patsy + statsmodels

Lecture 18

Dr. Colin Rundel

patsy

patsy

patsy is a Python package for describing statistical models (especially linear models, or models that have a linear component) and building design matrices. It is closely inspired by and compatible with the formula minilanguage used in R and S.

• • •

Patsy's goal is to become the standard high-level interface to describing statistical models in Python, regardless of what particular model or library is being used underneath.

Formulas

```
1 from patsy import ModelDesc
 1 ModelDesc.from formula("y ~ a + a:b + np.log(x)")
ModelDesc(lhs termlist=[Term([EvalFactor('y')])],
          rhs termlist=[Term([]),
                        Term([EvalFactor('a')]),
                        Term([EvalFactor('a'), EvalFactor('b')]),
                        Term([EvalFactor('np.log(x)')])])
   ModelDesc.from formula("y ~ a*b + np.log(x) - 1")
ModelDesc(lhs termlist=[Term([EvalFactor('y')])],
          rhs termlist=[Term([EvalFactor('a')]),
                        Term([EvalFactor('b')]),
                        Term([EvalFactor('a'), EvalFactor('b')]),
                        Term([EvalFactor('np.log(x)')])])
```

Model matrix

```
1 from patsy import demo data, dmatrix, dmatrices
  1 data = demo_data("y", "a", "b", "x1", "x2")
                                                           dmatrix("a + a:b + np.exp(x1)", data)
 2 data
                                                      DesignMatrix with shape (8, 5)
{'a': ['a1', 'a1', 'a2', 'a2', 'a1', 'a1', 'a2', 'a2
                                                        Intercept a[T.a2] a[a1]:b[T.b2]
                                                                                           a[a2]:b[T.b2] r
                                                                         0
                                                                                        0
                                                                                                       0
  pd.DataFrame(data)
                                                                                        1
                                                                                                       0
                                                                                                       0
       b
                x1
                          x2
   а
      b1 1.764052 -0.103219 1.494079
      b2 0.400157 0.410599 -0.205158
      b1 0.978738 0.144044 0.313068
  a2
                                                                1
                                                                                        0
                                                                                                       0
      b2 2.240893 1.454274 -0.854096
  a2
                                                                1
                                                                         1
      b1 1.867558 0.761038 -2.552990
                                                        Terms:
      b2 -0.977278 0.121675 0.653619
                                                           'Intercept' (column 0)
      b1 0.950088 0.443863 0.864436
                                                           'a' (column 1)
  a2 b2 -0.151357 0.333674 -0.742165
                                                           'a:b' (columns 2:4)
                                                           'np.exp(x1)' (column 4)
```

Model matrices

```
1 y, x = dmatrices("y \sim a + a:b + np.exp(x1)", data)
  1 y
                                                          1 x
DesignMatrix with shape (8, 1)
                                                        DesignMatrix with shape (8, 5)
                                                          Intercept a[T.a2] a[a1]:b[T.b2] a[a2]:b[T.b2] r
  1,49408
                                                                            0
                                                                                                           0
  -0.20516
                                                                   1
                                                                                           1
  0.31307
                                                                  1
                                                                                                           0
  -0.85410
  -2.55299
  0.65362
  0.86444
                                                                  1
  -0.74217
                                                                  1
  Terms:
                                                          Terms:
   'y' (column 0)
                                                             'Intercept' (column 0)
                                                             'a' (column 1)
                                                            'a:b' (columns 2:4)
                                                             'np.exp(x1)' (column 4)
```

as DataFrames

```
dmatrix("a + a:b + np.exp(x1)", data, return_type='dataframe')
   Intercept a[T.a2] a[a1]:b[T.b2] a[a2]:b[T.b2]
                                                       np.exp(x1)
         1.0
                   0.0
                                   0.0
                                                          5.836039
0
                                                  0.0
                                                          1.492059
1
         1.0
                  0.0
                                   1.0
                                                  0.0
         1.0
                  1.0
                                                  0.0
2
                                                          2.661096
                                   0.0
3
         1.0
                  1.0
                                                  1.0
                                                          9.401725
                                   0.0
         1.0
                  0.0
                                   0.0
                                                  0.0
                                                          6.472471
4
         1.0
                  0.0
                                                  0.0
                                                          0.376334
5
                                  1.0
6
         1.0
                  1.0
                                  0.0
                                                  0.0
                                                          2.585938
                  1.0
         1.0
                                                  1.0
                                                          0.859541
                                   0.0
```

Formula Syntax

Code	Description	Example
+	unions terms on the left and right	a+a ⇒ a
_	removes terms on the right from terms on the left	$a+b-a \Rightarrow b$
:	constructs interactions between each term on the left and right	$(a+b):c \Rightarrow a:c + b:c$
*	short-hand for terms and their interactions	$a*b \Rightarrow a + b + a:b$
/	short-hand for left terms and their interactions with right terms	a/b ⇒ a + a:b
I()	used for calculating arithmetic calculations	I(x1 + x2)
Q()	used to quote column names, e.g. columns with spaces or	Q('bad name!')
	symbols	
C()	used for categorical data coding	<pre>C(a, Treatment('a2'))</pre>

