Machine Learning for Graphs and Sequential Data

Recap: Bayesian Networks

lecturer: Prof. Dr. Stephan Günnemann

www.daml.in.tum.de

Summer Term 2020

Challenge

How to model $Pr(X_1, ..., X_T)$, e.g. a distribution over sequences?

- Assume that X_t can take, e.g., values in $\{1, ..., K\}$.
- Challenge: In general, we need K^T-1 parameters to specify a distribution over the sequence X_1, \dots, X_T .
- To have a more compact representation and to reduce the number of parameters, we make additional assumptions about the joint distribution $Pr(X_1, ..., X_T)$.
 - These assumptions should be a natural-fit for the data/task.
 - We use **Bayesian networks** (i.e. directed graphical models) to illustrate the assumptions on $Pr(X_1, ..., X_T)$.

Directed Graphical Models (Bayesian Networks)

- Bayesian network is a way to represent a joint distribution via a directed acyclic graph G = (V, E).
 - Each node represents a random variable.
 - Directed edges are often interpreted as causal relations.

- Graph G provides:
 - 1) a particular factorization for the joint distribution $Pr(X_1, ..., X_{|V|})$.
 - 2) a set of conditional independencies, inferred by a routine $d_separation(G)$.

Example from: [Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Models: Principles and Techniques. The MIT Press].

Recall: $X \perp Y \mid Z \iff \Pr(X, Y \mid Z) = \Pr(X \mid Z) \Pr(Y \mid Z)$

A Bayesian network specifies the following factorization for the joint distribution $Pr(X_1, ..., X_{|V|})$.

$$\Pr(X_1, \dots, X_{|V|}) = \prod_{n=1}^{|V|} \Pr(X_n | Pa(X_n))$$

- $Pa(X_n)$: parents of node X_n in Graph G.
- Example:

$$X_4$$
 X_5 X_2 X_3

$$Pr(X_1, X_2, X_3, X_4, X_5) =$$

A Bayesian network specifies the following factorization for the joint distribution $Pr(X_1, ..., X_{|V|})$.

$$\Pr(X_1, \dots, X_{|V|}) = \prod_{n=1}^{|V|} \Pr(X_n | Pa(X_n))$$

- $Pa(X_n)$: parents of node X_n in Graph G.
- Example:

$$Pr(X_1, X_2, X_3, X_4, X_5) =$$

$$Pr(X_1|X_4,X_5) \times$$

$$Pa(X_1) = \{X_4, X_5\}$$

A Bayesian network specifies the following factorization for the joint distribution $Pr(X_1, ..., X_{|V|})$.

$$\Pr(X_1, \dots, X_{|V|}) = \prod_{n=1}^{|V|} \Pr(X_n | Pa(X_n))$$

- $Pa(X_n)$: parents of node X_n in Graph G.
- Example:

$$Pr(X_1, X_2, X_3, X_4, X_5) =$$

$$\Pr(X_1|X_4,X_5) \times \Pr(X_2|X_1,X_5) \times$$

$$Pa(X_2) = \{X_1, X_5\}$$

A Bayesian network specifies the following factorization for the joint distribution $Pr(X_1, ..., X_{|V|})$.

$$\Pr(X_1, \dots, X_{|V|}) = \prod_{n=1}^{|V|} \Pr(X_n | Pa(X_n))$$

- $Pa(X_n)$: parents of node X_n in Graph G.
- Example:

$$Pr(X_1, X_2, X_3, X_4, X_5) =$$

$$\Pr(X_1|X_4,X_5) \times \Pr(X_2|X_1,X_5) \times \Pr(X_3|X_1,X_2) \times$$

$$Pa(X_3) = \{X_1, X_2\}$$

• A Bayesian network specifies the following factorization for the joint distribution $Pr(X_1, ..., X_{|V|})$.

$$\Pr(X_1, \dots, X_{|V|}) = \prod_{n=1}^{|V|} \Pr(X_n | Pa(X_n))$$

- $Pa(X_n)$: parents of node X_n in Graph G.
- Example:

$$Pr(X_1, X_2, X_3, X_4, X_5) =$$

$$\Pr(X_1|X_4,X_5) \times \Pr(X_2|X_1,X_5) \times \Pr(X_3|X_1,X_2) \times \Pr(X_4) \times$$

$$Pa(X_4) = \emptyset$$

A Bayesian network specifies the following factorization for the joint distribution $Pr(X_1, ..., X_{|V|})$.

$$\Pr(X_1, \dots, X_{|V|}) = \prod_{n=1}^{|V|} \Pr(X_n | Pa(X_n))$$

- $Pa(X_n)$: parents of node X_n in Graph G.
- Example:

$$Pr(X_1, X_2, X_3, X_4, X_5) =$$

$$\Pr(X_1|X_4,X_5) \times \Pr(X_2|X_1,X_5) \times \Pr(X_3|X_1,X_2) \times \Pr(X_4) \times \Pr(X_5)$$

$$Pa(X_5) = \emptyset$$

Bayesian Networks - Model Parameters

- A set of parameters $\{\theta_1, \dots, \theta_{|V|}\}$ parametrizes the joint distribution.
- θ_n parametrizes the factor $\Pr(X_n|Pa(X_n))$
 - Indeed, the factor is a function of θ_n as well. We can write $\Pr(X_n|Pa(X_n);\theta_n)$.
 - In a graphical model, we show θ_n using a filled circle connected to X_n .

Bayesian Networks - Model Parameters

Example:

 $variables \in \{0: low, 1: high\}$

Example from: [Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Models: Principles and Techniques. The MIT Press].

Pr(D=0)	$\Pr(D=1)$	$\Pr(I=0)$	$\Pr(I=1)$
0.5	0.5	0.5	0.5

D	I	$\Pr(G=0 D,I)$	$\Pr(G=1 D,I)$
0	0	0.5	0.5
0	1	0.1	0.9
1	0	0.9	0.1
1	1	0.5	0.5

Ι	$\Pr(S=0 I)$	$\Pr(S=1 I)$
0	0.9	0.1
1	0.1	0.9
G	$\Pr(L=0 G)$	$\Pr(L=1 G)$
0	0.9	0.1
1	0.1	0.9

7 ~ N(c,1)

Bayesian Networks – Generative Process

 $\times \sim N(f(Z),1)$

We can think of the model as a generative process

$$egin{aligned} Difficulty &\sim pig(D| heta_Dig) \ Intelligence &\sim pig(I| heta_Iig) \ Grade &\sim pig(G|D,I,\; heta_Gig) \ SAT &\sim pig(S|I,\; heta_Sig) \ Letter &\sim pig(L|G,\; heta_Lig) \end{aligned}$$

Example from: [Daphne Koller and Nir Friedman. 2009. Probabilistic Graphical Models: Principles and Techniques. The MIT Press].