Package 'vfcp'

October 12, 2022

Type Package **Date** 2017-10-24

Title Computation of v Values for U and Copula C(U, v)
Version 1.4.0
Author Josef Brejcha
Maintainer Josef Brejcha brchjo@gmail.com>
Depends copula, extraDistr, stringr
Suggests knitr, rmarkdown
Description Computation the value of one of two uniformly distributed marginals if the copula probability value is known and the value of the second marginal is also known. Computation and plotting corresponding cumulative distribution function or survival function. The numerical definition of a common area limited by lines of the cumulative distribution function and survival function. Approximate quantification of the probability of this area. In addition to 'amh', the copula dimension may be larger than 2.
License GPL (>= 3)
Encoding UTF-8
LazyData TRUE
RoxygenNote 6.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2017-10-27 13:02:22 UTC
R topics documented:
vfcp-package gentruk kopula prosim

2 vfcp-package

dex																										20
	vfpripo	•	 •	•	•	 •	•	•	•	 •	•	•	 •	•	 •	•	•	 •	•			 •	•	•	•	19
	vfprifo																									
	vfploto																									
	vfmrg																									
	vfjoe																									
	vfgumbel																									
	vffrank																									
	vffgm																									
	vfex																									
	vfenuo																									
	vfclayton																									9
	vfalihaq .																									
	trimeze .																									
	prunikus .																									

vfcp-package

Computation of v Values for U and Copula C(U, v)

Description

Computation v when v and v copula are known. Calculation and plotting of cumulative distribution and survival function when v, v copula and marginal distributions are known. These calculations can be tabulated as option. The numerical definition of a common area limited by lines of the cumulative distribution function and survival function. Approximate quantification of the probability of this area. In addition to 'amh', the copula dimension may be larger than 2.

Details

Package: vfcp
Type: Package
Version: 1.4.0
Date: 2017-10-24
License: GPL (>= 3)

Author(s)

Josef Brejcha

Maintainer: Josef Brejcha

brchjo@gmail.com>

gentruk 3

References

A.K. SUZUKI, F. LOUZADA and V.G. CANCHO, On estimation and influence diagnostics for a Bivariate Promotion Lifetime Model Based on the FGM Copula: A Fully Bayesian Computation, *Tendencias em Matematica Aplicada e Computacional*, 14, N. 3 (2013), 441-461, http://www.scielo.br/pdf/tema/v14n3/a14v14n3.pdf

M. Mahfoud, "Bivariate Archimedean copulas: an application to two stock market indices", *Vrije Universiteit Amsterdam*, **BMI Paper**, Amsterdam-2012, http://docplayer.net/24882927-Bivariate-archimedean-cohtml

Copula (probability theory), https://en.wikipedia.org/wiki/Copula_(probability_theory) Statistical - Distributions - Inverted Beta distribution - Example, http://www.xycoon.com/ibeta.htm

gentruk

Creating an object for CDF and copula survival

Description

For given inputs, the coordinates of the object defined by the CDF and the survival function for the copula object are created.

Usage

```
gentruk(tht, fm, C, pro)
```

Arguments

tht	Copula parameter. If fam = "fgm", it must be a vector of size $dm*(dm-1)/2+1$.
fm	Family name copula. These can be: "clayton", "gumbel", "frank", "joe", "amh", "fgm".
С	Probability value of the copula. Single value.
pro	Numeric vector. Its $pro[1:k]$ are upper values of the u. Next $pro[-c(1:k)]$ are then all greater than or equal to 1.

Value

A list with components as trimeze value.

Author(s)

4 kopula

```
tht = 0.6
cx = c(0.025, 0.05, 0.1, 0.15, 0.25)
pro = c(0.99999, 0.9999, 0.999, 0.99, 24, 16, 8, 4)
dm = 2
fam = "fgm"
marg = c("weibull", "betapr")
xo = c(200, 2.75, 16.5, 6.60)
e12 = vfenuo(marg, xo)
p = numeric(length(cx))
x12 = qweibull(0.975, scale = xo[1], shape = xo[2])
y12 = qbetapr(0.975, shape1 = xo[3], shape2 = xo[4])
mtit = paste(fam, " ... ", marg[1], "(", xo[1], ", ", xo[2], ")",
 " ", marg[2], "(", xo[3], ", ", xo[4], ")",
 sep = "")
plot(NULL, NULL, xlim = c(0, x12), ylim = c(0, y12),
     xlab = paste("x, E[x] = ", round(e12[1], 2)),
 ylab = paste("y, E[y] = ", round(e12[2], 2)),
main = mtit)
points(e12[1], e12[2], pch = 20)
abline(h = e12[2], v = e12[1])
grid(col = "grey50")
kop2 = kopula(fam, tht, dm)
fmc = c("", "", "clayton", "gumbel", "frank", "joe")
pro = c(0.999999, 0.99999, 0.9999, 16, 8, 4, 2)
tm3 = list()
tmk = list()
for (k in 1:length(cx)){
  tm3 = gentruk(tht, fm=fam, C=cx[k], pro)
  tmk[[k]] = tm3
}
p = prosim(C = cx, fam, tht, dm, no = 100000)
xa = c("u")
ya = c("v")
for (k in 1:length(cx)){
  mspx = vfmrg(rdj=marg, i=1, cosi=tmk[[k]]$sp$s1, yo=xo, cdf=TRUE)
  mspy = vfmrg(rdj=marg, i=2, cosi=tmk[[k]]$sp$s2, yo=xo, cdf=TRUE)
  mcpx = vfmrg(rdj=marg, i=1, cosi=tmk[[k]]$cp$c1, yo=xo, cdf=TRUE)
  mcpy = vfmrg(rdj=marg, i=2, cosi=tmk[[k]]$cp$c2, yo=xo, cdf=TRUE)
  lines(mspx,mspy, col=k)
  lines(mcpx, mcpy, col = k)
}
  legend("topleft", legend = c("C", cx), text.col = c(1, 1:length(cx)),
         bty = "n")
  legend("topright", legend = c("p", round(p, 4)),
         text.col = c(1, 1:length(cx)), bty = "n")
```

prosim 5

Description

Generate the copula object.

Usage

```
kopula(fam, tht, dm)
```

Arguments

fam Family name copula. These can be: "clayton", "gumbel", "frank", "joe", "amh",

"fgm".

tht Copula parameter. dm Copula dimension.

Value

Copula object

Author(s)

Josef Brejcha

prosim	Monte Carlo method	

Description

Probability of the inside of an object as defined by CDF and survival. For this, the Monte Carlo method is used.

Usage

```
prosim(C, fam, tht, dm, no)
```

Arguments

С	single numeric; CDF value. Survival value is 1 - CDF.
fam	Family name copula. These can be: "clayton", "gumbel", "frank", "joe", "amh", "fgm".
tht	Copula parameter. If fam = "fgm", it must be a vector of size $dm*(dm-1)/2+1$.
dm	Copula dimension
no	Monte Carlo sample size

Value

Probability

6 prunikus

Author(s)

Josef Brejcha

Examples

```
tht = 10.6
cx = c(0.05, 0.1, 0.15, 0.25)
pro = c(0.99999, 0.9999, 0.999, 0.99, 24, 16, 8, 4)
dm = 4
fam = "gumbel"
marg = rep(c("weibull", "betapr"), 2)
xo = rep(c(200, 2.75, 16.5, 6.60), 2)
kop2 = kopula(fam, tht, dm)
fmc = c("", "", "clayton", "gumbel", "frank", "joe")
pro = c(0.999999, 0.99999, 0.9999, 16, 8, 4, 2)
tm3 = list()
tmk = list()
# di = dm*(dm - 1)/2
for (k in 1:length(cx)){
 tm3 = gentruk(tht, fm=fam, C=cx[k], pro)
 tmk[[k]] = tm3
}
np = 5
no = 100000
ncx = length(cx)
p = array(0, c(np*ncx, 2))
colnames(p) = c("C", "p")
k = 0
for (i in 1:length(cx)){
 for (j in 1:np){
   k = k + 1
   p[k, 1] = cx[i]
   p[k, 2] = prosim(C = cx[i], fam, tht, dm, no)
plst = list()
print(paste(fam, "dim =", dm, "tht =", tht, "n =", no, "nrep.", np))
for (k in 1:ncx){
 plst[[k]] = summary(p[p[, 1] == cx[k], 2])
 print(paste("cx =", cx[k]))
 print(plst[[k]])
}
```

prunikus

The coordinates of the intersection lines of the cumulative distribution function and survival function

trimeze 7

Description

The coordinates of the intersection lines of the cumulative distribution function and survival function

Usage

```
prunikus(x, y)
```

Arguments

x Numeric vector of size 4. The horizontal coordinates of opposite points.

y Numeric vector of size 4. The vertical coordinates of opposite points.

Value

Numeric vector size 2.

Author(s)

Josef Brejcha

References

Line-line intersection, https://en.wikipedia.org/wiki/Line-line_intersection

trimeze

Coordinates of an object defined by CDF and survival functions

Description

Calculates the coordinates of the object defined matrices C1 and C23. Both matrices are two-row.

