Algoritmul FORD-FULKERSON CORECTITUDINE

Fără graf rezidual

Fie f un flux în N (exp f \equiv 0)

- Cât timp există un s-t lanţ f-nesaturat P în G
 - determină un astfel de P
 - Fie iP capacitatea reziduală a lui P
 - revizuieşte fluxul f de-a lungul lui P

$$f(e) = \begin{cases} f(e) + iP, e \text{ arc direct în } P \\ f(e) - iP, e \text{ este arc invers în } P \\ f(e), \text{ alt fel} \end{cases}$$

- Fie X = mulţimea vârfurilor accesibile din s prin lanţuri f-nesaturate
- 4. returnează f și (X, V-X)

Cu graf rezidual

- Fie f un flux în N (exp f \equiv 0)
- 2. Construim G_f graful rezidual pentru f
- 3. Cât timp există un s-t drum în G_f
 - determină P un s-t drum în G_f (pentru arcele $Cu_{C_f}(e) > 0$)
 - fie cfP capacitatea reziduală a lui P
 - actualizează G_f

pentru e
$$\in$$
 E(P) \subseteq E(G_f)
$$c_f(e) \leftarrow c_f(e) - cfP;$$

$$c_f(e^{-1}) \leftarrow c_f(e^{-1}) + cfP$$

- 4. Fie X = mulțimea vârfurilor accesibile din s în G_f
- 5. Returnează f corespunzător lui cf și (X, V-X)

Determinare cu parcurgere BFS (lanț/drum minim) => Edmonds-Karp

Proprietăți

Fie f flux, K=(X, Y=V-X) s-t tăietură

- 1. $val(f) = f(X, Y) f(Y, X) = f^{+}(X) f^{-}(X) = f^{-}(Y) f^{+}(Y)$
 - relaţia rezultă însumând condiţiile de conservare pentru
 vârfurile din X -{s} şi relaţia val(f) = f+(s) f-(s)

$$val(f) = \sum_{x \in X} (f^{+}(x) - f^{-}(x))$$
$$= f^{+}(X) + f(X, X) - (f^{-}(X) + f(X, X)) = f^{+}(X) - f^{-}(X)$$

Proprietăți

Fie f flux, K=(X, Y=V-X) s-t tăietură

- 1. $val(f) = f(X, Y) f(Y, X) = f^{+}(X) f^{-}(X) \le c(K) 0$
- val(f) \leq c(K) cu egalitate dacă și numai dacă f⁺(X) = c(K) și f⁻(X)=0 (deci toate arcele directe din K au flux= capacitate, și toate cele inverse au flux 0)

Proprietăți

Fie f flux, K=(X, Y=V-X) s-t tăietură

- 1. $val(f) = f(X, Y) f(Y, X) = f^{+}(X) f^{-}(X) \le c(K) 0$
- val(f) ≤ c(K) cu egalitate dacă și numai dacă f+(X) = c(K) și f-(X)=0 (deci toate arcele directe din K au flux= capacitate, și toate cele inverse au flux 0)
- 3. Dacă val(f) = c(K), f este flux maxim și K tăietură minimă

Tăietura minimă asociată unui flux maxim

Fie f flux.

Dacă **nu există s-t lanţ f-nesaturat** => există o s-t tăietură K_f cu val $(f) = c(K_f)$ deci **f este flux maxim și K_f este s-t tăietură minimă**, unde $K_f = (X_f, V-X_f)$ se definește astfel:

 $X_f = \{x \mid există s-x lanț f-nesaturat\} = \{x \mid există s-x drum în graful rezidual <math>G_f\}$

altfel s-x lanțul f-nesaturat poate fi extins cu arcul xy/yx și y ar fi în X_f

Tăietura minimă asociată unui flux maxim

Consecință

Fie f flux flux maxim -> tăietura minimă asociată se poate determina în O(n+m)

 $X_f = \{x \mid există s-x lanț f-nesaturat\} = \{x \mid există s-x drum în graful rezidual <math>G_f\}$

Observație In finalul algoritmului Ford-Fulkerson mulțimea X care definește tăietura minimă asociată lui f este chiar **mulțimea varfurilor vizitate** la ultima parcurgere a grafului (in care nu s-a mai gasit un s — t lanț f-nesaturat).

Tăietura minimă asociată unui flux maxim

Consecințe

Caracterizare flux maxim

f flux maxim \Leftrightarrow nu există s-t lanț f-nesaturat în G

Corectitudine algoritm FF

Algoritmului Ford-Fulkerson se termină într-un număr finit de pași și fluxul f determinat de algoritm este flux maxim. În plus, mulțimea X a vârfurilor accesibile din s prin lanțuri f-nesaturate determină o tăietură de capacitate minimă.

Teorema MAX-Flow, MIN-Cut FF

valoarea unui s - t flux maxim = capacitatea unei s - t tăieturi minime