APERIODIC LOOP ANTENNA ARRAYS

2005 - 2006 CATALOG

HF RECEIVE ANTENNAS

2.0 TO 32.0 MHz OPERATING RANGE

SMALL SIZE

TRANSPORTABLE VERSION

TRIPOD MOUNT
(SECURED BY CONCRETE BLOCKS)

4R8E13 SYSTEM

SYSTEM SUMMARY

Our basic antenna is an *untuned, balanced loop* which has dimensions that are small compared with the wavelength. A preamplifier circuit, fitted at the base of the antenna, exactly complements the loop characteristics. This combination results in a nominally constant, effective, height over the 2.0 to 32.0 MHz frequency range.

At frequencies less than 30.0 MHz it is possible to employ an antenna for receiving purposes which is electrically small and has poor free-space coupling efficiency, without prejudicing the overall system noise factor. This is because the antenna output noise comes primarily from atmospheric and galactic sources. The thermal noise introduced by the antenna radiation resistance is insignificant by comparison, if this resistance is presumed to be at ambient temperature.

While a requirement for free-space coupling efficiency remains for a transmit antenna, it does not for the receive antenna. The aperiodic loop antenna configuration includes loop/preamplifier elements, in an "end fire" array, with an interconnecting transmission line coupling each element. The element spacing has been carefully chosen to provide optimum directional characteristics for both long and short haul, point-to-point HF communication using the ionosphere. Outputs are available at both ends so the array can look both ways simultaneously, if required, or can be rapidly switched through 180° with a coaxial relay.

The loop, with its vertical plane, is mounted close to the ground in terms of wavelength to obtain additional incident and reflected signals. The loop element is a welded assembly of aluminum alloy weighing only 10 pounds, and may be mounted on a tripod or bolted to a post with an angle bracket.

APERIODIC LOOP ARRAYS

The new approach to High Frequency Receiving Antennas

The combination of an electrically small loop and a patented solid state preamplifier produces a broadband receiving antenna element covering the frequency range 2-32 MHz. The loop-preamplifier element has a performance. for reception, comparable to conventional large monopole antennas, because the incoming signal to noise ratio is limited by the high background atmospheric noise levels in the HF band.

The loop is a welded assembly of aluminum alloy tubing only one meter in diameter and weighing 10 pounds. It should be located close to the ground in terms of wavelength, and can be mounted on a tripod or bolted to a post with an angle bracket.

The Aperiodic Configuration comprises loop/preamplifier elements arranged along the ground, with an interconnecting transmission line, in the direction of signal arrival to form an 'end-fire' array. These linear arrays produce a unidirectional beam pattern with optimum characteristics for reception of HF signals propagated via the ionosphere. The directional gain of these arrays compares well with Log Periodic or Rhombic Antenna Systems

Because of the low mutual interference between the small loop elements, multiple cross array Rosette systems can be constructed, giving very efficient utilization of real estate.

What Price Real Estate?

A complete HF receive antenna capability now requires a piece of land only 50 meters in diameter.

Rosette and Circular Loop Array Systems replace vast Rhombic or Log Periodic antenna farms, and require less than one *hundredth* of the land area.

These antenna systems provide, over the frequency range 2-32 MHz, a number of high gain overlapping beams, all available simultaneously, covering all possible azimuth directions.

At Last One Antenna For Both Long and Short Haul Communication

The loop antenna element receives signals equally from all elevation arrival angles.

Short range communication via the ionosphere depends on acute reflection angles, and is only possible at the lower frequency end of the HF band. Aperiodic Loop Arrays have a wide elevation beamwidth at the lower frequency end of the HF band allowing short range signals to be received with substantial antenna gain.

The narrower elevation beamwidth at the high frequency end of the band gives additional directional gain to the array for the reception of Long Range signals.

Add Diversity Reception Without Adding Real Estate

Aperiodic Loop Arrays can be located on the ground, directly underneath your existing horizontally polarized antenna, to provide polarization diversity reception.

The small size of the arrays enables them to be easily installed, without requiring any additional real estate.

The New Low Profile HF Antenna

Aperiodic Loop Arrays are small enough to mount on a roof or conceal just below ground level.

They can be erected or taken down by an unskilled team, without special equipment, in less than one hour.

An 8 loop *Ultra Compact* array packs into two cases 4' x $2^{1}/2^{7}$ x $1^{1}/2^{7}$, and weighs less than 150 pounds.

GENERAL DESCRIPTION

Introduction

The basic antenna element is an *untuned balanced loop* whose dimensions are small compared with the wavelength. A patented preamplifier circuit fitted at the base of the antenna exactly complements the loop characteristics. This combination results in a constant effective height over the frequency range 2-32 MHz, that is, the preamplifier output voltage is constant over the complete frequency range for a fixed incident field strength. Because of the flat frequency response the antenna has well defined phase characteristics and is, therefore, particularly suited for a phased antenna system.

The aperiodic configuration comprises loop/preamplifier elements in an `end fire' array with an interconnecting transmission line coupling each element. The element spacing has been carefully chosen to provide optimum directional characteristics for both long and short haul, point-to-point HF communication via the ionosphere. Outputs are available at both ends so that the array can look both ways simultaneously, if required, or can be rapidly switched through 180 degrees with a coaxial relay.

Design Philosophy

At frequencies above about 100 MHz the problems of receiving and transmitting antenna design are interchangeable except, perhaps, that the radiating element operates with a voltage stress. Below 100 MHz, and to a much greater extent below 30 MHz, this is no longer true because of the effects of atmospheric and galactic noise sources. While a requirement for free-space coupling efficiency remains for the transmitting antenna, it does not for the receiving antenna. For example at VLF a large copper curtain is necessary for the transmitting array but a small whip antenna having negligible free space coupling, is adequate for receiving purposes.

At frequencies less than 30 MHz it is possible to employ an antenna for receiving purposes which is electrically small and has a poor free-space coupling efficiency, without prejudicing the overall system noise factor. This is because the antenna output noise comes primarily from atmospheric and galactic sources, the thermal noise introduced by the antenna radiation resistance being insignificant by comparison, if this resistance is assumed to be at ambient temperature.

The antenna system noise factor is defined as:

incoming atmospheric signal/noise ratio antenna output signal/noise ratio

Tabulated values of this noise factor for six different geographic locations are given below for a *single loop antenna element*. The atmospheric background noise values for these calculations were taker, from the contours given in CCIR Report No, 322 (Atmospheric Radio Noise Data) averaged over all four seasons of the year. The two lower frequencies (2 and 4 MHz) were computed on the basis of nighttime interference levels only since long haul communication using these frequencies is normally practicable only at this time For similar reasons, the two higher frequencies (16 and 32 MHz) were computed for daytime periods only. The 8 MHz frequency was taken over the complete 24 hour period.

Antenna System Noise Factor (Single Loop)

LOCATION FREQUENCIES	LOCATION	FREQUENCIES
----------------------	----------	-------------

	2 MHz	4 MHz	8 MHz	16 MHz	32 MHz
North America	<1.0 dB	<1.0 dB	<1.0 dB	3.5 dB	5.0 dB
United Kingdom	2.5 dB	<1.0 dB	2.3 dB	3.5 dB	5.0 dB
South America	<1.0 dB	<1.0 dB	<1.0 dB	3.2 dB	5.0 dB
Hawaii	1.5 dB	<1.0 dB	2.3 dB	3.5 dB	5.0 dB
South East Asia	<1.0 dB	<1.0 dB	<1.0 dB	3.2 dB	5.0 dB
Africa	<1.0 dB	<1.0 dB	<1.0 dB	3.0 dB	5.0 dB

It is clear that the small size of the antenna does not prejudice its performance to any practical extent in most world locations.

With 'N' loop antennas arranged as an array the signal amplitude is increased 'N' times, but the preamplifier noise only increases by \sqrt{N} giving a further improvement in signal to noise ratio.

Directional Characteristics

The Specification sheets following show the directional characteristics of various loop arrays, the elevation pattern being shown as a red line and the azimuth as a black line.

These show that Aperiodic Loop Antenna Arrays provide ideal directional characteristics for both long and short haul communications using ionospheric reflection. Long distance reception at higher frequencies in the 2-32 MHz band benefits from the narrow beamwidth and corresponding higher antenna gain.

Short haul communication which depends upon acute reflection angles, is generally iOniv possible at the lower part of the frequency range because of the nature of the reflecting characteristics of the ionized layers; the wider elevation beamwidth of the antenna at these frequencies allows signals arriving at near vertical incidence to be received with substantial antenna gain.

Operation in the Presence of Strong Unwanted Signals

Each preamplifier is designed to handle a peak signal strength of more than 2 V/m without overloading. In the HF band this is greater than the signal from a 10 kW transmitter at a distance of one mile over land.

Filters are included in the standard preamplifier to suppress signals below 2 MHz and above 32 MHz. This reduces interference from high level local broadcast and TV signals. Special notch filters can be designed to reject unusually strong individual signals present at a particular site but these must be specified at the time of ordering. For example: a system has been designed to operate 1/3 mile from a 10 kW 600 kHz broadcast transmitter.

Aperiodic antenna arrays yield second order intermodulation products down more than 70 dB, and third order 100 dB below two signals of 10 mV/m. For example, the 8 loop array, model 8E13 has an effective height of 8 meters and the intermodulation products would be 70 and 100 dB down on two multicoupler output signals of 80 mV. This is equivalent to 60 dB (second order) and 80 dB (third order) down relative to two 0.25 volt output signals. This performance compares well with active multi-couplers found at most receiving sites.

Power Supply and Multi-Coupler

D. C. power is fed to the loop preamplifiers via the coaxial cable connecting the array to the receiver building and no additional cables are necessary. The rack-mounted power supply unit located in the receiver building includes a multi-coupler enabling four receivers to be operated independently and simultaneously from a single array. Further multicoupler outputs can be provided to customer requirement.

The power supply output circuit is current limited to prevent damage due to short circuit conditions and includes an ammeter showing the total current drawn by the array amplifiers. This provides an indication of a fault condition in a preamplifier.

Reliability

The preamplifiers are conservatively designed to operate over the full external environmental temperature range of -40'C to + 70 C. They are contained in a sealed unit which plugs into the central tube of the loop from below, providing double protection from the weather.

Each preamplifier contains a fuse so that if a short circuit develops it will disconnect itself from the transmission line. Even if a preamplifier ceases to function the array will still operate with little reduction in performance.

The calculated MTBF of an individual preamplifier at +70°C ambient is 250,000 hours, i.e., just under 30 years.

Maintenance

Since the preamplifiers are located outside, remote from the receiving building, careful thought has been given to ease of maintenance. The preamplifiers plug into the central tube at the base of the loop and are secured by only four screws. Test points on each preamplifier are accessible through the base of the central tube without removing the unit. A faulty preamplifier can thus be quickly located and changed.

Mechanical Design of Loop Element

The loops should be located close to the ground in terms of wavelength so that the direct and reflected signals add in phase. To allow for build-up of snow or ground water, they are mounted on tripods about three feet above the ground and are adjustable to accommodate a variation of up to two feet in site irregularities. An alternative method of mounting is to bolt the loops onto posts with an angle bracket.

Each loop is supported by a tube in which the preamplifier is located. This tube effectively grounds the center of the loop to obviate electrostatic pickup and minimize damage due to lightning strike. The loop element is a welded assembly of aluminum alloy tubing weighing only 10 lbs., and is stressed to withstand a wind speed of 200 miles per hour.

Other Applications

Because of the low mutual interference between the untuned loop/preamplifier elements, multiple cross array systems can be constructed. For example, four 8-loop arrays arranged radially through a common center point provide omni directional coverage without mutual interference (Model 4R18E13). Both ends of each array can be fed to the receiving building and all 8 outputs used simultaneously. Wide azimuth coverage arrays can be made by combining the outputs of crossed arrays.

