

Data mining and visualisation

Contents

- ▶ The importance of data
- From data to knowledge
- Exploratory data analysis
 - Descriptive statistics
 - Visualisation
- ...and to know more

Contents

- ▶ The importance of data
- From data to knowledge
- Exploratory data analysis
 - Descriptive statistics
 - Visualisation
- ...and to know more

The importance of data

- We live in a world flooded with data
 - Websites that monitor every click of their users
 - Cell phones accumulating location records
 - Smart vehicles collecting driving habits
 - Smart homes collecting lifestyle habits
 - Online stores collecting shopping habits
 - All kinds of government statistics
 - Internet of Things
 - The quantified self
 - ...

The importance of data

Buried in this data are the answers to countless questions that no one has even thought to ask

Contents

- ▶ The importance of data
- From data to knowledge
- Exploratory data analysis
 - Descriptive statistics
 - Visualisation
- ...and to know more

- Extracting knowledge from data
 - Knowledge Discovery in Databases (KDD)
 - "Non-trivial extraction of implicit, previously unknown and potentially useful information from data

The Data Scientist's Toolbox

- Python (your favourite programming language)
- Google Colab (your favourite development platform)
- Pandas (your favourite library for manipulating tables)
- NumPy (your favourite library for vector manipulation)
- Scikit-learn (your favourite library for machine learning)
- Seaborn (your favourite library for visualisation)
- Kaggle (your favorite website to meet the beautiful people)

- Data mining
 - Process of discovering patterns in large volumes of data
 - Analogy with a real mining process
 - We start from a mineral (data)
 - We arrive at the refined final product (knowledge)
 - ▶ Employs machine learning, statistics, and databases methods

Data mining

- Knowledge extraction is a challenge due to the wide disparity of existing problems and data types
- Product recommendation is very different from an intrusion detection application
 - Format of input data
 - Problem definition
- Even within similar types of problems the differences are quite significant
 - Recommending a product in a database
 - ▶ Recommendation of contacts in a social network

Applications

- Analyze satellite image
- Analysis of organic compounds
- Credit card fraud detection
- Electricity consumption prediction
- Medical diagnoses
- House market prediction
- Targeted marketing
- Weather forecast
- Predict TV audience
- ...

Examples

- Facebook
 - Ask users for their hometown and current location
 - Apparently, the goal is to make it easier for your friends to find you and connect
 - It also analyzes these locations to identify global migration patterns and where fans of different football teams live

Examples

- ▶ 2012 Obama Campaign
 - He employed dozens of data scientists to identify voters who needed extra attention, whose vote was more likely to be useful
 - Identified optimal donor-specific fundraising programs

Examples

- OkCupid
 - Asks thousands of questions to its members (from climate change to cilantro) to find the most appropriate partners
 - Analyze these results to identify "innocuous" questions to ask to find out how likely someone is to sleep with you on the first date

An aside

Google Colaboratory

- Free Jupyter notebook environment running on Google cloud (Gmail account access)
 - https://colab.research.google.com
- Jupyter is an interactive web environment that allows editing and running Python code
- We can run our code on CPU and GPU in the cloud
- Jupyter notebooks are saved in Google Drive and can be shared like any other document
- There are some limitations:
 - Initial machine of I2GB RAM and I00GB hard drive
 - Maximum running time: 12 hours
 - If we are more than 90 minutes without using the notebook it disconnects

Google Colaboratory

Access

Make you own copy in Drive

```
Text Mining ☆

File Edit View Insert Runtime Tools Help

Table of contents

Tools Help

★ Copy to Drive
```

An aside

Contents

- ▶ The importance of data
- From data to knowledge
- Exploratory data analysis
 - Descriptive statistics
 - Visualisation
- ...and to know more

Exploratory Data Analysis

Definition

- Techniques for analyzing data through statistical processing
 - Import, clean and validate
 - View distributions
 - Explore relationships between variables
 - Feature selection
 - Identification of outliers
 - **...**
- Used in the initial phase of any data science project
- The goal is to have a solid knowledge of the data

Exploratory Data Analysis

- Types of analysis
 - Descriptive statistics
 - Mean
 - Median
 - Mode
 - Variance
 - **...**
 - Visualisation
 - Histogram
 - Scatter plot
 - Box diagram
 - Word clouds
 - **...**

Contents

- ▶ The importance of data
- From data to knowledge
- Exploratory data analysis
 - Descriptive statistics
 - Visualisation
- ...and to know more

Definition

- Mathematical techniques for summarising or describing datasets quantitatively
- Identify data properties, noise, and outlieres
- Common measures used to describe data
 - Central tendency
 - Dispersion

Central tendency

- Columns can have thousands of different values
- A basic step when exploring the data is to get a typical value for each column
- Central tendency: estimation of where most of the data is located
- Common measures
 - Mean
 - Median
 - Mode

