Matrices

Dans tout le chapitre, on désignera par \mathbb{K} l'un des ensembles \mathbb{R} ou \mathbb{C}

Matrices et opérations algébriques 1.

1.1. L'ensemble $\mathcal{M}_{np}\left(\mathbb{K}\right)$

<u>Définitions</u>: on appelle matrice à n lignes et p colonnes (ou matrice $n \times p$) à coefficients dans \mathbb{K} un tableau d'éléments de K de la forme

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & a_{ij} & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{pmatrix} i$$

On note aussi $A=(a_{ij})_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant p}}$ ou plus simplement (a_{ij}) . Le terme (i,j) de A se note parfois A_{ij} .

L'ensemble des matrices $n \times p$ à coefficients dans \mathbb{K} se note $\mathcal{M}_{np}\left(\mathbb{K}\right)$

Remarque: deux matrices $A = (a_{ij})$ et $B = (b_{ij})$ sont égales lorsqu'elles ont mêmes coefficients:

$$\forall (i,j) \in [[1,n]] \times [[1,p]], \ a_{ij} = b_{ij}$$

$$\left[\forall \left(i,j \right) \in \left[\left[1,n \right] \right] \times \left[\left[1,p \right] \right], \ a_{ij} = b_{ij} \right]$$
 Exemples:
$$\left(\begin{array}{ccc} 1 & -1 & 0 & 2 \\ 2 & 5 & 4 & -3 \end{array} \right) \in \mathcal{M}_{24} \left(\mathbb{R} \right); \quad \left(\begin{array}{ccc} 1 & -i \\ i & 1 \end{array} \right) \in \mathcal{M}_{22} \left(\mathbb{C} \right) = \mathcal{M}_{2} \left(\mathbb{C} \right).$$

- Les éléments de $\mathcal{M}_{nn}\left(\mathbb{K}\right)$ sont les **matrices carrées d'ordre** n, et on note $\mathcal{M}_{n}\left(\mathbb{K}\right)=\mathcal{M}_{nn}\left(\mathbb{K}\right)$
- Les éléments de $\mathcal{M}_{n1}\left(\mathbb{K}\right)$ sont appelés **matrices colonnes**, et notées plus simplement $C=\left(\begin{array}{c}x_1\\ \vdots\end{array}\right)$ On identifiera $\mathcal{M}_{n1}(\mathbb{K})$ et \mathbb{K}^n (d'où la notation en colonne des n-uplets).
- Les éléments de $\mathcal{M}_{1p}\left(\mathbb{K}\right)$ sont appelés **matrices lignes**, et notées plus simplement $L=(y_1,\ldots,y_p)$.

$$A + B = \begin{pmatrix} a_{11} & \dots & a_{1p} \\ \vdots & a_{ij} & \vdots \\ a_{n1} & \dots & a_{np} \end{pmatrix} + \begin{pmatrix} b_{11} & \dots & b_{1p} \\ \vdots & b_{ij} & \vdots \\ b_{n1} & \dots & b_{np} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1p} + b_{1p} \\ \vdots & a_{ij} + b_{ij} & \vdots \\ a_{n1} + b_{n1} & \dots & a_{np} + b_{np} \end{pmatrix}$$
et pour $\lambda \in \mathbb{K}$, $\lambda A = \lambda \begin{pmatrix} a_{11} & \dots & a_{1p} \\ \vdots & a_{ij} & \vdots \\ a_{n1} & \dots & a_{np} \end{pmatrix} = \begin{pmatrix} \lambda a_{11} & \dots & \lambda a_{p} \\ \vdots & \lambda a_{ij} & \vdots \\ \lambda a_{n} & \dots & \lambda a_{np} \end{pmatrix}$

Plus généralement, $si(\lambda, \mu) \in \mathbb{K}^2$,

 $\lambda A + \mu B$ est la matrice de $\mathcal{M}_{np}\left(\mathbb{K}\right)$ de terme général $\lambda a_{ij} + \mu b_{ij}$

La matrice nulle
$$0 = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & 0 & \vdots \\ 0 & \dots & 0 \end{pmatrix}$$
 est neutre pour l'addition, qui est associative et commutative.

