

Mitschrift von Falk-Jonatan Strube

Vorlesung von Herrn Michael Meinhold & Prof. Dr. Fabian Schwarzenberger

24. März 2016

Inhaltsverzeichnis

1	Elementare Grundlagen	
	1.1 Aussagen und Grundzüge der Logik	
	1.2 Mengen	
	1.3 Zahlen	
	1.4 Reellwertige Funktionen einer reellen Veränderlichen	
	1.5 Lineare Algebra	
2	Folgen, Reihen, Grenzwerte	
	2.1 Zahlenfolgen	
	2.2 Grenzwerte und Stetigkeit von Funktionen	
	2.2.1 Grenzwerte von Funktionen	
	2.2.2 Stetigkeit von Funktionen	
	2.3 Potenzreihen	
2	Differentialrechnung für Funktionen einer reellen Variablen	
J	3.1 Grundbegriffe	

1 Elementare Grundlagen

- 1.1 Aussagen und Grundzüge der Logik
- 1.2 Mengen
- 1.3 Zahlen
- 1.4 Reellwertige Funktionen einer reellen Veränderlichen
- 1.5 Lineare Algebra

2 Folgen, Reihen, Grenzwerte

2.1 Zahlenfolgen

2.2 Grenzwerte und Stetigkeit von Funktionen

2.2.1 Grenzwerte von Funktionen

Def. 1: Es sei $x_0 \in \mathbb{R}$ und es existiere eine Umgebung $U(x_0)$ mit $U(x_0)\{x_0\} \subseteq Db(f)$.

 $\lim_{\substack{x\to x_0\\ n\to\infty}} f(x) = \lambda : \Leftrightarrow \text{F\"ur jede Folge } (x_n) \text{ mit } x_n \in Db(f), \ x_n \neq x \text{ (f\"ur alle } n) \text{ und } \lim_{\substack{n\to\infty\\ n\to\infty}} x_n = x_0 \text{ gilt } \lim_{\substack{n\to\infty\\ n\to\infty}} f(x_n) = a.$

Anschaulich: f(x) strebt gegen a, wenn x gegen x_0 strebt.

Bemerkung: Die Stelle x_0 muss *nicht* selbst zum Definitionsbereich gehören.

Bsp. 1:

$$\bullet \lim_{x \to 0} \frac{\sin(x)}{x}$$

$$\begin{split} F_{\triangle MAB} &\leq F_{Sektor\ MAB} \leq F_{\triangle MAC} \\ \frac{1}{2} \sin x &< \frac{1}{2} x < \frac{1}{2} \tan x \quad | \cdot \frac{2}{\sin x} \end{split}$$

$$\Leftrightarrow 1 < \frac{x}{\sin x} < \frac{1}{\cos x}$$

$$\Leftrightarrow 1 > \frac{\sin x}{x} > \cos x$$

$$\Rightarrow \lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

Analog zu Grenzwertsätzen für Zahlenfolgen gilt:

Satz 1: Es gelte $\lim_{x \to x_0} f(x) = a$ und $\lim_{x \to x_0} g(x) = b$. Dann:

$$\bullet \lim_{x \to x_0} (f(x) + g(x) = a + b)$$

$$\bullet \lim_{x \to x_0} c \cdot f(x) = c \cdot a$$

•
$$\lim_{x \to x_0} (f(x) \cdot g(x)) = a \cdot b$$

•
$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b}$$
 (falls $b \neq 0$)

Bsp. 2:

a.)
$$\lim_{x \to 0} \frac{3x^3 - 7x + 4}{3\cos x} = \frac{4}{3}$$

b.)
$$\lim_{x \to 3} \frac{x^2 - x - 6}{x - 3} = \frac{0}{0}$$
 Satz nicht anwendbar. $= \lim_{x \to 3} \frac{(x - 3)(x + 2)}{(x - 3)} = \lim_{x \to 3} x + 2 = 5$

(andere Möglichkeit mit $\frac{0}{0}$ umzugehen lernen wir später)

Def. 2:

a.) rechtseitiger Grenzwert:

 $\lim_{x\searrow x_0} f(x) = a :\Leftrightarrow \text{ für jede Folge } (x_n) \text{ mit } x_n \in Db(f) \text{ und } x_n > x_0 \text{ und } \lim_{n\to\infty} x_n = x_0 \text{ gilt } \lim_{n\to\infty} f(x_n) = a.$

Andere Schreibweise: $\lim_{x\searrow x_0}=\lim_{x\to x_0+0}\dfrac{}{x_0}$

b.) linkseitiger Grenzwert:

$$\lim_{x \nearrow x_0} f(x) = a :\Leftrightarrow$$
 analog rechtsseitiger Grenzwert

$$\text{c.)} \ \lim_{x\to\infty} f(x) = a : \Leftrightarrow \text{für jede Folge} \ (x_n) \ \text{mit} \ x_n \in Db(f) \ \text{und} \ \lim_{x\to\infty} x_n = \infty \ \text{gilt} \ \lim_{n\to\infty} f(x_n) = a.$$

d.)
$$\lim_{x \to \infty} f(x) = a :\Leftrightarrow$$
 analog s.o.

