Devoir à la maison n°1: corrigé

SOLUTION 1.

- **1.** D'après l'énoncé, $x_0^3 = x_0^2$ donc $x_0 \in \{0, 1\}$.
- 2. Si $x_0 = 0$, alors $x_1^3 = x_1^2$ donc $x_1 \in \{0, 1\}$. Si $x_0 = 1$, alors $1 + x_1^3 = (1 + x_1)^2$ ce qui équivaut à $x_1(x_1^2 x_1 2) = 0$ ou encore $x_1(x_1 2)(x_1 + 1) = 0$ de sorte que $x_1 \in \{-1, 0, 2\}$.
- **3.** Si $(x_0, x_1) = (0, 0)$, alors $(S_0, S_1) = (0, 0)$.
 - Si $(x_0, x_1) = (0, 1)$, alors $(S_0, S_1) = (0, 1)$.
 - Si $(x_0, x_1) = (1, 0)$, alors $(S_0, S_1) = (1, 1)$.
 - Si $(x_0, x_1) = (1, -1)$, alors $(S_0, S_1) = (1, 0)$.
 - Si $(x_0, x_1) = (1, 2)$, alors $(S_0, S_1) = (1, 3)$.
- **4.** On raisonne par récurrence. On note \mathcal{P}_n l'assertion

$$\exists m \in \mathbb{N}, \; S_n = \frac{m(m+1)}{2}$$

Tout d'abord, \mathcal{P}_0 est vraie puisque $S_0=0=\frac{0\cdot(0+1)}{2}$ ou $S_1=1=\frac{1\cdot(1+1)}{2}$.

Supposons \mathcal{P}_n vraie pour un certain $n \in \mathbb{N}$. Il existe donc $m \in \mathbb{N}$ tel que $S_n = \frac{m(m+1)}{2}$. D'une part,

$$\sum_{k=0}^{n+1} x_k^3 = S_{n+1}^2 = (S_n + x_{n+1})^2$$

et d'autre part

$$\sum_{k=0}^{n+1} x_k^3 = \left(\sum_{k=0}^n x_k^3\right) + x_{n+1}^3 = S_n^2 + x_{n+1}^3$$

On en déduit que

$$(S_n + x_{n+1})^2 = S_n^2 + x_{n+1}^3$$

ou encore

$$x_{n+1}(x_{n+1}^2 - x_{n+1} - 2S_n) = 0$$

Cette dernière égalité équivaut à

$$x_{n+1}(x_{n+1}^2 - x_{n+1} - m(m+1)) = 0$$

ou encore

$$x_{n+1}(x_{n+1} + m)(x_{n+1} - (m+1)) = 0$$

de sorte que $x_{n+1} \in \{-m, 0, m+1\}$.

Si $x_{n+1} = -m$, alors $S_{n+1} = S_n - m = \frac{m(m-1)}{2} = \frac{(m-1)((m-1)+1)}{2}$. Si $m \ge 1$, alors $m-1 \in \mathbb{N}$. Sinon m=0 et alors $S_{n+1} = 0 = \frac{0 \cdot (0+1)}{2}$.

Si $x_{n+1}=0$, alors $S_{n+1}=S_n=\frac{m(m+1)}{2}$ et $m\in\mathbb{N}$.

Si $x_{n+1}=m+1$, alors $S_{n+1}=S_n+(m+1)=\frac{(m+1)(m+2)}{2}$ et $m+1\in\mathbb{N}$. Dans tous les cas de figure, \mathcal{P}_{n+1} est vraie.

Par récurrence, \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}$.

SOLUTION 2.

1. On remarque que

$$f(0) = f(0^2 + 0^2) = f(0)^2 + f(0)^2 = 2f(0)^2$$

de sorte que f(0) = 0 ou $f(0) = \frac{1}{2}$. Or f est à valeurs dans \mathbb{N} donc f(0) = 0. De même

$$f(1) = f(1^2 + 0^2) = f(1)^2 + f(0)^2 = f(1)^2$$

donc f(1) = 0 ou f(1) = 1. Or l'énoncé stipule que $f(1) \neq 0$ donc f(1) = 1.

2. On utilise à nouveau le même genre d'astuce.

$$f(2) = f(1^2 + 1^2) = f(1)^2 + f(1)^2 = 2$$

$$f(4) = f(2^2 + 0^2) = f(2)^2 + f(0)^2 = 4$$

$$f(5) = f(2^2 + 1^2) = f(2)^2 + f(1)^2 = 5$$

$$f(8) = f(2^2 + 2^2) = f(2)^2 + f(2)^2 = 8$$

3. On décompose 5² de deux manières sous la forme d'une somme de deux carrés.

$$f(5^2) = f(3^2 + 4^2) = f(3)^2 + f(4)^2$$

= $f(5^2 + 0^2) = f(5)^2 + f(0)^2 = f(5)^2$

On en déduit que

$$f(3)^2 = f(5)^2 - f(4)^2 = 5^2 - 4^2 = 3^2$$

Puisque f est à valeurs positives, f(3) = 3. On en déduit aussitôt que

$$f(9) = f(3^2 + 0^2) = f(3)^2 + f(0)^2 = 3^2 + 0^2 = 9$$

De la même manière, puisque $10^2 = 6^2 + 8^2$.

$$f(10)^2 = f(10^2) = f(6)^2 + f(8)^2$$

Ainsi

$$f(6)^2 = f(10)^2 - f(8)^2 = 10^2 - 8^2 = 6^2$$

de sorte que f(6) = 6.

