$\{(x-1)^k\}=$

	ſ	Σ
+	$\frac{(x-1)^k}{k!}$	$\binom{x-1}{k}$
*	$(-1)^k \cdot \frac{\gamma(k, -\log x)}{\Gamma(k)}$	$D_{k}'(x)$

 $\{x^z\}=$

	ſ	Σ
+	$L_z(1-x)$	$\frac{x^{(z)}}{z!}$
*	$L_{-z}(\log x)$	$D_z(x)$

 $\{\log x\}=$

	(108%)	
	ſ	\sum
+	$\Gamma(0,x-1)+\log(x-1)+\gamma$	H_{x-1}
*	$li(x) - \log \log x - \gamma$	$\Pi(x)$

$$\frac{\partial}{\partial x}\{(x-1)^k\} = \text{OR } \nabla_x\{(x-1)^k\} =$$

	$\mathcal{O}_{\mathcal{A}}$	
	ſ	Σ
+	$\frac{(x-1)^{k-1}}{(k-1)!}$	$\binom{x-2}{k-1}$
*	$\frac{\log^{k-1} x}{(k-1)!}$	$d_{k}'(x)$

$$\frac{\partial}{\partial x} \{x^z\} = \text{OR } \nabla_x \{x^z\} =$$

	ſ	Σ
+	$L_{z-1}^{(1)}(1-x)$	$\frac{x^{(z-1)}}{(z-1)!}$
*	$-\frac{1}{x} \cdot L_{-z-1}^{(1)}(\log x)$	$d_z(x)$

$$\frac{\partial}{\partial x} \{ \log x \} = \operatorname{OR} \nabla_x \{ \log x \} =$$

	ſ	Σ
+	$\frac{1}{x-1} - \frac{e^{1-x}}{x-1}$	$\frac{1}{x-1}$
*	$\frac{1}{\log x} - \frac{1}{x \log x}$	$\kappa(x)$

$$\frac{\partial}{\partial x} \{ (x-\mathbf{1})^k \}^{+ f} = \{ (x-\mathbf{1})^{k-1} \}^{+ f}$$

$$\nabla_x \{ (x-1)^k \}^{+\Sigma} = \{ ((x-1)-1)^{k-1} \}^{+\Sigma}$$