Principi mrežnog programiranja

Novembar 2014

Problemi koji se mogu predstaviti mrežom

	Gradski transport	Kominukicaioni sistemi	Vodovodi	
Proizvod	Autobusi, automobili	Poruke	Voda	
Čvorovi	Stajališta, raskrsnice	Komunikacioni centri, relejne stanice	Pumpne stanice, rezervoari, korisnici	
Grane	Ulice	Komunikacioni kanali	Cevovodi	

$$x_{ij} = protok kroz granu i - j$$

$$\binom{Protok iz}{\check{c}vora} - \binom{Protok u}{\check{c}vor} = \binom{Snadbevenost}{\check{c}vora}$$

$$x_{12} + x_{13} = 20$$

$$x_{23} + x_{24} + x_{25} - x_{12} = 0$$

	x12	x13	x23	x24	x25	x34	x35	x45	x53	balans
Č1	1	1								20
Č2	-1		1	1	1					0
Č3		-1	-1			1	1		-1	0
Č4				-1		-1		1		-5
Č5					-1		-1	-1	1	-15
Кар	15	8	∞	4	10	15	5	∞	4	
КО	4	4	2	2	6	1	3	2	1	

	x12	x13	x23	x24	x25	x34	x35	x45	x53	balans
Č1	1	1								20
Č2	-1		1	1	1					0
Č3		-1	-1			1	1		-1	0
Č4				-1		-1		1		-5
Č5					-1		-1	-1	1	-15
Кар	15	8	∞	4	10	15	5	∞	4	
КО	4	4	2	2	6	1	3	2	1	

$$\min z = \sum_{i} \sum_{j} c_{ij} x_{ij}$$
$$\sum_{j} x_{ij} - \sum_{k} x_{ki} = b_{i}$$

$$l_{ij} \le x_{ij} \le u_{ij}$$

$$a_i=$$
 broj jedinica raspoloživih na izvoru i
$$(i=1\cdots m) \qquad \sum_{i=1}^m a_i=\sum_{j=1}^n b_j$$
 $b_j=$ broj jedinica potrebnih na cilju j $(j=1\cdots n)$

$$c_{ij}=$$
 troškovi transporta od izvora i do cilja j $(i=1\cdots m, j=1\cdots n)$

 $x_{ij} = broj jedinica distribuiranih od izvora <math>i$ do cilja j

Min
$$z = \sum_{i} \sum_{j} c_{ij} x_{ij}$$

$$\sum_{j=1}^{n} x_{ij} = a_{i} (i = 1, 2, ... m)$$

$$\sum_{i=1}^{m} (-x_{ij}) = -b_j \qquad (j = 1, 2, \dots m)$$
$$x_{ij} \ge 0 \quad (i = 1 \dots m, j = 1 \dots n)$$

$$Min z = \sum_{i} \sum_{j} c_{ij} x_{ij}$$

$$\sum_{j=1}^{n} x_{ij} = a_i \qquad (i = 1, 2, \dots m)$$

$$\sum_{i=1}^{m} (-x_{ij}) = -b_j \qquad (j = 1, 2, \dots m)$$

$$x_{ij} \ge 0 \ (i = 1 \cdots m, j = 1 \cdots n)$$

(-45)

Fabrike	Distributivni o	Distributivni centri							
	Dallas	Atlanta	San F	Phily					
Cleveland	8	6	10	9	35				
Chicago	9	12	13	7	50				
Boston	14	9	16	5	40				
Potrebe	45	20	30	30	(125)				

Fabrike	Distributivni o	entri			Raspoloživo
	Dallas	Atlanta	San F	Phily	
Cleveland	8	6	10	9	35
Chicago	9	12	13	7	50
Boston	14	9	16	5	40
Potrebe	45	20	30	30	(125)

