AW883XX Android Driver(MTK)

版本: V2.1

时间: 2022年05月25日

目录

1.	驱动说明	4
2.	驱动移植	4
	2.1 SMARTPA 配置	4
	2.1.1 添加 PA 配置	4
	2.2 AW883XX 驱动移植	5
	2.2.1 DTS 配置	5
	2.2.2 驱动配置	6
	2.2.3 BIN 文件配置	7
	2.3 平台驱动配置	8
	2.3.1 DAI_LINK 配置	8
	2.4 平台通路配置	10
	2.5 驱动移植有效性验证	
2	驱动校准功能	11
٥.		
	3.1 校准目的	
	3.2 校准适配	
	3.2.1 校准结果保存路径适配	
	3.3 校准方式	11
	3.3.1 MISC 方式	11
	3.3.2 CLASS 方式	13
	3.3.3 ATTR 方式	13
	3.4 校准有效性验证	14
	3.5 校准示例代码	15
4.	调试接口	15
	4.1 设备节点	15
	REG	15
	RW	16
	DRV_VER	
	DSP_RW	
	DSP	
	FADE_STEP	
	DBG_PROFFADE_EN	
	MONITOR	
	MONITOR_UPDATE	
	DSP_RE	

	I2C_LOG_EN	18
	PHASE_SYNC	18
	SPK_TEMP	18
	CALI_RE	18
	CALI_F0	19
	CALI_F0_Q	19
	CALI_TIME	19
	RE_RANGE	19
	4.2 KCONTROL 控件	19
	AW_DEV_X_SWITCH	19
	AW_DEV_X_PROF	20
	AW_DEV_X_MONITOR_SWITCH	20
	AW883XX_FADEIN_US	20
	AW883XX_FADEOUT_US	20
5.	附录	20
	5.1 平台 I2C 总线动态变更	20
	5.1.1DTS 配置	20
	5 1 2 DALLINK 配置	22

1. 驱动说明

驱动源码文件	aw883xx.c, aw883xx.h, aw883xx_pid_2049_reg.h,aw883xx_monitor.c, aw883xx_monitor.h,aw883xx_log.h,aw883xx_init.c,aw883xx_device.c, aw883xx_device.h,aw883xx_data_type.h,aw883xx_calib.h,aw883xx_calib.c, aw883xx_bin_parse.c,aw883xx_bin_parse.h,aw883xx_spin.c,aw883xx_spin.h
驱动支持产品	aw88394、aw88395
I ² C 地址范围	0x34/0x35/0x36/0x37
平台信息	mt6853

2. 驱动移植

2.1 SmartPA 配置

2.1.1 添加 PA 配置

在 ProjectXXX.mk 中添加

```
MTK AUDIO SPEAKER PATH = smartpa awinic aw883xx
```

配置以上选项会在整编时在 AudioParamOptions.xml 中生成以下参数

<Param name="MTK_AUDIO_SPEAKER_PATH" value="smartpa_awinic_aw883xx" />

SmartPa AudioParam. xml 添加 aw883xx 参数配置

SmartPa_ParamUnitDesc.xml 中添加描述:

```
<Category name="smartpa_awinic_aw883xx"/>
```

2.2 AW883XX 驱动移植

2.2.1 DTS 配置

单 PA 配置方法

```
/*x 表示对应的总线号*/
&i2c x {
        aw883xx_smartpa_0: aw883xx smartpa@34 { /*以 I2C 地址 0x34 为例*/
            compatible = "awinic, aw883xx smartpa";
            \#sound-dai-cells = \langle 0 \rangle;
            reg = (0x34);
            reset-gpio = <&pio 89 0>; /*复位引脚配置,以 gpio 89 举例*/
            irq-gpio = <&pio 37 0x0>; /*中断引脚配置,以gpio 37 举例*/
            sound-channel = \langle 0 \rangle;
                                           /*校准 re 范围最小值 (mohms)*/
            re-min = \langle 1000 \rangle;
                                            /*校准 re 范围最大值 (mohms) */
            re-max = \langle 40000 \rangle;
            status = "okay";
        }:
       /*re 为喇叭阻抗*/
```

