4.1 相似矩阵

考虑如下图形变换:

我们建立了两个坐标系: Oxy和Ouv

坐标系的关系(坐标系变换):

$$(Oxy \widehat{\exists} J O u v) : \begin{cases} u = \frac{1}{\sqrt{2}} x + \frac{1}{\sqrt{2}} y, \\ v = -\frac{1}{\sqrt{2}} x + \frac{1}{\sqrt{2}} y. \end{cases} \exists J \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = P \begin{pmatrix} x \\ y \end{pmatrix}$$

已知变换:
$$\begin{cases} x' = \sqrt{3}x + y, & \text{pr} \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \sqrt{3} & 1 \\ -1 & \sqrt{3} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = A \begin{pmatrix} x \\ y \end{pmatrix}, 变换矩阵为A.$$

坐标系 Ouv:

求坐标系 Ouv下变换公式.

$$\begin{cases} x = \frac{1}{\sqrt{2}}u - \frac{1}{\sqrt{2}}v, & \begin{cases} x' = \sqrt{3}x + y, \\ y = \frac{1}{\sqrt{2}}u + \frac{1}{\sqrt{2}}v, \end{cases} & \begin{cases} x' = \sqrt{3}x + y, \\ y' = -x + \sqrt{3}y, \end{cases} \end{cases} \begin{cases} u' = \frac{1}{\sqrt{2}}x' + \frac{1}{\sqrt{2}}y', \\ v' = -\frac{1}{\sqrt{2}}x' + \frac{1}{\sqrt{2}}y'. \end{cases}$$
 的相似矩阵 表示不同坐

矩阵形式:

再看一种特殊的矩阵分解:

$$A = P \Lambda P^{-1} = P \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} P^{-1},$$

这种分解非常有用,可以在某种情况下简化矩阵,如计算Am,

$$A^{m} = (P\Lambda P^{-1})(P\Lambda P^{-1})\cdots(P\Lambda P^{-1}) = P\Lambda(P^{-1}P)\Lambda(P^{-1}P)\cdots(P^{-1}P)\Lambda P^{-1} = P\Lambda^{m}P^{-1} = P\begin{pmatrix}\lambda_{1}^{m} & & \\ & \ddots & \\ & & \lambda_{n}^{m}\end{pmatrix}P^{-1}.$$

定义4.1.1 (相似矩阵) 对于同阶方阵A与B,如果存在可逆矩阵P,使得 $B=P^{-1}AP$,

则称A相似B,记为 $A \sim B$.称B为A的相似矩阵,而称P为A到B的相似变换矩阵.

矩阵的相似关系也是等价关系,满足: (1) 自反性 (2) 对称性 (3) 传递性.

相似矩阵的性质:

性质1 若 $A \sim B$,则|A|=|B|,从而A = B可逆性相同.

性质2 若 $A \sim B$,且A或B可逆,则 $A^{-1} \sim B^{-1}$.

性质3 若 $A \sim B$,则 $A^n \sim B^n$, $kA \sim kB$,其中n为自然数,k为任意实数.

性质4 若 $A \sim B$,则, $f(A) \sim f(B)$,其中 $f(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0$ 为任意多项式.

说明: $A \sim B$ 即 $B=P^{-1}AP$

性质1: $|B|=|P^{-1}AP|=|P^{-1}||A|||P|=|P|^{-1}|A||P|=|A|$.

性质2: $B^{-1}=(P^{-1}AP)^{-1}=P^{-1}A^{-1}P$.

性质3: $B^n = (P^{-1}AP) (P^{-1}AP) \dots (P^{-1}AP)$ = $P^{-1}A(PP^{-1})A(PP^{-1}) A \dots (PP^{-1}) AP = P^{-1}A^nP$, $kB = P^{-1}(kA) P$.

性质4:
$$f(B) = a_n B^n + a_{n-1} B^{n-1} + \dots + a_1 B + a_0 E$$

 $= a_n (P^{-1} A^n P) + a_{n-1} (P^{-1} A^{n-1} P) + \dots + a_1 P^{-1} A P + a_0 P^{-1} E P$
 $= P^{-1} (a_n A^n + a_{n-1} A^{n-1} + \dots + a_1 A + a_0 E) P = P^{-1} f(A) P.$

相似矩阵用于求矩阵的正整数幂:

例4.1.1 若 $P^{-1}AP$ 为对角矩阵,其中

$$P = \begin{pmatrix} 4 & 1 \\ -1 & -1 \end{pmatrix}, \qquad A = \begin{pmatrix} 3 & 4 \\ -1 & -2 \end{pmatrix},$$

试求 A^n (n为正整数).

解 容易求得 $P^{-1} = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ -1 & -4 \end{pmatrix}$,于是

$$B = P^{-1}AP = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ -1 & -4 \end{pmatrix} \begin{pmatrix} 3 & 4 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} 4 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}.$$

由 P-1AP=B 得 A=PBP-1, 于是

$$A^{n} = (PBP^{-1})^{n} = PB^{n}P^{-1} = \begin{pmatrix} 4 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}^{n} \frac{1}{3} \begin{pmatrix} 1 & 1 \\ -1 & -4 \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} 4 & 1 \\ -1 & -1 \end{pmatrix} \begin{pmatrix} 2^{n} & 0 \\ 0 & (-1)^{n} \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & -4 \end{pmatrix}$$

$$= \frac{1}{3} \begin{pmatrix} 2^{n+2} + (-1)^{n+1} & 4(2^{n} + (-1)^{n+1}) \\ -2^{n} + (-1)^{n} & -2^{n} + 4(-1)^{n} \end{pmatrix}.$$

4.2 特征值与特征向量

已知方阵A,求 λ 和 $\xi \neq \theta$,满足 $A\xi = \lambda \xi$,称为特征值问题.

几何变换与特征值问题

用
$$A = \begin{pmatrix} 5/4 & 3/4 \\ 3/4 & 5/4 \end{pmatrix}$$
 表示图形几何变换
$$\begin{cases} x' = \frac{5}{4}x + \frac{3}{4}y, \\ y' = \frac{3}{4}x + \frac{5}{4}y. \end{cases}$$

则效果为u,v方向上的拉伸。

u,v这两个拉伸方向用向量 ξ,η 表示时,将满足 $A\xi=2\xi$, $A\eta=0.5\eta$, 拉 伸倍数2和0.5为A的特征值,对应拉伸方向 ξ =(1,1)^T和 η =(-1,1)^T为A的 属于2和0.5的特征向量。

当用 u,v坐标时,变换为 $\begin{cases} u'=2u, \\ v'=0.5v. \end{cases}$ 即 $\begin{pmatrix} 2 & 0 \\ 0 & 0.5 \end{pmatrix}$

相似变换与特征值问题

从相似矩阵这一节内容中,我们看到,若有 $A=P\Lambda P^{-1}$,或者 $P^{-1}AP=\Lambda$,其中 Λ 为对角矩阵,则 A^m 就很容易求出,为 $A^m=P\Lambda^m P^{-1}$.

下面来看一个具体的求矩阵乘幂的例子:

考虑斐波那契(Finonacci)数列:

递推公式为:
$$F_1=F_2=1$$
, $F_{n+2}=F_{n+1}+F_n$, $n=1,2,3,\ldots$.

