ПОВЫШЕНИЕ ТОЧНОСТИ ЭКСТРАПОЛЯЦИИ РЕГРЕССИИ ДЛЯ ДАННЫХ, СОДЕРЖАЩИХ КОМПЛЕКСНЫЕ ЧИСЛА, ПУТЕМ УЧЕТА ПОГРЕШНОСТИ ИЗМЕРЕНИЯ ПЕРЕМЕННЫХ

Постановка задачи

Имеется набор данных dataset_0, который содержит количественные предикторы A_1, A_2, A_3, A_4, A_5 и количественную целевую переменную b, значения которых являются комплексными числами. Набор данных dataset_0 представляет собой точную зависимость целевой переменной b от предикторов.

Даны два набора данных dataset_1 и dataset_2, каждый из которых содержит количественные предикторы A_h_1, A_h_2, A_h_3, A_h_4, A_h_5 и количественную целевую переменную b_d, значения которых также являются комплексными числами. Наборы данных dataset_1 и dataset_2 моделируют результаты измерений b от предикторов и сгенерированы по данным dataset_0 путем случайных отклонений предикторов в пределах 1% и целевой переменной b в пределах 5% от соответствующих точных значений из dataset_0.

Необходимо по данным dataset_1 и dataset_2 спрогнозировать значение целевой переменной b_max при значениях предикторов (1800 + j1000, 1500 + j1000, 1800 + j1400, 2000 + j1700, 1500 + j1200). Датасет dataset_0 использовать только для валидации обученных моделей.

РЕШЕНИЕ ЗАДАЧИ

1. Характеристика датасетов

Значения предикторов в каждом наборе данных являются положительными комплексными числами, максимальное значение которых не превышает 1230 + j513. Значения целевой переменной в каждом наборе данных также являются положительными комплексными числами, максимальное значение которых не превышает 83 + j109.

Для dataset_0 выявлена функциональная линейная зависимость целевой переменной от всех предикторов. При этом имеется практически абсолютная мультиколлинеарность всех предикторов.

Для dataset_1 и dataset_2 коэффициенты корреляции для всех предикторов между собой практически равны 1, а для целевой переменной с предикторами практически равны 0,99. Таким образом, для dataset_1 и dataset_2 также имеются практически функциональная линейная зависимость целевой переменной от предикторов и практически абсолютная мультиколлинеарность всех предикторов.

2. Обучение различных моделей

Данная задача относится к классу задач экстраполяции регрессии.

Обучение моделей выполнено на языке Python 3.

Обучение проводилось как при разбиении на обучающую и тестовую выборки (70/30), так и на полных наборах данных.

Модели строились на всех предикторах, которые масштабировались с помощью MaxAbsScaler.

Для обучения моделей применялись алгоритмы:

- 1) LinearRegression, Ridge, Lasso, ElasticNet, TheilSenRegressor из библиотеки Scikit-learn с подбором оптимальных значений их гиперпараметров по сетке с кросс-валидацией.
- 2) двухслойная нейронная сеть прямого распространения из библиотеки Keras с подбором оптимального числа нейронов на каждом слое по условию оптимизации коэффициента детерминации \mathbb{R}^2 .
- 3) регуляризация Тихонова с определением коэффициента регуляризации α методом обобщенной невязки [1].

Scikit-learn и TensorFlow поддерживают работу Алгоритмы не комплексными числами, что не позволяет построить непосредственные модели регрессии для данных, содержащих комплексные числа, с помощью стандартных регрессоров Scikit-learn и нейронных сетей TensorFlow. Для устранения этого препятствия автором разработан метод преобразования исходного датасета размером $M \times N$ с комплексными числами в датасет размером $2M \times (2N-1)$ с вещественными числами, что позволяет использовать ДЛЯ построения достоверных моделей регрессии комплексных чисел стандартные регрессоры Scikit-learn и нейронные сети TensorFlow (подробнее смотри репозиторий автора https://github.com/GorshkovAndrey/Regression_of_complex_numbers_using_Sklearn_and_TensorFlow).

Отличие алгоритма регуляризации Тихонова от модели Ridge из Scikit-learn состоит в том, что коэффициент регуляризации α определяется по условию оптимизации нестандартной метрики — обобщенной невязки, учитывающей информацию о погрешности измерения предикторов и целевой переменной.

