Generative Model

Generative Model이란

A generative model is a statistical model of the joint probability distribution P(X,Y) on given observable variable X and target variable Y. (출처: wikipedia)

아주 정확한 설명이라고 생각하지만 처음 보고 알아듣기는 힘들다.

예시를 통해 좀 더 쉽게 이해해보자.

녹색연합 기고] 우리나라 숲에 호...

2022년 호랑이의 해... ... vonginilho com

외래종이란? 아프리카로 간 시베리아 ...

전지적 '호랑이'가 온다

2022년은 검은 호랑이의 해! 호랑이..

반려동물: 골칫거리로 전락한 애완용 호랑이 - B...

美서 '애완용' 호랑이, 야생호랑이보...

멸종위기 야생생물 포털 국립생태원 멸종위...

전 세계 7~8마리뿐이라는 '검은 호랑이'가 인도에... huffingtonpost.kr

구글에 호랑이를 검색한 결과이다. 보통 사람들은 위에 있는 각각의 사진들을 모두 **호랑이**라고 인식한다. 그리고 Generative Model 사상의 시작은 이러하다. (쉬운 설명을 위해 위 사진 모두 256x256 크기의 RGB 3채널 사진이라고 생각하자.)

"사람들이 모두 **호랑이**라고 생각하는 사진들은 모두 특정한 분포를 따르지 않을까?" (좀 더 정확히 표현하자면 "모든 호랑이 사진들은 196,608(=256x256x3)개의 각각의 pixel 값들이 196608차원의 특정한 joint distribution을 따르지 않을까?")

"그 분포를 알 수 있다면 해당 분포에서 random sampling을 하면 **호랑이** 사진이 나오지 않을까?"

좋은 아이디어라고 생각한다.

하지만 문제가 있다. 196608차원 호랑이 분포를 어떻게 알 수 있단 말인가..? 그래서 대부분의 Generative Model은 다음과 같은 생각을 하게 된다.

 $X\in\mathbb{R}^{196608}$ 의 분포를 찾기보단, m차원의 다변량정규분포를 따르는 새로운 확률변수 Z($Z\sim\mathcal{N}(0,I)$ $(Z\in\mathbb{R}^m)$)에 대해 g(Z)=X를 만족하는 g()를 찾는게 빠르지 않을까? (그러면 sampling은 그냥 $\mathcal{N}(0,I)$ 에서 하면 되니까.)

정말 놀라운 아이디어다.

수식으로 정리해보자면

$$egin{aligned} X \sim P_{tiger}(X) & where & \left(X \in \mathbb{R}^{196608}
ight) \& \left(P_{tiger}(X) \ is \ PDF \ of \ tiger \ distribution
ight) \ & Z \sim \mathcal{N}(0,I) & where & \left(Z \in \mathbb{R}^m
ight) \ & g(Z) = X & where & \left(g \ is \ generative \ function
ight) \end{aligned}$$

Generative Model 종류

앞으로 다룰 3가지의 Generative Model 모두 위와 같은 아이디어를 따른다. 다만 g()를 찾는 방법은 각각 다르다.

GAN

Generator(g())는 계속해서 샘플을 생성해내며 Discriminator는 Generator가 만든 샘플의 진위 여부를 계속해서 확인한다. 경쟁적으로 학습하며 g()를 optimize한다.

VAE

모래시계 형태를 갖는 model이 output을 input과 똑같이 return하도록 만든다. 이때 z의 분포를 특정하고, ELBO term을 이용하여 Likelihood를 Maximize하는 방향으로 모델을 (그리고 Decoder(=g())를) optimize한다.

Flow-Based Generative Model

X를 Z로 변환하는 f()를 학습하고 $f^{-1}()$ 을 g()로 활용한다.

Linear Transformation에 대한 의문

굉장히 복잡한 분포인 x가 linear transform정도로 multivariate normal distribution을 따르게 바뀔 수 있을지 의문일 수도 있다. 이는 곧 딥러닝 모델이 이렇게 복잡한 분포에 맞게 수렴할 수 있을지에 대한 의문과도 연결된다.

위 그림을 보면 normal distribution과 uniform distribution을 linear transformation을 통해 복잡한 분 포로 변화 시킨 모습을 볼 수 있다. 이를 역으로 수행하는 것 역시 가능하다.

마무리

세가지 Generative Model 모두 TTS에 굉장히 많이 활용된다. 한가지씩만 예를 들어보면

GAN: <u>HiFi-GAN</u>

VAE: VITS

Flow-Based Generative Model: Glow-TTS

모두 접하게 될 예정이며 각각의 자세한 특징은 그 때 다시 짚어볼 예정이다.