

LSD4WN-2L317M90 产品规格书

文件版本: Rev02

最近更新: 2017年03月15日

利尔达科技集团股份有限公司

文件修订历史

版本	修订日期	修订说明
1. 0. 0	2016-04-14	初始版本
2. 0. 1	2016-06-02	增订部分参数,修改部分描述
2. 0. 2	2016-07-06	修改部分逻辑状态描述、增加视图说明
2. 0. 3	2016-11-10	增加模块引脚的缺省状态
2. 1. 0	2016-12-30	更新产品实物、引脚定义、增加天线设计建议
2. 2. 0	2016-12-30	增加参数指标说明
2. 2. 1	2017-03-15	修正错误

目录

1	概述	•••••		5
2	产品	技术参	数	7
3	产品	功能说	的用······	9
	3.1	功能	描述	9
		3.1.1	命令模式	10
		3.1.2	透传模式	11
4	机械	特性…		13
	4.1	产品	外观	13
	4.1	模块	装配图	13
	4.2	模块:	主板 PCB 封装尺寸图	14
5	接口	说明…		15
	5.1	引脚	定义	15
	5.2	硬件	接口描述	16
		5.2.1	外部电源	16
		5.2.2	复位	16
		5.2.3	模式控制	17
		5.2.4	UART 接口	17
		5.2.5	模块状态指示	18
		5.2.6	睡眠控制	19
		5.2.6	扩展 GPIO	20
	5.3	典型	应用电路	20

	5.3.1	天线设计建议	21
敬告用户	۵		23

1 概述

LSD4WN-2L317M90 是利尔达科技集团股份有限公司研制的一款 LoRaWAN End Node 模块。本模块集成了 LoRaWANTM 协议栈,符合 LoRa Alliance 发布的 LoRaWANTM Specification 1.0.1 Class A/Class B 标准。硬件支持 433~510MHz 超宽频段(使用不同频段时,需要选择合适天线)。模块采用串行接口与用户设备进行数据、指令交互,可以方便地为用户提供快速 LoRaWAN 网络接入和无线数据等业务。 LSD4WN-2L317M90 模块具有功耗低、传输距离远、抗干扰能力强,适用于多种应用场合:物联网低功耗应用(IoT)、自动抄表、智慧城市、工业自动化、智能家居等。

产品特点

- ▶ 工作电压: 2.5~ 3.6 V;
- ▶ 物理层: EU433;
- ▶ 发射功率: 19±1 dBm(max);
- ▶ 超高接收灵敏度: -136±1dBm(@SF=12);
- 》 超远有效通讯距离:5Km(城市公路环境,非旷野环境);
- ➢ 符合 LoRaWAN™ Specification 1.0.1 标准,支持 EU433 协议;
- ▶ 内部集成 LoRaWAN™协议栈,支持 Class A/Class C 设备类型;
- ▶ 低功耗: 待机电流 典型值 1.8 uA;
- UART 通信,对外接口为邮票孔,简易指令配置模块参数;

LSD4WN-2L317M90 模块适用于多种应用场合:

- ▶ 自动抄表,特别适用于水表、气表、热表等无线抄表场合;
- ➤ 物联网(IoT)
- > 智慧城市
- > 智能家居
- > 智慧物流
- ▶ 工业自动化
- **>**

2 产品技术参数

下文描述本模块的技术参数,主要包括遵循的协议标准、接口特性、机械特性、直流特性参数、射频特性参数、环境特性参数等。

表 2-1 模块技术参数

主要参数		内容	
		描述	备注
	协议版本	LoRaWAN™ Specification	更新时间2016年6月
	物理层	EU433	
协议标准	网络拓扑	Star	接入LoRaWAN网关,形成星 -星型网络拓扑
	设备类型	Class A/Class C	暂不支持Class B
	网络接入方式	OTAA/ABP	
	发送寻址模式	广播	
	调制方式	LoRa	
	数据速率	SF12~SF7	
	串口接口	2线UART	兼容3.3V TTL\CMOS
接口特性	串口波特率	2400\4800\9600\38400\1920 0\115200bps	用户可配置透传模式的串口波特率,命令模式固定使用9600bps
	主天线接口	邮票孔50Ω输出	
机械特性	接口封装类型	邮票孔(2×11pin×2.0mm)	
	PCBA尺寸	25(L) ×21.5(W) ×3 (H) mm	(GB/T1804-c)

表 2-2 直流特性参数

主要参数	测试条件	最小值	典型值	最大值	单位	备注
工作 中区		2. 5	3. 3	3. 6	V	保证最大输
工作电压	_					出功率20dBm
工作电流						
平均电流	正常工作, 9600Bps	-	2. 4	_	mA	

	RTC打开	-	2	3	uA	
峰值电流	最大输出	-	_	130	mA	

表 2-3 射频特性参数

主要参数	测试条件	最小值	典型值	最大值	单位	备注
工作频段	测试电压: 3.3V 测试温度: 室温	433	_	510	MHz	
发射特性	00K	模式,载波	输出,PA_	BOOST ON, 2	25°C环境》	温度
最大发射功率	PA_B00ST输出,功 率满负荷,使用 9020A频谱仪测试	18	19	20	dBm	
二次谐波			-38		dBm	
发射电流 (射频部分)	射频最大发送功率 输出,仪器负载		120		mA	实际使用时,电流 与天线环境有关
接收特性	PER = 1%, CR = 4	1/6, CRC 0	N, Preambl	e Length	= 12, Pa	cket Length = 10
接收灵敏度	SF12 SF7	_	-136 -123	-	dBm dBm	平坦度<0.5dB
接收电流(射频部分)		-	12	-	mA	
频率特性	频率稳					

表 2-4 环境特性参数

主要参数	测试条件	最小值	典型值	最大值	单位	备注
工作温度	_	-40	_	~85	°C	
存储温度	_	-40	_	125	°C	
工作湿度	-	5	_	95	%	
ESD防护	-	_	-	TBD	٧	

3 产品功能说明

本模块与用户主板连接时,主要包括串口接口、复位、唤醒、模式控制、状态输出及供电接口等。模块应用框图如图 3-1 所示。

图 3-1 模块应用框图

3.1 功能描述

本模块集成了 LoRaWAN™ 协议栈,符合 LoRa Alliance 发布的 LoRaWAN™ Specification 1.0.1,支持 Class A/Class C 设备类型,从空口支持的频段来看,模块功能包括:

a) LoRaWAN EU433 应用

本模块通过串口与用户进行数据交互。模块工作模式设计为透传模式与命令模式。

用户在命令模式通过 AT 指令配置 LoRaWAN 网络参数(如果未配置,将采用默认参数配置)。模块在透传模式,使用串口收发数据,用户可以配置参数,要求模块输出详细的信息(剩余未发数据、RSSI、数据包大小、重发次数等)。串口收到一帧数据后,BUSY 引脚拉低(忙),直到这一帧数据传输完成(成功或失败)。如果传输失败,在BUSY 引脚回到高电平(不忙)的同时,STAT 引脚拉低,当用户写新的一帧数据或者通过命令模式读取传输失败信息时,STAT 引脚回到高电平状态。

用户首次使用,需要首先配置模块必要的网络参数,并执行保存命令后,复位模块(模块以新参数来初始化网络),然后切换为透传模式,模块会自动加入设定的LoRaWAN网络,启动运行。用户可以通过判断 STAT 引脚状态,并进入命令模式查询当前数据发送结果等详细信息。

模块支持两种模式,分别是工作模式与睡眠模式。用户通过控制 WAKE 引脚来进入或者退出睡眠模式。工作模式细分为两种子模式,用户通过 MODE 引脚选择子模式,工作子模式具体定义如 3-1 所示。

