Fisica ed ecosistemi: il dilemma del rapporto stabilità-biodiversità

104° Congresso Nazionale della Società Italiana di Fisica - Rende

Leonardo Pacciani 20 settembre 2018

leonardo.pacciani@phd.unipd.it

■ Problemi aperti:

■ Problemi aperti:

■ Criterio di stabilità di May

■ Problemi aperti:

- Criterio di stabilità di May
- Principio di esclusione competitiva

■ Problemi aperti:

- Criterio di stabilità di May
- Principio di esclusione competitiva

■ Modello interessante

 May^1 fu il primo a proporre un modello matematico formale per lo studio degli ecosistemi.

¹Robert May. "Will a Large Complex System be Stable?" In: *Nature* 238 (1972).

May¹ fu il primo a proporre un modello matematico formale per lo studio degli ecosistemi. In generale:

$$\frac{dn_{\sigma}}{dt} = f_{\sigma}(\vec{n}(t)) \qquad \sigma \in \{1, \dots, m\} . \tag{1}$$

¹Robert May. "Will a Large Complex System be Stable?" In: *Nature* 238 (1972).

May¹ fu il primo a proporre un modello matematico formale per lo studio degli ecosistemi. In generale:

$$\frac{dn_{\sigma}}{dt} = f_{\sigma}(\vec{n}(t)) \qquad \sigma \in \{1, \dots, m\} . \tag{1}$$

All'equilibrio:

$$\frac{dn_{\sigma}}{dt}_{|\vec{n}^*} = f_{\sigma}(\vec{n}^*) = 0 \,\forall \sigma \,, \tag{2}$$

$$\vec{n}(t) = \vec{n}^* + \delta \vec{n}(t)$$
 \Rightarrow $\frac{d}{dt} \delta \vec{n}(t) = \mathcal{M} \delta \vec{n}$, (3)

"community matrix"
$$\mathcal{M}_{\sigma\tau} = \frac{\partial f_{\sigma}}{\partial n_{\tau}}_{|\vec{D}^*}. \tag{4}$$

¹Robert May. "Will a Large Complex System be Stable?" In: *Nature* 238 (1972).

May¹ fu il primo a proporre un modello matematico formale per lo studio degli ecosistemi. In generale:

$$\frac{dn_{\sigma}}{dt} = f_{\sigma}(\vec{n}(t)) \qquad \sigma \in \{1, \dots, m\} . \tag{1}$$

All'equilibrio:

$$\frac{dn_{\sigma}}{dt}_{|\vec{n}^*} = f_{\sigma}(\vec{n}^*) = 0 \,\forall \sigma \,, \tag{2}$$

$$\vec{n}(t) = \vec{n}^* + \delta \vec{n}(t)$$
 \Rightarrow $\frac{d}{dt} \delta \vec{n}(t) = \mathcal{M} \delta \vec{n}$, (3)

"community matrix"
$$\mathcal{M}_{\sigma\tau} = \frac{\partial f_{\sigma}}{\partial n_{\tau}}_{|\vec{p}^*}. \tag{4}$$

Stabilità:

$$\det(\mathcal{M} - \lambda \mathbb{I}) = 0 \qquad \Rightarrow \qquad \operatorname{Re} \lambda_{\sigma} < 0 \,\,\forall \sigma \,\,. \tag{5}$$

¹Robert May. "Will a Large Complex System be Stable?" In: *Nature* 238 (1972).

Problema

A seconda della forma delle f_{σ} (cioè a seconda del particolare modello usato) le proprietà di un equilibrio possono cambiare.

Problema

A seconda della forma delle f_{σ} (cioè a seconda del particolare modello usato) le proprietà di un equilibrio possono cambiare.

Soluzione di May

Costruiamo direttamente \mathcal{M} come un'opportuna random matrix (senza passare per le f_{σ}).

⇒ Interazioni fra specie all'equilibrio casuali (random null model)

Come costruiamo \mathcal{M} ?

Come costruiamo \mathcal{M} ?

$$\mathcal{M}_{\sigma\sigma} = -d < 0 \tag{6}$$

Come costruiamo \mathcal{M} ?

$$\mathcal{M}_{\sigma\sigma} = -d < 0 \tag{6}$$

$$\mathcal{M}_{\sigma\tau} = \begin{cases} \text{estratto da } PDF(\mu = 0, \Sigma^2) & \text{con probabilità } C \\ 0 & \text{con probabilità } 1 - C \end{cases}$$
 (7

$$\mathcal{M} = \begin{pmatrix} -d & \mathcal{B}\chi & \cdots & \mathcal{B}\chi \\ \mathcal{B}\chi & -d & \cdots & \mathcal{B}\chi \\ \vdots & \cdots & \ddots & \vdots \\ \mathcal{B}\chi & \cdots & \mathcal{B}\chi & -d \end{pmatrix} \qquad \mathcal{B} \sim \text{Ber}(C) \qquad \chi \sim PDF(\mu = 0, \Sigma^2)$$

(8)

Come costruiamo \mathcal{M} ?

$$\mathcal{M}_{\sigma\sigma} = -d < 0 \tag{6}$$

$$\mathcal{M}_{\sigma au} = egin{cases} ext{estratto da } PDF(\mu = 0, \Sigma^2) & ext{con probabilità } C \ 0 & ext{con probabilità } 1 - C \end{cases}$$
 (7)

$$\mathcal{M} = \begin{pmatrix} -d & \mathcal{B}\chi & \cdots & \mathcal{B}\chi \\ \mathcal{B}\chi & -d & \cdots & \mathcal{B}\chi \\ \vdots & \cdots & \ddots & \vdots \\ \mathcal{B}\chi & \cdots & \mathcal{B}\chi & -d \end{pmatrix} \qquad \mathcal{B} \sim \text{Ber}(C) \qquad \chi \sim PDF(\mu = 0, \Sigma^{2})$$

Problema

Qual è la distribuzione spettrale di una matrice costruita in questo modo? Quand'è che i suoi autovalori hanno tutti parte reale negativa?

