Solving systems of equations through quantum computing

Sara Galatro

Master 's Thesis in Computational Sciences

Department of Mathematics and Physics

Introduction

- Quantum computing promises to become a powerful tool for solving classically expensive problems, but the current devices have limited capacity and service due to noise and decoherence.
- Two approaches, however, seem to help bridge this computational gap -Variational Quantum Algorithms and Quantum Annealing.
- We test both these methods to solve systems of multivariate equations.
- Results show that a synergy between quantum and classical algorithms is required to achieve interesting results.

Contents

- Quantum mechanics
- Gate-Model Computing
- Quantum Annealing
- Experiments:
 - Variational Quantum Linear Solver (VQLS)
 - Quantum Approximate Optimization Algorithm (QAOA)
 - o MQ with Quantum Annealing
- Conclusions and future work

Quantum Mechanics: Dirac Notation

- We assume to be working in a **complex vector** space \mathbb{C}^N .
- A ket $|\psi\rangle$ is a column vector and a bra $\langle\psi|$ is the associated row vector:

$$|\psi
angle^{\dagger} = egin{bmatrix} \psi_1 \ dots \ \psi_N \end{bmatrix}^{\dagger} \equiv \left[\psi_1^*, ..., \psi_N^*
ight] = \langle \psi |$$

• Suppose we have two complex vector spaces, V and W. The **tensor product** of two kets from these spaces, say $|\psi\rangle \in V$ and $|\varphi\rangle \in W$, is a ket in $V \otimes W$ and it can be written using various notations:

$$|\psi\rangle \otimes |\varphi\rangle \qquad |\psi\rangle|\varphi\rangle \qquad |\psi\phi\rangle$$

First Postulate

Associated to any isolated quantum system is a complex Hilbert space known as the **state space** of the system. The system is completely described by its **state vector**, a *unit* vector in its state space.

- The qubit is the information unit of quantum information and quantum computing, and it is associated with a two-dimensional Hilbert space.
- The most used base to describe a qubit is the computational basis, defined as:

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

• An arbitrary state $|\psi\rangle$ can be written as a **superposition** of basis states:

$$|\psi\rangle=\alpha_0|0\rangle+\alpha_1|1\rangle$$
 where $\alpha_0,\alpha_1\in\mathbb{C}$ are such that
$$|\alpha_0|^2+|\alpha_1|^2=1$$

First Postulate

Associated to any isolated quantum system is a complex Hilbert space known as the **state space** of the system. The system is completely described by its **state vector**, a *unit* vector in its state space.

Second Postulate

The evolution of a closed quantum system is described by a **unitary operator** that only depends on the times t_1, t_2 :

$$|\psi(t_2)\rangle = \mathbf{U}|\psi(t_1)\rangle$$

• Examples:

$$\sigma^{x} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \sigma^{y} = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$
$$\sigma^{z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad \mathbf{H} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

 An alternative statement can be given using continuous time and the Schrödinger equation:

$$i\hbar \frac{d|\psi\rangle}{dt} = \mathcal{H}|\psi\rangle$$

Third Postulate

Quantum **measurements** are described by a collection $\{M_m\}$ of measurement operators, which act on the state space of the system being measured. After the measurement, the system collapses to the measured classical state.

• We can measure a state

$$|\psi\rangle = \alpha_0|0\rangle + \alpha_1|1\rangle$$

with respect to the computational basis using the **projectors** $|0\rangle\langle 0|$ and $|1\rangle\langle 1|$, obtaining the corresponding outputs with probability $|\alpha_0|^2$ and $|\alpha_1|^2$ respectively.

 We can measure with respect to a quantum observable M using its spectral decomposition

$$\mathbf{M} = \sum_{\lambda} \lambda \mathbf{P}_{\lambda}$$

Hence $\mathbb{E}[\mathbf{M}] \equiv \langle \mathbf{M} \rangle = \langle \psi | \mathbf{M} | \psi \rangle$, for any $|\psi\rangle$.

Third Postulate

Quantum **measurements** are described by a collection $\{M_m\}$ of measurement operators, which act on the state space of the system being measured. After the measurement, the system collapses to the measured classical state.

