1 Programfüggvény:

- $D_{p(S)} = \{a \in A | S(a) \subseteq A^*\}$ Csak azokban a pontokban van értelme azt vizsgálni hogy hova jut el a program, ahonnan kiindúlva nem hagya el az állapotteret.
- $p(S)(a) = \{b \in A | \exists \alpha \in S(a) : \tau(\alpha) = b\}$ Ahova a program eljut az a sorozat utolsó eleme.

2 Állapottér:

Legyenek A_1, A_2, \dots, A_n tetszőleges, vagy megszámlálhatóan végtelen halmazok. Az $A = A_1, A_2, \dots, A_n$ halmazt az állapottérnek nevezzük.

3 Sorozat Redukáltja:

Egy $a \in A^{**}$ sorozat redukáltja az a sorozat, amelyet úgy kapunk, hogy az α sorozat minden azonos elemből álló véges részsorozatát a részsorozat egyetlen elemével helyettesítjük. Jelölése: $red(\alpha)$.

4 Leggyengébb előfeltétel:

Legyen S program és R az A állapotteren értelmezett állítás. Az S program R utófeltételéhez tartozó legygyengébb előfeltétel az lf(S,R) állítás, amelyre $[lf(S,R)] = \{a \in D_{p(S)}|p(S)(a) \subseteq [R]\}$.

Azokban a pontokban igaz, ahonnan kiindulva az S program biztosan terminál, és az összes lehetséges végállapotra igaz R.

5 Félkiterjesztés:

Legyen B altere A-nak, $G \subseteq AxA$ feladat, $H \subseteq B$. Azt mondjuk hogy a G félkiterjesztése H felett, ha $pr_B^{-1} \subseteq D_G$

6 Feladat Kiterjesztés:

Ha egy megoldó program állapottere bővebb, mint a feladaté, akkor a feladat állapotterét kibővítjük újabb komponensekkel, de értelemszerűen azok értékére nem adunk semmilyen korlátozást.