

Global United Technology Services Co., Ltd.

Report No.: GTS201612000097F05

FCC Report (5.8G SRD)

Applicant: SHENZHEN FCAR TECHNOLOGY CO.,LTD

Address of Applicant: 8th floor, Chuangyi Building, No. 3025 Nanhai Ave., Nanshan,

Shenzhen, Guangdong, China

Equipment Under Test (EUT)

Product Name: AUTO DIAGNOSTIC SYSTEM

Model No.: F6 PLUS

Trade Mark: FCAR

FCC ID: 2AJDD-IDIAGSF6P

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.407:2016

Date of sample receipt: December 16, 2016

Date of Test: December 16-23, 2016

Date of report issued: December 23, 2016

Test Result: PASS *

Authorized Signature:

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	December 23, 2016	Original

Prepared By:	Edward.Pan	Date:	December 23, 2016
	Project Engineer		
Check By:	Andy w	Date:	December 23, 2016

3 Contents

			Page
1	COV	/ER PAGE	1
_			
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5 5.6	TEST FACILITY TEST LOCATION	
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	9
	7.2	CONDUCTED EMISSIONS	10
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4 7.5	CHANNEL BANDWIDTH POWER SPECTRAL DENSITY	
	7.5 7.6	BAND EDGES	
	7.6.1		
	7.7	Spurious Emission	
	7.7.1		
	7.8	FREQUENCY STABILITY	30
8	TES	T SETUP PHOTO	34
۵	EUT	CONSTRUCTIONAL DETAILS	35

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407(a)(3)	Pass
Channel Bandwidth	15.407(e)	Pass
Power Spectral Density	15.407(a)(3)	Pass
Band Edge	15.407(b)(4)	Pass
Spurious Emission	15.205/15.209/15.407(b)(4)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 40GHz	± 4.68dB	(1)
AC Power Line Conducted Emission	± 3.45dB	(1)	
Note (1): The measurement u	ncertainty is for coverage factor of	of k=2 and a level of confidence	of 95%.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 General Information

5.1 Client Information

Applicant:	SHENZHEN FCAR TECHNOLOGY CO.,LTD	
Address of Applicant:	8th floor, Chuangyi Building, No. 3025 Nanhai Ave., Nanshan, Shenzhen, Guangdong, China	
Manufacturer:	SHENZHEN FCAR TECHNOLOGY CO.,LTD	
Address of Manufacturer:	8th floor, Chuangyi Building, No. 3025 Nanhai Ave., Nanshan, Shenzhen, Guangdong, China	
Factory:	SHENZHEN FCAR TECHNOLOGY CO.,LTD	
Address of Factory:	West 1F, Bldg. B, Hengchao Industrial Park, Tangtou North Ave., Bao'an, Shenzhen, China	

5.2 General Description of EUT

Product Name:	AUTO DIAGNOSTIC SYSTEM
Model No.:	F6 PLUS
Operation Frequency:	802.11a/802.11n(HT20)@5.8G Band: 5745MHz ~ 5825MHz
	802.11n(HT40)@ 5.8G Band: 5755MHz ~ 5795MHz
Channel numbers:	802.11a/802.11n(HT20)@5.8G Band: 5
	802.11n(HT40)@ 5.8G Band: 2
Channel bandwidth:	802.11a/802.11n(HT20):20MHz
	802.11n(HT40):40MHz
Modulation technology:	Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	PCB antenna
Antenna gain:	1dBi
Power supply:	Adapter
	Model No.:HNSC050300WX
	Input: AC 100-240V, 50/60Hz, 0.45A MAX
	Output: DC 5V, 3A
	Or
	DC 3.7V 8500mAh Li-ion Battery

	Operation Frequency each of channel @ 5.8G Band						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
149	5745MHz	153	5765MHz	155	5775MHz	157	5785MHz
161 5805MHz 165 5825MHz							

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

chainer ded below.						
Test channel		Frequency (MHz)				
		5.8G Band				
	802.11a 802.11n(HT20)	802.11n(HT40)				
Lowest channel	5745	5755				
Middle channel	5785					
Highest channel	5825	5795				

5.3 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6Mbps
802.11n(HT20)	6.5Mbps
802.11n(HT40)	13Mbps

5.4 Description of Support Units

None.

