# Parte II: Capítulo 5

5.3 Aprendizaje de Variedades

(Manifold learning)

6.1 Teoría de Funciones Topológicas - Prólogo

 $(Topological\ function\ theory\ -\ Prologue)$ 

Eduardo Velázquez

23 de noviembre de 2023



### 5.3 Aprendizaje de Variedades

**Objetivo:** Estudiar una variedad riemanniana M extrayendo información acerca de ella a partir de un conjunto finito de puntos  $X = \{x_1, x_2, \dots, x_N\}$ .

Una cubierta buena  $\mathcal{U} = \{U_i\}$  de un espacio topológico es una cubierta abierta tal que cualquier intersección de un número finito de elementos de  $\mathcal{U}$  es vacía o contraible.

### Lema 1

Lema de Nerve (Hatcher, Algebraic topology) Sea  $\mathcal{U} = \{U_i\}$  una buena cubierta de M. Entonces la homología del correspondiente complejo de Cech de  $\mathcal{U}$  es igual al de la variedad:

$$H_*\left(\check{C}\left(\mathcal{U}\right)\right)=H_*\left(M\right).$$



Sea  $X\subset M$  un conjunto finito de puntos. Consideremos el complejo de Rips  $R_t(X)$  con conjunto de vértices X y símplices  $\sigma$  formados por los subconjuntos de X que tienen diámetro menor a t. Para X suficientemente denso (o t suficientemente grande) la colección  $\mathcal{U}_t=\mathcal{U}_t(X)=\{B_{2^t/2}(x)\}_{x\in X}$  es una cubierta de M. En este caso consideramos también al complejo de Čech,  $\check{C}_t(X)$ , asociado a esta cubierta. También sabemos que los módulos de persistencia  $V_a=\check{C}_{2^a}$  y  $W_a=R_{2^a}$  están 1-entrelazados.



#### Teorema 5.3.2

Sea M una variedad riemanniana y  $X\subset M$  una muestra finita de puntos. Supongamos que existe  $\varepsilon_-<\varepsilon_+$  con  $\varepsilon_+-\varepsilon_->4$ , tal que para cualquier  $t\in(\varepsilon_-,\varepsilon_+]$ , la colección  $\mathcal{U}_t$  es una buena cubierta de M. Entonces para cualquier  $k\geq 0$  la k-ésima homología de M puede recuperarse del correspondiente módulo de persistencia de Rips  $(W,\pi^W)$  asociado a X, es decir,

$$\operatorname{im}(\pi_{\varepsilon_-+1,\varepsilon_+-1}^W) \simeq H_k(M) \ \ \forall \ k \geq 0.$$

### Demostración.

Sea  $(V,\pi)$  un módulo de persistencia e  $I\subset\mathbb{R}$  un intervalo de la forma (a,b], donde  $b\leq\infty$ . Consideremos el módulo de persistencia truncado  $(\bar{V},\bar{\pi})$ , es decir,  $\bar{V}_t$  coincide con  $V_t$  para  $t\in I$  y cero en otro caso, y  $\bar{pi}$  se trunca conforme a este criterio.



### Teorema 5.3.2 (cont.)

Ejercicio 5.3.4

Sean  $(V,\pi)$  y  $(W,\sigma)$  dos módulos de persistencia  $\delta$ -entrelazados, y sea I=(a,b] un intervalo fijo tal que  $b\leq\infty$ . Muestre que los módulos de persistencia truncados respecto I,  $\bar{V}$  y  $\bar{W}$  también están  $\delta$ -entrelazados.

Sea  $J=(\varepsilon_-,\varepsilon_+]$  y  $k\geq 0$  un entero, escribiremos V y W para referirnos sólo a la homología de grado k. Como  $\mathcal{U}_t$  es una buena cubierta para cualquier  $t\in J$ , por el Lema de Nerve tenemos que

$$V_t = H_k(\check{C}(U_t)) = H_k(M),$$

así que la dimensión de  $V_t$  es constante en J. Entonces el número de intervalos en  $\mathcal{B}(V)$  que contienen a J es exactamente  $\dim H_k(M)$ .



