BVRIT HYDERABAD College of Enginnering for Women

Crop Prediction

Kavya Swamy - 18WH1A0233-EEE Vaishnavi Yelisetti - 18WH1A0567-CSE M.Jhahnavi- 18WH1A0461-ECE Karnati Neha Reddy- 18WH1A1231-IT A.Shalini- 18WH1A05A9-CSE May 29, 2021

Problem Statement

Build a Machine Learning model to predict the most suitable crop to grow on a particular farm.

Use Cases

- To help the farmer choose the right crop based on different parameters
- To avoid serious setback in productivity.

Approach

Dataset

• No of Crops: 22

 Classification: Rice, Maize, Chickpea, Kidneybeans, Pigeonbeans, mothbeans, Mungbean, Blackgram, Lentil, pomegranate, Banana, Grapes, Mango, Watermelon, Muskmelon, Apple, Orange, Papaya, Coconut, Cotton, Jute, Coffee

• Class variables: 'N', 'P', 'K', 'temperature', 'humidity', 'pH', 'rainfall'

Technical Stack

Libraries:

- Pandas
- Numpy
- Seaborn
- Matplotlib
- Sklearn

Tools:

- Google Colab
- Latex

Learnings

• Matplotlib plots

Challenges Faced

- Model Overfitting
- Working with Flask

Output

Colab Link

GitHub Link

Git Commits

Reference

