

CATHODE MATERIAL FOR LITHIUM RECHARGEABLE BATTERIES

ABSTRACT OF THE DISCLOSURE

A crystal which can be employed as the active material of a lithium-based battery has an empirical formula of $\text{Li}_{x_1}\text{A}_2\text{Ni}_{1-y-z}\text{Co}_y\text{B}_z\text{O}_a$, wherein “ x_1 ” is greater than 5 about 0.1 and equal to or less than about 1.3, “ x_2 ,” “ y ” and “ z ” each is greater than about 0.0 and equal to or less than about 0.2, “ a ” is greater than about 1.5 and less than about 2.1, “ A ” is at least one element selected from the group consisting of barium, magnesium, calcium and strontium and “ B ” is at least one element selected from the group consisting of boron, aluminum, gallium, manganese, titanium, vanadium and zirconium. A method includes combining lithium, nickel, cobalt and at least one 10 element “ A ” selected from the group consisting of barium, magnesium, calcium and strontium, has at least one element “ B ” selected from the group consisting of boron, aluminum, gallium, manganese, titanium, vanadium and zirconium, in the presence of oxygen, wherein the combined components have the relative ratio of $\text{Li}_{x_1}:\text{A}_{x_2}:\text{Ni}_{1-y-z}:\text{Co}_y\text{B}_z$, wherein “ x_1 ,” “ x_2 ,” “ y ” and “ z ” have the values given for the empirical 15 formula shown above.