

PHYSIKALISCHES GRUNDPRAKTIKUM

Versuch 17

Kennlinie der Vakuum-Diode

Praktikant:	$E ext{-}Mail:$
Tobias Wegener	tobias.wegener@stud.uni-goettingen.de
Alexander Osterkorn	a. osterkorn@stud.uni-goettingen.de
Tutor:	Gruppe:
Ralph Schäfer	1
Durchgeführt am:	Protokoll abgegeben:
13.09.2013	20.09.2013
Testiert:	

Inhaltsverzeichnis

1	Einleitung		
2	The	eorie	2
	2.1	Aufbau einer Vakuumdiode	2
	2.2	Strom-Spannungs-Kennlinie einer Diode	3
3	Dui	rchführung	4
	3.1	Versuchsaufbau	4
	3.2	Messreihe 1: Diodenkennlinien	4
	3.3	Messreihe 2: Anodenstrom in Abhängigkeit vom Heizstrom $$.	5
4	Aus	swertung	6
	4.1	Diodenkennlinien bei verschiedenen Heizströmen	6
	4.2	Raumladungsgebiet und Kontaktspannung	7
	4.3	Exponent von U_B im Raumladungsgesetz	8
	4.4	Gültigkeit des Richardson-Gesetzes und Austrittsarbeit W_A	10
		der Kathode	10
	4.5	Abschätzung der Messgerätefehler	10
5	Dis	kussion	11
	5.1	Diodenkennlinien bei verschiedenen Heizströmen	11
	5.2	Raumladungsgebiet und Kontaktspannung	11
	5.3	Exponent von U_B im Raumladungsbereich	11
	5.4	Gültigkeit des Richardson-Gesetzes und Austrittsarbeit W_A	
		der Kathode	11
T.i	terat	iir	12

1 Einleitung

Bei einer Vakuumdiode handelt es sich um ein elektrotechnisches Bauteil, das vor allem früher in vielen Geräten Anwendung fand. In den meisten Bereichen wurde sie inzwischen durch andere Elemente ersetzt.

Anders als z.B. bei einem *Ohm'schen Widerstand* ändert sich der Strom in einer Diode nicht linear mit der Spannung. Die entsprechende Auftragung des Stroms gegen die Spannung wird als *Diodenkennlinie* bezeichnet und in diesem Versuch gemessen. Die Ergebnisse lassen sich qualitativ auch auf allgemeine Dioden übertragen.

2 Theorie

2.1 Aufbau einer Vakuumdiode

Eine Vakuumdiode besteht aus einem evakuierten Glaskolben, in dem sich eine Kathode und eine Anode befinden. Um an der Anode einen Strom I_A zu erzeugen, müssen an der Kathode Elektronen aus dem Metall gelöst werden. Sie sind jedoch relativ stark im Festkörper gebunden, sodass dazu eine bestimmte materialspezifische **Austrittsarbeit** W_A (ca. 1 – 5 eV) geleistet werden muss. Diese ist für Alkalimetalle besonders klein. Da die kinetische Energie der einzelnen Elektronen **Maxwell-verteilt** ist, können auch schon bei kleinen Temperaturen einige wenige Elektronen die Kathode verlassen.

Abbildung 1: Aufbau einer Vakuum-Diode

Legt man an dieser nun eine Heizspannung an, so steigt die thermische Energie und somit die Anzahl austrittsfähiger Elektronen schnell an. Der Zusammenhang zwischen der daraus resultierenden Stromdichte j und der Temperatur T wird nach [Meschede, 2010, S. 164] durch die **Richardson-Gleichung** beschrieben:

$$j = C_R T^2 \exp{-\frac{W_A}{k_B T}} \tag{1}$$

Dabei bezeichnet C_R die Richardson-Konstante und k_B die Boltzmann-Konstante. Über die zwischen Kathode und Anode angelegte Beschleunigungsspannung U_B , die auch **Anodenspannung** genannt wird, kann der Stromfluss zwischen Kathode und Anode reguliert werden.

2.2 Strom-Spannungs-Kennlinie einer Diode

Selbst wenn keine Beschleunigungsspannung angelegt ist, wird zwischen Kathode und Anode ein kleiner Strom registriert, der **Anlaufstrom** genannt wird. Dieser resultiert daraus, dass einige der Elektronen, die von der Kathode emittiert wurden, zufällig auf die Anode treffen. Durch diesen Vorgang wird eine **Kontaktspannung** U_K erzeugt, welche erst verschwindet, wenn eine hinreichend große Gegenspannung U_B angelegt wird. Wird stattdessen U_B in positiver Richtung erhöht, so steigt der Strom zunächst (analog zum Verhalten in Metallen) linear mit der Spannung an.

Abbildung 2: Strom-Spannungskennlinie einer Diode

Einige der beschleunigten Elektronen verfehlen jedoch die Anode und bilden eine **Raumladung** in der Nähe der Anode, welche ein Gegenfeld erzeugt. Dieses schwächt den Anstieg des Stroms ab. Für sehr große Spannungen erreichen fast alle Elektronen die Anode und es stellt sich ein Sättigungswert für den Anodenstrom ein. Dieses Verhalten wird nach [Meschede, 2010, S. 475] durch das **Schottky-Langmuirsche Raumladungsgesetz** beschrieben:

$$j = \frac{4}{9} \cdot \varepsilon_0 \cdot \sqrt{\frac{2e}{m}} \cdot \frac{U^{3/2}}{d^2} \tag{2}$$

Dabei bezeichnet ε_0 die Vakuumpermittivität, e die Elektronenladung, m die Masse eines Elektrons, $U = U_A + U_K$ die resultierende Spannung und d den Abstand zwischen Kathode und Anode.

3 Durchführung

3.1 Versuchsaufbau

Zunächst muss die benötigte Schaltung nach Abb. 3 aufgebaut werden. Dabei ist vor allem auf die richtige Polung der Diode zu achten.

Abbildung 3: Skizze der verwendeten Messschaltung¹

3.2 Messreihe 1: Diodenkennlinien

Danach wird für drei verschiedene Heizströme zwischen 1,9 und 2,1 A die Diodenkennline aufgenommen. Dazu wird die Beschleunigungsspannung U_B variiert ($-10\,\mathrm{V} < U_B < 150\,\mathrm{V}$ und der Anodenstrom I_A gemessen. Da auch schon ohne externe Spannung eine Kontaktspannung U_K gemessen wird, soll die Messung bei dem negativen U_B begonnen werden, wo der Anodenstrom gerade verschwindet. Es ist zu beachten, dass die Diode beschädigt werden kann, wenn die Spannung in negativer Richtung zu weit über diesen Punkt erhöht wird.

¹Quelle: http://lp.uni-goettingen.de/get/text/4256, abgerufen am 19.09.2013

Die ersten Messwerte für den Anodenstrom (im Anlaufbereich) sind i.d.R. sehr klein, sodass es sinnvoll ist, hier bei der Strommessung auf das präzisere analoge Messgerät zurückzugreifen. Im Raumladungsbereich ($U < 20\,\mathrm{V}$) sollte die Schrittweite nicht $2\,\mathrm{V}$ übersteigen. Für größere Spannungen (Sättigungsbereich) kann diese aber deutlich erhöht werden, da die Änderungen dann nur noch marginal sind.

Bei den Multimetermessungen sollten die Messbereiche notiert werden, da der Messfehler von diesen abhängt.

3.3 Messreihe 2: Anodenstrom in Abhängigkeit vom Heizstrom

Bei dieser Messreihe soll die Anodenspannung konstant gehalten werden (125 V) und der Anodenstrom in Abhängigkeit vom Heizstrom I_H gemessen werden. Dazu wird der Heizstrom zwischen 1,8 und 2,15 A variiert, wobei eine Schrittweite von 0,05 A empfehlenswert ist. Schließlich sollten noch alle benötigten Werte notiert werden (Güteklasse des analogen Messgerätes, Informationen zu der Diode, ...).

4 Auswertung

4.1 Diodenkennlinien bei verschiedenen Heizströmen

Abbildung 4: Diodenkennlinien bei verschiedenen Heizströmen I_H

In Abb. 4 sind die gemessenen Diodenkennlinien für die unterschiedlichen Heizströme $I_H=1,9/2/2,1\,\mathrm{A}$ dargestellt. Für den angenommen Wert des Heizstroms muss der Fehler des Multimeters berücksichtigt werden. Dieser beträgt nach

$$\sigma_{I_H} = 10\,\mathrm{A}\cdot 0, 01 + 0, 001 = 0.11\,\mathrm{A}.$$

Der Fehler des Anodenstroms lässt sich analog berechnen, wobei die 10 A durch den jeweiligen Maximalwert des Messbereichs ersetzt werden müssen. Für den Fehler der Beschleunigungsspannung gilt:

$$\sigma_{U_B} = U_{\text{max}} \cdot 0,0025 + 1 \,\text{digit}$$

Auch dieser variiert also mit dem eingestellten Messbereich $(U_{\rm max})$. Um die einzelnen Kennlinien an dieser Stelle gut qualitativ vergleichen zu können, ist es am einfachsten, alle in ein Diagramm einzufügen. Es wurden bei diesem Plot die Fehlerbalken nicht mitgeplottet, da dies insbesondere im Anlauf- und Raumladungsbereich extrem unübersichtlich geworden wäre. Dies ist aber auch nicht weiter schlimm, da keine quantitavien Aussagen anhand dieses Diagramms getroffen werden. In den später folgenden Plots werden die Fehlerbalken wieder angezeigt.

4.2 Raumladungsgebiet und Kontaktspannung

Nach Gl. 2 ist zu erwarten, dass im Raumladungsbereich $I_A \propto U_B^{3/2}$ gilt. Somit sollte ein Plot von $I_A^{2/3}$ gegen U_B im Raumladungsbereich eine lineare Funktion darstellen. Auf diese Weise ist es möglich, den Raumladungsbereich einigermaßen eindeutig abzugrenzen. Die auf den Raumladungsbereich eingeschränkten Plots für die verschiedenen Heizspannungen I_H sind in Abb. 5 dargestellt.

Ergebnisse des linearen Fits:

$$f1(x) = 1.32e-03 \cdot x + 1.79e-03$$

$$f2(x) = 1.34e-03 \cdot x + 2.12e-03$$

$$f3(x) = 1.35e-03 \cdot x + 2.34e-03$$

Abbildung 5: Lineare Regression im Raumladungsgebiet

Die Fehlerbalken ergeben sich mittels Fehlerfortpflanzung aus den im vorherigen Unterkapitel diskutierten Fehlerwerten. Sei im Folgenden $I' := I_A^{2/3}$:

$$\sigma_{I'} = \frac{2}{3} I^{-1/3} \cdot \sigma_I \tag{3}$$

Außerdem wurde mit Hilfe von einer linearen Regression Ausgleichsgeraden durch die Messwerte berechnet. Die sich hieraus ergebenden Werte der Parameter sind in Tabelle 1 aufgeführt.

Aus diesen Werten lässt sich nun die Kontaktspannung U_K berechnen. Dast ist diejenige Spannung, die schon gemessen wird, wenn keine äußere Spannung angelegt ist. Wenn der Anodenstrom I_A verschwindet, ist die von außen angelegte Spannung U_B vom gleichen Betrag wie die Kontaktspannung, aber andersherum gerichtet. Es soll also die Stelle betrachtet werden, an der der Anodenstrom verschwindet ($I_A = 0$). Das führt zu folgender Gleichung:

$$0 = m \cdot U_B + b$$

$$\Leftrightarrow -U_B = \frac{b}{m} = U_K$$

$$\Rightarrow \sigma_{U_K}^2 = \left(\frac{\sigma_b}{m}\right)^2 + \left(\frac{b}{m^2} \cdot \sigma_m\right)^2$$

Die sich aus dieser Rechnung ergebenden Werte für die Kontaktspannung U_B sind in der Tabelle 1 in Abhängigkeit von der Stärke des Heizstroms eingetragen.

$I_H[A]$	$1,9 \pm 0,11$	$2 \pm 0, 11$	$2,1\pm 0,11$
$m \left[10^{-6} \mathrm{A}^{2/3}/\mathrm{V} \right]$	1319 ± 3	1337 ± 3	$1355, 8 \pm 1, 1$
$b \left[10^{-6} \mathrm{A^2/3} \right]$	1787 ± 14	2120 ± 30	2339 ± 13
$U_K[V]$	$1,355 \pm 0,012$	$1,59 \pm 0,03$	$1,73 \pm 0,01$

Tabelle 1: Aus den Fitwerten berechnete Kontaktspannungen für unterschiedliche Heizströme

