Machine Learning - Homework 4

資工四 B05902023 李澤諺

November 22, 2019

Part 1. Programming Problem

1.~(1%) 請使用不同的 Autoencoder model,以及不同的降維方式 (降到不同維度),討論其 reconstruction loss 和 public/private accuracy。(因此模型需要兩種,降維方法也需要兩種,但 clustering 不用兩種。)

以下爲我於本題中所比較的兩個 Autoencoder 的架構:

Autoencoder 1				
Encoder	$Conv2d(3, 8, kernel_size = (3, 3), stride = (2, 2),$			
	padding = (1, 1)			
	$Conv2d(8, 16, kernel_size = (3, 3), stride = (2, 2),$			
	padding = (1, 1)			
Decoder	$ConvTranspose2d(16, 8, kernel_size = (2, 2),$			
	stride = (2, 2)			
	$ConvTranspose2d(8, 3, kernel_size = (2, 2),$			
	stride = (2, 2)			
	Tanh()			

Autoencoder 2					
	$Conv2d(3, 1024, kernel_size = (3, 3), stride = (1, 1),$				
Encoder	padding = (1, 1)				
	$MaxPool2d(2, return_indices = True)$				
	$Conv2d(1024, 256, kernel_size = (3, 3), stride = (1, 1),$				
	padding = (1, 1))				
	$MaxPool2d(2, return_indices = True)$				
	$Conv2d(256, 64, kernel_size = (3, 3), stride = (1, 1),$				
	padding = (1, 1))				
	$MaxPool2d(2, return_indices = True)$				
	$Conv2d(64, 16, kernel_size = (3, 3), stride = (1, 1),$				
	padding = (1, 1))				
	$MaxPool2d(2, return_indices = True)$				
Decoder	MaxUnpool2d(2)				
	$ConvTranspose2d(16, 64, kernel_size = (3, 3),$				
	stride = (1, 1), padding = (1, 1))				
	MaxUnpool2d(2)				
	$ConvTranspose2d(64, 256, kernel_size = (3, 3),$				
	stride = (1, 1), padding = (1, 1))				
	MaxUnpool2d(2)				
	$ConvTranspose2d(256, 1024, kernel_size = (3, 3),$				
	stride = (1, 1), padding = (1, 1))				
	MaxUnpool2d(2)				
	$ConvTranspose2d(1024, 3, kernel_size = (3, 3),$				
	stride = (1, 1), padding = (1, 1))				
	Tanh()				

兩個 Autoencoder 皆爲使用 Adam 訓練,learning rate 爲 0.0001,使用 l1-loss 作爲 loss function,batch size 爲 256,訓練了 20 個 epoch。

Autoencoder 1 會將圖片降到 1024 維,而 Autoencoder 2 會將圖片降到 64 維,在兩個 Autoencoder 分別做完第一次的降維之後,接著皆會使用 t-SNE 進行第二次的降維,將圖片降到 2 維,最後使用 K-Means 進行 clustering。

以下爲兩種方法分別所得到的 average reconstruction loss 以及 public/private accuracy :

	reconstruction loss	public accuracy	private accuracy
Autoencoder 1	0.00084342	0.69259	0.70063
Autoencoder 2	0.00031634	0.75333	0.75920

2. (1%) 從 dataset 選出 2 張圖,並貼上原圖以及經過 autoencoder 後 reconstruct 的圖片。

以下爲從 training dataset 中取出前 2 張圖,使用第 1 題訓練出來的 Autoencoder 2,將圖片進行降維並 reconstruct 之後的結果:

3. (1%) 在之後我們會給你 dataset 的 label。請在二維平面上視覺化 label 的分佈。

以下爲使用第 1 題訓練出來的 Autoencoder 2 以及 t-SNE,將圖片進行降維之後的結果:

Part 2. Math Problem

In this problem set, we denote $[\![a,b]\!]=\{i\in\mathbb{Z}:a\leq i\leq b\}.$

1. Principle Component Analysis (1%)

Given 10 samples in 3D: (1,2,3), (4,8,5), (3,12,9), (1,8,5), (5,14,2), (7,4,1), (9,8,9), (3,8,1), (11,5,6), (10,11,7).

