NAME: Solution

ChBE 2130 Thermodynamics I Fall 2015 Exam 2

Remember

- Write down relevant relationships needed to solve each problem
- Provide details, intermediate steps, and units
- Note any assumptions
- Show your work
- Where indicated, place your final answer on the ________
- Submit your crib sheet with your exam.

Problem	Possible Points	Score
1	20	
2	24	
3	24	
4	32	
Crib Sheet	Yes No (-5)	
Total	100	

1. Concept Questions [20 pts: 5 points each, no partial credit within sub-problem]

- An ideal gas is compressed isothermally. What happens to the entropy of the Follow isothern on PH diagram gas?
 - a. Increases

as Pincreases. b. Decreases

c. Remains the same

Alternatively, for ideal gas

d. Not enough information to determine $\Delta S = \int \frac{C_p}{P_0} dT - \ln \frac{P_0}{P_0}$

The pressure of an ideal gas is increased while keeping the entropy constant. Regarive

What happens to the enthalpy of the gas?

Follow isotherm on PH diagram

(a. Increases

b. Decreases

c. Remains the same

Alternatively AS = SEAT - ln Po = 0

d. Not enough information to determine

SEST = In Fo both terms are positive for ideal gas Hisf(T) if AT is positive, AH is post A power plant operates using a hot reservoir of 350°C and a cold reservoir of

30°C. The system (heat engine) efficiency is 55% of the Carnot efficiency for these reservoirs. What is the system efficiency?

- a. 55%
- b. 50.3%

€ c. 28.3%

d. 26.7%

 $\mathcal{N}_{\text{Carnot}} = 1 - \frac{\tau_c}{\tau_H} = 1 - \frac{303}{623} = 0.514$

Machiel = 0.55 Acoust = 0.55 (0.514)

- Which of the following systems is isentropic?
 - a. An adiabatic system
 - b. An isothermal system
 - c. A reversible adiabatic system
 - d. A reversible isothermal system

rigid

2. A closed vessel containing 4 lb_m of saturated vapor methane has a total volume of 4 ft³ (State 1). The surroundings are at 80°F. Heat transfers from the surroundings to the vessel until the final temperature of the methane is 80°F (State 2).

Note: Temperature conversion of °F + 460 = °R and Entropy values on the diagram are in units of btu lb_m/R where R is *Rankine

a. [6 pts] What is the final pressure (State 2)?

V= 4+15 + 1 f3/lbm constant volume

350 psia

b. [8 pts] What is the entropy change of methane?

AS=S2-S, = (1,28-1,00) btu/

0.28 bhi/lbmR

From Methane Diagram

c. [10 pts] If the heat transfer is 420 btu, what is the total entropy generation?

0.34 bh/R

or 0.085 6hr/01 R

ASTOT = ASSYSKM + AS Surroundings

ASsystem = 4 lbn (0.28 bh) = 1.12 bh/R

 $\Delta S_{\text{surrounding}} = \frac{Q}{T} = \frac{-420 \text{ bhy}}{}$ (80+460)R

Sign is negative because heat is leaving the surrounding

=-0.78 bh/R

ASTOT = 1.12 btu - 0.78 btu = 0,34 btu/R

Figure G.1: PH diagram for methane. (Reproduced by permission of the Shell Development Company, Copyright 1945. Published by C. S. Matthews and C. O. Hurd, Trans. AIChE, vol. 42, pp. 55-78, 1946.)

3. An inventor proposes a process whereby 1.5 kmol of an ideal gas (constant C_p = 30 kJ/kmol K) is taken from 10 bar and 300 K to 1 bar and 500 K in a non-flow closed system. The process receives 50,000 kJ of heat reversibly from the surroundings at 300 K. The process produces work.

Note: For an ideal gas, $C_p - C_v = R$

a. [12 pts] Based upon an energy balance, how much work is produced?

b. [12 pts] Is the process feasible (i.e. consistent with the 2nd Law)?

