Basic mathematical concepts

Names: Ana Paula Katsuda Zalce, A01025303

- 1. Let X be a finite set. Give a recursive definition of the set of subsets of X (the Power set of X). Use union as the operator on the definition
- 2. Prove by induction on *n* that $\sum_{i=0}^{n} n = \frac{n(n+1)}{2}$
 - 3. Using the tree below, give the values of each of the items:
 - a. the depth of the tree
 - b. the ancestors of x_{18}
 - c. the internal nodes of the tree
 - d. the length of the path from x_3 to x_{14}
 - e. the vertex that is the parent of x_{16}
 - f. the vertices children of x_7

BASIC MATHEMATICAL CONCEPTS Andreina Sanánez Rico, A01024927 Ana Paula Katsuda Zalce, A01025303

Power set → P(x)

Basis \rightarrow {} \in P(x)

El conjunto vacío pertenece a P(x) en cualquier caso

Recorsive step: Definiendo X= YU{x}, es posible obtener P(x)= P(Y)U{WU{z}|WEP(Y)}

Closure: n E P(X) solo si puede ser obtenida de la base usando un conjunto finito de los conjuntos recursivos Un ejemplo de lo anterior se ve de la siguiente manera

- Considerando X={1,2,3}, se sique el paso recursivo de manera:

$$P\left(x\right) = \left\{\left\{\right\},\left\{1\right\},\left\{2\right\},\left\{1,2\right\}\right\} \ \ U\left\{\left\{5\right\},\left\{1,3\right\},\left\{2,3\right\},\left\{1,2,3\right\}\right\}$$

$$\sum_{i=0}^{n} n = \frac{n(n+1)}{2}$$

Basis
$$\rightarrow$$
 siendo $n = \frac{n(1+n)}{2} = \frac{0(1+0)}{2} = \frac{0}{2} = 0$

Inductive hypothesis: los primeros números hasta K suman $\frac{K(K+1)}{2}$ \therefore 1+2+3+...+k = $\frac{K(K+1)}{2}$

Inductive step: para k+1, $\frac{(K+1)((K+1)+1)}{2}$ dado que $1+2+3+...+K+(K+1)=\frac{K(K+1)}{2}+(K+1)$. Resolviendo, $\frac{K(K+1)}{2}+\frac{2(K+1)}{2}$

$$=\frac{K(K+1)+2(K+1)}{2}$$

- a) Depth: 4
- b) Ancestors of XIB: XIS, XIO, XY, XI
- c) Internal nodes: x1, x2, x3, x4, x5, x4, x10, x13, x15
- d) length from X3 to X14:2
- e) Vertex that is the parent of X16: X10
- f) Vertices children of X2: X13, X14