ФОРМИРАЩИ СХЕМИ

1. Формиращи схеми

Формиращите схеми се разделят на два вида:

- с диференциращи вериги
- с интегриращи вериги

1.2. Диференциращи вериги

Диференциращи вериги са вериги, при които изходното напрежение е пропорционално на производната на входното напрежение.

Най-проста диференцираща верига:

 $\mathbf{R.C} = \boldsymbol{\tau}$ - времеконстанта на веригата. За да бъде диференцирането по-точно, времеконстантата $\boldsymbol{\tau}$ трябва да е

Диференциране на правоъгълни импулси

 t_p — продължителност на импулса.

 $\xi = \frac{t_p}{T} \ - \ \text{коефициент на запълване.} \ \Pi \text{оказва каква част от периода } T \ e$ запълнена от импулса t_p .

 $t_{\text{п}} = T$ - $t_{\text{p}} -$ пауза между импулсите.

т трябва да е толкова малка, че да завърши процесът на заряд на кондензатора за време $t_{\rm p}.$

малка.

1. Формиращи схеми

1.2. Интегриращи вериги

Интегриращи вериги са вериги, **изходното** напрежение на които е пропорционално на интеграла на входното напрежение.

Най-проста интегрираща верига:

 $\mathbf{R.C} = \boldsymbol{\tau}$ - времеконстанта на веригата. трябва да e малко добро **3a** интегриране. За да е малко u₀, трябва u_R да голямо, a това така, когато e времеконстантата т е по-голяма. т се избира компромисно.

Интегриране на правоъгълни импулси:

т трябва да бъде голяма, за да не успее C да се зареди в рамките на t_p до U_m .

За да бъде веригата интегрираща, трябва времеконстантата й да е голяма, $\tau >> 0$.

ДИОДНИ ОГРАНИЧИТЕЛИ

2. Диодни ограничители

Диодният ограничител е схема, **изходното напрежение на която спира да се променя след като входното напрежение достигне определена стойност, наречена праг на ограничението. В останалата част входното напрежение се предава без изменение.**

ДО се делят на едностранни и двустранни.

Едностранните ДО се делят на:

- •диодни ограничители по максимум (или отгоре);
- •диодни ограничители по минимум (или отдолу).

2. Диодни ограничители

В зависимост от начина на свързване ДО се делят на последователни и паралелни:

В отпушено състояние диодът е късо съединение, а в запушено - прекъсната верига.

2.1. Последователни ДО

Едностранен ДО отдолу

Едностранен ДО отдолу на положително ниво

В зависимост от свързването на диода и на източника на напрежение, който определя праговото напрежение, имаме следните схеми (допуска се, че на входа се подава синусоидално напрежение):

доц. д-р Нина Бенчева

Катедра Телекомуникации

2.1. Последователни ДО

Едностранен ДО отгоре

^{Б пи}остранен ДО отгоре трицателно ниво

Едностранен ДО отгоре на положително ниво

2.2. Паралелни ДО

Мястото на диода е в паралелния клон.

В отпушено състояние диодът е късо съединение, а в запушено - прекъсната верига.

Едностранен ДО отдолу

2.2. Паралелни ДО

Мястото на диода е в паралелния клон.

Едностранен ДО отгоре

Ui R uo uo uo tui t

Едностранен ДО отгоре на отрицателно ниво

Едностранен ДО отгоре на положително ниво

При ключов режим транзисторът работи в:

т. 3 - режим на отсечка

Запушен транзистор: $|U_{CE}|$ е голямо, iC е малък.

т. Н - режим на насищане.

Наситен транзистор:

 $\left| \mathbf{U}_{\mathrm{CE}} \right|$ е малко, і \mathbf{C} е голям.

Преминаването от запушено състояние към наситено става през активен режим, за определено време. Това време характеризира преходния процес - запушено→ наситено, наситено → запушено.

Четири режима на работа:

- наситено състояние;
- инверсен активен режим;
- запушено състояние (режим на отсечка);
- активен режим.

Условия за р-п-р транзистор:

- 1. $u_{EB} > 0$, $u_{CB} > 0$ наситено състояние;
- $2.\;u_{EB}^{} \! < \! 0, \, u_{CB}^{} \! > \! 0$ инверсен активен режим;
- 3. $u_{EB} < 0$, $u_{CB} < 0$ запушено състояние режим на отсечка;
- 4. $u_{EB} > 0$, $u_{CB} < 0$ активен режим.

3. Статични режими

3. 1. Запушено състояние $u_{EB} < 0$, $u_{CB} < 0$ (p-n-p)

(р-п-р транзистор)

В запушено състояние транзисторът се представя с генератор на ток ICB0, с посока от базата към колектора, и прекъснат емитер

За п-р-п транзистори заместващата схема е:

При Si транзистори, за които ICB0 е много малък, може да се пренебрегне генераторът на ток.

3. Статични режими

3. 2. Активен режим $u_{EB} > 0$, $u_{CB} < 0$ (p-n-p)

(р-п-р транзистор)

Т е заместен със зависим генератор на ток. Преходът база-емитер е даден на късо.

За Si n-p-n транзистор: Посоката на генератора се обръща, характеристиката му е изместена надясно. Ео $= u_{BEa}$ в активен режим

3. Статични режими

3. 3. Наситено състояние $u_{EB} > 0$, $u_{CB} > 0$ (p-n-p)

Модел на идеален транзистор - еквипотенциална точка.

За Si n-p-n транзистор

