Notes 9/21

Liz Austin 9/23/2017

Comments on Assignment 1:

- 1) Produce a single, self-contained file
 - R markdown or python equivalent
 - create images using that same software
- 2) Solution set will be posted
- 3) Use slack/office hours!!
 - Work on equations/latex/knitting, share interesting realizations
 - slack board for assignment 2
- 4) We will begin using HW to cover things not covered in class

Casey's question: Confidence interval = coverage probability? (i.e. 95% when n -> inf?)

Topics for Today:

- 1) Diagnostics (*read book, too much to cover in class)
- 2) Newton-Raphson
- 3) Inference

Diagnostics

- 1) Deviance
 - measure of goodness of fit based on likelihood
 - most useful as a comparison between models
 - a) Equation:

$$D = -2[L(\hat{\mu}|y) - L(y|y)]$$
w) is log likelihood, saturated model, "best case so

L(y|y) is log likelihood, saturated model, "best case scenario" LRTS- comparing your model over a saturated model

$$D_{guassian} = \sum (y - \hat{\mu})^2$$
 same Kernel of MSE

$$D_{poisson} = 2\sum (y \log(\frac{y}{\hat{\mu}}) - (y - \hat{\mu}))$$

b) Deviance test for "nested" models

$$M_0 -> \hat{\mu}$$
 and $M_1 -> \hat{\mu}_1$
 M_0 is a special case of M_1
ex: $\eta_{i1} = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2}$
 $\eta_{i0} = \beta_0 + \beta_1 X_{i1}$ (i.e. $\beta_2 = 0$)

 $\bullet\,\,$ simpler models have larger deviance, lower log-likelihoods

- $H_0: \mu_1$ explains the data as well as μ_0 $D(y|\hat{\mu}_0) = D(y|\hat{\mu}_1) \sim \chi_{df}^2$ df = # of parameter difference = # of parts in M_1 - # parts in M_0
- 2) Residuals
 - Pearson, deviance, standardized
 - a) Equation:

 - Pearson: $e_i = \frac{y \hat{\mu}_i}{\sqrt{V(\hat{\mu}_i)}}$ Standardized: $r_i = \frac{e_i}{\sqrt{(1 \hat{h}_i)}}$
 - Advantage of standardized residuals: r_i (approx) $\sim N(0,1)$
 - b) Binned residual plots
 - "Is my model fitting reasonably?"
 - In R -> arm::binnedplot()
 - 1. Group observations into groups ordered by whatever x value (x_k, x_{ik}, \hat{y}) with the same number of observations per group
 - 2. Compute the group-wide average residual
 - 3. Plot
 - c) Ex. 6.2.2 in book, Heart Disease and BP
 - Sample of male residents of Framingham, MA age 40-59
 - Y=[1, developed heart disease during 6 yr. follow-up or 0, no HD]
 - X = Systolic blood pressure (continuous)
 - Independence model: $logit(\pi_i) = \alpha$
 - Systolic BP model: $logit(\pi_i) = \alpha + \beta X_i$

X level	\mathbf{n}	Ind. Model	SBP Model
<117	156	-2.62	-1.11
117 - 126	252	-0.12	2.37
127 - 136		-2.02	-0.95
137 - 146		-0.74	-0.57
147 - 156		-0.74	-0.57
157 - 166		0.93	-0.33
167 - 186	99	3.67	0.65
> 187	43	3.07	-0.18

Pretty strong linear of residuals in independence model so we need to use SBP model

Newton-Raphson

- 1) What is it?
 - A general iteraive method for solving non-linear equations
 - a) Steps:
 - 1. Initial guess at solution
 - 2. Approximate the function locally -> find maximum
 - 3. The maximum becomes your next "guess"
 - 4. Complete steps 2-3 until convergence
 - b) Mathematically:
 - We are maximizing $L(\beta)$

$$u = (\frac{\partial L(\beta)}{\partial \beta_1}, \frac{\partial L(\beta)}{\partial \beta_2}, ...), H = \text{ Hessian Matrix where element i,j is: } \frac{\partial^2 L(\beta)}{\partial \beta_i \partial \beta_j}$$

• Iterative process, t=1...

$$\begin{aligned} u^{(t)} &= u(\beta^{(t)}) \\ H^{(t)} &= H(\beta^{(t)}) \\ \text{where } \beta^{(t)} \text{ is our } t^{th} \text{ "guess" of } \beta \end{aligned}$$

• Taylor series approximation in local region of $\beta^{(t)}$:

$$\begin{split} L(\beta) \approx L(\beta^{(t)}) + u^{(t)}(\beta - \beta^{(t)}) + \frac{1}{2}(\beta - \beta^{(t)})^T H^{(t)}(\beta - \beta^{(t)}) \text{ (*multidimensional quadratic!)} \\ \text{solve: } \frac{\partial L(\beta)}{\partial \beta} = u^{(t)} + H^{(t)}(\beta - \beta^{(t)}) = 0 -> \beta^{(t+1)} \\ \beta^{(t+1)} = \beta^{(t)} - (H^{(t)})^{-1} u^{(t)} \\ H^{(t)} -> (I^{(t)})^{-1} \text{ *Fisher's uses this instead of Hessian matrix} \end{split}$$