WHAT IS CLAIMED IS:

1	1. A method of therapeutically heating a collagenous structural support
2	tissue of a pelvic support system to a target temperature, the method comprising:
3	delivering energy to the structural support tissue;
4	monitoring the effect of the delivery of energy on the structural support tissue
5	to estimate a treatment time of reaching the target temperature;
6	comparing the estimated treatment time with desired treatment time(s);
7	adjusting a power level of the energy if the estimated treatment time is not
8	coincident with the desired treatment time(s).
1	2. The method of claim 1 wherein monitoring the effect of the delivery of
2	energy comprises:
3	measuring an elapsed time of delivery of the energy to the structural support
4	tissue;
5	measuring a temperature of the tissue and a temperature rate of change of the
6	structural support tissue; and
7	using the elapsed time of delivery of the energy, measured temperature of the
8	structural support tissue, and temperature rate of change at the structural support tissue to
9	calculate the estimated treatment time.
1	3. The method of claim 2 wherein measuring the temperature and the
2	temperature rate of change at the structural support tissue is carried out only after a
3	predetermined amount of time after commencement of a delivery of energy to the structural
4	support tissue.
1	4. The method of claim 3 wherein the predetermined amount of time is
2	between approximately 25 seconds and 45 seconds.
1	5. The method of claim 2 wherein measuring the elapsed time,
2	temperature of the structural support tissue, and the temperature rate of change at the
3	structural support tissue is repeated at predetermined intervals during the delivery of the
4	energy.

1 6. The method of claim 2 wherein the measured temperature of the structural support tissue and temperature rate of change of the structural support tissue is an 2 3 average temperature and average temperature rate of change over a predetermined interval. 1 7. The method of claim 6 wherein the predetermined interval is 2 approximately six seconds. 8. 1 The method of claim 7 wherein adjusting the power level is carried out 2 after each predetermined interval. 1 9. The method of claim 1 wherein if the estimated treatment time is less 2 than the desired treatment time(s) then the adjusted power level is lower than an original 3 power level. 10. 1 The method of claim 1 wherein if the estimated treatment time is 2 greater than the desired treatment time(s) then the adjusted power level is higher than an original power level. 3 1 11. The method of claim 1 wherein adjusting the power level comprises 2 adjusting the power level in step-wise adjustments of ± 1 Watts, ± 2 Watts, or ± 5 Watts. 1 12. The method of claim 11 wherein a size of the step-wise adjustment is 2 selected based on the difference between the estimated treatment time and the desired 3 treatment time. 13. 1 The method of claim 1 wherein the target temperature is between 2 approximately 65°C and 75°C. 1 14. The method of claim 1 wherein the desired treatment time is between 2 approximately 150 seconds and approximately 240 seconds. 3 15. The method of claim 1 wherein adjusting is automatically carried out 4 by software in a control system memory. 1 16. The method of claim 1 wherein the structural support tissue is a

2

collagenated tissue in an endopelvic fascia.

1	17. The method of claim 1 further comprising accessing the structural
2	support tissue transvaginally.
1	18. The method of claim 1 further comprising accessing the structural
2	support tissue laparoscopically.
1	19. A system for delivering energy to a collagenous structural support
2	tissue of a pelvic support system, the system comprising:
3	a processor;
4	a memory coupled to the processor, the memory configured to store a plurality of
5	code modules for execution by the processor, the plurality of code modules comprising:
6	a code module for delivering energy to the structural support tissue;
7	a code module for estimating a treatment time of reaching a target
8	temperature;
9	a code module for comparing the estimated treatment time with desired
10	treatment time(s); and
11	a code module for adjusting the delivery of the energy to an adjusted power
12	level if the estimated treatment time is not coincident with the desired treatment time(s).
1	20. The system of claim 19 wherein the code module for estimating the
2	treatment time of reaching the target temperature comprises:
3	a code module for measuring an elapsed time of delivering energy to the
4	structural support tissue;
5	a code module for measuring a temperature and a temperature rate of change
6	at the structural support tissue; and
7	a code module for using the measured elapsed time, measured temperature and
8	temperature rate of change to calculate an estimated treatment time.
1	21. The system of claim 19 further comprising a power supply coupled to
2	the processor.
1	22. The system of claim 21 further comprising an applicator coupleable to
2	the power supply for delivering the energy to the structural support tissue.

1	23. A method of therapeutically heating a collagenous structural support
2	tissue of a pelvic support system, the method comprising:
3	delivering energy to raise a temperature of the structural support tissue to a
4	first target temperature; and
5	dynamically adjusting a power level of the energy after the structural support
6	tissue has substantially reached the first target temperature so as to allow the structural
7	support tissue to dwell at substantially a second target temperature for a desired amount of
8	dwell time.
1	24. The method of claim 23 wherein adjusting the power level comprises
2	making an adjustment of the power level upon entry into dwell which is either a constant
3	value drop from an entry power level or a power level drop which is proportional to a rate of
4	change of the tissue temperature at an entry point into the dwell.
1	25. The method of claim 23 wherein the first target temperature is
1	• .
2	substantially equal to the second target temperature.
1	26. The method of claim 23 wherein the first and second target
2	temperatures are between approximately 70°C and approximately 75°C.
1	
1	27. The method of claim 23 wherein the desired amount of dwell time is at
2	least approximately 30 seconds
1	28. The method of claim 23 wherein the desired amount of dwell time is
2	between approximately 20 seconds and approximately 45 seconds.
1	29. The method of claim 23 wherein adjusting the delivery of energy
2	comprises reducing a power level of the delivery of energy at least once during the dwell
3	time.
1	30. The method of claim 23 further comprising:
2	measuring a temperature of the structural support tissue at selected intervals
3	during the dwell time; and
4	further adjusting delivery of energy to the structural support tissue if the
5	measured temperature of the structural support tissue is not within an acceptable range from
6	the second target temperature.

2	comprises raising or lowering the power level less than approximately 2 Watts.
1	32. A system for delivering energy to a structural support tissue of a pelvic
2	support system, the system comprising:
3	a processor;
4	a memory coupled to the processor, the memory configured to store a plurality of
5	code modules for execution by the processor, the plurality of code modules comprising:
6	a code module for delivering energy to raise a temperature of the structural
7	support tissue to a first target temperature; and
8	a code module for dynamically adjusting a power level of the energy after the
9	structural support tissue has substantially reached the first target temperature so as to allow
10	the structural support tissue to dwell at substantially a second target temperature for a desired
11	amount of dwell time.
1	33. The system of claim 32 further comprising a power supply coupled to
2	the processor.
1	34. The system of claim 33 further comprising an applicator coupleable to
2	the power supply for delivering the energy to the tissue.
1	35. A method of treating a tissue of structural support tissue of a pelvic
2	support system, the method comprising:
3	delivering energy to the structural support tissue at a first power level;
4	estimating a treatment time of reaching a first target temperature;
5	comparing the estimated treatment time with desired treatment time(s) for
6	reaching the first target temperature;
7	adjusting the delivery of the energy to an adjusted power level if the estimated
8	treatment time is not coincident with the desired treatment time(s), wherein the adjusted
9	delivery of energy is sufficient to cause the first target temperature to be reached in
10	substantially the desired treatment time(s); and
11	dynamically adjusting a power level of the energy to a modified power level
12	after the structural support tissue has substantially reached the first target temperature so as to
13	allow the structural support tissue to dwell at substantially a second target temperature for a
14	desired amount of dwell time.

The method of claim 23 wherein further adjusting delivery of energy

1

31.