Учебный год 2022/23

Задачи олимпиады: Математика 11 класс (1 попытка)

Задача 1.

Задача 1. #1 ID 170

Вера написала на доске восьмизначное число. Надя переставила три первые его цифры в конец и написала полученное восьмизначное число на доске (Например, если Вера написала $12\,345\,678$, то Надя написала $45\,678\,123$.) Люба сложила два написанных на доске числа. Сколько различных чисел из отрезка $[23\,100\,000;\,23\,100\,140]$ могло получиться у Любы?

Ответ:

5

Задача 1. #2 ID 171

Вера написала на доске восьмизначное число. Надя переставила три первые его цифры в конец и написала полученное восьмизначное число на доске (Например, если Вера написала $12\,345\,678$, то Надя написала $45\,678\,123$.) Люба сложила два написанных на доске числа. Сколько различных чисел из отрезка $[25\,400\,000;\,25\,400\,160]$ могло получиться у Любы?

Ответ:

Q

Задача 1. #3 ID 172

Вера написала на доске восьмизначное число. Надя переставила три первые его цифры в конец и написала полученное восьмизначное число на доске (Например, если Вера написала $12\,345\,678$, то Надя написала $45\,678\,123$.) Люба сложила два написанных на доске числа. Сколько различных чисел из отрезка $[27\,000\,000;\,27\,000\,150]$ могло получиться у Любы?

Задача 1. #4 ID 173

Вера написала на доске восьмизначное число. Надя переставила три первые его цифры в конец и написала полученное восьмизначное число на доске (Например, если Вера написала $12\,345\,678$, то Надя написала $45\,678\,123$.) Люба сложила два написанных на доске числа. Сколько различных чисел из отрезка $[24\,200\,000;24\,200\,170]$ могло получиться у Любы?

Ответ:

7

Задача 2.

Задача 2. #5 10 174

Найдите сумму квадратов всех решений уравнения $x^2 - 14[3x] + 152 = 0.$

(Здесь [x] обозначает целую часть числа x — наибольшее целое число, не превосходящее x. Например, [1,7]=1, [-1,7]=-2.)

Ответ:

4306

Задача 2. #6 ID 175

Найдите сумму квадратов всех решений уравнения $x^2 - 10[5x] - 51 = 0.$

(Здесь [x] обозначает целую часть числа x — наибольшее целое число, не превосходящее x. Например, [1,7]=1, [-1,7]=-2.)

Ответ:

5193

Задача 2. #7 ID 176

Найдите сумму квадратов всех решений уравнения $x^2-3[8x]-52=0.$

(Здесь [x] обозначает целую часть числа x — наибольшее целое число, не превосходящее x. Например, [1,7]=1, [-1,7]=-2.)

Задача 2. #8 ID 177

Найдите сумму квадратов всех решений уравнения $x^2 + 3[11x] - 190 = 0$.

(Здесь [x] обозначает целую часть числа x — наибольшее целое число, не превосходящее x. Например, [1,7]=1, [-1,7]=-2.)

Ответ:

2916

Задача 3.

Задача 3. #9 ID 178

Сколькими способами в прямоугольнике 60×70 можно разместить две кости домино 1×2 ?

Замечание: каждая кость занимает две соседние клетки.

Ответ:

34167891 ; 68335782

Задача 3. #10 ID 179

Сколькими способами в прямоугольнике 50×40 можно разместить две кости домино 1×2 ?

Замечание: каждая кость занимает две соседние клетки.

Ответ:

7630631 ; 15261262

Задача 3. #11 ID 180

Сколькими способами в прямоугольнике 20×90 можно разместить две кости домино 1×2 ?

Замечание: каждая кость занимает две соседние клетки.

Ответ:

```
6078161
;
12156322
```

Задача 3. #12 1D 181

Сколькими способами в прямоугольнике 25 imes 37 можно разместить две кости домино 1 imes 2?

Замечание: каждая кость занимает две соседние клетки.

Ответ:

```
1592396
;
3184792
```

Задача 4.

Задача 4. #13 ID 182

Окружности Ω и ω радиусов 5 и 4 соответственно касаются друг друга внешним образом в точке T. Прямая ℓ пересекает окружность ω в точках A и B, а окружность Ω — в точках C и D, причём B лежит между A и C, C лежит между B и D, а центры окружностей лежат по одну сторону от ℓ . Известно, что AB:BC:CD=4:1:6. Найдите BC^2 . При необходимости округлите ответ до трёх знаков после запятой.

```
2,244
;
864/385
;
864
385
;
2.244
```

Задача 4. #14 ID 183

Окружности Ω и ω радиусов 5 и 2 соответственно касаются друг друга внешним образом в точке T. Прямая ℓ пересекает окружность ω в точках A и B, а окружность Ω — в точках C и D, причём B лежит между A и C, C лежит между B и D, а центры окружностей лежат по одну сторону от ℓ . Известно, что AB:BC:CD=4:3:4. Найдите AD^2 . При необходимости округлите ответ до трёх знаков после запятой.

Ответ:

88

Задача 4. #15 ID 184

Окружности Ω и ω радиусов 4 и 3 соответственно касаются друг друга внешним образом в точке T. Прямая ℓ пересекает окружность ω в точках A и B, а окружность Ω — в точках C и D, причём B лежит между A и C, C лежит между B и D, а центры окружностей лежат по одну сторону от ℓ . Известно, что AB:BC:CD=4:3:2. Найдите AC^2 . При необходимости округлите ответ до трёх знаков после запятой.

Ответ:

```
62,015;
62.015;
8372/135;
8372
135
```

Задача 4. #16 ID 185

Окружности Ω и ω радиусов 4 и 3 соответственно касаются друг друга внешним образом в точке T. Прямая ℓ пересекает окружность ω в точках A и B, а окружность Ω — в точках C и D, причём B лежит между A и C, C лежит между B и D, а центры окружностей лежат по одну сторону от ℓ . Известно, что AB:BC:CD=6:1:10. Найдите BD^2 . При необходимости округлите ответ до трёх знаков после запятой.

```
72,101
;
72.101
;
8580/119
;
8580
119
```

Задача 5.

Задача **5.** #17 ID 186

На рёбрах BC, AB и A_1B_1 параллелепипеда $ABCDA_1B_1C_1D_1$ отмечены точки K, L и M соответственно так, что $BC:BK=AL:LB=B_1M:MA_1=2$. Прямая ℓ пересекает прямые CD, C_1K , B_1D_1 и LM в четырёх различных точках E, F, G и H соответственно. Найдите длину отрезка HE, если известно, что GE=3.

Ответ:

5

Задача 5. #18 ID 187

На рёбрах BC, AB и A_1B_1 параллелепипеда $ABCDA_1B_1C_1D_1$ отмечены точки K, L и M соответственно так, что $BC:BK=AL:LB=B_1M:MA_1=3$. Прямая ℓ пересекает прямые CD, C_1K , B_1D_1 и LM в четырёх различных точках E, F, G и H соответственно. Найдите длину отрезка HE, если известно, что GE=4.

Ответ:

7

Задача 5. #19 ID 188

На рёбрах BC, AB и A_1B_1 параллелепипеда $ABCDA_1B_1C_1D_1$ отмечены точки K, L и M соответственно так, что $BC:BK=AL:LB=B_1M:MA_1=4$. Прямая ℓ пересекает прямые CD, C_1K , B_1D_1 и LM в четырёх различных точках E, F, G и H соответственно. Найдите длину отрезка HE, если известно, что GE=5.

Ответ:

9

Задача 5. #20 ID 189

На рёбрах BC, AB и A_1B_1 параллелепипеда $ABCDA_1B_1C_1D_1$ отмечены точки K, L и M соответственно так, что $BC:BK=AL:LB=B_1M:MA_1=5$. Прямая ℓ пересекает прямые CD, C_1K , B_1D_1 и LM в четырёх различных точках E, F, G и H соответственно. Найдите длину отрезка HE, если известно, что GE=6.