CS1231S Chapter 5

Sets

5.1 Basics

Definition 5.1.1. (1) A set is an unordered collection of objects.

- (2) These objects are called the *members* or *elements* of the set.
- (3) Write $x \in A$ for x is an element of A; $x \not\in A$ for x is not an element of A; $x, y \in A$ for x, y are elements of A; $x, y \not\in A$ for x, y are not elements of A; etc.
- (4) We may read $x \in A$ also as "x is in A" or "A contains x (as an element)".

Warning 5.1.2. Some use "contains" for the subset relation, but in this module we do not.

Symbol	Meaning	Examples	Non-examples			
\mathbb{N}	the set of all natural numbers	$0,1,2,3,31 \in \mathbb{N}$	$-1, \frac{1}{2} \notin \mathbb{N}$			
\mathbb{Z}	the set of all integers	$0,1,-1,2,-10\in\mathbb{Z}$	$\frac{1}{2},\sqrt{2} \not\in \mathbb{Z}$			
\mathbb{Q}	the set of all rational numbers	$-1, 10, \frac{1}{2}, -\frac{7}{5} \in \mathbb{Q}$	$\sqrt{2}, \pi, \sqrt{-1} \not\in \mathbb{Q}$			
\mathbb{R}	the set of all real numbers	$-1, 10, -\frac{3}{2}, \sqrt{2}, \pi \in \mathbb{R}$	$\sqrt{-1}, \sqrt{-10} \not\in \mathbb{R}$			
\mathbb{C}	the set of all complex numbers	$-1, 10, -\frac{3}{2}, \sqrt{2}, \pi, \sqrt{-1}$	$,\sqrt{-10}\in\mathbb{C}$			
$\overline{\mathbb{Z}^+}$	the set of all positive integers	$1, 2, 3, 31 \in \mathbb{Z}^+$	$0, -1, -12 \not\in \mathbb{Z}^+$			
\mathbb{Z}^-	the set of all negative integers	$-1, -2, -3, -31 \in \mathbb{Z}^-$	$0,1,12\not\in\mathbb{Z}^-$			
$\mathbb{Z}_{\geqslant 0}$	the set of all non-negative integers	$0,1,2,3,31\in\mathbb{Z}_{\geqslant 0}$	$-1, -12 \not\in \mathbb{Z}_{\geqslant 0}$			
$\mathbb{Q}^+, \mathbb{Q}^-, \mathbb{Q}_{\geqslant m}, \mathbb{R}^+, \mathbb{R}^-, \mathbb{R}_{\geqslant m}$, etc. are defined similarly.						

Table 5.1: Common sets

Note 5.1.3. Some define $0 \notin \mathbb{N}$, but in this module we do *not*.

Definition 5.1.4 (roster notation). (1) The set whose only elements are x_1, x_2, \ldots, x_n is denoted $\{x_1, x_2, \ldots, x_n\}$.

- (2) The set whose only elements are x_1, x_2, x_3, \ldots is denoted $\{x_1, x_2, x_3, \ldots\}$.
- **Example 5.1.5.** (1) The only elements of $A = \{1, 5, 6, 3, 3, 3\}$ are 1, 5, 6 and 3. So $6 \in A$ but $7 \notin A$.

(2) The only elements of $B = \{0, 2, 4, 6, 8, \dots\}$ are the non-negative even integers. So $4 \in B$ but $5 \notin B$.

To check whether an object z is an element of a set $S = \{x_1, x_2, \dots, x_n\}$. If z is in the list x_1, x_2, \dots, x_n , then $z \in S$, else $z \notin S$.

Definition 5.1.6 (set-builder notation). Let U be a set and P(x) be a predicate over U. Then the set of all elements $x \in U$ such that P(x) is true is denoted

$$\{x \in U : P(x)\}$$
 or $\{x \in U \mid P(x)\}.$

This is read as "the set of all x in U such that P(x)".

Example 5.1.7. (1) The elements of $C = \{x \in \mathbb{Z}_{\geq 0} : x \text{ is even}\}$ are precisely the elements of $\mathbb{Z}_{\geq 0}$ that are even, i.e., the non-negative even integers. So $6 \in C$ but $7 \notin C$.

(2) The elements of $D = \{x \in \mathbb{Z} : x \text{ is a prime number}\}$ are precisely the elements of \mathbb{Z} that are prime numbers, i.e., the prime integers. So $7 \in D$ but $9 \notin D$.

To check whether an object z is an element of $S = \{x \in U : P(x)\}$. If $z \in U$ and P(z) is true, then $z \in S$, else $z \notin S$. Hence $z \notin U$ implies $z \notin S$, and P(z) is false implies $z \notin S$.

Definition 5.1.8 (replacement notation). Let A be a set and t(x) be a term in a variable x. Then the set of all objects of the form t(x) where x ranges over the elements of A is denoted

$$\{t(x) : x \in A\}$$
 or $\{t(x) \mid x \in A\}$.

This is read as "the set of all t(x) where $x \in A$ ".

Example 5.1.9. (1) The elements of $E = \{x + 1 : x \in \mathbb{Z}_{\geq 0}\}$ are precisely those x + 1 where $x \in \mathbb{Z}_{\geq 0}$, i.e., the positive integers. So $1 = 0 + 1 \in E$ but $0 \notin E$.

(2) The elements of $F = \{x - y : x, y \in \mathbb{Z}_{\geq 0}\}$ are precisely those x - y where $x, y \in \mathbb{Z}_{\geq 0}$, i.e., the integers. So $-1 = 1 - 2 \in F$ but $\sqrt{2} \notin F$.

To check whether an object z is an element of $S = \{t(x) : x \in A\}$. If there is an element $x \in A$ such that t(x) = z, then $z \in S$, else $z \notin S$.

Definition 5.1.10. Two sets are equal if they have the same elements, i.e., for all sets A, B,

$$A = B \Leftrightarrow \forall z \ (z \in A \Leftrightarrow z \in B).$$

Convention 5.1.11. In mathematical definitions, people often use "if" between the term being defined and the phrase being used to define the term. This is the *only* situation in mathematics when "if" should be understood as a (special) "if and only if".

Example 5.1.12. $\{1, 5, 6, 3, 3, 3\} = \{1, 5, 6, 3\} = \{1, 3, 5, 6\}.$

Slogan 5.1.13. Order and repetition do not matter.

Example 5.1.14. $\{y^2 : y \text{ is an odd integer}\} = \{x \in \mathbb{Z} : x = y^2 \text{ for some odd integer } y\} = \{1^2, 3^2, 5^2, \dots\}.$

Example 5.1.15. $\{x \in \mathbb{Z} : x^2 = 1\} = \{1, -1\}.$

Proof. 1. (\Rightarrow)

- 1.1. Take any $z \in \{x \in \mathbb{Z} : x^2 = 1\}$.
- 1.2. Then $z \in \mathbb{Z}$ and $z^2 = 1$.
- 1.3. So $z^2 1 = (z 1)(z + 1) = 0.$
- 1.4. : z-1=0 or z+1=0.
- 1.5. \therefore z=1 or z=-1.

- 1.6. This means $z \in \{1, -1\}$.
- $2. \quad (\Leftarrow)$
 - 2.1. Take any $z \in \{1, -1\}$.
 - 2.2. Then z = 1 or z = -1.
 - 2.3. In either case, we have $z \in \mathbb{Z}$ and $z^2 = 1$.
 - 2.4. So $z \in \{x \in \mathbb{Z} : x^2 = 1\}$.

Exercise 5.1.16. Write down proofs of the claims made in Example 5.1.9. In other words, \varnothing 5a prove that $E = \mathbb{Z}^+$ and $F = \mathbb{Z}$, where E and F are as defined in Example 5.1.9.

Theorem 5.1.17. There exists a unique set with no element, i.e.,

• there is a set with no element; and

(existence part)

• for all sets A, B, if both A and B have no element, then A = B. (uniqueness part)

Proof. 1. (existence part) The set {} has no element.

