Knapsack Problem using Dynamic Programming

Nhóm 9

value = [2,3,1,4,5]

weight = [3,2,1,1,5]

n = 5

W = 10

value	weight	j	0	1	2	3	4	5	6	7	8	9	10
		i											
		0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	0	1	1	1	1	1	1	1	1	1	1
4	1	2	0	4	5	5	5	5	5	5	5	5	5
3	2	3	0	4	5	7	8	8	8	8	8	8	8
2	3	4	0	4	5	7	8	8	9	10	10	10	10
5	5	5	0	4	5	7	8	8	9	10	12	13	13

Ta sẽ dùng mảng F[0...n][0...W] để chứa các giá trị F[i,j]. F[i,j] là tổng giá trị lớn nhất của các món hàng được chọn trong i sao cho tổng khối lượng không lớn hơn j.

- * F[0,i] = 0
- * Nếu weight[i] > j:

$$F[i,j] = F[i-1,j]$$

* Nếu weight[i] <= j:

$$F[i,j] = Max(F[i-1,j], F[i-1, j - weight[i]] + value[i])$$

Ta sẽ truy vết để biết được các món hàng nào đã được chọn.

Bắt đầu từ ô F[n,W] dò ngược về.

- * Nếu F[i,j] != F[i-1,j] thì món hàng thứ i được chọn, ta truy tiếp đến ô F[i-1,j-weight[i]].
- * Nếu F[i,j] = F[i-1,j] thì món hàng thứ I không được chọn, ta truy tiếp đến ô F[i-1,j].

Như ví dụ trên ta sẽ chọn các món hàng 1,2,3,5 và tổng giá trị sẽ là 13.