

EXPERIMENTO 9 CIRCUITO RLC EM SÉRIE – RESPOSTA EM FREQUÊNCIA

OBJETIVOS: Obter a curva de ressonância de um circuito **RLC** em **série** alimentado com tensão alternada. Determinar o fator de qualidade Q₀ deste circuito.

MATERIAL UTILIZADO: Osciloscópio, Gerador de Sinais, Resistor, Capacitor, Indutor de 100mH interno à *Protoboard*.

FUNDAMENTOS TEÓRICOS

Estudaremos nesta prática o fenômeno de ressonância em um circuito RLC em série. A figura 9.1 mostra um circuito **RLC** em **série** conectado a um gerador que fornece uma tensão senoidal de amplitude V_0 e frequência angular ω .

Figura 9.1 – (a) Circuito RLC em série alimentado por uma onda senoidal v_g . Em (b), temos o comportamento temporal da tensão do gerador V_g defasada de um ângulo Φ com relação à corrente no circuito (direita).

Como a tensão no gerador, ${\bf v_g}$, é uma função senoidal $v_g=V_0$ sen ($\omega t+\phi$), pode-se supor, para resolver o circuito acima, que a corrente no circuito tem a forma ${\bf i}={\bf I}_0$ sen ωt . O ângulo ϕ corresponde à defasagem temporal entre a corrente no circuito e a tensão aplicada. As tensões no resistor , capacitor e indutor são dadas por:

$$v_R = R i = R I_0 sen \omega t$$
 $v_C = \frac{q}{C} = -\frac{I_0}{\omega C} \cos \omega t$ $v_L = L \frac{d i}{d t} = \omega L I_0 \cos \omega t$

Aplicando a primeira lei de Kirchhoff no circuito: $v_g = v_R + v_L + v_C$, teremos:

$$v_G = R I_0 \operatorname{sen} \omega t + I_0 \left(\omega L - \frac{1}{\omega C} \right) \cos \omega t$$

$$V_0 \operatorname{sen}(\omega t + \phi) = R \operatorname{I}_0 \operatorname{sen} \omega t + \operatorname{I}_0 \left(\omega L - \frac{1}{\omega C}\right) \cos \omega t$$

Para obter-se os valores de I_0 e ϕ , expandiremos o termo à esquerda como nos casos do circuito RC e RL em série:

$$V_{0}sen\left(\omega t+\phi\right)=V_{0}(sen\ \omega t\cos\phi+sen\ \phi\cos\omega t)=RI_{0}sen\ \omega t+I_{0}\left(\omega\ L-\frac{1}{\omega\ C}\right)\cos\omega t$$

Reagrupando os termos desta equação:

$$sen \omega t (V_0 \cos \phi - RI_0) + \cos \omega t (V_0 sen \phi - I_0 \left(\omega L - \frac{1}{\omega C}\right)) = 0$$

É fácil verificar que a relação acima é válida somente se os termos entre parênteses são nulos! Então:

$$V_0 \cos \phi = R I_0$$
 e $V_0 \sin \phi = I_0 \left(\omega L - \frac{1}{\omega C} \right)$ Equações (9.1)

O valor de ϕ é, portanto,

$$\phi = arc \ tg \left[\frac{\omega L - \frac{1}{\omega C}}{R} \right]$$

e o valor de I₀ é obtido elevando-se as equações (9.1) ao quadrado e somando-as:

$$V_0^2 (\cos^2 \phi + \sin^2 \phi) = \left[R^2 + \left(\omega L - \frac{1}{\omega C} \right)^2 \right] I_0^2$$

Logo:

$$V_0^2 = (R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2) I_0^2,$$

fornecendo o valor da corrente de $pico I_0$, correspondente à amplitude (ou valor máximo) da corrente, em função de V_0 (amplitude da tensão no gerador):

$$I_0^2 = \frac{V_0^2}{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} \quad \text{ou} \quad I_0 = \frac{V_0}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$

FREQUÊNCIA DE RESSONÂNCIA:

Analisando o comportamento de I₀ em função da frequência, concluímos que:

Quando
$$\omega \to 0$$
, $\mathbf{I_0} = \mathbf{0}$ e $\mathbf{V_R} = \mathbf{0}$ e $\phi = -\frac{\pi}{2}$.

