Homework 7	Problem 1	2
Dylan Hu	Problem 2	4
Professor Zhuolun Yang	Problem 3	6
APMA 0360 — Partial Differential Equations	Problem 4	7
April 21, 2024		•

Problem 1. Find the solution to the boundary value problem on a wedge:

$$\begin{cases} \Delta u = 0, & 0 < r < 1, \quad 0 < \theta < \pi/2, \\ u(r, 0) = 0, & 0 < r < 1, \\ u(r, \pi/2) = 0, & 0 < r < 1, \\ u(1, \theta) = f(\theta), & 0 < \theta < \pi/2. \end{cases}$$

Hint. Be careful that $\theta \in (0, \pi/2)$, we do not have periodic boundary condition in θ . And the formulas for Fourier coefficients are slightly different than what we have when $\theta \in (0, \pi)$ or $\theta \in (0, 2\pi)$.

Solution. First, we recall that the Laplacian in polar coordinates is given by

$$\Delta u = u_{rr} + \frac{u_r}{r} + \frac{u_{\theta\theta}}{r^2}.$$

Using separation of variables, we assume that $u(r,\theta) = R(r)\Theta(\theta)$. Then Laplace's equation becomes

$$R''\Theta + \frac{R'\Theta}{r} + \frac{R\Theta''}{r^2} = 0 \iff \frac{r^2R'' + rR'}{R} = -\frac{\Theta''}{\Theta} = \lambda.$$

The boundary conditions in θ give $\Theta(0) = \Theta\left(\frac{\pi}{2}\right) = 0$. We solve the ODE in θ first.

$$\begin{cases} \Theta'' + \lambda \Theta = 0, & 0 < \theta < \frac{\pi}{2}, \\ \Theta(0) = 0, & 0 < \theta < \frac{\pi}{2}, \\ \Theta\left(\frac{\pi}{2}\right) = 0, & 0 < \theta < \frac{\pi}{2}. \end{cases}$$

Case 1: $\lambda < 0$. Let $\lambda = -\omega^2$ where $\omega > 0$.

$$\Theta''(\theta) = \omega^2 \Theta(\theta) \implies \Theta(\theta) = Ae^{\omega \theta} + Be^{-\omega \theta}$$

The boundary conditions give

$$\begin{cases} \Theta(0) = A + B = 0, \\ \Theta\left(\frac{\pi}{2}\right) = Ae^{\omega\pi/2} + Be^{-\omega\pi/2} = 0. \end{cases}$$

By substituting the first equation into the second, we find that $A\left(e^{\omega\pi/2} - e^{-\omega\pi/2}\right) = 0$, and we see that the only solution is $A = B = 0 \implies \Theta(\theta) = 0$.

Case 2: $\lambda = 0$. Then $\Theta'' = 0 \implies \Theta(\theta) = A + B\theta$. The boundary conditions give $A = A + B\frac{\pi}{2} = 0$, and we find that $A = B = 0 \implies \Theta(\theta) = 0$.

Case 3: $\lambda > 0$. Let $\lambda = \omega^2$ where $\omega > 0$.

$$\Theta''(\theta) = -\omega^2 \Theta(\theta) \implies \Theta(\theta) = A\cos(\omega\theta) + B\sin(\omega\theta).$$

Using the boundary conditions:

$$\Theta(0) = A = 0, \quad \Theta\left(\frac{\pi}{2}\right) = B\sin\left(\frac{\omega\pi}{2}\right) = 0.$$

Then $\omega \frac{\pi}{2} = n\pi$ for some $n \in \mathbb{Z}$, and we find that $\omega = 2n$. Thus, $\Theta(\theta) = b_n \sin(2n\theta)$ for n = 1, 2, 3, ... and $\lambda = 4n^2$.

Now we solve the ODE in *r*.

$$\frac{r^2R'' + rR'}{R} = 4n^2 \implies r^2R'' + rR' - 4n^2R = 0, \quad n = 1, 2, 3, \dots$$

We recognize this as a Cauchy-Euler equation, and we make the substitution $R(r) = r^{\alpha}$.

$$r^{2}\alpha(\alpha - 1)r^{\alpha - 2} + r\alpha r^{\alpha - 1} - 4n^{2}r^{\alpha} = 0$$

$$r^{\alpha}(\alpha^{2} - \alpha + \alpha - 4n^{2}) = 0$$

$$\alpha^{2} - 4n^{2} = 0 \implies \alpha = \pm 2n.$$

This gives us two linearly independent solutions r^{2n} and r^{-2n} , so the general solution is

$$R(r) = Cr^{-2n} + Dr^{2n}, \quad n = 1, 2, 3, ...$$

However, we must have that the solution is bounded at r = 0, so we must have C = 0.

