Non-traditional Manufacturing Processes (MF30604)

Lecture 1 and 2: Introduction

Dr. Poonam Sundriyal
Assistant Professor
Department of Mechanical Engineering
IIT Kharagpur

Outline

- Objective of the Course
- Syllabus
- Marking Scheme
- Reference Books
- Traditional Manufacturing Processes
- Need of Non-traditional Manufacturing Processes
- Classification of Non-traditional Manufacturing Processes

Objectives of the course

- Learn about the basic theory, working principle, and characteristics of nontraditional manufacturing processes.
- Identify critical process variables and their effect on process performance and product quality
- Develop mathematical model relating MRR with machining parameters
- Develop understanding to properly assess the capabilities, limitations, and potentials of nontraditional manufacturing processes
- Decision for the right choice of machining process for a particular set of material and application.
- Further development of new techniques and improvement of existing methods.

Syllabus

- Introduction to Modern Manufacturing Processes/ Methods
- Electro Chemical Machining (ECM)
- Electric Discharge Machining
- Laser Beam Machining (LBM)
- Electron Beam Machining (EBM)
- Plasma Arc Machining (PAM)
- Ion-Beam Machining (IBM)
- Abrasive Jet Machining (AJM)
- Water Jet Machining (WJM)
- Abrasive Water Jet Machining (AWJM)
- Ultrasonic Machining (USM)

Marking Scheme

Total 33 marks

- 1) Mid Semester Exam (25 marks)
- 2) Assignment or Class test (8 marks)

References Books

1. Nontraditional Manufacturing Processes

Gary F. Benedict, Marcel Dekker, Inc

2. Modern Machining Processes

P C Pandey & H S Shan, Tata McGraw-Hill

3. Nonconventional Machining

P K Mishra, Narosa Publishing House

4. Manufacturing Science

Amitabha Ghosh & A K Mallik, Affiliated East-West Press

- 5. Laser Material Processing, by W M Steen
- 6. NPTEL Lectures, Nonconventional Machining, L35 to L40.

Traditional Manufacturing Processes

Machining (material removal): Turning, milling, grinding

Forming: Rolling, deep drawing,

Ref: www.manufacturing uide.com

Casting

Ref:

.com

Need of Non-traditional or Modern Manufacturing

Demand of Modern Products:

A) Processing new materials: Improved mechanical, thermal, electrical, &

chemical properties

Ceramics, super alloys, composites and polymers

- Too hard / brittle to machine with traditional process
- Materials too flexible / slender to cut or clamp

Ex: Semiconductors on silicon Material: Silicon (Brittle)

Ex: Producing holes in turbine blades Material: Nickel-based super alloy Operating temperature ~ 1000 to 1600°C

Ex: Microfluidic channels on glass substrate

Material: Glass (Brittle)

Need of Non-traditional or Modern Manufacturing

B) Dimensional and accuracy requirements

- Complex shapes, high precision & high surface finish.
- High repeatability.

Ex: Array of micro-holes Material: Stainless steel

Ex: Array of micropillars Material: Polymer

Ex: Microlense
Array of micropatterns
Material: Polymer

Ex: Complex shape with array of holes Material: Polymer

11/01/2023

C

Need of Non-traditional or Modern Manufacturing

- C) Requirement of high production rate and economy
- Less time
- Rapid machining
- Automatic processing
- Flexibility to change product design (Computer aided design)

Micro/nano sized components.

Ex: Printed supercapacitor/ battery

E) Less heat affected zone and residual stresses

Ex: Producing holes in stainless steel sheet In traditional machining: time/hole: 10 min In modern machining: time/hole: 2 µs

Non-traditional Manufacturing Processes/ Methods

Modern Manufacturing processes employ

New tools and New forms of energy

Developed as

- Efficient and economic alternatives to conventional ones.
- Often the first choice for certain technical requirements.

Modern manufacturing process

//////////////Traditional manufacturing process

Modern Manufacturing Processes differ to Traditional Mfg. Processes in following aspects \Rightarrow

- Unconventional Energy Sources: Thermal, Chemical, Kinetic Energy ----
- * Processing usually not by direct MECHANICAL contact: Nontraditional mechanism of interaction between the tool and the work piece: Evaporation, Ablation, Melt Ejection, Dissolution, Erosion----
- Nontraditional media to transfer energy from the tool to the work piece: Photons, E-beam, Dielectric media, Electrolytic media, Water, Abrasive slurry.
- ❖No tool wear.

