THE COLLINS-ROSCOE MECHANISM AND D-SPACES

XU YUMING¹ AND DÁNIEL SOUKUP²

ABSTRACT. We prove that if a space X is well ordered (αA) , or linearly semi-stratifiable, or elastic then X is a D-space.

1. Introduction

The connections between D-spaces and generalized metric spaces has been extensively studied. The aim of this paper is to prove the following theorems.

- Spaces satisfying well-ordered (αA) are D-spaces.
- Linearly semi-stratifiable spaces are D-spaces.
- Elastic spaces are D-spaces.

The proofs are based on Gruenhage's method of sticky relations.

The paper has the following structure. In Section 2 we introduce the Collins-Roscoe mechanism and give the basic definitions. In Section 3 we define the notion of D-spaces and briefly introduce how sticky relations are used to prove that a certain space is D. In Sections 4, 5 and 6 we prove the three results above.

2. The Collins-Roscoe mechanism

The expression *Collins-Roscoe structuring mechanism* refers to several definitions of generalized metric properties. In [5] P. J. Collins and A. W. Roscoe introduced the following notion.

Definition 2.1. We say that a space X satisfies condition (G) iff there is $W = \{W(x) : x \in X\}$, where $W(x) = \{W(m,x) : m \in \omega\}$, such that $x \in W(m,x) \subseteq X$ with the following property. For every open set U containing $x \in X$, there exists an open set V(x,U) containing x such that $y \in V(x,U)$ implies $x \in W(m,y) \subseteq U$ for some $m \in \omega$.

If we strengthen condition (G) by not allowing the natural number m to vary with y, then we say that X satisfies condition (A). The precise definition is the following.

Definition 2.2. We say that a space X satisfies condition (A) iff there is $W = \{W(x) : x \in X\}$, where $W(x) = \{W(m,x) : m \in \omega\}$, such that $x \in W(m,x) \subseteq X$ with the following property. For every open set U containing $x \in X$, there exists

1

²⁰⁰⁰ Mathematics Subject Classification. Primary 54D20. Secondary 54E20.

Key words and phrases. Collins-Roscoe mechanism; well-ordered (αA) ; linearly semi-stratifiable space; elastic space; D-space.

Corresponding author. E-mail: daniel.t.soukup@gmail.com

This work is supported by NSF of Shandong Province(No.ZR2010AM019) and NNSF of China(No.10971186).

an open set V(x,U) containing x and a natural number m=m(x,U) such that $x \in W(m,y) \subseteq U$ for all $y \in V(x,U)$.

If each W(n,x) is open (a neighborhood of x), we say that X satisfies open (neighborhood) (G) or open(neighborhood) (A), respectively. If $W(n+1,x) \subseteq W(n,x)$ for each $n \in \omega$, we say that X satisfies decreasing (G) or decreasing (A).

The Collins-Roscoe mechanism has been extensively studied, and a lot of significant results have been obtained. Let us summarize [5, Theorem 1] and [6, Theorem 8] in 2.3.

Theorem 2.3. The following are equivalent for a space X.

- (1) X is metrisable,
- (2) X satisfies decreasing open (A),
- (3) X satisfies decreasing open (G),
- (4) X satisfies decreasing neighborhood (A).

Stratifiable spaces are well known generalizations of metric spaces; see [14]. They have a characterization using the Collins-Roscoe mechanism as well. Theorem 2.4 summarizes [1, Theorem 2.2] and a remark from [6].

Theorem 2.4. The following are equivalent for a space X.

- (1) X is stratifiable,
- (2) X satisfies decreasing (G) and has countable pseudo-character,
- (3) X satisfies decreasing (A) and has countable pseudo-character.

We define a third condition denoted by (F), which is weaker than condition (G).

Definition 2.5. We say that a space X satisfies condition (F) iff there is $\mathcal{W} = \{\mathcal{W}(x) : x \in X\}$ such that $x \in W \subseteq X$ for all $W \in \mathcal{W}(x)$ with the following property. For every open U containing x there is an open V = V(x, U) containing x such that $y \in V$ implies $x \in W \subseteq U$ for some $W \in \mathcal{W}(y)$.

We say that X satisfies well-ordered (F) if each $\mathcal{W}(x)$ is well-ordered by reverse inclusion. We make a remark about well ordered (F) spaces in the last section.

3. D-spaces and sticky relations

In [7], van Douwen and Pfeffer introduced the concept of D-spaces.

