Algèbre linéaire avancée II printemps 2021

Série 11

Tous les exercices sauf celui marqué d'une (*) seront corrigés. La correction sera postée sur Piazza 2 semaines après. La solution de l'exercice (*) sera discutée dans les séances d'exercices du mardi. Un des exercices (*) sera une question ouverte de l'examen final.

Exercice 1. Soient $A, B, P \in \mathbb{C}^{n \times n}$ telles que P est inversible et $A = P^{-1}BP$. Montrer que $e^A = P^{-1}e^BP$.

Exercice 2. Trouver e^{tA} pour chacune des matrices suivantes :

a)
$$A=egin{pmatrix} x & 0 \ 0 & y \end{pmatrix}$$
, où $x,y\in\mathbb{C}.$

b)
$$A = \begin{pmatrix} 5 & 1 \\ -2 & 2 \end{pmatrix}$$
.

- c) Une matrice $A\in\mathbb{C}^{n imes n}$ qui satisfait $A^2=0.$
- d) Une matrice $A \in \mathbb{C}^{n \times n}$ qui satisfait $A^2 = A$.

Exercice 3. On considère le système

$$egin{split} rac{d}{dt}x_1(t) &= x_1(t) - 2x_2(t) \ rac{d}{dt}x_2(t) &= -2x_1(t) + x_2(t) \end{split}$$

avec les conditions initiales: $x_1(0) = \alpha$ et $x_2(0) = \beta$.

- a) Écrire le système en notation de vecteur matrice comme x' = Ax et $x(0) = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$.
- b) Trouver les valeurs propres λ_1 et λ_2 de la matrice A,
- c) Trouver la matrice S telle que $e^{tA}=Se^{t\Lambda}S^{-1}$, où

$$\Lambda = egin{pmatrix} \lambda_1 & 0 \ 0 & \lambda_2 \end{pmatrix}$$

d) Résoudre l'equation $x(t) = e^{tA}x(0)$ pour trouver une solution du système orignal.

Exercice 4.

a) Soient a et b deux nombres réels tels que 0 < a < b. Trouver e^{tA} , où

$$A = egin{pmatrix} a & b \ -b & a \end{pmatrix}.$$

b) Trouver la solution du système suivant :

$$x_1' = 2x_1 + 5x_2$$

 $x_2' = -5x_1 + 2x_2$

sujet aux conditions initiales $x_1(0) = 2$ et $x_2(0) = -1$.

Exercice 5. Soit $A=\begin{pmatrix}2&1\\0&2\end{pmatrix}\in\mathbb{R}^{2\times 2}$. Résoudre l'equation x'=Ax avec conditions initiales $x(0)=\begin{pmatrix}1\\2\end{pmatrix}$.

Exercice 6. Soit $A=\begin{pmatrix}0&1&1\\2&1&-1\\-6&-5&-3\end{pmatrix}\in\mathbb{R}^{3\times 3}$. Soit $T:\mathbb{R}^3\longrightarrow\mathbb{R}^3$ l'application linéaire

associée à cette matrice A. Trouver des sous-espaces $V_1, V_2 \subseteq \mathbb{R}^3$ qui satisfont les conditions du Lemme 5.20, c'est-à-dire $\mathbb{R}^3 = V_1 \oplus V_2$, $T(V_i) \subseteq V_i$ et $T_{|V_i|} = N_i + \lambda_i I$, où $N_i \colon V_i \to V_i$ est nilpotente, pour i = 1, 2.

Exercice 7. (*)

Soit $A \in \mathbb{C}^{n \times n}$ et soient J une forme normale de Jordan de A, P la matrice de passage associée $(A = PJP^{-1})$.

Le but de cet exercice est de montrer que le nombre de blocs de Jordan sur J associé à une valeur propre λ est exactement dim $\ker(A - \lambda I)$.

a) Soit $S=egin{pmatrix} S_1 & 0 \ 0 & S_2 \end{pmatrix}$ une matrice blocs diagonale. Montrer que

$$\mathrm{rang}(S) = \mathrm{rang}(S_1) + \mathrm{rang}(S_2)$$

Généraliser pour p blocs sur la diagonale. (Indice : Considérer les lignes linéairement indépendantes de S_1, S_2).

- b) Soit $B=U+\lambda I\in\mathbb{C}^{q\times q}$ un bloc de Jordan, où U est l'application de décalage. Montrez que la seule valeur propre de B est λ et que l'espace propre associé est engendré par e_1 . Déduisez dim $\mathrm{Im}(B-\lambda I)=q-1$.
- c) Soient $B_1, ..., B_k$ l'ensemble des blocs de Jordan sur J associé à une valeur propre λ . Déduire de a) et b) que dim $\operatorname{Im}(J-\lambda I)=n-k$. En déduire que dim $\ker(A-\lambda I)=k$.