Notes for Operations Research & More

Lan Peng, PhD Student

Department of Industrial and Systems Engineering University at Buffalo, SUNY lanpeng@buffalo.edu

June 9, 2019

Contents

Ι	Preliminary Topics	7		
1	Review of Linear Algebra			
2	Convex Sets			
3	Convex Functions and Generalizations	13		
II	Linear Programming	15		
4	Formulation 4.1 Typical Problems 4.2 Formulation Skills 4.2.1 Absolute Value 4.2.2 A Minimax Objective 4.2.3 A fractional Objective 4.2.4 A range Constraint	17 17 17 18		
5	Simplex Method 5.1 Basic Feasible Solutions and Extreme Points 5.2 Simplex Method 5.2.1 Simplex Method Algorithm 5.2.2 Simplex Method Tableau 5.2.3 Simplex Method as a Search Algorithm 5.3 Revised Simplex Method 5.4 Simplex Method with Bounded Variables 5.5 Artificial Variable 5.5.1 Two-Phase Method 5.5.2 Big-M Method 5.5.3 Single Artificial Variable Technique 5.6 Degeneracy and Cycling 5.6.1 Degeneracy 5.6.2 Cycling 5.6.3 Cycling Prevention Rules	19 19 19 19 19 19 19 19 19 19 19 19		
6	Duality Theory and Sensitivity Analysis	21		
7	Decomposition Principle 2			
8	8 Ellipsoid Algorithm			
9	9 Projective Algorithm 2			
10	Interior-Point Algorithm	29		
II	I Graph and Network Theory	31		
11	1 Paths, Trees, and Cycles 33			

4 CONTENTS

12 Shortest-Path Problem	35	
3 Minimum Spanning Tree Problem		
14 Maximum Flow Problem	39	
15 Minimum Cost Flow Problem	41	
16 Assignment and Matching Problem	43	
17 Graph Algorithms	45	
IV Integer and Combinatorial Programming	47	
18 Formulation 18.1 Typical Problems 18.2 Integer Programming Formulation Skills 18.2.1 A Variable Taking Discontinuous Values 18.2.2 Fixed Costs 18.2.3 Either-or Constraints 18.2.4 Conditional Constraints 18.2.5 Special Ordered Sets 18.2.6 Piecewise Linear Formulations 18.2.7 Conditional Binary Variables 18.2.8 Elimination of Products of Variables	49 49 50 50 51	
19 Branch and Bound	53	
20 Branch and Cut	55	
21 Packing and Matching	57	
22 Traveling Salesman Problem	59	
23 Knapsack Problem	61	
V Nonlinear Programming	63	
24 KKT Optimality Conditions	65	
25 Lagrangian Duality	67	
26 Unconstrained Optimization	69	
27 Penalty and Barrier Functions	71	
VI Algorithms and Computational Complexity	7 3	
28 Computational Complexity	7 5	
29 Sorting 29.1 Elementary Sorting Algorithms 29.2 Heap-sort 29.3 Quick-sort 29.4 Sorting in Linear Time 29.5 Medians and Order Statistics	77 77 77	

