Unit 10: Arithmetic Logic Units

CSE 220: System Fundamentals I Stony Brook University Joydeep Mitra

Arithmetic Circuits

- Arithmetic circuits are fundamental building blocks of computers
- We will look at the implementations of a few basic arithmetic functions: addition, subtraction, and comparators
- We will then see how they can be combined to a single unit called the ALU

Addition

- Let's consider the simple case of adding two bits
- This can be done by a 1-bit half adder
 - Takes two inputs, A and B
 - Produces two outputs, S and C_{out}

Α	В	C _{out}	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$S = A \oplus B$$
$$C_{\text{out}} = AB$$

• The half adder can be built from an XOR gate and an AND gate

Addition

- But what about adding more than 1 bit?
 - We need to build a multi-bit adder, where the carry out should propagate to the carry in of the next most significant bit
- This problem is solved by using the *full adder*
 - Takes three inputs, A, B, C_{in}
 - Produces two outputs, ${\tt S}$ and ${\tt C}_{\tt out}$
 - C_{in} is C_{out} of the previous bit

• The *full adder* can be built from 2 half adders

C_{in}	Α	В	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = A \oplus B \oplus C_{in}$$

$$C_{out} = AB + AC_{in} + BC_{in}$$

Addition

- An adder that performs multi-bit addition is called a *Carry Propagate Adder (CPA)*. Why?
 - Since the carry out of one bit propagates into the next bit as a carry in
 - It is represented as full adder, except that A,B, and S are actually buses and not single bits

 There are many ways of implementing a CPA; we will discuss one of them, the ripple carry adder

Ripple Carry Adder

- A ripple carry adder is implemented by chaining together N full adders, each adder feeding a carry out to the carry in of the next adder
- The carry values ripple through from the lsb to the msb

- A limitation of this implementation is that it's slow. Why?
 - S_{31} depends on C_{30} , which depends on C_{29} , and so on till C_{in}
 - Hence, the critical path grows with N, where N is the no. of full adders
 - Longer critical path implies longer (propagation) delays

Ripple Carry Adder

• If the propagation delays of the gates in a full adder are given to us, then what will be the propagation delay of one full adder circuit? Assume time in nanoseconds.

Ripple Carry Adder

Now, imagine the delay for a ripple carry adder for 4 bit addition

- The propagation delay is 19 ns
- An alternative implementation optimizes the delay by looking ahead at certain adders and predicting their sum and carry outs.

Subtraction

- Subtraction is just addition of a positive number with a negative number
- We know that the binary negative number is represented as two's complement
- So, subtracting B from A is the same as adding the two's complement of B to A

•
$$A - B = A + B' + 1$$

Magnitude Comparison

- Comparing two numbers A and B is the same as performing subtraction and checking the sign bit. E.g.,
 - A > B <=> 1 if sign bit of A B is 0; 0 if sign bit of A B is 1
 - A < B <=> 1 if sign bit of A <math>- B is 1; 0 if sign bit of A B is 0
- Basically, the output of a magnitude comparison is the value of the sign bit or its complement; depends on your requirement specification

Equality Comparison

- Equality comparison between $\mathbb A$ and $\mathbb B$ requires us to compare every bit in $\mathbb A$ and $\mathbb B$, a bit like addition
 - A = B if all bits are equal; if at least one is unequal, then $A \neq B$
- Note that the XNOR gate can be used to identify if the two inputs are equal
- Every bit of A and B can be XNOR-ed and the output fed to an AND gate

Building An ALU

- Until now, we have seen individual operations
- Building an ALU involves combining numerous operations (arithmetic and logical) into one unit
- General Idea:
 - Every operation in an ALU is identified by an opcode
 - A multiplexer is used to select between the different opcodes
 - Each operation is implemented by building an ALU for each bit of the operands in the operation
 - For N-bit operands, we will have N ALUs chained together; the output of 1 ALU may be the input of another ALU

- Consider the set of operations/functions in the table for which we will build an ALU
- $\mathbb{F}_{2:0}$ is a 3-bit signal, which indicates the opcode for each operation
 - E.g., 000 indicates the ALU output should be A AND B
- Assume we have an N-bit adder, a two input AND gate and OR gate, and a NOT gate. We also have a 2:1 MUX and a 4:1 MUX

$F_{2:0}$	Function
000	A AND B
001	A OR B
010	A + B
011	not used
100	A AND \overline{B}
101	A OR \overline{B}
110	A - B
111	SLT

- We see that few operations need an adder, which needs an input Cin
- We also observe that the operations are similar (with difference in operands) when $F_2 = 0$ and $F_2 = 1$
- We re-arrange the table according to our observations

