

Contrastive Multi-View Multiplex Network Embedding with Applications to Robust Network Alignment

Hao Xiong, Junchi Yan, Li Pan Shanghai Jiao Tong University

Outline

- Background
 - Network embedding and multiplex networks
- Motivations
 - Two challenges in multiplex network embedding
- The Framework: cM²NE
- Experiments
- Conclusion

Outline

- Background
 - Network embedding and multiplex networks
- Motivations
 - Two challenges in multiplex network embedding
- The Framework: cM²NE
- Experiments
- Conclusion

Network Embedding (NE)

• To represent nodes with low-dimensional vectors

- Why NE?
 - Scalable and easy to parallel
 - E.g. deepwalk [1]
 - Can apply advanced ML algorithms on downstream tasks
 - Classify nodes based on embeddings and labels [1]
 - Align nodes across networks [2]
 - Predict unseen links [3]

^[1] Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social representations (SIGKDD'2014)

^[2] Liu L, Cheung W K, Li X, et al. Aligning Users across Social Networks Using Network Embedding (IJCAI'2016)

^[3] Tang J, Qu M, Wang M, et al. Line: Large-scale information network embedding (WWW'2015)

Multiplex Networks (MNs)

- Multiplex networks
 - Multiple layers, each layer defines one type of interactions
 - Inter-layer anchor links

Multiplex Networks (MNs)

- Multiplex networks
 - Multiple layers
 - Inter-layer Anchor links
- Definitions
 - A layer: $G = (\mathcal{V}, \mathbf{A})$
 - Anchor links between source layer G^s and target layer G^t : $\mathcal{T}^{s,t} \subseteq \mathcal{V}^s \times \mathcal{V}^t$

social platforms

- A multiplex network of N layers: $\mathcal{G} = \{G^g\}_{g=1}^N$
- Anchor link sets of the MN: $\{\mathcal{T}^{s,t}\}_{s,t=1}^{N}$

intra-laver edges

social platform

inter-laver anchor links

Outline

- Backgrounds
 - Network Embedding and multiplex networks
- Motivations
 - Two challenges in multiplex network embedding
- The Framework: cM²NE
- Experiments
- Conclusion

Multiplex Networks Embedding (MNE)

- Challenge 1: intra-layer edges are missing
 - Solution: multiple structural views for each layer as data augmentation
 - Random walk
 - Random with restart (Personalize PageRank)
 - How to select views?
 - Low-order information or high-order information?

Multiplex Networks Embedding (MNE)

- Challenge 2: consistency assumption on inter-layer anchor links can be misleading
 - Solution: emphasize the anchor links tending to represent 'agreement' across layers and de-emphasize those tending to represent 'disagreement'
 - How to determine whether an anchor link represents 'agreement' or 'disagreement'?

Figure 10: The distribution of Jaccard Similarities between layers in several multiplex networks. In each subplot, x-axis denotes Jaccard Similarity, and y-axis is the number of anchor links whose Jaccard Similarity are in a certain interval.

Multiplex Networks Embedding (MNE)

- How to select views?
- How to determine 'agreement/disagreement'?

Fig. A toy example of one ideal solution

A Brief View of cM²NE

- Three levels of contrastive learning
 - Intra-view
 - Inter-view
 - Inter-layer

Figure 2: On the left is the sketch of our learning framework, where contrastive learning is performed on intraview, inter-view, and inter-layer level. On the right is our main motivations of framework design and the inside connections.

Outline

- Backgrounds
 - Network Embedding and multiplex networks
- Motivations
 - Two challenges in multiplex network embedding
- The Framework: cM²NE
- Experiments
- Conclusion

Contrastive Learning (CL) for NE

• The (predictive) mutual information [1] between two sets of embeddings:

