

STUDENT ID NO									
			:						

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2018/2019

EEL1176 – FIELD THEORY

(All sections / Groups)

22 OCTOBER 2018 9.00 a.m - 11.00 a.m (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of 8 pages with 4 questions only.
- 2. Answer all **FOUR** questions. All questions carry equal marks and the distribution of the marks for each question is given.
- 3. Please write all your answers in the Answer Booklet provided.

Question 1 (25 marks)

- (a) Given vector $\vec{A} = y\hat{x} + (x+z)\hat{y}$ and point P is located at (-2,6,3). Determine the following:
 - (i) Express the location of point P in spherical coordinates.

[3 marks]

(ii) Evaluate vector \vec{A} at point P in the spherical system.

[7 marks]

(b) A structure with the following dimensions are provided: $2 \le r \le 6$; $\frac{\pi}{4} \le \varphi \le \pi$; z=0. Determine the total surface area by performing surface integral.

[4 marks]

- (c) Given a vector field $\vec{D} = 3R^2\hat{R}$. The flux $\iint_S \vec{D} \cdot ds = 180\pi$ for the region enclosed between the spherical shells defined by R = 1 and R = 2 as seen in Figure 1 (c). Answer the following:
 - (i) State the Divergence Theorem mathematically.

[1 mark]

(ii) Verify the Divergence theorem by determining the volume integral of the divergence $\iiint \nabla \cdot \bar{D} dv$ for the given region.

[10 marks]

Figure 1(c)

Continued ...

Question 2 (25 marks)

(a) A positively charged rod is brought close to a neutral piece of paper. The charged rod attracts the paper. Draw a diagram showing the separation of charge in the paper, and explain why attraction occurs.

[4 marks]

- (b) Two point charges $Q_1 = 3 \mu C$ and $Q_2 = -4\mu C$ are placed at (3, 2, 1) and (-4, 0, 6), respectively.
 - (i) Determine the force, \vec{F} on the charge $20\mu\text{C}$ at the origin (0, 0, 0).

[4 marks]

- (ii) Find the electric field intensity, \vec{E} on the charge $20\mu\text{C}$ at the origin (0, 0, 0).
- (c) A spherical shell of radius a shown in Figure 2(c) contains a uniform charge density of $\rho_v / 2$ (C/m³). Determine the electric flux density, **D** by the given Gaussian surfaces for each of the following cases:
 - (i) $0 < R_1 < a$

[5 marks]

(ii) $R_2 > a$

[5 marks]

(d) Figure 2(d) shows 2 parallel plate capacitors made of paper and plastic. Given the paper dielectric constant $\varepsilon_{r_1}=3.7$ and the plastic dielectric constant $\varepsilon_{r_2}=2$. Determine the capacitance for both configurations.

[All dimensions are in meters].

Figure 2(d)

Continued...

Question 3 (25 marks)

(a) State Ampere's Law and give its mathematical expression.

[4 marks]

- (b) Figure 3(b) shows the cross section of a long coaxial cable. Current, *I*, flows along the positive z-direction in the inner conductor and returns through the outer conductor. The radius of the inner conductor is a, and the inner and outer radii of the outer conductor are b and c, respectively.
 - (i) Determine the magnetic flux density, B in each of the following THREE regions: $r \le a$, $a \le r \le b$, and $b \le r \le c$.

[12 marks]

(ii) Plot the magnitude of magnetic flux density, B as a function of r.

[3 marks]

Figure 3(b)

(c) State ONE difference between electric force and magnetic force.

[2 marks]

(d) A charged particle with velocity \vec{u} is moving in a medium containing uniform fields $\vec{E} = 20\hat{x}$ V/m and $\vec{B} = 3\hat{y}$ Wb/m². Determine \vec{u} so that the particle experiences no net force

[4 marks]

Continued ...

Question 4 (25 marks)

- (a) Define the following terms
 - (i) Permeability

[2 mark]

(ii) Reluctance

[2 mark]

(iii) Coercive force

[2 mark]

- (b) A magnetic circuit is made of three different materials as shown in Figure 4(b). The relative permeability of materials 1, 2 and 3 are 2000, 1000, and 800 respectively. Material 1 has a cross section area, A_1 of (2×2) cm² and a length, L_1 of 10 cm. Material 2 has a cross section area, A_2 of (2×2) cm² and a length, L_2 of 4 cm. Material 3 has a cross section area, A_3 of (2×2) cm² and a length, L_3 of 6 cm. The coil carries a current, I = 0.5 A, has 500 turns and an air gap of 1 mm is created at material 1. By using magnetic circuit concepts (assume that fringing effect is negligible),
 - (i) Sketch the equivalent circuit for the magnetic circuit of Figure 4(b).

[5 marks]

(ii) Determine the total reluctance of the circuit.

[10 mark]

(iii) Calculate the magnetic flux of the circuit.

[2 mark]

[2 marks]

(iv) If a flux density of 0.4 Tesla is required at the air gap, what should be the new supplied current?

