

A Structured Prediction Approach for Label Ranking

Anna Korba, Alexandre Garcia, Florence d'Alché-Buc LTCI, Télécom ParisTech, Université Paris-Saclay

Label ranking

Consider:

- A set of K items/labels : $\{1, ..., K\}$ (Ex: $\{1, 2, 3, 4\}$).
- A individual expresses her preferences as a full ranking (strict order \succ) over K:

$$a_1 \succ a_2 \succ \cdots \succ a_K \quad (Ex: 2 \succ 1 \succ 3 \succ 4)$$

• Also seen as the $permutation \sigma$ that maps an item to its rank:

$$a_1 \succ \cdots \succ a_K \Leftrightarrow \sigma \in \mathfrak{S}_K \text{ s.t. } \sigma(a_i) = i$$
(Ex: $\sigma(2) = 1, \sigma(1) = 2, \cdots \Rightarrow \sigma = 2134$)

• \mathfrak{S}_K : set of permutations of $\{1, \ldots, K\}$.

Learning problem

Goal: learn a function $s: \mathcal{X} \to \mathfrak{S}_K$ that minimizes the expected risk:

$$\min_{s: \mathcal{X} \to \mathfrak{S}_K} \mathcal{E}(s) = \int_{\mathcal{X} \times \mathfrak{S}_K} \Delta(s(x), \sigma) dP(x, \sigma). \tag{1}$$

with Δ some loss function, e.g.:

• Kendall's τ :

 $\Delta_{\tau}(\sigma, \sigma') = \sum_{i < j} \mathbb{I}[(\sigma(i) - \sigma(j))(\sigma'(i) - \sigma'(j)) < 0]$

• Hamming :

 $\Delta_H(\sigma, \sigma') = \sum_{i=1}^K \mathbb{I}[\sigma(i) \neq \sigma'(i)].$

Idea: Consider a family of Δ loss functions:

$$\Delta(\sigma, \sigma') = \|\phi(\sigma) - \phi(\sigma')\|_{\mathcal{F}}^2. \tag{2}$$

with $\phi: \mathfrak{S}_K \to \mathcal{F}$ some ranking embedding, i.e. that maps the permutations $\sigma \in \mathfrak{S}_K$ into a Hilbert space \mathcal{F} (e.g. \mathbb{R}^d for $d \in \mathbb{N}$).

Motivation: There exist ϕ_{τ} , ϕ_{H} such that Δ_{τ} and Δ_{H} write as (2).

Structured prediction approach

Pb: (1) is hard to optimize.

Idea: Introduce a surrogate problem:

$$\min_{g: \mathcal{X} \to \mathcal{F}} \mathcal{R}(g)$$
, with $\mathcal{R}(g) = \mathbb{E} \left[\| g(x) - \phi(\sigma) \|_{\mathcal{F}}^2 \right]$

 \Rightarrow easier to optimize since g has values in \mathcal{F} .

We can thus approach structured prediction in **two steps** (see [1, 2]):

• Step 1 (Regression): Learn g from $\mathcal{D}_N = (x_1, \phi(\sigma_1)), \dots, (x_N, \phi(\sigma_N))$ with any regression method (kNN, RF, Ridge regression...)

• Step 2 (Pre-image): for any $x \in \mathcal{X}$:

$$\widehat{s}(x) = d \circ \widehat{g}(x) = \underset{\sigma \in \mathfrak{S}_K}{\operatorname{argmin}} \|\phi(\sigma) - \widehat{g}(x)\|_{\mathcal{F}}^2$$

 \Longrightarrow Choice of ϕ and regression method matter

Embeddings proposed

Kemeny

$$\phi_{\tau} \colon \mathfrak{S}_{K} \to \mathbb{R}^{K(K-1)/2}$$
 Ex: $\sigma = 132$
$$\sigma \mapsto (\operatorname{sign}(\sigma(j) - \sigma(i)))_{1 \le i \le j \le K}$$

$$\phi_{\tau}(\sigma) = (1, 1, -1)$$

Properties: $\|\phi_{\tau}(\sigma) - \phi_{\tau}(\sigma')\|^2 = 4\Delta_{\tau}(\sigma, \sigma')$ and $\|\phi_{\tau}(\sigma)\| = \sqrt{K(K-1)/2}$. Pre-image problem: NP-Hard

Hamming

$$\phi_H \colon \mathfrak{S}_K \to \mathbb{R}^{K \times K}$$
 Ex: $\sigma = 132$
$$\sigma \mapsto (\mathbb{I}\{\sigma(i) = j\})_{1 \le i, j \le K}$$

$$\phi_H(\sigma) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Properties: $\|\phi_H(\sigma) - \phi_H(\sigma')\|^2 = \Delta_H(\sigma, \sigma')$ and $\|\phi_H(\sigma)\| = \sqrt{K}$. Pre-image problem: computed by the Hungarian algorithm in $\mathcal{O}(K^3)$

