2019年9月13日

# 敵対的生成ネットワークを用いた 教師なし物体カウント

@samacoba

# 研究背景

#### ・従来のカウント方法

・手動の 画像処理



- 前処理
- +機械学習



- ・画像を見て、人間が処理内容の選択やパラメータの調整が必要
- ・画像のタイプが異なると修正が必要

## 研究背景

・教師付き End-to-End 深層学習



⇒学習に教師データが必要

# 研究目標



特徴選択や抽出をしない

色・テクスチャ・形状にかかわらず

[1] Weidi Xie, et al. "Microscopy cell counting and detection with fully convolutional regression networks" COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION VOL. 6, NO. 3, 283-292(2018)

# 提案手法・アプローチ方法



A\*(A==B)

3 × 3 Max Pooling

# 提案手法

#### ・学習時の入力データ



※「ヒント」を与えているので、完全な教師なしではない

入力画像Aとランダムガウス球画像Bを64×64×100枚ずつ切り取り、4種類のDeep Neural Networkを学習させる

#### 提案手法



# 実験対象データ

# I.細胞核画像[3]



・細胞核の蛍光顕微鏡画像を合成して作成したサンプル (実画像ではない)

・画像枚数:200枚 ・平均個数:176.0個 ・最大個数:317個 ・最小個数:74個

## Ⅱ.ナット撮影画像



- ・六角ナット(M3、鉄製、ユニクロメッキ、YAHATA)
- ·画像枚数:10枚
- ・個数:すべて100個
- ・1枚ごとにランダム配置を変えて撮影
- ・光源、距離、カメラ設定は固定

## 比較手法

# ①大津の2値化[4]

白黒反転 Orそのまま

グレー スケール化 大津の **2**値化

ラベリング

面積α以 下カット

カウント

αの手動調整あり

②Blob検出器[5] (Laplacian of Gaussian)

白黒反転 Orそのまま グレー スケール化 Blob検出 (Laplacian of Gaussian)

カウント

Max sigma,Min sigma,Threshold の手動調整あり

③ピークポイント検出

白黒反転 Orそのまま グレー スケール化 ピークポイント の抽出 輝度β以 下カット

カウント

βの手動調整あり

④提案手法

教師なし Converの学習 学習済Converにより ガウス球画像へ変換 ③ピークポイント抽出

カウント

白黒反転なし、βは固定

※「ヒント」としてばらまくガウス球の個数は平均正解個数を使用

⑤教師ありCNN[1]

大津の2値化



https://qiita.com/haru1843/items/00de955790d3a22a217b

教師(N=8)あり CNN密度推定学習 学習済CNNにより 密度推定画像へ変換

個数を推定

ラプラシアン・ガウシアンフィルタ



画像認識 原田達也(2017)

[4]Nobuyuki Otsu "A threshold selection method from gray-level histograms".

IEEE Trans. Sys., Man., Cyber. 9(1): 62–66 (1979).

[5] L. Bretzner & T. Lindeberg. "Feature Tracking with Automatic Selection of Spatial Scales" Computer Vision and Image Understanding. 71 (3): 385–392 (1998) .

# 結果

## 出力例: ④提案手法

# I.細胞核画像

正解数:135 出力数:131 abs Err :4

# Ⅱ.ナット撮影画像

正解数:100 出力数:100 abs Err :0



## 結果

#### ・定量比較

## I.細胞核画像

|              | 平均値   |         |  |  |
|--------------|-------|---------|--|--|
|              | 出力数   | abs Err |  |  |
| 正解           | 176.0 | _       |  |  |
| ① 大津の2値化     | 76.6  | 99.4    |  |  |
| ② blob検出器    | 161.2 | 15.2    |  |  |
| ③ ピークポイント検出  | 171.9 | 8.6     |  |  |
| ④ 提案手法       | 144.3 | 37.1    |  |  |
| ⑤ 教師ありCNN[1] | _     | 3.9     |  |  |

出力例:①大津の2値化





# 結果

## ・定量比較

# Ⅱ.ナット撮影画像

|      |     | ①大津の2値化 ② |         | 2blob | ②blob検出器 |      | ③ピークポイント検出 |      | ④提案手法   |  |
|------|-----|-----------|---------|-------|----------|------|------------|------|---------|--|
| サンプル | 正解数 | 出力数       | abs Err | 出力数   | abs Err  | 出力数  | abs Err    | 出力数  | abs Err |  |
| img0 | 100 | 127       | 27      | 99    | 1        | 90   | 10         | 101  | 1       |  |
| img1 | 100 | 133       | 33      | 99    | 1        | 61   | 39         | 100  | 0       |  |
| img2 | 100 | 126       | 26      | 101   | 1        | 70   | 30         | 95   | 5       |  |
| img3 | 100 | 124       | 24      | 102   | 2        | 77   | 23         | 100  | 0       |  |
| img4 | 100 | 122       | 22      | 101   | 1        | 53   | 47         | 100  | 0       |  |
| img5 | 100 | 128       | 28      | 99    | 1        | 63   | 37         | 94   | 6       |  |
| img6 | 100 | 128       | 28      | 103   | 3        | 60   | 40         | 100  | 0       |  |
| img7 | 100 | 125       | 25      | 102   | 2        | 62   | 38         | 89   | 11      |  |
| img8 | 100 | 127       | 27      | 102   | 2        | 55   | 45         | 100  | 0       |  |
| img9 | 100 | 113       | 13      | 101   | 1        | 37   | 63         | 100  | 0       |  |
| 平均   | 100 | 125.3     | 25.3    | 100.9 | 1.5      | 62.8 | 37.2       | 97.9 | 2.3     |  |

出力例:①大津の2値化



出力例: ③ピークポイント検出



## まとめ

・GANを使用した提案手法により、細胞核画像、ナット撮影画像の2種類にて、 教師なし物体検出・カウントが可能であることを示した

## 今後の予定

- ・他の複数の種類のデータに提案手法が対応可能かテストを行う
- ・教師なしだけでなく、一部の物体位置を与える半教師付きにて実験を行う
- ・2クラス以上の物体に対して、検出・類別可能か実験を行う