Московский физико-технический институт (национальный исследовательский университет) Факультет общей и прикладной физики

Лабораторная работа №6.11.2

(Общая физика: квантовая физика)

Исследование фотопроводимости полупроводников

Работу выполнил: Иванов Кирилл, 625 группа

г. Долгопрудный 2018 год

Цель работы: исследовать собственную фотопроводимость. По полученной спектральной зависимости фототока определить ширину запрещенной зоны.

1. Теоретическое введение

Электропроводность полупроводника увеличивается под действием света. Это явление называется фотопроводимостью или внутренним фотоэффектом.

В отсутствии света в полупроводнике присутствует некоторое количество носителей тока: электроны переходя из валентной зоны в зону проводимости (в случае наличия примесей возможны также переходы с донорных на акцепторные уровни) в результате теплового движения. Количество таких носителей определяется температурой кристалла, они называются равновесными и составляют темновой ток.

Фотопроводимость проявляется в случае, если энергия квантов превышает некоторое пороговое значение. Для собственной фотопроводимости это значение равно ширине запрещенной зоны, а в случае примесной — энергии ионизации соответствующего уровня. Минимальная частота света, при которой возможно появление неравновесных электронов (то есть, электронов фотопроводимости), называется красной границей фотоэффекта. При этом можно считать, что включение света не влияет на концентрацию равновесных электронов.

2. Экспериментальная установка

В работе исследуются два образца: CdS и CdSe. Схема установки приведена на рисунке 1. Свет от источника И с помощью линзы Π фокусируется на щель монохроматора УМ-2, находящуюся в фокусе линзы Π_1 . Пучое света разлагается призмой Π , и выходная щель, находящаяся в фокусе линзы Π_2 , вырезает отпределенную область спектра. После прохождения монохроматора свет падает на ячейку Π с образцом. Вольтметр B7-34 нужен для измерения тока через образец.

Рис. 1: Схема установки для исследования спектральной зависимости фототока

Спектральное распределение потока фотонов на выходе монохроматора и его градиуровочная кривая приведены на рисунке 2.

Рис. 2: Спектральное распределение потока фотонов на выходе монохроматора и его градуировочная кривая

3. Выполнение работы

Прежде чем приступать к основным измерениям, уточним известную градуировочную кривую монохроматора: для ярких линий спектра неоновой лампы найдем соответствующие положения барабана. Измерения зафиксированы в таблице ??. Из анализа этих измерений, граду-ировочную кривую нужно «сдвинуть влево» примерно на 520 делений.

Таблица 1: Зависимость угла поворота φ барабана монохроматора от наблюдаемой линии λ

Цвет	λ_n, \mathring{A}	φ	λ,\mathring{A}
Зеленый	5400	1890	4945
Желтый	5842	2152	5291
Красный	6217	2392	5667

Перейдем теперь к основным измерениям, и заменим неоновую лампу лампой накаливания.

Будем измерять спектральную картину зависимости фототока от частоты падающего света (лампы накаливания). Фототок будем измерять посредством снятия показаний вольтметра в мВ, а падающий свет будем характеризовать длиной волны света лампы, переводя деления монохроматора в длину волны (в \mathring{A}) с помощью градуировочной шкалы рис. 2. Так как нам важен именно характер спектральной зависимости, мы оставим фототок в мВ, т.е. не будем делить напряжение на сопротивление вольтметра (нам интересно, при каких λ находятся максимумы и другие «особенности» кривой, а не абсолютные значения фототока в них).

Оценим погрешность монохроматора как 5 делений, а погрешность вольтметра -1.5 мВ.

Измерим темновой ток для двух образов: монокристаллов CdS и CdSe. Он оказался очень мал по сравнению с масштабами фототока и примерно сравним с погрешностью (порядка 2–3 мВ). Не будем учитывать его при дальнейших измерениях.

Проведем серию измерений фототока U' для обоих образов. С помощью рис. 2 отнормируем фототок по числу фотонов N, т.е. U=U'/N.. Результаты измерений занесем в таблицу 2 и построим графики спектральных зависимостей.

