## Lecture #28: Calculations with Itô's Formula

Example 17.1 (Assignment #4, problem #10). Suppose that  $\{B_t, t \geq 0\}$  is a standard Brownian motion with  $B_0 = 0$ . Determine an expression for

$$\int_0^t \sin(B_s) \, \mathrm{d}B_s$$

that does not involve Itô integrals means no Brownian integral dW(s)

**Solution.** Since Version I of Itô's formula tells us that

$$f(B_t) - f(B_0) = \int_0^t f'(B_s) dB_s + \frac{1}{2} \int_0^t f''(B_s) ds,$$

if we choose  $f'(x) = \sin(x)$  so that  $f(x) = -\cos(x)$  and  $f''(x) = \cos(x)$ , then

$$-\cos(B_t) + \cos(B_0) = \int_0^t \sin(B_s) dB_s + \frac{1}{2} \int_0^t \cos(B_s) ds.$$

The fact that  $B_0 = 0$  implies

$$\int_0^t \sin(B_s) \, dB_s = 1 - \cos(B_t) - \frac{1}{2} \int_0^t \cos(B_s) \, ds.$$

**Example 17.2** (Assignment #4, problem #1). Suppose that  $\{B_t, t \geq 0\}$  is a Brownian motion starting at 0. If the process  $\{X_t, t \geq 0\}$  is defined by setting

$$X_t = \exp\{B_t\},\,$$

use Itô's formula to compute  $dX_t$ .

**Solution.** Version I of Itô's formula tells us that

$$df(B_t) = f'(B_t) dB_t + \frac{1}{2}f''(B_t) dt$$

so that if  $f(x) = e^x$ , then

$$d \exp\{B_t\} = \exp\{B_t\} dB_t + \frac{1}{2} \exp\{B_t\} dt.$$

Equivalently, if  $X_t = \exp\{B_t\}$ , then

$$\mathrm{d}X_t = X_t \,\mathrm{d}B_t + \frac{X_t}{2} \,\mathrm{d}t.$$

**V** Example 17.3 (Assignment #4, problem #8). Suppose that  $\{B_t, t \geq 0\}$  is a standard Brownian motion with  $B_0 = 0$ . Consider the process  $\{Y_t, t \geq 0\}$  defined by setting  $Y_t = B_t^k$ where k is a positive integer. Use Itô's formula to show that  $Y_t$  satisfies the SDE

$$dY_t = kY_t^{1-1/k} dB_t + \frac{k(k-1)}{2} Y_t^{1-2/k} dt.$$

**Solution.** Version I of Itô's formula tells us that

$$df(B_t) = f'(B_t) dB_t + \frac{1}{2} f''(B_t) dt$$

so that if  $f(x) = x^k$ , then  $f'(x) = kx^{k-1}$  and  $f''(x) = k(k-1)x^{k-2}$  so that

$$dB_t^k = kB_t^{k-1} dB_t + \frac{k(k-1)}{2} B_t^{k-2} dt.$$

Writing  $Y_t = B_t^k$  gives

$$dY_t = kY_t^{1-1/k} dB_t + \frac{k(k-1)}{2} Y_t^{1-2/k} dt.$$

**/Example 17.4** (Assignment #4, problem #5). Consider the Itô process  $\{Y_t, t \geq 0\}$  described by the stochastic differential equation

$$dY_t = 0.4 dB_t + 0.1 dt.$$

If the process  $\{X_t, t \geq 0\}$  is defined by  $X_t = e^{0.5Y_t}$ , determine  $dX_t$ .

**Solution.** Version III of Itô's formula tells us that

$$df(Y_t) = f'(Y_t) dY_t + \frac{1}{2} f''(Y_t) d\langle Y \rangle_t$$

 $\mathrm{d}f(Y_t) = f'(Y_t)\,\mathrm{d}Y_t + \frac{1}{2}f''(Y_t)\,\mathrm{d}\langle Y\rangle_t$  isme brownian process ki jagh Yt k respect me diff ho jayega coz Yt is

so that if  $f(y) = e^{0.5y}$ , then how Xt evolves means finding dXt

$$d\exp\{0.5Y_t\} = (0.5)\exp\{0.5Y_t\} dY_t + \frac{(0.5)^2}{2}\exp\{0.5Y_t\} d\langle Y \rangle_t.$$

Since  $dY_t = 0.4 dB_t + 0.1 dt$ , we conclude that  $d\langle Y \rangle_t = (0.4)^2 dt = 0.16 dt$  and so

$$d\exp\{0.5Y_t\} = (0.5)\exp\{0.5Y_t\}(0.4\,dB_t + 0.1\,dt) + \frac{(0.5)^2}{2}\exp\{0.5Y_t\}(0.16\,dt).$$

