

Metal additive manufacturing processes

Local monitoring and defects prediction via Bayesian approach

Beatrice Crippa Simone Panzeri

19th February 2020

1. SELECTIVE LASER MELTING

1.1 Process

1. SELECTIVE LASER MELTING

1.2 Images Acquisition and Preprocessing Phase

2.1 Restriction of the domain

(BIG) COMPUTATIONAL PROBLEM:

Intensity values related to **996 pixels** ⇒ TOO LARGE AMOUNT OF DATA

2.1 Restriction of the domain

(BIG) COMPUTATIONAL PROBLEM:

Intensity values related to $996 \text{ pixels} \Rightarrow 420 \text{ pixels}$

2.2 Simulation of missing data

PROBLEM:

Simulate missing values (NA=sparkles), for each pixel

- Variables: $(V_{p1}, V_{p2}, ..., V_{pN}) \quad \forall p = 1, ..., 996, N = 329$
- $\bullet \ \ \, \textbf{Likelihood:} \ \, \textbf{V}_{\text{p1}},...,\textbf{V}_{\text{pN}}|\mu_{\rho} \overset{\text{iid}}{\sim} \mathcal{N}(\mu_{\rho},\sigma_{\rho}^2)$
- Prior distributions:

$$\mu_{p} \sim \mathcal{N}(\mu_{0_{p}}, \tau^{2})$$

where:

$$\mu_{0_p} = \bar{\mathtt{V}}_{\mathtt{p}},$$
 $\sigma_p^2 = \mathit{Var}(\mathtt{V}_{\mathtt{p}})$
 au^2 fixed

2.2 Simulation of missing data

Posterior distributions:

$$\mu_{p}|\mathbf{V}_{p1},...,\mathbf{V}_{pN} \sim \mathcal{N}(\mu_{1_{p}},\tau_{1}^{2})$$

2.3 Data extraction

2.3 Data extraction

2.4 Variables

2.4 Variables

Geometrical properties:

G_{1p}

G₂

3.1 Idea

BAYESIAN GAUSSIAN HIERARCHICAL MODEL

- 420 groups (one for each pixel)
- each group has $n_{p,TOT}$ observations
- ullet response variable: $oldsymbol{V}_p$
- covariates: $x_p = [1, N_p, L_p, T_p]$

For each **fixed** pixel p = 1, ..., 420:

$$\begin{split} & \boldsymbol{V_p} = \boldsymbol{x_p^t}\boldsymbol{\beta} + \boldsymbol{\epsilon_p} \quad \boldsymbol{\epsilon_p} \sim \mathcal{N}(\boldsymbol{0},Q_p) \\ & \boldsymbol{V_p}|\boldsymbol{\beta}, Q_p \overset{\text{ind}}{\sim} \mathcal{N}_{n_p}(\boldsymbol{x_p^t}\boldsymbol{\beta},Q_p) \\ & \pi(\boldsymbol{\beta},Q_p,\delta_p) = \pi(\boldsymbol{\beta})\pi(Q_p|\delta_p)\pi(\delta_p) \\ & \boldsymbol{\beta} \overset{\text{iid}}{\sim} \mathcal{N}_4(\boldsymbol{0},B) \\ & Q_p|\delta_p \sim \delta_p IW(\eta_0,\frac{1}{\sigma_0^2}I_{n_p}) + (1-\delta_p)\sigma_0^2I_{n_p} \\ & \delta_p|\xi_p \sim Be(\xi_p) \\ & \xi_p = \Lambda(\mathtt{G_p}^t\boldsymbol{\gamma}) \colon \textbf{logit model} \\ & \eta_0, \ \sigma_0^2, \ B \colon \text{fixed hyperparameters (using frequentist estimates)} \end{split}$$

- Model implemented in RStan
- Hence, δ_p integrated out \Rightarrow direct use of ξ_p in the expression of the mixture on $Q_p|\delta_p$
- iterations: 2000
- thinning: 2
- chains: 2

4.1 Idea

LONGITUDINAL DATA (AR(1))

- ullet each observation $ar{V}_{pt}$ depends only on the previous one
- p = 1, ..., 420 and $t = 1, ..., n_{p, TOT}$

$$\bar{\mathbf{V}}_{\mathtt{pt}} = \alpha_{p} \bar{\mathbf{V}}_{\mathtt{p,t-1}} + \epsilon_{pt}, \quad \epsilon_{pt} \stackrel{\mathsf{iid}}{\sim} \mathcal{N}(0, \sigma^{2})$$

4.2 Model

4.2 Model

$$\boldsymbol{\mu}_{p} = \begin{bmatrix} \mu_{0} \\ \alpha_{p}\mu_{0} \\ \alpha_{p}^{2}\mu_{0} \\ \vdots \\ \alpha_{p}^{n_{p,TOT}-1}\mu_{0} \end{bmatrix} \quad \text{and} \quad \boldsymbol{V}_{p} \stackrel{\text{sym}}{=} \begin{bmatrix} \sigma^{2} & \alpha_{p} & \alpha_{p}^{2} & \alpha_{p}^{3} & \dots & \alpha_{p}^{n_{p,TOT}-1} \\ \sigma^{2} & \alpha_{p} & \alpha_{p}^{2} & \dots & \alpha_{p}^{n_{p,TOT}-2} \\ & \sigma^{2} & \alpha_{p} & \dots & \alpha_{p}^{n_{p,TOT}-3} \\ & & \ddots & \ddots & \vdots \\ & & & \ddots & \ddots & \vdots \\ & & & & \ddots & \alpha_{p} \\ & & & & & \sigma^{2} \end{bmatrix}$$

 μ_0 and σ^2 : fixed hyperparameters

4.3 Results

logit parameters for p = 188

4.3 Results

autocorrelation plot for p = 147

autocorrelation plot for p = 188

0.10

0.05

5. BIBLIOGRAPHY

 Dataset provided by Matteo Bugatti (Mechanical Engineer and PhD student at Polimi and ESA)

 M. Grasso, V. Laguzza, Q. Semeraro, B. M. Colosimo, In-Process Monitoring of Selective Laser Melting: Spatial Detection of Defects Via Image Data Analysis, 2017