High Performance Parallel FDTD Computation by Using Vector Processor and CUDA

Wang Xuanyu

University of Electronic Science and Technology of China

June 4 2016

FDTD: Finite Difference Time Domain.

Wang Xuanyu

Introduction

FDTD wi

FDTD wi

Conclusio

Acknowledgements

Figure: The spatial discrete structure of Yee cell

High
Performance
Parallel FDTD
Computation
by Using
Vector
Processor and
CUDA

Wang Xuanyu

Introduction

FDTD wi

FDTD wi

Conclusio

Acknowledgements

Vector Processor

Figure: The spatial discrete structure of Yee cell

Introduction

VP

CUDA with

Conclusio

Acknowledgements

CUDA: Compute Unified Device Architecture. Characteristics:

- Massive threads.
- Independent device.

High
Performance
Parallel FDTD
Computation
by Using
Vector
Processor and
CUDA

Wang Xuanyu

Introduction

FDTD with VP

FDTD witl

Conclusio

Acknowledgements

FDTD with VP

New model

Figure: The traditional computational model

Figure: The modified computational model

Figure: The traditional and new computational model

FDTD with VP

Comparasions

Number of discrete field points

Field component	The number in x direction	The number in y direction
E_z	$N_x + 1$	$N_y + 1$
H_x	$N_x + 1$	N_y
H_y	$N_x + 1$	N_y

Table: The number of traditional scheme

Field component	The number in \boldsymbol{x} direction	The number in \boldsymbol{y} direction
E_z	$N_x + 1$	$N_y + 1$
H_x	N_x	$N_y - 1$
H_y	$N_x - 1$	N_y

Table: The number of modified scheme

Wang Xuanyu

Introduction

FDTD with VP

FDTD wit

CODA

Conclusio

Acknowledgements

FDTD with VP

Comparasions

Time elapsed

	Elapsed Inclusive (ms)		
Function -	Traditional model	New model	Time saved by using new model
main	4229.46	4082.64	3.47%
compute	4216.81	4070.73	3.46%
H_cmp	2.50	2.41	3.37%
E_cmp	1.68	1.62	3.57%

¹ The size of simulation area is 1000×1000 Yee cells.

Table: The comparison between traditional and new computational model

² The number of time step is 1000.

FDTD with VP

In different conditions

Wang Xuanyu

Introduction FDTD with

VP EDTD wit

CUDA

Conclusio

Acknowledgements

The relation between elapsed time and simulation size:

Space size The size of space scale is as n times as before, the time-consuming will be about 0.92n + 0.08 times than before.

Time size The size of time scale is as n times as before, the time-consuming will be about 0.99n times than before.

Introductio

VP VP

FDTD with

Conclusio

Acknowledgements 10 11 12 13 14

15

FDTD with CUDA

Implementation

```
int x, y, tid, number;
float dif_Hy, dif_Hx;
tid = threadIdx.x + blockIdx.x*blockDim.x;
while (tid < ele_ex*size_Ez_y)
{
    number = tid + 1;
    y = number % ele_ex;//row
    x = number - (y*ele_ex);//column
    //Hy(i,j) - Hy(i-1,j)
    dif_Hy = Hy[y*ele_hy + x] - Hy[(y - 1)* ele_hy + x];
    //Hx(i,j-1) - Hx(i,j)
    dif_Hx = Hx[y*ele_hx + (x - 1)] - Hx[y*ele_hx + x];
    Ez[y*ele_ex + x] += coe_Ez * (dif_Hx + dif_Hy);
    tid += blockDim.x*gridDim.x;
}</pre>
```

Introductio

VP VP

FDTD with CUDA

Conclusio

Acknowledgements

FDTD with CUDA

Comparison

Function	Elapsed Inclusive (ms)		The time saved by using CUDA
Function	The modified data parallelism	Using CUDA	The time saved by using CODA
main	7835.78	888.30	88.67%
H_{cmp}^3	4.64		
E_cmp ³	3.13		
Hy_cmp_kernel4		< 0.01	
Hx_cmp_kernel ⁴		< 0.01	
Ez_cmp_kernel ⁴		< 0.01	

¹ The size of simulation area is 2000×1000 Yee cells.

Table: The comparison between the modified data parallelism and using CUDA

² The number of time step is 1000.

³ Only in serial way.

⁴ Onely in the way of using CUDA.

FDTD with CUDA

In different conditions

Wang Xuanyu

Introductio

FDTD wi

FDTD with CUDA

Conclusio

Acknowledgements

In all conditions, time elapsed in a single running time is less that 0.01.

Conclusion

Wang Xuanyu

Introduction

VP EDTD with

FDTD with CUDA

Conclusion

Acknowled

In this, we did following contributions:

FDTD with VP Proposed a new computational model, which can save about 3.45% time. The result had been sent to a journal.

FDTD with CUDA Implemented the Mur ABC with CUDA. In the profiling result we can see how powerful the GPU is in parallel computation.

Introductio

FDTD wi

FDTD wit

Conclusion

Acknowledgements

Acknowledgements

Thanks for your patience.