ICET – INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOGIA

Roteiro de Atividades de Laboratório

Disciplina: Circuitos Lógicos Digitais

Curso: Ciência da Computação

2019

Sumário

Atividade 1: Conhecendo o Simulador Multisim™

Introdução

As atividades de laboratório da disciplina de Circuitos Lógicos Digitais serão realizadas por meio de simulação computacional, utilizando o simulador **Multisim™** desnvolvido e forncido pela **National Instruments**.

Este simulador é gratuito e pode ser usado na sua veraão online (**MultisimLive**), sem a necessidade de nenhuma instalação no computador; porém, é necessário criar uma conta para que o mesmo possa ser utilizado. Nesta atividade será apresentado o simulador **Multisim™** e as principais funcionalidades que serão utilizadas.

Acessando o Multisim™ e criando uma conta

O **Multisim**[™] é acessado pela página da **National Instruments**, no link_ Isto levará à página de abertura, onde será selecionada opção <u>Sign Up</u> (ver figura 1.1).

Figura 1.1: Página Inicial do Simulador Multisim™.

Para criar uma conta, será necessário definir um nome de usuário e indicar um e-mail válido, pois após o cadastro será enviada uma confirmação para o e-mail. A figra 1.2

apresenta a tela de cadastro. **Observação:** no campo "Empresa" já existem vários campi da UNIP cadastrados.; selecione o campus onde você estuda.

NATIONAL INSTRUMENTS	
Crie uma conta Já tem uma o Nome de usuário Josestiva77 Required field Nome	
Atividade Selecione	v
Empresa	
E-mail	
Senha	ogiusio ess
CRIAR	
Clicando em "Criar conta", dec	claro minha concerdância com

Figura 1.2: Página de cadastro para o uso do Multisim™.

Após o cadastro e a confirmação do e-mail, basta fazer o login para poder utilizar o simulador. Para criar um circuito, seleciona-se o botão Create Circuit no canto superior direito da tela (figura 1.3), o que nos levará à tela onde as simulções serão realizadas (figura 1.4).

CREATE CIRCUIT

Figura 1.4: Área de trabalho do Multisim™.

Funcionalidades do Multisim™

Ao clicar-se no quadrado no canto superior direito da área de trabalho, é aberto um menu que permite salvar e abrir circuitos previamente salvos (figura 1.5). Abaixo do nome do circuito, aparecem três opções de exibição de tela:

- Schematic: exibe o desenho do circuito;
- Grapher: exibe os gráficos da simulação;

Split: A tela se divide entre a exibição do circuito e os gráficos.

Figura 1.5: Menus da área de trabalho do Multisim™.

Na lateral esquerda da área de trabalho, aparece um caixa com os componentes disponíveis para a construção de circuitos. Nas atividades desta disciplina serão utilizados principalmente os três grupos indicados na figura 1.6 (Análise, Conectores e Componentes Digitais).

Figura 1.6: Componentes de circuitos do Multisim™.

Montando um circuito no Multisim™

Para construir um circuito no **Multisim**™, basta selecionar e arrastar os componentes desejados para a área de trabalho, conforma mostrado na figura 1.7. Os círculos azuis ao redor do componente inserido permitem rotacionar, espelhar, duplicar ou apagar o componente, o que agiliza a construção dos circuitos.

Figura 1.7: Inserindo um componente.

Um elemento importante é a entrada digital do circuito; para isto será utilizada a Constante Digital (figura 1.8). Esta constante pode ser alterada entre 0 e 1, permitindo alterar o valor da entrada.

Figura 1.8: Constante Digital.

Para concetar dois componentes, coloca-se o mouse sobre o conector do componente: isto fará com que surja o símbolo de um carretel, que indica a fiação do circuito. Simplemente clica-se na extremidade que quer se ligar e na extremidade do outro componenente.

Para medir o sinal digital (0 ou 1) em um dado ponto do circuito, usamos o medidor digital (figura 1.9). Observação: no **Multisim™**, o medidor precisa ser colocado em algum ponto entre componentes; assim, para inserir um medidor na saída de uma porta lógica,caso não haja nada ligado nela, precisamos ligá-la a um conector (figura 1.10).

Figura 1.10: Circuito com duas entradas digitais, uma porta lógica e um medidor digital.

Simulando um circuito no Multisim™

Para simular um circuito já construído no **Multisim**™, utilizamos o menu de simulação, na parte superior esquerda do simulador. Existem três opções referentes à simulação:

- Inicia/Pausa Simulação;
- Encerra Simulação;

Figura 1.11: Menu de simulação.

Ao se iniciar a simulação, cada medidor mostrará o valor que ele está medindo (0 ou 1), acompanhdo do termo d Hi (de high, alto) para 1 e d Lo (de low, baixo) para 0 (figura 1.12). Também é possível exibir um gráfico do valor do medidor, selecionado a opção

Grapher (figura 1.13), sendo que cada medidor apresenta uma cor ao ser colocado no circuito.

Figura 1.12: Valores dos medidores durante uma simulação.

Figura 1.13: Gráfico dos valores dos medidores durante uma simulação.

Conclusão

O objetivo desta primeira atividade foi apresentar os recursos oferecidos pelo simulador, bem como os fundamentos necessários para a simulação de Circuitos Lógicos Digitais. Nas próximas atividades, os conceitos aqui apresentados serão aplicados para ilustrar o funcionamento das portas lógicas e dos diferentes circuitos apresentados na disciplina.

Atividade 2: Simulando Portas Lógicas (Respondido no dia 8/9)

Introdução

O objetivo desta atividade é se familiarizar com o funciomanento das portas lógicas. Para isto, serão simuladas as portas lógicas *AND*, *NAND*, *OR*, *NOR*, *XOR* e *NXOR* com duas, três e quatro entradas em cada um dos casos.

O simulador **Multisim™** oferece a possibilidade de se trabalhar com estas portas lógicas com um número de entradas variando de duas a oito. Serão simuladas cada uma das seis portas lógicas com as quantidades de entradas indicadas e anotados e analisados os resultados.

Porta AND

Entrada	Entrada	Saída
1	2	
0	0	0
0	1	0
1	0	0
1	1	1

Entrada	Entrada	Entrada	Saída
1	2	3	
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Entrada	Entrada	Entrada	Entrada	Saída
1	2	3	4	
0	0	0	0	0
0	0	0	1	0

0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Porta NAND

Entrada	Entrada	Saída
1	2	
0	0	1
0	1	1
1	0	1
1	1	0

Entrada	Entrada	Entrada	Saída
1	2	3	
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Entrada	Entrada	Entrada	Entrada	Saída
1	2	3	4	
0	0	0	0	1
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1

0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Porta OR

Entrada	Entrada	Saída
1	2	
0	0	0
0	1	1
1	0	1
1	1	1

Entrada	Entrada 2	Entrada 3	Saída
1		J	
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Entrada	Entrada	Entrada	Entrada	Saída
1	2	3	4	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1

1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Porta NOR

Entrada 1	Entrada 2	Saída
0	0	1
0	1	0
1	0	0
1	1	0

Entrada 1	Entrada 2	Entrada 3	Saída
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Entrada	Entrada	Entrada	Entrada	Saída
1	2	3	4	
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0

1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Porta XOR

Entrada	Entrada	Saída
1	2	
0	0	0
0	1	1
1	0	1
1	1	0

Entrada	Entrada Entrada		Saída
1	2	3	
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

	Entrada	Entrada	Entrada	Saída
1	2	3	4	
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Porta NXOR

Entrada	Entrada	Saída
1	2	
0	0	1
0	1	0
1	0	0
1	1	1

Entrada	Entrada Entrada		Saída
1	2	3	
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Entrada	Entrada	Entrada	Entrada	Saída
1	2	3	4	
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	0
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

Questão: Considerando as portas com duas, três e quatro entradas, como pode ser descrito o funcionamento de cada uma seis portas lógicas?

Porta AND: É necessario que todas as portas sejam 1 para o resultado ser 1.

Porta NAND: O contrário do AND, é necessário que todas as portar sejam 0 para o resultado ser 1.

