Differential Cohesive Type Theory

Jacob A. Gross^ℜ, Daniel R. Licata[‡], Max S. New[&], Jennifer Paykin[♭], Mitchell Riley[‡], Michael Shulman[∫], and Felix Wellen^ℑ

^ℜUniversity of Pittsburgh, [‡]Wesleyan University, [&]Northeastern University, ^bUniversity of Pennsylvania, [∫]University of San Diego, ^ℜKarlsruhe Institute of Technology

Overview

Want a syntax for

Overview

- Modal Type Theory
- Simple Differential Cohesive Type Theory
- Towards Differential Cohesive Homotopy Type Theory

Modal Type Theory

Why do we need Modal Type Theory?

No-Go Theorem for Comonads

(Shulman '15) Any internal comonadic modality is of the form

$$\square A \cong A \times U$$

for some proposition U

No-Go Theorem for Comonads

(Shulman '15) Any **internal** comonadic modality is of the form

$$\square A \cong A \times U$$

for some proposition U

The solution: comonads can't be applied in every context, so add a syntax for restricted contexts.

Change the Judgmental structure!

Modal Logic

Traditionally: encode different modes of "truth"

A:A is true in the current world

 $\Box A:A$ is true in all possible worlds

 $\diamond A:A$ is true in some possible world

$$\emptyset \vdash A$$

$$\Gamma \vdash \Box A$$

$$A \vdash \Diamond C$$

$$\Diamond A \vdash \Diamond C$$

Modal Type Theory

- Encode different **modes** of "proof" or construction:
 - Smooth variation
 - Continuous variation
 - Discontinuity

Real-Cohesive Homotopy Type Theory Shulman '15

$$\int db d$$

- Extends Homotopy Type Theory with an extra context of "discontinuous dependency".
- flat, sharp defined using a modal type theory
- Shape is defined as localization at the reals.

Simple Differential Cohesive Type Theory

- A non-dependent type theory that includes all of the modalities of differential cohesion.
- Dependent type theory rules will be generalizations of these.

Simple DCTT

Types
$$A, B, C ::= \int A | bA | \sharp A | \Re A | \Im A | \& A$$

$$|A \to B | 1 | A \times B | X$$
Modes $m, n ::= b | \Re | 1 | \Im | \int$

compare real-cohesion which only has flat, 1.

 $\frac{\Gamma \ \text{ctx} \qquad A \ \text{type} \qquad m \in \{\flat, \Re, 1, \Im, \smallint\}}{\Gamma, x :_m A \ \text{ctx}}$

Modes are the **left adjoints**, monadic or comonadic

Monads

$$b \leq \Re \leq 1 \leq \Im \leq \int$$

Comonads

Easier to Use

Harder to Use

$$b \leq \Re \leq 1 \leq \Im \leq \int$$

$$\Gamma \mid \Delta \mid \Theta \mid \Lambda \mid \Xi \vdash t : A$$

Alternative notation for contexts

Alternative notation for contexts

Meaning of the Modes

$$\Gamma, x :_m A \vdash t : B$$

denotes

$$\llbracket t \rrbracket : \llbracket \Gamma \rrbracket \times \llbracket m \rrbracket \llbracket A \rrbracket \to \llbracket B \rrbracket$$

Meaning of the Modes

$$\Gamma, x :_m A \vdash t : B$$

b: is possibly discontinuous

 \Re : possibly ignores infinitesimal extensions

1: is smooth

3: has 0 derivatives

 \int : is constant on each connected component

Variables

Variable rule is a counit

$$m \leq 1$$

$$\Gamma, x :_m A \vdash x : A$$

Variables

Can't directly use m > 1 vars

$$m \leq 1$$

$$\Gamma, x :_m A \vdash x : A$$

Variables

Modal Promotion

$$\frac{m \le n \qquad \Gamma, x :_n A \vdash t : B}{\Gamma, x :_m A \vdash t : B}$$

Examples:

- 1. Locally constant functions have 0 derivative
- 2. Functions with 0 derivative are smooth
- 3. Smooth functions are "at most discontinuous"

Cut

Can only cut against restricted substitutions

$$\frac{\Gamma \vdash^m u : A \qquad \Gamma, x :_m A \vdash t : C}{\Gamma \vdash t[u/x] : C}$$

$$\frac{\Gamma \vdash^m u : A \qquad \Gamma, x :_m A \vdash t : C}{\Gamma \vdash t[u/x] : C}$$

