Chapter 1 Boolean Logic

- *Such simple things ,And we make of them something so complex it defeats us.
- Boolean Algebra: 布尔代数
 - 布尔代数处理布尔型数值01
 - 真值表表示法
 - 布尔表达式,布尔算子
 - x+y:or
 - xy:and
 - x:not
 - 规范表示法:每个布尔函数至少由一个布尔表达式表示
 - 每个布尔函数都可以仅由Nand函数构成

Function	x	0	0	1	1
	у	0	1	0	1
Constant 0	0	0	0	0	0
And	$x \cdot y$	0	0	0	1
x And Not y	$x \cdot \bar{y}$	0	0	1	0
x	x	0	0	1	1
Not x And y	$\bar{x} \cdot y$	0	1	0	0
y	y	0	1	0	1
Xor	$x \cdot \bar{y} + \bar{x} \cdot y$	0	1	1	0
Or	x + y	0	1	1	1
Nor	$\overline{x+y}$	1	0	0	0
Equivalence	$x \cdot y + \bar{x} \cdot \bar{y}$	1	0	0	1
Not y	\bar{y}	1	0	1	0
If y then x	$x + \bar{y}$	1	0	1	1
Not x	\bar{X}	1	1	0	0
If x then y	$\bar{x} + y$	1	1	0	1
Nand	$\overline{x\cdot y}$	1	1	1	0
Constant 1	1	1	1	1	1

图 1.2 所有"两变量"的布尔函数

- Gate Logic: 门逻辑
 - n个输入变量,返回m个结果——n个输入管脚,m个输出管脚
 - 简单门由微小开关设备"晶体管" (transistors) 构成, 微小开关按拓扑结构连接
 - 由原始门电路连接,实现复合门电路:逻辑设计
 - 内部设计——接口
- 实际硬件结构
- 硬件描述语言HDL
 - 硬件仿真器
 - 解释

- 测试:测试脚本
- Specification: 范例
 - Nand门:基本单元
 - 基本逻辑门
 - Not: 反相器, 非
 - And: 与
 - Or: 或
 - Xor: 异或: 不同出1, 相同出0
 - Multiplexer:数据选择器:多输入变量
 - Demultiplexer: 多路分配器: 多输出变量
 - 多位基本门
 - 通用计算机设计:能够在多位数据线(总线)上运行
 - 通过数组语法描述总线数据
 - Multi-Bit Not
 - Multi-Bit And
 - Multi-Bit Or
 - Multi-Bit Multiplexer:选择位仍为1位,输入输出为多位
 - 多通道逻辑门
 - Multi-Way Or: n位输入中只要出现1,输出即为1
 - Multi-Way Multiplexer:通过k个控制位指定选择,将m个n位输入中选择一个,由n位输出
 - Multi-Way Demultiplexer: 通过k个控制位指定选择,从m个可能的n位输出通道中选择输出一个n位变量
- Implementation: 实现
 - 通过Nand门实现所有的门电路
- Perspective: 观点
 - 设计的效率问题:如何优化需要电子学与物理学的知识
 - 晶体管作用: 如果输入负电平,则断开连接
- Project: 项目
 - 通过原始的Nand门实现所有逻辑门

以上内容整理于 幕布文档