Qüestions d'Electrònica

- 1. Un semiconductor és intrínsec quan
- a) no té impureses.
- b) els electrons són portadors majoritaris.
- c) té impureses acceptores.
- d) Cap de les anteriors.
- 2. En quin tipus de material els electrons són portadors minoritaris?
- a) Semiconductor intrínsec.
- b) Semiconductor extrínsec tipus p.
- c) Semiconductor extrínsec tipus n.
- d) Metall.
- 3. Quina de les següents afirmacions és certa?
- a) Els semiconductors extrínsecs de tipus p es caracteritzen per tenir impureses acceptores.
- b) En els semiconductors extrínsecs de tipus n el nombre d'electrons i de forats és el mateix.
- c) En els semiconductors extrínsecs de tipus p la conducció és deguda bàsicament als electrons.
- d) En els semiconductors intrínsecs el nombre d'electrons és més gran que el nombre de forats.
- 4. Quina de les següents afirmacions és certa?
- a) Els semiconductors extrínsecs de tipus n es caracteritzen per tenir impureses donadores.
- b) En els semiconductors extrínsecs de tipus n el nombre d'electrons i de forats és el mateix.
- c) En els semiconductors extrínsecs de tipus n la conducció és deguda bàsicament als forats.
- d) En els semiconductors intrínsecs el nombre d'electrons és més gran que el nombre de forats.
- 5 Quina de les següents afirmacions és certa referida als semiconductors tipus n?
- a) Es caracteritzen per tenir impureses acceptores.
- b) El nombre d'electrons i de forats és el mateix.
- c) La conducció és deguda bàsicament als electrons.
- d) La seva conductivitat disminueix amb la temperatura.
- **6** Quina de les següents afirmacions és certa?
- a) Pels semiconductors intrínsecs la diferència d'energia entre les bandes de conducció i de valència és nul·la.
- b) La conducció elèctrica en un semiconductor extrínsec tipus p és majoritàriament deguda als forats que hi ha a la banda de valència.
- c) En els semiconductors extrínsecs de tipus n el nombre d'electrons i de forats és el mateix.
- d) En els semiconductors intrínsecs el nombre d'electrons és més gran que el de forats.
- 7 Els semiconductors intrínsecs tenen alguns forats a temperatura ambient. Quin és el seu origen?
- a) El dopatge.
- b) L'energia tèrmica.
- c) L'energia electrostàtica.
- d) Cap de les anteriors.

- 8 En un LED es produeix llum:
- a) Per la creació de parells electró-forat a la zona de transició.
- b) Per recombinacions electró-forat a la zona de transició.
- c) Per efecte Joule en tot el díode.
- d) Pel moviment de forats en el costat p.
- **9** Donada la unió p-n representada a la figura, quina de les següents afirmacions és certa? $(V\gamma = 0.7 \text{ V})$
- a) Si V_A - $V_B < V\gamma$ llavors I > 0
- b) Si V_A - $V_B > V\gamma$ llavors I > 0
- c) I=0, independentment del valor de V_A-V_B
- d) Si V_A - V_B =0 llavors I > 0

- 10 La figura representa la part d'un circuit on hi ha una resistència i un díode amb una tensió llindar $V_{\gamma} = 0.7 \text{ V}$, i per on hi circulen respectivament els corrents I_R i I_d . Si inicialment el díode condueix i la intensitat total I augmenta, indiqueu quina de les següents afirmacions és correcta:
- a) I_R augmenta.
- b) La diferència de potencial als extrems de la resistència disminueix.
- c) I_d no varia.
- d) I_R no varia.

- 11 Si el díode del circuit de la figura es considera ideal (V_{γ} = 0),
- a) $I_1 = I_2 = 20$ mA.
- b) $I_1 = 10$ mA, $I_2 = 0$.
- c) Si invertim el díode, $I_1 = I_2 = 10$ mA.
- d) Si invertim el díode, $I_1 = 10$ mA, $I_2 = 0$.

