Diabetes Readmission Prediction

Vivian Do, Bethany Wang 2023-06-24

1. Initial Data Preparation

1.1 Import and check the Data

```
#Read in data, replace "?" with NA values
df <- read.csv(file = "diabetic_data.csv", na.strings=c("?"))
dim(df)</pre>
```

```
## [1] 101766 50
```

```
str(df)
```

```
## 'data.frame':
                   101766 obs. of 50 variables:
                            : int 2278392 149190 64410 500364 16680 35754 55842 63768 1252
## $ encounter id
2 15738 ...
                            : int 8222157 55629189 86047875 82442376 42519267 82637451 842
## $ patient_nbr
59809 114882984 48330783 63555939 ...
                            : chr "Caucasian" "Caucasian" "AfricanAmerican" "Caucasian"
## $ race
. . .
                                   "Female" "Female" "Male" ...
##
   $ gender
                            : chr
                                   "[0-10)" "[10-20)" "[20-30)" "[30-40)" ...
## $ age
                            : chr
## $ weight
                            : chr NA NA NA NA ...
## $ admission_type_id
                            : int 6 1 1 1 1 2 3 1 2 3 ...
## $ discharge_disposition_id: int 25 1 1 1 1 1 1 1 1 3 ...
## $ admission_source_id : int 1 7 7 7 7 2 2 7 4 4 ...
## $ time_in_hospital
                            : int 1 3 2 2 1 3 4 5 13 12 ...
## $ payer_code
                            : chr NA NA NA NA ...
## $ medical_specialty : chr "Pediatrics-Endocrinology" NA NA NA ...
## $ num_lab_procedures
                           : int 41 59 11 44 51 31 70 73 68 33 ...
                            : int 0051061023...
## $ num procedures
## $ num medications
                            : int 1 18 13 16 8 16 21 12 28 18 ...
## $ number_outpatient
                            : int 0020000000...
## $ number_emergency
                            : int 0000000000...
## $ number_inpatient
                            : int 0010000000...
                            : chr "250.83" "276" "648" "8" ...
## $ diag 1
                            : chr NA "250.01" "250" "250.43" ...
## $ diag_2
                                   NA "255" "V27" "403" ...
##
   $ diag_3
                            : chr
                                   1967597888...
  $ number_diagnoses
                            : int
                                   "None" "None" "None" ...
## $ max_glu_serum
                            : chr
## $ A1Cresult
                            : chr
                                   "None" "None" "None" "None" ...
  $ metformin
                                   "No" "No" "No" "No" ...
##
                            : chr
                                   "No" "No" "No" "No" ...
  $ repaglinide
                            : chr
##
## $ nateglinide
                                   "No" "No" "No" "No" ...
                            : chr
## $ chlorpropamide
                                   "No" "No" "No" "No" ...
                            : chr
## $ glimepiride
                                   "No" "No" "No" "No" ...
                            : chr
                                   "No" "No" "No" "No" ...
## $ acetohexamide
                            : chr
## $ glipizide
                                   "No" "No" "Steady" "No" ...
                            : chr
                                   "No" "No" "No" "No" ...
## $ glyburide
                            : chr
## $ tolbutamide
                            : chr
                                   "No" "No" "No" "No" ...
                                   "No" "No" "No" "No" ...
## $ pioglitazone
                            : chr
                                   "No" "No" "No" "No" ...
## $ rosiglitazone
                            : chr
                                   "No" "No" "No" "No" ...
## $ acarbose
                            : chr
   $ miglitol
                                   "No" "No" "No" "No" ...
##
                            : chr
  $ troglitazone
                                   "No" "No" "No" "No" ...
##
                            : chr
                                   "No" "No" "No" "No"
  $ tolazamide
##
                            : chr
## $ examide
                                   "No" "No" "No" "No" ...
                            : chr
                                   "No" "No" "No" "No"
   $ citoglipton
                            : chr
##
  $ insulin
                            : chr
                                   "No" "Up" "No" "Up" ...
                                   "No" "No" "No" "No"
  $ glyburide.metformin
                            : chr
                                   "No" "No" "No" "No" ...
## $ glipizide.metformin
                            : chr
                                   "No" "No" "No" "No"
   $ glimepiride.pioglitazone: chr
                                   "No" "No" "No" "No" ...
##
  $ metformin.rosiglitazone : chr
                                   "No" "No" "No" "No" ...
  $ metformin.pioglitazone : chr
                                   "No" "Ch" "No" "Ch" ...
##
  $ change
                            : chr
                                   "No" "Yes" "Yes" "Yes" ...
##
   $ diabetesMed
                            : chr
                                   "NO" ">30" "NO" "NO" ...
  $ readmitted
##
                            : chr
```

There are 101766 data records with 50 features

1.2 Filter out Irrelevant Observations

 All patient encounters associated with a discharge to hospice or death will be removed, as the chance of readmission is low-impossible.

```
dischargedRemoved <- c(11,13,14,19,20,21)
df <- subset(df, !(discharge_disposition_id %in% dischargedRemoved))</pre>
```

• encounter_id and patient_nbr are identifiers, not useful features. Payer_code is irrelevant feature too. They will be removed.

```
df <- subset(df, select = -c(encounter_id, patient_nbr, payer_code))
dim(df)</pre>
```

```
## [1] 99343 47
```

1.3 Filter out degenerated features

```
library(caret)

# Use nearZeroVar function to filter out low variance features
degenerateCols <- nearZeroVar(df)
length(degenerateCols)</pre>
```

```
## [1] 18
```

```
degenerateColNames <- colnames(df[degenerateCols])
degenerateColNum <- length(degenerateColNames)

cat("These are ", degenerateColNum, " degenerated predictors:\n", degenerateColNames, "\n\n")</pre>
```

```
## These are 18 degenerated predictors:
## max_glu_serum repaglinide nateglinide chlorpropamide glimepiride acetohexamide tolbutamid
e acarbose miglitol troglitazone tolazamide examide citoglipton glyburide.metformin glipizid
e.metformin glimepiride.pioglitazone metformin.rosiglitazone metformin.pioglitazone
```

```
df<- df[, -degenerateCols]
dim(df)</pre>
```

```
## [1] 99343 29
```

```
colnames(df)
```

```
##
   [1] "race"
                                    "gender"
## [3] "age"
                                    "weight"
## [5] "admission_type_id"
                                    "discharge_disposition_id"
## [7] "admission_source_id"
                                    "time_in_hospital"
                                    "num_lab_procedures"
## [9] "medical_specialty"
                                    "num_medications"
## [11] "num_procedures"
## [13] "number_outpatient"
                                    "number_emergency"
## [15] "number_inpatient"
                                    "diag_1"
## [17] "diag_2"
                                    "diag_3"
## [19] "number_diagnoses"
                                    "A1Cresult"
## [21] "metformin"
                                    "glipizide"
## [23] "glyburide"
                                    "pioglitazone"
## [25] "rosiglitazone"
                                    "insulin"
## [27] "change"
                                    "diabetesMed"
## [29] "readmitted"
```

 18 degenerated predictors that show near-zero variance have been removed. 29 columns are left in the dataset.

