Chapter 06: Linear Model Selection and Regularization

Solutions to Exercises

February 03, 2023

CONCEPTUAL
EXERCISE 1:
Part a)
Best subset will have the smallest train RSS because the models will optimize on the training RSS and bessubset will try every model that forward and backward selection will try.
Part b)
The best test RSS model could be any of the three. Best subset could easily overfit if the data has larg p predictors relative to n observations. Forward and backward selection might not converge on the sam model but try the same number of models and hard to say which selection process would be better.
Part c)
• i. TRUE
• ii. TRUE
• iii. FALSE
• iv. FALSE
• v. FALSE
EXERCISE 2:
Part a)
iii. is TRUE - lasso puts a budget constraint on least squares (less flexible)
Part b)
iii. is TRUE - ridge also puts a budget constraint on least squares (less flexible)
Part c)

ii. is TRUE - a non-linear model would be more flexible and have higher variance, less bias
EXERCISE 3:
Part a)
iv. is TRUE - as s is increased, there is less and less constraint on the model and it should always have better training error (if s is increased to s' , then the best model using a budget of s would be include when using a budget of s')
Part b)
ii. is TRUE - test error will improve (decrease) to a point and then will worsen (increase) as constraint loosen and model overfits
Part c)
iii. is TRUE - variance always increases with fewer constraints
Part d)
iv. is TRUE - bias always decreases with more model flexibility
Part e)
v. is TRUE - the irreducible error is a constant value, not related to model selection
EXERCISE 4:
This problem is similar to Excercise 3, but for ridge instead of lasso and using λ instead of s . For each question part, ridge and lasso should be the same directionally except that increasing λ puts a heavier penalty in the equation, equivalent to reducing the budget s , so the answers to Exercise 4 should be flipped (horizontally) from answers in Exercise 3.
Part a)
iii. is TRUE - training error increases steadily
Part b)
ii. is TRUE - test error will decrease initially and then increase
Part c)
iv. is TRUE - variance always decrease with more constraints

Part d)

iii. is TRUE - bias always increase with less model flexibility

Part e)

v. is TRUE - the irreducible error is a constant value, not related to model selection

EXERCISE 5:

Part a)

Ridge: minimize $(y_1 - \hat{\beta}_1 x_{11} - \hat{\beta}_2 x_{12})^2 + (y_2 - \hat{\beta}_1 x_{21} - \hat{\beta}_2 x_{22})^2 + \lambda(\hat{\beta}_1^2 + \hat{\beta}_2^2)$

Part b)

Step 1: Expanding the equation from Part a:

$$\begin{split} &(y_1 - \hat{\beta}_1 x_{11} - \hat{\beta}_2 x_{12})^2 + (y_2 - \hat{\beta}_1 x_{21} - \hat{\beta}_2 x_{22})^2 + \lambda (\hat{\beta}_1^2 + \hat{\beta}_2^2) \\ &= (y_1^2 + \hat{\beta}_1^2 x_{11}^2 + \hat{\beta}_2^2 x_{12}^2 - 2\hat{\beta}_1 x_{11} y_1 - 2\hat{\beta}_2 x_{12} y_1 + 2\hat{\beta}_1 \hat{\beta}_2 x_{11} x_{12}) \\ &+ (y_2^2 + \hat{\beta}_1^2 x_{21}^2 + \hat{\beta}_2^2 x_{22}^2 - 2\hat{\beta}_1 x_{21} y_2 - 2\hat{\beta}_2 x_{22} y_2 + 2\hat{\beta}_1 \hat{\beta}_2 x_{21} x_{22}) \\ &+ \lambda \hat{\beta}_1^2 + \lambda \hat{\beta}_2^2 \end{split}$$

Step 2: Taking the partial derivative to $\hat{\beta}_1$ and setting equation to 0 to minimize:

$$\frac{\partial}{\partial \hat{\beta}_1} : (2\hat{\beta}_1 x_{11}^2 - 2x_{11}y_1 + 2\hat{\beta}_2 x_{11}x_{12}) + (2\hat{\beta}_1 x_{21}^2 - 2x_{21}y_2 + 2\hat{\beta}_2 x_{21}x_{22}) + 2\lambda \hat{\beta}_1 = 0$$

Step 3: Setting $x_{11} = x_{12} = x_1$ and $x_{21} = x_{22} = x_2$ and dividing both sides of the equation by 2:

$$(\hat{\beta}_1 x_1^2 - x_1 y_1 + \hat{\beta}_2 x_1^2) + (\hat{\beta}_1 x_2^2 - x_2 y_2 + \hat{\beta}_2 x_2^2) + \lambda \hat{\beta}_1 = 0$$

$$\hat{\beta}_1(x_1^2 + x_2^2) + \hat{\beta}_2(x_1^2 + x_2^2) + \lambda \hat{\beta}_1 = x_1 y_1 + x_2 y_2$$

Step 4: Add $2\hat{\beta}_1x_1x_2$ and $2\hat{\beta}_2x_1x_2$ to both sides of the equation:

$$\hat{\beta}_1(x_1^2 + x_2^2 + 2x_1x_2) + \hat{\beta}_2(x_1^2 + x_2^2 + 2x_1x_2) + \lambda \hat{\beta}_1 = x_1y_1 + x_2y_2 + 2\hat{\beta}_1x_1x_2 + 2\hat{\beta}_2x_1x_2$$
$$\hat{\beta}_1(x_1 + x_2)^2 + \hat{\beta}_2(x_1 + x_2)^2 + \lambda \hat{\beta}_1 = x_1y_1 + x_2y_2 + 2\hat{\beta}_1x_1x_2 + 2\hat{\beta}_2x_1x_2$$

Step 5: Because $x_1 + x_2 = 0$, we can eliminate the first two terms:

$$\lambda \hat{\beta}_1 = x_1 y_1 + x_2 y_2 + 2 \hat{\beta}_1 x_1 x_2 + 2 \hat{\beta}_2 x_1 x_2$$

Step 6: Similarly by taking the partial derivative to $\hat{\beta}_2$, we can get the equation:

$$\lambda \hat{\beta}_2 = x_1 y_1 + x_2 y_2 + 2 \hat{\beta}_1 x_1 x_2 + 2 \hat{\beta}_2 x_1 x_2$$

Step 7: The left side of the equations for both $\lambda \hat{\beta}_1$ and $\lambda \hat{\beta}_2$ are the same so we have:

$$\lambda \hat{\beta}_1 = \lambda \hat{\beta}_2$$

$$\hat{\beta}_1 = \hat{\beta}_2$$

Part c)

Lasso: minimize $(y_1 - \hat{\beta}_1 x_{11} - \hat{\beta}_2 x_{12})^2 + (y_2 - \hat{\beta}_1 x_{21} - \hat{\beta}_2 x_{22})^2 + \lambda(|\hat{\beta}_1| + |\hat{\beta}_2|)$

Part d)

Replacing the constraint term from Part b, the derivative term to β is:

$$\frac{\partial}{\partial \hat{\beta}}(\lambda|\beta|):\lambda\frac{|\beta|}{\beta}$$

Following through the steps in Part b, we get:

$$\lambda \frac{|\beta_1|}{\beta_1} = \lambda \frac{|\beta_2|}{\beta_2}$$

So it seems that the lasso just requires that β_1 and β_2 are both positive or both negative (ignoring possibility of 0...)

