```
In [1]: import pandas as pd
    from sklearn.datasets import load_iris
    import matplotlib.pyplot as plt

    iris=load_iris()
    iris=pd.DataFrame(iris.data,columns=iris.feature_names)
    iris['class']=load_iris().target
    iris['class']=iris['class'].map({0:'Setosa',1:'Versicolour',2:'Virginica'})

In [2]: import numpy as np

V Mainis[Isonal longth (cm)]] inis[Isonal longth (cm)]]
```

```
In [2]: import numpy as np

X,Y=iris['sepal length (cm)'],iris['petal length (cm)']
b1,b0 = np.polyfit(X,Y,1)
plt.scatter(x=X,y=Y,alpha=0.5)
plt.plot(X,b1*X+b0,color='r')
plt.show()
```


In [3]: from pandas.plotting import scatter_matrix
 scatter_matrix(iris,alpha=0.5,figsize=(8,8),diagonal='hist')

plt.show()

2. 수식

KDE의 추정식은 다음과 같습니다.

$$\hat{f}_h(x) = rac{1}{nh} \sum_{i=1}^n K\left(rac{x-x_i}{h}
ight)$$

n: 데이터 개수

ullet h : 밴드위스(bandwidth) — 곡선의 폭을 조절하는 매개변수

• $K(\cdot)$: 커널 함수 (예: Gaussian, Epanechnikov, Uniform 등)

 $oldsymbol{x}_i$: 데이터 포인트

📌 공통점

- 둘 다 데이터 분포를 부드럽게 근사한다.
- 결과물로 **연속적인 확률밀도 함수(PDF)**를 얻을 수 있다.
- 초매개변수(커널 폭 h 또는 가우시안 개수 k) 선택이 성능에 매우 중요하다.

📌 차이점

구분	KDE	GMM
모델 유형	비모수적 (모양 가정 없음)	모수적 (가우시안 혼합 가정)
기본 아이디어	각 데이터 포인트마다 하나의 커널을 씌워서 합 친다	"데이터는 k개의 가우시안 분포 혼합"이라고 가정
커널 개수	데이터 개수(n) = 커널 개수	가우시안 개수(k)는 모델에서 설정
학습 방식	별도 학습 과정 없음, bandwidth(h)만 선택	EM 알고리즘으로 평균·분산·가중치 추정
유연성	분포 모양이 자유롭지만, 대역폭 선택에 민감	분포 모양은 가우시안 혼합으로 제한
복잡도	O(n) 평가 (데이터 많으면 느림)	O(k) 평가 (k는 보통 작음)

★ KDE에서 "여러 커널"이란?

- KDE는 데이터 포인트마다 하나씩 커널(예: 가우시안)을 씌움
- 이때 커널 종류를 여러 개 시도할 수 있지만, 보통은 가우시안 하나를 쓰고
 밴드위스(h)만 여러 후보로 시도해서 최적값을 선택
- 커널 종류보다 밴드위스가 분포 부드러움에 훨씬 큰 영향을 줌
 (→ 마치 GMM에서 k 조정이 중요한 것처럼 KDE에서는 h 조정이 핵심)

📌 그림으로 차이 감

- KDE: 모든 데이터에 얇은 종모양(또는 다른 커널) 곡선을 얹어서 전부 합침
- GMM: "데이터는 k개의 가우시안 클러스터"라고 가정하고 그 가우시안들의 합으로 분포를 표현

♀ 요약

- GMM = "분포 = k개의 가우시안 혼합" → 데이터 개수와 무관하게 k개의 가우시안만 사용, 모양이 제한됨

```
In [4]: import seaborn as sns
sns.pairplot(iris,diag_kind='kde',hue='class')
plt.show()
```


In [5]: sns.pairplot(iris,diag_kind='kde',hue='class',diag_kws={'bw_adjust': 0.5}) # bandwidth 조절) plt.show()

In [6]: iris_corr=iris.drop(columns='class').corr(method='pearson')
 sns.heatmap(iris_corr,xticklabels=iris_corr.columns,yticklabels=iris_corr.columns,cmap='RdBu_r',annot=True)
 plt.show()

In []: !pip install ydata_profiling
!pip install pydantic pydantic-settings

```
In [8]: from ydata_profiling import ProfileReport
ProfileReport(iris)
```

<u>Upgrade to ydata-sdk</u>

Improve your data and profiling with ydata-sdk, featuring data quality scoring, redundancy detection, outlier identification, text validation, and synthetic data generation.

```
Summarize dataset: 0%| | 0/5 [00:00<?, ?it/s]

100%| | 5/5 [00:00<00:00, 29.71it/s]

Generate report structure: 0%| | 0/1 [00:00<?, ?it/s]

Render HTML: 0%| | 0/1 [00:00<?, ?it/s]
```

Overview

Brought to you by YData

Variables

Select Columns V

0	u	t	[8	3]	i

In []: