Name _____

Section _____

1. (100 points) The figure below shows the pull-up network (PUN) for a logic function Y with 3 inputs.

a. (25 points) Fill in the truth table below.

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

b. (25 points) Determine the logic function for Y, either by inspection or reducing the truth table.

$$Y = \overline{A} + A\overline{B} = \overline{A} + \overline{B} = \overline{AB}$$

c. (25 points) Draw the pull-down network (PDN).

d. (25 points) If an inverter with $\left(\frac{W}{L}\right)_n = \frac{90 \text{ nm}}{45 \text{ nm}}$ and $\left(\frac{W}{L}\right)_p = \frac{225 \text{ nm}}{45 \text{ nm}}$ produces equal t_{PHL} and t_{PLH} , and we want to match those delays with our gate, size the transistors in the pull-up network. The minimum-length transistors have channel length, L, of 45 nm.

$$\left(\frac{w}{L}\right)_{QP1} = \underbrace{\frac{225 \text{ nm}}{45 \text{ nm}}} \qquad \left(\frac{w}{L}\right)_{QP2} = \underbrace{\frac{450}{45}} \qquad \left(\frac{w}{L}\right)_{QP3} = \underbrace{\frac{450}{45}}$$

Bonus. (Up to 25 points) Minimize the expression for \overline{Y} and draw the pull-up network to implement the minimized expression. Size the transistors for worst-case delay to match the delay of the reference inverter.

$$\overline{Y} = \overline{A} + \overline{B} = AB$$

2. (100 points) Figures 2 and 3 below show two different options to implement the PDN from Part I whose logic function Y was $Y = \overline{A} + A\overline{B}$, with PUN shown in Figure 1.

Figure 1 PUN

Figure 2 PDN option 1

Figure 3 PDN option 2

(10 points) Write the logic function \overline{Y} for PDN option 1. Do not reduce.

$$\overline{Y} = A(B + \overline{A})$$

(10 points) Write the logic function \overline{Y} for PDN option 2. Do not reduce.

$$\overline{Y} = AB + A\overline{A}$$

(10 points) Write the minimized logic function of \overline{Y} and draw the PDN to the right.

(25 points) What is the sizing requirement n=x(W/L) for each PDN transistor in options 1 and 2 and in the minimized PDN. x is the factor by which the basic inverter is scaled.

$$x$$
-option $1 = 2$ x -option $2 = 2$ x -minimized $= 2$

(45 points) Using your results above, explain why using reduced logic functions reduces the area required to synthesize a logic function, while optimizing delays.