

DIP: Introduction

Presenter: Dr. Ha Viet Uyen Synh.

Part A

WHAT IS BIG DATA?

How to solve a problem in computer science? Level 4 "Dynapaic of Conguer" technique technique Non-convex Optimization Level 3 **Convex Optimization** Level 2 Graphs Level 1 "Exhausted check" method

Example

Example

How do we represent what we know?

Comparing Imperative and Declarative Languages

Imperative Languages

- Procedural
 programming requires
 that the programmer
 tell the computer what
 to do.
- That is, how to get the output for the range of required inputs.
- The programmer must know an appropriate algorithm.

Declarative Languages

- Declarative
 programming requires
 a more descriptive
 style.
- The programmer must know what relationship s hold between various entities.
- Prolog provides a search strategy for free

Part B

WHAT IS DEEP LEARNING?

The Mind map of Engineering Mathematics

Al vs Machine Learning vs Deep Learning

Navier-Stokes Equations

Describe the flow of incompressible fluids.

#

Artificial Intelligence

Machine Learning

Deep Learning

Atabaian ataba matia

A technique which enables machines to mimic human behaviour

MACHINE LEARNING

Subset of AI technique which use statistical methods to enable machines to improve with experience

DEEP LEARNING

Subset of ML which make the computation of multi-layer neural network feasible

THIS IS YOUR MACHINE LEARNING SYSTEM? YUP! YOU POUR THE DATA INTO THIS BIG PILE OF LINEAR ALGEBRA, THEN COLLECT THE ANSWERS ON THE OTHER SIDE. WHAT IF THE ANSWERS ARE WRONG? JUST STIR THE PILE UNTIL THEY START LOOKING RIGHT.

Machine Learning vs Deep Learning

Check out art created with neural networks

Neural Network

Deep Learning Network

Deep Learning Network

Part B

WHAT ARE YOUR LEARNING OUTCOMES??

DL9CD5036

Learning Outcomes

tensor = multidimensional array

Learning Outcomes

Grading

Quizzes: 10%

Lab. Assignments: 20%

Midterm Exam: 30%

Final Exam: 40%

Questions? More Information?

