浙江大学

本科实验报告

课程名称:		计算机逻辑设计基础	
姓	名:	刘晨	
学	院:	计算机科学与技术学院	
	系:	人工智能 1902	
专	业:	计算机科学与技术	
学	号:	3190104666	
指导教师:		董亚波	

2020 年10月1日

浙江大学实验报告

课程名称:	计算机逻辑设计	-基础	_实验类	型: 综合
实验项目名称:	常用电子仪	(器的使用		
学生姓名:	刘晨	专业:图灵班	学号:	319010466
同组学生姓名:	<u>曲字阳</u> 指导	老师:董亚波		
实验地点: <u>东</u>	<u>4-509</u> 实验日期: <u>2</u>	<u>020 年_10</u> 月_1_日		

一、实验目的和要求

- 1.认识常用电子器件
- 2.学会数字示波器、数字信号发生器(函数信号发生器)、直流稳压电源、万用 表等常用电子仪器的使用
- 3.掌握用数字示波器来测量脉冲波形及幅度和频率的参数
- 4.掌握用数字示波器测量脉冲时序的上升沿和下降沿、延时等参数
- 5.掌握万用表测量电压、电阻及二极管的通断的判别
- 二、实验内容和原理

内容:

用数字示波器来测量函数信号发生器发出来的频率(周期)和幅度。通过选择频率范围按键和频率调节旋钮,使函数信号发生器发出频率分别为 100Hz、10KHz 和 100KHz 的正弦波,用数字示波器测出上述信号的周期和频率,验证函数信号发生器发生信号正确率。

让信号发生器输出频率为 1KHz、1-3V 任意有效值的正弦波(用数字万用表交流档测量有效值),用示波器测量其幅值,并进行有效电压值的计算与比较。

测量实验箱中的直流电源

用示波器测量正弦波信号

测量 YB1638 型函数信号发生器输出电压

测量二极管的单向导通特性

原理:

三、实验过程和数据记录

1. 测量实验箱中的直流电源

正确连接仪器,把功能开关量程置于直流量程,将测试笔连到待测电路上(实验时我们把夹子夹在了笔尖上,再插进孔洞)。用示波器和万用表来测量试验台上的 5V 直流稳压电源的输出,并记录测量结果。

(如果有,请附上照片)

直流稳压电源	示波器读数	灵敏度	示波器折算值	万用表读数
输出				
+5V	2.4div	2V/div	4.82V	4.83V

2. 用示波器测量正弦波信号

频率(周期)测量:通过选择频率范围开关和频率调节旋钮使 YB1638 型函数信号发生器发出频率分别为 100Hz、10KHz 和 100KHz 的正弦波,用示波器测出上述信号的周期和频率,比较是否与刻度值相一致,并将数据记入下表

	函数发生器输出	示波器	读数	灵敏度		实测值	
幅度		2.5	Div	1 V/Div	1.77		V
周期/频率	100Hz	5	Div	0. 4ms/Div	2.00	ms	100 Hz
幅度		2.5	Div	1 V/Div	1.77		V
周期/频率	10KHz	5	Div	4 μs/div	20.00	μs	100 Hz
幅度		2.5	Div	1 V/Div	1.77		V
周期/频率	100KHz	5	Div	0.4 μs/div	2.0	μs	100 Hz

将信号发生器输出的频率通过频率波段选择范围按键、频率微调旋钮调到所需要的频率,通过数码管显示输出信号的频率值。

3. 测量 YB1638 信号发生器输出电压

让信号发生器输出 1KHz、1--3V 任意的正弦波信号,将信号发生器的输出接到示波器,用示波器测量峰峰值。

将万用表功能量程开关置于交流电压档位和合适量程,测量信号发生器输出的信号的有效值。

示波器测量的峰峰值折算成有效值,与万用表用交流档读取的有效值进行比较。

将信号发生器输出接入万用表,万用表红表笔接正,黑表笔接负,使用交流 电压档,并选用适当量程。通过调节信号发生器幅度旋钮,使万用表显示 3V 的有效值。

将信号发生器输出接入到示波器中,用示波器读取峰峰值 VP-P。

函数发生器输出频率	示波器词	卖取值	折算有效值	万用表读取值
1KHz	2.6div	1V/div	1.83V	1.97V

4. 用万用表测二极管的单向导通特性

将万用表功能量程开关置于 ""位置,把红黑表笔分别接到实验台上的二极管的两极,如果显示屏上显示 0.6 - 0.7 的数字,此时二极管正向导通,显示的数字是 PN 结的电压,红表笔接的极是二极管的正极,黑表笔接的是负极。如果显示屏上显示的数字是"1",此时二极管反向截止,红表笔接的是二极管负极,黑表笔接的是正极。

二极管正向导通时万用表读数	二极管反向截止时万用表读数
0.577V	1V

四、实验结果分析

4.二极管是单向导电的

五、讨论与心得

附实验数据照片: (太大了放不下,用缩略图了)