F ₂	F _{1:0}	Function	C _{in} (Bit 0)
0	00	A AND B	X
0	01	A OR B	X
0	10	A + B	0
0	11	Not used	Χ

F ₂	F _{1:0}	Function	C _{in} (Bit 0)
1	00	A AND B'	X
1	01	A OR B'	X
1	10	A – B (A+B'+1)	1
1	11	SLT (A+B'+1)	1

- We use the 4:1 MUX with $F_{1:0}$ control signals to select between the functions -- AND, OR, +, -
- We use the 2:1 MUX with F₂ to select between B and B'
- Note that \mathbb{F}_2 and \mathbb{C}_{in} have the same values
- For the SLT function, we just need the msb of A+B+1 as the zero-extended output

ALU Flags

- Some ALUs produce extra outputs, called *flags*
- Flags indicate additional information about the output. E,g,.
 - An overflow flag that result has overflowed
 - A zero flag indicates that the output is 0
- The additional information from flags can be used to makes decisions about the final output or to select certain inputs for the next ALUs in the circuit

- Design a 3-bit ALU for the following functions:
 - We can only use 8:1 MUX, 2:1 MUX, half adders, and NOT gates inside an ALU

C2	C1	. CO	Function
0	0	0	A XOR B
0	0	1	A AND B
0	1	0	A + B
0	1	1	A NAND B
1	0	0	SGTE (Set to 1 if A >= B)
1	0	1	SLT (Set to 1 if A < B)
1	1	0	A - B
1	1	1	A NOR B

- First reason about the operands
 - Specifically, whether function operands need to be A,B,A', or B'
- Next, reason how to express each function with the available hardware

C2 C1 C0	Function	Translated Function
0 0 0	A XOR B	Sum output of half adder (A + B)
0 0 1	A AND B	Carry out of half adder (A + B)
0 1 0	A + B	Sum of full adder (A+B; Carry out is Carry in of next bit)
0 1 1	A NAND B	(A AND B) XOR 1
1 0 0	SGTE (Set to 1 if A >= B)	NOT SLT
1 0 1	SLT (Set to 1 if A < B)	A + B' + 1 (consider only MSB)
1 1 0	A - B	A + B' + 1
1 1 1	A NOR B	A'B' (Carry out of half adder)

- We need control/select signals to select between operands that use the same hardware
 - Ainv selects between A and A'
 - Binv selects between B and B'
 - **K** selects the input for the 2nd half adder
 - Less selects between SGTE and SLT

C2	C1	CO	Function	Ainv	Binv	K	Less	Cin (LSB)
0	0	0	A XOR B	0	0	X	Χ	X
0	0	1	A AND B	0	0	X	Χ	X
0	1	0	A + B	0	0	0	Χ	0
0	1	1	A NAND B	0	0	1	Χ	X
1	0	0	SGTE (Set to 1 if A >= B)	0	1	0	0	1
1	0	1	SLT (Set to 1 if A < B)	0	1	0	1	1
1	1	0	A - B	0	1	0	Χ	1
1	1	1	A NOR B	1	1	X	Χ	X

$$\begin{array}{lll} \textbf{Ainv} &=& \textbf{C}_2 \textbf{C}_1 \textbf{C}_0 & \textbf{Binv} &=& \textbf{C}_2 \\ \textbf{K} &=& \textbf{C}_1 \textbf{C}_0 & \textbf{Less} &=& \textbf{C}_0 \\ & & \textbf{Cin} & \textbf{(LSB)} &=& \textbf{C}_2 \\ \end{array}$$

Available Hardware

Joydeep Mitra

20

• LSB ALU

 The MSB will be the same as LSB except we will have to wire the comparator functions appropriately

• The LSB ALU needs to be modified to account for the Set bit from MSB

A snapshot of the 3-bit ALU

ALU Recap

- Arithmetic circuits are fundamental building blocks of computers
- We have seen implementations of a few basic arithmetic functions: addition, subtraction, and comparators
- We have seen examples of how ALUs can be used to implement a multitude of operations

Design the LSB and MSB ALU for the following functions

C2	C1	. CO	Function
0	0	0	A + B
0	0	1	A NOR B
0	1	0	SGT (A > B)
0	1	1	unused
1	0	0	A AND B
1	0	1	A XOR B
1	1	0	A - B
1	1	1	Set Even (A is even)

Available Hardware C2 C1 C0 - we can add at most one 2:1 MUX Ainv 3 Result Binv Less Set Cout

• Express the functions in available hardware

C2 C1 C0 Function		Translated Function
0 0 0	A + B	Full Adder with A, B, Cin (Sum)
0 0 1	A NOR B	Full Adder with A', B', Cin = 0 (Carry out)
0 1 0	SGT (A > B)	Full Adder with A', B, Cin = 1 (MSB of Sum)
0 1 1	unused	Ground
1 0 0	A AND B	Full Adder with A, B, Cin = 0 (Carry out)
1 0 1	A XOR B	Full Adder with A, B, Cin =0 (Sum)
1 1 0	A - B	Full Adder with A, B, Cin = 1 (Sum)
1 1 1	Set Even (A is even)	LSB of A'

- We need the following control/select signals to select between operands that use the same hardware
 - Ainv to select between A and A'
 - Binv to select between B and B'
 - **S** to select between arithmetic and logical functions

C2	C1	CO	Function	Ainv	Binv	S	Cin (LSB)
0	0	0	A + B	0	0	0	0
0	0	1	A NOR B	1	1	1	0
0	1	0	SGT (A > B)	1	0	0	1
0	1	1	unused	Χ	Χ	X	X
1	0	0	A AND B	0	0	1	0
1	0	1	A XOR B	0	0	1	0
1	1	0	A - B	0	1	0	1
1	1	1	Set Even (A is even)	1	X	X	X

Ainv =
$$C_2'$$
 ($C_0 + C_1$) + C_1C_0
Binv = $C_2'C_0 + C_2C_1$
S = $C_2C_1' + C_0$
Cin = C_1

C2	C1 C0	Function	Ainv	Binv	S	Cin
0	0 0	A + B	0	0	0	0
0	0 1	A NOR B	1	1	1	0
0	1 0	SGT (A > B)	1	0	0	1
0	1 1	unused	Χ	Χ	Χ	Χ
1	0 0	A AND B	0	0	1	0
1	0 1	A XOR B	0	0	1	0
1	1 0	A - B	0	1	0	1
1	1 1	Set Even (A is even)	1	Χ	Χ	Χ

Joydeep Mitra 30

Result

C2 C1 C0 Cin The LSB ALU Ainv FΑ Result Binv В Less Set Cout

- The MSB ALU is the same as LSB except the Set signal is connected to the Sum output of the full adder
- The Set output is connected back to the LSB Less signal
- The MSB **Less** signal is 0

• Design a 3-bit ALU for the following functions

			Cin	C2 C1 C0
C2 C1 C0	Function			
0 0 0	SEQ (A = B)	Ainv		
0 0 1	A NOR B	A 0	FA +	
0 1 0	A OR B			2
0 1 1	A AND B	Binv — 0	z	1 — 0 4
1 0 0	A - B	B 0 1	-0	5 6
1 0 1	A + B	Eq	_1	7
1 1 0	A XOR B			
1 1 1	2A	Set [/]	Cout [/]	

Available Hardware

Boolean Equations for Control/Select signals

C ₂	C ₁ C ₀	Function	A _{inv}	B _{inv}	Υ	Z	C _{in} (LSB)
0	0 0	SEQ (A = B)	0	0	0	1	0
0	0 1	A NOR B	1	1	0	1	0
0	1 0	A OR B	1	1	0	1	0
0	1 1	A AND B	0	0	0	1	0
1	0 0	A - B	0	1	0	0	1
1	0 1	A + B	0	0	0	0	0
1	1 0	A XOR B	0	0	0	1	0
1	1 1	2A	0	Х	1	0	0

$$A_{inv} = C_2' (C_1 \text{ XOR } C_0)$$
 $B_{inv} = C_2' (C_1 \text{ XOR } C_0) + C_2C_1'C_0'$
 $Y = C_2C_1C_0$
 $Z = C_2' + C_1C_0'$
 $Cin = C_2C_1'C_0'$

- Y is used to select between A and B
- Z is used to select between arithmetic and logical operations

C2	C1 C0	Function	Ainv	Binv	Υ	Z	Cin
0	0 0	SEQ (A = B)	0	0	0	1	0
0	0 1	A NOR B	1	1	0	1	0
0	1 0	A OR B	1	1	0	1	0
0	1 1	A AND B	0	0	0	1	0
1	0 0	A - B	0	1	0	0	1
1	0 1	A + B	0	0	0	0	0
1	1 0	A XOR B	0	0	0	1	0
1	1 1	2A	0	X	1	0	0

- LSB ALU
- The middle bit ALU and MSB ALU are the same as the LSB ALU

Set2 Set1

