Toric Varieties and their Euler characteristic

Ragib Zaman

AMSSC at the University of Newcastle

2 July 2014

Definition

The affine variety $(\mathbb{C}^*)^n = (\mathbb{C} \setminus \{0\})^n$ is called the *algebraic n-torus*. It acts on itself by componentwise multiplication.

Definition

A *Toric Variety* is a normal variety X that contains an algebraic torus $\mathbb T$ as a Zariski open dense subset together with an action $\mathbb T \times X \to X$ that extends the action of $\mathbb T$ on itself.

Definition

Let u_1, \ldots, u_k be points in \mathbb{Z}^n . Subsets of \mathbb{R}^n of the following form are called *cones*:

$$\sigma = \mathsf{Cone}(u_1, \ldots, u_k) = \{r_1 u_1 + \ldots + r_k u_k : r_i \geq 0 \ \forall i\}.$$

The *dual cone* of σ is the set

$$\sigma^{\vee} = \{ x \in \mathbb{R}^n : \langle x, y \rangle \ge 0 \ \forall y \in \sigma \}.$$

We also assume σ contains no line through the origin (so the origin is an apex). A *face* of σ is a set of the form

$$\tau := \sigma \cap u^{\perp} = \{ v \in \sigma \mid \langle v, u \rangle = 0 \}$$

for some $u \in \sigma^{\vee}$.

Affine Toric Varieties

- For any commutative monoid M there is a \mathbb{C} -algebra, denoted $\mathbb{C}[M]$, with basis elements $\chi^{\mu}, \mu \in M$ and multiplication defined by $\chi^{\mu}\chi^{\mu'} = \chi^{\mu+\mu'}$. The elements of $\mathbb{C}[M]$ are finite sums $\sum a_i\chi^{\mu_i}$ where $a_i \in \mathbb{C}$. If m_1, \ldots, m_r are generators of M then $\mathbb{C}[M] = \mathbb{C}[\chi^{m_1}, \ldots, \chi^{m_r}]$.
- To a cone σ we associate the monoid $M_{\sigma} = \sigma^{\vee} \cap \mathbb{Z}^n$, where the operation is addition of coordinates. Then we define the affine toric variety associated to σ to be

$$U_{\sigma} = \operatorname{Spec} \mathbb{C}[M_{\sigma}].$$

■ I'll let you identify Spec ($\mathbb{C}[X_1,\ldots,X_n]/I$) with V(I). For example,

Spec
$$\frac{\mathbb{C}[X_1, X_2]}{(X_1^2 + X_2^2 - 1)} \approx \{(X_1, X_2) \in \mathbb{C}^2 \mid X_1^2 + X_2^2 = 1\}.$$

Procedure

- II Start with a cone σ .
- **2** Compute its dual $\sigma^{\vee} = \{x \in \mathbb{R}^n : \langle x, y \rangle \geq 0 \ \forall y \in \sigma\}.$
- **3** Intersect with the lattice to get a monoid: $M_{\sigma} = \sigma^{\vee} \cap \mathbb{Z}^n$.
- **4** Find generators for M_{σ} so we can write down $\mathbb{C}[M_{\sigma}]$.
- **5** The affine toric variety U_{σ} is Spec $\mathbb{C}[M_{\sigma}]$.

Let τ be a face of σ and consider the following:

- $\tau \subseteq \sigma$.
- $\sigma^{\vee} \subseteq \tau^{\vee}$.
- \blacksquare $\mathbb{C}[M_{\sigma}] \subseteq \mathbb{C}[M_{\tau}].$
- $U_{\tau} \rightarrow U_{\sigma}$ is dominant (has dense image).

So there is a natural map from U_{τ} into U_{σ} . From the case $\tau=0$ we see that

Theorem

An algebraic torus is a dense subset of every affine toric variety.

Abstract Toric Varieties

Definition

A fan Δ is a set of cones satisfying the following conditions:

- Each face of a cone in Δ is also a cone in Δ .
- The intersection of two cones in Δ is a face of each.

The abstract toric variety $X(\Delta)$ is the disjoint union of all the $U_{\sigma}, \sigma \in \Delta$, glued together by the following rule: If $\sigma, \tau \in \Delta$ then $\sigma \cap \tau$ is a face of both. There are natural maps

$$i: U_{\sigma \cap \tau} \to U_{\sigma}$$

$$i': U_{\sigma\cap\tau}\to U_{\tau}.$$

We glue U_{σ} to U_{τ} by identifying images of the natural maps above. Doing this for every pair of cones in Δ yields $X(\Delta)$.

The geometry of the fan captures the geometry of the variety.

- $X(\Delta)$ is compact if and only Δ covers the Euclidean space it lies in.
- If σ has codimension k then $\pi_1(U_\sigma) = \mathbb{Z}^k$. If σ has codimension 0, then it is contractible.
- Let $\sigma = \text{Cone}(u_1, \dots, u_k)$. The affine toric variety U_{σ} is smooth if and only if $\{u_i\}$ can be extended to a basis of \mathbb{Z}^n .
 - If so, $U_{\sigma} \cong \mathbb{C}^k \times (\mathbb{C}^*)^{n-k}$ where $k = \dim \sigma$.
 - If not, then its singularities are all rational.

Cohomology

■ If $X(\Delta)$ is smooth and compact, then its odd cohomology is trivial and

$$b_{2k} = \sum_{i=k}^{n} (-1)^{i-k} {i \choose k} d_{n-i}$$

where $b_i = \dim_{\mathbb{Q}} H^i(X(\Delta), \mathbb{Q})$ and d_j is the number of j dimensional faces in Δ .

For example, $\mathbb{P}^n(\mathbb{C}) = X(\Delta)$ where $\Delta = \{ \operatorname{Cone}(E) | E \subset \{e_1, \dots, e_n, -(e_1 + \dots + e_n) \} \}$ so we have $d_{n-i} = \binom{n+1}{i}$. We get

$$b_{2k} = \sum_{i=k}^{n} (-1)^{i-k} \binom{i}{k} \binom{n+1}{i+1} = \mathbf{1}_{0 \le k \le n}.$$

• $X(\Delta) = \bigsqcup_{\sigma \in \Delta} T_{\sigma}$ is the disjoint union of finitely many locally closed (open in its closure) subvarieties which satisfy $T_{\sigma} \cong (\mathbb{C}^*)^{\operatorname{codim} \sigma}$.

For example

$$\mathbb{P}^{1}(\mathbb{C}) = \{[1:0]\} \middle| \ \big| \{[0:1]\} \middle| \ \big| \{[1:x] \mid x \in \mathbb{C}^{*}\}\big|$$

and

$$\{Y^{2} = XZ\} = \{(0,0,0)\} \bigsqcup \{0\} \times \{0\} \times \mathbb{C}^{*} \bigsqcup \mathbb{C}^{*} \times \{0\} \times \{0\}$$
$$| \{(t_{1}, t_{1}t_{2}, t_{1}t_{2}^{2}) \mid t_{1}, t_{2} \in \mathbb{C}^{*}\}.$$

Fuler Characteristic

Ragib Zaman

Definition

The Euler Chracteristic of a topological space X is

$$\chi(X) = \sum (-1)^i \operatorname{rank} \left(H^i(X, \mathbb{Z}) \right).$$

Theorem

The Euler characteristic of a (compact) toric variety is $\chi(X(\Delta)) = d_n$. Here d_n is the number of codimension zero cones in Δ .

Cohomology with Compact Supports

Suppose we have a singular cochain complex $C^{\bullet}(X)$. We consider the cohomology of the subcomplex $C_c^{\bullet}(X)$ of cochains which have compact support (that is, they vanish outside some compact subset of X).

- $H_c^i(\mathbb{R}^n,\mathbb{Q})=\mathbb{Q}$ if i=n and zero otherwise.
- If $U \subseteq X$ is open and $C = X \setminus U$, then there is a long exact sequence:

$$\cdots \rightarrow H_c^i(U) \rightarrow H_c^i(X) \rightarrow H_c^i(C) \rightarrow H_c^{i+1}(U) \rightarrow \cdots$$

This gives

 $\sum (-1)^i \dim H_c^i(X) = \sum (-1)^i \left(\dim H_c^i(C) + \dim H_c^i(U) \right).$ So Euler characteristic with compact supports is an additive function:

$$\chi_c(X) = \chi_c(U) + \chi_c(C).$$

χ_c is locally additive

- If $U \subseteq X$ is open and $C = X \setminus U$ then $\chi_c(X) = \chi_c(U) + \chi_c(C)$.
- If Y is locally closed (open in its closure) in X,

$$\chi_c(X) = \chi_c(X \setminus \overline{Y}) + \chi_c(\overline{Y}) = \chi_c(X \setminus \overline{Y}) + \chi_c(\overline{Y} \setminus Y) + \chi_c(Y).$$

Since $X \setminus \overline{Y}$ is open in $X \setminus Y$,

$$\chi_c(X \setminus Y) = \chi_c(X \setminus \overline{Y}) + \chi_c(\overline{Y} \setminus Y).$$

Lemma

Suppose Y is locally closed in X. Then

$$\chi_c(X) = \chi_c(X \setminus Y) + \chi_c(Y).$$

- $\chi_c(\mathbb{C}) = \chi_c(\{0\}) + \chi_c(\mathbb{C}^*) \text{ so } \chi_c(\mathbb{C}^*) = 0.$
- The Künneth formula

$$H_c^k(X \times Y) \cong \bigoplus_{i+j=k} (H_c^i(X) \otimes H_c^j(Y))$$

implies that $\chi_c((\mathbb{C}^*)^n) = 0$ for all $n \geq 1$.

■ Since $X(\Delta) = \bigsqcup_{\sigma \in \Delta} T_{\sigma}$, $T_{\sigma} \cong (\mathbb{C}^*)^{\operatorname{codim} \sigma}$ locally closed, we have

$$\chi_c(X) = \sum_{\sigma \in \Lambda} \chi_c \left((\mathbb{C}^*)^{\operatorname{codim} \sigma} \right).$$

Therefore

$$\chi_c(X) = d_n$$
.