利用矩阵发现该数列有如下关系

$$\begin{pmatrix} F_{n+2} & F_{n+1} \\ F_{n+1} & F_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix},$$

故有
$$\begin{pmatrix} F_{n+2} & F_{n+1} \\ F_{n+1} & F_n \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n-1} \begin{pmatrix} F_3 & F_2 \\ F_2 & F_1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^{n+1}, \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}^n.$$

为求
$$A^n$$
,需求矩阵 P 使得: $A = P \Lambda P^{-1} = P \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} P^{-1}$,其中 $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.

将 $A=P\Lambda P^{-1}$,改写成: $AP=P\Lambda$,再令 $P=(\xi,\eta)$,于是有: $(A\xi,A\eta)=(\xi,\eta)\Lambda=(\lambda_1\xi,\lambda_2\eta)$,

即:
$$A\xi = \lambda_1 \xi$$
, $A\eta = \lambda_2 \eta$. λ_1 , λ_2 为特征值, ξ , η 为特征向量.

如何计算特征值、特征向量?

计算非零 ξ : $A\xi = \lambda \xi \Leftrightarrow (\lambda E - A)\xi = \theta$

先计算 λ : $|\lambda E - A| = 0$,再计算非零 ξ : $(\lambda E - A)\xi = \theta$

计算前述几何变换矩阵 $A = \begin{pmatrix} 5/4 & 3/4 \\ 3/4 & 5/4 \end{pmatrix}$ 的特征值问题:

(1) 求特征值 λ : 计算 $|\lambda E - A| = 0$.

$$\begin{vmatrix} \lambda E - A \end{vmatrix} = \begin{vmatrix} \lambda - 5/4 & -3/4 \\ -3/4 & \lambda - 5/4 \end{vmatrix} = \begin{vmatrix} \lambda - 2 & -3/4 \\ \lambda - 2 & \lambda - 5/4 \end{vmatrix} = (\lambda - 2)(\lambda - 1/2) = 0.$$
 得特征值 $\lambda = 2$ 和 $\lambda = 1/2$.

(2) 求特征向量 ξ : 解齐次方程组(λE -A) ξ = θ .

 $\lambda=2$ 时,解得 $(2E-A)\xi=\theta$ 的解为 $\xi=k_1(1,1)^{\mathrm{T}}$. $\lambda=1/2$ 时,解得 $(0.5E-A)\eta=\theta$ 的解为 $\eta=k_2(-1,1)^{\mathrm{T}}$.

计算前述斐波那契数列相关矩阵 $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ 的特征值问题:

(1) 求特征值 λ : 计算 $|\lambda E - A| = 0$.

$$\left|\lambda E - A\right| = \begin{vmatrix} \lambda - 1 & -1 \\ -1 & \lambda \end{vmatrix} = \lambda^2 - \lambda - 1 = 0. \quad \text{解得特征值:} \quad \lambda_1 = \frac{1 + \sqrt{5}}{2}, \quad \lambda_2 = \frac{1 - \sqrt{5}}{2}.$$

(2) 求特征向量 ξ : 解齐次方程组(λE -A) ξ = θ .

 $\lambda_1 = (1 + \sqrt{5})/2$ 时,解得 $(\lambda_1 E - A) \xi = \theta$ 的解为 $\xi = k_1 (\lambda_1, 1)^T$. $\lambda_2 = (1 - \sqrt{5})/2$ 时,解得 $(\lambda_2 E - A) \eta = \theta$ 的解为 $\eta = k_2 (\lambda_2, 1)^T$.

特征值、特征向量一些概念

- 定义4.2.1 (特征值、特征向量) 设 A 是实数域R或复数域C上的一个方阵, $\lambda \in \mathbb{C}$,若存在非零向量 ξ 使得 $A\xi = \lambda \xi$,则称 λ 为矩阵 A 的特征值,称 ξ 为A 的属于特征值 λ 的特征向量 .
- 定理4.2.1 设方阵 Λ 有特征值 λ , ξ_1 , ξ_2 为属于 λ 的特征向量,则它们的任意不等于零向量的线性组合 $\eta = k_1\xi_1 + k_2\xi_2$ (k_1 , $k_2 \in \mathbf{R}$) 仍是属于 λ 的特征向量 .

证明: 直接验证 $A\eta = k_1 A \xi_1 + k_2 A \xi_2 = k_1 \lambda \xi_1 + k_2 \lambda \xi_2 = \lambda \eta$.

- ♥ 特征向量只是表示一个方向,与向量大小无关 (ξ, kξ 同为特征向量)
 - 定义4.2.2 (特征多项式、特征方程、特征矩阵) $|\lambda E-A|$ 称为A的特征多项式; $|\lambda E-A|=0$ 称为A的特征方程. 方程 $|\lambda E-A|=0$ 的解称为A的特征根,而 $\lambda E-A$ 称为A的特征矩阵.
 - A的特征根与A的特征值相同,以后看成等价概念,不再区分
 - n阶矩阵A的特征多项式是λ的n次多项式, A有n个特征值(包括重数)

求特征值、特征向量的步骤

求矩阵A的全部特征值和特征向量的计算步骤:

- (1) 计算行列式 $|\lambda E-A|$,并求出 $|\lambda E-A|=0$ 的全部根,即A的特征值;
- (2) 对于每个特征值 λ_i ,求齐次线性方程组 $(\lambda_i E A)x = \theta$ 的一个基础解系 α_1 , α_2 , . . . , α_{si} ;
- (3) 写出A属于 λ_i 的全部特征向量为: $k_1\alpha_1 + k_2\alpha_2 + ... + k_{si}\alpha_{si}$,其中 $k_1, k_2, ..., k_{si}$ 为不全为零的任意常数。

注: 4.3节有结论: 对于重特征值 λ ,所属的无关特征向量个数 $\leq \lambda$ 的重数。 上述是求特征值的常规步骤,有时可以直接解 $Ax=\lambda x$,如 $A=\alpha \beta^{T}$ (例4.2.4) 例4.2.1 求矩阵A的全部特征值和特征向量,其中 $A = \begin{bmatrix} 3 & -2 & 1 \\ 0 & 4 & 0 \\ 1 & -2 & 5 \end{bmatrix}$.

$$|\lambda E - A| = \begin{vmatrix} \lambda - 5 & 2 & -1 \\ 0 & \lambda - 4 & 0 \\ -1 & 2 & \lambda - 5 \end{vmatrix} = \begin{vmatrix} \lambda - 6 & 2 & -1 \\ 0 & \lambda - 4 & 0 \\ \lambda - 6 & 2 & \lambda - 5 \end{vmatrix} = \begin{vmatrix} \lambda - 6 & 2 & -1 \\ 0 & \lambda - 4 & 0 \\ 0 & 0 & \lambda - 4 \end{vmatrix} = (\lambda - 6)(\lambda - 4)^{2}$$

得A的两个特征值为: $\lambda=6,4$ (二重).

对于 $\lambda=6$,解齐次方程组 $(6E-A)x=\theta$,由

$$\begin{pmatrix} 1 & 2 & -1 \\ 0 & 2 & 0 \\ -1 & 2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & -1 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

求得该齐次方程组的一个基础解系为: $\alpha_1 = (1,0,1)^T$. 故属于特征值6的全 部特征向量为: $k_1\alpha_1$, 其中 k_1 为任意非零常数.

