# Data Preprocessing

October 25, 2018

## 1 Lab Assignment 1

#### 1.1 Data Preprocessing

class

dtype: object

```
1.1.1 Submitted to: Prof. Sweetlin Hemlatha
```

### 1.1.2 Submitted by: Prateek Singh (15BCE1091)

```
In [3]: import numpy as np
        import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        %matplotlib inline
In [3]: data = pd.read_csv("iris-data.csv")
        data.head()
Out[3]:
           sepal_length_cm sepal_width_cm petal_length_cm petal_width_cm \
                                       3.5
                                                         1.4
                                                                         0.2
        0
                       5.1
        1
                       4.9
                                       3.0
                                                                         0.2
                                                         1.4
        2
                       4.7
                                       3.2
                                                         1.3
                                                                         0.2
        3
                       4.6
                                       3.1
                                                         1.5
                                                                         0.2
        4
                       5.0
                                       3.6
                                                         1.4
                                                                         0.2
                 class
         Iris-setosa
        1 Iris-setosa
        2 Iris-setosa
        3 Iris-setosa
        4 Iris-setosa
In [4]: data.dtypes
Out[4]: sepal_length_cm
                           float64
        sepal_width_cm
                           float64
        petal_length_cm
                           float64
        petal_width_cm
                           float64
```

object

In [5]: data.describe()

| Out[5]: |       | sepal_length_cm | sepal_width_cm | petal_length_cm | petal_width_cm |
|---------|-------|-----------------|----------------|-----------------|----------------|
|         | count | 150.000000      | 150.000000     | 150.000000      | 145.000000     |
|         | mean  | 5.644627        | 3.054667       | 3.758667        | 1.236552       |
|         | std   | 1.312781        | 0.433123       | 1.764420        | 0.755058       |
|         | min   | 0.055000        | 2.000000       | 1.000000        | 0.100000       |
|         | 25%   | 5.100000        | 2.800000       | 1.600000        | 0.400000       |
|         | 50%   | 5.700000        | 3.000000       | 4.350000        | 1.300000       |
|         | 75%   | 6.400000        | 3.300000       | 5.100000        | 1.800000       |
|         | max   | 7.900000        | 4.400000       | 6.900000        | 2.500000       |

In [6]: sns.pairplot(data=data.dropna(),hue='class')

Out[6]: <seaborn.axisgrid.PairGrid at 0x7fddb39ba400>



In [8]: sns.pairplot(data=data.dropna(),hue='class') #Plot after fixing class labels



In [9]: data.loc[data["class"]=="Iris-setosa", "sepal\_width\_cm"].hist()

Out[9]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7fddaabda7b8>



In [10]: data.loc[data["petal\_width\_cm"].isnull()]

| Out[10]: | sepal_length_cm | sepal_width_cm | petal_length_cm | <pre>petal_width_cm \</pre> |  |
|----------|-----------------|----------------|-----------------|-----------------------------|--|
| 7        | 5.0             | 3.4            | 1.5             | NaN                         |  |
| 8        | 4.4             | 2.9            | 1.4             | NaN                         |  |
| 9        | 4.9             | 3.1            | 1.5             | NaN                         |  |
| 10       | 5.4             | 3.7            | 1.5             | NaN                         |  |
| 11       | 4.8             | 3.4            | 1.6             | NaN                         |  |

class

- 7 Iris-setosa
- 8 Iris-setosa
- 9 Iris-setosa
- 10 Iris-setosa
- 11 Iris-setosa

In [12]: sns.violinplot(data=data) # Violin Plot// They represent probability density also whe

Out[12]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7fddaa45af60>



In [13]: sns.boxplot(data=data) #Box plot representing mean and quantiles
Out[13]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7fddaa3e5ac8>



