EE 301 : Microelectronic Circuits II

Lecture 3

Building Blocks of Integrated Circuits

March 9, 2005

Prof. SeongHwan Cho

EE301 1

How to design a gain element

When we are going to design amplifiers for a varying gain, what is the simplest way?

2005-03-08 EE301

Outline

Transistor

2005-03-08

Semiconductor fundamentals

MOS Transistor

BJT

Variable Resistor

EE301

2005-03-08

$$V_{out} = \frac{R_{v}}{R + R_{v}} V_{DD}$$

2005-03-08 EE301 2

How to design a gain element

By similar approach, we can also derive an exponential relation between V_{in} and V_{out}. In this case, you can see the characteristic of BJT.

$$R_{_{V}} \propto \frac{1}{V_{_{in}}}$$

Structure of MOS Transistor

EE301

2005-03-08

2005-03-08 EE301

Fundamentals of Semiconductor Energy Bands • Si: $14 \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^2$ Valence Electrons Econduction Evalence Electron - hole pair 1s EE301 EE301 2005-03-08 2005-03-08 Si in Crystal **Energy Bands of Different Materials** Insulator Semi-conductor Conductor Energyband Free Electrons: EE301 EE301 2005-03-08 2005-03-08

Adding Impurities

At room temperature, $n_i \sim= 10^{10}/\text{cm}^3$, # of atoms = $10^{22}/\text{cm}^3$ \rightarrow one out of _____ atoms is ionized at room temperature.

p, p+, pn, n+, n-

P-N Junction

Diffusion:

Drift:

2005-03-08 EE301 13

2005-03-08

EE301

15

Doped semiconductors

Operation of MOS Transistor

EE301

Linear Region: $I_{\rm D} = \mu_{\rm n} C_{ox} \frac{W}{L} \left[(V_{\rm GS} - V_{\rm T}) V_{\rm DS} - \frac{1}{2} V_{\rm DS}^2 \right]$

Saturated Region: $I_{\rm D} = \frac{1}{2} \mu_{\rm n} C_{\rm ox} \frac{W}{L} \left[\left(V_{\rm GS} - V_{\rm T} \right) V_{\rm DS} - \frac{1}{2} V_{\rm DS}^{2} \right]$

2005-03-08 EE301

2005-03-08

16

Intuitive Understanding of I-V

$$I = v \cdot Q$$

$$Q = CV$$

2005-03-08

Operation of MOS Transistor

EE301

3. Operation as V_{DS} is increased

2nd order Effect : Channel Length Mod.

4. Operation as V_{DS} is increased beyond V_{DSsat}

Channel length modulation occurs,

2005-03-08

17

EE301

19

Operation of MOS Transistor

