SOUTENANCE DE THESE

Stratégies d'optimisation pour le problème intégré de transport et de gestion de stock

Présenté par

Diego Perdigão Martino

Encadré par

Philippe Lacomme Directeur
Katyanne Farias Co-encadrante
Manuel Iori Co-encadrant

Jury

Marie-Ange Manier Caroline Prodhon Alexandre Xavier Martins Laurent Deroussi Rapporteure Rapporteure Examinateur Invité

27 novembre 2024

SOUTENANCE DE THESE

Stratégies d'optimisation pour le problème intégré de transport et de gestion de stock

"Ce travail a bénéficié d'une aide de l'État gérée par l'Agence Nationale de la Recherche au titre du programme "Investissements d'Avenir" dans le cadre du Laboratoire d'Excellence IMobS³ (ANR-10-LABX-0016) et de l'Initiative d'Excellence IDEX-ISITE CAP 20-25 (ANR-16-IDEX-0001)."

Table des matières

1 IRPs

2 IRP/Algorithme itératif

3 HIRP-BS/Métaheuristique

4 Conclusion

Table des matières

1 IRPs

2 IRP/Algorithme itératif

3 HIRP-BS/Métaheuristique

4 Conclusion

Inventory Routing Problem (IRP)

ROUTAGE STOCK flotte de véhicules livraisons définition des routes gestion de stock • VRP, HVRP, CVRP ... • IRP, IRPT, Green-IRP . . . HORIZON MULTI-PERIODE: fini et discret **IRP**

Objectif: résolution conjointe à coût minimale de transport et stock

Inventory Routing Problem - Problème de base

Origine

- ▶ Bell et al. (1983)
- ▶ Gestion de stock de gas industriel
- Planification des tournées

- ▶ Un horizon de temps fini
- ▶ Un seul fournisseur

Inventory Routing Problem - Problème de base

Origine

- ▶ Bell et al. (1983)
- Gestion de stock de gas industriel
- ▶ Planification des tournées

Données

- Un horizon de temps fini
- ▶ Un ensemble de clients
- Un seul fournisseur
- ▶ Un seul produit
- ▶ Coûts et demandes déterministes
- ▶ Flotte de véhicules

Inventory Routing Problem

Hypothèses

- Livraison et demandes
- Split delivery non autorisée
- Niveaux de stock
- Quantité produite
- ▶ Capacité des véhicules
- Réasabilité des tournées

- ▶ Niveaux de stock
- Quantités à livrer
- ► Flux et sous-tours

IRPs

Inventory Routing Problem

Hypothèses

- Livraison et demandes
- Split delivery non autorisée
- Niveaux de stock
- Quantité produite
- ▶ Capacité des véhicules
- Réasabilité des tournées

Contraintes

- Niveaux de stock
- Quantités à livrer
- Flux et sous-tours
- Flotte de véhicules

IRPs et méthodes de résolution

Auteurs	Année	Problème	Méthode
Archetti et al.	2007	IRP	B&C
Aksen et al.	2014	Stochastic IRP	ALNS
Archetti et al.	2020	IRP with Pickup and Delivery	B&C
Manousakis et al.	2021	IRP	B&C
Touzout et al.	2022	Time Dependant IRP	Matheuristique
Skalnes et al.	2024	IRP	Matheuristique + B&C
:			

Instances

Nb.	Instan	ces^1	Nb.	Instan	ces^2	Nb. Périodes	Nb. Clients	h_i	h_0
160	100	50 50	800 -	500	250 250	3	{5, 10,, 50}	[0.01; 0.05]	0.03
100	60	30 30		300	150 150	6	{5, 10,, 30}	[0.01; 0.05] [0.1; 0.5]	0.03

(1) Archetti et al. (2007), (2) Coelho et al. (2012)

Contributions IRP

- ► Algorithme itératif
- ightharpoonup Nouvelle variante : HIRP-BS

Contributions HIRP-BS

- ▶ Modélisation mathématique
- ► Schéma d'optimisation SEMPO
- ► Algorithme Split adapté
- ▶ Nouvelles instances

