Integer Fuctions ITT9131 Konkreetne Matemaatika

Chapter Three

Floors and Ceilings

Floor/Ceiling Applications

Floor/Ceiling Recurrences

'mod': The Binary Operation Floor/Ceiling Sums

Contents

- 1 Floors and Ceilings
- 2 Floor/Ceiling Applications
- 3 Floor/Ceiling Recurrences
- 4 'mod': The Binary Operation
- 5 Floor/Ceiling Sums

Next section

- 1 Floors and Ceilings
- 2 Floor/Ceiling Applications
- 3 Floor/Ceiling Recurrences
- 4 'mod': The Binary Operation
- 5 Floor/Ceiling Sums

Floors and Ceilings

Definition

- The floor $\lfloor x \rfloor$ is the greatest integer less than or equal to x;
- The ceiling $\lceil x \rceil$ is the least integer greater than or equal to x .

$$\lfloor \pi \rfloor = 3$$
 $\lfloor -\pi \rfloor = -4$
 $\lceil \pi \rceil = 4$ $\lceil -\pi \rceil = -3$

Floors and Ceilings

Definition

- The floor |x| is the greatest integer less than or equal to x;
- The ceiling [x] is the least integer greater than or equal to x.

$$\lfloor \pi \rfloor = 3$$
 $\lfloor -\pi \rfloor = -4$
 $\lceil \pi \rceil = 4$ $\lceil -\pi \rceil = -3$

Properties of $\lfloor x \rfloor$ and $\lceil x \rceil$

Properties of [x] and [x]

- ① $\lfloor x \rfloor = x = \lceil x \rceil$ iff $x \in \mathbb{Z}$
- $2 x-1 < \lfloor x \rfloor \leqslant x \leqslant \lceil x \rceil < x+1$
- (-x) = -[x] and [-x] = -[x]

Warmup: the generalized Dirichlet box principle

Statement of the principle

Let m and n be positive integers. If n items are stored into m boxes, then:

- At least one box will contain at least $\lceil n/m \rceil$ objects.
- At least one box will contain at most $\lfloor n/m \rfloor$ objects.

Warmup: the generalized Dirichlet box principle

Statement of the principle

Let m and n be positive integers. If n items are stored into m boxes, then:

- At least one box will contain at least $\lceil n/m \rceil$ objects.
- At least one box will contain at most $\lfloor n/m \rfloor$ objects.

Proof

By contradiction, assume each of the m boxes contains fewer than $\lceil n/m \rceil$ objects.

Then

$$n \le m \cdot \left(\left\lceil \frac{n}{m} \right\rceil - 1 \right)$$
 or equivalently, $\frac{n}{m} + 1 \le \left\lceil \frac{n}{m} \right\rceil$:

which is impossible.

Similarly, if each of the m boxes contained more than $\lfloor n/m \rfloor$ objects, we would have

$$n \ge m \cdot \left(\left\lfloor \frac{n}{m} \right\rfloor + 1 \right)$$
 or equivalently, $\frac{n}{m} - 1 \ge \left\lfloor \frac{n}{m} \right\rfloor$:

which is also impossible

Properties of $\lfloor x \rfloor$ and $\lceil x \rceil$ (cont.)

①
$$|x| = x = \lceil x \rceil$$
 iff $x \in \mathbb{Z}$

$$2 x-1 < \lfloor x \rfloor \leqslant x \leqslant \lceil x \rceil < x+1$$

$$3 \mid -x \mid = - \lceil x \rceil$$
 and $\lceil -x \rceil = - \mid x \mid$

In the following properties $x \in \mathbb{R}$ and $n \in \mathbb{Z}$:

Properties of $\lfloor x \rfloor$ and $\lceil x \rceil$ (cont.)

①
$$|x| = x = \lceil x \rceil$$
 iff $x \in \mathbb{Z}$

$$2 \quad x-1 < |x| \le x \le \lceil x \rceil < x+1$$

$$3 \lfloor -x \rfloor = -\lceil x \rceil$$
 and $\lceil -x \rceil = -\lfloor x \rfloor$

In the following properties $x \in \mathbb{R}$ and $n \in \mathbb{Z}$:

$$|x| = n$$
 but $|nx| \neq n|x|$

More properties:

10
$$x < n$$
 iff $\lfloor x \rfloor < n$

12
$$x \le n$$
 iff $[x] \le n$

$$\begin{array}{ccc}
13 & n \leqslant x & \text{iff} & n \leqslant \lfloor x \rfloor
\end{array}$$

Generalization of the property #9

Theorem

$$[x+y] = \begin{cases} [x] + [y], & \text{if } 0 \le \{x\} + \{y\} < 1 \\ [x] + [y] + 1, & \text{if } 1 \le \{x\} + \{y\} < 2 \end{cases}$$

where $\{x\} = x - \lfloor x \rfloor$ is the fractional part of x.

Proof. Let
$$x = \lfloor x \rfloor + \{x\}$$
 and $y = \lfloor y \rfloor + \{y\}$
$$\lfloor x + y \rfloor = \lfloor \lfloor x \rfloor + \lfloor y \rfloor + \{x\} + \{y\} \rfloor$$

$$= \lfloor x \rfloor + \lfloor y \rfloor + \lfloor \{x\} + \{y\} \rfloor$$

and

$$\lfloor \{x\} + \{y\} \rfloor = \begin{cases} 0, & \text{if } 0 \leqslant \{x\} + \{y\} < 1\\ 1, & \text{if } 1 \leqslant \{x\} + \{y\} < 2 \end{cases}$$

Q.E.D.

Warmup: When is $\lfloor nx \rfloor = n \lfloor x \rfloor$?

The problem

Give a necessary and sufficient condition on n and x so that

$$\lfloor nx \rfloor = n \lfloor x \rfloor$$

where n is a positive integer.

Warmup: When is $\lfloor nx \rfloor = n \lfloor x \rfloor$?

The problem

Give a necessary and sufficient condition on n and x so that

$$\lfloor nx \rfloor = n \lfloor x \rfloor$$

where n is a positive integer

The solution

Write $x = |x| + \{x\}$ Then

$$\lfloor nx \rfloor = \lfloor n \lfloor x \rfloor + n\{x\} \rfloor = n \lfloor x \rfloor + \lfloor n\{x\} \rfloor$$

As $\{x\}$ is nonnegative, so is $\lfloor n\{x\} \rfloor$. Then

$$\lfloor nx \rfloor = n \lfloor x \rfloor$$
 if and only if $\{x\} < 1/n$

Next section

- 1 Floors and Ceilings
- 2 Floor/Ceiling Applications
- 3 Floor/Ceiling Recurrences
- 4 'mod': The Binary Operation
- 5 Floor/Ceiling Sums

Theorem

The binary representation of a natural number n > 0 has $m = \lfloor \log_2 n \rfloor + 1$ bits.

Proof.

$$n = \underbrace{a_{m-1}2^{m-1} + a_{m-2}2^{m-2} + \dots + a_12 + a_0}_{m \text{ bits}} \text{ , where } a_{m-1} = 1$$

Thus, $2^{m-1} \leqslant n < 2^m$, that gives $m-1 \leqslant \log_2 n < m$. The last formula is valid if and only if $\lfloor \log_2 n \rfloor = m-1$. Q.E.D.

Example: $n = 35 = 100011_2$

$$m = \lfloor \log_2 35 \rfloor + 1 = \lfloor \log_2 32 \rfloor + 1 = 5 + 1 = 6$$

Theorem

The binary representation of a natural number n > 0 has $m = |\log_2 n| + 1$ bits.

Proof.

$$n = \underbrace{a_{m-1}2^{m-1} + a_{m-2}2^{m-2} + \dots + a_12 + a_0}_{m \text{ bits}}$$
 , where $a_{m-1} = 1$

Thus, $2^{m-1} \leqslant n < 2^m$, that gives $m-1 \leqslant \log_2 n < m$. The last formula is valid if and only if $\lfloor \log_2 n \rfloor = m-1$. Q.E.D.

Example: $n = 35 = 100011_2$

$$m = \lfloor \log_2 35 \rfloor + 1 = \lfloor \log_2 32 \rfloor + 1 = 5 + 1 = 6$$

Theorem

Let $f:A\subseteq\mathbb{R}\to\mathbb{R}$ be a continuous, strictly increasing function with the property that $f(x)\in\mathbb{Z}$ implies that $x\in\mathbb{Z}$. Then

$$\lfloor f(x) \rfloor = \lfloor f(\lfloor x \rfloor) \rfloor$$
 and $\lceil f(x) \rceil = \lceil f(\lceil x \rceil) \rceil$

whenever f(x), $f(\lfloor x \rfloor)$, and $f(\lceil x \rceil)$ are all defined.

Proof. (for the ceiling function)

- The case $x = \lceil x \rceil$ is trivial.
- Otherwise $x < \lceil x \rceil$, and $f(x) < f(\lceil x \rceil)$ since f is increasing. Hence, $\lceil f(x) \rceil \le \lceil f(\lceil x \rceil) \rceil$ since $\lceil : \rceil$ is non-decreasing.
- If $\lceil f(x) \rceil < \lceil f(\lceil x \rceil) \rceil$, as f is continuous, by the intermediate value theorem there exists a number y such that $y \in [x, \lceil x \rceil)$ and $f(y) = \lceil f(x) \rceil$: such y is an integer, because of f's special property, so actually $x < y < \lceil x \rceil$.
- But there cannot be an integer strictly between x and $\lceil x \rceil$. This contradiction implies that we must have $\lceil f(x) \rceil = \lceil f(\lceil x \rceil) \rceil$.

$$\blacksquare \left[\sqrt{\lfloor x \rfloor}\right] = \lfloor \sqrt{x} \rfloor$$

$$\blacksquare \ \left\lfloor \sqrt{\lfloor x \rfloor} \right\rfloor = \left\lfloor \sqrt{x} \right\rfloor$$

Example

- [[[x/10]/10]/10] = [x/1000]

In contrast:

Floor/Ceiling Applications (3): Intervals

For Real numbers $lpha eq eta$										
	Interval	Integers contained	Restrictions							
	$[\alpha\beta]$	$\lfloor \beta \rfloor - \lceil \alpha \rceil + 1$	$\alpha\leqslant eta$							
	$(\alpha\beta)$	$\lceil \beta \rceil - \lceil \alpha \rceil$	$\alpha \leqslant eta$							
	$(\alpha\beta]$	$\lfloor \beta \rfloor - \lfloor \alpha \rfloor$	$\alpha \leqslant \beta$							
	$(\alpha\beta)$	$\lceil \beta \rceil - \lfloor \alpha \rfloor - 1$	$\alpha < \beta$							

Floor/Ceiling Applications (3): Spectra

Definition

The spectrum of a real number α is an infinite multiset of integers

$$\operatorname{Spec}(\alpha) = \{ \lfloor \alpha \rfloor, \lfloor 2\alpha \rfloor, \lfloor 3\alpha \rfloor, \ldots \} = \{ \lfloor n\alpha \rfloor \mid n \geq 1 \}$$

Theorem

If $\alpha \neq \beta$ then $\operatorname{Spec}(\alpha) \neq \operatorname{Spec}(\beta)$.

Proof. For, assuming without loss of generality that $\alpha < \beta$, there's a positive integer m such that $m(\beta - \alpha) \geqslant 1$. Hence $m\beta - m\alpha \geqslant 1$, and $\lfloor m\beta \rfloor > \lfloor m\alpha \rfloor$. Thus $\operatorname{Spec}(\beta)$ has fewer than m elements which are $\leqslant \lfloor m\alpha \rfloor$, while $\operatorname{Spec}(\alpha)$ has at least m such elements. Q.E.D.

$$Spec(\sqrt{2}) = \{1,2,4,5,7,8,9,11,12,14,15,16,18,19,21,22,24,\ldots\}$$

$$Spec(2+\sqrt{2}) = \{3,6,10,13,17,20,23,27,30,34,37,40,44,47,51,\ldots\}$$

Floor/Ceiling Applications (3a): Spectra

The number of elements in Spec(α) that are $\leq n$:

$$\begin{split} N(\alpha, n) &= \sum_{k>0} \left[\lfloor k\alpha \rfloor \leqslant n \right] \\ &= \sum_{k>0} \left[\lfloor k\alpha \rfloor < n+1 \right] \\ &= \sum_{k>0} \left[k\alpha < n+1 \right] \\ &= \sum_{k} \left[0 < k < (n+1)/\alpha \right] \\ &= \lceil (n+1)/\alpha \rceil - 1 \end{split}$$

Floor/Ceiling Applications (3b): Spectra

Let's compute (for any n > 0):

$$N(\sqrt{2}, n) + N(2 + \sqrt{2}, n) = \left\lceil \frac{n+1}{\sqrt{2}} \right\rceil - 1 + \left\lceil \frac{n+1}{2+\sqrt{2}} \right\rceil - 1$$

$$= \left\lfloor \frac{n+1}{\sqrt{2}} \right\rfloor + \left\lfloor \frac{n+1}{2+\sqrt{2}} \right\rfloor$$

$$= \frac{n+1}{\sqrt{2}} - \left\{ \frac{n+1}{\sqrt{2}} \right\} + \frac{n+1}{2+\sqrt{2}} - \left\{ \frac{n+1}{2+\sqrt{2}} \right\}$$

$$= (n+1) \left(\frac{1}{\sqrt{2}} + \frac{1}{2+\sqrt{2}} \right) - \left(\left\{ \frac{n+1}{\sqrt{2}} \right\} + \left\{ \frac{n+1}{2+\sqrt{2}} \right\} \right)$$

$$= n+1-1 = n$$

Corollary

The spectra $\operatorname{Spec}(\sqrt{2})$ and $\operatorname{Spec}(2+\sqrt{2})$ form a partition of the positive integers

Floor/Ceiling Applications (3b) : Spectra

Let's compute (for any n > 0):

$$N(\sqrt{2}, n) + N(2 + \sqrt{2}, n) = \left\lceil \frac{n+1}{\sqrt{2}} \right\rceil - 1 + \left\lceil \frac{n+1}{2+\sqrt{2}} \right\rceil - 1$$

$$= \left\lfloor \frac{n+1}{\sqrt{2}} \right\rfloor + \left\lfloor \frac{n+1}{2+\sqrt{2}} \right\rfloor$$

$$= \frac{n+1}{\sqrt{2}} - \left\{ \frac{n+1}{\sqrt{2}} \right\} + \frac{n+1}{2+\sqrt{2}} - \left\{ \frac{n+1}{2+\sqrt{2}} \right\}$$

$$= (n+1) \left(\frac{1}{\sqrt{2}} + \frac{1}{2+\sqrt{2}} \right) - \left(\left\{ \frac{n+1}{\sqrt{2}} \right\} + \left\{ \frac{n+1}{2+\sqrt{2}} \right\} \right)$$

$$= n+1-1 = n$$

Corollary

The spectra $\operatorname{Spec}(\sqrt{2})$ and $\operatorname{Spec}(2+\sqrt{2})$ form a partition of the positive integers.

Next section

- 1 Floors and Ceilings
- 2 Floor/Ceiling Applications
- 3 Floor/Ceiling Recurrences
- 4 'mod': The Binary Operation
- 5 Floor/Ceiling Sums

Floor/Ceiling Recurrences: Examples

The Knuth numbers:

$$\begin{split} & \mathcal{K}_0 = 1; \\ & \mathcal{K}_{n+1} = 1 + \min(2\mathcal{K}_{\lfloor n/2 \rfloor}, 3\mathcal{K}_{\lfloor n/3 \rfloor}) \end{split} \qquad \text{for } n \geqslant 0. \end{split}$$

The sequence begins as

$$\mathcal{K} = \langle 1, 3, 3, 4, 7, 7, 7, 9, 9, 10, 13, \ldots \rangle$$

Floor/Ceiling Recurrences: Examples

The Knuth numbers:

$$\begin{split} & \mathcal{K}_0 = 1; \\ & \mathcal{K}_{n+1} = 1 + \min(2\mathcal{K}_{\lfloor n/2 \rfloor}, 3\mathcal{K}_{\lfloor n/3 \rfloor}) \end{split} \qquad \text{for } n \geqslant 0. \end{split}$$

The sequence begins as

$$\mathcal{K} = \langle 1, 3, 3, 4, 7, 7, 7, 9, 9, 10, 13, \ldots \rangle$$

Merge sort $n = \lceil n/2 \rceil + \lfloor n/2 \rfloor$ records, number of comparisons:

$$\begin{split} f_1 &= 0; \\ f_{n+1} &= f(\lfloor n/2 \rfloor) + f(\lceil n/2 \rceil) + n - 1 & \text{for } n > 1. \end{split}$$

The sequence begins as

$$f = \langle 0, 1, 3, 5, 8, 11, 14, 17, 21, 25, 29, 33 \dots \rangle$$

Floor/Ceiling Recurrences: More Examples

The Josephus problem numbers:

$$J(1) = 1;$$

$$J(n) = 2J(\lfloor n/2 \rfloor) - (-1)^n \quad \text{for } n > 1.$$

The sequence begins as

$$J = \langle 1, 1, 3, 1, 3, 5, 7, 1, 3, 5, \ldots \rangle$$

Generalization of Josephus problem

Josephus problem in general: from n elements, every q-th is circularly eliminated. The element with number $J_q(n)$ will survive.

Theorem

$$J_q(n) = qn + 1 - D_k$$

where k is as small as possible such that $D_k > (q-1)n$ and D_k is computed using the following recurrent relation:

$$D_0=1;$$

$$D_n=\left\lceil\frac{q}{q-1}D_{n-1}\right\rceil \qquad \quad \text{for } n>0.$$

For example, if q = 5 and n = 12

$$D = \langle 1, 2, 3, 4, 5, 7, 9, 12, 15, 19, 24, 30, 38, 48, 60, 75 \dots \rangle$$

Then $(q-1)n = 4 \cdot 12 = 48$, the proper D_k is $D_{14} = 60$, and

$$J_5(12) = 5 \cdot 12 + 1 - D_{14} = 60 + 1 - 60 = 1$$

Generalization of Josephus problem

Josephus problem in general: from n elements, every q-th is circularly eliminated. The element with number $J_q(n)$ will survive.

Theorem

$$J_q(n) = qn + 1 - D_k$$

where k is as small as possible such that $D_k > (q-1)n$ and D_k is computed using the following recurrent relation:

$$D_0=1;$$

$$D_n=\left\lceil\frac{q}{q-1}D_{n-1}\right\rceil \qquad \quad \text{for } n>0.$$

For example, if q = 5 and n = 12

$$D = \langle 1, 2, 3, 4, 5, 7, 9, 12, 15, 19, 24, 30, 38, 48, 60, 75 \dots \rangle$$

Then $(q-1)n = 4 \cdot 12 = 48$, the proper D_k is $D_{14} = 60$, and

$$J_5(12) = 5 \cdot 12 + 1 - D_{14} = 60 + 1 - 60 = 1$$

Proof of the Theorem

58 59 60

Whenever a person is passed over, we can assign a new number, as in the example below fo n=12, q=5

example below to $n=12, q=5$											
1	2	3	4	5	6	7	8	9	10	11	12
13	14	15	16		17	18	19	20		21	22
23	24		25		26	27	28			29	30
31	32				33	34	35			36	
37	38				39	40				41	
42	43				44					45	
46	47				48						
49	50				51						
52					53						
54					55						
56											
57											

Denoting by N and N' succeeding elements in a column, we get

$$N = \left\lfloor rac{N' - n - 1}{q - 1}
ight
floor + N' - n$$

Proof of the Theorem (2)

Denoting by D = qn + 1 - N and D' = qn + 1 - N', we obtain for the formula

$$N = \left| \frac{N' - n - 1}{a - 1} \right| + N' - n$$

another form:

$$qn+1-D = \left\lfloor \frac{qn+1-D'-n-1}{q-1} \right\rfloor + qn+1-D'-n$$

Let us transform this:

$$D = qn + 1 - \left\lfloor \frac{qn + 1 - D' - n - 1}{q - 1} \right\rfloor - qn - 1 + D' + n$$

$$= D' + n - \left\lfloor \frac{n(q - 1) - D'}{q - 1} \right\rfloor$$

$$= D' + n - \left\lfloor n - \frac{D'}{q - 1} \right\rfloor$$

$$= D' - \left\lfloor \frac{-D'}{q - 1} \right\rfloor$$

$$= D' + \left\lceil \frac{D'}{q - 1} \right\rceil$$

$$= \left\lceil \frac{q}{q - 1} D' \right\rceil$$

Next section

- 1 Floors and Ceilings
- 2 Floor/Ceiling Applications
- 3 Floor/Ceiling Recurrences
- 4 'mod': The Binary Operation
- 5 Floor/Ceiling Sums

'mod': The Binary Operation

If n and m are positive integers

Write $n = q \cdot m + r$ with $q, r \in \mathbb{N}$ and $0 \le r < m$. Then:

$$q = \lfloor n/m \rfloor$$
 and $r = n - m \cdot \lfloor n/m \rfloor = n \mod m$

If x and v are real numbers

We follow the same idea and set

$$x \mod y = x - y \cdot |x/y| \ \forall x, y \in \mathbb{R}, \ y \neq 0$$

Note that, with this definition:

For y = 0 we want to respect the general rule that $x - (x \mod y) \in y\mathbb{Z} = \{yk \mid k \in \mathbb{Z}\}$ This is done by:

'mod': The Binary Operation

If *n* and *m* are positive integers

Write $n = q \cdot m + r$ with $q, r \in \mathbb{N}$ and $0 \le r < m$. Then:

$$q = \lfloor n/m \rfloor$$
 and $r = n - m \cdot \lfloor n/m \rfloor = n \mod m$

If x and y are real numbers

We follow the same idea and set:

$$x \mod y = x - y \cdot \lfloor x/y \rfloor \ \forall x, y \in \mathbb{R}, \ y \neq 0$$

Note that, with this definition:

For y = 0 we want to respect the general rule that $x - (x \mod y) \in y\mathbb{Z} = \{yk \mid k \in \mathbb{Z} \mid \text{This is done by:} \}$

'mod': The Binary Operation

If n and m are positive integers

Write $n = q \cdot m + r$ with $q, r \in \mathbb{N}$ and $0 \leqslant r < m$. Then:

$$q = \lfloor n/m \rfloor$$
 and $r = n - m \cdot \lfloor n/m \rfloor = n \mod m$

If x and y are real numbers

We follow the same idea and set:

$$x \mod y = x - y \cdot \lfloor x/y \rfloor \ \forall x, y \in \mathbb{R}, \ y \neq 0$$

Note that, with this definition:

For y = 0 we want to respect the general rule that $x - (x \mod y) \in y\mathbb{Z} = \{yk \mid k \in \mathbb{Z}\}$. This is done by:

Properties of the mod operation

$x = |x| + x \bmod 1$

For y = 1 it is $x \mod 1 = x - 1 \cdot \lfloor x/1 \rfloor = x - \lfloor x \rfloor$.

The distributive law: $c(x \mod y) = cx \mod cy$

If c = 0 both sides vanish; if y = 0 both sides equal cx. Otherwise:

$$c(x \mod y) = c(x - y \lfloor x/y \rfloor) = cx - cy \lfloor cx/cy \rfloor = cx \mod cy$$

Warmup: Solve the following recurrence

$$X_n = n$$
 for $0 \le n < m$,
 $X_n = X_{n-m} + 1$ for $n \ge m$.

Warmup: Solve the following recurrence

$$\begin{aligned} X_n &= n & \text{for } 0 \leqslant n < m \,, \\ X_n &= X_{n-m} + 1 & \text{for } n \geqslant m \,. \end{aligned}$$

Solution

We plot the first values when m = 4:

We conjecture that:

if
$$n = qm + r$$
 with $q, r \in \mathbb{N}$ and $0 \le r < m$ then $X_n = q + r$:

which clearly yields $X_n = |n/m| + n \mod m$.

- Induction base: True for n = 0, 1, ..., m-1.
- Inductive step: Let $n \ge m$. If $X_{n'} = q' + r'$ for every n' = q'm + r' < n = qm + r, then:

$$X_n = X_{n-m} + 1 = X_{(q-1)m+r} + 1 = q - 1 + r + 1 = q + r$$

Next section

- 1 Floors and Ceilings
- 2 Floor/Ceiling Applications
- 3 Floor/Ceiling Recurrences
- 4 'mod': The Binary Operation
- 5 Floor/Ceiling Sums

Floor/Ceiling Sums

Example: Find the sum $\sum_{0 \le k < n} \lfloor \sqrt{k} \rfloor$ in its closed form:

$$\begin{split} \sum_{0 \leqslant k < n} \lfloor \sqrt{k} \rfloor &= \sum_{k, m \geqslant 0} m[k < n][m = \lfloor \sqrt{k} \rfloor] \\ &= \sum_{k, m \geqslant 0} m[k < n][m \leqslant \sqrt{k} < m + 1] \\ &= \sum_{k, m \geqslant 0} m[k < n][m^2 \leqslant k < (m + 1)^2] \\ &= \sum_{k, m \geqslant 0} m[m^2 \leqslant k < (m + 1)^2 \leqslant n] + \\ &= S_1 \\ &+ \sum_{k, m \geqslant 0} m[m^2 \leqslant k < n < (m + 1)^2] \\ &= S_2 \end{split}$$

Floor/Ceiling Sums (2)

Example continues ...

Case $n = a^2$, for a value $a \in \mathbb{N}$

$$S_2 = 0$$

$$S_{1} = \sum_{k,m \geqslant 0} m[m^{2} \leqslant k < (m+1)^{2} \leqslant a^{2}]$$

$$= \sum_{m \geqslant 0} m((m+1)^{2} - m^{2})[m+1 \leqslant a]$$

$$= \sum_{m \geqslant 0} m(2m+1)[m < a]$$

$$= \sum_{m \geqslant 0} (2m(m-1) + 3m)[m < a]$$

$$= \sum_{m \geqslant 0} (2m^{2} + 3m^{1})[m < a] = \sum_{0}^{a} (2m^{2} + 3m^{1})\delta m$$

$$= (\frac{2}{3}m^{3} + \frac{3}{2}m^{2})\Big|_{0}^{a} = \frac{2}{3}a(a-1)(a-2) + \frac{3}{2}a(a-1)$$

$$= \frac{2}{3}a^{3} - \frac{1}{2}a^{2} - \frac{1}{6}a$$

Floor/Ceiling Sums (3)

Example continues ...

Case $n \neq b^2$, for any integer b; let $a = |\sqrt{n}|$

- For $0 \le k < a^2$ we get $S_1 = \frac{2}{3}a^3 \frac{1}{2}a^2 \frac{1}{6}a$ and $S_2 = 0$, as before;
- For $a^2 \le k < n$, it is valid that $S_1 = 0$ and

$$S_2 = \sum_{k,m\geqslant 0} m[m^2 \leqslant k < n < (m+1)^2]$$

$$= \sum_k a[a^2 \leqslant k < n]$$

$$= a\sum_k [a^2 \leqslant k < n]$$

$$= a(n-a^2) = an - a^3$$

To summarize

$$\sum_{0 \le k < n} \lfloor \sqrt{k} \rfloor = \frac{2}{3} a^3 - \frac{1}{2} a^2 - \frac{1}{6} a + an - a^3$$

$$= an - \frac{1}{2} a^3 - \frac{1}{2} a^2 - \frac{1}{6} a, \qquad \text{where } a = \lfloor \sqrt{n} \rfloor$$

Floor/Ceiling Sums (3)

Example continues ...

Case $n \neq b^2$, for any integer b; let $a = |\sqrt{n}|$

- For $0 \le k < a^2$ we get $S_1 = \frac{2}{3}a^3 \frac{1}{2}a^2 \frac{1}{6}a$ and $S_2 = 0$, as before;
- For $a^2 \le k < n$, it is valid that $S_1 = 0$ and

$$S_2 = \sum_{k,m \geqslant 0} m[m^2 \leqslant k < n < (m+1)^2]$$

$$= \sum_k a[a^2 \leqslant k < n]$$

$$= a\sum_k [a^2 \leqslant k < n]$$

$$= a(n-a^2) = an-a^3$$

To summarize:

$$\begin{split} \sum_{0 \leqslant k < n} \lfloor \sqrt{k} \rfloor &= \frac{2}{3} \, a^3 - \frac{1}{2} \, a^2 - \frac{1}{6} \, a + an - a^3 \\ &= an - \frac{1}{3} \, a^3 - \frac{1}{2} \, a^2 - \frac{1}{6} \, a, \qquad \quad \text{where } a = \lfloor \sqrt{n} \rfloor \end{split}$$

