Számítógépes szemantika

Berend Gábor

Értékelés

- Részteljesítések
 - Órai részvétel (és aktivitás): 25%
 - Szakirodalomfeldolgozás (és előadás): 35%
 - Projektmunka: 40%

Értékelés

- Részteljesítések
 - Órai részvétel (és aktivitás): 25%
 - Szakirodalomfeldolgozás (és előadás): 35%
 - Projektmunka: 40%
- Végső jegy: részteljesítések súlyozott átlaga egészre kerekítve
 - Pl. Ó:4, Sz:5, P:4 \rightarrow 0,25*4+0,35*5+0,4*4=4,35 \rightarrow 4

Lehetséges projektmunkák

- Megegyező tartalmú kérdések felismerése
 - https://www.kaggle.com/c/quora-question-pairs
- Etikusság
 - https://blog.conceptnet.io/2017/04/24/conceptnet-num berbatch-17-04-better-less-stereotyped-word-vectors/
- Fedőnevek ágens
 - https://jamesmullenbach.github.io/2018/01/02/codena mes-fun.html
- Saját témák

Mikről lesz szó a tárgyon?

- Szavak jelentését megragadni (közelíteni) képes számítógépes reprezentációk létrehozása
- Mire használhatók ezek a reprezentációk?
- Hogyan értékelhetők ki ezek a reprezentációk?
- Többnyelvű reprezentációk?
- Python + matek (valószínűség és lineáris algebra)
 - Numpy, scipy, sklearn csomagok

Python használata

- Python 2 vs. Python 3
 - https://docs.python.org/3/tutorial/
- Virtualenv vs. anaconda
 - https://www.continuum.io/downloads
- Nem csak Python
 - pip, ipython, jupyter, ...

Python alapok

- OO nyelv, dinamikus típusokkal
 - type(valtozonev) utasítással megtudhatjuk a változó aktuális típusát
- Nem muszáj ;-vel zárni a sorokat
- Cserébe az indentálásra ügyelni kell (szóközök)
- Asszociatív tömbök használatának támogatása

Python alapok – Fontos tárolók

- tuple
 - -t = ("Sanyi", 22, "körte")
 - Tipikusan eltérő "szemantikájú" adatokat csomagolunk össze segítségével
 - Inmutable (t [1]=23 hibát eredményezne)
- list
 - [-1 = [5, 3, 1, 4]
 - Tipikusan azonos típusú adatok összefűzésére használjuk
 - Mutable (1[1]=4 nem okoz hibát)

Python alapok – Fontos tárolók

- dict
 - $-d = \{$ "Sanyi":22, "Manyi":33, "Enci":52 $\}$
 - Asszociatív tömböt (kulcs-érték párok) valósít meg
 - KeyError, ha nem létező kulcsra hivatkozunk (pl. d ['Éva'])
- set
 - Halmazt valósít meg (tulajdonképp egy olyan dict, ami nem rendel értékeket a kucsokhoz)
- Továbbiak: defaultdict, Counter, ...
 - A collections csomagból importálhatjuk be őket

Python vezérlési szerkezetek

Ismétléses vezérlés

```
for valtozo in range(20):
      utasitasok

    Feltételes vezérlés (&& → and, || → or)

    if feltetel:
      utasitas(ok)
    elif feltetel:
      utasitas(ok)
    else:
      utasitas(ok)
```

Python I/O

Plain text fájlbeolvasás

```
for line in open('be.txt', 'r',
encoding='utf-8'):
    print(line)
```

Plain text kiíratás

```
f = open('workfile', 'w')
f.write('Dummy content...')
f.close()
```

Alternatív megoldás (with statement használatával)

```
with open("x.txt") as f:
```

Python függvények

```
def fuggveny nev(parameterek):
      fuggvenytorzs
      [return valtozo(k)]

    Például

   def hello bello(hello)
     if hello:
         print('Hello')
     else:
       print('Bello')
```

Importálás lehetőségei

Külső modulok funkcionalitásának használatához

```
import modulnev
import modulnev as alias
from modulnev import metodus
```