Quando
$$\omega \to \infty$$
, também $\mathbf{I_0} = \mathbf{0}$ e $\mathbf{V_R} = \mathbf{0}$ e $\phi = \frac{\pi}{2}$.

Note que v_R e v_C estão sempre defasados de $\pi/2$, assim como v_R e v_L também estão sempre defasados de $\pi/2$. Logo v_L e v_C estão sempre defasados de π .

Existe uma frequência angular $\omega_{\rm R}$ chamada frequência de ressonância, na qual a tensão no capacitor é igual à tensão no indutor, no entanto como elas estão sempre defasadas de π , o termo $\left(\omega\,L-\frac{1}{\omega\,C}\right)$ se anula, ou seja, nesta frequência:

$$\omega_R \ L = \frac{1}{\omega_0 \ C}$$
 ou $\omega_R = \frac{1}{\sqrt{L \ C}}$ Equação (9.2)

Nesta frequência, tem-se que ${\rm I}_0=rac{V_0}{R}$ e o circuito se comporta como se existisse apenas o resistor. Neste caso, a curva de corrente em função da frequência apresenta um máximo.

FATOR DE QUALIDADE (Q₀)

A ressonância ocorreria mesmo na ausência da resistência. A ressonância é um fenômeno que ocorre sempre que a frequência de oscilação externa ao circuito se igualar à frequência natural de oscilação do mesmo. Entretanto, no caso real, sempre há uma resistência no circuito que causa dissipação de energia. A resistência do circuito é um fator importante que determina a largura do pico de ressonância.

Esta largura é definida como sendo a diferença entre as frequências para as quais a potência dissipada é igual à metade da potência máxima. Elas são conhecidas como frequências de corte ou de meia-potência f_1 e f_2 .

Na curva da tensão no resistor em função da frequência, as frequências de corte f_1 e f_2 são aquelas para as quais a tensão é igual a **0,707** da tensão máxima. **Quanto menor a diferença** entre f_1 e f_2 , mais pronunciada é a resposta do circuito à ressonância. Chamamos de Q_0 o fator de qualidade de um oscilador como a grandeza que caracteriza a energia total **E** do sistema pela energia Δ **E** perdida em um ciclo, definindo da forma: $Q_0 = \frac{2 \pi E}{\Delta E}$

Pode-se mostrar então que, no caso do circuito RLC em série:

$$Q_0 = \frac{\omega_0 L}{R} = \frac{f_0}{f_2 - f_1}$$
 Equação (9.3)

PROCEDIMENTO EXPERIMENTAL

A) Monte o circuito da figura 9.2 usando R = 150 Ω e C = 22nF e L = 100mH. Ajuste $V_E^{PP} = 1,0~V$

Figura 9.2 – Circuito RLC em série alimentado por uma onda senoidal. Nas medidas a serem realizadas, é importante manter as conexões relativas ao "terra" comuns ao gerador de sinais e ao osciloscópio. Desta maneira, a figura à esquerda representa o circuito para medir-se V_R . Para medir-se V_L , trocamos R e L de lugar (centro) e à direita visualizamos a forma para medir-se V_C .

A.1) Varie a frequência do gerador até observar que a tensão no resistor atinge um valor máximo V_R^{MAX} . Esta é a frequência de ressonância f_R do circuito. Um modo rápido é: com os dois sinais senoidais na tela, ajuste a frequência, obtendo uma diferença de fase 0° entre os sinais de V_F e V_R .

Meça e anote os valores de f_0 , V_F , V_R^{MAX} , V_L e V_C nesta frequência. Note que para isto é preciso ir trocando as posições dos componentes em relação ao terra, de acordo com a figura 9.2.

- **A.2)** Encontre a frequência de ressonância através da figura de Lissajous. Nesta frequência, esboce a figura observada e determine a diferença de fase ϕ_L e ϕ_C em relação à fonte.
- **A.3**) Construa uma tabela com aproximadamente **25** pontos de tensão no resistor em função da frequência, começando com valores abaixo da frequência de ressonância e terminando com valores de frequência acima desta.
- **A.4**) Procure e meça as duas frequências de meia-potência f_1 e f_2 . Estas são as frequências nas quais a tensão no resistor corresponde ao valor $V_R(f_1;f_2)=\frac{V_R^{MAX}}{\sqrt{2}}$. Meça também as diferenças de fase entre V_R e V_F .
- **A.5**) Nas frequências f_1 e f_2 , meça a tensão **pico-a-pico** em **R**, em **L** e em **C**.
- A.6) Construa o gráfico da tensão no resistor em função da frequência f.
- A.7) Obtenha do gráfico a frequência de ressonância e as frequências de meia-potência.
- **A.8**) Calcule o valor teórico da frequência de ressonância do circuito e compare com o valor experimental de f_0 .

- A.9) Encontre o fator de Qualidade Q₀ experimental e teórico do circuito.
- **A.10**) Através dos valores medidos das tensões de pico-a-pico em ${\bf R}$, ${\bf L}$, ${\bf C}$ e na fonte, é possível construir o diagrama fasorial na frequência de ressonância ${\bf f}_0$ e verificar a validade da Lei de Kirchhoff. Note, entretanto, que $V_R^{MAX} \neq V_F$, pois as outras resistências do circuito não são desprezíveis. Encontre uma maneira de denotar a tensão em todos os resistores a partir do valor da tensão de pico-a-pico em ${\bf R}$ (DICA: cheque o exercício 10 no MOODLE).
- **A.11**) Com o mesmo raciocínio, construa os diagramas fasoriais nas frequências de meia potência f_1 e f_2 , e verifique a validade da Lei de Kirchhoff.
- A.12) Identifique em qual faixa de frequências o circuito é mais capacitivo ou indutivo.

EXPERIMENTO 9 CIRCUITO RLC EM SÉRIE RESPOSTA EM FREQUÊNCIA

TURMA: ___ DATA: __/__/

NOME				RA
RESUMO:				
MATERIAL	UTILIZADO (MARCA/N	MODELO quando for	o caso):	
A) RES	SULTADOS			
A.1) Métod	lo das duas ondas			
c	ı	.,	T / MAX	
t ₀ =	; φ=	; V _F =	$V_R^{MAX} = \underline{\hspace{1cm}}$	
V _L =	; V _C =	-		
A.2) Métod	lo das figuras de Lissajo	ous		
f -	· A -	· h -	φ _c =	
				
A.3) Tabela com os valores de V _R (Volts) em função da frequência f (Khz).				
A.4) Frequé	èncias de meia potênci	a.		
f ₁ :	φ _R :	f ₂ :	ϕ_{R} :	
A.5)				
,		V_R	V_L	V _c
	em f ₁ : em f ₂ :			
Ĺ	em 1 ₂ .			
A.6) Gráfico da tensão no resistor V_R em função da frequência f .				
They claimed as teribue no resistor the entrangue as frequential.				
A.7) Frequé	ència de ressonância e	de meia potência a p	artir do gráfico.	
f ₀ :		f ₁ :	f ₂ :	

A.8) Valor teórico da frequência de ressonância e comparação com o valor experimental.	

Medido: _____

A.10) Diagrama fasorial **na frequência** de **ressonância** f_0 dos valores de pico de V_R , V_L , V_C e V_0 e verificação da validade das Leis de Kirchhoff:

Valor da tensão V_{RT} sobre todos os resistores do circuito em f_{R.}

A.11) Diagrama fasorial dos valores de pico de V_R , V_L , V_C e V_0 nas frequências de meia potência f_1 e f_2 verificando a validade das Leis de Kirchhoff.

Valores da tensão $V_{RT}\, sobre \, todos \, os \, resistores \, do \, circuito \, em \, f_1 \, e \, f_2$

Verificação das leis de Kirchoff em f ₁ :	Verificação das leis de Kirchoff em f			
A.12) Circuito mais capacitivo:				
	_			
Circuito mais indutivo:				
CONCLUSÕES				
	-			
	-			