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been

Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 03 2015	July 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June 29 2016	June 28 2017	
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 29 2016	June 28 2017	
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 29 2016	June 28 2017	
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 29 2016	June 28 2017	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 29 2016	June 28 2017	
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
9	Coaxial Cable	GTS	N/A	GTS213	June 29 2016	June 28 2017	
10	Coaxial Cable	GTS	N/A	GTS211	June 29 2016	June 28 2017	
11	Coaxial cable	GTS	N/A	GTS210	June 29 2016	June 28 2017	
12	Coaxial Cable	GTS	N/A	GTS212	June 29 2016	June 28 2017	
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June 29 2016	June 28 2017	
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June 29 2016	June 28 2017	
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 29 2016	June 28 2017	
16	Band filter	Amindeon	82346	GTS219	June 29 2016	June 28 2017	
17	Power Meter	Anritsu	ML2495A	GTS540	June 29 2016	June 28 2017	
18	Power Sensor	Anritsu	MA2411B	GTS541	June 29 2016	June 28 2017	

Cond	Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	May.16 2014	May.15 2019	
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	June 29 2016	June 28 2017	
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	June 29 2016	June 28 2017	
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 29 2016	June 28 2017	
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	June 29 2016	June 28 2017	
6	Coaxial Cable	GTS	N/A	GTS227	June 29 2016	June 28 2017	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	

Gen	General used equipment:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)					
1	Barometer	ChangChun	DYM3	GTS257	June 29 2016	June 28 2017					

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is PCB antenna, the best case gain of the antenna is 1dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto						
Limit:	Francisco de CAULEN	Limit (c	lBuV)				
	Frequency range (MHz)	Quasi-peak	Average				
	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
Tankanka	* Decreases with the logarithm	n of the frequency.					
Test setup:	Reference Plane		•				
Tost procedure:	Remark: E.U.T Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter — AC pow					
Test procedure:	 The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impe 	n network (L.I.S.N.). Th	nis provides a				
	 The peripheral devices are LISN that provides a 50ohn termination. (Please refer to photographs). 	n/50uH coupling imped	dance with 50ohm				
	 Both sides of A.C. line are dinterference. In order to find positions of equipment and according to ANSI C63.10: 	the maximum emission all of the interface cab	on, the relative bles must be changed				
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

Measurement data

Line:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LINE

Job. No : GTS201612000097 Test mode : 5.8G SRD mode

Test Engineer: Boy

	Freq	Read Level	LISN Factor	Cable Loss	Leve1	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1 2 3 4 5 6 7	0. 150 0. 150 0. 182 0. 182 0. 239 0. 239 0. 286	54. 36 34. 41 52. 00 36. 20 48. 77 35. 38 41. 70	0. 42 0. 42 0. 42 0. 42 0. 44 0. 44	0. 12 0. 12 0. 13 0. 13 0. 12 0. 12 0. 12	54. 90 34. 95 52. 55 36. 75 49. 33 35. 94 42. 24	56. 00 64. 42 54. 42 62. 13 52. 13	-11.87 -17.67 -12.80	Average QP Average QP Average
9	0. 286 0. 375	30. 17 38. 95	0. 44 0. 42	0. 10 0. 10	30. 71 39. 47	58.39	-18.92	
10 11 12	0. 375 0. 641 0. 641	28. 21 38. 57 28. 74	0. 42 0. 30 0. 30	0. 10 0. 13 0. 13	28. 73 39. 00 29. 17	56.00	-17.00	Average QP Average

Neutral:

Site : Shielded room

Condition : FCC PART15 CLASSB QP NEUTRAL

Job. No : GTS201612000097 Test mode : 5.8G SRD mode

Test Engineer: Boy

	Freq	Read Level	LISN Factor	Cable Loss	Leve1	Limit Line	Over Limit	Remark
	MHz	dBu∀	d₿	d₿	dBuV	dBuV	d₿	
1	0.150	57.84	0.41	0.12	58.37	66.00	-7.63	QP
2	0.150	37.00	0.41	0.12	37.53	56.00	-18.47	Average
3	0.180	52.40	0.41	0.13	52.94	64.50	-11.56	QP
4 5	0.180	33.74	0.41	0.13	34. 28	54.50	-20.22	Average
	0.230	46.29	0.42	0.12	46.83	62.44	-15.61	QP
6 7	0.230	31.21	0.42	0.12	31.75	52.44	-20.69	Average
	0.280	42.16	0.42	0.10	42.68	60.81	-18.13	QP
8	0.280	29.87	0.42	0.10	30.39	50.81	-20.42	Average
9	0.320	38.48	0.42	0.10	39.00	59.71	-20.71	QP
10	0.320	28.93	0.42	0.10	29.45	49.71	-20.26	Average
11	0.516	37.66	0.34	0.11	38. 11	56.00	-17.89	QP
12	0.516	26.91	0.34	0.11	27.36	46.00	-18.64	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both *limits and measurement with the average detector receiver is unnecessary.*

