Байесовские Методы. Лекция 1

БИВТ-23-9/10-ИСАД

8 сентября 2025 г.

Обо мне

- Я Макс.
- Работаю в институте AIRI.
- Занимаюсь исследованиями
 ИИ в биохимии.
- Раньше исследователь в T-Bank (неопределенность моделей) / инженер с стартапе (generative CV).

В этом курсе поговорим про байесовские методы. Затронем классические аспекты, а также важные темы для современного deep learning.

• **База Deep Learning**: байесовские методы помогают глубже понять современные подходы и модели, такие как диффузии, вариационные автоэнодеры (VAE), активное обучение и много других.

- База Deep Learning: байесовские методы помогают глубже понять современные подходы и модели, такие как диффузии, вариационные автоэнодеры (VAE), активное обучение и много других.
- **Оценка неопределённости**: важно знать, *когда* модель не уверена в предсказании.

- **База Deep Learning**: байесовские методы помогают глубже понять современные подходы и модели, такие как диффузии, вариационные автоэнодеры (VAE), активное обучение и много других.
- **Оценка неопределённости**: важно знать, *когда* модель не уверена в предсказании.
- **Эффективность при малых данных**: использование априорных знаний помогает обучать модели даже при небольших выборках.

- **База Deep Learning**: байесовские методы помогают глубже понять современные подходы и модели, такие как диффузии, вариационные автоэнодеры (VAE), активное обучение и много других.
- **Оценка неопределённости**: важно знать, *когда* модель не уверена в предсказании.
- **Эффективность при малых данных**: использование априорных знаний помогает обучать модели даже при небольших выборках.
- Устойчивость к выбросам: модель "понимает", когда данные выходят за рамки обучающего распределения.

ullet Курс состоит из pprox 12 занятий.

- Курс состоит из \approx 12 занятий.
- Планируется \approx **4-5 домашних заданий**.

- Курс состоит из \approx **12 занятий**.
- Планируется \approx **4-5 домашних заданий**.
- Формат занятий:

- Курс состоит из \approx **12 занятий**.
- Планируется \approx **4-5 домашних заданий**.
- Формат занятий:
 - Некоторые семинары будут лекционными.

- Курс состоит из \approx **12 занятий**.
- Планируется \approx **4-5 домашних заданий**.
- Формат занятий:
 - Некоторые семинары будут лекционными.
 - В других первая половина лекция, а вторая половина практика.

- Курс состоит из \approx **12 занятий**.
- Планируется \approx **4-5 домашних заданий**.
- Формат занятий:
 - Некоторые семинары будут лекционными.
 - В других первая половина лекция, а вторая половина практика.
- Оценка за курс = средняя оценка за домашние задания.

- Курс состоит из \approx **12 занятий**.
- Планируется \approx **4-5 домашних заданий**.
- Формат занятий:
 - Некоторые семинары будут лекционными.
 - В других первая половина лекция, а вторая половина практика.
- Оценка за курс = средняя оценка за домашние задания.
- **Автоматы возможны**: если у вас есть проекты, связанные с вероятностными методами. Детали обсуждаются индивидуально.

- Курс состоит из \approx **12 занятий**.
- Планируется \approx **4-5 домашних заданий**.
- Формат занятий:
 - Некоторые семинары будут лекционными.
 - В других первая половина лекция, а вторая половина практика.
- Оценка за курс = средняя оценка за домашние задания.
- **Автоматы возможны**: если у вас есть проекты, связанные с вероятностными методами. Детали обсуждаются индивидуально.
- Полный список тем будет опубликован позже.

• Случайная величина X — переменная, принимающая значения из множества \mathcal{X} с некоторым распределением вероятностей.

- Случайная величина X переменная, принимающая значения из множества $\mathcal X$ с некоторым распределением вероятностей.
- **●** Вероятность события $A: P(A) \in [0, 1]$.

- Случайная величина X переменная, принимающая значения из множества $\mathcal X$ с некоторым распределением вероятностей.
- **●** Вероятность события $A: P(A) \in [0, 1]$.
- Совместная вероятность: $P(A, B) = P(A \cap B)$.

