Laboratorio Didattico di Matematica Computazionale

a.a. 2018-2019

Esercitazione 10

Problemi di massimo e minimo

Per questa esercitazione è richiesto l'upload del codice di uno a scelta tra l'Esercizio 2 e l'Esercizio 4.

Sia $f:[a,b]\to\mathbb{R}$ una funzione continua (se necessario anche derivabile un opportuno numero di volte). Ci poniamo il problema di calcolare numericamente i punti di massimo e/o minimo di f.

Per esempio, f potrebbe rappresentare il costo di un progetto in funzione di un certo parametro; determinarne il minimo ci permette di scegliere il parametro in modo che il costo del progetto sia il più basso possibile.

Più in generale, possiamo considerare il caso in cui f è una funzione a valori reali definita su un opportuno dominio chiuso e limitato di \mathbb{R}^n , per esempio su un rettangolo in \mathbb{R}^2 o un parallelepipedo in \mathbb{R}^3

A volte è facile determinare analiticamente massimi e minimi, ma in altri casi f è eccessivamente complicata (o non se ne conosce neppure un'espressione esplicita) ed è quindi necessario affidarsi a metodi numerici.

Senza perdita di generalità, ci limiteremo a studiare problemi di minimo. I metodi numerici di minimizzazione (ottimizzazione) sono essenzialmente di due tipi: quelli che calcolano la derivata (o il gradiente) di f e quelli che invece usano solo valutazioni di f, senza calcolare derivate.

1. Discretizzazione

Un approccio molto semplice consiste nel discretizzare [a,b] scegliendo dei punti equispaziati $x_0 = a < x_1 < \ldots < x_{N-1} < x_N = b$, quindi valutare f su tutti gli x_j e cercare il minimo o massimo. A volte questo metodo può dare buoni risultati, ma in altri casi rischia di essere dispendioso e poco efficace, perché potrebbe richiedere una discretizzazione molto fine dell'intervallo per dare risultati accurati, e conseguentemente molte valutazioni della f. Se poi f, anziché essere definita su un intervallo, fosse definita su un dominio 2 o 3-dimensionale, il costo computazionale crescerebbe ulteriormente.

Esercizio 1 Come esercizio di riscaldamento, scrivete una function forzabruta.m che prenda in ingresso una handle fun a una funzione di una variabile, un intervallo di definizione [a,b] e l'intero positivo N, e restituisca in output il punto x_j in cui si ha il minimo, secondo l'algoritmo descritto sopra, e il valore corrispondente della funzione.

Verificate il buon funzionamento del codice su una funzione "facile", per esempio $f(x) = x^2 + 1$ definita su [-1, 1].

Provate poi ad applicare la function alla funzione $f(x) = \frac{1}{x} \sin\left(\frac{1}{x}\right)$ su [0.08, 3] e confrontatene l'efficacia rispetto al comando fminbad di Matlab, che usa l'interpolazione parabolica. Quante valutazioni sono necessarie nei due casi per avere un'approssimazione ugualmente buona del minimo?

2. Steepest descent

Ci proponiamo qui di implementare una semplice versione del metodo della steepest descent applicato ad una funzione differenziabile $f: \mathbb{R}^2 \to \mathbb{R}$. Si tratta di un metodo iterativo. L'idea è di "scendere a valle" lungo il grafico di f seguendo la direzione data da $-\nabla f$. Ciascun passo è quindi della forma

$$(x_{new}, y_{new}) = (x_{old}, y_{old}) - \alpha \nabla f(x_{old}, y_{old}),$$

dove la lunghezza del passo $\alpha > 0$ è scelta in modo opportuno.

Il programma riceve in input:

- fun: handle alla funzione da minimizzare,
- grad: handle al gradiente della funzione da minimizzare,
- init: vettore di lunghezza 2 contenente le coordinate del punto iniziale,
- step: numero reale positivo corrispondente alla lunghezza del passo iniziale,
- [a,b], [c,d]: estremi della "finestra" in cui si cerca il minimo (in alternativa, per una finestra circolare di centro init, si assegnerà il raggio R),
- itermax: numero massimo di iterazioni,
- tol: tolleranza sulla norma del gradiente, da usare come criterio di convergenza.

