ΑΝΑΦΟΡΑ ΣΥΣΤΗΜΑΤΩΝ ΕΛΕΓΧΟΥ

ΠΑΥΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ 2018030139

ΚΑΡΑΜΠΕΛΑ ΣΩΤΗΡΙΑ 2018030077

Μέρος Α

Υπολογισμοί των τριών παραμέτρων του συστήματος (Ks, Tu, Tg)

TZ	T T1 / 0.27	ш ш. / э. ээ
Ks		$Tu \approx T2 / 3,33$ (seconds)
1	, ,	,
1	0,81	0,09
	0,27	0,03
	1,35	0,15
	2,7	0,3
	0,27	0,15
	1,08	0,6
	2,7	1,5
		3
	0,27	0,03
	1,35	0,15
	2,7	0,3
	1,35	0,03
	6,75	0,15
	Ks 1	(seconds) 1 0,81 0,27 1,35 2,7 0,27 1,08 2,7 0,27 0,27 1,35 2,7 1,35 2,7 1,35

Χρόνος ανόδου (Rise time), χρόνος αποκατάστασης (Settling time)

Με τις γνώσεις θεωρίας, δηλαδή πως ο χρόνος ανόδου είναι το χρονικό διάστημα απο το 10% έως το 90% του πλάτους εξόδου και πως ο χρόνος αποκατάστασης είναι ο χρόνος μέχρι να φτάσει στο τελικό πλάτος εξόδου με απόκλιση μικρότερη ή ίση του 2%, και αξιοποιώντας το control toolbox του Matlab υπολογίσαμε τους χρόνους ανόδου, αποκατάστασης καθώς και το ποσοστό υπερύψωσης (overshoot) που όπως περιμέναμε ειναι 0%.

(στα δεξιά οι ακριβείς μετρήσεις απο το ΜΑΤLAB)

Χρόνος ανόδου **0,6 sec** και χρόνος αποκατάστασης **1,2 sec**

Χρόνος ανόδου **1 sec** και χρόνος αποκατάστασης **1,7 sec**

Χρόνος ανόδου **0,3 sec** και χρόνος αποκατάστασης **0,6 sec**

Χρόνος ανόδου **1,7 sec** και χρόνος αποκατάστασης **2,9 sec**

Χρόνο ανόδου **3,4 sec** και χρόνος αποκατάστασης **5,8 sec**

Χρόνος ανόδου **1,1 sec** και χρόνος αποκατάστασης **2 sec**

Χρόνο ανόδου **4,5 sec** και χρόνος αποκατάστασης **8,3 sec**

Χρόνο ανόδου **11 sec** και χρόνος αποκατάστασης **20 sec**

Χρόνο ανόδου **22 sec** και χρόνος αποκατάστασης **40 sec**

$$\frac{1}{(0.1*s+1)*(10*s+1)}$$

Χρόνο ανόδου **0,5 sec** και χρόνος αποκατάστασης **0,9 sec**

$$\frac{1}{(0.1*s+1)^4}$$

Χρόνος ανόδου **2,5 sec** και χρόνος αποκατάστασης **4,5 sec**

$$\frac{1}{(0.5*s+1)^4}$$

Χρόνο ανόδου **4,9 sec** και χρόνος αποκατάστασης **9 sec**

Χρόνο ανόδου **1,2 sec** και χρόνος αποκατάστασης **2,3 sec**

$$\frac{1}{(0.5*s+1)} \frac{1}{(0.1*s+1)^3}$$

Χρόνος ανόδου **6 sec** και χρόνος αποκατάστασης **11,5 sec**

$$\frac{1}{(2.5*s+1)} \frac{1}{(0.5*s+1)^3}$$

ΜΕΡΟΣ Β'

ΜΕΘΟΔΟΣ ΖΝ

Η συνάρτηση μεταφοράς είναι $G(s) = \frac{1}{(2s+1)^3}$

Η βηματική απόκριση του συστήματος, χωρίς ανάδραση, είναι η παρακάτω:

Η βηματική απόκριση του συστήματος, με μοναδιαία ανάδραση, είναι η παρακάτω:

Χρησιμοποιώντας το Control System Designer του MATLAB και με βήμα 0,5 βρίσκουμε το Kp_{CRIT}

Kp = 1,5

Kp = 2

Kp = 2,5

Kp = 3

Kp = 3,5

Kp = 4

Kp = 4,5

Kp = 5

Kp = 5,5

Kp = 6

Kp = 6,5

Kp = 7,5

Kp = 8 (Αυτό ειναι το Kp crit)

υπολογίσαμε και το **Tcrit=7,2sec** δηλαδή την
περίοδο ταλάντωσης του
σταθεροποιημένου συστήματος
(πήραμε κορυφές απο το μέσο
του plot για να έχει
σταθεροποιηθεί το σύστημα)

(ενδεικτικά πήραμε τιμές μετά το 8 ώστε να αποδείξουμε την ορθότητα του αποτελέσματός μας)

Kp = 8,5

Kp = 9

Υπολογισμός ρυθμίσεων Ρ, ΡΙ, ΡΙΟ ελεγκτή

Ελεγκτής	K	Ti	Td
P	4		
PI	3,6	6,12	
PID	4,8	3,6	0,86

Step Response using P Controller (Kp=4)

Συνάρτηση μεταφοράς ελεγκτή D(s) και συστήματος G(s)

$$G(s) = \frac{1}{(2s+1)^3}$$
 $D(s) = Kp(1 + \frac{1}{Ti \cdot s} + Td \cdot s) = 4$

Συνολική συνάρτηση μεταφοράς

$$\frac{C(s)}{D(s)} = \frac{G(s)D(s)}{1+G(s)D(s)} = \frac{\frac{1}{(2s+1)^3} \cdot 4}{1+\frac{1}{(2s+1)^3} \cdot 4} = \frac{4}{(2s+1)^3 + 4} = \frac{4}{8s^3 + 12s^2 + 6s + 5}$$

Step Response using PI Controller (K=3,6 Ti=6,12)

Συνάρτηση μεταφοράς ελεγκτή και συστήματος

$$G(s) = \frac{1}{(2s+1)^3}$$
 $D(s) = Kp(1 + \frac{1}{Ti \cdot s} + Td \cdot s) = 3.6(1 + \frac{1}{6.12s}) = \frac{3.6s + 0.58}{s}$

Συνολική συνάρτηση μεταφοράς

$$\frac{C(s)}{D(s)} = \frac{G(s)D(s)}{1+G(s)D(s)} = \frac{\frac{1}{(2s+1)^3} \cdot \frac{(3,6s+0,58)}{s}}{1+\frac{1}{(2s+1)^3} \cdot \frac{(3,6s+0,58)}{s}} = \frac{3,6s+0,58}{8s^4+12s^3+6s^2+4,6s+0,58}$$

Step Response using PID Controller (K=4,8 Ti=3,6 Td=0,86)

Συνάρτηση μεταφοράς ελεγκτή και συστήματος

$$G(s) = \frac{1}{(2s+1)^3} \qquad D(s) = Kp\left(1 + \frac{1}{Ti \cdot s} + Td \cdot s\right) = 4.8\left(1 + \frac{1}{3.6 s} + 0.86 s\right) = \frac{4.1 s^2 + 4.8 s + 1.3}{s}$$

Συνολική συνάρτηση μεταφοράς

$$\frac{C(s)}{D(s)} = \frac{G(s)D(s)}{1+G(s)D(s)} = \frac{\frac{1}{(2s+1)^3} \cdot \frac{4,1s^2 + 4,8s + 1,3}{s}}{1+\frac{1}{(2s+1)^3} \cdot \frac{4,1s^2 + 4,8s + 1,3}{s}}$$

$$\frac{4,1s^2 + 4,8s + 1,3}{(4,1s^2 + 4,8s + 1,3) + s(2s+1)^3} = \frac{4,1s^2 + 4,8s + 1,3}{8s^4 + 12s^3 + 10,1s^2 + 5,8s + 1,3}$$

Παρατηρούμε πως επιβεβαιώνεται η θεωρία του πίνακα καθώς στο σύστημά μας ιδανικός ελεγκτής ειναι ο PID. Με τον PI έχουμε σταθεροποίηση στο 1 αλλά μετά απο αρκετό χρονικό διάστημα ταλαντώσεων, ενώ στον P δεν φτάνει η έξοδος στο 1.

