概率论与数理统计 习题集

第一章 随机事件及其概率

1.随机试验 2.样本空间、随机事件

_	植空斯		

- 1. $\partial A, B, C$ 为事件,A, B 至少有一个发生,但C 不发生的事件可以表示为
- 2. 设 A,B,C 为事件, A,B 发生, 但 C 不发生的事件可以表示为 .
- 二、选择题
- **1.** 向指定的目标射三枪,以 A_1, A_2, A_3 分别表示事件"第一、二、三枪击中目标", 则"只击中第一枪"用 A₁, A₂, A₃表示为_____.

- (A) A_1 (B) $A_1\overline{A}_2\overline{A}_3$ (C) $\overline{A}_1\overline{A}_2\overline{A}_3$ (D) $A_1 \cup A_2 \cup A_3$
- 2. 向指定的目标射击三枪, 若以 A₁, A₂, A₃分别表示事件"第一、二、三枪击中 目标",则"至少击中一枪"用 A_1, A_2, A_3 表示为______.
- 3. (A) A_1 (B) $A_1 \cup A_2 \cup A_3$ (C) $\overline{A}_1 \overline{A}_2 \overline{A}_3$ (D) $A_1 \overline{A}_2 \overline{A}_3$

3.频率与概率

- 1. 2 设 A,B 是 两 个 事 件 , 已 知 $P(A) = \frac{1}{4}$, $P(B) = \frac{1}{2}$, $P(AB) = \frac{1}{8}$, 则 $P(\overline{A}B) = \underline{\hspace{1cm}}$.
- 2. 设A与B为两个事件, $P(A \cup B) = 0.4$,则 $P(\overline{AB}) = ...$
- 3. 设A与B为两个互不相容的事件,P(A) = 0.4, P(B) = 0.5,则 $P(\overline{AB}) =$ ____.
- 4. 设A, B是任意两个事件,则 $P(A-B) = ____$.
 - (A) P(A) P(B)
- (B) P(A) P(B) + P(AB)
- (C) P(A) P(AB)
- (D) P(A) + P(B) P(AB)

(/	A) 0.1	(B) 0.3	(C) 0.5	(D) 0	
6.	12、设 <i>A</i> 与B	是两个事件,已	吕知 P(A) = 0.5,	$P(B) = 0.7, P(A \cup B) =$	0.8 ,则
	P(AB)=	<u>_</u> .			
	(A) 0.1	(B) 0.3	(C)0.5	(D) 0.4	
			. Hor ∓ d	证 共 1、	
		4. 寺 川 庇	:概型(古典村	然望)	
1.	袋中装有 10 只	球, 其编号为1,2	2,…,10.从中任	取 3 只球,则取出的理	求中最大
	号码为5的概	率是			
2.	袋中有 a 只白玛	\vec{k} , b 只红球, k	个 人(<i>k</i> ≤ <i>a</i> + <i>b</i>) 依次在袋中取一只3	球,在不
0		求第2个人取到E			
3.				【鞋配成1双的概率为 _. 、13	·
	$\frac{(A)}{21}$	(B) $\frac{12}{21}$	$\frac{1}{21}$	$\frac{1}{21}$	
		5.条件概	率		
	综合计算题				
1.				其中 8 个白球和 2 个 🖟 。现在从 2 箱子中任耳	
		1球,求取到白斑			
2.				率依次为 0.6, 0.3,	
	们的次品率依证品是次品的概题		0.04。	批产品中随机取一件,	求该产
3.	设播种的麦种	混有一等,二等,		种子,百分比分别占	
		•		等的种子长出的麦穗含 求这批种子所结麦穗	

3

5. 8、设A与B是两个事件,已知 $P(A) = 0.5, P(B) = 0.7, P(A \cup B) = 0.8$,则

 $P(A\overline{B}) = \underline{\hspace{1cm}}$

以上麦粒的概率.

- 4. 设一仓库中有 10 箱同种规格的产品,其中由甲、乙、丙三厂生产的分别为 5 箱、3 箱、2 箱,三厂产品的次品率依次为 0.1, 0.2, 0.3,从这 10 箱中任取一箱,再从这箱中任取一件,求这件产品为正品的概率.若取出的产品为正品,它是甲厂生产的概率是多少.
- 5. 一在线计算机系统,有4条输入通讯线,其性质如下表,求一随机选择的进入讯号无误差地被接受的概率.

通讯线	通讯量的份额	无误差的讯息的份额
1	0.4	0. 9998
2	0.3	0. 9999
3	0.1	0. 9997
4	0.2	0. 9996

- 6. 计算机中心有三台打字机 A, B, C,程序交与各台打字机打字的概率依次为 0.6, 0.3, 0.1,打字机发生故障的概率依次为 0.01, 0.05, 0.04.已知一程序因 打字机发生故障而被破坏了,求该程序是在 A, B, C 上打字的概率分别为多少?
- 7. 一种用来检验 50 岁以上的人是否患有关节炎的检验法,对于确实患关节炎的患者有 85%给出了正确结果;而对于已知未患关节炎的人有 4%会认为他患关节炎.已知人群中有 10%的人患有关节炎.问一名被检验者经检验,认为他没有患关节炎,而他却患有关节炎的概率?
- 8. 某地区居民的肝癌发病率为 0.0004, 现用甲胎蛋白法进行普查, 医学研究表明, 化验结果是存在错误的. 已知患有肝癌的人其化验结果 99%呈阳性 (有病), 而没有患有肝癌的人其化验结果 99.9%呈阴性 (无病), 现某人的检验结果为阳性, 问他真的患肝癌的概率是多大.
- 9. 甲袋中有3个白球2个黑球,乙袋中有4个白球4个黑球,今从甲袋中任取2球放入乙袋,再从乙袋中任取一球,求该球是白球的概率.
- 10. 假设有同种零件两箱,第一箱内装50件,其中10件一等品;第二箱内装30件,其中18件一等品。现从2箱中任取1箱,从中任取1个零件,求取出的零件是一等品的概率.

