

FCC RF TEST REPORT

APPLICANT

FXT Technology Co., Limited

PRODUCT NAME

5.8G AV Transmitter

MODEL NAME

FX799T-L,FX796T-L

TRADE NAME

FXT

BRAND NAME

FXT

FCC ID

2AGB8-002

STANDARD(S)

47 CFR Part 15 Subpart C

ISSUE DATE

Certification

SHENZHEN MORLAB COMMUNICATIONS ECHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

MORLAB GROUP

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Http://www.morlab.com

Tel: 86-755-36698555

Fax: 86-755-36698525 E-mail: service@morlab.cn

DIRECTORY

TEST F	REPORT DECLARATION						2
<u>1. T</u>	ECHNICAL INFORMATION						5
1.1	EUT DESCRIPTION						5
1.2	TEST STANDARDS AND RESULTS						7
1.2.1							
2. 4	7 CFR PART 15C REQUIREMENTS	×					8
3	RIAL MORE ME	NB.	RLAD	"OKE	W.	aB.	al.All
2.1	ANTENNA REQUIREMENT ·····						
2.1.1	APPLICABLE STANDARD ······			70°			
2.1.2	RESULT: COMPLIANT						
2.2	BANDWIDTH ······						
2.2.1	REQUIREMENT·····						
2.2.2	TEST DESCRIPTION ······						
2.2.3	TEST RESULT······						
2.3	BAND EDGE						
2.3.1	REQUIREMENT						
2.3.2	TEST DESCRIPTION ······						
2.3.3	TEST PROCEDURE ······						
2.3.4	TEST RESULT······						
2.3.4.	1 Test Verdict for White Antenna:						
	2 TEST VERDICT FOR BLACK ANTENNA:						
2.4	FIELD STRENGTH OF FUNDAMENTAL						18
2.4.1	REQUIREMENT						18
2.4.2	TEST DESCRIPTION ······						
2.1.1	Test Procedure ·····						19
2.1.2							
2.1.2.	1 Test Verdict for White Antenna:						19
2.1.2.	2 Test Verdict for Black antenna:					,	23
2.2	RADIATED EMISSION AND FIELD STRENG	TH OF HARMON	ICS······				27
2.4.1	REQUIREMENT						27
2.4.2	TEST DESCRIPTION ·····						
2.4.3	TEST RESULT······						30

ANNEX A GENERAL INFORMATION 43

			Change	History				
Issue	Date			Reaso	n for chan	ge		
1.0	2015-12-10	HOLO	3	Fire	st edition	Mole	B	LAB
MOL	-0 m	E ORLE	Mok	- @ W	LAB	ORL	HIC	26

TEST REPORT DECLARATION

Applicant	FXT Technology Co.,Limited
Applicant Address	Room1023, Tongsheng Technology building, Huahui Road, Shanghenglang, Dalang,Longhua District, Shenzhen, China
Manufacturer	FXT Technology Co.,Limited
Manufacturer Address	Room1023, Tongsheng Technology building, Huahui Road, Shanghenglang, Dalang,Longhua District, Shenzhen, China
Product Name	5.8G AV Transmitter
Model Name	FX799T-L,FX796T-L
Brand Name	FXT
HW Version	FX799T REV(V1.3) FX799T REV(V1.4) FX796T REV(V1.0) FX796-K RVE(1.0)
SW Version	N.A
Test Standards	47 CFR Part 15 Subpart C
Test Date	2015-11-25 to 2015-12-10
Test Result	PASS

Tested by	201	Tian	
	Zou Jian	(Test Engineer)	100

Qiu Xiaojun Reviewed by

Qiu Xiaojun(RF Manager)

Zeng Dexin(Chief Engineer) Approved by

1. TECHNICAL INFORMATION

Note: Provide by applicant.

1.1 EUT Description

EUT Type	5.8G AV Transmitter						
Serial No	(n.a, marked #1 by test site)						
Hardware Version	FX799T REV(V1.3) FX799T REV(V1.4) FX796T REV(V1.0)						
WOL B	FX796-K RVE(1.0)						
Software Version	N/A						
Applicant	FXT Technology Co.,Limited						
ORLAN MORL	Room1023, Tongsheng Technology building, Huahui Road,						
AE AE	Shanghenglang, Dalang,Longhua District, Shenzhen, China						
Manufacturer	FXT Technology Co.,Limited						
AB TO TRLAD	Room1023, Tongsheng Technology building, Huahui Road,						
ORL. MO.	Shanghenglang, Dalang,Longhua District, Shenzhen, China						
Frequency Range	5.725GHz – 5.875GHz						
Channel Number	26(See Note1)						
Channel Spacing:	Band F & Band A:20MHz; Band R & Band B:19MHz;						
Modulation Type	FM						
Antenna Type	PCB Antenna						
Antenna Gain	White antenna :2.0dBi						
E ORLAND	Black antenna :2.0dBi						

NOTE:

 The EUT is a 5.8G Monitor. It is working at the 5.8GHz ISM band, The detail about the module supports band is as follows. For all Bands, the channel 5733MHz, 5790MHz and 5866MHz were selected for test

CH	Ole	THE CH MORE THE RES						3
FR	CH1	CH2	CH3	CH4	CH5	CH6	CH7	CH8
FR1/Band F	5740	5760	5780	5800	5820	5840	5860	RLA -
FR3/Band A	5865	5845	5825	5805	5785	5765	5745	- 08
FR4/Band R	, EB	-RLA	5732	5769	5806	5843	RLA	MCRE
FR5/Band B	5733	5752	5771	5790	5809	5828	5847	5866

- 2. For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer
- 3. There are two types of EUT, only the antennal connecter location is different between each

other. Both two models of EUT can use two types of antennal, The two types of antennal are named "White antennal" and "Black antennal", in this report just recorded the worst test data of the model named 799T.the two models' appearance as shown below.

1.2 Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Bluetooth,

1.2 Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Bluetooth, 2.4GHz ISM band radiators) for the EUT FCC ID Certification:

	No.	Identity	Document Title
	1 🔊	47 CFR Part 15	Radio Frequency Devices
3	Mo	(10-1-13 Edition)	MORE ME AE . BLAE

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Date	Result
1	15.203	Antenna Requirement	N.A	PASS
2 💸	15.215	Bandwidth	Dec 01, 2015	PASS
3	15.249(a)	Field strength	Dec 10, 2015	PASS
4	15.249(d)	Band edge	Dec 10, 2015	PASS
5	15.209 ,15.249(a)	Radiated Emission and field strength of harmonics	Dec 10, 2015	PASS

The tests of Conducted Emission and Radiated Emission were performed according to the method of measurements prescribed in ANSI C63.4 2009.

These RF tests were performed according to the method of measurements prescribed in KDB558074 D01 v03r03 (09/06/2015).

1.2.1 Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35	More	2LAB	NORL
Relative Humidity (%):	30 -60	QLAB NORL	Wo.	CB /
Atmospheric Pressure (kPa):	86-106	10.	AB OR	

2. 47 CFR PART 15C REQUIREMENTS

2.1 Antenna requirement

2.1.1 Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2 Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2 Bandwidth

2.2.1 Requirement

None; for reporting purpose only.

2.2.2 Test Description

A. Test Set:

The EUT is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

KDB 558074 Section 8.1 Option 1 was used in order to prove compliance.

B. Equipments List:

Please reference ANNEX A(1.4).

2.2.3 Test Result

The lowest, middle and highest channels are selected to perform testing to record the 20dB bandwidth of the Module.

A. Test Verdict:

Channel	Frequency 20 dB Bandwidth (MHz) (MHz)		Refer Plot
Lowest	5733	3.155	Plot A
Middle	5790	3.451	Plot B
Highest	5866	3.201	Plot C

B. Test Plots

(Plot A@ Lowest Channel: 5733MHz)

(Plot B@ Middle Channel: 5790 MHz)

(Plot C@ Highest Channel: 5866MHz)

2.3 Band edge

2.3.1 Requirement

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

2.3.2 Test Description

A. Test Setup:

The EUT is powered by the Battery. The Module is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the EUT is activated and controlled by the software.

For the Test Antenna:

Horn Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

B. Equipments List:

Please reference ANNEX A(1.4).

2.3.3 Test Procedure

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 KHz for f < 1GHz

VBW = 3 MHz for peak and 10Hz for average

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize.

2.3.4 Test Result

The lowest and highest channels are tested to verify the band edge emissions

The measurement results are obtained as below:

 $E[dB\mu V/m] = UR + AT + AFactor[dB]; AT = LCable loss[dB] - Gpreamp[dB]$

AT: Total correction Factor except Antenna

UR: Receiver Reading
Gpreamp: Preamplifier Gain
AFactor: Antenna Factor at 3m

Note: Test were performed when antenna was at vertical and horizontal polarity, and only the

worse test

condition (vertical) was recorded in this test report.

2.3.4.1 Test Verdict for White antenna:

Channel	Frequency		Receiver Reading	A_T	A_{Factor}	Max. Emission	Limit	Verdict
Charmer	(MHz)		PK/ AV (dBuV) (dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	veralet	
Lowest	5733	PK	71.92	-33.63	32.56	70.85	74	Pass
Lowest	5733	AV	52.53	-33.63	32.56	51.46	54	Pass
Highort	5866	PK	68.34	-33.18	32.5	67.66	74	Pass
Highest	5866	AV	52.37	-33.18	32.5	51.69	54	Pass

Test Plots:

(Plot 1 PK @ Lowest Channel: 5733 MHz)

(Plot 1 AV @ Lowest Channel: 5733 MHz)

(Plot 5PK@ Highest Channel: 5866 MHz)

(Plot 5 AV@ Highest Channel: 5866 MHz)

2.3.4.2 Test Verdict for Black antenna:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
Chamer	(MHz)	PK/ AV	U_R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	Verdict
Lowest	5733	PK	71.93	-33.63	32.56	70.85	74	Pass
Lowest	5733	AV	51.90	-33.63	32.56	50.83	54	Pass
Highest	5866	PK	68.85	-33.18	32.5	68.17	74	Pass
riighest	5866	AV	51.95	-33.18	32.5	51.27	54	Pass

Test Plots:

(Plot 1 PK @ Lowest Channel: 5733 MHz)

(Plot 1 AV @ Lowest Channel: 5733 MHz)

(Plot 5PK@ Highest Channel: 5866 MHz)

(Plot 5 AV@ Highest Channel: 5866 MHz)

2.4 Field strength of fundamental

2.4.1 Requirement

According to FCC section 15.249(a), Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)		
902-928 MHz	50	500		
2400-2483.5 MHz	50	500		
5725-5875 MHz	50	500		
24.0-24.25 GHz	250	2500		

2.4.2 Test Description

A. Test Setup

The Module is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the

ground to determine the maximum value of the field strength.

KDB 558074 Section 12.1 was used in order to prove compliance.

B. Equipments List:

Please reference ANNEX A(1.4).

2.1.1 Test Procedure

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

2.1.2 Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below:

 $\label{eq:energy} E \left[dB\mu V/m \right] = U_R + A_T + A_{Factor} \left[dB \right]; \ A_T = L_{Cable \ loss} \left[dB \right] - G_{preamp} \left[dB \right]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor AT and AFactor were built in test software.

Note: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report

2.1.2.1 Test Verdict for White antenna:

Channel	Frequency (MHz)	Detector	Max. Emission E (dBµV/m)	Refer Plot	Limit (dBµV/m)	Verdict	
	(1411 12)	PK/ AV	<u> </u>		(αΒμ ۷/111)		
AB ORLAN	5700	PK	97.50	Plot1	114	Pass	
Lowest	5733	AV	82.42	Plot2	94	Pass	
Middle	5790	PK	97.17	Plot3	114	Pass	
Middle		AV	83.01	Plot4	94	Pass	
l liade o et	5000	PK	95.82	Plot5	114	Pass	
Highest	5866	AV	82.37	Plot6	94	Pass	

Test Plots:

(Plot 1 PK @ Lowest Channel : 5733 MHz)

(Plot 2 AV @ Lowest Channel: 5733 MHz)

(Plot 3 PK@ Middle Channel: 5790 MHz)

(Plot 4 AV@ Middle Channel: 5790 MHz)

(Plot 5PK@ Highest Channel: 5866 MHz)

(Plot 6 AV @ Highest Channel : 5866 MHz)

2.1.2.2 Test Verdict for Black antenna:

Channel	Frequency (MHz)	Detector	Max. Emission Ε (dBμV/m)	Refer Plot	Limit (dBµV/m)	Verdict
	(1411 12)	PK/ AV	L (dbp v/iii)		(αΒμ ۷/111)	
W _O	MO.	PK	97.48	Plot1	114	Pass
Lowest 5733	5/33	AV	84.17	Plot2	94	Pass
Middle	MILIUMB SLAW	PK	98.21	Plot3	114	Pass
Middle	5790	AV	84.54	Plot4	94	Pass
Highest	5000	PK	95.72	Plot5	114	Pass
	5866	AV	85.96	Plot6	94	Pass

Test Plots:

(Plot 1 PK @ Lowest Channel: 5733 MHz)

(Plot 2 AV @ Lowest Channel: 5733 MHz)

(Plot 3 PK@ Middle Channel: 5790 MHz)

(Plot 4 AV@ Middle Channel: 5790 MHz)

(Plot 5PK@ Highest Channel: 5866 MHz)

(Plot 6 AV @ Highest Channel: 5866 MHz)

2.2 Radiated Emission and field strength of harmonics

2.4.1 Requirement

According to section 15.249(a), the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)	
902-928 MHz	50	500	
2400-2483.5 MHz	50	500	
5725-5875 MHz	50	500	
24.0-24.25 GHz	250	2500	

According to section 15.249(d), Emission Radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50dB below the level of the fundamental or to the general radiated emission limits in Section 15.209:

AN' IN			<u> </u>	
Frequency	Field Strength	Measurement	Field Strength Limitat	tion at 3m Measurement Dist
(MHz)	(µV/m)	Distance (m)	(uV/m)	(dBuV/m)
0.009 - 0.490	2400/F(kHz)	300	10000* 2400/F(KHz)	20log 2400/F(KHz) + 80
0.490 - 1.705	24000/F(kHz)	30	100* 2400/F(KHz)	20log 2400/F(KHz) + 40
1.705 - 30.0	30	30	100*30	20log 30 + 40
30 - 88	100	3	100	20log 100
88 - 216	150	3	150	20log 150
216 - 960	200	3	200	20log 200
Above 960	500	3 RLP	500	20log 500

According to section 15.249(e), for frequencies above 1000MHz, the above field strength limits are based on average limits. The peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20dB under any condition of modulation.

Note:

- 1) The tighter limit shall apply at the boundary between two frequency range.
- 2) Limitation expressed in dBuV/m is calculated by 20log Emission Level(uV/m).
- 3) If measurement is made at 3m distance, then F.S Limitation at 3m distance is adjusted by using the formula of Ld1 = Ld2 * $(d2/d1)^2$.

Example: F.S Limit at 30m distance is 30uV/m, then F.S Limitation at 3m distance is adjusted as

$$Ld1 = L1 = 30uV/m * (10)^2 = 100 * 30uV/m$$

2.4.2 Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz

3) For radiated emissions above 1GHz

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.4 (2009). For radiated emissions below or equal to 1GHz, The EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.4.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading

For the Test Antenna:

- (a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- (b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

B. Equipments List:

Please reference ANNEX A(1.4).

2.4.3 Test Result

According to ANSI C63.4 selection 4.2.2, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

The measurement results are obtained as below:

 $\label{eq:energy} E \left[dB\mu V/m \right] = \!\! U_R + A_T + A_{Factor} \left[dB \right] \!\! ; A_T = \!\! L_{Cable \ loss} \left[dB \right] \!\! - \!\! G_{preamp} \left[dB \right]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor A_T and A_{Factor} were built in test software.

Note: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

The low frequency, which started from 9KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

2.4.3.1 White antenna

Note: Test Plots for the Whole Measurement Frequency Range:

Plot for lowest Channel = 5733

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Horizontal, 25GHz to 40GHz)

(Antenna Vertical, 30MHz to 25GHz)

(Antenna Vertical, 25GHz to 40GHz)

Plot for middle Channel = 5790

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Horizontal, 25GHz to 40GHz)

(Antenna Vertical, 30MHz to 25GHz)

(Antenna Vertical, 25GHz to 40GHz)

Plot for highest Channel = 5866

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Horizontal, 25GHz to 40GHz)

(Antenna Vertical, 30MHz to 25GHz)

(Antenna Vertical, 25GHz to 40GHz)

2.4.3.2 Black antenna

Note: Test Plots for the Whole Measurement Frequency Range:

Plot for lowest Channel = 5733

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Horizontal, 25GHz to 40GHz)

(Antenna Vertical, 30MHz to 25GHz)

(Antenna Vertical, 25GHz to 40GHz)

Plot for middle Channel = 5790

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Horizontal, 25GHz to 40GHz)

(Antenna Vertical, 30MHz to 25GHz)

(Antenna Vertical, 25GHz to 40GHz)

Plot for highest Channel = 5866

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Horizontal, 25GHz to 40GHz)

(Antenna Vertical, 30MHz to 25GHz)

(Antenna Vertical, 25GHz to 40GHz)

ANNEX A GENERAL INFORMATION

1.1 Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Department:	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong
Responsible Test Lab Manager:	Province, P. R. China Mr. Su Feng
Telephone:	+86 755 36698555
Facsimile:	+86 755 36698525

1.2 Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.			
RLAD MORE S ME LAB	Morlab Laboratory			
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang			
MORE MIC AB	Road, Block 67, BaoAn District, ShenZhen, GuangDong			
TRIAL MORL MO	Province, P. R. China			

1.3 Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.1, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10 2009, ANSI C63.4 2009 and CISPR Publication 22; the FCC registration number is 695796.

1.4 Test Equipments Utilized

1.4.1 Conducted Test Equipments

Conducted Test Equipment							
No.	Equipment Name	Serial No.	Type	Manufacturer	Cal. Date	Cal. Due	
1	Spectrum Analyzer	MY45101810	E4407B	Agilent	2015.02.26	2016.02.25	
2	Power Splitter	NW521	1506A	Weinschel	2015.02.26	2016.02.25	
3	Attenuator 1	(n.a.)	10dB	Resnet	2015.02.26	2016.02.25	
4	Attenuator 2	(n.a.)	3dB	Resnet	2015.02.26	2016.02.25	
5	USB Wideband Power Sensor	MY52280010	U2021XA	Agilent	2015.02.26	2016.02.25	
6	EXA Signal Analzyer	MY51440152	N9010A	Agilent	2015.02.26	2016.02.25	
7 3	RF cable	CB01	RF01	Morlab	N/A	N/A	
8	Coaxial cable	CB02	RF02	Morlab	N/A	N/A	
9	SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A	

1.4.2 Conducted Emission Test Equipments

Conducted Emission Test Equipments								
No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due		
1	Receiver	US44210471	E7405A	Agilent	2015.02.26	2016.02.25		
2	LISN	812744	NSLK 8127	Schwarzbeck	2015.02.26	2016.02.25		
3	Service Supplier	100448	CMU200	R&S	2015.02.26	2016.02.25		
4 A	Pulse Limiter (20dB)	9391	VTSD 9561-D	Schwarzbeck	2015.02.26	2016.02.25		
5	Coaxial cable(BNC)	CB01	EMC01	Morlab	N/A	N/A		

1.4.3 Radiated Test Equipments

Radiated Test Equipments							
No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal.Due Date	
101	System Simulator	100448	CMU200	R&S	2015.02.26	2016.02.25	
2	Receiver	US44210471	E7405A	Agilent	2015.02.26	2016.02.25	
3	Test Antenna - Bi-Log	9163-274	9m*6m*6m	Albatross	2015.02.26	2016.02.25	
4	Test Antenna - Horn	9120D-963	VULB 9163	Schwarzbeck	2015.02.26	2016.02.25	
5,00	Test Antenna - Horn	71688	BBHA 9120D	Schwarzbeck	2015.02.26	2016.02.25	
6	Test Antenna - Loop	1519-022	HL050S7	R&S	2015.02.26	2016.02.25	
7	Reject Filter	(n.a.)	BRM50702	Micro-Tronics	2015.02.26	2016.02.25	
8	Coaxial cable (N male)	CB02	EMC02	Morlab	N/A	N/A	
9	Coaxial cable (N male)	CB03	EMC03	Morlab	N/A	N/A	

1.4.4 Climate Chamber

Clima	te Chamber	ORLA	More	E M. ALAE	ORLA III	01.
No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal.Date	Cal.Due Date
1_0	Climate Chamber	2004012	HL4003T	Yinhe	2015.02.26	2016.02.25

1.4.5 Vibration Table

Vibra	ation Table	ORLAN	MOR	W. LAB	ORLAN IN	Ole W
No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal.Date	Cal.Due Date
10.0	Vibration Table	N/A	ACT2000- S015L	CMI-COM	2015.02.26	2016.02.25

1.4.6 Anechoic Chamber

Anechoic Chamber					arl All		
	No.	Equipment Name	Serial No.	Type	Manufacturer	Cal.Date	Cal.Due Date
	1	Anechoic Chamber	N/A	9m*6m*6m	Albatross	2015.02.26	2016.02.25

***** FND OF REPORT *****

