Technical Team

Nature of Invention: Process Flow Diagram and Mass Balance.

Applicant: GreenovateX

Inventors: Sumit Chouhan, Sanjeeta Singh

Chemical Formula: C18H35N2NaO4

Chemical Name: Sodium Lauroamphoacetate

Process Title: Production of Sodium Lauroamphoacetate from Lauric Acid

Raw materials and chemicals Required: Lauric Acid, Sodium Chloroacetate, Ammonia,

Coconut Oil and Water and pH Adjusters.

Process Description (Block diagram):

Step 1: Amidation Reaction (Formation of Amidoamine Intermediate)

Lauric Acid+ AEEA→ Amidoamine+H2O

(C12H24O2) + (C4H12N2O) \rightarrow Amidoamine+H2O

Step 2: Carboxymethylation Reaction (Formation of Sodium Lauroamphoacetate)

Amidoamine + Sodium Monochloroacetate → Sodium Lauroamphoacetate + NaCl

Material Balance:

	Duto Prage
1	Reaction Equations for Production
	Step: 2
	Amidation Reaction (formation of Intermedial
	Jauric Beid € + AEEA - Amidoamine + 40
	C12 H2402 + C4H12 N20 - Amidoamine +H20
	Step: 2
4	Carbonymethylation Reaction (formation of Sodium Lauro amphocal
-	Amidoamine + Sodium Monochlorace tate -> SL+N
2.	
-	Total feed: 1000 kg / day
1	Assonir Reaction yield : 30%
4	
4	

	Outs Doub
	Molecular Weight's (MW):
	Jauric Acid (C12H2402) = 200-32g/md
	DEEA (C4 He N20) = 104.15 g/mel
	Amidoamine intermediale - 286.47 g/mal
nak	Sodium Monochloroacetate = 11648 g/mol
	Sodium Lauromphoacetate: 368.48 g/mol
3. Step 1	Max flow Rate Calculation Assuming fauric scid anakes up to 60% of the food (Good Kg/day)
	Moles of Jauric Heid : 600,000 g 2995md/g
	Since the reaction is 1:1 required AEEA is also 2995 meles
Val.	Mass of AEEA = 2995 x 104.15 = 311.850 g
	= 311-85 kg lday

	Date Page
1	Mass of Amidaamine Intermediate produced -
	2995 x 286.7 = 857,900 g = 857.9 kg day
	Male of Water (by product):
	2995 x 18.015 = 53,950g = 53.95 kg lday
8K/2	Mass frocessed for batch
	Mass frocessed for batch
0.	Jawric Soid (600) kg + AEEA (312) kg = 812 kg Density ~ 300 kg/m ³
11-20	Volume for batch = V = 912 1.01 m ²
	Considering 70% fill factor
	Vareactor = 1.01 2 1.44 ms
- 8	final reactor Size Selection: 1.5 m3 Glass Jun CS Reactor
- 1 da-	CS Par glass Jun

	Dots Page
Step 2	Gorating Conditions: 80-100°C, almosthere
	Total mass inhut - 1100 kg
	As Amidoamine Intermediate reads 1.1 with SMCA
	Males of SMCA = 2995 males.
	= 2995 × 456 116.48 = 348,840g = 348.84kg
votas	Mass of Sodium Jauromphoacetate (Final Product)
	= 2995 x 368.48 = 1,103,200g = 1103.2kg/dag
	Mass of NaEl (by product)
ver	= 2995 × 58.44 = 175.08 g = 175.08 kg lday
	Carbonymethylation Reador (R-102)
	Mass processed for leater

9	Onto Progo
120	Amidoanine (857-9/59) + SMCA (3488/59) = 1206.7
	Density - 950 log/m3
75 N D III	Volume required per batch
13724	950 1.27m?
	Total volume Needed (Considering 70% fill factor)
Lalux o	Seador 1.27 1.81 m3
gH)	0.7
(laul	Final reactor Size Selection: 2 m3 Cilass- Lined CS Reator
b de	2011 2 FOR POLL & QU. RAP & 7 P82 -
4.	Mole fractions (final moles)
until of	mole fraction of Sodium Lauremphocetale: 2995
	2995 + 2985
	mel fraction of NaC1 = 2995 05
	299572935
-	

		Outs -	
5	Filtradian Drying & Storage Filtradian System: Nutsche Evaporator for Solved removel ~ Storage tanks ~ 3 m² for	Filter .	- 1.5 m² m 3 capaily m froded.
			1700 1700 1700 1700 1700 1700

Capital cost (only for the reactor):

example:

Equipment	Design	No. of	Cost/unit (\$ for	Total Cost (\$ for
	Capacity (L)	units	year 2014)	year 2014)
Amidation Reactor (Glass- Lined CS, R-101)	1500	1	30,000	30,000
Carboxymethylation Reactor (Glass-Lined CS, R-102)	2000	1	40,000	40,000
Total Estimated Cost				70,000

References: Provide reference for a research paper or an actual patent.

1. http://www.matche.com/equipcost/Reacto.html

List the contributions of each author:

• Sumit Chouhan: Reactor and equipment costing, Material Balance

• Sanjeeta: Block diagram

Sign the pdf and upload.

Name	Roll No	Signature
CEO Name	Aditya Singh	Aditya Singh
First author Name	Sumit Chouhan	Sums
Second author Name	Sanjeeta Singh	Sanjeeta