Weighted Visibly Pushdown Automata and Automated Music Transcription

April 27, 2021

Abstract

. . .

Symbolic Weighted (SW) extension of symbolic automata where...

Semirings. We shall consider semiring domains for weight values. A *semiring* $\langle \mathbb{S}, \oplus, \mathbb{O}, \otimes, \mathbb{1} \rangle$ is a structure with a domain \mathbb{S} , equipped with two associative binary operators \oplus and \otimes with respective neutral elements \mathbb{O} and $\mathbb{1}$ and such that: \oplus is commutative, \otimes distributes over \oplus : $\forall x, y, z \in \mathbb{S}$, $x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z)$, and \mathbb{O} is absorbing for \otimes : $\forall x \in \mathbb{S}$, $\mathbb{O} \otimes x = x \otimes \mathbb{O} = \mathbb{O}$. In the application presented in this paper, intuitively, \oplus selects an optimal value amongst two values and \otimes combines two values into a single value.

A semiring \mathbb{S} is commutative if \otimes is commutative. It bounded [4] if $\forall x \in dom(\mathbb{S}), \mathbb{1} \oplus x = \mathbb{1}$, and idempotent if for all $x \in \mathbb{S}$, $x \oplus x = x$. Note that every bounded semiring is idempotent: by boundedness, $\mathbb{1} \oplus \mathbb{1} = \mathbb{1}$, and idempotency follows by multiplying both sides by x and distributing.

A semiring $\mathbb S$ is *monotonic wrt* a partial ordering \le iff for all $x,y,z\in\mathbb S, x\le y$ implies $x\oplus z\le y\oplus z, x\otimes z\le y\otimes z$ and $z\otimes x\le z\otimes y$, and it is *superior wrt* \le iff for all $x,y\in\mathbb S, x\le x\otimes y$ and $y\le x\otimes y$ [3]. The latter property corresponds to the *non-negative weights* condition in shortest-path algorithms [1]. Intuitively, it means that combining elements always increase their weight. Note that when $\mathbb S$ is superior $wrt\le$, then $\mathbb 1\le \mathbb 0$ and moreover, for all $x\in\mathbb S, \mathbb 1\le x\le \mathbb 0$.

Every idempotent semiring $\mathbb S$ induces a partial ordering $\leq_{\mathbb S}$ called the *natural ordering* of $\mathbb S$ and defined by: for all x and $y, x \leq_{\mathbb S} y$ iff $x \oplus y = x$. This ordering is sometimes defined in the opposite direction [2]; The above definition follows [4], and coincides than the usual ordering on the Tropical semiring (*min-plus*). It holds that $\mathbb S$ is monotonic $wrt \leq_{\mathbb S}$. An idempotent Semiring $\mathbb S$ is called *total* if it $\leq_{\mathbb S}$ is total *i.e.* when for all $x, y \in \mathbb S$, either $x \oplus y = x$ or $x \oplus y = y$.

We shall consider below infinite sums with \oplus . A semiring $\mathbb S$ is called *complete* if for every family $(x_i)_{i\in I}$ of elements of $dom(\mathbb S)$ over an index set $I\subset \mathbb N$, the infinite sum $\bigoplus_{i\in I} x_i$ is well-defined and in $dom(\mathbb S)$, and the following properties hold:

$$\begin{split} i. \ \ & \textit{infinite sums extend finite sums:} \ \bigoplus_{i \in \emptyset} x_i = \mathbb{O}, \quad \forall j \in \mathbb{N}, \ \bigoplus_{i \in \{j\}} x_i = x_j, \\ \forall j, k \in \mathbb{N}, j \neq k, \bigoplus_{i \in \{j,k\}} x_i = x_j \oplus x_k, \end{split}$$

ii. associativity and commutativity: for all $I \subseteq \mathbb{N}$ and all partition $(I_j)_{j \in J}$ of I, $\bigoplus_{j \in J} \bigoplus_{i \in I_j} x_i = \bigoplus_{i \in I} x_i$,

iii. distributivity of product over infinite sum: for all
$$I \subseteq \mathbb{N}$$
, $\bigoplus_{i \in I} (x \otimes y_i) = x \otimes \bigoplus_{i \in I} y_i$, and $\bigoplus_{i \in I} (x_i \otimes y) = (\bigoplus_{i \in I} x_i) \otimes y$.

