Coq/MathComp上の VASSからVASへの変換の形式化

千葉大学大学院 脇坂勝大 山本光晴

概要

・状態遷移系...状態と状態間の遷移からなる

・これらの状態遷移系は互いに等価であることが知られている

・さらにHopcroftらの変換に改良を与えた

- 1. VAS·VASSの定義とその形式化
- 2. VASSからVASへの変換とその形式化
- 3. 変換の改良

- 1. VAS·VASSの定義とその形式化
- 2. VASSからVASへの変換とその形式化
- 3. 変換の改良

VAS(ベクトル加算系)の定義

· d次元 $VASV:V\subseteq \mathbb{Z}^d$, $\#V<\infty$ 状態: $\pmb{m}\in\mathbb{N}^d$

遷移: $m \xrightarrow{v} m + v$ (条件: $v \in V$, $m + v \in \mathbb{N}^d$)

VASの例: V = {(0, 2, -1), (1, -1, -1), (0, 0, 2)}

VASの形式化

```
d次元VASV: V \subseteq \mathbb{Z}^d, #V < \infty
```

状態: $m \in \mathbb{N}^d$

遷移: $m \to m + v$ (条件: $v \in V, m + v \in \mathbb{N}^d$)

Variable dim: nat.

```
Definition VAS := {fset (vint dim)}. (* vint dim := int ^ dim *) Definition markingVAS := vnat dim. (* vnat dim := nat ^ dim *) Definition vtrans (m : vnat dim) (w : vint dim) : option (vnat dim) := insub (val m + w)_{\%R}. (* vnatはvintのSubTypeとして定義*) Definition nextVAS {vas : VAS} (m : markingVAS) (v : vas) : option markingVAS := vtrans m (val v).
```

MathCompにおけるSubTypeのイメージ

SubTypeの例

Definition vtrans (m : vnat dim) (w : vint dim) : option (vnat dim) := insub (val m + w) $_{R}$

VASSの定義

· d次元VASS (Q,T) : $T \subseteq Q \times \mathbb{Z}^d \times Q$, $\#Q < \infty$, $\#T < \infty$

状態: $(q, \mathbf{m}) \in Q \times \mathbb{N}^d$

遷移: $(q, m) \xrightarrow{(q, v, q')} (q', m + v)$

(条件: $(q, \boldsymbol{v}, q') \in T, \boldsymbol{m} + \boldsymbol{v} \in \mathbb{N}^d$)

VASSの例 (1, 1) (0, -1) (1, -1) (-2, 1) (-1, 1)

Configurationと呼ぶ

VASSの形式化

```
d次元VASS (Q,T) : T \subseteq Q \times \mathbb{Z}^d \times Q, \#Q < \infty, \#T < \infty
```

状態: $(q, m) \in Q \times \mathbb{N}^d$

遷移: $(q, m) \xrightarrow{(q,v,q')} (q', m+v)$ (条件: $(q,v,q') \in T, m+v \in \mathbb{N}^d$)

Variables (dim : nat) (state : finType).

Definition VASS := {fset (state * vint dim * state)}.

Definition confVASS: Type := state * vnat dim.

Definition nextVASS {vass : VASS} (c : confVASS) (w : vass)

: option confVASS := let: $(q, m) := c in let: (q_1, v, q_2) := val w in$

if q!= q₁ then None

else if vtrans m v isn't Some t then None

else (* $(q == q_1) \&\& (vtrans m v == Some t) *) Some (q_2, t).$

- 1. VAS·VASSの定義とその形式化
- 2. VASSからVASへの変換とその形式化
- 3. 変換の改良

VASSからVASへの変換[Hopcroft&Pansiot,79]

・d次元VASSはある $a,b:Q \rightarrow \mathbb{N}$ を用いてd+3次元VASで模倣可能

Hopcroftらの証明

・[Hopcroft&Pansiot,79]より

Lemma 2.1. An n-dim VASS can be simulated by an (n+3)-dim VAS.

