Elimination: The	Culting	Plane Method
Sunday January 26, 2025 6:22 BM	V	

XEK.

f, K convex.

So $\forall x,y$ $f(s) \geq f(x) + \langle \nabla f(x), s - x \rangle$

and for any optimen X*

$$0 \ge f(x_*) - f(x) \ge \langle \Delta f(x), x_* - x \rangle$$

So ne con eliminate a halfspace and focus on its compliment.

"Broay search" in R".

Separation Made Gover set $K \subseteq \mathbb{R}^n$ closed.

 $\forall x \in \mathbb{R}^n$, oracle returns $g(x) \in \mathbb{R}^n$ st.

 $\langle g(x), y-x \rangle \leq 0$

nada ha Ker

Perblan1. Gran E>0, Separation Tack of for KER! find $X \in K$ or deduce $Vol(K) < E^n$. example. To minimize conex f, we can set g(x)= Vf and K= \(\frac{2}{2}\x: \times \tau \) \(\frac{2}{2}\tau \). minimizen 3 Basic Algorithm Start with convex set $E^{(0)} \subseteq R^n$ At. KCE. Repeat: Choose $x \in E$

Repeat: Charge $x \in E$ - Query $SEP_{k}(x)$ - If $x \in k$ \longrightarrow Done \checkmark Else $H = \{y : \langle g(x), y - x \rangle \leq 0\}$ - Set $E \leftarrow E \cap H$.

Q1. Hors to choose E?!

5. Complexity?

Ellipsoid Algorithm

Maintain Ellipsoid E containing K.

 $E^{(0)} = B(0,R)$ (assuption: $K \subseteq Ball of Nadius R$) $E(A,Z) = \begin{cases} x : (x-Z)^T A^{-1}(x-Z) \leq 1 \end{cases}$

A > 0

x = conta q E.

What about next E?

É = min volume Ellipsorid containing ENH.

Lemma! E(A,Z) H= \{X \ \nabla \ \tau \ \tau \ \frac{7}{2} \}

2= Z - INTAV

 $\hat{A} = \frac{n^2}{n^2 - 1} \left(A - \frac{2}{n+1} \frac{A v v^T A}{v^T A v} \right)$

 $E(\hat{A}, \hat{z})$ is min volume Ellipsoid containing $E\cap H$.

Lowa 2. (i) $E \cap A \subseteq E(\hat{A}, \hat{Z})$ (ii) $Vol(E(\hat{A}, \hat{Z})) \subseteq e^{\frac{1}{2n+2}} vol(E(A, Z))$.

Fact.
For A,B \(\) R\(\), affine transformation \(\),

A \(\) B \(\) TA \(\) TB

\(\forall \) \(\forall \)

Pf. WLO6. We can assure Z=0, A=I. $E(A,Z) \text{ is } B(0,1). \quad Alar \quad V=e_1.$ $Z=-\frac{1}{NH} e_1 \quad \hat{A}=\frac{\hat{n}}{\hat{r}-1} \left(I-\frac{2}{NH}e_1e_1^T\right)$

$$= \frac{N^{2}-1}{N^{2}} \left(|X||^{2} + X_{1}^{2} \left(\frac{2}{N-1} \right) + \frac{4X_{1}}{N^{2}-1} + \frac{2X_{1}}{(N+1)^{2}} + \frac{1}{(N+1)^{2}} \frac{2}{(N+1)^{2}} \right)$$

$$= \frac{N^{2}-1}{N^{2}} \left(1 + \frac{1}{N^{2}-1} + \frac{2X_{1}}{N-1} + \frac{X_{1}}{N^{2}-1} + \frac{1}{N^{2}-1} + \frac{2}{(N+1)^{2}} \right)$$

$$= \frac{N^{2}-1}{N^{2}} \left(\frac{N^{2}}{N-1} + \frac{2X_{1}(1+X_{1})}{N-1} \right) \leq 1 \quad \text{Annice} \quad X_{1}(1+X_{1}) \leq 0.$$

$$VA(E) = \int dat(N) \quad VA(B)$$

$$= \left(\frac{N^{2}}{N^{2}-1} \right)^{\frac{1}{2}} = \left(\frac{N}{(N-1)N+1} \right)^{\frac{1}{2}} \cdot \frac{N-1}{N+1}$$

$$= \left(\frac{N^{2}}{N^{2}-1} \right)^{\frac{1}{2}} \cdot \left(1 - \frac{2}{N+1} \right)^{\frac{1}{2}} = \left(\frac{N}{(N-1)N+1} \right)^{\frac{1}{2}} \cdot \frac{N-1}{N+1}$$

