## **Tutorial 4 - Solids**

| May | 7/ | June | 20 | 08 |
|-----|----|------|----|----|
|     |    |      |    |    |

| 7 | Wh | ich pair of elements have bonds of the same type between their atoms in the solid state? |
|---|----|------------------------------------------------------------------------------------------|
|   | Α  | aluminium and phosphorus                                                                 |

- B chlorine and argon
- C magnesium and silicon
- D sulphur and chlorine

October/November 2007

7 What are the lattice structures of solid diamond, iodine and silicon(IV) oxide?

|   | giant molecular            | simple molecular           |
|---|----------------------------|----------------------------|
| Α | diamond, silicon(IV) oxide | iodine                     |
| В | diamond, lodine            | silicon(IV) oxide          |
| С | iodine                     | diamond, silicon(IV) oxide |
| D | silicon(IV) oxide          | diamond, iodine            |

| 3 |     | eler<br>cture | ments phosphorus, sulphur, and chlorine are regarded as having simple molecu<br>୭୫. | ılar |
|---|-----|---------------|-------------------------------------------------------------------------------------|------|
|   | (a) | Wh            | at are the molecular formulae of each of these three elements?                      |      |
|   |     | phosphorus    |                                                                                     |      |
|   |     | sulphur       |                                                                                     |      |
|   |     | chlo          | Prine                                                                               | [3]  |
|   | (b) | (i)           | Place the three elements in order of their melting points with the highest first.   |      |
|   |     |               | highest low                                                                         | est  |
|   |     | (ii)          | Suggest an explanation for the order you have given in (i).                         |      |
|   |     |               |                                                                                     |      |
|   |     |               |                                                                                     |      |

## October/November 2006

7 Magnesium oxide may be used for the lining of an electric furnace for making crockery.

Which properties of magnesium oxide help to explain this use?

|   | strong forces<br>between particles | ionic<br>bonding | electrical<br>conductor |
|---|------------------------------------|------------------|-------------------------|
| A | yes                                | yes              | no                      |
| В | yes                                | no               | yes                     |
| С | no                                 | yes              | no                      |
| D | no                                 | no               | yes                     |

2 Copper and iodine are both solids which have different physical and chemical properties. Each element has the same face-centred crystal structure which is shown below.



The particles present in such a crystal may be atoms, molecules, anions or cations. In the diagram above, the particles present are represented by .

| (a) | Which type of particles are present in the iodine crystal? Give their formula.                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|-----|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|     | pari                                                                                                                            | iicle seesaan noo en contration of the contratio |      |
|     | form                                                                                                                            | nula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [2]  |
| (b) | When separate samples of copper or iodine are heated to 50 °C, the copper remains a solid while the iodine turns into a vapour. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     | (i)                                                                                                                             | Explain, in terms of the forces present in the solid structure, why copper remains solid at 50 $^{\circ}\text{C}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) O  |
|     |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3888 |
|     |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     | (ii)                                                                                                                            | Explain, in terms of the forces present in the solid structure, why iodine turns into vapour when heated to $50^{\circ}\text{C}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a    |
|     |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •••• |
|     |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |

[4]

7 The diagram shows part of the lattice structures of solids X and Y. [In X, O and ● represent particles of different elements.]





What are the types of bonding present in X and Y?

|   | x        | Y        |
|---|----------|----------|
| A | covalent | metallic |
| В | ionic    | covalent |
| С | ionic    | metallic |
| D | metallic | ionic    |

October/November 2005

- 35 What properties enable magnesium oxide to be used as a refractory lining in a furnace?
  - 1 It has a high melting point.
  - 2 It has a low thermal conductivity.
  - 3 It does not react with basic slags.

## May/ June 2004

| 6   | Mag             | Magnesium oxide is used to line industrial furnaces because it has a very high melting point.                                                                                                     |  |  |  |  |
|-----|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|     | Whi             | Which type of bond needs to be broken for magnesium oxide to melt?                                                                                                                                |  |  |  |  |
|     | A               | co-ordinate                                                                                                                                                                                       |  |  |  |  |
|     | В               | covalent                                                                                                                                                                                          |  |  |  |  |
|     | C               | ionic                                                                                                                                                                                             |  |  |  |  |
|     | D               | metallic                                                                                                                                                                                          |  |  |  |  |
| 7   | Whi             | ich solid exhibits more than one kind of chemical bonding?                                                                                                                                        |  |  |  |  |
|     | A               | brass                                                                                                                                                                                             |  |  |  |  |
|     | В               | copper                                                                                                                                                                                            |  |  |  |  |
|     | С               | diamond                                                                                                                                                                                           |  |  |  |  |
| Oct | <b>D</b><br>obe | ice<br>er/November 2003                                                                                                                                                                           |  |  |  |  |
| 1   | (a              | Salt, sodium chloride, forms transparent colourless crystals. Describe the bonding in<br>sodium chloride crystals, give the formula of each particle and sketch part of the crystal<br>structure. |  |  |  |  |
| (b) |                 | [3] oplain why crystals of sodium chloride do not conduct electricity, but molten sodium eloride does.                                                                                            |  |  |  |  |
|     | •••             |                                                                                                                                                                                                   |  |  |  |  |
|     | •••             |                                                                                                                                                                                                   |  |  |  |  |
|     | ###             | [2]                                                                                                                                                                                               |  |  |  |  |