#### **CHAPTER 2**

### **Discrete-Time Signals and Systems**

#### **Tutorial Problems**

1. (a) MATLAB script:

```
% P0201a: Generate and plot unit sample
close all; clc
n = -20:40; % specifiy support of signal
deltan = zeros(1,length(n)); % define signal
deltan(n==0)=1;
% Plot:
hf = figconfg('P0201a','small');
stem(n,deltan,'fill')
axis([min(n)-1,max(n)+1,min(deltan)-0.2,max(deltan)+0.2])
xlabel('n','fontsize',LFS); ylabel('\delta[n]','fontsize',LFS);
title('Unit Sample \delta[n]','fontsize',TFS)
```



FIGURE 2.1: unit sample  $\delta[n]$ .

#### (b) MATLAB script:

```
% P0201b: Generate and plot unit step sequence
close all; clc
n = -20:40; % specifiy support of signal
un = zeros(1,length(n)); % define signal
un(n>=0)=1;
% Plot:
hf = figconfg('P0201b','small');
stem(n,un,'fill')
axis([min(n)-1,max(n)+1,min(un)-0.2,max(un)+0.2])
xlabel('n','fontsize',LFS); ylabel('u[n]','fontsize',LFS);
title('Unit Step u[n]','fontsize',TFS)
```



FIGURE 2.2: unit step u[n].

#### (c) MATLAB script:

```
% P0201c: Generate and plot real exponential sequence
close all; clc
n = -20:40; % specifiy support of signal
x1n = 0.8.^n; % define signal
% Plot:
hf = figconfg('P0201c','small');
stem(n,x1n,'fill')
axis([min(n)-1,max(n)+1,min(x1n)-5,max(x1n)+5])
xlabel('n','fontsize',LFS); ylabel('x_1[n]','fontsize',LFS);
title('Real Exponential Sequence x_1[n]','fontsize',TFS)
```

#### (d) MATLAB script:

# Real Exponential Sequence x<sub>1</sub>[n]

FIGURE 2.3: real exponential signal  $x_1[n] = (0.80)^n$ .

```
% P0201d: Generate and plot complex exponential sequence
close all; clc
n = -20:40; % specifiy support of signal
x2n = (0.9*exp(j*pi/10)).^n; % define signal
x2n_r = real(x2n); % real part
x2n_i = imag(x2n); % imaginary part
x2n_m = abs(x2n); \% magnitude part
x2n_p = angle(x2n); % phase part
% Plot:
hf = figconfg('P0201d');
subplot(2,2,1)
stem(n,x2n_r,'fill')
axis([min(n)-1,max(n)+1,min(x2n_r)-1,max(x2n_r)+1])
xlabel('n','fontsize',LFS); ylabel('Re\{x_2[n]\}','fontsize',LFS);
title('Real Part of Sequence x_2[n]', 'fontsize', TFS)
subplot(2,2,2)
stem(n,x2n_i,'fill')
axis([min(n)-1,max(n)+1,min(x2n_i)-1,max(x2n_i)+1])
xlabel('n','fontsize',LFS); ylabel('Im\{x_2[n]\}','fontsize',LFS);
title('Imaginary Part of Sequence x_2[n]','fontsize',TFS)
subplot(2,2,3)
stem(n,x2n_m,'fill')
axis([min(n)-1,max(n)+1,min(x2n_m)-1,max(x2n_m)+1])
xlabel('n','fontsize',LFS); ylabel('|x_2[n]|','fontsize',LFS);
title('Magnitude of Sequence x_2[n]','fontsize',TFS)
subplot(2,2,4)
```

```
stem(n,x2n_p,'fill')
axis([min(n)-1,max(n)+1,min(x2n_p)-1,max(x2n_p)+1])
xlabel('n','fontsize',LFS); ylabel('\phi(x_2[n])','fontsize',LFS);
title('Phase of Sequence x_2[n]','fontsize',TFS)
```



FIGURE 2.4: complex exponential signal  $x_2[n] = (0.9e^{j\pi/10})^n$ .