Sean  $\bar{V}$  y  $\bar{W}$  los módulos de persistencia truncados respecto J, por el ejercicio 5.3.4,  $\bar{V}$  y  $\bar{W}$  están 1-entrelazados; y por el Teorema de Isometry sus códigos de barras satisfacen

$$d_{\text{bot}}(\mathcal{B}(V),\mathcal{B}(W)) \leq 1$$
,

es decir, existe un 1-apareamiento  $\mu: \mathcal{B}(\bar{V}) \to \mathcal{B}(\bar{W})$ . Notemos que  $\mathcal{B}(\bar{V})$  contiene exactamente dim  $H_k(M)$  copias de J, cada una de ellas de longitud mayor a 4, por lo que está apareada por  $\mu$  a una barra de  $\mathcal{B}(\bar{W})$  que contiene a  $J^1=(\varepsilon_-+1,\varepsilon_+-1]$ . Por otra parte, cada barra  $\mathcal{B}(\bar{W})$  que contiene a  $J^1$  es aún de longitud mayor a 2, por lo que está apareada por  $\mu$  a una barra de  $\mathcal{B}(\bar{V})$  que contiene a  $J^2=(\varepsilon_-+2,\varepsilon_+-2]$ . Esta barra sólo puede ser de la forma J, por lo tanto, el número de intervalos en  $\mathcal{B}(\bar{W})$  que contienen a  $J^1$  es exactamente dim  $H_k(M)$ , es decir,

$$\dim \operatorname{im}(\pi_{\varepsilon_-+1,\varepsilon_+-1}^W) = \dim H_k(M).$$



### Observaciones 5.3.5

▶ En la práctica, barras largas en el código de barras del complejo de Rips contienen más información confiable sobre la homología de M que las barras cortas, las cuales se pueden interpretar como ruido topológico [39]. Por lo que a mayor tamaño  $(\varepsilon_-, \varepsilon_+]$ , más confiable el cálculo de  $H_*(M)$  propuesto en el Teorema 5.3.2.

[39] Robert Ghrist, Barcodes: the persistent topology of data, Bull. Amer. Math. Soc. 45 (2008)



# Observaciones 5.3.5 (cont.)

▶ En [73] consideran el caso en el que X es una colección de puntos  $\frac{\varepsilon}{2}$ -densa muestreada de una subvariedad  $M \subset \mathbb{R}^n$ . Considere la unión de bolas euclidianas  $U = \{\bigcup_{x \in X} B_t(x_i)\}$ centrado en los puntos de X. Resulta que al variar t en un cierto intervalo que depende de la geometría de M, la deformación del conjunto U se retrae a M, y en particular sus homologás son iguales. Además, si X consta de un número suficientemente grande de puntos independientes e idénticamente distribuidos muestreados con respecto a la medida de probabilidad uniforme en M, la homología de U es igual a la homología de M.

[73] Partha Niyogi, Stephen Smale, and Shmuel Weinberger,

Finding the homology of submanifolds with high confidence from random samples,





# Observaciones 5.3.5 (cont.)

En [60] se obtiene el siguiente resultado: Para una variedad riemanniana cerrada M, existe  $\varepsilon_0 > 0$  lo suficientemente pequeña, tal que para cualquier  $0 < \varepsilon \leq \varepsilon_0$ , existe  $\delta_\varepsilon > 0$ , para la que si Y es un espacio métrico que tiene una distancia de Gromov-Hausdorff menor que  $\delta_\varepsilon$  a M, entonces su complejo Rips  $R_\varepsilon(Y)$  es homotópicamente equivalente a M. En particular se sigue que: si  $Y \subseteq M$  es finito y  $\delta_\varepsilon$ -denso en M, entonces  $R_\varepsilon(Y)$  y M tienen el mismo tipo de homotopía.

[60] Janko Latschev, Vietoris-Rips complexes of metric spaces near a closed Riemannian manifold, Arch. Math. (Basel) 77 (2001)



# 6. Teoría de Funciones Topológicas

#### 6.1 Prólogo

Estudia características de funciones suaves en una variedad que son invariantes bajo la acción del grupo de difeomorfismo.

- ▶ Denotaremos como  $||\cdot||_0$  a la norma uniforme, y como  $||\cdot||_2$  a la norma  $L_2$ .
- Para una función de Morse f,  $\nu(f)$  denotará el número de barars en el código de barras de f.
- $ightharpoonup \zeta(M)$  es el número de rayos infinitos.
- $\nu(f,c)$  denotará al número de barras finitas de longitud mayor a c.
- ▶  $\ell(f) := \operatorname{length}(\mathcal{B}(f) \cap [\min f, \max f])$  mide la longitud total de todas las barras finitas de f y los segmentos de los rayos infinitos en el intervalo  $[\min f, \max f]$ .



