Sprawozdanie

Jakub Kaźmierczyk

2025-06-01

Spis treści

1	Wp	Wprowadzenie								
	1.1	Opis projektu	2							
	1.2	Zmienne	2							
		1.2.1 Zmienna objaśniana	2							
		1.2.2 Zmienne objaśniające	2							
	1.3	Źródła	3							
2	Wez	zytywanie danych	4							
3	Pod	Podstawowe statystyki								
	3.1	Zmienna objaśniana	5							
	3.2	Zmienne objaśniające	5							
	3.3	Macierze korelacji	7							
		3.3.1 Macierz korlelacji przed usunięciem zmiennych	7							
		3.3.2 Macierz korlelacji po usunięciu zmiennych	8							
4	Ider	ntyfikacja niestacjonarnych zmiennych objaśniających	9							
	4.1	Sprawdzenie niestacjonarności zmiennych	9							
4.2 Usunięcie niestacjonarności										
	4.3	Ponowne sprawdzenie niestacjonarności zmiennych	3							
	4.4	Sprawdzenie korelacji po usunięciu niestacjonarności	4							
	Usunięcie zmiennych o zerowej wariancji	4								
		4.5.1 Przed usunięciem	4							
		4.5.2 Po usunieciu	5							

5	Metoda doboru zmiennych				
	5.1 Metoda Hellwiga	. 16			
6	Tworzenie modelu ekonometrycznego	17			
7	Niby TEST	18			
	7.1 Testowanie autokorealcji	. 19			
	7.2 Badanie heteroskedastyczności	. 20			
	7.3 Testowanie współliniowości (VIF)	. 22			
	7.4 Testowanie stabilności parametrów (TEST CHOWA)	. 22			
	7.5 Testowanie stabilności postaci analitycznej (TEST RESET)	. 23			
	7.6 Badanie efektu katalizy	. 24			
	7.7 Badanie koincydencji	. 24			
8	Podsumowanie wyników	26			

1 Wprowadzenie

1.1 Opis projektu

Projekt ma na celu budowę kompleksowego modelu ekonometrycznego służącego do analizy i prognozowania rentowności 10-letnich polskich obligacji skarbowych. Model zostanie zbudowany na podstawie szeregów czasowych, co umożliwia głębszą analizę dynamicznych zależności ekonomicznych.

1.2 Zmienne

1.2.1 Zmienna objaśniana

CLOSE - rentowność 10-letnich polskich obligacji skarbowych

1.2.2 Zmienne objaśniające

XAUUSD - cena złota w dolarze amerykańskim

S&P500 - ETF 500 największych notowanych na giełdzie amerykańskich spółek

PMI - wskaźnik aktywności przemysłowej

WIG20 - 20 najwiekszych notowanych na gieldzie polskich spolek

OIL - cena ropy naftowej za barylke

UNEMPLOYMENT - stopa bezrobocia w Polsce

USDPLN - kurs dolara amerykańskiego wyrażony w złotych

INFLATION - inflacja rok do roku

1.3 Źródła

www.stooq.com

2 Wczytywanie danych

```
data_all <- read_excel("data.xlsx")
data_all <- data_all[, -c(1, 3, 4)]
data_all[] <- lapply(data_all, function(col) {
    na.approx(col, na.rm = FALSE)
})

n <- nrow(data_all)
train_size <- floor(0.8 * n)

data <- data_all[1:train_size, , drop = FALSE]

Y <- data["CLOSE"]
X <- data[, !names(data) %in% "CLOSE", drop = FALSE]</pre>
```

3 Podstawowe statystyki

3.1 Zmienna objaśniana

CLOSE ## ## Min. : 1.843 1st Qu.: 3.457 ## Median : 5.495 : 5.610 ## Mean ## 3rd Qu.: 6.269 Max. :13.288 ##

Wartości zmiennej objaśnianej wachają się pomiędzy 13,288 a 1,149. Mediana wynosi 5,461 a średnia 5,347.