1.4 Filter out categorical levels indicating nulls

'discharge_disposition_id' (discharge ID), 'admission_type_id' (admission type ID), and 'admission_source_id' (admission source ID) are categorical variables with levels identified by their ID number. For example, 'admission_type_id' 1 refers to 'Emergency'.

For admission source and type, the following ID levels associated with null values will be replaced as NA:

- Admission source ID 9 (Not Available), 17 (NULL), and 20 (Not Mapped)
- Admission type ID 6 (NULL) and 8 (Not Mapped)

```
admissionsourceRemoved <- c(9,17,20)
df$admission_source_id[df$admission_source_id %in% admissionsourceRemoved] <- NA
admissiontypeRemoved <- c(6,8)
df$admission_type_id[df$admission_type_id %in% admissiontypeRemoved] <- NA
table(df$admission_source_id)
```

```
##
                            6 7
                                                       14
                                                            22
##
     1
          2
              3
                       5
                                     8
                                         10
                                              11
                                                  13
            185 3118
## 29168 1081
                                    15
                                                        2
                                                            12
                      806 2239 55850
##
    25
##
     2
```

```
sum(is.na(df$admission_source_id))
```

```
## [1] 6854
```

1.5 Handle missing values

Check missing values

```
# Check null values
#Show null counts
null_counts <- sort(colSums(is.na(df)), decreasing=TRUE)
head(null_counts,10)</pre>
```

```
##
                 weight
                           medical_specialty admission_source_id
                                                                      admission_type_id
                  96218
##
                                       48616
                                                              6854
                                                                                    5527
##
                                      diag 3
                                                            diag 2
                                                                                  diag 1
                   race
##
                   2234
                                                               356
                                         1419
                                                                                      20
##
                 gender
                                          age
##
                                            0
```

```
#Show proportion of null counts
nullProp <- sort(round(colMeans(is.na(df)),3), decreasing=TRUE)
head(nullProp,10)</pre>
```

```
##
                      weight
                                     medical_specialty
                                                              admission_source_id
##
                       0.969
                                                  0.489
                                                                             0.069
##
          admission_type_id
                                                   race
                                                                            diag_3
##
                       0.056
                                                  0.022
                                                                             0.014
##
                      diag_2
                                                 gender
                                                                                age
                       0.004
                                                  0.000
##
                                                                             0.000
## discharge_disposition_id
##
```

- The following predictors contain a significant number of null values: 'weight' (96.9%), medical_specialty (48.9%). These two predictors will be removed.
- The following predictors contain less than 2% null values: 'race' (2.2%), 'diag_3' (1.4%), 'diag_2' (0.4%), and 'diag_1' (0.02%). Because the null percentages are very low, we will simply remove the rows with null values.

```
# remove weight and medical_specialty
df<- subset(df, select = -c(weight, medical_specialty))

# Remove other null values
df <- na.omit(df)

null_counts <- sort(colSums(is.na(df)), decreasing=TRUE)
head(null_counts,10)</pre>
```

```
##
                                                gender
                        race
                                                                              age
##
          admission_type_id discharge_disposition_id
##
                                                             admission_source_id
##
##
           time in hospital
                                    num lab procedures
                                                                  num procedures
##
            num_medications
##
##
                           0
```

```
dim(df)
```

1.6 Feature Creation

• Explore primary diagnoses ('diag_1') and secondary diagnoses ('diag_2', 'diag_3')

```
# Convert to numeric
df$diag_1 <- as.numeric(df$diag_1)
df$diag_2 <- as.numeric(df$diag_2)
df$diag_3 <- as.numeric(df$diag_3)

# Show distributions of diagnoses
par(mfrow=c(1,3))
hist(df$diag_1)
hist(df$diag_2)
hist(df$diag_3)</pre>
```


#summary(df\$diag_1)

• Extract primary/secondary diagnoses

```
library(dplyr)
df <- df %>%
  mutate(primary_diagnosis = case_when(
    substr(diag_1, 1, 3) == "250" ~ "Diabetes",
    #between(as.numeric(diag_1), 001, 139) ~ "Infectious and Parasitic Diseases",
    between(as.numeric(diag_1), 140, 239) ~ "Neoplasms",
    between(as.numeric(diag_1), 320, 459) ~ "Circulatory",
    between(as.numeric(diag_1), 460, 519) ~ "Respiratory",
    between(as.numeric(diag_1), 520, 579) ~ "Digestive",
    between(as.numeric(diag_1), 580, 629) ~ "Genitourinary System",
    #between(as.numeric(diag_1), 680, 709) ~ "Skin/Subcutaneous Tissue",
    between(as.numeric(diag_1), 710, 739) ~ "Musculoskeletal",
    between(as.numeric(diag_1), 760, 779) ~ "Perinatal",
    between(as.numeric(diag_1), 800, 999) ~ "Injury and Poisoning",
    TRUE ~ "Other"
  ))
# Secondary Diagnosis
df <- df %>%
  mutate(secondary_diagnosis = case_when(
    substr(diag_2, 1, 3) == "250" ~ "Diabetes",
    #between(as.numeric(diag_2), 001, 139) ~ "Infectious and Parasitic Diseases",
    between(as.numeric(diag_2), 140, 239) ~ "Neoplasms",
    between(as.numeric(diag_2), 320, 459) ~ "Circulatory",
    between(as.numeric(diag_2), 460, 519) ~ "Respiratory",
    between(as.numeric(diag_2), 520, 579) ~ "Digestive",
    between(as.numeric(diag_2), 580, 629) ~ "Genitourinary System",
    #between(as.numeric(diag_2), 680, 709) ~ "Skin/Subcutaneous Tissue",
    between(as.numeric(diag_2), 710, 739) ~ "Musculoskeletal",
    between(as.numeric(diag_2), 760, 779) ~ "Perinatal",
    between(as.numeric(diag_2), 800, 999) ~ "Injury and Poisoning",
    TRUE ~ "Other"
  ))
# Secondary Diagnosis
df <- df %>%
  mutate(secondary_diagnosis2 = case_when(
    substr(diag_3, 1, 3) == "250" ~ "Diabetes",
    #between(as.numeric(diag_3), 001, 139) ~ "Infectious and Parasitic Diseases",
    between(as.numeric(diag_3), 140, 239) ~ "Neoplasms",
    between(as.numeric(diag_3), 320, 459) ~ "Circulatory",
    between(as.numeric(diag_3), 460, 519) ~ "Respiratory",
    between(as.numeric(diag 3), 520, 579) ~ "Digestive",
    between(as.numeric(diag_3), 580, 629) ~ "Genitourinary System",
    #between(as.numeric(diag_3), 680, 709) ~ "Skin/Subcutaneous Tissue",
    between(as.numeric(diag 3), 710, 739) ~ "Musculoskeletal",
    between(as.numeric(diag_3), 760, 779) ~ "Perinatal",
    between(as.numeric(diag_3), 800, 999) ~ "Injury and Poisoning",
    TRUE ~ "Other"
  ))
df$primary_diagnosis <- as.factor(df$primary_diagnosis)</pre>
df$secondary_diagnosis <- as.factor(df$secondary_diagnosis)</pre>
df$secondary_diagnosis2 <- as.factor(df$secondary_diagnosis2)</pre>
```