Porta OR: Se uma das portas for 1, já é o suficiente para o resultado ser 1.

Porta NOR: O contrário do OR, se uma das portas for 0, já é o suficiente para o resultado ser 1.

Porta XOR: <u>Se a soma das portas for impar, o resultado será 1. Se a soma das portas for par, o resultado será 0</u>

Porta NXOR: O contrário do XOR,Se a soma das portas for impar, o resultado será 0. Se a soma das portas for par, o resultado será 1

Atividade 3: Portas Lógicas como Operadores Aritméticos

Introdução

Georges Boole (1815-1864) estabeleceu a relação entre os operadores lógicos e operadores aritméticos, conforme descrito abaixo:

Tal relação fez com a Lógica, que antes era um ramo da Filosofia, passasse a ser um ramo da Matemática. Nesta forma, o valor 0 passou a representar o valor lógico "falso" e o valor 1, o valor lógico "verdadeiro".

O objetivo desta atividade é determinar quais portas lógicas correspondem às operações da "soma lógica" e "multiplicação lógica". É importante observar que ambas operações são comutativas.

Soma Lógica:

Porta Lógica: OR

Entrada A	Entrada B	Saída (A + B)
0	0	0
0	1	1
1	0	1
1	1	1

Multiplicação Lógica:

Porta Lógica: AND

Entrada A	Entrada B	Saída (A . B)
0	0	0
0	1	0
1	0	0
1	1	1

Questão: Uma vez identificada as portas lógicas correspondentes às duas operações, ambas respeitam as propriedades de associatividade e distribuitividade apresentadas abaixo? Monte os circuitos e complete a tabela verdade para justificar sua resposta.

Associatividade e Distributividade

$$A + (B + C) = (A + B) + C = A + B + C$$

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C = A \cdot B \cdot C$$

Soma Lógica

Entrada A	Entrada B	Entrada C	A + (B + C)	(A + B) + C	A + B + C
0	0	0	0	0	0
0	0	1	1	1	1
0	1	0	1	1	1
0	1	1	1	1	1
1	0	0	1	1	1

1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

Circuito A+(B+C)

Multiplicação Lógica

Entrada A	Entrada B	Entrada C	A · (B · C))	(A · B) · C	A · B · C
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	0	0	0
1	1	1	1	1	1

Circuito A.B.C

Circuito (A.B).C

Circuito A.(B.C)

Resposta: Sim, realmente as 3 expressões das 2 portas lógicas mantêm o mesmo resultado

Atividade 4: Construindo e avaliando Circuitos Lógicos

Introdução

Parte importante da construção de circuitos lógicos digitais é saber transformar expressões lógicas em circuitos e obter a expressão lógica a partir do desenho esquemático de circuitos.

Parte I

Esboçar o circuito para cada uma das expressões, simulá-lo e completar a tabela verdade.

•
$$S = A' \cdot B' + A \cdot C' + A' \cdot C$$

Α	В	С	Saída (Simulada)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

•
$$S = P \cdot Q' + P \cdot (R \cdot Q)' + (P' \oplus R)$$

Circuito:

Р	Q	R	Saída (Simulada)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Parte II

Determinar a expressão para cada um dos circuitos, simulá-lo e completar a tabela verdade.

 $S = \underline{(A+B)'.(B} \oplus \underline{C).C'}$

a)

Α	В	С	Saída (Simulada)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

 $S=(A.B)\oplus(A.B)'\oplus(A+B)\oplus(A+B)'$

b)

Α	В	Saída (Simulada)
0	0	0
0	1	0
1	0	0
1	1	0

Р	Q	R	Saída (Simulada)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Atividade 5: Equivalência de Circuitos Lógicos

Introdução

O objetivo desta atividade é demonstrar, por meio da simulação no **Multisim™**, que toda expressão lógica (e consequentemente, todo circuito lógico), possui infinitos equivalentes.