Fourth Postulate

The state space of a **composite physical system** is the tensor product of the state spaces of the component physical systems. Moreover, if we have systems numbered 1 through n, and system number i is prepared in the state $|\psi\rangle$, then the joint state of the total system is

$$|\psi_1\rangle \otimes |\psi_2\rangle \otimes \cdots \otimes |\psi_n\rangle$$

 If unitary operators act independently on different subsystem, we can write the overall operator as

$$\mathbf{U} = \mathbf{U}_1 \otimes \cdots \otimes \mathbf{U}_k$$

 It is useful to define controlled operations, a core term in quantum computation:

$$|0\rangle\langle 0| \otimes \mathbb{I}_T + |1\rangle\langle 1| \otimes \mathbf{U}_{\mathrm{T}} = \begin{bmatrix} \mathbb{I}_T & 0 \\ 0 & \mathbf{U}_{\mathrm{T}} \end{bmatrix}$$

Quantum Circuits

- Quantum circuits are a universal quantum model used to devise and analyze quantum algorithms.
- Quantum analogue of logical circuits, they are defined starting from **registers**, both quantum and classical.

Transpiling Process

- Each Quantum Processor Unit (QPU) has a distinctive topology and native set of universal gates.
- If not native, every unitary operator must be simulated.
- Even if all gates are native to the QPU, a circuit must still be **embedded** in the QPU's layout.
- The combination of all these processes is called Transpilation.
- Transpiling a circuit may cause an increase in size and depth, making it unfeasible.

|Input: $heta^{(0)}$ $|0\rangle$ $|0\rangle$ $\langle \psi | \mathcal{H} | \psi \rangle \approx \lambda_0$ **↓CPU** Classical Output: $|\psi_{\rm opt}\rangle$

- VQAs use a classical optimizer to minimize a cost function by training a parameterized quantum circuit.
- The cost function is defined as

$$\min_{\boldsymbol{\theta}} C(\boldsymbol{\theta}) = \min_{\boldsymbol{\theta}} \langle \psi(\boldsymbol{\theta}) | \mathcal{H} | \psi(\boldsymbol{\theta}) \rangle \ge \lambda_0$$

- Any VQA can be decomposed in five submodules:
 - 1) Initialization
 - 2) Parameterized circuit
 - 3) Cost evaluation
 - 4) Classical optimizer
 - 5) Adjust ansatz parameters and re-run

Input: $\theta^{(0)}$ Ansatz Circuit Observable $V(\theta)$ $\langle \psi | \mathcal{H} | \psi \rangle \approx \lambda_0$ **↓CPU** Classical Output: $|\psi_{\rm opt}\rangle$

- VQAs use a classical optimizer to minimize a cost function by training a parameterized quantum circuit.
- The cost function is defined as

$$\min_{\boldsymbol{\theta}} C(\boldsymbol{\theta}) = \min_{\boldsymbol{\theta}} \langle \psi(\boldsymbol{\theta}) | \mathcal{H} | \psi(\boldsymbol{\theta}) \rangle \ge \lambda_0$$

- Any VQA can be decomposed in five submodules:
 - 1) Initialization
 - 2) Parameterized circuit
 - 3) Cost evaluation
 - 4) Classical optimizer
 - 5) Adjust ansatz parameters and re-run

Input: $\theta^{(0)}$ Quantum Circuit Observable H $\langle \psi | \mathcal{H} | \psi \rangle \approx \lambda_0$ **↓CPU** Classical Output: $|\psi_{\rm opt}\rangle$

- VQAs use a classical optimizer to minimize a cost function by training a parameterized quantum circuit.
- The cost function is defined as

$$\min_{\boldsymbol{\theta}} C(\boldsymbol{\theta}) = \min_{\boldsymbol{\theta}} \langle \psi(\boldsymbol{\theta}) | \mathcal{H} | \psi(\boldsymbol{\theta}) \rangle \ge \lambda_0$$

- Any VQA can be decomposed in five submodules:
 - 1) Initialization
 - 2) Parameterized circuit
 - 3) Cost evaluation
 - 4) Classical optimizer
 - 5) Adjust ansatz parameters and re-run

- VQAs use a classical optimizer to minimize a cost function by training a parameterized quantum circuit.
- The cost function is defined as

$$\min_{\boldsymbol{\theta}} C(\boldsymbol{\theta}) = \min_{\boldsymbol{\theta}} \langle \psi(\boldsymbol{\theta}) | \mathcal{H} | \psi(\boldsymbol{\theta}) \rangle \ge \lambda_0$$

