PERTH MODERN SCHOOL

UNIT 3CD MAS - 2015

TEST 1: SOLUTIONS

POLAR COORDINATES, COMPLEX NUMBERS & VECTORS

NAME: _____ DATE: Feb.

Total: 45 marks Time: 50 min.

Question 1. (5 marks)

(i) Point P has polar coordinates $(4,17^{\circ})$ and it lies on the line y = -x + 5Point Q also lies on the line and is 12cm away from P.

Find the polar coordinates of Q $[r,\theta]$ where $90^{\circ} < \theta < 180^{\circ}$. (3 marks)

$$OQ^2 = 12^2 + 4^2 - 2(12)(4)\cos 62^0$$

OQ = 10.72

$$12^2 = 4^2 + 10.72^2 - 2(4)(10.72)\cos\angle POQ$$

$$\angle POQ = 98.77^{\circ}$$

Polar Coordinates of Q = $\begin{bmatrix} 10.72, 115.77^0 \end{bmatrix}$

Specific behaviours

✓ angle of 62°, ✓ ✓ $[10.72,115.77^{\circ}]$

(ii) Sketch the graph of $r = \frac{4}{\pi}\theta$ on the axes above and hence state where it intersects r = 4

Question 2 (9 marks)

On a 3D computer game, Chris, a keen cyclist leaves from *position* $(\mathbf{i} - \mathbf{j} + 2\mathbf{k})$ metres is travelling at $(2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k})$ m/s while his mate Dave leaves from position $(\mathbf{a}\mathbf{i} + \mathbf{j} + \mathbf{b}\mathbf{k})$ metres running at $(\mathbf{i} - \mathbf{j} + 2\mathbf{k})$ m/s.

(i) Although they do not collide, their paths do intersect at the point with coordinates (a, 1, b).

Determine the values of a and b.

(4 marks)

Solution

$$\underline{r}_{C} = (1+2\lambda)\underline{i} + (-1+3\lambda)\underline{j} + (2-6\lambda)\underline{k}$$

As paths meet at (a, 1, b), then (a, 1, b) lies on \underline{r}_{C}

i.e.
$$(1+2\lambda)=a$$
, $(-1+3\lambda)=1$, $(2-6\lambda)=b$

Solving these equations simultaneously, $\lambda = \frac{2}{3}$, $a = \frac{7}{3}$, $b = -2 \checkmark \checkmark \checkmark$

Specific behaviours

As allocated

(ii) Find the acute angle between these two paths.

(2 marks)

Solution

Let angle be θ

$$(2,3,-6)$$
 $(1,-1,2) = \sqrt{4+9+36} \cdot \sqrt{1+1+4} \cdot \cos \theta \checkmark$

$$\theta$$
 = 139.3 $^{\circ}$

Hence acute angle is 40.7°✓

Specific behaviours

As allocated

$$r = \begin{pmatrix} \frac{7}{3} \\ 1 \\ -2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$

(a) The vectors $3\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ and $\mathbf{i} + 2\mathbf{j} + \mathbf{a}\mathbf{k}$ are perpendicular. Determine the value of \mathbf{a} . (1marks)

$$\begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix} \bullet \begin{bmatrix} 1 \\ 2 \\ a \end{bmatrix} = 0 \Rightarrow 3 - 2 + 2a = 0 \Rightarrow a = -\frac{1}{2}$$

(b) Determine whether the two lines

$$r = 8i - j - 8k + \lambda(2i - 3k)$$
 and $r = j - 3k + \mu(i - j + 2k)$ intersect.

If they do intersect, state the position vector of their point of intersection.

If they do not intersect, justify your answer.

(4 marks)

$$\mathbf{i} \cdot 8 + 2\lambda = \lambda$$

$$\mathbf{j}$$
: -1=1- $\mu \Rightarrow \mu$ =2, λ =-3

$$\mathbf{k}$$
: -8-3(-3) =-3+2(2) \Rightarrow 1=1 \Rightarrow intersect

$$\begin{bmatrix} 0 \\ 1 \\ -3 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} \Rightarrow \text{ intersect at } 2\mathbf{i} - \mathbf{j} + \mathbf{k}$$

(a) If z = 3 - 4i, determine the reciprocal, $\frac{1}{z}$

(2 marks)

$$\frac{1}{z} = \frac{\overline{z}}{|z|^2}$$

$$= \frac{3+4i}{3^2+4^2}$$

$$= \frac{3}{25} + \frac{4i}{25}$$

(b) Let the non-zero complex number z = a + bi. Show that $\frac{1}{a + bi} = \frac{\overline{Z}}{|Z|^2}$ (3 marks)

$$LHS = \frac{1}{a+bi}$$

$$= \frac{1}{a+bi} \times \frac{a-bi}{a-bi}$$

$$= \frac{a-bi}{a^2+b^2}$$

$$= \frac{\overline{z}}{|z|^2}$$

$$= RHS$$

(c) Describe the geometrical relationship between any non-zero complex number and its reciprocal.

(2marks)

The reciprocal z^{-1} is the conjugate of z but multiplied by scale factor of $\frac{1}{|z|}$.

So the reciprocal z^{-1} will be the reflection of z in the real axis and of length $\frac{1}{|z|}$

Let $\overrightarrow{MNOPQRST}$ be a rectangular prism with sides \overrightarrow{ON} , \overrightarrow{OP} and \overrightarrow{OR} denoted by vectors \mathbf{a} , \mathbf{b} and \mathbf{c} respectively, as shown in the diagram below.

Suppose that A is the midpoint of \overrightarrow{MN} , B is the midpoint of \overrightarrow{MT} , C is the midpoint of \overrightarrow{QR} and D is the midpoint of \overrightarrow{OR} .