Loop Antenna Selection Chart

Model	Directional gain dB				Beamwidth between 3dB pts.			Site Requirements		Approx.	Comments			
	(rel 2			opic) 15		30 MHz	Azimu 5 MHz	th 30 MHz	Elevati 5 MHz		Length metres	Width metres	Relative Cost	
Linear Arrays														
4E26	5	8	10	11	9	11	86°	54°	80°	30°	25	1	8.0	Long, Med and Shor Haul Circuits
8E13	5	8	10	12	13	14	86°	54°	80 °	30 °	30	1	1.0	Long, Med and Shor Haul Circuits
8E26	8	10	13	14	11	14	76 °	40 °	54 °	21 °	60	1	1.4	Long and Med Haul Circuits
16E13	8	10	13	14	15	17	76 °	40 °	54 °	21 °	60	1	1.9	Long and Med Haul Circuits
2B/8E13	6	10	13	15	16	17	66°	16°	80 °	30 °	30	20	1.9	Long, Med and Shor Haul Circuits
2B/8E26	8	11	15	16	14	17	66 °	16°	54°.	21 °	60	20	2.6	Long and Med Haul Circuits
2B/16E13	8	11	15	17	18	20	66 °	16°	54°	21 °	60	20	3.7	Long and Med Haul Circuits
Rosette														
Systems 3R/4E26	5	8	10	11	9	11	86 °	54 °	80°	30 °	25 m diamete	r	2.6	Omnidirectional coverage in Azimuth in 6 sectors
4R/8E13	5	8	10	12	13	14	86°	54 °	80 °	30 °	30 m diamete	r	4.0	Omnidirectional coverage in Azimuti in 8 sectors
18C50	8	12	14	16	16	17	40 °	9°	60°	22°	50 m diamete	r	6.5	Omnidirectional coverage in Azimuti in 36 sectors

1. Linear Arrays

First numbers indicate number of elements in array. Next letter indicates type of array, i.e., 'E' endfire. Next numbers indicate inter element spacing in feet.

2.Combination of Linear Arrays

First *number* indicates number of arrays.

Next *letter* indicates arrangement of arrays i.e.,

B for Broadside, R for Rosette.

Finally the model number for individual linear arrays.

3.Circular Arrays

First *numbers* indicate number of elements in array. Next *letter* indicates type of array i.e., 'C' for Circular. Next *numbers* indicate diameter in metres.

CONFIGURATION IDENTIFICATION

Loop antenna Linear Arrays (e.g. 4E13P

The various array configurations that may be assembled from the components of the rosette may be identified as follows: 4E13, 3R/4E13P.

Loop Antenna rigid (Welded)

Mounting: a) Post (Bracket Supplied)

b) Tripod

Transmission Line: a) 13' Solid, Rigid

b) 13' Cable Special

c) 26' Solid (2 x 13') with Post or Tripod

d) 26' Cable Special

Loop Antenna Ultra Compact (Collapsable) with quadrupod only

Transmission Line:a) 13' Cable

b) 26' Cable

HF loop models presented in this catalog are available in both thirteen and twenty six foot loop element spacing.

SPECIFICATIONS SINGLE LOOP ELEMENT

Frequency range

2-32 MHz (MF and LF Models to order)

Polarization

Vertical

Effective height (2-32 MHz)

(Loop-preamplifier into 50 ohms) 2 metres

Directive gain

4.7 dB (Relative to an isotropic radiator) Loop diameter 1 metre

Weight of loop assembly

10 lbs

Weight of Tripod assembly

12 lbs

Wind loading

200 mph (no ice) 100 mph (1 inch radial ice) (Tripod rigidly bolted to ground)

Environmental Temperature range

-40°C to +70°C

Preamplifier MTBF

250,000 hours (at +70°C) Preamplifier power requirement

100 mA at + 24V DC

Directional Characteristics

Azimuth

Figure of eight with nulls on loop axis

Elevation

Omnidirectional in the elevation plane containing the

The loop element is an untuned balanced loop whose dimensions are small compared to the wavelength for frequencies up to 32 MHz. A patented preamplifier fitted at the base of the antenna exactly complements the loop characteristics, resulting in an antenna element with a constant effective height over the frequency range 2-32 MHz. This means that the preamplifier output voltage is constant over the working frequency range for a fixed incident field strength. The broadband response of the loop-preamplifier combination results in well defined phase characteristics, and hence makes the element very suitable for use in phased or interferometer arrays.

The loop with its plane vertical, is mounted close to the ground in terms of wavelength to obtain addition of incident and reflected signals. The loop element is a welded assembly of aluminum alloy weighing only 10 lbs., and may be mounted on a tripod or bolted to a post with an angle bracket.

SPECIFICATIONS MODEL 4E26

Model 4E26 consists of 4 individual loop preamplifier elements arranged in an 'end-fire' configuration using an inter element spacing of 26 ft. (8 meters). This arrangement gives a unidirectional characteristic up to 15 MHz. Above this frequency grating lobes appear limiting the directional gain, however, the main beam characteristics are optimum over the whole 2-32 MHz range.

The elevation characteristics are optimum for both long and short haul communications via the ionosphere, due to the 'opening up' of the elevation pattern at lower frequencies.

4E26 Plan view scaled

Frequency Range

2 to 32MHz

Polarization

Vertical

Effective Height (2-32 MHz)

(Terminated array)

4 meters

Approximate Directive Gain

(Relative to an isotropic radiator)

2 MHz 5 dB 5 MHz 8 dB 10 MHz 10 dB 15 MHz 11 dB 20 MHz 9 dB 30 MHz 11 dB

Half Power Points Azimuth

5 MHz ±43° 30 MHz ±27°

Elevation

5 MHz 80° 30 MHz 30°

Front/Back ratio (4-15 MHz)

Greater than 10 dB

Number of loops in array

4

Overall length of array

25 meters

Total weight of array

(Including interconnecting transmission lines but excluding tripods)

100 lbs

4 tripods 50 lbs

DIRECTIONAL CHARACTERISTICS MODEL 4E26

SPECIFICATIONS MODEL 3R4E26

Model 3R/4E26 provides complete 360° coverage in azimuth, by employing three 4E26 Aperiodic Loop Antenna Arrays in a radial configuration or Rosette. This arrangement is possible because of the low mutual coupling between individual elements which enables the arrays to be placed close to one another. Outputs are taken simultaneously from each end of each array to provide full ornnidirectional coverage.

The 3R/4E26 comprises three Model 4E26 Aperiodic Loop Antenna Arrays arranged at 60° to one another

The performance of each array is identical to the specification for Model 4E26. Receiver outputs are provided in six 60° sectors with four outlets available for each sector. (Additional outlets can be provided to order).

Number of loops in array 12

Overall diameter of array 25 meters

Total weight of array

(Including interconnecting transmission lines but excluding tripods)

300 lbs

12 tripods 150 lbs

DIRECTIONAL CHARACTERISTICS MODEL 3R4E26

SPECIFICATIONS MODEL 8E13

Model 8E13 consists of 8 individual loop/preamplifier elements arranged in an 'end-fire' configuration. The inter element spacing of 13 ft. (4 meters) has been chosen to be less than $\lambda/2$ at 32 MHz, giving a good front/back ratio for the array up to this frequency.

The elevation characteristics are optimum for both long and short haul communications via the ionosphere, due to the 'opening up' of the elevation pattern at the lower frequencies.

8E13 Plan view scaled

Frequency Range

2 to 32 MHz

Polarization

Vertical

Effective height (2-32 MHz)

(Terminated array) 8 meters

Approximate Directive Gain

(Relative to an isotropic radiator)

2 MHz 5 dB 5 MHz 8 dB 10 MHz 10 dB 20 MHz 13 dB 30 MHz 14 dB

Half Power Points Azimuth

5 MHz ± 43° 30 MHz ± 27°

Elevation 5 MHz 80° 30 MHz 30°

Front/Back ratio (4 to 32 MHz)

Greater than 13 dB

Number of loops in array

8

Overall length of array

30 meters

Total weight of array

(Including interconnecting transmission lines but excluding tripods)

150 lbs

8 Tripods 100 lbs

DIRECTIONAL CHARACTERISTICS MODEL 8E13

SPECIFICATIONS MODEL 4R8E13

Model 4R/8E13 provides complete 360° coverage in azimuth, by employing four 8E13 Aperiodic Loop Antenna Arrays in a radial configuration or Rosette. This arrangement is possible because of the low mutual coupling between individual elements which enables the arrays to be placed close to one another. Outputs are taken simultaneously from each end of each array to provide full omnidirectional coverage.

The 4R/8E13 comprises four Model 8E13 Aperiodic Loop Antenna Arrays arranged at 45° to one another.

4R/8E13 Plan view scaled

The performance of each array is identical to the specification for Model 8E13. Receiver outputs are provided in eight 45° sectors with four outlets available for each sector. (Additional outlets can be provided to order).

Number of loops in array

32

Overall diameter of array

30 meters

Total weight of array

(Including interconnecting transmission lines but excluding tripods) 600 lbs

32 tripods 400 lbs

RACK MOUNTED POWER SUPPLIES

DIRECTIONAL CHARACTERISTICS MODEL 4R8E13

SPECIFICATIONS MODEL 8E26

Model 8E26 consists of 8 individual loop preamplifier elements arranged in an 'end-fire' configuration using an inter element spacing of 26 ft. (8 meters). This arrangement gives a unidirectional characteristic up to 17 MHz. Above this frequency grating lobes appear limiting the directional gain, however, the main beam characteristics are optimum over the whole 2-32 MHz range.