Рис. 3: Спектральная зависимости фототока от частоты падающего света в образце CdS (сера)

Видно, что у образца с серой красную границу можно оценить как $\lambda_{\rm kpS} \simeq 5600 \mathring{A}$, откуда ширина запрещенной зоны $\Delta_S \simeq 2.2$ эВ. При этом можно наблюдать «примесные» пикимаксимумы в районе 6800–7000 \mathring{A} и 8000 \mathring{A} , т.е. это энергии примерно 1,8 эВ и 1,5 эВ.

Для образца с селеном красную границу можно оценить как $\lambda_{\text{кр}S} \simeq 8200 \mathring{A}$, откуда ширина запрещенной зоны $\Delta_S \simeq 1,5$ эВ. Также в районе 6700–7000 \mathring{A} мы наблюдаем характерное плато (соответствующее энергиям 1,7–1,8 эВ).

Приведем табличные значения ширин запрещенной зоны: для CdS $\Delta_S=2,42$ эB, для CdSe $\Delta_{Se}=1,74$ эB.

Рис. 4: Спектральная зависимости фототока от частоты падающего света в образце CdSe (селен)

4. Вывод

В работе исследована собственная фотопроводимость полупроводников и построены графики зависимости фототока для образцов CdS и CdSe; по графикам определены ширины запрещенной зоны. Полученные значения ширин запрещенной зоны отличаются от справочных примерно на ≈ 10 –15%), что объясняется условностью определения красной границы фотопроводимости. Также были обнаружены примеси в образце CdS и характерное плато образца CdSe.

Таблица 2: Результаты измерений

	Для образца CdS				Для образца CdSe					
$N_{\overline{0}}$	φ	U', мВ	N	U, MB	$\lambda,\ \mathring{A}$	φ	U', мВ	N	U, MB	$\lambda,\ \mathring{A}$
1	3200	5	37	0.1	8867	3180	15	36	0.4	8751
2	1500	10	1	8.3	4990	3145	67	35	1.9	8556
3	1565	11.8	1	10.7	5061	3160	41.7	36	1.2	8638
4	1630	16.5	1	14.5	5134	3110	78.7	34	2.3	8372
5	1695	36.2	1	27.8	5209	3075	84.1	33	2.6	8197
6	1760	56.7	2	35.2	5286	3040	112	31	3.6	8032
7	1825	66	2	32.1	5365	3005	136.4	30	4.5	7877
8	1890	70.3	3	26.7	5445	2970	152	29	5.2	7729
9	1955	71.8	3	21.4	5528	2935	161	28	5.8	7590
10	2020	74.3	4	17.7	5612	2900	162	27	6.1	7459
11	2085	75.5	5	14.6	5699	2915	163	27	6	7514
12	2150	76.3	6	12.1	5789	2865	156.9	25	6.2	7334
13	2215	78	8	10.4	5883	2830	141	24	5.8	7217
14	2280	79.9	9	9	5982	2795	117	23	5.1	7105
15	2345	81.3	10	7.8	6087	2760	95.5	22	4.3	7000
16	2410	84.3	12	7.1	6199	2725	88.2	21	4.2	6900
17	2475	95	14	7	6320	2690	87.6	20	4.4	6806
18	2540	110.4	15	7.2	6452	2655	81	19	4.3	6716
19	2605	127.7	17	7.4	6596	2620	55.2	18	3.1	6631
20	2670	141.5	19	7.4	6754	2585	30.2	17	1.8	6550
21	2735	149.7	21	7.1	6928	2550	21.9	16	1.4	6474
22	2800	149.3	23	6.4	7121	2515	19.9	15	1.4	6400
23	2770	155	22	6.9	7030	2480	18.5	14	1.3	6330
24	2865	129.5	25	5.1	7334	2445	16.5	13	1.3	6263
25	2930	88.5	28	3.2	7571	2410	14.7	12	1.2	6199
26	2900	104.7	27	3.9	7459					
27	2995	83.8	30	2.8	7834					
28	3060	66.2	32	2.1	8126					
29	3125	16.1	34	0.5	8449					
30	3090	31.3	33	0.9	8271					
31	3190	5	37	0.1	8808					