(8)

Usando la *random matrix theory* si può mostrare che, nel limite $m \to \infty$:

Usando la *random matrix theory* si può mostrare che, nel limite $m \to \infty$:

Usando la *random matrix theory* si può mostrare che, nel limite $m \to \infty$:

Usando la *random matrix theory* si può mostrare che, nel limite $m \to \infty$:

$$\operatorname{Re} \lambda_{\sigma} < 0 \ \forall \sigma \qquad \Longleftrightarrow \qquad \Sigma \sqrt{mC} < d \ . \tag{9}$$

Pertanto, fissate d, Σ e C (le proprietà dell'ecosistema), il sistema diventa instabile quando $m>\overline{m}=d^2/C\Sigma^2!$

■ Il criterio può essere generalizzato² per essere reso più realistico

²Stefano Allesina and Si Tang. "The stability–complexity relationship at age 40: a random matrix perspective". In: *Population Ecology* 57.1 (2015).

- Il criterio può essere generalizzato² per essere reso più realistico
- La sostanza non cambia: più specie ci sono, più il sistema è instabile

 $^{^2} Stefano$ Allesina and Si Tang. "The stability–complexity relationship at age 40: a random matrix perspective". In: *Population Ecology* 57.1 (2015).

- Il criterio può essere generalizzato² per essere reso più realistico
- La sostanza non cambia: più specie ci sono, più il sistema è instabile

Problema

Osservazioni sul campo portano a concludere l'esatto contrario: più un ecosistema è biodiverso più è stabile.

²Stefano Allesina and Si Tang. "The stability–complexity relationship at age 40: a random matrix perspective". In: *Population Ecology* 57.1 (2015).

- Il criterio può essere generalizzato² per essere reso più realistico
- La sostanza non cambia: più specie ci sono, più il sistema è instabile

Problema

Osservazioni sul campo portano a concludere l'esatto contrario: più un ecosistema è biodiverso più è stabile.

Osservazione

C'è qualcosa che manca: la biodiversità da sola non determina la stabilità di un ecosistema.

²Stefano Allesina and Si Tang. "The stability–complexity relationship at age 40: a random matrix perspective". In: *Population Ecology* 57.1 (2015).

³G. Hardin. "The Competitive Exclusion Principle". In: *Science* 131.November (1959), pp. 1292–1297.

³G. Hardin. "The Competitive Exclusion Principle". In: *Science* 131.November (1959), pp. 1292–1297.

³G. Hardin. "The Competitive Exclusion Principle". In: *Science* 131.November (1959), pp. 1292–1297.

Problema: ci sono molti casi noti in natura dove questo principio è palesemente violato (paradosso del plancton)!

³G. Hardin. "The Competitive Exclusion Principle". In: *Science* 131.November (1959), pp. 1292–1297.

Recentemente è stato proposto un modello⁴, ispirato al paradosso del plancton, che presenta proprietà interessanti.

⁴Anna Posfai, Thibaud Taillefumier, and Ned S. Wingreen. "Metabolic Trade-Offs Promote Diversity in a Model Ecosystem". In: *Physical Review Letters* 118.2 (2017).

Recentemente è stato proposto un modello⁴, ispirato al paradosso del plancton, che presenta proprietà interessanti.

$$\dot{n}_{\sigma} = n_{\sigma} \left(\sum_{i=1}^{p} \alpha_{\sigma i} r_{i}(c_{i}) - \delta \right) \tag{10a}$$

$$\dot{c}_i = s_i - \left(\sum_{\sigma=1}^m n_\sigma \alpha_{\sigma i}\right) r_i(c_i) - \mu_i c_i \tag{10b}$$

⁴Anna Posfai, Thibaud Taillefumier, and Ned S. Wingreen. "Metabolic Trade-Offs Promote Diversity in a Model Ecosystem". In: *Physical Review Letters* 118.2 (2017).

Recentemente è stato proposto un modello⁴, ispirato al paradosso del plancton, che presenta proprietà interessanti.

rate di assorbimento della risorsa
$$i$$
 come funzione della sua densità, e.g. $r_i(c_i) = \frac{c_i}{1+c_i}$ $\dot{c}_i = \frac{c_i}{1+c_i}$ $\dot{c}_i = \frac{c_i}{1+c_i}$ $\dot{c}_i = \frac{c_i}{1+c_i}$ $\dot{c}_i = \frac{c_i}{1+c_i}$ (10a)

⁴Anna Posfai, Thibaud Taillefumier, and Ned S. Wingreen. "Metabolic Trade-Offs Promote Diversity in a Model Ecosystem". In: *Physical Review Letters* 118.2 (2017).

Recentemente è stato proposto un modello⁴, ispirato al paradosso del plancton, che presenta proprietà interessanti.

rate di assorbimento della risorsa
$$i$$
 come funzione della sua densità, e.g. $r_i(c_i) = \frac{c_i}{1+c_i}$ $\dot{c}_i = \frac{c_i}{1+c_i}$ $\dot{c}_i = \frac{c_i}{1+c_i}$ $\dot{c}_i = \frac{c_i}{1+c_i}$ $\dot{c}_i = \frac{c_i}{1+c_i}$ (10a)

Assumiamo poi che:

⁴Anna Posfai, Thibaud Taillefumier, and Ned S. Wingreen. "Metabolic Trade-Offs Promote Diversity in a Model Ecosystem". In: *Physical Review Letters* 118.2 (2017).

Recentemente è stato proposto un modello⁴, ispirato al paradosso del plancton, che presenta proprietà interessanti.

rate di assorbimento
$$\dot{n}_{\sigma} = n_{\sigma} \left(\sum_{i=1}^{p} \alpha_{\sigma i} r_{i}(c_{i}) - \delta \right)$$
(10a)
$$\dot{c}_{i} = \sum_{i=1}^{q} \left(\sum_{j=1}^{p} \alpha_{\sigma i} r_{j}(c_{i}) - \delta \right)$$
(10b)
$$\dot{c}_{i} = \sum_{j=1}^{q} \left(\sum_{j=1}^{m} n_{\sigma} \alpha_{\sigma i} \right) r_{i}(c_{i}) - \mu_{i} c_{i}$$
(10b)

input di risorse

Assumiamo poi che:

1
$$\mu_i = 0$$

⁴Anna Posfai, Thibaud Taillefumier, and Ned S. Wingreen. "Metabolic Trade-Offs Promote Diversity in a Model Ecosystem". In: *Physical Review Letters* 118.2 (2017).

