CSC/MAT-220: Discrete Structures Solution 2

Thomas R. Cameron

September 8, 2017

Book Problems

Other Problems

- I. For each statement below, we indicate which of the strategies (i.) or (ii.) is more appropriate.a. Strategy (ii.)
 - b. Strategy (i.)
 - c. Strategy (i.)

II.

Proposition. Let A be a subset of U, then $A \cup (U - A) = U$.

Proof. Suppose that $x \in A \cup (U - A)$, then $x \in A$ or $x \in (U - A)$. If $x \in A$, then $x \in U$, since A is a subset of U. If $x \in (U - A)$, then $x \in U$ by definition of set-minus.

III. Let f_n denote the number of ways to tile a board of n squares, using squares and dominoes (two squares joined together).

i.

Proposition. For $n \ge 0$, $f_0 + f_1 + f_2 + \cdots + f_n = f_{n+2} - 1$.

Proof. We build this proof around the following question: How many tilings of an (n + 2)-board use at least one domino?

By definition, there are f_{n+2} tilings of a (n+2)-board; excluding the "all square" tiling gives $f_{n+2} - 1$ tilings with at least one domino.

Furthermore, there are f_k tilings where the last domino covers cells k+1 and k+2. Indeed, cell 1 through k can be tiled in f_k ways, cells k+1 and k+2 must be covered by squares. Hence the total number of tilings with at least one domino is $f_0 + f_1 + f_2 + \cdots + f_n$.

Therefore, both $f_{n+2}-1$ and $f_0+f_1+f_2+\cdots+f_n$ denote the number of tilings of an (n+2)-board that use at least one domino, and the result follows.

ii.

Proposition. For $n \ge 0$, $f_0 + f_2 + f_4 + \cdots + f_{2n} = f_{2n+1}$.

Proof. We build this proof around the following question: How many tilings of a (2n+1)-board exist?

By definition, there are f_{2n+1} tilings of a (2n+1) board.

Furthermore, since the board has odd length there must be at least one square and the last square occupies an odd-numbered cell. There are f_{2k} tilings where the last square occupies cell (2k+1), and hence the total number of tilings is $f_0 + f_2 + f_4 + \cdots + f_{2n}$.

Therefore, both f_{2n+1} and $f_0+f_2+f_4+\cdots+f_{2n}$ denote the number of tilings of a (2n+1)-board, and the result follows.