• Show counts of diseases for the primary and secondary diagnosis:

```
table(df$primary_diagnosis)
```

```
##
##
            Circulatory
                                     Diabetes
                                                          Digestive
                  27207
##
                                         7185
                                                               7873
## Genitourinary System Injury and Poisoning
                                                    Musculoskeletal
                   4445
                                         6017
                                                               4217
##
                                                        Respiratory
              Neoplasms
                                        Other
##
                   2762
##
                                        18242
                                                               8618
```

```
# table(df$secondary_diagnosis)
# table(df$secondary_diagnosis2)
```

- All levels w/ less than 2500 instances are combined into 'Other'
- Most common primary/secondary diagnosis were circulatory.
- 7185 patients had diabetes as their primary diagnosis
- diag_1, diag_2, and diag_3 are turned to new variables. They are not needed anymore and will be removed.

```
df <- subset(df, select = -c(diag_1, diag_2, diag_3))
dim(df)</pre>
```

```
## [1] 86566 27
```

1.7 Convert categorical variables into factors

- All feature that are recorded as chr type are categorical variables
- admission_type_id, discharge_disposition_id, admission_source_id are recorded as int, but should be taken as categorical variables.

All categorical variables have been converted into factors

1.8 Classify features

- · 27 variables are left for further analysis.
- · Subset numerical and categorical features

```
# Subset numerical and categorical features into new data frames
library(dplyr)
df_num <- df %>% select_if(is.integer)
df_cat <- df %>% select_if(is.factor)

# Show numerical variables
cat("These are the numerical features:\n", colnames(df_num), "\n\n")
```

```
## These are the numerical features:
## time_in_hospital num_lab_procedures num_procedures num_medications number_outpatient numb
er_emergency number_inpatient number_diagnoses
```

```
# Show categorical variables
cat("These are the categorical features:\n", colnames(df_cat), "\n\n")
```

```
## These are the categorical features:
## race gender age admission_type_id discharge_disposition_id admission_source_id A1Cresult
metformin glipizide glyburide pioglitazone rosiglitazone insulin change diabetesMed readmitte
d primary_diagnosis secondary_diagnosis secondary_diagnosis2
```

1.9 Explore and revalue the response variable

· We use "readmitted" as our response variable

```
# Show readmission counts
table(df$readmitted)
```

We will combine all patients who were admitted into one level. Thus, our response variable will be binary:

- · YES if the patient was readmitted at any time
- · NO if the patient was not readmitted

```
library(plyr)

revalue(df$readmitted, c("<30" = "YES")) -> df$readmitted
revalue(df$readmitted, c(">30" = "YES")) -> df$readmitted

# Show readmission counts using binary levels
table(df$readmitted)
```

```
##
## YES NO
## 41094 45472
```

```
# Show readmission ratio using binary levels
round(table(df$readmitted) / length(df$readmitted),2)
```

```
##
## YES NO
## 0.47 0.53
```

• The response variable now contains 47% of "YES" and 53% of "NO".

2. Exploratory Data Analysis

2.1 Statistics of the numerical variables

```
summary(df_num)
##
  time_in_hospital num_lab_procedures num_procedures num_medications
## Min. : 1.000 Min. : 1.00 Min.
                                      :0.000
                                             Min.
                                                  : 1.00
##
  1st Qu.: 2.000
                1st Qu.:10.00
## Median : 4.000 Median : 44.00
                               Median :1.000 Median :15.00
## Mean : 4.413 Mean : 43.42
                               Mean :1.348 Mean
                                                  :16.06
## 3rd Qu.: 6.000 3rd Qu.: 57.00 3rd Qu.:2.000
                                             3rd Qu.:20.00
## Max. :14.000 Max. :132.00 Max. :6.000 Max.
                                                  :81.00
  number_outpatient number_emergency number_inpatient number_diagnoses
## Min. : 0.0000 Min. : 0.0000 Min. : 0.0000 Min. : 3.000
## 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 0.0000 1st Qu.: 6.000
## Median: 0.0000 Median: 0.0000 Median: 9.000
## Mean : 0.3664 Mean : 0.2017 Mean : 0.6462 Mean : 7.543
## 3rd Qu.: 0.0000 3rd Qu.: 0.0000
                                3rd Qu.: 1.0000 3rd Qu.: 9.000
```

Max. :21.0000 Max. :16.000

2.2 Correlations of the numerical variables

· Find Correlations of numerical features

Max. :42.0000 Max. :76.0000

```
library(corrplot)
correlations <- round(cor(df_num), 2)
correlations</pre>
```

##		time in hospital	num_lab_procedures	num procedures
##	time_in_hospital	1.00	0.33	0.19
##	num_lab_procedures	0.33	1.00	0.03
##	num_procedures	0.19	0.03	1.00
##	num_medications	0.46	0.27	0.38
##	number_outpatient	-0.01	0.02	-0.02
##	number_emergency	-0.01	0.01	-0.04
##	number_inpatient	0.07	0.04	-0.07
##	number_diagnoses	0.22	0.16	0.05
##		<pre>num_medications number_outpatient number_emergency</pre>		
##	time_in_hospital	0.46	-0.01	-0.01
##	num_lab_procedures	0.27	0.02	0.01
##	num_procedures	0.38	-0.02	-0.04
##	num_medications	1.00	0.05	0.01
##	number_outpatient	0.05	1.00	0.09
##	number_emergency	0.01	0.09	1.00
##	number_inpatient	0.07	0.11	0.27
##	number_diagnoses	0.24	0.10	0.05
##		number_inpatient	number_diagnoses	
##	time_in_hospital	0.07	0.22	
##	num_lab_procedures	0.04	0.16	
##	num_procedures	-0.07	0.05	
##	num_medications	0.07	0.24	
##	number_outpatient	0.11	0.10	
##	number_emergency	0.27	0.05	
##	number_inpatient	1.00	0.10	
##	number_diagnoses	0.10	1.00	

Observing the correlation table and heatmap, there is modest correlations between:

- num_lab_procedures and time_in_hospital (0.33)
- num_medications and and time_in_hospital (0.46)

• num_lab_procedures and num_medications (0.38)

Other than that, there is no much correlations between other variables.