- Случайная величина X переменная, принимающая значения из множества $\mathcal X$ с некоторым распределением вероятностей.
- **●** Вероятность события $A: P(A) \in [0, 1]$.
- **●** Совместная вероятность: $P(A, B) = P(A \cap B)$.
- Условная вероятность:

$$P(A \mid B) = \frac{P(A,B)}{P(B)}, \quad P(B) > 0$$

- Случайная величина X переменная, принимающая значения из множества $\mathcal X$ с некоторым распределением вероятностей.
- **●** Вероятность события $A: P(A) \in [0, 1]$.
- Совместная вероятность: $P(A,B) = P(A \cap B)$.
- Условная вероятность:

$$P(A \mid B) = \frac{P(A,B)}{P(B)}, \quad P(B) > 0$$

• Формула полной вероятности:

$$P(A) = \sum_{i} P(A \mid B_i) \cdot P(B_i)$$

- Случайная величина X переменная, принимающая значения из множества $\mathcal X$ с некоторым распределением вероятностей.
- **●** Вероятность события $A: P(A) \in [0, 1]$.
- Совместная вероятность: $P(A, B) = P(A \cap B)$.
- Условная вероятность:

$$P(A \mid B) = \frac{P(A,B)}{P(B)}, \quad P(B) > 0$$

• Формула полной вероятности:

$$P(A) = \sum_{i} P(A \mid B_i) \cdot P(B_i)$$

• Теорема Байеса:

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Частотный vs Байесовский подход

Аспект	Частотный подход	Байесовский подход
Смысл вероятно- сти	Долгосрочная частота событий	Степень уверенности (субъективная)
Параметры θ	Фиксированные, но неиз- вестные константы	Случайные величины с рас- пределениями
Д анные \mathcal{D}	Случайные выборки из фиксированного процесса	Фиксированы после наблю- дения
Цель вывода	Найти лучшее значение $ heta$	Вычислить постериорное распределение $p(\theta \mid \mathcal{D})$
Источник неопре- делённости	Только из-за случайности данных	Из-за неопределённости данных и параметров
Обновление зна- ний	Невозможно обновить апри- орные представления	Обновление через теорему Байеса
Априорное рас- пределение	Не используется	Явно задаётся как $p(\theta)$

Формула

$$P(\theta \mid D) = \frac{P(D \mid \theta) \cdot P(\theta)}{P(D)}$$

• Гипотеза / Параметры θ — наши предположения о модели.

Формула

$$P(\theta \mid D) = \frac{P(D \mid \theta) \cdot P(\theta)}{P(D)}$$

- Гипотеза / Параметры θ наши предположения о модели.
- Данные D наблюдаемые измерения.

Формула

$$P(\theta \mid D) = \frac{P(D \mid \theta) \cdot P(\theta)}{P(D)}$$

- Гипотеза / Параметры θ наши предположения о модели.
- Данные D наблюдаемые измерения.
- Априорное распределение (prior) $P(\theta)$ знания о параметрах до данных.

Формула

$$P(\theta \mid D) = \frac{P(D \mid \theta) \cdot P(\theta)}{P(D)}$$

- Гипотеза / Параметры θ наши предположения о модели.
- Данные D наблюдаемые измерения.
- Априорное распределение (prior) $P(\theta)$ знания о параметрах до данных.
- lacktriangle Правдоподобие (likelihood) $P(D\mid heta)$ насколько heta объясняет D.

Формула

$$P(\theta \mid D) = \frac{P(D \mid \theta) \cdot P(\theta)}{P(D)}$$

- Гипотеза / Параметры θ наши предположения о модели.
- Данные D наблюдаемые измерения.
- Априорное распределение (prior) $P(\theta)$ знания о параметрах до данных.
- Правдоподобие (likelihood) $P(D \mid \theta)$ насколько θ объясняет D

• Обоснование (evidence) P(D) — нормировочная константа (как бы вероятность получения данных, имея все гипотезы в целом):

$$P(D) = \int P(D \mid \theta) P(\theta) \, d\theta$$

Формула

$$P(\theta \mid D) = \frac{P(D \mid \theta) \cdot P(\theta)}{P(D)}$$

- Гипотеза / Параметры θ наши предположения о модели.
- Данные D наблюдаемые измерения.
- Априорное распределение (prior) P(θ) — знания о параметрах до данных.
- Правдоподобие (likelihood) $P(D \mid \theta)$ насколько θ объясняет D

• Обоснование (evidence) P(D) — нормировочная константа (как бы вероятность получения данных, имея все гипотезы в целом):

$$P(D) = \int P(D \mid \theta)P(\theta) d\theta$$

• Постериорное распределение (posterior) $P(\theta \mid D)$ — обновленное знание относительно данных.

