Covariance, corrélation, régression linéaire

Définition et propriétés

1.1 Variance

La variance d'une variable aléatoire X est une mesure de sa dispersion autour de sa movenne $\mathbb{E}[X]$.

Définition 1 (Variance)

La variance d'une *v.a. X* s'écrit :

$$Var(X) = \mathbb{E}\left[\left(X - \mathbb{E}[X]\right)^2\right]$$

(sous réserve de convergence.)

Proposition 2 (Propriétés)

1. On a la formule de Kœnig-Huygens :

$$\operatorname{Var}(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$$

- **2.** Pour $a, b \in \mathbb{R}$ constantes déterministes, on a: $Var(aX + b) = a^2 \cdot Var(X)$.
- **3.** $[Var(X) = 0] \iff [X \text{ déterministe}].$

(et alors: $X \equiv \mathbb{E}[X]$.)

1.2 Covariance

La covariance est une **mesure de la co-dispersion** d'un couple de va(X,Y).

Définition 3 (Covariance)

La covariance de deux *v.a. X*, *Y* s'écrit :

$$Cov(X,Y) = \mathbb{E}\Big[\big(X - \mathbb{E}[X]\big) \cdot \big(Y - \mathbb{E}[Y]\big)\Big]$$

(sous réserve de convergence.)

Proposition 4 (Kænig-Huygens)

Soient *X*, *Y* deux variables aléatoires. Alors:

$$Cov(X,Y) = \mathbb{E}[X \cdot Y] - \mathbb{E}[X] \cdot \mathbb{E}[Y]$$

(sous réserve de convergence)

Des variables indépendantes sont décorrélées : Proposition 5 (Cas de l'indépendance)

Si X et Y sont **indépendantes**, alors :

$$Cov(X, Y) = 0.$$

Proposition 6 (Propriétés)

La covariance vérifie :

- ▶ **Symétrie** Cov(Y,X) = Cov(X,Y).
- ▶ **Variance** Cov(X,X) = Var(X)

Distributivité dans la covariance

La covariance est bilinéaire :

re:
$$\operatorname{Cov}(X,Y) = \mathbb{E}\left[\underbrace{\left(\begin{array}{c} I \text{ inéaire en } X \\ X - \mathbb{E}[X] \end{array}\right) \cdot \left(\begin{array}{c} Y - \mathbb{E}[Y] \\ Y - \mathbb{E}[Y] \end{array}\right)}_{\text{bilinéaire en } (X,Y)}\right]$$

Ainsi, l'expression $Cov(\lambda_1 X_1 + \lambda_2 X_2, \mu_1 Y_1 + \mu_2 Y_2)$ se développe par **double distributivité**. On a donc les « mêmes règles de calcul » pour Cov(X,Y) que pour xy où $x,y \in \mathbb{R}$:

▶ Formules Var, Cov

$$Var(X + Y) = Var(X) + 2 Cov(X,Y) + Var(Y)$$

$$Var(X - Y) = Var(X) - 2 Cov(X,Y) + Var(Y)$$

$$Cov(X + Y,X - Y) = Var(X) - Var(Y)$$

$$Var(Y - aX) = Var(Y) - 2a Cov(X,Y) + a^{2} Var(X)$$

Homologues numériques

$$(x + y)^{2} = x^{2} + 2xy + y^{2}$$

$$(x - y)^{2} = x^{2} - 2xy + y^{2}$$

$$(x + y)(x - y) = x^{2} - y^{2}$$

$$(y - ax)^{2} = y^{2} - 2axy + a^{2}x^{2}$$

▶ Formules de polarisation

$$Cov(X,Y) = \frac{1}{2} \cdot \left[Var(X+Y) - Var(X) - Var(Y) \right] \qquad xy = \frac{1}{2} \cdot \left[(x+y)^2 - x^2 - y^2 \right]$$

$$Cov(X,Y) = \frac{1}{4} \cdot \left[Var(X+Y) - Var(X-Y) \right] \qquad xy = \frac{1}{4} \cdot \left[(x+y)^2 - (x-y)^2 \right]$$

Y)]
$$xy = \frac{1}{2} \cdot [(x+y)^2 - x^2 - y^2]$$
$$xy = \frac{1}{4} \cdot [(x+y)^2 - (x-y)^2]$$

2 L'encadrement de Cauchy-Schwarz

Proposition 7 (Pour la covariance)

Soient X, Y deux variables aléatoires. On note σ_X, σ_Y leurs écarts-type.

$$(\sigma_X = \sqrt{\operatorname{Var}(X)}, \sigma_Y = \sqrt{\operatorname{Var}(Y)})$$

Alors:

$$-\sigma_X\cdot\sigma_Y \leq \operatorname{Cov}(X,Y) \leq \sigma_X\cdot\sigma_Y$$

Définition 8 (Corrélation)

On appelle **corrélation** de X et Y:

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \cdot \sigma_Y}$$

(ou coefficient de corrélation linéaire)

Par la Proposition 7, on a donc :

$$\rho(X,Y) \in [-1;1].$$

Démonstration de l'encadrement (Prop. 7) :

On considère la fonction $T: \int \mathbb{R} \to \mathbb{R}$ $a \mapsto \operatorname{Var}(Y - aX)$.