End of Paper

Appendix A: Physical Constants, Vector and Coordinate Transformations

Elementary charge

e 1.60 × 10⁻¹⁹ C

Permittivity of free space

 ε_0 8.85 × 10⁻¹² F/m

Permeability of free space

 μ_0 1.26 × 10⁻⁶ H/m = 4π × 10⁻⁷ H/m

	Cartesian Coordinates	Cylindrical Coordinates	Spherical Coordinates
Differential length	$\hat{x}dx + \hat{y}dy + \hat{z}dz$	$\hat{r}dr + \hat{\phi} r d\phi + \hat{z}dz$	$\hat{R}dR + \hat{\theta}Rd\theta + \hat{\phi}R\sin\theta d\phi$
Differential surface areas	$d\vec{s}_{x} = \hat{x} dydz$ $d\vec{s}_{y} = \hat{y} dxdz$	$d\vec{s}_r = \hat{r} rd\phi dz$ $d\vec{s}_\phi = \hat{\phi} dr dz$	$d\vec{s}_R = \hat{R} R^2 \sin \theta d\theta d\phi$ $d\vec{s}_\theta = \hat{\theta} R \sin \theta dR d\phi$
	$d\vec{s}_z = \hat{z} dx dy$	$d\overline{s}_z = \hat{z} r dr d\phi$	$d\vec{s}_{\phi} = \hat{\phi} R dR d\theta$
Differential volume	(dx)(dy)(dz)	$(dr)(r d\phi)(dz)$	$(dR)(R d\theta)(R \sin \theta d\phi)$

Transformation	Coordinate Variables	Unit Vectors	Vector Components
Cartesian &	$r = \sqrt{x^2 + y^2}$ $\phi = \tan^{-1}(y/x)$ $z = z$	$\hat{r} = \hat{x}\cos\phi + \hat{y}\sin\phi$ $\hat{\phi} = -\hat{x}\sin\phi + \hat{y}\cos\phi$ $\hat{z} = \hat{z}$	$A_r = A_x \cos \phi + A_y \sin \phi$ $A_\phi = -A_x \sin \phi + A_y \cos \phi$ $A_z = A_z$
Cylindrical	$x = r\cos\phi$ $y = r\sin\phi$ $z = z$	$\hat{x} = \hat{r}\cos\phi - \hat{\phi}\sin\phi$ $\hat{y} = \hat{r}\sin\phi + \hat{\phi}\cos\phi$ $\hat{z} = \hat{z}$	$A_{x} = A_{r} \cos \phi - A_{\phi} \sin \phi$ $A_{y} = A_{r} \sin \phi + A_{\phi} \cos \phi$ $A_{z} = A_{z}$
Spherical & Cartesian	$R = \sqrt{x^2 + y^2 + z^2}$ $\theta = \tan^{-1}(\sqrt{x^2 + y^2}/z)$ $\phi = \tan^{-1}(y/x)$	$\hat{R} = \hat{x} \sin \theta \cos \phi$ $+ \hat{y} \sin \theta \sin \phi + \hat{z} \cos \theta$ $\hat{\theta} = \hat{x} \cos \theta \cos \phi$ $+ \hat{y} \cos \theta \sin \phi - \hat{z} \sin \theta$ $\hat{\phi} = -\hat{x} \sin \phi + \hat{y} \cos \phi$	$A_{R} = A_{x} \sin \theta \cos \phi$ $+ A_{y} \sin \theta \sin \phi + A_{z} \cos \theta$ $A_{\theta} = A_{x} \cos \theta \cos \phi$ $+ A_{y} \cos \theta \sin \phi - A_{z} \sin \theta$ $A_{\phi} = -A_{x} \sin \phi + A_{y} \cos \phi$
	$x = R \sin \theta \cos \phi$ $y = R \sin \theta \sin \phi$ $z = R \cos \theta$	$\hat{x} = \hat{R} \sin \theta \cos \phi$ $+ \hat{\theta} \cos \theta \cos \phi - \hat{\phi} \sin \phi$ $\hat{y} = \hat{R} \sin \theta \sin \phi$ $+ \hat{\theta} \cos \theta \sin \phi + \hat{\phi} \cos \phi$ $\hat{z} = \hat{R} \cos \theta - \hat{\theta} \sin \theta$	$A_x = A_R \sin \theta \cos \phi$ $+ A_{\theta} \cos \theta \cos \phi - A_{\phi} \sin \phi$ $A_y = A_R \sin \theta \sin \phi$ $+ A_{\theta} \cos \theta \sin \phi + A_{\phi} \cos \phi$ $A_z = A_R \cos \theta - A_{\theta} \sin \theta$
Cylindrical &	$R = \sqrt{r^2 + z^2}$ $\theta = \tan^{-1}(r/z)$ $\phi = \phi$	$\hat{R} = \hat{r} \sin \theta + \hat{z} \cos \theta$ $\hat{\theta} = \hat{r} \cos \theta - \hat{z} \sin \theta$ $\hat{\phi} = \hat{\phi}$	$A_{R} = A_{r} \sin \theta + A_{z} \cos \theta$ $A_{\theta} = A_{r} \cos \theta - A_{z} \sin \theta$ $A_{\phi} = A_{\phi}$
Spherical	$r = R\sin\theta$ $\phi = \phi$ $z = R\cos\theta$	$\hat{r} = \hat{R}\sin\theta + \hat{\theta}\cos\theta$ $\hat{\phi} = \hat{\phi}$ $\hat{z} = \hat{R}\cos\theta - \hat{\theta}\sin\theta$	$A_r = A_R \sin \theta + A_\theta \cos \theta$ $A_\phi = A_\phi$ $A_z = A_R \cos \theta - A_\theta \sin \theta$

