Министерство образования и науки РФ Ульяновский государственный технический университет

Лабораторная работа по теории оптимизации информационных систем № 2_ОДНОМЕРНАЯ МИНИМИЗАЦИЯ ФУНКЦИЙ

(Название лабораторной работы)

Учебная группа ИСТМД-11

	ФИО	Дата	Подпись
Студент	Шаблыгин В.В.		
Преподаватель	Новиков А.А.		

ЦЕЛЬ РАБОТЫ:

изучение прямых методов минимизации функций, использующих информацию о производных целевой функции.

Задачи: изучить следующие методы минимизации:

- метод средней точки;
- метод хорд;
- метод Ньютона.

Программа лабораторной работы

Ознакомиться с вышеуказанными методами. Составить программу в среде MATLAB. Получить результаты и сделать выводы.

ОБОРУДОВАНИЕ И ПРИНАДЛЕЖНОСТИ:

Среда программирования MATLAB.

<u>КРАТКАЯ ТЕОРИЯ:</u>

Оптимизация — задача нахождения экстремума (минимума или максимума) целевой функции в некоторой области конечномерного векторного пространства, ограниченной набором линейных и/или нелинейных равенств и/или неравенств.

Если функция f(x) является дифференцируемой или дважды дифференцируемой выпуклой функцией и возможно вычисление производных в произвольно выбранных точках, то этом случае эффективность поиска точки минимума можно существенно повысить.

Метод средней точки. Если определение производной f '(x) не представляет затруднений, то в процедуре исключения отрезков методом дихотомии вычисление двух значений f(x) вблизи середины очередного отрезка можно заменить вычислением одного значения f '(x) в его средней точке $\bar{x}=(a+b)/2$. В самом деле, если 'xf>0)(, то точка \bar{x} лежит на участке монотонного возрастания f(x), поэтому $x^*<\bar{x}$, и точку минимума следует искать на отрезке [a, \bar{x}]. При f '(x)<0 имеем противоположную ситуацию и переходим к отрезку [\bar{x} , b]. Равенство f '(x)=0 означает, что точка минимума найдена точно $x^*=\bar{x}$,

Такое исключение отрезков требует на каждой итерации только одного вычисления f '(x) и уменьшает отрезок поиска точки x* ровно вдвое.

Метод хорд

Сущность приближенного решения уравнения F(x) = 0 на отрезке [a,b] при методом хорд состоит в исключении отрезков путем определения \bar{x} – точки пересечения с осью 0х хорды графика функции F(x) на [a,b]:

Полагая F(x) = f'(x), запишем координату точки \bar{x}

$$\widetilde{x} = a - \frac{f'(a)}{f'(a) - f'(b)}(a - b).$$

Отрезок дальнейшего поиска точки x^* ([a,x] или [\bar{x} , b]) выбирается в зависимости от знака $f'(\bar{x})$ так же, как в методе средней точки. На каждой итерации, кроме первой, необходимо вычислять только одно новое значение $f'(\bar{x})$

Метод Ньютона

Если выпуклая на отрезке [a,b] функция f(x) дважды непрерывно дифференцируема на этом отрезке, то точку $x^* \in [ab,]$ минимума этой функции можно найти, решая уравнение f'(x) = 0 методом Ньютона (другое название — метод касательных). Пусть $x_0 \in [a,b]$ — нулевое (начальное) приближение к искомой точке x^* . Линеаризуем функцию F(x) = f'(x) в окрестности начальной точки, приближенно заменив дугу графика этой функции касательной в точке $(x_0, f'(x_0))$

$$F(x) \approx F(x_0) + F(x'_0)(x - x_0)$$
.

Выберем в качестве следующего приближения к x^* точку x_1 пересечения касательной с осью абсцисс. Приравнивая к нулю правую часть , получим первый элемент $x_1 = x_0 - (F(x_0) / F(x'_0))$ итерационной последовательности $\{x_k\}$, k = 1, 2,

Выберем в качестве следующего приближения к x^* точку x_1 пересечения касательной с осью абсцисс. Приравнивая к нулю правую часть, получим

первый элемент
$$x_1 = x_0 - (F(x_0) / F(x'_0))$$
 итерационной последовательности $\{x_k\}$, $k = 1, 2,$

В очередной точке x_k построим линейную аппроксимирующую функцию для $F(\mathbf{x})$ и определим точку, в которой эта функция обращается в нуль, используя в качестве следующего приближения x_{k+1} .

