Electrodeposition of nanomaterials

W. Schwarzacher
H. H. Wills Physics Laboratory,
University of Bristol

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate or mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 00 JUN 2003		2. REPORT TYPE N/A		3. DATES COVERED -		
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER				
Electrodeposition	5b. GRANT NUMBER					
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Physics Laboratory, University of Bristol				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
	otes 97, ARO-44924.1-E Nanotechnology)., T	•		_	nterials (5th)	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 47	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Introduction:

Electrodeposition

has long history

Miniature mask from Loma Negra, Moche culture, northern Peru: 100 B.C. – 800 A.D.

Au applied to Cu by displacement plating. From: 'Pre-Columbian Surface Metallurgy', H. Lechtman, Sci. Am. (1984).

Introduction:

Electrodeposition

- has long history
- is an important current technology

Metal interconnects in ultra large scale integrated circuits

Cu interconnects on IBM chip

- electrodeposited Cu has replaced Al in ULSI
- higher conductivity –
 better electromigration
 resistance

P. C. Andricacos, Interface, **8**(1) (1999).

Introduction:

Electrodeposition

- has long history
- is an important current technology
- will play pivotal role in nanofabrication

Topics:

- Controlling morphology
- The dual-damascene method
- Electroless deposition
- Multilayer electrodeposition

Topics:

- Controlling morphology
- The dual-damascene method
- Electroless deposition
- Multilayer electrodeposition

Why do electrodeposited thin films become rough?

AFM image of film electrodeposited from 0.3M $CuSO_4$ / 1.2M H_2SO_4 , 4 mA cm⁻², t=6 mins

- Random fluctuations → noise
- Surface tension leads to smoothening

$$\mu = \mu_{eq} + \Gamma \kappa v_m$$

 Can incorporate these ideas in equation of motion for surface e.g.

$$\partial h(\mathbf{x},t)/\partial t = -c\nabla^4 h(\mathbf{x},t) + \eta(\mathbf{x},t)$$

Mass transport is by diffusion → Laplacian instability

Peaks grow faster than valleys

Further consequences of diffusion:

- Diffusion limited current $\propto -D \frac{C_{bulk}}{\delta}$
- ullet δ depends on convection

Complex non-linear system *but* simple power law behaviour (scaling)

- Local roughness scales as $t^{\beta_{loc}}$
- Large-scale roughness (w_{sat}) scales as $t^{\beta+\beta_{loc}}$

 Can change current density, electrolyte concentration, temperature

- •Only β_{loc} changes.
- β_{loc} depends on ratio of current to diffusion-limited current Laplacian instability
- S. Huo and W. Schwarzacher, Phys. Rev. Lett. 86, 256 (2001)

This is a useful result:

- Only 5 numbers (scaling exponents and prefactors) needed to describe roughness on any length-scale of film of any thickness
- 2 are invariant, 2 can be determined from a single film.

Example: deposition on patterned electrodes

- selective method
- widely used in microfabrication ('through-mask plating')

Example: deposition on patterned electrodes

Electrodeposited Co-Ni alloy pillars for patterned media studies. Patterning used interference lithography.

(Collaboration with C. A. Ross et al., M.I.T.)

Example: deposition on patterned electrodes

- edge → greater current density
- what happens to roughness?

• Edge significantly rougher than centre:

•but same scaling exponent $\beta + \beta_{loc}$

R. Cecchini, J. J. Mallett and W. Schwarzacher (Electrochem. Sol. State Lett., in press)

Tools for controlling morphology:

Pulse electrodeposition

- High current density for 'on'-pulse → high nucleation density
- Complexing agents and additives

Influence of additives

• When textured substrate used, Cl⁻ has major effect

Cu-on-Si substrate No Cl⁻

Influence of additives

When textured substrate used, Cl⁻ has major effect

Cu-on-Si substrate 0.25mM CI

Topics:

- Controlling morphology
- The dual-damascene method
- Electroless deposition
- Multilayer electrodeposition

Metal interconnects in ultra large scale integrated circuits

Cu interconnects on IBM chip

- electrodeposited Cu has replaced Al in ULSI
- higher conductivity –
 better electromigration
 resistance

