# Фреймворк для конечно-разностного моделирования диффузионных задач на гибридных вычислительных кластерах

Фролов Д. А.

Ярославский государственный университет им. П. Г. Демидова

Научный руководитель: Глызин С. Д.

Ярославль 2015

#### Основные понятия

Система «реакция-диффузия» — нелинейная динамическая система, в которой пространственно неоднородные колебательные режимы обусловлены наличием диффузионной составляющей.

Актуальная проблема – разработка программного комплекса для моделирования диффузионных задач.

#### Основные требования:

- высокий уровень настраиваемости;
- эффективная работа на гибридных вычислительных системах.

## Цель работы

Разработка части программного комплекса для моделирования диффузионных задач, отвечающей за повышение его производительности за счет применения распределенных вычислений.

#### Теоретические основы

Общий вид задачи «реакция-диффузия»

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} + F(u);$$

$$\frac{\partial u}{\partial x} \Big|_{x=0} = \frac{\partial u}{\partial x} \Big|_{x=1} = 0, \ F(0) = 0.$$

Приближение оператора Лапласа его разностными аналогами

$$\begin{split} \frac{\partial^2 u}{\partial x^2} \bigg|_{x=x_j} &= \frac{u_{j-1} - 2u_j + u_{j+1}}{\triangle^2}; \\ \dot{u}_j &= D \, \frac{u_{j-1} - 2u_j + u_{j+1}}{\triangle^2} + F(u_j); \\ u_0 &= u_1, \ u_{N+1} = u_N, \ j = \overline{1, N}. \end{split}$$

# Пример области задачи



### Kласc Solver и его наследники



## Kласс Block и его наследники



## Общая схема классов приложения



### Параллельность

- Крупнозернистый параллелизм разделение задачи на блоки
  - Передача данных между узлами кластера библиотека MPI
  - Обмен данными на одном узле pinned-память
- Мелкозернистый параллелизм
  - Центральный процессор OpenMP
  - Видеокарта CUDA

## Схема расчетов



- Оборудование узла: 2хСРU E5-2690 (8 ядер, 2.9ГГц), 3хGPU Tesla M2090
- Устройство для передачи данных: Infiniband QDR 40Gbps
- ΠO: SLES 12, gcc 4.8, Mellanox OFED 2.4, OpenMPI 1.8, CUDA Toolkit 7.0, SLURM 14.11

В дальнейшем 2 центральных процессора (16 ядер) в рамках одного узла используются как единое вычислительное устройство, обозначенное CPU.









