Sven Dorkenwald

Advanced Seminar 02/06/2017

ziti, Heidelberg University Supervisor: Prof. Dr. Peter Fischer

Outline

- 1. Compression after sensing
- 2. Why we can compress
- 3. Theory on Compressed Sensing
- 4. Example applications

Compression after sensing

Problems of "Compression after Sensing"

We likely gather too much data

Sampling with Shannon rate

- slow
- expensive
- problematic (eg. medical applications)

Compression on recorder side

expensive (satellites)

Superposition of 3 sinus waves:

Superposition of 3 sinus waves:

sampling at at least 1000Hztwice the highest frequency according to Shannon

6 parameters:3 frequencies3 amplitudes

8bit 288x288 image:

Wavelet Trafo

8bit 288x288 image:

Wavelet Trafo

First 2000 of ~83k coefficients:

→ Most coefficients close to 0

Omitting the 90% smallest coefficients and transforming back:

Omitting the 90% smallest coefficients and transforming back:

Relative difference to original image:

most signals are sparse in some basis

(e.g. Fourier, Wavelet)

How many weightings do we need to always find the counterfeit?

Hint 1: it is not 8

Hint 2: you may want to weigh multiple coins at once

Sensing a sparse vector

measurement	sensing matrix	signal
		N K sparse

→ M < N: information loss (not full rank)</p>

→ M < N: information loss (not full rank)

→ M > K: we preserve all information if M x K has full rank

- \longrightarrow M > K: we preserve all information if M x K has full rank
- Design problem: Find a M x N matrix such that all M x K submatrices have full rank and are almost orthogonal to each other Restricted Isometry Problem (RIP)

Using a random sampling matrix

a randomized (iid gaussian) matrix has this property to a very high likelihood if:

 $M = O(K \log(N/K))$

27

Recovering the input signal

Find \hat{x} that solves $y = \Phi x$

Least squares: $\min\{\|\Phi \hat{x} - y\|_2\}$

Find \hat{x} that solves $y = \Phi x$

Least squares: $\min\{\|\Phi \hat{x} - y\|_2\}$

finds perfect \hat{x} , but not a sparse one

Ridge regression: $\min\{\|\Phi \hat{x} - y\|_2 + \lambda \|\hat{x}\|_2\}$

Find \hat{x} that solves $y = \Phi x$

Least squares: $\min\{\|\Phi \hat{x} - y\|_2\}$

finds perfect \hat{x} , but not a sparse one

Ridge regression: $\min\{\|\Phi \hat{x} - y\|_2 + \lambda \|\hat{x}\|_2\}$

finds small \hat{x} , but not a sparse one

Lasso regression: $\min\{\|\Phi \hat{x} - y\|_2 + \lambda \|\hat{x}\|_1\}$

Example:

$$\Phi \hat{x} = y$$

 $\Phi = \text{random}(200, 1000)$

y = random(200)

Example:

$$\Phi \hat{x} = y$$

 $\Phi = \text{random}(200, 1000)$

y = random(200)

Ridge

Lasso

Dealing with non-sparse signals

Dealing with non-sparse signals

Let x' be the representation of x in a sparse basis Ψ

$$\Psi x' = x$$

Same sampling process

$$y = \Phi \Psi x'$$

Dealing with non-sparse signals

Let x' be the representation of x in a sparse basis Ψ

$$\Psi x' = x$$

Same sampling process

$$y = \Phi \Psi x'$$

Update measurement matrix when recovering

$$\min\{\|\Phi\Psi\hat{x}' - y\|_2 + \lambda \|\hat{x}'\|_1\}$$

Let x' be the representation of x in a sparse basis Ψ

$$\Psi x' = x$$

Same sampling process

$$y = \Phi \Psi x'$$

Update measurement matrix when recovering

$$\min\{\|\Phi\Psi\hat{x}' - y\|_2 + \lambda \|\hat{x}'\|_1\}$$

Transform back after recovering: $\hat{x} = \Psi \hat{x}'$

Let x' be the representation of x in a sparse basis Ψ

$$\Psi x' = x$$

Same sampling process

$$y = \Phi \Psi x'$$

Update measurement matrix when recovering

$$\min\{\|\Phi\Psi\hat{x}' - y\|_2 + \lambda \|\hat{x}'\|_1\}$$

Transform back after recovering: $\hat{x} = \Psi \hat{x}'$

 \rightarrow Ψ does not have to be known when sensing!

Wrap Up

Wrap Up

Sampling below Shannon frequency

faster

Asymmetric

the decoder has to do most of the work

One pixel camera

One pixel camera

target 65536 pixels

11000 measurements (16%)

1300 measurements (2%)

Low light one pixel camera

true color low-light imaging 256 x 256 image with 10:1 compression

Little experiment

10% highes wavelets coefficients

RMSE: 0.010

RMSE of random image: 0.423

Little experiment

10% highest wavelets coefficients

RMSE: 0.010

RMSE of random image: 0.423

30% as many measurements

RMSE: 0.039

Speeding up MRI acquisition

original image

original image

corruption rate: 0.1

recovered image

corruption rate: 0.1

random image

RMSE: 0.423

corruption rate: 0.1

recovered image

corruption rate: 0.1

recovered image

corruption rate: 0.2

recovered image

corruption rate: 0.3

recovered image

corruption rate: 0.4

recovered image

corruption rate: 0.5

recovered image

corruption rate: 0.6

recovered image

corruption rate: 0.7

recovered image

corruption rate: 0.8

recovered image

corruption rate: 0.9

Conclusion

CS can beat the Nyquist Shannon limit

The computational burdon is shifted to the decrypter

Adjustments to the sensor have to be made

Future: Combination with classification

Conclusion

Code and suggested talks and reading:

https://github.com/sdorkenw/CompressedSensingSeminar