

Lending Club Case Study

Exploratory Data Analysis

Analysis Done By -

- 1. MRUDHUL KOMMANA
- 2. NEERAJ KUMAR BHOLA

Content

- 1. Introduction
- 2. Problem Statement
- 3. Risks in Loan Approvals
- 4. Loan Dataset
- 5. Loan Outcomes
- 6. Understanding Business Objectives
- 7 Data Summary
- 8. Data Cleaning
- 9. Data Conversions vs Derived Columns

- 10. Dropping/Imputing the Rows
- 11. Univariate Analysis
- 12. Bivariate Analysis
- 13. Correlations
- 14. Conclusions

Problem Statement

Loan Application Process

Lending Club, a consumer finance company which specializes in lending various types of loans to urban customers. When the company receives a loan application, the company has to make a decision for loan approval based on the applicant's profile. So, as to minimize the business loss and maximize the profit.

Key Risks in Loan Approval

1. Loss of Business:

- Opportunity Cost: If a credit worthy applicant is rejected, the company may miss out on potential future revenue from that customer.
- Reputation Damage: A high rejection rate could harm the company's reputation, leading to fewer loan applications and customer dissatisfaction.

2. Financial Loss:

- Default Cost: In the event of a default, the company incurs costs associated with collection efforts, legal proceedings, and potential write-offs.
- Increased Risk Premium: A higher default rate may lead to increased borrowing costs for the company, as lenders perceive it as riskier.

Understanding the Dataset

LOAN DATASET

Loan Outcomes & Data Limitations

Understanding Loan Outcomes and Data Limitations

Key Loan Outcomes:

- Fully Paid: The applicant has successfully repaid the loan in full, indicating a positive repayment behavior.
- Current: The loan is still being actively repaid, showing ongoing commitment from the applicant.
- 3. Charged-Off: Applicant has defaulted on the loan due to non-payment, which is a significant risk for lenders.
- **4. Rejected:** The loan application was denied by the company.

Data Limitations:

Rejected Loans: The dataset only includes information on approved loans, as there is no transactional history for rejected applications.

Understanding the Business Objectives

Key Business Challenges and Opportunities:

Credit Risk Management: The company faces a significant financial risk due to loan defaults.

Data-Driven Decision Making: Leveraging data analytics can help identify early warning signs of default and improve risk assessment.

Portfolio Optimization: By understanding the factors that drive default, the company can optimize its loan portfolio to minimize risk.

Data Summary

Data Summary

- "loan.csv" file containing 39717 rows and 111 columns was provided for the analysis.
- There are two types of attributes
 - · Loan Attribute and
 - Customer attributes.

Data Cleaning

- √ Observations -
- ✓ No header, footers, summary or rows numbers were found in the dataset.
- ✓ no duplicates rows found.
- √ <u>1140 rows</u> present of loan_status='current' which has been deleted as <u>loan_status = 'current'</u> is not required for analysis.
- √ <u>55 columns</u> have all the rows values as <u>"null / blank"</u> and doesn't participate in analyze has been removed.
- √ <u>'url' and 'member_id'</u> is unique in nature and has been deleted. Have considered 'id' for further analysis.
- √ <u>'desc' and 'title'</u> contains text/description values and doesn't participate has been dropped from analysis.
- ✓ Limiting our analysis to 'Group' level only hence sub-group has been dropped.
- ✓ Using domain knowledge, behavioral data is captured and hence will not available during the loan approval and is not considered in this analysis.
- ✓ 21 behavioral data columns has deleted.
- √ <u>8 columns whose values were 1</u>, since this is a unique value it has been dropped from analysis.
- ✓ There were <u>two columns</u> which is having more that 50% of data as <u>"NA"</u> has been removed.
- ✓ After completing all the data cleaning process, we are left with <u>38577 rows and 20 columns</u> for our analysis.

Data Conversions vs Derived Columns

- ✓ Additional string value has been trimmed from <u>'term'</u> and <u>'int rate'</u> column and has been converted to int data types.
- ✓ Column <u>'loan funded amnt'</u> and <u>'funded amnt'</u> converted to float.
- ✓ <u>'lineament', 'funded_amnt', 'funded_amnt_inv', 'int_rate', 'data'</u> columns valued rounded off **to two decimal points**.
- √ <u>issue_d</u> has been converted to datatype.
- ✓ Creating a derived columns for <u>'issue year'</u> and <u>'issue month'</u> from <u>'issue d'</u> which will be used for further analysis.
- √ 'lineament b', 'annual inc b', 'int rate b, and 'data b' derived columns (multiple bucket kind of data from continuous data) has been created for better analysis.

Dropping / Imputing the rows

- √ <u>'emp lenght'</u> and <u>'pub rec bankruptcies'</u> contains
 2.67% and 1.80% of rows as null, which is very small percentage of data which we can drop it.
- ✓ Total % of rows deleted: 4.48%
- ✓ Outliers exists for numeric data <u>'lineament',</u> <u>'funded_amnt', 'funded_amnt_inv','int_rate',</u> <u>'installment', 'annual_inc'</u>.
- ✓ Outliers treatment has been done for above fields using quantile mechanism.

EDA - Univariate Analysis:

Descriptive Statistics: Calculate mean, median, mode, standard deviation, and other summary statistics for numerical variables.

Frequency Distributions: Analyze the distribution of categorical variables.

Visualization: Use histograms, box plots, and bar charts to visualize the data.

