압연공정 불량 발생

원인 분석

성수호

압연공정 불량 발생 원인 분석

STEEL KIND

FUR_HZ_TEMP

- ✓ STEEL_KIND : 특정 범주에서 불균형한 불량률을 보이면서 종류에 따라 불량에 영향을 미칠 수 있을 것이다.
- ✓ FUR_HZ_TEMP : 가열대의 온도가 높아질수록 불량품 발생 빈도수가 급격하게 높아진다. 온도에 따른 가열 대에서 문제가 발생할 수 있으므로 분석이 필요하다.
- ✓ FUR HZ TIME : 작업 초반의 경우 불량률이 평균에 유사하지만 특정 시간대에서 불규칙한 비율을 보인다.

압연공정 불량 발생 원인 분석

HSB SCALE 불량 양품	미적용	적용
	33 0	198 489
HSB SCALE	미적용	적용
물량 양품	1.0 0.0	0.288 0.712
	HSB	}

- ✓ ROLLING_DESCALING : 5,7회에서 불량품만 나오며 전체적으로 불량률이 평균보다 높기 때문에 조사 필요.
- ✓ HSB: HSB를 미적용하면 불량만 발생하므로 분석이 필요.
- ✓ FUR_EXTEMP : 추출온도 범위 내에서 불량품 발생률이 극단적으로 차이가 나므로 설명변수로 채택한다.
- ✓ ROLLING TEMP T5: 압연온도는 800도 부근에서 작업이 시작. 0도에서 발생한 데이터는 이상치로 분류.

압연공정 불량 발생 원인 분석

- ✓ FUR_SZ_TEMP : 균열대 온도 범위 내에서 불량품 발생률이 극단적으로 차이가 나므로 설명변수로 채택한다.
- ✓ FUR_SZ_TIME : : 중간 시간대에서 양품과 불량품의 발생 빈도가 같으므로 분석이 필요.
- ✓ FUR_TIME : 가열로 시간이 짧을 수록 불량률이 규칙적이나 150 이상이 되면 불량률이 50%를 초과한다.

압연공정 불량 발생 원인 분석

SPEC	A131-DH36TM	A283-C	A516-60	A709-36	AB/A	AB/AH32	AB/B	AB/EH32-1	M \
SCALE 불량 양품		1 5 0 1	1		4	1 4	3		0 2
SPEC SCALE	AB/EH36-TM	API-2W-5	θТ	NV - A32 - TM	NV-A3	6-TM NV	B NV	D32-TM \	
불량 양품	1 16		0		1	θ 2	2 1	θ 4	
SPEC SCALE	NV-D36-TM	NV-E32-TM	NV-E36-	TM PILAC	BT33	SA283-C	V42JBN	13	
불량 양품	1 4		θ 2	θ 5	2 38	10 11		1 3	
[2 row:	s x 66 colum	ıns]							
SPEC SCALE	A131-DH36TM	A283-C	A516-60	A709-36	AB/A	AB/AH32	AB/B	\	
불량 양품	1. 0.		0.5 0.5		0.571 0.429				
SPEC SCALE	AB/EH32-TM	AB/EH36-	TM API-2			32-TM N	/-A36-1	TM NV-B	1
불량 양품	0.6 1.6		059 941			0.333 0.667		0.0 0.667 1.0 0.333	
SPEC SCALE	NV - D32 - TM	NV - D36 - TM	NV-E32-	TM NV-E3	5-TM P	PILAC-BT3	3 SA28	33-C \	
불량 양품	0.0 1.0	θ.		0.0 1.0	0.0 1.0	0.0 0.9		9.476 9.524	
SPEC	V42JBN3								
SCALE 불량 양품	0.25 0.75								

WORK_GR SCALE 불량 67 45 54 65 양품 122 120 118 129 WORK_GR 1조 2조 3조 4조 SCALE 불량 0.354 0.273 0.314 0.335 양품 0.646 0.727 0.686 0.665

SPEC

FUR NO

FUR NO ROW

WORK GR

- ✓ SPEC : 범주가 너무 많아서 위 자료로 유의미성을 파악하기 어렵다. 새로운 범주로 만들어 분석할 필요가 있다.
- ✔ FUR NO : 가열로의 전 호기에 대해 불량률이 유사하므로 변수에서 제외한다.
- ✓ FUR NO ROW: 가열로의 작업순번과 상관없이 불량률이 유사하므로 변수에서 제외한다.
- ✓ WORK_GR : 불량률이 전체적으로 0.3에 근사하기 때문에 작업조 데이터는 크게 유효하지 않을 것이다.
- ✓ 제품의 사이즈와 관련된 변수들은 주문자 생산방식을 고려하여 사이즈 변경이 불가하다 판단했고, 그래서 변수에서 제외 하였다.

탐색적 분석 (이상치 제거)

압연공정 불량 발생 원인 분석


```
1 q1 = np.percentile(df_raw['ROLLING TEMP_T5'],25)
 2 q3 = np.percentile(df_raw['ROLLING_TEMP_T5'],75)
 3 minimum=q1-1.5*(q3-q1)
 4 df raw=df raw[df raw['ROLLING TEMP T5']>=float(minimum)]
 5 df raw['ROLLING TEMP T5'].describe()
          713.000000
count
          942.075736
mean
          65.344140
std
min
          745,000000
25%
          891.000000
50%
          952.000000
75%
          995.000000
         1078.000000
max
Name: ROLLING TEMP T5, dtype: float64
```

- ✓ 압연온도가 보통 800도 쯤에서 작업이 시작되는데 0도에서는 가열이 되지 않는 것이 당연하므로 이상치로 판단하고 제거한다.
- ✓ 사분위수를 계산하여 최소값 보다 작은 이상치를 제거한다.

탐색적 분석 (변수 중요도 파악)

압연공정 불량 발생 원인 분석

Ţ		Feature	Importance
ij	6	ROLLING_TEMP_T5	0.639
i	17	HSB_미적용	0.197
H	5	FUR_EXTEMP	0.156
Ų	7	ROLLING_DESCALING	0.008
	0	FUR_HZ_TEMP	0.000
	13	STEEL_KIND_T3	0.000
	21	WORK_GR_3조	0.000
	20	WORK_GR_2조	0.000
	19	WORK_GR_1조	0.000
	18	HSB_적용	0.000
	16	STEEL_KIND_T8	0.000
	15	STEEL_KIND_T7	0.000
	14	STEEL_KIND_T5	0.000
	11	STEEL_KIND_T0	0.000
	12	STEEL_KIND_T1	0.000
	1	FUR_HZ_TIME	0.000
	10	STEEL_KIND_C3	0.000
	9	STEEL_KIND_C1	0.000
	8	STEEL_KIND_C0	0.000
	4	FUR_TIME	0.000
	3	FUR_SZ_TIME	0.000
	2	FUR_SZ_TEMP	0.000
	22	WORK_GR_4조	0.000

Check POINT

✓ Decision Tree에서 변수 중요도를 계산하여 위와 같은 변수 순서로 설명력이 높다는 것을 알았다.

탐색적 분석 (로지스틱 회귀분석)

압연공정 불량 발생 원인 분석

	unction value			d.		
Iterations		t Regress	ion Results			
						==
Dep. Variable:			No. Observatio	ns:	4	
Model:			Df Residuals:		4	
Method:			Df Model:			_
Date:			Pseudo R-squ.:		0.53	71
Time:	22	:54:13	Log-Likelihood	:	-146.	27
converged:		False	LL-Null:		-315.	98
Covariance Type:	nor	robust	LLR p-value:		3.308e-	71
			Z		[0.025	0.975]
Intercept			-5.933		-131.034	-65.960
ROLLING TEMP T5	0.0371	0.005	8.144	0.000	0.028	0.046
ROLLING_TEMP_T5 HSB_미적용	36.3964	2.37e+06	1.54e-05	1.000	-4.64e+06	4.64e+06
FUR_EXTEMP						
ROLLING DESCALING	-0.8108	0.151	-5.377	0.000	-1.106	-0.515
FUR HZ TEMP	0.0303	0.014	2.209	0.027	0.003	0.057

- ✓ 설명 변수가 얼마나 영향이 있는지 서로 비교하기 위해 표준화(scaling)을 했다.
- ✓ 로지스틱 회귀분석에서는 ROLLING_TEMP_T5의 값이 커질수록 불량률의 영향이 커진다.
- ✓ 강종(STEEL KIND)가 T3일 경우 불량률이 낮아질 가능성이 커진다.

모델링 1. 랜덤포레스트

압연공정 불량 발생 원인 분석

	Feature	Importance
6	ROLLING_TEMP_T5	0.355
2	FUR_SZ_TEMP	0.138
5	FUR_EXTEMP	0.133
17	HSB_미적용	0.074
7	ROLLING_DESCALING	0.064
18	HSB_적용	0.053
8	STEEL_KIND_C0	0.046
1	FUR_HZ_TIME	0.031
4	FUR_TIME	0.029
3	FUR_SZ_TIME	0.029
0	FUR_HZ_TEMP	0.028
16	STEEL_KIND_T8	0.016
15	STEEL_KIND_T7	0.001
19	WORK_GR_1조	0.001
21	WORK_GR_3조	0.000
22	WORK_GR_4조	0.000
20	WORK_GR_2조	0.000
11	STEEL_KIND_T0	0.000
12	STEEL_KIND_T1	0.000
14	STEEL_KIND_T5	0.000
13	STEEL_KIND_T3	0.000
10	STEEL_KIND_C3	0.000
9	STEEL_KIND_C1	0.000


```
Accuracy on training set:0.954
Accuracy on test set:0.935
Confusion Matrix:
[[147 0]
[ 14 53]]
```

- ✓ 트리 생성 시 압연온도, 균열대 온도 순으로 영향도가 크다고 해석할 수 있다.
- ✓ 변수 중요도는 낮더라도 훈련 데이터에 따라 중요도가 변경될 수 있다.

모델링 2. 그래디언트 부스팅

압연공정 불량 발생 원인 분석

	Feature	Importance
6	ROLLING_TEMP_T5	0.768
0	FUR_HZ_TEMP	0.052
2	FUR_SZ_TEMP	0.048
5	FUR_EXTEMP	0.042
7	ROLLING_DESCALING	0.035
4	FUR_TIME	0.018
3	FUR_SZ_TIME	0.013
1	FUR_HZ_TIME	0.011
22	WORK_GR_4조	0.008
19	WORK_GR_1조	0.005
16	STEEL_KIND_T8	0.001
21	WORK_GR_3조	0.000
9	STEEL_KIND_C1	0.000
10	STEEL_KIND_C3	0.000
8	STEEL_KIND_C0	0.000
12	STEEL_KIND_T1	0.000
13	STEEL_KIND_T3	0.000
14	STEEL_KIND_T5	0.000
15	STEEL_KIND_T7	0.000
17	HSB_미적용	0.000
18	HSB_적용	0.000
20	WORK_GR_2조	0.000
11	STEEL_KIND_T0	0.000


```
Accuracy on training set:0.944
Accuracy on test set:0.935
Confusion matrix:
[[146 1]
[ 13 54]]
```

- ✓ 트리 생성 시 랜덤포레스트와 유사하게 압연온도, 균열대 온도 순으로 영향도를 보여주고 있다.
- ✓ 변수 중요도는 낮더라도 훈련 데이터에 따라 중요도가 변경될 수 있다.

모델링 3. SVM

압연공정 불량 발생 원인 분석

Check POINT

✓ 적절한 C와 gamma를 찾기 위해 scaling이 선행 되었고, 그 결과로 높은 정확도의 모델 형성

모델링 4. 인공신경망

압연공정 불량 발생 원인 분석

- ✓ 2개의 은닉층에 160개의 노드를 넣어 오차 최소화
- ✓ 활성화 함수로는 정확도가 가장 높은 relu를 선택했다.
- ✓ adam이 test에서 실제값과 예측값의 차이를 가장 최소화 한다.
- ✓ 전체 학습 데이터를 batch 사이즈로 등분하여 test의 오차를 줄인다.

모델 평가

압연공정 불량 발생 원인 분석

	TrainAccuracy	TestAccuracy	F1Score	AUC
RandomForest	0.954	0.935	0.857	0.896
GradientBoosting	0.944	0.935	0.883	0.900
SupportVectorMachine	0.928	0.869	0.885	0.844
NeuralNet	0.984	0.907	0.788	0.891

AUC(AREA UNDER COVER)

: 1에 가까울 수록 완벽한 모델

- ✓ train과 test에 대한 정확도 차이를 각 모델별 비교했을 때 인공신경망의 train 정확도가 가장 높지만 test의 정확도가 너무 낮아 과적합이 예상된다.
- ✓ 그래디언트 부스팅은 테스트에 가장 적합한 모델이며 AUC도 가장 높게 나왔다.
- ✓ 인공신경망은 낮은 F1 score를 보여주는데 이는 모델의 정밀도 혹은 재현율의 균형이 제일 안 좋다는 의미.

결과 해석

압연공정 불량 발생 원인 분석