CONTENTS 5

30 I	Data Structures	79
3	0.1 Elementary Data Structures	79
	0.2 Hash Tables	
	0.3 Binary Search Trees	
	0.4 Red-Black Trees	
	0.5 B-Trees	
	0.6 Fibonacci Heaps	
	0.7 van Emde Boas Trees	
31 I	Design and Analysis Techniques	81
3	1.1 Dynamic Programming	81
	11.2 Greedy Algorithms	
	11.3 Amortized Analysis	
	11.4 Multi-threaded Algorithms	
	11.5 Matrix Operations	
	11.6 Polynomials and the FFT	
	11.7 Number-Theoretic Algorithms	
	11.8 String Matching	
	11.9 Computational Geometry	
	1.10NP-Completeness	
	31.11Approximation Algorithms	
	1.1111pproximation ingorithms	. 01
VII	Heuristics ans Meta-heuristics	83
VII	II Game Theory	85
32 (Games with Ordinal Payoffs	87
	2.1 Ordinal Games in Strategic Form	
	22.2 Perfect-information Games	
	22.3 General Dynamic Games	
33 (Games with Cardinal Payoffs	89
	3.1 Expected Utility Theory	
	3.2 Strategic-form Games	
	33.3 Extensive-form Games	
94 T	Zurandadan Cananan Karandadan Ballafa	01
	Knowledge, Common Knowledge, Beliefs	91
	4.1 Common Knowledge	
	4.2 Adding Beliefs to Knowledge	
3	4.3 Rationality	91
25 E	Refinements of Subgame-perfect Equilibrium	93
	5.1 Weak Sequential Equilibrium	
	5.2 Sequential Equilibrium	
	5.3 Perfect Bayesian Equilibrium	
J	5.5 1 effect Dayesian Equinorium	. 93
36 I	ncomplete Information	95
3	6.1 Static Games	95
3	6.2 Dynamic Games	95
3	6.3 The Type-Space Approach	95
IX	Decision Analysis	97
\mathbf{X}	Probability, Stochastic Processes and Markov Chains	99
37 I	Discrete-Time Markov Chains	101

6	CONTENTS
---	----------

38 Continuous-Time Markov Chains	103
XI Queuing Theory	105
39 Queuing Model	107
40 Birth-and-Death Queuing Models	109
41 Multidimensional Birth-and-Death Queuing Models	111
42 Phase-Type Queue	113
43 Bulk Queue	115
44 Imbedded-Markov-Chain Queuing Models	117
45 Queuing Network	119
XII Inventory Theory	121
XIII Reliability Theory 45.1 Maintenance Optimization	123 . 125
XIV Bayesian Statistic	127
XV Classical Statistic	129
XVI Simulation	131

Part I Preliminary Topics

Review of Linear Algebra

Convex Sets

Convex Functions and Generalizations

Part II Linear Programming

Formulation

4.1 Typical Problems

4.2 Formulation Skills

4.2.1 Absolute Value

Description: Consider the following model statement:

min
$$\sum_{j \in J} c_j |x_j|, \quad c_j > 0$$

s.t. $\sum_{j \in J} a_{ij} x_j \gtrsim b_i, \quad \forall i \in I$
 x_j unrestricted, $\forall j \in J$

Modeling:

$$\min \sum_{j \in J} c_j (x_j^+ + x_j^-), \quad c_j > 0$$
s.t.
$$\sum_{j \in J} a_{ij} (x_j^+ - x_j^-) \gtrsim b_i, \quad \forall i \in I$$

$$x_j^+, x_j^- \ge 0, \quad \forall j \in J$$

4.2.2 A Minimax Objective

Description: Consider the following model statement:

$$\min \quad \max_{k \in K} \sum_{j \in J} c_{kj} x_j$$
s.t.
$$\sum_{j \in J} a_{ij} x_j \gtrsim b_i, \quad \forall i \in I$$

$$x_j \geq 0, \quad \forall j \in J$$

Modeling:

$$\min \quad z$$
s.t.
$$\sum_{j \in J} a_{ij} x_j \gtrsim b_i, \quad \forall i \in I$$

$$\sum_{j \in J} c_{kj} x_j \leq z, \quad \forall k \in K$$

$$x_j \geq 0, \quad \forall j \in J$$

4.2.3 A fractional Objective

Description: Consider the following model statement:

$$\min \quad \frac{\sum_{j \in J} c_j x_j + \alpha}{\sum_{j \in J} d_j x_j + \beta}$$
s.t.
$$\sum_{j \in J} a_{ij} x_j \gtrsim b_i, \quad \forall i \in I$$

$$x_j \geq 0, \quad \forall j \in J$$

Modeling:

$$\min \sum_{j \in J} c_j x_j t + \alpha t$$

$$\text{s.t.} \sum_{j \in J} a_{ij} x_j \gtrsim b_i, \quad \forall i \in I$$

$$\sum_{j \in J} d_j x_j t + \beta t = 1$$

$$t > 0$$

$$x_j \ge 0, \quad \forall j \in J$$

$$(t = \frac{1}{\sum_{j \in J} d_j x_j + \beta})$$

4.2.4 A range Constraint

Description: Consider the following model statement:

$$\begin{aligned} & \text{min} & & \sum_{j \in J} c_j x_j \\ & \text{s.t.} & & d_i \leq \sum_{j \in J} a_{ij} x_j \leq e_i, \quad \forall i \in I \\ & & & x_j \geq 0, \quad \forall j \in J \end{aligned}$$

Modeling:

$$\begin{aligned} & \text{min} & & \sum_{j \in J} c_j x_j, \quad c_j > 0 \\ & \text{s.t.} & & u_i + \sum_{j \in J} a_{ij} x_j = e_i, \quad \forall i \in I \\ & & x_j \geq 0, \quad \forall j \in J \\ & & & 0 \leq u_i \leq e_i - d_i, \quad \forall i \in I \end{aligned}$$

Lexicographic Rule

Successive Ratio Rule

Bland's Rule

Simplex Method

5.1	Basic Feasible Solutions and Extreme Points
5.2	Simplex Method
5.2.1	Simplex Method Algorithm
5.2.2	Simplex Method Tableau
5.2.3	Simplex Method as a Search Algorithm
5.3	Revised Simplex Method
5.4	Simplex Method with Bounded Variables
5.5	Artificial Variable
5.5.1	Two-Phase Method
5.5.2	Big-M Method
5.5.3	Single Artificial Variable Technique
5.6	Degeneracy and Cycling
5.6.1	Degeneracy
5.6.2	Cycling
5.6.3	Cycling Prevention Rules

Duality Theory and Sensitivity Analysis

Decomposition Principle

Ellipsoid Algorithm

Projective Algorithm

Interior-Point Algorithm

Part III Graph and Network Theory

Paths, Trees, and Cycles

Shortest-Path Problem

Minimum Spanning Tree Problem

Maximum Flow Problem

Minimum Cost Flow Problem

Assignment and Matching Problem

Graph Algorithms

Part IV

Integer and Combinatorial Programming

Formulation

18.1 Typical Problems

18.2 Integer Programming Formulation Skills

18.2.1 A Variable Taking Discontinuous Values

Description: In algebraic notation:

$$x = 0$$
, or $l \le x \le u$

Modeling:

$$x \le uy$$
$$x \ge ly$$
$$y \in \{0, 1\}$$

where

$$y = \begin{cases} 0, & \text{if } x = 0\\ 1, & \text{if } l \le x \le u \end{cases}$$

18.2.2 Fixed Costs

Description: In algebraic notation:

$$C(x) = \begin{cases} 0 & \text{for } x = 0\\ k + cx & \text{for } x > 0 \end{cases}$$

Modeling:

$$C^*(x, y) = ky + cx$$
$$x \le My$$
$$x \ge 0$$
$$y \in \{0, 1\}$$

where

$$y = \begin{cases} 0, & \text{if } x = 0 \\ 1, & \text{if } x \ge 0 \end{cases}$$

18.2.3 Either-or Constraints

Description: In algebraic notation:

$$\sum_{j \in J} a_{1j} x_j \le b_1 \text{ or } \sum_{j \in J} a_{2j} x_j \le b_2$$

Modeling:

$$\sum_{j \in J} a_{1j} x_j \le b_1 + M_1 y$$

$$\sum_{j \in J} a_{2j} x_j \le b_2 + M_1 (1 - y)$$

$$y \in \{0, 1\}$$

where

$$y = \begin{cases} 0, & \text{if } \sum_{j \in J} a_{1j} x_j \le b_1 \\ 1, & \text{if } \sum_{j \in J} a_{2j} x_j \le b_2 \end{cases}$$

Notice that the sign before M is determined by the inequality \geq or \leq , if it is " \geq ", use "-", if it " \leq ", use "+".