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 E Section 15.407(a)(3)
Test Method:	ANSI C63.10:2013 and KDB789033 D02 General UNII Test Procedures New Rules v01
Limit:	30dBm
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

Test CH	Pea	k Output Power (d	Limit(dBm)	Result		
Test CH	802.11a	802.11n(HT20)	802.11n(HT40)	Limit(abin)	Result	
Lowest	10.13	9.87	7.05			
Middle	10.58	9.71		30.00	Pass	
Highest	10.32	9.56	6.98			

Remark: "---" is not applicable

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 E Section 15.407(e)
Test Method:	ANSI C63.10:2013 and KDB789033 D02 General UNII Test Procedures New Rules v01
Limit:	>500KHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

Test CH	Chai	nnel Bandwidth (I	Limit/KU-	Result		
Test CH	802.11a	802.11n(HT20)	802.11n(HT40)	Limit(KHz)	Result	
Lowest	16.366	17.563	36.330			
Middle	16.334	17.565		>500KHz	Pass	
Highest	16.334	17.542	36.328			

Remark: "---" is not applicable

Test plot as follows:

Test mode: 802.11a

Lowest channel

Middle channel

Highest channel

Project No.: GTS201612000097

Page 15 of 35

Test mode: 802.11n(HT20) @ 5.8G Band

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT40) @ 5.8G Band

Lowest channel

Highest channel

Project No.: GTS201612000097

Page 17 of 35

7.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407(a)(3)
Test Method:	ANSI C63.10:2013 and KDB789033 D02 General UNII Test Procedures New Rules v01
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

Toot CH	Cha	nnel Bandwidth (I	Limit(dDm)	Dooult	
Test CH	802.11a	802.11n(HT20)	802.11n(HT40)	Limit(dBm)	Result
Lowest	-0.46	-2.19	-4.93		
Middle	0.13	-2.00		30.00	Pass
Highest	0.07	-0.92	-4.53		

Remark: "---" is not applicable

Test plot as follows:

Test mode: 802.11a

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT20) @ 5.8G Band

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT40) @ 5.8G Band

Lowest channel

Highest channel

7.6 Band edges

7.6.1 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205				
Test Method:	ANSI C63.10: 2013						
Test Frequency Range:	30MHz to 40GH	30MHz to 40GHz, only worse case is reported Measurement Distance: 3m					
Test site:	Measurement D	istance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
	Above 1GHz	Peak	1MHz	3MHz	Peak		
	Above 1G112	Peak	1MHz	10Hz	Average		
Limit:	Freque	ncy	Limit (dBuV	/m @3m)	Value		
	Above 1	GH ₇	54.0		Average		
	71,00001	0112	74.0	0	Peak		
Test setup:	Turn y 1.5m A	4m	Antenna To Horn Antenn Spectrum Analyzer Amplifier				
Test Procedure:	the ground at determine the 2. The EUT was antenna, white tower. 3. The antenna ground to det horizontal an measurement 4. For each sus and then the and the rotal the maximum 5. The test-recesspecified Ball 6. If the emission the limit specified ball of the EUT where and the rotal the limit specified ball of the EUT where and the rotal the limit specified ball of the EUT where and the specified ball of the EUT where and the specified ball of the EUT where and the specified ball of the EUT where and found the worst case meters.	t a 3 meter came position of the set 3 meters a ch was mounted the management of the set of the management of the set of	aber. The talk highest race highest race way from the don the top of the from one naximum value izations of the from 0 de as set to Peak aximum Hole UT in peaking could be act. Otherwise re-tested of specified are some performing which it is a set to peak aximum with the from the f	ble was rotadiation. The interferer of a variable of the field one antennal was arrange has from 1 ragrees to 360 ak Detect Full discounting the emission of the emission of the mode was a stopped and then report of the emission of the mode was a stopped and then report of the emission	r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find function and 10dB lower than ad the peak values sions that did not using peak, quasi-		
Test Instruments:	Refer to section						
Test mode:	Refer to section	5.3 for details					
Test results:	Pass						

Measurement data:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test mode:		802.1	1a	Test channel:		L	owest	
Peak value:					_		_	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	40.52	32.68	9.97	23.86	59.31	74.00	-14.69	Horizontal
5741.35	82.41	32.56	9.86	23.85	100.98	N/A	N/A	Horizontal
5725.00	41.08	32.68	9.97	23.86	59.87	74.00	-14.13	Vertical
5741.35	84.97	32.56	9.86	23.85	23.85 103.54 N/A		N/A	Vertical
Average va	lue:				_		_	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	30.15	32.68	9.97	23.86	48.94	54.00	-5.06	Horizontal
5741.35	72.33	32.56	9.86	23.85	90.9	N/A	N/A	Horizontal
5725.00	30.56	32.68	9.97	23.86	49.35	54.00	-4.65	Vertical
5741.35	75.98	32.56	9.86	23.85	94.55	N/A	N/A	Vertical
Test mode:		802.1	<u>1a</u>	Tes	st channel:		Highest	
Peak value:					Ī		I -	T 1
Frequency (MHz)	Read Level (dBuV)	Antenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Polarization
	(/	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
5826.20	78.38	32.68	(dB) 9.97	(dB) 23.86	97.17	(dBuV/m) N/A	(dB) N/A	Horizontal
5826.20 5850.00	, ,	` '		` '	,	,	` ′	Horizontal Horizontal
	78.38	32.68	9.97	23.86	97.17	N/A	N/A	
5850.00	78.38 38.21	32.68 32.7	9.97 9.99	23.86 23.87	97.17 57.03	N/A 74.00	N/A -16.97	Horizontal
5850.00 5826.20	78.38 38.21 85.39 40.04	32.68 32.7 32.68 32.7	9.97 9.99 9.97 9.99	23.86 23.87 23.86 23.87	97.17 57.03 104.18	N/A 74.00 N/A	N/A -16.97 N/A -15.14	Horizontal Vertical
5850.00 5826.20 5850.00	78.38 38.21 85.39 40.04	32.68 32.7 32.68	9.97 9.99 9.97	23.86 23.87 23.86	97.17 57.03 104.18	N/A 74.00 N/A 74.00 Limit Line (dBuV/m)	N/A -16.97 N/A	Horizontal Vertical
5850.00 5826.20 5850.00 Average va Frequency	78.38 38.21 85.39 40.04 lue: Read Level	32.68 32.7 32.68 32.7 Antenna Factor	9.97 9.99 9.97 9.99 Cable Loss	23.86 23.87 23.86 23.87 Preamp Factor	97.17 57.03 104.18 58.86	N/A 74.00 N/A 74.00 Limit Line	N/A -16.97 N/A -15.14 Over Limit	Horizontal Vertical Vertical
5850.00 5826.20 5850.00 Average va Frequency (MHz)	78.38 38.21 85.39 40.04 lue: Read Level (dBuV)	32.68 32.7 32.68 32.7 Antenna Factor (dB/m)	9.97 9.99 9.97 9.99 Cable Loss (dB)	23.86 23.87 23.86 23.87 Preamp Factor (dB)	97.17 57.03 104.18 58.86 Level (dBuV/m)	N/A 74.00 N/A 74.00 Limit Line (dBuV/m)	N/A -16.97 N/A -15.14 Over Limit (dB)	Horizontal Vertical Vertical Polarization
5850.00 5826.20 5850.00 Average va Frequency (MHz) 5826.20	78.38 38.21 85.39 40.04 Iue: Read Level (dBuV) 70.48	32.68 32.7 32.68 32.7 Antenna Factor (dB/m) 32.68	9.97 9.99 9.97 9.99 Cable Loss (dB) 9.97	23.86 23.87 23.86 23.87 Preamp Factor (dB) 23.86	97.17 57.03 104.18 58.86 Level (dBuV/m) 89.27	N/A 74.00 N/A 74.00 Limit Line (dBuV/m) N/A	N/A -16.97 N/A -15.14 Over Limit (dB) N/A	Horizontal Vertical Vertical Polarization Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:	802.1	1n(HT20) @	5.8G Band	d Tes	t channel:	l	_owest	
Peak value	•							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	37.77	32.68	9.97	23.86	56.56	74.00	-17.44	Horizontal
5742.19	77.34	32.56	9.86	23.85	95.91	N/A	N/A	Horizontal
5725.00	40.03	32.68	9.97	23.86	58.82	74.00	-15.18	Vertical
5742.19	84.15	32.56	9.86	23.85	102.72	N/A	N/A	Vertical
Average va	lue:				_			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	28.25	32.68	9.97	23.86	47.04	54.00	-6.96	Horizontal
5742.19	69.14	32.56	9.86	23.85	87.71	N/A	N/A	Horizontal
5725.00	29.57	32.68	9.97	23.86	48.36	54.00	-5.64	Vertical
5742.19	75.84	32.56	9.86	23.85	94.41	N/A	N/A	Vertical
	T							
Test mode:		1n(HT20) @	5.8G Band	d Tes	t channel:	ŀ	Highest	
Peak value		1			ı			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5826.20	77.84	32.68	9.97	23.86	96.63	N/A	N/A	Horizontal
5850.00	38.48	32.70	9.99	23.87	57.30	74.00	-16.70	Horizontal
5826.20	85.72	32.68	9.97	23.86	104.51	N/A	N/A	Vertical
5850.00	40.25	32.70	9.99	23.87	59.07	74.00	-14.93	Vertical
Average va		,			r			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5826.20	68.71	32.68	9.97	23.86	87.5	N/A	N/A	Horizontal
5850.00	28.06	32.7	9.99	23.87	46.88	54.00	-7.12	Horizontal
5826.20	74.33	32.68	9.97	23.86	93.12	N/A	N/A	Vertical
5850.00	29.15	32.7	9.99	23.87	47.97	54.00	-6.03	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:	802.1	1n(HT40) @	5.8G Band	Tes	t channel:	l	_owest	
Peak value:				•		•		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	38.79	32.53	9.83	23.84	57.31	74.00	-16.69	Horizontal
5745.00	75.04	32.56	9.86	23.85	93.61	N/A	N/A	Horizontal
5725.00	37.86	32.53	9.83	23.84	56.38	74.00	-17.62	Vertical
5745.00	84.53	32.56	9.86	23.85	103.10	N/A	N/A	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	30.25	32.53	9.83	23.84	48.77	54.00	-5.23	Horizontal
5745.00	68.98	32.56	9.86	23.85	87.55	N/A	N/A	Horizontal
5725.00	28.33	32.53	9.83	23.84	46.85	54.00	-7.15	Vertical
5745.00	75.04	32.56	9.86	23.85	93.61	N/A	N/A	Vertical
Test mode:	802.1	1n(HT40) @	2 5.8G Band	Tes	t channel:	ŀ	Highest	
Peak value:				•		•	-	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5784.88	79.88	32.63	9.90	23.85	98.56	N/A	N/A	Horizontal
5850.00	38.96	32.70	9.99	23.87	57.78	74.00	-16.22	Horizontal
5784.88	84.57	32.63	9.90	23.85	103.25	N/A	N/A	Vertical
5850.00	42.65	32.70	9.99	23.87	61.47	74.00	-12.53	Vertical
Average va		· .			T		_	т 1
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5784.88	71.59	32.63	9.90	23.85	90.27	N/A	N/A	Horizontal
5850.00	28.15	32.70	9.99	23.87	46.97	54.00	-7.03	Horizontal
5784.88	74.07	32.63	9.90	23.85	92.75	N/A	N/A	Vertical
5850.00	27.64	32.70	9.99	23.87	46.46	54.00	-7.54	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.7 Spurious Emission

