Question Number	Scheme	Marks
9 (a)	$\cos(\theta + \theta) = \cos\theta\cos\theta - \sin\theta\sin\theta$	M1
	$\cos 2\theta = \cos^2 \theta - \left(1 - \cos^2 \theta\right)$	M1
	$\cos 2\theta = 2\cos^2 \theta - 1 *$	A1cso (3)
(b)	$\sin 2\theta = 2\sin\theta\cos\theta$	B1 (1)
(c)	$\cos 3\theta = \cos 2\theta \cos \theta - \sin 2\theta \sin \theta$	M1
	$= (2\cos^2\theta - 1)\cos\theta - 2\sin\theta\cos\theta\sin\theta$	M1
	$=2\cos^3\theta-\cos\theta-2(1-\cos^2\theta)\cos\theta$	M1
	$=4\cos^3\theta-3\cos\theta *$	A1cso (4)
(d)	$1 = 8\cos^3\theta - 6\cos\theta = 2\cos3\theta$	
	$\cos 3\theta = \frac{1}{2}$	M1
	$3\theta = \frac{\pi}{3}, \ \frac{5\pi}{3}, \ \frac{7\pi}{3}$	M1
	$\theta = \frac{\pi}{9}, \ \frac{5\pi}{9}, \ \frac{7\pi}{9}$	A1A1 (4)
(e)	$\int (8\cos^3\theta + 4\sin\theta)d\theta = \int (2\cos 3\theta + 6\cos\theta + 4\sin\theta)dx$	M1
	$= \frac{2}{3}\sin 3\theta + 6\sin \theta - 4\cos \theta \ (+c)$	A1
(ii)	$= \frac{2}{3}\sin \pi + 6\sin \frac{\pi}{3} - 4\cos \frac{\pi}{3} - \left(-4\cos 0\right)$	dM1
	$=6 \times \frac{\sqrt{3}}{2} - 2 + 4 = 3\sqrt{3} + 2$	A1cao cso (4)
		[16]

9	If c, s used for cos and sin allow for all marks except final A marks in each section. For these marks the candidate must return to cos, sin as appropriate.	
(a)	Perhaps A and P with θ in $\cos(A + P) = \cos A \cos P$, $\sin A \sin P$	
M1 M1	Replace A and B with θ in $\cos(A+B) = \cos A \cos B - \sin A \sin B$ Use $\sin^2 \theta = 1 - \cos^2 \theta$ to eliminate $\sin^2 \theta$	
A1cso	Detain the given identity with no errors seen	
	, and the second	
(b) B1	$\sin 2\theta = 2\sin \theta \cos \theta$ Must be simplified	
(c)		
M1	Use $\cos(A+B) = \cos A \cos B - \sin A \sin B$ with $A = 2\theta$, $B = \theta$ to eliminate 3θ	
M1	se $\cos 2\theta = 2\cos^2 \theta - 1$ and $\sin 2\theta = 2\sin \theta \cos \theta$ to obtain an expression with powers of $\sin \theta$ and $\cos \theta$	
M1 A1cso	Use $\sin^2 \theta = 1 - \cos^2 \theta$ to eliminate $\sin^2 \theta$ leaving powers of cos only Obtain the given identity with no errors seen	
(d) M1 M1 A1	Use the identity given in (c) to change the equation to the form $\cos 3\theta = k$ where $-1 < k < 1$ Obtain 1 value in range 0, $3\theta < 3\pi$ in terms of π for 3θ Any 2 correct values for θ Ignore any answers outside the range, deduct one A mark if	
	extras within the range are included.	
ALT:	Can work in degrees for the M marks; A marks only available if answers changed to radians without loss of accuracy.	
(e) (i) M1	Change the given integrand to one which can be integrated, either by using the identity in (c) or by obtaining $\int (8\cos^3\theta + 4\sin\theta) d\theta = \int (8(1-\sin^2\theta)\cos\theta + 4\sin\theta) dx$	
A1	Correct integration $\frac{2}{3}\sin 3\theta + 6\sin \theta - 4\cos \theta \ (+c)$ or $8\sin \theta - \frac{8}{3}\sin^3 \theta - 4\cos \theta \ (+c)$	
(ii) dM1	Constant of integration may be missing. Substitute both limits into their answer from (i)- evidence needed of substitution of 0 Substitution of upper limit followed by - 0 qualifies	
A1cao cso	$3\sqrt{3} + 2$ oe two terms only.	
	Watch for:	
	$\int \left(8\cos^3\theta + 4\sin\theta\right) d\theta = \left[8\sin^3\theta - 4\cos\theta\right]_0^{\frac{\pi}{3}}$	
	$=3\sqrt{3}-2-(-4)$	
	= correct answer!! But from completely INCORRECT working.	