Introduction Reinforcement to Learning and Q-Learning

Extra Class: RL

Nguyen-Thuan Duong – TA

Outline

- > Introduction
- > Reinforcement Learning
- > Bellman Equation
- > Monte Carlo and TD Learning
- Q-Learning
- > Demo
- > Question

Introduction

Introduction

Getting Started

machine learning

unsupervised learning supervised learning

reinforcement'

Introduction

Unsupervised vs Supervised vs Reinforcement Learning

Unspervised Learning is used to train machines using labeled data.

Supervised Learning uses unlabeled data to train machines.

Reinforcement Learning uses an agent and an environment to produce actions and rewards.

Introduction

Algorithms

Introduction

***** Training data

Unsupervised Learning

Input data is not labeled

Supervised Learning

Input data is labeled

Reinforcement Learning

No need input data

Introduction

Applications

Unsupervised Learning

Soy Chunks Market Analysis By Type

Supervised Learning

Reinforcement Learning

Reinforcement Learning

***** Getting Started

- Reinforcement learning is a framework for solving control tasks (also called decision problems)
- By building agents that learn from the environment by interacting with it through trial and error.
- And receiving rewards (positive or negative) as unique feedback.

Learning from interactions with the environment comes from our natural experiences.

***** Getting Started

- 1. Agent receives state S_0 from environment.
- 2. Base on S_0 , Agent take a **action** A_0
- 3. Environment goes to next state S_1
- 4. Environment give some **rewards** R_1 to the Agent

Reinforcement Learning

Environment

The environment for testing RL algorithms is often games

***** Observation / State Space

State s: is a complete description of the state of the world.

Observation o: is a partial description of the state.

* Reward

The goal is maximizing the expected return (expected cumulative reward).

$$R = r_t + r_{t+1} + r_{t+2} + r_{t+3} + \cdots$$

$$R = \sum_{k=0}^{n} r_{t+k+1}$$

Discounting

It's also reasonable to prefer rewards now to rewards later

$$R = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 r_{t+3} + \cdots$$

$$R = \sum_{k=0}^{n} \gamma^k r_{t+k+1}$$

Exploration / Exloitation trade-off

Exploration

Appoachs for solving RL problem

The **Policy** π is the **brain** of our Agent, it's the function that tells us **what action** to take given the state we are in. So it defines the **agent's behavior** at a given time.

This Policy is the function we want to learn, our goal is to find the **optimal policy** π^* , the policy that **maximizes expected return** when the agent **acts according to it**. We find this π^* through training.

\Leftrightarrow How to find optimal policy π^*

Directly, by teaching the agent to learn which action to take, given the current state.

Indirectly, teach the agent to learn which state is **more valuable** and then take the action that **leads to the more valuable** states

Policy-based methods

State
$$s_0 \rightarrow \pi(s_0) \rightarrow a_0 = Right$$

Policy π is a Neural Network

Value-based methods

We learn a **value function** that **maps** a **state** to the **expected value** of being at that state.

$$v_\pi(s) = \mathbb{E}_\piig[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = sig]$$
 Value Expected discounted return Starting at state s

 $V_{\pi}(s)$: value of a state is the expected discounted return the agent can get if it starts in that state, and then acts according to our policy.

Bellman Equation

Bellman Equation

& Getting Started

Bellman Equation

***** Getting Started

Monte Carlo

Monte Carlo

***** Getting Started

- Monte Carlo is a strategy to train our value function function.
- It use **experience to solve** the RL problem.

- Monte Carlo uses an entire episode of experience before learning.
- So it requires a **complete episode** of interaction before updating our value function.

Monte Carlo

***** Training

- Initialize value function to zero for each state
- Learning rate (lr) is 0.1 and our discount rate is 1 (= no discount)
- The mouse explores the environment and takes random actions

- Calculate the return Gt.

Gt = Rt+1 + Rt+2 + Rt+3...

Gt = 1 + 0 + 0 + 0 + 0 + 0 + 1 + 1 + 0 + 0

Gt= 3

- We can now update V(S0).

$$V(S_t) \leftarrow V(S_t) + lpha[G_t - V(S_t)]$$

New V(S0) = V(S0) + Ir * [Gt-V(S0)]

New V(S0) = 0 + 0.1 * [3 - 0]

New V(S0) = 0.3

Temporal Difference

Temporal Difference

& Getting Started

- The idea with TD is to update at each step.
- Estimate G_t by R_{t+1} and discounted value of next state.

Temporal Difference

- Initialize value function to zero for each state
- Learning rate (lr) is 0.1 and our discount rate is 1 (= no discount)
- The mouse explores the environment and takes random actions (going to the left)

Monte Carlo vs TD Learning

Summary

Monte Carlo: $V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$

TD Learning: $V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$

Q-Learning

***** Getting Started

Q-learning is a simple Reinforcemen Learning algorithm

Q-learning is a value-based methods.

Q-learning uses a TD approach to train its action-value function.

Q-Learning is the algorithm we use to train our Q-function, an action-value function that determines the value of being at a particular state and taking a specific action at that state.

***** Getting Started

- The Q-function uses a Q-table that has the value of each state-action pair.
- Given a state and action, our Q-function will search inside its Q-table to output the value.
- Q(s, a) is the the value by starting from s and take action a.

& Getting Started

- Initialize Q(s, a) = 0 for each s, a pair
- Select action and observe an experience (s, a, r, s').
- Update $Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max Q(s', a') Q(s, a)]$

***** Training step 2

Training step 3

Take action A_t and observe R_{t+1}, S_{t+1}

***** Training step 4

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha[R_{t+1} + \gamma max_aQ(S_{t+1}, a) - Q(S_t, A_t)]$$

New **Q**-value estimation

Q-value estimation

Reward Rate

Former Learning Immediate Discounted Estimate optimal Q-value of next state

Former Q-value estimation

TD Target

TD Error

Rules

- You're a mouse in this tiny maze. You always start at the same starting point.
- The goal is to eat the big pile of cheese at the bottom right-hand corner and avoid the poison. After all, who doesn't like cheese?
- The episode ends if we eat the poison, eat the big pile of cheese, or if we take more than five steps.
- The learning rate is 0.1
- The discount rate (gamma) is 0.99

- +0: Going to a state with no cheese in it.
- +1: Going to a state with a small cheese in it.
- +10: Going to the state with the big pile of cheese.
- -10: Going to the state with the poison and thus dying.
- +0 If we take more than five steps.

$$lr = 0.1$$

 $\gamma = 0.99$

	←	→	1	Ţ
(A)	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
[0	0	0	0
	0	0	0	0

$$\alpha = 0.1$$
$$\gamma = 0.99$$

	←	→	1	Ţ
(A)	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
[0	0	0	0
	0	0	0	0

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + lpha[R_{t+1} + \gamma max_aQ(S_{t+1}, a) - Q(S_t, A_t)]$$

$$\alpha = 0.1$$
$$\gamma = 0.99$$

	←	→	1	1
9-6	0	0	0	0
	0	0	0	0
	0	0	0	0
	0	0	0	0
[0	0	0	0
	0	0	0	0

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + lpha[R_{t+1} + \gamma max_aQ(S_{t+1}, a) - Q(S_t, A_t)]$$

***** Training

At the end of the training, we'll get an estimate of the optimal Q-function.

The link between Value and Policy:

$$\pi^*(s) = rg \max_a Q^*(s,a)$$

Finding an optimal value function leads to having an optimal policy.

Demo

Question