7.7.1 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209, Part 15E Section 15.407(b)(4)					
Test Method:	ANSI C63.10:20	13				
Test Frequency Range:	30MHz to 40GHz					
Test site:	Measurement Distance: 3m					
Receiver setup:	Frequency	Detector	RBW	VBW	Value	
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value	
	AL 4011	Peak	1MHz	3MHz	Peak Value	
	Above 1GHz	Peak	1MHz	3MHz	Average Value	
Limit:	Frequen	су	Limit (dBuV/	/m @3m)	Remark	
	30MHz-88	MHz	40.0)	Quasi-peak Value	
	88MHz-216	6MHz	43.5	5	Quasi-peak Value	
	216MHz-96		46.0		Quasi-peak Value	
	960MHz-1		54.0		Quasi-peak Value	
	Frequen		Limit (dBn		Remark	
	Above 10	SHZ	-27.	0	Peak Value	
	Ground Plane Above 1GHz Turn Table V 0.8m 7 0.8m 1.5m 1.5m 1.5m 1.5m 1.5m 1.5m 1.5m 1.5	4m		Antenna Towe Search Antenna RF Test Receiver Antenna Towe Horn Antenna Spectrum Analyzer Amplifier		
Toot Droodures	1 The FUT was	placed as the	top of a mate	oting table	(0.0m for below	
Test Procedure:	1. The EUT was	placed on the	top of a rota	ating table ((U.8m for below	

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

 ${\it Xixiang Road, Baoan District, Shenzhen, Guangdong, China}$

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

	1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi- peak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

According to KDB 789033 D02V01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

Measurement Data

■ Below 1GHz

Only the data of worst case at each channel plan (nominal bandwidth =20MHz, 40MHz, 80MHz) is reported.

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
44.12	39.23	15.56	0.71	30.02	25.48	40.00	-14.52	Vertical
54.84	38.79	15.02	0.82	29.96	24.67	40.00	-15.33	Vertical
86.50	40.99	12.89	1.08	29.76	25.20	40.00	-14.80	Vertical
154.28	45.62	10.45	1.59	29.39	28.27	43.50	-15.23	Vertical
267.55	35.66	14.30	2.21	29.77	22.40	46.00	-23.60	Vertical
446.41	44.21	17.57	3.07	29.40	35.45	46.00	-10.55	Vertical
46.02	31.93	15.49	0.73	30.02	18.13	40.00	-21.87	Horizontal
147.92	51.42	10.24	1.56	29.42	33.80	43.50	-9.70	Horizontal
208.58	46.69	12.84	1.89	29.29	32.13	43.50	-11.37	Horizontal
313.28	45.83	15.24	2.43	29.92	33.58	46.00	-12.42	Horizontal
562.66	36.11	19.83	3.57	29.30	30.21	46.00	-15.79	Horizontal
787.85	39.86	21.92	4.41	29.20	36.99	46.00	-9.01	Horizontal

■ Above 1GHz

Test mode:		802.11a	802.11a		channel:	lowest	
Antenna Pol.	Frequenc y (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Over limit(dB)	Detector
V	11510.00	26.86	21.64	48.50	54(Note3)	-5.50	PK
V	17265.00	24.49	21.80	46.29	54(Note3)	-7.71	PK
Н	11510.00	24.38	21.83	46.21	54(Note3)	-7.79	PK
Н	17265.00	23.67	21.67	45.34	54(Note3)	-8.66	PK

Test mode:		802.11a	802.11a		Test channel:		Middle	
Antenna Pol.	Frequenc y (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Over limit(dB)	Detector	
V	11570.00	25.68	21.64	47.32	54(Note3)	-6.68	PK	
V	17355.00	24.05	21.80	45.85	54(Note3)	-8.15	PK	
Н	11570.00	22.71	21.83	44.54	54(Note3)	-9.46	PK	
Н	17355.00	23.45	21.67	45.12	54(Note3)	-8.88	PK	

Test mode:		802.11a		Test	channel:	Highest	
Antenna Pol.	Frequenc y (MHz)	Reading Level	Factor	Measure Level	Limit (dBuV/m)	Over limit(dB)	Detector
V	11650.00	25.92	21.64	47.56	54(Note3)	-6.44	PK
V	17475.00	23.60	21.80	45.40	54(Note3)	-8.60	PK
Н	11650.00	23.47	21.83	45.30	54(Note3)	-8.70	PK
Н	17475.00	22.05	21.67	43.72	54(Note3)	-10.28	PK

Note:

- 1. Measure Level = Reading Level + Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: $18GHz\sim40GHz$), therefore no data appear in the report.
- 3. This limit applies for using average detector, if the test result on peak is lower than average limit, then average measurement needn't be performed.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)				
Test Method:	ANSI C63.10:2013, FCC Part 2.1055				
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified				
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.				
Test setup:	Spectrum analyzer EUT Att. Variable Power Supply Note: Measurement setup for testing on Antenna connector				
Test Instruments:	Refer to section 5.10 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Measurement data:

			802.11a		
		Frequen	cy stability versus T	emp.	
		Pov	wer Supply: DC 3.7V	'	
Tomp	Operating	0 minute	2 minute	5 minute	10 minute
Temp. (°C)	Frequency	Measured	Measured	Measured	Measured
()	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
	5745	5744.9831	5744.9839	5744.9852	5744.9859
-30	5785	5784.9836	5784.9844	5784.9856	5784.9864
	5825	5824.9841	5824.9849	5824.9860	5824.9868
	5745	5744.9850	5744.9857	5744.9868	5744.9875
-20	5785	5784.9854	5784.9861	5784.9872	5784.9879
	5825	5824.9859	5824.9865	5824.9876	5824.9882
	5745	5744.9867	5744.9873	5744.9883	5744.9889
-10	5785	5784.9871	5784.9877	5784.9887	5784.9892
	5825	5824.9874	5824.9880	5824.9890	5824.9895
	5745	5744.9836	5744.9844	5744.9856	5744.9863
0	5785	5784.9841	5784.9848	5784.9860	5784.9867
	5825	5824.9845	5824.9853	5824.9864	5824.9871
	5745	5744.9854	5744.9861	5744.9872	5744.9879
10	5785	5784.9859	5784.9865	5784.9876	5784.9882
	5825	5824.9863	5824.9869	5824.9880	5824.9886
	5745	5744.9871	5744.9877	5744.9886	5744.9892
20	5785	5784.9874	5784.9880	5784.9890	5784.9895
	5825	5824.9878	5824.9884	5824.9893	5824.9898
	5745	5744.9830	5744.9838	5744.9851	5744.9858
30	5785	5784.9835	5784.9842	5784.9855	5784.9862
	5825	5824.9839	5824.9847	5824.9859	5824.9866
	5745	5744.9849	5744.9856	5744.9867	5744.9874
40	5785	5784.9853	5784.9860	5784.9871	5784.9878
	5825	5824.9857	5824.9864	5824.9875	5824.9881
	5745	5744.9865	5744.9872	5744.9882	5744.9888
50	5785	5784.9869	5784.9876	5784.9885	5784.9891
	5825	5824.9873	5824.9879	5824.9889	5824.9894

	Frequency stability versus Voltage									
	Temperature: 25°C									
Power	Operating	0 minute	2 minute	5 minute	10 minute					
Supply	Frequency	Measured	Measured	Measured	Measured					
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)					
	5745	5744.9849	5744.9856	5744.9868	5744.9874					
3.3	5785	5784.9854	5784.9861	5784.9872	5784.9878					
	5825	5824.9858	5824.9865	5824.9875	5824.9882					
	5745	5744.9866	5744.9872	5744.9882	5744.9888					
3.7	5785	5784.9870	5784.9876	5784.9886	5784.9892					
	5825	5824.9874	5824.9880	5824.9889	5824.9895					
	5745	5744.9881	5744.9887	5744.9896	5744.9901					
4.1	5785	5784.9884	5784.9890	5784.9899	5784.9904					
	5825	5824.9888	5824.9893	5824.9902	5824.9907					

			802.11n(HT20)						
		Frequen	cy stability versus T	emp.					
	Power Supply: DC 3.7V								
Tomp	Operating	0 minute	2 minute	5 minute	10 minute				
Temp.	Frequency	Measured	Measured	Measured	Measured				
(°C)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)				
	5745	5744.9864	5744.9871	5744.9881	5744.9887				
-30	5785	5784.9868	5784.9875	5784.9884	5784.9890				
	5825	5824.9872	5824.9878	5824.9888	5824.9893				
	5745	5744.9879	5744.9885	5744.9894	5744.9900				
-20	5785	5784.9883	5784.9889	5784.9897	5784.9903				
	5825	5824.9886	5824.9892	5824.9900	5824.9905				
	5745	5744.9893	5744.9898	5744.9906	5744.9911				
-10	5785	5784.9896	5784.9901	5784.9909	5784.9913				
	5825	5824.9899	5824.9904	5824.9911	5824.9916				
	5745	5744.9868	5744.9874	5744.9884	5744.9890				
0	5785	5784.9872	5784.9878	5784.9888	5784.9893				
	5825	5824.9876	5824.9882	5824.9891	5824.9896				
	5745	5744.9883	5744.9888	5744.9897	5744.9902				
10	5785	5784.9886	5784.9892	5784.9900	5784.9905				
	5825	5824.9890	5824.9895	5824.9903	5824.9908				
	5745	5744.9896	5744.9901	5744.9909	5744.9913				
20	5785	5784.9899	5784.9904	5784.9911	5784.9916				
	5825	5824.9902	5824.9907	5824.9914	5824.9918				
	5745	5744.9863	5744.9870	5744.9880	5744.9886				
30	5785	5784.9867	5784.9873	5784.9883	5784.9889				
	5825	5824.9871	5824.9877	5824.9887	5824.9892				
	5745	5744.9878	5744.9884	5744.9893	5744.9899				
40	5785	5784.9882	5784.9887	5784.9896	5784.9902				
	5825	5824.9885	5824.9891	5824.9899	5824.9904				
	5745	5744.9892	5744.9897	5744.9905	5744.9910				
50	5785	5784.9895	5784.9900	5784.9908	5784.9913				
	5825	5824.9898	5824.9903	5824.9911	5824.9915				

