

Algoritmos e Estruturas de Dados (Introdução a Grafos e Árvores)

Prof. Me. Diogo Tavares da Silva contato: diogotavares@unibarretos.com.br

- Modelo matemático que representa relações entre objetos
- Exemplos
 - Navegação na Web
 - Documentos referenciam outros documentos
 - Objetos: Documentos; Conexões: links.
 - Roteiro turístico
 - Qual o caminho mais curto para realizar o roteiro?
 - Partição de um programa em um conjunto de estados

- Conjunto de Vértices (V) e Arestas (E)
 - G(V,E)
 - V (Vértices)
 - Conjunto finito n\u00e3o vazio
 - E (Arestas)
 - Conjunto de pares não ordenados de elementos distintos de V
 - Pares não ordenados (Grafos simples)
 - e ∈ E; e=(v, w)
 - v e w, extremidades da aresta, são ditos vértices adjacentes

Grafos Direcionados

- Conjunto de Vértices (V) e Arestas (E)
 - G(V,E)
 - - Vértices
 - Conjunto finito n\u00e3o vazio
 - - Arestas
 - Conjunto de pares ordenados de elementos distintos de V
 - Pares ordenados (Grafos direcionados)

Representação geométrica

 Modelo matemático que representa relações entre objetos

Exemplos

Ligações aéreas entre cidades

Grafos (variações)

- Arestas direcionadas
- Arestas múltiplas
- Vértices isolados
- Arestas com pesos, etc

Paris

- Arestas tipo (v,v)
 - Laços
- Aresta e=(v,w)
 - o e é incidente a v e a w
 - o v é adjacente a w

Grafo - G(V, E)

- Grau de um vértice v grau(v)
 - Define-se grau de um vértice v ∈ V, como o número de vértices adjacentes a v.
- Caminho de k vértices
 - Um caminho de k vértices é formado por (k 1) arestas (v₁,v₂),(v₂,v₃),...,(v_{k-1},v_k).
 - O valor (k 1) é o comprimento do caminho .
 - Caminho fechado (ciclo): v₁ = v_k
- Distância
 - A distância d(v,w) entre dois vértices v, w é o comprimento do menor caminho entre v e w.

Grau(Recife) = 6 Paris Caminho de 3 vértices: (Paris, Recife); (Recife, Brasília); □ 2 arestas Distância □ (Paris, Brasília)=2 Nata/I Manau Recife Brasília Salvad r Rio de Janeiro São Paulo

FaculdadeBarre

Representação Interna

- Matriz de adjacências
 - Binária (1 ou 0)
 - Inteira ou reais (pesos)
 - Existe ou n\u00e3o aresta entre dois pontos
 - \circ O(n²)

	1	2	3	4	5	6	7	8
1	0	0	1	1	1	1	1	0
2	0	0	1	0	0	0	0	0
3	1	1	0	1	1	1	1	0
4	0	0	1	0	1	0	0	0
5	0	0	1	1	0	1	1	0
6	0	0	1	0	1	0	1	0
7	0	0	1	0	1	1	0	1
8	0	0	0	0	0	0	1	0

Representação Interna

- Listas de Adjacências
 - Cada célula do array possui um apontador para uma lista de arestas que incidem neste vértice.
 - O(n+2m)

- Subgrafo
 - Um subgrafo G'(V', E') de G(V, E) é um grafo tal que:
 - $\circ \qquad V' \subseteq V \in E' \subseteq E \cap (V' \times V')$
 - ou seja, é um subconjunto de um grafo maior
- Grafos Conexos
 - São grafos onde existe um caminho de um vértice para qualquer outro.

Grafos e Árvores

- Listas, Pilhas e Filas
 - Estruturas lineares
 - Cada nó possui um antecessor e um sucessor
- Árvores (estruturas não-lineares)
 - Cada nó pode ter vários sucessores e apenas um antecessor
 - Relação Hierárquica

Árvores

Árvore genealógica

Árvores

- Definição formal
 - Árvore enraizada
 - Conjunto finito de um ou mais nós, tais que:
 - existe um nó denominado raiz
 - os demais nós formam
 - $s_1, s_2, ... s_m, m \ge 0$, conjuntos disjuntos
 - Cada um desses conjuntos (s₁, s₂, ... s_m) também é uma árvore (sub-árvore)

Árvores

- Terminologia
 - RAIZ
 - Nó de origem da árvore;
 - FOLHAS
 - Nós que não têm filhos;
 - GRAU DE UM NÓ
 - Número de filhos de cada nó (número de sub-árvores de um nodo);
 - NÍVEL DE UM NÓ
 - Para a raiz o nível é zero (por definição)
 - Para os demais nós é a distância do nodo até o nodo raiz;
 - ALTURA DA ÁRVORE
 - É o nível mais alto da árvore;

Árvores (T)

- Uma árvore T(V,E) é um grafo acíclico e conexo
- Uma árvore T(V,E) é um grafo(simples), conexo com n-1 arestas (onde n é o número de vértices).

- Definição recursiva:
- Conjunto finito de nós que
 - Ou não contém nenhum nó
 - Ou, é formada por três conjuntos disjuntos de nós
 - Raiz
 - Sub-árvore da esquerda
 - Sub-árvore da direita
 - Se tem apenas 1 filho, indica-se se é da direita ou da esquerda

Raiz?

Folhas?

Intermediários?

Pai?

Filho esquerdo?

Filho direito?

Ascendentes?

Descendente?

Intermediários?

Profundidade: distância de um vértice (nó) em relação a raiz

Altura (h): número máximo de arestas em qualquer caminho da raiz até uma folha.

Número máximo de elementos: n_{max}=2^{h+1} - 1 elementos

Árvores Binárias: Profundidade

 A profundidade ou altura de uma árvore binária é determinada pelo seu maior nível.

A profundidade ou altura (h) da árvore binária acima é 3 (h=3).

Árvores Binárias: Tipos

- Árvore Estritamente Binária:
 - Todo nó não-folha deve ter sub-árvores esquerda e direita não vazias.

Árvores Binárias: Tipos

- Árvore BináriaCompleta:
 - É uma árvore estritamente binária em que todas as folhas estão no nível máximo da árvore.

Árvores Binárias Completas

- Cálculo do Número de Nós:
 - O número de nós (n) é obtido com a fórmula abaixo, sendo fornecida a altura (h) da mesma.

$$n = 2^{h+1} - 1$$

Ex.: Na árvore acima de altura h=2, obtemos facilmente com a fórmula ao lado que o número de nós desta árvore binária completa é n=7.

Árvores Binárias Completas

Cálculo da Altura:

 Sabendo-se o número de nós (n), pode-se com a fórmula abaixo obter-se a sua altura (h).

$$h = \log_2^{n+1} - 1$$

Ex.: Na árvore binária completa acima, cujo número de nós é n=7, obtemos com a fórmula ao lado que sua altura é h=2.

