Контрольная работа по курсу «Сети ЭВМ и телекоммуникации

Студент Anikin Kirill Гр. 320207

Вариант 10

Часть І. Планирование адресного пространства IPv6

Задание 1.1:: Представить сокращенную запись адреса сети IPv6, который сформирован следующим образом:

- 1. Префикс глобальной маршрутизации установлен в соответствии с рекомендациями http://tools.ietf.org/html/rfc3849
- 2. Идентификатор подсети установлен в соответствии с номером Вашей учебной группы, который интерпретируется как десятичное число.
- 3. Старшие 5 байтов идентификатора интерфейса установлены кодами ASCII (http://ascii.org.ru/) первых пяти букв Вашего имени (в латинице).
- 4. Остальные позиции адреса установлены нулевыми значениями.

Решение 1.1 (макс. 20 баллов):

Сеть IPv6 | 2001:db8:0:4eef:4b69:7269:6c00:0/102

Задание 1.2: разбить сеть из п.1.1 на 8 одинаковых по размеру подсетей МАКСИМАЛЬНОЙ ДЛИНЫ и указать префиксы первой и последней подсетей.

Решение 1.2 (макс. 20 баллов):

Префикс $N_{\text{С\'{\Gamma}C},}$	$2001: \mathtt{db8:0:4eef:4b69:7269:6c00:0/105}$
Префикс $N_{\rm C,P\ddot{e}PS}$	2001:db8:0:4eef:4b69:7269:6f80:0/105

Часть II. Планирование адресного пространства IPv4

X0= целая часть (N*16)/256+10= целая часть (10*16)/256+10=10

 $X1={f octatok}$ от деления $(N*16)/256={f octatok}$ от деления (10*16)/256=160

Дано: Сеть 10.160.0.0/12

Задание 2.1.1: разбить сеть на 512 подсетей, указать для первых 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	160	0	0
Адрес сети	00001010	10100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Чтобы разбить адрес сети на нужное количество подсетей, необходимо заимствовать 4 бит из 3-го октета и 5 бит из 2-го октета.

3. Итого, получается, что сеть 10.160.0.0/12 мы разбили на 512 подсети, в каждой из которых по 2046 узлов, указываем первые 5 подсетей:

	10	160	0	0
Адрес сети дв.с	00001010	10100000	00000000	00000000
Маска дв.с	11111111	11111111	11111000	00000000
	255	255	248	0

Адрес сети $N_1/$ Префикс N_1	10.160.0.0/21
Адрес первого узла N_1	10.160.0.1
Адрес последнего узла N_1	10.160.7.254
Широковещательный адрес N_1	10.160.7.255
Адрес сети $N_2/$ Префикс N_2	10.160.8.0/21
Адрес первого узла N_2	10.160.8.1
Адрес последнего узла N_2	10.160.15.254
Широковещательный адрес N_2	10.160.15.255
Адрес сети $N_3/$ Префикс N_3	10.160.16.0/21
Адрес первого узла N_3	10.160.16.1
Адрес последнего узла N_3	10.160.23.254
Широковещательный адрес N_3	10.160.23.255
$oxedsymbol{A}$ дрес сети $N_4/$ Префикс N_4	10.160.24.0/21
Λ дрес первого узла N_4	10.160.24.1
Адрес последнего узла N_4	10.160.31.254
Широковещательный адрес N_4	10.160.31.255
$oxedsymbol{A}$ дрес сети $N_5/$ Префикс N_5	10.160.32.0/21
Адрес первого узла N_5	10.160.32.1
Адрес последнего узла N_5	10.160.39.254
Широковещательный адрес N_5	10.160.39.255

Дано: Сеть 10.160.0.0/12

Задание 2.1.2: разбить сеть на 36 подсетей, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.1.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

2. Чтобы разбить данную сеть на $(36 \leqslant 2^6 = 64)$ подсетей необходимо заимствовать 4 бит из 3-го октета и 2 бит из 2-го октета (получается, что сеть можно разбить на 64 подсетей: $2^6 = 64$; оставшиеся 14 бит идут под узлы: $2^{14} - 2 = 16382$ в каждой подсети).

	10	160	0	0
Адрес сети дв.с	00001010	10100000	00000000	00000000
Маска дв.с	11111111	11111111	11000000	00000000
	255	255	192	0

3. Указываем первую и последнюю подсети:

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	10.160.0.0/18
Адрес первого узла N_1	10.160.0.1
Адрес последнего узла N_1	10.160.63.254
Широковещательный адрес N_1	10.160.63.255

$oxed{A}$ дрес сети $N_2/$ Префикс N_2	10.168.192.0/18
Адрес первого узла N_2	10.168.192.1
Адрес последнего узла N_2	10.168.255.254
Широковещательный адрес N_2	10.168.255.255

Задание 2.2.1: разбить сеть на подсети, чтобы в каждой было по 2048 узла (с учетом адресов сети и directed broadcast), указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;

- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.1(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	160	0	0
Адрес сети	00001010	10100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=11, т.к. $2^{11}-2=2046$. Т.е. нужно выбрать такую маску, которря выделит ровно 11 бит для адресов узлов. Таким образом, исходную сеть мы сможем разбить на $2^9=4096$ подсетей по 2046 узла(ов) в каждой.

3. Указываем последние 5 подсетей:

Адрес сети $N_1/$ Префикс N_1	10.175.216.0/21
Адрес первого узла N_1	10.175.216.1
Адрес последнего узла N_1	10.175.223.254
Широковещательный адрес N_1	10.175.223.255
$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	10.175.224.0/21
Адрес первого узла N_2	10.175.224.1
Адрес последнего узла N_2	10.175.231.254
Широковещательный адрес N_2	10.175.231.255
$oxed{A}$ дрес сети $N_3/$ Префикс N_3	10.175.232.0/21
Адрес первого узла N_3	10.175.232.1
Адрес последнего узла N_3	10.175.239.254
Широковещательный адрес N_3	10.175.239.255

$oxed{\mathrm{A}}$ дрес сети $N_4/$ Префикс N_4	$\fbox{10.175.240.0/21}$
Λ дрес первого узла N_4	10.175.240.1
Адрес последнего узла N_4	10.175.247.254
Широковещательный адрес N_4	10.175.247.255
Адрес сети $N_5/$ Префикс N_5	10.175.248.0/21
Адрес первого узла N_5	10.175.248.1
Адрес последнего узла N_5	10.175.255.254
Широковещательный адрес N_5	10.175.255.255

Задание 2.2.2: разбить сеть на подсети, чтобы в каждой было не менее 150 АКТИВНЫХ узлов, указать для первой и последней подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.2(макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	160	0	0
Адрес сети	00001010	10100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n - кол-во «узловых» бит. В нашем случае n=8, т.к. $2^8-2=254 \geqslant 150$.

	10	160	U	U
Адрес сети дв.с	00001010	10100000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	00000000
	255	255	255	0

3. Указываем первую и последнюю подсети

$oxedsymbol{A}$ дрес сети $N_1/$ Префикс N_1	10.160.0.0/24
Адрес первого узла N_1	10.160.0.1
Адрес последнего узла N_1	10.160.0.254
Широковещательный адрес N_1	10.160.0.255

Адрес сети $N_2/$ Префикс N_2	$ \boxed{ 10.175.255.0/24 } $
Адрес первого узла N_2	10.175.255.1
Адрес последнего узла N_2	10.175.255.254
Широковещательный адрес N_2	10.175.255.255

Задание 2.2.3: разбить сеть на подсети, чтобы в каждой было не менее 64 АКТИВНЫХ узлов, указать для ПОСЛЕДНИХ 5 подсетей:

- адрес подсети;
- адрес первого узла;
- адрес последнего узла;
- широковещательный адрес для данной подсети (directed broadcast).

Решение 2.2.3 (макс. 15 баллов):

1. Представляем адрес сети и маску подсети в двоичном виде::

	10	160	0	0
Адрес сети	00001010	10100000	00000000	00000000
Маска	11111111	11110000	00000000	00000000
	255	240	0	0

2. Количество узлов в сети зависит от числа бит в узловой части IP-адреса и вычисляется по формуле 2^n-2 , где n- кол-во «узловых» бит. В нашем случае n=7, т.к. $2^7-2=126$.

	10	160	0	0
Адрес сети дв.с	00001010	10100000	00000000	00000000
Маска дв.с	11111111	11111111	11111111	10000000
	255	255	255	128

3. Указываем последние 5 подсетей:

$oxedsymbol{\mathrm{A}}$ дрес сети $N_1/$ Префикс N_1	10.175.253.128/25
Λ дрес первого узла N_1	10.175.253.129
Адрес последнего узла N_1	10.175.253.254
Широковещательный адрес N_1	10.175.253.255
$oxedsymbol{A}$ дрес сети $N_2/$ Префикс N_2	10.175.254.0/25
Λ дрес первого узла N_2	10.175.254.1
Адрес последнего узла N_2	10.175.254.126
Широковещательный адрес N_2	10.175.254.127

Λ дрес сети $N_3/$ Префикс N_3	10.175.254.128/25
Адрес первого узла N_3	10.175.254.129
Адрес последнего узла N_3	10.175.254.254
Широковещательный адрес N_3	10.175.254.255
$oxed{A}$ дрес сети $N_4/$ Префикс N_4	$\fbox{10.175.255.0/25}$
${ m A}$ дрес первого узла N_4	10.175.255.1
${ m A}$ дрес последнего узла N_4	10.175.255.126
Широковещательный адрес N_4	10.175.255.127
Λ дрес сети $N_5/$ Префикс N_5	10.175.255.128/25
${ m A}$ дрес первого узла N_5	10.175.255.129
${ m A}$ дрес последнего узла N_5	10.175.255.254
Широковещательный адрес N_5	10.175.255.255