ΛΥΣΗ

α) Το ημίτονο μίας γωνίας με μία πλευρά την ημιευθεία Οχ και δεύτερη πλευρά που τέμνει στο σημείο Α του κύκλου, βρίσκεται από την προβολή του σημείου Α στον άξονα y'y.

Άρα, οι γωνίες που έχουν ημίτονο $\frac{1}{2}$ θα έχουν σημεία τομής με τον κύκλο τέτοια, ώστε η

προβολή τους να τέμνει τον άξονα y'y στο $\frac{1}{2}$.

Οπότε φέρουμε την ευθεία $y = \frac{1}{2}$ (βλ. σχήμα παρακάτω) και προκύπτουν δύο γωνίες στο

διάστημα [0,2π) που έχουν αυτό το ημίτονο. Είναι οι γωνίες $\alpha = 30^\circ = \frac{\pi}{6} rad$ και

$$\beta = 180^{\circ} - 30^{\circ} = 150^{\circ} = \frac{5\pi}{6} rad.$$

Το συνημίτονο μίας γωνίας με μία πλευρά την ημιευθεία Οχ και δεύτερη πλευρά που τέμνει στο σημείο Α του κύκλου, βρίσκεται από την προβολή του σημείου Α στον άξονα x'x.

Άρα οι γωνίες που έχουν συνημίτονο $\frac{1}{2}$ θα έχουν σημεία τομής με τον κύκλο τέτοια, ώστε

η προβολή τους να τέμνει τον άξονα χ΄χ στο $\frac{1}{2}$.

Οπότε φέρουμε την ευθεία $x=\frac{1}{2}$ (βλ. σχήμα παρακάτω) και προκύπτουν δύο γωνίες στο

διάστημα [0,2π) που έχουν αυτό το συνημίτονο. Είναι οι γωνίες $\alpha = 60^{\circ} = \frac{\pi}{3} rad$ και

$$\beta = 360 - 60 = 300^{\circ} = \frac{5 \pi}{3} rad$$
.

β) Όλες οι γωνίες που έχουν ημίτονο ίσο με $\frac{1}{2}$ στο διάστημα [0,2π) είναι οι α , β του ερωτήματος (α).

Για $x \in \mathbb{R}$ κάθε άλλη γωνία με ημίτονο ίσο με $\frac{1}{2}$ θα προκύπτει από αυτές, προσθέτοντας ή αφαιρώντας ακέραιο πλήθος κύκλων $\kappa \cdot 2\pi$, κ ακέραιος.

Άρα όλες οι λύσεις της εξίσωσης θα είναι:

$$\eta\mu x = \frac{1}{2} \Leftrightarrow \eta\mu x = \eta\mu \frac{\pi}{6} \Leftrightarrow x = 2\kappa \cdot \pi + \frac{\pi}{6} \text{ \'{\eta}} \ x = 2\kappa \cdot \pi + \pi - \frac{\pi}{6} = 2\kappa \cdot \pi + \frac{5\pi}{6} \ \mu\epsilon \ k \in \mathbb{Z}.$$