Concept	1-Categorical construction	∞ -Categorical construction	Intuition
Accessible category	\mathcal{C} is locally small, admits κ - filtered colimits, and there is a set of κ -compact objects that generate the category under κ - filtered colimits. ([nLa25a], Def 2.1)	\mathcal{C} is locally small, admits κ -filtered colimits, the full subcategory $\mathcal{C}^{\kappa} \subseteq \mathcal{C}$ of κ -compact objects is essentially small, and \mathcal{C}^{κ} generates \mathcal{C} under small, κ -filtered colimits. ([Lur09], Prop 5.4.2.2)	[todo]
F-Cartesian edge	$F: X \to S$ a functor, $f: x \to y$ a morphism in X is F -cartesian if the induced map $ X_{/f} \to X_{/y} \times_{S_{/F(y)}} S_{/F(f)} $ is an isomorphism of categories. ([nLa25b], Prop 2.4)	$F: X \to S$ an inner fibration of simplicial sets, $f: x \to y$ an edge in X is F -cartesian if the induced map $ X_{/f} \to X_{/y} \times_{S_{/F(y)}} S_{/F(f)} $ is a trivial Kan fibration. ([Lur09], Def 2.4.1.1)	In the model structure on sSet, the fibrations are Kan fibrations and the weak equivalences are weak homotopy equivalences ([Lur09], A.2.7). A trivial fibration in a model category is a map which is both a fibration and a weak equivalence, which in sSet is equivalent to the definition given in this table. Thus, being related by a Kan fibration is a higher categorical notion of 'sameness'. Why not a categorical equivalence? [Lur09] Rem 1.2.5.5 implies this is stronger, which would match more with the fact that the 1-categorical version is defined in terms of an isomorphism (not equivalence) of categories.
Category	Collection of objects C , set $\operatorname{Hom}(X,Y)$ for every $X,Y \in C$, associative composition and identity morphisms	Simplicial set $C: \Delta^{\text{op}} \to \mathbf{Set}$ satisfying the inner horn filling condition. ([Lur09], Def 1.1.2.4)	Category with objects C_0 , morphisms C_1 , morphisms between morphisms C_2 , etc. Inner horn filling defines a non-unique composition.
F-Cocartesian edge	$F: X \to S$ a functor, $f: x \to y$ a morphism in X is F -cocartesian if the induced map $X_{f/} \to X_{x/} \times_{S_{F(y)/}} S_{F(f)/}$ is an isomorphism of categories. ([nLa25b], Prop 2.4)	$F: X \to S$ an inner fibration of simplicial sets, $f: x \to y$ an edge in X is F -cartesian if the induced map $X_{f/} \to X_{x/} \times_{S_{F(y)/}} S_{F(f)/}$ is a trivial Kan fibration. ([Lur09], Def 2.4.1.1 / Prop 2.4.1.8)	Note that the definitions of an inner fibration and a Kan fibration are invariant under taking opposites. For other intuition, see: F-cartesian edge.
Colimit	A colimit for $F: J \to \mathcal{C}$ is an initial cocone on F .	A colimit for $F: X \to \mathcal{C}$ (X a simplicial set, \mathcal{C} an ∞ -category) is an initial object of $\mathcal{C}_{F/}$. ([Lur09], Def 1.2.13.4)	The obvious extension of the definition of the undercategory $\mathcal{C}_{C/}$ for $C: \{*\} \to \mathcal{C}$ to $\mathcal{C}_{/F}$ for an arbitrary functor $F: J \to \mathcal{C}$ ends up being exactly $\mathbf{Cocone}(F)$.
κ -Compact object	Let $C \in \mathcal{C}$, and let $j_C : \mathcal{C} \to \mathbf{Set}$ denote the functor represented by C . If \mathcal{C} admits κ -filtered col- imits, then C is κ -compact if j_C commutes with filtered colimits. ([Lur09], 5.3.4)	Let $C \in \mathcal{C}$, and let $j_C : \mathcal{C} \to \hat{\mathcal{S}}$ denote the functor represented by C . If \mathcal{C} admits κ -filtered colimits, then C is κ -compact if j_C preserves κ -filtered colimits. ([Lur09], Def 5.3.4.5)	[todo]
Dual object	[todo]	[todo]	[todo]
Essentially small category	\mathcal{C} equivalent to a small category.	\mathcal{C} equivalent ² to a small ∞ - category.	[todo]

¹Lurie introduces the term κ -continuous for such functors, but in ordinary category theory this generally means a functor which preserves κ -small limits; a functor preserving κ -filtered colimits is called κ -finitary. I have thus steered clear of this term.

²Categorically, or weakly?

