- <u>Remark</u> 4.2. (a) If dim $Fix(R) \ge 2$ then it follows from the Jordan decomposition of self adjoint linear functionals, that there are at least two states in Fix(R) which have orthogonal support (compare the proof of D-III, Theorem 1.10.(a)).
- (b) If R is a pseudo-resolvent with values in a W*-algebra such that Fix(R') is contained in M_{\star} , then it follows from the proof of D-III, Lemma 1.2 that there exists a sequence of normal states in Fix(R') whith orthogonal supports in M .
- Lemma 4.3. Let R be an identity preserving pseudo-resolvent of Schwarz type on D = $\{\lambda \in \mathbb{C} : \operatorname{Re}(\lambda) > 0\}$ with values in the predual of a W*-algebra M . If the fixed space of the canonical extension $\hat{\mathbb{R}}$ of R to some ultrapower of \mathbb{M}_{\star} is infinite dimensional, then there exists a sequence (z_n) in \mathbb{M}_{1}^{+} and a sequence of states (ϕ_n) in \mathbb{M}_{\star} such that:
- (a) $\lim_{n} z_{n} = 0$ in the $s*(M,M_{*})$ -topology.
- (b) $\lim_{n} \| (\operatorname{Id} \lambda R(\lambda)) \phi_{n} \| = 0$ for all $\lambda \in D$.
- (c) $\phi_n(z_n) \ge \frac{1}{2}$ for all $n \in \mathbb{N}$.

<u>Proof.</u> Let (M_\star) be the ultrapower of M_\star with respect to some free ultrafilter $\mathcal U$ on $\mathbb N$. Since (M_\star) is the predual of a W*-subalgebra of $\hat M'$ (see D-III, Remark 2.4.(b)), there exists a sequence of states $(\hat \psi_n)$ in $\operatorname{Fix}(\hat R)$ such that the corresponding support projections are mutually orthogonal in $\hat M'$ (Lemma 4.1). For every $n \in \mathbb N$ let $(\psi_{n,k})$ $\in \hat \psi_n$ be a representing sequence of states , let

$$\phi := \sum_{n,k} 2^{-(n+k+1)} \psi_{n,k}$$

and let

$$p := \sup\{s(\psi_{n,k}) : n,k=1,..\}$$

in M . Then $_{\varphi}$ is a normal state on M which is faithful on the W*-algebra $M_{_{\rm D}}$. Since

$$1 = \langle \psi_{n,k}, s(\psi_{n,k}) \rangle = \psi_{n,k}(p)$$
 (n, k \in N)

it follows $\hat{\psi}_n(\hat{p})$ = 1 where \hat{p} is the canonical image of p in \hat{M} .