- (a) What are the principal axes?
- (b) Please compute the principal components for each sample.
- (c) What is the average reconstruction error if reduce dimension to 2D? Here the reconstruction error is defined as the squared loss.

solution

(a)

令題幹中給定的點依序為 $x_1 \cdot x_2 \cdot \dots \cdot x_{10} \in \mathbb{R}^3$ 。 $x_1 \cdot x_2 \cdot \dots \cdot x_{10}$ 的 mean 和 covariance matrix 分別為

$$\mu = \frac{1}{10} \sum_{n=1}^{10} x_n = \begin{pmatrix} 5.4 \\ 8 \\ 4.8 \end{pmatrix}$$

$$\Sigma = \frac{1}{10} \sum_{n=1}^{10} (x_n - \mu)(x_n - \mu)^T = \begin{pmatrix} 12.04 & 0.5 & 3.28 \\ 0.5 & 12.2 & 2.9 \\ 3.28 & 2.9 & 8.16 \end{pmatrix}$$

將 Σ 正交對角化爲 $\Sigma = Q\Lambda Q^T$,其中

$$Q = \begin{pmatrix} 0.616596 & 0.678179 & -0.399856 \\ 0.58815 & -0.73439 & -0.337589 \\ 0.522596 & 0.0272856 & 0.852144 \end{pmatrix}$$

$$\Lambda = \begin{pmatrix} 15.2974 & 0 & 0 \\ 0 & 11.6305 & 0 \\ 0 & 0 & 5.47203 \end{pmatrix}$$

因此可得 Σ 的 eigenvector 爲 (依照 eigenvalue 的大小排序)

$$v_1 = \begin{pmatrix} 0.616596 \\ 0.58815 \\ 0.522596 \end{pmatrix} v_2 = \begin{pmatrix} 0.678179 \\ -0.73439 \\ 0.0272856 \end{pmatrix} v_3 = \begin{pmatrix} -0.399856 \\ -0.337589 \\ 0.852144 \end{pmatrix}$$

此即爲 principal axis。 □

(b)

令

$$W = \begin{pmatrix} v_1^T \\ v_2^T \\ v_3^T \end{pmatrix} = \begin{pmatrix} 0.616596 & 0.58815 & 0.522596 \\ 0.678179 & -0.73439 & 0.0272856 \\ -0.399856 & -0.337589 & 0.852144 \end{pmatrix}$$

則 $x_1 \cdot x_2 \cdot \cdots \cdot x_{10}$ 的 principal component 依序為

$$Wx_{1} = \begin{pmatrix} 3.360684 \\ -0.7087442 \\ 1.481398 \end{pmatrix} \quad Wx_{2} = \begin{pmatrix} 9.784564 \\ -3.025976 \\ -0.039416 \end{pmatrix}$$

$$Wx_{3} = \begin{pmatrix} 13.610952 \\ -6.5365726 \\ 2.41866 \end{pmatrix} \quad Wx_{4} = \begin{pmatrix} 7.934776 \\ -5.060513 \\ 1.160152 \end{pmatrix}$$

$$Wx_{5} = \begin{pmatrix} 12.362272 \\ -6.8359938 \\ -5.021238 \end{pmatrix} \quad Wx_{6} = \begin{pmatrix} 7.191368 \\ 1.8369786 \\ -3.297204 \end{pmatrix}$$

$$Wx_{7} = \begin{pmatrix} 14.957928 \\ 0.4740614 \\ 1.36988 \end{pmatrix} \quad Wx_{8} = \begin{pmatrix} 7.077584 \\ -3.8132974 \\ -3.048136 \end{pmatrix}$$

$$Wx_{9} = \begin{pmatrix} 12.858882 \\ 3.9517326 \\ -0.973497 \end{pmatrix} \quad Wx_{10} = \begin{pmatrix} 16.293782 \\ -1.105508 \\ -1.747031 \end{pmatrix} \square$$

(c)

令

$$\tilde{W} = \begin{pmatrix} v_1^T \\ v_2^T \end{pmatrix} = \begin{pmatrix} 0.616596 & 0.58815 & 0.522596 \\ 0.678179 & -0.73439 & 0.0272856 \end{pmatrix}$$

則 average reconstruction error 爲

$$\frac{1}{10} \sum_{n=1}^{10} \|x_n - \tilde{W}^T(\tilde{W}x_n)\|^2 = 6.0681663 \ \Box$$

2. Constrained Mahalanobis Distance Minimization Problem (1%)

- (a) (0.25%) Let $A \in \mathbb{R}^{m \times n}$, show that AA^T and A^TA are both symmetric and positive semi-definite, and share the same non-zero eigenvalues.
- (b) (0.25%) Let $\Sigma \in \mathbb{R}^{m \times m}$ be a symmetric positive semi-definite matrix, $\mu \in \mathbb{R}^m$. Please construct a set of points $x_1, \dots, x_n \in \mathbb{R}^m$ such that

$$\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)(x_i - \mu)^T = \Sigma, \ \frac{1}{N} \sum_{i=1}^{N} x_i = \mu$$

