International Flight Inspection Symposium

Oklahoma City, OK USA June 2008

The ICASC
Technical Working
Group View on RNAV DME/DME
Flight Inspection

Mike Spanner

Hervé Renouf

Reminder

In addition to traditional applications, avionics have been developed that can interrogate multiple DME enabling determination of aircraft position:

• B-RNAV ±5 Nm 95%

• P-RNAV (aka RNAV1) ±1 Nm 95%

Two Navigation Aids or Sensors : GNSS and DME/DME (DME/DME used as back-up for GNSS)

For DME/DME each combination of navigation aid needs to be assessed and potentially inspected

DME/DME Navigation Example

FI of DME/DME procedures

- Flight Inspection of DME/DME procedures was identified as an issue of concern for ANSP and FI providers
- Presentation of ICASC technical working group view
 - Documents
 - Implementation for a FI organisation
 - Role of FI Principles
 - Input / Output list
 - Equipment
 - Examples
 - Recommendations

DME/DME flight inspection Reference Documents

The ITWG identified a list of documents on DME/DME Flight inspection (Ref. Published paper)

Eurocontrol "Guidance Material for P-RNAV Infrastructure Assessment" found to be a good reference

(Summary in published paper)

Connection between documents

Procedure design process

Input list

Required

- Identification of critical DME's
- Intended procedure (WP data and position of DME's)
- List of DME's that are part of the procedure design
- Identification of facilities that are to be used outside of their currently defined operational volumes

Desirable

- Predicted coverage of DME's to be inspected
- Consideration of expanded service volumes
- List of restrictions applicable to the DME's under inspection
- Review of existing DME Flight Inspection records

Output list

Required

- Basic DME accuracy
- Signal in space, peak power pulse density
- Operational (designated operational coverage, consideration of Extended Service Volume)
- Critical DME performance
- scanning or individual fixed mode
- Potential DME interference
- Feedback to Procedure designer
- Notification of any DME that causes the PEE to exceed tolerance

Desirable

- PEE for measured sample
- TSE for measured sample
- Location of DME unlocks
- DME/DME or DME/DME/IRU
- Flyability
- Validation of DME/DME modelling
- Comparison of FMS vs Flight Inspection System

Important issues for DME/DME

Software tool highly recommended:

- identify individual qualifying DME facilities
- determine which DME are within line of sight
- define all possible combinations of pairs at each point usable by
 FMS (3NM≤range≤160NM, angle ≤ 40°):
- evaluate the subtended angle (30° ≤ α ≤ 150°)
- calculate the PEE (must be ≤ 0.866)
- identify critical DME

Flight Inspection Role

Confirm :

- signal in space compliance with ICAO Annex 10
- initial assessment made by the software tool

- It is generally sufficient to flight inspect the procedure on the defined path at the lowest published altitude
- □ It is not necessary to flight inspect the totality of the procedures if the number of suitable DME's are sufficient.
- According to experts experience and previous results, some flight inspection may be omitted or indeed increased

Flight Inspection Equipment

- It is recommended to use a Flight inspection equipment with the capability to record multiple DME simultaneously and accurately
- Independent single channel transponders

 Record Signal in Space and range errors
- Scanning DME transponders
 Record range errors only, use lock status for analysis
- Spectrum analysis of the entire L band

 Record Signal in Space and assess multipath

Eg: Nice P-RNAV DME/DME SIDs

Ex: Nice P-RNAV DME/DME SIDs

Predicted Coverage

Actual Coverage after flight

COULEUR	Nombre de paires de DME
	0
	1
	2
	3
	4
	5 à 8
	9 à 11
	>= 12

NICE: SID 22

A few recommendations

- When commissioning R-NAV procedures it is prudent to:
 - Check the "real world"
 - Detect potential interference
- Clearly define the boundaries of FI
- Use modelling techniques to reduce flying time (using a validated model)
- Consider the content of Eurocontrol P-RNAV, FAA 8200 and DOC 8071

Conclusions

- Use of DME/DME RNAV procedures are increasing throughout the World
- The ICASC paper presents some guidance to standardise the methods and processes used to check those procedures

 No further detailed work on this subject is planned for the ITWG, however.....

Thanks for your attention!