1 SW Visibly Pushdown Automata

We follow the approach of [5] for the computation of distances...

1.1 SW Automata and Transducers

The following definition of weighted transducers over infinite alphabets generalizes weighted transducers over finite alphabets, see e.g. [5], by considering weight functions generalizing the guards of symbolic automata

Let Σ and Δ be respectively an input and output alphabets, which are finite or infinite sets of symbols, and let $\mathbb S$ be a semiring. A label theory is a 4-uplet of recursively enumerable sets: Φ_0 containing constant functions valued in $\mathbb S$, Φ_{Σ} and Φ_{Δ} , containing unary functions in $\Sigma \to \mathbb S$, resp. $\Delta \to \mathbb S$, and $\Phi_{\Sigma,\Delta}$ containing binary functions in $\Sigma \times \Delta \to \mathbb S$. Moreover, we assume that each of these sets is closed under \oplus and \otimes , and all partial applications of functions $\Phi_{\Sigma,\Delta}$, resp. $f_a: y \mapsto f(a,y)$ for $a \in \Sigma$ and $y \in \Delta$ and $f_b: x \mapsto f(x,b)$ for $b \in \Delta$ and $x \in \Sigma$, belong resp. to Φ_{Σ} and Φ_{Δ} .

Definition 1 A weighted transducer T over the input and output alphabet Σ and Δ and the semiring $\mathbb S$ is a tuple $T=\langle Q, \mathsf{in}, \mathsf{weight}, \mathsf{out} \rangle$, where Q is a finite set of states, $\mathsf{in}: Q \to \mathbb S$, respectively $\mathsf{out}: Q \to \mathbb S$, is a function defining the weight for entering, respectively leaving, a state, and weight is a transition function of $Q \times Q$ into $\langle \Phi_0, \Phi_{\Sigma}, \Phi_{\Delta}, \Phi_{\Sigma, \Delta} \rangle$.

We extend the above transition function into a function from $Q \times (\Sigma \cup \{\epsilon\}) \times (\Delta \cup \{\epsilon\}) \times Q$ into S, also called weight for simplicity, such that for all $q, q' \in Q$, $a \in \Sigma$, $b \in \Delta$, and with $\langle \phi_{\epsilon}, \phi_{\Sigma}, \phi_{\Delta}, \phi_{\Sigma, \Delta} \rangle = \text{weight}(q, q')$,

$$\begin{array}{lcl} \operatorname{weight}(q,\epsilon,\epsilon,q') & = & \phi_{\epsilon} \\ \operatorname{weight}(q,a,\epsilon,q') & = & \phi_{\Sigma}(a) \\ \operatorname{weight}(q,\epsilon,b,q') & = & \phi_{\Delta}(b) \\ \operatorname{weight}(q,a,b,q') & = & \phi_{\Sigma,\Delta}(a,b) \end{array}$$

These functions ϕ act as guards for the transducer's transitions, preventing a transition when they return the absorbing $\mathbb O$ of $\mathbb S$.

