## Shreyas Mahimkar

### 3) Kmeans Clustering::

SSE vs k and NMI vs k plots for each dataset ::

### 1) Dermatology Data





For k=6 Optimal k base on the above plot is 5 (Both NMI and SSE).

NMI:0.9896762049031579 sse:11449.901306748103 iteration:38

### 2) Ecoli Data





Optimal K base on SSE and NMI:: between 4 and 8. As we can see after k=4 the exponential drop (knee) is not exponential anymore.

K = 5 - Class number

NMI:0.9696986830920746 sse:15.3123443054913 iteration:17

### 3) GlassData





Based on SSE : Best k = 7. Exponential drop stops at 7.

Based on NMI: k=2.

k = 6

NMI:1.1622090104655665 sse:61.81117417861708 iteration:16

# 4)SoyBean Data





k = 14 according to SSE:

k = 15

NMI:1.1184126663796718 sse:1665.668453373021 iteration:24

### 5) Vowels Data





k = 11

NMI:1.0118774989164114 sse:1825.882806346687 iteration:64

### 6) Yeast Data





k = 9

NMI:1.0730482121277236 sse:51.03846248432911 iteration:46

#### Based on only Kmeans Algorithm

| Datasets    | Optimal k<br>based on SSE | Optimal k<br>based on NMI | Num classes | NMI value for k = numClasses | SSE value for k= numClasses |
|-------------|---------------------------|---------------------------|-------------|------------------------------|-----------------------------|
| Dermatology | 4                         | 4                         | 5           | 0.96                         | 15.31                       |
| Ecoli       | 5                         | 5                         | 6           | 0.98                         | 11449.90                    |
| Glass       | 7                         | 2                         | 6           | 1.16                         | 61.81                       |
| SoyBean     | 14                        | 5                         | 15          | 1.11                         | 1665.66                     |
| Vowels      | 10                        | 4                         | 11          | 1.01                         | 1825.88                     |
| Yeast       | 3                         | 2                         | 9           | 1.07                         | 51.03                       |

Extra Credit for initializing cluster centroids.

Initiate cluster centroids such that if k=2, select the two centroids in the dataset which are farthest from each other. http://cs.nyu.edu/courses/spring11/G22.2580-001/lec5.html

### Furthest Point First (FPF) Algorithm

```
[Geraci et al., 2006] { V := random point in S;
```

```
CENTERS := \{V\};
 for (U in S) {
  LEADER[U] := V;
  D[U] = d(U,V);
 for (I = 1 \text{ to } K) {
   X := the point in S-CENTERS with maximal value of D[X];
   C := emptyset;
   for (U in S-CENTERS)
     if (d(U,X) < D[U]) add X to C;
   X := medoid(C,X);
   add X to CENTERS;
   for (U in S-CENTERS) {
    if (d(U,X) < D[U]) {
     LEADER[U] := X;
     D[U] := d(U,X)
return(CENTERS)}
```