征向量为:
$$k_1\alpha_1$$
,其中 k_1 为任意非零常数.
对于 λ =4,解齐次方程组 (4 E - A) x = θ ,由
$$\begin{pmatrix} -1 & 2 & -1 \\ 0 & 0 & 0 \\ -1 & 2 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

求得该齐次方程组的一个基础解系为: $\alpha_2 = (2,1,0)^T$, $\alpha_3 = (-1,0,1)^T$. 故属于特征值4的全部特征向量为: $k_2\alpha_2+k_3\alpha_3$, 其中 k_2,k_3 为不全为零的任 意常数.

例4.2.2 求矩阵A的全部特征值和特征向量,其中 $A = \begin{pmatrix} 3 & 0 & 1 \\ 2 & 0 & 2 \\ 3 & -4 & 5 \end{pmatrix}$.

解由

$$\begin{vmatrix} \lambda E - A \end{vmatrix} = \begin{vmatrix} \lambda - 3 & 0 & -1 \\ -2 & \lambda & -2 \\ -3 & 4 & \lambda - 5 \end{vmatrix} = \begin{vmatrix} \lambda - 4 & 0 & -1 \\ \lambda - 4 & \lambda & -2 \\ \lambda - 4 & 4 & \lambda - 5 \end{vmatrix} = (\lambda - 4)(\lambda - 2)^2$$

得A的两个特征值为: $\lambda=4,2$ (二重).

対于 λ =4, 解齐次方程组 (4*E*-*A*)x= θ , 由 $\begin{pmatrix} 1 & 0 & -1 \\ -2 & 4 & -2 \\ -3 & 4 & -1 \end{pmatrix}$ \rightarrow $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$

求得该齐次方程组的一个基础解系为: α_1 =(1,1,1)^T. 故属于特征值4的全部特征向量为: $k_1\alpha_1$,其中 k_1 为任意非零常数.

対于 λ =2,解齐次方程组 (2*E*-*A*)x= θ ,由 $\begin{pmatrix} -1 & 0 & -1 \\ -2 & 2 & -2 \\ -3 & 4 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

求得该齐次方程组的一个基础解系为: $\alpha_2 = (-1,0,1)^T$. 故属于特征值2的全部特征向量为: $k_2\alpha_2$, 其中 k_2 为任意非零常数.

例4.2.3 求矩阵A的全部特征值和特征向量,其中
$$A = \begin{pmatrix} 2 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & 2 \end{pmatrix}$$
. 解由 $|\lambda E - A| = \begin{vmatrix} \lambda - 2 & 1 & -1 \\ -1 & \lambda - 1 & -1 \\ -1 & 1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda^2 - 4\lambda + 5)$

得A的3个特征值为: $\lambda=1,2\pm i$.

対于
$$\lambda$$
=1, 解齐次方程组 (*E*-*A*) x = θ , 由 $\begin{pmatrix} -1 & 1 & -1 \\ -1 & 0 & -1 \\ -1 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

求得该齐次方程组的一个基础解系为: α_1 =(-1,0,1)^T. 故属于特征值 1的全部特征向量为: $k_1\alpha_1$,其中 k_1 为任意非零实常数.

对于 $\lambda=2+i$,解齐次方程组 ((2+i)E-A) $x=\theta$,由

$$\begin{pmatrix} i & 1 & -1 \\ -1 & 1+i & -1 \\ -1 & 1 & i \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1+i & -2 \\ 0 & i & -1-i \\ -1 & 1 & i \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1+i \\ 0 & 0 & 0 \end{pmatrix}$$

求得该齐次方程组的一个基础解系为: $\alpha_2 = (1,1-i,1)^T$. 故属于特征值 2+i 的全部特征向量为: $k_2\alpha_2$, 其中 k_2 为任意非零复常数.

对于 $\lambda=2-i$,解齐次方程组 ((2-i)E-A) $x=\theta$,由

$$\begin{pmatrix} -i & 1 & -1 \\ -1 & 1-i & -1 \\ -1 & 1 & -i \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1-i & -2 \\ 0 & -i & -1+i \\ -1 & 1 & -i \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1-i \\ 0 & 0 & 0 \end{pmatrix}$$

求得该齐次方程组的一个基础解系为: $\alpha_3 = (1,1+i,1)^T$. 故属于特征值 2-*i* 的全部特征向量为: $k_3\alpha_3$, 其中 k_3 为任意非零复常数.

下面进一步讨论互为共轭的两个特征值对应的特征向量:

上述例子属于 λ_2 =2+*i*的特征向量 α_2 和属于 λ_3 =2-*i*的特征向量 α_3 有关系: λ_2 =2+*i*与 λ_3 =2-*i*共轭, α_2 = (1,1-*i*,1)^T与 α_3 = (1,1+*i*,1)^T共轭,

于是我们也可以利用复数的共轭性质来求属于共轭特征值的特征向量. 已知属于 $\lambda=2+i$ 的特征向量为 $k_2\alpha_2$,其中 $\alpha_2=(1,1-i,1)^T$, $k_2\in \mathbb{R}$.

对于 λ =2-*i* ,对方程组((2+*i*)*E*-*A*) α_2 = θ 两边取共轭得((2-*i*)*E*-*A*) α_2 = θ . 故 $\alpha_3 = \alpha_2 = (1,1+i,1)^T$ 是((2-*i*)*E*-*A*)x= θ 的一个非零解. 又易知 \mathbf{r} ((2-*i*)*E*-*A*)=2,故 α_3 是((2-*i*)*E*-*A*)x= θ 的一个基础解系. 从而属于特征值2-*i*的全部特征向量为: $k_3\alpha_3$,其中 k_3 为任意非零复常数.

上述内容可替换上述例子中计算 $\lambda=2-i$ 的特征向量的内容:

对于 $\lambda=2-i$,解齐次方程组 $((2-i)E-A)x=\theta$,由

$$\begin{pmatrix} -i & 1 & -1 \\ -1 & 1-i & -1 \\ -1 & 1 & -i \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 1-i & -2 \\ 0 & -i & -1+i \\ -1 & 1 & -i \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1-i \\ 0 & 0 & 0 \end{pmatrix}$$

求得该齐次方程组的一个基础解系为: $\alpha_3 = (1,1+i,1)^T$. 故属于特征值 2-*i* 的全部特征向量为: $k_3\alpha_3$, 其中 k_3 为任意非零复常数.

有时可以使用非常规步骤来求特征值与特征向量.

例4.2.4 求 $E+xy^{T}$ 的特征值与特征向量,其中 E 为 n 阶单位矩阵, $x=(x_1,\ldots,x_n)^{T}$, $y=(y_1,\ldots,y_n)^{T}$.

求解思路:

简化问题: $(xy^T)\xi=\lambda\xi$ \Leftrightarrow $(E+xy^T)\xi=(\lambda+1)\xi$; $(\xi\neq\theta)$ 讨论 $(xy^T)\xi=\lambda\xi$, $(x\neq\theta,y\neq\theta)$: 即 $(y^T\xi)x=\lambda\xi$, 求特征向量 ξ , 将特征向量 ξ 分两类: $y^T\xi=0$ 和 $y^T\xi\neq0$;

当 $y^{T}\xi=0$ 时, $\lambda=0$,于是解方程组 $y^{T}\xi=0$ 求得 ξ ; 当 $y^{T}\xi\neq0$ 时, $x=(\lambda/y^{T}\xi)\xi$, $\lambda\neq0$,可取 $\xi=x$ 并保证 $\lambda=y^{T}\xi\neq0$.

