DOI:10. 16250/j. 32. 1374. 1997. 02. 003

考核血吸虫病低度流行区血清学 查病质量的方法学研究

1. 综合评估指标的研究

周晓农'孙乐平'洪青标'戴建荣' 吴 锋 张燕萍'高智慧'刘韵娟'朱荫昌' 吴中兴 胡晓抒'戎国荣'蔡刚'李波'

- 1 江苏省血吸虫病防治研究所 (无锡 214064)
- 2 江苏省血地防办公室

提要 为研究查病质量的综合指标,我们应用质控血清进行 COPT 双盲试验,跟踪考核现场血 吸虫病香病质量。结果 24 个具共检测质控血清 1 147 份,实际诊断符合率为 65. 34%,期望诊断符合 率为 59. 61%。7 项指标的聚类分析将 24 个县的查病质量分成好、中、差 3 类单位。提示该评估方法 对跟踪现场查病质量具有较强的实用性,并进一步筛选出 K、E、I、DI 4 项主要指标,分类正确率高 达 95%以上,因而该 4 项指标拟可用于评估现场 COPT 查病质量。

关键词 血吸虫病 质量控制 诊断技术

在血吸虫病低度流行区,当感染率和感 染度日益减轻[1]之时,如何提高查病质量至 关重要。在这类地区进行流行病学调查时,常 采用血清学方法过筛,阳性者再作病原学粪 检[2]。因此血清学讨筛质量直接关系到对当 地流行现状估价和防治策略制定的正确性。 但目前, 血清学过筛查病工作的规范化和质 量的提高,尚未得到普遍重视,原因可能是现 场调查面广量大、时间紧,质量指标难以重复 和追踪,更难选定综合评价质量的考核指标。 为研究选择评价质量的综合指标,我们在现 场流行病学调查中,尝试应用质控血清进行 双盲法环卵沉淀试验(COPT)跟踪考核现场 血吸虫病脊病质量。

材料与方法

质控血清 血清采自流行区血吸虫 病病人血清和正常人血清,分装在塑料毛细 管中。阳性血清经 2 名熟练化验员 2 次重复 COPT 双面胶纸法[3]测定,确定各阳性血清 标准抗体水平(环沉率),用作质控血清。每批 质控血清中环沉率分别有 0、1%、2%、3%、 6%、51%各若干份,以密码编号。

- 2 COPT 采用环卵沉淀试验双面胶 纸法[3]。干卵由江苏省血吸虫病防治研究所 提供,批号 950801。盖有双面胶纸的玻片每 孔加试验血清 50μl,干卵 100-150 个,37°C 孵育 72h,观察反应结果,计算环沉率[4]。
- 双盲试验 分别在24个县防疫(血 防)站进行质控血清测试。每批质控血清(50 份)与现场调查血清同时由县级化验员进行 COPT 检测。编号由市级防疫站掌握,每份血 **清的标准环沉率由省血防所掌握。县级化验** 员完成每份血清的 COPT 后,结果报至各市 防疫站,最后在省血防所汇总核对原标准环 沉率。
- 资料分析 质控血清核对后,分别 计算各地的灵敏度(Se),特异度(Sp),误诊率

(α),漏诊率(β),实际诊断符合率(Po)和期望 诊断符合率(Pe),并统计以下综合评价指 标^[5]:

Jouden's index (J)=Se+Sp-1
诊断指标 (DI)=Se+Sp
正确诊断指标(V)=1-(α+β)
Kappa 系数(K)=(Po-Pe)/(1-Pe)
可用度 (U)=2 Se+Sp-1
效率 (E)=(a+d)/n=SeP+Sp(1-Po)
信息量(I)=1.422 7/n{a ln[an/((a+b)(a+c))]+b ln[bn/((a+b)(b+d))]+c ln[cn/((a+c)(c+d))]+d ln
[dn/((b+d)(c+d))]}

同时,对各县检出结果中的7项综合指标进行聚类分析,并以判别分析进行反验,以较少的指标评估各县的COPT查病质量。并分析不同环沉率与检出率间的回归关系。统计在SPSS软件包上进行。

结 果

1 COPT **检測结果** 24 个县共检测 质控血清 1 147 份,平均检测阳性符合率(灵敏度)为 21.45%(0-50.0%),阴性符合率(特异度)为 84.36%(48.57%-100.0%),误诊率为 7.95%,漏诊率为 70.86%,实际诊断符合率 65.34%,期望诊断符合率为 59.61%(见表 1)