Rule out substitutions like

$$\frac{y:_{1} B \vdash u:A}{y:_{1} B \vdash t[u/x]:C}$$

$$\frac{\Gamma \vdash^m u : A \qquad \Gamma, x :_m A \vdash t : C}{\Gamma \vdash t[u/x] : C}$$

Rule out substitutions like

$$\frac{y:_{1} B \vdash u:A}{y:_{1} B \vdash t[u/x]:C}$$

DISALLOWED

u is smooth in y, but t is discontinuous in x, so the composition is not necessarily smooth in y

$$\frac{\Gamma \vdash^m u : A \qquad \Gamma, x :_m A \vdash t : C}{\Gamma \vdash t[u/x] : C}$$

$$\Gamma \mid \Delta \mid \Theta \mid \Lambda \mid \Xi \vdash^{\flat} A :\equiv \Gamma \mid \cdot \mid \cdot \mid \cdot \mid \Xi \vdash A$$

$$\Gamma \mid \Delta \mid \Theta \mid \Lambda \mid \Xi \vdash^{\Re} A :\equiv \Gamma \mid \Delta \mid \cdot \mid \cdot \mid \Xi \vdash A$$

$$\Gamma \mid \Delta \mid \Theta \mid \Lambda \mid \Xi \vdash^{1} A :\equiv \Gamma \mid \Delta \mid \Theta \mid \Lambda \mid \Xi \vdash A$$

$$\Gamma \mid \Delta \mid \Theta \mid \Lambda \mid \Xi \vdash^{\Im} A :\equiv \Gamma \mid \Lambda \mid \cdot \mid \cdot \mid \Xi \vdash A$$

$$\Gamma \mid \Delta \mid \Theta \mid \Lambda \mid \Xi \vdash^{\Im} A :\equiv \Gamma \mid \Xi \mid \cdot \mid \cdot \mid \cdot \vdash A$$

would not keep Xi in real-cohesion

$$\frac{\Gamma \mid \Delta \mid \cdot \mid \Theta, \Lambda \mid \Xi \vdash e : A}{\Gamma \mid \Delta \mid \Theta \mid \Lambda \mid \Xi \vdash e^{\Re} : \Re A} \Re I$$

$$\frac{\Gamma \mid \Delta \mid \cdot \mid \Theta, \Lambda \mid \Xi \vdash e : A}{\Gamma \mid \Delta \mid \Theta \mid \Lambda \mid \Xi \vdash e^{\Re} : \Re A} \Re I$$

Comonadic introduction: variables become *harder* to use

$$\frac{\Gamma \mid \Delta \mid \cdot \mid \Theta, \Lambda \mid \Xi \vdash t : A}{t : \flat \Gamma \times \Re \Delta \times \Im \Theta \times \Im \Lambda \times \Im \Xi \to A \qquad m \neq 1 \implies \Re m = m}$$

$$\Re t : \flat \Gamma \times \Re \Delta \times \Im \Theta \times \Im \Lambda \times \Im \Xi \to \Re A \qquad 1 \leq \Im$$

$$\Re t \circ (\cdot \cdot \cdot \cdot) : \flat \Gamma \times \Re \Delta \times \Theta \times \Im \Lambda \times \Im \Xi \to \Re A$$

$$\Gamma \mid \Delta \mid \Theta \mid \Lambda \mid \Xi \vdash t^{\Re} : \Re A$$

Justified by functoriality

$$\frac{\Gamma \vdash^m u: \Re A \qquad \Gamma, x:_{m\Re} A \vdash t: C}{\Gamma \vdash \text{let } x^{\Re}:_{m} = u \text{ in } t: C} \Re E$$

- same semantics as substitution
- producing RA under different restrictions means you can use A at different modes

Example: Shape

how do we use monadically modal variables? Monadic introduction rules **promote** variables

$$\frac{\Gamma \mid \Delta, \Theta, \Lambda, \Xi \mid \cdot \mid \cdot \mid \cdot \mid \cdot \mid e : A}{\Gamma \mid \Delta \mid \Theta \mid \Lambda \mid \Xi \vdash e^{\int} : \int A} \int I$$

Increased expressivity over cohesion In cohesion, they would be promoted to 1 but in differential cohesion promoted to R