(a) Express \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} and \overrightarrow{OD} in terms of \mathbf{a} , \mathbf{b} and \mathbf{c} . (2 marks)

 \checkmark correctly determines \overline{OA} and \overline{OC} from the diagram \checkmark correctly determines \overline{OB} and \overline{OD} from the diagram

	Solution	
$\overrightarrow{OA} = \mathbf{a} + \frac{\mathbf{b}}{2}$		
$\overrightarrow{OB} = \mathbf{a} + \mathbf{b} + \frac{\mathbf{c}}{2}$		
$\overrightarrow{OC} = \mathbf{c} + \frac{\mathbf{b}}{2}$		
$\overrightarrow{OD} = \frac{\mathbf{c}}{2}$		
Specific behaviours		

Solution

$$\overrightarrow{BC} = \mathbf{c} + \frac{\mathbf{b}}{2} - \mathbf{a} - \mathbf{b} - \frac{\mathbf{c}}{2}$$

$$= \frac{\mathbf{c}}{2} - \frac{\mathbf{b}}{2} - \mathbf{a}$$

$$\overrightarrow{AD} = \frac{\mathbf{c}}{2} - \mathbf{a} - \frac{\mathbf{b}}{2}$$

$$= \overrightarrow{BC}$$

$$\therefore \overrightarrow{BC} \text{ is parallel to } \overrightarrow{AD}$$

$$\overrightarrow{AB} = \mathbf{a} + \mathbf{b} + \frac{\mathbf{c}}{2} - \mathbf{a} - \frac{\mathbf{b}}{2}$$

$$= \frac{\mathbf{b}}{2} + \frac{\mathbf{c}}{2}$$

$$\overrightarrow{DC} = \mathbf{c} + \frac{\mathbf{b}}{2} - \frac{\mathbf{c}}{2}$$

$$= \frac{\mathbf{b}}{2} + \frac{\mathbf{c}}{2}$$

 \overrightarrow{DC} is parallel to \overrightarrow{AB}

i.e. Opposite sides of the quadrilateral ABCD are parallel

:. ABCD is a parallelogram

Specific behaviours

- \checkmark correctly determines \overline{BC} and \overline{AD} in terms of a, b and c
- \checkmark correctly determines \overrightarrow{AB} and \overrightarrow{DC} in terms of a, b and c
- √ states that two pairs of sides are parallel to deduce the result

Question 6 (5 marks)

(5 marks)

(a) Change the complex equation |Z - i| = |Z - 1| into its Cartesian equivalent. (3 marks)

$$|Z - i| = |Z - 1|$$

$$|x + yi - i| = |x + yi - 1|$$

$$|x + i(y - 1)| = |(x - 1) + yi|$$

$$x^{2} + (y - 1)^{2} = (x - 1)^{2} + y^{2}$$

$$x^{2} + y^{2} - 2y + 1 = x^{2} - 2x + 1 + y^{2}$$

$$2x - 2y = 0$$

$$\therefore \qquad x - y = 0$$

(b) Hence identify, the locus of all points Z satisfying the equation in (a). (2 marks)

Question 7

An equilateral triangle has vertices A, B and C, where A is the point $\sqrt{3}-i$ in the Argand plane.

The circumcircle is drawn that passes through vertices A, B and C and has a centre inside the triangle, called the circumcentre.

The circumcentre of the triangle is located at the origin.

Find the complex numbers z_1 and z_2 corresponding to the vertices B and C, expressing your answer in exact Cartesian form.

Solution

The centre is at the origin so the other two points can be found by rotating the point $A 120^{\circ}$.

A rotation of 120° is equivalent to multiplying by $z = 1 \operatorname{cis} \left(\frac{2\pi}{3} \right)$

$$z_A = 2 \operatorname{cis}\left(\frac{-\pi}{6}\right)$$
, so

$$z_B = 1\operatorname{cis}\left(\frac{2\pi}{3}\right) \times 2\operatorname{cis}\left(\frac{-\pi}{6}\right) = 2\operatorname{cis}\left(\frac{3\pi}{6}\right) = 2\operatorname{cis}\left(\frac{\pi}{2}\right)$$

$$z_C = 1 \operatorname{cis}\left(\frac{2\pi}{3}\right) \times 2 \operatorname{cis}\left(\frac{\pi}{2}\right) = 2 \operatorname{cis}\left(\frac{7\pi}{6}\right)$$

In Cartesian form:

$$z_B = 2\left(\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)\right) = 2i$$

$$z_C = 2\left(\cos\left(\frac{7\pi}{6}\right) + i\sin\left(\frac{7\pi}{6}\right)\right) = -\sqrt{3} - i$$

Specific behaviours

- √ uses separation between vectors as 120°
- √ uses a magnitude of 2 for all the vectors
- √ deduces the correct position for vertex B
- √ deduces the correct position for vertex C
- ✓ states the correct Cartesian coordinates for both *B* and *C*

Question 11 (5 marks)

An equilateral triangle has vertices A, B and C, where A is the point $\sqrt{3} - i$ in the Argand plane.

The circumcircle is drawn that passes through vertices A, B and C and has a centre inside the triangle, called the circumcentre.

The circumcentre of the triangle is located at the origin.

Find the complex numbers z_1 and z_2 corresponding to the vertices B and C, expressing your answer in exact Cartesian form.

Find two numbers which have a product of 2 and a sum of 2.

Let the numbers be x and y

$$xy = 2$$

(1)

and

$$x + y = 2$$

rearrange ② y = 2 - x and subst. into ①

$$x(2-x)=2$$

$$2x - 2x^2 = 2$$

$$x^2 - 2x + 2 = 0$$

(Using Classpad)

$$x = 1 \pm i$$

$$y = 1 \pm i$$

∴ the two numbers are 1 + i and 1-i