MSE, MAE, RMSE [Cost function]

- 1) Mean Squared Error (MSE) V
- 3 MIGN ADSOLUR ETTOR (MAE)
- 3 Root Mean Squared Error (RMSE)

$$J(\theta_0,\theta_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h_0(x)_i)^2$$

Mean Squened Error

1) Meen Squared Error (MSE)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - y_i^2)^2$$

—) Quadratic Equation

V -) Conver function

Non Convex function

Advantage

- 1) Equation is differentiable
- 2) It has only one local Dr global minima.

Disaduentage

- 1) Not Robust to outliers
- 2) It is not in the Same unit

Advantage

- 1) Robust to outlier
- 2) It will be in the same
- O Convergence usually takes more time
- 3) RMSE (Rout Mran Squard Error)

$$RMSE = \sqrt{MSE}$$

$$= \sqrt{\frac{1}{n} \left(\frac{1}{1}, -ho(n); \right)^{2}}$$

Advantages

Discovantage

- 1) Same Unit
- 1) Not Robust to outliers.
- 1 Diffeentable

Note: Linear Regrenion

Performance Metrics = R^2 and Adjusted R^2 =) Arc of model Cost function \rightarrow Error \rightarrow MSE, MAE, RMSE