浙江工业大学期终考试命题稿

2019/2020 学年第 2 学期

课程名称	机械原理	使用班级	机械	
教师份数	10	学生份数	480	
命题人	鲍官军			
命题总页数	7 页	每份试卷 需用白纸	2 大张	
AB 卷、近四年试剂	是			
试卷中一部分试题 的考试区分度?	是			
试卷考核的内容是 程目标?	是			

命题注意事项

- 一、命题稿请用 A4 纸电脑打印,或用教务处印刷的命题纸用黑色水笔书写,保持字迹清晰,页码完整。
- 二、AB 卷必须难度相当、覆盖面相同,卷面上不注明 A、B 字样,由教务处抽取其中一套作为期终考试卷。
- 三、命题稿必须经基层教学组织负责人或系主任审核签字,并在考试前两周交教务处。

浙江工业大学 2019/2020 学年 第 2 学期试卷

班级						姓名	姓名					
学号_	任课教师_							币			-/-	
	题序	_	<u> </u>	1=1	四	五.	六	七	八	九	总评	
	计分											

一、(8分)图示为欠驱动型机器人仿人手指结构及其机构运动简图,计算其机构的自由度。

二、 $(12 \, f)$ 如图所示的机构,并已知各杆件的杆长(标注在杆上)。试分析:(1) 当 AB 为主动件,滑块 E 为从动件时,机构是否有急回特性?(2) 如主动件改为 CD 时情况有无变化?试用作图法说明之。

三、 $(10\ eta)$ 图示为偏心圆凸轮杠杆机构运动简图,转动副的摩擦圆半径ho=5mm,滑动副处摩擦角 $\phi=15$ °。试用图解法求在图示位置时,为提起 Q=150N 的重物所应加于凸轮 1 上的平衡力矩 M1(方向、大小)。

四、(10 分)图示为一铝制圆盘,盘厚 b=40mm,位置 I 处有一直径 ϕ =45mm 的通孔,位置 II 处是一质量 m_2 =1.8kg 的重块。为了使圆盘平衡,拟在圆盘上 r=180mm 处制一通孔并填满铜材。试求此孔的直径与位置。(铝的密度 $2.7g/cm^3$,铜的密度 $8.9g/cm^3$)

五、(12分)图示为齿轮—连杆机构运动简图,已知:Z=24, $Z_0=36$, $Z_0=96$,

六、(12 分) 一机械系统,当取其主轴为等效构件时,在一个稳定运动循环中,其等效阻力矩 Mr 如图所示。已知等效驱动力矩为常数,机械主轴的平均转速为 1440r/min。若不计其余构件的转动惯量,试问:

- (1)当要求运转的速度不均匀系数 $\delta \leq 0.02$ 时,应在主轴上安装一个 JF =? 的飞轮;
- (2)如不计摩擦损失, 计算驱动此机器的原动机功率 (kW)?

七、(15分) 凸轮问题求解:

(1) 在图示的凸轮机构中,画出凸轮从图示位置转过 60° 时从动件的位置及从动件的位移s。

(2) 画出图示凸轮机构的基圆半径 r_0 及机构在该位置的压力角 α 。

(3) 在图示凸轮机构中,画出凸轮从图示位置转过 90° 时凸轮机构的压力角 α 。

- 八、(8分)已知铰链四杆机构的位置、速度多边形和加速度多边形如下图所示。试求:
 - ①构件 1、2 和 3 上速度均为 ν_x 的点 X1、X2 和 X3 的位置;
 - ②构件 2 上加速度为零的点 Q 位置,并求出该点的速度 $^{\nu_Q}$;
 - ③构件 2 上速度为零的点 H 位置,并求出该点的加速度 a_H ;
- ④ 画出构件1和3的速度瞬心点,并在速度多边形和加速度多边形上画出该点的速度和加速度矢量。

九、(13分)图示磨床砂轮架微动进给机构中,Z = Z = Z = 16,Z = 48,丝杠导程S = 5 mm,慢速进给时,齿轮 1 和齿轮 2 啮合;快速退回时,齿轮 1 与内齿轮 4 啮合。(1) 求慢速进给过程和快速退回过程中,手轮转一圈时,砂轮横向移动的距离各为多少? (2) 如手轮圆周刻度为 100 格,则慢速进给时,手轮转动 1 格可实现砂轮架的移动量为多少?