6.独立性

1.	设事件 A, B 相互独立, $P(A) = 0.3, P(AB) = 0.18$,则 $P(B) =$.
2.	设 A, B 两事件相互独立, $P(A \cup B) = 0.6$, $P(A) = 0.4$,则 $P(B) =$
3.	甲、乙两人分别独立破译某个密码,设甲、乙单独译出的概率是 0.4, 0.7,则密码能译出的概率是
4.	3 个人独立地破译一份密码,已知各人能译出的概率分别为 $\frac{1}{5}$, $\frac{1}{4}$, $\frac{1}{3}$,则三人能同时译
	出密码的概率是
5.	某一治疗方法对一个患者有效的概率为0.9,今对3个患者进行了治疗,对
	各个患者的治疗效果是相互独立的,则对3个患者的治疗中,至少有一人是
	有效的概率
6.	设事件 A , B , $P(A) > 0$, $P(B) > 0$, 且 $A \subset B$, 则下列命题正确的是
(A)	$P(A \cup B) = P(A) + P(B) $ (B) $P(AB) = P(A)P(B)$
(C)	$P(A B) = \frac{P(A)}{P(B)}$ (D) $P(A-B) = P(A) - P(B)$
7.	设 $A 与 B$ 互不相容, $P(A) > 0$, $P(B) > 0$, 则一定成立.
(A	$P(A) = 1 - P(B)$ (B) $P(A B) = 0$ (C) $P(A \overline{B}) = 1$ (D) $P(\overline{AB}) = 0$
8.	设事件 $A 与 B$ 互不相容, $P(B) > 0$,则一定成立.
	(A) $P(B A) > 0$ (B) $P(A B) = P(A)$ (C) $P(A B) = 0$ (D) $P(AB) = P(A)P(B)$
9.	设事件 $A 与 B$ 相互独立, $P(A) > 0$, $P(B) > 0$, 则一定不成立.
(A) $P(B A) > 0$ (B) $P(A B) = P(A)$
((C) $P(A B) = 0$ (D) $P(AB) = P(A)P(B)$
10.	设事件 $A 与 B$ 互不相容, $P(A) > 0, P(B) > 0$,则一定成立.

(A)
$$P(A) = 1 - P(B)$$

(B)
$$P(A|B) = 1$$

(C)
$$P(A|\overline{B}) = 1$$

(D)
$$P(\overline{AB}) = 1$$

11. 设每次试验成功的概率是 p(0 ,则 3 次重复独立试验都失败的概率为

(A) p^3 (B) $(1-p)^3$ (C) $p(1-p)^2 + p^2(1-p)$ (D) $1-p^3$

第二章 随机变量及其分布

1.随机变量 2.离散型随机变量及其分布律

1. 设随机变量X的分布律为

X	1	2	3
P	1/2	1/3	1/6

则 $P(2 \le X < 4) =$.

- 2. 设随机变量 X 的分布律为 $X \sim \begin{pmatrix} 0 & 1 & 3 \\ 0.4 & 0.3 & 0.3 \end{pmatrix}$, 则 $P\{X \le 2\} =$ ______.
- 3. 在进行 10 次重复独立试验中, 每次试验成功率为p (0),则 10 次试验中 4 次成功的概率为_____.

(A)
$$C_{10}^4 p^4 (1-p)^6$$

(B)
$$C_9^3 p^4 (1-p)^6$$

(C)
$$C_9^4 p^4 (1-p)^5$$

(D)
$$C_9^3 p^3 (1-p)^6$$

- 4. 设每次试验成功的概率是 p(0 ,则在 <math>3次重复独立试验中至少失败一 次的概率为_____.
- (A) p^3 (B) $(1-p)^3$ (C) $p(1-p)^2 + p^2(1-p)$ (D) $1-p^3$

- 二、综合计算题
- 1. 一电话公司有 5 名讯息员,各人在t分钟内收到讯息的次数 $X \sim \pi(2t)$ (设各 人收到讯息与否相互独立).(1)求在一给定的一分钟内第一个讯息员未收 到讯息的概率;(2)求在给定的一分钟内5个讯息员恰有4人未收到讯息的 概率; (3) 写出在一给定的一分钟内, 所有 5 个讯息员收到相同次数的讯息

的概率. (无理数e不用做近似计算)

3.随机变量的分布函数

- 1. 设离散型随机变量 X 的分布律为 $\begin{pmatrix} 1 & 2 & 3 \\ 1/2 & 1/3 & 1/6 \end{pmatrix}$, 求 X 的分布函数 F(x) 和 概率 $P\left(\frac{5}{4} < X \le \frac{5}{2}\right)$, $P(2 \le X < 4)$.
- 2. 4、一袋中有 5 个乒乓球,编号分别为 1, 2, 3, 4, 5, 从中随机地取 3 个球,以 X 表示取出的 3 个球中最小号码. (1) 写出 X 的分布律; (2) 求 X 的分布函数 F(x).
- 3. 一袋中有 10 个球(其中 7 个旧球 3 个新球),每次从中随机地任取 1 个球(不放回),以 X 表示直到取到新球为止所进行的抽取次数,(1) 写出 X 的分布 律; (2) 求 X 的分布函数 F(x).
- 4. 、一袋中有 5 个乒乓球,编号分别为 1, 2, 3, 4, 5, 从中随机地取 3 个球,以 X 表示取出的 3 个球中最大号码,(1)写出 X 的分布律;(2)求 X 的分布函数 F(x).
- **5.** 一袋中有 6 张卡片,编号分别为 0, 1, 2, 3, 4, 5, 从中随机地取 3 张,以 X 表示取出的 3 张中最大号码,求: (1) X 的分布律; (2) X 的分布函数 F(x).

