Zadania z Lab 13

Krystian Baran 145000 1 czerwca 2021

Spis treści

1	Zad	anie	e 1	L																	3	ļ
2	Zad	ane	2																		4	ĺ
	2.1	a)																			ŗ	
	2.2	b)																			(
	2.3	c).																			6	

1 Zadanie 1

(Krysicki 5.2). Zmierzono długości czasów świecenia trzech typów żarówek, otrzymując (w h):

dla typu 1: 1802, 1992, 1854, 1880, 1761, 1900;

dla typu 2: 1664, 1755, 1823, 1862;

dla typu 3: 1877, 1710, 1882, 1720, 1950.

Na poziomie istotności $\alpha=0,05$ zweryfikować hipotezę, że wartości przeciętne czasów świecenia żarówek tych typów są jednakowe.

Dane przygotowano w postaci pliku csv w celu obliczenia testu ANOVA w ${\bf R}.$

data	type
1802	"1"
1992	"1"
1854	"1"
1880	"1"
1761	"1"
1900	"1"
1664	"2"
1755	"2"
1823	"2"
1862	"2"
1877	"3"
1710	"3"
1882	"3"
1720	"3"
1950	"3"

Dane te wgrano w R w następujący sposób: data = read.csv("w12zad1.csv", colClasses = c("numeric", "factor").

Obliczenie testu ANOVA w R przeprowadzono w następujący sposób: $model = aov(data \sim type,\ data)$

summary(model)

Otrzymano następujący tablicowy wynik:

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
type	2	18947	9473	1.127	0.356
Residuals	12	100864	8405		

Funkcja oblicza p-value zapisane w ostatniej kolumnie, które jest większe od przyjętego poziomu istotności $\alpha=0.05$. Zatem nie mamy podstaw aby odrzucić hipotezę zerowa o równaniu się wartości przeciętnych czasów świecenia żarówek.

2 Zadane 2

(Krysicki 5.3). Spośród trzech odmian ziemniaków każdą uprawiano na 12 działkach tej samej wielkości i rodzaju. Działki te podzielono na 4 grupy po 3 działki i dla każdej grupy zastosowano różny rodzaj nawozu. Plony w q zestawione w tabeli:

Odmiana	Nawóz											
		1			2			3			4	
1	5,6	6,1	5,9	6,6	6,7	6,6	7,7	7,3	7,4	6,3	6,4	6,3
2	5,7	4,9	5,1	6,5	6,7	6,6	6,9	7,1	6,5	6,6	6,7	6,7
3	6,3	6,1	6,3	6,5	6,4	6,2	6,6	6,6	6,8	6,3	6,1	6,0

Na poziomie istotności $\alpha=0,05$ zweryfikować następujące hipotezy:

- a) wartości przeciętne plonów dla różnych odmian nie różnią się istotnie niezależnie od stosowanego nawozu,
- b) wartości przeciętne plonów dla różnych nawozów nie różnią się istotnie niezależnie od odmiany,
- c) interakcja między odmianami i nawozami jest równa 0.

Dane przygotowano w postaci pliku csv w celu obliczenia testu ANOVA w ${\bf R}.$

data	odmiana	nawoz
5.6	"1"	"1"
6.1	"1"	"1"
5.9	"1"	"1"
5.7	"1"	"2"
4.9	"1"	"2"
5.1	"1"	"2"
6.3	"1"	"3"
6.1	"1"	"3"
6.3	"1"	"3"
6.6	"1"	"4"
6.7	"1"	"4"
6.6	"1"	"4"
6.5	"2"	"1"
6.7	"2"	"1"
6.6	"2"	"1"
6.5	"2"	"2"
6.4	"2"	"2"
6.2	"2"	"2"
7.7	"2"	"3"
7.3	"2"	"3"
7.4	"2"	"3"
6.9	"2"	"4"
7.1	"2"	"4"
6.5	"2"	"4"
6.6	"3"	"1"
6.6	"3"	"1"
6.8	"3"	"1"
6.3	"3"	"2"
6.4	"3"	"2"
6.3	"3"	"2"
6.6	"3"	"3"
6.7	"3"	"3"
6.7	"3"	"3"
6.3	"3"	"4"
6.1	"3"	"4"
6.0	"3"	"4"

2.1 a)

Dane te wgrano w R w następujący sposób: data = read.csv("w12zad2.csv", colClasses = c("numeric", "factor", "factor").

Obliczenie testu ANOVA w R przeprowadzono w następujący sposób: $model = aov(data{\sim}odmiana + nawoz,\ data)\\summary(model)$

Otrzymano następujący tablicowy wynik:

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
odmiana	2	4.101	2.0503	16.900	1.21e-05
nawoz	3	3.116	1.0388	8.563	0.000294
Residuals	30	3.639	0.1213		

Funkcja oblicza p-value w ostatniej kolumnie. Dla typu nawozu widzimy że wartość 0.000294 jest mniejsza od przyjętego poziomu istotności $\alpha=0.05$, zatem wartości przeciętne plonów różnią się istotnie zależnie od stosowanego nawozu.

2.2 b)

Korzystając z tabeli poprzedniego podpunktu widzimy że p-value = 1.12e-05 dla typu odmiany jest mniejsze od przyjętego poziomu istotności $\alpha = 0.05$. Zatem wartości przeciętne plonów dla rożnych nawozów różnią się istotnie zależnie od odmiany.

2.3 c)

Aby sprawdzić interakcje między nawozami i odmianami możemy zastosować test Tukeya w R następująco: TukeyHSD(model, conf.level = 0.95). Funkcja ta oddaje następujące tablice:

	\$odmiana											
	diff	lwr	upr	p adj								
2-1	0.8250000	0.4744532	1.17554680	0.0000071								
3-1	0.4583333	0.1077865	0.80888014	0.0083242								
3-2	-0.3666667	-0.7172135	-0.01611986	0.0388934								
	\$nawoz											
2-1	-0.4000000	-0.84645464	0.04645464	0.0917316								
3-1	0.4111111	-0.03534353	0.85756575	0.0796887								
4-1	0.1555556	-0.29089908	0.60201019	0.7797038								
3-2	0.8111111	0.36465647	1.25756575	0.0001551								
4-2	0.555556	0.10910092	1.00201019	0.0102547								
4-3	-0.255556	-0.70201019	0.19089908	0.4179349								

Obliczone są p-value zatem możemy dokonać wnioski. Dla różnicy odmian widzimy że wszystkie p-value są mniejsze od $\alpha=0.05$, zatem każda wartość przeciętna dla odmian różni się, więc różnice nie są równe 0.

Dla nawozów natomiast istnieją wartości p-value większe od $\alpha=0.05$ są to różnice: 1-3, 1-4, 3-4. Oznacza to że dla tych nawozów różnica wartości przeciętnych jest z dużym prawdopodobieństwem 0. Natomiast dla reszty nawozów różnice nie są równe 0 bo przeciętne wartości różnią się za dużo.