Определение теплопроводности газов при атмосферном давлении

18 мая 2024 г.

1 Цель работы:

определение коэффициента теплопроводности воздуха или углекислого газа при атмосферном давлении и разных температурах по теплоотдаче нагреваемой током нити в цилиндрическом сосуде.

2 В работе используются:

прибор для определения теплопроводности газов; форвакуумный насос; газгольдер с углекислым газом; манометр; магазин сопротивлений; эталонное сопротивление 10 Ом; цифровой вольтметр В7-38; источник питания.

3 Экспериментальная установка:

4 Теоретическая часть:

Если температура заключенного в сосуд газа зависит от координат, в газе возникают процессы, приводящие к выравниванию температуры. В обычных условиях среди этих процессов наибольшую роль играет конвекция. Конвекция появляется из-за того, что легкий теплый газ поднимается вверх, а на его место опускаются более холодные массы газа. Конвекция не возникает, если температура газа повышается с высотой, если объем газа невелик или если он разбит на небольшие каналы или ячейки. В последних двух случаях возникновению конвекционных потоков мешает вязкость.

При отсутствии конвекции процесс переноса тепла замедляется, но не прекращается. Он происходит благодаря теплопроводности газа, связанной с тепловым движением молекул. Выравнивание температуры получается при этом из-за непрерывного перемешивания «горячих» и «холодных» молекул, происходящего в процессе их теплового движения и не сопровождающегося макроскопическими перемещениями газа. Нас будет интересовать именно этот случай.

Для цилиндрически симметричной установки, в которой

поток тепла направлен к стенкам цилиндра от нити, расположенной по его оси, справедлива формула:

$$\varkappa = \frac{Q}{T_1 - T_2} \frac{1}{2\pi L} = \frac{dQ}{dR} \frac{dR}{dT} \frac{1}{2\pi L},$$

где \varkappa — коэффициент теплопроводности, Q — выделяемая мощность, r_1 и r_2 — радиусы нити и внешнего цилиндра соответственно, L — длина нити.

5 Обработка результатов измерений:

L, mm	$2r_1, \text{MM}$	$2r_2$, MM	$R_{\mathfrak{d}}, \mathrm{Om}$
367	0.05	10	10

Для каждого измерения найдем ток, мощность, выделяемую в нити и сопротивление нити по формулам:

$$I = \frac{U_{9}}{R_{0}}$$

$$Q = IU_{H} = U_{H} \frac{U_{9}}{R_{9}}$$

$$R_{H} = \frac{U_{H}}{I} = \frac{U_{9}}{U_{2}}$$

T, K	$U_{\mathfrak{d}}$, мВ	$U_{\rm h}$, мВ	I, мА	Q , \mathbf{mBt}	$R_{\scriptscriptstyle \mathrm{H}}, \mathrm{O}_{\scriptscriptstyle \mathrm{M}}$
	119.5	1803.3	11.95	12.96	150.9
	129.1	1949.7	12.91	25.17	151.0
	170.1	2571.3	17.01	43.72	151.2
297.5	200.0	3028.2	20.00	60.56	151.4
	224.5	3403.4	22.45	76.41	151.6
	246.4	3740.3	24.64	92.16	151.8
	264.9	4025.9	26.49	106.67	151.9
	283.5	4312.3	28.35	122.25	152.1

T, K	$U_{\mathfrak{d}}$, мВ	$U_{\scriptscriptstyle \mathrm{H}}$, мВ	I, мА	Q, mBt	$R_{\scriptscriptstyle \mathrm{H}}, \mathrm{O}_{\scriptscriptstyle \mathrm{M}}$
308	100.1	1525.4	10.01	15.27	152.3
	139.1	2121.4	13.91	29.51	152.4
	170.8	2608.3	17.08	44.56	152.6
	204.3	3095.7	20.43	64.31	152.8
300	221.3	3385.8	22.13	74.92	152.9
	241.1	3692.7	24.11	89.04	153.1
	260.5	3994.1	26.05	104.04	153.3
	275.7	4230.3	27.57	116.62	153.4