Parte I

Demonstrar algumas Leis da Lógica por meio da construção de ambos os circuitos indicados em cada uma delas.

$$A \cdot A \equiv A$$

Α	A + A	A · A
	(Simulada)	(Simulada)
0	0	
0	1	

• Lei da Absorção:
$$(A \cdot B) + A \equiv A$$

$$(A + B) \cdot A \equiv A$$

Α	В	 (A + B) · A (Simulada)
0	0	

0	1	
1	0	
1	1	

• Lei de DeMorgan:
$$\sim (A \cdot B) \equiv \sim A + \sim B$$

$$\sim$$
(A + B) \equiv \sim A · \sim B

Circuitos:

Α	В	С	~(A · B) (Simulada)	~A + ~B (Simulada)	~(A + B) (Simulada)	~A · ~B (Simulada)
0	0	0				·
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				

Parte II

Todo circuito lógico pode ser representado como uma associação de portas lógicas NOT, AND e OR. Por meio do simulador, encontre uma expressão equivalente contendo apenas estas três portas lógicas para S1 = $P \oplus Q$ e S 2= \sim ($P \oplus Q$)

Α	В	P⊕Q (Simulada)	~(P ⊕ Q) (Simulada)	
		(Simulada)	(Simulada)	
0	0			
0	1			
1	0			
1	1			

Circuitos:

Atividade 6: Simplificação de Circuitos de 2 e de 3 Variáveis

Introdução

O objetivo desta atividade é, a partir da expressão lógica de um circuito, construí-lo e simulá-lo no **Multisim™**; em seguida, por meio mapa de Karnaugh, simplificá-lo e construir e testar no simulador a versão simplificada do circuito.

Circuito I: $S = [(A \cdot B) + (A + B)]$

A	В	S (Original)	S (Simplificado)
0	0	0	0
0	1	1	1
1	0	1	1
1	1	1	1

В	Α	0	1	
0		0	1	
1		1	1	7

Simplificação: A+B

Circuito II: S= [(M \oplus N) \oplus (M + N)] + M \cdot N

M	N	S	S
		(Original)	(Simplificado)

0	0	0	0
0	1	0	0
1	0	0	0
1	1	1	1

N M	0	1	
0	0	0	
1	0	1)

Simplificação: M.N

Circuito III: $S = A' \cdot [(B \cdot C) + (B' \cdot C')] + A \cdot [(B' \cdot C) + (B \cdot C')]$

A	В	С	S (Original)	S (Simplificado)
0	0	0	1	1
0	0	1	0	0

0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

BC A	0	1	
00	1	0	
01	0	1	
11	1	0	
10	0	1)

Simplificação: A'B'C'+AB'C+A'BC+ABC'

Circuito IV: $S = P' \cdot Q + (R \oplus P) + P \cdot Q' \cdot R$

Р	Q	R	S (Original)	S (Simplificado)
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

Mapa de Karnaugh

QR P	0	1		
0.0	0	1		
01	1	T	R+PQ'R'+P	'QR'
11	1	_ 1		
10	1	0		

Simplificação: R+PQ'R'+P'QR'

Circuito V: $S = X \cdot ((Y \cdot Z) + (Z' \cdot X')) + [X \oplus (Y' + Z) + (X \cdot Z')]$

Х	Υ	Z	S	S
			(Original)	(Simplificado)
0	0	0	1	1
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	1	1
1	0	1	0	0
1	1	0	1	1
1	1	1	1	1

Mapa de Karnaugh

YZ X	0	1
0.0	1	1
01	1	
11	1	1
10	0	1

Simplificação X'Y'+XZ'+YZ

Questão: As simplificações obtidas são as únicas possíveis para os circuitos dados? Justifique sua resposta.

Resposta: Não, depende da maneira na qual você simplificou.

Atividade 7: Simplificação de Circuitos de 4 Variáveis

Introdução

O objetivo desta atividade é, a partir da expressão lógica de um circuito com quatro variáveis (entradas), construí-lo e simulá-lo no **Multisim™**; em seguida, por meio mapa de Karnaugh, simplificá-lo e construir e testar no simulador a versão simplificada do circuito.

Circuito I: $S = AB \cdot C + D + (A + B) \cdot C \cdot D + (A + B) \cdot (C + D) + A \cdot B \cdot C \cdot D$

Α	В	С	D	Saída S (Simulada)	Saída após a simplificação (simulada)
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	1	1
0	1	0	0	1	1
0	1	0	1	1	1
0	1	1	0	1	1
0	1	1	1	1	1
1	0	0	0	1	1
1	0	0	1	0	0
1	0	1	0	1	1
1	0	1	1	1	1
1	1	0	0	1	1
1	1	0	1	0	0
1	1	1	0	1	1
1	1	1	1	1	1

Circuito Simplificado = A'B+AC+AC'D'+A'CD_____

Circuito completo e simplificado:

Circuito II: $S = (X \oplus Y) \bullet (Z+W) + (X \oplus Z) \bullet (Y+W) + (Y \oplus Z) \bullet (Y+W) + (W \oplus Z) \bullet (Y+X)$

W	X	Y	Z	Saída S (Simulada)	Saída após a simplificação (simulada)
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	0	0
0	1	0	0	0	0
0	1	0	1	0	0
0	1	1	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	0	1	0	0
1	0	1	0	0	0
1	0	1	1	0	0

1	1	0	0	0	0
1	1	0	1	0	0
1	1	1	0	0	0
1	1	1	1	0	0

YZ WX	0.0	01	11	10
0.0	0	0	0	0
01	0	0	0	0
11	0	0	0	0
10	0	0	0	0

JÁ QUE TODAS AS SAIDAS SÃO 0, NÃO É POSSIVEL FAZER O MAPA DE KARNAUGH

Circuito Completo e simplificado = **NÃO TEM SIMPLIFICAÇÃO**

Questão: As simplificações obtidas são as únicas possíveis para os circuitos dados? Justifique sua resposta.

Resposta: Não, depende do jeito que você fez o mapa de Karnaugh

Atividade 8: Circuitos Codificadores – Parte I (BCD8421 e BCH)

Introdução

O objetivo desta atividade é construir e simular dois dos principais circuitos codificadores, o BCD8421 e o BHC.

Código BCD 8421

O Código BCD 8421, ou simplesmente BCD (*Binary Coded Decimal*, Decimal Codificado em Binário) é um dos códigos mais utilizados nos sistemas digitais. Ele é composto de 4 bits, sendo cada representa uma potência de 2 (8, 4, 2 e 1, daí o nome do código).

Decimal	BCD			
	Canal	Canal	Canal	Canal
	8	4	2	1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

Este circuito apresenta 10 entradas e 4 saídas. Determinar a expressão lógica de cada saída, esboçar o circuito e realizar a simulação do mesmo.

Saídas:	
Canal 1:_	
Canal 2:	
Canal 4:	
Canal 8:	
_	

Circuito:

Decimal	Resultado da Simulação			
	Canal	Canal	Canal	Canal
	8	4	2	1
0				
1				
2				
3				
4				
5				
6				
7				
8				
9				

Código BCH

O Código BCH (*Binary Coded Hexadecimal*, Hexadecimal Codificado em Binário) é muito semelhante ao código BCD, mas serve para representar os 16 algarismos do sistema hexadecimal no sistema binário:

Decimal		В	CH	
	Canal	Canal	Canal	Canal
	8	4	2	1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
Α	1	0	1	0
В	1	0	1	1
С	1	1	0	0
D	1	1	0	1
E	1	1	1	0
F	1	1	1	1

Este circuito apresenta 16 entradas e 4 saídas. Determinar a expressão lógica de cada saída, esboçar o circuito e realizar a simulação do mesmo.

Saídas:

Canal 1:_	
Canal 2:	
Canal 4:	
Canal 8:	
-	

Circuito:

Decimal	Resi	Resultado da Simulação			
	Canal	Canal	Canal	Canal	
	8	4	2	1	
0					
1					
2					
3					
4					
5					
6					
7					
8					
9					
Α					
В					
С					
D					
E					
F					

Atividade 9: Circuitos Codificadores – Parte II (Excesso 3 e Gray)

Introdução

Esta atividade é continuidade da Atividade 8; agora, o objetivo é construir e simular dois os circuitos codificadores para os códigos Excesso 3 e Gray.

Código Excesso 3

O Código Excesso 3 é muito semelhante ao código BCD, com a diferença que cada número é acrescido de 3 (0011 no sistema binário). Ele foi criado para facilitar as operações de subtração.

Decimal		Excesso 3			
	Canal	Canal	Canal	Canal	
	8	4	2	1	
0	0	0	1	1	
1	0	1	0	0	
2	0	1	0	1	
3	0	1	1	0	
4	0	1	1	1	
5	1	0	0	0	
6	1	0	0	1	
7	1	0	1	0	
8	1	0	1	1	
9	1	1	0	0	

Este circuito apresenta 10 entradas e 4 saídas. Determinar a expressão lógica de cada saída, esboçar o circuito e realizar a simulação do mesmo.

Saidas:	
Canal 1:_	
Canal 2:	
Canal 4:	
Canal 8:	

Circuito:

Decimal	Resultado da Simulação			
	Canal	Canal	Canal	Canal
	8	4	2	1
0				
1				
2				
3				
4				
5				
6				
7				
8				

9		
•		

Código Gray

O Código Gray apresenta como característica principal que apenas um bit varia na mudança de um número para o subsequente.

Decimal		Gr	ay	
	Canal	Canal	Canal	Canal
	8	4	2	1
0	0	0	0	0
1	0	0	0	1
2	0	0	1	1
3	0	0	1	0
4	0	1	1	0
5	0	1	1	1
6	0	1	0	1
7	0	1	0	0
8	1	0	0	0
9	1	0	0	1
10	1	0	1	1
11	1	0	1	0
12	1	1	1	0
13	1	1	1	1
14	1	1	0	1
15	1	1	0	0

Este circuito apresenta 10 entradas e 4 saídas. Determinar a expressão lógica de cada saída, esboçar o circuito e realizar a simulação do mesmo.

Saídas:			
Canal 1:			
Canal 2:			
Canal 4:			
Canal 8:			
Circuito:			

Decimal	Resu	Resultado da Simulação									
	Canal	Canal	Canal	Canal							
	8	4	2	1							

0		
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		

Atividade 10: Circuitos Decodificadores – Parte I (BCD8421)

Introdução

O objetivo desta atividade é construir e simular um circuito decodificador, o BCD8421. Desta vez, o circuito terá 4 entradas cadas e 10 saídas, sendo que apenas uma das saídas terá sinal para cada combinação das entradas.

É importante observar que no BCD nem todas as combinações entre as entrada ocorrerão; assim as combinações que não ocorrerem serão consideradas como *indiferentes* no Mapa de Karnaugh.

Código BCD 8421

A tabela verdade do circuito decodificador BCD8421 é apresentada abaixo. As entradas indicada em cinza não ocorrerão.

	Entradas				Saídas								
C8	C4	C2	C1	S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
0	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0	0	0	0

0	0	1	1	0	0	0	1	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0	0	0	0	0
0	1	0	1	0	0	0	0	0	1	0	0	0	0
0	1	1	0	0	0	0	0	0	0	1	0	0	0
0	1	1	1	0	0	0	0	0	0	0	1	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	0	0	0	0	0	0	0	0	0	1
1	0	1	0										
1	0	1	1										
1	1	0	0										
1	1	0	1										
1	1	1	0										
1	1	1	1										

Mapas de Karnaugh

S0=S1=	
--------	--

S2=		63=
_	·	

S/I—		95 –
04		S5=
S6=		
S6=		S7=
S8=		S7=
S8=		

Entradas Resultado da Simulação

C8	C4	C2	C1	S0	S1	S2	S3	S4	S5	S6	S7	S8	S9
0	0	0	0										
0	0	0	1										
0	0	1	0										
0	0	1	1										
0	1	0	0										
0	1	0	1										
0	1	1	0										
0	1	1	1										
1	0	0	0										
1	0	0	1										
1	0	1	0										
1	0	1	1										
1	1	0	0										
1	1	0	1										
1	1	1	0										
1	1	1	1										

Atividade 11: Circuitos Decodificadores - Parte II (BCH)

Introdução

O objetivo desta atividade é construir e simular um circuito decodificador, o BCD8421. Desta vez, o circuito terá 4 entradas cadas e 16 saídas, sendo que apenas uma das saídas terá sinal para cada combinação das entradas.

