Assignment 6: Decomposition and Normal Forms

Hien Tu - tun1

November 21, 2021

Part 1: The analysis of a quick-event wizard for a local community

- 1. Minimal cover of all realistic non-trivial functional dependencies:
 - Since each event is organized by a user, we know that if the event id (*id*) is the same, then the organizer (*user_id*) must be the same. So, we can have id → user_id. The reverse would not hold since an organizer could organize many events.
 - Furthermore, each event happens in a day, so, we know that if the event id (id) is the same, the date that the event happens in (date) must be the same. So, we can have id \longrightarrow date.
 - We also have id, inv_id → inv_confirmed since each guest would determine what event to go to. We need both the event id (id) and the guest (inv_id) to determine if the invitation is confirmed (inv_confirmed).
 - Furthermore, we have id, product → p_amount since we would only know how much to bring if we know what to bring and where we need to bring it to. Only the product wouldn't be able to determine the amount since different event could need different amount of the same product. For example, in the given table, event 1 needs 4 chips while event 2 only needs 2 chips.
 - We have product → p_price since each product has its own price. The price of the product wouldn't depend on the event that the product is brough into. An example is that, in the given table,

the chips cost \$2 no matter if it is brought into event with id 1 or 2 and the cola would cost \$4 no matter if it is brought into event with id 1 or 2.

2. An example of a non-trivial dependency is id \rightarrow inv_id, inv_confirmed. This would hold since, for example, in the given table, from the first row and the fourth row, we know that there would exist a row where inv_id and inv_confirmed are the same as the first row and the rest of the attributes (user_id, date, product, p_price, p_amount) are the same as the fourth row. This row is the thrid row. We also know that there would exist a row where inv_id and inv_confirmed are the same as the fourth row and the rest of the attributes (user_id, date, product, p_price, p_amount) are the same as the first row. This row is the second row.

Part 2: Refinement of an order-table for a cinema chain

We will use the short hand notation for each attribute for brevity.

3. The relational schema is not in 3NF since $I \longrightarrow St$, Si, Ss, Sd would violate the 3NF property since $\{St, Si, Ss, Sd\} \not\subseteq I$, I is not a (super)key and each attribute in $\{St, Si, Ss, Sd\} \setminus I = \{St, Si, Ss, Sd\}$ is not part of a key.

To decompose, first, we need to compute the minimal cover of the functional dependencies

• We can use Decomposition on the first three functional dependencies to get

• From Reflexivity, since $Si \subseteq Si$, we can get $Si \longrightarrow Si$. So, we don't need to include $Si \longrightarrow Si$ in the minimal cover.

By Transitivity on $I \longrightarrow Si$ and $Si \longrightarrow Ss$, we can get $I \longrightarrow Ss$. So, we don't need $I \longrightarrow Ss$.

By Transitivity on $I \longrightarrow Si$ and $Si \longrightarrow Sd$, we can get $I \longrightarrow Sd$.

So, we don't need $I \longrightarrow Sd$.

By Union on $I \longrightarrow St$ and $I \longrightarrow Ri$; we can get $I \longrightarrow St$, Ri. By Transitivity on $I \longrightarrow St$, Ri and St, Ri \longrightarrow Fi; we can get $I \longrightarrow$ Fi. So we don't need $I \longrightarrow$ Fi.

By Transitivity on $I \longrightarrow Fi$ (that we just proved) and $Fi \longrightarrow Fl$, we can get $I \longrightarrow Fl$. So, we don't need $I \longrightarrow Fl$.

By Union on $I \longrightarrow Fi$ and $I \longrightarrow Si$; we can get $I \longrightarrow Fi$, Si. By Transitivity on $I \longrightarrow Fi$, Si and Fi, Si $\longrightarrow Fs$, we can get $I \longrightarrow Fs$. So, we don't need $I \longrightarrow Fs$.

By Transitivity on Si \longrightarrow Ss and Ss \longrightarrow Sd, we can get Si \longrightarrow Sd. So, we don't need Si \longrightarrow Sd.

Thus, we would get

$$\{ I \longrightarrow St; \ I \longrightarrow Si; \ I \longrightarrow Ri; \ Si \longrightarrow Ss; \ Ss \longrightarrow Sd; \ Sd \longrightarrow Ss; \ St, \\ Ri \longrightarrow Fi; \ Fi \longrightarrow Fl; \ Fi, \ Si \longrightarrow Fs; \ Ri \longrightarrow Rs \}$$

• Notice that the set above is already minimal. So it is the minimal cover.

