

மொறட்டுவைப் பல்கலைக்கழக வொறியியற் பீட தமிழ் மாணவர்கள் நடாத்தும் க.வொ.த உயர்தர மாணவர்களுக்கான 9^{வது}

முன்னோடிப் படிட்சை – 2018

02 - இரசாயனவியல் விடைகள்

(தமிழ் மொழி மூலமானது)

Dias BSc (Hons) Spl in Chem

New Science World SCIENCE WORLD Brown road, Jaffna.

Mora E-Tamils 2020 | Examination Committee

வொறட்டுவை பல்கலைக்கழக வொறியியற் பீட தமிழ் மாணவர்கள் நடாத்தும் க.வா.த உயர்தர மாணவர்களுக்கான 9^{்ஞ} முன்னோடிப் பரீட்சை – 2018

யாடஎண் } 02

un_i } 🗞 ស្រកាយថាជាលាំ

வீனா இல.	ബ്ത L കൂരം	வீனா இல.	ഖ്ത ഥ இ லം	வ்னா இல.	ഖ്ത∟ ⊛ ல∙	ഖ് ത്ന ഏலം	ഖ്ത∟ ഏல.	മ്മ്മ്പ കൂരം	ഖ്ത∟ ⊛ ல∙
01)	3	11)	1	21)	3	31)	5	41)	3
02)	2	12)	5	22)	1	32)	3	42)	5
03)	5	13)	3	23)	2	33)	2	43)	4
04)	1	14)	2	24)	5	34)	2	44)	3
05)	2	15)	2	25)	3	35)	4	45)	2
06)	5	16)	3	26)	2	36)	4	46)	1
07)	4	17)	4	27)	1	37)	2	47)	2
08)	3	18)	3	28)	4	38)	1	48)	. 1/4
09)	1	19)	2	29)	3	39)	5	49)	1
10)	4	20)	5	30)	1	40)	5	50)	4

OI

ប្រាំតា៍ ស្នីគ្នារំ 50

வைத்தப் புள்ளகள் $1 \times 50 = 50$

பகுதி A – அமைப்புக் கட்டுரை

நான்கு வினாக்களுக்கும் விடை எழுதுக. (ஒவ்வொரு வினாவிற்கும் **10** புள்ளிகள் வழங்கப்படும்) இந்நிரலில் எதனையும் எழுதுதல் அகாகு.

- 01.(a) பின்வருவனவற்றை அடைப்புக்குறிக்குள் குறிப்பிட்ட இயல்புகள் அதிகரிக்கும் வரிசையில் ஒழுங்குபடுத்துக.
 - i. C, Li, Si (இலத்திரன் நாட்டம்)

Li < C < Si

ii. N₂H₄, NaNH₂,NH₂OH (N – அணுவின் ஒட்சியேற்ற நிலை)

 $NaNH_2$ \leq N_2H_4 \leq NH_2OH

iii. Li⁺, Cl⁻, Al³⁺ (நீரேற்றல் சக்தி)

Cl⁻ < Li⁺ < Al³⁺

iv. KHCO₃,NaHCO₃, Mg(HCO₃)₂ (பிரிகை வெப்பநிலை)

 $Mg(HCO_3)_2 < N_2HCO_3 < KHCO_3$

v. Mg(OH)₂, Ca(OH)₂, Sr(OH)₂ (கரைதிறன்)

 $Mg(OH)_2 < Ca(OH)_2 < Sr(OH)_2$

(b) $H_3C_2NO_3$ மூலக்கூற்றுச் சூத்திரமுடைய சேர்வை NaOH நீர்க்கரைசலுடன் தாக்கி $H_2C_2NO_3Na$ என்ற மூலக்கூற்றுச் சூத்திரமுடைய சேர்வையினையும் நீரையும் கொடுக்கிறது. இச்சோடியம் உப்பின் அன்னயன் தொடர்பான பின்வரும் வினாக்களுக்கு விடை தருக.

இதன் லூயிஸ் கட்டமைப்பின் **முதற்படி** கீழே தரப்பட்டுள்ளது.

- i. காபன், ஒட்சிசன் அணுக்களிற்கு பொருத்தமான முறைமையான ஏற்றங்களை (Formal charges) மேற்குறித்த கட்டமைப்பில் இடுக.
- ii. பொருத்தமான லூயிஸ் கட்டமைப்பை வரைக.

iii. மேற்படி அயனிற்கு வரையக்கூடிய அனைத்துப் பரிவுக் கட்டமைப்புகளையும் வரைக.

iv. மேலே (iii) இல் வரைந்த பரிவுக்கட்டமைப்புகளிற்குரிய சார் உறுதிநிலைகளை காரணத்துடன் குறிப்பிடுக.

...புரிவுக்கட்டமைப்புக்கள்... I,II .. உறுதியானவை... அத்துடன்... சம்... உறுதியானவை... ஏற்றப்பிரிகை...

- ... குறைவு . மின்னெதிரான . O . அணுவில் . மறை . (-) . ஏற்றம் . உள்ளது.
- ... பரிவுக்கட்டமைப்புகள் . III, IV.. உறுதிகுறைந்தவை .. அத்துடன் . சம் . உறுதித்தன்மை . வாய்ந்தவை

- v. மேலே தரப்பட்ட உறுதியான லூயிக் கட்டமைப்பின் அடிப்படையில்,
 - 1. அணுக்களைச் சுற்றியுள்ள VSEPR சோடிகள்
 - 2. அணுக்களைச் சூழவுள்ள இலத்திரன் சோடிக்கேத்திரகணிதம்
 - 3. அணுக்களைச் சூழவுள்ள அணுக்களின் ஒழுங்கமைப்பு வடிவம்
 - 4. அணுக்களின் கலப்பாக்கம். என்பவற்றை பின்வரும் அட்டவணையில் பூர்த்தி செய்க.

		C ₁	C ₂	N
1.	VSEPR சோடிகள்	3	3	4
2.	இலத்திரன்சோடி கேத்திரகணிதம்	தளமுக்கோணம்	தளமுக்கோணம்	நான்முகி
3.	வடிவம்	தளமுக்கோணம் ²	தளமுக்கோணம் === ²	முக்கோணக் கூம்பகம் கூ3
4.	கலப்பாக்கம்	sp²	sp ²	Sp ³

- vi. மேலே நீர் வரைந்த உறுதியான லூயிக் கட்டமைப்பில் பின்வரும் σ பிணைப்பு உருவாக்கத்துடன் சம்மந்தப்பட்ட அணு / கலப்பு ஒழுக்குகளைத் தருக.
 - 1. C_1-C_2 $C_1 \cdot sp^2(h.o) C_2 \cdot sp^2(h.o)$
 - 2. $C_1 N$ $C_1 sp^2(h,o) NSp^3(h,o)$
 - 3. N H $Nsp^3 (h.o) H_1S(a.o)$
 - 4. $C_1 O$ $C_1 Sp^2(h.o) O$ 2p(a.o)
- vii. மேலே தரப்பட்ட அயனிற்கு ஐதான HCl ஐ சேர்த்த போது $H_3C_2NO_3$ மூலக்கூற்றுச்சூத்திரத்திற்கு அமைவான கூறு பெறப்பட்டது.
 - 1. இங்கு ${
 m H}^+$ அயன் ஓட்சிசன் அணுவுடனா / நைதரசன் அணுவுடனா இணைந்தது என்பதைக் கருத்திற் கொண்டு பெறப்படும் கட்டமைப்பை கீழே வரைக.

