Тест	1	2	3	Итого					
					\longleftarrow для проверяющего!				
Фамилия, имя, номер группы:									
Ответы на те	CT:								

1	2	3	4	5	6	7	8	9	10

Тест

Вопрос 1. Случайные величины X и Y независимы и имеют нормальное распределение с $\mathbb{E}(X) = 0$, $\mathbb{V}ar(X)=1, \mathbb{E}(Y)=5, \mathbb{V}ar(Y)=4.$ Величина Z=2X+Y имеет распределение

$$A \mathcal{N}(5;5)$$

$$C$$
 χ_2^2

$$\boxed{E}$$
 $F_{1,1}$

$$B \mathcal{N}(5;8)$$

$$D$$
 t_2

$$|F|$$
 нет верного ответа

Вопрос 2. Оценка $T_n = T(X_1, X_2, \dots, X_n)$ называется несмещённой оценкой параметра θ , если

$$\boxed{A} \ \mathbb{E}(T_n) = T_n$$

$$\boxed{D} \ \mathbb{E}(T_n) = 0$$

$$B T_n = 0$$

$$E \mid \mathbb{E}(T_n) = \theta$$

$$oxed{C} \lim_{n o \infty} \mathbb{P}(|T_n - heta| > arepsilon) = 0$$
 при $arepsilon > 0$

$$|F|$$
 нет верного ответа

Вопрос 3. Оценена регрессия $\hat{Y} = 300 + 6W$, где $R^2 = 0.85$ и $W_i = X_i/X_{i-1}$.

Если объясняющая переменная будет выражена в процентах, $\tilde{W}_i = 100(X_i - X_{i-1})/X_{i-1}$, то результаты оценки регрессии примут вид

$$A \hat{Y}_i = 3 + 6\tilde{W}_i, R^2 = 0.85$$

$$\boxed{A} \ \hat{Y}_i = 3 + 6 \tilde{W}_i, R^2 = 0.85 \qquad \boxed{C} \ \hat{Y}_i = 306 + 0.06 \tilde{W}_i, R^2 = 0.85 \qquad \boxed{E} \ \hat{Y}_i = 300 + 6 \tilde{W}_i, R^2 = 0.85$$

$$|E| \hat{Y}_i = 300 + 6\tilde{W}_i, R^2 = 0.85$$

$$\boxed{B} \hat{Y}_i = 300 + 600 \tilde{W}_i, R^2 = 0.85$$

$$oxed{B} \hat{Y}_i = 300 + 600 ilde{W}_i, R^2 = 0.85$$
 $oxed{D} \hat{Y}_i = 300 + 6 ilde{W}_i, R^2 = 0.085$ $oxed{F}$ нет верного ответа

$$\overline{F}$$
 нет верного ответа

Вопрос 4. Оценка ковариационной матрицы оценок коэффициентов регрессии $Y = X\beta + \varepsilon$ пропорциональна

$$A (XX^T)^{-1}$$

$$C$$
 $(X^TX)^{-1}$

$$E X^T Y$$

$$B X^T X$$

$$D XX^T$$

$$|F|$$
 нет верного ответа

Вопрос 5. Среди предпосылок теоремы Гаусса-Маркова фигурирует условие

$$A \ \mathbb{E}(Y_i) = 0$$

$$C$$
 $\mathbb{E}(\varepsilon_i) = 1$

$$E \ Var(\varepsilon_i) = 1$$

$$\boxed{B} \ \varepsilon_i \sim \mathcal{N}(0; \sigma^2)$$

$$\boxed{D} \ \mathbb{V}ar(\varepsilon_i) = const$$

$$\overline{F}$$
 нет верного ответа

Вопрос 6. Оценено уравнение парной регрессии $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$, причём МНК-оценка коэффициента β_1 равна 5, а стандартная ошибка оценки равна 0.25.