(c) (0.5%) Let $1 \le k \le m$, solve the following optimization problem (and justify with proof):

minimize
$$Trace(\Phi^T \Sigma \Phi)$$

subject to $\Phi^T \Phi = I_k$
variables $\Phi \in \mathbb{R}^{m \times k}$

solution

(a)

因爲

$$(AA^T)^T = (A^T)^T A^T = AA^T$$
$$(A^T A)^T = A^T (A^T)^T = A^T A$$

所以 AA^T 和 A^TA 皆爲 symmetric。 因爲 $\forall \, x \in \mathbb{R}^m$ 且 $x \neq 0$,以及 $\forall \, y \in \mathbb{R}^n$ 且 $y \neq 0$,皆有

$$x^{T}(AA^{T})x = (x^{T}A)(A^{T}x) = (A^{T}x)^{T}(A^{T}x) = ||A^{T}x||^{2} \ge 0$$
$$y^{T}(A^{T}A)y = (y^{T}A^{T})(Ay) = (Ay)^{T}(Ay) = ||Ay||^{2} \ge 0$$

所以 AA^T 和 A^TA 皆爲 positive semi-definite。 令 $\lambda \neq 0$ 爲 AA^T 的一個 eigenvalue。 取 $v \in \mathbb{R}^m$ 爲其對應的一個 eigenvector,則有

$$(AA^T)v = \lambda v$$

因此可得

$$(A^T A)(A^T v) = A^T ((AA^T)v) = A^T (\lambda v) = \lambda (A^T v)$$

故 λ 亦爲 A^TA 的一個 eigenvalue,而 A^Tv 爲其對應的一個 eigenvector。同理,令 $\mu \neq 0$ 爲 A^TA 的一個 eigenvalue。 取 $u \in \mathbb{R}^n$ 爲其對應的一個 eigenvector,則有

$$(A^T A)u = \mu u$$

因此可得

$$(AA^{T})(Av) = A((A^{T}A)u) = A(\mu u) = \mu(Au)$$

故 μ 亦爲 AA^T 的一個 eigenvalue,而 Au 爲其對應的一個 eigenvector。由上述可得, AA^T 和 A^TA 有相同的 non-zero eigenvalue。 \square

(b)

首先,取 $z_1 \setminus z_2 \setminus \cdots \setminus z_{2m} \in \mathbb{R}^m$ 依序為

$$\begin{pmatrix} \sqrt{m} \\ 0 \\ \vdots \\ 0 \end{pmatrix} \begin{pmatrix} -\sqrt{m} \\ 0 \\ \vdots \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ \sqrt{m} \\ \vdots \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ -\sqrt{m} \\ \vdots \\ 0 \end{pmatrix} \cdots \begin{pmatrix} 0 \\ 0 \\ \vdots \\ \sqrt{m} \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ -\sqrt{m} \end{pmatrix}$$

則 $z_1 \setminus z_2 \setminus \cdots \setminus z_{2m}$ 的 mean 爲

$$\frac{1}{2m} \sum_{k=1}^{2m} z_k = 0$$

而 covariance matrix 為

$$\frac{1}{2m} \sum_{k=1}^{2m} (z_k - 0)(z_k - 0)^T = \frac{1}{2m} \sum_{k=1}^{2m} z_k z_k^T = I_m$$

接著,因爲 $\Sigma \in \mathbb{R}^{m \times m}$ 爲 positive semi-definite,所以 $\exists \ A \in \mathbb{R}^{m \times m}$,使得 $\Sigma = AA^T$ (例如可取 $\Sigma = AA^T$ 爲 Σ 的 Cholesky decomposition)。 取 $x_k = Az_k + \mu$,即可得到 $x_1 \cdot x_2 \cdot \cdots \cdot x_{2m}$ 的 mean 爲

$$\frac{1}{2m} \sum_{k=1}^{2m} (Az_k + \mu) = A(\frac{1}{2m} \sum_{k=1}^{2m} z_k) + \mu = A \cdot 0 + \mu = \mu$$

