

Model Optimization and Tuning Phase Report

Date	07 JULY 2024
Team ID	685476
Project Title	Slop sense: utilising resort features for regression modelling
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values
KNN	from sklears.cluster import RHeans wore_list=[] for 1 le renge(2,11): kmeans-RHeans(_clusters=i,init='k-means++',random_state==2) kmeans-fit(new_df) iccs_list.append(kmeans.inertie_) glt.piot(renge(2,11),wcss_list,markers=o') plt.title('The Elbow Hethod Graph') plt.xiabel('Mambour of clusters(k)') plt.xiabel('Mambour of clusters(k)') plt.show()	cluster_assignments.value_counts() 0 4085 3 618 4 132 2 33 1 18 Name: count, dtype: int64


```
Pip install scikit-learn import pandas as pd from sklearn.linear_model import LinearRegression from sklearn.impute import SimpleImputer

imputer=SimpleImputer(strategy='mean')
x_train=imputer.fit_transform(x_train)
x_test=imputer.transform(x_test)

LR=LinearRegression()
LR.fit(x_train,y_train)
```

Performance Metrics Comparison Report (2 Marks):

```
models=[]
models.append(('Linear Regression',LinearRegression()))
models.append(('KNeighborsRegressor',KNeighborsRegressor()))
models.append(('Support Vector Regression',SVR()))
models.append(('Random Forest Regressor',RandomForestRegressor()))
models.append(('XBG Regressor',XGBRegressor()))

d={}

for name,model in models:
    model.fit(X_train,y_train)
    score=round(model.score(X_test,y_test)*100,4)
    d[name]=score
```

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
XGB Boosting	XGBoosting in a resort setting, you can gain valuable insights, improve operational efficiency, and enhance the overall guest experience! - Predicts room occupancy, guest satisfaction, and revenue optimization - Analyzes feedback, reviews, and demographics - Identifies loyal customers and preferences - Predicts equipment failures for maintenance scheduling