

蓝宝石的介绍

蓝宝石LED产业链结构

蓝宝石晶体的主要用途

蓝宝石晶体的主要原料及其生产方法

宣城晶瑞生产5N高纯氧化铝的方法及优势

一、蓝宝石的介绍

蓝宝石(Sapphire)是一种氧化铝(α -Al₂O₃)的单晶,又称为刚玉。

1.蓝宝石的主要性质

蓝宝石晶体具有优异的光学性能、机械性能和化学稳定性,强度高、硬度大、耐冲刷,可在接近2000℃高温的恶劣条件下工作。

2.蓝宝石的广泛应用

((应用之一:

广泛的应用于红外军事装置、卫星空间技术、高强度激光的窗口材料。

应用之二:

成为实际应用的半导体GaN/Al₂O₃发光二极管(LED)、大规模集成电路SOI和SOS及超导纳米结构薄膜等最为理想的衬底材料。

3.蓝宝石的需求实例

2008-2011全球蓝宝石衬底年用量(单位:万片)

2008年蓝宝石衬底用量仅200万片;

2009年下半年,蓝宝石衬底的月用量有150万片,全年用量在1600万片左右;

2010年,蓝宝石的用量达到**4400**万 片左右;

预计2011年全年的蓝宝石衬底用量在9000万片左右。

1

用于半导体照明产业

用于民用航天、军工等

3 蓝宝石晶体在民用领域的应用

1.蓝宝石用于半导体照明产业

特点及优势

目前能用于商品化的衬底 只有两种,即蓝宝石和碳 化硅衬底。目前全球 80%LED企业采用蓝宝石 衬底,其原因是碳化硅价 格昂贵。 LED能使发光效率 提高近10倍,寿命 是传统灯具的20倍 以上,兼有绿色、 环保等优点。

日本在1998年就制定了 "21世纪光计划"

欧盟从2000年7月,实施了"彩虹计划",在此基础上,与2004年7月又启动了"固态照明研究项目",成立了"欧盟光电产业联盟"。

韩国在2000年制定了"氮化镓半导体开发计划",成立了光产业振兴会。

LED是新一代光源,代为是21世纪,被公最的是21世纪,是21世纪,是21世纪,是21世纪,是21世纪,是21世纪,是20世纪的,是20世纪代代,是20世纪的,是20世纪的,是20世纪的,是20世纪的,是20世纪的,是20世纪的,是20世纪的,是20世纪的,是20世纪的,是20世纪的,是20世纪的,是20世纪的,是20世纪的,是20世纪的,是20世纪的,是20世纪的,是20世纪的是20世纪的,是20世纪的,是20世纪的,是20世纪的,是20世纪的,是20世纪的是20世纪的,是20世纪的是20世纪的,是20世纪的,是20世纪的是20世纪的,是20世纪的是20世纪的,是20世纪的是20世纪的,是20世纪的是20世纪的,是20世纪的是20世纪的是20世纪的,是20世纪的是20世纪的,是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪代的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪代纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是20世纪的是

美国在2001年启动的 "下一代照明计划 (NGLI)"及2002年 设立的"国家半导体 照明研究计划"列入 了能源法案。

中国在2003年6月17 日正式启动了"国家 半导体照明计划"。

2006年10月,中国科 技部启动"十一五" 半导体照明工程"863' 计划,对半导体照明 产业以更大的支持。

五、全球照明政策

在各国LED照明政策的推动下,白炽 灯的淘汰已经在进行。白炽灯禁用法 律已经在全球开始实行。

2011年:阿根廷、澳大利亚、新西兰、法国、意大利和菲律宾生效;

2012年:英国、芬兰、荷兰生效;

2013年:在日本和加拿大生效;

2014年: 在美国生效;

2017年: 在中国生效。

LED在照明方面的需求实例 1998年手机开始使用高亮 度LED作为手机显示屏的背 2010年全球LED用量(单位: 亿颗) 光源: 2010年手机市场对于LED 160 148 的需求量有76.8亿颗。 140 120 110.4 2010年LEDTV对于LED的 需求量在111~148亿颗之间。 100 76.8 76 80