#### (e) MATLAB script:

```
% P0201e: Generate and plot real sinusoidal sequence
close all; clc
n = -20:40; % specifiy support of signal
x3n = 2*cos(2*pi*0.3*n+pi/3); % define signal
% Plot:
hf = figconfg('P0201e','small');
stem(n,x3n,'fill')
axis([min(n)-1,max(n)+1,min(x3n)-0.5,max(x3n)+0.5])
xlabel('n','fontsize',LFS); ylabel('x_3[n]','fontsize',LFS);
title('Real Sinusoidal Sequence x_3[n]','fontsize',TFS)
```

## 

FIGURE 2.5: sinusoidal sequence  $x_3[n] = 2\cos[2\pi(0.3)n + \pi/3]$ .

```
% P0202: Illustrate the noncommutativity of folding and shifting
close all; clc
nx = 0:4; % specify the support
x = 5:-1:1; % specify sequence
n0 = 2;
% (a) First folding, then shifting
[y1 ny1] = fold(x,nx);
[y1 ny1] = shift(y1,ny1,-n0);
% (b) First shifting, then folding
[y2 ny2] = shift(x,nx,-n0);
[y2 ny2] = fold(y2,ny2);
% Plot
hf = figconfg('P0202');
xylimit = [min([nx(1),ny1(1),ny2(1)])-1,max([nx(end),ny1(end)...
    ,ny2(end)])+1,min(x)-1,max(x)+1];
subplot(3,1,1)
stem(nx,x,'fill')
axis(xylimit)
ylabel('x[n]','fontsize',LFS); title('x[n]','fontsize',TFS);
set(gca,'Xtick',xylimit(1):xylimit(2))
subplot(3,1,2)
stem(ny1,y1,'fill')
axis(xylimit)
ylabel('y_1[n]','fontsize',LFS);
```

```
title('y_1[n]: Folding and Shifting','fontsize',TFS)
set(gca,'Xtick',xylimit(1):xylimit(2))
subplot(3,1,3)
stem(ny2,y2,'fill')
axis(xylimit)
xlabel('n','fontsize',LFS); ylabel('y_2[n]','fontsize',LFS);
title('y_2[n]: Shifting and Folding','fontsize',TFS)
set(gca,'Xtick',xylimit(1):xylimit(2))
```



FIGURE 2.6: Illustrating noncommunativity of folding and shifting operations.

#### Comments:

From the plot, we can see  $y_1[n]$  and  $y_2[n]$  are different. Indeed,  $y_1[n]$  represents the correct x[2-n] signal while  $y_2[n]$  represents signal x[-n-2].

3. (a) 
$$x[-n] = \{4,4,4,4,4,3,2,1,0,-1\}$$
 
$$x[n-3] = \{-1,0,\underset{\uparrow}{1},2,3,4,4,4,4,4\}$$
 
$$x[n+2] = \{-1,0,1,2,3,4,4,\underset{\uparrow}{4},4,4\}$$

```
(b) see part (c)
(c) MATLAB script:
    % P0203bc: Illustrate the folding and shifting effect
    close all; clc
    nx = -5:4; % specify support
```

```
x = [-1:4,4*ones(1,4)]; % define sequence
[y1 ny1] = fold(x,nx); % folding
[y2 ny2] = shift(x,nx,-3); % right-shifting
[y3 ny3] = shift(x,nx,2); % left-shifting
% Plot
hf = figconfg('P0203');
xylimit = [min([nx(1),ny1(1),ny2(1),ny3(1)])-1,max([nx(end),...])
    ny1(end), ny2(end), ny2(end)])+1, min(x)-1, max(x)+1];
subplot(4,1,1)
stem(nx,x,'fill'); axis(xylimit)
ylabel('x[n]','fontsize',LFS); title('x[n]','fontsize',TFS);
set(gca,'Xtick',xylimit(1):xylimit(2))
subplot(4,1,2)
stem(ny1,y1,'fill'); axis(xylimit)
ylabel('x[-n]','fontsize',LFS); title('x[-n]','fontsize',TFS)
set(gca,'Xtick',xylimit(1):xylimit(2))
subplot(4,1,3)
stem(ny2,y2,'fill'); axis(xylimit)
ylabel('x[n-3]','fontsize',LFS); title('x[n-3]','fontsize',TFS);
set(gca,'Xtick',xylimit(1):xylimit(2))
subplot(4,1,4)
stem(ny3,y3,'fill'); axis(xylimit)
xlabel('n', 'fontsize', LFS); ylabel('x[n+2]', 'fontsize', LFS);
title('x[n+2]','fontsize',TFS)
set(gca,'Xtick',xylimit(1):xylimit(2))
```

```
% P0204: Illustrate the using of repmat, persegen and pulstran
% to generate periodic signal
close all; clc
n = 0:9; % specify support
x = [ones(1,4),zeros(1,6)]; % sequence 1
% x = cos(0.1*pi*n); % sequence 2
```



