In a market consisting of N stocks, we denote the dividend-adjusted return on stock i at trading day t by $r_{i,t}$. We adopt a factor model for stock return,

$$r_t - r_f = \beta_t F_t + \epsilon_t, \quad t = 1, 2, \dots, T \tag{1}$$

Here, $r_t = \{r_{i,t}\}_{i=1}^N \in \mathbb{R}^N$ are the dividend-adjusted daily return, $r_f \in \mathbb{R}$ is the risk-free rate, $F_t \in \mathbb{R}^{K \times 1}$ are the underlying factors, $\beta_t \in \mathbb{R}^{N \times K}$ are the corresponding loadings on K factors, and $\epsilon_t \in \mathbb{R}^N$ are the residual returns. Factor candidates varies widely, ranging from economical-driven factors such as the Fama-French factors, to statistically-driven factors derived from PCA. In our approach, factors are selected as the leading eigenvectors in PCA. The number of factors K is chosen based on the eigenvalue spectrum of the empirical correlation of daily returns.

Without loss of generality, these factors can be interpreted as portfolios of stocks,

$$F_t = \omega_t \left(r_t - r_f \right) \tag{2}$$

where $\omega_t \in \mathbb{R}^{K \times N}$ contains corresponding portfolio weights. Combining eq. (1) and eq. (2) yields

$$r_t - r_f = \beta_t \omega_t (r_t - r_f) + \epsilon_t \Rightarrow \epsilon_t = (I - \beta_t \omega_t) (r_t - r_f) := \Phi_t (r_t - r_f)$$
(3)

Here,

$$\Phi_t := (I - \beta_t \omega_t) \tag{4}$$

defines a linear transformation from r_t to ϵ_t . More importantly, $\epsilon_{i,t}$ can be viewed as the return of a tradable portfolio with weights specified by the *i*-th row of Φ_t . Consequently, the investing universe spanned by r_t is termed as name equity space, and that spanned by ϵ_t as name residual space.

We denote the portfolio weights in name equity space as $w_t^{R, \text{ name}}$ and portfolio weights in name residual space as $w_t^{\epsilon, \text{ name}}$. These weights are related by

$$w_t^{R, \text{ name}} = \Phi_t^T w_t^{\epsilon, \text{ name}} \tag{5}$$

, directly following the equality in portfolio return,

$$\left(w_t^{\epsilon \text{ name }}\right)^T \epsilon_t = \left(w_t^{\epsilon, \text{ name }}\right)^T \Phi_t \left(r_t - r_f\right) = \left(w_t^{R, \text{ name }}\right)^T \left(r_t - r_f\right) \tag{6}$$

For factors derived by PCA, we have

$$\Phi_t \beta_t = 0 \Longrightarrow \left(w_t^{R, \text{ name}} \right)^T \beta_t = \left(w_t^{\epsilon, \text{ name}} \right)^T \Phi_t \beta_t = 0, \quad \forall w_t^{\epsilon, \text{ name}}$$
 (7)

with proof given in the appendix. It means that for any $w_t^{\epsilon,\text{name}}$, the $w_t^{R,\text{name}}$ calculated by eq. (5) satisfy,

$$\left(w_t^{R, \text{ name }}\right)^T \left(r_t - r_f\right) = \left(w_t^{\epsilon, \text{ name }}\right)^T \Phi_t \left(\beta_t F_t + \epsilon_t\right) = \left(w_t^{\epsilon, \text{ name }}\right)^T \Phi_t \epsilon_t = \left(w_t^{R, \text{ name }}\right)^T \epsilon_t \qquad (8)$$

It suggests that the return of our statistical arbitrage portfolios is independent of market factors and relies solely on residual returns, a property usually termed as market neutrality. Ideally, portfolios are also desired to have a zero net value, known as dollar neutrality. Empirical evidence suggests that market-neutral portfolios are also approximately dollar-neutral.