Значение t-статистики для проверки гипотезы, что этот коэффициент равен 4, есть

$$A - 2$$

$$C$$
 -4

$$|B|$$
 4

$$D$$
 2

$$F$$
 нет верного ответа

Вопрос 7. Р-значение при проверке некоторой гипотезы H_0 оказалось равно 0.002.

Гипотеза H_0 не отвергается при уровне значимости

$$A 10\%$$

Вопрос 8. Известно, что выборочный коэффициент корреляции между X и Y равен 0.25. В регрессии Yна константу и X коэффициент R^2 равен

$$E \sqrt{0.5}$$

уменьшится

$$\overline{F}$$
 нет верного ответа

Вопрос 9. Исследователь оценил регрессию $\hat{Y}_i = 90 + 3X_i$. Если увеличить переменную X на 10%, а Yна 10 единиц, то

$$\boxed{A}$$
 оценка коэффициента eta_0 уменьшится, а eta_1 — увеличится

$$\boxed{D}$$
 оценки коэффициентов $eta_0,\,eta_1$ уменьшатся

$$B$$
 оценка коэффициента eta_0 увеличится, а eta_1 —

$$E$$
 оценки коэффициентов $eta_0,\,eta_1$ увеличатся

$$C$$
 оценки коэффициентов $\beta_0,\,\beta_1$ не изменятся F нет верного ответа

$$\overline{F}$$
 нет верного ответа

Вопрос 10. Исследователь оценил регрессию $\hat{Y}_i = \frac{30}{(0.1)} + \frac{6}{(0.5)} X_i$, причём $\sum_i (X_i - \bar{X})^2 = 4$. Все предпосылки теоремы Гаусса-Маркова выполнены.

В скобках приведены стандартные ошибки коэффициентов. Несмещённая оценка дисперсии ошибок регрессии равна

$$E 2\sqrt{0.5}$$

$$\lfloor F
floor$$
 нет верного ответа

Фамилия, имя, номер группы:

Задачи

1. Найдите величины Q1, ..., Q10, пропущенные в таблицах:

Indicator	Value						
Multiple R	Q1	ANOVA	df	SS	MS	F	Significance F
R^2	$\widetilde{\mathrm{Q}}2$	Regression	Q4	42.9	42.9	923	0
Adjusted \mathbb{R}^2	0.54	Residual	798	37.0	46		
Standart error	Q3	Total	799	Q5			
Observations	800						

	Coef.	St. error	t-stat	P-value	Lower 95%	Upper 95%
Intercept	-25.24	2.0	Q6	0	Q7	-21.31
totspan	1.7	Q8	30.4	0	Q9	Q10

2. Грета Тунберг оценила зависимость средней температуры на Земном шаре в градусах, Y_i , от количества своих постов в твиттере в соответствующий день, X_i , по 52 дням:

$$\hat{Y}_i = -1.53 + {0.14 \over (1.24)} X_i$$
, где $\sum_i (X_i - ar{X})^2 = 52.4$ и $ar{X} = 10$

- а) Проверьте гипотезы о незначимости каждого коэффициента при уровне значимости $\alpha=0.01.$
- б) Проверьте гипотезу о равенстве углового коэффициента 2 при альтернативной гипотезе, что коэффициент больше 2 и уровне значимости $\alpha=0.01$.
- в) Найдите оценку дисперсии ε_i в модели $Y_i=\beta_0+\beta_1 X_i+\varepsilon_i.$
- г) Постройте 95%-ый доверительный интервал для индивидуального прогноза Y, если X=10.
- 3. Рассмотрим парную регрессию $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$.
 - а) Дайте определение коэффициента детерминации \mathbb{R}^2 .
 - б) В каких пределах может лежать R^2 в указанной парной регрессии? Докажите сформулированное утверждение.
 - в) Как связан коэффициент R^2 и выборочная корреляция зависимой переменной и регрессора? Докажите сформулированное утверждение.