- 12 En el circuit de la figura, quina afirmació és certa?
- a) Si el díode és ideal (V_{γ} = 0 V), I_1 = I_2
- b) Si el díode és ideal (V_{γ} = 0 V), I_1 = 0.1 A
- c) Si el díode és real (V_{γ} = 0.7 V), I_2 = 93 mA
- d) Cap de les anteriors.

- **13**. Els dos díodes de la figura tenen una tensió llindar de 0.6 V. Per quin díode circula un corrent significatiu?
- a) per A
- b) per B
- c) per cap
- d) pels dos

14 Les tensions característiques dels dos díodes Zener del circuit de la figura són $V_{\gamma} = 0.7 \text{ V}$ i $V_{Z} = 10 \text{ V}$. Si les dues resistències són de 1 k Ω i la *fem* de la pila és de 20 V, digueu quina de les següents afirmacions és correcta:

- a) $I_1 = I_2$.
- b) $I_2 = 10 \text{ mA}$
- c) $I_2 = 0.7 \text{ mA}$
- d) $I_2 = 0$

15. Quina intensitat circula per cadascuna de les dues resistències del circuit de la figura?

- a) $I_1 = I_2 = 1 \text{ mA}$
- b) $I_1 = 1 \text{ mA i } I_2 = 0$
- c) $I_1 = 3 \text{ mA i } I_2 = 1 \text{ mA}$
- d) $I_1 = 2.86 \text{ mA}$ $I_2 = 0.7 \text{ mA}$

16. La tensió llindar del díode del circuit de la figura és $V_{\gamma} = 0.7$ V. Si la capacitat del condensador és de 1 nF, quina és la seva càrrega?

- a) 0
- b) 0.7 nC
- c) 10 nC
- d) 20 nC

17. El díode Zener del circuit de la figura es caracteritza per una tensió llindar $V_{\gamma} = 0.7 \text{ V}$ i una tensió Zener $V_Z = 10 \text{ V}$. Si la capacitat del condensador és de 25 pF, quina és la seva càrrega?

- a) 0
- b) 0.7 nC
- c) 10 nC
- d) 20 nC

18. El díode Zener del circuit de la figura es caracteritza per una tensió llindar $V_{\gamma}=0.7~{\rm V}$ i una tensió Zener $V_{Z}=10~{\rm V}$. Quina és la potència dissipada a la resistència $R_{2}=4~{\rm k}\Omega$?

- a) 0
- b) 4 mW
- c) 25 mW
- d) 64 mW

19. El díode Zener del circuit de la figura es caracteritza per una tensió llindar $V_{\gamma} = 0.7 \text{ V}$ i una tensió Zener $V_Z = 10 \text{ V}$. Quina és la potència dissipada a la resistència $R_2 = 4 \text{ k}\Omega$?

- a) 4 mW
- b) 25 mW
- c) 32 mW
- d) 64 mW

- **20**. El díode Zener del circuit de la figura es caracteritza per una tensió llindar $V_{\gamma} = 0.7 \text{ V}$ i una tensió Zener $V_{Z} = 10 \text{ V}$. Quina és la potència dissipada a les resistències i al díode?
- a) $P_1 = 48 \text{ mW}$, $P_2 = 32 \text{ mW}$, $P_Z = 0$
- b) $P_1 = 48 \text{ mW}$, $P_2 = 32 \text{ mW}$, $P_Z = 40 \text{ mW}$
- c) $P_1 = 48 \text{ mW}, P_2 = 32 \text{ mW}, P_Z = 20 \text{ mW}$
- d) P_1 = 32 mW, P_2 = 48 mW, P_Z = 0

- 21. El díode Zener del circuit de la figura es caracteritza per una tensió llindar $V_{\gamma}=0.7~{\rm V}$ i una tensió Zener $V_{Z}=10~{\rm V}$. Quina és la potència dissipada a les resistència $R_{2}=2~{\rm k}\Omega$?
- a) 0.245 mW
- b) 50 mW
- c) 32 mW
- d) 50 mW

- 22. Quin element del circuit consumeix la major part de la potència subministrada per la fem?
- a) R_1
- b) R_2
- c) El díode Zener
- d) La resistència interna r

- 23. La figura representa una part d'un circuit en la qual el díode treballa a la zona Zener. Si la intensitat I és duplica, digueu quina de les afirmacions següents, relacionades amb el corrent I_Z del díode i el corrent I_R de la resistència, és certa.
- a) I_Z i I_R es dupliquen
- b) $I_Z = 0$
- c) I_Z no canvia i I_R augmenta
- d) I_R no canvia i I_Z augmenta

- **24**. El díode del circuit de la figura es caracteritza per una tensió Zener $V_Z = 10$ V. Llavors la potència dissipada a R_2 val
- a) 0.12 W
- b) 16.6 W
- c) 33.3 W
- d) 85.3 W

- $\begin{array}{c|c}
 \hline
 R_1 = 1 \Omega \\
 \hline
 \hline
 S0 V
 \end{array}$ $R_2 = 6 \Omega \Longrightarrow R_3 = 3 \Omega$
- 25. El rectangle del circuit de la figura representa un aparell que admet una ddp màxima de 10 V entre els seus terminals. Si disposem d'un díode Zener, quina ha de ser la seva tensió Zener, V_Z , i com l'hem de connectar entre els punts A i B, per què l'aparell funcioni correctament.

- a) $V_Z = 10 \text{ V}$ i l'ànode del Zener connectat al punt A (polarització directa)
- b) $V_Z = 10 \text{ V}$, i l'ànode del Zener connectat al punt B (polarització inversa)
- c) $V_Z = 20 \text{ V}$ i l'ànode del Zener connectat al punt A (polarització directa)
- d) $V_Z = 20 \text{ V}$ i el càtode del Zener connectat al punt B (polarització inversa)

- **26**. Si la tensió llindar del díode del circuit de la figura és de $0.7~\rm V$ i $V_{\rm in}=0$, quina és la tensió $V_{\rm out}$?
- a) 0
- b) 0.7 V
- c) 4.3 V
- d) 5 V

- **27**. Si la tensió llindar dels díodes del circuit de la figura és de 0.7 V, $V_A = 0$ i $V_B = 5 \text{ V}$, quina és la tensió V_{out} ?
- a) 0
- b) 0.7 V
- c) 4.3 V
- d) 5 V

- **28**. A quina porta lògica correspon el circuit de la figura si V_A i V_B poden valer 0 o 5 V?
- a) AND
- b) OR
- c) NAND
- d) NOR

- **29**. Si la tensió llindar del díode del circuit de la figura és de 0.7 V i $V_{\text{in}} = 10 \text{ V}$, quina és la tensió V_{out} ?
- a) 10
- b) 9.3 V
- c) 0.7 V
- d) 0 V

- **30**. Si la tensió llindar del díode del circuit de la figura és de 0.7 V i $V_{\rm in} = 5$ V, quina és la tensió $V_{\rm out}$?
- a) 0
- b) 0.7 V
- c) 4.3 V
- d) 5 V

- **31**. Si la tensió llindar dels díodes del circuit de la figura és 0.7 V, $V_A = 0$ i $V_B = 5$ V, quina és la tensió V_{out} ?
- a) 0
- b) 0.7 V
- c) 4.3 V
- d) 5 V

- **32**. A quina porta lògica correspon el circuit de la figura si V_A i V_B poden valer 0 o 5 V?
- a) AND
- b) OR
- c) NAND
- d) NOR

Respostes

- 1 a) Es denomina intrínsec si no té impureses, i extrínsec si en té.
- **2** b) En un semiconductor extrínsec de tipus p els portadors majoritaris són els forats, i els electrons són els minoritaris.
- **3** a)
- **4**. a)
- **5** c) Els portadors majoritaris en els semiconductors extrínsecs de tipus n són els electrons.
- **6** b) Entre les bandes de conducció i de valència hi ha una diferència d'energia diferent de zero que es coneix com band-gap..

