18.S997 (FALL 2017) PROBLEM SET 3

- 1. Fix 0 . Let G be a graph on n vertices with average degree at least pn. Prove:
 - (a) The number of labeled 6-cycles in G is at least $(p^6 o(1))n^6$.

 - (b) The number of labeled copies of $K_{3,3}$ in G is at least $(p^9 o(1))n^6$. (c) The number of labeled copies of $Q_3 = \bigcap_{i=1}^{n} f_i$ in G is at least $(p^{12} o(1))n^8$.
 - (d) (Bonus) The number of labeled paths on 4 vertices in G is at least $(p^3 o(1))n^4$.
- 2. Deduce from the quasirandom Cayley graphs theorem the following corollary for vertex transitive graphs: If an n-vertex d-regular vertex-transitive graph G satisfies

$$\left| e(X,Y) - \frac{d}{n}|X||Y| \right| \le \epsilon dn$$
 for all $X,Y \subseteq V(G)$,

then all the eigenvalues of the adjacency matrix of G, other than the largest one, are at most $8\epsilon dn$ in absolute value.

- 3. Define $W: [0,1]^2 \to \mathbb{R}$ by $W(x,y) = 2\cos(2\pi(x-y))$. Let G be a graph. Show that t(G,W)is the number of ways to orient all edges of G so that every vertex has the same number of incoming edges as outgoing edges.
- 4. Let W be a $\{0,1\}$ -valued graphon. Suppose graphons W_n satisfy $||W_n W||_{\square} \to 0$ as $n \to \infty$. Show that $||W_n - W||_1 \to 0$ as $n \to \infty$.
- 5. Let $\epsilon > 0$. Show that for every graphon $W: [0,1]^2 \to [0,1]$, there exist measurable sets $S_1, \ldots, S_k, T_1, \ldots, T_k \subseteq [0, 1]$ and reals $a_1, \ldots, a_k \in \mathbb{R}$, with $k < 1/\epsilon^2$, such that

$$\left\|W - \sum_{i=1}^{k} a_i \mathbf{1}_{S_i \times T_i}\right\|_{\square} \le \epsilon.$$

... to be continued ... check back later (last updated: October 26, 2017). Some hints on next page

HINTS

4. Every measurable set can be arbitrarily well approximated (in measure) as a union of boxes.