2.	(a)	Given two vectors in \mathbb{R}^3 , (x_1, y_1, z_1) and (x_2, y_2, z_2) , give the mathematical condition for the two vectors to be perpendicular in words, and as an equation.	[2]
		Suppose that three points in \mathbb{R}^3 have position vectors $\underline{p}=(1,2,3), \underline{q}=(2,4,5)$, and $\underline{r}=(3,3,1)$. Find the angle between the vectors $(\underline{q}-\underline{p})$ and $\underline{q}-\underline{r})$.	[2]
	(c)	State De Moivre's theorem for computing powers of complex numbers. Hence find all $x \in \mathbb{C}$ such that $x^3 = -1$, writing your answer in the form $a + bi$, where $i = \sqrt{-1}$.	[4]