Domande (qualcuna capziosa e artificiale) per verificare la comprensione del significato di p-valore (ed implicitamente anche del FWER).

N.B. Spesso le domande contengono informazioni irrilevanti.

Quesito 1. Abbiamo fatto un T-test a due code con un campione di dimensione n=25 e abbiamo ottenuto come p-valore 0.05. Assumendo vera H_0 , qual è la probabilità che, ripetendo il test una seconda volta con un campione di dimensione doppia, il p-valore risulti ≥ 0.1 ?

Si scelga tra le seguenti opzioni la più opportuna.

- 1. La probabilità $\dot{e} = \dots$ (specificare)
- 2. La probabilità è $< \dots$ (specificare)
- 3. La probabilità è > ... (specificare)
- 4. Non ci sono sufficienti informazioni per stimare questa probabilità.

Risposta 1. La probabilità è = 1 - 0.1 = 0.9.

Quesito 2. Ripetiamo 3 volte lo stesso T-test a due code con campioni di dimensione n = 25. Assumendo vera H_0 , qual è la probabilità che in almeno uno di questi test il p-valore risulti ≤ 0.05 ?

Si scelga tra le seguenti opzioni la più opportuna.

- 1. La probabilità $\dot{e} = \dots$ (specificare)
- 2. La probabilità $\dot{e} < \dots$ (specificare)
- 3. La probabilità $\dot{e} > \dots$ (specificare)
- 4. Non ci sono sufficienti informazioni per stimare questa probabilità.

Risposta 1. La probabilità è = $1 - (0.95)^3 = 0.142625$.

Quesito 3. Abbiamo fatto un T-test coda inferiore con un campione di dimensione n=25 e abbiamo ottenuto come p-valore 0.05. Assumendo vera H_A con effect size 0.1, qual è la probabilità che ripetendo il test una seconda volta con un campione della stessa dimensione il p-valore risulti di nuovo ≤ 0.05 ?

Nel caso non sia possibile determinare il valore esatto ma solo un limite superiore/inferiore. Si scelga tra le seguenti opzioni la più opportuna.

- 1. La probabilità $\dot{e} = \dots$ (specificare)
- 2. La probabilità è $< \dots$ (specificare)
- 3. La probabilità $\dot{e} > \dots$ (specificare)
- 4. Non ci sono sufficienti informazioni per stimare questa probabilità.

Risposta 3. La probabilita e > 0.05.

Quesito 4. Abbiamo fatto un T-test a due code con un campione di dimensione n = 25 e abbiamo ottenuto come p-valore 0.05. Assumendo vera H_A con effect size 0.1, qual è la probabilità che ripetendo il test una seconda volta con un campione della stessa dimensione il p-valore risulti di nuovo ≤ 0.05 ?

Nel caso non sia possibile determinare il valore esatto ma solo un limite superiore/inferiore. Si scelga tra le seguenti opzioni la più opportuna.

- 1. La probabilità $\dot{e} = \dots$ (specificare)
- 2. La probabilità è < ... (specificare)
- 3. La probabilità $\dot{e} > \dots$ (specificare)
- 4. Non ci sono sufficienti informazioni per stimare questa probabilità.

Risposta 3. La probabilita e > 0.05.

Quesito 5. [da rivedere]

Il disturbo D è causato dalla presenza di almeno uno dei fattori F_1,\ldots,F_4 . Ovvero possiamo assumere che $D=F_1\cup\cdots\cup F_4$.

Un gruppo di ricercatori, non sospettando nemmeno l'esistenza dei fattori F_i , ipotizza invece ci sia un associazione tra D e un altro fattore A. La prevalinza Pr(D) nella popolazione generale è nota e i ricercatori vogliono fare il seguente test di ipotesi

$$H_0: \operatorname{Pr}(D) = \operatorname{Pr}(D|A)$$
 $H_A: \operatorname{Pr}(D) < \operatorname{Pr}(D|A)$

Quindi viene isolato un campione casuale dimensione 50 di individui con fattore A e misurano la proporzione p_0 di individui affetti dal disturbo D. Viene fatto un test binomiale.

Si assuma che A sia indipendente da D. Per semplificare assumiamo che A, F_1, \ldots, F_4 siano tra loro mutualmente indipendenti e che $\Pr(F_i) = p$. Si calcoli la probabilità che venga rifiutata l'ipotesi nulla con una significatività $\alpha = 2\%$.

Quesito 6. Preleviamo un campione di rango n=9 da una popolazione con distribuzione $N(\mu, \sigma^2)$. Sappiamo che la deviazione standard è $\sigma=3$. La media μ invece potrebbe avere uno qualsiasi dei tre valori 2, 6, o 9. Vogliamo testare $H_0: \mu=6$ contro $H_A: \mu\in\{2,9\}$.

- 1. Che test facciamo?
- 2. Se la media del campione di cui sopra è $\bar{x} = 5$, quant'è il p-valore?
- 3. Data questa media campionaria, la probabilità che $\mu \in \{2,9\}$ è (si scelga tra le seguenti)
 - (a) = p-valore; (b) = 1- p-valore; (c) 2/3; (d) Non ci sono sufficienti informazioni per rispondere.

Esprimere il risutato numerico tramite (solo) le funzioni elencate in calce.

Risposta

Facciamo uno z-test a due code.

Risposta 1

2 * norm.cdf(-1) Risposta 2

(d) Non ci sono sufficienti informazioni per rispondere.

Risposta 3

Quesito 7. Preleviamo un campione di rango n=25 da una popolazione con distribuzione $N(\mu, \sigma^2)$. Sappiamo che la deviazione standard è $\sigma=5$. La media μ invece potrebbe avere uno qualsiasi dei due valori 3 o 8. Vogliamo testare $H_0: \mu=3$ contro $H_A: \mu=8$.

- 1. Che test facciamo?
- 2. Se la media del campione di cui sopra è $\bar{x} = 4$, quant'è il p-valore?
- 3. Data questa media campionaria, la probabilità che $\mu = 8$ è (si scelga tra le seguenti)
 - (a) = p-valore; (b) = 1- p-valore; (c) 2/3; (d) Non ci sono sufficienti informazioni per rispondere.

Esprimere il risutato numerico tramite (solo) le funzioni elencate in calce.

Risposta

Facciamo uno z-test coda superiore.

Risposta 1

1 - norm.cdf(1) Risposta 2

(d) Non ci sono sufficienti informazioni per rispondere.

Risposta 3

Quesito 8. Assume the null hypothesis is true and denote by P the random variable that gives the p-value you would get if you run a test.

- 1. What is the probability that Pr(P < 0.05)?
- 2. If we run the tests 4 times (independently), what is the probability of incorrectly rejecting at least once the null hypotheses with a significance $\alpha = 5\%$?
- 3. If we run the tests 4 times (independently), how small do we have to make the cutoff (α above) to lower to 5% the probability of incorrectly rejecting at least once the null hypotheses?

Risposta

0.05

Risposta 1

0.1855

1.2741% Risposta 3

Si assuma noto il valore delle seguenti funzioni della libreria scipy.stats di Python

$$exttt{norm.cdf(z)} = \Pr \left(Z < \mathbf{z}
ight) \, \mathrm{per} \, Z \sim N(0,1)$$

norm.ppf(α) = z_{α} dove z_{α} è tale che $\Pr\left(Z < z_{\alpha}\right) = \alpha$ per $Z \sim N(0,1)$