A Study of Uncertainty in the LIDC

Jake Sauter, Victoria LaBarre,
Jacob Furst and Daniela Raicu

Overview:

- Study 1
 - Introduction
 - Motivation
 - Methodology
 - Results
 - Conclusion

- Study 2
 - Methodology
 - Results

Study 1

An Evaluation of Consensus Techniques for Diagnostic Interpretation

Introduction

- Lung cancer
- Computer-aided diagnosis (CAD)
- Variance in Ground Truth
- Mean consensus is the best technique to form ground truth with

Figure 1: Lung Nodules in a Radiographic Image

Literature Review:

- Lung Image Database Consortium: Developing a Resource for the Medical Imaging Research Community. Radiology
- Computer-Aided Diagnosis of Lung Nodules in Computed Tomography by Using Phylogenetic Diversity, Genetic Algorithm, and SVM

Motivation

- LIDC Data
- Consensus-based Label Extraction
 - Mean, Median, Mode
- Classification Models
- Hierarchy of Information Loss

PLV

- No loss of information
- Accuracy undefined

Label (1-5)

- Lose a little information
- Accuracy defined

Binary

- Lose more information
 - ROC, H-Measure, sensitivity, specificity...

Methodology

Methodology: Context

Methodology: Vote Vector Conversion

- Vote vector
 - Example: [2, 2, 3, 5]
- Converted using an consensus technique
 - Mean, median, mode
- Probabilistic label vector
 - Example of a Median PLV: [0, 0.5, 0.5, 0, 0]
 - Each index correlated to the probability of the nodule belonging to that malignancy class

Methodology: Vote Vector Conversion

Mean

$$\circ$$
 [2, 2, 3, 4] $\Rightarrow \frac{2+2+3+4}{4} = 2.75 \Rightarrow [0, .25, .75, 0, 0]$

Median

$$\circ$$
 [2, 2, 3, 5] \Rightarrow [2, 2, 3, 5] = 2.5 \Rightarrow [0, 0.5, 0.5, 0, 0]

Mode

$$\circ$$
 [2, 2, 3, 5] \Longrightarrow [2, 2, 3, 5] = 2 \Longrightarrow [0, 1, 0, 0, 0]

Methodology: Label Extraction

Mean

$$[.1,.1,.4,.2,.2] \implies 1*.1+2*.1+3*.4+4*.2+5*.2 = 3.3 \implies 3$$

Median

$$[.1,.1,.4,.2,.2] \Rightarrow RS: [.1,.2,6).8, 1] \Rightarrow 3$$

Mode

$$[.1,.1,.4].2,.2] \implies 3$$

Results:

- Compared consensus techniques
 - o Mean, Median, Mode
- Compared forcing a label before/after
 - Multi Class Decision Tree (DT)
 - Belief Decision Tree (BDT)
- Compared consensus techniques to distribution(BDT)
 - Consensus provided better positive to negative response rate

Results: before looking at our chart

- DT- Decision Tree
- BDT- Belief decision Tree
- Mean, Median, Mode, Distribution
- Green-correct
- Red-incorrect
- Negatives
- Positives

Conclusions

- Consensus produced more robust results
- Consensus before model
 - better than consensus after model
- Mean is the best technique
 - Most positive responses to negative responses

Study 2

An Evaluation of Feature Characteristics of Atypical Nodules

Methodology: Support

- Typical: There are "enough" similar nodules in the data
- Atypical: the nodule is "significantly" different from the other nodules

Methodology: Support

3 Strategies:

- Based on labels predicted using BDT's
- Based on image features
- Combinations the above strategies

Support

Results: Mean

Results: Discerning Features

Atypical nodules tend to be:

- Less solid
- Larger
- Less circular

- Less elongated
- Higher entropy

Results: Discerning Features

- Looked for a discerning feature of typicality
 - No one feature seemed to be able to do so
- Feature combinations necessary to determine atypical nodules

- Extracted the rules of the decisions of atypical cases
 - values of feature combinations

Questions?

Feature N

Atypical

Results: extracted rules from atypical nodules

- Elongation < 1.230454272
- gaborSD_0_1 < 5782.78
- gabormean_3_1 > 59.0652
- MaxIntensityBG > 485.3564']

- gaborSD_0_0 < 1646.04
- MinorAxisLength > 1.241783503
- Elongation < 1.390650159
- gaborSD_3_1 < 41.1318

- MinorAxisLength > 1.230454272
- SecondMoment < 0.170377481
- markov1 > 271.5484
- SDIntensity < 1412.0
- noduleID > 154.0