Решение задачи регрессии – системы линейных **вещественных** уравнений Az = b для алгоритма регуляризации Тихонова имеет следующий вид

$$z = (A^{T}A + \alpha E)^{-1}A^{T}b$$
 (1)

Уравнение обобщенной невязки для определения коэффициента регуляризации α имеет следующий вид

$$\|Az(\alpha) - b\|^2 - (h\|z(\alpha)\| + d)^2 = 0$$
(2)

$$h = \delta_{\mathbf{A}} \|\mathbf{A}\| \tag{3}$$

$$d = \delta_{\mathbf{b}} \|\mathbf{b}\| \tag{4}$$

где ||_|| – обозначение нормы матрицы или вектора;

 $\delta_{\rm A}$ – относительная погрешность измерения элементов матрицы A;

 $\delta_{\rm b}$ – относительная погрешность измерения элементов вектора b.

По условию данной задачи $\delta_{\rm A} = 0.01, \, \delta_{\rm b} = 0.05.$

Метрики, результаты прогноза целевой переменной b_max и их осредненные значения Меап для различных моделей регрессоров из библиотеки Scikit-learn приведены в таблицах 1-7. Там же приведены результаты прогнозов для нейронной сети, для модели регуляризации Тихонова и **точный прогноз** Accurate.

Таблица 1 — Метрики и результаты прогноза целевой переменной для dataset_1 (random_state = 1902 для train_test_split)

	LinearRegr	Ridge	Lasso	ElasticNet	TheilSenRegr	Mean	NeuralNet_balance	NeuralNet_best	Regularized	Accurate
R2 train	0.988	0.988	0.987	0.987	0.987	0.988	0.973	0.973	0.931	
R2 test	0.981	0.982	0.985	0.984	0.981	0.983	0.967	0.967	0.928	
b_max_complex	(305.5+440.4j)	(270.1+409.8j)	(192.3+320.6j)	(222.3+343.6j)	(272+427.6j)	(252.4+388.4j)	(172.2+276.5j)	(172.2+276.5j)	(159.7+324.4j)	[(147.1+303.7j)]
b_max_modul	536.0	490.8	373.9	409.2	506.7	463.2	325.7	325.7	361.6	[337.4]
b_max_arg, DEG	55.3	56.6	59.0	57.1	57.5	57.0	58.1	58.1	63.8	[64.2]

Таблица 2 — Метрики и результаты прогноза целевой переменной для dataset_1 (random_state = 1903 для train_test_split)

	LinearRegr	Ridge	Lasso	ElasticNet	TheilSenRegr	Mean	NeuralNet_balance	NeuralNet_best	Regularized	Accurate
R2 train	0.986	0.986	0.986	0.986	0.986	0.986	0.974	0.974	0.932	
R2 test	0.985	0.984	0.985	0.985	0.985	0.985	0.961	0.961	0.929	
b_max_complex	(208.3+343.9j)	(166.9+329.5j)	(220.4+327.8j)	(217.1+327.2j)	(194.9+341.7j)	(201.5+334j)	(173.8+276.7j)	(173.8+276.7j)	(160+325.1j)	[147.1+303.7j]
b_max_modul	402.0	369.4	395.0	392.7	393.4	390.1	326.8	326.8	362.3	[337.4]
b_max_arg, DEG	58.8	63.1	56.1	56.4	60.3	58.9	57.9	57.9	63.8	[64.2]

Таблица 3 — Метрики и результаты прогноза целевой переменной для dataset_1 (обучение на полном наборе данных)

	LinearRegr	Ridge	Lasso	ElasticNet	TheilSenRegr	Mean	NeuralNet_best	Regularized	Accurate
R2	0.987	0.986	0.986	0.986	0.986	0.986	0.969	0.933	
b_max_complex	(210.9+350.8j)	(173.2+330.8j)	(185.3+314.6j)	(192+321.2j)	(201.8+364.4j)	(192.6+336.4j)	(178+272.4j)	(160+325.1j)	(147.1+303.7j)
b_max_modul	409.4	373.4	365.1	374.2	416.6	387.6	325.4	362.3	337.4
b_max_arg, DEG	59.0	62.4	59.5	59.1	61.0	60.2	56.8	63.8	64.2