Classification of Modern Manufacturing Processes/ Methods

Energy type	Mechanics of material	Energy source	Process
	removal		
Mechanical	Plastic deformation/ Erosion	Mechanical motion of tool/job	Conventional machining processes
		Mechanical/fluid motion	 Abrasive jet machining (AJM) Ultrasonic machining (USM) Water jet machining (WJM) Abrasive water jet machining (AWJM)
Electrochemical	Ion displacement	Electric current	Electrochemical machining (ECM)
Electrochemical and Mechanical	Plastic deformation and ion displacement	Electric current and mechanical motion	Electrochemical grinding (ECG)

Corrosive agent

11/01/2023

Chemical

Corrosive reaction

Chemical machining (CHM)

Classification of Modern Manufacturing Processes/ Methods

Energy type	Mechanics of	Energy source	Process
	Material Removal		
Thermal	Fusion and	Electric sparks	Electric discharge machining (EDM)
	vaporization	Powerful light radiation	Laser beam machining (LBM)
		High speed electrons	Electron beam machining (EBM)
		Ionized substance	Plasma arc machining (PAM)
Kinetic energy	Atom by atom	Ionized substance	Ion beam machining (IBM)
	knocking		

*Hybrid modern manufacturing processes: Combination of different manufacturing techniques.

LASER Beam Machining (LBM)

Focusing Solar radiation on a paper

Intensity of sun at earth's surface = 1 kW/m^2

Focusing Light radiation on workpiece

Laser power density = $1.9 \times 10^7 \text{ kW/m}^2$

Can melt all the materials (including diamond)

Applications of Laser in Manufacturing

Laser Cutting of Metal Sheets, Glass, Wood, Plastics,

Textiles, Rubber, Ceramic, Marble etc.

Laser Cutting

Laser Welding of Similar & Dissimilar metals & Alloys.

➤ Laser Surface Hardening

Laser Welding

Laser Scribing

➤ Laser Surface Cladding

Laser Cladding

Laser Rapid Manufacturing

Laser polymerization

Laser Rapid Prototyping

Laser Metal Forming

Laser Forming

Laser Surface Alloying

Electron Beam Machining (EBM)

- Electron beam is used for machining.
- Electrons are generated by thermionic emission from hot tungsten cathode.
- Thermionic emission: emission of electrons from an electrode due to its temperature.

thermal energy provided to the charge carrier > work function of the material (binding potential).

Fig. Schematic of thermionic emission process

Electron Beam Machining

Fig. Schematic of EBM

Applications of EBM

EB Drilling: Suitable where large no. of hole are needed and drilling holes with conventional process is difficult due to material hardness or hole-geometry.

- Used in aerospace, instrumentation, food, chemical & textile industries.
- Thousands of tiny holes in Turbine (steel) engine combustor.
- Cobalt alloy fiber spinning heads.
- Filters used in food processing.

Insulation
Centrifugal disc for glass
wool production
12000 to 45000 holes

Sieves for food industry
12 million holes per square meter
1805 holes/sec

https://www.pro-beam.com/en/contractmanufacturing/mikrobohren

Plasma Arc Machining (PAM)

What is Plasma?

- This is the 4th state of matter –Ionized gas.
- Electrically neutral -numbers of negative charge (electron + negative ions) and positive charge equal.

What is an Arc?

Low voltage high current density gaseous discharge

- An electric arc is a discharge of electric current across a gap in a circuit.
- An arc discharge is characterized by a low voltage and relies on thermionic emission of electrons from the electrodes supporting the arc.

Ex: Ionized air (plasma)

Electric arc

Plasma Arc Machining

Plasma Arc

High temperature ionized gas produced by flowing gas through the arc established between cathode and work piece and/or Nozzle.

Fig. Schematic of plasma arc machining

Applications of Plasma Arc Machining

• Cutting a wide variety of conducting materials e.g. SS, Aluminum, Cr-Ni alloys, Copper, titanium, etc..

Mostly planer cutting

• Contour cutting of complex shape integrated with CNC

• Welding of materials such as Titanium, SS etc

Fig. Cutting an alloy sheet using plasma arc cutting

• Plasma arc surfacing and spraying

Ion Beam Machining (IBM)

• A type of particle beam consisting of ionized atoms i.e. ions.

Sputtering:

• A stream of ions of an inert gas, such as argon or metal such as gallium is accelerated in a vacuum by high energies and directed toward a solid workpiece.

• Ion beam knocks off atoms from workpiece by transferring kinetic energy and momentum to atoms on the targeted surface.

Kinetic Energy> Binding Energy

Fig. Schematic of sputtering process

Applications of Ion Beam Machining

• Etching / Milling of all material, reactive

etching, substrate cleaning,

- **Deposition:** Sputter deposition,
- Ion- beam lithography
- Ion-beam implantation

50 nm size holes patterned on a thin film using IBM

Coil 700 nm pitch, 80 nm line width, diamond like amorphous carbon, Fabricated by FIB induced deposition

Deposition and machining using FIB

23

11/01/2023 induced deposition

THANK YOU?