Nome: Renan Nunes

**Obs1.:** antes de resolver os exercícios abaixo, teste cada um dos métodos implementados resolvendo sistemas lineares simples de dimensão  $3 \times 3$  (use um exemplo dos Slides). **Obs2.:** utilize precisão dupla.

 Resolva o sistema gerado pela questão 2 da 1<sup>a</sup> Lista utilizando métodos diretos (Thomas, Gauss, LU e Cholesky) e métodos iterativos (Jacobi e Gauss-Seidel). Para este estudo, considere:

- Sistemas lineares de diferentes dimensões (ex. 1000, 5000, 10000) a partir do problema resolvido na  $1^a$  Lista variando o número de elementos;
- A aplicação do critério das linhas para determinar se os métodos iterativos convergem neste caso:
- O tempo de processamento de cada método, direto ou iterativo, para a resolução do sistema e monte uma tabela;
- Apresente o critério de parada e a tolerância utilizada para os métodos iterativos;
- Comente os resultados obtidos.

O critério de Parada Utilizado nas implementações dos métodos iterativos está no código abaixo. Na geração da matriz, foi usado o erro 0,01.

E a tolerância dos métodos iterativos usada foi de 0,0001.

### Python

```
def normaMaximo(self, x):
          size = len(x)
          maximo = abs(x[0])
           for i in range(size):
               temp = abs(x[i])
               if (temp > maximo):
                   maximo = temp
           return maximo
      def distanciaMaximo (self, x1, x2):
           if(len(x1) != len(x2)):
               print ("O tamanho dos vetores x1 e x2 precisa ser o mesmo")
               return 0
           size = len(x1)
           dist = abs(x1[0] - x2[0])
           for i in range(size):
               temp = abs(x1[i] - x2[i])
21
               if(temp > dist):
                   dist = temp
23
           return dist
25
      def calculaErro(self, x_prox, x_atual):
           return self.distanciaMaximo(x_prox, x_atual) / self.normaMaximo(x_prox)
```

Antes da execução dos métodos iterativos foi feita a verificação do critério das linhas com a implementação abaixo

## Python

```
def checarCriterioDasLinhas(self, M):
          ordem = len(M)
          for i in range(ordem):
              valores = []
              div = M[i][i]
              #se algum elemento da diagonal principal for zero
              #a matriz nao satisfaz o criterio das linhas
              if(div == 0):
                  return False
              for j in range(ordem):
                   if(i != j):
                       valores.append(M[i][j] / div)
              #um elemento dividido pelo valor da diagonal principal deu maior ou
                  igual que 1
              #a matriz nao satisfaz o criterio das linhas
              if(max(valores) >= 1):
                   return False
21
          return True
```

O método que calcula o erro residual da questão 2 também está mostrado abaixo.

# Python

```
def erroResidual(self, M, X, B):
    size = len(M[0])
    erroRet = []
    for i in range(size):
       valor = 0
       for j in range(size):
       valor += M[i][j] * X[j]

erroRet.append(abs(valor - B[i]))

return [erroRet, max(erroRet)]
```

Lembrando que a contagem de passos conta os realizados pelo pivoteamento Para uma Matriz  $100 \times 100$ :

| Metodo                         | Passos  | Tempo de Execução |
|--------------------------------|---------|-------------------|
| Thomas (direto)                | 9997    | 0:00:00.002952    |
| Gauss (direto)                 | 328251  | 0:00:00.107486    |
| Gauss com Pivoteamento Parcial | 338052  | 0:00:00.104647    |
| Gauss-Seidel (iterativo)       | 4361445 | 0:00:01.201678    |
| LU                             | 333300  | 0:00:00.324635    |
| Choleski                       | 24354   | 0:00:00.074590    |
| Jacobi (iterativo)             | 46629   | 0:00:00.785732    |

Tabela 1: Matriz 100x100



## Para uma matriz 1000x1000:

| Metodo                         | Passos     | Tempo de Execução |
|--------------------------------|------------|-------------------|
| Thomas (direto)                | 999997     | 0:00:00.235122    |
| Gauss (direto)                 | 332832501  | 0:01:39.306903    |
| Gauss com Pivoteamento Parcial | 333830502  | 0:01:39.587652    |
| Gauss-Seidel (iterativo)       | 2011970016 | 0:09:22.138811    |
| LU                             | 333333000  | 0:05:06.996908    |
| Choleski                       | 2493504    | 0:00:34.001452    |
| Jacobi (iterativo)             | 3964032    | 0:06:03.981231    |