The general solution for $u(r, \theta)$ is

$$u(r,\theta) = \sum_{n=1}^{\infty} b_n r^{2n} \sin(2n\theta).$$

The boundary condition $u(1, \theta) = f(\theta)$ gives

$$f(\theta) = \sum_{n=1}^{\infty} b_n \sin(2n\theta).$$

We wish to find the Fourier coefficients b_n . If we multiply both sides by $\sin(2k\theta)$ and integrate from 0 to $\pi/2$, we find that

$$\int_0^{\pi/2} f(\theta) \sin(2k\theta) d\theta = \sum_{n=1}^{\infty} b_n \int_0^{\pi/2} \sin(2n\theta) \sin(2k\theta) d\theta.$$

We can rewrite the integral on the right-hand side to be from 0 to π .

$$\int_0^{\pi/2} f(\theta) \sin(2k\theta) d\theta = \sum_{n=1}^{\infty} b_n \int_0^{\pi} \sin(n\theta) \sin(k\theta) d\theta.$$

Now we can recall that for the integral on the right hand side

$$\int_0^{\pi} \sin(n\theta) \sin(k\theta) d\theta = \langle \sin(n\theta), \sin(k\theta) \rangle_{(0,\pi)} = \begin{cases} 0 & n \neq k \\ \pi/2 & n = k \end{cases}.$$

So we find that

$$b_n = \frac{2}{\pi} \int_0^{\pi/2} f(\theta) \sin(2n\theta) d\theta.$$

and the solution is

$$u(r,\theta) = \frac{2}{\pi} \sum_{n=1}^{\infty} \left[\int_{0}^{\pi/2} f(\theta) \sin(2n\theta) d\theta \right] r^{2n} \sin(2n\theta).$$

Problem 2. Find the solution to the following boundary value problem on an annulus:

$$\begin{cases} \Delta u = 0, & 1 < r < 2, \quad 0 < \theta < 2\pi, \\ u(1, \theta) = \sin(\theta), & 0 < \theta < 2\pi, \\ u(2, \theta) = \cos(\theta), & 0 < \theta < 2\pi. \end{cases}$$

Hint. Since we are working on an annulus, we do not need boundedness condition for u at r = 0.

Solution. As in the previous problem, we arrive at

$$\frac{r^2R''+rR'}{R}=-\frac{\Theta''}{\Theta}=\lambda.$$

We solve the ODE in θ first with the implicit periodic boundary conditions. We recall from lecture that the general solution is

$$\Theta(\theta) = A_n \cos(n\theta) + B_n \sin(n\theta), \quad n = 0, 1, 2, ..., \quad \lambda = n^2.$$

We also recall that the general solution for R(r) given $\lambda = n^2$ is

$$R = \begin{cases} C_n r^{-n} + D_n r^n, & n = 1, 2, 3, \dots, \\ C_0 \ln(r) + D, & n = 0. \end{cases}$$

Here, we do not set $C_n = 0$ or $C_0 = 0$ as we do not need to enforce boundedness at r = 0 since the annulus is bounded by 1 < r < 2.

The general solution for $u(r, \theta)$ is

$$u(r,\theta) = A + B\ln(r) + \sum_{n=1}^{\infty} \left[A_n \cos(n\theta) + B_n \sin(n\theta) \right] \left[C_n r^{-n} + D_n r^n \right]$$

Using the first boundary condition, we have:

$$u(1,\theta) = A + \sum_{n=1}^{\infty} \left[A_n \cos(n\theta) + B_n \sin(n\theta) \right] \left[C_n + D_n \right] = \sin(\theta).$$

We recognize this as a Fourier series, and we can compute the Fourier coefficients.

$$A = \int_0^{2\pi} \sin(\theta) d\theta = 0$$

$$A_n = \frac{1}{\pi} \int_0^{2\pi} \sin(\theta) \cos(n\theta) d\theta = 0$$

$$B_n = \frac{1}{\pi} \int_0^{2\pi} \sin(\theta) \sin(n\theta) d\theta = \begin{cases} \frac{1}{C_1 + D_1} & n = 1\\ 0 & n \neq 1 \end{cases}$$

