

planetmath.org

Math for the people, by the people.

subset

Canonical name Subset

Date of creation 2013-03-22 11:52:38 Last modified on 2013-03-22 11:52:38 Owner Wkbj79 (1863) Last modified by Wkbj79 (1863)

Numerical id 13

Author Wkbj79 (1863) Entry type Definition Classification msc 03-00

Classification msc 00-02 Related topic EmptySet Related topic Superset

Related topic TotallyBounded

Related topic ProofThatAllSubgroupsOfACyclicGroupAreCyclic

Related topic Property2

Related topic CardinalityOfAFiniteSetIsUnique

Related topic CriterionOfSurjectivity

Defines set inclusion

Given two sets A and B, we say that A is a subset of B (which we denote as $A \subseteq B$ or simply $A \subset B$) if every element of A is also in B. That is, the following implication holds:

$$x \in A \Rightarrow x \in B$$
.

The relation between A and B is then called *set inclusion*.

Some examples:

The set $A = \{d, r, i, t, o\}$ is a subset of the set $B = \{p, e, d, r, i, t, o\}$ because every element of A is also in B. That is, $A \subseteq B$.

On the other hand, if $C = \{p, e, d, r, o\}$, then neither $A \subseteq C$ (because $t \in A$ but $t \notin C$) nor $C \subseteq A$ (because $p \in C$ but $p \notin A$). The fact that A is not a subset of C is written as $A \nsubseteq C$. Similarly, we have $C \nsubseteq A$.

If $X \subseteq Y$ and $Y \subseteq X$, it must be the case that X = Y.

Every set is a subset of itself, and the empty set is a subset of every other set. The set A is called a proper subset of B, if $A \subset B$ and $A \neq B$. In this case, we do not use $A \subseteq B$.