Entropy Balance
$$\Delta S_{univ} = \Delta S_{system} + \Delta S_{sorroundiap}$$

$$\Delta S_{system} = M \left[\left(\frac{Cp}{4T} - R \ln \frac{P^2}{P_1} \right) \right] = M \left(\frac{Cp}{4T} - R \ln \frac{P^2}{P_1} \right)$$

$$\Delta S_{system} = 1500 \text{ mol} \left[30 \text{ J/mol} \text{ K} \left(\ln \left(\frac{500}{300} \right) \right) - 8.314 \text{ J} \ln \left(\frac{1}{10} \right) \right]$$

$$\Delta S_{system} = 51.7 \text{ kJ/K}$$

$$\Delta S_{surround} = \frac{Q}{T} = \frac{-50,000 \text{ kJ}}{300 \text{ K}} = -166.7 \text{ kJ/K}$$

$$\Delta S_{univ} = 51.7 \text{ kJ/K} - 166.7 \text{ kJ/K} = -115 \text{ kJ/K}$$

$$\Delta S_{univ} \neq 0 \quad \text{So impossible}$$

$$418386$$

4. Consider a Carnot Cycle operating on steam (Steam Table Attached). The fluid is condensed at 30°C and evaporated at 200°C. The process steps are:

Isothermal expansion from State 1 to 2 Adiabatic expansion from State 2 to 3 Isothermal compression from State 3 to 4 200° -Adiabatic compression from State 4 to 1

a. [12 pts] Complete the following chart:

State	Temp (°C)	Entropy (kJ/ kg K)
1	200	2.3307
2	200	6.4278
3	30	6.4278
4	30	2.3307

b. [8 pts] Determine the heat transfer in the boiler in k.

Alternatively

$$Q_{12} = T(S_{12}) = (200)(6.4278 - 2.3307)^{kJ/ksK}$$

c. [8 pts] Determine the cycle efficiency

	0.359	8Y
		35.9°%
Acarnot = 1- Tc TH = 1-	30+273	
$T_{H} = 1$	200+273	

d. **[4 pts]** Suppose that the turbine and pump operated at 85% efficiency. In other words, they did **not** operate isentropically (there was irreversibility in the equipment operation). Compare the entropy change of the steam for one complete cycle with the entropy change of a reversible cycle.

Does ΔS increase, decrease, or remain the same?

Remains the Same

Entropy is a State function. If the steam Completes one cycle it returns to the original state and AS=0. This is true whether the cycle is reversible or irreversible.

ASuniv (or total AS) will increase.

Table F.1. Saturated Steam, SI Units (Continued)

