(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2002-147542 (P2002-147542A)

(43)公開日 平成14年5月22日(2002.5.22)

(51) Int.Cl.'	設別配号	FI	テーマコード(参考)
F 1 6 G 13/06		F16G 13/06	E 3J031
C 2 3 C 8/32		C 2 3 C 8/32	3 J O 5 O
F 1 6 G 5/16		F 1 6 G 5/16	C 4K028
			G
F16H 9/18		F16H 9/18	Z
	審查請求	未請求 請求項の数6 OL (全	12 頁) 最終頁に続く
(21)出願番号	特顧2001-269308(P2001-269308)	(71)出顧人 390009070	
		ルーク ラメレン	ウント クツブルング
(22)出顧日	平成13年9月5日(2001.9.5)	スパウ ベタイリク	プングス コマンディー
		トゲゼルシャフト	
(31)優先権主張番号	10043963. 2	Luk Lame:	llen und Ku
(32)優先日	平成12年9月6日(2000.9.6)	pplungsba	au Beteiliq
(33)優先権主張国	ドイツ (DE)	ungs KG	
		ドイツ連邦共和国	パーデン ビユール
		インズストリイス	トラーセ 3
		(74)代理人 100061815	
		弁理士 矢野 敏起	隹 (外4名)
			最終頁に絞く

(54) 【発明の名称】 リンクプレートチェーン

(57)【要約】

【課題】 特に無段階に調節可能な円錐円板形巻き掛け 伝動装置のためのリンクプレートチェーンであって、該 リンクプレートチェーンの、プレート 1. 2 によって形成された個別のチェーンリンクを結合するジョイント部 材が、プレート 1. 2 の切欠 4 内に挿入された、互いに 支え合う転動面 6 を備えたクレードル部材 3 の対として 構成されている形式のものを改良して、従来技術に関連して特に高い運転負荷に耐えることできるか又は同じ負荷においてより高い耐用年数が得られるようなものを提供する。

【解決手段】 円錐円板と作用接触するクレードル部材 3の少なくとも端面19が、窒素を含有する縁部層19 a例えば没炭窒化層を備えている。

【特許請求の範囲】

【請求項1】 特に無段階に調節可能な円錐円板形巻き 掛け伝動装置のためのリンクプレートチェーンであっ て、該リンクプレートチェーンの、プレートによって形 成された個別のチェーンリンクを結合するジョイント部 材が、プレートの切欠内に挿入された、互いに支え合う 転動面を備えたクレードル部材の対として構成されてい る形式のものにおいて、

1

円錐円板と作用接触するクレードル部材の少なくとも端 面が、窒素を含有する縁部層例えば浸炭窒化層を備えて 10 いることを特徴とする、リンクプレートチェーン。

【請求項2】 特に無段階に調節可能な円錐円板形巻き 掛け伝動装置のための推進用コマ付きベルトであって、 少なくとも 1 つの閉じたベルトストランドと、ストラン ドによって支持された推進用コマとを備えている形式の ものにおいて、

円錐円板と作用接触する推進用コマの少なくとも端面 が、窒素を含有する縁部層例えば浸炭窒化層を備えてい ることを特徴とする、推進用コマ付きベルト。

【請求項3】 第1の軸と第2の軸とを備えた無段階に 20 調節可能な円錐円板形巻き掛け伝動装置であって、第1 の軸及び第2の軸に、互いに向き合うほぼ円錐台形の面 を備えたそれぞれ2つの円錐円板が設けられており、と の場合、軸毎の少なくとも1つの円錐円板が、軸に対し て軸方向で摺動可能である形式のものにおいて、

巻き掛け部材例えばリンクプレートチェーン又は推進用 コマ付きベルトに作用接触する円錐円板の少なくとも円 錐台形の面が、窒素を含有する緑部層例えば浸炭窒化層 を備えていることを特徴とする、円錐円板形巻き掛け伝 動装置。

【請求項4】 請求項1から3までのいずれか1項記載 の伝動装置構成部材において、前記縁部層が、少なくと も50μmの縁部層内で、少なくとも0,01%、有利 には少なくとも0.05%~0.1%の範囲の窒素含有 量を有していることを特徴とする、伝動装置構成部材。

【請求項5】 請求項1から4までのいずれか1項記載 の伝動装置構成部材において、浸炭窒化過程の他に同様 に硬化過程が実施されることを特徴とする、伝動装置構 成部材。

【請求項6】 肌焼き入れ深さが、0.3mmより大き い範囲有利には0.5mmより大きい範囲内であること を特徴とする、請求項5記載の伝動装置構成部材。

【発明の詳細な説明】

[0001]

1

【発明の属する技術分野】本発明は、伝動装置構成部 材、特に無段階に調節可能な円錐円板形巻き掛け伝動装 置のためのリンクプレートチェーン(Laschenkette) で あって、該リンクプレートチェーンの、プレートによっ て形成された個別のチェーンリンクを結合するジョイン ト部材が、プレートの切欠内に挿入された、互いに支え 50 化層を備えていることによって解決された。