Diskussion: Uneigentliche Grenzwerte:

Wir schreiben $\lim_{\bullet} f(x) 0 \begin{cases} \infty \\ -\infty \end{cases}$ bei bestimmter Divergenz der Funktionswerte für:

$$\bullet \begin{cases}
 x \to x_0 \\
 x \nearrow x_0 \\
 x \searrow x_0 \\
 x \to \infty \\
 x \to -\infty
\end{cases}$$

Satz 2:

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow \lim_{x \nearrow x_0} f(x) = \lim_{x \searrow x_0} = a$$

$$\lim_{x \nearrow 0} f(x) = 0, \ \lim_{x \searrow 0} f(x) = 1$$

$$\Rightarrow \lim_{x \to 0} f(x) \text{ existiert nicht!}$$

$$\lim_{x \to \infty} x \cdot \sin\left(\frac{4}{x}\right) = "\infty \cdot 0"$$

$$u = \frac{4}{x}$$

$$= \lim_{u \searrow 0} \frac{4}{u} \sin(u) = 4$$

Bsp. 5:

$$\lim_{x\nearrow\frac{\pi}{2}}\tan x = \infty$$

$$\lim_{x\searrow\frac{\pi}{2}}\tan x = -\infty$$

2.2.2 Stetigkeit von Funktionen

Def. 3: Sei $f: Db(f) \to \mathbb{R}, \ Db(f) \subseteq \mathbb{R}$ eine Funktion und $x_0 \in Db(f)$ gegeben. Es heißt f:

a.) stetig in x_0 falls $\lim_{x \to \infty} f(x) = f(x_0)$ gilt (also $\lim_{x\to x_0} f(x) = f(\lim_{x\to x_0} x)$, d.h. Limes und Funktion kann vertauscht werden).

- b.) linksseitig stetig in x_0 , falls $\lim_{x \nearrow x_0} f(x) = f(x_0)$.
- c.) rechtsseitig stetig in x_0 , falls $\lim_{x \searrow x_0} f(x) = f(x_0)$.

Bsp. 6:

a.)
$$f_1(x) = \begin{cases} \frac{\sin x}{x} & x \neq 0 \\ 0 & x = 0 \end{cases} \text{ ist in } x_0 = 0 \text{ nicht stetig, da} \lim_{x \to 0} f(x) = 1 \neq 0 = f(0).$$
 Aber $\tilde{f}_1(x) = \begin{cases} f(x) & x \neq 0 \\ 1 & x = 0 \end{cases} \text{ ist in } x_0 = 0 \text{ stetig.}$

Aber
$$\tilde{f}_1(x) = \begin{cases} f(x) & x \neq 0 \\ 1 & x = 0 \end{cases}$$
 ist in $x_0 = 0$ stetig.

Bezeichnung: hebbare Unstetigkeit.

ABB16

$$\text{b.)} \ \ f_2(x) = \begin{cases} \arctan\left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases} \text{ ist unstetig in } x_0 = 0 \text{, da} \lim_{x \nearrow 0} f_2(x) \neq f_2(0) \neq \lim_{x \nearrow 0} f_2(x)$$

Bezeichnung: endlicher Sprung.

ABB17

$$\text{c.)} \ \ f_3(x) = \begin{cases} \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases} \text{ ist unstetig in } x_0 = 0 \text{, da} \lim_{x \nearrow 0} f_3(x) = \infty \neq f_3(0).$$

d.)
$$f_3(x) = \begin{cases} \sin\frac{1}{x} & x \neq 0 \\ 1 & x = 0 \end{cases}$$
 ist unstetig in $x_0 = 0$, da der Grenzwert $\lim_{x \to 0} \sin\frac{1}{x}$ nicht existiert.

Def. 4: Die Funktion $f:DB(f)\to\mathbb{R},\ Db(f)\subseteq\mathbb{R}$ heißt

- a.) in einem Intervall $I \subset Db(f)$ stetig, falls f an jeder inneren Stelle $x_0 \in I$ stetig ist und in evtl. zu I gehörenden Randpunkten einseitig stetig ist.
- b.) *stetig*, falls f in allen Punkten $x_0 \in Db(f)$ stetig ist.

Bemerkung: Jede der in ?? und ?? betrachteten Funktionen ist stetig.

