Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg Fakultät für Maschinenbau und Bauingenieurwesen

Prof. Dr. Thomas Carraro M.Sc Janna Puderbach

Mathematik II/B (WI/ET)

Blatt 7

 $WT\,2024$

Newton-Verfahren, Kurvendiskussion, Integration

Einführende Bemerkungen

• Vermeiden Sie die Verwendung von Taschenrechnern oder Online-Ressourcen.

Aufgabe 7.1: Newton-Verfahren

Gegeben sei die Funktion

$$f(x) = 17x^3 - 468x^2 + 2849x - 2294.$$

- a) Skizzieren Sie die Funktion im Intervall $-5 \le x \le 20$.
- b) Führen Sie mindestens zwei Schritte des Newton-Verfahrens mit dem Startwert $x_0 = 13$ für die Funktion f(x) durch.
- c) Skizzieren Sie im Funktionsgraphen die berechneten Iterationen x_0, x_1, x_2, \ldots

Lösung 7.1:

a)/c)

b) Das Newtonverfahren mit der Iterationsvorschrift:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2, \dots$$

ergibt

1

n	x_n	$f(x_n)$	$f'(x_n)$	$-f(x_n)/f'(x_n)$
0	13.0000	-7000.0000	-700	-10.0000000
1	3.0000	2500.0000	500	-5.0000000
2	-2.0000	-10000.0000	4925	2.0304568
3	0.0304	-2207.6621	2821	0.7827090
4	0.8131	-277.6091	2122	0.1308489
5	0.9440	-7.2647	2011	0.0036127
6	0.9476	-0.0055	2008	0.0000027
7	0.9476			

Aufgabe 7.2:

a) Bestimmen Sie die folgenden Integrale

i)
$$\int_{t=0}^{x} (t^2 + 3t - 4) dt$$

iii)
$$\int_{x=-1}^{3} \left(5x^4 + \frac{x^3}{3} + 2\right) dx$$

$$\mathbf{ii}) \quad \int\limits_{x=-4}^{4} (x^3 - x) \mathrm{d}x$$

$$\mathbf{iv}$$
) $\int \frac{1}{(x+1)^3} \mathrm{d}x$.

- b) Bestimmen Sie desweiteren
 - \mathbf{i}) $\int \cos(x) dx$

$$\mathbf{iii}) \quad \int\limits_{x=0}^{2\pi} \sin(x) \mathrm{d}x$$

 $\mathbf{ii}) \quad \int\limits_{x=2}^{8} \frac{1}{x} \mathrm{d}x$

 $\mathbf{iv}) \quad \int\limits_{x=0}^{\pi/2} \cos(x) \mathrm{d}x.$

Lösung 7.2:

a) **i**)

$$\int_{t=0}^{x} (t^2 + 3t - 4) dt = \left[\frac{t^3}{3} + \frac{3t^2}{2} - 4t \right]_{t=0}^{x}$$
$$= \frac{x^3}{3} + \frac{3x^2}{2} - 4x$$

ii)

$$\int_{x=-4}^{4} (x^3 - x) dx = \left[\frac{x^4}{4} - \frac{x^2}{2} \right]_{x=-4}^{4} = 0$$

(Dasselbe Ergebnis kann man auch ohne Rechnung begründen, da eine ungerade Funktion auf einem symmetrischen Intervall integriert wird.)

$$\int_{x=-1}^{3} \left(5x^4 + \frac{x^3}{3} + 2\right) dx = \left[x^5 + \frac{x^4}{12} + 2x\right]_{x=-1}^{3}$$

$$= 3^5 + \frac{3^4}{12} + 2 \cdot 3 - \left((-1)^5 + \frac{(-1)^4}{12} + 2 \cdot (-1)\right)$$

$$= 243 + \frac{27}{4} + 6 + 1 - \frac{1}{12} + 2$$

$$= 252 + \frac{81 - 1}{12} = \frac{776}{3}$$

iv)

$$\int \frac{1}{(x+1)^3} dx = -\frac{1}{2(x+1)^2} + C$$

b) **i**)

$$\int \cos(x) \mathrm{d}x = \sin(x) + C$$

ii)

$$\int_{x=2}^{8} \frac{1}{x} dx = \ln|x| \Big|_{x=2}^{8} = \ln(8) - \ln(2) = \ln\frac{8}{2} = \ln(4)$$

iii)

$$\int_{x=0}^{2\pi} \sin(x) dx = -\cos(x) \Big|_{x=0}^{2\pi} = -\cos(2\pi) + \cos(0) = 0$$

(Auch hier hätte man mit der Symmetrie der Sinusfunktion argumentieren können.)

