Computational Skills		Theory	i	
	te det prod.	Linear Systems		Linear Transformations
	ulate projections	linear Systems Systems Systems	matrix	$T:\mathbb{R}^n\to\mathbb{R}^m$
	vector de composition			- represented by matrix $T(\vec{x}) = A\vec{x} (mxn)$
Earls. Earls. 34steins	culate distance	Solns = particular +		T(x) = Ax (mxn)
	tween vectors. m-schmidt	Unique A is in	nvertible 1	A = [Tien] Tien]
- Writing Solutions 1"		Vectorspaces		{ei} - storderd basis
- Writing solutions in parametric form	Every vector is	basis = linearly under spanning s	pendent !	if $A = [a_1 \dots a_n]$ (mxn)
ヌ= ドナト	Every vector is made of basis elements			- (ol(A) = [x, a, + . + x, a, x; ER }
- Determine linear	V=6,++Cnbn	$\beta = \{b_1, b_2,, b_n\}$	-dimensional	= output of T
independence - calculate dimension - recognize pivots	[V] = [C] = coordinate [V] = Vector w.r.t B	a basis for an r	And Andrews	= range (T) = R"
8 free var.		B= [61, 6n]		- Null(A)={文 A文=分分
- Matrix algebra	- if B, C are bases	- has n-pivots	= spans	= homogeneous
addition/scalar/matrix	[V] c = P [V]c	- has no free vo dim (V) = # bo	indepl	= homogeneous solves of Ax = 0
- Finding inverses for	Chang of basis	-If USV 15 a SU		" - 07
matrices	Charge of basis) matrix	dim (U) \le di	im(V)	- rank(A) = dim(Gl(A))
- Taking determinants	Basis for null(A)	- dim(u) =dim(v) =		
- Finding Change / Switching of basis mutrix / coordinate systems	= Nomogeneos solvs	TISO	ento &	- nullity(A) = dim(Null(A))
- Find a basis for	Basis for Col(A)	1 40		= # free var.
null(A), col(A), cow(A)	= pivot columns		vertible	- rank + nullity = # cols - dim(row(A)) = dim(col(A))
- Find Eigen values / Eigen vect.	Basis for row (A)	RREE 1 1		- Tonto (A) Pivot in Every
- Find P.D for diagonalization	- nonzero rows of	Ais	invertible	-TItol > No free var.

More Theory

Determinants

- Only square matrices

- det (A) ≠0

A is invertible

- det (AB) = det(A) det(B)

- det(AT) = Vdet(A)

- det(AT) = det(A)

row op Effect

Scale by K det(A)

switch - det(A)

add multiples Nocharge

Eigen voctors/Eigen values

- A (nxn) has n complex
Eigenvalues
(counting multiplicity)

- Eigenvalues = roots of det (A-XI)

- Eigenvectors = null (A-LI)

 $-A\dot{x} = \lambda\dot{x}$ Eigenvalue Eigenvector

· A is diagonal izable

dim (null (A-AiI)) = mult(Ai)

 $-A = PDP^{-1}$ where

 $D = \begin{pmatrix} \lambda_1 \\ \lambda_n \end{pmatrix}$ $P = \begin{bmatrix} E_{igenvects} \end{bmatrix}$

change of basis matrix

orthogonality

- ガエグ きる・ジ=0

- ||v|| = |v.v = kength of v

- VIIII is a unit vector

- If W = subspace then W = vectors I to all vectors in W

Given a vector y

g = w + w where

 $\vec{w} = proj_{\vec{w}}(\vec{y}) \in W$ $\vec{w}_{\perp} = \vec{y} - proj_{\vec{w}}(\vec{y}) \in W$

- Given an orthogonal basis for W; (成,... 成n) Proj(ý)=Ciwi+··+Cnwn

Ci = 9. Wi

- if gew then y = Projug)
- dist(g,w) = || y-projug)||