

Scalable Data Science

Lecture 10: Frequent Elements: SpaceSaving and CountMin

Anirban Dasgupta

Computer Science and Engineering
IIT GANDHINAGAR

Streaming model revisited

- Data is seen as incoming sequence
 - can be just element-ids, or (id, frequency update) tuple

Arrival only streams

- Arrival + departure
 - Negative updates to frequencies possible
 - Can represent fluctuating quantities, e.g.

Review: Frequency Estimation in one pass

- Given input stream, length m, want a sketch that can answer frequency queries at the end
 - For give item x, return an estimate of the frequency
- Deterministic algorithm by Misra and Gries
 - $-f_{x}$ = original frequency of item x . Return $\widehat{f_{x}}$ such that

$$f_{x} - \epsilon m \le f_{x} \le f_{x}$$

- Space =
$$O(\frac{1}{\epsilon}\log n)$$

Space Saving Algorithm

Keep k counters and items in hand

Initialize:

Set all counters to 0

Process(x)

- if x is same as any item in hand, increment its counter
- else if number of items < k, store x with counter = 1
- else replace item with smallest counter by x, increment counter

Query(q)

If q is in hand return its counter, else 0

Example

Analysis

- Smallest counter value, min, is at most ϵm
 - Counters sum to m, by induction
 - $-1/\epsilon$ counters, so average is ϵm , hence smallest is less

Analysis

<u>Claim 1</u>: All items with true count $> \epsilon m$ are present in hand at the end

Analysis

<u>Claim 1</u>: All items with true count $> \epsilon m$ are present in hand at the end

- Smallest counter value, min, is at most ϵm
 - Counters sum to m, by induction
 - $-1/\epsilon$ counters, so average is ϵm , hence smallest is less
- True count of an uncounted item is between 0 and min
 - Proof by induction, true initially, min increases monotonically
 - Consider last time the item was dropped

Counter based vs "sketch" based

- Counter based methods
 - Misra-Gries, Space-Saving,
 - Work for arrival only streams
 - In practice somewhat more efficient: space, and especially update time
- Sketch based methods
 - "Sketch" is informally defined as a "compact" data structure that allows both inserts and deletes
 - Use hash functions to compute a linear transform of the input
 - Work naturally for arrivals + departure

Count-min sketch

- Model input stream as a vector over U
 - $-f_x$ is the entry for dimension x
- Creates a small summary $w \times d$
- Use w hash functions, each maps $U \rightarrow [1, d]$

Count Min Sketch

Initialize

- Choose $h_1, ..., h_w$, A[w, d] ← 0

Process(x, c):

- For each $i \in [w]$, $A[i, h_i(x)] += c$

Query(q):

- Return $\min_{i} A[i, h_i(x)]$

Example

h1		
h2		

	h1	h2
	2	1
•	1	2
	1	3
0	3	2

Space =
$$O(wd)$$

Update time = $O(w)$

Each item is mapped to one bucket per row

•
$$w = \frac{2}{\epsilon}$$
 $d = \log\left(\frac{1}{\delta}\right)$

$$Y_1 \dots Y_w$$
 be the w estimates, i.e. $Y_i = A[i, h_i(x)], \quad \widehat{f}_x = \min_i Y_i$

Each estimate \widehat{f}_{x} always satisfies $\widehat{f}_{x} \geq f_{x}$

•
$$w = \frac{2}{\epsilon}$$
 $d = \log\left(\frac{1}{\delta}\right)$

$$Y_1 \dots Y_w$$
 be the w estimates, i.e. $Y_i = A[i, h_i(x)], \quad \widehat{f}_x = \min_i Y_i$

Each estimate \widehat{f}_{x} always satisfies $\widehat{f}_{x} \geq f_{x}$

$$E[Y_i] = \sum_{y:h_i(y)=h_i(x)} f_y = f_x + \epsilon (m - f_x)/2$$

•
$$w = \frac{2}{\epsilon}$$
 $d = \log\left(\frac{1}{\delta}\right)$

$$Y_1 \dots Y_w$$
 be the w estimates, i.e. $Y_i = A[i, h_i(x)], \quad \widehat{f}_x = \min_i Y_i$

Each estimate \widehat{f}_x always satisfies $\widehat{f}_x \ge f_x$

$$E[Y_i] = \sum_{y:h_i(y)=h_i(x)} f_y = f_x + \epsilon (m - f_x)/2$$

Applying Markov's inequality,

$$\Pr[Y_i - f_x > \epsilon m] \le \frac{\epsilon(m - f_x)}{2\epsilon m} \le \frac{1}{2}$$

• Since we are taking minimum of $\log\left(\frac{1}{\delta}\right)$ such random variables,

$$\Pr[\widehat{f}_{x} > f_{x} + \epsilon m] \leq 2^{-\log(\frac{1}{\delta})} \leq \delta$$

• Since we are taking minimum of $\log\left(\frac{1}{\delta}\right)$ such random variables,

$$\Pr[\widehat{f}_{x} > f_{x} + \epsilon m] \le 2^{-\log(\frac{1}{\delta})} \le \delta$$

• Hence, with probability $1 - \delta$, for any query x

$$f_{\mathcal{X}} \le \widehat{f_{\mathcal{X}}} \le f_{\mathcal{X}} + \epsilon m$$

Summary

- Two algorithms for frequency estimation
 - Counter based: Space Saving
 - Sketch based: Count-Min
- Guiding principle: use error bounds as design parameters of the data structure
- More to come...

References:

- Primary references for this lecture
 - Lecture slides by Graham Cormode http://dmac.rutgers.edu/Workshops/WGUnifyingTheory/Slides/cormode.pdf
 - Lecture notes by Amit Chakrabarti: http://www.cs.dartmouth.edu/~ac/Teach/data-streams-lecnotes.pdf
 - Sketch techniques for approximate query processing, Graham Cormode. http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

Thank You!!