Tabela 2: Matriz 1000x1000



#### Para uma matriz 2000x2000:

| Metodo                                  | Passos     | Tempo de Execução |
|-----------------------------------------|------------|-------------------|
| Thomas (direto)                         | 3999997    | 0:00:01.438566    |
| Gauss (direto)                          | 2664665001 | 0:12:35.660406    |
| Gauss com Pivoteamento Parcial (direto) | 2668661002 | 0:13:36.051002    |
| Gauss-Seidel (iterativo)                | 9270722320 | 0:45:47.694755    |
| LU                                      | 2666666000 | 0:44:35.352543    |
| Choleski                                | 9987004    | 0:04:44.301479    |
| Jacobi (iterativo)                      | 9137429    | 0:26:51.788595    |

Tabela 3: Matriz 2000x2000



#### 2. Seja o sistema linear:

$$Ax = b$$

onde,

$$\mathbf{A} = A_{i,j} = \frac{1}{i+j+1}$$
 e  $\mathbf{b} = b_i = \frac{1}{i+n+1}$ .

Supondo a matriz  $\mathbf{A}_{n\times n}$ , com diferentes dimensões n (ex. n=10,100,1000), faça:

- $-\,$ Resolva utilizando o método de eliminação de Gauss $\mathbf{sem}$ e  $\mathbf{com}$  pivoteamento e a decomposição LU.
- Determine o erro cometido, por cada um dos métodos utilizados, através do resíduo calculado na norma do máximo, dado por:

$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_{\infty} = \max_{1 \le i \le n} |A_{i,j}x_i - b_i|, \quad \forall j \in [1, n]$$

onde  $x_i$  é o vetor solução. Compare e discuta os resultados.

Supondo matrizes de dimensões 10,100 e 1000; Para 10 elementos:

|                   | Gauss          | Gauss com Pivoteamento Parcial | LU             |
|-------------------|----------------|--------------------------------|----------------|
| PASSOS            | 375            | 475                            | 440            |
| TEMPO DE EXECUÇÃO | 0:00:00.000989 | 0:00:00.000997                 | 0:00:00.000990 |

Tabela 4: Comparação de resultados de diferentes dimensões

|          | Gauss              | Gauss com Pivoteamento Parcial | LU                     |
|----------|--------------------|--------------------------------|------------------------|
| Erro Max | 27717.293488028645 | 2.7755575615628914e-16         | 2.0816681711721685e-16 |

Tabela 5: Comparação de erros





# Para 100:

|                   | Gauss          | Gauss com Pivoteamento Parcial | LU             |
|-------------------|----------------|--------------------------------|----------------|
| PASSOS            | 338250         | 348250                         | 343400         |
| TEMPO DE EXECUÇÃO | 0:00:00.156041 | 0:00:00.100983                 | 0:00:00.085986 |

Tabela 6: Comparação de resultados de diferentes dimensões

|          | Gauss             | Gauss com Pivoteamento Parcial | LU                    |
|----------|-------------------|--------------------------------|-----------------------|
| Erro Max | 59153715.99267997 | 3.9898639947466563e-17         | 3.452099717193846e-16 |

Tabela 7: Comparação de erros







# Para 1000 elementos:

|                   | Gauss          | Gauss com Pivoteamento Parcial | LU             |
|-------------------|----------------|--------------------------------|----------------|
| PASSOS            | 333832500      | 334832500                      | 334334000      |
| TEMPO DE EXECUÇÃO | 0:01:38.251980 | 0:01:40.540858                 | 0:05:04.649882 |

Tabela 8: Comparação de resultados de diferentes dimensões

|          | Gauss              | Gauss com Pivoteamento Parcial | $\mid LU$                 |
|----------|--------------------|--------------------------------|---------------------------|
| Erro Max | 140669356.34659576 | 1.9081958235744878e-17         | 3.3881317890172013563e-20 |

Tabela 9: Comparação de erros





