인체측정 데이터 수집에 대한 최신 기술(3D 스캐너) 및 문제

<요약>

- 과거, 인체 치수를 기록하여 평균과 표준편차와 같은 공식을 인체 데이터로 많이 사용
- 오늘날 인체 치수에 대한 연구는 3차원 신체 스캐너를 사용하여 더 효율적으로 수행될 수 있으며, 이는 기존의 기법보다 더 빠르고 많은 양의 인체 측정 데이터를 제공할 수 있음
- 본 논문은 3차원 신체 스캐너를 사용한 인체측정 데이터 수집과 관련된 이슈에 대해 다루고, 효과적인 데이터 수집에 필요한 프로세스와 수집된 데이터의 신뢰성과 유효성에 영향을 미칠 수 있는 측정 오류 발생 원인에 대해 알아봄

1. 소개

- (1) 첫 인체 측정의 시도는 1890년 Richer의 캘리퍼로 인체를 측정하는 방법
- *캘리퍼: 컴퍼스와 비슷한 도구로 작은 치수를 잴 때 사용함
- 일반적으로 여러 번 측정하여 평균값을 계산하여 사용
- 이러한 기존의 인체측정학 데이터 수집 방법은 시간이 많이 걸리고 비용이 많이 들며 오류 가 발생하기 쉬움
- (2) 표면 데이터를 얻는 새로운 방법이 등장함에 따라 새로운 디지털 도구를 사용하여 곡선이나 볼륨에 대한 데이터를 수집할 수 있게 됨
- (3) 디지철 캡처 도구를 사용한 3D 인체 연구는 1973년 Lovesey가 제안한 기법으로 시작됨
 - → 이 기술은 현재 3차원 스캐너로 알려진 것으로 진화함
 - → 대부분의 3차원 바디 스캐너는 광학 기술을 사용하여 빛에 민감한 장치와 결합하여 신체의 표면을 캡처하는 방식으로, 신체에 물리적인 접촉을 필요로 하지 않음
- 2. 인체측정 데이터를 수집하기 위한 3D 신체 스캐너의 사용
- 2.1 영상촬영기법의 종류
- 주요 스캔 기술은 레이저와 비레이저 빛을 사용하는 것임
- Daanen과 Ter Haar에 따르면, 2013년 3차원 바디 스캐너에 사용된 다양한 기술은 다음과 같음
- 1) 레이저 라인 시스템: 모든 측면에서 신체에 투영됨
 - ✓ 장점: 투사된 2D가 3D 표면에서 어떻게 변형되는지 정확하게 계산할 수 있는 센서 로 쉽게 감지됨
- 2) 구조화된 빛 시스템: 빛을 몸 표면에 투영시키고 전체 3D 이미지가 계산됨✓ 장점: 데이터를 캡처하는 속도가 빠름
- 3) 멀티 뷰 카메라 시스템: 3D 이미지는 두대 이상의 카메라에서 획득되고 두 이미지에서 신

체 깊이를 실시간으로 계산하여 고밀도 3D 영상으로 변환할 수 있음

4) 밀리미터 전파: 피부가 아닌 의류를 통과한다는 이점이 있어 옷을 벗을 필요 없이 신체형태를 캡처할 수 있음

2.2 스캔 프로세스

- 3D 스캔은 빠르게 신체 치수를 캡처하는 기술을 제공함
- 그러나 인체측정 데이터베이스에서 사용할 수 있는 데이터를 얻으려면 피측정자의 위치
 가 중요함
- ISO20685는 그림1과 같은 네 가지 자세를 제안함
- 모든 자세에 대해서는 정상적인 호흡, 뻣뻣하지 않고 곧게 편 어깨, 긴장하기 않은 근육 이 요구됨
- 연구자들은 측정 기준을 준수하고 변동성을 최소화하기 위해 다중 측정을 함으로써 자세및 기술적 오류를 줄이는 것을 목표로 해야함

Figure 1. Subject positions during scanning.

