Spis treści

1	Rac	chunek λ bez typów	4
	1.1	Język rachunku λ i λ -pretermy	4
	1.2	Wyrażenia λ i ich własności	7
	1.3	Semantyka operacyjna	11
		1.3.1 Redukcje	11
		1.3.2 Strategie redukcji	18
	1.4	Równościowa teoria rachunku λ	21
	1.5	Semantyka denotacyjna	22
		1.5.1 λ -modele	22
		1.5.2 Model Scotta D_{∞}	26
	1.6	Kodowanie typów danych	31
		1.6.1 Algebraiczne typy danych	32
		1.6.2 Proste typy wyliczeniowe	33
		1.6.3 Pary w rachunku λ	34
		1.6.4 Kodowanie rekurencji	35
		1.6.5 Kodowanie Scotta typów rekursywnych	36
		1.6.6 Kodowanie Churcha typów rekursywnych	37
		1.6.7 Ogólny schemat kodowania Scotta typów ADT	37
	1.7	Podsumowanie	38
2	Rac	chunek λ z typami prostymi	39
	2.1	Typy proste	39
	2.2	Typowanie	41
	2.3	Własności	44
		2.3.1 Uniwersalny polimorfizm	47
		2.3.2 Silna normalizacja	48
	2.4	Typy w stylu Churcha	52
		2.4.1 Składnia	53
		2.4.2 Wyprowadzanie typu	53
	2.5	Podsumowanie	54
3	System Girarda/Reynoldsa		55
	3.1	Termy zależne od typów	55
	3.2	Typowanie	59
	3.3	Redukcja	61
	3.4	Język pośredni GHC	64
	2.5	Podgumowania	65

For a large class of cases of the employment of the word 'meaning' – though not for all – this word can be explained in this way: the meaning of a word is its use in the language. [Wit53]

L. Wittgenstein

The meaning of a proposition is determined by (...) what counts as a verification of it. [Mar96]

P. Martin-Löf

Wstęp

Pojęcia funkcji używa się na ogół mając na myśli jedno z dwóch znaczeń:

- (1) funkcji jako algorytmu, którym obliczamy wartość dla zadanego argumentu,
- (2) funkcji w rozumieniu teoriomnogościowym: jako zbioru par argument-wartość z którego wartość odczytujemy.

Ujęcie (1) nazywane jest semantyką operacyjną. Oddaje ono dynamiczny charakter procesu obliczania wartości funkcji jako ciągu wykonywanych w czasie elementarnych operacji na zadanym argumencie. W kontekście teorii języków programowania przez operacje elementarne możemy rozumieć wykonywanie podstawowych instrukcji procesora. W teorii obliczalności to samo rozumielibyśmy pod pojęciem funkcji obliczalnej, zaś algorytmiczny proces otrzymywania wartości nazwalibyśmy efektywnym.

Ujęcie (2) odpowiada rozumieniu funkcji jako ustalonego, statycznego zbioru przyporządkowań z którego możemy odczytać wartość. Przypisanie funkcjom takiego znaczenia nazywamy semantyką denotacyjną. Wymaga ono dostępu do pełnej informacji o funkcji. Niestety, spełnienie tego wymogu na ogół nie może być efektywnie zrealizowane ze względu na złożoność pamięciową konieczną do przeprowadzenia takiego procesu (tzw. memoizacji).

Obydwa ujęcia są wspólne dla programowania funkcyjnego. Refleksja nad rachunkiem λ D. Scotta i Ch. Strachey'a prowadziła do powstania semantyki denotacyjnej dla rachunku λ i w ogóle pozwoliła wyodrębnić się dziedzinie formalnej semantyki języków programowania. Przyjmując drugą perspektywę, wynosimy

z bogatych teorii matematycznych abstrakcje, które kształtują techniki, którymi przetwarzamy informacje: funkcje wyższego rzędu, leniwa ewaluacja, dopasowywanie wzorców, różnorodne metody abstrakcji danych. Celem tej pracy jest wyłożenie minimalnych podstaw teoretycznych koniecznych do zrozumienia powyższych haseł. Bardzo konkretnym zamiarem tej pracy jest przygotowanie bazy wiedzy koniecznej do rozpoczęcia studiowania kompilatora GHC języka Haskell.

Pierwszy rozdział o rachunku λ bez typów to podstawa, na której opierały będą się pozostałe. Omówiona jest składnia rachunku λ i jego operacyjny charakter oraz elementy semantyki denotacyjnej. Rozdział kończy omówienie alternatywnej do kodowania Churcha metody reprezentowania struktur danych – kodowania Scotta.

Drugi rozdział uzupełnia rachunek λ o typy. Omawiamy własności tego systemu: związki jego operacyjnego charakteru z typowaniem i ewaluacją. Główny wynik to własność silnej normalizacji.

W pracy przechodzimy z systemu nietypowanego, przez system w którym termy mają arbitralny (dynamiczny) charakter, do systemu, w którym typy wyrażeń są z góry ustalone (statyczne). System F w Rozdziale 3 zarysowany jest tak, by wskazać różnice pomiędzy systemami w stylu Curry'ego i systemami w stylu Churcha. Składnia systemu wybrana została tak, aby zasugerować możliwe rozszerzenia systemu i z łatwością odnieść go do tzw. kostki λ H. P. Barendregta. Informacje tu zgromadzone są punktem wyjścia do zrozumienia technikaliów związanymi z kompilowaniem języka Haskell do języka pośredniego, który oparty jest w przeważającej mierze na Systemie F w stylu Churcha.

1 Rachunek λ bez typów

1.1 Język rachunku λ i λ -pretermy

Niech V będzie przeliczalnie nieskończonym zbiorem zmiennych przedmiotowych $x,\ y,\ \dots$ (indeksowanych być może liczbami naturalnymi). Elementy takiego zbioru będziemy nazywali λ -zmiennymi. Ponieważ V jest potencjalnie nieskończony, zastrzegamy sobie możliwość wybierania w razie potrzeby wcześniej nie użytej zmiennej.

Definicja 1 (Zbiór $\tilde{\Lambda}$ pretermów). Zbiorem pretermów będziemy nazywali najmniejszy (w sensie mnogościowym) zbiór wyrażeń $\tilde{\Lambda}$ taki, że:

- (P1) Jeśli $x \in V$, to $x \in \tilde{\Lambda}$.
- (P2) Jeśli $M, N \in \tilde{\Lambda}$, to $(MN) \in \tilde{\Lambda}$.
- (P3) Jeśli $x \in V$ i $M \in \tilde{\Lambda}$, to $(\lambda x. M) \in \tilde{\Lambda}$.

Definicję 1 można równoznacznie wyrazić przy pomocy notacji Backusa-Naura. Wówczas ma ona następującą, zwięzłą postać:

$$\tilde{\Lambda} \leftarrow V \mid (\tilde{\Lambda} \tilde{\Lambda}) \mid (\lambda V. \tilde{\Lambda})$$

Powiemy, że dwa λ -termy są syntaktycznie równe, jeśli rozumiane jako ciągi znaków są identyczne. Równość syntaktyczną będziemy oznaczali znakiem \equiv .

Elementy Λ będziemy oznaczali literami $L,\ M,\ N,\ P,\ Q,\ R$ i ich wariantami z górnymi lub dolnymi indeksami. Wyrażenia postaci (P2) nazywamy aplikacjami M do N. Symbol λ występujący w (P3) nazywamy λ -abstraktorem, zaś wyrażenia powstałe przez zastosowanie tej reguły to λ -abstrakcje. W wyrażeniu postaci ($\lambda x.M$) preterm M jest w zasięgu λ -abstraktora, a zmienna x jest przez niego związana. Ponadto, będziemy stosowali następujące konwencje notacyjne:

- najbardziej zewnętrzne nawiasy bedą pomijane,
- aplikacja wiąże lewostronnie; wyrażenia postaci (PQ)R będą zapisywane w postaci PQR,
- $-\lambda$ -abstrakcja wiąże prawostronnie: λx_1 . $(\lambda x_2. P)$ zapisujemy $\lambda x_1. \lambda x_2. P$,
- następujące po sobie λ -abstrakcje postaci $\lambda x_1. \lambda x_2....\lambda x_n. P$ zapisujemy pod wspólnym λ -abstraktorem: $\lambda x_1 x_2....x_n. P$,
- wspolnym λ -austrakiotem. $\Delta x_1 x_2 \dots x_n \dots$,
 n-krotną aplikację $P \in \tilde{\Lambda}$ do siebie zapisujemy skrótowo: $P^n \equiv \underbrace{PP \dots P}_{n\text{-razy}}$.

Przykład 1. Podajmy kilka przykładów λ -pretermów pogrupowanych ze względu na ich konstrukcję.

(P1): x, y, z.

(P2):
$$xx$$
, yx , $x(xz)$,
 $(\lambda x.(xz))y$, $y(\lambda x.(xz))$, $(\lambda x.x)(\lambda x.x)$.
(P3): $\lambda x.(xz)$, $\lambda yz.x$, $\lambda x.(\lambda x.(xx))$.

Podwyrażenia λ -pretermu mogą być wzajemnie identyczne i występować wielokrotnie. Obserwację tę ujmuje następująca definicja.

Definicja 2. (Multizbiór Sub podtermów pretermu)

- (1) $Sub(x) = \{x\}$
- (2) $\operatorname{Sub}(MN) = \operatorname{Sub}(M) \cup \operatorname{Sub}(N) \cup \{MN\}$
- (3) $\operatorname{Sub}(\lambda x. M) = \operatorname{Sub}(M) \cup \{\lambda x. M\}$

Elementy multizbioru Sub(M) nazywamy podtermami M. Jeśli L jest podtermem M, ale $L \not\equiv M$, to L nazywamy podtermem wlaściwym.

Przykład 2. Podtermy wybranych λ -pretermów.

(a) Sub
$$(\lambda x. xx) = \{(\lambda x. xx)^1, (xx)^1, x^2\}$$

(b) Sub
$$((\lambda x. x x) (\lambda x. x x)) =$$

= $\{((\lambda x. x x) (\lambda x. x x))^1, (\lambda x. x x)^2, (x x)^2, x^4\}$

W powyższych przykładach użyliśmy standardowej notacji w górnym indeksie umieszczając krotność występowania elementu.

Definicja 3 (Zbiór FV zmiennych wolnych). Dla dowolnego pretermu M określamy zbiór FV(M) zmiennych wolnych w M w następujący sposób:

$$FV(x) = \{x\}$$

$$FV(\lambda x. P) = FV(P) \setminus \{x\}$$

$$FV(PQ) = FV(P) \cup FV(Q)$$

Jeśli $FV(M) = \emptyset$, to mówimy, że M jest domknięty lub nazywamy M kombinatorem.

Przykład 3. (a) $FV(\lambda x. xy) = \{y\}$

- (b) $FV(x(\lambda x. xy)) = \{x, y\}$
- (c) $FV(\lambda xyz.xy) = \emptyset$

Definicja 4. (Podstawienie) Dla dowolnych M, N $\in \tilde{\Lambda}$ i $x \in V$ przez N[x/N] oznaczamy rezultat podstawienia termu N za wszystkie wolne wystąpienia zmiennej x w M, o ile w rezultacie podstawienia nie zostaną związane żadne zmienne wolne występujące w N. W takim wypadku:

- (S1) x[x/N] = N
- (S2) y[x/N] = y, o ile $x \not\equiv y$
- (S3) (PQ)[x/N] = P[x/N]Q[x/N]
- (S4) $(\lambda y. P)[x/N] = \lambda y. P[x/N]$, gdzie $x \neq y$ i $y \notin FV(N)$
- (S5) $(\lambda x. P)[x/N] = \lambda x. P$

Operacja podstawienia wymaga jednak pewnej delikatności. Rozważmy następującą relację:

$$\lambda x. zx =_{\alpha} \lambda y. zy$$

Zauważmy, że traktując podstawienie w sposób naiwny, mamy, że $(\lambda x. zx)[z/x] \neq_{\alpha} (\lambda y. zy)[z/x]$, a więc tracimy pożądaną własność niezmienniczości α -konwersji względem podstawienia. Stąd w Definicji 4 wymóg, aby podstawienie nie prowadziło do uszczuplenia zbioru zmiennych wolnych. Alternatywnym rozwiązaniem jest określenie podstawienia, które wprowadzałoby do wyrażenia nową zmienną i prowadziło w konsekwencji do abstrahowania po wcześniej nie występujacych zmiennych:

$$(\lambda x. M)[y/N] = \lambda x'. M[x/x'][y/N],$$

w przypadku, gdy $x \not\equiv y$, gdzie $x' \not\in FV(M)$ i $x' \not\in FV(N)$. Rozstrzygnięcie takie przytacza się w [HS08]. Po uwzględneniu odpowiednich modyfikacji, Definicja 4 przyjmuje następującą postać:

Definicja 4'. (Podstawienie')

- (S'1) x[x/N] = N
- (S'2) y[x/N] = y, o ile $x \not\equiv y$
- (S'3) (PQ)[x/N] = P[x/N]Q[x/N]
- $(S'4) (\lambda x. P)[x/N] = \lambda x. P$
- (S'5) $(\lambda y. P)[x/N] = \lambda y. P$, jeśli $x \notin FV(P)$
- $(S'6) \ (\lambda y.P)[x/N] = \lambda y.P[x/N], \ gdzie \ x \in \mathrm{FV}(P) \ i \ y \notin \mathrm{FV}(N)$
- $(S'7) \ (\lambda y.P)[x/N] = \lambda z.P[y/z][x/N], \ gdzie \ x \in \mathrm{FV}(P) \ i \ y \in \mathrm{FV}(N)$

przy czym w (S'7) wymagamy, aby zmienna z nie występowała wcześniej w pretermach N i P jako zmienna wolna, zaś dla (S'5)-(S'7) dodatkowo $y \not\equiv x$.

Lemat 1. (O podstawieniu) Niech $M, N, L \in \tilde{\Lambda}$ i niech ponadto $x \not\equiv y$ oraz $x \not\in FV(L)$. Wówczas

$$M[x/N][y/L] \equiv M[y/L][x/N[y/L]]. \tag{1}$$

Dowód. Dowód przebiega przez indukcję strukturalną względem M. Rozważmy następujące przypadki:

- i) M jest zmienną. Wówczas:
 - a. Jeśli $M \equiv x$, to obie strony (1) po podstawieniu są postaci N[y/L].
 - b. Jeśli $M \equiv y$, to ponieważ $x \not\equiv y$ i $x \not\in FV(M)$, po wykonaniu podstawienia po lewej stronie (1) otrzymujemy $M[x/N][y/L] \equiv L$. Ponieważ $x \not\in FV(L)$, to po wykonaniu podstawienia po prawej stronie widzimy, że obydwie strony są identyczne.
 - c. Jeśli $M \equiv z$ i $z \not\equiv x$ oraz $z \not\equiv y$, to obydwie strony (1) sa identyczne.
- ii) $M \equiv PQ$ dla pewnych $P, Q \in \tilde{\Lambda}$. Wówczas korzystając z założenia indukcyjnego wnosimy, że

$$P[x/N][y/L] = P[y/L][x/N[y/L]],$$

$$Q[x/N][y/L] = Q[y/L][x/N[y/L]].$$

Mając na względzie (S3) widzimy, że twierdzenie zachodzi i w tym przypadku.

iii) Jeśli $M \equiv \lambda z. P$ oraz $z \equiv x$ lub $z \equiv y$, to z (S'5) widzimy, że obydwie strony (1) sa identyczne. Przypuśćmy, że $z \not\equiv x$ i $z \not\equiv y$ i $z \not\in FV(L)$. Wówczas na podstawie założenia indukcyjnego mamy:

$$(\lambda z. P)[x/N][y/L] = \lambda z. P[x/N][y/L] =$$

$$= \lambda z. P[y/L][x/N[y/L]] =$$

$$= (\lambda z. P)[y/L][x/N[y/L]].$$

Wniosek 1. Jeśli M[x/y] jest określone i $y \notin FV(M)$, to M[x/y][y/x] jest określone oraz M[x/y][y/x] = M.

Dowód. Mając na uwadze Lemat 1 dowód przebiega przez indukcję strukturalną względem M.

1.2 Wyrażenia λ i ich własności

Na ogół chcielibyśmy utożsamiać pretermy, które różnią się wyłącznie zmiennymi związanymi, tak jak w przypadku wyrażeń $\lambda x. zx$ i $\lambda y. zy$. W takim wypadku powiemy o nich, że są swoimi α -wariantami lub że są ze sobą w relacji α -konwersji.

Definicja 5. (α -konwersja) Relacją = $_{\alpha}$ (α -konwersji) nazywamy najmniejszy w sensie mnogościowym praporządek na $\tilde{\Lambda}$ taki, że

- (α1) Jeśli $y \notin FV(M)$ oraz M[x/y] jest określone, to $\lambda x. M =_{\alpha} \lambda y. M[x/y]$
- $(\alpha 2)$ Jeśli $M =_{\alpha} N$, to dla dowolnego $x \in V$ zachodzi $\lambda x. M =_{\alpha} \lambda x. N$
- (α 3) Jeśli $M =_{\alpha} N$, to dla dowolnego $Z \in \tilde{\Lambda}$ zachodzi $MZ =_{\alpha} NZ$
- $(\alpha 4)$ Jeśli $M=_{\alpha}N,$ to dla dowolnego $Z\in\tilde{\mathbf{\Lambda}}$ zachodzi $ZM=_{\alpha}ZN$

Przykład 4.

$$\lambda xy. x(xy) \equiv \lambda x. (\lambda y. x(xy))$$

$$=_{\alpha} \lambda x. (\lambda z. x(xz))$$

$$=_{\alpha} \lambda v. (\lambda z. v(vz))$$

$$\equiv \lambda vz. v(vz).$$

Wniosek 2. $Relacja =_{\alpha} jest \ relacja \ równoważności.$

Dowód. Wystarczy, że pokażemy, że relacja = $_{\alpha}$ jest symetryczna. Dowód przebiega przez indukcję względem Definicji 5. Rozważmy następujące przypadki:

- i) Jeśli $M =_{\alpha} N$ w konsekwencji zwrotności $=_{\alpha}$, to $M \equiv N$, a zatem również $N \equiv M$. Stąd $N =_{\alpha} M$.
- ii) Jeśli $M=_{\alpha}N$ w konsekwencji przechodniości $=_{\alpha}$, to istnieje $L\in \tilde{\Lambda}$ takie, że $M=_{\alpha}L$ i $L=_{\alpha}N$. Wówczas z założenia indukcyjnego $N=_{\alpha}L$ i $L=_{\alpha}M$. Z przechodniości relacji $=_{\alpha}$ otrzymujemy spodziewaną tezę.
- iii) Przypuśćmy, że $M =_{\alpha} N$ w konsekwencji ($\alpha 1$) dla $M \equiv \lambda x$. M' i $N \equiv \lambda y$. M'[x/y]. Ponieważ $x \notin FV(M'[x/y])$, to ze względu na Wniosek 1 mamy, że M'[x/y][y/x] = M'. Zatem, na podstawie ($\alpha 1$):

$$\lambda y. M'[x/y] =_{\alpha} \lambda x. M'[x/y][y/x].$$

- iv) Jeśli $M =_{\alpha} N$ w konsekwencji ($\alpha 2$), gdzie $M = \lambda x. M'$ i $N = \lambda x. N'$ dla $M' =_{\alpha} N'$, to z założenia indukcyjnego $N' =_{\alpha} M'$ i w konsekwencji ($\alpha 2$) mamy, że $N =_{\alpha} M$.
- v) Jeśli $M=_{\alpha}N$ w konsekwencji ($\alpha 3$) dla $M\equiv M'Z$ i $N\equiv N'Z$ takich, że $M'=_{\alpha}N'$, to z założenia indukcyjnego oczywiście $N'=_{\alpha}M'$, a zatem z ($\alpha 3$) $N=_{\alpha}M$.

vi) Jeśli $M =_{\alpha} N$ w konsekwencji ($\alpha 4$), to postępujemy jak w przypadku (v). \square

Definicja 6. (Zbiór Λ λ-termów) Każdą klasę abstrakcji relacji =_α nazywamy λ-termem. Zbiór wszystkich λ-termów Λ to zbiór ilorazowy relacji α-konwersji:

$$\mathbf{\Lambda} = \left\{ [M]_{=_{\alpha}} \mid M \in \tilde{\mathbf{\Lambda}} \right\}.$$

Konwencja. Wprowadzamy następujące konwencje notacyjne:

$$x = [x]_{=\alpha},$$

$$MN = [M'N']_{=\alpha}, \text{ gdzie } M = [M']_{=\alpha} \text{ i } N = [N']_{=\alpha},$$

$$\lambda x. M = [\lambda x. M']_{=\alpha}, \text{ gdzie } M = [M']_{=\alpha}.$$

Twierdzenie 1. Każdy $M \in \Lambda$ ma jedną z poniższych postaci:

- (1) $M \equiv \lambda x_1 \dots x_n$. $y N_1 \dots N_m$, $gdzie n, m \ge 0$ $i y \in V$,
- (2) $M \equiv \lambda x_1 \dots x_n$. $(\lambda y. N_0) N_1 \dots N_m$, $gdzie \ n \ge 0$ $i \ m \ge 1$.

Dowód. Z definicji λ -term M jest albo zmienną, albo aplikacją postaci PQ, albo abstrakcją postaci $(\lambda x. P)$. Wówczas mamy nastepujące przypadki:

- i) Jeśli M jest zmienną, to wówczas M jest postaci (1).
- ii) Jeśli M jest aplikacją, to wówczas $M \equiv P_0 P_1 \dots P_m$, gdzie P_0 nie jest aplikacją. Wówczas M jest postaci (1) albo postaci (2) dla n = 0, w zależności od tego czy P_0 jest zmienną (wówczas jest to przypadek (1)) czy abstrakcją (wówczas jest to przypadek (2)).
- iii) Jeśli M jest abstrakcją postaci $M \equiv \lambda x_1 x_2 \dots x_n \cdot P_0 P_1 \dots P_m$, to wówczas mamy następujące przypadki:
 - (a) Jeśli P_0 jest zmienną, to M jest postaci (1).
 - (b) Jeśli P_0 jest aplikacją, to $P_0 \equiv P_0' P_0''$, gdzie P_0' jest albo zmienną (wówczas M jest postaci (1)) albo λ -abstrakcją (wówczas M jest postaci (2)).

(c) Jeśli P_0 jest abstrakcją, to M jest postaci (2).

Definicja 7 (Postać HNF, WHNF). Niech $M \in \Lambda$. Powiemy, że M jest w:

1. czołowej postaci normalnej (ang. head normal form), jeśli

$$M \equiv \lambda y_1 y_2 \dots y_n \cdot x M_1 M_2 \dots M_m \quad \text{dla } n, m \ge 0,$$

- 2. słabej czołowej postaci normalnej (ang. weak head normal form), jeśli dla $n \ge 0$ i $x \in V$ λ -term M jest postaci i) lub ii).
 - i) $x P_1 P_2 \dots P_n$,
 - ii) $\lambda x. P_1 P_2 \dots P_n$.

Z określenia HNF widzimy, że każdy λ -term w postaci HNF jest również w postaci WHNF, ale nie odwrotnie.

Przykład 5. $\lambda x.(\lambda y.y)N$ jest w w postaci WHNF, ale nie jest w postaci HNF, ponieważ zawiera redeks czołowy $(\lambda y.y)N$.

Na zbiór Λ przenoszą się pojęcia podtermu, zmiennych wolnych i operacji podstawienia definiowane uprzednio dla pretermów.

Definicja 8. (Multizbiór Sub podtermów λ-termu) Dla dowolnego λ-termu $M = [M']_{=_{\alpha}}$ określamy

$$Sub(M) = Sub(M'),$$

gdzie Sub(M') jest multizbiorem podwyrażeń pretermu M' zdefiniowanym w myśl Definicji 2.

Definicja 9. (Zbiór zmiennych wolnych FV) Dla dowolnego λ -termu $M = [M']_{=\alpha}$ określamy zbiór FV(M) zmiennych wolnych w M

$$FV(M) = FV(M'),$$

gdzie $\mathrm{FV}(M')$ jest zbiorem zmiennych wolnych pretermu M' zdefiniowanym w myśl Definicji 3.

Definicja 10. (Podstawienie) Niech $M = [M']_{=_{\alpha}}$ i $N = [N']_{=_{\alpha}}$ i niech M'[x/N'] będzie określone w myśl Definicji 4. Wówczas

$$M[x/N] = [M'[x/N']]_{=_\alpha}.$$

Definicja 11. (Podstawienie jednoczesne) Dla dowolnego $M \in \Lambda$, nieskończonego ciągu λ-zmiennych \vec{x} i nieskończonego ciągu λ-termów \vec{N} określamy:

- $(\vec{s}1) \ x_i[\vec{x}/\vec{N}] = N_i \ \text{dla} \ i \in \mathbb{N},$
- $(\vec{s}2) \ y[\vec{x}/\vec{N}] = y$ o ile dla dowolnego $i \in \mathbb{N}, \ y \not\equiv x_i,$
- $(\vec{s}3) (PQ)[\vec{x}/\vec{N}] = P[\vec{x}/\vec{N}]Q[\vec{x}/\vec{N}],$
- $(\vec{s}4) (\lambda y. P)[\vec{x}/\vec{N}] = \lambda y. P[\vec{x}/\vec{N}], jeśli y \neq x_i dla wszystkich i \in \mathbb{N}$ i $y \notin \bigcup_{i \in \mathbb{N}} FV(N_i)$.

Konwencja. Jeśli $N_i \equiv x_i$ dla wszystkich poza skończenie wieloma $i_1, i_2, \ldots, i_n \in \mathbb{N}$, to $[x_{i_1}/N_{i_1}, x_{i_2}/N_{i_2}, \ldots, x_{i_n}/N_{i_n}] \equiv [\vec{x}/\vec{N}]$.

Przykład 6. Zauważmy, że podstawienia w myśl Definicji 4 i Definicji 11 mogą, ale nie muszą, prowadzić do różnych rezultatów.

a)
$$(xy)[y/x][x/u] = uu$$
, b) $(\lambda x. yx)[x/y][y/z] = \lambda x. zx$, $(xy)[y/x, x/u] = ux$. $(\lambda x. yx)[x/y, y/z] = \lambda x. zx$.

W literaturze znajdujemy mnogość propozycji, które w ten czy inny sposób starają się ułatwić rzeczywistą implementację podstawienia. Na szczególną uwagę zasługują tutaj tak zwane indeksy de Bruijna. Zaproponowana przez N. G. de Brujina w [Bru72] notacja eliminuje bezpośrednie występowanie symboli zmiennych w λ -termach, zastępując je liczbą naturalną wyrażającą głębokość zagnieżdżenia odpowiedniej λ -abstrakcji przez którą jest związana, przykładowo:

$$\lambda f.(\lambda x. f(xx))(\lambda x. f(xx)) \equiv_{deBrujin} \lambda(\lambda 2(11))(\lambda 2(11))$$

Historycznie wiąże się ta notacja z jego pracami nad systemem komputerowo wspomaganego dowodzenia twierdzeń AUTOMATH. Rozwiązanie takie, podobnie jak w przypadku tzw. logik kombinatorów (np. rachunku SKI), eliminuje konieczność α -konwersji termów przy wykonywaniu β -redukcji, ale istotnie zmniejsza ich czytelność wyrażeń.

Szerszy komentarz dotyczący dotychczasowych prób uchwycenia operacji podstawienia można prześledzić w [Alt02]. Nasze rozważania opierają się w tej materii przeważająco na [SU06]. Technikalia definiowania λ -termow jako klas α -konwersji są na ogół w literaturze pomijane.

1.3 Semantyka operacyjna

1.3.1 Redukcje

Sens obliczeniowy λ -termom nadajemy przez określenie na Λ operacji β - i η -redukcji. Pożądane jest, żeby operacje te wykonywane na podtermach pozostowały w zgodzie ze strukturą całego λ -termu.

Definicja 12. (Relacja zgodna) Relację binarną \mathcal{R} na zbiorze Λ nazywamy zgodną, jeśli dla dowolnych $M, N, P \in \Lambda$ zachodzą następujące warunki:

- (c1) Jeśli $M\mathcal{R}N$, to $(\lambda x. M)\mathcal{R}(\lambda x. N)$ dla dowolnej λ -zmiennej x.
- (c2) Jeśli MRN, to (MP)R(NP).
- (c3) Jeśli $M\mathcal{R}N$, to $(PM)\mathcal{R}(PN)$.

Przez domknięcie relacji \mathcal{R}_1 względem własności P będziemy rozumieli najmniejszą (w sensie mnogościowym) relację \mathcal{R}_2 taką, że $\mathcal{R}_1 \subset \mathcal{R}_2$ i \mathcal{R}_2 ma własność P. Z pewnego rodzaju domknięciami, ze względu na ich szczególną rolę, wiążemy następującą notację:

- (a) Symbolem \mathcal{R}^+ oznaczamy domknięcie relacji \mathcal{R} względem przechodniości (przechodnie domknięcie).
- (b) Symbolem \mathcal{R}^* oznaczamy domknięcie relacji \mathcal{R}^+ względem zwrotności (*zwrotne* domknięcie).
- (c) Symbolem $=_{\mathcal{R}}$ oznaczamy domknięcie relacji \mathcal{R}^* względem symetryczności (symetryczne domknięcie).

Dla lepszego zrozumienia powyższych operacji warto zauważyć, że (b) wyznacza praporzadek, który w odniesieniu do redukcji określonych na Λ można rozumieć jako graf skierowany (w przypadku Λ być może nieskończony) w którym krawędzie odpowiadają możliwym krokom obliczenia, zaś (c) – kongruencję, która znów w szczególnym odniesieniu do λ -termów, będzie dokonywała podziału w Λ ze względu na rezultat obliczenia.

Definicja 13. Niech \rightarrow będzie relacją binarną w zbiorze A.

(CR) Powiemy, że \rightarrow ma wlasność Churcha-Rossera, jeśli dla dowolnych $a, b, c \in A$ takich, że $a \rightarrow^* b$ oraz $a \rightarrow^* c$ istnieje $d \in A$ takie, że $b \rightarrow^* d$ i $c \rightarrow^* d$. Własność tę przedstawia poniższy diagram:

$$\begin{array}{ccc}
a & \xrightarrow{*} & b \\
\downarrow^* & & \downarrow^* \\
c & \xrightarrow{*} & d
\end{array}$$

(WCR) Powiemy, że \rightarrow ma stabq wtasność Churcha-Rossera, jeśli dla dowolnych $a, b, c \in A$ takich, że $a \rightarrow b$ oraz $a \rightarrow c$ istnieje $d \in A$ takie, że $b \rightarrow^* d$ i $c \rightarrow^* d$. Własność tę przedstawia poniższy diagram:

$$\begin{array}{ccc}
a & \longrightarrow & b \\
\downarrow & & \downarrow^* \\
c & \xrightarrow{*} & d
\end{array}$$

Widzimy, że własność CR pociąga za sobą własność WCR. Odwrotna zależność nie zachodzi (patrz Rysunek 1).

Rysunek 1: Rozważmy graf skierowany, w którym krawędzie odpowiadają relacji \to w zbiorze $\{a,b,c,d\}$. Widzimy, że relacja \to ma własnosność WCR, ale nie ma własności CR.

Definicja 14. (Postać normalna) Powiemy, że $x \in A$ jest redukowalny, jeśli istnieje $y \in A$ takie, że $x \to y$. W przeciwnym wypadku powiemy, że x jest w postaci normalnej i będziemy pisali $x \in NF$.

Element $y \in A$ nazywamy postacią normalną $x \in A$, jeśli $x \to^* y$ i $y \in NF$. Jeśli y jest jedyną postacią normalną x, to piszemy $x \downarrow y$. W przeciwnym wypadku, czyli jeśli istnieją $y, z \in NF, y \neq z$ takie, że $x \to^* y$ i $x \to^* z$, powiemy, że x jest niejednoznaczny.

Uwaga. Zbiór λ-termów w postaci normalnej względem β-redukcji będziemy oznaczali symbolem NF_β.

Definicja 15. Niech \rightarrow będzie relacją binarną na zbiorze A.

- (WN) Powiemy, że element $a \in A$ jest słabo normalizowany i będziemy pisali $a \in WN$, jeśli istnieje $a' \in NF$ taki, że $a \to^* a'$. Jeśli każdy element $a \in A$ jest słabo normalizowalny, to o relacji \to powiemy, że jest słabo normalizująca.
 - (SN) Powiemy, że element $a \in A$ jest silnie normalizowalny i będziemy pisali $a \in$ SN, jeśli nie istnieje nieskończony ciąg relacji $a \to a_1 \to a_2 \to \dots$ Jeśli każdy element $a \in A$ jest silnie normalizowalny, to o relacji \to powiemy, że jest silnie normalizująca.

Uwaga. Zbiory λ-termów słabo i silnie normalizowalnych względem β-redukcji będziemy oznaczali symbolami WN_β i SN_β odpowiednio.

Twierdzenie 2. (Lemat Newmana) Niech \rightarrow bedzie relacją binarną mającą własność SN. Jeśli \rightarrow ma własność WCR, to \rightarrow ma własność CR.

Dowód. Niech \rightarrow będzie relacją binarną na A o własności SN i WCR. Ponieważ \rightarrow jest SN, to każdy a jest normalizowalny.

Jeśli A nie zawiera elementów niejednoznacznych, to twierdzenie zachodzi w sposób trywialny. Przypuśćmy, że $a \in A$ jest niejednoznaczny. Twierdzimy, że istnieje $a' \in A$ taki, że $a \to a'$ i a' jest niejednoznaczny. Niech $b_1, b_2 \in NF$, $b_1 \neq b_2$ i $a \to^* b_1$ oraz $a \to^* b_2$. Ponieważ $b_1 \neq b_2$, to istnieją $a_1, a_2 \in A$ takie, że:

$$a \rightarrow a_1 \rightarrow^* b_1$$
 oraz $a \rightarrow a_2 \rightarrow^* b_2$

Zachodzą więc dwa przypadki:

- i) $a_1 = a_2$. Wówczas wystarczy ustalić $a' = a_1$ albo $a' = a_2$ (Rysunek 2a).
- ii) $a_1 \neq a_2$ (Rysunek 2b). Wówczas z WCR istnieje $b_3 \in A$ takie, że $a_1 \to^* b_3$ oraz $a_2 \to^* b_3$ (Rysunek 2c). Przypuśćmy, że $b_3 \in NF$. Ponieważ $b_1 \neq b_2$, więc $b_3 \neq b_1$ lub $b_3 \neq b_2$, zatem możemy wybrać $a' = a_1$ albo $a' = a_2$.

Rysunek 2: Warianty konstruowania redukcji.

Stosując powyższe rozumowanie do a' otrzymujemy kolejny element niejednoznaczny. a zatem możemy skontruować nieskończony ciąg redukcji, wbrew zalożeniu, że relacja \rightarrow jest SN. Zatem A nie zawiera elementów niejednoznacznych.

Definicja 16. (β-redukcja) β-redukcją nazywamy najmniejszą (w sensie mnogościowym) zgodną na Λ relację binarną \rightarrow_{β} taką, że

$$(\lambda x. M)N \to_{\beta} M[x/N].$$

 β -redeksami bedziemy nazywali wyrażenia postaci $(\lambda x. M)N$, zaś rezultat ich β redukcji w postaci termu $M[x/N] - \beta$ -reduktem. Przez $\rightarrow_{\beta}^+, \rightarrow_{\beta}^*, =_{\beta}$ oznaczamy
odpowiednie domknięcia relacji β -redukcji. Symbolem \leftarrow_{β} oznaczać będziemy relację odwrotną do β -redukcji, zaś przez \leftrightarrow_{β} jej symetryczne domknięcie.

 $Ciqgiem\ \beta$ -redukcji nazywamy każdy skończony lub nieskończony ciąg λ -termów $M_0,\ M_1,\ \dots$ taki, że $M_0\to_\beta M_1\to_\beta\dots$

Relację = $_{\beta}$ nazywamy β -konwersją. Zauważmy, że M = $_{\beta}$ N wtedy i tylko wtedy, gdy istnieje skończony ciąg λ -termów M = M_0 , M_1 , ..., M_n = N taki, że $M_i \rightarrow_{\beta} M_{i+1}$ lub $M_{i+1} \rightarrow_{\beta} M_i$ dla $0 \le i \le n$.

Przykład 7. Wszystkie pary λ -termów ze zbioru

$$\{(\lambda x.(\lambda y.yx)z)v, (\lambda y.yv)z, (\lambda x.zx)v, zv\}$$

są swoimi β -konwersami. Mamy:

$$(\lambda y. yv)z \to_{\beta} zv \leftarrow_{\beta} (\lambda x. zx)v,$$

$$(\lambda y. yv)z \leftarrow_{\beta} (\lambda x. (\lambda y. yx)z)v \to_{\beta} (\lambda x. zx)v.$$

Lemat 2. Dla dowolnych $N, Q \in \Lambda$, jeśli $N[y/Q] \in SN_{\beta}$, to $N \in SN_{\beta}$. Jeśli dodatkowo $y \in FV(N)$, to także $Q \in SN_{\beta}$.

Dowód. Dowód przeprowadzamy przez indukcję względem definicji 4'. □

Konwencja. Składnię rachunku λ często rozszerza się o wyrażenia let pozwalające konstruować β -redeksy w czytelny sposób. Rozszerzenie ma następującą postąć:

let
$$x=N$$
 in $M \equiv (\lambda x. M)N$

Jest to przykład tzw. cukru syntaktycznego, czyli wtórnych rozszerzeń języka, które ułatwiają jego użycie. Wyrażenia let w których $M \equiv \lambda y.M'$ dla pewnego $M' \in \Lambda$ nazywamy $domknięciami^1$ (ang. closure). Nieformalnie, pozwalają one na przypisywanie wartości zmiennym o tzw. zakresie leksykalnym.

Definicja 17. (Strategia redukcji) Strategią redukcji nazywamy każde odwzorowanie $S: \Lambda \to \Lambda$, które dla $M \in \Lambda$ spełnia następującą równość:

$$S(M) = \begin{cases} M, & \text{jeśli } M \in NF_{\beta}, \\ M', & \text{jeśli } M \rightarrow_{\beta} M'. \end{cases}$$

Strategię S nazywamy normalizującą, jeśli dla każdego $M \in WN_{\beta}$ istnieje $i \in \mathbb{N}$ takie, że $S^{i}(M) \equiv \underbrace{S(S(\ldots(S(M))\ldots))}_{i\text{-razy}} \in NF_{\beta}$.

Przykład 8. (a) Oznaczmy Y $\equiv \lambda f.(\lambda x.(f(xx))\lambda x.(f(xx)))$ i niech F będzie dowolnym λ -termem. Wówczas otrzymujemy nieskończony ciąg redukcji postaci

$$YF = (\lambda f. (\lambda x. (f(xx))\lambda x. (f(xx))))F$$

$$\rightarrow_{\beta} (\lambda x. F(xx))\lambda x. F(xx)$$

$$\rightarrow_{\beta} F((\lambda x. F(xx))\lambda x. F(xx))$$

$$\rightarrow_{\beta} F(\underbrace{F((\lambda x. F(xx))\lambda x. F(xx))}_{=_{\beta}YF})$$

$$\rightarrow_{\beta} F(F((\lambda x. F(xx))\lambda x. F(xx)))$$

i w konsekwencji Y $F =_{\beta} F(YF)$. Y nazywamy kombinatorem punktu stałego. Widzimy, że relacja β -redukcji w rachunku λ nie jest ani słabo, ani silnie normalizująca.

¹Idiom ten w literaturze poświęconej językom programowania z rodziny Lisp występuje również pod nazwą *let-over-lambda*.

(b) Niech $\Omega \equiv (\lambda x. xx)(\lambda x. xx)$. Ω jest β -redeksem, którego redukcja prowadzi do ponownego otrzymania termu Ω i w konsekwencji do stałego ciągu redukcji postaci:

$$\Omega \to_{\beta} \Omega \to_{\beta} \Omega \to_{\beta} \dots$$

(c) Niech $\Delta \equiv \lambda x$. xxx. Wówczas:

$$\Delta\Delta \rightarrow_{\beta} \Delta\Delta\Delta \rightarrow_{\beta} \Delta\Delta\Delta\Delta \rightarrow_{\beta} \dots$$

Ponownie, ponieważ każda redukcja powoduje wydłużenie termu, $\Delta\Delta$ nie ma postaci normalnej i w konsekwencji każdy powstały ciąg redukcji termu $\Delta\Delta$ jest nieskończony.

(d) Redukcja λ -termu posiadającego więcej niż jeden redeks może prowadzić do różnych (choć β -równoważnych) reduktów. Zależy to od wyboru strategii redukcji. Rozważmy następujący term: $(\lambda u.\ v)\Omega$. Konsekwentne redukowanie podtermu Ω prowadzić musi do niekończącego się stałego ciągu redukcji

$$(\lambda u. \ v) \Omega \rightarrow_{\beta} (\lambda u. \ v) \Omega \rightarrow_{\beta} \dots$$

Wybierając strategię polegającą na aplikacji Ω do $(\lambda u. v)$ otrzymujemy natychmiastowo redeks w postaci normalnej.

Definicja 18. (η -redukcją) η -redukcją nazywamy najmniejszą (w sensie mnogościowym) zgodną na Λ relację binarną \rightarrow_{η} taką, że

$$\lambda x. Mx \rightarrow_{\eta} M$$
, o ile $x \notin FV(M)$.

 η -redukcja pozwala na pominięcie niczego nie wnoszącej λ -abstrakcji. Operację odwrotną nazywamy η -abstrakcją, zaś λ -termy będące w którejkolwiek z tych relacji nazywamy η -konwersami. Operacja ta nie ma wpływu na rezultat obliczenia, jedynie optymializuje zapis λ -termów i stąd ma duże znaczenie stylistyczne w programowaniu funkcyjnym.

Przykład 9. Przypuśćmy, że (+1)
$$\in \Lambda$$
. Wówczas $\lambda x.((+1)x) =_{\eta} (+1)$.

Widzieliśmy, że konsekwentne β -redukowanie λ -termów nie zawsze prowadzi do uzyskania postaci normalnej. Fakt 1 i następujące po nim Wniosek 3 i Wniosek 4 stwierdzają, że jeśli tylko mamy pewność, że λ -term ma postać normalną, to jest ona wyznaczona jednoznacznie i doprowadzi nas do niej każda strategia normalizująca. Fakt 1 to klasyczne twierdzenie, którego dowód można znaleźć w [Bar84, Rozdział 3.2] i ze względu na jego obszerność pozwalamy sobie go pominąć.

Fakt 1. (Twierdzenie Churcha-Rossera). β-redukcja ma własność CR.

Wniosek 3. Jeśli $M =_{\beta} N$, to istnieje $L \in \Lambda$ takie, że $M \to_{\beta}^* L$ i $N \to_{\beta}^* L$.

Dowód. Niech $M, N \in \Lambda$ będą takie, że $M =_{\beta} N$. Wówczas istnieje ciąg λ -termów $M_0, M_1, \ldots, M_{n-1}, M_n$ taki, że

$$M_0 \underset{\beta}{\leftrightarrow} M_1 \underset{\beta}{\leftrightarrow} \dots \underset{\beta}{\leftrightarrow} M_{n-1} \underset{\beta}{\leftrightarrow} M_n,$$

gdzie $M_0 \equiv M$ i $M_n \equiv N$. Dowód przeprowadzimy przez indukcję względem n. Rozważmy następujące przypadki:

- (1) Jeśli n=0, to $M\equiv N$. Ustalając $L\equiv M(\equiv N)$ w oczywisty sposób $M\to_\beta^* L$ i $N\to_\beta^* L$.
- (2) Jeśli n = k > 0, to istnieje $M_{k-1} \in \Lambda$ takie, że

$$M \equiv M_0 \underset{\beta}{\leftrightarrow} M_1 \underset{\beta}{\leftrightarrow} \dots \underset{\beta}{\longleftrightarrow} M_{k-1} \underset{\beta}{\longleftrightarrow} M_k \equiv N$$

Z założenia indukcyjnego wiemy, że istnieje $L' \in \Lambda$ takie, że $M_0 \to_{\beta}^* L'$ i $M_{k-1} \to_{\beta}^* L'$. Ponieważ $\underset{\beta}{\longleftrightarrow}$ jest symetryczna, rozważmy osobno przypadki $M_{k-1} \to_{\beta} M_k$ i $M_k \to_{\beta} M_{k-1}$.

(a) Jeśli $M_{k-1} \to_{\beta} M_k$, to tym bardziej $M_{k-1} \to_{\beta}^* M_k$. Ponieważ $M_{k-1} \to_{\beta}^* L'$, to korzystając Faktu 1 wnosimy, że istnieje $L \in \Lambda$ taki, że $L' \to_{\beta}^* L$ i $M_k \to_{\beta}^* L$, czyli

$$M_0 \longleftrightarrow \ldots \longleftrightarrow M_{k-1} \longleftrightarrow M_k$$

$$\downarrow^* \qquad \downarrow^* \qquad \downarrow^* \qquad \downarrow L' \overset{*}{\longleftrightarrow} L$$

(b) Jeśli $M_k \to_{\beta} M_{k-1}$, to ponieważ $M_{k-1} \to_{\beta}^* L'$, natychmiast otrzymujemy, że $M_k \to_{\beta}^* L'$. Ustalając $L \equiv L'$ otrzymujemy tezę.

Wniosek 4.

 $Ka\dot{z}dy \lambda$ -term ma co najwyżej jedną postać normalną.

Dowód.

Przypuśćmy, że M ma dwie różne postacie normalne, N_1 , N_2 . Wówczas na podstawie Definicji 14, $M \to_{\beta}^* N_1$ i $M \to_{\beta}^* N_2$. Z Faktu 1 istnieje $L \in \Lambda$ taki, że $N_1 \to_{\beta}^* L$ i $N_2 \to_{\beta}^* L$. Ponieważ N_1 , $N_2 \in \operatorname{NF}_{\beta}$, to $N_1 \equiv L \equiv N_2$.

1.3.2 Strategie redukcji

Przedmiotem tego podrozdziału jest przedstawienie najczęściej spotykanych klasyfikacji obliczeń w rachunku λ . Na gruncie tego formalizmu nakreślimy czym jest szeroko stosowany w funkcyjnych językach programowania leniwy sposób wykonywania programów.

Definicja 19. Strategię nazywamy:

- 1. normalną (ang. normal-order), gdy zawsze redukujemy redeksy pojedyńczo, rozpoczynając od najbardziej zewnętrznego redeksu od lewej strony wyrażenia; strategię tę nazywa się również lewostronną najbardziej zewnętrzną (ang. leftmost outermost reduction).
- 2. aplikatywną (ang. applicative-order), jeśli zawsze redukujemy redeksy pojedyńczo, rozpoczynając od najbardziej zagnieżdżonego redeksu występującego najbardziej po lewej stronie wyrażenia; strategię tę nazywa się również lewostronną najbardziej wewnętrzną (ang. leftmost innermost reduction).

