NFA-to-DFA conversion

Slides from

http://web.cecs.pdx.edu/~harry/compilers/slides/LexicalPart3.pdf

Two ways to deal with an NFA

Convert the NFA to an equivalent DFA first

Use the NFA directly

Converting an NFA to a DFA

• Input: an NFA

• Output: a DFA, which is equivalent

• Idea: Each state in the DFA corresponds to a set of NFA states

Move_{DF.} a
$$= \text{£-Closure (Move}_{NFA}(A,a))$$

$$= \text{£-Closure ({3,8})}$$

$$= \{1,2,3,4,6,7,8\}$$

Move_{DFA}(A,b)
=
$$\epsilon$$
-Closure (Move_{NFA}(A,b))
= ϵ - Closure ({5})
{1,2,4,5,6,7} =

A is now done; mark it! B and C are unmarked. Let's do B next...


```
Move<sub>DFA</sub>(B,a)

= \epsilon-Closure (Move<sub>NF</sub> (B,a))

= \epsilon-Closure ({3,8})

1,2,3,4,6, = B
```

Move_{DFA}(B,b)
= £ · Closure (Mo e_ (B,b))
= £ · Closure (
$$\{5.9\}$$

= $\{1,2,4,5,6,7,9\}$ = D

Move_{DFA}(
$$C$$
,a) = {1,2,3,4,6,7,8}
Move_{FA}(C ,b) = {1,2,4,5,6,7} =

Process E
$$2,4,5,6,7,10$$
}

Move_{DFA}(E,a) = $\{1,2,3,4,6,7,8\}$ =

Move_{DFA}(E,b) $\frac{1}{2},4,5,6,7\}$ =

Algorithm: Convert NFA to DFA

```
5nFA = \{\}
Add \pounds-Clos e(s) to SOFA as the start state
Se the nlys ate in FA 0
                               n:marke n
hile Gii-0 FA c n to 1.ns unmar
                               state ....Q.
 Let T bet at -u .-rke d sta
                                     A <u>set of.</u>⋅ F
                                               stat
  ar
  <u>for ea ...</u> a ... 0
                                        Everywhere ou could
    S = E-C os re( e (T, a))
                                        possibly t to 011 an
   if S is not 'n SDFA alrea y then
    Add S to 5nFA (as an nmar e " sate)
    end.If
   Set MovenFA (T,a) to S.
                                  endFor
endWhile
_:__fanys ES is a fi al sta e i e
                                           en
   Mark S an a finals ate i e DFA
 e dlf
end.For
```

Use NFA directly

• Your code will keep track of "current search states". Once you reach the end of the input symbol sequence, check one of the current search states is a final state.

Note that you do not need to enumerate all possible paths explicitly.
 You just need to keep track of multiple current search states.

• The method is explained in Section 2.2.5 in Jurasfsky & Martin (2nd edition).