Proof. We give the construction of the VAS. The last three coordinates encode the state while the first n coordinates are as in the VASS. Assume that the VASS has k states q_1, \ldots, q_k . Let $a_i = i$ and $b_i = (k+1)(k+1-i)$ for i=1 to k. If the VASS is at v in state q_i then the VAS will be at $(v, a_i, b_i, 0)$. For each i the VAS has two dummy transitions t_i and t_i' defined so that t_i goes from $(v, a_i, b_i, 0)$ to $(v, 0, a_{k-i+1}, b_{k-i+1})$ and t_i' goes from $(v, 0, a_{k-i+1}, b_{k-i+1})$ to $(v, b_i, 0, a_i)$. Note that t_i and t_i' modify only the last three components. In addition there is a transition t_i'' for each transition $i \rightarrow (j, w)$ of the VASS, defined by

$$t''_{i} = (w, a_{i} - b_{i}, b_{j}, -a_{i}).$$

Clearly any path of the VASS can be mimicked by the VAS. It remains to be shown that the VAS cannot do something unintended. We will only show that t_i'' can only be applied if the last three components are b_i , 0 and a_i respectively. The other cases are similar. Observe that for each i and j, $a_i < a_{i+1}$, $b_i > b_{i+1}$, $a_i < b_j$ and $b_i - b_{i+1} = k + 1 > a_j$. Let v_i'' be the vector $(w, a_j - b_i, b_j, -a_i)$ which accomplishes the transition t_i'' . Note that the n+1st and last components are negative. Hence t_i'' cannot be applied when the last three coordinates are $(a_i, b_i, 0)$ or $(0, a_{k-i+1}, b_{k-i+1})$ since either the first or third components are 0. Let the last three coordinates be $(b_m, 0, a_m)$. Then if m < i, t_i'' cannot be applied since $a_m - a_i < 0$. If m > i, then t_i'' cannot be applied since $b_m + a_i - b_i \le a_i - (k+1) < 0$. \square

Since an *n*-dim VASS can trivially simulate an *n*-dim VAS, the reachability problem for VAS is solvable if and only if the reachability problem for VASS is solvable.

なぜこの変換?

$$Q = \{1, ..., k\},\$$

$$a_i = i, b_i = (k+1)(k-i+1),\$$

$$\tilde{q} = k+1-q$$

・適用できる遷移を1種類のみにするため

$$(m \mid (a_{q}, b_{q}, 0))$$

$$(m \mid (a_{q}, b_{q}, 0))$$

$$(m \mid (a_{q}, b_{q}, a_{q}))$$

$$(m \mid (a_{q} + b_{q}, b_{q} - a_{\tilde{q}}, a_{q} - b_{\tilde{q}}))$$

$$(m \mid (a_{q} + b_{q}, b_{q} - a_{\tilde{q}}, a_{q} - b_{\tilde{q}}))$$

$$(m \mid (a_{q} + b_{q}, b_{q} - a_{\tilde{q}}, a_{q} - b_{\tilde{q}}))$$

$$(m \mid (a_{q} + a_{q'} - b_{q}, b_{q} + b_{q'}, -a_{q}))$$

$$(m \mid (a_{q} + a_{q'} - b_{q}, b_{q} + b_{q'}, -a_{q}))$$

$$(m \mid (a_{q} - a_{q'}, a_{\tilde{q}} + b_{q} - b_{q'}, b_{\tilde{q}}))$$

VASSからVASへの変換例

$$Q = \{1, ..., k\},$$
 $a_i = i, b_i = (k+1)(k-i+1),$ $\tilde{q} = \underline{k+1-q}$ と定める

変換

 $a_i = i, b_i = 3(3 - i), \tilde{q} = \underline{q}$ $\{(0,0,-1,-5,6), (0,0,-2,-1,3),$ (0,0,6,-1,-5), (0,0,3,-2,-1), (1,1,-5,6,-1), (0,-1,-4,3,-1), (-2,1,-4,3,-1), $(1,-1,-1,3,-2), (-1,1,-2,6,-2)\}$