Examples

```
1 dmatrix("x:y", demo data("x","y","z"))
                                                        1 dmatrix("x/y", demo data("x","y","z"))
DesignMatrix with shape (5, 2)
                                                      DesignMatrix with shape (5, 3)
  Intercept
                                                        Intercept
                 x:y
                                                                         X
                                                                                 x:y
         1 -1.72397
                                                                1 1.76405 -1.72397
         1 0.38018
                                                                1 0.40016 0.38018
         1 - 0.14814
                                                                1 0.97874 -0.14814
         1 - 0.23130
                                                                1 2.24089 -0.23130
         1 0.76682
                                                                1 1.86756 0.76682
  Terms:
                                                         Terms:
    'Intercept' (column 0)
                                                           'Intercept' (column 0)
    'x:y' (column 1)
                                                           'x' (column 1)
                                                           'x:y' (column 2)
 1 dmatrix("x*y", demo data("x","y","z"))
                                                        1 dmatrix("x*(y+z)", demo data("x","y","z"))
DesignMatrix with shape (5, 4)
  Intercept
                                                      DesignMatrix with shape (5, 6)
                  X
                            У
                                    x:y
                                                        Intercept
         1 1.76405 -0.97728 -1.72397
                                                                    X
                                                                                                    x:y
                                                                                   У
         1 0.40016 0.95009
                               0.38018
                                                                1 1.76405 -0.97728 0.14404 -1.72397 0.
         1 \quad 0.97874 \quad -0.15136 \quad -0.14814
                                                                1 0.40016 0.95009 1.45427
                                                                                                0.38018 0.
         1 \quad 2.24089 \quad -0.10322 \quad -0.23130
                                                                1 0.97874 -0.15136 0.76104 -0.14814 0.
         1 1.86756 0.41060 0.76682
                                                                1 2.24089 -0.10322 0.12168 -0.23130 0.
                                                                1 1.86756 0.41060 0.44386
                                                                                                0.76682 0.
  Terms:
    'Intercept' (column 0)
                                                         Terms:
    'x' (column 1)
                                                           'Intercept' (column 0)
    'y' (column 2)
                                                           'x' (column 1)
    'x:y' (column 3)
                                                           'y' (column 2)
                                                           'z' (column 3)
                                                           'x:y' (column 4)
                                                           'x:z' (column 5)
```

Intercept Examples (-1)

```
1 dmatrix("x", demo data("x", "y", "z"))
DesignMatrix with shape (5, 2)
  Intercept
          1 1.76405
          1 0.40016
          1 0.97874
          1 2.24089
          1 1.86756
  Terms:
    'Intercept' (column 0)
    'x' (column 1)
  1 dmatrix("x-1", demo_data("x","y","z"))
DesignMatrix with shape (5, 1)
       X
  1.76405
  0.40016
  0.97874
  2.24089
  1.86756
  Terms:
   'x' (column 0)
```

Intercept Examples (0)

```
1 dmatrix("x+0", demo data("x","y","z"))
DesignMatrix with shape (5, 1)
       X
  1.76405
  0.40016
 0.97874
  2.24089
  1.86756
  Terms:
   'x' (column 0)
 1 dmatrix("x-0", demo_data("x","y","z"))
DesignMatrix with shape (5, 2)
  Intercept
          1 1.76405
          1 0.40016
          1 0.97874
          1 2.24089
          1 1.86756
  Terms:
    'Intercept' (column 0)
    'x' (column 1)
```

Design Info

One of the keep features of the design matrix object is that it retains all the necessary details (including stateful transforms) that are necessary to apply to new data inputs (e.g. for prediction).

```
1 d = dmatrix("a + a:b + np.exp(x1)", data, return type='dataframe')
  2 d.design info
DesignInfo(['Intercept',
            'a[T.a2]',
            'a[a1]:b[T.b2]',
            'a[a2]:b[T.b2]',
            'np.exp(x1)'],
           factor infos={EvalFactor('a'): FactorInfo(factor=EvalFactor('a'),
                                    type='categorical',
                                    state=<factor state>,
                                    categories=('a1', 'a2')),
                         EvalFactor('b'): FactorInfo(factor=EvalFactor('b'),
                                    type='categorical',
                                     state=<factor state>,
                                    categories=('b1', 'b2')),
                         EvalFactor('np.exp(x1)'): FactorInfo(factor=EvalFactor('np.exp(x1)'),
                                    type='numerical',
                                     state=<factor state>,
                                    num columns=1)},
           term_codings=OrderedDict([(Term([5)ta 663 - Spring 2023
```

Stateful transforms

```
1 data = {"x1": np.random.normal(size=10)}
  2 new data = {"x1": np.random.normal(size=10)}
  1 d = dmatrix("scale(x1)", data)
                                                        1 pred = dmatrix(d.design info, new data)
  2 d
                                                        2 pred
DesignMatrix with shape (10, 2)
                                                      DesignMatrix with shape (10, 2)
  Intercept scale(x1)
                                                        Intercept scale(x1)
            -1.90949
                                                               1 0.11925
         1
            -0.33140
                                                                  1.78150
            1.01561
                                                                   -0.25861
         1
            1.38457
                                                                  0.75752
             -0.73524
                                                               1 0.24595
         1
                                                                   -0.29425
             -0.38595
         1
            1.29286
                                                               1 -0.70571
         1
             -0.79691
                                                               1 -0.55710
         1
             -0.07595
                                                                  -0.37134
                                                                   -1.95723
         1
              0.54190
  Terms:
                                                        Terms:
                                                          'Intercept' (column 0)
    'Intercept' (column 0)
    'scale(x1)' (column 1)
                                                          'scale(x1)' (column 1)
  1 np.mean(d, axis=0)
                                                        1 np.mean(pred, axis=0)
array([1., 0.])
                                                      array([1., -0.124])
```

scikit-lego PatsyTransformer

If you would like to use a Patsy formula in a scikitlearn pipeline, it is possible via the PatsyTransformer from the scikit-lego library (sklego).

```
1 from sklego.preprocessing import PatsyTransformer
2 df = pd.DataFrame({
3    "y": [2, 2, 4, 4, 6], "x": [1, 2, 3, 4, 5],
4    "a": ["yes", "yes", "no", "no", "yes"]
5 })
6 X, y = df[["x", "a"]], df[["y"]].values
```

B-splines

Patsy also has support for B-splines and other related models,

What is bs(x)[i]?

```
bs_df = (
dmatrix("bs(x, df=6)", data=d, return_type="dataframe")
drop(["Intercept"], axis = 1)
assign(x = d["x"])
melt(id_vars="x")

nmelt(id_vars="x")
sns.relplot(x="x", y="value", hue="variable", kind="line", data = bs_df, aspect=1.5)
```


Fitting a model

```
1 from sklearn.linear_model import LinearRegression
2 lm = LinearRegression(fit_intercept=False).fit(X,y)
3 lm.coef_

array([[ 1.28955, -1.69132,  3.17914, -5.3865 , -1.18284, -3.8488 , -2.42867]])

1 plt.figure(layout="constrained")
2 sns.lineplot(x=d["x"], y=lm.predict(X).ravel(), color="r")
3 sns.scatterplot(x="x", y="y", data=d)
4 plt.show()
```


sklearn SplineTransformer

```
1 from sklearn.preprocessing import SplineTransfor
 2
   p = make pipeline(
     SplineTransformer(
      n knots=6,
      degree=3,
 6
       include bias=True
 8
     ),
     LinearRegression(fit intercept=False)
 9
   ).fit(
10
     d[["x"]], d["y"]
11
12 )
```

```
plt.figure()
sns.lineplot(x=d["x"], y=p.predict(d[["x"]]).rav
sns.scatterplot(x="x", y="y", data=d)
plt.show()
```


Comparison

```
plt.figure()
sns.lineplot(x=d["x"], y=p.predict(d[["x"]]).ravel(), color="k", label = "sklearn")
sns.lineplot(x=d["x"], y=lm.predict(X).ravel(), color="r", label = "patsy")
sns.scatterplot(x="x", y="y", data=d)
plt.show()
```


Why different?

For patsy the number of splines is determined by df while for sklearn this is determined by n_knots + degree - 1.

```
p = p.set_params(splinetransformer__n_knots = 5).fit(d[["x"]], d["y"])

plt.figure(layout="constrained")

sns.lineplot(x=d["x"], y=p.predict(d[["x"]]).ravel(), color="k", label = "sklearn")

sns.lineplot(x=d["x"], y=lm.predict(X).ravel(), color="r", label = "patsy")

sns.scatterplot(x="x", y="y", data=d)

plt.show()
```


but that is not the whole story, if we examine the bases we also see they differ slightly between implementations

statsmodels

statsmodels

statsmodels is a Python module that provides classes and functions for the estimation of many different statistical models, as well as for conducting statistical tests, and statistical data exploration. An extensive list of result statistics are available for each estimator. The results are tested against existing statistical packages to ensure that they are correct.

```
1 import statsmodels.api as sm
2 import statsmodels.formula.api as smf
3 import statsmodels.tsa.api as tsa
```

statsmodels uses slightly different terminology for referring to y (dependent / response) and x (independent / explanatory) variables. Specifically it uses endog to refer to the y and exog to refer to the x variable(s).

