Need an amazing tutor?

www.teachme2.com/matric

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

NOVEMBER 2023

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 23 pages./ Hierdie nasienriglyne bestaan uit 23 bladsye.

NSC/NSS – Marking Guidelines/Nasienriglyne

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the Marking Guidelines. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

NOTA:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, merk slegs die EERSTE poging.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, merk die doodgetrekte poging.
- Volgehoue akkuraatheid word in ALLE aspekte van die Nasienriglyne toegepas. Hou op nasien by die tweede berekeningsfout.
- Aanvaar van antwoorde/waardes om 'n probleem op te los, word NIE toegelaat nie.

GEOM	IETRY
S	A mark for a correct statement (A statement mark is independent of a reason)
	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)
R	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)
	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)
S/R	Award a mark if statement AND reason are both correct
	Ken 'n punt toe as die bewering EN rede beide korrek is

1.1	a = -23,846	$\checkmark a = -23,846$
	b = 0,227	$\checkmark b = 0,227$
	$\hat{y} = -23,85 + 0,23x$	✓ equation
		(3)
1.2	$\hat{y} = -23,85 + 0,23(550)$	✓ substitution of 550
	y = 102,65	✓ answer
		(2)
	OR	
	y = 101,02	$\checkmark \checkmark y = 101,02 \text{ (calculator)}$
		(2)
1.3	r = 0.98	$\checkmark r = 0.98$
		(1)
1.4	Very strong positive correlation	✓ strong positive
		(1)

50 100 130 150	180 190	200 200
----------------	---------	---------

1.5.1	$\overline{x} = \frac{1200}{8}$	✓ 1200
1.5.1		✓ answer
	$\overline{x} = 150$	answer
		(2)
	OR	
	$\overline{x} = 150$	\checkmark $\overline{x} = 150$
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\lambda = 130$
		(2)
1.5.2	$\sigma = 50,50$	$\checkmark \sigma = 50,50$
		(1)
1.5.3	$\overline{x} - \sigma$	
	=150-50,50	\checkmark calculation of $\bar{x} - \sigma$
	= 99,50	
	∴ 1 stop	✓ answer
		(2)
		[12]

2.1								
		Number of glasses of	Number of staff	Cumulative frequency				
		water per day	members					
		$0 \le x < 2$	5	5				
		$2 \le x < 4$	15	20		√ 5	5; 20	
		$4 \le x < 6$	13	33				
		$6 \le x < 8$	5	38				
		$8 \le x < 10$	2	40		✓ 4	10	(2)
2.2	40 -4 - ff	1				(-		(2)
2.2	40 staff n	nembers				v a	nswer	(1)
2.3	33 staff n	nembers				√ a	nswer	(1)
								(1)
	(1)	(5,k)	15) 5 12	(7,5) + (0) v 2)		nswer fro	m
2.4	$\overline{r} = \frac{1}{1}$	$\left(\frac{3+\overline{2}}{2}\right)^{+(3\times)}$	$(3) + (3 \times (13 + \frac{1}{2}))$	$\frac{1}{2}$	$(\times 2)$ $= 4$		22.2 + k))
2.4	<i>x</i> –	$\overline{x} = \frac{\left(1 \times \left(5 + \frac{k}{2}\right)\right) + \left(3 \times 15\right) + \left(5 \times \left(13 + \frac{k}{2}\right)\right) + \left(7 \times 5\right) + \left(9 \times 2\right)}{40 + k} = 4$					$1 \times \left(5 + \frac{k}{2}\right)$))
	$5 + \frac{k}{2} + 45 + 65 + \frac{5k}{2} + 35 + 18 = 160 + 4k$					✓ ($5 \times \left(13 + \frac{1}{2}\right)$	$\left(\frac{k}{2}\right)$
	_	_	. 10 100 1 110			Ì		//
	3k+168=160+4k							
	<i>k</i> = 8				√ a	nswer	(4)	
								(.)
	OR							
	$\overline{x} = \frac{(1 \times 1)^n}{n!}$	$5)+(15\times3)+(1$	$\frac{3\times5)+(5\times7)+}{40}$	(2×9)				
	= 4,2					√ <i>∆</i>	. 2	
	$\overline{x}_{\text{old}} - \overline{x}_{\text{current}} = 4.2 - 4$			$\sqrt{\overline{x}}$	$\frac{1}{2}$ $\frac{1}$			
	Cia Cui	= 0.2					lifference	
	. 0 2							
	$\therefore 0, 2 \times 4$							
	= 8 teach	ners				v a	nswer	(4)
								[8]

S NSC/*NSS* – Marking Guidelines/*Nasienriglyne*

DBE/November 2023

3.1	$SL = \sqrt{(x_S - x_L)^2 + (y_S - y_L)^2}$	
	$SL = \sqrt{(4-(-4))^2 + (5-1)^2}$	✓ substitution of S and L
	$SL = \sqrt{80} = 4\sqrt{5} = 8,94 \text{ units}$	into correct formula ✓ answer (2)
	5-(-3)	(2)
3.2	$m_{\rm SN} = \frac{5 - (-3)}{4 - (-2)}$	✓ substitution of S and N
		into correct formula
	$m_{\rm SN} = \frac{4}{3}$	✓ answer (2)
3.3	$m = \tan \theta = \frac{4}{3}$	
3.3		$\sqrt{\tan \theta} = m_{\rm SN}$
	$\theta = 53,13^{\circ}$	✓ answer (2)
3.4	1-(-3)	(-)
3.4	$m_{\rm LN} = \frac{1 - (-3)}{-4 - (-2)}$	
	$m_{\rm LN} = -2$	$\sqrt{m_{\rm LN}} = -2$
	LÂO = 116,565°	✓ size of LKO
	$\hat{LNS} = 116,565^{\circ} - 53,13^{\circ}$	
	$\hat{LNS} = 63,44^{\circ}$	✓ answer
		(3)

6 NSC/*NSS* – Marking Guidelines/*Nasienriglyne*

OR		
$SN = 10 \text{ units}$ $\sin L\hat{N}S = \frac{4\sqrt{5}}{10}$		\checkmark SN = 10 units
$\frac{\sin 2NS - \frac{10}{10}}{10}$ $\hat{LNS} = 63,44^{\circ}$		✓ correct trig ratio ✓ answer (3)
OR		
LN = $2\sqrt{5}$ units $\tan L\hat{N}S = \frac{4\sqrt{5}}{2\sqrt{5}}$ $L\hat{N}S = 63,44^{\circ}$		✓ LN = $2\sqrt{5}$ units ✓ correct trig ratio ✓ answer (3)
OR		
SN = 10 units $LN = 2\sqrt{5} \text{ units}$		✓ SN = 10 units and LN = $2\sqrt{5}$ units
$\cos L\hat{N}S = \frac{2\sqrt{5}}{10}$ $L\hat{N}S = 63,44^{\circ}$		✓ correct trig ratio ✓ answer
$3.5 m = \frac{4}{2}$		(3) ✓ m _{SN}
3.5 $m = \frac{4}{3}$ $1 = \frac{4}{3}(-4) + c$ OR	3 ` ` ''	✓ substitution of $m_{\rm SN}$ & L
$c = \frac{19}{3}$	$y - 1 = \frac{4}{3}x + \frac{16}{3}$	
$y = \frac{4}{3}x + \frac{19}{3}$	$y = \frac{4}{3}x + \frac{19}{3}$	✓ equation (3)
$3.6 \qquad SL = 4\sqrt{5}$		
LN = $\sqrt{(-4-(-2))^2 + (1-(-4))^2}$ LN = $\sqrt{20}$ = $2\sqrt{5}$	(3))	$\checkmark LN = \sqrt{20} = 2\sqrt{5}$
Area $\triangle LSN = \frac{1}{2} (4\sqrt{5})(2\sqrt{5})$ = 20 units ²)	✓ substitution into formula ✓ answer (3)
OR		(3)

NSC/NSS – Marking Guidelines/Nasienriglyne

SN = 10	units	
$LN = \sqrt{6}$	$-4-(-2))^2+(1-(-3))^2$	$\checkmark LN = \sqrt{20} = 2\sqrt{5}$
$LN = \sqrt{2}$		V = V20 = 2V3
	0 – 243	,
Area ALS	$SN = \frac{1}{2}(10)(2\sqrt{5})\sin 63,44^{\circ}$	✓ substitution into formula
	$= 20 \text{ units}^2$	✓ answer
$3.7 \hat{L} = 90^{\circ}$	= 20 units	(3)
	iameter of circle S, L, N [chord subtends 90° OR converse ∠ in semi-circle]	✓ SN is a diameter of circle S, L, N
Centre of	$Fcircle = P\left(\frac{4+(-2)}{2}; \frac{5+(-3)}{2}\right)$	
	$= \mathbf{P}(1;1)$	✓ x -value ✓ y -value
OR		(3)
	pordinates of P be $(a; b)$.	
Then, PI	L = PN: $(-4-a)^2 + (1-b)^2 = (-2-a)^2 + (-3-b)^2$ a-2b=-1equation 1	
	N, then: $4a + 2b = 6$ equation 2	✓ 2 correct linear equations
	imultaneously yields: $a = 1$ and $b = 1$ and $P(1; 1)$	\checkmark x-value \checkmark y-value
OR		(3)
If PL = F	PN, then: $a-2b=-1$ equation 1	
	L, then: $2a+b=3$ equation 2	✓ 2 correct linear equations
Solving s	imultaneously yields: $a = 1$ and $b = 1$ and $P(1; 1)$	\checkmark x-value \checkmark y-value
3.8 $\hat{LPN} = \theta$	$2=53,13^{\circ}$ [alt \angle s; LP x -axis]	✓ LPN
∴ LPS =	- "	✓ answer
OR		(2)
$\hat{LNS} = 6$	3 44°	(x \(\hat{x} \)
∴ LPS=1		✓ LÑS ✓ answer
OR		(2)
	6,56° [sum of ∠s in Δ]	√ LŜN
$\begin{array}{c c} \mathbf{LSN} = 26 \\ \mathbf{SLP} = 26 \end{array}$		v LSIN
∴ LPS =		√ oneswor
		✓ answer (2)
OR		
$(4\sqrt{5})^2 =$	$5^2 + 5^2 - 2(5)(5)\cos L\hat{P}S$	✓ correct substitution into cosine formula
	$= 5^{2} + 5^{2} - 2(5)(5)\cos LPS$ $= -\frac{3}{5}$	Cosmic formula
cos LPS :	$=-\frac{5}{5}$	d onesvien
∴ LPS =	126,87°	✓ answer (2)
		[20]

8
NSC/*NSS* – Marking Guidelines/*Nasienriglyne*

DBE/November 2023

4.1	$D(p; -2)$ $x^{2} + y^{2} = 20$ $p^{2} + (-2)^{2} = 20$ $p^{2} = 16$ $p = \pm 4$ $p = 4$		✓ substitution of point $D(p;-2)$ ✓ $p^2 = 16$
	<i>p</i> – 4		(2)
4.2	$\frac{4+x_{\rm F}}{2}=6$	$\frac{-2+y_{\rm F}}{2}=2$	✓ method
	$x_{\rm F} = 8$ $F(8;6)$	$y_{\rm F} = 6$	\checkmark x-value \checkmark y-value (3)
	OR		
	$x_{\rm E} - x_{\rm D} = 6 - 4$ $= 2$	$y_{\rm E} - y_{\rm D} = 2 - (-2)$ = 4	✓ method
	$x_{\rm F} = 6 + 2 = 8$ F(8;6)	$y_{\rm F} = 2 + 4 = 6$	\checkmark x-value \checkmark y-value (3)