VASSの遷移
$$(1, (1, 1)) \xrightarrow{(1, (0, -1), 2)} (2, (1, 0))$$

VASの遷移 (1, 1, 1, 6, 0) \longrightarrow (1, 1, 0, 1, 6) \longrightarrow (1, 1, 0, 1, 6) \longrightarrow (1, 1, 6, 0, 1) \longrightarrow (1, 1, 6, 0, 1) \longrightarrow (1, 0, 2, 3, 0) \longrightarrow (1, 0, 2, 3, 0) \longrightarrow (1, 0, 2, 3, 0)

形式化の準備

ここではa,bを具体的に定めず、 $\tilde{q} = q$ とする

Variables (dim: nat) (state: finType) (a b: state \rightarrow nat). (* vrotrは自分で定義したベクトル右回転関数*) Definition vs (p: state) (i: 'Z_3): vnat 3:= vrotr i [ffun j: 'Z_3 => if j == $0_{\%R}$ then a p else if j == $1_{\%R}$ then b p else (* j == $2_{\%R}$ *) 0].

Definition vst (p q : state) (i : 'Z_3) : vint 3 :=

vrotr i [ffun j : $^{'}Z_3 =$ if j == $0_{\%R}$ then — (a p)_{\(\pi\):Z}

else if $j == 1_{\%R}$ then $(a q)\%:_{Z} - (b p)\%:_{Z}$

else (* j == $2_{\%R}$ *) (b q)_{\%;Z}]_{\%R}.

$$(m \mid (a_{q}, b_{q}, 0)) \xrightarrow{(0 \mid (-a_{q}, a_{\tilde{q}} - b_{q}, b_{\tilde{q}}))} \xrightarrow{i = 0} (m \mid (0, a_{\tilde{q}}, b_{\tilde{q}})) \xrightarrow{i = 2} (m \mid (b_{q}, 0, a_{q})) \xrightarrow{i = 2} (m \mid (b_{q}, 0, a_{q})) \xrightarrow{i = 0} (m \mid v \mid (a_{q'}, b_{q'}, 0)) \xrightarrow{i = 0} (m \mid v \mid (a_{q'}, b_{q'}, 0)) \xrightarrow{i = 0} (m \mid v \mid (a_{q'}, b_{q'}, 0)) \xrightarrow{i = 0} (m \mid v \mid (a_{q'}, b_{q'}, 0)) \xrightarrow{i = 0} (m \mid v \mid (a_{q'}, b_{q'}, 0)) \xrightarrow{i = 0} (m \mid v \mid (a_{q'}, b_{q'}, 0)) \xrightarrow{i = 0} (m \mid v \mid (a_{q'}, b_{q'}, 0)) \xrightarrow{i = 0} (m \mid v \mid (a_{q'}, b_{q'}, 0)) \xrightarrow{i = 0} (m \mid v \mid (a_{q'}, b_{q'}, 0)) \xrightarrow{i = 0} (m \mid v \mid (a_{q'}, b_{q'}, 0)) \xrightarrow{i = 0} (m \mid v \mid (a_{q'}, b_{q'}, 0)) \xrightarrow{i = 0} (m \mid v \mid (a_{q'}, b_{q'}, 0)) \xrightarrow{i = 0} (m \mid v \mid (a_{q'}, b_{q'}, 0)) \xrightarrow{i = 0} (m \mid v \mid (a_{q'}, b_{q'}, 0)) \xrightarrow{i = 0} (m \mid v \mid (a_{q'}, b_{q'}, 0)) \xrightarrow{i = 0} (m \mid v \mid (a_{q'}, b_{q'}, 0)) \xrightarrow{i = 0} (m \mid v \mid (a_{q'}, b_{q'}, 0)) \xrightarrow{i = 0} (m \mid v \mid (a_{q'}, b_{q'}, 0)) \xrightarrow{i = 0} (m \mid v \mid (a_{q'}, b_{q'}, 0))$$

