Решения задач

M436-M440; Ф448, Ф450-Ф452

М436. Дано 20 чисел a_1 , a_2 , ..., a_{10} , b_1 , b_2 , ..., b_{10} . Докажите, что множество из 100 чисел (необязательно различных) $a_1 + b_1$, $a_1 + b_2$, ..., $a_{10} + b_{10}$ можно разбить на 10 подмножеств, по 10 чисел в каждом так, чтобы сумма чисел в каждом подмножестве была одной и той же.

Запишем наши 100 чисел в квадратную таблицу так, как изображено на рисунке 1; на пересечении i-й строки и j-го столбца поставим число a_i+b_j . Образуем теперь 10 подмножеств так, как показано на рисунке 2 (на рисунке клетки-числа, относящиеся к одному и тому же подмножеству, обозначены одной и той же цифрой). Легко видеть, что в каждом столбце (в каждой строке) есть представители всех подмножеств, так что индексы i и j чисел a_i+b_j , входящих в каждое из подмножеств, принимают все значения от 1 до 10 (ровно по одному разу). Поэтому сумма чисел в каждом из подмножеств одна и та же: $a_1+a_2+\ldots+a_{10}+b_1+b_2+\ldots+b_{10}$.

С. Берколайко

	D ₁	D ₂	b,	•	•	•	D _{t0}	
a ₁	$a_1 + b_1$	$a_1 + b_2$	$a_1 + b_3$	•	•	•	$a_1 + b_{10}$	
a_2	$a_2 + b_1$	$a_2 + b_2$	$a_2 + b_3$			•	a2+b10	
aa	a ₃ + b ₁	a ₃ + b ₂	a ₃ + b ₃			•	a3+b10	
•				. •	•	•		
•		•	•	•	•	•		
•	•	•	•	•	•	•	•	
a_i	a10+ b1	a ₁₀ + b ₂	a,0+ b3		•		a10+ b10	

1	2	3	4	5	6	7	8	9	10
10	1	2	3	4	5	6	7	8	9
9	10	1	2	3	4	5	6	7	8
8	9	10	1	2	3	4	5	6	7
7	8	9	10	1	2	3	4	5	6
6	7	8	9	10	1	2	3	4	5
5	6	7	8	9	10	1	2	3	4
4	5	6	7	8	9	10	1	2	3
3	4	5	6	7	8	9	10	1	2
2.	3	4	5	6	7	8	9	10	1

Рис. 1.

способами.

М437. Докажите, что нечетное число, являющееся произведением п различных простых множителей, можно представить в виде разности квадратов двух натуральных чисел ровно 2ⁿ⁻¹ различными

Рис. 2.

Представлению нечетного числа a в виде разности двух квадратов $a=x^2-y^2$ соответствует его разложение в произведение двух множителей $a=(x-y)\,(x+y)$. Это соответствие взаимно однозначно: по каждому разложению a=rq (где r<q) из системы уравнений $x-y=r,\ x+y=q$ однозначно определяются x=(r+q)/2 и y=(q-r)/2 (поскольку a нечетно, оба множителя r и q тоже нечетны). Выясним, сколькими способами можно разложить число $a=p_1p_2\dots p_n$, где p_1,p_2,\dots,p_n —различные простые множители, в произведение двух натуральных чисел: a=rq. Из n множителей p_1,\dots,p_n можно p_n 0 способами выбрать некоторое (в частности, пустое) подмножество — произведение этих множителей даст p_n 1 поможество соответствует единице) Таким образом, всех представлений p_n 2 существует p_n 3 таких, в которых p_n 4 в вдвое меньше: p_n 5 на таких, в которых p_n 6 на вдвое меньше: p_n 7 на таких, в которых p_n 6 на вдвое меньше: p_n 7 на таких, в которых p_n 9 на вдвое меньше: p_n 9 на таких, в которых p_n 9 на выбрать некоторых p_n 9 на вдвое меньше: p_n 9 на таких, в которых p_n 9 на вдвое меньше: p_n 9 на таких, в которых p_n 9 на вдвое меньше: p_n 9 на таких, в которых p_n 9 на вдвое меньше: p_n 9 на таких, в которых p_n 9 на вдвое меньше: p_n 9 на таких в которых p_n 9 на таких в таких в

О. Гончарик, С. Сергей

٠

М438. В данный сегмент вписываются всевозможные пары касающихся окружностей Для каждой пары окружностей через точку касания про-

Докажем, что все эти прямые проходят через точку M — середину дуги сегмента, дополняющего данный сегмент до круга. Обозначим границу этого круга через γ (рис 3) Через K обозначим точку пересечения диаметра MN окружности γ с хордой AB данного сегмента. Пусть γ_1 и

(где $a_1, a_2, ..., a_n$ — действительные, $k_1, k_2, ..., k_n$ — натуральные числа) имеет не более п положительных корней.

в) Докажите, что

$$ax^{k}(x+1)^{p}+bx^{l}(x+1)^{q}+$$

$$+cx^{m}(x+1)^{r}=1$$

(где a, b, c — действительные, k, l, m, p, q, r — натуральные числа) имеет не более 14 положительных корней.

Рис. 5.

части уравнения (1') на $(-\bar{a}_n x^k n^{-1})$, получим уравнение $b_1 x^{k_1-k} n + b_2 x^{k_2-k} n + \dots + b_{n-1} x^k n^{-1}^{-k} n = 1$ (2)

(имеющее более n-1 положительных корней). Продифференцировав обе части уравнения (2), получим уравнение

$$\overline{b}_1 x^{k_1-k_n-1} + \overline{b}_2 x^{k_2-k_n-1} + \dots + \overline{b}_{n-1} x^{k_{n-1}-k_n-1} = 0, \quad (2')$$

имеющее более n-2 положительных корией. Поделив обе части (2') на $(-\bar{b}_{n-1}x^k n^{-1}^{-k} n^{-1})$, получим уравнение

$$c_1 x^{k_1-k_{n-1}} + c_2 x^{k_2-k_{n-1}} + \dots + c_{n-2} x^{k_{n-2}-k_{n-1}} = 0,$$
 (3)

имеющее более n-2 положительных корней.

Проделав указанные действия n-1 раз, мы придем к уравнению

$$\alpha x^m = 1, (m = k_1 - k_2),$$

которое, в силу сделанного предположения относительно уравнения (1), должно иметь более одного положительного корня. Но это невозможно; значит, исходное уравнение (1) не может иметь более п положительных корней. Утверждение задачи б) доказано.

Перейдем к задаче в). Нам понадобится следующий факт. Пусть $P_m(x)$ — многочлен от x степени m. Тогда производная выражения $x^k(x+1)^p P_m(x)$ имеет вид $x^{k-1}(x+1)^{p-1} P_{m+1}(x)$, где $P_{m+1}(x)$ — многочлен от x степени m+1 (k и p — любые действительные числа). Действительно,

$$(x^{k} (x + 1)^{p} P_{m} (x))' = kx^{k-1} (x + 1)^{p} P_{m} (x) + + px^{k} (x + 1)^{p-1} P_{m} (x) + x^{k} (x + 1)^{p} P'_{m} (x) = = x^{k-1} (x + 1)^{p-1} [k (x + 1) P_{m} (x) + px P_{m} (x) + + x (x + 1) P'_{m} (x) = x^{k-1} (x + 1)^{p-1} P_{m+1} (x),$$