Bioinformatics for biomedicine

Sequence search: BLAST, FASTA

Lecture 2, 2006-09-26
Per Kraulis

http://biomedicum.ut.ee/~kraulis

Previous lecture: Databases

- General issues
 - Data model
 - Quality
 - Policies
 - Updates, corrections
- EMBL, GenBank, Ensembl
- UniProt
- Access: EBI, NCBI (Entrez)

Course design

- 1. What is bioinformatics? Basic databases and tools
- 2. <u>Sequence searches: BLAST, FASTA</u>
- 3. Multiple alignments, phylogenetic trees
- 4. Protein domains and 3D structure
- 5. Seminar: Sequence analysis of a favourite gene
- 6. Gene expression data, methods of analysis
- Gene and protein annotation, Gene Ontology, pathways
- 8. Seminar: Further analysis of a favourite gene

Sequence searches

Two tasks:

- 3) Compare two sequences: How similar?
- 4) Search for similar sequences

How to do it? Computer program

- Algorithm
 - Appropriate
 - Correct
 - Speed

- Database
 - Content

Consider!

- Sensitivity
 - Are correct hits found?
- Specificity
 - Are false hits avoided?
- Statistics: Significant match?
- Biological judgement
 - "Strange" features in sequences
 - Are assumptions OK?

What is an algorithm?

- "Procedure for accomplishing some task"
 - Set of well-defined instructions
 - Cookbook recipe
 - Produce result from initial data
 - Input data set -> output data set

All software implements algorithms

Example: substring search

Naïve algorithm: 11 operations

Substring search with lookup

Improved algorithm: 6 operations

But: preprocessing required

Algorithm properties

- Execution time
 - Number of operations to produce result
- Storage
 - Amount of memory required
- Result
 - Exact: Guaranteed correct
 - Approximate: Reasonably good

Analysis of algorithms, 1

- Larger input data set: what happens to
 - Execution time?
 - Storage?

- Examples:
 - Longer query sequence
 - Larger database
 - More sequences in multiple alignment

Analysis of algorithms, 2

- "Complexity" of an algorithm
 - Behaviour with larger input data sets
 - Time (speed) and storage (memory)
- Big-O notation: general behaviour
 - O(c) constant
 - O(log(n)) logarithmic
 - O(n) linear
 - O(n²) quadratic
 - O(2ⁿ) exponential

Example: O(n)

Compute mol weight M_w of protein

- Table: M_w(aa) for each amino acid residue
- For each residue in protein, add M_w
 - $-M_{W}(Met) + M_{W}(Ala) + ... + M_{W}(Ser)$
- Add M_w for water

O(n) for protein size

Example: O(2ⁿ)

 Given mol weight M_w for a protein, compute all possible sequence that might fit

- Table: M_w(aa) for each amino acid residue
- Produce all permutations up to M_w
 - MAAAA, MAAAG, MAAAS, MAAAT, ...

Naïve implementation: O(2ⁿ) for M_w

Heuristic algorithms

- Less-than-perfect
 - Reasonably good solution in decent time
- Why?
 - Faster than rigorous algorithm
 - May be the only practical approach
- Specific to the task
 - Reasonable or likely cases
 - Rule-of-thumb
 - Use biological knowledge

Sequence comparison

- Sequences related by evolution
 - Common ancestor
 - Modified over time
 - Biologically relevant changes
 - Single-residue mutations
 - Deletion/insertion of segments

 Sequences may be related by evolution, although we cannot detect it

Alignment

```
PRESELVISLEY
| | | | | | | | | |
PREPELIISL-Y
```

- Corresponding segments of sequences
- Identical residues
- Conserved residues
- Gaps for deletion/insertion

Local vs. global alignment

Global alignment: entire sequences

Local alignment: segments of sequences

- Local alignment often the most relevant
 - Depends on biological assumptions

Alignment matrix, 1

- Mark identical residues
- Find longest diagonal stretch
- Local alignment
- O(m*n)

Χ

Χ

PRESELVISLEY

Alignment matrix, 2

- Mark similar residues
 - Substitution probability
- Find longest diagonal stretch
 - Above some score limit
- Local alignment
 - High Scoring Pair, HSP