Central tendency

- Mean (also average)
 - Most common measure, although sensitive to extreme values

$$\bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

- Median (also 50th percentile)
 - Value that occupies the center position in an ordered set
 - If the dataset is even, it will be the average of the two occupying that position
 - Less sensitive to extreme values
 - ☐ E.g. household income in the area where Bill Gates lives

- Central tendency
 - Mode
 - ▶ The most repeated value or category in a dataset
 - Mainly used for categorial data
 - ▶ There can be several modes in a set
 - □ Unimodal
 - □ Bimodal
 - Multimodal

Dispersion

- The central tendency is a way of summarising a variable
- Another way to do this is by dispersion (variability), measuring whether the values are clustered or scattered
- Useful for identifying extreme values (outliers)
- Common measures
 - Range
 - Quantile
 - Interquartile range
 - Standard deviation

Dispersion

- Range
 - Difference between the largest and smallest value
 - It is the most basic measure of dispersion
 - It is very sensitive to extreme values

Quantile

- Points taken at regular intervals of a distribution that divide it into sets of equal size
- Quartiles: divide the distribution into 4 parts (quantile 0.25, 0.50 and 0.75)
- Percentiles: divide the distribution into one hundred parts
 - □ The P percentile is a value so that at least P percent of the values have this value or less, and at most 100-P percent take this value or more
 - ☐ The median is the same as the 50th percentile

Dispersion

- Interquartile range (IQR)
 - Usual measure of variability
 - Difference between the 75th percentile (Q3) and the 25th percentile (Q1)

$$IQR = Q_3 - Q_1$$

- Shows the range covered by the central half of the data
- Less sensitive to extreme values than standard deviation

Dispersion

- Standard deviation
 - Square root of variance
 - Easier to interpret than variance, as it is on the same scale
 - Especially sensitive to extreme values (same as variance)

$$s = \sqrt{s^2} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$$

Let's practice!

https://bit.ly/3w9cWKq

Contents

- ▶ The importance of data
- From data to knowledge
- Exploratory data analysis
 - Descriptive statistics
 - Visualisation
- ...and to know more

Definition

- Visualising the data allows to highlight its main characteristics
- Ways to present the data
 - Textual
 - ▶ Tabular
 - Graphic
- ▶ The graphic representation is attractive and easy to understand
 - To explore the data
 - ▶ To communicate the data (not just to experts)

- Visualisation techniques can provide a quick answer to many important questions
 - What range do the observations cover?
 - What is the central tendency?
 - Is the distribution symmetric or is there asymmetry in some direction?
 - Is there evidence of bimodality?
 - Are there significant extreme values?
 - ...

- There are multiple types of diagrams for different purposes:
 - Bar chart (ranking)
 - Histogram (distribution)
 - Density plot (distribution)
 - Line chart (evolution)
 - Scatter plot (correlation)
 - Heat map (correlation)
 - Box plot (distribution and ranking)
 - Violin plot (distribution)
 - Word cloud (ranking)
 - **...**

Bar chart

- Useful for displaying discrete or categorical value distributions
- Graphically represents the comparison between data categories

Histogram

- Bar chart type to display numeric value distributions
- Indicates the number of observations that fall within a range of values (bin)

Density plot

- It is a variant of the histogram that uses a Gaussian kernel to smooth out values
- Offer a better view of the shape of the distribution

Line chart

- Useful for viewing tendencies (very common in time series)
- Displays data as points joined by straight lines

Scatter plot

- Useful for identifying relationships, patterns, or trends between two numeric values (bivariate)
- Visualise data clusters
- Identify outliers
- Explore correlations

Scatter plot

- Two attributes are correlated if one implies the other
 - Positive: when one increases the other too
 - Negative: when one increases the other decreases
 - Neutral: no correlation

Positive correlation

no correlation

Negative correlation

- Scatter plot
 - Correlation does not imply causation

Per capita cheese consumption

correlates with

Number of people who died by becoming tangled in their bedsheets

Heatmap

- Visualise data using two-dimensional color codes (useful for correlations)
- Pitch and/or intensity indicates how data varies in space

Box plot

- Describes numeric data groups using quartiles
- Useful for data that does not follow a normal distribution

Box plot

- Five-number summary
 - Minimum
 - First quartile (QI)
 - Median
 - Third quartile (Q3)
 - Maximum
- Outliers
 - ▶ Below Q1 1.5 * IQR
 - ▶ Above Q3 + I.5 * IQR

Violin plot

- Provides the information of a box plot and also the distribution of values
- Suitable when there are many values and cannot be visualised individually

Word cloud

- Visual representation of the words that appear in a text
- The size is larger for the most frequent words

Let's practice!

https://bit.ly/3svvwKx

Contents

- ▶ The importance of data
- From data to knowledge
- Exploratory data analysis
 - Descriptive statistics
 - Visualisation
- ...and to know more

... and to know more

- Webs
 - ▶ Towards Data Science
 - KDnuggets
 - Kaggle competitions
 - Coursera
- YouTube
 - Dot CSV
- Courses (Warning! Concealed advertising)
 - "Master's Degree in Data Cience", título de la UA

David Tomás Díaz

