Math 254: Analysis 1

Definitions, Theorems, and Results from the Class (Fall 2018)

Shereen Elaidi

Abstract

The purpose of this document is to review analysis 1.

Introduction

Random things we proved to get a handle on how to prove things:

- $\bullet \ \cap_{x \in [0,1]} [0,x] = \{0\}.$
- $2^n < n!$
- Let X and Y be sets. Consider the following family of sets:

$$\{V_i \mid i \in I, V_i \subseteq Y\}$$

then, $f^{-1}(\bigcup_{i \in I} V_i) = \bigcup_{i \in I} f^{-1}(V_i)$.

- $5^n 1$ is divisible by $4 \forall n > 1$.
- Bernoulli's Inequality: $\forall n \in \mathbb{N}, x \in \mathbb{R}, x \geq -1$, one has:

$$(1+x)^n \ge 1 + nx \tag{1}$$

• Every non-empty subset of the natural numbers has a smallest element.

Definition 1 (Cartesian Product). Let A and B be two sets. Then, their Cartesian Product is defined as:

$$A \times B := \{(a, b) \mid a \in A \land b \in B\}$$
 (2)

Definition 2 (Function). Let D, E be sets. A <u>function</u> f from D to E is a subset of the cartesian product $D \times E$ such that $\forall x \in D, \exists_1 \ t \in E$ such that $(x, y) \in f$. In symbols, we define:

$$f(A) := \{ f(x) \mid x \in A \} \tag{3}$$

Proposition 1 (Properties of Functions). Let $f: D \to E$ be a function and let $A, B \subseteq D$. Then, consider the following:

- $f(A \cup B) = f(A) \cup f(B)$ [well behaved with respect to unions]
- $f(A \cap B) \subseteq f(A) \cap f(B)$.

Definition 3 (Pre-Image). Let $f: D \to E$, $A \subseteq E$. Then, the **pre-image** is defined as:

$$f^{-1}(A) := \{ x \in D \mid f(x) \in A \} \tag{4}$$

Proposition 2. Let $f: D \to E$, $A, B \subseteq E$. Then:

- $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$

Math 254: Analysis 1 Page 2

Definition 4 (Injective). Let $f: D \to E$. f is said to be **injective** if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$.

Definition 5 (Surjective). Let $f: D \to E$. f is said to be <u>surjective</u> if $\forall y \in E, \exists x \in D$ such that f(x) = y.

Definition 6 (Bijective). $f: D \to E$ is called **bijective** if it is surjective and injective.

Definition 7. If $f: D \to E$ is bijective, then we can define the <u>inverse</u> function $f^{-1}: E \to D$ as follows:

$$f^{-1}(y) := x \tag{5}$$

where x is a uniquely determined point in D with f(x) = y.

1.1 Countability of Finite Sets

Definition 8 (Cardinality). Let $S = \{a_1, ..., a_n\}$. Then, the <u>cardinality</u> of S, in symbols |S|, is the number of elements in a set S.

Theorem 1. Let A, B be finite sets. Then, $|A| \leq |B| \iff$ there exists a function $f: A \to B$ which is injective.

Theorem 2. Let A, B be finite sets. Then, $|A| \ge |B| \iff \exists$ a surjective map from $A \to B$.

Theorem 3. Let A, B be finite sets. Then, $|A| = |B| \iff \exists$ a bijective map $f: A \to B$.

Definition 9. Let A and B be sets, not necessarily finite. We then say that A and B have the same cardinality, in symbols,

$$|A| = |B| \tag{6}$$

if \exists a bijective map $f: A \to B$.

Theorem 4 (Cantor's Theorem). Let A and B be sets. If $|A| \leq |B|$ and if $|B| \leq |A|$, then |A| = |B|.

Definition 10 (Countability). We say that a set A with $|A| = |\mathbb{N}|$ is <u>countably infinite</u>. A set which is either finite or countably infinite is called **countable**.

Theorem 5 (Arithmetic-Geometric Inequality). $\forall n \geq 1$ and for all $x_1, ..., x_n > 0$, the following holds:

$$\frac{x_1 + \dots + x_n}{n} \ge \sqrt[n]{x_1 x_2 \cdots x_n} \tag{7}$$

Lemma 6. Let $n \in \mathbb{N}$ and let $x_1, ..., x_n > 0$. If $x_1 \cdots x_n = 1$, then:

$$x_1 + \dots + x_n \ge n \tag{8}$$

Theorem 7. Let $S \subseteq \mathbb{N}$. Then, there are only two possibilities:

- (i) S is finite.
- (ii) S is countably infinite.

Lemma 8. Let $a_1 < a_2 < \cdots$ be a strictly increasing sequence of natural numbers. Then, we can say something about the growth rate:

$$a_n \ge n \tag{9}$$

 $\forall n \in \mathbb{N}.$

Math 254: Analysis 1 Page 3

Theorem 9. Let $f: \mathbb{N} \to S$ be surjective. Then, S is countable.

Theorem 10 (Cantor). The set \mathbb{Q} of all rational numbers is countably infinite.

Theorem 11. \mathbb{R} is uncountable (i.e, \mathbb{R} is infinite and there does not exist a bijection from \mathbb{N} to \mathbb{R} .

Definition 11 (Absolute Value). Let $x \in \mathbb{R}$. Then, the absolute value of x is defined as:

$$|x| := \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases} \tag{10}$$

Note that |x| is used to measure distances.

Proposition 3 (Properties of Absolute Value). (i) $\forall x \in \mathbb{R}, |x| \geq 0 \text{ and } |x| = 0 \iff x = 0.$

- (ii) $\forall x, y \in \mathbb{R}, |xy| = |x||y|$. Especially, |-x| = |x|, in this case you would simply set y = -1.
- (iii) $\forall x \in \mathbb{R}, -|x| \le x \le |x|$.
- (iv) Let a > 0, $x \in \mathbb{R}$. Then, $|x| \le a \iff -a \le x \le a$.

Theorem 12 (Triangle Inequality). Let $x, y \in \mathbb{R}$. Then:

- (i) $|x+y| \le |x| + |y|$
- (ii) $|x y| \ge ||x| |y||$
- (iii) Especially,
 - (i) $|x y| \ge |x| |y|$ (ii) $|x y| \ge |y| |x|$

Corollary 1. We also have,

- (i) $|x y| \le |x| + |y|$ (ii) $|x + y| \ge |x| |y|$ and $|x + y| \ge |y| |x|$.

Corollary 2 (Generalisation of the Triangle Inequality).

$$|x_1 + x_2 + \dots + x_n| \le |x_1| + |x_2| + \dots + |x_n| \tag{11}$$

Definition 12. ε -neighbourhood Let $x \in \mathbb{R}$ and let $\varepsilon > 0$ be fixed. Then, the ε -neighbourhood of x, $V_{\varepsilon}(x)$, to be:

$$V_{\varepsilon}(x) :=]x - \varepsilon, x + \varepsilon[$$

= $\{y \in \mathbb{R} \mid |y - x| < \varepsilon\}$

Theorem 13. Let $x, y \in \mathbb{R}$, where $x \neq y$. Then, "x and y can be separated by neighbourhoods", i.e., \exists a $\varepsilon > 0$ such that $V_{\varepsilon}(x) \cap V_{\varepsilon}(y) \neq \emptyset$.

Supremum and Infimum

Definition 13 (Bounded From Above). Let $S \subseteq \mathbb{R}$, $S \neq \emptyset$. We say that S is bounded from above if \exists a $u \in \mathbb{R}$ such that $\forall s \in S \ s \leq u$.

Definition 14 (Bounded from Below). Let $S \subseteq \mathbb{R}$, $S \neq \emptyset$. We say that S is bounded from below if \exists a $u \in \mathbb{R}$ such that $\forall s \in S, u \leq s$.

Definition 15 (Supremum/Least Upper Bound). Let $S \subseteq \mathbb{R}$, $S \neq \emptyset$. $u \in \mathbb{R}$ is called a supremum or **least upper bound**, denoted by $\sup S$, if:

(i) u is an upper bound for S.

Math 254: Analysis 1 Page 4

(ii) If v is any other upper bound for S, then $u \leq v$.

If $u = \sup S \in S$, then we say that u is the **maximum element** of S.

Definition 16 (Infimum/Greatest Lower Bound). Let $S \subseteq \mathbb{R}$, $S \neq \emptyset$. $u \in \mathbb{R}$ is called a <u>infimum</u> or greatest lower bound, denoted by inf S, if:

- (i) u is a lower bound.
- (ii) If v is an arbitrary lower bound of S, then $v \leq u$.

If $u = \inf S \in S$, then we say that u is the **minimum element of** S.

[Begin Tutorial]

Proposition 4. If $X_1, ..., X_{n+1}$ are countable sets, then so is $X_1 \times \cdots \times X_{n+1}$.

Definition 17 (Power Set). Let X be a set, possibly empty. Then, the <u>power set of X</u>, denoted $\mathcal{P}(X)$, is defined as the set of all subsets of X:

$$\mathcal{P}(X) := \{ A \mid A \subseteq X \} \tag{12}$$

Theorem 14 (Cantor's Theorem). Let X be a set. Then, there does not exist a surjection $X \to \mathcal{P}(X)$, which means that $|X| < |\mathcal{P}(X)|$

Corollary 3 (Russel's Paradox). The set of all sets does not exist.

Proposition 5. A binary sequence is a list of points

$$a_1, a_2, ..., a_n, ...$$

such that each $a_i \in \{0,1\}$. Let \mathcal{B} be the set of all binary sequences. Then, \mathcal{B} is uncountable.

[End Tutorial]

Theorem 15. Let S be a non-empty and bounded set from above, with supremum sup S. Define:

$$a + S := \{a + s \mid s \in S\}$$

Then, a + S has a supremum which is given by:

$$\sup (a+S) = a + \sup S \tag{13}$$

Theorem 16. Let $S \neq \emptyset$, $S \subseteq \mathbb{R}$, S bounded from above with supremum sup S. Let k > 0 and define:

$$k \cdot s := \{ks \mid s \in S\}$$

Then,

• If k > 0, $k \cdot S$ is bounded from above and

$$\sup k \cdot S = k \cdot \sup S \tag{14}$$

• if k < 0, then $k \cdot S$ is bounded from below and

$$\inf k \cdot S = k \cdot \sup S \tag{15}$$

Math 254: Analysis 1 Page 5

AXIOM: we assume \mathbb{R} is complete. This means that every non-empty subset $S \subseteq \mathbb{R}$ which is bounded from above has a supremum in \mathbb{R} .

Theorem 17 (Archimedean Property of \mathbb{R}). Let $x \in \mathbb{R}$, x > 0. Then, $\exists n \in \mathbb{N}$ such that $n \geq x$.

Theorem 18. Let x < y, $x, y \in \mathbb{R}$. Then, $\exists r \in \mathbb{Q}$ such that x < r < y. I.e., this means that the rational numbers are **dense** in \mathbb{R} .

Theorem 19. The irrational numbers are dense in \mathbb{R} .

Definition 18. Let $I_1, I_2, I_3, ...$ be intervals with the following property:

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$$

Then, we call the $I_1, I_2, I_3, ...$ a **nested sequence** of intervals.

Theorem 20 (Nested Interval Property). Let $I_1 \supseteq I_2 \supseteq I_3 \cdots$ be a nested sequence of non-empty, closed and bounded (we call this compact) intervals, then:

$$\bigcap_{n\in\mathbb{N}} I_n \neq \emptyset \tag{16}$$

THE NESTED INTERVAL PROPERTY IS IN FACT EQUIVALENT TO COMPLETNEESS.

Corollary 4. \mathbb{R} is uncountable.

[Begin Tutorial]

COMPLETENESS PROPERTY OF \mathbb{R} : Let X be a non-empty subset of \mathbb{R} that is bounded from above. Then, X has a least upper bound, denoted by $\sup X$.

Proposition 6. Let $X \subseteq \mathbb{R}$.

- (i) if X has a supremum, then X is non-empty and bounded from above.
- (ii) if X has an infimum, then X is non-empty and bounded from below.

Proposition 7. Let X be a non-empty set and let s be an upper bound for X in \mathbb{R} . Then, the following statements are equivalent:

- (i) $s = \sup S$
- (ii) $\forall \varepsilon > 0, \exists x_{\varepsilon} \in X \text{ such that:}$

$$s - \varepsilon < x_{\varepsilon} \le s \tag{17}$$

Proposition 8. Let X be a non-empty set and let v be a lower bound for X in \mathbb{R} . Then, the following statements are equivalent:

- (i) $v = \inf S$
- (ii) $\forall \varepsilon > 0, \exists x_{\varepsilon} \in X \text{ such that:}$

$$v \le x_{\varepsilon} < v + \varepsilon \tag{18}$$

A useful application of the Archimedean property: $\forall \ \varepsilon > 0$, one has that \exists an $m \in \mathbb{N}$ such that $0 < \frac{1}{m} < \varepsilon$.

Theorem 21 (Characterisation of Intervals). Let $S \subseteq \mathbb{R}$ contain at least two points and assume that S satisfies the property:

$$x, y \in S \text{ and } x < y \implies [x, y] \subseteq S$$
 (19)

then S is an interval.

Proposition 9 (Algebraic Properties of Sup and Inf). Let A, B be non-empty subsets of \mathbb{R} that are bounded from above. Suppose that both $x, y \in [0, \infty[$. Then:

(i) $\sup(A \cdot B) = \sup(A) \sup(B)$, where $A \cdot B := \{ab \mid a \in A, b \in B\}$.

[End Tutorial]