

Lecture 7: Law of Large Numbers and Central Limit Theorem

Yi, Yung (이용)

EE210: Probability and Introductory Random Processes KAIST EE

MONTH DAY, 2021

1/1

Roadmap

- Most remarkable two results in probability theory history
- Weak Law of Large Numbers: Result and Meaning
- Central Limit Theorem: Result and Meaning
- Weak Law of Large Numbers: Proof
 - Inequalities: Markov and Chebyshev
- Central Limit Theorem: Proof
 - Moment Generating Function (MGF)
- Strong Law of Large Numbers

Roadmap

- Most remarkable two results in probability theory history
- Weak Law of Large Numbers: Result and Meaning
- Central Limit Theorem: Result and Meaning
- Weak Law of Large Numbers: Proof
 - Inequalities: Markov and Chebyshev
- Central Limit Theorem: Proof
 - Moment Generating Function (MGF)
- Strong Law of Large Numbers

3/1

Our interest: Sum of Random Variables

- Example 1. *n* students who decides their presence, depending on their feeling. Each student is happy or sad at random. How many students will show their presence?
- Example 2. I am hearing some sound. There are n noisy sources from outside.
- X_1, X_2, \ldots, X_n : i.i.d (independent and identically distributed) random variables
- $\mathbb{E}[X_i] = \mu$, $\operatorname{var}[X_i] = \sigma^2$
- Our interest is to understand how the following sum behaves:

$$S_n = X_1 + X_2 + \ldots + X_n$$

Our First Strategy

$$S_n = X_1 + X_2 + \ldots + X_n$$

• Challenging if we intend to approach directly. Even just for Z = X + Y, finding the distribution, for example, requires the complex convolution.

$$p_Z(z) = \mathbb{P}(X + Y = z) = \sum_x p_X(x)p_Y(z - x)$$

- Take a certain scaling with respect to n that corresponds to a new glass, and investigate the system for large n
- First, consider the sample mean, and try to understand how it behaves:

$$M_n = \frac{X_1 + X_2 + \dots X_n}{n}$$

5/1

Sample Mean

$$M_n = \frac{S_n}{n} = \frac{X_1 + X_2 + \dots X_n}{n}$$

- Example. n coin tossing. $X_i = 1$ if head, and 0 otherwise. S_n : total number of heads.
- $\mathbb{E}(M_n) = \mu$, $\operatorname{var}(M_n) = \sigma^2/n$
- For large n, the variance decays. We expect that, for large n, M_n looses its randomness and concentrates around μ .
- Why important? If we take the scaling of S_n by 1/n, it behaves like a deterministic number. This significantly simplifies how we understand the world.
- We call this law of large numbers.

Let's Establish Mathematically

$$M_n = \frac{S_n}{n} = \frac{X_1 + X_2 + \dots X_n}{n}$$

• What about this? What's wrong?

$$M_n \xrightarrow{n \to \infty} \mu$$

- Ordinary convergence for the sequence of real numbers: $a_n o a$
 - For every $\epsilon > 0$, there exists n_0 , such that for every $n \geq n_0$, $|a_n a| \leq \epsilon$.
- M_n is a random variable, which is a function from Ω to \mathbb{R} .
- Need to mathematically build up the concept of convergence for the sequence of random variables.

7/1

Convergence in Probability

- Consider the sequence of rvs $(Y_n)_{n=1,2,...}$, and I want to say they "converge" to a number a.
- Play the game with my friend Lin.
 - Lin, give me any $\epsilon > 0$.
 - OK. Then, let me consider the event $\{|Y_n a| \ge \epsilon\}$, and compute its probability $a_n = \mathbb{P}(|Y_n a| \ge \epsilon)$.
 - Now, a_n is just the real number, and I will show that $a_n \to a$ as $n \to \infty$.