Definition 3.1. An open neighborhood assignment (ONA) on a space (X, τ) is a function $N: X \to \tau$ such that $x \in N(x)$ for all $x \in X$. X is a D-space iff for all ONA N, there is a closed discrete subset D of X such that $N[D] = \{N(d) : d \in D\}$ covers X.

We recommend G. Gruenhage's paper [13] which gives a full review on what we know and do not know about D-spaces.

The following method of G. Gruenhage [12] provides us a useful tool for proving that a spaces is a D-space.

Definition 3.2. Let X be a space. A relation R on X is nearly good iff $x \in \overline{A}$ implies that there is $y \in A$ such that xRy. Let N denote an ONA. If $X' \subseteq X$ and $D \subseteq X$ we say that D is N-sticky mod R on X' if whenever $x \in X'$ and xRy for some $y \in D$ then $x \in \bigcup N[D]$.

Theorem 3.3 ([12, Proposition 2.2]). Let X be a space and N an ONA on X. Suppose R is a nearly good relation on X such that every non-empty closed subset F of X contains a non-empty closed discrete subset D which is N-sticky mod R on F. Then there is a closed discrete D^* in X with $\bigcup N[D^*] = X$.

Let $Z \subseteq X$ and N an ONA on X. We say that Z is N-close iff $Z \subseteq N(x)$ for all $x \in Z$.

Theorem 3.4 ([12, Proposition 2.4]). Let N be a neighborhood assignment on X. Suppose there is a nearly good R on X such that for any $y \in X$, $R^{-1}(y) \setminus N(y)$ is the countable union of N-close sets. Then there is a closed discrete D such that $\cup N[D] = X$.

As an easy application of his method, Gruenhage proves in [12, Proposition 2.5] that spaces satisfying open (G) are D-spaces. The same proof yields the following.

Proposition 3.5. If the space X satisfies condition (G) then X is a D-space.

Proof. Let $W = \{W(x) : x \in X\}$, where $W(x) = \{W(n,x) : n \in \omega\}$, witness condition (G). We use the notation V(x,U) from Definition 2.1 as well.

Let N be an ONA on X. We will apply Theorem 3.4 for the following relation R. Let xRy iff $x \in W(n,y) \subseteq N(x)$ for some $n \in \omega$. Then R is nearly good; indeed, let $x \in \overline{A}$ for some $A \subseteq X$. Then $V(x,N(x)) \cap A \neq \emptyset$ and xRy for any $y \in V(x,N(x)) \cap A$.

Let $y \in X$ and let $C_n = \{x \in X : x \in W(n,y) \subseteq N(x)\}$ for $n \in \omega$. Clearly $R^{-1}(y) = \bigcup \{C_n : n \in \omega\}$ and $C_n \subseteq W(n,y)$ is N-close. Thus by Theorem 3.4 there is some closed discrete $D \subseteq X$ such that $X = \bigcup N[D]$.

4. Well ordered (αA) spaces

Our goal now is to prove that spaces satisfying well-ordered (αA) are D-spaces.

Definition 4.1. Let X be a space, α an ordinal. We say that X satisfies (αA) iff there is $\mathcal{W} = \{\mathcal{W}(x) : x \in X\}$, where $\mathcal{W}(x) = \{W(\beta, x) : \beta < \alpha\}$, such that $x \in W(\beta, x) \subseteq X$ with the following property. For every open U containing x, there exists an open set V(x, U) containing x and an ordinal $\beta = \varphi(x, U) < \alpha$ such that $x \in W(\beta, y) \subseteq U$ for all $y \in V(x, U)$.

If, in addition, $W(\beta, x) \subseteq W(\gamma, x)$ whenever $\gamma < \beta < \alpha$, then we say that X satisfies well-ordered (αA) .

Theorem 4.2. If the space X satisfies well-ordered (αA) (for some ordinal α) then X is a D-space.

Proof. Let $W = \{W(x) : x \in X\}$, where $W(x) = \{W(\beta, x) : \beta < \alpha\}$, witness condition (αA) . We use the notation V(x, U) and $\varphi(x, U)$ from Definition 4.1 as well.

Let N be a neighborhood assignment on X. We will define a relation R on X and apply Theorem 3.3. Let xRy iff $x \in W(\beta, y)$ for $\beta = \varphi(x, N(x))$. Clearly R is nearly good; indeed, let $x \in \overline{A}$ for some $A \subseteq X$. Then $V(x, N(x)) \cap A \neq \emptyset$ and xRy for any $y \in V(x, N(x)) \cap A$.

Suppose that $F \subseteq X$ is closed and non-empty. We show that there is a closed discrete $D \subseteq F$ such that D is N-sticky mod R on F. Let $\beta_0 = \min\{\varphi(y, N(y)) :$

 $y \in F$ and pick $y \in F$ such that $\beta_0 = \varphi(y, N(y))$. Let $D = \{y\}$. Suppose that xRy for some $x \in F$. Then for $\beta = \varphi(x, N(x))$ the following holds

$$x \in W(\beta, y) \subseteq W(\beta_0, y) \subseteq N(y)$$

since $\beta \geq \beta_0$. Thus D is N-sticky mod R on F, and so by Theorem 3.3 there is some closed discrete $D^* \subseteq X$ such that $X = \bigcup N[D^*]$.

Now we formulate some corollaries. It is proved in [2] that (semi-)stratifiable spaces are D-spaces. We can slightly strengthen this result.

Definition 4.3 ([20, Definition 2.2]). Let (X, τ) be a T_1 topological space and $\alpha \geq \omega$ an ordinal. X is said to be stratifiable over α or linearly stratifiable iff there exists a mapping $G: \alpha \times \tau \to \tau$ with the following properties (write $U_\beta = G(\beta, U)$).

- (1) $\overline{U_{\beta}} \subseteq U$ for all $\beta < \alpha$ and $U \in \tau$,
- (2) $\bigcup \{U_{\beta} : \beta < \alpha\} = U \text{ for all } U \in \tau,$
- (3) if $U \subseteq V$ then $U_{\beta} \subseteq V_{\beta}$ for all $\beta < \alpha$,
- (4) if $\gamma < \beta < \alpha$ then $U_{\gamma} \subseteq U_{\gamma}$ for all $U \in \tau$.

From [17, Theorem 5.2] we know that linearly stratifiable spaces are well-ordered (αA) , thus we have the following.

Corollary 4.4. Linearly stratifiable spaces are D-spaces.

For a space (X, τ) let $\mathcal{D}_X = \{(x, U) : x \in U \in \tau\}.$

Definition 4.5. A space (X, τ) is said to be Borges normal iff there are operators $H: \mathcal{D}_X \to \tau$ and $n: \mathcal{D}_X \to \omega$ such that $H(x, U) \cap H(y, V) \neq \emptyset$ and $n(x, U) \leq n(y, V)$ implies $y \in U$ for all $(x, U), (y, V) \in \mathcal{D}_X$.

It can be proved that Borges normal spaces are special well-ordered (αA) spaces.

Theorem 4.6 ([18, Theorem 2.1]). A space X is Borges normal iff X satisfies well-ordered (ωA) .

Corollary 4.7. Borges normal spaces are D-spaces.

5. Linearly semi-stratifiable spaces

In [2], Borges and Wehrly proved that semi-stratifiable spaces are D-spaces. We find a common generalization of this and Corollary 4.4, that is, we show that linearly semi-stratifiable spaces are D-spaces.

Let (X, τ) be a T_1 -space and let \mathcal{F}_X denote the family of all closed subsets of X.

Definition 5.1. X is said to be semi-stratifiable over α (for some ordinal α) or linearly semi-stratifiable if there exists a mapping $F: \alpha \times \tau \to \mathcal{F}_X$ such that:

- (1) $U = \bigcup \{F(U, \beta) : \beta < \alpha\}$ for all $U \in \tau$;
- (2) if $U \subseteq W$ then $F(U,\beta) \subseteq F(W,\beta)$ for all $\beta < \alpha$;
- (3) if $\gamma < \beta < \alpha$, then $F(U, \gamma) \subseteq F(U, \beta)$ for all $U \in \tau$.

Theorem 5.2. If the space X is semi-stratifiable over α (for some ordinal α) then X is a D-space.

Proof. Let $F: \alpha \times \tau \to \mathcal{F}_X$ be the function witnessing that X is linearly semi-stratifiable.

