Gauss Jacobi

```
GaussJacobi[Ao_, bo_, Xo_, maxiter_] :=
In[∘ ]:=
          Module \{A = N[Ao], b = N[bo], xk = Xo, xk1, i, j, k = 0,
             n, m, OutputDetails},
           Size = Dimensions[A];
           n = Size[1];
           m = Size[2];
           If [n \neq m]
            Print["This square matrix cannot proceed with Gauss Jacobi Method !!"];
             Return[]];
           OutputDetails = {xk};
           xk1 = Table[0, {n}];
           While k < maxiter,
            For i = 1, i \le n, i++,
              xk1∏i∏ =
                1 / A[i, i] \left[ b[i] - \sum_{j=1}^{i-1} A[i, j] * xk[j] - \sum_{j=i+1}^{n} A[i, j] * xk[j] \right];
             k++;
             OutputDetails = Append[OutputDetails, xk1];
             xk = xk1; |;
            colHeading = Table[X[k], {k, 1, n}];
           Print[
             NumberForm[TableForm[OutputDetails, TableHeadings → {None, colHeading}], 6]];
           Print["Number of iterations Performed", maxiter];];
        A = \{\{5, 1, 2\}, \{-3, 9, 4\}, \{1, 2, -7\}\};
        b = \{10, -14, -33\};
        Xo = \{0, 0, 0\};
        GaussJacobi[A, b, Xo, 15];
```

X[1]	X[2]	X[3]
0	0	0
2.	-1.55556	4.71429
0.425397	-2.98413	4.55556
0.774603	-3.43845	3.92245
1.11871	-3.04067	3.84253
1.07112	-2.89044	4.00534
0.975953	-2.97867	4.04146
0.979148	-3.02644	4.00266
1.00422	-3.00813	3.98947
1.00584	-2.99391	3.99828
0.99947	-2.99729	4.00257
0.998428	-3.00132	4.0007
0.999985	-3.00083	3.9994
1.00041	-2.99974	3.99976
1.00004	-2.99976	4.00013
0.999898	-3.00004	4.00008

Number of iterations Performed15