- A külső modulnak persze már telepítve kell legyen
 - pip install[--upgrade] modulnev

Numpy vs. Matlab

Sok hasonlóság mellett fontos különbségek is

	Numpy	Matlab
Transzponálás	Y=X.T	Y=X'
Mátrixszorzás	C=A.dot(B)	C=A*B
Elemenkénti szorzás	D=A*B	D=A.*B

- Mátrixszorzás esetén $A \in \mathbb{R}^{kxl}$, $B \in \mathbb{R}^{lxm}$
- Elemenkénti szorzás esetében $A \in \mathbb{R}^{kxl}$, $B \in \mathbb{R}^{kxl}$

Gyakorlás

- Írjunk egy függvényt, ami kiszámolja az n-edik Fibonacci számot
- Hozzunk létre egy listát, ami a Fibonacci sor első 20 elemét tartalmazza
- Érjük el, hogy az előző lista kétszer egymás után legyen fűzve
- Az előző lista minden elemét emeljük négyzetre
 - List comprehension

Szemantika (jelentéstan)

- Disztribúciós hipotézis
 - Hasonló jelentésű szavak környezetében hasonló szavak találhatók
- Az elmélet >50 éves, az első számítógépes megvalósítás is már >20
 - Igazán népszerű csak az elmúlt években lett

Folytonos reprezentáció

```
alma [1 0 0 0 ... 0 0 0 0 0 ... 0] -----[3,2 -1,5]
lapát [0 0 0 0 ... 0 0 1 0 0 ... 0] ------ [-4,1 12,6]
```

Versengő paradigmák

- 2013: word2vec megjelenése
 - Korábbi években is voltak már NN-alapú modellek

Versengő paradigmák

- 2013: word2vec megjelenése
 - Korábbi években is voltak már NN-alapú modellek

Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors

Marco Baroni and Georgiana Dinu and Germán Kruszewski

Versengő paradigmák

- 2013: word2vec megjelenése
 - Korábbi években is voltak már NN-alapú modellek

Don't count, predict! A systematic comparison of context-counting vs. context-predicting semantic vectors

Marco Baroni and Georgiana Dinu and Germán Kruszewski
Rehabilitation of Count-based Models for Word Vector
Representations

word2vec sematikusan

CBOW

Skip-gram

word2vec neurális hálós értelmezése

Ábrák forrása: Xin Rong: Word Embedding Explained and Visualized $^{
m C}$

word2vec célja

 Hasonló jelentésű input szavak hasonló outputot eredményezzenek

$$y(x) = softmax(W'(W1_x))$$

- a és b szó jelentése minél hasonlóbb, y(a) és y(b)
 (eloszlás)vektorok annál inkább hasonlítani fognak
- CBOW: x "környező" szavak reprezentációi alapján akarjuk a "középső" szót előrejelezni y(x)-szel
- Skipgram: x "középső" szó reprezentációja alapján akarjuk a "környező" szavakat előrejelezni y(x)-szel

Szóanalógiák

• a:b::c:?

RepEval 2016

Analysis Track

- Problems With Evaluation of Word Embeddings Using Word Similarity Tasks [pdf]
 Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi, Chris Dyer
- Intrinsic Evaluations of Word Embeddings: What Can We Do Better? [pdf]
 Anna Gladkova, Aleksandr Drozd
- Issues in Evaluating Semantic Spaces Using Word Analogies [pdf]
 Tal Linzen
- Intrinsic Evaluation of Word Vectors Fails to Predict Extrinsic Performance [pdf]
 Billy Chiu, Anna Korhonen, Sampo Pyysalo
- A Critique of Word Similarity as a Method for Evaluating Distributional Semantic Models [pdf]
 Miroslav Batchkarov, Thomas Kober, Jeremy Reffin, Julie Weeds, David Weir

Folytonos reprezentáció

```
alma [1 0 0 0 ... 0 0 0 0 0 ... 0] -----[3,2 -1,5]
lapát [0 0 0 0 ... 0 0 1 0 0 ... 0] ------ [-4,1 12,6]
```