Writing  $X_t = e^{0.5Y_t}$  and collecting like terms gives

$$\mathrm{d}X_t = 0.2X_t \,\mathrm{d}B_t + 0.07X_t \,\mathrm{d}t.$$

**Example 17.5** (Assignment #4, problem #11). Suppose that  $\{B_t, t \geq 0\}$  is a standard Brownian motion with  $B_0 = 0$ , and suppose further that the process  $\{X_t, t \geq 0\}$ ,  $X_0 = a > 0$ , satisfies the stochastic differential equation

$$\mathrm{d}X_t = X_t \,\mathrm{d}B_t + \frac{1}{X_t} \,\mathrm{d}t.$$

(a) If  $f(x) = x^2$ , determine  $df(X_t)$ .

jiska function ho usi k respect me diff kro don't directly put dt use d<X>t

(b) If  $f(t,x) = t^2x^2$ , determine  $df(t,X_t)$ .

Solution. Version III of Itô's formula tells us that

$$df(X_t) = f'(X_t) dX_t + \frac{1}{2} f''(X_t) d\langle X \rangle_t$$

so that

$$\sqrt{\mathrm{d}(X_t^2)} = 2X_t \,\mathrm{d}X_t + \,\mathrm{d}\langle X \rangle_t.$$

Version IV of Itô's formula tells us that

$$df(t, X_t) = \dot{f}(t, X_t) dt + f'(t, X_t) dX_t + \frac{1}{2} f''(t, X_t) d\langle X \rangle_t$$

so that

$$d(t^2 X_t^2) = 2t X_t^2 dt + 2t^2 X_t dX_t + t^2 d\langle X \rangle_t.$$

Since

$$dX_t = X_t dB_t + \frac{1}{X_t} dt,$$

we conclude that

$$\mathrm{d}\langle X\rangle_t = X_t^2 \,\mathrm{d}t.$$

Thus.

(a) 
$$d(X_t^2) = 2X_t^2 dB_t + (2 + X_t^2) dt$$
, and

(b) 
$$d(t^2X_t^2) = 2t^2X_t^2 dB_t + (2tX_t^2 + 2t^2 + t^2X_t^2) dt$$
.

**Example 17.6** (Assignment #4, problem #7). Suppose that  $g : \mathbb{R} \to [0, \infty)$  is a bounded, piecewise continuous, deterministic function. Assume further that  $g \in L^2([0, \infty))$  so that the Wiener integral

$$I_t = \int_0^t g(s) \, \mathrm{d}B_s$$

is well defined for all  $t \geq 0$ . Define the continuous-time stochastic process  $\{M_t, t \geq 0\}$  by setting

$$M_t = I_t^2 - \int_0^t g^2(s) \, ds = \left( \int_0^t g(s) \, dB_s \right)^2 - \int_0^t g^2(s) \, ds.$$

Use Itô's formula to prove that  $\{M_t, t \geq 0\}$  is a continuous-time martingale.

Solution. If

$$I_t = \int_0^t g(s) \, \mathrm{d}B_s,$$

then  $dI_t = g(t) dB_t$  so that  $d\langle I \rangle_t = g^2(t) dt$ . If

$$M_t = I_t^2 - \int_0^t g^2(s) \, \mathrm{d}s,$$

then written in differential form we have

$$dM_t = d(I_t^2) - g^2(t) dt.$$

Version III of Itô's formula implies

$$d(I_t^2) = 2I_t dI_t + d\langle I \rangle_t.$$

Substituting back therefore gives

$$dM_t = d(I_t^2) - g^2(t) dt = 2I_t dI_t + d\langle I \rangle_t - g^2(t) dt = 2g(t)I_t dB_t + g^2(t) dt - g^2(t) dt$$
  
= 2g(t)I<sub>t</sub> dB<sub>t</sub>.

Since Itô integrals are martingales, we conclude that  $\{M_t, t \geq 0\}$  is a continuous-time martingale.

**Example 17.7** (Assignment #4, problem #9). Suppose that  $\{X_t, t \geq 0\}$  is a time-inhomogeneous Ornstein-Uhlenbeck-type process defined by the SDE

$$dX_t = \sigma(t) dB_t - a(X_t - g(t)) dt$$

where g and  $\sigma$  are (sufficiently regular) deterministic functions of time. If  $Y_t = \exp\{X_t + ct\}$ , use Itô's formula to compute  $dY_t$ .

