220330 三角函数 题目选解

高一 (4) 班 邵亦成 48 号

Section 1 填空题

- 1. $\max_{x \in \mathbb{R}} (2\sin x 1) = 1$, 此时 $x \in \left\{ x | x = 2k\pi + \frac{\pi}{2}, k \in \mathbb{Z} \right\}$. 解析. 三角函数的极值性.
- 2. $\min_{x \in \mathbb{R}} (-3\cos x + 5) = 2$, 此时 $x \in \{x | x = 2k\pi, k \in \mathbb{Z}\}$. 解析. 三角函数的极值性.
- 3. 函数 $y=3\cos\left(\frac{1}{2}x+\frac{\pi}{4}\right)$ 的周期是 $T=4k\pi, k\in\mathbb{Z}, k\neq 0$. 解析. 三角函数的周期性.
- 4. 在 $\triangle ABC$ 中, $a=12, A=45^{\circ}, C=60^{\circ}$, 则 $b=6+6\sqrt{3}$. 解析. 解三角形.
- **5.** 在 $\triangle ABC$ 中, $a=4,b=5,S_{\triangle}=5\sqrt{3}$, 则 $c=\sqrt{21}$ or $\sqrt{61}$. 解析. 解三角形.
- **6.** 函数 $y = 3\sin\left(2x + \frac{\pi}{3}\right)$ 的单调递增区间是 $\bigcup_{k \in \mathbb{Z}} \left[k\pi \frac{\pi}{12}, k\pi + \frac{5\pi}{12}\right]$. 解析. 三角函数的单调性.
- 7. 函数 $y = 5 \sin x + \cos 2x$ 的值域是 [-6,4]. 解析. 三角变换, 二次函数.
- 8. 函数 $y = \sin x + \sqrt{3}\cos x, x \in \left[-\frac{\pi}{6}, \frac{\pi}{3} \right]$ 的值域是 [1, 2]. 解析. 三角函数的值域; 三角变换.
- 9. 在 $\triangle ABC$ 中, $AB = \sqrt{3}$, BC = 3, AC = 4, 则 AC 边上的中线 $BD = \sqrt{2}$. 解析. 解三角形.
- **10.** 在 $\triangle ABC$ 中, 若 $\sin A : \sin B : \sin C = 3 : 5 : 7$, $S_{\triangle ABC} = 15\sqrt{3}$, 则最长的边长为 **14**. 解析。解三角形; 海伦·秦九韶公式.
- 11. 设函数 f(x) 是以 2 为周期的奇函数,且 $f\left(-\frac{2}{5}\right)=7$. 若 $\sin\alpha=\frac{\sqrt{5}}{5}$,则 $f(4\cos2\alpha)=-7$.

解析. 三角变换, 函数的基本性质.

12. 已知函数 $f(x) = \frac{1}{2} (\sin x + \cos x) - \frac{1}{2} |\sin x - \cos x|$, 则 f(x) 的值域是 $\left[-1, \frac{\sqrt{2}}{2} \right]$. 解析. 三角函数的值域; 分段函数.

Section 2 解答题

13. 在 $\triangle ABC$ 中, a,b,c 分别是三个内角 A,B,C 的对边. 若 $a=2,C=\frac{\pi}{4},\cos\frac{B}{2}=\frac{2\sqrt{5}}{5}$, 求 $S_{\triangle ABC}$. 解析. 解三角形. 过程略. $S_{\triangle ABC}=\frac{8}{7}$.

14. 在 $\triangle ABC$ 中, 内角 A,B,C 所对的边长分别是 a,b,c.

(1) 若
$$c = 2, C = \frac{\pi}{3}, S_{\triangle ABC} = \sqrt{3}, 求 a, b.$$

解析. 解三角形. 过程略. a=b=2.

(2) 若 $\sin C + \sin(B - A) = \sin 2A$, 试判断 $\triangle ABC$ 的形状.

