Math 310: Problem Set 7 Avinash lyer

Problem 1

Let $D \subseteq \mathbb{R}$ and $c \in \mathbb{R}$. Show that the following are equivalent:

- (i) c is a limit point of D.
- (ii) There is a sequence $(x_n)_n$ in $D \setminus \{c\}$ with $(x_n)_n \to c$.
- (\Rightarrow) Let c be a limit point of D. Then, taking $\delta_n = 1/n$, let $x_n \in \dot{V}_{\delta_n}(c)$. Then, $(x_n)_n \to c$.
- (\Leftarrow) Let $(x_n)_n$ be a sequence in $D \setminus \{c\}$ with $(x_n)_n \to c$.

Then, $\forall \varepsilon > 0$, $\exists N \in \mathbb{N}$ with, $\forall n \geq N$, $|x_n - c| < \varepsilon$. Thus, $\forall \varepsilon > 0$, $\exists x_n$ such that $x_n \in \dot{V}_{\varepsilon}(c)$. Thus, c is a limit point.

Problem 2

Show that f can have at most one limit at c.

Suppose toward contradiction that $\lim_{x\to c} f(x) = L_1$ and $\lim_{x\to c} f(x) = L_2$, where $L_1 \neq L_2$. Then, $\exists \varepsilon_0 > 0$ such that $V_{\varepsilon}(L_1) \cap V_{\varepsilon}(L_2) = \emptyset$.

Let δ_1 be such that $|x-c| < \delta_1 \Rightarrow |f(x)-L_1| < \varepsilon_0$, and δ_2 be such that $|x-c| < \delta_2 \Rightarrow |f(x)-L_2| < \varepsilon_0$. Set $\delta = \min(\delta_1, \delta_2)$.

Then, $|x-c|<\delta\Rightarrow |f(x)-L_1|<\varepsilon_0$ and $|x-c|<\delta\Rightarrow |f(x)-L_2|<\varepsilon_0$. So, $\exists k$ such that $f(k)\in V_\varepsilon(L_1)$ and $f(k)\in V_\varepsilon(L_2)$. \bot

Problem 3

Show that the following are equivalent:

- (i) $\lim_{x\to c} f(x) = L$
- (ii) For every sequence $(x_n)_n$ in $D \setminus \{c\}$ such that $(x_n)_n \to c$, we have $(f(x_n))_n \to L$.
- (\Rightarrow) Let $\lim_{x\to c} f(x) = L$. Then, $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $|x-c| < \delta \Rightarrow |f(x)-L| < \varepsilon$.

So, $\forall \varepsilon > 0$, $\exists f(x_k) \in V_{\varepsilon}(L)$, such that $x_k \in \dot{V}_{\delta}(c)$. So, we have a sequence $(x_n)_n \to c$ defined by $\delta(\varepsilon, c)$, where $(f(x_n))_n \to L$.

(⇐) Assume toward contradiction that $\lim_{x\to c} f(x) \neq L$. Then, $\exists \varepsilon_0$ such that $\forall \delta > 0$, $\exists x \in \dot{V}_\delta(c) \cap D$ such that $|f(x) - L| > \varepsilon_0$.

Let $\delta_n = \frac{1}{n}$. Then, $\exists x_n \in \dot{V}_{1/n}(c) \cap D$ with $|f(x_n) - L| > \varepsilon_0$.

Since 0 < |x - c| < 1/n, $(x_n)_n \in D \setminus \{c\}$ and $(x_n)_n \to c$, meaning $(f(x_n))_n \to L$. However, $|f(x_n) - L| > \varepsilon_0$. \perp

Problem 4

If $\lim_{x\to c} f = L$ exists, show that there is a $\delta > 0$ such that

$$\sup_{x\in\dot{V}_{\delta}(c)}|f(x)|<\infty$$

Let $\varepsilon=1$. Then, $\exists \delta>0$ such that $\forall x\in \dot{V}_{\delta}(c)$, |f(x)-L|<1. Therefore,

$$|f(x)| = |f(x) - L + L|$$

$$\leq |f(x) - L| + |L|$$

$$< 1 + |L|$$

Triangle Inequality

So,

$$\sup_{x \in \dot{V}_{\delta}(c)} |f(x)| \le 1 + |L|$$

Problem 5

Establish the following limits:

(a)

$$\lim_{x \to 1} \frac{3x}{1+x} = \frac{3}{2}$$

Preliminary Work: Let $\varepsilon > 0$.

$$\left| \frac{3x}{1+x} - \frac{3}{2} \right| = \frac{3|x-1|}{2|x+1|}$$

If $x \in (0, 2)$, or |x - 1| < 1, then

$$\frac{3|x-1|}{2|x+1|} < \frac{3}{2}|x-1|$$
$$< \varepsilon$$

Proof: Given $\varepsilon > 0$, let $\delta = \frac{1}{2} \min \left(1, \frac{2}{3} \varepsilon \right)$. Then,

$$0 < |x - c| < \delta$$

$$\left| \frac{3x}{1 + x} - \frac{3}{2} \right| < \frac{3}{2}|x - 1|$$

$$< \frac{3}{2} \frac{2}{3} \varepsilon$$

(b)

$$\lim_{x \to 6} \frac{x^2 - 3x}{x + 3} = 2$$

Preliminary Work: Let $\varepsilon > 0$.