Código BCH

A tabela verdade do circuito decodificador BCD8421 é apresentada abaixo. Para uma maior clareza, a tabela verdade foi dividida em duas:

	Entr	adas					Saío	das			
C8	C4	C2	C1	S0	S1	S2	S3	S4	S5	S6	S7
0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	1	0	1	0	0	0	0	0	0
0	0	1	0	0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	1	0	0	0	0
0	1	0	0	0	0	0	0	1	0	0	0
0	1	0	1	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	0	0	0	1	0
0	1	1	1	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	0	0	0	0

1	0	0	1	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0	0	0	0
1	0	1	1	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	0	0	0	0	0
1	1	1	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0	0

	Entra	adas					Saío	las			
C8	C4	C2	C1	S8	S9	SA	SB	SC	SD	SE	SF
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0	0
0	1	1	0	0	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0
1	0	1	0	0	0	1	0	0	0	0	0
1	0	1	1	0	0	0	1	0	0	0	0
1	1	0	0	0	0	0	0	1	0	0	0
1	1	0	1	0	0	0	0	0	1	0	0

1	1	0	1	0	0	0	0	0	1	0	0
1	1	1	0	0	0	0	0	0	0	1	0
1	1	1	1	0	0	0	0	0	0	0	1

Mapas de Karnaugh

S0=	S1=
	
S2=	S3=
<u> </u>	
	
S4=	S5=
O-1-	

S6=			S7=
S8=			S9=
	<u> </u>	1	
SA=			_SB=
	, ,		
SC=			SD=

3L= 31 =

Circuito:

	Entr	adas			R	esulta	ado da	Sim	ulaçã	io	
C8	C4	C2	C1	S0	S1	S2	S3	S4	S5	S6	S7
0	0	0	0								
0	0	0	1								
0	0	1	0								
0	0	1	1								
0	1	0	0								
0	1	0	1								
0	1	1	0								
0	1	1	1								
1	0	0	0								
1	0	0	1								
1	0	1	0								
1	0	1	1								
1	1	0	0								
1	1	0	1								
1	1	1	0								
1	1	1	1								

		Resultado da Simulação									
C8	C4	C2	C1	S8	S9	SA	SB	SC	SD	SE	SF
0	0	0	0								
0	0	0	1								
0	0	1	0								
0	0	1	1								

0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

Atividade 12: Display de 7 Segmentos

Introdução

Um display de sete segmentos (SSD), ou indicador de sete segmentos, é uma forma de dispositivo de exibição eletrônica para exibir numerais decimais que é uma alternativa aos displays de matriz de pontos mais complexos.

Os monitores de sete segmentos são amplamente utilizados em relógios digitais, medidores eletrônicos, calculadoras básicas e outros dispositivos eletrônicos que exibem informações numéricas. A figura 1.12 ilustra este display.

Figura 12.1: Display de Sete Segmentos

Um circuito para este display pode ser considerado como um codificador com dez entradas (de 0 a 9) e sete saídas. Utilizando a imagem apresentada em cada linha da tabela a seguir

Decimal	Evibição	Saídas
---------	----------	--------

(Entrada)		Α	В	С	D	Е	F	G
0	8							
1	8							
2	٥							
3	8							
4	8							
5	8							
6	8							
7	8							
8	8							
9	9							

A partir da tabela verdade do circuito, obter a expressão lógica do circuito, esboçá-lo e simulá-lo:

Segmento A:	
Segmento B:	
Segmento C:	
Segmento D:	
Segmento E:	
Segmento F:	
Segmento G:	

Circuito:

Questão: Alguns displays de 7 segmentos também exibem as letras de A a F, para formar o código hexadecimal. Sendo as letras as indicadas na imagem abaixo, quais segmentos são utilizados em cada uma delas?