Algorithm 1. Market decomposition (PCA) [Fig. 5, panel (c1, c2)]

```
Require: r_t, r_{f,t}, K

Ensure: \epsilon_t, \Phi_t

1: function MARKET_DECOMPOSITION(r_t, r_{f,t}, K)

2: Perform principal component analysis: r_t - r_{f,t} = U\Sigma V^T

3: F_t \leftarrow (v_1, v_2, \dots, v_K), where v_k is the k-th column of V^T

4: Calculate \omega_t by solving F_t = \omega_t(r_t - r_{f,t})

5: Calculate \beta_t as the coefficient of the linear regression r_t - r_f \sim F_t

6: \Phi_t \leftarrow I - \beta_t \omega_t

7: \epsilon_t \leftarrow \Phi_t(r_t - r_{f,t})

8: return \epsilon_t, \Phi_t
```

Input:

9: end function

- r_t : return in name space or transformed return in rank space.
- $r_{f,t}$: risk-free rate at the end of trading day t.
- K: number of market factors, predetermined by analyzing eigenvalue spectrum of the correlation matrix.

Output:

- ϵ_t : residual returns in name space or rank space.
- Φ_t : transformation between residual space and equity space (Eq. 2.1.1 for name space and Eq. 2.1.10 for rank space).

Note:

• The algorithm realizes the formulation in section 2.1.

- Factors F_t and ω_t are calculated on a 252-day look-back window.
- Loadings β_t are calculated on a 60-day look-back window.
- F_t , ω_t , and β_t are updated daily.
- K = 5 for name space and K = 1 for rank space based on empirical eigenvalue spectrum of the correlation matrix (Fig. 6(c,d)).

[Appendix]: Here, we prove the equality $\Phi_t \beta_t = 0$, crucial relationship for market neutrality. We denote the return matrix $R_t = (r_{t-T+1}, r_{t-T+2}, \dots, r_t) \in \mathbb{R}^{N \times T}$, (where T is a window of 252 days). Assume singular value decomposition of R_t ,

$$R_t - R_t^f = U\Sigma V^T$$

where $R_t^f \in \mathbb{R}^{1 \times T}$ is the risk-free rate, $U \in \mathbb{R}^{N \times N}$, $\Sigma \in \mathbb{R}^{N \times T}$, and $V^T \in \mathbb{R}^{T \times T}$. Then, the factors and loadings in Eq. 2.1.1 and ω_t in Eq. 2.1.2 becomes

$$F_t = \begin{pmatrix} v_1^T \\ v_2^T \\ \dots \\ v_K^T \end{pmatrix}, \quad \beta_t = (u_1, u_2, \dots, u_K) \begin{pmatrix} \sigma_1 \\ \dots \\ \sigma_K \end{pmatrix}, \quad \omega_t = \begin{pmatrix} \sigma_1^{-1} \\ \dots \\ \dots \\ \sigma_K \end{pmatrix}, \quad \omega_t = \begin{pmatrix} \sigma_1^{-1} \\ \dots \\ \dots \\ \sigma_K \end{pmatrix} \begin{pmatrix} u_1^T \\ u_2^T \\ \dots \\ u_K^T \end{pmatrix}$$

where u_i and v_i are the *i*-th column of matrix U and V. Then, because U and V are orthogonal matrix,

$$\beta_t \omega_t = I$$

$$\Longrightarrow \Phi_t \beta_t = (I - \beta_t \omega_t) \beta_t = 0$$

$$\underbrace{V_{K \times T}}_{K \times T} = \underbrace{V_{K}}_{K \times T}$$

$$\underbrace{W_{t}}_{K \times N} = \underbrace{\sum_{K \times K}^{+}}_{K \times K} \underbrace{U_{K}^{T}}_{K \times N} = \underbrace{F_{t}}_{K \times T} \underbrace{R_{t}^{+}}_{T \times N}$$

$$\underbrace{\beta_{t}}_{N \times K} = \underbrace{U_{K}}_{N \times K} \underbrace{\sum_{K \times K}}_{K \times K} = \underbrace{(F_{t}^{T} F_{t})^{+}}_{K \times K} \underbrace{F_{t}}_{K \times T} \underbrace{r_{t}}_{T \times 1}$$