Usage

```
trimeze(C1, C23)
```

Arguments

C1 numerical probability two-row matrix defining survival line
C23 numerical probability two-row matrix defining CDF line

8 vfalihaq

Value

A list with components as follows:

tlc upper left corner coordinates
brc bottom right corner coordinates
sp survival line coordinates
cp CDF line coordinates

Author(s)

Josef Brejcha

vfalihaq Ali-Mikhail-Haq Copula Variable Given Second One and Copula Probability

Description

v for Ali-Mikhail-Haq copula C(u, v) given probability C(u, v) and u.

Usage

```
vfalihaq(C, u, tht)
```

Arguments

C Probability value of the Ali-Mikhail-Haq copula. It can be a vector.

u The first variable value of the C(u, v). u can be a vector if C is a single. u is a

matrix with nrow = length(C) if C is a vector.

tht Copula parameter

Details

The value of the u must be grater than C.

Value

The value of the second variable depending on the first variable and copula probability value.

Author(s)

vfclayton 9

Examples

```
require(copula)
C = 0.3
tht = 0.5
u = c(0.35, 0.40, 0.45)
v <- vfalihaq(C, u, tht)</pre>
kali <- archmCopula(family = "amh", param = tht, dim = 2)</pre>
pCopula(cbind(u, v), kali)
Cf <- c(0.3, 0.4)
mx \leftarrow matrix(c(seq(0.35, 0.45, 0.05), seq(0.5, 0.6, 0.05)),
             nrow = 2, ncol = 3, byrow = TRUE)
rownames(mx) <- Cf
vfalihaq(C = Cf, u = mx, tht=0.5)
           [,1]
                     [,2]
# 0.3 0.8019802 0.6774194 0.5918367
# 0.4 0.7500000 0.6739130 0.6153846
```

vfclayton

Clayton Copula Variable Given Second One and Copula Probability

Description

```
v for Clayton copula C(u, v) given probability C(u, v) and u.
```

Usage

```
vfclayton(C, u, tht)
```

Arguments

C Probability value of the Clayton copula. It can be a vector.

u The first variable value of the C(u, v). u can be a vector if C is a single. u is a

matrix with nrow = length(C) if C is a vector.

tht Copula parameter

Details

The value of the u must be grater than C.

Value

The value of the second variable depending on the first variable and copula probability value.

Author(s)

10 vfenuo

Examples

```
C <- 0.3
tht <- 6
u < -c(0.35, 0.4, 0.45)
v <- vfclayton(C, u, tht)</pre>
kop = claytonCopula(tht)
pCopula(cbind(u, v), kop)
Cf \leftarrow c(0.3, 0.4)
mx \leftarrow matrix(c(seq(0.35, 0.45, 0.05), seq(0.5, 0.6, 0.05)),
 nrow = 2, ncol = 3, byrow = TRUE)
rownames(mx) <- Cf</pre>
vfclayton(C = Cf, u = mx, tht=7)
                  [,2]
          [,1]
                             [,3]
# 0.3 0.3183261 0.3061926 0.3025859
# 0.4 0.4135555 0.4064530 0.4033610
```

vfenuo

Expected values of marginal distributions

Description

Auxiliary function that calculates the expected values of marginal distributions.

Usage

```
vfenuo(marg, xo)
```

Arguments

```
Character vector size greater than or equal to 2. Its components can now be c("weibull", "gamma", "lnorm", "norm", "betapr", "beta").

XO

Vector size 2*length(marg) of parameters of marg.

xo[odd] scale, meanlog, mean, shape1
```

shape, sdlog, sd, shape2

Value

Numeric vector size equal to length(marg).

xo[even]

Author(s)

vfex 11

Examples

```
vfenuo(marg = c("betapr", "beta", "norm", "weibull"),
xo = c(5, 5, 3, 20, 30, 5, 100, 1.5))
```

vfex

Compute vector V for C(u, V)

Description

A vector v is computed for C and numeric probability vector u.

Usage

```
vfex(C, u, th, fm)
```

Arguments

C Copula probability. It is a single value.

u Probability vector. All its components are greater than C.

th Copula parameter.

fm character; A name of copula. One of c("clayton", "frank", "gumbel", "amh",

"joe", "fgm"). "amh", "joe", "fgm" names are for Ali-Mikhail-Haq, Joe, Farlie-

Gumbel-Morgenstern copulas.

Value

Numeric vector.