多 PA 配置方法

```
\#sound-dai-cells = \langle 0 \rangle;
             reg = (0x34):
             reset-gpio = \langle \text{\&pio } 89 \text{ } 0x0 \rangle;
             irq-gpio = \langle \&pio 37 0x0 \rangle;
                                             /*第1个PA sound-channel 配置为 0*/
             sound-channel = \langle 0 \rangle;
              re-min = \langle 1000 \rangle:
              re-max = \langle 40000 \rangle;
             status = "okay";
         }:
         aw883xx_smartpa_1: aw883xx@35 {
             compatible = "awinic, aw883xx";
             \#sound-dai-cells = \langle 0 \rangle;
             reg = (0x35):
             reset-gpio = \langle \&pio 17 0x0 \rangle;
             irq-gpio = \langle &pio 19 0x0 \rangle;
             sound-channel = <1>; /*第2个PA sound-channel 配置为1*/
              re-min = \langle 1000 \rangle;
              re-max= <40000>:
             status = "okay";
       };
+}:
/*以上为双 PA 举例,多 PA 时 sound-channel 序号依次递增。其他属性参考单 PA 说明*/
```

2.2.2 驱动配置

内核编译配置

defconfig 编译配置选项:

```
CONFIG_SND_SMARTPA_AW883XX=y
```

内核 codecs 目录创建 aw883xx 目录,添加驱动文件

```
aw883xx.c,aw883xx.h,aw883xx_pid_2049_reg.h,aw883xx_monitor.c,aw883xx_monitor.h,
aw883xx_log.h,aw883xx_init.c,aw883xx_device.c,aw883xx_device.h,aw883xx_data_type.h,
aw883xx_calib.h,aw883xx_calib.c,aw883xx_bin_parse.c,aw883xx_bin_parse.h,aw883xx_spin.c,
aw883xx_spin.h
```

Kconfig 配置

```
config SND_SMARTPA_AW883XX
tristate "SoC Audio for awinic aw883xxseries"
depends on I2C
help
This option enables support for aw883xxseries Smart PA.
```

Makefile 配置

```
#for AWINIC AW883XXSmart PA
```

obj-\$(CONFIG_SND_SMARTPA_AW883XX) += aw883xx/aw883xx.o aw883xx/aw883xx_monitor.o aw883xx/aw883xx_bin_parse.o aw883xx/aw883xx_device.o aw883xx/aw883xx_init.o aw883xx/aw883xx_calib.o aw883xx/aw883xx_spin.o

KO 编译配置

若驱动以 KO 方式进行编译,需要配置以下宏定义

```
diff --git a/aw883xx.h b/aw883xx.h
index a377035..10bdfdc 100644
--- a/aw883xx.h
+++ b/aw883xx.h
00 -10,7 +10,7 00
#define AW_MTK_PLATFORM

+#define AW_SYNC_LOAD

#define AW883XX_CHIP_ID_REG (0x00)
```

2.2.3 bin 文件配置

PA 需要配置寄存器等参数才能正常工作, PA bin 文件配置步骤如下:

编译配置

在项目对应位置添加 bin 文件编译选项:

```
PRODUCT_COPY_FILES += \
xxxx/aw883xx_acf.bin:$(TARGET_COPY_OUT_VENDOR)/firmware/aw883xx_acf.bin

/*xxxx 为平台路径*/
```

路径配置

在内核 firmware_class.c 中添加 bin 文件在手机中的目录,一般目录为 vendor/firmware

```
static const char * const fw_path[] = {
    fw_path_para,
        "/vendor/firmware", /*添加路径*/
        "/lib/firmware/updates/" UTS_RELEASE,
        "/lib/firmware/" UTS_RELEASE,
        "/lib/firmware/" UTS_RELEASE,
        "/lib/firmware"
};
```

/* 注:调试阶段可直接 push bin 文件到/vendor/firmware/ */

bin 文件选择

根据平台 I2S 输出格式以及 PA 数量选择 bin 文件,以 aw88394 为例:

```
AW883XX_Driver_MTK_V1.2.0 /*驱动移植包根目录,以V1.2.0为例*/
cali
arm64-v8a
aw_cali
armeabi-v7a
aw_cali
example_source_code
aw883xx_cali_attr_example.c
aw883xx_cali_class_example.c

config
aw88394 /*产品名: aw88394*/
| 16bit /*12S 16bit配置*/
stereo
aw883xx_acf.bin /*单PA 16bit配置*/

stereo
aw883xx_acf.bin /*双PA 16bit配置*/
stereo
aw883xx_acf.bin /*如PA 32bit配置*/
```

