

UNIT-2

Unit Outcome

At the end of this unit, student will be able to

- •Prepare a DC power supply
- implement different rectifier circuits, filter circuits.
- •Understand different types of Zener diode voltage regulators and illustrate its working

Block Diagram of Regulated Power Supply

DC REGULATED POWER SUPPLY

ZEAL

Regulated Power Supply contd.

Regulated power supply converts an alternating current signal to a constant signal It consists of

- •**Transformer**: The output sinusoid voltage is either step-up or step-down from the input sinusoid voltage value
- •Rectifier: Converts an alternating current into a direct one by allowing a current to flow through it in one direction only.
- •Filter: Removes the AC ripples from the DC signal obtained from the rectifier
- •Regulator: Converts DC voltage into a lower constant voltage

Rectifiers

Half Wave Rectifier

Half Wave Rectifier contd.

Conduction region $(0 \rightarrow T/2)$.

Nonconduction region $(T/2 \rightarrow T)$.

Half-wave rectified signal.

Half Wave Rectifier contd.

$$V_{rms} = \frac{V_{peak}}{2}$$

$$V_{dc} = \frac{V_{peak}}{\pi}$$

Effect of V_K on half-wave rectified signal.

$$V_{\rm dc} \cong 0.318(V_m - V_K)$$

Center Tapped Full Wave Rectifier

Center Tapped Full Wave Rectifier contd.

 $PIV \ge 2V_m$

CT transformer, full-wave rectifier

Center Tapped Full Wave Rectifier contd.

Bridge-Full Wave Rectifier

Bridge Full wave rectifier equations

Conduction path for the positive region of v_p

Bridge Full wave rectifier equations contd.

Conduction path for the negative region of vi-

Ripple factor

$$\gamma = \frac{I'_{rms}}{I_{dc}} = \frac{V'_{rms}}{V_{dc}}$$

where I'rms and V'rms are the rms value of alternating component of load current and voltage respectively.

Ripple factor contd.

$$I_{rms}' = \sqrt{I_{rms}^2 - I_{dc'}^2}$$

where $I'_{rms} = rms$ value of AC Component

$$r = \frac{I'_{rms}}{I_{dc}} = \sqrt{\frac{\left(I_{rms}^2 - I_{dc}^2\right)}{I_{dc}}}$$

$$= \sqrt{\left(\frac{I_{rms}}{I_{dc}}\right)^2 - 1}$$

$$r = 1.21$$
 For HWR

$$r = 0.48$$
 For FWR

Peak Inverse Voltage (PIV)

•PIV rating of a diode is the maximum reverse bias Voltage that a diode can sustain without going into reverse breakdown.

For half wave rectifier: PIV = Vm

For full wave rectifier : PIV = 2Vm

For bridge rectifier : PIV = Vm

Comparison Table for HWR & FWR

Measure	HWR Ideal	HWR Practical	CT-Ideal	CT-Practical	Bridge-Ideal	Bridge-Practical
I_{dc}	$\frac{I_{\rm m}}{\pi}$	$\frac{I_m}{\pi}$	$\frac{2l_m}{\pi}$	21 _m /π	$\frac{2I_{\rm m}}{\pi}$	$\frac{2I_{m}}{\pi}$
V_{dc}	$\frac{V_{\rm m}}{\pi}$	$\frac{V_m - V_k}{\pi}$	$\frac{2V_{m}}{\pi}$	$\frac{2(V_m-V_k)}{\pi}$	$\frac{2V_m}{\pi}$	$\frac{2(V_m-2V_k)}{\pi}$
I _{rms}	$\frac{I_{m}}{2}$	$\frac{I_m}{2}$	$\frac{I_{\rm H}}{\sqrt{2}}$	$\frac{I_m}{\sqrt{2}}$	$\frac{I_{m}}{\sqrt{2}}$	$\frac{I_m}{\sqrt{2}}$
V _{rms}	$\frac{V_{\rm m}}{2}$	$\frac{V_{\rm m}-V_{\rm k}}{2}$	$\frac{V_{\text{int}}}{\sqrt{2}}$	$\frac{V_m-V_k}{\sqrt{2}}$	$\frac{V_m}{\sqrt{2}}$	$\frac{V_m-2V_k}{\sqrt{2}}$
PIV	Vm	V _m	$2V_m$	$2V_m - V_k$	V_m	$V_m - V_k$

Solved example

Determine the output waveform for the network and calculate the output dc level and the required PIV of each diode.