iv)

$$\int_{x=0}^{\pi/2} \cos(x) dx = \sin(x) \Big|_{x=0}^{\pi/2} = \sin\left(\frac{\pi}{2}\right) - \sin(0) = 1 - 0 = 1.$$

Aufgabe 7.3:

a) zur partiellen Integration

$$\int u(t) \cdot v'(t) dt = u(t) \cdot v(t) - \int u'(t) \cdot v(t) dt$$

Berechnen Sie Stammfunktionen der beiden Funktionen

i)
$$(2t-1)\cos(t)$$
, ii) $(t^2+t-5)e^{t/2}$.

b) zur Substitution

$$\int f(g(t)) \cdot g'(t) dt = \int f(z) dz \text{ mit } z = g(t), dz = g'(t) dt$$

Berechnen Sie Stammfunktionen von

i)
$$4 t e^{t^2}$$
 ii) $\frac{1}{\sqrt{t}} e^{\sqrt{t}}$.

Lösung 7.3:

a) i) Mit u(t)=(2t-1), u'(t)=2 und $v'(t)=\cos(t)$, $v(t)=\sin(t)$ erhält man

$$\int (2t-1)\cos(t) dt = (2t-1)\sin(t) - \int 2\sin(t) dt = (2t-1)\sin(t) + 2\cos(t) + C.$$

ii) Mit $u(t)=t^2+t-5$, u'(t)=2t+1 und $v'(t)=\mathrm{e}^{t/2}$, $v(t)=2\,\mathrm{e}^{t/2}$ für die erste partielle Integration und mit u(t)=4t+2, u'(t)=4 und $v'(t)=\mathrm{e}^{t/2}$, $v(t)=2\,\mathrm{e}^{t/2}$ für die zweite erhält man

$$\int (t^2 + t - 5) e^{t/2} dt = (t^2 + t - 5) 2 e^{t/2} - \int (2t + 1) 2 e^{t/2} dt$$

$$= (2t^2 + 2t - 10) e^{t/2} - (4t + 2) 2 e^{t/2} + \int 4 \cdot 2 e^{t/2} dt$$

$$= (2t^2 - 6t - 14) e^{t/2} + 16 e^{t/2} + C$$

$$= (2t^2 - 6t + 2) e^{t/2} + C.$$

b) **i**) Mit $z = t^2$ und dz = 2t dt erhält man

$$\int 4 t e^{t^2} dt = \int 2 e^z dz = 2 e^z + C = 2 e^{t^2} + C.$$

ii) Mit $z = \sqrt{t}$ und $dz = \frac{1}{2\sqrt{t}} dt$ erhält man

$$\int \frac{1}{\sqrt{t}} e^{\sqrt{t}} dt = 2 \int e^z dz = 2e^z + C = 2e^{\sqrt{t}} + C.$$

Aufgabe 7.4: Partialbruchzerlegung

Berechnen Sie mit Hilfe der Partialbruchzerlegung die unbestimmten Integrale folgender Funktionen:

a)
$$f(x) = \frac{x^2 - x - 1}{(x - 1)(x - 2)(x - 3)}$$
, b) $f(x) = \frac{x^2}{(x - 3)^3}$,

c)
$$f(x) = \frac{x^2 + 1}{(x+1)(x-2)^2}$$
, d) $f(x) = \frac{1}{(x-1)(x^2 + x + 1)}$.

Lösung 7.4:

 \mathbf{Zu} a) Die Funktion f lässt sich darstellen als

$$f(x) = \frac{x^2 - x - 1}{(x - 1)(x - 2)(x - 3)} = \frac{A}{x - 1} + \frac{B}{x - 2} + \frac{C}{x - 3}.$$

Durch Multiplikation mit dem Hauptnenner erhält man

$$x^{2} - x - 1 = A(x - 2)(x - 3) + B(x - 1)(x - 3) + C(x - 2)(x - 1)$$

Einsetzen der Nullstellen des Hauptnenners in die Gleichung liefert:

für x = 1: $-1 = A \cdot (-1) \cdot (-2) \Rightarrow A = -\frac{1}{2}$

für x = 2: B = -1

für x = 3: $5 = C \cdot 2 \Rightarrow C = \frac{5}{2}$.

Es folgt

$$\int f(x) dx = -\frac{1}{2} \ln|x - 1| - \ln|x - 2| + \frac{5}{2} \ln|x - 3| + C.$$

 \mathbf{Zu} b) Die Funktion f lässt sich darstellen als

$$f(x) = \frac{x^2}{(x-3)^3} = \frac{A}{x-3} + \frac{B}{(x-3)^2} + \frac{C}{(x-3)^3}.$$

Durch Multiplikation mit dem Hauptnenner erhält man

$$x^{2} = A(x-3)^{2} + B(x-3) + C$$

Es folgt Einsetzen der Nullstelle des Hauptnenners in die Gleichung liefert für x=3 den Wert C=9 und Koeffizientenvergleich für x^2 liefert A=1. Nun wählen wir noch x=4 und erhalten die Gleichung $16=A+B+C\Rightarrow B=16$.

$$\int f(x) dx = \ln|x-3| - \frac{6}{x-3} - \frac{9}{2(x-3)^2} + C.$$

Zu c) Hier existiert eine Partialbruchzerlegung der Form

$$f(x) = \frac{x^2 + 1}{(x+1)(x-2)^2} = \frac{A}{x+1} + \frac{B}{x-2} + \frac{C}{(x-2)^2}.$$

Durch Multiplikation mit dem Hauptnenner erhält man

$$x^{2} + 1 = A(x-2)^{2} + B(x+1)(x-2) + C(x+1)$$

Einsetzen der Nullstellen des Hauptnenners in die Gleichung liefert:

für x = -1: $2 = A \cdot 9 \Rightarrow A = \frac{2}{9}$ für x = 2: $5 = C \cdot 3 \Rightarrow C = \frac{5}{2}$.

Mithilfe des Koeffizientenvergleichs für die Potenz x^2 erhält man $1 = A + B \Rightarrow B = 1 - A = \frac{7}{9}$.

Folglich ist

$$f(x) = \frac{2}{9(x+1)} + \frac{7}{9(x-2)} + \frac{5}{3(x-2)^2},$$

und

$$\int f(x) dx = \frac{2}{9} \ln|x+1| + \frac{7}{9} \ln|x-2| - \frac{5}{3(x-2)} + C.$$

Zu d) Der Faktor $x^2 + x + 1$ hat hier keine reellen Nullstellen und kann deshalb nicht in Linearfaktoren zerlegt werden (zumindest nicht in \mathbb{R}). Deshalb benutzt man den Ansatz

$$f(x) = \frac{1}{(x-1)(x^2+x+1)} = \frac{A}{x-1} + \frac{Bx+C}{x^2+x+1}.$$

Durch Multiplikation mit dem Hauptnenner erhält man

$$1 = A(x^2 + x + 1) + (Bx + C)(x - 1)$$

Einsetzen der reellen Nullstelle des Hauptnenners in die Gleichung liefert für x=1 die Gleichung $1=3\cdot A\Rightarrow A=\frac{1}{3}$ und Koeffizientenvergleich für x^2 liefert $0=A+B\Rightarrow B=-\frac{1}{3}$. Nun wählen wir noch x=0 und erhalten $1=A-C\Rightarrow C=A-1=-\frac{2}{3}$.

Damit ist
$$f(x) = \frac{1}{3(x-1)} - \frac{x+2}{3(x^2+x+1)}$$
. Das Integral über $\frac{x+2}{x^2+x+1}$ berechnet

man mit der Substitution $u = x + \frac{1}{2}$,

$$\int \frac{x+2}{x^2+x+1} dx = \int \frac{x+2}{(x+\frac{1}{2})^2 + \frac{3}{4}} dx$$

$$= \int \frac{u+\frac{3}{2}}{u^2+\frac{3}{4}} du$$

$$= \frac{1}{2} \int \frac{2u}{u^2+\frac{3}{4}} du + \frac{3}{2} \int \frac{1}{u^2+\frac{3}{4}} du$$

$$= \frac{1}{2} \ln \left| u^2 + \frac{3}{4} \right| + \frac{3}{2} \cdot \frac{4}{3} \int \frac{1}{\frac{4u^2}{3}+1} du, \quad \text{substituiere } z = 2u/\sqrt{3}$$

$$= \frac{1}{2} \ln \left| u^2 + \frac{3}{4} \right| + \sqrt{3} \int \frac{1}{z^2+1} dz$$

$$= \frac{1}{2} \ln \left| u^2 + \frac{3}{4} \right| + \sqrt{3} \arctan(z) + C$$

$$= \frac{1}{2} \ln \left| u^2 + \frac{3}{4} \right| + \sqrt{3} \arctan\left(\frac{2u}{\sqrt{3}}\right) + C$$

$$= \frac{1}{2} \ln(x^2+x+1) + \sqrt{3} \arctan\left(\frac{2x+1}{\sqrt{3}}\right) + C$$

Damit gilt

$$\int f(x) \, \mathrm{d}x = \frac{1}{3} \ln |x-1| - \frac{1}{6} \ln (x^2 + x + 1) - \frac{1}{\sqrt{3}} \arctan \frac{2x+1}{\sqrt{3}} + C \, .$$

Aufgabe 7.5: Integration

a) Berechnen Sie folgende Integrale mittels partieller Integration:

$$\mathbf{i}$$
) $\int x \cdot \sin x \, \mathrm{d}x$,

$$\mathbf{iv}$$
) $\int \frac{x}{\cos^2 x} \, \mathrm{d}x$,

ii)
$$\int \sin^2(x) dx$$
,

$$\mathbf{v}) \quad \int\limits_{0}^{\pi/4} \frac{x}{\cos^2 x} \, \mathrm{d}x$$

iii) $\int x^2 e^{1-x} dx,$

b) Berechnen Sie folgende Integrale mittels einer geeigneten Substitution:

$$\mathbf{i}$$
) $\int_{1}^{2} \frac{3x^2 + 7}{x^3 + 7x - 2} \, \mathrm{d}x$,

$$\mathbf{iii}) \quad \int\limits_{1}^{2} \frac{1}{x} \mathrm{e}^{1+\ln x} \, \mathrm{d}x,$$

ii)
$$\int_{0}^{3\pi/2} x^2 \cos(x^3 + 2) \, \mathrm{d}x$$
,

$$\mathbf{iv}) \quad \int\limits_{1/4}^{1} \mathrm{e}^{\sqrt{x}} \, \mathrm{d}x,$$

ii)
$$\int_{\pi} x^2 \cos(x^3 + 2) dx,$$
 v)
$$\int \cosh^2 x \sinh x dx$$

Lösung 7.5:

a) **i**)

$$\int \underbrace{x}_{u} \underbrace{\sin x}_{v'} dx = \underbrace{x}_{u} \underbrace{(-\cos x)}_{v} - \int \underbrace{1}_{u'} \cdot \underbrace{(-\cos x)}_{v}$$
$$= -x \cos x + \int \cos x = -x \cos x + \sin x + C$$

ii)

$$\int \underbrace{\sin x \sin x}_{u} dx = \underbrace{\sin x}_{u} \underbrace{(-\cos x)}_{v} - \int \underbrace{\cos x \underbrace{(-\cos x)}_{u'} dx}_{v'} dx$$

$$= -\sin x \cos x + \int \underbrace{\cos x \cos x}_{=1-\sin^{2} x} dx$$

$$= -\sin x \cos x + \int 1 dx - \int \sin^{2} x dx$$

$$\Rightarrow 2 \int \sin^{2} x dx = -\sin x \cos x + x + 2C$$

$$\Rightarrow \int \sin^{2} x dx = \frac{x - \sin x \cos x}{2} + C$$

Alternativ kann man die Beziehung $\sin^2(x) = \frac{1}{2}(1 - \cos(2x))$ (siehe Formelsammlung) nutzen. Damit bekommt man:

$$\int \sin^2(x) \, dx = \frac{1}{2} \int (1 - \cos(2x)) \, dx = \frac{1}{2} \left(x - \frac{1}{2} \sin(2x) \right) + C$$

Dies lässt sich mithilfe von $\sin(x)\cos(x) = \frac{1}{2}\sin(x)$ in die andere Darstellung der Lösung umwandeln.

iii)

$$\int \underbrace{x^2}_{u} \underbrace{e^{1-x}}_{v'} dx = \underbrace{x^2}_{u} \underbrace{(-e^{1-x})}_{v} - \int \underbrace{2x}_{u'=u_2} \underbrace{(-e^{1-x})}_{v=v'_2} dx$$

$$= -x^2 e^{1-x} - \underbrace{2x}_{u_2} \underbrace{e^{1-x}}_{v_2} + \int \underbrace{2}_{u'_2} \underbrace{e^{1-x}}_{v_2} dx$$

$$= -(x^2 + 2x)e^{1-x} - 2e^{1-x} + C = -(x^2 + 2x + 2)e^{1-x} + C$$

iv)

$$\int \underbrace{x}_{u} \underbrace{\frac{1}{\cos^{2} x}}_{v'} dx = \underbrace{x}_{u} \underbrace{\tan x}_{v} - \int \underbrace{1}_{u'} \underbrace{\tan x}_{v} dx$$
$$= x \tan x + \ln|\cos x| + C$$

- v) $\left[x \tan x + \ln|\cos x|\right]_{x=0}^{\pi/4} = \frac{\pi}{4} + \ln\frac{1}{\sqrt{2}} 0 = \frac{\pi}{4} \frac{\ln 2}{2}$
- **b**) i) Mit $y = x^3 + 7x 2$ und $dy = (3x^2 + 7) dx$ hat man:

$$\int_{1}^{2} \frac{3x^{2} + 7}{x^{3} + 7x - 2} dx = \int_{y(1)}^{y(2)} \frac{1}{y} dy = \left[\ln|y| \right]_{6}^{20} = \ln\frac{20}{6} = \ln\frac{10}{3}$$

ii) Hier wählt man $y = x^3 + 2$ und erhält daraus $dy = 3x^2 dx$ und setzt ein:

$$\frac{1}{3} \int_{\pi}^{3\pi/2} 3x^2 \cos(x^3 + 2) dx = \frac{1}{3} \int_{y(\pi)}^{y(3\pi/2)} \cos(y) dy$$
$$= \frac{1}{3} \left(\sin\left(\left(\frac{3\pi}{2}\right)^3 + 2\right) - \sin(\pi^3 + 2) \right)$$

iii) Mit $y = 1 + \ln x$ und $dy = \frac{dx}{x}$ hat man

$$\int_{1}^{2} \frac{1}{x} e^{1+\ln x} dx = \int_{y(1)}^{y(2)} e^{y} dy = e^{1+\ln 2} - e^{1} = e$$

iv) Wir wählen $y = \sqrt{x}$. Damit folgt (für x > 0):

$$x = y^2 \Rightarrow dx = 2y dy$$

und schließlich

$$\int_{1/4}^{1} e^{\sqrt{x}} dx = \int_{y(1/4)}^{y(1)} e^{y} \cdot 2y dy = 2 \int_{1/2}^{1} y e^{y} dy$$

$$= \left[2y e^{y} \right]_{1/2}^{1} - 2 \int_{1/2}^{1} e^{y} dy \text{ (partielle Integration)}$$

$$= 2e - \sqrt{e} - 2(e - \sqrt{e}) = \sqrt{e}$$

 \mathbf{v}) Mit $y = \cosh x$ und $dy = \sinh x dx$ hat man

$$\int \cosh^2 x \sinh x \, dx = \int y^2 \, dy = \frac{y^3}{3} + C = \frac{\cosh^3 x}{3} + C$$

Aufgabe 7.6: Kurvendiskussion

Gegeben sei die reelle Funktion

$$f(x) = \frac{x^2 + 7x + 10}{x + 1} \ .$$

- i) Geben Sie den maximalen Definitionsbereich der Funktion an.
- ii) Bestimmen Sie die Nullstellen der Funktion.
- iii) Bestimmen Sie die kritischen Punkte für die Extrema der Funktion und deren Funktionswerte.
- iv) Bestimmen Sie die (nicht vertikale) Asymptote der Funktion, d. h. diejenige Gerade q(x) = a + bx, für die

$$\lim_{x \to +\infty} \left(f(x) - g(x) \right) = 0$$

gilt.

v) Skizzieren Sie die Funktion.

Lösung 7.6:

Zu a)

- i) Die Funktion ist nur an der Nullstelle des Nenners, $x_{\rm Pol}=-1$, nicht definiert und hat dort eine einfache Polstelle.
- ii) Die Nullstellen sind die Nullstellen des Zählers: $x_{N1} = -5$ und $x_{N2} = -2$.
- iii) Die kritischen Punkte für die Extrema sind die Nullstellen (des Zählers) der ersten Ableitung:

$$f'(x) = \frac{x^2 + 2x - 3}{(x+1)^2} \implies x_{E1} = -3 \text{ un d } x_{E2} = 1$$

mit f(-3) = 1 und f(1) = 9.

iv) Durch Polynomdivision erhält man die Asymptote:

$$f(x) = \frac{x^2 + 7x + 10}{x + 1} = x + 6 + \frac{4}{x + 1} \implies g(x) = x + 6.$$

v) Skizze:

Aus der Skizze ersieht man, dass bei x=-3 ein Maximum vorliegt und bei x=1 ein Minimum.

Zu b) Da die Funktion beliebig oft differenzierbar ist, können die Extrema nur an Nullstellen der ersten Ableitung liegen:

$$g'(x) = x^7 \cdot (8+x) \cdot e^x = 0 \implies x_1 = -8 \text{ und } x_2, \dots = 0.$$

Da $\lim_{x\to -\infty}g(x)=0$ und g(0)=0 ist und x=-8 der einzige kritische Punkt im Innern dieses Intervalls ist, liegt wegen g(-8)>0 an der Stelle x=-8 ein Maximum vor. An der Stelle x=0 gilt g(x)=0. Da x=0 die einzige Nullstelle ist, muß dies ein Minimum sein.