Package 'flex'

September 2, 2025

Title Fuzzy Linear Squares Estimation with Explicit Formula (FLI	EX)
Version 0.1.0	
Date 2025-08-27	
Description The FLEX method, developed by Yoon and Choi (20 1_21>, performs least squares estimation for fuzzy predictors gression coefficients by minimizing the distance between obscomes. It also provides functions for fuzzifying data and infecance testing, fit indices, and confidence interval estimation.	s and outcomes, generating crisp re- served and predicted out-
License MIT + file LICENSE	
BugReports https://github.com/cwlee-quantpsych/flex/is	ssues
Depends R (>= 3.5.0)	
Encoding UTF-8	
RoxygenNote 7.3.2	
Imports ggplot2, plotly, rlang, magrittr	
NeedsCompilation no	
Author Chaewon Lee [aut, cre], Jin Hee Yoon [ctb]	
Maintainer Chaewon Lee <chaewon.lee@unc.edu></chaewon.lee@unc.edu>	
Repository CRAN	
Date/Publication 2025-09-02 06:30:07 UTC	
Contents	
coefficients coefficients.fuzzy_lm compute_ci compute_pred compute_p_values compute_res compute_t_values fuzzify_crisp_matrix	

2 coefficients

Index		19
	summary.fuzzy_lm	18
	residuals.fuzzy_lm	
	residuals	
	predictions.fuzzy_lm	
	predictions	
	plot.fuzzy_lm	
	plot	
	fuzzy_mults	
	fuzzy_lm	
	fuzzy_crisp_mult	
	fuzzy_add	
	fuzzify_crisp_vector	
	fuzzify_crisp_value	

coefficients

Define generic for coefficients

Description

A generic function to retrieve coefficients from model objects.

Usage

```
coefficients(object, ...)
```

Arguments

object The model object from which to extract coefficients.
... Additional arguments (ignored).

Value

A data frame of coefficients and related statistics.

```
# Simulate data and fit a fuzzy linear model
set.seed(123)
X_crisp <- matrix(round(runif(300, 2, 10)), nrow = 100, ncol = 3)
beta <- c(1.5, -0.8, 2.0)
Y_crisp <- round(X_crisp %*% beta + rnorm(100, mean = 0, sd = 1))
X_fuzzy <- fuzzify_crisp_matrix(X_crisp, spread = 1)
Y_fuzzy <- fuzzify_crisp_vector(Y_crisp, spread = 1)
object <- fuzzy_lm(X_fuzzy, Y_fuzzy, p = 3)
# Extract coefficients
coefficients(object)</pre>
```

coefficients.fuzzy_lm 3

Description

Accessor for Coefficients

Usage

```
## S3 method for class 'fuzzy_lm'
coefficients(object, ...)
```

Arguments

```
object An object of class fuzzy_lm.
... Additional arguments (ignored).
```

Value

A data frame of coefficients and statistics.

Examples

```
# Simulate data and fit a fuzzy linear model
set.seed(123)
X_crisp <- matrix(round(runif(300, 2, 10)), nrow = 100, ncol = 3)
beta <- c(1.5, -0.8, 2.0)
Y_crisp <- round(X_crisp %*% beta + rnorm(100, mean = 0, sd = 1))
X_fuzzy <- fuzzify_crisp_matrix(X_crisp, spread = 1)
Y_fuzzy <- fuzzify_crisp_vector(Y_crisp, spread = 1)
object <- fuzzy_lm(X_fuzzy, Y_fuzzy, p = 3)
# Extract coefficients
coefficients(object)</pre>
```

compute_ci

Compute confidence intervals for regression coefficients

Description

Compute confidence intervals for regression coefficients

Usage

```
compute_ci(beta_hat, se_beta, df, alpha = 0.05)
```

4 compute_pred

Arguments

beta_hat Numeric vector. Estimated regression coefficients.

se_beta Numeric vector. Standard errors of coefficients.

df Integer. Degrees of freedom.

alpha Numeric. Significance level (default: 0.05).