Таблица 4 — Метрики и результаты прогноза целевой переменной для dataset_2 (random_state = 1994 для train_test_split)

	LinearRegr	Ridge	Lasso	ElasticNet	TheilSenRegr	Mean	NeuralNet_balance	NeuralNet_best	Regularized	Accurate
R2 train	0.99	0.99	0.989	0.989	0.989	0.989	0.97	0.97	0.936	
R2 test	0.977	0.978	0.98	0.98	0.977	0.979	0.966	0.966	0.907	
b_max_complex	(288.5+435.5j)	(273.2+420.6j)	(231.6+337.5j)	(231.4+337.6j)	(271.9+439.1j)	(259.3+394.1j)	(172.1+275.1j)	(172.1+275.1j)	(159.9+324.5j)	[(147.1+303.7j)]
b_max_modul	522.3	501.6	409.3	409.3	516.5	471.7	324.5	324.5	361.8	[337.4]
b_max_arg, DEG	56.5	57.0	55.5	55.6	58.2	56.7	58.0	58.0	63.8	[64.2]

Таблица 5 — Метрики и результаты прогноза целевой переменной для dataset_2 (random_state = 1961 для train_test_split)

	LinearRegr	Ridge	Lasso	ElasticNet	TheilSenRegr	Mean	NeuralNet_balance	NeuralNet_best	Regularized	Accurate
R2 train	0.987	0.987	0.987	0.987	0.987	0.987	0.972	0.972	0.93	
R2 test	0.985	0.986	0.987	0.986	0.983	0.986	0.96	0.96	0.939	
b_max_complex	(102.5+215.9j)	(153.5+297.8j)	(155.8+281j)	(158.6+292.2j)	(91.8+216.5j)	(132.4+260.7j)	(172.4+278.3j)	(172.4+278.3j)	(160.4+325.4j)	[(147.1+303.7j)]
b_max_modul	239.0	335.0	321.3	332.5	235.1	292.4	327.4	327.4	362.8	[337.4]
b_max_arg, DEG	64.6	62.7	61.0	61.5	67.0	63.1	58.2	58.2	63.8	[64.2]

Таблица 6 — Метрики и результаты прогноза целевой переменной для dataset_2 (обучение на полном наборе данных)

	LinearRegr	Ridge	Lasso	ElasticNet	TheilSenRegr	Mean	NeuralNet_best	Regularized	Accurate
R2	0.987	0.987	0.987	0.987	0.987	0.987	0.968	0.933	
b_max_complex	(190+321.4j)	(170.4+329.7j)	(188.3+299.4j)	(207.6+310.3j)	(175.5+323.5j)	(186.4+316.9j)	(178.5+272.6j)	(160.4+325.4j)	(147.1+303.7j)
b_max_modul	373.4	371.1	353.7	373.3	368.0	367.6	325.8	362.8	337.4
b_max_arg, DEG	59.4	62.7	57.8	56.2	61.5	59.5	56.8	63.8	64.2

Таблица 7 — Метрики и результаты прогноза целевой переменной для dataset_0 (обучение на полном наборе данных)

	LinearRegr	Ridge	TheilSenRegr	Mean	NeuralNet_best	Regularized	Accurate
R2	1.0	1.0	1.0	1.0	0.977	1.0	
b_max_complex	(147.1+303.7j)	(147.1+303.7j)	(147.1+303.7j)	(147.1+303.7j)	(179.2+272.1j)	(147.1+303.7j)	(147.1+303.7j)
b_max_modul	337.4	337.4	337.4	337.4	325.8	337.4	337.4
b_max_arg, DEG	64.2	64.2	64.2	64.2	56.6	64.2	64.2

Примечание. dataset_0 сгенерирован при коэффициентах $\mathbf{z} = (0.04 + j0.02, 0.035 + j0.015, 0.03 + j0.02, 0.02 + j 0.012, 0.016 + j0.01)$

3. Анализ прогнозов различных моделей

Для dataset_1 комплексный диапазон осредненного прогноза Mean различных моделей регрессоров Scikit-learn составил (192,6 \div 252,4) + j(276,5 \div 336,4). Комплексный диапазон прогноза двухслойной нейронной сети составил (172,2 \div 178,0) + j(272,4 \div 276,7). Комплексный диапазон прогноза модели регуляризации Тихонова, учитывающей информацию о погрешности измерения предикторов и целевой переменной, составил (159,7 \div 160,0) + j(324,4 \div 325,1).