EXERCISE 6:

Part a)

```
betas <- seq(-10,10,0.1)
eq.ridge <- function(beta, y=7, lambda=10) (y-beta)^2 + lambda*beta^2
plot(betas, eq.ridge(betas), xlab="beta", main="Ridge Regression Optimization", pch=1)
points(5/(1+10), eq.ridge(7/(1+10)), pch=16, col="red", cex=2)</pre>
```

Ridge Regression Optimization

For y=7 and $\lambda=10,\,\hat{\beta}=\frac{7}{1+10}$ minimizes the ridge regression equation

Part b)

```
betas <- seq(-10,10,0.1)
eq.lasso <- function(beta, y=7, lambda=10) (y-beta)^2 + lambda*abs(beta)
plot(betas, eq.lasso(betas), xlab="beta", main="Lasso Regression Optimization", pch=1)
points(7-10/2, eq.lasso(7-10/2), pch=16, col="red", cex=2)</pre>
```

Lasso Regression Optimization

For y=7 and $\lambda=10,\,\hat{\beta}=7-\frac{10}{2}$ minimizes the ridge regression equation

EXERCISE 7:

Part a)

[... will come back to this. maybe.]

Part b)

[... will come back to this. maybe.]

Part c)

[... will come back to this. maybe.]

Part d)

[... will come back to this. maybe.]

Part e

[... will come back to this. maybe.]

APPLIED

EXERCISE 8:

Part a)

```
set.seed(1)
X <- rnorm(100)
eps <- rnorm(100)</pre>
```

Part b)

```
Y \leftarrow 5 + 10*X - 3*X^2 + 2*X^3 + eps plot(X,Y)
```


Part c)

```
require(leaps)
regfit.full <- regsubsets(Y~poly(X,10,raw=T), data=data.frame(Y,X), nvmax=10)
(reg.summary <- summary(regfit.full))</pre>
```

```
## Subset selection object
## Call: regsubsets.formula(Y ~ poly(X, 10, raw = T), data = data.frame(Y,
```

```
X), nvmax = 10
## 10 Variables (and intercept)
                           Forced in Forced out
##
                               FALSE
## poly(X, 10, raw = T)1
                                           FALSE
## poly(X, 10, raw = T)2
                               FALSE
                                           FALSE
## poly(X, 10, raw = T)3
                               FALSE
                                           FALSE
## poly(X, 10, raw = T)4
                               FALSE
                                           FALSE
## poly(X, 10, raw = T)5
                               FALSE
                                           FALSE
## poly(X, 10, raw = T)6
                               FALSE
                                           FALSE
## poly(X, 10, raw = T)7
                               FALSE
                                           FALSE
## poly(X, 10, raw = T)8
                               FALSE
                                           FALSE
## poly(X, 10, raw = T)9
                               FALSE
                                           FALSE
## poly(X, 10, raw = T)10
                               FALSE
                                           FALSE
## 1 subsets of each size up to 10
## Selection Algorithm: exhaustive
##
             poly(X, 10, raw = T)1 poly(X, 10, raw = T)2 poly(X, 10, raw = T)3
## 1
                                     11 11
                                                            11 11
     (1)
                                     "*"
                                                            11 11
             "*"
## 2
     (1)
             "*"
                                     "*"
                                                            "*"
## 3
     (1)
             "*"
                                     "*"
## 4
                                                            "*"
     (1)
                                     "*"
                                                            "*"
## 5
     (1)
             "*"
## 6 (1)
             "*"
                                     "*"
                                                            "*"
## 7
     (1)
              "*"
                                     "*"
                                                            "*"
                                     "*"
                                                            "*"
## 8
     (1)
              "*"
## 9 (1)
             "*"
                                     "*"
                                                            "*"
## 10 (1) "*"
                                     "*"
                                                            "*"
##
             poly(X, 10, raw = T)4 poly(X, 10, raw = T)5 poly(X, 10, raw = T)6
             11 11
## 1
     (1)
             11 11
                                     11 11
                                                            11 11
## 2 (1)
                                     ......
                                                            11 11
             11 11
## 3
     (1)
                                     "*"
## 4
      (1)
## 5
      ( 1
          )
             11 11
                                     "*"
                                                            "*"
## 6
             ......
                                     11 11
                                                            11 11
     (1)
             11 11
                                     "*"
                                                            "*"
## 7
     (1)
                                     11 11
                                                            "*"
             "*"
## 8
     (1)
                                     "*"
                                                            "*"
## 9
     (1)
             "*"
                                     "*"
                                                            "*"
## 10 (1) "*"
##
             poly(X, 10, raw = T)7 poly(X, 10, raw = T)8 poly(X, 10, raw = T)9
                                     11 11
                                                            11 11
## 1
     (1)
             11 11
                                     11 11
                                                            11 11
## 2 (1)
             11 11
             11 11
                                     11 11
## 3
     (1)
## 4
     (1)
## 5
      (1)
                                     11 11
## 6
             "*"
                                     "*"
     (1)
## 7
     (1)
                                     "*"
     (1)
                                     "*"
                                                             "*"
## 8
      (1)
             11 11
                                     "*"
                                                            "*"
## 9
                                     "*"
                                                            "*"
## 10 (1) "*"
##
             poly(X, 10, raw = T)10
## 1
      (1)
             11 11
## 2
     (1)
             11 11
## 3
     (1)
             11 11
## 4
     (1)
## 5
             11 11
     (1)
```

```
## 6
      (1)
## 7
      (1
          )
      ( 1
      (1)
## 9
## 10 (1) "*"
par(mfrow=c(3,1))
min.cp <- which.min(reg.summary$cp)</pre>
plot(reg.summary$cp, xlab="Number of Poly(X)", ylab="Best Subset Cp", type="1")
points(min.cp, reg.summary$cp[min.cp], col="red", pch=4, lwd=5)
min.bic <- which.min(reg.summary$bic)</pre>
plot(reg.summary$bic, xlab="Number of Poly(X)", ylab="Best Subset BIC", type="l")
points(min.bic, reg.summary$bic[min.bic], col="red", pch=4, lwd=5)
min.adjr2 <- which.max(reg.summary$adjr2)</pre>
plot(reg.summary$adjr2, xlab="Number of Poly(X)", ylab="Best Subset Adjusted R^2", type="1")
points(min.adjr2, reg.summary$adjr2[min.adjr2], col="red", pch=4, lwd=5)
Best Subset Cp
                    2
                                                                         8
                                                                                          10
                                            Number of Poly(X)
Best Subset BIC
                    2
                                     4
                                                       6
                                                                         8
                                                                                          10
                                            Number of Poly(X)
Best Subset Adjusted R^2
                    2
                                                       6
                                                                         8
                                                                                          10
                                            Number of Poly(X)
coef(regfit.full, min.cp)
              (Intercept) poly(X, 10, raw = T)1 poly(X, 10, raw = T)2
##
##
               5.07200775
                                      10.38745596
                                                               -3.15424359
## poly(X, 10, raw = T)3 poly(X, 10, raw = T)5
##
               1.55797426
                                       0.08072292
```

```
coef(regfit.full, min.bic)
##
             (Intercept) poly(X, 10, raw = T)1 poly(X, 10, raw = T)2
##
                5.061507
                                       9.975280
                                                            -3.123791
## poly(X, 10, raw = T)3
                2.017639
##
coef(regfit.full, min.adjr2)
             (Intercept) poly(X, 10, raw = T)1 poly(X, 10, raw = T)2
##
##
              5.07200775
                                   10.38745596
                                                          -3.15424359
## poly(X, 10, raw = T)3 poly(X, 10, raw = T)5
              1.55797426
                                    0.08072292
##
Part d)
# forward selection
regfit.fwd <- regsubsets(Y~poly(X,10,raw=T), data=data.frame(Y,X), nvmax=10)</pre>
(fwd.summary <- summary(regfit.fwd))</pre>
## Subset selection object
## Call: regsubsets.formula(Y ~ poly(X, 10, raw = T), data = data.frame(Y,
       X), nvmax = 10
## 10 Variables (and intercept)
##
                          Forced in Forced out
## poly(X, 10, raw = T)1
                              FALSE
                                         FALSE
## poly(X, 10, raw = T)2
                              FALSE
                                         FALSE
## poly(X, 10, raw = T)3
                              FALSE
                                         FALSE
## poly(X, 10, raw = T)4
                              FALSE
                                         FALSE
## poly(X, 10, raw = T)5
                              FALSE
                                         FALSE
## poly(X, 10, raw = T)6
                              FALSE
                                         FALSE
## poly(X, 10, raw = T)7
                              FALSE
                                         FALSE
## poly(X, 10, raw = T)8
                              FALSE
                                         FALSE
## poly(X, 10, raw = T)9
                              FALSE
                                         FALSE
## poly(X, 10, raw = T)10
                                         FALSE
                              FALSE
## 1 subsets of each size up to 10
## Selection Algorithm: exhaustive
             poly(X, 10, raw = T)1 poly(X, 10, raw = T)2 poly(X, 10, raw = T)3
## 1 ( 1 )
             "*"
             "*"
                                    "*"
                                                          11 11
## 2 (1)
             "*"
                                    "*"
                                                          "*"
## 3 (1)
             "*"
                                    "*"
                                                          "*"
## 4 (1)
                                    "*"
                                                          11 🕌 11
             "*"
## 5
     (1)
                                    "*"
                                                          "*"
## 6 (1)
             "*"
            "*"
                                    "*"
                                                          "*"
## 7 (1)
                                    "*"
                                                          "*"
## 8 (1)
            "*"
                                    "*"
                                                          "*"
## 9 (1)
            "*"
                                    "*"
## 10 (1) "*"
             poly(X, 10, raw = T)4 poly(X, 10, raw = T)5 poly(X, 10, raw = T)6
## 1 (1)
            11 11
                                   11 11
                                    11 11
                                                          .. ..
## 2 (1) ""
```

```
## 3 (1)
                                   11 11
                                                         11 11
                                   "*"
## 4 (1)
            11 11
                                   "*"
## 5 (1)
## 6 (1)
                                   11 11
                                                         11 11
            11 11
                                   "*"
                                                         "*"
## 7
     (1)
                                   11 11
## 8 (1)
            "*"
                                                         "*"
                                   "*"
                                                         "*"
## 9 (1)
## 10 (1) "*"
                                   "*"
                                                         "*"
             poly(X, 10, raw = T)7 poly(X, 10, raw = T)8 poly(X, 10, raw = T)9
## 1 ( 1 )
                                   11 11
            11 11
## 2 (1)
## 3 (1)
            11 11
                                   11 11
## 4 (1)
             11 11
            11 11
## 5 (1)
## 6 (1)
                                   "*"
            11 11
                                   11 🕌 11
## 7
     (1)
## 8 (1)
                                   "*"
                                   "*"
## 9 (1) ""
                                                         "*"
## 10 (1) "*"
                                                         "*"
             poly(X, 10, raw = T)10
## 1 (1)
## 2 (1)
            11 11
## 3 (1)
## 4
     (1)
## 5 (1)
## 6 (1)
            11 11
## 7 (1)
## 8 (1)
## 9 (1)
            "*"
## 10 (1) "*"
# backward selection
regfit.bwd <- regsubsets(Y~poly(X,10,raw=T), data=data.frame(Y,X), nvmax=10)</pre>
(bwd.summary <- summary(regfit.bwd))</pre>
## Subset selection object
## Call: regsubsets.formula(Y ~ poly(X, 10, raw = T), data = data.frame(Y,
       X), nvmax = 10
## 10 Variables (and intercept)
                          Forced in Forced out
## poly(X, 10, raw = T)1
                              FALSE
                                         FALSE
## poly(X, 10, raw = T)2
                              FALSE
                                         FALSE
## poly(X, 10, raw = T)3
                              FALSE
                                         FALSE
## poly(X, 10, raw = T)4
                              FALSE
                                         FALSE
## poly(X, 10, raw = T)5
                              FALSE
                                         FALSE
## poly(X, 10, raw = T)6
                              FALSE
                                         FALSE
## poly(X, 10, raw = T)7
                              FALSE
                                         FALSE
## poly(X, 10, raw = T)8
                              FALSE
                                         FALSE
## poly(X, 10, raw = T)9
                              FALSE
                                         FALSE
## poly(X, 10, raw = T)10
                              FALSE
                                         FALSE
## 1 subsets of each size up to 10
## Selection Algorithm: exhaustive
            poly(X, 10, raw = T)1 poly(X, 10, raw = T)2 poly(X, 10, raw = T)3
## 1 ( 1 ) "*"
```

```
## 2 (1)
                                    "*"
                                                          "*"
## 3
     (1)
             "*"
                                    "*"
## 4
     (1)
             "*"
                                                          "*"
## 5
     (1)
             "*"
                                    "*"
                                                          "*"
                                                          "*"
## 6
     (1)
             "*"
                                    "*"
     (1)
## 7
             "*"
                                    "*"
                                                          "*"
## 8 (1)
             "*"
                                    "*"
                                                          "*"
## 9 (1)
                                    "*"
                                                          "*"
             "*"
## 10 (1) "*"
                                    11 * 11
                                                          11 * 11
##
             poly(X, 10, raw = T)4 poly(X, 10, raw = T)5 poly(X, 10, raw = T)6
## 1
     (1)
                                    11 11
## 2
     (1)
             11 11
                                    11 11
## 3
     (1)
             11 11
             11 11
                                    "*"
## 4
     (1)
## 5
     (1)
             11 11
                                    "*"
                                    11 11
## 6
     (1)
## 7
     (1)
                                    "*"
                                    11 11
                                                          "*"
## 8
     (1)
             "*"
             "*"
                                    "*"
                                                          "*"
## 9 (1)
                                                          "*"
## 10 (1) "*"
                                    "*"
##
             poly(X, 10, raw = T)7 poly(X, 10, raw = T)8 poly(X, 10, raw = T)9
## 1 (1)
## 2 (1)
                                    .. ..
                                    11 11
                                                          11 11
## 3
      (1)
             11 11
## 4
     (1)
## 5
     (1)
             11 11
                                    11 11
## 6
     (1)
             "*"
                                    "*"
## 7
     (1)
                                    "*"
             11 11
                                    "*"
                                                          "*"
## 8 (1)
## 9 (1)
             11 11
                                    "*"
                                                          "*"
                                    "*"
                                                          "*"
## 10 (1) "*"
##
             poly(X, 10, raw = T)10
## 1 ( 1 )
             11 11
## 2 (1)
             11 11
## 3
     (1)
## 4
     (1)
## 5 (1)
             11 11
## 6
     (1)
## 7
     (1)
             "*"
             "*"
## 8 (1)
## 9 (1)
             "*"
## 10 (1) "*"
par(mfrow=c(3,2))
min.cp <- which.min(fwd.summary$cp)</pre>
plot(fwd.summary$cp, xlab="Number of Poly(X)", ylab="Forward Selection Cp", type="1")
points(min.cp, fwd.summary$cp[min.cp], col="red", pch=4, lwd=5)
min.cp <- which.min(bwd.summary$cp)</pre>
plot(bwd.summary$cp, xlab="Number of Poly(X)", ylab="Backward Selection Cp", type="l")
points(min.cp, bwd.summary$cp[min.cp], col="red", pch=4, lwd=5)
min.bic <- which.min(fwd.summary$bic)</pre>
```

