

YOCO: Unified and Efficient Memory Protection for High Bandwidth Memory

Dongwhee Kim and Jungrae Kim

Sungkyunkwan University

Outline

- Introduction
- Background
- Motivation
- YOCO (You Only Code Once)
- Evaluation
- Conclusion

Introduction

Error correction code in modern memory systems

− Pros : Yield ★

Cons : Storage overhead , protection cost

Maximize yield with minimal protection overhead

Datacenter DRAM [2]

Background

- System ECC (S-ECC)
 - Using extra chips
 - Can correct severe multi-bit errors (Reed-Solomon code)
 - Can prevent system from failures (System companies)

Background

- On-die ECC (O-ECC)
 - Using extra cells within a chip
 - Can correct randomly distributed errors
 - Can hide error information (DRAM vendors)

Motivation

- Combining two ECCs
 - Can correct severe multi-bit errors and randomly distributed errors
 - At high storage costs (21.9% extra cells)

Correct both severe multi-bit errors and random bit errors using the same redundancy and single encoding

Prior Work

Remove O-ECC redundancy

- Encoding
 - Single encoding in S-ECC
 - No encoding in O-ECC

S-ECC
$$\begin{pmatrix} \alpha^{26} & \alpha^1 & \alpha^0 & 0 & \dots & 0 & 0 \\ \alpha^{198} \alpha^{25} & 0 & \alpha^0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \alpha^{43} & \alpha^{121} \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} & \alpha^0 \end{pmatrix}$$

Generator Matrix over GF(2⁸)

- Decoding
 - O-ECC: SEC-DED (144, 128) X 2
 - S-ECC : Single-Symbol Correction [18, 16] X 2

- Decoding
 - Using the same redundancy

Evaluation

- Comparison of estimated yield
 - Reduce ECC storage!
 - Maintain almost the same-level yield

Conclusion

- We propose YOCO, providing the almost same level of protection as separate S-ECC and O-ECC but reduces the redundancy by encoding only once.
- Reduce the overall ECC storage overhead
 √21.9% 12.5%
- No O-ECC encoding logic! (You Only Code Once)

Thank you

Backup slides

Decoding

```
- No error : S_0 = 0 and S_1 = 0
```

-SSC: S_0 = error value and S_1/S_0 = error location

- SEC : $S_0 = \alpha^0 \sim \alpha^7$ and $S_1/S_0 = \text{error location}$

- DED: $(S_0 \neq 0 \text{ and } S_0 \neq \alpha^0 \sim \alpha^7) \text{ or } (S_0 = 0 \text{ and } S_1 \neq 0)$

Reference

- [1] S. Cha et al., "Defect Analysis and Cost-effective Resilience Architecture for Future DRAM Devices," in HPCA, 2017.
- [2] "The case for cold DRAM in the data center", Rambus blog.last modified Oct 5. 2017, accessed Sep 8, 2022, https://www.rambus.com/blogs/the-case-for-cold-dram-in-the-data-center/