

Recap

Limitations of Encoder-Decoder

Encoder state burden: Carries all data from encoder to decoder where encoder errors may lead to translation failures.

For long texts, **Encoder state may miss key info**

The model struggles to prioritize important details at each time step

Limitations of Encoder-Decoder

Attention Mechanism

Attention

submitted on 1 Sep 2014 (v1), last revised 19 May 2016 (this version, v7)]

Neural Machine Translation by Jointly Learning to Align and Translate

Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio

Neural machine translation is a recently proposed approach to machine translation. Unlike the traditional statistical machine translation, the neural machine translation aims at building a single neural network that can be jointly tuned to maximize the translation performance. The models proposed recently for neural machine translation often belong to a family of encoder-decoders and consists of an encoder that encodes a source sentence into a fixed-length vector from which a decoder generates a translation. In this paper, we conjecture that the use of a fixed-length vector is a bottleneck in improving the performance of this basic encoder-decoder architecture, and propose to extend this by allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word, without having to form these parts as a hard segment explicitly. With this new approach, we achieve a translation performance comparable to the existing state-of-the-art phrase-based system on the task of English-to-French translation. Furthermore, qualitative analysis reveals that the (soft-)alignments found by the model agree well with our intuition.

Comments: Accepted at ICLR 2015 as oral presentation

Subjects: Computation and Language (cs.CL); Machine Learning (cs.LG); Neural and Evolutionary Computing (cs.NE); Machine Learning (stat.ML)

Cite as: arXiv:1409.0473 [cs.CL]

(or arXiv:1409.0473v7 [cs.CL] for this version) https://doi.org/10.48550/arXiv.1409.0473 (i)

Impact of Attention Mechanism

Impact of Attention Mechanism

- Europèenne → European
- Agreement → Accord
- Area \rightarrow Zone

Translate the following to German:

English - "how are you" → **German**- "wei geht es dir"

 Attention context vector is the weighted sum of the hidden states of the encoder.

Attention context vector (Ci)

$$C_i = \sum \alpha_{ij} h_i$$

Attention weights

α_{ij} weights for ith time step in decoder and jth in the encoder

	How	Are	you
Wie	α ₁₁	α ₁₂	α ₁₃
geht	α ₂₁	α ₂₂	α ₂₃
er	α ₃₁	α ₃₂	α ₃₃
dis	α ₄₁	α ₄₂	α ₄₃

$$C_3 = \alpha_{31} \cdot h_1 + \alpha_{32} \cdot h_2 + \alpha_{33} \cdot h_3$$

$$C_4 = \alpha_{41} \cdot h_1 + \alpha_{42} \cdot h_2 + \alpha_{43} \cdot h_3$$

$$C_5 = \alpha_{51} \cdot h_1 + \alpha_{52} \cdot h_2 + \alpha_{53} \cdot h_3$$

Attention Weights

	How	Are	you
Wie	α ₁₁	α ₁₂	α ₁₃
geht	α ₂₁	α ₂₂	α ₂₃
er	α ₃₁	α ₃₂	α ₃₃
dis	α ₄₁	α ₄₂	α ₄₃

