Continuity (Section 2.4)

Feb 7, 2017 9:35 - 10:50 AM

Outline

Definition of continuous

Discontinuity examples

One sided continuity

Harder examples

Intuitive idea

A **continuous function** is a function that doesn't have any gaps, jumps, or holes. (You can draw its graph without taking your pencil off the paper.)

Continuity at a point

Idea: Look at tiny neighborhood around the point to determine continuity of the function at the point.

Definition using limits (IMPORTANT)

The function f(x) is continuous at x = a if The limit $\lim_{x \to a} f(x)$ exists.

The function f(x) is defined at x = a

The two match: $\lim_{x \to a} f(x) = f(a)$.

First requirement: $\lim f(x)$ exists

This means that

The limit from the left $\lim_{x\to a^-} f(x)$ exists, the limit from the right $\lim_{x\to a^+} f(x)$ exists, and they are both equal $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x)$

Second requirement: f(x) is defined at x = a

This means that the number a is in the domain of f(x).

Recall: Possible issues include dividing by 0, even roots of negative numbers, and log's of nonpositive numbers.

Third requirement: $\lim_{x \to a} f(x) = f(a)$

Calculate both sides, see if they agree.

Usually only piecewise functions violate this rule.

Continuity on an interval

If a function f(x) is continuous at every point in the interval (a, b), then we say that f(x) is continuous on (a, b).

Discontinuities

Removable discontinuities

Jump discontinuities

Infinite discontinuities

Other types

Which of the three rules does f(x) break at:

Example

Identify the discontinuities of the following function:

$$f(x) = \frac{x^2 + 6x + 5}{x^2 - 2x - 3}$$

Example

Identify the discontinuities of the following function:

$$f(x) = e^{1/x} + \frac{x^2 - 1}{x + 1}$$

Take the definition of continuity, and replace each limit with a one-sided limit.

Take the definition of continuity, and replace each limit with a one-sided limit.

The function f(x) is continuous at x = a from the left if

The limit $\lim_{x\to a^-} f(x)$ exists.

The function f(x) is defined at x = a

The two match: $\lim_{x\to a^-} f(x) = f(a)$.

The function f(x) is continuous at x = a from the right if

The limit $\lim_{x\to a^+} f(x)$ exists.

The function f(x) is defined at x = a

The two match: $\lim_{x \to a^+} f(x) = f(a)$.

Is f(x) continuous from the left/right at x = 2?

Harder example

Find the number c such that f(x) is continuous at x = 3.

$$f(x) = \begin{cases} cx^2 + 6x, & x < 3 \\ x^3 - cx, & x \ge 3 \end{cases}$$

Harder example

Find the number c such that f(x) is continuous at x = -1.

$$f(x) = \begin{cases} x^3 - 2x^2 + cx, & x < -1 \\ cx^2 + 7x, & x \ge -1 \end{cases}$$