TD

1 Mesures

Exercice 1. Donner une définition plus succincte d'une tribu.

Solution. La définition plus succincte d'une tribu respecte uniquement les points 1, 3 et 4. En effet, nous pouvons prouver les points 2 et 5 grâce aux points 1, 3 et 4.

Preuve du point 2. Si $\emptyset \in \Sigma_X$ et si Σ_X est stable par complémentaire alors nous avons également $\overline{\emptyset} = X - \emptyset = X \in \Sigma_X$.

Preuve du point 5. Si $\forall n \in \mathbb{N}$, nous avons $A_n \in \Sigma_X$, alors $\forall n \in \mathbb{N}$, nous avons $\overline{A_n} \in \Sigma_X$ vu que Σ_X est stable par complémentaire. De plus, étant donné que Σ_X est stable par union dénombrable, nous avons $\overline{\cup_{n \in \mathbb{N}} A_n} \in \Sigma_X$. Finalement, vu que Σ_X est stable par complémentaire, alors nous avons $\overline{\cup_{n \in \mathbb{N}} A_n} = \cap_{n \in \mathbb{N}} A_n \in \Sigma_X$, c'est-à-dire que Σ_X est stable par intersection dénombrable.

Exercice 2. Prouver la Proposition 1.8 du cours.

Proposition. Si (X, Σ_X, ν) est un espace mesuré où $\nu : \Sigma_X \to \mathbb{R}^+$, nous avons les propriétés suivantes :

- 1. Pour tout $A, B \in \Sigma_X$, $A \cap B = \emptyset$ implique $\nu(A \sqcup B) = \nu(A) + \nu(B)$;
- 2. Pour tout $A, B \in \Sigma_X$, $\nu(A \cup B) = \nu(A) + \nu(B) \nu(A \cap B)$;
- 3. Pour tout $A, B \in \Sigma_X$, $\nu(A \cup B) \le \nu(A) + \nu(B)$;
- 4. Pour tout $A, B \in \Sigma_X$, $\nu(A \cap B) \leq \min(\nu(A), \nu(B))$;
- 5. Pour tout $A, B \in \Sigma_X$, $\nu(A \cup B) \ge \max(\nu(A), \nu(B))$.

Solution.

Nous allons d'abord prouver le point 2, puis les points 1 et 3.

Preuve du point 2. En utilisant Définition 1.6 (point 2) avec $A_0 = A - (A \cap B)$, $A_1 = B$, et $A_i = \emptyset$ pour $i \ge 2$ où $i \in \mathbb{N}$, nous avons

$$\begin{split} \nu(A-(A\cap B)) + \nu(B) &= \nu(A-(A\cap B)) + \nu(B) + \sum_{i\geq 2} \nu(A_i) \\ &= \nu\Big((A-(A\cap B)) \cup B \cup (\cup_{i\geq 2} A_i)\Big) \\ &= \nu(A\cup B). \end{split}$$

De plus, en utilisant Définition 1.6 (point 2) avec $A_0 = A - (A \cap B)$, $A_1 = A \cap B$ et $A_i = \emptyset$ pour $i \geq 2$ où $i \in \mathbb{N}$, nous avons

$$\nu(A - (A \cap B)) + \nu(A \cap B) = \nu(A - (A \cap B)) + \nu(A \cap B) + \sum_{i \ge 2} \nu(A_i)$$
$$= \nu\Big((A - (A \cap B)) \cup (A \cap B) \cup (\cup_{i \ge 2} A_i)\Big)$$
$$= \nu(A).$$

Ainsi, en utilisant ces deux égalités, nous obtenons :

$$\nu(A \cup B) = \nu(A - (A \cap B)) + \nu(B) = \nu(A) - \nu(A \cap B) + \nu(B).$$

Preuve du point 1. Si $A\cap B=\emptyset$ alors $\nu(A\cap B)=\nu(\emptyset)=0$. Par conséquent, d'après le point 2, nous avons $\nu(A\cup B)=\nu(A)+\nu(B)$.

Preuve du point 3. Par définition, nous avons $\nu(\cdot) \geq 0$, donc

$$\nu(A \cup B) = \nu(A) + \nu(B) - \nu(A \cap B)$$

$$\leq \nu(A) + \nu(B).$$

Afin de prouver les points 4 et 5, nous démontrerons le lemme suivant.

Lemme 1. Soit (X, Σ_X, ν) un espace mesuré,

Pour tout $A, B \in \Sigma_X$ tel que $A \subseteq B$, nous avons $\nu(A) \le \nu(B)$.

Preuve. Tout d'abord, lorsque $A\subseteq B$, notons que $B=(B-A)\cup A$ et que $(B-A)\cap A=\emptyset$, du coup d'après le point 1, nous avons

$$\nu(B) = \nu(A) + \nu(B - A)$$

$$\geq \nu(A) + 0$$

$$= \nu(A).$$

Nous pouvons maintenant prouver les points 4 et 5.