NSC/NSS – Marking Guidelines/Nasienriglyne

4.3	$m_{\rm DE} = \frac{-2 - 2}{4 - 6}$		✓ correct substitution
	$m_{\rm DE} = 2$		✓ gradient of DE, DF or EF
	-2 = 2(4) + c OR $c = -10$	y-(-2)=2(x-4) y+2=2x-8	✓ substitution of point D(4;-2) or E(6; 2) or F(8; 6)
	y = 2x - 10	y = 2x - 10	✓ answer (4)
	OR		
	$m_{\text{OD}} = -\frac{2}{4} = -\frac{1}{2}$		✓ correct gradient of OD
	$\therefore m_{\rm DE} = 2$	$[\tan \perp radius]$	✓ gradient of DE
	$-2 = 2(4) + c \qquad \mathbf{OR}$	y-(-2)=2(x-4)	✓ substitution of point D(4;-2)
	c = -10	y+2=2x-8	or E(6; 2) or F(8; 6)
	y = 2x - 10	y = 2x - 10	✓ answer (4)
4.4	$m_{\rm DE}=2$		
	1	[tan \perp radius]	✓ correct gradient of GF
	$\left \frac{0-6}{t-8} = -\frac{1}{2} \right $		✓ substitution of F
	$\begin{vmatrix} t-8 & 2 \\ -(t-8) = 2(-6) \end{vmatrix}$		
	t = 20		✓ answer
	OR		(3)
	y = 2x - 10		
	0 = 2x - 10		
	$ \begin{array}{c} x = 5 \\ A(5; 0) \end{array} $		✓ x-intercept of DF
	In ΔAFG: FA ⊥ FG		
	FA ² = $(6-0)^2 + (8-5)^2 = 45$		
	$FG^{2} = (t-8)^{2} + (0-6)^{2}$		
	$= t^2 - 16t + 100$		
	$GA^2 = (t-5)^2$		
	$=t^2-10t+25$		
	$\therefore GA^2 = GF^2 + FA^2$		
	$t^2 - 10t + 25 = t^2 - 16t + 100 + 45$		✓ substitution into
	$\begin{cases} 6t = 120 \\ t = 20 \end{cases}$		Pythagoras ✓ answer
	-		(3)

 $10 \\ NSC/\textit{NSS}-Marking Guidelines/\textit{Nasienriglyne}$

	= 11,06 units = 28,94 units	(4)
	$\therefore k = 20 + 4\sqrt{5} \qquad \therefore k = 20 - 4\sqrt{5}$ $= 11.06 \text{ units} \qquad = 28.04 \text{ units}$	✓ answer ✓ answer
	$\therefore k = 20 + 6\sqrt{5} - \sqrt{20} \text{or} k = 20 - 6\sqrt{5} + \sqrt{20}$	✓ method
	$\therefore x = 20 + 6\sqrt{5} \text{ or } x = 20 - 6\sqrt{5}$	✓ x-intercepts
	$y = 0$ $\therefore x^2 - 40x + 220 = 0$	
	$x^2 + y^2 - 40x + 220 = 0$	
	OR	
	= 11,06 units = 28,94 units	✓ answer ✓ answer (4)
	$k = 2(2\sqrt{5}) + 20 - 8\sqrt{5}$ or $k = 2(6\sqrt{5}) + 20 - 8\sqrt{5}$ = $20 - 4\sqrt{5}$ = $20 + 4\sqrt{5}$	✓ method
		·
	Smaller circle $r = 2\sqrt{5}$	$\checkmark r = 2\sqrt{5}$
	OR	(4)
	$= 20 - 4\sqrt{5} = 20 + 4\sqrt{5}$ = 11,06 units = 28,94 units	✓ answer ✓ answer
	$k = 20 - (6\sqrt{5} - 2\sqrt{5})$ or $k = 20 + (6\sqrt{5} - 2\sqrt{5})$	✓ method
	G(20; 0)	
	Larger circle $r = 6\sqrt{5}$	
4.6	Smaller circle $r = 2\sqrt{5}$	$\checkmark r = 2\sqrt{5}$
	$x^2 + y^2 - 40x + 220 = 0$	✓ answer (4)
	$(x-20)^2 + y^2 = 180$	✓ equation of circle
	$r^2 = 180$	\checkmark value of r^2
	$(8-20)^2 + (6-0)^2 = r^2$	✓ substitution of F and G
	G(20; 0)	
4.5	F(8;6)	

 $11 \\ NSC/\textit{NSS}-Marking Guidelines/\textit{Nasienriglyne}$

DBE/November 2023

5.1.1	$\sin \beta = \frac{1}{3} \qquad \beta \in (90^\circ; 270^\circ)$		
	$(-\sqrt{8};1)$ β	$\checkmark x^2 + y^2 = r^2$	
	$x = -\sqrt{8} = -2\sqrt{2}$	$\checkmark x = -2\sqrt{2}$	
	$\cos \beta = \frac{-2\sqrt{2}}{3}$	✓ answer	(3)
	OR		
	$\sin \beta = \frac{1}{3} \qquad \beta \in (90^\circ; 270^\circ)$		
	$\cos^2 \beta = 1 - \sin^2 \beta$	✓ square identity	
	$\cos^2 \beta = 1 - \left(\frac{1}{3}\right)^2$		
	$\cos^2 \beta = \frac{8}{9}$ $-\sqrt{8}$	$\checkmark \cos^2 \beta$	
	$\cos \beta = \frac{-\sqrt{8}}{3}$		
	$=\frac{-2\sqrt{2}}{3}$	✓ answer	(3)
5.1.2	$ \sin 2\beta \\ = 2\sin \beta \cos \beta $	✓ double angle	
	$=2\left(\frac{1}{3}\right)\left(\frac{-\sqrt{8}}{3}\right)$	✓ substitution	
	$= \frac{-2\sqrt{8}}{9} \mathbf{OR} 2\left(\frac{-2\sqrt{2}}{9}\right)$		
	$=\frac{-4\sqrt{2}}{9}$	✓ answer	(3)
5.1.3	$\cos (450^\circ - \beta)$		
	$= \cos (90^{\circ} - \beta)$ $= \sin \beta$	$\checkmark \cos (90^{\circ} - \beta)$ $\checkmark \text{ co-ratio}$	
	$=\frac{1}{3}$		
	3 OR	✓ answer (3)
	UN		

Mathematics P2/Wiskunde V2 12 NSC/NSS – Marking Guidelines/Nasienrig	DBE/November 2023
$\cos (450^{\circ} - \beta)$	rtyne
$= \cos 450^{\circ} \cos \beta + \sin 450^{\circ} \sin \beta$	✓ expansion
$= \cos 90^{\circ} \cos \beta + \sin 90^{\circ} \sin \beta$	✓ reduction
$=\sin\beta$	
$=\frac{1}{3}$	✓ answer (3)
$\cos^4 v + \sin^2 v \cos^2 v$	
$5.2.1 LHS = \frac{\cos x + \sin x \cdot \cos x}{1 + \sin x}$	
$=\frac{\cos^2 x \left(\cos^2 x + \sin^2 x\right)}{1 + \sin^2 x}$	✓ factors
$1 + \sin x$	$\int \sin^2 x + \cos^2 x = 1$
$=\frac{1-\sin^2 x}{1-\sin^2 x}$	$\sqrt{\cos^2 x} = 1 - \sin^2 x$
$-\frac{1}{1+\sin x}$	
$=\frac{(1-\sin x)(1+\sin x)}{1+\sin x}$	✓ factors
$ \begin{array}{c} 1 + \sin x \\ = 1 - \sin x \end{array} $	
$= 1 - \sin x$ $= RHS$	
	(4)
OR	
$LHS = \frac{\cos^4 x + \sin^2 x \cdot \cos^2 x}{\sin^2 x \cdot \cos^2 x}$	
$\frac{1+\sin x}{1+\sin x}$	
$\cos^4 x + \left(1 - \cos^2 x\right) \cos^2 x$	$\sqrt{\sin^2 x} = 1 - \cos^2 x$
$=\frac{1+\sin x}{1+\sin x}$	
$\cos^4 x + \cos^2 x - \cos^4 x$	✓ expansion
$=$ $\frac{1+\sin x}{1+\sin x}$	empaniston
$1-\sin^2 x$	$\sqrt{\cos^2 x} = 1 - \sin^2 x$
$=\frac{1}{1+\sin x}$	
$(1-\sin x)(1+\sin x)$	✓ factors
$=\frac{1+\sin x}{1+\sin x}$	
$=1-\sin x$	(4)
= RHS	(4)
OR	
$RHS = 1 - \sin x$	
	$\sqrt{\frac{1+\sin x}{1+\sin x}}$
$= (1 - \sin x) \times \frac{1 + \sin x}{1 + \sin x}$	$\sqrt{\frac{1+\sin x}{1+\sin x}}$
$1-\sin^2 x$	
$=\frac{1-\sin x}{1+\sin x}$	✓ product
$-\frac{\cos^2 x}{\cos^2 x}$	$\int 1-\sin^2 x = \cos^2 x$
	$1-\sin^2 x = \cos^2 x$
$1+\sin x$	$\int 1 = \cos^2 x + \sin^2 x$
$=\frac{\cos^2 x \left(\sin^2 x + \cos^2 x\right)}{\cos^2 x \left(\sin^2 x + \cos^2 x\right)}$	$1 = \cos^2 x + \sin^2 x$
$1+\sin x$	
$-\frac{\cos^4 x + \cos^2 x \cdot \sin^2 x}{\cos^2 x \cdot \sin^2 x}$	
$=\frac{1+\sin x}{1+\sin x}$	
= LHS	(4)

13

SSC/NSS – Marking Guidelines/Nasienriglyne 5.2.2 $\sin x + 1 = 0$ $\sin x = -1$ $\text{ref. } \angle = 90^{\circ}$ $x = 270^{\circ}$ 5.2.3 $y = \frac{\cos^4 x + \sin^2 x \cdot \cos^2 x}{1 + \sin x}$ $y = 1 - \sin x$ ∴ Minimum = 0	(2)
ref. $\angle = 90^{\circ}$ $x = 270^{\circ}$ $\sqrt{x} = 270^{\circ}$ $5.2.3 \qquad y = \frac{\cos^{4} x + \sin^{2} x \cdot \cos^{2} x}{1 + \sin x}$ $y = 1 - \sin x$	(2)
$x = 270^{\circ}$ $5.2.3 \qquad y = \frac{\cos^4 x + \sin^2 x \cdot \cos^2 x}{1 + \sin x}$ $y = 1 - \sin x$	(2)
5.2.3 $y = \frac{\cos^4 x + \sin^2 x \cdot \cos^2 x}{1 + \sin x}$ $y = 1 - \sin x$	(2)
$y = 1 - \sin x$	(2)
$y = 1 - \sin x$	
$y = 1 - \sin x$	
$\therefore \text{ Minimum} = 0$	
7.0.1 (4. P)	(2)
$5.3.1 \left \sin (A - B) \right $	
$= \cos[90^{\circ} - (A - B)] $ \checkmark co-ratio	
$=\cos\left[(90^{\circ}-A)-(-B)\right]$	
$= \cos(90^{\circ} - A)\cos(-B) + \sin(90^{\circ} - A)\sin(-B)$ \checkmark compound angle	
$= \sin A \cos B + \cos A (-\sin B)$ \(\sigma \text{ reduction}	
$= \sin A \cos B - \cos A \sin B$	(4)
	(3)
OR	
$\sin (A - B)$	
$\begin{vmatrix} \sin(A - B) \\ = \cos \left[90^{\circ} - (A - B) \right] $ \checkmark co-ratio	
$=\cos\left[(90^{\circ} + B) - A\right]$	
$= \cos(90^{\circ} + B)\cos A + \sin(90^{\circ} + B)\sin A$ \checkmark compound angle	
=-sin Bcos A+cos Bsin A ✓ reduction	
$= \sin A \cos B - \cos A \sin B$	(3)
5.3.2 $\sin 48^{\circ} \cos x - \cos 48^{\circ} \sin x = \cos 2x$	
$\sin(48^{\circ} - x) = \cos 2x$ \checkmark compound angle	
$\sin(48^{\circ} - x) = \sin(90^{\circ} - 2x)$	
$48^{\circ} - x = 90^{\circ} - 2x + k.360^{\circ} \text{or} \checkmark \text{ both equations}$	
$48^{\circ} - x = 180^{\circ} - (90^{\circ} - 2x) + k.360^{\circ}$	
$x = 42^{\circ} + k.360^{\circ}$ $-3x = 42^{\circ} + k.360^{\circ}$ general solution	
$x = -14^{\circ} - k.120^{\circ} ; k \in \mathbb{Z} \forall \text{ general solution};$	$k \in \mathbf{Z}$
OR	(5)
$\sin 48^{\circ} \cos x - \cos 48^{\circ} \sin x = \cos 2x$ \(\square \text{ compound angle} \)	
$\sin(48^{\circ} - x) = \cos 2x$	
$\cos(90^\circ - 48^\circ + x) = \cos 2x$ \checkmark co-ratio	
$\cos(42^\circ + x) = \cos 2x$	
$\cos(42 + \lambda) - \cos 2\lambda$	
120 L m 2 m L 2600 m 120 L m 2600 2 m L 2600 / L m 1	
$42^{\circ} + x = 2x + k.360^{\circ}$ or $42^{\circ} + x = 360^{\circ} - 2x + k.360^{\circ}$ \checkmark both equations $-x = -42^{\circ} + k.360^{\circ}$ $3x = 318^{\circ} + k.360^{\circ}$	
$42^{\circ} + x = 2x + k.360^{\circ}$ or $42^{\circ} + x = 360^{\circ} - 2x + k.360^{\circ}$ \checkmark both equations $-x = -42^{\circ} + k.360^{\circ}$ $3x = 318^{\circ} + k.360^{\circ}$ \checkmark general solution $x = 42^{\circ} - k.360^{\circ}$ $x = 106^{\circ} + k.120^{\circ}$; $k \in \mathbb{Z}$ \checkmark general solution;	<i>b</i> ← 7

14

NSC/NSS – Marking Guidelines/Nasienriglyne	DBE/November 2023
$5.4 \sin 3x + \sin x$	
$\frac{1}{\cos 2x+1}$	
$= \frac{\sin(2x+x) + \sin(2x-x)}{\sin(2x-x)}$	$\sqrt{3x} = (2x + x)$
$=\frac{\sqrt{\cos 2x+1}}{\cos 2x}$	
$\sin 2x \cos x + \cos 2x \sin x + \sin 2x \cos x - \cos 2x \sin x$	✓ expansion
$=\frac{2\cos^2 x - 1 + 1}{\cos^2 x - 1}$	\checkmark double angle of $\cos 2x$
$=\frac{2\sin 2x\cos x}{2\cos x}$	✓ simplification
$={2\cos^2x}$	Simplification
$= \frac{2(2\sin x \cos x)\cos x}{1-(2\sin x \cos x)\cos x}$	$\sqrt{\sin 2x} = 2\sin x \cos x$
$=\frac{2\cos^2 x}{2\cos^2 x}$	
$4\sin x \cos^2 x$	
$=\frac{2\cos^2 x}{2\cos^2 x}$	
$=2\sin x$	✓ answer
	(6)
OR	
$\sin 3x + \sin x$	
$\frac{\sin 3x + \sin x}{\cos 2x + 1}$	
$\sin(2x+x) + \sin x$	(2 (2)
$=\frac{\sin(2x+x)+\sin x}{2\cos^2 x-1+1}$	$\sqrt{3x = (2x + x)}$
	\checkmark double angle of $\cos 2x$
$=\frac{\sin 2x \cos x + \cos 2x \sin x + \sin x}{2}$	√ expansion
$\frac{1}{2\cos^2 x}$	
$= \frac{2\sin x \cos x \cos x + \cos 2x \sin x + \sin x}{2}$	$\checkmark \sin 2x = 2\sin x \cos x$
$\frac{2\cos^2 x}{\cos^2 x}$	
$-\frac{\sin x \left(2\cos^2 x + \cos 2x + 1\right)}{2}$	✓ common factor
$-\frac{2\cos^2 x}{$	
$-\sin x (2\cos^2 x + 2\cos^2 x - 1 + 1)$	
$={2\cos^2 x}$	
$=2\sin x$	✓ answer (6)
	[31

15 NSC/*NSS* – Marking Guidelines/*Nasienriglyne* DBE/November 2023

6.2 $y \in \left[-\frac{\sqrt{2}}{2};1\right]$ OR $y \in \left[-0,71;1\right]$ OR $-\frac{\sqrt{2}}{2} \le y \le 1$ $\checkmark -\frac{\sqrt{2}}{2}$ $\checkmark y \in \left[-\frac{\sqrt{2}}{2};1\right]$ (2) 6.3.1 $x \in (45^{\circ}; 90^{\circ})$ OR $45^{\circ} < x < 90^{\circ}$ $\checkmark \lor x \in (45^{\circ}; 90^{\circ})$ (2) 6.3.2 $f(x)+1 \le 0$ $f(x) \le -1$ $f(x) \le 1$ $f(x) \ge 1$ $f($	6.1	Period = 180°	✓ 180°
6.3.1 $x \in (45^{\circ}; 90^{\circ})$ OR $45^{\circ} < x < 90^{\circ}$ $\checkmark x \in (45^{\circ}; 90^{\circ})$ OR $45^{\circ} < x < 90^{\circ}$ $\checkmark x \in (45^{\circ}; 90^{\circ})$ (2) 6.3.2 $f(x)+1 \le 0$ $f(x) \le -1$ $f(x) \le -1$ $f(x) \le 1$ $f(x) \le -1$ $f(x) \le -1$ $f(x) \le -2\sin 2x$ $f(x) = 1$ $f(x) = 1$ or $f(x) = 1$ or $f(x) = 1$ or $f(x) = -1$			(1)
6.3.1 $x \in (45^{\circ}; 90^{\circ})$ OR $45^{\circ} < x < 90^{\circ}$ $\checkmark \checkmark x \in (45^{\circ}; 90^{\circ})$ (2) 6.3.2 $f(x)+1 \le 0$ $f(x) \le -1$ $f(x) \le -2 \sin 2x$ $f(x) = 1 \text{ or } -f(x) = -1$ $f(x) = 1 \text{ or } -f(x) = -1$ $f(x) = -1$ $f($	6.2	$y \in \left[-\frac{\sqrt{2}}{2}; 1 \right]$ OR $y \in \left[-0.71; 1 \right]$ OR $-\frac{\sqrt{2}}{2} \le y \le 1$	$\checkmark -\frac{\sqrt{2}}{2}$
6.3.2 $f(x)+1 \le 0$ $f(x) \le -1$ $x \in [105^{\circ}; 165^{\circ}]$ OR $105^{\circ} \le x \le 165^{\circ}$ 6.4 $p(x) = -2\sin 2x$ $-2\sin 2x = -1$ OR $2\sin 2x = 1$ $k = 15^{\circ}$ or $k = 75^{\circ}$ 6.5 $g(x) = -\cos(x+45^{\circ})$ $h(x) = -\cos(x+90^{\circ})$ $h(x) = \sin x$ (2)			$\checkmark y \in \left[-\frac{\sqrt{2}}{2}; 1 \right]$
6.3.2 $f(x)+1 \le 0$ $f(x) \le -1$ $x \in [105^{\circ}; 165^{\circ}]$ OR $105^{\circ} \le x \le 165^{\circ}$ 6.4 $p(x) = -2\sin 2x$ $-2\sin 2x = -1$ OR $2\sin 2x = 1$ $k = 15^{\circ}$ or $k = 75^{\circ}$ 6.5 $g(x) = -\cos(x+45^{\circ})$ $h(x) = -\cos(x+90^{\circ})$ $h(x) = \sin x$ (2)	631	(450, 000) OB 450	(2)
6.3.2 $f(x)+1 \le 0$ $f(x) \le -1$ $x \in [105^{\circ}; 165^{\circ}]$ OR $105^{\circ} \le x \le 165^{\circ}$ 6.4 $p(x) = -2\sin 2x$ $-2\sin 2x = -1$ OR $2\sin 2x = 1$ $k = 15^{\circ}$ or $k = 75^{\circ}$ 6.5 $g(x) = -\cos(x + 45^{\circ})$ $h(x) = -\cos(x + 90^{\circ})$ $h(x) = \sin x$ (2)	0.5.1	$x \in (45^\circ; 90^\circ)$ OR $45^\circ < x < 90^\circ$	$\sqrt{x} \in (45^\circ; 90^\circ)$
$f(x) \le -1$ $x \in [105^{\circ}; 165^{\circ}] \text{ OR } 105^{\circ} \le x \le 165^{\circ}$ $f(x) \le -1$ $x \in [105^{\circ}; 165^{\circ}] \text{ OR } 105^{\circ} \le x \le 165^{\circ}$ $f(x) = 1 \text{ or } f(x) = 1 \text{ or } f(x) = -1$ $k = 15^{\circ} \text{ or } k = 75^{\circ}$ $f(x) = 1 \text{ or } f(x) = -1$ $f(x) = -1$ $f(x$			(2)
$x \in [105^{\circ}; 165^{\circ}] \text{ OR } 105^{\circ} \le x \le 165^{\circ}$ $f(x) = -2\sin 2x$ $-2\sin 2x = -1 \text{ OR } 2\sin 2x = 1$ $k = 15^{\circ} \text{ or } k = 75^{\circ}$ $f(x) = 1 \text{ or } -f(x) = -1$ $k = 15^{\circ} \times 75^{\circ}$ $f(x) = -\cos(x + 45^{\circ})$ $h(x) = -\cos(x + 90^{\circ})$ $h(x) = \sin x$ $f(x) = \cos(x + 90^{\circ})$ $f(x) = \sin x$ $f(x) = \cos(x + 90^{\circ})$ $f(x) = \sin x$ $f(x) = \cos(x + 90^{\circ})$ $f(x) = \sin x$ $f(x) = \cos(x + 90^{\circ})$ $f(x) = \sin x$ $f(x) = \cos(x + 90^{\circ})$ $f(x) = \sin x$ $f(x) = \cos(x + 90^{\circ})$ $f(x) = \sin x$ $f(x) = \cos(x + 90^{\circ})$ $f(x) = \sin x$ $f(x) = \cos(x + 90^{\circ})$ $f(x) = \sin x$ $f(x) = \cos(x + 90^{\circ})$ $f(x) = \cos(x + 90^{\circ})$ $f(x) = \sin x$ $f(x) = \cos(x + 90^{\circ})$	6.3.2	$f(x)+1\leq 0$	
6.4 $p(x) = -2\sin 2x$ \checkmark reading off $f(x) = 1$ or $-f(x) = -1$ $k = 15^{\circ}$ or $k = 75^{\circ}$ \checkmark $15^{\circ} \checkmark 75^{\circ}$ (3) 6.5 $g(x) = -\cos(x + 45^{\circ})$ $h(x) = -\cos(x + 90^{\circ})$ $h(x) = \sin x$ \checkmark answer (2)		$f(x) \leq -1$	
6.4 $p(x) = -2\sin 2x$ \checkmark reading off $f(x) = 1$ or $-f(x) = -1$ \lor 15° \lor 75° \lor 15° \lor 75° \lor 6.5 $g(x) = -\cos(x+45^\circ)$ $h(x) = -\cos(x+90^\circ)$ $h(x) = \sin x$ \checkmark answer (2)		$x \in [105^{\circ}; 165^{\circ}]$ OR $105^{\circ} \le x \le 165^{\circ}$	$\checkmark \checkmark x \in [105^{\circ}; 165^{\circ}]$
$-2\sin 2x = -1 \mathbf{OR} 2\sin 2x = 1$ $k = 15^{\circ} \text{or} k = 75^{\circ}$ $6.5 g(x) = -\cos(x + 45^{\circ})$ $h(x) = -\cos(x + 90^{\circ})$ $h(x) = \sin x$ (2) $f(x) = 1 \text{ or}$ $-f(x) = -1$ $\checkmark 15^{\circ} \checkmark 75^{\circ}$			(2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6.4	$p(x) = -2\sin 2x$	✓ reading off
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$-2\sin 2x = -1$ OR $2\sin 2x = 1$	f(x) = 1 or
6.5 $g(x) = -\cos(x+45^{\circ})$ $h(x) = -\cos(x+90^{\circ})$ $h(x) = \sin x$ (3) $\checkmark -\cos(x+90^{\circ})$ $\checkmark \text{ answer}$ (2)			-f(x) = -1
6.5 $g(x) = -\cos(x+45^{\circ})$ $h(x) = -\cos(x+90^{\circ})$ $h(x) = \sin x$ (2)		$k = 15^{\circ} \text{ or } k = 75^{\circ}$	✓ 15° ✓ 75°
$h(x) = -\cos(x+90^{\circ})$ $h(x) = \sin x$ (2)			(3)
$h(x) = -\cos(x+90^{\circ})$ $h(x) = \sin x$ $\checkmark -\cos(x+90^{\circ})$ $\checkmark \text{ answer}$ (2)	6.5	$g(x) = -\cos(x + 45^\circ)$	
$h(x) = \sin x \qquad \qquad \checkmark \text{ answer} $			$\sqrt{-\cos(x+90^\circ)}$
(2)			✓ answer
			(2)

16 NSC/*NSS* – Marking Guidelines/*Nasienriglyne*

QUESTION/VRAAG 7

7.1 (av.)	
7.1 Area $\Delta STK = \frac{1}{2} p(SK) \sin \alpha$	
$q = \frac{1}{2} p(SK) \sin \alpha$	✓ substitution into the correct formula
$SK = \frac{q}{\frac{1}{2} p \sin \alpha}$	✓ answer
$=\frac{2q}{p\sin\alpha}$	
	(2)
7.2 $\hat{RKS} = \beta$	\checkmark RKS= β
$\frac{RS}{SK} = \tan \beta$	✓ correct trig ratio
$RS = \frac{2q \tan \beta}{p \sin \alpha}$	(2)
OR	
RS SK	
$\frac{RS}{\sin\beta} = \frac{SK}{\sin(90^\circ - \beta)}$	\checkmark R $\hat{\mathbf{K}}\mathbf{S} = \boldsymbol{\beta}$
$RS\cos\beta = SK\sin\beta$	
$RS = SK \tan \beta$	$\checkmark \tan \beta = \frac{\sin \beta}{\cos \beta}$
$RS = \frac{2q \tan \beta}{\cdot}$	(2)
$\frac{RS - p\sin\alpha}{p\sin\alpha}$	(2)
7.3 $70 = \frac{2(2500)\tan 42^{\circ}}{80\sin \alpha}$	✓ correct substitution
$\sqrt{0} = \frac{1}{80 \sin \alpha}$	of values into RS
$\sin \alpha = \frac{25}{28} \tan 42^{\circ}$ OR $\sin \alpha = 0.80$	\checkmark value of $\sin \alpha$
$\alpha = 53,51^{\circ}$	✓ answer
	(3)
	[7]

NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2023

QUESTION/VRAAG 8

8.1	Construction: Draw KO prod	luced	✓ construction
	$\hat{O}_1 = \hat{K}_1 + \hat{T}$	$[\operatorname{ext} \angle \operatorname{of} \Delta]$	
	But $\hat{\mathbf{K}}_1 = \hat{\mathbf{T}}$	[∠s opp equal sides]	✓ S/R
	$\therefore \hat{O}_1 = 2\hat{K}_1$		✓ S
	^ ^		
	$\hat{\mathbf{O}}_2 = \hat{\mathbf{K}}_2 + \mathbf{P}$	$[\operatorname{ext} \angle \operatorname{of} \Delta]$	
	But $\hat{K}_2 = P$	[∠s opp equal sides]	
	$\therefore \hat{\mathbf{O}}_2 = 2\hat{\mathbf{K}}_2$		✓ S
	$\therefore \hat{O}_1 + \hat{O}_2 = 2\hat{K}_1 + 2\hat{K}_2$		✓ S
	$=2(\hat{\mathbf{K}}_1+\hat{\mathbf{K}}_2)$		
	∴ TÔP = 2TKP		(5)
	OR		

 $18 \\ NSC/\textit{NSS}-Marking \ Guidelines/\textit{Nasienriglyne}$

DBE/November 2023

8.1	Construction: Draw KO		✓ construction
	$\hat{T} = \hat{K}_1$ $\therefore K\hat{O}T = 180^{\circ} - 2\hat{K}_1$ $\hat{P} = \hat{K}_2$ $\therefore K\hat{O}P = 180^{\circ} - 2\hat{K}_2$	[\angle s opp. equal sides] [sum of \angle s of Δ KOT] [\angle s opp. equal sides] [sum of \angle s of Δ KOP]	✓ S/R ✓ S ✓ S
	$T\hat{O}P = 360^{\circ} - \left(K\hat{O}T + K\hat{O}P\right)$	[∠s around a point]	
	$= 360^{\circ} - (180^{\circ} - 2\hat{K}_{1} + 180^{\circ} - 2\hat{K}_{2})$ $= 2\hat{K}_{1} + 2\hat{K}_{2}$ $= 2(\hat{K}_{1} + \hat{K}_{2})$ $\therefore T\hat{O}P = 2T\hat{K}P$		✓ S
			(5)

19 NSC/*NSS* – Marking Guidelines/*Nasienriglyne* DBE/November 2023

8.2	$\hat{O}_1 = 4x + 100^{\circ}$	[given]		
	$3x = 96^{\circ}$	[\angle at centre = 2 × \angle at circumference] [opp \angle s of cyclic quad]	✓ S ✓ R ✓ S ✓ R	
	$x = 32^{\circ}$		✓ answer ((5)
	OR			
	$\hat{O}_2 = 2x + 68^{\circ}$	$[\angle$ at centre = 2 × \angle at circumference]	✓ S ✓ R	
	$4x + 100^{\circ} + 2x + 68^{\circ} = 360^{\circ}$ $6x = 192^{\circ}$	[∠s round a pt]	✓ S ✓ R	
	$x = 32^{\circ}$		✓ answer	
	OR			(5)
	$\hat{O}_2 = -4x + 260^{\circ}$	[∠s round a pt]	✓ S ✓ R	
	$2\hat{C} = -4x + 260^{\circ}$	[\angle at centre = 2 × \angle at circumference]	✓ S ✓ R	
	$ \hat{C} = -2x + 130^{\circ} x + 34^{\circ} = -2x + 130^{\circ} $			
	$3x = 96^{\circ}$		√ onewer	
	x = 32°		✓ answer ((5)