Controlled system step response	Primary con- trolled variables	Applicable controllers	Inapplicable controllers
	Mixture	I, <u>PI</u> , <u>PID</u>	P,PD

Τέλος με **fine tuning** φτάσαμε σε μία γρήγορότερη απόκριση και με μικρότερη υπερύψωση

$$(Kp = 3,4 Ti=6 Td=1,5)$$

ΜΕΘΟΔΟΣ CHR

Η συνάρτηση μεταφοράς είναι $G(s) = \frac{1}{(2s+1)^3}$

Η βηματική απόκριση, του ανοικτού συστήματος, χωρίς ανάδραση είναι:

Υπολογίσαμε το περίπου **Tu = 1,6 sec** και το **Tg = 6,3 sec**

<u>Χρησιμοποιώντας Τu = 1,7 sec και Tg = 6,7 sec και με K = 1 υπολογίσαμε:</u>

Η τάξη του συστήματος υπολογίζεται απο $n \approx \frac{Tu}{Tg} \cdot 10 + 1 = \frac{1.7}{6.7} \cdot 10 + 1 = 3.5$ άρα ειναι **4ης** τάξης

Απο τύπους της θεωρίας υπολογίζουμε τα Τ1,Τ2 σταθερές του απλοποιημένου δευτεροβάθμιου συστήματος

$T_1 = T_g / e$	$T_2 = T_u / 3-e$
T1 = 2,317 sec	T2 = 5,714 sec

	Overshoot 0%	Set Point Response	
Ελεγκτής	K	Ti	Td
P	1,18		
PI	1,38	8,04	
PID	2,36	6,7	0,85

Απόκριση με Ρ

Συνάρτηση συστήματος: $G(s) = \frac{1}{(2s+1)^3}$

Συνάρτηση ελεγκτή: Kp=1,18 άρα $D(s) = Kp \left(1 + \frac{1}{Ti \cdot s} + Td \cdot s\right) = 1,18$

Συνολική συνάρτηση: $\frac{C(s)}{D(s)} = \frac{G(s)D(s)}{1+G(s)D(s)} = \frac{\frac{1}{(2s+1)^3} \cdot 1{,}18}{1+\frac{1}{(2s+1)^3} \cdot 1{,}18} = \frac{1{,}18}{(2s+1)^3+1{,}18}$

Απόκριση με ΡΙ

Συνάρτηση συστήματος: $G(s) = \frac{1}{(2s+1)^3}$

Συνάρτηση ελεγκτή: Kp=1,38, Ti=8,04 άρα
$$D\left(s\right) = Kp\left(1 + \frac{1}{Ti \cdot s} + Td \cdot s\right) = \frac{1,38 s + 0,17}{s}$$

Συνολική συνάρτηση:

$$\frac{C(s)}{D(s)} = \frac{G(s)D(s)}{1 + G(s)D(s)} = \frac{\frac{1}{(2s+1)^3} \cdot \frac{1,38s+0,17}{s}}{1 + \frac{1}{(2s+1)^3} \cdot \frac{1,38s+0,17}{s}} = \frac{1,38s+0,17}{8s^4 + 12s^3 + 6s^2 + 2,38s+0,17}$$

Απόκριση με PID

Συνάρτηση συστήματος: $G(s) = \frac{1}{(2s+1)^3}$

Συνάρτηση ελεγκτή: Kp=2,36 Ti=6,7 Td=0,85 άρα

$$D(s) = Kp \left(1 + \frac{1}{Ti \cdot s} + Td \cdot s\right) = \frac{2s^2 + 2,36s + 0,35}{s}$$

Συνολική συνάρτηση:

$$\frac{C(s)}{D(s)} = \frac{G(s)D(s)}{1+G(s)D(s)} = \frac{\frac{1}{(2s+1)^3} \cdot \frac{2s^2+2,36s+0,35}{s}}{1+\frac{1}{(2s+1)^3} \cdot \frac{2s^2+2,36s+0,35}{s}} = \frac{2s^2+2,36s+0,35}{8s^4+12s^3+8s^2+3,36s+0,35}$$

Fine Tuning με Kp = 2,4 Ti = 5,9 Td = 1,47

Επιβεβαιώνεται η θεωρία του πίνακα καθώς στο σύστημά μας ιδανικός ελεγκτής ειναι ο PID. Με τον PI σταθεροποίηση επέρχεται μετά απο μεγαλύτερο χρονικό διάστημα , ενώ στον P δεν σταθεροποιείται ποτέ η έξοδος στο 1.

Controlled system step response	Primary con- trolled variables	Applicable controllers	Inapplicable controllers
	Mixture	I, <u>PI</u> , <u>PID</u>	P,PD

	Overshoot 20%	Set Point Response	
Ελεγκτής	K	Ti	Td
P	2,76		
PI	2,36	6,7	
PID	3,74	9,4	0,8

Απόκριση με Ρ

Συνάρτηση συτήματος: $G(s) = \frac{1}{(2s+1)^3}$

Συνάρτηση ελεγκτή : Kp=2,76 $D(s) = Kp \left(1 + \frac{1}{Ti \cdot s} + Td \cdot s\right) = 2,76$

Συνολική συνάρτηση:
$$\frac{C(s)}{D(s)} = \frac{G(s)D(s)}{1+G(s)D(s)} = \frac{\frac{1}{(2s+1)^3} \cdot 2,76}{1+\frac{1}{(2s+1)^3} \cdot 2,76} = \frac{2,76}{(2s+1)^3+2,76}$$

Απόκριση με ΡΙ

Συνάρτηση συστήματος: $G(s) = \frac{1}{(2s+1)^3}$

Συνάρτηση ελεγκτή: με Kp=2,36 και Ti=6,7
$$D(s)=Kp\left(1+\frac{1}{Ti\cdot s}+Td\cdot s\right)=\frac{2,36\ s+0,35}{s}$$

Συνολική συνάρτηση:

$$\frac{C(s)}{D(s)} = \frac{G(s)D(s)}{1+G(s)D(s)} = \frac{\frac{1}{(2s+1)^3} \cdot \frac{2,36s+0,35}{s}}{1+\frac{1}{(2s+1)^3} \cdot \frac{2,36s+0,35}{s}} = \frac{2,36s+0,34}{8s^4+12s^3+6s^2+3,36s+0,35}$$

Απόκριση με PID

Συνάρτηση συστήματος: $G(s) = \frac{1}{(2s+1)^3}$

Συνάρτηση ελεγκτή: με Kp=3,74 Ti=9,4 Td=0,8
$$D(s) = Kp \left(1 + \frac{1}{Ti \cdot s} + Td \cdot s\right) = \frac{3 s^2 + 3,74 s + 0,4}{s}$$

Συνολική συνάρτηση:

$$\frac{C(s)}{D(s)} = \frac{G(s)D(s)}{1 + G(s)D(s)} = \frac{\frac{1}{(2s+1)^3} \cdot \frac{3s^2 + 3,74s + 0,4}{s}}{1 + \frac{1}{(2s+1)^3} \cdot \frac{3s^2 + 3,74s + 0,4}{s}} = \frac{3s^2 + 3,74s + 0,4}{8s^4 + 12s^3 + 9s^2 + 4,74s + 0,4}$$

Παρατηρούμε και πάλι πως επιβεβαιώνεται η θεωρία του πίνακα καθώς στο σύστημά μας ιδανικός ελεγκτής ειναι ο PID. Με τον PI έχουμε λίγο παραπάνω overshooting και επέρχεται αρκετό χρονικό διάστημα μέχρι να σταθεροποιηθεί, ενώ στον P δεν σταθεροποιείται ποτέ η έξοδος στο 1.

Controlled system step response	Primary con- trolled variables	Applicable controllers	Inapplicable controllers
	Mixture	I, <u>PI</u> , <u>PID</u>	P,PD

Fine Tuning $\mu \epsilon Kp = 5,3 \text{ Ti} = 6,76 \text{ Td} = 1,69$