The elevation characteristics are optimum for long and medium haul communications via the ionosphere.

8E26 Plan view scaled

Frequency Range

2 to 32 MHz

Polarization

Vertical

Effective Height (2-32 MHz)

(Terminated array) 8 meters

Approximate Directive Gain

(Relative to an isotropic radiztor)

2 MHz 8 dB 5 MHz 10 dB 10 MHz 13 dB 15 MHz 14 dB 20 MHz 11 dB 30 MHz 14 dB

Half Power Points

Azimuth 5 MHz ±38° 30 MHz ±20°

Elevation 5 MHz 54° 30 MHz 21°

Front/Back Ratio (2-17 MHz)

Greater than 13 dB

Number of loops in array

8

Overall length of array

60 meters

Total weight of array

(Including interconnecting transmission lines but excluding tripods)

200 lbs

15 tripods 200 lbs

DIRECTIONAL CHARACTERISTICS MODEL 8E26

SPECIFICATIONS MODEL 16E13

Model 16E13 consists of 16 individual loop/preamplifier elements arranged in an 'end-fire' configuration. The inter element spacing of 13 ft. (4 meters) has been chosen to be less than λ / 2 at 32 MHz, giving a good front/back ratio for the array up to this frequency.

The elevation characteristics are optimum for long and medium haul communications via the ionosphere.

16E13 Plan view scaled

Frequency Range

2 to 32 MHz

Polarization

Vertical

Effective Height (2-32 MHz)

(Terminated array) 16 meters

Approximate Directive Gain

(Relative to an isotropic radiztor)

2 MHz 8 dB 5 MHz 10 dB 10 MHz 13 dB 20 MHz 15 dB 30 MHz 17 dB

Half Power Points

Azimuth 5 MHz ±38° 30 MHz ±20°

Elevation 5 MHz 54° 30 MHz 21°

Front/Back Ratio (2-17 MHz)

Greater than 13 dB

Number of loops in array

16

Overall length of array

60 meters

Total weight of array

(Including interconnecting transmission lines but excluding tripods)

200 lbs

16 tripods 200 lbs

DIRECTIONAL CHARACTERISTICS MODEL 16E13

SPECIFICATIONS MODEL 2B/8E13

Model 2B/8E13 consists of two mode2B8E13 arrays arranged as a broadside pair with a spacing of 2 λ at 32 MHz. This arrangement narrows the azmoth beam width, but does not change the elevation pattern or the front/back ratio, compared to a single 8E13 array.

The elevation characteristics are optimum for both long and short haul communications via the ionosphere. due to the 'opening up' of the elevation pattern at the lower frequencies.

2B/8E13 Plan view scaled

Frequency Range

2 to 32 MHz

Polarization

Vertical

Effective height (2 to 32 MHz)

(Combined arrays into termination) 12 meters

Approximate Directive Gain

(Relative to an isotropic radiator)

2 MHz 6 dB 5 MHz 10 dB 10 MHz 13 dB 20 MHz 16 dB 30 MHz 17 dB

Half Power Points Azimuth

5 MHz ±33° 30 MHz ± 8°

Elevation 5 MHz 80° 30 MHz 30°

Front/Back ratio (4 to 32 MHz)

Greater than 13 dB

Number of loops in array

16

Overall length of array

30 meters

Overall width of array

20 meters

Total weight of array

(including interconnecting transmission lines but excluding tripods)

300 lbs

16 Tripods 200 lbs

DIRECTIONAL CHARACTERISTICS MODEL 2B/8E13

SPECIFICATIONS MODEL 2B/8E26

Model 2B/8E26 consists of two model 8E26 arrays arranged as a broadside pair with a spacing of 2 λ at 32 MHz. This arrangement narrows the azimuth beamwidth, but does not change the elevation pattern, or the front/back

The elevation characteristics are optimum for long and medium haul communications via the ionosphere.

ratio compared to a single 8E26 array.