4.连续型随机变量及其概率密度

- 1. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} kx^2, & 0 \le x \le 1, \\ 0, & \text{其他} \end{cases}$. 则常数 k =_____.
- 3. 设随机变量 X 的密度函数为 $f(x) = \begin{cases} Ax & 0 < x < 2 \\ 0 & \text{其它} \end{cases}$, 则 A =______.
- 4. 设随机变量 X 的函数为 $F(x) = \frac{1}{2} + \frac{1}{\pi} \arctan x$,则其密度函数为 $f(x) = ______.$

5.	设随机变量 X 的分布函数为 $F(x) = \begin{cases} 0 & , & x \le 0 \\ \frac{x}{a} & , & 0 < x < a , , \\ 1 & , & x \ge a . \end{cases}$
6.	设随机变量 X 的概率密度为 $f(x) = \begin{cases} 2x, 0 < x < 1, \\ 0, 其他. \end{cases}$ 以 Y 表示对 X 的三次独
	立重复观察中事件 $\{X \leq \frac{1}{2}\}$ 出现的次数,则 $P\{Y = 2\} =$
7.	设 $X \sim N(0,1)$, $\Phi(x)$ 为 X 的分布函数,若 $\Phi(-a) = 0.7$,则 $\Phi(a) =$
8.	设随机变量 $X \sim N(1,2)$,且 $P\{1 < X < 3\} = 0.4$,则 $P\{X < -1\} =$.
9.	设随机变量 $X \sim N(3,4)$, 若 $P\{X < C\} = P\{X \ge C\}$,则 $C = $
10.	设随机变量 $X \sim N(2, \sigma^2)$,且 $P\{2 < X < 4\} = 0.4$,则 $P\{X < 0\} =$
11.	设随机变量 $X \sim N(3,16)$,则 $P(X > 3) =$
二、	选择题
1.	设连续型随机变量 X 的概率密度函数 $f(x) = \begin{cases} 2\sin x, & x \in [0, A\pi], \\ 0, & \text{其他.} \end{cases}$,则常数
	A =
(A)	$\frac{1}{2}$ (B) $\frac{1}{3}$ (C) 1 (D) $\frac{3}{2}$
2.	若 $X \sim U(0,5)$, 方程 $x^2 + 2Xx + 5X - 4 = 0$ 有实根的概率为
(A)	$\frac{1}{5}$ (B) $\frac{3}{5}$ (C) $\frac{4}{5}$ (D) $\frac{2}{5}$
3.	设随机变量 $X \sim N(\mu, \sigma^2)$,则随着 σ 的增大,概率 $P\{ X - \mu < \sigma\}$ 将会
(A	A) 单调增加 (B) 单调减少 (C) 保持不变 (D) 不能确定

三、计算题

- 1. 设随机变量 X 服从指数分布 $f(x) = \begin{cases} \frac{1}{2}e^{\frac{-x}{2}}, & x > 0, \\ 0, & 其他. \end{cases}$
- 2. 设连续型随机变量 X 的分布函数为

$$F(x) = \begin{cases} 0, & x < 0, \\ x^2, & 0 \le x \le 1, \\ 1, & x \ge 1. \end{cases}$$

求: (1) $P{0.3 < X < 0.7}$; (2) X 的密度函数 f(x).

- 3. 一教授当下课铃打响时,他还不结束讲解. 他常结束他的讲解在铃响后的一分钟以内,以 X 表示铃响至结束讲解的时间. 设 X 的概率密度为 $f(x) = \begin{cases} kx^2 &, & 0 \le x \le 1, \\ 0 &, & \text{其 他.} \end{cases} (1)确定 k; (2)求 <math>P\{X \le \frac{1}{3}\}; (3)$ 求 $P\{\frac{1}{4} \le X \le \frac{1}{2}\}.$
- 4. 设连续型随机变量 X 的分布函数为

$$F(x) = \begin{cases} 0, & x < 0, \\ x^2, & 0 \le x \le 1, \\ 1, & x \ge 1. \end{cases}$$

求: (1) $P{0.3 < X < 0.7}$; (2) X 的密度函数 f(x).

定常数C; (2) 求分布函数F(y); (3) 求 $P\{0 \le Y \le 0.5\}$.

6. 设顾客在某银行的窗口等待服务的时间 X (以 min 计) 服从指数分布,其概率密度为 $f(x) = \begin{cases} \frac{1}{5}e^{-\frac{x}{5}}, & x > 0 \\ 0 & ,$ 其他 .

就离开. 他一个月要到银行 5 次,以 Y 表示一个月内他未等到服务而离开窗口的次数,试求 $P\{Y \ge 1\}$.

7. 设某种型号的器件的寿命 X (以小时计) 具有概率密度 $\left[\frac{1000}{2}, x > 1000, x + \frac{1}{2}\right]$

$$f(x) = \begin{cases} \frac{1000}{x^2}, & x > 1000, \\ 0, &$$
其他.

立), 任取5只,问其中至少有2只寿命大于1500小时的概率.

- 8. 设随机变量 $X \sim U[2,5]$,现对 X 进行 3 次独立观测,求至少有 2 次观测值大于 3 的概率.
- 9. 设随机变量 X 的密度函数为

$$f(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & \sharp \dot{\Xi}. \end{cases}$$

Y表示对X的 3次独立重复观察中事件 $\{X \leq \frac{1}{2}\}$ 出现的次数。

- (1) 求 $P{Y = 2}$; (2) 写出随机变量X的分布函数F(x).
- 10. 设随机变量 X 的密度函数为

$$f(x) = \begin{cases} 3x, & 0 < x < 1, \\ 0, & \sharp : \Box . \end{cases}$$

Y表示对X的 3次独立重复观察中事件 $\{X \leq \frac{1}{2}\}$ 出现的次数。

求: (1) $P{Y=1}$; (2) 随机变量 X 的分布函数 F(x).

11. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 0.003x^2, & 0 \le x \le 10, \\ 0, & \text{其 他.} \end{cases}$ 求 t 的方程 $t^2 + 2Xt + 5X - 4 = 0$ 有实根的概率.

4=0 有头似的燃华.

5.随机变量的函数的分布

一、填空题

- 1. 设随机变量 X 的分布律为 $X \sim \begin{pmatrix} -1 & 0 & 1 & 4 \\ 0.1 & 0.2 & 0.3 & 0.4 \end{pmatrix}$,则 $Y = 2X^2 + 1$ 的分布律为 $Y \sim$
- 2. 设随机变量 X 的分布律为

X -2 -1 0	1	3
-----------	---	---

P_k	1/5	1/6	1/5	1/15	11/30

随机变量 $Y = X^2 + 1$,则 $P(Y = 2) = ____$.

