Механизмы внимания для генерации описания изображения Практикум на ЭВМ 2017/2018

Филимонов Владислав Аскольдович, студент 317 группы

МГУ имени М. В. Ломоносова, факультет ВМК, кафедра ММП

10 мая 2018 г.

Постановка задачи генерации описания изображения

Для любой картинки нужно сопоставить описание y - последовательность one-hot-encoded слов из словаря.

$$y = \{y_1, \dots, y_C\}, y_i \in R^K, K = \|Dictionary\|$$

Puc.: Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

Решение с архитектурой encoder-decoder

Решение данной задачи может иметь следующую архитектуру:

- Encoder для поиска "хорошего представления данных" (например, первые слои CNN).
- Механизм внимания для поиска "важных" данных.
 - Decoder, переводящий последовательность данных, выбранных механизмом внимания, в последовательность слов (например, LSTM).

Далее будет рассмотрено решение, описанное в [1]

Encoder

В качестве кодировщика была использована CNN, которая выделила L annotation векторов размерности D,

$$a = \{a_1, \ldots, a_L\}, \ a_i \in R^D$$

так, что каждый вектор соответствовал некоторой области исходной картинки. Например, если после сверточных слоев данные имели размер $14 \times 14 \times 512$, тогда L=196,~D=512.

Decoder

В качестве декодера использовалась LSTM сеть, которая генерировала описание по слову за один шаг, основываясь на context векторе ($\hat{z_t} \in R^D$ сгенерировано с помощью механизма внимания), предыдущем hidden state ($h_{t-1} \in R^n$) и предыдущем сгенерированном слове ($Ey_{t-1}, y \in R^K, E \in R^{m \times K}$).

$$\begin{pmatrix} i_t \\ f_t \\ o_t \\ g_t \end{pmatrix} = \begin{pmatrix} \sigma \\ \sigma \\ \sigma \\ tanh \end{pmatrix} T_{D+m+n,4n} \begin{pmatrix} Ey_{t-1} \\ h_{t-1} \\ \hat{z_t} \end{pmatrix}.$$

 $T_{s,t}:R^s \to R^t$ - аффинное преобразование с обучаемыми параметрами.

$$c_t = f_t \odot c_{t-1} + i_t \odot g_t.$$

$$h_t = o_t \odot \tanh(c_t).$$

Decoder

Вычисление вероятности выходного слова при заданном LSTM state(h_t), context векторе и предыдущем слове:

$$p(y_t|a, y^{t-1}) \propto \exp(L_o(Ey_{t-1} + L_h h_t + L_z \hat{z}_t)),$$

где $L_o \in R^{K \times m}$, $L_h \in R^{m \times n}$, $L_z \in R^{m \times D}$, $E \in R^{m \times K}$ - обучаемые параметры.

Механизмы внимания

Соптехт вектор $\hat{z_t}$ по сути - представление релевантной части изображения. Механизм внимания ϕ генерирует $\hat{z_t}$, основываясь на множестве всех annotation векторов и их весов, вычисленных на основе некоторой функции f_{att} (в данном решении - f_{att} - MLP):

$$e_{ti} = f_{att}(a_i, h_{t-1})$$

$$\alpha_{ti} = \frac{\exp(e_{ti})}{\sum_{k=1}^{L} \exp(e_{tk})}$$

$$\hat{z}_t = \phi(\{a_i\}, \{\alpha_{ti}\})$$

Далее будет рассмотрено два механизма внимания:

- Stohastic "Hard" Attention
- Deterministic "Soft" Attention

Stohastic "Hard" Attention

Рассмотрим бинарный вектор $s_t \in \{0,1\}^L$ (location variable), который определяет, где нужно сконцентрировать внимание при генерации t-ого слова. Введем категориальное распределение (multinoulli distribution):

$$p(s_{t,i} = 1 \mid s_{j < t}, a) = \alpha_{t,i}$$

И рассмотрим context вектор:

$$\hat{z}_t = \sum_i s_{t,i} a_i.$$

Введем целевую функцию L_s , которая является нижней оценкой логорифма правдоподобия:

$$L_s = \sum_{a} p(s \mid a) \log p(y \mid s, a) \leq \log \sum_{a} p(s \mid a) p(y \mid s, a) = \log p(y \mid a)$$

Stohastic "Hard" Attention

Для обучения градиентными методами рассмотрим производную:

$$\frac{\partial L_s}{\partial W} = \sum_s p(s \mid a) \left[\frac{\partial \log p(y \mid s, a)}{\partial W} + \log p(y \mid s, a) \frac{\partial \log p(s \mid a)}{\partial W} \right].$$

Так как, $\tilde{s_t} \sim \text{Multinoulli}_L(\{\alpha_{ti}\})$, то $\frac{\partial L_s}{\partial W}$ можно аппроксимировать методом Монте-Карло:

$$\frac{\partial L_s}{\partial W} \approx \frac{1}{N} \sum_{n=1}^{N} \left[\frac{\partial \log p(y \mid \tilde{s}^n, a)}{\partial W} + \log p(y \mid \tilde{s}^n, a) \frac{\partial \log p(\tilde{s}^n \mid a)}{\partial W} \right]$$

Существуют методы для снижения разброса этой оценки, описанные в [1]

Deterministic "Soft" Attention

В качестве context вектора в этом подходе используется матожидание context вектора из подхода Stohastic "Hard" Attention

$$\hat{z}_t = \mathbb{E}_{p(s_t|a)}[\hat{z}_t^{hard}] = \sum_{i=1}^{L} \alpha_{t,i} a_i$$

При таком выборе context вектора вся модель - дифференцируемая и обучение происходит с помощью backpropagation.

Пример для сравнения двух подходов

Puc.: Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

Примеры ошибок

Puc.: Examples of mistakes where we can use attention to gain intuition into what the model saw.

Список литературы

