Theoretische Physik II – Quantenmechanik – Blatt 6

Sommersemester 2023

Webpage: http://www.thp.uni-koeln.de/~rk/qm_2023.html/

Abgabe: bis Mittwoch, 24.05.23, 10:00 in elektronischer Form per ILIAS unter https://www.ilias.uni-koeln.de/ilias/goto uk crs 5154210.html

19. Zur Diskussion

0 Punkte

- a) Erläutern Sie kurz die Struktur des Grundzustands und des ersten angeregten Zustands eines Teilchens im Doppelkastenpotenzial.
- b) Weshalb beginnt ein Teilchen zwischen den beiden Kästen zu oszillieren, wenn es sich anfänglich in einem Kasten befindet? Wodurch ist die Frequenz bestimmt?

20. Spin-Resonanz

2+3+7=12 Punkte

Die Spin-Zustände $|z\pm\rangle$ eines Elektrons (z.B. des 2S - Elektrons im Be $^+$ -Ion, vgl. Vrlsg.) weisen geringfügig unterschiedliche Energien $E_\pm=\pm\frac12\epsilon$ auf ($\epsilon\neq0$). In einem Experiment soll der Spin-Zustand kontinuierlich zwischen den beiden Zuständen $|z+\rangle$ und $|z-\rangle$ oszillieren. Zu diesem Zweck wird ein elektromagnetisches Feld mit einem in der xy-Ebene rotierenden Magnetfeld $\mathbf{B}(t)=B_0(\cos(\omega t)\mathbf{e}_x+\sin(\omega t)\mathbf{e}_y)$ eingestrahlt. Über die Wechselwirkung $-\mathbf{B}\cdot\boldsymbol{\mu}$ mit dem magnetischen Moment $\boldsymbol{\mu}=\mu_0(\ \sigma_1\mathbf{e}_x+\sigma_2\mathbf{e}_y+\sigma_3\mathbf{e}_z)$ des Spins resultiert hieraus der zeitabhängige Wechselwirkungsoperator

$$W(t) = u(\cos(\omega t)\sigma_1 + \sin(\omega t)\sigma_2),$$

wobei $u=-\mu_0B_0$. Mit dem Hamiltonoperator $H_0=\frac{\epsilon}{2}\sigma_3$ des ungestörten Systems erhalten wir somit einen zeitabhängigen Hamiltonoperator

$$H(t) = H_0 + W(t).$$

für das System mit Magnetfeld,

a) Zeigen Sie:

$$H(t) = \begin{pmatrix} \frac{\epsilon}{2} & u e^{-i\omega t} \\ u e^{+i\omega t} & -\frac{\epsilon}{2} \end{pmatrix}.$$

b) Zur Bestimmung einer allgemeinen Lösungen $\psi(t)$ der Schrödingergleichung verwenden wir den Ansatz

$$\psi(t) = \begin{pmatrix} a_{+}(t) e^{-i\omega t/2} \\ a_{-}(t) e^{+i\omega t/2} \end{pmatrix}.$$

Zeigen Sie, dass die zeitabhängigen Koeffizienten $a_{\pm}(t)$ folgendem Differenzialgleichungssystem genügen:

$$\frac{\mathsf{d}}{\mathsf{d}t} \begin{pmatrix} a_+ \\ a_- \end{pmatrix} \; = \; -\frac{i}{\hbar} \begin{pmatrix} \frac{\epsilon - \hbar \omega}{2} & u \\ u & -\frac{\epsilon - \hbar \omega}{2} \end{pmatrix} \begin{pmatrix} a_+ \\ a_- \end{pmatrix} \; .$$

c) Lösen Sie das Differenzialgleichungssystem unter c) für den Fall einer elektromagnetischen Welle mit resonanter Frequenz $\omega = \epsilon/\hbar$. Bestimmen Sie damit die zeitliche Entwicklung eines Anfangszustands $|\psi(0)\rangle = |z+\rangle$. Mit welcher Wahrscheinlichkeit $P_+(t)$ liegt zur Zeit t der Zustand $|z+\rangle$ vor? Skizzieren Sie $P_+(t)$ für $0 < t < 2\pi\hbar/|u|$.

Hinweis: Zur Lösung des DGL-Systems $\frac{\mathsf{d}^2}{\mathsf{d}t^2} \left(egin{matrix} a_+ \\ a_- \end{matrix} \right)$ betrachten.

21. Wahrscheinlichkeitsstromdichten

5 Punkte

Gegeben seien Wellenfunktionen

$$\psi_1(x) = e^{ikx} + r e^{-ikx},$$

$$\psi_2(x) = t e^{ikx}, \qquad r, t \in \mathbb{C},$$

eines Teilchens der Masse m in einer Dimension. Zeigen Sie, dass die Wahrscheinlichkeitsstromdichten dieser Wellenfunktionen gegeben sind durch

$$j_1(x) = \frac{p}{m} (1 - |r|^2),$$

 $j_2(x) = \frac{p}{m} |t|^2,$ $p = \hbar k.$

22. Streuung am δ -Potenzial

8 Punkte

Ein Teilchen der Masse m und mit Impuls $\hbar k$ (> 0) wird am eindimensionalen Potenzial $U(x)=u\delta(x)$ gestreut. Mit welcher Wahrscheinlichkeit wird das Teilchen an der Potenzialbarriere reflektiert? Überprüfen Sie Ihr Ergebnis auf Plausibilität in den Grenzfällen $|u|\to\infty,\ u\to0,\ k\to\infty$ und im klassischen Grenzfall $\hbar\to0$.

Klassischen Grenzfall $n \to 0$.

Hinweise: Verwenden Sie den Streuansatz $\psi(x) = \begin{cases} \mathrm{e}^{ikx} + r\,\mathrm{e}^{-ikx} & : x < 0 \\ t\,\mathrm{e}^{ikx} & : x \geq 0 \end{cases}$ und überlegen Sie sich geeignete Anschlussbedingungen bei x = 0.