metropolis

minimalGrayHTML37474f minimalLightHTMLf5f5f5 minimalAccentHTML546e7a normal textfg=black,bg=white alerted textfg=minimalAccent example textfg=minimalGray frametitlefg=minimalGray,bg=minimalLight titlefg=minimalGray progress barfg=minimalAccent,bg=minimalLight

block titlefg=minimalGray,bg=minimalLight block bodyfg=black,bg=white navigation symbols footline[frame number] $_{i+-i}$

1. In this question, we will give unequal weightage to errors in linear regression setup.

For i^{th} observation, the error is given by $e_i = (y_i - \hat{y}_i)$, where y_i is the actual value and \hat{y}_i is the predicted value. We weigh the error by r_i . Our objective is to minimize the weighted sum of squared errors, i.e., $\sum_{i=1}^n r_i e_i^2$.

Assuming you can form a vector/matrix from r_i 's, write down the objective function in matrix form, and find the optimal θ 's.

- 2. Given a simple model, $\hat{y} = \theta_1 x$, where x is the input and θ_1 is the parameter to be estimated. What is the optimal value of θ_1 in terms of the data?
- 3. Given a simple model, $\hat{y} = \theta_0$, where x is the input and θ_0 is the parameter to be estimated. What is the optimal value of θ_0 in terms of the data?
- 4. Suppose I want to put a hard constraint for linear regression that all the coefficients should be positive. How can I do that?
- 5. Prove that stochastic gradient is an unbiased estimator of the true gradient.
- 6. Prove that the expected size of bootstrapped sample 0.632 times the original sample size.