Math 209-16 Homework 7

Due Date: Dec. 29, 2022

P1.(2 pts) If α is an algebraic number in $\mathbb{Q}(\sqrt{m})$ with m < 0, prove that $N(\alpha) \ge 0$. Show that this is false if m > 0.

Proof. When m < 0 and $\alpha = a + b\sqrt{m}$, we have $N(\alpha) = a^2 - mb^2 \ge 0$. But when m > 0, we have, for instance, $N(\sqrt{m}) = -m < 0$.

P2.(2 pts) Prove that the following assertion is false in $\mathbb{Q}(i)$: if $N(\alpha)$ is a rational integer, then α is an algebraic integer.

Proof. For example, $N(\frac{3}{5} + \frac{4}{5}i) = 1$ is a rational integer, but $\frac{3}{5} + \frac{4}{5}i$ is not an algebraic integer.

P3.(2 pts) Prove that 3 is a prime in $\mathbb{Q}(i)$, but not a prime in $\mathbb{Q}(\sqrt{6})$.

Proof. If 3 is not a prime in $\mathbb{Q}(i)$, then it is reducible and can be written as 3 = xy with $x, y \in \mathbb{Z}[i]$ non-units. Taking norms we obtain 9 = N(x)N(y), and so N(x) = 3 since non-units in $\mathbb{Q}(i)$ have norm larger than 1. But if we write x = a + bi with $a, b \in \mathbb{Z}$ this would mean $a^2 + b^2 = 3$, which is impossible. Therefore 3 is a prime in $\mathbb{Q}(i)$.

On the other hand, in the ring of integers $\mathbb{Z}[\sqrt{6}]$ of $\mathbb{Q}(\sqrt{6})$, we have $3 = (3 + \sqrt{6})(3 - \sqrt{6})$. And since $N(3 + \sqrt{6}) = N(3 - \sqrt{6}) = 3 \neq \pm 1$, they are not units, so indeed 3 is not a prime in $\mathbb{Q}(\sqrt{6})$.

P4.(2 pts) Prove that $\mathbb{Q}(\sqrt{-11})$ has the unique factorization property.

Proof. Recall the norm map of the field extension $\mathbb{Q}(\sqrt{-11})/\mathbb{Q}$ is given by $N(\alpha) = a^2 + 11b^2$ for $\alpha = a + b\sqrt{-11}$ and the ring of integers in $\mathbb{Q}(\sqrt{-11})$ is $R := \mathbb{Z}[\frac{1+\sqrt{-11}}{2}]$. Elements of R are those $a + b\sqrt{-11}$ with $a, b \in \frac{1}{2}\mathbb{Z}$ and $a + b \in \mathbb{Z}$, therefore their norms are actually rational integers. We claim that the norm map $N : R \to \mathbb{N}$ can serve as an Euclidean function for R. Indeed, for any elements $\alpha = a + b\sqrt{-11}$ and $\beta = c + d\sqrt{-11} \neq 0$ in R, we first write $\alpha = \beta \gamma$ with $\gamma = m + n\sqrt{-11} \in \mathbb{N}$

 $\mathbb{Q}(\sqrt{-11})$. Now 2m and 2n are rational numbers and we can find integers m_0 and n_0 with the same parity such that $|m_0-2m|\leqslant 1$ and $|n_0-2n|\leqslant \frac{1}{2}$. Putting $\gamma_0=\frac{1}{2}(m_0+n_0\sqrt{-11})$, which is an element in R, we find $\alpha=\beta\gamma_0+\beta\delta$, where $\delta=\gamma-\gamma_0=(m-\frac{m_0}{2})+(n-\frac{n_0}{2})\sqrt{-11}$. By our choice of m_0 and n_0 , we see that $N(\delta)\leqslant \frac{1}{4}+\frac{11}{16}<1$, hence $N(\beta\delta)< N(\beta)$, which concludes the proof of the claim. Being an Euclidean domain, the ring R therefore has the unique factorization property.

P5.(2 pts) Prove that the primes of $\mathbb{Q}(\sqrt{2})$ are $\sqrt{2}$, all rational primes of the form $8k\pm 3$, and all factors $a+b\sqrt{2}$ of rational primes of the form $8k\pm 1$, and all associates of these primes.

Proof. We know that $\mathbb{Q}(\sqrt{2})$ has the unique factorization property, so this proposition follows immediately from Theorem 9.29 in the textbook, since for odd primes p, we have:

P6.(2 pts) Find all solutions of $y^2 + 1 = x^3$ in rational integers.

Proof. A solution gives a factorization $x^3 = (y+i)(y-i)$ in the ring $R = \mathbb{Z}[i]$. Notice that y cannot be odd, since otherwise we would have $x^3 \equiv 2 \pmod{4}$ which is impossible. Now in R we have $(y+i,y-i)|(2i)=(1+i)^2$, and $(1+i)\nmid (y+i)$ since $2=N(1+i)\nmid N(y+i)=(y^2+1)$, therefore (y+i,y-i)=1. As R is a unique factorization domain we conclude that y+i and y-i should both be perfect cubes in R. Writing $y+i=(a+bi)^3$ we obtain $a^3-3ab^2=y$ and $3a^2b-b^3=1$. It is easy to see the only integer solution is a=0 and b=-1, which is to say the only solution of the original equation is x=1,y=0.