La conducció en un semiconductor extrínsec tipus p és majoritàriament deguda als forats que hi ha a la banda de valència.

En els semiconductors extrínsecs de tipus n el nombre d'electrons és molt superior al de forats. En els semiconductors intrínsecs el nombre d'electrons és el mateix que el de forats.

- 7. b) Els parells electró-forat es formen gràcies a l'energia d'agitació tèrmica del cristall.
- **8**. b) La llum emesa pel LED prové de l'energia alliberada en les recombinacions electróforat, principalment a la zona de transició.
- $\bf 9$ b) Sols circularà un corrent de valor positiu (segons els sentit definit al dibuix) quan $V_A > V_B$, donat que en aquest cas la unió estarà sota polarització directa, amb un corrent no menyspreable d'electrons de n cap a p, i de forats de p cap a n.
- 10 d) Quan el díode deixa passar el corrent la tensió entre els seus terminals és constant (en el cas ideal) i de valor V_{γ} . Això fa que per la resistència no variïn ni la tensió (igual a la del díode) ni la intensitat (de valor $I_R = V_{\gamma} / R$). L'augment de la intensitat total implicarà un increment proporcional de la intensitat que passa pel díode.
- 11. c) En el circuit la figura el díode està polaritzat directament i equival a un curtcircuit, de manera que $I_2 = 0$ i $I_1 = (10 \text{ V})/(500 \Omega) = 0.02 \text{ A}$ que no correspon a cap de les opcions. Si invertim el díode, estarà polaritzat inversament i equivaldrà a un circuit obert de manera que $I_1 = I_2 = (10 \text{ V})/(500 \Omega + 500 \Omega) = 0.01 \text{ A}$.
- 12 b) Si el díode és ideal es comportarà com un curtcircuit, de forma que $I_2 = 0$, i $I_1 = 0.1$ A. En el cas que no sigui ideal, es comportarà com una *fem* de valor 0.7, i per tant $I_2 = 7$ mA.
- 13. b) B està polaritzat directament, mentre que A és en inversa.
- **14** c) Donada la orientació de la pila la hipòtesi més raonable és que el díode de l'esquerra es troba en tall i el de la dreta en polarització directa, tal i com s'indica a l'esquema

En aquest cas $I_2 = V_\gamma / R_2 = 0.7$ mA, i $I_1 = (20 - V_\gamma) / R_1 = 19.3$ mA, el que fa que la intensitat pel díode de la dreta valgui I = 18.6 mA > 0 (i per tant consistent amb el fet que es troba en polarització directa). La tensió al de l'esquerra val $V_{anode} - V_{catode} = -0.7$ V, al ser negativa i menor en valor absolut que V_Z , també és consistent amb la regió de tall.

- 15. a) El díode està en polarització inversa i no hi passa corrent. Per tant, per les dues resistències circula el mateix corrent $I = (15 \text{ V})/(5 \text{ k}\Omega + 10 \text{ k}\Omega) = 1 \text{ mA}$.
- 16. d) Pel condensador, un vegada carregat, no circula corrent. El díode està en polarització inversa i no hi passa corrent. Per tant, pel circuit no circula corrent i la tenisó a borns del condensador és V = 20 V. Llavors, Q = CV = 20 nC
- 17. c) Pel condensador, un vegada carregat, no circula corrent. El díode Zener està en polarització inversa, però, com que la fem de 20 V és més gran que $V_Z = 10$ V, deixa passar corrent i la tensió als seus borns és $V = V_Z = 10$ V, que és la tensió a borns del condensador perquè per la resistència de la dreta no passa corrent. Llavors, Q = CV = 10 nC.
- 18. b) El Zener està en polarització inversa. Com que la fem de la bateria de 5 V és inferior a $V_Z = 10$ V, pel Zenner no passa corrent i només circula $I = (5 \text{ V})/(3 \text{ k}\Omega + 2 \text{ k}\Omega) = 1 \text{ mA}$ per la malla exterior. Aleshores, la potencia dissipada a la resistència $R_2 = 4 \text{ k}\Omega$ és $P = R_2I^2 = 4 \text{ mW}$.
- 19. b) El Zener està en polarització inversa. Si pel Zener no passes corrent, per la malla exterior circularia $I=(20 \text{ V})/(1 \text{ k}\Omega+4 \text{ k}\Omega)=4 \text{ mA}$, i la tensió a borns del Zener (la fem Thèvenin del circuit sense Zener entre els punts als quals es connecta el Zenner) seria la de R_2 , és a dir, $\varepsilon_{\text{Th}}=R_2I=(4 \text{ k}\Omega)(4 \text{ mA})=16 \text{ V}$. Ara bé, atès que $\varepsilon_{\text{Th}}=16 \text{ V}>V_Z=10 \text{ V}$, pel Zener passa corrent i la tensió als seus borns és $V=V_Z=10 \text{ V}$, que és la tensió a borns de R_2 . Per tant, la potencia dissipada en aquesta resistència és $P=V^2/R_2=25 \text{ mW}$.
- **20**. a) El Zener està en polarització inversa. Si pel Zener no passa corrent, per la malla externa circula $I=(20 \text{ V})/(3 \text{ k}\Omega+2 \text{ k}\Omega)=4 \text{ mA}$, i la tensió a borns del Zener (la fem Thèvenin del circuit sense Zener entre els punts als quals es connecta el Zenner) és la de R_2 , és a dir, $\varepsilon_{\text{Th}}=R_2I=(2 \text{ k}\Omega)(4 \text{ mA})=8 \text{ V}$. Atès que $\varepsilon_{\text{Th}}=8 \text{ V} < V_Z=10 \text{ V}$, comprovem que pel Zener no passa corrent, com hem suposat d'entrada, de manera que la potencia dissipada al díode és nul·la, a R_2 és $P=R_2I^2=0.032 \text{ W}=32 \text{ mW}$, i de forma similar a R_1 és 48 mW
- **21**. a) El Zener està polaritzat directament i, com que la fem de la bateria de 20 V és més gran que $V_{\gamma} = 0.7$ V, deixa passa corrent. Llavors, la tensió als seus borns és $V = V_{\gamma} = 0.7$ V, que és la tensió a R_2 , de manera que la potencia dissipada a R_2 és $P = V^2/R_2 = 0.245$ mW.
- 22. c) Procedint de forma anàloga a les questions anteiors,

$$I = \mathcal{E}/(R_1 + R_2) \rightarrow \mathcal{E}_{Th} = R_2 I = 13 \text{ V} > V_Z = 10 \text{ V} \rightarrow I_Z \neq 0 \text{ i } V_2 = V_Z = 10 \text{ V}$$

 $I_2 = V_2/R_2 = 5 \text{ mA} \text{ i } P_2 = V_2 I_2 = 50 \text{ mW}$
 $I_1 = (\mathcal{E} - V_Z)/R_1 = 16.8 \text{ mA} \text{ i } P_1 = R_1 I_1^2 = 84 \text{ mW} \text{ i } P_r = r I_1^2 = 0.563 \text{ mW}$
 $I_Z = I_1 - I_2 = 11.8 \text{ mA} \text{ i } P_Z = V_Z I_Z = 118 \text{ mW}$

