Homomorphisms

Let $(G_1, *)$ and $(G_2, 0)$ be two algebraic systems where * and 0 both are binary operations. Then, the mapping $f: G_1 \rightarrow G_2$ is said to be homomorphism from $(G_1, *)$ to $(G_{12}, 0)$ such that $\forall a, b \in G$, we have $f(a) + f(b) \in G_2$

Properties: 0 f(e) = e', $e \in G_1$, $4 e' \in G_2$ 2 $[f(a')] = [f(a)]^{-1}$, $a, a^{-1} \in G$

Proof: ① $a,b \in G_1$ =) $f(a) \circ f(b) \in G_2$ f(a)e' = f(a)Identity eliment

f(q) e' = f(q * e) (qoe = a) f(q) e' = f(q) o' f(e) (By homomorphism dy.) e' = f(e) - by Cancellation 200

Cancellation Low $a * b = a * c \Rightarrow b = c$ Left Cancellation $b * a = c * a \Rightarrow b = c$ Righ "

f(a), $f(a^{-1})$ $\in G_2$ f(a) o $f(a^{-1})$ = f(a * a') ': f is homomorphism f(a) o $f(a^{-1})$ = f(e) = e' $f(a^{-1})$ = $[f(a)]^{-1}$ => a a' = I Isomorphism

Let $(G_1,*)$ and $(G_2,0)$ be two algebraic systems when * and 0 both are binary operations. The systems $(G_1,*)$ and $(G_2,0)$ are said to be isomorphic if there exists an isomorphic mapping $f:G_1\to G_2$

when two algebraic systems are isomorphic, the system are structurally equivalent and one can be obtained from another by simply remaining the elements and the operation

OR

but $(G_1,*)$ and $(G_2,0)$ are two groups. A Mapping $f:G_1\to G_2$ is called usomorphism if

Of is one-one

1 & is onto

3) f is homomorphism (f(a*b) = f(a) of(b) \ 49,689

Que! f: G = G2 where G, 4G2 both are additive Group and G, is of. Intigue and even integers respectively.

flu1= an Vneg

set Of is one - one \rightarrow Let $f(x_1) + f(x_2) \in G_2$ set $f(x_1) = f(x_2) =$

=) &m = &m

=) 24 = 1/2

= fis on-one

2) f M on to M any $y \in G_2$ (yM even \exists a element $M \in G$ M of M of M on M

$$x = \frac{1}{2}$$
Since $f(\frac{1}{2}) = \frac{2(\frac{1}{2})}{2} = \frac{1}{2}$
Since $f(\frac{1}{2}) = \frac{1}{2}(\frac{1}{2}) = \frac{1}{2}$

$$f(\frac{1}{2}) = \frac{1}{2}(\frac{1}{2}) = \frac{1}{2}$$
we have $x \in G_1 \text{ s.t. } f(x) = \frac{1}{2}$

(3) f is homomorphism:
$$f(x_1 + x_2) = 2(x_1 + x_2)$$

$$= 2x_1 + 2x_2$$

$$= f(x_1 + f(x_2))$$
f is homomorphism

=) f u Isomorphism Group.

dus! Let (A, ,*) and (A2, []) be two algebraic system as shown in given fig. Attendine whether the two algebraic system are isomosphic.

	a	Ь	C				· w	
a	a	Ь	С				w	
		c	a	7			we	
b	C	a	6		w	wz	t	w

bot? The two algebraic skystems $(A_1,*)$ and (A_2,\square) are isomorphic and (A_2,\square) is an isomorphic image of A_2 , A_3 , A_4 A_4 A_5 A_5

Que: Define Ring.

An: Ring: An algebric system (R,+, .) is called ring if the binary operation '+' and . ' in R, satisfies the Julianing properties.

() (R, +) is an abelian group

(1) (R, .) is a semi - group

(11) The operation e. is distribution over + ': Lo a, b, c ∈ R then

@ a.(b+c) = a.b + a.c

(b+c) . q = b . a + c . a

Que: Dyni field.

Ans! Field: A ring R with alleast two elements is

Called a field if it is

1 Comptative sing

De Las unit element

3) Each non- Leso eliment having multiplication inverse

auy! Bore that a ring R is Commutative if $(a+b)^2 = a^2 + 2ab + b^2 \quad \forall \quad a,b \in \mathbb{R}$

Lit R be a Commutative sing, then (a+b)2 = (a+b) (a+b) = a (a+b) + b (a+b) = a2+ ab + ba + b2 $= a^2 + ab + ab + b^2$ (:: ba = ab) $= a^2 + 2ab + b^2$

```
Conversely:
  det (a+b)2= a2+2ab+b, then we have to show
that R is commutative i.e;
     (a+b)^2 = a^2 + 2ab + b^2
  \Rightarrow a^2 + ab + ba + b^2 = a^2 + aab + b^2
  =) abt ba = 2ab ( by cancellation law)
   => R is Commutative ring.
Ques:- Prove that (-1) (-1)=1
del we know that
      (-1) a = -a & a & R
 Put a = -1, in above , we have
   (-1) (-1) = - (-1) = /
  (-1) (-1) = 1
```