主领审签

哈尔滨工业大学(深圳)2021年秋季学期

离散数学期末试题

题 号	_	П	Ξ	四	五	六	七	总分
得 分								
阅卷人								

考生须知:本次考试为闭卷考试,考试时间为120分钟,总分80分。

一、 本题得分 _____

填空题(每小题2分,共20分)

- 设P: 天气热, Q: 他去游泳。则命题"如果天气热, 他就去游泳"可符号化为___P⇒Q____。
- 3. 4 阶群必是 循环 群或 四元 群。
- 4. $\langle Z_n, \oplus \rangle$ 是个群,其中 $Z_n = \{0,1,2,\cdots,n-1\}$, $x \oplus y = (x+y) \mod n \quad .$ 则在 $\langle Z_6, \oplus \rangle$ 中,3的阶数是_____。
- 5. 设 $G = \langle a \rangle$ 是 4 阶循环群。则G的所有生成元是<u>a</u>, a^3 。

6. 下面偏序格是分配格的是 (A) (B)。

- 7. 命题公式 $(\sim P \Rightarrow Q) \Rightarrow (\sim Q \lor P)$ 中极小项的个数为_____。
- 8. 连接词 ⇒, ∧, ∨, ⇔ 中不具有交换律的是 __⇒___。
- 9. 在有界格中,若一个元素有补元,则补元<u>(C)</u>。
 (A). 必唯一 (B). 不唯一 (C). 不一定唯一
- 10. *是定义在②上的二元运算,

$$\forall x, y \in \mathbb{Z}, \ x * y = xy + x - y$$
,

则*的单位元 ____ 不存在____。(若此二元运算的单位元存在,就求出。 否则就说不存在。)

	:	单项选择题(每小题 2 分,共 20	分)					
		1. 重言式的否定为(A)。						
		A. 矛盾式; B. 蕴含式; C. 重	言式; D. 等价式。					
左 4		2. 设 <i>P</i> :今天下雨, <i>Q</i> : 明天下雨, 这	$AP \wedge Q$ 表示(A)。					
₹ X	密	A. 今天和明天都下雨;	B. 今天没有下雨;					
		C. 今天和明天都不会下雨;	D. 今天或明天下雨					
		3. 下列句子不是命题的是(D)。						
か か ・・・ ・・・ ・・・ ・・・	A. 今天是五一国际劳动节。							
滑	封	B. π 的小数点后第八万位是 5。						
ı		C. $1+10=110$ o						
		D. 全体立正!						
班号	······线·	4. 下面的语句哪一个是真命题(C)。						
Ī		A. 如果 1+2=3, 则雪是黑色的;	B. 我正在说谎;					
		C. 如果 1+2=5,则雪是黑色的;	D. 上网了吗?					
		5. 格不一定具有(C)。						
小河		A. 交换律; B. 结合律; C.	分配律; D. 吸收律。					

二、 本题得分 _____

- 6. 设G是群,当G有(C)个元素时,不能肯定G是交换群。
 - A. 4; B. 5; C. 6;
- D. 7.
- 7. 若个体域为整数域,下列公式中值为真的是(A)。
 - A. $\forall x \exists y (x+y=0)$;

B. $\exists y \ \forall x(x+y=0)$;

C. $\forall x \forall y \ (x+y=0)$;

- D. $\sim \exists x \exists y \ (x + y = 0)$.
- 8. 下列公式中,含有3个命题变项P,Q,R的极小项是(C)。
 - A. $P \vee Q$;

B. $\sim (P \wedge Q \wedge R)$;

C. ~ $P \land \sim Q \land \sim R$;

- D. $P \wedge Q \vee R$.
- 9. 半群、群及独异点的关系是(A)。
 - A. {群} ⊂ {独异点} ⊂ {半群}; B. {独异点} ⊂ {半群} ⊂ {群};

 - C. {独异点} ⊂ {群} ⊂ {半群}; D. {半群} ⊂ {群} ⊂ {独异点}。
- 10. 下面偏序集中能构成格是(B)。

运算题 (每小题 10 分, 共 20 分)

