STAT5014 Homewoek 2

Yixin Chen

09/13/2020

Problem 3

Version control will help me keep track of any changes I made to the project. It will be needed in the final project of this course. Because there will be multiple people working on a project and we need to review the history of the code during the project.

Problem 4

a. Sensory data from five operators. http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/Sensory.dat

First, import the data.

```
url1 <- "http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/Sensory.dat"
sensory_raw <- fread(url1,fill = T, skip = 1, data.table = F)
saveRDS(sensory_raw, "sensory.RDS")
sensory_raw <- readRDS("sensory.RDS")</pre>
```

Second, clean the data with base R.

Third, clean the data with tidyverse

Here is the summary for sensory data:

Item	operator	n
Min.: 1.0	Min. :1	Min. :0.700
1st Qu.: 3.0	1st Qu.:2	1st Qu.:3.025
Median: 5.5	Median :3	Median :4.700
Mean: 5.5	Mean :3	Mean :4.657
3rd Qu.: 8.0	3rd Qu.:4	3rd Qu.:6.000
Max. $:10.0$	Max. :5	Max. $:9.400$

Here is a scatter plot for n versus Operator:

b. Gold Medal performance for Olympic Men's Long Jump, year is coded as 1900=0. http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/LongJumpData.dat

First, import the data.

```
url2 <- "http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/LongJumpData.dat"
longj_raw <- fread(url2,skip = 1,fill = T)
saveRDS(longj_raw, "longj.RDS")
longj_raw <- readRDS("longj.RDS")</pre>
```

Second, clean the data with base R.

Third, clean the data with tidyverse.

```
#colnames(longj_raw) <- rep(c("Year","LongJump"),4)
year <- longj_raw %>%
```

Here is the summary for long jump data:

Year	LongJump
Min. :-4.00	Min. :249.8
1st Qu.:21.00 Median :50.00	1st Qu.:295.4 Median :308.1
Mean :45.45	Mean :310.3
3rd Qu.:71.00	3rd Qu.:327.5
Max. $:92.00$	Max. $:350.5$

Here is a scatter plot for long jump data:

c. Brain weight (g) and body weight (kg) for 62 species. $http://www2.isye.gatech.edu/\sim jeffwu/wuhamadabook/data/BrainandBodyWeight.dat$

First, import the data.

```
url3 <- "http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/BrainandBodyWeight.dat"
bbweight_raw <- fread(url3,skip = 1,fill = T)
saveRDS(bbweight_raw, "bbweight.RDS")
bbweight_raw <- readRDS("bbweight.RDS")</pre>
```

Second, clean the data with base R.

```
bbweight_tidy_br <- data.frame(BodyWt = c(bbweight_raw$V1, bbweight_raw$V3, bbweight_raw$V5),

BrainWt = c(bbweight_raw$V2, bbweight_raw$V4, bbweight_raw$V6))
bbweight_tidy_br <- bbweight_tidy_br[1:62,]
```

Third, clean the data with tidyverse.

Here is the summary for Brain Body Weight data:

BodyWt	$\operatorname{BrainWt}$
Min.: 0.005	Min.: 0.10
1st Qu.: 0.600	1st Qu.: 4.25
Median: 3.342	Median: 17.25
Mean: 198.790	Mean: 283.13
3rd Qu.: 48.202	3rd Qu.: 166.00
Max. :6654.000	Max. :5712.00

Here is a scatter plot for long jump data:

d. Triplicate measurements of tomato yield for two varieties of tomatos at three planting densities. http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/tomato.dat

First, import the data.

```
url4 <- "http://www2.isye.gatech.edu/~jeffwu/wuhamadabook/data/tomato.dat"
tomato_raw <- fread(url4,skip = 1)

## Warning in fread(url4, skip = 1): Detected 3 column names but the data has 4

## columns (i.e. invalid file). Added 1 extra default column name for the first

## column which is guessed to be row names or an index. Use setnames() afterwards

## if this guess is not correct, or fix the file write command that created the

## file to create a valid file.

saveRDS(tomato_raw, "tomato.RDS")

tomato raw <- readRDS("tomato.RDS")</pre>
```

Second, clean the data with base R.

Third, clean the data with tidyverse.

Warning: Expected 3 pieces. Additional pieces discarded in 1 rows [2].

Here is the summary for tomato data:

_			
	Variety	Density	Yield
	Length:18	Min. :10000	Length:18
	Class :character	1st Qu.:10000	Class :character
	Mode :character	Median $:20000$	Mode :character
	NA	Mean $:20000$	NA

Variety	Density	Yield
NA	3rd Qu.:30000	NA
NA	Max. $:30000$	NA

Here is a scatter plot for Yield versus Density:

Problem 5

Finish this homework by pushing your changes to your repo. In general, your workflow for this should be:

##

- 1. git pull to make sure you have the most recent repo
- 2. In R: do some work
- 3. git add this tells git to track new files
- 4. git commit make message INFORMATIVE and USEFUL
- 5. git push this pushes your local changes to the repo

If you have difficulty with steps 1-5, git is not correctly or completely setup. See me for help.

Only submit the .Rmd and .pdf solution files. Names should be formatted HW2_lastname.Rmd and HW2_lastname.pdf