Exercise set 1.2.3

1. (a)
$$f(x) = x + x^3$$

 $f(-x) = (-x) + (-x)^3$
 $= -x - (1)^3 x^3$
 $= -x - x^3$
 $= -(x + x^3)$
... $f(-x) = -f(x)$
So $f(x)$ is an odd function.

(b)
$$f(x) = (x^{2}+25)^{2}$$

 $f(-x) = \{(-x)^{2}+25\}^{2}$
 $f(-x) = (x^{2}+25)^{2}$
 $f(-x) = f(x)$
 $f(-x) = f(x)$
So, $f(x)$ is an even function

(c)
$$f(x) = x^6 + e^{4x}$$

 $f(-x) = (-x)^6 + e^{4(-x)}$
 $= (-1)^6 x^6 + e^{-4x}$
 $: f(-x) = x^6 + e^{-4x}$
So, $f(x)$ is nither odd nor even function.

$$(d) f(x) = \sin^{3}x \cos^{6}x$$

$$f(-x) = \sin^{3}(-x) \cos^{6}(-x)$$

$$= -\sin^{3}x \cos^{6}x$$

$$= -\sin^{3}x \cos^{6}x$$

$$f(-x) = -f(x)$$
So, $f(x)$ is an odd function

(e)
$$f(x) = \sin^4 x \cos^5 x$$

 $f(-x) = \sin^4 (-x) \cos^5 (-x)$
 $1 = \sin^4 x \cos^5 x$
 $i \cdot f(-x) = f(x)$
So, $f(x)$ is an evan function.

$$(f) f(x) = f(an x + cot x)$$

$$f(-x) = f(an(-x) + cot(-x))$$

$$= -f(an x + cot x)$$

$$f(-x) = -f(x)$$
So, $f(x)$ is an odd function.

(2)(0)
$$\int_{-1}^{1} (x^3 + 5x^4) dx$$

Here $f(x) = x^3 + 5x^4$
 $f(-x) = (-x)^3 + 5(-x)^4$
 $= (-1)^3 x^3 + 5(-1)^4 x^4$
 $f(-x) = -x^3 + 5x^4$
so $f(x)$ is nither odd nor even function

$$\int_{-1}^{1} (x^{3} + 5x^{4}) dx$$

$$= \left[\frac{x^{4}}{4} + \frac{5x^{5}}{5} \right]_{-1}^{1}$$

$$= \left(\frac{1^{4}}{4} + \frac{5 \cdot 1^{5}}{5} \right) - \left(\frac{(-1)^{4}}{4} + \frac{5 \cdot (-1)^{5}}{5} \right)$$

$$= \frac{1}{4} + 1 - \left(\frac{1}{4} - 1 \right)$$

$$= \frac{1}{4} + 1 - \frac{1}{4} + 1$$

$$= 2$$

Here
$$f(x) = x(1+x+x^{2}) dx$$

$$= x + x^{2} + x^{3}$$

$$f(-x) = (-x) + (-x)^{2} + (-x)^{3}$$

$$= -x + (-1)^{2}x^{2} + (-1)^{3}x^{3}$$

$$f(-x) = -x + x^{2} - x^{3}$$

$$= 0$$

$$f(-x) = -x + x^{2} - x^{3}$$

$$f(-x) = -x + x^{2} - x^{2}$$

$$f(-x) = -x + x^{2} - x^{2}$$

$$f(-x) = -x + x^{2} + x^{$$

(c)
$$\int_{-4}^{4} (2+3x^{2}) dx$$

Here $f(x) = 2+3x^{2}$
 $f(-x) = 2+3(-1)^{2}$
 $= 2+3x^{2}$
 $f(-x) = f(x)$ [Even function]
 $\therefore \int_{-4}^{4} (2+3x^{2}) dx = 2 \int_{0}^{4} (2+3x^{2}) dx$,
Since $(2+3x^{2})$ is an even function.
 $\therefore \int_{-4}^{4} (2+3x^{2}) dx$.
 $= 2 \int_{0}^{4} (2+3x^{2}) dx$.

Here
$$f(x) = x^5 e^{x^4} dx$$

 $f(-x) = (-x)^5 e^{(-x)^4}$
 $f(-x) = (-x)^5 e^{(-x)^4}$
 $= (-1)^5 x^5 e^{(-1)^4 x^4}$
 $= -x^5 e^{x^4}$
 $f(-x) = -f(x)$
if $f(-x) = -f(x)$
an odd function.

(e)
$$\int_{-TT}^{T} x^8 \sin x \, dx$$

Here, $f(x) = x^8 \sin x$
 $f(-x) = (-x)^8 \sin (-x)$
 $= (-1)^8 x^8 (-\sin x)$
 $= -x^8 \sin x$
 $f(-x) = -f(x)$

$$\int_{-\pi}^{\pi} x^8 \sin x dx = 0$$
, Since $x^8 \sin x$ is an odd function.

(f)
$$\int_{-\pi}^{\pi} x \cos x dx$$

Here, $f(x) = x \cos x$
 $f(-x) = (-x) \cos (-x)$
 $= -x \cos x$
 $f(-x) = -f(x)$
 $f(-x) = -f(x)$
 $f(-x) = -f(x)$
 $f(-x) = -f(x)$
 $f(-x) = -f(x)$

(9)
$$\int_{-\pi}^{\pi} \sin^3 x \cos^5 x \, dx$$

Here, $f(x) = \sin^3 x \cos^5 x \, dx$
 $f(-x) = \sin^3(-x) \cos^5(-x)$
 $= -\sin^3 x \cos^5 x$
 $\vdots \int_{-\pi}^{\pi} \sin^3 x \cos^5 x \, dx = 0$, since $\sin^3 x \cos^5 x$
is an odd function.

(h) $\int_{-\pi/2}^{\pi/2} x^4 \sin^3 x \cos^3 x \, dx$ Here $f(x) = x^4 \sin^3 x \cos^3 x$ $f(-x) = (-x)^4 \sin^3 (-x) \cos^3 (-x)$ $= x^4 (-\sin^3 x) \cos^3 x$ $= -x^4 \sin^3 x \cos^3 x$ f(-x) = -f(x) $\int_{-\pi/2}^{\pi/2} x^4 \sin^3 x \cos^3 x \, dx$ is = 0, Since $x^4 \sin^3 x \cos^3 x \cos^3 x$ is an odd function-

(i)
$$\int_{-\pi}^{\pi} \frac{\lambda^3}{\sqrt{1+x^2}} dx$$

Here, $f(x) = \frac{x^3}{\sqrt{1+x^2}}$
 $f(-x) = \frac{(-x)^3}{\sqrt{1+(-x)^2}}$
 $= -\frac{x}{\sqrt{1+x^2}}$
 $f(-x) = -f(x)$
 $\int_{-\pi}^{\pi} \frac{x^3}{\sqrt{1+x^2}} dx = 0$, Since $\frac{x^3}{\sqrt{1+x^2}}$ is an odd function