Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling

Yu-Guan Hsieh, Franck lutzeler, Jérôme Malick, Panayotis Mertikopoulos (Univ. Grenoble Alpes)

Saddle-point Optimization

Find
$$x^* = (\theta^*, \phi^*)$$
 such that
$$\forall \theta \in \mathbb{R}^{d_1}, \ \forall \phi \in \mathbb{R}^{d_2}, \ \mathcal{L}(\theta^*, \phi) \leq \mathcal{L}(\theta^*, \phi^*) \leq \mathcal{L}(\theta, \phi^*)$$

Associated vector field:

$$V(\theta, \phi) = (\nabla_{\theta} \mathcal{L}(\theta, \phi), -\nabla_{\phi} \mathcal{L}(\theta, \phi))$$

First order optimality condition: $V(x^*) = 0$

Applications. • Generative adversarial networks • Adversarial training • Self-play • Robust optimization

Extragradient and its Failure

From gradient to extragradient

$$\mathcal{L}: (\theta, \phi) \in \mathbb{R} \times \mathbb{R} \mapsto \theta \cdot \phi; \ V(\theta, \phi) = (\phi, -\theta); \ x^* = (0, 0)$$

Algorithms -

. Gradient method:

$$X_{t+1} = X_t - \gamma_t V(X_t)$$

2. Extragradient (EG):

$$X_{t+\frac{1}{2}} = X_t - \gamma_t V(X_t)$$

$$X_{t+1} = X_t - \gamma_t V(X_{t+\frac{1}{2}})$$

The non-convergence of stochastic EG

$$\hat{V}_t = (\phi_t + \xi_t, -\theta_t); \quad \mathbb{E}[\xi_t] = 0, \quad \mathbb{E}[\xi_t^2] \ge \sigma^2 > 0$$

Propostion. Whatever stepsize is used, running EG with oracle feedback \hat{V}_t leads to $\liminf_{t\to\infty} \mathbb{E}[\theta_t^2 + \phi_t^2] > 0$.

N.B. EG is known to converge ergodically in $\mathcal{O}(1/\sqrt{t})$ in all stochastic monotone problems. However, in this work, we are interested in its lastiterate convergence.

A Remedy with Double Stepsize

DSEG -

$$X_{t+\frac{1}{2}} = X_t - \gamma_t \hat{V}_t, \qquad X_{t+1} = X_t - \eta_t \hat{V}_{t+\frac{1}{2}}$$

Explore aggressively, update conservatively: $\eta_t \leq \gamma_t$

Assumptions

On the **operator**

- 1. β -Lipschitz continuity (L): $||V(x) V(x')|| \le \beta ||x x'||$
- 2. Variational stability (VS): $\langle V(x), x x^* \rangle \ge 0$
- 3. Error bound (EB): $\exists \tau > 0, \forall x, ||V(x)|| \ge \tau \operatorname{dist}(x, \mathcal{X}^*)$

On the **noise** $(\forall s \in \mathbb{N}/2, \hat{V}_s = V(X_s) + Z_s)$

- . Unbiasedness: $\mathbb{E}[Z_s \mid \mathcal{F}_s] = 0$
- 2. Variance control: $\mathbb{E}[||Z_s||^2 | \mathcal{F}_s] \leq (\sigma + \kappa ||X_s x^*||)^2, \forall x^* \in \mathcal{X}^*$

A descent lemma

Assume (L). Let $C_t = 4\gamma_t^2\eta_t\beta + 2\gamma_t^3\eta_t\beta^2 + 4\eta_t^2 + 16\gamma_t^2\eta_t^2\kappa^2$. Then

$$\mathbb{E}[\|X_{t+1} - x^{\star}\|^{2} \mid \mathcal{F}_{t}] \leq \underbrace{(1 + C_{t} \kappa^{2})}_{\rightarrow 1} \|X_{t} - x^{\star}\|^{2}$$

$$-2\eta_{t} \mathbb{E}[\langle V(X_{t+\frac{1}{2}}), X_{t+\frac{1}{2}} - x^{\star} \rangle \mid \mathcal{F}_{t}]$$

$$\leq 0 \text{ (VS)}$$

$$-\gamma_{t}\eta_{t}(1 - \gamma_{t}^{2}\beta^{2} - 8\gamma_{t}\eta_{t} \kappa^{2}) \|V(X_{t})\|^{2} + \underbrace{C_{t}\sigma^{2}}_{\geq 0}$$

$$< 0 \text{ possible to use (EB)}$$

The decrement term is in $\Theta(\gamma_t \eta_t)$ while the noise term is in $\Theta(\eta_t^2)$

Convergence Result

Asymptotic convergence

Stepsize condition (SC). $\sum_t \gamma_t \eta_t = \infty$, $\sum_t \eta_t^2 < \infty$, $\sum_t \gamma_t^2 \eta_t < \infty$

Theorem. Assume (L) + (VS). DSEG with (SC) and $\gamma_t \leq c/\beta$ for some c < 1 converges to a solution x^* almost surely.

Convergence rate

Consider $\gamma_t = \gamma/(t+b)^{r_{\gamma}}$ and $\eta_t = \eta/(t+b)^{r_{\eta}}$

$r_{\gamma} = r_{\eta} = 1$	Strongly Monotone	$\mathcal{O}(1/t)$
$r_{\gamma} = 1/3, r_{\eta} = 2/3$	(EB) + (VS)	$\mathcal{O}(1/t^{1/3})$
$r_{\gamma} = r_{\eta} = 0 \ (\eta < \gamma)$	(EB) + (VS) + (σ = 0)	$\mathcal{O}(e^{-\rho t})$
$r_{\gamma}=0, r_{\eta}=1$	Affine Monotone	$\mathcal{O}(1/t)$

Local convergence

New!

- (a) Around solution x^* : (L) + (VS) + q-th moment control for Z_t
- (b) $Jac_V(x^*)$ is defined and invertible \Rightarrow local (EB)

Theorem. Fix tolerance level $\delta \in$ DSEG with close enough initialization and suitable stepsizes guarantees:

- If (a), then $\mathbb{P}(X_t \to x^*) \ge 1 \delta$
- If (a)+(b), then there exists event E such that $\mathbb{P}(E) \geq 1 - \delta$ and

$$\mathbb{E}[||X_t - x^*||^2 | E] = \mathcal{O}(1/t^{1/3})$$

Numerical Illustrations

Left Bilinear zero-sum game Middle Strongly monotone (biquadratic) Right Linear quadratic Gaussian WGAN

$$x \sim \mathcal{N}(0, \Sigma)$$

 $G(z) = Yz, D(x) = x^{\mathsf{T}}Wx$

