MISE EN PLACE D'UN RAID 5 LOGICIEL AVEC LVM SUR ALPINE LINUX

Auteur: Wadje Kamgo Leonce

Objectifs pédagogiques

Ce tutoriel guide un technicien débutant dans la création d'un système de stockage redondant et flexible. Il permet d'apprendre à :

- Créer un RAID 5 logiciel avec trois disques.
- Gérer les volumes logiques avec LVM.
- Formater, monter et tester le volume.
- Simuler une panne et reconstruire le RAID.

Définitions concept concepts clés

Qu'est-ce qu'un RAID 5?

Un RAID 5 utilise au moins trois disques pour distribuer les données avec parité, offrant une tolérance à la panne d'un disque tout en optimisant l'espace de stockage.

Pourquoi LVM?

LVM (Logical Volume Manager) permet une gestion flexible des volumes, comme le redimensionnement ou la création de snapshots, contrairement à un partitionnement classique

Prérequis

- Alpine Linux installé sur une machine virtuelle ou physique.
- Accès root ou sudo.
- Trois disques additionnels non utilisés : /dev/vdb, /dev/vdc, /dev/vdd.
- Paquets requis : mdadm, lvm2.

Installation des paquets

apk update apk add mdadm lvm2

```
MINOW64/oUser/user
localhost:~# apk update
retch ntrp://alpinelinux.mirrors.ovh.net/v3.22/main/x86_64/APKINDEX.tar.gz
v3.22.0-316-g6c5c0d0b299 [http://alpinelinux.mirrors.ovh.net/v3.22/main]
OK: 5654 distinct packages available
localhost:~# apk add mdadm lvm2
(1/9) Installing libaio (0.3.113-r2)
(2/9) Installing low2-libs (2.03.32-r0)
(3/9) Installing lvm2-libs (2.03.32-r0)
(4/9) Installing lvm2-Q:03.32-r0)
(5/9) Installing lvm2-qibe (2.03.32-r0)
(6/9) Installing lbm2-openc (2.03.32-r0)
(6/9) Installing libsmartcols (2.41-r9)
(7/9) Installing mdadm (4.3-r2)
(8/9) Installing mdadm (4.3-r2)
(9/9) Installing mdadm (4.3-r2)
(9/9) Installing mdadm-openc (4.3-r2)
Executing busybox-1.37.0-r18.trigger
OK: 210 MiB in 109 packages
```

Capture 1: Installation des paquets avec apk add.

1. Vérification des disques

fdisk –l

Capture 2 : Affichage des disques disponibles.

2. Création du RAID 5

Avant de créer le RAID, assurez-vous que les disques ne contiennent pas de données importantes, car la création du RAID formatera les disques. Le RAID 5 utilise la parité pour reconstruire les données en cas de panne d'un disque.

mdadm --create --verbose /dev/md0 --level=5 --raid-devices=3 /dev/vdb /dev/vdc /dev/vdd

Puis:

cat /proc/mdstat pour verifier

Capture 3: Résultat de cat/proc/mdstat avec la synchronisation RAID 5 en cours.

3. Sauvegarde de la configuration RAID

La sauvegarde dans /etc/mdadm.conf permet au système de reconnaître automatiquement le RAID au redémarrage.

mdadm --detail --scan >> /etc/mdadm.conf

4. Création des volumes LVM

pvcreate /dev/md0 vgcreate vgdata /dev/md0 lvcreate -n lvstockage -L 5G vgdata

```
MNNGWS4/cdVers/user
localhost:-#
localhost:-# pvcreate /dev/md0
Physical volume "/dev/md0" successfully created.
localhost:-#
Création d'un
volume logique
```

Capture 4: Affichage du volume logique avec lvdisplay.

5. Formatage et montage du volume :

mkfs.ext4 /dev/vgdata/lvstockage mkdir /mnt/raid mount /dev/vgdata/lvstockage /mnt/raid

Capture 5: df-h montrant le volume monté.

6. Test de fonctionnement

echo "Test RAID + LVM OK" > /mnt/raid/test.txt
cat /mnt/raid/test.txt

```
MINGW64/c/Users/user
localhost:~#
localhost:~# echo "Test RAID + LVM OK" > /mnt/raid/test.txt
localhost:~# cat /mnt/raid/test.txt
Test RAID + LVM OK
localhost:~# |
```

Capture 6 : Fichier test.txt affiché correctement.

7. Simulation de panne disque

mdadm /dev/md0 --fail /dev/vdb mdadm /dev/md0 --remove /dev/vdb cat /proc/mdstat

```
localnost:~#
localhost:~# cat /proc/mdstat
Personalities : [raid6] [raid5] [raid4]
md0 : active raid5 sdd[3] sdb[0]
16758784 blocks super 1.2 level 5, 512k chunk, algorithm 2 [3/2] [U
unused devices: <none>
localhost:~# mdadm --detail /dev/md0
 /dev/md0:
        Version: 1.2
Creation Time: Wed Jul 9 04:12:41 2025
Raid Level: raid5
Array Size: 16758784 (15.98 GiB 17.16 GB)
Used Dev Size: 8379392 (7.99 GiB 8.58 GB)
Raid Devices: 3
Total Devices: 2
             Persistence : Superblock is persistent
    Update Time : Wed Jul 9 04:29:21 2025
State : clean, degraded
Active Devices : 2
Working Devices : 2
Failed Devices : 0
         Spare Devices : 0
              Layout : left-symmetric
Chunk Size : 512K
Consistency Policy : resync
                     Name : localhost:0 (local to host localhost)
UUID : 630498cc:85facdf4:e943996e:b1018829
Events : 21
       Number
                        Major
                                       Minor
                                                       RaidDevice State
                                           16
0
            0
                                                                           active sync
                                                                                                      /dev/sdb
                            8
0
8
                                                              1
2
                                                                           removed
                                           48
                                                                           active sync
                                                                                                      /dev/sdd
 localhost:~#
```

Capture 7: mdadm --detail /dev/md0 montrant le disque échoué.

8. Remplacement et reconstruction :

Simuler un nouveau disque (ex. /dev/vde), puis :

mdadm /dev/md0 --add /dev/vde cat /proc/mdstat

Capture 8: Reconstruction du RAID en cours.

Résultat final attendu:

- RAID 5 actif et fonctionnel.
- Volume LVM accessible et monté.
- Données conservées après panne et reconstruction.

Problèmes fréquents et solutions :

Problème	Solution
RAID ne se crée pas	Vérifier les disques et leurs usages
LVM ne reconnaît pas /dev/md0	RAID non initialisé ou corrompu
RAID ne se reconstruit pas	Disque ajouté incorrectement

Ce tutoriel démontre une méthode fiable pour mettre en œuvre un système de stockage combinant tolérance aux pannes (RAID 5) et souplesse d'administration (LVM). Cette approche est parfaitement adaptée à des environnements nécessitant haute disponibilité et évolutivité, comme les serveurs de fichiers, de sauvegarde ou de virtualisation.