- Any VQA can be decomposed in five submodules:
 - 1) Initialization
 - 2) Parameterized circuit
 - 3) Cost evaluation
 - 4) Classical optimizer
 - 5) Adjust ansatz parameters and re-run

|Input: $\theta^{(0)}$ Ansatz Adjust parameters: $\theta = \theta^{(t+1)}$ \mathbf{yes} $\langle \psi | \mathcal{H} | \psi \rangle \approx \lambda_0$ **↓ QPU ↓CPU** Ansatz Classical Circuit $V(\theta_{opt})$ $|0\rangle$ Output: $|\psi_{ m opt} angle$

- VQAs use a classical optimizer to minimize a cost function by training a parameterized quantum circuit.
- The cost function is defined as

$$\min_{\boldsymbol{\theta}} C(\boldsymbol{\theta}) = \min_{\boldsymbol{\theta}} \langle \psi(\boldsymbol{\theta}) | \mathcal{H} | \psi(\boldsymbol{\theta}) \rangle \ge \lambda_0$$

- Any VQA can be decomposed in five submodules:
 - 1) Initialization
 - 2) Parameterized circuit
 - 3) Cost evaluation
 - 4) Classical optimizer
 - 5) Adjust ansatz parameters (and re-run)

Quantum Tunneling

- Simulated annealing (SA) is a classical heuristic to explore the landscape of a cost function, searching for the global minimum. It uses a temperature parameter to move stochastically in the landscape.
- If the landscape has wells too deep, the SA may **get stuck** in a local minimum.
- Using **quantum tunnelling**, it is possible to define a quantum version of the SA to have a positive probability to escape local minima regardless of the barrier height.

Quantum Annealing

- The idea is to introduce artificial **quantum fluctuations** $\Gamma(t)\mathcal{H}_{kin}$ regulated through the parameter $\Gamma(t)$, that is slowly decreases in time.
- The **total Hamiltonian** of the system is

$$\mathcal{H} = \mathcal{H}_P + \Gamma(t)\mathcal{H}_{kin}$$

• If we initialize our system in the ground state of \mathcal{H}_{kin} , the **adiabatic theorem** guarantees the system will end in the ground state of \mathcal{H}_{P} .

Minor Embedding

- Given a problem Hamiltonian \mathcal{H}_P , the input to the QPU will be its associated **graph**.
- The input graph is then embedded into the QPU through a **minor embedding**.
- Since real hardware has a limited connectivity, representing one logical qubit may require multiple physical qubits. These groups of qubits are called **chains**.
- Chains must be kept intact during the annealing procedure. This is achieved by tuning an hyperparameter called chain strength.

Variational Quantum Linear Solver (VQLS)

• Suppose we want to solve a **real-valued linear system** of the form

$$\mathbf{A}\mathbf{x} = \mathbf{b} \Leftrightarrow \mathbf{A}|x\rangle = |b\rangle$$

where we assume $\bf A$ can be written as a linear combination of unitary operators:

$$\mathbf{A} = \sum_{l=0}^{L} c_l A_l$$

• The goal of the algorithm is to find an optimal set of parameters $m{ heta}_{opt}$ such that

$$\mathbf{A}|x_{opt}\rangle \equiv \mathbf{A}|x(\boldsymbol{\theta}_{opt})\rangle \propto |b\rangle$$

• In our experiments, we used the system defined by

$$\mathbf{A} = 0.55\mathbb{I} + 0.225\mathbf{Z}_2 + 0.225\mathbf{Z}_1 \qquad |b\rangle = \mathbf{H}^{\otimes 3}|0\rangle$$

VOLS

• We use a Hardware Efficient Ansatz paired with a default reference state.

• As four our parameters θ , we test four different initialization techniques:

	Zero Vector	Uniform Vector	Normal Distribution	Random Vector
$oldsymbol{ heta}^{(0)}$	$\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$	$\begin{pmatrix} 1/N \\ \vdots \\ 1/N \end{pmatrix}$	Obtained through np.random.normal(0,1)	Obtained through np.random.rand()

Global cost

 We can define a global cost by measuring the orthogonality of our estimate, i.e.

$$\hat{C}_G = \langle x | \mathcal{H}_G | x \rangle$$

where

$$\mathcal{H}_G = \mathbf{A}^{\dagger} (\mathbb{I} - |b\rangle\langle \mathbf{b}|) \mathbf{A}$$

