Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego

Laboratorium z przedmiotu: Wprowadzenie do Kryptologii

Sprawozdanie z ćwiczenia laboratoryjnego nr 4:

Kryptografia asymetryczna

Prowadzący: mgr inż. Marta Turowska

Wykonał: Radosław Relidzyński

Grupa: WCY20IY4S1

Data laboratoriów: 20.05.2021 r.

Spis treści

Α.	Treść zadania	2
	Kolejne działania	
	Generuję parę kluczy	
	Tworzę kopię zapasową kluczy oraz eksportuję klucz publiczny	
	Szyfruję plik	
	Odczytuję zaszyfrowany plik	
	Wykonuję samo podpisanie pliku	7
	Odczytuję podpisany plik	9
	Wnioski	10

A. Treść zadania

Wygenerować parę kluczy publiczny i prywatny dla swojego adresu email, a następnie wygenerować podpis pliku i wyciągnąć wnioski z działania.

B. Kolejne działania

Generuję parę kluczy

1. Klikam "Nowa para kluczy".

2. Uzupełniam dane.

3. Wchodzę w "ustawienia rozszerzone..." i wybieram opcję materiału klucza "RSA".

4. Klikam "OK", a następnie "Utwórz".

5. Otrzymuję komunikat o utworzeniu kluczy. (odcisk klucza: C366 27D6 E06E 2A3B 1DCA 81D5 D824 BD37 10CE CFDA)

Tworzę kopię zapasową kluczy oraz eksportuję klucz publiczny

1. W głównym oknie programu klikam w utworzony certyfikat i wybieram opcję "Kopia zapasowa kluczy poufnych". Następnie wybieram miejsce do jego zapisania i klikam "Zapisz".

2. Po utworzeniu kopii zapasowej eksportuję klucz publiczny (opcja "Wyeksportuj..."). Następnie wybieram miejsce do jego zapisania i klikam "Zapisz".

Szyfruję plik

1. Wybieram opcję "Pospisz/zaszyfruj..." a następnie wybieram plik, który chcę zaszyfrować.

2. W dodatkowym oknie sprawdzam, czy wszystkie dane są poprawne i jeśli są to klikam "Podpisz/zaszyfruj".

3. Otrzymuję komunikat o poprawnym podpisaniu i zaszyfrowaniu. Klikam "zakończ".

4. W tym momencie posiadam zaszyfrowany plik.

Odczytuję zaszyfrowany plik

1. W głównym oknie programu wybieram opcję "Odszyfruj/sprawdź..."

2. Wybieram zaszyfrowany plik i zatwierdzam "Otwórz".

3. Otrzymuję informację o poprawnym podpisie i o zakończeniu operacji. Klikam opcję "Zachowaj wszystko", a następnie w dodatkowym oknie "Zastąp".

4. Logo po odczytaniu jest niezmienione.

Wykonuję samo podpisanie pliku

1. Ponownie wybieram opcję "Pospisz/zaszyfruj..." a następnie wybieram plik, który chcę zaszyfrować.

2. W dodatkowym oknie odznaczam opcje szyfrowania oraz sprawdzam, czy wszystkie dane są poprawne i jeśli są to klikam "Podpisz".

3. Otrzymuję komunikat o poprawnym podpisaniu. Klikam "zakończ".

4. W tym momencie posiadam podpisany plik.

Odczytuję podpisany plik

1. W głównym oknie programu wybieram opcję "Odszyfruj/sprawdź..."

2. Wybieram podpisany plik i zatwierdzam "Otwórz".

3. Otrzymuję informację o poprawnym podpisie i o zakończeniu operacji. Klikam opcję "OK".

Wnioski

Efekt końcowy ćwiczenia:

Nazwa	Data modyfikacji	Тур	Rozmiar
🔳 logo.bmp	22.05.2022 18:18	Plik BMP	2 267 KB
🔒 logo.bmp.gpg	22.05.2022 18:13	OpenPGP Binary F	691 KB
🔒 logo.bmp.sig	22.05.2022 18:25	OpenPGP Signature	1 KB
Radosław Relidzyński_0x10CECFDA_publi	22.05.2022 18:09	OpenPGP Text File	3 KB
Radosław Relidzyński_0x10CECFDA_SECR	22.05.2022 18:05	OpenPGP Text File	6 KB
₩ WKR-4-WCY20IY4S1-RELIDZYŃSKI.docx	22.05.2022 18:15	Dokument progra	320 KB

Podpis pliku zawiera jedynie informację o nadawcy pliku, przez co waży zaledwie 1 KB. Pozwala on jedynie na sprawdzenie autentyczności pochodzenia pliku (w przeciwieństwie do szyfrowania pliku, który posiada również informacje o zawartości).

Podpisywanie pliku jest więc wydajną i skuteczną metodą na sprawdzanie autentyczności pochodzenia pliku na podstawie jego nadawcy. Przez swój niewielki rozmiar sprawdziłby się w sytuacji, kiedy takich podpisów potrzeba by było w znacznej ilości. Chcąc przechowywać zaszyfrowane informacje kosztowałoby to ogromną ilość pamięci. Potwierdza to wydajność korzystania z podpisów.