This is particularly important when using the main API, less so when using the formula API.

OpenIntro Loans data

9181

CT

3

36

RENT

This data set represents thousands of loans made through the Lending Club platform, which is a platform that allows individuals to lend to other individuals. Of course, not all loans are created equal. Someone who is a essentially a sure bet to pay back a loan will have an easier time getting a loan with a low interest rate than someone who appears to be riskier. And for people who are very risky? They may not even get a loan offer, or they may not have accepted the loan offer due to a high interest rate. It is important to keep that last part in mind, since this data set only represents loans actually made, i.e. do not mistake this data for loan applications!

For the full data dictionary see here. We have removed some of the columns to make the data set more reasonably sized and also droped any rows with missing values.

```
loans = pd.read csv("data/openintro loans.csv")
    loans
            emp length term homeownership annual income ... loan amount
                                                                                 grade
                                                                                         interest rate public rec
     state
                                                                                                  14.07
                            60
                                                     90000.0
                                                                          28000
0
        NJ
                      3
                                    MORTGAGE
                                                                                      C
                                                     40000.0
                                                                                                  12.61
1
        HΤ
                     10
                            36
                                         RENT
                                                                           5000
                                                                                      C
                                                                                                  17.09
2
        WI
                      3
                            36
                                         RENT
                                                      40000.0
                                                                           2000
                                                                                      D
3
                            36
                                                     30000.0
                                                                                                   6.72
        PA
                      1
                                        RENT
                                                                          21600
                                                                                      Α
4
        CA
                     10
                            36
                                         RENT
                                                      35000.0
                                                                          23000
                                                                                      C
                                                                                                  14.07
        . . .
9177
        TX
                     10
                            36
                                         RENT
                                                     108000.0
                                                                          24000
                                                                                      Α
                                                                                                   7.35
9178
                                                                                                  19.03
                            36
                                    MORTGAGE
                                                     121000.0
                                                                                      D
        PA
                                                                          10000
9179
                                                      67000.0
                                                                                                  23.88
        СТ
                     10
                            36
                                    MORTGAGE
                                                                          30000
                                                                                      Е
9180
                            36
                                                     80000.0
                                                                          24000
                                                                                                   5.32
                      1
        WΤ
                                    MORTGAGE
                                                                                      Α
```

Sta 66% Spring 2023

12800

В

10.91

'loan_status'],
dtype='object')

OLS

['MORTGAGE' 67000.0 45.26 23.88 0]

```
1 y = loans["loan amount"]
 2 X = loans[["homeownership", "annual income", "debt to income", "interest rate", "public record bankrupt
  3
 4 model = sm.OLS(endog=y, exog=X)
Error: ValueError: Pandas data cast to numpy dtype of object. Check input data with np.asarray(data). The ty
<... omitted ...>0.0 21.33 17.09 01
 ['RENT' 32000.0 37.06 18.45 0]
 ['MORTGAGE' 170000.0 10.4 6.08 0]
 ['RENT' 85000.0 12.4 9.43 0]
 ['MORTGAGE' 64000.0 36.49 9.93 0]
 ['MORTGAGE' 100000.0 21.71 9.93 1]
 ['MORTGAGE' 114000.0 14.6 9.93 0]
 ['MORTGAGE' 49000.0 36.2 21.45 0]
 ['MORTGAGE' 106000.0 22.26 7.35 0]
 ['MORTGAGE' 150000.0 6.26 6.07 0]
 ['MORTGAGE' 55000.0 22.19 9.43 0]
 ['RENT' 65000.0 9.77 9.92 0]
 ['RENT' 65000.0 27.1 15.05 0]
 ['OWN' 96774.0 0.04 9.44 0]
 ['MORTGAGE' 75000.0 28.45 11.99 0]
 ['RENT' 70000.0 15.31 9.93 0]
 ['MORTGAGE' 20000.0 23.23 7.97 0]
 ['RENT' 40000.0 12.07 10.41 0]
 ['RENT' 108000.0 22.28 7.35 1]
 ['MORTGAGE' 121000.0 32.38 19.03 0]
```

What do you think the issue is here?

The error occurs because X contains mixed types - specifically we have categorical data columns which cannot be directly converted to a numeric dtype so we need to take care of the dummy coding for statsmodels (with this interface).

```
1  X_dc = pd.get_dummies(X)
2  model = sm.OLS(endog=y, exog=X_dc)
3  model

<statsmodels.regression.linear_model.OLS object at 0x2d10c0820>

1  dir(model)

['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattri
```

