

ECG & Cardiac Arrhythmias

Introduction:

The body acts as a conductor of electricity.

As the wave of depolarization is transmitted throughout the heart, electrical currents spread into tissues surrounding the heart and to the surface of the body.

The placement of electrodes on the skin on opposing sides of the heart enables the electrical current generated by the heart to be recorded.

What is an ECG?

The electrocardiogram (ECG/EKG) is a representation of the electrical events of the cardiac cycle.

Each event has a distinctive waveform, the study of which can lead to greater insight into a patient's cardiac pathophysiology.

Cardio-diagnostic Investigations

- 1. ECG Recording
- 2. Cardiac Monitoring
- 3. TMT/Exercise ECG/Dobutamine Stress Test
- 4. Holter monitoring
- 5. Echocardiography
- 6. Pericardiocentesis
- 7. Pulse Oxymetery
- 8. Chest X-ray
- 9. Cardiac Angiography
- 10. Others: Pulse, BP, Heart Sound, CT, MRT etc

Purpose:

- Arrhythmias
- Myocardial ischemia and infarction
- Pericarditis
- Chamber hypertrophy / Cardiomegaly.
- Electrolyte disturbances (i.e. hyperkalemia, hypokalemia)
- Drug toxicity (i.e. digoxin)
- To provide vital information regarding the patient's condition and progress(Death: flat ECG)

Anatomy & Physiology

Blood Flow through heart

- Superior and Inferior Vena Cava
- Right Atrium
- Right Ventricle
- Pulmonary Artery
- Lungs
- Pulmonary Vein
- Left Atrium
- Left Ventricle
- Aorta
- Body

Review Basic of ECG

Conduction System

Conduction System

- The heart has a conduction system separate from any other system
- The conduction system makes up the PQRST complex we see on paper

An arrhythmia is a disruption of the

conduction system

 Understanding how the heart conducts normally is essential in understanding and identifying arrhythmias

Conduction System

- SA Node
- Inter-nodal and inter-atrial pathways
- A-V Node
- Bundle of His
- Perkinje Fibers

SA Node

- The primary pacemaker of the heart
- Each normal beat is initiated by the SA node
- Inherent rate of 60-100 beats per minute
- Represents the P-wave in the QRS complex or atrial depolarization (firing)

AV Node

- Located in the septum of the heart
- Receives impulse from inter-nodal pathways and holds the signal before sending on to the Bundle of His
- Represents the PR segment of the QRS complex

AV Node

- Represents the PR segment of the cardiac cycle
- Has an inherent rate of 40-60 beats per minute
- Acts as a back up when the SA node fails
- Where all junctional rhythms originate

QRS Complex

- Represents the ventricles depolarizing (firing) collectively. (Bundle of His and Perkinje fibers)
- Origin of all ventricular rhythms
- Has an inherent rate of 20-40 beats per minute

Normal Impulse Conduction

Sinoatrial node AV node **Bundle of His Bundle Branches** Purkinje fibers

EKG Trace

- Isoelectric line (baseline)
- P-wave
 - Atria firing
- PR interval
 - Delay at AV

EKG Trace

- QRS
 - Ventricles firing
- T-wave
 - Ventricles repolarizing

EKG Trace

ST segment

- Ventricle contracting
- Should be at isoelectric line
- Elevation or depression may be important
- U wave
 - Perkinje fiber repolarization?

Waveform Analysis

- For each strip it is necessary to go through steps to correctly identify the rhythm
- 1. Is there a P-wave for every QRS?
 - P-waves are upright and uniform
 - One P-wave preceding each QRS
- 2. Is the rhythm regular?
 - Verify by assessing R-R interval
 - Confirm by assessing P-P interval
- What is the rate?
 - Count the number of beats occuring in one minute
 - Counting the p-waves will give the atrial rate
 - Counting QRS will give ventricular rate

Summary

Normal

- Heart rate = 60 100 bpm
- PR interval = 0.12 0.20 sec
- QRS interval <0.12
- SA Node discharge = 60 100 / min
- AV Node discharge = 40 60 min
- Ventricular Tissue discharge = 20 40 min

Summary

- Cardiac cycle
 - P wave = atrial depolarization
 - PR interval = pause between atrial and ventricular depolarization
 - QRS = ventricular depolarization
 - T wave = ventricular depolarization

The 12-Leads

The 12-leads include:

- -3 Limb leads (I, II, III)
- –3 Augmented leads (aVR, aVL, aVF)
- –6 Precordial leads (V₁- V₆)

Lead Views

Leads paced in limbs (arm/leg) RT Minimum Muscle as to decrease muscle twitching.