合う転動面を備えたクレードル部材 (Wiegestueck)の対 (対偶) として構成されている形式のものに関する。ま た本発明は、特に無段階に調節可能な円錐円板形巻き掛 け伝動装置のための推進用コマ付きベルト(Schubgliede rband)であって、少なくとも l つの閉じたベルトストラ ンド (Baenderstrand)と、ストランドによって支持され た推進用コマとを備えている形式のものに関する。さら に本発明は、第1の軸と第2の軸とを備えた無段階に調 節可能な円錐円板形巻き掛け伝動装置であって、第1の 軸及び第2の軸に、互いに向き合うほぼ円錐台形の面を 備えたそれぞれ2つの円錐円板が設けられており、この 場合、軸毎の少なくとも1つの円錐円板が、軸に対して 軸方向で摺動可能である形式のものに関する。

[0002]

【従来の技術】このような形式のリンクプレートチェー ン及び伝動装置は、DE38268009号明細書及び DE19544644号明細書により公知である。上記 形式の推進用コマ付きベルトは、DE3145470号 明細書により公知である。

【0003】例えばリンクプレートチェーン、推進用コ マ付きベルト及び伝動装置等の伝動装置構成部材におい ては、円錐円板形巻き掛け伝動装置において巻き掛け部 材と円錐円板との間の摩擦接続的な(reibschluessig: 摩擦による束縛)力伝達に基づいて、著しく大きい摩擦 力が生じる。何故ならば、伝動装置内でガイドされた駆 動モーメントを支えるために非常に大きい押し付け力が 必要となるからである。

【0004】伝動装置の摩擦箇所における出力密度が大 きくなるに伴って、この摩擦箇所における損失並びに、 熱的及び機械的な負荷も著しく上昇するので、接触相手 は許容できない程度に強く摩耗することになる。

[0005]

【発明が解決しようとする課題】そこで本発明の課題 は、伝動装置構成部材、例えばリンクプレートチェー ン、又は本発明の別の考え方によれば推進用コマ付きべ ルト、又は本発明の別の考え方によれば円錐円板を備え た円錐円板形巻き掛け伝動装置を改良して、従来技術に 関連して特に髙い運転負荷に耐えることできるか又は同 じ負荷においてより高い耐用年数が得られるようなもの を提供することである。

[0006]

40

【課題を解決するための手段】との課題は、本発明のリ ンクプレートチェーンによれば、円錐円板と作用接触す るクレードル部材の少なくとも端面が、窒素を含有する 縁部層例えば浸炭窒化層を備えていることによって解決 された。

【0007】またこの課題は、本発明の推進用コマ付き ベルトによれば、円錐円板と作用接触する推進用コマの 少なくとも端面が、窒素を含有する縁部層例えば浸炭窒

【0008】またこの課題は、本発明による無段階に調 節可能な円錐円板形巻き掛け伝動装置によれば、巻き掛 け部材例えばリンクプレートチェーン又は推進用コマ付 きベルトに作用接触する円錐円板の少なくとも円錐台形 の面が、窒素を含有する縁部層例えば浸炭窒化層を備え ていることによって解決された。

【0009】縁部層が、少なくとも50μmの縁部層内 で、少なくとも0,01%、有利には少なくとも0,0 5%~0.1%の範囲の窒素含有量を有していれば有利 である。

【0010】この場合、浸炭窒化過程と並んで同様に硬 化過程が実施されれば特に有利である。また肌焼き入れ 深さが、0.3mmより大きい範囲有利には0.5mm より大きい範囲内であれば有利である。

)

)

【0011】前記形式のリンクプレートチェーンにおい ては、負荷容量を高めるために、プレートとクレードル 部材との組み付け後の開放した状態で、非常に強い引張 力を加えながら真っ直ぐなストランド(帯材)に、延伸 されたリンクプレートチェーンの延伸過程が実施され る。とれによって一列のプレートのうちのすべてのプレ 20 ートの、プレートとクレードル部材との間のプレートの 接触領域が一様に塑性変形せしめられる。真っ直ぐなス トランドを延伸させる際に、接触領域内でプレートが一 様に塑性変形せしめられるので、一列のプレートは、プ レートの幅に亘って同様に伸張されるか又は同じ長さを 有することになる。これによって、無段階に調節可能な 伝動装置の運転中にリンクプレートチェーンを負荷する と、最適でない耐用年数及び作業能力を有するという欠 点がある。

【0012】本発明の別の課題は、従来技術のリンクプ 30 レートチェーンに対して、より高い運転負荷に耐えると とができるか、又は同じ負荷においてより高い耐用年数 を有する、リンクプレートチェーン及びこのリンクプレ ートチェーンを製造するための方法を提供することであ る。

【0013】 この課題は本発明によれば、前記リンクプ レートチェーンにおいて、リンクプレートチェーンを閉 鎖された状態で延伸することによって解決された。

【0014】また本発明の課題は、上記リンクプレート チェーンにおいて、プレートがチェーン幅の関数として 種々異なるプレート内側幅を有していることによって解 決される。これは本発明によれば、リンクプレートチェ ーンの延伸時に巻き掛け時の閉鎖状態で得られる。

【0015】プレート内側幅とは、2つの外側のクレー ドル部材がプレートに当接する輪郭の間隔に相当する。 このことは、プレートが、クレードル部材を受容するた めの1つの中央の開口又は2つの開口を有しているかど うかとは無関係である。詳細は図面に関する説明に記載 されている。

【0016】しかしながら別の実施例において、プレー 50 クレードル部材が同じ長さであるか又は異なる長さであ

トが、打ち抜き過程又は例えばレーザ及びこれと類似の 手段による切断過程等の製造過程で種々異なって製造さ れ、各プレートが同様に延伸されるか又は種々異なって 延伸され、互いに組み付けられるか又は、組み付けられ たチェーンが巻き掛け時に延伸されるようにすれば、有 利である。

