RS/Conference2019

San Francisco | March 4-8 | Moscone Center

SESSION ID: HTA-F02

Blackbox Interpretability: Next Frontier in Adversarial ML Evasion

Holly Stewart, Greg Ellison

Microsoft Defender Research Team

Contributions by: Sam Jenkins, Harsha Nori

How do we address these zero day malware attacks?

Use attack surface reduction rules (ex. blocking all docs with macros)

Detonate malware in an isolated environment

Block when malware behaves badly on the system

Use machine learning to predict and block the threat at first sight

Supervised machine learning process

* More info on the blog: https://aka.ms/hardening-ML and Black Hat USA

* More info on the blog: https://aka.ms/hardening-ML and Black Hat USA

Challenges with machine learning

Challenges with machine learning

False Positives
Compute

Linear Model

Computationally fast Simple structure Less precise predictions

Deep Learning Model

Computationally slow
Complex structure
Better predictive performance

Challenges with machine learning

False Positives

Compute

Interpretability

This black box is intentional.

Enter black box interpretability methods

(Many) work with any model

Help explain model decisions

Publicly available libraries

Missing signals (feature evasion)

Missing signals (feature evasion)

Missing signals (feature evasion)

Missing signals (feature evasion)

Misleading signals (ambiguous features)

How about fauxhawks...

??

Model improvement using black box interpretability

Misleading signals
Remove misleading features

(ambiguous features)

RS/Conference2019

Notes on terminology

- We're considering binary malware classifiers
 - Decide if a file is malware (1) or clean (0)
- An instance is a single classifier decision (file, in this case)
- FP: False Positive a clean file the classifier thinks is malware
- FN: False Negative a malware file the classifier misses

Black box interpretability methods

- Current focus of publicly-available methods:
 - Instance level model decisions
- Two methodologies:
 - LIME
 - SHAP

- Introduced in 2016 by Marco Ribero [1]
- Locally Interpretable Model-Agnostic Explanations

#RSAC

- The model weights the samples by distance from instance
- The local model is fit using K-LASSO

SHAP

- Introduced in 2017 By Scott Lundberg [2]
- Differs from LIME in weighting sample distance from x', and estimating f'(x)

Implementation details

- LIME & SHAP frameworks are not computationally cheap
 - Focus on known FPs & FNs

- SHAP & LIME open source python libraries
 - https://github.com/marcotcr/lime
 - https://github.com/slundberg/shap

Combining multiple methods

- These methods are approximations!
- Unlike reading the coefficients of a linear model, we're estimating model behavior
- So, we check to see that results of LIME and SHAP are consistent

Black box interpretability methods

- LIME & SHAP both result in a feature contribution score, s
 - -s > 0: the feature pushes the classifier toward malware
 - s < 0: the feature pushes the classifier toward clean
 - The closer s is to 0, the weaker the feature's contribution

Example: Per instance interpretability

Cloud classifier false positive (FP)

Feature	LIME score	SHAP score
Emulation Event 1	0.22	0.03
Emulation Event 2	0.27	0.18
File Metadata Feature	0.22	0.07
Other Features	•••	•••

Example: Per instance interpretability

Cloud classifier false positive (FP)

Feature	LIME score	SHAP score
Emulation Event 1	0.22	0.03
Emulation Event 2	0.27	0.18
File Metadata Feature	0.22	0.07
Other Features	•••	•••

Aggregated interpretability

Should we remove this misleading feature to avoid FPs?

Not necessarily... this is only one instance – let's aggregate!

Example: Emulation Event 2

Feature	Avg LIME score	Avg SHAP score	FPs Contributed	TPs Contributed
Emulation Event 2	0.115	0.114	1	30

Looks like this is a good feature!

Fauxhawks are GOOD!

RSAConference2019

Identifying misleading features

Example: Emulation Event 2

Feature	Avg LIME score	Avg SHAP score	FPs Contributed	TPs Contributed
Emulation Event Feature 2	0.115	0.114	1	30

We can extend this analysis to discover badly behaved features:

Example: Emulation Event 2

Feature	Avg LIME score	Avg SHAP score	FPs Contributed	TPs Contributed
Candidate 1	0.356	0.388	4	2
Candidate 2	0.943	0.874	4	0
Candidate 3	0.053	0.081	2	28

Resolving misleading features

 The obvious solution is to exclude misleading features from the model entirely

Experiment design: Excluding misleading features

Measurements

Recall - % malware detected

Precision - % actual malware/classified malware

#RSAC

Results: Excluding misleading features

Measurements

Recall - % malware detected

Precision - % actual malware/classified malware

Both techniques beat the baseline

Sweet spot: 50 features removed (out of 200k)

LIME/SHAP best model

#RSAC

Detecting feature evasion

Reminder: LIME and SHAP feature contribution score, s

s > 0: the feature pushes the classifier toward malware

s < 0: the feature pushes the classifier toward clean

Example: Cloud Classifier FN

Feature	LIME score	SHAP score
Generic File Metadata 1	-0.002	0.028
Generic File Metadata 2	-0.018	-0.060
•••		
File Content Feature 1	-0.002	0
File Content Feature 2	0.008	0

Automating feature generation

- What to do about these feature evaded files?
- Generate signal!
 - Collect files with feature evasion
 - Mine the file content for malware signals
- Target new feature development at previously unclassifiable malware

Automated feature mining (JavaScript files)

FILE SELECTION PROCESS

Keep only malware files with feature evasion (~5k)

IDENTIFY STRONG FEATURES

Feature	Score
File Content Feature 1	0.64
File Content Feature 2	0.33

FEATURIZATION

Parse text to create new ngram features

parser.ENTITIES[name] = value;

TRAIN LINEAR

MODEL

ength '

'gth -

"h - 1]" "- 1],p" "1],par"

',parse"

"arsedo"

"sedoct"

'doctyp"

"ctype(" "ype(cu"

parser.ondoctype = dt => { appendChild(openStack[openStack.length - 1], parseDocType(currentDocument, `<!doctype \${dt}>`) const entityMatcher = /<!ENTITY ([^]+) "([^"]+)">/g; let result; while ((result = entityMatcher.exec(dt))) { const [, name, value] = result; if (!(name in parser.ENTITIES)) { 38

RETRAIN MODEL WITH NEW FEATURES

RS/Conference2019

Impact and results (JavaScript)

Did any of the new features matter?

Malware prediction from new features

Impact and results (JavaScript)

Did any of the new features matter?

YES

Did the features result in a reduction of featureevasion misses?

YES

Percentage of missed feature evasion files dropped by 40%

Impact and results (JavaScript)

Did any of the new features matter?

YES

Did the features result in a reduction of featureevasion misses?

YES

Did our classifiers miss less malware?

Total number of average daily classifier JavaScript misses declined

Adversaries can use it, too

- Black box interpretability methods consider only the inputs and resulting decision of a classifier
 - This is exactly how an attacker would examine our model!

How attackers can use black box interpretability

Key Takeaways

Interpretability methods are freely available

Make machine learning black box "explainable"

Help identify feature evasion and misleading features

But... attackers could also use these methods to their advantage

Start your experiments now before they do!

Questions?

#RSAC

References

- [1] "'Why Should I Trust You?': Explaining the Predictions of Any Classifier"; Ribeiro, Singh, Geustrin (2016)
- [2] A Unified Approach to Interpreting Model Predictions; Lundberg, Lee (2017)
- [3] High-Precision Model-Agnostic Explanations; Ribeiro, Singh, Guestrin (2018)