Come abbiamo detto, il metodo che vogliamo implementare è di tipo iterativo, quindi sarà necessario inserire un ciclo nel programma. Ad ogni iterazione, il programma ha a disposizione un'approssimazione attuale del minimo xmin e un valore step della lunghezza del passo, e fa quanto segue:

- calcola il gradiente in xmin,
- esegue un passo di lunghezza step, ottenendo un punto x1,
- valuta se il passo eseguito è accettabile: se sì, si pone xmin=x1 e l'iterazione è terminata, invece se x1 esce dalla finestra, oppure non ha diminuito la funzione, si dimezza la lunghezza del passo e si rifà l'iterazione.

L'iterazione si arresta se:

- la norma del gradiente è minore di tol (convergenza),
- oppure il numero di iterazioni eseguite è maggiore di itermax (fallimento).

Naturalmente è sempre bene stampare l'esito dell'esecuzione, in modo che l'utente sappia se il programma si è arrestato perché ritiene di aver trovato un minimo, o perché non riesce a risolvere il problema.

Provate poi a introdurre una modifica per vedere se possiamo usare un passo più lungo e accelerare così l'iterazione. Se il passo eseguito per calcolare x1 è subito accettabile, si raddoppia il passo e si rifà il controllo: se anche il nuovo punto calcolato è accettabile lo si tiene come nuova approssimazione del minimo e si mantiene il passo raddoppiato.

Esercizio 2 Scrivere una function steepest.m che implementi il metodo delineato sopra. Scrivere uno script che applichi la function alla funzione $f(x,y) = x^2/2 + 2y^2$ su $[-2,2] \times [-2,2]$ e crei due figure: una contenente il grafico di f (cioè una superficie in \mathbb{R}^3) e una in cui si disegnano le curve di livello di f insieme al percorso seguito dal metodo.

Esercizio 3 Un metodo più sofisticato è implementato in Matlab sotto il nome di fininunc. Usate l'help per capire come funziona questo comando e provate ad applicarlo alla funzione dell'esercizio e alla funzione di Rosenbrock, disegnando in entrambi i casi il percorso sulle curve di livello. Che cosa osservate?

La funzione di Rosenbrock è definita da $f(x,y) = 100(y-x^2)^2 + (1-x)^2$ e ha minimo in (1,1). Per disegnarne il grafico potete scegliere per esempio il dominio di definizione $[-2,2] \times [-1,3]$.

3. Metodo di Nelder-Mead

In questa sezione vogliamo studiare un metodo di minimizzazione che non usa il gradiente. Si parte con tre punti $x_1, x_2, x_3 \in \mathbb{R}^2$ non allineati. Ad ogni iterazione il metodo si comporta nel modo seguente (provate a fare dei disegni per capire graficamente il significato di ciascuna operazione):

- rinomina i punti x_1, x_2, x_3 in modo da avere $f(x_1) \le f(x_2) \le f(x_3)$,
- calcola il punto medio x_m di x_1 e x_2 ,
- calcola il punto $x_r = 2x_m x_3$ (riflessione),
- ora abbiamo 3 casi:
 - -1. $f(x_1) \leq f(x_r) < f(x_2)$: si rimpiazza x_3 con x_r e l'iterazione finisce,
 - $-2. f(x_r) < f(x_1)$: si calcola $x_e = 2x_r x_m$ (espansione),
 - se $f(x_e) < f(x_r)$, allora si rimpiazza x_3 con x_e e l'iterazione finisce,
 - altrimenti si rimpiazza x_3 con x_r e l'iterazione finisce,
 - -3. $f(x_r) \ge f(x_2)$: si calcola $x_c = (x_m + x_r)/2$ (contrazione),
 - se $f(x_c) < f(x_3)$, allora si rimpiazza x_3 con x_c e l'iterazione finisce,
 - altrimenti si rimpiazza x_2 con $(x_2 + x_1)/2$ e x_3 con $(x_3 + x_1)/2$, e l'iterazione finisce.

Il programma termina quando:

- $\bullet\,$ i punti x_1,x_2,x_3 sono sufficientemente vicini tra loro (convergenza),
- oppure se i valori di f su x_1, x_2, x_3 sono sufficientemente vicini tra loro (convergenza),
- oppure se il numero di iterazioni eseguite supera un valore prestabilito (fallimento).

Esercizio 4 Scrivere una function neldermead.m che implementi il metodo delineato sopra. Scrivere uno script che applichi la function alla funzione di Rosenbrock e disegni le curve di livello della funzione insieme al percorso seguito dal metodo.