Predicting News Popularity with Supervised Machine Learning

Monday 12/09/2024 Team 2 Section B

Contributors: Achinthya Sreedhar, Neha Shastri, Chaitali Deshmukh, Aryan Sehgal

Problem Statement

Problem: Accurately predicting the success of newly published news articles by forecasting their popularity (clicks/impressions ratio)

Stakeholders: News platforms and publishers

Why: To optimize content selection, promotion strategies, and personalized recommendations, maximizing reader engagement and platform success

Data Source

Microsoft News Dataset (MIND)

Behaviors:

- Contains click histories and impression logs of users
- Used to analyze user interaction patterns and define the target variable, click percentage

News:

- Contains information of news articles
- Used to extract features such as title length and category for predictive modeling

Descriptive Analysis and Insights

Distribution of Target Variable

Most click percentage values are 0

Indicates the dataset is:

- Highly imbalanced
- Positively skewed

Machine Learning Methods Applied

Classification Model

1. Cost Function

Cost matrix	Predicted -	Predicted +
Actual -	5	-10
Actual +	-8	16

3. Value of Top 3 Models After Tuning

Tuned Balanced Logistic Regression Test Score (Custom Gain): 23708.0000

Tuned Test Score (Custom Gain) CatBoostClassifier: 21524.0000

Tuned XGBClassifier Test Score (Custom Gain): 21059.0000

2. Top 10 Models During Cross Validation

4. Voting Model Performance Improvement Over Null Model

Model Performance Comparison (Custom Gain Scorer):

Mean Custom Gain
Model
Null Model (Majority Class)

Voting Classifier Test Score (Custom Gain): 25187.0000

Regression Model

1. Histogram Before and After Applying Log

2. Top 10 Models During Cross Validation

3. RMSE of Top 2 Models After Tuning

Tuned Catboost Regressor RMSE: 0.6942

Tuned SVR RMSE: 0.6960

4. Voting Model RMSE Over Null Model

Model			Mean	Negative	RMSE
	(Mean	Prediction)		0.	7554

Voting Regressor Test RMSE score: 0.6941

Combined Model


```
Confusion Matrix (Model):
[[7587 1170]
 [3303 1586]]
Confusion Matrix (Null Model):
[[8757
         0]
         011
 [4889
Custom Gain (Model): 25187
Custom Gain (Null Model): 4673
Model Performance:
True Positives (TP): 1586
False Positives (FP): 1170
True Negatives (TN): 7587
False Negatives (FN): 3303
Null Model Performance:
True Positives (TP): 0
False Positives (FP): 0
True Negatives (TN): 8757
False Negatives (FN): 4889
```

Challenges & Key Takeaways

- 1. Extensive Data Preprocessing
- 2. Skewed Dataset
- 3. Google Trends Integration
- 4. Managing Narrowly Distributed Non-Zero Click Percentages
- 5. Slow Performance of Certain Models
- 6. Stacking Model Challenges
- 7. Classifier Voting Limitations

Conclusion & Future Steps

- The regression models used were relatively weak learners.
- Explore ensemble methods like boosting for better performance.
- Integrate search terms with trend velocity to refine predictions.
- Expand applications to ads, YouTube videos, and other digital content.

Link to Final Colab Notebook

Predicting News Popularity With Supervised Machine Learning