

Theorem 7.3.10:

Let X be a set and assume that \sim is an equivalence relation on X. Then the following are true:

- 1. For every $x \in X$, $x \in [x]$.
- 2. For all $x,y \in X$, we have $x \sim y$ if and only if [x] = [y].
- 3. For all $x,y \in X$, if $[x] \cap [y] \neq \emptyset$, then [x] = [y].

We prove each of the three required properties.

Proof. **Proof of(1):** Let $x \in X$. From the reflexive property of equivalence relations, we know that for all $x \in X$, $x \sim x$.

The definition of the equivalence class of x in a set X is defined to be $[x] = \{ y \in X : x \sim y \}$.

Since $x \sim x$ from the the reflexive property, it follows from the definition of the equivalence class of x that $x \in [x]$.

Proof. **Proof of(2):** We must prove both directions. Let $x,y \in X$ be arbitrary.

Proof of \Rightarrow Assume $x \sim y$. We must show that [x] = [y].

First, we will show that $[x] \subset [y]$. Let $a \in [x]$ be arbitrary. We will show that $a \in [y]$.

By definition of an equivalence class, we find that $a \sim x$. Using our assumption that $x \sim y$, it follows from the transitive property of equivalence relations that since $a \sim x$ and $x \sim y$, $a \sim y$.

By definition of an equivalence class, since $a \sim y$, it follows that $a \in [y]$. Thus, $[x] \subset [y]$ as desired.

Next, we will show that $[y] \subset [x]$. Let $m \in [y]$ be arbitrary. We will show that $m \in [x]$.

By definition of an equivalence class, we find that $m \sim y$. Also, the symmetry property of equivalence relations tells us that if $x \sim y$, then $y \sim x$. Using this property in our assumption that $x \sim y$, it follows that $y \sim x$. The transitive property of equivalence relations then shows that since $m \sim y$ and $y \sim x$, $m \sim x$.

By definition of an equivalence class, since $m \sim x$, it follows that $m \in [x]$ Thus, $[y] \subset [x]$ as desired.

Hence, since $[x] \subset [y]$ and $[y] \subset [c]$, [x] = [y].

Proof of \Leftarrow Assume [x] = [y]. We must show that $x \sim y$.

Given that [x] = [y], we know that $[x] \subset [y]$ and $[y] \subset [x]$. Let us use the fact that $[x] \subset [y]$. Let $n \in [x]$ be an arbitrary element. The definition of equivalence classes shows us that $n \sim x$. The symmetry property of equivalence relations shows us that $x \sim n$.

Since $[x] \subset [y]$, n must also be in [y]. The logic described above for $n \in [x]$ therefore follows for $n \in [y]$ and we end up concluding that $n \sim y$.

Since $x \sim n$ and $n \sim y$, the transitive property of equivalence relations shows us that $x \sim y$ as desired. Thus, since we've proven both conditionals to be true, the biconditional statement must also be true.

Proof. **Proof of(3):** Suppose $[x] \cap [y] \neq .$ We will show that [x] = [y].

Let $z \in [x] \cap [y]$. From the definition of intersection of sets, $z \in [x]$ and $z \in [y]$. By the definition of equivalence classes, $z \sim x$ and $z \sim y$. From the reflexive property of equivalence relations, we know that if $z \sim x$, then $x \sim z$. Using the transitive property of equivalence relations, it follows that since $x \sim z$ and $z \sim y$, $x \sim y$. The proof described in part 2 shows that $x \sim y$ if and only if [x] = [y] as desired.

Due: March 31th, 2021