Определение

Правдоподобие — это *интерпретация* вероятности данных как функции от параметров:

$$L(\theta; D) := P(D \mid \theta)$$

lacktriangle Если фиксируем параметры $heta o P(D\mid heta)$ — вероятность данных.

Определение

$$L(\theta; D) := P(D \mid \theta)$$

- lacktriangle Если фиксируем параметры $heta o P(D\mid heta)$ вероятность данных.
- lacktriangle Если фиксируем данные D o L(heta;D) правдоподобие параметров.

Определение

$$L(\theta; D) := P(D \mid \theta)$$

- Если фиксируем параметры $\theta \to P(D \mid \theta)$ вероятность данных.
- lacktriangle Если фиксируем данные D o L(heta; D) правдоподобие параметров.
- Пример:

Определение

$$L(\theta; D) := P(D \mid \theta)$$

- Если фиксируем параметры $\theta \to P(D \mid \theta)$ вероятность данных.
- Если фиксируем данные $D \to L(\theta; D)$ правдоподобие параметров.
- Пример:
 - Вероятность: «Какова вероятность получить 12 очков в 100 бросках костей, если кости честные?»

Определение

$$L(\theta; D) := P(D \mid \theta)$$

- Если фиксируем параметры $\theta \to P(D \mid \theta)$ вероятность данных.
- Если фиксируем данные $D \to L(\theta; D)$ правдоподобие параметров.
- Пример:
 - Вероятность: «Какова вероятность получить 12 очков в 100 бросках костей, если кости честные?»
 - Правдоподобие: «Насколько правдоподобно, что кости честные, если в 100 бросках всегда выпало 12 очков?»

Определение

Правдоподобие — это *интерпретация* вероятности данных как функции от параметров:

$$L(\theta; D) := P(D \mid \theta)$$

- Если фиксируем параметры $\theta \to P(D \mid \theta)$ вероятность данных.
- Если фиксируем данные $D \to L(\theta; D)$ правдоподобие параметров.
- Пример:
 - Вероятность: «Какова вероятность получить 12 очков в 100 бросках костей, если кости честные?»
 - Правдоподобие: «Насколько правдоподобно, что кости честные, если в 100 бросках всегда выпало 12 очков?»
- Часто используют лог-правдоподобие:

 $\log P(D \mid \theta)$

Оценка максимального правдоподобия (MLE)

Идея

В классической постановке параметры θ выбираются так, чтобы максимизировать вероятность данных:

$$\hat{\theta}_{\mathrm{MLE}} = \arg\max_{\theta} P(D \mid \theta)$$

 Мы выбираем те параметры, которые делают наблюдённые данные наиболее вероятными.

Оценка максимального правдоподобия (MLE)

Идея

В классической постановке параметры θ выбираются так, чтобы максимизировать вероятность данных:

$$\hat{\theta}_{\text{MLE}} = \arg\max_{\theta} P(D \mid \theta)$$

- Мы выбираем те параметры, которые делают наблюдённые данные наиболее вероятными.
- ullet Эквивалентно: $\hat{ heta}_{\mathrm{MLE}} = \arg\max_{ heta} L(heta; D)$, где $L(heta; D) = P(D \mid heta)$ функция правдоподобия.

Оценка максимального правдоподобия (MLE)

Идея

В классической постановке параметры θ выбираются так, чтобы максимизировать вероятность данных:

$$\hat{\theta}_{\text{MLE}} = \arg\max_{\theta} P(D \mid \theta)$$

- Мы выбираем те параметры, которые делают наблюдённые данные наиболее вероятными.
- ullet Эквивалентно: $\hat{ heta}_{\mathrm{MLE}} = \arg\max_{ heta} L(heta; D)$, где $L(heta; D) = P(D \mid heta)$ функция правдоподобия.
- Обычно используем лог-правдоподобие:

$$\hat{\theta}_{\text{MLE}} = \arg\max_{\theta} \log P(D \mid \theta)$$

Оценка максимального правдоподобия (MLE)

Идея

В классической постановке параметры θ выбираются так, чтобы максимизировать вероятность данных:

$$\hat{\theta}_{\text{MLE}} = \arg \max_{\theta} P(D \mid \theta)$$

- Мы выбираем те параметры, которые делают наблюдённые данные наиболее вероятными.
- ullet Эквивалентно: $\hat{ heta}_{
 m MLE} = rg \max_{ heta} L(heta; D)$, где $L(heta; D) = P(D \mid heta)$ функция правдоподобия.
- Обычно используем лог-правдоподобие:

$$\hat{\theta}_{\mathrm{MLE}} = \arg\max_{\theta} \log P(D \mid \theta)$$

• С предположением, что данные независимы:

$$P(D \mid \theta) = \prod_{i=1}^{n} P(x_i \mid \theta) \Rightarrow \log P(D \mid \theta) = \sum_{i=1}^{n} \log P(x_i \mid \theta)$$