$$Exemple : \text{si } A = \begin{pmatrix} 1 & 0 \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \in \mathcal{M}_n(\mathbb{K}), \text{ et } I_n = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & & 1 \end{pmatrix}, \text{ on a } A + \lambda I_n = \begin{pmatrix} 1 & 0 \\ \vdots & & \vdots \\ 0 & & 1 \end{pmatrix}$$

1.2. Produits de matrices

a) Produit d'une matrice et d'une colonne : si $A = (a_{ij})$ est une matrice $n \times p$, on not

$$\operatorname{si} X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \in \mathbb{K}^p, \quad AX = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1p}x_p \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{np}x_p \end{pmatrix} \in \mathbb{K}^n$$

On a ainsi la multiplication d'une matrice $n \times p$ par une colonne $p \times 1$ qui donne une colonne $n \times 1$.

• On a vu que ce produit vérifiait $A(\lambda X + \mu X') = \lambda AX + \mu AX'$ et $A\begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$

Il est facile de vérifier qu'on a aussi pour deux matrice $n \times p$ A et B: $(\lambda A + \mu B) X = \lambda AX + \mu BX$

 $\bullet \quad \text{Posons } C_1 = \left(\begin{array}{c} a_{11} \\ \vdots \\ a_{n1} \end{array} \right), \dots, C_p = \left(\begin{array}{c} a_{1p} \\ \vdots \\ a_{np} \end{array} \right) \text{ les colonnes de } A \text{ : alors on a} \underbrace{AX = x_1C_1 + \dots + x_pC_p} \text{ : }$

AX est une combinaison linéaire des colonnes de A

• Inversement, posons $E_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, E_p = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$ (dite base canonique de \mathbb{K}^p):

$$\forall j \in [[1, p]], AE_j = C_j$$

Exemple 1:
$$\begin{pmatrix} 1 & -1 & 0 & 2 \\ 2 & 5 & 4 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} =$$
 ; $\begin{pmatrix} 1 & -1 & 0 & 2 \\ 2 & 5 & 4 & -3 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} =$

Exemple 2 : la matrice identité $I_n \in \mathcal{M}_n\left(\mathbb{K}\right)$ vérifie $\forall X \in \mathbb{K}^n, \boxed{I_n X = X}$

Remarque: si $B \in \mathbb{K}^n$, AX = B(S) est le système de matrice augmentée A|B

En notant $f: \mathbb{K}^p \to \mathbb{K}^n$ l'application définie par f(X) = AX, la résolution de (S) revient à déterminer les antécédents X de B par f. A suivre...

b) <u>Produit de deux matrices</u>: on veut généraliser cette notion de produit à deux matrices rectangulaires. Pour cela, on interprète celle de droite comme "concaténation" de colonnes. Soit donc A une matrice $n \times p$:

pour pouvoir définir AB, il faut que le nombre de ligne de B soit égal au nombre de colonnes de A.

<u>Définition</u>: soient $A \in \mathcal{M}_{mn}(\mathbb{K})$ et $B \in \mathcal{M}_{np}(\mathbb{K})$. On note C_1, \ldots, C_p les colonnes de B.

Le produit $AB \in \mathcal{M}_{np}(\mathbb{K})$ est défini comme la matrice $n \times p$ de colonnes sont AC_1, \dots, AC_p

Attention: BA n'a AUCUN SENS dans le cas général

Exemple : soient
$$A = \begin{pmatrix} 1 & 0 & -3 & 1 \\ -1 & -2 & 0 & 1 \\ 0 & 1 & -1 & 2 \end{pmatrix}$$
 et $B = \begin{pmatrix} 0 & 2 \\ -1 & -3 \\ 2 & 0 \\ 1 & -2 \end{pmatrix}$. Calcul de AB .

