Praktikum Struktur Data

Modul 1 - Review Algoritma

Senin, 28 Maret 2022

Tujuan dari modul ini agar mahasiswa memahami konsep struktur data Stack. Kerjakan tugas-tugas yang terdapat dalam modul ini, dengan ketentuan sebagai berikut :

- 1. Semua jawaban modul dikerjakan dalam format *.ipynb (baik konsep maupun implementasi), jangan lupa diberikan **heading** di setiap cell jawaban, misalkan untuk jawaban konsep Nomor 1, diberikan heading **Konsep_1**. Silahkan dilihat contoh *lecture notes* yang saya telah bagikan melalui website.
- 2. Penamaan file ipynb adalah : NPM_ModulX_TopikModul.ipynb, misalkan, 200411100077_Modul2_Stack.ipynb
- 3. Print menjadi file pdf, dokumen ipynb tersebut dengan nama yang sama, hanya saja berekstensi pdf, misalkan, 200411100077_Modul2_Stack.pdf
- 4. Submit link collaboratory yang berisi file ipynb tersebut, dan submit file pdf
- 5. Pilih salah satu nomor dari bagian implementasi, buat video berupa live code, disertai dengan narasi. Berikan hashtag #PraktikumStrukturDataModul1
- 6. Kejujuran selalu jadi yang utama, kerjakan sendiri, tidak diperkenankan plagiarism

1 Konsep

Tulis ringkasan atau penjelasan hal-hal berikut, dengan kata-kata kalian sendiri mengenai,

- 1. iterasi, syntax for dan while, jelaskan perbedaan kedua syntax, berikan contoh masing-masing penggunaan
- 2. List, apa itu list, bagaimana mengakses setiap anggota di dalam list, berikan contoh penggunaan
- 3. Sebutkan jenis fungsi, perbedaan, dan syntax dari fungsi, berikan contoh penggunaan

2 Implementasi

2.1 Persamaan Matematika

Buatlah Fungsi dan code yang diperlukan untuk memanggil fungsi tersebut dengan menggunakan bahasa Python, antara lain :

- Fungsi createList untuk membentuk suatu list dengan parameter atau argumen berupa ukuran list
- Fungsi untuk menghitung Persamaan (1) yaitu:

$$y = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{1}$$

dimana n adalah jumlah data yang terdapat pada list (dari fungsi createList), dan x_i adalah data ke-i dari suatu list

• Fungsi untuk menghitung Persamaan (2) yaitu :

$$z = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - y)^2 \tag{2}$$

dimana n adalah jumlah data yang terdapat pada list (dari fungsi createList), dan x_i adalah data ke-i dari suatu list, dan y adalah hasil perhitungan yang didapatkan pada Persamaan (1)

Contoh output yang dihasilkan dapat dilihat pada Gambar 1.

```
print('data=',data)
print('y=',y(data))
print('z=',z(data))

data= [10, 12, 8, 4, 9, 1, 7]
y= 7.285714285714286
z= 13.904761904761905
```

Gambar 1: Persamaan Matematika

2.2 Matriks1D

Buatlah Fungsi dan code untuk memanggil fungsi dengan menggunakan Python, antara lain:

- Fungsi **pembuatan matriks 1D** untuk membentuk suatu list 1D dengan parameter atau argumen berupa ukuran list
- Fungsi **penjumlahan matriks 1D** untuk menghitung penjumlahan dua buah matriks 1D (dengan syarat, ukuran atau jumlah data pada matriks adalah sama)
- Fungsi **perkalian antara skalar dan matriks 1D** untuk menghitung operasi perkalian antara sebuah bilangan dengan sebuah matriks 1D
- Fungsi **perkalian dua buah matriks 1D** untuk menghitung operasi perkalian antara setiap bilangan pada matriks 1D (dengan syarat, ukuran atau jumlah data pada matriks adalah sama)

Contoh output yang dihasilkan dapat dilihat pada Gambar 2.