【0017】さらに別の実施例において、同じプレート 内側幅を有するプレートが打ち抜き過程によって製造さ れ、種々異なる長さに延伸され、互いに組み付けられる ようにしても有利である。延伸は、との実施例でも、組 み付け前に各プレートにおいて行われるか、又は巻き掛 け時に組み付けられたチェーンにおいて行われる。

【0018】本発明の別の考え方によれば、本発明の課 題は、前記リンクプレートチェーンにおいてにおいて、 プレートがチェーン幅の関数として種々異なる延伸度を 有することによっても解決される。

【0019】とれは有利には、同じプレート内側幅又は 異なるプレート内側幅を有するプレートが種々異なる延 伸度で延伸され、互いに組み付けられることによっても 得られる。

【0020】本発明の別の考え方によれば、前記リンク プレートチェーンにおいて本発明の課題は、プレートが チェーン幅の関数として、チェーン長手方向に対して直 交する方向で見た軸線と接触領域との間の種々異なる角 度を有しているととによって、解決される。とれによっ て、プレートを、チェーンの運転中に湾曲したクレード ル部材に比較的に良好に当接又は合わせることができ る、チェーン幅に亘っての角度の修正又は変化が得られ る。

【0021】本発明の別の考え方によれば、前記リンク プレートチェーンにおいて本発明の課題は、プレート が、延伸過程時に、プレート長手方向に対して種々異な る角度を有する延伸負荷によって負荷されることによっ ても解決される。これによって、プレートは、クレード ル部材との接触領域で、種々異なる箇所で延伸され、そ れによって、チェーンの運転中に負荷がかかった時に、 円錐円板対間の真っ直ぐなストランドでもまた円錐円板 対の領域内でも十分な強度が得られるように強化され る。

【0022】特に、ブレートが個別に延伸され、次いで 互いに組み付けられるようになっていれば有利である。 別の実施例においては、プレートが閉鎖したチェーンを 組み付けた状態で、特に1つの装置の2つの円錐円板間 に配置した場合に巻き掛け中に、延伸されるようになっ ていれば、有利である。

【0023】本発明は有利には、各円錐円板に向けられ た、クレードル部材の端面の一方が、ジョイント毎に円 錐円板とリンクプレートチェーンとの間で摩擦力を伝達 するリンクプレートチェーンに関するものである。また 5

れば、実施例のそれぞれの適用例に応じて有利である。 【0024】本発明は有利には、リンクプレートチェーンが、クレードル部材に対して付加的に、円錐円板とリンクプレートチェーンとの間で摩擦力を伝達する横方向ピンを有するリンクプレートチェーンに関するものでもある。

【0025】リンクプレートチェーンの縁部に隣接するプレートが、リンクプレートチェーンの中央に配置されたプレートよりも強く延伸されるか、又はリンクプレートチェーンの縁部に隣接するプレートが、リンクプレー 10トチェーンの中央に配置されたプレートよりも大きいプレート内側幅を有していれば、有利である。

【0026】さらに、延伸過程によって、プレートとクレードル部材との接触領域が塑性変形されて、この接触領域とチェーンの長手方向に対して直交する方向との間で角度が形成されるようになっていれば有利である。

【0027】特に前記請求項のいずれか1項記載のリンクプレートチェーンは、リンクプレートチェーンの縁部に隣接するブレートにおける接触領域の塑性変形が、リンクプレートチェーンの中央に配置されたプレートにお 20 ける塑性変形よりも強いことを特徴としている。また、プレートの接触領域の塑性変形がチェーンの幅方向で見てアーチ状の延びを形成しているか、又は接触領域の多項のn度の延びを形成するようになっていても有利である。

【0028】リンクプレートチェーンが延伸過程時に、2つの円錐円板対の円錐円板ギャップ内に受容され、回転数及び/又はトルクで負荷されるようになっていれば、有利である。

【0029】延伸過程時のリンクプレートチェーンの負荷は、円錐円板を押圧することによって、及び/又は円錐円板対の軸を互いに離れる方向に引っ張ることによって行われるようになっていれば、有利である。これに関連して、本発明は、リンクプレートチェーンを延伸するための装置にも関する。この場合、円錐円板対の円錐円板が互いに相対的に変位可能であるか又は不動であれば有利である。

【0030】リンクプレートチェーンを延伸する際に、 延伸過程中の負荷可能なトルクが、リンクプレートチェ ーンを備えた伝動装置の運転中の名目上のトルクよりも 40 実質的に大きければ有利である。

【0031】延伸過程中の負荷可能なトルクが、ゼロと、リンクブレートチェーンを備えた伝動装置の運転中の名目上のトルクの10倍との間の範囲、有利には3倍~5倍であれば有利である。

【0032】延伸過程中のチェーンの張り区分の引っ張り力が、リンクプレートチェーンを備えた伝動装置の運転中の名目上の引っ張り力よりも大きければ有利である。

【0033】本発明は、特に上記請求項のいずれか1項 50 ル部材が円錐円板と接触するようになっていれば有利で

6

記載のリンクプレートチェーンを製造するための方法に 関する。また本発明は、リンクプレートチェーンを延伸 させるための方法にも関する。

【0034】本発明のその他の特徴及び詳細が、図面を 用いて以下に記載されている。

[0035]

【発明の実施の形態】次に本発明の実施の形態を図面に 示した実施例を用いて以下に詳しく説明する。

【0036】図1及び図3には、一般的なリンクプレー トチェーン1とアウターリンク2とを備えた公知のリン クプレートチェーンの一部の側面図が示されており、こ の場合、プレートはリンクプレートチェーンの幅Bに亘 って配置されていて、配置パターンに従って繰り返えさ れている。プレートは、列状に配置されたプレートバッ ケージを形成する。プレート1及び2によって形成され たチェーンリンクは、ジョイント部材を介して互いに旋 回可能に結合されており、このジョイント部材は、プレ ートの切欠4内に挿入されていて、形状接続式(formsch luessig;形状のよる束縛)の結合部を介してそれぞれ の所属のプレートに回転可能に結合されている(drehve rbunden)。切欠4は、プレート毎に2つのジョイント のための2つの切欠が形成されるように構成されている か、又はプレート毎に、2つのジョイントのためのクレ ードル部材を受容するための1つの切欠だけが形成され るように構成されている。クレードル部材は、互いに向 き合って向けられた、例えば少なくとも個別の凹状のク レードル面若しくは転動面6を有しており、これらの転 動面6を介して、クレードル部材は互いに転動すること ができ、これによって、隣接し合うチェーンリンクのジ ョイント旋回可動性が得られる。 クレードル面は2つ共 凹状であるか、又は一方のクレードル面が平ら又は凸状 であって他方のクレードル面が凹状であってもよい。 【0037】このようなリンクプレートチェーンは、少

は、チェーンの全長に亘って同じに構成されているが、チェーンの主である。 は、チェーンピッチと称呼される間隔7を有している。チェーンピッチと称呼される間隔7を有している。チェーンピッチでの大きさは、チェーン走行方向8に延びるクレードル部材3並びに、各切欠4間に必要な間隔に基づいている。公知の形式でチェーンピッチ7は、チェーンの全長に亘って同じに構成されているが、チェーンの雑音発生に良好な影響を与えるために、場合によっては所定の限界内で不規則に変化していてもよい。

【0039】クレードル部材はその側方の端部領域で端面を有していて、この端面でクレードル部材は伝動装置の運転中に円錐円板と摩擦接触することができる。2つのクレードル部材が同じ長さであって、2つのクレードル部材が四维甲板と接触するとみになっていわげ有利で

ある。別の実施例では、クレードル部材が異なる長さを 有していて、それによって1つのクレードル部材だけが ジョイント毎に円錐円板に摩擦接触するようになってい れば有利である。

【0040】図3の平面図により明らかなように、チェ ーンはいわゆる2列複合リンクプレート構造で組み立て られている。つまり隣接し合うリンクプレートのそれぞ れ2つの半径方向の端部ウエブ9若しくは10が、クレ ードル部材3の2つの対間に並んで配置され、それに応 じて、クレードル部材対によって形成されたジョイント 10 の間隔が規定されている。

【0041】図3には同様に、端面19の縁部層19a が示されている。この縁部層19aは、浸炭窒化工程 (Carbonitriervorgang) 及び場合によっては硬化工程 によって有利な形式で改良される。

)

【0042】図4に示した平面図によれば、公知のチェ ーンが3列複合リンクプレート構造の構造で構成されて いる。この平面図では、チェーンの幅方向で見て通常の プレート11とアウタープレート12とがチェーン走行 方向でそれぞれ1ビッチ分だけ互いにずらされ、それに 20 よってチェーンが走行方向に対して横方向でずらされる が、これによって他方側では、クレードル部材13の対 によって形成されたジョイント間の間隔が図3に示され た列状複合リンクプレート構造に対して減少されること ができる。

【0043】図4に示した平面図は、図2の側面図で示 した、通常のプレート11とアウタープレート12とを 有する別の公知のチェーン構造に相当する。この場合、 ジョイント部材はクレードル部材13の対より成ってい る。このクレードル部材13は、2箇所14,15だけ 30 でプレート切欠16に当接するような構成を有してい る。当接箇所14,15間でクレードル部材13はチェ ーンのプレート11, 12から離れている。

【0044】本発明に従って少なくとも巻き掛け部材の 端面及び/又は円錐円板表面を浸炭窒化及び硬化するた めに、例えば、窒素添加され次いで硬化された縁部層 (浸炭窒化層)を生ぜしめるために拡散焼きなまし/分 離焼きなましが用いられる。

【0045】伝動装置部材つまり、チェーン、推進用コ マ付きベルト又は円錐円板のための材料としての使用鋼 40 のために、例えば次の作業経過が行われる。

【0046】1) 780℃~1050℃の間の温度範囲 内で、縁部層漫炭処理を行うために若しくは縁部層漫炭 及び窒化処理(Randschichtaufstickung)を行うために 拡散焼きなまし処理を行う。焼きなまし処理の時間は、 得ようとする肌焼き入れ深さ及び、浸炭処理若しくは窒 化処理 (ガス、塩浴又は粒化処理) するための選択され た方法/媒体に基づいている。 有利な方法では、 浸炭等 囲気内でガス浸炭処理/-窒化処理において、天然ガ ス、プロパン又はその他の炭素(C)を含有するエンリ