- 3. 设随机变量 X 的分布律为 $X \sim \begin{pmatrix} -1 & 0 & 1 \\ 0.1 & 0.4 & 0.5 \end{pmatrix}$, 则 $Y = X^2 + 1$ 的分布律为 $Y \sim$
- 4. 设随机变量 X 的分布律为 $X \sim \begin{pmatrix} -1 & 0 & 1 \\ 0.3 & 0.3 & 0.4 \end{pmatrix}$,则 $Y = X^2 + 1$ 的分布律为 $Y \sim$
- 5. 设随机变量 X 的分布律为 $X \sim \begin{pmatrix} 0 & 1 & 3 \\ 0.4 & 0.3 & 0.3 \end{pmatrix}$, 则 P(X > 2) =______.
- 6. 设随机变量 X 的分布律为 $X \sim \begin{pmatrix} -1 & 0 & 1 & 2 \\ 0.1 & 0.2 & 0.3 & 0.4 \end{pmatrix}$,则 Y = X + 1 的分布律为
- 二、综合计算题
- 1. 设随机变量 $X \sim U(-1,1)$, 求 Y = (X+1)/2 的概率密度.
- 2. 设随机变量 X 的概率密度函数为: $f(x) = \begin{cases} 1, & 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$ 求 $Y = -2 \ln X$ 的概率密度.
- 3. 设随机变量 X 的概率密度函数为: $f(x) = \begin{cases} 1, & 0 < x < 1, \\ 0, & \text{其他.} \end{cases}$ 求 $Y = e^{x}$ 的概率密度.
- 4. 设随机变量 X 的概率密度为 $f_X(x) = \begin{cases} e^{-x}, x \ge 0, \\ 0, x < 0. \end{cases}$, 求 $Y = \sqrt{X}$ 的概率密度 $f_Y(y)$.
- 5. 设随机变量 $X \sim N(0, \sigma^2)$, 求随机变量 Y = |X| 的概率密度 $f_Y(y)$.
- 6. 设随机变量 X 的概率密度函数为 $f_X(x) = \begin{cases} e^{-x}, x \ge 0 \\ 0, x < 0 \end{cases}$ 求随机变量 $Y = e^{2X}$ 的概率密度函数 $f_Y(y)$.

第三章 多维随机变量及其分布

一、选择题

1、设随机变量 X 和 Y 相互独立, 其概率分布律为

X	-1	1
p	0.5	0.5

则下列式子正确的是 .

(A)
$$X = Y$$

(B)
$$P\{X = Y\} = 0$$

(A)
$$X = Y$$
 (B) $P\{X = Y\} = 0$ (C) $P\{X = Y\} = 0.5$ (D) $P\{X = Y\} = 1$

(D)
$$P\{X = Y\} = 1$$

2、设X,Y是相互独立的两个随机变量,它们的分布函数分别为 $F_{Y}(x)$, $F_{Y}(y)$,

则 $Z = \max(X, Y)$ 的分布函数为_____

(A)
$$F_Z(z) = \max\{F_X(z), F_Y(z)\}$$

$$(A) \quad F_Z(z) = \max\{F_X(z), F_Y(z)\}$$

$$(B) \quad F_Z(z) = \max\{F_X(z)|, |F_Y(z)|\}$$

$$(D) \quad \text{以上都不对}$$

(C)
$$F_z(z) = F_y(z)F_y(z)$$

3、设X,Y 是相互独立的两个随机变量,它们的分布函数分别为 $F_x(x),F_y(y)$,则 $Z = \min(X, Y)$ 的分布函数为_____.

(A)
$$F_Z(z) = \min\{F_X(z), F_Y(z)\}$$
 (B) $F_Z(z) = 1 - [1 - F_X(z)][1 - F_Y(z)]$

(B)
$$F_z(z) = 1 - [1 - F_y(z)][1 - F_y(z)]$$

(C)
$$F_Z(z) = F_X(z)F_Y(z)$$
 (D) 以上都不对

三、综合计算题

1. 随机变量
$$(X,Y)$$
的概率密度为 $f(x,y) = \begin{cases} 4xy, & 0 < x < 1, & 0 < y < 1, \\ 0, &$ 其它 .

求: (1) 边缘概率密度; (2) $P\{X < Y\}$; (3) X,Y 是否相互独立?

2. 设随机变量 X 的概率密度为 $f_X(x) = \begin{cases} e^{-x}, x \ge 0, \\ 0, x \ge 0. \end{cases}$ 求 $Y = e^{x}$ 的概率密度 $f_{y}(y)$.

3. 设随机变量(X,Y)在由曲线 $y=x^2,y=\sqrt{x}$ 所围成的区域G内服从均匀分布. 试求:

(1) (X,Y) 的联合概率密度; (2) 边缘密度 $f_{Y}(x), f_{Y}(y)$; (3) 判断 X 和 Y 是否 独立?

4. 设二维随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} ce^{-(x+y)}, & x > 0, y > 0, \\ 0, & \text{其他.} \end{cases}$

(1) 求c; (2) 求边缘概率密度 $f_{x}(x)$ 及 $f_{y}(y)$; (3) 判断 X, Y 是否独立.

12

- 5. 设二维随机变量 (X,Y) 在由曲线 y = 2, y = x, y = 2x 所围成的区域 G 服从均匀分布. 求(1)边缘概率密度 $f_{x}(x)$ 及 $f_{y}(y)$;(2)判断 X, Y 是否独立.
- 6. 设二维随机变量 (X,Y) 在区域 G 内服从均匀分布,G 由直线 $\frac{x}{2} + y = 1$,x 轴及y 轴围成,求: (1) (X,Y) 的概率密度; (2) 关于 X 和关于 Y 的边缘概率密度,并说明 X,Y 是否相互独立; (3) $P\{Y \ge X\}$.
- 7. 随机变量 (X,Y) 在由曲线 $y = x^2, y = x^2/2, x = 1$ 所围成的区域 G 上服从均匀分布.
- (1) 求(X,Y)的概率密度; (2) 求边缘概率密度 $f_{X}(x), f_{Y}(y)$.
- 8. 设二维随机变量(X,Y)的联合密度为

$$f(x,y) = \begin{cases} x^2 + \frac{1}{3}xy, & 0 \le x \le 1, 0 \le y \le 2, \\ 0, & 其它. \end{cases}$$

求(1)求(X,Y)的边缘密度函数;(2) $P{X < Y}$.

