

1. DESCRIPTION

XL549 is an 8-bit serial A/D converter chip, which adopts CMOS technology and realizes A/D conversion by 8-bit switching capacitor successive approximation method. It can be serial interface with general microprocessor and controller through CLK, CS and DATAOUT, and constitute a variety of cheap measurement and control application systems. With a 4MHz on-chip system clock and hardware and software control circuit, the conversion time is up to $17\mu s$, and the XL549 sampling is 40,000 times /s.

The maximum total out-of-balance error of other functions is ± 0.5 LSB, and the typical power consumption is 6mW. Differential reference voltage high resistance input, anti-interference, can be calibrated according to the proportional scale conversion range, VREF+-VREF- ≥ 1 V, can be used for small signal sampling.

2. FEATURES

- Adopts three-wire serial mode and microprocessor interface
- 8-bit resolution AD converter
- Typical internal system clock of 4MHz
- On-chip sampling and holding circuit, conversion time ≤17us
- Differential voltage input
- Wide operating voltage 3V-6.5V
- Low power consumption 15mW
- Total offset error is ≤±0.5LSB
- Sampling speed 40000 times /S
- An internal 4MHz system clock is provided on chip and is independent of the external I/OCLOCK for operation control
- Available package : SOP8 (XL549) , DIP8 (XD549)

3. TYPICAL APPLICATION

- Handheld device
- Portable monitors and power management
- Industrial signal monitoring
- Measurement and control instrument

4. PIN CONFIGURATIONS AND FUNCTIONS

Pin Functions

Pin	Symbol	Description			
1	REF+	Positive reference voltage input 2.5V≤REF+≤Vcc+0.1			
2	ANALOG IN	Analog signal input			
3	REF—	Negative reference voltage input, -0.1V≤REF-≤2.5V			
4	GND	ground			
5	CS	Chip selection end			
6	DATA OUT	Data conversion interface output			
7	I/O CLOCK	External clock input			
8	VCC	supply voltage			

5. LIMITING PARAMETER

Supply voltage, VCC	6.5 V
Input voltage range at any input	+ 0.3 V
Output voltage range	+ 0.3 V
Peak input current range (any input)	10 mA
Peak total input current range (all inputs)	30 mA
Operating free-air temperature range, TA	o 85°C
Storage temperature range, Tstg	150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

6. ELECTRICAL CHARACTERISTIC

(VIN=5V, unless otherwise noted, TA=-40 $^{\circ}$ C to 85 $^{\circ}$ C, typical values measured at ambient temperatures of 25 $^{\circ}$ C)

Symbol	Parameter	Conditions	Min	ТҮРЕ	Max	Unit	
VCC	Supply voltage		3	5	6	V	
VOH	High-level output voltage	VCC=4.75V	2.4			V	
VOL	Low-level output voltage	VCC=4.75V			0.4	V	
	High-impedance off-	VO=VCC			10		
IOZ	state output current	VO=0			-10	μΑ	
IIH	High-level input current,control inputs	VI=VCC	0.005 2.5			μА	
IIL	Low-level input current,control inputs	VI=0	-0.005		-2.5	μА	
	Analog channel on-state	Analog input at VCC	0.4			μΑ	
II(on)	input current during sample cycle	Analog input at 0 V	1.8		-1	μΑ	
ICC	Operating supply current	CS at 0V	1.9		2.5	mA	
ICC +Iref	Linearity error	Vref+=VCC				mA	
EL	Full-scale error				±0.5	LSB	
EZS	Zero-scale error				±0.5	LSB	
EFS	Conversion time				±0.5	LSB	
tconv	Conversion time			12	17	μΑ	
Total ac	cess and conversion time			19	25	μΑ	
ta	Channel acquisition time(sample cycle)			4		I/O clock cycles	
tv	Time output data remains valid after I/O CLOCK↓			10		ns	
td	Time output data output valid			400		ns	
ten	Output enable time			1.4		μΑ	
tdis	Data bus fall time			150		ns	
tr(bus)				300		ns	
Tf(bus)				300		ns	

7. TIMING CHART AND DESCRIPTION

VOLTAGE WAVEFORMS FOR ENABLE AND DISABLE TIMES

The usual control sequence is:

- (1) Set CS low. After measuring the CS falling edge, the internal circuit waits for two internal clock rising edges and a falling edge, then confirms the change, and finally automatically outputs the highest bit (D7) of the previous conversion result to the DATAOUT terminal.
- (2) The falling edge of the first four I/OCLOCK cycles moves out of the second, third, fourth, and fifth bits (D6, D5, D4, D3), and the on-chip sampling hold circuit starts sampling the analog input at the fourth I/OCLOCK falling edge.
- (3) The falling edge of the next three I/OCLOCK cycles moves out of the 6, 7, 8 (D2, D1, D0) transitions
- (4) The falling edge of the on-chip sampling-hold circuit at the 8th I/OCLOCK cycle moves out the 6th, 7th, 8th (D2, D1, D0) conversion bits. The hold function will last for 4 internal clock cycles and then begin A/D conversion for 32 internal clock cycles. After the eighth I/OCLOCK, CS must be high, or I/OCLOCK must remain low for 36 internal system clock cycles Completion of work to be maintained and converted. If there is a valid interference pulse on I/OCLOCK when CS is low, the microprocessor/controller will lose synchronization with the device's I/O timing. An effective low level occurs if CS is high.
- (5) To sample the analog signal at a specific time, the falling edge of the 8th I/OCLOCK clock should correspond to that time, because the chip starts sampling at the falling edge of the 4th I/OCLOCK clock, but starts saving at the falling edge of the 8th I/OCLOCK clock.

www.xinluda.com 4 / 6 Rev 2.5.2

8. ORDERING INFORMATION

Ordering Information

Part Number	Device Marking	Package Type	Body size (mm)	Temperature (°C)	MSL	Transport Media	Package Quantity
XL549	XL549	SOP8	4.90 * 3.90	- 20 to 85	MSL3	T&R	2500
XD549	XD549	DIP8	9.25 * 6.38	- 2 0 to 85	MSL3	Tube 50	2000

9. DIMENSIONAL DRAWINGS

UNIT:mm

	MIN	NOM	MAX
A	3.600	3.800	4.000
A1	3. 786	3.886	3. 986
A2	3. 200	3. 300	3. 400
A3	1.550	1.600	1.650
b	0. 440	1	0.490
е	2.510	2.540	2. 570
D	9. 150	9. 250	9. 350
E	7.800	8. 500	9. 200
E1	6. 280	6. 380	6. 480
L	3.000	I	I