Frequency stability versus Voltage									
Temperature: 25°C									
Power	Operating	0 minute	2 minute	5 minute	10 minute				
Supply	Frequency	Measured	Measured	Measured	Measured				
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)				
3.3	5745	5744.9853	5744.9860	5744.9871	5744.9878				
	5785	5784.9858	5784.9865	5784.9875	5784.9882				
	5825	5824.9862	5824.9868	5824.9879	5824.9885				
3.7	5745	5744.9870	5744.9876	5744.9886	5744.9892				
	5785	5784.9874	5784.9880	5784.9889	5784.9895				
	5825	5824.9877	5824.9883	5824.9892	5824.9898				
4.1	5745	5744.9884	5744.9890	5744.9899	5744.9904				
	5785	5784.9888	5784.9893	5784.9901	5784.9906				
	5825	5824.9891	5824.9896	5824.9904	5824.9909				

802.11n(HT40)									
Frequency stability versus Temp.									
Power Supply: DC 3.7V									
Tomp	Operating	0 minute	2 minute	5 minute	10 minute				
Temp.	Frequency	Measured	Measured	Measured	Measured				
(°C)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)				
-30	5755	5754.9849	5754.9856	5754.9868	5754.9874				
-30	5795	5794.9853	5794.9860	5794.9871	5794.9878				
20	5755	5754.9858	5754.9864	5754.9875	5754.9881				
-20	5795	5794.9862	5794.9868	5794.9879	5794.9885				
10	5755	5754.9866	5754.9872	5754.9882	5754.9888				
-10	5795	5794.9870	5794.9876	5794.9886	5794.9892				
0	5755	5754.9874	5754.9880	5754.9889	5754.9895				
0	5795	5794.9877	5794.9883	5794.9892	5794.9898				
10	5755	5754.9881	5754.9886	5754.9895	5754.9901				
10	5795	5794.9884	5794.9890	5794.9898	5794.9904				
20	5755	5754.9888	5754.9893	5754.9901	5754.9906				
20	5795	5794.9891	5794.9896	5794.9904	5794.9909				
30	5755	5754.9853	5754.9860	5754.9871	5754.9878				
	5795	5794.9858	5794.9864	5794.9875	5794.9881				
40	5755	5754.9862	5754.9868	5754.9879	5754.9885				
	5795	5794.9866	5794.9872	5794.9882	5794.9888				
50	5755	5754.9870	5754.9876	5754.9886	5754.9891				
	5795	5794.9884	5794.9890	5794.9898	5794.9904				

Frequency stability versus Voltage									
Temperature: 25°C									
Power	Operating	0 minute	2 minute	5 minute	10 minute				
Supply	Frequency	Measured	Measured	Measured	Measured				
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)				
3.3	5755	5754.9894	5754.9899	5754.9907	5754.9912				
	5795	5794.9847	5794.9855	5794.9866	5794.9873				
3.7	5755	5754.9852	5754.9859	5754.9870	5754.9877				
	5795	5794.9856	5794.9863	5794.9874	5794.9880				
4.1	5755	5754.9860	5754.9867	5754.9878	5754.9884				
	5795	5794.9864	5794.9871	5794.9881	5794.9887				

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTS201612000097F01

-----END-----