Materijali uz 11. vježbe iz predmeta Kartografske projekcije, ak. god. 2017/18. Ana Kuveždić Divjak, Marina Viličić, Dražen Tutić

Ovaj rad licenciran je pod Creative Commons Attribution-NonCommercial-ShareAlike 4.0 međunarodnom licencom (CC BY-NC-SA 4.0).

Izrada karata u uspravnoj i poprečnoj Mercatorovoj projekciji i usporedba njihovih svojstava

A. Plan vježbi

Na ovim vježbama izradit ćete karte svijeta i Hrvatske u uspravnoj i poprečnoj Mercatorovoj projekciji. Na izrađenim kartama pomoću dodataka za QGIS *Projection Factors* i *Profile Tool* vizualizirat ćete i analizirati linearna mjerila tih projekcija.

B. Ishodi učenja

Po završetku ovih vježbi student će:

- znati zadati parametre uspravne i poprečne Mercatorove projekcije u QGIS-u pomoću parametara PROJ-a.4,
- znati izvršiti transformaciju geodetskih (geografskih) koordinata zadanog područja u koordinate u ravnini zadane kartografske projekcije,
- primijeniti dodatak za QGIS Projection Factors koji će mu omogućiti vizualizaciju linearnih mjerila, deformacija i drugih svojstava kartografskih projekcija,
- primijeniti dodatak za QGIS *Profile Tool* koji će mu omogućiti crtanje krivulje linearnih mjerila.

C. Koncepti koji će se upotrijebiti na vježbama

Zadavanje projekcije

Zadavanje projekcije je postupak u kojem se pomoću metapodataka (parametara) opisuje koji je referentni koordinatni sustav upotrijebljen za georeferenciranje određenog skupa podataka. Zadati projekciju u QGIS-u pomoću parametara PROJ-a.4 naučili ste na 4. vježbama (vidi <u>materijale uz 4. vježbe</u>).

Dodatak za QGIS Projection Factors

Projection Factors je dodatak za QGIS koji ima svrhu vizualizirati linearna mjerila, deformacije i druga svojstva kartografskih projekcija (Projection Factors, https://github.com/GEOF-OSGL/ProjFactors). Dodatak se na vježbama koristi za izučavanja svojstava kartografskih projekcija (vidi materijale uz 6. vježbe).

Dodatak za QGIS Profile Tool

Profile Tool je dodatak za QGIS koji iscrtava profile na temelju podataka u rasterskom sloju ili skupu točaka u vektorskom sloju (Profile Tool, https://github.com/etiennesky/profiletool). Dodatak se na vježbama koristi za crtanje krivulja linearnih mjerila u različitim projekcijama.

Mercatorova projekcija

Mercatorova projekcija je uspravna konformna cilindrična projekcija. Ima posebnu važnost u navigaciji, jer se loksodrome preslikavaju u toj projekciji kao pravci. Poprečna je u upotrebi u mnogim zemljama u službenoj kartografiji. Univerzalna poprečna (UTM) je u vojnoj upotrebi (NATO).

Gauss-Krügerova ili poprečna Mercatorova projekcija

Gauss-Krügerova ili poprečna Mercatorova projekcija je konformna poprečna cilindrična projekcija kod koje se srednji meridijan zadanog područja preslikava kao dužina, a os *x* pravokutnoga koordinatnog sustava u ravnini se poklapa s tom dužinom. Srednji meridijan područja preslikava se u pravoj dužini, tj. bez linearnih deformacija ili je linearno mjerilo uzduž njega konstantno. U engleskom govornom području projekcija je poznatija pod nazivom *Transverse Mercator projection*.

Izrada karata u uspravnoj i poprečnoj Mercatorovoj projekciji u QGIS-u

- A. Učitavanje podataka s konturama granica država, definiranje i iscrtavanje opisanog pravokutnika i kartografske mreže
 - 1. Podatke s granicama država svijeta <u>preuzeti sa stranica Natural Earth-a</u>. Postupak je objašnjen na 9. vježbama.

Podaci Natural Eartha s granicama država svijeta i iscrtanom kartografskom mrežom.

- B. Učitavanje podataka s konturama granice Hrvatske, definiranje i iscrtavanje opisanog pravokutnika i kartografske mreže
 - 1. Podatke s granicom Hrvatske <u>preuzeti sa stranica DivaGIS-a</u>. Postupak je objašnjen na 4. vježbama.
 - 2. Za područje Hrvatske potrebno je definirati opisani pravokutnik (rubne geografske koordinate) i iscrtati kartografsku mrežu gustoće 1° (vidi <u>materijale uz 6. vježbe</u>).

