CWRU DSCI351-351M-453: Week10b w10b-p-LinRegr

Roger H. French, JiQi Liu 01 November, 2018

Contents

10.2.1.1 Underst	anding simple linear regression	1
10.2.1.1.1	Build and use our own simple linear regression algorithm	1
10.2.1.2 Let's ex	amine this with an example of the iris dataset	1
10.2.1.2.1	Computing the intercept and slope coefficient	2
10.2.1.2.2	Now make your linear regression function	2
10.2.1.2.3	Now perform regression on Petal Length and Petal Width	3
10.2.1.2.4	Obtaining the residuals	3
10.2.1.3 Comput	ing the significance of the coefficients	4
10.2.1.4 Links .		5

10.2.1.1 Understanding simple linear regression

10.2.1.1.1 Build and use our own simple linear regression algorithm

- Create multiple linear regression models in R
- Perform diagnostic tests of such models
- Score new data using a linear regression model
- Examine how well the model predicts the new data

Regression seeks to obtain the model coefficients

- that explain the variable's relationship the best
- but such a model only seldom reflects the relationship entirely

Indeed, measurement error,

- And also attributes that are not included in the analysis
- affect also the data.

The model residuals

- express the deviation of the observed data points
- to the model.

The residual's value

- is the vertical distance from a point
- to the regression line.

10.2.1.2 Let's examine this with an example of the iris dataset.

We have already seen that the dataset contains data about iris flowers.

For the purpose of this example,

- we will consider the petal length as the response
 - sometimes the response is referred to as the "criterion"
- and the petal width as the predictor

```
plot(iris$Petal.Length ~ iris$Petal.Width,
    main = "Relationship between petal length and petal width",
    xlab = "Petal width", ylab = "Petal length")
iris.lm = lm(iris$Petal.Length ~ iris$Petal.Width)
abline(iris.lm)
```

Relationship between petal length and petal width

10.2.1.2.1 Computing the intercept and slope coefficient

```
SlopeCoef = cor(iris$Petal.Length,iris$Petal.Width) *
    (sd(iris$Petal.Length) / sd(iris$Petal.Width))
SlopeCoef

## [1] 2.22994

coeffs = function(y,x) {
    ((length(y) * sum( y*x)) -
        (sum( y) * sum(x)) ) /
    (length(y) * sum(x^2) - sum(x)^2)
}
```

[1] 2.22994

10.2.1.2.2 Now make your linear regression function

coeffs(iris\$Petal.Length, iris\$Petal.Width)

```
iris.lm
##
## Call:
```

```
## lm(formula = iris$Petal.Length ~ iris$Petal.Width)
##
## Coefficients:
## (Intercept) iris$Petal.Width
## 1.084 2.230

regress = function(y,x) {
    slope = coeffs(y,x)
    intercept = mean(y) - (slope * mean(x))
    model = c(intercept, slope)
    names(model) = c("intercept", "slope")
    model
}
```

10.2.1.2.3 Now perform regression on Petal Length and Petal Width

```
model = regress(iris$Petal.Length, iris$Petal.Width)
model

## intercept slope
## 1.083558 2.229940
```

10.2.1.2.4 Obtaining the residuals

```
resids = function(y,x, model) {
   y - model[1] - (model[2] * x)
}

Residuals = resids(iris$Petal.Length, iris$Petal.Width, model)

head(round(Residuals,2))

## [1] -0.13 -0.13 -0.23 -0.03 -0.13 -0.28
```

```
## [1] -0.13 -0.13 -0.23 -0.03 -0.13 -0.28

par(mfrow = c(2, 2))
plot(iris.lm)
```


10.2.1.3 Computing the significance of the coefficients

This is also the uncertainty

• in your regression coefficients

```
Significance = function(y, x, model) {
  SSE = sum(resids(y,x,model)^2)
  DF = length(y) - 2
  S = sqrt( SSE / DF)
  SEslope = S / sqrt(sum((x - mean(x))^2))
  tslope = model[2] / SEslope
  sigslope = 2*(1 - pt(abs(tslope),DF))
  SEintercept = S * sqrt((1/length(y) + mean(x)^2 / sum((x - mean(x))^2)))
  tintercept = model[1] / SEintercept
  sigintercept = 2*(1 - pt(abs(tintercept),DF))
  RES = c(SEslope, tslope, sigslope, SEintercept, tintercept, sigintercept)
  names(RES) = c("SE slope", "T slope", "sig slope", "SE intercept",
                 "t intercept", "sig intercept")
  RES
round(Significance(iris$Petal.Length,iris$Petal.Width, model), 3)
##
        SE slope
                       T slope
                                   sig slope
                                              SE intercept
                                                              t intercept
                                       0.000
##
           0.051
                        43.387
                                                      0.073
                                                                   14.850
## sig intercept
           0.000
##
```

summary(iris.lm)

```
##
## Call:
## lm(formula = iris$Petal.Length ~ iris$Petal.Width)
## Residuals:
##
       Min
                     Median
                                    ЗQ
                                            Max
                 1Q
## -1.33542 -0.30347 -0.02955 0.25776 1.39453
##
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    1.08356
                               0.07297
                                          14.85
                                                 <2e-16 ***
## iris$Petal.Width 2.22994
                                0.05140
                                         43.39
                                                  <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
\mbox{\tt \#\#} Residual standard error: 0.4782 on 148 degrees of freedom
## Multiple R-squared: 0.9271, Adjusted R-squared: 0.9266
## F-statistic: 1882 on 1 and 148 DF, p-value: < 2.2e-16
```

10.2.1.4 Links

Learning Predictive Analytics with R, Eric Mayor, Packtpub 2015