PRESEIVISLEY E X X X E X X X L X L . . X V X V X I X X I X X . S X X X S X X

Substitution matrix

- The probability of mutation X -> Y
 - M(i,j) where i and j are all amino acid residues
 - Transformed into log-odds for computation

- Common matrices
 - PAM250 (Dayhoff et al)
 - Based on closely similar proteins
 - BLOSUM62 (Henikoff et al)
 - Based on conserved regions
 - Considered best for distantly related proteins

Gap penalties

- To model deletion/insertion
 - Segment of gene deleted or inserted

```
PRESELVISLEY
| | | | | | | | | |
PREPELIISL-Y
```

- Gap open
 - Start a gap: should be tough
- Gap extension
 - Continue a gap: should be easier

Alignment/search algorithms

- Needleman-Wunsch
- Smith-Waterman
- FASTA
- BLAST

Needleman-Wunsch, 1970

- Global alignment
- Rigorous algorithm
 - Dynamic programming
 - Simple to implement
- Slow; not used for search
- http://bioweb.pasteur.fr/seqanal/interface

Smith-Waterman, 1981

- Local alignment
- Rigorous algorithm
 - Dynamic programming
 - Fairly simple to implement
- Precise, sensitive alignments
- Slow; not used for search
- SSEARCH in the FASTA package
- http://pir.georgetown.edu/pirwww/search/

FASTA, Lipman Pearson 1985

- Local alignment
- Heuristic algorithm
 - Table lookup, "words" of length ktup
 - Higher ktup: faster but less sensitive
 - Protein: ktup=2
 - Nucleotide: ktup=6
 - Extension of hits into alignments
- Faster than Smith-Waterman
- Useful for searches

FASTA statistics

- Fairly sophisticated statistics
 - But still fallible
- E-value (expectation value)
 - The number of hits with this score expected, if query were a random sequence
 - Values should be low
 - Below 0.001 almost certainly significant
 - 0.001 to 0.1 probably significant
 - 0.1 to 10 may be significant
 - 10 and above probably rubbish

FASTA example

- http://www.ebi.ac.uk/fasta33/
- Example search
 - Query: UniProt P04049 (RAF1_HUMAN)
 - Standard parameters, fasta3, UniProt
 - Kept only 24 hours at EBI
 - http://www.ebi.ac.uk/cgi-bin/sumtab?tool=fasta

BLAST, Altschul et al 1990

- Basic Local Alignment Search Tool
- Heuristic algorithm
 - Basically similar ideas as FASTA
 - Did not originally allow gaps
 - BLAST2 allows gaps
- ~50 faster than Smith-Waterman
- Faster than FASTA, less sensitive
- E-value statistics: same idea as FASTA

BLAST example

- http://www.ncbi.nlm.nih.gov/BLAST/
- Example search
 - Query: UniProt P04049 (RAF1_HUMAN)
 - Standard parameters, human proteins
 - http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi
 - 1159262528-13488-10186840195.BLASTQ2
- http://www.ebi.ac.uk/blast/index.html

BLAST and short nucleotides

 Default BLAST parameters are for genes and proteins

- Oligonucleotides require other parameters for meaningful results
- http://www.ncbi.nlm.nih.gov/BLAST/ special link

BLAST and low complexity regions

- Some proteins contain "low complexity" regions, e.g. S, T, Q in long peptides
- Spurious high significance
 - Does not make biological sense
- Filter out such regions
 - BLAST uses SEG algorithm
 - Regions masked out; replaced by "XXXX"
 - May go wrong; check results!

Variants of search programs

Query	Database	Program	Comment
Protein	Protein	blastp	
		fastp	
Nucleotide	Nucleotide	blastn	Use only if nucleotide
		fastn	comparison is really wanted
Nucleotide	Protein	blastx	Translate query to protein;
		fastx3	6-frame
Protein	Nucleotide	tblastn	Translate DB on the fly;
		tfastx3	6-frame
Nucleotide	Nucleotide	tblastx	Translate both query and DB (gene-oriented); 2* 6-frame