Complex Geometry. HW 5 IAN JORQUERA

- (9.2) Consider two meromorphic function from \mathbb{CP}^1 to \mathbb{C} , the function $F(X:Y) = \frac{\prod^n (a_i X b_i Y)}{\prod^n (c_i X d_i Y)}$ and $G(X:Y) = \frac{\prod^n (e_i X f_i Y)}{\prod^n (g_i X g_i Y)}$. Notice that their product $F(X:Y)G(X:Y) = \frac{\prod^n (a_i X b_i Y)}{\prod^n (c_i X d_i Y)} \frac{\prod^n (e_i X f_i Y)}{\prod^n (g_i X g_i Y)}$ added the zeros of FG are precisely the zeros from F and G separately. Likewise the poles of FG are precisely the poles from F and G separately. This means the the divisor is div(FG) = div(F) + div(G)
- (9.4) Let $s: \mathbb{CP}^1 \to L$ be a section for the line bundle $\pi: L \to \mathbb{CP}^1$. Let the supp(div(s)) be the points with non-zero coefficient in the divisor, meaning this are precisely the zeros and poles of s. This gives us a natural bijection, that trivializes the line bundle for all fibers other then the one in the support.

Consider the map $T_s: \pi^{-1}(\mathbb{CP}^1 - supp(div(s))) \to (\mathbb{CP}^1 - supp(div(s))) \times \mathbb{C}$ that maps $p \in \pi^{-1}(\mathbb{CP}^1 - supp(div(s)))$ and maps it to the point $(\pi(p), \frac{p}{s(\pi(p))})$ where because both p and $s(\pi(p))$ live in the same fiber, $\pi^{-1}(\pi(p))$ we can interpret $\frac{p}{s(\pi(p))}$ as an element of \mathbb{C} , where we relate p with a value in \mathbb{C} with the corresponding non-canonical linear isomorphism, and $s(\pi(p))$ with the same linear isomorphism. It is then the case that $\frac{p}{s(\pi(p))}$ is invariant under the choice on non-canonical isomorphism and is defined for all points p not in the fibers of the support of the divisor. This is invertible precisely because we divide by a non-zero complex number $s(\pi(p))$