Quiz 5 Problem 2

- 1. Find the sequence generation rule of:
- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

$$\begin{array}{l} \Longrightarrow \ a_0 = 0 \\ \\ a_1 = 1 \\ \\ a_n = a_{n-1} + a_{n-2} \ , \forall n \geq 2 \end{array}$$

2. Use Berlekamp-Massey algorithm to find out the sequence rule of: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34

=>
$$s(x) = x^8 + x^7 + 2x^6 + 3x^5 + 5x^4 + 8x^3 + 13x^2 + 21x + 34$$

 $r(x) = x^9$

Find c(x) such that f(x)r(x) + c(x)s(x) = b(x), deg b < deg c

Formula No.	f(x)	c(x)	b(x)
(1)	1	0	x^9
(2)	0	1	$x^8 + x^7 + 2x^6 + 3x^5 + 5x^4 + 8x^3$
			$+13x^2 + 21x + 34$
(3): (1) – (2) * (x - 1)	1	-x + 1	$-x^7 - x^6 - 2x^5 - 3x^4 - 5x^3$
			$-8x^2 - 13x + 34$
(4): (2) – (3) * (-x)	X	$-x^2 + x + 1$	55x + 34

$$=> c(x) = -x^2 + x + 1$$

Division:

$$x^{9} = (x^{8} + x^{7} + 2x^{6} + 3x^{5} + 5x^{4} + 8x^{3} + 13x^{2} + 21x + 34)(x - 1) + (-x^{7} - x^{6} - 2x^{5} - 3x^{4} - 5x^{3} - 8x^{2} - 13x + 34)$$

$$x^{8} + x^{7} + 2x^{6} + 3x^{5} + 5x^{4} + 8x^{3} + 13x^{2} + 21x + 34$$
$$= (-x^{7} - x^{6} - 2x^{5} - 3x^{4} - 5x^{3} - 8x^{2} - 13x + 34)(-x) + (55x + 34)$$

Validation:

 $\downarrow c(x)$

- (-) 1 1 2 3 5 8 13 21 34
- (+) 1 1 2 3 5 8 13 21 34
- (+) 1 1 2 3 5 8 13 21 34

1 0| 0 0 0 0 0 0 0| 55 34 ↑f(x) ↑b(x)