

CENTRO UNIVERSITÁRIO DA FUNDAÇÃO HERMÍNIO OMETTO NÚCLEO

DE ENGENHARIA

ENGENHARIA ELÉTRICA

Projetos de sistemas elétricos

Projeto elétrico de uma indústria de papel

Nome completo	RA
André Rodrigues Sanches	109177
Gabriel Henrique Leme	109551
Gustavo Ferreira	110353
Matheus de Souza Cardoso	108925

Araras

Junho 2025

1. INTRODUÇÃO

A energia elétrica tornou-se fundamental na vida das pessoas. Só no Brasil, segundo o IBGE, 99,8% das residências brasileiras possuem acesso à energia elétrica, consequentemente, a busca por profissionais que executam serviços de instalações elétricas ficaram cada vez maiores. As instalações elétricas são compostas por diversos elementos, que vão desde condutores básicos em qualquer instalação até dispositivos de automação, aplicados em instalações mais complexas. O conhecimento desses elementos e de sua forma correta de utilização é necessário aos projetistas para garantir instalações confortáveis e seguras a seus usuários.

A segurança das instalações elétricas é um aspecto fundamental e está previsto em algumas normas brasileiras. As normas existem para padronizar, trazer igualdade às instalações elétricas e melhorar o âmbito de qualidade das mesmas e foi criada justamente para garantir a segurança de equipamentos e pessoas (SILVA et al., 2019)

Como base, utilizamos da NBR5410:2004, que existe para regulamentar a execução dos projetos elétricos em baixa tensão, ela surgiu pela preocupação com este tipo de instalação e traz em suas especificações as justas explicações e vantagens quanto as instalações prediais que atendem e seguem regularmente a norma. A mesma se aplica principalmente às instalações elétricas de edificações, qualquer que seja seu uso (residencial, comercial, público, industrial, de serviços, agropecuário, hortigranjeiro etc.), incluindo as pré-fabricadas, sejam instalações novas ou reformas

É imprescindível ter certeza de realizar o processo de dimensionamento e execução de instalação elétrica de maneira correta e com segurança para evitar futuros problemas, pois estes processos uma vez feitos de maneira imprudente podem ocasionar diversos transtornos durante e após construção (PORTE, 2018).

Portanto, este relatório detalha o projeto elétrico de uma pequena indústria de papel, estruturada em três áreas produtivas distintas. O relatório visa abranger desde o dimensionamento de condutores e dispositivos de proteção até a análise de curtos-circuitos e o projeto luminotécnico de uma das áreas. A relevância desse relatório simulando o real retrata para a Engenharia de Segurança do Trabalho a minimização de riscos de acidentes e falhas operacionais, promovendo um ambiente de trabalho seguro, além disso, para a instituição representa a aplicação prática e integrada de conhecimentos teóricos estudados em todo decorrer do curso.

2. DESENVOLVIMENTO

2.1 Dados iniciais do cliente

Como base para o início do projeto do cliente é fundamental o entendimento das áreas e dados solicitados pelo mesmo. Abaixo segue tais descrições:

Figura 1 - Distribuição de setores dentro da indústria de papel

Figura 2 - Dados do cliente

TABELA DE DADOS DO CLIENTE										
Dados	Siglas	Valores	Unidade							
Tensão nominal primária	Vnp	13,8	Kv							
Tensão nominal secundária	Vns	380	V							
Impedância de sequência positiva do sistema de suprimento	Zps	(0,1+j0,5)	Pu							
Impedância de sequência zero do sistema de suprimento	Zzs	(0,2+j0,8)	Pu							
Comprimento do circuito TR- QGF	TR-QGF	10	Metros							
Comprimento do circuito do QGF-Área 1	QGF-Área 1	25	Metros							
Comprimento do circuito do QGF-Área 2	QGF-Área 2	35	Metros							
Comprimento do circuito do QGF-Área 3	QGF-Área 3	30	Metros							

Todas as cargas de cada setor estão distantes de 5m do seu respectivo barramento;

M Importante: Desconsidere os comprimentos dos barramentos PotBase =100MVA

2.2 Motores

A partir do conhecimento dos dados iniciais do cliente, é começado o dimensionamento dos equipamentos do projeto.

O grupo responsável pelo projeto, buscou adequar o melhor modelo de motor para a instalação na planta industrial. O modelo escolhido para as operações é a linha de motores trifásica de 4 polos W22 IR3 Premium. De acordo com o site do fornecedor, a linha W22 IR3 Premium atende aos níveis de rendimento especificados na Portaria Interministerial n.º 1, de 29 de junho de 2017, que determina o nível mínimo de rendimento em IR3 (faixa de potência de 0,16 a 500 Cv, de 2 a 8 polos), válido para todos os motores comercializados. Também atendem à norma ABNT NBR 17094 e às legislações anteriores." (WEG, 2022, p. 3). Portanto, a linha de modelos atende adequadamente a potência necessária na planta industrial.

Figura 3 - Motores WEG

Fonte: WEG

Com os devidos modelos de motores escolhidos, os dados técnicos dos mesmos fornecidos pelo fabricante via site, serão utilizados para o preenchimento da tabela de carga inicial, tendo em vista que os motores trabalharam com fator de potência e rendimento em plena carga. Abaixo segue os dados obtidos:

Quadro 1 - Dados de Carga Inicial

Setor	Carga	Potência mecânica (cv)	Fator de potência	Rendimento	Potência ativa (kW)	Potência reativa (kVAr)	Potência aparente (kVA)
	Motor 1	75	0,83	0,958	55	30,68	66,27
۱.	Motor 2	100	0,82	0,962	75	42,93	91,46
1 '	Motor 3	30	0,81	0,943	22	12,90	27,16
	Motor 4	150	0,87	0,965	110	54,23	126,44
	Motor 5	15	0,8	0,931	11	6,60	13,75
2	Motor 6	75	0,83	0,958	55	30,68	66,27
	Motor 7	50	0,81	0,954	37	21,70	45,68
	Auxiliar	-	0,92	-	90	35,27	97,83
1	Auxiliar	-	0,92	-	75	29,39	81,52
3	Aquecimento 1	-	1	-	35	0	35
1	Aquecimento 2	-	1	-	25	0	25
	Aquecimento 3	-	1	-	40	0	40

2.3. Condutores

Para o cálculo do dimensionamento dos condutores, foi utilizado o método da ampacidade, que consiste no critério da capacidade de condução de corrente determinando a menor seção nominal de forma que a corrente que deve circular pelo circuito, a chamada corrente de projeto, não provoque um aquecimento excessivo nos condutores. Isto é, não leve os condutores a uma temperatura acima de 70° C para os fios e cabos com isolação de PVC e de 90° C para os isolados com EPR e XLPE.

O grupo responsável seguiu etapas para o dimensionamento dos condutores, levando em conta o cálculo da corrente de projeto, método de instalação, aplicação de fatores de correção apropriados (temperatura e agrupamento), correção de corrente de projeto e seleção da secção do condutor via dados do fabricante.

A NBR5410 estabelece um total de 75 métodos diferentes de instalação de condutores. Dependendo do método de instalação, maior ou menor será a capacidade de dissipação de calor gerado pela passagem da corrente elétrica e, por consequência, maior ou menor será a capacidade de condução dos condutores. O grupo responsável pelo projeto optou pelos seguintes métodos:

Para o circuito principal QGF - Método B1, Cabos unipolares ou cabo multipolar em canaleta ventilada encaixada no piso ou no solo.

Figura 4 - Representação do método de instalação (B1)

L				
	43	22.0 02.00	Cabos unipolares ou cabo multipolar em canaleta ventilada encaixada no piso ou no solo	B1

Fonte: NBR 5410

Para os demais circuitos áreas e motores - método F (unipolar) e método E (multipolar), canaleta fechada no piso, solo ou parede.

Figura 5 - Representação do método de instalação

	16	<u> </u>	Cabos unipolares ou cabo multipolar em leito	E (multipolar)
١				F (unipolares)
		16		

Fonte: NBR 5410

Em relação ao fator de correção por temperatura, o grupo adotou a temperatura ambiente de 30 °C já que é a média anual da cidade de Curitiba, na qual se localiza a indústria de papel projetada. De acordo com a norma NBR 5410, para essa condição, não é necessário aplicar fator de correção à corrente de projeto, uma vez que 30 °C é considerada a temperatura de referência.

A respeito do fator de agrupamento, conforme estabelece a norma NBR 5410, quando condutores são instalados em grupos (como em eletrodutos, leitos ou bandejas compartilhadas etc.), é necessário aplicar um fator de correção à corrente de projeto, a fim de considerar a redução da dissipação térmica.

O valor do fator de agrupamento depende da quantidade de circuitos agrupados, tipo de instalação e forma de distribuição dos cabos.

Figura 6 - Fatores de correção para agrupamento de circuitos ou cabos multipolares

Item	Disposição dos cabos			Núme	ero de	circui	tos ou	ı de c	abos r	nultip	olares	•		Tabelas dos métodos de
	justapostos	1	2	3	4	5	6	7	8	9	12	16	20	instalação
1	Feixe de cabos ao ar livre ou sobre super- fície; cabos em condutos fechados	1,00	0,80	0,70	0,65	0,60	0,57	0,54	0,52	0,50	0,45	0,41	0,38	métodos A a F
2	Camada única sobre parede, piso, ou em bandeja não perfurada ou prateleira	1,00	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70	Nenhum fator de redução adicional para			método C
3	Camada única no teto	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62	0,61		nais de cuitos	-	
4	Camada única em bandeja perfurada, horizontal ou vertical Camada unida em		0,88	0,82		0,75		0,73	0,72	0,72	circuitos ou cabos multipolares			métodos E e F
5	unida em leito, suporte	1,00	0,87	0,82	0,80	0,80	0,79	0,79	0,78	0,78				

Fonte: NBR 5410

No projeto da indústria ficou determinado as seguintes formas de agrupamento:

- Para o circuito geral QGF 1 circuito, com FCA= 1;
- Para as áreas 1,2,3-3 Circuitos; com FCA = 0,82;
- Paras os motores 12 circuitos (Considerando futuras expansões); com FCA =
 0,78.

Com os fatores de temperatura e agrupamento definidos, o grupo responsável pelo projeto realizou os cálculos para a escolha das secções dos cabos para todo sistema da indústria. Abaixo segue a tabela dos resultados obtidos para os dimensionamentos dos condutores.

Quadro 2 - Dados para dimensionamento das secções dos condutores

		Dado	s das Cargas					
DESCRICAO	Tensa o (V)	Potencia Aparente(kVA)	Fator de Potencia (FP)	Corrente de Projeto Ip (A)	Metodo de Instalação	FCA	FCT (30°)	Corrente de Projeto Corrigida l'p (A)
CARGA GERAL QGF	380	685,35	0,92	1125,2	Canaleta fechada no piso, solo ou parede	1	1	1125,22
ÁREA 1	380	315,84	0,82	500,1	Leitos, suportes horizontais ou telas 14/16 - F E	0,82	1	609,85
ÁREA 2	380	125,69	0,92	200,2	Leitos, suportes horizontais ou telas 14/16 - F E	0,82	1	244,16
ÁREA 3	380	279,35	0,92	424,9	Leitos, suportes horizontais ou telas 14/16 - F E	0,82	1	518,21
MOTOR 1	380	66,27	0,83	105,22	Leitos, suportes horizontais ou telas 14/16 - F E	0,78	1	134,89
MOTOR 2	380	91,46	0,82	144,62	Leitos, suportes horizontais ou telas 14/16 - F E	0,78	1	185,42
MOTOR 3	380	27,16	0,81	43,81	Leitos, suportes horizontais ou telas 14/16 - F E	0,78	1	56,17
MOTOR 4	380	126,4	0,87	199,3	Leitos, suportes horizontais ou telas 14/16 - F E	0,78	1	255,52
MOTOR 5	380	13,75	0,8	22,47	Leitos, suportes horizontais ou telas 14/16 - F E	0,78	1	28,8
MOTOR 6	380	66,27	0,83	105,22	Leitos, suportes horizontais ou telas 14/16 - F E	0,78	1	134,89
MOTOR 7	380	45,68	0,81	72,53	Leitos, suportes horizontais ou telas 14/16 - F E	0,78	1	92,99
AUXILIAR	380	97,83	0,92	148,81	Leitos, suportes horizontais ou telas 14/16 - F E	0,78	1	190,78
AUXILIAR	380	81,52	0,92	124,01	Leitos, suportes horizontais ou telas 14/16 - F E	0,78	1	158,98
AQUECIMENTO 1	380	35	1	53,24	Leitos, suportes horizontais ou telas 14/16 - F E	0,78	1	68,26
AQUECIMENTO 2	380	25	1	38,03	Leitos, suportes horizontais ou telas 14/16 - F E	0,78	1	48,75
AQUECIMENTO 3	380	40	1	60,85	Leitos, suportes horizontais ou telas 14/16 - F E	0,78	1	78,01

A escolha final das seções dos cabos foi realizada com base nas correntes corrigidas e nas tabelas de fabricantes, assegurando segurança, eficiência e viabilidade técnica para o funcionamento contínuo e confiável do sistema. Os condutores selecionados são de cobre com isolação em PVC, oferecendo boa performance elétrica e resistência mecânica para o ambiente industrial projetado.

Para o ponto de alimentação do QGF:

Quadro 3 - Secção condutores selecionados para a alimentação do QGF

Setor	Potência ativa (kW)	Potência reativa (kVAr)	Potência aparente (kVA)	Cabo mm² Ampacidade	Cabo mm² Queda de tensão	Cabo mm² Seção mínima	Cabo mm² Escolhido	Disjuntor BT
1	630	264,38	683,23	4x185mm²	50mm²	2,5 mm²	4x185mm²	600A

Fonte: Autoria do grupo

Para o ponto de alimentação que liga o QGF as áreas:

Quadro 4 - Secção condutores selecionados para a alimentação que liga QGF as áreas 1,2 e 3

Area	Potência ativa (kW)	Potência reativa (kVAr)	Potência aparente (kVA)	Cabo mm² Ampacidade	Cabo mm² Queda de tensão	Cabo mm² Seção mínima	Cabo mm² Escolhido	Disjuntor BT
1	262	146,19	315,84	2x120mm²	70mm²	2,5 mm²	2x120mm²	600A
2	103	58,97	125,69	95mm²	35mm²	2,5 mm²	95mm²	250A
3	265	64,67	279,35	2x120mm²	70mm²	2,5 mm²	2x120mm ²	600A

Para o ponto de alimentação que liga os motores:

Quadro 5 - Secção de condutores selecionados para a alimentação dos motores

Area	Carga	Potência mecânica Potência aparente (CV) (kVA)		Cabo mm² Ampacidade	Cabo mm² Queda de tensão	Cabo mm² Seção mínima	Cabo mm² Escolhido	Disjuntor BT
	Motor 1	75	66,27	35 mm²	2,5 mm²	2,5 mm ²	35 mm²	125A
۱ ،	Motor 2	100	91,46	70 mm²	2,5 mm²	2,5 mm ²	70 mm²	160A
Ι'	Motor 3	30	27,16	10 mm²	2,5 mm ²	2,5 mm²	10 mm²	50A
	Motor 4	150	130,95	95 mm²	4 mm²	2,5 mm²	95 mm²	250A
	Motor 5	15	13,75	4 mm²	2,5 mm²	2,5 mm ²	4 mm²	32A
2	Motor 6	75	66,27	35 mm²	2,5 mm ²	2,5 mm²	35 mm²	125A
	Motor 7	50	45,68	25 mm ²	2,5 mm²	2,5 mm²	25 mm²	100A
	Auxiliar	-	97,83	70 mm²	2,5 mm²	2,5 mm ²	70 mm²	160A
	Auxiliar	-	81,52	50 mm²	2,5 mm²	2,5 mm ²	50 mm²	160A
3	Aquecimento 1	-	35	16 mm²	2,5 mm²	2,5 mm ²	16 mm²	80A
	Aquecimento 2	-	25	10 mm²	2,5 mm ²	2,5 mm ²	10 mm²	50A
	Aquecimento 3	-	40	16 mm²	2,5 mm²	2,5 mm²	16 mm²	80A

Fonte: Autoria do grupo

Com os resultados obtidos a seleção dos condutores atende integralmente às exigências normativas e técnicas, contribuindo para a segurança, durabilidade e eficiência da instalação elétrica da indústria.

2.4 Disjuntores

Após a realização do dimensionamento dos condutores do projeto, a próxima etapa de cálculos é a definição dos dispositivos de proteção desses condutores contra curtoscircuitos e sobrecargas, a fim de prevenir riscos de incêndio, danos materiais e choques elétricos.

De acordo com a norma NBR 5410:2004, o projeto deve prever dispositivos de proteção que assegurem a integridade dos condutores e a continuidade do fornecimento de energia elétrica de forma segura e eficiente. O dimensionamento dos disjuntores deve estar alinhado à corrente de projeto do circuito, ao tipo de carga, ao tempo de atuação desejado, e às características de coordenação com os condutores e demais dispositivos.

A escolha dos disjuntores ideais para os pontos do projeto, foi definida a partir da corrente de projeto do circuito, obtida a partir da potência total das cargas, da tensão de alimentação e do fator de potência. Com isso, foi selecionado um modelo cuja corrente nominal (In) e superior à corrente de projeto (Ip), não ultrapassando a capacidade de condução do condutor (Iz). Além disso, foi aplicado os devidos fatores de correção a temperatura e agrupamento, uma vez que esses impactam diretamente a corrente corrigida, que por sua vez influencia a escolha do disjuntor. Por fim, foi verificado a capacidade interrupção do disjuntor, curva de disparo e a seletividade, já que essas garantem a atuação correta e segura dos disjuntores frente a falhas, como curto-circuito.

Quadro 6 - Verificação de disjuntores

			(Capac	cidade		
Circuito	Ip (A)	Seção	lz(máxA)	ц.	Não atuação In x 1,05	Atuação In x 1,35	lp ≤ in ≤ iz	12 ≤ 1,45 * Iz
CARGA GERAL	1.118,10	185,00	1256,00	1200,00	1260,00	1620,00	1118,1 ≤ 1200 ≤ 1256	1620 ≤ 1821,2
ÁREA 1	492,96	120,00	616,00	600,00	630,00	810,00	492,96 ≤ 600 ≤ 616	810 ≤ 893,2
ÁREA 2	200,21	95,00	264,00	250,00	262,50	337,50	200,21 ≤ 250 ≤ 264	337,5 ≤ 382,8
ÁREA 3	424,93	120,00	616,00	600,00	630,00	810,00	424,93 ≤ 600 ≤ 616	810 ≤ 893,2
MOTOR 1	105,22	35,00	137,00	125,00	131,25	168,75	105,22 ≤ 125 ≤ 137	168,75 ≤ 198,65
MOTOR 2	144,62	70,00	216,00	160,00	168,00	216,00	144,62 ≤ 160 ≤ 216	216 ≤ 313,2
MOTOR 3	43,81	10,00	60,00	50,00	52,50	67,50	43,81 ≤ 50 ≤ 60	67,5 ≤ 87
MOTOR 4	199,30	95,00	264,00	250,00	262,50	337,50	199,3 ≤ 250 ≤ 264	337,5 ≤ 382,8
MOTOR 5	22,47	4,00	34,00	32,00	33,60	43,20	22,47 ≤ 32 ≤ 34	43,2 ≤ 49,3
MOTOR 6	105,22	35,00	137,00	125,00	131,25	168,75	105,22 ≤ 125 ≤ 137	168,75 ≤ 198,65
MOTOR 7	72,53	25,00	110,00	100,00	105,00	135,00	72,53 ≤ 100 ≤ 110	135 ≤ 159,5
AUXILIAR	148,81	70,00	216,00	160,00	168,00	216,00	148,81 ≤ 160 ≤ 216	216 ≤ 313,2
AUXILIAR	124,01	50,00	167,00	160,00	168,00	216,00	124,01 ≤ 160 ≤ 167	216 ≤ 242,15
AQUECIMENTO 1	53,24	16,00	80,00	80,00	84,00	108,00	53,24 ≤ 80 ≤ 80	108 ≤ 116
AQUECIMENTO 2	38,03	10,00	60,00	50,00	52,50	67,50	38,03 ≤ 50 ≤ 60	67,5 ≤ 87
AQUECIMENTO 3	60,85	16,00	80,00	80,00	84,00	108,00	60,85 ≤ 80 ≤ 80	108 ≤ 116

Abaixo segue os modelos e resultados obtidos dos disjuntores selecionados para todos os pontos do projeto.