9. 设二维随机变量(X,Y)的联合密度为

$$f(x,y) = \begin{cases} Ae^{-(x+2y)}, & x > 0, y > 0, \\ 0, & \not\exists \dot{\Xi}. \end{cases}$$

求 (1) 求 A; (2) 边缘密度函数 $f_X(x), f_Y(y)$; (3) X 和 Y 是否独立?

10. 设二维随机变量
$$(X,Y)$$
的联合密度为 $f(x,y) =$
$$\begin{cases} cx^2y, & x^2 \le y \le 1, \\ 0, & \text{其它}. \end{cases}$$

求: (1) 确定常数c; (2) 求边缘密度 $f_X(x)$, $f_Y(y)$,并判断随机变量 X,Y 的独立性.

11. 设二维随机变量(X,Y)的联合密度函数为

$$f(x,y) = \begin{cases} Ae^{-(2x+y)}, & x > 0, y > 0, \\ 0, & 其它. \end{cases}$$

求(1)常数A;(2)边缘密度函数 $f_X(x), f_Y(y)$;(3)X和Y是否独立?

第四章 随机变量的数字特征

1.数学期望

- 一、填空题
- 1. 设随机变量 X 服从区间 (2,5) 上的均匀分布,则 X 的数学期望 E(X) 为
- 2. 己知 X 服 从 泊 松 分 布 , 且 P(X = 5) = P(X = 6) , 则 E(X + 2) = .
- 3. 设 $X \sim U(0,2)$,则 $E(X) = _____$
- 4. 设随机变量 $X \sim U(1,6)$,则 $E(X) = _____.$
- 二、综合计算题
- 1. 将n只球($1\sim n$ 号)放入n个盒子($1\sim n$ 号)中去,一个盒子装一只球. 若一只球装入与球同号的盒子中,称为一个配对. 记X为总的配对数,求E(X).
- 2. 设随机变量 X 具有概率密度 $f(x) = \begin{cases} k(1 \frac{1}{x^2}), & 1 < x < 2, \\ 0, & 其他. \end{cases}$
 - (1) 求参数k; (2) 求X的数学期望E(X).
- 3. 在美国,致命的汽车事故占所有汽车事故的比例 X 的概率密度为

$$f(x) = \begin{cases} kx(1-x)^5, & 0 < x < 1, \\ 0, & \text{ 其他.} \end{cases}$$

- (1) 求参数k, (2) 求X的数学期望E(X).
- 4. 掷一颗骰子,若得 6 点则可掷第二次,此时得分为: 6+第二次所掷的点数, 否则得分就是第一次所掷的点数,不能再掷,求所得分数的分布律,并求得 分的数学期望.
- 5. 某种动物寿命 X 的分布函数为 $F(x) = \begin{cases} 1 \frac{25}{x^2}, & x > 5, \\ 0, & 其它. \end{cases}$

\$2 方差.

1、已知
$$E(X) = -2$$
, $E(X^2) = 5$,则 $D(1-3X) = _____$

2、已知
$$X \sim N(2,9)$$
,则 $E(X^2) = _____$.

3、设随机变量
$$X \sim B(10, 0.2)$$
 ,则 $D(X) =$.

4、已知
$$D(Y) = 36$$
, $Cov(X,Y) = 12$, $\rho_{XY} = 0.4$,则 $D(X) = _____.$

5、设
$$X \sim b(100, 0.1)$$
,则 $DX = ____$.

6、设
$$X \sim b(n, p)$$
,则 $DX = _____$.

7、设随机变量 X 与设随机变量 Y 相互独立,则 X 与 Y 的相关系数 ρ = ______.

8、设随机变量
$$X \sim U(0,2)$$
 , 则 $DX =$.

9、1 设随机变量
$$X \sim U(1,6)$$
 , 则 $D(X) =$.

10、设随机变量
$$X \sim N(1,2), Y \sim N(3,2)$$
,且 X, Y 独立,则 $Z = 2X - Y, Z \sim$ ______.

二、选择题

1、对于任意两个随机变量X和Y,若E(XY) = E(X)E(Y),则有_____.

(A)
$$D(XY) = D(X)D(Y)$$

(B)
$$D(X + Y) = D(X) + D(Y)$$

2、若随机变量 X 的期望为 E(X),方差为 $D(X) = \sigma^2$,由切比雪夫不等式得 $P\{|X - E(X)| \geq 3\sigma\} \leq \underline{\hspace{1cm}}.$

(A)	$\frac{1}{3}$	(B)	$\frac{4}{3}$	(C) $\frac{1}{9}$		(D) $\frac{8}{9}$			
3、设	随机变	乏量 <i>X ~ b</i>	(n,p) , \blacksquare	EX = 2.4	DX = 1	.44,则二项	页分布参数	(n, p 的信	ī为
	·								
(A)	n=4	p = 0.6	(B) n	a = 6, p = 0	0.4				
(C)	n = 8, p	p = 0.3	(D)	n = 24, p	= 0.1				
4、设	两个随	 机变量 <i>)</i>	Y和Y的方	差分别为	月6和3	,则 D(2X	-3Y)为	·	
(A)	51	(B)	21 (C) -3	(D)	36			
5、设	随机变		$B(n,p)$, \square	E(X)=5,	D(X) =	2.5,则二耳	页分布的参	·数 n, p 的	自值
为						0 00			
(A)	n = 10	p = 0.5	(B) $n = 6$	p, p = 0.4	(C) <i>n</i>	= 8, p = 0.3	(D) $n =$	24, p = 0.	I
6、设	a,b均	为常数,	则下列数量	学期望和了	方差的情	生质中错误	的是		
(A)	E(X -	+Y) = EX	+EY			(B) $D(b)$:	= 0		
(C) I	O(aX)	=aD(X)				(D) $E(aX)$	= aE(X)		
7、设	$X \sim N$	$f(\mu,\sigma^2)$,	则 <i>P</i> (<i>X</i> ≤1	. + μ) =	·				
(A) 阅	重μ的5	增大而增	大	(B)随,	u 的增力	て而减少			
(C) 阅	重σ的 ^j	增大而增	大	(D)随a	σ 的增力	て而减少			
8、设	随机图	变量 X 的]数学期望	E(X)和	方差 <i>[</i>	D(X) 都存a	在,且 <i>D</i> (X) > 0,	则
$Y = \frac{X}{A}$	$\frac{Y - E(X)}{\sqrt{D(X)}}$	<u>()</u> 的数 ⁵	学期望 <i>E</i> (Y) =					
	(A)	0	(B)	1	(C) -1	(D)	2	

9、设随机变量 $X \sim N(0,1)$, Y = 2X - 2 , 则 $Y \sim$ ______.