Essentially surjective functor	$F: \mathcal{C} \to \mathcal{D}$ is essentially surjective if for every $D \in \mathcal{D}$, there ex-	$F: \mathcal{C} \to \mathcal{D}$ is essentially surjective if $hF: hC \to h\mathcal{D}$ is essentially sur-	Essentially surjective up to homotopy.
Faithful functor	ists some $C \in \mathcal{C}$ with $FC \cong D$. $F : \mathcal{C} \to \mathcal{D}$ is faithful if $\operatorname{Hom}(X,Y) \to \operatorname{Hom}(FX,FY)$ is injective for all $X,Y \in \mathcal{C}$.	jective. ([Lur09], Def 1.2.10.1) $F: \mathcal{C} \to \mathcal{D} \text{ is faithful if } hF:$ $h\mathcal{C} \to h\mathcal{D} \text{ is faithful. ([Lur09], Def}$ $1.2.10.1)$	Faithful up to homotopy.
κ -Filtered category	For a regular cardinal κ , \mathcal{C} is κ - filtered if, for every κ -small cat- egory J and every functor F : $J \to \mathcal{C}$, there exists a cocone on F .	For a regular cardinal κ , \mathcal{C} is κ - filtered if, for every κ -small simpli- cial set X and every map $f: X \to \mathcal{C}$, there exists a map $\overline{f}: K^{\triangleright} \to \mathcal{C}$ extending f . ([Lur09], Def 5.3.1.7)	A cocone on F is a collection of compatible maps $(\lambda_j : F(j) \to C)$. Define $\overline{F} : J \star [0] \to C$ to be F on J , send the cone point to C , and send the unique morphisms $*_j$ from $j \in J$ to the cone point to the λ_j . Conversely, if you have some \overline{F} extending F , define $\lambda_j := F(*_j)$.
Final object	Object $C \in \mathcal{C}$ such that for any other object $C' \in \mathcal{C}$, there exists a unique morphism $C' \to C$.	Object $C \in \mathcal{C}$ such that C is final in $h\mathcal{C}$, regarded as an enriched category over \mathcal{H} . ([Lur09], Def 1.2.12.1)	Object $C \in \mathcal{C}$ such that for any other object $C' \in \mathcal{C}$, there exists a unique (up to homotopy) morphism $C' \to C$.
Full functor	$F: \mathcal{C} \to \mathcal{D}$ is full if $\operatorname{Hom}(X,Y) \to \operatorname{Hom}(FX,FY)$ is surjective for all $X,Y \in \mathcal{C}$.	$F: \mathcal{C} \to \mathcal{D}$ is full if $hF: h\mathcal{C} \to h\mathcal{D}$ is full. ([Lur09], Def 1.2.10.1)	Full up to homotopy.
Functor	Functor.	Natural transformation of simplicial sets. ([Lur09], 1.2.7)	-
Groupoid	Category whose morphisms are all invertible.	Kan complex.	Not only can you find (non-unique) 'composites', but you can also fill in diagrams like $C \xrightarrow{\text{id}} C C \xrightarrow{\text{id}} D$ $f \downarrow \qquad $
Initial object	Object $C \in \mathcal{C}$ such that for any other object $C' \in \mathcal{C}$, there exists a unique morphism $C \to C'$.	Object $C \in \mathcal{C}$ such that C is initial in $h\mathcal{C}$, regarded as an enriched category over \mathcal{H} . ([Lur09], Def 1.2.12.1)	Object $C \in \mathcal{C}$ such that for any other object $C' \in \mathcal{C}$, there exists a unique (up to homotopy) morphism $C \to C'$.
Join	$ \begin{array}{c} \mathcal{C}\star\mathcal{D} \text{ has objects ob}\mathcal{C}\sqcup\text{ob}\mathcal{D},\\ \text{and } \mathrm{Hom}_{\mathcal{C}\star\mathcal{D}}(X,Y) \text{ is given by:}\\ \left\{ \begin{aligned} &\mathrm{Hom}_{\mathcal{C}}(X,Y) & X,Y\in\mathcal{C},\\ &\mathrm{Hom}_{\mathcal{D}}(X,Y) & X,Y\in\mathcal{D},\\ \end{aligned} \right.\\ \left\{ \begin{aligned} &\emptyset & X\in\mathcal{D},Y\in\mathcal{C},\\ &\ast & X\in\mathcal{C},Y\in\mathcal{D}. \end{aligned} \right.\\ \left([\mathrm{Lur09}], 1.2.8) \end{aligned} $	$\mathcal{C} \star \mathcal{D}$ has n -simplicies $(\mathcal{C} \star \mathcal{D}) = \mathcal{C}_n \cup \mathcal{D}_n \cup \bigcup_{i+j=n-1} \mathcal{C}_i \times \mathcal{D}_j$. The i th boundary map $d_i : (\mathcal{C} \star \mathcal{D})_n \to (\mathcal{C} \star \mathcal{D})_{n-1}$ is defined on \mathcal{C}_n and \mathcal{D}_n using the i th boundary map on \mathcal{C} and \mathcal{D} . Given $\sigma \in S_j, \tau \in T_k$, $d_i(\sigma, \tau)$ is given by $\begin{cases} (d_i \sigma, \tau) & i \leq j, \ j \neq 0, \\ (\sigma, d_{i-j-1}\tau) & i > j, \ k \neq 0. \end{cases}$ If $j = 0$, then $d_0(\sigma, \tau) = \tau$, and if $k = 0$, then $d_n(\sigma, \tau) = \sigma$. ([Lur09], Def 1.2.8.1 / [nLa25c])	Objects are in both cases disjoint unions of objects from the two categories being joined. Morphisms are also exactly the same in both cases (you get all the morphisms from \mathcal{C} and \mathcal{D} , plus a morphism from $c \to d$ for every pair $(c,d) \in \mathcal{C}_0 \times \mathcal{D}_0$). Whenever you have an n -simplex in \mathcal{C} and an m -simplex in \mathcal{D} , you get an $(m+n+1)$ -simplex in $\mathcal{C} \star \mathcal{D}$, so in particular $\Delta^n \star \Delta^m \cong \Delta^{m+n+1}$.
Left cone	$\mathcal{C}^{\triangleleft} := [0] \star \mathcal{C}.$	$ \begin{array}{ccc} \mathcal{C}^{\triangleleft} &:= \Delta^{0} \star \mathcal{C}. & ([\text{Lur09}], \text{ Not} \\ 1.2.8.4) \end{array} $	\mathcal{C} with extra vertex (cone point) added, as well as a map from that cone point to every other vertex in \mathcal{C} (plus obligatory degenerate simplicies).