Quadro 7 - Resultados e modelos de disjuntores selecionados para o projeto

		Dados	das Cargas								
Descrição	Tensao (V)	Potencia Aparente(kVA)	Fator de Potencia (FP)	Corrente de Projeto Ip (A)	Qtd De Cicuitos	FCA	FCT (30°)	Corrente de Projeto Corrigida l'p (A)	Disjuntor (A)	Fabricante	Modelo
CARGA GERAL QGF	380	685,35	0,92	1125,2	1	1	1	1125,22	1250	SIEMENS	3WJ11122
ÁREA 1	380	315,84	0,87	500,1	4	0,82	1	609,85	600	SIEMENS	3VA1463
ÁREA 2	380	125,69	0,87	200,2	3	0,82	1	244,16	250	SIEMENS	3VA1225
ÁREA 3	380	279,35	0,97	424,9	5	0,82	1	518,21	600	SIEMENS	3VA1463
MOTOR 1	380	66,27	0,83	105,22	12	0,78	1	134,89	125	SIEMENS	3VM1112
MOTOR 2	380	91,46	0,82	144,62	12	0,78	1	185,42	160	SIEMENS	3VM1116
MOTOR 3	380	27,16	0,81	43,81	12	0,78	1	56,17	50	SIEMENS	3VM1115
MOTOR 4	380	130,95	0,84	206,42	12	0,78	1	264,64	250	SIEMENS	3VM2225
MOTOR 5	380	13,75	0,8	22,47	12	0,78	1	28,8	32	SIEMENS	3VM1132
MOTOR 6	380	66,27	0,83	105,22	12	0,78	1	134,89	125	SIEMENS	3VM1125
MOTOR 7	380	45,68	0,81	72,53	12	0,78	1	92,99	100	SIEMENS	3VM1110
AUXILIAR	380	97,83	0,92	148,81	12	0,78	1	190,78	160	SIEMENS	3VM1116
AUXILIAR	380	81,52	0,92	124,01	12	0,78	1	158,98	160	SIEMENS	3VM1116
AQUECIMENTO 1	380	35	1	53,24	12	0,78	1	68,26	80	SIEMENS	3VM1180
AQUECIMENTO 2	380	25	1	38,03	12	0,78	1	48,75	50	SIEMENS	3VM1150
AQUECIMENTO 3	380	40	1	60,85	12	0,78	1	78,01	80	SIEMENS	3VM1180

Figura 7- Disjuntor 3WJ11122

Fonte: Catálogo Siemens

Figura 8- Linha completa de Disjuntores CX MOLDADA 3VA1 E 3VA2

Fonte: Catálogo Siemens

Figura 9 - Linha completa de disjuntores ex moldada 3VM

Fonte: Catálogo Siemens

Os modelos selecionados atendem tanto aos requisitos técnicos quanto normativos, proporcionando confiabilidade, segurança operacional e continuidade no fornecimento de energia elétrica. O grupo responsável optou por apresentar apenas os aspectos gerais dos disjuntores, não se aprofundando em dados mais técnicos da construção dos mesmos. Em caso, de maiores especificações consultar o site ou próprio catálogo dos modelos especificados.

Assim, os resultados obtidos refletem um dimensionamento criterioso e coerente com as condições reais da instalação, garantindo integridade da rede elétrica como um todo.

2.5 Análise de curto circuito

A análise de curto-circuito é uma etapa fundamental para o dimensionamento dentro do projeto, já que a partir dela é possível identificar níveis de corrente de falta em diferentes pontos do sistema. A partir dos resultados e análise pode-se definir a correta especificação dos dispositivos de proteção, condutores e barramentos do sistema. Além disso, garante a segurança dos trabalhadores que estarão envolvidos em futuras manutenções e na instalação como um todo.

De acordo com a NBR 5410, as correntes de curto-circuito devem ser determinadas para possibilitar o correto dimensionamento dos dispositivos de proteção, que devem possuir capacidade de interrupção compatível com a corrente de curto-circuito presumida no ponto da instalação (ABNT, 2004, NBR 5410, item 6.5.3.2.2). Da mesma forma, a norma NBR 14039, descreve que devem ser considerados os valores de corrente de curto-circuito trifásica e monofásica no dimensionamento da instalação e escolha dos equipamentos, levando-se em conta as componentes simétricas e assimétricas (ABNT, 2005, NBR 14039, item 5.3.3 e 6.1.1). Por fim, a NR10 prevê que em instalações elétricas deve conter a documentação atualizada, contemplando estudos de curto-circuito, seletividade, coordenação e proteção.

Seguindo as normas descritas, a tabela de análise de curto-circuito do projeto da indústria de papel foi realizada, contemplando os valores calculados de corrente de curto-circuito em diversos pontos da instalação, incluindo o ponto de entrega, o secundário do transformador, o Quadro Geral de Força (QGF) e os barramentos das áreas 1, 2 e 3.

O grupo responsável pelo projeto, utilizou o simulador PSP-UFU para realizar as devidas análises de corrente de curto-circuito. Abaixo e demostrado a imagem do sistema para início das análises.

Figura 10 - Sistema representado no PSP-UFU

Os parâmetros considerados foram: corrente trifásica de curto-circuito (Ics), corrente monofásica franco (Icft), fator de assimetria e corrente de curto-circuito assimétrica (Ica).

Os pontos calculados para a análise de curto-circuito foram, o ponto de entrega, o secundário do transformador, o Quadro Geral de Força (QGF) e os barramentos das áreas 1, 2 e 3.

• Ponto de entrega PSP-UFU

Figura 11 - Curto-circuito trifásico ponto de entrega

Coult have make	Phas	ase A Phase B		Phase B Phase C		
rault bus name	ult bus name Current (A) Angle		Current (A)	Angle	Current (A)	Angle
Ponto de entrega	8204.9060445260548	-78.6900675259798	8204.9060445229388	161.3099324740076	8204.9060445229388	41.3099324740328

Fonte: Autoria do grupo

Figura 12 - Curto-circuito fase-terra ponto de entrega

Foult has no me	Phas	Phase A Phase B Current (A) Angle Current (A) Angle		Phase B Phase C		
Fault bus name	Current (A)			Angle	Current (A)	Angle
Ponto de entrega	6806.7857726646671	-77.4711922908485	0.0	0.0	0.0000000000001	-90.0

Figura 13 - Ponto de entrega Excel

	Corrente de Curto Circuito no ponto de Fornecimento							
	Corrente de Curto Trifasico							
lcs	1609,11446262437-8045,57231312187j	A - Forma Cart.						
Modulo de Ics	8204,906045	Α						
Fase de lcs	-78,69006753	Graus						
	Corrente de Curto Fase - Terra	a .						
Zeq - Lado de alta		0.4+1.8i						
do Transformador		0,4 · 1,0]						
lcft	lcft 1476,59915393766-6644,69619271948j A - Forma Cart.							
Modulo de Icft	Modulo de lcft 6806,785773 A							
Fase de lcft	-77,47119229	Graus						

• Secundário do transformador PSP-UFU

Figura 14 - Curto-circuito trifásico secundário do transformador

Fault bus name	Phase	Phase A		ie B	Phase C	
rault bus name	Current (A)	Angle	Current (A)	Angle	Current (A)	Angle
Secundário do transformador	33708.4880546572676	-73.2365539518418	33708.488054644462	166.7634460481456	33708.488054644462	46.7634460481707

Fonte: Autoria do grupo

Figura 15 - Curto-circuito fase-terra secundário do transformador

Cault hus mans	Phase	e A	Phase B	Phase C		
Fault bus name	Current (A)	Angle	Current (A)	Angle	Current (A)	Angle
Secundário do transformador	32938.4974685321067	-73.1983619622843	0.0000000000011	180.0	0.0	0.0

Fonte: Autoria do grupo

Figura 16 - Curto-circuito secundário do transformador Excel

C	Corrente de curto-circuito secundário do transformador(lado BT)							
Impedancia equivalente até o ponto - Apenas sequência positiva!	1,3+4,31575680566778j							
Ics	9722,23519235548-32276,0020751623j	A - Forma Cart.						
Modulo de Ics	33708,48806	Α						
Fase de lcs	-73,23655395	Graus						
	Corrente de Curto Fase - Terr	a						
ZEQ até este ponto - Lado de baixa	4+13,2472704170033j							
icft	9521,17460156129-31532,3936585965j	A - Forma Cart.						
Modulo de Ics	32938,49747	Α						
Fase de lcs	-73,19836196	Graus						
Corre	ente assimetrica de curto-circuito no Lado de	Baixa Transformador	•					
relação X/R no CCM	3,536885246							
Fator de assimetria	1,35							
Corrente de curto-circuitoassímetrico (Ica)	45506,45888							
Impulso da corrente de curto-circuito	64355,85132							