Maximum a Posteriori (MAP) и связь с MLE

Определение МАР

МАР-оценка выбирает параметры, которые максимизируют постериор:

$$\hat{\theta}_{\text{MAP}} = \arg \max_{\theta} P(\theta \mid D) = \arg \max_{\theta} \frac{P(D \mid \theta)P(\theta)}{P(D)}$$

МАР сочетает:

$$\underbrace{P(D\mid \theta)}_{\text{правдоподобие}} \times \underbrace{P(\theta)}_{\text{априор}}$$

Maximum a Posteriori (MAP) и связь с MLE

Определение МАР

МАР-оценка выбирает параметры, которые максимизируют постериор:

$$\hat{\theta}_{\text{MAP}} = \arg \max_{\theta} P(\theta \mid D) = \arg \max_{\theta} \frac{P(D \mid \theta)P(\theta)}{P(D)}$$

МАР сочетает:

$$\underbrace{P(D \mid \theta)}_{\text{правдоподобие}} \times \underbrace{P(\theta)}_{\text{априор}}$$

• В логарифмах:

$$\hat{\theta}_{\text{MAP}} = \arg \max_{\theta} \left[\log P(D \mid \theta) + \log P(\theta) \right]$$

Maximum a Posteriori (MAP) и связь с MLE

Определение МАР

МАР-оценка выбирает параметры, которые максимизируют постериор:

$$\hat{\theta}_{\text{MAP}} = \arg\max_{\theta} P(\theta \mid D) = \arg\max_{\theta} \frac{P(D \mid \theta)P(\theta)}{P(D)}$$

МАР сочетает:

$$\underbrace{P(D \mid \theta)}_{\text{правдоподобие}} \times \underbrace{P(\theta)}_{\text{априор}}$$

В логарифмах:

$$\hat{\theta}_{\text{MAP}} = \arg \max_{\theta} \left[\log P(D \mid \theta) + \log P(\theta) \right]$$

lacktriangle MLE как частный случай: если априор P(heta) равномерный, тогда $\hat{ heta}_{ ext{MAP}}=\hat{ heta}_{ ext{MLE}}.$

Постериор

$$P(\theta \mid D) = rac{P(D \mid heta)P(heta)}{P(D)}, \;\;\;$$
где $P(D) = \int P(D \mid heta)P(heta) \, d heta$

Rich Man's Bayes

Poor Man's Bayes

Считаем P(D) точно.

Постериор

$$P(\theta \mid D) = rac{P(D \mid heta)P(heta)}{P(D)}, \;\;\;$$
 где $P(D) = \int P(D \mid heta)P(heta) \, d heta$

Rich Man's Bayes

- Считаем P(D) точно.
- Получаем **нормированное** распределение $P(\theta \mid D)$.

Постериор

$$P(\theta \mid D) = rac{P(D \mid heta)P(heta)}{P(D)}, \quad$$
где $P(D) = \int P(D \mid heta)P(heta) \, d heta$

Rich Man's Bayes

- Считаем P(D) точно.
- Получаем **нормированное** распределение $P(\theta \mid D)$.
- Используем при малом числе параметров или простых моделях.

Постериор

$$P(\theta \mid D) = rac{P(D \mid heta)P(heta)}{P(D)}, \quad$$
где $P(D) = \int P(D \mid heta)P(heta) \, d heta$

Rich Man's Bayes

- Считаем P(D) точно.
- Получаем **нормированное** распределение $P(\theta \mid D)$.
- Используем при малом числе параметров или простых моделях.
- Пример: аналитические задачи, conjugate priors.

Постериор

$$P(\theta \mid D) = rac{P(D \mid heta)P(heta)}{P(D)}, \quad$$
где $P(D) = \int P(D \mid heta)P(heta) \, d heta$

Rich Man's Bayes

- Считаем P(D) точно.
- Получаем **нормированное** распределение $P(\theta \mid D)$.
- Используем при малом числе параметров или простых моделях.
- Пример: аналитические задачи, conjugate priors.

Poor Man's Bayes

• Игнорируем P(D), работаем с $\tilde{P}(\theta \mid D) \propto P(D \mid \theta)P(\theta)$.

