CMIP6 Model Documentation

Institute: CCCMA CANESM5

Topic: Atmospheric Chemistry

Doc. Generated: 2018-12-16

Doc. Seeded From: N/A

Specialization Version: 1.0.0

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	3
2	Grid	9
3	Transport	11
4	Emissions Concentrations	12
5	Gas Phase Chemistry	15
6	Stratospheric Heterogeneous Chemistry	17
7	Tropospheric Heterogeneous Chemistry	19
8	Photo Chemistry	21

1 Key Properties

Key properties of the atmospheric chemistry

1.1.1 Top level propertie	1.1.	$1 \ 1$	Гор	level	pro	pertie
---------------------------	------	---------	-----	-------	-----	--------

Key properties of the atmospheric chemistry

1.1.1.1 Name *

 $Name\ of\ atmoschem\ model\ code$

1.1.1.2 Keywords *

 $Keywords\ associated\ with\ atmoschem\ model\ code$

Enter COMMA SEPERATED list:

1.1.1.3 Overview *

Overview of atmoschem model.

Enter TEXT:

1.1.1.4 Chemistry Scheme Scope *

Atmosphe	ric domains covered by the atmospheric chemistry model
	Troposphere
	Stratosphere
	Mesosphere
	Mesosphere
	Whole atmosphere
	Other - please specify:

1.1.1.5 Basic Approximations *

 $Basic\ approximations\ made\ in\ the\ atmospheric\ chemistry\ model$

Enter TEXT:

1.1.1.6 Prognostic Variables Form *

 $Form\ of\ prognostic\ variables\ in\ the\ atmospheric\ chemistry\ component.$

Select	MULT	IPLE o	ption	ıs:	
	3D mass	/mixing	ratio	for	gas

Other - please specify:

1.1.1.7 Number Of Tracers *		
Number of advected tracers in the atmospheric chemistry model		
2		
1.1.1.8 Family Approach *		
Atmospheric chemistry calculations (not advection) generalized into families of species?		
Select either TRUE or FALSE:		
☐ True ☐ False		
1146		
1.1.1.9 Coupling With Chemical Reactivity *		
$Atmospheric\ chemistry\ transport\ scheme\ turbulence\ is\ couple\ with\ chemical\ reactivity?$		
☐ False		
1.2.1 Software Properties		
Software properties of aerosol code		
1.2.1.1 Repository		
Location of code for this component.		
Enter TEXT:		
1.2.1.2 Code Version		
Code version identifier.		
Enter TEXT:		
1.2.1.3 Code Languages		
Code language(s).		
Enter COMMA SEPERATED list:		
1.3.1 Timestep Framework		
Timestepping in the atmospheric chemistry model		
Timestepping in the almospheric chemistry model		
1.3.1.1 Method *		
Mathematical method deployed to solve the evolution of a given variable		
Operator splitting		
☐ Integrated		
Other - please specify:		

1.3.1.2	Split Operator Advection Timestep
Timestep	$for\ chemical\ species\ advection\ (in\ seconds)$
900	
	Split Operator Physical Timestep for physics (in seconds).
	Split Operator Chemistry Timestep for chemistry (in seconds).
Ente	r INTEGER value:
1.3.1.5 ?	Split Operator Alternate Order
Selec	et either TRUE or FALSE:
	True
1.3.1.6	Integrated Timestep *
Timestep	$for \ the \ atmospheric \ chemistry \ model \ (in \ seconds)$
Ente	r INTEGER value:
	Integrated Scheme Type * the type of timestep scheme
Selec	t SINGLE option:
	Explicit
	Implicit
	Semi-implicit
	Semi-analytic
	Impact solver
	Back Euler
	Newton Raphson
	Rosenbrock
	Other - please specify:

1.3.2 Split Operator Order

1.3.2.1 Turbulence

Call order for turbulence scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.

Enter INTEGER value:

1.3.2.2 Convection

Call order for convection scheme This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.

Enter INTEGER value:

1.3.2.3 Precipitation

Call order for precipitation scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.

Enter INTEGER value:

1.3.2.4 Emissions

Call order for emissions scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.

Enter INTEGER value:

1.3.2.5 Deposition

Call order for deposition scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.

Enter INTEGER value:

1.3.2.6 Gas Phase Chemistry

Call order for gas phase chemistry scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.

1.3.2.7 Tropospheric Heterogeneous Phase Chemistry

Call order for tropospheric heterogeneous phase chemistry scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.