QGF PSP-UFU

Figura 17 - Curto-circuito trifásico QGF

Fault has a see	Phase	A	Phase B		Phase C	
Fault bus name	Current (A)	Angle	Current (A)	Angle	Current (A)	Angle
QGF	30283.2662282118035	-72.008603474676	30283.266228200293	167.9913965253115	30283.266228200293	47.9913965253366

Fonte: Autoria do grupo

Figura 18 - Curto-circuito fase-terra QGF

Facilit have a series	Phase A		Phase B		Ph	nase C
Fault bus name	Current (A)	Angle	Current (A) Angle		Current (A)	Angle
QGF	23550.8498088321467	-74.8673184471612	0.0000000000011	180.0	0.0000000000011	-165.9637565320735

Fonte: Autoria do grupo

Figura 19 - Curto-circuito QGF Excel

	Corrente de Curto-circuito no barramento QGF						
Impedância equivalente até o ponto - Apenas sequência positiva!	1,51104570637119+4,79619309375642j						
	Corrente CC Trifasica						
lcs	9079,05719110731-28817,7327887602j	A - Forma Cart.					
Modulo de lcs	30214,08616	Α					
Fase de lcs	-72,5129114	-72,5129114 Graus					
	Corrente de curto-circuito fase-	terra					
ZEQ até este ponto - Lado de baixa do transformador	7,77364958448753+18,8748673699119j						
lcs	8503,32260674685-20646,5553484941j	A - Forma Cart.					
Modulo de lcs	22329,05603						
Fase de lcs	se de lcs -67,61559452 Graus						

Fonte: Autoria do grupo

• CCM ÁREA 1 PSP-UFU

Figura 20 - Curto-circuito trifásico CCM área 1

Fault bus name	Phase	e A	Phase B		Phase	e C
rault bus hame	Current (A)	Angle	Current (A)	Angle	Current (A)	Angle
Barramento Área 1	24577.4356461476636	-59.0418667355673	24577.435646138325	-179.0418667355798	24577.435646138325	60.9581332644453

Fonte: Autoria do grupo

Figura 21 - Curto-circuito fase-terra CCM área 1

Fault bus name	Phase A Phase B		Phase A Phase B		Pha	ise C
rault bus hame	Current (A)	Angle	Current (A)	Angle	Current (A)	Angle
Barramento Área 1	10643.8697012031407	-74.475072737815	0.0000000000005	180.0	0.0000000000006	153.434948822922

Figura 22 - Curto-circuito CCM Área 1 Excel

	Corrente de curto-circuito no CC	CM 1	
Impedância equivalente até o ponto - Apenas sequência positiva!	3,21724376731302+5,62115		
	Corrente CC Trifasica		
lcs	11652,7292793149-20359,6129475598j	A - Forma Cart.	
Modulo de Ics	23458,47265	Α	
Fase de lcs	-60,21553776	Graus	
	Corrente de curto-circuito fase-t	егга	
ZEQ até este ponto - Lado de baixa do transformador	10,9981994459834+40,6892718020449j		
lcs	2821,72398723802-10439,3355322364j	A - Forma Cart.	
Modulo de Ics	10813,96563	Α	
Fase de lcs	-74,87455057	Graus	
	Corrente assimetrica de curto-circuito	no CCM 1	
Relação X/R no CCM	1,747280075		
Fator de assimetria	1,15		Tabelado
Corrente de curto-circuitoassímetrico (Ica)	26977,24355		
Impulso da corrente de curto-circuito	38151,5837		

• CCM ÁREA 2 PSP-UFU

Figura 23 - Curto-circuito trifásico CCM área 2

Fault bus name	Phase	e A	Phas	e B	Phase C		
rault bus hame	Current (A)	Angle	Current (A)	Angle	Current (A)	Angle	
Barramento Área 2	15021.9266575587881	-42,3262648644378	15021.9266575530801	-162,3262648644504	15021.9266575530819	77.6737351355748	

Fonte: Autoria do grupo

Figura 24 - Curto-circuito fase-terra CCM área 2

Fault bus name	Phas	e A	Phase B		Phase C		
rault bus name	Current (A)	Angle	Current (A)	Angle	Current (A)	Angle	
Barramento Área 2	5152.6401705141807	-72.1703861787508	0.0000000000001	180.0	0.0000000000003	-165.9637565320735	

Fonte: Autoria do grupo

Figura 25 - Curto-circuito CCM Área 2 Excel

	Corrente de curto-circuito no Co	CM 2							
Impedância equivalente até o ponto - Apenas sequência positiva!	7,51485457063712+7,13033	3436799465j							
Corrente CC Trifasica									
lcs	10639,3993538867-10095,0023922295j	A - Forma Cart.							
Modulo de Ics	14666,48874	Α							
Fase de Ics	-43,49600272	Graus							
	Corrente de curto-circuito fase-	terra							
ZEQ até este ponto - Lado de baixa do transformador	18,02641966759+80,6217510264216j								
lcs	1203,91381832093-5384,41032150424j	A - Forma Cart.							
Modulo de Ics	5517,36196	Α							
Fase de lcs	-77,396397	Graus							
	Corrente assimetrica de curto-circuito	no CCM 2							
relação X/R no CCM	0,949400799								
Fator de assimetria	1,02								
Corrente de curto-circuitoassímetrico (Ica)	14959,81851								
Impulso da corrente de curto-circuito	21156,37823								

• CCM ÁREA 3 PSP-UFU

Figura 26 - Curto-circuito trifásico CCM área 3

Fault bus name	Phas	e A	Phas	e B	Phase C		
rault bus name	Current (A)	Angle	Current (A)	Angle	Current (A)	Angle	
Barramento Área 3	20602.078459511853	-49.5835940796683	20602.0784595040204	-169.5835940796808	20602.0784595040204	70.4164059203443	

Fonte: Autoria do grupo

Figura 27 - Curto-circuito fase-terra CCM área 3

Fault has a see	Phase	e A	Phase B	Phase C		
Fault bus name	Current (A)	Angle	Current (A)	Angle	Current (A)	Angle
Barramento Área 3	9355.8486736558625	-71.684955864949	0.0000000000003	0.0	0.0	0.0

Fonte: Autoria do grupo

Figura 28 - Curto-circuito CCM Área 3 Excel

Corrente de curto-circuito no CCM 3									
Impedância equivalente até o ponto - Apenas sequência positiva!	4,81852493	074792+5,93469724888107j							
	Corrente CC Trifasica								
Ics	lcs 12527,6177455611-15429,5390473523j A - Forma Cart.								
Modulo de lcs	19874,90583	Α							
Fase de lcs	-50,92601531	Graus							
Corrente de curto-circuito fase-terra									
ZEQ até este ponto - Lado de baixa do transformador	11,6431094182825+45,0521526884715j								
Ics	2450,96023776704-9483,80977094189j	A - Forma Cart.							
Modulo de lcs	9795,399627	Α							
Fase de lcs	-75,50973876	Graus							
	Corrente assimentrica de curto-circuite	o no CCM 3							
relação X/R no CCM	1,232848233								
Fator de assimetria	1,08		Tabelado Aproximado						
Corrente de curto-circuitoassímetrico (Ica)	21464,89829		4,53 kA						
Impulso da corrente de curto-circuito	30355,95028		6,41 kA						

Fonte: Autoria do grupo

Os valores de impedância dos cabos, sequência positiva, negativa (Iguais) e sequência zero foram obtidos via fabricante, valores esses que foram utilizados para calcular a corrente de curto-circuito trifásico e fase-terra dos pontos citados via simulador. Além disso as demais impedâncias utilizadas na simulação podem ser encontradas na figura de dados do cliente (Figura 2).

Quadro 8 - Valores de impedância de sequência positiva, negativa e zero dos condutores

IMPEDÂNCIA Cabos Eproflex 90 0,6/1 kV (PVC)	Resistência	Reatância		
2,5	8,8882	0,1378		
4	5,5518	0,1345		
6	3,7035	0,1279		
10	2,2221	0,1225		
16	1,3899	0,1207		
25	0,8891	0,1173		
35	0,6353	0,1164 0,1128		
50	0,4992			
70	0,3428	0,0987		
95	0,2477	0,0963		
120	0,1971	0,0953		
150	0,1632	0,0943		
185	0,1295	0,0948		
240	0,1004	0,0927		
300	0,0818	0,0925		
400	0,0665	0,0911		
500	0,0547	0,0911		
630	2			

Fonte: Induscabos

Os valores dos cálculos de cada ponto e apresentado na tabela abaixo:

Quadro 9 - Corrente de curto-circuito

Setor	Corrente de curto-circuito								
Setoi	trifásico (lcs) - kA	monofásico franco (lcft) - kA	Fator de assimetria	Corrente de curto assimétrica (Ica) - kA					
Ponto de entrega	8,20	6,81	50,00	1,69					
Secundário do transformador	33,71	32,94	3,53	1,35					
QGF	30,21	22,32	3,17	1,31					
Barramento área 1	23,45	10,81	1,74	1,15					
Barramento área 2	14,67	5,52	0,94	1,02					
Barramento área 3	19,87	9,80	1,23	1,08					

Fonte: Autoria do grupo

No ponto de entrega, a corrente trifásica foi de 8,20 kA, enquanto a corrente monofásica atingiu 6,81 kA, com fator de assimetria de 50,0 e corrente assimétrica de 1,69 kA. Já no secundário do transformador, ponto mais crítico da instalação, a corrente trifásica chegou a 33,71 kA e a monofásica a 32,94 kA, com fator de assimetria de 3,53 e corrente assimétrica de 1,35 kA. O QGF apresentou valores semelhantes, com 30,21 kA trifásico e 22,32 kA monofásico.