18.2.4 Conditional Constraints

Description: If constraint A is satisfied, then constraint B must also be satisfied

If
$$\sum_{j \in J} a_{1j} x_j \le b_1$$
 then $\sum_{j \in J} a_{2j} x_j \le b_2$

The key part is to find the opposite of the first condition. We are using $A \Rightarrow B \Leftrightarrow \neg B \Rightarrow \neg A$ Therefore it is equivalent to

$$\sum_{j \in J} a_{1j} x_j > b_1 \text{ or } \sum_{j \in J} a_{2j} x_j \le b_2$$

Furthermore, it is equivalent to

$$\sum_{j \in J} a_{1j} x_j \ge b_1 + \epsilon \text{ or } \sum_{j \in J} a_{2j} x_j \le b_2$$

Where ϵ is a very small positive number.

Modeling:

$$\sum_{j \in J} a_{1j} x_j \ge b_1 + \epsilon - M_2 y$$
$$\sum_{j \in J} a_{2j} x_j \le b_2 + M_2 (1 - y)$$
$$y \in \{0, 1\}$$

18.2.5 Special Ordered Sets

SOS1 Description Out of a set of yes-no decisions, at most one decision variable can be yes.

$$x_1 = 1, x_2 = x_3 = \dots = x_n = 0$$
or
 $x_2 = 1, x_1 = x_3 = \dots = x_n = 0$

Modeling:

$$\sum_{i} x_i = 1, \quad i \in N$$

SOS2 Description 1 Out of a set of binary variables, at most two variables can be nonzero. In addition, the two variables must be adjacent to each other in a fixed order list.

Modeling: If $x_1, x_2, ..., x_n$ is a SOS2, then

$$\sum_{i=1}^{n} x_i \leq 2$$

$$x_i + x_j \leq 1, \forall i \in \{1, 2, ..., n\}, j \in \{i + 2, i + 3, ..., n\}$$

$$x_i \in \{0, 1\}$$

SOS2 Description 2 There is another type of definition, that is out of a set of nonnegative variables **not binary here**, at most two variables can be nonzero. In addition, the two variables must be adjacent to each other in a fixed order list. All variables summing to 1.

This definition of SOS2 is used in the following section Piecewise Linear Formulations

18.2.6 Piecewise Linear Formulations

Description: The objective function is a sequence of line segments, e.g. y = f(x), consists k - 1 linear segments going through k given points $(x_1, y_1), (x_2, y_2), ..., (x_k, y_k)$.

Denote

$$d_i = \begin{cases} 1, & x \in (x_i, x_{i+1}) \\ 0, & \text{otherwise} \end{cases}$$

Then the objective function is

$$\sum_{i \in \{1,2,\dots,k-1\}} y = d_i f_i(x)$$

Modeling: Given that objective function as a piecewise linear formulation, we can have these constraints

$$\begin{split} &\sum_{i \in \{1,2,...,k-1\}} d_i = 1 \\ d_i \in \{0,1\}, i \in \{1,2,...,k-1\} \\ &x = \sum_{i \in \{1,2,...,k\}} w_i x_i \\ &y = \sum_{i \in \{1,2,...,k\}} w_i y_i \\ &w_1 \leq d_1 \\ &w_i \leq d_{i-1} + di, i \in \{2,3,...,k-1\} \\ &w_k \leq d_{k-1} \end{split}$$

In this case, $w_i \in SOS2$ (second definition)

18.2.7 Conditional Binary Variables

Description: Choose at most n binary variable to be 1 out of $x_1, x_2, ... x_m, m \ge n$. If n = 1 then it is SOS1.

Modeling:

$$\sum_{k \in \{1, 2, \dots, m\}} x_k \le n$$

Description: Choose exactly n binary variable to be 1 out of $x_1, x_2, ... x_m, m \ge n$

Modeling:

$$\sum_{k \in \{1, 2, \dots, m\}} x_k = n$$

Description: Choose x_j only if $x_k = 1$

Modeling:

$$x_i = x_k$$

Description: "and" condition, iff $x_1, x_2, ..., x_m = 1$ then y = 1

Modeling:

$$y \le x_i, i \in \{1, 2, ..., m\}$$

 $y \ge \sum_{i \in \{1, 2, ..., m\}} x_i - (m - 1)$

18.2.8 Elimination of Products of Variables

Description: For variables x_1 and x_2 ,

$$y = x_1 x_2$$

Modeling: If x_1, x_2 are binary, it is the same as "and" condition of binary variables.

If x_1 is binary, while x_2 is continuous and $0 \le x_2 \le u$, then

$$y \le ux_1$$

$$y \le x_2$$

$$y \ge x_2 - u(1 - x_1)$$

$$u > 0$$

If both x_1 and x_2 are continuous, it is non-linear, we can use Piecewise linear formulation to simulate.

Branch and Bound

Branch and Cut

Packing and Matching

Traveling Salesman Problem

Knapsack Problem

${\bf Part~V}$ ${\bf Nonlinear~Programming}$

KKT Optimality Conditions

Lagrangian Duality

Unconstrained Optimization

Penalty and Barrier Functions

Part VI Algorithms and Computational Complexity

Computational Complexity

Sorting

- 29.1 Elementary Sorting Algorithms
- 29.2 Heap-sort
- 29.3 Quick-sort
- 29.4 Sorting in Linear Time
- 29.5 Medians and Order Statistics

Data Structures

30.1	Elementary Data Structures
30.2	Hash Tables
30.3	Binary Search Trees
30.4	Red-Black Trees
30.5	B-Trees
30.6	Fibonacci Heaps
30.7	van Emde Boas Trees

Design and Analysis Techniques

31.1	Dynamic Programming
31.2	Greedy Algorithms
31.3	Amortized Analysis

- 31.4 Multi-threaded Algorithms
- 31.5 Matrix Operations
- 31.6 Polynomials and the FFT
- 31.7 Number-Theoretic Algorithms
- 31.8 String Matching
- 31.9 Computational Geometry
- 31.10 NP-Completeness
- 31.11 Approximation Algorithms

Part VII Heuristics ans Meta-heuristics

Part VIII Game Theory

Games with Ordinal Payoffs

- 32.1 Ordinal Games in Strategic Form
- 32.2 Perfect-information Games
- 32.3 General Dynamic Games

Games with Cardinal Payoffs

- 33.1 Expected Utility Theory
- 33.2 Strategic-form Games
- 33.3 Extensive-form Games

Knowledge, Common Knowledge, Beliefs

- 34.1 Common Knowledge
- 34.2 Adding Beliefs to Knowledge
- 34.3 Rationality

Refinements of Subgame-perfect Equilibrium

- 35.1 Weak Sequential Equilibrium
- 35.2 Sequential Equilibrium
- 35.3 Perfect Bayesian Equilibrium

Incomplete Information

- 36.1 Static Games
- 36.2 Dynamic Games
- 36.3 The Type-Space Approach

Part IX Decision Analysis

Part X

Probability, Stochastic Processes and Markov Chains

Discrete-Time Markov Chains

Continuous-Time Markov Chains

Part XI Queuing Theory

Queuing Model

Birth-and-Death Queuing Models

Multidimensional Birth-and-Death Queuing Models

Phase-Type Queue

Bulk Queue

Imbedded-Markov-Chain Queuing Models

Queuing Network

Part XII Inventory Theory

Part XIII Reliability Theory

45.1 Maintenance Optimization

Part XIV Bayesian Statistic

Part XV Classical Statistic

Part XVI Simulation