Homework 5

Brandon Hosley Mike Davis

Homework 5

Problem 1

(1 point each) Draw the non-abbreviated logic diagram.

(1 point each) Construct the truth table for each.

a.
$$((ab)'(b'c)' + a'b'c')'$$

 $c \mid x$

 $0 \mid 0$

 $1 \mid 0$

 $0 \mid 1$

 $1 \mid 1$

 $0 \mid 1$

 $1 \mid 0$

X

0

0

0

0

0

0

1 | 1

 $1 \ 1 \ 0 \ 0$

1

 $1 \ 1 \ 0 \ 0$

1 1

 $1 \quad 1 \quad 0$

b.	((abc)'	+(a'b')	(c')
----	---------	---------	------

b (abc)'			
c ((abc)'+a'b'c')'	_a	b	c
a	0	0	0
a'b'c'	0	0	1
cc'	0	1	0
	0	1	1
	1	0	0
	1	0	1

HW5

c.
$$(a \oplus b) \oplus c + ab'c$$

d.
$$(((a+b)'+c)'+d)'$$

a (a+b)'	
b —	(a+b)'+c)'
c	(a+b)'+c)'+d)'
d ————	

a	b	c	d	x
0	0	0	0	1
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

Problem 2

- (3 points each) Draw a Karnaugh map.
- (3 points each) Find the minimum AND-OR expression for .
- **a.** $\Sigma(2,4,5,11,13,15)$

$$x(a, b, c, d) =$$

$$acd + bc'd + a'd'b'c + a'd'c'b$$

$$= d(bc' + ac) + a'd'(b'c + bc')$$

b. $\Sigma(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14)$

x:		<u> </u>)
	1	1	1	1
_ c	1	1	1	1
$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	1	1	0	1
	1	1	1	1

$$= a' + b' + ac' + bd'$$

$$= (ab)' + ac' + bd'$$

HW5 5

Problem 3

(3 points each) Draw a Karnaugh map.

(3 points each) Find the minimum AND-OR expression for x(a,b,c,d) with don't care conditions.

a.
$$\Sigma(0,3,14) + d(2,4,7,8,10,11,13,15)$$

x:			1)
	1	0	0	x
$\begin{bmatrix} c \end{bmatrix}$	X	1	X	0
	x	X	х	1
	x	0	X	0

$$= cd + b'd' + ac$$

$$= ac + cd + b'd'$$

b.
$$\Sigma(1,6,9,12) + d(0,2,3,4,5,7,14,15)$$

x:		 	1 1)
	X	1	X	X
$_{\pm}$ c	X	X	X	1
$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	0	0	X	x
	0	1	0	1

$$= bd' + b'c'd$$

HW5

Problem 4

For this diagram;

. Draw the truth table.

s	$\mid a \mid$	b	x	y
1	0	0	0	0
1	0	1	0	1
1	1	0	1	0
1	1	1	1	1
0	0	0	0	0
0	0	1	1	1
0	1	0	0	1
0	1	1	1	1

. Draw 2 K-Maps one for output of x and one of for output of y.

. Find \mathcal{E} show the minimum AND-OR expressions - one for f(x) and one for f(y)

$$f(x) = \frac{sa}{sa} + \frac{s'b}{s}$$
$$f(y) = \frac{sb}{sa} + \frac{s'a}{s}$$

. Construct one circuit using only AND, OR, and inverter gates.

HW5

Problem 5

Implement the following logic units for the Pep/8 ALU:

Logic unit 6, $\overline{A \cdot B}$

HW5 8

References

Warford, J. (2009). Computer systems (4th ed.). Jones and Bartlett.