(A)	N(0,1)

- (B) N(-1,4) (C) N(-2,4) (D) N(-2,1)

10、设 $X \sim N(-3,1), Y \sim N(2,1)$,且X 与 Y相互独立,令Z = X - 2Y + 7,则 *Z* ~ _____.

- (A) N(0,5) (B) N(0,3) (C) N(0,46) (D) N(0,54)

11、设随机变量 $X \sim N(0,1), Y = 2X - 1$,则 $Y \sim$

- (A) N(0,1) (B) N(-1,4) (C) N(-2,4) (D) N(-2,1)

- 三、综合计算题
- 1、某工程队完成某项工程的天数 X 是随机变量,具有分布律

X	10	11	12	13	14	
$p_{\scriptscriptstyle k}$	0.2	0.3	0.3	0.1	0.1	

所得利润(以一万元计)为Y = 1000(12 - X),求随机变量Y的期望和方差.

- 2、设随机变量 X 的概率密度函数为 $f(x) = \begin{cases} Ax^2, 0 \le x \le 2, \\ 0, 其它 \end{cases}$ 求:常数 A, E(X) 及 D(X).
- 3、随机变量 X 的概率密度为 $f(x) = \begin{cases} x, & 0 < x \le 1, \\ 2 x, & 1 < x \le 2, 求 E(X) \setminus D(X). \\ 0, & 其它. \end{cases}$
- 4、在一批12台电视机中有2台次品,从中随机抽取3台,求取到的电视机中的 次品数的数学期望和方差.

3.协方差及相关系数

1、设X,Y为两个随机变量,已知cov(X,Y)=0,则必有 .

(A) X与Y相互独立 (B) $D(XY) = DX \cdot DY$

(C) $E(XY) = EX \cdot EY$ (D) 以上都不对

2、设(X,Y) 为二维随机变量,则 $\xi = X + Y$ 与 $\eta = X - Y$ 不相关的充要条件为

(A) E(X) = E(Y)

(B) $E(X^2) - E^2(X) = E(Y^2) - E^2(Y)$

(C) $E(X^2) = E(Y^2)$ (D) $E(X^2) + E^2(X) = E(Y^2) + E^2(Y)$

第五章 大数定律与中心极限定理

一、综合计算题

1、以 $X_1, X_2, \cdots, X_{100}$ 记 100 袋额定重量(以kg 计)为 25 的袋装肥料的真实的净 重, $E(X_i) = 25$, $D(X_i) = 1$, $i = 1, 2, \dots, 100, X_1, X_2, \dots, X_{100}$ 服从同一分布,且 相互独立. $\overline{X} = \frac{1}{100} \sum_{i=1}^{100} X_i$, 求 $P\{24.75 \le \overline{X} \le 25.25\}$ 的近似值.

[附表]设 $\Phi(x)$ 是标准正态分布的分布函数

x	0	0.5	1.0	1.5	2. 0	2. 5
$\Phi(x)$	0.5000	0. 6915	0.8413	0. 9332	0. 9772	0. 9938

2、一仪器同时收到 100 个信号, 其中第i个信号的长度为 X_i , $i=1,2,\cdots,100$. 设 X_i 是相互独立且都服从数学期望为 2 的指数分布, $i=1,2,\cdots,100$, 试求 $P\left(\sum_{i=1}^{100} X_i > 180\right).$

[附表]设 $\Phi(x)$ 是标准正态分布的分布函数

x	0	0.5	1.0	1.5	2.0	2. 5
$\Phi(x)$	0.5000	0. 6915	0. 8413	0. 9332	0. 9772	0. 9938

3、预测量两地的距离,限于测量工具,将其分成1200段进行测量.设每段测量 误差(单位:千米)相互独立,且均服从区间(-0.5,0.5)上的均匀分布,试求 总距离测量误差的绝对值不超过20(千米)的概率.(利用中心极限定理)

X	1	2	3
$\Phi(x)$	0.8413	0. 9772	0. 9987

4、假设生产线上组装每件成品所花费的时间服从指数分布,统计资料表明: 该生产线每件产品的平均组装时间为 10 分钟. 假设各件产品的组装时间相 互独立. 试求在 15 小时至 20 小时之间在该生产线组装完成 100 件成品的 概率. (利用中心极限定理).

x	1	2	3
$\Phi(x)$	0.8413	0. 9772	0. 9987

5、某种电子元件的寿命 *X* (以年计)服从数学期望为 2 的指数分布,各元件的寿命相互独立.随机取 100 只元件,求这 100 只元件的寿命之和大于 180 的概率. [附表]设Φ(*x*)是标准正态分布函数

х	0	0.5	1. 0	1.5	2. 0	2. 5
$\Phi(x)$	0. 5000	0. 6915	0. 8413	0. 9332	0. 9772	0. 9938

6、一加法器同时收到 20 个噪声电压 $V_k(k=1,2,\cdots,20)$,设它们是相互独立的随机变量,且都在区间(0,10)上服从均匀分布.记 $V=\sum_{k=1}^{20}V_k$,求 $P\{V>105\}$ 的近似值.

[附表]设 $\Phi(x)$ 是标准正态分布函数

x	0	0. 387	0. 950	1. 241	2. 072	2. 551
$\Phi(x)$	0. 5000	0. 6520	0. 8289	0.8925	0. 9808	0. 9946

7、某种电灯的寿命 X (以年计) 服从数学期望为 2 的指数分布,各只电灯的寿命相互独立。随机取 100 只,利用中心极限定理求这 100 只电灯的寿命之和大于 220 年的概率.

