

X3-Class HiPerFET™ Power MOSFET

IXFN400N15X3

N-Channel Enhancement Mode Avalanche Rated

V _{DSS}	=	150V
I _{D25}	=	400A
R _{DS(on)}	≤	$2.5 m\Omega$

Symbol	Test Conditions	Maximum R	Maximum Ratings		
V _{DSS} V _{DGR}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}$ $T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}, R_{GS} = 1\text{M}\Omega$	150 150	V		
V _{GSS} V _{GSM}	Continuous Transient	± 20 ± 30	V V		
I _{D25} I _{L(RMS)}	$T_{\rm C}=25^{\circ}{\rm C}$ (Chip Capability) External Lead Current Limit $T_{\rm C}=25^{\circ}{\rm C}$, Pulse Width Limited by $T_{\rm JM}$	400 200 900	A A A		
I _A E _{AS}	T _c = 25°C T _c = 25°C	200 3.5	A J		
\mathbf{P}_{D}	T _C = 25°C	695	W		
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$	50	V/ns		
T _J T _{JM} T _{stg}		-55 +150 150 -55 +150	°C °C °C		
V _{ISOL}	50/60 Hz, RMS $t = 1$ minute $I_{ISOL} \le 1$ mA $t = 1$ second	2500 3000	V~ V~		
M_d	Mounting Torque Terminal Connection Torque	1.5/13 1.3/11.5	Nm/lb.in Nm/lb.in		
Weight		30	g		

SymbolTest ConditionsCharacteristics $(T_J = 25^{\circ}C \text{ Unless Otherwise Specified})$ Min.		cteristic Values Typ. Max.			
BV _{DSS}	$V_{GS} = 0V, I_D = 3mA$	150			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 8mA$	2.5		4.5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$			± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$ T_{J}	= 125°C		25 1.5	μA mA
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 200A, Note 1$			2.5	mΩ

G = Gate D = Drain S = Source

Features

- International Standard Package
- miniBLOC, with Aluminium Nitride Isolation
- Isolation Voltage 2500V~
- High Current Handling Capability
- Avalanche Rated
- Low R_{DS(on)}

Advantages

- High Power Density
- Easy to Mount
- Space Savings

Applications

- Switch-Mode and Resonant-Mode Power Supplies
- DC-DC Converters
- PFC Circuits
- AC and DC Motor Drives
- Robotics and Servo Controls

•		Characteristic Values		
		Vin.	Тур.	Max
g _{fs}	$V_{DS} = 10V, I_{D} = 60A, Note 1$ 8	5	145	S
R_{Gi}	Gate Input Resistance		2.15	Ω
C _{iss}			23.7	nF
C _{oss}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		3730	pF
C _{rss}			140	pF
	Effective Output Capacitance			
$C_{o(er)}$	Energy related $\int V_{GS} = 0V$		2200	pF
$C_{o(tr)}$	Time related $\int V_{DS}^{GS} = 0.8 \cdot V_{DSS}$		5330	pF
t _{d(on)}	Resistive Switching Times		36	ns
t _r	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 200A$		30	ns
t _{d(off)}	$R_{G} = 10$ (External)		210	ns
t,	Tig = 132 (External)		19	ns
Q _{g(on)}			365	nC
Q _{gs}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 200A$		103	nC
\mathbf{Q}_{gd}			87	nC
R _{thJC}				0.18 °C/W
R _{thCS}			0.05	°C/W

Source-Drain Diode

Symbol (T _J = 25°C, U	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max	
I _s	$V_{GS} = 0V$			400	Α
SM	Repetitive, Pulse Width Limited by $T_{_{JM}}$			1600	Α
V _{SD}	$I_{\rm F} = 100 {\rm A}, \ V_{\rm GS} = 0 {\rm V}, \ {\rm Note} \ 1$			1.4	V
t _{rr} Q _{RM} }	$I_F = 150A$, -di/dt = 100A/ μ s $V_R = 100V$		132 580 8.8		ns nC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

400

Fig. 1. Output Characteristics @ T_J = 25°C

Fig. 2. Extended Output Characteristics @ T_J = 25°C

Fig. 3. Output Characteristics @ T_J = 125°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = 200A$ Value vs. **Junction Temperature**

Fig. 5. $R_{DS(on)}$ Normalized to I_D = 200A Value vs.

Fig. 6. Normalized Breakdown & Threshold Voltages vs. Junction Temperature

IXFN400N15X3

 $\ensuremath{\mathsf{IXYS}}$ Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 15. Maximum Transient Thermal Impedance

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.