Strategia aplikatywna jest rodzajem strategii ścisłej (nazywanej również zachłanną, w angielskojęzycznej literaturze określanej odpowiednio strict, gready lub eager). Strategiami zachłannymi nazywamy wszystkie te redukcje, w których argumenty λ -abstrakcji są redukowane do postaci normalnej przed zaaplikowaniem ich. Strategie, które nie są ścisłe, nazywamy strategiami nieścisłymi (ang. non-strict) – argumenty λ -abstkracji w strategiach tego rodzaju mogą być redukowane dopiero wówczas, gdy jest to konieczne.

W przeciwieństwie do strategii aplikatywnej (patrz Przykład 8(d)), okazuje się, że strategia normalna jest strategią normalizującą [SU06, Rozdział 1.5]. Niestety, narzuca ona w pesymistycznym przypadku wykładniczą złożoność obliczeniową. Zobserwujmy następującą redukcję:

$$(\lambda x.(+ x x)) (* 5 4) \rightarrow_{\beta} (+ (* 5 4)(* 5 4)) \rightarrow_{\beta} (+ 20 (* 5 4)) \rightarrow_{\beta} (+ 20 20) \rightarrow_{\beta} 40.$$

Widzimy, że redeksy są niepotrzebnie zwielokratniane, podczas gdy przy podejściu aplikatywnym zostałyby wpierw zredukowane. Obydwie strategie mają więc poważne wady; niekiedy stosuje się je naprzemiennie, ich efektywność zależy od wyrażenia². Używając grafowej reprezentacji λ -termów możemy wprowadzić jednak

²Analiza wyrażeń m.in. pod kątem możliwości redukowania wyrażeń strategią aplikatywną to tzw. *strictness analysis*.

Rysunek 3: Schematyczne porównanie redukcji (\blacktriangledown) z użyciem redukcji grafów wyrażeń bez współdzielenia (po lewej) i ze współdzieleniem (po prawej).

pewną istotną optymalizację: w przypadku, gdy przy pomocy strategii normalnej redukujemy te same podwyrażenia, zamiast powielać wierzchołki odpowiadające β -reduktom, możemy dodać krawędzie prowadzące do tych podwyrażeń (Rysunek 3). Jest to nic innego jak ustawianie wskaźnika do innego, być może nieobliczonego jeszcze podwyrażenia³ i współdzielenie wyników redukcji (Rysunek 4). Takie rozwiązanie pozwala na przeprowadzenie redukcji w skutek której współdzielone podwyrażenia są redukowane dokładnie jeden raz. Zauważmy jednak, że używając strategii zachłannych taka optymalizacja jest niemożliwa, gdyż podwyrażenia odpowiadające argumentom są już wstępnie redukowane do postaci normalnej. Współdzielenie wprowadza również właściwe sobie problemy, których omówienie można znaleźć w [Rin93, Rozdział 3.8.3].

Normalne strategie redukcji, które używają współdzielenia rezultatu redukcji (ang. sharing) nazywa się strategiami call-by-need albo strategiami leniwymi. Wykonywanie redukcji strategią call-by-need aż do uzyskania wyrażenia w słabej czołowiej postaci normalnej nazywamy leniwą ewaluacją. Ze względu na kolejność

 $^{^3}$ Na określenie podwyrażeń, których redukcja jest odłożona na później, używa się nazwy $\it thunk.$

wykonywania redukcji strategie leniwe są więc strategiami nieścisłymi⁴. Implementacja tej strategii odpowiada leniwej redukcji grafu [Pey87, Rozdział 12.1, str. 212] na przykład przy pomocy abstrakcyjnej maszyny STG, jak ma to miejsce współcześnie w przypadku kompilatora GHC języka Haskell. Szczegóły technicznie związane z formalizmem maszyny STG można znaleźć w [JLP92]; prezentacja nawet zrębów tej implementacji znacznie wykraczaja poza zamierzony zakres tej pracy.

Rysunek 4: Redukcja (▼) z użyciem redukcji grafu ze współdzieleniem.

Redukcja do słabej czołowej postaci normalnej ma szczególne znaczenie, bowiem pozwala unikać α -konwersji przy kolejnych β -redukcjach. Sensowne wyrażenia, które kodujemy w rachunku λ , są na ogół kombinatorami, tzn. nie zawierają zmiennych wolnych. Zauważmy, że jeśli redukujemy λ -term zamknięty strategią normalną, to nie jest możliwe aby wykonując podstawienie jakieś zmienne zostały dodatkowo związane λ -abstraktorem. Dopóki redukcja nie zostanie przeprowadzo-

⁴Haskell, jako jeden z nielicznych języków programowania, określany jest jako *nieścisły*; ma to jednak związek z *nieścisłą semantyką* języka, a nie strategią redukcji jego wyrażeń (które notabene najcześciej redukowane są strategią leniwą, a wiec nieścisłą).

na wewnątrz λ -abstrakcji, to α -konwersja okazuje się zbędna.

Przykład 10. Rozważmy następujący λ -term:

$$(\lambda y.(\lambda x y. xy)y)(\lambda x y. xy)$$

Zauważmy, że wykonanie redukcji strategią aplikatywną (tzn. redukucja redeksu $(\lambda x\,y.\,xy)\,y)$ musi być poprzedzone α -konwersją. Dla porównania przeprowadźmy redukcję strategią normalną:

$$(\lambda y. (\lambda x y. xy) y) (\lambda x y. xy) \rightarrow_{\beta} (\lambda x y. xy) (\lambda x y. xy) \rightarrow_{\beta} \lambda y. (\lambda x y. xy) y$$

Żadna zmienna nie została dodatkowo związana. Otrzymany λ -term jest w czołowej postaci normalnej. Przeprowadzenie kolejnej redukcji wewnątrz λ -abstrakcji wymagałoby już jednak uprzedniej α -konwersji.

Własność tę można zachować dla wyrażeń ze zmiennymi wolnymi, jeśli tylko wstępnie przemianujemy zmienne wolne na zmienne nie występujące w wyrażeniu.

1.4 Równościowa teoria rachunku λ

Rachunek λ możemy rozszerzyć o teorię równościową w stylu Hilberta. Składa się ona z następujących reguł i aksjomatów inferencji.

- (a) Aksjomaty:
 - (α) $\lambda x. M = \lambda y. M[x/y]$, jeśli $y \in FV(M)$
 - $(\beta) (\lambda x. M)N = M[x/N]$
 - (ρ) M = M
- (b) Reguly inferencji:

$$\frac{M=M'}{NM=NM'} \text{ (l-con)} \quad \frac{M=N}{M=P} \quad \text{(trans)}$$

$$\frac{M=M'}{MN=M'N} \quad \text{(r-con)} \qquad \frac{M=N}{N=M} \quad \text{(sym)}$$

$$\frac{M=M'}{\lambda x. \ M=\lambda x. \ M'} \quad (\xi)$$

Powyższy system nazywamy $teoriq~\lambda\beta;$ jest ona zbiorem r'owności między λ -termami.

Definicja 20. (Wyprowadzenie) Niech $M, N \in \Lambda$ będą dowolnymi λ -termami. Wyprowadzeniem równości M = N ze zbioru równości Γ w teorii $\lambda\beta$ będziemy nazywali drzewo \mathcal{P} równości takie, że:

- (i) liście \mathcal{P} są aksjomatami albo należą do zbioru Γ ,
- (ii) korzeniem \mathcal{P} jest równość M = N (jest wnioskiem),
- (iii) wszystkie pozostałe równości w \mathcal{P} są uzyskane ze swoich dzieci (przesłanek) za pomoca reguł inferencji.

Jeśli istnieje wyprowadzenie \mathcal{P} równości M=N ze zbioru równości Γ , to M=N nazywamy wyprowadzalnym w kontekście Γ i piszemy λ , $\Gamma \vdash M=N$. Jeśli Γ jest zbiorem pustym, to wyprowadzenie \mathcal{P} nazywamy dowodem równości M=N, a o równości M=N mówimy, że jest dowodliwa.

Następujący fakt ustala związek między równościami dowodliwymi w $\lambda\beta$ a λ -termami, które są swoimi β -konwersami.

Fakt 2. ([HS08, Lem. 6.4]) Niech $M, N \in \Lambda$. Wówczas

$$M =_{\beta} N \iff \lambda \vdash M = N$$

1.5 Semantyka denotacyjna

1.5.1 λ -modele

Ustalmy wpierw, że nie możemy naiwnie interpretować λ -termów jako funkcji i aplikacji argumentów do funkcji. Przypuśćmy bowiem, że w pewnej interpretacji $[\![M]\!] = f_M$, gdzie $f_M \in A \to B$ dla pewnych zbiorów A i B. Wówczas $[\![MM]\!] = f_M(f_M)$, a zatem $f_M \in A$. Oznacza to, że funkcja f_M jest elementem swojej własnej dziedziny i możliwe jest skonstruowanie nieskończonego zstępującego ciąg zbiorów:

$$f_M \ni (f_M, f_M(f_M)) \ni \{f_M\} \ni f_M \ni \dots$$

Istnienie takiego ciągu narusza jednak aksjomat ufundowania na gruncie aksjomatyki ZF, a to wyklucza możliwość określenia takich modeli.

Celem wprowadzenia ustalmy szereg następujących pojęć.

Definicja 21. (Struktura aplikatywna) Parę (D, \bullet) , gdzie D jest zbiorem zawierającym przynajmniej dwa elementy i w którym symbol \bullet oznacza działanie binarne na D, nazywamy strukturą aplikatywną.

Konwencja. Ponieważ nie zakładamy, że działanie • jest łączne, to celem ograniczenia ilości nawiasów przyjmijmy, że • wiąże lewostronnie, czyli $a • b • c • d \equiv ((a • b) • c) • d$.

Definicja 22. (Ekstensjonalność) Strukturę aplikatywną $\mathcal{D} = (D, \bullet)$ nazywamy ekstensjonalną, jeśli dla dowolnych $a, b \in D$ spełnia ona warunek

$$(\forall d \in D \ a \bullet d = b \bullet d) \implies a = b.$$

Definicja 23. (Ekstensjonala równoważność) Niech (D, \bullet) będzie strukturą aplikatywną i niech $a, b \in D$. Określamy relację:

$$a \sim b \iff \forall d \in D \ a \bullet d = b \bullet d.$$

Powiemy, że a jest ekstensjonalnie równoważne b, jeśli $a \sim b$.

Ustalmy teraz co rozumiemy przez λ -model.

Definicja 24. (Wartościowanie λ -zmiennych) Każde odwzorowanie

$$\rho: V \to D$$
,

gdzie V jest zbiorem λ -zmiennych, a D dowolnym niepustym zbiorem, nazywamy wartościowaniem (λ -zmiennych).

Jeśli ρ jest wartościowaniem, to symbolem $\rho[x_0/d_0]$ będziemy oznaczali następujące wartościowanie:

$$\rho[x_0/d_0](x) = \begin{cases} d_0, & \text{jeśli } x = x_0, \\ \rho(x) & \text{w przeciwnym wypadku.} \end{cases}$$

Definicja 25. (λ -model) Trójkę $\mathcal{M} = (D, \bullet, [])$, gdzie

$$[\![]\!]: \mathbf{\Lambda} \times D^V \to D$$

oraz (D, \bullet) jest strukturą aplikatywną, nazywamy λ -modelem, jeśli dla dowolnego wartościowania ρ spełnione są poniższe własności:

- (i) $\forall x \in V ([\![x]\!]_o = \rho(x)),$
- (ii) $\forall M, N \in \Lambda (\llbracket MN \rrbracket_{\varrho} = \llbracket M \rrbracket_{\varrho} \bullet \llbracket N \rrbracket_{\varrho}),$
- (iii) $\forall x \in V \ \forall M \in \Lambda \ \forall d \in D \ ([\![\lambda x. M]\!]_{\rho} \bullet d = [\![M]\!]_{\rho[x/d]}),$
- (iv) Dla dowolnych wartościowań ρ , σ i dowolnego termu $M \in \Lambda$, jeśli

$$\forall x \in FV(M) \ (\rho(x) = \sigma(x)),$$

to
$$[\![M]\!]_{\rho} = [\![M]\!]_{\sigma}$$
,

(v)
$$\forall M \in \Lambda \ \forall x, y \in V \ (y \notin FV(M) \Longrightarrow [\![\lambda x. M]\!]_{\rho} = [\![\lambda y. M[x/y]\!]]_{\rho}),$$

(vi)
$$\forall M, N \in \Lambda \left(\left(\forall d \in D \llbracket M \rrbracket_{\rho \lceil x/d \rceil} = \llbracket N \rrbracket_{\rho \lceil x/d \rceil} \right) \Longrightarrow \llbracket \lambda x. M \rrbracket_{\rho} = \llbracket \lambda x. N \rrbracket_{\rho} \right).$$

Omówmy pokrótce Definicję 25. Zauważmy na początku, że aplikacja w rachunku λ oznacza w istocie działanie binarne na λ -termach; dlatego na uniwersum interpretacji D wprowadzamy strukturę aplikatywną okreslając działanie • w myśl warunku (ii).

Określając działanie • wymagamy w warunku (iii), żeby było ono zgodne z β -redukcją. Zauważmy, że w konsekwencji ($\lambda x. M$) $N =_{\beta} M[x/N]$ mamy, że

$$[\![\lambda x. M]\!]_{\rho} \bullet [\![N]\!]_{\rho} = [\![(\lambda x. M)N]\!]_{\rho}$$

$$= [\![\lambda x. M]\!]_{\rho} \bullet b$$

$$= [\![M]\!]_{\rho[x/b]}$$

$$= [\![M[x/N].]\!]_{\rho}$$

$$(\dagger)$$

Ostatnia równość wymaga dowodu: przeprowadza się go indukcją strukturalną względem M. Szczegółowe uzasadnienia można znaleźć w [HS08, Tw. 15.10(a)]. Interpretacja rezultatu operacji podstawienia termu N za zmienną x nie różni się w tym wypadku niczym od zmiany wartościowania ρ dla zmiennej x na desygnat $[N]_{\rho}$ (symbolicznie: $\rho[x/[N]_{\rho}]$), bowiem w wyniku β -redukcji żadna nowa zmienna nie zostaje związana; przez N zastąpione zostają wszystkie wolne wystąpienia x w M. Zachodzi więc równość

$$[M[x/N]]_{\rho} = [M]_{\rho[x/[N]_{\rho}]}.$$

W myśl warunku (iv) wymagamy, żeby interpretacja λ -termu zależała tylko od wartościowania występujących w nim zmiennych wolnych.

Warunek (v) zapewnia, że interpretacja λ -termów, które są swoimi α -konwersami, jest taka sama. Odpowiada on więc aksjomatowi (α) z Podrozdziału 1.4.

Warunek (vi) odpowiada regule (ξ) z Rodrozdziału 1.4. Zauważmy wpierw jednak, że zgodnie z warunkiem (iii)

$$(\forall d \in D \ \llbracket M \rrbracket_{\rho[x/d]} = \llbracket N \rrbracket_{\rho[x/d]}) \iff \llbracket \lambda x. M \rrbracket_{\rho} \sim \llbracket \lambda x. N \rrbracket_{\rho}. \tag{\dagger \dagger}$$

Warunek (vi) stwierdza więc, że jeśli dwie λ -abstrakcje ($\lambda x.M$), ($\lambda x.N$) $\in \Lambda$ indukują dwie częściowe aplikacje działania \bullet

$$([\![\lambda x.M]\!]_{\rho}\bullet), ([\![\lambda x.N]\!]_{\rho}\bullet): D \to D,$$

które są sobie równe, czyli

$$\forall d \in D \ [\![\lambda x.M]\!]_o \bullet d = [\![\lambda x.N]\!]_o \bullet d,$$

to interpretacje obu λ -abstrakcji również muszą być sobie równe. Zgodnie z dyskusją we wstępie do niniejszego rozdziału, nie możemy interpretować λ -abstrakcji jako funkcji $D \to D$. Nic nie stoi jednak na na przeszkodzie, żeby scharakteryzować je czysto semantycznie przez operację w λ -modelu.

Zgodnie z (\dagger \dagger) możemy przepisać warunek (vi) do następującej równoważnej postaci

$$\forall M, N \in \mathbf{\Lambda} \left([\![\lambda x. M]\!]_{\rho} \sim [\![\lambda x. N]\!]_{\rho} \implies [\![\lambda x. M]\!]_{\rho} = [\![\lambda x. N]\!]_{\rho} \right). \tag{vi'}$$

Własność (vi') w literaturze nazywa się niekiedy warunkiem słabej ekstensjonalności λ -abstrakcji.

Definicja 26. (Spełnianie, prawdziwość) Niech $\mathcal{M} = (D, \bullet, [])$ będzie λ-modelem. Jeśli dla dowolnych λ-termów M, N i wartościowania ρ zachodzi

$$[M]_{\rho} = [N]_{\rho},$$

to mówimy, że wartościowanie ρ spełnia równość M=N i piszemy $\mathcal{M}, \rho \models M=N$. Jeśli każde wartościowanie ρ spełnia równość M=N, to mówimy, że równość M=N jest prawdziwa w \mathcal{M} (lub \mathcal{M} spełnia M=N) i piszemy $\mathcal{M} \models M=N$.

Twierdzenie 3. Każdy λ -model spełnia wszystkie dowodliwe rówania teorii $\lambda\beta$.

Dowód. Dowód przeprowadzimy indukcją względem wyprowadzenia równania M = N. Niech $\lambda \vdash M = N$, \mathcal{M} będzie λ -modelem i ρ dowolnym wartościowaniem. Rozważmy następujące przypadki:

- 1. Równanie M = N jest aksjomatem w postaci:
 - (α) Wówczas na podstawie warunku (v) mamy $[\![\lambda x. M]\!]_{\rho} = [\![\lambda y. M[x/y]\!]]_{\rho}$.
 - (β) Wówczas na podstawie (†) mamy $[(\lambda x. M)N]_{\rho} = [\lambda y. M[x/N]]_{\rho}$.
 - (ρ) Wynika ze zwrotności semantycznej równości.

W każdym z powyższych przypadków $\mathcal{M} \models M = N$.

- 2. Równanie M = N jest konkluzją reguły:
- (l-con) Wówczas M i N są postaci PM' i PN' odpowiednio, dla pewnego $P \in \Lambda$. Ponadto, z założenia indukcyjnego $[\![M']\!]_{\rho} = [\![N']\!]_{\rho}$. Wobec tego na podstawie warunku (ii) mamy

$$[PM']_{\rho} = [P]_{\rho} \bullet [M']_{\rho} = [P]_{\rho} \bullet [N']_{\rho} = [PN']_{\rho}.$$

- (r-con) Analogicznie do (l-con).
 - (ξ) Wówczas na podstawie warunku (vi) mamy $[\![\lambda x.M]\!]_{\rho} = [\![\lambda x.N]\!]_{\rho}$.

(trans) Wówczas z założenia indykcyjnego dla pewnego $P \in \Lambda$ $[M]_{\rho} = [P]_{\rho}$ oraz $[P]_{\rho} = [N]_{\rho}$. Z przechodniości semantycznej równości mamy zatem, że $[M]_{\rho} = [N]_{\rho}$.

(sym) Wynika symetryczności semantycznej równości.

W każdym z powyższych przypadków $\mathcal{M} \models M = N$.

1.5.2 Model Scotta D_{∞}

W tym podrozdziale przybliżymy konstrukcję modelu Scotta D_{∞} zgodnie z [HS08, Rozdział 16]. Rozwiązanie D. Scotta polega na tym, aby zamiast naiwnych prób interpretacji termów jako funkcji, przypisać im nieskończone ciągi funkcji postaci

$$\varphi = (\varphi_0, \varphi_1, \varphi_2, \dots),$$

gdzie $\varphi \in D_{\infty}$ i $\varphi_n \in D_n$. Określając na takiej strukturze aplikację następująco

$$\varphi \bullet \psi = (\varphi_1(\psi_0), \varphi_2(\psi_1), \varphi_3(\psi_2), \ldots),$$

widzimy, że samoaplikacja jest wówczas poprawnie określona:

$$\varphi \bullet \varphi = (\varphi_1(\varphi_0), \varphi_2(\varphi_1), \varphi_3(\varphi_2), \dots).$$

Wszystkie symbole użyte w powyższym wprowadzeniu zostaną zdefiniowane w tym podrozdziale.

Elementy teorii porządku Niech (D, \sqsubseteq) będzie zbiorem częściowo uporzadkowanym. Powiemy, że $b \in D$ jest elementem najmniejszym, jeśli $b \sqsubseteq d$ dla wszystkich $d \in D$. Element ten, o ile istnieje, wyznaczony jest jednoznacznie i będziemy oznaczać go symbolem \bot . Niech $X \subset D$. Ograniczeniem górnym X nazywamy element $u \in D$ taki, że $x \sqsubseteq u$ dla wszystkich $x \in X$. Kresem górny zbioru X nazywamy element $\ell \in D$ taki, że ℓ jest ograniczeniem górnym X i $\ell \sqsubseteq u$ dla wszystkich ograniczeń górnych u zbioru X. Element taki, o ile istnieje, będziemy oznaczali symbolem $\bigsqcup X$. Podzbiór $X \subset D$ nazywamy skierowanym, jeśli $X \neq \emptyset$ i dla dowolnych $x, y \in X$ istnieje $z \in X$ taki, że $x \sqsubseteq z$ i $y \sqsubseteq z$.

Definicja 27. (Zupełny porządek częściowy) Porządek częściowy (D, \subseteq) taki, że

- (a) posiada element najmniejszy oraz
- (b) każdy skierowany poddzbiór $X \subset D$ ma kres górny,

nazywamy zupełnym porządkiem częściowym (w skrócie: cpo).

Ustalmy, że jeśli D', D'', ... są cpo, to odpowiadające im porządki częściowe będziemy notowali symbolami \sqsubseteq' , \sqsubseteq'' , ...

Przykład 11. Ustalmy $\bot \notin \mathbb{N}$ i niech $\mathbb{N}^+ = \mathbb{N} \cup \bot$. Określmy na \mathbb{N}^+ następującą relacje:

$$a \sqsubseteq b \iff (a = \bot \land b \in \mathbb{N}) \lor a = b.$$

 \sqsubseteq jest oczywiście zwrotna, przechodnia i antysymetryczna. Widzimy, że \mathbb{N}^+ ma względem niej element najmniejszy (jest nim \bot). Podzbiory jednoelementowe \mathbb{N}^+ i podzbiory dwuelementowe zawierające \bot to wszystkie skierowane podzbiory \mathbb{N}^+ . Widzimy, że każdy z nich ma kres górny, a zatem \mathbb{N}^+ jest cpo.

Definicja 28. (Monotoniczność, ciągłość, ścisłość) Niech D i D' bedą cpo i φ : $D \to D'$.

- (a) Powiemy, że φ jest monotoniczna, jeśli $\varphi(a) \subseteq \varphi(b)$ dla $a \subseteq b$.
- (b) Powiemy, że φ jest *ciągła* (w sensie Scotta⁵), jeśli $\varphi(\sqcup X) = \sqcup \varphi(X)$ dla wszystkich skierowanych podzbioru $X \subseteq D$.
- (c) Powiemy, że φ jest ścisła⁶ (ang. strict), jeśli $\varphi(\bot) = \bot'$. Funkcje, które nie są ścisłe, nazywamy niekiedy leniwymi (ang. lazy).

Symbolem $[D \to D']$ oznaczamy zbiór wszystkich funkcji ciągłych ze zbioru D do D'.

Uwaga. Zauważmy, że jeśli φ jest ciągła, to jest również monotoniczna. Istotnie, jeśli $a \subseteq b$, to w szczególności $\{a,b\} \subseteq D$ jest skierowanym podzbiorem D. Wówczas $\sqcup \{a,b\} = b$ i ponieważ $\sqcup \varphi(\{ab\}) = \varphi(\sqcup \{a,b\})$, to otrzymujemy, że $\varphi(a) \subseteq \varphi(\sqcup \{a,b\}) = \varphi(b)$.