Let N be ONA on X. We will define a relation R on X and apply Theorem 3.3. Let $\sigma(x) = \min\{\beta < \alpha : x \in F(N(x), \beta)\}$ for $x \in X$. Let xRy iff $x \in N(y)$

or $\sigma(x) < \sigma(y)$. We prove that R is nearly good. Suppose that $x \in \overline{A}$ however $x \notin R^{-1}(y)$ for all $y \in A$. Thus $x \notin \bigcup \{N(y) : y \in A\}$ and $\sigma(y) \leq \sigma(x)$ for all $y \in A$. Thus $y \in F(N(y), \sigma(y)) \subseteq F(N(y), \sigma(x))$ for all $y \in A$. Thus

$$A \subseteq F(\cup \{N(y) : y \in A\}, \sigma(x)) \subseteq \cup \{N(y) : y \in A\} \subseteq X \setminus \{x\}.$$

 $F(\cup \{N(y): y \in A\}, \sigma(x))$ is closed hence $x \in \overline{A} \subseteq F(\cup \{N(y): y \in A\}, \sigma(x))$, which is a contradiction. This proves that R is nearly good.

Suppose that $F \subseteq X$ is closed and nonempty. We show that there is a closed discrete $D \subseteq F$ such that D is N-sticky mod R on F. Let $\sigma = \min\{\sigma(y) : y \in F\}$ and let $y \in F$ such that $\sigma = \sigma(y)$. Let $D = \{y\}$. If xRy for some $x \in F$ then $x \in N(y)$ since $\sigma(x) \geq \sigma(y)$. Thus D is N-sticky mod R on F, and so by Theorem 3.3 there is some closed discrete $D^* \subseteq X$ such that $X = \bigcup N[D^*]$.

6. Elastic spaces

Our aim now is to prove that *elastic spaces* are D-spaces. Elastic spaces were first introduced by H. Tamano and J. E. Vaughan in [19] as a natural generalization of stratifiable spaces. First we need the definition of a pair-base which is due to J. G. Ceder [4].

Definition 6.1. Let X be a space. A collection \mathcal{P} of ordered pairs $P = (P_1, P_2)$ of subsets of X is called a pair-base provided that P_1 is open for all $P \in \mathcal{P}$ and that for every $x \in X$ and open set U containing x, there is a $P \in \mathcal{P}$ such that $x \in P_1 \subseteq P_2 \subseteq U$.

The following definition of elastic spaces is an improvement of the original one and due to Gartside and Moody [11].

Definition 6.2. A space X is elastic if there is a pair-base \mathcal{P} on X and transitive relation < on P such that

- (1) if P, P' ∈ P are such that P₁ ∩ P'₁ ≠ ∅ then P ≤ P' or P' ≤ P;
 (2) if P ∈ P and P' ⊆ {P' ∈ P : P' ≤ P} then ∪{P'₁ : P' ∈ P'} ⊆ ∪{P'₂ : P' ∈ P'}.

Note that the relation \leq should be reflexive.

Before we show that elastic spaces are D-spaces, we need the following proposition which is implicitly in [19, Lemma 2].

Proposition 6.3. Suppose that \leq is a reflexive, transitive relation on the set S, then there is a reflexive, antisymmetric relation \leq on S such that:

- (1) if $x, y \in S$ and $x \leq y$, then $x \leq y$ or $y \leq x$;
- (2) if A is a non-empty subset of S, then A has a \leq -minimal element, i.e. there is an $x \in A$ such that $y \not\preceq x$ whenever $y \in A \setminus \{x\}$;
- (3) if $A \subseteq S$ and $A \subseteq \{x \in S : x \leq s\}$ for some $s \in S$, then $A \subseteq \{x \in S : x \leq s'\}$ for some $s' \in S$.

Proof. Let $S = \{s_{\alpha} : \alpha < \kappa\}$ and $S(\alpha) = \{s \in S : s \leq s_{\alpha}\}$ for $\alpha < \kappa$. By induction on $\alpha < \kappa$ we define a reflexive and antisymmetric relation \leq_{α} on $\cup \{S(\beta) : \beta \leq \alpha\}$ such that \leq_{α} extends \leq_{β} for $\beta < \alpha < \kappa$ and then let \leq to be $\cup \{\leq_{\alpha} : \alpha < \kappa\}$.

