Solving Trigonometric Equations 20.4

- using properties of sine, cosine and tangent to solve for an unknown variable
- using inverse trigonometric functions to solve for an unknown variable

Example 20.4.1. Solve for x.

 $4\cos x + 1 = -1$

Want the actual angle(s)

$$4\cos x + 1 = -1$$
 $4\cos x + 1 = -1$
 $\cos x = -2$
 $\cos x = -\frac{1}{2}$
 $x = \frac{2\pi}{8} + 2\pi\pi$ or $\frac{4\pi}{8} + 2\pi\pi$
 $x = \frac{2\pi}{8} + 2\pi\pi$ or $\frac{4\pi}{8} + 2\pi\pi$

Definition 20.4.2. A trigonometric equation is an equation in which the variable to be solved for is inside a trigonometric function.

Strategy 20.4.3. If we can solve the equation to $\sin u = k$, $\cos u = k$ or $\tan u = k$, then we can use inverse trig functions to help solve trigonometric equations!

Example 20.4.4. Solve for θ .

MATH 111 Lecture Notes

apple 20.4.4. Solve for
$$\theta$$
.

$$2\sin^{2}(\theta) - \sin(\theta) = 1$$

$$3\sin^{2}(\theta) - \sin^{2}(\theta) = 1$$

$$3\sin^{2}$$

Strategy 20.4.5. Don't forget the Pythagorean identity!

$$\sin^2(x) + \cos^2(x) = 1$$

Example 20.4.6. Solve for θ .

$$\frac{2\cos^{2}(\theta) + \sin(\theta) = 1}{1 - \sin^{2}\Theta}$$

$$\Rightarrow 2(1 - \sin^{2}\Theta) + \sin\Theta = 1$$

$$2 - 2\sin^{2}\Theta + \sin\Theta - 1 = 0$$

$$-2\sin^{2}\Theta + \sin\Theta + 1 = 0$$

$$\cos^{2}\theta + \sin^{2}\theta + 1 = 0$$

$$\cos^{2}\theta + \sin^{2}\theta - \sin^{2}\theta - \sin^{2}\theta - 1 = 0$$

$$\frac{11\pi}{G} + 2\pi\pi, \text{ or } 2\sin^{2}\theta - \sin^{2}\theta - 1 = 0$$

$$\frac{11\pi}{G} + 2\pi\pi, \text{ or } 2\sin^{2}\theta - \sin^{2}\theta - 1 = 0$$

$$X_5 - 1$$
 or I

Example 20.4.7. Find all $x \in [-2\pi, 2\pi]$ such that

 $\tan x \sec x = \tan x$.

tactor tux rounties to save ton u= K sec "= K" tonx secx - tanx = 0 or tany = 0 When 4= NTC tanx(sec x -1) =0 and then divide tonx=0 X= ntc ~0R~ Secx=1 T 13 Sometimes COSX= 2KIT X= 2010 tanxsecx = tanx \Rightarrow $x = n\pi$ x = \(\frac{2}{2} - 2π \, -π \, 0 \, π \, 2π \)

Example 20.4.8. Find all $x \in [0, 2\pi]$ such that

$$\cos(2x) = \frac{\sqrt{3}}{2}.$$

$$\cos(2x) = \frac{\sqrt{3}}{2}.$$

$$\cos(2x) = \frac{\sqrt{3}}{2}.$$

$$\cos(2x) = \frac{\sqrt{3}}{2}.$$

$$2x = \frac{11\pi}{6}$$

$$x = \frac{11\pi}{12}$$

20.6 Trigonometric Identities

Goals

- $\sin(A+B) \neq \sin A + \sin B$
- sum formulas
- using the sum formulas to derive other trig identities
- using trig identities to solve trig equations

Think, Pair, Share 20.6.1. Is $\sin(A+B) = \sin(A) + \sin(B)$? Why or why not?

try
$$A = \pi I_Z$$
 $B = \pi I_Z$
 $Sin(A+B) = Sin(\pi I_Z + \pi I_Z) = Sin(\pi I_Z) = O$
 $Sin(A) + Sin(B) = Sin(\pi I_Z) + Sin(\pi I_Z) = Z$

Proposition 20.6.2 (Addition Formulas). The correct identities are

$$\sin(A+B) = \sin A \cos B + \sin B \cos A$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B$$

RJS McDonald SIN (A+B)

MATH 111 Lecture Notes

Example 20.6.3. From the addition formulas, verify the double-angle formulas

$$A = x \quad S = x \quad (a) \sin 2x = 2 \sin x \cos x$$

(c)
$$\cos 2x = 2\cos^2 x - 1$$

$$2iN_{5}X = 1 - \cos_{5}X$$

$$2iN_{5}X + \cos_{5}X = 1$$

$$\cos_{5}X - \sin_{5}X$$

=
$$S\cos_3 x - I$$

= $\cos_3 (x) - (I - \cos_3 x)$
 $\cos_3 x = \cos_3 x - \sin_3 x$

$$(d) \cos 2x = 1 - 2\sin^2 x$$

Cos (A+B) = Cos A Cos B - Sin A Sin B
(b)
$$\cos 2x = \cos^2 x - \sin^2 x$$

$$\frac{=\cos_3 x - 2\omega_3 X}{\cos(x+x) = \cos x \cos x - \sin x \sin x}$$

Example 20.6.4. From the last two formulas for $\cos 2x$, derive the power-reducing formulas

(e)
$$\cos^2 x = \frac{1}{2}(1 + \cos 2x)$$

(f)
$$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$$
 Eqn (2) **For** $\sin^2 x$

Example 20.6.5. From the formula $\sin^2 x + \cos^2 x = 1$, derive the following

(e)
$$\tan^2 x + 1 = \sec^2 x$$

$$\frac{\text{co2}_{3}x}{2(N_{5}x+\cos_{5}x+\cos_{5}x+\cos_{5}x+\cos_{5}x+\cos_{5}x+\cos_{5}x}$$

 $\frac{\text{divide by } \sin^2 x}{(f) \ 1 + \cot^2 x = \csc^2 x}$

20.6.1Extra Examples

x= ±1

Example 20.6.6. Solve.

CoSZX = 2 CoS2X - 1

(a) $\cos^2 x - \cos 2x = 0$ for $x \in (-\infty, \infty)$

 $\cos_{3}x + (\cos_{5}x + \sin_{5}x) = 0$ $\cos_{5}x - (\cos_{5}x - \sin_{5}x) = 0$ $\cos_{5}x - (\cos_{5}x - i) = -\cos_{5}x + i = 0$ $\cos_{5}x - (\cos_{5}x - i) = -\cos_{5}x + i = 0$

(b) $2\sin x \cos x = \frac{\sqrt{3}}{2} \text{ for } x \in [0, 2\pi]$

€ 200 5× = 3

€ (05X=±/ art 10,310,510

(c) $\sin^2 x + \cos 2x = 0$ for $x \in [0, 2\pi]$

t sub something as identity

(d) $-\cos^2 x + \frac{1}{2}\sin x + 1 = 0$ for $x \in [0, 2\pi]$