Communication-Efficient Topologies for Decentralized Learning with O(1) Consensus Rate

Advances in Neural Information Processing Systems (2022)

Alice H. Oh and Alekh Agarwal and Danielle Belgrave and Kyunghyun Cho Reporter: Fengjiao Gong

April 19, 2023

Outline

- 1. Background
- 2. Proposed topology EquiTopo
- 3. Applying EquiTopo to decentralized learning
- 4. Experiments

Background

Consider the following distributed problem over a network of n computing nodes:

$$\min_{m{x} \in \mathbb{R}^d} \! f(m{x}) = rac{1}{n} \sum_{i=1}^n \! f_i(m{x}), ext{ where } \! f_i(m{x}) := \mathbb{E}_{\xi_i \sim \mathcal{D}_i} \left[F(m{x}; \xi_i)
ight].$$

- \triangleright ξ_i is the local data following local distribution \mathcal{D}_i
- ► $f_i(\mathbf{x})$ is kept at node i
- $\triangleright x_i^{(t)}$ is node i's local model at iteration t
- $ightharpoonup \overline{oldsymbol{x}}^{(t)} = rac{1}{n} \sum_{i=1}^n oldsymbol{x}_i^{(t)}.$

Background

Centralized learning — simple & useful

- ► The master node may become *a communication bottleneck* if it has limited communication resources, as the number of nodes *n* grows large.
- ► The master node may become *a robustness bottleneck* in the sense that if the master node fails then the entire network fails.
- ► Impractical to have a single master node that communicates with all agents, or to have all nodes within the required proximity of the master.

Background

Decentralized learning — connected

- ▶ Lower overhead in per-iteration communication
- ▶ Less effective in mixing information and slower convergence

Notation

Given graph $\mathcal{G}(\mathcal{V}, \mathcal{E})$ with nodes \mathcal{V} and directed edges \mathcal{E} ,

- ▶ An edge $(j,i) \in \mathcal{E}$ means node j can directly send information to node i.
- ▶ Node i's degree is the number of its in-neighbors $|\{j \mid (j,i) \in \mathcal{E}\}|$.
- ▶ A one-peer graph means that the degree for each node is at most 1.
- ▶ For undirected graphs, $(j, i) \in \mathcal{E}$ if and only if $(i, j) \in \mathcal{E}$.

Background – Directed graph

Equal-neighbor update rule in a directed graph: at step k,

- ightharpoonup node *i* broadcasts the value x_i^k to its out-neighbors
- ightharpoonup receives values x_i^k from its in-neighbors
- \triangleright sets x_i^{k+1} to be the average of the messages it has received

$$x_i^{k+1} = rac{1}{d_i^{ ext{in},k}} \sum_{j \in N_i^{ ext{in},k}} x_j^k$$

Node i repeatedly revises it's opinion vector x_i^k by averaging the opinions of it's neighbors.

Background — Undirected graph

Over undirected graphs, an alternative popular choice of update rule is to set

$$x_i^{k+1} = x_i^k + \epsilon \sum_{j \in N_i^k} \left(x_j^k - x_i^k \right)$$

where $\epsilon > 0$ is sufficiently small.

Background — Linear consensus process

Both can be written in the form of the **linear consensus process** defined as

$$x^{k+1} = A^k x^k, \quad k = 0, 1, \dots$$

by stacking up the variables x_i^k into the vector x^k , where the matrices $A^k \in \mathbb{R}^{n \times n}$ are stochastic, and the initial vector $x^0 \in \mathbb{R}^n$ is given.

 $Angelia\ Nedi\'c, Alex\ Olshevsky, and\ Michael\ G\ Rabbat.\ Network\ topology\ and\ communication-computation\ tradeoffs\ in\ decentralized\ optimization.\ Proceedings\ of\ the\ IEEE,\ 106(5):953-976,\ 2018.$

Notation

Each graph is associated with a nonnegative weight matrix $\mathbf{W} = [w_{ii}] \in \mathbb{R}^{n \times n}$

Nonnegative

$$w_{ij}$$
 is non-zero only if $(j,i) \in \mathcal{E}$ or $i=j$

▶ Doubly stochastic

$$oldsymbol{W}\mathbb{1}_n = oldsymbol{W}^T\mathbb{1}_n = \mathbb{1}_n$$

- ► Symmetric for undirected graph
- ► Time-varying for the dynamic pattern between iterations.

Network topology selection

Topology evaluation

- ► **Maximum graph degree** communication cost
- ► **Consensus rate** effectiveness to mix information

A densely-connected topology enables decentralized methods to converge faster but results in less efficient communication since each node needs to average with more neighbors.

Consensus rate

For weight matrices $\left\{ oldsymbol{W}^{(t)} \right\}_{t \geq 0} \subseteq \mathbb{R}^{n \times n}$, minimum nonnegative number β

$$\mathbb{E}\left[\left\|\boldsymbol{W}^{(t)}\boldsymbol{x} - \bar{x} \cdot \mathbb{1}_{n}\right\|^{2}\right] \leq \beta^{2} \left\|\boldsymbol{x} - \bar{x} \cdot \mathbb{1}_{n}\right\|^{2}, \forall t \geq 0$$

is the **consensus rate**, where $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ and $\mathbb{1}_n \in \mathbb{R}^n$ is the all-ones vector.

Consensus rate

Denote

- $ightharpoonup oldsymbol{J} = rac{1}{n} \mathbb{1}_n \mathbb{1}_n^T$
- ▶ $\Pi = I J$, where $I \in \mathbb{R}^{n \times n}$ is the identity matrix

Equivalently,

$$\mathbb{E}\left[\left\|\boldsymbol{\Pi}\boldsymbol{W}^{(t)}\boldsymbol{x}\right\|^{2}\right] \leq \beta^{2}\|\boldsymbol{\Pi}\boldsymbol{x}\|^{2}$$

If
$$\boldsymbol{W}^{(t)} \equiv \boldsymbol{W}$$
, then

$$\beta \equiv \|\mathbf{\Pi} \boldsymbol{W}\|_2$$

where $\|\mathbf{A}\|_2$ is the spectral norm (maximum singular value of $A^H A$) $^{\frac{1}{2}}$.

Commonly-used topologies

- ► Ring
- ► Grid
- ► Torus
- ► Hypercube
- Exponential graph
- ► Random graph

Commonly-used Topologies

▶ **Ring** — A ring network is a network topology in which each node connects to exactly two other nodes, forming a single continuous pathway for signals through each node — a ring.

Rings can be unidirectional, either clockwise or anticlockwise around the ring, or bidirectional.

https://en.wikipedia.org/wiki/Regular_grid

Commonly-used Topologies

► **Torus** — Topologically, a torus is a closed surface defined as the product of two circles.

https://en.wikipedia.org/wiki/Torus

https://en.wikipedia.org/wiki/Hypercube

Grid Network

In a regular grid topology, each node in the network is connected with **two neighbors** along one or more dimensions.

- ► If the network is *one-dimensional*, and the chain of nodes is connected to form a circular loop, the resulting topology is known as a **ring**.
- ▶ In general, when an *n-dimensional* grid network is connected circularly in more than one dimension, the resulting network topology is a **torus**, and the network is called "**toroidal**".
- ▶ When *the number of nodes* along each dimension of a toroidal network *is 2*, the resulting network is called a **hypercube**.

https://en.wikipedia.org/wiki/Grid_network

Exponential graph

- ▶ "Static Exp." static exponential graph each node communicates to $\lceil \log_2(n) \rceil$ neighbors.
- ► "O.-P. Exp." one-peer exponential graph each node cycles through all its neighbors, communicating only to a single neighbor per iteration.

Random graph

"E.-R. Rand": Erdos-Renyi random graph G(n, p)

- 1. A symmetric adjacency matrix A whose $\binom{n}{2}$ distinct off-diagonal entries are independent Bernoulli random variables taking the value 1 with probability p.
- 2. Here $p = (1 + a) \log(n)/n$ and a > 0, for which it is known that the random graph is connected with high probability.

"Geo. Rand": Geometric random graph G(n, r)

- 1. n nodes are placed uniformly and independently in the unit square $[0,1]^2$ and two nodes are connected with an edge if their distance is at most r_n .
- 2. Here $r_n^2 = (1+a)\log(n)/n$ for some a>0, for which it is known that the random graph is connected with high probability.

Comparison between different commonly-used topologies

Topology	Connection	Pattern	Degree	Consensus Rate	size n
Ring	undirect.	static	$\Theta(1)$	$1-\Theta(1/n^2)$	arbitrary
Grid	undirect.	static	$\Theta(1)$	$1 - \Theta(1/(n \ln(n)))$	arbitrary
Torus	undirect.	static	$\Theta(1)$	$1-\Theta(1/n)$	arbitrary
Hypercube	undirect.	static	$\Theta(\ln(n))$	$1 - \Theta(1/\ln(n))$	power of 2
Static Exp.	directed	static	$\Theta(\ln(n))$	$1 - \Theta(1/\ln(n))$	arbitrary
OP. Exp.	directed	dynamic	1	finite-time conv.†	power of 2
ER. Rand	undirect.	static	$\Theta(\ln(n))^{\diamond}$	$\Theta(1)$	arbitrary
Geo. Rand	undirect.	static	$\Theta(\ln(n))$	$1 - \Theta(\ln(n)/n)$	arbitrary
D-EquiStatic	directed	static	$\Theta(\ln(n))$	$\rho \in (0,1)^{\ddagger}$	arbitrary
U-EquiStatic	undirect.	static	$\Theta(\ln(n))$	$ \rho \in (0,1)^{\ddagger} $	arbitrary
OD-EquiDyn	directed	dynamic	1	$\sqrt{(1+ ho)/2}$	arbitrary
OU-EquiDyn	undirect.	dynamic	1	$\sqrt{(2+ ho)/3}$	arbitrary

 $[\]dagger$ One-peer exponential graph has finite-time exact convergence only when n is the power of 2.

 $^{{}^{\}diamond}$ $\Theta(\ln(n))$ is the averaged degree; its maximum degree can be O(n) with a non-zero probability.

[‡] Constant $\rho = \Theta(1)$ is independent of network-size n.

Develop topology — EquiTopo

EquiTopo:

- **▶** Directed EquiTopo Graphs
- **▶** Undirected EquiTopo Graphs

Pros:

- 1. network-size-independent consensus rate
- 2. (almost) constant graph degrees

Develop topology — EquiTopo

Directed EquiTopo Graphs

- 1. Directed static EquiTopo graphs (**D-EquiStatic**)
- 2. One-peer directed EquiTopo graphs (OD-EquiDyn)

Directed EquiTopo Graphs

▶ Mod operation — returns a value in $[n] = \{1, \dots, n\}$

$$i \bmod n = \left\{ egin{array}{ll} \ell & ext{if } i = kn + \ell ext{ for some } k \in \mathbb{Z} ext{ and } \ell \in [n-1] \\ n & ext{if } i = kn ext{ for some } k \in \mathbb{Z} \end{array}
ight.$$

 $lackbox{ iny Doubly stochastic basis matrix } oldsymbol{A}^{(u,n)} = \left[a_{ij}^{(u,n)}
ight] \in \mathbb{R}^{n imes n}$

$$a_{ij}^{(u,n)} = \begin{cases} \frac{n-1}{n}, & \text{if } i = (j+u) \bmod n \\ \frac{1}{n}, & \text{if } i = j \\ 0, & \text{otherwise.} \end{cases}$$
 (2)

- ▶ Basis weight graphs $\mathcal{G}\left(\mathbf{A}^{(u,n)}\right)$
 - 1. Degree one
 - **2.** Same label difference $(i j) \mod n$ for all edges (j, i).

Directed EquiTopo Graphs

Figure 1: The set of five basis graphs $\left\{\mathcal{G}\left(\mathbf{A}^{(u,6)}\right)\right\}_{u=1}^{5}$ for n=6

Given a graph of size n, the basis graphs are $\left\{\mathcal{G}\left(\mathbf{A}^{(u,n)}\right)\right\}_{u=1}^{n-1}$. Since n is clear from the context, we omit it and write $\mathbf{A}^{(u)}$ instead.

D-EquiStatic

Directed static EquiTopo graphs (D-EquiStatic)

► Weight matrix

$$\boldsymbol{W} = \frac{1}{M} \sum_{i=1}^{M} \boldsymbol{A}^{(u_i)} \tag{3}$$

where $u_i \in [n-1]$ and M > 0 is the number of basis graphs we will sample.

- ► W is doubly stochastic
- ▶ All nodes of the directed graph $\mathcal{G}(\mathbf{W})$ have the same degree that is no more than M.

D-EquiStatic

Theorem 1 Let $A^{(u)}$ be defined by (2) for any $u \in [n-1]$. For any constant $\rho \in (0,1)$, we can choose a sequence of u_1, \cdots, u_M from [n-1] with $M = \Theta\left(\ln(n)/\rho^2\right)$ and construct the D-EquiStatic weight matrix \boldsymbol{W} as in (3) such that **the consensus rate of** \boldsymbol{W} **is** ρ , i.e.,

$$\|\mathbf{\Pi} \mathbf{W} \mathbf{x}\| \le \rho \|\mathbf{\Pi} \mathbf{x}\|, \forall \mathbf{x} \in \mathbb{R}^n$$
 (4)

Here,

- ▶ Graph G(W) has degree at most M, so we just say that **the degree is** $\Theta(\ln(n))$.
- ightharpoonup Degree can be easily predefined by specifying M.
- ightharpoonup Consensus rate is independent of the network size n.
- ightharpoonup
 ho is tunable, and is chosen to be a constant, e.g., ho=0.5.