Preuve du point 4. Remarquons que $A \cap B \subseteq A$ et $A \cap B \subseteq B$; nous en déduisons que

$$\nu(A \cap B) \le \nu(A)$$
 et $\nu(A \cap B) \le \nu(B)$.

Ainsi, nous pouvons déduire que $\nu(A \cap B) \leq \min(\nu(A), \nu(B))$.

Preuve du point 5. Remarquons que nous avons $A \subseteq A \cup B$ et $B \subseteq A \cup B$, donc nous avons

$$\nu(A) \leq \nu(A \cup B) \quad \text{et} \quad \nu(B) \leq \nu(A \cup B).$$

Ainsi, nous pouvons déduire que $\max(\nu(A), \nu(B)) \leq \nu(A \cup B)$.

Exercice 3. Prouver la Proposition 1.14 du cours.

Proposition. Si $(\Omega, \Sigma_{\Omega}, \mu)$ est un espace probabilisé, nous avons :

1. Pour tout $A \in \Sigma_{\Omega}$, $\mu(\overline{A}) = 1 - \mu(A)$.

Solution. Nous allons le prouver en utilisant le point 1 de la proposition précédente.

Preuve. Etant donné que nous avons $\overline{A} \cap A = \emptyset$, en utilisant le point 1, nous pouvons affirmer que

$$\mu(\overline{A} \cup A) = \mu(A) + \mu(\overline{A})$$

$$\iff \mu(\Omega) = \mu(A) + \mu(\overline{A})$$

$$\iff \mu(\overline{A}) = 1 - \mu(A).$$

2

2 Fonction simple

Exercice 4. Prouver le Théorème 2.4 du cours.

Théorème. Soient un espace mesurable (X, Σ_X) et $f: X \to \mathbb{R}$ une fonction simple, alors f est une fonction mesurable.

Solution. D'après Théorème 2.3 - point 2, nous devons vérifier que

pour tout
$$\alpha \in \mathbb{R}$$
, nous avons $\{x \in X \mid f(x) \leq \alpha\} \in \Sigma_X$.

Pour cela, remarquons que nous avons

$$\{x \in X \mid f(x) \le \alpha\} = \bigcup_{k=1}^{n} \{x \in X \mid x \in A_k \text{ et } a_k \le \alpha\}$$

$$= \bigcup_{k=1}^{n} \left(\{x \in X \mid x \in A_k\} \cap \{x \in X \mid a_k \le \alpha\} \right)$$

$$= \bigcup_{k=1}^{n} A_k \cap \{x \in X \mid a_k \le \alpha\}$$

$$= \bigcup_{k \in K} A_k,$$

où $K=\{k\mid a_k\leq \alpha\}$. De plus, comme $A_1,\ldots,A_n\in \Sigma_X$ et qu'une tribu est stable par union dénombrable, nous avons

$$\{x \in X \mid f(x) \le \alpha\} = \bigcup_{k \in K} A_k \in \Sigma_X.$$

Exercice 5. Prouver le théorème suivant, qui est une version simplifiée du Théorème 2.5.

Théorème. Soient un espace mesurable (X, Σ_X) et $f: X \to \mathbb{R}^+$ une fonction mesurable positive, alors il existe une séquence de fonctions simples $\{f_n\}_{n\in\mathbb{N}}$ telle que

pour tout
$$x \in X$$
, nous avons $\lim_{n \to \infty} f_n(x) = f(x)$.

Solution. L'idée est de construire une séquence de fonctions simples $\{f_n\}_{n\in\mathbb{N}}$ qui approche de mieux en mieux la fonction f. Pour $n\in\mathbb{N}$, nous définissons la fonction simple f_n par

$$f_n(x) = \sum_{k=0}^{n2^n - 1} \left(\frac{k}{2^n}\right) \mathbb{1} \left[f(x) \in \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right] + n \cdot \mathbb{1} \left[f(x) \in [n, +\infty[\right] \right].$$

Notons que les ensembles sont bien mesurables et disjoints deux à deux. Ensuite, pour tout $x \in X$, il existe un k et n tels que $f(x) \in \left[\frac{k}{2^n}, \frac{k+1}{2^n}\right[$. Ainsi, nous avons dans ce cas

$$f(x) - f_n(x) \le \frac{k}{2^n} - \frac{k-1}{2^n} = 2^{-n}$$
 et $f_n(x) - f(x) \le \frac{k}{2^n} - \frac{k-1}{2^n} = 2^{-n}$

Ainsi, nous avons bien $\lim_{n\to+\infty} f_n(x) = f(x)$ pour tout $x\in X$.