Wann ist eine linearer Operator aus \mathcal{H} dicht definiert?	Wenn $D(A)$ Definitionsbereich dicht in $\mathcal H$ ist.
Wie ist ein beschränkter Operator definiert?	Sei $A:D(A)\to \mathcal{H}$ ein linearer Operator. A heißt beschränkt, falls für jede beschränkte Menge $M\subset D(A)$ gilt, dass $A[M]$ beschränkt ist.
Sei $A:D(A)\to \mathcal{H}$ ein linearer Operator. A heißt stetig, falls	für jede Folge (φ_n) in $D(A)$ mit $\varphi_n \to \varphi \in D(A)$ gilt, dass $A\varphi_n \to A\varphi$
Sei $A:D(A)\to \mathcal{H}$ ein linearer Operator. Welche Aussagen sind äquivalent zu • A ist beschränkt?	 ∃c > 0 : ∀φ ∈ D(A) Aφ ≤ c phi , A ist stetig, A ist stetig in 0.

Wann lässt sich ein linearer Operator A auf ganz $\mathcal H$ fortsetzen?	Falls $D(A)$ dicht in $\mathcal H$ und A stetig, lässt sich A stetig auf $\mathcal H$ fortsetzen.
Was ist $B(\mathcal{H})$?	$B(\mathcal{H})$ ist der Vektorraum aller beschränkten linearen Operatoren auf \mathcal{H} . Es ist ein Vektorraum ,da für ein skalar c und zwei beschränkte Operatoren $A_1, A_2, A_1 + A_2$ und cA auch beschränkt sind.
Wie ist die Operatornorm auf $B(\mathcal{H})$ definiert?	$ T := \inf\{c > 0 \mid \forall \varphi \in \mathcal{H} : T\varphi \le c \varphi \}$
Was besagt der Satz Norm auf $B(\mathcal{H})$, außer dass die definierte Operatornorm tatsächlich einer Norm auf (\mathcal{H}) ist?	$(B(\mathcal{H}), \ \cdot\)$ ist ein Banach-Raum. Es gilt die Submultiplikativität der Norm, also $\ AB\ \le \ A\ \ B\ $.

Welche äquivalente zu $\ T\ := \inf \big\{ c < 0 \mid \forall \varphi \in \mathcal{H} \ T\varphi\ \leq \ \varphi\ \big\}$ Charakterisierungen der Operatornorm auf $B(\mathcal{H})$ gibt es (Es sind 4.)?	$ T = \sup\{ T\varphi \mid \varphi \in \mathcal{H}, \varphi \le 1\}$ $ T = \sup\{ T\varphi \mid \varphi \in \mathcal{H}, \varphi = 1\}$ $ T = \sup\{ T\varphi \mid \varphi \in \mathcal{H}, \varphi < 1\}$ $ T = \sup\{ \langle \psi, T\varphi \rangle \mid \psi, \varphi \in \mathcal{H}, (\psi \le 1 \land \varphi \le 1)\}$
Ein Operator aus $B(\mathcal{H})$ heißt $endlich$ -dimensional, wenn	der Bildbereich von diesem Operator endlich-dimensional ist.
Wann existiert der inverse Operator zu einem linearen Operator A ?	Falls $A:D(A)\to \mathrm{im} A$ injektiv. Dann ist A^{-1} auch linear.
Was besagt der Satz über den inversen Operator?	Wenn $A \in B(\mathcal{H})$, im $A = \mathcal{H}$ und A^{-1} existiert, dann ist $A^{-1} \in B(\mathcal{H})$.

Was besagt der Sagt über den adjungierten Operator?	Zu jedem $T\in B(\mathcal{H})$ existiert genau ein $T^*\in B(\mathcal{H})$ mit folgender Eigenschaft: $\forall \varphi,\psi\in\mathcal{H}: \langle\varphi,T\psi\rangle=\langle T^*\varphi,\psi\rangle$ T^* heißt der zu T adjungierte Operator. Es gilt: $\ T\ =\ T^*\ $
$(B(\mathcal{H}), \ \cdot\)$ ist eine C^* -Algebra mit Eins-Element, d.h	 i) B(H) ist ein C-Vektorraum mit einer Multiplikation (assoziative, bilineare Abbildung) B(H) × B(H) ∋ (S, T) → S ∘ T Als Vektorraum mit assoziativer bilinearer Abbildung ist B(H) eine Abbildung. Das Eins-Element dieser Algebra ist Einheitsoperator 1. ii) (B(H), ·) ist eine normierte Algebra, d.h. · ist submultiplikativ: ∀S, T ∈ B(H): ST ≤ S T Es ist eine Banach-Algebra (also vollständig und normiert). iii) B(H) ist eine *-Algebra. iv) Die Norm erfüllt die C*-Algebra, d.h. ∀T ∈ B(H): T*T = T ².
$B(\mathcal{H})$ ist eine *-Algebra, d.h	es gibt eine Abbildung $*:B(\mathcal{H})\to B(\mathcal{H}),\ T\mapsto T^*$ mit $\forall S,T\in B(\mathcal{H}), \forall \lambda\in\mathbb{C}:$ 1. $(\lambda S+T)^*=\bar{\lambda}S^*+T^*,$ 2. $(ST)^*=T^*S^*,$ 3. $S^{**}=S$ Eine solche Abbildung heißt Involution.