Getrennte Variablen

- x und y voneinander trennbar
- Vorgehensweise:

 - gegeben: $y' = \frac{f(x)}{g(y)} = \frac{dy}{dx}$ nach Umformung: g(y)dy = f(x)dx
 - nach Integration: G(y) = F(x) + C

$$y' = \frac{f(x)}{g(y)} = \frac{dy}{dx}$$
 $g(y)dy = f(x)dx$ $G(y) = \mp (x) + C$

• Beispiele:

* nicht möglich, da Lösung Definitionsbereich verlässt

Lineare DGL

- $y' = a(x)y = = > \frac{y'}{y} = a(x)$
- \bullet wenn $y(x_0)=0==>$ laut Satz von P-Ly(x)=0 für alle x
- $ln|y(x)| = \int a(x)dx$
 - $-y(x) = C * e^{A(x)}$ ist allgemeine Lösung
- Beispiel:

Inhomogene lineare DGL

- $\bullet \ y' = a(x)y + b(x)$
 - -b(x) ==> Inhomogenität durch Störfunktion
- Vorgehensweise:
 - homogene GL lösen

$$* y'_H = a(x)y_H(x) ==> y_H(x) = C * e^{A(x)}$$

– inhomogene GL lösen

$$* y_P(x) = C(x) * e^{A(x)}$$

- \bullet C(x) gesuchte Funktion
- ♦ Variation der Konstanten

$$*\ y_P = C'(x) * e^{A(x)} + C(x) * e^{A(x)} * a(x) = a(x) * C(x) * e^{A(x)} + b(x)$$

$$ullet ==> C'(x) = b(x) * e^{-A(x)} ==> C(x) = \int b(x) * e^{-A(x)} dx$$

$$-\ y(x) = y_P(x) + D*e^{A(x)}$$

- * allgemeine Lösung
- * homogene + partikuläre Lösung
- Beispiel:

Exakte DGL

•
$$P(x,y)dx + Q(x,y)dy = 0 \le y' = \frac{dy}{dx} = -\frac{P(x,y)}{Q(x,y)}$$

- Stammfunktion existiert, wenn $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$

- * wenn nicht exakt ==> Multiplikation mit integrierenden Faktor $\mu(x)$
 - \bullet alternative Formen $\mu(x)$ in Reihenfolge zum Versuchen
 - desto mehr Versuche desto verzweifelter

* $\mu(x)$ bestimmen

- \bullet DGL nach $\mu(x)$ lösen
- * siehe 2. Beispiel
- Stammfunktion: $d\phi = 0 = > \phi(x, y) = const$
 - * Lösungen von P(x,y)dx + Q(x,y)dy = 0 sind Niveaulinien von ϕ
- Beispiele:
 - ohne $\mu(x)$

- mit $\mu(x)$

- mit $\mu(x * y)$

- Lotka-Volterra Räuber-Beute-Modell

– logistisches Wachstum

[[Differentialgleichungen]]