Author: Olivier Jean Blanchard and Charles M. Kahn

Year: 1980

Name: The Solution of Linear Difference Models under Rational Expectations **Journal:** Econometrica , Jul., 1980, Vol. 48, No. 5 (Jul., 1980), pp. 1305-1311

Fernández-Villaverde, Rubio-Ramírez, Schorfheide (2016) Handbook of Macroeconomics

Х

The Model

The model is given by

The structural model.

$$\begin{bmatrix} X_{t+1} \\ P_{t+1}^{(t)} \end{bmatrix} = A \begin{bmatrix} X_t \\ P_t \end{bmatrix} + \gamma Z_t \tag{1.a}$$

 X_t : is an n imes 1 vector of variables predetermined at t

 P_t : is an m imes 1 vector of variables non-predetermined at t

 Z_t : is an m imes 1 vector of exogenous variables at t

Linear Rational Expectation

$$P_{t+1}^{(t)} = \mathbb{E}_t P_{t+1} | \Omega_t \tag{1.b}$$

 Ω_t : the information set at time t

$$\forall t, \exists \overline{Z}_t \in \mathbb{R}^k, \; \theta \in \mathbb{R}$$

such that

$$-(1+i)^{\theta_t}\overline{Z}_t \le E(Z_{t+i}|\Omega_t) \le (1+i)^{\theta_t}\overline{Z}_t \tag{1.c}$$

Predetermined or backward looking variables

• Functions only of variables known at time t time t, that is of variables in Ω_t . i.e.,

$$X_{t+1} = \mathbb{E}_t X_{t+1} | \Omega_t \quad ext{ or } \quad X_{t+1} = f(X_t) + \epsilon$$

• Forward iteration:

$$X_{t+1} = f^{(t)} \circ X_0 + \sum_{i=1}^t f^{(i)} \circ \epsilon_{t-i}$$

Forward looking variables | Non-predetermined variables

• Variables following such formula

$$\mathbb{E}_t P_{t+1} = g(P_t) + \epsilon_t$$

Forward iteration:

$$P_t = (g^{-1})^{(n)} \circ \mathbb{E}_t P_{t+n} - \sum_{i=0}^{n-1} (g^{-1})^{(i+1)} \circ \mathbb{E}_t \epsilon_{t+i}$$

Solution

BK Condition

Perspective of Jordan Canonical Form

b Simplify the notations:

$$Y_{t+1} = AY_t + \gamma Z_t$$

 $\downarrow \downarrow$

Mathematical Projection Description:

$$A = C^{-1}JC$$

 \downarrow

6 Ordering by magnitudes of eigenvalues

$$J = egin{bmatrix} J_{1(ilde{n} imes ilde{n})} & 0 \ 0 & J_{2(ilde{m} imes ilde{m})} \end{bmatrix} \quad C = egin{bmatrix} C_{11(ilde{n} imes n)} & C_{12(ilde{n} imes m)} \ C_{21(ilde{m} imes n)} & C_{22(ilde{m} imes m)} \end{bmatrix}$$

$$C^{-1} = egin{bmatrix} B_{11\,(n imes ilde{n})} & B_{12\,(m imes ilde{m})} \ B_{21\,(n imes ilde{m})} & B_{22\,(m imes ilde{m})} \end{bmatrix} \quad \gamma = egin{bmatrix} \gamma_{1\,(ilde{n} imes k)} \ \gamma_{2\,(ilde{m} imes k)} \end{bmatrix}$$

 J_1 : all eigenvalues are on or inside the unit circle

 J_2 : all eigenvalues are outside the unit circle

શ

Blanchard-Kahn Condition:

 \circ if the number of eigenvalues of A outside the unit circle is equal to the number of non-predetermined variables $\tilde{m}=m$, then there exists a unique solution

- ullet if the number of eigenvalues outside the unit circle exceeds the number of non-predetermined variables $ilde{m}>m$, then there exists a no solution
- ullet if the number of eigenvalues outside the unit circle is lower than the number of non-predetermined variables $ilde{m} < m$, then there exists a infinite solution

Perspective of Schur Decomposition

See Klein (2000)