Welcome to CME 250 Introduction to Machine Learning!

Spring 2020 – Online version April 28th 2020

Today's schedule: Classification

- Why does the distinction between regression and classification matters?
- Classification looking at Y as a random variable:
 - Logistic regression as a Generalized linear model
- Classification finding boundaries:
 - Support Vector Machines
- How to measure classification success?
 - Confusion Matrix

Let's get to know each other...

Breakout room

You

Name

Location

Department

Year

How was Part I Project? Interesting/unexpected/unforgettable lessons or insights.

3 mins

Chat/Audio/Video

Experience

Data Exploration Prediction Models

Performance Analysis

Task

Last week recap

Supervised Learning

Given

predict

y = a x + b

Prediction Models

Supervised Learning Part II: Prediction Models for Classification

Introduction to Statistical Learning

Chapter 4: Classification

Chapter 9: Support Vector Machines

Elements Statistical Learning

Chapter 3.2: Linear Methods for Classification

Chapter 12: Support Vector Machines

More on Generalized Linear Models

Bayesian and Frequentist Regression Methods.

Jon Wakefield, 2013

Chapter 6.3: Generalized Linear Models

Breast Cancer Wisconsin (Diagnostic) Dataset

What if we have more than 2 categories?

Linear regression with more than 2 categories

We need a different approach!

How can we extend Linear Regression?

LR is Maximum Likelihood estimator

Find a better distribution for Y categorical

Logistic Regression

LR creates separating hyperplanes

Optimize the hyperplane

Support Vector Machines

Extend LR: Generalized Linear Models

Exponential Family

Normal distribution

$$N(\mu, \sigma^2)$$

$$p(y|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{(y-\mu)^2}{2\sigma^2}\right)$$

Poisson distribution

Poisson(λ)

$$p(y|\lambda) = \frac{\lambda^{y} \exp(-\lambda)}{y!}$$

Bernoulli distribution Bernoulli(p)

$$p(y|\lambda) = p^y (1-p)^{1-y}$$

Extend LR: Generalized Linear Models

Normal distribution

$$N(\mu, \sigma^2)$$

Poisson distribution $Poisson(\lambda)$

$$b(\theta) = \exp(\theta)$$
$$\lambda = E[Y|\theta, \alpha] = \exp(\theta)$$

Bernoulli distribution Bernoulli(p)

$$b(\theta) = \log(1 + \exp(\theta))$$
$$p = E[Y|\theta, \alpha] = \frac{\exp(\theta)}{1 + \exp(\theta)}$$

Calculate a linear regression of $\theta = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$

Extend LR: Generalized Linear Models

Normal distribution

$$N(\mu, \sigma^2)$$

Poisson distribution $Poisson(\lambda)$

Bernoulli distribution Bernoulli(p)

Linear Regression

$$y \approx \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

Log-Linear Regression $\log(y) \approx \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$

Logistic Regression
$$\log\left(\frac{p}{1-p}\right) \approx \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

Logistic Regression

Bernoulli distribution Bernoulli(p)

$$p = \frac{\exp(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p)}{1 + \exp(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p)}$$
Sigmoid

To classify, we specify probability threshold

Challenges of Logistic Regression

Probability Threshold Logistic Regression

Hyperparameter Usually 0.5 (not always)

Linear Decision Boundary

ESL Fig 4.1

As in Linear regression: Add additional features $X_1, X_2, X_1X_2, X_1^2, X_2^2$

Multiple Categories

$$p_1 = \frac{\exp(\beta_{01} + \beta_1^T X)}{1 + \sum_{l=1}^{K-1} \exp(\beta_{0l} + \beta_l^T X)}$$

...

$$p_{K-1} = \frac{\exp(\beta_{0K-1} + \beta_K^T X)}{1 + \sum_{l=1}^{K-1} \exp(\beta_{0l} + \beta_l^T X)}$$
$$p_K = \frac{1}{1 + \sum_{l=1}^{K-1} \exp(\beta_{0l} + \beta_l^T X)}$$

Find "optimal" boundary to separate classes

Find "optimal" boundary to separate classes

 $\beta_0 + \beta_1 x_1 + \beta_2 x_2 = 0$ X_2 $\beta_0 + \beta_1 x_1 + \beta_2 x_2 > 0$ $\beta_0 + \beta_1 x_1 + \beta_2 x_2 < 0$

