ECO206 Microeconomic Theory Summary I

Tianyu Du

$\mathrm{July}\ 3,\ 2018$

Contents

1	Lec	ture 1 Introduction	1		
	1.1	Types of Income and Budget Set	1		
	1.2	Opportunity Cost	1		
	1.3	Comparative Statics	2		
		1.3.1 Pure Income Effect	2		
		1.3.2 Price Changes	3		
2	Lec	ture 2 Preference and Utility	4		
	2.1	Preference Relation	4		
	2.2	Rationality Assumptions	4		
	2.3	Convenience Assumptions	4		
	2.4	Indifference Curve	5		
	2.5	Utility Function	5		
	2.6	Marginal Rate of Substitution	6		
	2.7	Types of Preference Relations	6		
3	Lec	ture 3 Choice	7		
•	3.1	Different Types of Tastes	7		
	3.2	Shape and Substitutability Along a given IC	7		
	3.3	Diminishing MRS	7		
	3.4	Choice	8		
	0.4	3.4.1 Tangency	8		
		3.4.2 Lagrangian Multiplier Method	9		
4	Log	ture 4 Demand and Income Effects	9		
4	4.1	Income Effects	9		
	4.2	Engel Curves	10		
5	Lecture 5 Income and Substitution Effects				
	5.1	SE: Expenditure Minimization	11		
		5.1.1 Calculating a Substitution Effect	11		
	5.2	Income Effect	12		
	5.3	Compensated Demand Curve	12		

	5.4	Slutsky Equation	13		
6	Lecture 6 Labor Supply and Elasticities				
	6.1	Model Setup	13		
	6.2	Deriving Labor Supply	13		
		6.2.1 Shape of Labor supply	13		

1 Lecture 1 Introduction

Notation Assuming there are n goods, then a **bundle** of goods, \mathcal{A} can be denoted as

$$\{x^{A}_{1},\ldots,x^{A}_{n}\}\in\mathbb{R}^{n}_{+}$$

1.1 Types of Income and Budget Set

Let $\vec{p} \in \mathbb{R}^n$ denote the **price vector**.

Exogenous income Let $I \in \mathbb{R}_+$ denote the **exogenous income**, then the budget set can be expressed as

$$\mathcal{B} = \{ \vec{x} \in \mathbb{R}^n_+ \mid \vec{x} \cdot \vec{p} \le I \}$$

Endogenous income Let $\vec{\omega} \in \mathbb{R}^n_+$ denote the **endowment** and the budget set can be expressed as

$$\mathcal{B} = \{ \vec{x} \in \mathbb{R}^n_+ \mid \vec{x} \cdot \vec{p} \le \vec{\omega} \cdot \vec{p} \}$$

1.2 Opportunity Cost

MRT Marginal Rate of Transformation (MRT) measures, given budget constraint, the unit of a good need to be given up in order to consume one additional unit of the other good. OC/MRT is expressed in units of a good, instead of dollar.

Mathemtically,

Two-goods example,
$$E = x_1 p_1 + x_2 p_2 = y$$
 Take total differential,
$$dy = \frac{\partial E}{\partial x_1} dx_1 + \frac{\partial E}{\partial x_2} dx_2 = 0$$

$$\Longrightarrow \frac{dx_2}{dx_1} = -\frac{p_1}{p_2}$$

Interpretation Units of good x_2 to given up (negative sign) in exchange for one unit of x_1 .

1.3 Comparative Statics

1.3.1 Pure Income Effect

Figure 1: pure income effect from increase in income

For both types of income, pure income effect shifts the budget line parallel.

1.3.2 Price Changes

Exogenous income Consider a price increase in meat, in this case, the *invariant bundle* (i.e. the bundle that is not affected by the price change at all) is on y-intercept.

Figure 2: increase in price of meat on exogenous income budget line

Endogenous income in this case, the *invariant bundle* is the endowment bundle.

Figure 3: increase in price of meat on endogenous income budeget line

Note In both cases, price change causes the budget line rotates around the invariant bundle.

2 Lecture 2 Preference and Utility

2.1 Preference Relation

Preference Relation is Binary. Let \mathcal{X} be the consumption set, and let $\mathcal{A}, \mathcal{B} \in \mathcal{X}$.

Definition If a bundle \mathcal{A} is no worse than (i.e. at least as good as) another bundle \mathcal{B} , then we denote this as

$$\mathcal{A} \succcurlyeq \mathcal{B}$$

Definition A consumer **strictly prefers** bundle \mathcal{A} than bundle \mathcal{B} if and only if

$$\mathcal{A} \succcurlyeq \mathcal{B} \land \neg \mathcal{B} \succcurlyeq \mathcal{A}$$

and denoted as

$$A \succ B$$

Definition A consumer is **indifferent** between two bundles \mathcal{A} and \mathcal{B} if and only if

$$\mathcal{A} \succeq \mathcal{B} \wedge \mathcal{B} \succeq \mathcal{A}$$

2.2 Rationality Assumptions

Let \mathcal{X} denote the consumption set.

A1.Completeness A preference relation \succeq is **complete** if and only if

$$A \succcurlyeq B \lor B \succcurlyeq A, \ \forall A, B \in \mathcal{X}$$

A2.Transitivity A preference relation ≽ is **transitive** if and only if

$$\mathcal{A}\succcurlyeq\mathcal{B}\wedge\mathcal{B}\succcurlyeq\mathcal{C}\implies\mathcal{A}\succcurlyeq\mathcal{C},\ \forall\mathcal{A},\mathcal{B},\mathcal{C}\in\mathcal{X}$$

Definition a preference relation is **rational** if and only if it satisfies assumptions A1 and A2 above.

2.3 Convenience Assumptions

A3.Monotonicity Let $\mathcal{A} = \{x^A_1, \dots, x^A_n\}$ and $\mathcal{B} = \{x^B_1, \dots, x^B_n\} \in \mathcal{X}$, then

$$x_i^A \ge x_i^B, \ \forall i \in \{1, \dots, n\} \implies \mathcal{A} \succcurlyeq \mathcal{B}$$

and

$$x_i^A > x_i^B, \ \forall i \in \{1, \dots, n\} \implies \mathcal{A} \succ \mathcal{B}$$

Example In figure below, region 3 (including boundary) represents the *no worse* than set of \mathcal{A} , i.e. $R_3 = \succcurlyeq (\mathcal{A}) := \{\vec{x} \in \mathcal{X} \mid \vec{x} \succcurlyeq \mathcal{A}\}$ and region 2 (including boundary) represents the *no better than set* of \mathcal{A} , i.e. $R_2 = \succcurlyeq (\mathcal{A}) := \{\vec{x} \in \mathcal{X} \mid \mathcal{A} \succcurlyeq \vec{x}\}$

Figure 4: monotonic preference

A4.(Weak) Convexity If a preference relation is **convex**, then, for any $A, B \in \mathcal{X}$, suppose $A \sim B$,

$$\alpha \mathcal{A} + (1 - \alpha)\mathcal{B} \succcurlyeq \mathcal{A}, \ \forall \alpha \in [0, 1]$$

Meaning the *no worse than set* for any given bundle A over preference relation \succeq is a convex set.

Implication the utility function has to be quasi-concave.

Lemma the upper level contour for a quasi-concave function is convex.

A5.Continuity Loosely speaking, no sudden switch over preference. Formally, $\geq (A)$ and $\leq (A)$ sets are closed.

2.4 Indifference Curve

Definition Let $A \in \mathcal{X}$, then indifference set of A over preference relation \succeq is defined as

$$\sim (\mathcal{A}) = \{ \vec{x} \in \mathcal{X} \mid \vec{x} \sim \mathcal{A} \}$$

2.5 Utility Function

Definition a real-valued function $u : \mathbb{R}^n_+ \to \mathbb{R}$ represents a preference relation if and only if, let $\vec{x_1}, \vec{x_2} \in \mathbb{R}^n_+$ denote the quantities of goods in bundles \mathcal{A}_1 and $\mathcal{A}_2 \in \mathcal{X}$,

$$A_1 \succcurlyeq A_2 \iff u(\vec{x_1}) \ge u(\vec{x_2})$$

Theorem an utility function is invariant to <u>positive-monotonic</u> transformations. That's, let g denote a positive-monotonic transformation, and $u: \mathbb{R}^n_+ \to \mathbb{R}$ be a utility function representing preference relation \succcurlyeq , then $g \circ u$ also is an utility function representing \succcurlyeq .

Definition we say two consumers have the **same tastes** if and only if (1) they have same willingness to trade (MRS) at the same bundle <u>and</u> (2) same direction of increasing preference.

Mathematically,

$$MRS_1|_{\vec{x}} = MRS_2|_{\vec{x}}, \ \forall \vec{x} \in \mathcal{X}$$

and, let u_1 and u_2 denote utility functions, then

$$\nabla u_1 \cdot \vec{d} \ge 0 \iff \nabla u_2 \cdot \vec{d} \ge 0, \ \forall \ \vec{d} \in \mathbb{R}^n$$

2.6 Marginal Rate of Substitution

Definition MRS represents the <u>willingness to trade</u>. In two-goods situations, it measures the number of goods 2 the consumer is willing to give up for one unit of good 1, keeping his/her utility level constant.

Mathematically,

$$du(\cdot) = \frac{\partial u}{\partial x_1} dx_1 + \frac{\partial u}{\partial x_2} dx_2 = 0$$

$$\implies \frac{dx_2}{dx_1} = -\frac{\frac{\partial u}{\partial x_1}}{\frac{\partial u}{\partial x_2}} = -\frac{MU_1}{MU_2}$$

2.7 Types of Preference Relations

Definition A preference relation is homothetic if and only if there exists a homogeneous utility function to represent it. That's

$$u(\alpha \vec{x}) = \alpha^k u(\vec{x})$$
 for some $k \in \mathbb{Z}^+ \ \forall \alpha \in \mathbb{R}_+, \ \vec{x} \in \mathbb{R}_+^n$

Note that, utility function is invariant to positive monotonic transformation.

Proposition MRS of a homothetic preference only depends on the ratio of consumption. i.e. $MRS_{homothetic} = f(\frac{x_2}{x_1})$.

Figure 5: homothetic preference and MRS of it

Definition A preference relation is **quasi-linear** in good i if and only if, for all A and $B \in \mathcal{X}$,

$$\mathcal{A} \sim \mathcal{B} \implies (\mathcal{A} + \alpha \vec{e_i}) \sim (\mathcal{B} + \alpha \vec{e_i}), \ \forall a \in \mathbb{R}$$

where $\vec{e_i}$ is the i^{th} standard basis vector of \mathbb{R}^n .

Proposition MRS of a quasi-linear utility depends only on one goods.

Figure 6: quasi-linear preference and MRS of it

3 Lecture 3 Choice

3.1 Different Types of Tastes

Examine

- 1. How MRS changes along an IC.
- 2. How MRS changes as we move **across** ICs.

3.2 Shape and Substitutability Along a given IC

Type	MRS (Trade-offs)
Perfect Substitutes Perfect Complements	Constant at every bundle
	Unwilling to substitute
In Between	Changes as we move along IC

Figure 7: different types of preference and substituability

3.3 Diminishing MRS

Definition When we move down (more x and less y) along an indifference curve.

Figure 8: different types of preference and graphs

Figure 9: diminishing in MRS on graph

Diminishing MRS in words Compare two bundles on the *same* indifference curve. At each bundle consider how much of y this consumer are willing to give up for an additional unit of x. Diminishing means if we have relative *more* x in one bundle, then we are *less* willing to give up y at that bundle compared to the other bundle.

Note Perfect substitution preference is linear and therefore quasi-linear.

3.4 Choice

3.4.1 Tangency

MRS units of x_2 that we are **willing** to pay for 1 more unit of x_1 .

Opp. Cost units of x_2 that we have to pay for 1 more x_1 .

Tangency units we are willing to pay is, on the margin, equal to the amount we have to pay.

$$MRS = -\frac{MU_1}{MU_2} = -\frac{p_1}{p_2} = Opp.Cost$$

Lagrangian Multiplier Method

Method:

$$\max_{\vec{x}} u(\vec{x})$$
$$s.t.\vec{x} \cdot \vec{p} < I$$

By monotonicity, income constraint holds as equality.

$$\mathcal{L}(\vec{x}, \lambda) = u(\vec{x}) + \lambda \times (I - \vec{x} \cdot \vec{p})$$

First Order Conditions.

$$\begin{cases} \frac{\partial \mathcal{L}(\cdot)}{\partial x_i} = \frac{\partial u(\cdot)}{\partial x_i} - \lambda p_i = 0, \ \forall i \\ \frac{\partial \mathcal{L}(\cdot)}{\partial \lambda} = I - \vec{x} \cdot \vec{p} = 0 \end{cases}$$

Note our assumption on preference relations ensure the sufficiency of first order condition and uniqueness of solution.¹

Shadow price Let $v(\vec{p}, I)$ denote the highest level (i.e. value function, indirect utility) of utility achievable given price \vec{p} and income I. By envelope theorem, we can show that

$$\lambda^* = \frac{\partial v}{\partial I}$$

where λ^* measures the "value" of relaxing the constraint by a tiny bit. λ^* here is called the **shadow price** of income.

Summary the though process of solving consumer's optimization problem:

Lecture 4 Demand and Income Effects

Income Effects 4.1

Definition income effect captures the change in behaviour arising from just a change in income. A pure income effect leads to a parallel shift in the budget constraint.

¹Basically, the generic optimization problem has been reduced to a convex optimization problem.

Thought Process

- ▶ Preference Type? Check MRS
- ► Can I use LM or not?

 - ► Any nonconvexities?
- ▶ If Yes
 - ▶ Identify, choice variables, objective and constraints then setup and solve.
 - ▶ Be careful about necessary vs. sufficient conditions
- ▶ If No ⇒ use Intuition, Graphs and Logic
 - ► Highest IC given constraint.
- ► Check for Multiple Optimal Solutions! non-convexities, flat spots etc.
- ► Check to make sure answers make sense. This is when step 1 and graphs can help.

Definition let $x_i(\vec{p}, I)$ denote the demand for good i given price vector \vec{p} and income I. Then good i is classified as **normal goods** if and only if

$$\frac{\partial x_i(\cdot, I)}{\partial I} > 0$$

Good i is classified as **inferior goods** if and only if

$$\frac{\partial x_i(\cdot, I)}{\partial I} < 0$$

Note if preference relation is *quasi-linear* in good i, then a change in p_i has **no** income effect.

4.2 Engel Curves

Definition Engel curve captures the correlation between consumer's *income* and the *quantity demanded* by the consumer.

Note Engel curve have slope $\frac{dI}{dx}$. Therefore, if good i is <u>normal</u>, it has <u>upward sloping</u> Engel curve. If good i is <u>inferior</u>, it has <u>downward sloping</u> Engel curve.

5 Lecture 5 Income and Substitution Effects

When price changes, both relative price (substitution effect) and real income (income effect) changes.

