Analisi Matematica 2 - Ing. Informatica Telecomunicazioni		Esame del 21 gennaio 2022
Cognome:	Nome:	Matricola:

È richiesto di giustificare tutti i passaggi.

La prova è sufficiente se e solo se le seguenti tre soglie sono tutte raggiunte: esercizi 12 punti, teoria 4 punti, punteggio totale 18.

ESERCIZI: 24 punti.

Esercizio 1 (5,5 punti)

1) (3 punti) Determinare l'integrale generale dell'equazione differenziale

$$y''(t) + 4y(t) = \cos(2t) + 8.$$

- 2) (1 punto) Stabilire se esiste una soluzione limitata (in tutto il suo dominio di definizione) di tale equazione.
- 3) (1,5 punti) Tra le soluzioni trovate al punto 1), determinare quella il cui grafico passa per il punto $(\pi,0)$, la cui retta tangente in tale punto ha coefficiente angolare π .

Esercizio 2 (7 punti)

- 1) (5 punti) Scrivere lo sviluppo in serie di potenze della funzione $f(x) = \arctan(x^2)$, seguendo lo schema di seguito riportato:
 - a- a partire dalle note proprietà della serie geometrica, scrivere lo sviluppo in serie di potenze di $\frac{1}{1+x^4}$; dedurne lo sviluppo di $\frac{2x}{1+x^4}$;
 - b- dal momento che $(\arctan(x^2))' = \frac{2x}{1+x^4}$, usare le proprietà viste per le serie di potenze reali per dedurre lo sviluppo in serie di potenze di $\arctan(x^2)$ e specificarne l'intervallo di convergenza.
- 2) (2 punti) Determinare l'intervallo di convergenza della serie di potenze reale

$$\sum_{n=1}^{+\infty} \frac{\log n}{n \cdot 2^n} (x-1)^n.$$

Esercizio 3 (6 punti)

Sia f la funzione di due variabili definita da

$$f(x,y) = \frac{y}{x^4 + y^4}.$$

- 1) (1 punto) Determinare il dominio di f e dire se si tratta di un insieme aperto/chiuso limitato/illimitato.
- 2) (2 punti) Determinare la derivata direzionale di f in direzione (3/5, 4/5) nel punto (1, -1). Determinare il piano tangente al grafico di f nel punto (1, -1, f(1, -1)).
- 3) (3 punti) Stabilire se esistono il massimo assoluto e il minimo assoluto di f sul quadrato chiuso Q di vertici (0,1), (1,1), (1,2), (0,2) e, in caso affermativo, determinarli.

Esercizio 4 (5,5 punti)

Calcolare l'integrale triplo

$$\iiint_{\Sigma}xz\,dxdydz,$$

 ${\rm dove}$

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le z \le 4 - (x^2 + y^2), \ x \ge 0\}.$$

TEORIA: 8 punti.

Tutte le domande a crocette ammettono una e una sola risposta corretta.

1) (1 punto) Data un'equazione differenziale a variabili separabili y'(t) = a(t)b(y(t)), con a, b funzioni continue,

A se a(t) non è identicamente nulla e b(y) > 0 per ogni $y \in \mathbb{R}$, essa non ha soluzioni costanti

B se $a(t_0)=0$ per un opportuno $t_0\in\mathbb{R}$, essa ha la soluzione costante $y(t)=t_0$ per ogni t

C se b(y) = |y|, essa è lineare

D le sue soluzioni sono sempre definite su tutto $\mathbb R$

2) (1 punto) Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione 2π -periodica e regolare a tratti in $[-\pi, \pi]$. Denotiamo con $a_0, a_n, b_n \ (n \ge 1)$ i suoi coefficienti di Fourier e sia

$$F_m(x) = a_0 + \sum_{n=1}^{m} (a_n \cos(nx) + b_n \sin(nx)).$$

Si ha:

A per ogni $x \in \mathbb{R}$, $\lim_{m \to +\infty} F_m(x) = f(x)$

B
$$\lim_{m \to +\infty} \int_{-\pi}^{\pi} (F_m(x) - f(x))^2 dx = 0$$

C può esistere $x_0 \in \mathbb{R}$ tale che $\lim_{m \to +\infty} F_m(x_0)$ non esiste

D se $\sum_{n}(|a_n|+|b_n|)<+\infty$, allora la serie di Fourier di f è derivabile termine a termine ed inoltre converge in ogni punto di \mathbb{R} ad f'(x)

3) (1 punto) Data una funzione $f: \mathbb{R}^2 \to \mathbb{R}$ di classe C^1 e dato un vincolo $\mathcal{Z} = \{(x,y) \in \mathbb{R}^2: G(x,y) = 0\}$, con G di classe C^1 su \mathbb{R}^2 ,

A se esiste $\lambda \in \mathbb{R}$ per cui $\nabla f(x_0, y_0) = \lambda \nabla G(x_0, y_0)$ e $\nabla G(x_0, y_0) \neq (0, 0)$, allora (x_0, y_0) è estremo relativo vincolato per f su \mathcal{Z}

B se $(x_0, y_0) \in \mathcal{Z}$ è estremo relativo vincolato per f su \mathcal{Z} e $\nabla G(x_0, y_0) \neq (0, 0)$, allora esiste $\lambda \in \mathbb{R}$ tale che $\nabla f(x_0, y_0) = \lambda \nabla G(x_0, y_0)$

C se $\nabla f(x_0, y_0) = (0, 0)$, allora (x_0, y_0) è un estremo relativo vincolato per f su \mathcal{Z}

D nessuna delle altre

4) (2 punti) Enunciare il teorema di convergenza puntuale delle serie di Fourier. Indicare, eventualmente mediante rappresentazione grafica, un esempio di funzione periodica e non continua su tutto \mathbb{R} a cui tale teorema può essere applicato.

5) (3 punti) Dare la definizione di differenziabilità per una funzione di 2 variabili e dimostrare che la differenziabilità in un punto implica la continuità in tale punto.	ı
6	