程序代写代做 CS编辑编码 PDBs

Single Agent So

Lecture 7 **Enhanced Pattern Databas**

UNIVERSITY OF DENVER

- Add values together from disjoint PDBs
- Compressed
 - Min Compression
 - Partial Pattern Databases
 - Bloom Filters
- Dual
- Symmetry

<u>cstutores</u>

Assignment Project Exam Help

Additive PDBs Email: tutorcs@163.com Example

- In regular PDBs we counted all actions as cost 1 whether or not they moved a tile in the pattern
- Alternatively: Only count action costs they move at tile in the pattern
 - If every action only moves a single element, this, results in an additive PDB
- Complicates building the PDB, because introduces 0-cost actions
 - Need to avoid cycles in 0-cost actions

- Manhattan Distance
- Can be seen as relaxation of logical formulation
 - Can also be seen as N-1 additive PDBs
- · Pre-compute and store distance from each tile tps://tutorcs.com/Add the results together (instead of max) to its goal location

Single Agent Search

- Reduce the memory used by a PDB
- · Choose a function which maps the ra into a smaller range of ranks
 - · Could use hash function, div, mod
 - Take the min of all entries that map range to preserve admissibility

WeChat: cstutorcs

- To compress by a factor of N:
 - · Compute rank, divide by N
- Example: N = 2

Original PDB:

	1	2	3	4	5	6	7	8
--	---	---	---	---	---	---	---	---

Compressed PDB:

1	2	3	4	5	6	7	8
- 							

UNIVERSITY OF DENVER

Assignment Project Exam Help

Min Compression MOD tutorcs@163.compression

- To compress to PDB size N:
 - · Compute rank, mod by N
- Example: N = 4

Original PDB:

- https://tutorcs.compress Larger heuristic
- Compressed PDB:

QQ: 74938947.6 can manipulate values to be more similar

- Need entries compressed together to be as similar as possible (DIV better than MOD in example)
- Delta Heuristic
 - Subtract a smaller heuristic from larger heuristic
 - Sliding Tile Puzzle with Manhattan Distance
 - Compute PDB: Subtract MD: Compress PDB
 - Better than just compressing PDB

- In regular search, low values are most important
 - · High values are not used very often in the search (especially at larger depths)
 - · Only store the low values in the search
 - · Initial implementation: Anderson, et al

WeChat: cstutorcs

Assignment Project Exam Help

Bloom Filter Email: tutorcs@163.com Filter

- · Bloom filters test set membership
 - Always return true if set membership is true.
 - May return true when membership is false
- · Can be used for heuristics
 - Use a bloom filter for each depth, slarting by: //tutorcs.com

Single Agent Search

- If we get the incorrect depth, result is stilladmissible
- In practice use hash table first, then bloom filter

- Bloom filters can implement PPDBs
- Don't need to store all levels of the PDB
 - Only store shallow levels
 - · Get most of the gain in practice

Dual Lookup程序代写代做 CS编辑集Pokups

UNIVERSITY OF DENVER

- In pure permutations, we can ask what permutation takes us from the current state to the
 - . Know this even if we don't know the that achieve it
- If we apply this permutation to the gold dual state
 - · Guaranteed to be the same distance
 - Can perform another lookup from this state

- In practice dual representation is easy to compute
 - Location-based versus tile-based representation
- Can represent this state as:

•[1 3 0 2]

- Each entry represents the tile in the location
- Location 1 has the 3
- •[2031]
 - Each entry represents the location of the tile (0 to 3)
 - The 0 is in location 2

WeChat: cstutorcs

Assignment Project Exam Help

Dual Lookups Lutorcs@163.commetry

- Dual lookups can be inconsistent
 - •The neighbors of the dual of a state are not the 749389 duals of the neighbor
- Only works on pure permutations
 - Available actions cannot depend on the values of tutores. Commercial symmetric lookup improves the
 - Doesn't work for sliding-tile puzzle
 - Depends on the blank

- In some states spaces other types of symmetry exists
- Alternate states that are guaranteed to be at the same solution depth
 - · eg flip sliding-tile puzzle around a diagonal
- average heuristic value
 - See original PDB paper for examples

Single Agent Search