4.3 Exponent von U_B im Raumladungsgesetz

Nach der in der Theorie erwähnten Gleichung 2 gilt:

$$I_A = c \cdot U_{\text{ges}}^{3/2}$$
$$= c \cdot (U_K + U_B)^{3/2}$$

Nach beidseitigem Logarithmieren ergibt sich:

$$\ln I_A = \ln c + \frac{3}{2} \, \ln U_K + U_B$$

Somit sollte bei einem doppeltlogarithmischem Plot die Steigung m gerade gleich dem Exponent $^{3}/_{2}$ sein. Für die geplotteten Fehler gilt:

$$\sigma_{\ln{(U_B + U_K)}}^2 = \frac{\sigma_{U_B}^2 + \sigma_{U_K}^2}{(U_B + U_K)^2}$$
$$\sigma_{\ln{(I_A)}}^2 = \frac{\sigma_{I_A}}{I_A}$$

In Abb. 6 sind die entsprechenden Werte sowie die zugehörigen Regressionsgeraden dargestellt.

Ergebnisse des linearen Fits:

$$f1(x) = 1.50 \cdot x + -9.94$$

$$f2(x) = 1.51 \cdot x + -9.94$$

$$f3(x) = 1.47 \cdot x + -9.80$$

Abbildung 6: Doppeltlogarithmischer Plot der Messwerte im Raumladungsbereich

Der daraus berechnete gewichtete Mittelwert für die Steigung ist:

$$m = 1,4949 \pm 0,0019$$

$I_H[A]$	$1,9 \pm 0,11$	$2 \pm 0, 11$	$2,1 \pm 0,11$
m	$1,499 \pm 0,003$	$1,507 \pm 0,003$	$1,466 \pm 0,004$

Tabelle 2: Übersicht über die Regressionswerte für die Steigung

4.4 Gültigkeit des Richardson-Gesetzes und Austrittsarbeit W_A der Kathode

Abbildung 7: $\ln(I_{\rm S}/T^2)$ mit Sättigungsstrom $I_{\rm S}$ aufgetragen gegen Kehrwert 1/Tder Temperatur T

Für die in der Abb. ?? aufgetragenen Größen erwarten wir nach Formel 1 einen Verlauf der Form

$$I_{\rm S} = j_{\rm S}A = AC_RT^2 \exp\left(-\frac{W_A}{k_BT}\right) \equiv KT^2 \exp\left(-\frac{W_A}{k_BT}\right)$$

mit $K := AC_R$ bzw.

$$\ln\left(\frac{I_{\rm S}}{T^2}\right) = \ln(K) - \frac{W_A}{k_B} \cdot \frac{1}{T} .$$

Das entspricht genau einer Geraden in Abb. ??, was auch gut erkennbar ist. Qualitativ ist damit das Richardson-Gesetz bestätigt.

Die Fehler für die gemessenen Größen werden nach der üblichen "Multimeter-Formel" berechnet, also $\sigma_{I_{\rm S}}=1\%\cdot20\,{\rm mA}+0.01\,{\rm mA}=0.21\,{\rm mA}$ und $\sigma_{I_{\rm H}}=1\%\cdot10\,{\rm A}+0.01\,{\rm A}=0.11\,{\rm A}$.

Die Temperatur T der Kathode berechnet sich aus der Heizspannung $I_{\rm H}$ nach der in der Praktikumsanleitung angegebenen Formel

$$T(I_{\rm H}) = a \cdot I_{\rm H} + b \text{ mit } a = 579 \,\mathrm{K \, A^{-1}}, b = 1150.2 \,\mathrm{K}$$

und der Fehlerfortpflanzung

$$\sigma_T = a \cdot \sigma_{I_{\rm H}}$$
.

Die Fehler im Diagramm ergeben sich dann zu

$$\sigma\left(\frac{1}{T}\right) = \frac{\sigma_T}{T^2}$$

$$\sigma^2\left(\frac{I_S}{T^2}\right) = \left(\frac{1}{T}\sigma_{I_S}\right)^2 + \left(\frac{2I_S}{T^3}\sigma_T\right)^2$$

$$\sigma\left(\ln\left(\frac{I_S}{T^2}\right)\right) = \frac{T^2}{I_S}\sigma\left(\frac{I_S}{T^2}\right).$$

Der lineare Gnuplot-Fit liefert für Steigung und Achsenabschnitt der gefitteten Geraden die Werte $m=(-56\,700\pm700)\,\mathrm{K}$ und $c=3.66\pm0.28$. Weiter wissen wir, dass für die Steigung der Geraden

$$m = -\frac{W_A}{k_B} \iff W_A = -mk_B$$

gelten muss.