- 2. (uniqueness part)
 - 2.1. Let A, B be sets with no element.
 - 2.2. Then vacuously,

$$\forall z \ (z \in A \Rightarrow z \in B) \text{ and } \forall z \ (z \in B \Rightarrow z \in A)$$

because the hypotheses in the implications are never true.

2.3. So
$$A = B$$
.

Definition 5.1.18. The set with no element is called the *empty set*. It is denoted by \varnothing .

Definition 5.1.19. Let A, B be sets. Call A a *subset* of B, and write $A \subseteq B$, if

$$\forall z \ (z \in A \Rightarrow z \in B).$$

Alternatively, we may say that B includes A, and write $B \supseteq A$ in this case.

Note 5.1.20. We avoid using the symbol \subset because it may have different meanings to different people.

Example 5.1.21. (1) $\{1,5,2\} \subseteq \{5,2,1,4\}$ but $\{1,5,2\} \not\subseteq \{2,1,4\}$.

(2) $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$.

Remark 5.1.22. Let A, B be sets.

(1)
$$A \not\subseteq B \Leftrightarrow \exists z \ (z \in A \text{ and } z \notin B).$$

(2)
$$A = B \Leftrightarrow A \subseteq B \text{ and } B \subseteq A.$$

(3)
$$\varnothing \subseteq A \text{ and } A \subseteq A.$$

Definition 5.1.23. Let A, B be sets. Call A a proper subset of B, and write $A \subseteq B$, if $A \subseteq B$ and $A \neq B$. In this case, we may say that the inclusion of A in B is proper or strict.

Example 5.1.24. All the inclusions in Example 5.1.21 are strict.

Note 5.1.25. Sets can be elements of sets.

Example 5.1.26. (1) The set $A = \{\emptyset\}$ has exactly 1 element, namely the empty set. So A is not empty.

(2) The set $B = \{\{1\}, \{2,3\}\}$ has exactly 2 elements, namely $\{1\}, \{2,3\}$. So $\{1\} \in B$, but $1 \notin B$.

Note 5.1.27. Membership and inclusion can be different.

Question 5.1.28. Let $C = \{\{1\}, 2, \{3\}, 3, \{\{4\}\}\}\}$. Which of the following are true?

🥏 5b

• $\{1\} \in C$.

• $\{1\} \subseteq C$.

• $\{2\} \in C$.

• $\{2\} \subseteq C$.

• $\{3\} \in C$.

• $\{3\} \subseteq C$.

• $\{4\} \in C$.

• $\{4\} \subseteq C$.

5.2 Powers and products

Definition 5.2.1. Let A be a set. The set of all subsets of A, denoted $\mathcal{P}(A)$, is called the *power set* of A.

Example 5.2.2. (1) $\mathcal{P}(\emptyset) = \{\emptyset\}.$

- (2) $\mathcal{P}(\{1\}) = \{\emptyset, \{1\}\}.$
- (3) $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$
- (4) The following are subsets of $\mathbb{Z}_{\geq 0}$ and thus are elements of $\mathcal{P}(\mathbb{Z}_{\geq 0})$.

$$\emptyset$$
, $\{0\}$, $\{1\}$, $\{2\}$, ..., $\{0,1\}$, $\{0,2\}$, $\{0,3\}$..., $\{1,2\}$, $\{1,3\}$, $\{1,4\}$...

$$\{2,3\},\{2,4\},\{2,5\}\dots\{0,1,2\},\{0,1,3\},\{0,1,4\},\dots$$

$$\{1,2,3\},\{1,2,4\},\{1,2,5\},\ldots\{2,3,4\},\{2,3,5\},\{2,3,6\},\ldots$$

$$\mathbb{Z}_{\geqslant 0}, \mathbb{Z}_{\geqslant 1}, \mathbb{Z}_{\geqslant 2}, \dots \{0, 2, 4, \dots\}, \{1, 3, 5, \dots\}, \{2, 4, 6, \dots\}, \{3, 5, 7, \dots\}, \dots$$

$${x \in \mathbb{Z}_{\geq 0} : (x-1)(x-2) < 0}, {x \in \mathbb{Z}_{\geq 0} : (x-2)(x-3) < 0}, \dots$$

$${3x + 2 : x \in \mathbb{Z}_{\geq 0}}, {4x + 3 : x \in \mathbb{Z}_{\geq 0}}, {5x + 4 : x \in \mathbb{Z}_{\geq 0}}, \dots$$

Definition 5.2.3. (1) A set is *finite* if it has finitely many (distinct) elements. It is *infinite* if it is not finite.

- (2) Let A be a finite set. The *cardinality* of A, or the *size* of A, is the number of (distinct) elements in A. It is denoted by |A|.
- (3) Sets of size 1 are called *singletons*.

Theorem 5.2.4. Let A be a finite set. Then $|\mathcal{P}(A)| = 2^{|A|}$.

Example 5.2.5. (1) $|\emptyset| = 0$ and $|\mathcal{P}(\emptyset)| = 1 = 2^0$.

- (2) $|\{1\}| = 1$ and $|\mathcal{P}(\{1\})| = 2 = 2^1$.
- (3) $|\{1,2\}| = 2$ and $|\mathcal{P}(\{1,2\})| = 4 = 2^2$.

Definition 5.2.6. An *ordered pair* is an expression of the form

Let (x_1, y_1) and (x_2, y_2) be ordered pairs. Then

$$(x_1, y_1) = (x_2, y_2)$$
 \Leftrightarrow $x_1 = x_2$ and $y_1 = y_2$.

Example 5.2.7. (1) $(1,2) \neq (2,1)$, although $\{1,2\} = \{2,1\}$.

(2)
$$(3,0.5) = (\sqrt{9}, \frac{1}{2}).$$

Definition 5.2.8. Let A, B be sets. The *Cartesian product* of A and B, denoted $A \times B$, is defined to be

$$\{(x,y): x \in A \text{ and } y \in B\}.$$

Read $A \times B$ as "A cross B".

Example 5.2.9. $\{a,b\} \times \{1,2,3\} = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}.$

Note 5.2.10. $|\{a,b\} \times \{1,2,3\}| = 6 = 2 \times 3 = |\{a,b\}| \times |\{1,2,3\}|.$

Definition 5.2.11. Let $n \in \{x \in \mathbb{Z} : x \geqslant 2\}$. An *ordered n-tuple* is an expression of the form

$$(x_1,x_2,\ldots,x_n).$$

Let (x_1, x_2, \ldots, x_n) and (y_1, y_2, \ldots, y_n) be ordered *n*-tuples. Then

$$(x_1, x_2, \dots, x_n) = (y_1, y_2, \dots, y_n) \Leftrightarrow x_1 = y_1 \text{ and } x_2 = y_2 \text{ and } \dots \text{ and } x_n = y_n.$$

Example 5.2.12. (1) $(1,2,5) \neq (2,1,5)$, although $\{1,2,5\} = \{2,1,5\}$.

(2)
$$(3, (-2)^2, 0.5, 0) = (\sqrt{9}, 4, \frac{1}{2}, 0)$$

Definition 5.2.13. Let $n \in \{x \in \mathbb{Z} : x \ge 2\}$ and A_1, A_2, \ldots, A_n be sets. The *Cartesian product* of A_1, A_2, \ldots, A_n , denoted $A_1 \times A_2 \times \cdots \times A_n$, is defined to be

$$\{(x_1, x_2, \dots, x_n) : x_1 \in A_1 \text{ and } x_2 \in A_2 \text{ and } \dots \text{ and } x_n \in A_n\}.$$

If A is a set, then $A^n = \underbrace{A \times A \times \cdots \times A}_{n\text{-many } A\text{'s}}$.

Example 5.2.14. $\{0,1\}\times\{0,1\}\times\{x,y\} = \{(0,0,x),(0,0,y),(0,1,x),(0,1,y),(1,0,x),(1,0,y),(1,1,x),(1,1,y)\}.$

5.3 Boolean operations

Definition 5.3.1. Let A, B be sets.

(1) The union of A and B, denoted $A \cup B$, is defined by

$$A \cup B = \{x : x \in A \text{ or } x \in B\}.$$

Read $A \cup B$ as "A union B".

(2) The intersection of A and B, denoted $A \cap B$, is defined by

$$A \cap B = \{x : x \in A \text{ and } x \in B\}.$$

Read $A \cap B$ as "A intersect B".

(3) The *complement* of B in A, denoted A - B or $A \setminus B$, is defined by

$$A \setminus B = \{x : x \in A \text{ and } x \notin B\}.$$

Read $A \setminus B$ as "A minus B".

Figure 5.2: Boolean operations on sets

Convention and terminology 5.3.2. When working in a particular context, one usually works within a fixed set U which includes all the sets one may talk about, so that one only needs to consider the elements of U when proving set equality and inclusion (because no other object can be the element of a set). This U is called a *universal set*.

Definition 5.3.3. Let B be a set. In a context where U is the universal set (so that implicitly $U \supset B$), the *complement* of B, denoted \overline{B} or B^c , is defined by

$$\overline{B} = U \setminus B$$
.

Example 5.3.4. Let $A = \{x \in \mathbb{Z} : x \le 10\}$ and $B = \{x \in \mathbb{Z} : 5 \le x \le 15\}$. Then

$$A \cup B = \{x \in \mathbb{Z} : (x \le 10) \lor (5 \le x \le 15)\} = \{x \in \mathbb{Z} : x \le 15\};$$

$$A \cap B = \{x \in \mathbb{Z} : (x \le 10) \land (5 \le x \le 15)\} = \{x \in \mathbb{Z} : 5 \le x \le 10\};$$

$$A \setminus B = \{x \in \mathbb{Z} : (x \le 10) \land \sim (5 \le x \le 15)\} = \{x \in \mathbb{Z} : x < 5\};$$

$$\overline{B} = \{x \in \mathbb{Z} : \sim (5 \le x \le 15)\} = \{x \in \mathbb{Z} : (x < 5) \lor (x > 15)\},$$

in a context where \mathbb{Z} is the universal set. To show the first equation, one shows

$$\forall x \in \mathbb{Z} \ \big((x \le 10) \lor (5 \le x \le 15) \Leftrightarrow (x \le 15) \big),$$
 etc.

Theorem 5.3.5 (Set Identities). For all set A, B, C in a context where U is the universal set, the following hold.

Identity Laws	$A \cup \varnothing = A$	$A \cap U = A$		
Universal Bound Laws	s $A \cup U = U$	$A\cap\varnothing=\varnothing$		
Idempotent Laws	$A \cup A = A$	$A \cap A = A$		
Double Complement I	Law	$\overline{(\overline{A})} = A$		
Commutative Laws	$A \cup B = B \cup A$	$A\cap B=B\cap A$		
Associative Laws	$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$		
Distributive Laws	$A \cup (B \cap C) = (A \cup B) \cap C$	$(A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$		
De Morgan's Laws	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A\cap B}=\overline{A}\cup\overline{B}$		
Absorption Laws	$A \cup (A \cap B) = A$	$A\cap (A\cup B)=A$		
Complement Laws	$A\cup \overline{A}=U$	$A\cap \overline{A}=\varnothing$		
Set Difference Law		$A \setminus B = A \cap \overline{B}$		
Top and Bottom Laws	$\overline{\varnothing} = U$	$\overline{U}=arnothing$		

One of De Morgan's Laws. Work in the universal set U. For all sets A, B,

$$\overline{A \cup B} = \overline{A} \cap \overline{B}.$$

Venn Diagrams. In the left diagram below, hatch the regions representing A and B with \square and \square respectively. In the right diagram below, hatch the regions representing \overline{A} and \overline{B} with \square and \square respectively.