ッチガス及びアンモニアを反応ガスとして添加する。 【0047】2) 炉を硬化温度に冷却し、次いでT<M s にマルテンサイト急冷硬化させる。硬化温度の保持時 間は、必要な時間に応じて構成部分温度補償まで選択し なければならない。

[0048]3) 150℃~250℃の間の温度におけ る焼き戻し/応力除去、円錐円板の肌焼き入れ深さは、 有利には0. 5mmよりも大きい。肌焼き入れと関連し た浸炭窒化法の可能な変化例によれば、浸炭処理と窒化 処理とを個別の焼きなまし段階で分離して行い、拡散焼 きなまし処理(1)中に浸炭処理が行われ、硬化温度で 窒化処理が行われる。とのような処置は、浸炭処理と窒 化処理とを同時に行うことに対して次のような利点を有 している。1. カーボンポテンシャルの良好な調整可能 性が得られ、2. 短い窒化処理時間に基づく<浸炭窒化 層厚及びひいては、CとNとの基本的に低い合計濃度、 つまり縁部領域における高い粘さ及び低い残留オーステ ナイトが得られる。

【0049】転がり軸受鋼又は調質鋼の浸炭窒化処理: 巻き掛け手段の、摩擦力を伝達する部材のための基礎材 料としての転がり軸受鋼又は調質鋼において、浸炭窒化 処理は有利な形式で、肌焼き入れ鋼において用いられた 前処理としての拡散焼きなまし処理を行うことなしに硬 化温度で直接行われる。硬化温度は典型的な形式で、8 00℃~900℃の間で、保持時間は10′~2h(1 0分~2時間)の間である。

[0050] 良好な摩耗特性のための前提条件は、縁部 層の有利には50μmの深さまで、少なくとも0.01 %有利には0.05%~0.1%の窒累が存在するとい うととである。

【0051】急冷による硬化は、マルテンサイト段階 (T<<Ms)でも中間段階(例えばMsの温度におけ るベイナイト)でも行うことができる。この場合マルテ ンサイト硬化された部分は、続いて焼き戻ししなければ ならない(焼き戻し温度は約150℃~250℃)。

【0052】従来の硬化に対して、チェーンの浸炭窒化 処理されたクレードル部材から次のような利点が得られ

【0053】a)同じ寸法の円錐円板において、従来の 方法で硬化されたクレードル部材よりも大きい伝動装置 拡開が得られる。何故ならば限界伝達比は変わらないか らである。

【0054】b) 高い焼き戻し耐性及びひいては、スリ ップ時又は巻き掛け部材が滑る際の損傷が少ない。

【0055】c)円錐円板のわずかな表面調質が許容さ

【0056】d)伝動装置の汚れが少なく、オイル耐用 年数が長い。

【0057】e)チェーン音響学的な影響の可能性若し 50 くはチェーン幅に亘る影響の可能性(チェーン幅のラン ダム化又は短いクレードル部材及び長いクレードル部材 の所望の連続) 浸炭窒化処理された円錐円板の利点:

- a) 孔食に対する良好な耐性
- b) 浸炭窒化処理されたクレードル部材に関連した剥摩 傾向が小さい
- c)高い焼き戻し耐性

)

- d) 少ない面腐食、ひいてはわずかな輪郭変化、並びに 伝達及び押しつけに関連した伝動装置の良好な調整可能 性
- e) 摩擦力を伝達する部材が合金鋼から製造されていて、これが硬化されていて、心部内でもっぱらマルテンサイト又はベイナイトの構造、及び窒素を添加した縁部層(浸炭窒化層)を有している。

【0058】摩擦力を伝達する部材が合金鋼より製造されていて、浸炭地下層内で50μmの深さまで少なくとも0,05%の窒素含有量を有していても有利である。【0059】図5には本発明によるリンクブレートチェーン32を延伸させるための装置50が図示されており、この場合、リンクブレートチェーン32は、2組の円錐円板内で受容されている。一方の組の円錐円板は、軸方向で互いに相対的にスライド可能な2つの円錐円板24及び25によって形成されている。このために一方の円錐円板25が軸方向でスライド(転位若しくはずらし)可能である(矢印32参照)。チェーンを円錐円板組に対して軸方向でスライドさせて押し付けるために調節シリンダ28が使用される。

【0060】他方の組の円錐円板は、2つの円錐円板26及び27によって形成されており、これらの円錐円板26及び27は軸方向で互いに相対的にスライド可能である(矢印31参照)。円錐円板組に対してチェーンを軸方向でスライドさせて押し付けるために調節シリンダ29が使用される。駆動側の軸22及び被駆動側の軸23を介して回転数及び/又はトルクを調節することができる。

【0061】本発明の、リンクブレートチェーンを延伸するための装置の別の構成に従って、装置の軸線又は軸が力の負荷を受けて互いに延びるようになっていて、それによってリンクプレートチェーンが円錐円板ギャップ内に押し込められ、リンクプレートチェーンと円錐円板との間の力伝達が所望の値に調節されるようになっていれば有利である。このために、円錐円板対の円錐円板が軸方向で互いに変位可能であることは、必ずしも必要ではない。円錐円板が互いに固定して配置されていても有利である。

【0062】巻き掛けた状態でチェーンが延伸する際に、リンクプレートチェーンは各プレートの組み付け後にクレードル部材によって閉鎖される。次いで、リンクプレートチェーンは例えば図5に示した変化実施例におけるように設けられる。クレードル部材と円錐円板との間の押し付けによって、及び/又はトルク伝達によっ

