Dự Đoán Khả Năng Sống Sót Thảm Họa Titanic Bằng Machine Learning

- Nguyễn Tuấn Đạt, Châu Hải Đăng, Trần Đại Thắng -

Problem Review

Thuộc dạng bài toán phân lớp (Classification)

Input:

- Dữ liệu hành khách gồm thông tin cá nhân và vé tàu từ **Kaggle Titanic Dataset**.

Output:

- Khả năng sống sót của của hành khách (0 hay 1).

Notice:

- Tập dữ liệu bị thiếu, mất mát và nhiễu. Cần tiền xử lí và phân tích đặc trưng.

Dataset

Source:

- Kaggle - Titanic: Machine Learning from Disaster.

https://www.kaggle.com/competitions/titanic/dat

<u>nttps://www.kaggie.com/competitions/titanic/data</u>					
Embarked	Bến khởi hành	Parch	Cha mẹ, Con cái	SibSp	Anh, chị, em và họ hàng
PClass	Hạng khoa	Fare	Giá vé	PassengerId	Mã hành khách
Age	Tuổi	Sex	Giới tính	Survived	Sống sót
Name	Tên	Cabin	Số cabin	Ticket	Mã vé

- Gồm 891 bộ train và 418 bô test.
- Tỉ lệ phân lớp của tập train xấp xỉ 1:2

Propose Method

Exploring Data Analysis

Đáng c	hú ý	
Fare	Mật độ outlier dày	
Age	đặc	
Sibps	Mật thiết với và có	
Parch	thể xử lí chung	

Thuộc tính	Thiếu	Tỉ lệ
Cabin	687	77.1%
Age	177	~20%
Embark	2	0.22%

Preprocessing & Freature Engineering

- Thực nghiệm 1: One-hot Encoding

Thậc nghiệm 1. One học Encoung.			
Đặc trưng	Phương Thức xử lí	One-hot encoding	
PassengerID, Ticket	Đặc trưng không hữu dụng với mô hình. Loại bỏ (drop).		
Name	Trích xuất đặc trưng thành danh hiệu - Tittle.	X	
Age, Fare	Sử dụng trung vị (median) cho dữ liệu thiếu		
Embarked	Giả sử các giá trị thiếu là cảng phổ biến nhất vì chỉ có 2 dữ liệu thiếu.	X	
Cabin	Chuyển mã cabin về thành phân chia khu vực trong tàu, các giá trị thiếu cho là unknown.	Х	
Sex	Chỉ One-hot.	Х	

- Thực nghiệm 2: Label Encoding (Phương thức xử lí tương tự thực nghiệm 1, Chỉ khác Encoding)

Model Training

Proposed models:

3. Gradient boosting

Evaluating Method:

 K-Fold Cross validation và kaggle submition score.

Tuning Method:

- Kết hợp giữa K-Fold và GridSearch Cho các hyperparameters của các model.

Model Evaluating

Ex1: One-Hot Encoding

Baseline	Kaggle Score	accuracy
LogisticRegression	0.78708	79.90%
LogisticRegressionCV	0.78708	79.10%
RandomForestClassifier	0.73923	81.58%
GradientBoostingClassifier	0.76555	82.37%

Ex2: Label Encoding

Baseline	Kaggle Score	accuracy
LogisticRegression	0.75837	81.48%
LogisticRegressionCV	0.78468	81.26%
RandomForestClassifier	0.77033	81.03%
GradientBoostingClassifier	0.76794	82.71%

Result

Best Model:

- Logistic Regression.

Best Fearture Engineering method:

One-hot Encoding.

Prove:

0.78708