Left Kan extension	Given a commutative diagram	Given a commutative diagram	In the 1-categorical case, the col-
(along the inclusion of a full subcategory)	Given a commutative diagram $C^0 \xrightarrow{F_0} \mathcal{D}$, F is a left Kan extension of F_0 along ι if there is a natural transformation $\eta: F_0 \to F\iota$ such that for any other pair $(G: \mathcal{C} \to \mathcal{D}, \gamma: F_0 \to G\iota)$, there exists a unique natural transformation $\alpha: F \to G$ such that $\gamma = (\alpha * \iota) \circ \eta$. ([Rie16], Def 6.1.1)	Given a commutative diagram $C^0 \xrightarrow{F_0} \mathcal{D}$, F is a left Kan extension of F_0 along ι if for all $C \in \mathcal{C}$, the induced diagram $C^0_{/C} \xrightarrow{F_C} \mathcal{D}$ exhibits FC as $(C^0_{/C})^{\triangleright}$ a colimit of F_C . ([Lur09], Def 4.3.2.2)	imits of $C_{/C}^0 \to C^0 \xrightarrow{F_0} \mathcal{D}$ for each $C \in \mathcal{C}$ (if they all exist) define the left Kan extension of F_0 along ι ([Rie16], Thm 6.2.1) ³ . This is the case if and only if F is a pointwise Kan extension ([Rie16], Thm 6.3.7), so really the higher categorical version generalises pointwise left Kan extensions (along the inclusion of a full subcategory).
Limit	A limit for $F: J \to \mathcal{C}$ is a terminal cone on F .	A limit for $F: X \to \mathcal{C}$ (X a simplicial set, \mathcal{C} an ∞ -category) is a final object of $\mathcal{C}_{/F}$. ([Lur09], Def 1.2.13.4)	The obvious extension of the definition of the overcategory $\mathcal{C}_{/C}$ for $C: \{*\} \to \mathcal{C}$ to $\mathcal{C}_{/F}$ for an arbitrary functor $F: J \to \mathcal{C}$ ends up being exactly $\mathbf{Cone}(F)$.
Locally small category	For every $X, Y \in \mathcal{C}$, $\text{Hom}(X, Y)$ is a set.	For every $X, Y \in \mathcal{C}$, the space $\operatorname{Hom}(X, Y)$ is essentially small. ([Lur09], Prop 5.4.1.7)	[todo]
Monoidal category	Opfibration of categories $p: \mathcal{C}^{\otimes} \to \Delta^{\text{op}}$ such that, for each $n \geq 0$, the associated functors $\mathcal{C}^{\otimes}_{[n]} \to \mathcal{C}^{\otimes}_{\{i,i+1\}}$ determine an equivalence of categories $\mathcal{C}^{\otimes}_{[n]} \to \mathcal{C}^{\otimes}_{\{0,1\}} \times \times \mathcal{C}^{\otimes}_{\{n-1,n\}} \simeq (\mathcal{C}^{\otimes}_{[1]})^n$.	Cocartesian fibration of simplicial sets $p: \mathcal{C}^{\otimes} \to N(\Delta)^{\mathrm{op}}$ such that, for each $n \geq 0$, the associated functors $\mathcal{C}^{\otimes}_{[n]} \to \mathcal{C}^{\otimes}_{\{i,i+1\}}$ determine an equivalence ⁴ of ∞ -categories $\mathcal{C}^{\otimes}_{[n]} \to \mathcal{C}^{\otimes}_{\{0,1\}} \times \times \mathcal{C}^{\otimes}_{\{n-1,n\}} \simeq (\mathcal{C}^{\otimes}_{[1]})^n$ ([Lur07], Def 1.1.2) ⁵	In the 1-categorical case, you recover the original category by setting $\mathcal{C} := \mathcal{C}_{[1]}^{\otimes}$. The unit is $\mathcal{C}_{[0]}^{\otimes}$, the tensor product \otimes is induced by the outer inclusion $\{0 < 2\} = [1] \subseteq [2]$, the unitors and associators come from the commutative diagrams $\{0,1\} \longleftarrow \{0,1,2\} \longrightarrow \{1,2\}$
			$ \begin{cases} \{0,3\} & \longrightarrow \{0,1,3\} \\ \downarrow & \downarrow \\ \{0,2,3\} & \longrightarrow \{0,1,2,3\} \end{cases} $
			in Δ . Conversely, given a monoidal category \mathcal{C} , define \mathcal{C}^{\otimes} to have objects finite sequences $[C_1,,C_n]$ of objects of \mathcal{C} , and a morphism $[C_1,,C_n] \rightarrow [C'_1,,C'_m]$ to be a map $[m] \rightarrow [n]$ and a collection of morphisms $C_{f(i-1)+1} \otimes \cdots \otimes C_{f(i)} \rightarrow C'_i$ for $1 \leq i \leq m$. Then the forgetful functor to Δ^{op} is the required cocartesian fibration.

