NOMENCLATURA

REPRESENTACIÓN DE FÓRMULAS

El símbolo del catión se escribe del lado izquierdo y el del anión del lado derecho.

NaCl

HF

Cuando la molécula está formada a partir de tres átomos: primero se anota el catión de menor electronegatividad, luego el catión que le sigue en aumento de electronegatividad y por último se anota el símbolo del anión.

NaCN

NaHCO₃

SISTEMAS DE NOMENCLATURA

A) NOMENCLATURA GINEBRA

Considera el empleo de prefijos "hipo" y "per", y como sufijos "oso" e "ico".

1) Elementos con dos estados de oxidación

Al elemento con menor número de oxidación, se le asigna el sufijo "oso" y para el de mayor oxidación se usa "ico".

Estados de oxidación	Sufijo	lón+ palabra genérica del elemento+ sufijo	
Fe ²⁺	"oso"	Ión ferroso	
Fe ³⁺	"ico"	Ión férrico	

2) Elementos con 4 estados de oxidación

Se usan los prefijos "hipo" y "per" además de los sufijos "oso" e "ico"

Número de oxidación	Prefijo	Sufijo	Ión+prefijo+palabra genérica del elemento+ sufijo	
Cl ⁺	Hipo	oso	Ión hipocloroso	
Cl ³⁺		oso	Ión cloroso	
Cl ⁵⁺		ico	Ión clórico	
Cl ⁷⁺	Per	ico	lón perclórico	

B) NOMENCLATURA STOCK

Utiliza un número romano entre paréntesis que indica el estado de oxidación del elemento positivo

lón	Número de oxidación	Ión+ nombre del elemento+oxidación
Fe ²⁺	2+	Ión fierro (II)
Fe ³⁺	3+	Ión fierro(III)

C) NOMENCLATURA SISTEMÁTICA (I.U.P.A.C.)

Este tipo de nomenclatura nombra el número de átomos de cada elemento que integran la molécula, y para enunciarlos utiliza los prefijos numéricos siguientes:

Número	Prefijo	Número	Prefijo
1	Mono	6	Hexa
2	Di	7	Hepta
3	Tri	8	Octa
4	Tetra	9	Nona
5	Penta	10	Deca

Molécula	Nombre Sistemático	
Fe ₂ O ₃	Trióxido de difierro	
Cu(OH) ₂	Dihidróxido de monocobre	
	Dihidróxido de cobre	
Al_2S_3	Trisulfuro de dialuminio	
CoCl ₃	Tricloruro de monocobalto	
	Tricloruro de cobalto	

NOMENCLATURA TRADICIONAL DE ANIONES MONOÁTOMICOS Y POLIATÓMICOS

A) ANIONES MONOATÓMICOS

Nombre genérico del elemento + sufijo "uro"

Anión	Nombre genérico del elemento	Sufijo "uro"	Nombre
F ⁻	Fluor	uro	Fluoruro
S ²⁻	Sulf	uro	Sulfuro
Cl	Clor	uro	Cloruro

B) ANIONES POLIATÓMICOS

Depende de la molécula que les da origen, generalmente provienen de la disociación de ácidos de oxisales. Debido a que en su estructura los elementos poseen diferente número de oxidación, se utilizan los sufijos "ito" y "ato".

ANIÓN	Oxidación del N	Nombre genérico	Sufijo	Nombre
NO ₂	3+	Nitr	ito	Nitrito
NO ₃	5+	Nitr	ato	Nitrato

PRINCIPALES ANIONES POLIATÓMICOS MONOVALENTES

Acetato	CH₃COO ⁻	Nitrito	NO ₂
Bicarbonato	HCO ₃	Perclorato	CIO ₄
Bisulfato	HSO ₄ ⁻¹	Permanganato	MnO ₄
Bisulfito	HSO ₃ ⁻¹	Tiocianato	SCN
Bisulfuro	HS ⁻	Hidróxido	OH ⁻
Cianuro	CN ⁻	Fluoruro	F ⁻
Clorato	ClO ₃	Cloruro	Cl
Clorito	ClO ₂	Yoduro	Ī
Formiato	HCOO ⁻	Bromuro	Br⁻
Nitrato	NO ₃	Hipoclorito	CIO

PRINCIPALES ANIONES DIVALENTES

Carbonato	CO ₃ ⁻²
Cromato	CrO ₄ ⁻²
Dicromato	Cr ₂ O ₇ ⁻²
Fosfato monoácido	HPO ₄ ⁻²
Oxalato	$C_2O_4^{-2}$
Óxido	O ⁻²
Sulfato	SO ₄ ⁻²
Sulfito	HSO ₃ ⁻²
Sulfuro	S ⁻²
Tiosulfato	$S_2O_3^{-2}$
Peróxido	02-2

PRINCIPALES ANIONES TRIVALENTES

Arseniato	AsO ₄ ³⁻	
Fosfato	PO ₄ ³⁻	
Fosfito	PO ₃ ³⁻	
Arsenito	AsO ₃ ³⁻	

HIDRUROS E HIDRÁCIDOS

Cuando el hidrógeno se combina con elementos químicos que tienen menor electronegatividad que él, genera la formación de **HIDRUROS**

NaH Hidruro de Sodio

Cuando la combinación del hidrógeno se realiza con elementos más electronegativos, se producen los HIDRÁCIDOS

ÓXIDOS Y ANHÍDRIDOS

A) ÓXIDOS METÁLICOS

B) ÓXIDOS DE NO METALES

"óxido de..." + nombre del metal

"anhídrido"+ nombre del no metal

CaO Óxido de Calcio

FeO Óxido ferr**oso** Fe₂O₃ Óxido férr**ico** SO₂ Anhídrido sulfur**oso** SO₃ Anhídrido sulfúr**ico**

HIDRÓXIDOS

OXIÁCIDOS

Óxidos + Agua

"Hidróxido de..." + nombre del metal

Pb(OH)₂ Hidróxido plumboso Pb(OH)₄ Hidróxido plúmbico Hidrógeno+ elemento-no metal + Oxígeno

"Ácido" + nombre genérico + sufijo "oso" o "ico"

H₂SO₃ Ácido sulfuroso H₂SO₄ Ácido sulfúrico

SALES BINARIAS

Hidróxido + Hidrácido → Sal binaria + Agua NaOH + HCl → NaCl + H_2O OXISALES

Hidróxido + Oxiácidos → Sales binarias + H₂O

Nombre genérico del anión con sufijo "uro" + de + Nombre del metal

FeCl₂ Cloruro ferroso FeCl₃ Cloruro férrico El anión se nombra derivándolo del ácido del que proviene cambiando los sufijos "oso" e "ico" por las terminaciones "ito" y "ato"

NaOH + HClO → NaClO + H₂O

Oxisal formada: Hipoclorito de sodio

OXISALES ÁCIDAS

Se forman cuando al oxiácido no se le sustituyen todos los iones hidrógeno que posee su molécula.

$$H_2CO_3 + Na^+ \rightarrow NaHCO_3 + H^+$$

 $H_2CO_3 + 2Na^+ \rightarrow Na_2CO_3 + 2H^+$

Se utiliza el prefijo "Bi" para nombrar al carbonato que aún conserva algún hidrógeno.

NaHCO₃ Bicarbonato de sodio

RADICALES

Se les llama así, al grupo de átomos con carga residual que quedan fuertemente unidos debido a una disociación incompleta.

OXIÁCIDO	FÓRMULA	RADICAL	FÓRMULA
Ácido sulfúrico	H ₂ SO ₄	Bisulfato	HSO ₄
Ácido sulfúrico	H ₂ SO ₄	Sulfato	SO ₄ ²⁻
Ácido sulfuroso	H ₂ SO ₃	Bisulfito	HSO ₃
Ácido sulfuroso	H₂SO₃	Sulfito	SO ₃ ²⁻
Ácido carbónico	H ₂ CO ₃	Bicarbonato	HCO ₃
Ácido carbónico	H ₂ CO ₃	Carbonato	CO ₃ ²⁻
Ácido nítrico	HNO ₃	Nitrato	NO ₃
Ácido nitroso	HNO ₂	Nitrito	NO ₂
Ácido fosfórico	H ₃ PO ₄	Fosfato diácido	H ₂ PO ₄
Ácido fosfórico	H ₃ PO ₄	Fosfato monoácido	HPO ₄ ²⁻
Ácido fosfórico	H ₃ PO ₄	Fosfato	PO ₄ ³⁻
Ácido acético	CH₃COOH	Acetato	CH₃COO ⁻
Hidróxido de Sodio	NaOH	Hidróxido	ŌН

BIBLIOGRAFÍA: López A. Formulación y nomenclatura de compuestos químicos inorgánicos. Instituto Politécnico Nacional. Escuela Nacional de Ciencias Biológicas. Departamento de Química Inorgánica. pp. 22-60.