Lehmer

$$\phi_L \colon \mathfrak{S}_K \to \mathbb{R}^K$$
 Ex: $\sigma = 132$
$$\sigma \mapsto (\#\{i \in \llbracket K \rrbracket : i < j, \sigma(i) > \sigma(j)\}))_{i=1,\dots,K}$$

$$\phi_L(\sigma) = (0, 1, 0)$$

Properties: Related to Δ_{τ} : $\frac{1}{K-1}\Delta_{\tau}(\sigma, \sigma') \leq |\phi_L(\sigma) - \phi_L(\sigma')| \leq \Delta_{\tau}(\sigma, \sigma')$. Pre-image: by rounding towards closest integer and decoding Lehmer in $\mathcal{O}(K)$

Computational properties

Essala a dalisa sa	Embedding σ in $\phi(\sigma)$ Pre-image in \mathcal{F}			T	Prediction in \mathcal{F}
Embedding	Step 1 a	Step 2 b	Regressor	Learning g	$(dim(\mathcal{F}) = m)$
$\phi_{ au}$	$\mathcal{O}(K^2N)$	NP-hard		oreh i n	Step 2 a
ϕ_H	$\mathcal{O}(KN)$	$\mathcal{O}(K^3N)$	kNN	$\mathcal{O}(1)$	$\mathcal{O}(Nm)$
ϕ_L	$\mathcal{O}(KN)$	$\mathcal{O}(KN)$	Ridge	$\mathcal{O}(N^3)$	$\mathcal{O}(Nm)$

 Table 1: Embeddings and regressors complexities.

 \Longrightarrow Fastest: kNN+Lehmer in $\mathcal{O}(KN)$

Numerical results

Table 2: Mean Kendall's τ coefficient on benchmark datasets

	authorship	glass	iris	vehicle	vowel	wine
kNN Hamming	0.01 ± 0.02	0.08 ± 0.04	-0.15 ± 0.13	-0.21 ± 0.04	0.24 ± 0.04	-0.36 ± 0.04
kNN Kemeny	0.94 ± 0.02	0.85 ± 0.06	0.95 ± 0.05	0.85 ± 0.03	0.85 ± 0.02	0.94 ± 0.05
kNN Lehmer	0.93 ± 0.02	0.85 ± 0.05	0.95 ± 0.04	0.84 ± 0.03	0.78 ± 0.03	0.94 ± 0.06
ridge Hamming	-0.00 ± 0.02	0.08 ± 0.05	-0.10 ± 0.13	-0.21 ± 0.03	0.26 ± 0.04	-0.36 ± 0.03
ridge Lehmer	0.92 ± 0.02	0.83 ± 0.05	0.97 ± 0.03	0.85 ± 0.02	0.86 ± 0.01	0.84 ± 0.08
ridge Kemeny	0.94 ±0.02	0.86 ± 0.06	0.97 ± 0.05	0.89 ±0.03	0.92 ±0.01	0.94 ± 0.05
Cheng PL	0.94 ±0.02	0.84 ± 0.07	0.96 ± 0.04	0.86 ± 0.03	0.85 ± 0.02	0.95 ± 0.05
Cheng LWD	0.93 ± 0.02	0.84 ± 0.08	0.96 ± 0.04	0.85 ± 0.03	0.88 ± 0.02	0.94 ± 0.05
Zhou RF	0.91	0.89	0.97	0.86	0.87	0.95

Cheng PL [3], Cheng LWD [4], Zhou RF [5]

Kendall's τ coefficient corresponds to a rescaling of Kendall's tau distance d_{τ} between [-1,1] (so the closer from 1 is the better)

Theory vs computation

For **Kemeny** and **Hamming** embedding:

consistency holds ([1]):

$$\mathcal{E}(d \circ \widehat{g}) - \mathcal{E}(s^*) \leq c_{\phi} \sqrt{\mathcal{R}(\widehat{g})} - \mathcal{R}(g^*)$$
with $c_{\phi_{\tau}} = \sqrt{\frac{K(K-1)}{2}}$ and $c_{\phi_H} = \sqrt{K}$ (constants with K the number of labels)

• but the pre-image step is hard

In contrast, for the **Lehmer** embedding:

• we lose consistency:

$$\mathcal{E}(d \circ \widehat{g}) - \mathcal{E}(s^*) \le \sqrt{\frac{K(K-1)}{2}} \sqrt{\mathcal{R}(\widehat{g}) - \mathcal{R}(g^*)} + \mathcal{E}(d \circ g^*) - \mathcal{E}(s^*) + \mathcal{O}(K\sqrt{K})$$

• but the pre-image step is fast

References

[1] Carlo Ciliberto, Lorenzo Rosasco, and Alessandro Rudi. A consistent regularization approach for structured prediction.

In Advances in Neural Information Processing Systems, pages 4412–4420, 2016.

[2] Céline Brouard, Marie Szafranski, and Florence d'Alché Buc.

Input output kernel regression: supervised and semi-supervised structured output prediction with operator-valued kernels.

Journal of Machine Learning Research, 17(176):1–48, 2016.

[3] Weiwei Cheng, Eyke Hüllermeier, and Krzysztof J Dembczynski. Label ranking methods based on the plackett-luce model.

In Proceedings of the 27th Annual International Conference on Machine Learning (ICML-10), pages 215–222, 2010.

[4] W. Cheng and E. Hüllermeier.

A nearest neighbor approach to label ranking based on generalized labelwise loss minimization, 2013.

[5] Yangming Zhou and Guoping Qiu.Random forest for label ranking.Expert Systems with Applications, 2018.