[附表]设 $\Phi(x)$ 是标准正态分布的分布函数

х	0	0.5	1.0	1.5	2.0	2. 5
$\Phi(x)$	0. 5000	0. 6915	0. 8413	0. 9332	0. 9772	0. 9938

第六章 样本及抽样分布

一、填空题

1、设 X_1, X_2, \cdots, X_n 是来自标准正态总体 N(0,1) 的样本,则统计量

$$\sum_{i=1}^{n} X_i^2 \sim \underline{\qquad}.$$

2、设 X_1, X_2, \cdots, X_n 是 来 自 正 态 总 体 $N(\mu, \sigma^2)$ 的 样 本 ,

$$\frac{\overline{X} - \mu}{\sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} \left(X_i - \overline{X}\right)^2}} \sim \underline{\hspace{1cm}}.$$

3、设 X_1, X_2, \cdots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的样本, S^2 是样本方差,则

$$\frac{(n-1)S^2}{\sigma^2} \sim \underline{\hspace{1cm}}.$$

4、设 $X_i \sim N(0,1), i = 1, 2, \dots, 6$., $C[(X_1 + X_2 + X_3)^2 + (X_4 + X_5 + X_6)^2] \sim \chi^2(2)$,则

1、设 X_1, X_2, \dots, X_n 是来自于正态总体 $N(\mu, \sigma^2)$ 的简单随机样本,其中 μ, σ^2 未

知,则下面不是统计量的是

$$(A)$$
 X_i

(B)
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

(C)
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

(D)
$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2$$

2、下列结论中,不正确的是

(A) 若
$$X \sim \chi^2(2), Y \sim \chi^2(3)$$
, 则 $X + Y \sim \chi^2(5)$

(B) 若
$$X \sim N(0,1)$$
, $Y \sim N(0,1)$, 且 X 和 Y 独立, 则 $X^2 + Y^2 \sim \chi^2(2)$

(C) 设 $X_1, \dots X_n$ 是来自总体 $X \sim N(\mu, \sigma^2)$ 的样本, \overline{X} 是样本均值,则

$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$

- (D) 若 $X \sim \chi^2(10)$, 则D(X) = 20
- 3、对于给定的 α , $0 < \alpha < 1$, 其中满足条件 $P\{t > t_{\alpha}(n)\} = \int_{t_{\alpha}(n)}^{\infty} h(t)dt = \alpha$ 的点 $t_{\alpha}(n)$ 为 t(n)分布的上 α 分位点,故______
- (A) $t_{1-\alpha}(n) = t_{\alpha}(n)$ (B) $t_{1-\alpha}(n) = -t_{\alpha}(n)$
- (C) $t_{1-\alpha}(n) = -t_{\alpha-1}(n)$ (D) $t_{1-\alpha}(n) = 1 t_{\alpha}(n)$

4、设 X_1, X_2, \cdots, X_{20} 是来自正态总体 $N(\mu, \sigma^2)$ 的样本,则统计量 \overline{X} 服从的分布

- (A) $N(\mu, \frac{\sigma^2}{20})$ (B) $N(20\mu, 400\sigma^2)$ (C) $N(\mu, 20\sigma^2)$ (D) $N(20\mu, \frac{\sigma^2}{400})$

5、设 X_1,X_2,\cdots,X_{10} 是来自正态总体 $N(0,\sigma^2)$ 的样本,则统计量 $T=\frac{\sum\limits_{i=1}^{5}X_i}{\sqrt{\sum\limits_{i=1}^{10}X_i^2}}$ ~

- (A) $\chi^2(10)$ (B) t(5) (C) F(5,10) (D) N(0,1)
- (A) 若 $X \sim N(0,1), Y \sim N(0,1)$,则 $X^2 + Y^2 \sim \chi^2(2)$
- (B) 若 $X \sim \chi^2(2), Y \sim \chi^2(3)$ 且 X 和 Y 独立,则 $X + Y \sim \chi^2(5)$
- (C) 设 X_1, \cdots, X_n 是 来 自 总 体 $X \sim N(\mu, \sigma^2)$ 的 样 本 , \overline{X} 是 样 本 均 值 , 则 $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$
- (D) 若 $X \sim \chi^2(10)$, 则D(X) = 20

第七章 参数估计

1.点估计 2.基于截尾样本的最大似然估计

一、选择题

1、设总体 $X \sim U(0,\theta)$,其中 θ 为未知参数, X_1 , X_2 ,……, X_n 为来自总体X的

样本,则 θ 的矩估计量 $\hat{\theta}$ = .

- (A) X

- (B) \overline{X} (C) $2\overline{X}$ (D) 以上都不对
- 2、设总体 X 服从参数 λ 的泊松分布,其中 $\lambda > 0$ 为未知参数, X_1 , X_2 , … , X_n 为来自总体 X 的样本,则 λ 的矩估计量 $\hat{\lambda}$ = .

- (B) \overline{X} (C) $\frac{1}{\overline{V}}$ (D) 以上都不对
- 二、综合计算题
- 1、设总体 X 的概率密度为

$$f(x; \theta) = \begin{cases} \theta \cdot x^{\theta-1} , & 0 < x < 1 , \\ 0 , 其它 . \end{cases}$$

其中 $\theta > 0$ 为未知参数。 X_1, X_2, \cdots, X_n 是来自总体X的一个容量为n的简单随机 样本, x_1, x_2, \dots, x_n 为一相应的样本值,求参数 θ 的最大似然估计值.

2、设总体
$$X$$
 的概率密度为 $f(x;\theta) = \begin{cases} \frac{x}{\theta^2} e^{-\frac{x}{\theta}}, x > 0, \\ 0, \\ 1, & \text{其中 } 0 < \theta < \infty \text{ 为未知参} \end{cases}$

数. X_1, X_2, \cdots, X_n 是来自总体 X 的一个容量为 n 的简单随机样本, x_1, x_2, \cdots, x_n 为一 相应的样本值,试求参数 θ 的最大似然估计值.

3、设总体 X 的概率密度为

$$f(x;\theta) = \begin{cases} \frac{1}{6\theta^4} x^3 e^{\frac{-x}{\theta}}, & x > 0, \\ 0, & 其他. \end{cases}$$

其中 θ (θ >0) 为待估参数,设 X_1, X_2, \dots, X_n 是来自总体X的一个样本, x_1, x_2, \dots, x_n 是一个样本值,求参数 θ 的最大似然估计值.