Let \leq_0 denote a well-ordering of S(0). Let $\alpha < \kappa$ and suppose that \leq_{β} is constructed for $\beta < \alpha$. Let $S'(\alpha) = S(\alpha) \setminus \bigcup \{S(\beta : \beta < \alpha)\}$. Let \leq_{α} be a wellordering on $S'(\alpha)$ and also put $s \leq_{\alpha} s'$ if $s' \in S'(\alpha)$ and $s \in S(\alpha) \cap (\cup \{S(\beta) : \beta < \beta \})$ α). Let $\leq_{\alpha} = \cup \{\leq_{\beta} : \beta < \alpha\} \cup \leq_{\alpha}$; this is reflexive and antisymmetric. Finally, let \leq to be $\cup \{\leq_{\alpha} : \alpha < \kappa\}$.

Clearly \leq is reflexive and antisymmetric on S. First we shall verify (1). Let us suppose that $x \leq y$ for some $x, y \in S$. Let $\alpha_0 = \min\{\alpha < \kappa : y \in S(\alpha)\}$, since \leq is transitive we have $x \in S(\alpha_0)$. Then by definition $x \leq_{\alpha} y$ or $y \leq_{\alpha} x$ thus $x \leq y$ or $y \leq x$.

Next we show that every nonempty $A\subseteq S$ has a \preceq -minimal element. First note the following.

Claim 6.4. If $s, s' \in S$, $s \leq s'$ and $\alpha < \kappa$ is minimal such that $s, s' \in \cup \{S(\beta) : \beta \leq \alpha\}$ then $s \leq_{\alpha} s'$, $s' \in S'(\alpha)$ and $s \in S(\alpha)$.

Proof. Let $\gamma < \kappa$ minimal such that $s \preceq_{\gamma} s'$. Thus $s, s' \in \cup \{S(\beta) : \beta \leq \gamma\}$ hence $\alpha \leq \gamma$. If $\alpha < \gamma$ then $s, s' \notin S'(\gamma)$ so s and s' are not related by \leq_{γ} . Hence there is some $\beta < \gamma$ such that $s \preceq_{\beta} s'$ (by the definition of \preceq_{γ}). This contradicts the choice of γ . Thus $\alpha = \gamma$ and $s \preceq_{\alpha} s'$. Clearly $s \leq_{\alpha} s'$ by the definition of \preceq_{α} since s and s' are not related by \preceq_{δ} for any $\delta < \alpha = \gamma$. Thus $s' \in S'(\alpha)$ and $s \in S(\alpha)$.

Suppose that $\emptyset \neq A \subseteq S$. Let $\alpha_0 = \min\{\alpha < \kappa : A \cap S(\alpha) \neq \emptyset\}$. Then $A \cap S(\alpha_0) \subseteq S'(\alpha_0)$. Since $S'(\alpha_0)$ is well-ordered by \leq_{α_0} , there is an $x \in A \cap S(\alpha_0)$ which is \leq_{α_0} -minimal in $A \cap S(\alpha_0)$. We show that x is \preceq -minimal in A. Clearly x is \preceq -minimal in $A \cap S(\alpha_0)$. If $y \preceq x$ for some $y \in A$ then for the minimal $\alpha < \kappa$ such that $x, y \in \cup \{S(\beta) : \beta \leq \alpha\}$ we have $\alpha_0 < \alpha$. By the claim $x \in S'(\alpha)$ which is a contradiction. Thus x is \preceq -minimal in A, i.e. (2) holds.

Finally we show that if A is \leq upper bounded then also \leq upper bounded. Suppose that $A \subseteq \{x \in S : x \leq s\}$ for some $s \in S$. Let $\alpha_0 = \min\{\alpha < \kappa : s \in S(\alpha)\}$. We shall show that $A \subseteq S(\alpha_0)$, that is, s_{α_0} is a \leq upper bound for A. Clearly $s \in S'(\alpha_0)$. Let $x \in A$ and let α be minimal such that $x, s \in \cup \{S(\beta) : \beta \leq \alpha\}$. Then $s \in S'(\alpha)$ by the claim and $x \leq s$. Hence $\alpha = \alpha_0$ and $x \in S(\alpha_0)$, using the claim again. This proves $A \subseteq S(\alpha_0)$.

Theorem 6.5. If X is elastic then X is a D-space.

Proof. Let \mathcal{P} be the pair-base on X with some relation \leq witnessing that X is elastic. There is a reflexive antisymmetric relation \leq on \mathcal{P} by Proposition 6.3 with the following properties:

- (a) if $P, P' \in \mathcal{P}$ are such that $P_1 \cap P'_1 \neq \emptyset$ then $P \leq P'$ or $P' \leq P$;
- (b) if \mathcal{P}' is a non-empty subset of \mathcal{P} , then there is a \preceq -minimal element of \mathcal{P}' ;
- (c) if $P \in \mathcal{P}$ and $\mathcal{P}' \subseteq \{P' \in \mathcal{P} : P' \leq P\}$ then $\overline{\cup \{P'_1 : P' \in \mathcal{P}'\}} \subseteq \cup \{P'_2 : P' \in \mathcal{P}'\}$.