2.3 인체 스캐너의 적용

- 의료: 신체 기형, 녹내장, 교정, 정형외과, 수술, 폐 기능 연구, 소아과
- 인간 공학: 작업 환경, 인구 인류학, 헬멧 및 안면 마스크, 장갑, 의류, 인간 움직임 분석, 법의학, 청각 연구
- 가상 현실과 커뮤니케이션: 3차원 인간 모델의 애니메이션
- 최근 연구에 따르면 3D 스캔은 의류 산업을 위한 고객의 가상 모델을 만드는 데 사용되어 왔으며, 소비자들은 이를 사용하여 가상으로 옷을 입어 볼 수 있음
- 인체 스캐너의 또 다른 중요한 용도는 인체측정학 데이터베이스의 구축
 - → 최초로 수행된 대규모 3D 인체측정학 조사 프로젝트는 민간 미국 및 유럽 표면 인체 측정학 자원(CAESAR)으로 시저 데이터베이스에는 18세부터 65세까지의 남성과 여성의 인체측정학적 다양성이 포함되어 있음
- 이외에도 사이즈 UK, 사이즈 USA, 사이즈 스페인, 사이즈 China 등 많은 연구가 3D 바디 스캐너로 수집한 데이터를 이용하여 개체군을 분류

3. 인체측정 데이터의 신뢰성 및 유효성

- 데이터의 유효성: 측정값이 참값을 달성할 수 있는 능력
- 데이터의 신뢰성: 동일한 조건에서 동일한 측정을 반복했을 때, 일관되게 획득할 수 있는 능력
- 인체 측정 데이터 사용시 필수로 요구되는 평가지표
 - 1) 데이터의 타당성: 대상 모집단이 조사 대상에 의해 잘 정의되는 것
 - 2) 데이터의 비교 가능성: 동일한 측정법을 사용하는 측정 데이터와 비교 가능한 것
 - 3) 데이터 측정의 정확도: 측정 기술, 측정 대상 등의 요소에 영향을 받음

3.1 오류의 원인

- 대부분의 연구에서 오차의 한계는 데이터 수집 전 설정되는 반면, 측정 성능은 수집 과정 중에 평가된다.
- 인체 측정의 전통적인 방법은 교정이 간단하며 따라서 제대로 설계되지 않은 경우에만 신뢰성이 떨어지는 반면, 3D 시스템의 보정은 하드웨어 또는 소프트웨어에 의해 손상되기 쉽다.

Table 2. Factors that affect errors in anthropometry.

F	Factors		3D anthropometry
	Hardware	Accuracy of instrument	Accuracy of scanner system 스캐너 시스템의 정확도
Devices	es Software		Accuracy of landmarking software 소프트웨어의 랜드마크 정확되
	Software		Accuracy of measurement calculation software 소프트웨어의 측정 정확도
	Measurer	Skill of measurement	Skill of landmarking 측정자의 랜드마크 정확도
Humans	Computer		Accuracy of landmarking software 츠저자이 시스텐 자동 정화도
Trumans	operator		software 축정자의 시스템 작동 정확도 Accuracy of measurement calculation software
	Participant	Repeatability of	Repeatability of posture 측정대상의 움직임
		posture	Body sway during scan

- → 인체측정 오류에 영향을 주는 요인들
- → 3차원 인체측정학의 오류는 랜드마크가 큰 영향을 주는 것을 알 수 있음
- → 기존 인체측정 연구들은 정해진 정확도의 표준이 없어 랜드마크 위치의 오류보다는 신체 측정의 오류를 평가하기 때문에 측정 오류의 정확도 평가에 랜드마크 오류를 과 소평가하는 경향이 있음

*랜드마크: 데이터에서 계산된 마크(일반적으로 식별 가능한 골격 지점)의 위치를 측정자 또는 소프트웨어가 식별하는 것

3.2 랜드마크

- 신체 랜드마크를 잘못 식별하는 것은 인체측정 데이터 수집에서 관찰자 오류의 주요 원인이 된다.
- 따라서 랜드마크화로 인한 측정 오차를 정량화 하는 것이 중요
 - → 특히, 3D 인체측정에서 feature의 랜드마크 위치 식별이 미흡하면 측정대상의 신체 치수를 정의하고 분석에 사용하는 파생 데이터에 큰 영향을 미치게 됨
- (1) 일부 연구에서는 정확한 랜드마크 자동 식별을 위한 알고리즘을 제시했지만 알고리즘의 성능 평가를 위한 좋은 기준을 만드는 것 또한 매우 어렵기 때문에 쉽지 않음
- 랜드마크 식별 방법: 사전표시 -> 인체와의 매핑 -> 기하학적 분석 -> 높이 위치의 대략 적인 결정
- (2) 랜드마크를 수동으로 배치하는 방법도 있는데 이는 시간이 많이 소요되고 침습적인 방법으로 사람의 실수가 개입된다.