Predicting Departure Delays

Hawa Abdo, David Burke, Brianna Mitri, & Casey Wright

Webportal Homepage & Dashboards

Prediction Problem

Our goal was to predict flight delays using a combination of numeric and categorical features.

We investigated 3 options for the target variable.

- 6 classes:
 - Early
 - o On Time
 - o 1-10 min late
 - 11-30 min late
 - 31-60 min late
 - o 60+ min late
- 4 classes:
 - Early
 - On Time (0-15 min late)
 - 16-60 min late
 - o 61+ min late
- Binary
 - Not delayed: up to 15 min late
 - Delayed: 16+ min late

Data Sources

Source	Data
U.S. Bureau of Transportation Statistics	Flights originating from LAX, 2020-2024
Federal Aviation Administration (FAA)	Aircraft specifications by tail number
National Weather Service	Historical weather observations for origin (LAX) and destination airports

Data Cleaning

- Merged the different data sets
 - Aircraft specifications merged by tail number and manufacturer model code
 - Weather data merged by DateTime using an asof function
- Removed columns that contained a single value overwhelmingly (>99.9%)
 - o For example: weight class, speed
- Kept only major commercial aircraft
 - For example: removed helicopters and balloons
- Condensed categorical columns
 - Low value counts summarised as 'Other'
 - Synonymous categories combined
 - For example: Airbus and Airbus SAS
- Converted date, time, wind direction columns into cyclical format (sin, cos) to facilitate machine learning
- Verified no nulls remained
- Modeling dataset resulted in 829,906 rows and 48 columns.

Splitting for Machine Learning

- Loaded from SQLite database with SQLAlchemy
- 80% training & 20% testing
- Applied stratification
- Processed data
 - Categorical → One Hot Encoder (will handle new values better)
 - Numerical→ standard scaler
- Tried rebalancing with SMOTE
 - Generated very large files
 - Took longer to run with decreased accuracy

Modeling

We explored several modeling types with different assortments of hyperparameters.

- Random Forest
- Support Vector Machine
- Logistic Regression
- K-Nearest Neighbors
- Neural Network

Random Forest

Random Forest

Binary Classification, full tree

Label	Precision	Recall	F1
0 <= 15 min	0.85	0.99	0.91
1 > 15min	0.36	0.06	0.11
Accuracy			0.84

Binary Classification, hyperparameters determined by RandomSearchCV

Label	Precision	Recall	F1
0	0.88	0.59	0.71
1	0.22	0.60	0.32
Accuracy			0.59

Random Forest

Support Vector Machine

- Model did not complete
- Run time over 20 hours!
- Local machines and colab tried

Logistic Regression

K-Nearest Neighbors

Neural Network

Binary Classification

Label	Precision	Recall	F1
Not Delayed (0)	0.85	0.96	0.90
Delayed (1)	0.40	0.13	0.19
Accuracy			0.83

83%

The Neural Network model was selected as the best option as it reached an overall accuracy of 83%, with the best precision and recall for the Delayed category.

Deployment

Backend: Flask App holds the neural network model and preprocessor

Frontend: Web App run predictions

Thank you!

Questions/ Comments?

Thank you for listening! Let us know if you have any questions.

"This is a super-important quote"

- From an expert

Final point

A one-line description of it

Prediction Problem

What's this presentation about? Use this slide to introduce yourself and give a high level overview of the topic you're about to explain.

This is the most important takeaway that everyone has to remember.