# On the Difficulty of Training Recurrent Neural Networks

Razvan Pascanu, Tomas Mikolov, Yoshua Bengio

December 4, 2015

#### Overview

#### Contents

- Exploding Gradients
- Vanishing Gradients
- Related Work
- Paper Contribution
- Experimental Results

## **Exploding Gradients**



## **Exploding Gradients**

#### Gradient Descent Method:

$$w_{n+1} = w_n - \eta \nabla f(w_n)$$

- w: weight
- n: n-th iteration
- $\eta$ : learning rate
- f(w): cost function



Figure: Sample of MNIST dataset









$$\frac{\partial C}{\partial b_1} = \sigma'(z_1) w_2 \sigma'(z_2) w_3 \sigma'(z_3) w_4 \sigma'(z_4) \frac{\partial C}{\partial a_4}$$



$$\frac{\partial C}{\partial b_1} = \sigma'(z_1) \underbrace{w_2 \sigma'(z_2)}_{} \underbrace{w_3 \sigma'(z_3)}_{} \underbrace{w_4 \sigma'(z_4) \frac{\partial C}{\partial a_4}}_{}$$

$$\underbrace{\frac{\partial C}{\partial b_3}}_{} = \sigma'(z_3) \underbrace{w_4 \sigma'(z_4) \frac{\partial C}{\partial a_4}}_{}$$



$$\begin{split} \frac{\partial E}{\partial W} &= \sum_{t} \frac{\partial E_{t}}{\partial W} \\ \frac{\partial E_{t}}{\partial W} &= \frac{\partial E_{t}}{\partial \hat{o}_{t}} \frac{\partial \hat{o}_{t}}{\partial s_{t}} \frac{\partial s_{t}}{\partial W} \\ \frac{\partial E_{t}}{\partial W} &= \sum_{k=0}^{t} \frac{\partial E_{t}}{\partial \hat{o}_{t}} \frac{\partial \hat{o}_{t}}{\partial s_{t}} \frac{\partial s_{t}}{\partial s_{k}} \frac{\partial s_{k}}{\partial W} \\ \frac{\partial E_{t}}{\partial W} &= \sum_{k=0}^{t} \frac{\partial E_{t}}{\partial \hat{o}_{t}} \frac{\partial \hat{o}_{t}}{\partial s_{t}} \left( \prod_{j=k+1}^{t} \frac{\partial s_{j}}{\partial s_{j-1}} \right) \frac{\partial s_{k}}{\partial W} \end{split}$$

#### Teacher Forcing

- Proposed by Doya (1993)
- Use targets for some or all hidden units to converge towards
- Assumes model asymptotic behaviour is the same required by the target
- Requires target to be defined at every time step
- Reduces exploding gradients
- Not practical and difficult

#### Long Short Term Memory Architecture (LSTM)

- Proposed by Hochreiter and Schmidhuber (1997)
- Introduces Input, Ouput and Forget gates
- linear unit with self connection of value 1
- Deals with vanishing but not exploding graidents



#### Legend

— unweighted connection

weighted connection

connection with time-lag

branching point

mutliplication

sum over all inputs

gate activation function (always sigmoid)

g input activation function (usually tanh)

output activation function (usually tanh)

$$\mathbf{z}^{t} = g(\mathbf{W}_{z}\mathbf{x}^{t} + \mathbf{R}_{z}\mathbf{y}^{t-1} + \mathbf{b}_{z}) \qquad block input$$

$$\mathbf{i}^{t} = \sigma(\mathbf{W}_{i}\mathbf{x}^{t} + \mathbf{R}_{i}\mathbf{y}^{t-1} + \mathbf{p}_{i} \odot \mathbf{c}^{t-1} + \mathbf{b}_{i}) \qquad input gate$$

$$\mathbf{f}^{t} = \sigma(\mathbf{W}_{f}\mathbf{x}^{t} + \mathbf{R}_{f}\mathbf{y}^{t-1} + \mathbf{p}_{f} \odot \mathbf{c}^{t-1} + \mathbf{b}_{f}) \qquad forget gate$$

$$\mathbf{c}^{t} = \mathbf{i}^{t} \odot \mathbf{z}^{t} + \mathbf{f}^{t} \odot \mathbf{c}^{t-1} \qquad cell state$$

$$\mathbf{o}^{t} = \sigma(\mathbf{W}_{o}\mathbf{x}^{t} + \mathbf{R}_{o}\mathbf{y}^{t-1} + \mathbf{p}_{o} \odot \mathbf{c}^{t} + \mathbf{b}_{o}) \qquad output gate$$

$$\mathbf{y}^{t} = \mathbf{o}^{t} \odot h(\mathbf{c}^{t}) \qquad block output$$

#### Hessian-Free Optimizer with Structural Damping

• Proposed by Sutskever et al (2011)

(For Vanishing Problem) "Presumably this method works because in high dimensional spaces there is a high probability for long term components to be orthogonal to short term ones. This would allow the Hessian to rescale these components independently."