Problem dodele zadataka

$$x_{ij} = \begin{cases} 1 \text{ ako je osobi } i \text{ dodeljen posao } j \\ 0 \text{ svi ostali slučajevi} \end{cases}$$

$$Min z = \sum_{i} \sum_{j} c_{ij} x_{ij}$$

$$\sum_{i=1}^{n} x_{ij} = 1 \qquad (i = 1, 2, \dots n)$$

$$\sum_{\substack{j=1\\n}}^{n} x_{ij} = 1 \qquad (i = 1, 2, \dots n)$$

$$\sum_{i=1}^{n} x_{ij} = 1 \qquad (j = 1, 2, \dots n)$$

$$x_{ij} = 0$$
 ili 1 $(i = 1 \cdots n, j = 1 \cdots n)$

Problem maksimalnog protoka

max v

$$\sum_{j} x_{ij} - \sum_{k} x_{ki} = \begin{cases} v & ako \ je \ i = s \\ -v & ako \ je \ i = t \\ 0 & ostali \ slučajevi \end{cases}$$
$$0 \le x_{ij} \le u_{ij} \ (i = 1 \cdots n, j = 1 \cdots n)$$
$$\max x_{ts}$$

Problem najkraće putanje

$$\min z = \sum_{i} \sum_{j} c_{ij} x_{ij}$$

$$\sum_{j} x_{ij} - \sum_{k} x_{ki} = \begin{cases} 1 & ako \ je \ i = s \\ -1 & ako \ je \ i = t \\ 0 & ostali \ slučajevi \end{cases}$$

$$x_{ij} \ge 0$$

Rešavanje transportnog problema

Rešavanje transportnog problema

		С		Ponuda u _i	
Izvor	1	2	•••	n	Ponuda u _i
1	C ₁₁	C ₁₂		C _{1n}	a ₁
	X ₁₁	X ₁₂		X _{1n}	'
2	C ₂₁	C ₂₂		c _{2n}	a_2
_	X ₂₁	X ₂₁	•••	X _{2n}	42
m	C _{m1}	C _{m2}		C _{mn} X _{mn}	a _m
Potreba	b ₁	b_2	•••	b_n	. Z=
V _j					_ _

Fabrike	Distributivni o	Distributivni centri							
	Dallas	Atlanta	San F	Phily					
Cleveland	8	6	10	9	35				
Chicago	9	12	13	7	50				
Boston	14	9	16	5	40				
Potrebe	45	20	30	30	(125)				

$$\sum_{i=1}^{m} a_i = \sum_{i=1}^{n} b_i = \sum_{i=1}^{m} \sum_{i=1}^{n} x_{ij}$$

Fabrike	Distributivni o	Distributivni centri							
	Dallas								
Cleveland	8	6	10	9	35				
Chicago	9	12	13	7	50				
Boston	14	9	16	5	40				
Potrebe	45	20	30	30	(125)				

Fabrike	Distributivni o	Distributivni centri							
	Dallas	Dallas Atlanta San F Phily							
Cleveland	35				35				
Chicago	10	20	20		50				
Boston			10	30	40				
Potrebe	45	20	30	30	(125)				

Transportni problem, početno rešenje. Severozapadni ugao

NIJE North West,

već Northwest

Transportni problem, početno rešenje. Minimalna matrica

				- Ponuda					
Izvor		1		2		3		4	Poliuua
	8		6		10		9		25
1	15		20						35
0	9		12		13		7		50
2	30					20		•	50
0	14		9		16		5		40
3		•		•		10		30	40
Potreba	4	.5	20		30		30		

Transportni problem, početno rešenje.

RAZAPINJUĆE Ili OBUHVATNO STABLO

- 1.Svi čvorovi su međusobno povezani, preko međusobno povezanih grane, zanemarujući orijentaciju grana
- 2. Nema petlji, čvor nije povezan sa samim sobom preko međusobno povezanih grana, zanemarujući orijentaciju grana

$$\sum_{i=1}^{n} x_{ij} = a_{i} \qquad (i = 1, 2, ... m)$$
 Skiveni troškovi u_{i}

$$\sum_{i=1}^{m} x_{ij} = b_j \qquad (i = 1, 2, \dots n)$$
 v_j

$$x_{ij} \ge 0 \ (i = 1 \cdots m, j = 1 \cdots n)$$

Za dopustivo početno rešenje izrčunamo u_i i v_j

$$u_i + v_j = c_{ij}$$

Za ove simplex množitelje, izračunvamo umanjene troškove, za ne bazna rešenja

$$\bar{c}_{ij} = c_{ij} - u_i - v_j$$

				Ponuda					
Izvor	1		2		3		4		
1	8		6		10		9		0
1		-		-	(-2)	8	0
2	9		12		13		7		4
2		-		5		- -		5	I
2	14		9		16		5		
3		2		-1		-		_	4
Potreba	8	3	(<u> </u>	1	2	•	1	