10

て、チェーンは巻き掛け状態で延伸する。このために有利には、伝動装置内で一般的な形式で発生する多様な押圧力及び/又はトルクが調節され、速度可変装置(Variator)によってチェーンが例えばわずかに循環回転せしめられ、それによって各チェーンリンク例えばブレート及びクレードル部材等が少なくとも1回又は複数回速度可変装置で循環回転せしめられる。チェーンが自動車の伝動装置の伝達比と比較して遅く、またわずかな循環回転で空転せしめられれば有利である。

【0063】典型的な場合、始動伝達比(アンダードライブ)で延伸過程が行われ、この場合トルクは、速度可変装置の最大モーメントの0~10倍の公称トルクの範囲内、つまり伝動装置内で発生する最大トルク及び伝動装置の0~10倍の公称トルクの範囲内に調節可能である。トルクは有利には、速度可変装置の最大モーメントの約3倍の範囲内に調節される。チェーンのベルト70の引張力が延伸過程中において、伝動装置の運転中におけるよりも大きければ有利である。引張力が、少なくとも伝動装置の通常運転中の最大引張力と比較して2倍であれば有利である。

【0064】との場合、リンクプレートチェーンは、毎分約0.5回転から約500回転まで、有利には毎分約10回転から毎分50回転までの範囲の低い回転数で、数回転又は数回の循環運動が空転で行われる。との場合、リンクプレートチェーン毎に応じて1~20循環運動が行われるようになっていれば、有利である。

【0065】本発明によれば、伝達比は延伸過程中にも変えることができる。

【0066】 これによってアンダードライブ(始動伝達比)中の車両の全負荷にほぼ相当する負荷分布が調節される。しかしながら延伸過程時には、例えばオーバードライブ伝達比又は、延伸時の可変伝達比のような、別の伝達比を調節することができる。巻き掛け中の延伸過程の利点は、チェーンがほぼあらゆる運転中に生じるチェーン湾曲において延伸せしめられ、それによって負荷分布は、伝動装置の運転中の実際の負荷分布に類似したものになる。

[0067] 巻き掛け状態での延伸過程によって、押圧及び/又はトルク負荷に基づいてチェーンは、クレードル部材が半径方向でも巻き掛け方向でも、円錐円板対の軸を基準として弾性的に変形又は湾曲せしめられるように負荷される。これによって、チェーンの幅方向で見て外側に配置されたプレートは、リンクプレートチェーンの中央に配置されたプレートよりも強く負荷される。その結果、アウタープレート又は縁部に配置されたプレートは、内側に配置されたプレートよりも大きく伸張し、このアウタープレートは、内側のプレートよりも大きい延伸率で伸張することになる。延伸率とは、破壊負荷に対する延伸時の負荷の比である。

) 【0068】との場合、一列のプレートの各ブレートが

組立時に同じ長さを有し、これらのプレートが幅の関数 (Funktion)として種々異なる長さに伸張されるようになっていれば、有利である。

【0069】同様に、一列のプレートの各プレートが予 め組み立て時に種々異なる長さ若しくはプレート内側幅 を有していて、それによってチェーンの縁部に配置され たブレートが、中央のブレートよりも大きいブレート内 側幅を有していれば有利である。これは特に、巻き掛け 時に延伸されるのではなく、プレートが組み立て前に延 伸され、次いで互いに組み付けられてチェーンが形成さ 10 れるようになっていれば特に有利である。この場合は、 種々異なるプレート内側幅のプレートを組み付けること に基づいて、予め中央部におけるよりも縁部において長 いプレート内側幅を有するチェーンを組み立てることが できる。これは例えば図12に示されている。図12で は、縁部におけるプレートの位置の関数としてのプレー ト内側幅が中央の領域におけるよりも大きいことが示さ れている。これは、巻き掛け時における延伸過程によっ ても、また種々異なるプレートを本発明に従って組み付 けることによっても実施することができる。

【0070】また、プレートは、組み立て前の延伸過程において種々異なる延伸率で延伸され、組み立て時において、プレートが高い延伸率でチェーンの縁部に配置されるような形式で、構成することができる。これによって、アウタープレート又は、縁部に配置されたプレートは、内側に配置されたプレートよりも強く可塑化(塑性変形)され、かつ負荷可能であって、アウタープレートは、内側のプレートよりも高い延伸率を有する。これは例えば図11に示されている。図11では、縁部におけるプレートの位置の関数としての延伸率が、中央の領域るプレートの位置の関数としての延伸率が、中央の領域ないよりも大きいことが示されている。これは、巻き掛け時における延伸過程によっても、また種々異なる強さで延伸されるプレートを本発明に従って組み付けることによっても行うことができる。

)

【0071】図6乃至図8には、プレートの長さの特性 が、チェーンの幅方向の配置の関数として見た線図が示 されている。図6及び図7のy軸線には、プレートの2 つの接触領域の間隔しの長さ若しくはプレートの長さが 示されている。との長さしは、プレート内側幅でもあ る。図8には、延伸されていない状態と本発明に従って 延伸された状態との間の、プレートの長さの差△しが示 されている。図6乃至図8のx軸線に関連して、それぞ れ、チェーンの幅に亘ってのプレートの位置が示されて いる。位置1は、チェーンの一方側におけるプレートの 位置に相当し、位置14は、ブレートの他方側における プレートの位置に相当する。位置2乃至13は、縁部プ レート」と14との間のプレートの位置に相当する。と の場合、特に14のプレート位置を有するチェーンがチ ェーンの幅に亘って配置されている実施例が示されてお り、この場合、別のチェーン変化実施例も、一般的な制 50 12

