Exercice 1. ('16) [Centrale] Pour tout entier naturel n, on note $u_n =$

 $\sum_{k=0}^{n} \frac{1}{\binom{n}{k}}.$ **1.** Écrire une fonction **binomial(n, k)** qui renvoie $\binom{n}{k}$. Tracer, pour $n \in \{5, 8, 9\}$, les points $\binom{n}{k}_{2 \le k \le n-2}$.

- **2.** Montrer que, pour tout $2 \leqslant k \leqslant n-2$, $\binom{n}{k} \geqslant \binom{n}{2}$.
- 3. Pour tout $n \in \mathbb{N}$, on note A_n le point de coordonnées (n, u_n) . Afficher les 31 premiers termes A_0, \ldots, A_{30} . Conjecturer le comportement asymptotique de (u_n) .
- **4.** Démontrer rigoureusement la convergence de (u_n) .

Soit $p \geqslant 2$ et $q \in \mathbb{N}$. On pose $S(p) = \sum_{n=p}^{+\infty} \frac{1}{\binom{n}{p}}$.

- **5.** Montrer l'existence de S(p).
- **6.** On note $S_N = \sum_{n=p}^N {n \choose p}^{-1}$. Tracer $(p-1)S_{200}(p)$ en fonction de p pour $p \in [2, 50].$
- 7. Exprimer $I(p,q) = \int_0^1 t^p (1-t)^q dt$ en fonction d'un coefficient bino-
- **8.** En déduire que $S(p) = \frac{p}{p-1}$.