Health AI – Intelligent Healthcare Assistant

1.Introduction

Project Title: Health AI – Intelligent Healthcare Assistant

Team ID: NM2025TMID01492

Team Leader: A.Sindhu Bhairavi- bhairavi.arjunan@gmail.com

Team Members:

M.Mahathi shree– mahathim962@gmail.com
K.Subashree – subashreek20@gmail.com
A.Srimathi – srimathichatresh@gmail.com

2. Project Overview

Purpose: Health AI offers intelligent and easy-to-understand healthcare assistance by leveraging the IBM Granite model. It enables features such as Patient Chat, Disease Prediction, and Treatment Plans for better medical guidance. **Features:**

Patient Chat Interface

Disease Prediction System

Treatment Plan Recommendations – Integration with IBM Granite Model

Secure Deployment in Google Colab

3. Architecture

Frontend: Gradio for interactive UI

Backend: Python (Transformers and Torch Libraries)

Model: IBM Granite Model from Hugging Face **Deployment:**

Google Colab with T4 GPU

4. Setup Instructions

Prerequisites:

- Python (3.x)
- Git
- Gradio Framework
- IBM Granite Model (via Hugging Face) Google Colab Access

Installation Steps:

1. Clone the repository (if applicable):

git clone [Repository URL] 2. Install

required libraries: pip install

transformers torch gradio -q

3. Open Google Colab, change Runtime Type to T4 GPU.

5. Folder Structure

HealthAl/ |-- colab_notebook.ipynb # Main Google Colab Notebook |-- model_integration.py # Code for model interaction |-- utils.py # Helper functions |-- requirements.txt # Required Python packages

6. Running the Application

- 1. Open Google Colab: https://colab.research.google.com/
- 2. Set Runtime to T4 GPU
- 3. Run the initial cell to install dependencies:

!pip install transformers torch gradio -q

4. Upload and run the project code cells sequentially.

7. API Documentation

The project runs entirely in Google Colab without separate REST APIs. Interaction occurs through the Gradio web interface.

8. Authentication

No explicit authentication mechanism. The model runs locally in Google Colab and is accessed through Gradio's interface.

9. User Interface

- Landing Page with Gradio Interface
- Chat Window for Patient Interaction
- Prediction Output Section
- Treatment Plan Recommendations

10. Testing

- Manual Testing through the Gradio Interface Sample Inputs:
- Symptoms for disease prediction
- Query for treatment plans

11. Known Issues

- Performance depends on Google Colab session time limits
- Occasional loading delays when model is first initialized

12. Future Enhancements

- Add Authentication System for User Tracking
- Build a Dedicated Web Interface
- Expand Database for Disease & Treatment Knowledge
- Deploy on Cloud Infrastructure for Scalability

13. Screenshots or Demo

[Provide screenshots of the Gradio interface and sample outputs]

♦ Inference Providers

t: Model tree for ibm-granite/granite-embedding-english-r2@ Activate V

ibm-granite/GneissWeb

open-11m-leaderboard/ibm-granite_granite-3.8-2_

ibm-granite/granite-vision-demo

pair datasets with perm | ibm-granite/granite-3.1-8b-instruct

open-llm-leaderboard/ibm-granite_granite-7b-ba...

Model Summary: Grani

biencoder embedding n

other open-source mod Space

The r2 models show strc

