M520 Ch. 6 Notes: Orthogonality and Least Squares • Theorem 3: Let A be an mxn matrix.

6.1

The Inner Product

- u and v are vectors in \mathbb{R}^n , then u and v are $n \times 1$ matrices
- Definition: $u^T v$ is the inner product (or dot product) of u and v and written as $u \cdot v$
- $u = \langle u_1, ..., u_n \rangle$ and $v = \langle v_1, ..., v_n \rangle$, then $u \cdot v$ is $u_1v_1 + \ldots + u_nv_n$

Inner Product Properties

- Let u, v, and w be vectors in \mathbb{R}^n , and let c be a scalar,
- a: $u \cdot v = v \cdot u$
- b: $(u+v) \cdot w = u \cdot w + v \cdot w$
- c: $(cu) \cdot v = c(u \cdot v) = u \cdot (cv)$
- d: $u \cdot u \ge 0$, and $u \cdot u = 0$ if and only if u = 0
- another useful property: $(c_1u_1 + ... + c_pu_p) \cdot w = c_1(u_1 \cdot ... + c_pu_p)$ $(w) + \ldots + c_p(u_p \cdot w)$

The Length of a Vector

• Definition: The length (or norm) of a vector v is the nonnegative scalar ||v|| defined by: $||v|| = \sqrt{v \cdot v} =$ $\sqrt{v_1^2 + ... + v_n^2}$ and $||v||^2 = v \cdot v$

Distance in \mathbb{R}^n

- Definition: For u and v in \mathbb{R}^n , the distance between uand v, written as dist(u, v), is the length of the vector u - v
- $\operatorname{dist}(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} \mathbf{v}||$

Orthogonal Vectors

- Definition: Two vectors u and v in \mathbb{R}^n are orthogonal to each other if $u \cdot v = 0$
- zero vector is orthogonal to every vector in \mathbb{R}^n because $0^T v = 0$ for all v
- Theorem 2: The Pythagorean Theorem: Two vectors u and v are orthogonal if and only if $||u+v||^2 = ||u||^2 + ||v||^2$

Orthogonal Complements

- if vector z is orthogonal to every vector in a subspace W of \mathbb{R}^n then z is said to be orthogonal to W
- Definition: the set of all vectors z that are orthogonal to W is called the orthogonal complement of W and is denoted by W^{\perp} (W perpendicular)
- fact 1 about W^{\perp} where W is a subspace of \mathbb{R}^n : A vector x is in W^{\perp} if and only if x is orthogonal to every vector in a set that spans W
- fact 2: W^{\perp} is a subspace of \mathbb{R}^n

- - orthogonal complement of the row space of A is the null space of A: $(RowA)^{\perp} = NulA$
 - the orthogonal complement of the column space of A is the null space of A^T : $(ColA)^{\perp} = NulA^T$

Angles in \mathbb{R}^2 and \mathbb{R}^3

• $u \cdot v = ||u||||v||cos\theta$

6.2

Orthogonal Sets

- Definition: A set of vectors $\{u_1,...,u_p\}$ in \mathbb{R}^n is said to be an orthogonal set if each pair of distinct vector from the set is orthogonal; that is if $u_i \cdot u_j = 0$ whenever $i \neq j$
- Theorem 4: If $S = \{u_1, ..., u_p\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^n , then S is linearly independent and hence is a basis for the subspace spanned by S

Orthogonal Basis

- Definition: An orthogonal basis for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set
- Theorem 5: Let $\{u_1,...,u_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each y in W, the weights in the linear combination $y = c_1u_1 + ... + c_pu_p$ are given by $c_j = \frac{y \cdot u_j}{u_j \cdot u_j}$ for j = 1, ..., p

Orthogonal Projection

- want to decompose a vector y in \mathbb{R}^n into the sum of 2 vectors, one is a multiple of u and the other orthogonal to u (where u is nonzero)
- $\bullet \ \ y = \hat{y} + z$
- \hat{y} is the scalar multiple of u; \hat{y} is the orthogonal projection of y onto u; $y = \alpha u$ where $\alpha = \frac{y \cdot u}{u \cdot u}$
- z is a vector orthogonal to u; z is the component of v orthogonal to u

Orthonormal Sets

- Definition: A set $\{u_1,...,u_p\}$ is an orthonormal set if it is an orthogonal set of unit vectors
- Orthonormal basis: if W is a subspace spanned by an orthonormal set then the set is the orthonormal basis for W
- Theorem 6: An mxn matrix U has orthonormal columns if and only if $U^TU = I$
- Theorem 7: Let U be an mxn matrix with orthonormal columns, and let x and y be in \mathbb{R}^n , then:
 - a ||Ux|| = ||x||
 - b $(Ux) \cdot (Uy) = x \cdot y$
 - c $(Ux) \cdot (Uy) = 0$ if and only if $x \cdot y = 0$

• Orthogonal matrix: a square invertible matrix U such that $U^{-1} = U^T$; matrix has orthonormal columns and rows

6.3

Theorem 8: The Orthogonal Decomposition Theorem

- Let W be a subspace of \mathbb{R}^n
- then each y in \mathbb{R}^n can be written uniquely in the form: $y = \hat{y} + z$ where \hat{y} is in W and z is in W^{\perp}
- If $\{u_1, ..., u_p\}$ is any orthogonal basis of W, then:

$$\hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u + \dots + \frac{y \cdot u_p}{u_p \cdot u_p} u p$$

