

Tópicos de Geometria e Topologia

LISTA 2

Bruno Sant'Anna 14 de janeiro de 2024

Sejam X, Y, Z espaços topológicos, $f: X \to Y, g: Y \to Z$ funções contínuas e $p \in X$. Mostre que

- a. O homomorfismo induzido $(g \circ f)_*: \pi_1(X,p) \to \pi_1(Z,(g \circ f)(p))$ coincide com a composição dos respectivos homomorfismos induzidos $g_* \circ f_*$, onde $f_*: \pi_1(X,p) \to \pi_1(Y,f(p))$ e $g_*: \pi_1(Y,f(p)) \to \pi_1(Z,(g \circ f)(p))$.
- b. Se I_X denota a identidade de X, então o homomorfismo induzido $(I_X)_*$ coincide com o homomorfismo identidade do grupo fundamental $\pi_1(X, p)$.
- a. Se $\psi: X \to Y$ é um mapa contínuo e $p \in X$, então o mapa

$$\psi_*: \pi_1(X, p) \to \pi_1(X, \psi(p))$$

$$[\gamma] \mapsto [\psi \circ \gamma]$$

é dito mapa induzido de ψ e está bem definido

Sejam $f:X\to Y$ e $g:Y\to Z$ mapas contínuos entre espaços topologicos e $p\in X$. Pela definição de mapa induzido temos

$$(g \circ f)_*[\gamma] = [(g \circ f) \circ \gamma]$$

como a composição de mapas é associativa

$$[(g \circ f) \circ \gamma] = [g \circ (f \circ \gamma)]$$

e novamente utilizando a definição de mapa induzido

$$[g\circ (f\circ \gamma)]=g_*[f\circ \gamma]=(g_*\circ f_*)[\gamma].$$

Então de fato, o homomorfismo induzido $(g\circ f)_*$ coincide com a composição $g_*\circ f_*$

b. Se $I_X: X \to X$ é a identidade de X, então o mapa induzido $(I_X)_*: \pi_1(X,p) \to \pi_1(X,p)$ é a identidade de $\pi_1(X,p)$. Com efeito

$$(I_X)_*[\gamma] = [I_X \circ \gamma] = [\gamma]$$

ou seja, a classe de γ por meio de $(I_X)_*$ foi levada a ela mesma. Portanto $(I_X)_*$ é a identidade em $\pi_1(X,p)$