Já nos barramentos das áreas 1, 2 e 3, foi observado a queda progressiva das correntes de curto-circuito, devido às perdas por impedância ao longo da rede. Na área 1, os valores foram

23,45 kA (Ics) e 10,81 kA (Icft). Na área 2, 14,67 kA e 5,52 kA respectivamente. Por fim, na área 3, 19,87 kA e 9,8 kA, com fatores de assimetria variando entre 0,94 e 1,74.

A análise foi realizada conforme as diretrizes das normas NBR 5410 e NBR 14039, que estabelecem critérios para o dimensionamento de dispositivos de proteção e condutores com base nos valores de curto-circuito. Com isso, notou-se que o ponto mais crítico da instalação é o secundário do transformador, onde foi registrada a maior corrente trifásica de curto-circuito (33,71 kA) e corrente franco monofásica de 32,94 kA, com fator de assimetria elevado. Esse valor indica a necessidade de dispositivos com alto Poder de Interrupção (PDI), além de cuidados especiais com a seletividade e coordenação da proteção, já o menor ponto de curto-circuito foi o barramento da Área 2, com corrente trifásica de 14,67 kA e corrente franco monofásica de 5,52 kA, isso se deu devido à distância elétrica maior do centro de transformação e o efeito das impedâncias ao longo do circuito.

Portanto conclui-se, que o sistema analisado apresenta níveis de curto-circuito compatíveis com as exigências normativas, podendo ser cabível um estudo de seletividade e validação computacional mais afundo em pontos como o secundário do transformador, já que demostrou maior incidência de corrente de curto curto-circuito.

2.6 Inversores

Com os motores dimensionados, juntamente com condutores e dispositivos de proteção cabe ao grupo responsável pelo projeto a escolha dos modelos de inversores para os motores que a indústria de papel irá utilizar em sua operação.

A empresa optou por inversores como chave de partida, já que em sua operação será necessário o controle de velocidade e torque dos motores. O grupo responsável escolheu em seguir o mesmo fabricante dos motores para os inversores, neste caso o fabricante será a WEG.

Cada motor da operação terá seu inversor individualmente. Os inversores deverão ser parametrizados conforme os dados do motor como exemplo: potência, corrente nominal, tensão, rampa de aceleração, RPM, frequência e demais dados se necessária integração a rede de automação.

O grupo responsável escolheu a linha CFW11 da WEG para os motores, a linha da WEG conta com excelentes qualidades em performance, robustez, tecnologia e longevidade, fatores esses indispensáveis em um ambiente industrial.

Figura 29 – Inversor WEG CFW11

Fonte: Catálogo CFW11 WEG

Figura 30 – Método de instalação dos inversores

(a) Modelos com alimentação em tensão alternada (IP20)

Fonte: Catálogo CFW11 WEG

Os inversores foram dimensionados levando em conta a corrente nominal dos motores a qual serão instalados. Abaixo segue a tabela dos modelos especificados dos inversores e a tabela fornecida pela própria WEG.

Quadro 10 - Dimensionamento de inversores

					Dados	s da Carg	ja						
AREA	DESCRIÇÃO	Tipo Acion.	Tensao(V)	G	randeza	s Elétrica	ıs	Fp	Rend.	FS	lp(A)	Fabricante	Modelo
			Tellsau(V)	(kW)	(CV)	(kVAr)	(kVA)	ıρ	(η)	2			
	MOTOR 1	INVERSOR	380	55,00	75,00	30,68	66,27	0,83	0,96	1,25	105,22	WEG	CFW110105T4ODBZ
1	MOTOR 2	INVERSOR	380	75,00	100,00	42,93	91,46	0,82	0,962	1,25	144,62	WEG	CFW110142T4SZ
-	MOTOR 3	INVERSOR	380	22,00	30,00	12,90	27,16	0,81	0,943	1,25	43,81	WEG	CFW110045T4SZ
	MOTOR 4	INVERSOR	380	110,00	150,00	59,68	130,95	0,84	0,965	1,25	206,42	WEG	CFW110211T4SZ
	MOTOR 5	INVERSOR	380	11,00	15,00	6,60	13,75	0,80	0,931	1,25	22,47	WEG	CFW110024T4SZ
2	MOTOR 6	INVERSOR	380	55,00	75,00	30,68	66,27	0,83	0,958	1,25	105,22	WEG	CFW110105T4ODBZ
	MOTOR 7	INVERSOR	380	37,00	50,00	21,70	45,68	0,81	0,96	1,25	72,53	WEG	CFW110070T4SZ
	AUXILIAR	ALIM	380	90,00	1,50	35,27	97,83	0,92	-	-	148,81	-	-
	AUXILIAR	ALIM	380	75,00	2,00	29,39	81,52	0,92	-	-	124,01	-	-
3	AQUECIMENTO 1	ALIM	380	35,00	1,50	0,00	35,00	1,00	-	-	53,24	-	-
	AQUECIMENTO 2	ALIM	380	25,00	20,00	0,00	25,00	1,00	-	1	38,03	-	-
	AQUECIMENTO 3	ALIM	380	40,00	20,00	0,00	40,00	1,00	-	-	60,85	-	-

Figura 31 - Tabela de especificação inversor CFW11 WEG

Versão IP2x

	lr	wersor de fn	equência	CFW11						N	láximo mot	or aplicáveľ	1)										
							-	Regime de so	brecarga no	rmal (ND)			Regime de s	sobrecarga p	esada (HD)								
				1007	Corrente nominal de			IEC		UL	IEC			UL									
Referência		nsão de alimentação (V)				IGBT de		a (A)	60 Hz	60 Hz	60 Hz	60 Hz	60 Hz	60 Hz	60 Hz	60 Hz	60 H	60 Hz					
	,	,		frenagem			380 V ca	380 V ca	440 V ca	440 V ca	460 V ca	380 V ca	380 V ca	440 V ca	440 V ca	460 V ca							
					ND	HD	cv	kW	CV	kW	HP	CV	kW	cv	kW	HP							
CFW110003T4SZ					3,6	3,6	2,0	1,5	2,0	1,5	2,0	2,0	1,5	2,0	1,5	2,0							
CFW110005T4SZ					5,0	5,0	3,0	2,2	3,0	2,2	3,0	3,0	2,2	3,0	2,2	3,0							
CFW110007T4SZ			A		7,0	5,5	4,0	3,0	4,0	3,0	3,0	3,0	2,2	3,0	2,2	3,0							
CFW110010T4SZ					10	10	6,0	4,5	6	4,5	5,0	6,0	4,5	6,0	4,5	5,0							
CFW110013T4SZ					13,5	11	7,5	5,5	10	7,5	7,5	6,0	4,5	7,5	5,5	7,5							
CFW110017T4SZ					17	13,5	10	7,5	12,5	9,2	10	7,5	5,5	10	7,5	7,5							
CFW110024T4SZ			В		24	19	15	11	15	11	15	12,5	9,2	15	11	10							
CFW110031T4SZ					31	25	20	15	20	15	20	15	11	15	11	15							
CFW110038T4SZ		c		Incorporado interno	38	33	25	18,5	30	22	25	20	15	25	18,5	20							
CFW110045T4SZ			С		45	38	30	22	30	22	30	25	18,5	30	22	25							
CFW110058T4SZ							58,5	47	40	30	40	30	40	30	22	30	22	30					
CFW110070T4SZ			D		70,5	61	50	37	50	37	50	40	30	50	37	40							
CFW110088T4SZ				,				88	73	60	45	75	55	60	50	37	60	45	50				
CFW110105T40DBZ					105	88	75	55	75	55	75	60	45	75	55	60							
CFW110142T40DBZ				0 E			142	115	100	75	100	75	100	75	55	75	55	75					
CFW110180T40DBZ												180	142	125	90	150	110	150	100	75	100	75	100
CFW110211T40DBZ	Trifásica	380-480					211	180	150	110	175	132	150	125	90	125	90	150					
CFW110105T4SZ						E	E	E	105	88	75	55	75	55	75	60	45	75	55	60			
CFW110142T4SZ					Não	142	115	100	75	100	75	100	75	55	75	55	75						
CFW110180T4SZ				incorporado	180	142	125	90	150	110	150	100	75	100	75	100							
CFW110211T4SZ					211	180	150	110	175	132	150	125	90	125	90	150							
CFW110242T4SZ					242	211	150	110	200	150	200	150	110	175	132	150							
CFW110312T4SZ			F		312	242	200	150	250	185	250	150	110	200	150	200							
CFW110370T4SZ			'	Não	370	312	270	200	300	220	300	200	150	250	185	250							
CFW110477T4SZ				incorporado; usar	477	370	350	260	400	300	400	270	200	300	220	300							
CFW110515T4SZ				acessório externo	515	477	350	260	400	300	400	300	220	400	300	400							
CFW110601T4SZ			G	DBW03	601	515	400	300	500	370	500	350	260	400	300	400							
CFW110720T4SZ			d		720	560	500	370	600	440	600	400	300	450	330	400							
CFW110760T4SZ					760	600	550	400	650	480	600	400	300	500	370	500							
CFW110795T4SZ				Não	796	637	550	400	650	480	600	450	330	550	400	500							
CFW110877T4SZ			ш	incorporado; usar	877	715	650	480	750	560	700	500	370	600	440	500							
CFW111062T4SZ			Н	Н	acessório externo	1.062	855	750	560	900	660	900	600	440	700	515	700						
CFW111141T4SZ				DBW04	1.141	943	800	590	950	700	1.000	700	515	800	560	800							

Fonte: Manual CFW11 WEG

Figura 32 - Dados da eletrônica/gerais CFW11

Controle	Método	 ✓ Tensão imposta ✓ Tipos de controle: - V/f (Escalar) - VW: Controle vetorial de tensão - Controle vetorial sensorless (sem encoder) - PWM SVM (Space Vector Modulation) ✓ Reguladores de corrente, fluxo e velocidade em software (full digital) Taxa de Execução: - reguladores de corrente: 0,2 ms (frequência de chaveamento de 2,5 kHz e 5 kHz), 0,25 ms (frequência de chaveamento = 2 kHz) - regulador de fluxo: 0,4 ms (frequência de chaveamento de 2,5 kHz e 5 kHz), 0,5 ms (frequência de chaveamento = 2 kHz) - regulador de velocidade / medição de velocidade: 1,2 ms
	Frequência de saída	 ✓ 0 a 3,4 x frequência nominal (P0403) do motor. A frequência nominal do motor ajustável de 0 Hz a 300 Hz no modo escalar e de 30 Hz a 120 Hz no modo vetorial ✓ Limite máximo de frequência de saída em função da frequência de chaveamento: 125 Hz (frequência de chaveamento = 1,25 kHz) 200 Hz (frequência de chaveamento = 2 kHz) 250 Hz (frequência de chaveamento = 2,5 kHz) 500 Hz (frequência de chaveamento = 5 kHz)
Performance	Controle de velocidade	Vf (Escalar): Regulação (com compensação de escorregamento): 1 % da velocidade nominal Faixa de variação da velocidade: 1:20 VWW: Regulação: 1 % da velocidade nominal Faixa de variação da velocidade: 1:30 Sensorless (P0202 = 3 motor de indução); Regulação: 0,5 % da velocidade nominal Faixa de variação da velocidade nominal Faixa de variação da velocidade: 1:100 Vetorial com Encoder (P0202 = 4 motor de indução ou P0202 = 6 ímã permanente): Regulação: ±0,01 % da velocidade nominal com entrada analógica 14-bits (IOA) ±0,01 % da velocidade nominal com referência digital (teclado, serial, Fieldbus, Potenciômetro Eletrônico, Multispeed)
	Controle de torque	±0,05 % da velocidade nominal com entrada analógica 12 bits (CC11) Faixa de variação de velocidade: 1:1000 Faixa: 10 a 180 %, regulação: ±5 % do torque nominal (P0202 = 4, 6 ou 7) Faixa: 20 a 180 %, regulação: ±10 % do torque nominal (P0202 = 3, acima de 3 Hz)
Entradas (Cartão CC11)	Analógicas	2 entradas diferenciais isoladas por amplificador diferencial; resolução da Al1: 12 bits, resolução da Al2: 11 bits + sinal, (0 a 10) V, (0 a 20) mA ou (4 a 20) mA, impedância: 400 kΩ para (0 a 10) V, 500 Ω para (0 a 20) mA ou (4 a 20) mA, funções programáveis
	Digitais	✓ 6 entradas digitais isoladas, 24 Vcc, funções programáveis
Saídas (Cartão CC11)	Analógicas	2 saídas isoladas, (0 a 10) V, R _i ≥ 10 kΩ (carga máx.), 0 a 20 mA / 4 a 20 mA (R _i ≤ 500 Ω) resolução: 11 bits, funções programáveis
	Relé	☑ 3 relés com contatos NA/NF (NO/NC), 240 Vca, 1 A, funções programáveis
Segurança	Proteção	✓ Sobrecorrente/curto-circuito na saída ✓ Sub./sobretensão na potência ✓ Falta de fase ✓ Sobretemperatura ✓ Sobrecarga no resistor de frenagem ✓ Sobrecarga nos IGBTs ✓ Sobrecarga no motor ✓ Falha / alarme externo ✓ Falha na CPU ou memória ✓ Curto-circuito fase-terra na saída
Interface homem- máquina (HMI)	HMI standard	 ✓ 9 teclas: Gira/Pára, Incrementa, Decrementa, Sentido de Giro, Jog, Local/Remoto, Soft key direita e Soft key esquerda Display LCD gráfico Permite acesso/alteração de todos os parâmetros Exatidão das indicações: corrente: 5 % da corrente nominal resolução da velocidade: 1 rpm Possibilidade de montagem externa
Grau de Proteção	IP20	☑ Padrão
_	IP00	✓ Hardware especial DC
	IP54	☑ Parte traseira do inversor (parte externa para montagem em flange) (*)

(1) Necessitam de hardware especial H1.

Fonte: Manual CFW11 WEG

2.7 Esquema unifilar

Com os condutores, dispositivos de proteção, motores e acionamentos definidos o grupo elaborou o seguinte diagrama unifilar da planta da indústria de papel.

AREA 1

AREA 2

AREA 2

AREA 3

Figura 33 - Vista geral do diagrama unifilar

Figura 34 - Vista do diagrama unifilar substacao-QGF1

Figura 35 - Vista do diagrama unifilar QGF1 – AREA 1

Figura 36 - Vista do diagrama unifilar QGF1 - AREA 2

CBT-ÁREA 3 PVC- 750V 3x(2x1c#120mm²) (F) Rc=0,1971 XI=0.0953 ÁREA 3 H SIEMENS 3VM1463 Ir : 600A In : 630A H 1 H H H SIEMENS 3VM1116 In: 160A SIEMENS 3VM1180 In:80A In: 80A CBT-AUXILIAR2 PVC- 750V 3x(1c#50mm²) (F) Rc=0,4992 CBT-AQUEC2 PVC- 750V 1x(3c#10mm²) (F) Rc=2,2221 CBT-AQUEC3 PVC- 750V 1x(3c#16mm²) (F) Rc=1,3899 CBT-AUXILIAR1 PVC- 750V 3x(1c#70mm²) (F) Rc=0,3428 PVC- 750V 1x(3c#16mm²) (F) Rc=1,3899 XI=0,0987 L: 5m XI=0,1128 L: 5m XI=0.1207 XI=0,1225 L: 5m XI=0,1207 L: 5m AUXILIAR AUXILIAR AQUECIMENTO AQUECIMENTO AQUECIMENTO 25kW 148,81A 35kW 148,81A 90kW 148,81A 75kW 124,01A 35kW 148,81A F.P=0,92 F.P=0,92 F.P=1 F.P=1 F.P=1

Figura 37 - Vista do diagrama unifilar QGF1 – AREA 3

2.9 Fator de potência

Para o cálculo do fator de potência geral do projeto foi utilizado a seguinte fórmula

Figura 38 - Fórmula Fator de potência

$$FP = \cos \varphi = \cos \left(\arctan \frac{kVAr}{kW}\right)$$

Pativa = 630 kW

Preativa = 264,38 kVAr

O resultado foi um FP de 0,92, portanto é o suficiente para evitar multas da concessionária, porém, foram dimensionados os bancos de capacitores necessários para corrigir o fator de potência das áreas 1 e 2, para serem instalados futuramente, pois são as áreas que apresentam menor fator de potência para serem instalados futuramente.

A correção foi feita utilizando a tabela de correção, disponibilizada por um fabricante de banco de capacitores.

Quadro 11 - Fator de potência corrigido

LOCAL	Pativa (kW)	Preativa (kVAr)	FP	FP Desejado	Fator multiplicador (Segundo tabela)	kVAr Necessário	Modelo Escolhido
ÁREA 1	262	140,7413972	0,88	0,92	0,114	29,87	BCW30V40 T WEG 30 kVAr
ÁREA 2	103	58,97489192	0,87	0,92	0,141	14,52	BCWP15V25DV25T WEG 15 kVAr