Recentemente è stato proposto un modello⁴, ispirato al paradosso del plancton, che presenta proprietà interessanti.

rate di assorbimento
$$\dot{n}_{\sigma} = n_{\sigma} \left(\sum_{i=1}^{p} \alpha_{\sigma i} | r_{i}(c_{i}) - \delta \right)$$
(10a) della risorsa i come funzione della sua densità, e.g. $r_{i}(c_{i}) = \frac{c_{i}}{1+c_{i}}$
$$\dot{c}_{i} = \boxed{S_{i}} - \left(\sum_{\sigma=1}^{m} n_{\sigma} \alpha_{\sigma i} \right) \boxed{r_{i}(c_{i})} - \mu_{i}c_{i}$$
(10b)

Assumiamo poi che:

- 1 $\mu_i = 0$
- $\dot{c}_i = 0$, quindi $r_i(c_i) \rightarrow r_i(\vec{n})$

input di risorse

⁴Anna Posfai, Thibaud Taillefumier, and Ned S. Wingreen. "Metabolic Trade-Offs Promote Diversity in a Model Ecosystem". In: *Physical Review Letters* 118.2 (2017).

Recentemente è stato proposto un modello⁴, ispirato al paradosso del plancton, che presenta proprietà interessanti.

rate di assorbimento della risorsa
$$i$$
 come funzione della sua densità, e.g. $r_i(c_i) = \frac{c_i}{1+c_i}$ $\dot{c}_i = \frac{c_i}{1+c_i}$ $\dot{c}_i = \frac{c_i}{1+c_i}$ $\dot{c}_i = \frac{c_i}{1+c_i}$ $\dot{c}_i = \frac{c_i}{1+c_i}$ (10b)

Assumiamo poi che:

- 1 $\mu_i = 0$
- $\dot{c}_i = 0$, quindi $r_i(c_i) \rightarrow r_i(\vec{n})$
- $\sum_{i=1}^{p} \alpha_{\sigma i} = \mathbf{E} \ \forall \sigma$

⁴Anna Posfai, Thibaud Taillefumier, and Ned S. Wingreen. "Metabolic Trade-Offs Promote Diversity in a Model Ecosystem". In: *Physical Review Letters* 118.2 (2017).

Recentemente è stato proposto un modello⁴, ispirato al paradosso del plancton, che presenta proprietà interessanti.

"strategie metaboliche"

rate di assorbimento della risorsa
$$i$$
 come funzione della sua densità, e.g. $r_i(c_i) = \frac{c_i}{1+c_i}$ $\dot{c}_i = \frac{c_i}{1+c_i}$ (10b)

Assumiamo poi che:

1
$$\mu_i = 0$$

$$\dot{c}_i = 0$$
, quindi $r_i(c_i) \rightarrow r_i(\vec{n})$

$$\sum_{i=1}^{p} \alpha_{\sigma i} = \mathbf{E} \ \forall \sigma$$

⁴Anna Posfai, Thibaud Taillefumier, and Ned S. Wingreen. "Metabolic Trade-Offs Promote Diversity in a Model Ecosystem". In: *Physical Review Letters* 118.2 (2017).

Risultato principale

Il sistema raggiungerà uno stato stazionario dove un numero *arbitrario* di specie può coesistere se

$$\frac{E}{S}\vec{s} = \sum_{\sigma=1}^{m} n_{\sigma}^* \vec{\alpha}_{\sigma}$$
 con $\sum_{\sigma=1}^{m} n_{\sigma}^* = 1$, $S = \sum_{i=1}^{p} s_i$, (11)

ha una solutione positiva $n_{\sigma}^*>0$. Questo significa che la coesistenza è possibile se $\vec{s}E/S$ appartiene all'*inviluppo convesso* delle strategie metaboliche.

Risultato principale

Il sistema raggiungerà uno stato stazionario dove un numero *arbitrario* di specie può coesistere se

$$\frac{E}{S}\vec{s} = \sum_{\sigma=1}^{m} n_{\sigma}^* \vec{\alpha}_{\sigma} \qquad \text{con} \qquad \sum_{\sigma=1}^{m} n_{\sigma}^* = 1, \quad S = \sum_{i=1}^{p} s_i , \qquad (11)$$

ha una solutione positiva $n_{\sigma}^*>0$. Questo significa che la coesistenza è possibile se $\vec{s}E/S$ appartiene all'*inviluppo convesso* delle strategie metaboliche.

Nota

Il numero di specie che riescono a coesistere è *arbitrario*, quindi possiamo anche avere $m\gg p$ specie: il principio di esclusione competitiva può essere violato.

$$m = 15, p = 3, n_{\sigma}(0) = 1/m \ \forall \sigma$$

$$m = 15, p = 3, n_{\sigma}(0) = 1/m \ \forall \sigma$$

$$m = 15, p = 3, n_{\sigma}(0) = 1/m \ \forall \sigma$$

Il criterio di stabilità di May è rispettato quando le specie coesistono?

Il criterio di stabilità di May è rispettato quando le specie coesistono?

$$\frac{1}{d}\max\left\{\sqrt{m\mathcal{V}}(1+\rho)-\mathcal{E},(m-1)\mathcal{E}\right\}<1\tag{12}$$

Il criterio di stabilità di May è rispettato quando le specie coesistono?

$$\frac{1}{d}\max\left\{\sqrt{m\mathcal{V}}(1+\rho)-\mathcal{E},(m-1)\mathcal{E}\right\}<1\tag{12}$$

Lasciamo evolvere il sistema nelle condizioni di coesistenza fino al raggiungimento della stazionarietà

Il criterio di stabilità di May è rispettato quando le specie coesistono?

$$\frac{1}{d}\max\left\{\sqrt{m\mathcal{V}}(1+\rho)-\mathcal{E},(m-1)\mathcal{E}\right\}<1\tag{12}$$

- Lasciamo evolvere il sistema nelle condizioni di coesistenza fino al raggiungimento della stazionarietà
- Calcoliamo la community matrix:

$$\mathcal{M} = -DASA^{T} \tag{13}$$

with

$$D = \operatorname{diag}(n_1^*, \dots, n_m^*) \qquad A = (\alpha_{\sigma i})_{\substack{\sigma \in \{1, \dots, m\} \\ i \in \{1, \dots, p\}}} \qquad S = \operatorname{diag}(1/s_1, \dots, 1/s_p)$$
(14)

Il criterio di stabilità di May è rispettato quando le specie coesistono?

$$\frac{1}{d}\max\left\{\sqrt{m\mathcal{V}}(1+\rho)-\mathcal{E},(m-1)\mathcal{E}\right\}<1\tag{12}$$

- Lasciamo evolvere il sistema nelle condizioni di coesistenza fino al raggiungimento della stazionarietà
- Calcoliamo la community matrix:

$$\mathcal{M} = -DASA^{T} \tag{13}$$

with

$$D = diag(n_1^*, ..., n_m^*) \qquad A = (\alpha_{\sigma i})_{\substack{\sigma \in \{1, ..., m\} \\ i \in \{1, ..., p\}}} \qquad S = diag(1/s_1, ..., 1/s_p)$$
(14)

3 Calcoliamo max $\{\sqrt{mV}(1+\rho)-\mathcal{E},(m-1)\mathcal{E}\}/d$ per valutare (12)

Stabilità dello stato stazionario

Ipotesi

Lo stato stazionario è marginalmente stabile?

Stabilità dello stato stazionario

Ipotesi

Lo stato stazionario è marginalmente stabile?

Risultato

- M è semidefinita negativa
- lacktriangledown rk $\mathcal{M} = \min\{m,p\} \ \Rightarrow$ quando m>p ci sono m-p autovalori nulli

Conclusioni:

Conclusioni:

■ Criterio di stabilità di May e principio di esclusione competitiva restano problemi aperti

Conclusioni:

- Criterio di stabilità di May e principio di esclusione competitiva restano problemi aperti
- Il modello mostrato pone nuova luce su questi problemi, e illustra l'importanza dei trade-off metabolici

Conclusioni:

- Criterio di stabilità di May e principio di esclusione competitiva restano problemi aperti
- Il modello mostrato pone nuova luce su questi problemi, e illustra l'importanza dei trade-off metabolici

Conclusioni:

- Criterio di stabilità di May e principio di esclusione competitiva restano problemi aperti
- Il modello mostrato pone nuova luce su questi problemi, e illustra l'importanza dei trade-off metabolici

Prospettive (non tanto) future:

■ Death rate δ_{σ} ed energy budget E_{σ} per ogni specie

Conclusioni:

- Criterio di stabilità di May e principio di esclusione competitiva restano problemi aperti
- Il modello mostrato pone nuova luce su questi problemi, e illustra l'importanza dei trade-off metabolici

- lacksquare Death rate δ_σ ed energy budget E_σ per ogni specie
- lacksquare Utilizzo di trade-off più generali, come $\sum_{i=1}^p lpha_{\sigma i} \leq E_\sigma$

Conclusioni:

- Criterio di stabilità di May e principio di esclusione competitiva restano problemi aperti
- Il modello mostrato pone nuova luce su questi problemi, e illustra l'importanza dei trade-off metabolici

- Death rate δ_{σ} ed energy budget E_{σ} per ogni specie
- Utilizzo di trade-off più generali, come $\sum_{i=1}^{p} \alpha_{\sigma i} \leq E_{\sigma}$
- Strategie metaboliche *dinamiche*

Conclusioni:

- Criterio di stabilità di May e principio di esclusione competitiva restano problemi aperti
- Il modello mostrato pone nuova luce su questi problemi, e illustra l'importanza dei trade-off metabolici

- Death rate δ_{σ} ed energy budget E_{σ} per ogni specie
- Utilizzo di trade-off più generali, come $\sum_{i=1}^{p} \alpha_{\sigma i} \leq E_{\sigma}$
- Strategie metaboliche *dinamiche*
- L. Pacciani, S. Suweis, and A. Maritan. "Adaptive metabolic strategies explain diauxic shifts and promote species coexistence". In: *bioRxiv* (2018). DOI: 10.1101/385724

Bibliography

- Stefano Allesina and Si Tang. "The stability–complexity relationship at age 40: a random matrix perspective". In: *Population Ecology* 57.1 (2015).
- G. Hardin. "The Competitive Exclusion Principle". In: *Science* 131.November (1959), pp. 1292–1297.
- Robert May. "Will a Large Complex System be Stable?" In: *Nature* 238 (1972).
- L. Pacciani, S. Suweis, and A. Maritan. "Adaptive metabolic strategies explain diauxic shifts and promote species coexistence". In: bioRxiv (2018). DOI: 10.1101/385724.
- Anna Posfai, Thibaud Taillefumier, and Ned S. Wingreen. "Metabolic Trade-Offs Promote Diversity in a Model Ecosystem". In: *Physical Review Letters* 118.2 (2017).

Backup slides

Per *m* finito la "transizione" non è "improvvisa":

 $C=0.5,\ d=10,\ PDF=\mathcal{N}(0,0.5).$ Le probabilità sono calcolate come frequenze relative mediate su 100 iterazioni.

