Macroeconomia I Lista de Exercícios 5

1. (Política Fiscal no Ramsey-Cass-Koopmans). Considere o modelo Ramsey-Cass-Koopmans com governo (sem crescimento populacional nem crescimento tecnológico). $L_0 = 1$. A preferência da família representativa é dado por:

$$\max_{c_t \ge 0} \int_0^\infty e^{-\rho t} \frac{c_t^{1-\sigma}}{1-\sigma} dt,\tag{1}$$

onde c_t é o consumo per capita e $\rho > 0$. A restrição orçamentária da família juntamente com a condição no-Ponzi:

$$\dot{a}_t = a_t(r_t - \delta) + w_t - c_t - \tau_t \qquad \forall t,$$
$$\lim_{t \to \infty} a_t e^{-\int_0^t (r_s - \delta) ds} = 0 \quad \text{e} \quad a_0 > 0,$$

onde τ_t é a taxação lump-sum. O orçamento do governo é financiado via taxação lump-sum e é balanceado todo o instante:

$$g_t = \tau_t$$
.

A firma representativa produz um único bem final utilizando capital e trabalho que pode ser consumido ou investido. A função de produção segue as típicas suposições neoclássicas (retornos constante a escala, produto marginal decrescente e Inada): $y_t = F(k_t, 1) \equiv f(k_t)$.

- (a) Suponha que $g_t = g$. Resolva o problema da família e da firma. Encontre as equações que caracterizam a solução do sistema para esta economia.
- (b) Considere um aumento permanente nos gastos do governo: g' > g. Suponha que a economia está no estado estacionário no momento do aumento e mostre a dinâmica no diagrama de fases.
- (c) Assuma agora que o governo não necessita manter o orçamento balanceado todo instante. Especificamente, suponha que o gasto do governo g é constante, mas o imposto pode mudar ao longo do tempo. Seja d a dívida do governo, a restrição oçamentária do governo é (juntamente com a condição no-Ponzi do governo):

$$\dot{d} = g + (r_t - \delta)d_t - \tau_t, \qquad \forall t,$$

$$\lim_{t \to \infty} d_t e^{-\int_0^t (r_s - \delta)ds} = 0$$

e para simplificar considere $d_0 = 0$.

Mostre que este modelo apresenta equivalência ricardiana, isto é, o período em que o imposto é cobrado é irrelevante para a caracterização do equilíbrio. Em particular, mostre que o timing do imposto (i) não distorce as decisões individuais, e (ii) não altera a

- renda permanente das famílias (Dica: escreva a restrição orçamentária intertemporal do consumidor e do governo em t = 0 e utilize a condição no-Ponzi).¹
- (d) Explique intuitivamente por que não haveria equivalência ricardiana caso o governo utilizasse imposto sobre o retorno do capital (exatamente como vimos em sala de aula) para financiar os seus gastos.
- 2. (Baby Boom Dynamics). Considere o modelo Ramsey-Cass-Koopmans padrão com crescimento populacional (mas sem crescimento tecnológico). A preferência da família representativa é dado por:

$$\max_{c_t \ge 0} \int_0^\infty e^{-(\rho - n)t} \frac{c_t^{1 - \sigma}}{1 - \sigma} dt, \tag{2}$$

onde c_t é o consumo per capita. A restrição de recursos (per capita) da economia é dado por:

$$f(k_t) = c_t + i_t,$$

$$\dot{k}_t = i_t - (n + \delta)k_t.$$

Suponha que $\rho > n$ para todas as mudanças de n nas questões.

- (a) Caracterize a solução do planejador para esta economia.
- (b) Derive as equações que caracterizam o estado estacionário e desenhe o diagrama de fases.
- (c) Considere um aumento permanente e não anunciado na taxa de crescimento populacional da economia. Suponha que a economia está no estado estacionário no momento do aumento e mostre a dinâmica no diagrama de fases.
- (d) Considere agora um aumento temporário e não anunciado na taxa de crescimento em t_0 . Isto é, $n_t = n' > n$ durante $t_0 \le t \le T$, mas $n_t = n$ para t > T. Suponha que a economia está no estado estacionário em t_0 e mostre a dinâmica de consumo e investimento no diagrama de fases e ao longo do tempo (Dica: o consumo salta apenas quando a mudança de n é anunciada).
- (e) Considere agora um aumento permanente na taxa de crescimento em T, mas anunciado $em t_0 < T$. Suponha que a economia esta no estado estacionário em t_0 . Mostre a dinâmica de consumo e investimento no diagrama de fases e ao longo do tempo.
- 3. (Oferta de Trabalho Elástica no Balanced-Growth Path). Considere o modelo de crescimento neoclássico em tempo discreto. A família representativa deriva utilidade do lazer (ou alternativamente desutilidade do trabalho), ou seja, além da escolha de consumo e acumulação de capital, a família escolhe a quantidade de horas trabalhadas h_t . A utilidade é:

$$\sum_{t=0}^{\infty} \beta^t \left(\log(C_t) - \theta \frac{h_t^{1+\phi}}{1+\phi} \right),\,$$

¹Em tempo discreto, bastaria iterar a restrição "para frente". Em tempo contínuo, você necessita resolver uma equação diferencial. A solução geral de uma equação diferencial linear do tipo y'(t) + a(t)y(t) = f(t) é dada por $y(t) = [\int_{t_0}^t u(s)f(s)ds + C]/u(t)$, onde u(t) é o fator de integração $u(t) = \exp(\int_{t_0}^t a(s)ds)$, e C é uma constante arbitrária. Utilize a condição inicial para encontrar a constante.

onde $0 < \beta < 1$. Vamos supor depreciação total do capital $\delta = 1$ (para simplificar). A restrição de recursos da economia é:

$$Y_t = K_t^{\alpha} (A_t h_t)^{1-\alpha} = K_{t+1} + C_t,$$

onde a evolução tecnológica $A_{t+1}/A_t = (1+g)$. Não há crescimento populacional, $L_0 = 1$ e $A_0 = 1$. $K_0 > 0$ é dado. Na hora de resolver a questão NÃO transforme as variáveis em unidades eficientes (ou seja, trabalhe com C_t , Y_t e K_t , as variáveis que NÃO serão estacionárias no balanced-growth path).

- (a) Defina e resolva o problema do planejador social da economia. Escreva um sistema de três equações que juntamente com K_0 e a TVC nos permite encontrar as alocações ótimas $\{C_t, K_{t+1}, h_t\}_{t=0}^{\infty}$ desta economia.
- (b) Sabemos que com utilidade log e $\delta = 1$ podemos encontrar a regra de decisão do agente em forma analítica fechada. Suponha que a taxa de poupança s é constante ao longo do tempo: $C_t = (1-s)Y_t$. Utilize o método dos coeficientes inderteminados para mostrar que $s = \alpha\beta$ (Dica: utilize a equação de euler e a restrição de recursos).
- (c) Mostre que as horas trabalhadas, h_t , é uma função dos parâmetros e não varia ao longo do tempo: $h_t = h^*$.
- (d) Finalmente transforme as variáveis para unidades eficientes de trabalho: $k_t = K_t/A_t$, $c_t = C_t/A_t$ e $y_t = Y_t/A_t$. Encontre o capital no estado estacionário, k_{ss} , em função dos parâmetros e de h^* . Qual a taxa de crescimento de K_t no balanced-growth path (ou seja, quando $k_t = k_{ss}$)?
- (e) Para que as horas trabalhadas, h_t , sejam constante ao longo do balanced-growth path é necessário que a utilidade tenha a forma:

$$u(c, l) = \frac{(cv(l))^{1-\sigma} - 1}{1 - \sigma},$$

onde l = 1 - h é o lazer e v() uma função. Explique intuitivamente (sem argumentos matemáticos) por que h é constante no longo prazo, mesmo quando C_t , Y_t e K_t têm taxa de crescimento positivo (Dica: pense no que deveria ocorrer com o efeito renda, o efeito substituição e complementaridade do consumo e lazer para que a quantidade de lazer demandada se mantenha constante).

²No nosso caso, h_t também é constante fora do estado estacionário. Isso se deve as suposições de log e $\delta = 1$. Em geral isso não acontece.