Disposition pratique : règle du "sémaphore" : on "balaie" simultanément la ligne i de A et la colonne j

2

de B pour avoir le terme (i, j) de AB:

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ b_{n1} & \cdots & b_{nj} & \cdots & b_{np} \end{pmatrix} = B$$

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{i1} & \cdots & a_{in} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \quad \begin{pmatrix} c_{11} & \cdots & c_{1p} \\ \vdots & & \vdots \\ c_{m1} & \cdots & c_{mp} \end{pmatrix} = AB = C$$

Formule du produit : le terme (i,j) de AB est donc le "produit terme à terme" de la ligne i de A et de la colonne j de B :

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}$$

1.3. Propriétés de la multiplication matricielle

- a) Eléments "neutres": si $A \in \mathcal{M}_{mp}(\mathbb{K})$, alors $I_n A = AI_p = A$
- **b)** Associativité: Si $A \in \mathcal{M}_{mn}$, $B \in \mathcal{M}_{np}$, $C \in \mathcal{M}_{pq}$, alors $A(BC) = (AB) C \in \mathcal{M}_{mq}$

A retenir : formule du "double produit" : pour $1 \leqslant i \leqslant m$ et $1 \leqslant j \leqslant q$

$$(ABC)_{ij} = \sum_{k=1}^{n} \sum_{\ell=1}^{p} A_{ik} B_{k\ell} C_{\ell j}$$

Remarque: $\forall \lambda \in \mathbb{K}, \ \lambda (AB) = (\lambda A) B = A (\lambda B)$

- c) <u>Distributivité</u>: Si $(A, A') \in \mathcal{M}_{mn}^2$, $(B, B') \in \mathcal{M}_{np}^2$, alors $\begin{cases} (A + A')B = AB + A'B \\ A(B + B') = AB + AB' \end{cases}$
- d) Ce qui ne "marche pas":
 - (i) Commutativité : $A=\left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right)$, $B=\left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array}\right)$. Calcul de AB et BA
 - (ii) "Règle du produit nul" : $A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$. Calculer AB et BA

On s'abstiendra donc de conclure à la nullité d'une matrice lorsque AB=0, et à simplifier par A dans une égalité du type AB=AC

3

PCSI Matrices

2. L'"algèbre" $\mathcal{M}_n(\mathbb{K})$ des matrices carrées

Remarque préliminaire: si A et B sont des matrices carrées d'ordre n, alors AB et BA sont des matrices carrées d'ordre n, ce qui fait de la multiplication matricielle une "loi interne" sur $\mathcal{M}_n(\mathbb{K})$, associative, distributive, admettant I_n comme élément neutre, mais pas commutative.

Cela étant, certaines matrices "commutent", comme A et I_n ou A et A^2 , ou encore A et 0

2.1. Puissances de matrices

a) <u>Définitions</u>: on peut définir, pour $A \in \mathcal{M}_n$ (\mathbb{K}) et $p \in \mathbb{N}^*$: $A^p = \underbrace{A \times \cdots \times A}_{p \text{ fois}}$

Plus sérieusement, les puissances de A sont définies par $\left\{ \begin{array}{l} A^0 = I_n \\ \forall p \in \mathbb{N}, \ A^{p+1} = AA^p = A^pA \end{array} \right.$

Exemple 1: soit $J = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$. Calculer J^n pour $n \in \mathbb{N}$.

Exemple 2: calculer $(AB)^2$, $(AB)^3$, $(A+B)^2$ et $(A+B)^3$ dans le cas général.

b) Formules algébriques élémentaires :

(i) Formule du binôme : si A et B commutent, alors pour tout $p \in \mathbb{N}$

$$(A+B)^p = \sum_{k=0}^p {p \choose k} A^k B^{p-k} = A^p + pA^{n-1}B + \dots + pAB^{p-1} + B^p$$

En particulier, comme I_n et A commutent, on a toujours

$$(A + I_n)^p = \sum_{k=0}^p {p \choose k} A^k = A^p + pA^{n-1} + \dots + pA + I_n$$

(ii) Fact<u>orisation de A^p-B^p </u> : de même **si** A **et** B **commutent**, alors pour tout $p\in\mathbb{N}$

$$A^{p} - B^{p} = (A - B) \sum_{k=0}^{p-1} A^{k} B^{p-1-k} = \sum_{k=0}^{p-1} A^{k} B^{p-1-k} (A - B)$$

En particulier

$$A^{p} - I_{n} = (A - I_{n}) \sum_{k=0}^{p-1} A^{k} = (A - I_{n}) (A^{p-1} + A^{p-2} + \dots + A + I_{n})$$

Exemple: soit $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$: calculer de A^n pour $n \in \mathbb{N}$.