解析. 解三角形, 三角变换.

$$A + B + C = \pi \Rightarrow \sin C = \sin(A + B)$$

 $\Rightarrow \sin(A + B) + \sin(B - A) = 2\sin A\cos A$
 $\Rightarrow 2\sin B\cos A = 2\sin A\cos A$
 $\Rightarrow \cos A = 0 \text{ or } \sin B = \sin A$
 $\Rightarrow A = \frac{\pi}{2} \text{ or } A = B$
 $\Rightarrow \triangle ABC$ 是Rt \triangle or 等腰 \triangle .

15. 已知函数
$$f(x) = 2 - \sin\left(2x + \frac{\pi}{6}\right) - 2\sin^2 x, x \in \mathbb{R}$$
,

(1) 求函数 f(x) 的最小正周期.

解析. 三角函数的周期性; 三角变换. 过程略. $\min_{T>0} T = \pi$.

(2) 求 f(x) 单调递增区间.

解析. 三角函数的单调性. 过程略. $\bigcup_{k\in\mathbb{Z}}\left[k\pi-\frac{2}{3}\pi,k\pi-\frac{\pi}{6}\right]$.

(3) 记 $\triangle ABC$ 的内角 A,B,C 的对边长分别为 a,b,c, 若 $f\left(\frac{B}{2}\right)=1,b=1,c=\sqrt{3}$, 求 a 的值.

由
$$f\left(\frac{B}{2}\right) = 1$$
 可知 $B = \frac{\pi}{6}$.

考虑到
$$b=1, c=\sqrt{3}$$
, 又由正弦定理有 $\frac{b}{\sin B}=\frac{c}{\sin C}$, 可知 $\sin C=\frac{\sqrt{3}}{2}$, 故可知 $C=\frac{\pi}{3}$ or $\frac{2\pi}{3}$. 当 $C=\frac{\pi}{3}, A=\frac{\pi}{2}, a=\sqrt{b^2+c^2}=2$.

$$\stackrel{\circ}{=} C = \frac{2\pi}{3}, A = \frac{\pi}{6}, B = \frac{\pi}{6}, a = b = 1.$$

于是有 a=1 or 2.

Section 3 附加题

16. 如图所示, ABCD 是一块边长为 7 米的正方形铁皮, 其中 ATN 是一半径为 6 米的扇形, 已经被腐蚀不能使用, 其余部分完好可利用. 工人师傅想在未被腐蚀部分截下一个有边落在 BC 与 CD 上的长方形铁皮 PQCR, 其中 P 是 \widehat{TN} 上一点. 设 $\angle TAP = \theta$, 长方形 PQCR 的面积为 S 平方米.

(1) 求 S 关于 θ 的函数解析式.

解析. 三角比. 过程略.
$$S=49-42\left(\sin\theta+\cos\theta\right)+36\sin\theta\cos\theta$$
, $\theta\in\left[0,\frac{\pi}{2}\right]$.

(2) 求 S 的最大值及此时 θ 的值.

解析. 三角变换; 二次函数.

令
$$t = \sin \theta + \cos \theta = \sqrt{2} \sin \left(\theta + \frac{\pi}{4}\right)$$
, $\sin \theta \cos \theta = \frac{t^2 - 1}{2}$, 于是有 $S = 49 - 42t + 18\left(t^2 - 1\right) = 18t^2 - 42t + 31$.

注意到
$$\theta \in \left[0, \frac{\pi}{2}\right]$$
, 可知 $\theta + \frac{\pi}{4} \in \left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$, 有 $t = \sqrt{2}\sin\left(\theta + \frac{\pi}{4}\right) \in \left[1, \sqrt{2}\right]$.

于是有
$$S = S(t) = 18t^2 - 42t + 31 = 18\left(t - \frac{7}{6}\right)^2 + \frac{13}{2}, t \in \left[1, \sqrt{2}\right],$$

故
$$\max_{t \in \left[1,\sqrt{2}\right]} S = \left. S \right|_{t = \sqrt{2}} = 67 - 42\sqrt{2},$$
 此时 $\theta = \frac{\pi}{4}.$