限なしに考慮することができる。

【0072】図6には、延伸されていないチェーン又は 真っ直ぐな状態で延伸された開放したチェーンの線図が 示されている。長さしは、プレート1乃至14の関数と してほぼ同じで一定である。

【0073】図7には、巻き掛け時における閉鎖状態でダイナミックに延伸されたチェーンの線図が示されている。長さしは、プレート1乃至14の関数として変化し、この場合、位置1乃至3及び12乃至14における 縁部プレートは、中央のプレート位置4乃至11におけるプレートの位置よりも大きく延伸せしめられる。これは、クレードル部材の半径方向及び周方向での撓み、並びにこれに対応する、縁部又は縁部付近に配置されたプレートの位置におけるプレートの接触領域の強い可塑化に基づいている。

【0074】図8には巻き掛け時において閉鎖状態でダイナミックに延伸されたチェーンの線図が示されている。長さの差△Lは、プレート位置1から4の関数として変化し、この場合、位置1~3及び12~14におけるプレートは、中央のプレート位置4~11におけるプレートよりも強く延伸せしめられる。これは、クレードル部材の半径方向及び周方向での撓み、並びにこれに対応する、縁部又は縁部付近に配置されたプレートの位置におけるプレートの接触領域の強い可塑化に基づいている。図8は、チェーンのガイド可能性を高めるための本発明による効果をさらに明らかに示している。

[0075] 中央領域の長さL若しくは延長△Lにおけるわずかな変動は、測定エラーに基づくものである。

【0076】特に半径方向及び/又は周方向に向けられた、クレードル部材の撓みによって、走行方向とクレードル部材との間の角度に適合するプレート可塑化が行われる

【0077】図9は、プレート103~113の切欠120内に受容されているクレードル部材101及び102を備えたチェーン100の一部を示している。クレードル部材が、例えば半月キーにおけるように、どのような形式で巻き掛け時にダイナミックな延伸過程で湾曲されるかが示されている。図面は、説明するために勿論やや誇張して示されている。

【0078】接触領域103a~113aは、クレードル部材101及び102が撓むことによって可塑化され、その輪郭形状がクレードル部材に適合せしめられる。図面では、アウタープレートが、例えば107で示されている中央のプレートにおけるよりも、より強く延伸され、チェーン横方向Qと接触面Fとの間でより大きい角度々で可塑化されることが示されている。図9aにはその一部が示されている。

[0079] 角度 αは、チェーンの中央から外方に向かって次第に大きくなっていく。

【0080】図10は、角度αが、プレート位置の関数

としての量 | α | として示されている線図を示している。この角度は、外方に縁部に向かって次第に大きくなり、中央の領域でゼロに戻る。これは本発明によれば、巻き掛け時における延伸によって、又は本発明の別の考え方に基づいて、組み立て前に角度αで異なって延伸せしめられ、次いで互いに1つのチェーンに組み付けられるような形式で延伸されたブレートによっても得ること

13

[0081]プレートは縁部付近で、本発明による延伸において、真っ直ぐな帯材若しくはストランド(Strang) 10での延伸過程におけるよりも強く負荷される。これによってブレートは縁部で、より強く伸張され、延伸率が高くなる。

ができる。

[0082] 要求に基づいて正しく延伸することによって、チェーンは、延伸過程において、後で伝動装置内においてチェーンを駆動する場合に負荷が均一化され、それによってチェーンの耐用年数はより長くなるように、前もって良い状態が得られる。

[0083] さらに有利には、チェーンの負荷は、ブレートに導入されるクレードル部材の力が、図3に示した 20ようにダブル領域接触80,81において2つの領域に均一に導入されることによって減少される。これについては特に、DE3027834号明細書を参照されたい。この明細書の開示内容は、本発明の明細書の内容に属するものである。

【0084】図13には、クレードル部材201,202を備えたプレート200を取り出した図が示されており、この場合、プレートは延伸過程時に、延伸力210の力の導入がプレート若しくはチェーン長手方向220に対して角度ゆで向けられるように、延伸される。この場合、延伸過程中に角度ゆは、約60~~60°まで達するので、接触領域230は、幅の広い角度範囲に亘って延伸し、可塑化される。

[0085] 図14には、リンクプレートチェーン300の断面図が示されており、この断面図では、プレート301、302、303及びクレードル部材310の隣にジョイントとして、円錐円板とチェーンとの間でトルク伝達を行うための横方向ビン320が設けられている。摩擦力の伝達は、この横方向ビン320の端面321を介して行われる。

【0086】図15には、第1の軸401と第2の軸402と、これらの軸に配置された円錐円板403及び404とを備えた本発明による伝動装置400の概略図が示されている。円錐円板対403及び404は、それぞれ2つの円錐円板403a、403b及び404a、404bを有しており、これら2つの円錐円板のうちの少なくともそれぞれ一方が、それぞれの軸に対して相対的に軸方向で移動可能である。円錐円板対間に、トルクを伝達するために巻き掛け部材410例えばリンクプレートチェーン又は推進用コマ付きベルトが配置されてい