Fonte: Autoria do grupo

Figura 39 - Fator de potência

							F	ATOF	R DE	PO	ΓÊΝ	CIAI	DESI	EJAI	DO							
		0,80	0,81	0,82	0,83	0,84	0,85	0,86	0,87	0,88	0,89	0,90	0,91	0,92	0,93	0,94	0,95	0,96	0,97	0,98	0,99	1,000
		0,982	1,008		1,060					1,192		1,248	1,276				1,403		1,481	1,529	1,590	
		0,937		0,989								1,202	1,231	1,261	1,291	1,324				1,484	1,544	
		0.850		0,945			0.980		1,076	1,103			1,187 1,144	1,217	1,247	1,280	1,314	1,351	1,392	1,440	1,500	1,510
	0.54	0.809	0.835	0.861	0,928	0,954	0,980		0.992	1,000		1,116	1,103	1,174	1,163	1,196		1,306	1,349	1,356	1,456	1,400
	0.55	0.768	0.794	0.820		0.873	0.899		0.952	0.979		1.034	1.063	1.092	1.123	1.156		1,207	1.268		1.376	1.386
	0.56	0.729		0.781		0.834	0.860			0.940		0.995	1.024	1.053	1.084	1.116		1,188	1.229	1.276	1.337	1.347
	0,57	0,691	0,717		0,769			0,848		0,902	0,929	0,957	0,986	1,015		1,079			1,191	1,238	1,299	1,309
	0,58	0,655	0,681	0,707	0,733	0,759	0,785	0,811	0,838	0,865	0,892	0,920	0,949	0,979	1,009	1,042	1,076	1,113	1,154	1,201	1,262	1,272
١.	0,59	0,618		0,670			0,749			0,829						1,006		1,077	1,118	1,165	1,226	1,236
₽	-,	0,583			0,661					0,794					0,938				1,083	.,	1,191	1,201
Z		0,549			0,627				0,732						0,904		0,970		1,048	1,096	1,157	1,167
G		0,515		0,567		0,620				0,726	0,753				0,870			0,974	1,015	1,062	1,123	1,133
POTÊNCIA ORIGINAL	0,63	-1	0,509		0,561	0,587		0,639		0,693	0,720		0,777	0,807	0,837	0,870		0,941	0,982	0.998	1,090	1,100
0					0,323										0,774					0.966	1.027	1.037
A		0.388			0.466					0,599						0.775			0.888		0.996	1.006
$\overline{\mathbf{c}}$	0,67	0,358			0,436			0,515		0,568	0,596		0,652	0,682	0,713	0,745		0,816	0,857		0,966	0,976
z	0,68	0,328	0,354	0,380	0,406	0,432	0,459	0,485	0,512	0,539	0,566	0,594	0,623	0,652	0,683	0,715	0,750	0,787	0,828	0,875	0,936	0,946
Ħ		0,299	0,325		0,377	0,403		0,456		0,509			0,593				0,720		0,798		0,907	0,917
0					0,348					0,480					0,625					-1	0,878	0,888
<u>a.</u>		0,242	0,268					0,398		0,452			0,536				0,663			0,789	0,849	0,859
DE	0,72	0,214	0,240	0,266	0,292	0,318		0,370		0,424			0,508	0,538		0,601	0,635		0,713	0,761	0,821	0,831
~		0,186			0.237				0,370						0,541				0.658		0,794	
ō				0.184		0.236				0.342					0,487						0.739	0.749
FATOR		0.105		0.157		0,209			0,288						0,460					0.652	0.713	0.723
12	0,77	0,079	0,105	0,131				0,235		0,289					0,433		0,500		0,578	0,626	0,686	0,696
	0,78	0,052	0,078	0,104	0,130	0,156	0,183	0,209	0,236	0,263	0,290	0,318	0,347	0,376	0,407	0,439	0,474	0,511	0,552	0,599	0,660	0,670
		0,026		0,078		0,130			0,209			0,292					0,447	0,484	0,525		0,634	0,644
		0,000		0,052			0,130			0,210			0,294		0,355			0,458			0,608	
	0,81		0,000	0,026		0,078				0,184	0,212		0,268	0,298		-,	0,395		0,473	-,	0,581	0,591
	0,82			0,000	0,026	0,052	0,078	0,105	0,131	0,158	0,186	0,214	0,242	0,272	0,303	0,335			0,447	-,	0,556 0.530	0,566
	0.84				0,000			0.053		0,132			0,216			0,309		0,380	0,421		0,530	0,540
	0.85					5,000		-,		0.080			0.164			0.257		0.328		0.417	0.477	0.487
	0,86						5,000	0,000		0,054	0,081		0,138		0,198	0,230			0,343	0,390	0,451	0,461
	0,87									0,027	0,054	0,082	0,111	0,141	0,172	0,204			0,316	0,364	0,424	0,434
	0,88									0,000		-,	0,084	0,114	0,145	0,177	0,211	0,248	0,289	0,337	0,397	0,407
	0,89										0,000		0,057			0,149			0,262	0,309	0,370	0,380
	0,90											0,000			0,089			0,193			0,342	0,352
	0,91												0,000	-,	-,	-,	0,127	0,164	0,205	0,253	0,313	0,323
	0,92													0,000	-1	0,063	-,	0,134	0,175	0,223	0,284	0,294
	0,93														0,000		0,067			0,192		0,263
	0.95															0,000			0.078			
	0.96																3,000			0.089		
	0,97																	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0,048		
	0,98																		,,,,,,	0,000		
	0,99																					0,010

Fonte: Engematec

2.10 Especificação do tipo de subestação

Para a escolha de entrada de serviço optou-se pela entrada de serviço subterrânea. Conforme estabelecido pela Copel NTC 903100, essa escolha se justifica pela maior segurança operacional, menor impacto visual e proteção dos condutores contra intempéries e danos externos, garantindo maior confiabilidade e longevidade ao sistema elétrico da indústria. O projeto de entrada de serviço subterrâneo atende as necessidades de demanda da indústria de papel.

DETALHES CONSTRUCTIVOS DAS CAIXAS DE PASSAGEM

ENVILOPADO EN SUB-TAMPA

CONCENTO CON
PITA DE RUPTA

DETALHE TO

DE

Figura 40 - Caixas de passagem

Notas:

- 1- Paredes em tijolos maciços de 1º categoria, tipo 2, assentados com argamassa de cimento, traço 1:6.
- 2- Fundo em concreto simples sobre o solo, com resistência mínima à compressão de 180 kgf/cm², em 28 dias, bem apiloado.
- 3- Revestimento interno (chapisco e emboço) com argamassa de cimento e areia, traço 1:4, espessura de 10 mm, acabamento áspero à desempenadeira.
- 4- Para a drenagem, o fundo deverá ter inclinação de 2% em sentido ao furo ou camada de brita sob o fundo da caixa.
- 5- Ferragem de ferro fundido ou alumínio.
- 6- Em qualquer das alternativas, a tampa e sub-tampa deverão possuir as mesmas medidas.
- 7- Os lacres poderão ser conectados no aro da caixa ou nos chumbadores.

Fonte: : Copel NTC 903100

A entrada de serviço subterrânea exige caixas de passagem para a acomodação e proteção dos cabos. Essas caixas de passagem são projetadas para garantir a segurança dos circuitos de alimentação e facilitar as manutenções futuras, seguindo padrões construtivos estabelecidos pela NTC 903100 para garantir durabilidade e segurança.

Figura 41 - Subestação

Fonte: Copel NTC 903100

A caixa de passagem leva os condutores de alimentação até um abrigo, esse abrigo é projetado para abrigar os módulos de medição, equipamentos de proteção, transformadores de corrente, transformador de potencial e um transformador de potência, considerando uma instalação de 1000 kVA com relés secundários, conforme a NTC 903100 da Copel. Esta cabine é crucial para a segurança e o controle do sistema, garantindo a proteção dos equipamentos e a medição adequada do consumo de energia.

2.11 Transformador

A partir da tabela de cargas, deve se escolher também o modelo ideal de transformador para atender a alimentação da indústria de papel. O mercado disponibiliza diversos transformadores, o de escolha do grupo responsável foi o Transformador de potência a Seco 1000.0kVA

Figura 42 - Transformador Seco 1000.0kVA 13.8/0.38kV CST IP -00 NA

Fonte: WEG

Figura 43 - Dados Técnicos Transformador Seco

Transformador Seco 1000.0kVA 13.8/0.38kV CST IP -00 NA						
Potência	1000 kva	Fator K	K1			
Tensão Nominal AT	13.8 kv	Tipo Comutação	CST			
Tensão Nominal BT	0.38kv	Taps	4x0,6 kV			
Grau de Proteção	IP-00	Classe temperatura material isolante	F (155 °C)			
Forma construtiva NBI (AT)	Seco	Refrigeração	AN			
NBI (AT)	95.0 kV	Material dos condutores AT/BT	Al/Al			
Norma	NBR 5356-11	Elevação temperatura dos enrolamentos média	100.0 °C			
Frequência	60 Hz	Elevação de temperatura dos enrolamentos no ponto ma	115.0 °C			
Grupo Ligação Wt	Dyn1	Impedância	6.0 %			
Fase	Trifásico	Perdas em vazio	2.9 kW			
Instação	Abrigado	Perdas totais	2.9 kW			
Altitude Máxima de Instalação	1000.0 m	Corrente de excitação	1.5 %			
Atmosfera	Não agressiva	Nível de ruído	64.0 dB			
Temperatura ambiente máxima	40.0 °C	Descaragas parciais	10.0 pC			

Fonte: WEG

A escolha do transformador foi baseada no cálculo da demanda total do projeto, que resultou em um valor de 685kVA, entretanto deve-se considerar um fator de segurança de 25 a 30% (Fator de segurança = 1.25), com isso valor real da demanda corrigido resultou em 872.5 kVA. Desse modo, a escolha do transformador para atender a indústria de papel deve ter potência superior a 872.5 kVA. O transformador mais próximo que atende esse valor é o transformador de 1000 kVA.

Além disso, outros fatores para a escolha do transformador a seco foram a segurança, manutenção e dimensões frente a ambientes abrigados. De acordo com a NBR 5356-11 (ABNT, 2021), transformadores a seco são frequentemente preferidos em instalações abrigadas, especialmente em ambientes comerciais e industriais, devido à sua segurança contra incêndios. Como não contêm óleo, eliminam o risco de vazamentos e incêndios associados ao óleo. Portanto, a escolha se passou pela não utilização do óleo, já que o mesmo traz fatores negativos em ambientes abrigados, o que não é interessante para área industrial projetada.

Segue abaixo a especificação sumária de todos os equipamentos necessários e requisitados obrigatoriamente pela Copel, respeitando todos os valores mínimos impostos pela NTC 903100.

Quadro 12 - Especificação componentes subestação

Imagem do produto	Nome	Especifi	icações	Link do Produto	
		Tipo	Polimerico		
		Material	Oxido De Zinco		
		Tensão	15 KV		
	Para-Raio	Carga Ruptura Aplicação	10 KA	Para Raio Polimérico	
	Polimérico	Dimensões	346x263.5x101	Tala Nator officeroo	
		Difficustos	(Milímetro Quadrado)		
-		Fabricante	Plenobras		
-))	Bucha	Tensão	15 kv		
	de Passagem	Corrente	100 A	Bucha de Passagem	
	Interna/Externa	Marca	Lebasi		
		Potência	1000 KVA		
		Tensão Nominal AT	13.8 KV]	
EN SHIP SHIP		Tensão Nominal BT	0.38 KV]	
	Transformador	Frequência	60 Hz	Tonosformador	
	de potência seco	Fase	Trifásico	<u>Transformador</u>	
	Seco	Instalação	Abrigada		
7		Impedância	6.0%	1	
		Norma	NBR 5356-11		
		Tensão	17.5 KV		
		Corrente	630 A		
		Frequência			
		Valor de Crista	82 KA	Chave Seccionadora	
Fig. 12 Variation	Chave	Nominal da Corrente	02104		
	Seccionadora	Tensão suportável	95/110 KV	211010 000101100110	
0.37		de impulso atmosférico			
-		Operação	manual		
		Códio do produto	1YMX001224M3104		
		Fabricante	ABB		