2. H^+ இணைந்த அணுவைக் கருத்திற் கொண்டு இவ்வணுவின் பின்வரும் இயல்புகளில் ஏற்படும் மாற்றம் தொடர்பாக பொருத்தமான சொல்லின் கீழ் கோடிடுக.

கலப்பு நிலை (மாற்றமடைகிறது / <mark>மாற்றமடையவில்லை)</mark> ஒட்சியேற்றநிலை (அதிகரிக்கிறது / குறைகிறது / <mark>மாற்றமடையவில்லை)</mark> ஏற்றப்பருமன் (அதிகரிக்கிறது / குறைகிறது / மாற்றமடையவில்லை) VSEPR சோடிகளின் எண்ணிக்கை (அதிகரிக்கிறது / குறைகிறது / மாற்றமடையவில்லை) மின்னெதிரியல்பு (அதிகரிக்கிறது / குறைகிறது / மாற்றமடையவில்லை)

(c) கீழே தரப்பட்ட மூலக்கூறுகளில் காணப்படும் மூலக்கூற்றிடைக்கவர்ச்சி விசைக்கமைய பொருத்தமான மூலக்கூறுகளைத் தெரிவு செய்க.

CS₂₍₁₎, CH₂Cl₂₍₁₎, NH₂OH₍₁₎, XeO₃₍₁₎, C₆H₆₍₁₎

i. ஐதரசன் பிணைப்பைக் கொண்ட மூலக்கூறு/மூலக்கூறுகள்-

NH₂OH(l)

- ${
 m ii.}$ இருமுனைவு இருமுனைவுக் கவர்ச்சி விசையைக் கொண்ட மூலக்கூறு / மூலக்கூறுகள்- ${
 m CH_2Cl_2(l), XeO_3(l)}$

இந்நிரலில் எதனையும் எழுதுதல் ஆகாது.

Λ N		வற்றை இனங்கால	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
Α	la	В	NaOH	(CH ₂	
DP.2O	₅ /P _{.4} H _{.10}	ES	603	I	Na ₃ PO ₄	
GNa ₂	SO ₄	НВ	Sa ₃ (P.O ₄) ₂		IBaSO4	
	படி செயன்முறைச பாடுகளைத் தருக.	ெ ருடன் சம்பந்தப்ப	படும் இரசாயனத் தாக்	கங்களிற்கா	ான சமன்செய்த	
	$2Na + 2H_2O$	\rightarrow 2NaOH + H ₂				
	P ₂ O ₅ .+.6NaO	OH .→. 2Na₃P.O₄.+.	3H ₂ O			
			ωΟ			
			O ₄) ₂ + 6NaCl			
			NaCl O ₃) ₂ + 2H ₃ PO ₄			
		,ZnCl ₂ ஆகிய உ கோட்டுப்படம் கீழே உப்புக்களின் க		. திண்ம	மாதிரியொன்றின்	
		கோட்டுப்படம் கீழே உப்புக்களின் க	ழதரப்பட்டுள்ளது. 	ரக்கப்பட்டத		
ugiuni	விற்கான பாய்ச்சழ்	கோட்டுப்படம் கீழே உப்புக்களின் க	ழதரப்பட்டுள்ளது. லைவை ஐதான HCl இல் கழை	ரக்கப்பட்ட <u>ഉ</u> சர்த்தல்	ы.	
பகுப்பாய் வீழ்படிவ (i)]	விற்கான பாய்ச்ச <u>ற</u> ் கள்	கோட்டுப்படம் கீழே உப்புக்களின் க	ழதரப்பட்டுள்ளது. லைவை ஐதான HCl இல் கழை	ரக்கப்பட்ட ஓ சேர்த்தல் (i) உே	நு. ▼ வடிகிரவம் லாக அயன் N	
பகுப்பாய்	விற்கான பாய்ச்ச <u>ற</u> ் கள்	கோட்டுப்படம் கீழே உப்புக்களின் க	ழதரப்பட்டுள்ளது. லைவை ஐதான HCl இல் கழை	ரக்கப்பட்ட ஓ சேர்த்தல் (i) உே	நு. • வடிகிரவம்	
பகுப்பாய் வீழ்படிவ (i)]	விற்கான பாய்ச்ச <u>ற</u> ் கள்	கோட்டுப்படம் கீழே உப்புக்களின் க (i) १ (ii)	ழதரப்பட்டுள்ளது. லைவை ஐதான HCl இல் கழை	ரக்கப்பட்ட ஐ சர்த்தல் (i) உே (ii) உே	நு. வடிகிரவம் லாக அயன் N லாகஅயன் O	
பகுப்பாய் வீழ்படிவ (i)]	விற்கான பாய்ச்ச <u>ற</u> ் கள் 	கோட்டுப்படம் கீழே உப்புக்களின் க (i) १ (ii)	ழதரப்பட்டுள்ளது. லைவை ஐதான HCl இல் கரை	ரக்கப்பட்ட ஐ சர்த்தல் (i) உே (ii) உே	நு. ▼ வடிகிரவம் லாக அயன் N	
வீழ்படிவ (i)] (ii)]	விற்கான பாய்ச்ச <u>ற</u> ் கள் 	கோட்டுப்படம் கீழே உப்புக்களின் க (i) १ (ii)	ழத்ரப்பட்டுள்ளது. லவை ஐதான HCl இல் கண NH₄Cl/NH₄OH(aq) பே	ரக்கப்பட்ட ஓ சர்த்தல் (i) உசே (ii) உசே	நு. வடிகிரவம் லாக அயன் N லாகஅயன் O லிகைNaOH _(aq) பே	சர்த்தவி
பகுப்பாய் வீழ்படிவ (i)]	கள் திற்கான பாய்ச்ச <u>ந்</u> திற்கான பாய்ச்ச <u>ந்</u>	கோட்டுப்படம் கீழே உப்புக்களின் க (i) g (ii)	ழதரப்பட்டுள்ளது. லைவை ஐதான HCl இல் கரை	ரக்கப்பட்ட ஓ சர்த்தல் (i) உசே (ii) உசே	நு. வடிகிரவம் லாக அயன் N லாகஅயன் O லிகைNaOH _(aq) பே	
வீழ்படிவ (i)] (ii)]	ுவிற்கான பாய்ச்ச <u>ற்</u> தவர் 	கோட்டுப்படம் கீழே உப்புக்களின் க (i) g (ii)	ழத்ரப்பட்டுள்ளது. லவை ஐதான HCl இல் கண NH₄Cl/NH₄OH(aq) பே	ரக்கப்பட்ட ஓ சர்த்தல் (i) உலே (ii) உலே ய	நு. வடிகிரவம் லாக அயன் N லாகஅயன் O விகைNaOH _(aq) சே வடிதி	சர்த்தவி
வீழ்படிவ (i)] (ii)]	ுவிற்கான பாய்ச்ச <u>ற்</u> தவர் 	தேவாட்டுப்படம் கீழே உப்புக்களின் க (i) இ (ii) கீல் டப்பு P aCl _{2(aq)} சேர்த்தல்	ழத்ரப்பட்டுள்ளது. லவை ஐதான HCl இல் கண NH₄Cl/NH₄OH(aq) பே	ரக்கப்பட்ட ஓ சர்த்தல் (i) உலே (ii) உலே ய	நு. வடிகிரவம் லாக அயன் N லாகஅயன் O விகைNaOH _(aq) ே	சர்த்தவி