	sat.	vap.	7.0261	6.9864	6.9669	0.84/0	6.9284	0.9093	0.0300	6.8539	0300	6.8178	6,800	6.7823	6.7648	6.7475	6.7303	6.7133	6.6964	96.6796	6.6630	6.6465	6.6302	6.6140	0.0373	6.5819	6.5660	6.5303 6.5346	6.5191	6,5036	6.4883	6.4730	6.42/8	R 4278	N. P. S	6.3980	6.3832	6.3686	6.3539	6.3394	6.3249	6.2960	3
ENTROPY S		evap.	5.3917	5.3099	5.2695	5.2233	5.1894	5.1488	0.100	5.0327	1000	4.004	4 0178	4 8800	4.8424	4.8050	4.7679	4.7309	4.6942	4.6577	4.6214	4.5853	4,5493	4.5136	4.4700	4.4426	4.40/4	4.3/23	4.3026	4 2680	4.2336	4.1993	4.1651	4 0071	1.03/	4 0296	3.9961	3.9626	3.9293	3.8960	3.8629	3.8298	5
Ä	sat.	ġ	1.6344	1.6765	1.6974	1./182	1,7390	1.7597	1.7803	 825 8213	,	0410	1.0013	1 9023	1.9224	1 9425	1.9624	1.9823	2.0022	2.0219	2.0416	2.0613	2.0809	2.1004	2.1139	2.1393	2.1587	2.1/80	2.2164	2 2356	2.2547	2.2738	2.2928	70000	2000 C	2,3430	2 3872	2.4059	2.4247	2.4434	2.4620	2.4806	L.733L
7**	sat.	vap.	2719.9	2725.3	2727.9	2730.5	2733.1	2735.6	2738.1	2740.6		2/45.4	2/4/./	97693	2754.5	77567	2758.9	2761.0	2763.1	2765.1	2767.1	2769.0	2770.9	2772.7	2774.5	2776.3	2778.0	2779.6	2787.2	2784 3	2785.7	2787.1	2788.4	0.000.7	2790.9	0703.0	27043	2795.3	2796.2	2797.1	2797.9	2798.6	Z133.0
ENTHALPY H		evap.	2173.6	2161.9	2155.9	2150.0	2144.0	2137.9	2131.8	2125.7	2	2113.2	2106.9	2000	2087.7	2081 3	2074.7	2068.1	2061.4	2054.7	2047.9	2041.1	2034.2	2027.3	2020.2	2013.1	2006.0	1998.8	1991.5	1076 7	1969.3	1961.7	1954.1	4.040	1938.6	1330.4	1014 7	1906.6	1898.5	1890.2	1881.8	1873.4	1004.3
岀	sat.	ğ	546.3	563.4	572.0	580.5	589.1	597.7	606.3	614.9	200	632.1	640.8	4.0.40	666.8	27E E	6842	692.9	701.6	710.4	719.1	727.9	736.7	745.5	754.3	763.1	772.0	780.8	789.7 798.6	2000	816.5	825.4	834.4	4.040	852.4	901.4	870.5	888.6	897 7	906.9	916.0	925.2	#. #.
GY U	sat	vap.	2539.4	2543.4	2545.4	2547.4	2549.3	2551.2	2553.1	2554.9	6330.0	2558.6	2560.3	7,207.	2565.5	1 6230	2568.8	2570.4	2571.9	2573.4	2574.9	2576.4	2577.8	2579.3	2580.6	2581.9	2583.2	2584.5	2585.7	20000	2589.2	2590.2	2591.3	2592.3	2593.2	2594.1	2593.0	2596.6	2597.3	2598.0	2598.7	2599.3	2089.0
INTERNAL ENERGY U		evap.	1993.4	1980.4	1973.8	1967.2	1960.6	1953.9	1947.2	1940.5	1323.7	1926.9	1920.1	1913.2	1899.3	0000	1892.3	1878.2	1871.1	1863.9	1856.7	1849.5	1842.2	1834.8	1827.4	1820.0	1812.5	1804.9	1797.3	1,000	1774.2	1766.4	1758.6	1/50.6	1742.6	1734.6	1770.3	1710.1	1701 B	1693.5	1685.1	1676.6	1000.0
INTERI	tes	ġ	546.0	563.1	571.6	580.2	588.7	597.3	602.9	614.4	0.530	631.6	640.2	648.9	657.5 666.1		6/4.8	600.1	700.	709.5	718.2	727.0	735.7	744.4	753.2	762.0	770.8	779.6	788.4	7.101	800. 914 9	823.8	832.7	841.6	850.6	859.5	868.5	886.5	805.5	904.5	913.6	922.7	931.8
ME V	17	vap.	668.1	598.0	566.2	536.4	508.5	482.3	457.7	434.6	412.9	392.4	373.2	355.1	338.0	3 6	306.8	278.0	266.1	254.0	2426	231.7	221.5	211.7	202.5	193.8	185.5	177.6	170.2	- 60	126.3	143.8	138.0	132.4	127.2	122.1	117.3	108.4	104.2	100.26	96.46	92.83	89.30
SPECIFIC VOLUME V		evap.	667.1	596.9	565.1	535.3	507.4	481.2	456.6	433.5	411.8	391.4	372.1	354.0	336.9	050.0	305.7	591.5	265.0	252.9	241.4	230.6	220.3	210.6	201.4	1927	184.4	176.5	169.0	D !	155.2	140.0	136.8	131.3	126.0	121.0	116.2	107.2		60.66	95.28	91.65	88.1/
SPECI	ŧ	ig.	1.070	1.072	1.076	1.078	1.080	1.082	1.084	1.086	1.089	1.091	1.093	1.095	1.098	3	1.102	25	36	1.10	7		120	1.122	1.125	1 128	130	1.133	1.136	1.139	1.142	1 144	1.150	1.153	1.156	1.160	1.163	1.166		1.1/3	1.179	1.183	1.186
	Q	r Pa	270.13	286.70	322.29	341.38	361 38	382.31	404.20	427.09	451.01	476.00	502.08	529.29	557.67	207.700	618.06	650.16	583.55	754 45	00.007	132.02	871.60	913.68	957:36	1000 7	1049.6	1098.3	1148.8	1201.0	1255.1	1311.1	1428.9	1490.9	1554.9	1621.0	1689.3	1759.8	0.200	1907.7	065	2147.5	232
	۲	- ¥	403.15	405.15	409 15	411.15	413 15	415.15	417.15	419.15	421.15	-	425.15	427.15	429.15	431.13	433.15	435.15	437.15	439.15		443.15	443.13	449.15	451.15	450 45	455.15	457.15	459.15	461.15	463.15	465.15	469.15	471.15	473.15	475.15	477.15	479.15	2	483.15		-	-
	,	- 50	130	132	, 5	38	140	142	144	146	148	150	152	154	156	128	160	162	164	166	9 6	170	7/1	176	178		5 2	184	186	188	190	192	196	-	002	202	204	50e	200	210	214	216	218