

Александр Калиниченко

ИНТЕЛЛЕКТУАЛЬНЫЕ ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ В МЕДИЦИНЕ

Модуль 2. Методы искусственного интеллекта

Тема 9. Персептроны. Алгоритм обратного распространения.

РОЗЕНБЛАТТ – СОЗДАТЕЛЬ ПЕРСЕПТРОНА

Фрэнк Розенблатт (1928–1971)

ПЕРСЕПТРОН РОЗЕНБЛАТТА (1957 Г.)

ВОЗМОЖНОСТИ ПЕРСЕПТРОНОВ

Исключающее ИЛИ:

	0	1
0	0	1
1	1	0

ОДНОСЛОЙНЫЙ ПЕРСЕПТРОН

АЛГОРИТМ ОБУЧЕНИЯ ОДНОСЛОЙНОГО ПЕРСЕПТРОНА

- 1) Инициализация весов и порогов небольшими случайными значениями.
- 2) Подача на вход вектора $(x_1, x_2, x_3, ..., x_j, ..., x_n)$ и оценка выходов нейронов
- 3) Обновление весов в соответствии с формулой:

$$w_{ij}\left(t+1\right)=w_{ij}\left(t\right)+\eta(d_i-y_i)x_j$$
 , где $i=1,2,...,m$ — номер нейрона, d_i — желаемый выход i —го нейрона, t — номер итерации, и η , $(0<\eta<1)$ — вес шага адаптации (обучения), y_i — выход i —го нейрона, x_j — значение признака на входе j

4) Если разность « $d_i - y_i$ » больше заданного порога и не превышено допустимое число итераций, переход к шагу 2, в противном случае — окончание обучения

ГРАДИЕНТНЫЙ СПУСК

До достижения сходимости:

$$\theta_j := \theta_j - \eta \frac{\partial F(\theta_0, \theta_1)}{\partial \theta_j}, \quad j = 0, 1$$

η – вес шага адаптации

$$\frac{\partial F(\theta_0, \theta_1)}{\partial \theta_j}$$
 — частная производная по $\partial \theta_j$

СКОРОСТЬ ГРАДИЕНТНОГО СПУСКА

Проблемы со скоростью градиентного спуска:

a — слишком маленькие шаги;

 δ — слишком большие шаги

АЛГОРИТМ ОБРАТНОГО РАСПРОСТРАНЕНИЯ ОШИБКИ

- 1)Инициализация весов и порогов небольшими случайными значениями
- 2) Случайный выбор входного образца $(x_1, x_2, x_3, ..., x_n)$
- 3) Расчёт прохождения сигнала через сеть
- 4) Расчёт для выходного слоя K разности:

$$\delta_i^K = F'(h_i^K) \left[d_i^K - y_i^K \right],$$

где h_i^K – выход сумматора i -го нейрона K -го (последнего) слоя сети, а F' – производная функции активации (функция должна быть дифференцируемой)

5)Вычисление разности для предыдущего слоя путём распространения ошибки в обратном направлении:

$$\delta_{i}^{k} = F'(h_{i}^{k}) \sum_{j} w_{ij}^{k+1} \delta_{j}^{k+1}$$
, для $k = K-1,...,1$

6) Обновление весов:

$$w_{ij}^{k} := w_{ij}^{k} - \Delta w_{ij}^{k} = w_{ij}^{k} - \eta \delta_{i}^{k} y_{j}^{k-1}$$

7)Переход к шагу 2 и повторение для следующих образцов, пока ошибка в выходном слое не станет ниже заданного порога или пока не будет достигнуто максимальное допустимое число итераций

АЛГОРИТМ ОБРАТНОГО РАСПРОСТРАНЕНИЯ ОШИБКИ

 $x_1, x_2, x_3, ..., x_n$ — вектор входных значений y_j^k — значение на j-м входе i-го нейрона слоя k

 h_i^k — выход сумматора i-го нейрона слоя k w_{ii}^k — вес на j-м входе i-го нейрона слоя k

КОНСТРУИРОВАНИЕ ПРИЗНАКОВ

Конструирование признаков в машинном обучении:

- выбор признаков
- оценка информативности
- нормализация признаков

ПРОСТЫЕ ПРИЗНАКИ

Признаки формы QRSкомплекса:

Т – длительность

А – размах

S – смещение относительно базовой линии

Р – площадь волн

КЛАССИФИКАЦИЯ ПО ПРОСТЫМ ПРИЗНАКАМ

Классификация форм QRS-комплексов по <u>нормализованным</u> признакам формы

ПРИЗНАКИ, ПОЛУЧАЕМЫЕ ИЗ ФОРМАЛЬНЫХ ПРЕОБРАЗОВАНИЙ

Классификация форм QRS-комплексов по компонентам ДПФ

КЛАССИФИКАЦИЯ ПО ОБРАЗЦАМ

Классификация форм QRS-комплексов по отсчетам сигнала (для каждого QRS-комплекса)

КЛАССИФИКАЦИЯ ПО ИСХОДНОМУ ОПИСАНИЮ

Анализ ЭКГ по исходной записи сигнала

КЛАССИФИКАЦИЯ СЛОЖНЫХ ОБЪЕКТОВ

Классификация сложных объектов – задача глубокого обучения