Example: Shape

$$\frac{\Gamma \mid \Delta, \Theta, \Lambda, \Xi \mid \cdot \mid \cdot \mid \cdot \vdash t : A}{t : \flat \Gamma \times \Re \Delta \times \Re \Theta \times \Re \Lambda \times \Re \Xi \to A \qquad \beta \flat = \flat \qquad \beta \Re = \Re}$$

$$\frac{\int t : \flat \Gamma \times \int \Delta \times \int \Theta \times \int \Lambda \times \int \Xi \to \int A}{\int t \circ (\cdot \cdot \cdot) : \flat \Gamma \times \Re \Delta \times \Theta \times \Im \Lambda \times \int \Xi \to \int A}$$

$$\frac{\Gamma \mid \Delta \mid \Theta \mid \Lambda \mid \Xi \vdash t^{\int} : \int A}{}$$

Example: Shape

$$\frac{\Gamma \mid \Delta, \Theta, \Lambda, \Xi \mid \cdot \mid \cdot \mid \cdot \vdash e : \int A \qquad \Gamma \mid \Delta \mid \Theta \mid \Lambda \mid \Xi, x : A \vdash e' : C}{\Gamma \mid \Delta \mid \Theta \mid \Lambda \mid \Xi \vdash \mathsf{let} \ x^{\int} := e \ \mathsf{in} \ e' : C} \int \mathsf{E}$$

Unlike Reduction, one mode of cut is optimal, so we only need one rule.

Simple DCTT

- Linear order on modes makes it easy to pick a "best" mode for a rule.
- Of 12 intro/elim rules for modalities, only 2: reduction/co-reduction elimination need mode annotations

Complicated...

• 6 modalities, 5 modes, too complex to do "manually"

Fibrational Framework

A Fibrational Framework for Substructural and Modal Logics (extended version)

Daniel R. Licata*1, Michael Shulman*2, and Mitchell Riley*1

¹Wesleyan University
²University of San Diego

FSCD 2017

Mode Theory => Modal Type Theory

- Provide a Mode Theory:
 - 0-cells ~ Categories
 - 1-cells ~ Adjunctions
 - 2-cells ~ Morphisms of Adjunctions
- Get an "Assembly code" modal logic
 - simplify manually after

Fibrational Framework

Uniform rules for left adjoints

$$\frac{\Gamma, \Gamma', \Delta \vdash_{\beta[\alpha/x]} C}{\Gamma, x : \mathsf{F}_{\alpha}(\Delta), \Gamma' \vdash_{\beta} C} \; \mathsf{FL} \quad \frac{\beta \Rightarrow \alpha[\gamma] \quad \Gamma \vdash_{\gamma} \Delta}{\Gamma \vdash_{\beta} \mathsf{F}_{\alpha}(\Delta)} \; \mathsf{FR}$$

Fibrational Framework

Uniform rules for right adjoints

$$\frac{x: \mathsf{U}_{x.\alpha}(\Delta \mid A) \in \Gamma \quad \beta \Rightarrow \beta'[\alpha[\gamma]/z] \quad \Gamma \vdash_{\gamma} \Delta \quad \Gamma, z: A \vdash_{\beta'} C}{\Gamma \vdash_{\beta} C} \quad \mathsf{UL} \quad \frac{\Gamma, \Delta \vdash_{\alpha[\beta/x]} A}{\Gamma \vdash_{\beta} \mathsf{U}_{x.\alpha}(\Delta \mid A)} \quad \mathsf{UR}$$

- Multiple possibilities for a mode theory
 - Split monads/comonads into adjunctions, relationship encoded by assembling these adjunctions in various ways, add in equalities for (co)-reflections.
 - 3 categories (Discrete, Smooth, Formal Smooth)
 - At least 9 functors.
 - Treat the monads/comonads *directly* as the adjoints of the theory, add in 2-cells to make them monads/comonads
 - 1 category (Formal Smooth)
 - 4 adjunctions

- Multiple possibilities for a mode theory
 - Split monads/comonads into adjunctions, relationship encoded by assembling these adjunctions in various ways, add in equalities for (co)-reflections.
 - 3 categories (Discrete, Smooth, Formal Smooth)
 - At least 9 functors.
 - Treat the monads/comonads *directly* as the adjoints of the theory, add in 2-cells to make them monads/comonads
 - 1 category (Formal Smooth)
 - 4 adjunctions

0	p
1	$\Re,\Im, J, \flat: p \to p$
	and a product that the above respect
	$\times:(p,p)\to p$ $\top:()\to p$
$\boxed{2}$	$\flat \Rightarrow \Re \Rightarrow 1 \Rightarrow \Im \Rightarrow J$
eq	$m\flat=\flat$
	$m \int = \int$
	$m\Im=m$
	$m\Re = m$

0	p
1	$\Re,\Im, J, \flat: p \to p$
	and a product that the above respect
	$\times:(p,p)\to p$ $\top:()\to p$
$\boxed{2}$	$\flat \Rightarrow \Re \Rightarrow 1 \Rightarrow \Im \Rightarrow J$
eq	$m\flat=\flat$
	$m \int = \int$
	$m\Im=m$
	$m\Re = m$

Every 1 cell generates left and right adjoint (named for left)

0	p
1	$\Re, \Im, \int, \flat : p \to p$
	and a product that the above respect
	$\times : (p,p) \to p \qquad \top : () \to p$
$\boxed{2}$	$\flat \Rightarrow \Re \Rightarrow 1 \Rightarrow \Im \Rightarrow J$
eq	$m\flat = \flat$
	$m \int = \int$
	$m\Im=m$
	$m\Re = m$

Note: product means we function types too

0	p
1	$\Re, \Im, \int, \flat : p \to p$
	and a product that the above respect
	$\times : (p,p) \to p \qquad \top : () \to p$
2	$\flat \Rightarrow \Re \Rightarrow 1 \Rightarrow \Im \Rightarrow J$
eq	$m\flat=\flat$
	$m \int = \int$
	$m\Im=m$
	$m\Re = m$

Note: The "Infinitesimal" modalities don't survive interaction with a cohesive modality because the infinitesimal structure is destroyed

Fibrational Framework

- Gives us meta-theoretic properties: substitution, variables working properly together
- F U, so all of our adjunctions hold
- Manually we have verified that the F,U presentation of middle adjoints are equivalent.

Simple DCTT

- Nice simple type theory, but not much use for Differential Geometry
- Can prove that the modalities have the right relationship and preserve products, but not much else.

Towards Differential Cohesive Homotopy Type Theory

 How to make a dependent modal type theory with differential cohesive \infty-toposes as models?

Comonadic Modalities

 We have a nice description of monadic modalities (see previous talk), but less worked out on the comonadic side.

Who can you depend on?

- Summary:
 - flat can depend on flat (assumptions)
 - & can depend on flat, &
 - Reduction can depend on flat, but not itself.

Differential Cohesive HoTT

- Try adding dependent types to our simple type theory.
- Problems even with just cohesion: ∫ ⊢ ♭ ⊢ ♯
- Monadic assumptions don't work out so nicely.

Real-Differential Cohesion

- In the models, the shape modality is usually a localization, can define them internally and add axioms (Shulman '15)
 - Working on doing the same thing for inf. shape
 - May avoid weird dependency issues by avoiding monadic modes.

Previous work: Shulman '15, "Real Cohesion"

defined

$$\int$$
 $+$ $+$

Works

Needs semantics work

defined 3 - 4

defined

??? defined defined

Conclusion

- Simple Type Theory for full Diff. Cohesion.
- "Abstract" DC-HoTT requires a more sophisticated understanding of modal dependency.
- Extending Shulman's Real-Cohesion may be easier, less general.
- https://github.com/jpaykin/DifferentialCohesiveHoTT
 - Full rules, WIP Agda formalization

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \int A \text{ type}} \ \frac{\Gamma \vdash A \text{ type}}{\Gamma, \Delta \vdash \flat A \text{ type}} \ \frac{\Gamma \vdash A \text{ type}}{\Gamma, \Delta \vdash \flat A \text{ type}}$$

- Can't order the context since dependency structure and natural transformations don't align.
- Shape and flat **both** define the discrete types, but since ∫A can depend on non-discrete types, need to look at transitive dependence

No best choice sometimes

$$\frac{? \vdash t : C}{x : f A, y :_{\flat} B[x] \vdash t^{\int} : \int C}$$

No best choice sometimes

$$x:_1 A \vdash t:C$$

$$x : \int A, y :_{\flat} B[x] \vdash t^{\int} : \int C$$

$$x : \int A, y :_{\flat} B[x] \vdash t : C$$

$$x : \int A, y :_{\flat} B[x] \vdash t^{\int} : \int C$$

Mike's proposal: keep track of *how* types depend on terms

$$\frac{x:A,y:_{\flat}B[x_{\int}]\vdash t:C \qquad \flat \int \sim 1}{x:_{\int}A,y:_{\flat}B[x_{\int}]\vdash t^{\int}:_{\int}C}$$

unclear how to justify in general