Ritka folytonos reprezentáció

alma
$$[3,2 -1,5] \longrightarrow [0 1,7 0 0 -0,2 0]$$
...

körte $[2,8 -1,6] \longrightarrow [0 1,1 0 0 -0,4 0]$
...

lapát $[-4,1 12,6] \longrightarrow [1,7 0 -2,1 0 0 -0,8]$
...

zebra $[3,8 0,5] \longrightarrow [0 0 1,3 0 -1,2 0]$

Szófaji kódolás eredményei

Folytonos reprezentáció

	bg	da	de	en	es	hu	it	nl	pt	sl	sv	tr	Avg.
polyglot	92.11	93.03	93.10	94.80	94.64	89.23	92.90	90.07	94.36	89.36	89.14	81.33	91.17
CBOW	90.19	90.36	88.46	91.22	91.55	86.07	87.11	88.09	92.45	87.82	87.00	79.30	88.30
SG	88.10	88.84	86.48	90.19	91.34	84.38	85.09	85.11	91.77	88.17	84.48	78.72	86.89
Glove	83.10	81.95	83.07	86.64	84.65	77.34	79.98	78.54	86.62	80.91	78.77	76.77	81.53

Szófaji kódolás eredményei

Folytonos reprezentáció

	bg	da	de	en	es	hu	it	nl	pt	sl	sv	tr	Avg.
polyglot	92.11	93.03	93.10	94.80	94.64	89.23	92.90	90.07	94.36	89.36	89.14	81.33	91.17
CBOW	90.19	90.36	88.46	91.22	91.55	86.07	87.11	88.09	92.45	87.82	87.00	79.30	88.30
SG	88.10	88.84	86.48	90.19	91.34	84.38	85.09	85.11	91.77	88.17	84.48	78.72	86.89
Glove	83.10	81.95	83.07	86.64	84.65	77.34	79.98	78.54	86.62	80.91	78.77	76.77	81.53

Ritka folytonos reprezentáció

	bg	da	de	en	es	hu	it	nl	pt	sl	sv	tr	Avg.
polyglotsc	96.04	95.71	96.33	97.20	96.14	92.92	95.21	93.43	95.96	94.10	94.36	85.93	94.44
$CBOW_{SC}$	95.10	95.35	95.61	97.08	95.75	92.17	94.51	92.61	95.42	92.96	93.18	85.12	93.74
SG_{SC}	94.67	95.49	95.47	96.91	95.29	91.97	94.11	93.12	95.28	92.63	93.60	84.99	93.63
$Glove_{SC}$	93.16	93.63	94.61	96.10	93.36	88.62	92.88	90.16	94.65	90.31	92.19	83.36	91.92

Szófaji kódolás eredményei

Mondatszintű reprezentációk

- Skip-thought vektorok
 - Rekurrens neurális háló (GRU)

Query and nearest sentence

he ran his hand inside his coat, double-checking that the unopened letter was still there. he slipped his hand between his coat and his shirt, where the folded copies lay in a brown envelope.

im sure youll have a glamorous evening, she said, giving an exaggerated wink. im really glad you came to the party tonight, he said, turning to her.

Nyitott kérdések

Következtetés, hétköznapi gondolkodás

A Corpus and Cloze Evaluation for Deeper Understanding of Commonsense Stories

Nasrin Mostafazadeh¹, Nathanael Chambers², Xiaodong He³, Devi Parikh⁴, Dhruv Batra⁴, Lucy Vanderwende³, Pushmeet Kohli³, James Allen^{1,5}

	,	choose first	4	overlap	S	L.Full	L.Last	lghts aive	ie Chains AR Chains Stories		
	Constant	Frequenc	N-grann.	Censim	Sentimer	Sentimen	SkiP-tho	Marrative	Marrative	DSSM	Human
Validation Set Test Set	0.514 0.513	0.506 0.520	0.477 0.494	0.545 0.539	0.489 0.492	0.514 0.522	0.536 0.552	0.472 0.478	0.510 0.494	0.604 0.585	1.0 1.0