2.3 Distribution of the numerical variables

library(Hmisc)
hist.data.frame(df_num)

• number_medications and number_lab_procedures have a distribution that is close to normal distribution. The distribution for other variables are all skewed.

2.4 Explore the relationship between the numerical predictors and the predicted variable

```
par(mfrow = c(2,4))

boxplot(df$time_in_hospital ~ df$readmitted, col="blue")
boxplot(df$num_lab_procedures ~ df$readmitted, col="orange")
boxplot(df$number_diagnoses ~ df$readmitted, col="blue")

boxplot(df$number_emergency ~ df$readmitted, col="orange")
boxplot(df$num_medications ~ df$readmitted, col="blue")
boxplot(df$number_inpatient ~ df$readmitted, col="orange")
boxplot(df$number_outpatient ~ df$readmitted, col="blue")
```


Patients who are readmitted, in general:

- · Spend more time in the hospital
- Have more lab procedures done

2.5 Distribution of the categorical variables

```
par(mfrow = c(3,3))
barplot(table(df$age), main="Distribution of Age", col="blue", las=2)
barplot(table(df$race), main="Distribution of Race", col="orange", las=2)
barplot(table(df$gender), main="Distribution of Gender", col="blue", las=2)
barplot(table(df$admission_type_id), main="Distribution of admission_type_id",
        col="orange", las=2)
barplot(table(df$discharge_disposition_id), main="Distribution of discharge_disposition_id",
        col="blue", las=2)
barplot(table(df$admission_source_id), main="Distribution of admission_source_id",
        col="orange",las=2)
barplot(table(df$primary_diagnosis), main="Distribution of primary_diagnosis",
        col="blue", las=2)
barplot(table(df$secondary_diagnosis), main="Distribution of secondary_diagnosis",
        col="orange", las=2)
barplot(table(df$secondary_diagnosis2), main="Distribution of secondary_diagnosis2",
        col="blue", las=2)
```



```
par(mfrow = c(3,3))

barplot(table(df$diabetesMed), main="Distribution of diabetesMed", col="blue", las=2)
barplot(table(df$AlCresult), main="Distribution of AlCresult", col="orange", las=2)
barplot(table(df$metformin), main="Distribution of metformin", col="blue", las=2)

barplot(table(df$glipizide), main="Distribution of glipizide", col="orange", las=2)
barplot(table(df$glyburide), main="Distribution of glyburide", col="blue", las=2)
barplot(table(df$pioglitazone), main="Distribution of pioglitazone", col="orange", las=2)

barplot(table(df$rosiglitazone), main="Distribution of rosiglitazone", col="blue", las=2)
barplot(table(df$insulin), main="Distribution of insulin", col="orange", las=2)
barplot(table(df$change), main="Distribution of change", col="blue", las=2)
```


2.6 Explore the relationship between the categorical predictors and the predicted variable

```
ct_gender <- table(df$readmitted, df$gender)</pre>
ct_age <- table(df$readmitted, df$age)</pre>
ct_admissionType <- table(df$readmitted, df$admission_type_id)</pre>
ct_dischargeID <- table(df$readmitted, df$discharge_disposition_id)</pre>
ct_admissionSource <- table(df$readmitted, df$admission_source_id)</pre>
ct_A1C <- table(df$readmitted, df$A1Cresult)</pre>
ct_metf <- table(df$readmitted, df$metformin)</pre>
ct_glipz <- table(df$readmitted, df$glipizide)</pre>
ct_glyb <- table(df$readmitted, df$glyburide)</pre>
ct_piog <- table(df$readmitted, df$pioglitazone)</pre>
ct_rosig <- table(df$readmitted, df$rosiglitazone)</pre>
ct_insulin <- table(df$readmitted, df$insulin)</pre>
ct_change <- table(df$readmitted, df$change)</pre>
ct_diabMeds <- table(df$readmitted, df$diabetesMed)</pre>
# Create contingency tables showing proportions
ct race1 <- prop.table(table(df$readmitted, df$race),2)
ct_gender1 <- prop.table(table(df$readmitted, df$gender),2)</pre>
ct_age1 <- prop.table(table(df$readmitted, df$age),2)</pre>
ct_admissionType1 <- prop.table(table(df$readmitted, df$admission_type_id),2)</pre>
ct_dischargeID1 <- prop.table(table(df$readmitted, df$discharge_disposition_id),2)</pre>
ct_admissionSource1 <- prop.table(table(df$readmitted, df$admission_source_id),2)</pre>
ct_A1C1 <- prop.table(table(df$readmitted, df$A1Cresult),2)</pre>
ct metf1 <- prop.table(table(df$readmitted, df$metformin),2)</pre>
ct_glipz1 <- prop.table(table(df$readmitted, df$glipizide),2)</pre>
ct_glyb1 <- prop.table(table(df$readmitted, df$glyburide),2)</pre>
ct_piog1 <- prop.table(table(df$readmitted, df$pioglitazone),2)</pre>
ct_rosig1 <- prop.table(table(df$readmitted, df$rosiglitazone),2)</pre>
ct_insulin1 <- prop.table(table(df$readmitted, df$insulin),2)</pre>
ct_change1 <- prop.table(table(df$readmitted, df$change),2)</pre>
ct_diabMeds1 <- prop.table(table(df$readmitted, df$diabetesMed),2)</pre>
## Create barplots ##
# Patient Demographics (Legend removed for individual graphs where bars would be blocked)
par(mfrow=c(3,3))
barplot(ct_age1,main="Age Group", ylab="Readmitted",col=c("blue", "orange"))
barplot(ct_race1,main="Race", ylab="Readmitted",col=c("blue", "orange"),las=2)
barplot(ct_gender1,main="Gender", ylab="Readmitted",col=c("blue", "orange"),
        legend=rownames(ct_gender1))
barplot(ct_dischargeID1,main="Discharge ID", ylab="Readmitted",col=c("blue", "orange"))
barplot(ct_admissionSource1, main="Admission Source",
        ylab="Readmitted",col=c("blue", "orange"),las=2)
barplot(ct_admissionType1,main="Admission Type", ylab="Readmitted",col=c("blue", "orange"))
barplot(ct_A1C,main="A1C Result", ylab="Readmitted",col=c("blue", "orange"),legend=rownames(c
t A1C))
barplot(ct_change1,main="Medications Change", ylab="Readmitted",col=c("blue", "orange"))
barplot(ct_diabMeds1,main="Diabetes Medication",ylab="Readmitted",col=c("blue", "orange"))
```

