

Нейросети в РС

Андрей Зимовнов (Яндекс, ВШЭ)

Введение в нейросети

Линейная классификация

Признаки: $x = (x_1, x_2)$

Целевая переменная: $y \in \{+1, -1\}$

Функция принятия решения: $d(x) = w_0 + w_1 x_1 + w_2 x_2$

Алгоритм: a(x) = sign(d(x))

Логистическая регрессия

Предсказывает вероятность положительного класса (+1)

Функция принятия решения: $d(x) = w_0 + w_1 x_1 + w_2 x_2$

Алгоритм: $a(x) = \sigma(d(x))$

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

А что же делать тут?

Признаки: $x = (x_1, x_2)$

Целевой признак: $y \in \{+1, -1\}$

Решим подзадачу

Признаки: $x = (x_1, x_2)$

Целевой признак: $y \in \{+1, -1\}$

Отделим минусы слева

$$z_1 = \sigma(\mathbf{w_{0,1}} + \mathbf{w_{1,1}}x_1 + \mathbf{w_{2,1}}x_2)$$

Своя линия для каждой подзадачи

Признаки: $x = (x_1, x_2)$

Целевой признак: $y \in \{+1, -1\}$

$$z_i = \sigma(w_{0,i} + w_{1,i}x_1 + w_{2,i}x_2)$$

Допустим, мы нашли 3 таких линии...

Используем предсказания линий

Признаки: $x = (x_1, x_2)$

Целевой признак: $y \in \{+1, -1\}$

Новые признаки:

$z_1(x)$	$z_2(x)$	$z_3(x)$	y
0.6	0.3	0.8	-1
0.7	0.7	0.7	+1

$$(x_1, x_2) \rightarrow (z_1, z_2, z_3)$$

Что дальше?

$$z_i = \sigma(w_{0,i} + w_{1,i}x_1 + w_{2,i}x_2)$$

Финальная модель

Признаки: $x = (x_1, x_2)$

Целевой признак: $y \in \{+1, -1\}$

$$z_i = \sigma(\mathbf{w_{0,i}} + \mathbf{w_{1,i}} x_1 + \mathbf{w_{2,i}} x_2)$$

Новые признаки:

$z_1(x)$	$z_2(x)$	$z_3(x)$	y
0.6	0.3	8.0	-1
0.7	0.7	0.7	+1

$$(x_1, x_2) \rightarrow (z_1, z_2, z_3)$$

Строим финальную линейную модель:

$$a(x) = \sigma(w_0 + w_1 z_1(x) + w_2 z_2(x) + w_3 z_3(x))$$

Параметров линий пока нет

Но понятно как все будет работать, если найти эти параметры:

$$z_{i} = \sigma(w_{0,i} + w_{1,i}x_{1} + w_{2,i}x_{2})$$

$$a(x) = \sigma(w_{0} + w_{1}z_{1}(x) + w_{2}z_{2}(x) + w_{3}z_{3}(x))$$

Запишем наши вычисления в виде графа:

Вершины: вычисляемые переменные $(x_1, x_2, z_1, z_2, z_3, a)$

Ребра: зависимости (нам нужен x_1 и x_2 чтобы получить z_1)

У этого графа есть имя!

Многослойный персептрон (MLP):

Входной слой

Скрытый слой

Выходной слой

Признаки

Каждая вершина называется нейроном:

- 1. Линейная комбинация входов
- 2. Нелинейная функция **активации** (пример: $\sigma(x)$)

Почему нейрон?

Нейрон человека:

$$z_i = \sigma(w_{0,i} + w_{1,i}x_1 + w_{2,i}x_2)$$

Математический нейрон:

Нужны нелинейности в нейронах!

Давайте попробуем выкинуть $\sigma(x)$:

$$z_1 = w_{1,1}x_1 + w_{2,1}x_2$$

$$z_2 = w_{1,2}x_1 + w_{2,2}x_2$$

$$a = w_1z_1 + w_2z_2$$

Наш алгоритм становится линейной функцией!

$$a = (w_1 w_{1,1} + w_2 w_{1,2}) x_1 + (w_1 w_{2,1} + w_2 w_{2,2}) x_2$$

Обзор MLP

MLP – это простейший пример нейросети MLP может иметь много скрытых слоев:

Архитектура MLP:

Кол-во слоев

Кол-во нейронов в каждом слое Какую активацию использовать

Скрытый слой в MLP называют:

- Dense layer (плотный)
- Fully-connected layer (полно-связный)

Как найти параметры MLP?

Мы знаем как выучить параметры логистической регрессии – **SGD!**

Давайте здесь сделаем то же самое, ведь финальная функция дифференцируемая!

Быстрый и эффективный способ вычисления градиента для любого дифференцируемого графа вычислений называется back-propagation (обратное распространение ошибки)

Застревает в локальных минимумах

Демо в TensorFlow Playground

http://playground.tensorflow.org

Можно решать сложные задачи

От SVD к нейросетям

Что такое embedding

Матрица *имбедингов*

Funk SVD как нейросеть

Обучаем при помощи SGD

Content-boosted CF

Добавим в профиль товара имбединг его контента!

Контент бывает разный, например, картинки

Neural Collaborative Filtering

В онлайне считать затратно

DSSM

Работает в онлайне!

Признаки пользователя

Признаки товара

Например: мешки слов

DL фреймворк – это удобно!

Можно использовать крутые оптимайзеры (Adam, ...) Можно имбеддить картинки, текст, ...

Описываем какие взаимосвязи имеют смысл. Детали выучит сеть.

Задача: домены → видео

Хотим помочь холодному старту рекомендаций видео

Знаем куда ходит пользователь

Похожие видео (по dot)

Похожие на hi-tech.mail.ru

[0.94703776]

[0.9381]

[0.92087275]

[0.9200871]

Похожие на goodhouse.ru

[0.89342886]

[0.89316946]

[0.8903276]

[0.88709587]

BIG DATA IS LOVE

NEWPROLAB.COM