Starting the algorithm, we get know

- $result = \{\}$
- $cover = \{I \longrightarrow St; I \longrightarrow Si; I \longrightarrow Ri; Si \longrightarrow Ss; Ss \longrightarrow Sd; Sd \longrightarrow Ss; St, Ri \longrightarrow Fi; Fi \longrightarrow Fl; Fi, Si \longrightarrow Fs; Ri \longrightarrow Rs\}$

First, we have $I \longrightarrow St$

- Since we have $I \longrightarrow St$, $I \longrightarrow Ri \in cover$, we get $B = \{St, Si, Ri\}$
- So, $result = \{(I, St, Si, Ri)\}$

Next, we have $Si \longrightarrow Ss$

- Since only Si \longrightarrow Ss \in cover that starts with Si, $B = \{Ss\}$
- $\bullet \ \operatorname{So}, \, result = \{ (\operatorname{I}, \, \operatorname{St}, \, \operatorname{Si}, \, \operatorname{Ri}), \, (\operatorname{Si}, \, \operatorname{Ss}) \}$

Then, we have $Ss \longrightarrow Sd$

- Since only Ss \longrightarrow Sd \in cover that starts with Ss, $B = \{Sd\}$
- So, $result = \{(I, St, Si, Ri), (Si, Ss), (Ss, Sd)\}$

Then, we have $Sd \longrightarrow Ss$

- Since only Sd \longrightarrow Ss \in cover that starts with Sd, $B = \{Ss\}$
- So, $result = \{(I, St, Si, Ri), (Si, Ss), (Ss, Sd), (Sd, Ss)\}$

Next, we have St, Ri \longrightarrow Fi

- Since only St, Ri \longrightarrow Fi \in cover that starts with St, Ri; $B = \{Fi\}$
- So, $result = \{(I, St, Si, Ri), (Si, Ss), (Ss, Sd), (Sd, Ss), (St, Ri, Fi)\}$

Next, we have $Fi \longrightarrow Fl$

- Since only Fi \longrightarrow Fl \in cover that starts with Fi, $B = \{Fl\}$
- So, $result = \{(I, St, Si, Ri), (Si, Ss), (Ss, Sd), (Sd, Ss), (St, Ri, Fi), (Fi, Fl)\}$

Next, we have Fi, Si \longrightarrow Fs

- Since only Fi, Si \longrightarrow Fs \in cover that starts with Fi, Si; $B = \{Fs\}$
- So, $result = \{(I, St, Si, Ri), (Si, Ss), (Ss, Sd), (Sd, Ss), (St, Ri, Fi), (Fi, Fl), (Fi, Si, Fs)\}$

Finally, we have $Ri \longrightarrow Rs$

- Since only Ri \longrightarrow Rs \in cover that starts with Ri, $B = \{Fi\}$
- So, $result = \{(I, St, Si, Ri), (Si, Ss), (Ss, Sd), (Sd, Ss), (St, Ri, Fi), (Fi, Fl), (Fi, Si, Fs), (Ri, Rs)\}$

Since result doesn't contain the key, which is "I, P, Rp", we need to add it to result. So, result = {(I, St, Si, Ri), (Si, Ss), (Ss, Sd), (Sd, Ss), (St, Ri, Fi), (Fi, Fl), (Fi, Si, Fs), (Ri, Rs), (I, P, Rp)} Since (Sd, Ss) \subseteq (Ss, Sd), we will remove (Sd, Ss) from result. Thus, result = {(I, St, Si, Ri), (Si, Ss), (Ss, Sd), (St, Ri, Fi), (Fi, Fl), (Fi, Si, Fs), (Ri, Rs), (I, P, Rp)}

Minimal cover for each relational schema of the resulting decomposition

$$\bullet \ (I, St, Si, Ri) \Longrightarrow \{I \longrightarrow St; I \longrightarrow Si, I \longrightarrow Ri\}$$

- $\bullet (Si, Ss)$ $\Longrightarrow \{Si \longrightarrow Ss\}$
- $\bullet (Ss, Sd)$ $\Longrightarrow \{Ss \longrightarrow Sd\}$
- $\bullet \text{ (St, Ri, Fi)} \\ \Longrightarrow \text{ \{St, Ri } \longrightarrow \text{Fi} \}$
- $\bullet (Fi, Fl)$ $\Longrightarrow \{Fi \longrightarrow Fl\}$
- $\bullet (Fi, Si, Fs)$ $\Longrightarrow \{Fi, Si \longrightarrow Fs\}$
- $\begin{array}{c} \bullet \ (Ri, Rs) \\ \Longrightarrow \ \{Ri \longrightarrow Rs\} \end{array}$

From the minimal covers of the relational schemas of the resulting decomposition, we can see that the decomposition is dependency-preserving. It is also proved in the lecture that Decompose-3NF is dependencypreserving.

Furthermore, it is proved in the lecture that Decompose-3NF is also lossless-join. Thus, this decomposition should be lossless-join as well.

4. The relational schema is not in BCNF since $I \longrightarrow St$, Si, Ss, Sd $\in \mathfrak{S}^+$ but I is not a (super)key.