る。
【0087】図16には、本発明による推進用コマ付きベルト(Schubgliederband)411が概略的に示されており、この推進用コマ付きベルト411においては、少なくとも1つ有利には2つの閉鎖したベルトストランド420、421が設けられていて、これらのベルトストランド420、421は推進用コマ(Schubglieder)422を受容している(図15も参照)。図16には同様に端面422aの縁部層423が示されている。この縁部層423は、有利な形式で浸炭室化法及び場合によっては硬化過程によって改良される。

[0088]本発明明細書に記載した請求項は、広範囲な保護を得るための偏見のない提案である。本特許出願人は、以上の実施例及び/又は図面に開示した以外のさらに別の特徴を請求する権利を留保する。

[0089]従属請求項には、それぞれの従属請求項の特徴によって主要請求項の要件のさらに別の構成について記載されている。従属請求項は、引用した従属請求項の特徴のための具体的な独立した保護を得ることを放棄したものではない。

【0090】しかしながら従属請求項の要件は、先行する従属請求項の要件とは無関係な構成を有する独立した発明を形成するものでもある。

【0091】本発明は、明細書の実施例の説明だけに限定されるものではない。むしろ本発明の枠内で多くの変更及び変化実施例が可能である。特に、例えば一般的な説明及び実施例並びに請求項に関連して記載され、図面に含まれる個別の特徴若しくは部材又は方法段階の組み合わせ又は変更によって発明性を有する、かつ、組み合わせ可能な特徴によって1つの新たな要件又は1つの新たな方法段階若しくは方法段階の連続を形成する、変化例、部材及び組み合わせ及び/又は特徴が可能である。その限りにおいて、本発明は製造法、検査法及び作業法に関するものでもある。

【図面の簡単な説明】

【図1】2リンク複合体を備えた公知のリンクプレート チェーンの側面図である。

[図2] 別の構造の公知のリンクプレートチェーンの側面図である。

40 【図3】図1に示したリンクプレートチェーンの平面図である。

[図4]図2に示した公知のリンクプレートチェーンの 3リンク複合体を示す、図3に相応する平面図である。

【図5】リンクプレートチェーンを延伸するための装置の概略図である。

【図6】ブレートの長さとチェーンの幅との関係を示す 線図である。

【図7】 プレートの長さとチェーンの幅との関係を示す 線図である。

50 【図8】プレートの長さとチェーンの幅との関係を示す

15

線図である。

【図9】プレートの延びを示す線図である。

【図9a】図9の一部の拡大図である。

【図10】プレートの位置を示す線図である。

【図11】プレートの位置と延伸率との関係を示す線図 である。

【図12】プレートの位置とリンクの内法幅の長さとの 関係を示す線図である。

【図13】プレートを示す図である。

【図14】リンクプレートチェーンの断面図である。

【図15】伝動装置の概略図である。

【図16】推進用コマ付きベルトの概略図である。

【符号の説明】

)

)

1 リンクプレート、 2 アウタープレート、 3 クレードル部材、 4切欠、 5 結合部、 6 転助面、 7 間隔、 8 チェーン走行方向、9,10 終端ロッド、 11 ブレート、 12 アウタープレート、 13 クレードル部材、 14,15 箇所、 16 プレート切欠、 19 端面、 19a 緑部*

22, 23 軸、 24, 25, 26, 27 円 錐円板、28,29 調節シリンダ、 31 矢印、 32 リンクプレートチェーン、 70 チェーンの張 り区分、 100 チェーン、 101,102 クレ 103~113 プレート、 103a ードル部材、 ~113a 接触領域、 120 切欠、 200 ブ レート、 201, 202 クレードル部材、210 延伸力、 220 プレート若しくはチェーン長手方 向、 230接触領域、 300 リンクプレートチェ 10 ーン、 301, 302, 303 プレート、 310 クレードル部材、 320 横方向ピン、 321 端面、400 伝動装置、 401, 402 軸、 4 03, 404 円錐円板、403a, 403b; 404 a, 404b 円錐円板、 410 巻き掛け部材、 411 推進用コマ付きベルト、 420,421 ベ ルトストランド、422 推進用コマ、 422a 端 面、 423 縁部層、 Q チェーン横方向、 α 角度

16

【図1】

【図2】

Position 14

【図3】

19a 19 Posttlon 15

(図6)

)

)

【図14】

【図15】

フロントページの続き

(51) Int.Cl.7

)

識別記号

F 1 6 H 9/24 55/36

55/56

(71)出願人 390009623

イナーシエツフレル コマンディートゲゼ

ルシャフト

INA-Schaeffler KG ドイツ連邦共和国 ヘルツオーゲンアウラ

ツハ インヅストリイストラーセ 1-3

(72)発明者 マルクス バウマン

ドイツ連邦共和国 ピユール ローゼンヴ

ェーク 10

FΙ

F 1 6 H 9/24

55/36

Z

テーマコート (参考)

55/56

(72)発明者 ロタール モーゼル

ドイツ連邦共和国 オッタースヴァイアー

タンツビュール 4

(72)発明者 ヴェルナー クライス

ドイツ連邦共和国 エアランゲン コーブ

ルガーシュトラーセ 43

Fターム(参考) 3J031 AB03 AC10 BA04 BA09 BB01

BB05 BB06 BC08 CA01 CA02

CA08

3J050 AA03 AA08 BA03 CD09 CE01 4K028 AA03 AB01 AB06 AC01