Fourier-Taylor Fitting Algorithm Theory

Garrett Lim, garrett.m.lim@gmail.com

Last Update: August 2, 2021

1 Introduction

This document describes the formulation of an algorithm to select parameters for a function that is fitted to a measured data set. The family of functions that are generated by this algorithm are a linear combination of polynomial and harmonic terms. The function generated by this algorithm may be considered as a hybrid of Taylor series and a Fourier series.

2 Parameters

Parameter	Description	Units
$c_h\left[q,h ight]$	Artificial output function harmonic coefficient of di-	[output unit]
	mensions q and h	
$c_p\left[q,p ight]$	Artificial output function polynomial coefficient of	[output unit] / [input unit q] ^{p}
	dimensions q and p	
$f\left(t\left[q\right]\right)\forall q\in\left[1,Q\right]$	Artificial output function	[output unit]
H	Maximum degree of harmonic fitting	Unitless
h	Artificial output function harmonic coefficient de-	Unitless
	gree dimension index	
N	Number of measurements	Unitless
n	Index of measurement instance	Unitless
P	Maximum degree of polynomial fitting	Unitless
p	Artificial output function polynomial coefficient de-	Unitless
	gree dimension index	
Q	Input parameter dimension count	Unitless
q	Input paramater dimensional index	Unitless
$t\left[q ight]$	Artificial input parameter of dimension q	[input unit q]
$x\left[q,n ight]$	Measured input parameter of dimension q at instance n	[input unit q]
$y\left[n ight]$	Measured output parameter at instance n	[output unit]
$\delta\left[q,h ight]$	Phase offset of harmonic fitting of dimensions q	[radians]
$\varepsilon[n]$	Error of fitted function at instance n	[output unit]
$\omega\left[q ight]$	Fundamental frequency of harmonic fitting of dimension q	[radians] / [output unit]

3 Theory

Assume we are given a set of synchronous measurements. We may arbitrarily select one dimension of these measurements as our output parameter set, y[n]. The remainder are the input parameter set, x[q, n].

The goal of the algorithm is to determine the coefficients of the function that best match the measure dataset. The function has the form described in equation (1).

$$f(t[q]) = f_h(t[q]) + f_p(t[q])$$
(1a)

$$f_h\left(t\left[q\right]\right) = \sum_{q=1}^{q=Q} \sum_{h=1}^{h=H} c_h\left[q, h\right] \cdot \cos\left(h \cdot \omega\left[q\right] \cdot t\left[q\right] + \delta\left[q, h\right]\right) \tag{1b}$$

$$f_p(t[q]) = c_p[1,0] + \sum_{q=1}^{q=Q} \sum_{p=1}^{p=P} c_p[q,n] \cdot (t[q])^n$$
 (1c)

The error between the fitted function and the measured data is defined as in equation (2).

$$\varepsilon[n] = \left(\sum_{q=1}^{q=Q} f(x[q,n])\right) - y[n]$$
(2)

The algorithm minimizes the net square error.

$$0 = \frac{\partial}{\partial c_h [q, h]} \left(\varepsilon^2 [n] \right) = \varepsilon [n] \cdot \frac{\partial \varepsilon [n]}{\partial c_h [q, h]}$$
(3a)

$$0 = \frac{\partial}{\partial \delta[q, h]} \left(\varepsilon^{2}[n] \right) = \varepsilon[n] \cdot \frac{\partial \varepsilon[n]}{\partial \delta[q, h]}$$
(3b)

$$0 = \frac{\partial}{\partial \omega [q]} \left(\varepsilon^2 [n] \right) = \varepsilon [n] \cdot \frac{\partial \varepsilon [n]}{\partial \omega [q]}$$
(3c)

$$0 = \frac{\partial}{\partial c_{p} [q, p]} \left(\varepsilon^{2} [n] \right) = \varepsilon [n] \cdot \frac{\partial \varepsilon [n]}{\partial c_{p} [q, p]}$$
(3d)

