## سوال ۱: جدول زیر مراحل کامپایل یک برنامه را نشان می دهد، آن را کامل کنید.



سوال ۲: الگوی لکس موارد خواسته شده ی زیر را بنویسید.

اعداد زوج به طول حداقل ۵رقم بدون صفر ابتدایی

'[1-9][0-9][0-9][0-9]\*[02468]'

الگوی کامنت Single-Line و رشته در زبان پایتون

Comment: '#[a-zA-Z0-9\_]\*'

String: '['|"][a-zA-Z0-9\_]\*[']'

اعداد بخش پذیر بر ۳

 $'[0]^*|[[1][[0][1]^*[0]]^*1]^{*'}$ 

رمز عبور ۱۰کرکتری که می تواند از حروف و اعداد و کرکتر های (a) (a) (b) (a) (b) (b) (b) (c) (c)

'[a-zA-Z0-9#\$%@][0-9#\$%@][a-zA-Z0-9#\$%@]^8'

سوال ۳: برای زبانهای منظم زیر  $\mathbf{DFA}$ کمینه متناظر را رسم کنید.

- (a|b)\* a(a|b) -
- (a|b)\* a (a|b) (a|b) -
- (a|b)\* a (a|b) (a|b) (a|b) -

I) (alb) a (alb)







آیا الگوی خاصی مشاهده می کنید؟ توضیح دهید.

به ازای هر (a|b) اضافه شده تعداد حالات دوبرابر می شود.

(a|b) هر NFA و NFA را رسم کنیم، تعداد حالات n خواهد بود. در تبدیل NFA به NFA، بهازای هر (a|b) باید دو حالت معادل را در DFA در نظر بگیریم. برای همین، تعداد حالات در DFA بهازای هر (a|b) اضافه شده دوبرابر حالت قبل خواهند شد.

سوال ۴: اثبات کنید که هر DFAبرای زبان منظم (a|b) ... (a|b)  $\dots$  (a|b) که (a|b) به تعداد n-1 بار در انتهای آن تکرار می شود، باید  $2^n$  حالت داشته باشد. ( راهنمایی: از الگوی بدست آمده از سوال قبل کمک بگیرید) .

می توان از استقراء برای اثبات استفاده کرد:

همانطور که در شکل آمده،  $r=2;\, 2^2=4$  : حالت داریم،  $n=k;\, 2^k$  حالت  $n=k;\, 2^k$  : مون  $n=k+1:\, 2^{k+1}$  حالت

به ازای هر (a|b) اضافه شده، بنا به دلیل گفته شده در قسمت آخر سوال a، تعداد حالات دوبرابر می شود. پس از فرض به حکم می رسیم.