思路二:

讨论 (xy^{T}) $\xi = \lambda \xi$, $(x \neq \theta, y \neq \theta)$: 令 $A = xy^{T}$, 则有 $A^{2} = x(y^{T}x)y^{T} = (y^{T}x)A$. 分两类: $y^{T}x = 0$ 和 $y^{T}x \neq 0$;

当 $y^Tx=0$ 时, $A^2=O$,则 $\lambda^2=0$,和方程组 $xy^T\xi=0$ 求得 ξ ; 当 $y^Tx=t\neq 0$ 时, $A^2-tA=O$,则 $\lambda^2-t\lambda=0$, $\lambda=0$ 或t , $\lambda=t$ 可取 $\xi=x$. 解: 当 $x = \theta$ 或 $y = \theta$ 时, $E + xy^T = E$,故特征值为 $\lambda = 1$ (n重),属于该特征值的特征向量为 $k_1e_1 + \ldots + k_ne_n, k_1, \ldots, k_n$ 不全为零 .

当 $x \neq \theta, y \neq \theta$ 时,由于 (xy^T) $\xi = \lambda \xi$ 等价于($E + xy^T$) $\xi = (\lambda + 1) \xi$,所以我们先考虑矩阵 $A = xy^T$ 的特征值与特征向量.

考虑: $(xy^T)\xi = \lambda\xi$, $\xi \neq \theta$, 此即 $(y^T\xi)x = \lambda\xi$, $x \neq \theta, \xi \neq \theta$.

当 $y^T\xi=0$ 时, 有 $\lambda\xi=\theta$, 故 $\lambda=0$. 因为 $y\neq\theta$,故r(y^T)=1,解方程组 $y^T\xi=0$ 得基础解系 $\xi_1,\xi_2,\ldots,\xi_{n-1}$,易知为 $(xy^T)\xi=\lambda\xi$ 的属于 $\lambda=0$ 的极大无关特征向量组.

当 $y^{T}\xi\neq 0$ 时,有 $x=(\lambda/y^{T}\xi)\xi$,故 $\lambda\neq 0$. 可取 $\xi=x$ 代入 $(xy^{T})\xi=\lambda\xi$ 得 $\lambda=y^{T}x=y^{T}\xi\neq 0$. 若 $y^{T}x=0$,则没有满足 $y^{T}\xi\neq 0$ 的特征向量 ξ 和非零特征值 λ . 否则若 $y^{T}x\neq 0$,则有非零特征值 $\lambda=y^{T}x$ 和特征向量 $\xi=x$.

综上可得, $E+xy^T=E+A$ 的特征值与特征向量为: 当 $x=\theta$ 或 $y=\theta$ 时,特征值为 $\lambda=1(n$ 重),属于该特征值的特征向量为 $k_1e_1+\ldots+k_ne_n$, k_1,\ldots,k_n 不全为零.

当 $x \neq \theta, y \neq \theta$ 且 $y^Tx \neq 0$ 时,特征值为 $\lambda=1+y^Tx$ (单重)和 $\lambda=1$ (n-1重),其中属于 $\lambda=1+y^Tx$ 的特征向量为 $kx,k \neq 0$,而属于 $\lambda=1$ 的特征向量为 $k_1\xi_1+\ldots+k_{n-1}\xi_{n-1}$,其中 ξ_1,\ldots,ξ_{n-1} 为 $y^T\xi=0$ 的基础解系, k_1,\ldots,k_{n-1} 不全为零.

当 $x \neq \theta, y \neq \theta$ 且 $y^Tx = 0$ 时,特征值为 $\lambda = 1$ (n重),对应的特征向量为 $k_1 \xi_1 + \dots + k_{n-1} \xi_{n-1}$, k_1, \dots, k_{n-1} 不全为零 .

解法二: 当 $x = \theta$ 或 $y = \theta$ 时, $E + xy^T = E$,故特征值为 $\lambda = 1$ (n重),属于该特征值的特征向量为 $k_1e_1 + \ldots + k_ne_n, k_1, \ldots, k_n$ 不全为零 .

当 $x \neq \theta, y \neq \theta$ 时,由于 $(xy^T) \xi = \lambda \xi$ 等价于($E + xy^T$) $\xi = (\lambda + 1) \xi$,所以我们先考虑矩阵 $A = xy^T$ 的特征值与特征向量.

考虑关系: $A^2=x(y^Tx)y^T=(y^Tx)A$, A的特征值为 λ .

当 $y^{T}x=0$ 时,有 $A^{2}=O$, $A^{2}\xi=\lambda^{2}\xi=\theta$,故 $\lambda^{2}=0$,从而 $\lambda=0$. 因为 $x,y\neq\theta$,故 $1\leq r(A)=r(xy^{T})\leq r(x)=1$,从而r(A)=1. 解方程组 $xy^{T}\xi=0$ 得基础解系 $\xi_{1},\xi_{2},\ldots,\xi_{n-1}$,即A的无关特征向量组.

当 $y^Tx=t\neq 0$ 时,有 $A^2-tA=O$,则 $\lambda^2-t\lambda=0$,从而 $\lambda=0$ 或t.

 $\lambda=0$ 的特征向量 $\xi_1, \xi_2, \ldots, \xi_{n-1}$ 如上求得.

 $\lambda=t$ 时有 $A\xi=(y^{T}\xi)x=t\xi$,从而 $\xi=(y^{T}\xi/t)x$,得对应特征向量 $\xi=x$.

综上可得, $E+xy^T=E+A$ 的特征值与特征向量为:

当 $x = \theta$ 或 $y = \theta$ 时,特征值为 $\lambda = 1(n \pm 1)$,属于该特征值的特征向量为 $k_1 e_1 + \ldots + k_n e_n$, k_1, \ldots, k_n 不全为零 .

当 $x \neq \theta, y \neq \theta$ 且 $y^Tx \neq 0$ 时,特征值为 $\lambda=1+y^Tx$ (单重)和 $\lambda=1$ (n-1重),其中属于 $\lambda=1+y^Tx$ 的特征向量为 $kx,k \neq 0$,而属于 $\lambda=1$ 的特征向量为 $k_1\xi_1+\ldots+k_{n-1}\xi_{n-1}$,其中 ξ_1,\ldots,ξ_{n-1} 为 $y^T\xi=0$ 的基础解系, k_1,\ldots,k_{n-1} 不全为零 .

当 $x \neq \theta, y \neq \theta$ 且 $y^Tx = 0$ 时,特征值为 $\lambda=1$ (n重),对应的特征向量为 $k_1\xi_1+ \dots + k_{n-1}\xi_{n-1}$, k_1, \dots, k_{n-1} 不全为零 .

常规解法(作为对比): 计算复杂, 技巧要求高

 $\diamondsuit A = E + xy^{\mathrm{T}}$,则

$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 - x_1 y_1 & -x_1 y_2 & \cdots & -x_1 y_n \\ -x_2 y_1 & \lambda - 1 - x_2 y_2 & \cdots & -x_2 y_n \\ \vdots & \vdots & & \vdots \\ -x_n y_1 & -x_n y_2 & \cdots & \lambda - 1 - x_n y_n \end{vmatrix} = D_n = \begin{vmatrix} \lambda - 1 - x_1 y_1 & -x_1 y_2 & \cdots & -x_1 y_n \\ -x_2 y_1 & \lambda - 1 - x_2 y_2 & \cdots & -x_2 y_n \\ \vdots & & \vdots & & \vdots \\ -x_n y_1 & -x_n y_2 & \cdots & -x_n y_n \end{vmatrix} + (\lambda - 1) D_{n-1}$$

$$= (\lambda - 1) D_{n-1} - (\lambda - 1)^{n-1} x_n y_n = \cdots = (\lambda - 1)^{n-1} (\lambda - 1 - \sum_{i=1}^n x_i y_i) = (\lambda - 1)^{n-1} (\lambda - 1 - y^T x).$$

得A的特征值为: $\lambda=1$ 和 $1+y^{T}x$.

- (1) 当 $y^Tx=0$ 时,A的特征值为: $\lambda=1(n$ 重).解方程组 $(E-A)\xi=\theta$.
 - (a) 当 $x=\theta$ 或 $y=\theta$ 时, A=E, 易知此时属于 $\lambda=1$ 的特征向量为任意非零向量 $\xi\in \mathbf{R}^n$.
 - (b) 当 $x\neq\theta$ 且 $y\neq\theta$ 时,

$$E - A = \begin{pmatrix} -x_1 y_1 & -x_1 y_2 & \cdots & -x_1 y_n \\ -x_2 y_1 & -x_2 y_2 & \cdots & -x_2 y_n \\ \vdots & \vdots & & \vdots \\ -x_n y_1 & -x_n y_2 & \cdots & -x_n y_n \end{pmatrix} \rightarrow \begin{pmatrix} y_1 & y_2 & \cdots & y_n \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

可得属于 $\lambda=1$ 的特征向量为 $k_1\xi_1+...+k_{n-1}\xi_{n-1}$, 其中 $\xi_1,...,\xi_{n-1}$ 为 $y^T\xi=0$ 的基础解系, $k_1,...,k_{n-1}$ 不全为零 .

(2) 当 $y^Tx \neq 0$ 时, $x \neq \theta$, $y \neq \theta$,且 A的特征值为: $\lambda=1$ (n-1重)和 $1+y^Tx$.

对于 $\lambda=1$,解方程组 (*E-A*) $\xi=\theta$. 由(b)可得属于 $\lambda=1$ 的特征向量为 $k_1\xi_1+\dots+k_{n-1}\xi_{n-1}$,其中 ξ_1,\dots,ξ_{n-1} 为 $y^T\xi=0$ 的基础解系, k_1,\dots,k_{n-1} 不全为零.

对于 $\lambda=1+y^{T}x$,解方程组 ($(1+y^{T}x)E-A)\xi=\theta$.

$$(1+y^{\mathsf{T}}x)E - A = \begin{pmatrix} y^{\mathsf{T}}x - x_{1}y_{1} & -x_{1}y_{2} & \cdots & -x_{1}y_{n} \\ -x_{2}y_{1} & y^{\mathsf{T}}x - x_{2}y_{2} & \cdots & -x_{2}y_{n} \\ \vdots & \vdots & & \vdots \\ -x_{n}y_{1} & -x_{n}y_{2} & \cdots & y^{\mathsf{T}}x - x_{n}y_{n} \end{pmatrix}$$

$$\uparrow \emptyset_{x_{n}\neq 0} \begin{pmatrix} y^{\mathsf{T}}x & 0 & \cdots & -(y^{\mathsf{T}}x)x_{1}/x_{n} \\ 0 & y^{\mathsf{T}}x & \cdots & -(y^{\mathsf{T}}x)x_{2}/x_{n} \\ \vdots & \vdots & & \vdots \\ -x_{n}y_{1} & -x_{n}y_{2} & \cdots & y^{\mathsf{T}}x - x_{n}y_{n} \end{pmatrix} \xrightarrow{r_{i} + y^{\mathsf{T}}x} \begin{pmatrix} 1 & \cdots & 0 & -x_{1}/x_{n} \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & -x_{n-1}/x_{n} \\ 0 & \cdots & 0 & 0 \end{pmatrix}$$

可得属于 $\lambda=1+y^{T}x$ 的特征向量为 $k_{n}x$, 其中 k_{n} 为任意非零实数.

补充例4A 求
$$n$$
阶矩阵 A 的全部特征值,其中 $A = \begin{pmatrix} 1 & \cdots & 1 & 0 \\ 1 & \cdots & 0 & 1 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & 1 \end{pmatrix}$. 解 当 $n=2m$ 时,

解 当n=2m时,

$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & -1 & \cdots & \cdots & -1 & 0 \\ -1 & \ddots & \vdots & \vdots & \ddots & -1 \\ \vdots & \cdots & \lambda - 1 & 0 & \cdots & \vdots & \vdots \\ -1 & \cdots & 0 & \lambda - 1 & \cdots & \vdots & \vdots \\ 0 & -1 & \cdots & \cdots & -1 & \lambda - 1 \end{vmatrix} \begin{vmatrix} \lambda - 1 & 0 & \cdots & \cdots & 0 & 0 \\ 0 & \ddots & \vdots & \vdots & \ddots & 0 \\ 0 & \ddots & \vdots & \vdots & \ddots & \lambda - 1 & 0 & \cdots & \vdots \\ \vdots & \cdots & \lambda - 1 & 0 & \cdots & \vdots & \vdots \\ -2 & \lambda - 1 & \cdots & -1 & \lambda - 1 & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda + 1 \end{vmatrix} \begin{vmatrix} \lambda - 1 & 0 & \cdots & \cdots & 0 & 0 \\ 0 & \ddots & \vdots & \vdots & \ddots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ -2 & \lambda - 1 & \cdots & \lambda - 1 & 0 & \cdots & \lambda - 1 & 0 & \cdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ -2 & \lambda - 1 & \cdots & -2 & \lambda - 1 & \cdots & -2 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ -2 & -2 & \cdots & \lambda - 1 & 0 & \cdots & \lambda + 1 \end{vmatrix} \begin{vmatrix} \lambda - 1 & 0 & \cdots & \cdots & 0 & 0 \\ 0 & \ddots & \vdots & \vdots & \ddots & \vdots \\ -2 & -1 & \cdots & \lambda - 1 & 0 & \cdots & \lambda - 1 & 0 & \cdots \\ 0 & \lambda - 1 & \cdots & \lambda - 1 & 0 & \cdots & \vdots \\ -1 & \cdots & 0 & \lambda - 1 & \cdots & \vdots \\ 0 & -1 & \cdots & \cdots & -2 & \lambda - 1 & \cdots \\ 0 & \lambda + 1 & \cdots & 0 & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda + 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda + 1 & \cdots & 0 \end{vmatrix}$$

得特征值: $\lambda=2m-1$, -1(m-1), 1(m)

对于 $\lambda=2m-1$,

$$\begin{pmatrix} 2m-2 & -1 & \cdots & & \cdots & -1 & 0 \\ -1 & \ddots & \vdots & & \vdots & \ddots & -1 \\ \vdots & \cdots & 2m-2 & 0 & \cdots & \vdots & \\ \hline \vdots & \cdots & 0 & 2m-2 & \cdots & \vdots & \\ -1 & \ddots & \vdots & & \vdots & \ddots & -1 \\ 0 & -1 & \cdots & & -1 & 2m-2 \end{pmatrix}^{r_i-r_{2m+1-i}} \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 & -1 \\ 0 & \ddots & \vdots & \vdots & \ddots & 0 \\ \vdots & \cdots & 1 & -1 & \cdots & \vdots \\ \hline \vdots & \cdots & 0 & 2m-2 & \cdots & \vdots \\ -1 & \cdots & \vdots & \vdots & \ddots & -1 \\ 0 & -1 & \cdots & & -1 & 2m-2 \end{pmatrix}^{r_i-r_{2m+1-i}} \begin{pmatrix} 1 & 0 & \cdots & 0 & -1 \\ 0 & \ddots & \vdots & \vdots & \ddots & -1 \\ 0 & -1 & \cdots & & -1 & 2m-2 \end{pmatrix}^{r_{2m+1-i}+r_{m+1}} \begin{pmatrix} 1 & 0 & \cdots & 0 & -1 \\ 0 & \ddots & \vdots & \vdots & \ddots & -1 \\ 0 & \cdots & & & -1 & 2m-2 \end{pmatrix}^{r_{2m+1-i}+r_{m+1}+r_{m+1}+\cdots +r_{m+1}} \begin{pmatrix} 1 & 0 & \cdots & 0 & \cdots & -1 \\ 0 & \ddots & \vdots & \vdots & \ddots & \vdots \\ \vdots & \cdots & 1 & 0 & \cdots & -1 \\ 0 & \cdots & 0 & \ddots & \vdots & \vdots \\ \vdots & \cdots & 1 & 0 & \cdots & -1 \\ 0 & \cdots & 0 & \cdots & 0 & 0 \end{pmatrix}^{r_{2m+1-i}+r_{m+1}+r_{m+1}+\cdots +r_{m+1}$$

得特征向量为 $k_1\xi_1$, ξ_1 =(1,1,...,1)^T \in \mathbb{R}^n , k_1 \in \mathbb{R} .

对于λ= -1(m-1重),

$$\begin{pmatrix} -2 & -1 & \cdots & \cdots & -1 & 0 \\ -1 & \ddots & \vdots & \vdots & \ddots & -1 \\ \vdots & \cdots & -2 & 0 & \cdots & \vdots \\ -1 & \ddots & \vdots & \vdots & \ddots & -1 \\ 0 & -1 & \cdots & \cdots & -1 & -2 \end{pmatrix}^{r_{i}-r_{2m+1-i}} \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 & -1 \\ 0 & \ddots & \vdots & \vdots & \ddots & 0 \\ \vdots & \cdots & 1 & -1 & \cdots & \vdots \\ -1 & \ddots & \vdots & \vdots & \ddots & -1 \\ 0 & -1 & \cdots & \cdots & -1 & -2 \end{pmatrix}^{r_{i}-r_{2m+1-i}} \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 & -1 \\ 0 & \ddots & \vdots & \vdots & \ddots & 0 \\ \vdots & \cdots & 1 & -1 & \cdots & \vdots \\ -1 & \ddots & \vdots & \vdots & \ddots & -1 \\ 0 & -1 & \cdots & \cdots & -1 & -2 \end{pmatrix}^{r_{2m+1-i}+\sum_{j=1,\cdots,m}r_{j}} \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 & -1 \\ 0 & \ddots & \vdots & \vdots & \ddots & 0 \\ \vdots & \cdots & 1 & -1 & \cdots & \vdots \\ 0 & \cdots & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & 0 & \cdots & 0 \\ 0 & \cdots & 0 & \vdots & \cdots & \vdots \end{pmatrix}^{r_{2m+1-i}+\sum_{j=1,\cdots,m}r_{j}} \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 & -1 \\ 0 & \ddots & \vdots & \vdots & \ddots & 0 \\ \vdots & \cdots & 1 & -1 & \cdots & \vdots \\ 0 & \cdots & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & 0 & \cdots & 0 \\ 0 & \cdots & 0 & \vdots & \cdots & \vdots \end{pmatrix}^{r_{2m+1-i}+\sum_{j=1,\cdots,m}r_{j}} \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 & -1 \\ 0 & \ddots & \vdots & \vdots & \ddots & 0 \\ \vdots & \cdots & 1 & -1 & \cdots & \vdots \\ 0 & \cdots & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \ddots & 0 \\ 0 & \cdots & 0 & \vdots & \cdots & \vdots \end{pmatrix}^{r_{2m+1-i}+\sum_{j=1,\cdots,m}r_{j}} \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 & -1 \\ 0 & \ddots & \vdots & \vdots & \ddots & 0 \\ \vdots & \cdots & 1 & -1 & \cdots & \vdots \\ 0 & \cdots & 0 & \vdots & \cdots & 1 \\ 0 & \cdots & 0 & \vdots & \cdots & \vdots \end{pmatrix}^{r_{2m+1-i}+\sum_{j=1,\cdots,m}r_{j}} \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 & -1 \\ 0 & \cdots & 1 & \cdots & \vdots & \vdots \\ \vdots & \cdots & 0 & -2 & \cdots & \vdots \\ 0 & \cdots & 0 & 1 & \cdots & 1 \\ \vdots & \cdots & 0 & \cdots & 0 \\ 0 & \cdots & 0 & \vdots & \cdots & \vdots \end{pmatrix}^{r_{2m+1-i}+\sum_{j=1,\cdots,m}r_{j}} \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 & -1 \\ 0 & \cdots & 0 & 1 & \cdots & 1 \\ \vdots & \cdots & 0 & \cdots & 0 & \vdots \\ 0 & \cdots & 0 & \vdots & \cdots & \vdots \\$$

得特征向量为 $k_2\xi_2+k_3\xi_3+...+k_m\xi_m$, $\xi_{i+1}=\begin{pmatrix}e_{m-i}\\0\\-1\\e_i\end{pmatrix}$, $e_j\in\mathbb{R}^{m-1}, k_{i+1}\in\mathbb{R}, i=1,2,\cdots,m-1$. 对于 $\lambda=\mathbf{1}(m\mathbf{1})$,

$$\begin{pmatrix}
0 & -1 & \cdots & \cdots & -1 & 0 \\
-1 & \ddots & \vdots & \vdots & \ddots & -1 \\
\vdots & \cdots & 0 & 0 & \cdots & \vdots \\
-1 & \ddots & \vdots & \vdots & \ddots & -1 \\
0 & -1 & \cdots & \cdots & -1 & 0
\end{pmatrix}
\xrightarrow{r_{2m+1-i}-r_i}
\begin{pmatrix}
1 & 1 & \cdots & \cdots & 1 & 1 \\
-1 & \ddots & \vdots & \vdots & \ddots & -1 \\
\vdots & \cdots & 0 & 0 & \cdots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0
\end{pmatrix}
\xrightarrow{r_i+r_1}
\begin{pmatrix}
1 & 0 & \cdots & \cdots & 0 & 1 \\
0 & \ddots & \vdots & \vdots & \ddots & 0 \\
\vdots & \cdots & 1 & 1 & \cdots & \vdots \\
\vdots & \cdots & 1 & 1 & \cdots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 0
\end{pmatrix}$$

得特征向量为 $k_{m+1}\xi_{m+1}+...+k_{2m}\xi_{2m}$, $\xi_{m+i}=\begin{pmatrix} -e_{m+1-i} \\ e_i \end{pmatrix}$, $e_j\in\mathbb{R}^m$, $k_{m+i}\in\mathbb{R}$, $i=1,2,\cdots,m$.

当n=2m+1时,

 $\lambda=2m$, -1(m重), 1(m重)

对于 $\lambda=2m$,

$$\begin{pmatrix} 2m-1 & -1 & \cdots & -1 & \cdots & -1 & 0 \\ -1 & 2m-1 & \cdots & -1 & \cdots & 0 & -1 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \hline -1 & -1 & \cdots & 2m & \cdots & -1 & -1 \\ 0 & -1 & \cdots & -1 & \cdots & 2m-1 & -1 \\ 0 & -1 & \cdots & -1 & \cdots & -1 & 2m-1 \end{pmatrix} \xrightarrow{\begin{pmatrix} r_{i}-r_{2m+2-i}+c_{2m-1} \\ r_{m+i}+r_{i}+\cdots+r_{m}+c_{m-1} \\ r_{m+i}+r_{m+2}+\cdots+r_{2m+1} \\ r_{m+1}+r_{m+2}+\cdots+r_{2m+1} \\ r_{m+1}+r_{m+2}+\cdots+r_{2m+1} \end{pmatrix}} \begin{pmatrix} 1 & 0 & \cdots & 0 & \cdots & 0 & -1 \\ 0 & 1 & \cdots & 0 & \cdots & -1 & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & -1 & 2m-1 & \cdots & -2 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & -1 & -2 & \cdots & 2m-1 \end{pmatrix}$$

 $r_i + r_{2m+2-i}$

得特征向量为 $k_1\xi_1$, ξ_1 =(1,1,...,1)^T \in \mathbb{R}^n , k_1 \in \mathbb{R} .

对于λ= -1(m重),

得特征向量为 $k_2\xi_2+k_3\xi_3+...+k_{m+1}\xi_{m+1}$, $\xi_{i+1}=\begin{pmatrix} e_{m+1-i}\\ -2\\ e_i \end{pmatrix}$, $e_j\in\mathbb{R}^m, k_{i+1}\in\mathbb{R}, i=1,2,\cdots,m$.

对于
$$\lambda$$
= 1(m 重),

得特征向量为
$$k_{m+2}\xi_{m+2}+...+k_{2m+1}\xi_{2m+1}$$
, $\xi_{m+1+i}=\begin{bmatrix} 0 \\ e_i \end{bmatrix}$, $e_j \in \mathbb{R}^m$, $k_{m+1+i} \in \mathbb{R}$, $i=1,2,\cdots,m$.

补充例4B 求矩阵A的全部特征值与特征向量,其中 $A = \begin{bmatrix} 1 & 1 & -1 \\ 2 & a & 2 \\ 3 & -1 & 5 \end{bmatrix}$.

解

$$\begin{vmatrix} \lambda E - A \end{vmatrix} = \begin{vmatrix} \lambda - 1 & -1 & 1 \\ -2 & \lambda - a & -2 \\ -3 & 1 & \lambda - 5 \end{vmatrix} = \begin{vmatrix} \lambda - 2 & -1 & 1 \\ 0 & \lambda - a & -2 \\ 2 - \lambda & 1 & \lambda - 5 \end{vmatrix} = (\lambda - 2)(\lambda - 4)(\lambda - a).$$

(1) a=2时,特征值: $\lambda=2$ (二重), $\lambda=4$

$$\lambda = 2$$
时, $2E - A = \begin{pmatrix} 1 & -1 & 1 \ -2 & 0 & -2 \ -3 & 1 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{pmatrix}$,特征向量 $k_1 \begin{pmatrix} -1 \ 0 \ 1 \end{pmatrix}$. $\lambda = 4$ 时, $4E - A = \begin{pmatrix} 3 & -1 & 1 \ -2 & 2 & -2 \ -3 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \ 0 & 1 & -1 \ 0 & 0 & 0 \end{pmatrix}$,特征向量 $k_2 \begin{pmatrix} 0 \ 1 \ 1 \end{pmatrix}$.

(2) a=4时,特征值: $\lambda=2$, $\lambda=4$ (二重)

$$\lambda = 2$$
时, $2E - A = \begin{pmatrix} 1 & -1 & 1 \ -2 & -2 & -2 \ -3 & 1 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{pmatrix}$,特征向量 $k_1 \begin{pmatrix} -1 \ 0 \ 1 \end{pmatrix}$. $\lambda = 4$ 时, $4E - A = \begin{pmatrix} 3 & -1 & 1 \ -2 & 0 & -2 \ -3 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \ 0 & 1 & 2 \ 0 & 0 & 0 \end{pmatrix}$,特征向量 $k_2 \begin{pmatrix} -1 \ -2 \ 1 \end{pmatrix}$.

(3) $a\neq 2$, $\neq 4$ 时,特征值: $\lambda=2$, $\lambda=4$, $\lambda=a$

$$\lambda = 2$$
时, $2E - A = \begin{pmatrix} 1 & -1 & 1 \\ -2 & 2 - a & -2 \\ -3 & 1 & -3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,特征向量 $k_1 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$.

$$\lambda = 4$$
时, $4E - A = \begin{pmatrix} 3 & -1 & 1 \\ -2 & 4 - a & -2 \\ -3 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & (2-a)/4 & 0 \\ 0 & (3a-10)/4 & 1 \\ 0 & 0 & 0 \end{pmatrix}$,特征向量 $k_2 \begin{pmatrix} a-2 \\ 4 \\ 10-3a \end{pmatrix}$.

$$\lambda = a$$
时, $aE - A = \begin{pmatrix} a - 1 & -1 & 1 \\ -2 & 0 & -2 \\ -3 & 1 & a - 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & a - 2 \\ 0 & 0 & 0 \end{pmatrix}$, 特征向量 $k_3 \begin{pmatrix} -1 \\ 2 - a \\ 1 \end{pmatrix}$.

特征值特征向量的重要性质

例4.2.5 设矩阵
$$A = \begin{pmatrix} 1 & 1 & 1 \\ -2 & 1 & 2 \\ 2 & 1 & 0 \end{pmatrix}$$
.

求A的全部特征值和B=5A的全部特征值.

解由
$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & -1 & -1 \\ 2 & \lambda - 1 & -2 \\ -2 & -1 & \lambda \end{vmatrix} = \begin{vmatrix} \lambda - 2 & -1 & -1 \\ 0 & \lambda - 1 & -2 \\ \lambda - 2 & -1 & \lambda \end{vmatrix} = (\lambda^2 - 1)(\lambda - 2)$$

得A的特征值为: 1,-1,2.

$$B = 5A = \begin{pmatrix} 5 & 5 & 5 \\ -10 & 5 & 10 \\ 10 & 5 & 0 \end{pmatrix}, \quad \dot{\blacksquare}$$
$$|\lambda E - B| = \begin{vmatrix} \lambda - 5 & -5 & -5 \\ 10 & \lambda - 5 & -10 \\ -10 & -5 & \lambda \end{vmatrix} = \begin{vmatrix} \lambda - 10 & -5 & -5 \\ 0 & \lambda - 5 & -10 \\ \lambda - 10 & -5 & \lambda \end{vmatrix} = (\lambda^2 - 25)(\lambda - 10)$$

得B的特征值为: 5,-5,10.