表 1 24 个县质控血清各指标的检测结果

Table 1	Detection results	of standard	sera in	24 counties

县编号 County code	检测份数 No. detected	Se	Sp	α	β	Po	Pe	J	Dì	v	К	U	E	I
1	46	. 267	. 967	. 032	. 733	. 739	. 636	. 234	1.234	. 234	. 283	. 005	. 739	. 083
2	40	. 250	. 679	. 321	. 750	. 550	. 580	070	. 929	070	070	390	. 550	. 004
3	50	. 133	. 943	. 057	. 867	. 700	. 668	. 076	1.076	. 076	. 096	070	. 700	. 011
4	50	. 133	1.000	. 000	. 867	. 740	. 684	. 133	1.133	. 133	. 177	. 013	. 740	. 071
5	50	. 467	. 914	. 086	. 533	. 780	. 620	. 381	1.381	. 381	. 421	. 038	. 780	. 126
6	50	. 467	. 486	. 514	. 533	. 480	. 500	050	. 952	050	040	460	. 480	. 001
7	50	. 133	1.000	.000	. 867	. 740	. 684	. 133	1.133	. 133	. 177	. 013	. 740	. 071
8	50	. 133	1.000	. 000	. 867	. 740	. 684	. 133	1.133	. 133	. 177	. 013	. 740	. 071
9	50	. 000	. 943	. 057	1.000	. 660	- 684	060	. 943	060	080	080	. 660	. 021
10	45	. 400	. 867	. 133	. 6 00	. 711	. 593	. 267	1.267	. 267	. 291	060	. 711	. 062
11	50	. 200	. 943	. 057	. 800	. 720	.660	. 143	1.143	. 143	. 177	050	. 720	. 031
12	42	. 231	. 897	. 103	. 770	. 691	. 636	. 127	1. 127	- 127	. 150	110	. 691	.019
13	50	. 200	. 943	. 057	. 800	. 720	. 660	. 143	1.143	. 143	. 177	050	. 720	. 031
14	43	. 214	. 966	. 035	. 786	. 721	. 642	. 180	1.180	. 180	220	020	. 721	. 056
15	48	. 133	1.000	. 000	. 867	. 729	. 672	. 133	1. 133	. 133	. 175	. 013	. 729	. 072
16	50	. 200	. 971	. 029	. 800	. 740	. 668	. 171	1.171	. 171	. 217	010	. 740	. 054
17	50	- 267	. 943	. 057	. 733	. 740	. 652	. 210	1. 210	. 210	. 253	030	. 740	. 056
18	50	. 200	. 971	. 029	. 800	. 740	. 668	. 171	1.171	. 171	. 217	010	. 740	. 054
19	50	. 133	1.000	. 000	. 867	. 740	. 684	. 133	1.133	. 133	. 177	. 013	. 740	. 071
20	50	. 467	. 829	. 171	. 533	. 720	. 596	. 295	1.295	. 295	. 307	070	. 720	. 064
21	47	. 167	. 914	. 086	. 833	. 723	. 693	. 081	1.081	. 081	. 100	100	. 723	. 009
22	38	. 500	. 846	. 154	. 500	. 737	. 587	. 346	1.346	. 346	. 362	020	. 737	. 091
23	50	. 067	1.000	.000	. 933	. 720	. 692	. 067	1.067	. 067	. 091	. 003	. 720	. 035
24	48	. 214	. 912	. 088	. 786	. 708	. 656	. 126	1.126	. 126	. 151	090	. 708	. 020
平均 Average	48	. 215	. 844	. 080	. 709	. 653	596	. 135	1.058	. 135	. 162	060	. 653	. 046

2 7 项综合评价指标 24 个县 7 项综合评价指标的平均值分别为 J: 0. 135 7(-0. 476 0-0. 381 0), DI: 1. 058 1(0. 928 6-1. 381 0), V: 0. 135 0(-0. 047 6-0. 381 0), K: 0. 161 9 (-0. 040 0 - 0. 421 1), U:-0. 058 3 (-0. 016 0 - 0. 037 5), E: 0. 653 4 (0. 480 0-0. 780 0), I: 0. 045 5(0. 001 4-0. 125 7)。

- 3 **聚类分析** 24 个县的 7 项综合评价指标的聚类分析结果见图 1。聚类结果将 24 个县分成 3 组,第 1 组为 COPT 查病质量较好的 6 个县,第 2 组为质量中等的 15 个县,第 3 组为质量较差的 3 个县。
- 4 **逐步判别分析** 7 项综合评价指标中仅 K、E、I、DI 4 项显著性地依次进入判别方程,且由该 4 项指标判别出的分类总正确

率为95.83%(表2)。

图 1 7 项指标聚类分析图

Figure 1 Dendrogram using Complete Linkage with 7 indexes

表 2 判别分析的分组正确率

Table 2 Correctly classified rate of discriminant analysis

组别 Group	县数 No. of county	理论组别 1 Theoretical group 1	理论组别 2 Theoretical group 2	理论组别 3 Theoretical group 3
1(好)Good	6	5(83.3%)	1(16.7%)	0
2(中)Medium	15	0	15(100%)	0
3(差)Bad	3	0	0	3(100%)

