I_{Z})$
- (iii) $V(\Sigma I_{\lambda}) = \bigcup V(I_{\lambda})$

Die Huyen $\{V(I) \mid I \le k[X]\}$ bilden genau die abgeschlossehen Mengen einer Topologie auf A_k^k , der sogenannten $\{X_k^k\}_{k}^k$, $\{V(0) = A^k, V(1) = \emptyset\}$

Affine Varietäkn trajen die Unknommtopologie.

Lemma 3. Die offeren Heugen der Form $\mathcal{D}(f) := V((f))^c = \{P \in A_R^h \mid f(P) \neq 0\}$ mit $f \in R[X]$ bilden eine Bosis der Eariski-Topologie auf A_R^h .

Für eine affine Varietät X ⊆ An setze I(X) := { fe k[X] | Y PEX: f(P) = 0} o k[X].
Für Iok[X] setze radI:= √I:= { fe k[X] | 3ne(N: fre I}, das Radikal von I.

Gilt I = TI, so heißt I Radikalideal.

Theorem 4. (Hilbertischer Nullskellensatz)

I(·), V(·) induzieren Bijekhonen

{Radikalideale in le[X]}

Radikalideale in le[X]}

{affine Varietäten im Ah}

Korollar 5. Maximale Ideale von k[X] entoprechen abgeschlossenen Punkten.

$$m_{\alpha} := \underline{T}(\{\alpha\}) = (X_{\lambda} - a_{\lambda}, -, X_{n} - a_{n}); \quad \alpha = (a_{\lambda, -1} a_{n}) \in A^{h}$$

Lemma G. Für I = k[x] gict:

I = Speck[x] <=> Z = V(I) ist irreduzibel als topologischer Roum.

Irreduzible Rähme sind zusammenhänzend. Y = x irreduzibel <=> Y = x irreduzibel.

Korollow 9. Jede affine Varietät ist eine endliche Vereinigung irreduzider Varietäten.

Bsp. 10.
$$I = (x_n x_2) \subseteq k[x_n, x_2]$$
, $V(I) = V(X_n) \cup V(X_n)$
 $A_k^2 = V(x_n) \cup V(x_n)$

Bsp. 10. $I = (x_{\lambda}x_{2}) \subseteq k[x_{\lambda_{1}}x_{2}], V(I) = V(x_{\lambda}) \cup V(x_{\ell})$

Koordinater achsen, zevlege in ivved.
Komponenten.

Freitag, 20. April 2018 14:57

Def. 11. Für eine affine Varietät X hußt $A(X) := A_X := \frac{k[X]}{I(X)}$ der Koordinaturring von X.

("Morphismen $X \longrightarrow A^1$ ") A(X) ist eine reduzierte ($\overline{10} = 0$) endl. erz. k- Algebra.

A(X) ist luty vitätsving <=> X ist ivreduzibel <=> I(X) & Spec k[X].

Def. 12. Seien $X \subseteq \mathbb{A}^h$, $Y \subseteq \mathbb{A}^m$ office Verietäten. Ein Morphismus $X \xrightarrow{\phi} Y$ von Varietäten beskht aus einem m-Tupel $\phi = (f_1, -, f_m) \in A(x)^m$

wit $\phi(P) := (f_{\lambda}(P)_{1-1} f_{m}(P)) \in Y \quad \forall P \in X.$

Lemma 13. Morphismen von Varietäten sind stelig begl. der Zariski-Topologie. Bevris.

 $\phi^{\Lambda}(\mathcal{D}(f)) = \mathcal{D}(\underbrace{f \cdot \phi})$ $A(Y) \in A(X)$

Def. 14 $X \subseteq \mathbb{A}^n$, $Y \subseteq \mathbb{A}^m$. Dann ist das kartesische Produkt $X \times Y \in \mathbb{A}^n \times \mathbb{A}^m = \mathbb{A}^{n+m}$ wieder eine affine Varietät, das Produkt von X,Y.

Achtung: $X \times Y$ trägt nicht die Produkttopologie Beneis. (14) $X = V(f_{\Lambda_1 - 1}f_{n}), Y = V(f_{\Lambda_1 - 1}f_{n}) = X \times Y = V(f_{\Lambda_1 - 1}f_{n})$

Theorem 15. Der Funktor $X \longmapsto A(X)$ induziert eine Kategorienäglnivalenz. von 2 affine Varietäten /k $\stackrel{OP}{\longleftrightarrow} \frac{1:1}{2}$ {reduzierk endlich enz. k-Algebren} $(X \xrightarrow{\Phi} Y) \longmapsto A(Y) \xrightarrow{\Phi} A(X)$ $f \mapsto f \circ \phi + I(X)$

Der quasiinverse Funkter ordnet R die Mange Specm(R) zn, $R[X] \rightarrow R$ induziont Specm(R) \rightarrow Specm $R[X] = A_k^n$

Alternativ Röhum wiv den Funktov $\text{Hom}_{k-Alg}(-,k)$ bountzen, da $\text{Hom}_{k-Alg}(R,k) \cong \text{Specm } R$ $(k \in R/m) \text{ ist endlich}, d.h. R/m = k, da k = k)$

II. FUNKTOREN

Sei C eine Kategovie. Dann ist der kontravariante Funktor Yoneda - Lemma. h: E -> Fun(Z, Sets) = Sets A I May (A,C)

John

B ha: C May (B,C)

volltyen, d.h.

hA(B) = More (A,B) => More (hB, hA) $\phi \longmapsto \left(\phi^{*}: h_{8}(c) \rightarrow h_{A}(c)\right)_{(e7)}$ (not. Trafos) $\eta_{\lambda}(id_{\lambda}) \leftarrow (\eta_{c}: h_{\lambda}(c) - h_{\lambda}(c))_{c \in Y}$

Mit anderen Worken: AEZ ist genanso jut wie der Funktor ha.

Funktoren der Form ha heißen darstellbar.

C: Kalegovie endl. ere. reduzierter 1e-Algebren.

(ii) F, G: C -> Sets seien darstellbar. Dann ist der Produkt funktor FxG: Z -> Sets, R -> F(R) x G(R) darshellborr.

$$F = h_{A \mid G} = h_{B \mid A \mid B} \in C = P F(R) \times G(R) = Hom_{R-Alg}(A,R) \times Hom_{R-Alg}(3,R)$$

$$d.h. F \times G = h_{A \circ_{R} B} = Hom_{R-Alg}(A \otimes_{R} B, R)$$