Each of the partial derivatives in equation (3) are expanded in equation (13). Note that each of the partial derivates in equation (13) is two-dimensional or three-dimensional.

$$\frac{\partial \varepsilon [n]}{\partial c_{h} [q, h]} = \cos (h \cdot \omega [q] x [q, n] + \delta [q, h])$$
(4a)

$$\frac{\partial \varepsilon [n]}{\partial \delta [q, h]} = -c_h [q, h] \cdot \sin (h \cdot \omega [q] \cdot x [q, n] + \delta [q, h])$$
(4b)

$$\frac{\partial \varepsilon \left[n \right]}{\partial \omega \left[q \right]} = -c_h \left[q, h \right] \cdot h \cdot x \left[q, i \right] \cdot \sin \left(h \cdot \omega \left[q \right] \cdot x \left[q, i \right] + \delta \left[q, h \right] \right) \tag{4c}$$

$$\frac{\partial \varepsilon [n]}{\partial c_p [q, p]} = \begin{cases} p = 0 : 1 \\ p \neq 0 : p \cdot (x [q, n])^{(p-1)} \end{cases}$$

$$(4d)$$

The partial derivatives of the harmonic series are problematic because they incorporate coefficients. For this reason, it is necessary to (a) determine the fundamental frequencies, $\omega[q]$, in advance, and (b) dissociate the phase and amplitude coefficients. The algorithm assumes that these are the first q fundamental frequencies observed in y, as computed from a Fourier transformation.

The algorithm associates each dimension with its fundamental frequency by computing the minimum error of the simplified fitted function in equation (5).

$$f[n] = A \cdot \cos(\omega \cdot x[q, n]) + B \cdot \sin(\omega \cdot x[q, n]) \tag{5}$$

Multiple dimensions may share a fundamental frequency.

Note that computation of the dimension-associated fundamental frequencies is computationally expensive. If you, the reader, can find a way to improve this aspect of the algorithm, please contact the author.

The phase and amplitude coefficients can be separated via trigonometric identity.

$$C\cos(\theta + \delta) = C\cos\theta\cos\delta - C\sin\theta\sin\delta = A\cos\theta + B\sin\theta \tag{6}$$

$$C = \sqrt{A^2 + B^2} \tag{7}$$

$$\tan \delta = -\frac{B}{A} \tag{8}$$

The partial derivatives in equation (3) can be adjusted to those in equation (9). Remember that the fundamental frequencies, $\omega[q]$, are determined by a subprocess of the main algorithm.

$$\frac{\partial \varepsilon [n]}{\partial a_{h} [q, h]} = \cos (h \cdot \omega [q] x [q, n])$$
(9a)

$$\frac{\partial \varepsilon [n]}{\partial b_{h} [q, h]} = \sin (h \cdot \omega [q] x [q, n]) \tag{9b}$$

$$\frac{\partial \varepsilon [n]}{\partial c_p [q, p]} = \begin{cases} p = 0 : 1 \\ p \neq 0 : p \cdot (x [q, i])^{(p-1)} \end{cases}$$

$$(9c)$$

The coefficients can be reorganized into a one-dimensional parameter, γ , that is constructed by the algorithm.

$$\begin{cases}
c_{p} [q = 1, p = 0] \\
c_{p} [q = 1, p = 1]
\end{cases} \\
\vdots \\
c_{p} [q, p = P[q]] : q = 1 \\
c_{p} [q, p = 1] : q = 2
\end{cases} \\
\vdots \\
c_{p} [q, p = P[q]] : q = 2] \\
\vdots \\
c_{p} [q, p = P[q]] : q = Q
\end{cases} \\
a_{h} [q = 1, h = 1] \\
b_{h} [q = 1, h = 1]
\end{cases} \\
b_{h} [q, h = H[q]] : q = 1 \\
b_{h} [q, h = H[q]] : q = 1
\end{cases} \\
\vdots \\
a_{h} [q, h = H[q]] : q = Q
\end{cases} \\
b_{h} [q, h = H[q]] : q = Q$$

Note that in equation (10) we allow that the maximum fitting degrees, H[q] and P[q], may vary by dimension, q. The number of coefficients must not exceed the number of measurement instances.¹

The variables can also be reorganized into a conformal two-dimensional parameter, ξ , as in equation (11).

