AI CLUB

Google Classroom: vlafrzz

Remind: @aiclub2023

Instagram: @ayala_aiclub

TABLE OF CONTENTS

01

Data Storage

Scalars Vectors Matrices 02

How does an Artificial Neuron work?

03

How does a Layer of Neurons work?

Scalar/Scalars

The Python name for scalar includes int, Float (decimal), or just any other type to STORE 1 VALUE.

Scalar in Python Example: This scalar is a float.

Vector/Vectors

Row Vector in Python Example: This is a 4-element vector (list containing 4 element

This vector has **one dimension** since there is only 1 row, which makes the row dimension insignificant. Because it has 1 row, we call this a 4-element row vector.

Column Vector in Python Example: This is another 4-element vector.

```
column_vector = [[2.918],

Row 1
Row 2
Row 3
[7.835],
Row 4
[9.273]]
```

Matrix/Matrices

Matrix in Python Example: This is a (4, 3) or 4 by 3 matrix.

Steps for Artificial Neural Network

Step 1:

Step 2:

Step 3:

Artificial Neural Networks

Artificial Neuron (1 Input Feature)

Variables in Al

Variable	Math Meaning	Al Conversion
х	input	Denoted with letter X, meaning input to the neuron
m	slope	Denoted with letter w, which is the weight variable
b	y-intercept	Denoted with letter b, which is the bias variable
у	output	Denoted with ŷ (y_hat), meaning the neuron's prediction

Working with Scalars

Multiple Examples

Artificial Neuron (Multiple Inputs)

Multiple Examples

Multiple Examples (Multiplication)

Multiple Examples (Addition)

Layer of Neurons:

Let's take a look at the outside and inside view of a layer of artificial neurons:

Each neuron in a layer receives all input features. They receive the same 3 input features and output one value for each example.

Vectorization

Equation Vectorization

```
\hat{\mathbf{y}} = \underline{\text{sum}(\mathbf{wX})} + \mathbf{b}
\begin{bmatrix} [w_{11}, w_{12}, w_{13}] \\ [w_{21}, w_{22}, w_{23}] \end{bmatrix} \bigotimes_{\mathbf{X}_{3}}^{[X_{1}]} \qquad \underline{\text{sum}(\begin{bmatrix} [w_{11}^{*}X_{1}, w_{12}^{*}X_{2}, w_{13}^{*}X_{3}] \\ [w_{21}^{*}X_{1}, w_{22}^{*}X_{2}, w_{23}^{*}X_{3}] \end{bmatrix})} \qquad \underline{\begin{bmatrix} [w_{11}^{*}X_{1} + w_{12}^{*}X_{2} + w_{13}^{*}X_{3}] \\ [w_{21}^{*}X_{1} + w_{22}^{*}X_{2} + w_{23}^{*}X_{3}] \end{bmatrix}}
(2, 3) \otimes (3, 1)
(2, 1)
```

Equation Vectorization (cont.)

Matrix Multiplication (Dot Product)

Equation Vectorization

Homework

Chapter 01

https://github.com/ohhh25/aibook/blob/main/Chapter%200 1/Chapter%2001.pdf