Database

Friday, January 3, 2025 9:21 AM

What is normalization?

It is a technique to reduce redundancy from the table.

Normalizati on Form	Definition	Key Requirements	Purpose	Example
1NF	A relation is in 1NF if it has only atomic (indivisible) values and each column contains unique values for that attribute.	- Each column has atomic values Rows are uniquely identifiable (with a primary key).	Eliminates duplicate rows and ensures data is organized in tabular format.	A table storing customer data where each cell contains a single value (e.g., one phone number per customer).
2NF	A relation is in 2NF if it is in 1NF and all non-prime attributes are fully functionally dependent on the entire primary key.	- Must be in 1NF Non-prime attributes must depend on the entire primary key (eliminates partial dependency).	Removes partial dependency.	Splitting a table into two to ensure that attributes related to only part of a composite key are stored in a separate table.
3NF	A relation is in 3NF if it is in 2NF and there are no transitive dependencies (non-prime attributes depend only on the primary key).	- Must be in 2NF No transitive dependency (no non-prime attribute depends on another non-prime attribute).	Removes transitive dependency.	Creating a separate table for department names if they indirectly determine an employee's address via a department ID.
BCNF (Boyce- Codd)	A stricter version of 3NF where every determinant is a candidate key.	- Must be in 3NF Every determinant must be a candidate key (eliminates dependency anomalies).	Ensures minimal redundancy and dependency.	A table that contains attributes for professors and courses split into two to prevent a non-candidate key determining another attribute.
4NF	A relation is in 4NF if it is in BCNF and has no multi-valued dependencies (MVDs).	- Must be in BCNF No multi-valued dependencies (MVDs).	Removes multi-valued dependency.	Splitting a table with attributes for students and hobbies into separate tables, one for hobbies and another for skills, to eliminate MVDs.
5NF	A relation is in 5NF if it is in 4NF and cannot be further decomposed into smaller tables without losing data (removes join dependency).	- Must be in 4NF No join dependency (JD).	Prevents loss of data during recombination.	Decomposing a table to separate supplier, part, and project relationships into individual tables to preserve information during recombination operations.

	Two types of redundency:						
	1) Now level						
	2) Column level						
*	row level redundency can resolve using primary						
	key						
4	Calum Janot -						
	Column level -> update anormaly (problem)						
	-> insert anomaly						
	deletion anomary						
	C. Land and Land of Manager will a series of series in the						
	Column Level redundency remove using normaization						
	Normalization:						
	1) INF 2) 2NF 3] 3NF 4) BCNF						
~							
0	1 MF: Table should not Contain any multivaled						
	attribute.						
	eg Rollno name Course						
	1 A C/C++						
	2 B C						
	Soir 1						
	Rollno nome Course						
	1 A c Compo Primary key = Rollno + Counte						
	1 A C++						
	2 B C						

							Page No.		
							Roll No.		
Date :									
	100	,^ 2							
	130		name	courses	Cour	rde 2	Problem		
	Rollno		A	e	C++		many null		
	+	0	В	С	_		value		
	+	2			201100				
	-		Primary	ked = k	1				
	Sol	73	+1	t ke	1 +2				
		Rollno	name		Rollno	Courfe			
	PK	1	A		1	C			
		2	8		1.	C++			
				+	2	C			
	Ph = Rollno Ph = Rollno + counse								
,		1				partition in			
*	Closesure, Find an candidate key								
		Relation attribute							
	R	(A, B, C	,D)	•					
	FD	2 A→B	, B > c,	6-203					
	A	+ -> B	, c , D , A	cand	idate k	eg 🗸			
		+ -> B, C					B + aiso candidate		
	$C_{k} = \{A\}$ $C_{k} = \{A\}$ AB + Can be a Clow								
							Candidate kezamo		
	(u)	where: R -> Resation							
			(,8,(,7)						
		FD -> Functional dependency							
		At -3 Clousine							
		C	ix & card	ideate ke	7				
		-							

Reflexivity; if y is subset of x then x-37 Argumentaiton: if x->y, they xz, > yz

Transitive: if x->y 4 y->z then x-> zz

Union: if x->+ 4 x-> z then x-> yz decomposition: it x-1/2 then x-17 4 x-32 Composition: if x by 4 z bw then XZ byw 2NF: 1 relation or table must be in 1st normal form @ All non-Prime attribute should be fully functional dependent on Candidate kex or those should partial dependency in mer e. of C. key AB Proper subset & A, B But A or B single determine non Prime attribute then their is partial dependant A -> corb-> D

R (AB CDEF) PD={C>F, E-JA, EC-JD, A-JB? C.k: EC = FADB Fc+ = E, C, A, F, D, 8 1 CK: {EC } @ Prime attribute: E,C 3 non-Prime attribule: A, B, D, F 6) Proper subset of Ec: E, C FD = { C > F, E > A, E C > D, A > B} R (ABCD)

FO = [AB -> CD, D -> A]

C.key: AB+, DB+

Prime AHT: A,B,D

Relation Already in 3NF

BCNF: O golation in 3HF

O x should be a super ker for every FD

(fD) x - y in a given relation

