你的报告应该有良好的结构。对于每一项任务,解释你应该做什么,你实际做了什么,结果是什么,最重要的是, 得出一些结论。

1 Introduction

在该任务中,我们通过构建单层感知器在MINST数据集上实现多分类任务。为实现该功能,我们对数据进行了与处理,并在不同weights区间上进行了实验,以期找到最快的收敛速度和准确率。最后,通过交叉验证的方式对模型的鲁棒性进行了验证。

2 What we do

2.1 Data preprrcessing

在数据预处理阶段,我们首先通过Numpy加载数据集,并通过sklearn提供的model_selection.train_test_split方 法将数据集划分为Training sets和Validation sets,每个sets中均包含用与训练的inputs和用于验证的targets。

此外,我们为每个input set添加了额外bais以用于神经网络训练,将每个target转换为dummy matrix以便在训练过程中运用矩阵乘法。

Basic datasets	Shape	preprocessing datasets	Shape
Input_train	1365, 256	X_train	1365, 257
Target_train	1365	y_train_dummy	1365, 10
Input_validation	342, 256	X_validation	342, 257
Target_validation	342	y_validation_dummy	342,10

2.2 Training process

在模型训练阶段,我们循环读取Input set的每行数据,使用sigmoid作为激活函数完成模型的向前传播过程。随后使用 □w = □x(d - out)*out'(x)作为梯度下降函数更新模型权重。最终以模型正确预测数量与target总数的比值作为误差函数判断循环终点。

2.3 Weights optimization & Cross validation

在模型优化阶段,我们尝试了多种不同weights区间对模型准确性带来的影响,在weights为完全随机数,【-1,1】随机数,【-0.5,0.5】随机数和weights初始值为0中进行实验。

为generation的展示模型性能,我们采用5-flod交叉验证检验模型准确性。在该方法中我们通过sklearn提供的model_selection.KFold方法随机划分数据集,其中每个train set和test set的数据大小如下表所示

Each fold datasets	Shape
Input_train[fold]	1092, 257
Test_train[fold]	273, 257

2.4 Result

通过上述方法,我们在交叉验证中实验不同weights区间对模型准确性的影响,将模型误差小于0.03或迭代次数达到1000作为训练终点,得到结果如下表所示:

Weights section	Accuracy Train	Accuracy Validation	Accuracy Test
Completely random	0.188	0.216	0.228
(-1, 1)	0.797	0.798	0.727
(-0.5, 0.5)	0.973	0.956	0.877
(-0.3, 0.3)	0.970	0.961	0.886
(-0.1, 0.1)	0.972	0.950	0.882
0	0.970	0.956	0.879

可以很清楚的发现在weights取值区间为(-0.3, 0.3)时,模型取得了最佳表现,将该weight运用在交叉验证中的得到:

K-fold	Accuracy Train	Accuracy Validation	Accuracy Test
1	0.941	0.950	0.872
2	0.956	0.947	0.882
3	0.970	0.956	0.883
4	0.981	0.947	0.881
5	0.981	0.950	0.879

测试集上平均准确率为0.879, 其混淆矩阵为:

```
array([[215,
       0,
           3,
                3,
                    2,
                         3,
                             2,
                                          0],
                                 0,
                                      3,
[ 0, 113,
                0,
                    1,
                                 0,
                                      2,
                                          1],
           0,
                         0,
                             0,
[ 1,
       0,
                                 1,
                                          0],
          80,
                2,
                    0,
                         0,
                             0,
                                      3,
[ 1,
           2,
                       11,
                                 1,
                                      4,
                                          0],
       0,
               67,
                    0,
                            1,
[ 3,
      2,
           5,
                1, 76, 2,
                            1,
                                 3,
                                          3],
                                      1,
       0,
           0,
                    2, 35,
                                 0,
                                      2,
                                          2],
                1,
                             0,
[ 1,
      3,
           2,
                0,
                    2,
                        0, 86,
                                 0,
                                      0,
                                          0],
[ 0,
                                 56,
                                          2],
       2,
           2,
                1,
                    1, 2,
                             0,
                                      4,
[ 1, 0,
           7,
                    0, 0,
                                          1],
                3,
                             0,
                                 0,
                                     73,
[ 1, 1,
           0, 1, 2, 2, 0, 3, 0, 79]])
```

3 Conclution

通过weights对比试验发现,模型在weight区间为(-1~0,0~1)时都有较好表现,在(-0.3,0.3)时表现最优。通过分析模型训练过程中的各项参数变化得出这一现象的猜测为,在初次计算output时,全随机权重易导致output值为接近于0的极小数,通过该 \square w = \square x(d - out)*out(1-out)公式更新梯度时会导致 \square w为0而无法完成梯度下降。