Foreword Acknowledgements History Overview 1. Specifications 2. Memory Map I/O Ports 3. Rendering 4. Sound Controller 5. Joypad Input 6. Serial Data Transfer 7. Timer and Divider Registers 7.1. Timer Obscure Behaviour) 8. Interrupts 9. CGB Registers 10. Infrared Communication 11. SGB Functions **CPU Specifications** 12. CPU Registers and Flags 13. CPU Instruction Set 14. CPU Comparison with Z80 Cartridges 15. The Cartridge Header **16.** MBCs Accessories 17. Game Boy Printer 18. Game Boy Camera

- 19. 4-Player Adapter
- 20. Game Genie/Shark Cheats

Other

- 21. Power-Up Sequence
- 22. Reducing Power Consumption
- 23. Accessing VRAM and OAM
- 24. OAM Corruption Bug
- 25. External Connectors

Pan Docs

Timer and Divider Registers

NOTE

The Timer described below is the built-in timer in the gameboy. It has nothing to do with the MBC3s battery buffered Real Time Clock - that's a completely different thing, described in Memory Bank Controllers.

FF04 - DIV - Divider Register (R/W)

This register is incremented at a rate of 16384Hz (~16779Hz on SGB). Writing any value this register resets it to \$00. Additionally, this register is reset when executing the stop instruction, and only begins ticking again once stop mode ends. This also occurs during a speed switch. (TODO: how is it affected by the wait after a speed switch?)

Note: The divider is affected by CGB double speed mode, and will increment at 32768Hz i double speed.

FF05 - TIMA - Timer counter (R/W)

This timer is incremented at the clock frequency specified by the TAC register (\$FF07). When the value overflows (exceeds \$FF) it is reset to the value specified in TMA (FF06) at an interrupt is requested, as described below.

FF06 - TMA - Timer Modulo (R/W)

When TIMA overflows, it is reset to the value in this register and an interrupt is requested Example of use: if TMA is set to \$FF, an interrupt is requested at the clock frequency selected in TAC (because every increment is an overflow). However, if TMA is set to \$FE. interrupt is only requested every two increments, which effectively divides the selected clock by two. Setting TMA to \$FD would divide the clock by three, and so on.

If a TMA write is executed on the same cycle as the content of TMA is transferred to TIMA due to a timer overflow, the old value is transferred to TIMA.

FF07 - TAC - Timer Control (R/W)

```
Timer EnableInput Clock Select
Bits 1-0 -
                    00: CPU Clock / 1024 (DMG, SGB2, CGB Single Speed Mode:
01: CPU Clock / 16 (DMG, SGB2, CGB Single Speed Mode:
10: CPU Clock / 64 (DMG, SGB2, CGB Single Speed Mode:
                                                                                                                                   4096 Hz, SGB1:
                                                             (DMG, SGB2, CGB Single Speed Mode: 262144 Hz, SGB1: ~26 (DMG, SGB2, CGB Single Speed Mode: 65536 Hz, SGB1: ~6
                                                            (DMG, SGB2, CGB Single Speed Mode:
```

NOTE

The "Timer Enable" bit only affects the timer (TIMA). The divider (DIV) is always