### Aprendizagem

Instituto Superior Técnico outubro de 2023

## Homework 4 - Report

Joana Pimenta (103730), Rodrigo Laia (102674)

## Pen and Paper

1. Fórmulas utilizadas:

$$\gamma_{ki} = p(c_k|\mathbf{x}_i) = \frac{p(c_k)p(\mathbf{x}_i|c_k)}{p(\mathbf{x}_i)}$$
(1)

$$p(\mathbf{x}_i) = p(c_1)p(\mathbf{x}_i|c_1) + p(c_2)p(\mathbf{x}_i|c_2)$$
(2)

$$p(\mathbf{x}_i|c_k) = \begin{cases} p_k \cdot \mathcal{N}(\mathbf{x}_i|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) & \text{se } y_1 = 1\\ (1 - p_k) \cdot \mathcal{N}(\mathbf{x}_i|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) & \text{se } y_1 = 0 \end{cases}$$
(3)

E-step:

Cálculo das probabilidades  $p(\mathbf{x}_i)$ 

$$p(\mathbf{x}_1) = 0.05185$$

$$p(\mathbf{x}_2) = 0.02775$$

$$p(\mathbf{x}_3) = 0.04337$$

$$p(\mathbf{x}_4) = 0.05243$$

Cálculos dos  $\gamma_{ki}$ 

$$\gamma_{k=1,i=1} = 0.19259$$

$$\gamma_{k=2,i=1} = 0.80741$$

$$\gamma_{k=1,i=2} = 0.63135$$

$$\gamma_{k=2,i=2} = 0.36865$$

$$\gamma_{k=1,i=3} = 0.55181$$

$$\gamma_{k=2,i=3} = 0.44819$$

$$\gamma_{k=1,i=4} = 0.16892$$

$$\gamma_{k=2,i=4} = 0.83108$$

#### M-step:

Cada observação  $\mathbf{x}_i$  permite atualizar os parâmetros com peso  $\gamma_{ki}$ . Assim calculamos os novos parâmetros atualizados para cada cluster utilizando as seguintes fórmulas.

$$N_k = \sum_{i=1}^4 \gamma_{ki} \tag{4}$$

$$\pi_k = \frac{N_k}{N} \tag{5}$$

$$P_k(y_1 = 1) = \frac{\sum_{i=1}^4 \gamma_{ki} \cdot p(y_1 = 1 | \mathbf{x}_i)}{\sum_{i=1}^4 \gamma_{ki}}$$
 (6)

Nota: A probabilidade  $p(y_1 = 1 | \mathbf{x}_i)$  é 1 se  $y_1$  de  $\mathbf{x}_i$  for 1 e 0 caso contrário.

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{i=1}^4 \gamma_{ki} \mathbf{x}_i \tag{7}$$

$$\Sigma_k = \frac{1}{N_k} \sum_{i=1}^4 \gamma_{ki} (\mathbf{x}_i - \boldsymbol{\mu}_k) (\mathbf{x}_i - \boldsymbol{\mu}_k)^T$$
(8)

Parâmetros atualizados:

$$\pi_1 = 0.38617$$

$$\pi_2 = 0.61383$$

$$P_{k=1}(y_1 = 1) = 0.23404$$

$$P_{k=2}(y_1=1)=0.66732$$

$$\boldsymbol{\mu}_1 = \begin{bmatrix} 0.02651 \\ 0.50713 \end{bmatrix}$$

$$\mu_2 = \begin{bmatrix} 0.30914 \\ 0.21042 \end{bmatrix}$$

$$\Sigma_1 = \begin{bmatrix} 0.14137 & -0.10541 \\ -0.10541 & 0.09605 \end{bmatrix}$$

$$\Sigma_2 = \begin{bmatrix} 0.10829 & -0.08865 \\ -0.08865 & 0.10412 \end{bmatrix}$$

2. Para calcular os posteriors da observação  $\mathbf{x}_{new}$  utilizamos a seguinte fórmula:

$$p(cluster = k | \mathbf{x}_{new}) = \frac{p(cluster = k)p(\mathbf{x}_{new} | cluster = k)}{p(\mathbf{x}_{new})}$$
(9)

Em que p(cluster = k) é dado por  $\pi_k$  e  $p(\mathbf{x}_{new}|cluster = k)$  é dado pela fórmula (3).

Cálculos:

$$p(\mathbf{x}_{new}) = 0.03048$$

$$p(cluster = 1|\mathbf{x}_{new}) = 0.08029$$

$$p(cluster = 2|\mathbf{x}_{new}) = 0.91971$$

Assim conclui-se que a observação  $\mathbf{x}_{new}$  pertence ao cluster 2 com probabilidade 0.91971 e ao cluster 1 com probabilidade 0.08029.

3. Neste exercício assumimos que o cluster atribuído a cada observação é é escolhido pelo critério de *maximum likelihood*. Assim, o cluster escolhido é dado por:

$$cluster = \arg\max_{k} p(\mathbf{x}_{i}|cluster = k)$$
 (10)

Em que  $p(\mathbf{x}_i|cluster = k)$  é dado pela fórmula (3).

Assim,

| Observação     | $p(\mathbf{x}_i cluster = 1)$ | $p(\mathbf{x}_i cluster = 2)$ | Cluster atribuído |
|----------------|-------------------------------|-------------------------------|-------------------|
| $\mathbf{x_1}$ | 0.23147                       | 0.94954                       | 2                 |
| x <sub>2</sub> | 1.26633                       | 0.08874                       | 1                 |
| X <sub>3</sub> | 1.43811                       | 0.45417                       | 1                 |
| X <sub>4</sub> | 0.02077                       | 0.72331                       | 2                 |

Coeficiente de Silhueta:

$$s_i = 1 - \frac{a(\mathbf{x}_i)}{b(\mathbf{x}_i)} \tag{11}$$

em que  $a(\mathbf{x}_i)$  é a distância média entre  $\mathbf{x}_i$  e as outras observações no mesmo cluster e  $b(\mathbf{x}_i)$  é a distância média entre  $\mathbf{x}_i$  e as observações no outro cluster.

A silhueta de um cluster é dada pela média dos coeficientes de silhueta de todas as observações pertencentes a esse cluster.

A silhueta da solução é por sua vez dada pela média das silhuetas de todos os clusters.

Neste caso a distância considerada é a distância de Manhattan, logo:

$$d(\mathbf{u}, \mathbf{v}) = \sum_{i=1}^{n} |u_i - v_i|$$
(12)

Assim, as silhuetas obtidas foram:

| cluster | $\mathbf{x}_i$ | $a(\mathbf{x}_i)$ | $b(\mathbf{x}_i)$ | $s(\mathbf{x}_i)$ | s(cluster) | s(sol)   |
|---------|----------------|-------------------|-------------------|-------------------|------------|----------|
| 1       | $\mathbf{x}_2$ | 0.9               | 2.7               | 0.(6)             | 0.58(3)    | 0.702(7) |
|         | $\mathbf{x}_3$ | 0.9               | 1.7(9)            | 0.4(9)            | 0.50(5)    |          |
| 2       | $\mathbf{x}_1$ | 0.3(9)            | 2.25              | 0.8(2)            | 0.8(2)     |          |
|         | $\mathbf{x}_4$ | 0.3(9)            | 2.25              | 0.8(2)            | 0.0(2)     |          |

#### 4. A purity é dada por:

purity = 
$$\frac{1}{N} \sum_{k=1}^{K} \max_{j} |c_k \cap t_j| = \frac{1}{N} \left( \max_{j} |c_1 \cap t_j| + \max_{j} |c_2 \cap t_j| \right)$$
 (13)

Uma vez que temos uma purity de 0.75 e um número total de observações de 4, então  $\frac{1}{N} \left( \max_j |c_1 \cap t_j| + \max_j |c_2 \cap t_j| \right) = 0.75 \times 4 = 3$ 

Logo podemos ter os seguintes casos:

- (a)  $\max_{i} |c_1 \cap t_i| = 3 \text{ e } \max_{i} |c_2 \cap t_i| = 0$
- (b)  $\max_{i} |c_1 \cap t_i| = 2 \text{ e } \max_{i} |c_2 \cap t_i| = 1$
- (c)  $\max_{i} |c_1 \cap t_i| = 1 \text{ e } \max_{i} |c_2 \cap t_i| = 2$
- (d)  $\max_{j} |c_1 \cap t_j| = 0 \text{ e } \max_{j} |c_2 \cap t_j| = 3$

As opções (a) e (d) não são possíveis porque os clusters 2 e 1 só têm 2 observações cada um.

#### Opção (b)

Neste caso, as observações do cluster 1 são as duas classificadas corretamente. No cluster 2 uma é corretamente identificada e a outra não. Assim, as observações no cluster 1 têm a mesma classificação; uma das observações do cluster 2 tem classificação diferente das do cluster 1 e a outra pode ter classificação igual às do cluster 1 (opção 1) ou diferente, sendo que neste caso é também diferente da classificação do outra observação do cluster 2 (opção 2). Assim, conclui-se que o número verdadeiro de classes pode ser 2 ou 3.

Para visualizar melhor as opções possíveis fizemos os seguintes esquemas (bolas de cores diferentes representam classes verdadeiras diferentes):



#### Opção (c)

O raciocínio é semelhante ao da opção (b). Conclui-se que o número verdadeiro de classes pode ser 2 ou 3.

# Programming - Código Python e Resultados Obtidos

- 1. Código Utilizado:
- 2. Código Utilizado:
- 3. Código Utilizado:
- 4.