而 covariance matrix 爲

$$\frac{1}{2m} \sum_{k=1}^{2m} (x_k - \mu)(x_k - \mu)^T$$

$$= \frac{1}{2m} \sum_{k=1}^{2m} ((Az_k + \mu) - \mu)((Az_k + \mu) - \mu)^T$$

$$= \frac{1}{2m} \sum_{k=1}^{2m} (Az_k)(Az_k)^T = \frac{1}{2m} \sum_{k=1}^{2m} (Az_k z_k^T A^T)$$

$$= A(\frac{1}{2m} \sum_{k=1}^{2m} z_k z_k^T) A^T = A \cdot I_m \cdot A^T = AA^T = \Sigma \square$$

(c)

因為 Σ 和 $\Phi\Phi^T$ 皆為 symmetric,所以 Σ 和 $\Phi\Phi^T$ 皆可以正交對角化。 令 Σ 的 eigenvalue 為 $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m$,而 $\Phi\Phi^T$ 的 eigenvalue 為 $\mu_1 \geq \mu_2 \geq \cdots \geq \mu_m$ 。

事實上,若 $\Phi = (v_1 \ v_2 \ \cdots \ v_k)$,因爲 $\Phi^T \Phi = I_k$,所以 $v_1 \ v_2 \ \cdots \ v_k$ 爲 \mathbb{R}^m 中的一組 orthonormal vectors。

取 $w_1 imes w_2 imes \cdots imes w_{m-k} \in \mathbb{R}^m$,使得 $v_1 imes v_2 imes \cdots imes v_k imes w_1 imes w_2 imes \cdots imes w_{m-k}$ 構成 \mathbb{R}^m 的一組 orthonormal basis。 因爲

$$(\Phi\Phi^T)v_i = \Phi(\Phi^Tv_i) = \Phi \cdot e_i = v_i = 1 \cdot v_i$$

所以 v_i 皆爲 $\Phi\Phi^T$ 的 eigenvector,且其對應的 eigenvalue 爲 1 (因此 1 的 multiplicity 爲 k)。 因爲

$$(\Phi\Phi^T)w_i = \Phi(\Phi^T w_i) = \Phi \cdot 0 = 0 = 0 \cdot w_i$$

所以 w_i 皆爲 $\Phi\Phi^T$ 的 eigenvector,且其對應的 eigenvalue 爲 0 (因此 0 的 multiplicity 爲 m-k)。

由此可得 $\Phi\Phi^T$ 的 eigenvalue 為 $\mu_1=\mu_2=\cdots=\mu_k=1$, $\mu_{k+1}=\mu_{k+2}=\cdots=\mu_m=0$ 。 所以

$$Trace(\Phi^{T}\Sigma\Phi) = Trace(\Phi^{T}(\Sigma\Phi)) = Trace((\Sigma\Phi)\Phi^{T}) = Trace(\Sigma(\Phi\Phi^{T}))$$

$$\geq \sum_{i=1}^{m} \lambda_{i}\mu_{m-i+1} \ (Von \ Neumann's \ Trace \ Inequality)$$

$$= \lambda_{1}\mu_{m} + \lambda_{2}\mu_{m-1} + \dots + \lambda_{m-k}\mu_{k+1} + \lambda_{m-k+1}\mu_{k} + \lambda_{m-k+2}\mu_{k-1} + \dots + \lambda_{m}\mu_{1}$$

$$= \lambda_{1} \cdot 0 + \lambda_{2} \cdot 0 + \dots + \lambda_{m-k} \cdot 0 + \lambda_{m-k+1} \cdot 1 + \lambda_{m-k+2} \cdot 1 + \dots + \lambda_{m} \cdot 1$$

$$= \lambda_{m-k+1} + \lambda_{m-k+2} + \dots + \lambda_{m}$$

因此可得 $\lambda_{m-k+1}+\lambda_{m-k+2}+\cdots+\lambda_m$,即 Σ 最小的 k 個 eigenvalue 之和,爲 $Trace(\Phi^T\Sigma\Phi)$ 的一個 lower bound。

接著,只要證明 $\exists \Phi \in \mathbb{R}^{m \times k}$ 且 $\Phi^T \Phi = I_k$,使得 $Trace(\Phi^T \Sigma \Phi) = \lambda_{m-k+1} + \lambda_{m-k+2} + \cdots + \lambda_m$,即可得到 $\lambda_{m-k+1} + \lambda_{m-k+2} + \cdots + \lambda_m$ 爲 $Trace(\Phi^T \Sigma \Phi)$ 的最小值。

