Efficient and Adaptive ConvNets for Face Recognition: A Channel Prioritized Approach

Deep Learning for Computer Vision (DLCV) Competition, 2018 Spring

Chun-Min Chang, Chia-Ching Lin, Tsun-Hsien Tang

Motivation

- Deploying ConvNets on resource-limited platforms is often impeded by constraints in size and speed
- Need an one-for-all model to meet different power consumption, accuracy, and latency requirements

Therefore, we propose to train a ConvNet to achieve model reduction and dynamically trade-offs between performance and resource

Base Model Architecture

- VGG-like ConvNets using global average pooling
- Every conv layer is followed by a BN layer

ConvBlock1_1 (3, 3, 64)	ConvBlock1_2 (3, 3, 64)	MaxPooling_1	ConvBLock2_1 (3, 3, 128)	ConvBlock2_2 (3, 3, 128)	MaxPooling_2	ConvBlock3_1 (3, 3, 256)	ConvBlock3_2 (3, 3, 256)	ConvBlock3_3 (3, 3, 256)	MaxPooling_3	ConvBlock4_1 (3, 3, 512)	ConvBlock4_2 (3, 3, 512)	ConvBlock4_3 (3, 3, 512)	MaxPooling_4	ConvBlock5_1 (3, 3, 512)	ConvBlock5_2 (3, 3, 512)	ConvBlock5_3 (3, 3, 512)	GlobalAveragePooling_5	Dropout	FullyConnected (classes)	Softmax	
-------------------------	-------------------------	--------------	--------------------------	--------------------------	--------------	--------------------------	--------------------------	--------------------------	--------------	--------------------------	--------------------------	--------------------------	--------------	--------------------------	--------------------------	--------------------------	------------------------	---------	--------------------------	---------	--

Method: Channel Prioritization for Sparsity and Adaptivity

- We leverage scaling factors of batch normalization since these factors represent the importance of channels
 - We enforce to sparsify and prioritize channels along their indices using three techniques

 - (i) Monotonically decreasing initialization (ii) Monotonicity-induced penalty
- (iii) Sparsity penalty

$$\gamma_l^{(k)} = 1 - \frac{k-1}{N_l}, \quad k = 1, ..., N_l$$

$$L_{m,l}^{(k)} = \begin{cases} \gamma_l^{(k+1)} - \gamma_l^{(k)} &, \text{ if } \gamma_l^{(k+1)} > \gamma_l^{(k)} \\ 0 &, \text{ otherwise} \end{cases}$$

$$|\gamma_I^{(k)}|$$

$$\gamma_{l}^{(k)} = 1 - \frac{k-1}{N_{l}}, \quad k = 1, ..., N_{l}$$

$$L_{m,l}^{(k)} = \begin{cases} \gamma_{l}^{(k+1)} - \gamma_{l}^{(k)} &, \text{ if } \gamma_{l}^{(k+1)} > \gamma_{l}^{(k)} \\ 0 &, \text{ otherwise} \end{cases} \qquad |\gamma_{l}^{(k)}| \qquad L_{obj} = Loss + \lambda_{s} \sum_{k,l} |\gamma_{l}^{(k)}| + \lambda_{m} \sum_{k,l} L_{m,l}^{(k)} |\gamma_{l}^{(k)}| + \lambda_{m} \sum_{k,l} |\gamma_{l}^{(k)}| + \lambda_$$

Based on the learned channel priority, a small sub-network can be built by removing (100-p)% insignificant channels. By jointly training the sub-network at various utilization levels, we can obtain the adaptive property

Pre-training stage

- 1. Monotonically decreasing initialization on scaling factors
- 2. Train with sparsity and monotonicity-induced penalties
- 3. Prune channels by a global threshold

Magnitude-based Pruning threshold: 0.1

Fine-tuning stage

- 4. Fix all parameters in BN layers
- 5. Define and sum up the losses at different utilization levels
- 6. Fine-tune the pruned network with the aggregated loss

Experiment Results

	Accuracy (%)	Multi-Adds	Parameters
VGG-16 (baseline)	86.28	24.71 x 10 ⁹	15.91 x 10 ⁶
MobileNet-224 [1]	65.31	5.73 x 10 ⁹	5.62 x 10 ⁶
SqueezeNet-v1.0 [2]	60.02	8.61 x 10 ⁸	1.75 x 10 ⁶
Extracted feature+NearestOne*	84.05	7.30 x 10 ⁹	4.05 x 10 ⁶
Our (100%)	86.38	6.87 x 10 ⁹	4.05 x 10 ⁶
Our (75%)	81.40	3.84 x 10 ⁹	2.28 x 10 ⁶
Our (50%)	78.47	1.68 x 10 ⁹	1.01 x 10 ⁶

*Features extracted from the best CNN model, compute centers for all classes using training and validation data, and predict the test class with the smallest cosine similarity

Training Details

Objective: softmax loss+center_loss

Hyper-para	meters	Optimizer and Augmentation				
lambda_s	1e-3	Optimizer	Adam, beta1=0.5 64 1e-4			
lambda_m	4e-5	Batch size				
lambda_c	1e-3	Ir				
alpha_c	0.5	Rotation	[-45, 45]			
weight_decay	1e-5	Scale	+- 15%			
dropout	0.8	Shift	+- 15 %			
early stop	10	Flip	with prob = 0.5			

Conclusions

- We propose a generalized method to train an efficient and adaptive CNNs, also suitable for face recognition
- ConvNet with prioritized channels can adapt to various requirements
- Experiments showed 2.5, 14.5x reduction with 0, 8% accuracy drop