INEFFICIENT AND DELAYED VICTIM IDENTIFICATION IN DISASTER ZONES

Problem Description

Natural disasters such as earthquakes, tsunamis, and floods often leave vast areas devastated, with countless victims trapped or injured. The first 72 hours after a disaster are critical for survival, making swift victim identification and rescue paramount. However, traditional search and rescue methods face significant challenges:

- Vast Search Areas: Disaster zones can span hundreds of square miles, making it difficult for human rescue teams to cover the entire area effectively.
- **Limited Visibility:** Debris, darkness, and adverse weather conditions can obscure victims, hindering their detection.
- **Delayed Response Times:** Manually searching for victims is time-consuming, leading to delays in providing critical aid.
- **Inefficient Resource Allocation:** Without a clear understanding of victim locations and their condition, rescue teams may struggle to prioritize their efforts, potentially missing those in most urgent need.

[Ideal Search area]

Impact

The consequences of delayed or inefficient victim identification are devastating:

Increased Mortality Rates: Victims who are not found and treated quickly are at a much higher risk of death due to injuries, exposure, or underlying medical conditions.

Extended Suffering: Survivors trapped in debris or isolated areas endure prolonged physical and psychological trauma.

Strain on Resources: Inefficient search and rescue operations waste valuable time and resources, potentially hindering the overall disaster response effort.

Economic Losses: Delays in rescue and recovery can lead to significant economic losses for affected communities.

Preliminary Research and Data

- World Health Organization (WHO): The WHO estimates that disasters cause an average of 60,000 deaths annually, with many more suffering injuries and displacement.
- United Nations Office for Disaster Risk Reduction (UNDRR): The UNDRR reports that disaster impacts are increasing due to climate change, urbanization, and population growth, making effective search and rescue even more crucial.
- **Studies on Drone Technology:** Research has shown that drones equipped with thermal imaging and other sensors can significantly improve the speed and accuracy of victim detection in disaster zones.
- Gaps in Current Technology: Existing drone-based search and rescue solutions
 often lack intelligent algorithms for victim prioritization and route optimization,
 limiting their effectiveness.

Why This Problem Needs to be Solved

The current limitations in disaster victim identification and rescue present a compelling need for innovative solutions. By developing a drone-based system that can rapidly locate victims, assess their criticality, and guide rescue teams on the most efficient routes, we can:

- **Save Lives:** Increase the number of survivors by accelerating victim identification and prioritization.
- **Reduce Suffering:** Minimize the time victims spend trapped or injured, alleviating their suffering.
- **Optimize Resource Utilization:** Ensure that rescue teams are deployed most effectively, maximizing their impact.
- **Build Resilience:** Strengthen disaster response capabilities and help communities recover more quickly.

Conclusion

The need for a more efficient and effective solution for victim identification in disaster zones is clear. The proposed drone-based system offers a promising approach to address this critical challenge, with the potential to save lives and improve disaster response outcomes.

Contact Information

Email Address: cb.en.u4cse21148@cb.students.amrita.edu