1. 构造命题公式~(P∧Q)⇔(~P∨~Q)的真值表。

P	Q	P∧Q	~P	~Q	\sim (P \land Q)	~PV~Q	所给命题公式
Т	T	Т	F	F	F	F	Т
Т	F	F	F	Т	T	Т	Т
F	T	F	Т	F	T	Т	Т
F	F	F	Т	Т	Т	Т	Т

2. 判断下面推理是否正确,并证明你的结论。

如果今天是星期三,那么我有一次英语或数学测验;如果数学老师有事,那么没有数学测验;今天是星期三且数学老师有事,所以我有一次英语测验。

解: p: 今天是星期三。

q: 我有一次英语测验。

r: 我有一次数学测验。

s: 数学老师有事。

前提: p⇒(q∨r) , s⇒~r , p∧s

结论: q

证明: ①p∧s

前提引入

(2)p

(1)化简

 $\mathfrak{J}_{p\Rightarrow}(q \lor r)$

前提引入

4q∨r

②③假言推理

5s

①化简

6s⇒~r

前提引入

⑦~r

⑤⑥假言推理

®q

④⑦析取三段论

推理正确。

逃兆

四、 本题得分 _____

(5分)设G为群,且|G|=4。证明G为阿贝尔群。

证:设G为群,且|G|=4。 $\forall a \in G$,由拉格朗日定理的推论知,

$$|a| = 1, 2, 4$$
.

若G中没有4阶元。则G中只含有1阶元和2阶元。于是, $\forall x \in G$,有

$$x^2 = e$$

这说明它是阿贝尔群。

五、**本题得分**_____

(5分)设 $G=\langle a\rangle$ 是12阶循环群。试找出G的所有子群。

解:由于12的正因子是1,2,3,4,6和12,G的所有子群为

$$\left\langle a^{\frac{12}{1}} \right\rangle = \left\langle a^{12} \right\rangle = \left\{ e \right\},$$

$$\left\langle a^{\frac{12}{2}} \right\rangle = \left\langle a^{6} \right\rangle = \left\{ e, a^{6} \right\},$$

$$\left\langle a^{\frac{12}{3}} \right\rangle = \left\langle a^{4} \right\rangle = \left\{ e, a^{4}, a^{8} \right\},$$

$$\left\langle a^{\frac{12}{4}} \right\rangle = \left\langle a^{3} \right\rangle = \left\{ e, a^{3}, a^{6}, a^{9} \right\},$$

$$\left\langle a^{\frac{12}{6}} \right\rangle = \left\langle a^{2} \right\rangle = \left\{ e, a^{2}, a^{4}, a^{6}, a^{8}, a^{10} \right\},$$

$$\left\langle a^{\frac{12}{12}} \right\rangle = \left\langle a^{2} \right\rangle = \left\{ e, a^{2}, a^{4}, a^{6}, a^{8}, a^{10} \right\},$$

解:

它们是分配格, 但不是有补格;

它们是有补格, 但不是分配格。

七、 本题得分 _____

(5分) 设 G 为 阿 贝 尔群,且 |G|=7 。 证明 G 中 所 有 元素之 积 为 单 位 元 。 证:设 G 为 阿 贝 尔群,且 |G|=7 。由 拉 格 朗 日 定 理 的 推 论 知,不 存 在 元素 $a \neq e \in G$,满足 $a^2=e$ 。于 是,任 给 $a \neq e$,则 有 $a \neq a^{-1}$ 及 $\left(a^{-1}\right)^{-1}=a$ 。因此, a 与 a^{-1} 是 两 个 不 同 的 元素,且 它 们 总 是 成 对 出 现 。由 于 G 为 阿 贝 尔 群,且 |G|=7, G 中 所 有 元素 之 积 为

$$ea_1a_1^{-1}a_2a_2^{-1}a_3a_3^{-1} = e$$
.