NOTAÇÕES

i : unidade imaginária ; $i^2 = i \cdot 1$ C : conjunto dos números complexos z = x + iy; x; y 2 R Q : conjunto dos números racionais 2 : conjugado do número z 2 C R: conjunto dos números reais **Z** : conjunto dos números inteiros jzj: módulo do número z 2 C N = f0; 1; 2; 3; :::gRez: parte real de z 2 C $N^{x} = f1; 2; 3; :::q$ Im z : parte imaginária de z 2 C ; : conjunto vazio $[a;b] = fx 2 R : a \cdot x \cdot bq$ (a; b) = fx 2 R : a < x < bgAnB = fx 2 A : x 2 Bgdet A: determinante da matriz A $[a; b) = fx \ 2 \ R : a \cdot x < bq$ \overline{AB} : segmento de reta unindo os pontos A e B $(a;b] = fx 2 R : a < x \cdot bq$: combinação de a elementos, b a b, onde a e b são inteiros maiores ou iguais a zero P(X): conjunto de todos os subconjuntos de X n(X): número de elementos do conjunto X (X ...nito)

Obs.: São cartesianos ortogonais os sistemas de coordenadas considerados

Questão 1. Seja E um ponto externo a uma circunferência. Os segmentos \overline{EA} e \overline{ED} interceptam essa circunferência nos pontos B e A, e, C e D, respectivamente. A corda \overline{AF} da circunferência intercepta o segmento \overline{ED} no ponto G: Se EB = 5, BA = 7, EC = 4, GD = 3 e AG = 6, então GF vale

A()1 B()2

C()3 D()4 E()5

Questão 2. Seja U um conjunto não vazio com n elementos, n 1: Seja S um subconjunto de P(U) com a seguinte propriedade:

Se A; B 2 S, então A ½ B ou B ½ A:

Então, o número máximo de elementos que S pode ter é

A () $2^{n_i \ 1}$ B () n=2, se n for par, e (n + 1)=2 se n for impar C () n+1 D () $2^{n_i \ 1}$ E () $2^{n_i \ 1}+1$

Questão 3. Sejam A e B subconjuntos ...nitos de um mesmo conjunto X, tais que n(BnA), n(AnB) e $n(A \setminus B)$ formam, nesta ordem, uma progressão aritmética de razão r > 0. Sabendo que n(BnA) = 4 e $n(A \mid B) + r = 64$, então, n(AnB) é igual a

A() 12

B()17

C()20

D()22

E()24

dado por B =	fx 2 R: f(x)		aior elemento de l	¼=6)] e seja B o c B \ (¡ 1 ; 0) e n é c	
A () $\frac{2\%}{15}$	B () $\frac{\frac{1}{4}}{15}$	C () $i \frac{\frac{1}{4}}{30}$	D (); $\frac{\frac{1}{4}}{15}$	E () $i \frac{2\%}{15}$	
Questão 5.	Considere a ec	juação (a ^x ¡ a ^{¡ x})	$=(a^{x}+a^{i}^{x})=m$	n, na variável real	x, com

Questão 5. Considere a equação $(a^x_i a^i)=(a^x+a^i)=m$, na variável real x, com $0 < a \in 1$. O conjunto de todos os valores de m para os quais esta equação admite solução real é

Questão 6. Considere uma prova com 10 questões de múltipla escolha, cada questão com 5 alternativas. Sabendo que cada questão admite uma única alternativa correta, então o número de formas possíveis para que um candidato acerte somente 7 das 10 questões é

A ()
$$4^4 \, \text{(30)}$$
 B () $4^3 \, \text{(60)}$ C () $5^3 \, \text{(60)}$ D () $\frac{\mu_7 \, \text{(1)}}{3} \, \text{(4)}^3$ E () $\frac{7}{3} \, \text{(1)}^3$

Questão 7. Considere as seguintes a...rmações sobre a expressão $S = P_{k=0}^{101} log_8 i_4^k P_{\overline{2}}^{\c t}$:

- I. S é a soma dos termos de uma progressão geométrica ...nita
- II. S é a soma dos termos de uma progressão aritmética ...nita de razão 2=3
- III. S = 3451
- IV. $S \cdot 3434 + \log_8 \frac{D}{2}$