Per *m* finito la "transizione" non è "improvvisa":

 $C=0.3,~d=\sqrt{mC},~PDF=\mathcal{U}[-\Sigma\sqrt{3},\Sigma\sqrt{3}].$ Le probabilità sono calcolate come frequenze relative mediate su 100

Come costruiamo \mathcal{M} ?

$$\mathcal{M}_{\sigma\sigma} = -d < 0 \tag{1}$$

$$\mathcal{M}_{\sigma\tau} = \begin{cases} \text{estratto da } PDF(\mu = 0, \Sigma^2) & \text{con probabilità } C \\ 0 & \text{con probabilità } 1 - C \end{cases} \tag{2}$$

$$\mathcal{M} = \begin{pmatrix} -d & \mathcal{B}\chi & \cdots & \mathcal{B}\chi \\ \mathcal{B}\chi & -d & \cdots & \mathcal{B}\chi \\ \vdots & \cdots & \ddots & \vdots \\ \mathcal{B}\chi & \cdots & \mathcal{B}\chi & -d \end{pmatrix} \qquad \mathcal{B} \sim \text{Ber}(C) \qquad \chi \sim PDF(\mu = 0, \Sigma^{2})$$
(3)

Problema

Qual è la distribuzione spettrale di una matrice costruita in questo modo? Quand'è che i suoi autovalori hanno tutti parte reale negativa?

Dobbiamo usare una versione leggermente modificata della

Circular law

Sia \mathcal{M} una matrice $m \times m$ le cui entrate (tutte, diagonale compresa) siano variabili aleatorie indipendenti e identicamente distribuite secondo una distribuzione con media nulla e varianza unitaria. Allora la distribuzione spettrale empirica

$$\mu_m(x,y) = \# \{ \sigma \le m : \operatorname{Re}(\lambda_\sigma) \le x, \operatorname{Im}(\lambda_\sigma) \le y \}$$
 (4)

della matrice \mathcal{M}/\sqrt{m} converge nel limite $m \to \infty$ a una distribuzione uniforme sul disco unitario centrato nell'origine del piano complesso.

Distribuzione normale $\mathcal{N}(0,1)$.

Distribuzione uniforme $\mathcal{U}[-\sqrt{3},\sqrt{3}].$

Cosa succede introducendo Σ^2 , C e d?

- **1** Il raggio spettrale $ho(\mathcal{M}) \sim \sqrt{m}$ per $m \to \infty$
- 2 Una matrice con $\Sigma^2 \neq 1$ si può ottenere da una con $\Sigma = 1$ moltiplicando le entrate per Σ : $\rho(\mathcal{M}) \stackrel{m \to \infty}{\sim} \Sigma \sqrt{m}$
- Includendo C la varianza si riduce a $C\Sigma^2$: $\rho(\mathcal{M}) \stackrel{m \to \infty}{\sim} \Sigma \sqrt{mC}$
- 4 Porre -d nella diagonale trasla tutto il disco a sinistra di d:

$$\begin{split} \mathcal{A} \in \mathbb{M}_n, \ \mathcal{B} = \mathcal{A} - d\mathbb{I} \quad \Rightarrow \quad & \begin{cases} \det(\lambda^{\mathcal{A}} \mathbb{I} - \mathcal{A}) = 0 & \lambda_i^{\mathcal{A}} \\ \det(\lambda^{\mathcal{B}} \mathbb{I} - \mathcal{B}) = 0 & \lambda_i^{\mathcal{B}} \end{cases} \Rightarrow \\ \Rightarrow \quad & \det[(\lambda^{\mathcal{B}} + d)\mathbb{I} - \mathcal{A}] = 0 \quad \Rightarrow \quad \lambda_i^{\mathcal{B}} = \lambda_i^{\mathcal{A}} - d \ . \end{split}$$

Osservazione

In figura: m=1000,~C=1,~d=0. Gli elementi fuori dalla diagonale sono estratti da $\mathcal{U}[-\sqrt{3},\sqrt{3}]$, mentre quelli della diagonale dale distribuzione scritte nelle didascalie.

Pertanto se estraiamo gli elementi della diagonale da una distribuzione di media nulla e varianza $\Sigma_d^2 \neq \Sigma^2$, la circular law continua a valere fintanto che $\Sigma_d \lesssim \Sigma$ (nel nostro caso $\Sigma_d = 0$).

Generalizzazione

Generalizzazione

Problema

Cosa accade se estraiamo gli elementi fuori dalla diagonale (con probabilità C) da una distribuzione con media μ e varianza Σ^2 ?

- **1** La media degli elementi fuori dalla diagonale non è più nulla, ma uguale a $\mathcal{E} = \mathcal{C}\mu$.
- Le somme degli elementi sulle stesse righe hanno la stessa media:

$$egin{aligned} \mathbb{E}\left[\sum_{ au=1}^{m}\mathcal{M}_{\sigma au}
ight] &= \mathbb{E}\left[\mathcal{M}_{\sigma\sigma} + \sum_{ au
eq\sigma}\mathcal{M}_{\sigma au}
ight] &= \\ &= -d + \sum_{ au
eq\sigma}\mathbb{E}[\mathcal{M}_{\sigma au}] = -d + (m-1)_{\mathcal{E}} \; . \end{aligned}$$

Per $m \to \infty$ è probabile che un autovalore abbia valore simile, e a seconda di quanto grande sia μ può cadere molto lontano dal disco (che invece continua a comportarsi "normalmente").

Generalizzazione

Il centro del disco trasla ulteriormente di $\mathcal E$ a sinistra. Detta infatti $\mathfrak D$ il nuovo centro del disco sull'asse reale, richiedendo che la media di tutti gli autovalori sia ancora -d si ha

$$\frac{(m-1)\mathfrak{D}-d+(m-1)\mathfrak{E}}{m}=-d \qquad \Rightarrow \qquad \mathfrak{D}=-d-\mathfrak{E} \ . \tag{5}$$

4 La varianza degli elementi fuori dalla diagonale è ora

$$\mathcal{V} = \mathsf{Var}[\mathcal{M}_{\sigma\tau}] = C(\Sigma^2 + (1 - C)\mu) \ . \tag{6}$$

Se μ è sufficientemente grande, l'autovalore $-d+(m-1)\mathcal{E}$ può giacere fuori dal disco quindi in questo caso la più grande parte reale possibile per un autovalore è $-d+(m-1)\mathcal{E}$; se μ è sufficientemente piccolo invece è $-(d+\mathcal{E})+\sqrt{m\mathcal{V}}$. Il criterio di stabilità si può quindi scrivere come

$$\max \left\{ \sqrt{m \mathcal{V}} - \mathcal{E}, (m-1)\mathcal{E} \right\} < d. \tag{7}$$

Generalizzazione

Altro problema

In generale *non* è vero che $\mathcal{M}_{\sigma\tau}$ e $\mathcal{M}_{\tau\sigma}$ sono scorrelati: se σ è una preda e τ un predatore, $\mathcal{M}_{\sigma\tau} < 0$ e $\mathcal{M}_{\tau\sigma} > 0$.

