NEC

PNP SILICON TRANSISTOR 2SB1068

DESCRIPTION

The 2SB1068 is designed for use in driver and output stages of

audio frequency amplifiers.

FEATURES

• Low Collector Saturation Voltage

 $V_{CE(sat)}$: -0.25 V TYP. ($I_C = -1.0 \text{ A}, I_B = -10 \text{ mA}$)

• High DC Current Gain

 h_{FE} : 350 TYP. ($V_{CE} = -2.0 \text{ V}, I_{C} = -100 \text{ mA}$)

- High Total Power Dissipation P_T: 0.75 W (T_a = 25 °C)
- Complementary to The NEC 2SD1513 NPN Transistor

ABSOLUTE MAXIMUM RATINGS

ELECTRICAL CHARACTERISTICS (Ta = 25 °C)

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
hFE1	DC Current Gain	135	350	650	_	$V_{CE} = -2.0 \text{ V, I}_{C} = -100 \text{ mA}$
hFE2	DC Current Gain	100			-	$V_{CE} = -2.0 \text{ V, I}_{C} = -1.5 \text{ A}$
fT	Gain Bandwidth Product	100	180		MHz	$V_{CE} = -10 \text{ V}, I_{E} = 50 \text{ mA}$
C _{ob}	Output Capacitance		60		pF	$V_{CB} = -10 \text{ V}, I_E = 0, f = 1.0 \text{ MHz}$
Ісво	Collector Cutoff Current			-100	nΑ	$V_{CB} = -16 \text{ V}, I_E = 0$
¹EBO	Emitter Cutoff Current			-100	nA	$V_{EB} = -6.0 \text{ V, } 1_{C} = 0$
VBE	Base to Emitter Voltage	-550	-600	-650	mV	$V_{CE} = -6.0 \text{ V, } I_{C} = -5.0 \text{ mA}$
VCE(sat)1	Collector Saturation Voltage		-0.25	-0.40	V	$I_C = -1.0 \text{ A}, I_B = -10 \text{ mA}$
VCE(sat)2	Collector Saturation Voltage		-0.31	-0.50	٧	$I_{C} = -1.5 \text{ A}, I_{B} = -75 \text{ mA}$
VCE(sat)3	Collector Saturation Voltage		-0.33	-0.50	٧.	$I_C = -1.5 \text{ A}, I_B = -20 \text{ mA}$
VBE(sat)	Base Saturation Voltage		-1.05	-1.2	V	$I_C = -1.5 \text{ A}, I_B = -75 \text{ mA}$

Classification of hFE

Rank	L	К	U
Range	135 — 270	200 – 400	300 650

Test Conditions : $V_{CE} = -2.0 \text{ V}$, $I_{C} = -100 \text{ mA}$

^{*} PW \leq 10 ms, Duty Cycle \leq 50 %

TYPICAL CHARACTERISTICS (Ta = 25 °C)

SAFE OPERATING AREAS (TRANSIENT THERMAL RESISTANCE METHOD)

COLLECTOR CURRENT vs. COLLECTOR TO EMITTER VOLTAGE

COLLECTOR CURRENT vs. COLLECTOR TO EMITTER VOLTAGE

DC CURRENT GAIN vs. COLLECTOR CURRENT

COLLECTOR CURRENT vs. BASE TO EMITTER VOLTAGE

BASE AND COLLECTOR SATURATION VOLTAGE vs. COLLECTOR CURRENT

GAIN BANDWIDTH PRODUCT vs. EMITTER CURRENT

OUTPUT CAPACITANCE vs. COLLECTOR TO BASE VOLTAGE