FIGURE 2.7: Illustrating folding and shifting operations.

```
% x = 0.8.^n; % sequence 3
Np = 5; % number of periods
xp1 = repmat(x,1,Np);
nxp1 = n(1):Np*length(x)-1;
[xp2 nxp2] = persegen(x,length(x),Np*length(x),n(1));
xp3 = pulstran(nxp1, (0:Np-1)'*length(x), x);
%Plot
hf = figconfg('P0204');
xylimit = [-1,nxp1(end)+1,min(x)-1,max(x)+1];
subplot(3,1,1)
stem(nxp1,xp1,'fill'); axis(xylimit)
ylabel('x_p[n]','fontsize',LFS);
title('Function ''repmat'', 'fontsize', TFS);
subplot(3,1,2)
stem(nxp2,xp2,'fill'); axis(xylimit)
ylabel('x_p[n]','fontsize',LFS);
```

```
title('Function ''persegen''', 'fontsize', TFS)
subplot(3,1,3)
stem(nxp1,xp3,'fill'); axis(xylimit)
xlabel('n','fontsize', LFS); ylabel('x_p[n]','fontsize', LFS);
title('Function ''pulstran''','fontsize', TFS)
```



FIGURE 2.8: Periodically expanding sequence {1 1 1 1 0 0 0 0 0 0 }.



FIGURE 2.9: Periodically expanding sequence  $\cos(0.1\pi n), 0 \le n \le 9$ .



FIGURE 2.10: Periodically expanding sequence  $0.8^n, 0 \le n \le 9$ .

- 5. (a) Proof: If the sinusoidal signal  $\cos(\omega_0 n + \theta_0)$  is periodic in n, we need to find a period  $N_p$  that satisfy  $\cos(\omega_0 n + \theta_0) = \cos(\omega_0 n + \omega_0 N_p + \theta_0)$  for every n. Since  $f_0 \triangleq \frac{\omega_0}{2\pi}$  is a rational number, we can substitute  $\omega_0 = 2\pi f_0 = 2\pi \frac{M}{N}$  into the previous periodic condition to have  $\cos(2\pi \frac{M}{N} n + \theta_0) = \cos(2\pi \frac{M}{N} n + 2\pi \frac{M}{N} N_p + \theta_0)$ . No matter what integers M and N take,  $N_p = N$  is a period of the sinusoidal signal.
  - (b) The sequence is NOT periodic.
  - (c) The sequence is periodic with fundamental period N=10. N can be interpreted as period and M is the number of repetitions the corresponding continuous signal repeats itself.



FIGURE 2.11: Illustrating the periodicity condition of sinusoidal signals.

```
% P0205: Illustrates the condition for periodicity of discrete
% sinusoidal sequence
close all; clc
% Part (b): Nonperiodic
```

```
n = -20:20; % support
  w1 = 0.1; % angular frequency
  x1 = cos(w1*n-pi/5);
  % Part (c): Periodic
  w2 = 0.1*pi; % angular frequency
  x2 = cos(w2*n-pi/5);
  %Plot
  hf = figconfg('P0205');
  xylimit = [n(1)-1,n(end)+1,min(x1)-0.5,max(x1)+0.5];
  subplot(2,1,1)
  stem(n,x1,'fill'); axis(xylimit)
  xlabel('n','fontsize',LFS); ylabel('x_1[n]','fontsize',LFS);
  title('Nonperiodic Sequence', 'fontsize', TFS);
  % set(gca,'Xtick',xylimit(1):xylimit(2))
  subplot(2,1,2)
  stem(n,x2,'fill'); axis(xylimit)
  xlabel('n', 'fontsize', LFS); ylabel('x_2[n]', 'fontsize', LFS);
  title('Periodic Sequence', 'fontsize', TFS)
6. MATLAB script:
  % P0206: Investigates the effect of downsampling using
           audio file 'handel'
  close all; clc
  load('handel.mat')
  n = 1:length(y);
  % Part (a): original sampling rate
  sound(y,Fs); pause(1)
  % Part (b): downsampling by a factor of two
  y_ds2_ind = mod(n,2)==1;
  sound(y(y_ds2_ind),Fs/2); pause(1)
  % Part (c): downsampling by a factor of four
  y_ds4_ind = mod(n,4) == 1;
  sound(y(y_ds4_ind),Fs/4)
  % save the sound file
  wavwrite(y(y_ds4_ind),Fs/4,'handel_ds4')
```

7. Comments: The first system is NOT time-invariant but the second system is time invariant.



FIGURE 2.12: System responses with respect to input signal  $x[n] = \delta[n]$ .

```
% P0207: Compute and plot sequence defined by difference equations
close all; clc
n = 0:20; % define support
yi = 0; % zero initial condition
xn = delta(n(1),0,n(end))'; % input 1
% xn = delta(n(1),5,n(end))'; % input 2
% Compute sequence 1:
yn1 = zeros(1,length(n));
yn1(1) = n(1)/(n(1)+1)*yi+xn(1);
for ii = 2:length(n)
    yn1(ii) = n(ii)/(n(ii)+1)*yn1(ii-1)+xn(ii);
end
% Compute sequence 2:
yn2 = filter(1,[1,-0.9],xn);
%Plot
hf = figconfg('P0207');
```



FIGURE 2.13: System responses with respect to input signal  $x[n] = \delta[n-5]$ .



FIGURE 2.14: Impulse response of a 5-point moving average filter.

#### (c) Block diagram.



FIGURE 2.15: Block diagram of a 5-point moving average filter.

```
% P0208: Plot the 5-point moving average filter
%          y[n] = 1/5*(x[n]+x[n-1]+x[n-2]+x[n-3]+x[n-4]);
close all; clc
n = 0:20;
xn = delta(n(1),0,n(end))';
hn = filter(ones(1,5)/5,1,xn);
%Plot
hf = figconfg('P0208','small');
xylimit = [n(1)-1,n(end)+1,min(hn)-0.1,max(hn)+0.1];
stem(n,hn,'fill'); axis(xylimit)
```

xlabel('n','fontsize',LFS); ylabel('h[n]','fontsize',LFS);
title('5-Point Moving Average Filter Impulse Response',...
'fontsize',TFS);

9. (a) Proof:

$$\sum_{n=0}^{\infty} a^n = 1 + a + a^2 + \cdots$$

$$a \sum_{n=0}^{\infty} a^n = a + a^2 + a^3 + \cdots$$

$$(1-a) \sum_{n=0}^{\infty} a^n = 1 + (a-a) + (a^2 - a^2) + \cdots + (a^\infty - a^\infty)$$

$$(1-a) \sum_{n=0}^{\infty} a^n = 1 + 0 + 0 + \cdots + 0$$

$$\sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$$

(b) Proof:

$$\sum_{n=0}^{N-1} a^n = \sum_{n=0}^{\infty} a^n - \sum_{n=N}^{\infty} a^n = \sum_{n=0}^{\infty} a^n - a^N \sum_{n=0}^{\infty} a^n$$

Substituting the result in part (a), we have

$$\sum_{n=0}^{N-1} a^n = (1 - a^N) \sum_{n=0}^{\infty} a^n = \frac{1 - a^N}{1 - a}$$

10. (a) Solution:

$$x[-m] = \{-1, 2, 3, \frac{1}{1}\}$$

$$x[3-m] = \{-1, 2, 3, 1\}$$

$$h[m] = \{2, 2(0.8)^{1}, 2(0.8)^{2}, 2(0.8)^{3}, 2(0.8)^{4}, 2(0.8)^{5}, 2(0.8)^{6}\}$$

$$x[3-m] * h[m] = \{-2, 4(0.8)^{1}, 6(0.8)^{2}, 2(0.8)^{3}\}$$

$$y[3] = \sum_{m=0}^{3} x[3-m] * h[m] = 6.064$$

#### (b) MATLAB script:

```
% P0210: Graphically illustrate the convolution sum
close all; clc
nx = 0:3;
x = [1,3,2,-1]; % input sequence
nh = 0:6;
h = 2*(0.8).^nh; \% impulse response
nxf = fliplr(-nx); xf = fliplr(x); %folding
nxfs = nxf+3; % left shifting
[y1 y2 n] = timealign(xf,nxfs,h,nh);
y = y1.*y2;
y3 = sum(y);
%Plot
hf = figconfg('P0210');
subplot(5,1,1)
stem(nx,x,'fill')
axis([-4 7 min(x)-1 max(x)+1])
ylabel('x[k]','fontsize',LFS);
subplot(5,1,2)
stem(nh,h,'fill')
axis([-4 7 min(h)-1 max(h)+1])
ylabel('h[k]','fontsize',LFS);
subplot(5,1,3)
stem(nxf,xf,'fill')
axis([-4 7 min(x)-1 max(x)+1])
ylabel('x[-k]','fontsize',LFS);
subplot(5,1,4)
stem(nxfs,xf,'fill')
axis([-4 7 min(x)-1 max(x)+1])
ylabel('x[-k+3]','fontsize',LFS);
subplot(5,1,5)
stem(n,y,'fill')
axis([-4 7 min(y)-1 max(y)+1])
xlabel('k','fontsize',LFS);
ylabel('h[k]*x[-k+3]','fontsize',LFS);
```



FIGURE 2.16: Graphically illustration of convolution as a superposition of scaled and scaled replicas.

11. Comments: The step responses of the two equivalent system representations are equal.



FIGURE 2.17: Illustrating equivalent system representation.

```
[y1 ny1] = conv0(h3,n2,ytemp1+ytemp2,nyt);
   [y2 ny2] = conv0(h,n,un,n1);
   %Plot
   hf = figconfg('P0211');
   subplot(2,2,1)
   stem(n,h,'fill')
   axis([n(1)-1 n(end)+1 min(h)-1 max(h)+1])
   xlabel('n','fontsize',LFS);
   ylabel('h[n]','fontsize',LFS);
   title('System h[n]','fontsize',TFS);
   subplot(2,2,2)
   stem(n1,un,'fill')
   axis([n1(1)-1 n1(end)+1 min(h)-1 max(h)+1])
   xlabel('n','fontsize',LFS);
   ylabel('u[n]','fontsize',LFS);
   title('Unit Step u[n]','fontsize',TFS);
   subplot(2,2,3)
   stem(ny1,y1,'fill')
   axis([ny1(1)-1 ny1(end)+1 min(y1)-1 max(y1)+1])
   xlabel('n','fontsize',LFS);
   ylabel('y_1[n]','fontsize',LFS);
   title('Step Response of System I', 'fontsize', TFS);
   subplot(2,2,4)
   stem(ny2,y2,'fill')
   axis([ny1(1)-1 ny1(end)+1 min(y2)-1 max(y2)+1])
   xlabel('n', 'fontsize', LFS); ylabel('y_2[n]', 'fontsize', LFS);
   title('Step Response of System II', 'fontsize', TFS);
12. MATLAB script:
   % P0212: Illustrating the usage of function 'convmtx'
   close all; clc
   nx = 0:5; nh = 0:3;
   x = ones(1,6); h = 0.5.^{(0:3)};
   A = convmtx(x,length(h));
   y = h*A; % compute convolution
   ny = (nx(1)+nh(1)):(nx(end)+nh(end)); % compute support
   % [y2 ny2] = conv0(x,nx,h,nh);
   %Plot
```

```
hf = figconfg('P0212','small');
stem(ny,y,'fill')
axis([ny(1)-1 ny(end)+1 min(y)-1 max(y)+1])
xlabel('n','fontsize',LFS); ylabel('y[n]','fontsize',LFS);
title('Convolution y[n]','fontsize',TFS);
set(gca,'XTick',ny(1):ny(end))
```



FIGURE 2.18: Compute the convolution of the finite length sequences in (2.38) using convmtx.



FIGURE 2.19: Compute the convolution of the finite length sequences in (2.39) using convmtx.

