```
\begin{array}{rcl} \mathsf{R}(a) & = & \{M \mid M \text{ is SN}\} \\ \mathsf{R}(A \to B) & = & \{M \mid \forall N \in \mathsf{R}(A).MN \in \mathsf{R}(B)\} \\ \mathsf{R}(\forall \overline{a}.A) & = & \{M \mid \text{for all } \overline{B} \in \mathscr{P}(\mathbb{T}), M \in \mathsf{R}(A[\overline{B}/\overline{a}])\} \end{array}
```

Lemma

for all A: VHSN $\subseteq R(A) \subseteq SN$

Lemma

If, for all $N \in R(B)$: $M[N/x] \in R(A)$, then for all N: $(\lambda x. M)N \in R(A)$.

Theorem

Suppose $\Gamma \vdash M : B$ and, for each variable $x \in \text{dom}(\Gamma)$, there is a term N_x such that $N_x \in \mathsf{R}(\Gamma(x))$.

Then $M[N_x/x \mid x \in dom(\Gamma)] \in R(B)$.

Corollary (Strong Normalisation) *If* $\Gamma \vdash M : A$ *then* M *is* SN.