Distribution of

negative node pairs

Contrastive Learning (CL) for NE

- Mutual information estimators [1]:
 - NT-Xent $I(\mathbf{x}_j; \mathbf{x}_i) = \log \frac{\exp(\mathbf{x}_i^{\top} \mathbf{x}_j / \tau)}{\exp(\mathbf{x}_i^{\top} \mathbf{x}_j / \tau) + \sum_{b=1}^{B} \mathbb{E}_{j' \sim p_{neg}} \exp(\mathbf{x}_i^{\top} \mathbf{x}_{j'} / \tau)}$ Temperature
 - NT-Logistic $I(\mathbf{x}_j; \mathbf{x}_i) = \log \sigma(\mathbf{x}_i^{\top} \mathbf{x}_j / \tau) + \sum_{b=1}^{B} \mathbb{E}_{j' \sim p_{neg}} \log \sigma(-\mathbf{x}_i^{\top} \mathbf{x}_{j'} / \tau)$
 - Marginal Triplets $I(\mathbf{x}_j; \mathbf{x}_i) = -\sum_{k=1}^{B} \mathbb{E}_{j' \sim p_{neg}} \max(\mathbf{x}_i^{\top} \mathbf{x}_{j'} \mathbf{x}_i^{\top} \mathbf{x}_j + \gamma, 0)$ Number of negative samples
- Mutual information with alignment and uniformity loss [2]:
 - Alignment loss $\mathcal{L}_a(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{x}_i \mathbf{x}_j\|_2^{\rho}$ Explicitly shorten the distance of positive pair of nodes
 - Uniformity loss $\mathcal{L}_{u}(\mathbf{x}_{i}) = \log \mathbb{E}_{j' \sim p_{neg}} \exp(-\frac{\|\mathbf{x}_{i} \mathbf{x}_{j'}\|_{2}^{2}}{\sigma_{u}})$ Scatter embeddings uniformly on the hypersphere

$$I_{AU}(\mathbf{x}_j; \mathbf{x}_i) = I(\mathbf{x}_j; \mathbf{x}_i) + \beta \Big(\mathcal{L}_a(\mathbf{x}_i, \mathbf{x}_j) + \mathcal{L}_u(\mathbf{x}_i) \Big)$$
 (in the paper, we use I_{AU} instead of the vanilla mutual information)

^[1] Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations. (ICML'20)

^[2] Wang T, Isola P. Understanding contrastive representation learning through alignment and uniformity on the hypersphere. (ICML'2020)

The Framework: cM²NE

Figure 3: The cM²NE framework with multiplex network $\mathcal{G}=\{G^g\}_{g=1}^N$ as input and embeddings $\{\mathbf{X}^{(g)}\}_{g=1}^N$ as output. For layer G^1 , M multi-view augmentations $\{G^{1,m}\}_{m=1}^M$ are generated given functions $\{q_m(\cdot)\}_{m=1}^M$. Then by $f(\cdot)$, nodes in view $G^{1,m}$ are embedded into a low-dimensional space, where the embeddings are denoted as $\mathbf{X}^{(1,m)}$. Then contrastive learning (CL) is performed on three levels: i) Intra-view CL is conducted directly on $\mathbf{X}^{(1,m)}$ to preserve intra-view information. ii) For interview CL on layer G^1 between the m-th view and the others, first $\{\mathbf{X}^{(1,k)}\}_{k=1,k\neq m}^M$ are aggregated together by inter-view readout function $\mathcal{P}_v(\cdot)$ whose results are denoted as $\mathbf{X}^{(1,\overline{m})}$, then inter-view CL is performed after mapping $\mathbf{X}^{(1,m)}$ and $\mathbf{X}^{(1,\overline{m})}$ to $\mathbf{Y}^{(1,m)}$ and $\mathbf{Y}^{(1,\overline{m})}$ by projection heads $h_v^{(1)}(\cdot)$. iii) For inter-layer CL between G^1 and G^2 , embeddings of multiple views are aggregated by inter-layer readout function $\mathcal{P}_l(\cdot)$ and we get embedding $\mathbf{X}^{(1)}$, $\mathbf{X}^{(2)}$, then they are mapped to $\mathbf{Z}^{(1)}$, $\mathbf{Z}^{(2)}$ for inter-layer CL.

The Framework: cM²NE

• Data augmentation: generate M views for each layer

pre-designed functions to generate multiple structural views

Intra-view Contrastive Learning

Intra-view Sampling

- Positive samples:
 - Directly sampled from $G^{1,1}$
- Negative samples:
 - On $G^{1,1}$
 - B negative nodes

Inter-view Contrastive Learning

Inter-view Sampling

- Positive samples:
 - Step 1: sample one positive node pair from $G^{1,1}$
 - Step 2: map the source node to other views
 - 1 target node and *M*-1 source nodes from other views
- Negative samples:
 - On $G^{1,1}$
 - B negative nodes

Inter-layer Contrastive Learning

attention-enhanced mutual information: $\widetilde{I}(\mathbf{Z}^{(t)}; \mathbf{Z}^{(s)}) = \mathbb{E}_{\mathcal{B} \sim \{(i,j) \sim p_{pos}\}^{bs}} \sum_{(i,j) \in \mathcal{B}} \frac{\exp \mathbf{a}_i^{(s,t)}}{\sum_{(i',\cdot) \in \mathcal{B}} \exp \mathbf{a}_{i'}^{(s,t)}} I(\mathbf{z}_j^{(t)}; \mathbf{z}_i^{(s)})$

view attention

inter-view readout function (pooling):

