Planiranje pogona elektroenergetskog sustava

Završni ispit

27. lipnja 2013.

 Ostvarene potrošnje električne energije na području elektroenergetskog sustava u razdoblju 2001. do 2007. godine iznosile su:

Godina	2001	2002	2003	2004	2005	2006	2007
W(GWh)	14455	14831	15527	16096	16706	17178	17629

Metodom logaritamskog pravca izračunajte potrošnju koja se može očekivati u 2016. godini. (3 boda)

- 2. Dnevna krivulja trajanja opterećenja elektroenergetskog sustava aproksimirana je s tri pravca. Poznati podaci o krivulji su sljedeći: $P_{dmax} = 1800$ MW, $P_{dk} = 700$ MW, $t_{pv} = 17$ h, $W_d = 26000$ MWh, $\beta = 0.6$. Potrebno je izračunati koeficijent α i nacrtati točan oblik trajanja opterećenja. (3 boda)
- 3. Kako se sve može riješiti problem previsokih napona u EES-u? (2 boda)
- 4. Potrebne količine goriva za proizvodnju električne energije u plinskoj turbini nazivne snage 50 MW pri različitim opterećenjima su sljedeće:

pri 25% nazivne snage: 15,045 GJ/h pri 40% nazivne snage: 13,652 GJ/h pri 100% nazivne snage: 12,344 GJ/h

Pretpostaviti da je cijena plina 5 €/GJ. Odrediti parametre funkcije troškova pogona plinske elektrane:

 $C(P_g) = a P_g^2 + b P_g + \gamma$ Eur/h te specifičnu i ukupnu cijenu pogona plinske elektrane pri 50 % i 100 % nazivne snage. (4 bodova)

5. Dva generatora instalirane snage 250 MW svaki imaju sljedeće krivulje troška:

$$C(P_1) = 0.35 P_1^2 + 410 P_1 + 2100 Eur/MW$$

 $C(P_2) = 0.3 P_2^2 + 380 P_2 + 2400 Eur/MW$

Gubici na spojnom vodu se aproksimiraju se s $P_{loss} = 0.001$ ($P_2 - 50$)² MW. Pronaći optimalni pogon oba generatora prema slici (mislim da je P_{demand} 300 ili 350 MW, da ne crtam) i inkrementalni trošak pogona. Izračunati ukupne troškove pogona. (6 bodova)