Die Boltzmann-Konstante ist etwa $k_B=1.38\cdot 10^{-23}\,\mathrm{J\,C^{-1}}$. [?, S. 481] Die Ungenauigkeit bei dieser Konstanten wird vernachlässigt. Es ergibt sich die Fehlerfortpflanzung

$$\sigma_{W_A} = k_B \sigma_m \ .$$

Daraus erhalten wir $W_A = (7.8 \pm 0.1) \cdot 10^{-19} \,\text{J} = (4.88 \pm 0.06) \,\text{eV}$. Der in der Praktikumsanleitung angegebene Wert ist 4.5 eV.

Die Richardson-Konstante für Wolfram wird in der Versuchsbeschreibung zu $C_R=72\,{\rm A\,K^{-2}\,cm^{-2}}$ angegeben. Aus den obigen Rechnungen folgt für den Achsenabschnitt der Geraden

$$\ln(A \cdot C_R) = c \iff A \cdot C_R = \exp(c) \iff A = \frac{1}{C_R} \exp(c)$$

und der Fehlerfortpflanzung

$$\sigma_A = \frac{\sigma_c}{C_R} \exp(c)$$

die Fläche A, durch die Elektronen aus der Anode ausströmen müssen, zu $A = (0.54 \pm 0.16) \, \mathrm{cm}^2$.

4.5 Abschätzung der Messgerätefehler

Der Fehler bei einer Messung mit dem Digitalmultimeter richtet sich nach dem eingestellten Messbereich. Insofern ist es sinnvoll, immer einen möglichst kleinen Messbereich zu wählen. Bei Gleichstrom gelten folgende Abschätzungen für den Multimeterfehler:

$$\sigma_U = U_{\text{max}} \cdot 0,0025 + 1 \text{ digit}$$

$$\sigma_I = I_{\text{max}} \cdot 0,01 + 1 \text{ digit}$$

Dabei bezeichnet der Maximalwert jeweils die obere Grenze des Messbereichs, 1 digit steht für die kleinste ablesbare Schrittweite bei dem eingestellten Messbereich.

In diesem Versuch konnte für die Messung der sehr kleinen Ströme auch ein analoges Messgerät verwendet werden. Solche Messgeräte werden in Güteklasseneingeteilt. Die Nummer der Güteklasse gibt dabei an, wie groß die Abweichung vom Messwert in % maximal ist. Das von uns verwendete analoge Strommessgerät hatte die Güteklasse 2, hat also einen Fehler von 2%.

5 Diskussion

5.1 Diodenkennlinien bei verschiedenen Heizströmen

Das in der Theorie diskutierte Verhalten des Anodenstroms in Abhängigkeit von der Beschleunigungsspannung kommt in Abb. 4 gut zum Ausdruck. Zudem zeigt sich, dass die Kennlinien für verschiedene Heizströme im Anlaufund Raumladungsbereich nahezu identisch verlaufen und sich nur im Sättigungswert unterscheiden. Da hier hauptsächlich mit einem Multimeter gemessen worden ist, sollte sich der systematische Fehler im Großen und Ganzen auf dessen Fehler beschränken. Denn es ist unwahrscheinlich, dass sich die Eigenschaften der Diode (Temperatur, ...) während der Dauer einer Messreihe entscheidend verändert haben.

5.2 Raumladungsgebiet und Kontaktspannung

Anhand der Auftragung des umgerechneten Stroms gegen die Spannung lässt sich das Raumladungsgebiet ziemlich genau auf den Bereich abgrenzen, in dem der Graph linear verläuft. Aus den berechneten Werten für die Kontaktspannung U_K wird deutlich, dass diese mit wachsendem Heizstrom I_H zunimmt. Das entspricht den Erwartungen, da sie durch freie Elektronen zustande kommt, die zufällig den Weg von der Kathode zur Anode finden. Mit einer steigenden Anzahl an freien Elektronen treffen natürlich auch mehr Elektronen zufällig auf die Anode.