Twierdzenie 4. Jeśli D i D' są cpo, to $[D \rightarrow D']$ jest cpo.

Dowód. Określmy na $[D \rightarrow D']$ relację \leq :

$$\varphi \leq \psi \quad \Leftrightarrow \quad \forall d \in D(\varphi(d) \sqsubseteq' \psi(d)).$$

Ponieważ D' jest cpo, to aby wykazać, że $[D \to D']$ ma element najmniejszy, wystarczy, że rozpatrzymy $\bot(d) = \bot'$ dla $d \in D$.

Niech teraz Φ będzie skierowanym podzbiorem $[D \to D']$. Wówczas dla wszystkich $d \in D$ zbiór $\{\varphi(d) \mid \varphi \in \Phi\}$ jest skierowanym podzbiorem D'. Wybierzmy

 $^{^5}$ Funkcje te są ciągłe w topologicznym sensie względem topologii Scotta; taką topologię można określić na każdym cpo.

 $^{^6}$ Każdą semantykę, w której $\varphi(\bot) \neq \bot'$ dla pewnej funkcji $\varphi,$ nazywamy nieścisłą (ang. non-strict).

 $y_1, y_2 \in \{\varphi(d) \mid \varphi \in \Phi\}$. Wówczas dla pewnych $\varphi_1, \varphi_2 \in \Phi$ mamy, że $y_1 = \varphi_1(d)$ oraz $y_2 = \varphi_2(d)$. Ponieważ Φ jest skierowany, to istnieje φ_3 taki, że $\varphi_1 \leq \varphi_3$ i $\varphi_2 \leq \varphi_3$. Wówczas dla dowolnego $d \in D$ $\varphi_1(d) \sqsubseteq' \varphi_3(d)$ oraz $\varphi_1(d) \sqsubseteq' \varphi_3(d)$, a zatem zbiór $\{\varphi(d) \mid \varphi \in \Phi\}$ istotnie jest skierowany dla każdego $d \in D$. Ponieważ zaś D' jest cpo, to dla każdego $d \in D$ istnieje kres górny $\{\varphi(d) \mid \varphi \in \Phi\}$. Określmy więc funkcję $\Psi_{\Phi}: D \to D'$ następującym wzorem:

$$\Psi_{\Phi}(d) = | \Phi d,$$

gdzie $\Phi d = \{ \varphi(d) \mid \varphi \in \Phi \}$. Wystarczy teraz pokazać, że Ψ_{Φ} jest ciągla i jest kresem górnym zbioru Φ .

1. Pokażemy najpierw, że Ψ_{Φ} jest ciągła. Niech X będzie dowolnym skierowanym podzbiorem D. Wówczas:

$$\Psi_{\Phi}(\bigsqcup X) = \bigsqcup \Phi(\bigsqcup X) \\
= \bigsqcup \{\varphi(\bigsqcup X) \mid \varphi \in \Phi\} \\
= \bigsqcup \{\bigcup \{\varphi(d) \mid d \in X\} \mid \varphi \in \Phi\} \\
= \bigsqcup \{\bigcup_{\varphi \in \Phi} \{\varphi(d) \mid d \in X\} \} \\
= \bigsqcup \{\bigcup_{\varphi \in \Phi} \bigcup_{d \in X} \{\varphi(d)\} \} = \bigsqcup \{\bigcup_{d \in X} \bigcup_{\varphi \in \Phi} \{\varphi(d)\} \} \\
= \bigsqcup \{\bigcup_{d \in X} \{\varphi(d) \mid \varphi \in \Phi\} \} \\
= \bigsqcup \{\bigcup \{\varphi(d) \mid \varphi \in \Phi\} \mid d \in X\} \\
= \bigsqcup \{\bigcup \Phi d \mid d \in X\} = \bigsqcup \Psi_{\Phi}(X).$$

2. Niech $\varphi \in \Phi$. Wówczas dla dowolnego $d \in D$ mamy $\varphi(d) \sqsubseteq' \sqcup \Phi d = \Psi_{\Phi}(d)$. Zatem $\varphi \leq \Psi_{\Phi}$ i stąd Φ jest ograniczony, a Ψ_{Φ} jest jego ograniczeniem górnym. Niech χ będzie dowolnym ograniczeniem górnym zbioru Φ . Oznacza to, że dla każdego $d \in D$ mamy, że $\varphi(d) \sqsubseteq' \chi(d)$ dla dowolnego $\varphi \in \Phi$. Wówczas $\Psi_{\Phi}(d) \sqsubseteq' \chi(d)$ dla dowolnego $d \in D$ i wobec tego $\Psi_{\Phi} \leq \chi$. Zatem Ψ_{Φ} jest kresem górnym Φ .

Definicja 29. Dla danego cpo D_0 możemy skonstruować ciąg cpo $\{D_n\}_{n=0}^{\infty}$ określając $D_{n+1} = [D_n \to D_n]$ dla $n \ge 0$. Tak określony ciąg dla $D_0 = \mathbb{N}^+$ (patrz Przykład 11) nazywamy modelem Scotta.

Definicja 30. (Projekcja) Niech D i D' będą cpo. Projekcją z D' do D nazywamy parę (φ, ψ) funkcji $\varphi \in [D \to D'], \psi \in [D' \to D]$ takich, że

$$\psi \circ \varphi = I_D \quad \text{oraz} \quad \varphi \circ \psi \le I_{D'},$$
 (2)

gdzie przez I_D i $I_{D'}$ oznaczamy funkcję identycznościową na zbiorze D i D', odpowiednio.

Rysunek 5: Projekcja (φ_n, ψ_n) z D_{n+1} do D_n .

Okazuje się, że ciąg cpo $\{D_n\}_{n=0}^{\infty}$ skonstruowany w myśl Wniosku 29 można określić definiując dla każdego $n \in \mathbb{N}$ projekcję (φ_n, ψ_n) z D_{n+1} do D_n . Istotnie, spróbujmy skonstruować taką rodzinę projekcji. Wybierzmy $d \in D_0$ i niech κ_d oznacza funkcję stałą

$$\kappa_d(c) = d$$
 dla wszystkich $c \in D_0$.

Określmy $D_1 = [D_0 \to D_0]$. Ponieważ κ_d jest funkcją ciągłą, to $\kappa_d \in D_1$. Niech teraz

$$\varphi_0(d) = \kappa_d$$
 dla wszystkich $d \in D_0$,
 $\psi_0(c) = c(\bot_0)$ dla wszystkich $c \in D_1$,

gdzie \perp_0 jest elementem najmniejszym D_0 . Widzimy, że $\varphi_0: D_0 \to D_1$ i $\psi_0: D_1 \to D_0$. Funkcje φ_0 i ψ_0 są ciągłe, zaś $\psi_0 \circ \varphi_0 = I_{D_0}$ (dowód pomijamy), zatem (φ_0, ψ_0) jest projekcją z D_1 do D_0 .

Dla n>0 określamy teraz $\varphi_n:D_n\to D_{n+1}$ i $\psi_{n+1}:D_{n+1}\to D_n$ następującym wzorem:

$$\varphi_n(\sigma) = \varphi_{n-1} \circ \sigma \circ \psi_{n-1}, \quad \text{dla } \sigma \in D_n,$$

$$\psi_n(\tau) = \psi_{n-1} \circ \varphi_{n-1}, \quad \text{dla } \tau \in D_{n+1}.$$

Wówczas $\varphi_n \in [D_n \to D_{n+1}], \ \psi_n \in [D_{n+1} \to D_n] \ i \ \psi_n \circ \varphi_n = I_{D_n} \ \text{oraz} \ \varphi_n \circ \psi_n \le I_{D_{n+1}}.$ [HS08, Lemat 16.28]. A zatem (φ_n, ψ_n) jest projekcją z D_{n+1} do D_n .

Ponieważ projekcje (φ_n, ψ_n) przenoszą nas tylko pomiędzy następującymi po sobie cpo w ciągu $\{D_n\}_{n=0}^{\infty}$, (Rysunek 5) w Definicji 31 określamy złożenie pozwalające na projekcje między dowolnymi dwoma wyrazami ciągu.

Definicja 31. Dla $m, n \ge 0$ określamy $\varphi_{mn}: D_m \to D_n$ w następujący sposób:

$$\varphi_{mn} = \begin{cases} \varphi_{n-1} \circ \varphi_{n-2} \circ \dots \varphi_{m+1} \circ \varphi_m, & \text{jeśli } m \leq n, \\ I_{D_n}, & \text{jeśli } m = n, \\ \psi_n \circ \psi_{n+1} \circ \dots \circ \psi_{m-2} \circ \psi_{m-1} & \text{jeśli } m \geq n. \end{cases}$$

W myśl Definicji 31, dla każdego $n \in \mathbb{N}$ para (φ_n, ψ_n) jest projekcją z D_{n+1} do D_n .

Konstrukcja D_{∞} Mając zadane dwa cpo D, D' możemy zapytać czy istnieje włożenie jednego z nich w drugi. Zauważmy, że jeśli φ , ψ jest projekcją z D' do D, to ϕ jest włożeniem D w D' (w sensie topologii Scotta). Ciąg $\{D_n\}_{n=0}^{\infty}$ intuicyjnie przypomina więc wstępujący ciąg zbiorów. Formalizuje to następująca definicja.

Definicja 32. (D_{∞}) Niech D_{∞} oznacza zbiór wszystkich nieskończonych ciągów postaci $d = (d_0, d_1, \dots)$ takich, że dla wszystkich $n \ge 0$ mamy, że $d_n \in D_n$ oraz $\psi_n(d_{n+1}) = d_n$.

Na zbiorze D_{∞} określamy relację \sqsubseteq w nastepujący sposób:

$$(d_0, d_1, \dots) \subseteq (d'_0, d'_1, \dots) \iff \forall n \ge 0 \ (d_n \subseteq d'_n).$$

Przez d_n oznaczać będziemy n-ty element ciągu d. Jeśli $X \subset D_\infty$, to określamy $X_n = \{d_n \mid d \in X\}$.

Przy powyższym określeniu D_{∞} okazuje się być cpo [HS08, Tw. 16.36]. Dodatkowo, określamy projekcję z D_{∞} do D_n dla każdego $n \in \mathbb{N}$. Wymaga to dowodu (patrz Fakt 3(i)), który pomijamy.

Definicja 33. Dla $n \ge 0$ określamy funkcje $\varphi_{n\infty} : D_n \to D_\infty$ oraz $\varphi_{\infty n} : D_\infty \to D_n$, gdzie

$$\varphi_{n\infty}(d) = (\varphi_{n0}(d), \varphi_{n1}(d), \dots) \text{ dla } d \in D_n,
\varphi_{\infty n}(d) = d_n.$$

Określona para funkcji spełnia poniższy szereg własności.

Fakt 3 ([HS08, Tw. 16.38, 16.39, 16.42]). Niech $m, n \ge 0, m \le n \ i \ a, b \in D_{\infty}$. Wówczas:

- (i) $(\varphi_{n\infty}, \varphi_{\infty n})$ jest projekcją $z D_{\infty}$ do D_n ,
- (ii) $\varphi_{mn}(a_m) \subseteq a_n$,
- (iii) $\varphi_{m\infty}(a_m) \subseteq \varphi_{n\infty}(a_n)$,

(iv)
$$a = \bigsqcup_{n\geq 0} \varphi_{n\infty}(a_n),,$$

(v) $\varphi_{n\infty}(a_{n+1}(b_n)) \subseteq \varphi_{(n+1)\infty}(a_{n+2}(b_{n+1})).$

Zauważmy, że $\varphi_{n\infty}$ jest izomorficznym włożeniem D_n w D_∞ . Oznacza to, że każdy $a \in D_n$ możemy utożsamiać z odpowiadającym mu $\varphi_{n\infty}(a) \in D_\infty$. Biorąc $a \in D_\infty$ i stosując tę odpowiedniość jako konwencję notacyjną, na podstawie 3(iii) mamy, że

$$a_0 \sqsubseteq a_1 \sqsubseteq a_2 \sqsubseteq a_3 \sqsubseteq \dots$$

zaś na podstawie 3(iv):

$$a = | \{a_0, a_1, a_2, a_3, \dots\}.$$

Zatem wyrazy $a_0, a_1, a_2, a_3, \ldots$ możemy traktowac jako kolejne przybliżenia elementu a. Zauwazmy, że na podstawie Faktu (v) ciąg ten jest zawsze rosnący. Traktując nieformalnie D_{∞} jako pewną przestrzeń informacji i w niej: element \bot jako brak informacji, zaś relację \sqsubseteq odczytując jako "więcej informacji", kolejne przybliżenia możemy odczytąc jako proces poznawczy prowadzący do stanu pełnej informacji o jakimś fakcie.

Kolejną istotną obserwacją jest fakt, że dziedzina każdej funkcji z D_n zawiera się w powyższym sensie również w D_n . Fakty 3(iv) i 3(v) sugerują metodę określenia struktury aplikatywnej na D_{∞} . Przypuśćmy bowiem, że $a, b \in D_{\infty}$. Wówczas dla każdego $n \in \mathbb{N}$ wyrazy a_n i b_n są przybliżeniami a i b, odpowiednio. Ponieważ $a_{n+1} \in D_{n+1} = [D_n \to D_n]$, to $a_{n+1}(b_n)$ jest określony. A zatem $a_{n+1}(b_n)$ jest pewnym przybliżeniem aplikacji a do b. Widzimy, że rozwiązuje to wymieniony wcześniej problem samoaplikacji.

Definicja 34. Dla $a, b \in D_{\infty}$ określamy:

$$a \bullet b = \bigsqcup \{ \varphi_{n\infty}(a_{n+1}(b_n)) \mid n \ge 0 \}.$$

Zauważmy, że na podstawie Faktu 3(v) D_{∞} jest łańcuchem, a zatem zbiorem skierowanym. Ponieważ D_{∞} jest cpo, to supremum takiego zbioru zawsze istnieje. Zatem działanie • jest poprawnie określone. Dowód, że operacja ta nie wyprowadza poza zbiór funkcji ciągłych pomijamy.

Fakt 4. ([HS08, p. 16.55]) D_{∞} jest λ -modelem.

1.6 Kodowanie typów danych

Prosta składnia języka rachunku λ pozwala wyrazić zaskakująco wiele struktur danych reprezentując je i operacje na nich jako funkcje. Z tego powodu, stanowiąc

inspirację dla wielu projektantów języków programowania, uchodzi za protoplastę rodziny języków funkcyjnych. Rozwój tej legendy dobrze oddaje cykl klasycznych artykułów (tzw. *Lambda Papers*) zapoczątkowany przez dokumentację języka Scheme [SS75].

Najpopularniejszym sposobem reprezentacji danych przez funkcje w rachunku λ oparty jest na kodowaniu liczb Peano za pomocą tzw. liczebników Churcha. Metoda ta, ze względu na wynikające zeń problemy natury złożonościowej [KPJ14], ma obecnie wyłącznie walory edukacyjne, dlatego w dalszej części pracy pokażemy tzw. kodowanie Scotta. Jest ona interesująca ze względu na praktyczną możliwość reprezentacji algebraicznych typów danych (ADT, ang. Algebraic Data Types⁷) znanych ze współczesnych języków funkcyjnych [Jan13], pozwalając tym samym zaimplementować te konstrukcje w dowolnym języku, w którym dostępne są wyrażenia λ . Fakt, że każdy typ danych można zastąpić tym sposobem odpowiadającą mu funkcją, wskazuje na metodę konstruowania prostych języków funkcyjnych [JKP06] oraz na uniwersalność rachunku λ jako języka przejściowego dla kompilatorów języków funkcyjnych [PL92, Rozdział 3]. Druga z tych idei znajduje dziś bardzo praktyczne zastosowanie w przypadku Systemu F – rozszerzenia rachunku λ , który będzie tematem Rozdziału 3 – i kompilatora GHC języka Haskell.

Szerokie omówienie struktur danych, które można wyrazić za pomocą rachunku λ bez typów można znaleźć w [Sel08, Rozdział 3]. Niniejszy rozdział opieramy na [Jan13]. Kodowanie Scotta, które jest jego tematem, jest stosunkowo mało popularne i nie spotyka się go w klasycznej literaturze przedmiotu.

1.6.1 Algebraiczne typy danych

Algebraiczne typy danych są podstawowym środkiem służącym do określania struktur danych we współczesnych funkcyjnych językach programowania. Na potrzeby prezentacji poszczególnych kodowań posłużymy się intuicjami o ADT zbudowanymi na gruncie następujących definicji w języku Haskell:

```
data Boolean = True
| False
data Tuple a b = Tuple a b
data Temperature = Fahrenheit Int
| Celsius Int
data Maybe a = Nothing
| Just a
data Nat = Zero
| Succ Nat
```

⁷Nie należy mylić z *Abstract Data Types*.

Definicja typu rozpoczynają się od słowa kluczowego data⁸ po którym występuje konstruktor typu. Na wzór notacji BNF, typy przyjmują jedną z wartości odzielonych znakiem "|". Każda z wartości składa się z konstruktora wartości i ewentualnie występujących po nim parametrów typowych. Zauważmy, że umożliwia to rekurencyjnie konstruowanie typów, tak jak w wypadku Nat i List.

Pokażemy, że algebraiczne typy danych możemy reprezentować w zwięzły sposób w rachunku λ bez typów. Przedstawione tutaj koncepcje w zaskakujący sposób przenoszą się do bardziej złożonych typowanych systemów rachunku λ .

1.6.2 Proste typy wyliczeniowe

Typy wyliczeniowe to typy, które reprezentują możliwe warianty przyjmowanej wartości. Najprostrzym nietrywialnym przykładem takiego typu jest Boolean. Ma on dwa konstruktory wartości: True, False. Praca z tego rodzaju typami wymaga mechanizmu dopasowywania wzorców (ang. pattern-matching) [PL92, Rozdział IV], który pozwala na wybór częściowej definicji funkcji w zależności od zadanego konstruktora wartości. Ponieważ w rachunku λ wyrażenia nie mają typów (lub, przyjmując perspektywę systemów z typami: wszystkie wyrażenia mają jeden, ten sam typ), interesowało nas będzie nie bezpośrednie kodowanie typu, ale kodowanie mechanizmu, który odpowiada za dopasowywanie wzorców. Posłużmy się znowu przykładem z języka Haskell i określmy funkcję odpowiadającą wykonaniu instrukcji warunkowej:

```
if True a b = a
if False a b = b
```

gdzie True i False są wartościami typu Boolean. Właśnie ze względu na nie, mechanizm dopasowywania wzorca wybiera odpowiednią implementację instrukcji warunkowej. Ten sam efekt osiągnęlibyśmy kodując True i False w rachunku λ w następujący sposób:

```
True \equiv \lambda ab. a
False \equiv \lambda ab. b
```

Wówczas funkcję if możemy reprezentować wyrażeniem if $\equiv \lambda cte.cte$ lub jego η -reduktem: $\lambda c.c.$

⁸Dyskusja ta ma na celu wyłącznie ustalenie uwagi; świadomi jesteśmy niuansów związanych z określaniem synonimów typów lub definiowaniem typów przy pomocy słowa kluczowego newtype.

1.6.3 Pary w rachunku λ

Parą nazywamy każdy nierekurencyjny typ, który posiada jeden konstruktor wartości parametryzowany przez dwa typy. W takim wypadku potrzebujemy dwóch projekcji zwracających odpowiednio pierwszy i drugi element pary. Przykładem takiego typu jest Tuple. Mamy wówczas:

```
fst (Tuple a b) = a
snd (Tuple a b) = b
```

Tego rodzaju typy możemy reprezentować przez domknięcie. Standardowym sposobem reprezentacji pary w rachunku λ jest:

Tuple
$$\equiv \lambda abf. fab$$

Uzywajac wyrażeń let, powyższą reprezentację możemy przepisać w postaci:

let
$$a = a$$
 $b = b$ in f

Aplikując Tuple tylko do dwóch termów (domykając term Tuple) otrzymujemy reprezentację pary. Argument f nazywamy kontynuacją, gdyż aplikując (Tuple x y) dla dowolnych $x, y \in \Lambda$ do pewnego $f \in \Lambda$, w konsekwencji x i y zostają zaaplikowane do f. Zauważmy, że wówczas reprezentacja fst i fst

fst
$$\equiv \lambda t. t(\lambda ab. a)$$

snd $\equiv \lambda t. t(\lambda ab. b)$

Przykład 12. Wprowadzone konstrukcje pozwalają nam na definicję skończonych (w sensie liczby konstruktorów) typów. Rozważmy następujące przykłady:

a) Konstruktory wartości typu Maybe możemy reprezentować przez

Nothing
$$\equiv \lambda n j. n$$

Just $\equiv \lambda a n j. j a$

Rozważmy następującą funkcję:

```
maybe :: b -> (a -> b) -> Maybe a -> b
maybe n _ Nothing = n
maybe _ f (Just x) = f x
```

Odpowiadająca jej reprezentacja to

maybe
$$\equiv \lambda b f t. t b (\lambda a. f a)$$

b) Rozważmy następującą funkcję

```
fromTemperature :: Temperature -> Int
fromTemperature (Fahrenheit a) = a
fromTemperature (Celsius a) = a
```

Ustalając reprezentację konstruktorów Fahrenheit i Celsius:

Fahrenheit
$$\equiv \lambda t f c. f t$$

Celsius $\equiv \lambda t f c. c t$

otrzymujemy reprezentację funkcji formTemperature postaci:

from Temperature
$$\equiv \lambda t. t(\lambda f. f)(\lambda c. c)$$

1.6.4 Kodowanie rekurencji

Rozważmy następującą funkcję dodawania liczb Peano w języku Haskell:

```
add Zero m = m
add (Succ n) m = Succ (add n m)
```

Funkcję tę możemy wyrazić w rachunku λ przy pomocy kodowania Scotta w następujący sposób:

$$add_0 \equiv \lambda nm. n m (\lambda n. Succ(add_0 n m))$$

Formalizm rachunku λ nie pozwala na określanie nowych nazw i rekurencyjne odnoszenie się przez nie do nich samych. Standardową techniką w rachunku λ do określania funkcji w ten sposób jest użycie operatora punktu stałego Y. Przypomnijmy:

$$Y \equiv \lambda f. (\lambda x. f(xx))(\lambda x. f(xx)).$$

Wówczas określamy

$$add_{Y} \equiv Y (\lambda a n m. nm (\lambda n. Succ(a n m)))$$

Mając na uwadze możliwość przeprowadzenia powyższej konstrukcji przy użyciu rekurencji, będziemy dopuszczali w notacji odnoszenie się wprowadzanych λ -termów do nich samych.

1.6.5 Kodowanie Scotta typów rekursywnych

Stosując metody kodowania prostych typów wyliczeniowych i par, łatwo odnajdujemy reprezentację konstruktorów wartości dla typów Nat i List:

Zero
$$\equiv \lambda z s. z$$
 Nil $\equiv \lambda n c. n$
Succ $\equiv \lambda n z s. s n$ Cons $\equiv \lambda x x_s n c. c x x_s$

Zwróćmy uwagę, że konstruktory Nat i Maybe są swoimi α -konwersami. Podobieństwo nie jest przypadkowe: na poziomie typów konstrukcja Maybe jest odpowiednikiem brania następnika. Określając dodatkowo Void $\equiv \lambda x.x$ jako element neutralny działania łącznego, otrzymujemy na poziomie typów strukturę półpierścienia z działaniem mnożenia określoną przez konstrukcję par i dzałaniem dodawania określonego przez konstrukcję typów wyliczeniowych. Stąd algebraicze typy danych biorą swoją nazwę.