Cosa accade quindi se gli elementi fuori dalla diagonale hanno una correlazione $\rho \neq 0$?

Dobbiamo usare una versione generalizzata della

Elliptic law

Sia $\mathcal M$ una matrice $m \times m$ le cui entrate fuori dalla diagonale sono estratte in coppie indipendenti ed indenticamente distribuite secondo una distribuzione bivariata con media marginale nulla, varianza marginale unitaria e correlazione ρ . Allora nel limite $m \to \infty$ la distribuzione spettrale di $\mathcal M/\sqrt{m}$ tende ad una distribuzione uniforme su un ellisse centrato nell'origine del piano complesso, di semiasse reale $1+\rho$ e semiasse immaginario $1-\rho$.

Nel nostro caso, costruendo ${\mathcal M}$ ponendo:

- **g** gli elementi diagonali pari a -d con d > 0,
- le coppie $(\mathcal{M}_{\sigma\tau}, \mathcal{M}_{\tau\sigma})$ con $\sigma \neq \tau$ uguali a (0,0) con probabilità 1 C ed estraendole con probabilità C da una distribuzione bivariata di media e matrice di covarianza

$$\vec{\mu} = \begin{pmatrix} \mu \\ \mu \end{pmatrix} \qquad \hat{\Sigma}^2 = \begin{pmatrix} \Sigma^2 & \rho \Sigma^2 \\ \rho \Sigma^2 & \Sigma^2 \end{pmatrix} , \tag{8}$$

si ritrovano gli stessi risultati di prima, con la differenza che stavolta la più grande parte reale dell'ellisse è $\approx -(d+\mathcal{E}) + \sqrt{m\mathcal{V}}(1+\rho)$. Pertanto il criterio di stabilità di May può essere riscritto come:

$$\max \left\{ \sqrt{m\mathcal{V}}(1+\rho) - \mathcal{E}, (m-1)\mathcal{E} \right\} < d. \tag{9}$$

Riscalamento delle equazioni

Le equazioni dalle quali partiamo sono:

$$\sum_{i=1}^{p} w_i \alpha_{\sigma i} = E \tag{10}$$

$$\dot{c}_i = s_i - \left(\sum_{\sigma=1}^m n_\sigma(t)\alpha_{\sigma i}\right)r_i(c_i) - \mu_i c_i(t)$$
(11)

$$\frac{dn_{\sigma}}{dt} = [g_{\sigma}(c_1, \ldots, c_p) - \delta] n_{\sigma} \qquad g_{\sigma}(c_1, \ldots, c_p) = \sum_{i=1}^{p} v_i \alpha_{\sigma i} r_i(c_i) \quad (12)$$

$$r_i(c_i) = \frac{c_i}{K_i + c_i} \tag{13}$$

Riscalamento delle equazioni

Supponendo $\mu_i = 0$, da $\dot{c}_i = 0$ si ha

$$r_i = \frac{s_i}{\sum_{\sigma} n_{\sigma} \alpha_{\sigma i}} \ . \tag{14}$$

Introducendo le strategie e il vettore riscalati

$$\tilde{\alpha}_{\sigma i} := \alpha_{\sigma i} \frac{w_i}{E} \qquad \qquad \tilde{s}_i := v_i s_i \tag{15}$$

(di modo che $\sum_i \tilde{\alpha}_{\sigma i} = 1$) si ha:

$$g_{\sigma}(n_{1},...,n_{m}) = \sum_{i=1}^{p} v_{i}\alpha_{\sigma i} \frac{s_{i}}{\sum_{\tau=1}^{m} n_{\tau}\alpha_{\tau i}} =$$

$$= \sum_{i=1}^{p} \tilde{\alpha}_{\sigma i} \frac{\tilde{s}_{i}}{\sum_{\tau=1}^{m} n_{\tau}\tilde{\alpha}_{\tau i}} = \tilde{g}_{\sigma}(n_{1},...,n_{m}).$$

Riscalamento delle equazioni

Usando \tilde{g}_{σ} e riscalando

$$\tilde{n}_{\sigma} := n_{\sigma} \frac{\delta}{\sum_{i} \tilde{s}_{i}} \qquad \qquad \tilde{t} := t\delta$$
 (16)

l'equazione per le popolazioni si può riscrivere come:

$$\frac{d\tilde{n}_{\sigma}}{d\tilde{t}} = \left(\sum_{i=1}^{p} \tilde{\alpha}_{\sigma i} \frac{\tilde{s}_{i}}{\sum_{\tau=1}^{m} \tilde{n}_{\tau} \alpha_{\tilde{\tau} i}} \cdot \frac{1}{\sum_{j=1}^{p} \tilde{s}_{j}} - 1\right) \tilde{n}_{\sigma} . \tag{17}$$

Ridefinendo ora \tilde{s}_i come $\tilde{s}_i^{\text{new}} = \tilde{s}_i / \sum_j \tilde{s}_j$, e rinominando \tilde{s}_i^{new} con \tilde{s}_i (di modo che $\sum_i \tilde{s}_i = 1$) e togliendo le tilde, possiamo riscrivere l'equazione per le popolazioni come:

È equivalente a porre
$$E = S = \delta =$$
 $\dot{n}_{\sigma} = \left(\sum_{i=1}^{p} \alpha_{\sigma i} \frac{s_{i}}{\sum_{\tau=1}^{m} n_{\tau} \alpha_{\tau i}} - 1\right) n_{\sigma}$ (18)

Coesistenza fra specie

Coesistenza fra specie

L'equazione per le popolazioni è

$$\frac{dn_{\sigma}}{dt} = [g_{\sigma}(c_1, \ldots, c_p) - \delta] n_{\sigma} \qquad g_{\sigma}(c_1, \ldots, c_p) = \sum_{i=1}^{p} \alpha_{\sigma i} r_i(c_i) , \quad (19)$$

ove scegliamo $v_i=w_i=1 \ \forall i$ (nota: sommando su σ ambo i membri dell'equazione per n_σ , alla stazionarietà si ha $n_{\rm tot}^*=S/\delta$). Ponendo $\dot{n}_\sigma=0$ si ha

$$g_{\sigma}(c_1,\ldots,c_p)=0 \ \forall \sigma \qquad \Rightarrow \qquad \sum_{i=1}^p \alpha_{\sigma i} r_i = \delta \ \forall \sigma \ .$$
 (20)

Coesistenza fra specie

Introducendo

$$A = \begin{pmatrix} \alpha_{11} & \cdots & \alpha_{1p} \\ \vdots & \ddots & \vdots \\ \alpha_{m1} & \cdots & \alpha_{mp} \end{pmatrix} \qquad \vec{r} = \begin{pmatrix} r_1 \\ \vdots \\ r_p \end{pmatrix} \qquad \vec{\delta} = \begin{pmatrix} \delta \\ \vdots \\ \delta \end{pmatrix}$$
(21)

il precedente sistema di equazioni si può scrivere come

$$A\vec{r} = \vec{\delta} \qquad \Rightarrow \qquad \begin{cases} \alpha_{11}r_1 + \dots + \alpha_{1p}r_p = \delta \\ \vdots \\ \alpha_{m1}r_1 + \dots + \alpha_{mp}r_p = \delta \end{cases}$$
 (22)

Nota

Senza nessun'altra ipotesi, questo sistema di equazioni si può risolvere solo se $m \le p$ e quindi vale il principio di esclusione competitiva!

Coesistenza fra specie

Se introduciamo l'ipotesi di trade-off metabolico $\sum_i \alpha_{\sigma i} = E$ il sistema ammette **sempre** (anche per m > p!) la soluzione non banale $\vec{r_i}^* = \delta/E \ \forall i$. Da $r_i = s_i/\sum_{\tau} n_{\tau} \alpha_{\tau i}$ si ha che questo è possibile se il sistema

$$A^{T}\vec{n} = \frac{E}{\delta}\vec{s} \qquad \Rightarrow \qquad \begin{cases} n_{1}\alpha_{11} + \dots + n_{m}\alpha_{m1} = Es_{1}/\delta \\ \vdots \\ n_{1}\alpha_{1p} + \dots + n_{m}\alpha_{mp} = Es_{p}/\delta \end{cases}$$
(23)

ammette soluzione (positiva).

Coesistenza fra specie

Riscalando le n_{σ} con $n_{\mathrm{tot}}^* = S/\delta$, si ha quindi che la coesistenza fra m>p specie è permessa se

$$\left\{ n_1^* > 0, \dots, n_m^* > 0, \quad \sum_{\sigma=1}^m n_\sigma^* = 1: \quad n_1^* \vec{\alpha}_1 + \dots + n_m^* \vec{\alpha}_m = \frac{E}{S} \vec{s} \right\} \neq \emptyset.$$
(24)

Geometricamente questo significa che $\vec{s}_{\alpha}:=(E/S)\vec{s}$ deve giacere all'interno dell'inviluppo convesso delle strategie metaboliche.

È prevista l'esistenza delle "keystone species" (confermata sperimentalmente).

È prevista l'esistenza delle "keystone species" (confermata sperimentalmente).

$$m = 20, p = 3, n_{\sigma}(0) = 1/m \ \forall \sigma$$

È prevista l'esistenza delle "keystone species" (confermata sperimentalmente).

$$m = 19, p = 3, n_{\sigma}(0) = 1/m \ \forall \sigma$$

Proprietà dello stato stazionario

Proprietà dello stato stazionario

Partiamo dalle equazioni riscalate:

$$\frac{dn_{\sigma}}{dt} = (g_{\sigma}(\vec{n}) - 1)n_{\sigma} , \qquad g_{\sigma}(\vec{n}) = \sum_{i=1}^{p} \alpha_{\sigma i} r_{i} . \qquad (25)$$

Scrivendo $\vec{n} = \vec{n}^* + \Delta \vec{n}$ con \vec{n}^* equilibrio, ed espandendo in serie di Taylor attorno a \vec{n}^* fino al primo ordine si ottiene:

$$\frac{d}{dt}\Delta n_{\sigma} = \left(\sum_{\tau=1}^{m} \frac{\partial g_{\sigma}}{\partial n_{\tau}}(t)\Delta n_{\tau}\right) n_{\sigma}^{*} . \tag{26}$$

Proprietà dello stato stazionario

La derivata di g_{σ} è:

$$\frac{\partial g_{\sigma}}{\partial n_{\tau}}(\vec{n}^*) = -\sum_{i=1}^{p} \alpha_{\sigma i} \alpha_{\tau i} \frac{s_i}{\left(\sum_{\rho=1}^{m} n_{\rho}^* \alpha_{\rho i}\right)^2} = -\sum_{i=1}^{p} \alpha_{\sigma i} \alpha_{\tau i} \frac{r_i^{*2}}{s_i} , \quad (27)$$

e dato che nella notazione che stiamo usando $r_i^* = 1$ allora

$$\frac{\partial g_{\sigma}}{\partial n_{\tau}}(\vec{n}^*) = -\sum_{i=1}^{p} \frac{\alpha_{\sigma i} \alpha_{\tau i}}{s_i} . \tag{28}$$

