Pre-class activities Artifical Neural Networks

Emmanuel Rachelson

1 Derivation: the chain rule and total derivatives

- 1. Consider a function $f: \mathbb{R}^p \to \mathbb{R}^q$. Recall the expression of this function's Jacobian matrix.
- 2. The total derivative $Df_{\hat{x}}(h)$ of f in \hat{x} is a linear operator. Recall its definition (for the same $f: \mathbb{R}^p \to \mathbb{R}^q$ function as above).
- 3. Consider two functions, $g: \mathbb{R} \to \mathbb{R}^p$ and $f: \mathbb{R}^p \to \mathbb{R}$. Let $F = f \circ g$ be the composite function such that F(x) = f(g(x)). Write the derivative of F with respect to x as an expression of the partial derivatives of f and g.
- 4. Now suppose that in the example above, all the g_k functions are identity functions, that is $g(x) = [x, ..., x]^T$. How does the total derivative of F simplify?
- 5. Finally, consider two functions $g: \mathbb{R} \to \mathbb{R}^p$ and $f: \mathbb{R}^p \to \mathbb{R}^q$. As previously, lets $F = f \circ g$ be the composite function. Write the total derivative of F as an expression of the partial derivatives of f and g.