#### Echo State Networks

- Proposed by Jaeger and Haas (2014)
- Avoid exploding and vanishing problem by not learning  $W_{rec}$  and  $W_{in}$
- Sparsely connected hidden layer (typically 1%)
- Connectivity and weights are fixed and randomly assigned
- Only weights of output are learned

## Scaling Gradient

#### Algorithm 1 Pseudo-code for norm clipping

$$\hat{\mathbf{g}} \leftarrow \frac{\partial \mathcal{E}}{\partial \hat{\theta}}$$
if  $\|\hat{\mathbf{g}}\| \geq threshold$  then
 $\hat{\mathbf{g}} \leftarrow \frac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}}$ 
end if

## Scaling Gradient



## Vanishing Gradient Regularizer

- Vanishing gradients prevents long term latching
- Increasing the norm  $\frac{\partial s_t}{\partial s_k}$  will increase the sensitivity to all inputs.
- Creates larger errors
- In turn causes convergence to suffer
- Solution is to create a regularizer

## Vanishing Gradient Regularizer

$$\frac{\partial E_t}{\partial W} = \sum_{k=0}^t \frac{\partial E_t}{\partial \hat{o}_t} \frac{\partial \hat{o}_t}{\partial s_t} \frac{\partial s_t}{\partial s_k} \frac{\partial s_k}{\partial W}$$

$$\frac{\partial E_t}{\partial W} = \sum_{k=0}^t \frac{\partial E_t}{\partial \hat{o}_t} \frac{\partial \hat{o}_t}{\partial s_t} \left( \prod_{j=k+1}^t \frac{\partial s_j}{\partial s_{j-1}} \right) \frac{\partial s_k}{\partial W}$$

## Vanishing Gradient Regularizer

$$\Omega = \sum_{k} \Omega_{k} = \sum_{k} \left( \frac{\left\| \frac{\delta \varepsilon}{\delta x_{k+1}} \frac{\delta x_{k+1}}{\delta x_{k}} \right\|}{\left\| \frac{\delta \varepsilon}{\delta x_{k+1}} \right\|} - 1 \right)^{2}$$

 Prefers solutions which the error preserves the norm as it travels back in time

### Experimental Results

#### The Temporal Order Problem

- Long random sequence of discrete symbols
- Beginning and middle of sequence will contain one of {A, B}
- Task is to classify order of A, B
- Task successful if only 1% of 10,000 random sequences are misclassified

Three different RNN intializations were performed for the experiment:

- sigmoid unit network:  $W_{rec}$ ,  $W_{in}$ ,  $W_{out} \sim \mathcal{N}(0, 0.01)$
- basic tanh unit network:  $W_{rec}$ ,  $W_{in}$ ,  $W_{out} \sim \mathcal{N}(0, 0.1)$
- smart tanh unit network:  $W_{rec}, W_{in}, W_{out} \sim \mathcal{N}(0, 0.01)$

Of the three RNN networks three different optimizer configurations were used:

- MSGD: Mini-batch Stochastic Gradient Decent
- MSGD-C: MSGD with Gradient Clipping
- MSGD-CR: MSGD-C with Regularization

## Experimental Results The Temporal Order Problem







- 5 runs
- 50 hidden unit model
- Learning rate of 0.01
- Threshold of 1.0 (for gradient clipping)

## Experimental Results Natural Problems

| Data set            | Data<br>FOLD | MSGD | MSGD+C | MSGD+CR | STATE OF THE<br>ART FOR RNN | STATE OF THE<br>ART |
|---------------------|--------------|------|--------|---------|-----------------------------|---------------------|
| Piano-midi.de       | TRAIN        | 6.87 | 6.81   | 7.01    | 7.04                        | 6.32                |
| (NLL)               | TEST         | 7.56 | 7.53   | 7.46    | 7.57                        | 7.05                |
| Nottingham          | TRAIN        | 3.67 | 3.21   | 2.95    | 3.20                        | 1.81                |
| (NLL)               | TEST         | 3.80 | 3.48   | 3.36    | 3.43                        | 2.31                |
| MuseData            | TRAIN        | 8.25 | 6.54   | 6.43    | 6.47                        | 5.20                |
| (NLL)               | TEST         | 7.11 | 7.00   | 6.97    | 6.99                        | 5.60                |
| Penn Treebank       | TRAIN        | 1.46 | 1.34   | 1.36    | N/A                         | N/A                 |
| 1 step (bits/char)  | TEST         | 1.50 | 1.42   | 1.41    | 1.41                        | 1.37                |
| Penn Treebank       | TRAIN        | N/A  | 3.76   | 3.70    | N/A                         | N/A                 |
| 5 STEPS (BITS/CHAR) | TEST         | N/A  | 3.89   | 3.74    | N/A                         | N/A                 |

Questions?





Figure: Whitley's GENITOR Algorithm



Figure: Fitness Proportionate Selection

```
Parent 1: 001010011 01010010101110
```

Parent 2: 010101110 | 1010101101110101

Child: 001010011 1010101101110101

Figure: Point Crossover

#### Example Applications:

- Marl/O (NEAT Algorithm): Plays a level of Mario YouTube