How is CCM useful?

1 Linear Example #1

Consider the linear example dynamical system of

$$X_t = \sin(t) \tag{1}$$

$$Y_t = AX_{t-1} + B\eta_t, \tag{2}$$

with $A, B \in \mathbb{R} \geq 0$ and $\eta_t \sim \mathcal{N}(0, 1)$. Specifically, consider $A, B \in [0, 10]$ step through in increments of 0.1. Figure 19 shows C_{XY} and CYX.

Figure 1: Changing A and B. C_{XY} and C_{YX}

Figure 2: Changing A and B. Δ

Consider the convergence of two specific points in the above plots (A, B) = (2.6, 2.6) and (A, B) = (3.0, 2.6).

Figure 3:

2 Linear Example #2

Consider the linear example dynamical system of

$$X_t = \sin(t)$$

$$Y_t = AX_{t-1} + B\eta_t$$

$$Z_t = Y_{t-1},$$

$$(3)$$

$$(4)$$

$$(5)$$

$$Y_t = AX_{t-1} + B\eta_t \tag{4}$$

$$Z_t = Y_{t-1}, (5)$$

with $A, B \in \mathbb{R} \ge 0$ and $\eta_t \sim \mathcal{N}(0, 1)$. Specifically, consider $A, B \in [0, 5]$ step through in increments of 0.1.

Figure 4:

3 Non-Linear Example

Consider the nonlinear example dynamical system of

$$X_t = \sin(t) \tag{6}$$

$$X_t = \sin(t)$$
 (6)
 $Y_t = AX_{t-1} (1 - BX_{t-1}) + C\eta_t,$ (7)

with $A, B, C \in \mathbb{R} \ge 0$ and $\eta_t \sim \mathcal{N}(0, 1)$. Specifically, consider $A, B, C \in [0, 5]$ step through in increments of 0.5.

Figure 5:

4 RL Circuit Example

The continuous system is

$$\frac{dI}{dt} = \frac{V(t)}{L} - \frac{R(t)}{L}I,\tag{8}$$

where I is the current at time t, V(t) is the voltage at time t, R(t) is the resistance at time t, and L is the inductance (which is also constant in these examples), and it can be approximated as

$$\dot{I} = \frac{V(t)}{L} - \frac{R(t)}{L}I \Rightarrow I_{t+1} - I_t = \frac{V_t}{L} - \frac{R_t}{L}I_t.$$
(9)

Rearranging leads to

$$I_{t+1} = \frac{V_t}{L} + I_t \left(1 - \frac{R_t}{L} \right), \tag{10}$$

$$V_t = L\left(I_{t+1} - I_t\left(1 - \frac{R_t}{L}\right)\right),\tag{11}$$

and

$$R_t = L\left(I_t - I_{t+1} + \frac{V_t}{L}\right). \tag{12}$$

All of the plots of I seen below are produced by using MATLAB's ode45 to solve Eqn. 8 (i.e. not using the discrete approximation shown). The time series V(t) and R(t) are created by defining values at fixed points and using linear interpolation (i.e. MATLAB's interp1) to find the time steps required by the ODE solver (i.e. MATLAB's ode45).

5 Changing V(t)

Consider the situation where R(t) is constant.

Physical intuition is that V drives I, so we expect to find V CCM causes I $(C_{VI} > C_{IV})$.

For this example, the voltage is described by

$$V(t) = A_v \sin(f_v t + \phi_v) + O_v, \tag{13}$$

where A_v is the amplitude, f_v is the frequency, ϕ_v is the phase, and O_v is the offset voltage.

5.1 Changing A_v

Consider evaluating the CCM correlations C_{VI} and C_{IV} for each $A_v \in [0.01, 2.0]$ in steps of 0.01. For reference, both V(t) and I(t) are plotted for different A_v in Figure 6.

Figure 6: Reference plots for changing A_v .

The CCM correlations are each plotted in Figure 7 along with the corresponding PAI elements P_{θ} and |P|.

Figure 7: Changing A_v .

5.2 Changing f_v

Consider evaluating the CCM correlations C_{VI} and C_{IV} for each $f_v \in [0.01, 2.0]$ in steps of 0.01. For reference, both V(t) and I(t) are plotted for different f_v in Figure 8.

Figure 8: Reference plots for changing f_v .

The CCM correlations are each plotted in Figure 9 along with the corresponding PAI elements P_{θ} and |P|.

Figure 9: Changing f_v .

5.3 Changing ϕ_v

Consider evaluating the CCM correlations C_{VI} and C_{IV} for each $\phi_v \in [0.01, 2.0]$ in steps of 0.01. For reference, both V(t) and I(t) are plotted for different ϕ_v in Figure 10.

Figure 10: Reference plots for changing ϕ_v .

The CCM correlations are each plotted in Figure 11 along with the corresponding PAI elements P_{θ} and |P|.

Figure 11: Changing ϕ_v .

5.4 Changing O_v

Consider evaluating the CCM correlations C_{VI} and C_{IV} for each $O_v \in [0.01, 2.0]$ in steps of 0.01. For reference, both V(t) and I(t) are plotted for different O_v in Figure 12.

Figure 12: Reference plots for changing O_v .

The CCM correlations are each plotted in Figure 13 along with the corresponding PAI elements P_{θ} and |P|.

Figure 13: Changing O_v .

Figure 14 shows the effect of increasing the library length from 2×10^3 (i.e. tspan = [0:0.5:1000];) to 10^4 (i.e. tspan = [0:0.5:5000];), and Figure 15 extends the above plots to $O_v \in [0.01, 10.0]$ in steps of 0.05.

Figure 14: Changing O_v (longer library length).

Figure 15: Changing O_v (larger domain for O_v).

6 PAI

Consider the system (Sugihara Figure 3 C and D)

$$X_{t+1} = X_t (r_x - r_x X_t - \beta_{xy} Y_t)$$
 (14)

$$Y_{t+1} = Y_t (r_y - r_y Y_t - \beta_{yx} X_t), (15)$$

with $r_y = r_y = 3.7$, $X_0 = 0.2$, $Y_0 = 0.4$, $\beta_{xy} = 0$, and $\beta_{yx} = 0.32$. Plots of the correlation between X and X|Y, as well as, Y and Y|X are shown below.

Figure 16: Changing A and B. C_{XY} and C_{YX}

Figure 17: Changing A and B. C_{XY} and C_{YX}

Figure 18: Changing A and B. C_{XY} and C_{YX}

This leads to					
	C_{XX}	$C_{X(XY)}$	C_{YY}	$C_{Y(YX)}$	$\Delta = C_{Y(YX)} - C_{X(XY)}$
	0.999841	0.998989	0.999908	0.998693	-2.9548e-04
Consider a comparison of PAI and CCM given the linear example system from above.					

Figure 19: Linear Example 1 PAI

Figure 20: Linear Example 2 PAI

Figure 21: Non Linear Example PAI