FCC ID. : TX4ES60A Page 34 of 34 Report No.: E147R-021

12. RADIO FREQUENCY EXPOSURE

12.1 RF Exposure Calculation

According to the FCC rule 1.1310 table 1B, the limit for the maximum permissible RF exposure for an uncontrolled environment are f/1500 mW/cm² for the frequency range between 300 MHz and 1 500 MHz and 1.0 mW/cm² for the frequency range between 1 500 MHz and 100 000 MHz.

The electric field generated for a 1 mW/cm² exposure is calculated as follows:

$$E = \sqrt{(30 * P * G)} / d$$
, and $S = E^2 / Z = E^2 / 377$, because 1 mW/cm² = 10 W/m²

Where

S = Power density in mW/cm², Z = Impedance of free space, 377 Ω

E = Electric filed strength in V/m, G = Numeric antenna gain, and d = distance in meter

Combing equations and rearranging the terms to express the distance as a function of the remaining variable

$$d = \sqrt{(30 * P * G) / (377 * 10 S)}$$

Changing to units of mW and cm, using P(mW) = P(W) / 1000, d(cm) = 0.01 * d(m)

$$d = 0.282 * \sqrt{(P * G) / S}$$

Where

d = distance in cm, P = Power in mW, G = Numeric antenna gain, and S = Power density in mW/cm²

12.2 Calculated MPE Safe Distance

According to above equation, the following result was obtained.

Operating Freq.	Peak Output Power		Antenna Gain		Safe	Power Density	**
Band	(4D)	(τ	T !	Distance	(mW/cm²)	Limit
(MHz)	(dBm)	(mW)	Log	Linear	(cm)	@ 20 cm Separation	(mW/cm²)
2 405 ~ 2 475	17.14	51.76	0.27	1.06	2.09	0.0109	1.00

$$D = 0.282 * \sqrt{(51.76 * 1.06)/1.00} = 2.09 \text{ cm}.$$

For getting power density at 20 cm separation in above table, following formula was used.

$$S = P * G / (4\pi * R^2) = 51.76 * 1.06 / (4 * 3.14 * 20^2) = 0.0109$$

Where:

S = Power Density,

P = Power input to the external antenna (Output power from the EUT antenna port (dBm) – cable loss (dB)),

G = Gain of Transmit Antenna (linear gain), R = Distance from Transmitting Antenna