OD-EquiDyn

One-peer directed EquiTopo graphs (OD-EquiDyn)

Algorithm 1: OD-EquiDyn weight matrix generation at iteration t

Input: constant $\eta \in (0,1)$; basis index $\{u_1, u_2, \dots, u_M\}$ from a weight matrix \boldsymbol{W} of form (3); Pick v_t from uniform distribution over the basis index $\{u_1, u_2, \dots, u_M\}$;

Produce basis matrix $A^{(v_t)}$ according to (2);

Output:
$$W^{(t)} = (1 - \eta)I + \eta A^{(v_t)}$$

- ▶ One peer the degree for each node is at most 1
- ► To further reduce the degree to one

OD-EquiDyn

Theorem 2 Let the one-peer directed weight matrix $W^{(t)}$ be generated by Alg.1 It holds that

$$\mathbb{E}\left[\left\|\mathbf{\Pi}\boldsymbol{W}^{(t)}\boldsymbol{x}\right\|^{2}\right] \leq (1 - 2\eta(1 - \eta)(1 - \rho))\|\mathbf{\Pi}\boldsymbol{x}\|^{2}, \quad \forall \boldsymbol{x} \in \mathbb{R}^{n}$$

where ρ is the consensus rate of the weight matrix \boldsymbol{W} (which can be tuned freely as in *Theorem 1*).

▶ Let $\eta = 1/2$, then it holds that

$$\mathbb{E} \left\| \mathbf{\Pi} \mathbf{W}^{(t)} \mathbf{x} \right\|^2 \le (1 + \rho)/2 \| \mathbf{\Pi} \mathbf{x} \|^2$$

Let W = J, then $\|\Pi Jx\| = 0$, which implies $\rho = 0$, so

$$\mathbb{E}\left\|\mathbf{\Pi} \mathbf{W}^{(t)} \mathbf{x} \right\|^2 \leq rac{1}{2} \|\mathbf{\Pi} \mathbf{x} \|^2$$

Develop topology — EquiTopo

Undirected EquiTopo Graphs

- 1. Undirected static EquiTopo graphs (U-EquiStatic)
- 2. One-peer undirected EquiTopo graphs (OU-EquiDyn)

Undirected EquiTopo Graphs

Undirected static EquiTopo graphs (U-EquiStatic)

Weight matrix

$$\widetilde{\boldsymbol{W}} = \frac{1}{2} \left(\boldsymbol{W} + \boldsymbol{W}^T \right) = \frac{1}{2M} \sum_{i=1}^{M} \left(\boldsymbol{A}^{(u_i)} + \left[\boldsymbol{A}^{(u_i)} \right]^T \right)$$
 (5)

▶ Basis index are $\{u_i, -u_i\}_{i=1}^M$ because $\mathbf{A}^{(-u)} = \left[\mathbf{A}^{(u)}\right]^T$

U-EquiStatic

Theorem 3 Let W be a D-EquiStatic matrix with consensus rate ρ and \widetilde{W} be the U-EquiStatic matrix defined by (5). It holds that

$$\|\mathbf{\Pi}\widetilde{\boldsymbol{W}}\boldsymbol{x}\| \le \rho \|\mathbf{\Pi}\boldsymbol{x}\|, \forall \boldsymbol{x} \in \mathbb{R}^n$$
 (6)

One-peer undirected EquiTopo graphs (OU-EquiDyn)

Algorithm 2: OU-EquiDyn weight matrix generation at iteration t

```
Input: \eta \in (0,1); basis index \{u_i, -u_i\}_{i=1}^M from a symmetric weight matrix \widetilde{\boldsymbol{W}} \in \mathbb{R}^{n \times n} of
            form (5):
Pick v_t \in \{u_i, -u_i\}_{i=1}^M and s_t \in [n] uniformly at random;
Initialize \boldsymbol{A} = [a_{ij}] = \boldsymbol{I} and b_i = 0, \forall i \in [n];
for j = (s_t : s_t + n - 1 \mod n) do
     i = (j + v_t) \mod n;
   \mathbf{if}\ b_i = 0\ and\ b_j = 0\ \mathbf{then}\ a_{ij} = a_{ji} = (n-1)/n;\ a_{ii} = a_{jj} = 1/n;\ b_i = 1, b_j = 1;
      end
end
Output: \widetilde{\boldsymbol{W}}^{(t)} = (1-\eta)I + \eta \boldsymbol{A}
```

OU-EquiDyn

OU-EquiDyn

Theorem 4 Let $\widetilde{\boldsymbol{W}}$ be a U-EquiStatic matrix with consensus rate ρ , and $\widetilde{\boldsymbol{W}}^{(t)}$ be an OU-EquiDyn matrix generated by Alg. 2, it holds that

$$\mathbb{E}\left[\left\|\mathbf{\Pi}\widetilde{\boldsymbol{W}}^{(t)}\boldsymbol{x}\right\|^{2}\right] \leq \left(1 - \frac{4}{3}\eta(1 - \eta)(1 - \rho)\right)\|\mathbf{\Pi}\boldsymbol{x}\|^{2}, \quad \forall \boldsymbol{x} \in \mathbb{R}^{n}$$

• When $\eta = 1/2$, it holds that

$$\mathbb{E} \left\| \mathbf{\Pi} \mathbf{W}^{(t)} \mathbf{x} \right\|^2 \le \left[(2 + \rho)/3 \right] \| \mathbf{\Pi} \mathbf{x} \|^2.$$

▶ When $\widetilde{W} = J$ and the basis index $\{1, \dots, n-1\}$ are input to Alg. 2, we obtain an OU-EquiDyn sequence $\widetilde{\boldsymbol{W}}^{(t)}$ such that

$$\mathbb{E}\left\|\mathbf{\Pi}\widetilde{\boldsymbol{W}}^{(t)}\boldsymbol{x}\right\|^{2} \leq (2/3)\|\mathbf{\Pi}\boldsymbol{x}\|^{2}.$$

Comparison between different commonly-used topologies

Topology	Connection	Pattern	Degree	Consensus Rate	size n
Ring	undirect.	static	$\Theta(1)$	$1-\Theta(1/n^2)$	arbitrary
Grid	undirect.	static	$\Theta(1)$	$1 - \Theta(1/(n \ln(n)))$	arbitrary
Torus	undirect.	static	$\Theta(1)$	$1 - \Theta(1/n)$	arbitrary
Hypercube	undirect.	static	$\Theta(\ln(n))$	$1 - \Theta(1/\ln(n))$	power of 2
Static Exp.	directed	static	$\Theta(\ln(n))$	$1 - \Theta(1/\ln(n))$	arbitrary
OP. Exp.	directed	dynamic	1	finite-time conv.†	power of 2
ER. Rand	undirect.	static	$\Theta(\ln(n))^{\diamond}$	$\Theta(1)$	arbitrary
Geo. Rand	undirect.	static	$\Theta(\ln(n))$	$1 - \Theta(\ln(n)/n)$	arbitrary
D-EquiStatic	directed	static	$\Theta(\ln(n))$	$\rho \in (0,1)^{\ddagger}$	arbitrary
U-EquiStatic	undirect.	static	$\Theta(\ln(n))$	$ \rho \in (0,1)^{\ddagger} $	arbitrary
OD-EquiDyn	directed	dynamic	1	$\sqrt{(1+\rho)/2}$	arbitrary
OU-EquiDyn	undirect.	dynamic	1	$\sqrt{(2+ ho)/3}$	arbitrary

[†] One-peer exponential graph has finite-time exact convergence only when n is the power of 2.

Remark EquiTopo family (especially the one-peer variants) has achieved the best balance between maximum graph degree and consensus rate.

 $^{^{\}diamond}$ $\Theta(\ln(n))$ is the averaged degree; its maximum degree can be O(n) with a non-zero probability.

[‡] Constant $\rho = \Theta(1)$ is independent of network-size n.

Apply EquiTopo to decentralized learning

Two well-known decentralized algorithms

- ► Decentralized stochastic gradient descent —**DSGD**
- ▶ Decentralized stochastic gradient tracking algorithm —**DSGT**

Assumptions

- ▶ **A.1** Each local cost function $f_i(x)$ is differentiable, and there exists a constant L > 0 such that $\|\nabla f_i(\mathbf{x}) \nabla f_i(\mathbf{y})\| \le L\|\mathbf{x} \mathbf{y}\|, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d$.
- ▶ **A.2** Let $\boldsymbol{g}_i^{(t)} = \nabla F\left(\boldsymbol{x}_i^{(t)}; \xi_i^{(t)}\right)$. There exists $\sigma^2 > 0$ such that for any t and t

$$\mathbb{E}_{\xi_{i}^{(t)} \sim \mathcal{D}_{i}} oldsymbol{g}_{i}^{(t)} = \nabla f_{i}\left(oldsymbol{x}_{i}^{(t)}
ight)$$
, and $\mathbb{E}_{\xi_{i}^{(t)} \sim \mathcal{D}_{i}}\left[\left\|oldsymbol{g}_{i}^{(t)} - \nabla f_{i}\left(oldsymbol{x}_{i}^{(t)}
ight)
ight\|^{2}\right] \leq \sigma^{2}$.

▶ **A.3** (For DSGD only) There exists b^2 such that $\frac{1}{n} \sum_{i=1}^n \|\nabla f_i(\mathbf{x}) - \nabla f(\mathbf{x})\| \le b^2$ for all $\mathbf{x} \in \mathbb{R}^d$.

