In the CNS, the axon distal to the injury dies, in the PNS the axon regenerates.
The regenerative ability depends on:
Intrinsic ability of regeneration:
o Growth mode: Developing axons have actin rich active growth cone, containing lamellipodia and filopodia
○ Tranmission mode: release of neurotransmittors
Permissive environment:
○ Experimental evidence: injury were induced to four nerves, PNS environment allow regeneration.
Spinocortical neuron: CNS injury does not regenerate
Dorsal root ganglion: CNS injury does not regenerate, PNS does
Motor neurons: PNS injury regenerates
Autonomic neuron: PNS injury regenerates
o Schwann cells in CNS: oligodendrocytes. Schwann cells in PNS: Remak cells and myelinating schwann cells. All
have poor regenerative ability.
 Schwann cells undergo phenotypic changes to become repair schwann cells, provide strong regenerative ability.
Elongation in shape, form repair column, guide growth of the nerve.
 Neurotrophin release: GDNF NGF BDNF, promotes cell proliferation and neuronal growth.
Myelin breakdown: Myelin inhibit axon growth
Axon guidance: provide growth tract from the injury site to the growth target.
Difficult nerve regeneration in larger organisms.
 Slow growth of axon takes long to grow to target, however repair schwann cells degenerate.
 Regenerative markers have decreased in denervated tissues (e.g. GDNF, BDNF, Shh), number of cells
regenerated also decrease (Eggers et al., 2009)
The target tissue also deteriorates and undergoes atrophy over time
CNS regeneration
○ CNS environment is inhibitory
Astrocyte becomes reactive astrocyte, proliferate around the injury site
Oligodendrocytes fails to break down myelin around the injury site
Microglia migrate towards the injury site, form blockage (glial scar cause physical impedance)
 Experimental inhibition by downregulating STAT3 prevent astrocyte proliferation caused increased
inflammation and cell death.
During development, both CNS and PNS can regenerate, ability is lost in adults.
Regenerative approaches:
○ Stimulation of pro-growth pathways e.g. EGF/mTOR pathway
 Grafting of repair mode schwann cells to provide growth environment, neurons does not tend to grow out of the
environment.
o Grafting of embryonic stem cells, can achieve adequate effects, but have too great proliferative potentials.