

Álgebra Lineal

Clase 3 Curso Propedéutico 2017/07/07

Transformaciones Lineales = Matrices

 $T: \mathbb{R}^m \to \mathbb{R}^n$ es transformación lineal si:

1.
$$T(\vec{x} + \vec{y}) = T(\vec{x}) + T(\vec{y})$$
 para todos $\vec{x}, \vec{y} \in R^m$

2. $T(\alpha \vec{x}) = \alpha T(\vec{x})$ para toda $\alpha \in R$

Fuente: Wolfram Alpha

¿Cómo pasar de una transformación a una

matriz y viceversa?
$$T(e_i) \neq Ae_j = A^j$$
para todo vector canónico.

$$Ax = A(x_1e_1 + \dots + x_ne_n) = x_1A^1 + \dots + x_nA^n$$

$$\mathcal{T}(x) = \mathcal{T}\left(\sum_{i=1}^{n} X_ie_i\right) = x_1\mathcal{T}(e_i) + \dots + x_n\mathcal{T}(e_n)$$
si Timal

La matriz A que reprosenta a la transformación
There en ada columna a T(ej)

$$T: \mathbb{R}^3 \to \mathbb{R}^2$$

• Ejemplo:
$$T(x, y, z) = (x - \frac{y}{2}, y + z)$$

 $T(2) = T(1, 0, 0) = (1, 0)$
 $T(2) = T(0, 0, 0) = (-\frac{1}{2})$
 $T(2) = T(0, 0, 0) = (0, 0)$

• Ejemplo 2:

$$A \begin{bmatrix} X \\ Z \end{bmatrix} = \begin{bmatrix} 1 - 1/2 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} X \\ Z \end{bmatrix} = \begin{bmatrix} X - \frac{1}{2}y \\ y + Z \end{bmatrix}$$

$$A = \begin{pmatrix} 3 & 1 \\ 6 & 0 \end{pmatrix}$$

$$A \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x+y \\ 6x \end{bmatrix}$$

$$T(x,y) = (3x+y,6x)$$

Otra forma de ver la multiplicación de madries Si T:12" -> RP es representado per B de pxn y S:1RP-> RM 1 4 11 A de mxp entenus la tronsformación 5 oT trone rep. mat. AB $(S \circ T)(x) = S(T(x))$ (AB)(x) = A(Bx)Para que SoT tenya sontida la dem. desalida de T debe ser la misma que la andrada de S.

 $T: \mathbb{R}^n \rightarrow \mathbb{R}^p$ $S: \mathbb{R}^n \rightarrow \mathbb{R}^m \Rightarrow S \circ T: \mathbb{R}^n \rightarrow \mathbb{R}^m$

Bascernos la repronat de SoT

$$(S \circ T)(e_{j}) = S(T(e_{j}))$$

$$= S(B^{j})$$

$$= S(\sum_{k=1}^{p} b_{kj} e_{k})$$

$$= \sum_{k=1}^{p} b_{kj} S(e_{k}) A^{k}$$

$$= \sum_{k=1}^{m} b_{kj} \left(\sum_{i=1}^{m} a_{ik} e_{i}\right)$$

$$= \sum_{i=1}^{m} \left(\sum_{k=1}^{p} a_{ik} b_{ki}\right) e_{i} = \sum_{k=1}^{m} \left(\sum_{k=1}^{p}$$

Advertencia (por si no hemos insistido suficiente...)

• Todo vector en \mathbb{R}^n puede verse como una matriz de dimensiones nx1. Sin embargo, es más conveniente pensar las matrices como "transformaciones" que convierten vectores en vectores.

La categoría de espacios vectoriales

Une categorie es una colection de objetos;

l'Hechas' o relaciones entre ellos

categoria Vec trane objetos espacios vectuales
mílaciones transf. Inealis

Subespacios Vectoriales

• Un subconjunto $V \subset \mathbb{R}^n$ es un subespacio vectorial si es cerrado bajo la suma y la multiplicación por escalar.

• Un subespacio vectorial V es **generado** los vectores $x_1, ..., x_k$ si para <u>cualquier e</u>lemento $y \in V \setminus \{e_i\}$

existen constantes di,-, de tal que

y = d, X, + - + d k Xk genran IRh
y es comb. Invent de X1, - , X e

• Cualquier conjunto de vectores $x_1, ..., x_k$ genera un espacio vectorial de combinaciones lineales denotado span $(x_1, ..., x_k)$

 $Span(X_{1,1-i}X_{t}) = \begin{cases} V : \exists x_{1,i-i} x_{t} V = \sum_{i=1}^{K} x_{i} \end{cases}$ $= \begin{cases} \sum_{i=1}^{K} x_{i} : x_{1,r-i} x_{t} \in \mathbb{R} \end{cases}$

$Span\left(\{(1,0),(2,0),(-1,0)\}\right) = span\left((1,0)\right)$ Independencia Lineal

Dependencia lineal = redundancia

¿Cuántos elementos se necesitan para generar un espacio?.....

Necesitamos un definición nueva...

(versión formal) Un conjunto es linealmente independiente (l.i.) si:

(versión intuitiva) Observemos que si y es generado por $x_1, ..., x_k$ entonces existen constants α_i no todas cero tales que existen coefs $\{-1, \alpha_{i,1}, \dots, \alpha_{i,k}\}$ tales que $\{-1, \alpha_{i,k}, \dots, \alpha_{i,k}\}$ tales que $\{-1, \alpha_{i,k}, \dots, \alpha_{i,k}\}$ tales que

 $y - \alpha_1 x_1 + \dots + \alpha_k x_k = 0$ (-1) $y_1 x_1 x_1 + \dots + \alpha_k x_k = 0$ Por lo tanto, decimos que un conjunto de vectores es l.i

si ningún vector es generado por otro.

en ohns palabons si
$$\sum \alpha_i \chi_i = 0 \text{ y } \exists j \text{ d} j \neq 0$$

$$\Rightarrow \chi_j = \sum_{i \neq j} (-\alpha_i) \chi_i$$

Bases

- $x_1, ..., x_k$ es una base de V si los vectores $x_1, ..., x_k$ generan V y si forman un conjunto l.i.
- Es fácil ver (ejercicio) que el tamaño de una base siempre es el mismo. La **dimensión** de *V*, denotado dim(*V*), es el tamaño es el temaño de una base de *V*
- 2) en R3, e, es base de lR 2) en R3, e, ez son bave chet={2=0} 3) (1,0) y (1,1) es base de [R² Eirei aio. Encentar di,d2 tel que (-2,3)=d,(1,0)+d2(1,1)

Kernel e Imagen de $A \in R_{m \times n}$

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

$$Ker(A) = \{x \in \mathbb{R}^n | Ax = 0\} \qquad \text{Ku}(A) \leq \mathbb{R}^M$$

$$Im(T) = \{y \in \mathbb{R}^m | \exists x : Ax = y\} \qquad \text{Im}(\mathbb{R}) \leq \mathbb{R}^m$$

Son subespacios porque son cerrados bajo combinaciones lineales (demostrar)

• Ejemplo:
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

• Si
$$\vec{x} = (x, y, z)$$
 y $A\vec{x} = (x + y, 2y, 0)$

- $Ker(A) = \{(x, y, z) | x = 0, y = 0\}$ Axis = 0 $Im(A) = \{(x, y, z) | z = 0\}$ (piensen un poco como
- deducimos este punto)

• Gráficamente

Conexión con sistemas de ecuaciones $Ax = \left[x_1 A' + \dots + x_n A'' = y \right]$

• Ax = y es un sistema con m ecuaciones y n variables.

$$\begin{array}{c}
A_{11}X_1 + \dots + A_{1n}X_n = y_1 \\
A_{m_1}X_1 + \dots + A_{m_n}X_n = y_m
\end{array}$$

Una solución existe siempre y cuando
$$y \in Im(A)!$$

Y debe estar en espació to

 $Im(A) = Span(A, A) = Span(A,$

- Supongan que x_p resuelve $Ax_p = y$ y llamémosle solución particular.
- El sistema Ax = 0 se llama sistema homogéneo.
- Si x_h es cualquier solución del sistema homogéneo entonces $\tilde{x} = x_p + x_h$ es solución del sistema original.

$$AX = A(Xp + Xh) = AXp + AXh$$

• Si tenemos dos soluciones particulares entonces difieren entre ellas por una solución del sistema homogéneo: Ax = 4 Ax= 4

A(
$$x_1-x_2$$
)= $y-y=0$
 $(x_1-x_2)=(x_1-x_2)=(x_1-x_2)$
 $(x_1-x_2)=(x_1-x_2)=(x_1-x_2)=(x_1-x_2)$
 $(x_1-x_2)=(x$

- Ker(A) nos dice el tamaño del espacio de soluciones!!!
- Encontrando UNA solución particular y resolviendo el sistema homogéneo encontramos TODAS las soluciones. Ku(A) = 409
- ¿Cuándo hay solución única?