Author(s)

Josef Brejcha

vffgm

Farlie-Gumbel-Morgenstern Copula Variable Given Second One and Copula Probability

Description

v for Farlie-Gumbel-Morgenstern copula C(u, v) given probability C(u, v) and u.

Usage

```
vffgm(C, u, tht)
```

12 vffgm

Arguments

С	Probability value of the Farlie-Gumbel-Morgenstern copula. It can be a vector.
u	The first variable value of the $C(u, v)$. u can be a vector if C is a single. u is a matrix with nrow = length(C) if C is a vector.
tht	Copula parameter

Details

The value of the u must be grater than C.

Value

The value of the second variable depending on the first variable and copula probability value.

Author(s)

Josef Brejcha

References

A.K. SUZUKI, F. LOUZADA and V.G. CANCHO, On estimation and influence diagnostics for a Bivariate Promotion Lifetime Model Based on the FGM Copula: A Fully Bayesian Computation, *Tend^encias em Matem´ atica Aplicada e Computacional, 14, N. 3 (2013), 441-461*, http://www.scielo.br/pdf/tema/v14n3/a14v14n3.pdf

```
require(copula)
C = 0.3
tht = 0.5
u = c(0.35, 0.40, 0.45)
v <- vffgm(C, u, tht)
kfgm <- fgmCopula(tht)</pre>
pCopula(c(u, v), kfgm)
Cf <- c(0.3, 0.4)
mx \leftarrow matrix(c(seq(0.35, 0.45, 0.05), seq(0.5, 0.6, 0.05)),
             nrow = 2, ncol = 3, byrow = TRUE)
rownames(mx) <- Cf</pre>
vffgm(C = Cf, u = mx, tht=0.5)
           [,1]
                  [,2]
# 0.3 0.8064052 0.6853009 0.6007056
# 0.4 0.7535751 0.6781648 0.6195239
```

vffrank 13

vffrank

Frank Copula Variable Given Second One and Copula Probability

Description

```
v for Frank copula C(u, v) given probability C(u, v) and u.
```

Usage

```
vffrank(C, u, tht)
```

Arguments

C	Probability value of the Frank copula. It can be a vector.
u	The first variable value of the $C(u, v)$. u can be a vector if C is a single. u is a

matrix with nrow = length(C) if C is a vector.

tht Copula parameter

Details

The value of the u must be grater than C.

Value

The value of the second variable depending on the first variable and copula probability value.

Author(s)

Josef Brejcha

```
C <- 0.3
tht <- 6
u <- c(0.35, 0.4, 0.45)
v <- vffrank(C, u, tht)
kop = frankCopula(tht)
pCopula(cbind(u, v), kop)</pre>
```

14 vfgumbel

vfgumbel

Gumbel Copula Variable Given Second One and Copula Probability

Description

```
v for Gumbel copula C(u, v) given probability C(u, v) and u.
```

Usage

```
vfgumbel(C, u, tht)
```

Arguments

C Probability value of the Gumbel copula. It can be a vector.

u The first variable value of the C(u, v). u can be a vector if C is a single. u is a

matrix with nrow = length(C) if C is a vector.

tht Copula parameter

Details

The value of the u must be grater than C.

Value

The value of the second variable depending on the first variable and copula probability value.

Author(s)

Josef Brejcha

vfjoe 15

vfjoe

Joe Copula Variable Given Second One and Copula Probability

Description

```
v for Joe copula C(u, v) given probability C(u, v) and u.
```

Usage

```
vfjoe(C, u, tht)
```

Arguments

C Probability value of the Joe copula. It can be a vector.

U The first variable value of the C(u, v). u can be a vector if C is a single. u is a

matrix with nrow = length(C) if C is a vector.

tht Copula parameter

Details

The value of the u must be grater than C.

Value

The value of the second variable depending on the first variable and copula probability value.

Author(s)

Josef Brejcha

16 vfmrg

vfmrg	Auxiliary function	
-------	--------------------	--

Description

Auxiliary function used in vfploto. It computes random variable value of the CDF or survival which can be one of the c("weibull", "gamma", "lnorm", "betapr", "betapr", "beta").

Usage

```
vfmrg(rdj, i, cosi, yo, cdf)
```

Arguments

rdj	A character vector. Its components are from c("weibull", "gamma", "lnorm", "norm", "betapr", "beta").
i	An index of the rdj
cosi	A vector of probabilities
yo	Vector size 2*length(rdj) of parameters of rdj
	yo[1], yo[3] scale, meanlog, mean, shape1 yo[2], yo[4] shape, sdlog, sd, shape2

cdf

Cumulative distribution function when TRUE, survival otherwise.