2010年LED背光的笔记本 电脑对于LED芯片的需求量 大概在76亿颗。

2010年,LED照明灯对于 LED芯片需求量大概在 110.4亿颗。

图3战斗机光电吊舱

图4 潜基光电设备——潜艇光电桅杆

军用光电设备, 如:光电吊舱、 光电跟踪仪、红 外警戒系统、潜 舰光电桅杆等。

生产蓝宝石晶体主要原料为5N高纯氧化铝。

氧化铝原料纯度是最 重要的参数,纯度5N 的原料和4N6的长晶 的理上说自然是杂质 要少,可以减少一定 的位错密度和显色等。

高纯氧化铝的生产方法

目前国内生产高纯氧化铝的主流技术

1

多重结晶法: 硫酸铝铵热解法和碳酸铝铵热解法

2 醇盐水解法: 异丙醇铝法和胆碱法

3

直接水解法: 铝跟水直接反应生成氢氧化铝,水解过程在全密闭有机内衬环境中进行,不添加任何催化剂。

三种方法的比较

方法 比较		优点		
多重结晶法	硫酸铝铵 热解法	工艺较为简单,成本相对较低。	金属离子以及卤素元素难以 去除,纯度只能达到4N,且 生产周期长,污染环境。	
	碳酸铝铵 热解法	无污染, 工艺较为简单。	金属离子以及卤素元素难以 去除,纯度只能达到4N,增 加了生产周期。	
醇盐 水解法	异丙醇铝法	纯度高, 粒径小。	工艺复杂,生产成本高。	
	胆碱法	反应温和,无污染, 成本相对较低。	无法做出高纯的产品。	
直接水解法		工艺简单, 无污染,成本低。	无法提纯,只能做出4N	

[┷] 宣城晶瑞新材料有限公司

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

技术指标

型号	VK-L100G	VK-L100K	VK-L100Q		
晶型	a	a	a		
外观	白色疏松粉末	白色块状	白色颗粒		
平均一次粒径(um)	0.2-3				
比表面积(m²/g)	3-12				
松散密度(g/cm³)	0.4-0.1		0.8-1.5		
块密度(g/cm³)		3.2-3.9			
Al ₂ O ₃ 含量(%)	99.999	99.999	99.999		
Si (ppm)	5	5	5		
Na (ppm)	1	1	1		
Fe (ppm)	1	1	1		
Ca (ppm)	1	1	1		
Mg (ppm)	1	1	1		

JingHe

[→] 宣城晶瑞新材料有限公司

醇铝法的优势

醇铝法工艺能得到高纯的氧化铝是由其多种提纯方 法决定。醇铝法纯度比金属铝直接水解法、硫酸铝 氨法、拜耳法高1-2个数量级。

醇铝法用5个9金属铝块反应,因为金属铝和异丙醇丁醇、乙醇反应很快,不需要用刀具加工成铝粉末,这个就避免了用刀具加工带入铁的污染。

第二

得到的金属乙醇铝异丙醇铝是金属有机化合物,可以在230-250度下精馏,可以去掉前馏分和底馏分杂质,收集主流段得到高纯的醇铝液体,精馏醇铝气化经过冷凝得到液体。被蒸馏的物料其中即使有铁、镍、硅、铜等杂质也不会气化,而是留在了釜底,这样就提纯了产品,这个是其他工艺没法做到的。

第三

乙醇铝精馏后在230度进行陶瓷膜(5个9氧化铝陶瓷膜提纯) 分离提纯,除去钾钠锌等杂质,进一步提纯。经过了两道提 纯。

00

宣城晶瑞醇铝法生产的 5N高纯氧化铝的应用

v目前,多个研究机构、公司使用

宣城晶瑞VK-L100K, VK-L100G型号的

5N高纯氧化铝都长出了优质大尺寸蓝宝石晶体。