### Observaciones

- ightharpoonup c 
  u(f,c) es decreciente en c y  $c 
  u(f,c) \le \ell(f)$ .
- $ewline \ell$  es discontinua bajo perturbaciones en la norma uniforme: Se pueden generar un conjunto arbitrariamente grande de barras cortas mediante perturbaciones; sin embargo, para cualquier par de funciones de Morse f y h tenemos

$$\ell(f) - \ell(g) \le (2\nu(f) + \xi(M))||f - h||_0$$

$$\nu(f,c) \geq \nu(h,c+2||f-h||_0)$$
.

Estas desigualdades se siguen de que los códigos de barras de f y g admiten un  $\delta$ -apareamiento con  $\delta = ||f - h||_0$ .



### **Observaciones**

Sea f una función de Morse en  $\mathbb{S}^1$ , todos los puntos críticos de f son mínimos locales o máximos locales, más aún, si hay N mínimos locales  $x_1, \dots, x_N$  también hay N máximos locales  $y_1, \dots, y_N$  que pueden ordenarse como

$$x_1, y_1, x_2, y_2, \cdots, c_N, y_N, x_1.$$

▶ El código de barras de f contiene N-1 barras finitas de grado 0 cuyos extremos del lado izquierdo son mínimos y cuyos extremos del lado derecho son máximos; así como dos barras infinitas de grado 1 y 0 comenzando en el máximo global y el mínimo global,respectivamente. De esto se sigue:

$$\ell(f) = \sum_{i=1}^{N} (f(y_i) - f(x_i)).$$



# Observaciones (cont.)

Por otra parte,

$$\ell(f) = \frac{1}{2} \int_0^{2\pi} ||f'(t)|| \, dt.$$

En consecuencia,

$$\nu(f,c) \leq \pi ||f'||_0/c.$$



## Teorema 6.1.1 (Teorema de Chebyshev)

Sea  $\mathcal{T}_n$  el conjunto de polinomios trigonométricos de grado menor o igual a n en  $\mathbb{S}^1$  y sea  $p \in \mathcal{T}_{n-1}$ . Entonces p es la mejor aproximación uniforme en  $\mathcal{T}_{n-1}$  a una función f si y sólo si existen 2n puntos  $0 \le x_1 \le \cdots \le x_{2n} \le 2\pi$  tales que las diferencias  $f(x_i) - p(x_i)$  alcanzan el valor máximo  $||f - p||_0$  con signos alternantes.

A la existencia de estos puntos extremos se le llama alternancia.



### Proposición 6.1.2

Sean h, q dos funciones de Morse en una variadad cerrada M tal que para alguna c>0 q tiene estrictamente menos de  $2\nu(h,c)+\zeta(M)$  puntos críticos. Entonces

$$||h-q||_0 \ge c/2.$$

### Demostración.

Supongamos lo contrario, i.e.  $||h-q||_0 < (c-\varepsilon)/2$  para alguna  $\varepsilon > 0$  suficientemente grande. Sea N el número de puntos críticos de q. Exactamente  $\zeta(M)$  de ellos contribuyen a los rayos infinitos del código de barras. Entonces el número de barras finitas en el código de barras de q no puede ser mayor a  $(N-\zeta(M))/2$ . Por tanto,  $\nu(q,\varepsilon) < \nu(h,c)$ ; sin embargo por la ec. 24:

$$\nu(q,\varepsilon) \ge \nu(h,\varepsilon+2||h-q||_0) \ge \nu(h,c),$$

lo cual es una contradicción.



# Demostración Teorema de Chebyshev (⇒)

Sea h=f-p y  $c=||h||_0$ . Por la propiedad de alternancia, el código de barras de h consiste en dos rayos infinitos y  $\nu(h,2c-\varepsilon)=n-1$  para  $\varepsilon>0$  suficientemente pequeña (Ejercicio).

Por otra parte, todo polinomio trigonométrico q no constante de grado menor o igual a n-1 tiene a lo más 2n-2 puntos críticos. Por la proposición 6.1.2,

$$||h-q||_0 \geq c$$
,

pero

$$h-q=f-(p+q)\Rightarrow ||f-r||_0\geq c$$

para cualquier polinomio trigonométrico  $r \in \mathcal{T}_{n-1}$ . Sin embargo como  $||f - p||_0 = c$ , p es la mejor aproximación polinomial de grado menor o igual a n - 1.

