Cognoms	Nom	DNI
Examen Parcial EDA	Duració: 2h45min	11/11/2019
 L'enunciat té 7 fulls, 14 cares Poseu el vostre nom complet i Contesteu tots els problemes e A no ser que es digui el contre Sempre que parlem de cost, en 	i número de DNI a cada full. en el propi full de l'enunciat i a l' ari, cal justificar totes les res p	ostes.
Problema 1		(1 punt)
(a) (0.5 pts.) La solució de la recu $T(n) = \Theta($	urrència $T(n) = 2T(n/4) + \Theta($). No cal que justifique	
(b) (0.5 pts.) Per a quines $X \in \{C$	$\{0,\Omega,\Theta\}$ es compleix que $\log_2(1)$	$n) \in X(\log_2(\log_2(n^2))?$

Cognoms	Nom	DNI
Problema 2		(2.5 punts)
Donat un natural $n \ge 1$, qualsevol fures pot representar com un vector d'en	nció $f: \{0, 1,, n\}$ iters $[f(0), f(1),, n]$	$\{n-1\} \longrightarrow \{0,1,\ldots,n-1\}$ f(n-1)].
Per exemple, si $n = 5$ i $f(0) = 2$, $f(1)$ f es pot representar pel vector [2, 1, 2 aquesta representació de funcions.		
(a) (0.75 pts.) Considereu el codi segü	ient:	
<pre>if (i < f. size ()) { r[i] = f[g[i]]; misteri_aux (f,g,i+1,r); } vector < int > misteri(const vec // Precondició: f i g tenen // entre 0 i f.size() - 1 vector < int > r(f. size ()); misteri_aux (f,g,0,r); return r; }</pre>	ctor < int>& f, cons la mateix mida i co	ontenen nombres
Què retorna la funció $misteri$? No Si assumim que n és la mida de f ,		

(0.75 pts.) Considereu ara el codi següent:	
<pre>vector < int> misteri_2(const vector < int>& f, int k) { if (k == 0) { vector < int> r(f. size ()); for (int i = 0; i < f. size (); ++i) r[i] = i; return r; } }</pre>	
else return $misteri\ (f, misteri\ 2\ (f, k-1));$	
Què retorna la funció <i>misteri_</i> 2? No cal que justifiqueu la resposta.	
	\ /
Quin és el cost de <i>misteri</i> _2 en funció només de <i>k</i> ?	
	<pre>if (k == 0) { vector < int> r(f. size ()); for (int i = 0; i < f. size (); ++i) r[i] = i; return r; } else return misteri (f, misteri_2 (f,k-1)); } Què retorna la funció misteri_2? No cal que justifiqueu la resposta.</pre>

(c) (1 pt.) Completeu la funció següent per tal que calculi el mateix que *misteri*_2 però sigui més eficient asimptòticament. Analitzeu-ne el cost en funció de *k*.

```
vector < int> misteri_2_quick (const vector < int>& f, int k) {
    if (k == 0) {
        vector < int> r(f. size ());
        for (int i = 0; i < f. size (); ++i) r[i] = i;
        return r;
    }
}</pre>
```

Anàlisi del cost en funció de *k*:

Cognoms	Nom	DNI

Problema 3 (3.25 punts)

Donat un conjunt S de m=2n enters diferents, volem agrupar-los en parelles de manera que la suma dels seus productes sigui màxima. És a dir, busquem la màxima expressió de la forma $x_0*x_1+x_2*x_3+\ldots+x_{2n-2}*x_{2n-1}$, on el x_i 's són tots els elements de S.

Per exemple, si $S = \{5,6,1,3,8,4\}$, dues possibles expressions són 1*5+6*3+4*8, que suma 55, i 5*4+1*8+3*6, que suma 46. D'entre aquestes dues preferim la primera, tot i que encara n'hi ha d'altres de millors.

La funció *max_suma* calcula la màxima suma de productes de S:

```
int pos_max (const vector < int>& v, int l, int r) {
   int p = l;
   for (int j = l + 1; j ≤ r; ++j)
      if (v[j] > v[p]) p = j;
   return p;
}

int max_suma (vector < int>& S) {
   int suma = 0;
   int m = S. size ();
   for (int i = 0; i < m; ++i) {
      int p = pos_max(S,i,m-1);
      swap(S[i],S[p]);
      if (i%2 == 1) suma += S[i-1]*S[i];
   }
   return suma;
}</pre>
```

(a) (1 pt.) Analitzeu el cost en cas pitjor de *max_suma* en funció de *m*, el nombre d'elements del vector *S*.

1.25 pts.) nàxima.	Demostreu que	e la funció <i>m</i>	ax_suma reto	rna la suma de	e productes
ileshores u no pot ser i	na expressió qu	ie conté els p tinuació utili	roductes $x_0 *$ tzeu aquest f	nombres més y i $x_1 * z$, per ce tet per demostra	erts $y, z \in S$

Cognoms	Nom DNI	

Cognoms	NOIII	DNI

NI

DAIL

Problema 4 (3.25 punts)

Durant els propers $n \geq 3$ dies, se celebrarà un important esdeveniment esportiu, pel qual existeix un enorme mercat de compra-venda d'entrades del que ens en volem aprofitar. Sabem que cada dia podrem comprar o vendre una entrada, i també sabem el preu de les entrades en cada dia, donat com una seqüència $(p_0, p_1, \ldots, p_{n-1})$.

(a) (1.25 pts.) Ens assabentem que la seqüència de preus segueix una forma ben particular. Hi ha un únic dia $0 \le d \le n-1$ amb preu mínim p_d i sabem que $p_1 > p_2 > \cdots > p_d$ i $p_d < p_{d+1} < \cdots < p_{n-1}$.

El nostre objectiu és comprar una entrada el dia c i vendre-la el dia v, amb $0 \le c \le v \le n-1$ de manera que maximitzem els nostres guanys. És a dir, volem que $p_v - p_c$ sigui màxim. A tal efecte, ompliu els buits del codi següent per tal que la funció max_guany retorni aquest parell < c, v > en temps $\Theta(\log n)$ i analitzeu per què la funció resultant té aquest cost.

Nota: recordeu que l'expressió (B ? E_T : E_F) equival a E_T si l'expressió booleana B és certa i equival a E_F altrament.

Anàlisi del cost:

(b) (1 pt.) En el que resta d'exercici, assumiu que la seqüència *p* no necessàriament té la forma mencionada a l'apartat anterior, sinó que és una seqüència arbitrària de nombres naturals.

En aquest apartat, donat un dia k en el que necessitem disposar d'una entrada, volem saber quin és el màxim benefici que podem obtenir comprant l'entrada en un cert dia c i venent-la en un cert dia v, però que ens garanteixi tenir l'entrada el dia k. És a dir, no ens val qualsevol parell (c,v) sinó que necessitem que $0 \le c \le k \le v \le n-1$. Implementeu una funció amb $\cos \Theta(n)$ per calcular aquest benefici.

1 pt.) Afrontem finalmenir qualsevol forma i correspon a comprar un v. Expliqueu a alt nivelmàxim guany i analitze Ajuda: la funció de l'apa pasada en dividir i vènc	volem calcular na entrada en el c ll com implemen u-ne el cost. Solu artat anterior us p	el màxim guan dia <i>c</i> i vendre-la j ntaríeu una fund ucions amb cost	y possible $p_v - p_c$ que posteriorment en el dia ció que calculés aquest $\Omega(n^2)$ rebran 0 punts.
(