· 分类总正确率:95.83%

Total rate of correct classification: 95.83%

讨论

关于低度血吸虫病流行区血清学查病质量的现场控制方法报道较少。本文报告的应用质控血清现场跟踪查病质量,并以双盲试验考核效果,所得数据比较可信。但关键问题是要找到适当的统计指标,以客观地反映现场查病质量。

选择统计指标中,灵敏度(Se)和特异度(Sp)曾由 Yerushaling(1947)率先提出^[5]。但由于个体变异,多数试验结果呈正态或拖尾的偏态分布,Se 和 Sp 存在不同程度重叠现象,出现此好彼差的矛盾现象^[6]。自 1950 年 Jouden 提出了综合评价指标后,已有许多的综合指标用于评价试验结果^[5]。COPT 双面

胶纸检测血吸虫病是卫生部专家咨询委员会推荐的方法之一,该方法本身的 Se 和 Sp 分别为 90.8 和 96.0^[7]。因此,如能找到该方法的综合性指标作横向比较时,即可用来评估现场血清学查病质量。我们引用了较为常用的 7 项综合指标来评价现场诊断的质量,聚类分析结果对 24 个县的查病质量分成好、中、差 3 类单位,提示该评估方法对跟踪现场查病质量具有较强的实用性,为及时掌握基层人员查病质量提供了较好的手段和分析方法。

为克服每次评估时同时计算7项指标方法繁复,我们进一步运用判别分析,筛选出 K、E、I、DI4项主要指标,并且以该4项指标而得的分类正确率高达95%以上,因而作者

推荐 K、E、I、DI 4 项指标拟可用于评估现场 COPT 查病质量。

本文结果发现,在好组别中,K、E、I、DI 4 项指标的变异范围分别为 0. 253 - 0. 421、0. 711 - 0. 780、0. 056 - 0. 126、1. 210 - 1. 380。而在差组别中,同样 4 项指标的变异范围分别为-0. 460-0. 070、0. 480-0. 660、0. 001-0. 021、0. 925-0. 943,可见组内变异范围较小,而两组间的差别相差较大。因此,建议在低度血吸虫病流行区,应用标准血清作跟踪质量检查时,当 4 项指标中 K 值出现负值,E 值大于 0. 5,I 值小于 0. 01,DI 值小于 1. 0 时,即可认为质量不过关,应重新检测。对于该 4 项指标的适用范围和标准将在今后现场推广研究中检验、制定。

本工作得到南京、镇江、扬州、苏州、无锡、常州、 盐城、南通等市县血防部门的支持,特此致谢。

参考文献

- 1 陆 毅,等.中国寄生虫学与寄生虫病杂志 1989,7(1):52
- 2 朱荫昌,等. 江苏医药 1986,12(1):25
- 3 殷水龙,等. 江苏医药 1981,7(3):44
- 4 卫生部地病司编.血吸虫病防治手册.上海: 上海科学技术出版社 1990,125
- 5 陈平雁. 中国卫生统计 1991,8(5):53
- 6 李秀央. 中国卫生统计 1995,12(增刊):110
- 7 卫生部专家咨询委员会. 寄生虫病防治与研究 1990,19(3):142

1996年3月8日收稿 1996年11月10日修回 (編輯:方洪元)

INVESTIGATION ON EVALUATION METHODOLOGY OF SERO-DIAGNOSIS OF SCHISTOSOMIASIS IN ENDEMIC AREAS WITH A LOW PREVALENCE

I . COMPREHENSIVE INDEXES FOR EVALUATION
OF SCHISTOSOMIASIS DETECTION

Zhou Xiaonong¹, Sun Leping¹, Hong Qingbiao¹, Dan Jinrong¹, Wu Feng¹ Zhang Yanping¹, Gao Zihui¹, Liu Yunjuan¹, Zhu Yinchang¹, Wu Zhongxing¹ Hu Xiaosu², Rong Guorong², Cai Gang², Li Bo²

- 1 Jiangsu Institute of Parasitic Disease (Wuxi 214064)
- 2 Jiangsu Provincial Office for Endemic Diseases Control

ABSTRACT

The double blind tests of COPT with standard sera were carried out to trace the quality of field work on detection of schistosomiasis. The results showed that 1 147 standard sera were detected in 24 counties, the actual coincidence rate was 65. 34%, and expect coincidence rate was 59. 61%. The 24 counties were divided into 3 groups (good, medium, bad) by cluster analysis depending on 7 comprehensive indexes representing the quality of schistosomiasis detection. More than 95% of cases were correctly classified by stepwise discriminant analysis depending on only 4 indexes, such as K,E,I,DI. It is indicated that these 4 comprehensive indexes can be used for evaluation of the quality of schistosomiasis detection.

Key words: Schistosomiasis, quality control, detection technique