Potential Typo: If $\beta_t \omega_t = I$, then $\Phi_t := (I - \beta_t \omega_t) = I - I = 0$, which doesn't make sense. Note that:

$$\begin{array}{lll} \beta_t & = U_K \Sigma_K \\ \omega_t & = \Sigma_K^{-1} U_K^\top \\ \beta_t \omega_t & = U_K \Sigma_K \Sigma_K^{-1} U_K^\top & = U_K U_K^\top \\ \beta_t \omega_t & = (U_K \Sigma_K \Sigma_K^{-1} U_K^\top) & = U_K U_K^\top \\ (\beta_t \omega_t) \beta_t & = (U_K U_K^\top) U_K \Sigma_K & = U_K \Sigma_K \\ \Phi_t & = (I - \beta_t \omega_t) & = I - U_K U_K^\top & = I_N - (I_N - \sum_{i=K+1}^N \vec{u}_i \vec{u}_i^\top) & = \sum_{i=K+1}^N \vec{u}_i \vec{u}_i^\top \\ \Phi_t \beta_t & = (I - \beta_t \omega_t) \beta_t & = \beta_t - \beta_t \omega_t \beta_t & = \beta_t - \beta_t \end{array}$$

- Since U and V are orthogonal matrices from the Singular Value Decomposition (SVD), they satisfy $U^TU = I \in \mathbb{R}^{N \times N}$ and $V^TV = I \in \mathbb{R}^{T \times T}$.
- $U \in \mathbb{R}^{N \times N}$ is an orthogonal matrix $\implies U^{\top}U = UU^{\top} = I_N$, where I_N is the $N \times N$ identity matrix. Hence, the columns (and rows) of U are orthonormal vectors in \mathbb{R}^N .
 - $-U^{\top}U=I_N$ can be seen from the inner product of the orthonormal vectors \vec{u}_i .

$$U^{\top}U = \begin{bmatrix} \vec{u}_1^{\top} \\ \vec{u}_2^{\top} \\ \vdots \\ \vec{u}_N^{\top} \end{bmatrix} \begin{bmatrix} \vec{u}_1 & \vec{u}_2 & \dots & \vec{u}_N \end{bmatrix} = \begin{bmatrix} \vec{u}_1^{\top}\vec{u}_1 & \vec{u}_1^{\top}\vec{u}_2 & \dots & \vec{u}_1^{\top}\vec{u}_N \\ \vec{u}_2^{\top}\vec{u}_1 & \vec{u}_2^{\top}\vec{u}_2 & \dots & \vec{u}_2^{\top}\vec{u}_N \\ \vdots & \vdots & \ddots & \vdots \\ \vec{u}_N^{\top}\vec{u}_1 & \vec{u}_N^{\top}\vec{u}_2 & \dots & \vec{u}_N^{\top}\vec{u}_N \end{bmatrix} = I_N$$

 $-UU^{\top} = I_N$ can be seen from the outer product of the orthonormal vectors $\vec{u}_i \vec{u}_i^{\top} \in \mathbb{R}^N$

$$UU^{ op} = \left[\begin{array}{cccc} \vec{u}_1 & \vec{u}_2 & \dots & \vec{u}_N \end{array} \right] \left[\begin{array}{c} \vec{u}_1^{ op} \\ \vec{u}_2^{ op} \\ \vdots \\ \vec{u}_N^{ op} \end{array} \right] = \sum_{i=1}^N \vec{u}_i \vec{u}_i^{ op} = I_N$$

• The matrix $U_K \in \mathbb{R}^{N \times K}$ is formed by taking the first K columns of U $(K \leq N)$

$$U_K = \left[\begin{array}{cccc} \vec{u}_1 & \vec{u}_2 & \dots & \vec{u}_K \end{array} \right],$$

where $\vec{u}_i \in \mathbb{R}^N$ are the orthonormal columns of U. This means:

$$\vec{u}_i^{\top} \vec{u}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

• Computing $U_K^{\top}U_K$:

 $U_K^{\top} \in \mathbb{R}^{K \times N}, U_K \in \mathbb{R}^{N \times K} \implies U_K^{\top} U_K \in \mathbb{R}^{K \times K}$. Computation:

$$U_K^{\top}U_K = \left[\begin{array}{c} \vec{u}_1^{\top} \\ \vec{u}_2^{\top} \\ \vdots \\ \vec{u}_K^{\top} \end{array} \right] \left[\begin{array}{ccccc} \vec{u}_1 & \vec{u}_2 & \dots & \vec{u}_K \end{array} \right] = \left[\begin{array}{ccccc} \vec{u}_1^{\top}\vec{u}_1 & \vec{u}_1^{\top}\vec{u}_2 & \dots & \vec{u}_1^{\top}\vec{u}_K \\ \vec{u}_2^{\top}\vec{u}_1 & \vec{u}_2^{\top}\vec{u}_2 & \dots & \vec{u}_2^{\top}\vec{u}_K \\ \vdots & \vdots & \ddots & \vdots \\ \vec{u}_K^{\top}\vec{u}_1 & \vec{u}_K^{\top}\vec{u}_2 & \dots & \vec{u}_K^{\top}\vec{u}_K \end{array} \right] = I_K$$

since the vectors \vec{u}_i are orthonormal:

• Computing $U_K U_K^{\top}$

 $U_K \in \mathbb{R}^{N \times K}, U_K^{\top} \in \mathbb{R}^{K \times N} \implies U_K U_K^{\top} \in \mathbb{R}^{N \times N}$. Computation:

$$U_K U_K^ op = \left[egin{array}{cccc} ec{u}_1 & ec{u}_2 & \dots & ec{u}_K \end{array}
ight] \left[egin{array}{c} ec{u}_1^ op \ ec{u}_2^ op \ dots \ ec{u}_K^ op \end{array}
ight] = \sum_{i=1}^K ec{u}_i ec{u}_i^ op \ ec{u}_i^ op \end{array}$$

Hence, $U_K U_K^{\top}$ is not the identity matrix I_N unless K = N. Instead, $U_K U_K^{\top}$ is a projection matrix onto the column space of U_K .

- Incomplete Basis: The set $\{\vec{u}_1, \vec{u}_2, \dots, \vec{u}_K\}$ spans a K-dimensional subspace S of \mathbb{R}^N . It does not form a complete basis for \mathbb{R}^N when K < N.
- **Projection Operator**: $U_K U_K^{\top}$ is a projection matrix onto the subspace \mathcal{S} . This projection does not recover \vec{x} unless $\vec{x} \in \mathcal{S}$. For any $\vec{x} \in \mathbb{R}^N$, the projection onto \mathcal{S} is:

$$U_K U_K^{\top} \vec{x} = \sum_{i=1}^K \vec{u}_i \left(\vec{u}_i^{\top} \vec{x} \right)$$

- Note that, since $\sum_{i=1}^N \vec{u}_i \vec{u}_i^{\top} = (\sum_{i=1}^K \vec{u}_i \vec{u}_i^{\top}) + (\sum_{i=K+1}^N \vec{u}_i \vec{u}_i^{\top}) = I_N$, then

$$\sum_{i=1}^K \vec{u}_i \vec{u}_i^\top = I_N - \sum_{i=K+1}^N \vec{u}_i \vec{u}_i^\top$$

• Question: Given: $(\beta_t \omega_t) \beta_t = (U_K U_K^{\top}) U_K \Sigma_K = U_K \Sigma_K$, does this imply that $U_K U_K^{\top} = I_N$?

Answer: No, it does not imply that $U_K U_K^{\top} = I_N$. The equation shows that $U_K U_K^{\top}$ acts as an identity only on the vectors in the column space of $U_K \Sigma_K$.

Key Points:

- 1. $U_K U_K^{\top}$ is a Projection Matrix: It satisfies $\left(U_K U_K^{\top}\right)^2 = U_K U_K^{\top}$. It projects any vector onto the column space of U_K .
- 2. Acting on $U_K \Sigma_K$: Since $U_K \Sigma_K \in \operatorname{Col}(U_K)$, projecting it onto the column space throught the projection matrix $U_K U_K^{\top}$ leaves it unchanged: $(U_K U_K^{\top})(U_K \Sigma_K) = U_K \Sigma_K$
- 3. Not Acting as Identity on Entire \mathbb{R}^N : For $\vec{v} \notin \operatorname{Col}(U_K)$, the projection matrix $U_K U_K^{\top}$ does not act as the identity. Example: Let \vec{v} be orthogonal to the column space of U_K :

$$U_K^{\top} \vec{v} = 0$$

Then:

$$U_K U_K^{\top} \vec{v} = U_K \left(U_K^{\top} \vec{v} \right) = U_K(0) = 0 \neq \vec{v}$$

This shows that $U_K U_K^{\top}$ does not act as the identity on \vec{v} .

Further Explanation with Mathematical Details

- Rank considerations. U_K has dimensions $N \times K$. Then, $U_K^{\top}U_K = I_K$ because the columns of U_K are orthonormal. However, $U_K U_K^{\top}$ is an $N \times N$ matrix, and $\operatorname{rank}(U_K U_K^{\top}) = K$, since it's the product of an $N \times K$ matrix and a $K \times N$ matrix. Since the Identity Matrix I_N has $\operatorname{rank} N$ and $\operatorname{rank}(U_K U_K^{\top}) = K < N$, it's clear that $U_K U_K^{\top}$ cannot be equal to I_N , as a matrix of $\operatorname{rank} K$ cannot equal a matrix of $\operatorname{rank} N$.
- **Projection onto Col**(U_K) **considerations**. Any vector \vec{x} in \mathbb{R}^N can be decomposed as $\vec{x} = \vec{x}_{\parallel} + \vec{x}_{\perp}$, where \vec{x}_{\parallel} is the component in the column space of U_K , and \vec{x}_{\perp} is the component orthogonal to the column space of U_K . Applying $U_K U_K^{\top}$ to \vec{x} :

$$U_K U_K^\top \vec{x} = U_K U_K^\top (\vec{x}_{\parallel} + \vec{x}_{\perp}) = U_K U_K^\top \vec{x}_{\parallel} + U_K U_K^\top \vec{x}_{\perp} = \vec{x}_{\parallel}$$

because, since $U_K U_K^{\top}$ projects onto the column space, $U_K U_K^{\top} \vec{x}_{\parallel} = \vec{x}_{\parallel}$ and $U_K U_K^{\top} \vec{x}_{\perp} = \overrightarrow{0}$. Therefore, $U_K U_K^{\top} \vec{x} = \vec{x}_{\parallel}$. In general, unless there is no component in \vec{x} that is orthogonal to $\operatorname{Col}(U_K)$; that is, if $\vec{x}_{\perp} = \overrightarrow{0}$ (i.e. \vec{x} is in the column space), $U_K U_K^{\top} \vec{x} \neq \vec{x}$.

Why is $\omega_t = \Sigma_K^{-1} U_K^{\top}$ implied by Algorithm 1?

According to Algorithm 1., ω_t can be computed by solving $F_t = \omega_t(r_t - r_{f,t})$.

• Truncated SVD with Top K Components. We can approximate $R_t - R_t^f$ using the top K components:

$$R_t - R_t^f \approx U_K \Sigma_K V_K^{\top}$$

where $U_K \in \mathbb{R}^{N \times K}$ are the first K columns of U, $\Sigma_K \in \mathbb{R}^{K \times K}$ are the top K singular values, and $V_K^{\top} \in \mathbb{R}^{K \times T}$ are the first K rows of V^{\top} . Define $F_t = V_K^{\top} \in \mathbb{R}^{K \times T}$.

$$\dot{R}_{t} = U\Sigma V^{\top} \approx U_{K}\Sigma_{K}V_{K}^{\top}$$

$$F_{t} := V_{K} = \omega_{t}\dot{R}_{t} \approx \omega_{t}U_{K}\Sigma_{K}V_{K}^{\top}$$

$$F_{t} \approx \omega_{t}U_{K}\Sigma_{K}V_{K}^{\top}$$

$$V_{K}^{T} \approx \omega_{t}U_{K}\Sigma_{K}V_{K}^{\top}$$

$$V_{K}^{T}V_{K} \approx \omega_{t}U_{K}\Sigma_{K}V_{K}^{\top}V_{K}$$

$$I \approx \omega_{t}U_{K}\Sigma_{K}$$

$$\omega_{t} \approx (U_{K}\Sigma_{K})^{-1}$$

$$\approx \Sigma_{K}^{-1}U_{K}^{\top}$$

My understanding of the algorithm:

for t in timeline:

•
$$\dot{\mathbf{r}}_{t-w_{pca}+1:t} - \mathrm{TSmean}(\dot{\mathbf{r}}_{t-w_{pca}+1:t}) = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\top} \in \mathbb{R}^{w_{pca}\times N}$$
 focus on $\mathbf{V} \in \mathbb{R}^{N\times N}$
- $\mathrm{TSmean}(\dot{\mathbf{r}}_{t-w_{pca}+1:t}^{(i)}) = \frac{1}{w_{pca}} \sum_{s=t-w_{pca}+1}^{t} \dot{r}_{s}^{(i)}$ for i in $firms$