Let us enumerate \mathcal{P} as follows. By property (b), there is an element of \mathcal{P} , denoted by P^0 , such that $P \not\preceq P^0$ whenever $P \in \mathcal{P} \setminus \{P^0\}$. Assume P^γ has been selected for each $\gamma < \beta$, and $P \not\preceq P^\gamma$ whenever $P \in \mathcal{P} \setminus \{P^\eta : \eta \le \gamma\}$. If $\mathcal{P} \setminus \{P^\gamma : \gamma < \beta\} \ne \emptyset$, there is an element of $\mathcal{P} \setminus \{P^\gamma : \gamma < \beta\}$, denoted by P^β , such that $P \not\preceq P^\beta$ whenever $P \in \mathcal{P} \setminus \{P^\gamma : \gamma \le \beta\}$. Thus \mathcal{P} can be enumerated as $\mathcal{P} = \{P^\beta : \beta < \lambda\}$ such that (d) $P^{\beta'} \not\preceq P^\beta$ if $\beta < \beta' < \lambda$.

Let N be an ONA on X. We will define a relation R on X and apply Theorem 3.3. Let $\sigma(x) = \min\{\beta < \lambda : x \in P_1^\beta \subseteq P_2^\beta \subseteq N(x)\}$ for $x \in X$. Let xRy iff $x \in N(y)$ or $P^{\sigma(x)} \preceq P^{\sigma(y)}$. We prove that R is nearly good. Suppose that $x \in \overline{A}$ however $x \notin R^{-1}(y)$ for all $y \in A$. Thus $x \notin N(y)$ and $P^{\sigma(x)} \not \preceq P^{\sigma(y)}$ for all $y \in A$. Let $A_1 = A \cap P_1^{\sigma(x)} \neq \emptyset$. Since $P_1^{\sigma(x)} \cap P_1^{\sigma(y)} \neq \emptyset$ we have $P^{\sigma(y)} \preceq P^{\sigma(x)}$ for all $y \in A_1$. Thus

$$\overline{\cup \{P_1^{\sigma(y)} : y \in A_1\}} \subseteq \cup \{P_2^{\sigma(y)} : y \in A_1\} \subseteq \cup \{N(y) : y \in A_1\} \subseteq X \setminus \{x\}$$

using $P_2^{\sigma(y)}\subseteq N(y)$ and $x\notin N(y)$ for $y\in A_1$. Clearly $x\in\overline{A_1}$ and $A_1\subseteq \cup\{P_1^{\sigma(y)}:y\in A_1\}.$

This yields $x \in \overline{A_1} \subseteq X \setminus \{x\}$ which is a contradiction. Thus R is nearly good. Suppose that $F \subseteq X$ is closed and nonempty. We show that there is a closed discrete $D \subseteq F$ such that D is N-sticky mod R on F. Let $\sigma = \min\{\sigma(y) : y \in F\}$ and let $y \in F$ such that $\sigma = \sigma(y)$. Let $D = \{y\}$. Suppose xRy for some $x \in F$. If $P^{\sigma(x)} \preceq P^{\sigma(y)}$ then $\sigma(x) = \sigma(y)$ since $\sigma(y) \leq \sigma(x)$ (and by property (d)). Thus $x \in P_1^{\sigma(x)} = P_1^{\sigma(y)} \subseteq P_2^{\sigma(y)} \subseteq N(y)$. If $P^{\sigma(x)} \not\preceq P^{\sigma(y)}$ then $x \in N(y)$. Thus D is N-sticky mod R on F, and so by Theorem 3.3 there is some closed discrete $D^* \subseteq X$ such that $X = \bigcup N[D^*]$.

Proto-metrisable spaces were introduced by P. Nyikos in his study of nonarchimedian spaces in [16].

Definition 6.6. Let X be a space, \mathcal{B} a base for the topology. The base \mathcal{B} is said to be an orthobase if whenever $\mathcal{B}' \subseteq \mathcal{B}$, either $\cap \mathcal{B}'$ is open or \mathcal{B}' is a local base for any point in $\cap \mathcal{B}'$. A space is said to be proto-metrisable if it is paracompact and has an orthobase.