Solution:

$$V o max = 12 V i max = 12 (10 V) = 5 V$$

$$V_{\rm dc} = 0.636(5 \text{ V}) = 3.18 \text{ V}$$

HWR with capacitor filter

Ripple factor for HWR with capacitor filter

We know that $T_1 + T_2 = T/2$ complete time period of the rectifier and we have assumed the time period $T_2 \approx T$.

Replacing this in the above equations, we have

$$C(V_r)_{p-p} = I_{dc}T_2$$

$$(V_r)_{p-p} = \frac{I_{dc}T_2}{C}$$

$$= \frac{I_{dc}T}{C}$$

$$= \frac{I_{dc}}{fC}$$

$$= \frac{V_{dc}}{fCR_L}$$

We can write $(V_r)_{p-p}$ as

$$(V_r)_{p-p} = \frac{V_{dc}}{fCR_L}$$

Using equation 19 and 23 we can write

$$(V_r)_{rms} = \frac{(V_r)_{p-p}}{2\sqrt{3}} = \frac{V_{dc}}{fCR_L 2\sqrt{3}}$$

Now, we will use the definition of ripple factor and write

$$r = \frac{(V_r)_{rms}}{V_{dc}} = \frac{1}{2\sqrt{3}fCR_L}$$

FWR with capacitor filter

Full wave rectifier with capacitor filter

Ripple factor for FWR with capacitor filter

The charge that the capacitor loses during T_2 can be given by

$$Q = C(V_r)_{p-p}$$

In the interval T2 we can write that the charge due to the current is given by

$$Q = \int_0^{T_2} id(t)$$

And the average value over 1 cycle is I_{dc} and that is given by

$$\frac{1}{T_2} \int_0^{T_2} i d(t) = I_{dc}$$
$$\int_0^{T_2} i d(t) = I_{dc} T_2$$

Using equation of the charge the capacitor loses and the above equation we can write

$$C(V_r)_{p-p} = I_{dc}T_2$$

$$(V_r)_{p-p} = \frac{I_{dc}T_2}{C}$$

$$= \frac{I_{dc}T}{2C}$$

$$= \frac{I_{dc}}{2fC}$$

$$= \frac{V_{dc}}{2fCR_L}$$

Thus we can write $(V_r)_{p-p}$ as

$$(V_r)_{p-p} = \frac{V_{dc}}{2fCR_L}$$

Using equation 19 and 20 we can write

$$(V_r)_{rms} = \frac{(V_r)_{p-p}}{2\sqrt{3}} = \frac{V_{dc}}{2fCR_L 2\sqrt{3}}$$

Now, we will use the definition of ripple factor and write

$$r = \frac{(V_r)_{rms}}{V_{dc}} = \frac{1}{4\sqrt{3}fCR_L}$$

DC voltage can be computed by the formula

$$V_d = V_m - \frac{(V_r)_{p-p}}{2}$$

Zener diode

Zener Diode characteristics is as shown in the figure:

Zener Diode as Voltage Regulator

Four type of regulators:

- 1.Fixed Vi and fixed R
- 2. Fixed Vi and Variable R
- 3. Variable Vi and Fixed R
- 4. Variable Vi and Variable R

Fixed Vi and fixed R Voltage Regulator

 Determine the state of the Zener diode by removing it from the network and calculating the voltage across the resulting open circuit.

$$V = V_L = \frac{R_L V_i}{R + R_L}$$

Substitute the appropriate equivalent circuit and solve for the desired unknowns.

$$I_{R} = I_{Z} + I_{L}$$

$$I_{Z} = I_{R} - I_{L}$$

$$I_{L} = \frac{V_{L}}{R_{L}}$$

$$I_{R} = \frac{V_{R}}{R} = \frac{V_{i} - V_{L}}{R}$$

$$P_{Z} = V_{Z}I_{Z}$$

Determining the state of the Zener diode.

Substituting the Zener equivalent for the "on" situation.

Fixed Vi and Variable RL Voltage Regulator

$$V_L = V_Z = \frac{R_L V_i}{R_L + R}$$

$$R_{L_{\min}} = \frac{RV_{Z}}{V_{I} - V_{Z}}$$

$$I_{L_{\rm max}} = \frac{V_L}{R_L} = \frac{V_Z}{R_{L_{\rm min}}}$$

$$V_R = V_i - V_Z$$

$$I_R = \frac{V_R}{R}$$

$$I_{\rm Z} = I_R - I_L$$

$$I_{L_{\min}} = I_R - I_{ZM}$$

$$R_{L_{\max}} = \frac{V_Z}{I_{L_{\min}}}$$

Solved example

Find the range of load resistance and the maximum power rating for the circuit?

$$R_{L_{max}} = \frac{RV_Z}{V_i - V_Z} = \frac{(1 \text{ k}\Omega)(10 \text{ V})}{50 \text{ V} - 10 \text{ V}} = \frac{10 \text{ k}\Omega}{40} = 250 \text{ }\Omega$$

$$V_R = V_i - V_Z = 50 \text{ V} - 10 \text{ V} = 40 \text{ V}$$

$$I_R = \frac{V_R}{R} = \frac{40 \text{ V}}{1 \text{ k}\Omega} = 40 \text{ mA}$$

$$I_{L_{max}} = I_R - I_{ZM} = 40 \text{ mA} - 32 \text{ mA} = 8 \text{ mA}$$

$$R_{L_{max}} = \frac{V_Z}{I_{L_{max}}} = \frac{10 \text{ V}}{8 \text{ mA}} = 1.25 \text{ k}\Omega$$

$$P_{max} = V_Z I_{ZM}$$

$$= (10 \text{ V})(32 \text{ mA}) = 320 \text{ mW}$$

Variable Vi and Fixed RL Voltage Regulator

$$V_L = V_Z = \frac{R_L V_i}{R_L + R}$$

$$V_{i_{\min}} = \frac{(R_L + R)V_Z}{R_L}$$

$$I_{R_{\text{max}}} = I_{ZM} + I_L$$

$$V_{i_{\max}} = V_{R_{\max}} + V_{Z}$$

$$V_{i_{\max}} = I_{R_{\max}} R + V_Z$$

Solved example

Determine the range of values of Vi that will maintain Zener diode in the "on" state?

Variable Vi and Variable RL Voltage Regulator

Vi= Small value (Vimin)

Rs= Large value(Rsmax)

RL = small value(Rlmin & ILmax)

$$R_{Smax} = \frac{V_{Imin} - V_Z}{I_{Zmin} + I_{Lmax}}$$

Vi= Large value (Vimax)

Rs= Small value(Rsmin)

RL = Large value(Rlmax & ILmin)

$$R_{Smin} = \frac{V_{Imax} - V_{Z}}{I_{Zmax} + I_{Lmin}}$$

Practical Applications

- •Rectification Battery chargers
 - Protective Configurations
 - Polarity Insurance
- Controlled Battery Powered Backup
 - Polarity Detector
- •AC Regulator & Square wave Generator.

Practice problem – 1

- 1. A Bridge rectifier with ideal diodes has an ac source of RMS value 220 V, 50Hz connected to the primary of transformer. If the load resistance is 200Ω , find the dc output volatge, dc output current and output frequency.
- 2. In a two diode FWR using Si diodes, the RMS voltage across each half of the transformer secondary is 100V. The load resistance is 975 Ω and each diode has a forward resistance of 25 Ω Find (i) Average current (ii) Average output voltage (iii) PIV of diode.

Practice problem – 2

- 1. Design a zener regulator that maintains V_0 at 10V for input voltage variation of $20V\pm10\%$ and load current variation of $30mA\pm20\%$. Given I_{Zmin} =2mA and P_{Zmax} =0.5W
- 2. In a Zener diode regulator, the input DC is $10 \text{ V}\pm20\%$. The output requirement is 5 V and 20 mA. Assume I_{Zmin} and I_{Zmax} as 5 mA and 80 mA, design the voltage regulator. Calculate the power rating of the Zener diode.
- 3. Design a voltage regulator that will maintain an output voltage of 20V across a 1 $k\Omega$ load with an input that vary between 30V and 50V.

4. Design a Zener diode regulator that maintains output voltage at 10V for an input voltage variation 20V±10% and a load current variation of 30mA±20% .Given Izmin=2mA and Pzmax=0.5W

Resources on rectifiers and filters

•https://www.slideshare.net/mumerlari/solved-problems-on-rectifiers