### Enter the Tidyverse

BIO5312 FALL2017

STEPHANIE J. SPIELMAN, PHD

#### What is the "tidyverse"?

A collection of R packages largely developed by Hadley Wickham and others at Rstudio

Have emerged as staples of modern-day data science in the past 5—10 years



#### We will focus on:

- Visualization/plotting with ggplot2
- Data management and "wrangling" with dplyr and tidyr
- Document presentation with RMarkdown

#### Focus is on tidy dataframes

Each variable forms a column.

Each observation forms a row.

Tidy data provides a consistent approach to data management that greatly facilitates downstream analysis and viz

Each type of observational unit forms a table.







#### Working with tidy data

The package dplyr can manipulate and manage tidy data

The package tidyr can rearrange data to convert to/from tidy data

The package ggplot2 is used for visualization/plotting



#### The fundamental verbs of dplyr

| filter()    | select rows                      |
|-------------|----------------------------------|
| select()    | select columns                   |
| mutate()    | create new columns               |
| group_by()  | establish a data grouping        |
| tally()     | count observations in a grouping |
| summarize() | calculate summary statistic      |
| arrange()   | arrange rows                     |

There are more functions but these ones are key!

#### The pipe operator %>%

"Pipes" output from one function/operation as input to the next

```
## Start simple: display data
head(iris)

## Find the mean of iris sepal lengths
mean.sepal <- mean(iris$Sepal.Length)

## Using %>%
iris %>% head()

## Using %>%
mean.sepal <- iris$Sepal.Length %>% mean()

iris$Sepal.Length %>% mean() -> mean.sepal

iris %>% mean(Sepal.Length) -> mean.sepal
```

"forward assignment" operator follows the logical flow of piping

#### dplyr demo

Commands in demo are on sjspielman.org/bio5312\_fall2017/day2\_tidyverse1

#### Visualizing with ggplot2

The package ggplot2 is a graphics package that implements a grammar of graphics

- Operates on data frames, not vectors like Base R
- Explicitly differentiates between the data and the representation of the data

#### The ggplot2 grammar

| <b>Grammar element*</b> | What is it                                                                                                                 |
|-------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Data                    | The data frame being plotted                                                                                               |
| Geometrics              | <ul> <li>The geometric shape that will represent the data</li> <li>Point, boxplot, histogram, violin, bar, etc.</li> </ul> |
| Aesthetics              | The aesthetics of the geometric object  • Color, size, shape, etc.                                                         |

#### Example: scatterplot

> ggplot(iris, aes(x = Sepal.Length, y = Petal.Length)) + geom\_point()



#### Example: scatterplot

> ggplot( iris, aes(x = Sepal.Length, y = Petal.Length) ) + geom\_point()

- Pass in the data frame as your first argument
- Aesthetics map the data onto plot characteristics, here x and y axes
- Display the data geometrically as points



### Example: scatterplot with color

> ggplot(iris, aes(x = Sepal.Length, y = Petal.Length)) + geom\_point(color = "red")



#### Example: scatterplot with aes color

> ggplot(iris, aes(x = Sepal.Length, y = Petal.Length, color = Species)) + geom\_point()

 Placing color inside aesethetic maps it to the data.



#### Example: scatterplot with aes color, shape

> ggplot(iris, aes(x = Sepal.Length, y = Petal.Length, color = Species, shape = Species))

+ geom\_point()



# Aesthetics may be placed inside the relevant geom

> ggplot(iris, aes(x = Sepal.Length, y = Petal.Length)) + geom\_point(aes(color =

Species, shape = Species))

> ## Remember dplyr!

> iris %>% ggplot(aes(x = Sepal.Length, y =
Petal.Length)) + geom\_point(aes(color =
Species, shape = Species))



#### Aesthetics are for mapping only

- > ### Color all points blue?
- > ggplot(iris, aes(x = Sepal.Length, y = Petal.Length, color = "blue")) + geom\_point()



#### Aesthetics are for mapping only

> ### Color all points blue?
> ggplot(iris, aes(x = Sepal.Length, y = Petal.Length, color = "blue")) + geom\_point()
> ### Correctly color all points blue
> ggplot(iris, aes(x = Sepal.Length, y = Petal.Length)) + geom\_point(color = "blue")



#### Example: multiple geoms

- > ### Use some fake data:
- > fake.data <- data.frame(t = 1:10, y = runif(10, 1, 100))
- >  $ggplot(fake.data, aes(x = t, y = y)) + geom_point() + geom_line()$



# Make sure aesthetic mappings are properly applied

> ggplot(fake.data, aes(x = t, y = y, size = y)) + geom\_point() + geom\_line()



# Make sure aesthetic mappings are properly applied

- > ggplot(fake.data, aes(x = t, y = y, size = y)) + geom\_point() + geom\_line()
- >  $gaplot(fake.data, aes(x = t, y = y)) + geom_point(aes(size=y)) + geom_line()$



> ggplot(iris, aes(x = Sepal.Length)) + geom\_histogram()



> ggplot(iris, aes(x = Sepal.Length)) + geom\_histogram( fill = "orange" )



> ggplot(iris, aes(x = Sepal.Length)) + geom\_histogram( fill = "orange", line = "brown" )



> ggplot(iris, aes(x = Sepal.Length)) + geom\_histogram( fill = "orange", color = "brown" )
+ xlab("Sepal Length") + ylab("Count") + ggtitle("Histogram of iris sepal lengths")



> ggplot(iris, aes(x = "", y = Sepal.Length)) + geom\_boxplot()



> ggplot(iris, aes(x = "", y = Sepal.Length)) + geom\_boxplot(color = "green")



> ggplot(iris, aes(x = Species, y = Sepal.Length)) + geom\_boxplot(color = "green")



> ggplot(iris, aes(x = Species, y = Sepal.Length, fill = Species)) + geom\_boxplot()



#### Boxplots: Customizing the fill mappings

> ggplot(iris, aes(x = Species, y = Sepal.Length, fill = Species)) + geom\_boxplot() +
scale\_fill\_manual(values=c("red", "blue", "purple"))



#### scale\_fill\_manual() also tweaks legend

> ggplot(iris, aes(x = Species, y = Sepal.Length, fill = Species)) + geom\_boxplot() +
scale\_fill\_manual(values=c("red", "blue", "purple"), name = "Species name",
labels=c("SETOSA", "VIRGINICA", "VERSICOLOR"))



#### Changing the order

```
> ### Ordering depends on factor levels
> levels(iris$Species)
   [1] "setosa" "versicolor" "virginica"

> ### Change order of levels
> iris$Species <- factor(iris$Species, levels=c("virginica", "setosa", "versicolor"))
   [1] "virginica" "setosa" "versicolor"

> ### Replot
> ggplot(iris, aes(x = Species, y = Sepal.Length, fill = Species)) +
        geom_boxplot() +
        scale_fill_manual(values=c("red", "blue", "purple"))
```

#### Grouped boxplots

This will apply to violin plots as well.

3.9

```
> ## Create another categorical variable for grouping purpopses
> iris %>%
    group_by(Species) %>%
    mutate(size = ifelse( Sepal.Width > median(Sepal.Width) , "big" , "small" )) -> iris2
                                          Condition
                                                                   Value if
                                                                               Value if
> head(iris2)
                                                                    TRUE
                                                                                FALSE
        Source: local data frame [150 x 6]
        Groups: Species [3]
           Sepal.Length Sepal.Width Petal.Length Petal.Width Species size
                 <dbl>
                                        <dbl>
                                                  <dbl> <fctr> <chr>
                            <dbl>
                             3.5
                                                    0.2 setosa
                              3.0
                                                    0.2 setosa small
                   4.7
                             3.2
                                                    0.2 setosa small
                                         1.5
                   4.6
                             3.1
                                                    0.2 setosa small
                   5.0
                              3.6
                                                    0.2 setosa
                                                                 bia
```

0.4 setosa

big

#### Grouped boxplots

> ggplot(iris2, aes( x = Species, fill=size, y=Sepal.Width)) + geom\_boxplot()



#### Grouped boxplots

> ggplot(iris2, aes( x = size, fill = Species, y=Sepal.Width)) + geom\_boxplot()



## Detour: scale\_color\_manual() customizes color



#### Detour round 2: scale\_<fill/color>\_??

There are many scales to use besides default and custom.

 scale\_<fil/color>\_brewer() uses pre-made color schemes from colorbrewer.org

scale\_color\_gradient() can take a low and high to fill along a spectrum

See here: http://ggplot2.tidyverse.org/reference/#scales

#### Violin plot

> ggplot(iris, aes(x = Species, y = Sepal.Length, fill = Species)) + geom\_violin()



#### Bar plot

> ggplot(iris, aes(x = Species, fill = Species)) + geom\_bar()



#### Stacked/grouped bar plot

#### > head(iris2)

```
Source: local data frame [150 x 6]
Groups: Species [3]
   Sepal.Length Sepal.Width Petal.Length Petal.Width Species size
                      <dbl>
          <dbl>
                                   <dbl>
                                               <dbl> <fctr> <chr>
            5.1
                                                 0.2 setosa
                                                               big
                        3.0
                                                 0.2 setosa small
            4.7
                                                 0.2 setosa small
           4.6
                                                 0.2 setosa small
            5.0
                        3.6
                                                 0.2 setosa
                                                               big
            5.4
                                                 0.4 setosa
                                                               big
```

#### Stacked/grouped bar plot

> ggplot(iris, aes(x = Species, fill = size)) + geom\_bar()



#### Stacked/grouped bar plot

> ggplot(iris, aes(x = Species, fill = size)) + geom\_bar( position = "dodge" )



#### Density plot

> ggplot(iris, aes(x = Species, y = Sepal.Length, fill = Species)) + geom\_density()



What does the tail of the setosa distribution look like?

#### Density plot

> ggplot(iris, aes(x = Species, y = Sepal.Length, fill = Species)) +
 geom\_density( alpha = 0.5 )