- 23. d) Si el díode és a la zona Zener, $I_Z \neq 0$ i la tensió als seus borns és V_Z independentment del valor de I_Z . Per tant, la tensió a la resistència és mante constant a V_Z i el valor de I_R no canvia, encara que I i $I_Z = I I_R$ augmentin.
- **24.** c) El díode treballa a la zona Zener. Per tant, la tensió a R_3 val $V_Z = 10$ V i, la potència dissipada a R_3 val $P = V_Z^2/R_3 = (10 \text{ V})^2/(3 \Omega) \approx 33.3 \text{ W}.$
- **25**. b) En un díode Zener polaritzat inversament la tensió mai és superior a V_Z .
- **26**. b) Si $V_{\rm in} = 0$, el díode està polaritzat directament, deixa passar corrent i la tensió als seus borns ($V_{\rm out} V_{\rm in}$) és la tensió llindar $V_{\gamma} = 0.7$ V. Per tant, $V_{\rm out} = V_{\rm out} V_{\rm in} = V_{\gamma} = 0.7$ V.
- 27. b) El díode amb $V_B = 5$ V no està polaritzat directament i es comporta com un interruptor obert que no deixa passar corrent. El díode amb $V_A = 0$ està polaritzat directament,

deixa passar corrent i la la tensió als seus borns ($V_{\text{out}}-V_A$) és la tensió llindar $V_{\gamma}=0.7$ V. Per tant, $V_{\text{out}}=V_{\text{out}}-V_A=V_{\gamma}=0.7$ V.

28. a) Com hem vist a la qüestio anterior, si $V_A = 0$ o $V_B = 0$, $V_{\text{out}} = 0.7 \text{ V}$. I si $V_A = V_B = 5 \text{ V}$ no passa corrent i $V_{\text{out}} = 5 \text{ V}$. Per tant, a partir de les taules següents veiem que és una AND.

V_A	V_V	Vout
0 V	0 V	0.7 V
0 V	5 V	0.7 V
5 V	0 V	0.7 V
5 V	5 V	5 V

A	В	AND
0	0	0
0	1	0
1	0	0
1	1	1

29. b) Si $V_{\rm in}=10$ V, el díode està polaritzat directament, deixa passar corrent i la tensió als seus borns $(V_{\rm in}-V_{\rm out})$ és la tensió llindar $V_{\gamma}=0.7$ V, és a dir $V_{\rm in}-V_{\rm out}=V_{\gamma}$. Per tant, $V_{\rm out}=V_{\rm in}-V_{\gamma}=9.3$ V.

30. c) Si $V_{\rm in}=5$ V, el díode està polaritzat directament, deixa passar corrent i la tensió als seus borns $(V_{\rm in}-V_{\rm out})$ és $V_{\gamma}=0.7$ V, és a dir $V_{\rm in}-V_{\rm out}=V_{\gamma}$. Per tant, $V_{\rm out}=V_{\rm in}-V_{\gamma}=4.3$ V.

31. c) El díode amb $V_A = 0$ no està polaritzat directament i es comporta cm un interruptor obert que no deixa passar corrent. El díode amb $V_B = 5$ V està polaritzat directament, deixa passar corrent i la tensió als seus borns $(V_B - V_{out})$ és la tensió llindar $V_\gamma = 0.7$ V, és a dir, $V_B - V_{out} = V_\gamma$. Per tant, $V_{out} = V_P - V_{\gamma} = 4.3$ V.

32. b) Com hem vist a la qüestio anterior, si $V_A = 5$ V o $V_B = 5$ V, $V_{\text{out}} = 4.3$ V. I si $V_A = V_B = 0$ no passa corrent i $V_{\text{out}} = 0$. Per tant, a partir de les taules següents, veiem que és una OR.

V_A	V_B	Vout
0 V	0 V	0.7 V
0 V	5 V	4.3 V
5 V	0 V	4.3 V
5 V	5 V	4.3 V

A	В	OR
0	0	0
0	1	1
1	0	1
1	1	1