"*"

11 11

```
plot(fwd.summary$bic, xlab="Number of Poly(X)", ylab="Forward Selection BIC", type="1")
points(min.bic, fwd.summary$bic[min.bic], col="red", pch=4, lwd=5)
min.bic <- which.min(bwd.summary$bic)</pre>
plot(bwd.summary$bic, xlab="Number of Poly(X)", ylab="Backward Selection BIC", type="1")
points(min.bic, bwd.summary$bic[min.bic], col="red", pch=4, lwd=5)
min.adjr2 <- which.max(fwd.summary$adjr2)</pre>
plot(fwd.summary$adjr2, xlab="Number of Poly(X)", ylab="Forward Selection Adjusted R^2", type="1")
points(min.adjr2, fwd.summary$adjr2[min.adjr2], col="red", pch=4, lwd=5)
min.adjr2 <- which.max(bwd.summary$adjr2)</pre>
plot(bwd.summary$adjr2, xlab="Number of Poly(X)", ylab="Backward Selection Adjusted R^2", type="1")
points(min.adjr2, bwd.summary$adjr2[min.adjr2], col="red", pch=4, lwd=5)
                                                     Backward Selection Cp
Forward Selection Cp
                                              10
                                                                   2
                                                                                                   10
              2
                      4
                              6
                                      8
                                                                                            8
                     Number of Poly(X)
                                                                          Number of Poly(X)
                                                     Backward Selection BIC
Forward Selection BIC
                      4
                              6
                                      8
                                              10
                                                                   2
                                                                           4
                                                                                   6
              2
                                                                                            8
                                                                                                   10
                                                                          Number of Poly(X)
                     Number of Poly(X)
                                                     Sackward Selection Adjusted F
Forward Selection Adjusted R
                                                                   2
              2
                      4
                              6
                                      8
                                              10
                                                                           4
                                                                                   6
                                                                                            8
                                                                                                   10
                                                                          Number of Poly(X)
                     Number of Poly(X)
# coefficients of selected models
coef(regfit.fwd, which.min(fwd.summary$cp))
##
               (Intercept) poly(X, 10, raw = T)1 poly(X, 10, raw = T)2
##
                5.07200775
                                         10.38745596
                                                                   -3.15424359
## poly(X, 10, raw = T)3 poly(X, 10, raw = T)5
```

0.08072292

1.55797426

```
coef(regfit.bwd, which.min(bwd.summary$cp))
##
              (Intercept) poly(X, 10, raw = T)1 poly(X, 10, raw = T)2
              5.07200775
                                    10.38745596
                                                           -3.15424359
##
## poly(X, 10, raw = T)3 poly(X, 10, raw = T)5
              1.55797426
                                     0.08072292
##
coef(regfit.fwd, which.min(fwd.summary$bic))
             (Intercept) poly(X, 10, raw = T)1 poly(X, 10, raw = T)2
##
##
                5.061507
                                       9.975280
                                                             -3.123791
## poly(X, 10, raw = T)3
                2.017639
##
coef(regfit.bwd, which.min(bwd.summary$bic))
##
              (Intercept) poly(X, 10, raw = T)1 poly(X, 10, raw = T)2
##
                5.061507
                                       9.975280
                                                             -3.123791
## poly(X, 10, raw = T)3
##
                2.017639
coef(regfit.fwd, which.max(fwd.summary$adjr2))
##
             (Intercept) poly(X, 10, raw = T)1 poly(X, 10, raw = T)2
##
              5.07200775
                                    10.38745596
                                                           -3.15424359
## poly(X, 10, raw = T)3 poly(X, 10, raw = T)5
              1.55797426
                                     0.08072292
coef(regfit.bwd, which.max(bwd.summary$adjr2))
##
             (Intercept) poly(X, 10, raw = T)1 poly(X, 10, raw = T)2
              5.07200775
                                    10.38745596
                                                           -3.15424359
## poly(X, 10, raw = T)3 poly(X, 10, raw = T)5
##
              1.55797426
                                     0.08072292
Best subset, foward selection and backward selection all resulted in the same best models
Part e)
require(glmnet)
xmat <- model.matrix(Y~poly(X,10,raw=T))[,-1]</pre>
lasso.mod <- cv.glmnet(xmat, Y, alpha=1)</pre>
(lambda <- lasso.mod$lambda.min)</pre>
## [1] 0.04835977
par(mfrow=c(1,1))
plot(lasso.mod)
```



```
predict(lasso.mod, s=lambda, type="coefficients")
```

```
## 11 x 1 sparse Matrix of class "dgCMatrix"
                           5.032793082
## (Intercept)
## poly(X, 10, raw = T)1 10.211994502
## poly(X, 10, raw = T)2
                          -3.092418697
## poly(X, 10, raw = T)3
                           1.708546779
## poly(X, 10, raw = T)4
## poly(X, 10, raw = T)5
                           0.049655684
## poly(X, 10, raw = T)6
## poly(X, 10, raw = T)7
                           0.000459821
## poly(X, 10, raw = T)8
## poly(X, 10, raw = T)9
## poly(X, 10, raw = T)10
```