4、设总体 X 的分布律为

X	1	2	3
P	$ heta^2$	$2\theta(1-\theta)$	$(1-\theta)^2$

其中 $0<\theta<1$ 为待估参数,设 X_1,X_2,\cdots,X_n 是来自总体X的一个样本, x_1,x_2,\cdots,x_n

是一个样本值,求参数 θ 的最大似然估计值.

5、设 X 服 从 参 数 为 $p(0 的 几 何 分 布 , 其 分 布 律 为 <math>P\{X = x\} = (1 - p)^{x-1} p, x = 1, 2, \cdots$

p 为未知参数. 设 x_1, x_2, \dots, x_n 是一个样本值, 求p 的最大似然估计值.

- 6、设总体 $X \sim \pi(\lambda), \lambda > 0$ 未知, X_1, X_2, \dots, X_n 是来自 X 的样本, x_1, x_2, \dots, x_n 是相应的样本值. (1) 求 λ 的矩估计量: (2) 求 λ 的最大似然估计值.
- 7、设总体 X 的概率密度为

$$f(x;\theta) = \frac{\theta^x \cdot e^{-\theta}}{x!} \qquad (x = 0,1,\cdots)$$

其中 $\theta > 0$ 为未知参数。设 x_1, x_2, \cdots, x_n 是来自总体X的一个样本值,求参数 θ 的最大似然估计值.

8、设总体 X 的概率密度为

$$f(x; \theta) = \begin{cases} \theta \cdot e^{(-\theta x)}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

其中 $\theta > 0$ 为未知参数。设 x_1, x_2, \cdots, x_n 是来自总体X的一个样本值,用最大似然估计法求参数 θ 的估计值.

9、已知总体 X 服 从 参 数 为 λ 的 指 数 分 布 , 其 概 率 密 度 函 数 为 $f(x) = \begin{cases} \lambda e^{-\lambda x} \;, & x > 0 \;, \\ 0 \;, & x \leq 0 \end{cases}, \quad x_1, x_2, \cdots, x_n$ 是来自总体的样本值,求参数 λ 的最大似然估计值.

10、设总体 X 的概率密度为

$$f(x;\theta) = \begin{cases} (\theta+1) \cdot x^{\theta}, & 0 < x < 1, \\ 0, & \text{ } \sharp \dot{\Xi} \end{cases}.$$

其中 $\theta > 0$ 为未知参数。 x_1, x_2, \cdots, x_n 是来自总体X的一个样本值,用最大似然估计法求参数 θ 的估计值.

3.估计量的评选标准

- 一、埴空颢
- 1、 $\hat{\theta}_1$, $\hat{\theta}_2$ 是常数 θ 的两个无偏估计量,若 $D(\hat{\theta}_1) < D(\hat{\theta}_2)$,则_______更有效.
- 二、选择题
- $1、设<math>X_1, \cdots X_n$ 是总体的样本,则下列统计量均为总体均值的无偏估计,其中最

有效的是_____.

(A)
$$\frac{1}{2}X_1 + \frac{1}{3}X_2 + \frac{1}{6}X_3$$
 (B) $\frac{1}{3}(X_1 + X_2 + X_3)$ (C) $X_1 + X_2 - X_3$ (D) $\frac{1}{2}(X_1 + X_2)$

- 2、设 X_1, \dots, X_n 是来自总体 $X \sim N(\mu, \sigma^2)$ 的样本, \overline{X}, S^2 是样本均值和样本方差, 下列结论中,错误的是_____.
- (A) $\frac{\overline{X} \mu}{\sigma / \sqrt{n}} \sim N(0,1)$ (B) $\frac{\overline{X} \mu}{S / \sqrt{n}} \sim t(n-1)$

(B)
$$\frac{\overline{X} - \mu}{S / \sqrt{n}} \sim t(n-1)$$

- (C) S^2 为 σ^2 的有偏估计量
- (D) $\frac{1}{n}\sum_{i=1}^{n}(X_{i}-\overline{X})^{2}$ 为 σ^{2} 的有偏估计量
- 3、设 $X_1, \cdots X_n$ 是来自总体 $X \sim N(\mu, \sigma^2)$ 的样本, \overline{X}, S^2 是样本均值和样本方差,
 - (A) $\frac{\overline{X} \mu}{\sigma / \sqrt{n}} \sim N(0,1)$ (B) $\frac{\overline{X} \mu}{S / \sqrt{n}} \sim t(n-1)$
 - (C) S^2 为 σ^2 的无偏估计量 (D) $B_2 = \frac{1}{n} \sum_{i=1}^{n} \left(X_i \overline{X} \right)^2$ 为 σ^2 的无偏估计量

第七章 假设检验

1.假设检验

- 一、填空题
- 1、假设盒中有5个球,关于球的颜色有如下假设 H_0 :盒中至多有一个红球.若 H_0 为基本假设,其对立假设 H_1 为_____.
- 二、选择题
- 1、在假设检验中,显著性水平 α 的意义是 .
- (A) H_0 为真,但经检验拒绝 H_0 的概率 (B) H_0 为真,经检验接受 H_0 的概率
- $(C)H_0$ 不成立,经检验拒绝 H_0 的概率 $(D)H_0$ 不成立,但经检验接受 H_0 的概率
- 2、在对单个正态总体均值的假设检验中,当总体方差已知时,选用...
- (A) t检验法 (B) χ^2 检验法 (C) F 检验法
- (D) u 检验法

- 3、在假设检验中,显著性水平 α 的意义是____.
- (A) H_0 为真, 但经检验拒绝 H_0 的概率 (B) H_0 为真, 经检验接受 H_0 的概率
- (C) H_0 为假,经检验拒绝 H_0 的概率 (D) H_0 为假,但经检验接受 H_0 的概率 4、设 X_1, X_2, \cdots, X_n 是来自正态总体 $N(\mu, \sigma^2)$ 的样本, σ^2 未知,统计假设为 $H_0: \mu = \mu_0$ (μ_0 已知) $H_1: \mu \neq \mu_0$,则所用统计量为_____.

(A)
$$U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$
 (B) $T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$ (C) $\chi^2 = \frac{(n-1)S^2}{\sigma^2}$ (D) $\chi^2 = \frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2$