Основи_програмування – 1. Алгоритми та структури даних

Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження лінійних алгоритмів»

Варіант_11__

Виконав	студент	П-13, Дем'янчук Олександр Петрович_
		(шифр, прізвище, ім'я, по батькові)
Перевіри	В	
		(прізвище, ім'я, по батькові)

Основи програмування – 1. Алгоритми та структури даних

Лабораторна робота 4

Дослідження арифметичних циклічних алгоритмів

Мета – дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Індивідуальне завдання

Варіант 11

Завдання

Визначити n-не число Каталана. Кожне число Каталана, починаючи з третього, обчислюється за рекурентною формулою:

$$k_0 = k_1 = 1$$
, $k_n = \frac{k_{n-1}(4n-6)}{n}$.

1. Постановка задачі

Використовуючи арифметичний цикл, знайти значення n-ного числа Каталана — lastK, де n-ний член вираховується за формулою lastK = (prevK*(4n-6))/n. Цикл завершується тоді, коли n досягає заданого значення.

2. Математична модель

Побудуємо таблицю імен змінних:

Змінна	Tun	Ім'я	Призначення
Порядок числа Каталана	Цілий	n	Вхідні дані
Арифметичний параметр	Цілий	i	Проміжні дані
Перше число Каталана	Дійсний	zeroK	Проміжні дані
Друге число Каталана	Дійсний	firstK	Проміжні дані
п-не число Каталана	Дійсний	lastK	Вихідні дані

n - кінцеве значення арифметичного параметра;

i - власне арифметичний параметр: **i1**=3, **i2**=**n**, **i3**=1;

zeroK ϵ сталим значенням і дорівню ϵ 1;

firstK ϵ сталим значенням і дорівню ϵ 1;

lastK обчислюємо за формулою **lastK** = (prevK*(4i-6))/;

Розв'язання

кінець

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

- Крок 1. Визначимо основні дії
- Крок 2. Деталізуємо дію знаходження першого значення **prevK** як **firstK**
- Крок 2. Деталізуємо дію обчислення числа Каталана як арифметичний цикл

Псевдокод Крок 1 початок введення п визначення prevK як другого елемента firstK цикл знаходження lastK виведення lastK кінець Крок 2 початок введення п firstK:=1prevK:= firstK цикл знаходження lastK виведення у кінець Крок 3 початок введення п zeroK:= 1 prevY:= firstK повторити і раз Р кінець_циклу lastK := (prevK*(4i-6))/iprevK:= lastK все повторити виведення lastY

Основи_програмування – 1. Алгоритми та структури даних

Блок-схема

Тестування

Блок	Дія
	Початок
1	Введення п = 9
2	firstK = 1; prevK = firstK
3	i = 3, 9, 1
4	lastK = $(1*(4*3-6))/3 = 2$ prevK = lastK

Основи_програмування – 1. Алгоритми та структури даних

5	i = 4, 9, 1
6	lastK = (2*(4*4-6))/4 = 5
	prevK = lastK
7	$\hat{i} = 5, 9, 1$
8	lastK = (5*(4*5-6))/5 = 14
	prevK = lastK
9	$\hat{i} = 6, 9, 1$
10	lastK = (14*(4*6-6))/6 = 42
	prevK = lastK
11	i = 7, 9, 1
12	lastK = (42*(4*7-6))/7 = 132
	prevK = lastK
13	i = 8, 9, 1
14	lastK = (132*(4*8-6))/8 = 429
	prevK = lastK
15	i = 9, 9, 1
16	lastK = (429*(4*9-6))/9 = 1430
	prevK = lastK
17	Виведення lastK = 1430
	Кінець

Висновок

На лабораторній роботі дослідив особливості роботи арифметичних циклів, навчився створювати їх та використовувати під час складання програмних специфікацій.