¹i.e.,
$$1 + \sum_{q=1}^{q=Q} (1 + 2H[q] + P[q]) \le I$$
.

$$\xi\left[s,n\right] = \left\{ \begin{array}{c} 1 \\ x^{1}\left[q,n\right]:q=1 \\ \vdots \\ x^{P[q]}\left[q,n\right]:q=2 \\ \vdots \\ x^{P[q]}\left[q,n\right]:q=2 \\ \vdots \\ x^{P[q]}\left[q,n\right]:q=2 \\ \vdots \\ x^{P[q]}\left[q,n\right]:q=0 \\ \cos\theta\left[q,h,n\right]:h=1,q=1 \\ \sin\theta\left[q,h,n\right]:h=1,q=1 \\ \vdots \\ \cos\theta\left[q,h,n\right]:h=H\left[q\right],q=1 \\ \sin\theta\left[q,h,n\right]:h=H\left[q\right],q=1 \\ \vdots \\ \cos\theta\left[q,h,n\right]:h=H\left[q\right],q=Q \\ \sin\theta\left[q,h,n\right]:h=H\left[q\right],q=Q \end{array} \right\}$$

We can use these linearized coefficients and variables to compute the fitted functional values by a different manner.

$$\sum_{q=1}^{q=Q} f(x[q,n]) = \gamma[s] \cdot \xi[s,n]$$

$$\tag{12}$$

The partial derivatives of the error can be conveniently redefined as well.

$$\left(\frac{\partial \varepsilon [n]}{\partial \gamma [s]} : \gamma [s] = a_h [q, h]\right) = \cos(h \cdot \omega [q] \cdot x [q, n])$$
(13a)

$$\left(\frac{\partial \varepsilon [n]}{\partial \gamma [s]} : \gamma [s] = b_h [q, h]\right) = \sin (h \cdot \omega [q] \cdot x [q, n])$$
(13b)

$$\left(\frac{\partial \varepsilon \left[n\right]}{\partial \gamma \left[s\right]} : \gamma \left[s\right] = c_p \left[q, p\right]\right) = \begin{cases} p = 0 & : & 1\\ p \neq 0 & : & p \cdot x^{(p-1)} \left[q, n\right] \end{cases}$$
(13c)

These can be used to compute the coefficients associated with minimum net error.

$$y[n] \cdot \frac{\partial \varepsilon[n]}{\partial \gamma[s_2]} = (\gamma[s_1] \cdot \xi[s_1, n]) \cdot \frac{\partial \varepsilon[n]}{\partial \gamma[s_2]}$$
(14)

At this point, the algorithm filters the data to exclude instances with incomplete data. Such a filtration will exclude instances, n, with null output measurements, y[n], and null input measurements, $\xi[s,n]$.

$$\left[\xi\left[s_{1},n\right]\cdot\frac{\partial\varepsilon\left[n\right]}{\partial\gamma\left[s_{2}\right]}\right]\cdot\gamma\left[s_{1}\right] = \frac{\partial\varepsilon\left[n\right]}{\partial\gamma\left[s_{2}\right]}\cdot y\left[n\right] \tag{15}$$

Note that $\left[\xi \cdot \frac{\partial \varepsilon}{\partial \gamma}\right]$ is a square matrix. The algorithm then uses Gaussian elimination to compute the coefficients, γ .

Finally, the amplitudes, c_h , and phase offsets, δ_h , of the harmonic series are computed from the isolated amplitudes, a_h and b_h .

$$c_h[q, h] = \sqrt{a_h^2[q, h] + b_h^2[q, h]}$$
 (16a)

$$\tan\left(\delta\left[q,h\right]\right) = \frac{b_h\left[q,h\right]}{a_h\left[q,h\right]} \tag{16b}$$