

JC09 Rec'd PCT/PTO 16 JUN 2009

SEQUENCE LISTING

<110> University of Maryland Biotechnology Institute
Pauza, C. David
Tikhonov, Ilia

<120> VACCINES AGAINST HIV-1 PROTEIN TO GENERATE NEUTRALIZING
ANTIBODIES

<130> 4115-194

<140> Not yet assigned

<141> 2005-06-16

<150> US 60/434,368

<151> 2002-12-18

<160> 51

<170> PatentIn version 3.3

<210> 1
<211> 21
<212> PRT
<213> Human immunodeficiency virus type 1

<220>
<221> MISC FEATURE
<222> (21)..(21)
<223> X may be any amino acid, preferably A or P

<400> 1

Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser
1 5 10 15

Gln Pro Lys Thr Xaa
20

<210> 2
<211> 21
<212> PRT
<213> Human immunodeficiency virus type 1

<220>
<221> MISC FEATURE
<222> (21)..(21)
<223> X may be any amino acid, preferably A or P

<400> 2

Met Glu Pro Val Asp Pro Asn Leu Glu Pro Trp Asn His Pro Gly Ser
1 5 10 15

Gln Pro Lys Thr Xaa
20

<210> 3

<211> 21
<212> PRT
<213> Human immunodeficiency virus type 1

<220>
<221> MISC_FEATURE
<222> (21)..(21)
<223> X may be any amino acid, preferably A or P

<400> 3

Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Asn His Pro Gly Ser
1 5 10 15

Gln Pro Lys Thr Xaa
20

<210> 4
<211> 21
<212> PRT
<213> Human immunodeficiency virus type 1

<220>
<221> MISC_FEATURE
<222> (21)..(21)
<223> X may be any amino acid, preferably A or P

<400> 4

Met Glu Pro Val Asp Pro Asn Leu Glu Pro Trp Lys His Pro Gly Ser
1 5 10 15

Gln Pro Lys Thr Xaa
20

<210> 5
<211> 21
<212> PRT
<213> Human immunodeficiency virus type 1

<400> 5

Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser
1 5 10 15

Gln Pro Lys Thr Ala
20

<210> 6
<211> 21
<212> PRT
<213> Human immunodeficiency virus type 1

<400> 6

Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser

1

5

10

15

Gln Pro Lys Thr Pro
20

<210> 7
<211> 63
<212> DNA
<213> Human immunodeficiency virus type 1

<220>
<221> misc_feature
<222> (61)..(63)
<223> nnn may be any codon, preferably encoding A or P

<400> 7
atggagccag tagatcctag actagagccc tggaaggcatc caggaagtca gcctaagact 60
nnn 63

<210> 8
<211> 63
<212> DNA
<213> Human immunodeficiency virus type 1

<220>
<221> misc_feature
<222> (61)..(63)
<223> nnn may be any codon, preferably encoding A or P

<400> 8
atggagccag tagatcctaa tctagagccc tggaatcatc caggaagtca gcctaagact 60
nnn 63

<210> 9
<211> 63
<212> DNA
<213> Human immunodeficiency virus type 1

<220>
<221> misc_feature
<222> (61)..(63)
<223> nnn may be any codon, preferably encoding A or P

<400> 9
atggagccag tagatcctag actagagccc tggaatcatc caggaagtca gcctaagact 60
nnn 63

<210> 10
<211> 63
<212> DNA
<213> Human immunodeficiency virus type 1

<220>
<221> misc_feature
<222> (61)..(63)
<223> nnn may be any codon, preferably encoding A or P

<400> 10
atggagccag tagatcctaa tcttagagccc tggaaggcatc caggaagtca gcctaagact 60
nnn 63

<210> 11
<211> 63
<212> DNA
<213> Human immunodeficiency virus type 1

<400> 11
atggagccag tagatcctag acttagagccc tggaaggcatc caggaagtca gcctaagact 60
gct 63

