MTH 131b: Analysis

Homework 2

Due Date: April 20, 2018

Instructions:

- All questions have equal weight.
- Answer all questions.
- Three randomly selected problems will be graded from all the problems below. Each problem carries a maximum of three points. One point will be awarded for completing the remaining problems.
- Maximum score in this homework set is 10 points.
- 1. Let (X,d) be a metric space and let Y be a subset viewed as a metric space with the relative topology. Let $\{y_n\}$ be a sequence with $y_n \in Y$. Suppose that $\{y_n\}$ is a convergent sequence in X, show that $\{y_n\}$ is a Cauchy sequence in (Y,d_Y) . Is it necessarily true that it is a convergent sequence in (Y,d_Y) ?
- 2. Let X be a metric space and suppose that $\{x_n\}$ is a Cauchy sequence. Suppose that $\{x'_n\}$ is another sequence in X such that $d(x_n, x'_n) \to 0$ as $n \to \infty$. Show that $\{x'_n\}$ is also Cauchy.
- 3. Show that any set X with the discrete metric is complete.
- 4. If Y is a non-empty compact subset of \mathbb{R} , then there exits A and B such that $A \leq x \leq B$ for all $x \in Y$.
- 5. Let X be a metric space. Let K_i be a sequence of non-empty compact sets such that

$$K_1 \supset K_2 \supset K_3 \supset \cdots$$
.

Show that the intersection $\bigcap_{i=1}^{\infty} K_i \neq \emptyset$.