Comparatif

Problème traité	IRP de base	HIRP-BS				
Objectif	Minimiser la somme des coûts de stock et de transport					
Coûts de stock	Independants de la période	Dépendants de la période				
Coûts de transport	Distance unitaire de déplacement	Distances réelles Fixes et variables selon le véhicule				
Demandes	Independants de la période	Dépendants de la période				
Véhicules	Homogènes	Hétérogènes Dépendants de la période				
Politiques de livraison	$\mathrm{ML}^{1},\mathrm{OU}^{1},\mathrm{ZIO}^{2}$	$\mathrm{ML}^{1} + \mathrm{BS}$				

^{1.} Archetti et al. (2007)

^{2.} Diabat et al. (2024)

Niveaux de stock

Les niveaux de stock sont exprimés par I_i^t

Pour t = 0: stock de départ Pour t > 0: stock en t - 1 et

Fournisseur

- quantité produite
- montant livré aux clients

Clients

- quantités réapprovisionnées
- demandes

Politiques de stock

Maximum Level (ML)

$$\underbrace{L_i - I_i^{t-1}}_{\text{Quantit\'e minimale}} \leq q_i^t \leq \underbrace{U_i - I_i^{t-1}}_{\text{Quantit\'e maximale}}$$

Taille de lot
$$\ell_i = 1$$

Batch Size (BS)

Contraintes ML et

$$q_i^t = \underbrace{z_i^t \times \ell_i}_{\text{Quantit\'e multiple de ℓ_i}}$$

Taille de lot
$$\ell_i = 3$$

Contributions

Contributions

Table des matières

1 IRPs

2 IRP/Algorithme itératif

3 HIRP-BS/Métaheuristique

4 Conclusion

Algorithme itératif

Algorithme itératif

Hypothèses

Sous-problèmes \mathcal{P}^t : basé sur les périodes 1 jusqu'à t-1

Dimensions: $|\mathcal{P}^1| > |\mathcal{P}^2| > |\mathcal{P}^3| > \ldots > |\mathcal{P}^{|\mathcal{T}|}|$

Contributions

- Algorithme de découpage
- Résolution itérative
- ▶ Degré de liberté

Littérature

Bourreau et al. (2020)

Algorithme itératif pour l'IRP

Résolution

Choix des variables : x (tournées)

lien entre les variables restantes : PLNE

 $x_{i,j}^t = \text{clients} \times \text{clients} \times \text{périodes}$

Ordre: chronologique

Degré de liberté : contrôle des modifications autorisées

Faisabilité : dépendance du Δ

"Distance"

$$\delta = |\bar{x} - x|$$

$$\eta = \begin{cases}
\delta \ge \bar{x} - x \\
\delta \ge x - \bar{x} \\
\delta \le \bar{x} + x \\
\delta < 2 - \bar{x} - x
\end{cases}$$

Degré de liberté

$$\sum \delta \le \left\lceil \hat{x} \cdot \Delta \right\rceil$$

- $\hookrightarrow \Delta = 0$: aucune modification autorisée
- $\hookrightarrow \Delta = 100$: toutes modifications autorisées

Expériments et résultats

- Sous-ensemble d'instances ¹
- Variation $\Delta = \{0, 10, \dots, 50, \dots, 90, 100\}$

Instance	Algo. It	ératif	Littérat	${f ure}^{2}$	$\mathrm{gap}(\%)$	rTemps	
	z	t(s)	z	t(s)			
IRP_low_c5_t3	1826.68	0	1430.51	1	22	1	
$IRP_low_c10_t3$	2894.35	2	2732.61	21	6	11	
$IRP_low_c15_t3$	3073.35	9	2783.77	23	9	3	
$IRP_low_c20_t3$	3913.45	139	3605.72	196	8	1	
:			:		:		
IRP_high_c5_t3	2695.22	0	2298.73	0	15	0	
$IRP_high_c10_t3$	5666.74	2	5506.09	13	3	8	
$IRP_high_c15_t3$	6480.80	9	6242.90	16	4	2	
$IRP_high_c20_t3$	8506.00	85	8165.42	229	4	3	
:			:		:		
			Moye	nnes	9	7	

^{1.} Archetti et al. (2007)

^{2.} Manousakis et al. (2021)