ii.		வீழ்படிவிற்கு ஐதான HNO3 ஐ சேர்க்கும் பொழுது பெறப்படும் இம்மாற்றத்திற்கான பொருத்தமான சமன்செய்த இரசாயனச்
	உப்பு R இன் நிறம் .மஞ்சள் .	
	பெறப்பட்ட விளைவுக்கரைசலின் நிற	_{3ம்-} செம்மஞ்சுள்
		$H^{+} \rightarrow Cr_{2}O_{7}^{2-} + H_{2}O$ or $+ 2HNO_{3(aq)} \rightarrow BaCr_{2}O_{7(aq)} + Ba(NO_{3})_{2(aq)} + H_{2}O_{(aq)}$
iii.	. வீழ்படிவு S,U இலுள்ள உலோக உ பெறப்படும் அவதானிப்புக்களையும்	அயன்களை இனங்காண்பதற்கான சோதனை ஒன்றையும் குறிப்பிடுக.
	F	χτ
	அவதானிப்புக்கள்	
	·	
	U: புச்சை	
iv.	வீழ்படிவு Q இல் உள்ள கற்றயனை அவதானத்தையும் குறிப்பிடுக.	я இனங்காண்பதற்கான சோதனையையும் பொருத்தமான
	வீழ்படிவை CH3COOH _{(aq).} இல் . ச	ரைத்தல்
		பு நிறம் பெறப்படும்.
	$\mathrm{K}_4[\mathrm{Fe}(\mathrm{CN})_6]$ சேர்த்தல் நீல வீழ்ப	தவு பெறப்படுதல் (வேறு ஏற்கக்கூ டிய விடை)
H H	சநிவுகள் $1 ext{moldm}^3$ ஆக அமையக்கூழ $1 ext{A}, HB$ என்பவந்நின் அயனாக்க அளவு $1 ext{A}, HB$ இன் அயனாக்க மாநிலிகள் முன $2 ext{5}^0 ext{C}$ இல் $ ext{K}_1 = 4 ext{x} 10^{-6} ext{moldm}^{-3}, ext{K}_2 = 1.$	2 x 10 ⁻⁵ moldm ⁻³) ம கூடியது எது என்பதை காரணத்துடன் உய்த்தநிக. 2 K 2 > K 1.
ii.	அமிலங்களின் அயனாக்க அளவுக இடையேயான தொடர்பைப் பெறுக.	ர் $lpha,eta$ அயனாக்க மாறிலிகள் K_1,K_2 ஆகியவற்றிற்கு
	$HA_{(aq)} \stackrel{K_1}{\longleftarrow}$	$-\lambda$ H^+ $+ \Delta^-$
	சமநிலைச் 1 - α	$\alpha \qquad \alpha$
	செறிவு	
	$HB_{(aq)}$ $ abla^{$	$\frac{-2}{1}$ $H^{+}_{(aq)} + B^{-}_{(Aq)}$
	சமநிலைச் 1 – β செநிவு	β β
		மென்னமிலங்களின் அயனாக்க அளவு புறக்கணிக்கக்
	சமநிலை விதிப்படி " "	கூடியது. \therefore $(1-\alpha) \Omega 1$, $(1-\beta) \Omega 1$
	$K_1 = \frac{\left[H_{(aq)}^+ \right] A_{(aq)}^-}{\left[H A_{(aq)}\right]}$	$K_1 = (\alpha + \beta) \alpha$ $K_2 = (\beta + \alpha) \beta$
	$K_1 = \frac{(\alpha + \beta).\alpha}{(1 - \alpha)}$	$K_1 + K_2 = (\alpha + \beta) \alpha + (\alpha + \beta) \beta$ $K_1 + K_2 = \underline{(\alpha + \beta)^2}$
	$K_{2} = \frac{\left[H_{(aq)}^{+} \mathbf{I} B_{(aq)}^{-}\right]}{\left[HB_{(aq)}\right]}$	$\alpha + \beta = \sqrt{K_1 + K_2}$
	$K_2 = \frac{(\alpha + \beta).\beta}{(1 - \beta)}$	

இந்நிரலில் எதனையும் எழுதுதல் ஆகாது.

iii.	இக்கரைசல்	S	இன்	pН	இந்கான	கோவையை	$pH = -\frac{1}{2}log[K_1+K_2]$ ஆக	அமையுமெனக்
	காட்டுக.							

$[H^{+}_{(aq)}] = \alpha + \beta = \sqrt{K_1 + K_2}$	
$pH = -\log \left[H^+_{(aq)}\right]$	
$= -\log (K_1 + K_2)^{1/2}$	
$= -\frac{1}{2} \log [K_1 + K_2]$	

iv.
$$\alpha+\beta=4\mathrm{x}10^{-3}$$
 ஆக அமையுமெனக் காட்டுக.
$$\alpha+\beta=\sqrt{K_1+K_2}$$

$$\alpha+\beta=\sqrt{16}\times10^{-6}$$

$$=\sqrt{16}\times10^{-6}$$

$$=4\times10^{-3}$$

v.	மேலே	iv	இல்	பெற்ற	தொடர்புகளுடன்	அயனாக்க	மாறிலிகள்	α,β	ஆகியவற்றின்
	பெறும	திக	ளைச்	க் கணி	க்க.				

```
\begin{array}{c} K_1 = (\alpha + \beta) \ \alpha \ K_2 = (\alpha + \beta) \ \beta \\ \\ \frac{\alpha}{\beta} = \frac{K_1}{K_2} \\ \\ \frac{\alpha}{\beta} = \frac{4 \times 10^{-3}}{K_2} \\ \\ \frac{\alpha}{\beta} = \frac{4 \times 10^{-6}}{12 \times 10^{-6}} \\ \\ \frac{\beta}{\beta} = 3\alpha \end{array}
```

.....

(b) நியம மக்னீசியம் மின்வாய், நியம வெள்ளி மின்வாய், Pt கம்பி, Cu கம்பி என்பவற்றைப் பயன்படுத்தி மாணவன் ஒருவனால் உருவாக்கப்பட்ட ஒழுங்கமைப்பு கீழே தரப்பட்டுள்ளது.

i. Mg,Ag மின்வாய்களின், Pt கம்பியின் முனைவுகள் P,Q ஆகியவற்றின் முனைவுத்தன்மைகளை நேர்முனைவு / எதிர்முனைவு என அடையாளம் காண்க.

Mg எதிர்முனைவு	Ag நேர்முனைவு
Р Зъјт (முனைவு	Q எதிர்முனைவு

- ii. மேலே சுற்றில் Cu கம்பி, Pt கம்பிகளில் இலத்திரன் பாய்ச்சல் திசையை குறித்துக் காட்டுக.
- iii. Mg , Ag மின்வாய்களில் நடைபெறும் தாக்கங்களை தருக.

$Mg(s) - 2e \rightarrow Mg^{2+}_{(aq)},$
$Ag^{+}_{(aq)} + e \rightarrow Ag(s)$

iv.	ஆரம்பநிலையில் மின்வ	ாய்களிடையே காணப்படும் மின்னழுத்	த வேறுபாடு யாது?
		$E^{ heta}_{cell} = E^{ heta}_{Cathode}$ - $E^{ heta}_{Anode}$	
		=+0.8V -(-2.36V)	
		= 3.16V	
v.		சல்களிலும் காணப்படும் Pt கம்பி <mark>மு</mark> படுத்திய இரசாயன சமன்பாடுகளை எ	• -
		$_{0} + 2e \rightarrow H_{2(g)} \text{ Or } 2H_{2}O_{(1)} + 2e \rightarrow H_{2(g)}$	<u> </u>
	Q 40H -0	$_{(aq)}$ – 4e \rightarrow $O_{2(g)}$ + $2H_2O_{(1)}$ Or $2H_2O_{(1)}$	(1) $-4e \rightarrow 4H^{+}_{(aq)} + O_{2(g)}$
vi.		Cu கம்பியை பயன்படுத்தும் போத க்கான சமன்படுத்திய சமன்பாடுகளை	
		$_{1} + 2e \rightarrow H_{2(g)}$ Or $2H_{2}O_{(1)} + 2e \rightarrow H_{2(g)}$	
	$\mathrm{Cu}_{(\mathrm{s})}$ –	· ∠e → Cu ⁻ (aq)	
இச்சே சேர்க நீரக ஈர்மடி PCC நீரேர உட தன் i. <i>A</i>	சர்வைகள் யாவும் பிராழ வை A ஒளியியல் தொழ ந்நலுக்கு உட்படுத்தியபே பவெளி சமபகுதியத்தன் இனால் ஒட்சியேற்றும் ந்நலுக்கு உட்படுத்திய (ன் உடனடிக் கலங்களை னொடுங்கலுக்கு உட்படுக A,B,C,D,E,F,G,H,I ஆகி	D,E என்பன C ₅ H ₁₀ O எனும் மூலக்கூ பின் சோதனைப் பொருளுடன் செம்ம நிற்பாடுடையது. சேர்வைகள் A,B,C உ பாது முறையே F,G,H எனும் விளைவ மையைக் கொண்டது. H இனை ஐதர போது சேர்வை D பெறப்பட்டது. F,C போது I எனும் ஒரே விளைவு பெறப்ப உருவாக்கக்கூடியது. சேர்வை E ஆ வதில்லை. யவற்றின் கட்டமைப்புகளை கீழே தரம் CH ₃ - C - CH - CH ₃	நிறத்தை தரக்கூடியவை. ஐ NaBH4 இனால் தாழ்த்தி பின் வுகள் பெறப்பட்டன H ஆனது என H ₂ SO ₄ தொழிற்படச் செய்து நி ஐ ஐதான H ₂ SO ₄ உடன் பட்டது. I ஆனது நீர்ற்ற ZnCl ₂ /HCl னது ஐதான NaOH கரைசலில் ப்பட்ட பெட்டிகளில் வரைக.
	A	В	C
CH₃CH	O 11 2 - C - CH ₂ CH ₃	(CH ₃) ₃ – C – CHO	$CH_3CH_2 - C = CH_2$ CH_3
	D	E	F
CH ₃ –	$CH = C - CH_3$ CH_3	$CH_3CH_2 - CH = CH - CH_3$	OH CH ₃ CH ₂ – C – CH ₃ CH ₃
	G	НН	I

இந்நிரலில் எதனையும் எழுதுதல் ஆகாது. ii. H இன் ஈர்மயவெளி சமபகுதியங்களை கீழே தரப்பட்ட பெட்டிகளில் வரைக.

$$C = C$$
 CH_3CH_2
 CH_3

$$CH_3CH_2$$
 H $C=C$ CH_3

iii. சேர்வைகள் F,G,H ஐ அவற்றின் உறுதித் தன்மை அதிகரிக்கும் வரிசையில் தருக.

F<H<G

(b) 1 தொடக்கம் 6 வரையான தாக்கங்கள் ஒவ்வொன்றிலும் உள்ள தாக்கியும் சோதனைப்பொருளும் கீழே உள்ள அட்டவணையில் தரப்பட்டுள்ளன. ஒவ்வொரு தாக்கத்திற்குரிய வகைகளையும் [கருநாட்டகூட்டல் (A_N), மின்நாட்டகூட்டல் (A_E), கருநாட்ட பிரதியீடு (S_N), மின்நாட்ட பிரதியீடு (S_E), நீக்கல் (E)] மற்றும் பிரதான விளைபொருளையும் உரிய பெட்டிகளில் எழுதுக.

	தாக்கி	சோதனைப்பொருள்	தாக்க வகை	பிரதான விளைபொருள்
1	CH ₃ CH=CH ₂	HBr	AE	CH ₃ – CH – CH ₃ Br
2	CH ₃ CH ₂ -C-(CH ₃) ₂ Cl	C ₂ H ₅ OH / KOH	E	$CH_3 - CH = C - (CH_3)_2$
3	CH₃C≡C–MgCl	CH ₃ CH ₂ Cl	SN	$CH_3 - C \equiv C - CH_2CH_3 + MgCl_2$
4	0	CH ₃ -CH-CH ₂ Cl CH ₃ Dry AlCl ₃	SE	C – (CH ₃) ₃
5	СНО	2,4 - DNPH	AN + E	$CH = N - NH$ NO_2 NO_2
6	COCH ₃	Dil Ba(OH) _{2(aq)}	AN	$ \begin{array}{c c} OH & O \\ -\stackrel{l}{C} - CH_2 & -\stackrel{l}{C} & -\stackrel{\frown}{\bigcirc} \\ Br \end{array} $

(c) பின்வரும் தாக்கத்திற்குப் பொருத்தமான பொறிநுட்பத்தை தருக.

$$(CH_3)_3-C-OH$$
 Con.HBr $(CH_3)_3-C-Br$

$$(CH_3)_3 - C - OH \xrightarrow{C.HBr} (CH_3)_3 - C - Br$$

$$(CH_3)_3 - C - OH \xrightarrow{\delta^+H - Br^{\delta^-}} (CH_3)_3 - C + {}^+OH_2$$

$$(CH_3)_3 - C - \overset{+}{O}H_2 \longrightarrow (CH_3)_3 - C^+ + H_2O$$

$$(CH_3)_3 - \overset{+}{C} \iff Br - \longrightarrow R_3 - C - OH$$

Al/2018/02/T-1 -10-

Essay part

05. (a)
$$NH_4Cl_{(s)} \rightleftharpoons NH_3(g) + HCl(g)$$
 $Kp_1 = 3x10^8Pa^2$
$$P_1 \qquad P_1$$

$$NH_4Br(s) \rightleftharpoons NH_3(g) + HBr(g) \qquad kp_2 = 6 x10^8Pa^2$$

$$P_2 \qquad P_2$$

(i)
$$Kp_1 = P_{NH3(g)}x P_{HCl(g)}$$

3 $x10^8 Pa^2 = (P_1 + P_2) xP_1$ (1)

(1) +(2)
$$9 x10^8 Pa^2 = (P_1 + P_2) x P_1 + (P_1 + P_2) x P_2$$

$$(P_1 + P_2)^2 = 9x10^8 Pa^2$$

$$P_1 + P_2 = 3x 10^4 Pa$$

$$P_{NH3(g)} = 3 x10^4 Pa$$

(ii) (1)
$$\rightarrow P_1 = \frac{3 \times 10^8 Pa^2}{3 \times 10^4 Pa}$$

 $P_{\text{HCl(g)}} = 1 \times 10^4 Pa$

(2)
$$\rightarrow P_2 = \frac{6 \times 10^8 Pa^2}{3 \times 10^4 Pa}$$

 $P_2 = 2 \times 10^4 Pa$
 $P_{HBr(g)} = 2 \times 10^4 Pa$

(iii) புதிய சமநிலையில், $P_{HCl(g)} = 6x10^3 Pa$ வெப்பநிலை மாறவில்லை என்பதால் $NH_4Cl(s) \rightleftharpoons NH_{3(g)} + HCl_{(g)}$ எனும் சமநிலைக்குரிய Kp மாற்றமடையாது.

