Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in

the application:

Listing of Claims:

1. (currently amended): A method of simultaneously transmitting signals

over a channel between a first device having N plurality of antennas and a second

device having M plurality of antennas, the method comprising:

processing a vector **s** representing L signals [s₁ ... s_L] with a transmit matrix

A that is computed to maximize capacity of the channel by multiplying the vector s

with the transmit matrix A, wherein the transmit matrix A is equal to VD, where V

is an eigenvector matrix for H^HH, H is the channel response from the first device to

the second device, $\mathbf{D} = \operatorname{diag}(d_1,...,d_L)$ and $|d_p|^2$ is the transmit power for p = 1 to L;

and

transmitting with a power constraint for each individual transmit antenna

path, wherein if $N \leq M$, then $D = I \cdot \operatorname{sqrt}(P_{\text{max}}/N)$, with I as an identity matrix, such

that the power transmitted by each of the N plurality of antennas is the same and

equal to P_{max}/N ; and if N>M, then $D = sqrt(d \cdot P_{max}/N) \cdot I$, such that the power

transmitted by antenna i for i = 1 to N is $(d \cdot P_{max}/N) \cdot (VV^{H})_{ii}$, and $d_{p} = d$ for p = 1 to

<u>L.</u>

2. (currently amended): The method of claim 1, wherein the transmit

matrix **A** is computed subject to the [[a]] power constraint.

Claims 3-7. (canceled)

- 2 -

- 8. (currently amended): The method of claim $\underline{1}$ [[7]], wherein $\underline{if N>M}$, then d=1/z and $z=\max_i \left(\!\!\!\left\langle VV^H\right\rangle_{\!\!\!ii}\right)\!\!\!$, such that the maximum power from any of the N plurality of antennas is P_{max}/N and the total power emitted from the N plurality of antennas combined is between P_{max}/M and P_{max} .
- 9. (currently amended): The method of claim $\underline{1}$ [[7]], wherein $\underline{if N>M}$, \underline{then} d=1, such that the power emitted by antenna i for i=1 to N is $(P_{max}/N) \cdot (VV^H)_{ii}$, and the total power emitted from the N plurality of antennas combined is P_{max}/M .
- 10. (previously presented): The method of claim 1, and further comprising: receiving at the M plurality of antennas signals transmitted by the first device; and

processing the signals received at each of the plurality of M antennas with receive weights and combining the resulting signals to recover the L signals.

- 11. (previously presented): The method of claim 1, wherein each of the L signals is baseband modulated using a multi-carrier modulation process, and wherein the processing comprises multiplying the vector s with a transmit matrix $\mathbf{A}(\mathbf{k})$ at each of a plurality of sub-carriers k.
- 12. (currently amended): A radio communication device for simultaneously transmitting signals over a channel <u>between N transmit antennas and M receive</u> <u>antennas</u>, the radio communication device comprising:
 - a. N plurality of antennas;
- b. N plurality of radio transmitters each coupled to a corresponding one of the plurality of antennas; and

- c. a baseband signal processor coupled to the N plurality of radio transmitters to process a vector \mathbf{s} representing L signals $[\mathbf{s}_1 \dots \mathbf{s}_L]$ with a transmit matrix \mathbf{A} that is computed to maximize capacity of the channel by multiplying the vector \mathbf{s} with the transmit matrix \mathbf{A} , wherein the transmit matrix \mathbf{A} is equal to \mathbf{VD} , where \mathbf{V} is an eigenvector matrix for $\mathbf{H}^H\mathbf{H}$, \mathbf{H} is the channel response from the first device to the second device, $\mathbf{D} = \text{diag}(d_1,\dots,d_L)$ and $|d_p|^2$ is the transmit power for p = 1 to L; and to transmit according to a power constraint for each individual transmit antenna path, wherein if $\mathbf{N} \leq \mathbf{M}$, then $\mathbf{D} = \mathbf{I} \cdot \text{sqrt}(P_{max}/\mathbf{N})$, with \mathbf{I} as an identity matrix, such that the power transmitted by each of the N plurality of antennas is the same and equal to P_{max}/\mathbf{N} ; and if $\mathbf{N} > \mathbf{M}$, then $\mathbf{D} = \text{sqrt}(\mathbf{d} \cdot P_{max}/\mathbf{N}) \cdot \mathbf{I}$, such that the power transmitted by antenna i for $\mathbf{i} = 1$ to \mathbf{N} is $(\mathbf{d} \cdot P_{max}/\mathbf{N}) \cdot (\mathbf{V}\mathbf{V}^H)_{ii}$, and $d_p = \mathbf{d}$ for p = 1 to L.
- 13. (currently amended): The device of claim 12, wherein the transmit matrix A is computed subject to the [[a]] power constraint.