Table des matières

1 IRPs

2 IRP/Algorithme itératif

3 HIRP-BS/Métaheuristique

4 Conclusion

Split-Embedded Metaheuristic with Post-optimization (SEMPO)

Etapes

1. Heuristique constructive

HIRP-BS/Métaheuristique

- 2. Recherche locale évolutionnaire (ELS)
- 3. Post-optimisation

Littérature

Lacomme, P. et al. (2001) Prins, C. (2009)

Split-Embedded Metaheuristic with Post-optimization (SEMPO)

Etapes

- 1. Heuristique constructive
- Recherche locale évolutionnaire (ELS)
- 3. Post-optimisation

Littérature

Lacomme, P. et al. (2001) Prins, C. (2009)

Algorithmes de type Split

VRP (Beasley (1983))

- Véhicules illimités et homogènes
- Garantie de solution toujours
- ► Algorithme d'évaluation plus court chemin classique

HVRP (Duhamel et al. (2012))

- Véhicules
 - limités, hétérogènes et capacités
- ▶ Pas de garantie de solution
 - nombre de véhicules nombre de labels
- ► Algorithme d'évaluation plus court chemin à contrainte de ressources

CVRP (Prins et al. (2014))

- Véhicules
 - limités, homogènes et capacités
- ▶ Garantie de solution nombre de véhicules nombre de labels
- Algorithme d'évaluation plus court chemin à contrainte de ressources

Algorithmes de type Split

$\overline{\mathrm{VRP}}$ (Beasley (1983))

- Véhicules illimités et homogènes
- Garantie de solution

toujours

► Algorithme d'évaluation plus court chemin classique

HVRP (Duhamel et al. (2012))

- Véhicules
 - limités, hétérogènes et capacités
- ▶ Pas de garantie de solution
 - nombre de véhicules nombre de labels
- ► Algorithme d'évaluation plus court chemin à contrainte de ressources

CVRP (Prins et al. (2014))

- Véhicules
 - limités, homogènes et capacités
- ▶ Garantie de solution nombre de véhicules nombre de labels

de ressources

Algorithme d'évaluation plus court chemin à contrainte

Contribution: IRP/HIRP-BS

Split pour le HVRP +

- Séquence multi-période
- Résolution conjointe
 - → tournées de véhicules
 - → gestion de stock Anticipation et Cumul

Split - Cadre général

Etapes

- 1. Suite de clients prédéfinie (tour géant)
- 2. Evaluation (découpage) de la séquence
- 3. Recherche du plus court chemin
- 4. Définition d'une solution réalisable

Split pour l'IRP - Cadre général

Analyses

- \blacktriangleright {0, c, 0} (t = 1) : HVRP
- ▶ $\{0, a, b, 0\}$ (t = 1): anticipation
- \blacktriangleright {0, c, a, 0} (t = 2) : HVRP
- ▶ $\{0, e, d, 0\}$ (t = 2): anticipation + cumul

Tour géant - Définition des clients

Hypothèses

- ► Chaque nœud contient un triplet {client, période, quantité}
- ▶ Pas de split delivery
- \triangleright \mathcal{C}^t : clients à traiter en t

Deux étapes

- Calcul des quantités au plus tard période de rupture de stock
- 2. Ajustement (si nécessaire)

Right shift

Niveau de stock

$$I_i^t = I_i^{t-1} + q_i^t - d_i^t$$

Quantités au plus tard

$$q_i^t = \left\lceil \frac{d_i^t - I_i^{t-1}}{\ell_i} \right\rceil \ell_i$$

Left shift

Surplus

surplus
$$\leftarrow U_i - I_i^t$$

Ajustement

$$q_i^{t-1} \leftarrow q_i^{t-1} + \left\lceil \frac{\text{surplus}}{\ell_i} \right\rceil \times \ell_i$$

Tour géant - Placement des clients

Idée

- ightharpoonup Première période t : aléatoire
- ▶ Pour t', t' > t: probabilistique (λ) + aléatoire

Split - Labels

Définition

- Suivi des ressources
- Etat de l'évaluation du TG
- ▶ Solution partielle

réalisable : dernier sommet

$\overline{\text{VRP}}$

$$l = \begin{cases} \text{coût} \\ label \text{ d'origine} \end{cases}$$

CVRP/HVRP

 $\begin{cases} \text{coût} \\ \text{disponibilité des véhicules} \\ label \text{ d'origine} \end{cases}$

