Course in Semantics · Ling 531 / 731 McKenzie · University of Kansas

1 Abstract functions

- **1.** Complete the following applications/ β -reductions, until you run out of arguments.
 - 1. [$\lambda f \in D_{\langle e, t \rangle}$. f(x)](Q) =
 - 2. [$\lambda g \in D_{\langle e, t \rangle}$. g(x)](Q) =
 - 3. [$\lambda f \in D_{\langle e, t \rangle}.\lambda x \in D_e. g(x)$](Q) =
 - 4. [$\lambda f \in D_{\langle e, t \rangle}.\lambda x \in D_e.$ g(x)](Q)(x) =
 - 5. [$\lambda f \in D_{\langle e, t \rangle}.\lambda x \in D_e.$ g(x)](x)(Q) = (watch out!)
 - 6. [$\lambda f \in D_{\langle e, t \rangle}.\lambda x \in D_e.$ g(f(x))](A)(b) =

2 Similar but with natural language

- 1. [$\lambda f \in D_{\langle e, t \rangle}$. f(y)]($\lambda x \in D_e$. cat(x)) =
- 2. [$\lambda f \in D_{\langle e, t \rangle}$. f(x)]($\lambda y \in D_e$. happy(y)) =
- 3. [$\lambda f \in D_{(e,t)}$. $f(Marie)](\lambda x \in D_e$. happy(x)) =
- 4. [$\lambda g \in D_{(e,t)}.\lambda x \in D_e. g(x)$]([broad])(the Mississippi River) =
- 5. $[\lambda f \in D_{(e,t)}.\lambda x \in D_e. Q(f(x))](\lambda y \in D_e. Greek(y))(Apollo) =$