What is Claimed is

1. A process for preparing a compound of the formula 1:

$$R^{1}$$
 R^{2}
 R^{2}
 R^{3}
 R^{3}
formula I

10

15

wherein

R¹ and R² independently of one another denote hydrogen or a group which is selected from among the group consisting of C₁-C₆-alkyl, C₃-C₈-cycloalkyl, C₆-C₁₀-aryl and C₁-C₄-alkylene-C₆-C₁₀-aryl, optionally with one, two or three substituents, selected from the group consisting of OH, NH₂, NH-CO-CH₃ or N(-CO-CH₃)₂, halogen, C₁-C₄-alkoxy and CF₃, while R¹ and R² do not simultaneously have the same meaning;

20 R³

25

denotes an aryl substituted in the meta position, which optionally comprises at least one other substituent, the substituents being selected from the group consisting of F, Cl, Br, I, OH, O-SO₂-CF₃, NO₂, NH₂, NH-SO₂-(4-trifluoromethylpyridin-2-yl), N(-CH₂-aryl)₂, NY₁Y₂ with Y₁ and Y₂ selected from H, COO-alkyl, COO-CH₂-aryl, CO-alkyl and CO-aryl;

R⁴

is selected from the group consisting of H and C₁-C₈-alkyl; and

R⁵

is selected from the group consisting of H, $Si(CH_3)_3$, Li, Na, K, Cs, $N(R')_4$, while all the R' groups may be identical or different and are selected from C_1 - C_8 -alkyl and CH_2 -aryl;

which process comprises hydrogenating a compound of the formula II

wherein the groups R¹ to R⁵ are as previously defined in this claim, in the presence of a catalyst which contains at least one ligand in the form of a chiral 1,2-bis(phospholano)maleic anhydride.

10

2. The process according to claim 1, wherein R^1 and R^2 independently of one another are selected from the group consisting of methyl, ethyl, propyl, butyl, phenyl, benzyl, cyclohexyl, phenylethyl and phenylpropyl, optionally with a substituent selected from the group consisting of hydroxy, fluorine, chlorine, bromine, methoxy, ethoxy and CF_3 .

20

15

3. The process according to one of claim 1, wherein R¹ denotes phenylethyl and R² denotes propyl or R¹ denotes propyl and R² denotes phenylethyl.

The process according to claim 1, wherein R¹ and R² are selected from

phenylethyl and propyl, R³ denotes optionally substituted phenyl with an NO₂ group in the meta position, R⁴ denotes methyl and R⁵ denotes hydrogen.

- 25 **5.** The process according to claim 1, wherein the starting compound of the formula I is used in the form of an E/Z mixture.
 - **6.** The process according to claim 5, wherein roughly 50:50 mixture of E and Z isomer is used.

30

5 **7.** The process according to claim 1 wherein the catalyst has the following structure:

[ligand¹-transition metal-ligand²] anion,

wherein the ligand denotes a chiral 1,2-bis(phospholano)maleic anhydride of formula III

wherein R^{L1} and R^{L2} which may be identical or different represent branched or unbranched C_1 - C_8 -alkyl.

- **8.** The process according to claim 7, wherein the ligand² denotes an unsaturated cyclic hydrocarbon with 3 to 12 carbon atoms.
- 20 **9.** The process according to claim 7, wherein the ligand² denotes a cyclopentadiene, benzene, cycloheptatriene or cyclooctadiene system.
 - **10.** The process according to claim 9, wherein the ligand² denotes cyclopentadiene or 1,5-cyclooctadiene.

11. The process according to claim 7, wherein the ligand 1 of formula III, R^{L1} and R^{L2} represent branched or unbranched C_1 - C_4 -alkyl.

- 12. The process according to claim 11, wherein R^{L1} and R^{L2} both represent30 methyl.
 - 13. The process according to claim 1, characterised in that the transition metal in the catalyst is rhodium-(I), ruthenium-(I) or iridium-(I).

15

20

- 5 **14.** The process according to claim 1, wherein the anion in the catalyst is BF₄, CF₃-CO-O⁻, Cl⁻, Br⁻ or l⁻.
 - **15.** The process according to claim 1 wherein it is carried out in the presence of the following catalyst:

- **16.** The process according to claim 1 wherein the hydrogenation is carried out in the presence of a base.
- 17. The process according to claim 16, wherein the base is selected from the group consisting of a hydroxide, C_1 - C_5 -alkoxide, bicarbonate, carbonate, di- and tribasic phosphate, borate, fluoride, optionally with C_1 - C_4 -alkyl or aryl-substituted amine, optionally with C_1 - C_3 substituted silane.
 - **18.** The process according to claim 16 wherein the base is selected from alkali metal or alkaline earth metal methoxide, ethoxide or carbonate.
- **19.** The process according to claim 16 wherein the base is used in an amount of about 1mol% to about 20mol%.
 - **20.** The process according to claim 1 wherein the ratio (in mol) of substrate/catalyst is about 200/1 to 5000/1.

- 5 **21.** The process according to claim 1 wherein the temperature during hydrogenation is about 20°C to about 100°C.
 - **22.** The process according to claim 1 wherein the hydrogen pressure during hydrogenation is about 2 bar to about 100 bar.