5.1 SE: Expenditure Minimization

Definition to capture substitution effect from price change, we compensate the consumer enough exogenous income so that this consumer can reach the **original indifference curve**² with the **new price**.

$$min_{x_1,x_2}p_1^{final}x_1+p_2^{final}x_2$$
 subject to $u(x_1,x_2)=U^{initial}$

Figure 10: decomposing total effect into income and substitution effects in graph

5.1.1 Calculating a Substitution Effect

Intuition to find SE, we need to find the demand of goods with new price level and the origin utility level achieved.

Method:

This can be done via expenditure minimization.

Let \overline{U} denote the origin utility level.

$$\min_{\vec{x}} \vec{p}^{new} \vec{x} + \lambda \times (\overline{U} - u(\vec{x}))$$

Extracting the first order conditions:

$$\begin{cases} \frac{\partial \mathcal{L}(\cdot)}{\partial x_i} = p_i^{new} - \lambda \frac{\partial u}{\partial x_i} = 0, \ \forall i \\ \frac{\partial \mathcal{L}(\cdot)}{\partial \lambda} = \overline{U} - u(\vec{x}) = 0 \end{cases}$$

and by solving these first order conditions above, we have $h_i(\vec{p}, \overline{U})$ as **compensated demand curve** (aka Hicksian demand).

 $^{^{2}}$ In ECO206, we analyze Hicksian substitution effect. If we compensate the consumer enough to reach the $origin\ bundle$, we are capturing the Slutsky substitution effect.

5.2 Income Effect

Definition Income Effect can be captured by proportion of total effect unexplained by substitution effect.

$$\begin{split} \text{Total Effect} &= x_i^{final} - x_i^{initial} \\ \text{Substitution Effect} &= x_i^{SE} - x_i^{initial} \\ \text{Income Effect} &= x_i^{final} - x_i^{SE} \end{split}$$

5.3 Compensated Demand Curve

Definition compensated demand curve captures the changes in quantity demanded for good i when p_i changes, while holding the <u>utility</u> level fixed. And compensated demanded is denoted as

$$h_i(\vec{p}, \overline{U})$$

Regular Demand	Compensated Demand
Holds fixed income	Holds fixed IC
moves across IC	Moves along an IC
x_2 x_1	x_2 x_2 x_1

Figure 11: regular demand and compensated demand on graph: framework 1

Regular Demand	Compensated Demand
Income held fixed	Utility held fixed
Utility can vary	Income can vary
p_1	p_1
$ \begin{array}{c} $	

Figure 12: regular demand and compensated demand on graph: framework 2

5.4 Slutsky Equation

Proof.

$$h_{i}(\vec{p}, \overline{U}) = x_{i}(\vec{p}, I)$$

$$\implies h_{i}(\vec{p}, \overline{U}) = x_{i}(\vec{p}, e(\vec{p}, \overline{U}))$$

$$\implies \frac{\partial h_{i}}{\partial p_{j}} = \frac{\partial x_{i}}{\partial p_{j}} + \frac{\partial x_{i}}{\partial I} \frac{\partial E}{\partial p_{j}}$$

$$\implies \frac{\partial h_{i}}{\partial p_{j}} = \frac{\partial x_{i}}{\partial p_{j}} + \frac{\partial x_{i}}{\partial I} h_{j}$$

$$\implies \frac{\partial x_{i}}{\partial p_{j}} = \frac{\partial h_{i}}{\partial p_{j}} - \frac{\partial x_{i}}{\partial I} h_{j}$$

6 Lecture 6 Labor Supply and Elasticities

6.1 Model Setup

Goods c consumption and ℓ leisure.

Preference $u(c, \ell)$.

Income <u>endogenous</u> (L time endowment) and <u>exogenous</u> incomes (M as non-labor income).

6.2 Deriving Labor Supply

$$\max_{c,\ell} u(c,\ell) \ s.t. \ c + w\ell \le wL + M$$

By solving the above optimization, we have (c^*, ℓ^*) . And hours of working h is given by $h = L - \ell^*$.

6.2.1 Shape of Labor supply

Note notice the assumption on leisure, inferior or normal.