Prof. Dr. RS Mehta, MSND, BPKIHS

Anatomic Groups (Summary)

l	aVR	V ₁	V ₄	
Lateral	None	Septal	Anterior	
II	aVL	V ₂	V ₅	
Inferior	Lateral	Septal	Lateral	
III	a∀F	V ₃	V ₆	
Inferior	Inferior	Anterior	Lateral	

Other MI Locations

Lateral portion of

the heart

Inferior portion of the heart

Prof. Dr. RS Mehta, MSND, BPKIHS

Features to Analyze on every ECG

- 1. Standardization / Calibration / Technical Quality
- 2. Heart Rate
- 3. Rhythm
- 4. PR interval
- 5. P-wave Size
- 6. QRS-width/interval
- 7. QT interval
- 8. R-wave progression in chest leads
- 9. Abnormal q-wave
- 10. ST Segment
- 11. T-wave
- 12. U- wave
- 13. Others-Axis, voltage etc

Determining the Heart Rate

1 Small Squire =1mm/0.04sec.

1 Large Squire =5mm/0.2sec.

5 Large Squire =25mm/1 sec.

Calibration: 25mm/sec, 25x6o=1500

: 10mm/sec, 10x60=600

: 100mm/sec, 100x60=6000

Rule of 300 (Clinical use)

Take the number of "big boxes" between neighboring QRS complexes, and divide this into 300. The result will be approximately equal to the rate

When Heart Rate Regular:

- 300/ No of large squires between 2 'R' wave = HR/min (300/4=75 min)

-1500 No. of small squire between 2 'R' wave =HR/min.(1500/20=75min)

What is the heart rate?

(300 / 6) = 50 bpm

What is the heart rate?

 $(300 / \sim 4) = \sim 75 \text{ bpm}$

The Rule of 300

It may be easiest to memorize the following table:

# of big boxes	Rate	
1	300	
2	150	
3	100	
4	75	
5	60	
Pro 6 Dr. RS Mehta	, MSND, B 50 IS	

Rhythm

Mobitz type I block (Wenckebach phenomenon)

Mobitz type II block—a complication of an inferior myocardial infarction. The PR interval is identical before and after the P wave that is not conducted

Common ECG View

Sinus Rhythms

Normal Sinus Rhythm

Heart Rate	Rhythm	P Wave	PR Interval (sec.)	QRS (Sec.)
60 - 100	Regular	Before each QRS, Identical Prof. Dr. RS Mehta, MSND, BPKIHS	.1220	<.12

- Normal Sinus Rhythm
 - Sinus Node is the primary pacemaker
 - One upright uniform p-wave for every QRS
 - Rhythm is regular
 - Rate is between 60-100 beats per minute

ECG Video Show

Cardiac Arrhythmias

Abnormal Rhythm?

Sinus Bradycardia

Heart Rate	Rhythm	P Wave	PR Interval (sec.)	QRS (Sec.)
<60	Regular	Before each QRS, Identical Prof. Dr. RS Mehta, MSND, BPK	.1220	<.12

40

Sinus Tachycardia

Heart Rate	Rhythm	P Wave	PR Interval (sec.)	QRS (Sec.)
>100	Regular	Before each QRS, Identical Prof. Dr. RS Mehta, MSND, BPK	.1220	<.12

41

Sinus Arrhythmia

Heart Rate	Rhythm	P Wave	PR Interval (sec.)	QRS (Sec.)
Var.	Irregular	Before each QRS, Identical	.1220	<.12
CHARLES OF THE	建筑区产品产品的 。全	Prof. Dr. RS Mehta, MSND, BPK	IHS	SET LINE CONTROL

42

Atrial Rhythms

Premature Atrial Contraction (PAC)

Heart Rate	Rhythm	P Wave	PR Interval (sec.)	QRS (Sec.)
NA	Irregular	Premature & abnormal or Prof. Dr. Rhidde, MSND, BPK	.1220 IHS	<.12

Atrial Rhythms

Atrial Fibrillation

Heart Rate	Rhythm	P Wave	PR Interval (sec.)	QRS (Sec.)
Var.	Irregular	Wavy irregular	NA	<.12

Atrial Rhythms

Atrial Flutter

Heart Rate	Rhythm	P Wave	PR Interval (sec.)	QRS (Sec.)
Atrial=250 -400 Ventricular Var.	Irregular	Sawtooth	Not Measur- able	<.12

Prof. Dr. RS Mehta, MSND, BPKIHS

Ventricular Rhythms

Premature Ventricular Contraction (PVC)