2.3 平台驱动配置

2.3.1 DAI_LINK 配置

不同平台 dai_link 配置如下。

4G 平台配置

1) 添加 awinic_codecs 数组。

单 PA 配置方法

多 PA 配置方法

2) 修改 DAI 接口

5G 平台配置

单 PA 配置方法

多 PA 配置方法

```
diff --git a/arch/arm/boot/dts/mediatek/mt6853.dtsi
b/arch/arm/boot/dts/mediatek/mt6853.dtsi
index f22db2e..a340a32 100644
--- a/arch/arm64/boot/dts/mediatek/mt6853.dts
+++ b/arch/arm/boot/dts/mediatek/mt6853.dts
@@ -2824,7 +2824,7 @@
    mtk_spk_i2s_in = <0>;
    /* mtk_spk_i2s_mck = <3>; */
    mediatek,speaker-codec {
        sound-dai = <&speaker_amp>;
        + sound-dai = <&aw883xx_smartpa_0 &aw883xx_smartpa_1>;
        };
    };
};
```


/*以双 PA 举例, 其中对应 I2C 节点的信息分别为<aw883xx smartpa 0>、<aw883xx smartpa 1>*/

2.4 平台通路配置

仅 5G 平台需要配置

```
diff --git a/arch/arm/boot/dts/mediatek/mt6853.dtsi
b/arch/arm/boot/dts/mediatek/mt6853.dtsi
index f22db2e..a340a32 100644
--- a/arch/arm/boot/dts/mediatek/mt6853.dtsi
+++ b/arch/arm/boot/dts/mediatek/mt6853.dtsi
    sound: sound {
        compatible = "mediatek, mt6853-mt6359-sound";
        mediatek, audio-codec = <&mt6359_snd>;
        mediatek, platform = <&afe>;
        + mtk_spk_i2s_out = <3>;
        + mtk_spk_i2s_in = <9>;
        mtk_spk_i2s_mck = <3>;
        };
```

2.5 驱动移植有效性验证

以上操作完成了驱动集成,通过以下驱动 log 确认移植有效:

1) I2C 通信成功:

```
[Awinic] [6-0034] aw883xx_append_i2c_suffix: change name :aw883xx-aif-6-34
[Awinic] [6-0034] aw883xx_append_i2c_suffix: change name :Speaker_Playback_6_34
[Awinic] [6-0034] aw883xx_append_i2c_suffix: change name :Speaker_Capture_6_34
[Awinic] [6-0034] aw883xx_dai_drv_append_suffix: dai name [aw883xx-aif-6-34]
[Awinic] [6-0034] aw883xx_dai_drv_append_suffix: pstream_name [Speaker_Playback_6_34]
[Awinic] [6-0034] aw883xx_dai_drv_append_suffix: cstream_name [Speaker_Capture_6_34]
[Awinic] [6-0034] aw883xx_i2c_probe: dev_cnt 1 probe completed successfully
```

2) 声卡注册成功:

```
[Awinic] [6-0035] aw883xx_i2c_probe: dev_cnt 2 probe completed successfully
-;type=1400 audit(1667.319:26): avc: denied { net_raw } for pid=513 comm="pm-service" capability=13
-;type=1400 audit(1667.319:26): avc: denied { net_raw } for pid=513 comm="pm-service" capability=13
;[Awinic] [6-0034] aw883xx_codec_probe: enter
;[Awinic] [6-0034] aw883xx_add_codec_controls: enter
;[Awinic] [6-0034] aw883xx_request_firmware_file: loaded aw883xx_acf.bin - size: 167092
;[Awinic] aw_dev_check_cfg_by_hdr: project name [aw88395]
```

3) bin 文件加载成功:

```
[Awinic] [6-0034] aw_monitor_write_data_to_table: min_val:3700, max_val:3800, ipeak:0x9, gain:0x8, vmax:0xfffffe82 [Awinic] [6-0034] aw_monitor_write_data_to_table: min_val:3500, max_val:3600, ipeak:0x8, gain:0xc, vmax:0xfffffdf2 [Awinic] [6-0034] aw_monitor_write_data_to_table: min_val:0, max_val:3400, ipeak:0x7, gain:0x10, vmax:0xfffffd5a [Awinic] [6-0034] aw monitor parse vol data v 0 1 1: ==parse vol end === [Awinic] [6-0034] aw_dev_cfg_get_vaild_prof: get vaild profile:2 [Awinic] [6-0034] aw_dev_cfg_load: parse cfg_success [Awinic] [6-0034] aw_dev_fw_update: start update Music [Awinic] [6-0034] aw_dev_get_dsp_config: done [Awinic] [6-0034] aw_dev_mute: done
```

