

Research on

Evolutional Integrated Satellite-Terrestrial Network (ISTN)

Hewu Li
Tsinghua University
Institute for Network Sciences and Cyberspace
IETF106 Singapore

ISTN is coming ...

- Providing global Internet access from sky (Satellite) has made a huge comeback in recent years.
- Building Integrated Satellite-Terrestrial Network (ISTN) and/or Satellite Internet has become attractive and emergency more and more.

 Consists of heterogeneous space nodes including Geostationary Orbit (GEO), Medium Earth Orbit (MEO), Low Earth Orbit (LEO) satellites and Ground Gateways.

ISTN is still all IP, but different challenge ...

- The goal of ISTN is to provide global seamless, ubiquitous services of accessing to Internet, is all networks(Satellite Network, 5G/6G, Internet...) together, which leading ISTN would still persist all IP architecture.
- Different from traditional satellite networks, ISTN based on the modern satellite networks, using huge number of satellites, which mean network connection would be always exist not like DTN, while the network connection would be always changing constantly not like terrestrial networks.

New challenge from ISTN just begin

- . ISTN introduces many new issues:
 - Frequent changes of spatial network connection due to the satellites continual movement, which would decrease routing convergence performance of IGP and BGP, moreover, such kind of dynamic timevarying spatial network topology would kill the performance of higher level protocols at the same time.
 - Frequent changes (about 20 minutes) of access router (satellite) for LEO users and servers, which bring new mobility storms and problems.
 - Large RTT and loss rate due to long transmission distance, which also kill the performance of today's transport protocols.
 - . New requirement for Security, Qos, Traffic Engineering, Management ...

It is time to start ...

- To investigate the future Application Scenarios and Network Structures of ISTN
- To test the performance of Internet protocols in ISTN especially on Routing and Transport area.
- To explore the unknown problems and challenges while integrating satellite networks and terrestrial networks.
- To study Protocols optimization for convergence of satellite networks and terrestrial networks
- To research on more new and effective addressing, routing, transport, and etc. solutions for future ISTN.

Thanks!!! Any comment are welcome!

lihewu@cernet.edu.cn

Satellite Using Scenarios in 5G

- 5G+Satellite <> 5G+Satellite Network
- With the wide-area coverage capability of satellites, operators can provide 5G commercial services in underdeveloped place and realize 5G services continuity, especially in emergency communication, maritime communication, aviation communication, railway communication and other scenarios.

Result: Topology stability

Factors	Meaning
N	the number of orbits
M	the number of satellites per orbit
G	the number of ground stations
p	the process time in each satellite node(described in III-C)

Result: Topology stability

Factors	Meaning
N	the number of orbits
M	the number of satellites per orbit
G	the number of ground stations
p	the process time in each satellite node(described in III-C)

Result: Routing Coverage

Result: Routing Usability

TABLE III
ROUTING USABLE TIME AND ROUTING USABLE PERCENTAGE IN ONE DAY PERIOD IN SATELLITE NETWORK

Satellite Network		p=0ms		p=10ms		p=20ms		p=30ms		p=60ms		p=90ms	
M = 10	N = 6	23.75h	98.97%	23.56h	98.19%	23.36h	97.35%	23.16h	96.48%	22.53h	93.88%	21.91h	91.28%
	N = 12	23.43h	97.61%	22.76h	94.82%	22.06h	91.92%	21.35h	88.94%	19.20h	80.01%	17.45h	72.72%
	N = 18	23.07h	96.14%	21.63h	90.14%	20.14h	83.91%	18.63h	77.62%	16.38h	68.25%	15.64h	65.17%
	N = 24	22.68h	94.52%	20.18h	84.08%	17.76h	74.01%	16.48h	68.68%	15.18h	63.24%	13.87h	57.79%
M = 20	N = 6	23.50h	97.92%	22.93h	95.53%	22.30h	92.92%	21.67h	90.31%	19.79h	82.47%	17.91h	74.63%
	N = 12	22.84h	95.18%	21.09h	87.88%	19.21h	80.04%	17.33h	72.21%	12.02h	50.10%-		39.96%
	N = 18	22.14h	92.23%	18.59h	77.46%	14.88h	62.01%	11.63h	48.47%	8.61h	35.88%	7.04h	29.33%
	N = 24	21.36h	88.99%	15.42h	64.23%	10.43h	43.46%	8.98h	37.40%	6.32h	26.31%	4.44h	18.49%
M = 40	N = 6	22.99h	95.79%	21.00h	87.50%	18.90h	78.75%	16.80h	70.01%	10.73h	44.71%	7.16h	29.85%
	N = 12	21.66h	90.27%	16.35h	68.14%	10.80h	44.99%	7.20h	29.99%	3.35h	13.95%	1.93h	8.03%
	N = 18	20.23h	84.29%	10.44h	43.50%	5.14h	21.42%	3.33h	13.87%	_	5.32%	0.34h	1.40%
	N = 24	18.66h	77.76%	6.19h	25.81%	2.99h	12.46%	1.60h	6.66%	0.09h	0.37%	0.00h	0.00%

nearly no usable time

TABLE IV
ROUTING USABLE TIME AND ROUTING USABLE PERCENTAGE IN ONE DAY PERIOD IN SATELLITE NETWORK IN ISTN

ISTN		p=0ms		p=10ms		p=20ms		p=30ms		p=60ms		p=90ms	
M = 10	N = 6 G = 3	23.70h	98.74%	23.45h	97.73%	23.21h	96.71%	22.97h	95.69%	22.23h	92.62%	21.49h	89.55%
	N = 12 G = 5	23.21h	96.72%	22.36h	93.19%	21.48h	89.52%	20.59h	85.79%	17.90h	74.59%	15.63h	65.14%
	N = 18 G = 7	22.57h	94.03%	20.60h	85.85%	18.53h	77.22%	16.48h	68.67%	12.74h	53.08%	10.36h	43.18%
	N = 24 G = 9	21.67h	90.29%	17.85h	74.35%	14.19h	59.12%	12.04h	50.17%	7.48h	31.15%	4.46h	18.60%
M = 20	N = 6 G = 3	23.30h	97.10%	22.40h	93.33%	21.49h	89.54%	20.58h	85.74%	17.85h	74.36%	15.11h	62.97%
	N = 12 G = 5	22.21h	92.52%	19.55h	81.45%	16.86h	70.26%	14.16h	59.02%	7.94h	33.07%	5.60h	23.32%
	N = 18 G = 7	20.74h	86.43%	15.29h	63.69%	9.91h	41.27%	6.65h	27.72%	2.41h	10.05%	0.96h	4.01%
	N = 24 G = 9	18.77h	78.20%	9.20h	38.31%	4.40h	18.35%	1.91h	7.96%	0.04h	0.16%	0.00h	0.00%
M = 40	N = 6 G = 3	22.50h	93.74%	18.91h	78.78%	15.31h	63.81%	11.73h	48.89%	5.10h	21.25%	2.63h	10.95%
	N = 12 G = 5	20.18h	84.08%	10.62h	44.26%	4.27h	17.79%	1.87h	7:79%	0.10h	0.42%	0.00h	0.00%