SP/NL/NCH/LYC 6/8

Appendix B: Gradient, Divergence, Curl and Laplacian Operators

Cartesian coordinate (x, y, z)

$$\nabla V = \hat{\mathbf{x}} \frac{\partial V}{\partial x} + \hat{\mathbf{y}} \frac{\partial V}{\partial y} + \hat{\mathbf{z}} \frac{\partial V}{\partial z}$$

$$\nabla \cdot \vec{\mathbf{A}} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \vec{\mathbf{A}} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} = \hat{\mathbf{x}} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{\mathbf{y}} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{\mathbf{z}} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)$$

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$$

Cylindrical coordinate (r, \, \phi, z)

$$\nabla V = \hat{r} \frac{\partial V}{\partial r} + \hat{\phi} \frac{1}{r} \frac{\partial V}{\partial \phi} + \hat{z} \frac{\partial V}{\partial z}$$

$$\nabla \cdot \vec{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \vec{A} = \frac{1}{r} \left| \begin{vmatrix} \hat{r} & \hat{\phi}r & \hat{z} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_r & rA_{\phi} & A_z \end{vmatrix} = \hat{r} \left(\frac{1}{r} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z} \right) + \hat{\phi} \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r} \right) + \hat{z} \frac{1}{r} \left[\frac{\partial}{\partial r} (rA_{\phi}) - \frac{\partial A_r}{\partial \phi} \right]$$

$$\nabla^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial r^2}$$

Spherical coordinate (R, θ, ϕ)

$$\begin{split} \nabla V &= \hat{R} \frac{\partial V}{\partial R} + \hat{\theta} \frac{1}{R} \frac{\partial V}{\partial \theta} + \hat{\phi} \frac{1}{R \sin \theta} \frac{\partial V}{\partial \phi} \\ \nabla \cdot \vec{A} &= \frac{1}{R^2} \frac{\partial}{\partial R} (R^2 A_R) + \frac{1}{R \sin \theta} \frac{\partial}{\partial \theta} (A_{\theta} \sin \theta) + \frac{1}{R \sin \theta} \frac{\partial A_{\phi}}{\partial \phi} \\ \nabla \times \vec{A} &= \frac{1}{R^2 \sin \theta} \begin{vmatrix} \hat{R} & \hat{\theta} R & \hat{\phi} R \sin \theta \\ \frac{\partial}{\partial R} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ A_R & R A_{\theta} & (R \sin \theta) A_{\phi} \end{vmatrix} \\ &= \hat{R} \frac{1}{R \sin \theta} \left[\frac{\partial}{\partial \theta} (A_{\phi} \sin \theta) - \frac{\partial A_{\theta}}{\partial \phi} \right] + \hat{\theta} \frac{1}{R} \left[\frac{1}{\sin \theta} \frac{\partial A_R}{\partial \phi} - \frac{\partial}{\partial R} (R A_{\phi}) \right] + \hat{\phi} \frac{1}{R} \left[\frac{\partial}{\partial R} (R A_{\theta}) - \frac{\partial A_R}{\partial \theta} \right] \\ \nabla^2 V &= \frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial V}{\partial R} \right) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2} \end{split}$$

Appendix C: Table of Integrals

$$\int \sin^2 \theta d\theta = \frac{\theta}{2} - \frac{1}{4} \sin 2\theta + \text{constant}$$

$$\int \cos^2 \theta d\theta = \frac{\theta}{2} + \frac{1}{4} \sin 2\theta + \text{constant}$$

$$\int \sin \theta \cos^2 \theta d\theta = -\frac{1}{3} \cos^3 \theta + \text{constant}$$

$$\int \cos \theta \sin^4 \theta d\theta = \frac{1}{5} \sin^5 \theta + \text{constant}$$

$$\int \sin 2\theta d\theta = -\frac{1}{2} \cos 2\theta + \text{constant}$$

$$\int x \sqrt{a^2 - x^2} dx = -\frac{1}{3} (a^2 - x^2)^{3/2} + \text{constant}$$

$$\int \sqrt{a^2 - x^2} dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \tan^{-1} \left(\frac{x}{\sqrt{a^2 - x^2}} \right) + \text{constant}$$

$$\int \frac{x}{\sqrt{a^2 - x^2}} dx = -\sqrt{a^2 - x^2} + \text{constant}$$

$$\int \frac{dz}{(r^2 + z^2)^{3/2}} = \frac{z}{r^2 \sqrt{r^2 + z^2}} + \text{constant}$$

$$\int \frac{rdr}{(r^2 + z^2)^{3/2}} = \frac{-1}{\sqrt{r^2 + z^2}} + \text{constant}$$

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + \text{constant}$$

End of Appendix