				<u> </u>		
	Transformador de	Uso	Interno			
		Tensao Máxima	15 KV			
1 100		Frequência	60 Hz			
		Nivel de isolamento	95 kV			
		Tensao primária	13.8 KV	Transformador de Potencial		
	Potencial	Tensao Secundaria	115/220 V	Transformation de Potenciat		
	Potencial	Relação nominal	120:1			
100		Meio dielétrico	Epoxi			
•		Grupo de Ligação	1			
		Marca	Mult Inst			
		Tensão	15 kv			
		Corrente Primária	100			
2	Transformador de Corrente	Isolação	Epoxi			
		uso	Interno	Tfdd Ct-		
		Frequência	60 Hz	Transformador de Corrente		
- C		Nivel de isolamento	95 KV			
		Corrente Secundária	5 A			
		Marca	Brasformer Braspel			
		Uso	Interno			
		Tensão aplicada a	60			
		frequência industrial sob				
-		chuva (CA) - 1 minuto				
		Tensão impulsiva	450	1		
X		(1,2 x 50) us (10+, 10-)	150			
- T		Descargas parciais				
The same of the sa	Mufla Terminal	(sensibilidade <5pC) V	19	Mufla Terminal		
1	(15KV)	extincão>				
1		Ciclos térmicos 95°C				
		sob tensão de 1.8Vo -	80 ciclos			
4		ciclos de 8 horas				
		Ensaio de				
		curto-circuito térmico	até 250°C			
		Marca	Prysmian	1		
	l		,	1		

Quadro 13 - Especificação sumária componentes subestação

		Tensão de Teste Dielétrica	17.5 KV			
		Tensão estipulada de isolamento à frequência industrial (Ud)	38 KV			
		Frequência	60 Hz			
6 4	Disjuntor de MT	Corrente estipulada em regime continuo	630 A	Disjuntor de MT		
	Dajaronociii	Corrente estipulada de corte em curto circuito	25 KA	anaparton oct i ii		
		Duração estipulada de curto circuito	3 s			
		DC time constant	45 ms			
		modelo	EXE172506K1B			
		Marca	Schneider Electric			
	Rele de proteção Multifunção 50/51 e 50N/51N	Tensão	72250 Vca / Vcc			
		Corrente	5 A			
		Frequência	60 Hz			
cort (MIII)		Marca	Pextron	Rele De Proteção URPE 7104T 50/51		
		Tensão Auxiliar/Tempo	110Vca/1.7s			
		Isolação das entradas	2000 V			
		Modelo	URPE 7104T			
		Tipo	50/51 e 50N/51N			
		-		Parâmetrose Ajustes do Rele		
		-				
		-		a arrest out a parter of the		
			*			
		Corrente Nominal	1600 A			
-		Corrente de Curto Circuito	55 KA			
Marian Co.		Tensão Nominal	380 V			
THE PARTY OF		Número de Polos	3			
2 4 E		Operação	manual e/ou motorizada			
	Disjuntor de BT	Tipo de Unidade de Disparo	Eletrônica	Disjuntor Siemens		
-		Especificações	ACB - Air Circuit Breaker			
		Marca	Siemens			
		Fase	Trifásico			
		Modelo	3WL			
		Capacidade de Interrupção	100%			

2.12 Luminotécnico

O projeto luminotécnico foi desenvolvido para a área A1, designada como escritório comum, com dimensões de 20 metros de comprimento por 15 metros de largura. As características do ambiente, que influenciam diretamente no cálculo e na distribuição da luz, incluem teto de superfície branca, paredes claras e pisos escuros. O objetivo principal deste projeto foi garantir um nível de iluminação adequado para a atividade de escritório, atendendo aos requisitos de iluminância média estabelecidos pela norma NBR ISO/CIE 8995-1 para escritórios.

Para a elaboração e simulação do projeto, foi utilizado o software DIALux evo, uma ferramenta padrão da indústria que permite análises precisas da distribuição luminosa e dos resultados quantitativos.

Figura 44 - Dados luminotécnico

Categoria	Valor/Descrição
Área	20 m / 15 m
Atividade	Escritório Comum
Pé-direito	4.60 m
Plano de Trabalho	1 m
Plano de Trabalho	0,8 m
Altura da montagem	2.90
da luminaria	2.80 m
Reflectância - Teto	70% - Branca
Reflectância - Parede	50% - Clara
Reflectância - Piso	10% - Escura
Fator de Manutenção	0.67

Fonte: Autoria do grupo

Figura 45 - Dados lâmpada

Tipo de Lâmpada	Fluorescente Tubular	
Fluxo Luminoso	7.938 lm	
da Luminária	7.550 IIII	
Potência por Luminária	128 W	
Rendimento Luminoso	76.0 %	

Fonte: Autoria do grupo

Foram selecionadas luminárias que utilizam lâmpadas fluorescentes de 4x32W. O posicionamento das luminárias foi otimizado para assegurar uma distribuição homogênea da luz em todo o ambiente.

Para a elaboração e análise do projeto luminotécnico no software DIALux evo, utilizouse como referência a norma Europa (EN 12464-1:2021), que trata da iluminação de locais de trabalho. Embora a norma brasileira NBR ISO/CIE 8995-1 não estejam diretamente integrada aos perfis padrão do software, a EN 12464-1:2021 é uma das normas mais completas, atualizadas e internacionalmente reconhecidas para a qualidade da iluminação em ambientes profissionais.

Figura 46 - Resultados simulação

Resultados da Simulação						
Software Utilizado	DIALux evo					
Norma de Referência	EN 12464-1:2021					
Número de Luminárias	30 unidades					
lluminância Média (Em)	561 lx					
Uniformidade (U0)	0.63					
Potência Total Instalada	3.840 W					
Potência Específica de Iluminação (PEI)	2.8 W/m ²					
Ofuscamento (UGR)	19					

Figura 47 - Disposição luminárias

Figura 48 - Visão simulação inferior

Figura 49 - Visão simulação superior

3 CONCLUSÃO

O projeto apresentado permitiu o desenvolvimento completo de um sistema elétrico industrial, desde o levantamento de dados iniciais até a definição dos componentes essenciais, como transformadores, condutores, disjuntores, inversores. As escolhas técnicas foram baseadas em normas vigentes, especialmente a NBR 5410 e catálogos de fabricantes, de forma a garantir segurança, eficiência e conformidade com os requisitos operacionais da indústria. A análise de curto-circuito e o dimensionamento do sistema luminotécnico complementaram o estudo, onde foi possível realizar a simulação em softwares como o Dialux e o PSP-UFU, para complementar o estudo. Assim, o trabalho demonstrou a importância da integração entre teoria e prática do conteúdo visto em aula e ao decorrer do curso.

4 REFERENCIA BIBLIOGRÁFICAS

GOMES, Caroline Fernandes da Silva; SANTOS, Victor Souza dos; VIEIRA, Guilherme Pires; PIRES, Rachel Cristina Santos; FARIAS, Bruno Matos de. A importância da elaboração de um projeto de instalações elétricas e seus requisitos normativos. *Epitaya E-Books*, v. 1, n. 15, p. 71–86, 2020. Disponível em: https://portal.epitaya.com.br/index.php/ebooks/article/view/97. Acesso em: 2 jun. 2025

SILVA, Iago de Melo; ALMEIRA, Brayan Lima de; SILVA, Sabrina Oliveira; FERNANDES, Márcio da Silva. A importância do projeto elétrico e a análise da execução na cidade de Paracatu-MG. Anais do 1º Simpósio de TCC das Faculdades FINOM e Tecsoma, Paracatu, MG, 2019. p. 892–902. Disponível em: https://www.finom.edu.br/assets/uploads/cursos/tcc/2021042217042012.pdf. Acesso em: 27 mai. 2025

WEG. Motor elétrico trifásico W22 IR3 Premium: catálogo técnico. Jaraguá do Sul: WEG, 2022. Disponível em: https://static.weg.net/medias/downloadcenter/h94/h69/WEG-w22-motor-eletrico-trifasico-50023622-brochure-portuguese-web.pdf. Acesso em: 3 jun. 2025.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5410: Instalações elétricas de baixa tensão. Rio de Janeiro: ABNT, 2004.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 5356-11: Transformadores de potência – Parte 11: Transformadores do tipo seco – Especificação. Rio de Janeiro: ABNT, 2016

KRUGER, Tarcísio Pollnow. *Dimensionamento de condutores*. São José: Instituto Federal de Santa Catarina (IFSC), 2016. Disponível em: https://wiki.sj.ifsc.edu.br/images/4/47/Dimensionamento_Condutores.pdf. Acesso em: 1 jun. 2025

SIEMENS. Siemens Brasil. Disponível em: https://www.siemens.com/br/pt.html. Acesso em: 20 mai. 2025

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS (ABNT). **NBR 14039**: instalações elétricas de média tensão, de 1,0 kV a 36,2 kV. Rio de Janeiro, 2005.

WEG. **CFW11**: catálogo de inversores de frequência. [S. 1.]: WEG, 2020. Disponível em: https://static.weg.net/medias/downloadcenter/h88/h14/WEG-CFW11-catalogo-10510201-pt.pdf. Acesso em: 3 jun. 2025

WEG. Manual do Usuário CFW11: inversores de frequência modelos Mec-F a H. [S. 1.]: WEG, [ano de publicação]. Disponível em: https://www.servicedrive.com.br/wp-content/uploads/Manual-do-Usuário-CFW11-Mec-F-a-H-PTBR-ServiceDrive-19-3012-6360.pdf. Acesso em: 5 jun. 2025

MORETTI, José Carlos. *NTC 903100: Fornecimento em tensão primária de distribuição*. Curitiba: Universidade Federal do Paraná, 2013. Disponível em: http://www.moretti.agrarias.ufpr.br/eletrificacao_rural/livro_copel_ntc_903100.pdf. Acesso em: 5 jun. 2025.