ОТЧЕТ

По реализации схемы А.Г. Соколова ПЛОТНОСТЬ-ИМПУЛЬС для решения задачи о движении газа

1 Постановка задачи

Рассмотрим движение газа в одномерной области. Оно описывается системой дифференциальных уравнений:

$$\begin{cases} \frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = 0\\ \frac{\partial \rho u}{\partial t} + \frac{\partial \rho u^2}{\partial x} + \frac{\partial p}{\partial x} = \mu \frac{\partial^2 u}{\partial x^2} + \rho f, \end{cases}$$
(1)

Где ρ - плотность газа, u - скорость газа, $p=p(\rho)=\rho^{\gamma}$ - давление газа (γ обычно равно 1.4). μ - вязкость газа, обычно в диапозоне [0.0001, 0.1]. С начальными условиями

$$(\rho, u)|_{t=0} = (\rho_0, u_0) \tag{2}$$

и граничными условиями непротекания:

$$u(t, X_0) = u(t, X_1) = 0. (3)$$

Заметим, что в разностной схеме, описанной ниже, этих условий достаточно (Граничные условия на плотность газа не ставятся).

2 Разностная схема

Рассмотрим разностную схему А.Г. Соколова ПЛОТНОСТЬ-ИМПУЛЬС на отрезке $[X_0, X_1]$ с равномерным разбиением с шагом h и шагом по времени τ . Т.е. $x_i = X_0 + i * h$, $i = 0, \ldots, M$, $h = (X_1 - X_0)/M$ (для скорости).

Разбиение для плотности H отличается, $x_i = X_0 + (i+1/2) * h$, $i = 0, \ldots, M-1$.

Рассмотрим приближение скорости V и приближение плотности H и распишем в этих обозначениях систему дифференциальных уравнений:

$$\begin{cases} H_t + (\sigma\{\hat{H}, V\}V)_x = 0, \ 0 \le m < M, n \ge 0, \\ (H_{\bar{s}}V)_t + \frac{1}{2} \left((\sigma\{\hat{H}\hat{V}, V\}V)_x + (\sigma\{\hat{H}\hat{V}^{+1}, V\}V)_{\bar{x}} \right) + \frac{\gamma}{\gamma - 1} \hat{H}_{\bar{s}} ((\hat{H})^{\gamma - 1})_{\bar{x}} = \mu \hat{V}_{x\bar{x}} + \hat{H}_{\bar{s}}f, \text{при}\hat{H}_{\bar{s}} \ne 0, \\ \hat{V} = 0, \text{при } \hat{H}_{\bar{s}} = 0, \\ 0 < m < M, \ n \ge 0, \\ \hat{V}_0 = \hat{V}_M = 0. \end{cases}$$

$$(4)$$

где

$$\sigma\{H,V\} = H\frac{|V|-V}{2|V|} + H^{(-1)}\frac{|V|+V}{2|V|} = \begin{cases} H, & \text{если } V < 0, \\ H^{(-1)}, & \text{если } V \geq 0. \end{cases}$$

где $H^{(-1)} = H_{m-1}^n$

Определим $H_m^n = H_n(x_m)$ - значение плотности в точке x_m на временном шаге n; Распишем первое уравнение для произвольного временного шага n и точки x_m :

$$\frac{H_m^{n+1} - H_m^n}{\tau} + \frac{(V_{m+1}^n - |V_{m+1}^n|)H_{m+1}^{n+1} + (V_{m+1}^n + |V_{m+1}^n| - V_m^n + |V_m^n|)H_m^{n+1} - (V_m^n + |V_m^n|)H_{m-1}^{n+1}}{2h} = 0,$$

$$0 \le m < M, \ n \ge 0.$$
(5)

Это система из M уравнений с M неизвестными $H_m^{n+1},\ m=0,\ldots,M-1$. Следовательно, можно решить эту систему и найти $H_m^{n+1},\ m=0,\ldots,M-1$.

Составим матрицу $A\ M \times M$ для решения этой системы, она трехдиагональная:

$$\begin{cases}
 a_{m,m-1} = \operatorname{Coef}(H_{m-1}^{n+1}) = -\frac{V_m^n + |V_m^n|}{2h}, & m = 1, \dots, M \\
 a_{m,m} = \operatorname{Coef}(H_m^{n+1}) = \frac{1}{\tau} + \frac{V_{m+1}^n + |V_{m+1}^n| - V_m^n + |V_m^n|}{2h}, & m = 0, \dots, M \\
 a_{m,m+1} = \operatorname{Coef}(H_{m+1}^{n+1}) = \frac{V_{m+1}^n - |V_{m+1}^n|}{2h}, & m = 0, \dots, M - 1 \\
 b_m = \frac{H_m^n}{\tau}, & m = 0, \dots, M
\end{cases}$$
(6)

Где $\operatorname{Coef}(H^n_m)$ это коэффициент при H^n_m в уравнении.

