Talfølge

Problem ID: sequence

En følge af positive heltal (x_1,\ldots,x_m) er god hvis $x_1=1$ og der for $1< j \leq m$ gælder enten $x_j=x_{j-1}+1$ eller $x_j=x_k\cdot x_l$ for nogle k og l med $0< k \leq l < j$. For eksempel er talfølgerne (1,1) og (1,2) begge gode, men talfølgen (1,3) er ikke god. For n givne heltal w_1,\ldots,w_n defines vægten an en heltalsfølge (x_1,\ldots,x_m) , der opfylder $1\leq x_j\leq n$ for alle $1\leq j\leq m$, som

$$w_{x_1} + \cdots + w_{x_m}$$
.

Hvis for eksempel de givne vægte er $w_1=10, w_2=42, w_3=1$, så har talfølgen (1,1) vægt 20 og talfølgen (1,3) har vægt 11. For $1 \le v \le n$, lad s_v angive den mindst mulige vægt af en god talfølge, der indeholder værdien v.

Din opgave er at bestemme værdierne s_1, \ldots, s_n .

Indlæsning

Første linje af indlæsningen bestar af heltallet n, antallet af vægte. De næste n linjer indeholder heltalsvægtene w_1, \ldots, w_n .

Udskrift

Skriv n linjer med s_1, \ldots, s_n i rækkefølge.

Begrænsninger og pointgivning

Der gælder altid $1 \le n \le 30\,000$ og $1 \le w_i \le 10^6$ for hvert $1 \le i \le n$.

Din løsning vil blive testet på en række testgrupper, hver med en vist antal point. Hver testgruppe indeholder en række testfald. For at opnå point for en testgruppe skal du løse alle testfald i testgruppen. Din endelige score vil være den højeste score for en enkelt indsendelse.

Gruppe	Point	Begrænsninger
1	11	$n \le 10$
2	10	$n \le 300, w_1 = \dots = w_n = 1$
3	10	$n \leq 300, w_1 = \dots = w_n$
4	9	$n \le 1400, w_1 = \dots = w_n = 1$
5	45	$n \le 5000$
6	15	Ingen yderligere begrænsninger

Sample Input 1

Sample Output 1

3	10
10	52
42	53
1	