$$3 \times 10^{8} Pa^{2} = P_{NH3(g)} \times P_{HCl(g)}$$

 $3 \times 10^{8} Pa^{2} = P_{NH3(g)} \times 6 \times 10^{3} Pa$
 $P_{NH3(g)} = 5 \times 10^{4} Pa$

புதிய சமநிலையில்
$$P_{NH3(g)} = 5 \ x 10^4 Pa$$

(iv)
$$Kp_2 = 6 x10^8 Pa^2 = P_{NH3(g)} x P_{HBr(g)}$$

 $6 x10^8 Pa^2 = 5 x10^4 Pa x P_{HBr(g)}$
 $P_{HBr(g)} = 1.2 x10^4 Pa$
 புதிய சமநிலையில் $P_{HBr(g)} = 1.2 x10^4 Pa$

புதிய சமநிலையில் $PHBr_{(g)} = 1.2 \times 10^4 Pa$ புதிய சமநிலையில்,

 $NH_4Cl(s) \rightleftharpoons NH_{3(g)} + HCl_{(g)}$

$$NH_4Br(s) \rightleftharpoons NH_{3(g)} + HBr_{(g)}$$

$$\begin{split} P_{NH3(g)} &= x + y \\ P_{NH3(g)} &= P_{HCl(g)} + P_{HBr}(g) \\ 5 \ x 10^4 Pa &= 6 \ x 10^3 Pa + PHBr_{(g)} \\ P_{HBr(g)} &= 44 \ x 10^3 Pa \end{split}$$

$$2HBr_{(g)} \rightleftharpoons H_{(g)} + Br_{2(g)}$$

சமநிலை அமுக்கம் $44 \times 10^3 - 2p$ p p

$$44 \times 10^{3} - 2p = 12 \times 10^{3}$$

$$P = 16 \times 10^{3}$$

$$Kp = \frac{P_{H2(g)} \times P_{Br2(g)}}{P_{HBr(g)}} = \frac{16 \times 16}{12 \times 12}$$

$$= \frac{\left(16 \times 10^{3} Pa\right)^{2}}{\left(12 \times 10^{3} Pa\right)^{2}} = \frac{16}{9}$$

Al/2018/02/T-1 -11-

(b) i. WA (ឡូវាច់បាច់) = WA (ទ្រឹក់) + WA (CHCl $_3$) 17.5ppm x 100 x 10 3 dm 3 = C_A x 100 x 10 3 dm 3 + 25ppm x 50 x 10 3 dm 3 C_A = 5 ppm

$$K_D = \frac{[A]_{CHC13}}{[A]_{(1)}} = \frac{25ppm}{5ppm} = 5$$

ii. பரிசோதனை (i) இல், ஆரம்பA

$$[A]_{(aq)} = \frac{1 \times 10^{-3} \, mol}{50 \times 10^{-3} \, dm^3} = 0.02 \, moldm^{-3}$$
$$[B]_{(aq)} = \frac{2 \times 10^{-3} \, mol}{50 \times 10^{-3} \, dm^3} = 0.04 \, moldm^{-3}$$

பரிசோதனை (ii) இல்

ஆரம்ப $[A]_{(aq)}$ x 50 x 10^{-3} dm $^3 + [A]_{CHCl3}$ x 50 x 10^{-3} dm $^3 = 12$ x 10^{-3} mol

$$S = \frac{[A]_{CHC/3}}{[A]_{(aq)}}$$

$$6[A]_{aq} = 0.24$$

$$[B]_{aq} = \frac{2 \times 10^{-3} \, mol}{50 \times 10^{-3} \, dm^3}$$

$$[A]_{aq} = 0.04 \, moldm^{-3}$$

$$= 0.04 \, moldm^{-3}$$

பரிசோதனை (iii) இல்

ஆரம்ப $[A]_{(aq)}$ x 100 x 10^{-3} dm $^3 + [A]_{CHCl3}$ x 100 x 10^{-3} dm $^3 = 0.012$ mol

$$S = \frac{[A]_{cHC13}}{[A]_{aq}}$$

$$[A]_{aq} = 0.12$$

$$[A]_{aq} = 0.02 moldm^{-3}$$

$$[B]_{aq} = \frac{0.002 mol}{100 \times 10^{-3} dm^{3}} = 0.02 moldm^{-3}$$

i. Rate = $k[A]^a[B]^b$

ii.
$$4 \times 10^{-6} \text{moldm}^{-3} \text{ s}^{-1} = \text{k} (0.02 \text{moldm}^{-3})^a (0.04 \text{moldm}^{-3})^b$$
(1) $8 \times 10^{-6} \text{moldm}^{-3} \text{ s}^{-1} = \text{k} (0.04 \text{moldm}^{-3})^a (0.04 \text{moldm}^{-3})^b$ (2) $1 \times 10^{-6} \text{moldm}^{-3} \text{s}^{-1} = \text{k} (0.02 \text{moldm}^{-3})^a (0.02 \text{moldm}^{-3})^b$ (3) $(2)/(1) \text{ a} = 1$ $(1)/(3) \text{ b} = 2$

iii. தாக்கத்தின் மொத்த வரிசை = 1 + 2 = 3

iv. Rate =k [A][B]²

$$4 \times 10^{-6} \text{ moldm}^{-3}s^{-1} = k (0.02 \text{moldm}^{-3}) (0.04 \text{moldm}^{-3})^2$$

 $k = \frac{4 \times 10^{-6}}{32 \times 10^{-6}} mol^{-2} dm^6 s^{-1}$
 $k = 0.125 mol^{-2} dm^6 s^{-1}$

(c)
$$nA = \frac{64g}{32gmol^{-1}} = 2mol$$
 $nB = \frac{46g}{46gmol^{-1}} = 1mol$

And the state of the s

$$X_A + X_B = 1$$
$$X_B = 0.25$$

ക്കുഴെலിல்
$${
m n_A}=2$$
- $0.6=1.4{
m mol}$ ${
m n_B}=1-0.2=0.8{
m mol}$ திரவநிலையில் $X_A=rac{1.4mol}{2.2mol}=rac{7}{11}$ $X_B=1-X_A=rac{4}{11}$

இரவோற்றின் விதிப்படி, $P_A = P^0_A \; X_A = X_A{}^1. \; P_T$

 $n_B(vapour) = 0.2mol$

$$P_A = \frac{7}{11} P_A^0 = 0.75 \times 2.4 \times 10^5 Pa$$

-12-Al/2018/02/T-1

1- $\alpha \Omega 1$ என எடுக்க $[OH_{(aq)}] = 1x10^{-3} \text{ moldm}^{-3}$ $[H^{+}_{(aq)}][OH^{-}_{(aq)}] = 10^{-14} \text{mol}^2 \text{dm}^{-6}$ $[H^{+}_{(aq)}] = 10^{-11} \text{moldm}^{-3}$ $pH=-log[H^{+}_{(aq)}] = -log10^{-11} = 11$

ii.

 $n(NH_4)_2 SO_4 = \frac{0.66g}{132 gmol^{-1}} 0.005 mol$

 $nNH_4^+ = 2n(NH_4)_2SO_4 = 2x0.005mol = 0.01mol$ $[NH_4^+_{(aq)}] = 0.01 \text{ moldm}^{-3}$

 $NH_4OH_{(aq)} \rightleftharpoons NH_4^+_{(aq)} + OH^-_{(aq)}$

ஆரம்பச் செறிவு / moldm⁻³ 0.1 0.01 தாக்கிய செறிவு/ moldm⁻³ α- NH₄OH இன் கூட்டந்பிரிவளவு C c சமநிலைச்செறிவு/ $moldm^{-3}$ 0.1- c0.01+c c

$$kb = \frac{[NH_{4(aq)}^{+}][OH_{(aq)}^{-}]}{[NH_{4}OH_{(aq)}]}$$

 $[{
m NH_4^+}_{
m (aq)}]$ உயர்ந்த நிலையில் ${
m NH_4OH}$ இன் அயனாக்கம் குறைவு 0.1 $-{
m C}$ Ω 0.1 எனவும் 0.01 + ${
m C}$ Ω 0.01 எனவும் கொள்க.

$$1\times10^{-5}\,moldm^{-3} = \frac{0.01moldm^{-3}[OH^{-}_{(aq)}]}{0.1moldm^{-3}}$$

 $[OH_{(aq)}] = 1x10^{-4} moldm^{-3}$

 $[H^+_{(aq)}] \ [OH^-_{(aq)}] = 10^{\text{-}14} mol^2 dm^{\text{-}6}$

 $[H^{+}_{(aq)}] = 10^{-10} \text{moldm}^{-3}$

$$pH = -log [H^{+}_{(aq)}] = -log 10^{-10} = 10$$

 $M(OH)_2$ மட்டுமட்டாக விழ்படியும் போது,

$$[M^{2+}_{(aq)}][OH^{-}_{(aq)}]^2 = ksp(M(OH)_{2(s)})$$

 $[M^{2+}_{(aq)}] (1x10^{-4} moldm^{-3})^2 = 1x10^{-11} mol^3 dm^{-9}$

$$[M^{2+}_{(aq)}] = 10^{-3} \text{moldm}^{-3}$$

 $nM^{2+} = 10^{-3} moldm^{-3} \ x \ 1dm^3 = 10^{-3} mol$

 $nMCl_2 = nM^{2+} = 10^{-3}mol$

 $WMCl_2 = 10^{-3} \text{mol x } 95 \text{gmol}^{-1} = 0.095 \text{g}$

iii. Ca(OH)₂ மட்டுமட்டாக வீழ்படிவாக வேண்டும் எனின்,

$$[Ca^{2+}_{(aq)}][OH^{-}_{(aq)}]^2 = ksp(Ca(OH)_{2(s)})$$

 $[Ca^{2+}_{(aq)}] (1x10^{-4} \text{moldm}^{-3})^2 = 4 x10^{-6} \text{mol}^3 \text{dm}^{-9}$

 $[Ca^{2+}_{(aq)}] = 400 \text{ moldm}^{-3}$

 $/ nCa^{2+} = 400 moldm^{-3} \times 1 dm^3 = 400 mol$

 $nCaCl_2 = nCa^{2+} = 400mol$

 $WCaCl_2 = 400 \text{mol } x 111 \text{gmol}$

=44400g

= 44.4 kg

 $1 dm^3$ கரைசலில் 44.4 kg திண்மத்தை கரைப்பது பொருத்தமற்ற நடவடிக்கையாகும் எனவே $Ca(OH)_2$ வீழ்படிவை ஏற்படுத்த முடியாது.

07. (a) $CH_3CH_2OH \xrightarrow{H_2SO_4/KMnO_4} CH_3COOH \xrightarrow{PCl_5} CH_3COCI$

Al/2018/02/T-1 -14-

$P_1 \rightarrow CH_2 = CH_2$
$P_2 \rightarrow CH_3 - CH_2 - Cl$
$P_3 \rightarrow CH_3CH_2NH_2$
$P_4 \rightarrow H - C \equiv C \cdot Na^+$
$P_5 \rightarrow CH_3 - CH_2 - C - CH_3$
$P_6 \rightarrow CH_3 - CH_2 - \begin{matrix} O^{-} \\ C - C \\ C - C \end{matrix} \equiv CH$ CH_3
$P_7 \rightarrow CH_3 - CH_2 - C - C \equiv CH$ CH_3
$P_8 \rightarrow CH_3 - CH_2 - \begin{matrix} OH & O \\ I & II \\ CH_3 \end{matrix} - CH_3$

 $R_1 \rightarrow H_2/Pd/BaSO_4/Quinoline$

 $R_2 {\longrightarrow} \ HCl_{(g)}$

 $R_3 \rightarrow C. NH_{3(aq)}$

 $R_4 \rightarrow Na$

 $R_5 \rightarrow Hg^{2+}/ dil H_2SO_4$

 $R_6 \!\! \to H_2 O$

08. i. P- BaCl₂
$$Q - BaSO_4$$
 $R - CrO_2Cl_2$ $S - Na_2CrO_4$ $T - BaCrO_4$ $U - Ba_2Cr_2O_7$

- ii. செம்மஞ்சள் நிறக்கரைசல் மஞ்சள் நிறமாக மாற்றமடையும். $\mathrm{Cr_2O_7^{2-}} + 2\mathrm{OH} \xrightarrow{-} 2\mathrm{CrO_4^{2-}} + \mathrm{H_2O}$
- (b) i. $A1^{3+}$, Mn^{2+} , Ca^{2+}
 - ii. $P_3 CaC_2O_4$ $P_4 Mn(OH)_2$ $P_5 Al(OH)_3$
 - iii. 1. PbO₂,C.H₂SO₄ சேர்த்தல் ஊதாக நிறக்கரைசல் பெறப்படுதல் Or
 - 2. Na₂CO₃, KNO₃ சேர்த்து உருக்குதல் பச்சைநிறமீதி பெறப்படுதல்

(c) i.
$$IO_3^-(aq) + 8I^-(aq) + 6H^+(aq) \rightarrow 3I^-_3(aq) + 3H_2O(1)$$

ii. நடைமுறை I ல் பயன்பட்ட

 $nIO_3^- = 0.02 \text{moldm}^{-3} \times 25 \times 10^{-3} \text{ dm}^3$.

$$=\frac{0.5}{1000}\,mol$$

ஆனால் nIO₃-: nI₃-= 1:3

$$\therefore nI_3^- = \frac{3 \times 0.5 mol}{1000}$$

$$nI_3^- = \frac{1.5}{1000} mol$$

iii. I_3 -(aq) $+ 2Na_2S_2O_3(aq) \rightarrow 3I$ -(aq) $+ Na_2S_4O_6(aq) + 2Na^+$ எஞ்சிய I-3(aq) உடன் தாக்கமடைய தேவைப்பட்ட $nNa_2S_2O_3(aq) = 0.1 moldm^{-3} \times 25 \times 10^{-3} dm^3$ $= \frac{2.5}{1000} mole$

ஆனால்
$$nI_3^-$$
: $nNa_2S_2O_3=1:2$ எனவே தாக்கிய $nI_3^-=\frac{1}{2}\times\frac{2.5}{1000}$ $mole$

$$=\frac{1.25}{1000} mole$$

எனவே அஸ்கோபிக் அமிலத்துடன் தாக்கிய $nI_3^-(aq)=\left(rac{1.5}{1000}-rac{1.25}{1000}
ight)\!mole = rac{0.25}{1000}\,mole$