Bsp. 7:
$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, \ f(x) = \frac{1}{x}$$
 ist stetig.

Satz 3: Sind f und g stetig in x_0 , so sind auch $c_1 \cdot f + c_2 \cdot g$, $f \cdot g$ und $\frac{f}{g}$ (falls $g(x_0) \neq 0$) stetig in x_0 .

Satz 4: (Stetigkeit und Verknüpfungen)

Seien $g:Db(g)\to\mathbb{R}$ und $f:Db(f)\to\mathbb{R}$ Funktionen mit $Wb(g)\subseteq Db(f)$, dann gilt: Ist g stetig in x_0 und f stetig in $g(x_0)$, so ist $f\circ g:Db(g)\to\mathbb{R},\ (f\circ g)(x)=f(g(x))$ stetig in x_0 .

Satz 5: (Zwischenwertsatz)

Sei $f:Db(f)\to\mathbb{R},\ Db(f)\subseteq\mathbb{R}$ stetig auf [a,b]Db(f). Falls $f(a)\cdot f(b)<0$ (also haben unterschiedliche Vorzeichen), so gilt $\exists x^*\in[a,b]$ mit $f(x^*)=0$ ABB20

Satz 6: Sei $f: Db(f) \to \mathbb{R}, \ Db(f) \subseteq \mathbb{R}$ stetig auf [a,b]. Dann nimmt f auf [a,b] Minimum und Maximum an.

Diskussion:

- a.) $f(x) = \tan x$ nimmt auf $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ kein Maximum an. ABB21
- b.) $f(x) = \begin{cases} \arctan\frac{1}{x} & x \in [-1,1] \setminus \{0\} \\ 0 & x = 0 \end{cases}$ nicht stetig und nimmt kein Maximum auf [-1,1] an. ABB22

2.3 Potenzreihen

Def.: Sei (a_n) eine Zahlenfolge und $x_0 \in \mathbb{R}$ heißt $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ Potenzreihe mit dem Mittelpunkt x_0 .

Diskussion:

- Für jedes feste $x \in \mathbb{R}$ ist die Potenzreihe eine feste Reihe.
- Konvergenzbereich $K := \{x \in \mathbb{R} | \text{Potenzreihe ist konvergent} \}$
- Für jedes $x \in K$ existiert der Summenwert der Potenzreihe. Die Funktion $f: K \to \mathbb{R}$ mit $f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$ heißt Grenzfunktion der Potenzreihe.

Zur Bestimmung des Konvergenzbereichs nutz man Satz 10 und 11 aus **??** und erhält absolute Konvergenz in einem um x_0 liegendem Konvergenzintervall $I:=(x_0-r,x_0+r)$. Wie r bestimmt wird liefert:

Diskussion:

- Verwechslungsgefahr:
 - Satz 10 und 11 betrachten (Zahlen-)Reihen $\sum_{n=0}^{\infty} a_n$
 - Satz 1 betrachtet Potenzreihen $\sum_{n=0}^{\infty} a_n (x-x_0)^n$, wobei a_n ein Faktor vor $(x-x_0)^n$ ist.
- Falls der Grenzwert r aus Satz 1 nicht existiert, so gibt es trotzdem einen Konvergenzradius. Den gilt es auf andere Weise zu betrachten/ermitteln.
- Satz 1 sagt nichts über das Verhalten an den Randpunkten aus → gesonderte Untersuchung nötig.

Bsp. 1:

a.)
$$\sum_{n=1}^{\infty} \frac{x^n}{n}, \text{ d.h. } x_0 = 0, \ a_n = \frac{1}{n}, \ n = 1, 2, \dots$$

$$r = \lim_{n \to \infty} \frac{1}{\sqrt[n]{\left|\frac{1}{n}\right|}} = \lim_{n \to \infty} = \frac{1}{\frac{1}{\sqrt[n]{n}}} = \lim_{n \to \infty} \sqrt[n]{n} = 1$$

$$\Rightarrow \text{Konvergenzintervall } I = (-1, 1)$$
 Randpunkte:
$$x = -1 : \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \text{ bedingt konvergent (alternierenden harmonische Reihe)}$$

$$x = 1 : \sum_{n=1}^{\infty} \frac{1}{n} \text{ divergent}$$

 \Rightarrow Konvergenzbereich: K = [-1, 1)

$$\begin{array}{l} \text{b.)} \ \sum_{n=0}^{\infty} \frac{x^n}{n!}, \text{d.h.} \ x_0=0, \ a_n=\frac{1}{n!} \\ \left|\frac{a_n}{a_{n+1}}\right| = \frac{\frac{1}{n!}}{\frac{1}{(n+1)!}} = \frac{(n+1)!}{n!} = n+1 \stackrel{n\to\infty}{\longrightarrow} \infty \\ \Rightarrow r=\infty \end{array}$$

d.h. die Reihe ist absolut konvergent für alle $x \in \mathbb{R}$.