 $20 \\ NSC/\textit{NSS}-Marking Guidelines/\textit{Nasienriglyne}$

DBE/November 2023

8.3.1	$\hat{OMB} = 90^{\circ}$	[∠ in semi circle]	✓ S ✓ R	(2)
8.3.2	$AB = \sqrt{300} = 10\sqrt{3}$ $\therefore MB = 5\sqrt{3}$	[line from centre \(\perp\) to chord]	✓ S ✓ R	, ,
	$OB^{2} = OM^{2} + MB^{2}$ $OB^{2} = 5^{2} + (5\sqrt{3})^{2}$ $OB = 10 \text{ units}$	[Pythagoras]	✓ S ✓ answer	(4)
				[16]

21 NSC/NSS – Marking Guidelines/Nasienriglyne

DBE/November 2023

В

QUESTION/VRAAG 9

A

9.1	$\frac{FB}{EB} = \frac{DA}{EA}$ [pro	p theorem; DC AB] OR [line one side of Δ]	✓ S ✓ R	
	$FB = \frac{4p \times 21}{7p}$			
	FB = 12 units		✓ answer	
			ans wer	(3)
9.2	In ΔEDF and ΔEA	B:		
	Ê is common		✓ S	
	$\hat{EDF} = \hat{A}$	[corresp \angle s; EA \parallel CB]	✓ S/R	
	$\hat{EFD} = \hat{EBA}$	[corresp \angle s; DC AB]	✓ S OR R	
	$\Delta EDF \parallel\!\mid\!\mid \Delta EAB$	[∠;∠;∠]	V S OK K	(3)
9.3	$\frac{DF}{AB} = \frac{ED}{EA}$	$[\Delta s]$	✓ S	
	$DF = \frac{3p \times 14}{7p}$			
	DF = 6 units		✓ DF = 6	
	FC = 8 units	$[DC = AB = 14 \text{ units; opp sides of } ^{m}]$	✓ FC = 14 – DF	(2)
	OR			(3)
	$\Delta EDF \Delta BCF$	[∠;∠;∠]	✓ ∆EDF ∆BCF	
	$\frac{ED}{BC} = \frac{DF}{CF}$	$[\Delta s]$		
	$\frac{3}{4} = \frac{14 - FC}{FC}$	[BC = AD; opp sides of $\ ^m$]	$\checkmark \frac{3}{4} = \frac{14 - FC}{FC}$	
	3FC = 56 – 4FC FC = 8		d onessen	
	1.0-0		✓ answer	(3)
				[9]

DBE/November 2023

10.1	$\hat{S}_3 = \hat{PQR}$	[ext ∠ of cyclic quad]	✓ S ✓ R	
	$\hat{R}_3 = P\hat{Q}R$	[∠s opp equal sides]	✓ S/R	
	$\therefore \hat{\mathbf{S}}_3 = \hat{\mathbf{R}}_3$			
	But $\hat{S}_4 = \hat{R}_3$	[∠s in the same seg]	✓ S ✓ R	(5)
	$\therefore \hat{\mathbf{S}}_3 = \hat{\mathbf{S}}_4$			(5)
10.2	$\hat{\mathbf{R}}_1 + \hat{\mathbf{R}}_2 = \mathbf{P}\hat{\mathbf{Q}}\mathbf{R}$	[tan chord theorem]	✓ S ✓ R	
	$\hat{S}_4 = \hat{PQR}$	[proved in 10.1]		
	$\therefore \hat{\mathbf{S}}_4 = \hat{\mathbf{R}}_1 + \hat{\mathbf{R}}_2$		✓ S	
	SMRC is a cyclic quad	[converse ext \angle of cyclic quad]	✓ R	(4)
				(4)
10.3	$\hat{\mathbf{S}}_3 = \hat{\mathbf{R}}_2 + \hat{\mathbf{P}}_2$	$[\operatorname{ext} \angle \operatorname{of} \Delta]$	✓ S ✓ R	
	$\hat{\mathbf{S}}_4 = \hat{\mathbf{P}}_1 + \hat{\mathbf{A}}_2$	$[\operatorname{ext} \angle \operatorname{of} \Delta]$	✓ S	
	$\therefore \hat{\mathbf{R}}_2 + \hat{\mathbf{P}}_2 = \hat{\mathbf{A}}_2 + \hat{\mathbf{P}}_1$			
	But $\hat{P}_1 = \hat{R}_2$	[tan chord theorem]	✓ S ✓ R	
	$\therefore \hat{\mathbf{P}}_2 = \hat{\mathbf{A}}_2$			
	RP is a tangent to the circle	[converse tan chord theorem]	✓ R	
		OR		
		[∠ between line and chord] OR		
		[converse alt seg theorem]		(6)
	OR			

Need an amazing tutor? www.teachme2.com/matric

Mathematics P2/Wiskunde V2

23

DBE/November 2023

NSC/NSS – Marking Guidelines/Nasienriglyne

In ΔMSP and ΔMPA			
\hat{M}_2 is common		✓ S	
AR = AP	[tans from same point]	✓ S/R	
$\hat{\mathbf{R}}_1 + \hat{\mathbf{R}}_2 = \hat{\mathbf{P}}_1 + \hat{\mathbf{P}}_2$	[∠s opp equal sides]	✓ S	
$\hat{\mathbf{S}}_{4} = \hat{\mathbf{R}}_{1} + \hat{\mathbf{R}}_{2}$ $\therefore \hat{\mathbf{S}}_{4} = \hat{\mathbf{P}}_{1} + \hat{\mathbf{P}}_{2}$ $\therefore \hat{\mathbf{P}}_{2} = \hat{\mathbf{A}}_{2}$	[proved in 10.2]		
$\therefore \hat{\mathbf{S}}_4 = \hat{\mathbf{P}}_1 + \hat{\mathbf{P}}_2$		✓ S	
$\therefore \hat{\mathbf{P}}_2 = \hat{\mathbf{A}}_2$	[sum of \angle s in Δ]	✓ S	
RP is a tangent to the circle	[converse tan chord theorem]	✓ R	
			(6)
			[15]

TOTAL/TOTAAL: 150