Assignment on Machine Learning I_Laxman

Split the Heart dataset into a training set (80%) and test set (20%)

Use the training set to fit classification models in order to predict whether a person is likely to suffer from Arterial Heart Disease (AHD). Consider the following classification techniques:

1. Logistic Regression with L2 regularization

weighted avg 0.92 0.92 0.92

The accuracy score achieved using Logistic Regression is: 91.67 %

60

2. Linear Discriminant Analysis

```
Threshold = 0.9
Confusion Matrix:
[29, 1],
    [ 2, 28]])
```

prec	ision	recall	f1-score	support	
0 1	0.94 0.97	0.97	0.95	30 30	
accuracy macro avg weighted avg	0.95	0.95	0.95 0.95 0.95	60 60 0.95	60

The accuracy score achieved using LDA is: 95.0 %

```
Threshold = 0.9
Confusion Matrix:
([[29, 1],
[2, 28]])
```

		precision	recall	f1-score	support
	0	0.94	0.97	0.95 0.95	30 30
accur macro weighted	avg	0.95 0.95	0.95 0.95	0.95 0.95 0.95	60 60

The accuracy score achieved using LDA is: 95.0 $\mbox{\$}$

3. K-Nearest neighbors

K=3
Confusion Matrix:
[[17 13]
 [7 23]]

prec	ision	recall	f1-score	support	
0 1	0.71	0.57 0.77	0.63 0.70	30 30	
accuracy macro avg	0.67	0.67	0.67	60 60	60
weighted avg		0.67	0.67	0.66	60

The accuracy score achieved using KNN is: 66.67 %

K=5
Confusion Matrix:
[[15 15]
 [9 21]]

	precision	recall	f1-score	support
0 1	0.62 0.58	0.50 0.70	0.56	30 30
accuracy macro avg weighted avg	0.60	0.60	0.60 0.60 0.60	60 60 60

The accuracy score achieved using KNN is: 60.0 %

4. Naïve Bayes

```
Confusion Matrix:
    [[25 5]
     [ 6 24]]
          precision recall f1-score support
                              0.82
              0.81 0.83
                                         30
        1
              0.83
                      0.80
                              0.81
                                         30
                               0.82
                                         60
   accuracy
              0.82
                      0.82
                               0.82
                                         60
  macro avg
                       0.82
weighted avg 0.82
                               0.82
                                         60
    The accuracy score achieved using Naive Bayes is: 81.67 %
```

Use <u>10-fold cross validation over the training set (80%)</u> for training the models. <u>Generate the confusion matrix for the test data</u>. Also calculate the <u>precision, recall, F1 and accuracy scores</u>. Train your model for <u>different threshold values for the LDA and different K values for the KNN</u> and for the test data use the model that produced the best accuracy.

Write your codes in python and submit the .pynb files <u>along with a report</u> on the above mentioned results on the test data.