IRP/HIRP-BS

coût période véhicule niveaux de stock disponibilité des véhicules visite effectuée label d'origine

Split - Propagation des *labels*

▶ Même période

▶ Périodes différentes

Split-Embedded Metaheuristic with Post-optimization (SEMPO)

Etapes

- 1. Heuristique constructive
- 2. Recherche locale évolutionnaire (ELS)
- 3. Post-optimisation

Evolutionary Local Search (ELS) ¹

Mutation

Recherche locale

- Cible problème de tournées
- 2 opérateurs intra et inter tournées
 Reinsertion
 2-OPT

 ${\tt Reinsertion} \ intra$

Wolf, S., & Merz, P. (2007)

Recherche locale - Schéma adaptatif

Initialisation

$$P_1 = P_2 = P_3 = P_4 = 25\%$$

Mise à jour

- ightharpoonup pour n courant : $\pm \delta$
- ightharpoonup pour $i, i \neq n : \pm \frac{\delta}{\text{mouv}-1}$
- ▶ limites $[P^-, P^+]$

Littérature

Chassaing, et al. (2016)

Split-Embedded Metaheuristic with Post-optimization (SEMPO)

Etapes

- 1. Heuristique constructive
- 2. Recherche locale évolutionnaire (ELS)
 - 3. Post-optimisation

Post-optimisation

Hypothèses

- Utilisation du PLNE
- Exploration voisinage (RL)
- Autoriser des modifications selon un degré de liberté routage + stock

Post-optimisation

Hypothèses

- ▶ Utilisation du PLNE
- ► Exploration voisinage (RL)
- Autoriser des modifications selon un degré de liberté
 routage + stock

"Distance"

$$\delta = |\bar{x} - x|$$

$$\eta = \begin{cases} \delta \geq \bar{x} - x \\ \delta \geq x - \bar{x} \\ \delta \leq \bar{x} + x \\ \delta \leq 2 - \bar{x} - x \end{cases}$$

Degré de liberté

$$\phi = \sum \delta$$

$$\leq \phi < \xi_i + \Delta$$

Instances pour l'HIRP-BS

Caractéristiques

▶ Demandes [10,100]

Coûts de stock [0.1,0.5]

Véhicules (par période)

Types: [1,6]

Nombre par type : [1,5] Coûts fixes : [50,150] Coûts variables : [0.5,3.0] Distances non Euclidiennes

Duhamel et al. (2012)

80 instances $\begin{cases} petite : 13 \\ moyenne : 57 \\ grande : 10 \end{cases}$

Archetti et al. Archetti et al. Coelho et al. Skalnes et al. Cette thèse (2007)(2012)(2012)(2023)(2024)Nombre de clients 5-50 50-200 5-50 10-200 19-183 6, 9, 12 7, 14, 21, 28 Nombre de périodes 3, 6 3, 6 Coûts stockage dépendants de la période Demandes dépendantes de la période Flotte de véhicules hétérogène Taille de lot par client Distances réélles х

Expériments et résultats - Instances petite taille

Expériments et résultats - Instances moyenne et grande tailles

Instances		PLNI	£		SE	(07)		
	z^{RL}	$t^{RL}(s)$	z^{UB}	$t^{UB}(s)$	z^{avg}	z^{σ}	t(s)	gap(%)
HIRPBS_C19_T14	31765,05	1	-	-	34135,72	152,40	568	6,19
:								
HIRPBS_C34_T28	199983,60	15	-	-	211313,40	379,20	948	5,02
:								
HIRPBS_C46_T21	$165078,\!24$	48	-	-	174330,50	679,94	1088	4,66
:								
HIRPBS_C58_T14	100261,99	33	-	-	$112918,\!60$	$228,\!33$	950	10,96
:								
HIRPBS_C83_T28	$458910,\!43$	618	-	-	500579,90	$798,\!14$	863	8,10
Moyennes		77					921	8,53