Enter INTEGER value:

1.3.2.8 Stratospheric Heterogeneous Phase Chemistry

Call order for stratospheric heterogeneous phase chemistry scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.

Enter INTEGER value:

1.3.2.9 Photo Chemistry

Call order for photo chemistry scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.

Enter INTEGER value:

1.3.2.10 Aerosols

Call order for aerosols scheme. This should be an integer greater than zero, and may be the same value as for another process if they are calculated at the same time.

Enter INTEGER value:

1.4.1 Tuning Applied

Tuning methodology for atmospheric chemistry component

1.4.1.1 Description *

General overview description of tuning: explain and motivate the main targets and metrics retained. and Document the relative weight given to climate performance metrics versus process oriented metrics, and and on the possible conflicts with parameterization level tuning. In particular describe any struggle and with a parameter value that required pushing it to its limits to solve a particular model deficiency.

Enter TEXT:

1.4.1.2 Global Mean Metrics Used

 $List\ set\ of\ metrics\ of\ the\ global\ mean\ state\ used\ in\ tuning\ model/component$

Enter COMMA SEPERATED list:

1.4.1.3 Regional Metrics Used

List of regional metrics of mean state used in tuning model/component

Enter COMMA SEPERATED list:

1.4.1.4 Trend Metrics Used

 $List\ observed\ trend\ metrics\ used\ in\ tuning\ model/component$

Enter COMMA SEPERATED list:

2 Grid

Atmospheric chemistry grid

2.1.1 Top level properties

Atmospheric chemistry grid

2.1.1.1 Name

Name of grid in atmoschem model.

Enter TEXT:

2.1.1.2 Overview

Overview of grid in atmoschem model.

Enter TEXT:

2.1.1.3 Matches Atmosphere Grid *

Does the atmospheric chemistry grid match the atmosphere grid?

Select either TRUE or FALSE: $\begin{tabular}{llll} \hline & True & \begin{tabular}{llll} \hline & False \\ \hline \end{tabular}$

2.2.1 Resolution

Resolution in the atmospheric chemistry grid

2.2.1.1 Name *

This is a string usually used by the modelling group to describe the resolution of this grid, e.g. ORCA025, N512L180, T512L70 etc.

Enter TEXT:

2.2.1.2 Canonical Horizontal Resolution

Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc.

Enter TEXT:

2.2.1.3 Number Of Horizontal Gridpoints

Total number of horizontal (XY) points (or degrees of freedom) on computational grid.

2.2.1.4 Number Of Vertical Levels

 $Number\ of\ vertical\ levels\ resolved\ on\ computational\ grid.$

	Is Adaptiv			
Default is False. Set true if grid resolution changes during execution.				
Sele	ct either TRU	J E or	FALSE:	
	True		False	

3 Transport

 $Atmospheric\ chemistry\ transport$

3.1.1 Top level properties

 $Atmospheric\ chemistry\ transport$

3.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ transport\ in\ atmoschem\ model.$

Enter TEXT:

3.1.1.2 Overview

 $Overview\ of\ atmospheric\ chemistry\ transport\ in\ atmoschem\ model.$

3.1.1.3 Use Atmospheric Transport *

Is transport handled by the atmosphere, rather than within atmospheric cehmistry?

Select either	TRUE or	FALSE:
True		False

3.1.1.4 Transport Details

 ${\it If transport is handled within the atmospheric chemistry scheme, describe it.}$

Enter TEXT:

4 Emissions Concentrations

 $Atmospheric\ chemistry\ emissions$

4.1.1 Top level properties

 $Atmospheric\ chemistry\ emissions$

4.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ emissions\ concentrations\ in\ atmoschem\ model.$

Enter TEXT:

4.1.1.2 Overview

 $Overview\ of\ atmospheric\ chemistry\ emissions\ in\ atmoschem\ model.$

4.2.1 Surface Emissions

Spatially uniform mixing ratio Spatially uniform concentration

Interactive

Other - please specify:

4.2.1.1	Sources
Sources o	f the chemical species emitted at the surface that are taken into account in the emissions scheme
\boxtimes	Vegetation
	Soil
\boxtimes	Sea surface
\boxtimes	Anthropogenic
	Biomass burning
	Other - please specify:
4.2.1.2	Method
	used to define chemical species emitted directly into model layers above the surface (several methods exause the different species may not use the same method).
Selec	t MULTIPLE options:
	Climatology

