_											
Data											
Date		٠.	٠.	٠.		٠.	•	٠.	•		

A CONSOLIDATED QUESTION PAPER-CUM-ANSWER BOOKLET

MAINS TEST SERIES-2021

(JUNE to DEC.-2021)

IAS/IFoS

MATHEMATICS

Under the guidance of K. Venkanna

FULL SYLLABUS (PAPER-I)

TEST CODE: TEST-7: IAS(M)/22-AUG.-2021

Time: 3 Hours Maximum Marks: 250

INSTRUCTIONS

- This question paper-cum-answer booklet has <u>52</u> pages and has
 - $\underline{32\ PART/SUBPART}$ questions. Please ensure that the copy of the question paper-cum-answer booklet you have received contains all the questions.
- 2. Write your Name, Roll Number, Name of the Test Centre and Medium in the appropriate space provided on the right side.
- 3. A consolidated Question Paper-cum-Answer Booklet, having space below each part/sub part of a question shall be provided to them for writing the answers. Candidates shall be required to attempt answer to the part/sub-part of a question strictly within the pre-defined space. Any attempt outside the pre-defined space shall not be evaluated."
- 4. Answer must be written in the medium specified in the admission Certificate issued to you, which must be stated clearly on the right side. No marks will be given for the answers written in a medium other than that specified in the Admission Certificate.
- Candidates should attempt Question Nos. 1 and 5, which are compulsory, and any THREE of the remaining questions selecting at least ONE question from each Section.
- The number of marks carried by each question is indicated at the end of the question. Assume suitable data if considered necessary and indicate the same clearly.
- 7. Symbols/notations carry their usual meanings, unless otherwise indicated.
- 8. All questions carry equal marks.
- All answers must be written in blue/black ink only. Sketch pen, pencil or ink of any other colour should not be used.
- All rough work should be done in the space provided and scored out finally.
- 11. The candidate should respect the instructions given by the invigilator.
- The question paper-cum-answer booklet must be returned in its entirety to the invigilator before leaving the examination hall. Do not remove any page from this booklet.

READ	INSTR	UCT	IONS	ON	THE
LEFT	SIDE	ΟF	THIS	P	AGE
CAREI	FULLY				

Name	
Roll No.	
Test Centre	

Do not write your Roll Number or Name
anywhere else in this Question Paper-
cum-Answer Booklet.

Medium

I	have	read	all	the	instructions	and	shall

abide by them

Signature of the Candidate

I have verified the information filled by the candidate above

Signature of the invigilator

IMPORTANT NOTE:

Whenever a question is being attempted, all its parts/ sub-parts must be attempted contiguously. This means that before moving on to the next question to be attempted, candidates must finish attempting all parts/ sub-parts of the previous question attempted. This is to be strictly followed. Pages left blank in the answer-book are to be clearly struck out in ink. Any answers that follow pages left blank may not be given credit.

DO NOT WRITE ON THIS SPACE

INDEX TABLE

QUESTION	No.	PAGE NO.	MAX. MARKS	MARKS OBTAINED
1	(a)			
	(b)			
	(c)			
	(d)			
	(e)			
2	(a)			
	(b)			
	(c)			
	(d)			
3	(a)			
	(b)			
	(c)			
	(d)			
4	(a)			
	(b)			
	(c)			
	(d)			
5	(a)			
	(b)			
	(c)			
	(d)			
	(e)			
6	(a)			
	(b)			
	(c)			
	(d)			
7	(a)			
	(b)			
	(c)			
	(d)			
8	(a)			
	(b)			
	(c)			
	(d)			
			Total Marks	

DO NOT WRITE ON THIS SPACE

SE	01	r\T/		NΤ	A
5 E	U	ш	U	IVI	А

1.	(a)	Find the dimension and a basis of the solution space W of the system x	+ 2y +
		2z - s + 3t = 0, $x + 2y + 3z + s + t = 0$, $3x + 6y + 8z + s + 5t = 0$	[10]

			2	-2	2	
1.	(b)	Let A=	1	1	1	and C be a non-singular matrix of order 3×3 . Find the eigen
			1	3	-1	

values of the matrix B^3 where $B = C^{-1} AC$.

[10]

1. (c) Let $f: \mathbb{R} \to \mathbb{R}$ be such that

$$f(x) = \frac{\sin(a+1)x + \sin x}{x} , \text{ if } x < 0$$

$$c , \text{ if } x = 0$$

c , if
$$x = 0$$

$$\frac{(x+bx^2)^{1/2} - x^{1/2}}{bx^{3/2}}$$
 , if $x > 0$

Determine the values of a, b c for which the function is continuous at x = 0.