2B/8E26 Plan view scaled

Frequency range

2 to 32 MHz

Polarization

Vertical

Effective height (2-32 MHz)

12 meters (Combined arrays into termination)

Approximate Directive Gain

(Relative to an isotropic radiator)

2 MHz 8 dB 5 MHz 11 dB 10 MHz 15 dB 15 MHz 16 dB 20 MHz 14 dB 30 MHz 17 dB

Half Power Points

Azimuth
5 MHz ±33°
30 MHz ± 8°

Elevation 5 MHz 54° 30 MHz 21°

Front/Back ratio (2-17 MHz)

Greater than 13 dB

Number of loops in array

16

Overall length of array

60 meters

Overall width of array

20 meters

Total weight of array

(Including interconnecting transmission lines but excluding tripods)

400 lb s 16 tripods 200 lbs

DIRECTIONAL CHARACTERISTICS MODEL 2B/8E26

SPECIFICATIONS MODEL 2B/16E13

Model 2B/16E13 consists of two model 16E13 arrays arranged as a broadside pair with a spacing of 2 λ at 32 MHz. This arrangement narrows the azimuth beamwidth, but does not change the elevation pattern or the front/back ratio. compared to a single 16E13 array.

The elevation characteristics are optimum for long and medium haul communications via the ionosphere.

2B/16E13 Plan view scaled

Frequency range

2-32 MHz

Polarization

Vertical

Effective height (2-32 MHz)

12 meters (Combined arrays into termination)

Approximate Directive Gain

(Relative to an isotropic radiator)

2 MHz 8 dB 5 MHz 11 dB 10 MHz 15 dB 20 MHz 18 dB 30 MHz 20 dB

Half Power Points

Azimuth 5 MHz ±33° 30 MHz ±8°

Elevation 5 MHz 54° 30 MHz 21°

Front/Back ratio (2-32 MHz)

Greater than 13 dB

Number of loops in array

32

Overall length of array

60 meters

Overall width of array

20 meters

Total weight of array

(Including interconnecting transmission lines but excluding tripods) 600 lbs

32 tripods 400 lbs

DIRECTIONAL CHARACTERISTICS MODEL 2B/16E13

SPECIFICATIONS MULTICOUPLER / POWER SUPPLY

This unit provides the DC power to the preamplifiers, via the coaxial cable connecting the array to the receiver building. It includes a multicoupler enabling a maximum of four receivers to be operated independently and simultaneously from a single array.

The DC power output circuit is current limited to prevent damage due to short circuit conditions, and includes an ammeter showing the total current drawn by the array preamplifiers. This provides an indication of fault condition in a preamplifier.

Power Supply Input Voltage

115 V±10% 50/60 Hz (230 V model available to order)

RF Input and Output Impedance

50 ohms

RF Connectors

BNC

Receiver Outputs

8

Isolation Between Receiver Output:

Greater than 20 dB

DC Output

+24 V at 4 amperes

Array Current Requirements

200 mA per 4 output multicoupler 200 mA per loop preamplifier

Weight

10 lbs

SPECIFICATIONS TRANSPORTABLE LOOP

This model is designed for quick erection at a site, and to pack into the minimum transportation volume. The electrical performance is identical to the standard loop antenna, and is equally suitable for permanent or temporary installations.

The illustrations show the way the half loops fold over one another, and the flexible transmission line coils up for transport.

Each element, complete with 13 foot transmission line and support, occupies 45" x 16" x 6". Weight, unpacked, of a four element arry is approximately 150 pounds. Individual loop assemblies can be packed individually or in groups as required by the customer.

SPECIFICATIONS TEST SET MODEL LTS 12

The test set **LTS 12** provides facilities for performing radio frequency and direct current tests of each loop antenna

The test set is provided with a self-test facility and may, in addition, be used as an uncalibrated field test meter. Radio frequency tests of individual loops are performed by radiating a signal into the loop from the test set.

Characteristics

Power consuption 24 V dc 45 mA (drawn from Loop Antenna)

Oscillator Frequency 8 MHz (approx.)

Power Output 100 milliwatts

Temperature Range - 20° C to 50° C

Weight of Test Set 1 lb 3 oz.

Weight in carrying case 3 lb 13 oz.

Dimensions in inches

(in carrying case) Height 41/4 in. Width 13 in.

Depth 71/2 in.

Inserting the probe assembly into the base of a loop antenna connects it to the +24 VDC antenna system supply and provides power for

the Test Set.

www.usantennaproducts.com
United States Antenna Products, LLC, 5263 Agro Drive, Frederick, Maryland 21703 USA Phone (301) 874-5885