Problemas para convocatoria 2025

1. Problemas

Problema 1.1 (Sugerido para II o III nivel). En base a la siguiente figura.

¿Cuál es la cantidad mínima de cuadritos adicionales que deben pintarse para tener dos ejes de simetría en la figura?

Problema 1.2 (Sugerido para III o IV nivel). Un niño llamado Tato al aprender matemáticas inventó la operación numeral (#), cuyo resultado es la suma de dos números dividida entre su resta. Por ejemplo, $9 \# 3 = \frac{9+3}{9-3} = \frac{12}{6} = 2$. Hallar (1 # 2025) # 1.

Problema 1.3 (Sugerido para IV nivel). Si $x^2 - 2x + 11$ se hace cero cuando x = n, entonces, sin hallar n, calcular el valor numérico de

$$\frac{n^3 + 7n + 2047}{2}.$$

Problema 1.4 (Sugerido para IV nivel). En la figura, se tiene que AB = AC = 40 y BC = 60, donde D es un punto medio de BC y M es punto medio de AD. Si se traza una cuerda PQ paralela a BC que pasa por M, hallar la longitud de PQ.

Problema 1.5 (Sugerido para IV nivel). Diego enumeró una por una las páginas de su cuaderno de matemáticas, comenzando desde la página 1 y terminando en la página 2025 ¿cuántas veces escribió la cifra 2 al enumerar su cuaderno?

Problema 1.6 (Sugerido para IV o V nivel). Fabiana compró lápices y carpetas a 11 y 9 córdobas, respectivamente. Curiosamente, pagó la misma cantidad de dinero en lápices y en carpetas ¿Cuántos artículos compró, sabiendo que la cantidad es mayor a 80 y menor a 120 artículos?

Problema 1.7 (Sugerido para IV o V nivel). Naho tiene muchos amigos, tantos que no sabe la cantidad exacta. Si tuviera 2 amigos menos, la cantidad sería múltiplo de 3. Si tuviera 3 amigos menos, la cantidad sería múltiplo de 10. ¿Cuántos amigos tiene Naho si la cantidad de amigos es mayor a 60 y menor a 100?

Problema 1.8 (Sugerido para IV o V nivel). R(k) es una máquina que recibe entradas enteras y produce salidas enteras positivas. Si se tiene que $R(-1) \cdot R(2) = 4$ y

$$R(a)^2 = R(a-b) \cdot R(b)$$

para a, b enteros cualesquiera, hallar R(k).

Problema 1.9 (Sugerido para IV o V nivel). Hallar $Q(x^2 + 7x + 10)$ en términos de x, sabiendo que $Q(x^2 + x - 2) = x^3 - 27$ se cumple para cualquier número x.

Problema 1.10 (Sugerido para IV o V nivel). Hallar todos los enteros m, n tales que

$$m^2 + mn + n^2 = m - 2n - 1.$$

Problema 1.11 (Sugerido para V nivel). Brisa Marina quiere pagarle una deuda a Gerald, si ella solo tiene monedas de 3 y 5 córdobas y la deuda es un monto entero mayor a 7 córdobas ¿es posible pagar la deuda sea cual sea el monto?

Solución (Problema 1). Un rectángulo como este solo puede tener un eje vertical y horizontal de simetría. Trazando una línea vertical y reflejando llegamos a la siguiente configuración (a).

(a) Simetría vertical

(b) Simetría horizontal

Análogamente, tomando a la configuración (a), trazando una línea horizontal y reflejando llegamos a la configuración (b). Luego, se necesitan como mínimo 3 cuadritos pintados más.

Solución (Problema 2). Realizando la operación $m \# n = \frac{m+n}{m-n}$, sustituyendo.

$$(m \# n) \# 1 = \left(\frac{m+n}{m-n}\right) \# 1 = \frac{\frac{m+n}{m-n}+1}{\frac{m+n}{m-n}-1}$$
$$= \frac{\frac{m+n+m-n}{m-n}}{\frac{m+n-m+n}{m-n}} = \frac{\frac{2m}{m-n}}{\frac{2n}{m-n}}$$
$$= \frac{m}{n}$$

Luego, se tiene que $(1 \# 2025) \# 1 = \frac{1}{2025}$.

Solución (Problema 3). Por dato tenemos la siguiente ecuación

$$n^2 - 2n + 11 = 0.$$

Convenientemente, podemos despejar $n^2+7=2n-4=2(n-2)$, multiplicando este resultado por n se obtiene que $n^3+7n=2(n^2-2n)$. Rápidamente, notamos $n^2-2n=-11$, usando este valor encontramos $n^3+7n=2(-11)=-22$. Luego, al sustituir

$$\frac{n^3 + 7n + 2047}{2} = \frac{-22 + 2047}{2} = \frac{2025}{2}.$$

Solución (Problema 4). Sea T y R los puntos medios de los lados AB y AC respectivamente, es claro que PT = RQ = x, por el teorema de base media TR = 30 y AT = TB = AR = RC = 20.

Por potencia de puntos, se tiene que $PT \cdot TQ = BT \cdot TA = 20 \cdot 20 = 400$ con lo cual x(30+x) = 400, claramente x = 10 es el único valor entero positivo que cumple. Luego, PQ = 10 + 30 + 10 = 50.

Solución (Problema 5). Partiremos el problema contando las veces que aparece el dígito 2 como millares, centenas, decenas y unidades.

- Para millares, solo aparecen 26 veces, esto es desde 2000 hasta 2025.
- Para centenas, tenemos 100 veces desde 200 a 299 y 100 veces más desde 1200 a 1299, es decir 200 veces.
- Para decenas, tenemos 10 veces desde 20 a 29, 10 veces desde 120 a 129, 10 veces desde 220 a 229, ..., 10 veces desde 1920 a 1929, en total $10 \times 20 = 200$ veces. Además, 6 veces más desde 2020 a 2025, es decir 206 veces el dígito 2.
- Para unidades, tenemos 10 veces desde 2 a 92, 10 veces desde 102 a 192, 10 veces desde 202 a 292, ..., 10 veces desde 1902 a 1992, en total $10 \times 20 = 200$ veces. Además, 3 veces más desde 2002 a 2022, es decir 203 veces.

Finalmente, la cantidad de veces que Diego escribió el dígito 2 es 26+200+206+203=635 veces.

Solución (**Problema 6**). Sean m y n las cantidades de lápices y carpetas, respectivamente, por dato tenemos que 11m = 9n. De esta ecuación, es claro que 9 no divide a 11, por lo cual 9 divide a m, por tanto m = 9k. Sustituyendo, tenemos que 11(9k) = 9n lo que implica que n = 11k. Es decir, que la cantidad total de artículos está dado por m + n = 11k + 9k = 20k, así el problema se reduce a encontrar k. Como la cantidad total está entre 80 y 120, tenemos que 80 < 20k < 120 lo que implica 4 < k < 6, luego como k es entero se tiene que k = 5. Luego, Fabiana compró 20(5) = 100 artículos.

Solución (Problema 7). Considerando el enunciado en notación de congruencias tenemos

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{10} \end{cases}$$

De $x \equiv 3 \pmod{10}$ es claro que $x \equiv 3 \equiv 1 \pmod{2}$ y $x \equiv 3 \pmod{5}$, por lo cual tenemos que el problema se equivalente a resolver el sistema

$$\begin{cases} x \equiv 1 \pmod{2} \\ x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \end{cases}$$

Consideremos los números x_1, x_2, x_3 tales que:

$$\begin{cases} x_1 \equiv 1 \; (\text{m\'od} \; 2) \\ x_1 \equiv 0 \; (\text{m\'od} \; 3) \\ x_1 \equiv 0 \; (\text{m\'od} \; 5) \end{cases} \qquad \begin{cases} x_2 \equiv 0 \; (\text{m\'od} \; 2) \\ x_2 \equiv 2 \; (\text{m\'od} \; 3) \\ x_2 \equiv 0 \; (\text{m\'od} \; 5) \end{cases} \qquad \begin{cases} x_3 \equiv 0 \; (\text{m\'od} \; 2) \\ x_3 \equiv 0 \; (\text{m\'od} \; 3) \\ x_3 \equiv 3 \; (\text{m\'od} \; 5) \end{cases}$$

Vemos que en el primer sistema buscamos un múltiplo de 3 y 5 que deje resto 1 la división por 2, por tanteo vemos que $x_1 = 15$ cumple. En el segundo sistema buscamos un múltiplo de 2 y 5 que deje resto 2 la división por 3, por tanteo vemos que $x_2 = 20$ cumple. En el tercer sistema buscamos un múltiplo de 2 y 3 que deje resto 3 la división por 5, por tanteo vemos que $x_3 = 18$ cumple. Con lo cual, si consideramos el número $x = x_1 + x_2 + x_3 = 53$ este cumple los tres sistemas a la vez, por tanto, también cumple el sistema original.

Sin embargo, este número no es la solución, pero si consideramos el número 53 + 30k con k entero, este siempre es congruente con 53 en módulo 2,3 y 5. Por lo cual, 53 + 30 = 83 es también solución, luego Naho tiene 83 amigos.

Solución (Problema 8). Haciendo b=0, tenemos que $R(a)^2=R(a)R(0)$ lo cual implica $R(a)^2-R(a)R(0)=R(a)\left[R(a)-R(0)\right]=0$. De esta ecuación aparecen dos casos, R(a)=0 y R(a)=R(0), el primer caso no puede ser, puesto que la definición dice que las salidas son positivas y 0 no es positivo, luego

$$R(a) = R(0)$$
 para todo entero a ,

así el problema se reduce a encontrar R(0). Haciendo a=1 y b=-1 en la ecuación original se tiene que $R(1)^2=R(2)R(-1)=4$ lo que implica que $R(1)=\pm 2$, así R(1)=2. Finalmente, con a=1 se tiene R(1)=R(0)=2, luego R(a)=2 para todo entero a.

Solución (Problema 9). Notamos que $Q(x^2 + 7x + 10) = Q[(x+2)(x+5)]$ por lo cual nuestro objetivo será encontrar esta expresión. Factorizando el argumento de $Q(x^2 + x - 2) = x^3 - 27$ se tiene $Q[(x-1)(x+2)] = x^3 - 27$, como estamos trabajando en los reales se puede tomar el cambio de variable x = a + 3, con lo cual $Q[(a+3-1)(a+3+2)] = (a+3)^3 - 27$, es decir

$$Q[(a+2)(a+5)] = (a+3)^3 - 27$$

$$Q(a^{2} + 7a + 10) = (a^{3} + 9a^{2} + 27a + 27) - 27$$
$$Q(a^{2} + 7a + 10) = a^{3} + 9a^{2} + 27a.$$

Como x es real, se tiene que a también lo es, luego $Q(x^2 + 7x + 10) = x^3 + 9x^2 + 27x$ para todo real x.

Solución (Problema 10). Multiplicando por dos y reordenando vemos que:

$$m^{2} + mn + n^{2} = m - 2n - 1$$

$$2m^{2} + 2mn + 2n^{2} = 2m - 4n - 2$$

$$(m^{2} - 2m) + (n^{2} + 4n) + (m^{2} + 2mn + n^{2}) = -2$$

$$(m^{2} - 2m + 1) + (n^{2} + 4n + 4) + (m + n)^{2} = 3$$

$$(m - 1)^{2} + (n + 2)^{2} + (m + n)^{2} = 3$$

Como estamos trabajando en enteros la única opción es que todos los cuadrados de la izquierda sean iguales a 1. En caso contrario la ecuación no tendría soluciones enteras. Con lo cual se obtiene que m=2 y n=-1 son los únicos valores que cumplen.

Solución (Problema 11). Sí, utilizando un análisis inductivo es posible demostrar que todo número mayor a 7 córdobas en combinación lineal de 3 y 5.