Loan Amount


```
count 33191.000000
mean 9820.838480
std 5809.600807
min 500.000000
25% 5000.000000
50% 9000.000000
75% 13750.000000
max 29000.0000000
Name: loan_amnt, dtype: float64
```

Observation of Loan Amount:

Most of the loan amount applied was in the range of 5k-14k.

Max Loan amount applied was ~29k.

Univariate Analysis

Annual Income

33191.000000 count 59883.284700 mean 26916.857415 std 4000.000000 min 25% 40000.000000 50% 55000.000000 75% 75000.000000 140000.0000000 max

Name: annual_inc, dtype: float64

The Annual income of most if applicants lies between 40k-75k.
print("Average Annual Income is :", round(loan_df['annual_inc'].median(),2))

Average Annual Income is: 55000.0

Interest Rate

count	33191.000000
mean	11.782783
std	3.591944
min	5.420000
25%	8.900000
50%	11.710000
75%	14.260000
max	22.110000

Name: int_rate, dtype: float64

- Observation of Rate of Interest
- Most of the applicant's rate of interest is between in the range of 8%-14%.

Average Rate of interest of rate is 11.71%

upGrad

Unordered & Ordered Categorical Variable Analysis

- 1. Most of the Loan applicants are from CA, NY and FL (States).
- 2. Most of the applications are having 10+ yrs of Exp.
- 3. Most of the loan applicants are for debt_consolidations.
- 4. Majority of loan applicants are either living on Rent or on Mortgage.

Annual Income vs Charged Off

loan_status	int_rate_b	Charged Off	Fully Paid	Total	Chargedoff_Proportion
3	Very High	1670	4751	6421	0.260084
0	High	985	4851	5836	0.168780
2	Moderate	961	5638	6599	0.145628
1	Low	579	4983	5562	0.104099
4	Very Low	519	8254	8773	0.059159

- 1. Income range 80k & above have less chances of charged off.
- 2. Income range of 0 to 40k have high chances of charged-off.
- 3. Notice that with increase in annual income charged off proposition got decreased.

Interest Rate vs Charged off:

loan_status	home_ownership	Charged Off	Fully Paid	Total	Chargedoff_Proportion
1	OTHER	16	73	89	0.179775
3	RENT	2488	14156	16644	0.149483
2	OWN	355	2121	2476	0.143376
0	MORTGAGE	1855	12127	13982	0.132671

- 1. Interest rate less than 10% or very low has very less chances of charged off. Interest rates are starting from minimum 5 %.
- 2. Interest rate more than 16% or very high has good chances of charged off as compared to other category interest rates.
- 3. Charged off proportion is increasing with higher interest rates.

Home Ownership vs Charged off

loan_status	home_ownership	Charged Off	Fully Paid	Total	Chargedoff_Proportion
1	OTHER	16	73	89	0.179775
3	RENT	2488	14156	16644	0.149483
2	OWN	355	2121	2476	0.143376
0	MORTGAGE	1855	12127	13982	0.132671

Observations:

Those who are not owning the home is having high chances of loan defaulter.

Purpose vs Charged Off

- 1. Those applicants who is having home loan is having low chances of loan defaults.
- 2. Those applicants having loan for small bussiness is having high chances for loan defaults.

DTI Vs Charged off:

- 1. High DTI value having high risk of defaults
- 2. Lower the DTO having low chances loan defaults

Bankruptcies Record vs Charged off

- 1. Bankruptcies
 Record with 2 is
 having high impact on
 loan defaults.
- 2. Bankruptcies
 Record with 0 is low
 impact on loan
 defaults.
- 3. Lower the Bankruptcies lower the risk.

Issue Year vs Charged off:

- 1. Year 2007 is highest loan defaults.
- 2. Year 2009 is having lowest loan defaults.

Issue Month Vs Charged off

- 1. Those loan has been issued in May, September and December is having high number of loan defaults.
- 2. Those loan has been issued in month of February is having high number of loan defaults.
- 3. Majority of loan defaults coming from applicants whose loan has been approved from September to December.

State vs Charged off:

- 1. DE States is holding highest number of loan defaults.
- 2. CA is having low number of loan defaults.

Grade vs Charged Off

Bivariate Analysis

- 1. The Loan applicants with loan Grade G is having highest Loan Defaults.
- 2. The Loan applicants with loan A is having lowest Loan Defaults.

Correlation

Negative Correlation:

lineament has negative correlation with lineament.
 annual income has a negative correlation with data.

Strong Correlation:

- 1.term has a strong correlation with loan amount.
- 2.term has a strong correlation with interest rate.
- 3.annual income has a strong correlation with loan amount.

Final Conclusion

- Lending club should reduce the high interest loans for 60 months tenure, they are prone to loan default.
- Grades are good metric for detecting defaulters.
- Lending club should examine more information from borrowers before issuing loans to Low grade (G to A).
- Lending Club should control their number of loan issues to borrowers who are from CA, FL and NY to make profits.
- Small business loans are defaulted more. Lending club should stop/reduce issuing the loans to them.
- Borrowers with mortgage home ownership are taking higher loans and defaulting the approved loans.
- Lending club should stop giving loans to this category when loan amount requested is more than 12000.
- People with more number of public derogatory records are having more chance of filing a bankruptcy.
- Lending club should make sure there are no public derogatory records for borrower.

Thank You!

- Please feel free to contact us on below github ids.
- Mrudhul Kommana mrudhulk
- Neeraj Kumar Bhola NeerajBhola21