

TTI109 - Estatística

Aula 06 - Estatística Descritiva 05

Vamos investigar as *separatrizes* para especificar a posição de um elemento dentro de um conjunto de dados.

Separatrizes são números que partilham, ou dividem, um conjunto de dados ordenado em partes iguais (com o mesmo número de elementos).

A <u>mediana é uma separatriz</u> porque divide um conjunto de dados ordenado em duas partes com quantidades iguais de elementos.

Quartis

Definição

Os três **quartis**, Q_1 , Q_2 e Q_3 , dividem um conjunto de dados ordenado em quatro partes iguais. Aproximadamente 1/4 dos dados recai sobre ou abaixo do **primeiro quartil** Q₁. Aproximadamente metade dos dados recai sobre ou abaixo do **segundo quartil** Q_2 (o segundo quartil é o mesmo que a mediana do conjunto de dados). Aproximadamente 3/4 dos dados recaem sobre ou abaixo do **terceiro quartil** Q_2 .

Encontrando os quartis de um conjunto de dados

O número de usinas nucleares nos 15 maiores produtores de energia nuclear no mundo está listado a seguir. Encontre o primeiro, o segundo e o terceiro quartis do conjunto de dados. O que você observa? (*Fonte: International Atomic Energy Agency.*)

Como fazer?

16

6 58 9 20 50 23 33 8 10 15 16 104

- 1 Ordene o conjunto de dados e encontre a mediana
- 2 O primeiro quartil, , é a mediana dos valores à esquerda de
- O terceiro quartil, , é a mediana dos valores à direita de

A mediana (o segundo quartil) é uma medida de tendência central baseada na posição. A medida de variação que é baseada na posição é a amplitude interquartil, que indica a dispersão dos 50% centrais.

Definição

A **amplitude interquartil (AIQ)** de um conjunto de dados é uma medida de variação que fornece a amplitude da porção central (aproximadamente metade) dos dados. A AIQ é a diferença entre o terceiro e o primeiro quartis. $AIQ = Q_3 - Q_1$

Um *outlier* está muito distante dos demais valores do conjunto de dados. Uma forma de identificar *outliers* é usar a amplitude interquartil.

Instruções

Usando a amplitude interquartil para identificar outliers

- **1.** Encontre o primeiro (Q_1) e o terceiro (Q_2) quartis do conjunto de dados.
- **2.** Encontre a amplitude interquartil: AIQ = $Q_3 Q_1$.
- 3. Multiplique a AIQ por 1,5: 1,5 (AIQ).
- **4.** Subtraia 1,5 (AIQ) de Q_1 . Qualquer valor menor que Q_1 1,5 (AIQ) é um *outlier*.
- **5.** Adicione 1,5 (AIQ) à Q_3 . Qualquer valor maior que $Q_3 + 1,5$ (AIQ) é um *outlier*.

O número de usinas nucleares nos 15 maiores produtores de energia nuclear no mundo está listado a seguir. Encontre o primeiro, o segundo e o terceiro quartis do conjunto de dados. O que você observa? (Fonte: International Atomic Energy Agency.)

7 20 16 6 58 9 20 50 23 33 8 10 15 16 10-

Existem
outliers nesse
conjunto de
dados?

(não se aplica!)

$$Q_1 = 9eQ_3 = 33$$

Amplitude interquartil:

¬¬ Para se identificar outlier:

Valores à esquerda de Q_2 Valores à direita de Q_2 Valores à direita de Q_2 Outlier

Outlier

Conclusão: O número de usinas nucleares na porção central do conjunto de dados varia por, no máximo, 24. O *outlier*, 104, não afeta a .

Aplicação dos quartis: representar conjuntos de dados usando diagramas

de caixa-e-bigode ou boxplots.

boxplot é uma ferramenta de análise exploratória que destaca características importantes de um conjunto de

dados.

1. O valor mínimo

4. O terceiro quartil Q_3

2. O primeiro quartil Q_1

5. O valor máximo

Instruções

3. A mediana Q_2

Desenhando um boxplot

- 1. Determine o resumo dos cinco números do conjunto de dados.
- 2. Construa uma escala horizontal que se estenda sobre a amplitude dos dados.
- 3. Represente os cinco números sobre a escala horizontal.
- **4.** Desenhe uma caixa em cima da escala horizontal de Q_1 a Q_3 , e desenhe uma linha vertical na caixa, em Q_2 .
- 5. Desenhe os bigodes da caixa para os valores mínimo e máximo.

Percentis e outras separatrizes

Separatriz	Resumo	Símbolos		
Quartis	Divide um conjunto de dados em 4 partes iguais	Q_1, Q_2, Q_3		
Decis	Divide um conjunto de dados em 10 partes iguais	$D_1, D_2, D_3,, D_9$		
Percentis	Divide um conjunto de dados em 100 partes iguais	$P_1, P_2, P_3,, P_{99}$		

Definição

Para encontrar o **percentil que corresponde a um valor específico x**, use a fórmula:

Percentil de
$$x = \frac{\text{número de elementos menores que } x}{\text{número total de elementos}} \cdot 100$$

e então arredonde o resultado para o valor inteiro mais próximo.

Conjunto de dados ordenado:
Custos com ensino superior (em milhares de dólares)

19	22	23	23	26	26	27	27	27	30	31	32	32
33	34	34	38	38	40	41	42	44	45	45	46	

¬¬ Qual o percentil correspondente a US\$

30,000 são menores do que US\$ 30.000

25 amostras no total

Percentil de 30 =
$$\frac{\text{número de elementos menores que 30}}{\text{número total de elementos}} = \frac{9}{25} \cdot 100 = 36$$

Interpretação: O custo com ensino em 36% das faculdade pesquisadas é inferior ou igual a US\$ 30.000.

Escore padrão

Definição

O **escore padrão** ou **escore-**z representa o número de desvios padrão em que um valor x encontra-se a partir da média μ . Para calcular o escore-z para um valor, use a fórmula a seguir:

$$z = \frac{\text{valor} - \text{m\'edia}}{\text{desvio padr\~ao}} = \frac{x - \mu}{\sigma}.$$

Um <u>escore-z</u> pode ser usado para <u>identificar valores incomuns</u> de um conjunto de dados que seja aproximadamente em formato de sino

Médias e desvios padrão de populações de homens e mulheres

Altura dos homens	Altura das mulheres

Compare os escores-z de um homem e uma mulher com 1,83 m de altura. Admita que as distribuições das alturas sejam aproximadamente em formato de sino (chamadas de normais ou gaussianas).

$$z_H = \frac{x_H - \mu_H}{\sigma_H} = \frac{183 - 177,6}{7,6} = 0,71$$
 $z_M = \frac{x_M - \mu_M}{\sigma_M} = \frac{183 - 163,3}{6,6} = 2,98$

$$z_H = 0.71$$

O escore-z para o homem com 1,83 m de altura está dentro de 1 desvio padrão da média, designando uma altura típica para um homem dessa população.

$$z_M$$
=2,98

O escore-z para a mulher com 1,83 m de altura está a quase 3 desvios padrão da média, designando uma altura incomum para uma mulher dessa população.

TTI109 - Estatística

Aula 06 - Estatística Descritiva 05

