Siren Sounds as Acoustic Landmarks for Content Verification

Jakob Abeßer, Juan Manuel Rodríguez Mejía, Luca Cuccovillo, Patrick Aichroth

(jakob.abesser@idmt.fraunhofer.de)

Motivation

- Siren sounds are perceptually very prominent, even in complex (urban) sound scenes
- Hypotheses:
 - Characteristic fundamental frequency patterns (pitch contours) allow for recognizing different siren types
 - Siren sounds can serve as acoustic landmarks to verify
 claims about the location of ambient audio recordings

Goals

- Supervised learning experiment (using deep residual network) to classify the siren type (3 classes) and country of origin (9 classes)
- Study on similarity between pitch contours across siren classes
 - Study high-dimensional embedding space derived from computer vision model
 - Shared pitch contours can lead to possibly ill-defined classification task

Challenges

- Some siren sounds are used internationally, which makes it impossible to assign them to specific regions / countries
- Pitch changes due to Doppler shift (produced by passing vehicles) need to be addressed

Dataset & Audio Processing

Category	Classes	
Type (3)	Police, Firefighters, Ambulance	
Country (9+1)	Canada, China, France, Germany, India, Italy, Japan, Spain, USA, (Non-Siren)	

- Mel spectrogram
 - Log-magnitude (or)
 - Per-Channel Energy Normalization (PCEN)
- 44,100 Hz sample rate
- FFT size 2048, Hop length: 1024
- Spectrogram patch duration
 - 2.5s
 - 1.48s
- Patch examples illustrate large variety of pitch contour types (stable, sweeps, alternating, etc.)

(1) Supervised Learning

Method

- Deep Residual Neural Network
 - Convolutional Block (64 filters, 5x5 kernel size, ReLU)
 - 4 Residual Blocks (64/64/128/128 filters)
 - Global Average Pooling
 - Around 800k parameters
- Data Augmentation
 - Random Rotate, Grid Distortion, Spec Augment, Random Erasing, Random Brightness, Mixup (all with probability of p=0.5)

Experiment

Joint Siren type & country classification (27+1 classes)
 Example: Germany-Police, France-Ambulance, etc.

Patch Length (s)	Spectrogram Type	Accuracy*
1.4	Log Mel	0.46 (0.58)
1.4	PCEN	0.55 (0.75)
2.5	Log Mel	0.50 (0.64)
2.5	PCEN	0.57 (0.72)

^{*}Accuracy values per Spectral Patch or aggregated per Test-File (in brackets)

Results

- **PCEN is better** spectrogram representations than log-magnitude Mel spectrogram (Log Mel)
 - PCEN suppresses background noise & enhances salient foreground sounds
- Longer spectrogram patches (2.5 s) improved results
- Hypothesis: especially relevant for slowly changing pitch contours

(2) Investigation of Similarity between Siren Classes

Method

- Convert spectrogram patches into images (224x224 pixels)
- Compute embeddings from pre-trained VGG16 model

t-SNE embedding space visualization

Confusion matrix for siren country classification (A=0.44)

Results

- CV model embeddings clusters similar pitch contours (interpretable embedding space structure)
- Confusion matrix reveals shared siren sounds across siren types and countries (demonstrate that classification task is somewhat ill-defined)