 $^{^3}I$ think Lurie is saying exactly the same thing in the $\infty\text{-categorical case, just in a slightly confusing way.} <math display="inline">^4Weak$ or categorical? 5I consider this a temporary definition, because I can't yet reconcile it with [Lur17], Def 4.1.1.10. 6You "tensor along the gap", if that makes any sense.

(Coloured) operad	 A collection of objects O. For every finite set I, every 	Functor $p: \mathcal{O}^{\otimes} \to N(\mathbf{Fin}_*)$ between ∞ -categories which satisfies	[todo]
	<i>I</i> -indexed collection of objects	the following conditions:	
	$\{X_i\}_{i\in I}$ of \mathcal{O} , and every $Y\in\mathcal{O}$,	• For every inert morphism f :	
	a set $\operatorname{Hom}(\{X_i\}_{i\in I}, Y)$.	$\langle m \rangle \to \langle n \rangle$ in $N(\mathbf{Fin}_*)$ and every	
	• For every map of finite sets	object $C \in \mathcal{O}_{\langle m \rangle}^{\otimes}$, there exists a p -	
	$I \to J$ having fibres $\{I_j\}_{j \in J}$, every finite collection of objects	cocartesian morphism $\overline{f}: C \to C'$ in \mathcal{O}^{\otimes} lifting f .	
	$\{X_i\}_{i\in I}$, every finite collection	• Let $C \in \mathcal{O}_{\langle m \rangle}^{\otimes}$ and $C' \in$	
	of objects $\{Y_j\}_{j\in J}$, and every	$\mathcal{O}_{\langle n \rangle}^{\otimes}$ be objects, let $f:\langle m angle ightarrow$	
	object $Z \in \mathcal{O}$, a composition map $\prod_{i} \operatorname{Hom}(\{X_i\}_{i \in I_i}, Y_j) \times$	$\langle n \rangle$ be a morphism in \mathbf{Fin}_* , and	
	$ \operatorname{Hom}(\{Y_i\}_i, Z) \to \operatorname{Hom}(\{X_i\}_i, Z),$	let $\operatorname{Hom}_{\mathcal{O}^{\otimes}}^{f}(C,C')$ be the union	
	which is associative.	of those connected components	
	• Units $id_X \in Hom(\{X\}, X)$.	of $\operatorname{Hom}_{\mathcal{O}\otimes}(C,C')$ which lie over	
	([Lur17], Def 2.1.1.1)	$f \in \operatorname{Hom}_{\mathbf{Fin}_*}(\langle m \rangle, \langle n \rangle)$. Choose p -cocartesian morphisms $C' \to C'_i$	
		lying over the inert morphisms ρ^i :	
		$\langle n \rangle \to \langle 1 \rangle$ for $1 \leq i \leq n$. Then the	
		induced map	
		$\operatorname{Hom}_{\mathcal{O}^{\otimes}}^{f}(C, C') \to \prod_{1 \le i \le n} \operatorname{Hom}_{\mathcal{O}^{\otimes}}^{\rho^{i} f}(C, C'_{i})$	
		is a homotopy equivalence.	
		• For every finite collection of	
		objects $C_1,, C_n \in \mathcal{O}_{\langle 1 \rangle}^{\otimes}$, there	
		exists an object $C \in \mathcal{O}_{\langle n \rangle}^{\otimes}$ and	
		a collection of <i>p</i> -cocartesian mor-	
		phisms $C \to C_i$ covering ρ^i : $\langle n \rangle \to \langle 1 \rangle$.	
Opposite category	$\mathcal{C}^{\mathrm{op}}$ has the same objects	$C_n^{\text{op}} = C([n]^{\text{op}}), \text{ where } \{0 < 1 < 1 < 1 < 1\}$	A map $x \to y$ is an edge $\Delta^1 \to \mathcal{C}$
	as \mathcal{C} , and $\operatorname{Hom}_{\mathcal{C}^{\operatorname{op}}}(X,Y) =$	$\dots < n$ op = $\{0 > 1 > \dots > n\}$.	where $0 \mapsto x$ and $1 \mapsto y$. In \mathcal{C}^{op}
	$\operatorname{Hom}_{\mathcal{C}}(Y,X).$	([Lur09], 1.2.1)	0 and 1 swap roles, so we instead
Overcategory	For $C \in \mathcal{C}$, the category $\mathcal{C}_{/C}$	For $f: S \to \mathcal{C}$, S a simplicial	get a map $y \to x$. If $S = \Delta^0$, writing $C \in \mathcal{C}$
Overcategory	satisfies the following universal	set and \mathcal{C} an ∞ -category, the ∞ -	for the object picked out by f ,
	property: for any category \mathcal{D} ,	category \mathcal{C}_{f} satisfies the following	we have $(\mathcal{C}_{/C})_n = \operatorname{Hom}_C(\Delta^n \star)$
	there is a bijection	universal property: for any simpli-	$\Delta^0, \mathcal{C}) \cong \operatorname{Hom}_C(\Delta^{n+1}, \mathcal{C})$ (where
	$ \operatorname{Hom}(\mathcal{D}, \mathcal{C}_{/C}) \simeq \operatorname{Hom}_{C}(\mathcal{D} \star [0], \mathcal{C}),$	cial set X , there is a bijection	the subscript indicates that we
	where the subscript on the right	$\operatorname{Hom}(X, \mathcal{C}_{/f}) \simeq \operatorname{Hom}_f(X \star S, \mathcal{C}),$	only consider morphisms sending the $(n + 1)$ st vertex to C).
	indicates that we consider only	where the subscript on the right	In other words, the objects are
	those functors $\mathcal{D} \star [0] \to \mathcal{C}$ whose	indicates that we consider only	maps to C , the morphisms are commuting triangles over C , and
	restriction to $[0]$ consides with C .	those functors $X \star S \to \mathcal{C}$ whose	so on; these are exactly the ob-
	([Lur09], 1.2.9)	restriction to S consides with f .	jects and morphisms in the 1-
		Explicitly,	categorical case.
		$(\mathcal{C}_{/f})_n := \operatorname{Hom}_f(\Delta^n \star S, \mathcal{C}).$	
		([Lur09], Prop 1.2.9.2)	
Presentable category	[todo]	[todo]	[todo]
Presheaf Representable func-	[todo]	[todo]	[todo]
tor	[todo]	[todo]	[todo]
	I .		

