Costs and Challenges of EMP Protection for U.S. Electric Grid

Presentation of the Foundation for Resilient Societies Exeter, New Hampshire

Thomas S. Popik, Chairman and President

Agenda

- **Executive Summary**
- Configuration of electric grid
- Types of equipment and counts
- **EMP** protection strategies
- **Examples of preliminary costs for EMP protection**
- **■** Importance of prioritization
- Summary conclusions

Executive Summary

- U.S. electric grid has a great diversity of equipment vulnerable to natural and man-made EMP
- Basic EMP protection cost model
 - Catalog types of equipment to be protected
 - Engineering study of vulnerabilities and protective technologies
 - Determine counts by equipment categories
 - Multiply per-unit protection costs by equipment counts
- Substantial costs make prioritization important
- Partial EMP protection is better than no protection
- Even partial EMP protection is likely to be a deterrent against EMP attack

Configuration of Electric Grid

U.S. Electric Transmission System

Graphic credit: Federal Emergency Management Agency

Electric Grid Generation, Transmission, Distribution, and Customers

Graphic Credit: U.S. Department of Energy

Types of Electric Grid Equipment and Counts in Bulk Power System

32,215 Substations

Photo credit: O'Connell Electric Company

15,906 Generation Units

Photo credit: Creative Commons/Rhododendrites

~500 Control Centers

Photo credit: New York State SmartGrid Consortium

EMP Protection Strategies

Neutral Ground Blocking Device

Photo credit: ABB

Spare Circuit Breaker

Photo credit: SML Resources International

Fiber Optic Cabling

Photo Credit: PeakOptical

Shielded Control Enclosure

Photo credit: ARMAG Corporation

Examples of Preliminary Costs for EMP Protection

Example of Substation Protection Costs

Substation			Unit Cost	Estimated	
Name	Item	Protection Basis	(\$M)	Quantity	Cost (\$M)
	Backup Generator	New Equipment	\$0.10M	1	\$0.10M
Substation 1	Circuit Breaker	Spare	\$0.31M	1	\$0.31M
	Control House	New Equipment	\$1.00M	1	\$1.00M
	Neutral Ground Blocker	New Equipment	\$0.60M	2	\$1.20M
	Engineering Study	Overhead	\$1.00M	1	\$1.00M
Total					\$3.61M

Example of Generation Protection Costs

Generator		Capacity	Capacity	Power				
Name	Technology	(MW)	(MVA)	Factor	Cost Driver	Unit Cost	Quantity	Cost (\$M)
					Electrical, Instrumentation & Controls Cost (\$/MW)	\$314,000	1000	\$314.00M
Generator 1	Nuclear - Dual Unit	1000 1176	1176	0.85	Generator Step-up Transformer (\$/MVA)	\$10,000	1176	(\$11.76M)
					Neutral Ground Blocker (\$/ea.)	\$600,000	1	\$0.60M
Total								\$302.84M

Examples of Control Room Protection Costs

		Peak Load/	Estimated	Cost	
Utility Name	Role	Capacity (MW)	Protected Area (ft ²)	(\$/ft²)	Cost (\$M)
Control Room 1	Transmission	7500	6000	\$590.00	\$3.54M
Subtotal					\$3.54M
Control Room 2	Generation Dispatch	1200	2400	\$590.00	\$1.42M
Subtotal					\$1.42M
Control Room 3	Reliability Coordinator & Transmission	-	20000	\$590.00	\$11.80M
Subtotal					\$11.80M
Total					\$16.76M

Importance of Prioritization

- Total EMP protection costs are likely to cause "sticker shock" for policymakers
- EMP protection to supply critical facilities with electricity will be a starting point
 - Military bases
 - Nuclear power plants
 - Natural gas pipelines
 - Water treatment facilities
 - Other critical facilities
- Implementation of EMP protection over multiple years will make costs more manageable

Summary Conclusions

- Determining categories of grid equipment and their EMP vulnerabilities is a substantial task
 - Individual engineering studies needed
- Finding counts of equipment by category is more straightforward
- Estimating EMP protection costs by equipment category will be challenging
- Pilot programs will provide a better cost basis
- Prioritization is essential, across facilities and time
- Partial EMP protection will have multiple benefits
 - Experience in protection techniques
 - Deterrence of adversaries

For More Information

- Foundation for Resilient Societies is an IRS-approved 501(c)(3) charitable organization with the mission of critical infrastructure protection.
- Contact Info:

Foundation for Resilient Societies 24 Front Street, Suite 203 Exeter, NH 03833 855-688-2430