

Introduction to Armbased System on Chip Design

Learning Outcomes

At the end of this module, you will be able to:

- Explain the motivations for the development of a System on Chip (SoC).
- Define what an SoC is and its characteristics.
- Outline the advantages and limitations of SoCs.
- Describe the main steps in an SoC design flow.
- Define what a Programmable SoC (PSoC) and its characteristics.

Why the SoC Design Concept Developed

- We are living in a post-PC era, with:
 - Smartphones and tablets
 - The Internet of Things, wearable computing, and cyber-physical systems
 - Industry 4.0
- The silicon transistor is still at the heart of this revolution.
- The primary metrics of silicon chips have changed: from clock-frequency to cost, formfactor, and power.
- On-chip integration of functional hardware is now more important than ever.
- How and why have we reached this point?

Moore's Law

Prediction of Moore's Law(*)

(*) Data are based on international semiconductor technology road map (http://www.itrs.net/)

Why Scaling?

The virtuous circle of the semiconductor industry

The Design Productivity Gap

Bridging the Design Productivity Gap

• Several strategies exist to reduce the design productivity gap exist, namely:

What Is an SoC?

- An SoC is an integrated circuit that packages basic computing components into a single chip.
- An SoC may have most or even all of the components to power a computer.

What Is Inside an SoC?

- The basic components of an SoC include:
 - A system Requester, such as a microprocessor or DSP
 - System peripherals, such as memory blocks, timers, and external digital/analog interfaces
 - A system bus that connects Requester and peripherals using a specific bus protocol
- More sophisticated s are integrated in modern SoCs, such as multicores, DSPs, GPUs, and multiple buses connected by bus bridges.

Example Arm-based SoC

Advantages of SoCs

Limitations of SoCs

SoC v Microcontroller v Processor

SoC

Can have a single or multiple processor cores

Has larger memory blocks, a variety of IOs, and other peripherals

Integrated with more powerful blocks, e.g., GPU, DSP

Capable of running OSs

Mainly used for advanced applications (e.g., smartphones, tablets).

CPU

Is a single processor core

Used for general purposes

It needs to be supported with memories and IOs

MCU

Typically has a single processor core

Has memory blocks, basic IOs, and other basic peripherals

Mainly used for basic control purposes, such as embedded applications

Commercialized SoCs

- Benefiting from its power efficiency, SoCs have been widely used in mobile devices, such as smartphones, tablets, and digital cameras.
- A number of SoCs have been developed by a large ecosystem of design companies:
 - Snapdragon by Qualcomm
 - Tegra by Nvidia
 - OMAP by Texas Instruments

Most mobile SoCs use Arm-based microprocessors since they deliver high performance with less power consumption.

SoC Example: NVIDIA Tegra 2

Designer NVIDIA

Year 2010

Processor Arm Cortex-A9

(dual-core)

Frequency Up to 1.2 GHz

Memory 1 GB 667 MHz LP-DDR2

Graphics ULP GeForce

Process 40 nm

Package $12 \times 12 \text{ mm}$ (Package on

Package)

Used in tablets Acer Iconia Tab A500

Asus Eee Pad Transformer

Motorola Xoom

Motorola Xoom Family Edition

Samsung Galaxy Tab 10.1

Toshiba Thrive

Programmable SoC

- SoCs can be prototyped and tested on FPGAs.
- Two options:
 - Use soft cores to embed a processor in the logic fabric (soft processor) and use device interconnect resources to implement a bus that communicates with other custom design blocks.
 - Use modern programmable SoCs (PSoCs; e.g., Xilinx Zynq), which include hard processors (e.g., Arm) connected to peripherals and to the logic fabric through a bus (e.g., AXI bus).
- PSoCs can overcome ASIC SoC limitations in some application areas by providing:
 - Flexibility for upgrading and functionality modification
 - Faster time-to-market for low to medium production volumes

Architecture of a PSoC

Example: Xilinx Zynq-7000

- Dual-core Arm Cortex-A9 processor
- On-chip memory
- Memory interfaces
- Integrated peripherals: timers, USB, UART, I2C, SPI
- AXI buses and AXI ports
- Programmable logic

Design a Simple Arm-based SoC

- Design Arm-based SoCs and prototype them onto a Zynq chip.
- The SoCs will consist of:
 - An Arm Cortex-A9 microprocessor
 - An AXI bus
 - Different customer-made physical IPs

