AI25BTECH11034 - SUJAL CHAUHAN 2.10.23

Question:

The vector(s) which is/are coplanar with the vectors $\hat{i}+\hat{j}+2\hat{k}$ and $\hat{i}+2\hat{j}+\hat{k}$, and perpendicular to vector $\hat{i}+\hat{j}+\hat{k}$ is/are.

- a) $\hat{\mathbf{j}} \hat{\mathbf{k}}$
- b) $\hat{\mathbf{i}} + \hat{\mathbf{j}}$
- c) $\hat{\mathbf{i}} \hat{\mathbf{j}}$
- d) $\hat{\mathbf{j}}+\hat{\mathbf{k}}$

Variable	Vector
A	$\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$
В	$\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$
C	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

Listing options as vectors $\mathbf{D}_{\mathbf{i}}$:

Input	Vector
D_1	$\begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$
D_2	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$
D_3	$\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$
D_4	$\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$

Checking coplanarity

If the given vector \mathbf{D}_i is coplanar with \mathbf{A} and \mathbf{B} :

$$[\mathbf{A} \mathbf{B} \mathbf{D_i}] = 0 \quad \Longleftrightarrow \quad [\mathbf{A} \mathbf{B} \mathbf{D_i}]^2 = 0 \tag{1}$$

The determinant test via Gram matrix:

$$\mathbf{G_i} = \begin{pmatrix} \mathbf{A}^T \mathbf{A} & \mathbf{A}^T \mathbf{B} & \mathbf{A}^T \mathbf{D_i} \\ \mathbf{B}^T \mathbf{A} & \mathbf{B}^T \mathbf{B} & \mathbf{B}^T \mathbf{D_i} \\ \mathbf{D_i}^T \mathbf{A} & \mathbf{D_i}^T \mathbf{B} & \mathbf{D_i}^T \mathbf{D_i} \end{pmatrix}$$
(2)

$$[\mathbf{A} \mathbf{B} \mathbf{D_i}]^2 = \det(\mathbf{G_i}) \tag{3}$$

Checking coplanarity for all four vectors:

Vector	$\det(G)$	Coplanar?
D_1	0	Yes
D_2	4	No
D_3	16	No
D_4	4	No

Checking perpendicular to ${\bf C}\,$

If a given vector is perpendicular to C:

$$\mathbf{C}^T \mathbf{D_i} = 0 \tag{4}$$

$$\mathbf{C}^T = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \tag{5}$$

Vector	$\mathbf{C}^T\mathbf{D_i}$	Perpendicular?
D_1	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = 0$	Yes
$ ho_2$	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 3$	No
D_3		Yes
${ m D_4}$	$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = 2$	No

Figure 1: Vector \mathbf{D}_1 in plane

Figure 2: Vector $\mathbf{D_2}$ not coplanar

Figure 3: Vector \mathbf{D}_3 not coplanar

Figure 4: Vector \mathbf{D}_4 not coplanar