TP 3.2 - Chute d'une balle

Objectifs de la séance :

- > Comprendre la notion de vecteur vitesse.
- > Tracer des vecteurs vitesses.

Compétences	Items	D	\mathbf{C}	В	A
APP	Représenter une situation par un schéma.				
COM	Travailler en groupe, échanger entre élèves.				

→ Quelle est l'influence d'une translation sur la description du mouvement d'un objet?

Document 1 - Chronophotographie de la chute d'une balle

La superposition de plusieurs images prises les unes après les autres avec un intervalle de temps régulier est une **chronophotographie**. Pour réaliser cette chronophotographie, **on a pris une image toutes les 40 ms**. Une chronophotographie permet de repérer des positions par lesquelles passent la balle.

Les ronds indiquent les positions du centre de la balle, les carrés indiquent les positions du centre de masse de l'homme sur la trottinette.

Document 2 - Vecteur

Vecteur : objet mathématique représenté par un segment fléché \longrightarrow et noté avec une lettre surmontée d'une flèche \overrightarrow{v} .

Un vecteur contient quatre information:

• une direction

• une norme

• un sens

• une origine

Un vecteur est **constant** si sa direction, son sens et sa norme ne varie pas pendant le mouvement.

Document 3 - Vecteur déplacement

Soient P_1 la position d'un point à l'instant t_1 et P_3 la position de ce même point à l'instant t_3 . Le déplacement du point matériel entre les dates t_1 et t_3 est défini par le vecteur déplacement $\overline{P_1P_3}$. Graphiquement, c'est la flèche qui relie P_1 à P_3 .

Le vecteur P_1P_3 est caractérisé par

• Une origine : le point P_1 .

• une direction : celle de la droite P_1P_3 .

• Un sens : de P_1 vers P_3 .

• Une norme : la distance P_1P_3 en mètre m.

Document 4 - Vecteur vitesse

Le vecteur vitesse $\vec{v_2}$ d'un système au point P_2 entre les instants t_1 et t_3 a pour expression

$$\overrightarrow{v_2} = \frac{\overrightarrow{P_1 P_3}}{t_3 - t_1}$$

Le vecteur $\overrightarrow{v_2}$ est caractérisé par :

• Une origine : P_2 .

• une direction : parallèle au segment P_1P_3 et tangent à la trajectoire.

• Un sens : le sens du mouvement.

• Une norme : $v_2 = \left\| \overrightarrow{P_1 P_3}_{13} \right\| = \frac{P_1 P_3}{t_3 - t_1}$.

 P_1P_3 est la distance entre les points P_1 et P_3 en mètre m. $t_3 - t_1$ est la durée séparant les instants t_1 et t_3 en seconde s. v_2 est la norme de la vitesse en mètre par seconde m/s.

A - Mouvement de l'homme sur la trottinette

1 - Quelle est la trajectoire de l'homme sur la trottinette?

2 - Comment évolue la vitesse de l'homme sur la trottinette? Décrire son mouvement.

.....

B - Mouvement de la balle

Repérer sur la chronophotographie du document 1, le point de départ de la balle. On notera P_1 cette position. Numéroter les positions successives de la balle, que l'on notera P_1, P_2, P_3, \dots

 $\nearrow \bot$ Tracer sur la photo du document 1 le vecteur $\overrightarrow{P_2P_3}$ et le vecteur $\overrightarrow{P_5P_7}$.

3 – En utilisant l'échelle sur la photo, déterminer les normes en mètre de $\overrightarrow{P_1P_3}$ et $\overrightarrow{P_5P_7}$. Indiquer si ces normes sont identiques.

.....

Schématiser le vecteur vitesse $\overrightarrow{v_2}$ entre les points P_1 et P_3 et le vecteur vitesse $\overrightarrow{v_6}$ entre les points P_5 et P_7 , en vous aidant du document 4.

4 - Calculer la norme en mètre par seconde de $\overrightarrow{v_2}$ et $\overrightarrow{v_6}$, en vous aidant du document 4.

.....