MATA KULIAH LOGIKA INFORMATIKA

Identitas Mata Kuliah

Program Studi : Teknik Informatika

Mata Kuliah / Kode : Logika Informatika / TPLB22

Jumlah SKS : 3 SKS

Prasyarat : --

Deskripsi Mata Kuliah : Mata kuliah ini membahas tentang

proposisi, kata hubung kalimat, nilai kebenaran dari proposisi tautologi, ekuivalen, kontradiksi, kuantor dan validasi pembuktian, konsep dasar digital, operasi bilangan, gerbang logika, penyederhanaan rangkaian logika dan fungsi logika

kombinasi.

Capaian Pembelajaran : Setelah pembelajaran, mahasiswa

mampu mampu memahami cara pengambilan keputusan berdasarkan logika

matematika.

Penyusun : Ahmad Musyafa, M.Kom (Ketua)

Ir. Surip Widodo, M.I.T (Anggota 1)

Fajar Agung Nugroho, M.Kom (Anggota 2)

Ketua Program Studi Ketua Team Teaching

Achmad Hindasyah, M.Si Ahmad Musyafa, M.Kom

NIDN. 0419067102 NIDN. 0425018609

Kata Pengantar

Untuk meningkatkan kemampuan dan pengetahuan mahasiswa Program Studi S1 Teknik Informatika di bidang ilmu komputer dan kemajuan teknologi maka disajikan materi tentang *Logika Informatika*, karena materi ini adalah dasar dari alur logika pada komputer dengan mempelajari bahasa mesin (*engine lenguage*) yang terdiri dari bilangan biner, yang berarti Nol adalah bernilai (False) dan Satu adalah bernilai (True), atau Nol adalah (Mati) dan Satu adalah (Hidup).

Mata kuliah *Logika Informatika* mempelajari tentang proposisi, kata hubung kalimat, nilai kebenaran dari proposisi tautologi, ekuivalen, kontradiksi, kuantor dan validasi pembuktian, konsep dasar digital, operasi bilangan, gerbang logika, penyederhanaan rangkaian logika dan fungsi logika kombinasi. Modul atau bahan ajar ini disusun untuk mempermudah mahasiswa dalam mempelajari mata kuliah Logika Informatika.

PERTEMUAN 13 SISTEM BILANGAN

A. TUJUAN PEMBELAJARAN

Pada bab ini akan dijelaskan mengenai Sistem Bilangan yaitu Bilangan Desimal, Bilangan Biner dan Bilangan HexaDesimal, Bilangan Oktal:

B. URAIAN MATERI

≻ Bilangan Desimal

I. BILANGAN DESIMAL

Basis: $10 \text{ (ada } 10 \text{ digit)} \rightarrow 0, 1, 2, 3, 4, 5, 6, 7, 8, 9$

Jika akan menyatakan suatu bilangan desimal lebih besar dari 9, dapat digunakan 2 digit atau lebih dimana setiap posisi dari tiap digit memiliki bobot yang berbeda.

Secara umum bobot dalam sistem desimal untuk setiap posisi :

Contoh: Nyatakan bilangan desimal 24,65 sebagai penjumlahan dari masing-masing digitnya

Jawab :
$$24,65 = (2 \times 10^{1}) + (4 \times 10^{0}) + (6 \times 10^{-1}) + (5 \times 10^{-2})$$

 $20 + 4 + 0,6 + 0,05$

Bilangan biner → basis 2

Lebih sederhana karena hanya terdiri dari dua digit (bit): 0 dan 1

Menghitung dalam biner:

Bilangan desimal	Bilangan biner	Untuk n buah digit biner maka
0	0000	bilangan desimal
1	0001	terbesarnya:
2	0 0 1 0	$2^{n} - 1$
2 3	0 0 1 1	2 1
4	0100	
4 5	0 1 0 1	C + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6	0 1 1 0	Contoh dengan enam bit biner
7	0 1 1 1	(n = 6), maka dapat
8	1000	menghitung dalam desimal
9	1001	dari O sampai :
10	1010	26.4.42
11	1 0 1 1	2 ⁶ -1= 63
12	1100	
13	1 1 0 1	(0 - 63)
14	1110	
15	1 1 1 1	

Control of the Contro

Struktur bobot bilangan biner :

Contoh 1 : Tentukan nilai desimal dari biner 1101101

Jawab: $(1\times64)+(1\times32)+(0\times16)+(1\times8)+(1\times4)+(0\times2)+(1\times1)=109$

Contoh 2 : Tentukan nilai desimal dari biner 11,01

Jawab: $(1\times2)+(1\times1)+(0\times0,5)+(1\times0,25)=3,25$

Terdiri dari 16 digit: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

BINER	HEXADESIMAL
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	A
1011	В
1100	C
1101	D
1110	E
1111	F
	0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1101 1100 1101

➤ Blangan Oktal

Basis: 8

Terdiri dari: 0, 1, 2, 3, 4, 5, 6, 7

DESIMAL	BINER	OKTAL
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7

Soal:

Coba berhitung dengan basis bilangan oktal!!!!

	Decimal	Binary	Octal	Hexadecimal
	(base 10)	(base 2)	(base 8)	(base 16)
	00	0000	00	0
	01	0001	01	1
	02	0010	02	2
	03	0011	03	3
	04	0100	04	4
	05	0101	05	5
	06	0110	06	6
	07	0111	07	7
	08	1000	10	8
	09	1001	11	9
	10	1010	12	A
١	11	1011	13	В
١	12	1100	14	С
	13	1101	15	D
١	14	1110	16	E
1	15	1111	17	F

> Aritmatika Biner

A. Penjumlahan

B. Pengurangan

Contoh: 11 + 1

Contoh: 101 - 011

C. Perkalian

$$0 \times 0 = 0$$

 $0 \times 1 = 0$
 $1 \times 0 = 0$
 $1 \times 1 = 1$

D. Pembag

Prosedurnya pembagia

Contoh: 110:1

10)110 ←

10 10

10

00

Contoh:
$$11 \times 11$$

$$\frac{11}{11} \times \frac{=3}{=3} \times \frac{11}{11} + \frac{1}{1001} = 9$$

C. SOAL LATIHAN/TUGAS

- (a). 1386 (b). 54.692
- 3. Berapa nilai desimal tertinggi dari biner dengan jumlah digit (bit) sbb: (a). 2 (b). 8 (c). 16 (d). 64
- 4. Berapa bit biner diperlukan untuk menyatakan bilangan desimal berikut: (a). 17 (b). 75 (c). 120 (d). 400 (e). 1500
- 5. Tentukan nilai biner dari desimal berikut: (a). 128 (b). 300 (c). 700 (d). 100,25
- Tentukan penjumlahan biner berikut:
 (a). 1001 + 111 (b). 1101 + 1011 (c). 111 + 111
- 7. Tentukan pengurangan biner berikut: (a). 11-1 (b). 1110 - 11 (c). 11010 - 10111

D. DAFTAR PUSTAKA

Buku

- 1. Drs. Toto' Bara Setiawan, M.Si, *Diktat kuliah Logika Matematika*, Pendidikan matematika, Universitas Negeri Jember, 2007.
- 2. Rinaldi Munir, *Matematika Diskrit*, Edisi Ketiga, Informatika, Bandung, 2005.
- 3. Jong Jeng Siang, *Matematika Diskrit dan Aplikasinya pada Ilmu Komputer*, Andi Offset, Yogyakarta, 2004.
- 4. Kenneth H. Rosen, *Discrete Mathematics and Application to Computer Science* 5th Edition, Mc Graw-Hill, 2003.

Link and Sites: