[Aula 15] LLC – Autômato com Pilha

Prof. João F. Mari joaof.mari@ufv.br

[Aula 15] LLC - Autômato com Pilha

SIN 131 – Introdução à Teoria da Computação (PER-3)

BIBLIOGRAFIA

- MENEZES, P. B. Linguagens formais e autômatos,
 6. ed., Bookman, 2011.
 - Capítulo 6.
 - + Slides disponibilizados pelo autor do livro.

ROTEIRO

- Autômato com Pilha
- Definição do Autômato com Pilha
- Autômato com Pilha (Não-Determinístico)
- EXEMPLO: {aⁿbⁿ | n >= 0} Duplo Balanceamento
- EXEMPLO: Palavra e sua Reversa
- EXEMPLO: Autômato com Pilha: anbman+m
- AP e Linguagens Livres do Contexto
- GLC \rightarrow AP
- EXEMPLO: GLC → AP: L5 = { aⁿbⁿ | n ≥ 1 }
- Corolários

Prof. João Fernando Mari (joaof.mari@ufv.br)

8

[Aula 15] LLC - Autômato com Pilha

SIN 131 – Introdução à Teoria da Computação (PER-3)

Autômato com Pilha

- Classe das Linguagens Livres do Contexto
 - Pode ser associada a um formalismo do tipo autômato
 - Autômato com Pilha
- Autômato com pilha
 - Análogo ao autômato finito
 - Incluindo uma pilha como memória auxiliar
 - Não determinismo
- Pilha
 - Independente da fita de entrada
 - Não possui limite máximo de tamanho
 - "tão grande quanto necessário"
 - Baseada na noção de conjunto infinitamente contável

Autômato com Pilha

- Não-determinismo: importante e necessário
 - Aumenta o poder computacional dos AP
- Exemplo:
 - { ww^r | w é palavra sobre { a, b } }
 - Reconhecimento só é possível por um AP Não-Determinístico
 - * w^r é a palavra w escrita ao contrário.

Prof. João Fernando Mari (joaof.mari@ufv.br)

5

[Aula 15] LLC – Autômato com Pilha

SIN 131 – Introdução à Teoria da Computação (PER-3)

Autômato com Pilha

- Estrutura de uma pilha
 - Último símbolo gravado é o primeiro a ser lido
 - Base: fixa e define o seu início
 - Topo: variável e define a posição do último símbolo gravado

Autômato com Pilha

- AP × Número de estados
 - Qualquer LLC pode ser reconhecida por um AP
 - Com somente um estado
 - (ou três estados, dependendo da definição)
 - Pilha é suficiente como única memória
 - Os estados não são necessários para "memorizar" informações passadas
 - Ao contrário do que ocorria com os Autômatos Finitos.
 - Estados no AP
 - Poderiam ser excluídos sem reduzir o poder computacional
 - Como a pilha não possui tamanho máximo
 - AP pode assumir tantos estados quanto se queira

Prof. João Fernando Mari (joaof.mari@ufv.br)

7

[Aula 15] LLC – Autômato com Pilha

SIN 131 – Introdução à Teoria da Computação (PER-3)

Definição do Autômato com Pilha

- Duas definições universalmente aceitas:
 - Estados finais
 - O AP PARA aceitando quando atinge um estado final
 - Inicialmente a pilha é vazia
 - Pilha vazia
 - O AP PARA aceitando quando a pilha estiver vazia.
 - Inicialmente, a pilha possui um símbolo inicial da pilha
 - Não existem estados finais
 - São definições equivalentes (possuem o mesmo poder computacional)
 - Adotada a definição que usa estados finais.

Autômato com Pilha (Não-Determinístico)

$$M = (\Sigma, Q, \delta, q0, F, V)$$

- Σ alfabeto de símbolos de entrada
- Q conjunto de estados possíveis (finito)
- δ (função) programa ou função de transição
 - função parcial

δ: Q × (Σ ∪ { ε, ? }) × (V ∪ { ε, ? })
$$\rightarrow$$
 2^Q×V* δ(p, x, y) = { (q1, v1),...,(qn, vn) } transição

- q0 elemento distinguido de Q: estado inicial
- F subconjunto de Q: conjunto de estados finais
- V alfabeto auxiliar ou alfabeto da pilha
 - ? → Teste de Pilha Vazia ou Teste de Final de Fita.

