1 Lógica

Las reglas de la logica le dan un significado preciso a los enunciados matematicos o sentensias matematicas. Estas reglas se usan para distinguir entre argumentos validos y no validos. La logica tiene ademas numerosas aplicaciones en ciencias de la computacion. Las reglas de la logiuca se usan en el diseño de circuitos de ordenador, la construccion de programas informaticos, la verificacion de que un programa esta bien construido y mas.

Proposicion

Una proposicion es una oracion declarativa que es correcta o falsa, pero no ambas cosas a la vez.

Ejemplos

- 1. Todas las siguientes oraciones declarativas son proposiciones:
 - (a) Bruselas es la capital de la Union Europea.
 - (b) Toronto es la capital de Canada.
 - (c) 1 + 1 = 2.
 - (d) 2 + 2 = 3.

Las proposiciones 1 y 3 son correctas, mientras que la 2 y 4 son falsas.

- 2. Considera las siguientes oraciones:
 - (a) ¿Que hora es?
 - (b) Lee esto con atencion.
 - (c) x + 1 = 2.
 - (d) x + y = z.

Las frases 1 y 2 no son proposiciones porque no son declarativas. Las frases 3 y 4 no son proposiciones porque no son ni verdaderas ni falsas, ya que no se les han asignado valores a las variables.

El valor de verdad de una proposicion es V si es verdadera y F si es falsa.

Se llama **calculo proposicional** o **logica proposicional** al area de la logica que trata de proposiciones. Las nuevas proposiciones, llamadas **formulas** o **proposiciones compuestas**, se forman a partir de las existentes usando operadores logicos.

Definicion 1

Sea p una proposicion. El enunciado

No se cumple p

es otra proposicion, llamada la negacion de p. La negacion de p se denota mediante p'. La proposicion p' se lee no p.

Una tabla de verdad muestra las relaciones entre los valores de verdad ed proposiciones. Son especialmente valiosas a la hora de determinar los valores de verdad de proposiciones construidas a partir de proposiciones simples.

La negacion de una proposicion se puede considerar como el resultado de aplicar el **operador negacion** sobre una proposicion. El operador negacion construye una nueva proposicion a partir de la proposicion individual existente.

Definicion 2

Sean p y q proposiciones. La proposicion p y q, denotada por $p \wedge q$, es la proposicion que es verdadera cuando tanto p como q son verdaderas y falsa en cualquier otro caso. La proposicion $p \wedge q$ se llama conjuncion de p y q.

p	q	$p \wedge q$
0	0	1
0	1	0
1	0	0
1	1	1

Definicion 3

Sean p y q proposiciones. La proposicion p o q, denotada por $p \lor q$, es la proposicion que es falsa cuando tanto p como q son falsas y verdadera en cualquier otro caso. La proposicion $p \lor q$ se llama disyuncion de p o q.

p	q	$p \lor q$
0	0	0
0	1	1
1	0	1
1	1	1

Definicion 4

Sean p y q proposiciones. El conectivo logico o exclusivo de p y q, denotada por $p \oplus q$, es la proposicion que es verdadera cuando exactamente una de las proposiciones p y q es verdadera y falsa en cualquier otro caso.

p	q	$p \oplus q$
0	0	0
0	1	1
1	0	1
1	1	0

Implicaciones

El concepto matematico de implicacion es independiente de la relacion causa-efecto entre hipotesis y conclusion. Especifica valores de verdad, no se basa en el uso del lenguaje

Definicion 5

Sean p y q proposiciones. La implicacion $p \to q$ es la proposicion que es falsa cuando p es verdadera y q es falsa, y verdadera en cualquier otro caso. En esta implicacion p se llama hipotesis o antecedente o premisa y q se llama tesis o conclusion o consecuencia.

p	q	$p \to q$
0	0	1
0	1	1
1	0	0
1	1	1

Recipropca, contrarreciproca e inversa

Hay algunas implicaciones relacionadas con $p \to q$ que pueden formarse a partir de ella. La proposicion $q \to p$ se llama **reciproca** de $p \to q$. La **contrarreciproca** de $p \to q$ es $q' \to p'$. La proposicion $p' \to q'$ es la **inversa** de $p \to q$. Cuando dos formulas tienen siempre los mismos valores de verdad las llamamos **equivalentes**, de tal forma que una implicacion y su contrarreciproca son equivalentes. La reciproca y la inversa de una implicacion tambien son equivalentes.

Definicion 6

Sean p y q proposiciones. La bicondicional, o doble impliacion, $p \leftrightarrow q$ es la proposicion que es verdadera cuando p y q tienen los mismos valores de veradd y falsa en los otros casos.

p	q	$p \leftrightarrow q$
0	0	1
0	1	0
1	0	0
1	1	1

Precedencia de operadores logicos

Operador	Precedencia
' (not)	1
\wedge	2
\vee	4
\rightarrow	4
\leftrightarrow	5

Busquedas Booleanas

En las busquedas booleanas se usa la conexion AND para emparejar datos almacenados que contengan los dos terminos de la busqueda, la conexion OR se usa para emparejar uno o ambos terminos de la busqueda y la conexion NOT (a veces escrita ANDNOT) se usa para excluir un termino particular de busqueda.

Juegos de Logica

Son aquellos juegos que se pueden resolver usando el razonamiento logico.

1.1 Logica y Operaciones con Bits

Un **bit** tiene dos valores posibles: 0 y 1. La palabra bit viene de la expresion inglesa *binary digit*. Un bit se puede utilizar para represenar un valor de verdad. Se usa 1 para representar V de verdadero y 0 para

representar F de falso. Una variable se llama **variable booleana** si su valor es verdadero o falso. Se puede representar una variable booleana con bits.

Definicion 7

Una cadena de bits es una sucesion de cero o mas bits. La longitud de esta cadena es el numero de bits de la cadena.

2 Equivalencias proposicionales

Definicion 1

Una formula que es siempre verdadera, no importa los valores de verdad de las proposiciones que la componen, se denomina *tautologia*. Una formula que es siepre falsa se denomina *contradiccion*. Finalmente, una proposicion que no es ni una tautologia ni una contradiccion se denomina *contingencia*.

Equivalencias Logicas

Las formulas que tienen los mismos valores de verdad en todos los casos posibles se llaman **logicamente** equivalentes.

Definicion 2

Se dice que las proposiciones p y q son logicamente equivalentes si $p \leftrightarrow q$ que es una tautologia. La notación $p \equiv q$ denota que p y q son logicamente equivalentes.

Equivalencias Logicas

Equivalencia	Nombre
$p \land V \equiv p$ $p \lor F \equiv p$	Leyes de identidad
$p \lor V \equiv V \\ p \land F \equiv F$	Leyes de dominacion
$p \lor p \equiv p$ $p \land p \equiv p$	Leyes de idempotentes
$(p')' \equiv p$	Ley de la doble negacion
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Leyes de conmutativas
$(p \lor q) \lor r \equiv p \lor (q \lor p)$ $(p \land q) \land r \equiv p \land (q \land p)$	Leyes de asociativas
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Leyes de distributivas
$(p \land q)' \equiv p' \lor q'$ $(p \lor q)' \equiv p' \land q'$	Leyes de Morgan
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Leyes de absorcion
$p \lor p' \equiv V$ $p \land p' \equiv F$	Leyes de negacion

Equivalencia
$p \to q \equiv p' \lor q$
$p \to q \equiv q' \lor p$
$p \vee q \equiv p' \to q$
$p \wedge q \equiv (p \vee q')'$
$(p \lor q') \equiv p \to q'$
$(p \to q) \land (p \to r) \equiv p \to (q \land r)$
$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$
$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$
$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$
$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$
$p \leftrightarrow q \equiv p' \leftrightarrow q'$
$p \leftrightarrow q \equiv (p \land q) \lor (p' \land q')$
$(p \leftrightarrow q)' \equiv p \leftrightarrow q'$