Bezeichnung: beständige Konvergenz

c.)
$$\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} = 1 + \frac{x^2}{2!} + \frac{x^2}{4!} + \dots$$
 d.h. $x_0 = 0$, $a_n = \begin{cases} \frac{1}{n} & n \text{ gerade} \\ 0 & n \text{ungerade} \end{cases}$

Satz 1 ist aber nicht unmittelbar anwendbar. Substitution
$$u:=x^2$$
 liefert aber $\sum_{n=0}^{\infty}\frac{u^n}{(2n)!}$ mit $u_0=0,\,b_n=\frac{1}{(2n)!}\left(\sum b_n(u-u_0)^n\right)$

$$\left| \frac{b_n}{b_{n+1}} \right| = \frac{(2n+2)!}{(2n)!} = (2n+2) \cdot (2n+1) \stackrel{n \to \infty}{\longrightarrow} \infty$$

 $\Rightarrow r_u = \infty$ (Konvergenzradius für die Substituierte Reihe)

 $\Rightarrow r_x = \sqrt[n]{\infty} = \infty$ (Konvergenzradius für die untersuchte Funktion)

Im Konvergenzbereich K wird dadurch eine Potenzreihe eine Funktion dargestellt, die Grenzfunktion (siehe vorhergehende Diskussion).

Bsp. 2:

a.)
$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$
 für $x \in (-1,1)$ (geometrische Reihe)

b.)
$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = e^x$$
 für $x \in \mathbb{R}$ (Beweis später)

Satz 2: Die Grenzfunktion jeder Potenzreihe ist im Konvergenzbereich stetig.

3 Differentialrechnung für Funktionen einer reellen Variablen

3.1 Grundbegriffe

Tangentenproblem

ABB38

Gegeben: y = f(x)

Gesucht: Tangente im Punkt $(x_0, f(x_0))$

- Zunächst Sekante durch $(x_1, f(x_1))$ und $(x_0, f(x_0))$
- Dann betrachten wir $x_1 \rightarrow x_0$
- Damit geht Sekante über in die Tangente. Außerdem geht φ in α über.

$$\tan \alpha = \lim_{\varphi \to \alpha} \tan \varphi = \lim_{x_1 \to x_0} \underbrace{\frac{f(x_1) - f(x_0)}{x_1 - x_0}}_{\text{Difference enquotient}}$$

Def. 1: Die Funktion $f: Db(f) \to \mathbb{R}$ heißt an der Stelle x_0 (mit $U(x_0) \subseteq Db(f)$) differenzierbar, falls $\operatorname{der} \operatorname{Grenzwert} \boxed{f'(x_0) := \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}} \operatorname{existiert}.$

 $f'(x_0)$ heißt dann 1. Ableitung von f an der Stelle x_0 .

Diskussion:

•
$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

- Gleichung der Tangente in $(x_0, f(x_0))$ ist $t(x) = f(x_0) + f'(x_0)(x x_0)$ $(t : \mathbb{R} \to \mathbb{R})$ Anstieg der Tangente ist als $m = \tan \alpha = f'(x_0)$
- f in x_0 differenzierbar bedeutet es existiert eine eindeutige Tangente an die Kurve in dieser

z.B. ist
$$f:\mathbb{R}\to\mathbb{R},\ f(x)=|x|$$
 in $x_0=0$ nicht differenzierbar: ABB39

Satz 1: Ist $f: \mathbb{R} \to \mathbb{R}$ in x_0 differenzierbar, so ist f in x_0 stetig.

Beweis:

Sei f in x_n differenzierbar und (x_n) eine beliebige Folge mit $x_n \to x_0$. Dann gilt:

$$\lim_{n\to\infty} \frac{f(x_n)-f(x_0)}{x_n-x_0}$$
 existiert.

$$\lim_{n\to\infty} \frac{f(x_n) - f(x_0)}{x_n - x_0} \text{ existiert.}$$

$$\Rightarrow \exists \ K > 0 \text{ mit } \left| \frac{f(x_n) - f(x_0)}{x_n - x_0} \right| = \frac{|f(x_n) - f(x_0)|}{|x_n - x_0|} \le K$$

$$\Rightarrow |f(x_n) - f(x_0)| \le K \cdot |x_n - x_0| \stackrel{n \to \infty}{\longrightarrow} 0$$

$$\Rightarrow \lim_{n \to \infty} f(x_n) = f(x_0) \Rightarrow f$$
 ist stetig.