Frequency counts

ct_race <- table(df\$readmitted, df\$race)</pre>

Ch

No

No

Yes

• Race: Asians were disproportionately less likely to be readmitted.

>7

>8

None Norm

- Discharge ID: Discharge IDs 11, 19, and 20 were disproportionately less likely to be readmitted. Patients with discharge IDs 10,12,15 were disproportionately more likely to be readmitted.
- Admission sources 10, 11, 13, 14, 22, and 25 were less likely to be readmitted (0% readmission rates)
- Admission type 7 proportionately less likely to be readmitted
- No significant differences for the change in/prescription of drugs were observed.

3. Data Preprocessing

3.1 Select features

• From EDA, we observe that variables number_emergency, number_outpatient, number_inpatient, A1Cresult, glyburide, pioglitazone, pioglitazone, rosiglitazone, glipizide show low variance or are extremely skewed. They will be excluded from modeling.

```
df <- subset(df, select = -c(number_emergency, number_outpatient, number_inpatient, A1Cresul
t, glyburide, pioglitazone, pioglitazone, rosiglitazone, glipizide))
dim(df)</pre>
```

```
## [1] 86566 19
```

After this step, 19 variables are left for modeling.

3.2 Remove outliers

 From visualizations in the EDA section, we observe some NUmerical variables including num_lab_procedures, number_diagnoses, and num_medications have outliers. We use 1.5 IQR to remove them.

```
# Remove outlier from column 'num_lab_procedures'
quartiles <- quantile(df$num_lab_procedures, probs=c(.25, .75), na.rm = FALSE)
IQR <- IQR(df$num_lab_procedures)
Lower <- quartiles[1] - 1.5*IQR
Upper <- quartiles[2] + 1.5*IQR

count_before <-dim(df)[1]
df<- subset(df, df$num_lab_procedures > Lower & df$num_lab_procedures < Upper)
count_after <-dim(df)[1]
cat(count_before-count_after, " outliers in num_lab_procedures have been removed. \n")</pre>
```

186 outliers in num_lab_procedures have been removed.

```
# Remove outliers from column 'number_diagnoses'
quartiles <- quantile(df$number_diagnoses, probs=c(.25, .75), na.rm = FALSE)
IQR <- IQR(df$number_diagnoses)
Lower <- quartiles[1] - 1.5*IQR
Upper <- quartiles[2] + 1.5*IQR

count_before <-dim(df)[1]
df <- subset(df, df$number_diagnoses > Lower & df$number_diagnoses < Upper)
count_after <-dim(df)[1]
cat(count_before-count_after, " outliers in number_diagnoses have been removed. \n")</pre>
```

52 outliers in number_diagnoses have been removed.

```
# Remove outliers from column 'num_medications'
quartiles <- quantile(df$num_medications, probs=c(.25, .75), na.rm = FALSE)
IQR <- IQR(df$num_medications)
Lower <- quartiles[1] - 2*IQR
Upper <- quartiles[2] + 2*IQR

count_before <-dim(df)[1]
df <- subset(df, df$num_medications > Lower & df$num_medications < Upper)
count_after <-dim(df)[1]
cat(count_before-count_after, " outliers in num_medications have been removed. \n")</pre>
```

1287 outliers in num_medications have been removed.

3.3 Partition data into training and test datasets using a 70% ratio

• readmitted is the predicted variable. It will be separated from the predictors.

```
#Separate X and Y using readmitted as predicted variable
dfX <- subset(df, select = -c(readmitted))
dfY <- subset(df, select = c(readmitted))

set.seed(123)
# Partition the dataset
trainRows <- createDataPartition(dfY$readmitted, p = .70, list = FALSE)

trainX <- dfX[trainRows,]
testX <- dfX[-trainRows,]
trainY <- dfY[trainRows,]
testY <- dfY[-trainRows,]
dim(trainX)</pre>
```

```
## [1] 59529 18
```

```
dim(testX)
```

```
## [1] 25512 18
```

• After the partition, there are 59529 instances in the training set and 25512 instances in the test set.

3.4 Trandform and standardize features: center and scale

```
# center and scale the training set
train_tran <- preProcess(trainX, method=c("center", "scale"))
trainX <- predict(train_tran, trainX)

# center and scale the test set
testX <- predict(train_tran, testX)</pre>
```

3.5 Convert categorical variables to dummy variables

Backup the training and testing sets before adding dummy variables for training different models

```
library(fastDummies)

# Some models do not require dummy variable, like the trees
# Will use the sets without dummies for models
trainX_noDummy <- trainX
testX_noDummy <- testX

colnames(trainX_noDummy)</pre>
```

```
## [1] "race"
                                    "gender"
## [3] "age"
                                    "admission_type_id"
## [5] "discharge_disposition_id" "admission_source id"
## [7] "time_in_hospital"
                                   "num_lab_procedures"
                                   "num_medications"
## [9] "num procedures"
## [11] "number_diagnoses"
                                   "metformin"
## [13] "insulin"
                                    "change"
## [15] "diabetesMed"
                                   "primary_diagnosis"
## [17] "secondary_diagnosis"
                                    "secondary_diagnosis2"
```

• Categorical variables will now be converted into n-1 dummy variables.

```
# Add dummy variables
trainX <- dummy_cols(trainX,</pre>
                      select_columns=c("race", "gender", "age",
                                        "admission_type_id", "discharge_disposition_id", "metfor
min",
                                        "insulin", "change", "diabetesMed",
                                        "admission_source_id", "primary_diagnosis",
                                        "secondary_diagnosis", "secondary_diagnosis2"),
                      remove_first_dummy=TRUE,
                      remove_selected_columns=TRUE)
testX <- dummy_cols(testX,</pre>
                      select_columns=c("race", "gender", "age",
                                        "admission_type_id", "discharge_disposition_id", "metfor
min",
                                        "insulin", "change", "diabetesMed",
                                        "admission_source_id", "primary_diagnosis",
                                        "secondary_diagnosis", "secondary_diagnosis2"),
                      remove_first_dummy=TRUE,
                      remove_selected_columns=TRUE)
```

