timeserieslab11-rohramehak-251524

May 15, 2024

```
[]: from google.colab import drive
     drive.mount('/content/drive')
    Mounted at /content/drive
[]: !pip install pmdarima
    Collecting pmdarima
      Downloading pmdarima-2.0.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86
    _64.manylinux_2_28_x86_64.whl (2.1 MB)
                               2.1/2.1 MB
    39.0 MB/s eta 0:00:00
    Requirement already satisfied: joblib>=0.11 in
    /usr/local/lib/python3.10/dist-packages (from pmdarima) (1.4.2)
    Requirement already satisfied: Cython!=0.29.18,!=0.29.31,>=0.29 in
    /usr/local/lib/python3.10/dist-packages (from pmdarima) (3.0.10)
    Requirement already satisfied: numpy>=1.21.2 in /usr/local/lib/python3.10/dist-
    packages (from pmdarima) (1.25.2)
    Requirement already satisfied: pandas>=0.19 in /usr/local/lib/python3.10/dist-
    packages (from pmdarima) (2.0.3)
    Requirement already satisfied: scikit-learn>=0.22 in
    /usr/local/lib/python3.10/dist-packages (from pmdarima) (1.2.2)
    Requirement already satisfied: scipy>=1.3.2 in /usr/local/lib/python3.10/dist-
    packages (from pmdarima) (1.11.4)
    Requirement already satisfied: statsmodels>=0.13.2 in
    /usr/local/lib/python3.10/dist-packages (from pmdarima) (0.14.2)
    Requirement already satisfied: urllib3 in /usr/local/lib/python3.10/dist-
    packages (from pmdarima) (2.0.7)
    Requirement already satisfied: setuptools!=50.0.0,>=38.6.0 in
    /usr/local/lib/python3.10/dist-packages (from pmdarima) (67.7.2)
    Requirement already satisfied: packaging>=17.1 in
    /usr/local/lib/python3.10/dist-packages (from pmdarima) (24.0)
    Requirement already satisfied: python-dateutil>=2.8.2 in
    /usr/local/lib/python3.10/dist-packages (from pandas>=0.19->pmdarima) (2.8.2)
    Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-
    packages (from pandas>=0.19->pmdarima) (2023.4)
    Requirement already satisfied: tzdata>=2022.1 in /usr/local/lib/python3.10/dist-
```

packages (from pandas>=0.19->pmdarima) (2024.1)

```
Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.22->pmdarima) (3.5.0)

Requirement already satisfied: patsy>=0.5.6 in /usr/local/lib/python3.10/dist-packages (from statsmodels>=0.13.2->pmdarima) (0.5.6)

Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from patsy>=0.5.6->statsmodels>=0.13.2->pmdarima) (1.16.0)

Installing collected packages: pmdarima

Successfully installed pmdarima-2.0.4
```

Importing libraries

```
[]: import pandas as pd
    from matplotlib import pyplot as plt
    import numpy as np
    from pmdarima import auto_arima
    from statsmodels.tsa.statespace.sarimax import SARIMAX
    from sklearn.metrics import mean_absolute_percentage_error
    from statsmodels.tsa.holtwinters import ExponentialSmoothing
    import warnings
    from statsmodels.tools.sm_exceptions import ConvergenceWarning
    warnings.simplefilter('ignore', ConvergenceWarning)
    from statsmodels.tsa.seasonal import seasonal_decompose
```

Restaurants data

```
[]: df = pd.read_csv('/content/drive/MyDrive/TSA_BDA_2024/Lab11/RestaurantVisitors.

csv', index_col='date',parse_dates=True)
```

[]: df

[]:	weekday	holiday	holiday_name	rest1	rest2	rest3	rest4	\
2016-01-0	1 Friday	1	New Year's Day	65.0	25.0	67.0	139.0	
2016-01-0	2 Saturday	0	na	24.0	39.0	43.0	85.0	
2016-01-0	3 Sunday	0	na	24.0	31.0	66.0	81.0	
2016-01-0	4 Monday	0	na	23.0	18.0	32.0	32.0	
2016-01-0	5 Tuesday	0	na	2.0	15.0	38.0	43.0	
•••	•••	•••			•••			
2017-05-2	7 Saturday	0	na	NaN	NaN	NaN	NaN	
2017-05-2	8 Sunday	0	na	NaN	NaN	NaN	NaN	
2017-05-2	9 Monday	1	Memorial Day	NaN	NaN	NaN	NaN	
2017-05-3	0 Tuesday	0	na	NaN	NaN	NaN	NaN	
2017-05-3	1 Wednesday	0	na	NaN	NaN	NaN	NaN	

total

date

2016-01-01 296.0

```
2016-01-02 191.0
     2016-01-03 202.0
     2016-01-04 105.0
     2016-01-05
                  98.0
     2017-05-27
                   NaN
    2017-05-28
                   NaN
    2017-05-29
                   NaN
     2017-05-30
                   NaN
     2017-05-31
                   NaN
     [517 rows x 8 columns]
[]: df.index.freq = 'D'
     df1 = df.dropna()
     df1.tail()
[]:
                   weekday holiday holiday_name rest1 rest2 rest3 rest4 total
     date
     2017-04-18
                                  0
                                                   30.0
                                                                               91.0
                   Tuesday
                                                          30.0
                                                                 13.0
                                                                        18.0
     2017-04-19 Wednesday
                                  0
                                                   20.0
                                                          11.0
                                                                 30.0
                                                                        18.0
                                                                               79.0
                                              na
     2017-04-20
                  Thursday
                                  0
                                                   22.0
                                                           3.0
                                                                 19.0
                                                                        46.0
                                                                               90.0
                                              na
     2017-04-21
                    Friday
                                  0
                                                   38.0
                                                          53.0
                                                                 36.0
                                                                        38.0 165.0
                                              na
     2017-04-22
                                                   97.0
                  Saturday
                                  0
                                                          20.0
                                                                 50.0
                                                                        59.0 226.0
                                              na
[]: cols=['rest1','rest2','rest3','rest4','total']
     for col in cols:
      df1[col]=df1[col].astype(int)
    <ipython-input-7-015192da4e31>:3: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead
    See the caveats in the documentation: https://pandas.pydata.org/pandas-
    docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
      df1[col]=df1[col].astype(int)
    <ipython-input-7-015192da4e31>:3: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead
    See the caveats in the documentation: https://pandas.pydata.org/pandas-
    docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
      df1[col]=df1[col].astype(int)
    <ipython-input-7-015192da4e31>:3: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
```

Try using .loc[row_indexer,col_indexer] = value instead

```
See the caveats in the documentation: https://pandas.pydata.org/pandas-
    docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
      df1[col]=df1[col].astype(int)
    <ipython-input-7-015192da4e31>:3: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead
    See the caveats in the documentation: https://pandas.pydata.org/pandas-
    docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
      df1[col] = df1[col].astype(int)
    <ipython-input-7-015192da4e31>:3: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead
    See the caveats in the documentation: https://pandas.pydata.org/pandas-
    docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
      df1[col]=df1[col].astype(int)
[]: df1.info()
    <class 'pandas.core.frame.DataFrame'>
    DatetimeIndex: 478 entries, 2016-01-01 to 2017-04-22
    Freq: D
    Data columns (total 8 columns):
         Column
                       Non-Null Count Dtype
    --- -----
     0
         weekday
                       478 non-null
                                       object
     1
         holiday
                       478 non-null
                                       int64
        holiday_name 478 non-null
                                       object
     3
        rest1
                       478 non-null
                                       int64
        rest2
                       478 non-null
                                       int64
     5
        rest3
                       478 non-null
                                       int64
     6
                       478 non-null
        rest4
                                       int64
     7
        total
                       478 non-null
                                       int64
    dtypes: int64(6), object(2)
    memory usage: 33.6+ KB
    Time series restaurant 1
[]: ax=df1['rest1'].plot(figsize=(16,5))
     for x in df1.query('holiday==1').index:
```

ax.axvline(x=x,color='r')

Time series restaurant 2

```
[]: ax=df1['rest2'].plot(figsize=(16,5))
for x in df1.query('holiday==1').index:
    ax.axvline(x=x,color='r')
```


Time series restaurant 3

```
[]: ax=df1['rest3'].plot(figsize=(16,5))
for x in df1.query('holiday==1').index:
    ax.axvline(x=x,color='r')
```


Time series restaurant 4

```
[]: ax=df1['rest4'].plot(figsize=(16,5))
for x in df1.query('holiday==1').index:
    ax.axvline(x=x,color='r')
```


Plots for restaurant 1

```
[]: result_rest1=seasonal_decompose(df1['rest1'])
result_rest1.plot()
```


Plots for restaurant 2 time series

```
[]: result_rest2=seasonal_decompose(df1['rest2'])
result_rest2.plot()
```



```
[]: result_rest3=seasonal_decompose(df1['rest3'])
result_rest3.plot()
```



```
[]: result_rest4=seasonal_decompose(df1['rest4']) result_rest4.plot()
```


using auto_arima for automatically selecting the optimal ARIMA model parameters for all 4 time series separately

```
[]: auto_arima(df1['rest1'], exogenous = df1['holiday'], start_p =0, start_q= 0, wax_p =5, max_q = 5, stepwise=True, seasonal=True, m=7, trace=True).summary()
```

```
Performing stepwise search to minimize aic
 ARIMA(0,1,0)(1,0,1)[7] intercept
                                     : AIC=4288.103, Time=1.59 sec
 ARIMA(0,1,0)(0,0,0)[7] intercept
                                     : AIC=4498.869, Time=0.06 sec
 ARIMA(1,1,0)(1,0,0)[7] intercept
                                     : AIC=4282.164, Time=0.78 sec
                                     : AIC=inf, Time=1.99 sec
 ARIMA(0,1,1)(0,0,1)[7] intercept
 ARIMA(0,1,0)(0,0,0)[7]
                                     : AIC=4496.872, Time=0.03 sec
                                     : AIC=4459.994, Time=0.14 sec
 ARIMA(1,1,0)(0,0,0)[7] intercept
ARIMA(1,1,0)(2,0,0)[7] intercept
                                     : AIC=4233.491, Time=0.94 sec
                                     : AIC=inf, Time=1.84 sec
 ARIMA(1,1,0)(2,0,1)[7] intercept
 ARIMA(1,1,0)(1,0,1)[7] intercept
                                     : AIC=4124.750, Time=2.03 sec
                                     : AIC=4354.529, Time=0.42 sec
 ARIMA(1,1,0)(0,0,1)[7] intercept
 ARIMA(1,1,0)(1,0,2)[7] intercept
                                     : AIC=inf, Time=2.23 sec
 ARIMA(1,1,0)(0,0,2)[7] intercept
                                     : AIC=4324.385, Time=1.28 sec
                                     : AIC=inf, Time=9.52 sec
 ARIMA(1,1,0)(2,0,2)[7] intercept
 ARIMA(2,1,0)(1,0,1)[7] intercept
                                     : AIC=inf, Time=4.30 sec
```

```
: AIC=3961.998, Time=3.06 sec
ARIMA(1,1,1)(1,0,1)[7] intercept
ARIMA(1,1,1)(0,0,1)[7] intercept
                                   : AIC=inf, Time=2.49 sec
ARIMA(1,1,1)(1,0,0)[7] intercept
                                   : AIC=inf, Time=3.36 sec
ARIMA(1,1,1)(2,0,1)[7] intercept
                                   : AIC=3963.752, Time=9.23 sec
                                   : AIC=inf, Time=14.45 sec
ARIMA(1,1,1)(1,0,2)[7] intercept
ARIMA(1,1,1)(0,0,0)[7] intercept
                                   : AIC=inf, Time=1.48 sec
ARIMA(1,1,1)(0,0,2)[7] intercept
                                   : AIC=inf, Time=3.15 sec
                                   : AIC=inf, Time=2.53 sec
ARIMA(1,1,1)(2,0,0)[7] intercept
                                   : AIC=inf, Time=3.21 sec
ARIMA(1,1,1)(2,0,2)[7] intercept
                                   : AIC=inf, Time=3.13 sec
ARIMA(0,1,1)(1,0,1)[7] intercept
                                   : AIC=inf, Time=2.61 sec
ARIMA(2,1,1)(1,0,1)[7] intercept
ARIMA(1,1,2)(1,0,1)[7] intercept
                                   : AIC=inf, Time=2.31 sec
                                   : AIC=inf, Time=1.78 sec
ARIMA(0,1,2)(1,0,1)[7] intercept
ARIMA(2,1,2)(1,0,1)[7] intercept
                                   : AIC=inf, Time=1.62 sec
                                   : AIC=inf, Time=1.53 sec
ARIMA(1,1,1)(1,0,1)[7]
```

Best model: ARIMA(1,1,1)(1,0,1)[7] intercept

Total fit time: 83.327 seconds

Г 7 .			
Г];	Dep. Variable:	y	No
	Model:	SARIMAX(1, 1, 1)x(1, 0, 1, 7)	\mathbf{Lo}

Date:Wed, 15 May 2024Time:11:43:42Sample:01-01-2016- 04-22-2017

Covariance Type: opg

	No. Observations:	478
1)x(1, 0, 1, 7)	Log Likelihood	-1974.999
Iay 2024	AIC	3961.998
:42	BIC	3987.003
2016	HQIC	3971.829
0017		

	coef	std err	Z	$\mathbf{P} > \mathbf{z} $	[0.025]	0.975]
intercept	5.752 e-05	0.000	0.203	0.839	-0.000	0.001
ar.L1	-0.0243	0.046	-0.523	0.601	-0.115	0.067
ma.L1	-0.9839	0.009	-107.063	0.000	-1.002	-0.966
ar.S.L7	0.9981	0.002	596.498	0.000	0.995	1.001
ma.S.L7	-0.9303	0.023	-39.780	0.000	-0.976	-0.884
sigma2	222.6720	14.239	15.638	0.000	194.764	250.580
) (T 1) (1	2)	0.4 T		(TD)	21 22

Ljung-Box $(L1)$ (Q) :	0.01	Jarque-Bera (JB):	21.29
Prob(Q):	0.93	Prob(JB):	0.00
Heteroskedasticity (H):	0.74	Skew:	0.50
Prob(H) (two-sided):	0.06	Kurtosis:	3.30

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

Performing stepwise search to minimize aic

ARIMA(0,0,0)(1,0,1)[7] intercept : AIC=3796.678, Time=2.25 sec ARIMA(0,0,0)(0,0,0)[7] intercept : AIC=3993.941, Time=0.07 sec ARIMA(1,0,0)(1,0,0)[7] intercept : AIC=3879.592, Time=1.42 sec

```
: AIC=3913.211, Time=1.08 sec
ARIMA(0,0,1)(0,0,1)[7] intercept
                                    : AIC=4653.097, Time=0.05 sec
ARIMA(0,0,0)(0,0,0)[7]
ARIMA(0,0,0)(0,0,1)[7] intercept
                                    : AIC=3927.769, Time=0.68 sec
ARIMA(0,0,0)(1,0,0)[7] intercept
                                    : AIC=3891.413, Time=0.89 sec
ARIMA(0,0,0)(2,0,1)[7] intercept
                                    : AIC=3816.916, Time=2.68 sec
ARIMA(0,0,0)(1,0,2)[7] intercept
                                    : AIC=3806.983, Time=2.48 sec
ARIMA(0,0,0)(0,0,2)[7] intercept
                                    : AIC=3904.015, Time=0.49 sec
ARIMA(0,0,0)(2,0,0)[7] intercept
                                    : AIC=3858.705, Time=1.03 sec
ARIMA(0,0,0)(2,0,2)[7] intercept
                                    : AIC=inf, Time=1.49 sec
ARIMA(1,0,0)(1,0,1)[7] intercept
                                    : AIC=3789.098, Time=1.59 sec
                                    : AIC=3913.497, Time=0.44 sec
ARIMA(1,0,0)(0,0,1)[7] intercept
ARIMA(1,0,0)(2,0,1)[7] intercept
                                    : AIC=3836.022, Time=5.19 sec
                                    : AIC=3798.604, Time=3.48 sec
ARIMA(1,0,0)(1,0,2)[7] intercept
                                    : AIC=3974.721, Time=0.07 sec
ARIMA(1,0,0)(0,0,0)[7] intercept
                                    : AIC=3889.658, Time=1.13 sec
ARIMA(1,0,0)(0,0,2)[7] intercept
ARIMA(1,0,0)(2,0,0)[7] intercept
                                    : AIC=3846.742, Time=1.61 sec
ARIMA(1,0,0)(2,0,2)[7] intercept
                                    : AIC=3906.871, Time=3.46 sec
ARIMA(2,0,0)(1,0,1)[7] intercept
                                    : AIC=3786.202, Time=2.31 sec
ARIMA(2,0,0)(0,0,1)[7] intercept
                                    : AIC=3915.045, Time=1.18 sec
ARIMA(2,0,0)(1,0,0)[7] intercept
                                    : AIC=3881.496, Time=2.02 sec
ARIMA(2,0,0)(2,0,1)[7] intercept
                                    : AIC=3850.233, Time=4.89 sec
                                    : AIC=3807.869, Time=3.16 sec
ARIMA(2,0,0)(1,0,2)[7] intercept
ARIMA(2,0,0)(0,0,0)[7] intercept
                                   : AIC=3973.489, Time=0.22 sec
                                    : AIC=3891.652, Time=1.71 sec
ARIMA(2,0,0)(0,0,2)[7] intercept
ARIMA(2,0,0)(2,0,0)[7] intercept
                                    : AIC=3847.373, Time=2.00 sec
                                    : AIC=3915.546, Time=7.25 sec
ARIMA(2,0,0)(2,0,2)[7] intercept
                                    : AIC=3810.621, Time=3.99 sec
ARIMA(3,0,0)(1,0,1)[7] intercept
                                    : AIC=inf, Time=3.14 sec
ARIMA(2,0,1)(1,0,1)[7] intercept
                                    : AIC=3799.630, Time=2.00 sec
ARIMA(1,0,1)(1,0,1)[7] intercept
ARIMA(3,0,1)(1,0,1)[7] intercept
                                    : AIC=inf, Time=4.98 sec
ARIMA(2,0,0)(1,0,1)[7]
                                    : AIC=3793.470, Time=1.22 sec
```

Best model: ARIMA(2,0,0)(1,0,1)[7] intercept

Total fit time: 71.782 seconds

Dep. Variable:	у	No. Observations:	478
Model:	SARIMAX(2, 0, 0)x(1, 0, [1], 7)	Log Likelihood	-1887.101
Date:	Wed, 15 May 2024	\mathbf{AIC}	3786.202
Time:	11:44:54	BIC	3811.220
Sample:	01-01-2016	HQIC	3796.038
	- 04-22-2017		
Covariance Type:	opg		

	\mathbf{coef}	std err	${f z}$	P	$> \mathbf{z} $	[0.025]	0.975]
intercept	0.6968	0.343	2.03	1 0	0.042	0.025	1.369
ar.L1	0.1320	0.047	2.82	5 0	0.005	0.040	0.224
ar.L2	0.1037	0.040	2.56	2 0	0.010	0.024	0.183
ar.S.L7	0.9626	0.015	62.29	90 0	0.000	0.932	0.993
ma.S.L7	-0.7804	0.042	-18.3	65 - 0	0.000	-0.864	-0.697
sigma2	151.0947	8.986	16.83	14 0	0.000	133.482	168.707
Ljung-B	ox (L1) (0	Q): 0	0.01	Jarqu	e-Ber	a (JB):	31.33
$\operatorname{Prob}(\operatorname{Q})$:	C	0.91	Prob(JB):		0.00
Heterosl	kedasticity	(H): 0	0.78	Skew:			0.56
Prob(H)	(two-side	ed): 0	0.11	Kurto	sis:		3.55

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
[]: auto_arima(df1['rest3'], exogenous = df1['holiday'], start_p =0 , start_q= 0,_u 

max_p =5, max_q = 5 , stepwise=True, seasonal=True,m=7,trace=True).summary()
```

```
Performing stepwise search to minimize aic
```

```
ARIMA(0,0,0)(1,0,1)[7] intercept
                                    : AIC=3654.398, Time=1.38 sec
ARIMA(0,0,0)(0,0,0)[7] intercept
                                    : AIC=4113.097, Time=0.03 sec
                                    : AIC=3865.463, Time=1.84 sec
ARIMA(1,0,0)(1,0,0)[7] intercept
ARIMA(0,0,1)(0,0,1)[7] intercept
                                    : AIC=3963.602, Time=0.51 sec
ARIMA(0,0,0)(0,0,0)[7]
                                    : AIC=4790.278, Time=0.02 sec
                                   : AIC=3984.802, Time=0.29 sec
ARIMA(0,0,0)(0,0,1)[7] intercept
ARIMA(0,0,0)(1,0,0)[7] intercept
                                   : AIC=3864.802, Time=0.48 sec
ARIMA(0,0,0)(2,0,1)[7] intercept
                                   : AIC=3822.189, Time=3.01 sec
ARIMA(0,0,0)(1,0,2)[7] intercept
                                   : AIC=3703.219, Time=3.38 sec
ARIMA(0,0,0)(0,0,2)[7] intercept
                                    : AIC=3906.933, Time=3.22 sec
                                    : AIC=3781.022, Time=5.11 sec
ARIMA(0,0,0)(2,0,0)[7] intercept
                                    : AIC=3909.204, Time=12.28 sec
ARIMA(0,0,0)(2,0,2)[7] intercept
ARIMA(1,0,0)(1,0,1)[7] intercept
                                    : AIC=3674.265, Time=3.37 sec
                                    : AIC=3676.310, Time=3.75 sec
ARIMA(0,0,1)(1,0,1)[7] intercept
ARIMA(1,0,1)(1,0,1)[7] intercept
                                    : AIC=inf, Time=2.33 sec
                                    : AIC=inf, Time=0.79 sec
ARIMA(0,0,0)(1,0,1)[7]
```

Best model: ARIMA(0,0,0)(1,0,1)[7] intercept

Total fit time: 41.870 seconds

Dep. Variable:	y	No. Observations:	478
Model:	SARIMAX(1, 0, [1], 7)	Log Likelihood	-1823.199
Date:	Wed, $15 \text{ May } 2024$	\mathbf{AIC}	3654.398
Time:	11:45:36	BIC	3671.076
Sample:	01-01-2016	HQIC	3660.955
	- 04-22-2017		
Covariance Type:	opg		

	\mathbf{coef}	std err	${f z}$	$\mathbf{P} > \mathbf{z} $	[0.025]	0.975]
intercept	0.1148	0.103	1.118	0.264	-0.087	0.316
ar.S.L7	0.9963	0.003	316.533	0.000	0.990	1.002
ma.S.L7	-0.9240	0.029	-31.713	0.000	-0.981	-0.867
$\mathbf{sigma2}$	117.9847	6.087	19.385	0.000	106.055	129.914
Ljung-B	ox (L1) (C	2): 1.	12 Jaro	que-Bera	(JB):	156.85
$\operatorname{Prob}(\operatorname{Q})$:	0.	29 Pro	b(JB):		0.00
Heterosl	kedasticity	(H): 0.	67 Ske	w:		1.05
$\operatorname{Prob}(\mathrm{H})$	(two-side	d): 0.	01 Ku r	tosis:		4.86

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
[]: auto_arima(df1['rest4'], exogenous = df1['holiday'], start_p =0 , start_q= 0, with the start of the start
```

```
Performing stepwise search to minimize aic
 ARIMA(0,1,0)(1,0,1)[7] intercept
                                     : AIC=4386.707, Time=1.25 sec
 ARIMA(0,1,0)(0,0,0)[7] intercept
                                     : AIC=4585.754, Time=0.10 sec
 ARIMA(1,1,0)(1,0,0)[7] intercept
                                     : AIC=4430.846, Time=0.72 sec
                                     : AIC=4340.249, Time=1.23 sec
 ARIMA(0,1,1)(0,0,1)[7] intercept
                                     : AIC=4583.769, Time=0.05 sec
 ARIMA(0,1,0)(0,0,0)[7]
                                     : AIC=4399.114, Time=0.53 sec
 ARIMA(0,1,1)(0,0,0)[7] intercept
 ARIMA(0,1,1)(1,0,1)[7] intercept
                                     : AIC=inf, Time=3.35 sec
 ARIMA(0,1,1)(0,0,2)[7] intercept
                                     : AIC=inf, Time=1.11 sec
 ARIMA(0,1,1)(1,0,0)[7] intercept
                                     : AIC=inf, Time=0.37 sec
 ARIMA(0,1,1)(1,0,2)[7] intercept
                                     : AIC=4178.177, Time=2.47 sec
 ARIMA(0,1,1)(2,0,2)[7] intercept
                                     : AIC=inf, Time=4.79 sec
                                     : AIC=inf, Time=6.38 sec
 ARIMA(0,1,1)(2,0,1)[7] intercept
 ARIMA(0,1,0)(1,0,2)[7] intercept
                                     : AIC=4384.934, Time=1.45 sec
                                     : AIC=inf, Time=3.44 sec
 ARIMA(1,1,1)(1,0,2)[7] intercept
                                     : AIC=4174.637, Time=3.30 sec
 ARIMA(0,1,2)(1,0,2)[7] intercept
 ARIMA(0,1,2)(0,0,2)[7] intercept
                                     : AIC=inf, Time=5.04 sec
 ARIMA(0,1,2)(1,0,1)[7] intercept
                                     : AIC=inf, Time=5.43 sec
 ARIMA(0,1,2)(2,0,2)[7] intercept
                                     : AIC=inf, Time=7.65 sec
                                     : AIC=inf, Time=0.91 sec
 ARIMA(0,1,2)(0,0,1)[7] intercept
 ARIMA(0,1,2)(2,0,1)[7] intercept
                                     : AIC=inf, Time=10.72 sec
                                     : AIC=inf, Time=12.22 sec
 ARIMA(1,1,2)(1,0,2)[7] intercept
                                     : AIC=4169.615, Time=5.18 sec
 ARIMA(0,1,3)(1,0,2)[7] intercept
 ARIMA(0,1,3)(0,0,2)[7] intercept
                                     : AIC=inf, Time=4.56 sec
                                     : AIC=inf, Time=8.63 sec
 ARIMA(0,1,3)(1,0,1)[7] intercept
                                     : AIC=inf, Time=16.16 sec
 ARIMA(0,1,3)(2,0,2)[7] intercept
 ARIMA(0,1,3)(0,0,1)[7] intercept
                                     : AIC=inf, Time=1.77 sec
 ARIMA(0,1,3)(2,0,1)[7] intercept
                                     : AIC=inf, Time=9.77 sec
 ARIMA(1,1,3)(1,0,2)[7] intercept
                                     : AIC=inf, Time=6.54 sec
 ARIMA(0,1,4)(1,0,2)[7] intercept
                                     : AIC=inf, Time=5.91 sec
                                     : AIC=inf, Time=8.78 sec
 ARIMA(1,1,4)(1,0,2)[7] intercept
 ARIMA(0,1,3)(1,0,2)[7]
                                     : AIC=4167.449, Time=3.58 sec
```

```
: AIC=4300.055, Time=1.77 sec
ARIMA(0,1,3)(0,0,2)[7]
ARIMA(0,1,3)(1,0,1)[7]
                                    : AIC=4165.771, Time=1.49 sec
                                    : AIC=4322.990, Time=0.74 sec
ARIMA(0,1,3)(0,0,1)[7]
                                    : AIC=4292.929, Time=0.84 sec
ARIMA(0,1,3)(1,0,0)[7]
                                    : AIC=4167.495, Time=5.35 sec
ARIMA(0,1,3)(2,0,1)[7]
                                    : AIC=4373.078, Time=0.55 sec
ARIMA(0,1,3)(0,0,0)[7]
                                    : AIC=inf, Time=1.50 sec
ARIMA(0,1,3)(2,0,0)[7]
ARIMA(0,1,3)(2,0,2)[7]
                                    : AIC=inf, Time=4.81 sec
                                    : AIC=inf, Time=1.18 sec
ARIMA(0,1,2)(1,0,1)[7]
                                    : AIC=inf, Time=2.92 sec
ARIMA(1,1,3)(1,0,1)[7]
                                    : AIC=4164.564, Time=4.70 sec
ARIMA(0,1,4)(1,0,1)[7]
ARIMA(0,1,4)(0,0,1)[7]
                                    : AIC=4324.310, Time=1.27 sec
                                    : AIC=4294.836, Time=0.65 sec
ARIMA(0,1,4)(1,0,0)[7]
ARIMA(0,1,4)(2,0,1)[7]
                                    : AIC=4166.176, Time=3.33 sec
                                    : AIC=4166.110, Time=3.66 sec
ARIMA(0,1,4)(1,0,2)[7]
                                    : AIC=4369.737, Time=0.41 sec
ARIMA(0,1,4)(0,0,0)[7]
ARIMA(0,1,4)(0,0,2)[7]
                                    : AIC=4302.011, Time=2.80 sec
                                    : AIC=inf, Time=2.63 sec
ARIMA(0,1,4)(2,0,0)[7]
                                    : AIC=4166.137, Time=5.79 sec
ARIMA(0,1,4)(2,0,2)[7]
                                    : AIC=4169.765, Time=2.83 sec
ARIMA(1,1,4)(1,0,1)[7]
ARIMA(0,1,5)(1,0,1)[7]
                                    : AIC=inf, Time=1.93 sec
                                    : AIC=inf, Time=6.75 sec
ARIMA(1,1,5)(1,0,1)[7]
ARIMA(0,1,4)(1,0,1)[7] intercept
                                    : AIC=inf, Time=5.54 sec
```

Best model: ARIMA(0,1,4)(1,0,1)[7] Total fit time: 207.020 seconds

Covariance Type:

ma.S.L7

гэ.				
[]:	Dep. Variable:	у	No. Observations:	478
	Model:	SARIMAX(0, 1, 4)x(1, 0, [1], 7)	Log Likelihood	-2075.282
	Date:	Wed, 15 May 2024	AIC	4164.564
	Time:	11:49:03	BIC	4193.736
	Sample:	01-01-2016	HQIC	4176.034

- 04-22-2017

-0.9281

	\mathbf{coef}	std err	${f z}$	$\mathbf{P} > \mathbf{z} $	[0.025]	0.975]	
ma.L1	-0.8280	0.040	-20.793	0.000	-0.906	-0.750	
ma.L2	-0.0316	0.055	-0.571	0.568	-0.140	0.077	
ma.L3	-0.0402	0.058	-0.693	0.488	-0.154	0.073	
ma.L4	-0.0841	0.045	-1.875	0.061	-0.172	0.004	
ar.S.L7	0.9968	0.002	407.237	0.000	0.992	1.002	

opg

0.024

sigma2	341.1262	15.838	21.	538	0.000	310.084	372.168
Ljung-B	Sox (L1) (C	2):	0.24	Jaro	que-Ber	a (JB):	204.96
Prob(Q)):	(0.62	Pro	b(JB):		0.00
Heteros	kedasticity	(H):	0.72	Skev	w:		0.93
Prob(H) (two-side	d): (0.04	Kur	\mathbf{tosis} :		5.61

-38.457

0.000

-0.975

-0.881

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
 - 1. for rest1 we have SARIMAX $(1,1,1 \times 1,0,1,7)$
 - 2. for rest2 we have SARIMAX $(2,0,0 \times 1,0,1,7)$
 - 3. for rest3 we have SARIMAX $(0.0,0 \times 1,0.1,7)$
 - 4. for rest3 we have SARIMAX $(0,1,4 \times 1,0,1,7)$

```
[]: train=df1.iloc[:-12] test=df1.iloc[-12:]
```

Fitting data to all models for respective time series

Dep. Variable:	$\operatorname{rest} 1$	No. Observations:	466
Model:	SARIMAX(1, 1, 1)x(1, 0, 1, 7)	Log Likelihood	-1913.993
Date:	Wed, 15 May 2024	\mathbf{AIC}	3839.986
Time:	12:07:45	BIC	3864.839
Sample:	01-01-2016	HQIC	3849.768
	- 04-10-2017		

Covariance Type	opg

	\mathbf{coef}	std err	${f z}$	$\mathbf{P} > \mathbf{z} $	[0.025]	0.975]
holiday	13.1820	2.251	5.856	0.000	8.770	17.594
ar.L1	-0.0018	0.044	-0.041	0.967	-0.088	0.084
ma.L1	-0.9970	0.003	-349.897	0.000	-1.003	-0.991
ar.S.L7	0.9980	0.002	571.676	0.000	0.995	1.001
ma.S.L7	-0.9232	0.024	-38.108	0.000	-0.971	-0.876
$\mathbf{sigma2}$	211.5058	12.884	16.416	0.000	186.254	236.758
Ljung-I	Box (L1) (Q):	0.01 Jar	que-Ber	a (JB):	19.54
$\operatorname{Prob}(\operatorname{Q}$	<u>:</u>):		0.94 Pro		0.00	
Heteroskedasticity (H):			0.67 Ske	ew:		0.43
Prob(H	(two-sid)	led):	0.01 Ku	${f rtosis}:$		3.51

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
[]: model_rest1.plot_diagnostics();
```



```
[]: start=len(train)
     end=start+len(test)-1
     predictions_rest1=model_rest1.predict(start=start,end=end,dynamic=False,__
      \neg exog=test['holiday']).rename('SARImax(1,1,1)x (1, 0, 1, 7)')
[]: model_rest2=SARIMAX(train['rest2'],order=(2,0,0),seasonal_order=(1,0,1,7),
      ⇔exog=train['holiday']).fit()
     model rest2.summary()
[]:
       Dep. Variable:
                                                         No. Observations:
                                      rest2
                                                                                 466
       Model:
                          SARIMAX(2, 0, 0)x(1, 0, [1], 7)
                                                         Log Likelihood
                                                                              -1837.479
       Date:
                                                         AIC
                                Wed, 15 May 2024
                                                                              3686.958
                                                         BIC
       Time:
                                    12:10:41
                                                                              3711.823
       Sample:
                                                         HQIC
                                   01-01-2016
                                                                              3696.744
                                   - 04-10-2017
       Covariance Type:
                                      opg
```

	\mathbf{coef}	std err	Z	i	$\mathbf{P} > \mathbf{z} $	[0.025]	0.975]
holiday	6.1697	2.170	2.8	43	0.004	1.916	10.423
ar.L1	0.1591	0.048	3.3	30	0.001	0.065	0.253
ar.L2	0.1306	0.043	3.0	10	0.003	0.046	0.216
ar.S.L7	0.9977	0.002	517.	649	0.000	0.994	1.001
ma.S.L7	-0.8794	0.026	-33.	436	0.000	-0.931	-0.828
$\mathbf{sigma2}$	149.6457	8.956	16.7	709	0.000	132.093	167.199
Ljung-E	Box (L1) (Q):	0.13	Jar	que-Ber	a (JB):	24.88
$\operatorname{Prob}(\operatorname{Q}$):		0.72	\mathbf{Pr}	ob(JB):		0.00
Heteros	kedasticit	y (H):	0.76	0.76 Skew:			
$\operatorname{Prob}(\mathbf{H}$	(two-sid	ed):	0.09	Ku	rtosis:		3.56

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

[]: model_rest2.plot_diagnostics();


```
[]: start=len(train)
end=start+len(test)-1
```

```
predictions_rest2=model_rest2.predict(start=start,end=end,dynamic=False, 

⇔exog=test['holiday']).rename('SARImax(2,0,0)x (1, 0, 1, 7)')
```

```
[]: model_rest3=SARIMAX(train['rest3'],order=(0,0,0),seasonal_order=(1,0,1,7), 

⇔exog=train['holiday']).fit()
model_rest3.summary()
```

[]:

Dep. Variable:	rest3	No. Observations:	466
Model:	SARIMAX(1, 0, [1], 7)	Log Likelihood	-1758.135
Date:	Wed, 15 May 2024	AIC	3524.270
Time:	12:11:03	BIC	3540.846
Sample:	01-01-2016	HQIC	3530.794
	- 04-10-2017		
Corresionae Trans	ong		

Covariance Type: opg

	_						
	\mathbf{coef}	std err		${f z}$	$\mathbf{P} > \mathbf{z} $	[0.025]	0.975]
holiday	13.0672	1.252	10.	.438	0.000	10.614	15.521
ar.S.L7	1.0000	5.78e-05	1.73	e + 04	0.000	1.000	1.000
ma.S.L7	-0.9950	0.130	-7.	642	0.000	-1.250	-0.740
sigma2	101.0527	13.127	7.	698	0.000	75.325	126.781
Ljung-l	Box (L1)	(Q):	1.54	Jarq	ue-Bera	(JB):	97.42
Prob(C	Q):		0.21	Prol	o(JB):		0.00
${f Hetero}$	Heteroskedasticity (H):				8 Skew:		
$\operatorname{Prob}(\operatorname{F}$	I) (two-sid	ded):	0.12	\mathbf{Kur}	\mathbf{tosis} :		4.70

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
[]: model_rest3.plot_diagnostics();
```



```
[]: start=len(train)
     end=start+len(test)-1
     predictions_rest3=model_rest3.predict(start=start,end=end,dynamic=False,__
      \neg exog=test['holiday']).rename('SARImax(0,0,0)x (1, 0, 1, 7)')
[]: model_rest4=SARIMAX(train['rest4'],order=(0,1,4),seasonal_order=(1,0,1,7),
      ⇔exog=train['holiday']).fit()
     model rest4.summary()
[]:
       Dep. Variable:
                                                         No. Observations:
                                      rest4
                                                                                 466
       Model:
                                                         Log Likelihood
                                                                              -1975.672
                          SARIMAX(0, 1, 4)x(1, 0, [1], 7)
       Date:
                                                         AIC
                                Wed, 15 May 2024
                                                                              3967.345
                                                         BIC
       Time:
                                     12:11:49
                                                                              4000.481
       Sample:
                                                         HQIC
                                   01-01-2016
                                                                              3980.387
                                   - 04-10-2017
       Covariance Type:
                                      opg
```

	\mathbf{coef}	std err	\mathbf{z}	$\mathbf{P}{>}\left \mathbf{z}\right $	[0.025]	0.975]		
holiday	33.2224	1.976	16.812	0.000	29.349	37.095		
$\mathbf{ma.L1}$	-0.8844	0.041	-21.668	8 0.000	-0.964	-0.804		
ma.L2	-0.0140	0.062	-0.224	0.823	-0.136	0.108		
ma.L3	-0.0309	0.072	-0.427	0.670	-0.173	0.111		
ma.L4	-0.0608	0.050	-1.208	0.227	-0.159	0.038		
ar.S.L7	0.9965	0.003	382.98	0.000	0.991	1.002		
ma.S.L7	-0.9126	0.027	-34.360	0.000	-0.965	-0.861		
$\mathbf{sigma2}$	277.6064	16.217	17.118	0.000	245.821	309.392		
Ljung-E	Box (L1) (Q):	0.06 J	arque-Be	ra (JB):	26.47		
$\operatorname{Prob}(\operatorname{Q}$):		0.80 F	Prob(JB):		0.00		
Heteros	kedasticit	y (H):	0.73 S	0.73 Skew:				
$\operatorname{Prob}(\mathbf{H}$	(two-sid	ed):	0.05 K	3.89				

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

[]: model_rest4.plot_diagnostics();


```
[]: start=len(train)
end=start+len(test)-1
predictions_rest4=model_rest4.predict(start=start,end=end,dynamic=False,
→exog=test['holiday']).rename('SARImax(0,1,4)x (1, 0, 1, 7)')
```

Aggregating predictions from all models to see total customers from all 4 restaurants

```
[]: 2017-04-11
                   92.898621
    2017-04-12
                   95.859431
    2017-04-13
                  91.086233
    2017-04-14 207.037557
    2017-04-15
                 223.126629
    2017-04-16
                 232.531090
    2017-04-17
                146.131602
    2017-04-18
                 91.431586
    2017-04-19
                  95.575462
    2017-04-20
                  90.745328
    2017-04-21
                  141.361139
    2017-04-22
                  222.868314
    Freq: D, dtype: float64
```

Compariosn of "total" actual customers vs separately predcted

```
[]: ax=test['total'].plot()
    predictions_total.plot(legend=True, label="preds")
    for x in test.query('holiday==1').index:
        ax.axvline(x=x,color='r')
```


[]: mean_absolute_percentage_error(test['total'],predictions_total)*100

[]: 9.801164725409066

The mean abs pecent error is significantly lower than the model predictions made directly on the "total" customers time series in the lecture (18.7)

0.0.1 Regression

on the "total" cusotmers time series using 7 days + holidays + weekdays as features

[]:	df1								
[]:		weekday	holiday	holiday_name	rest1	rest2	rest3	rest4	\
	date								
	2016-01-01	Friday	1	New Year's Day	65	25	67	139	
	2016-01-02	Saturday	0	na	24	39	43	85	
	2016-01-03	Sunday	0	na	24	31	66	81	
	2016-01-04	Monday	0	na	23	18	32	32	
	2016-01-05	Tuesday	0	na	2	15	38	43	

	 2017-04-18	 Tuesday	0	 na	30	 30	13	18	
		•							
	2017-04-19	Wednesday	0	na	20	11	30	18	
	2017-04-20	Thursday	0	na	22	3	19	46	
	2017-04-21	Friday	0	na	38	53	36	38	
	2017-04-22	Saturday	0	na	97	20	50	59	
		total							
	date								
	2016-01-01	296							
	2016-01-02	191							
	2016-01-03	202							
	2016-01-04	105							
	2016-01-05	98							
	•••	•••							
	2017-04-18	91							
	2017-04-19	79							
	2017-04-20	90							
	2017-04-21	165							
	2017-04-22	226							
	2017 04 22	220							
	[478 rows x	8 columns]							
.									
[]:	data_reg =	df1.copy()							
	-								
[]:	data_reg								
	data_reg								
[]:		weekday	holiday	holiday_name	rest1	rest2	rest3	rest4	\
	date	·	·						\
	date 2016-01-01	Friday	1	holiday_name New Year's Day	65	25	67	139	\
	date 2016-01-01 2016-01-02	Friday Saturday	·			25 39	67 43	139 85	\
	date 2016-01-01	Friday	1	New Year's Day	65	25	67	139 85 81	\
	date 2016-01-01 2016-01-02	Friday Saturday	1 0	New Year's Day	65 24	25 39	67 43	139 85	\
	date 2016-01-01 2016-01-02 2016-01-03	Friday Saturday Sunday	1 0 0	New Year's Day na na	65 24 24	25 39 31	67 43 66	139 85 81	\
	date 2016-01-01 2016-01-02 2016-01-03 2016-01-04	Friday Saturday Sunday Monday	1 0 0 0	New Year's Day na na na	65 24 24 23	25 39 31 18	67 43 66 32	139 85 81 32	\
	date 2016-01-01 2016-01-02 2016-01-03 2016-01-04	Friday Saturday Sunday Monday	1 0 0 0	New Year's Day na na na na	65 24 24 23 2	25 39 31 18 15	67 43 66 32	139 85 81 32	\
	date 2016-01-01 2016-01-02 2016-01-03 2016-01-04 2016-01-05	Friday Saturday Sunday Monday Tuesday 	1 0 0 0 0	New Year's Day na na na na	65 24 24 23 2	25 39 31 18 15	67 43 66 32 38	139 85 81 32 43	\
	date 2016-01-01 2016-01-02 2016-01-03 2016-01-04 2016-01-05 2017-04-18	Friday Saturday Sunday Monday Tuesday Tuesday Wednesday	1 0 0 0 0	New Year's Day na na na na na na	65 24 24 23 2 	25 39 31 18 15 	67 43 66 32 38	139 85 81 32 43	\
	date 2016-01-01 2016-01-02 2016-01-03 2016-01-04 2016-01-05 2017-04-18 2017-04-19	Friday Saturday Sunday Monday Tuesday Tuesday Wednesday Thursday	1 0 0 0 0 0	New Year's Day na na na na na na na na	65 24 24 23 2 30 20 22	25 39 31 18 15 30 11 3	67 43 66 32 38 13 30 19	139 85 81 32 43 18 18	\
	date 2016-01-01 2016-01-02 2016-01-03 2016-01-04 2016-01-05 2017-04-18 2017-04-20 2017-04-21	Friday Saturday Sunday Monday Tuesday Tuesday Wednesday Thursday Friday	1 0 0 0 0 0	New Year's Day na	65 24 24 23 2 30 20 22 38	25 39 31 18 15 30 11 3 53	67 43 66 32 38 13 30 19 36	139 85 81 32 43 18 18 46 38	\
	date 2016-01-01 2016-01-02 2016-01-03 2016-01-04 2016-01-05 2017-04-18 2017-04-20	Friday Saturday Sunday Monday Tuesday Tuesday Wednesday Thursday	1 0 0 0 0 0	New Year's Day na na na na na na na na	65 24 24 23 2 30 20 22	25 39 31 18 15 30 11 3	67 43 66 32 38 13 30 19	139 85 81 32 43 18 18	\
	date 2016-01-01 2016-01-02 2016-01-03 2016-01-05 2017-04-18 2017-04-19 2017-04-20 2017-04-21 2017-04-22	Friday Saturday Sunday Monday Tuesday Tuesday Wednesday Thursday Friday	1 0 0 0 0 0	New Year's Day na	65 24 24 23 2 30 20 22 38	25 39 31 18 15 30 11 3 53	67 43 66 32 38 13 30 19 36	139 85 81 32 43 18 18 46 38	\
	date 2016-01-01 2016-01-02 2016-01-03 2016-01-04 2016-01-05 2017-04-18 2017-04-19 2017-04-20 2017-04-21 2017-04-22	Friday Saturday Sunday Monday Tuesday Tuesday Wednesday Thursday Friday Saturday total	1 0 0 0 0 0	New Year's Day na	65 24 24 23 2 30 20 22 38	25 39 31 18 15 30 11 3 53	67 43 66 32 38 13 30 19 36	139 85 81 32 43 18 18 46 38	
	date 2016-01-01 2016-01-02 2016-01-03 2016-01-04 2016-01-05 2017-04-18 2017-04-19 2017-04-20 2017-04-21 2017-04-21	Friday Saturday Sunday Monday Tuesday Tuesday Wednesday Thursday Friday Saturday total	1 0 0 0 0 0	New Year's Day na	65 24 24 23 2 30 20 22 38	25 39 31 18 15 30 11 3 53	67 43 66 32 38 13 30 19 36	139 85 81 32 43 18 18 46 38	
	date 2016-01-01 2016-01-02 2016-01-03 2016-01-04 2016-01-05 2017-04-18 2017-04-19 2017-04-20 2017-04-21 2017-04-22	Friday Saturday Sunday Monday Tuesday Tuesday Wednesday Thursday Friday Saturday total	1 0 0 0 0 0	New Year's Day na	65 24 24 23 2 30 20 22 38	25 39 31 18 15 30 11 3 53	67 43 66 32 38 13 30 19 36	139 85 81 32 43 18 18 46 38	
	date 2016-01-01 2016-01-02 2016-01-03 2016-01-04 2016-01-05 2017-04-18 2017-04-19 2017-04-20 2017-04-21 2017-04-21	Friday Saturday Sunday Monday Tuesday Tuesday Wednesday Thursday Friday Saturday total	1 0 0 0 0 0	New Year's Day na	65 24 24 23 2 30 20 22 38	25 39 31 18 15 30 11 3 53	67 43 66 32 38 13 30 19 36	139 85 81 32 43 18 18 46 38	
	date 2016-01-01 2016-01-02 2016-01-03 2016-01-05 2017-04-18 2017-04-19 2017-04-20 2017-04-21 2017-04-21 2016-01-01 2016-01-01	Friday Saturday Sunday Monday Tuesday Tuesday Wednesday Thursday Friday Saturday total 296 191	1 0 0 0 0 0	New Year's Day na	65 24 24 23 2 30 20 22 38	25 39 31 18 15 30 11 3 53	67 43 66 32 38 13 30 19 36	139 85 81 32 43 18 18 46 38	

```
2016-01-05
                    98
     2017-04-18
                    91
     2017-04-19
                    79
     2017-04-20
                    90
     2017-04-21
                   165
     2017-04-22
                   226
     [478 rows x 8 columns]
[]: data_reg['total'].shift(0)
[ ]: date
     2016-01-01
                   296
     2016-01-02
                   191
     2016-01-03
                   202
     2016-01-04
                   105
     2016-01-05
                    98
     2017-04-18
                    91
     2017-04-19
                    79
     2017-04-20
                    90
     2017-04-21
                   165
     2017-04-22
                   226
     Freq: D, Name: total, Length: 478, dtype: int64
[]: for i in range(7,0,-1):
         print(i)
         data_reg['t= ' + str(i)] =df1['total'].shift(i)
    7
    6
    5
    4
    3
    2
    1
[]: data_reg
[]:
                   weekday holiday
                                        holiday_name rest1 rest2 rest3 rest4 \
     date
                                      New Year's Day
                    Friday
     2016-01-01
                                   1
                                                          65
                                                                 25
                                                                         67
                                                                               139
     2016-01-02
                  Saturday
                                   0
                                                          24
                                                                  39
                                                                         43
                                                                                85
                                                   na
     2016-01-03
                    Sunday
                                   0
                                                          24
                                                                 31
                                                                         66
                                                                                81
                                                   na
     2016-01-04
                    Monday
                                                                                32
                                   0
                                                          23
                                                                  18
                                                                         32
                                                   na
     2016-01-05
                   Tuesday
                                   0
                                                           2
                                                                  15
                                                                         38
                                                                                43
                                                   na
```

•••	•••	•••		•••	•••		•••		
2017-04-18	Tues	day	0		na	30	30	13	18
2017-04-19	Wednes	day	0		na	20	11	30	18
2017-04-20	Thurs	day	0		na	22	3	19	46
2017-04-21	Fri	day	0		na	38	53	36	38
2017-04-22	Satur	day	0		na	97	20	50	59
	total	t= 7	t= 6	t= 5	t= 4	t= 3	t= 2	t= 1	
date									
2016-01-01	296	NaN							
2016-01-02	191	NaN	NaN	NaN	NaN	NaN	NaN	296.0	
2016-01-03	202	NaN	NaN	NaN	NaN	NaN	296.0	191.0	
2016-01-04	105	NaN	NaN	NaN	NaN	296.0	191.0	202.0	
2016-01-05	98	NaN	NaN	NaN	296.0	191.0	202.0	105.0	
•••		•••	•••		•••	•••			
2017-04-18	91	77.0	89.0	70.0	221.0	218.0	253.0	140.0	
2017-04-19	79	89.0	70.0	221.0	218.0	253.0	140.0	91.0	
2017-04-20	90	70.0	221.0	218.0	253.0	140.0	91.0	79.0	
2017-04-21	165	221.0	218.0	253.0	140.0	91.0	79.0	90.0	
2017-04-22	226	218.0	253.0	140.0	91.0	79.0	90.0	165.0	

[478 rows x 15 columns]

[]: data_reg.dropna(inplace=True)

[]: data_reg

[]:		week	day h	oliday h	oliday_	name	rest1	rest2	rest3	rest4	\
	date										
	2016-01-08	Fri	day	0		na	79	32	22	16	
	2016-01-09	Satur	day	0		na	44	44	47	99	
	2016-01-10	Sun	day	0		na	26	43	49	94	
	2016-01-11	Mon	day	0		na	9	22	33	37	
	2016-01-12	Tues	day	0		na	6	10	21	20	
	•••	•••	•••		•••		•••				
	2017-04-18	Tues	day	0		na	30	30	13	18	
	2017-04-19	Wednes	day	0		na	20	11	30	18	
	2017-04-20	Thurs	day	0		na	22	3	19	46	
	2017-04-21	Fri	day	0		na	38	38 53	36	38	
	2017-04-22	Satur	day	0		na	97	20	50	59	
		+-+-7	±- 7	t- C	+	+_ 1	±_ 0		· +_ ·	4	
		total	t= 7	t= 6	t= 5	t= 4	t= 3	t= 2	t=	1	
	date										
	2016-01-08	149	296.0	191.0	202.0	105.0	98.0	83.0	69.	0	
	2016-01-09	234	191.0	202.0	105.0	98.0	83.0	69.0	149.	0	
	2016-01-10	212	202.0	105.0	98.0	83.0	69.0	149.0	234.	0	
	2016-01-11	101	105.0	98.0	83.0	69.0	149.0	234.0	212.	0	

```
2016-01-12
                    57
                         98.0
                                83.0
                                       69.0 149.0 234.0 212.0 101.0
     2017-04-18
                    91
                         77.0
                                89.0
                                       70.0
                                             221.0
                                                     218.0
                                                            253.0
                                                                   140.0
     2017-04-19
                         89.0
                                      221.0
                                             218.0
                                                     253.0
                                                            140.0
                    79
                                70.0
                                                                    91.0
     2017-04-20
                    90
                         70.0
                               221.0
                                      218.0
                                             253.0
                                                     140.0
                                                             91.0
                                                                    79.0
     2017-04-21
                                      253.0
                   165
                        221.0
                               218.0
                                             140.0
                                                      91.0
                                                             79.0
                                                                    90.0
     2017-04-22
                   226
                        218.0
                               253.0
                                      140.0
                                               91.0
                                                      79.0
                                                             90.0 165.0
     [471 rows x 15 columns]
[]: data reg.drop(columns=['holiday name', 'rest1', 'rest3', 'rest4', 'rest2'],
      →inplace=True)
[]: data_reg
                                                                          t= 3 \
[]:
                   weekday holiday total
                                                                   t=4
                                             t=7
                                                     t=6
                                                            t=5
     date
     2016-01-08
                    Friday
                                  0
                                            296.0
                                                    191.0
                                                           202.0
                                                                  105.0
                                                                          98.0
                                        149
                                                           105.0
                  Saturday
                                            191.0
                                                    202.0
                                                                          83.0
     2016-01-09
                                  0
                                       234
                                                                   98.0
     2016-01-10
                    Sunday
                                  0
                                       212
                                            202.0
                                                    105.0
                                                            98.0
                                                                   83.0
                                                                          69.0
     2016-01-11
                    Monday
                                  0
                                            105.0
                                                     98.0
                                                            83.0
                                                                   69.0
                                                                         149.0
                                        101
     2016-01-12
                                              98.0
                                                            69.0
                   Tuesday
                                  0
                                        57
                                                     83.0
                                                                  149.0
                                                                         234.0
     2017-04-18
                                  0
                                             77.0
                                                            70.0
                                                                  221.0
                                                                         218.0
                   Tuesday
                                        91
                                                     89.0
     2017-04-19 Wednesday
                                  0
                                        79
                                             89.0
                                                     70.0
                                                           221.0
                                                                  218.0
                                                                         253.0
                                                           218.0
     2017-04-20
                  Thursday
                                  0
                                        90
                                             70.0
                                                    221.0
                                                                  253.0
                                                                         140.0
     2017-04-21
                                                           253.0
                    Friday
                                  0
                                       165
                                            221.0
                                                    218.0
                                                                  140.0
                                                                          91.0
     2017-04-22
                  Saturday
                                  0
                                       226
                                            218.0
                                                    253.0
                                                           140.0
                                                                   91.0
                                                                          79.0
                  t=2
                         t=1
     date
                         69.0
     2016-01-08
                  83.0
     2016-01-09
                  69.0
                       149.0
                        234.0
     2016-01-10
                 149.0
     2016-01-11
                 234.0
                        212.0
     2016-01-12
                 212.0 101.0
     2017-04-18
                 253.0 140.0
     2017-04-19 140.0
                         91.0
     2017-04-20
                  91.0
                         79.0
     2017-04-21
                         90.0
                  79.0
     2017-04-22
                  90.0
                        165.0
     [471 rows x 10 columns]
[]: weekday_mapping = {
         'Monday': 0,
```

```
'Tuesday': 1,
         'Wednesday': 2,
         'Thursday': 3,
         'Friday': 4,
         'Saturday': 5,
         'Sunday': 6
    }
    data_reg['weekday'] = data_reg['weekday'].apply(lambda x: weekday_mapping.
      \rightarrowget(x))
[]: data_reg
[]:
                total weekday holiday
                                         t=7
                                                t=6
                                                       t=5
                                                              t=4
                                                                     t=3
                                                                            t= 2 \
    date
                                       296.0 191.0
    2016-01-08
                  149
                         None
                                     0
                                                      202.0 105.0
                                                                     98.0
                                                                            83.0
                                     0 191.0 202.0 105.0
                                                                     83.0
                                                                            69.0
    2016-01-09
                  234
                         None
                                                              98.0
    2016-01-10
                  212
                         None
                                     0 202.0 105.0
                                                       98.0
                                                              83.0
                                                                     69.0 149.0
                                     0 105.0
                                                       83.0
                                                              69.0
    2016-01-11
                  101
                         None
                                                98.0
                                                                    149.0 234.0
    2016-01-12
                   57
                         None
                                     0
                                         98.0
                                                83.0
                                                       69.0 149.0
                                                                    234.0 212.0
    2017-04-18
                   91
                                         77.0
                                                89.0
                                                       70.0 221.0
                                                                   218.0 253.0
                                     0
                         None
    2017-04-19
                   79
                         None
                                     0 89.0
                                                70.0 221.0 218.0
                                                                   253.0 140.0
    2017-04-20
                         None
                                         70.0 221.0 218.0 253.0 140.0
                                                                            91.0
                   90
                                     0
    2017-04-21
                  165
                         None
                                     0 221.0
                                               218.0
                                                      253.0 140.0
                                                                     91.0
                                                                            79.0
    2017-04-22
                  226
                         None
                                     0 218.0
                                               253.0 140.0
                                                              91.0
                                                                     79.0
                                                                            90.0
                 t=1
    date
    2016-01-08
                 69.0
    2016-01-09 149.0
    2016-01-10 234.0
    2016-01-11 212.0
    2016-01-12 101.0
    2017-04-18 140.0
    2017-04-19
                 91.0
    2017-04-20
                79.0
    2017-04-21
                 90.0
    2017-04-22 165.0
    [471 rows x 10 columns]
[]: cols = list(data_reg.columns)
    cols.remove('total')
    cols.insert(0, 'total')
    data_reg = data_reg[cols]
```

```
[]: data_reg
[]:
                 total weekday holiday
                                          t=7
                                                                             t= 2 \
                                                 t=6
                                                        t=5
                                                               t=4
                                                                      t=3
     date
     2016-01-08
                   149
                          None
                                      0
                                         296.0
                                                191.0
                                                       202.0
                                                              105.0
                                                                      98.0
                                                                             83.0
                                        191.0
                                                202.0
                                                                      83.0
     2016-01-09
                   234
                          None
                                                       105.0
                                                               98.0
                                                                              69.0
     2016-01-10
                   212
                          None
                                        202.0
                                                105.0
                                                        98.0
                                                               83.0
                                                                      69.0 149.0
     2016-01-11
                   101
                          None
                                      0 105.0
                                                 98.0
                                                        83.0
                                                               69.0
                                                                     149.0
                                                                            234.0
                                          98.0
                                                        69.0 149.0
                                                                     234.0 212.0
     2016-01-12
                    57
                          None
                                      0
                                                 83.0
                                          77.0
     2017-04-18
                    91
                                                 89.0
                                                        70.0 221.0
                                                                     218.0
                                                                            253.0
                          None
                                      0
                                                                            140.0
     2017-04-19
                    79
                          None
                                      0
                                          89.0
                                                 70.0
                                                       221.0 218.0
                                                                     253.0
     2017-04-20
                          None
                                          70.0
                                                221.0
                                                       218.0 253.0
                                                                     140.0
                                                                             91.0
                    90
                                      0
     2017-04-21
                   165
                          None
                                      0 221.0
                                                218.0
                                                       253.0 140.0
                                                                      91.0
                                                                             79.0
     2017-04-22
                   226
                          None
                                         218.0
                                                253.0
                                                       140.0
                                                               91.0
                                                                      79.0
                                                                             90.0
                  t=1
     date
     2016-01-08
                  69.0
     2016-01-09 149.0
     2016-01-10
                 234.0
     2016-01-11
                 212.0
     2016-01-12 101.0
     2017-04-18
                140.0
     2017-04-19
                  91.0
     2017-04-20
                  79.0
     2017-04-21
                  90.0
     2017-04-22 165.0
     [471 rows x 10 columns]
[]: X = data_reg.iloc[:,1:].values
[]: y = data_reg.iloc[:, 0].values
[]: from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
     from sklearn.metrics import mean_absolute_percentage_error
     from sklearn.model_selection import train_test_split
[]: X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.
      →025, random_state=42)
[]: y_test_total =y_test
     len(y_test)
```

```
[]: from sklearn.model_selection import GridSearchCV
     parameters = {
         'learning_rate': [0.01, 0.05, 0.1],
         'max_depth': [3, 4, 5, 6, 7,8, 9, 10],
         'n_estimators': [100, 200, 500],
         'max_features' : [3,4,5, 6, 7, 8, 9]
     clf_gbm = GridSearchCV(GradientBoostingRegressor(), parameters, cv=8)
     clf_gbm.fit(X_train, y_train)
     print("Best parameters:", clf_gbm.best_params_)
     print("Best score:", clf_gbm.best_score_)
    Best parameters: {'learning_rate': 0.01, 'max_depth': 3, 'max_features': 9,
    'n estimators': 500}
    Best score: 0.7474838783464414
[]: gb_regressor = GradientBoostingRegressor(n_estimators=500, max_depth=3,__
      →learning_rate=0.01, max_features=9, random_state=42)
     gb_regressor.fit(X_train, y_train)
     gb_y_pred = gb_regressor.predict(X_test)
     gb_mse = mean_absolute_percentage_error(y_test, gb_y_pred)*100
     print("Gradient Boosting Mean abs percent Error:", gb_mse)
    Gradient Boosting Mean abs percent Error: 17.187200168600658
[]: plt.plot(y_test, color='blue', label='Actual')
     plt.plot(gb_y_pred, color='red', label='Predicted')
     plt.ylabel('Values')
     plt.title('Actual vs Predicted Values')
     plt.legend()
     plt.grid(True)
     plt.show()
```



```
[]: rf_regressor = RandomForestRegressor(n_estimators=100, random_state=42)
    rf_regressor.fit(X_train, y_train)
    rf_y_pred = rf_regressor.predict(X_test)
    rf_mse = mean_absolute_percentage_error(y_test, rf_y_pred)*100
    print("Random Forest Mean abs percent Error:", rf_mse)
```

Random Forest Mean abs percent Error: 18.95050111051191

```
[]: import xgboost as xgb

[]: xgb_regressor = xgb.XGBRegressor(objective ='reg:squarederror', random_state=42)
    xgb_regressor.fit(X_train, y_train)
    xgb_y_pred = xgb_regressor.predict(X_test)
    xgb_mse = mean_absolute_percentage_error(y_test, xgb_y_pred)*100
    print("XGBoost Mean abs percent Error:", xgb_mse)
```

XGBoost Mean abs percent Error: 21.296742771445174

For the direct , total customers time series fitting , the gradient Boosting regression error metric (17.1) does better than SARIMAX (18.75) from the lectures