Homework 02: Due 9/20

Stat061-F23 Prof Amanda Luby

1. Define a new estimator $\hat{\theta}_4$ for the Uniform $(0,\theta)$ distribution as follows. Is $\hat{\theta}_4$ unbiased? You can give an intuitive justification or a mathematical one, and are welcome to use any results from class.

$$\hat{\theta_4} = \begin{cases} 2\bar{X} & \text{if } \max\{X_i\} < 2\bar{X} \\ \max\{X_i\} & \text{otherwise} \end{cases}$$

- 2. Let $Y_1,Y_2,...Y_n$ be a random sample of size n from the pdf $f_y(y)=\frac{1}{\theta}e^{-y/\theta},y>0.$
 - (a) Show that $\hat{\theta_1}=Y_1, \hat{\theta_2}=\bar{Y},$ and $\hat{\theta_3}=nY_{\min}$ are all unbiased estimators for θ .
 - (b) Find the variances of $\hat{\theta}_1$, $\hat{\theta}_2$, $\hat{\theta}_3$. Comment on which estimator is most efficient.
- 3. Suppose $X_1,X_2,...,X_n$ are iid from a Gamma (α,λ) distribution. That is, $f_x(x)=\frac{\lambda^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\lambda x}$. You can also use $E(X)=\frac{\alpha}{\lambda}$ and $V(X)=\frac{\alpha}{\lambda^2}$.
 - (a) Write out the likelihood function, and show that it depends on the data values only through \bar{X} and $\bar{X}_g = (\prod X_i)^{1/n}$ (\bar{X}_g is the geometric mean).
 - (b) When α and λ are both unknown, the MLE does not have a closed form solution. Instead, find the MoM estimates $\hat{\alpha}$ and $\hat{\lambda}$.
 - (c) Are the MoM estimates unbiased?
 - (d) Gamma random variables are the waiting times for Poisson occurrences. In sports, goals are often assumed to follow a Poisson process, which means that the waiting time for the 1st goal can be assumed to be a Gamma random variable. For the Swarthmore women's soccer team so far this year, the first goal in n=4 games has occurred at $X_i=11.01667,3.05,76.65,24.1333$ minutes. Report $\hat{\alpha}$ and $\hat{\lambda}$ for these data. (Note that $\alpha=1$ implies an exponential distribution, which would be the case if goals occur as a Poisson process)
- 4. TBA after Friday's class
- 5. TBA after Friday's class