Teste, 10 questions

~	Parabé	éns! Você foi aprovado!	Próximo item				
	~	1/1 pontos					
	_	p.ses					
		notation would you use to denote the 3rd layer's activa out is the 7th example from the 8th minibatch?	ations when				
		$a^{[3]\{7\}(8)}$					
		$a^{[8]\{3\}(7)}$					
	0	$a^{[3]\{8\}(7)}$					
	Correto						
		$a^{[8]\{7\}(3)}$					
	~	1/1 pontos					
	2. Which agree	of these statements about mini-batch gradient descen with?	t do you				
		Training one epoch (one pass through the training se mini-batch gradient descent is faster than training on using batch gradient descent.	_				
		You should implement mini-batch gradient descent we explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).	he				

One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient Optimization algorithms

10/10 points (100%)

Teste, 10 questions

Correto				
~	1/1 pontos			
-	the best mini-batch size usually not 1 and not m, but instead ning in-between?			
	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.			
Não :	selecionado está correto			
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.			
Corre	eto			
	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.			
Corre	eto			
	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.			
Não selecionado está correto				

1/1 pontos

Optimization algorithms

Teste, 10 questions

10/10 points (100%)

Which of the following do you agree with?

1/1 pontos

Optimization algorithms

Teste, 10 questions

Jan 1st: $\theta_1 = 10^o C$

10/10 points (100%)

Jan 2nd: $\theta_2 10^{\circ} C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0 = 0$, $v_t = \beta v_{t-1} + (1 - \beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2 = 10, v_2^{corrected} = 7.5$$

$$v_2 = 7.5, v_2^{corrected} = 7.5$$

$$v_2 = 10, v_2^{corrected} = 10$$

$$v_2 = 7.5, v_2^{corrected} = 10$$

Correto

1/1 pontos

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\bigcirc \quad \alpha = \frac{1}{1+2*t} \ \alpha_0$$

$$\bigcap \quad \alpha = e^t \alpha_0$$

Correto

$$\alpha = 0.95^t \alpha_0$$

$$\alpha = 0.95^t \alpha_0$$

$$\alpha = \frac{1}{\sqrt{t}} \alpha_0$$

Optimization algorithms

Teste, 10 questions 7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t.$ The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Decreasing β will shift the red line slightly to the right.

Não selecionado está correto

Increasing eta will shift the red line slightly to the right.

Correto

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Decreasing eta will create more oscillation within the red line.

Correto

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Optimization algorithms Não selecionado está correto

Teste, 10 questions

10/10 points (100%)

1/1 pontos

8. Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correto

- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)
- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)

1/1 pontos Suppose batch gradient descent in a deep network is taking excessively

long to find a value of the parameters that achieves a small value for the							
Optimizatio	\mathbf{D} \mathbf{b} \mathbf{a} \mathbf{b} \mathbf{c}	10/10 points (100%)					
Teste, 10 questions	techniques could help find parameter values that attain a small value	for					
	${\mathcal J}$? (Check all that apply)						

Try mini-batch gradient descent Correto
Try tuning the learning rate $lpha$
Try better random initialization for the weights Correto
Try using Adam Correto
Try initializing all the weights to zero Não selecionado está correto
1/1 pontos 10.
Which of the following statements about Adam is False?
The learning rate hyperparameter α in Adam usually needs to be tuned.
Adam combines the advantages of RMSProp and momentum
We usually use "default" values for the hyperparameters β_1,β_2 and ε in Adam ($\beta_1=0.9,\beta_2=0.999,\varepsilon=10^{-8}$)

10/10 points (100%)

Γeste, 10 questions	Correto						
				ŕ	- C)	i	_