

Unsupervised Learning Reinforcement Learning

Decision Tree · Random Forest

Supervised Learning

- Logistic Regression ·kNN

· Apriori algorithm · k-means · Hierarchical Clustering

Markov Decision Process

- Q Learning

#Import other necessary libraries like pandas,

Python

Code

#numpy... from sklearn import linear_model

#Import Library

#Load Train and Test datasets

#Identify feature and response variable(s) and

#values must be numeric and numpy arrays

x_train=input_variables_values_training_datasets y_train=target_variables_values_training_datasets

x_test=input_variables_values_test_datasets #Create linear regression object

linear = linear_model.LinearRegression() #Train the model using the training sets and

#check score linear.fit(x_train, y_train)

linear.score(x_train, y_train)

#Equation coefficient and Intercept print('Coefficient: \n', linear.coef_) print('Intercept: \n', linear.intercept_)

#Predict Output predicted= linear.predict(x_test)

#of test_dataset

#and check score

model.score(X, y)

model.fit(X, y)

#Import Library

#Create logistic regression object

predicted= model.predict(x_test)

#Train the model using the training sets

model = LogisticRegression()

from sklearn.linear_model import LogisticRegression

#Assumed you have, X (predictor) and Y (target)

#for training data set and x_test(predictor)

#Load Train and Test datasets #Identify feature and response variable(s) and

Code

x_train <- input_variables_values_training_datasets</pre>

y_train <- target_variables_values_training_datasets x_test <- input_variables_values_test_datasets</pre>

#values must be numeric and numpy arrays

x <- cbind(x train,y train)</pre> #Train the model using the training sets and

linear <- $lm(y_train \sim ., data = x)$ summary(linear)

#check score

#Predict Output predicted= predict(linear,x_test)

#Train the model using the training sets and check

logistic <- glm(y_train ~ ., data = x,family='binomial')</pre>

x <- cbind(x_train,y_train)</pre>

predicted= predict(logistic,x_test)

#score

summary(logistic)

#Predict Output

#Equation coefficient and Intercept print('Coefficient: \n', model.coef_) print('Intercept: \n', model.intercept)

#Predict Output

#Import Library #Import other necessary libraries like pandas, numpy... library(rpart)

#training data set and x_test(predictor) of #test_dataset

#Create tree object

from sklearn import tree

model = tree.DecisionTreeClassifier(criterion='gini') #for classification, here you can change the

#Assumed you have, X (predictor) and Y (target) for

#default it is gini #model = tree.DecisionTreeRegressor() for

#Train the model using the training sets and check #score

#Predict Output predicted= model.predict(x_test)

#regression

from sklearn import svm

#Create SVM classification object

#there are various options associated

with it, this is simple for classification.

#Import Library

model = svm.svc()

#algorithm as gini or entropy (information gain) by

model.fit(X, y) model.score(X, y)

#Assumed you have, X (predictor) and Y (target) for

#Train the model using the training sets and check

#training data set and x_test(predictor) of test_dataset

#Import Library

#grow tree

summary(fit)

#Predict Output

x <- cbind(x_train,y_train)</pre>

predicted= predict(fit,x_test)

fit <- rpart(y_train ~ ., data = x,method="class")</pre>

Support Vector Machine)

Naive Bayes

Decision Tree

#score model.fit(X, y)

> model.score(X, y) #Predict Output

predicted= model.predict(x_test)

#Predict Output predicted= predict(fit,x_test)

summary(fit)

#Import Library

library(e1071)

#Fitting model

x <- cbind(x_train,y_train)</pre>

fit $<-svm(y_train ~ ., data = x)$

#there is other distribution for multinomial classes like Bernoulli Naive Bayes #Train the model using the training sets and check

model.fit(X, y)

#Import Library

model.fit(X, y)

#Predict Output

#score

#Import Library

#Predict Output predicted= model.predict(x_test)

from sklearn.neighbors import KNeighborsClassifier

#Assumed you have, X (predictor) and Y (target) for

#Create KNeighbors classifier object model

KNeighborsClassifier(n_neighbors=6)

#default value for n neighbors is 5

predicted= model.predict(x_test)

#training data set and x_test(predictor) of test_dataset

#Train the model using the training sets and check score

from sklearn.naive_bayes import GaussianNB

#Assumed you have, X (predictor) and Y (target) for

#training data set and x_test(predictor) of test_dataset

#Create SVM classification object model = GaussianNB()

#Import Library library(knn) x <- cbind(x_train,y_train)</pre>

#Predict Output

library(cluster)

#Import Library

#Fitting model

summary(fit)

#Predict Output

#Import Library

library(stats)

library(randomForest)

x <- cbind(x_train,y_train)</pre>

predicted= predict(fit,x_test)

pca <- princomp(train, cor = TRUE)</pre>

test_reduced <- predict(pca,test)</pre>

train_reduced <- predict(pca,train)</pre>

fit <- randomForest(Species ~ ., x,ntree=500)</pre>

fit <- kmeans(X, 3)</pre>

#5 cluster solution

#Fitting model fit $<-knn(y_train ~ ., data = x,k=5)$ summary(fit)

predicted= predict(fit,x_test)

#Import Library

#and x_test(attributes) of test_dataset #Create KNeighbors classifier object model k_means = KMeans(n_clusters=3, random_state=0)

predicted= model.predict(x_test)

#Create Random Forest object model= RandomForestClassifier()

from sklearn.ensemble import RandomForestClassifier

#default value of k =min(n_sample, n_features) #For Factor analysis

#Reduced the dimension of test dataset test_reduced = pca.transform(test)

train_reduced = pca.fit_transform(train)

from sklearn.ensemble import GradientBoostingClassifier #Assumed you have, X (predictor) and Y (target) for #training data set and x_test(predictor) of test_dataset

#Create Gradient Boosting Classifier object model= GradientBoostingClassifier(n_estimators=100, \ learning_rate=1.0, max_depth=1, random_state=0) #Train the model using the training sets and check score model.fit(X, y)

predicted= model.predict(x_test)

library(e1071) x <- cbind(x_train,y_train)</pre>

#Import Library

#Fitting model

summary(fit)

#Predict Output predicted= predict(fit,x_test)

fit <-naiveBayes(y_train ~ ., data = x)</pre>

kNN (k- Nearest Neighbors)

from sklearn.cluster import KMeans #Assumed you have, X (attributes) for training data set

#Import Library

#Import Library

model.fit(X, y)

#Predict Output

predicted= model.predict(x_test)

#Train the model using the training sets and check score model.fit(X) #Predict Output

#Assumed you have, X (predictor) and Y (target) for #training data set and x_test(predictor) of test_dataset #Train the model using the training sets and check score

#Import Library from sklearn import decomposition

#Import Library

library(caret) x <- cbind(x train,y train)</pre> #Fitting model

fitControl <- trainControl(method = "repeatedcv", + number = 4, repeats = 4) fit <- train(y ~ ., data = x, method = "gbm",

predicted= predict(fit,x_test,type= "prob")[,2]

+ trControl = fitControl, verbose = FALSE)

Random Forest

nality Reduction Algorithms

Gradient Boosting & AdaBoost

To view complete guide on Machine Learning Algorithms, visit here:

#Assumed you have training and test data set as train and #test #Create PCA object pca= decomposition.PCA(n_components=k) #fa= decomposition.FactorAnalysis() #Reduced the dimension of training dataset using PCA

#Import Library

#Predict Output