Definition 4. Let Φ be the set of all functions $\phi : \mathbb{E} \to \mathbb{R}_+$ which are lower semi-continuous function satisfying the following properties:

- $(i) \qquad \phi(\mathbf{0}) = 0,$
- (ii) $\phi(\mathbf{x}) = \phi(-\mathbf{x})(symmetry),$
- (iii) $\phi(\mathbf{x} + \mathbf{y}) \le \phi(\mathbf{x}) + \phi(\mathbf{y})$ (subadditivity).

Here \mathbb{E} is a finite dimensional Euclidean space.

We can verify that the function of matrix Z involved in the definition of the k-BDMS, i.e., $\operatorname{rank}(L_W)$ with $W = (|Z| + |Z^T|)/2$, falls in the above set Φ .

Definition 5 (SRIP (k, α)). We say the SRIP (k, α) holds for an affine operator A if there exist $\nu_k, \mu_k > 0$ satisfying $\mu_k/\nu_k < \alpha$ such that

$$\nu_k \|\mathbf{x}\| \le \|\mathcal{A}(\mathbf{x})\| \le \mu_k \|\mathbf{x}\|, \forall \mathbf{x} \in \mathcal{C}_k,$$

where $C_k := \{\mathbf{x} : \phi(\mathbf{x}) \leq k\}$ is a nonconvex constraint set parameterized by k.

We have the following convergence guarantee for applying the gradient projection algorithm (Algorithm 1) to optimize the function f_1 in Eqn. (1).

Theorem 2 (Convergence of Alg. 1 for BD-SSC). Consider the Gradient Projection (GP) method with a constant stepsize $\eta_t = \eta \in [\mu_k^2, 2\nu_k^2)$ and suppose that $SRIP(k, \sqrt{2})$ is satisfied. Then

$$f_1(Z_{t+1}) - f_1(Z^*) \le \left(\rho - \frac{1}{2}\right) \left(f_1(Z_t) - f_1(Z^*)\right), \forall t \ge 0$$

with $\rho = \eta/2\nu_k^2$. As a consequence,

$$f_1(Z_{t+1}) - f_1(Z^*) \le \left(\rho - \frac{1}{2}\right)^t (f_1(Z_0) - f_1(Z^*)), \forall t \ge 0$$

and $f_1(Z_t) \to f_1(Z^*)$ as $t \to \infty$.

Proof. Let

$$q_t(Z, Z_t) := f_1(Z_t) + \langle Z - Z_t, \partial f_1(Z_t) \rangle + \frac{\eta_t}{2} \|Z - Z_t\|_F^2.$$

Then the GP method can be equivalently rewritten as

$$Z_{t+1} \in \arg\min \{q_t(Z, Z_t) : Z \in \mathcal{K}\},\$$

and hence, for the global optimum $Z^* \in \mathcal{K}$ it holds that

$$q_t(Z_{t+1}, Z_t) \le q_t(Z^*, Z_t).$$
 (6)

Now, since
$$f_1(Z) = \frac{\lambda}{2} ||XZ - X||_F^2 + ||Z||_1$$
, it follows that

$$f_{1}(Z_{t+1}) \qquad (7)$$

$$= f_{1}(Z_{t}) + \langle Z_{t+1} - Z_{t}, \partial f_{1}(Z_{t}) \rangle + \frac{1}{2} \|X(Z_{t+1} - Z_{t})\|_{F}^{2}$$

$$\stackrel{SRIP}{\leq} f_{1}(Z_{t}) + \langle Z_{t+1} - Z_{t}, \partial f_{1}(Z_{t}) \rangle + \frac{\eta_{t}}{2} \|Z_{t+1} - Z_{t}\|_{F}^{2},$$

where the last inequality follows from the fact that $Z_t - Z_{t+1} \in \mathcal{C}_k$ (by the subadditivity and symmetry of the function $\phi \in \Phi$) and from the fact that the definition of the stepsize implies that $\|X(Z_{t+1}-Z_t)\|_F \leq \sqrt{\eta_t} \|Z_{t+1}-Z_t\|$. Therefore, we have shown that $f_1(Z_{t+1}) \leq q_t(Z_{t+1}, Z_t)$ so that

$$f_1(Z_{t+1}) = q_t(Z_{t+1}, Z_t) \stackrel{\text{(6)}}{\leq} q_t(Z^*, Z_t).$$

On the other hand,

$$\begin{split} q_k(Z^*, Z_t) &= f_1(Z_t) + \langle Z^* - Z_t, \partial f_1(Z_t) \rangle + \frac{\eta_t}{2} \|Z^* - Z_t\|_F^2 \\ & \stackrel{\text{SRIP}}{\leq} f_1(Z_t) + \langle Z^* - Z_t, \partial f_1(Z_t) \rangle + \frac{\eta_t}{2\nu_k^2} \|X(Z^* - Z_t)\|_F^2 \\ & \stackrel{\text{(?)}}{=} f_1(Z^*) + \left(\frac{\eta_t}{2\nu_k^2} - \frac{1}{2}\right) \|XZ^* - XZ_t\|_F^2 \\ & \leq f_1(Z^*) + \left(\frac{\eta_t}{2\nu_k^2} - \frac{1}{2}\right) \left(f_1(Z_t) - f_1(Z^*)\right). \end{split}$$

Therefore, we have,

$$f_1(Z_{t+1}) - f_1(Z^*) \le \left(\frac{\eta_t}{2\nu_k^2} - \frac{1}{2}\right) (f_1(Z_t) - f_1(Z^*)).$$

Similarly, we have the convergence guarantee for applying the gradient projection algorithm (Algorithm 1) to optimize the function f_* in Eqn. (2).

Theorem 3 (Convergence of Alg. 1 for BD-LRR). Also consider the Gradient Projection (GP) method with a constant stepsize $\eta_t = \eta \in [\mu_k^2, 2\nu_k^2)$ and suppose that $SRIP(k, \sqrt{2})$ is satisfied. Then

$$f_*(Z_{t+1}) - f_*(Z^*) \le \left(\rho - \frac{1}{2}\right) \left(f_*(Z_t) - f_*(Z^*)\right), \forall t \ge 0$$

with $\rho = \eta/2\nu_k^2$. As a consequence,

$$f_*(Z_{t+1}) - f_*(Z^*) \le \left(\rho - \frac{1}{2}\right)^t (f_*(Z_0) - f_*(Z^*)), \forall t \ge 0$$

and
$$f_*(Z_t) \to f_*(Z^*)$$
 as $t \to \infty$.

Proof. The proof exactly follows the procedure of proving Theorem .