Une application: calculer les suites (x_n) , (y_n) et (z_n) définies par $x_0 = 1$, $y_0 = 2$, $z_0 = -1$ et les relations de récurrence

$$\forall n \in \mathbb{N}, \begin{cases} x_{n+1} = 2x_n + y_n + z_n \\ y_{n+1} = x_n + 2y_n + z_n \\ z_{n+1} = x_n + y_n + 2z_n \end{cases}$$

4

(iii) Polynômes de matrices : plus généralement, si $P = a_d X^d + \cdots + a_1 X + a_0$, on peut noter

$$P(A) = a_d A^d + \dots + a_1 A + a_0 I_n$$

Dans toute identité polynomiale on peut alors substituer une matrice à l'indéterminée X.

Exemple: si
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
 on $A^2 = \begin{pmatrix} 6 & 5 & 5 \\ 5 & 6 & 5 \\ 5 & 5 & 6 \end{pmatrix} = 5A - 4I$:

Le polynôme $P(X) = X^2 - 5X + 4$ vérifie $P(A) = A^2 - 5A + 4I = 0$

On dit que P est un **polynôme annulateur** de la matrice A

De l'identité
$$X^2 - 5X + 4 = (X - 1)(X - 4)$$
 on déduit : $(A - I)(A - 4I) = 0$ (vérifier!)

c) Matrices nilpotentes:

(i) <u>Définition</u>: on dit que $N \in \mathcal{M}_n(\mathbb{K})$ est **nilpotente** d'ordre p lorsque

$$\boxed{\exists p \in \mathbb{N} \ / \ N^p = 0 \text{ et } N^{p-1} \neq 0}$$

On a alors

$$\left\{ \begin{array}{ll} \forall k \geqslant p, & N^k = 0 \\ \forall k < p, & N^k \neq 0 \end{array} \right.$$

Exemple:
$$N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 est nilpotente d'ordre 3 .

(ii) Application au calcul de puissances : calcul de
$$A^n$$
, $n \in \mathbb{N}$: où $A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$

d) Calcul avec un polynôme annulateur :

Idée: lorsqu'on connait un polynôme annulateur de la matrice A, on peut calculer ses puissances.

Exemple:
$$A = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$

2.2. Inversibilité

a) <u>Définition</u>: On dit que $A \in \mathcal{M}_n(\mathbb{K})$ est inversible lorsque $\exists B \in \mathcal{M}_n(\mathbb{K}) / AB = BA = I_n$

La matrice B est alors notée A^{-1} et appelée **inverse de** A : on a donc $AA^{-1} = A^{-1}A = I_n$.

L'ensemble des matrices inversibles de $\mathcal{M}_n(\mathbb{K})$ est noté $GL_n(\mathbb{K})$ et appelé **groupe linéaire**.

Attention : une matrice inversible est nécessairement carrée!

Remarque : unicité de l'inverse : si B et C sont deux inverses de A, alors B=C

Exemple 1: la matrice nulle O n'est pas inversible. I_n l'est, et $I_n^{-1} = I_n$

Exemple 2: montrer que $A = \begin{pmatrix} i & 4 & 0 \\ 2+i & 5i & 0 \\ 3-i & 6 & 0 \end{pmatrix}$ n'est pas inversible

Exemple 3: montrer que $A = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 3 & -1 \\ 1 & 1 & 1 \end{pmatrix}$ est inversible et calculer A^{-1} (méthode "formelle")

b) Propriétés:

(i) Si
$$A \in GL_n(\mathbb{K})$$
, alors $A^{-1} \in GL_n(\mathbb{K})$ et $A^{-1} = A$

(ii) Simplifications : soit A une matrice <u>inversible</u> : alors pour toutes matrices B et C, on a

$$\boxed{AB = AC \Longleftrightarrow B = C} \quad \text{et} \quad \boxed{BA = CA \Longleftrightarrow B = C}$$

et

$$\boxed{AB=C\Longleftrightarrow B=A^{-1}C}\quad \text{et} \quad \boxed{BA=C\Longleftrightarrow B=CA^{-1}}$$

- (iii) Produit: si A et B sont inversibles, alors AB est inversible et $(AB)^{-1} = B^{-1}A^{-1}$
- (iv) <u>Puissances</u>: si A est inversible, alors les puissances de A sont inversibles.

De plus, on a alors
$$\forall n \in \mathbb{N}, \ (A^n)^{-1} = (A^{-1})^n$$
, et on note $A^{-n} = (A^n)^{-1} = (A^{-1})^n$

Exemple 1: montrer qu'une matrice nilpotente n'est pas inversible.

Exemple 2: soit
$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix} = 2I + N, N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Montrer que la formule $A^n=(2I+N)^n=2^nI+n2^{n-1}N+\binom{n}{2}2^{n-2}N^2$ reste vraie pour $n\in\mathbb{Z}$

Exemple 3 : même question avec l'exemple du 2.1.d)

c) Lien avec les systèmes :

(i) Si $A \in \mathcal{M}_n(\mathbb{K})$ est inversible, alors

 $\forall Y \in \mathbb{K}^n$, le système (S): AX = Y admet une unique solution, qui est donnée par $X = A^{-1}Y$

Exemple : résoudre le système
$$\begin{cases} 3x+y-z=1\\ x+3y-z=-1\\ x+y+z=2 \end{cases}$$
, puis
$$\begin{cases} 3x+y-z=x'\\ x+3y-z=y'\\ x+y+z=z' \end{cases}$$

(ii) Réciproque : soit $A \in \mathcal{M}_n\left(\mathbb{K}\right)$

Si $\forall Y \in \mathbb{K}^n$, le système (S): AX = Y admet une unique solution, alors A est inversible

PCSI

Exemple: montrer que
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 0 & 3 \\ 1 & 1 & 5 \end{pmatrix}$$
 est inversible et calculer A^{-1}

Rappel:
$$\operatorname{rg} A = n \Longleftrightarrow A \underset{L}{\sim} I_n \Longleftrightarrow [\forall Y \in \mathbb{R}^n, \ AX = Y \text{ admet une unique solution}]$$

- d) Diverses caractérisations de l'inversibilité : soit $A \in \mathcal{M}_n(\mathbb{K})$.
 - (i) A est inversible si et seulement si $\exists B \in \mathcal{M}_n(\mathbb{K}) / AB = BA = I_n$ On montre :

```
A est inversible si et seulement si \exists B \in \mathcal{M}_n(\mathbb{K}) \ / BA = I_n (inversibilité à gauche) A est inversible si et seulement si \exists B \in \mathcal{M}_n(\mathbb{K}) \ / AB = I_n (inversibilité à droite)
```

Autrement dit la condition $AB = I_n$ ou $BA = I_n$ suffit à établir l'inversibilité de A.

(ii) A est inversible si et seulement si $\forall Y \in \mathbb{R}^n, \ AX = Y$ admet une unique solution On montre

$$A$$
 est inversible si et seulement si $AX = 0$ n'admet que la solution nulle A est inversible si et seulement si $\forall Y \in \mathbb{K}^n, \ AX = Y$ admet au moins une solution

Autrement dit l'existence $\lceil ou \rceil$ l'unicité d'une solution de AX = Y suffit à établir l'inversibilité de A.

(iii) A est inversible si et seulement si $\operatorname{rg} A = n \iff A \sim I_n$

Remarque: on a en général $\operatorname{rg} A \leqslant n$

(iv) par contraposée de la caractérisation du (ii), on a

$$A$$
 non inversible si et seulement si il existe $X \neq 0$ tel que $AX = 0$

ou encore, en notant C_1, \ldots, C_n les colonnes de A:

$$A$$
 non inversible si et seulement si $\exists (x_1,\ldots,x_n) \neq (0,\ldots,0) \ / \ x_1C_1+\cdots+x_nC_n=0$

(il existe une relation de dépendance linéaire non triviale entre les colonnes de A)

Exemple :
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$
 . Montrer que A n'est pas inversible.

e) <u>Cas des matrices 2×2 </u>: soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$. On pose $\boxed{\det A = ad - bc}$. Alors

$$A \in GL_2(\mathbb{K}) \Longleftrightarrow \det A \neq 0$$

et dans ce cas

$$\boxed{A^{-1} = \frac{1}{\det A} \left(\begin{array}{cc} d & -b \\ -c & a \end{array} \right)}$$

3. Matrices particulières

3.1. Matrices triangulaires

a) Définitions:

On dit que $A \in \mathcal{M}_n(\mathbb{K})$ est **triangulaire supérieure** si $1 \leqslant j < i \leqslant n \Rightarrow a_{ij} = 0$ On dit que $B \in \mathcal{M}_n(\mathbb{K})$ est **triangulaire inférieure** si $1 \leqslant i < j \leqslant n \Rightarrow b_{ij} = 0$

Autrement dit

$$A = \left(\begin{array}{ccc} a_{11} & \cdots & a_{1n} \\ & \ddots & \vdots \\ 0 & & a_{nn} \end{array}\right) \quad \text{et} \quad B = \left(\begin{array}{ccc} b_{11} & & 0 \\ \vdots & \ddots & \\ b_{n1} & \cdots & b_{nn} \end{array}\right)$$

On notera $\mathcal{T}_n\left(\mathbb{K}\right)$ l'ensemble des matrices d'ordre n triangulaires supérieures à coefficients dans \mathbb{K}

- b) Opérations: soient $A=(a_{ij})$ et $B=(b_{ij})$ deux matrices triangulaires supérieures, $(\lambda,\mu)\in\mathbb{K}^2$: alors
 - (i) $\lambda A + \mu B$ est triangulaire supérieure
 - (ii) AB est triangulaire supérieure

Remarque: le coefficient diagonal $(AB)_{ii}$ vaut $a_{ii}b_{ii}$.

c) Inversibilité: $A = (a_{ij}) \in \mathcal{T}_n (\mathbb{K})$ est inversible $\iff \forall i \in [[1, n]], \ a_{ii} \neq 0.$

 A^{-1} est alors triangulaire supérieure

Exemple:
$$T = \begin{pmatrix} 1 & 4 & 3 \\ 0 & 2 & -6 \\ 0 & 0 & 3 \end{pmatrix}$$
. Calculer T^{-1}

Remarque: le coefficient diagonal $(A^{-1})_{ii}$ vaut $\frac{1}{a_{ii}}$.

3.2. Matrices diagonales

a) <u>Définition</u>: on dit que $A \in \mathcal{M}_n(\mathbb{K})$ est **diagonale** lorsqu'elle est de la forme

$$A = \begin{pmatrix} \lambda_1 & & & 0 \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{pmatrix} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

autrement dit

$$\forall (i,j) \in [[1,n]]^2, i \neq j \Longrightarrow a_{ij} = 0$$

PCSI Matrices

b) Opérations:

(i) La somme et le produit de matrices diagonales sont diagonales.

Plus précisément, pour tous $(\lambda_1, \dots, \lambda_n, \mu_1, \dots, \mu_n, \alpha, \beta) \in \mathbb{K}^{2n+2}$

$$\alpha \operatorname{diag}(\lambda_1, \dots, \lambda_n) + \beta \operatorname{diag}(\mu_1, \dots, \mu_n) = \operatorname{diag}(\alpha \lambda_1 + \beta \mu_1, \dots, \alpha \lambda_n + \beta \mu_n)$$

et

$$\overline{\operatorname{diag}(\lambda_1,\ldots,\lambda_n)\operatorname{diag}(\mu_1,\ldots,\mu_n)=\operatorname{diag}(\lambda_1\mu_1,\ldots,\lambda_n\mu_n)}$$

(ii) Pour tout $p \in \mathbb{N}$, on a

$$\left[\operatorname{diag}(\lambda_1,\ldots,\lambda_n)\right]^p = \operatorname{diag}(\lambda_1^p,\ldots,\lambda_n^p)$$

Remarque: si P est un polynôme, alors $P\left(\operatorname{diag}(\lambda_1,\ldots,\lambda_n)\right) = \operatorname{diag}\left(P\left(\lambda_1\right),\ldots,P\left(\lambda_n\right)\right)$

Exemple:
$$A = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$
.