Proprietà dello stato stazionario

Possiamo quindi scrivere

$$\frac{d}{dt}\Delta\vec{n} = \mathcal{M}\Delta\vec{n} , \qquad (29)$$

ove:

$$\mathcal{M} = -DM \qquad D = \begin{pmatrix} n_1^* & 0 & \cdots & 0 \\ 0 & n_2^* & \cdots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ 0 & \cdots & 0 & n_m^* \end{pmatrix} , \qquad M_{\sigma\tau} = -\sum_{i=1}^p \frac{\alpha_{\sigma i} \alpha_{\tau i}}{s_i} .$$
(30)

Proprietà dello stato stazionario

Per mostrare che \vec{n}^* è un equilibrio dobbiamo mostrare che \mathcal{M} è (almeno) definita (semi)negativa, ossia DM è definita (semi)positiva. Per farlo notiamo che essendo sia D che M invertibili possiamo effettuare la trasformazione di similitudine

$$DM \longmapsto D^{-1/2}(DM)D^{1/2} = D^{1/2}MD^{1/2}$$
, (31)

che ovviamente lascia inalterati gli autovalori di \mathcal{M} . A questo punto dato un qualsiasi vettore \vec{v} si ha:

$$\begin{split} & \vec{v} \cdot D^{1/2} M D^{1/2} \vec{v} = \sum_{j,k=1}^{p} \sum_{\sigma,\tau=1}^{m} v_{j} D_{j\sigma}^{1/2} M_{\sigma\tau} D_{\tau k}^{1/2} v_{k} = \sum_{i=1}^{p} \sum_{\sigma,\tau=1}^{m} v_{\sigma} \sqrt{n_{\sigma}^{*}} \frac{\alpha_{\sigma i} \alpha_{\tau i}}{s_{i}} v_{\tau} \sqrt{n_{\tau}^{*}} = \\ & = \sum_{i=1}^{p} \frac{1}{s_{i}} \left(\sum_{\sigma=1}^{m} v_{\sigma} \sqrt{n_{\sigma}^{*}} \alpha_{\sigma i} \right) \left(\sum_{\tau=1}^{m} v_{\tau} \sqrt{n_{\tau}^{*}} \alpha_{\tau i} \right) = \sum_{i=1}^{p} \left(\sum_{\sigma=1}^{m} \frac{v_{\sigma} \sqrt{n_{\sigma}^{*}} \alpha_{\sigma i}}{\sqrt{s_{i}}} \right)^{2} \ge 0 \; . \end{split}$$

Proprietà dello stato stazionario

In realtà si può dire qualcosa di più. Notiamo innanzitutto che introducendo

$$S := \begin{pmatrix} 1/s_1 & 0 & \cdots & 0 \\ 0 & 1/s_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & \cdots & 0 & 1/s_p \end{pmatrix}$$
(32)

la matrice \mathcal{M} si può riscrivere come $\mathcal{M} = -DASA^T$.

A questo punto possiamo dimostrare che rk $\mathcal{M} = \min\{m, p\}$; per farlo usiamo i seguenti risultati noti sul prodotto di matrici:

$$rk(\mathcal{AB}) \le min \{rk \mathcal{A}, rk \mathcal{B}\},$$
 (33)

$$\operatorname{rk}(\mathcal{AB}) \ge \operatorname{rk} \mathcal{A} + \operatorname{rk} \mathcal{B} - n$$
, (34)

ove $A \in M_{m,n}$ e $B \in M_{n,k}$, con m, n e k interi qualunque.

Proprietà dello stato stazionario

Supponiamo ad esempio m > p; tenendo conto che

$$D \in M_m$$
 $A \in M_{m,p}$ $S \in M_p$ (35)

allora:

$$\begin{cases} \operatorname{rk}(DA) \le \min \left\{ \operatorname{rk} D, \operatorname{rk} A \right\} = \min \left\{ m, p \right\} = p \\ \operatorname{rk}(DA) \ge \operatorname{rk} D + \operatorname{rk} A - m = m + p - m = p \end{cases} \Rightarrow \operatorname{rk}(DA) = p , \quad (36)$$

$$\begin{cases} \operatorname{rk}(SA^{T}) \leq \min \left\{ \operatorname{rk} S, \operatorname{rk} A \right\} = \min \left\{ p, p \right\} = p \\ \operatorname{rk}(SA^{T}) \geq \operatorname{rk} S + \operatorname{rk} A - p = p + p - p = p \end{cases} \Rightarrow \operatorname{rk}(SA^{T}) = p , \quad (37)$$

e quindi:

$$\begin{cases}
\operatorname{rk} \mathcal{M} \leq \min \left\{ \operatorname{rk}(DA), \operatorname{rk}(SA^{T}) \right\} = \min \left\{ p, p \right\} = p \\
\operatorname{rk} \mathcal{M} \geq \operatorname{rk}(DA) + \operatorname{rk}(SA^{T}) - p = p + p - p = p
\end{cases}
\Rightarrow \operatorname{rk} \mathcal{M} = p. \quad (38)$$

Nello stesso modo si trova che se m < p allora rk $\mathcal{M} = m$.

Proprietà dello stato stazionario

Dato che se m > p si ha rk $\mathcal{M} = p$, in questo caso ci saranno m - p autovalori nulli. È un problema per la stabilità del sistema?

La coesistenza è possibile se

$$\vec{s}_{\alpha} = n_1 \vec{\alpha}_1 + \dots + n_m \vec{\alpha}_m \tag{39}$$

ammette una soluzione positiva con $\sum_i n_i^* = 1$. Tuttavia, questo è un sistema di p equazioni in m incognite, e per m > p è indeterminato: ci sono *infinite* soluzioni (ogni possibile configurazione dei coefficienti n_σ a somma 1 è un possibile equilibrio del sistema). Se quindi il sistema è in un equilibrio e viene perturbato, tenderà ad uno di questi infiniti possibili equilibri dove la coesistenza è permessa.

Se m=p la matrice $\mathcal M$ ha rango massimo e quindi nessun autovalore è nullo: l'equilibrio è asintoticamente stabile.