Then the \square region represents $\overline{A \cup B}$ in the left diagram, and the \boxtimes region represents $\overline{A} \cap \overline{B}$ in the right diagram. Since these regions occupy the same region in the respective diagrams, we infer that $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Note 5.3.6. This argument depends on the fact that each possibility for membership in A and B is represented by a region in the diagram.

Proof using a truth table. The rows in the following table list all the possibilities for an element $x \in U$:

$x \in A$	$x \in B$	$x \in A \cup B$	$x\in \overline{A\cup B}$	$x \in \overline{A}$	$x\in \overline{B}$	$x\in \overline{A}\cap \overline{B}$
${ m T}$	${ m T}$	${ m T}$	F	F	F	F
${ m T}$	F	${ m T}$	\mathbf{F}	F	${ m T}$	\mathbf{F}
\mathbf{F}	${ m T}$	${f T}$	\mathbf{F}	Т	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	F	${ m T}$	Т	${ m T}$	${ m T}$

Since the columns under " $x \in \overline{A \cup B}$ " and " $x \in \overline{A} \cap \overline{B}$ " are the same, for any $x \in U$,

$$x \in \overline{A \cup B} \quad \Leftrightarrow \quad x \in \overline{A} \cap \overline{B}$$

no matter in which case we are. So $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

Direct proof. 1. Let $z \in U$.

- $z \in \overline{A \cup B}$ 2. 2.1. Then
 - 2.2. $z \not\in A \cup B$ \Leftrightarrow
 - by the definition of $\dot{\cdot}$; 2.3. $\sim ((z \in A) \lor (z \in B))$ by the definition of \cup ;
 - $(z \not\in A) \land (z \not\in B)$
- by De Morgan's Laws for propositions; by the definition of \cdot ;
- $(z \in \overline{A}) \land (z \in \overline{B})$ 2.5. \Leftrightarrow
- $z \in \overline{A} \cap \overline{B}$ 2.6.

by the definition of \cap .

Example 5.3.7. Under the universal set U, show that $(A \cap B) \cup (A \setminus B) = A$ for all sets A, B.

Proof. 1.
$$(A \cap B) \cup (A \setminus B) = (A \cap B) \cup (A \cap \overline{B})$$
 by the Set Difference Law;

2.
$$= A \cap (B \cup \overline{B})$$
 by the Distributive Law;

3.
$$= A \cap U$$
 by the Complement Law;

4.
$$= A$$
 by the Identity Law.

Example 5.3.8. Show that $A \cap B \subseteq A$ for all sets A, B.

Proof. 1. Let $z \in A \cap B$.

- 2. Then $z \in A$ and $z \in B$ by the definition of \cap .
- 3. In particular, we know $z \in A$.

Question 5.3.9. Is the following true?

Ø 5c

$$(A \setminus B) \cup (B \setminus C) = A \setminus C$$
 for all sets A, B, C .

Definition 5.3.10. (1) Two sets A, B are disjoint if $A \cap B = \emptyset$.

(2) Sets A_1, A_2, \ldots, A_n are pairwise disjoint or mutually disjoint if $A_i \cap A_j = \emptyset$ for all distinct $i, j \in \{1, 2, ..., n\}$.

Figure 5.3: (Pairwise) disjoint sets

Example 5.3.11. The sets $A = \{1, 3, 5\}$ and $B = \{2, 4\}$ are (pairwise) disjoint. Note

$$|A \cup B| = |\{1, 2, 3, 4, 5\}| = 5 = 3 + 2 = |A| + |B|.$$

Theorem 5.3.12. (1) Let A, B be disjoint finite sets. Then $|A \cup B| = |A| + |B|$.

(2) Let A_1, A_2, \dots, A_n be pairwise disjoint finite sets. Then

$$|A_1 \cup A_2 \cup \cdots \cup A_n| = |A_1| + |A_2| + \cdots + |A_n|.$$

Proof. Count the elements set by set. Every element in the union is counted exactly once because the sets are (pairwise) disjoint.

Theorem 5.3.13 (Inclusion–Exclusion Principle). For all finite sets A, B,

$$|A \cup B| = |A| + |B| - |A \cap B|.$$