Algorithm 1 DECENTRALIZED SGD (DSGD)

```
input for each node i \in [n] initialize \mathbf{x}_i^{(0)} \in \mathbb{R}^d,
      stepsizes \{\eta_t\}_{t=0}^{T-1}, number of iterations T.
       mixing matrix distributions \mathcal{W}^{(t)} for t \in [0, T]
  1: for t in 0 \dots T do
           Sample W^{(t)} \sim \mathcal{W}^{(t)}
 2:
           In parallel (task for worker i, i \in [n])
          Sample \xi_i^{(t)}, compute \mathbf{g}_i^{(t)} := \nabla F_i(\mathbf{x}_i^{(t)}, \xi_i^{(t)})
 5: \mathbf{x}_i^{(t+\frac{1}{2})} = \mathbf{x}_i^{(t)} - \eta_t \mathbf{g}_i^{(t)} > stochastic gradient updates
       \mathbf{x}_i^{(t+1)} := \sum_{i \in \mathcal{N}^t} w_{ii}^{(t)} \mathbf{x}_i^{(t+\frac{1}{2})} 
ightharpoonup \operatorname{gossip} \operatorname{averaging}
  7: end for
```

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian U Stich. A unified theory of decentralized sgd with changing topology and local updates. In International Conference on Machine Learning (ICML), pages 1–12, 2020.

The **d**ecentralized **s**tochastic **g**radient **d**escent (DSGD) is given by

$$\boldsymbol{x}_{i}^{(t+1)} = \sum_{j=1}^{n} w_{ij}^{(t)} \left(\boldsymbol{x}_{j}^{(t)} - \gamma \boldsymbol{g}_{j}^{(t)} \right)$$

$$(8)$$

where the weight matrix $oldsymbol{W}^{(t)} = \left[w_{ij}^{(t)}
ight]$ can be time-varying and random.

Theorem 5 Consider the DSGD algorithm (8). Under Assumptions A.1-A.3, it holds that

$$\frac{1}{T+1} \sum_{t=0}^{T} \mathbb{E}\left[\left\|\nabla f\left(\overline{\boldsymbol{x}}^{(t)}\right)\right\|^{2}\right] = \mathcal{O}\left(\frac{\sigma}{\sqrt{nT}} + \frac{\beta^{\frac{2}{3}}\sigma^{\frac{2}{3}}}{T^{\frac{2}{3}}(1-\beta)^{\frac{1}{3}}} + \frac{\beta^{\frac{2}{3}}b^{\frac{2}{3}}}{T^{\frac{2}{3}}(1-\beta)^{\frac{2}{3}}} + \frac{\beta}{T(1-\beta)}\right)$$

where error
$$\frac{1}{(T+1)}\sum_{t=0}^{T}\left(\mathbb{E}f\left(\overline{\mathbf{x}}^{(t)}\right)-f^{*}\right)\leq\epsilon$$

- ightharpoonup eta =
 ho with D-EquiStatic $oldsymbol{W}$ or U -EquiStatic $oldsymbol{\widetilde{W}}$
- $\beta = \sqrt{(1+\rho)/2}$ for OD-EquiDyn $\mathbf{W}^{(t)}$
- $ightharpoonup eta = \sqrt{(2+
 ho)/3}$ for OU-EquiDyn $\widetilde{W}^{(t)}$

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian U Stich. A unified theory of decentralized sgd with changing topology and local updates. In International Conference on Machine Learning (ICML), pages 1–12, 2020.

Theorem 5 Consider the DSGD algorithm (8). Under Assumptions A.1-A.3, it holds that

$$\frac{1}{T+1} \sum_{t=0}^{T} \mathbb{E}\left[\left\| \nabla f \left(\overline{\pmb{x}}^{(t)} \right) \right\|^{2} \right] = \mathcal{O}\left(\frac{\sigma}{\sqrt{nT}} + \frac{\beta^{\frac{2}{3}} \sigma^{\frac{2}{3}}}{T^{\frac{2}{3}} (1-\beta)^{\frac{1}{3}}} + \frac{\beta^{\frac{2}{3}} b^{\frac{2}{3}}}{T^{\frac{2}{3}} (1-\beta)^{\frac{2}{3}}} + \frac{\beta}{T(1-\beta)} \right)$$

- ▶ For a sufficiently large T, the term $\mathcal{O}(1/\sqrt{nT})$ dominates the rate, and we say the algorithm reaches the linear speedup stage.
- ► The *transient iterations* are referred to as those iterations *before an algorithm reaches the linear-speedup stage*.
- ► The smaller the transient iteration complexity is, the faster the algorithm converges.

For **strongly convex** cost functions

Topology	Per-iter Comm.	Convergence Rate	Trans. Iters.
Ring	$\Theta(1)$	$ ilde{\mathcal{O}}\Big(rac{\sigma^2}{nT} + rac{\kappa n^2\sigma^2}{T^2} + rac{\kappa n^4b^2}{T^2}\Big)$	$ ilde{\mathcal{O}}(\kappa n^5)$
Torus	$\Theta(1)$	$ ilde{\mathcal{O}}\Big(rac{\sigma^2}{nT} + rac{\kappa n \sigma^2}{T^2} + rac{\kappa n^2 b^2}{T^2}\Big)$	$ ilde{\mathcal{O}}(\kappa n^3)$
Static Exp.	$\Theta(\ln(n))$	$ ilde{\mathcal{O}}\Big(rac{\sigma^2}{nT} + rac{\kappa \ln(n)\sigma^2}{T^2} + rac{\kappa \ln^2(n)b^2}{T^2}\Big)$	$\tilde{\mathcal{O}}(\kappa n \ln^2(n))$
OP. Exp.	1	$ ilde{\mathcal{O}}\Big(rac{\sigma^2}{nT} + rac{\kappa \ln(n)\sigma^2}{T^2} + rac{\kappa \ln^2(n)b^2}{T^2}\Big)$	$\mathcal{\tilde{O}}(\kappa n \ln^2(n))$
D(U)-EquiStatic	$\Theta(\ln(n))$	$ ilde{\mathcal{O}}\Big(rac{\sigma^2}{nT} + rac{\kappa\sigma^2}{T^2} + rac{\kappa b^2}{T^2}\Big)$	$ ilde{\mathcal{O}}(\kappa n)$
OD (OU)-EquiDyn	1	$ ilde{\mathcal{O}}\Big(rac{\sigma^2}{nT} + rac{\kappa\sigma^2}{T^2} + rac{\kappa b^2}{T^2}\Big)$	$ ilde{\mathcal{O}}(\kappa n)$

It is observed that OD/OU-EquiDyn endows DSGD with the lightest communication, fastest convergence rate, and smallest transient iteration complexity.

Algorithm 1 GRADIENT TRACKING (DSGT)

input Initial values $\mathbf{x}_i^{(0)} \in \mathbb{R}^d$ on each node $i \in [n]$, communication graph G = ([n], E) and mixing matrix W, stepsize γ , initialize $\mathbf{y}_i^{(0)} = \nabla F_i(\mathbf{x}_i^{(0)}, \xi_i^{(0)})$, $\mathbf{g}_i^{(0)} = \mathbf{y}_i^{(0)}$ in parallel for $i \in [n]$.

- 1: in parallel on all workers $i \in [n]$, for $t = 0, \dots, T-1$ do
- 2: each node i sends $\left(\mathbf{x}_{i}^{(t)}, \mathbf{y}_{i}^{(t)}\right)$ to is neighbors

3:
$$\mathbf{x}_i^{(t+1)} = \sum_{j:\{i,j\} \in E} w_{ij} \left(\mathbf{x}_j^{(t)} - \gamma \mathbf{y}_j^{(t)} \right)$$
 \Rightarrow update model parameters

- 4: Sample $\xi_i^{(t+1)}$, compute gradient $\mathbf{g}_i^{(t+1)} = \nabla F_i \left(\mathbf{x}_i^{(t+1)}, \xi_i^{(t+1)} \right)$
- 5: $\mathbf{y}_i^{(t+1)} = \sum_{j:\{i,j\} \in E} w_{ij} \mathbf{y}_j^{(t)} + \left(\mathbf{g}_i^{(t+1)} \mathbf{g}_i^{(t)}\right)$ \triangleright update tracking variable
- 6: end parallel for

Anastasiia Koloskova, Tao Lin, and Sebastian U Stich. An improved analysis of gradient tracking for decentralized machine learning. Advances in Neural Information Processing Systems, 34, 2021.

- Each agent *i* keeps an estimate of the minimizer $\mathbf{x}_i(t) \in \mathbb{R}^{1 \times N}$
- ▶ $\boldsymbol{y}^{(t)} \in \mathbb{R}^{1 \times N}$ to estimate the average gradient $\frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\boldsymbol{x}_i(t))$.

$$\mathbf{x}_{i}^{(t+1)} = \sum_{j=1}^{n} w_{ij}^{(t)} \left(\mathbf{x}_{j}^{(t)} - \gamma \mathbf{y}_{j}^{(t)} \right)
\mathbf{y}_{i}^{(t+1)} = \sum_{j=1}^{n} w_{ij}^{(t)} \mathbf{y}_{j}^{(t)} + \mathbf{g}_{i}^{(t+1)} - \mathbf{g}_{i}^{(t)}, \mathbf{y}_{i}^{(0)} = \mathbf{g}_{i}^{(0)}.$$
(9)

Improved convergence rate over *asymmetric* or *time-varying* weight matrices.

G. Quand N. Li, "Harnessing smoothness to accelerate distributed optimization," IEEE Trans-actions on Control of Network Systems, vol. 5, pp. 1245–1260, Sept. 2018.

Theorem 6 Consider the DSGT algorithm in (9). If $\left\{ \boldsymbol{W}^{(t)} \right\}_{t \geq 0}$ have consensus rate β , then under Assumptions A.1-A.2, it holds for $T \geq \frac{1}{1-\beta}$ that

$$\frac{1}{T+1}\sum_{t=0}^T \mathbb{E}\left[\left\|\nabla f\left(\overline{\boldsymbol{x}}^{(t)}\right)\right\|^2\right] = \mathcal{O}\left(\frac{\sigma}{\sqrt{nT}} + \frac{\sigma^{\frac{2}{3}}}{(1-\beta)T^{\frac{2}{3}}} + \frac{1}{(1-\beta)^2T}\right).$$

When utilizing the EquiTopo matrices, the corresponding β is specified in Theorem 5.

DSGT achieves linear speedup for large T.

Topology	Per-iter Comm.	Convergence Rate	Trans. Iters.
Ring	$\Theta(1)$	$\mathcal{O}\left(rac{\sigma}{\sqrt{nT}} + rac{n^2\sigma^2_3}{T^2_3} + rac{n^4}{T} ight)$ $\mathcal{O}\left(rac{\sigma}{\sqrt{nT}} + rac{n\sigma^2_3}{T^2_3} + rac{n^2}{T} ight)$ $\mathcal{O}\left(rac{\sigma}{\sqrt{nT}} + rac{\ln(n)\sigma^2_3}{T^2_3} + rac{\ln^2(n)}{T} ight)$ $\mathcal{O}\left(rac{\sigma}{\sqrt{nT}} + rac{\ln(n)\sigma^2_3}{T^2_3} + rac{\ln^2(n)}{T} ight)$ $\mathcal{O}\left(rac{\sigma}{\sqrt{nT}} + \left(rac{\sigma}{T} ight)^{rac{2}{3}} + rac{1}{T} ight)$	$\mathcal{O}(n^{15})$
Torus	$\Theta(1)$	$\mathcal{O}\left(rac{\sigma}{\sqrt{nT}} + rac{n\sigma^{rac{2}{3}}}{T^{rac{2}{3}}} + rac{n^2}{T} ight)$	$\mathcal{O}(n^9)$
Static Exp.	$\Theta(\ln(n))$	$\mathcal{O}\left(rac{\sigma}{\sqrt{nT}} + rac{\ln(n)\sigma^{rac{2}{3}}}{T^{rac{2}{3}}} + rac{\ln^2(n)}{T} ight)$	$\mathcal{O}(n^3 \ln^6(n))$
OP. Exp.	1	$\mathcal{O}\left(rac{\sigma}{\sqrt{nT}} + rac{\ln(n)\sigma^{rac{2}{3}}}{T^{rac{2}{3}}} + rac{\ln^2(n)}{T} ight)$	$\mathcal{O}(n^3 \ln^6(n))$
D(U)-EquiStatic	$\Theta(\ln(n))$	$\mathcal{O}\left(\frac{\sigma}{\sqrt{nT}} + \left(\frac{\sigma}{T}\right)^{rac{2}{3}} + rac{1}{T} ight)$	$\mathcal{O}(n^3)$
OD (OU)-EquiDyn	1	$\mathcal{O}\left(\frac{\sigma}{\sqrt{nT}} + \left(\frac{\sigma}{T}\right)^{\frac{2}{3}} + \frac{1}{T}\right)$	$\mathcal{O}(n^3)$

OD/OU-EquiDyn endows DSGT with the lightest communication, fastest convergence rate, and smallest transient iteration complexity.

Experiments

- 1. Consensus rate
 - ► Network-size independent consensus rate.
 - Comparison with other topologies.
- 2. DSGD with EquiTopo
 - ▶ Distributed least-square problem
 - Distributed deep learning

Experiments — Network-size independent consensus rate

Figure 2: The D-EquiStatic topology can achieve network-size independent consensus rate

Experiments — Comparison with other topologies

Figure 3: OD/OU-EquiDyn is faster than other topologies (i.e., ring, grid, and one-peer exponen- tial graph) with $\mathbb{O}(1)$ degree in consensus rate.

Experiments — DSGD with EquiTopo on Least-square

Figure 4: D/U-EquiStatic in DSGD. λ_2 is the second largest eigenvalue.

Experiments — DSGD with EquiTopo on Deep Learning

Figure 5: Train loss and test accuracy comparisons among different topologies for ResNet-20 on CIFAR-10.

Conclusion

- ► This paper develops several novel graphs built upon a set of basis graphs in which the label difference between any pair of connected nodes are equivalent.
- ▶ With a general name EquiTopo, these new graphs can achieve network-size-independent consensus rates while maintaining (almost) constant graph degrees.

Thanks!