Calculer A^n , puis P(A) avec $P = X^2 - 5X + 6$ puis P = (X + 1)(X - 2)(X - 3)

c) Inversibilité:

$$A = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$
 est inversible $\iff \forall i \in [[1, n]], \ \lambda_i \neq 0$. On a alors $A^{-1} = \operatorname{diag}\left(\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_n}\right)$

Remarque: les systèmes diagonaux inversibles sont triviaux

$$AX = Y \Leftrightarrow \begin{cases} \lambda_1 x_1 = y_1 \\ \lambda_2 x_2 = y_2 \\ \vdots \\ \lambda_n x_n = y_n \end{cases} \Leftrightarrow \begin{cases} x_1 = y_1/\lambda_1 \\ x_2 = y_2/\lambda_2 \\ \vdots \\ x_n = y_n/\lambda_n \end{cases}$$

3.3. Transposition-Matrices symétriques

a) Transposition dans $\mathcal{M}_{np}(\mathbb{K})$: soit $A = (a_{ij}) \in \mathcal{M}_{np}(\mathbb{K})$.

On appelle **transposée de** A la matrice $tA = (a_{ji}) \in \mathcal{M}_{pn}(\mathbb{K})$. On note aussi parfois tA = T(A).

$$\mathbf{Si} \ A = \begin{pmatrix} a_{11} & \dots & a_{1p} \\ \vdots & & \vdots \\ a_{n1} & \dots & a_{np} \end{pmatrix} \in \mathcal{M}_{np}(\mathbb{K}) \text{ alors } {}^t A = \begin{pmatrix} a_{11} & \dots & a_{p1} \\ \vdots & & \vdots \\ a_{1n} & \dots & a_{pn} \end{pmatrix} \mathcal{M}_{pn}(\mathbb{K})$$

Exemple:
$$A = \begin{pmatrix} 1 & 2 & -5 \\ 3 & 1 & 1 \end{pmatrix}$$
 a pour transposée ${}^tA = \begin{pmatrix} 1 & 3 \\ 2 & 1 \\ -5 & 1 \end{pmatrix}$

Remarque : t(tA) = A

b) Propriétés:

- (i) <u>Linéarité</u>: si $(A, B) \in \mathcal{M}_{np}(\mathbb{K})$ et $(\lambda, \mu) \in \mathbb{K}^2$, alors $t (\lambda A + \lambda B) = \lambda^t A + \mu^t B$
- (ii) Produit : si $A \in \mathcal{M}_{mn}\left(\mathbb{K}\right)$ et $B \in \mathcal{M}_{np}\left(\mathbb{K}\right)$, alors $table{table} A = table{table} B^{t}A$
- (iii) Transposée de l'inverse : si $A \in GL_n(\mathbb{K})$, alors ${}^tA \in GL_n(\mathbb{K})$, et ${}^tA)^{-1} = {}^t\left(A^{-1}\right)$

Ainsi, pour calculer A^{-1} , on peut calculer l'inverse de tA et la transposer.

- c) Matrices symétriques, antisymétriques :
 - (i) On dit que $S\in\mathcal{M}_{n}\left(\mathbb{K}\right)$ est **symétrique** lorsque tolerapping, autrement dit

$$\forall (i,j) \in \left[\left[1,n \right] \right]^2, \ a_{ij} = a_{ji}$$

On note $S_n(\mathbb{K})$ l'ensemble des matrices symétriques.

Toute combinaison linéaire de matrices symétriques est symétrique

Exemple:
$$\begin{pmatrix} 1 & -7 & 5 \\ -7 & 2 & 0 \\ 5 & 0 & 3 \end{pmatrix} \in \mathcal{S}_3$$

(ii) On dit que $S \in \mathcal{M}_n\left(\mathbb{K}\right)$ est **antisymétrique** lorsque tS = -S, autrement dit

$$\forall (i,j) \in [[1,n]]^2, \ a_{ij} = -a_{ji}$$

On note $\mathcal{A}_n\left(\mathbb{K}\right)$ l'ensemble des matrices antisymétriques.

Toute combinaison linéaire de matrices antisymétriques est antisymétrique

Exemple:
$$\begin{pmatrix} 0 & -3 & 2 \\ 3 & 0 & -1 \\ -2 & 1 & 0 \end{pmatrix} \in \mathcal{A}_3$$

Remarque1: si $A=(a_{ij})$ est antisymétrique, alors $\forall i \in [[1,n]], \ a_{ii}=0$

Remarque2: seule la matrice nulle est symétrique et antisymétrique

PCSI Matrices

4. Matrices et opérations élémentaires

4.1. Matrices élémentaires

a) <u>Définitions</u>: on appelle matrice élémentaire toute matrice obtenue en faisant subir une opération élémentaire sur les lignes de I_n . Il y en a donc trois types

• Les matrices correspondant aux échanges $L_i \leftrightarrow L_j$. Elles sont de la forme

$$\begin{pmatrix} 1 & & & & \\ & 0 & & 1 & \\ & & 1 & & \\ & 1 & & 0 & \\ & & & & 1 \end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$$

• Les matrices correspondant aux multiplications $L_i \leftarrow \lambda L_i$. Elles sont de la forme

$$\begin{pmatrix}
1 & & & & \\
& 1 & & & \\
& & 1 & & \\
& & & \lambda & \\
& & & & 1
\end{pmatrix} \in \mathcal{M}_n(\mathbb{K})$$

• Les matrices correspondant aux multiplications $L_i \leftarrow L_i + \lambda L_j$. Elles sont de la forme

$$\begin{pmatrix} 1 & & & & \\ & 1 & & \lambda & & \\ & & 1 & & \\ & & & 1 & \\ & & & & 1 \end{pmatrix} \in \mathcal{M}_n\left(\mathbb{K}\right)$$

b) Effet par multiplication à gauche :

La multiplication à gauche d'une matrice de $\mathcal{M}_{np}\left(\mathbb{K}\right)$ par une matrice élémentaire (d'ordre n) effectue l'opération correspondante sur les lignes de A

Exemples:
$$A = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$
, $L_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$, $L_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, $L_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$

c) Inversibilité: les matrices élémentaires sont toutes inversibles

Plus précisément

- L'inverse de la matrice correspondant à $L_i \leftrightarrow L_j$ est elle-même
- L'inverse de la matrice correspondant à $L_i \leftarrow \lambda L_i$ est la matrice correspondant à $L_i \leftarrow \frac{1}{\lambda} L_i$
- L'inverse de la matrice correspondant à $L_i \leftarrow L_i + \lambda L_j$ est la matrice correspondant à $L_i \leftarrow L_i \lambda L_i$

4.2. Interprétation matricielle de l'algorithme de Gauss

a) Théorème: soit $A \in \mathcal{M}_{np}(\mathbb{K})$. Alors il existe un nombre fini de matrices élémentaires L_1, \ldots, L_q telles que le produit $L_q \cdots L_1 A$ soit échelonnée réduite en lignes

Autrement dit, puisque L_1, \dots, L_q sont inversibles, et que leur produit $P = L_q \cdots L_1$ l'est aussi,

il existe une matrice inversible $P \in GL_n(\mathbb{K})$ telle que PA soit échelonnée réduite en lignes

PCSI

Matrices

b) Applications à l'inversibilité : soit $A \in \mathcal{M}_n(\mathbb{K})$: alors

A est inversible si et seulement si $\forall Y \in \mathbb{R}^n$, le système AX = Y(S) admet une unique solution

On montre en fait le résultat plus fin :

A inversible à gauche si et seulement si (S_0) : AX = 0 n'admet que la solution nulle

A inversible à droite si et seulement si $\forall Y \in \mathbb{R}^n$, (S): AX = Y admet au moins une solution

Dans les deux cas A est en fait inversible

c) Application au calcul de l'inverse : ainsi, si A est inversible, on a une suite finie de matrices élémentaires

 L_1, \ldots, L_q telles que

$$L_q \cdots L_1 A = I_n$$

Ce qui signifie que

$$A^{-1} = L_q \cdots L_1$$

Qu'on peut aussi écrire

$$A^{-1} = L_q \cdots L_1 I_n$$

Cela signifie qu'en effectuant sur la I_n les opérations réduisant la matrice A, on aboutit à la matrice A^{-1}

Exemple: inverser $A = \begin{pmatrix} 1 & -1 & -1 \\ -2 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix}$. On peut travailler sur la matrice concaténée: