Kapitel 3

Bedingte Wahrscheinlichkeiten und Unabhängigkeiten

Wie können wir Teilinformationen über den Ausgang eines Zufallsexperimentes nutzen?

Beispiel 3.1 Es werden zwei Würfel geworfen. Wir erhalten die Information, dass die Augensumme mindestens 10 ist. Wie groß ist die Wahrscheinlichkeit, dass mind. einer der Würfel 6 zeigt?

Aufgrund der Vorinformation wissen wir, dass das Ergebnis des Experiments in der Menge

$$B = \{(4,6), (6,4), (5,5), (5,6), (6,5), (6,6)\}$$

liegt. In nur einem Fall (5,5) ist keine 6 dabei.

Wir definieren die folgenden Ereignisse:

A = mindestens einer der Würfel zeigt 6

B = die Augensumme ist mindestens 10

Die gesuchte Wahrscheinlichkeit sollte also wie folgt sein:

$$\frac{|A \cap B|}{|B|} = \frac{5}{6} = \frac{P(A \cap B)}{P(B)}$$

Definition 3.1 Seien $A, B \in \mathcal{A}$ Ereignisse mit P(B) > 0. Dann heißt

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

die bedingte Wahrscheinlichkeit von A unter Bedingung B.

Bemerkung 3.1 Bezeichnen wir $P_B(A) := P(A|B)$, so ist (B, A_B, P_B) wieder ein Wahrscheinlichkeitsraum.

Oft ist die bedingte Wahrscheinlichkeit P(A|B) gegeben und man muss $P(A \cap B)$ bestimmen. Also $P(A \cap B) = P(A|B) \cdot P(B)$

Durch vollständige Induktion nach n erhält man:

Satz 3.1 (Multiplikationssatz)

Seien $A_1, \ldots, A_n \in \mathcal{A}$ Ereignisse mit $P(A_1 \cap \cdots \cap A_n) > 0$. Dann gilt $P(A_1 \cap \cdots \cap A_n) = \prod_{k=1}^n P(A_k | A_1 \cap \cdots \cap A_{k-1})$ mit $A_0 = \Omega$ also $P(A_1 | A_0) = P(A_1)$.

Beispiel 3.2 Von einem Kartenspiel mit 32 Blatt, wovon 4 Asse sind, bekommt jeder von 3 Spielern 10 Karten. Wie groß ist die Wahrscheinlichkeit, dass jeder der 3 Spieler genau ein As erhält?

Es sei A_i das Ereignis, dass Spieler i genau ein As erhält. i=1,2,3 Gesucht ist die Wahrscheinlichkeit $P(A_1 \cap A_2 \cap A_3)$. Es gilt:

$$P(A_1 \cdot A_2 \cdot A_3) = P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_2 \cdot A_1)$$

$$P(A_1) = \frac{\binom{4}{1} \cdot \binom{28}{9}}{\binom{32}{10}}, \ P(A_2|A_1) = \frac{\binom{3}{1} \cdot \binom{19}{9}}{\binom{12}{10}}, \ P(A_3|A_2 \cdot A_1) = \frac{\binom{2}{1} \cdot \binom{10}{9}}{\binom{12}{10}}$$
Satz $3.1 \Rightarrow P(A_1 \cdot A_2 \cdot A_3) = 0,0556$

Satz 3.2 Es seien $B_1, B_2, \ldots \in \mathcal{A}$ eine **Ereignispartition** von Ω , d.h.

(i)
$$B_i \cap B_j = \emptyset$$
 für $i \neq j$

(ii)

$$\sum_{i=1}^{\infty} B_i = \Omega$$

(iii)
$$P(B_i) > 0 \quad \forall i = 1, 2, ...$$

Dann folgt:

a) Satz von der totalen Wahrscheinlichkeit Für jedes Ereignis $A \in \mathcal{A}$ gilt:

$$P(A) = \sum_{j=1}^{\infty} P(B_j) \cdot P(A|B_j)$$

b) Formel von Bayes

Für jedes Ereignis $A \in \mathcal{A}$ mit P(A) > 0 gilt:

$$P(B_k|A) = \frac{P(B_k) \cdot P(A|B_k)}{\sum_{j=1}^{\infty} P(B_j) \cdot P(A|B_j)}$$

Beweis a)

$$P(A) = P(A \cap \Omega) \cdot P(A \cap \sum_{j=1}^{\infty} B_j) = P(\sum_{j=1}^{\infty} A \cap B_j) = \sum_{j=1}^{\infty} P(A \cap B_j)$$

$$\stackrel{\text{Def. bed. W'keit}}{=} \sum_{j=1}^{\infty} P(A|B_j) \cdot P(B_j)$$

b)

$$P(B_k|A) = \frac{P(B_k \cap A)}{P(A)} = \frac{P(B_k) \cdot P(A|B_k)}{P(A)}$$

Einsetzen von a) liefert die Behauptung

Beispiel 3.3 Bei einer binären Übertragung von Nachrichten werden durch Störung 5% der gesendeten Nullen zu Einsen und 3% der gesendeten Einsen zu Nullen verfälscht. Das Verhältnis der gesendeten Nullen zu den gesendeten Einsen betrage 3:5. Wie groß ist die Wahrscheinlichkeit, dass eine empfangene Null richtig ist? Es sei $\Omega = \{(i,j)|i,j \in \{0,1\}\}$

1.Komponente = gesendetes Signal; 2. Komponente = empfangenes Signal Wir betrachten die folgenden Ereignisse:

 S_0 = "eine Null wird gesendet"

 S_1 = "eine Eins wird gesendet"

 E_0 = "eine Null wird empfangen"

Bekannt sind: $P(E_0|S_0) = 0.95$ $P(E_0|S_1) = 0.03$ $P(S_0) = \frac{3}{8}$ $P(S_1) = \frac{5}{8}$

Außerdem ist $\Omega = S_0 + S_1$. Damit folgt:

$$P(S_0|E_0) = \frac{P(S_0) \cdot P(E_0|S_0)}{P(S_0) \cdot P(E_0|S_0) + P(S_1) \cdot P(E_0|S_1)} = 0.95$$

Falls P(A|B) = P(A), so heißt das, dass "das Eintreten des Ereignisses B keinen Einfluss auf das Eintreten von A hat" Wegen der Definition der bedingten Wahrscheinlichkeit ist dies äquivalent zu $P(A \cap B) = P(A) \cdot P(B)$

Definition 3.2

- a) Zwei Ereignisse $A, B \in \mathcal{A}$ heißen **unabhängig**, falls $P(A \cap B) = P(A) \cdot P(B)$
- b) Die Ereignisse $A_1, \ldots, A_n \in A$ heißen **unabhängig**, falls für alle $k = 1, \ldots, n$ und für alle k-Tupel, $1 \le i_1 < i_2 < \cdots < i_k \le n$ stets gilt:

$$P(\bigcap_{j=1}^{k} A_{i_j}) = \prod_{j=1}^{k} P(A_{i_j})$$

Bemerkung 3.2

- a) Teilsysteme von unabhängigen Ereignissen sind unabhängig
- b) Der Begriff der Unabhängigkeit wird auch für unendliche Folgen von Ereignissen benötigt. Man sagt $A_1, A_2, \ldots \in A$ sind unabhängige Ereignisse, falls für jede endliche Teilfolge $\{i_1, i_2, \ldots, i_k\} \subset \{1, 2, \ldots\}$ die Ereignisse A_{i_1}, \ldots, A_{i_k} unabhängig sind im Sinne von Teil b).

Beispiel 3.4 Eine faire Münze wird $2 \times$ geworfen

 $\Omega = \{KK, KZ, ZK, ZZ\}$

Es sei $A_1 = \{KK, KZ\}$ "Kopf im ersten Wurf"

 $A_2 = \{KK, ZK\}$ "Kopf im zweiten Wurf"

 $A_3 = \{KZ, ZK\}$ "Resultate verschieden"

Es gilt: $P(A_1 \cap A_2) = \frac{1}{4} = \frac{1}{2} \cdot \frac{1}{2} = P(A_1) \cdot P(A_2)$

 $P(A_1 \cap A_3) = P(A_1) \cdot P(A_3), P(A_2 \cap A_3) = P(A_2) \cdot P(A_3)$

Aber: $P(A_1 \cap A_2 \cap A_3) = P(\emptyset) = 0 \neq P(A_1) \cdot P(A_2) \cdot P(A_3)$

Damit sind A_1, A_2, A_3 <u>nicht</u> unabhängig.