The weighted transducer T defines a mapping from the pairs of strings of $\Sigma^* \times \Delta^*$ into the weights of \mathbb{S} , based on the following intermediate function weight_A defined recursively for every $q, q' \in Q$, for every strings of $s \in \Sigma^*$, $t \in \Delta^*$:

$$\begin{split} \operatorname{weight}_{\mathcal{A}}(q,s,t,q') &= & \operatorname{weight}(q,\epsilon,\epsilon,q') \\ \oplus &\bigoplus_{\substack{q'' \in Q \\ s = au, a \in \Sigma}} \operatorname{weight}(q,a,\epsilon,q'') \otimes \operatorname{weight}_{\mathcal{A}}(q'',u,t,q') \\ \oplus &\bigoplus_{\substack{q'' \in Q \\ t = bv, b \in \Delta}} \operatorname{weight}(q,\epsilon,b,q'') \otimes \operatorname{weight}_{\mathcal{A}}(q'',s,v,q') \\ &\oplus &\bigoplus_{\substack{q'' \in Q \\ s = au, a \in \Sigma \\ t = bv, b \in \Delta}} \operatorname{weight}(q,a,b,q'') \otimes \operatorname{weight}_{\mathcal{A}}(q'',u,v,q') \end{split}$$

Recall that by convention, an empty sum with \oplus is \mathbb{O} . The weight associated by T to $\langle s,t\rangle\in\Sigma^*\times\Delta^*$ is then defined as follows:

$$T(s,t) = \bigoplus_{q,q' \in Q} \operatorname{in}(q) \otimes \operatorname{weight}_{\mathcal{A}}(q,s,t,q') \otimes \operatorname{out}(q').$$

A weighted automata $T = \langle Q, \text{in}, \text{weight}, \text{out} \rangle$ over Σ and $\mathbb S$ is defined in a similar way by simply omitting the output symbols, *i.e.* weight is a function of $Q \times Q$ into $\langle \Phi_0, \Phi_\Sigma \rangle$, or equivalently from $Q \times (\Sigma \cup \{\epsilon\}) \times Q$ into $\mathbb S$.

1.2 Distance between words or languages

distance d: defined over $\Sigma^* \times \Sigma^*$ into a semiring $\mathbb{S} = (\mathbb{S}, \oplus, \mathbb{O}, \otimes, \mathbb{1})$.

Edit-Distance. ...algebraic definition of edit-distance of Mohri, in [5] Let $\Omega = \Sigma \cup \{\epsilon\} \times \Sigma \cup \{\epsilon\} \setminus \{(\epsilon, \epsilon)\}$, and let h be the morphism from Ω^* into $\Sigma^* \times \Sigma^*$ defined over the concatenation of strings of Σ^* (that removes the ϵ 's). An alignment between 2 strings $s, t \in \Sigma^*$ is an element $\omega \in \Omega^*$ such that $h(\omega) = (s, t)$. We assume a base cost function $\Omega: \delta: \Omega \to S$, extended to Ω^* as follows (for $\omega \in \Omega^*$): $\delta(\omega) = \bigotimes_{0 \le i < |\omega|} \delta(\omega_i)$.

Definition 2 For
$$s, t \in \Sigma^*$$
, the edit-distance between s and t is $d(s, t) = \bigoplus_{\omega \in \Omega^*} \delta(\omega)$.

e.g. Levenstein edit-distance: S is min-plus and $\delta(a,b)=1$ for all $(a,b)\in\Omega.$

1.3 SW Visibly Pushdown Automata

2 Application

Symbolic Automated Music Transcription

2.1 Representations

Performance.

Score.

2.2 Transducer for Distance Computation

References

- [1] E. W. Dijkstra. A note on two problems in connexion with graphs. *NUMERISCHE MATHEMATIK*, 1(1):269–271, 1959.
- [2] M. Droste and W. Kuich. Semirings and formal power series. In *Handbook of Weighted Automata*, pages 3–28. Springer, 2009.
- [3] L. Huang. Advanced dynamic programming in semiring and hypergraph frameworks. In *In COLING*, 2008.
- [4] M. Mohri. Semiring frameworks and algorithms for shortest-distance problems. *Journal of Automata, Languages and Combinatorics*, 7(3):321–350, 2002.
- [5] M. Mohri. Edit-distance of weighted automata: General definitions and algorithms. *International Journal of Foundations of Computer Science*, 14(06):957–982, 2003.