■8. Algorithmic (automatic) differentiation

8. Algorithmic (automatic) differentiation

Last time

- Systems of nonlinear equations
- Derivatives in higher dimensions
- Multidimensional Newton

Goal for today

- Rules for derivatives
- Teach computer to follow rules: algorithmic differentiation
- Computing derivatives in higher dimensions

Derivatives as rules

■ Think about differentiating $f(x) = \sin(x + (x+1)(x^2+2))$

Derivatives as rules

- Think about differentiating $f(x) = \sin(x + (x+1)(x^2+2))$
- We apply rules for derivatives of sums, products, compositions
- This feels like following an algorithm
- Can we get the computer to execute that for us?

Derivatives as rules

- Think about differentiating $f(x) = \sin(x + (x+1)(x^2+2))$
- We apply rules for derivatives of sums, products, compositions
- This feels like following an algorithm
- Can we get the computer to execute that for us?
- We only discuss forward-mode algorithmic (automatic) differentiation

Derivatives (review)

- Derivative = rate of change
- Increasing ⇔ derivative > 0

Derivatives (review)

- Derivative = rate of change
- Increasing ⇔ derivative > 0
- Tells us how function looks locally (close to a point)
- E.g. Use to analyze dynamics near a fixed point
- Crucial in root finding + optimization

Derivatives II

- lacksquare Derivative of $f:\mathbb{R} o \mathbb{R}$ at a is slope of tangent line
- Tangent line: "touches" graph of function at point
- Best affine approximation to f near a.

Derivatives II

- lacksquare Derivative of $f:\mathbb{R} o \mathbb{R}$ at a is slope of tangent line
- Tangent line: "touches" graph of function at point
- Best affine approximation to f near a.
- Notation: f'(a), or $\frac{df}{dx}\Big|_a$ (if you must).

Definition of derivative

■ Definition of derivative of $f: \mathbb{R} \to \mathbb{R}$ at $a \in \mathbb{R}$:

$$f'(a) := \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Intuition: Limit of slopes of secant lines ("rise over run")

Definition of derivative

■ Definition of derivative of $f: \mathbb{R} \to \mathbb{R}$ at $a \in \mathbb{R}$:

$$f'(a) := \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

- Intuition: Limit of slopes of secant lines ("rise over run")
- How can we calculate derivatives numerically?

Numerically: Cannot take limit $h \to 0$

- Numerically: Cannot take limit $h \to 0$
- lacksquare So don't! Fix h>0 to get **finite difference** approximation:

$$f'(a) \simeq \frac{f(a+h) - f(a)}{h}$$

- Numerically: Cannot take limit $h \to 0$
- lacksquare So don't! Fix h>0 to get **finite difference** approximation:

$$f'(a) \simeq \frac{f(a+h) - f(a)}{h}$$

How good is this approximation? See later

- Numerically: Cannot take limit $h \to 0$
- lacksquare So don't! Fix h>0 to get **finite difference** approximation:

$$f'(a) \simeq \frac{f(a+h) - f(a)}{h}$$

- How good is this approximation? See later
- Do better: calculate derivatives exactly!

Alternative viewpoint: Little-o notation

■ Rewrite by hiding annoying limit:

$$\lim_{h\to 0} \left\lceil \frac{f(a+h)-f(a)}{h} - f'(a) \right\rceil = 0$$

Alternative viewpoint: Little-o notation

Rewrite by hiding annoying limit:

$$\lim_{h\to 0}\left[\frac{f(a+h)-f(a)}{h}-f'(a)\right]=0$$

 \blacksquare So f(a+h)=f(a)+hf'(a)+o(h) where $\frac{o(h)}{h}\to 0$ when $h\to 0$

Alternative viewpoint: Little-o notation

■ Rewrite by hiding annoying limit:

$$\lim_{h\to 0}\left[\frac{f(a+h)-f(a)}{h}-f'(a)\right]=0$$

- \blacksquare So f(a+h)=f(a)+hf'(a)+o(h) where $\frac{o(h)}{h}\to 0$ when $h\to 0$
- lacksquare o(h): "some function that goes to 0 *faster* than h"
- "Little-o notation"

Derivative from $\overline{f(a+h)}$

■ We showed that if f is differentiable at a then

$$f(a+h) = f(a) + hf'(a) + o(h)$$

Derivative from f(a+h)

lacktriangle We showed that if f is differentiable at a then

$$f(a+h) = f(a) + hf'(a) + o(h)$$

• We also have the **converse**: Suppose f(a+h)=A+Bh+o(h). Then A=f(a) and B=f'(a).

Derivative from f(a+h)

lacktriangle We showed that if f is differentiable at a then

$$f(a+h) = f(a) + hf'(a) + o(h)$$

- We also have the **converse**: Suppose f(a+h) = A + Bh + o(h). Then A = f(a) and B = f'(a).
- Use to calculate derivatives: calculate f(a + h)
- lacktriangle Put in this form to extract derivative as coefficient of h

Infinitesimals

- \blacksquare Simplify by thinking of "infinitesimal" perturbation ϵ
- $\quad \blacksquare \text{ With } \epsilon^2 = 0$

Infinitesimals

- \blacksquare Simplify by thinking of "infinitesimal" perturbation ϵ
- $With <math>\epsilon^2 = 0$
- Manipulate first-order Taylor expansions:

Infinitesimals

- \blacksquare Simplify by thinking of "infinitesimal" perturbation ϵ
- $With <math>\epsilon^2 = 0$
- Manipulate first-order Taylor expansions:
- $f(a+\epsilon) = f(a) + \epsilon f'(a)$
- $Expand <math>f(a+\epsilon) = A + B\epsilon$
- lacktriangle Coefficient of ϵ is derivative

Let's derive some of the rules of derivatives from calculus

- Let's derive some of the rules of derivatives from calculus
- Sum of two functions:

$$(f+g)(x) := f(x) + g(x)$$

- Let's derive some of the rules of derivatives from calculus
- Sum of two functions:

$$(f+g)(x) := f(x) + g(x)$$

■ Want (f+g)'(a) so calculate $[f+g](a+\epsilon)$:

- Let's derive some of the rules of derivatives from calculus
- Sum of two functions:

$$(f+g)(x) := f(x) + g(x)$$

■ Want (f+g)'(a) so calculate $[f+g](a+\epsilon)$:

$$\begin{split} [f+g](a+\epsilon) &= f(a+\epsilon) + g(a+\epsilon) \\ &= [f(a)+\epsilon f'(a)] + [g(a)+\epsilon g'(a)] \\ &= [f(a)+g(a)] + [f'(a)+g'(a)]\epsilon \end{split}$$

■ Hence (f+g)'(a) = (coefficient of ϵ) = f'(a)+g'(a).

Product rule for derivatives

Product of two functions:

$$(f\cdot g)(x):=f(x)\cdot g(x)$$

(Here · is normal scalar multiplication)

Product rule for derivatives

Product of two functions:

$$(f \cdot g)(x) := f(x) \cdot g(x)$$

(Here · is normal scalar multiplication)

■ Calculate $(f \cdot g)(a + \epsilon)$:

$$[f \cdot g](a + \epsilon) = f(a + \epsilon) \cdot g(a + \epsilon)$$

$$= [f(a) + \epsilon f'(a)] \cdot [g(a) + \epsilon g'(a)]$$

$$= [f(a) \cdot g(a)] + [f(a)g'(a) + g(a)f'(a)]\epsilon.$$

■ Hence $(f \cdot g)'(a) = f(a)g'(a) + g(a)f'(a)$.

Derivatives from rules: Algorithmic differentiation

- For complicated function, execute each rule in turn
- $\blacksquare \text{ E.g. } h(x) = 3x^2 + 2x = +(3*(x*x), 2*x)$

Derivatives from rules: Algorithmic differentiation

- For complicated function, execute each rule in turn
- E.g. $h(x) = 3x^2 + 2x = +(3*(x*x), 2*x)$

What information do we need for each function?

Required information

- Fix point a where taking derivatives
- For function f, need exactly 2 pieces of information:
 - \blacksquare value f(a)
 - lacktriangle derivative f'(a)
- Represent f as

$$f \rightsquigarrow (f(a), f'(a))$$

Required information

- Fix point a where taking derivatives
- For function f, need exactly 2 pieces of information:
 - \blacksquare value f(a)
 - lacktriangle derivative f'(a)
- Represent f as

$$f \rightsquigarrow (f(a), f'(a))$$

■ How can we represent this in Julia?

Representation in Julia

Need to group together 2 pieces of information

Representation in Julia

- Need to group together 2 pieces of information
- Could use tuple or vector etc.
- But want novel **behaviour**, i.e. rules for + and \times .

Representation in Julia

- Need to group together 2 pieces of information
- Could use tuple or vector etc.
- But want novel **behaviour**, i.e. rules for + and \times .

- So define a new type
- Commonly called dual number

Dual number type in Julia

■ Make an immutable dual number type:

Dual number type in Julia

Make an immutable dual number type:

```
```julia
struct Dual{T<:Real}
 value::T
 deriv::T
end
```</pre>
```

- Recall: composite type is a template for box containing data
- T is a type parameter, any subtype of real numbers
- lacksquare Dual(a, b) corresponds directly to $a+\epsilon b$

Creating dual numbers

Create dual number by calling constructor, as usual:

```
julia> Dual(3, 4)
Dual{Int64}(3, 4)
```

■ Note that Julia automatically infers the type T as Int64

Implementing arithmetic

■ To implement arithmetic, import relevant functions:

```
import Base: +, *
```

Add methods acting on objects of type Dual:

```
+(f::Dual, g::Dual) = Dual(f.value + g.value, f.deriv + g.deriv)
```

Differentiation using dual numbers

- Suppose have Julia function like $f(x) = x^2 + 2x$
- How can we differentiate f at a=3?

Differentiation using dual numbers

- Suppose have Julia function like $f(x) = x^2 + 2x$
- How can we differentiate f at a=3?

- lacktriangle We need ϵ components for derivative
- \blacksquare So want to calculate $f(a+\epsilon)=f(a)+\epsilon f'(a)$

Differentiation using dual numbers

- Suppose have Julia function like $f(x) = x^2 + 2x$
- How can we differentiate f at a=3?

- lacktriangle We need ϵ components for derivative
- \blacksquare So want to calculate $f(a+\epsilon)=f(a)+\epsilon f'(a)$

Differentiation II

- lacktriangle Recall that $a+b\epsilon$ corresponds to Dual(a, b)
- So define xx = Dual(a, 1)
- And call f(xx)
- [Represents identity function $x \mapsto x$ at x = a, with derivative 1].

Higher-dimensional functions

- How calculate derivatives of higher-dimensional functions?
- lacksquare Consider f(x,y)
- Suppose take dual numbers with same ϵ :
- Set $x = a + c\epsilon$ and $y = b + d\epsilon$
- Calculate

$$f(a+c\epsilon,b+d\epsilon)$$

Directional derivative

lacksquare For $f:\mathbb{R}^n o \mathbb{R}$, derivative is

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} f(\mathbf{a} + \epsilon \mathbf{v})$$

Directional derivative in direction v

Directional derivative

 \blacksquare For $f:\mathbb{R}^n \to \mathbb{R}$, derivative is

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} f(\mathbf{a} + \epsilon \mathbf{v})$$

- Directional derivative in direction v
- In 2D, define

$$g(\epsilon) := f(a + v_1 \, \epsilon, b + v_2 \, \epsilon)$$

Directional derivative II

 $\blacksquare \text{ Expand } g(\epsilon) := f(a + v_1 \, \epsilon, b + v_2 \, \epsilon) \colon$

Directional derivative II

 $\blacksquare \text{ Expand } g(\epsilon) := f(a + v_1 \, \epsilon, b + v_2 \, \epsilon) \colon$

$$g(\epsilon) = f(a,b) + v_1 \epsilon \frac{\partial f}{\partial x}(a,b) + v_2 \epsilon \frac{\partial f}{\partial y}(a,b)$$

lacksquare Coefficient of ϵ is

$$v_1 \frac{\partial f}{\partial x}(a,b) + v_2 \frac{\partial f}{\partial y}(a,b) = \nabla f(a,b) \cdot \mathbf{v}$$

Directional derivative II

 $\blacksquare \text{ Expand } g(\epsilon) := f(a + v_1 \, \epsilon, b + v_2 \, \epsilon) \colon$

$$g(\epsilon) = f(a,b) + v_1 \epsilon \frac{\partial f}{\partial x}(a,b) + v_2 \epsilon \frac{\partial f}{\partial y}(a,b)$$

lacksquare Coefficient of ϵ is

$$v_1 \frac{\partial f}{\partial x}(a,b) + v_2 \frac{\partial f}{\partial y}(a,b) = \nabla f(a,b) \cdot \mathbf{v}$$

How can we calculate this?

Calculating directional derivatives

lacksquare f(Dual(a, $v_{\scriptscriptstyle 1}$), Dual(b, $v_{\scriptscriptstyle 2}$) calculates $abla f(a,b) \cdot \mathbf{v}!$

Calculating directional derivatives

- lacksquare f(Dual(a, $\mathbf{v}_{\scriptscriptstyle 1}$), Dual(b, $\mathbf{v}_{\scriptscriptstyle 2}$) calculates $abla f(a,b) \cdot \mathbf{v}!$
- ${f v}=(1,0)$ gives $\partial f/\partial x$
- $\mathbf{v} = (0,1)$ gives $\partial f/\partial y$

Jacobian

 \blacksquare For $f:\mathbb{R}^2 \to \mathbb{R}^2$, have $f=(f_1,f_2)$ with

$$f_i(\mathbf{a} + \epsilon \mathbf{v}) = f_i(\mathbf{a}) + \epsilon \nabla f_i(\mathbf{a}) \cdot \mathbf{v}$$

So

$$f(\mathbf{a} + \epsilon \mathbf{v}) = f(\mathbf{a}) + \epsilon \, Df(\mathbf{a}) \cdot \mathbf{v}$$

- $\blacksquare \ Df(\mathbf{a})$ is Jacobian matrix of partial derivatives $\frac{\partial f_i}{\partial x_j}$
- lacktriangle Coefficient of ϵ is Jacobian–vector product

Summary

- We can implement rules to calculate derivatives
- By defining a new type and overloading operations
- Extends directly to derivatives of higher-dimensional functions