Fitting and summary

```
1 res = model.fit()
2 print(res.summary())
```

Sta 663 - Spring 2023

OLS Regression Results Dep. Variable: loan amount R-squared: 0.135 Model: OLS Adj. R-squared: 0.135 Least Squares F-statistic: Method: 239.5 Tue, 21 Mar 2023 Prob (F-statistic): 2.33e-285 Date: Time: 12:14:38 Log-Likelihood: -97245.No. Observations: 9182 ATC: 1.945e+05 Df Residuals: BIC: 9175 1.946e+05 Df Model: Covariance Type: nonrobust std err t P>|t| [0.025 coef 0.9751 0.0505 0.002 31.952 0.000 0.047 0.054 annual income debt to income 65.6641 7.310 8.982 0.000 51.334 79.994 interest rate 204.2480 20.448 9.989 0.000 164.166 244.330 public record bankrupt -1362.3253 306.019 -4.452 0.000 -1962.191-762.460homeownership MORTGAGE 1.002e+04 357.245 28.048 0.000 9319.724 1.07e+04 homeownership OWN 8880.4144 422.296 21.029 0.000 8052.620 9708.209 homeownership RENT 7446.5385 351.641 21.177 0.000 6757,243 8135,834 Omnibus: 481.833 Durbin-Watson: 2.002

Formula interface

Most of the modeling interfaces are also provided by smf (statsmodels.formula.api) in which case patsy is used to construct the model matrices.

```
model = smf.ols(
    "loan_amount ~ homeownership + annual_income + debt_to_income + interest_rate + public_record_bankrup
    data = loans
4 )
5 res = model.fit()
6 print(res.summary())
```

Sta 663 - Spring 2023

loan amount R-squared: Dep. Variable: 0.135 OLS Adj. R-squared: Model: 0.135 Least Squares F-statistic: Method: 239.5 Tue, 21 Mar 2023 Prob (F-statistic): Date: 2.33e-285 Time: 12:14:38 Log-Likelihood: -97245.No. Observations: 9182 ATC: 1.945e+05 Df Residuals: 9175 BTC: 1.946e+05 Df Model: Covariance Type: nonrobust. P>|t| coef std err [0.025]

OLS Regression Results

Intercept	1.002e+04	357.245	28.048	0.000	9319.724	1.07e+04
homeownership[T.OWN]	-1139.5893	322.361	-3.535	0.000	-1771.489	-507.690
homeownership[T.RENT]	-2573.4652	221.101	-11.639	0.000	-3006.873	-2140.057
annual_income	0.0505	0.002	31.952	0.000	0.047	0.054
debt_to_income	65.6641	7.310	8.982	0.000	51.334	79.994
interest_rate	204.2480	20.448	9.989	0.000	164.166	244.330
<pre>public_record_bankrupt</pre>	-1362.3253	306.019	-4.452	0.000	-1962.191	-762.460

Result values and model parameters

```
1 res.rsquared
  1 res.params
Intercept
                          10020.003630
                                                        0.13542611095847523
homeownership[T.OWN]
                          -1139.589268
                                                          1 res.aic
homeownership[T.RENT]
                          -2573.465175
annual income
                              0.050505
                                                        194503,99751598848
debt to income
                             65,664103
                                                          1 res.bic
interest rate
                            204.247993
public record bankrupt
                          -1362.325291
                                                        194553.87251826216
dtype: float64
                                                          1 res.predict()
  1 res.bse
                                                        array([18621.86199, 11010.94015, 14346.14516, 11001.3
Intercept
                          357.244896
                                                               18283.87492, 26719.61804, 18496.72337, 14811.4
homeownership[T.OWN]
                          322.361151
                                                               18845.26463, 20083.33976, ..., 19576.16932, 18
homeownership[T.RENT]
                          221.101300
                                                               17161.96037, 18764.48833, 19252.9242 , 18336.4
annual income
                            0.001581
                                                               22144.19006, 21253.25932, 15934.34097, 14375.3
debt to income
                            7.310428
interest rate
                           20.447644
public record bankrupt
                          306.019080
dtype: float64
```

Diagnostic plots

QQ Plot

```
plt.figure()
sm.graphics.qqplot(res.resid, line="s")
plt.show()
```


Leverage plot

```
plt.figure()
sm.graphics.plot_leverage_resid2(res)
plt.show()
```


Alternative model

```
1 res = smf.ols(
2    "np.sqrt(loan_amount) ~ homeownership + annual_income + debt_to_income + interest_rate + public_recor
3    data = loans
4    ).fit()
5    print(res.summary())
OLS Regression Results
```

Dep. Variable:	np.sqrt(loan_amount)	R-squared:	0.132
Model:	OLS	Adj. R-squared:	0.132
Method:	Least Squares	F-statistic:	232.7
Date:	Tue, 21 Mar 2023	Prob (F-statistic):	1.16e-277
Time:	12:14:41	Log-Likelihood:	-46429.
No. Observations:	9182	AIC:	9.287e+04
Df Residuals:	9175	BIC:	9.292e+04
Df Model:	6		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	95.4915	1.411	67.687	0.000	92.726	98.257
homeownership[T.OWN]	-4.4495	1.273	-3.495	0.000	-6.945	-1.954
homeownership[T.RENT]	-10.4225	0.873	-11.937	0.000	-12.134	-8.711
annual_income	0.0002	6.24e-06	30.916	0.000	0.000	0.000
debt_to_income	0.2720	0.029	9.421	0.000	0.215	0.329
interest_rate	0.8911	0.081	11.035	0.000	0.733	1.049
<pre>public_record_bankrupt</pre>	-4.6899	1.208	ta 663 - Spring	0.000	-7.059	-2.321