Convergence in probability

For any
$$\epsilon>0,\,\mathbb{P}\Big(|Y_n-a|\geq\epsilon\Big)\xrightarrow{n\to\infty}0.$$

Weak Law of Large Numbers

$$M_n = \frac{S_n}{n} = \frac{X_1 + X_2 + \dots X_n}{n}$$

Weak law of large numbers

 M_n converges to μ in probability.

- Why "Weak"? There exists a stronger stronger version, which we call "strong" law of large numbers.
- Proof requires some knowledge about useful inequalities, which we cover later.

9/1

Roadmap

- Most remarkable two results in probability theory history
- Weak Law of Large Numbers: Result and Meaning
- Central Limit Theorem: Result and Meaning
- Weak Law of Large Numbers: Proof
 - Inequalities: Markov and Chebyshev
- Central Limit Theorem: Proof
 - Moment Generating Function (MGF)
- Strong Law of Large Numbers

Central Limit Theorem: Start with Scaling (1)

Loosely speaking, WLLG says:

$$(M_n-\mu) \xrightarrow{n\to\infty} 0$$

- However, we don't know how $M_n \mu$ converges to 0. For example, what's the speed of convergence?
- Question. What should be "something"? Something should what blows up.

- What's α for our magic?
- The answer is $\frac{1}{2}$

11 / 1

Central Limit Theorem: Start with Scaling (2)

• Reshaping the equation:

$$\sqrt{n} \times (M_n - \mu) = \sqrt{n} \left(\frac{S_n - n\mu}{n} \right) = \frac{S_n - n\mu}{\sqrt{n}}.$$
 Let $Z_n = \frac{S_n - n\mu}{\sigma \sqrt{n}}.$

- $\mathbb{E}[Z_n] = 0$ and $var(Z_n) = 1$.
 - Z_n is well-centered with a constant variance irrespective of n.
- We expect that Z_n converges to something meaningful, but what?
- Some deterministic number just like WLLG?
- Interestingly, it converges to some random variable Z that we know very well.

Central Limit Theorem: Formalism

- $Z_n \xrightarrow{n \to \infty} Z$, where $Z \sim N(0,1)$.
- Wait! What kind of convergence? Convergence in probability as in WLLN? No.
- Convergence in distribution (another type of convergence of rvs)

Central Limit Theorem

For every z,

$$\mathbb{P}(Z_n \leq z) \xrightarrow{n \to \infty} \mathbb{P}(Z \leq z),$$

where $Z \sim N(0, 1)$.

- Meaning from scaling perspective.
 - LLN: Scaling S_n by 1/n, you go to a deterministic world.
 - CLT: Scaling S_n by $1/\sqrt{n}$, you still stay at the random world, but not an arbitrary random world. That's the normal random world, not depending on the distribution of each X_i . Very interesting!

13 / 1

Practical Use of CLT

$$Z_n = \frac{S_n - n\mu}{\sigma \sqrt{n}}$$

$$\mathbb{P}(Z_n \leq z) \xrightarrow{n \to \infty} \mathbb{P}(Z \leq z), \ Z \sim N(0, 1)$$

- Can approximate Z_n with a standard normal rv
- Can approximate S_n with a normal rv $\sim (n\mu, n\sigma^2)$

-
$$S_n = n\mu + Z_n \sigma \sqrt{n}$$

- How large should n be?
 - \circ A moderate n (20 or 30) usually works, which the power of CLT.
 - If X_i resembles a normal rv more, smaller n works: symmetry and unimodality¹

¹Only unique mode. A single maximum or minimum.

CLT: Examples of n

15 / 1

Roadmap

- Most remarkable two results in probability theory history
- Weak Law of Large Numbers: Result and Meaning
- Central Limit Theorem: Result and Meaning
- Weak Law of Large Numbers: Proof
 - Inequalities: Markov and Chebyshev
- Central Limit Theorem: Proof
 - Moment Generating Function (MGF)
- Strong Law of Large Numbers

Markov Inequality

- (Q) Knowing $\mathbb{E}(X)$, can we say something about the distribution of X?
- Intuition: small $\mathbb{E}(X) \Longrightarrow \text{small } \mathbb{P}(X \geq a)$

Markov Inequality

If $X \geq 0$ and a > 0, then $\mathbb{P}(X \geq a) \leq \frac{\mathbb{E}(X)}{a}$.

