

1. Controle de Qualidade. Os dados a seguir foram obtidos em um ensaio R&R. Determine os parâmetros $\%R\&R_{VT}$ e $\%R\&R_{TOL}$ desses processos de medição e indique se eles são adequados ou não e o motivo (Extraído do livro Fundamentos de Metrologia Científica e Industrial de Armando Albertazzi G. Jr. e André R. de Souza, 2^a edição, página 409).

	Peças									
Operadores		1	2	3	4	5	6	7	8	9
A	Medição 1	56.07	56.32	56.07	56.19	56.27	55.95	56.43	56.11	56.5
	Medição 2	56.25	56.26	56.21	56.04	56.2	56.23	56.12	56.08	56.23
	Medição 3	56.43	56.2	56.17	56.14	56.49	56.32	56.23	56.24	56.16
	Medição 1	56.06	56.11	56.34	56.23	56.13	56.39	56.3	56.32	56.11
В	Medição 2	56.44	56.21	56.08	56.41	56.26	56.53	56.22	56.08	56.08
	Medição 3	56.18	56.51	56.54	56.43	56.14	56.01	56.26	56.24	56.38
	Medição 1	56.12	56.03	56.38	56.21	56.15	56.12	56.31	56.25	56.29
С	Medição 2	56.19	56.24	56.19	56.31	56.08	56.38	56.14	56.42	56.48
	Medição 3	56.41	56.22	56.34	56.4	56.12	56.16	56.3	56.29	56.3

2. Ajuste Linear. Para determinar a constante de elasticidade de uma mola, um estudante pendura várias massas M em uma extremidade da mola e mede a sua correspondente dimensão l. Os resultados obtidos estão apresentados na Tabela 1. Como a força $mg = k(l-l_0)$ é o comprimento da mola sem distensão, esses dados devem se ajustar a uma reta, $l = l_0 + (g/k)m$. Faça um ajuste por mínimos quadrados para essa reta, considerando os dados apresentados, e determine as melhores estimativas para l_0 e para k. Calcule o comprimento l e sua incerteza para o peso de 1kg (Extraído do livro Introdução à análise de erros de John R. Taylor, 2^a edição, página 200).

Peso m (gramas)	200	300	400	500	600	700	800	900
Comprimento l (cm)	4.75	4.79	4.89	5.09	5.76	6.66	8.92	9.47

Tabela 1: Comprimento versus peso para uma mola M.

3. Medidas Correlacionadas. Considere o modelo matemático abaixo para medição de uma resistência com base nos valores simultaneamente observados de corrente e voltagem sob condições ambientais idênticas, utilizando um voltímetro e um amperímetro (ambos os instrumentos estavam com escala selecionada visando a menor incerteza associada ao conjunto de medições em questão, ver Tabelas 3 e 4), considerando a influência de correlação entre as variáveis e tendo ciência de que a temperatura ambiente estava oscilando entre 19°C e 28°C. Determine a incerteza no cálculo de R com 99.73% de confiança de acordo com a quantidade de algarismos significativos de acordo com o Método de Monte Carlo.

$$R = (V_a + V_{resol} + V_{calib} + V_{temp})/(I_a + I_{resol} + I_{calib} + I_{temp})$$
, sendo:

N	1	2	3	4	5	6	7	8
$V_a(V)$	8.43	11.13	10.81	9	8.45	9.52	9.39	8.74
$I_a (mA)$	84.438	110.895	107.171	90.662	85.318	95.956	93.26	87.928

Tabela 2: Medições simultâneas de voltagem e corrente

Faixa	Precisão
200mV, 2V, 20V, 200V	$\pm (0.5\% + 3D)$
1000V	$\pm (1.0\% + 5D)$

Tabela 3: Incerteza do voltímetro de 3 1/2 dígitos, segundo o certificado de calibração, válida para temperatura ambiente oscilando entre $-10^{\circ}C$ e $40^{\circ}C$.

Faixa	Incerteza
20mA	$\pm (0.8\% + 3D)$
200mA	$\pm (1.2\% + 4D)$
20A	$\pm (2.0\% + 5D)$

Tabela 4: Incerteza do amperímetro de 5 1/2 dígitos, segundo o certificado de calibração, válida para temperatura de $23^{\circ}C \pm 5^{\circ}C$ e umidade relativa < 75%.