But **n**அஸ்கோபிக்கமிலம்: $nI_3^-(aq) = 1:1$

$$25 \mathrm{cm}^3$$
 இலுள்ள n அஸ்கோபிக் அமிலம் $= \frac{0.25}{1000} \, mole$

$$500 \mathrm{cm}^3$$
 இலுள்ள $\, n \,$ அஸ்கோபிக்கமிலம் $\, = \frac{0.25}{1000} imes 20 mole \,$

$$=\frac{5}{1000} \times mole$$

weight of ascorbic acid in 500cm³

$$= \frac{5}{1000} mole \times 176 gmol^{-1}$$
$$= \frac{880}{1000} g$$

$$=0.88g$$

 $500 \mathrm{cm}^3$ ல் விற்றமின் C மாத்திரையின் திணிவு $= 2 \mathrm{~x} \; 500 \mathrm{mg}$

$$=1g$$

ஒரு விற்றமின்
$$C$$
 யிலுள்ள அஸ்கோபிக் அமிலத்தின் திணிவு நூற்றுவீதம் $=rac{0.88 g}{1 g} imes 100$ $=88\%$

Al/2018/02/T-1 -15-

 R_1-CaCO_3 i. R_1-CaCO_3 R_2- கடல் நீர் R_3- கற்கரி/ R_4- வளி

ii. O_1 – வெப்பப்படுத்தல் O_2 –மின்பகுப்பு O_3 – செறிவாக்கல்

 ${
m O}_4-$ உருக்குதல் ${
m O}_5-$ பகுதிபடக் காய்ச்சிவடித்தல்.

iii. $P_1 - CaO$ P_2 - CO_2 $P_3 - CaC_2$ $P_4 - C_2H_2$ P_6 – தாய்த்திராவகம் P_8-CaSO_4 / ஜிப்சம் $P_7 - NaCl$ $P_5 - Ca(OH)_2$ $P_{10}-MgO\\$ $P_9 - Mg(OH)_2$ $P_{11} - NaOH$ $P_{12} - Cl_2$ $P_{14} - HC1$ P_{16} – ஏனையவாயுக்கள் $P_{13} - H_2$ $P_{15} - N_2$

 P_{17} - NH₃ $P_{18} - C_2H_3Cl$ $P_{19} - PVC$ $P_{20} - MgCl_2$

 $P_{21}-Mg \hspace{1cm} P_{22}-NH_4Cl \hspace{1cm} P_{23}-NaHCO_3 \\$

 $P_{21} - Mg$ $P_{22} - NH_4CI$ $P_{23} - NaHCO$

iv. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$

ஹேபர்முறை $m NH_3$ தயாரிப்பு வெப்பநிலை $m 450-500^{0}C$

அமுக்கம் 250atm ஊக்கி Fe/Fe₂O₃ ஊக்கித்தூண்டி Al₂O₃/K₂O

 $Ca(OH)_2 + 2NH_4C1 \longrightarrow CaCl_2 + 2NH_3 + H_2O$

- v. 1. பூகோளம் வெப்பமாதல்
 - 2. பிணைப்பு அதிர்வின் போது ஏற்படும் இருமுனைவுத் திருப்புதிறன் மாற்றம் காரமாக IR கதிர்களை உறிஞ்சி பின்னர் வெளிவீசுவதன் மூலம்
 - 3. CO₂
 - 4. துருவப்பகுதி பனிக்கட்டிகள் உருகுதல்
 - கடல் மட்டம் உயருதல்
 - தாழ்பிரதேசங்கள்/ தீவுகள் நீரினுள் மூழ்குதல்
 - மண்ணின் ஈரப்பற்று அற்றுப்போவதனால் பாலைவனம் உருவாதல்.
 - நன்னீர் நிலை வற்றிப்போதல்
 - காலநிலை மாற்றம் ஏற்படுதல்
 - உயிர் பல்வகைமை மாற்றமடைதல்.
 - 5. வளிக்கோளத்தில் உள்ள நீராவியினளவு ஒரு மாநிலியாக இருப்பதனால் இது வெப்பநிலை உயர்ச்சிக்கு பங்களிப்பு செய்வதில்லை
 - 6. NO₂/NO
 - 7. AR $2NO_2 + H_2O \rightarrow HNO_2 + HNO_3$

Or

$$4NO_2 + O_2 + H_2O \rightarrow 4HNO_3$$

நீரில் கரைவதன் மூலம் மழைநீரின் pH ஜ 5 இலும் பார்க்க குறைந்தநிலைக்கு இட்டுச்செல்கிறது.

 ${
m GN}$ — அதிர்வின் போது ஏற்படும் இருமுனைவுத்திருப்புதிறன் மாற்றத்தினால் ${
m IR}$ கதிர்களை உறிஞ்சி பின்னர் விடுவிக்கின்றது.

 ${
m OLD}$ – ஞாயிற்றுக்கதிர்களுடன் ஏற்படும் தாக்கத்தினால் மூலிகங்களை உருவாக்கி ஊக்கியாக தொழிற்படுவதன் மூலம்.

$$\begin{array}{ccc}
NO_2 & \xrightarrow{hv} & NO + O \\
NO + O_3 & \xrightarrow{NO_2 + O_2} \\
O_2 & \xrightarrow{2O} & 2O \\
O + NO_2 & \xrightarrow{NO + O_2} & \\
\end{array}$$

PCS – உயர்சக்தியுடைய கதிர்களுடன் தாக்கமடைந்து உருவாகும் மூலிகம், தாழ்வளிமண்டலத்தில் O_2 உடன் தாக்கி O_3 ஐ உருவாக்குவதன் மூலம்.

8. SO_2 – நீரில் கரைவதன் மூலம்

 $SO_2 + H_2O \rightarrow H_2SO_3$

 $H_2SO_3 + H_2O \rightleftharpoons H_3O^+ + HSO_3^-$

$$HSO_3^- + H_2O \rightleftharpoons H_3O^+ + SO_3^{2-}$$

 ${
m SO}_2$ வளிமண்டல ஒட்சியேற்றிகளாகிய ${
m O}_2, {
m O}_3, {
m OH}$ போன்றவற்றால் ஒட்சியேற்றப்பட்டு நீரில் கரைவதன் மூலம்.

SO₂ ஓட்சியேற்றி SO₃

 $SO_3 + H_2O \rightarrow H_2SO_4$

 $H_2SO_4 \rightleftharpoons H^+ + HSO_4^-$

Al/2018/02/T-1 -16-

9. சுண்ணாம்பு (CaCO₃) தொலமைற்று (CaCO₃.MgCO₃),CaO,MgO போன்ற காரப்பதார்த்தங்களினால் உறிஞ்சுவதன் மூலம்.

$$CaCO_3 + SO_2 \rightarrow CaSO_3 + CO_2$$

$$MgCO_3 + SO_2 \rightarrow MgSO_3 + CO_2$$

$$CaO + SO_2 \rightarrow CaSO_3$$

$$MgO + SO_2 \rightarrow MgSO_3$$

10. Cr₂O₃,CuO, Pt

$$2NO_{(g)} + 2CO_{(g)} \rightarrow N_2(g) \ + 2CO_{2(g)}$$

$$2CO_{(g)} + O_{2(g)} \rightarrow 2CO_{2(g)}$$

10. (a) i. +3 (+III)

ii. P – [COBr(NH₃)₅]Cl₂ Pentaamminebromidocobal(III) chloride

Q – [CoCl (NH₃)₅ BrCl – Pentaamminechioridocobalt (III) bromidechloride

R – [COBr(NH₃)₅] BrCl –Pentaamminebromidocobalt(III) bromide chloride

S-[COCl (NH₃)₅]Br₂ Pentaamminechloridocobalt(III) bromide

iii. R- AgCl, AgBr

iv.

