CS2502 – Logic Design

- Logic Design is primarily about digital circuits, such as computer hardware.
- LD can also be applied to more general digital systems, such as computer software.

CS2502 – 1 Combinational Circuits

1.1 Introduction

Observed bahaviour

X - switch	L - bulb
open	off
closed	on

Analysis

- Q1: How many states can the circuit assume?
- Q2: How do X and L depend from each other?
- Q3: How can we distinguish the states more simply?
- A1: The circuit can assume two states.
- A2: L depends on X, but X does not depend on L.
- A3: We can describe the states by 0 and 1.

Description with 0 and 1

X open \rightarrow 0, X closed \rightarrow 1 L off \rightarrow 0, L on \rightarrow 1

Input X	Output L
0	0
1	1

1.2 AND, OR and NOT

X1	X2	L
open	open	off
open	closed	off
closed	open	off
closed	closed	on

X1	X2	L
0	0	0
0	1	0
1	0	0
1	1	1

The AND Operation

- X1 and X2 are inputs.
- L is the only output.
- L is on iff X1 AND X2 are closed.
- L assumes 1 if both X1 AND X2 assume 1. L is 0 otherwise.
- The AND operation is the logic equivalent of the multiplication.
- Notations:
 L = X1 AND X2
 L = X1 ^ X2
 L = X1 * X2

A different Circuit

X1	X2	L
open	open	off
open	closed	on
closed	open	on
closed	closed	on

X1	X2	L
0	0	0
0	1	1
1	0	1
1	1	1

The OR Operation

- X1 and X2 are inputs.
- L is the only output.
- L is on if X1 OR X2 are closed.
- L assumes 1 as soon as X1 OR X2 assumes 1.
- The AND operation is the logic equivalent of the addition.
- Notations:

The NOT Operation

Observed bahaviour

X - switch	L - bulb
open	on
closed	off

X	L
0	1
1	0

L = NOT X

1.3 Boolean Algebra

Rules

Commutative: A + B = B + A

• **Associative**:
$$A + (B + C) = (A + B) + C$$

$$A + B * C = (A + B) * (A + C)$$

Rules (continued)

- 0 is neutral to +: A + 0 = A
- 1 is neutral to *: A * 1 = A
- Property of NOT: A + NOT(A) = 1
- A * NOT(A) = 0

Boolean Algebra vs Numerical Algebra

- All Values are either 0 or 1.
- The NOT function is a fundamental operation.
- 1 + 1 = 1
- Both, + and * are distributive with respect to the other operation.
- Neither + nor * have an inverse operation, i.e. subtraction and division do not exist.

Design Example: Majority Decoder

- 3 inputs: A, B and C
- One output Y
- Y shall asume that value which is carried by the majority of inputs.
- Therefore, Y
 assumes 1 iff two or
 all three inputs are 1.

Applications of Majority Decoders

- Alarm systems. In systems with three sensors, an alarm is raised if at least two sensors are activated.
- The, so called, full adder is used to add binary numbers. The carry-over output of a full adder is the same logic function which is performed by a majority decoder.
- Majority decoders with more than three inputs are possible. However, the number of inputs must be odd.

Majority Decoder: Truth Table

A	В	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Majority Decoder: Switching Function

From Truth Table:

$$Y = \neg A \cdot B \cdot C + A \cdot \neg B \cdot C + A \cdot B \cdot \neg C + A \cdot B \cdot C$$

After Simplification: $Y = A \cdot B + B \cdot C + A \cdot C$

(Algorithms for simplification will be taught later in this course.)

1.4 Gates and Circuit Diagrams

1.5 Minterms and Maxterms

Important properties of AND and OR

AND	OR
Assumes 1 iff all	Assumes 0 iff all
arguments are 1.	arguments are 0 .
Assumes 0 if any	Assumes 1 if any
argument is 0 .	argument is 1.

Minterms, Maxterms (continued)

Now, we consider products and sums where some of the arguments are **inverted**.

For example:

$$Y = A \cdot \overline{B} \cdot C$$
$$Y = A + \overline{B} + C$$

Minterms, Maxterms (continued)

Α	В	С	A*NOT(B)*C	A+NOT(B)+C
0	0	0	0	1
0	0	1	0	1
0	1	0	0	0
0	1	1	0	1
1	0	0	0	1
1	0	1	1	1
1	1	0	0	1
1	1	1	0	1

Minterms, Maxterms (continued)

A minterm is a product of all variables, some of which might be inverted A maxterm is a sum of all variables, some of which might be inverted..

Minterms and maxterms of n variables:

Minterm	Maxterm
Assumes 1 in	Assumes 0 in
exactly 1 case.	exactly 1 case
Assumes 0 in 2 ⁿ -1	Assumes 1 in 2 ⁿ -1
cases.	cases.

1.6 The Canonical Sum of Products

- Any switching function can be expressed as a canonical sum of products (CSOP).
- Each occurrence of 1 in the Y-column of the truth table corresponds to one minterm.
- In most cases, the CSOP form is not the optimal expression of a switching function.

Short Notations for CSOP Form

Majority Decoder with 3 Inputs:

$$Y = m_3 + m_5 + m_6 + m_7$$

Note that this switching function assumes 1 for those combinations of input values which are listed in row number **3**, **5**, **6** and **7** in the truth table.

1.7 The Canonical Product of Sums

- Any switching function can be expressed as a canonical product of sums (CPOS).
- Each occurrence of 0 in the Y-column of the truth table corresponds to one maxterm.
- In most cases, the CPOS form is not the optimal expression of a switching function.

Short Notations for CPOS Form

Majority Decoder with 3 Inputs:

$$Y = M_{\cdot} \cdot M_1 \cdot M_2 \cdot M_4$$

Note that this switching function assumes 0 for those combinations of input values which are listed in row number **0**, **1**, **2** and **4** in the truth table.

Design Example 2: 2-to-1 Multiplexer

Design a circuit with 3 inputs A, B and C and one output Y that meets these specifications:

- If C=0 then Y=A
- If C=1 then Y=B

In other words, depending on the value of C, either A or B will be connected to the output Y. A and B are also called data inputs and C is also called selection input.

1.8 Simplification of Boolean Expressions

A related example (bank loan or similar):

- Type 1: Applicants must be older than 25 and married.
- Type 2: Applicants must be older than 25 and single.
- Type 3: Applicants must be eligable to Type 1 or to Type 2.

Simplifications (continued)

It is obvious that *Type 3* is equivalent to

Applicants must be older than 25 and married or single.

Which simply means

Applicants must be older than 25.

Simplifications (continued)

Logic equivalent:

$$A \cdot B + A \cdot \overline{B} = A \cdot (B + \overline{B}) = A$$

This formula is the underlying principle of simplification with Karnaugh maps.

Karnaugh Maps

Layout of a Karnaugh Map for switching functions of 4 variables.

Karnaugh Maps (continued)

Calculating the Simplified Sum of Products (SSOP):

- Cover all 1s with rectangular blocks of size 1,2,4,8,...
- Try to maximize the size of the blocks.
- Try to minimize the number of blocks.
- Overlapping is allowed.
- Each block corresponds to a simplified sum.

Karnaugh Maps (continued)

Calculating the Simplified Product of Sums (SPOS):

- Cover all 0s with rectangular blocks of size 1,2,4,8,...
- Try to maximize the size of the blocks.
- Try to minimize the number of blocks.
- Overlapping is allowed.
- Each block corresponds to a simplified product.

Karnaugh Maps with Don't Care Entries

We use this method whenever the switching function is **not fully specified**, i.e. when certain combinations of input values are of **no interest**.

Examples are:

- 2-to-1 multiplexer with only one "clamp" case
- Majority decoders with an even number of inputs
- Comparator circuits where the output in case of equal inputs is of no interest
- BCD-to-7 segment decoder

Karnaugh-Maps with Don't Care Entries (continued)

We extend the algorithms:

- In addition to 1 and 0, we use a new entry Ø to indicate that Y might be either 1 or 0.
- Each Ø entry may be inside or outside the block coverage.
- Minimize the number and maximize the size of blocks as before.

Example: BCD-to-7 segment Decoder

The complete circuit has 4 inputs and 7 outputs.

7-segment LED display: Truth Tables of the 7 switching functions:

1.9 De Morgan's Theorem

Relation between minterms and maxterms:

$$m_n = \overline{M}_n$$

This formula can be rewritten in many ways, e.g.:

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

Applying De Morgan's Theoreme

To rewrite a Boolean expression into **NAND-only** form:

- Replace every OR operator with AND
- Invert each argument of the former OR operations
- Invert the result of every former OR operation
- If the outermost operation is not an inversion, add a pair of invertions across the whole expression

(continued)

To rewrite a Boolean expression into **NOR-only** form:

- Replace every AND operator with OR
- Invert each argument of the former AND operations
- Invert the result of every former AND operation
- If the outermost operation is not an inversion, add a pair of invertions across the whole expression

1.10 Multiplexers

Multiplexer

Depending on A and B, one of the data inputs will be routed to the output.

...continued

Switching function of Multiplexer:

$$Y = D_0 \cdot m_0 + D_1 \cdot m_1 + D_2 \cdot m_2 + \dots$$

 D_n : data input line

 m_n : minterm formed by control input lines

Realizing Switching Functions with Multiplexers

Replacing the data input lines D_n with switching functions of p input variables leads arbitrary switching functions of p + q variables where q is the number of control inputs.

2 Sequential Circuits

2.1 Introduction and Definitions

- In combinational circuits, the output only depends on the inputs at the same time. This is not the case in sequential circuits.
- In sequential circuits, we have to introduce a
 state Z and we need to consider the time t.
- We assume a central discrete clock, i.e

$$t = 0, 1, 2, 3, 4, \dots$$

2.1 (continued)

The output depends on the state and on the input at the same time:

$$Y(t) = g(Z(t), X(t))$$

 The state at time t generally depends on previous inputs and on previous states:

$$Z(t+1) = f(Z(t), X(t))$$

 A systems that is governed my this equations are called Mealy Machine.

2.2 Mealy- and Moore Machine

A special case is called Moore Machine.
 The output of a Moore Machine depends only on Z(t):

$$Z(t+1) = f(Z(t), X(t))$$
 (as before)
 $Y(t) = g(Z(t))$ (depends only on Z)

Moore Machine vs Mealy Machine

- The output of a Mealy Machine can change whenever the input changes or whenever a clock step occurs.
- The output output of a Moore Machine can only change when a clock step occurs. The output is synchronized with the time grid.
- In the state diagram of a Mealy Machine, the output values are associated with the transition arcs.
- In the state diagram of a Moore Machine, the output values are associated with the state nodes.

Example: Traffic Light

Circuit Level Design

Each state Z is represented by a combination of flip-flop output lines Q0, Q1, Q2,...

The problem of mapping of the flip-flop output values to the states is known as **Secondary State Assignment**. Different assignments lead to circuits of different complexity.

The rules for SSA are based on the concept of adjacent codes.

2.3 Secondary State Assignment

- Two present states should be assigned adjacent codes if they have the same next state for
 - a) Each input combination
 - b) Different input combinations, if the next state can also be given adjacent assignments
 - c) Some input combinations, but nonecessarily all
- For all inputs, codes assigned to the next states for each present state should be adjacent
- Assignments should simplify the output function.