若 Σ 的正交對角化爲 $\Sigma=Q\Lambda Q^T$,其中 $Q=(u_1\ u_2\ \cdots\ u_m)$ 爲 orthogonal,且 u_i 所對應的 eigenvalue 爲 λ_i 。

取 $\Phi=(u_{m-k+1}\;u_{m-k+2}\;\cdots\;u_m)$,即 Φ 的 column vector 爲 Σ 最小的 k 個 eigenvalue 其對應的 eigenvector。

則 $\Phi \in \mathbb{R}^{m \times k}$,滿足 $\Phi^T \Phi = I_k$,且

$$\begin{split} &Trace(\Phi^{T}\Sigma\Phi)\\ &=Trace\left(\Phi^{T}(\Sigma\Phi)\right)\\ &=Trace\left(\begin{pmatrix} u_{m-k+1}^{T} \\ u_{m-k+2}^{T} \\ \vdots \\ u_{m}^{T} \end{pmatrix} \cdot \Sigma\left(u_{m-k+1} \ u_{m-k+2} \ \cdots \ u_{m}\right) \\ &=Trace\left(\begin{pmatrix} u_{m-k+1}^{T} \\ u_{m-k+2}^{T} \\ \vdots \\ u_{m}^{T} \end{pmatrix} \cdot (\Sigma u_{m-k+1} \ \Sigma u_{m-k+2} \ \cdots \ \Sigma u_{m}) \right)\\ &=Trace\left(\begin{pmatrix} u_{m-k+1}^{T} \\ u_{m-k+2}^{T} \\ \vdots \\ u_{m}^{T} \end{pmatrix} \cdot (\lambda_{m-k+1} u_{m-k+1} \ \lambda_{m-k+2} u_{m-k+2} \ \cdots \ \lambda_{m} u_{m}) \right)\\ &=Trace\left(\begin{pmatrix} \lambda_{m-k+1} \| u_{m-k+1} \|^{2} \\ \vdots \\ u_{m}^{T} \end{pmatrix} \cdot (\lambda_{m-k+1} u_{m-k+1} \ \lambda_{m-k+2} u_{m-k+2} \|^{2} \\ \vdots \\ u_{m}^{T} \end{pmatrix} \cdot \sum_{\lambda_{m} \| u_{m} \|^{2}} \right)\\ &= \lambda_{m-k+1} \| u_{m-k+1} \|^{2} + \lambda_{m-k+2} \| u_{m-k+2} \|^{2} + \cdots + \lambda_{m} \| u_{m} \|^{2}\\ &= \lambda_{m-k+1} + \lambda_{m-k+2} + \cdots + \lambda_{m} \end{split}$$

故可得 $\lambda_{m-k+1} + \lambda_{m-k+2} + \cdots + \lambda_m$,即 Σ 最小的 k 個 eigenvalue 之和,爲 $Trace(\Phi^T\Sigma\Phi)$ 的最小值,且當 Φ 的 column vector 分別爲 $\lambda_{m-k+1} \cdot \lambda_{m-k+2} \cdot \cdots \cdot \lambda_m$ 所對應的 eigenvector 時, $Trace(\Phi^T\Sigma\Phi)$ 即可取到該最小值。 \square

3. Multiclass AdaBoost (1%)

Let \mathcal{X} be the input space, \mathcal{F} be a collection of multiclass classifiers that map from \mathcal{X} to $[\![1,K]\!]$, where K denotes the number of classes. Let $\{(x_i,\hat{y}_i)\}_{i=1}^n$ be

the training data set, where $x_i \in \mathbb{R}^m$ and $\hat{y}_i \in [1, K]$.

Given $T \in \mathbb{N}$, suppose we want to find functions

$$g_T^k(x) = \sum_{t=1}^T \alpha_t^k f_t(x), \ k \in [1, K]$$

where $f_t \in \mathcal{F}$ and $\alpha_t^k \in \mathbb{R}$ for all $t \in [1, T]$, $k \in [1, K]$, by which the aggregated classifier $h: \mathcal{X} \to [1, K]$ is defined as

$$h(x) = argmax_{1 \le k \le K} g_T^k(x)$$

Please apply gradient boosting to show how the functions f_t and coefficients α_t^k are computed with an aim to minimize the following loss function

$$L(g_T^1, \dots, g_T^K) = \sum_{i=1}^n exp(\frac{1}{K-1} \sum_{k \neq \hat{y}_i} g_T^k(x_i) - g_T^{\hat{y}_i}(x_i))$$

solution