Value

A list containing lower and upper bounds of confidence intervals.

Examples

```
beta_hat <- c(0.5, 1.2) # Example regression coefficients se_beta <- c(0.1, 0.2) # Example standard errors df <- 30 # Example degrees of freedom ci <- compute_ci(beta_hat, se_beta, df) print(ci)
```

compute_pred

Compute Predictions from Fuzzy Linear Model

Description

Compute Predictions from Fuzzy Linear Model

Usage

```
compute_pred(object, X_fuzzy)
```

Arguments

object List. Result of fuzzy least squares regression containing beta_hat.

X_fuzzy List. Fuzzified predictor variables.

Value

A list of fuzzy predictions.

```
# Example setup
X_fuzzy <- list(
    list(list(l = 1, x = 2, r = 3), list(l = 4, x = 5, r = 6)),
    list(list(l = 2, x = 3, r = 4), list(l = 5, x = 6, r = 7))
)
beta_hat <- c(0.5, 1.2, -0.8)  # Example regression coefficients
object <- list(beta_hat = beta_hat)</pre>
```

compute_p_values 5

```
# Compute predictions
predictions <- compute_pred(object, X_fuzzy)
print(head(predictions, 6))</pre>
```

compute_p_values

Compute p-values for regression coefficients

Description

Compute p-values for regression coefficients

Usage

```
compute_p_values(t_values, df)
```

Arguments

df Integer. Degrees of freedom.

Value

Numeric vector of p-values for each coefficient.

Examples

```
t_values <- c(2.5, 3.0) # Example t-values
df <- 30 # Example degrees of freedom
p_values <- compute_p_values(t_values, df)
print(p_values)</pre>
```

compute_res

Compute Residuals for Fuzzy Linear Model

Description

Compute Residuals for Fuzzy Linear Model

Usage

```
compute_res(Y_fuzzy, Y_pred)
```

Arguments

Y_fuzzy List. Fuzzified observed response variables. Y_pred List. Fuzzified predicted response variables. 6 compute_t_values

Value

A list of fuzzy residuals.

Examples

```
# Example setup
Y_fuzzy <- list(
    list(1 = 2, x = 3, r = 4),
    list(1 = 5, x = 6, r = 7)
)
Y_pred <- list(
    list(1 = 1.5, x = 2.5, r = 3.5),
    list(1 = 4.5, x = 5.5, r = 6.5)
)
# Compute residuals
residuals <- compute_res(Y_fuzzy, Y_pred)
print(head(residuals, 6))</pre>
```

 $compute_t_values$

Compute t-values for regression coefficients

Description

Compute t-values for regression coefficients

Usage

```
compute_t_values(beta_hat, Y_fuzzy, Y_pred, XtX_inv)
```

Arguments

beta_hat	Numeric vector. Estimated regression coefficients.
Y_fuzzy	List. Observed fuzzy responses.
Y_pred	List. Predicted fuzzy responses.
XtX_inv	Matrix. Inverse of the XtX matrix.

Value

Numeric vector of t-values for the regression coefficients.

fuzzify_crisp_matrix 7

Examples

```
# Example setup
beta_hat <- c(0.5, 1.2)  # Example regression coefficients
Y_fuzzy <- list(
    list(1 = 2.1, x = 2.3, r = 2.5),
    list(1 = 3.1, x = 3.3, r = 3.5),
    list(1 = 4.1, x = 4.3, r = 4.5)
)  # Example fuzzy response
Y_pred <- list(
    list(1 = 2.0, x = 2.2, r = 2.4),
    list(1 = 3.0, x = 3.2, r = 3.4),
    list(1 = 4.0, x = 4.2, r = 4.4)
)  # Example predicted values
XtX_inv <- matrix(c(0.1, 0.2, 0.2, 0.4), ncol = 2)  # Example XtX_inv matrix
t_values <- compute_t_values(beta_hat, Y_fuzzy, Y_pred, XtX_inv)
print(t_values)</pre>
```

fuzzify_crisp_matrix Fuzzify a matrix of crisp values

Description

Converts a numeric matrix into a list of triangular fuzzy numbers.

Usage

```
fuzzify_crisp_matrix(crisp_matrix, spread = 1)
```

Arguments

```
crisp_matrix Numeric matrix to be fuzzified.

spread Numeric. The spread for fuzzification (default is 1).
```

Value

A list of lists representing rows of triangular fuzzy numbers.

```
set.seed(123)
matrix <- matrix(runif(9, 5, 15), nrow = 3, ncol = 3)
fuzzify_crisp_matrix(matrix, spread = 1.5)</pre>
```

fuzzify_crisp_value Fuzzify a single crisp value

Description

Converts a crisp value into a triangular fuzzy number with a specified spread.

Usage

```
fuzzify_crisp_value(crisp_value, spread = 1)
```

Arguments

crisp_value Numeric. The crisp value to be fuzzified.

spread Numeric. The spread for fuzzification (default is 1).

Value

A list representing the triangular fuzzy number with components 1, x, and r.

Examples

```
fuzzify_crisp_value(10, spread = 2)
```

fuzzify_crisp_vector Fuzzify a vector of crisp values

Description

Converts a numeric vector into a list of fuzzified values using a triangular fuzzy membership function.

Usage

```
fuzzify_crisp_vector(crisp_vector, spread = 1, var_name = "Outcome")
```

Arguments

crisp_vector A numeric vector to be fuzzified.

spread A non-negative numeric value specifying the spread for the fuzzy membership

function

var_name Optional. A character string specifying a common name for all fuzzified values.

Default is NULL.

fuzzy_add 9

Value

A list of fuzzified values, where each value is represented as a list with components 1, x, and r.

Examples

```
crisp_vector <- c(10, 20, 30)
fuzzify_crisp_vector(crisp_vector, spread = 1, var_name = "Variable")</pre>
```

fuzzy_add

Add two triangular fuzzy numbers

Description

Performs the addition of two triangular fuzzy numbers.

Usage

```
fuzzy_add(X, Y)
```

Arguments

X List. First triangular fuzzy number with components 1, x, and r.

Y List. Second triangular fuzzy number with components 1, x, and r.

Value

A list representing the sum of the two fuzzy numbers.

Examples

```
X <- list(1 = 1, x = 2, r = 3)
Y <- list(1 = 2, x = 3, r = 4)
fuzzy_add(X, Y)</pre>
```

fuzzy_crisp_mult

Multiply a crisp scalar by a triangular fuzzy number

Description

Scales a triangular fuzzy number by a crisp scalar.

Usage

```
fuzzy_crisp_mult(scalar, fuzzy_num)
```

10 fuzzy_d_squared

Arguments

scalar Numeric. The scalar to multiply with the fuzzy number.

fuzzy_num List. A triangular fuzzy number with components 1, x, and r.

Value

A list representing the scaled fuzzy number.

Examples

```
scalar <- 3
fuzzy_num <- list(l = 1, x = 2, r = 3)
fuzzy_crisp_mult(scalar, fuzzy_num)</pre>
```

fuzzy_d_squared

Compute the squared distance between two fuzzy numbers

Description

Calculates the squared distance between two triangular fuzzy numbers using Diamond's metric.

Usage

```
fuzzy_d_squared(X, Y)
```

Arguments

X List. First triangular fuzzy number.

Y List. Second triangular fuzzy number.

Value

Numeric. The squared distance between X and Y.

```
X <- list(l = 1, x = 2, r = 3)
Y <- list(l = 2, x = 3, r = 4)
fuzzy_d_squared(X, Y)</pre>
```

fuzzy_lm 11

fuzzy_lm	Fuzzy Linear Regression

Description

Fits a fuzzy linear regression model given fuzzified predictors and response variables.

Usage

```
fuzzy_lm(X_fuzzy, Y_fuzzy, p, X_crisp = NULL)
```

Arguments

X_fuzzy A list of fuzzified predictor values.
 Y_fuzzy A list of fuzzified response values.
 An integer specifying the number of predictors.
 X_crisp Optional. The original crisp predictor matrix or data frame. Used to retrieve variable names. Default is NULL.

Value

A list object of class fuzzy_lm containing:

Coefficients A data frame with estimated coefficients, standard errors, t-values, p-values, and

significance stars.

Residuals The residuals from the fitted model.

Predictions The predicted fuzzified response values.

RSS The residual sum of squares.

R_squared The coefficient of determination (R-squared).

Sigma_squared The estimated variance of the residuals.

Degrees_of_Freedom

The degrees of freedom for the model.

```
# Simulate complex data for fuzzy linear regression
set.seed(123)

# Generate a dataset with 100 observations and 4 predictors
n <- 100
X_crisp <- data.frame(
   Age = round(runif(n, 20, 70)),  # Random ages between 20 and 70
   Income = round(runif(n, 20000, 120000)), # Random incomes between 20k and 120k
   Education = round(runif(n, 10, 20)),  # Random years of education between 10 and 20
   Experience = round(runif(n, 1, 40))  # Random years of work experience between 1 and 40
)</pre>
```

12 fuzzy_mults

```
# Define true coefficients
beta <- c(5.0, 1.2, -0.5, 0.8, 0.05) # Intercept and coefficients for the predictors
# Generate the crisp response variable with noise
Y_{crisp} \leftarrow round(beta[1] + as.matrix(X_{crisp}) %*% beta[-1] + rnorm(n, mean = 0, sd = 50))
# Fuzzify the predictor and response variables
X_fuzzy <- fuzzify_crisp_matrix(as.matrix(X_crisp), spread = 10) # Larger spread for predictors
Y_fuzzy <- fuzzify_crisp_vector(Y_crisp, spread = 20)</pre>
                                                            # Larger spread for responses
# Fit the fuzzy linear model
object <- fuzzy_lm(X_fuzzy, Y_fuzzy, p = 4, X_crisp = X_crisp)
# Print the coefficients
print("Fuzzy Linear Model Coefficients:")
print(object$Coefficients)
# Example residuals and predictions
print("Example Residuals:")
print(head(object$Residuals, 6))
print("Example Predictions:")
print(head(object$Predictions, 6))
```

fuzzy_mults

Multiply two triangular fuzzy numbers

Description

Computes the scalar product of two triangular fuzzy numbers.

Usage

```
fuzzy_mults(X, Y)
```

Arguments

X List. First triangular fuzzy number with components 1, x, and r.

Y List. Second triangular fuzzy number with components 1, x, and r.

Value

A scalar representing the sum of the product of the corresponding components.

```
X <- list(1 = 1, x = 2, r = 3)
Y <- list(1 = 2, x = 3, r = 4)
fuzzy_mults(X, Y)</pre>
```

plot 13

plot

Generic Plot Function

Description

This is a generic plot function that dispatches to specific plot methods based on the class of the object provided. It is used to create plots for objects such as fuzzy_lm.

Usage

```
plot(object, ...)
```

Arguments

object The object to be plotted.

... Additional arguments passed to specific plot methods.

Value

Depends on the class of object. Typically, a plot or visualization is returned.

```
# Example with fuzzy_lm:
set.seed(123)
x_crisp <- seq(4, 12, length.out = 20)
beta <- 1.5
intercept <- 2
y_crisp <- intercept + beta * x_crisp + rnorm(length(x_crisp), mean = 0, sd = 0.5)
# Fuzzify data
spread_x <- 0.5
spread_y <- 1.0
X_fuzzy <- fuzzify_crisp_matrix(matrix(x_crisp, ncol = 1), spread = spread_x)
Y_fuzzy <- fuzzify_crisp_vector(y_crisp, spread = spread_y)
# Fit fuzzy regression model
object <- fuzzy_lm(X_fuzzy, Y_fuzzy, p = 1)
# Plot
plot(object, X_fuzzy = X_fuzzy, Y_fuzzy = Y_fuzzy)</pre>
```

14 plot.fuzzy_lm

plot.fuzzy_lm

Plot Fuzzy Regression Results

Description

Visualizes the results of a fuzzy regression model. For simple regression (1 predictor), it generates a 2D plot with fuzzy intervals and regression lines. For multiple regression (2 predictors), it generates a 3D plot with cubes representing fuzzy intervals and a regression plane.

Usage

```
## S3 method for class 'fuzzy_lm'
plot(object, ...)
```

Arguments

object

An object of class fuzzy_lm.

. .

Additional arguments passed to the method, including:

- X_fuzzy: A list of fuzzified predictor variables.
- Y_fuzzy: A list of fuzzified outcome variables.

Value

A ggplot2 object for simple regression or a plotly object for multiple regression.

```
# Example 1: Simple Regression
# See above for setup example

# Example 2: Multiple Regression
set.seed(123)
n <- 100
x1_crisp <- runif(n, 5, 15)
x2_crisp <- runif(n, 10, 20)
beta <- c(3, 1.5, -0.8)
y_crisp <- beta[1] + beta[2] * x1_crisp + beta[3] * x2_crisp + rnorm(n, mean = 0, sd = 2)

X_fuzzy <- fuzzify_crisp_matrix(cbind(x1_crisp, x2_crisp), spread = 0.5)
Y_fuzzy <- fuzzify_crisp_vector(y_crisp, spread = 1.0)
object <- fuzzy_lm(X_fuzzy, Y_fuzzy, p = 2)

plot(object, X_fuzzy = X_fuzzy, Y_fuzzy = Y_fuzzy)</pre>
```

predictions 15

predictions

Define generic for predictions

Description

Define generic for predictions

Usage

```
predictions(object, ...)
```

Arguments

object An object of class fuzzy_lm. The model object.
... Additional arguments (currently ignored).

Value

A list of fuzzy predictions.

Examples

```
# Simulate data and fit a fuzzy linear model
set.seed(123)
X_crisp <- matrix(round(runif(300, 2, 10)), nrow = 100, ncol = 3)
beta <- c(1.5, -0.8, 2.0)
Y_crisp <- round(X_crisp %*% beta + rnorm(100, mean = 0, sd = 1))
X_fuzzy <- fuzzify_crisp_matrix(X_crisp, spread = 1)
Y_fuzzy <- fuzzify_crisp_vector(Y_crisp, spread = 1)
object <- fuzzy_lm(X_fuzzy, Y_fuzzy, p = 3)
# Extract predictions
head(predictions(object))</pre>
```

```
predictions.fuzzy_lm Accessor for Predictions
```

Description

Accessor for Predictions

Usage

```
## S3 method for class 'fuzzy_lm'
predictions(object, ...)
```

16 residuals

Arguments

```
object An object of class fuzzy_lm. The model object.
... Additional arguments (currently ignored).
```

Value

A list of fuzzy predictions.

Examples

```
# Simulate data and fit a fuzzy linear model
set.seed(123)
X_crisp <- matrix(round(runif(300, 2, 10)), nrow = 100, ncol = 3)
beta <- c(1.5, -0.8, 2.0)
Y_crisp <- round(X_crisp %*% beta + rnorm(100, mean = 0, sd = 1))
X_fuzzy <- fuzzify_crisp_matrix(X_crisp, spread = 1)
Y_fuzzy <- fuzzify_crisp_vector(Y_crisp, spread = 1)
object <- fuzzy_lm(X_fuzzy, Y_fuzzy, p = 3)
# Extract predictions
head(predictions(object))</pre>
```

residuals

Define generic for residuals

Description

A generic function to retrieve residuals from model objects.

Usage

```
residuals(object, ...)
```

Arguments

```
object The model object from which to extract residuals.
... Additional arguments (ignored).
```

Value

A list of fuzzy residuals.

residuals.fuzzy_lm 17

Examples

```
# Simulate data and fit a fuzzy linear model
set.seed(123)
X_crisp <- matrix(round(runif(300, 2, 10)), nrow = 100, ncol = 3)
beta <- c(1.5, -0.8, 2.0)
Y_crisp <- round(X_crisp %*% beta + rnorm(100, mean = 0, sd = 1))
X_fuzzy <- fuzzify_crisp_matrix(X_crisp, spread = 1)
Y_fuzzy <- fuzzify_crisp_vector(Y_crisp, spread = 1)
object <- fuzzy_lm(X_fuzzy, Y_fuzzy, p = 3)

# Extract residuals
head(residuals(object))</pre>
```

residuals.fuzzy_lm

Accessor for Residuals

Description

Accessor for Residuals

Usage

```
## S3 method for class 'fuzzy_lm'
residuals(object, ...)
```

Arguments

object An object of class fuzzy_lm. The model object.
... Additional arguments (currently ignored).

Value

A list of fuzzy residuals.

```
# Simulate data and fit a fuzzy linear model
set.seed(123)
X_crisp <- matrix(round(runif(300, 2, 10)), nrow = 100, ncol = 3)
beta <- c(1.5, -0.8, 2.0)
Y_crisp <- round(X_crisp %*% beta + rnorm(100, mean = 0, sd = 1))
X_fuzzy <- fuzzify_crisp_matrix(X_crisp, spread = 1)
Y_fuzzy <- fuzzify_crisp_vector(Y_crisp, spread = 1)
object <- fuzzy_lm(X_fuzzy, Y_fuzzy, p = 3)
# Extract residuals
head(residuals(object))</pre>
```

18 summary.fuzzy_lm

summary.fuzzy_lm

Summary for Fuzzy Linear Regression

Description

Summary for Fuzzy Linear Regression

Usage

```
## S3 method for class 'fuzzy_lm'
summary(object, ...)
```

Arguments

object An object of class fuzzy_lm. The model object.
... Additional arguments (currently ignored).

Value

Prints a summary of the fuzzy linear regression results.

```
# Simulate data and fit a fuzzy linear model
set.seed(123)
X_crisp <- matrix(round(runif(300, 2, 10)), nrow = 100, ncol = 3)
beta <- c(1.5, -0.8, 2.0)
Y_crisp <- round(X_crisp %*% beta + rnorm(100, mean = 0, sd = 1))
X_fuzzy <- fuzzify_crisp_matrix(X_crisp, spread = 1)
Y_fuzzy <- fuzzify_crisp_vector(Y_crisp, spread = 1)
object <- fuzzy_lm(X_fuzzy, Y_fuzzy, p = 3)

# Summarize the model
summary(object)</pre>
```

Index

```
coefficients, 2
{\tt coefficients.fuzzy\_lm, 3}
compute_ci, 3
compute_p_values, 5
compute_pred, 4
compute_res, 5
compute_t_values, 6
fuzzify_crisp_matrix, 7
fuzzify_crisp_value, 8
fuzzify_crisp_vector, 8
fuzzy_add, 9
fuzzy_crisp_mult, 9
fuzzy_d_squared, 10
fuzzy_lm, 11
\texttt{fuzzy\_mults}, \textcolor{red}{12}
plot, 13
plot.fuzzy_lm, 14
predictions, 15
predictions.fuzzy_lm, 15
residuals, 16
residuals.fuzzy_lm, 17
\verb|summary.fuzzy_lm|, 18|
```