Housing Prices

Load required libraries for models that we are testing

Load the data sets

This loads up the data sets dfTraining and dfAnalysis so we can use them to create models

```
rm(list = ls())
df <- read.csv("dfTrain1.csv")</pre>
```

Decision Tree

Create a decision tree model

```
# Decision Tree

tree <- rpart(formula = SalePrice ~ OverallQual + YearBuilt + YearRemodAdd + TotalBsmtSF + GrLivArea +
```

Decision Tree plot

```
# Visualize the decision tree with rpart.plot
rpart.plot(tree, box.palette="RdBu", shadow.col="gray", nn=TRUE)
```

Warning: labs do not fit even at cex 0.15, there may be some overplotting

Linear Regression

Regression Model

```
# Linear Regression (using variables that are high correlation)
reg <- lm(formula = SalePrice ~ OverallQual + YearBuilt + YearRemodAdd + TotalBsmtSF + GrLivArea + Gara
# Model Performance
print(reg)
##
## lm(formula = SalePrice ~ OverallQual + YearBuilt + YearRemodAdd +
##
       TotalBsmtSF + GrLivArea + GarageCars + BsmtQual_Ex + KitchenQual_Ex,
##
       data = df)
##
## Coefficients:
                                        YearBuilt
                                                     YearRemodAdd
                                                                       TotalBsmtSF
##
      (Intercept)
                      OverallQual
##
       -1.004e+06
                        1.473e+04
                                        2.448e+02
                                                         2.442e+02
                                                                         2.231e+01
##
        GrLivArea
                       GarageCars
                                      BsmtQual_Ex KitchenQual_Ex
        4.999e+01
                        1.323e+04
                                        3.708e+04
                                                         3.593e+04
##
r2(reg)
```

```
## # R2 for Linear Regression
##
          R2: 0.802
##
     adj. R2: 0.801
model_performance(reg)
## # Indices of model performance
##
                                                    RMSE |
## AIC
                     BIC |
                              R2 | R2 (adj.) |
                                                                Sigma
## 34742.881 | 34795.743 | 0.802 |
                                       0.801 | 35328.983 | 35438.380
#Visualization of model checks
check_model(reg)
  Linearity
                                                Homogeneity of Variance
                                                Reference line should be flat and horizontal
  Reference line should be flat and horizontal
                                                residu
 (VIF)Residual
     -250000
     -500000
                                                Std.
             0e+00
                      2e+05
                               4e+05
                                        6e+05
                                                       0e+00
                                                                2e+05
                                                                         4e+05
                                                                                  6e+05
                       Fitted values
                                                                  Fitted values
  ©ollinearity
                                                Influential Observations
 'ariance Inflation
                                                Std.
          Bsmt Quad of 10 to 14 co 20 verted to Ballote SBR it mod
                                                       0.00
                                                                  0.05
                                                                            0.10
                                                                  Leverage (hii)
                      moderate (< 10)
           low (< 5)
                                         high (>
  Mormality of Residuals
                                                Normality of Residuals
 Distribution should be close to the normal curve
                                                Density
                                                               -250000
                             0
                                                     -500000
                                                                                   250000
           Standard Normal Distribution Quantile
                                                                   Residuals
```

Neural Network

Adding a neural network model

```
# Neural Network
nn <-nnet.formula(formula = SalePrice ~ OverallQual + YearBuilt + YearRemodAdd + TotalBsmtSF + GrLivAre</pre>
```

weights: 111

initial value 56997365982750.078125 ## final value 9208736243659.042969

converged