Enfin,

$$f(10) = f(1^2 + 3^2) = f(1)^2 + f(3)^2 = 1^2 + 3^2 = 10$$

4. Tout d'abord

$$f(50) = f(5^2 + 5^2) = f(5)^2 + f(5)^2 = 5^2 + 5^2 = 50$$

Enfin,

$$50 = f(50) = f(1^2 + 7^2) = f(1)^2 + f(7)^2 = 1 + f(7)^2$$

donc $f(7)^2 = 49 = 7^2$ puis f(7) = 7.

5. Puisque $125 = 10^2 + 5^2 = 11^2 + 2^2$, on obtient

$$f(10)^2 + f(5)^2 = f(11)^2 + f(2)^2$$

Or on a montré que f(10) = 10, f(5) = 5 et f(2) = 2 donc $f(11)^2 = 11^2$ puis f(11) = 11. De même, $145 = 8^2 + 9^2 = 12^2 + 1^2$ et on a montré que f(8) = 8, f(9) = 9 et f(1) = 1. On en déduit comme précédemment que f(12) = 12.

6. On peu raisonnablement conjecturer que f(n) = n pour tout $n \in \mathbb{N}$. On note \mathcal{P}_n l'assertion

$$\forall k \in [0, 2n], f(k) = k$$

D'après les questions précédentes, \mathcal{P}_4 est vraie (et même \mathcal{P}_6).

On suppose \mathcal{P}_n vraie pour un certain entier $n \geqslant 4$ D'après les indications de l'énoncé,

$$f(2n+1)^2 + f(n-2)^2 = f(2n-1)^2 + f(n+2)^2$$

Or n-2, n+2 et 2n-1 appartiennent à [0,2n] car $n \ge 2$ donc f(n-2)=n-2, f(n+2)=n+2 et f(2n-1)=2n-1 d'après \mathcal{P}_n . Ainsi $f(2n+1)^2=(2n+1)^2$ puis f(2n+1)=2n+1.

$$f(2n+2)^2 + f(n-4)^2 = f(2n-2)^2 + f(n+4)^2$$

Or n-4, n+4 et 2n-2 appartiennent à [0,2n] car $n\geqslant 4$ donc f(n-4)=n-4, f(n+4)=n+4 et f(2n-2)=2n-2 d'après \mathcal{P}_n . Ainsi $f(2n+2)^2=(2n+2)^2$ puis f(2n+2)=2n+2. Finalement \mathcal{P}_{n+1} est vraie.

Par récurrence, \mathcal{P}_n est vraie pour tout $n \in \mathbb{N}$ ce qui permet d'affirmer que f(n) = n pour tout $n \in \mathbb{N}$.

SOLUTION 3.

1. Remarquons que $1 + j + j^2 = \frac{1-j^3}{1-j} = 0$.

2.

$$P(1) + P(j) + P(j^2) = \left(1 + j^3 + j^6\right) + \alpha\left(1 + j^2 + j^4\right) + \beta(1 + j + j^2) = 3 + \alpha(1 + j + j^2) + \beta(1 + j + j^2) = 3$$

3. Notons b_1 et b_2 les affixes des points B_1 et B_2 . Puisque 1, j et j^2 sont de module 1, $A_0O = A_1O = A_2O = 1$. Pour $k \in \{0, 1, 2\}$

$$p_k = A_k B_1 \cdot A_k B_2 = A_k O \cdot A_k B_1 \cdot A_k B_2 = |j^k| \cdot |j^k - b_1| \cdot |j^k - b_2| = |j^k(j^k - b_1)(j^k - b_2)|$$

Posons $P(z)=z(z-b_1)(z-b_2)$ pour $z\in\mathbb{C}$ de sorte que $\mathfrak{p}_k=\left|P(\mathfrak{j}^k)\right|$ pour tout $k\in\{0,1,2\}$. En développant, il existe $(\alpha,\beta)\in\mathbb{C}^2$ tel que $P(z)=z^3+\alpha z^2+\beta z$ pour tout $z\in\mathbb{C}$. Par inégalité triangulaire,

$$p_0 + p_1 + p_2 = |P(1)| + |P(j)| + |P(j^2)| \ge |P(1) + P(j) + P(j^2)| = 3$$

en utilisant la question précédente. Si l'on suppose que pour tout $k \in \{0, 1, 2\}$, $p_k < 1$, alors $p_0 + p_1 + p_2 < 3$, ce qui contredit l'inégalité précédente. Il existe donc $k \in \{0, 1, 2\}$ tel que $p_k \geqslant 1$, ce qui répond à la question.