#### 13. Proof:

Since the linear time-invariant system is stable, we have

$$\sum_{n=-\infty}^{\infty}|h[n]|<\infty$$
 
$$\sum_{n=-\infty}^{\infty}|h[n]|=\lim_{N\to\infty}\left(\sum_{n=-\infty}^{N}|h[n]|+\sum_{n=N+1}^{\infty}|h[n]|\right)$$
 
$$\lim_{N\to\infty}\left(\sum_{n=N+1}^{\infty}|h[n]|\right)=0$$
 
$$y[n]=x[n]*h[n]=\sum_{m=-\infty}^{\infty}h[m]x[n-m]=\sum_{m=n-n_0}^{\infty}h[m]x[n-m]$$
 
$$\lim_{n\to\infty}|y[n]|=\lim_{n\to\infty}|\sum_{m=n-n_0}^{\infty}h[m]x[n-m]|\leq\lim_{n\to\infty}\sum_{m=n-n_0}^{\infty}|h[m]||x[n-m]|=0$$
 Hence, we proved

$$\lim_{n \to \infty} y[n] = 0$$

```
% P0214: Use function 'conv(h,x)' to compute noncausal
        h convolves causal x
close all; clc
nh = -4:4;
nx = 0:5;
h = ones(1,9);
x = 1:6;
y1 = conv(h,x); % compute convolution
ny1 = (nh(1)+nx(1)):(nh(end)+nx(end)); % define support
[y2 ny2] = conv0(h,nh,x,nx); % verification
```

15. Comments: The image is blurred by both filters and the larger the filter is the more blurred the image is.

```
% PO215: Filtering 2D image lena.jpg using 2D filter
close all; clc
x = imread('lena.jpg');
% Part (a): image show
hfs = figconfg('P0215a','small');
imshow(x,[])
% Part (b):
hmn = ones(3,3)/9;
y1 = filter2(hmn,x);
\% hmn is symmetric and no change if rotated by 180 degrees
\% we can use 2d correlation instead of 2d convolution
hfs1 = figconfg('P0215b','small');
imshow(y1,[])
% Part (c):
hmn2 = ones(5,5)/25;
y2 = filter2(hmn2,x);
hfs2 = figconfg('P0215c','small');
imshow(y2,[])
```



(a)





(b) (c)

FIGURE 2.20: (a) Original image. (b) Output image processed by  $3\times 3$  impulse response h[m,n] given in (2.75). (c) Output image processed by  $5\times 5$  impulse response h[m,n] defined in part (c).

- 16. (a) See plots.
  - (b) Comments: The resulting image is horizontally blurred.
  - (c) Comments: The resulting image is vertically blurred.
  - (d) Comments: The resulting image is blurred the same way as the one in part (c) in Problem 16.

```
% P0216: Filtering 2D image lena.jpg using 1D filter
x = imread('lena.jpg');
[nx ny] = size(x);
% Part (a): image show
hfs = figconfg('0216a','small');
imshow(x,[])
n = -2:2;
h = ones(1,5)/5;
% Part (b): horizontal filtering
yh = zeros(nx,ny);
for ii = 1:ny
    temp = conv(h,double(x(ii,:)));
    yh(ii,:) = temp(3:end-2);
end
hfs1 = figconfg('0216b', 'small');
imshow(yh,[])
% Part (c): vertical filtering
yv = zeros(nx,ny);
for ii = 1:nx
    temp = conv(h,double(x(:,ii)));
    yv(:,ii) = temp(3:end-2);
end
hfs2 = figconfg('0216c', 'small');
imshow(yv,[])
% Part (d): horizontal and vertical filtering
yhv = zeros(nx,ny);
for ii = 1:nx
    temp = conv(h, yh(:,ii));
    yhv(:,ii) = temp(3:end-2);
end
hfs3 = figconfg('0216d','small');
imshow(yhv,[])
```



FIGURE 2.21: (a) Original image. (b) Output image obtained by row processing. (c) Output image obtained by column processing. (d) Output image obtained by row and column processing.

#### 17. (a) Impulse response.



FIGURE 2.22: Impulse response h[n].

#### (b) Output using y=filter(b,a,x).



FIGURE 2.23: System step output y[n] computed using the function y=filter(b,a,x).

- (c) Output using y=conv(h,x).
- (d) Output using y=filter(h,1,x).

```
% P0217: Illustrating the usage of functions 'impz','filter,'conv'
close all; clc
n = 0:100;
b = [0.18 0.1 0.3 0.1 0.18];
a = [1 -1.15 1.5 -0.7 0.25];
% Part (a):
```



FIGURE 2.24: System step output y[n] computed using the function y=conv(h,x).



