合 肥 工 业 大 学 试 卷 (A)

共 3 页第 1 页

2021~2022 学年第<u>二</u>学期 课程代码<u>034Y01</u> 课程名称<u>数学(下)</u> 学分<u>5</u> 课程性质: 必修☑选修□限修□ 考试形式: 开卷□闭卷☑ 专业班级(教学班)<u>少数民族预科班</u> 考试日期 2022 年 6 月 18 日 8:00-10:00 命题教师<u>集体</u> 系(所或教研室)主任审批签名_____

一、模板选项

本模板旨在为将合肥工业大学试卷的 word 格式转为 LèTeX 格式. 使用时, 只需在文档开头写上

\documentclass[shijuan] {hfutexam}

即可使用. 需要使用 UTF-8 编码, 并使用 XeLaTeX 至少编译两次, 以正确生成页码. 可使用的选项为: shijuan (试卷), datizhi (答题纸), cankaodaan (参考答案) 和 simple (简易模式). 如果留空则为默认值 shijuan (试卷).

- 1. 试卷/答题纸/参考答案三个选项下页面会设置为 A3 大小, 三种情形的页眉页脚显示的内容以及标题的文字间隔有所不同.
- 2. 简易模式选项下页面会设置为 A4 大小, 页眉页脚也较为简单. 此时需要使用命令 \maketitle 来生成标题. 一般用于仅保存(多张) 试卷内的内容用.
- 3. 标题默认使用方正字体, 因此请在使用前先安装字体: **方正小标宋**和方正**仿宋**, 否则请使用选项 nofangzheng (采用新宋体和仿宋代替).

二、试卷信息

通过下述命令来设置试卷信息.

```
\BiaoTi{试卷标题} % 一般为: 合肥工业大学试卷(A)或(B)
\XueNian{学年起始}{学年结束} % 一般为相差 1 的 4 位数字
\XueQi{学期} % 一般为: 一,二
\KeChengDaiMa{课程代码}
\KeChengMingCheng{课程名称}
\XueFen{学分}
\KeChengXingZhi{课程性质} % 只能为: 必修, 选修, 限修
\KaoShiXingShi{考试形式} % 只能为: 开卷, 闭卷
\ZhuanYeBanJi{专业班级} % 一般不需要填写
\KaoShiRiQi{考试日期}
\MingTiJiaoShi{命题教师}
\XiZhuRenQianMing{系主任签名}
```

其中系主任签名处需要填写相应的图片名, 默认为 example-sign.png, 即一个空白图片. 其它选项默认均为空, 可根据需要只填部分内容.

示例:

```
\BiaoTi{合肥工业大学试卷(A)}
\XueNian{2021}{2022}
\XueQi{二}
\KeChengDaiMa{034Y01}
\KeChengMingCheng{数学(下)}
\XueFen{5}
\KeChengXingZhi{必修}
\KaoShiXingShi{闭卷}
\ZhuanYeBanJi{少数民族预科班}
\KaoShiRiQi{2022年6月18日8:00-10:00}
\MingTiJiaoShi{集体}
\XiZhuRenQianMing{dengbing.png}
```

三、命令

- 1. \tigan{三、命令} 用于生成题干,字体相对较大,且为黑体. 小题建议使用 enumerate 环境来生成.
- 2. \notice 用于生成答题纸提示信息、请放置在答题纸的正文开始处.
- 3. 答题纸中可能需要设置一定高度的空白, 使用命令 \hspace {5cm} 之类的命令即可. 也可以使用 \newpage 换到新的一页 (或分栏).
- 4. \scorebox 用于生成打分框,请放置在答题纸一行的开头使用.

得分	阅卷人		

填空题相关

1. \fillblank{长度}{最低高度}{内容}用于生成填空题的空白,内容可以为空.

示例:

```
\textbf{inkm的答案对应填在横线上: }
\textbf{1.} \fillblank{3.5cm}{1cm}{},
\textbf{2.} \fillblank{3.5cm}{1cm}{},
\textbf{3.} \fillblank{3.5cm}{1cm}{}.
```

合 肥 工 业 大 学 试 卷 (A)

共 3 页第 2 页

2021~2022 学年第_二	学期 课程代码_		妳数学(下)	学分_5_	课程性质:	必修☑选修□限修□] 考试形式::	开卷□闭卷↓
专业班级(教学班)_	少数民族预科班	考试日期_20	22 年 6 月 18 日 8:00-10:00) 命题教师	i 集体	_ 系(所或教研室)	主任审批签名	

请将你的答案对应填在横线上:

1.		, 2.	, 3.	
	I = -= I = 3.4			

选择题相关

- 1. \xx{选项}{选项}{选项}{选项} 用于生成选择题的选项,直接在选择题题干后使用即可. 该命令会自动根据选项长度设置行数. 只支持四个选项, 选项会自动带上 ABCD.
- **2.** 如果想要手动改变每行显示的选项数,可使用命令 \xx[每行显示的选项数]{选项}{选项}}{选项},每行只能显示 1, 2 或 4 个选项.
- 3. \xuanzeti{题号}{答案} 用于生成答题纸选择题的答题区域, 或参考答案选择题的答案 区域.