#### Applying the above functions to my own dataset

```
In [4]: wine_data = pd.read_csv('../Dataset/winequality-white.csv', sep=';')
        red wine = pd.read csv('../Dataset/winequality-red.csv', sep=';')
        sns.set(style='whitegrid', context='notebook', font_scale=1)
In [5]:
            wine_data.append(red_wine)
        wine_data["quality"] = wine_data["quality"].astype(str)
        wine_data.head(10)
Out[5]:
           fixed acidity volatile acidity citric acid residual sugar
                                                                             chlorides
        0
                      7.0
                                        0.27
                                                      0.36
                                                                       20.7
                                                                                 0.045
        1
                      6.3
                                        0.30
                                                      0.34
                                                                        1.6
                                                                                 0.049
        2
                      8.1
                                        0.28
                                                      0.40
                                                                        6.9
                                                                                 0.050
        3
                      7.2
                                        0.23
                                                      0.32
                                                                        8.5
                                                                                 0.058
        4
                      7.2
                                        0.23
                                                      0.32
                                                                        8.5
                                                                                 0.058
        5
                      8.1
                                        0.28
                                                      0.40
                                                                        6.9
                                                                                 0.050
        6
                      6.2
                                        0.32
                                                      0.16
                                                                        7.0
                                                                                 0.045
        7
                      7.0
                                        0.27
                                                      0.36
                                                                       20.7
                                                                                 0.045
                                                                                 0.049
        8
                      6.3
                                        0.30
                                                      0.34
                                                                        1.6
        9
                      8.1
                                        0.22
                                                      0.43
                                                                        1.5
                                                                                 0.044
           free sulfur dioxide total sulfur dioxide
                                                         density
                                                                    рΗ
                                                                         sulphates \
        0
                           45.0
                                                                              0.45
                                                 170.0
                                                          1.0010
                                                                  3.00
                           14.0
        1
                                                          0.9940 3.30
                                                                              0.49
                                                 132.0
        2
                           30.0
                                                  97.0
                                                          0.9951 3.26
                                                                              0.44
        3
                           47.0
                                                 186.0
                                                          0.9956 3.19
                                                                              0.40
        4
                           47.0
                                                          0.9956 3.19
                                                                              0.40
                                                 186.0
        5
                           30.0
                                                  97.0
                                                          0.9951 3.26
                                                                              0.44
        6
                           30.0
                                                 136.0
                                                          0.9949 3.18
                                                                              0.47
        7
                           45.0
                                                 170.0
                                                          1.0010 3.00
                                                                              0.45
                           14.0
        8
                                                 132.0
                                                          0.9940 3.30
                                                                              0.49
        9
                                                 129.0
                                                                              0.45
                           28.0
                                                          0.9938 3.22
           alcohol quality
        0
               8.8
                          6
               9.5
        1
                          6
        2
              10.1
                          6
        3
               9.9
                          6
               9.9
        4
                          6
        5
              10.1
                          6
        6
               9.6
                          6
        7
               8.8
                          6
        8
               9.5
                          6
        9
              11.0
                          6
In [6]: wine_data.describe()
Out [6]:
               fixed acidity volatile acidity citric acid residual sugar
```

4898.000000 4898.000000

4898.000000

4898.000000

count

|         | mean                                                        | 6.854788      | 3 0.        | 278241  | 0.334192   | 6.3        | 91415       |   |
|---------|-------------------------------------------------------------|---------------|-------------|---------|------------|------------|-------------|---|
|         | std                                                         | 0.843868      | 3 0.        | 100795  | 0.121020   | 5.0        | 72058       |   |
|         | min                                                         | 3.800000      | 0.          | 080000  | 0.000000   | 0.6        | 00000       |   |
|         | 25%                                                         | 6.30000       | 0.          | 210000  | 0.270000   | 1.7        | 00000       |   |
|         | 50%                                                         | 6.800000      | 0.          | 260000  | 0.320000   | 5.2        | 200000      |   |
|         | 75%                                                         | 7.300000      | 0.          | 320000  | 0.390000   | 9.9        | 00000       |   |
|         | max                                                         | 14.200000     | 1.          | 100000  | 1.660000   | 65.8       | 800000      |   |
|         |                                                             |               |             |         |            |            |             |   |
|         |                                                             | chlorides     | free sulfur |         | total sulf |            | density     | \ |
|         | count                                                       | 4898.000000   |             | .000000 |            | 898.000000 | 4898.000000 |   |
|         | mean                                                        | 0.045772      |             | .308085 |            | 138.360657 | 0.994027    |   |
|         | std                                                         | 0.021848      |             | .007137 |            | 42.498065  | 0.002991    |   |
|         | min                                                         | 0.009000      | 2           | .000000 |            | 9.000000   | 0.987110    |   |
|         | 25%                                                         | 0.036000      | 23          | .000000 |            | 108.000000 | 0.991723    |   |
|         | 50%                                                         | 0.043000      | 34          | .000000 |            | 134.000000 | 0.993740    |   |
|         | 75%                                                         | 0.050000      | 46          | .000000 |            | 167.000000 | 0.996100    |   |
|         | max                                                         | 0.346000      | 289         | .000000 | •          | 440.000000 | 1.038980    |   |
|         |                                                             |               | 7 1 .       | -       | 1 7        |            |             |   |
|         |                                                             | рН            | sulphates   |         | ohol       |            |             |   |
|         | count                                                       | 4898.000000   | 4898.000000 | 4898.00 |            |            |             |   |
|         | mean                                                        | 3.188267      | 0.489847    | 10.51   |            |            |             |   |
|         | std                                                         | 0.151001      | 0.114126    | 1.23    |            |            |             |   |
|         | min                                                         | 2.720000      | 0.220000    | 8.00    |            |            |             |   |
|         | 25%                                                         | 3.090000      | 0.410000    | 9.50    |            |            |             |   |
|         | 50%                                                         | 3.180000      | 0.470000    | 10.40   | 0000       |            |             |   |
|         | 75%                                                         | 3.280000      | 0.550000    | 11.40   | 0000       |            |             |   |
|         | max                                                         | 3.820000      | 1.080000    | 14.20   | 0000       |            |             |   |
| In [7]: | wine_da                                                     | ata.dtypes    |             |         |            |            |             |   |
| Out[7]: | : fixed acidity volatile acidity citric acid residual sugar |               | float64     |         |            |            |             |   |
|         |                                                             |               | float64     |         |            |            |             |   |
|         |                                                             |               | float64     |         |            |            |             |   |
|         |                                                             |               | float64     |         |            |            |             |   |
|         | chlori                                                      | -             | float64     |         |            |            |             |   |
|         |                                                             | ulfur dioxide | float64     |         |            |            |             |   |
|         |                                                             | arrar aroniae | 1100001     |         |            |            |             |   |

In [8]: sns.pairplot(wine\_data.dropna(), size=2.5, hue="quality")

float64

float64 float64

float64

float64

object

Out[8]: <seaborn.axisgrid.PairGrid at 0x7fe2f539cdd8>

total sulfur dioxide

density

alcohol

quality

sulphates

dtype: object

рΗ



In [9]: wine\_data.loc[wine\_data["quality"] == '5', "fixed acidity"].hist()

Out[9]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7fe2eb803b38>



In [57]: sns.violinplot(data=wine\_data["density"], size=10)

Out[57]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7f6474553b70>



In [44]: sns.violinplot(data=wine\_data["citric acid"], size=10)

Out[44]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7f647c0660f0>



In [45]: sns.violinplot(data=wine\_data["sulphates"], size=10)

Out[45]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7f6476e25e10>



In [46]: sns.violinplot(data=wine\_data["pH"], size=10)

Out[46]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7f6476d8f630>



In [55]: fig, ax = plt.subplots(figsize=(20, 20))
 # seaborn.violinplot(ax=ax, data=df, \*\*violin\_options)
 sns.boxplot(ax=ax, data=wine\_data)

Out[55]: <matplotlib.axes.\_subplots.AxesSubplot at 0x7f6476575ef0>

