Introduction of this course

李宏毅

Hung-yi Lee

Policy

評量方式

- 不點名、不考試
- 作業 (60%): 沒有分組、每個人都要繳交
- 期末專題 (40%): 分組進行

成績是相對的 成績是相對的 成績是相對的

評量方式 - 作業 (60%)

- 作業一(10%): 3/02 3/23 (三週)
- 作業二 (10%): 3/23 4/06 (二週)
- 作業三 (10%): 4/06 5/04 (四週)
- 作業四 (10%): 4/27 5/11 (二週)
- 作業五 (10%): 5/11 5/25 (二週)
- 作業六 (10%): 5/25 6/08 (二週)

評量方式 - 作業 (60%)

- •程式碼:程式碼要符合指定格式可以順利執行,經助教要求修改後才能執行會被扣分
- 課堂內競賽成績:同學上傳程式執行結果到競賽專用平台 Kaggle,可以即時得知成果
 - 達到 baseline 就得到大部分的分數
 - 課堂內競賽成績優異的同學會被邀請在課堂上發表, 會有額外的加分。
 - 課堂內競賽視同考試,嚴禁任何作弊行為
 - 在機器學習過程中使用禁止使用的資料,如測試資料(視同考試攜帶小抄)
 - 註冊多重分身參加比賽(視同考試請人代考)
- 繳交報告回答問題

評量方式-期末專題

- 期末專題 (40%):
 - 2~4人一組
 - 找不到隊友也沒關係,會幫忙配對
- 5/04 公告題目
- 進行方式:會公告幾個可能的題目給同學們選擇, 其餘規定同作業
- 最後會有組內互評

上課

- 老師上課時間: 週四上午 9:10-12:10
 - 上課投影片和錄音會放到李宏毅的個人網頁上
- 助教時間:
 - **在作業截止的前一週**週四中午 12:20 1:10,由助教 示範、講解作業實作方式
 - 不一定要參加
 - 在講解作業前就在 Kaggle 上達到 baseline 會有額外加分
- 3/09 老師請假

FB社團

- 社團: "Machine Learning (2017, Spring)"
 - https://www.facebook.com/groups/226970244375624/
- 有問題可以直接在 FB社團上發問
 - 如果有同學知道答案請幫忙回答
- 有想法也可以在 FB社團上發言
- 會紀錄好的問題、答案、留言,期末會加分

加簽

- 如果上學期「正確」完成作業零但沒有加簽,等 一下直接加簽
- •助教會公告作業 0 , 明天 (週五) 12:00 前完成
 - 作業 O 跟機器學習無關,只是測驗基礎程式能力
 - 完成作業 O 就加簽,助教會公告授權碼取得 方式

參考書籍

FAQ

- Q: 和上學期的 "Machine Learning" (ML) 有何不同?
- A: 基本上是一樣的,只是增加作業量和助教時間。
 - 如果上學期你有拿到 ML 的學分,禁止再修一次
- Q: 和這學期週五下午的 "Machine Learning and having it Deep and Structured" (MLDS) 有何不同?
- A: ML和 MLDS 內容完全不同
 - MLDS 會著重於 deep learning 和 structured learning , 且和 ML 不重複

Welcome our TAs

TA 信箱: ntu.mlta@gmail.com

作業零

許宗嫄

李佳軒

作業一

楊靖平

李佳軒

作業二

葉政杰

蔡哲平

作業三

徐瑞陽

陳奕禎

作業四

方為

茅耀文

作業五

周儒杰

王耀賢

作業六

王上銘

宋昀蓁

大助教- 盧柏儒

臉書社團管理

陳冠宇

What is Machine Learning?

What is Machine Learning?

What is Machine Learning?

Machine Learning ≈ Looking for a Function

Speech Recognition

$$f($$
 $)=$ "How are you"

Image Recognition

Playing Go

Dialogue System

$$f($$
 "Hi" $)=$ "Hello" (what the user said) (system response)

Image Recognition:

Framework

$$f($$
 $)=$ "cat"

A set of function

Model

$$f_1, f_2 \cdots$$

$$f_1($$

$$f_2($$

$$)=$$
 "money"

$$f_1($$

$$f_2($$

Image Recognition:

Framework

$$f($$
 $)=$ "cat"

Training
Data

function f

function input:

function output: "monkey"

"cat"

"dog"

Image Recognition:

Framework

$$f(\bigcap)=$$
 "cat"

Machine Learning is so simple

就好像把大象放進冰箱

scenario

method

Regression

The output of the target function *f* is "scalar".

預測 PM2.5

Training Data:

Input:

Input:

9/12 上午 PM2.5 = 30 9/13 上午 PM2.5 = 25

Output:

9/03 上午 PM2.5 = 100

Output:

9/14 上午 PM2.5 = 20

Classification

Binary Classification

Multi-class
 Classification

Class 1, Class 2, ... Class N

Function f

Input

Binary Classification

Multi-class Classification

Classification - Deep Learning

Image Recognition

Training Data

Classification - Deep Learning

Playing GO

Training Data

一堆棋譜

進藤光 v.s. 社清春

黑: 5之五 → 白: 天元 → 黑: 五之5

Classification - Deep Learning

Playing GO

Training Data

一堆棋譜

進藤光 v.s. 社清春

黑: 5之五 → 白: 天元 → 黑: 五之5

Input: 黑: 5之五 天元

Output:

Input:

黑:5之五、白:天元 五之5

Hard to collect a large amount of labelled data

Semi-supervised Learning

Training Data:

Input/output pair of target function

Function output = label

Semi-supervised Learning

For example, recognizing cats and dogs

Labelled data

Unlabeled data

(Images of cats and dogs)

Transfer Learning

For example, recognizing cats and dogs

Labelled data

Data not related to the task considered (can be either labeled or unlabeled)

 Machine Reading: Machine learns the meaning of words from reading a lot of documents

http://top-breaking-news.com/

 Machine Reading: Machine learns the meaning of words from reading a lot of documents

Training data is a lot of text

https://garavato.files.wordpress.com/ 2011/11/stacksdocuments.jpg?w=490

http://ttic.uchicago.edu/~klivescu/MLSLP2016/ (slides of Ian Goodfellow)

Machine Drawing

Structured Learning

- Beyond Classification

長門

實玖瑠

人臉辨識

Reinforcement Learning

Supervised v.s. Reinforcement

Supervised v.s. Reinforcement

Supervised:

Next move: **"**5-5"

Next move: "3-3"

Reinforcement Learning

First move ____ many moves

Alpha Go is supervised learning + reinforcement learning.

scenario

method

Why we need to learn Machine Learning?

AI 即將取代部分的工作? 新工作: AI 訓練師

AI訓練師

機器不是自己會學嗎? 為什麼需要 AI 訓練師

> 戰鬥是寶可夢在打, 為什麼需要寶可夢訓練師?

神奇寶貝第5集尼比市的決鬥

https://www.youtube.com/watch?v=uUOZZb8eJ_k

AI訓練師

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

寶可夢訓練師

- 寶可夢訓練師要挑選適合的寶可夢來戰鬥
 - 寶可夢有不同的屬性

AI訓練師

- AI訓練師要挑選合適的 model, loss function
 - 不同 model, loss function 適合解決不同的問題

神奇寶貝第106集 噴火龍·就決 定是你了

https://www.youtube.com/watch?v=4G_aoKiCDc4

AI訓練師

Step 1: define a set of function

Step 2: goodness of function

Step 3: pick the best function

寶可夢訓練師

- 寶可夢訓練師要挑選適合的寶可夢來戰鬥
 - 寶可夢有不同的屬性
- 召喚出來的寶可夢不一定 聽話
 - E.g. 小智的噴火龍
 - 需要有經驗的寶可夢訓練師

AI 訓練師

- AI訓練師要挑選合適的 model, loss function
 - 不同 model, loss function 適合解決不同的問題
- 不一定能找出 best function
 - E.g. Deep Learning
 - 需要有經驗的 AI 訓練 師

大家還記得寶可夢的開場嗎?

https://www.youtube.com/watch?v=NyCNkq4ByzY

http://www.gvm.com.tw/webonly_content_10 787.html

AI訓練師

- 厲害的 AI , AI 訓練師功不可沒
- •讓我們一起朝 AI 訓練師之路邁進

