The Use of Concatemer Subunit Constructs to Study the Pharmacology of $\alpha 4$ - and $\alpha 6$ -Containing Neuronal Nicotinic Acetylcholine Receptor

Anna Sheraz¹, Eloisa Peredia¹, Omar El-Kishky¹, Gregory Sawyer², Farah Deba¹, Ayman K. Hamouda¹.

¹Departmental of Pharmaceutical Sciences, The Ben and Maytee Fisch College of Pharmacy, University of Texas at Tyler, 3900 University Blvd. Tyler, Tx 75799.

²Department of Biopharmaceutical Sciences, School of Pharmacy, Shenandoah University, Winchester, VA 22601.

Purpose:

To define the molecular interactions between the positive allosteric modulator, CMPI and neuronal nicotinic acetylcholine receptors (nAChRs).

Methods:

We introduce specific amino acid mutations in plasmids encoding linked nAChR subunits ($\beta 2-\alpha 4-\beta 2-\alpha 4-\beta 2$ and $\beta 2-\alpha 4-\beta 2-\alpha 4-\alpha 4$). Then we use these plasmids to prepare cRNA *in vitro* and inject into *Xenopus laevis* oocytes to express nAChR containing these mutations. Then we use two-electrode voltage-clamp electrophysiological recording *from Xenopus laevis* oocytes to measure effect of these mutations on CMPI potentiation.

Results:

We have identified several amino acids within the $\alpha 4$ subunit that are required for CMPI potentiation of $(\alpha 4)3(\beta 2)2$ nAChR. We introduced these amino acid mutations in the last $\alpha 4$ of the pentameric construct ($\beta 2$ - $\alpha 4$ - $\beta 2$ - $\alpha 4$ - $\alpha 4$ *) and currently testing the effect of these mutation on CMPI potentiation. Additionally, we individually replaced the $\alpha 4$ subunits within $\beta 2$ - $\alpha 4$ - $\beta 2$ and $\beta 2$ - $\alpha 4$ - $\beta 2$ - $\alpha 4$ - $\alpha 4$ pentameric constructs with a transcript for the human Alpha 6 subunits and created the following [$(\beta 2$ - $\alpha 6$ - $\beta 2$ - $\alpha 4$ - $\alpha 4$; $\beta 2$ - $\alpha 6$ - $\alpha 4$; $\beta 2$ - $\alpha 6$ - - α

Conclusions:

The $\alpha 4$: $\alpha 4$ subunit extracellular is a likely binding site for CMPI. Identifying binding site for CMPI and defining the structural feature of CMPI that are required for binding at the $\alpha 4$: $\alpha 4$ subunit extracellular interface will facilitate the structure-based design of novel nAChR PAMs. PAMs such as CMPI, represent a novel mechanism to pharmacological target ($\alpha 4$)3($\beta 2$)2 and $\alpha 6(\alpha 4)2(\beta 2)2$ nAChRs and holds promise in the development of drug strategies to alleviate chronic pain, treat nicotine dependence, and slow cognitive decline associated with Alzheimer's disease.