Instances		PLNE				SEMPO			
	z^{RL}	$t^{RL}(s)$	z^{UB}	$t^{UB}(s)$	z^{avg}	z^{σ}	t(s)	gap(%)	
HIRPBS_C114_T7	63214,61	148,56	-	-	74120,87	357,73	1288,12	14,22	
i i									
$HIRPBS_C114_T21$	368429,19	1234,34	-	-	409722,40	627,68	683,56	9,95	
<u> </u>									
$HIRPBS_C149_T28$	-	-	-	-	904061,50	2204,26	780,12	-	
:									
$HIRPBS_C183_T7$	-	-	-	-	99123,17	326,58	806,78	-	
Moyennes		348,15					868,94	12,01	

Table des matières

1 IRPs

2 IRP/Algorithme itératif

3 HIRP-BS/Métaheuristique

4 Conclusion

Conclusion

IRP

- ▶ Algorithme itératif
- ► Nouvelle variation : HIRP-BS

Valorisation

- ▶ Conférences
 - → ROADEF, EURO, MIC, EU/ME
- ▶ Publications
 - $\hookrightarrow\,$ ROADEF, LNCS, EJOR (en cours)

HIRP-BS

- ▶ Modélisation mathématique
- $\blacktriangleright~80$ nouvelles instances
- ▶ Métaheuristique SEMPO
 - $\hookrightarrow \ \, \text{Heuristique constructive}$
 - \hookrightarrow Split
 - \hookrightarrow Post-optimisation

Perspectives

- Nouvelles caractéristiques
 - → géométrie des objets
 - $\hookrightarrow \,$ limitation des véhicules
- ▶ Algorithme itératif pour le HIRP-BS
 - $\hookrightarrow\,$ combiné avec un $\mathit{Branch\text{-}and\text{-}cut}$
- ▶ Intelligence artificielle

33 / 33

Publications

Communications nationales

- 1. Martino, D. P.; Lacomme, P.; Farias, K.; Iori M. Un algorithme basé sur la Programmation Dynamique pour l'Inventory Routing Problem. 24ème Conférence ROADEF de la Société Française de Recherche Opérationnelle et Aide à la Décision. Lyon, 2023.
- 2. Lucas F.: Martino, D. P.: Billot R.: Lacomme, P. Inventory Routing Problem et Fouille de données : quel apport des règles de décision ?. 24ème Conférence ROADEF de la Société Française de Recherche Opérationnelle et Aide à la Décision. Lvon, 2023.

Communications internationales

- 1. Martino, D. P.; Lacomme P.; Farias K.; Iori M. A metaheuristic schema for the Inventory Routing Problem. In: EU/ME meeting and Quantum School, 2023, Troyes.
- 2. Martino D.; Lacomme P.; Farias, K.; Iori M. A Split-based Dynamic Programming approach for the Inventory Routing Problem. 32nd European Conference on Operational Research, Finland, 2022.

Chapitre de livre

1. Farias K.: Lacomme P.: **Perdigão Martino D.** Iterative heuristic over periods for the Inventory Routing Problem. Lecture Notes in Computer Science. In Metaheuristics International Conference (pp. 123-135), Cham: Springer Nature Switzerland.

Journal

1. Martino, D. P.: Lacomme P.: Farias K. A Split-Embedded Metaheuristic for the Heterogenous Inventory Routing Problem with Batch Size. European Journal of Operational Research (en cours)

SOUTENANCE DE THESE

Stratégies d'optimisation pour le problème intégré de transport et de gestion de stock

Présenté par Diego Perdigão Martino

Merci !

Algorithme Split

Data: data from the problem, triplets $\{\Gamma, \gamma, q\}$, maximum number of labels \mathcal{L}^{max} Result: a feasible solution s

```
1 Begin
 2 Generate the only label at \mathcal{L}_0
 3 for each node v \in |\mathcal{V}| - 1 of \Gamma do
        Get customer j = \Gamma_{v+1} and period t = \gamma_{v+1}
        Set inventory and routing costs and volume load to zero
        repeat
            Calculate inventory costs and distance traveled
            Update vehicle load with q_i^t
            for each label l \in \mathcal{L}_i do
                Define a label L=l
10
                 Update L
11
                 for each vehicle v \in K^t do
12
                     Update the inventory and routing costs
13
                     if L is feasible and |\mathcal{L}_i| < \mathcal{L}^{max} then
14
                         Add label to \mathcal{L}_i
15
16
                     end
17
                end
18
            end
        until \Delta^{load} < \operatorname{argmax}_{k \in \mathcal{K}^t} \{B^k\} and j \leq |\Gamma|;
19
20 end
21 Retrieve critical path and build the solution s
```