Prof. João Fernando Mari (joaof.mari@ufv.br)

9

[Aula 15] LLC – Autômato com Pilha

SIN 131 – Introdução à Teoria da Computação (PER-3)

Autômato com Pilha (Não-Determinístico)

- Características da função de transição (função programa)
 - função parcial
 - "?" indica teste de:
 - pilha vazia
 - toda palavra de entrada lida
- leitura de ε indica
 - movimento vazio da fita ou pilha (não lê, nem move a cabeça)
 - não-determinístico: basta que o movimento seja vazio na fita
- gravação de ε
 - nenhuma gravação é realizada na pilha (e não move a cabeça)
- Exemplo: $\delta(p, ?, \epsilon) = \{ (q, \epsilon) \}$
 - no estado p, se a entrada foi completamente lida, não lê da pilha
 - assume o estado q e não grava na pilha

Autômato com Pilha (Não-Determinístico)

• Programa como diagrama: $\delta(p, x, y) = \{ (q, v) \}$

Prof. João Fernando Mari (joaof.mari@ufv.br)

11

[Aula 15] LLC – Autômato com Pilha

SIN 131 – Introdução à Teoria da Computação (PER-3)

Autômato com Pilha (Não-Determinístico)

- Computação de um AP
 - Sucessiva aplicação da função programa
 - Para cada símbolo da entrada (da esquerda para a direita)
 - Até ocorrer uma condição de parada
 - É possível que nunca atinja uma condição de parada
 - processa indefinidamente (loop infinito)
 - <u>EXEMPLO</u>: empilha e desempilha um mesmo símbolo indefinidamente, sem ler da fita

Autômato com Pilha (Não-Determinístico)

- Parada de um AP
 - Aceita
 - Pelo menos um dos caminhos alternativos atinge um estado final
 - não importa se leu ou não toda a entrada
 - Rejeita
 - todos os caminhos alternativos rejeitam a entrada
 - a função programa é indefinida para cada caso
 - Loop
 - pelo menos um caminho alternativo está em loop infinito
 - E os demais rejeitam ou também estão em loop infinito
- Partição de Σ* induzida por um AP M

Prof. João Fernando Mari (joaof.mari@ufv.br)

13

[Aula 15] LLC - Autômato com Pilha

SIN 131 – Introdução à Teoria da Computação (PER-3)

EXEMPLO: $\{a^nb^n \mid n \ge 0\}$ Duplo Balanceamento

 $M1 = (\{ a, b \}, \{ q0, q1, qf \}, \delta1, q0, \{ qf \}, \{ B \})$

EXEMPLO: $\{a^nb^n \mid n \ge 0\}$ Duplo Balanceamento

- M1 = ({ a, b }, { q0, q1, qf }, δ 1, q0, { qf }, { B })
 - AP determinístico
 - -ACEITA(M1) = L1
 - $\delta 1$ (q0, a, ϵ) = { (q0, B) }
 - $\delta 1$ (q0, b, B) = { (q1, ϵ) } (a, ϵ , B)
 - $\delta 1 (q0, ?, ?) = \{ (qf, \epsilon) \}$
 - $\delta 1 (q1, b, B) = \{ (q1, \epsilon) \}$
 - $\delta 1 (q1, ?, ?) = \{ (qf, \epsilon) \}$

Prof. João Fernando Mari (joaof.mari@ufv.br)

15

[Aula 15] LLC - Autômato com Pilha

SIN 131 – Introdução à Teoria da Computação (PER-3)

EXEMPLO: Palavra e sua Reversa

- L3 = { ww^r | w pertence a { a, b }* }
 - -ACEITA(M3) = L3
 - AP não-determinístico

EXEMPLO: Palavra e sua Reversa

- L3 = { ww^r | w pertence a { a, b }* }
 - -ACEITA(M3) = L3
 - AP não-determinístico

Prof. João Fernando Mari (joaof.mari@ufv.br)

17

[Aula 15] LLC – Autômato com Pilha

SIN 131 – Introdução à Teoria da Computação (PER-3)

EXEMPLO: Autômato com Pilha: anbman+m

- L4 = { $a^nb^ma^{n+m} | n \ge 0, m \ge 0$ }
 - -ACEITA(M4) = L4
 - AP não-determinístico

AP e Linguagens Livres do Contexto

- A classe de linguagens aceitas por um AP
 - É a classe das LLC
 - A mesma classe das linguagens geradas pelas GLC
- Construção de um AP a partir de uma GLC qualquer, permite concluir
 - Construção de um reconhecedor para uma LLC a partir de sua gramática é simples e imediata.
 - Qualquer LLC pode ser aceita por um AP com somente um estado (ou três, dependendo da definição).
 - Estados não aumentam o poder computacional.

Prof. João Fernando Mari (joaof.mari@ufv.br)

19

[Aula 15] LLC - Autômato com Pilha

SIN 131 – Introdução à Teoria da Computação (PER-3)

$GLC \rightarrow AP$

- Suponha que ε ∉ L
- Construção de um AP a partir da gramática na FNG
 - produções da forma $A \rightarrow a\alpha$, α palavra de variáveis
- AP resultante simula a derivação mais à esquerda
 - lê o símbolo a da fita
 - lê o símbolo A da pilha
 - empilha a palavra de variáveis α

$GLC \rightarrow AP$ (Algoritmo)

- AP M a partir da gramática G = (V, T, P, S)
 - GFNG = (V_{FNG}, T_{FNG}, P_{FNG}, S), é G na Forma Normal de Greibach
- $M = (T_{FNG}, \{ q0, q1, qf \}, \delta, q0, \{ qf \}, V_{FNG})$
 - δ(q0, ε, ε) = { (q1, S) }
 - $-\delta(q1, a, A) = \{ (q1, \alpha) \mid A \rightarrow a\alpha \in P_{ENG} \}$
 - $-\delta(q1,?,?) = \{ (qf, \epsilon) \}$

Prof. João Fernando Mari (joaof.mari@ufv.br)

21

[Aula 15] LLC - Autômato com Pilha

SIN 131 – Introdução à Teoria da Computação (PER-3)

EXEMPLO: GLC \rightarrow AP: L5 = { $a^nb^n \mid n \ge 1$ }

- · Gramática na Forma Normal de Greibach
 - $G5 = (\{ S, B \}, \{ a, b \}, P5, S)$
 - $P5 = \{ S \rightarrow aB \mid aSB, B \rightarrow b \}$
- Correspondente AP
 - $-M5 = (\{a, b\}, \{q0, q, qf\}, \delta 5, q0, \{qf\}, \{S, B\})$

Corolários

- Se L é uma LLC, então existe um AP M:
 - M : Um AP com controle de aceitação por estados finais, com três estados, tal que ACEITA(M) = L
 - M : AP com controle de aceitação por pilha vazia, com um estado tal que ACEITA(M) = L
- Existência de um AP que Sempre PARA:
 - Se L é uma LLC, então existe um AP M, tal que
 - ACEITA(M) = L
 - REJEITA(M) = Σ^* L
 - LOOP(M) = \emptyset \rightarrow Ou seja, AP sempre para LLC.

Prof. João Fernando Mari (joaof.mari@ufv.br)

23

[Aula 15] LLC - Autômato com Pilha

SIN 131 – Introdução à Teoria da Computação (PER-3)

Número de Pilhas e o Poder Computacional

- Autômato com Pilha, sem usar a estrutura de pilha
 - Estados: única forma de memorizar informações passadas
 - Equivale a um Autômato Finito
 - AP, sem usar a pilha, com ou sem não-determinismo
 - Reconhecem a Classe das Linguagens Regulares
- Autômato com Pilha Determinístico
 - Aceita a Classe das Linguagens Livres do Contexto Determinísticas
 - Um importante subconjunto próprio da Classe das LLC
 - Implementação de um AP determinístico é simples e eficiente
 - facilita o desenvolvimento de analisadores sintáticos.
- Autômato com (uma) Pilha Não-Determinístico
 - Aceitam exatamente a Classe das LLC

Hierarquia de Chomsky

Prof. João Fernando Mari (joaof.mari@ufv.br)

25

[Aula 15] LLC – Autômato com Pilha

SIN 131 – Introdução à Teoria da Computação (PER-3)

Número de Pilhas e o Poder Computacional

- Autômato com Duas Pilhas
 - Mesmo poder computacional da Máquina de Turing
 - Considerada o dispositivo mais geral de computação
 - Resolve QUALQUER problema computável!!!!
 - Se existe um algoritmo para resolver um problema
 - Ele pode ser expresso como um autômato com duas pilhas
 - O não determinismo não aumenta o poder computacional
- Autômato com Múltiplas Pilhas
 - Poder computacional de um autômato com mais de duas pilhas
 - Equivalente ao do autômato com duas pilhas
 - Se um problema é solucionado por um autômato com múltiplas pilhas
 - Também pode ser solucionado por um autômato com duas pilhas

[FIM]

- FIM:
 - [AULA 15] LLC Autômato com Pilha
- Próxima aula:
 - [AULA 16] Propriedades e reconhecimento das LLC

Prof. João Fernando Mari (joaof.mari@ufv.br)