## Problem 1:

Consider a one-dimensional particle size object that has the following initial conditions:

$$t_0 = 0, h = 1, v_0 = 1, x_0 = 2$$

The only force acting on this particle is a gravitational force with the constant -1. We consider no damping forces for this example.

Compute analytically y(t), write both the Euler implicit and explicit integration scheme; Compute the three time-steps after 0 for both approximations as well as the analytical solution, look at the error and discuss it.

## Problem 2:

Consider a one-dimensional spring as illustrated in class. The spring is fixed at the origin and at the other end of the spring there is a particle A whose motion in space we would like to compute. If there is no damping and the rest length of the spring is L=2, the spring coefficient is k=3, and mass is 1. The rest of the parameters are:

$$t_0 = 0, h = 1, v_0 = 1, x_0 = 3$$

Write both the Euler implicit and explicit integration scheme; Compute the two time-steps after 0 for explicit and one time-step after 0 for implicit.

## Problem3: Inverse problems



You are working for a spring making factory and you are required to run an experiment to determine the stiffness coefficient k of a given spring.

The setup of the experiment, illustrated in the figure above, consists of placing the spring on a horizontal rail (i.e. no gravity forces) where one end of the spring is fixed while the position of the second one is recorded by a high-speed camera (i.e. the blue dot in the illustration above). The blue dot can only move in the x-axis and all the forces in the system are along x-axis. The rest length of the spring is L = 1

The experiment consists of extending the blue dot to twice its rest length and releasing the spring. The position over time of the blue dot is recorded over time.

## Assuming that:

- you release the spring at time  $t_0 = 0$
- the camera starts recording at exactly  $t_0$
- the camera records at a frequency of 1000 fps (unit of time we use are milliseconds (0.001 seconds)
- ignore damping forces

Compute the stiffness of the spring using both the explicit and implicit Euler integration schemes. For the explicit Euler integration use the position (in x direction) in the third frame which is 1.5. For the implicit Euler scheme use the position (in x direction) in the second frame which is  $\frac{5}{3}$ .

A variation of this problem can be knowing the stiffness and estimating the damping forces

Problem4: IK



Consider the 2D Kinematic link in the image above. The target in point A (in red) and the control angles are  $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_3$ . The lengths of the kinematic arms are: 3, 2 and 3 respectively.

Assuming that we have the additional constraint  $\alpha_1 = \alpha_3$ , tailor the Jacobian method presented in class to solve the inverse kinematic problem for this chain and show the first iteration assuming  $\Delta e = {-1 \choose 0}$ . You can use the transpose of the Jacobian instead of the inverse.