示例:

```
\begin{enumerate}
\item 柳宗元的《江雪》包含下面哪一句? (~~~~).
\xx[2]{一山鸟飞绝}{百山鸟飞绝}{千山鸟飞绝}{亿山鸟飞绝}
\item 张志和的《渔歌子》是(~~~~).
\xx{东塞山前白鹭飞,桃花流水鳜鱼肥。青箬笠,绿蓑衣,斜风细雨不须归。}
{两塞山前白鹭飞,桃花流水鳜鱼肥。青箬笠,绿蓑衣,斜风细雨不须归。}
{西塞山前白鹭飞,桃花流水鳜鱼肥。青箬笠,绿蓑衣,斜风细雨不须归。}
{北塞山前白鹭飞,桃花流水鳜鱼肥。青箬笠,绿蓑衣,斜风细雨不须归。}
\end{enumerate}
```

- 1. 柳宗元的《江雪》包含下面哪一句?().
 - A. 一山鸟飞绝

B. 百山鸟飞绝

C. 千山鸟飞绝

D. 亿山鸟飞绝

- 2. 张志和的《渔歌子》是 ().
 - A. 东塞山前白鹭飞, 桃花流水鳜鱼肥。青箬笠, 绿蓑衣, 斜风细雨不须归。
 - B. 南塞山前白鹭飞, 桃花流水鳜鱼肥。青箬笠, 绿蓑衣, 斜风细雨不须归。
 - C. 西塞山前白鹭飞,桃花流水鳜鱼肥。青箬笠,绿蓑衣,斜风细雨不须归。
 - D. 北塞山前白鹭飞,桃花流水鳜鱼肥。青箬笠,绿蓑衣,斜风细雨不须归。

在答题纸上的示例:

```
\textbf{请将你所选择的字母 A, B, C, D 之一对应填在下列表格里: }
\xuanzeti{\textbf{题号}}{\textbf{答案}}%
\xuanzeti{1}{}\xuanzeti{2}{}\xuanzeti{3}{}\xuanzeti{4}{}
```

请将你所选择的字母 A, B, C, D 之一对应填在下列表格里:

题号	1	2	3	4	
答案					

得分点相关

\score{数值}用于在参考答案一行结尾处生成得分点的虚线. · · · · · · · · (2分)\score{(2分,缺少常数得1分)}自定义得分内容. · · · · · · · (2分,缺少常数得1分)在公式中无法自动设置虚线长度,此时请根据需要使用flalign*环境并使用如下命令:

```
\begin{flalign*}
&&aaaa&=bbbbbb&\Score[3cm]{(2分, 缺少常数得1分)}\\ % 指定长度, 预设 4cm
&&aaaa&=bbbbb&\sscore3\\ % 预设 2cm, 且只需要输入分数
&&aaaaa&=bbbbbb&\score4\\ % 预设 4cm, 且只需要输入分数
&&aaaaa&=bbbbbb&\lscore5 % 预设 8cm, 且只需要输入分数
\end{flalign*}
\begin{flalign*}
&&a&=b&\Lscore6 % 预设 12cm, 且只需要输入分数
\end{flalign*}
```

```
aaaaaa = bbbbbb aaaa = bbbbb aaaaa = bbbbb aaaa = bbbbb aaaa = bbbbb aaaa = bbbbb aaaaa = bbbbb  aaaaa = bbbbb  aaaaa = bbbbb  aaaaa = bbbbb  aaaaa = bbbbb  aaaaa = bbbbb  aaaaa = bbbbb  aaaaa = bbbbb  aaaaa = bbbbb  aaaaa = bbbbb  aaaaa = bbbbb  aaaaa = bbbbb  aaaaa = bbbbb  aaaaa = bbbbb  aaaaa = bbbbbb  aaaaa = bbbbbb  aaaaa = bbbbbb  aaaaaa = bbbbbbb  aaaaaa = bbbbbb  aaaaaa = bbbbbbb  aaaaaa = bbbbbbb  aaaaaa = bbbbbbb  aaaaaa = bbbbbb  aaaaaa = bbbbbb  aaaaaa = bbbbbb  aaaaaa = bbbbbb  aaaaaaa = bbbbbbb  aaaaaaa = bbbbbbb
```