Gartside and Moody proved that proto-metrisable spaces are elastic [10, Corollary 9]. Thus we can deduce the following corollary, which had already been obtained by Borges and Wehrly in [3].

Corollary 6.7. Every proto-metrisable space is a D-space.

Finally, let us mention a long standing problem of Borges and Wehrly. In [2], the authors asked whether monotonically normal paracompact spaces are D-spaces. Almost twenty years past, this question remains open. The following implications can be proved; for details see [15], [11] and [6].

 $\text{metrisable} \Rightarrow (\text{linearly-}) \text{stratifiable} \Rightarrow \textbf{elastic} \Rightarrow$

 \Rightarrow well-ordered (F) \Rightarrow monotone normal and (her.) paracompact

Since we know that elastic spaces are D-spaces, we think the following question is valuable to study.

Problem 6.8. Are well-ordered (F) spaces D-spaces?

We mention that Y. Z. Gao, H. Z. Qu and S. T. Wang gave an interesting characterization for monotonically normal paracompact spaces in [9].

References

- [1] Z. Balogh, Topological spaces with point-networks, Pro. Amer. Math. Soc. 94 (1985), 497-501.
- [2] C. R. Borges, A. C. Wehrly, A study of D-spaces, Topology Proc. 16 (1991), 7-15.
- [3] C. R. Borges, A. C. Wehrly, Another study of D-spaces, Questions and Answers in Gen. Topology 14 (1996), 73-76.
- [4] J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105-125.
- [5] P. J. Collins, A. W. Roscoe, Criteria for metrisability, Pro. Amer. Math. Soc. 90 (1984), 631-640.
- [6] P. J. Collins, G. M. Reed, A. W. Roscoe, M. E. Rudin, A lattice of conditions on topological spaces, Pro. Amer. Math. Soc. 94 (1985), 487-496.
- [7] E. K. van Douwen, W. F. Pfeffer, Some properties of the Sorgenfrey line and related spaces, Pacific J. Math. 81 (1979), 371-377.

- [8] Todd Eisworth, On D-spaces, Open Problems in Topology II, Elliott Pearl ed., Chapter 1 129-134, Elsevier Publishing, Amsterdam, The Netherlands, 2007.
- [9] Y. Z. Gao, H. Z. Qu, S. T. Wang, A note on monotonically normal spaces, Acta Math. Hungar. 117 (2007), 175-178.
- [10] P. M. Gartside, P. J. Moody, Proto-metrisable spaces are elastic, Topology Appl. 79 (1997), 49-62.
- $[11]\,$ P. M. Gartside, P. J. Moody, Well-ordered (F) spaces, Topology Proc. 17 (1992), 111-130.
- [12] G. Gruenhage, A note on D-spaces, Topology and its Appl. 153(2006), 2229–2240.
- [13] G. Gruenhage, A survey of D-spaces, Contemporary Math, to appear (http://auburn.edu/ \sim gruengf/papers/dsurv7.pdf)
- [14] G. Gruenahge, Generalized metric spaces, Handbook of Set-Theoretic Topology, Edited by K. Kunen and J. E. Vaughan, Chapter 10, 423-503, Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 1984.
- [15] J. M. Harris, On stratifiable and elastic spaces, Pro. Amer. Math. Soc. Vol. 122, No. 3, Nov. 1994, pp. 925-929.
- [16] P. J. Nyikos, Some surprising base properties in topology, in: Stavrakas and Allen. eds., Studies in Topology, 427-450.
- [17] I. S. Stares, Borges normality and generalized metric spaces, Topology Proc. 19 (1994), 277-305.
- [18] I. S. Stares, Concerning the Dugundji extension property, Topology Appl. 63 (1995), 165-172.
- [19] H. Tamano, J. E. Vaughan, Paracompactness and elastic spaces, Pro. Amer. Math. Soc. 28 (1971), 299-303.
- [20] J. E. Vaughan, Linearly stratifiable spaces, Pacific J. Math. Volume 43, Number 1 (1972), 253-266.
- 1 School of Mathematics, Shandong University, Jinan, China E-mail: xuyuming@sdu.edu.cn
- 2 Institute of Mathematics, Eötvös Loránd University, Budapest, Hungary E-mail: daniel.t.soukup@gmail.com