Details

"betapr" is the name of 'BetaPrime' distribution from extrDistr package. The other name 'BetaPrime' is 'Inverted Beta'.

Value

Numeric vector

Author(s)

vfploto 17

Description

Plotting the cumulative distribution function or survival function.

Usage

```
vfploto(cx, pro, fam, marg, xo, tht, cdf=TRUE, plt=TRUE, rtn=FALSE,
    ped = TRUE)
```

Arguments

СХ	A vector of copula probabilities.
pro	Numeric vector. Its pro[1] is upper value of the u. Next pro[-1] are then all greater than or equal to 1. The second case of pro is all pro less than 1. The first case is an extra calculation of the u values. In the latter case, u values can be pre-selected.
fam	character; A name of copula. One of c("clayton", "frank", "gumbel", "amh", "joe", "fgm"). "amh", "joe", "fgm" names are for Ali-Mikhail-Haq, Joe, Farlie-Gumbel-Morgenstern copulas.
marg	A vector size 2. Combination of these marginals: c("weibull", "gamma", "lnorm", "norm", "betapr", "beta").
хо	A vector of marginal distribution parameters. It is size 4 with these components:
	xo[1], xo[3] scale, meanlog, mean, shape1 xo[2], xo[4] shape, sdlog, sd, shape2
tht	copula parameter
cdf	logical; Computation for CDF when TRUE. If FALSE is the same for Survival.
plt	Plot only when TRUE.
rtn	Print output value only when TRUE.
ped	Compute and add to plot an expected values o f marginal distributions when

Details

Must not be plt and rtn at the same time equal to FALSE.

ped = TRUE.

18 vfprifo

Value

If rtn is TRUE, then a list of these components:

```
character; "CDF" or "Survival"
Type
   Ρ
       numeric; CDF or Survival value
      numeric vector of the first marginal values for P
   Χ
      numeric vector of the second marginal values for P
   У
   u numeric vector of the first copula marginal values
       numeric vector of the second copula marginal values
```

Author(s)

Josef Brejcha

Examples

```
require(copula)
tht = 0.475
cx = c(0.0025, 0.05, seq(0.1, 0.9, 0.1), 0.95, 0.975)
\# nC = length(cx)
proh = c(0.99999999, 8, 4, 4, 4)
prod = c(0.999, 8, 4, 4, 4)
fam = "clayton"
marg = c("weibull", "lnorm")
xo = c(100, 1.5, 3, 0.425)
suro = vfploto(cx, proh, fam, marg, xo, tht, cdf=FALSE, plt=TRUE, rtn=FALSE)
cdfo = vfploto(cx, prod, fam, marg, xo, tht, cdf=TRUE, plt=TRUE, rtn=FALSE)
cx = 0.4
vfploto(cx, proh, fam, marg, xo, tht, cdf=TRUE, plt=FALSE, rtn=TRUE,
        ped = TRUE)
```

vfprifo

Computation of the vector u to compute the second vector v

Description

Auxiliary function. Each vector value u must be greater than the probability of the copula.

Usage

```
vfprifo(ck, pro)
```

Arguments

ck Copula probability. Single value. Not a vector.

pro Numeric vector. All its components are less than 1. u can be pre-set in the desired values.

vfpripo 19

Value

Numeric vector.

Author(s)

Josef Brejcha

vfpripo

Computation of the vector \boldsymbol{u} to compute the second vector \boldsymbol{v}

Description

Auxiliary function. Each vector value u must be greater than the probability of the copula.

Usage

```
vfpripo(ck, pro)
```

Arguments

ck Copula probability. Single value. Not a vector.

pro Numeric vector. Its pro[1:k] are upper values of the u. Next pro[-c(1:k)]

are then all greater than or equal to 1.

Value

Numeric vector.

Author(s)

Josef Brejcha

```
prk = c(0.99999, 0.9999, 0.999, 0.99, 8, 4, 2)
C = 0.1
u = vfpripo(ck = C, pro = prk)
```

Index

```
gentruk, 3
kopula, 4
{\tt prosim}, {\tt 5}
prunikus,6
\texttt{trimeze}, \textcolor{red}{\textit{3}}, \textcolor{red}{\textit{7}}
\quad \text{vfalihaq,} \, {\color{red} 8}
vfclayton, 9
vfcp-package, 2
vfenuo, 10
vfex, 11
vffgm, 11
vffrank, 13
vfgumbel, \\ 14
vfjoe, 15
vfmrg, 16
vfploto, 17
vfprifo, 18
vfpripo, 19
```