

Метрики в задаче

План занятия

- Метрики, их назначение. Виды метрик
- Основные метрики регрессии:
 - o MSE, MAE и их вариации,
 - коэффициент детерминации.
- Отличие метрики от функции потерь

Метрики классификации и регрессии

• Accuracy (процент правильных ответов) — метрика классификации

• MSE
$$=\frac{1}{\ell}\sum_{i=1}^{\ell}(y_{true}^i-y_{pred}^i)^2$$
 — метрика регрессии

Метрика

Метрика — численный показатель качества работы алгоритма для данной задачи.

- Принимает на вход правильные ответы и ответы алгоритма.
- Метрика тем больше (или меньше), чем точнее алгоритм предсказывает правильные ответы.
- Для разных задач можно рассматривать специфические метрики.

Более сложные метрики машинного обучения

- Модель предсказания спроса на ноутбуки — задача регрессии
- Реальный спрос составит 15 ноутбуков
- Предсказали 20 ноутбуков не очень хорошо, но не так страшно
- Предсказали 10 ноутбуков гораздо хуже

Более сложные метрики машинного обучения

- Модель предсказания спроса на ноутбуки — задача регрессии
- Реальный спрос составит 15 ноутбуков
- Предсказали 20 ноутбуков не очень хорошо, но не так страшно
- Предсказали 10 ноутбуков гораздо хуже

$$L(y_{true}, y_{pred}) = egin{cases} lpha(y_{true} - y_{pred}), & y_{true} > y_{pred} \ eta(y_{pred} - y_{true}), & y_{true} \leq y_{pred} \end{cases}$$

Базовые метрики регрессии

Дано: выборка из ℓ элементов,

 y^i_{true} — верный ответ на i-ом объекте, y^i_{pred} — предсказанный ответ.

• Средняя квадратичная ошибка, MSE

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (y_{true}^i - y_{pred}^i)^2$$

• Средняя абсолютная ошибка, МАЕ

$$\frac{1}{\ell} \sum_{i=1}^{\ell} |y_{true}^i - y_{pred}^i|$$

RMSE и MAPE

• Корень из средней квадратичной ошибки, RMSE

$$\sqrt{\frac{1}{\ell} \sum_{i=1}^{\ell} (y_{true}^i - y_{pred}^i)^2}$$

• Процентная средняя абсолютная ошибка, МАРЕ

$$\frac{1}{\ell} \sum_{i=1}^{\ell} \left| \frac{y_{true}^i - y_{pred}^i}{y_{true}^i} \right|$$

Коэффициент детерминации

Коэффициент детерминации (R^2) :

$$R^{2}(y_{true}, y_{pred}) = 1 - \frac{\sum_{i=1}^{\ell} (y_{true}^{i} - y_{pred}^{i})^{2}}{\sum_{i=1}^{\ell} (y_{true}^{i} - \overline{y_{true}})^{2}}$$

- ullet Если y^i_{pred} равно $\overline{y_{true}}$ для всех i, то R^2 равно 0
- ullet Если y^i_{pred} равно y^i_{true} для всех i, то R^2 равно 1
- R^2 может быть отрицательной
- ullet Для «адекватных» моделей $0 \leq R^2 \leq 1$

Метрика и функция потерь

Метрика

- Необходима для измерения качества работы
- Должна соответствовать бизнес-задаче, важна заказчику
- Должна быть интерпретируемой

Функция потерь

- Необходима для обучения алгоритма
- При обучении её обычно минимизируют
- Должна быть удобной для минимизации

Итоги занятия

Мы изучили:

- метрики, их определение и назначение,
- особые метрики для конкретных задач,
- метрики регрессии: MSE, MAE, RMSE, MAPE, R²,
- отличие метрики от функции потерь.