• A **normalized** version is needed:

$$C_G = \frac{\langle x | \mathcal{H}_G | x \rangle}{\langle \psi | \psi \rangle} = 1 - \frac{|\langle b | \psi \rangle|^2}{\langle \psi | \psi \rangle}$$

- To estimate the cost function, we used a quantum subroutine called Hadamard test.
- Using this test, we can estimate any real operator ${f U}$ as

$$Re(\langle \psi | \mathbf{U} | \psi \rangle) = 1 - 2p_1$$

• To use Hadamard tests, we decompose the terms we need to estimate:

$$\langle \psi | \psi \rangle = \sum_{ij} c_i c_j^* \langle 0 | \mathbf{V}^{\dagger} \mathbf{A}_j^{\dagger} \mathbf{A}_i \mathbf{V} | 0 \rangle = \sum_{ij} c_i c_j^* \beta_{ij}$$

$$|\langle b|\psi\rangle|^2 = \sum_{ij} c_i c_j^* \langle 0|\mathbf{U}_b^{\dagger} \mathbf{A}_i \mathbf{V}|0\rangle \langle 0|\mathbf{V}^{\dagger} \mathbf{A}_j^{\dagger} \mathbf{U}_b|0\rangle = \sum_{ij} c_i c_j^* \gamma_{ij}$$

Local cost

• To avoid **trainability issues**, we can define a local version of \hat{C}_G :

$$\hat{C}_L = \langle x | \mathcal{H}_L | x \rangle$$

where

$$\mathcal{H}_L = \mathbf{A}^{\dagger} \mathbf{U}_b \left(1 - \frac{1}{n} \sum_{k=1}^n |0_k\rangle \langle 0_k| \otimes \mathbb{I}_{\bar{k}} \right) \mathbf{U}_b^{\dagger} \mathbf{A}$$

• Once again, we **normalize** the cost function:

$$C_L = \frac{\langle x | \mathcal{H}_L | x \rangle}{\langle \psi | \psi \rangle}$$

Using the linearity of the expected value and the fact that

$$|0_k\rangle\langle 0_k| = \frac{\mathbb{I}_k + \mathbf{Z}_k}{2}$$

we can expand $\langle x|\mathcal{H}_L|x\rangle$ and rewrite \mathcal{C}_L as

$$C_{L} = \frac{\langle x | \mathcal{H}_{L} | x \rangle}{\langle \psi | \psi \rangle} =$$

$$= \frac{1}{2} - \frac{1}{2n\langle \psi | \psi \rangle} \sum_{k=1}^{n} \sum_{ij} c_{i} c_{j}^{*} \delta_{ij}^{(k)}$$

where

$$\boldsymbol{\delta}_{ij}^{(k)} = \langle 0|V^{\dagger}A_{j}^{\dagger}U_{b}(Z_{k}\otimes \mathbb{I}_{\overline{k}})U_{b}^{\dagger}A_{i}V|0\rangle$$

Local cost

• To avoid **trainability issues**, we can define a local version of \hat{C}_G :

$$\hat{C}_L = \langle x | \mathcal{H}_L | x \rangle$$

where

$$\mathcal{H}_L = \mathbf{A}^{\dagger} \mathbf{U}_b \left(1 - \frac{1}{n} \sum_{k=1}^{n} |0_k\rangle \langle 0_k| \otimes \mathbb{I}_{\bar{k}} \right) \mathbf{U}_b^{\dagger} \mathbf{A}$$

• Once again, we **normalize** the cost function:

$$C_L = \frac{\langle x | \mathcal{H}_L | x \rangle}{\langle \psi | \psi \rangle}$$

The results for both cost functions in the **ideal simulations** are reported in the following table:

Initialization	ζ_{global}	ζ _{local}
Zero vector	0.7486162	0.78634465
Uniform vector	0.7765784	0.7876895
Normal Distribution	0.7145117	0.8834687
Random vector	0.7466224	0.9157983

As for the **noisy simulation**:

Initialization	ζ_{global}	ζ_{local}
Random vector	0.6392252	0.8224284

MQ Boolean Problems

- Another interesting class of systems of equations is the one of Multivariate Quadratic (MQ) Boolean equations.
- The input to a MQ problem consists of m quadratic polynomials $p_1(\mathbf{x}), ..., p_m(\mathbf{x})$ in n variables $\mathbf{x} = (x_1, ..., x_n)$ and coefficients in the binary field \mathbb{F}_2 .
- We want to find a vector **s** such that $p_i(\mathbf{s}) = 0$ for all i = 1, ..., m.
- A **direct approach** to encode the problem in a cost function is to penalize with positive energy each equation that is not satisfied:

$$\mathcal{H}_P = \sum_{i=1}^m p_i(\mathbf{x})$$

Direct Encoding

• A **direct approach** to encode the problem in a cost function is to penalize with positive energy each equation that is not satisfied:

$$\mathcal{H}_P = \sum_{i=1}^m p_i(\mathbf{x})$$

• The polynomials $p_i(\mathbf{x})$ must be **converted** from the given ANF to the relative NNF by applying the substitution

$$(x_i + x_j) \mapsto x_i + x_j - 2x_i x_j$$

- This conversion, though, generates **multi-qubit interactions** of degree > 2, which cannot be executed on quantum hardware.
- The cost is then reduced to a two-body Hamiltonian by using **ancillary variables** and a penalization term that includes those ancillae.

QAOA

- The Quantum Approximate Optimization Algorithm (QAOA) is a variational algorithm that uses a specific ansatz (also named QAOA).
- The QAOAnsatz is inspired by an **approximated adiabatic transformation**, where the order p of the approximation determines the precision of the solution.
- The ansatz is defined as

$$\mathbf{V}(\mathbf{\gamma}, \mathbf{\beta}) = \prod_{l=1}^{p} e^{-i\beta_l \mathcal{H}_M} e^{-i\gamma_l \mathcal{H}_P}$$

where \mathcal{H}_P is the problem Hamiltonian and \mathcal{H}_M is the mixing Hamiltonian.

We use QAOAlgorithm to solve an MQ instance with five variables (henceforth, MQ5).

IDEAL

probability: 0.013212

NOISY

probability: 0.00293

MQ5 through Quantum Annealing

- We start the tests on quantum annealing solving the same MQ5 instance used in the QAOA experiment.
- All the experiments run on two different topologies: Pegasus and Zephyr.

MQ9 and the Iterative Method

- Increasing the number of variables may negatively impact the search for the ground state.
- We can use an iterative routine that fixes ancillae based on the most common sampled value:
 - 1) At every iteration, the algorithm checks the first k samples, ordered in ascending order based on the **associated energy value**.
 - 2) If an ancilla has the same value in all these k samples, then said ancilla is substituted by the sampled value.
 - 3) Repeat until convergence or until the stopping criteria is met.
- We use this method to solve an MQ instance with **nine variables**, encoded using the **direct approach**.

Conclusions and Future Work

VQLS → **Fast-and-Slow Algorithm**

- The algorithm requires multiple runs to achieve an acceptable accuracy level.
- It may be useful to test a different initialization technique to not get stuck in a local minima.

QAOA \rightarrow **Grover Adaptive Search + more noisy simulations**

- The main limitation of this approach is the size of the problem and the depth of the circuit.
- Further analysis and tests on noisy runs to see if a pattern can be inferred.

Quantum Annealing \rightarrow **MinRank Problem + more BQMs analysis**

- Most performant quantum computing paradigm.
- Though with some preprocessing, it could be used to develop an algebraic attack.

General → **Metalearning**

• Run a statistical analysis on different BQMs associated to the same problem.

Main References

- [NC10] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Cambridge university press, 2010
- [Sip96] Michael Sipser. "Introduction to the Theory of Computation". In: ACM Sigact News 27.1 (1996), pp. 27-29.
- [IBMd] IBM Quantum. IBM Quantum Learning Variational algorithm design. Last accessed February 14, 2024. url: https://learning.quantum.ibm.com/course/variational-algorithm-design.
- [Bra+23] Carlos Bravo-Prieto et al. "Variational quantum linear solver". In: Quantum 7 (2023), p. 1188.
- [FGG14] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. "A quantum approximate optimization algorithm". In: arXiv preprint arXiv:1411.4028 (2014).
- [KN98] Tadashi Kadowaki and Hidetoshi Nishimori. "Quantum annealing in the transverse Ising model". In: Physical Review E 58.5 (1998), p. 5355.
- [Ram+22] Sergi Ramos-Calderer et al. "Solving systems of Boolean multivariate equations with quantum annealing". In: Physical Review Research 4.1 (2022), p. 013096.