Ventricular Rhythm

Ventricular Rhythms

Ventricular Tachycardia

Heart Rate	Rhythm	P Wave	PR Interval (sec.)	QRS (Sec.)
100 – 250	Regular	No P waves corresponding to QRS, a few may be seen Prof. Dr. RS Mehta, MSND, BPKIHS	NA	>.12

Ventricular Rhythms

Ventricular Fibrillation

Heart Rate	Rhythm	P Wave	PR Interval (sec.)	QRS (Sec.)
0	Chaotic	None	NA	None
	Substitution of the substi	Prof. Dr. RS Mehta, MSND, BPKIHS		53

Asystole

Heart Rate	Rhythm	P Wave	PR Interval (sec.)	QRS (Sec.)
None	None	None	None	None

First Degree Heart Block

Heart Rate	Rhythm	P Wave	PR Interval (sec.)	QRS (Sec.)
Norm.	Regular	Before each QRS, Identical Prof. Dr. RS Mehra, MSND, RPKIHS	> .20	<.12

Prof. Dr. RS Menta, MSND, BPKIHS

Second Degree Heart Block Mobitz Type I (Wenckebach)

Heart Rate	Rhythm	P Wave	PR Interval (sec.)	QRS (Sec.)
Norm. can be slow	Irregular	Present but some not followed by QRS Prof. Dr. RS Mehta, MSND, BP	Progressively longer	<.12

Second Degree Heart Block Mobitz Type II (Classical)

Heart Rate	Rhythm	P Wave	PR Interval (sec.)	QRS (Sec.)
Usually slow	Regular or irregular	2 3 or 4 before each QRS, Identical Prof. Dr. RS Mehta, MSND, BPKIHS	.1220	<.12 depends

Third Degree Heart Block (Complete)

Heart Rate	Rhythm	P Wave	PR Interval (sec.)	QRS (Sec.)
30 – 60	Regular	Present but no correlation to QRS may be hidden Prof. Dr. RS Mehta, MSND, BPKIHS	Varies	<.12 depends

Look Some ECGs

Normal Sinus Rhythm

Premature Ventricular Complex

Prof. Dr. RS Mehta, MSND, BPKIHS

Ventricular Tachycardia

Ventricular Fibrillation Agonal Rhythm

Third-Degree Heart Block

Normal EKG

Prof. Dr. RS Mehta, MSND, BPKIHS

504 0.15-150 Hz

Atrial Fibrillation with Rapid Ventricular Response

ECG Changes

Ways the ECG can change include:

Diagnosis of Arrhythmia

- Medical history
- Physical examination
- ECG
- Laboratory test

Therapy Principal

- Pathogenesis therapy
- Stop the arrhythmia immediately if the hemodynamic was unstable
- Individual therapy

Rx.: Commonly used drugs

- 1. Lidocaine (xylocard)
- 2. Procanamide
- 3. Mexiletine
- 4. Moricizine
- 5. Propafenone
- 6. Propranolol

- 7. Metoprolol
- 8. Verapamil
- 9. Diltiazen
- 10. Isoprenaline
- 11. Epinephrine
- 12. Atropine

Drugs

VASOPRESER	ANTIARRYTHMIAS	
Epinephrine	Amiodarone, Lidocaine	
Norepinephrine	Atropine	
Vasoprossine	Adenosine	
Dopamine	β- blockers	
Dobutamine	Calcium channel blockers	

Miscellaneous: Na Bicarbonate, Ca-Glucomate, Heparin

RX

- Drugs
- Cardioversoin: Low Voltage
- DC SHOCK: 200, 200-250, 270/360
- Carotid Massage
- Pri-cordail Thumb
- Artificial Pacing

DC Cardio version

150-200, 200-250, 270-260 / 200, 250, 270

Monophasic = 360 J once of Biphasic Tokonce ok 2010 guidelines

Synchronized Cardioversion

- Shock delivery is timed with QRS complex
- Indications :

SVT reentry

Atrial Flutter

Atrial Fibrillation

Energy used is lower than Defibrillation.

Precordial Thump

- Only to be executed by health care workers
- Risk of conversion of coordinated cardiac rhythm to VF/ PulselessVT/ asystole
- Not part of the training in BCLS & ACLS

SHOCKABLE

Figure 27-16 Ventricular tachycardia in lead V1.

Copyright @ 2004 Lippincott Williams & Wilkins.

SHOCKABLE

Figure 27-17 Ventricular fibrillation in lead II.

Copyright © 2004 Lippincott Williams & Wilkins.

NON SHOCKABLE

Figure 27-19 Asystole. (Always check two different leads to confirm rhythm.)

Copyright @ 2004 Lippincott Williams & Wilkins.

Thank you