The tables prepared in Task 3:

simpleloop.c size = 50

	fifo	lru	clock	rand
Hit rate	71.0639	72.8468	72.7592	70.7034
Hit count	7294	7477	7468	7257
Miss count	2970	2787	2796	3007
Overall eviction count	2920	2737	2746	2957
Clean eviction count	203	90	97	251
Dirty eviction count	2717	2647	2649	2706

simpleloop.c size = 100

	fifo	Iru	clock	rand
Hit rate	73.1099	73.8406	73.8016	73.0417
Hit count	7504	7579	7575	7497
Miss count	2760	2685	2689	2767
Overall eviction count	2660	2585	2589	2667
Clean eviction count	46	1	4	55
Dirty eviction count	2614	2584	2585	2612

matmul.c size = 50

	fifo	lru	clock	rand
Hit rate	60.9664	63.9458	63.9447	65.5416
Hit count	1760685	1846728	1846696	1892816
Miss count	1127275	1041232	1041264	995144
Overall eviction count	1127225	1041182	1041214	995094
Clean eviction count	1083231	1040070	1040098	955961
Dirty eviction count	43994	1112	1116	39133

matmul.c size = 100

	fifo	Iru	clock	rand
Hit rate	62.4805	65.1499	63.9500	88.8185
Hit count	1804411	1881504	1846850	2565043
Miss count	1083549	1006456	1041110	322917
Overall eviction count	1083449	1006356	1041010	322817
Clean eviction count	1061226	1005275	1039927	315339
Dirty eviction count	22223	1081	1083	7478

Comparing the various algorithms:

From the results we get in the tables, we may find that the hit rate from highest to lowest of the various algorithms is always OTP, LRU, Clock, FIFO, and Rand. For OTP, it is the optimal algorithm, and it is always finding and replace the page that is not used in the future, so the hit rate is the highest. The LRU replace the page used least often, and Clock replace the first page whose ref bit is 0. The rate of LRU and Clock is close, while LRU is always a little higher. The hit rate of FIFO is lower, because it just replace the page by the order of 'First in first out', which doesn't consider later used or not. The Rand has the worst result since it just choose page randomly. We may also notice that, the hit rate also increases slightly as the memory size increases with the same program and algorithm. For the running time, it first depends on the memory size. Also for each algorithm, the runtime order from fastest to slowest is Rand, FIFO, Clock, LRU, and OTP, which is the inverse order of hit rate. This is because Rand and FIFO just choose the page randomly or oldest page, so they are fast. For Clock, LRU and OTP, they all need to store some information of each page, like time, counter, and ref bit. In order to make an efficient choice, they need to trace each page according the stored information, so these three algorithms takes more time and spaces.

My three traces:

tr-trace1.ref size = 8

	fifo	Iru	clock	opt(by hand)
Hit rate	47.0588	55.8824	50.0000	67.6471
Hit count	16	19	17	23
Miss count	18	15	17	11
Overall eviction count	10	7	9	
Clean eviction count	0	0	0	
Dirty eviction count	10	7	9	

tr-trace2.ref size = 8

	fifo	lru	clock
Hit rate	80.0000	80.0000	80.0000
Hit count	32	32	32
Miss count	8	8	8
Overall eviction count	0	0	0
Clean eviction count	0	0	0
Dirty eviction count	0	0	0

tr-trace3.ref size = 8

	fifo	Iru	clock
Hit rate	0	0	0
Hit count	0	0	0
Miss count	36	36	36
Overall eviction count	28	28	28
Clean eviction count	19	19	19
Dirty eviction count	9	9	9