Right cone		$\mathcal{C}^{\triangleright} := \mathcal{C} \star \Delta^{0}.$ ([Lur09], Not	\mathcal{C} with extra vertex (cone point)
Teight cone		1.2.8.4)	added, as well as a map from ev-
		- /	ery other vertex in \mathcal{C} to that cone
			point (plus obligatory degenerate
			simplicies).
Subcategory	Subcategory $C' \subseteq C$.	Subsimplicial set $\mathcal{C}' \subseteq \mathcal{C}$ arising as	Expected definition: Subsimpli-
		$ \begin{array}{c cccc} & \mathcal{C}' & \longrightarrow & \mathcal{C} \\ & \text{a pullback} & & & & \\ \end{array} $	cial set $\mathcal{C}' \subseteq \mathcal{C}$ satisfying inner
		a pullback	horn filling. These are actually
		$N(hC)' \longrightarrow N(hC)$	equivalent: suppose we have a such a subsimplicial set. Then
		` ′ ′	_
		where $(hC)' \subseteq hC$ is a subcategory. $([Lur09], 1.2.11)$	$\begin{array}{cccc} & & & & & & & & & & & & \\ & & & & & & $
		([Duro3], 1.2.11)	is a pull-
			$N(hC') \longrightarrow N(hC)$
			back. Conversely, suppose we're
			given a pullback as in the box to
			the left. Then the diagram $\Delta^n \longleftrightarrow \Lambda^n_i$ $C' \longrightarrow C$
			Λ^n , Λ^n
			Δ
			$C' \longrightarrow C$
			$N(h\mathcal{C})' \longrightarrow N(h\mathcal{C})$
			1. (10)
			shows that \mathcal{C}' also satisfies inner
			horn filling, where the outer two
			dotted maps come from horn fill-
			ing for C and $N(hC)'$, and the in-
			ner dotted map comes from the
Symmetric monoidal	[todo]	[todo]	fact that the square is a pullback. [todo]
category	[todo]	[todo]	[todo]
Symmetric monoidal	[todo]	[todo]	[todo]
functor			
Topos	[todo]	[todo]	[todo]
Undercategory	For $C \in \mathcal{C}$, the category $\mathcal{C}_{C/}$	For $f: S \to \mathcal{C}$, S a simplicial	If $S = \Delta^0$, writing $C \in \mathcal{C}$ for the
	satisfies the following universal	set and \mathcal{C} an ∞ -category, the ∞ -	object picked out by f , we have
	\parallel property: for any category \mathcal{D} , there is a bijection	category $C_{f/}$ satisfies the following universal property: for any simpli-	$(\mathcal{C}_{C/})_n = \operatorname{Hom}_C(\Delta^0 \star \Delta^n, \mathcal{C}) \cong \operatorname{Hom}_C(\Delta^{n+1}, \mathcal{C})$ (where the sub-
	uncre is a Dijection	cial set X , there is a bijection	script indicates that we only con-
	$\operatorname{Hom}(\mathcal{D}, \mathcal{C}_{C/}) \simeq \operatorname{Hom}_{C}([0] \star \mathcal{D}, \mathcal{C}),$		sider morphisms sending the 0th
		$\operatorname{Hom}(X, \mathcal{C}_{f/}) \simeq \operatorname{Hom}_f(S \star X, \mathcal{C}),$	vertex to C). In other words,
	where the subscript on the right indicates that we consider only	where the subscript on the right	the objects are maps from C , the
	those functors $[0] \star \mathcal{D} \to \mathcal{C}$ whose	indicates that we consider only	morphisms are commuting trian-
	restriction to $[0]$ consides with C .	those functors $S \star X \to \mathcal{C}$ whose	gles under C , and so on; these
	([Lur09], 1.2.9)	restriction to S consides with f .	are exactly the objects and morphisms in the 1-categorical case.
		Explicitly,	phisms in the 1-categorical case.
		$(\mathcal{C}_{f/})_n := \operatorname{Hom}_f(S \star \Delta^n, \mathcal{C}).$	
		([Lur09], Prop 1.2.9.2)	

Equivalences			
Name	Between	Definition	
Strong equivalence	Topological categories \mathcal{C}, \mathcal{D}	$\mathcal{C} \to \mathcal{D}$ is an equivalnce in the sense of enriched	
		category theory. ([Lur09], Def 1.1.3.1)	
(Weak) equivalence	Topological categories \mathcal{C}, \mathcal{D}	The induced functor $h\mathcal{C} \to h\mathcal{D}$ is an equiva-	
		lence of \mathcal{H} -enriched categories. ([Lur09], Def	
		1.1.3.6)	
Categorical equivalence	Simplicial sets X, S	The induced functor $hX \to hS$ is an equiva-	
		lence of \mathcal{H} -enriched categories. ([Lur09], Def	
		1.1.5.14)	
Weak (homotopy) equivalence	Simplicial sets X, S	The induced map $ X \rightarrow S $ is a weak	
		homotopy equivalence of topological spaces.	
		([Lur09], 1.1.4)	
Equivalence	Simplicial categories \mathcal{C}, \mathcal{D}	The induced functor $h\mathcal{C} \to h\mathcal{D}$ is an equiva-	
		lence of \mathcal{H} -enriched categories. ([Lur09], Def	
		1.1.4.4)	

Fibrations and anodyne morphisms			
Name	Describes	Definition	
Acyclic Kan fibration	$f: X \to S$ map of simplicial sets	see: trivial Kan fibration. ([nLa23])	
Anodyne	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with	
		$p: Y \to T$ a Kan fibration,	
		$X \longrightarrow Y$	
		$ \begin{array}{ccc} f \downarrow & \downarrow p \\ S & \longrightarrow T \end{array} $	
		$S \xrightarrow{\sim} T$	
		1 1 11 11 (T 00) F 2001)	
Cartesian fibration	$f: X \to S$ map of simplicial sets	there exists a dotted lift. ([Lur09], Ex 2.0.0.1) f is an inner fibration such that for every edge	
Cartesian infration	$J: X \to S$ map of simplicial sets	$g: x \to y$ of S and every vertex \tilde{y} of X with	
		$f(\tilde{y}) = y$, there exists an f-cartesian edge \tilde{g} :	
		$\tilde{x} \rightarrow \tilde{y}$ with $f(\tilde{g}) = g$. ([Lur09], Def 2.4.2.1)	
Categorical fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with	
		$p: Y \to T$ both a cofibration and a categorical	
		equivalence,	
		$V \longrightarrow V$	
		$Y \longrightarrow X$ $\downarrow f$ $T \longrightarrow S$	
		$T \longrightarrow S$	
		there exists a dotted lift. ([Lur09], p90)	
Cocartesian fibration	$f: X \to S$ map of simplicial sets	f is an inner fibration such that for every edge	
		$g: x \to y$ of S and every vertex \tilde{x} of X with	
		$f(\tilde{x}) = x$, there exists an f-cocartesian edge	
Cofibration	$f: X \to S$ map of simplicial sets	$\tilde{g}: \tilde{x} \to \tilde{y} \text{ with } f(\tilde{g}) = g. \text{ ([Lur09], Def 2.4.2.1)}$ $f \text{ is a monomorphism. ([Lur09], A.2.7)}$	
Inner anodyne	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with	
inner anoughe	y 111 / S map of simplicial sees	$p: Y \to T$ an inner fibration,	
		,	
		$X \longrightarrow Y$	
		$f \downarrow p$	
		$S \xrightarrow{\checkmark} T$	
		there exists a dotted lift. ([Lur09], Def 2.0.0.3)	