$$\mathcal{P}_{l}(\{\mathbf{x}_{i}^{(g,m)}\}_{m=1}^{M}) = \sum_{m=1}^{M} \frac{\exp \mathbf{v}_{i}^{(g,m)}}{\sum_{k=1}^{M} \exp \mathbf{v}_{i}^{(g,k)}} \mathbf{x}_{i}^{(g,m)}$$

projection heads to map embeddings to inter-layer space:

identical/linear/non-linear mapping

anchor link attention

Inter-layer Sampling

- Positive samples:
 - Step 1: sample one positive node pair from view $G^{1,1}$ (target) with the source node anchored
 - Step 2: map the source node to all the views of the source layer; map the target node to all the views of the target layer.
 - *M* target nodes and *M* source nodes
- Negative samples:
 - Step 1: sample on $G^{1,1}$
 - Step 2: map the negative nodes to all the views of the target layer
 - *B*M* negative nodes

Jointly Learning

Outline

- Backgrounds
 - Network Embedding and multiplex networks
- Motivations
 - Two challenges in multiplex network embedding
- The Framework: cM²NE
- Experiments
- Conclusion

- Network alignment
 - Predict unseen anchor links
 - Datasets:
 - Facebook-Twitter
 - Douban-Weibo
 - SacchCere

Fig. A toy example of network alignment

Table 4: Network statistics.

Dataset	PPI	BlogCatalog (simulated)	Facebook-Twitter	Douban-Weibo	SacchCere	
Domain	Biological	Social	Social	Social	Biological	
Task	Node classification		Network alignment			
$ \mathcal{G} (N)$	1	3	2	2	7	
$ \mathcal{V}^g $	3890	[10312, 10312, 10312]	[2458, 2458]	[3154, 3154]	[5928, 4850, 5042, 4694, 1401, 1130, 4949]	
$ \mathcal{E}^g $	76,584	[380078, 380304, 380120]	[40298, 95034]	[301074, 241736]	[66150, 37241, 29599, 37106, 2188, 1426, 109045]	
Edge	Undirected	Directed	Directed	Directed	Directed	
#Labels	50	39	/	/	/	
Avg. $ \mathcal{T}^{s,t} $	/	10312	2458	3154	[3499.8, 3247.2, 3223.8, 3194.8, 1179.3, 986.7, 3278.7]	

- Network alignment
 - Predict unseen anchor links
 - Datasets:
 - Facebook-Twitter
 - Douban-Weibo
 - SacchCere

Figure 5: Network alignment results.

- Node classification
 - Predict node labels
 - Datasets:
 - BlogCatalog
 - PPI

Table 4: Network statistics.

Dataset	PPI	BlogCatalog (simulated)	Facebook-Twitter	Douban-Weibo	SacchCere	
Domain	Biological	Social	Social	Social	Biological	
Task	Node classification		Network alignment			
$ \mathcal{G} (N)$	1	3	2	2	7	
$ \mathcal{V}^g $	3890	[10312, 10312, 10312]	[2458, 2458]	[3154, 3154]	[5928, 4850, 5042, 4694, 1401, 1130, 4949]	
$ \mathcal{E}^g $	76,584	[380078, 380304, 380120]	[40298, 95034]	[301074, 241736]	[66150, 37241, 29599, 37106, 2188, 1426, 109045]	
Edge	Undirected	Directed	Directed	Directed	Directed	
#Labels	50	39	/	/	/	
Avg. $ \mathcal{T}^{s,t} $	/	10312	2458	3154	[3499.8, 3247.2, 3223.8, 3194.8, 1179.3, 986.7, 3278.7]	

Figure 4: Node classification results.

(a) (single-layer) PPI

(b) (multi-layer) BlogCatalog

Abaltion study

Figure 6: Ablation study of MI estimators. 'NT-X' is short for 'NT-Xent', 'NT-L': 'NT-Logistic', 'MT': 'Marginal Triplets'.

Figure 7: Ablation study for readout functions.

- Case study
 - Different layers show different preferences on structural views, while loworder information are consistently prefered.
 - Anchor link attention is usually positively related with the Jaccard Similarity of the neighborhoods of the two anchored nodes.

Figure 8: Case study for Facebook-Twitter. (a) distribution of attention over views. (b) positive correlation between the learned attention over anchor links and Jaccard Similarities.

Conclusion

- Summary of contributions:
- i) It is the first work to explore multiple structural views for multiplex network embedding.
- ii) Our multi-view contrastive learning framework is modulated by a tensorized attention mechanism, which adaptively learns the importance of each view and the agreement level of each anchor link.
- iii) The framework is equipped with several plug-in components that are new to the literature on MNE, including projection heads, embedding readout functions, and mutual information estimators.