Find "optimal" boundary to separate classes

21

$$\max_{\beta_0,\beta_1,\beta_2} M$$

such that
$$\beta_0^2 + \beta_1^2 + \beta_2^2 = 1$$

For all training data

$$y^{(i)} \left(\beta_0 + \beta_1 x_1^{(i)} + \beta_2 x_2^{(i)} \right) \ge M$$

Optimal: Farthest distance to training data

 $\max_{\beta_0,\beta_1,\beta_2} \frac{M}{\beta_0}$

such that
$$\beta_0^2 + \beta_1^2 + \beta_2^2 = 1$$

For all training data

$$y^{(i)} \left(\beta_0 + \beta_1 x_1^{(i)} + \beta_2 x_2^{(i)}\right) \ge M$$
Only points with equality_matter

Solving optimization problem we find $\beta_0, \alpha_1, ..., \alpha_N$ such that hyperplane:

$$f(x) = \beta_0 + \sum_{i \in S} \alpha_i x^T x^{(i)}$$
Support Vectors

What if there is no separating hyperplane?

What if there is no separating hyperplane?

C is the "budget" for violations

ISL Fig 9.7

C is the "budget" for violations

Slack variables ϵ_i

Support Vector Classifier vs Logistic Regression

Solving optimization problem we find $\beta_0, \alpha_1, ..., \alpha_N$ such that hyperplane:

$$f(x) = \beta_0 + \sum_{i \in S} \alpha_i x^T x^{(i)}$$

We only get linear boundaries

Beyond linear decision boundaries

$$f(x) = \beta_0 + \sum_{i \in S} \alpha_i x^T x^{(i)}$$

Option I)
Add additional features

$$X_1, X_2, X_1X_2, X_1^2, X_2^2, \dots$$

Option 2) Generalize inner product Kernels $x^T x^{(i)} \rightarrow K(x, x^{(i)})$

Support Vector Machines

$$f(x) = \beta_0 + \sum_{i \in S} \alpha_i K(x, x^{(i)})$$

Linear Kernel

$$K(x, \mathbf{x}^{(i)}) = x^T \mathbf{x}^{(i)}$$

Polynomial Kernel
$$K(x, \mathbf{x}^{(i)}) = (1 + x^T \mathbf{x}^{(i)})^p$$
 Includes $x_1^k x_2^l$, $k + l \le p$

Radial Basis Kernel
$$K(x, \mathbf{x}^{(i)}) = \exp(-\gamma ||x - \mathbf{x}^{(i)}||^2)$$
 Includes infinite # features

Kernel ≈ Similarity Measure

Challenges Support Vector Machines

Hyperparameters: C and Kernel

Melicate tuning

Extend to more than 2 classes

One vs all
I SVM per class

C1	C2 C3 C4
C2	C1 C3 C4
C3	C1 C2 C4
C4	C1 C2 C3

How can we extend Linear Regression?

LR is Maximum Likelihood estimator

Find a better distribution for Y categorical

Logistic Regression

LR creates separating hyperplanes

Optimize the hyperplane

Support Vector Machines

How do we measure the error?

Most common approach: Error rate

$$error = \frac{1}{N} \sum_{i=1}^{N} \underbrace{I(\hat{y}^{(i)} \neq y^{(i)})}_{0 \text{ if } \hat{y}^{(i)} = y^{(i)}}$$

Most common approach: Error rate

error =
$$\frac{1}{N} \sum_{i=1}^{N} I(\hat{y}^{(i)} \neq y^{(i)})$$

$$1 \text{ if } \hat{y}^{(i)} \neq y^{(i)}$$

$$0 \text{ if } \hat{y}^{(i)} = y^{(i)}$$

Design test with $error \leq 0.2\%$

Assign healthy to Option 2 everyone

2 sick

Useful approach: Confusion Matrix

Predicted Labels

True Labels

2 sick

Design test with

 $error \leq 0.2\%$

Assign healthy to Option 2 everyone

Useful approach: Confusion Matrix

(+) predictions that
are truly(+)

Perfect Classifier

Random Guessing 50/50

Useful approach: ROC curve

Useful approach: ROC curve

Today's Recap____

Classification

Logistic Regression

$$\log\left(\frac{p}{1-p}\right) \approx \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

$$\text{Malign}$$

$$\text{Regression}$$

Support Vector Machines

$$f(x) = \beta_0 + \sum_{i \in S} \alpha_i K(x, x^{(i)})$$

Evaluation: Confusion Matrix

True Positive False Negative False Positive Vegative Negative