Exercise 5. Answer Sheet

Student's Name: Haruki Terushima Student's ID: s1290037

Problem 1. (15 points) Consider the graph below.

Draw a shortest path spanning tree with root at vertex s. Show the cost (weight) of paths to each vertex.

Problem 2. (15 points) Dijksta's algorithm cannot handle negative weights. Show an example and explain what happens.

The negative weight changes the shortest path. There is an example;

To get C, there are 2 path: A=>B=>C and A=>C If the weight of B to C is minus 3, then A, B, C path is the shortest.

But adding 3 for all the weight, then the shortest path changes to A to C.

Problem 3. (20 points) Extend the pseudocode of the Bellman-Ford algorithm given at the lecture so it can detect negative cycles.

```
\label{eq:continuous_section} \begin{split} \text{def Bellman-Ford-modified } & (G,s,w) \text{:} \\ \text{Init-SS } & (G,s) \\ \text{for } i = 1 \text{ to } |G.V| - 1 \\ \text{ for each edge } & (u,v) \text{ in } G.E \\ & \text{RELAX } & (u,v,w) \\ & \text{ if } d[u] + w(u,v) \leq d[v] \text{:} \\ & \text{ return "Negative cycle found"} \end{split}
```

Problem 4. (50 points) Write a program implementing Dijksta's algorithm. Upload your source code. Show your input graph and the obtained shortest path spanning tree in the space below.

```
<Compire>
javac *.java
java findShortestPath
<input>
6
9
018
022
034
127
142
231
243
259
355
0
<output>
node 0:
    distance => 0 path =>
node 1:
    distance \Rightarrow 7 \quad path \Rightarrow 0.2.4
node 2:
    distance \Rightarrow 2 path \Rightarrow 0
node 3:
    distance \Rightarrow 3 path \Rightarrow 0.2
node 4:
    distance => 5 path => 0.2
node 5:
    distance => 8 path => 0.23
```

<input graph >

< shortest path spanning tree >

