ELEC-313 Lab 5: CMOS Circuits

October 30, 2013

Date Performed: October 16, 2013 Partners: Charles Pittman

Stephen Wilson

Contents

1	Objective	3			
2	Equipment				
3	Schematics				
4	Procedure 4.1 CMOS Inverter	3 4			
5	Results				
6	Conclusion				
L	ist of Figures				
	Circuits used in this lab	3 5 6 6			
L	ist of Tables				
	1 NAND logic table	5			

1 Objective

The objective is to construct and observe the operation of a CMOS inverter and NAND gate.

2 Equipment

• ALD1105 Dual N-channel and P-channel matched pair MOSFET

• Power supply: HP E3631A

• Oscilloscope: Agilent 54622D

• Function generator: HP 33120A

3 Schematics

Figure 1: Circuits used in this lab.

4 Procedure

4.1 CMOS Inverter

- 1. Construct the circuit of Figure 1a.
- 2. Connect the V+ terminal (Pin 11) to the + supply voltage

- 3. Connect the V- terminal (Pin 4) to the circuit ground.
- 4. Set VDD to 5 V using the HP source.
- 5. Use the function generator to input V_i . Set the function generator to a frequency of 20 kHz and select a triangle wave. Set the wave for 0 to 5 V using the offset.
- 6. Connect channel 1 of the oscilloscope to the input and channel 2 to the output.
- 7. Use the x-y plot function of the scope to produce the transfer characteristic V_o vs. V_i . (Press the main key, then select the x-y soft-key, then adjust the voltage scales as needed.)
- 8. Capture the V_o vs. V_i . data, so you can recreate the plot for the lab report.
- 9. Adjust the amplitude and offset of the function generator for an input square wave of 0 to $5\,\mathrm{V}$ as measured on the oscilloscope.
- 10. Adjust the scope and capture both input and output on one screen for the report.
- 11. Measure the propagation delay times of the output waveform.

4.2 CMOS NAND

- 1. Construct the circuit of figure 1b.
- 2. Connect the v+ terminal (Pin 11) to the + supply voltage.
- 3. Connect the V- terminal (Pin 4) to the circuit ground.
- 4. Set the + supply voltage to 5 V DC using the HP source.
- 5. Set input A to 0 V.
- 6. Use the function generator for input B. Set the function generator to a frequency of $20\,\mathrm{kHz}$ and select a square wave. Set the square wave for 0 to $5\,\mathrm{V}$ using the offset.
- 7. Connect channel 1 of the oscilloscope to the input and channel 2 to the output.
- 8. Adjust the scope and capture both input and output on one screen for the report.
- 9. Repeat step 8 with the input A set to +5 V.

5 Results

Figure 2: Output of CMOS inverter

A	В	F
0	0	1
0	1	1
1	0	1
1	1	0

Table 1: NAND logic table

Figure 3: Transition point in CMOS inverter

Figure 4: Output of CMOS NAND gate

6 Conclusion

As seen in Figure 2, as the input voltage (V_i) is low $(0\,\mathrm{V})$, V_o is high $(5\,\mathrm{V})$. Conversely, when V_i is high, V_o is low. This relationship of V_i to V_o is why the configuration is called an inverter. Also, the transition from high to low on the output happens when the input is approximately between 1 and $3\,\mathrm{V}$ at V_i ; that is, when the input voltage is less than one, the output voltage is almost exactly $5\,\mathrm{V}$ and when the input voltage is greater than $3\,\mathrm{V}$, the output voltage is almost exactly $0\,\mathrm{V}$. (Refer to Figure 2 for a close up of the V_i to V_o). Additionally, the output voltage closely represents a square wave or an on/off relationship as the input voltage is swept back and forth between low and high. It should also be noted that it takes $58.8\,\mathrm{ns}$ for the output voltage response to change from high to low.

The circuit in Figure 1b operates as a NAND gate (see Table 1) because when input A is low $(0\,\mathrm{V})$, the inverting gate (Q_1) is shorted and the non-inverting gate (Q_3) is open. Therefore no matter what input B is shown, the output voltage is high. When input A is high, Q_1 is inverted and therefore open and Q_3 is shorted. During this state, when input B is low, Q_2 is inverted and shorted allowing current to flow through it, but Q_4 is open blocking the current and the output voltage is again high. The only time the output voltage is low, is when A and B are high, which means both the inverting gates Q_1 and Q_2 are open. This behavior is shown in Figure 4.