Então, pode-se a...rmar que é(são) verdadeira(s) apenas

Questão 8. Se para todo z 2 C, jf(z)j = jzj e $jf(z)_i$ $f(1)j = jz_i$ 1j, então, para todo z 2 C, $\overline{f(1)}f(z) + f(1)\overline{f(z)}$ e igual a

A() 1 B()
$$2z$$
 C() $2 Rez$ D() $2 Imz$ E() $2jzj^2$

Questão 9. O conjunto solução de
$$(tg^2x_i \ 1)(1_i \ cotg^2x) = 4$$
, $x \notin k\% = 2$, $k \neq 3$, $k \neq 4$, $k \neq 4$, $k \neq 4$, $k \neq 2$, $k \neq 4$,

Questão 10. Se ® 2 [0; 24) é o argumento de um número complexo z 6 0 e n é um número natural tal que $(z=izi)^n = isen(n®)$, então, é verdade que

- A () 2n® é múltiplo de 2¼
- B () 2n®; ¼ é múltiplo de 2¼
- C () $n^{\text{\tiny R}}$; ¼=4 é múltiplo de ¼=2
- D () 2n®; ¼ é múltiplo não nulo de 2
- E () n®; 2¼ é múltiplo de ¼

Questão 11. A condição para que as constantes reais a e b tornem incompatível o sistema

|
$$x + y + 3z = 2$$

| $x + 2y + 5z = 1$ | $2x + 2y + az = b$

A()
$$a_i b \in 2$$
 B() $a + b = 10$ C() $4a_i 6b = 0$

D ()
$$\frac{a}{b} = \frac{3}{2}$$
 E () a t b = 24

Questão 13. Seja p um polinômio com coe...cientes reais, de grau 7, que admite 1; i como raiz de multiplicidade 2. Sabe-se que a soma e o produto de todas as raízes de p são, respectivamente, 10 e ¡ 40. Sendo a...rmado que três raízes de p são reais e distintas e formam uma progressão aritmética, então, tais raízes são

e formam uma progressao aritmetica, entao, tais raizes sao
A ()
$$\frac{3}{2}$$
 i $\frac{P_{\overline{193}}}{6}$, 3, $\frac{3}{2}$ + $\frac{P_{\overline{193}}}{6}$ B () 2 i $4^{P_{\overline{13}}}$, 2, 2 + $4^{P_{\overline{13}}}$ C () i 4, 2, 8 D () i 2, 3, 8 E () i 1, 2, 5

Questão 14. Sobre o polinômio $p(x) = x^5 i 5x^3 + 4x^2 i 3x i 2$ podemos armar que
A () x = 2 não é raiz de p B () p só admite raízes reais, sendo uma delas inteira, duas racionais e duas irracionais C () p admite uma única raiz real, sendo ela uma raiz inteira D () p só admite raízes reais, sendo duas delas inteiras E () p admite somente 3 raízes reais, sendo uma delas inteira e duas irracionais
Questão 15. Seja o sistema linear nas incógnitas x e y, com a e b reais, dado por

$$(a_i b)x_i (a + b)y = 1$$

 $(a + b)x + (a_i b)y = 1$

Considere as seguintes a...rmações:

- O sistema é possível e indeterminado se a = b = 0
- O sistema é possível e determinado se a e b não são simultaneamente nulos

III.
$$x^2 + y^2 = \frac{1}{a^2 + b^2}$$
, se $a^2 + b^2 \in 0$

Então, pode-se a...rmar que é(são) verdadeira(s) apenas

Questão 16. Considere o polinômio $p(x) = x^3$; (a + 1)x + a, onde a 2 Z. O conjunto de todos os valores de a, para os quais o polinômio p(x) só admite raízes inteiras, é

A ()
$$f2n; n 2 Ng$$
 B () $f4n^2; n 2 Ng$ C () $f6n^2; 4n; n 2 Ng$ D () $fn(n + 1); n 2 Ng$ E () N

Questão 17. Numa circunferência C_1 de raio $r_1 = 3$ cm está inscrito um hexágono regular H_1 ; em H_1 está inscrita uma circunferência C_2 ; em C_2 está inscrito um hexágono regular H_2 e, assim, sucessivamente. Se A_n (em cm 2) é a área do hexágono H_n , então

$$P_{n=1}^{1} A_{n}$$
 (em cm²) é igual a
A () $54^{10}\overline{2}$ B () $54^{10}\overline{3}$ C () $36(1 + \frac{10}{3})$
D () $\frac{27}{2 + \frac{10}{3}}$ E () $30(2 + \frac{10}{3})$

