EX:No.10 DATE:13/4/202	Implement program for decomposing time series data into trend and seasonality.
5	

AIM:

To Implement program for decomposing time series data into trend and seasonality.

ALGORITHM:

1. Import Libraries

Use pandas, numpy, matplotlib, statsmodels

2. Load and Prepare Dataset

- o Import multivariate time series data (e.g., economic indicators, stock prices)
- o Ensure time is the index and all variables are numeric

3. Check for Missing Values

- Impute or drop missing entries
- Stationarity assumption requires complete sequences

4. Make Series Stationary

- Apply differencing (data.diff()) if needed
- Use ADF test for each variable to verify stationarity

5. Split into Train and Test Sets

- Use ~80% for training
- Reserve the rest for forecasting and validation

6. Select Optimal Lag Order (p)

- Use model.select_order() with AIC, BIC, or FPE criteria
- Choose optimal lag based on minimum information criteria

7. Fit the VAR Model

- Use VAR(train_data)
- Fit using model.fit(maxlags=p)

8. Forecast Future Values

- Use model.forecast(y=train.values[-p:], steps=n)
- o Get predictions for multiple time steps and all variables

9. Inverse Differencing (if applied earlier)

Reconstruct original scale by adding differenced values back to last known actuals

10. Evaluate Forecast Accuracy

- Use RMSE or MAE for each variable
- Compare forecasted vs actual values

11. Plot Results

- Time series plots for actual vs predicted for each variable
- Optionally plot residuals and confidence intervals

CODE:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.api import VAR
from statsmodels.graphics.tsaplots import plot_acf
from statsmodels.tsa.stattools import adfuller
# 1. Sample Dataset (20 quarters of GDP & Unemployment)
data = {
  'date': pd.date_range(start='2000-01', periods=20, freq='Q'),
  'gdp': [2.9, 3.0, 2.8, 3.1, 3.3, 3.5, 3.2, 3.6, 3.7, 3.8,
       4.0, 4.2, 4.1, 4.0, 3.9, 4.1, 4.3, 4.2, 4.4, 4.5],
  'unemployment': [6.1, 6.0, 5.9, 5.7, 5.6, 5.5, 5.4, 5.3, 5.2, 5.1,
             5.0, 4.9, 4.8, 4.9, 5.0, 4.8, 4.7, 4.6, 4.5, 4.4]
df = pd.DataFrame(data).set index('date')
# 2. Difference to make stationary
df_diff = df.diff().dropna()
# 3. Fit VAR Model with safe lag
model = VAR(df diff)
results = model.fit(maxlags=2)
k_ar = results.k_ar
#4. Forecast
forecast_input = df_diff.values[-k_ar:]
forecast = results.forecast(y=forecast_input, steps=4)
forecast_df = pd.DataFrame(forecast, columns=df.columns)
# Inverse transform
last obs = df.iloc[-1]
forecast values = forecast df.cumsum() + last obs
#5. PLOTS (5 Total)
# 1. Original Time Series
```

df.plot(title='Original Time Series', figsize=(10, 4))

```
plt.grid(True)
plt.show()
# 2. Differenced Time Series
df_diff.plot(title='Differenced Time Series', figsize=(10, 4))
plt.grid(True)
plt.show()
#3. ACF Plot - GDP
plot_acf(df_diff['gdp'], lags=8)
plt.title('ACF of Differenced GDP')
plt.grid(True)
plt.show()
#4. ACF Plot - Unemployment
plot_acf(df_diff['unemployment'], lags=8)
plt.title('ACF of Differenced Unemployment')
plt.grid(True)
plt.show()
# 5. Forecast Plot
plt.plot(df['gdp'], label='GDP Actual')
plt.plot(df['unemployment'], label='Unemployment Actual')
forecast_index = pd.date_range(start=df.index[-1], periods=5, freq='Q')[1:]
plt.plot(forecast_index, forecast_values['gdp'], '--', label='GDP Forecast')
plt.plot(forecast_index, forecast_values['unemployment'], '--', label='Unemployment Forecast')
plt.title('Forecast using VAR Model')
plt.legend()
plt.grid(True)
plt.show()
```

OUTPUT:

RESULT:

Thus the program has been completed and verified successfully.