Α	8
b	8
С	8
d	8
Е	8
F	8

Letra A:	Letra b:	Letra C:
Letra d:	Letra E: Leti	ra F:

Atividade 13: Circuitos Meio Somadores e Somadores

Introdução

Um circuito somador é um circuito que emula, por meio de operações lógicas, o resultado de uma soma entre dois números binários. Para tanto, é importante lembrar que as operações com números binários são as seguintes:

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 1 = 10$$

$$1+1+1=11$$

Circuito Meio Somador

O circuito para realizar a soma de dois números de um dígito cada (A e B), chamado de meio somador, realiza a seguinte operação, onde S1 e S2 representa um dígito do resultado cada:

Α	В	S2	S 1
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Obter as expressões lógicas das saídas S1 e S2, esboçar e simular o circuito

Circuito:

Circuito Somador Completo

O circuito somador completo soma três digítos, sendo dois deles dos números que estão sendo (A e B) e um outro que é chamado "vai-um" (CE, do inglês *carry*), que pode aparecer caso a soma dos dígitos anteriores resulte em um resultado com mais de dois dígitos. As saídas representam o dígito menos significativo da soma dos três (S1) e outro que seria um eventual "vai-um" de saída (CS). A tabela ilustra este funcionamento:

Entradas			Saídas		
Α	В	CE	CS	S1	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	1	0	
1	1	0	1	0	
1	1	1	1	1	

Obter as expressões lógicas das saídas CS e S1, esboçar e simular o circuito Circuito:

Entradas			Resu	ltado
Α	В	CE	CS	S1
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Questão: É possível construir um circuito para soma de dois números de N dígitos utilizando um meio somador e N-1 somadores completos. Esboce como seria um circuito para realizar a soma de dois números de dois dígitos cada.

Circuito:

Atividade 13: Circuitos Meio Subtratores e Subtratores

Introdução

Um circuito subtrator é um circuito que emula, por meio de operações lógicas, o resultado de uma subtração entre dois algarismos binários. Para tanto, é importante lembrar que as operações com números binários são as seguintes:

$$0 - 0 = 0$$

$$1 - 1 = 0$$

$$1 - 0 = 1$$

$$0 - 1 = 11$$
 (resulta em 1 e "desce 1")

Circuito Meio Somador

O circuito para realizar a soma de dois números de um dígito cada (A e B), chamado de meio somador, realiza a seguinte operação, onde S1 representa o dígito da subtração e C1 representa o "desce 1":

C1 S1

Α	В	C1	S1
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

Obter as expressões lógicas das saídas S1 e C1, esboçar e simular o circuito

Circuito:

Circuito Subtrator Completo

O circuito somador completo subtrai dois digítos, sendo dois deles dos números que estão sendo (A e B), e considerando que pode haver outro, que é chamado "desce 1" (CE, do inglês *carry*), que pode aparecer caso a diferença dos dígitos anteriores resulte

em um resultado menor que zero. As saídas representam o dígito menos significativo da soma dos três (S1) e outro que seria um eventual "desce 1" de saída (CS). A tabela ilustra este funcionamento:

Entradas			Saídas		
Α	В	CE	CS	S 1	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	1	1	
0	1	1	1	0	
1	0	0	0	1	
1	0	1	0	0	
1	1	0	0	0	
1	1	1	1	1	

Obter as expressões lógicas das saídas CS e S1, esboçar e simular o circuito Circuito:

Entradas			Resu	ltado
Α	В	CE	CS	S1
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Questão: É possível construir um circuito para subtrair dois números de N dígitos utilizando um meio subtrator e N-1 subtratores completos. Esboce como seria um circuito para realizar a subtração de dois números de dois dígitos cada.

Circuito:

Bibliografia

IDOETA, I.V.; CAPUANO, F.G. Elementos de eletrônica digital. São Paulo: Érica, 1998.

LOURENÇO, A.C.; CRUZ, E.C.A.; FERREIRA, S. <u>Circuitos Digitais</u> – Série ESTUDE E USE, Editora Érica. São Paulo, 1996

"http://www.multisim.com/help/getting-started/" HYPERLINK
"http://www.multisim.com/help/getting-started/". 2019.