ДЗ #17, 3-SAT-Забавы СПб ВШЭ, 1 курс ПМИ, 5 февраля 2025

Содержание

Must have	2
Обязательные задачи	2
Для искателей острых ощущений	2
Задача 17S. SAT USAT [0.1 sec, 256 mb]	2

У вас не получается читать/выводить данные? Воспользуйтесь примерами (c++) (python).

Обратите внимание, входные данные лежат в **стандартном потоке ввода** (он же stdin), вывести ответ нужно в **стандартный поток вывода** (он же stdout).

Обратите внимание на GNU C++ компиляторы с суффиксом inc.

Подни можно пользоваться дополнительной библиотекой (optimization.h).

То есть, использовать быстрый ввод-вывод: пример про числа и строки.

И быструю аллокацию памяти (ускоряет vector-set-map-весь-STL): пример.

Для тех, кто хочет разобраться, как всё это работает.

Короткая версия быстрого ввода-вывода (тык) и короткая версия аллокатора (тык).

Must have

 $n \leq 30$

Обязательные задачи

 $n \leq 70$

Для искателей острых ощущений

 $n \leqslant 120$

Задача 17S. SAT USAT [0.1 sec, 256 mb]

Широко известна задача 3-SAT. Ещё про неё можно почитать здесь.

Решите её. Гарантируется, что решение существует.

Формулировка 3-SAT: нужно подобрать значения n булевых переменных так, чтобы все m утверждений вида $x_{i_1} = e_1 \lor x_{i_2} = e_2 \lor x_{i_3} = e_3$ обратились в истину.

Формат входных данных

На первой строке число переменных n и число утверждений m ($1 \le m \le \min(n^2, 1000)$).

Каждая из следующих m строк содержит числа $i_1, e_1, i_2, e_2, i_3, e_3$ и

задает утверждение $x_{i_1} = e_1 \lor x_{i_2} = e_2 \lor x_{i_3} = e_3$.

Все тесты случайны, тем не менее гарантируется, что решение существует.

Формат выходных данных

Выведите строку из n нулей и единиц — значения переменных.

Если у данной задачи 3-SAT есть несколько решений, выведите любое.

Система оценки

Подзадача 1 (10 баллов) $n \leq 20$

Подзадача 2 (40 баллов) $n \leq 30$

Подзадача 3 (10 баллов) $n \le 40$

Подзадача 4 (10 баллов) $n \leqslant 50$

Подзадача 5 (10 баллов) $n \le 70$

Подзадача 6 (10 баллов) $n \leqslant 90$

Подзадача 7 (10 баллов) $n \leq 120$

За практику баллы за задачу вычисляются по формуле 4 за must-have + $0.2 \cdot \max(0, x-50)$, где $x \in [0,100]$. Максимально можно получить $3 + 50 \cdot 0.2 = 14$ баллов.

Примеры

stdin	stdout
2 3	01
1 0 1 0 1 0	
2 0 2 1 1 1	
1 1 2 1 1 1	

Пояснение к примеру

$$(x_1 = 0 \lor x_1 = 0 \lor x_1 = 0) \land (x_2 = 0 \lor x_2 = 1 \lor x_1 = 1) \land (x_1 = 1 \lor x_2 = 1 \lor x_1 = 1)$$

В каждом клозе подчеркнуты истинные условия.