$$\left| \frac{x^2 - 3x}{x + 3} - 2 \right| = \left| \frac{x^2 - 3x - 2(x + 3)}{x + 3} \right|$$
$$= \left| \frac{x^2 - 5x - 6}{x + 3} \right|$$
$$= \frac{|x + 1|}{|x - 3|} |x - 6|$$

for |x - 6| < 1, we have

$$< 3|x - 6|$$

 $< \varepsilon$

Proof: Let $\varepsilon > 0$, and let $\delta = \frac{1}{2} \min \left(1, \frac{\varepsilon}{3} \right)$. Then,

$$0 < |x - 6| < \delta$$

$$\left| \frac{x^2 - 3x}{x + 3} - 2 \right| < 3|x - 6|$$

$$< 3\frac{\varepsilon}{3}$$

$$= \varepsilon$$

(c)

$$\lim_{x\to 0}\mathbf{1}_{\mathbb{Q}}=0$$

Let $(x_n)_n$ be a sequence defined by $\frac{1}{n}$, and let $(y_n)_n$ be a sequence defined by $\frac{1}{n\sqrt{2}}$. Then,

$$(x_n)_n = (1, 1, 1, ...)$$

 $(y_n)_n = (0, 0, 0, ...)$
 $(z_n)_n := (x_1, y_1, x_2, y_2, ...)$
 $= (1, 0, 1, 0, ...)$

Then, $(z_n)_n$ contains two subsequences, namely $(x_n)_n$ and $(y_n)_n$ that converge to two different values (1 and 0 respectively). Therefore $\lim_{x\to 0} \mathbf{1}_{\mathbb{Q}}$ does not exist.

(d)

$$\lim_{x\to 0}\frac{x^2}{|x|}=0$$

Let $(x_n)_n$ be a sequence such that $(x_n)_n \to 0$ and $x_n \neq 0 \ \forall n \in \mathbb{N}$. Then,

$$f(x_n) = \frac{x_n^2}{|x_n|}$$
$$= \frac{|x_n|^2}{|x_n|}$$
$$= |x_n|$$
$$\to 0$$

Problem 6

For which values of k = 0, 1, 2, ... does

$$\lim_{x\to 0} x^k \sin(1/x)$$

exist?

k=0: Suppose k=0. Let $(a_n)_n\in(0,1)$ be a sequence defined by $a_n=\frac{2}{(4n+1)\pi}$, and let $(b_n)_n\in(0,1)$ be a sequence defined by $\frac{1}{\pi n}$. Then,

$$(f(a_n))_n = (1, 1, 1, ...),$$

and

$$(f(b_n))_n = (0, 0, 0, \dots),$$

meaning that $(f(a_n))_n \to 1$ and $(f(b_n))_n \to 0$. Let $(c_n)_n = (a_1, b_1, a_2, b_2, \dots)$. Then, $(f(c_n))_n$ has a subsequence $(f(a_n))_n \to 1$ and a subsequence $(f(b_n))_n \to 0$. Therefore, $(f(c_n))_n$ is divergent, meaning the limit does not exist.

 $k \neq 0$: Suppose $k \neq 0$. Let $(x_n)_n$ be an arbitrary sequence in $D \setminus \{0\}$ such that $(x_n)_n \to 0$. Then,

$$|f(x_n)| = \left| x_n \sin\left(\frac{1}{x_n}\right) \right|$$

$$\leq |x_n|$$

$$\to 0$$

meaning $(f(x_n))_n \to 0$.

Problem 7

Assume $f(x) \ge 0$ for all $x \in D$ and suppose $\lim_{x \to c} f :=: L$ exists. Show that $L \ge 0$ and

$$\lim_{x \to c} \sqrt{f} = \sqrt{L}$$

Math 310: Problem Set 7 Avinash lyer

Let $(x_n)_n \in D \setminus \{c\}$ such that $(x_n)_n \to c$. Then, $(f(x_n))_n \to L$, by the sequential definition of limits. Since $f(x_n) \ge 0$ for all x_n , by the properties of sequences, it must be the case that $L \ge 0$.

Similarly, it must be the case that $\left(\sqrt{f(x_n)}\right)_n \to \sqrt{L}$ by the properties of sequences — meaning that $\lim_{X\to c} \sqrt{f} = \sqrt{L}$.

Problem 8

Assume $f: \mathbb{R} \to \mathbb{R}$ such that f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. If $\lim_{x\to 0} f := L$ exists, show that L = 0 and show that $\lim_{x\to c} f$ exists for all $c \in \mathbb{R}$.

Problem 9

Let $f:(0,1)\to\mathbb{R}$ be a bounded function such that $\lim_{x\to 0}f$ does not exist. Show that there are two sequences $(x_n)_n$ and $(y_n)_n$ with $(x_n)_n\to 0$, $(y_n)_n\to 0$, and $(f(x_n))_n$ and $(f(y_n))_n$ are both convergent, but with different limits.

Problem 10

Suppose $f:(0,\infty)\to\mathbb{R}$. Show that the following are equivalent:

- (i) $\lim_{x\to\infty} f = L$
- (ii) For every sequence $(x_n)_n$ in $(0,\infty)$ with $(x_n)_n \to \infty$, we have $(f(x_n))_n \to L$.

Problem 11

If $f:(a,\infty)\to\mathbb{R}$ such that $\lim_{x\to\infty}xf(x):=:L$ exists, show that

$$\lim_{x \to \infty} f(x) = 0.$$

Problem 12

Suppose $f,g:(0,\infty)\to\mathbb{R}$ are such that $\overline{\lim_{\mathbf{x}\to\infty}f:=}$: L>0, and $\lim_{\mathbf{x}\to\infty}g=\infty$. Show that $\lim_{\mathbf{x}\to\infty}fg=\infty$. Does this hold if L=0?