3.6 PCA Analysis

• This is a high-dimensional dataset, we want to see if PCA can be applied to reduce feature dimension.

```
# Find the PCA from the training set
pca <- prcomp(trainX)
pca_var <- pca$sdev^2

# Find the percentage of each PCA component
pca_percents <- pca_var / sum(pca_var)
cat("Percentage of the first 15 PCAs: ", pca_percents[1:15], "\n")</pre>
```

Percentage of the first 15 PCAs: 0.1910663 0.1092462 0.08477103 0.06680895 0.06017332 0.0 4253663 0.03169632 0.02533176 0.02446798 0.02444144 0.02292527 0.02127575 0.02083785 0.019348 05 0.01887004

```
# The total percentage of the first 35 PCAs
cat("The total percentage of the first 35 PCAs: ", sum(pca_percents[1:35]), "\n")
```

```
## The total percentage of the first 35 PCAs: 0.9428998
```

 We see there are no dominant PCA components. The first 35 components represent 94% of the features.

4. Modeling

4.0 Define functions

First we will define a function to calculate the metrics of a trained model

- The function will take one parameters: a trained model
- The function will calculate these metrics including accuracy, sensitivity, specificity, precision
- It will return a vector containing those metrics

```
# Define a function to calculate the metrics of a trained model
get_training_metrics <- function(model, roc) {</pre>
  # Total number of training objects
  total <- dim(trainX)[1]</pre>
 # Construct model's confusion matrix
  cm <- confusionMatrix(model, norm = "none")</pre>
  # Calculate metrics
  accuracy <- round((cm$table[1,1] + cm$table[2,2]) / total, 3)</pre>
  sensitivity \leftarrow round(cmtable[1,1] / (cmtable[1,1] + cmtable[2,1]), 3)
  specificity <- round(cm$table[2,2] / (cm$table[2,2] + cm$table[1,2]), 3)</pre>
  precision <- round(cm$table[1,1] / (cm$table[1,1] + cm$table[1,2]), 3)</pre>
  recall <- sensitivity
  F1 <- round(2 * recall * precision / (recall + precision ), 3)
  # Return a vector of metrics
  c(accuracy, sensitivity, specificity, precision, recall, F1, round(roc,3))
}
```

Next we will define a function to calculate the metrics of prediction result on test dataset

- The function will take one parameters: predicted results of the test set
- The function will calculate these metrics including ROC, accuracy, sensitivity, specificity, precision
- · It will return a vector containing those metrics

```
# Define a function to calculate the metrics of a trained model
get_test_metrics <- function(test_results) {
  total <- dim(testX)[1]

# Construct prediction's confusion matrix
  cm <- confusionMatrix(test_results, testY, positive = "YES")

# Calculate metrics
accuracy <- round((cm$table[1,1] + cm$table[2,2]) / total, 3)
sensitivity <- round(cm$table[1,1] / (cm$table[1,1] + cm$table[2,1]), 3)
specificity <- round(cm$table[2,2] / (cm$table[2,2] + cm$table[1,2]), 3)
precision <- round(cm$table[1,1] / (cm$table[1,1] + cm$table[1,2]), 3)
recall <- sensitivity
F1 <- round(2 * recall * precision / (recall + precision ), 3)
# Return a vector of metrics
c(accuracy, sensitivity, specificity, precision, recall, F1)
}</pre>
```

4.1 Logistic Regression Model

- First we will define a control variable that will be used to train all the models.
- We will use a 10 fold cross-validation method to optimize the training process.
- For each model, we will first train the model using training dataset, then use test dataset to test the model
- We will generate a data frame to hold the training and testing performance metrics.

```
# Define train control
ctrl <- trainControl(method = "cv", summaryFunction = twoClassSummary,</pre>
                      classProbs = TRUE, savePredictions = "final")
# Logistic Regression
set.seed(123)
lrFit <- train(x = trainX, y = trainY,</pre>
               method = "glm", metric = "ROC", trControl = ctrl)
# Calculate training/resampling performance metrics
metrics_tr <- data.frame(Metric.Train = c("Accuracy", "Sensitivity", "Specificity", "Precisio</pre>
n", "Recall", "F-Measure", "ROC"))
metrics_tr$LR <- get_training_metrics(lrFit, lrFit$results$ROC)</pre>
#metrics_tr
# Predict on test data
lrTestResults <- predict(lrFit, testX)</pre>
# Calculate test performance metrics
metrics_test <- data.frame(Metric.Test = c("Accuracy", "Sensitivity", "Specificity", "Precisi</pre>
on", "Recall", "F-Measure"))
metrics_test$LR <- get_test_metrics(lrTestResults)</pre>
# Importance of the predictors
lrImp <- varImp(lrFit, scale = FALSE)</pre>
# Display model's performance
metrics_tr[, c("Metric.Train", "LR")]
```

```
metrics_test[, c("Metric.Test", "LR")]
```

```
## Metric.Test LR
## 1 Accuracy 0.586
## 2 Sensitivity 0.524
## 3 Specificity 0.643
## 4 Precision 0.572
## 5 Recall 0.524
## 6 F-Measure 0.547
```

• The training (cross validation) performance and testing performance for logistic regression model is displayed in the above metrics.

4.2 Penalized Logistic Regression Model

For penalized logistic regression model, we use the following perimeters to build the tuning grid:

- alpha values: 0, 0,0.1,0.2,0.4
- regularization perimeter lambda takes 5 values evenly between 0.01 and 0.1
- length: 5

```
# Penalized Logistic Regression
set.seed(123)
glmnGrid \leftarrow expand.grid(alpha=c(0,0.1,0.2,0.4),
                         lambda=seq(.01, .1, length=5))
glmnFit <- train(x = trainX, y = trainY,</pre>
                  method="glmnet", tuneGrid=glmnGrid,
                  metric="ROC", trControl=ctrl)
#glmnFit
# Calculate training/resampling performance metrics
metrics_tr$GLMN <- get_training_metrics(glmnFit, glmnFit$results$ROC[1])</pre>
#metrics_tr
# Predict on test data
glmnTestResults <- predict(glmnFit, testX)</pre>
# Calculate test performance metrics
metrics_test$GLMN <- get_test_metrics(glmnTestResults)</pre>
# Importance of the predictors
glmnImp <- varImp(glmnFit, scale = FALSE)</pre>
# Plot the tuning results
plot(glmnFit)
```



```
# Display model's performance
metrics_tr[, c("Metric.Train", "GLMN")]
```

```
##
     Metric.Train GLMN
## 1
         Accuracy 0.585
## 2
     Sensitivity 0.521
      Specificity 0.642
## 3
## 4
        Precision 0.570
## 5
           Recall 0.521
## 6
        F-Measure 0.544
## 7
              ROC 0.617
```

```
metrics_test[, c("Metric.Test", "GLMN")]
```

```
## Metric.Test GLMN
## 1    Accuracy 0.586
## 2 Sensitivity 0.520
## 3 Specificity 0.646
## 4    Precision 0.572
## 5         Recall 0.520
## 6    F-Measure 0.545
```

- The cross validation result shows the optimal model comes when alpha=0, lambda=0.01
- The training (cross validation) performance and testing performance is displayed in the above metrics.

4.3 Nearest Shrunken Centroids Model

For Nearest Shrunken Centroids model, we use the following perimeter to build the tuning grid:

• threshold takes 20 values evenly spaced between 0 and 15

1111111111

```
#nscFit

# Calculate training/resampling performance metrics
metrics_tr$NSC <- get_training_metrics(nscFit, nscFit$results$ROC[1])

# Predict on test data
nscTestResults <- predict(nscFit, testX)

# Calculate test performance metrics
metrics_test$NSC <- get_test_metrics(nscTestResults)

# Importance of the predictors
nscImp <- varImp(nscFit, scale = FALSE)

# Plot the tuning result
plot(nscFit)</pre>
```



```
# Display model's performance
metrics_tr[, c("Metric.Train", "NSC")]
```

```
## Metric.Train NSC
## 1 Accuracy 0.570
## 2 Sensitivity 0.504
## 3 Specificity 0.629
## 4 Precision 0.553
## 5 Recall 0.504
## 6 F-Measure 0.527
## 7 ROC 0.600
```

```
metrics_test[, c("Metric.Test", "NSC")]
```

```
## Metric.Test NSC
## 1 Accuracy 0.575
## 2 Sensitivity 0.507
## 3 Specificity 0.637
## 4 Precision 0.559
## 5 Recall 0.507
## 6 F-Measure 0.532
```

- The cross validation result shows the optimal model comes when shrinkage threshhold is 0.
- The training (cross validation) performance and testing performance is displayed in the above metrics.

4.4 Boosted Trees

For the boosted trees model, we use the following perimeter to build the tuning grid:

interaction depth: 5, 7number of trees: 500shrinkage: 0.01, 0.1

```
gbmGrid <- expand.grid(interaction.depth = c(5, 7),</pre>
                        n.trees = 500,
                        shrinkage = c(.01, .1),
                        n.minobsinnode = 5)
set.seed(123)
gbmFit <- train(x = trainX_noDummy, y = trainY,</pre>
                 method = "gbm", tuneGrid = gbmGrid,
                 verbose = FALSE, metric = "ROC", trControl = ctrl)
# Calculate training/resampling performance metrics
metrics_tr$GBM <- get_training_metrics(gbmFit, gbmFit$results$ROC[3])</pre>
#metrics_tr
# Predict on test data
gbmTestResults <- predict(gbmFit, testX_noDummy)</pre>
# Calculate test performance metrics
metrics_test$GBM <- get_test_metrics(gbmTestResults)</pre>
#The tunning result
#gbmFit
plot(gbmFit)
```



```
# Display model's performance
metrics_tr[, c("Metric.Train", "GBM")]
```

```
##
     Metric.Train
                    GBM
## 1
         Accuracy 0.596
## 2 Sensitivity 0.561
      Specificity 0.628
## 3
## 4
        Precision 0.578
## 5
           Recall 0.561
## 6
        F-Measure 0.569
## 7
              ROC 0.627
```

```
metrics_test[, c("Metric.Test", "GBM")]
```

```
## Metric.Test GBM

## 1 Accuracy 0.601

## 2 Sensitivity 0.565

## 3 Specificity 0.633

## 4 Precision 0.583

## 5 Recall 0.565

## 6 F-Measure 0.574
```

- The cross validation result shows the optimal model comes when shrinkage is 0.1 and depth is 5...
- The training (cross validation) performance and testing performance is displayed in the above metrics.

4.5 Bagged Tree

For bagged tree model, we use the following perimeter to train:

• number of bag(nbagg) = 30

```
metrics_test[, c("Metric.Test", "TRBAG")]
```

```
## Metric.Test TRBAG
## 1    Accuracy 0.569
## 2 Sensitivity 0.535
## 3 Specificity 0.601
## 4    Precision 0.549
## 5     Recall 0.535
## 6    F-Measure 0.542
```

The training (cross validation) performance and testing performance is displayed in the above metrics.

4.6 Random Forest Tree

For random forest tree model, we use the following perimeter to build the tuning grid:

- number of randomly selected predictors: 1, 3, 5, 7
- number of trees: 100

```
mtryValues <- seq(1,8,2)</pre>
set.seed(123)
rfFit <- train(x = trainX_noDummy, y = trainY,</pre>
                 method = "rf",
                 ntree = 100,
                 tuneGrid = data.frame(mtry = mtryValues),
                 metric = "ROC",
                 trControl = ctrl)
# Calculate training/resampling performance metrics
metrics_tr$RF <- get_training_metrics(rfFit, rfFit$results$ROC[2])</pre>
# Predict on test data
rfTestResults <- predict(rfFit, testX_noDummy)</pre>
# Calculate test performance metrics
metrics_test$RF <- get_test_metrics(rfTestResults)</pre>
# Importance of the predictors
rfImp <- varImp(rfFit, scale = FALSE)</pre>
# Plot tuning result
#rfFit
plot(rfFit)
```



```
# Display model's performance
metrics_tr[, c("Metric.Train", "RF")]
```

```
## Metric.Train RF

## 1 Accuracy 0.586

## 2 Sensitivity 0.532

## 3 Specificity 0.635

## 4 Precision 0.570

## 5 Recall 0.532

## 6 F-Measure 0.550

## 7 ROC 0.622
```

```
metrics_test[, c("Metric.Test", "RF")]
```

```
## Metric.Test RF

## 1 Accuracy 0.587

## 2 Sensitivity 0.503

## 3 Specificity 0.663

## 4 Precision 0.576

## 5 Recall 0.503

## 6 F-Measure 0.537
```

- The cross validation result shows the optimal model comes when the number of randomly selected predictors is 3
- The training (cross validation) performance and testing performance is displayed in the above metrics.

4.7 K-Nearest Neighbor (KNN) Model

For KNN model, we use the following perimeter to build the tuning grid:

- tuneLength = 3
- number of neighbors: 5, 7, 9

```
set.seed(123)
knnFit <- train(x = trainX, y = trainY,</pre>
                  method = "knn",
                  tuneLength = 3,
                  metric = "ROC", trControl = ctrl)
# Calculate training/resampling performance metrics
metrics_tr$KNN <- get_training_metrics(knnFit, knnFit$results$ROC[3])</pre>
# Predict on test data
knnTestResults <- predict(knnFit, testX)</pre>
# Calculate test performance metrics
metrics_test$KNN <- get_test_metrics(knnTestResults)</pre>
# Importance of the predictors
knnImp <- varImp(knnFit, scale = FALSE)</pre>
# Plot the tuning results
#knnFit
plot(knnFit)
```



```
# Display model's performance
metrics_tr[, c("Metric.Train", "KNN")]
```

```
##
     Metric.Train
                    KNN
## 1
         Accuracy 0.555
## 2 Sensitivity 0.527
     Specificity 0.581
## 3
## 4
       Precision 0.534
           Recall 0.527
## 5
        F-Measure 0.530
## 6
## 7
              ROC 0.576
```

```
metrics_test[, c("Metric.Test", "KNN")]
```

```
## Metric.Test KNN
## 1 Accuracy 0.557
## 2 Sensitivity 0.528
## 3 Specificity 0.583
## 4 Precision 0.535
## 5 Recall 0.528
## 6 F-Measure 0.531
```

- The cross validation result shows the optimal model comes when K is 9.
- The training (cross validation) performance and testing performance is displayed in the above metrics.

5. Model Evaluation and Conclusion

5.1 Baseline Model

• For this data analysis, a model's ability to predict the positive (readmitted-Yes) accurately is the most important metric. Therefore, we choose All Positive Model as the base model.

```
round(table(trainY) / length(trainY), 3)

## trainY
## YES NO
## 0.476 0.524
```

• From the above table, we see that when we assign all predictions as positive, the accuracy of this base model is 0.476

5.2 Calculate AUC (Area Under ROC Curve)

For each model, based on the trained models' result, we first generate ROC, then calculate the area under ROC curve (AUC)

```
#ROC Curve
library(pROC)
lrROC <- roc(response=trainY,predictor=lrFit$pred$YES,levels=rev(levels(lrFit$pred$obs)))</pre>
glmnROC <- roc(response=trainY,predictor=glmnFit$pred$YES,levels=rev(levels(glmnFit$pred$ob</pre>
s)))
nscROC <- roc(response=trainY,predictor=nscFit$pred$YES,levels=rev(levels(nscFit$pred$obs)))</pre>
gbmROC <- roc(response=trainY,predictor=gbmFit$pred$YES,levels=rev(levels(gbmFit$pred$obs)))</pre>
rfROC <- roc(response=trainY,predictor=rfFit$pred$YES,levels=rev(levels(rfFit$pred$obs)))
trbagROC <- roc(response=trainY,predictor=trbagFit$pred$YES,levels=rev(levels(trbagFit$pred$o</pre>
bs)))
knnROC <- roc(response=trainY,predictor=knnFit$pred$YES,levels=rev(levels(knnFit$pred$obs)))</pre>
lrAUC <-round(auc(lrROC), 3)</pre>
glmnAUC <-round(auc(glmnROC), 3)</pre>
nscAUC <-round(auc(nscROC), 3)</pre>
gbmAUC <-round(auc(gbmROC), 3)</pre>
rfAUC <-round(auc(rfROC), 3)</pre>
trbagAUC <-round(auc(trbagROC), 3)</pre>
knnAUC <-round(auc(knnROC), 3)</pre>
# Get Area under the ROC
metrics_tr <- rbind(metrics_tr, c("AUC", lrAUC, glmnAUC, nscAUC,</pre>
                                     gbmAUC, rfAUC, trbagAUC, knnAUC))
```

• The AUC values are added to the training model's performance metrics data frame.

5.3 Compare models' performance metrics

• Compare Models' training (cross-validation) performance

```
metrics_tr
```

```
##
    Metric.Train
                    LR GLMN
                               NSC
                                     GBM TRBAG
                                                       KNN
                                                  RF
## 1
        Accuracy 0.585 0.585 0.57 0.596 0.572 0.586 0.555
## 2 Sensitivity 0.524 0.521 0.504 0.561 0.541 0.532 0.527
## 3
     Specificity 0.64 0.642 0.629 0.628 0.601 0.635 0.581
        Precision 0.57 0.57 0.553 0.578 0.552 0.57 0.534
## 4
## 5
           Recall 0.524 0.521 0.504 0.561 0.541 0.532 0.527
## 6
       F-Measure 0.546 0.544 0.527 0.569 0.546 0.55 0.53
             ROC 0.617 0.617 0.6 0.627 0.603 0.622 0.576
## 7
## 8
             AUC 0.503 0.51 0.502 0.502 0.499 0.503 0.495
```

· Compare Models' test performance

```
metrics_test
```

```
##
                               NSC
                                                       KNN
    Metric.Test
                    LR GLMN
                                     GBM TRBAG
## 1
        Accuracy 0.586 0.586 0.575 0.601 0.569 0.587 0.557
## 2 Sensitivity 0.524 0.520 0.507 0.565 0.535 0.503 0.528
## 3 Specificity 0.643 0.646 0.637 0.633 0.601 0.663 0.583
       Precision 0.572 0.572 0.559 0.583 0.549 0.576 0.535
## 4
## 5
          Recall 0.524 0.520 0.507 0.565 0.535 0.503 0.528
## 6
       F-Measure 0.547 0.545 0.532 0.574 0.542 0.537 0.531
```

5.4 Plot Roc Curves

• We plot the ROC curves for all trainings models in one graph. The comparison can be seen with different marking colors.

5.5 Check Feature's Importance

 We displayed the first 15 important features from logistic regression model, random forest model, and KNN model respectively.

```
plot(lrImp, top = 15)
```


plot(rfImp, top = 15)

plot(knnImp, top = 15)

- Though each model displays the important features in different order, some features appear commonly in the top list.
- These important features include: number_diagnoses, num_procedures, num_lab_procedures, num_medication, time_in_hospital. etc.