Lab 6 CS 135

Problem 1 from pset 6

- d. $(a|bc \land \gcd(a,b) = 1) \Rightarrow a|c$ e. $\gcd(a,b) = \gcd(b,rem(a,b))$, where rem(a,b) is the remainder when a is divided by b.

Problem 1 Answer Key

- d. $(a|bc \land \gcd(a,b) = 1) \Rightarrow a|c$ e. $\gcd(a,b) = \gcd(b,rem(a,b))$, where rem(a,b) is the remainder when a is divided by b.
 - D. From the LHS we have that bc = ax, and $\exists s$, t: sa + tb = 1. Multiplying both sides by c, we have: sac + tbc = c. Substituting for bc, this becomes sac + tax = c, or a(sc + tx) = c. From this last equation it follows that a | c.
 - E. From a = bq + r, $0 \le r < b$ we see that every divisor of a and b must also divide r. Furthermore, every divisor of b and r must also divide a. Therefore gcd(a, b) = gcd(b, r).

Problem 2 Pulverizer

Use the Pulverizer to express gcd(221,91) as a linear combination of 221 and 91.

Problem 2 Answer Key

gcd(221, 91) 13 = 91 - 2*39gcd(91, 39) 221=91*2+39 = 91 - 2(221-2*91)gcd(39, 13) 91=39*2+13 = -2*221 + 5*91gcd(13,0) 39=13*3+0

13 = -2*221 + 5*91

Problem 3 Inverses

Find an inverse of a modulo m for each of these pairs of relatively prime integers.

- a. a = 101, m = 4620
- b. a = 144, m = 233

Problem 3 Answer Key

First prove that gcd(4620, 101) = 1

gcd(4620,101)= gcd(101,75)	4620 = 101 • 45 + 75
gcd (75, 26)	101 = 75.1 + 26/
qcd (26, 23)	75=26.2 +23/
gcd(23,3)	26=23.1+3/
gcd(3,2)	23=3.7+2/
gcd(a,1)	3=2.1+1/
gcd(1,0)	2=1.2+0

Then use the pulverizer to find the linear combination

Answer:

1601 is the inverse of 101 modulo 4620.

In other words

If 101d≡1 mod 4620

Then d = 1601

^{*}Follow the same format for part b: Answer 89

RACKET