Постериор

$$P(\theta \mid D) = rac{P(D \mid heta)P(heta)}{P(D)}, \quad$$
где $P(D) = \int P(D \mid heta)P(heta) \, d heta$

Rich Man's Bayes

- Считаем *P(D)* точно.
- Получаем **нормированное** распределение $P(\theta \mid D)$.
- Используем при малом числе параметров или простых моделях.
- Пример: аналитические задачи, conjugate priors.

- Игнорируем P(D), работаем с $\tilde{P}(\theta \mid D) \propto P(D \mid \theta)P(\theta)$.
- Не нормируем постериор.

Постериор

$$P(\theta \mid D) = rac{P(D \mid heta)P(heta)}{P(D)}, \;\;\;$$
где $P(D) = \int P(D \mid heta)P(heta) \, d heta$

Rich Man's Bayes

- Считаем *P(D)* точно.
- Получаем **нормированное** распределение $P(\theta \mid D)$.
- Используем при малом числе параметров или простых моделях.
- Пример: аналитические задачи, conjugate priors.

- Игнорируем P(D), работаем с $\tilde{P}(\theta \mid D) \propto P(D \mid \theta)P(\theta)$.
- Не нормируем постериор.
- Достаточно для МАР, МСМС, вариационного вывода.

Постериор

$$P(\theta \mid D) = rac{P(D \mid heta)P(heta)}{P(D)}, \;\;\;$$
 где $P(D) = \int P(D \mid heta)P(heta) \, d heta$

Rich Man's Bayes

- Считаем P(D) точно.
- Получаем **нормированное** распределение $P(\theta \mid D)$.
- Используем при малом числе параметров или простых моделях.
- Пример: аналитические задачи, conjugate priors.

- Игнорируем P(D), работаем с $\tilde{P}(\theta \mid D) \propto P(D \mid \theta)P(\theta)$.
- Не нормируем постериор.
- Достаточно для МАР, МСМС, вариационного вывода.
- Популярен при высокоразмерных моделях.

Определение

Априор $P(\theta)$ называется **сопряжённым** для правдоподобия $P(D \mid \theta)$, если **постериор** $P(\theta \mid D)$ принадлежит *тому же семейству распределений*, что и априор:

$$P(\theta \mid D) \propto P(D \mid \theta) P(\theta),$$
 где $P(\theta), P(\theta \mid D) \in \mathcal{F}.$

 Главная идея: выбираем такой априор, чтобы после обновления мы получили распределение того же типа.

Определение

$$P(\theta \mid D) \propto P(D \mid \theta) P(\theta),$$
 где $P(\theta), P(\theta \mid D) \in \mathcal{F}.$

- Главная идея: выбираем такой априор, чтобы после обновления мы получили распределение того же типа.
- Это даёт:

Определение

$$P(\theta \mid D) \propto P(D \mid \theta) P(\theta), \quad$$
где $P(\theta), P(\theta \mid D) \in \mathcal{F}.$

- Главная идея: выбираем такой априор, чтобы после обновления мы получили распределение того же типа.
- Это даёт:
 - Закрытую аналитическую форму постериора.

Определение

$$extbf{ extit{P}}(heta \mid extbf{ extit{D}}) \propto extbf{ extit{P}}(extbf{ extit{D}} \mid heta) extbf{ extit{P}}(heta), \;\; extbf{ extit{Tge}} extbf{ extit{P}}(heta), extbf{ extit{P}}(heta) \in \mathcal{F}.$$

- Главная идея: выбираем такой априор, чтобы после обновления мы получили распределение того же типа.
- Это даёт:
 - Закрытую аналитическую форму постериора.
 - Простое обновление параметров.

Определение

$$P(\theta \mid D) \propto P(D \mid \theta) P(\theta), \quad$$
где $P(\theta), P(\theta \mid D) \in \mathcal{F}.$

- Главная идея: выбираем такой априор, чтобы после обновления мы получили распределение того же типа.
- Это даёт:
 - Закрытую аналитическую форму постериора.
 - Простое обновление параметров.
 - Упрощение байесовского вывода.