Inner fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with
		0 < i < n,
		$ \begin{array}{ccc} \Lambda_i^n & \longrightarrow X \\ \downarrow & & \downarrow^{f} \end{array} $
		$\lambda^n \xrightarrow{\qquad} S$
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Isofibration	$F: \mathcal{C} \to \mathcal{D}$ map of ∞ -categories	there exists a dotted lift. F is an inner fibration such that for all $C \in \mathcal{C}$
Isomoration	$F: \mathcal{C} \to \mathcal{D}$ map of ∞ -categories	and every isomorphism $u:D\to FC$ in \mathcal{D}
		(i.e. $[u]$ is an isomorphism in $h\mathcal{D}$) there exists
		an isomorphism $\overline{u}:\overline{D}\to C$ in C such that
		$F(\overline{u}) = u.$ [Lur25, Def 01EN]
(Kan) fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with
		$0 \le i \le n,$
		$\Lambda_i^n \longrightarrow X$ $\downarrow f$
		$\int f$
		$\Delta^n \xrightarrow{\cdot} S$
		there exists a dotted lift. ([Lur09], A.2.7)
Left anodyne	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with
		$p: Y \to T$ a left fibration,
		Y Y
		$X \longrightarrow Y$ $f \downarrow \qquad \qquad \downarrow p$
		$f \downarrow \qquad \downarrow p$
		$S \xrightarrow{r} T$
		there exists a dotted lift. ([Lur09], Def 2.0.0.3)
Left fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with
		$0 \le i < n,$
		$ \begin{array}{ccc} \Lambda_i^n & \longrightarrow X \\ \downarrow & & \downarrow f \end{array} $
		$\int \int \int \int d^3x dx dx$
		$\lambda^n \longrightarrow S$
Disabet association	f V Cf -:1: -:-1	there exists a dotted lift. ([Lur09], Def 2.0.0.3)
Right anodyne	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with $p: Y \to T$ a right fibration,
		p. 1 / 1 a right horation,
		$X \longrightarrow Y$
		$ \begin{array}{c} f \downarrow & \downarrow p \\ S \longrightarrow T \end{array} $
		$S \xrightarrow{\checkmark} T$
D: 14 Cl 4:		there exists a dotted lift. ([Lur09], Def 2.0.0.3)
Right fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below, with $0 < i < n$
		$0 < i \le n,$ $\Lambda^n \longrightarrow X$
		$ \begin{array}{ccc} \Lambda_i^n & \longrightarrow X \\ \downarrow & & \downarrow^{f} \end{array} $
		\downarrow \downarrow \uparrow
		$\Delta^n \longrightarrow S$
		there exists a dotted lift. ([Lur09], Def 2.0.0.3)
	- ''	

Serre fibration	$f: Y \to Z$ map of topological	For every solid arrow diagram as below,
	spaces	
		$\{0\} \times \Delta^n \longrightarrow Y$
		$\{0\} \times \Delta^n Y$
		$[0,1] \times \Delta^n \longrightarrow Z$
		there exists a dotted lift. [Lur25, Def 021R]
		L / 1
Trivial (Kan) fibration	$f: X \to S$ map of simplicial sets	For every solid arrow diagram as below,
		0.4 m . W
		$\partial \Delta^n \longrightarrow X$
		$\Delta^n \xrightarrow{\searrow} S$
		there exists a dotted lift. ([Lur25, Def]
		006W]/[Lur09], Def 2.0.0.2)

	Nerves		
Name	Domain object	Definition	
Nerve	Category \mathcal{C}	$(NC)_n = \{n\text{-composable strings of morphisms in } C\}.$ ([Lur09], p9)	
Simplicial nerve	Simplicial category \mathcal{C}	$(NC)_n = \operatorname{Hom}_{\mathbf{Cat}_{\Delta}}(\mathfrak{C}[\Delta^n], \mathcal{C}), \text{ where } \mathfrak{C}[\Delta^n] \text{ is the category whose objects are the same as } [n], and \operatorname{Hom}_{\mathfrak{C}[\Delta^n]}(i,j) = \emptyset \text{ for } i < j \text{ and } N(P_{ij}) \text{ for } i \geq j \text{ (where } P_{ij} = \{I \subseteq [n] : (i,j \in I) \land (\forall k \in I, i \leq k \leq j)\}). ([\operatorname{Lur09}], \operatorname{Def} 1.1.5.5)$	
Topological nerve	Topological category $\mathcal C$	The simplicial nerve of Sing \mathcal{C} . ([Lur09], Def 1.1.5.5)	