Now we have

$$u(r,\theta) = B \ln(r) + \frac{1}{C_1 + D_1} \sin(\theta) [C_1 + D_1] = B \ln(r) + \sin(\theta)$$

Using the second boundary condition, we have:

$$u(2,\theta) = B\ln(2) + \sin(\theta) = \cos(\theta) \implies B = \frac{\cos(\theta) - \sin(\theta)}{\ln(2)}$$

The solution is

$$u(r,\theta) = \frac{\ln(r)}{\ln(2)} (\cos(\theta) - \sin(\theta)) + \sin(\theta).$$

Problem 3. Consider the following harmonic function in a unit disk with boundary value:

$$\begin{cases} \Delta u = 0, & 0 < r < 1, \quad 0 < \theta < 2\pi, \\ u(1, \theta) = 1 + 3\sin(2\theta), & 0 < \theta < 2\pi. \end{cases}$$

Without solving the solution explicitly, answer the following questions:

- (a) What is the maximum value of u in the unit disk $\{x^2 + y^2 \le 1\}$?
- (b) What is the value of u at the origin?

Solution.

- (a) By the maximum principle, the maximum value of u in the unit disk is the maximum value of u on the boundary. The maximum value of u on the boundary is 1 + 3, so the maximum value of u in the unit disk is 4.
- (b) The origin is the center of the disk, so the value of u at the origin is the average at the boundary by the mean value property.

$$\frac{1}{2\pi} \int_0^{2\pi} (1 + 3\sin(2\theta)) d\theta$$

$$= \frac{1}{2\pi} \int_0^{2\pi} 1 d\theta + \frac{3}{2\pi} \int_0^{2\pi} \sin(2\theta) d\theta$$

$$= 1 + 0$$

$$= 1.$$

Problem 4. Let Ω be a bounded connected open set. The goal of this problem is to show the uniqueness of harmonic function with Dirichlet boundary condition by an energy method.

- (a) Recall that for any vector field $\overrightarrow{A} = (A_1, A_2)$, $\operatorname{div} \overrightarrow{A} = A_{1x} + A_{2y}$, and for any scalar function f, $\nabla f = (f_x, f_y)$. Verify that $\operatorname{div}(u\nabla u) = u_x^2 + u_y^2 + u\Delta u.$
- (b) Recall the divergence theorem from multivariable calculus:

$$\int_{\Omega} \operatorname{div} \overrightarrow{A} \, \mathrm{d}x \, \mathrm{d}y = \int_{\partial \Omega} \overrightarrow{A} \cdot n \, \mathrm{d}S,$$

where n is the unit outer normal vector on $\partial\Omega$. Use the divergence theorem with $\overrightarrow{A} = u\nabla u$ to show that the only function satisfying

$$\begin{cases} \Delta u = 0, & in \Omega, \\ u = 0 & on \partial \Omega \end{cases}$$

is 0.

Solution.

(a)

$$\begin{split} \operatorname{div} \left(u \nabla u \right) &= \operatorname{div} \left(u \left(u_x, u_y \right) \right) \\ &= \operatorname{div} \left(u u_x, u u_y \right) \\ &= \left(u u_x \right)_x + \left(u u_y \right)_y = u_x^2 + u u_{xx} + u_y^2 + u u_{yy} \\ &= u_x^2 + u_y^2 + u \left(u_{xx} + u_{yy} \right) \\ &= u_x^2 + u_y^2 + u \Delta u. \end{split}$$

(b) By the divergence theorem,

$$\int_{\Omega} \operatorname{div}(u \nabla u) \, \mathrm{d}x \, \mathrm{d}y = \int_{\partial \Omega} u \nabla u \cdot n \, \mathrm{d}S.$$

Since u = 0 on $\partial \Omega$, we have

$$\int_{\Omega} \operatorname{div}(u \nabla u) \, \mathrm{d}x \, \mathrm{d}y = 0.$$

By part (a), we have

$$\int_{\Omega} \left(u_x^2 + u_y^2 + u \Delta u \right) dx dy = 0.$$

Since *u* is harmonic, $\Delta u = 0$, so we have

$$\int_{\Omega} \left(u_x^2 + u_y^2 \right) \mathrm{d}x \, \mathrm{d}y = 0.$$

Since $u_x^2 + u_y^2 \ge 0$, we must have that $u_x^2 + u_y^2 = 0$, so $u_x = u_y = 0$. Thus, u is constant, and since u = 0 on $\partial\Omega$, we must have that u = 0 in Ω .