

Sunbeam Institute of Information Technology Pune and Karad

Module – Data Structures and Algorithms

Trainer - Devendra Dhande

Email – <u>devendra.dhande@sunbeaminfo.com</u>

Add Node (Recursion)


```
void add Node (int value, Node frav) ?
     if (value < trav. data) }
           if (trav. left == null) &
                 trav. left = new Node (value);
                 return;
               add Node (value, trav. left);
          if (trav. right == null) &
trav. right = new Node (value);
                 return;
          Else add Node (value, trav. right);
```


Binary Search (Recursive)

binary Search Rec (int key, Node trav) { if (trav == null) return null; if (key == trav. date) return tray; else if (kep < trav. data) return bindry Search Rec (key, trav. left); Use return binary Search Rec (Key, trav. right):

Delete Node

Binary Search Tree - Height

Height of root = MAX (height (left sub tree), height (right sub tree)) + 1

- 1. If left or right sub tree is absent then return -1
- 2. Find height of left sub tree
- 3. Find height of right sub tree
- 4. Find max height
- 5. Add one to max height and return

BST - Time complexity of operations

$$n = 2^{h+1}$$

\bigvee	n	
-)	O	root
0	1	Å
1	3	\mathcal{A}
2.	7	6666
3	15	/ / / / / /
`	ĵ	

$$n = 2$$

$$\log n = \log 2$$

$$h = \frac{\log n}{\log 2}$$

Skewed Binary Search Tree

Keys: 30, 40, 20, 50, 10

Keys: 10, 20, 30, 40, 50

Keys: 50, 40, 30, 20, 10

- In binary tree if only left or right links are used, tree grows only in one direction such tree is called as skewed binary tree
 - Left skewed binary tree
 - Right skewed binary tree
- Time complexity of any BST is O(h)
- Skewed BST have maximum height ie same as number of elements.
- Time complexity of searching is skewed BST is O(n)

Balanced BST

- To speed up searching, height of BST should be minimum as possible
- If nodes in BST are arranged, so that its height is kept as less as possible, is called as Balanced BST

Balance factor = Height (left sub tree) - Height (right sub tree)

- tree is balanced if balance factors of all the nodes is either -1, 0 or +1
- balance factors = {-1, 0, +1}
- A tree can be balanced by applying series of left or right rotations on imbalance nodes (node having balance factor other than 1,0 or 1)

Right Rotation

rightRotation (Mode axis, Node parent) ¿ newara's = arais. left; axis.left = newaxis.right; newaxis.right = axis if (axis = = root) root = newazi's; else if (axis == parent. left) parent. left = newaxis; else if (anis = = parent. vight)
parent. vight = newaxls

Left Rotation

D

Rotation cases

Rotation cases

AVL Tree

- self balancing binary search tree
- on every insertion and deletion of a node, tree is getting balanced by applying rotations on imbalance nodes
- The difference bet heights of left and right sub trees can not be more than one for all nodes
- Balance factors of all the nodes are either -1, 0 or +1
- All operations of AVL tree are performed in O(log n) time complexity

Keys: 40, 20, 10, 25, 30, 22, 50

AVL Tree

Keys: 40, 20, 10, 25, 30, 22, 50

AVL Tree

Keys: 40, 20, 10, 25, 30, 22, 50

Almost Complete Binary Tree or Heap

- Almost Complete Binary Tree (height = h)
- All leaf nodes must be at level h or h-1
- All leaf nodes at level h must aligned as left as possible

 Array implementation of Almost Complete Binary Tree is called as heap

Heap - Create heap (Add)

Keys: 6, 14, 3, 26, 8, 18, 21, 9, 5

- 1. Add new value at first index of array from left side
- 2. Adjust position of newly added value by comparing it with all its ancestors one by one.

Heap - Create heap (Delete)

$$Max = 26$$

$$Max = 21$$

- 1. Place last element of heap
- at root position

 2. Adjust position of not
 element by comparing it with
 all its descendents one by one

Heap sort

Thank you!!!

Devendra Dhande

devendra.dhande@sunbeaminfo.com