Mathematical Basics of Computational Psychiatry: Generative Modeling

Klaas Enno Stephan

Swiss Federal Institute of Technology Zurich

Systems

- system = a set of entities that interact to form a unified whole
- biological systems are open systems: they interact with their environment (exchange of energy, matter, information)

isolated system INPUTS OUTPUTS SYSTEM ENVIRONMENT ENVIRONMENT

System models (state space models, latent process models)

- mathematically formal description of a system's behavior (at an algorithmic or biophysical level that cannot be observed directly)
- central concept: hidden (latent) system states cause noisy measurements

- forward models that combine three things:
 - how system states evolve in time
 - how states determine system outputs
 - how outputs are corrupted by measurement noise

Forward modeling

- many ways to categorise modeling approaches
- one possibility: distinguish presence vs. absence of a forward model

States, parameters, inputs

- mandatory system components:
 - what are the relevant variables whose dynamics are of interest? \rightarrow states $\mathbf{x}(t)$
 - what are structural determinants of their interactions? \rightarrow parameters θ
 - what perturbations need to be considered? \rightarrow inputs $\mathbf{u}(t)$
- system states:

state vector

$$\mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_N(t) \end{bmatrix}$$

neurophysiological or algorithmic variables

state (or evolution) equations, e.g.:

$$\frac{d\mathbf{x}}{dt} = f\left(\mathbf{x}(t), \mathbf{\theta}_f, \mathbf{u}(t)\right)$$
 as differential equation

$$\mathbf{x}(t+1) = f(\mathbf{x}(t), \mathbf{\theta}_f, \mathbf{u}(t))$$
 as difference equation

For a discussion of system theory in the context of neuroimaging, see Stephan 2004, J. Anat.

State space representation

observed system behaviour

y_t

 \mathbf{u}_{t}

measurement equation:

$$\mathbf{y}(t) = g(\mathbf{x}(t), \mathbf{\theta}_g) + \mathbf{\varepsilon}(t)$$

θ_g θ_g \mathbf{y} $\mathbf{$

 y_{t+1}

 u_{t+1}

ENVIRONMENT

inputs

On this slide, time is indexed by subscripts.

Examples of models discussed later in the course: HGF...

... and nonlinear DCM for fMRI

$$\frac{dx}{dt} = \left(A + \sum_{i=1}^{m} u_i B^{(i)} + \sum_{j=1}^{n} x_j D^{(j)}\right) x + Cu$$

20

 X_2

Statistical interlude: random variables/vectors

- random variable: a variable whose possible values are outcomes of a random phenomenon
- random vector: a vector of random variables

Statistical interlude: probability distributions and densities

probability distribution:

 describes the probability that a discrete random variable takes on a particular value

probability density:

 describes the probability of a continuous random variable falling within a particular range of values

Statistical interlude: probability distributions and densities

notation example (Normal densities):

- for scalars:
$$p(x) = N(x; \mu, \sigma^2)$$
 $\mu = \text{mean}; \sigma^2 = \text{variance}$

- for vectors:
$$p(\mathbf{x}) = N(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 $\Sigma = \text{covariance matrix}$
= $E[(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^T]$

Statistical interlude: probability distributions and densities

notation example (Normal densities):

$$p(\mathbf{x}) = N(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\lambda}^{-1})$$

$$p(\mathbf{x}) = N(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1})$$

$$\mu = \text{mean}; \ \lambda = 1/\sigma^2 = \text{precision}$$

$$\Lambda = \text{precision matrix}$$

$$p(\mathbf{x}) = N(\mathbf{x}; \boldsymbol{\mu}, \Lambda^{-1})$$

$$\mu$$
 = mean; λ = 1/ σ ² = precision

same thing, just expressed wrt. precision

Statistical interlude: multivariate Gaussian/Normal

p-dimensional random vector: $p(\mathbf{x}) = N(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$

PDF:
$$p(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right) \qquad \mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix}$$

covariance $\Sigma = \mathbf{E} \left[\left((\mathbf{x} - \boldsymbol{\mu}) (\mathbf{x} - \boldsymbol{\mu})^T \right) \right]$ matrix:

Figures adapted from Wikipedia

Signal-generating equations (forward model) → likelihood

State (evolution) equation *

$$\mathbf{x}(t+1) = f(\mathbf{x}(t), \mathbf{\theta}, \mathbf{u}(t))$$

Measurement (observation) equation

$$\mathbf{y}(t) = g(\mathbf{x}(t), \mathbf{\theta}) + \mathbf{\varepsilon}(t)$$

 Assuming IID Gaussian noise, write the (known) data as a probabilistic function of the (unknown) parameters:

$$\varepsilon = N(\varepsilon; 0, \sigma^2)$$

$$p(\mathbf{y} | \mathbf{\theta}) = N(\mathbf{y}; g(\mathbf{x}, \mathbf{\theta}), \sigma^2 \mathbf{I})$$

This turns our forward model into a probability statement:
 the likelihood of the observed data y, given any particular value of θ.

^{*} For simplicity, we assume deterministic state equations (no state noise) and absorb all parameters into a single vector $\theta = \{\theta_f, \theta_g\}$.

Maximum likelihood estimation (MLE)

• For any particular value of θ , we can refer to the definition of a multivariate Gaussian to compute the **likelihood of the entire dataset Y** (all system nodes, all time points):

$$p(\mathbf{y} | \mathbf{\theta}) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2} (\mathbf{y} - g(\mathbf{x}, \mathbf{\theta}))^T \mathbf{\Sigma}^{-1} (\mathbf{y} - g(\mathbf{x}, \mathbf{\theta}))\right)$$

$$p(\mathbf{Y} | \mathbf{\theta}) = p(\mathbf{y}(1), ..., \mathbf{y}(T) | \mathbf{\theta}) = \prod_{t=1}^{T} p(\mathbf{y}(t) | \mathbf{\theta})$$

 We could now search for the parameter value that maximises the likelihood (or, for numerical reasons, the log likelihood), or put simply: the parameter value for which the model fits the data best.

This is known as **maximum likelihood estimation (MLE)**:

$$\hat{\boldsymbol{\theta}}_{ML} = \arg\max_{\theta} \ln p(\mathbf{Y} | \boldsymbol{\theta})$$

Overfitting

- MLE has various limitations.
 For example, for complex models and limited data,
 overfitting is a severe problem.
- For more robust inference, we turn to Bayesian methods
 - → need to define a prior distribution of parameters
- Together, likelihood and prior define a generative model.

Pitt & Myung (2002) TICS

Generative models

- 1. a probabilistic forward mapping from parameters to data, defined by likelihood and prior
- 2. provide the joint probability of parameters and data
- 3. enforce mechanistic thinking: how could the data have been caused?
- 4. generate synthetic data (observations) by sampling from the prior can model explain certain phenomena at all?
- 5. model inversion = inference about parameters $\rightarrow p(\theta|y)$

Bayes' theorem

The Reverend Thomas Bayes (1702-1761)

$$p(\mathbf{\theta} \mid \mathbf{y}) = \frac{p(\mathbf{y} \mid \mathbf{\theta}) p(\mathbf{\theta})}{p(\mathbf{y})}$$

posterior = likelihood • prior / evidence

Bayes' theorem

$$p(\mathbf{\theta} \mid \mathbf{y}) = \frac{p(\mathbf{y} \mid \mathbf{\theta}) p(\mathbf{\theta})}{\int p(\mathbf{y} \mid \mathbf{\theta}) p(\mathbf{\theta})}$$

posterior = likelihood • prior / evidence

The Reverend Thomas Bayes (1702-1761)

Principles of generative modeling

⇒ Specifying a generative model

⇒ Observation of data

⇒ Model inversion

Methods for model inversion

How is the posterior computed = how is a generative model inverted?

compute the posterior analytically

requires conjugate priors

variational Bayes (VB)

- often hard work to derive, but fast to compute
- uses approximations (approx. posterior, mean field)
- problems: local minima, potentially inaccurate approximations

Sampling: Markov Chain Monte Carlo (MCMC)

- theoretically guaranteed to be accurate (for infinite computation time)
- problems: may require very long run time in practice, convergence difficult to prove

Conjugate priors

- for a given likelihood function, the choice of prior determines the mathematical form of the posterior
- for some probability distributions a prior can be found such that the posterior has the same mathematical form as the prior
- such a prior is called "conjugate" to the likelihood
- examples (prior x likelihood ∞ posterior):
 - Normal x Normal ∞ Normal
 - Beta x Binomial ∞ Beta
 - Dirichlet x Multinomial ∞ Dirichlet

$$p(\mathbf{\theta} | \mathbf{y}) \propto p(\mathbf{y} | \mathbf{\theta}) p(\mathbf{\theta})$$
same form

A simple example: univariate Gaussian belief update

Likelihood & prior

$$p(\mathbf{y} \mid \theta) = N(\theta, \lambda_e^{-1})$$

$$p(\theta) = N(\mu_p, \lambda_p^{-1})$$

Posterior: $p(\theta | y) = N(\mu, \lambda^{-1})$

$$\lambda = \lambda_e + \lambda_p$$

$$\mu = \frac{\lambda_e}{\lambda} \, \overline{y} + \frac{\lambda_p}{\lambda} \, \mu_p$$

relative precision weighting:

posterior mean = precision-weighted combination of prior mean and data mean

Model comparison and selection

Given competing hypotheses on structure & functional mechanisms of a system, which model is the best?

Which model represents the best balance between model fit and model complexity?

For which model m does p(y|m) become maximal?

Pitt & Miyung (2002) TICS

Bayesian model selection (BMS)

- First step of inference: define model space *M*
- Inference on model structure *m*:

 For a uniform prior on m, model evidence sufficient for model selection

$|M| \in [1, \infty[$

Posterior model probability

$$p(m|y) = \frac{p(y|m)p(m)}{p(y)}$$
$$= \frac{p(y|m)p(m)}{\sum_{m} p(y|m)p(m)}$$

Model evidence:

$$p(y | m) = \int p(y | \theta, m) p(\theta | m) d\theta$$

Bayesian model selection (BMS)

Model evidence:

$$p(y | m) = \int p(y | \theta, m) p(\theta | m) d\theta$$

probability that data were generated by model m, averaging over all possible parameter values (as specified by the prior)

Various approximations:

- negative free energy (F)
- Akaike Information Criterion (AIC)
- Bayesian Information Criterion (BIC)

Bayesian model selection (BMS)

Model evidence:

$$p(y | m) = \int p(y | \theta, m) p(\theta | m) d\theta$$

"If I randomly sampled from my prior and plugged the resulting value into the likelihood function, how close would the predicted data be – on average – to my observed data?"

accounts for both accuracy and complexity of the model

Various approximations:

- negative free energy (F)
- Akaike Information Criterion (AIC)
- Bayesian Information Criterion (BIC)

Generative models as computational assays for addressing key clinical questions

SYMPTOMS

(behavioural or physiological data)

MECHANISMS

(computational, physiological)

CAUSES

(aetiology)

- differential diagnosis of alternative disease mechanisms
- 2 stratification / subgroup detection into mechanistically distinct subgroups
- **3 prediction** of clinical trajectories and treatment response

• Differential diagnosis: model selection

Stratification / subgroup detection: Generative embedding (unsupervised)

Prediction: Generative embedding (supervised)

measurements from an individual subject

subject-specific inverted generative model

subject representation in the generative score space

separating hyperplane fitted to discriminate between groups

model parameters

jointly discriminative

Brodersen et al. 2011, PLoS Comput. Biol.

Further reading

- Brodersen, K.H., Schofield, T.M., Leff, A.P., Ong, C.S., Lomakina, E.I., Buhmann, J.M., Stephan, K.E., 2011. Generative embedding for model-based classification of fMRI data. PLoS Comput. Biol. 7, e1002079
- Brodersen, K.H., Deserno, L., Schlagenhauf, F., Lin, Z., Penny, W.D., Buhmann, J.M., Stephan, K.E., 2014. Dissecting psychiatric spectrum disorders by generative embedding. Neuroimage Clin. 4, 98–111.
- Stephan KE (2004) On the role of general system theory for functional neuroimaging.
 Journal of Anatomy 205: 443-470.
- Stephan KE, Schlagenhauf F, Huys QJM, Raman S, Aponte EA, Brodersen KH, Rigoux L, Moran RJ, Daunizeau J, Dolan RJ, Friston KJ, Heinz A (2017)
 Computational Neuroimaging Strategies for Single Patient Predictions. NeuroImage 145:180-199

Thank you