5.3 Exponent von U_B im Raumladungsbereich

Der in diesem Teil der Auswertung ermittelte Wert für den Exponenten in Gl. 2 entspricht ebenfalls sehr gut dem theoretischen Wert und weicht mit $m = 1,4949 \pm 0,0019$ nur um 0,4% vom erwarteten Wert m = 1,5% ab.

5.4 Gültigkeit des Richardson-Gesetzes und Austrittsarbeit W_A der Kathode

Der berechnete Wert für die Austrittsarbeit von Wolfram W_A liegt recht dicht am angegebenen Literaturwert (Abweichung etwa 8.5%). Dieser Wert liegt leider nicht einmal in der dreifachen Fehlerumgebung des berechneten. Das deutet darauf hin, dass ein Messfehler zu niedrig angesetzt wurde. Unter anderem kann Gnuplot beim Fitten keine x-Fehler berücksichtigen. Diese sind im vorliegenden Fall aber besonders groß und müssten zu größeren Fehlern für m und c führen.

Der berechnete Wert für die Kathodenfläche hat keinen Vergleichswert, scheint aber anschaulich im korrekten Bereich zu liegen, wenn man sich die Oberfläche der Kathode vorstellt.

Literatur

Dieter Meschede. ${\it Gerthsen~Physik}.$ Springer-Verlag Berlin Heidelberg, 24 edition, 2010.

Messwerte

Durchführung 2

I_A [A]	U_A [V]
0	-2.2
0.0000361	-0.683
0.00005	0.000427
0.0001	0.265
0.00015	0.78
0.0003	2.049
0.00059	3.99
0.00096	6.01
0.00138	8.05
0.00172	10.02
0.00181	12.05
0.00183	14.02
0.00184	15
0.00185	16
0.00185	16.99
0.00186	18.03
0.00186	20.01
0.00188	25
0.00189	30.02
0.00191	40.1
0.00192	50.1
0.00193	60
0.00194	70.1
0.00194	80
0.00195	90
0.00196	100
0.00197	110
0.00198	120
0.00201	130
0.00204	140
0.00205	150

Tabelle 4: Messwerte Heizstrom 1.9 A

I_A [A]	U_A [V]
0	-2.771
0.000014	-1.466
0.000034	-0.995
0.00006	0.542
0.0002	0.994
0.00033	1.997
0.00048	3.002
0.00064	3.98
0.00083	5.03
0.00102	6
0.00123	6.99
0.00146	7.99
0.0017	9.02
0.00194	10.01
0.0022	11.03
0.00246	12.02
0.00273	13.01
0.00301	14.01
0.00328	15
0.00356	15.99
0.00376	17.01
0.00388	18.02
0.00394	19.07
0.00397	20
0.00401	22.04
0.00404	24.08
0.00406	26.01
0.00408	27.94
0.0041	30.02
0.00415	40.1
0.00418	50.1
0.00422	59.9
0.00422	69.9
0.00426	80
0.00427	90
0.00429	99.9
0.0043	110.2
0.0043	120
0.00434	130
0.0043617	139.9
0.00438	150

Tabelle 6: Messwerte Heizstrom $2.0\,\mathrm{A}$

I_A [A]	U_A [V]
0	-2.91
0.0000235	-1.443
0.00007	-0.637
0.00007	0
0.00023	1.033
0.00037	2.044
0.00051	3.001
0.00068	4
0.00086	4.97
0.00108	6.03
0.00129	7.02
0.00152	8.03
0.00175	9.01
0.002	9.99
0.00228	11.06
0.00253	12
0.00281	13.02
0.0031	14.01
0.00341	15.01
0.00371	15.99
0.00405	17.02
0.00437	18
0.0047	18.97
0.00505	20.01
0.00682	25.03
0.0077	30
0.00794	40
0.00798	49.9
0.00807	60
0.00809	70
0.00808	80
0.00817	90
0.00816	100
0.00815	109.8
0.00815	119.9
0.0082	129.6
0.00827	140.4
0.0084	151.1

Tabelle 8: Messwerte Heizstrom $2.1\,\mathrm{A}$ 18

Durchführung 3

<i>I</i> _H [A]	$I_{\rm S}~{ m [mA]}$
1.8	1.06
1.85	1.54
1.9	2.3
1.95	3.15
2	4.49
2.05	6.12
2.09	7.97

Tabelle 9: Messwerte Sättigungsstrom