DECOMPOSE-BCNF:

Since $I \longrightarrow St$, Si, Ss, Sd $\in \mathfrak{S}^+$ violates the BCNF constraint since I is not the (super)key, then

- $\bullet \ \mathbf{R}_1 = I^+ = \{I,\, \mathrm{St},\, \mathrm{Si},\, \mathrm{Ss},\, \mathrm{Sd},\, \mathrm{Fi},\, \mathrm{Fl},\, \mathrm{Fs},\, \mathrm{Ri},\, \mathrm{Rs}\}$
- $\bullet \ \mathbf{R}_2 = I \cup Z = \{I,\,P,\,Rp\}$
- Note that {I, P, Rp} satisfies the BCNF constraint, so they would be part of the resulting decomposition.

For \mathbf{R}_1 , since Si \longrightarrow Si, Ss, Sd $\in \mathfrak{S}_1^+$ violates the BCNF constraint since Si is not the (super)key, then

- $\mathbf{R}_{1,1} = (\mathrm{Si})^+ = {\mathrm{Si, Ss, Sd}}$
- $\mathbf{R}_{1,2} = \mathrm{Si} \cup \mathrm{Z} = \{ \mathrm{Si}, \mathrm{I}, \mathrm{St}, \mathrm{Fi}, \mathrm{Fl}, \mathrm{Fs}, \mathrm{Ri}, \mathrm{Rs} \}$

For $\mathbf{R}_{1,1}$, since Ss \longrightarrow Sd $\in \mathfrak{S}_{1,1}^+$ violates the BCNF constraint, then

- $\mathbf{R}_{1,1,1} = (Ss)^+ = \{Ss, Sd\}$
- $\mathbf{R}_{1,1,2} = Ss \cup Z = \{Ss, Si\}$
- Note that {Ss, Sd} and {Ss, Si} satisfies BCNF, so they would be part of the resulting decomposition.

For $\mathbf{R}_{1,2}$, since St, Ri \longrightarrow Fi $\in \mathfrak{S}_{1,2}^+$ violates the BCNF constraint, then

- $\mathbf{R}_{1,2,1} = \{St, Ri\}^+ = \{St, Ri, Fi, Fl, Rs\}$
- Note that {St, Ri, I, Fs, Si} satisfies BCNF, so they would be part of the resulting decomposition.

For $\mathbf{R}_{1,2,1}$, since Fi \longrightarrow Fl $\in \mathfrak{S}_{1,2,1}^+$ violates the BCNF constraint, then

- $\mathbf{R}_{1,2,1,1} = (Fi)^+ = \{Fi, Fl\}$
- $\bullet \ \mathbf{R}_{1,2,1,2} = \mathrm{Fi} \, \cup \, \mathbf{Z} = \{\mathrm{Fi}, \, \mathrm{St}, \, \mathrm{Ri}, \, \mathrm{Rs}\}$
- Note that {Fi, Fl} satisfies the BCNF constraint, so they would be part of the resulting decomposition.

For $\mathbf{R}_{1,2,1,2}$, since $\mathrm{Ri} \longrightarrow \mathrm{Rs} \in \mathfrak{S}_{1,2,1,2}^+$ violates the BCNF constraint, then

- $\mathbf{R}_{1,2,1,2,1} = (Ri)^+ = \{Ri, Rs\}$
- $\bullet \ \mathbf{R}_{1,2,1,2,2} = \mathrm{Ri} \cup \mathbf{Z} = \{\mathrm{Ri},\,\mathrm{Fi},\,\mathrm{St}\}$
- Noe that {Ri, Rs} and {Ri, Fi, St} satisfies the BCNF constraint, so they would be part of the resulting decomposition.

All relational schemas in the resulting decomposition are {I, P, Rp}, {Ss, Sd}, {Si, Ss}, {St, Ri, Fs, Si, I}, {Fi, Fl}, {Ri, Rs}, {Ri, Fi, St}.

Minimal cover for each relational schema

- $\bullet \ \{I, P, Rp\} \\ \Longrightarrow \ \{\}$
- $\bullet \{ Ss, Sd \}$ $\Longrightarrow \{ Ss \longrightarrow Sd, Sd \longrightarrow Ss \}$
- $\begin{array}{c} \bullet \ \{Si, \, Ss\} \\ \Longrightarrow \ \{Si \longrightarrow Ss\} \end{array}$
- $\begin{array}{l} \bullet \ \{\mathrm{St}, \, \mathrm{Ri}, \, \mathrm{Fs}, \, \mathrm{Si}, \, \mathrm{I}\} \\ \Longrightarrow \ \{\mathrm{I} \longrightarrow \mathrm{St}, \, \mathrm{I} \longrightarrow \mathrm{Ri}, \, \mathrm{I} \longrightarrow \mathrm{Si}\} \end{array}$
- $\begin{array}{c} \bullet \ \{ \mathrm{Fi}, \, \mathrm{Fl} \} \\ \Longrightarrow \ \{ \mathrm{Fi} \longrightarrow \mathrm{Fl} \} \end{array}$
- $\begin{array}{l} \bullet \ \{ \mathrm{Ri}, \, \mathrm{Fi}, \, \mathrm{St} \} \\ \Longrightarrow \ \{ \mathrm{St}, \, \mathrm{Ri} \longrightarrow \mathrm{Fi} \} \end{array}$