Теперь распишем второе уравнение для произвольного временного шага n и точки x_m :

$$\frac{(H_{m-1}^{n+1} + H_m^{n+1})V_m^{n+1} - (H_{m-1}^n + H_m^n)V_m^n}{2\tau} - \frac{((|V_{m-1}^n| + V_{m-1}^n)H_{m-2}^{n+1} + (|V_m| + V_m^n)H_{m-1}^{n+1})V_{m-1}^{n+1}}{4h} + \frac{((|V_{m-1}^n| - V_{m-1}^n + |V_m^n| + V_m^n)H_{m-1}^{n+1} + (|V_{m+1}^n| + V_{m+1}^n + |V_m^n| - V_m^n)H_m^{n+1})V_m^{n+1}}{4h} - \frac{((|V_m^n| - V_m^n)H_m^{n+1} + (|V_{m+1}^n| - V_{m+1}^n)H_{m+1}^{n+1})V_{m+1}^{n+1}}{4h} + \frac{\gamma}{\gamma - 1} \frac{H_m^{n+1} + H_{m-1}^{n+1}}{2} \frac{(H_m^{n+1})^{\gamma - 1} - (H_{m-1}^{n+1})^{\gamma - 1}}{h} = \frac{1}{2} \frac{H_m^{n+1} + H_{m-1}^{n+1}}{h^2} + \frac{H_m^{n+1} + H_m^{n+1}}{2} f_m^{n+1}, \quad \text{IIDM } H_{m-1}^{n+1} + H_m^{n+1} \neq 0, \quad V_m^{n+1} = 0, \quad \text{IIDM } H_{m-1}^{n+1} + H_m^{n+1} = 0, \quad 0 < m < M, n \geq 0, \quad V_0^{n+1} = V_M^{n+1} = 0.$$

Это система из M-1 уравнений и M-1 неизвестной $V_m^{n+1},\ m=1,\dots,M-1,$ так как мы знаем $V_0^{n+1}=0,$ и $V_M^{n+1}=0.$

Составим матрицу А $(M-1) \times (M-1)$ для решения этой системы, она трехдиагональная:

Если
$$H_{m-1}^{n+1} + H_m^{n+1} \neq 0$$
, то

$$\begin{cases} a_{m,m-1} = \operatorname{Coef}(V_{m-1}^{n+1}) = -\frac{(|V_{m-1}^n| + V_{m-1}^n) H_{m-2}^{n+1} + (|V_m^n| + V_m^n) H_{m-1}^{n+1}}{4h} - \frac{\mu}{h^2}, \\ a_{m,m} = \operatorname{Coef}(V_m^{n+1}) = \frac{H_{m-1}^{n+1} + H_m^{n+1}}{2\tau} + \frac{(|V_{m-1}^n| - V_{m-1}^n + |V_m^n| + V_m^n) H_{m-1}^{n+1} + (|V_{m+1}^n| + V_{m+1}^n + |V_m^n| - V_m^n) H_m^{n+1}}{4h} + \frac{2\mu}{h^2}, \\ a_{m,m+1} = \operatorname{Coef}(V_{m+1}^{n+1}) = \frac{(|V_m^n| - V_m^n) H_m^{n+1} + (|V_{m+1}^n| - V_{m+1}^n) H_{m+1}^{n+1}}{4h} - \frac{\mu}{h^2}, \\ b_m = \frac{(H_{m-1}^n + H_m^n) V_m^n}{2\tau} - \frac{\gamma}{\gamma - 1} \frac{H_m^{n+1} + H_{m-1}^{n+1}}{2} \frac{(H_m^{n+1})^{\gamma - 1} - (H_{m-1}^{n+1})^{\gamma - 1}}{h} + \frac{H_{m-1}^{n+1} + H_m^{n+1}}{2} f_m^{n+1}, \end{cases}$$

$$(8)$$

Если $H_{m-1}^{n+1} + H_m^{n+1} = 0$, то

$$\begin{cases}
 a_{m,m-1} = \operatorname{Coef}(V_{m-1}^{n+1}) = 0, \\
 a_{m,m} = \operatorname{Coef}(V_m^{n+1}) = 1, \\
 a_{m,m+1} = \operatorname{Coef}(V_{m+1}^{n+1}) = 0, \\
 b_m = 0,
\end{cases} \tag{9}$$

3 Решение

На каждой итерации решается 2 системы линейных уравнений: сначала для H, атем для V. Они решаются методом прогонки.

4 Проверка невязки

Рассмотрим функции для проверки невязки:

$$\begin{cases} \rho = e^t(x+1) \\ u = x(x-1) \end{cases} \tag{10}$$

На отрезке по пространству и по времени [0,1], вязкость $\mu=0.01$.

