1 Zanke v Hassejevem diagramu

Pokazali bomo, kako se fundamentalna grupa končnega T_0 prostora izraža preko prirejenega Hassejevega diagrama. Hassejev diagram končnega T_0 prostora X označimo z $\mathcal{H}(X)$, z $E(\mathcal{H}(X))$ pa označimo množico njegovih robov.

 $Edge\ path$ simplicialnega kompleksa K je zaporedje $(v_0,v_1)(v_1,v_2),...,(v_{r-1},v_r)$ urejenih parov ogljišč, pri čemer je $\{v_1,v_{i+1}\}$ simpleks za vsak i. Če $edge\ path$ vsebuje dva zaporedna para (v_i,v_{i+1}) in (v_{i+1},v_{i+2}) in je $\{v_i,v_{i+1},v_{i+2}\}$ simpleks, potem ju lahko zamenjamo z parom (v_i,v_{i+1}) in dobimo ekvivalentno a krajšo pot. Za poti $(v_0,v_1)(v_1,v_2),...,(v_{r-1},v_r)$ in $(u_0,u_1)(u_1,u_2),...,(u_{s-1},u_s)$ definiramo stik poti....??? Omejili se bomo na zanke, torej poti, ki se začnejo in končaj o z v_0 . Z $E(K,v_0)$ označimo množico ekvivalenčnih razredov zank z začetno točko v_0

Naj bo (X, x_0) končen pointed T_0 prostor. Urejen par e = (x, y) imenujemo \mathcal{H} -rob od X, če $(x, y) \in E(\mathcal{H}(X))$, ali $(y, x) \in E(\mathcal{H}(X))$. Točki x rečem začetek x in označimo $x = \mathfrak{o}(e)$, točki y pa konec od e, označimo $\mathfrak{e}(e) = y$. $Inverz \mathcal{H}$ -roba e = (x, y) je \mathcal{H} -rob $e^{-1} = (y, x)$

 \mathcal{H} -pot v (X, x_0) je zaporedje (lahko tudi prazno), \mathcal{H} -robov $\xi = e_1 e_2 \cdots e_n$, za katero velja, da je $\mathfrak{e}(e_i) = \mathfrak{o}(e_i + 1)$, za vsak $0 \le i \le n - 1$. Začetek \mathcal{H} -poti ξ je $\mathfrak{o}(\xi) = e_1$, konez pa $\mathfrak{e}(\xi) = e_n$, začetek in konec prazne poti je $\mathfrak{o}(\emptyset) = \mathfrak{e}(\emptyset) = x_0$ Če je $\xi = e_1, e_2 \cdots e_n \mathcal{H}$ -pot, definiramo $\overline{\xi} = e_n^{-1}, \cdots e_2^{-1} e_n^{-1}$. Če sta ξ in ξ' \mathcal{H} -poti in velja $\mathfrak{e}(\xi) = \mathfrak{e}(\xi')$, lahko definiramo produktno \mathcal{H} -pot $\xi \xi'$, kot zaporednje \mathcal{H} -robov v ξ , ki mu sledi zaporednje \mathcal{H} -robov v ξ' .

Za \mathcal{H} -pot $\xi = e_1 e_2, \dots e_n$ pravimo, da je monotona, če je $e_i \in E(\mathcal{H}(X))$ za vsak $1 \leq i \leq n$ ali pa je $e_i^{-1} \in E(\mathcal{H}(X))$ za vsak $1 \leq i \leq n$. Zanka iz x_0 je \mathcal{H} -pot , ki se začne in konča v x_0 . Za zanki ξ in ξ' rečemo, da sta blizu, če obstajajo monotone \mathcal{H} -poti $\xi_1, \xi_2, \xi_3, \xi_4$, take, da sta množici $\{\xi, \xi' \text{ in } \{\xi_1\xi_2\xi_3\xi_4, \xi_1\xi_4\}$ enaki.

Primer 1. poti ki sta si blizu.