Лабораторная робота №1 (4 часа)

Тема: Изучение стандартных средств отображения графической информации интегрированной среды разработки C++ Builder.

Цель: Используя стандартные средства вывода графической информации среды C++ Builder, построить графики кривых высших порядков и обеспечить масштабирование кривых по размерам формы приложения.

Варианты заданий:

Вариант 1. Декартов лист

Уравнение кривой:

$$x^3 + y^3 - 3axy = 0$$
, $a > 0$.

Параметрическое представление:

$$x = 3at/(1+t^3),$$

$$y = 3at^2/(1+t^3)$$
,

$$-\infty < t < -1$$
 и $-1 < t < \infty$.

Вершина: A(3a/2,3a/2).

Вариант 2. Циссоида

Уравнение кривой:

$$x^3 + (x-a)y^2 = 0$$
, $a > 0$.

Параметрическое представление:

$$x = at^2/(1+t^2),$$

$$y = at^3/(1+t^2),$$

$$-\infty < t < \infty$$
, $t = tg\varphi(t)$,

где $\varphi(t)$ - угол между прямой МО и положительным направлением оси X, M(t) - текущая точка кривой.

Вариант 3. Улитка Паскаля

Уравнение кривой:

$$(x^{2} + y^{2} - ax)^{2} - l^{2}(x^{2} + y^{2}) = 0,$$

 $a > 0, l > 0.$

В параметрической форме (при a < l точка О не включается):

$$x = a\cos^2 t + l\cos t \; ,$$

$$y = a \cos t \cdot \sin t + l \sin t$$
, $0 \le t < 2\pi$.

Вариант 4. Кардиоида

Уравнение кривой:

$$(x^2 + y^2)(x^2 + y^2 - 2ax) - a^2y^2 = 0, \quad a > 0.$$

В параметрической форме:

 $x = a\cos t(1+\cos t), \ y = a\sin t(1+\cos t),$

 $0 \le t < 2\pi$.

Вершина: A(2a,0); координаты точек C и

$$D: x_C = x_D = 3a/4, \ y_C = -y_D = \sqrt{3} \cdot x_C$$

Вариант 5. Эпициклоиды

Направляющая кривая L — окружность радиуса b, окружность K радиуса a катится без скольжения вне ее.

В параметрической форме:

$$x = (a+b)\cos\varphi - a\cos((a+b)\varphi/a),$$

$$y = (a+b)\sin\varphi - a\sin((a+b)\varphi/a),$$

$$-\infty < \varphi < \infty, \ \varphi = \angle COA_1$$

Вид кривых зависит от отношения m = b/a.

а) m - целое положительное число. Кривые состоят из m равных друг другу дуг, «обходящих» направляющую окружность L (а). Достаточно рассмотреть изменение φ от нуля до 2π , так как кривые далее переходят сами в себя.

б) m = p/q, p и q- положительные целые взаимно простые числа. Кривые состоят из p равных друг другу пересекающихся дуг (б). Кривые замкнуты. Интервал изменения параметра: $0 \le \varphi < 2q\pi$.

в) если m - иррациональное, то кривые состоят из бесконечного числа равных друг другу дуг. Кривые не замкнуты. Радиус кривизны $R(\varphi) = (4a(a+b)\sin((b\varphi)/(2a)))/(2a+b)$, в вершинах $B_k: R_{B_k} = 4a(a+b)/(2a+b)$

Вариант 6. Архимедова спираль

Кривая представляет собой путь, описываемый некоторой точкой, движущейся с постоянной скоростью v по лучу, вращающемуся около полюса O с постоянной угловой скоростью w.

Уравнение в полярных координатах: $\rho = a \varphi$, a = v/w > 0, $-\infty < \varphi < \infty$.

Первая ветвь: $0 \le \varphi < \infty$; вторая: $-\infty < \varphi < 0$.

Каждый луч ОК пересекает кривую в точках $A_1, A_2, \dots, A_n, \dots$, находящихся друг от друга на расстоянии $A_i A_{i+1} = 2\pi a$. Радиус кривизны $R(\varphi) = a(\varphi^3 + 1)^{3/2}/(\varphi^2 + 2)$.