Lasso regression selects the correct predictors: X, X^2 and X^3

Part f)

```
Y2 <- 5 + 1.5*X^7 + eps

# best subset model selection
regfit.full <- regsubsets(Y2~poly(X,10,raw=T), data=data.frame(Y,X), nvmax=10)
par(mfrow=c(3,1))
(reg.summary <- summary(regfit.full))</pre>
```

```
## Subset selection object
## Call: regsubsets.formula(Y2 ~ poly(X, 10, raw = T), data = data.frame(Y,
       X), nvmax = 10
## 10 Variables (and intercept)
                           Forced in Forced out
                               FALSE
## poly(X, 10, raw = T)1
                                          FALSE
                               FALSE
                                          FALSE
## poly(X, 10, raw = T)2
## poly(X, 10, raw = T)3
                               FALSE
                                          FALSE
## poly(X, 10, raw = T)4
                               FALSE
                                          FALSE
## poly(X, 10, raw = T)5
                               FALSE
                                          FALSE
## poly(X, 10, raw = T)6
                               FALSE
                                          FALSE
## poly(X, 10, raw = T)7
                                          FALSE
                               FALSE
## poly(X, 10, raw = T)8
                               FALSE
                                          FALSE
## poly(X, 10, raw = T)9
                               FALSE
                                          FALSE
## poly(X, 10, raw = T)10
                                          FALSE
                               FALSE
## 1 subsets of each size up to 10
## Selection Algorithm: exhaustive
             poly(X, 10, raw = T)1 poly(X, 10, raw = T)2 poly(X, 10, raw = T)3
     (1)
## 1
                                                           11 11
             11 11
                                    "*"
## 2
     (1)
             11 11
                                    "*"
                                                           11 11
## 3
     (1)
## 4 (1)
             "*"
                                    "*"
                                                           11 * 11
     (1)
             "*"
                                    "*"
                                                           "*"
## 5
                                    11 11
## 6
      (1)
             "*"
                                                           "*"
## 7
             "*"
                                                           "*"
     (1)
## 8 (1)
             "*"
                                    "*"
                                                           "*"
                                    "*"
                                                           "*"
## 9
     (1)
             "*"
## 10 (1) "*"
                                    "*"
                                                           "*"
             poly(X, 10, raw = T)4 poly(X, 10, raw = T)5 poly(X, 10, raw = T)6
## 1
     (1)
                                    .. ..
             11 11
## 2
      (1)
## 3
     (1)
                                    "*"
                                                           11 11
             11 11
## 4
     (1)
             "*"
                                    ......
## 5
     (1)
             11 11
                                    11 11
                                                           "*"
## 6
     ( 1
          )
                                    "*"
                                                           "*"
## 7
     (1)
             "*"
                                    11 11
## 8 (1)
                                                           "*"
## 9
     (1)
             "*"
                                    11 11
                                                           "*"
                                    "*"
                                                           "*"
## 10 (1) "*"
##
             poly(X, 10, raw = T)7 poly(X, 10, raw = T)8 poly(X, 10, raw = T)9
     (1)
             "*"
## 1
     (1)
             "*"
## 2
## 3
      (1)
                                    11 11
                                                           11 11
## 4
             "*"
                                    11 11
     (1)
                                    11 11
## 5
     (1)
             "*"
             "*"
                                    "*"
## 6
     (1)
## 7
             "*"
                                    "*"
      (1)
             "*"
                                    "*"
## 8
     (1)
             "*"
                                    "*"
                                                           "*"
## 9
     (1)
## 10 (1) "*"
                                    "*"
                                                           "*"
##
             poly(X, 10, raw = T)10
## 1 (1)
             11 11
## 2 (1)
## 3 (1)
             11 11
```

```
## 4
      (1)
      ( 1
       (1
## 7
       (1
       (1
## 9
      (1)
## 10
      (1)
min.cp <- which.min(reg.summary$cp)</pre>
plot(reg.summary$cp, xlab="Number of Poly(X)", ylab="Best Subset Cp", type="1")
points(min.cp, reg.summary$cp[min.cp], col="red", pch=4, lwd=5)
min.bic <- which.min(reg.summary$bic)</pre>
plot(reg.summary$bic, xlab="Number of Poly(X)", ylab="Best Subset BIC", type="1")
points(min.bic, reg.summary$bic[min.bic], col="red", pch=4, lwd=5)
min.adjr2 <- which.max(reg.summary$adjr2)</pre>
plot(reg.summary$adjr2, xlab="Number of Poly(X)", ylab="Best Subset Adjusted R^2", type="1")
points(min.adjr2, reg.summary$adjr2[min.adjr2], col="red", pch=4, lwd=5)
Best Subset Cp
    ∞
    0
                    2
                                                        6
                                                                          8
                                                                                            10
                                             Number of Poly(X)
Best Subset BIC
                    2
                                      4
                                                        6
                                                                          8
                                                                                            10
                                             Number of Poly(X)
Sest Subset Adjusted R^2
    0.999887
                    2
                                                                          8
                                                                                            10
                                             Number of Poly(X)
coef(regfit.full, min.cp)
               (Intercept) poly(X, 10, raw = T)2 poly(X, 10, raw = T)7
##
                                                                  1.5015552
##
                 5.0704904
                                        -0.1417084
```

```
coef(regfit.full, min.bic)
              (Intercept) poly(X, 10, raw = T)7
##
##
                  4.95894
                                         1.50077
coef(regfit.full, min.adjr2)
              (Intercept) poly(X, 10, raw = T)1 poly(X, 10, raw = T)2
##
##
               5.0762524
                                       0.2914016
                                                             -0.1617671
## poly(X, 10, raw = T)3 poly(X, 10, raw = T)7
              -0.2526527
                                       1.5091338
# lasso regression
xmat <- model.matrix(Y2~poly(X,10,raw=T))[,-1]</pre>
lasso.mod <- cv.glmnet(xmat, Y2, alpha=1)</pre>
(lambda <- lasso.mod$lambda.min)</pre>
## [1] 2.651535
par(mfrow=c(1,1))
plot(lasso.mod)
```



```
predict(lasso.mod, s=lambda, type="coefficients")
## 11 x 1 sparse Matrix of class "dgCMatrix"
##
                                s1
## (Intercept)
                          5.143574
## poly(X, 10, raw = T)1
## poly(X, 10, raw = T)2
## poly(X, 10, raw = T)3
## poly(X, 10, raw = T)4
## poly(X, 10, raw = T)5
## poly(X, 10, raw = T)6
## poly(X, 10, raw = T)7 1.457022
## poly(X, 10, raw = T)8
## poly(X, 10, raw = T)9
## poly(X, 10, raw = T)10.
Lasso selects the correct model but best subset diagnostics indicate using 1 to 4 predictors
EXERCISE 9:
Part a)
require(ISLR2)
data(College)
set.seed(1)
trainid <- sample(1:nrow(College), nrow(College)/2)</pre>
train <- College[trainid,]</pre>
test <- College[-trainid,]</pre>
str(College)
                   777 obs. of 18 variables:
## 'data.frame':
## $ Private
                : Factor w/ 2 levels "No", "Yes": 2 2 2 2 2 2 2 2 2 ...
## $ Apps
                 : num 1660 2186 1428 417 193 ...
## $ Accept
                 : num 1232 1924 1097 349 146 ...
## $ Enroll
                 : num 721 512 336 137 55 158 103 489 227 172 ...
## $ Top10perc : num 23 16 22 60 16 38 17 37 30 21 ...
## $ Top25perc : num
                       52 29 50 89 44 62 45 68 63 44 ...
## $ F.Undergrad: num
                       2885 2683 1036 510 249 ...
                        537 1227 99 63 869 ...
## $ P.Undergrad: num
## $ Outstate
                       7440 12280 11250 12960 7560 ...
               : num
## $ Room.Board : num
                       3300 6450 3750 5450 4120 ...
## $ Books
                : num 450 750 400 450 800 500 500 450 300 660 ...
## $ Personal : num
                       2200 1500 1165 875 1500 ...
## $ PhD
                : num 70 29 53 92 76 67 90 89 79 40 ...
## $ Terminal : num 78 30 66 97 72 73 93 100 84 41 ...
## $ S.F.Ratio : num 18.1 12.2 12.9 7.7 11.9 9.4 11.5 13.7 11.3 11.5 ...
## $ perc.alumni: num 12 16 30 37 2 11 26 37 23 15 ...
## $ Expend
                 : num 7041 10527 8735 19016 10922 ...
```

