

1:	(h	30/		
ن		19	70)	

End Semester Examination

May-June 2023

MAS2069B - Calculus and Basic Statistics

Schedule ID: 18501

Faculty/School	Faculty of Engineering & Technology	Term	IV
Program	Second Year,B. Tech	Duration	1 Hours 30 Minutes
Specialization		Max. Marks	40

Instructions to the Candidate:

- 1. Write the PRN on the top right-hand corner of the question paper.
- 2. Draw neat diagrams.
- 3. Assume suitable data, if necessary.

Section - 1 (4 X 10 Marks) Answer <u>any 4</u> questions

1		olve the		differe	ntial ec	quation	(D^2-4)	ID + 4	i)y = e	$e^{2\pi} \sin 3x$,				10 ma	rks	CO1, CO2	Applying
	$\frac{x}{2}$		=1, z =	0 un	ıder t	he fic	dd of	for		the ellipse given by							
2	(a) F	ind the	directi	onal d	erivativ	es of t	he func	tion ($0 = e^2$	2x+y+z at				10 ma	rks	CO1,	Applying
),0,0) in sin <i>t</i> +					to the	curve	x = 0	e^{-t} , $y=$						CO3	
	Ī	$valuate$ $\vec{x} = xy^2 \hat{i}$ $y_i x = 0$	s +yj+	$z^2x\bar{k}$,	for the s	urface o				where a bounded							
$\left(\frac{3}{2} \right)$		The l				ars ma	anufac	cture	ed by				nd B are	10 ma	rks	CO4	Analysing
	A	14	15	18	12	18	17				~ ~	5. pp					
6	В	21	18	14	22	23	19			6	415) `					
6	meth (b) T	od: cc	effici st fou	ient o r moi	f vari nents	ation) of a) distrib	outic	on ab			e reaso	ns. (Use				

6	(a) Find the coefficient of correlation between population density (x) per	10 marks	CO4	Evaluating
6	square miles and death rate (y) per thousand persons from the given data related to 5 cities. X 200 500 400 700 800 Y 12 18 16 21 10 (b) Use method of least squares to fit a straight line of the form $y = mx + c$ to the following data: X 1 3 5 8 9 10 Y 12 22 32 47 52 57 A A A A A A A A A			
(3) PA	a) Three screws are drawn at random from a lot of 100 screws, 10 of which are defective. Find the probability of the event that all 3 screws drawn are non defective, assuming that we draw (i) with replacement, (ii) without replacement (iii) 2 defectives without replacement. Suppose 3% of bolts made by a machine are defective, the defects occurring at random during production. If bolts are packaged 50 per box, find (a) exact probability and (b) Poisson approximation to it, that a given box will contain 5 defectives.	10 marks	CO5	Applying
6	a) In a sample of 1000 cases, the mean of a certain test is 14 and standard deviation is 2.5. Assuming the distribution to be normal and A(0 \leq z \leq 0.8) = 0.2881, A(0 \leq z \leq 1.6) = 0.4452, A(0 \leq z \leq 2.4) = 0.4918 and A(0 \leq z \leq 0.4) = 0.1554], Find (i) how many students score between 12 and 15? (ii) How many score above 18? (iii) how many score below 8? (iv) how many score 16? (iv) how many sc	10 marks	CO5	Analysing

END OF QUESTION PAPER

