Assignment 3

Machine Learning COMS 4771

Spring 2014, Itsik Pe'er

Due: Class time, Feb 19th Assigned: Feb 12th

Submission: Your submission folder on Courseworks. Submit folders for Assignment03.Problem01, Assignment03.Problem02 and optionally Assignment03. Problem03 as in previous assignment. Further print Assignment03. Problem03 if you need it for the quiz.

1) Simulation:

a) Write a function to simulate N uniformly-drawn points within bound polyhedra. The function SimPolyHedra would proceed by a 1st stage of uniformly drawing (possibly >N) points within a box that is bounding the desired polyhedra, followed by a 2nd stage of filtering, so that the function outputs only the first N of those points that fall within the polyhedra. The 2^{nd} stage would retain a point iff it is in any of $p \ge 1$ convex polyhedra that are provided as input. The input arguments are:

N: The number of points to simulate

Bounds: A real $D\times 2$ matrix, each of its rows specifying the (lower, upper) bounds of a D-

dimensional box from which all points are drawn at the 1st stage

Polyhedra: A cell-array of real matrices $M^1,...,M^p$. M^i is of size $f_i \times (D+1)$. It defines a convex

polyhedron of f_i faces, as all the vectors x in \mathbb{R}^D such that $M^i \begin{bmatrix} 1 \\ r \end{bmatrix} \ge \vec{0}$. Each face is thus defined by a row of M^i interpreted as a hyperplane in \mathbf{R}^D . Note that M^i may be unbounded, by devfined faces, as we only consider its intersection with

the Bounds box.

Output:

X: A real $N \times D$ matrix, each of its rows specifying a vector that is inside the

> Bounds box and inside at least one of the polyhedra M^i . To generate those you draw potential D dimensional vectors x whose transpose could serve as rows of X . You would then check whether to include each row, i.e. whether any for each

such x there exists at least one M^i such that the $M^i \begin{bmatrix} 1 \\ r \end{bmatrix} \ge \vec{0}$ condition is satisfied.

[20 points]

b) Use the above to write a function SimTanzania () that simulate points of particular colors in the Tanzanian flag (see attached Tanzania.pdf). This flag spans the axis-bounded rectangle between (0,0) and (1.5,1.0), and has 5 regions in green, yellow, black, yellow and cyan, separated by the lines $y = \frac{2}{3}x - 0.24$, $y = \frac{2}{3}x - 0.16$, $y = \frac{2}{3}x + 0.16$, $y = \frac{2}{3}x + 0.24$. Draw points inside the

planar rectangle of the flag, and save 4 text files, each of N=50 rows and D=2 columns of numbers in text, specifying 50 points of the appropriate color: Tanzania_green.txt, Tanzania_black.txt and Tanzania_yellow.txt.

[5 points]

2) Probabilistic interpretation:

- a) Consider SimPoly of Assignment2, Question 1 as defining a probability space of potential outputs y. As such, it defines a probability density function f(y) over possible values of y = y. Of course, this probability space is different for each input, so f(y) depends on the inputs RealThetas, sigma and x. Denote it $f_{\theta,\sigma,x}(y)$ for RealThetas= θ , sigma= σ and x=x. Prove that the least-squares regression result $\theta = \theta^*$ maximizes $f_{\theta,\sigma,x}(y)$ for any σ , x and y. [15 points]
- b) Consider SimLogistic of Assignment2, Question 3, with zero noise, as defining a probability space of potential outputs y. As such, it defines a probability function P(y) over possible values of y=y. Of course, this probability space is different for each input, so P(y) depends on the inputs RealThetas and x. Denote it $P_{\theta, x}(y)$ for RealThetas= θ and x=x. Prove that the logistic regression result $\theta = \theta^*$ maximizes $P_{\theta, x}(y)$ for any x and y. [15 points]

Guidance: Neither 2a nor 2b requires computing derivatives. Both can be solved by the definition of θ^* as an ERM, so you are welcome to just use that.

3) Optional:

Prepare a single sided, single page, 12-font English-letter (with potential notations in Greek) cheat sheet for the quiz scheduled for Feb 19th. This would be the only allowed material. [0 points]

Good luck!