[10]

1.	(d)	Evaluate	$\iint\limits_{D}xydA\;,$	where	D is	the	region	bounded	by	the	line y	= x -	l and	the
		parabola	$y^2 = 2x +$	6.									[10]

1.	(e)	Find the equation of a sphere touching the three co-ordinate planes. How many
	(~)	such spheres can be drawn? [10]
		[10]

2. (a) (i) If
$$P = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
, then find P^{50} .

(ii) Find the dimension of the subspace $W = \{(x, y, z, w) \in \mathbb{R}^4 \mid x + y + z + w = 0, x + y + 2z = 0, x + 3y = 0\}.$ [16]

- **2.** (b) (i) Show that the height of an open cylinder of given surface and greatest volume is equal to the radius of its base.
 - (ii) If $z = (x + y) + (x + y)\phi(y/x)$, prove that

$$x\left(\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 x}{\partial y \partial x}\right) = y\left(\frac{\partial^2 z}{\partial y^2} - \frac{\partial^2 z}{\partial x \partial y}\right)$$
[18]

- **2.** (c) (i) A variable plane, which remains at a constant distance p from the origin, cuts the co-ordinate axes at A, B and C. Show that the locus of the centroid of Δ ABC is $x^{-2} + y^{-2} + z^{-2} = 9p^{-2}$.
 - (ii) Find the equation of the cylinder whose generators are parallel to the line x v z

$$\frac{x}{1} = \frac{y}{(-2)} = \frac{z}{3}$$
 and passing through the curve $x^2 + 2y^2 = 1$, $z = 0$ [16]

3. (a) If H is a Hermitian matrix, show that

$$(I - iH)(I + iH)^{-1} = (I + iH)^{-1} (I - iH) = U$$

where U is a unitary matrix and that if λ is an eigenvalue of H, then $(1-i\lambda)/(1+i\lambda)$ is an eigenvalue of U.

Find U when
$$H = \begin{bmatrix} 1 & e^{i\alpha} \\ e^{-i\alpha} & -1 \end{bmatrix}$$

[15]

3. (b) (i) Show that $\frac{v-u}{1+v^2} < \tan^{-1} v - \tan^{-1} u < \frac{v-u}{1+u^2}$, if 0 < u < v and deduce that

$$\frac{\pi}{4} + \frac{3}{25} < \tan^{-1}\frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}.$$

(ii) Examine the convergence of $\int_{1}^{\infty} \frac{dx}{x\sqrt{x^2+1}}$.

Using Lagrange's Multiple Method.

[12+6=18]

3.	(c)	Prove that in general three normals can be drawn from a given point to the
	()	paraboloid of revolution $x^2 + y^2 = 2az$ but if the point lies on the surface $27a(x^2 +$
		y^2) + 8(a - z) ³ = 0, two of the three normals coincide. [17]

4.	(a)	(i)	Let A be a 3 × 3 upper tri	angu	lar	ma	atrix with real entries. If $a_{11} = 1$, $a_{22} = 2$
			and $a_{33} = 3$, determine α ,	β and	γε	suc	h that $A^{-1} = \alpha A^2 + \beta A + \gamma I$.
				- 9	4	4	
		(ii)					is diagonalizable. Also find the diagonal
				_16	8	7	

form and diagonalizing matrix P.

[6+14=20]

4.	(b)	Find the	maximum	and	minimum	values	of	$\boldsymbol{x}^2 \boldsymbol{+} \boldsymbol{y}^2 \boldsymbol{+} \boldsymbol{z}^2$	subject to	the	conditions
		$\frac{x^2}{4} + \frac{y^2}{5} +$	$\frac{z^2}{25} = 1$, and	z = x	+ y.						[15]

4.	(c)	Find the equations to the generating lines of the hyperboloid $(x^2/4) + (y^2/9) - (z^2/16) = 1$ which pass through the points $(2, 3, -4)$ and $(2, -1, 4/3)$. [15]

			_
SEC'	PT.	M	D
OE.	ıı.	<i>,</i> 14	- D

5. (a) Solve $(3y^2 - 7x^2 + 7)xdx + (7y^2 - 3x^2 + 3) y dy = 0$ [10]

[10]
arame
on of p
ariatio
d of va
metho
y the
> 0 b
g x, x
x e ^x lo
+ y = :
$y_2 - 2y_1$
Solve
(b)
5.

5.	(c)	A particle is thrown over a triangle from one end of a horizontal base and grazing over the vertex falls on the other end of the base. If A, B be the base angles of the triangle and α the angle of projection, prove that tan α = tan A + tan B. [10]

5.	(d)	Find the directional derivative of the function $xy^2 + yz^2 + zx^2$ along the tangent to the curve $x = t$, $y = t^2$, $z = t^3$ at the point $(1, 1, 1)$.

5.	(e)	(i) If A and B are irrotational, prove that A × B is solenoidal. (ii) Prove that curl curl(ϕ grad ϕ) = 0.	[10]

6.	(a)	Find the solution of the differential equation $y=2xp-yp^2$ where $p=dy/dx$. Also find the singular solution. Find the orthogonal trajectories of the family of curves $x^2/(a^2+\lambda)+y^2/(b^2+\lambda)=1$, where λ is a parameter. [18]

6.	(b)	A uniform solid hemisphere rests on a rough plane inclined to the horizon at an angle ϕ with its curved surface touching the plane. find the greatest admissible value of the inclination ϕ for equilibrium. If ϕ be less than this value, is the equilibrium stable?

6. (c) (i) Show that $E = \frac{r}{r^2}$ is irrotational. Find ϕ such that $E = -\nabla \phi$ and such that

 $\phi(a) = 0$ where a > 0.

(ii) ϕ_1 and ϕ_2 are two scalar functions such that $(\nabla^2 + \mathbf{k}^2) \phi_1 = 0$ and $(\nabla^2 + \mathbf{k}^2) \phi_2 = 0$ and $\mathbf{f} = \nabla \times [\mathbf{r}\phi_1 + \mathbf{r} \times \nabla\phi_2]$, show that div $\mathbf{f} = 0$, $(\nabla^2 + \mathbf{k}^2) \mathbf{f} = 0$. [17]

[15]	
1)e ^x .	
= (x +	
+ 2y =	
5)y' -	
· (2x +	
2)y" -	
olve (x -	
(a)	
7.	

7.	(b)	A uniform rod AB of length 2a movable about a hinge at A rests with other end against a smooth vertical wall. If α is the inclination of the rod to the vertical, prove that the magnitude of reaction of the hinge is $\frac{1}{2}W\sqrt{4+\tan^2\alpha}$ where W is the weight of the rod.
		where W is the weight of the rod. [17]

7.	(c)	Verity the divergence theorem for A = $4xi - 2y^2j + z^2k$ taken over the region bounded
		by $x^2 + y^2 = 4$, $z = 0$ and $z = 3$. [18]

		40 01 52
8.	(b)	A particle moves with a central acceleration which varies inversely as the cube of the distance. If it be projected from an apse at a distance a from the origin with
		a velocity which is $\sqrt{2}$ times the velocity for a circle of radius a, show that the
		equation to its path is $r\cos(\theta/\sqrt{2}) = a$. [18]

8.	(c)	If $A = 2yz\mathbf{i} - (x + 3y - 2)\mathbf{j} + (x^2 + z)\mathbf{k}$, evaluate $\iint_{S} (\nabla \times A) \cdot ndS$ over the surface of
		intersection of the cylinders $x^2 + y^2 = a^2$, $x^2 + z^2 = a^2$ which is included in the first octant. [17]

ROUGH SPACE

No.1 INSTITUTE FOR IAS/IFOS EXAMINATIONS

OUR ACHIEVEMENTS IN IFoS (FROM 2008 TO 2019)

OUR RANKERS AMONG TOP 10 IN IFoS

DISSII KIIMAD AIR-01 IFoS-2019

PRATAP SINGH AIR-01 IFoS-2015

PRATEEK JAIN AIR-03 IFoS-2016

STONARTHA GUPTA AIR-03 IFoS-2014

VARIIN CUNTURALLI AIR-04 IFoS-2014

AIR-04 IFoS-2010

O IMPRIM IGTARN AIR-05 IFoS-2019

DESHAL DAN AIR-05 IFoS-2017

PARTH JAISWAL AIR-05 IFoS-2014

HIMANSHU GUPTA AIR-05 IFoS-2011

ASHISH REDOY MY AIR-06 IFoS-2015

ANUPAH SHUKLA AIR-07 IFoS-2012

ARMCHAL SPINASTAW AIR-09 IFoS-2018

HARSHVARDHAM AIR-10 IFoS-2017

AIR-30

AIR-93

AIR-22

AIR-21

AIR-67

101 AIR-13

AIR-72 AIR-11 AIR-36 ONLY IMS PROVIDES SCIENTIFIC & INNOVATIVE TEACHING METHODOLOGIES FULLY REVISED STUDY MATERIALS AND FULLY REVISED TEST SERIES.

HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9 © Ph.:011-45629987, 9999197625 💋 www.ims4maths.com @ e-Mail: ims4maths@gmail.com

Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152

No. 1 INSTITUTE FOR IAS/IFOS EXAMINATIONS

OUR ACHIEVEMENTS (FROM 2008 TO 2019)

HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9

© Ph.:011-45629987, 9999197625 www.ims4maths.com @ e-Mail: ims4maths@gmail.com

Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152