Claims 14-18 (canceled)

- 19. (currently amended): The device of claim 12 [[18]], wherein if N>M, then d = 1/z and $z = \max_{i} \{(VV^H)_{ii}\}$ such that the maximum power from any antenna of the N plurality of antennas is P_{max}/N and the total power emitted from the N plurality of antennas combined is between P_{max}/M and P_{max} .
- 20. (currently amended): The device of claim 18, $\underline{12}$ [[18]], wherein $\underline{if N>M}$, $\underline{then} d = 1$, such that the power emitted by antenna i for i = 1 to N is $(P_{max}/N) \cdot (VV^H)_{ii}$, and the total power emitted from the N plurality of antennas combined is P_{max}/M .

- 21. (original): The device of claim 12, wherein each of the L signals is baseband modulated using a multi-carrier modulation process, and the baseband signal processor multiplies the vector s with a transmit matrix A(k) at each of a plurality of sub-carriers k.
- 22. (currently amended): A radio communication system for simultaneously transmitting signals over a channel <u>between N transmit antennas</u> and <u>M receive antennas</u>, the radio communication system comprising:
 - a. a first device comprising:
 - i. N plurality of antennas;
- ii. N plurality of radio transmitters each coupled to a corresponding one of the plurality of antennas; and
- iii. a baseband signal processor coupled to the N plurality of radio transmitters to process a vector \mathbf{s} representing L signals $[s_1 \dots s_L]$ with a transmit matrix \mathbf{A} that is computed to maximize capacity of the channel by multiplying the vector \mathbf{s} with the transmit matrix \mathbf{A} , wherein the transmit matrix \mathbf{A} is equal to \mathbf{VD} , where \mathbf{V} is an eigenvector matrix for $\mathbf{H}^H\mathbf{H}$, \mathbf{H} is the channel response from the first device to the second device, $\mathbf{D} = \text{diag}(d_1,\dots,d_L)$ and $|d_p|^2$ is the transmit power for p=1 to L; and to transmit according to a power constraint for each individual transmit antenna path, wherein if $\mathbf{N} \leq \mathbf{M}$, then $\mathbf{D} = \mathbf{I} \cdot \text{sqrt}(P_{\text{max}}/\mathbf{N})$, with \mathbf{I} as an identity matrix, such that the power transmitted by each of the N plurality of antennas is the same and equal to $P_{\text{max}}/\mathbf{N}$; and if $\mathbf{N} > \mathbf{M}$, then $\mathbf{D} = \text{sqrt}(\mathbf{d} \cdot P_{\text{max}}/\mathbf{N}) \cdot \mathbf{I}$, such that the power transmitted by antenna i for $\mathbf{i} = 1$ to \mathbf{N} is $(\mathbf{d} \cdot P_{\text{max}}/\mathbf{N}) \cdot (\mathbf{V}\mathbf{V}^H)_{ii}$, and $d_p = \mathbf{d}$ for p = 1 to L.
 - b. the second device comprising:
 - i. M plurality of antennas;
- ii. M plurality of radio receivers each coupled to a corresponding one of the plurality of antennas; and

iii. a baseband signal processor coupled to the \underline{M} [[N]] plurality of radio receivers to process signals output by the plurality of radio receivers with receive weights and combining the resulting signals to recover the L signals [$s_1 \dots s_L$].

Claims 23-26. (canceled)

- 27. (new): The system of claim 22, wherein if N>M, then d = 1/z and $z = \max_{i} \{(VV^H)_{ii}\}$ such that the maximum power from any antenna of the N plurality of antennas is P_{max}/N and the total power emitted from the N plurality of antennas combined is between P_{max}/M and P_{max} .
- 28. (new): The system of claim 22, wherein if N>M, then d=1, such that the power emitted by antenna i for i=1 to N is $(P_{max}/N) \cdot (VV^H)_{ii}$, and the total power emitted from the N plurality of antennas combined is P_{max}/M .
- 29. (new): The system of claim 22, wherein each of the L signals is baseband modulated using a multi-carrier modulation process, and the baseband signal processor multiplies the vector \mathbf{s} with a transmit matrix $\mathbf{A}(\mathbf{k})$ at each of a plurality of sub-carriers \mathbf{k} .