\$ Grad.Rate : num 60 56 54 59 15 55 63 73 80 52 ...

```
Part b)
fit.lm <- lm(Apps~., data=train)</pre>
pred.lm <- predict(fit.lm, test)</pre>
(err.lm <- mean((test$Apps - pred.lm)^2)) # test error</pre>
## [1] 1135758
Part c)
require(glmnet)
xmat.train <- model.matrix(Apps~., data=train)[,-1]</pre>
xmat.test <- model.matrix(Apps~., data=test)[,-1]</pre>
fit.ridge <- cv.glmnet(xmat.train, train$Apps, alpha=0)</pre>
(lambda \leftarrow fit.ridge\$lambda.min) \quad \textit{\# optimal lambda}
## [1] 405.8404
pred.ridge <- predict(fit.ridge, s=lambda, newx=xmat.test)</pre>
(err.ridge <- mean((test$Apps - pred.ridge)^2)) # test error</pre>
## [1] 976261.5
Part d)
require(glmnet)
xmat.train <- model.matrix(Apps~., data=train)[,-1]</pre>
xmat.test <- model.matrix(Apps~., data=test)[,-1]</pre>
fit.lasso <- cv.glmnet(xmat.train, train$Apps, alpha=1)</pre>
(lambda <- fit.lasso$lambda.min) # optimal lambda
## [1] 1.97344
pred.lasso <- predict(fit.lasso, s=lambda, newx=xmat.test)</pre>
(err.lasso <- mean((test$Apps - pred.lasso)^2)) # test error</pre>
## [1] 1115901
coef.lasso <- predict(fit.lasso, type="coefficients", s=lambda)[1:ncol(College),]</pre>
coef.lasso[coef.lasso != 0]
##
     (Intercept)
                     PrivateYes
                                         Accept
                                                        Enroll
                                                                    Top10perc
## -7.688896e+02 -3.127034e+02 1.762718e+00 -1.318195e+00 6.482356e+01
                   F.Undergrad
##
                                  P.Undergrad
                                                                   Room.Board
       Top25perc
                                                      Outstate
## -2.081406e+01 7.119149e-02 1.246161e-02 -1.049091e-01 2.088305e-01
                                                                    S.F.Ratio
##
           Books
                       Personal
                                            PhD
                                                      Terminal
## 2.926466e-01 3.955068e-03 -1.455463e+01
                                                5.395858e+00 2.171398e+01
##
    perc.alumni
                         Expend
                                     Grad.Rate
```

5.088260e-01 4.824455e-02 7.036148e+00

```
length(coef.lasso[coef.lasso != 0])

## [1] 18

Part e)

require(pls)
set.seed(1)
fit.pcr <- pcr(Apps~., data=train, scale=TRUE, validation="CV")</pre>
```

Apps

summary(fit.pcr)

validationplot(fit.pcr, val.type="MSEP")

```
## Data:
            X dimension: 388 17
## Y dimension: 388 1
## Fit method: svdpc
## Number of components considered: 17
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
##
          (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps
## CV
                 4288
                         4006
                                  2373
                                           2372
                                                    2069
                                                             1961
                                                                      1919
## adjCV
                4288
                         4007
                                  2368
                                           2369
                                                    1999
                                                             1948
                                                                      1911
         7 comps 8 comps 9 comps 10 comps 11 comps 12 comps 13 comps
##
```

```
## CV
             1919
                      1921
                               1876
                                         1832
                                                   1832
                                                             1836
                                                                       1837
             1912
                      1915
                               1868
                                         1821
                                                   1823
                                                             1827
                                                                       1827
## adjCV
##
          14 comps 15 comps 16 comps 17 comps
## CV
              1853
                        1759
                                  1341
                                            1270
              1850
                        1733
                                  1326
                                            1257
## adjCV
##
## TRAINING: % variance explained
         1 comps 2 comps 3 comps 4 comps 5 comps 6 comps 7 comps 8 comps
##
## X
           32.20
                    57.78
                             65.31
                                      70.99
                                               76.37
                                                        81.27
                                                                  84.8
                                                                          87.85
           13.44
## Apps
                    70.93
                             71.07
                                      79.87
                                               81.15
                                                        82.25
                                                                  82.3
                                                                           82.33
         9 comps 10 comps 11 comps 12 comps 13 comps 14 comps 15 comps
           90.62
                     92.91
                               94.98
                                         96.74
                                                   97.79
                                                             98.72
                                                                       99.42
## X
## Apps
           83.38
                     84.76
                               84.80
                                         84.84
                                                   85.11
                                                             85.14
                                                                       90.55
##
         16 comps 17 comps
## X
            99.88
                     100.00
            93.42
                      93.89
## Apps
pred.pcr <- predict(fit.pcr, test, ncomp=16) # min Cv at M=16</pre>
(err.pcr <- mean((test$Apps - pred.pcr)^2)) # test error</pre>
```

[1] 1137877

Part f)

```
require(pls)
set.seed(1)
fit.pls <- plsr(Apps~., data=train, scale=TRUE, validation="CV")
validationplot(fit.pls, val.type="MSEP")</pre>
```

Apps

summary(fit.pls)

```
## Data:
            X dimension: 388 17
## Y dimension: 388 1
## Fit method: kernelpls
## Number of components considered: 17
##
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
##
          (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps
                                                                      6 comps
## CV
                 4288
                           2217
                                    2019
                                             1761
                                                      1630
                                                                1533
                                                                         1347
## adiCV
                 4288
                           2211
                                    2012
                                             1749
                                                      1605
                                                                1510
                                                                         1331
##
          7 comps 8 comps 9 comps 10 comps 11 comps 12 comps
                                                                     13 comps
             1309
                      1303
                                1286
                                          1283
                                                    1283
## CV
                                                               1277
                                                                         1271
             1296
                      1289
                                1273
                                          1270
                                                    1270
                                                               1264
                                                                         1258
## adjCV
##
          14 comps
                   15 comps
                              16 comps
                                         17 comps
## CV
              1270
                        1270
                                   1270
                                             1270
              1258
                        1257
                                   1257
                                             1257
## adjCV
##
## TRAINING: % variance explained
##
         1 comps 2 comps 3 comps
                                     4 comps 5 comps 6 comps
                                                                7 comps
                                                                          8 comps
## X
           27.21
                    50.73
                             63.06
                                       65.52
                                                70.20
                                                         74.20
                                                                   78.62
                                                                            80.81
           75.39
                    81.24
                             86.97
                                                         93.43
                                                                   93.56
## Apps
                                       91.14
                                                92.62
                                                                            93.68
##
         9 comps
                  10 comps
                           11 comps 12 comps 13 comps 14 comps 15 comps
## X
           83.29
                     87.17
                                89.15
                                          91.37
                                                    92.58
                                                               94.42
                                                                         96.98
```

```
## Apps
           93.76
                      93.79
                                 93.83
                                            93.86
                                                      93.88
                                                                 93.89
                                                                            93.89
##
         16 comps 17 comps
## X
            98.78
                      100.00
## Apps
             93.89
                       93.89
pred.pls <- predict(fit.pls, test, ncomp=10) # min Cv at M=10</pre>
(err.pls <- mean((test$Apps - pred.pls)^2)) # test error</pre>
## [1] 1131661
Part g)
err.all <- c(err.lm, err.ridge, err.lasso, err.pcr, err.pls)</pre>
names(err.all) <- c("lm", "ridge", "lasso", "pcr", "pls")</pre>
barplot(err.all )
```


The test errors aren't much different. The ridge and lasso seem to perform slightly better while the PCR/PLS don't show any improvement from the full linear regression model.

```
plot(test$Apps, pred.lm)
```


EXERCISE 10:

Part a)

```
set.seed(1)
eps <- rnorm(1000)
xmat <- matrix(rnorm(1000*20), ncol=20)
betas <- sample(-5:5, 20, replace=TRUE)
betas[c(3,6,7,10,13,17)] <- 0
betas

## [1] -3 5 0 -5 2 0 0 4 5 0 4 1 0 5 -3 4 0 4 -2 1

y <- xmat %*% betas + eps</pre>
```