4)播放音乐, PA 发声:

```
[Awinic] [6-0034] aw_dev_mute: enter
[Awinic] [6-0034] aw_dev_mute: done
[Awinic] [6-0034] aw_dev_get_int_status: read interrupt reg = 0x03d5
[Awinic] [6-0034] aw_dev_get_int_status: read interrupt reg = 0x0000
[Awinic] [6-0034] aw_dev_clear_int_status: done
[Awinic] [6-0034] aw_dev_set_intmask: done
[Awinic] [6-0034] aw_monitor_start: enter
[Awinic] [6-0034] aw_device_start: done
[Awinic] [6-0034] aw_device_start: start_success
[Awinic] [6-0034] aw_883xx_start_pa: start_success
[Awinic] [6-0034] aw_monitor_work_func: scene_mode 0, monitor_status:1, monitor_switch:0
```

3. 驱动校准功能

3.1 校准目的

针对喇叭保护需求,AW883XX 驱动支持在产线对 speaker 进行校准,并将符合要求的 speaker 的 re 值写入到手机的 persist 分区中。在开机加载芯片配置时,驱动会将 persist 分区中读到的校准值写入芯片 DSP中,达到温度保护的作用。

3.2 校准适配

3.2.1 校准结果保存路径适配

1) 驱动(aw883xx_calib.c)中定义了保存校准值文件的路径如下:

2)请确认手机中是否存在相同路径,无对应路径时会导致校准失败:

```
msm8996:/ # cd mnt/vendor/persist/factory/audio/
msm8996:/mnt/vendor/persist/factory/audio # pwd
/mnt/vendor/persist/factory/audio
msm8996:/mnt/vendor/persist/factory/audio # 1s
aw_cali.bin
msm8996:/mnt/vendor/persist/factory/audio #
```

3.3 校准方式

AW883XX 驱动提供了 misc、class 和 attr 三种校准方式。

3.3.1 misc 方式

AW883XX 驱动 misc 校准通过可执行文件来实现。按照以下步骤进行:

获取可执行文件

配置可执行文件

指令介绍

```
May Cali [dev_name] start_cali /aw_cali [dev_name] start_cali /aw_cali [dev_name] cali_re /aw_cali [dev_name] cali_re /aw_cali [dev_name] cali_f0 /aw_cali [dev_name] get_spkr_status /aw_cali [dev_name] get_spkr_status /aw_cali [dev_name] set_cali_re re_value1 [re_value2] /aw_cali [dev_name] set_cali_re 8000 /aw_cali [dev_name] get_re_range /aw_cali [dev_name]
```

参数解释(注:[]代表该选项可不填)

dev_name 用于校准单个设备,devx,x与dts中配置的 sound-channel 相对应,不填写时默 认校准所有设备

校准步骤

1) 播放静音音乐;

2) 启动校准:

```
msm8996:/ # aw_cali start_cali
dev[0]cali_re = 6718
dev[1]cali_re = 6903
dev[0]cali_f0 = 946
dev[1]cali_f0 = 846
```

3.3.2 class 方式

节点功能

节点	功能
/sys/class/smartpa/cali_time	1.可配置校准 re 的延时时间 2.读取当前校准 re 的延时时间
/sys/class/smartpa/f0_calib	校准 f0
/sys/class/smartpa/re25_calib	1.校准 re 2.设置 re 值
/sys/class/smartpa/f0_q_calib	校准 f0 和 q 值
/sys/class/smartpa/re_range	查看 re 值设置范围

校准步骤

- 1) 播放静音文件;
- 2) 校准 re:

```
msm8996:/sys/class/smartpa #
msm8996:/sys/class/smartpa # cat re25_calib
dev[0]:6810 m0hms dev[1]:6886 m0hms
msm8996:/sys/class/smartpa # _
```

校准 f0:

```
msm8996:/sys/class/smartpa #
msm8996:/sys/class/smartpa # cat f0_calib
dev[0]:1115 Hz dev[1]:949 Hz
msm8996:/sys/class/smartpa #
```

3.3.3 attr 方式

节点路径

其中 6-0034, "6" 代表 i2c 总线号, "0034" 代表 i2c 地址:

节点功能

节点	功能
cali_time	1.可配置校准 re 的延时时间 2.读取当前校准 re 的延时时间
cali_re	1.校准 re 2.设置 re 值
cali_f0	校准 f0
cali_f0_q	校准 f0、q
re_range	查看 re 设置范围

校准步骤

- 1)播放静音文件;
- 2) 校准 re:

```
msm8996:/sys/bus/i2c/drivers/aw883xx_smartpa/6-0034 # cat cali_re
dev[0]: 6790m0hms dev[1]: 6859m0hms
msm8996:/sys/bus/i2c/drivers/aw883xx_smartpa/6-0034 # _
```

校准 f0:

3.4 校准有效性验证

1) 多次校准,确认校准 re 是否在有效范围内,且值不恒定。(re 有效范围与硬件同事确认)以 attr 方式校准 2 次举例:

```
msm8996:/sys/bus/i2c/drivers/aw883xx_smartpa/6-0034 # cat cali_re
dev[0]: 6791m0hms dev[1]: 6889m0hms
msm8996:/sys/bus/i2c/drivers/aw883xx_smartpa/6-0034 # cat cali_re
dev[0]: 6796m0hms dev[1]: 6885m0hms
msm8996:/sys/bus/i2c/drivers/aw883xx_smartpa/6-0034 #
```

2) 查看 re 值是否写入文件中:


```
msm8996:/ #
msm8996:/ # cat mnt/vendor/persist/factory/audio/aw_cali.bin
6796 6885msm8996:/ #
```

3)播放音乐状态下,查看 dsp re 节点,确认与上述校准值相同:

```
msm8996:/sys/bus/i2c/drivers/aw883xx_smartpa/6-0034 # cat cali_re
dev[0]: 6791m0hms dev[1]: 6889m0hms
msm8996:/sys/bus/i2c/drivers/aw883xx_smartpa/6-0034 # cat cali_re
dev[0]: 6796m0hms dev[1]: 6885m0hms
msm8996:/sys/bus/i2c/drivers/aw883xx_smartpa/6-0034 # cat dsp_re
dsp_re: 6795
msm8996:/sys/bus/i2c/drivers/aw883xx_smartpa/6-0034 # cd ../6-0035
msm8996:/sys/bus/i2c/drivers/aw883xx_smartpa/6-0035 # cat dsp_re
dsp_re: 6884
```

(注:以上差异为定点化计算结果的正常误差,一般范围为1)

4) 重启手机,播放音乐,再次查看 dsp_re 节点,确认 dsp_re 节点中的值与文件中的 re 值相同。

3.5 校准示例代码

AW883XX 驱动提供了 attr、class 校准节点调用参考代码,如下所示。

4. 调试接口

4.1 设备节点

AW883XX Driver 创建多个设备节点文件供调试,路径是 sys/bus/i2c/drivers/aw883xx_smartpa/*-00xx,其中*为 i2c bus number,xx 为 i2c address。

reg

节点名字	reg
功能描述	用于读写 aw883xx 的所有寄存器
使用方法	读寄存器值: cat reg 写寄存器值: echo reg_addr reg_data > reg (16 进制操作)
参考例程	cat reg (获取所有可读寄存器上的值) echo 0x04 0x0241 > reg (向 0x04 寄存器写值 0x0241)

rw

节点名字	rw	
功能描述	用于读写 aw883xx 的单个寄存器	
使用方法	读寄存器值: echo reg_addr > rw cat rw	(16 进制操作)
	写寄存器值: echo reg_addr reg_data	> rw (16 进制操作)
参考例程	echo 0x04 > rw cat rw	(读取 0x04 寄存器值)
	echo 0x04 0x0241 > rw	向 0x04 寄存器写值 0x0241)

drv_ver

节点名字	drv_ver
功能描述	用于获取驱动版本号
使用方法	获取版本号: cat drv_ver

dsp_rw

节点名字	dsp_rw	
功能描述	用于设置或者获取 dsp 寄存器值	
	读寄存器值:	
	echo reg_addr > dsp_rw	(16 进制操作)
使用方法	cat dsp_rw	
(X/11/3/12)		
	写寄存器值:	
	echo reg_addr reg_data > dsp_rw	(16 进制操作)
	echo 0x8601 > dsp_rw	(读取 dsp 的 0x8604 寄存器值)
参考例程	cat dsp_rw	
多有例框		
	echo 0x8604 0x4011 > dsp_rw	(向 dsp 的 0x8604 寄存器写值 0x4011)

dsp

节点名字	dsp
功能描述	用于获取 dsp firmware 与 dsp config
使用方法	获取 dsp firmware 与 dsp config: cat dsp
参考例程	cat dsp

fade_step

节点名字	fade_step	
功能描述	设置淡入淡出步进	
使用方法	设置步进 echo step > fade_step 获取步进 cat fade_step	
参考例程	echo 6 > fade_step (设置步进为 6) cat fade_step (获取当前淡入淡出步进)	

dbg_prof

节点名字	dbg_prof
功能描述	用于控制是否开启场景切换
使用方法	开启场景切换 echo 1 > dbg_prof 关闭场景切换 echo 0 > dbg_prof

fade_en

节点名字	fade_en
功能描述	用于控制淡入淡出使能
使用方法	开启淡入淡出 echo 1 > fade_en 关闭淡入淡出 echo 0 > fade_en

monitor

节点名字	monitor
功能描述	用于控制低温低压开关
使用方法	开启低温低压 echo 1 > monitor 关闭低温低压 echo 0 > monitor

monitor_update

节点名字	monitor_update
功能描述	用于临时更新 monitor 配置
使用方法	更新配置 echo 1 > monitor_update

dsp_re

节点名字	dsp_re
功能描述	用于获取 dsp 中的 re 值
使用方法	cat dsp_re

i2c_log_en

节点名字	I2c_log_en
功能描述	用于控制寄存器读写 log
使用方法	开启 i2c 读写 log echo 1 > i2c_log_en 关闭 i2c 读写 log echo 0 > i2c_log_en

phase_sync

节点名字	phase_sync
功能描述	用于控制是否每次开启 pa 时均更新寄存器
使用方法	开启更新使能标志 echo 1 > phase_sync 关闭更新使能标志 echo 0 > phase_sync

spk_temp

节点名字	spk_temp
功能描述	用于查看喇叭实时状态
使用方法	cat spk_temp

cali_re

节点名字	cali_re
功能描述	校准 re 设置校准 re 值到 bin 与 dsp 中
使用方法	校准 re: cat cali_re 设置 re 值: echo dev[0]:6848 dev[1]:6683 > cali_re (以双 PA 配置举例,多 PA 时按照格式增加)

cali_f0

节点名字	cali_f0
功能描述	校准 f0
使用方法	校准 f0: cat cali_f0

cali_f0_q

节点名字	cali_f0_q
功能描述	校准 f0,q
使用方法	校准 f0,q: cat cali_f0_q

cali_time

节点名字	cali_time
功能描述	查看校准时间
	设置校准延时时间
使用方法	查看校准时间:
	cat cali_time
	设置校准延时时间:
	echo 3000 > cali_time (单位为 ms)

re_range

节点名字	re_range
功能描述	查看校准 re 值范围
使用方法	查看校准 re 值范围: cat re_range

4.2 Kcontrol 控件

其中x代表设备号

aw_dev_x_switch

节点名字	aw_dev_x_switch
功能描述	PA 开关

使用方法	tinymix aw_dev_ x _switch Enable	第 x 个 PA 允许开启
	tinymix aw_dev_ x _switch Disable	第 x 个 PA 不允许开启

aw_dev_x_prof

节点名字	aw_dev_x_prof	
功能描述	模式切换(假设 bin 文件中配置了 Music 和 Receive 模式)	
使用方法	tinymix aw_dev_ x _prof Music 第 x 个 PA 切换到 Music 模式 tinymix aw_dev_ x _prof Receive 切换到 Receive 模式	

aw_dev_x_monitor_switch

节点名字	aw_dev_x_monitor_switch
功能描述	PA monitor 功能开关
使用方法	tinymix aw_dev_ x _switch Enable 第 x 个 PA 允许 monitor 开启 tinymix aw_dev_ x _switch Disable 第 x 个 PA 不允许 monitor 开启

aw883xx_fadein_us

节点名字	aw883xx_fadein_us	
功能描述	每个步进的淡入时间设置	
使用方法	tinymix aw883xx_fadein_us 500	将每个步进淡入时间间隔设置为 500us

aw883xx_fadeout_us

节点名字	aw883xx_fadeout_us	
功能描述	每个步进的淡出时间设置	
使用方法	tinymix aw883xx_fadeout_us 500	将每个步进淡出时间间隔设置为 500us

5. 附录

5.1 平台 I2C 总线动态变更

若平台 I2C 总线号会发生变更,I2C 总线号的动态变更会导致 dai_link 匹配失败,可通过修改设备树配置与 dai_link 配置解决。

5.1.1DTS 配置

驱动节点增加 rename-flag 属性,并配置属性值为 1。

单 PA 配置方法

```
/*x 表示对应的总线号*/
&i2c x {
        aw883xx smartpa 0: aw883xx smartpa@34 { /*以 I2C 地址 0x34 为例*/
            compatible = "awinic, aw883xx smartpa";
            \#sound-dai-cells = \langle 0 \rangle;
            reg = \langle 0x34 \rangle;
            reset-gpio = <&pio 89 0>;
                                           /*复位引脚配置,以 gpio 89 举例*/
                                           /*中断引脚配置,以 gpio 37 举例*/
            irq-gpio = \langle \&pio 37 0x0 \rangle;
            sound-channel = \langle 0 \rangle:
                                             /*校准 re 范围最小值(mohms)*/
            re-min = \langle 1000 \rangle;
                                             /*校准 re 范围最大值(mohms)*/
            re-max = (40000);
            rename-flag= <1>;
            status = "okay";
       /*re 为喇叭阻抗*/
```

多 PA 配置方法

```
/*x 表示对应的总线号*/
&i2c x {
         aw883xx smartpa 0: aw883xx@34 {
             compatible = "awinic, aw883xx";
             \#sound-dai-cells = \langle 0 \rangle:
             reg = \langle 0x34 \rangle;
             reset-gpio = \langle \text{\&pio } 89 \text{ } 0x0 \rangle;
             irq-gpio = \langle \&pio 37 0x0 \rangle;
             sound-channel = \langle 0 \rangle;
                                              /*第1个PA sound-channel 配置为 0*/
              re-min = \langle 1000 \rangle;
              re-max = \langle 40000 \rangle;
              rename-flag= <1>:
             status = "okay";
         };
         aw883xx smartpa 1: aw883xx@35 {
             compatible = "awinic, aw883xx";
             #sound-dai-cells = <0>:
             reg = (0x35);
             reset-gpio = \langle \text{\&pio } 17 \text{ } 0x0 \rangle;
             irq-gpio = \langle &pio 19 0x0 \rangle;
             sound-channel = <1>; /*第2个PA sound-channel 配置为1*/
              re-min = (1000);
              re-max = (40000);
              rename-flag= <1>;
```

```
status = "okay";
     }:
+};
/*以上为双 PA 举例,多 PA 时 sound-channel 序号依次递增。其他属性参考单 PA 说明*/
```

5.1.2 DAI LINK 配置

codec name 与 codec dai name 修改后缀为 sound-channel,不同平台的 dai link 配置区分如下。

4G 平台配置

1)添加 awinic codecs 数组。

单 PA 配置方法

```
struct snd soc dai link component awinic codecs[] = {
      .of node = NULL,
      .dai name = "aw883xx-aif-0",
                                    /*修改后缀为 dts 节点对应的 sound-channel */
      .name = "aw883xx smartpa 0",
   },
```

多 PA 配置方法

```
struct snd soc dai link component awinic codecs[] = {
      .of node = NULL,
       .dai name = "aw883xx-aif-0",
                                      /*修改后缀为 dts 节点对应的 sound-channel */
      .name = "aw883xx smartpa 0",
   },
      .of node = NULL,
                                     /*修改后缀为 dts 节点对应的 sound-channel */
      .dai name = "aw883xx-aif-1",
      .name = "aw883xx smartpa 1",
   },
};
/*以上以双 PA 配置举例,多 PA 时依次增加配置*/
```

2) 修改 DAI 接口

```
static struct snd soc dai link mt soc extspk dai[] = {
       .name = "Ext Speaker Multimedia",
       .stream name = MT SOC SPEAKER STREAM NAME,
       .cpu dai name = "snd-soc-dummy-dai",
       .platform name = "snd-soc-dummy",
   +#ifdef CONFIG SND SMARTPA AW883XX
      .num codecs = ARRAY SIZE(awinic codecs),
       .codecs = awinic codecs,
       .ops = &mt machine audio ops,
```

5G 平台配置

5G 平台不需要做额外修改;