Уравнение касательной к графику F(x) в точке $x = x_k$ имеет вид $y = F(x_k) + F(x'_k)(x - x_k)$, поэтому точка $x = x_{k+1}$, найденная из условия y = 0, определяется формулой $x_{k+1} = x_k - (F(x_k) / F'(x_k))$

Поскольку $F(x) \equiv f'(x)$, получим, что для решения уравнения f'(x) = 0 необходимо построить последовательность

$$x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}, \quad k = 1, 2, ...$$

где х0 – точка, выбранная в качестве начального приближения.

Вычисления по формуле производятся до тех пор, пока не выполнится неравенство $f'(x_k) \le \varepsilon$, после чего полагают $x * \approx xk$, $f * \approx f(x_k)$.

ВЫПОЛНЕНИЕ РАБОТЫ

Исследовать методы минимизации будем на примере функции:

$$f(x) = 10x \ln x - \frac{x^2}{2} \to \min, x \in [0, 1, 1].$$

Текст программы:

```
% Построим график
ezplot ('10*x*log(x)-(x^2/2)', [0 2.0])
hold on
ezplot ('10*(log(x)+1)-x', [0 2.0])
xline(0)
yline(0)
% 1. Метод средней точки
f = @(x) 10*x*log(x)-(x^2/2); % наша функция
Df = @(x) 10*(log(x)+1)-x;
                              % производная
е = 0.00001; % заданная погрешность
         % задаем начальный отрезок [a,b]
a = 0.3;
b = 0.5;
x=(a+b)/2; % средняя точка
i=1;
           % счетчик итераций
```

```
while abs(Df(x)) > e % пока не добьемся требуемой точности
    if Df(x) > 0 %
                 % задаем новый отрезок [а, х]
        b=x;
    else
                  % задаем новый отрезок [x, b]
        a=x;
    end
    i = i+1;
    x=(a+b)/2;
                  % новая средняя точка
end
disp('1. Метод средней точки, x= :')
disp(x)
disp('Минимальное значение функции, f(x) = :')
disp(f(x))
disp('Затрачено итераций, i= :')
disp(i)
% 2. Метод хорд
f = Q(x) 10*x*log(x)-(x^2/2); % наша функция
Df = @(x) 10*(\log(x)+1)-x;
                             % производная
е = 0.00001; % заданная погрешность
a = 0.3;
            % задаем начальный отрезок [a,b]
b = 0.5;
x = a - (Df(a)/(Df(a) - Df(b)))*(a - b); % точка пересечения хорды
            % счетчик итераций
while abs(Df(x)) > e % пока не добьемся требуемой точности
    if Df(x) > 0 %
       b=x;
                 % задаем новый отрезок [a, x]
    else
                 % задаем новый отрезок [x, b]
        a=x;
    end
    i = i+1;
    x=a-(Df(a)/(Df(a)-Df(b)))*(a-b); % новая средняя точка
end
disp('2. Метод хорд, x= :')
disp(x)
disp('Минимальное значение функции, f(x)=:')
disp(f(x))
disp('Затрачено итераций, i= :')
disp(i)
% 3. Метод Ньютона
f = @(x) 10*x*log(x)-(x^2/2); % наша функция
Df = @(x) 10*(log(x)+1)-x;
                              % производная первого порядка
Df2 = @(x) 10/x-1;
                               % производная второго порядка
е = 0.00001; % заданная погрешность
         % задаем начальный отрезок [a,b]
a = 0.3;
b = 0.5;
x = (a+b)/2;
               % начальное приближение
           % счетчик итераций
i=1;
while abs(Df(x)) > e % пока не добьемся требуемой точности
    i = i+1;
    x = x - Df(x)/Df2(x); % новое приближение
end
disp('3. Метод Ньютона, x=')
disp(x)
disp('Минимальное значение функции, <math>f(x)=')
disp(f(x))
disp('Затрачено итераций, i= ')
disp(i)
```

Результат:

1. Метод средней точки, х=:

0.382212066650391

Минимальное значение функции, f(x)=:

-3.749081008645030

Затрачено итераций, і=:

18

2. Метод хорд, х=:

0.382212689504838

Минимальное значение функции, f(x)=:

-3.749081008645648

Затрачено итераций, і=:

6

3. Метод Ньютона, x= 0.382212172156819

Минимальное значение функции, f(x)=

-3.749081008645822

Затрачено итераций, і=

3

Сведем результаты в таблицу:

	метод средней точки	метод хорд	метод Ньютона
Погрешность	0.00001	0.00001	0.00001
Количество итераций	18	6	3

Выводы по работе: из таблицы видно, что наиболее эффективным методом является метод Ньютона.