2.3 Matriks2D

Buatlah Fungsi dan Code untuk memanggil fungsi dengan menggunakan Python, antara lain:

- Fungsi **pembuatan matriks 2D** untuk membentuk suatu list 2D dengan parameter atau argumen berupa ukuran list (yaitu jumlah baris dan kolom), seperti yang ditunjukkan pada Gambar 3a
- Fungsi **penjumlahan dua buah matriks 2D** untuk menghitung penjumlahan dua buah matriks 2D (dengan syarat, ukuran matriks adalah sama, yaitu kedua matriks memiliki jumlah baris dan jumlah kolom yang sama), seperti yang ditunjukkan pada Gambar 3b
- Fungsi **perkalian dua buah matriks 2D** untuk menghitung operasi perkalian matriks (dengan syarat, jumlah kolom pada matriks pertama sama dengan jumlah baris pada matriks kedua), seperti yang ditunjukkan pada Gambar 3c

```
print('matriks 1 =',a)
  print('matriks 2 =',b)
  print('matriks 3 =',c)
  jumlah1=penjumlahanMatriks1D(a,b)
  print('Hasil Penjumlahan =', jumlah1)
  print('matriks 1 =',a)
  print('matriks 3 =',c)
  jumlah2=penjumlahanMatriks1D(a,c)
  print('Hasil Penjumlahan =',jumlah2)
  perkalian1=perkalianSkalar(3,jumlah2)
  print('Hasil Perkalian skalar =',perkalian1)
  perkalian2=perkalianMatriks1D(perkalian1,a)
  print('Hasil Perkalian Matriks =',perkalian2)
  matriks 1 = [4, 1, 9, 10]
  matriks 2 = [5, 2, 3]
  matriks 3 = [6, 5, 1, 4]
  Hasil Penjumlahan = Ukuran Matriks Tidak Sama
  matriks 1 = [4, 1, 9, 10]
  matriks 3 = [6, 5, 1, 4]
  Hasil Penjumlahan = [10, 6, 10, 14]
  Hasil Perkalian skalar = [30, 18, 30, 42]
  Hasil Perkalian Matriks = [120, 18, 270, 420]
```

Gambar 2: Matriks1D

Selamat Mengerjakan, Selalu Latihan, Jujur harus dimulai kapanpun, Bertanya jika kurang mengerti, #StayAtHome, #LearningFromHome

Struktur Data - 2022 Indah Agustien Siradjuddin

```
| import matrix
                                      mat1=matrix.createMatrix2D(2,3)

    mat1=matrix.createMatrix2D(2,3)

                                        print(mat1)
  print(mat1)
                                        mat[1,1]=3
                                        mat[1,2]=1
  mat[1,1]=3
                                        mat[1,3]=5
  mat[1,2]=1
                                        mat[2,1]=9
  mat[1,3]=5
                                        mat[2,2]=1
  mat[2,1]=9
                                        mat[2,3]=4
                                        [[3, 1, 5], [9, 1, 4]]
  mat[2,2]=1
                          (a) Pembuatan Matriks 2D

jumlah1=matrix.addMatrix(mat1,mat2)

                 jumlah2=matrix.addMatrix(mat1,mat3)
                 print('mat1=',mat1)
                 print('mat2=',mat2)
                 print('mat3=',mat3)
                 print('mat1+mat2=',jumlah1)
                 print('mat1+mat3=',jumlah2)
                 mat1= [[3, 1, 5], [9, 1, 4]]
                 mat2= [[1, 4, 7], [8, 0, 2]]
                 mat3= [[2, 1], [4, 8]]
                 mat1+mat2= [[4, 5, 12], [17, 1, 6]]
                 mat1+mat3= Ukuran Tidak Sama
                         (b) Penjumlahan Matriks 2D
                 kali1=matrix.multMat(mat1,mat2)
                 kali2=matrix.multMat(mat1,mat3)
                 kali3=matrix.multMat(mat3,mat2)
                 print('mat1=',mat1)
                 print('mat2=',mat2)
                 print('mat3=',mat3)
                 print('mat1*mat2=',kali1)
                 print('mat1*mat3=',kali2)
                 print('mat3*mat2=',kali3)
                 mat1= [[3, 1, 5], [9, 1, 4]]
                 mat2= [[1, 4, 7], [8, 0, 2]]
                 mat3= [[2, 1], [4, 8]]
                 mat1*mat2= Ukuran tidak Memenuhi
                 mat1*mat3= Ukuran tidak Memenuhi
                 mat3*mat2= [[10, 8, 16], [68, 16, 44]]
```

(c) Perkalian Matriks 2D

Gambar 3: Matriks 2 Dimensi