VASSからVASへの変換の形式化

```
Definition VAS_of_VASS_m (c: confVASS dim state): markingVAS (dim + 3) :=
let: (q, m) := c in vcat m (vs q <math>0_{\%R}).
                                                                    (* vcatはベクトルの連結 *)
Definition VAS_of_VASS_t (vass: VASS dim state) : VAS (dim + 3) :=
[fset vcat (0_{\%R} : vint dim) (vst q q (x_{\%R})_{\%R}) | x : bool, q : state]
     [fset let: (q,v,q') := t in vcat v (vst q q' 2<sub>%R</sub>) | t in vass].

\frac{\left(\mathbf{m} \mid (a_q, b_q, 0)\right)}{\left(\mathbf{0} \mid (b_q, -a_{\widetilde{q}}, a_q - b_{\widetilde{q}}, b_{\widetilde{q}})\right)}

                                                                                                              (\boldsymbol{m} \mid (0, a_{\tilde{q}}, b_{\tilde{q}}))
```

遷移の制御のためのa,bに関する条件

Definition ab_consistent (a b : state -> nat) := \forall (q q' q'' : state) (i i' : 'Z_3), vtrans (vs a b q i) (vst a b q' q'' i') = if (q' == q) && (i' == i) then Some (vs a b q'' (i + 1)_{%R}) else None.

到達可能性の保存

```
Definition reachable {S T : Type} (next : S -> T -> option S) (x0 x : S) :=
∃ s: seq T, foldm next x0 s = Some x. (* foldmはモナド版foldl *)
Lemma reachable_VASS_VAS (vass : VASS dim state) (c<sub>0</sub> c : confVASS dim state)
(a b : nat -> state) :
ab_consistent a b ->
 reachable (@nextVASS _ _ vass) c<sub>o</sub> c <->
                                                  (*←を帰納法で示すには一般化が必要 *)
 reachable (@nextVAS _ (VAS_of_VASS_t a b vass))
                        (VAS of VASS m a b c_0) (VAS of VASS m a b c).
```

一般化した補題

```
Lemma VASS_of_VAS_reachable' (c_0: confVASS dim state) (vass: VASS dim state) (vm: markingVAS (dim+3)) (a b: nat -> state): ab_consistent a b -> reachable (@nextVAS _ (VAS_of_VASS_t a b vass)) (VAS_of_VASS_m a b c_0) vm_-> \exists q m i, vm = vcat m (vs a b q i) \land reachable (@nextVASS _ vass) c_0 (q,m).
```

元の命題

```
reachable (@nextVAS _ (VAS_of_VASS_t a b vass))  (VAS\_of\_VASS\_m \ a \ b \ c_0) \ \underline{(VAS\_of\_VASS\_m \ a \ b \ c)}   -> \ reachable \ (@nextVASS \_ \_ \ vass) \ c_0 \ \underline{c}.
```

- 1. VAS·VASSの定義とその形式化
- 2. VASSからVASへの変換とその形式化
- 3. 変換の改良

条件の改良

問: Hopcroftらの論文で定めたa,bがab_consistentを満たすのか?
→そのままだと証明が難しいので、同値な条件を用意する

Variable state : finType.

Definition ab_aligned (a b : state -> nat) :=

injective a

 \land (\forall p q : state, a p > a q -> \forall r : state, a r + b p < b q)

 $\land \forall pq$: state, a p < b q.

条件の同値性

```
Lemma ab_iff (a b : state -> nat) :
         \#|\text{state}| > 1 -> \text{ab consistent a b} <-> \text{ab aligned a b}.
                                                                                                                  条件#|state| > 1 が必要
                                        ab consistent
                                          \forall (p p' q : state) (i i' : 'Z_3),
                                           vtrans (vs a b p i) (vst a b p' q i') =
   ab consistent ∅
                                           if (p' == p) \&\& (i' == i) then Some (vs a b q (i + 1)_{\%R}) else None.
  回転数を1つ固定
                                                                                        ab aligned
ab consistent0
                                                                                          injective a
   \forall (p p' q : state) (i' : 'Z 3),
                                                                                          \land (\forall p q : state, a_p > a_q \rightarrow \forall r : state, a_r + b_p < b_q)
    vtrans (vs a b p O_{\text{MR}}) (vst a b p' q i') =
                                                                                          \land \forall p q : state, ap < b_q
    if (p' == p) \&\& (i' == 0_{\%R}) then Some (vs a b q 1_{\%R}) else None.
```

Hopcroftらの a, b の形式化

```
(* Hopcroft&Pansiot: Q = \{1, ..., k\}, a_i = i, b_i = (k+1)(k+1-i) *)

Definition a_HP (q: state): nat := (enum_rank q).+1.

Definition b_HP (q: state): nat := #|state|.+1 * (#|state| - enum_rank q).

Lemma HPab_prop: ab_aligned a_HP b_HP.
```

問:この a, b が (何らかの意味で) 最良か?

参考図(stateはaに関して昇順)

Definition ab_aligned (a b : state -> nat) :=
 injective a

 $\land (\forall p q : state, a_p > a_q \rightarrow \forall r : state, a_r + b_p < b_q)$

 $\land \forall p q : state, a_p < b_q$.

Hopcroft&Pansiotの変換では<

ab_alignedを満たすa,b

```
(* Hopcroft&Pansiot: Q = \{1, ..., k\}, a_i = i, b_i = (k+1)(k+1-i) *)

Definition a_HP (q: state): nat := (enum_rank q).+1.

Definition b_HP (q: state): nat := #|state|.+1 * (#|state| - enum_rank q).

Lemma HPab_prop: ab_aligned a_HP b_HP.
```

```
(* Q = \{1, ..., k\}, a_i = i - 1, b_i = k(k + 1 - i) のとき最小*)
```

Definition mina (q : state) : nat := enum_rank q.

Definition minb (q : state) : nat := #|state| * (#|state| — enum_rank q).

Lemma minab_prop : ab_aligned mina minb.

・実際に最小になることも示した

$$a_i = i - 1, b_i = 2(3 - i)$$

 $\{(0,0,0,-4,4), (0,0,-1,-1,2), (0,0,4,0,-4), (0,0,2,-1,-1), (1,1,-4,4,0), (0,-1,-3,2,0), (-2,1,-3,2,0), (1,-1,-1,2,-1), (-1,1,-2,4,-1)\}$

mina, minb

 $a_i = i, b_i = 3(3 - i)$

 $\{(0,0,-1,-5,6), (0,0,-2,-1,3),$

(0,0,6,-1,-5), (0,0,3,-2,-1),

(1,1,-5,6,-1),

minabの補題

aの昇順になるようstateを整列したもの

Definition sorted_state := sort (relpre a leq) (enum state).

Definition sorted_a := map a sorted_state.

Lemma a_ith_geq: ∀ i, i < # | state | -> i <= nth 0 sorted_a i.

Lemma b_ith_geq: ∀ i, i < # | state | ->

#|state| * (#|state| - i) <= nth 0 sorted_b i.

気持ち: ∀q:sorted_state, mina q <= a q

気持ち: ∀ q : sorted_state, minb q <= b q

なぜこの変換? (再掲)

 $\frac{\left(\mathbf{0}\mid(-a_{q'},a_{\tilde{q}}-b_{q'},b_{\tilde{q}})\right)}{\left(q'\neq q\right)}$

 $a_q = 0$ を許すことにより、 ここが負にならない可能性がある

 $(\boldsymbol{m} \mid (a_q - a_{q'}, a_{\tilde{q}} + b_q - b_{q'}, b_{\tilde{q}}))$

$$(m \mid (a_{q}, b_{q}, 0))$$

$$(m \mid (a_{q}, b_{q}, 0))$$

$$(m \mid (a_{q}, b_{q}, a_{q} - b_{\tilde{q}}))$$

$$(m \mid (a_{q} + b_{q}, b_{q} - a_{\tilde{q}}, a_{q} - b_{\tilde{q}}))$$

$$(m \mid (a_{q} + b_{q}, b_{q} - a_{\tilde{q}}, a_{q} - b_{\tilde{q}}))$$

$$(m \mid (a_{q} + a_{q'} - b_{q}, b_{q'}, -a_{q}))$$

条件の同値性 (再掲)

Lemma ab_iff (a b : state -> nat) :

#|state| > 1 -> ab_consistent a b <-> ab_aligned

ab_consistent

∀ (p p' q : state) (i i' : 'Z_3), vtrans (vs a b p i) (vst a b p' q i') = if (p' == p) && (i' == i) then Some (vs a b q √

ab_aligned

/_R) else None.

ab consistent0

 \forall (p p' q : state) (i' : 'Z_3), vtrans (vs a b p $0_{\%R}$) (vst a b p' q i') = if (p' == p) && (i' == $0_{\%R}$) then Some (vs a b q $1_{\%R}$) else None. $a_q = 0$ を許すことにより、 ここの証明で場合分けが増える

injective a

 $\land (\forall p q : state, a_p > a_q \rightarrow \forall r : state, a_r + b_p < b_q)$

 $\land \forall p q : state, ap < b_q$

a_q = 0を許すことによる証明の変化

```
Lemma ab aligned vs0 : ab aligned -> ab consistent0.
Proof.
 rewrite /ab consistent0 /ab aligned => -[inj a [a gt bpbq a gt b]] p p' q i.
 case: ifP.
  move/andP \Rightarrow [/eqP \leftarrow /eqP \rightarrow ].
                                               apply/existsP; move: H; case: (Z3\_cases i) \Rightarrow [-> []|-> _]-> _] //.
  rewrite /vtrans; case: insubP=> [w|].
                                                  case: (ltngtP (a p) (a p')) \Rightarrow [h | h | h].
   move/forallP => H1 H2; congr Some.
                                                      by exists 0%R; rewrite !ffunE /=; lia.
   apply: val inj; rewrite H2; apply/ffunP=
                                                     by exists 1%R; rewrite !ffunE /=; move: (a_gt_bpbq _ _ h q); lia.
   by case: (Z3 \text{ cases } k) \Rightarrow - /=; lia.
                                                    by move: (inj_a _ _ h)=> ->; rewrite eqxx.
  rewrite negb forall; move/existsP=> -[j].
                                                  by exists 2%R; rewrite !ffunE /=; move: (a gt b q p'); lia.
  rewrite !ffunE.
                                               case E: (a p') => [|n]; last by exists 2%R; rewrite !ffunE /=; lia.
  by case: (Z3\_cases j) \Rightarrow - > /=; lia.
                                                exists 0%R; rewrite !ffunE /=.
 move/negP/negP; rewrite Bool.negb andb; mo
                                                case E': (a q) => [|m]; first by move: (a_gt_b p p'); lia.
 rewrite /vtrans insubN // negb forall.
                                                have h : a p' < a q by rewrite E E'.
                                                by move: (a_gt_b q q) (a_gt_bpbq q p' h p); lia.
                                               Qed.
```

今後の展望

- ・今回は被覆性の形式化を行わなかった
- →Hierarchy Builder[HB,20]を用いることで簡潔に形式化?
- ・コードの改良
- $\rightarrow \tilde{q}$ が任意の置換で成り立つことの証明

本研究のコード:

まとめ

https://github.com/Wakisaka1205/VASS2VAS-1x

VASSからVASへの変換を形式化した

- ・Hopcroft&Pansiotが示した変換に基づいている
- ・遷移を模倣できる条件ab_consistentを定め、この条件下で 到達可能性が保存されることを示した

変換の改良を行った

- ・ab_consistentを満たす a, b を不等式で特徴付けた
- ・改良した a,b ($a_a = 0$ を許す) を定め、その最小性を示した

参考文献

[Karp&Miller,69] Richard M. Karp and Raymond E. Miller. "Parallel Program Schemata". *Journal of Computer and System Sciences*, 3(2):147–195, 1969.

[Hopcroft&Pansiot,79] John Hopcroft and Jean-Jacques Pansiot. "On the reachability problem for 5-dimensional vector addition systems". *Theoretical Computer Science*, 8(2):135–159, 1979.

[HB,20] Cyril Cohen, Kazuhiko Sakaguchi and Enrico Tassi. "Hierarchy Builder: Algebraic hierarchies Made Easy in Coq with Elpi". *FSCD 2020*, volume 167 of LIPIcs, pages 34:1–34:21, 2020.

[山口,17] 山口智也.「ベクトル加算系・状態付きベクトル加算系・ペトリネットの等価性の形式化」.千葉大学修士論文,2017.