Pomeranja ka boljem rešenju

$$u_i + v_j = c_{ij}$$
$$\bar{c}_{ij} = c_{ij} - u_i - v_j$$

Potreba

6

6

10

-1

-1

Pomeranja ka boljem rešenju

				Ponuda					
Izvor	1		2	2		3	4		Polluda
1	8		6		10		9		35
•				10		25			33
2	9		12		13		7		50
2	45					5			50
2	14		9		16		5		40
3	•			10		•		30	40
Potreba	4	5	2	20	3	0	3	80	

Pomeranja ka boljem rešenju

	Cilj								- Ponuda	
Izvor	1		2		3		4		1 Olluda	
4	8		6		10		9			
1		2		<u>-</u>		-		7	0	
2	9		12		13		7			
		-		3		<u>-</u>		2	3	
3	14		9		16		5			
		5		<u>-</u>		3		_	3	
Potreba	6		6		10		2			

Transportni problem, dodatak

Ponuda različita od potražnje

$$\sum_{i=1}^{m} a_i - \sum_{j=1}^{n} b_j = d > 0$$

$$b_{n+1} = d \qquad c_{i,n+1} = 0$$

$$\sum_{j=1}^{n} b_j - \sum_{i=1}^{m} a_i = d > 0$$

$$a_{m+1} = d \quad c_{m+1,j} = 0$$

Zabranjene putanje

C_{i,j}=M gde je M veoma veliki broj

Degenracija

Cij je cena protoka din/kb

$$\binom{Protok\ iz}{\check{c}vora} - \binom{Protok\ u}{\check{c}vor} = \binom{Snadbevenost}{\check{c}vora}$$

$$\operatorname{Min} z = \sum_{i} \sum_{j} c_{ij} x_{ij}$$

Minimalna cena protoka kroz mrežu

Minimalna cena protoka kroz mrežu, teorija grafova

Minimalna cena protoka kroz mrežu, teorija grafova

Minimalna cena protoka kroz mrežu, teorija grafova, osnovni pojmovi

• Putanja od čvora s do t u orijentisanom grafu je povezana sekvenca grana ρ_1 do ρ_N gde važi

$$\rho_k = (i_{k-1}, i_k)$$
 ili $\rho_k = (i_k, i_{k-1})$ gde je $i_0 = s$ i $i_N = t$.

• Direktna putanja od čvora s do t u orijentisanom grafu je povezana sekvenca grana ρ_1 do ρ_N gde važi

$$\rho_{k} = (i_{k-1}, i_{k})$$
 gde je $i_{0} = s$ i $i_{N} = t$

- (Direktna) petlja je (direktna) putanja koja počinje i završava u istom čvoru
- Graf je povezan ako postoji putanja između bilo koja dva čvora
- Stablo je povezni podskup grafa, koji ne sadrži petlje
- Razapinjuće ili obuhvatno stablo sadrži n čvorova i n-1 grana

Minimalna cena protoka kroz mrežu, teorija grafova, osnovni pojmovi

Minimalna cena protoka kroz mrežu, teorija grafova, osnovni pojmovi

Minimalna cena protoka kroz mrežu, balansne jednačine

$$\sum_{i=1}^{n} a_{ij} x_{ij} = b_i \quad i = 1, \dots n. \quad \Leftrightarrow \tilde{A}x = \tilde{b}$$

$$e^T \tilde{b} = 0$$
, gde je $e^T = [1 \dots 1]$

$$Ax = b$$
, gde je $b = [1 \ 1 \dots \ 1]^T$

Inicijaliazcija (pronalaženje početnog dopustivog rešenja)