$$= \left(\frac{N^{2}}{N^{2}-1} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$= \left(1 - \frac{1}{N^{2}} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$= \left(1 - \frac{1}{N^{2}} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$= \left(1 - \frac{1}{N^{2}} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$= \left(1 - \frac{1}{N^{2}} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$= \left(1 - \frac{1}{N^{2}} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$= \left(1 - \frac{1}{N^{2}} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$= \left(1 - \frac{1}{N^{2}} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$= \left(1 - \frac{1}{N^{2}} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$= \left(1 - \frac{1}{N^{2}} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$= \left(1 - \frac{1}{N^{2}} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$= \left(1 - \frac{1}{N^{2}} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$= \left(1 - \frac{1}{N^{2}} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$= \left(1 - \frac{1}{N^{2}} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$= \left(1 - \frac{1}{N^{2}} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$= \left(1 - \frac{1}{N^{2}} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$= \left(1 - \frac{1}{N^{2}} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$= \left(1 - \frac{1}{N^{2}} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$= \left(1 - \frac{1}{N^{2}} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$= \left(1 - \frac{1}{N^{2}} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$= \left(1 - \frac{1}{N^{2}} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$= \left(1 - \frac{1}{N^{2}} \right) \cdot \left(1 + \frac{1}{N^{2}-1} \right)^{\frac{1}{2}}$$

$$=$$

CS6550 Page 5

If E(s) = B(o, R) then at most $O\left(n \ln\left(\frac{R^n}{\epsilon^n}\right)\right) = O\left(n^2 \ln\frac{R}{\epsilon}\right)$ iterations to terrinate. The per iteration = $O(N^2)$ Dhat about function value? Sk(x)= { 0 x \ x \ x \ x $\min_{x \in Y} f(x) \iff \min_{x \in Y} f(x) + S(x)$ conex! For correx f, we can défine a $GRAD_{f}(x) = \S T: \forall y, f(y) \leq f(x)$ gradient d'acle >> VT(y-x) ≤ 0 } If is differentiable, then {\forallf(k)}= GRAD_f(x) _ continues, _ subdifferential. GRADE (x) is defined for XEDK $Pv = \delta^{k}$ and is any supporting hyperplane - i se an separating lone.

For X &K, any separating plane. (normal).

Then after the iterations
$$X^* = \operatorname{argmi}_{\Gamma} f$$
.

Then after the iterations $X^* = \operatorname{argmi}_{\Gamma} f$.

Then after the iterations $X^* = \operatorname{argmi}_{\Gamma} f$.

 $\operatorname{rin}_{\Gamma} f(X^{(i)}) - f(X^*) \leq \left(\frac{\operatorname{Vol}(E^{(n)})}{\operatorname{Vol}(\Omega)} \right)^n \left(\operatorname{wax}_{\Gamma} f(X) - \operatorname{mi}_{\Gamma} f(X) \right)$
 $\operatorname{rin}_{\Gamma} f(X^{(i)}) - \operatorname{rin}_{\Gamma} f(X) = \operatorname{vol}_{\Gamma} f(X)$
 $\operatorname{vol}_{\Gamma} f(X) = \operatorname{vol}_{\Gamma} f(X)$
 $\operatorname{vol}_{\Gamma} f(X) = \operatorname{hRAD}_{\Gamma} f(X)$

"Optimolity gap durps by a constant factor in O(n2) iterations."

Pf. Let
$$\alpha > \left(\frac{\mathcal{W}(E^{(R)})}{\mathcal{W}(Q)}\right)^{\frac{1}{n}}$$
. $S = (1-\alpha) \times^{\frac{1}{n}} + \alpha \Omega$

 $Val(S) = a^{\prime}Val(\Omega) > Val(E^{(w)})^{\frac{1}{n}}$

i. I y ESIE(k), i.e. y is separated from E(k) by some
(i) avery $x^{(i)}$. $\langle \nabla f(x^{(i)}), y-x^* \rangle$

2€ Ω $f((-\alpha)x^{+}+\alpha z) \geq f(x^{(i)})$

n . . (i) \

$$+(((-\alpha)X + \alpha \pm) \ge ((-\alpha)f(x^*) + \alpha f(z) \ge f(x^{(i)}) - f(x^*).$$
 $((-\alpha)f(x^*) + \alpha f(z) \ge f(x^{(i)}) - f(x^*).$

The we can use any progress findin $2) \ge 0$ with the following properties: linear (1) 2(x+dS) = d2(S) 2(x+dS) = d2(S) 2(x+dS) = d2(S). Monoton (2) $1 \le S \Rightarrow 2(x+dS) = 2(x+dS)$. The very Edipoid Method for convex $x \in \mathbb{R}^n$ $x \in$

v(·)= voe(·), midth, meanwidth, dianeter etc...

Cot. [Linear Prog.] To solve vain C^{TX} $X \in P = \{x : Ax > b\} \subseteq \mathbb{R}^{n}$ with $R = \max_{x \in P} \|x\|_{2}$, $Y = Vol(P)^{\frac{1}{n}}$, $H \geq 0$, $X \in P$ Ellipsid method finds $X \in P$ s.t. $X \in P$ $X \in$

Ellipsina vineurous
$$P^{n \times n} \in \mathcal{E}(\max_{P} C^{T} x - \min_{P} C^{T} x)$$

in the $O(N^{2}(n^{2} + \max_{P} (A)) log(\frac{R}{r \cdot E}))$

Pf. Set
$$f(x) = CTx + S_p(x)$$
. $E^{(0)} = B(0,R)$.
SEP_f(x) = C if $Ax \ge b$
 $-a_i$ for any i i A . $a_i^Tx < b$.