•
$$\boldsymbol{\omega}_t = \mathbf{V}_{[1:K,:]} \in \mathbb{R}^{K \times N}$$

•
$$\mathbf{F}_t = \boldsymbol{\omega}_t [\dot{\mathbf{r}}_t - \text{mean}(\dot{\mathbf{r}}_{t-w_{reg}+1:t})] \in \mathbb{R}^{K \times 1}$$

• Solution: Use TSmean($\dot{\mathbf{r}}_{t-w_{pca}+1:t}$) to center the returns in the regression

$$-\left[\dot{\mathbf{r}}_{t-w_{reg}+1:t}^{(i)}-\mathrm{TSmean}(\dot{\mathbf{r}}_{t-w_{pca}+1:t}^{(i)})\right]=\boldsymbol{\beta}_{t}^{(i)}\mathbf{F}_{t}+\boldsymbol{\epsilon}_{t-w_{reg}+1:t}^{(i)}\in\mathbb{R}^{w_{reg}\times1}\quad\text{for each }i\text{ in }firms$$

– Extract the last TS element:
$$[\dot{\mathbf{r}}_t^{(i)} - \text{TSmean}(\dot{\mathbf{r}}_{t-w_{pca}+1:t}^{(i)})] = \boldsymbol{\beta}_t^{(i)}\mathbf{F}_t + \boldsymbol{\epsilon}_t^{(i)} \in \mathbb{R}$$

– Stack them XS:
$$[\dot{\mathbf{r}}_t - \text{TSmean}(\dot{\mathbf{r}}_{t-w_{pca}+1:t})] = \boldsymbol{\beta}_t \mathbf{F}_t + \boldsymbol{\epsilon}_t \in \mathbb{R}^{N \times 1}$$

Hence, now:

$$\begin{aligned} \boldsymbol{\epsilon}_t &= \left[\dot{\mathbf{r}}_t - \operatorname{TSmean}(\dot{\mathbf{r}}_{t-w_{pca}+1:t}) \right] - \boldsymbol{\beta}_t \mathbf{F}_t \\ &= \left[\dot{\mathbf{r}}_t - \operatorname{TSmean}(\dot{\mathbf{r}}_{t-w_{pca}+1:t}) \right] - \boldsymbol{\beta}_t \boldsymbol{\omega}_t [\dot{\mathbf{r}}_t - \operatorname{mean}(\dot{\mathbf{r}}_{t-w_{pca}+1:t})] \\ &= (\mathbf{I} - \boldsymbol{\beta}_t \boldsymbol{\omega}_t) [\dot{\mathbf{r}}_t - \operatorname{TSmean}(\dot{\mathbf{r}}_{t-w_{pca}+1:t})] \\ &= \boldsymbol{\Phi}_t [\dot{\mathbf{r}}_t - \operatorname{TSmean}(\dot{\mathbf{r}}_{t-w_{pca}+1:t})] \end{aligned}$$

Problem: Inconsistent return centering \implies we cannot compute Φ_t

•
$$[\dot{\mathbf{r}}_{t-w_{reg}+1:t}^{(i)} - \text{TSmean}(\dot{\mathbf{r}}_{t-w_{reg}+1:t}^{(i)})] = \boldsymbol{\beta}_t^{(i)} \mathbf{F}_t + \boldsymbol{\epsilon}_{t-w_{reg}+1:t}^{(i)} \in \mathbb{R}^{w_{reg} \times 1}$$
 for each i in $firms$

- Extract the last TS element: $[\dot{\mathbf{r}}_t^{(i)} \text{TSmean}(\dot{\mathbf{r}}_{t-w_{reg}+1:t}^{(i)})] = \boldsymbol{\beta}_t^{(i)} \mathbf{F}_t + \boldsymbol{\epsilon}_t^{(i)} \in \mathbb{R}$
- Stack them XS: $[\dot{\mathbf{r}}_t \mathrm{TSmean}(\dot{\mathbf{r}}_{t-w_{reg}+1:t})] = \boldsymbol{\beta}_t \mathbf{F}_t + \boldsymbol{\epsilon}_t \in \mathbb{R}^{N \times 1}$

$$\begin{aligned} \boldsymbol{\epsilon}_t &= \left[\dot{\mathbf{r}}_t - \mathrm{TSmean}(\dot{\mathbf{r}}_{t-w_{reg}+1:t})\right] - \boldsymbol{\beta}_t \mathbf{F}_t \\ &= \left[\dot{\mathbf{r}}_t - \mathrm{TSmean}(\dot{\mathbf{r}}_{t-w_{reg}+1:t})\right] - \boldsymbol{\beta}_t \boldsymbol{\omega}_t \left[\dot{\mathbf{r}}_t - \mathrm{mean}(\dot{\mathbf{r}}_{t-w_{pea}+1:t})\right] \end{aligned}$$

$$< \text{if } w = w_{pca} = w_{reg} > = [\dot{\mathbf{r}}_t - \text{TSmean}(\dot{\mathbf{r}}_{t-w+1:t})] - \boldsymbol{\beta}_t \boldsymbol{\omega}_t [\dot{\mathbf{r}}_t - \text{mean}(\dot{\mathbf{r}}_{t-w+1:t})]$$

 $= (\mathbf{I} - \boldsymbol{\beta}_t \boldsymbol{\omega}_t) [\dot{\mathbf{r}}_t - \text{TSmean}(\dot{\mathbf{r}}_{t-w+1:t})]$
 $= \boldsymbol{\Phi}_t [\dot{\mathbf{r}}_t - \text{TSmean}(\dot{\mathbf{r}}_{t-w+1:t})]$

0.1. Fitting an Ornstein-Uhlenbeck (OU) Process

The objective is to fit an Ornstein-Uhlenbeck (OU) process to the cumulative residual returns x_t^L for each asset. The OU process is a continuous-time stochastic process exhibiting mean-reverting behavior, suitable for modeling financial time series that drift toward a long-term mean.

Definition of the Ornstein-Uhlenbeck Process

The OU process is governed by the stochastic differential equation (SDE):

$$dX_t = \frac{1}{\tau}(\mu - X_t)dt + \sigma dB_t \tag{9}$$

where:

- X_t is the state variable at time t.
- μ is the long-term mean toward which the process reverts.
- τ is the mean-reversion time (the speed of reversion).
- σ is the volatility parameter.
- dB_t is the increment of a standard Brownian motion.

Discretization of the OU Process

To fit this continuous-time process to discrete data, we discretize the SDE using the Euler-Maruyama method with a time step $\Delta t = 1$:

$$X_{t+1} = X_t + \frac{1}{\tau}(\mu - X_t)\Delta t + \sigma \epsilon_t \tag{10}$$

where $\epsilon_t \sim \mathcal{N}(0, \Delta t)$ is a standard normal random variable.

Simplifying with $\Delta t = 1$:

$$X_{t+1} = X_t + \frac{1}{\tau}(\mu - X_t) + \sigma\epsilon_t \tag{11}$$

Rewriting the Equation

Rewriting the equation:

$$X_{t+1} = \left(1 - \frac{1}{\tau}\right)X_t + \frac{\mu}{\tau} + \sigma\epsilon_t \tag{12}$$

Define:

$$a = 1 - \frac{1}{\tau} \tag{13}$$

$$b = \frac{\mu}{\tau} \tag{14}$$

The equation becomes:

$$X_{t+1} = aX_t + b + \sigma\epsilon_t \tag{15}$$

This is a first-order autoregressive (AR(1)) process with an intercept term.

Estimating Parameters Using Linear Regression

We estimate the parameters a and b by performing linear regression on X_t and X_{t+1} :

$$X_{t+1} = aX_t + b + \text{noise} (16)$$

Linear Regression Model

We set up the linear regression model:

$$y_t^{(i)} = a_i x_t^{(i)} + b_i + \epsilon_t^{(i)} \tag{17}$$

where:

•
$$y_t^{(i)} = x_{\text{curr}}^{(i)}$$

•
$$x_t^{(i)} = x_{\text{lag}}^{(i)}$$

Estimating Coefficients

We use the Ordinary Least Squares (OLS) method to estimate a_i and b_i by minimizing the sum of squared residuals:

$$\min_{a_i, b_i} \sum_{t} \left(y_t^{(i)} - a_i x_t^{(i)} - b_i \right)^2 \tag{18}$$

This can be solved analytically using the normal equations:

$$\beta^{(i)} = \left(X^{(i)\top}X^{(i)}\right)^{-1}X^{(i)\top}y^{(i)} \tag{19}$$

where:

- $y^{(i)} = [x_0^{(i)}, x_1^{(i)}, ..., x_{T-1}^{(i)}]^\top$
- $X^{(i)} = [\mathbf{1}_{T-1}, x^{(i)}]$
- $x^{(i)} = [x_1^{(i)}, x_2^{(i)}, ..., x_T^{(i)}]^{\top}$
- $\bullet \quad \beta^{(i)} = \begin{bmatrix} a_i \\ b_i \end{bmatrix}$
- $X^{(i)}$ is the design matrix for asset i, including an intercept term.

Computing Residuals and Estimating Volatility

The residuals are computed as:

$$\epsilon_t^{(i)} = y_t^{(i)} - (a_i x_t^{(i)} + b_i) \tag{20}$$

The volatility σ_i is estimated as the standard deviation of the residuals:

$$\sigma_i = \sqrt{\frac{1}{T - 2} \sum_{t=1}^{T-1} \left(\epsilon_t^{(i)}\right)^2} \tag{21}$$

Recovering OU Process Parameters

From the estimated a_i and b_i , we recover τ_i and μ_i .

Mean-Reversion Time

$$\tau_i = -\frac{1}{\ln(a_i)} \tag{22}$$

Long-Term Mean

$$\mu_i = \frac{b_i}{1 - a_i} \tag{23}$$

Constraints on Parameter Estimates

Why $a_i \leq 0$ and $a_i \geq 1$ Are Invalid

For the OU process:

- The mean-reversion time $\tau > 0$, implying $a_i = 1 \frac{1}{\tau} < 1$.
- If $a_i \ge 1$, $\ln(a_i) \ge 0$, leading to $\tau_i \le 0$, which is not meaningful.
- If $a_i \leq 0$, $\ln(a_i)$ is undefined (complex), and a_i implies explosive or oscillatory behavior, inconsistent with the OU process.

Therefore, valid estimates require $0 < a_i < 1$.

Maximum Likelihood Estimation and Log-Likelihood Optimization

Under the assumption of normally distributed residuals $\epsilon_t^{(i)}$, OLS estimation of the AR(1) model is equivalent to maximizing the log-likelihood function.

Log-Likelihood Function

The likelihood function for the AR(1) model is:

$$L(a_i, b_i, \sigma_i) = \prod_{t=1}^{T-1} \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left(-\frac{\left(y_t^{(i)} - a_i x_t^{(i)} - b_i\right)^2}{2\sigma_i^2}\right)$$
(24)

Taking the natural logarithm:

$$\ln L(a_i, b_i, \sigma_i) = -\frac{(T-1)}{2} \ln(2\pi\sigma_i^2) - \frac{1}{2\sigma_i^2} \sum_{t=1}^{T-1} \left(y_t^{(i)} - a_i x_t^{(i)} - b_i \right)^2$$
 (25)

Maximizing the log-likelihood with respect to a_i and b_i is equivalent to minimizing the sum of squared residuals, which is what OLS achieves.

Summary of Steps

- 1. Data Preparation: Extract lagged and current values for each asset.
- 2. Linear Regression: Set up the regression model $y = ax + b + \epsilon$.
- 3. Estimate Coefficients: Use OLS to estimate a_i and b_i .
- 4. Compute Residuals: Calculate $\epsilon_t^{(i)}$ and estimate σ_i .
- 5. Recover OU Parameters: Compute τ_i and μ_i from a_i and b_i .
- 6. Validate Estimates: Ensure that $0 < a_i < 1$ for valid OU process parameters.

Conclusion

By discretizing the OU process and fitting an AR(1) model using linear regression, we estimate the parameters τ_i , μ_i , and σ_i for each asset. The OLS estimation implicitly performs log-likelihood optimization under the assumption of normally distributed residuals. The constraints on a_i ensure the estimated OU process parameters are valid and meaningful.

Key Takeaways

- The OU process models mean-reverting behavior suitable for financial time series.
- Discretization allows us to fit the continuous-time OU process to discrete data.
- OLS regression provides maximum likelihood estimates under Gaussian noise assumptions.
- Valid parameter estimates require $0 < a_i < 1$ to ensure meaningful τ_i and μ_i .