ME 55600/I0200

HW: Lubrication Project

Consider an extrusion process where a fluid of high viscosity is squeezed between a flat solid surface and a roller of radius a as shown in the figure. The roller is rotating at an angular velocity ω , reducing the thickness of the fluid layer from h_1 to h_2 with a minimum gap of ϵ between the roller and the flat boundary.

Assume a profile for the liquid layer between the roller and the flat surface in the form:

$$h(x) = \epsilon + a(1 - \cos \alpha)$$

and assume α is small.

- (a) Use the lubrication approximation to determine the pressure distribution in the liquid film and show it graphically.
- (b) Determine the maximum angular velocity which can be used to avoid cavitation.
- (c) Calculate the lubrication thickness and the maximum angular velocity for the following conditions*:

$$a=1m$$
, $h_1=20$ mm, $h_1=2$ mm, $\epsilon=1$ mm, $\mu=10^4 \times \mu_{water}$

^{*}Numbers have been selected to simplify mathematical analysis