Nonparametric Regression with K-Nearest Neighbors

```
In [5]: import numpy as np
import pandas as pd
from plotnine import *
```

Let's start with a simulated function which we want to estimate nonparametrically:

```
In [6]: # Define the true regression function
        def q(x):
            return np.maximum(x, 5) + 0.5 * x * np.sin(x)
        # Generate the data
        np.random.seed(1234) # For reproducibility
        x = np.arange(0, 10, 0.01)
        x sample = np.sort(np.random.choice(x, 100, replace=False))
        y = g(x_sample) + np.random.normal(0, 0.5, size=100)
        # Create dataframes to hold simulated data
        data = pd.DataFrame({'x': x_sample, 'y': y})
        data_nonoise = pd.DataFrame({'x': x_sample, 'g': g(x_sample)})
In [7]: plot1 = (
            qqplot() +
            geom_point(data, aes(x='x', y='y'), color='black') +
            geom_line(data_nonoise, aes(x='x', y='g'), color='blue') +
            theme bw() +
            labs(title='True Regression Curve and Sample Observations', y='y') +
            theme(
                plot_title=element_text(ha='center', size=16),
                axis_title=element_text(size=14),
                axis_text=element_text(size=12)
```

plot1

True Regression Curve and Sample Observations

Let's try to implement KNN regression from scratch:

For example, let's try to predict y when x = 2, using K=10 nearest neighbors...

Our first step will be to find the 10 nearest neighbors near x=2!

```
In [8]: # Pick the x point of interest
x_point = 2

# Calculate distances from observations to x_point & sort them
dist = np.abs(data['x'] - x_point)
sorted_dist = dist.sort_values()

# We want the K smallest distances
K = 10
k_indices = sorted_dist.index[:K]
k_dists = sorted_dist.iloc[:K]

# Find out which points these correspond to
neighbor_x = data.loc[k_indices, 'x']
print("Neighbor x-values:", neighbor_x.values)
```

Neighbor x-values: [2.02 2.06 1.92 1.88 2.19 1.75 1.66 2.41 1.55 1.43]

Let's wrap this into a function which takes x and K as arguments so we can use it repeatedly and build onto it:

```
In [9]: def neighbors(x point, K, xvar, data):
             # Calculate distances & sort them
             dist = np.abs(data[xvar] - x point)
             sorted dist = dist.sort values()
             k_dists = sorted_dist[:K]
             # Find out which points these correspond to
             neighbor ind = np.where(np.isin(dist, k dists))[0]
             # Break ties by randomly subsetting down to K
             if len(neighbor ind) != K:
                  neighbor_ind = np.random.choice(neighbor_ind, K, replace=False)
             neighbor x = data.iloc[neighbor ind][xvar]
             # Return the indices and x-values for the K nearest neighbors
             out = {'ind': neighbor ind, 'xvals': neighbor x.values}
             return out
         Before moving on, apply it to the situation before to sanity check that it works...:
In [10]: neighbors(x_point = 2, K = 10, xvar = 'x', data = data)
Out[10]: {'ind': array([13, 14, 15, 16, 17, 18, 19, 20, 21, 22]),
           'xvals': array([1.43, 1.55, 1.66, 1.75, 1.88, 1.92, 2.02, 2.06, 2.19, 2.4
          1])}
         Ok cool, now let's use these neighbors to predict the y value!
In [11]: nearby_points_idx = neighbors(x_point = 2, K = 10, xvar = 'x', data = data)[
         y_hat_knn = data.iloc[nearby_points_idx]['y'].mean()
         y_hat_knn
Out[11]: 5.656884670423805
In [12]: def knn_predict(x_point, K, xvar, yvar, data):
             nearby points idx = neighbors(x point, K, xvar, data)['ind']
             knn_pred = data.iloc[nearby_points_idx][yvar].mean()
             return knn_pred
         # Example prediction at x = 2
         prediction = knn_predict(2, K=10, xvar='x', yvar='y', data=data)
         print(f''KNN Prediction at x=2: {prediction.round(4)}'')
        KNN Prediction at x=2:5.6569
```

Predicting over a grid of x-values...

```
In [13]: # make a grid of x-values
    x_grid = np.arange(0, 10, 0.1)
    predictions = [knn_predict(x_point, K=10, xvar='x', yvar='y', data=data) for
    pred_df = pd.DataFrame({'x': x_grid, 'y': predictions})
    pred_df.head()
```

```
      o
      0.0
      5.409209

      1
      0.1
      5.409209

      2
      0.2
      5.409209

      3
      0.3
      5.409209

      4
      0.4
      5.409209
```

And plotting, where red is the estimate and blue is the true function:

KNN Regression Estimate

If we want to assess goodness of fit we can calculate the SSE:

```
In [15]: # Calculate fitted values and SSE
    fitted_values = [knn_predict(xi, K=10, xvar='x', yvar='y', data=data) for xi
    sse = np.sum((data['y'] - fitted_values) ** 2)
    print(f"SSE for K=10: {sse}")
    SSE for K=10: 34.190330283485366
In [16]: # Define the SSE function
```

```
In [16]: # Define the SSE function
def SSE(K, data):
    fitted_values = [knn_predict(xi, K=K, xvar='x', yvar='y', data=data) for
    sse = np.sum((data['y'] - fitted_values) ** 2)
    return sse

# Example SSE
sse_value = SSE(K=10, data=data)
print(f"SSE for K=10: {sse_value}")
```

SSE for K=10: 34.218171317054306

We expect these values to be the same... why is the SSE changing slightly each time we run it?

How to choose the best value of K?

We could perform data splitting and choose the value of K which minimizes the validation data set mean square error. Or we could do K-fold cross validation if we want to let each data point have a turn in the validation set.

K-fold Cross-Validation Idea:

- For a grid of K values, K in K_grid:
- For each observation i = 1,...,n:
 - 1. Exclude the ith observation one at a time. This ith observation will serve as the "validation set."
 - 2. Fit the K-Nearest Neighbor regression on the remaining n-1 observations (the training set).
 - 3. Predict the y value for the ith data point.
 - 4. Calculate squared prediction error and store it as $SSE_{(i)}$.

After you've done this for each i = 1,...,n, average the squared prediction errors. This is the cross-validated MSE:

$$MSE_{CV}(K) = \frac{1}{n} \sum_{i=1}^{n} SSE_{(i)}.$$

Choose the value of K in K_grid which minimizes $MSE_{CV}(K)$

Exercise:

- 1. Write a function which performs leave-one-out cross-validation.
- 2. Apply it to our dataset in this simulation. What is the optimal value of K? Call it K^* .
- 3. Calculate the SSE of the cross-validated KNN regression model with $K=K^{st}$. Compare it to the SSE for our initial choice of K=10. Does the tuning make a big difference in this case or were we close to correct with our initial hyperparameter choice?

Challenge:

• How can we extend the idea of KNN regression to the setting where we have multiple predictors, say X_1 and X_2 ? Describe the process in words and then write a function which implements this.

```
In [17]: def L00CV(K, data):
    n = len(data)
    errors = np.zeros(n)

for i in range(n):
```

```
train_data = data.drop(index=data.index[i]).reset_index(drop=True)
                 # The x and y values of the left out point
                 x_i = data.iloc[i]['x']
                 y i = data.iloc[i]['y']
                 # Predict y_i using the model trained on train_data
                 y pred = knn predict(x i, K=K, xvar='x', yvar='y', data=train data)
                 # Compute squared error
                 errors[i] = (y_pred - y_i) ** 2
             # Sum up squared errors
             loocv error = np.sum(errors)/n
             return loocv error
In [18]: # Perform LOOCV for K=10
         loocv_error = L00CV(K=10, data=data)
         print(f"L00CV Error for K=10: {loocv error}")
        LOOCV Error for K=10: 0.4647813749582214
In [20]: K grid = np.arange(1, 100, 1)
In [21]: loocv_K_MSE = [LOOCV(K=k, data=data) for k in K_grid]
In [22]: kstar idx = np.where(np.isin(loocv K MSE, np.min(loocv K MSE)))
In [23]: kstar = K_grid[kstar_idx]
         kstar \#K* = 3
Out[23]: array([3])
In [24]: L00CV(K=3, data=data) #better than K = 10
Out[24]: 0.3276057972997473
In [25]: x_{grid} = np.arange(0, 10, 0.1)
         predictions3 = [knn_predict(x_point, K=3, xvar='x', yvar='y', data=data) for
         pred_df3 = pd.DataFrame({'x': x_grid, 'y': predictions3})
         pred df3.head()
Out[25]:
             X
         0 0.0 4.778216
         1 0.1 4.778216
         2 0.2 4.778216
         3 0.3 4.778216
         4 0.4 4.778216
```

Exclude the ith observation

```
In [26]: # Plot the data, true function, and KNN estimate
plot3 = (
    ggplot() +
    geom_point(data, aes(x='x', y='y'), color='black') +
    geom_line(data_nonoise, aes(x='x', y='g'), color='blue') +
    geom_line(pred_df3, aes(x='x', y='y'), color='red') +
    theme_bw() +
    labs(title='KNN Regression Estimate', y='y') +
    theme(
        plot_title=element_text(ha='center', size=16),
        axis_title=element_text(size=14),
        axis_text=element_text(size=12)
    )
    )
    plot3
```

KNN Regression Estimate

It's a slight improvement over the previous but overall its pretty close. It is smoother as well, which may be a benefit.

In []: