(a) Wortmindestlänge

(2 Punkte)

Betrachten Sie die reguläre Sprache $A := \mathcal{L}(b^+a^*)$. Geben Sie die minimale Wortmindestlänge n(A) an, sodass eine Zerlegung gemäß dem Pumping Lemma existiert.

(b) Anwendung

(8 Punkte)

Zeigen Sie mithilfe des Pumping Lemmas, dass

$$L := \{a^i b^j a^k \mid i \mod 3 = 1, (j+k) \mod 3 = 0, i+k \le j\}$$

nicht regulär ist.

a 6 °3 € i=1 1 mod 3=1 j=6 $(j+k) \mod 3=9 \mod 3=0$ $i+k=4 \le 6=j$

Lefillt nicht regulase Pumping-Eigenschaft, d.h. FrelNzn BzeL mit IzIzn sodans

H Zerlegungen Z = UVW mit · luvl < n und

Bevis: Sei NEN. Walle Z := 0 3n+1 3n+5 $L := \{a^ib^ja^k \mid i \mod 3 = 1, (j+k) \mod 3 = 0, i+k \le j\}$

j=3 n+5 (j+k/ mod 3= (3 n+6)=med 3 = = 3.(n+2) mod 3=0

L+ K=3n+2 ≤ 3n+5= }

12 = 3n+3n +7 = 6n+72n

Sei z = a 2n+1 3n+5 a = uvw eine Zerlegg mit |uv| = n

and |v| ≥ 1.

Dd | UV | = n und z mit (3n+1) a's liegint, no

besteht uv mu aus a's. =) Auch v besteht nur aus a's

Walle i:= 100 is k

100 is = 3n+1+30-10/3n+5 m

UV W = d 3n+1+30-10/3n+5 m

miro

Free States In the Secretary Secretary States In S

So those to Reidle dering X_i if one contribute $X_iX_i = 1$ object X_i is the Queen that one can X_i the Solderman State i and i that $X_i = 1$ in $X_i = 1$ and $X_i = 1$ in $X_i = 1$ in

$$21 = 16 + 4 + 1 = 1 \cdot 4^{2} + 1 \cdot 4^{4} + 1 \cdot 4^{0} = (111)_{4}$$

$$40 = 2 \cdot 16 + 2 \cdot 4 = 2 \cdot 4^{2} + 2 \cdot 4^{4} + 0 \cdot 4^{0} = (220)_{4}$$

Salprin & Burkerski Techposeritor

$$= \underbrace{1 \cdot 2^{5} + 12^{4} + 0 \cdot 2^{3} + 1 \cdot 2^{2}}_{= \underbrace{1 \cdot 2^{5} + 12^{5} \cdot 2^{4} + \underbrace{0 \cdot 2^{5} + 1 \cdot 2^{5}}_{= \underbrace{1 \cdot 2^{5} + 12^{5} \cdot 2^{5}}_{= \underbrace{1 \cdot 2^{5} + 12^{5}$$

$$= 3 \cdot (2^{2})^{2} + 1 \cdot 2^{2} + 2 \cdot 4^{6}$$

$$= 3 \cdot 4^{2} + 1 \cdot 4 + 2 \cdot 4^{6}$$

$$= (3) 12) 4$$

$$(1101100011010)_2 =$$

= $(123012)_4$

Extlere &

2 Min Quaterris $\alpha + 1$, wenn $\alpha \mod 4 \neq 3$

 $f(\alpha) :=$

Aufgabe 1: Informationstheorie

(10 Punkte)

(a) Krwartete Codewortlänge

Betrachten Sie die nebenstehende Tabelle für die Quelle (Σ,p) .

Ist der gegebene Code C über dem Alphabet {0,1,2} ein Präfixode minimaler erwarteter Codewortlänge? Begrinden Ste.

					(4 Punkt		
	п	b	6	d		Г	8
p_{σ}	3 18		4 18				
$\mathbb{C}(\sigma)$	00	01	20	22	21	10	11

(b) Erwarteter Informationsgewinn

(6 Punkt

Sei $\varphi\colon \Sigma^* \to \{d, e, f, g\}^*$ sine Püterfanktion, welche die Zeichen a, b und n durch 8 ersetzt und die ührigen Zeichen unveräudert kiest. Sei m eine Nachricht, deren Zeichen jeweils unsbößingig aus der üben angegebenen Quelle (Σ, p) stammen.

Bestimmen Sie den erwarteten Informationsgewinn der Nachricht $\varphi(m)$ in Abhängigkeit von $k=\lfloor \rho(m)\rfloor$. Vereinfachen Sie Ihr Ergebnie, his es keine lag Terme mehr enthält.

$$(3 \ 123)_{4} =$$

$$= 3 \cdot 4^{3} + 1 \cdot 4^{2} + 2 \cdot 4^{1} + 3$$

$$= 4 \cdot (34^{2} + 1 \cdot 4 + 2) + 3 = 3 \text{ mod } 4$$

$$(1201)_{4} = 1 \text{ mod } 4$$

$$(13022)_{4} = 2 \text{ mod } 4$$
miro

2,37

1,19 L

313-06

0,078

Aufgabe 1: Informationstheorie

(10 Punkte)

(a) Erwartete Codewortlänge

Betrachten Sie die nebenstehende Tabelle für die Quelle (Σ, p) .

lst der gegebene Code C über dem Alphabet {0,1,2} ein Präfixcode minimaler erwarteter Codewortlänge? Begründen Sie.

						(4 Punkt			
	0	4	ь	e	d	e	f	g	
	p_{σ} $\mathbb{C}(\sigma)$	IB	1 18	4 18	I IE	4 15	2 15	III	
ľ	$C(\sigma)$	00	01	20	22	21	10	11	

(b) Kewacteter Informationsgowinn

(6 Punkte)

Sei $\varphi \colon \Sigma^* \to \{d,e,f,g\}^*$ eine Filterfunktion, welche die Zeichen a,b und c durch ε etsetzt und die übrigen Zeichen unverändert lässt. Sei m eine Nachricht, deren Zeichen jeweils unahhängig aus der oben angegebenen Quelle (Σ, p) stammen.

Bestimmen Sie den erwarteten Informationsgewinn der Nachricht $\varphi(m)$ in Abhängigkeit von $k := |\omega(m)|$. Vereinfachen Sie Ihr Ergebnis, bis as keine log-Terme mehr enthält.

$$\Omega = \{a, b, c, d, e, 1, g\}$$

$$P(a) = \frac{3}{13}, \dots, P(g) = \frac{1}{18}$$

$$A := \{d, e, 1, g\}$$

$$P(A) = P(A) + \dots + P(g) = \frac{1}{18} + \frac{4}{18} + \dots$$

$$= \frac{2}{18}$$

$$P_A(a) = P(a) = \frac{8}{8} = 8$$

$$P_A(e) = P(e) = \frac{4}{18} = \frac{4}{8} = \frac{1}{3}$$

$$P_A(1) = \frac{2}{48} = \frac{2}{8} = \frac{4}{4}$$

$$P_A(g) = \frac{1}{18} = \frac{1}{8}$$

$$\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \cdot \left(\frac{1}{2} \left(\frac{1}{2} \right) \cdot \log_2 \left(\frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} \right) \cdot \log_2 \left(\frac{1}{2} \right) \right) + \frac{1}{2} \left(\frac{1}{2} \right) \cdot \log_2 \left(\frac{1$$

Entropie $\mathbf{H}_{\Sigma,0}$ = Erwarteter Infigewinn durch ein Symbol $\mathbf{H}_{\Sigma,\rho} = \mathbb{E}[\mathbb{X}] = \sum \rho_v \cdot \mathbb{X}(\rho_\sigma) = -\sum \rho_\sigma \log_2 \rho_\sigma$

$$= k \cdot (-n) \cdot \left(\frac{1}{8} \cdot \log_2 \left(\frac{1}{8} \right) + \frac{1}{2} \cdot \log_2 \left(\frac{1}{2} \right) + \frac{1}{4} \cdot \log_2 \left(\frac{1}{4} \right) + \frac{1}{8} \cdot \log_2 \left(\frac{1}{8} \right) \right)$$

$$l_{\sigma_{12}}\left(\frac{1}{8}\right) = l_{\sigma_{12}}\left(\frac{1}{2^{3}}\right) = l_{\sigma_{12}}\left(2^{-3}\right) = -3$$

$$= \underbrace{3.4^{3} + 1.4^{2} + 2.4^{1} + 3}_{= 4.(34^{2} + 1.4 + 2) + 3} = 3 \text{ mod } 4$$

$$(1201)_{4} = 1 \text{ mod } 4$$

$$(13022)_{4} = 2 \text{ mod } 4$$