P. C. Andricacos, Interface, **8**(1) (1999).

Through-mask plating

1 patterning

2 electrodeposition

3 seed layer etching

Damascene plating

1 patterning

2 electrodeposition

3 planarization

'Superfilling' needed to avoid defects

Requires appropriate additives

- •1.8 M H₂SO₄
- •0.25 M CuSO₄
- •1 mM NaCl
- •88 μ M PEG (M_w=3,400) n=77
- •~ 5 μM SPS/MPSA

- D. Josell, B. Baker, D. Wheeler, C. Witt and T.P. Moffat,
- J. Electrochem. Soc. 149, C637 (2002).

Simple model:

- Additives act to block deposition
- Additive diffusion to recesses slow

additive molecules

Unfortunately this model is wrong!

- Metal deposition rate increases with catalyst coverage
- Local catalyst coverage increases as local area decreases converse also true.

T.P. Moffat, D. Wheeler, W.H. Huber and D. Josell, Electrochemical and Solid-State Letters **4**, C26 (2001).

- Initial condition catalyst coverage θ = 0
- Catalyst accumulates from reaction with precursors in electrolyte

 Catalyst coverage increases on bottom, concave surface, may decrease on top, convex corners.

 Deposition rate highest at bottom of feature.

- Catalyst coverage maximized on bottom surface
- Metal deposition rate at bottom is accelerated.

- Catalyst coverage maximized on bottom surface.
- Metal deposition is highest on bottom

- Inversion of curvature
 'Bottom' is above trench.
 'Momentum plating'
- Catalyst coverage θ decreases as bump area increases

Topics:

- Controlling morphology
- The dual-damascene method
- Electroless deposition
- Multilayer electrodeposition

No need for electrical contact to substrate!

- Conventional electrodeposition: electrons that reduce metal ions in solution supplied from external circuit
- Electroless deposition: electrons generated at substrate by chemical reducing agent
- Need catalytically active surface

Example: electroless Cu

Typical electrolyte: 0.04 M CuSO₄, 0.08 M EDTA (ethylenediaminetetraacetic acid - complexing agent), 0.24M HCHO (formaldehyde - reducing agent), 0.4 mM 2,2'-bipyridyl (stabilizer)

$$2 \ HCHO + 4 \ OH^{-} \rightarrow 2 \ HCOO^{-} + 2 \ H_{2}O + H_{2} + 2 \ e^{-}$$

$$CuEDTA^{2-} + 2 e^{-} \rightarrow Cu^{0} + EDTA^{4-}_{ADS}$$

- Electroless deposition can deposit single metals e.g.
 Cu, Ni, Au or alloys e.g. CoFeB
- Despite versatility, under-exploited in nanotechnology

Fig.2 SEM micrograph of nickel dots on silicon wafer.

T.Osaka, N.Takano, S.Komaba; Chem. Lett., 7 657 (1998)

Topics:

- Controlling morphology
- The dual-damascene method
- Electroless deposition
- Multilayer electrodeposition

- Use electrolyte containing ions of more than one metal: pulse deposition → multilayer
- Typical example: 0.05M Cu²⁺; 2.3M Ni²⁺; 0.4M Co²⁺
 - -0.2V → pure Cu
 - -1.6V → ferromagnetic Co-Ni-Cu alloy

- For 1-2 nm layers, electrodeposited multilayers show Giant Magnetoresistance
- Even greater effect with multilayer nanowires prepared by template deposition:

Over 110% GMR at 77K, over 55% at room temperature

- What happens as layer thickness further reduced?
- Multilayer -> heterogeneous alloy

 Can control Cu-Ni alloy composition through lengths of Cu and Ni pulses

Electrodeposition Research Group

Application: alloy/alloy superlattice

100×(Cu_{0.19}Ni_{0.81} 6nm/ Cu_{0.79} Ni_{0.21} 2nm) alloy/alloy multilayer

Acknowledgments:

S. Huo, J. J. Mallet, R.Cecchini and P. Evans (Bristol)

T. P. Moffat (NIST)

Disclaimer: the information in this presentation is provided in good faith, but no warranty is made as to its accuracy.