Z łatwością możemy określić teraz operacje brania poprzednika, głowy i ogona listy, odpowiednio:

```
pred \equiv \lambda n. n \text{ undef } (\lambda m. m)
head \equiv \lambda x_s. x_s \text{ undef } (\lambda x_s. x)
tail \equiv \lambda x_s. \text{ undef } (\lambda x_s. x_s)
```

gdzie undef jest stałą o którą rozszerzamy rachunek λ celem sygnalizowania błędnej aplikacji.

Celem lepszego porównania kodowania Churcha i Scotta podamy reprezentacje funkcji foldl dla typu Nat. Określmy:

```
foldl f x Zero = x
foldl f x (Succ n) = f (foldl f x n)
```

foldl może być przy pomocy kodowania Scotta zapisane jako

fold
$$\exists \lambda f x n. n x (\lambda n. (fold | f x n))$$

Ogólnie, przy pomocy foldl wyabstrahowujemy pojęcie tzw. rekursji od strony ogona (ang. tail recrusion), w teorii obliczalności nazywane rekursją prostą lub, popularnie, zwijaniem od lewej. Operator foldl spełnia następującą własność [Hut99]

$$f = \text{foldl } \varphi \ a \iff \begin{cases} f \text{ Zero } = a \\ f \text{ (Succ } n) = \varphi \text{ (} f \text{ } n\text{)} \end{cases}$$
 (3)

1.6.6 Kodowanie Churcha typów rekursywnych

Przedstawimy teraz klasyczny sposób kodowania typów po raz pierwszy zaprezentowany dla liczb naturalnych przez A. Churcha w [Chu41]. Różni się on od kodowania Scotta tylko w przypadku typów rekursywnych, w pozostałych przypadkach obydwa kodowania dają te same rezultaty. Typ Nat ma dwa konstruktory: Zero i Succ. W kodowaniu Churcha reprezentujemy je w następujący sposób:

$$\operatorname{Zero}_{Ch} \equiv \lambda f x. x$$

 $\operatorname{Succ}_{Ch} \equiv \lambda n f x. f (n f x)$

Wyrażenia będące skutkiem konsekwentnej aplikacji Succ do Zero w literaturze popularnie nazywa się *liczebnikami Churcha* i oznacza następująco:

$$\bar{1} \equiv \operatorname{Succ}_{Ch} \operatorname{Zero}_{Ch} =_{\beta} \lambda f x. f x$$

$$\bar{2} \equiv \operatorname{Succ}_{Ch} \operatorname{Succ}_{Ch} \operatorname{Zero}_{Ch} =_{\beta} \lambda f x. f f x$$

$$\vdots$$

$$\bar{n} \equiv \operatorname{Succ}_{Ch}^{n} \operatorname{Zero}_{Ch} =_{\beta} \lambda f x. f^{n} x$$

Liczba naturalna n jest kodowana przez funkcję w której jej pierwszy argument jest aplikowany n razy do drugiego argumentu. Porównując je do kodowania Scotta widzimy, że różnica polega na aplikowaniu do kontynuacji termu $(n\,f\,x)$ w przypadku brania następnika. Da się pokazać [Hin05], że liczebniki Churcha są w istocie operacją foldl na argumentach Succ i Zero. Istotnie, niech nat $\equiv \lambda c$. c Succ Zero. Wówczas nat $\bar{n} =_{\beta} \bar{n}$. Z tego powodu kodowanie operacji na liczebnikach Churcha, lub ogólnie – funkcji opartych na rekursji prostej po zbiorze liczb naturalnych – jest wyjątkowo proste przy użyciu tej metody. Przykładowo, używając metody Churcha, operację dodawania kodujemy w następujący sposób:

$$\operatorname{add}_{Ch} \equiv \lambda n \, m. \, n \, \operatorname{Succ}_{Ch} \, m$$

Dla porównania, używając kodowania Scotta:

$$add_S \equiv \lambda n \, m$$
. fold Succ $n \, m$

1.6.7 Ogólny schemat kodowania Scotta typów ADT

W ogólnym przypadku, mając następującą definicję ADT:

dla $m, n \in \mathbb{N}$, wiążemy z nią reprezentację każdego z konstruktorów:

$$C_{1} \equiv \lambda t_{11} t_{12} \dots t_{1n_{1}} f_{1} f_{2} \dots f_{m}. f_{1} t_{11} t_{12} \dots t_{1n_{1}}$$

$$C_{2} \equiv \lambda t_{21} t_{22} \dots t_{2n_{2}} f_{1} f_{2} \dots f_{m}. f_{2} t_{21} t_{22} \dots t_{2n_{2}}$$

$$\vdots$$

$$C_{m} \equiv \lambda t_{m1} t_{m2} \dots t_{mn_{m}} f_{1} f_{m} \dots f_{m}. f_{1} t_{m1} t_{m2} \dots t_{mn_{m}}$$

Wówczas następującą definicję częściową funkcji f:

```
f (C1 v11 ... v1n1) = y1 ...
f (Cm vm1 ... vmnm) = ym
```

kodujemy przy za pomocą następujego λ -termu:

$$\lambda x. \ x (\lambda v_{11} \dots v_{1n_1}. \ y_1)$$

$$\vdots$$

$$(\lambda v_{m_1} \dots v_{mn_m}. \ y_m)$$

gdzie y_1 są kodowaniami Scotta yi dla $i \in \mathbb{N}$.

1.7 Podsumowanie

Istotą rachunku λ bez typów jest uchwycenie pojęcia aplikacji argumentu do funkcji. Kodując selektor if dla typu Boolean w 1.6.2 zauważmy, że nic nie powstrzymuje nas przed zaaplikowaniem do wyrażenia if dowolnego λ -termu. Analogiczna sytuacja ma miejsce, gdy określamy operacje na reprezentacji liczb naturalnych. Widzimy, że w ramach tak zakrojonego systemu nie mamy możlwiości uchwycenia które rezultaty są sensowne. Jak przekonamy się w Rozdziale 2, problem ten eliminuje w pewnym stopniu rozszerzenie systemu rachunku λ o typy wyrażeń. Wówczas aplikacja argumentu do funkcji wymaga wcześniejszej weryfikacji typu, zaś typy argumentów oraz rezultatu funkcji są z góry określone (z dokładnością do podstawienia). Niestety, w rezultacie otrzymujemy system w którym wiele sensownych wyrażeń możliwych do zbudowania w rachunku λ nie jest poprawnych. W dziedzinie projektowania języków programowania pożądane zaś są bogate systemy typów, które jednocześnie nie ograniczają ekspresji: takie, które pozwalają na określenie większej ilości programów o z góry zadanych własnościach.

2 Rachunek λ z typami prostymi

2.1 Typy proste

Niech U będzie przeliczalnie nieskończonym zbiorem zmiennych przedmiotowych $p,\ q,\ \dots$ (być może indeksowanych liczbami naturalnymi), które będziemy nazywali $zmiennymi\ typowymi.$

Definicja 35. (Typy proste) *Typami prostymi* będziemy określali najmniejszy w sensie mnogościowym zbiór wyrażeń taki, że:

- (S1) Jeśli p jest zmienną typową, to p jest typem prostym.
- (S2) Jeśli σ i τ są typami prostymi, to $(\sigma \to \tau)$ jest typem prostym.

Zmienne typowe nazywa się w literaturze niekiedy $stałymi typowymi^9$. Typy proste zbudowane tylko wedle reguły (S1) nazywamy typami atomowymi, zaś wyrażenia zbudowane wedle reguły (S2) – typami funkcyjnymi. Zbiór typów prostych określony w myśl powyższej definicji będziemy oznaczali przez \mathbb{T} . Definicję 35 można równoznacznie wyrazić przy pomocy notacji Backusa-Naura. Wówczas ma ona następującą, zwięzłą postać:

$$\mathbb{T} \leftarrow U \mid (\mathbb{T} \to \mathbb{T})$$

Późniejsze litery alfabetu greckiego $(\sigma, \tau, \rho, \ldots)$, być może z indeksami, będą służyły nam za zmienne metasyntaktyczne do oznaczania typów prostych. Dla lepszej czytelności będziemy pomijali najbardziej zewnętrzne nawiasy. Konstruktor typu \rightarrow wiąże prawostronnie; oznacza to, że typy $\sigma \rightarrow \tau \rightarrow \rho$ oraz $\sigma \rightarrow (\tau \rightarrow \rho)$ będziemy uznawali za tożsame.

Definicja 36. (Stwierdzenie, deklaracja, kontekst, sąd)

- (1) Stwierdzeniem (ang. statement) nazywamy każdy napis postaci $M : \sigma$, gdzie $M \in \mathbf{\Lambda}$ i $\sigma \in \mathbb{T}$. W stwierdzeniu $M : \sigma$ λ -term M nazwamy podmiotem (ang. subject), zaś σ predykatem¹⁰.
- (2) Deklaracją (ang. declaration) nazywamy każde stwierdzenie w którym podmiot jest zmienną termową.
- (3) Kontekstem (ang. context) nazywamy skończony liniowo uporządkowany zbiór (listę) deklaracji (Γ, \leq) , w którym wszystkie podmioty są wzajemnie różne.

⁹Podkreśla się w ten sposób ograniczenie typów prostych: abstrakcja po zmiennych typowych jest w tym systemie niemożliwa.

 $^{^{10}\}mathrm{Nazwy}$ te historycznie sięgają prac nad semantyką formalną języków naturalnych R. Montague.

- (4) Sqdem (ang. judgement) nazywamy każdy napis postaci $\Gamma \vdash M : \sigma$, gdzie Γ jest kontekstem, zaś $M : \sigma$ stwierdzeniem; w przypadku, gdy $\Gamma = \emptyset$, piszemy $\vdash M : \sigma$.
- **Definicja 37.** (1) Dla kontekstu $\Gamma = (x_1 : \sigma_1, \dots, x_n : \sigma_n)$ określamy

$$\operatorname{dom} \Gamma = \{ x \in V \mid (x : \sigma) \in \Gamma \},$$

$$\operatorname{rg} \Gamma = \{ \sigma \in \mathbb{T} \mid (x : \sigma) \in \Gamma \}.$$

Zbiory dom Γ i rg Γ nazywamy odpowiednio *dziedziną* i *zakresem* kontekstu Γ .

- (2) Powiemy, że konteksty $\Gamma = (D_1, \leq_1)$ i $\Delta = (D_2, \leq_2)$ są rozłączne, jeśli $D_1 \cap D_2 = \emptyset$.
- (3) Kontekst Γ' nazywamy podkontekstem Γ i piszemy $\Gamma' \subseteq \Gamma$, jeśli wszystkie deklaracje występujące w Γ' występują również w Γ z zachowaniem tego samego porządku; kontekst pusty oznaczać będziemy symbolem \varnothing .
- (4) Kontekst Γ' nazywamy permutacjq kontekstu Γ , jeśli wszystkie deklaracje w Γ' występują w Γ i odwrotnie.
- (5) Jeśli $\Gamma = (D_1, \leq_1)$ i $\Delta = (D_2, \leq_2)$ są kontekstami takimi, że $D_1 \cap D_2 = \emptyset$, to $konkatenacjq \Gamma$ i Γ' nazywamy kontekst $\Gamma + \Gamma' = (D_1 \cup D_2, \leq_{12})$, gdzie $d_1 \leq_{12} d_2$ zachodzi wtedy i tylko wtedy, gdy:
 - (a) dla $d_1, d_2 \in D_1$ zachodzi $d_1 \leq d_2$ lub
 - (b) dla $d_1, d_2 \in D_2$ zachodzi $d_1 \leq d_2$ lub
 - (c) $d_1 \in D_1 \text{ i } d_2 \in D_2$.

Przy powyższych ustaleniach, jeśli $\Gamma = (x_1 : \sigma_1, \ldots, x_k : \sigma_m)$ oraz $\Delta = (y_1 : \rho_1, \ldots, y_n : \rho_n)$, to mamy

$$\Gamma + \Gamma' = (x_1 : \sigma_1, \ldots, x_k : \sigma_m, y_1 : \rho_1, \ldots y_n : \rho_n).$$

(6) Jeśli Γ jest kontekstem i Φ jest zbiorem λ -zmiennych, wówczas projekcją Γ na Φ (symbolicznie $\Gamma \upharpoonright \Phi$) nazywamy podkontekst Γ' kontekstu Γ taki, że $\operatorname{dom}\Gamma' = (\operatorname{dom}\Gamma) \cap \Phi$.

Przykład 13. Niech $\Gamma \equiv (y:\sigma, x_1:\rho_1, x_2:\rho_2, z:\tau, x_3:\rho_3)$. Wówczas:

- (1) dom $\Gamma = \{y, x_1, x_2, z, x_3\}.$
- (2) $\varnothing \subseteq (x_1 : \rho_1, z : \tau) \subseteq \Gamma$.
- (3) $(x_1 : \rho_1, x_2 : \rho_2, x_3 : \rho_3, y : \sigma, z : \tau)$ jest permutacją Γ .
- (4) $\Gamma \upharpoonright \{z, u, x_1\} = (x_1 : \rho_1, z : \tau).$

Konwencja. Niech Γ, Δ będą rozłącznymi kontekstami i $x : \sigma$ dowolną deklaracją. Wprowadzamy następującą notację:

$$\Gamma, x : \sigma \equiv \Gamma + (x : \sigma)$$
$$\Gamma, \Delta \equiv \Gamma + \Delta$$

2.2 Typowanie

Wprowadzamy następujące reguły wyprowadzania typu (relacji typowalności):

$$\Gamma \vdash x : \sigma \text{ (var)}, \qquad \text{jeśli } x : \sigma \in \Gamma,$$

$$\frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash (MN) : \tau} \text{ (app)},$$

$$\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash (\lambda x. M) : \sigma \to \tau} \text{ (abs)}.$$

W systemie tym mamy do czynienia z wyraźnym podziałem na obiekty dwóch rodzajów: λ -termy i typy. λ -termy możemy przekształcać dwoma dualnymi operacjami: λ -abstrakcją i aplikacją. Rezultat operacji zależy od wyboru zmiennej wolnej, którą chcemy wyabstrahować z termu albo wyboru termu, który chcemy zaaplikować do innego termu, odpowiednio. Dlatego mówimy, że w rachunku λ z typami prostymi termy zależą od termów. Ponieważ abstrahowanie przebiega wyłącznie po zbiorze λ -zmiennych, mówimy, że zależność (abstrakcja) jest pierwszego rzędu.

Definicja 38. (Wyprowadzenie typu) Wyprowadzeniem sądu $\Gamma \vdash M : \sigma$ nazywamy skończone drzewo sądów \mathcal{P} takie, że dla pewnego kontekstu Δ spełnione są następujące warunki:

- (D1) W korzeniu \mathcal{P} znajduje się sąd $\Gamma \vdash M : \sigma$, gdzie $\Gamma \subset \Delta$.
- (D2) Liście \mathcal{P} są aksjomatami, czyli sądami postaci $\Delta \vdash x : \sigma$.
- (D3) Wszystkie pozostałe sądy w \mathcal{P} są uzyskane ze swoich dzieci za pomocą reguły (app) albo (abs).

Jeśli istnieje wyprowadzenie sądu dla $\Gamma \vdash M : \sigma$, to powiemy, że jest on *wyprowadzalny*. Jeśli nie będzie to prowadziło do niejednoznaczności, będziemy wówczas również pisali $\Gamma \vdash M : \sigma$.

Definicja 39. (Poprawność, typowalność) λ -term $M \in \Lambda$ nazywamy poprawnym (ang. legal) lub typowalnym (ang. typable), jeśli istnieje wyprowadzenie sądu $\Gamma \vdash M : \rho$ dla pewnego kontekstu Γ i typu $\rho \in \mathbb{T}$.

Przykład 14. (a) Niech $\Gamma = (x : \sigma, y : \tau)$. Pokażemy, że $K = \lambda xy. x$ ma typ $\sigma \to \tau \to \sigma$. Istotnie,

$$\frac{x:\sigma, y:\tau \vdash x:\sigma}{x:\sigma \vdash \lambda y. x:\tau \to \sigma} \text{ (abs)}$$
$$\vdash \lambda xy. x:\sigma \to \tau \to \sigma$$

(b) Niech $\Gamma = (x : \tau \to \rho, y : \sigma \to \tau, z : \sigma)$. Wówczas:

$$\frac{\Gamma \vdash y : \sigma \to \tau \qquad \Gamma \vdash z : \sigma}{\Gamma \vdash yz : \tau} \text{ (app)}$$

$$\frac{\Gamma \vdash x : \tau \to \rho \qquad \Gamma \vdash x(yz) : \rho}{\Gamma \vdash x(yz) : \rho \qquad \text{(abs)}}$$

$$\frac{x : \tau \to \sigma, y : \sigma \to \rho \vdash \lambda z. x(yz) : \sigma \to \rho}{x : \tau \to \rho \vdash \lambda yz. x(yz) : (\sigma \to \tau) \to \sigma \to \rho} \text{ (abs)}$$

$$\frac{x : \tau \to \rho \vdash \lambda yz. x(yz) : (\sigma \to \tau) \to \sigma \to \rho}{\vdash \lambda xyz. x(yz) : (\tau \to \rho) \to (\sigma \to \tau) \to \sigma \to \rho} \text{ (abs)}$$

Uwaga. Notacja dowodowa zaproponowana w Przykładzie 14 utrudnia zorientowanie się w dłuższych wyprowadzeniach przez konieczność wielokrotnego powtarzania kontekstów. Wariant notacji w postaci drzew wprowadzony przez Pravitza i proponowany w [HS08] eliminuje ten problem przez wprowadzanie do wyprowadzenia poszczególnych deklaracji przed użyciem i wykreślanie jej po użyciu. W dalszej części pracy będziemy korzystać z analogicznej pod wieloma względami notacji Fitcha (tzw. notacji flagowej) proponowanej w [NG14]. Poniżej pokazujemy wyprowadzenia typu z Przykładu 14 w tej notacji.

(a)
$$\begin{array}{c|cccc} 1 & \underline{x}: \sigma & \text{(var)} \\ 2 & \underline{y}: \tau & \text{(var)} \\ 3 & \lambda y. \, x: \tau \to \sigma & \text{(abs)} \ 1 \\ 4 & \lambda xy. \, x: \sigma \to \tau \to \sigma & \text{(abs)} \ 3 \end{array}$$

(b)
$$\begin{array}{c|cccc}
1 & x: \tau \to \rho & \text{(var)} \\
2 & y: \sigma \to \tau & \text{(var)} \\
3 & z: \sigma & \text{(var)} \\
4 & yz: \tau & \text{(app) 2 3} \\
5 & x(yz): \rho & \text{(app) 1 4} \\
6 & \lambda z. x(yz): \sigma \to \rho & \text{(abs) 5} \\
7 & \lambda yz. x(yz): (\sigma \to \tau) \to \sigma \to \rho & \text{(abs) 6} \\
8 & \lambda xyz. x(yz): (\tau \to \rho) \to (\sigma \to \tau) \to \sigma \to \rho & \text{(abs) 7}
\end{array}$$

Klasyfikacja problemów z typowaniem W teorii typów spotykamy trzy rodzaje problemów dotyczące sadów:

1. Problem typowalności (ang. well-typedness, typability) Polega na rozstrzygnięciu czy zadany term jest poprawny, czyli znalezieniu kontekstu oraz wyprowadzenia typu względem tego kontekstu dla zadanego termu. Symbolicznie:

$$? \vdash \text{term} : ?$$

Problem typowalności przy zadanym kontekście nazywamy problemem przypisania typu (ang. type assignment). Ma on następującą postać:

$$kontekst \vdash term : ?$$

2. Problem weryfikacji typu (ang. type checking)

Polega na sprawdzeniu czy term ma zadany typ względem danego kontekstu. Symbolicznie:

$$kontekst \stackrel{?}{\vdash} term : typ$$

3. Problem inhabitacji (ang. inhabitation, term finding)

Polega na skonstruowaniu termu (lub przynajmniej wykazaniu istnienia takiego termu), który miałby zadany typ względem danego kontekstu. Symbolicznie:

$$kontekst \vdash ? : typ$$

W wielu systemach problem typowalności można sprowadzić do problemu weryfikacji typu. Istotnie, przypuśćmy, że M jest poprawnym termem i $FV(M) = \{x_1, \ldots x_n\}$. Zauważmy, że M jest typowalny, jeśli wyprowadzalny jest sąd

$$x_0: p \vdash \mathrm{K} x_0(\lambda x_1 \ldots x_n. M): p$$

gdzie $p \in U$ jest zmienną typową, zaś kombinator $K \equiv \lambda xy. x$.

Wszystkie wymienione problemy są w rachunku λ z typami prostymi rozstrzygalne, tzn. istnieją efektywnie obliczalne metody ich rozwiązywania. Czytelnika zainteresowanego szczegółami odsyłamy do [SU06, Twierdzenie 3.2.7] i [Bar92, Rozdział 4.4]. Fakt ten nie jest oczywisty dla innych systemów typów; za przykład wystarczy wziąć wynik J. B. Wellsa [Wel99], który stwierdza, że problemy typowalności i weryfikacji typu w Systemie F (w stylu Currego) są nierozstrzygalne.

2.3 Własności

Przedstawimy teraz szereg lematów ustalających związki między rachunkiem λ bez typów wprowadzonym w Rozdziałe 1, a rachunkiem λ z typami prostymi oraz najistotniejsze własności wprowadzonego właśnie systemu typów.

Lemat 3. (O generowaniu)

- (1) $Je\acute{s}li\ \Gamma \vdash x : \sigma, \ to \ x : \sigma \in \Gamma.$
- (2) $Jeśli \ \Gamma \vdash MN : \tau, \ to \ \Gamma \vdash M : \sigma \to \tau \ i \ \Gamma \vdash N : \sigma \ dla \ pewnego \ \sigma \in \mathbb{T}.$
- (3) $Je\acute{s}li\ \Gamma \vdash \lambda x.\ M:\tau\ i\ x \notin \mathrm{dom}\ \Gamma,\ to\ \tau \equiv \tau_1 \to \tau_2\ oraz\ \Gamma, x:\tau_1 \vdash N:\tau_2.$

Dowód. Wynika natychmiast z postaci λ -termu.

Lemat 4. (O podtermie) Podterm poprawnego λ -termu jest poprawny.

Dowód. Załóżmy, że sąd $J: \Gamma \vdash M: \sigma$ jest wyprowadzalny. Dowód przebiega przez indukcję względem długości wyprowadzenia J. Rozważmy następujące przypadki:

- (a) Jeśli J jest konsekwencją reguły var, to $Sub(M) = \{M\}$ (Definicja 2.1), a zatem teza jest trywialnie spełniona.
- (b) Jeśli J jest konsekwencją reguły app, to $M \equiv PQ$ dla P, Q dla których twierdzenie zachodzi. Ponieważ $\mathrm{Sub}(M) = \mathrm{Sub}(P) \cup \mathrm{Sub}(Q) \cup \{PQ\}$ (Definicja 2.3), to teza również zachodzi.
- (c) Jeśli J jest konsekwencją reguły abs, to $M \equiv \lambda x$. P dla pewnego P dla którego twierdzenie zachodzi. Ponieważ $\mathrm{Sub}(\lambda x. M) = \mathrm{Sub}(M) \cup \{\lambda x. M\}$, (Definicia 2.5) to teza zachodzi również w tym przypadku.

Lemat 5. (O zmiennych wolnych) Jeśli sąd $\Gamma \vdash L : \sigma$ jest wyprowadzalny, to $FV(L) \subseteq \text{dom } \Gamma$.

Dowód. Dowód przeprowadzamy przez indukcję względem długości wyprowadzenia sądu $J: \Gamma \vdash L: \sigma$. Rozważmy następujące przypadki:

- (a) Jeśli J jest konsekwencą reguły var, to $L \equiv x$ dla pewnej λ -zmiennej x. Wobec tego $x : \sigma \in \Gamma$, a zatem $FV(x) \subseteq \text{dom }\Gamma$.
- (b) Jeśli J jest konsekwencją reguły app, to J musi mieć postać $\Gamma \vdash MN : \sigma$. Z założenia indukcyjnego: $\mathrm{FV}(M) \subseteq \mathrm{dom}\,\Gamma$ i $\mathrm{FV}(N) \subseteq \mathrm{dom}\,\Gamma$. Z Definicji 3: $\mathrm{FV}(MN) = \mathrm{FV}(M) \cup \mathrm{FV}(N)$. Stąd $\mathrm{FV}(MN) \subseteq \mathrm{dom}\,\Gamma$.
- (c) Jeśli J jest konsekwencją reguły abs, to J musi mieć postać $\Gamma \vdash \lambda x. M : \sigma$. Z założenia indukcyjnego $FV(M) \subseteq \text{dom } \Gamma$. Ponieważ $FV(\lambda x. M) = FV(M) \setminus \{x\} \subseteq FV(M)$ (z Definicji 3), to $FV(M) \subseteq \text{dom } \Gamma$.

Lemat 6. (1) Niech Γ' i Γ'' bedą kontekstami takimi, że $\Gamma' \subseteq \Gamma''$. Jeśli $\Gamma' \vdash M : \sigma$, to $\Gamma'' \vdash M : \sigma$.

- (2) $Je\acute{s}li\ \Gamma \vdash M : \sigma$, to $\Gamma \upharpoonright FV(M) \vdash M : \sigma$.
- (3) $Jeśli \Gamma \vdash M : \sigma \ i \Gamma' \ jest \ permutacją \Gamma, \ to \Gamma' \vdash M : \sigma.$

Dowód. Dowody przebiegają przez indukcję względem długości wyprowadzenia. Czytelnika zainteresowanego szczegółami odsyłamy do [Bar92, Tw. 3.1.7]. □

Lemat 7. (O podstawieniu) Załóżmy, że

- (a) $\Gamma_1, x : \sigma, \Gamma_2 \vdash M : \rho$
- (b) $\Gamma_1 \vdash N : \sigma$

Wówczas $\Gamma_1, \Gamma_2 \vdash M[x/N] : \rho$.

Dowód. Niech $\Gamma = \Gamma_1 + \Gamma_2$. Korzystając z części (3) Lematu 6 dowód przeprowadzimy przez indukcję względem długości wyprowadzenia Γ , $x : \sigma \vdash M : \rho$. Rozważmy następujące przypadki:

- (i) Jeśli $\Gamma, x : \sigma \vdash M : \rho$ jest konsekwencją reguły var, to $M \equiv x$. Wówczas $M[x/N] \equiv N$ i $\rho \equiv \sigma$. Teza zachodzi w oczywisty sposób.
- (ii) $\Gamma, x : \sigma \vdash M : \rho$ jest konsekwencją reguły app. Wówczas $M \equiv PQ$ i istnieją wyprowadzenia $\Gamma, x : \sigma \vdash P : \tau \to \rho$ oraz $\Gamma, x : \sigma \vdash Q : \tau$. Z założenia indykcyjnego mamy, że $\Gamma \vdash P[x/N] : \tau \to \rho$ oraz $\Gamma \vdash Q[x/N] : \tau$. Wówczas stosując regułe app mamy:

$$\frac{\Gamma \vdash P[x/N] : \tau \to \rho \qquad \Gamma \vdash Q[x/N] : \tau}{\Gamma \vdash (P[x/N]Q[x/N]) : \rho} \text{ (app)}.$$

Tezę otrzymujemy z faktu, że (PQ)[x/N] = P[x/N]Q[x/N].

(iii) Jeśli $\Gamma, x : \sigma \vdash M : \rho$ jest konsekwencją reguły abs, to $M \equiv \lambda y.P : \rho$ dla $\rho \equiv \sigma \rightarrow \tau, \ y \not\equiv x.$ Z założenia indukcyjnego istnieje wyprowadzenie $\Gamma', \ y : \tau \vdash P[x/N] : \rho$, gdzie $\Gamma' = \Gamma + (x : \sigma)$. Wówczas, stosując regułę abs mamy:

$$\frac{\Gamma', y : \tau \vdash P[x/N] : \rho}{\Gamma' \vdash (\lambda y. P[x/N]) : \tau \to \rho} \text{ (abs)}.$$

Ponieważ $(\lambda y. P)[x/N] = \lambda y. P[x/N]$ oraz $M \equiv \lambda y. P : \tau \rightarrow \rho$, otrzymujemy tezę.

Lemat 8. (Redukcja podmiotu) Załóżmy, że

- (i) $\Gamma \vdash M : \sigma$
- (ii) $M \to_{\beta}^* N$

 $W\'owczas \Gamma \vdash N : \sigma$.

Dowód. Pokażemy, że twierdzenie zachodzi dla jednego kroku redukcji \rightarrow_{β} . Dowód zwrotności jest trywialny, zaś aby pokazać przechodniość wystarczy skorzystać z indukcji wzgledem długości ciągu redukcji.

Niech $M \to_{\beta} N$. Dowód przeprowadzimy przez indukcję względem długości wyprowadzenia $\Gamma \vdash M : \sigma$. Rozważmy następujące przypadki:

- (a) $\Gamma \vdash M : \sigma$ jest konsekwencją reguły var. Wówczas $M \equiv x$ dla pewnej λ -zmiennej $x \in V$. Wówczas poprzednik nie jest spełniony, bowiem M nie da się zredukować. Zatem twierdzenie trywialnie zachodzi.
- (b) $\Gamma \vdash M : \sigma$ jest konsekwencją reguły app. Wówczas $M \equiv PQ$ oraz istnieją wyprowadzenia $\Gamma \vdash P : \tau \to \sigma$ oraz $\Gamma \vdash Q : \sigma$. Ponadto zakładamy, że dla pewnych $P', Q' \in \Lambda$ mamy $P \to_{\beta} P'$ i $Q \to_{\beta} Q'$. Istnieją dwie możliwości redukcji $M \to_{\beta} N$:
 - (1) $N \equiv PQ'$. Poniważ $\Gamma \vdash Q' : \sigma$ (założenie indukcyjne), to możemy zastosować regułę app:

$$\frac{\Gamma \vdash P : \tau \to \sigma \quad \Gamma \vdash Q' : \tau}{\Gamma \vdash PQ' : \sigma} \text{ (app)}.$$

Ponieważ $N \equiv PQ'$, to otrzymujemy tezę.

- (2) $N \equiv P'Q$. Postępujemy analogicznie do przypadku (1)
- (c) $\Gamma \vdash M : \sigma$ jest konsekwencją reguły abs. Wówczas $M \equiv \lambda x. P$, dla pewnych $\rho, \tau \in \mathbb{T}$ mamy $\sigma \equiv \rho \to \tau$ oraz istnieje wyprowadzenie sądu $\Gamma, x : \rho \vdash P : \tau$. Ponadto zakładamy, że dla pewnego $P' \in \Lambda$ mamy $P \to_{\beta} P'$. β -redukcja $M \to_{\beta} N$ musi prowadzić w tym wypadku do $N \equiv \lambda x. P'$. Ponieważ $\Gamma, x : \rho \vdash P' : \tau$ (założenie indukcyjne), to możemy zastosowac regułę abs:

$$\frac{\Gamma', x : \rho \vdash P' : \tau}{\Gamma \vdash \lambda \, x. \, P' : \rho \to \tau} \text{ (abs)}.$$

Stąd teza.

Lemat 9. (Zachowawczość η-redukcji) Załóżmy, że

- (i) $\Gamma \vdash M : \sigma$,
- (ii) $M \to_n^* N$.

 $W\acute{o}wczas \Gamma \vdash N : \sigma$.

Dowód. Dowód przeprowadzamy analogicznie do Lematu 8. □

Twierdzenie 5. (Własność Churcha-Rossera) Relacja \rightarrow_{β} określona na typowalnych λ -termach ma własność CR.

Dowód. Wynika to bezpośrednio z Faktu 1 i Lematu 8. □

2.3.1 Uniwersalny polimorfizm

Istnieje kilka wariantów wprowadzania typów prostych. Przedstawiony w tym rozdziale rachunek nazywany jest stylem Currego. Charakteryzuje go fakt, że poprawne termy mają jednoznacznie wyznaczony typ z dokładnością do podstawienia. Oznacza to, że zmienne wystepujące w typie każdego poprawnego termu są w istocie kwantyfikowane po zbiorze wszystkich typów prostych. Każdy taki typ nazywamy typem (uniwersalnie parametrycznie) polimorficznym zgodnie z klasyfikacją zaproponowaną w [CW85].

Definicja 40. (Podstawienie typu) Podstawienie typu τ za zmienną typową p w typie σ nazywamy następującą funkcję :

$$p[p/\tau] = \tau,$$

$$q[p/\tau] = q, \text{ jeśli } q \not\equiv p,$$

$$(\sigma_1 \to \sigma_2)[p/\tau] = \sigma_1[p/\tau] \to \sigma_2[p/\tau].$$

Jeśli Γ jest kontekstem, to przez $\Gamma[p/\tau]$ oznaczamy podstawienie τ za zmienną p dla wszystkich typów występujących w Γ .

Lemat 10. Jeśli $\Gamma \vdash M : \sigma$, to $\Gamma[p/\tau] \vdash M : \sigma[p/\tau]$ dla dowolnego $\tau \in \mathbb{T}$ i zmiennej $p \in U$.

Dowód. Dowód przebiega przez indukcję względem długości wyprowadzenia $\Gamma \vdash M : \sigma$. Szczegóły pomijamy.

Mając na uwadze Lemat 10 możemy wnioskować o wielu własnościach funkcji reprezentowanych przez λ -termy tylko na podstawie typu. Na przykład typowi $\sigma \to \sigma$ odpowiada dokładnie jeden (z dokładnością do α -konwersji) term $\lambda x. x$ i reprezentuje on funkcję identycznościową; typom $\sigma \to \rho \to \sigma$ i $\sigma \to \rho \to \rho$ odpowiednio przypisać możemy wyłącznie projekcje fst i snd (określone w 1.6.3), zaś typowi $(\rho \to \tau) \to (\sigma \to \rho) \to \sigma \to \tau$ term $\lambda gfx.g(fx)$ reprezentujący złożenie funkcji (Przykład 14 (b)), co do której wiemy z kolei, że jest łączna. Jest to wyraz ogólnej zależności: dysponując dowolnym typem polimorficznym otrzymujemy twierdzenie za darmo [Wad89] dotyczące termów, które są tego typu.

2.3.2 Silna normalizacja

Pokażemy, że wszystkie typowalne λ -termy redukują się do postaci β -normalnej przez skończony ciąg β -redukcji. Oznacza to, że nie ma możliwości otrzymania nieskończonego ciągu β -redukcji, tak jak to miało miejsce w Przykładzie 8 (a) (b) i to bez względu na przyjętą strategię redukcji.

Ponieważ wszystkie ciągi redukcji są w tym systemie skończone, to relacja β -konwersji jest rozstrzygalna, wystarczy bowiem sprowadzić jej argumenty do postaci normalnej¹¹. Opracowany tutaj dowód pochodzi z [HS08, Dodatek A3]. Polega on na:

- 1. Konstrukcji interpretacji dla typów prostych: termów redukowalnych.
- 2. Wykazaniu, że każdy term redukowalny jest silnie normalizowalny.
- 3. Wykazaniu, że każdy typowalny term jest redukowalny.

Rozumowanie przedstawione w tym dowodzie, tzw. computability method oryginalnie przypisywane W. Taitowi [Tai67], z odpowiednimi zmianami stosuje się w dowodach własności silnej normalizacji dla innych systemów typów [SU06, Podrozdział 11.5][GTL89, Rozdział 6].

Definicja 41. (Termy redukowalne) Niech $\Gamma \vdash M : \sigma$. Powiemy, że M jest redukowalny (także silnie obliczalny), jeśli spełnia poniższe warunki:

¹¹Rodzi to jednak nietrywialne problemy natury złożonościowej [SU06, Rozdział 3.7].

(R1) Jesli σ jest zmienną typową, to M jest silnie normalizowalny. Określamy:

$$\llbracket \sigma \rrbracket = \mathrm{SN}.$$

(R2) Jesli σ jest typem funkcyjnym postaci $\sigma \equiv \rho \rightarrow \tau$, to dla wszystkich termów redukowalnych N takich, że $\Gamma' \vdash MN : \tau$, MN jest redukowalny. Określamy:

$$\llbracket \rho \to \tau \rrbracket = \{ M \mid \forall N (N \in \llbracket \rho \rrbracket) \implies MN \in \llbracket \tau \rrbracket \}.$$

Lemat 11. Niech $\tau \in \mathbb{T}$ bedzie dowolnym typem prostym. Wówczas:

- (1) $\llbracket \tau \rrbracket \subseteq SN$.
- (2) $Jeśli N_1, N_2, ..., N_k \in SN, to xN_1N_2...N_k \in [\![\tau]\!].$

Dowód. Dowód przeprowadzimy przez indukcję strukturalną względem typu τ . Mamy do rozważenia następujące dwa przypadki:

- (a) τ jest zmienną typową.
 - (1) Wynika bezpośrednio z definicji $[\tau] \in SN$.
 - (2) Niech $N_1, N_2, \ldots, N_k \in SN$. Wówczas $N_1, N_2, \ldots, N_k \in SN$. Z definicji $\llbracket \tau \rrbracket \text{ mamy, że } xN_1N_2\ldots N_k \in \llbracket \tau \rrbracket$.
- (b) Przypuśćmy, że $\tau = \sigma \rightarrow \rho$ oraz twierdzenie zachodzi dla σ i ρ .
 - (1) Niech $M \in \llbracket \sigma \to \rho \rrbracket$ i niech x bedzie dowolną λ -zmienną. Z części (2) założenia indukcyjnego mamy $x \in \llbracket \sigma \rrbracket$, zatem z definicji $\llbracket \sigma \to \rho \rrbracket$ mamy $Mx \in \llbracket p \rrbracket$. Ponieważ z części (1) założenia indukcyjnego $\llbracket \rho \rrbracket \in SN$, to $Mx \in SN$ i w konsekwencji $\llbracket \sigma \to \rho \rrbracket \subseteq SN$.
 - (2) Niech $P \in \llbracket \sigma \rrbracket$. Wówczas z części (1) założenia indukcyjnego $P \in SN$. Chcemy pokazać, że $xN_1N_2...N_k \in \llbracket \rho \rrbracket$. Z części (2) założenia indukcyjnego

$$xN_1N_2\dots N_kN_{k+1}\in \llbracket\rho\rrbracket.$$

Ustalając $N_{k+1} \equiv P$ otrzymujemy tezę.

Lemat 12. Załóżmy, że:

- (a) $M[x/N_0]N_1 \dots N_k \in SN$,
- (b) $N_0 \in SN$.

Wówczas $(\lambda x. M)N_0N_1...N_k \in SN$.

Dowód. (Ad absurdum) Przypuśćmy, że $P_0 \equiv (\lambda x. M) N_0 N_1 ... N_k \notin SN$. Wówczas istnieje nieskończony ciąg redukcji

$$P_0 \rightarrow P_1 \rightarrow \dots$$

Każdy podterm λ -termu silnie normalizowalnego jest silnie normalizowalny. Ponieważ $P_0 \equiv M[x/N_0]N_0N_1...N_k \in SN$, to $M[x/N_0], N_0, N_1, ..., N_k \in SN$. Na podstawie Lematu 2 mamy ponadto, że $M \in SN$. Wobec tego dla pewnego $n \in \mathbb{N}$ redukcji ulega redeks czołowy:

$$P_n \equiv (\lambda x. M') N_0' N_1' \dots N_k' \to_{\beta} M' [x/N_0'] N_0' N_1' \dots N_k' \equiv P_{n+1},$$

gdzie $M \to_{\beta}^* M'$ oraz $N_i \to_{\beta}^* N_i'$ dla $i \leq k$. Ale skoro tak, to prawdą jest również, że $M[x/N_0]N_1 \dots N_k \to_{\beta}^* P_{n+1}$, zaś $M[x/N_0]N_1 \dots N_k \in SN$. Zatem $P_{n+1} \in SN$, co prowadzi do sprzeczonści.

Lemat 13. Załóżmy, że:

- (a) $M[x/N_0]N_1...N_k \in [\![\tau]\!],$
- (b) $N_0 \in SN$.

 $W\acute{o}wczas\ (\lambda x.M)N_0N_1...N_k \in \llbracket \tau \rrbracket.$

Dowód. Dowód przebiega przez indukcję strukturalną względem τ . Rozważmy następujące przypadki:

- (a) Jeśli τ jest zmienną typową, to $[\![\tau]\!]$ = SN. Wobec tego problem sprowadza się do Lematu 12.
- (b) Przypuśćmy, że $\tau \equiv \sigma \to \rho$ i niech $M[x/N_0]N_1 \dots N_k \in \llbracket \sigma \to \rho \rrbracket$. Wybierzmy dowolny $P \in \llbracket \sigma \rrbracket$. Wówczas $M[x/N_0]N_1 \dots N_k N_{k+1} \in \llbracket \rho \rrbracket$. Z założenia indukcyjnego mamy jednak, że $(\lambda x. M)N_0 N_1 \dots N_k N_{k+1} \in \llbracket \rho \rrbracket$. Wystarczy więc przyjąć $N_{k+1} \equiv P$ i z definicji $\llbracket \sigma \to \rho \rrbracket$ mamy, że $(\lambda x. M)N_0 N_1 \dots N_k \in \llbracket \sigma \to \rho \rrbracket$.

Definicja 42. Powiemy, że kontekst $\Gamma = (x_1 : \sigma_1, x_2 : \sigma_2, ..., x_n : \sigma_n)$ spełnia stwierdzenie $M : \sigma$ i będziemy pisali $\Gamma \models M : \sigma$, jeśli dla dowolnych $N_1 \in \llbracket \sigma_1 \rrbracket$, $N_2 \in \llbracket \sigma_2 \rrbracket$, ..., $N_n \in \llbracket \sigma_n \rrbracket$ mamy, że:

$$M[x_1/N_1, x_2/N_2, \ldots, x_n/N_n] \in [\![\tau]\!].$$

Lemat 14. Jeśli $\Gamma \vdash M : \tau$, to $\Gamma \vDash M : \tau$.

Dowód. Dowód będzie przebiegał przez indukcję względem wyprowadzenia $\Gamma \vdash M : \tau$. Niech $\Gamma = (x_1 : \tau_1, x_2 : \tau_2, \ldots, x_n : \tau_n)$ będzie kontekstem dla którego istnieje wyprowadzenie $J : \Gamma \vdash M : \tau$. Wybierzmy $N_1 \in [\![\tau_1]\!], N_2 \in [\![\tau_2]\!], \ldots, N_n \in [\![\tau_n]\!]$. Rozważmy następujące przypadki:

- (a) J jest konsekwencją reguły var. Wówczas J jest postaci $\Gamma \vdash x_i : \tau$ dla pewnego $i \in \mathbb{N}, \ 1 \le i \le n$, gdzie $x_i : \tau \in \Gamma$. Stąd $M[\vec{x}/\vec{N}] = x_i[x_i/N_i] = N_i \in [\![\tau]\!]$. Z dowolności $N_i, \ \Gamma \vDash M : \tau$.
- (b) J jest konsekwencją reguły app. Wówczas J jest postaci $\Gamma \vdash PQ : \tau$. Z założenia indukcyjnego istnieje $\sigma \in \mathbb{T}$ takie, że $\Gamma \vDash P : \sigma \to \tau$ i $\Gamma \vDash Q : \sigma$. Wobec tego $P[\vec{x}/\vec{N}] \in \llbracket \sigma \to \tau \rrbracket$ i $Q[\llbracket \vec{x}/\vec{N} \rrbracket \in \llbracket \sigma \rrbracket$. Z definicji jednoczesnego podstawienia (Definicja 11) mamy:

$$PQ[\vec{x}/\vec{N}] = P[\vec{x}/\vec{N}]Q[\vec{x}/\vec{N}]$$

Z definicji $[\![\sigma \to \tau]\!]$ wówczas $M \in [\![\tau]\!].$

(c) J jest konsekwencją reguły abs. Wówczas J jest postaci $\Gamma \vdash \lambda y. P : \sigma \rightarrow \rho$, gdzie $y \notin \text{dom}\Gamma$. Z założenia indukcyjnego mamy, że $\Gamma, y : \sigma \models P : \rho$. Oznacza to, że dla dowolnych $N_1 \in \llbracket \tau_1 \rrbracket, N_2 \in \llbracket \tau_2 \rrbracket, \ldots, N_n \in \llbracket \tau_n \rrbracket$ mamy

$$\forall N \in \llbracket \sigma \rrbracket \left(P[\vec{x}, y/\vec{N}, N] \in \llbracket \rho \rrbracket \right) \tag{*}$$

Ustalmy $P' \equiv P[y/y'][\vec{x}/\vec{N}]$, gdzie $y' \notin \text{dom}\Gamma$ i $y' \notin \text{FV}(N_i)$ dla $i \in \mathbb{N}, 1 \le i \le n$. Wówczas z (*):

$$\forall N \in \llbracket \sigma \rrbracket \ (P'[y'/N] \in \llbracket \rho \rrbracket)$$

Ustalmy $N_0 \in [\![\sigma]\!]$. Wówczas z części (1) Lematu 11 $N_0 \in SN$. Wobec tego z Lematu 13 wnioskujemy, że:

$$(\lambda y'. P') N_0 \in \llbracket \rho \rrbracket \tag{**}$$

Zauważmy teraz, że ponieważ $\forall i \ y_i \notin FV(N_i)$

$$(\lambda y'. P') = (\lambda y'. P[y/y'][\vec{x}/\vec{N}])$$

$$= (\lambda y'. P[y/y'])[\vec{x}/\vec{N}] = (\lambda y. P)[\vec{x}/\vec{N}]$$
(***)

Z (**) i (***) otrzymujemy

$$((\lambda y. P)[\vec{x}/\vec{N}]) N_0 \in [\![\rho]\!].$$

Ponieważ $N_0 \in \llbracket \sigma \rrbracket$, to z definicji $\llbracket \sigma \to \rho \rrbracket$ mamy, że

$$(\lambda y. P)[\vec{x}/\vec{N}] \in [\sigma \to \rho].$$

Z dowolności \vec{N} otrzymujemy ostatecznie, że $\Gamma \vDash \lambda y. P.$

Twierdzenie 6. (O silnej normalizacji) Jeżeli $\Gamma \vdash M : \tau$, to $M \in SN_{\beta}$.

Dowód. Na podstawie Lematu 14, jeśli $\Gamma \vdash M : \tau$, to $M \in \llbracket \tau \rrbracket$. Stosując Lemat 11 otrzymujemy tezę.

Natychmiast widzimy, że własność silnej normalizacji pociąga za sobą własność słabej normalizacji, dlatego pomijamy dowód tej drugiej.

2.4 Typy w stylu Churcha

Przypisanie typu λ -termowi rozpoczynamy zawsze od określenia typów dla λ -zmiennych. Zasadniczo możemy to rozwiązać na dwa sposoby:

- 1. Możemy przypisać unikalny typ każdej λ -zmiennej przed jej wprowadzeniem. Takie podejście nazywamy stylem Churcha albo typowaniem explicite, ponieważ deklaracje typowe zmiennych występują jawnie w składni λ -termów. W konsekwencji w podejściu tym nie spotykamy problemu typowalności. Stąd systemy w tym stylu nazywa się również systemami typowanymi (ang. typed systems).
- 2. Inny sposób polega na nie ustalaniu typów zmiennych. Składnia λ -termów nie ulega wówczas zmianie, zaś o typie rozstrzyga algorytm rekonstrukcji typu. Typy w tym stylu były przedmotem Rozdziału 2. W literaturze powszechnie nazywa się to podejście stylem Currego albo typowaniem implicite, zaś systemy w takim stylu określa się systemami przypisywania typu (ang. type assignment systems).

Obydwa podejścia dają w rezultacie podobne systemy typów [SU06, Rozdział 3.4]. Rozwiązaniem kompromisowym jest tzw. typowanie w *stylu de Brujina*¹² [BDS13, 1A.33] w którym nie ustala się typu wszystkich zmiennych, jednak adnotacje typowe są częścią składni (tak jak w stylu Churcha) i zależą od ustalonego kontekstu (jak w stylu Currego).

Zaprezentujemy teraz alternatywną składnię oraz reguły wyprowadzania typów dla systemu typów prostych w stylu Churcha. Wszystkie określenia oraz twierdzenia występujące dotychczas w Rozdziałe 2 mają swoje odpowiedniki dla systemu w stylu Churcha (szczegóły w [NG14, Rozdział 2.10]). Wyjątek stanowi Lemat 10, który jest zastąpiony w tym systemie Lematem 15 o jednoznaczności typu.

 $^{^{12}\}mathrm{W}$ [SU06] nazywa się to podejście nieortodoksyjnym stylem Churcha

2.4.1 Składnia

Zbiór typów \mathbb{T} definiujemy w myśl Definicji 35. Niech U,V będą przeliczalnie nieskończonym zbiorem zmiennych przedmiotowych, odpowiednio: zmiennych typowych i λ -zmiennych. Celem zdefiniowania λ -termów w stylu Churcha przeprowadzamy konstrukcję analogiczną do tej przedstawionej w Rozdziale 1: określamy zbiór pretermów $\tilde{\Lambda}_{\mathbb{T}}$, a następnie definiujemy λ -termy jako klasy abstrakcji α -konwersji.

$$\begin{split} & \mathbb{T} \ \leftarrow \ U \mid \big(\mathbb{T} \to \mathbb{T}\big) \\ & \tilde{\mathbf{\Lambda}}_{\mathbb{T}} \ \leftarrow \ V \mid \big(\tilde{\mathbf{\Lambda}}_{\mathbb{T}} \, \tilde{\mathbf{\Lambda}}_{\mathbb{T}}\big) \mid \big(\lambda V : \mathbb{T}. \, \tilde{\mathbf{\Lambda}}_{\mathbb{T}}\big) \end{split}$$

Zauważmy, że λ -termy w stylu Churcha różnią się od stylu Currego tylko w wypadku λ -abstrakcji. Z tą jedną modyfikacją definicje zbioru zmiennych wolnych, podstawienia, β - i η -redukcji, są analogiczne do tych z Rozdziału 1, zaś pojęcia kontekstu i wyprowadzenia sądu przyjmujemy z Podrozdziału 2.2.

2.4.2 Wyprowadzanie typu

Wprowadzamy następujące reguły wyprowadzania typu (relacji typowalności):

$$\Gamma \vdash x : \sigma \text{ (var)}, \qquad \text{jeśli } x : \sigma \in \Gamma,$$

$$\frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash (MN) : \tau} \text{ (app)},$$

$$\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash (\lambda x : \sigma . M) : \sigma \to \tau} \text{ (abs)}.$$

Zauważmy, że mając zadany kontekst, typ każdego poprawnego λ -termu jest jednoznacznie określony. Jest to istotna różnica, którą wprowadza styl Churcha. W systemach w stylu Currego termy poprawne są zamknięte ze względu na podstawienie typu. Własność, którą wyraża Lemat 15 zachodzi w nich z dokładnością do podstawienia.

Lemat 15. (O jednoznaczności typu) Jeśli $\Gamma \vdash M : \sigma \ i \ \Gamma \vdash M : \tau$, to $\sigma \equiv \tau$.

Dowód. Dowód przeprowadzamy indukcją strukturalną względem M. Szczegóły pomijamy. \Box

Twierdzenie 7. (Nietypowalność samoaplikacji) λ -termy postaci MM dla $M \in \lambda$ nie są typowalne.

Dowód. Przypuśćmy, że istnieje kontekst Γ i typ τ taki, że $\Gamma \vdash MM : \sigma$. Wówczas z analogu Lematu 3(2) dla systemu w stylu Churcha mamy, że $\Gamma \vdash M : \sigma \to \tau$ i $\Gamma \vdash M : \sigma$ dla pewnego $\sigma \in \mathbb{T}$. Z Twierdzenia 15 wynika natomiast, że $\sigma \to \tau \equiv \sigma$, co jest niemożliwe.

Uwaga. Ponieważ wszystkie λ -termy samoreplikujące się przy β -redukcji nie są typowalne (Twierdzenie 7), nie jest możliwe w rachunku λ z typami prostymi reprezentowanie rekurencyjnych typów ADT w myśl Podrozdziału 1.6.4. Dodanie typów prostych do rachunku λ bez typów znacznie zmniejsza ekspresywność systemu, uniemożliwiając wyrażenie operacji rekursji prostej. Okazuje się, że stosujac reprezentację Churcha dla liczb naturalnych i utożsamiajac λ -termy za pomocą β -konwersji, rachunek λ z typami prostymi równoważny jest zbiorowi wielomianów rozszerzonych [Zak07]. Liczebnikom Churcha odpowiada wówczas typ postaci $(\sigma \to \sigma) \to \sigma \to \sigma$ i możliwe jest określenie na nich dodawania i mnożenia.

Przykład 15. Zauważmy, że nie istnieje jeden typ dla reprezentacji funkcji identycznościowej. Jeśli nat jest stałą typową, którą reprezentujemy liczby naturalne, to identyczność na zbiorze liczb naturalnych będziemy reprezentowali termem $\lambda x: nat.x$, na zbiorze funkcji $\mathbb{N} \to \mathbb{N}$, $\lambda x: nat \to nat.x$ i tak dalej. Aby określić ogólną postać identyczności, musimy mieć możliwość abstrahować względen nie tylko zmiennych, ale także typów, czyli parametryzować postać termu typem w następujcy sposób:

$$\lambda \sigma : \star . \lambda x : \sigma . x$$
,

gdzie symbolem * oznaczamy typ obiektów będących typami (szczegóły omówimy w Rozdziale 3). Własność tę (polimorfizm parametryczny) miał w pewnym sensie rachunek λ w stylu Currego (Podrozdział 2.3.1).

2.5 Podsumowanie

System typów, który był przedmiotem Rozdziału 2 jest najbardziej elementarnym przypadkiem typowanego rachunku λ^{13} . W literaturze występują pewne rozbieżności co do składni typów prostych: niekiedy występuje w niej typ bazowy z którego budowane są pozostałe typy lub dodatkowy konstruktor typu dla pary (można porównać np. [GTL89; Sel08]). Rozszerzenia takie nie wpływają jednak na samą istotę typowania, która polega na $zależności\ termów\ od\ termów$. Jak przekonamy się w Rozdziałe 3, zależność tę można rozszerzyć pozwalając również typom na decydowanie o postaci termu.

 $^{^{13}}$ Patologicznym przypadkiem jest rachunek λ bez typów, jeśli przyjmiemy, że wszystkie wyrażenia mają w nim dokładnie jeden typ. Argument ten często podejmowany jest przeciwko dynamicznie typowanym jezykom programowania.

3 System Girarda/Reynoldsa

Przedmiotem tego rozdziału bedzie rachunek λ drugiego rzędu w stylu Churcha. Rozumieć należy przez to, że w λ -termach wiązane mogą być również zmienne typowe. System ten wprowadzony został równolegle przez J.-Y. Girarda i J. C. Reynoldsa i nazywany był przez autorów Systemem F. Odpowiada on również systemowi $\lambda 2$ w klasyfikacji, którą zaproponował H. Barendregt. Pozwala on na formalne ujęcie pojęcia polimorfizmu parametrycznego, które znamy z języków programowania.

3.1 Termy zależne od typów

Definicja 43. (Typy $\mathbb{T}2$) Niech \mathbb{V} będzie przeliczalnie nieskończonym zbiorem zmiennych przedmiotowych. Zmienne te będziemy nazywali *zmiennymi typowymi* i oznaczali literami alfabetu greckiego $(\alpha, \beta, \gamma, \ldots)$. Zbiór typów $\mathbb{T}2$ Systemu F określamy w notacji BNF następującym zapisem:

$$\mathbb{T}2 \leftarrow \mathbb{V} \mid (\mathbb{T}2 \to \mathbb{T}2) \mid (\Pi \mathbb{V} : *. \mathbb{T}2)$$

Za oznaczenia metazmiennych przebiegających zbiór typów $\mathbb{T}2$ posłużą nam późniejsze litery alfabetu greckiego: $\sigma, \tau, \rho, \dots$ lub następujące litery alfabetu łacińskiego: A, B, T.

Definicja 44. (Pretermy $\tilde{\Lambda}_{\mathbb{T}^2}$) Niech V będzie przeliczalnie nieskończonym zbiorem zmiennych przedmiotowych. Zmienne te będziemy nazywali *zmiennymi termowymi* i oznaczali literami alfabetu łacińskiego (x, y, z, \ldots) . Zbiór pretermów $\tilde{\Lambda}_{\mathbb{T}^2}$ Systemu F określamy w notacji BNF następującym zapisem:

$$\tilde{\mathbf{\Lambda}}_{\mathbb{T}2} \leftarrow V \mid (\tilde{\mathbf{\Lambda}}_{\mathbb{T}2} \, \tilde{\mathbf{\Lambda}}_{\mathbb{T}2}) \mid (\tilde{\mathbf{\Lambda}}_{\mathbb{T}2} \, \mathbb{T}2) \mid (\lambda V : \mathbb{T}2. \, \tilde{\mathbf{\Lambda}}_{\mathbb{T}2}) \mid (\lambda V : *. \, \tilde{\mathbf{\Lambda}}_{\mathbb{T}2})$$

Wyrażenia postaci ($\lambda V: *.\tilde{\Lambda}_{\mathbb{T}2}$) i ($\tilde{\Lambda}_{\mathbb{T}2}\mathbb{T}2$) nazywamy polimorficzną abstrakcją i polimorficzną aplikacją, odpowiednio. O zmiennej (termowej lub typowej) występującej bezpośrednio po znaku λ powiemy, że jest związana.

Uwaga. Zakładamy, że $V \cap \mathbb{V} = \emptyset$.

Konwencja. Stosujemy standardowe konwencje notacyjne:

- Opuszczamy najbardziej zewnętrzne nawiasy,
- Aplikacja wiąże prawostronnie,
- Aplikacja i → wiaża mocniej niż λ i Π -abstrakcja,
- Kolejne λ i Π-abstrakcje zmiennych tych samych typów mogą występować pod wspólnym znakiem i wiążą prawostronnie,
- Konstruktor typu → wiaże prawostronnie.

Przykładowo: $\Pi \alpha \beta : *. \alpha \to \beta \to \alpha \equiv \Pi \alpha : *. (\Pi \beta : *. (\alpha \to (\beta \to \alpha))).$

Wyrażenia λ w Systemie F to klasy abstrakcji α -konwersji. Konstrukcja ta jest analogiczna do zaprezentowanej w Podrozdziale 1.2. Za oznaczenia metazmiennych przebiegających zbiór wyrażeń Systemu F posłużą nam późniejsze litery alfabetu łacińskiego: M, N, P, \ldots

Naturalnemu rozszerzeniu ulega szereg pojęć z Rozdziału 2. Poniżej umieszczamy najistotniejsze z nich.

Definicja 45. (Zbiór FV zmiennych wolnych) Przez FV(M) oznaczamy zbiór wszystkich wolnych zmiennych termowych i typowych występujących w $M \in \Lambda_{T2}$.

$$FV(x) = x,$$

$$FV(\lambda x : \sigma. M) = FV(\sigma) \cup (FV(M) \setminus \{x\}),$$

$$FV(MN) = FV(M) \cup FV(N),$$

$$FV(\lambda \alpha : *. M) = FV(M) \setminus \{\alpha\},$$

$$FV(M\sigma) = FV(M) \cup FV(\sigma).$$

Definicja 46. (Multizbiór Sub podtermów pretermu)

- (1) $Sub(x) = \{x\}$
- (2) $\operatorname{Sub}(MN) = \operatorname{Sub}(M) \cup \operatorname{Sub}(N) \cup \{MN\},\$
- (3) $\operatorname{Sub}(M\sigma) = \operatorname{Sub}(M) \cup \{M\sigma\},\$
- (4) Sub($\lambda x : \alpha . M$) = Sub(M) $\cup \{\lambda x : \alpha . M\}$,
- (5) Sub($\lambda \sigma : *. M$) = Sub(M) $\cup \{\lambda \sigma : *. M\}$.

Definicja 47. (Podstawienie) Rozszerzamy definicję podstawienia o reguły obejmujące zmienne typowe.

$$x[x/P] = P,$$

$$y[x/P] = y,$$

$$(MN)[x/P] = M[x/P]N[x/P],$$

$$(\lambda y : \sigma. M)[x/P] = \lambda y : \sigma. M[x/P], \text{ gdzie } y \notin FV(P) \cup \{x\},$$

$$(M\sigma)[x/P] = M[x/P]\sigma,$$

$$(\lambda \beta : *. M)[x/P] = \lambda \beta : *. M[x/P], \text{ gdzie } p \notin FV(P),$$

$$x[\alpha/\sigma] = x,$$

$$(MN)[\alpha/\sigma] = M[\alpha/\sigma]N[\alpha/\sigma],$$

$$(\lambda y : \sigma. M)[\alpha/\sigma] = \lambda y : \sigma. M[\alpha/\sigma],$$

$$(M\rho)[\alpha/\sigma] = M\rho[\alpha/\sigma],$$

$$(M\rho)[\alpha/\sigma] = \lambda \beta : *. M[\alpha/\sigma], \text{ gdzie } \beta \notin FV(\sigma) \cup \{\alpha\}.$$

Definicja 48. (α -konwersja) Relacją = $_{\alpha}$ (α -konwersji) nazywamy najmniejszą w sensie mnogościowym zgodną relację równoważności na $\tilde{\Lambda}_{\mathbb{T}^2}$ taką, że

- (α 1) $\lambda x : \sigma . M =_{\alpha} \lambda y : \sigma . M[x/y]$, jeśli M[x/y] jest określone i $y \notin FV(M)$,
- $(\alpha 2) \lambda \alpha : *. M =_{\alpha} \lambda \beta : *. M[\alpha/\beta], jeśli \beta nie występuje w M,$
- (α 3) $\Pi \alpha : *. M =_{\alpha} \Pi \beta : *. M[\alpha/\beta]$, jeśli β nie występuje w M.

Przykład 16. Rozważmy następujące przykłady α -konwertów:

a)
$$\lambda \alpha : *. \lambda x : \alpha . x$$
 b) $\Pi \alpha : *. \alpha \to \alpha$
 $=_{\alpha} \lambda \beta : *. \lambda x : \beta . x$ $=_{\alpha} \Pi \beta : *. \beta \to \beta$
 $=_{\alpha} \lambda \beta : *. \lambda y : \beta . y$ $=_{\alpha} \Pi \beta : *. \beta \to \beta$

Odpowiednim modyfikacjom ulegają również pojęcia wprowadzone w Definicji 36 i Definicji 37.

Definicja 49. (Stwierdzenie, deklaracja)

- 1. Stwierdzeniem nazywamy każdy napis postaci $M : \sigma$, gdzie $M \in \Lambda_{\mathbb{T}2}$ i $\sigma \in \mathbb{T}2$ lub $\sigma : *$, gdzie $\sigma \in \mathbb{T}2$.
- 2. Deklaracją nazywamy każde stwierdzenie ze zmienną typową lub zmienną termową w miejscu podmiotu.

Definicja 50. (λ 2-kontekst, dziedzina, zakres) Rozważmy następującą definicję rekurencyjną.

- (E1) \emptyset jest λ 2-kontekstem; oznaczamy go parą nawiasów () lub pomijamy, jeśli nie prowadzi to do niejednoznaczności.
- (E2) Jeśli:
 - (a) Γ jest λ 2-kontekstem,
 - (b) $\alpha \in \mathbb{V}$ jest zmienną typową taką, że $\alpha \notin \text{dom}(\Gamma)$,

to $\Gamma, \alpha : * \text{ jest } \lambda 2\text{-kontekstem, gdzie}$

$$dom(\Gamma, \alpha : *) = dom(\Gamma) \cup \{\alpha\},$$

$$rg(\Gamma, \alpha : *) = rg(\Gamma) \cup \{*\}.$$

- (E3) Jeśli:
 - (a) Γ jest $\lambda 2$ -kontekstem,
 - (b) $\rho \in \mathbb{T}^2$ jest typem takim, że $\alpha \in \text{dom}(\Gamma)$ dla wszystkich $\alpha \in \text{FV}(\rho)$,

(c) $x \in V$ jest zmienną termową taką, że $x \notin \text{dom } \Gamma$,

to $\Gamma, x : \rho$ jest λ 2-kontekstem, gdzie

$$dom(\Gamma, x : \rho) = dom(\Gamma) \cup \{x\},$$

$$rg(\Gamma, \alpha : *) = rg(\Gamma) \cup \{\rho\}.$$

 $\operatorname{dom}(\Gamma)$ i $\operatorname{rg}(\Gamma)$ nazywamy odpowiednio dziedziną i zakresem $\lambda 2$ -kontekstu Γ .

Jeśli $\Gamma = (a_{11} : a_{12}, \ldots, a_{n1} : a_{n2})$ jest $\lambda 2$ -kontekstem, to przez $\Gamma[\alpha/\sigma]$ oznaczamy $\lambda 2$ -kontekst, w którym jeśli $a_{i1} \in V$, to a_{i2} zamieniamy na $x_{i2}[\alpha/\sigma]$ dla $1 \le i \le n$.

Uwaga. Zauważmy, że przy powyższych rozstrzygnięciach definicyjnych nie zachodzi odpowiednik Twierdzenia 6(3): nie możemy rozpatrywać dowolnych permutacji kontekstów w sądach $\Gamma \vdash M : T$, ponieważ w myśl Definicji 50 deklaracje zmiennych termowych w poprawnie zbudowanych $\lambda 2$ -kontekstach są uzależnione od poprzedzających je deklaracji typowych.

Następujący lemat to odpowiednik Lematu 6 (1).

Lemat 16. (O zwężaniu) Jeśli

- (a) Γ' i Γ'' są kontekstami takimi, że $\Gamma' \subseteq \Gamma''$,
- (b) $\Gamma' \vdash M : \sigma$,

to $\Gamma'' \vdash M : \sigma$.

Dowód. Dowód przeprowadzamy przez indukcję względem długości wyprowadzenia sadu $\Gamma' \vdash M : \sigma$. Szczegóły pomijamy.

Przykład 17. (a) \emptyset jest λ 2-kontekstem na podstawie (E1).

- (b) $\alpha : * \text{ jest } \lambda 2\text{-kontekstem na podstawie (E2)}.$
- (c) $\alpha: *, x: \alpha \to \alpha$ jest $\lambda 2$ -kontekstem na podstawie (E3). Zauważmy, że deklaracja $\alpha: *$ występuje w kontekście przed $x: \alpha \to \alpha$.
- (d) $\alpha : *, x : \alpha \to \alpha, \beta : * jest \lambda 2$ -kontekstem na podstawie (E2).
- (e) $\Gamma \equiv (\alpha : *, x : \alpha \to \alpha, \beta : *, y : (\alpha \to \alpha) \to \beta)$ jest $\lambda 2$ -kontekstem na podstawie (E3). Wówczas dom $(\Gamma) = \{\alpha, x, \beta, y\}$ i $\operatorname{rg}(\Gamma) = \{*, \alpha \to \alpha, \beta, (\alpha \to \alpha) \to \beta\}$.

3.2 Typowanie

Wprowadzamy następujące reguły wyprowadzania typu:

(var)
$$\Gamma \vdash x : \sigma$$
, jeśli $x : \sigma \in \Gamma$,

$$(\mathrm{app}) \qquad \frac{\Gamma \vdash M : \sigma \to \tau \quad \Gamma \vdash N : \sigma}{\Gamma \vdash MN : \tau},$$

(abs)
$$\frac{\Gamma, x : \sigma \vdash M : \tau}{\Gamma \vdash (\lambda x : \sigma, M) : \sigma \to \tau},$$

(form)
$$\Gamma \vdash B : *,$$
 jeśli $B \in \mathbb{T}2$ i $FV(B) \subseteq rg \Gamma$,

(П-е)
$$\frac{\Gamma \vdash M : (\Pi \alpha : *.A) \qquad \Gamma \vdash B : *}{\Gamma \vdash MB : A[\alpha/B]},$$

(
$$\Pi$$
-i)
$$\frac{\Gamma, \alpha : * \vdash M : A}{\Gamma \vdash \lambda \alpha : * M : \Pi \alpha : * A}$$

Definicja 51. (Poprawność, typowalność) Powiemy, że term $M \in \Lambda_{\mathbb{T}^2}$ jest poprawny lub typowalny, jeśli istnieje $\lambda 2$ -kontekst Γ i typ $\rho \in \mathbb{T}^2$ taki, że $\Gamma \vdash M : \rho$.

Przykład 18. (a) Niech $\perp \equiv \Pi \sigma : *. \sigma \text{ i } \Gamma = (\beta : *, x : \bot).$

$$\begin{array}{c|cccc}
1 & \beta : * & (form) \\
2 & x : \bot & (var) \\
3 & x\beta : \beta & (\Pi-e) \ 2 \ 1 \\
4 & \lambda\beta : * \cdot x\beta : \Pi\beta : * \cdot \beta & (\Pi-i) \ 3
\end{array}$$

(b)
$$\Gamma = (\beta : *, y : \beta, x : \bot).$$

$$\begin{array}{c|ccccc}
1 & \beta : * & (form) \\
2 & y : \beta & (var) \\
3 & x : \bot & (var) \\
4 & \lambda x : \bot \cdot y : \bot \rightarrow \beta & (abs) 2 \\
5 & \lambda y : \beta x : \bot \cdot y : \bot \rightarrow \beta & (abs) 4 \\
6 & \lambda \beta : * \cdot \lambda y : \beta x : \bot \cdot y : \Pi \beta : * \cdot \bot \rightarrow \beta & (\Pi - i) 1
\end{array}$$

(c) Przykład 15 ilustrował, że typy proste nie pozwalają na określenie polimorficznej identyczności. W Systemie F nie sprawia to problemów.

$$\begin{array}{c|cccc}
1 & \alpha : * & (form) \\
2 & x : \alpha & (var) \\
3 & \lambda x : \alpha . x : \alpha \to \alpha & (abs) 2 \\
4 & \lambda \alpha : * . \lambda x : \alpha . x : \Pi \alpha : * . \alpha \to \alpha & (\Pi-i) 3
\end{array}$$

(d) W systemie Girarda/Reynoldsa możemy określić polimorficzne liczebniki Churcha ustalając:

Nat
$$\equiv \Pi \alpha : *. (\alpha \to \alpha) \to \alpha \to \alpha$$

 $\bar{0} \equiv \lambda \alpha : *. \lambda f : \alpha \to \alpha \ x : \alpha . x$
 $\bar{1} \equiv \lambda \alpha : *. \lambda f : \alpha \to \alpha \ x : \alpha . f x$
 \vdots
 $\bar{n} \equiv \lambda \alpha : *. \lambda f : \alpha \to \alpha \ x : \alpha . \underbrace{f ... (f x)}_{\text{n-razy}}$

Dla przykładu rozważmy typowanie 2:

Za pomocą łatwej indukcji względem długości wyprowadzenia możemy przekonać się, że w istocie wszystkie polimorficzne liczebniki Churcha są typu Nat.

(e) Typować możemy również polimorficzne złożenie funkcji.

Jak widzimy procedura wyprowadzania typu odpowiada w istocie rekonstrukcji wyrażenia. Problem typowania w (ortodoksyjnym) stylu Churcha jest trywialny, gdyż zgodnie z Rozdziałem 2.4 założyliśmy, że mamy pełną informację typową o zmiennych przedmiotowych. Czytając wyprowadzenia od dołu do góry rekonstruujemy również kontekst. Mówimy, że składnia Systemu F w stylu Churcha koduje typowanie.

3.3 Redukcja

Definicja 52. (β -redukcją nazywamy najmniejszą (w sensie mnogościowym) zgodną na $\Lambda_{\mathbb{T}^2}$ relację binarną \rightarrow_{β} taką, że

$$(\lambda x : \sigma. M)N \to_{\beta} M[x/N],$$

 $(\lambda \alpha : *. M)T \to_{\beta} M[\alpha/T].$

Lemat 17 (podobnie jak Lemat 15) zapewnia nas, że typ termu zachowuje się przy β -redukcji. Praktyczny sens tego twierdzenia polega na tym, że relacja posiadania tego samego typu jest zamknięta na β -konwersję i aby rozstrzygnąć o typie danego termu wystarczy, że znamy typ któregokolwiek jego β -konwersu.

Lemat 17. (O redukcji podmiotu) Jeśli $\Gamma \vdash M : \tau \ i \ M \to_{\beta}^{\star} N$, to $\Gamma \vdash N : \tau$.

Dowód. Dowód przeprowadzamy analogicznie do dowodu Lematu 8, przez indukcję względem długości wyprowadzenia sądu $\Gamma \vdash M : \tau$. Szczegóły pomijamy.

Przykład 19. Wróćmy do Przykładu 18 (d). Wyprowadziliśmy w nim sąd:

$$\vdash \lambda \alpha : *. \lambda f : \alpha \to \alpha. \lambda x : \alpha. f(fx) : \Pi \alpha : *. (\alpha \to \alpha) \to \alpha \to \alpha$$

Stosując lemat o zwężaniu (Lemat 16), dla dowolnego λ 2-kontekstu Γ wyprowadzalny jest również sąd:

$$\Gamma \vdash \lambda \alpha : *. \lambda f : \alpha \to \alpha. \lambda x : \alpha. f(fx) : \Pi \alpha : *. (\alpha \to \alpha) \to \alpha \to \alpha$$
 (1)

Niech Γ będzie takim $\lambda 2$ -kontekstem, że

$$\{ \text{nat} : *, \text{ zero} : \text{nat}, \text{ succ} : \text{nat} \rightarrow \text{nat} \} \subseteq \Gamma,$$

gdzie przez nat, zero i succ oznaczamy dowolnie wybrane zmienne termowe i typowe, odpowiednio. Stosując regułę (Π -e) do (1) i $\Gamma \vdash$ nat : * otrzymujemy:

$$\Gamma \vdash \lambda f : \text{nat} \to \text{nat}. \ \lambda x : \text{nat}. \ f(fx) \ \text{nat} : \ (\text{nat} \to \text{nat}) \to \text{nat} \to \text{nat}$$
 (2)

Dalej, stosujac regulę (app) do (2) i $\Gamma \vdash \text{succ} : \text{nat} \rightarrow \text{nat mamy, że}$

$$\Gamma \vdash \lambda x : \text{nat. } f(fx) \text{ nat succ } : \text{ nat } \to \text{nat}$$
 (3)

Ponownie aplikując (3) do $\Gamma \vdash \text{zero} : \text{nat mamy}:$

$$\Gamma \vdash f(fx)$$
 nat succ zero : nat (4)

Na podstawie lematu o redukcji podmiotu (Lemat 17) widzimy, że każdy kolejny redukt w poniższym ciągu ma typ nat.

$$\lambda \alpha : *. \lambda f : \alpha \to \alpha. \lambda x : \alpha. f(fx)$$
) nat suc zero
 $\to_{\beta} \lambda f : \text{nat} \to \text{nat.} \lambda x : \text{nat.} f(fx)$) suc zero
 $\to_{\beta} (\lambda x : \text{nat.} \text{suc}(\text{suc } x))$ zero
 $\to_{\beta} \text{suc}(\text{suc zero})$

Odpowiedniej modyfikacji ulega również pojęcie η -redukcji.

Definicja 53. (η-redukcja) η-redukcją nazywamy najmniejszą (w sensie mnogościowym) zgodną na $\Lambda_{\mathbb{T}^2}$ relację binarną \rightarrow_{β} taką, że

$$\lambda x : \sigma. Mx \to_{\eta} M,$$

 $\lambda \alpha : *. M\alpha \to_{\eta} M.$

Zachodzi oczywiście również odpowiednik Lematu 9:

Lemat 18. (Zachowawczość η -redukcji) Jeśli $\Gamma \vdash M : \tau \ i \ M \to_{\eta}^* N$, to $\Gamma \vdash N : \tau$.

Dowód. Dowód przeprowadzamy przez indukcję względem długości wyprowadzenia sądu $\Gamma \vdash M : \tau$. Szczegóły pomijamy.

Przykład 20. Zwróćmy ponownie uwagę na Przykład 18(a). Ponieważ $\lambda\beta: \star. x\beta \to_{\eta} x$, to ze względu na Lemat 18 wyprowadzalny jest również $\Gamma \vdash x : \bot$.

W odpowiednich wersjach zachodzą również Lemat 3 o generowaniu, Lemat 4 o podtermie, Lemat 5 o zmiennych wolnych i Lemat 7 o podstawieniu. We wszystkich przypadkach metoda dowodowa nie odbiega znacząco od odpowiedników z Rozdziałów 1 i 2.

Kolejną istotną własnością Systemu F jest silna normalizacja β -redukcji.

Twierdzenie 8. (O silnej normalizacji) Jeżeli $\Gamma \vdash_{\mathbb{T}} M : \tau$, to $M \in SN_{\beta}$.

Dowód. Metoda polegająca na naiwnym uogólnieniu dowodu z Rozdziału 2.3.2 przez interpretację typów polimorficznych jako zbioru wszystkich możliwych podstawień za zmienne typowe prowadzi do błędnego koła w definiowaniu. Interesujące rozwiązanie (metodę *kandydatów*) bazujące na wynikach z Rozdziału 2.3.2 pochodzące od J.-Y Girarda można znaleźć w [SU06, Rozdział 11.5] i [GTL89, Rozdział 6]. Szczegóły pomijmamy.

Wniosek. Ponieważ wszystkie typowalne termy w Systemie F mają skończone ciągi redukcji, to kombinator punktu stałego

$$fix : \Pi \alpha : *. (\alpha \to \alpha) \to \alpha$$

nie jest typowalny w tym systemie.

Jako Fakt 5 przedstawimy własność Churcha-Rossera upewniającą nas, β -redukcja, bez względu na przyjętą strategię, zawsze prowadzi do tych samych rezultatów, a zatem ma sens obliczeniowy. Fakt ten otrzymujemy jako wniosek z lematu Newmana (Twierdzenie 2), wykazując, że β -redukcja ma słabą własność Churcha-Rossera (WCR) [SU06, Twierdzenie 11.2.12].

Fakt 5. (Własność Churcha-Rossera) Relacja β -redukcji ma własność CR.

3.4 Język pośredni GHC

Języki programowania to narzędzia służące do reprezentowania pojęć i ich wzajemnych zależności w sposób umożliwiający efektywne tłumaczenie ich na język maszynowy. Myśleć można o nich w bardzo uproszczony sposób jak o środkach komunikacji człowieka z maszyną.

GHC (ang. Glasgow Haskell Compiler) to otwartoźródłowy kompilator języka Haskell. Kompilatorem nazywamy program, którego zadaniem jest tłumaczenie kodu programu napisanego w danym języku (w języku kodu źródłowego) na kod w innym języku (języku wyjściowym) z zachowaniem własności programu wejściowego. GHC jest stosunkowo wyjątkowym kompilatorem, gdyż kompilację do kodu wyjściowego poprzedza w nim kompilacja do kodu pośredniego, który jest rozszerzonym wariantem Systemu F w stylu Churcha [Sul+07].

Język Haskell to polimorficzny statycznie typowany, leniwy, czysto funkcyjny język programowania. Leniwość odnosi się do strategii ewaluacji nakreślonej w Rozdziale 1.3.2. Funkcyjność języka polega na tym, że funkcje są w nim obiektami pierwszego rzędu, tzn. można z nich budować struktury danych i przesyłać jako argument tak jak pozostałe obiekty języka. Czystość oznacza ograniczenie efektów ubocznych: funkcje nie współdzielą stanu i zwracają za każdym razem tę samą wartość obliczenia.

Statyczność Określenie statyczny oznacza, że na etapie kompilacji do kodu wyjściowego wszystkie typy wyrażeń są ustalone właśnie na gruncie języka pośredniego. Jest kontynuacja wywodzącej się z lat '70 idei oparcia języków programowania na czystym rachunku λ wspomnianej w Rozdziale 1.6.

Rozważmy następujący przykładowy kod źródłowy w języku Haskell. Funkcja comp to polimorficzne złożenie funkcji.

```
module Fnord where
  comp = \g f x -> g (f x)
```

Przypomnijmy Przykład (e), którego rezultatem było następujące przypisanie typu:

$$\lambda \gamma \beta \alpha : *. \lambda g : \beta \to \gamma \ f : \alpha \to \beta \ x : \alpha. \ g(fa) :$$
$$\Pi \gamma \beta \alpha : *. (\beta \to \gamma) \to (\alpha \to \beta) \to \alpha \to \gamma$$

Rezultatem kompilacja powyższego programu za pomocą kompilatora ghc z dodatkowym argumentem -ddump-simpl jest następujący kod pośredni:

```
comp
:: forall t aqz t1 aqB t2 aqD.
```

```
(t_aqz -> t1_aqB) -> (t2_aqD -> t_aqz) -> t2_aqD -> t1_aqB

comp =
  \ (@ t_aqz)
     (@ t1_aqB)
     (@ t2_aqD)
     (g_aqg :: t_aqz -> t1_aqB)
     (f_aqh :: t2_aqD -> t_aqz)
     (x_aqi :: t2_aqD) ->
     g aqg (f aqh x aqi)
```

Pierwsza, druga i trzecia linia to rezultat przypisania typu. Symbolowi forall odpowiada symbol polimorficznej abstrakcji Π . Dalej widzimy ciało funkcji comp: symbol \ odpowiada w nim λ -abstraktorowi, zaś symbol @ wyróżnia zmienne typowe, które oznaczaliśmy symbolem *. Widzimy, że (\blacklozenge) i powyższy kod z dokładnością do użytych symboli są takie same.

Kod źródłowy programów w języku Haskell może być zupełnie pozbawiony deklaracji typowych, zaś kompilacja przebiega przez proces przypisywania wyrażeniom typu¹⁴. Pod tym względem przypomina systemy w stylu Currego. Deklaracje typowe w kodzie źródłowym służą w istocie wyłącznie weryfikacji przez algorytm typowania czy oczekiwane przez programistę własności programu są sensowne. Przypomnijmy jednak, że w Systemie F w stylu Currego problem typowania jest nierozstrzygalny [Wel99]. Jeśli jednak dopuścimy, żeby język źródłowy dysponował być może węższą ekspresją, ale miał rozstrzygalny system typów, to typy wyrażeń mogą być uzgodnione algorytmicznie na etapie tłumaczenia do języka przejściowego. Dlatego Haskell ma statyczny system typów: wszystkie deklaracje typowe są w nim znane przed etapem kompilacji do języka maszynowego. Podział kompilacji programu na proces tłumaczenia go na język przejściowy i dopiero wówczas na język maszynowy umożliwia przede wszystkim niezależnie optymalizować metody redukcji wyrażeń i stopniowo rozszerzać ekspresję języka źródłowego.

3.5 Podsumowanie

System F, który był przedmiotem Rozdziału 3 można umieścić na kanwie zaproponowanej przez H. P. Barendregta w [Bar92, Rozdział 5] klasyfikacji rozszerzeń rachunku λ z typami prostymi (tzw. kostki λ , Rysunek 6) w miejscu systemu λ 2.

Wszystkie części kostki λ są systemami w stylu Churcha. System $\lambda \rightarrow$ to omawiany przez nas w Rozdziale 2 rachunek λ z typami prostymi. Jak widzieliśmy,

¹⁴Dla porównania: język programowania C jest również statycznie typowanym językiem, ale za typowanie odpowiada wyłącznie programista, nie algorytm typowania. Kod zostaje sprawdzony pod względem składni i kompilacja zaciera wszystkie deklaracje typowe.

Rysunek 6: Poszczególne systemy klasyfikacji H. Barendregta; kierunek krawędzi \rightarrow oznacza relację $\subseteq.$

rozszerzenie go o typy polimorficzne prowadzi do systemu $\lambda 2$.

System $\lambda\underline{\omega}$ to rozszerzenie, w którym sama struktura typów jest podobna do typów prostych: typy zależą w nim od typów. Zaobserwujmy, że typy takie jak $\beta \to \beta$, $\gamma \to \gamma$, $(\beta \to \gamma) \to (\beta \to \gamma)$ itp. mają tę samą strukturę postaci $\diamond \to \diamond$, gdzie \diamond jest tym samym typem wystepującym po obu stronach \to . Wprowadzając operator abstrakcji względem \diamond możemy w ramach systemu $\lambda\underline{\omega}$ wyrazić rodziny typów:

$$\lambda \alpha : \alpha \to \alpha$$
.

Wyrażenia takie nazywamy konstruktorami typu: po zaaplikowaniu do nich typu uzyskujemy znowu typ.

Przykład 21. Rozważmy następujące redukcje:

$$(\lambda\alpha: *. \alpha \to \alpha)\beta \longrightarrow_{\beta} \beta \to \beta,$$

$$(\lambda\alpha: *. \alpha \to \alpha)\gamma \longrightarrow_{\beta} \gamma \to \gamma,$$

$$(\lambda\alpha: *. \alpha \to \alpha)(\beta \to \gamma) \longrightarrow_{\beta} (\beta \to \gamma) \to (\beta \to \gamma).$$

Typy konstruktorów typów nazywamy gatunkami (ang. kind). Zbiór wszystkich gatunków oznaczamy symbolem \Box . Mają one następującą postać:

$$\Box \leftarrow *|(\Box \rightarrow \Box)$$

Mamy więc $*: \Box, * \to *: \Box, (* \to *) \to * \to *$ itp. Termy, które mają typ * nazywamy wówczas konstruktorami właściwymi. Łącznie, symbole * i \Box nazywamy rodzajami (ang. sort).

System λP rozszerza typy proste o abstrakcję umożliwiającą uzależnienie typów od termów. Typy takie mają postać $\lambda x:A.M.$ gdzie M jest typem, a x zmienną typową.

Jak zauważył Barendregt, rozszerzenia $\lambda 2$, $\lambda \underline{\omega}$ i λP są od siebie w pewnym sensie niezależne i można je ze sobą składać. Intuicję tę można sformalizować w ten sposób, aby wybierając tylko odpowiednią kombinację zależności, otrzymać odpowiadającą jej teorię (szczegóły w [Bar91]). Ponieważ przybliżenie tego uogólnionego systemu wykracza poza zamierzony zakres tej pracy, prezentujemy tylko zestawienie systemów kostki λ w Tabeli 1. Zależności charakteryzujące zebrane systemy oznaczamy następującymi symbolami:

- (*,*) termy zależne od termów (typy funkcyjne),
- $(\Box, *)$ termy zależne od typów (typy polimorficzne),
- (*,□) typy zależne od termów (typy zależne),
- (\Box, \Box) typy zależne od typów (rodziny typów, higher-kinded types).

System	Zależności			
λ_{\rightarrow}	(*, *)			
$\lambda 2$	(*, *)	$(\square, *)$		
λP	(*, *)		$(*, \square)$	
$\lambda P2$	(*, *)	$(\square, *)$	$(*, \square)$	
$\lambda \underline{\omega}$	(*, *)			(\Box,\Box)
$\lambda \omega$	(*, *)	$(\Box, *)$		(\Box,\Box)
$\lambda P \underline{\omega}$	(*, *)		$(*,\Box)$	(\Box,\Box)
λC	(*, *)	$(\Box, *)$	$(*, \square)$	(\Box,\Box)

Tabela 1: Zestawienie systemów kostki λ .

Literatura

- [Alt02] Thorsten Altenkirch. "α-conversion is easy". Under Revision. 2002. URL: https://www.cs.nott.ac.uk/~psztxa/publ/alpha-draft.pdf.
- [Bar84] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. Elsevier, 1984.
- [Bar91] Henk Barendregt. "Introduction to generalized type systems". In: Journal of Functional Programming 1.2 (1991), pp. 125–154. DOI: 10.1017/S0956796800020025.
- [Bar92] H. P. Barendregt. "Lambda Calculi with Types". In: vol. 2. Jan. 1992, pp. 117–309. ISBN: 0198537611.
- [BDS13] Henk Barendregt, Wil Dekkers, and Richard Statman. *Lambda Calculus with Types*. Perspectives in Logic. Cambridge University Press, 2013. DOI: 10.1017/CB09781139032636.
- [Bru72] N.G. de Bruijn. "Lambda Calculus Notation with Nameless Dummies, a Tool for Automatic Formula Manipulation, with Application to the Church-Rosser Theorem". In: *Indagationes Mathematicae (Proceedings)* 75 (Dec. 1972), pp. 381–392. DOI: 10.1016/1385-7258(72)90034-0.
- [Chu41] Alonzo Church. The Calculi of Lambda-Conversion. Princeton University Press, 1941.
- [CW85] Luca Cardelli and Peter Wegner. "On Understanding Types, Data Abstraction, and Polymorphism". In: *ACM Comput. Surv.* 17.4 (Dec. 1985), pp. 471–523. ISSN: 0360-0300. DOI: 10.1145/6041.6042. URL: http://doi.acm.org/10.1145/6041.6042.
- [GTL89] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. New York, NY, USA: Cambridge University Press, 1989. ISBN: 0-521-37181-3.
- [Hin05] Ralf Hinze. "THEORETICAL PEARL Church Numerals, Twice!" In: J. Funct. Program. 15.1 (Jan. 2005), pp. 1–13. ISSN: 0956-7968. DOI: 10.1017/S0956796804005313. URL: http://dx.doi.org/10.1017/S0956796804005313.
- [HS08] J. Roger Hindley and Jonathan P. Seldin. *Lambda-Calculus and Combinators: An Introduction*. 2nd ed. New York, NY, USA: Cambridge University Press, 2008. ISBN: 0521898854, 9780521898850.
- [Hut99] Graham Hutton. "A Tutorial on the Universality and Expressiveness of Fold". In: *J. Funct. Program.* 9.4 (July 1999), pp. 355–372. ISSN: 0956-7968. DOI: 10.1017/S0956796899003500. URL: http://dx.doi.org/10.1017/S0956796899003500.

- [Jan13] Jan Martin Jansen. "Programming in the λ-Calculus: From Church to Scott and Back". In: Essays Dedicated to Rinus Plasmeijer on the Occasion of His 61st Birthday on The Beauty of Functional Code Volume 8106. Berlin, Heidelberg: Springer-Verlag, 2013, pp. 168–180. ISBN: 978-3-642-40354-5. DOI: 10.1007/978-3-642-40355-2_12. URL: https://doi.org/10.1007/978-3-642-40355-2_12.
- [JKP06] Jan Martin Jansen, Pieter Koopman, and Rinus Plasmeijer. "Efficient Interpretation by Transforming Data Types and Patterns to Functions". In: Jan. 2006, pp. 73–90.
- [JLP92] Peyton Jones, Simon L, and Simon Peyton Jones. "Implementing Lazy Functional Languages on Stock Hardware: The Spineless Tagless G-machine". In: Journal of Functional Programming 2 (July 1992), pp. 127-202. URL: https://www.microsoft.com/en-us/research/publication/implementing-lazy-functional-languages-on-stock-hardware-the-spineless-tagless-g-machine/.
- [KPJ14] Pieter Koopman, Rinus Plasmeijer, and Jan Martin Jansen. "Church Encoding of Data Types Considered Harmful for Implementations: Functional Pearl". In: Proceedings of the 26Nd 2014 International Symposium on Implementation and Application of Functional Languages. IFL '14. Boston, MA, USA: ACM, 2014, 4:1–4:12. ISBN: 978-1-4503-3284-2. DOI: 10.1145/2746325.2746330. URL: http://doi.acm.org/10.1145/2746325.2746330.
- [Mar96] P Martin Lof. "On the Meanings of the Logical Constants and the Justifications of the Logical Laws". In: Nordic Journal of Philosophical Logic 1 (Jan. 1996).
- [NG14] Rob Nederpelt and Herman Geuvers. *Type Theory and Formal Proof:* An Introduction. Cambridge University Press, 2014. DOI: 10.1017/CB09781139567725.
- [Pey87] Simon L. Peyton Jones. The Implementation of Functional Programming Languages (Prentice-Hall International Series in Computer Science). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1987. ISBN: 013453333X.
- [PL92] Simon L. Peyton Jones and David R. Lester. *Implementing Functional Languages*. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1992. ISBN: 0-13-721952-0.

- [Rin93] Marko van Eekelen Rinus Plasmeijer. Functional Programming and Parallel Graph Rewriting. Addison-Wesley, 1993. ISBN: 0471935670. URL: https://clean.cs.ru.nl/Functional_Programming_and_Parallel_Graph_Rewriting.
- [Sel08] Peter Selinger. "Lecture notes on the lambda calculus". In: CoRR abs/0804.3434 (2008). arXiv: 0804.3434. URL: http://arxiv.org/abs/0804.3434.
- [SS75] Gerald J. Sussman and Guy L. Steele Jr. An Interpreter for Extended Lambda Calculus. Tech. rep. Cambridge, MA, USA, 1975.
- [SU06] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard Isomorphism, Volume 149 (Studies in Logic and the Foundations of Mathematics). New York, NY, USA: Elsevier Science Inc., 2006. ISBN: 0444520775.
- [Sul+07] Martin Sulzmann et al. "System F with Type Equality Coercions". In: Proceedings of the 2007 ACM SIGPLAN International Workshop on Types in Languages Design and Implementation. TLDI '07. Nice, Nice, France: ACM, 2007, pp. 53–66. ISBN: 1-59593-393-X. DOI: 10.1145/1190315.1190324. URL: http://doi.acm.org/10.1145/1190315.1190324.
- [Tai67] W. W. Tait. "Intensional Interpretations of Functionals of Finite Type I". In: Journal of Symbolic Logic 32.2 (1967), pp. 198–212. DOI: 10. 2307/2271658.
- [Wad89] Philip Wadler. "Theorems for Free!" In: Proceedings of the Fourth International Conference on Functional Programming Languages and Computer Architecture. FPCA '89. Imperial College, London, United Kingdom: ACM, 1989, pp. 347–359. ISBN: 0-89791-328-0. DOI: 10.1145/99370.99404. URL: http://doi.acm.org/10.1145/99370.99404.
- [Wel99] J. B. Wells. "Typability and type checking in system F are equivalent and undecidable". English. In: *Annals of Pure and Applied Logic* 98.1-3 (June 1999), pp. 111–156. ISSN: 0168-0072.
- [Wit53] Ludwig Wittgenstein. *Philosophical Investigations*. Wiley-Blackwell, 1953.
- [Zak07] Mateusz Zakrzewski. "Definable functions in the simply typed lambda-calculus". In: CoRR abs/cs/0701022 (2007). arXiv: cs/0701022. URL: http://arxiv.org/abs/cs/0701022.