肥 工 业 大 学 试 卷 (A)

共 3 页第 3 页

2021~2022 学年第_二_学期 课程代码_034Y01_ 课程名称_____数学(下)_____ 学分_5_ 课程性质:必修☑选修□限修□ 考试形式:开卷□闭卷☑

考试日期 2022 年 6 月 18 日 8:00-10:00 命题教师 集体 系(所或教研室)主任审批签名 专业班级(教学班) 少数民族预科班

一、填空题(每题3分,共18分)

- **1.** 如果 f(x) > 0 且 $\lim_{x \to \infty} f(x) = 0$,则 $\lim_{x \to \infty} [1 + f(x)]^{1/f(x)} =$ _____
- **2.** 设 $y = \sin(x^2 + 1)$, 则 dy =
- 3. 极限 $\lim_{n\to\infty} \left(\frac{1}{n^2-1} + \frac{2}{n^2-2} + \cdots + \frac{n}{n^2-n} \right) = \underline{\hspace{1cm}}$
- **4.** 曲线 $y = 2\ln(x+1)$ 在点 $(1,2\ln 2)$ 处的切线方程为
- 5. 若 $e^{y-1} = 1 + xy$, 则 $\frac{dy}{dx}$ =_______.
- **6.** 如果函数 f(x) 的定义域是 $(0,+\infty)$, 且 x=0 是曲线 y=f(x) 的垂直渐近线, 那么 $\lim_{x \to 0^+} \frac{1}{f(x)} =$

二、选择题(每题3分,共18分)

- 1. 当 $x \to +\infty$ 时, $\frac{1}{x}$ 和 () 是等价无穷小.
 - A. $\sin \frac{1}{x}$ B. $\sin x$ C. e^{-x}

- **2.** 若当 $x \to 0$ 时, $\arctan(e^x 1) \cdot (\cos x 1)$ 和 x^n 是同阶无穷小, 则 n = ().
 - A. 0
- B. 1
- C. 2
- D. 3
- 3. 设 $f(x) = \arctan \frac{1}{x(x-1)^2}$, 则 x = 0 是 f(x) 的 ().

- D. 连续点
- **4.** 设 f(x) 是定义在 $(-\infty, +\infty)$ 上的连续函数, 且 f'(x) 的图像如下图所示, 则 f(x) 有 ().
 - A. 一个极大值点,没有极小值点
 - B. 没有极大值点, 一个极小值点
 - C. 一个极大值点和一个极小值点
 - D. 一个极大值点和两个极小值点

- **5.** 设函数 f(x) 在点 x = 0 处可导, 且 f(0) = 0, 则 $\lim_{x \to 0} \frac{f(x^{2022}) + x^{2021}f(x)}{x^{2022}} = ($).
- B. f'(0)
- C. 2f'(0)
- D. 2022f'(0)
- **6.** 如果点 (x_0, y_0) 是曲线 y = f(x) 的拐点, 则 $f''(x_0) = ($).

- B. ∞
- C. 不存在
- D. 0 或不存在

三、解答题(每题8分,共64分)

- 1. 求极限 $\lim_{x \to -1} \frac{x^2 1}{x^2 + 3x + 2}$.
- 2. 求极限 $\lim_{x\to 0} \frac{e^x 1 x}{\arcsin x^2}$.
- 3. 设 $\begin{cases} x = t^2 + t \\ y = t^3 + t \end{cases}$, 求 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 和 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.
- **4.** 设 $f(x) = \begin{cases} x \arctan \frac{1}{x}, & x < 0, \\ x^2 + ax + b, & x \ge 0. \end{cases}$ 求常数 a, b 使得函数 f(x) 在 $(-\infty, +\infty)$ 内可导, 并求出 此时曲线 y = f(x) 的渐近线
- **5.** 求函数 $f(x) = x^3 x^2 x$ 在区间 [-2, 2] 上的最大值和最小值.
- **6.** 证明: 当 $-\frac{\pi}{2} < x_1 < x_2 < \frac{\pi}{2}$ 时, $\tan x_2 \tan x_1 \geqslant x_2 x_1$.
- 7. 设函数 f(x) 在 $(-\infty, +\infty)$ 内可导, 且 f(1) = 0. 证明: 存在 $\xi \in (0,1)$ 使得 $\xi f'(\xi) + \xi f'(\xi)$ $2022f(\xi) = 0.$
- 8. 设函数 $f(x) = \ln x + \frac{2}{x^2}, x \in (0, +\infty)$. 求
 - (1) 函数 f(x) 的增减区间及极值;
 - (2) 曲线 y = f(x) 的凹凸区间及拐点