1 plt.figure() 2 sm.graphics.qqplot(res.resid, line="s") 3 plt.show()

Bushtail Possums

Data representing possums in Australia and New Guinea. This is a copy of the data set by the same name in the DAAG package, however, the data set included here includes fewer variables.

pop - Population, either Vic (Victoria) or other (New South Wales or Queensland).

Logistic regression models (GLM)

```
1  y = pd.get_dummies( possum["pop"], drop_first = True )
2  X = pd.get_dummies( possum.drop(["site","pop"], axis=1) )
3
4  model = sm.GLM(y, X, family = sm.families.Binomial())
```

Error: statsmodels.tools.sm_exceptions.MissingDataError: exog contains inf or name

What is wrong now?

Behavior for dealing with missing data can be handled via missing, possible values are "none", "drop", and "raise".

```
1 model = sm.GLM(y, X, family = sm.families.Binomial(), missing="drop")
```

Fit and summary

```
1 res = model.fit()
2 print(res.summary())
```

	Genera	lized Linear	Model Reg	gression Resu	ults	
Dep. Variak	========= ole:	 oth	======= er No.(======== Observations	======================================	102
Model:		G	LM Df Re	esiduals:		95
Model Famil	Ly:	Binomi	al Df Mo	odel:		6
Link Functi	lon:	Log	it Scale	e:		1.0000
Method:		IR	LS Log-1	Likelihood:		-31.942
Date:	Tue	e, 21 Mar 20	23 Devi	ance:		63.885
Time:		12:14:	44 Pears	son chi2:		154.
No. Iterati	lons:		7 Pseud	do R-squ. (C	S):	0.5234
Covariance	Type:	nonrobu	st			
=======			=======			
	coef	std err	Z	P> z	[0.025	0.975]
age	-0.1373	0.183	-0.751	0.453	-0.495	0.221
head_1	0.1972	0.158	1.247	0.212	-0.113	0.507
skull_w	0.2001	0.139	1.443	0.149	-0.072	0.472
total_l	-0.7569	0.176	-4.290	0.000	-1.103	-0.411
tail_l	2.0698	0.429	4.820	0.000	1.228	2.912
sex_f	-40.0148	13.077	-3.060	0.002	-65.645	-14.385
sex_m	-38.5395	12.941	-2.978	0.003	-63.904	-13.175

Success vs failure

skull w

-0.2001

Note endog can be 1d or 2d for binomial models - in the case of the latter each row is interpreted as [success, failure].

```
1  y = pd.get_dummies( possum["pop"] )
2  X = pd.get_dummies( possum.drop(["site","pop"], axis=1) )
3
4  res = sm.GLM(y, X, family = sm.families.Binomial(), missing="drop").fit()
5  print(res.summary())
```

-1.443 Sta 663 +4Spring 2023 472

0.072

Generalized Linear Model Regression Results

=======================================			========
Dep. Variable:	['Vic', 'other']	No. Observations:	102
Model:	GLM	1 Df Residuals:	95
Model Family:	Binomia	Df Model:	6
Link Function:	Logit	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-31.942
Date:	Tue, 21 Mar 2023	B Deviance:	63.885
Time:	12:14:44	Pearson chi2:	154.
No. Iterations:	7	Pseudo R-squ. (CS):	0.5234
Covariance Type:	nonrobust	:	
=======================================			
CO	oef std err	z P> z [0.025	0.975]
age 0.13	373 0.183	0.751 0.453 -0.221	0.495
head_1 -0.19	972 0.158	-1.247 0.212 -0.507	0.113

0.139

total_l	0.7569	0.176	4.290	0.000	0.411	1.103
tail_l	-2.0698	0.429	-4.820	0.000	-2.912	-1.228
sex_f	40.0148	13.077	3.060	0.002	14.385	65.645
sex_m	38.5395	12.941	2.978	0.003	13.175	63.904

Fit and summary

```
1 res = model.fit()
2 print(res.summary())
```

	Genera	lized Linear	Model Reg	gression Res	ults	
Dep. Variab	======================================	 oth	====== er No.(======= Observations	:	102
Model:		G	LM Df Re	esiduals:		95
Model Famil	-y:	Binomi	al Df Mo	odel:		6
Link Functi	on:	Log	it Scale	e:		1.0000
Method:		IR	LS Log-1	Likelihood:		-31.942
Date:	Tue	e, 21 Mar 20	23 Devi	ance:		63.885
Time:		12:14:	45 Pears	son chi2:		154.
No. Iterati	ons:		7 Pseud	do R-squ. (C	S):	0.5234
Covariance	Type:	nonrobu	st			
========	-=======	========	=======	========	=======	========
	coef	std err	Z	P> z	[0.025	0.975]
age	-0.1373	0.183	-0.751	0.453	-0.495	0.221
head_1	0.1972	0.158	1.247	0.212	-0.113	0.507
skull_w	0.2001	0.139	1.443	0.149	-0.072	0.472
total_l	-0.7569	0.176	-4.290	0.000	-1.103	-0.411
tail_l	2.0698	0.429	4.820	0.000	1.228	2.912
sex_f	-40.0148	13.077	-3.060	0.002	-65.645	-14.385
sex_m	-38.5395	12.941	-2.978	0.003	-63.904	-13.175

Formula interface

```
1 res = smf.glm(
2    "pop ~ sex + age + head_l + skull_w + total_l + tail_l-1",
3    data = possum,
4    family = sm.families.Binomial(),
5    missing="drop"
6 ).fit()
7 print(res.summary())
```

Generalized Linear Model Regression Results

Dep. Variak	ole: ['pc	p[Vic]', 'po	======= op[other]']	No. Obser	vations:		102
Model:			GLM	Df Residu	als:		95
Model Famil	Ly:		Binomial	Df Model:			6
Link Functi	ion:		Logit	Scale:			1.0000
Method:			IRLS	Log-Likel	ihood:		-31.942
Date:		Tue, 2	21 Mar 2023	Deviance:			63.885
Time:			12:14:45	Pearson c	hi2:		154.
No. Iterati	ions:		7	Pseudo R-	squ. (CS):		0.5234
Covariance	Type:		nonrobust				
========		:=======		========	========	=======	
	coef	std err	z	P> z	[0.025	0.975]	
sex[f]	40.0148	13.077	3.060	0.002	14.385	65.645	
sex[m]	38.5395	12.941	2.978	0.003	13.175	63.904	
age	0.1373	0.183	0.751	0.453	-0.221	0.495	
head_l	-0.1972	0.158	-1.247	0.212	-0.507	0.113	
skull_w	-0.2001	0.139	-1.443	61212 Sta 663 - Sprin	9 2023 -0.472	0.072	

total_l	0.7569	0.176	4.290	0.000	0.411	1.103
tail_l	-2.0698	0.429	-4.820	0.000	-2.912	-1.228

sleepstudy data

These data are from the study described in Belenky et al. (2003), for the most sleep-deprived group (3 hours time-in-bed) and for the first 10 days of the study, up to the recovery period. The original study analyzed speed (1/(reaction time)) and treated day as a categorical rather than a continuous predictor.

The average reaction time per day (in milliseconds) for subjects in a sleep deprivation study. Days 0-1 were adaptation and training (T1/T2), day 2 was baseline (B); sleep deprivation started after day 2.

```
1 sleep = pd.read_csv("data/sleepstudy.csv")
2 sleep
```

	Reaction	Days	Subject
0	249.5600	0	308
1	258.7047	1	308
2	250.8006	2	308
3	321.4398	3	308
4	356.8519	4	308
• •	• • •	• • •	• • •
175	329.6076	5	372
176	334.4818	6	372
177	343.2199	7	372
178	369.1417	8	372
179	364.1236	9	372
178	369.1417	8	372

[180 rows x 3 columns]

1 sns.relplot(x="Days", y="Reaction", col="Subject", col_wrap=6, data=sleep)

Random intercept model

```
me_rand_int = smf.mixedlm(
    "Reaction ~ Days", data=sleep, groups=sleep["Subject"],
    subset=sleep.Days >= 2

4 )
5 res_rand_int = me_rand_int.fit(method=["lbfgs"])
6 print(res_rand_int.summary())
```

Mixed Linear Model Regression Results

```
Model: MixedLM Dependent Variable: Reaction
No. Observations: 180 Method: REML
No. Groups: 18 Scale: 960.4529
Min. group size: 10 Log-Likelihood: -893.2325
Max. group size: 10 Converged: Yes
Mean group size: 10.0

Coef. Std.Err. z P>|z| [0.025 0.975]

Intercept 251.405 9.747 25.793 0.000 232.302 270.509
Days 10.467 0.804 13.015 0.000 8.891 12.044
Group Var 1378.232 17.157
```

```
1 summary(
      lmer(Reaction ~ Days + (1 | Subject), data=sleepstudy)
  2
  3)
Linear mixed model fit by REML ['lmerMod']
Formula: Reaction ~ Days + (1 | Subject)
  Data: sleepstudy
REML criterion at convergence: 1786.5
Scaled residuals:
   Min
            10 Median
                           3Q
                                  Max
-3.2257 -0.5529 0.0109 0.5188 4.2506
Random effects:
 Groups
         Name
                  Variance Std.Dev.
 Subject (Intercept) 1378.2 37.12
 Residual
                      960.5 30.99
Number of obs: 180, groups: Subject, 18
Fixed effects:
           Estimate Std. Error t value
(Intercept) 251.4051 9.7467 25.79
            10.4673 0.8042 13.02
Days
Correlation of Fixed Effects:
     (Intr)
```

Predictions

Recovering random effects for prediction

```
# Dictionary of random effects estimates
re = res_rand_int.random_effects
# Multiply each RE by the random effects design matrix for each group
rex = [np.dot(me_rand_int.exog_re_li[j], re[k]) for (j, k) in enumerate(me_rand_int.group_labels)]
# Add the fixed and random terms to get the overall prediction
y_hat = res_rand_int.predict() + np.concatenate(rex)
```


Random intercept and slope model

```
me_rand_sl= smf.mixedlm(
    "Reaction ~ Days", data=sleep, groups=sleep["Subject"],
    subset=sleep.Days >= 2,
    re_formula="~Days"

    )
    res_rand_sl = me_rand_sl.fit(method=["lbfgs"])
    print(res_rand_sl.summary())
```

Dependent Variable Reaction

Mixed Linear Model Regression Results

MivedT.M

Model .

Model:	MTX6	заым рег	pendent	varia	ore: R	eaction	
No. Observations:	180	Met	thod:		R	EML	
No. Groups:	18	Sca	ale:		6	54.9412	
Min. group size:	10	Log	g-Likel:	ihood:	_	871.8141	
Max. group size:	10	Cor	nverged	•	Y	Yes	
Mean group size:	10.0)					
	Coef.	Std.Err.	Z	P> z	[0.025	0.975]	
Intercept	251.405	6.825	36.838	0.000	238.029	264.781	
Days	10.467	1.546	6.771	0.000	7.438	13.497	
Group Var	612.089	11.881					
Group x Days Cov	9.605	1.820					
Days Var	35.072	0.610					
============	=======	=======	-=====	=====	=======	=======	

```
1 summary(
      lmer(Reaction ~ Days + (Days | Subject), data=sleepstudy)
  2
  3)
Linear mixed model fit by REML ['lmerMod']
Formula: Reaction ~ Days + (Days | Subject)
  Data: sleepstudy
REML criterion at convergence: 1743.6
Scaled residuals:
   Min
            10 Median
                          30
                                 Max
-3.9536 - 0.4634  0.0231  0.4634  5.1793
Random effects:
 Groups
         Name
                Variance Std.Dev. Corr
 Subject (Intercept) 612.10 24.741
                   35.07 5.922
         Days
                                   0.07
 Residual
              654.94 25.592
Number of obs: 180, groups: Subject, 18
Fixed effects:
           Estimate Std. Error t value
(Intercept) 251.405
                        6.825 36.838
      10.467 1.546 6.771
Days
Correlation of Fixed Effects:
```

Prediction

Odds and ends

t-test and z-test for equality of means

```
1 books = pd.read csv("data/daag books.csv")
 2 cm = sm.stats.CompareMeans(
     sm.stats.DescrStatsW( books.weight[books.cover == "hb"] ),
     sm.stats.DescrStatsW( books.weight[books.cover == "pb"] )
 1 print(cm.summary())
                     Test for equality of means
              coef std err t P>|t| [0.025 0.975]
subset #1 168.3036 136.636 1.232 0.240 -126.880 463.487
 1 print(cm.summary(use t=False))
                     Test for equality of means
              coef std err z P > |z| [0.025 0.975]
subset #1 168.3036 136.636 1.232 0.218 -99.497 436.104
```

1 print(cm.summary(usevar="unequal"))

Test for equality of means

=======	coef	std err	======== t	P> t	[0.025	0.975]
subset #1	168.3036	136.360	1.234	0.239	-126.686	463.293

Contigency tables

df

pvalue 0.5587832913935942

Below are data from the GSS and a survery of Duke students in a intro stats class - the question asked about how concerned the respondent was about the effect of global warming on polar ice cap melt.

```
1 gss = pd.DataFrame({"US": [454, 226], "Duke": [56,32]}, index=["A great deal", "Not a great deal"])
 2 gss
                 US
                    Duke
A great deal 454
                      56
Not a great deal 226
                      32
 1 tbl = sm.stats.Table2x2(gss.to numpy())
 2 print(tbl.summary())
             Estimate SE LCB UCB p-value
Odds ratio 1.148 0.723 1.823 0.559
Log odds ratio 0.138 0.236 -0.325 0.601 0.559
Risk ratio 1.016 0.962 1.074 0.567
Log risk ratio 0.016 0.028 -0.039 0.071 0.567
 1 print(tbl.test nominal association())
```