T, K	$U_{\rm 9}$, мВ	$U_{\scriptscriptstyle \mathrm{H}},{\scriptscriptstyle \mathrm{MB}}$	I, мА	Q, м B т	$R_{\scriptscriptstyle \mathrm{H}}, \mathrm{O}_{\scriptscriptstyle \mathrm{M}}$
	98.0	1506.5	9.80	14.77	153.7
	140.9	2169.2	14.9	30.58	153.9
318	170.9	2632.4	17.09	44.98	154.0
	190.7	2940.0	19.07	56.07	154.1
	220.5	3403.0	22.05	75.01	154.3
	240.1	3710.1	24.01	89.09	154.5
	260.2	4024.6	26.02	104.72	154.7
	275.2	4260.8	27.52	117.28	154.8

T, K	$U_{\mathfrak{d}}, \mathrm{mB}$	$U_{\rm h}$, мВ	I, мА	Q, м B т	$R_{\scriptscriptstyle \mathrm{H}}, \mathrm{Om}$
	98.1	1521.1	9.81	14.92	155.1
	139.2	2160.4	13.92	30.07	155.2
	170.0	2642.4	17.00	44.93	155.4
328	196.1	3050.6	19.61	59.83	155.5
320	219.0	3410.6	21.90	74.69	155.7
	240.6	3749.9	24.06	90.22	155.8
	259.1	4042.0	25.91	104.72	156.0
	274.9	4292.7	27.49	118.01	156.1

T, K	$U_{\mathfrak{d}}$, мВ	$U_{\rm h}$, мВ	I, м A	Q , MBT	$R_{\scriptscriptstyle \mathrm{H}}, \mathrm{O}_{\scriptscriptstyle \mathrm{M}}$
338	98.0	1533.9	9.80	15.04	156.4
	139.2	2160.4	13.92	30.07	156.5
	169.2	2652.3	16.92	44.87	156.7
	195.0	3059.6	19.50	59.66	156.9
	218.2	3427.1	21.82	74.78	157.0
	239.6	3767.1	23.96	90.27	157.2
	258.8	4073.4	25.88	105.39	157.3
	278.7	4309.7	27.87	117.94	157.5

Построим график зависимости сопротивления нити от температуры и из наклона графика найдём dR/dT:

Рис. 1: Зависимость сопротивления нити от температуры

Как видно, точки хорошо ложатся на прямую.

$$\frac{dR}{dT} = 0.13468$$

Посчитаем температурный коэффициент сопротивления материала нити:

$$\alpha = \frac{1}{R_{273}} \frac{dR}{dT} = 0.9 \cdot 10^{-3} K^{-1}$$

Построим для каждого T графики зависимости Q от R и из наклонов графиков найдём dQ/dT:

Рис. 2: Зависимость Q от R при T_1

Рис. 3: Зависимость Q от R при T_2

Рис. 4: Зависимость Q от R при T_3

Рис. 5: Зависимость Q от R при T_4

Рис. 6: Зависимость Q от R при T_5

T, K	297.5	308	318	328	338
$\frac{dQ_1}{dT}, \frac{\mathcal{L}_K}{K}$	0.0120	0.0125	0.0129	0.0134	0.0140
$arkappa, rac{\mathrm{B_T}}{\mathrm{M}}$	25.98 ± 0.9	26.62 ± 1.0	27.74 ± 1.1	28.55 ± 1.1	29.84 ± 1.2

 \parallel Построим график $\ln \varkappa$ от $\ln T$:

Рис. 7: Зависимость $\ln \varkappa$ от $\ln T$

$$\frac{d\left(\ln\varkappa\right)}{d\left(\ln T\right)} = 1.08$$

6 Вывод:

Я исследовал зависимость коэффицента теплопроводности от температуры, зависимость экспоненциальная, т.е. $\ln \varkappa$ от $\ln T$ зависит линейно, с коэффицентом наклона 1.08