Proof. For any a > 0, define Y_a as:

$$Y_a \triangleq \begin{cases} 0, & \text{if } X < a, \\ a, & \text{if } X \ge a \end{cases}$$

Then, using non-negativity of $X,\ Y_a \leq X,$ which leads to $\mathbb{E}[Y_a] \leq \mathbb{E}[X].$

Note that we have:

$$\mathbb{E}[Y_a] = a\mathbb{P}(Y_a = a) = a\mathbb{P}(X \ge a).$$

Thus, $a \cdot \mathbb{P}(X \ge a) \le \mathbb{E}[X].$

Thus,
$$a \cdot \mathbb{P}(X \geq a) \leq \mathbb{E}[X]$$
.

17 / 1

Chebyshev Inequality

- (Q) Knowing both $\mathbb{E}(X)$ and var(X), can we say something about the distribution of *X*?
- Intuition: small $var(X) \Longrightarrow X$ is unlikely to be too far away from its mean.
- $\mathbb{E}(X) = \mu$, $\operatorname{var}(X) = \sigma^2$.

Chebyshev Inequality

$$\mathbb{P}\Big(|X - \mu| \ge c\Big) \le \frac{\sigma^2}{c^2}$$

Proof.

$$\mathbb{P}\Big(|X-\mu| \geq c\Big) = \mathbb{P}\Big((X-\mu)^2 \geq c^2\Big) \leq \frac{\mathbb{E}\Big[(X-\mu)^2\Big]}{c^2} = \frac{\mathsf{var}(X)}{c^2}$$

Example

- $X \sim \exp(1)$. Then, $\mathbb{E}[X] = 1$ and var[X] = 1.
- $\mathbb{E}(X > a) = e^{-a}$
- Markov inequality

$$\mathbb{P}(X \ge a) \le \frac{\mathbb{E}[X]}{a} = \frac{1}{a}$$

• Chebyshev inequality
$$\mathbb{P}(X \geq a) = \mathbb{P}(X-1 \geq a-1)$$

$$\leq \mathbb{P}(|X-1| \geq a-1) \leq \frac{1}{(a-1)^2}$$

- For reasonably large a, CI provides much better bound.
- knowing the variance helps
- Both bounds are the ones that bound the probability of rare events.

19/1

Back to WLLN

$$M_n = \frac{S_n}{n} = \frac{X_1 + X_2 + \dots X_n}{n}$$

Weak law of large numbers

 M_n converges to μ in probability.

Proof.

$$\mathbb{P}\Big(|M_n - \mu| \ge \epsilon\Big) \le \frac{\mathsf{var}\big(M_n\big)}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2} \xrightarrow{n \to \infty} 0$$

Roadmap

- Most remarkable two results in probability theory history
- Weak Law of Large Numbers: Result and Meaning
- Central Limit Theorem: Result and Meaning
- Weak Law of Large Numbers: Proof
 - Inequalities: Markov and Chebyshev
- Central Limit Theorem: Proof
 - Moment Generating Function (MGF)
- Strong Law of Large Numbers

21 / 1

Moment Generating Function

KAIST EE

- For a rv X, we introduce a kind of transform, called moment generating function (MGF).
- A function of a scalar parameter s, defined by

$$M_X(s) = \mathbb{E}[e^{sX}]$$

- If clear, we omit X and use M(s).

$$M(s) = \sum_{x} e^{sx} p_X(x)$$
 (discrete)

$$M(s) = \int e^{sx} f_X(x) dx$$
 (continuous)

Ex1)
$$X \sim \exp(\lambda)$$
, $f_X(x) = \lambda e^{-\lambda x}$, $x \ge 0$

$$M(s) = \lambda \int_0^\infty e^{sx} e^{-\lambda x} dx$$

$$= \lambda \frac{e^{(s-\lambda)x}}{s-\lambda} \Big|_0^\infty \quad \text{(if } s < \lambda\text{)}$$

$$= \frac{\lambda}{\lambda - s}$$

Ex2) $X \sim N(0,1)$ (homework problem)

$$M(s)=e^{s^2/2}$$

Useful Properties of MGF

1. $M'(0) = \mathbb{E}[X]$

$$\frac{d}{ds}M(s) = \frac{d}{ds} \int_{-\infty}^{\infty} e^{sx} f_X(x) dx = \int_{-\infty}^{\infty} \frac{d}{ds} e^{sx} f_X(x) dx = \int_{-\infty}^{\infty} x e^{sx} f_X(x) dx$$
$$= \frac{d}{ds} M(s) \Big|_{s=0} = \mathbb{E}[X]$$

- 2. Similarly, $M''(0) = \mathbb{E}[X^2]$
- $3. \left. \frac{d^n}{ds^n} M(s) \right|_{s=0} = \mathbb{E}[X^n]$
- 4. MGF provides a convenient way of generating moments. That's why it is called moment generating function.

23 / 1

Inversion Property

Inversion Property

The transform $M_X(s)$ associated with a random variable X uniquely determines the CDF of X, assuming that $M_X(s)$ is finite for all s in some interval [-a,a], where a is a positive number.

- In easy words, we can recover the distribution if we know the MGF.
- Thus, each rv has its own MGF.

Back to CLT

- Without loss of generality, assume $\mathbb{E}(X_i) = 0$ and $\text{var}(X_i) = 1$
- $Z_n = \frac{S_n}{\sqrt{n}} = \frac{X_1 + X_2 + ... X_n}{\sqrt{n}}$
- Show: MGF of Z_n converges to MFG of N(0,1) (using inversion property)

Proof.

$$\mathbb{E}\Big[e^{sS_n/\sqrt{n}}\Big] = \mathbb{E}\Big[e^{sX_1/\sqrt{n}}\Big] imes \cdots imes \mathbb{E}\Big[e^{sX_n/\sqrt{n}}\Big] \ = \Big(\mathbb{E}\Big[e^{sX_1/\sqrt{n}}\Big]\Big)^n = \Big(M_{X_1}\Big(rac{s}{\sqrt{n}}\Big)\Big)^n$$

- For simplicity, let $M(\cdot) = M_{X_1}(\cdot)$ Facts: M(0) = 1, M'(0) = 0, M''(0) = 1- $\left(M\left(\frac{s}{\sqrt{n}}\right)\right)^n \to \text{what}???$ Taking log, $n \log M\left(\frac{s}{\sqrt{n}}\right) \to \text{what}???$

or convenience, do the change of variable $y = \frac{1}{\sqrt{n}}$. Then, we have

$$\lim_{y\to 0}\frac{\log M(ys)}{y^2}$$

- If we apply l'hopital's rule twice (please check), we get $\lim_{y\to 0}\frac{\log M(ys)}{y^2}=\frac{s^2}{2}$

$$\lim_{y\to 0}\frac{\log M(ys)}{y^2}=\frac{s^2}{2}$$

25 / 1

Roadmap

KAIST EE

- Most remarkable two results in probability theory history
- Weak Law of Large Numbers: Result and Meaning
- Central Limit Theorem: Result and Meaning
- Weak Law of Large Numbers: Proof
 - Inequalities: Markov and Chebyshev
- Central Limit Theorem: Proof
 - Moment Generating Function (MGF)
- Strong Law of Large Numbers (Optional)

Questions?

27 / 1

Review Questions

- 1) What's the practical value of LLN and CLT?
- 2) Explain LLN and CLT from the scaling perspective.
- 3) Why are LLN and CLT great?
- 4) Why do we need different concepts of convergence for random variables?
- 5) Explain what is convergence in probability.
- 6) Explain what is convergence in distribution.
- 7) Why is MGF useful?