$$CH_{2} \xrightarrow{C} C$$

$$NH_{2} \xrightarrow{C} C$$

$$Cr^{3+} \xrightarrow{C} CH_{2}$$

$$CH_{2} \xrightarrow{C} C$$

$$NH_{2} \xrightarrow{C} CH_{2}$$

$$CH_{2} \xrightarrow{C} C$$

(b) i. (1)
$$\Delta H^{\theta} = \sum H^{\emptyset} - \sum H^{\emptyset}$$

விளைவுகள் தாக்கிகள்

=
$$(2 \times 0 + 2 \times 0) - (2 \times (-240 \text{kJmol}^{-1}) + 2 \times 0)$$

=480kJmol⁻¹

$$(2) \Delta S^{\theta} = \sum S^{\emptyset} - \sum S^{\emptyset}$$

____ விளைவுகள் தாக்கிகள்

= $(2 \times 51 \text{Jmol}^{-1} \text{K}^{-1} + 0) - (2 \times 59 \text{Jmol}^{-1} \text{K}^{-1} + 131 \text{Jmol}^{-1} \text{k}^{-1})$

 $= -147 \text{Jmol}^{-1} \text{K}^{-1}$

(3)
$$\Delta G^{\theta} = \Delta H^{\theta} - \Delta S^{\theta}$$

= + 480kJmol⁻¹ - 298K x (-147 x 10⁻³) kJmol⁻¹
= +523.806kJmol⁻¹

ii. (1)
$$\Delta H^{\theta} = -480 \text{kJmol}^{-1}$$

(2)
$$\Delta S^{\theta} = 147 \text{Jmol}^{-1} \text{K}^{-1}$$

(3)
$$\Delta G^{\theta} = -523.806 \text{kJmol}^{-1}$$

iii. பகுதி (ii) இல் $\Delta G^{\theta} < 0$ ஆக வருவதனால்

 $2H^+_{(aq)} + 2X(s) \to H_2(g) + 2X^+_{(aq)}$ என்ற தாக்கம் $25^0 C$ யிலும் 1 atm அமுக்கத்திலும் சுயமாக

நடைபெறும்

எனவே $2H^+_{(aq)}+2e \to H_2(g)$ என்ற தாழ்த்தல் தாக்கமும் $X(s) \to X^+_{(aq)}+e$ என்ற ஒட்சியேற்றல் தாக்கமும் நடைபெறவாய்ப்புண்டு எனவே $X^+_{(aq)}+e \to X(s)$ இற்கான நியம தாழ்த்தல் மின்வாய் அழுத்தம் மறைபெறுமதியுடையதாக இருக்கும். H_2 இன் நியமமின்வாய் அழுத்தம் 0 மின்னிரசாயனத் தொடர் தாழ்த்தும் மின்வாய் அழுத்த அதிகரிப்பிற்கு

அமைவானது இதனால் X ஆனது மின்னிரசாயனத் தொடரில் H_2 இந்கு மேலேயுள்ள உலோகமாகும்.

Al/2018/02/T-1 -17-

 $iv. \qquad (1) \ \, X(s) \, / X^+_{(aq)} \qquad \qquad (2) \, \, H^+_{(aq)} / H_2(g) \, / pt \, (s) \, or \, \, H^+_{(aq)} \, / \, H_{2(g)}, \, Pt(s)$

 $\begin{array}{lll} \text{(3)} \ \, X(s) \to X^{+}_{\ \, (aq)} + e & \text{(4)} \ 2H^{+}_{\ \, (aq)} + 2e \to H_{2}(g) \\ \text{(5)} \ \, 2H^{+}_{\ \, (aq)} + 2X(s) \to H_{2(g)} \, + 2X^{+}_{\ \, (aq)} \\ \end{array}$

(6) $X(s)/X^{+}_{(aq,1 \text{ moldm}^{-3})} \parallel H^{+}_{(aq,1 \text{ moldm}^{-3})} \parallel H_{2(g,1 \text{atm})}/Pt_{(s)}$

(7) அனோட்டுப் பகுதியில் $X^+_{(aq)}$ இன் செறிவினைக் குறைக்க வேண்டும். கதோட்டுப்பகுதியில் $H^+_{(aq)}$ இன் செறிவினைக் கூட்ட வேண்டும் $H_2(g)$ இன் அமுக்கத்தை குறைக்க வேண்டும் கலத்தின் வெப்பநிலையைக் குறைக்க வேண்டும்

Pirakanth

Photo Copy Centre

55, Palaly Road, Thirunelvely, Jaffna. Photo Copy,
Colour Print,
Computer Typing,
Colour Photo Copy,
Binding, Laminating

T.P: 077 223 8447 075 498 5417 077 313 8881

Evergreen Printers

வவகிறீன் இச்சகம்

(Offset Printers, Publishers & Book Binders)

பில் புத்தகங்கள் லைட்டர் ஹெட் திருமண அழைப்பிதழ்கள் சுவரொட்டிகள் போஸ்டர்கள் கலண்டர்கள் / டயறிகள் சான்றிதழ்கள் இன்னும் பல.....

ANL MINDS
OF OFFICE
PRINTING WORKS
UNDER TAKEN
UNDER ONE ROOF

Reasonable Prices
Neat Works
Quick Services
Free Delivery
In Addition

Officet Printing

Bill Books
Letter Heads
Wedding Invitation
Hand Bills.
Posters
Diaries
Calendars
Certificates
And Many More.....

ම් පුදුල්වේ මුදුල්වේ ලබාග් මුදුල්වේ ලබාග් දුවේ දුවේ දුවේ දුවේ දැවීම් විදුල්වේ ලබාග් දුවේ දුවේ දුවේ දැවීම් දුවේ මුදුල්වේ දෙවේ දැවීම් දුවේ දැවීම් ද වැනැත්තිය දැවීම් දැවීම්

Telk 021 221 9393 // 0777 1414 44

ூல. 693, கே.கே.எஸ். வீதி, யாழ்ப்பாணம். # 693, K.K.S Road, Jaffna. E-mail: evergreenjaffna@gmail.com

- > SQA HND in Business
- > SQA HND in Computing : Software Development
- > Northshore Foundation Programme

- **Join with pending**O/Level Or A/Level
Results

ESOFT METRO CAMPUS

No. 137, K.K.S Road, Jaffna, Sri Lanka

UNIVERSITY OF WESTMINSTER#

Producing Innovators, **Entrepreneurs** and **Business leaders** since 1990

Employability | Marketability | Industry Ready

Krishnakripa Jayakumar

Software Engineer

99 (Technology

Scan here for the video

Foundation Certificate in

Higher Education (IT | Business)

after O/L towards selected degree programmes

Foundation

(A fast-track for students

in IT & Business) **Duration 1 Year**

BEng(Hons) Software Engineering

BSc(Hons) Computer Science

With Specialization Options

Games & Computer Graphics | Mobile & Web Computing | Multimedia Computing

BSc(Hons) Business Information Systems

Duration 4 Years

REGISTRATIONS

Assurance

Compulsory 1Year Industrial Placement An Award Winning Campus Life

IIT CAMPUS

#57, Ramakrishna Road, Colombo 06.

Tel: 0112 360 212 admissions@iit.ac.lk

Hotline.... 0722 72 72 72 www.iit.ac.lk 🖸 🚳 🎯 🛗 🛅 🚺 iitsl

BSc. [Hons]

Network Technology &

er Security

Topup **Higher Diploma** Diploma O/L or A/L

Top-Up Degree

Lincoln University-Malaysia.

UGC Regognised

IDM NATIONS CAMPUS

#216. Navalar Road, Jaffna

Tel: 021 222 9901

E-mail: jaffna@idmedu.lk

For More Info

🌒 www.idmedu.lk 📑 www.facebook.com/idmnc