Для dataset_2 комплексный диапазон осредненного прогноза Mean различных моделей регрессоров Scikit-learn составил $(132,4 \div 259,3) + j(260,7 \div 394,1)$. Комплексный диапазон прогноза двухслойной нейронной сети составил $(172,1 \div 178,5) + j(272,6 \div 278,3)$. Комплексный диапазон прогноза модели регуляризации Тихонова, учитывающей информацию о погрешности измерения предикторов и целевой переменной, составил $(159,9 \div 160,4) + j(324,5 \div 325,4)$.

Для dataset_0 значение прогноза составляет 147,1+j303,7. Это же значение получается при вычислении **точного прогноза** по выражению $b_{\rm max}=A_{\rm max}\cdot z$, где $z=(0.04+j0.02,\ 0.035+j0.015,\ 0.03+j0.02,\ 0.02+j\ 0.012,\ 0.016+j0.01)$ — коэффициенты регрессии для генерации dataset_0. Значение прогноза модели регуляризации Тихонова с учетом того, что погрешности измерения переменных для dataset_0 равны нулю, также составило 147,1+j303,7. Значение прогноза двухслойной нейронной сети для dataset_0 составило 179,2+j272,1.

Таким образом, несмотря на отличные метрики всех моделей регрессоров из библиотеки Scikit-learn, результаты их прогнозов не только имеют неприемлемую точность, но и являются неустойчивыми — небольшие погрешности измерений данных приводят к недопустимым погрешностям прогноза целевой переменной (в терминологии ML это означает, что модели переобучаются). Максимальный модуль разброса (variance) осредненного прогноза различных моделей регрессоров достигает 24% при модуле смещения (bias) 18%.

При этом результаты прогнозов двухслойной нейронной сети прямого распространения являются достаточно устойчивыми и имеют приемлемую точность. Максимальный модуль разброса (variance) прогноза достигает 1,5% при модуле смещения (bias) 12%.

Наилучшие устойчивые прогнозы с приемлемой точностью выдает модель регуляризации Тихонова, учитывающая информацию о погрешности измерения предикторов и целевой переменной. Максимальный модуль разброса (variance) прогноза модели регуляризации Тихонова достигает 0,2% при модуле смещения (bias) 7%.

4. Выводы

- 1. Алгоритмы Scikit-learn и TensorFlow не поддерживают работу с комплексными числами, что не позволяет построить непосредственные модели регрессии для данных, содержащих комплексные числа, с помощью стандартных регрессоров Scikit-learn и нейронных сетей TensorFlow.
- 2. Разработан метод преобразования исходного датасета размером $M \times N$ с комплексными числами в датасет размером $2M \times (2N-1)$ с вещественными числами, что позволяет использовать для построения достоверных моделей регрессии комплексных чисел стандартные регрессоры Scikit-learn и нейронные сети TensorFlow.
- 3. Игнорирование даже незначительной погрешности измерения значений предикторов и целевой переменной может привести к крайне большой погрешности прогноза экстраполяции регрессии (как для наборов данных, содержащих комплексные числа, так и для наборов данных, содержащих только вещественные числа).
- 4. Модели регрессоров Scikit-learn, обученные на наборах данных с мультиколлинеарными предикторами по условию оптимизации стандартных метрик Scikit-learn, могут привести к неустойчивым прогнозам экстраполяции с недопустимой погрешностью.
- 5. Для наборов данных с мультиколлинеарными предикторами для получения устойчивого прогноза экстраполяции с допустимой погрешностью следует использовать модель регуляризации Тихонова, учитывающую информацию о погрешности измерения предикторов и целевой переменной.
- 6. Для получения устойчивого прогноза экстраполяции с допустимой погрешностью при отсутствии информации о погрешности измерения предикторов и целевой переменной следует использовать модели нейронных сетей прямого распространения с подбором оптимального числа нейронов на каждом слое по условию оптимизации стандартных метрик Scikit-learn.

Список литературы

1. Тихонов А. Н., Гончарский А. В., Степанов В.В., Ягола А. Г. Регуляризирующие алгоритмы и априорная информация. – М.: Наука, 1983. – 200 с.