Least Square Regression Problem

$$h_{\theta}(x) = \theta^T x$$

1.1 Batch Gradient Decent

cost function:
$$\frac{1}{2m} \sum_{i=0}^{m-1} (h_{\theta}(X^i) - y^i)^2$$

Update Rule: m = 600

for
$$j = 0....7$$
:
 $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=0}^{m-1} (h_{\theta}(X^i) - y^i) X_j^i$

1.1.1 Result Plot

epochs = 100, $\alpha = 0.0001$

Stochastic Gradient Decent

cost function: $\frac{1}{2}(h_{\theta}(X^i) - y^i)^2$

Update Rule: m = 600

for i = 0....599:

for
$$j = 0....7$$
:

$$\theta_j := \theta_j - \alpha(h_\theta(X^i) - y^i)X_j^i$$

1.2.1 Result Plot

epochs = 100, $\alpha = 0.00001$

Mini Batch Gradient Decent

cost function: $\frac{1}{k} \sum_{i=0}^{k-1} (h_{\theta}(X^k) - y^k)^2$

Update Rule: k = 10, m = 600

for i = 0..9..19....599:

for
$$j = 0....7$$
:
 $\theta_j := \theta_j - \alpha \frac{1}{b} \sum_{k=i}^{(i+k)-1} (h_{\theta}(X^k) - y^k) X_j^k$

1.3.1 Result Plot

epochs = 100, $\alpha = 0.00001$, b = 10

1.4 BGD vs SGD vs MBGD

Classification Problem

$$h_{\theta}(x) = \frac{1}{1 + e^{\theta^T x}}$$

Batch Gradient Decent

cost function:
$$-\frac{1}{m}\sum_{i=0}^{m-1}(\ y^ilog(h_\theta(X^i))+(1-y^i)log(1-h_\theta(X^i))\)$$

Update Rule: m = 600

for
$$j = 0....7$$
:
 $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=0}^{m-1} (h_{\theta}(X^i) - y^i) X_j^i$

2.1.1Accuracy

0.806

2.1.2 Result Plot

epochs = 1000, $\alpha = 0.0001$

Stochastic Gradient Decent

cost function:
$$-(y^i log(h_{\theta}(X^i)) + (1 - y^i) log(1 - h_{\theta}(X^i)))$$

Update Rule: m = 600

for i = 0....599:

for j = 0....7:

$$\theta_j := \theta_j - \alpha(h_\theta(X^i) - y^i)X_j^i$$

2.2.1Accuracy

0.806

2.2.2 Result Plot

epochs = 1000, $\alpha = 0.000001$

Mini Batch Gradient Decent

cost function: $-\frac{1}{k}\sum_{i=0}^{k-1}(\ y^klog(h_\theta(X^k))+(1-y^k)log(1-h_\theta(X^k))\)$

Update Rule: k = 10, m = 600

for i = 0..9..19....599:

for
$$j = 0....7$$
:
 $\theta_j := \theta_j - \alpha \frac{1}{b} \sum_{k=i}^{(i+k)-1} (h_{\theta}(X^k) - y^k) X_j^k$

2.3.1Accuracy

0.806

Result Plot 2.3.2

epochs = 1000, $\alpha = 0.000001$, b = 10

$2.4 \quad BGD \ vs \ SGD \ vs \ MBGD$

