

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

I2

Topología - MAT2545 Fecha de Entrega: 2020-06-05

Problema 1:

Demuestre que \mathbb{R} con la topología del complemento finito tiene la propiedad que todo subespacio es compacto.

Solución problema 1: Sea U_{α} un cubrimiento abierto de $Y \subset \mathbb{R}$, se fija algún U_{α_0} . Se recuerda que los $U_{\alpha} = \mathbb{R} \setminus \{a_1, \ldots, a_n\}$, s.p.d.g. los $a_i \in Y$, en caso de que alguno no este se ignora el U_{α_i} correspondiente. Dado lo anterior, para que los U_{α} cubran Y tienen que existir $U_{\alpha_1}, \ldots, U_{\alpha_n}$ tal que $a_i \in U_{\alpha_i}$, por lo tanto se ve que $Y \subset \bigcup_{i=0}^n U_{\alpha_i}$, como U_{α_i} es un subcubrimiento finito se tiene que Y es un subespacio compacto.

Problema 2:

Considere el espacio métrico l^2 cuyos elementos son sucesiones reales $a=(a_n)_{n\geq 0}$ tales que $\sum a_n^2 < \infty$, con la métrica inducida por la norma $||a||_2 = \sqrt{\sum a_n^2}$. Demuestre que l^2 no es localmente compacto.

Solución problema 2: Se asume que l^2 es localmente compacto. Sea $\mathbf{0} = (0,0,0,\dots)$, todo vecindad de $\mathbf{0}$ contiene a $B(\mathbf{0},\varepsilon)$ para algún $\varepsilon > 0$, se nota que $\{\varepsilon/2 \cdot e_n\}_{n \geq 0} \in B(\mathbf{0},\varepsilon)$ donde e_n es la sucesión a_k que cumple que $a_k = 1$ ssi k = n y que $a_k = 0$ ssi $k \neq n$. Ahora, como l^2 es localmente compacto, para algún $\varepsilon > 0$ $B(\mathbf{0},\varepsilon)$ tiene que estar contenido en un subespacio compacto de l^2 , por ende toda sucesión en $B(\mathbf{0},\varepsilon)$ tiene que tener una subsucesión convergente, pero $\{\varepsilon/2 \cdot e_n\}_{n \geq 0}$ está en $B(\mathbf{0},\varepsilon)$ y no tiene subsucesiones convergentes, lo que es una contradicción, por ende l^2 no es localemente compacto.

Problema 3:

Muestre que si X es un e.t. regular (T3), todo par de puntos de X tiene vecindades cuyas clausuras son disjuntas.

Solución problema 3: Por lema visto en clase se tiene que si X es regular para todo $x \in X$ y V abierto tal que $x \in V$, existe un abierto U tal que $x \in U \subset \overline{U} \subset V$. Ahora, sean $x,y \in X$, se nota que $X \setminus \{y\}$ es un abierto¹, y que $x \in X \setminus \{y\}$ por lo que existe V abierto tal que $x \in V \subset \overline{V} \subset X \setminus \{y\}$, ahora $X \setminus \overline{V}$ es abierto, más aún $y \in X \setminus \overline{V}$, por lo que existe un U tal que $y \in U \subset \overline{U} \subset X \setminus \overline{V}$, con lo que se tiene que $\overline{U} \cap \overline{V} = \emptyset$. Como $x \in V, y \in U$, U, V son abiertos y $\overline{U} \cap \overline{V} = \emptyset$, se tiene lo pedido.

¹Para cada punto $x \in X$ tiene que existir un abierto U_x tal que $y \notin U_x$, por lo que $X \setminus \{y\} = \bigcup_{x \neq y} U_x$