Homotopy categories		
Domain object	Definition	
∞ -Category \mathcal{C}	The objects of hC are the vertices of C , and	
	$\operatorname{Hom}_{\mathrm{h}\mathcal{C}}(X,Y)$ is the set of homotopy classes of edges	
	$X \to Y \text{ in } \mathcal{C}. \ ([\text{Lur09}], \text{Prop } 1.2.3.9)$	
Simplicial category \mathcal{C}	h C . ([Lur09], 1.1.4)	
Topological category \mathcal{C}	$h\mathcal{C}$ has the same objects as \mathcal{C} , and $\operatorname{Hom}_{h\mathcal{C}}(X,Y) =$	
	$[Hom_{\mathcal{C}}(X,Y)].$ ([Lur09], 1.1.3)	

Objects		
Name	Definition	
Assoc (the associative operad)	The coloured operad with a single object \mathfrak{a} , and for every finite set I , $\operatorname{Hom}(\{\mathfrak{a}\}_i,\mathfrak{a})$ is the set of linear orderings on I . Given a map of finite sets $\alpha:I\to J$ together with operations $\phi_j\in \operatorname{Hom}(\{\mathfrak{a}\}_{\alpha(i)=j},\mathfrak{a})$ and $\psi\in \operatorname{Hom}(\{\mathfrak{a}_j,\mathfrak{a}\})$, we identify each ϕ_j with a linear ordering \leq_j on the set $\alpha^{-1}\{j\}$ and ψ with a linear ordering \leq' on the set J . The composition of ψ with $\{\phi_j\}$ corresponds to the linear ordering \leq on the set I which is defined by: $i\leq i'$ if either $\alpha(i)<_j\alpha(i')$ or $\alpha(i)=j=\alpha(i')$ and $i\leq_j i'$. ([Lur17], Def 4.1.1.1)	
Assoc $^{\otimes}$ (the associative ∞ -operad)	$N(\mathbf{Assoc}^{\otimes})$. ([Lur17], Def 4.1.1.3)	

\mathbf{Assoc}^{\otimes}	The category whose objects are the objects of \mathbf{Fin}_* , and a mor-
	phism $m \to n$ is given by a map $\alpha : \langle m \rangle \to \langle n \rangle$ in \mathbf{Fin}_* together
	with a collection of linear orderings \leq_j on $\alpha^{-1}\{j\}$, for $1 \leq j \leq n$.
	Composition of morphisms is determined by the composition laws
	on \mathbf{Fin}_* and on \mathbf{Assoc} . [Lur17], Def 4.1.1.3
\mathbf{Fin}_*	The category whose objects are the sets $\langle n \rangle = \{*, 1, 2,, n\}$, and a
	morphism $\langle m \rangle \to \langle n \rangle$ is a map $\alpha : \langle m \rangle \to \langle n \rangle$ such that $\alpha(*) = *$.
Kan	The full subcategory of sSet spanned by the collection of small
	Kan complexes. ([Lur09], Def 1.2.16.1)
KAN	The category of all Kan complexes. ([Lur09], Rem 5.1.6.1)
\mathcal{S} (the ∞ -category of spaces)	The simplicial 7 nerve $N(\mathbf{Kan})$. ([Lur09], Def 1.2.16.1)
$\widehat{\mathcal{S}}$	The simplicial nerve $N(KAN)$. ([Lur09], Rem 5.1.6.1)

 $^{{}^7\}mathbf{sSet}$ is a simplicial category, with $\mathrm{Hom}(X,S)_n = \mathrm{Hom}_{\mathbf{sSet}}(\Delta^n \times X,S)$. The subcategory **Kan** inherits this structure.

References

- [Lur07] Jacob Lurie. Derived Algebraic Geometry II: Noncommutative Algebra. 2007. arXiv: math/0702299 [math.CT]. URL: https://arxiv.org/abs/math/0702299.
- [Lur09] Jacob Lurie. Higher Topos Theory. 2009.
- [Lur17] Jacob Lurie. Higher Algebra. 2017. URL: https://www.math.ias.edu/~lurie/papers/HA.pdf.
- [Lur25] Jacob Lurie. Kerodon. https://kerodon.net. 2025.
- [nLa23] nLab (Urs Schreiber). acyclic Kan fibration. https://ncatlab.org/nlab/show/acyclic+Kan+fibration. Revision 5. 2023.
- [nLa25a] nLab authors. accessible category. https://ncatlab.org/nlab/show/accessible+category. Revision 69. 2025.
- [nLa25b] nLab authors. Cartesian morphism. https://ncatlab.org/nlab/show/Cartesian+morphism. Revision 52. 2025.
- [nLa25c] nLab authors. join of simplicial sets. https://ncatlab.org/nlab/show/join+of+simplicial+sets. Revision 62. 2025.
- [Rie16] Emily Riehl. Category Theory in Context. 2016. URL: https://emilyriehl.github.io/files/context.pdf.