<210> 12
<211> 63
<212> DNA
<213> Human immunodeficiency virus type 1

<400> 12
atggagccag tagatcctag acttagagccc tggaaggcatc caggaagtca gcctaagact 60
ccc 63

<210> 13
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 13

Ser Tyr Gly Ser Lys Lys Arg Arg Gln Arg Arg Arg Pro Pro Gln
1 5 10 15

<210> 14
<211> 12
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 14

Ser Tyr Gly Ser Lys Lys Arg Arg Gln Arg Arg Arg
1 5 10

<210> 15
<211> 16
<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 15

Lys Ala Leu Gly Ile Ser Tyr Gly Ser Lys Lys Arg Arg Gln Arg Arg
1 5 10 15

<210> 16

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 16

Met Glu Pro Val Asp Pro Arg Leu Glu Pro Trp Lys His Pro Gly Ser
1 5 10 15

Gln Pro Lys Thr

20

<210> 17

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 17

Met Glu Pro Val Asp Pro Lys Leu Glu Pro Trp Lys His Pro Gly Ser
1 5 10 15

Gln Pro Arg Thr

20

<210> 18

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 18

Met Glu Pro Val Asp Pro Asn Leu Glu Pro Trp Lys His Pro Gly Ser
1 5 10 15

Gln Pro Arg Thr

20

<210> 19
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 19

Met Glu Pro Val Asp Pro Asn Leu Glu Pro Trp Asn His Pro Gly Ser
1 5 10 15

Gln Pro Lys Thr
20

<210> 20
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 20

Met Asp Pro Val Asp Pro Ser Leu Glu Pro Trp Asn His Pro Gly Ser
1 5 10 15

Gln Pro Lys Thr
20

<210> 21
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 21

Asp Pro Gly Thr Val Glu Pro Lys Pro Leu His Pro Glu Arg Lys Gln
1 5 10 15

Met Pro Trp Ser
20

<210> 22
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 22

Ser Gln Pro Lys Thr Ala Cys Thr Asn Cys Tyr Cys Lys Lys Cys Cys
1 5 10 15

Phe His Cys Gln
20

<210> 23
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 23

Ser Gln Pro Arg Thr Ala Cys Thr Ser Cys Tyr Cys Lys Lys Cys Cys
1 5 10 15

Phe His Cys Gln
20

<210> 24
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 24

Ser Gln Pro Arg Thr Ala Cys Asn Asn Cys Tyr Cys Lys Lys Cys Cys
1 5 10 15

Phe His Cys Tyr
20

<210> 25
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 25

Ser Gln Pro Lys Thr Ala Cys Asn Lys Cys Tyr Cys Lys Asn Cys Ser
1 5 10 15

Tyr His Cys Leu
20

<210> 26

<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 26

Ser Gln Pro Lys Thr Ala Cys Asn Thr Cys Tyr Cys Lys Lys Cys Cys
1 5 10 15

Tyr His Cys Gln
20

<210> 27
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 27

Thr Cys Cys Gln Lys Asn Lys Cys Pro Thr Lys His Gln Cys Cys Phe
1 5 10 15

Ser Ala Tyr Cys
20

<210> 28
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 28

Cys Phe His Cys Gln Val Cys Phe Met Thr Lys Ala Leu Gly Ile Ser
1 5 10 15

Tyr Gly Arg Lys
20

<210> 29
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 29

Cys Phe His Cys Gln Val Cys Phe Ile Thr Lys Gly Leu Gly Ile Ser

1 5 10 15

Tyr Gly Ser Lys
20

<210> 30
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 30

Cys Phe His Cys Tyr Ala Cys Phe Thr Arg Lys Gly Leu Gly Ile Ser
1 5 10 15

Tyr Gly Arg Lys
20

<210> 31
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 31

Ser Tyr His Cys Leu Val Cys Phe Gln Thr Lys Gly Leu Gly Ile Ser
1 5 10 15

Tyr Gly Arg Lys
20

<210> 32
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 32

Cys Tyr His Cys Gln Val Cys Phe Leu Asn Lys Gly Leu Gly Ile Ser
1 5 10 15

Tyr Gly Arg Lys
20

<210> 33
<211> 20
<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 33

Gln Thr Ile Lys Cys Met Gly Arg Phe His Leu Phe Gly Cys Ala Tyr
1 5 10 15

Cys Val Lys Ser
20

<210> 34

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 34

Ser Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Ala His Gln Asn
1 5 10 15