FIGURE 2.25: System step output y[n] computed using the function y=filter(h,1,x).

```
h = impz(b,a,length(n));
% Part (b):
u = unitstep(n(1),0,n(end));
y1 = filter(b,a,u);
% Part (c):
y2 = conv(h,u);
% Part (d):
y3 = filter(h,1,u);
%Plot
hf = figconfg('P0217a','long');
stem(n,h,'fill')
xlabel('n','fontsize',LFS); ylabel('h[n]','fontsize',LFS);
title('Impulse Response h[n]','fontsize',TFS);
```

```
hf2 = figconfg('P0217b','long');
stem(n,y1,'fill')
xlabel('n','fontsize',LFS); ylabel('y_1[n]','fontsize',LFS);
title('Unit Step Response: filter(b,a,x)','fontsize',TFS);
hf3 = figconfg('P0217c','long');
stem(0:2*n(end),y2,'fill')
xlabel('n','fontsize',LFS); ylabel('y_2[n]','fontsize',LFS);
title('Unit Step Response: conv(h,x)','fontsize',TFS);
hf4 = figconfg('P0217d','long');
stem(n,y3,'fill')
xlabel('n','fontsize',LFS); ylabel('y_3[n]','fontsize',LFS);
title('Unit Step Response: filter(h,1,x)','fontsize',TFS);
```

#### 18. (a) Block diagrams.



FIGURE 2.26: Block diagram representations of the nonrecursive implementation of M=5 moving average filter.

#### (b) MATLAB script:



FIGURE 2.27: Block diagram representations of the recursive implementation of M=5 moving average filter.

```
stem(n,y_nr,'fill')
axis([n(1)-1 n(end)+1 min(y_nr)-0.5 max(y_nr)+0.5])
xlabel('n','fontsize',LFS); ylabel('y_1[n]','fontsize',LFS);
title('Nonrecursive Implementation','fontsize',TFS);
subplot(2,1,2)
stem(n,y_re,'fill')
axis([n(1)-1 n(end)+1 min(y_re)-0.5 max(y_re)+0.5])
xlabel('n','fontsize',LFS); ylabel('y_2[n]','fontsize',LFS);
title('Recursive Implementation','fontsize',TFS);
```

```
% P0219: Generate digital reverberation using audio file 'handel'
close all; clc
load('handel.mat')
n = 1:length(y);
a = 0.7; % specify attenuation factor
tau = 50e-3; % Part (a)
```



FIGURE 2.28: Step response computed by nonrecursive and recursive implementations.

```
% tau = 100e-3; % Part (b)
% tau = 500e-3; % Part (c)
D = floor(tau*Fs); % compute delay
yd = filter(1,[1 zeros(1,length(D)-1),-a],y);
sound(yd,Fs)
```

#### 20. (a) Solution:

$$y_1(t) = x_1(t) * h(t) = \int_{-\infty}^{\infty} h(\tau)x_1(t-\tau)d\tau = \int_{-\infty}^{\infty} e^{-\tau/2}u(\tau)u(t-\tau)d\tau$$
$$= u(t)\int_0^t e^{-\tau/2}d\tau = u(t)(-2)e^{-\tau/2}|_0^t = 2(1 - e^{-t/2})u(t)$$

$$y_2(t) = x_2(t) * h(t) = \int_{-\infty}^{\infty} h(t - \tau) x_2(\tau) d\tau = 2 \int_0^3 e^{-(t - \tau)/2} u(t - \tau) d\tau$$

$$= (u(t) - u(t - 3)) 2 \int_0^t e^{-(t - \tau)/2} d\tau + u(t - 3) 2 \int_0^3 e^{-(t - \tau)/2} d\tau$$

$$= (u(t) - u(t - 3)) 4 e^{-(t - \tau)/2} \Big|_0^t + u(t - 3) 4 e^{-(t - \tau)/2} \Big|_0^3$$

$$= 4(1 - e^{-t/2}) u(t) - 4(1 - e^{-(t - 3)/2}) u(t - 3)$$

#### (b) Proof:

$$\begin{aligned} x_2(t) &= 2x_1(t) - 2x_1(t-3) \\ y_2(t) &= 2y_1(t) - 2y_1(t-3) \\ &= 4(1 - e^{-t/2})u(t) - 4(1 - e^{-(t-3)/2})u(t-3) \end{aligned}$$