Part b)

```
set.seed(1)
trainid <- sample(1:1000, 100, replace=FALSE)
xmat.train <- xmat[trainid,]
xmat.test <- xmat[-trainid,]
y.train <- y[trainid,]</pre>
```

```
y.test <- y[-trainid,]
train <- data.frame(y=y.train, xmat.train)
test <- data.frame(y=y.test, xmat.test)</pre>
```

Part c)

```
# predict function from chapter 6 labs
predict.regsubsets <- function(object, newdata, id, ...){
  form <- as.formula(object$call[[2]])
  mat <- model.matrix(form, newdata)
  coefi <- coef(object, id=id)
  xvars <- names(coefi)
  mat[,xvars]%*%coefi
}

regfit.full <- regsubsets(y~., data=train, nvmax=20)
err.full <- rep(NA, 20)
for(i in 1:20) {
  pred.full <- predict(regfit.full, train, id=i)
  err.full[i] <- mean((train$y - pred.full)^2)
}
plot(1:20, err.full, type="b", main="Training MSE", xlab="Number of Predictors")</pre>
```

Training MSE


```
which.min(err.full) # min for train error should be at max pred count

## [1] 20

Part d)

err.full <- rep(NA, 20)
for(i in 1:20) {
   pred.full <- predict(regfit.full, test, id=i)
   err.full[i] <- mean((test$y - pred.full)^2)</pre>
```

plot(1:20, err.full, type="b", main="Test MSE", xlab="Number of Predictors")

Test MSE

Part e)

```
which.min(err.full) # optimal number of predictors from best subset

## [1] 14

Part f)

(coef.best <- coef(regfit.full, id=which.min(err.full)))</pre>
```

```
##
    (Intercept)
                          Х1
                                       X2
                                                     Х4
                                                                  Х5
                                                                               Х8
   0.002830717 -2.971273645
                             5.016860247 -5.032930569 2.011190672 4.043424774
##
##
             Х9
                         X11
                                      X12
                                                    X14
                                                                 X15
   5.166187040
                4.002964100
                              1.038961952
                                           4.950846519 -2.815120305 3.816000415
##
##
            X18
                         X19
                                      X20
   4.146759315 -1.943471497
                             1.199621119
##
betas[betas != 0]
   [1] -3 5 -5 2 4 5 4 1 5 -3 4 4 -2 1
names(betas) <- paste0("X", 1:20)</pre>
merge(data.frame(beta=names(betas),betas), data.frame(beta=names(coef.best),coef.best), all.x=T, sort=F
##
      beta betas coef.best
## 1
              -3 -2.971274
       Х1
## 2
       X2
               5 5.016860
              -5 -5.032931
## 3
       Х4
## 4
       Х5
               2 2.011191
## 5
        Х8
               4 4.043425
## 6
       Х9
               5 5.166187
## 7
       X11
               4 4.002964
## 8
       X12
               1
                  1.038962
## 9
       X14
               5
                  4.950847
## 10 X15
              -3 -2.815120
## 11
      X16
               4 3.816000
## 12
      X18
               4 4.146759
       X19
              -2 -1.943471
## 13
## 14
      X20
               1 1.199621
## 15
      X13
               0
                        NA
## 16
       Х6
               0
                        NA
## 17
       ХЗ
               0
                        NA
## 18
      X17
               0
                        NA
## 19
      X10
               0
                        NA
```

The best subset model selected all the correct predictors

NA

Part g)

20

Х7

0

```
err.coef <- rep(NA, 20)
for(i in 1:20) {
  coef.i <- coef(regfit.full, id=i)
   df.err <- merge(data.frame(beta=names(betas),betas), data.frame(beta=names(coef.i),coef.i), all.x=T)
   df.err[is.na(df.err[,3]),3] <- 0
   err.coef[i] <- sqrt(sum((df.err[,2] - df.err[,3])^2))
}
plot(1:20, err.coef, type="b", main="Coefficient Error", xlab="Number of Predictors")
points(which.min(err.coef), err.coef[which.min(err.coef)], col="red", pch=16)</pre>
```

Coefficient Error

The coefficient error plot shows a very similar plot to the test error plot

EXERCISE 11:

Part a)

```
require(leaps) # forward and backward selection
require(glmnet) # ridge and lasso
require(MASS) # Boston data set
data(Boston)

# split data into training and test sets
set.seed(1)
trainid <- sample(1:nrow(Boston), nrow(Boston)/2)
train <- Boston[trainid,]
test <- Boston[-trainid,]
xmat.train <- model.matrix(crim~., data=train)[,-1]
xmat.test <- model.matrix(crim~., data=test)[,-1]
str(Boston)</pre>
```

```
## 'data.frame': 506 obs. of 14 variables:
## $ crim : num 0.00632 0.02731 0.02729 0.03237 0.06905 ...
## $ zn : num 18 0 0 0 0 12.5 12.5 12.5 12.5 ...
## $ indus : num 2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
```

```
: int 0000000000...
## $ nox
          : num 0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
            : num 6.58 6.42 7.18 7 7.15 ...
            : num 65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
## $ age
## $ dis
            : num 4.09 4.97 4.97 6.06 6.06 ...
## $ rad
          : int 1223335555...
           : num 296 242 242 222 222 222 311 311 311 311 ...
## $ tax
## $ ptratio: num 15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
## $ black : num 397 397 393 395 397 ...
## $ lstat : num 4.98 9.14 4.03 2.94 5.33 ...
## $ medv
           : num 24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
# ridge regression model
fit.ridge <- cv.glmnet(xmat.train, train$crim, alpha=0)</pre>
(lambda <- fit.ridge$lambda.min) # optimal lambda
## [1] 0.5919159
pred.ridge <- predict(fit.ridge, s=lambda, newx=xmat.test)</pre>
(err.ridge <- mean((test$crim - pred.ridge)^2)) # test error</pre>
## [1] 40.92777
predict(fit.ridge, s=lambda, type="coefficients")
## 14 x 1 sparse Matrix of class "dgCMatrix"
## (Intercept) 14.702068319
## zn
              0.035283661
## indus
              -0.119976460
## chas
              -0.616052143
              -5.629356997
## nox
              0.228001209
## rm
              -0.004314219
## age
## dis
              -0.768474303
## rad
              0.434236779
## tax
              0.003139323
## ptratio
              -0.298647697
## black
              -0.013823430
## 1stat
               0.262179351
## medv
              -0.146028474
# lasso regression model
fit.lasso <- cv.glmnet(xmat.train, train$crim, alpha=1)</pre>
(lambda <- fit.lasso$lambda.min) # optimal lambda
## [1] 0.06805595
pred.lasso <- predict(fit.lasso, s=lambda, newx=xmat.test)</pre>
(err.lasso <- mean((test$crim - pred.lasso)^2)) # test error</pre>
```

```
predict(fit.lasso, s=lambda, type="coefficients")
## 14 x 1 sparse Matrix of class "dgCMatrix"
## (Intercept) 17.65005513
                0.03516255
## indus
               -0.11838293
## chas
               -0.43135144
## nox
               -7.19578180
## rm
               0.04271112
## age
## dis
               -0.76801501
## rad
               0.52430211
## tax
## ptratio
               -0.35072332
## black
               -0.01307754
## lstat
                0.25559458
## medv
               -0.14805010
# predict function from chapter 6 labs
predict.regsubsets <- function(object, newdata, id, ...){</pre>
  form <- as.formula(object$call[[2]])</pre>
  mat <- model.matrix(form, newdata)</pre>
  coefi <- coef(object, id=id)</pre>
  xvars <- names(coefi)</pre>
  mat[,xvars]%*%coefi
}
# forward selection
fit.fwd <- regsubsets(crim~., data=train, nvmax=ncol(Boston)-1)</pre>
(fwd.summary <- summary(fit.fwd))</pre>
## Subset selection object
## Call: regsubsets.formula(crim ~ ., data = train, nvmax = ncol(Boston) -
       1)
## 13 Variables (and intercept)
           Forced in Forced out
##
## zn
               FALSE
                           FALSE
## indus
               FALSE
                           FALSE
               FALSE
                           FALSE
## chas
## nox
               FALSE
                           FALSE
## rm
               FALSE
                           FALSE
               FALSE
                           FALSE
## age
## dis
               FALSE
                           FALSE
               FALSE
                           FALSE
## rad
## tax
               FALSE
                           FALSE
## ptratio
               FALSE
                           FALSE
## black
               FALSE
                           FALSE
## lstat
               FALSE
                           FALSE
## medv
               FALSE
                           FALSE
## 1 subsets of each size up to 13
```

```
## Selection Algorithm: exhaustive
##
             zn indus chas nox rm age dis rad tax ptratio black lstat medv
      ( 1
        1
## 4
      (1
                                                               "*"
## 6
      (1
      (1
## 8
      ( 1
      (1
## 10
                                                               "*"
                                                                            "*"
## 11
                                                               "*"
                                                                            "*"
## 12
## 13
err.fwd <- rep(NA, ncol(Boston)-1)
for(i in 1:(ncol(Boston)-1)) {
  pred.fwd <- predict(fit.fwd, test, id=i)</pre>
  err.fwd[i] <- mean((test$crim - pred.fwd)^2)</pre>
plot(err.fwd, type="b", main="Test MSE for Forward Selection", xlab="Number of Predictors")
```

Test MSE for Forward Selection


```
which.min(err.fwd)
```

[1] 1

```
# backward selection
fit.bwd <- regsubsets(crim~., data=train, nvmax=ncol(Boston)-1)</pre>
(bwd.summary <- summary(fit.bwd))</pre>
## Subset selection object
## Call: regsubsets.formula(crim ~ ., data = train, nvmax = ncol(Boston) -
      1)
## 13 Variables (and intercept)
##
         Forced in Forced out
## zn
             FALSE
                       FALSE
             FALSE
                       FALSE
## indus
## chas
             FALSE
                       FALSE
## nox
             FALSE
                       FALSE
## rm
             FALSE
                       FALSE
## age
             FALSE
                       FALSE
## dis
             FALSE
                       FALSE
## rad
             FALSE
                      FALSE
             FALSE
                       FALSE
## tax
## ptratio
             FALSE
                       FALSE
## black
             FALSE
                       FALSE
## lstat
             FALSE
                       FALSE
## medv
             FALSE
                       FALSE
## 1 subsets of each size up to 13
## Selection Algorithm: exhaustive
           zn indus chas nox rm age dis rad tax ptratio black lstat medv
## 1 (1) """"
                    ## 2 (1)
           11 11
                         11 11
                                                           "*"
           "*"
                                                      11 * 11
## 3 (1)
           "*" " "
                         "*"
                                                           "*"
## 4 (1)
                         11 11 11 11 11 11
                                                      11 * 11
                                                           11 * 11
## 5
    (1)
                         ## 6 (1)
           "*" "*"
                                                      "*"
                                                           "*"
           "*" "*"
                         ## 7 (1)
                                                      "*"
                                                           "*"
                                                                11 4 11
           "*" " "
                         "*"
                                                           "*"
## 8 (1)
           "*" "*"
                         "*" " " " " *" "*" " *" " " *"
                                                      11 🕌 11
                                                           "*"
                                                                11 4 11
## 9
    (1)
                         "*" " " " " "*" "*" "*"
## 10 ( 1 ) "*" "*"
                    11 11
                                                      "*"
                                                           "*"
                         "*" " " " " "*" "*" "*" "*"
                                                      "*"
                    11 🕌 11
                                                           "*"
## 11
                                                                "*"
## 12 ( 1 ) "*" "*"
                         "*" "*" " " "*" "*" "*"
                                                      "*"
                                                           "*"
                                                                "*"
     (1)"*""*"
                    "*" "*" "*" "*" "*" "*" "*"
                                                      "*"
                                                           11 4 11
                                                                11 🕌 11
## 13
err.bwd <- rep(NA, ncol(Boston)-1)
for(i in 1:(ncol(Boston)-1)) {
 pred.bwd <- predict(fit.bwd, test, id=i)</pre>
 err.bwd[i] <- mean((test$crim - pred.bwd)^2)</pre>
plot(err.bwd, type="b", main="Test MSE for Backward Selection", xlab="Number of Predictors")
```

Test MSE for Backward Selection

which.min(err.bwd)

[1] 1

```
par(mfrow=c(3,2))
min.cp <- which.min(fwd.summary$cp)</pre>
plot(fwd.summary$cp, xlab="Number of Poly(X)", ylab="Forward Selection Cp", type="1")
points(min.cp, fwd.summary$cp[min.cp], col="red", pch=4, lwd=5)
min.cp <- which.min(bwd.summary$cp)</pre>
plot(bwd.summary$cp, xlab="Number of Poly(X)", ylab="Backward Selection Cp", type="1")
points(min.cp, bwd.summary$cp[min.cp], col="red", pch=4, lwd=5)
min.bic <- which.min(fwd.summary$bic)</pre>
plot(fwd.summary$bic, xlab="Number of Poly(X)", ylab="Forward Selection BIC", type="1")
points(min.bic, fwd.summary$bic[min.bic], col="red", pch=4, lwd=5)
min.bic <- which.min(bwd.summary$bic)</pre>
plot(bwd.summary$bic, xlab="Number of Poly(X)", ylab="Backward Selection BIC", type="1")
points(min.bic, bwd.summary$bic[min.bic], col="red", pch=4, lwd=5)
min.adjr2 <- which.max(fwd.summary$adjr2)</pre>
plot(fwd.summary$adjr2, xlab="Number of Poly(X)", ylab="Forward Selection Adjusted R^2", type="1")
points(min.adjr2, fwd.summary$adjr2[min.adjr2], col="red", pch=4, lwd=5)
```

```
min.adjr2 <- which.max(bwd.summary$adjr2)
plot(bwd.summary$adjr2, xlab="Number of Poly(X)", ylab="Backward Selection Adjusted R^2", type="l")
points(min.adjr2, bwd.summary$adjr2[min.adjr2], col="red", pch=4, lwd=5)</pre>
```


Part b)

err.ridge

[1] 40.92777

err.lasso

[1] 40.90173

err.fwd

[1] 40.14557 41.87706 42.40901 42.45745 43.03836 42.13258 41.25016 41.28957

[9] 41.49271 41.50577 41.48839 41.46692 41.54639

err.bwd

[1] 40.14557 41.87706 42.40901 42.45745 43.03836 42.13258 41.25016 41.28957

[9] 41.49271 41.50577 41.48839 41.46692 41.54639

Probably choose the lasso model because its test MSE is close to best and eliminates some predictors to reduce model complexity

Part c)

No because not all the predictors add much value to the model