CSC373 Worksheet 7 Solution

August 14, 2020

1. Notes

• Decision Problem

 Is the problem if determining ansewr to a class of yes/no questions about some objects of interest

• Reduction Problem

_

Example:

• P

– Is set of problems that can be solved by a deterministic Turing machine in Polynomial time (i.e. $\mathcal{O}(n^k)$) [2].

Example:

- 1) Shortest path problems
- 2) Calculating the greatest common divisor
- 3) Finding maximum bipartite matching

• NP (Non-deterministic Polynominal):

- Is set of decision problems that can be solved by a Non-deterministic Turing Machine in Polynomial time.^[2]
- Has no particular rule is followed to make a guess ^[1].
- Can be solved in polynominal time via a "lucky algorithm", a magical algorithm
 that always make a right guess [2]
- $-P \subseteq NP$

Examples:

- Longest-path problems
- Hamiltonian Cycle
- Graph coloring

• NP-Complete Problems:

- A decision problem A is NP-complete (NPC) if
 - 1) $A \in NP$ and
 - 2) Every (other) problems A' in NP is reducible to A
- Has no efficient solution in polynominal number of steps (not yet) [3]
- Is not likely that there is an algorithm to make it efficient [3]

• NP-Hard:

- A decision problem A is NP-hard if
 - 1) $A \in NP$ (Not necessarily) and
 - 2) Every (other) problems A' in NP is reducible to A
- NP-Hard means "at least as hard as any problems in NP"
- Does not have to be about decision problems

Example:

1) Alan Turing's Halting Problem

References

- 1) Encyclopedia Britannica, NP-Complete Problem, link
- 2) Geeks for Geeks, NP-Completeness, link
- 3) Wikipedia, NP-complete, link
- 4) UCLA UC-Davis, ECS122A Handout on NP-Completeness, link