Algorithm Development Task: Inventory Reordering System

Item ID	Current Stock	Forecasted Demand	Reorder Cost per Unit	Batch Size
Α	50	100	5	10
В	80	90	3	5
С	20	60	4	10

Step-by-Step Execution:

- 1. Sorting Items by Reorder Cost per Unit (Ascending Order):
 - Order: B (3/unit), C (4/unit), A (5/unit)
- 2. Processing Each Item:
 - O Item B:
 - Shortage = 90 (demand) 80 (stock) = 10
 - Batch Units Needed = ceil(10 / 5) = 2
 - Total Units Ordered = $2 \times 5 = 10$
 - O Item C:
 - Shortage = 60 20 = 40
 - Batch Units Needed = ceil(40 / 10) = 4
 - Total Units Ordered = $4 \times 10 = 40$

o Item A:

- Shortage = 100 50 = 50
- Batch Units Needed = ceil(50 / 10) = 5
- Total Units Ordered = $5 \times 10 = 50$

Item ID	Units to Order
В	10
С	40
Α	50

Stock Levels are Maintained: Ensures no item goes out of stock. **Minimized Reordering Costs:** Prioritizes cheaper items first.

Batch Constraints are Considered: Orders only in allowed batch sizes.