Определение

Априор $P(\theta)$ называется **сопряжённым** для правдоподобия $P(D \mid \theta)$, если **постериор** $P(\theta \mid D)$ принадлежит *тому же семейству распределений*, что и априор:

$$P(\theta \mid D) \propto P(D \mid \theta) P(\theta), \quad$$
где $P(\theta), P(\theta \mid D) \in \mathcal{F}.$

- Главная идея: выбираем такой априор, чтобы после обновления мы получили распределение того же типа.
- Это даёт:
 - Закрытую аналитическую форму постериора.
 - Простое обновление параметров.
 - Упрощение байесовского вывода.
- Если априор не сопряжён, постериор не имеет аналитической формы:

$$P(\theta \mid D) = \frac{P(D \mid \theta) P(\theta)}{\int P(D \mid \theta) P(\theta) d\theta}$$

→ сложный интеграл, как на картинке.

Определение

$$P(\theta \mid D) \propto P(D \mid \theta) \, P(\theta), \quad$$
где $P(\theta), \, P(\theta \mid D) \in \mathcal{F}.$

- Главная идея: выбираем такой априор, чтобы после обновления мы получили распределение того же типа.
- Это даёт:
 - Закрытую аналитическую форму постериора.
 - Простое обновление параметров.
 - Упрощение байесовского вывода.
- Если априор не сопряжён, постериор не имеет аналитической формы:

$$P(\theta \mid D) = \frac{P(D \mid \theta) P(\theta)}{\int P(D \mid \theta) P(\theta) d\theta}$$

- ightarrow сложный интеграл, как на картинке.
- Примеры сопряжённых пар:

Определение

$$P(\theta \mid D) \propto P(D \mid \theta) \, P(\theta), \quad$$
где $P(\theta), \, P(\theta \mid D) \in \mathcal{F}.$

- Главная идея: выбираем такой априор, чтобы после обновления мы получили распределение того же типа.
- Это даёт:
 - Закрытую аналитическую форму постериора.
 - Простое обновление параметров.
 - Упрощение байесовского вывода.
- Если априор не сопряжён, постериор не имеет аналитической формы:

$$P(\theta \mid D) = \frac{P(D \mid \theta) P(\theta)}{\int P(D \mid \theta) P(\theta) d\theta}$$

- → сложный интеграл, как на картинке.
- Примеры сопряжённых пар:
 - Бета ↔ биномиальное правдоподобие.

Определение

$$P(\theta \mid D) \propto P(D \mid \theta) P(\theta), \quad$$
где $P(\theta), P(\theta \mid D) \in \mathcal{F}.$

- Главная идея: выбираем такой априор, чтобы после обновления мы получили распределение того же типа.
- Это даёт:
 - Закрытую аналитическую форму постериора.
 - Простое обновление параметров.
 - Упрощение байесовского вывода.
- Если априор не сопряжён, постериор не имеет аналитической формы:

$$P(\theta \mid D) = \frac{P(D \mid \theta) P(\theta)}{\int P(D \mid \theta) P(\theta) d\theta}$$

- → сложный интеграл, как на картинке.
- Примеры сопряжённых пар:
 - Бета ↔ биномиальное правдоподобие.
 - Нормальное ↔ нормальное.

Определение

$$P(\theta \mid D) \propto P(D \mid \theta) P(\theta), \quad$$
где $P(\theta), P(\theta \mid D) \in \mathcal{F}.$

- Главная идея: выбираем такой априор, чтобы после обновления мы получили распределение того же типа.
- Это даёт:
 - Закрытую аналитическую форму постериора.
 - Простое обновление параметров.
 - Упрощение байесовского вывода.
- Если априор не сопряжён, постериор не имеет аналитической формы:

$$P(\theta \mid D) = \frac{P(D \mid \theta) P(\theta)}{\int P(D \mid \theta) P(\theta) d\theta}$$

- → сложный интеграл, как на картинке.
- Примеры сопряжённых пар:
 - Бета ↔ биномиальное правдоподобие.
 - Нормальное ↔ нормальное.
 - Гамма ↔ пуассон.

Пример: биномиальное правдоподобие + бета-априор

Задача

Подбрасываем монетку n раз, в k случаях выпал орёл.

Правдоподобие: биномиальное

$$P(D \mid \theta) = \binom{n}{k} \theta^k (1 - \theta)^{n-k}$$

где θ — вероятность орла.

Априор: бета-распределение

$$\textit{P}(\theta) = \mathrm{Beta}(\theta;\,\alpha,\beta) = \frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{\textit{B}(\alpha,\beta)}$$

Постериор: снова бета!

$$P(\theta \mid D) \propto \theta^{k} (1 - \theta)^{n-k} \cdot \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

$$P(\theta \mid D) = \text{Beta}(\alpha + k, \beta + n - k)$$