Podaci DivaGIS-a s granicom Hrvatske i iscrtanom kartografskom mrežom gustoće 1°. Opisani pravokutnik (rubne geografske koordinate ϕ_{Max} = 47°, ϕ_{Min} = 42°, λ_{Max} = 20°, λ_{Min} = 13°).

- B. Zadavanje koordinatnih sustava i automatska transformacija ("on-the-fly") podataka svijeta u uspravnu i poprečnu Mercatorovu projekciju
 - 1. Pomoću parametara PROJ-a.4 napisati definicije za preslikavanje područja cijelog svijeta i preslikavanje Hrvatske u
 - a) uspravnu konformnu cilindričnu projekciju:

b) poprečna konformnu cilindričnu projekciju:

tmerc : Transverse Mercator Cyl, Sph&Ell

2. Pomoću automatske transformacije transformirati područje čitavog svijeta, odnosno Hrvatske, i pripadajućih kartografskih mreža u zadane projekcije.

Analiza i usporedba svojstava uspravne i poprečne Mercatorove projekcije u QGIS-u pomoću dodatka *Projection Factors* i *Profile Tool*

A. Vizualizacija linearnih mjerila u uspravnoj i poprečnoj Mercatorovoj projekciji

- 1. Pomoću dodatka *Projection Factors* izraditi vizualizacije linearnog mjerila (*m*=*n*=*a*=*b*) u uspravnoj i u poprečnoj Mercatorovoj projekciji za područje cijelog svijeta, a zatim za područje Hrvatske. Postupak je obješnjen na 6. vježbama.
- 2. Pomoću dodatka *Profile Tool* izraditi krivulje linearnih mjerila u uspravnoj Mercatorovoj projekciji za područje cijelog svijeta i Hrvatske, a zatim i u poprečnoj za područje Hrvatske.
- Instalirati dodatak Profile Tool Plugins > Manage and Install Plugins > Profile Tool.
- Pokrenuti dodatak *Profile Tool* Plugins > Profile Tool > Terrain Profile.
- Pomoću naredbe Add Layer zadati da se krivulja linearnih mjerila iscrtava na temelju podataka zapisanih u rasterskom sloju s vizualizacijom lineranih deformacija i povući okomitu liniju preko tog sloja (dvostruki klik za završetak).
- Dobiveni profil tj. krivulju linearnih mjerila spremiti kao sliku (Graph PNG > Save AS).

Vizualizacija linearnog mjerila na području cijelog svijeta u uspravnoj Mercatorovoj projekciji.

Vizualizacija linearnog mjerila na području Hrvatske u uspravnoj Mercatorovoj projekciji.

Vizualizacija linearnog mjerila na području Hrvatske u poprečnoj Mercatorovoj projekciji.

B. Zadatak koji se predaje na E-kolegij

Izrađene vizualizacije linearnih mjerila i pripadajuće krivulje linearnih mjerila u uspravnoj i poprečnoj Mercatorovoj projekciji potrebno je spremiti kao slike. Izraditi Word dokument u kojem ćete učitati izrađene vizualizacije linearnih mjerila i opisati parametre koje ste koristili za zadavanje pojedine projekcije. Taj dokument predaje se na <u>E-kolegiju</u>.

C. Zadatak za samoprocjenu

<u>Vizualizacija mjerila u cilindričnim kartografskim projekcijama</u> je interaktivna vizualizacija koja pruža uvid u svojstva mjerila u uspravnim cilindričnim projekcijama.

Na karti svijeta prikazane su tri krivulje, svaka označava jedno mjerilo: linearno mjerilo duž meridijana (crvena krivulja), linearno mjerilo duž paralela (crtkana crna krivulja) i mjerilo površina (zelena krivulja). Krivulje se isrtavaju u vlastitom koordinatnom sustavu, a zatim preklapaju preko karte svijeta, pri čemu je okomita os (geografska širina) zajednička os karte i grafa mjerila. Okomite crne crte označavaju vrijednost mjerila na vodoravnoj osi. Mjerilo jednako jedinici je na sredini karte, a vrijednosti 0 i 2 nalaze se s lijeve, donosno desne strane. Na mjestima na kojima je mjerilo veće od 2, krivulje se protežu izvan karte.

Pomicanjem klizača (sliders) na lijevoj i desnoj strani karte možete upravljati parametrima cilindrične projekcije.

Pokušajte pomicati klizač s lijeve strane karte i promotrite kako se mijenjaju vrste deformacija u projekciji. Što se događa kada pomičete klizač s lijeve strane karte?

Standardna paralela definirana klizačem iscrtava se punom linijom, a paralela s istim svojstvima, ali negativnim vrijednostima iscrtava se crtkanom linijom.

Što zaključujete o lineranom mjerilu i mjerilu površina u slučaju konformne cilindrične projekcije (Mercatorove)?