- ► **Signe de** T La variance d'une variable aléatoire $Var(Z) = \mathbb{E}\left[\underbrace{\left(Z \mathbb{E}[Z]\right)^2}_{\geq 0}\right] \geq 0$. Ainsi, on a $\forall a \in \mathbb{R}$, $T(a) \geq 0$.
- ▶ T est un trinôme

On développe par double distributivité : T(a) = Var(Y - aX) (bilinéarité puis symétrie) = $\text{Var}(Y) - 2a \cdot \text{Cov}(X, Y) + a^2 \cdot \text{Var}(X)$

On reconnaît un trinôme : $T(a) = r + qa + pa^2$.

Discriminant

Calculons le discriminant du trinôme : $T(a) = Var(X) \cdot a^2 - 2 \cdot Cov(X,Y) \cdot a + Var(Y)$.

On trouve: $\Delta = [-2\operatorname{Cov}(X,Y)]^2 - 4\operatorname{Var}(X) \cdot \operatorname{Var}(Y).$ $= 4[\operatorname{Cov}(X,Y)^2 - \operatorname{Var}(X) \cdot \operatorname{Var}(Y)]$

▶ **Conclusion** Le trinôme T ne change pas de signe. Son discriminant Δ est donc \leq 0.

Il vient : $Cov(X, Y)^2 - Var(X) \cdot Var(Y) \le 0$, soit : $Cov(X, Y)^2 \le Var(X) \cdot Var(Y)$.

L'inéquation $u^2 \le v$

Pour $v \ge 0$, on résout l'inéquation : $\left[u^2 \le v \right] \iff \left[-\sqrt{v} \le u \le \sqrt{v} \right]$

On en déduit bien : $-\sqrt{\operatorname{Var}(X)\cdot\operatorname{Var}(Y)} \leq \operatorname{Cov}(X,Y) \leq \sqrt{\operatorname{Var}(X)\cdot\operatorname{Var}(Y)}$

soit: $-\sigma_X \cdot \sigma_Y \leq \text{Cov}(X, Y) \leq \sigma_X \cdot \sigma_Y$

3 Régression linéaire

Soient deux variables aléatoires *X* et *Y*.

On suppose que : \rightarrow la valeur de X est connue, (X est la variable explicative)

▶ la valeur de *Y* inconnue, et à estimer. (*Y est la variable expliquée*)

On recherche une estimation de *Y* en fonction de *X*, estimation **aussi bonne que possible**.

▶ Forme de l'estimation : ajustement affine

Plus précisément, on cherche à estimer Y par une expression affine $\widehat{Y} = aX + b$. où a, b des constantes déterministes.

► Résidu de l'estimation

C'est la variable aléatoire ϵ définie comme « l'erreur » : $\epsilon = Y - \widehat{Y}$. (soit $Y = \widehat{Y} + \epsilon$)

Optimisation au sens des moindres carrés

On cherche le couple (a,b) tel que $\widehat{Y} = aX + b$ minimise l'**erreur quadratique** (moyenne):

$$r(a,b) = \mathbb{E}[\epsilon^2] = \mathbb{E}[(Y - \widehat{Y})^2]$$

Proposition 9 (Régression linéaire)

- 1. L'optimisation des moindres carrés de l'estimation de Y par $\widehat{Y} = aX + b$ est réalisée par un unique couple (a,b) de réels déterministes.
- **2.** Pour cette valeur optimale de (a,b) le résidu $\epsilon = Y \widehat{Y}$ vérifie :
 - ▶ le résidu ϵ est nul en moyenne (\widehat{Y} *non-biaisé*): $\mathbb{E}[\epsilon] = 0$,
 - ▶ le résidu ϵ et X sont décorrélés : $Cov(X, \epsilon) = 0$.

De plus le coefficient directeur a est du signe de Cov(X,Y).

(sens de la tendance)

3. Si $\rho(X,Y) = \pm 1$, alors, pour cette valeur de (a,b), on a $Y = \widehat{Y}$.

(avec probabilité 1)

Remarques

- 1. Cette proposition précise le sens en lequel la covariance Cov(X,Y) est une mesure de codispersion. Par exemple, elle donne le signe du coefficient directeur.
 - ▶ si Cov(X,Y) > 0, les variables X et Y varient « plutôt ensemble, » (dans le même sens)
 - si Cov(X,Y) < 0, les variables X et Y varient « plutôt en sens opposé »</p>
- **2.** L'ajustement affine $\hat{Y} = aX + b$ et le résidu $\epsilon = Y \hat{Y}$ étant décorrélés, leurs variances s'additionnent :

$$\operatorname{Var}\left(\underbrace{\widehat{Y} + \epsilon}_{Y}\right) = \operatorname{Var}\left(\widehat{Y}\right) + \operatorname{Var}(\epsilon)$$

Ainsi on a: $\frac{\operatorname{Var}(\widehat{Y})}{\operatorname{Var}(Y)} + \frac{\operatorname{Var}(\epsilon)}{\operatorname{Var}(Y)} = 1$, et on dit que :

- $\frac{\operatorname{Var}(\widehat{Y})}{\operatorname{Var}(Y)} = \rho(X,Y)^2 \text{ est la part de variance expliquée, } \qquad (ou \ \textit{coeff}^{nt} \ \textit{de détermination, noté} \ R^2)$
- $\frac{\text{Var}(\epsilon)}{\text{Var}(Y)}$ est la part de variance inexpliquée

On a toujours $0 \le R^2 \le 1$, et R^2 indique la pertinence de la régression linéaire de Y par X.

- ▶ si le coeff^{nt} de détermination est **élevé** $R^2 \approx 1$, alors X explique bien Y.
- ▶ si le coeff^{nt} de détermination est **faible** $R^2 \approx 0$, l'explicabilité linéaire de Y par X est faible.

Interprétation graphique de la qualité de la régression linéaire :

Lemme 10 (Décomposition biais-variance)

- 1. L'erreur quadratique se décompose : $r(a,b) = \left(\underbrace{\mathbb{E}[Y-aX-b]}\right)^2 + \underbrace{\mathrm{Var}(Y-aX)}_{T(a)}.$ 2. Le trinôme T est minimisé pour $a = \frac{\mathrm{Cov}(X,Y)}{\mathrm{Var}(X)}$.
- **3.** Le terme $\mathbb{E}[\epsilon]^2$ est minimisé pour $b = \mathbb{E}[Y] a \cdot \mathbb{E}[X]$.

Démonstration du Lemme 10:

- 1. La décomposition biais-variance est une réécriture de la formule de Kœnig-Huygens.
- **2.** Le carré $\mathbb{E}[\epsilon]^2 = \left(\mathbb{E}[Y aX b]\right)^2$ est minimisé quand $\mathbb{E}[Y aX b] = 0$, soit, en développant, pour $b = \mathbb{E}[Y] - a \cdot \mathbb{E}[X]$.
- **3.** On a étudié le trinôme $T(a) = \text{Var}(Y aX) = \text{Var}(Y) 2a \cdot \text{Cov}(X,Y) + a^2 \cdot \text{Var}(X)$. Il est minimisé quand $T'(a) = -2 \text{Cov}(X,Y) + 2 \text{Var}(X) \cdot a = 0$, soit $a = \frac{\text{Cov}(X,Y)}{\text{Var}(X)}$.

Démonstration de la Proposition 9:

1. On vérifie que minimiser r(a,b), c'est minimiser les deux termes de la décomposition :

$$r(a,b) = \left(\mathbb{E}[Y - aX - b]\right)^2 + \text{Var}(Y - aX)$$

et que la minimisation de r(a,b) se réalise donc uniquement pour $\begin{cases} a = \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var}(X)} \\ b = \mathbb{E}[Y] - a \cdot \mathbb{E}[X] \end{cases}$

On trouve donc l'ajustement affine optimal:

$$\widehat{Y} = \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var}(X)} \cdot \left(X - \mathbb{E}[X] \right) + \mathbb{E}[Y].$$

- On vérifie que $\mathbb{E}[\widehat{Y}] = \mathbb{E}[Y]$ et donc que $\mathbb{E}[\epsilon] = 0$.
 - On a: $T'(a) = -2 \operatorname{Cov}(X, Y) + 2 \operatorname{Var}(X) \cdot a = -2 \operatorname{Cov}(X, Y aX)$. Ainsi pour T'(a)=0, il vient : $Cov(X,\underbrace{Y-aX})=0$, d'où $Cov(X,\epsilon)=0$.
- **3.** Si $\rho(X,Y) = \pm 1$, alors, d'après la Remarque **2.**, on trouve $Var(\epsilon) = 0$. Par la Proposition 2-3., la variable ϵ est donc déterministe et $\epsilon \equiv \mathbb{E}[\epsilon] = 0$. Ainsi, on a bien $Y - \widehat{Y} \equiv 0$, soit : $Y \equiv \widehat{Y} = aX + b$.