Ser Gln Thr His
20

<210> 35

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 35

Ser Tyr Gly Ser Lys Lys Arg Arg Gln Arg Arg Arg Pro Pro Gln Asp
1 5 10 15

Asn Gln Thr His
20

<210> 36

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 36

Ser Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Arg Ala Pro Gln Asp
1 5 10 15

Ser Gln Thr His
20

<210> 37
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 37

Ser Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Ser Ala Pro Pro Ser
1 5 10 15

Ser Glu Asp His
20

<210> 38
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 38

Ser Tyr Gly Arg Lys Lys Arg Arg Gln Arg Arg Ser Ala Pro Pro Ser
1 5 10 15

Asn Gly Asp His
20

<210> 39
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 39

Gln Lys Arg His Arg Gln His Thr Gly Arg Ala Gln Tyr Arg Ser Arg
1 5 10 15

Ser Lys Arg Asn
20

<210> 40
<211> 20
<212> PRT
<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 40

Asn Ser Gln Thr His Gln Ala Ser Leu Ser Lys Gln Pro Thr Ser Gln
1 5 10 15

Ser Arg Gly Asp
20

<210> 41

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 41

Cys Asn Gln Thr His Gln Val Ser Leu Ser Lys Gln Pro Ser Ser Gln
1 5 10 15

Pro Arg Gly Asp
20

<210> 42

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 42

Asp Ser Gln Thr His Gln Ala Ser Leu Ser Lys Gln Pro Ala Ser Gln
1 5 10 15

Ser Arg Gly Asp
20

<210> 43

<211> 20

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Construct

<400> 43

Ser Ser Glu Asp His Gln Asn Leu Ile Pro Lys Gln Pro Leu Pro Arg
1 5 10 15

Thr Gln Gly Asp

20

<210> 44
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 44

Ser Asn Gly Asp His Gln Asn Pro Ile Ser Lys Gln Pro Leu Pro Gln
1 5 10 15

Thr Arg Gly Asp
20

<210> 45
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 45

His Ser Ser Asp Thr Leu Thr Gly Gln Ser Pro Arg Ser Ala Gln Ser
1 5 10 15

Asn Gln Lys Gln
20

<210> 46
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 46

Gln Ser Arg Gly Asp Pro Thr Gly Pro Lys Glu Ser Lys Lys Lys Val
1 5 10 15

Glu Arg Glu Thr
20

<210> 47
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 47

Gln Pro Arg Gly Asp Pro Thr Gly Pro Lys Glu Ser Lys Lys Lys Val
1 5 10 15

Glu Arg Glu Thr
20

<210> 48
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 48

Gln Ser Arg Gly Asp Pro Thr Gly Pro Thr Glu Ser Lys Lys Lys Val
1 5 10 15

Glu Arg Glu Thr
20

<210> 49
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 49

Arg Thr Gln Gly Asp Pro Thr Gly Ser Glu Glu Ser Lys Lys Lys Val
1 5 10 15

Glu Ser Lys Thr
20

<210> 50
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 50

Gln Thr Arg Gly Asp Pro Thr Gly Ser Lys Glu Ser Lys Lys Glu Val
1 5 10 15

Glu Ser Lys Thr
20

<210> 51
<211> 20
<212> PRT
<213> Artificial Sequence

<220>
<223> Synthetic Construct

<400> 51

Lys Asp Lys Thr Gly Glu Lys Pro Arg Lys Gly Arg Ser Thr Ser Glu
1 5 10 15

Gln Pro Glu Val
20