

Modeling white mold with more than genomics

Alencar Xavier

Quantitative Geneticist at Corteva Biostatistics

Adjunct professor at Purdue University

Outline

1. Introduction

- White mold
- Model and data sources

2. Environmental data

- Features and models
- Models with GxE
- Random regression

3. Secondary traits

- High-throughput phenotyping
- Identification of key traits

4. Conclusion

http://www.sclerotia.org/lifecycle/apothecia

Sclerotinia sclerotiorum

https://www.pioneer.com/CMRoot/Pioneer/US/agronomy/cropfocus/soybeans/White-Mold-Soybeans.pdf

Source: https://soybeanresearchinfo.com/soybean-disease/white-mold/

White mold can decrease yield by up to 60%

(Cunha et al. 2010, 10.1111/j.1365-3059.2010.02279.x)

Fall et al. (2018) Phytopathology 108(4) https://doi.org/10.1094/PHYTO-12-16-0446-R

WM and its genetic correlation to yield

Topic 1: Models with environmental data

Disease principles

Contreras-Medina, L. M., et al. "Mathematical modeling tendencies in plant pathology." African Journal of Biotechnology 8.25 (2009).

Model construction

Some things we know about white mold

- Conducive conditions: Cold-wet, dense canopy, high fertility
- Timing: Sclerotinia spores infects flowers (30+ days, R1-R4)
- Existing inoculum: Is the previous crop a host? beans, canola, alfalfa, sunflower
- QTLs reported on chromosomes: 1, 3, 4, 7, 8, 10, 11, 17, 19, 20
 - Iquira and François (10.1186/s12870-014-0408-y), Jing et al. 2021 (10.1016/j.ygeno.2020.10.042), Zhang et al. 2021 (10.1007/s13353-021-00654-z), Kandell et al 2018 (10.3389/fpls.2018.00505), Antwi-Boasiako et al. 2021 (10.1007/s10681-021-02909-6)

Fall et al. (2018) https://doi.org/10.1094/PHYTO-12-16-0446-R

Dataset

23K observations 16K genotypes 166 environments (over 7 years)

All-in approach vs tailored features

All env. features in the model, aggregated by time or phenology

Only features pertinent to WM, aggregated R1-R3

* Predictions of environmental means based on Gaussian kernel fit with REML

(SIDE NOTE)
Variation among source of environmental data

Model testing and validation

Product placement with GxE?

GxE depicts the reranking of genotypes with similar levels of disease resistance

Resistant cultivars will always outperform susceptible ones, despite GxE variation

Random Regression

For the random regression model

$$y = Xb + \sum_{i}^{I} Z_{i}u_{i} + e$$

$$V(Z_{i}u_{i}) = Z_{i}GZ'_{i}\sigma_{i}^{2}$$

$$V(u_{i,i'}) = 0$$

$$V(e) = I\sigma_{e}^{2}$$

What are the random effects?

 $X = \text{Permanent environment} \rightarrow \text{AOI means}$

 $Z_{i=0} = Common genetic factor$

 $Z_{i\neq 0}$ = Polynomial of some order from some EC

Good when there are few, but important ECs

Legendre Polynomials

Random regression uses specific environmental factors to modulate GEBVs and genetic variance

Avg. plot-level $h^2 = 0.28$

Topic 2: Models with secondary traits

High-throughput phenotyping

Singh A.K. et al. (2021) High-Throughput Phenotyping in Soybean. https://doi-org.ezproxy.lib.purdue.edu/10.1007/978-3-030-73734-4_7

But no direct HTP measurements of WM (yet)

Roth et al. (2022) High-throughput field phenotyping of soybean: Spotting an ideotype. https://doi.org/10.1016/j.rse.2021.112797

Identification of key traits

 Candidate traits: Bandwidth transformations, ratios or models (e.g., Mfuka 2019 used NDVI; Vigier et al. 2004 used R₆₃₆-R₆₈₅)

• *Multivariate models*: Fit multiple correlated traits in the same model to capture their genetic covariance:

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} X_1 & 0 \\ 0 & X_2 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} + \begin{bmatrix} Z_1 & 0 \\ 0 & Z_2 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} + \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$$

with

$$Var \binom{u_1}{u_2} = \begin{bmatrix} Var(u_1) \\ Cov(u_1, u_2) \end{bmatrix}$$

$$Var\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{bmatrix} Var(u_1) & Cov(u_1, u_2) \\ Cov(u_1, u_2) & Var(u_2) \end{bmatrix}$$
 Key advantage

Leverage information from secondary and/or proxy traits through the genetic covariance

Identification of key traits

Use of secondary traits

Empirical calculation

Formulas available in Wientjes et al. (2016) Genetics 202(2) https://doi.org/10.1534/genetics.115.183269

 $h_1^2 = h_2^2 = 0.5$ Pop: 20 FS + 10 HS

Use of secondary traits

Alternatively, improve yield under white mold as a separate trait from yield

Thank you for your attention!

Remarks:

- 1) Biologically meaningful features are generally preferred over 'all-in' approach
- 2) GxE re-ranks genotypes with similar resistance levels (but not from "R" to "S")
- 3) Secondary traits from HTP can be used to increase GEBV accuracy

Questions??

Alencar Xavier

Alencar.Xavier@Corteva.com