Teorema m-1 kolona matrice A (m-1)x(n) je je linearno nezavisna akko odgovrajućih m-1 grana formira razapinjuće stablo

(b1, b2, b3, b4) = (40, 35, -30, -25) napomena b5=20

$$x_{12} = b_1 = 40$$

$$x_{23} = -b_3 = 30$$

$$x_{24} = b_2 + x_{12} - x_{23} = 45$$

$$x_{45} = x_{24} + b_4 = 20$$

x_{ii}>0 dopustivo početo rešenje

Određvanje simplex multiplikatora $\mathbf{y}^{\mathsf{T}}\mathbf{A}_{\beta} = \mathbf{C}^{\mathsf{T}}_{\beta}$

$$y_m=0$$

 $y_i - y_i = c_{ij}$ za sve grane baznog rešenja

Provera da li je trenutno rešenje optimalno?

$$\mathbf{c}^{\mathsf{T}} = (c12, c13, c23, c24, c34, c35, c45) = (2, 5, 2, 2, 1, 1, 2)$$

$$y_4 - y_5 = c_{45} \implies y_4 = c_{45} = 2$$

$$y_2 - y_4 = c_{24} \implies y_2 = y_4 + c_{24} = 2 + 2 = 4$$

$$y_2 - y_3 = c_{23} \implies y_3 = y_2 - c_{23} = 4 - 2 = 2$$

$$y_1 - y_2 = c_{12} \implies y_1 = y_2 + c_{12} = 4 + 2 = 6$$

Provera da li je trenutno rešenje optimalno?

$$\mathbf{c}^{\mathsf{T}} = (c12, c13, c23, c24, c34, c35, c45) = (2, 5, 2, 2, 1, 1, 2)$$

$$\bar{c} = c_{\nu}^{T} - y^{T} A_{\nu}$$
$$\bar{c}_{ij} = c_{ij} - y_{i} + y_{j}$$

$$\mathbf{v} = \{(1,3), (3,4), (3,5)\}$$

$$A_{\nu} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 1 & 1 \\ 0 & -1 & 0 \end{bmatrix}$$

Rešavanje problema Provera da li je trenutno

rešenje optimalno?

$$\mathbf{c}^{\mathsf{T}} = (c12, c13, c23, c24, c34, c35, c45) = (2, 5, 2, 2, 1, 1, 2)$$

$$\bar{c}_{13} = c_{13} - y_1 + y_3 = 5 - 6 + 2 = 1$$

$$\bar{c}_{34} = c_{34} - y_3 + y_4 = 1 - 2 + 2 = 1$$

$$\bar{c}_{35} = c_{35} - y_3 + y_5 = 1 - 2 + 0 = -1$$

Pomeranja ka boljem rešenju

Pomeranja ka boljem rešenju

$$x_{\beta} = \begin{bmatrix} 40 \\ 50 \\ 25 \\ 20 \end{bmatrix} \ge 0$$

Pomeranja ka boljem rešenju

$$\beta = \{(1, 2), (2,3), (2,4), (3,5)\}$$

Rezime

- i. Početno rešenje odgovara razapinjućem stablu
- ii. Iz balansnih jednačina odrede se protoci xij, ako su nenegativni početno rešenje je moguće i dobro izabrano (bazno rešenje)
- iii. Odrediti simpleks množitellje iz uslova da je ym=0 i

$$y_i - y_i = c_{ij}$$
 za sve grane baznog rešenja

iv. Odrediti redukovane troškove za rešenja koja nisu bazna

$$\bar{c}_{ij} = c_{ij} - y_i + y_j$$

- v. Ako su redukovani troškovi iz iv ≥ 0, dobili smo optimalno rešenje
- vi. Ako je neki od redukovanih troškova negativan, izabrati najveći negativni po apsolutnoj vrednosti i odgovarajuću granu dodati razapinjućem stablu. U dobijenoj petlji naći graničnu vrednost protoka, tako da protok kroz jednu granu pada na 0.
- vii. Granu sa protokom 0 izbaciti i grafa, čime se dobija novo razapinjuće stablo. viii. Ponoviti iii

