

Simple Linear Models

Itthi Chatnuntawech

Spike Count Prediction in 2D

Contrast

Contrast

Contrast

Spike Count Prediction in 3D

Spike Count Prediction

Spike Count Prediction

5.5

3.0

contrast [a.u.]

3.5

feature 1 of feature 2 of sample i sample i

$$MSE(Y, \hat{Y}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} \sum_{i=1}^{n} (y_i - (\hat{w}_0 + \hat{w}_1 x_{i1} + \hat{w}_2 x_{i2}))^2$$

Find $\hat{w_0}$, $\hat{w_1}$ and $\hat{w_2}$ that minimize $MSE(Y, \hat{Y})$

$$\min_{\hat{w}_0, \hat{w}_1, \hat{w}_2} MSE(Y, \hat{Y}) = \min_{\hat{w}_0, \hat{w}_1, \hat{w}_2} \frac{1}{n} \sum_{i=1}^{n} \left(y_i - (\hat{w}_0 + \hat{w}_1 x_{i1} + \hat{w}_2 x_{i2}) \right)^2$$

sklearn.linear_model.LinearRegression

class sklearn.linear_model.LinearRegression(*, fit_intercept=True, copy_X=True, n_jobs=None, positive=False)

[source]

Data

$$(x_{11}, x_{12}, y_1), (x_{21}, x_{22}, y_2), \dots, (x_{n1}, x_{n2}, y_n)$$

X

У

sample 1

x_{11}	x_{12}	y_1	
x_{21}	x_{22}	y_2	
•	•	•	
x_{n1}	x_{n2}	y_n	

sample n

feature feature 1 2 shape = (n, 2) shape = (n, 1)

Data

$$(x_{11}, x_{12}, y_1), (x_{21}, x_{22}, y_2), \dots, (x_{n1}, x_{n2}, y_n)$$

X

У

sample 1 $\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ \vdots & \vdots \\ x_{n1} & x_{n2} \end{bmatrix}$

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

```
feature feature

1 2

shape = (n, 2) shape = (n, 1)
```

```
# Import a necessary module
from sklearn.linear_model import LinearRegression

# Create the model
model_linear = LinearRegression()

# Train the model
model_linear.fit(X, y)

# Make prediction
y_hat = model_linear.predict(x)
```


Let consider p features and n samples

Each datapoint is represented by a point in (p+1)-dimensional space

$$y = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_p x_p$$

Find $\hat{w_0}, \hat{w_1}, \dots, \hat{w_p}$ that minimize $MSE(Y, \hat{Y})$ feature 1 of sample i sample i

$$\min_{\hat{w}_0, \dots, \hat{w}_p} MSE(Y, \hat{Y}) = \min_{\hat{w}_0, \dots, \hat{w}_p} \frac{1}{n} \sum_{i=1}^n \left(y_i - (\hat{w}_0 + \hat{w}_1 x_{i1} + \dots + \hat{w}_p x_{ip}) \right)^2$$

sklearn.linear_model.LinearRegression

class sklearn.linear_model.LinearRegression(*, fit_intercept=True, copy_X=True, n_jobs=None, positive=False)
[source]

Data feature feature shape = (n, p)shape = (n, 1)

```
# Import a necessary module
from sklearn.linear_model import LinearRegression

# Create the model
model_linear = LinearRegression()

# Train the model
model_linear.fit(X, y)

# Make prediction
y_hat = model_linear.predict(x)
```



```
# Import a necessary module
from sklearn.linear_model import LinearRegression

# Create the model
model_linear = LinearRegression()

# Train the model
model_linear.fit(X, y)

# Make prediction
y_hat = model_linear.predict(x)
```

1 feature

X

 $\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$

shape = (n, 1)

2 features

X

 $\begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ \vdots & \vdots \\ x_{n1} & x_{n2} \end{bmatrix}$

feature feature
1 2
shape =
$$(n, 2)$$

p features

 $\chi_{1,1}$

 x_{11} \dots x_1 x_{21} \dots x_2

···

feature feature

1 p

shape = (n, p)

У

 y_1 y_2 \vdots y_n

shape = (n, 1)