4.2.1.3 Prescribed Climatology Emitted Species

List of chemical species emitted at the surface and prescribed via a climatology, and the nature of the climatology $(E.g.\ CO\ (monthly),\ C2H6\ (constant))$

4.2.1.4 Prescribed Spatially Uniform Emitted Species

List of chemical species emitted at the surface and prescribed as spatially uniform

Enter COMMA SEPERATED list:

4.2.1.5 Interactive Emitted Species

List of chemical species emitted at the surface and specified via an interactive method

4.2.1.6 Other Emitted Species

List of chemical species emitted at the surface and specified via any other method

4.3.1 Atmospheric Emissions

TO DO

4.3.1.1 Sources

 $Sources\ of\ chemical\ species\ emitted\ in\ the\ atmosphere\ that\ are\ taken\ into\ account\ in\ the\ emissions\ scheme.$

Select	MULTIPLE options:
	Aircraft
	Biomass burning
	Lightning
	Volcanos
	Other - please specify:
4.3.1.2	Method
	sed to define the chemical species emitted in the atmosphere (several methods allowed because the dif- cies may not use the same method).
Select	MULTIPLE options:
	Climatology
	Spatially uniform mixing ratio
	Spatially uniform concentration
	Interactive
	Other - please specify:

4.3.1.3 Prescribed Climatology Emitted Species

List of chemical species emitted in the atmosphere and prescribed via a climatology (E.g. CO (monthly), C2H6 (constant))

4.3.1.4 Prescribed Spatially Uniform Emitted Species

List of chemical species emitted in the atmosphere and prescribed as spatially uniform

Enter COMMA SEPERATED list:

4.3.1.5 Interactive Emitted Species

List of chemical species emitted in the atmosphere and specified via an interactive method

Enter COMMA SEPERATED list:

4.3.1.6 Other Emitted Species

List of chemical species emitted in the atmosphere and specified via an "other method"

4.4.1 Concentrations

TO DO

4.4.1.1 Prescribed Lower Boundary

List of species prescribed at the lower boundary.

Enter COMMA SEPERATED list:

4.4.1.2 Prescribed Upper Boundary

List of species prescribed at the upper boundary.

Enter COMMA SEPERATED list:

5 Gas Phase Chemistry

Atmospheric gas phase chemistry transport

5.1.1 Top level properties

 $Atmospheric\ gas\ phase\ chemistry\ transport$

5.1.1.1 Name

Commonly used name for the gas phase chemistry in atmoschem model.

Enter TEXT:

5.1.1.2 Overview

 $Overview\ of\ atmospheric\ gas\ phase\ chemistry\ transport\ in\ atmoschem\ model.$

5.1.1.3 Species

5.1.1.3 Species		
Species included in the gas phase chemistry scheme.		
	HOx	
	NOy	
	Ox	
	Cly	
	HSOx	
	Bry	
	VOCs	
	Isoprene	
	H2O	
	Other - please specify:	

5.1.1.4 Number Of Bimolecular Reactions *

The number of bi-molecular reactions in the gas phase chemistry scheme.

 $\mathbf{5}$

5.1.1.5 Number Of Termolecular Reactions *

The number of ter-molecular reactions in the gas phase chemistry scheme.

5.1.1.6 Number Of Tropospheric Heterogenous Reactions *
The number of reactions in the tropospheric heterogeneous chemistry scheme.
Enter INTEGER value:
5.1.1.7 Number Of Stratospheric Heterogenous Reactions *
The number of reactions in the stratospheric heterogeneous chemistry scheme.
Enter INTEGER value:
5.1.1.8 Number Of Advected Species *
The number of advected species in the gas phase chemistry scheme.
Enter INTEGER value:
5.1.1.9 Number Of Steady State Species *
the number of gas phase species for which the concentration is updated in the chemical solver assuming photochemical steady state
Enter INTEGER value:
5.1.1.10 Interactive Dry Deposition *
Is dry deposition interactive (as opposed to prescribed)? Dry deposition describes the dry processes by which gaseous species deposit themselves on solid surfaces thus decreasing their concentration in the air.
Select either TRUE or FALSE:
☐ True ☐ False
5.1.1.11 Wet Deposition *
Is wet deposition included? Wet deposition describes the moist processes by which gaseous species deposit them selves on solid surfaces thus decreasing their concentration in the air.

5.1.1.12 Wet Oxidation *

True

 ${\it Is wet oxidation included? Oxidation describes the loss of electrons or an increase in oxidation state by a molecule}$

☐ False

6 Stratospheric Heterogeneous Chemistry

Atmospheric chemistry startospheric heterogeneous chemistry

6.1.1 Top level properties

Atmospheric chemistry startospheric heterogeneous chemistry

6.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ stratospheric\ heterogeneous\ chemistry\ in\ atmoschem\ model.$

Enter TEXT:

6.1.1.2 Overview

 $Overview\ of\ atmospheric\ chemistry\ startospheric\ heterogeneous\ chemistry\ in\ atmoschem\ model.$

Enter TEXT:

6.1.1.3 Gas Phase Species

Gas phase species included in the stratospheric heterogeneous chemistry scheme.

Select MULTIPLE options:			
	Cly		
	Bry		
	NOy		
6.1.1.4 Aerosol Species			
Aerosol species included in the stratospheric heterogeneous chemistry scheme.			
Select	MULTIPLE options:		
	Sulphate		
	Polar stratospheric ice		
	NAT (Nitric acid trihydrate)		
	NAD (Nitric acid dihydrate)		
	STS (supercooled ternary solution aerosol particule))		

6.1.1.5 Number Of Steady State Species *

The number of steady state species in the stratospheric heterogeneous chemistry scheme.

6.1.1.6 Sedimentation *			
${\it Is sedimentation is included in the stratospheric heterogeneous chemistry scheme or not?}$			
Select either TRUE or FALSE:			
☐ True ☐ False			
6.1.1.7 Coagulation *			
${\it Is coagulation is included in the stratospheric heterogeneous chemistry scheme or not?}$			
Select either TRUE or FALSE:			
☐ True ☐ False			

7 Tropospheric Heterogeneous Chemistry

Atmospheric chemistry tropospheric heterogeneous chemistry

7.1.1 Top level properties

Atmospheric chemistry tropospheric heterogeneous chemistry

7.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ tropospheric\ heterogeneous\ chemistry\ in\ atmoschem\ model.$

Enter TEXT:

7.1.1.2 Overview

 $Overview\ of\ atmospheric\ chemistry\ tropospheric\ heterogeneous\ chemistry\ in\ atmoschem\ model.$

Enter TEXT:

7.1.1.3 Gas Phase Species

 $List\ of\ gas\ phase\ species\ included\ in\ the\ tropospheric\ heterogeneous\ chemistry\ scheme.$

Enter COMMA SEPERATED list:

7.1.1.4 Aerosol Species

Aerosol species included in the tropospheric heterogeneous chemistry scheme.

Select MULTIPLE options:		
	Sulphate	
	Nitrate	
	Sea salt	
	Dust	
	Ice	
	Organic	
	Black carbon/soot	
	Polar stratospheric ice	
	Secondary organic aerosols	
	Particulate organic matter	

7.1.1.5 Number Of Steady State Species *

The number of steady state species in the tropospheric heterogeneous chemistry scheme.

7.1.1.6 Interactive Dry Deposition **	
Is dry deposition interactive (as opposed to prescribed)? Dry deposition describes the dry processes by w gaseous species deposit themselves on solid surfaces thus decreasing their concentration in the air.	hich

aseous species aeposit themselves on solia surjaces thus aecreasing their concentration in the air.				
Select either TRUE or FALSE:				
☐ True ☐ False				
7.1.1.7 Coagulation *				
's coagulation is included in the tropospheric heterogeneous chemistry scheme or not?				
Select either TRUE or FALSE:				
☐ True ☐ False				

8 Photo Chemistry

Atmospheric chemistry photo chemistry

8.1.1 Top level properties

Atmospheric chemistry photo chemistry

8.1.1.1 Name

Commonly used name for the photo chemistry in atmoschem model.

Enter TEXT:

8.1.1.2 Overview

 $Overview\ of\ atmospheric\ chemistry\ photo\ chemistry\ in\ atmoschem\ model.$

Enter TEXT:

8.1.1.3 Number Of Reactions *

The number of reactions in the photo-chemistry scheme.

Enter INTEGER value:

8.2.1 Photolysis

Photolysis scheme

8.2.1.1 Method *

 $Photolysis\ scheme$

Select	SINGLE option:
	Offline (clear sky)
	Offline (with clouds)

Online

8.2.1.2 Environmental Conditions

Describe any environmental conditions taken into account by the photolysis scheme (e.g. whether pressure- and temperature-sensitive cross-sections and quantum yields in the photolysis calculations are modified to reflect the modelled conditions.)

Enter TEXT: