

HCC/HCF4013B

DUAL 'D' - TYPE FLIP-FLOP

- SET-RESET CAPABILITY
- STATIC FLIP-FLOP OPERATION RETAINS STATE INDEFINITELY WITH CLOCK LEVEL EITHER "HIGH" OR "LOW"
- MEDIUM-SPEED OPERATION 16MHz (typ.) CLOCK TOGGLE RATE AT 10V
- QUIESCENT CURRENT SPECIFIED TO 20V FOR HCC DEVICE
- STANDARDIZED SYMMETRICAL OUTPUT CHARACTERISTICS
- 5V, 10V, AND 15V PARAMETRIC RATINGS
- INPUT CURRENT OF 100nA AT 18V AND 25°C FOR HCC DEVICE
- 100% TESTED FOR QUIESCENT CURRENT
- MEETS ALL REQUIREMENTS OF JEDECTEN-TATIVE STANDARD No. 13A, "STANDARD SPECIFICATIONS FOR DESCRIPTION OF "B" SERIES CMOS DEVICES"

DESCRIPTION

The **HCC4013B** (extended temperature range) and **HCF4013B** (intermediate temperature range) are monolithic integrated circuits, available in 14-lead dual in-line plastic or ceramic package and plastic micropackage.

The HCC/HCF4013B consists of two identical, independent data-type flip-flops. Each flip-flop has independent data, set, reset, and clock inputs and Q and \overline{Q} outputs. These devices can be used for shift register applications, and, by connecting \overline{Q} output to the data input, for counter and toggle applications. The logic level present at the D input is transferred to the \overline{Q} output during the positive-going transition of the clock pulse. Setting or resetting is independent of the clock and is accomplished by a high level on the set or reset line, respectively.

June 1989 1/11

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DD} *	Supply Voltage : HCC Types HCF Types	- 0.5 to + 20 - 0.5 to + 18	V V
Vi	Input Voltage	- 0.5 to V _{DD} + 0.5	V
I_1	DC Input Current (any one input)	± 10	mA
P _{tot}	Total Power Dissipation (per package) Dissipation per Output Transistor for T_{op} = Full Package-temperature Range	200 100	mW mW
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C
T _{stg}	Storasge Temperature	- 65 to + 150	°C

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for external periods may affect device reliability.

* All voltages are with respect to Vss (GND).

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage : HCC Types HCF Types	3 to 18 3 to 15	V V
V_{I}	Input Voltage	0 to V _{DD}	V
Top	Operating Temperature : HCC Types HCF Types	- 55 to + 125 - 40 to + 85	°C °C

LOGIC DIAGRAM AND TRUTH TABLE (one of two identical flip-flops)

STATIC ELECTRICAL CHARACTERISTICS (over recommended operating conditions)

			Т	est Con	dition	s	Value							
Symbol	Parame	ter	Vı	۷o	I ₀	V _{DD}	T _{Low} * 25°C					T _{High} *		Unit
				(V)		(V)	Min.	Max.	Min.	Тур.	Max.	Min.	Max.	
ΙL	Quiescent		0/5			5		1		0.02	1		30	
	Current	нсс	0/10			10		2		0.02	2		60	
		Types	0/15			15		4		0.02	4		120	
			0/20			20		20		0.04	20		600	μΑ
			0/5			5		4		0.02	4		30	
		HCF Types	0/10			10		8		0.02	8		60	
		Турсз	0/15			15		16		0.02	16		120	
V _{OH}	Output High	า	0/5		< 1	5	4.95		4.95			4.95		
	Voltage		0/10		< 1	10	9.95		9.95			9.95		V
			0/15		< 1	15	14.95		14.95			14.95		
V _{OL}	Output Low	1	5/0		< 1	5		0.05			0.05		0.05	
	Voltage		10/0		< 1	10		0.05			0.05		0.05	V
			15/0		< 1	15		0.05			0.05		0.05	
V _{IH}	Input High			0.5/4.5	< 1	5	3.5		3.5			3.5		
	Voltage			1/9	< 1	10	7		7			7		V
				1.5/13.5	< 1	15	11		11			11		
V _{IL}	Input Low			4.5/0.5	< 1	5		1.5			1.5		1.5	V
	Voltage			9/1	< 1	10		3			3		3	
				13.5/1.5	< 1	15		4			4		4	
I _{OH}	Output		0/5	2.5		5	- 2		- 1.6	- 3.2		- 1.15		
	Drive	нсс	0/5	4.6		5	- 0.64		- 0.51	- 1		- 0.36		
	Current	Types	0/10	9.5		10	- 1.6		- 1.3	- 2.6		- 0.9		
			0/15	13.5		15	- 4.2		- 3.4	- 6.8		- 2.4		mA
			0/ 5	2.5		5	- 1.53		- 1.36	- 3.2		- 1.1		ША
		HCF	0/ 5	4.6		5	- 0.52		- 0.44	- 1		- 0.36		
		Types	0/10	9.5		10	- 1.3		- 1.1	- 2.6		- 0.9		
			0/15	13.5		15	- 3.6		- 3.0	- 6.8		- 2.4		
I _{OL}	Output		0/5	0.4		5	0.64		0.51	1		0.36		
	Sink Current	HCC Types	0/10	0.5		10	1.6		1.3	2.6		0.9		
	Current	.,,,,,,	0/15	1.5		15	4.2		3.4	6.8		2.4		mA
			0/5	0.4		5	0.52		0.44	1		0.36		111/4
		HCF Types	0/10	0.5		10	1.3		1.1	2.6		0.9		
		.,,,,,,	0/15	1.5		15	3.6		3.0	6.8		2.4		
I _{IH} , I _{IL}	Input HCC Leakage Types		0/18	Any In	nut	18		± 0.1		±10 ⁻⁵	± 0.1		± 1	^
	Current		0/15	Any III	pui	15		± 0.3		±10 ⁻⁵	± 0.3		± 1	μА
Cı	Input Capa	citance		Any In	put					5	7.5			pF

^{*} T_{Low} = - 55°C for **HCC** device : - 40°C for **HCF** device. * T_{High} = + 125°C for **HCC** device : + 85°C for **HCF** device. The Noise Margin for both "1" and "0" level is : 1V min. with V_{DD} = 5V, 2V min. with V_{DD} = 10V, 2.5 V min. with V_{DD} = 15V.

DYNAMIC ELECTRICAL CHARACTERISTICS ($T_{amb} = 25^{\circ}C$, $C_{L} = 50 pF$, $R_{L} = 200 k\Omega$, typical temperature coefficient for all $V_{DD} = 0.3\%/^{\circ}C$ values, all input rise and fall time = 20ns)

Cumbal	Donomotor	Parameter Test Conditions					
Symbol	Parameter	V	/ _{DD} (V)	Min.	Тур.	Max.	Unit
t _{PLH} , t _{PHL}	Propagation Delay Time		5		150	300	
	(clock to Q or Q outputs)		10		65	130	ns
		Γ	15		45	90	
t _{PLH}	Propagation Delay Time		5		150	300	
	(set to Q or reset to Q)		10		65	130	ns
			15		45	90	
t _{PHL}	Propagation Delay Time		5		200	400	
	(set to Q or reset to Q)		10		85	170	ns
			15		60	120	
t _{THL} , t _{TLH}	Transition Time		5		100	200	
			10		50	100	ns
			15		40	80	
f _{CL} *	Maximum Clock Input Frequency		5	3.5	7		
			10	8	16		MHz
			15	12	24		
tw	Cock Pulse Width		5	140	70		
			10	60	30		ns
			15	40	20		
t _r , t _f **	Clock Input Rise or Fall Time		5			15	
			10			4	μs
			15			1	
t _W	Set or Reset Pulse Width		5	180	90		
			10	80	40		ns
		<u> </u>	15	50	25		
t _{setup}	Data Setup Time		5	40	20		
		Γ	10	20	10		ns
		Γ	15	15	7		

^{*} Input t_r , $t_f = 5$ ns.

^{**} If more than unit is cascaded in a parallel clocked application, t_r should be made less than or equal to the sum of the fixed propagation delay time at 15pF and the transition time of the carry output driving stage for the estimated capacitive load.

Typical Output Low (sink) Current Characteristics.

Typical Output High (source) Current Characteristics.

Typical Propagation Delay Time vs. Load Capacitance (CLOCK or SET to Q, CLOCK or RESET to $\overline{\mathbb{Q}}$).

Minimum Output Low (sink) Current Characteristics.

Minimum Output High (source) Current Characteristics.

Typical Propagation Delay Time vs. Load Capacitance (SET to Q or RESET to Q).

Typical Maximum Clock Frequency vs. Supply Voltage.

Typical Power Dissipation Device vs. Frequency.

TEST CIRCUITS

Quiescent Device Current.

Noise Immunity.

Input Leakage Current.

Plastic DIP14 MECHANICAL DATA

DIM.		mm			inch	
D.W.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	1.39		1.65	0.055		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		15.24			0.600	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z	1.27		2.54	0.050		0.100

Ceramic DIP14/1 MECHANICAL DATA

DIM.		mm			inch		
Diwi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			20			0.787	
В			7.0			0.276	
D		3.3			0.130		
E	0.38			0.015			
e3		15.24			0.600		
F	2.29		2.79	0.090		0.110	
G	0.4		0.55	0.016		0.022	
Н	1.17		1.52	0.046		0.060	
L	0.22		0.31	0.009		0.012	
M	1.52		2.54	0.060		0.100	
N			10.3			0.406	
Р	7.8		8.05	0.307		0.317	
Q			5.08			0.200	

SO14 MECHANICAL DATA

DIM.		mm			inch		
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			1.75			0.068	
a1	0.1		0.2	0.003		0.007	
a2			1.65			0.064	
b	0.35		0.46	0.013		0.018	
b1	0.19		0.25	0.007		0.010	
С		0.5			0.019		
c1			45°	(typ.)			
D	8.55		8.75	0.336		0.344	
Е	5.8		6.2	0.228		0.244	
е		1.27			0.050		
e3		7.62			0.300		
F	3.8		4.0	0.149		0.157	
G	4.6		5.3	0.181		0.208	
L	0.5		1.27	0.019		0.050	
М			0.68			0.026	
S			8° (ı	max.)			

PLCC20 MECHANICAL DATA

DIM.		mm			inch	
5	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	9.78		10.03	0.385		0.395
В	8.89		9.04	0.350		0.356
D	4.2		4.57	0.165		0.180
d1		2.54			0.100	
d2		0.56			0.022	
E	7.37		8.38	0.290		0.330
е		1.27			0.050	
e3		5.08			0.200	
F		0.38			0.015	
G			0.101			0.004
М		1.27			0.050	
M1		1.14			0.045	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

