XGBoost -AK-47 in your machine learning models arsenal

BIO

- Maths, Computer Science & Econometrics graduate (Warsaw University)
- PwC Data Analytics since 2015
- 2013 2015: PZU (insurance risk management)
- Main focus on financial sector and geospatial modeling
- Nerd by heart

Agenda

- Decision trees & ensembling
- XGBoost Genesis
- Algorithm explanation
- Benchmarks
- R demo

Laboratory Troubleshooting Flowchart

Decision trees

Pros:

- interpretable!!!
- can handle missing data
- very fast at testing time: O(depth)

Cons:

unstable

prone to overfitting

Ensembling!!!

In ensembling we trust

Random Forest

Gradient boosted Regression/Decision Trees

Boosting - example

pwc

kaggle

2012-...

Chucking everything into a Random Forest: Ben Hamner on Winning The Air Quality Prediction Hackathon

Kaggle Team | 05.01.2012

Random Forest of 'Give Me Some Credit' Survey Results

Margit Zwemer | 04.02.201

...-2016

Profiling Top Kagglers: Gilberto Titericz, New #1 in the World

Triskelion | 11.09.201

What are your favorite machine learning libraries?

I have many favourite libraries, but I will try to rank them according the ones I use most:

- XGBoost Fast and optimized GBM implementation.
- Vowpal Wabbit Very fast with lots of parameters and linear algorithms.
- LibFM Factorization Machines.
- scikit-learn Lots of functions and algorithms.
- Lasagne Very good and fast NN implementation (but unfortunately I don't have a GPU).
- Matlab Neural Network Toolbox Classic.
- R GBM, randomForest and glm Classic.

Profiling Top Kagglers: KazAnova, New #1 in the World

Triskelion | 02.10.201

What are your favorite machine learning libraries?

- 1. Scikit for forests.
- 2. XGBoost for GBM.
- 3. LibLinear for linear models.
- 4. Weka for all.
- 5. Encog for neural nets.
- 6. Lasagne for nets, although I learnt it very recently.
- 7. RankLib for functions like NDCG.

It used to be random forest that was the big winner, but over the last six months a new algorithm called Xgboost has cropped up, and it's winning practically every competition in the structured data category.

Anthony Goldbloom, CEO Kaggle (12.2015)

In theory...

XGBoost (eXtreme Gradient Boosting) is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework.

In practice...

- Speed!!!
- State-of-the-art results on a wide range of problems:
 - store sales prediction,
 - web text classification,
 - customer behavior prediction,
 - ad click through rate prediction,
 - malware classification,
 - product categorization
- Interfaces in R, Python, C++, Julia, Java, Scala, Spark, Flink

• Large number of hyperparameters to tune \otimes

Algorithm (in 3 "easy" steps)

$$Obj = \sum_{i=1}^{n} l(y_i, \sum_{k=1}^{K} f_k(x_i)) + \sum_{k=1}^{K} \Omega(f_k)$$

Loss functions:

- RMSE
- binary / multiclass log-loss
- binary / multiclass misclassification rate
- auc
- customized functions

Regularization

 $f_k \in \mathcal{F}$

$$\Omega(f_t) = \gamma T + \frac{1}{2}\lambda \sum_{j=1}^{T} w_j^2$$

- number of leaves (T)
- L2 norm of leaf scores
- learning rate
- maximum tree depth
- minimum number of instances in node
- columns subsampling
- observations subsampling

Algorithm (in 3 "easy" steps)

$$Obj^{(t)} = \sum_{i=1}^{n} l\left(y_{i}, \hat{y}_{i}^{(t-1)} + f_{t}(x_{i})\right) + \Omega(f_{t}) + constant$$

$$\simeq \sum_{i=1}^{n} \left[l(y_{i}, \hat{y}_{i}^{(t-1)}) + g_{i}f_{t}(x_{i}) + \frac{1}{2}h_{i}f_{t}^{2}(x_{i})\right] + \Omega(f_{t}) + constant$$

$$= \sum_{i=1}^{n} \left[g_{i}f_{t}(x_{i}) + \frac{1}{2}h_{i}f_{t}^{2}(x_{i})\right] + \Omega(f_{t}) + constant$$

Algorithm (in 3 "easy" steps)

We grow each tree in greadily manner:

- Start with one node
- For each node make a split (using one of the variable); the change of objective is equal to:

$$Gain = \frac{G_L^2}{H_L + \lambda} + \frac{G_R^2}{H_R + \lambda} - \frac{(G_L + G_R)^2}{H_L + H_R + \lambda} - \gamma$$

- For given node, take the variable with highest gain
- Repeat until zero/negative gain for every node

Benchmarks

data from: Higgs Boson Competition (250000 observations, 30 features) source: http://www.r-bloggers.com/an-introduction-to-xgboost-r-package/

Benchmarks

More objective benchmark (https://github.com/szilard/benchm-ml)

- Training datasets from well known airline dataset (predict whether a flight will be delayed by more than 15 minutes)
- Sample sizes: 10K, 100K, 1M, 10M (ca 1000 features)
- Setup: Amazon EC2 c3.8xlarge instance (32 cores, 60GB RAM)
- Open source implementations:
 - R (gbm)
 - Python (GradientBoostingClassifier)
 - Spark Mllib (GradientBoostedTrees)
 - H2O (h2o.gbm)
 - XGBoost

Benchmarks

References

- http://xgboost.readthedocs.io/en/latest/
- https://cran.r-project.org/web/packages/xgboost/xgboost.pdf
- http://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
- https://github.com/dmlc/xgboost/

