Fachbereich Mathematik & Informatik

Freie Universität Berlin

Prof. Dr. Ralf Kornhuber, Prof. Dr. Christof Schütte, Lasse Hinrichsen

## 1. Übung zur Vorlesung

## Computerorientierte Mathematik I

WS 2020/2021

http://numerik.mi.fu-berlin.de/wiki/WS\_2020/CoMaI.php

### Abgabe: Do., 26. November 2020, 12:15 Uhr

### **1. Aufgabe** (4 TP)

Bestimmen Sie nachvollziehbar (d. h. mit Zwischenschritten) die Darstellung der gegebenen natürlichen Zahlen in der jeweils angegebenen Basis:

a) 
$$5453_6 = (\dots)_2$$
, b)  $72_{10} = (\dots)_3$ , c)  $654_7 = (\dots)_9$ , d)  $17HAI_{26} = (\dots)_{36}$ .

Um Missverständnisse zu vermeiden: Sie sollen beispielsweise für Aufgabe a) die Zahl 54536, die im Hexalsystem angegeben ist, zur Basis 2 angeben, also als Binärzahl.

### **2. Aufgabe** (6 TP)

In der Schule lernt man, dass eine natürliche Zahl genau dann durch 3 teilbar ist, wenn die Summe ihrer Ziffern im Dezimalsystem ("Quersumme") durch 3 teilbar ist.

a) Beweisen Sie die obige Aussage. Genauer, zeigen Sie, dass für  $n \in \mathbb{N}$  mit

$$n = \sum_{i=0}^{k} r_i \cdot 10^i, \quad r_i \in \{0, \dots, 9\}$$

gilt, dass  $3|n \iff 3|\left(\sum_{i=0}^k r_i\right)$ .

**Hinweis:** Es gilt  $10^i = 1 + \sum_{j=0}^{i-1} 9 \cdot 10^j$ .

b) Angenommen Menschen hätten 4 Finger an jeder Hand und würden daher ein Zahlensystem zur Basis 8 nutzen. Leiten Sie eine entsprechende Teilbarkeitsregel basierend auf der Quersumme in diesem Ziffernsystem her.

### **3. Aufgabe** (2 TP)

Gegeben seien N Bits  $z_{N-1}|z_{N-2}...z_0$  (mit  $z_i \in \{0,1\}$ ), die eine ganze Zahl  $z \in \mathbb{Z}$  im **Zweierkomplement** darstellen.

Geben Sie eine Regel an, mit deren Hilfe sich durch Blick auf die Koeffizienten sagen lässt, ob z gerade ist (d. h.  $\exists k \in \mathbb{Z} : z = 2 \cdot k$ ) oder nicht. Erläutern Sie, warum Ihre Regel funktioniert.

## 4. Bonusaufgabe (Quiz) (1 Bonus TP/PP)

Formulieren Sie eine Frage zur Vorlesung. Falls Sie die Antwort wissen, geben Sie die richtige Antwort und 3 falsche Antwortmöglichkeiten an.

#### Allgemeine Hinweise

Die Punkte unterteilen sich in Theoriepunkte (TP) und Programmierpunkte (PP). Bitte beachten Sie die auf der Vorlesungshomepage angegebenen Hinweise zur Bearbeitung und Abgabe der Übungszettel, insbesondere der Programmieraufgaben.

### 1. Aufgabe (4 TP)

Bestimmen Sie nachvollziehbar (d. h. mit Zwischenschritten) die Darstellung der gegebenen natürlichen Zahlen in der jeweils angegebenen Basis:

a) 
$$5453_6 = (\dots)_2$$
, b)  $72_{10} = (\dots)_3$ , c)  $654_7 = (\dots)_9$ , d)  $17HAI_{26} = (\dots)_{36}$ .

Um Missverständnisse zu vermeiden: Sie sollen beispielsweise für Aufgabe a) die Zahl 54536, die im Hexalsystem angegeben ist, zur Basis 2 angeben, also als Binärzahl.





# **2. Aufgabe** (6 TP)

In der Schule lernt man, dass eine natürliche Zahl genau dann durch 3 teilbar ist, wenn die Summe ihrer Ziffern im Dezimalsystem ("Quersumme") durch 3 teilbar ist.

a) Beweisen Sie die obige Aussage. Genauer, zeigen Sie, dass für  $n \in \mathbb{N}$  mit

$$n = \sum_{i=0}^k r_i \cdot 10^i, \quad r_i \in \{0, \dots, 9\}$$
 gilt, dass  $3|n \iff 3| \left(\sum_{i=0}^k r_i\right)$ . Tipp:  $\times$  mod  $3$ 

**Hinweis:** Es gilt  $10^i = 1 + \sum_{j=0}^{i-1} 9 \cdot 10^j$ .  $v = \sum_{i=0}^{k} r_i \cdot 10^{i}$ 3/4 => 3/( = r; )

### **3. Aufgabe** (2 TP)

Gegeben seien N Bits  $z_{N-1}|z_{N-2}...z_0$  (mit  $z_i \in \{0,1\}$ ), die eine ganze Zahl  $z \in \mathbb{Z}$  im **Zweierkomplement** darstellen.

Geben Sie eine Regel an, mit deren Hilfe sich durch Blick auf die Koeffizienten sagen lässt, ob z gerade ist (d. h.  $\exists k \in \mathbb{Z}: z=2\cdot k$ ) oder nicht. Erläutern Sie, warum Ihre Regel funktioniert.

| 23  | · u    | nuss   | . 1    | ledia<br>erdei    | , Ci             | ch          | С          | w      | (        | de   | n   | e    | rst  | CL       | 1    | an    | J    | (et      | ح(   | CL   | \ l | Loe | (izi | enl  |
|-----|--------|--------|--------|-------------------|------------------|-------------|------------|--------|----------|------|-----|------|------|----------|------|-------|------|----------|------|------|-----|-----|------|------|
| 3   | egu    | ckt    | w      | erder             | (                | Zn          | -1         | un     | ᢖ        | 6)   |     |      |      |          |      |       |      |          |      |      |     |     |      |      |
| Fa  | (1     | 2 n    | -1=    | O                 | =)               | 2 13        | st p       | oros i | Eive ?   | Zahl |     |      |      |          |      |       |      |          |      |      |     |     |      |      |
|     | Fall.  | 1.1    | ٤٥:    | <b>O</b>          | =)               | Z i         | sŧ         | ge     | rad      | و    |     |      |      |          |      |       |      |          |      |      |     |     |      |      |
|     | Fall-  | 1. Z   | 267    | = O<br>{ O        | =)               | Z i         | st         | ung    | e-a      | de   |     |      |      |          |      |       |      |          |      |      |     |     |      |      |
| Dus | s Lie  | st o   | lara   | n, d              | مع               | d           | ie         | St     | elle     | ح    | o   | u    | ns   | و۲6      | ماء  | net   | in   | <b>D</b> | 5    | en   | tu  | ed  | er   |      |
| 2°. | O od   | er 2°  | '· 1 ; | st. A             | lle              | an          | der        | en     | Koe      | izie | nte | n    | Sind | <u>.</u> | £ 1  | 24. 2 | . Pi | CSC      | Su   | mm   | و   | ist | imu  | ner  |
|     |        |        |        | 2 <sup>*</sup> (A |                  |             |            |        |          |      |     | ทนง  | 2    | о b      | esti | nmt   | 06   | gera     | de   | oder | U   | ger | dae  |      |
| Fa  | ((2    | 2 n.   | ·1=    | 1                 | =)               | <b>z</b> is | E u        | neza   | £ive =   | ah ( |     |      |      |          |      |       |      |          |      |      |     |     |      |      |
| 7   | Fall 2 | 2.1    | ء ع    | : C               | <del>-</del> )   | Z is        | st w       | ger    | -ade     |      |     |      |      |          |      |       |      |          |      |      |     |     |      |      |
| +   | -all Z | . 2    | ۶,۶    | ( ()              | <del>=</del> ) : | <b>Z</b> 15 | s <b>E</b> | ge     | radi     |      |     |      |      |          |      |       |      |          |      |      |     |     |      |      |
| Cr  | klas   | whey   | Wie    | bei<br>E Z        | Ŧ                | all         | 1.         | nu     | <b>V</b> | mit  | . 0 | le i | 1    | Uı       | 1te  | 750   | Lie  | ر ل      | lass | 6    | ei  | иe  | soti | ivel |
| Zw  | eierk  | om ple | emen   | t Z               | ahle             | ~ o         | ulle       | B      | its      | 5e   | kip | pt   | ں "  | uer      | -de  | ٠.    |      |          |      |      |     |     |      |      |
|     |        |        |        |                   |                  |             |            |        |          |      |     |      |      |          |      |       |      |          |      |      |     |     |      |      |
|     |        |        |        |                   |                  |             |            |        |          |      |     |      |      |          |      |       |      |          |      |      |     |     |      |      |
|     |        |        |        |                   |                  |             |            |        |          |      |     |      |      |          |      |       |      |          |      |      |     |     |      |      |
|     |        |        |        |                   |                  |             |            |        |          |      |     |      |      |          |      |       |      |          |      |      |     |     |      |      |
|     |        |        |        |                   |                  |             |            |        |          |      |     |      |      |          |      |       |      |          |      |      |     |     |      |      |
|     |        |        |        |                   |                  |             |            |        |          |      |     |      |      |          |      |       |      |          |      |      |     |     |      |      |
|     |        |        |        |                   |                  |             |            |        |          |      |     |      |      |          |      |       |      |          |      |      |     |     |      |      |
|     |        |        |        |                   |                  |             |            |        |          |      |     |      |      |          |      |       |      |          |      |      |     |     |      |      |
|     |        |        |        |                   |                  |             |            |        |          |      |     |      |      |          |      |       |      |          |      |      |     |     |      |      |
|     |        |        |        |                   |                  |             |            |        |          |      |     |      |      |          |      |       |      |          |      |      |     |     |      |      |
|     |        |        |        |                   |                  |             |            |        |          |      |     |      |      |          |      |       |      |          |      |      |     |     |      |      |
|     |        |        |        |                   |                  |             |            |        |          |      |     |      |      |          |      |       |      |          |      |      |     |     |      |      |
|     |        |        |        |                   |                  |             |            |        |          |      |     |      |      |          |      |       |      |          |      |      |     |     |      |      |
|     |        |        |        |                   |                  |             |            |        |          |      |     |      |      |          |      |       |      |          |      |      |     |     |      |      |
|     |        |        |        |                   |                  |             |            |        |          |      |     |      |      |          |      |       |      |          |      |      |     |     |      |      |