XAUUSD

USDPLN

3.2 Zmienne objaśniające

INFLATION

##

##	Min. :-0	.01600	Min.	:1.455	Min.	: 255.8	Min.	:2.060
##	1st Qu.: 0	.01000	1st Qu.	:2.337	1st Qu.	: 416.2	1st Q	u.:3.084
##	Median : 0	.02250	Median	:3.385	Median	:1024.5	Media	n :3.509
##	Mean : 0	.02711	Mean	:3.461	Mean	: 921.2	Mean	:3.476
##	3rd Qu.: 0	.04000	3rd Qu.	:4.480	3rd Qu.	:1292.5	3rd Q	u.:3.910
##	Max. : 0	.11600	Max.	:6.667	Max.	:1825.3	Max.	:4.644
##								
##	WIBOR		10YDEBO	ND	WIG	20	S&P	500
##	Min. : 1	.560 M	in. :-	0.7010	Min.	:1023	Min.	: 735.1
##	1st Qu.: 2	.062 1	st Qu.:	0.7907	1st Qu.	:1789	1st Qu.	:1154.7
##	Median: 4	.175 M	edian :	3.1740	Median	:2268	Median	:1366.2
##	Mean : 5	.572 M	ean :	2.6779	Mean	:2182	Mean	:1578.4
##	3rd Qu.: 6	.143 3	rd Qu.:	4.1895	3rd Qu.	:2462	3rd Qu.	:1972.2
##	Max. :20	.520 M	ax. :	5.5390	Max.	:3878	Max.	:3230.8
##								
##	UNEMPLOYM	ENT	PMI		DETAL			OIL

10YUSBOND

Min. :0.0500 Min. :38.30 Min. :-10.7000 Min. : 18.57 ## 1st Qu.:0.1030 1st Qu.:48.38 1st Qu.: -0.5000 1st Qu.: 37.32 Median : 0.5000 Median :0.1245 Median :51.15 Median : 58.28 ## Mean :0.1288 Mean :50.58 : 0.5221 Mean : 60.99 ## Mean 3rd Qu.:0.1590 3rd Qu.:53.20 3rd Qu.: 1.5000 3rd Qu.: 80.75 ## ## Max. :0.2070 Max. :56.90 Max. : 10.8000 Max. :140.00 :8

NA's

3.3 Macierze korelacji

3.3.1 Macierz korlelacji przed usunięciem zmiennych

Z 11 zmiennych objaśniających wybrałem 7, których wartość bezwględna korelacji nie przekracza 0.7.

3.3.2 Macierz korlelacji po usunięciu zmiennych

4 Identyfikacja niestacjonarnych zmiennych objaśniających

4.1 Sprawdzenie niestacjonarności zmiennych

Zmienna	Stacjonarnosc
CLOSE	Niestacjonarna
XAUUSD	Niestacjonarna
USDPLN	Niestacjonarna
WIG20	Niestacjonarna
S&P500	Niestacjonarna
PMI	Niestacjonarna
OIL	Niestacjonarna
UNEMPLOYMENT	Niestacjonarna

4.2 Usunięcie niestacjonarności

4.3 Ponowne sprawdzenie niestacjonarności zmiennych

Zmienna	Stacjonarnosc			
D_CLOSE	Stacjonarna			
D_XAUUSD	Stacjonarna			
D_USDPLN	Stacjonarna			
D_WIG20	Stacjonarna			
D2_S.P500	Stacjonarna			
D_PMI	Stacjonarna			
D_OIL	Stacjonarna			
D_UNEMPLOYMENT	Stacjonarna			

4.4 Sprawdzenie korelacji po usunięciu niestacjonarności

4.5 Usunięcie zmiennych o zerowej wariancji

4.5.1 Przed usunięciem

D_CLOSE - Współczynnik zmienności: -1479.303 %, Wariancja: 0.1246856
D_XAUUSD - Współczynnik zmienności: 1006.021 %, Wariancja: 2638.734
D_USDPLN - Współczynnik zmienności: -27121.85 %, Wariancja: 0.01641273

- D_WIG20 Współczynnik zmienności: 6463.945 %, Wariancja: 19022.24
- D2_S.P500 Współczynnik zmienności: 57653.87 %, Wariancja: 8239.136
- D_PMI Współczynnik zmienności: 63313.66 %, Wariancja: 1.656016
- D_OIL Współczynnik zmienności: 3422.796 %, Wariancja: 35.01729
- D_UNEMPLOYMENT Współczynnik zmienności: -1377.121 %, Wariancja: 1.283612e-05

4.5.2 Po usunięciu

- D_CLOSE Współczynnik zmienności: -1479.303 %, Wariancja: 0.1246856
- D_XAUUSD Współczynnik zmienności: 1006.021 %, Wariancja: 2638.734
- D USDPLN Współczynnik zmienności: -27121.85 %, Wariancja: 0.01641273
- D_WIG20 Współczynnik zmienności: 6463.945 %, Wariancja: 19022.24
- D2_S.P500 Współczynnik zmienności: 57653.87 %, Wariancja: 8239.136
- D_PMI Współczynnik zmienności: 63313.66 %, Wariancja: 1.656016
- D_OIL Współczynnik zmienności: 3422.796 %, Wariancja: 35.01729

5 Metoda doboru zmiennych

5.1 Metoda Hellwiga

```
Zmienne składowe w najlepszej kombinacji:
D_USDPLN
D_WIG20
D_PMI
```

6 Tworzenie modelu ekonometrycznego

```
formula_modelu <- reformulate(best_hellwig_vars, response = "D_CLOSE")</pre>
model <- lm(formula_modelu, data = data_stationary)</pre>
print(summary(model))
Call:
lm(formula = formula_modelu, data = data_stationary)
Residuals:
    Min
                  Median
                               3Q
                                       Max
-1.09467 -0.16183 -0.00217 0.18815 1.28861
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0226434 0.0208685 -1.085 0.278978
D_USDPLN
           0.6970193  0.1837255  3.794  0.000187 ***
D_WIG20
           0.0440821 0.0165181 2.669 0.008129 **
D PMI
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3273 on 242 degrees of freedom
Multiple R-squared: 0.1515, Adjusted R-squared: 0.141
F-statistic: 14.41 on 3 and 242 DF, p-value: 1.149e-08
H0 takie ze ... p wynoszace xyz oznacza...
```

7 Niby TEST

```
## TEORIA: Testy normalności sprawdzają czy reszty mają rozkład normalny.
## HO: Reszty mają rozkład normalny
## H1: Reszty nie mają rozkładu normalnego
## Poziom istotności: = 0.05
## 1. TEST SHAPIRO-WILKA:
##
      Statystyka W = 0.9719
##
      p-value = 1e-04
##
      Wniosek: Odrzucamy HO - reszty nie są normalne
## 2. TEST JARQUE-BERA:
##
      Statystyka JB = 34.9526
##
      p-value = 0
##
      Wniosek: Odrzucamy HO - reszty nie są normalne
## 3. TEST ANDERSON-DARLING:
      Statystyka A = 1.6762
##
      p-value = 3e-04
##
##
      Wniosek: Odrzucamy HO - reszty nie są normalne
```

Histogram reszt

Rzeczywista Teoretyczna -1.0 -0.5 0.0 0.5 1.0 Reszty

Wykres Q-Q reszt

Theoretical Quantiles

7.1 Testowanie autokorealcji

TEORIA: Autokorelacja oznacza korelację między resztami w różnych okresach.

HO: Brak autokorelacji reszt

H1: Występuje autokorelacja reszt

1. TEST DURBINA-WATSONA:

Statystyka DW = 1.5324

p-value = 0

Wniosek: Odrzucamy HO - występuje autokorelacja

2. TEST LJUNGA-BOXA:

Statystyka LB = 31.6143

p-value = 5e-04

Wniosek: Odrzucamy HO - występuje autokorelacja

3. TEST BREUSCHA-GODFREYA:

Statystyka LM = 10.6555

p-value = 0.0049

Wniosek: Odrzucamy HO - występuje autokorelacja

Funkcja autokorelacji reszt

7.2 Badanie heteroskedastyczności

TEORIA: Heteroskedastyczność oznacza niestałą wariancję składnika losowego.

HO: Homoskedastyczność (stała wariancja)

H1: Heteroskedastyczność (niestała wariancja)

1. TEST BREUSCHA-PAGANA:

Statystyka BP = 0.1821

p-value = 0.9804 ##

Wniosek: Nie ma podstaw do odrzucenia HO - homoskedastyczność

3. TEST GOLDFELDA-QUANDTA:

Statystyka GQ = 1.1587

p-value = 0.2115

Wniosek: Nie ma podstaw do odrzucenia HO - homoskedastyczność ##

Reszty vs Wartosci dopasowane

|Reszty| vs Wartosci dopasowane

7.3 Testowanie współliniowości (VIF)

```
## TEORIA: Współliniowość oznacza wysoką korelację między zmiennymi objaśniającymi.
## VIF > 10: poważna współliniowość
## VIF > 5: umiarkowana współliniowość
## VIF < 5: brak problemów ze współliniowością
## WSPÓŁCZYNNIKI VIF:
##
      D_USDPLN : 1.267 - OK
      D_WIG20 : 1.305 - OK
##
      D_PMI : 1.034 - OK
##
##
## WNIOSEK: Brak problemów ze współliniowością
7.4 Testowanie stabilności parametrów (TEST CHOWA)
## TEORIA: Test Chowa sprawdza czy parametry modelu są stabilne w czasie.
## HO: Parametry są stabilne (brak przełomu strukturalnego)
## H1: Parametry nie są stabilne (występuje przełom strukturalny)
## TEST CHOWA (punkt przełomu w obserwacji 123 ):
##
      Statystyka F = 2.9766
      p-value = 0.02
##
      Wniosek: Odrzucamy HO - brak stabilności parametrów
##
```

Test CUSUM stabilnosci parametrów

7.5 Testowanie stabilności postaci analitycznej (TEST RESET)

TEORIA: Test RESET sprawdza czy postać funkcyjna modelu jest poprawna.

HO: Model ma poprawną postać funkcyjną

H1: Model ma niepoprawną postać funkcyjną

1. TEST RESET RAMSEYA:

Statystyka F = 1.5663

p-value = 0.2109

Wniosek: Nie ma podstaw do odrzucenia HO - poprawna postać modelu

2. TEST LICZBY SERII:

```
## TEORIA: Test sprawdza czy reszty są losowo rozłożone.
## HO: Reszty są losowo rozłożone
## H1: Reszty wykazują systematyczne wzorce
##
      Statystyka = -1.6602
##
      p-value = 0.0969
##
      Wniosek: Nie ma podstaw do odrzucenia HO - reszty są losowe
7.6 Badanie efektu katalizy
## TEORIA: Efekt katalizy - jedna zmienna wpływa na siłę oddziaływania innej.
## Sprawdzamy czy interakcje między zmiennymi są istotne.
## TEST F DLA INTERAKCJI:
      Statystyka F = 0.9552
##
##
      p-value = 0.4328
      Wniosek: Brak istotnego efektu katalizy
##
##
## WSPÓŁCZYNNIKI INTERAKCJI:
      D_USDPLN:D_WIG20 : p-value = 0.9471
##
##
      D_USDPLN:D_PMI : p-value = 0.8729
      D_WIG20:D_PMI: p-value = 0.121
##
      D_USDPLN:D_WIG20:D_PMI : p-value = 0.5999
##
7.7
    Badanie koincydencji
## TEORIA: Koincydencja - zmienna objaśniająca ma wpływ jedynie w określonych okresach.
## Sprawdzamy stabilność parametrów w różnych podokresach.
```

```
## ANALIZA STABILNOŚCI PARAMETRÓW W PODOKRESACH:
## Współczynniki determinacji:
##
     Okres 1 (obs. 1-82): R^2 = 0.2761
     Okres 2 (obs. 83 - 164 ): R^2 = 0.1815
##
     Okres 3 (obs. 165 - 246): R^2 = 0.0457
##
## PORÓWNANIE PARAMETRÓW W PODOKRESACH:
## Parametr (Intercept) :
     Okres 1: -0.0094
##
     Okres 2: -0.0175
##
     Okres 3: -0.0265
##
     *** MOŻLIWA KOINCYDENCJA - duże różnice między okresami ***
##
##
## Parametr D_USDPLN :
##
     Okres 1: 1.3833
     Okres 2: 0.244
##
##
     Okres 3: 0.4964
     *** MOŻLIWA KOINCYDENCJA - duże różnice między okresami ***
##
##
## Parametr D_WIG20 :
     Okres 1: -9e-04
##
##
     Okres 2: -5e-04
     Okres 3: 0
##
     *** MOŻLIWA KOINCYDENCJA - duże różnice między okresami ***
##
## Parametr D_PMI :
     Okres 1: 0.0912
##
     Okres 2: 0.025
##
##
     Okres 3: 0.0063
     *** MOŻLIWA KOINCYDENCJA - duże różnice między okresami ***
##
```

8 Podsumowanie wyników

WYNIKI TESTÓW DIAGNOSTYCZNYCH:

```
##
                                     Test Statystyka p_value
                                                                     Wynik
## 1
                 Normalność (Jarque-Bera)
                                               34.953
                                                            O NIESPEŁNIONE
                Autokorelacja (Ljung-Box)
                                              31.614
                                                            O NIESPEŁNIONE
## 3 Heteroskedastyczność (Breusch-Pagan)
                                                         0.98
                                                                 SPEŁNIONE
                                               0.182
                 Współliniowość (max VIF)
## 4
                                                1.305
                                                          N/A
                                                                 SPEŁNIONE
## 5
                        Stabilność (Chow)
                                                2.977
                                                         0.02 NIESPEŁNIONE
                    Postać modelu (RESET)
                                                1.566
                                                                 SPEŁNIONE
## 6
                                                        0.211
##
## === OGÓLNA OCENA MODELU ===
## Spełnione założenia: 3 / 6
## Niespełnione założenia: 3 / 6
## MODEL WYMAGA ISTOTNYCH POPRAWEK - niespełnia kluczowych założeń
##
## === REKOMENDACJE ===
## • Rozważ transformację zmiennych (logarytmowanie) ze względu na brak normalności reszt
## • Dodaj zmienne opóźnione lub rozważ model ARIMA ze względu na autokorelację
## • Rozważ model ze zmiennymi strukturalnymi ze względu na niestabilność parametrów
##
## KONIEC WERYFIKACJI MODELU
```