MAE 221 - Probabilidade I - 2022/01

Aline Duarte - **Prova 1**

Análise Combinatória

• Permutação de n elementos: $n! = n(n-1)(n-2) \dots 2 \cdot 1$

 \bullet Permutação com ambiguidades: $\frac{n!}{n_1!n_2!...n_r!}$

• Combinação de n elementos agrupados k a k: $C_{n,k} = \frac{n!}{(n-k)!k!} = \binom{n}{k}$

Teoria de conjuntos. Dados A, B e C eventos do mesmo espaço amostral Ω

i.
$$A \cup B = B \cup A \in A \cap B = B \cap A$$

ii.
$$(A \cup B) \cup C = A \cup (B \cup C)$$
 e $(A \cap B) \cap C = A \cap (B \cap C)$

iii.
$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

iv.
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

v.
$$(A \cup B)^c = A^c \cap B^c$$

vi.
$$(A \cap B)^c = A^c \cup B^c$$

Probabilidade. Dado (Ω, \mathcal{F}, P) um espaço de probabilidade, $A, B, A_1, A_2, \cdots, B_1, B_2, \cdots \in \mathcal{F}$

• Propriedades da probabilidade:

i. Se
$$A_1, \ldots, A_n$$
 são mutuamente exclusivos, então $P\left(\bigcup_{k=1}^n A_k\right) = \sum_{k=1}^n P(A_k)$

ii.
$$P(A^c) = 1 - P(A)$$

iii. Se
$$A \subset B$$
 então $P(A) \leq P(B)$.

iv.
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

v.
$$P\left(\bigcup_{k=1}^{n} A_k\right) \le \sum_{k=1}^{n} P(A_k)$$

- Limite superior: $\limsup A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$.
- Limite inferior: $\liminf A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k$.
- A sequência de eventos $\{A_n, n \geq 1\}$ tem **limite** se $\liminf A_n = \limsup A_n = \lim A_n$
- Probabilidade de A dado B. $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$
- Regra da multiplicação.

$$P\left(\bigcap_{k=1}^{n} A_{k}\right) = P(A_{1})P(A_{2} \mid A_{1})P(A_{3} \mid A_{1} \cap A_{2}) \dots P(A_{n} \mid A_{1} \cap \dots \cap A_{n-1})$$

• Fórmula das Probabilidades Totais. Se $B_1, \dots B_n \in \mathcal{F}$ é uma partição de Ω então

$$P(A) = \sum_{k=1}^{n} P(A \mid B_k) P(B_k)$$

• Fórmula de Bayes.
$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B \mid A)P(A) + P(B \mid A^c)P(A^c)}$$

• Eventos independentes. A_1, \dots, A_n são independentes se $P(\bigcap_{k=1}^n A_k) = P(A_1) \dots P(A_n)$

Variáveis aleatórias discretas. Dado X uma v.a. discreta assumindo os valores x_1, x_2, \ldots

- Função de probabilidade. $p(x_i) = P(X = x_i)$ para qualquer i = 1, 2, ...
- Função de distribuição. $F(x) = P(X \le x), -\infty < x < \infty$
- Valor médio: $EX = \sum_{i=1}^{\infty} x_i p(x_i)$
- Propriedades do valor médio
- i. Dada uma função $g: \mathbb{R} \to \mathbb{R} \ E[g(X)] = \sum_{i=1}^{\infty} g(x_i) p(x_i)$.
- ii. E[aX + b] = aEX + b, para quaisquer números reais $a \in b$.
 - Variância: $Var(X) = E[(X \mu)^2] = E[X^2] (EX)^2$
 - Desvio padrão: $DP(X) = \sqrt{Var(X)}$
 - Propriedades da Variância. Seja X uma v.a. com $EX < \infty$ e quaisquer
- (i) Se X = a com probabilidade 1 então Var(X) = 0.
- (ii) $Var(aX + b) = a^2Var(X)$ para $a \in b$ números reais.

• Bernoulli

- \diamond Função de probabilidade: p(1) = p = 1 p(0)
- $\Leftrightarrow EX = p \quad e \quad Var(X) = p(1-p)$

• Binomial

- \diamond Função de probabilidade: $p(k) = \binom{n}{k} p^k (1-p)^{n-k}, k = 0, 1, \dots, n$
- $\Leftrightarrow EX = np \quad e \quad Var(X) = np(1-p)$

• Geométrica

- \diamond Função de probabilidade: $p(k) = (1-p)^{k-1} p, \, k = 1, 2 \dots$
- $\Leftrightarrow EX = \frac{1}{p} \quad e \quad Var(X) = \frac{1-p}{p}$

• Binomial Negativa

- \diamond Função de probabilidade: $p(n) = \binom{n-1}{r-1} p^{r-1} (1-p)^{n-r} \binom{1}{1} p, k = r, \dots, n$
- $\diamond EX = \frac{r}{p} \quad e \quad Var(X) = \frac{r(1-p)}{p^2}$

• Hipergeométrica

- \diamond Função de probabilidade: $p(k) = \frac{\binom{m}{k}\binom{N-m}{n-k}}{\binom{N}{n}}, \ k = 0, 1, \dots, m; \ k = r, \dots, n$
- $\diamond \ EX = \frac{nm}{N} \quad e \quad Var(X) = \frac{nm}{N} \left[\frac{(n-1)(m-1)}{N-1} + 1 \frac{nm}{N} \right]$

• Poisson

- \diamond Função de probabilidade: $p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2 \dots$
- $\Leftrightarrow EX = \lambda \quad e \quad Var(X) = \lambda$
- \bullet Aproximação da Binomial por Poisson Sen>30é grande e $\lambda=np<10$ é moderado então

$$p(k) \approx e^{-\lambda} \frac{\lambda^k}{k!}$$
 com $\lambda = np$ e $k = 0, 1, 2, ...$