

planetmath.org

Math for the people, by the people.

completely Hausdorff

Canonical name CompletelyHausdorff
Date of creation 2013-03-22 14:16:03
Last modified on Owner PrimeFan (13766)
Last modified by PrimeFan (13766)

Numerical id 15

Author PrimeFan (13766)

Entry type Definition Classification msc 54D10

Synonym completely Hausdorff space

Synonym $T_{2\frac{1}{2}}$

Synonym Urysohn space

Related topic HausdorffSpaceNotCompletelyHausdorff

Definition 1. [?] Let (X, τ) be a topological space. Suppose that for any two different points $x, y \in X, x \neq y$, we can find two disjoint neighborhoods

$$U_x, V_y \in \tau, \qquad x \in U_x, y \in Y_y$$

such that their closures are also disjoint:

$$\overline{U_x} \cap \overline{V_y} = \emptyset.$$

Then we say that (X,τ) is a completely Hausdorff space or a $T_{2\frac{1}{2}}$ space.

Notes

A synonym for functionally Hausdorff space is $Urysohn\ space\ [?]$. Unfortunately, the definition of completely Hausdorff and $T_{2\frac{1}{2}}$ are not as standard as one would like since. For example, the term completely Hausdorff space is also used to mean a functionally Hausdorff space (e.g. [?]). Nevertheless, in the present convention, we have the implication:

functionally Hausdorff \Rightarrow completely Hausdorff \Rightarrow $T_2 =$ Hausdorff,

which suggests why the $T_{2\frac{1}{2}}$ name have been used to denote both completely Hausdorff spaces and functionally Hausdorff spaces.

References

- [1] L.A. Steen, J.A.Seebach, Jr., Counterexamples in topology, Holt, Rinehart and Winston, Inc., 1970.
- [2] S. Willard, *General Topology*, Addison-Wesley Publishing Company, 1970.