30. Aplikace kombinačních čísel

Úloha 1. Martin má sedm knih, o které se zajímá Ivana; oproti tomu Ivana má deset knih, o které se zajímá Martin. Určete, kolika způsoby si mohou Martin a Ivana vyměnit (a) dvě, (b) tři knihy.

Úloha 2. Tentokrát už naposledy: kolik je na obrázku obdélníků? (Nápověda: Každý obdélník je popsán dvojící vodorovných a dvojící svislých čar.)

			₩
0			

Úloha 3. Kolika způsoby se v tabulce v Úloze 2 můžeme dostat z políčka ☺ do políčka ☺, jestliže jsou povoleny pouze tahy o jedna nahoru nebo o jedna doprava? (Nápověda: Kolik uděláme celkem tahů? Kolik jich bude nahoru?)

Úloha 4. Určete, kolika způsoby lze vybrat (neuspořádanou) čtveřici (různých) čísel z 1, 2, ..., 20 tak, aby (a) jejich součin byl sudý, (b) jejich součin byl lichý, (c) jejich součet byl sudý, (d) jejich součet byl lichý.

* Úloha 5. Najděte chybu v následující "úvaze", proč by v Úloze 4 měly (c) a (d) vyjít stejně: "Mezi čísly 1,..., 20 je stejně sudých jako lichých, takže se ve čtveřicích budou sudá a lichá čísla vyskytovat stejně často, proto budou i součty stejně často sudé jako liché."

Úloha 6. Mějme šachovnici 8×8 . Kolika způsoby na ní lze vybrat trojici políček, pokud

- (a) (žádná další podmínka),
- (b) nesmí být všechna téže barvy,
- (c) nesmí ležet všechna v jednom řádku,
- (d) nesmí ležet všechna v jednom řádku ani v jednom sloupci,
- * (e) žádná dvě nesmí být v témže řádku,
- * (f) žádná dvě nesmí být v témže řádku ani sloupci.

Úloha 7. V rovině se nachází $n \in \mathbb{N}$ bodů. Kolik je těmito body určeno

- (a) přímek, jestliže žádné tři body neleží na jedné přímce?
- (b) trojúhelníků, jestliže žádné tři neleží na jedné přímce?
- (c) přímek, jestliže jich p leží na jedné přímce a kromě nich už žádné tři neleží?
- (d) trojúhelníků, jestliže jich p leží na jedné přímce a kromě nich už žádné tři neleží?
- * Úloha 8. Nalezněte všechna $n \in \mathbb{N}$ s touto vlastností: (n+1)-prvková množina má o 8515 víc tříprvkových podmnožin, než kolik jich má n-prvková.
- ** Úloha 9. Celkem n pirátů uložilo svůj společný poklad do truhly. Na truhlu umístili celkem ℓ zámků, ke kterým si potom rozdali klíče, a to tak, že kdykoliv se sejde více jak k pirátů, tak se budou moct do truhly dostat, zatímco když se jich sejde nejvýše k, tak truhlu neotevřou (tj. od nějakého zámku jim bude chybět klíč). Jaký je nejmenší počet zámků ℓ , pro který lze totoho dosáhnout, a jak si mají od nich rozdat klíče?

1. (a)
$$\binom{7}{2} \cdot \binom{10}{2} = 945$$
 (b) $\binom{7}{3} \cdot \binom{10}{3} = 4200$

2.
$$\binom{8}{2} \cdot \binom{5}{2} = 280$$

3.
$$\binom{9}{2} = 84$$

4. (a)
$$\binom{20}{4} - \binom{10}{4} = 4635$$
 (b) $\binom{10}{4} = 210$ (c) $2 \cdot \binom{10}{4} + \binom{10}{2} \cdot \binom{10}{2} = 2445$ (d) $2 \cdot \binom{10}{1} \cdot \binom{10}{3} = 2400$

6. (a)
$$\binom{64}{2} = 41\,664$$
 (b) $\binom{64}{2} - 2 \cdot \binom{32}{2} = 2 \cdot \binom{32}{2} \cdot \binom{32}{1} = 31\,744$ (c) $\binom{64}{2} - 8 \cdot \binom{8}{2} = 41\,216$

6. (a)
$$\binom{64}{3} = 41\,664$$
 (b) $\binom{64}{3} - 2 \cdot \binom{32}{3} = 2 \cdot \binom{32}{2} \cdot \binom{32}{1} = 31\,744$ (c) $\binom{64}{3} - 8 \cdot \binom{8}{3} = 41\,216$ (d) $\binom{64}{3} - 8 \cdot \binom{8}{3} - 8 \cdot \binom{8}{3} = 40\,768$ (e) $8^3 \cdot \binom{8}{3} = 28\,672$ (f) $\frac{1}{3!} \cdot 64 \cdot 49 \cdot 36 = 8 \cdot 7 \cdot 6 \cdot \binom{8}{3} = 18\,816$

7. (a)
$$\binom{n}{2}$$
 (b) $\binom{n}{3}$ (c) $\binom{n}{2} - \binom{p}{2} + 1$ (d) $\binom{n}{3} - \binom{p}{3}$

8.
$$n = 131$$

9. $\ell = \binom{n}{k}$; každý zámek odpovídá jedné k-prvkové podmnožině pirátů, přičemž klíče od něj dostanou právě ti, kteří v oné množině nejsou