Devoir à la maison nº 2

EXERCICE 1.

Soit n un entier naturel impair. On pose $\omega = e^{\frac{2i\pi}{n}}$ et $G = \sum_{k=0}^{n-1} \omega^{k^2}$.

- 1. Soit $r \in \mathbb{Z}$. Calculer $\sum_{k=0}^{n-1} \omega^{rk}$ selon les valeurs de r.
- $\textbf{2.} \ \, \text{Montrer que l'application } \varphi : \left\{ \begin{array}{l} \mathbb{Z} & \longrightarrow & \mathbb{C} \\ k & \longmapsto & \omega^{k^2} \end{array} \right. \text{ est } n\text{-p\'eriodique.}$
- 3. Soit $j \in \mathbb{Z}$. Montrer que $\sum_{k=0}^{n-1} \omega^{(k+j)^2} = G$.
- 4. Montrer que $G\overline{G} = n$ et en déduire |G|.

EXERCICE 2.

Soient A, B, C, D quatre points du plan distincts deux à deux. On suppose de plus A, B, C non alignés et on introduit le cercle C de centre O circonscrit au triangle ABC.

On choisit un repère orthonormé du plan de centre O tel que \mathcal{C} ait pour rayon 1. On note $\mathfrak{a},\mathfrak{b},\mathfrak{c},\mathfrak{d}$ les affixes respectifs de A,B,C,D.

On pose enfin $Z = \frac{d-a}{c-a} \frac{c-b}{d-b}$

- 1. Dans cette question, on suppose que D appartient à $\mathcal{C}.$
 - $\mathbf{a.}\ \, \mathrm{Justifier}\ \, \mathrm{que}\ \, \overline{\alpha}=\frac{1}{\alpha},\, \overline{b}=\frac{1}{b},\, \overline{c}=\frac{1}{c},\, \overline{d}=\frac{1}{d}.$
 - **b.** Montrer que Z est un réel.
 - **c.** En déduire que $(\overrightarrow{AC}, \overrightarrow{AD}) \equiv (\overrightarrow{BC}, \overrightarrow{BD})[\pi]$.
- 2. Réciproquement, on suppose que $(\overrightarrow{AC}, \overrightarrow{AD}) \equiv (\overrightarrow{BC}, \overrightarrow{BD})[\pi]$ et on veut montrer que D appartient à \mathcal{C} .
 - a. Que peut-on dire de Z?
 - **b.** Exprimer d en fonction de a, b, c, Z.
 - c. Calculer $\overline{\mathbf{d}}$ et en déduire que D appartient à $\mathcal{C}.$

EXERCICE 3.

Soit $n \in \mathbb{N}$. Calculer de deux manières $(1+\mathfrak{i})^n$ et en déduire les sommes suivantes

$$S_n = \sum_{0 \le 2k \le n}^n (-1)^k \binom{n}{2k}$$

$$T_n = \sum_{0 \leqslant 2k+1 \leqslant n} (-1)^k \binom{n}{2k+1}$$