• also, $z = y - \hat{y}$

Properties of Orthogonal Projections

- If y is in W = Span $\{u_1, ..., u_p\}$, then $proj_w y = y$
- Theorem 9: The Best Approximation Theorem
 - Let W be a subspace of \mathbb{R}^n , let y be any vector in \mathbb{R}^n , and let \hat{y} be the orthogonal projection of y onto W
 - Then \hat{y} is the closest point in W to y, in the sense that

$$||y - \hat{y}|| < ||y - v||$$

for all v in W distinct from \hat{y}

- Theorem 10:
 - If $\{u_1, ..., u_p\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then

$$proj_W y = (y \cdot u_1)u_1 + \dots + (y \cdot u_p)u_p$$

- similar to Theorem 8 except that denominators are
 because two unit vectors dotted with each other
 is 1
- If $U = [u_1...u_p]$, then

$$proj_W y = UU^T y$$

for all y in \mathbb{R}^n

6.4 The Gram-Schmidt Process

• Given a basis $\{x_1, ..., x_p\}$ for a nonzero subspace W of \mathbb{R}^n , define

$$\begin{aligned} v_1 &= x_1 \\ v_2 &= x_2 - \frac{x_2 \cdot v_1}{v_1 \cdot v_1} v_1 \\ v_3 &= x_3 - \frac{x_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{x_3 \cdot v_2}{v_2 \cdot v_2} v_2 \\ & \dots \\ v_p &= x_p - \frac{x_p \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{x_p \cdot v_2}{v_2 \cdot v_2} v_2 - \dots - \frac{x_p \cdot v_{p-1}}{v_{p-1} \cdot v_{p-1}} v_{p-1} \end{aligned}$$

• Then $\{v_1, ..., v_p\}$ is an orthogonal basis for W; in addition: $\operatorname{Span}\{v_1, ..., v_k\} = \operatorname{Span}\{x_1, ..., x_k\}$ for $1 \le k \le p$

QR Factorization of Matrices

• If A is an mxn matrix with linearly independent columns, then A can be factored as A=QR, where Q is an mxn matrix whose columns form an orthonormal basis for Col A and R is an nxn upper triangular invertible matrix with positive entries on its diagonal

6.5: Least Squares Problems

General Least Squares Problem

- Sometimes Ax = b has an inconsistent solution, want to find an x that makes Ax as close as possible to b; minimize the distance between b and Ax; want to make ||b Ax|| as small as possible
- Definition: If A is mxn and b is in \mathbb{R}^m , a least-squares solution of Ax=b is an \hat{x} in \mathbb{R}^n such that

$$||b - A\hat{x}|| \le ||b - Ax||$$

for all x in \mathbb{R}^n

Solution of General Least-Squares Problem

- apply Theorem 9 Best Approximation Theorem to subspace Col A to get: $\hat{b} = proj_{ColA}b$
- since \hat{b} is the closest point in Col A to b, a vector \hat{x} is a least-squares solution of Ax=b if and only if \hat{x} satisfies $A\hat{x} = \hat{b}$
- Theorem 13: The set of least-squares solutions of Ax=b coincides with the nonempty set of solutions of the normal equations $A^TAx = A^Tb$; every least-squares solution of Ax=b satisfies the equation $A^TAx = A^Tb$
- Theorem 14: Let A be an mxn matrix. The following statements are logically equivalent:
 - a: The equation Ax=b has a unique least squares solution for each b in \mathbb{R}^m
 - b: The columns of A are linearly independent
 - c: The matrix $A^T A$ is invertible
 - When these statements are true, the least-squares solution \hat{x} is given by $\hat{x} = (A^T A)^{-1} A^T b$
- Least-squares error: when a least-squares solution \hat{x} is used to produce $A\hat{x}$ as an approximation to b, the distance from b to $A\hat{x}$ is called the least-squares error of this approximation
- Theorem 15:
 - Given an mxn matrix A with linearly independent columns, let A=QR be a QR factorization of A as in Theorem 12.
 - Then for each b in \mathbb{R}^m , the equation Ax=b has a unique least-squares solution given by $\hat{x} = R^{-1}Q^Tb$

6.7: Inner Product Spaces

Inner Product Space

- An inner product on a vector space V is a function that, to each pair of vectors u and v in V, associates a real number $\langle u, v \rangle$ and satisfies the following axioms, for all u, v, and w in V and all scalars c:
- 1: < u, v > = < v, u >
- $2: \langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$
- $3: \langle cu, v \rangle = c \langle u, v \rangle = \langle u, cv \rangle$
- 4: $\langle u, u \rangle > 0$ and $\langle u, u \rangle = 0$ if and only if u = 0
- A vector space with an inner product is called an inner product space

Lengths, Distances, and Orthogonality

- Let V be an inner product space, with the inner product denoted by < u, v >
- Length (norm): length of a vector v is the scalar $||v|| = \sqrt{\langle v, v \rangle}$ just as in \mathbb{R}^n
- Distance between u and v is ||u-v||

The Gram-Schmidt Process

- existence of orthogonal bases for finite-dimensional subspaces of an inner product space can be established by the Gram-Schmidt process, just as in \mathbb{R}^n
- orthogonal projection of a vector onto a subspace W with an orthogonal basis has the properties described in the Orthogonal decomposition Theorem and the Best Approximation Theorem

Best Approximation in Inner Product Spaces

- vector space V whose elements are functions
- want to approximate a function f in V by a function g from a specified subspace W of V
- best approximation to f by functions in W is the orthogonal projection of f onto the subspace W

The Cauchy-Schwarz Inequality

• For all vectors u and v in an inner product space V:

$$|< u, v > | \le ||u|| * ||v||$$

Theorem 17: The Triangle Inequality

• For all vectors u and v in an inner product space V:

$$||u+v|| \le ||u|| + ||v||$$

An Inner Product for C[a, b]

6.8: Applications of Linear Product Spaces Fourier Series

•