Questão 18. Sejam a reta s : $12x_1$ 5y + 7 = 0 e a circunferência C : $x^2 + y^2 + 4x + 2y = 11$: A reta p, que é perpendicular a s e é secante a C, corta o eixo Oy num ponto cuja ordenada pertence ao seguinte intervalo

- Questão 19. Os focos de uma elipse são $F_1(0; i, 6)$ e $F_2(0; 6)$. Os pontos A(0; 9) e B(x; 3), x > 0, estão na elipse. A área do triângulo com vértices em B, F_1 e F_2 é igual a
- A() $22^{p}\overline{10}$ B() $18^{p}\overline{10}$ C() $15^{p}\overline{10}$ D() $12^{p}\overline{10}$ E() $6^{p}\overline{10}$

Questão 20. Uma pirâmide regular tem por base um hexágono cuja diagonal menor mede 3 3 cm. As faces laterais desta pirâmide formam diedros de 60° com o plano da base: A área total da pirâmide, em cm², é

- A() $\frac{81^{p_{\overline{3}}}}{2}$ B() $\frac{81^{p_{\overline{2}}}}{2}$ C() $\frac{81}{2}$ D() $27^{p_{\overline{3}}}$ E() $27^{p_{\overline{2}}}$

As questões dissertativas, numeradas de 21 a 30, devem ser resolvidas e respondidas no caderno de soluções.

Questão 21. Considere A um conjunto não vazio com um número ...nito de elementos. Dizemos que $F = fA_1; ...; A_m g \% P(A)$ é uma partição de A se as seguintes condições são satisfeitas:

- A_{i} 6;, i = 1; :::; m
- $A_i \setminus A_j = ;$, se i \in j, para i; j = 1;:::; m
- III. $A = A_1 [A_2 [ff] A_m]$

Dizemos ainda que F é uma partição de ordem k se $n(A_i) = k$, i = 1; :::; m: Supondo que n(A) = 8, determine:

- (a) As ordens possíveis para uma partição de A
- (b) O número de partições de A que têm ordem 2

Questão 22. Seja f : [0;1) ! R de...nida por $f(x) = \begin{pmatrix} \frac{1}{2}x \\ 2x \\ 1 \end{pmatrix}; \quad 0 \cdot x < 1=2 \\ 2x \\ 1 \end{cases}$:

de...nida acima. Justi...cando a resposta, determine se g é par, ímpar ou nem par nem ímpar.

- Questão 23. Determine o coe...ciente de x^4 no desenvolvimento de $(1 + x + x^2)^9$:
- Questão 24. Determine para quais valores de x 2 (j ¼=2; ¼=2) vale a desigualdade

$$\log_{\cos x}(4 \sin^2 x + 1) + \log_{\cos x}(4 + \sec^2 x) > 2$$
:

Questão 25. Considere o polinômio $p(x) = x^3 + ax^2 + x + 1$, com raízes reais. O coe...ciente a é racional e a diferença entre duas de suas raízes também é racional. Nestas condições, analise se a seguinte a...rmação é verdadeira:

"Se uma das raízes de p(x) é racional, então todas as suas raízes são racionais."

Questão 26. As medidas, em metros, do raio da base, da altura e da geratriz de um cone circular reto formam, nesta ordem, uma progressão aritmética de razão 2 metros. Calcule a área total deste cone em m².

Questão 27. Sejam as matrizes

Determine o elemento C_{34} da matriz $C = (A + B)^{i-1}$:

Questão 28. Seja $(a_1; a_2; a_3; \dots; a_n; \dots)$ uma progressão geométrica in...nita de razão positiva r, em que $a_1 = a$ é um número real não nulo. Sabendo que a soma de todos os termos de índices pares desta progressão geométrica é igual a 4 e que a soma de todos os termos de índices múltiplos de 3 é 16=13, determine o valor de a + r:

Questão 29. Sabendo que $9y^2$ i $16x^2$ i 144y + 224x i 352 = 0 é a equação de uma hipérbole, calcule sua distância focal.

Questão 30. Considere um losango ABCD cujo perímetro mede 100 cm e cuja maior diagonal mede 40 cm. Calcule a área, em cm², do círculo inscrito neste losango.