Solution. If  $dX_t = \sigma(t) dB_t - a(X_t - g(t)) dt$  and  $Y_t = \exp\{X_t + ct\}$ , then Version IV of Itô's formula implies that

$$dY_t = cY_t dt + Y_t dX_t + \frac{Y_t}{2} d\langle X \rangle_t.$$

Since

$$d\langle X\rangle_t = \sigma^2(t)dt,$$

we conclude that

$$\frac{\mathrm{d}Y_t}{Y_t} = \sigma(t)\,\mathrm{d}B_t + \left[c - a(X_t - g(t)) + \frac{\sigma^2(t)}{2}\right]\,\mathrm{d}t.$$

Since we want a stochastic differential equation for  $Y_t$ , we should really substitute back for  $X_t$  in terms of  $Y_t$ . Solving  $Y_t = \exp\{X_t + ct\}$  for  $X_t$  gives  $X_t = \log(Y_t) - ct$  so that  $\limsup$  substituted in terms

of Yt

 $\frac{\mathrm{d}Y_t}{Y_t} = \sigma(t) \,\mathrm{d}B_t + \left[c - a(\log(Y_t) - ct - g(t)) + \frac{\sigma^2(t)}{2}\right] \,\mathrm{d}t$  $= \sigma(t) \,\mathrm{d}B_t + \left[c(1+at) - a\log(Y_t) + ag(t) + \frac{\sigma^2(t)}{2}\right] \,\mathrm{d}t.$ 

## use the method of ln(X t+s/X s)

**Example 17.8** (Assignment #4, problem #2). Suppose that the price of a stock  $\{X_t, t \geq 0\}$  follows geometric Brownian motion with drift 0.05 and volatility 0.3 so that it satisfies the stochastic differential equation

$$dX_t = 0.3X_t dB_t + 0.05X_t dt.$$

If the price of the stock at time 2 is 30, determine the probability that the price of the stock at time 2.5 is between 30 and 33.

**Solution.** Since the price of the stock is given by geometric Brownian motion

$$dX_t = 0.3X_t dB_t + 0.05X_t dt,$$

we can read off the solution, namely

$$X_t = X_0 \exp\left\{0.3B_t + \left(0.05 - \frac{0.3^2}{2}\right)t\right\} = X_0 \exp\{0.30B_t + 0.005t\}.$$

Therefore,

$$\mathbf{P}\{30 \le X_{2.5} \le 33 | X_2 = 30\}$$

$$= \mathbf{P} \left\{ \frac{\log\left(\frac{30}{X_0}\right) - 0.0125}{0.30} \le B_{2.5} \le \frac{\log\left(\frac{33}{X_0}\right) - 0.0125}{0.30} \,\middle|\, B_2 = \frac{\log\left(\frac{30}{X_0}\right) - 0.01}{0.30} \right\}$$

$$= \mathbf{P} \left\{ \frac{\log\left(\frac{30}{X_0}\right) - 0.0125}{0.30} - \frac{\log\left(\frac{30}{X_0}\right) - 0.01}{0.30} \le B_{0.5} \le \frac{\log\left(\frac{33}{X_0}\right) - 0.0125}{0.30} - \frac{\log\left(\frac{30}{X_0}\right) - 0.01}{0.30} \right\}$$

$$= \mathbf{P} \left\{ -\frac{0.0025}{0.30} \le B_{0.5} \le \frac{\log\left(\frac{33}{30}\right) - 0.0025}{0.30} \right\}$$

using the stationarity of Brownian increments. If  $Z \sim \mathcal{N}(0,1)$  so that  $B_{0.5} \sim \sqrt{0.5} Z$ , then

$$P\{-0.00833 \le B_{0.5} \le 0.3094\} = P\{-0.0118 \le Z \le 0.4375\} = 0.1587.$$

**Remark.** The solution to the previous exercise can be generalized as follows. Suppose that  $\{X_t, t \geq 0\}$  is geometric Brownian motion given by

$$dX_t = \sigma X_t dB_t + \mu X_t dt$$

so that

$$X_t = X_0 \exp\left\{\sigma B_t + \left(\mu - \frac{\sigma^2}{2}\right)t\right\}.$$

If  $s \geq 0$ , t > 0, then

$$\log\left(\frac{X_{t+s}}{X_s}\right) = \sigma(B_{t+s} - B_s) + \left(\mu - \frac{\sigma^2}{2}\right)t.$$

Using the facts that (i)  $B_{t+s} - B_s$  is independent of  $B_s$ , and (ii)  $B_{t+s} - B_s \sim B_t \sim \mathcal{N}(0, t)$  implies that (i)  $\log (X_{t+s}/X_s)$  is independent of  $\log X_s$ , and (ii)

$$\log\left(\frac{X_{t+s}}{X_s}\right) \sim \left(\frac{X_t}{X_0}\right) \sim \mathcal{N}\left(\left(\mu - \frac{\sigma^2}{2}\right)t, \, \sigma^2 t\right).$$

Therefore, we can conclude that if 0 < a < b and c > 0 are constants, then

imp

$$\begin{aligned} \mathbf{P}\{a \leq X_{t+s} \leq b | X_s = c\} &= \mathbf{P}\left\{\log\left(\frac{a}{c}\right) \leq \log\left(\frac{X_{t+s}}{X_s}\right) \leq \log\left(\frac{b}{c}\right)\right\} \\ &= \mathbf{P}\left\{\log\left(\frac{a}{c}\right) \leq \log\left(\frac{X_t}{X_0}\right) \leq \log\left(\frac{b}{c}\right)\right\} \\ \text{write} &= \mathbf{P}\left\{\frac{\log\left(\frac{a}{c}\right) - \left(\mu - \frac{\sigma^2}{2}\right)t}{\sigma\sqrt{t}} \leq Z \leq \frac{\log\left(\frac{b}{c}\right) - \left(\mu - \frac{\sigma^2}{2}\right)t}{\sigma\sqrt{t}}\right\} \end{aligned}$$

where  $Z \sim \mathcal{N}(0, 1)$ .

**Example 17.9** (Assignment #4, problem #3). Consider the Itô process  $\{X_t, t \geq 0\}$  described by the stochastic differential equation

$$\mathrm{d}X_t = 0.10X_t \,\mathrm{d}B_t + 0.25X_t \,\mathrm{d}t.$$

Calculate the probability that  $X_t$  is at least 5% higher than  $X_0$ 

- (a) at time t = 0.01, and
- (b) at time t = 1.

**Solution.** Since the price of the stock is given by geometric Brownian motion

$$dX_t = 0.25X_t dt + 0.10X_t dB_t,$$

we can read off the solution, namely

$$X_t = X_0 \exp\left\{0.10B_t + \left(0.25 - \frac{0.10^2}{2}\right)t\right\} = X_0 \exp\{0.10B_t + 0.245t\}.$$

Therefore, if  $Z \sim \mathcal{N}(0,1)$ , then

$$\mathbf{P}\{X_t \ge 1.05X_0\} = \mathbf{P}\left\{B_t \ge \frac{\log(1.05) - 0.245t}{0.10}\right\} = \mathbf{P}\left\{Z \ge \frac{\log(1.05) - 0.245t}{0.10\sqrt{t}}\right\}.$$

- (a) If t = 0.01, then  $\mathbf{P}\{X_{0.01} \ge 1.05X_0\} = \mathbf{P}\{Z \ge 4.634\} = 0.000002$ .
- (b) If t = 1, then  $\mathbf{P}\{X_1 \ge 1.05X_0\} = \mathbf{P}\{Z \ge -1.962\} = 0.9751$ .

**Example 17.10** (Assignment #4, problem #4). Consider the Itô process  $\{X_t, t \geq 0\}$  described by the stochastic differential equation

$$dX_t = 0.05X_t dB_t + 0.1X_t dt, \quad X_0 = 35.$$

Compute  $P\{X_5 \le 48\}$ .

Solution. Since the price of the stock is given by geometric Brownian motion

$$dX_t = 0.1X_t dt + 0.05X_t dB_t, \quad X_0 = 35,$$

we can read off the solution, namely

$$X_t = 35 \exp\left\{0.05B_t + \left(0.1 - \frac{0.05^2}{2}\right)t\right\} = 35 \exp\{0.05B_t + 0.09875t\}.$$

Therefore, if  $Z \sim \mathcal{N}(0,1)$ , then substitute t=5 in Xt and substitute Xt in P

$$\mathbf{P}\{X_5 \le 48\} = \mathbf{P}\{B_5 \le -3.5579\} = \mathbf{P}\left\{Z \le \frac{-3.5579}{\sqrt{5}}\right\} = \mathbf{P}\{Z \le -1.5911\} = 0.0558.$$

**Example 17.11** (Assignment #4, problem #12). It follows from Version II of Itô's formula that if f(t,x) satisfies the partial differential equation

$$\dot{f}(t,x) + \frac{1}{2}f''(t,x) = 0,$$

then  $f(t, B_t)$  is a martingale.

- If  $f(t,x) = x^5 10tx^3 + 15t^2x$ , then  $f(t,B_t)$  is a martingale.
- If  $f(t,x) = x^6 15x^4t + 45t^2x^2 15t^3$ , then  $f(t,B_t)$  is a martingale.
- If  $f(t,x) = e^{t/2}\cos(x)$ , then  $f(t,B_t)$  is a martingale.
- $f(t,x) = -e^{-t/2}\cos(x)$ , then  $f(t,B_t)$  is a martingale.
- $f(t,x) = e^{x-t/2}$ , then  $f(t,B_t)$  is a martingale.