Построим новую систему дифференциальных уравнений, для которой эти функции будут являться решением, и сравним с ними решение, полученное программой.

$$\begin{cases} \frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} = f_0\\ \frac{\partial \rho u}{\partial t} + \frac{\partial \rho u^2}{\partial x} + \frac{\partial p}{\partial x} = \mu \frac{\partial^2 u}{\partial x^2} + \rho f + f_1, \end{cases}$$
(11)

Где

$$\begin{cases}
f_0 = e^t(x+1) + e^t(3x^2 - 1), \\
f_1 = e^tx(x^2 - 1) + e^t(2x(x^2 - 1)(x - 1) + 2x^3(x - 1) + x^2(x^2 - 1)) + \gamma e^t(e^t(x+1))^{\gamma - 1} - \mu
\end{cases}$$
(12)

В каждой ячейке значения 3-х невязок : первая - $L_{2,h}$, вторая - C_h , третья - $||x||_2$.

Таблица невязок для Н:

$\tau \backslash h$	0.1	0.01	0.0001	0.00001
	1.715046e-01	2.438564e+00	5.005354e+00	9.664192e+00
0.1	2.853975e-01	$1.068528\mathrm{e}{+01}$	1.117180e+02	7.698708e+02
	4.487259e-01	2.371597e+01	1.581367e+02	9.578208e+02
	1.971254e-02	1.646628e-02	1.662962e-02	1.664992e-02
0.01	3.266910e-02	3.160195e-02	3.167248e-02	3.168116e-02
	5.116027e-02	1.608697e-01	5.246955e-01	$1.664620\mathrm{e}{+00}$
	9.138907e-03	1.488073e-03	1.637004e-03	1.667097e-03
0.0001	1.483328e-02	3.326893e-03	3.192647e-03	3.180749e-03
	2.785230e-02	1.438916e-02	5.164376e-02	1.666722e-01
0.000001	8.998438e-03	6.319611e-04	1.437646e-04	1.636009e-04
	1.476457e-02	1.034910e-03	3.335590e-04	3.195915e-04
	2.800643e-02	6.316172e-03	4.530117e-03	1.635619e-02

Таблица невязок для V:

τh	1	0.1	0.001	0.0001
1	2.265398e-02	9.846926e-01	2.381708e+00	5.240725e+01
	3.161089e-02	3.708657e+00	1.613122e+01	3.108529e+02
	3.203757e-02	$1.392566e{+00}$	3.368244e+00	7.411505e+01
	8.200595e-03	2.770304e-03	2.189140e-03	2.130651e-03
0.1	1.145685e-02	3.947567e-03	3.151864e-03	3.072026e-03
	1.159739e-02	3.917802e-03	3.095911e-03	3.013195e-03
	6.578740e-03	8.928189e-04	2.824992e-04	2.212076e-04
0.001	9.205240e-03	1.249728e-03	4.035818e-04	3.193218e-04
	9.303743e-03	1.262637e-03	3.995143e-04	3.128348e-04
0.0001	6.414909e-03	7.038132e-04	9.009657e-05	2.830514e-05
	8.977915e-03	9.802615e-04	1.260776e-04	4.044741e-05
	9.072052e-03	9.953422e-04	1.274158e-04	4.002951e-05

5 Стабилизация

Рассмотрим изменение количества шагов до стабилизации в модели "скачок по плотности" при различной вязкости μ . На отрезке по пространству [0,10] с шагом h и шагом по времени τ

$$\mu = 0.1$$

τh	0.1	0.01	0.0001
0.1	181.4	185.7	198.2
0.01	181.32	185.61	189.84
0.0001	181.305	185.593	189.882

$$\mu = 0.01$$

τh	0.1	0.01	0.0001
0.1			
0.01	711.64	1043.20	1366.57
0.0001			

Где ∞ оначает, что модель не сошлась за 1 000 000 итераций. Во всех случаях ошибка мат.баланса не привышала 1e-14. Для проверки на сходимость испольовались условия: $L_{2,h}(V) < 1e-2$ и max(H)-min(H) < 1e-2, где H и V- значения плотности и скорости на текущем шаге.

6 Macca

Рассмотрим отличие массы газа перед расчетом с массой газа после расчета в случае, как в предыдущем пункте.

$$\mu = 0.1$$

τh	0.1	0.01	0.0001
0.1	5.329071e-15	3.552714e-15	1.421085e-14
0.01	1.598721e-14	2.131628e-14	2.309264e-14
0.0001	9.769963e-14	1.829648e-13	2.131628e-14

7 Графики

Рассмотрим случай "скачек плотности"
с параметрами: $\mu=0.1,\,h=0.1,\, au=0.1$, на отрезке [0,10]. Далее преведены графики на некоторых шагах.

Рис. 1: Скорость на 0 шаге.

Рис. 2: Плотность на 0 шаге.

Рис. 3: Скорость на 11 шаге.

Рис. 4: Плотность на 11 шаге.

Рис. 5: Скорость на 21 шаге.

Рис. 6: Плотность на 21 шаге.

Рис. 7: Скорость на 101 шаге.

Рис. 8: Плотность на 101 ша-ге.

Рис. 9: Скорость на 521 шаге.

Рис. 10: Плотность на 421 шаге.