表 3-1 模块的工作模式

3.1.1 命令模式

在命令模式下,用户可以通过串口发送 AT 指令来访问模块。用户端发送指令给模块,模块解析接收到的命令,并返回一个命令响应帧,指示所接收命令的执行结果。

3.1.2 透传模式

在透传模式下,模块直接转发用户数据。

如果开启 LoRaWAN 网络的 ADR 机制,由于每个空口数据包的最大数据长度可能会动态变化,为了保证数据传输可靠性与完整性,引入一种简单的流控机制。

1)、流控机制

用户自行决定一帧数据的长度。当串口超过 2 字节传输时间未接收到新的串口数据数据或者达到 FIFO 存储上限时 ,判定一帧数据传输完成 ,立即拉低 BUSY 引脚(忙),关闭串口接收,进行发送操作。发送完成后(成功或失败), BUSY 引脚重新拉高,如果 WAKE 引脚仍为高电平,则重新开启模块的串口接收。

2)、物理分包机制

实际的物理分包情况由 Network Server 决定,用户可以通过 AT 指令查询响应参数,或者要求详细信息输出,来获取分包情况。

通常情况下,不同速率对应的最大负载值 N,如表 3-2 所示:

SF	N (MAX)
7	222
8	222
9	115
10	51
11	51
12	51

表 3-2 不同速率对应的最大负载值

3)服务器响应

根据 LoRaWAN 网络 Class A 运行特点,任何一包数据,用户服务器都可以给出

响应,如果模块收到用户服务器数据,会立即通过串口输出。因此由于数据帧分包的原因,用户的一帧数据可能收到若干个响应数据包。

4 机械特性

4.1 产品外观

产品实物图如 4-1 与 4-2 所示,标签中的 EUI 与 $S\N$ 等仅供参考,具体以实际为

准,标签的小黑点标识为模块的 Pin1:

图 4-1 LSD4WN-2L317M90 TOP 面

图 4-2 LSD4WN-2L317M90 BOT 面

4.1 模块装配图

模块装配图如图 4-3 所示 (单位:mm), 左图视角为 Top View

图 4-3 模块装配图

4.2 模块主板PCB封装尺寸图

用户主板的模块 PCB 封装请根据图 4-2 进行设计 ,我司可提供本模块的 PCB 封装供用户参考。

5 接口说明

5.1 引脚定义

所有 I\O 口为 CMOS 与 TTL 兼容。模块引脚功能如表 5-1 所示:

表 5-1 引脚定义

引脚	功能定义	端口类型	缺省值 ³	描述				
1	GND	Power	-	接系统地				
2	GND	Power	-	接系统地				
3	P1	1/0	Low	扩展功能 ¹ ,比如GPIO/ADC				
4	P2	1/0	Low	扩展功能 ¹ ,比如GPIO/ADC				
5	Р3	1/0	Low	扩展功能 ¹ ,比如GPIO/ADC				
6	GND	Power	-	接系统地				
7	WAKE	Input	Float	唤醒\关闭模块				
8	STAT	0uptut	Low	状态指示				
9	NC	NC	-	悬空处理				
10	NC	NC	-	悬空处理				
11	P0	1/0	Low	扩展功能 ¹ ,比如GPIO/ADC				
12	GND	Power	-	接系统地				
13	VCC	Power	-	系统供电,供电范围2.5~3.6V				
14	NRST	Reset	PULL-UP	复位模块,内部弱上拉,低电平有效,用户若不				
				使用,可以悬空处理				
15	BUSY	0utput	Low	模块忙信号输出				
16	MODE	Input	Low	工作模式控制,根据用户控制电平,内部自动上				
				\下拉				
17	GND	Power	-	接系统地				
18	TXD	0utput	High	串口发送端(TX)				
19	RXD	Input	High-impendance	串口接收端(RX)				
20	GND	Power	=	接系统地				
21	GND	Power	-	接系统地				
22	ANT	RF	-	射频出口. 注意使用50Ω阻抗线				

注1:扩展功能用于开放 IO 的操作。

注 2:淡蓝色标注是客户系统最小使用的引脚

注 3: 缺省值,描述的是用户尚未对模块进行任何配置、首次上电后的引脚状态

5.2 硬件接口描述

使用 LSD4WN-2L317M90 模块进行硬件设计时,根据实际应用,需要合理选择与设计所需接口及其外围电路。

LSD4WN-2L317M90 模块应用接口包括以下:

- 外部电源
- 复位
- 模式控制
- UART接口
- 模块状态指示
- 睡眠控制
- 扩展 GPIO

5.2.1 外部电源

用户在使用本模块时,首先需要保证外部电源能够充足的供电带载能力,并且供电范围需要严格控制在 2.5V~3.6V 之间。高于模块供电范围,会导致模块的主芯片损坏;低于模块供电范围,会影响射频电路工作,无法保证输出最大功率。

5.2.2 复位

用户给模块 NRST 引脚提供一个至少 1ms 低脉冲(或者直接拉低),会复位模块。模块复位后,需要等待复位延时时间为 150ms,保证模块系统初始化完成。模块复位

引脚功能如表 5-2 所示:

表 5-2 复位引脚功能

接口	引脚	定义	1/0		备注	
复位	14	NRST	Input			模块复位后,用
				高电平	模块正常运行	户需要等待复位
				低电平	模块保持复位状态(复位MCU)	延时时间, 才可
						以操作模块

5.2.3 模式控制

模块有在两种工作模式,用户通过 MODE 引脚来选择工作在哪种模式。用户如果不知道模块当前的工作模式,可以通过读取该引脚的状态来获取。模块模式控制引脚功能如表 5-3 所示:

表 5-3 模式控制引脚功能

接口	引脚	定义	1/0		描述			
模式	16	MODE	Input					
控制				高电平	检测到高电平脉冲(上升沿&高电平)进			
					入并驻留在命令模式			
				低电平				

5.2.4 UART接口

模块提供一个 UART 接口,结合自定义的软件流控制,来完成串口通信,缺省串口设置为 9600N81,对外接口电平为 3.3V TTL\CMOS 电平。

用户每次发送数据前,拉高 WAKE 引脚,等待 10ms 后,唤醒模块(以便模块准备好串口等)。用户拉低 WAKE 引脚,则模块进入睡眠模式。串口接口功能如表 5-4

所示:

表 5-4 串口接口

接口	引脚	定义	1/0	描述			备注	
UART	18	TXD	Output	串口发送端(TX)			模块的TX	
					信号方向			
	19	RXD	Input	串口接收端(RX)			模块的RX	
							信号方向	
	15	BUSY	Output	模块忙信号输出。			空口速率	
				模块初			所指定的	
				始化(复	高电平	模块空闲。指示用户	最大数据	
				位或者		MCU可以继续向模块写	包大小请	
				WAKE唤		入数据。	见表3.2	
				醒)	低电平	模块忙。指示用户MCU		
						暂停向模块写入数据。		
				数据通				
				信阶段	高电平	模块空闲。指示用户		
						MCU可以继续向模块写		
						入数据。		
					低电平	模块忙。指示用户MCU		
						暂停向模块写入数据。		
	7	WAKE	Input	模块唤醒\睡眠 高电平 用户发送数据前,必须拉高WAKE引脚, 并等待10ms时间,唤醒模块				
				低电平	模块进入睡	匪 展 模 式 。		

5.2.5 模块状态指示

模块的 STAT 引脚目前定义两种功能:

(1) 模块在首次接入 LoRaWAN 网络时,首先执行加入网络操作,在 JOIN 过

程中, STAT 引脚始终保持为低电平, 直到模块成功加入网络, 此时 STAT 输出高电平, 模块可以正常处理用户的串口数据。用户此时可以通过特定 AT 指令来进一步获取详细的状态信息。

注:在搜索网络过程中,用户此时可以通过特定 AT 指令来进一步获取详细的状态信息。用户查询完成后,立即切换会透传模式。

(2)模块在接入 LoRaWAN 网络后,会动态更新模块的网络状态,状态变化通过 STAT 引脚输出。如果模块模块当次数据操作异常,STAT 引脚输出为低电平,用户此时可以通过特定 AT 指令来进一步获取详细的状态信息。

状态指示引脚功能如表 5-6 所示:

接口 引脚 定义 描述 备注 状态 STAT **Output** 若模块处于 具体异常 输出 入网阶段 STAT引脚表示入网状态 状态可以 特定AT命 高电平 模块入网成功 令读取 低电平 模块未入网,等待入网 成功 数据通信 STAT引脚表示数据通信状态 阶段 高电平 模块的网络状态正常 低电平 模块的网络状态异常

表 5-6 状态指示引脚

5.2.6 睡眠控制

为了满足低功耗应用场景,用户在不需要使用的时候,可以通过拉低睡眠引脚 WAKE,并至少保持 5ms,控制模块进入睡眠状态。在睡眠状态,模块将不进行任何数 据操作,但仍然会保存入网信息等。用户通过拉高 WAKE 引脚,并至少保持 5ms,可以唤醒模块,唤醒后可以便进行正常的数据操作。睡眠控制如表 5-7 所示:

表 5-7 睡眠引脚

接口	引脚	定义	1/0		备注	
睡眠	7	WAKE	Input			
引脚				高电平	唤醒模块,模块处于正常工作状态	
				低电平	控制模块进入休眠	

5.2.6 扩展 GPIO

模块提供了 PO-P3 扩展 GPIO 口,用户当前可以通过 AT+GPIO 指令,控制指定的 GPIO 口输出高\低电平。扩展 GPIO 说明,如表 5-8 所示:

表 5-8 扩展 GPIO

接口	引脚	定义	1/0	描述	备注
GP10	11	P0	Output	通过AT+GP10指令控制输出高电平或者低电平	
GP10	3	P1	Output	通过AT+GP10指令控制输出高电平或者低电平	
GP10	4	P2	Output	通过AT+GP10指令控制输出高电平或者低电平	
GP10	5	Р3	Output	通过AT+GPIO指令控制输出高电平或者低电平	

5.3 典型应用电路

用户接口:串口、GPIO、电源等

天线接口:50Ω邮票孔输出

图 5-1 LSD4WN-2L317M90 典型应用电路

说明:

1:加粗 Trace 为系统所需连接(推荐)。

2:天线出口(ANT<->PIN22)的绿色 Trace 要求 50Ω阻抗匹配。

3: 缺省情况下, R1为0Ω, C1, C2为空贴。C4空贴(只做预留)。

4、R1、C1、C2 参数的具体取值,由产品进行天线匹配后确定。

5、天线部分的 Layout 设计,请参考我司《射频 PCB LAYOUT 设计规则(适用 sub-1GHZ 及蓝牙模块)_WSN_160824》。

5.3.1 天线设计建议

天线设计直接关系到产品的通信性能。不同终端根据天线大小、成本、性能会选择不同类型的天线,短距离天线中比较常见的有 PCB 天线、芯片(陶瓷)天线、弹簧天线、鞭状天线等。选择天线时,需要主要考虑如下几个最重要的参数:在天线周围不同方向上的辐射变化、天线效率、天线工作时需要的带宽以及需要提供给天线的功率等。其中,天线带宽的典型定义是反射波衰低于-10dB 或者 VSWR 小于 2 的频率范围,即天线反射功率小于 10%的频率范围。

目前面向 LoRa 表类应用,我司主要提供弹簧天线与折线天线两种形式。

理想情况下,客户的天线带宽设计在470~510MHz,可以满足。但在实际应用中, 受限于天线大小、成本等因素,天线带宽有限制,因此必须根据实际情况来选择。一 种解决方式是根据基站部署所采用频段,来最终确定天线的工作带宽。

敬告用户

1、欢迎您使用利尔达科技有限公司的产品,在使用我公司产品前,请先阅读此敬

告;如果您已开始使用说明您已阅读并接受本敬告。

利尔达科技有限公司保留所配备全部资料的最终解释和修改权,如有更改恕不另行通知。

编制:利尔达科技集团股份有限公司 无线传感网

2016年12月