- 22 return s if $\Gamma_{|\mathcal{L}_i|} > 0$ and \varnothing otherwise
- 23 End

Références - I

- Aksen, D., Kaya, O., Salman, F. S., & Tüncel, Ö. (2014). An adaptive large neighborhood search algorithm for a selective and periodic inventory routing problem. European Journal of Operational Research, 239(2), 413-426.
- Archetti, C., Bertazzi, L., Laporte, G., & Speranza, M. G. (2007). A branch-and-cut algorithm for a vendor-managed inventory-routing problem. Transportation science, 41(3), 382-391.
- Archetti, C., Speranza, M. G., Boccia, M., Sforza, A., & Sterle, C. (2020). A branch-and-cut algorithm for the inventory routing problem with pickups and deliveries. European Journal of Operational Research, 282(3), 886-895.
- Beasley, J. E. (1983). Route first—cluster second methods for vehicle routing. Omega, 11(4), 403-408.
- Bell, W. J., Dalberto, L. M., Fisher, M. L., Greenfield, A. J., Jaikumar, R., Kedia, P.,
 ... & Prutzman, P. J. (1983). Improving the distribution of industrial gases with an on-line computerized routing and scheduling optimizer. Interfaces, 13(6), 4-23.
- Bourreau, E., Gondran, M., Lacomme, P., & Vinot, M. (2020). Programmation Par Contraintes: démarches de modélisation pour des problèmes d'optimisation. Ellipses.
- Chassaing, M., Duhamel, C., & Lacomme, P. (2016). An ELS-based approach with dynamic probabilities management in local search for the Dial-A-Ride Problem. Engineering Applications of Artificial Intelligence, 48, 119-133.
- Coelho, L. C., Cordeau, J. F., & Laporte, G. (2012). Consistency in multi-vehicle inventory-routing. Transportation Research Part C: Emerging Technologies, 24, 270-287.
- Diabat, A., Bianchessi, N., & Archetti, C. (2024). On the zero-inventory-ordering policy in the inventory routing problem. European Journal of Operational Research, 312(3), 1024-1038.

Références - II

- Duhamel, C., Lacomme, P., & Prodhon, C. (2012). A hybrid evolutionary local search
 with depth first search split procedure for the heterogeneous vehicle routing problems.
 Engineering Applications of Artificial Intelligence, 25(2), 345-358.
- Lacomme, P., Prins, C., & Ramdane-Chérif, W. (2001, April). A genetic algorithm for the capacitated arc routing problem and its extensions. In Workshops on applications of evolutionary computation (pp. 473-483). Berlin, Heidelberg: Springer Berlin Heidelberg.
- Manousakis, E., Repoussis, P., Zachariadis, E., & Tarantilis, C. (2021). Improved branch-and-cut for the inventory routing problem based on a two-commodity flow formulation. European Journal of Operational Research, 290(3), 870-885.
- Prins, C., Labadi, N., & Reghioui, M. (2009). Tour splitting algorithms for vehicle routing problems. International Journal of Production Research, 47(2), 507-535.
- Prins, C., Lacomme, P., & Prodhon, C. (2014). Order-first split-second methods for vehicle routing problems: A review. Transportation Research Part C: Emerging Technologies, 40, 179-200.
- Skålnes, J., Ahmed, M. B., Hvattum, L. M., & Stålhane, M. (2024). New benchmark instances for the inventory routing problem. European Journal of Operational Research, 313(3), 992-1014.
- Touzout, F. A., Ladier, A. L., & Hadj-Hamou, K. (2022). An assign-and-route matheuristic for the time-dependent inventory routing problem. European Journal of Operational Research, 300(3), 1081-1097.
- Wolf, S., & Merz, P. (2007, October). Evolutionary local search for the super-peer selection problem and the p-hub median problem. In International workshop on hybrid metaheuristics (pp. 1-15). Berlin, Heidelberg: Springer Berlin Heidelberg.