由上例看到B=5A,而B的特征值也正好是A的特征值的5倍. 其实我们有下列定理说明矩阵特征值的关系正好是矩阵的关系.

定理4.2.2 若 f(x)为x的多项式,矩阵A有特征值 λ ,则f(A)有特征值 $f(\lambda)$.

说明
$$f(x)=a_{m}x^{m}+a_{m-1}x^{m-1}+\ldots+a_{1}x+a_{0}$$
, $A\xi=\lambda\xi$
 $f(A)\xi=(a_{m}A^{m}+a_{m-1}A^{m-1}+\ldots+a_{1}A+a_{0}E)\xi$
 $=a_{m}A^{m}\xi+a_{m-1}A^{m-1}\xi+\ldots+a_{1}A\xi+a_{0}\xi$
 $=a_{m}\lambda^{m}\xi+a_{m-1}\lambda^{m-1}\xi+\ldots+a_{1}\lambda\xi+a_{0}\xi=(a_{m}\lambda^{m}+a_{m-1}\lambda^{m-1}+\ldots+a_{1}\lambda+a_{0})\xi=f(\lambda)\xi$
故 $f(\lambda)$ 为 $f(A)$ 的特征值, ξ 也是 $f(A)$ 的属于 $f(\lambda)$ 的特征向量.

- 注1 若定理4.2.2中矩阵A的所有特征值为 $\lambda_1, \lambda_2, ..., \lambda_n$ (包括相同的特征值),则f(A)的所有特征值为 $f(\lambda_1), f(\lambda_2), ..., f(\lambda_n)$. 结论的证明见后面若尔当标准形和奇异值分解一节.
- 注3 不可逆方阵A必有0特征值.

说明 注2: $A\xi_i = \lambda_i \xi_i \ (\xi_i \neq \theta) \Rightarrow \xi_i = \lambda_i A^{-1} \xi_i \Rightarrow \lambda_i \neq 0 \ \text{且} \ A^{-1} \xi_i = \lambda_i^{-1} \xi_i .$ 注3: $|A| = 0 \Rightarrow Ax = \theta$ 有非零解 $\xi \neq \theta$,即 $A\xi = 0\xi$.

$Ax = \theta$ 有非零解⇔ A有0特征值

例4.2.6 已知矩阵
$$A = \begin{pmatrix} 1 & 1 & 1 \\ -2 & 1 & 2 \\ 2 & 1 & 0 \end{pmatrix}$$
.

的特征值为 1,-1,2, 求 $B=A^2+2A+E$ 和 $C=A^2$ 的全部特征值.

解 显然 1,-1,2 是A的全部特征值,由定理4.2.2知, $B=f(A)=A^2+2A+E$ 有特征值 $f(\lambda)=\lambda^2+2\lambda+1$,因为 f(1)=4,f(-1)=0,f(2)=9,故 4,0,9 为B的特征值,且是B的全部特征值.

同样, 1^2 , $(-1)^2$, 2^2 ,即1(二重)和4也是C的全部特征值.

矩阵关系与特征值关系的相关内容还有:

定理4.2.3 相似矩阵具有相同的特征多项式,从而它们具有相同的特征值.

说明 $|\lambda E-B|=|\lambda P^{-1}P-P^{-1}AP|=|P^{-1}(\lambda E-A)P|=|P^{-1}||\lambda E-A||P|=|\lambda E-A|$. 特征多项式相同,特征值也相同

注意:特征多项式相同 $\neq>$ 矩阵相似,见 $E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

特征多项式均为 $(\lambda-1)^2$,但不相似 $(P^{-1}EP=E\neq B)$.

定义4.2.3(迹) 定义 $tr(A) = \sum_{i=1}^{n} a_{ii}$ 为矩阵 $A = (a_{ij})_{n \times n}$ 的迹.

定理4.2.4 若n阶矩阵A的特征值为 $\lambda_1, \lambda_2, ..., \lambda_n$,则有 $\operatorname{tr}(A) = \sum_{i=1}^n \lambda_i$, $|A| = \prod_{i=1}^n \lambda_i$.

说明 $|\lambda E - A| = (\lambda - \lambda_1)(\lambda - \lambda_2)...(\lambda - \lambda_n) = \lambda^n - (\lambda_1 + \lambda_2 + ... + \lambda_n) \lambda^{n-1} + ... + (-1)^n \Pi \lambda_i$ (*) (*) 两边取 $\lambda = 0 => |-A| = (-1)^n \Pi \lambda_i$,即 $|A| = \Pi \lambda_i$ 比较(*) 两边 λ 的n-1次项系数,由于

$$|\lambda E - A| = \begin{vmatrix} \lambda - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix}$$

$$= (\lambda - a_{11}) \begin{vmatrix} \lambda - a_{22} & -a_{23} & \cdots & -a_{2n} \\ -a_{32} & \lambda - a_{33} & \cdots & -a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n2} & -a_{n3} & \cdots & \lambda - a_{nn} \end{vmatrix} - (-a_{12}) \begin{vmatrix} -a_{21} & -a_{23} & \cdots & -a_{2n} \\ -a_{31} & \lambda - a_{33} & \cdots & -a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n3} & \cdots & \lambda - a_{nn} \end{vmatrix} + (-a_{13}) \begin{vmatrix} -a_{21} & \lambda - a_{22} & \cdots & -a_{2n} \\ -a_{31} & \lambda - a_{33} & \cdots & -a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & -a_{n2} & \cdots & \lambda - a_{nn} \end{vmatrix} + \cdots$$

$$= (\lambda - a_{11}) \begin{vmatrix} \lambda - a_{22} & -a_{23} & \cdots & -a_{2n} \\ -a_{32} & \lambda - a_{33} & \cdots & -a_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n2} & -a_{n3} & \cdots & \lambda - a_{nn} \end{vmatrix} + P_{n-2}(\lambda) = (\lambda - a_{11})(\lambda - a_{22}) \begin{vmatrix} \lambda - a_{33} & -a_{34} & \cdots & -a_{3n} \\ -a_{43} & \lambda - a_{44} & \cdots & -a_{4n} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n3} & -a_{n4} & \cdots & \lambda - a_{nn} \end{vmatrix} + (\lambda - a_{11})P_{n-3}(\lambda) + P_{n-2}(\lambda).$$

故有 $|\lambda E - A| = (\lambda - a_{11})(\lambda - a_{22})...(\lambda - a_{nn}) + P'_{-2}(\lambda) = \lambda^n - (a_{11} + a_{22} + ... + a_{nn}) \lambda^{n-1} + ...$,于是 $\lambda_1 + \lambda_2 + ... + \lambda_n = a_{11} + a_{22} + ... + a_{nn}$,即 $\operatorname{tr}(A) = \Sigma \lambda_i$.

推论4.2.5 相似矩阵有相同的迹和相同的行列式.

证明 由定理4.2.3知相似矩阵有相同的特征值,设为 $\lambda_1, \lambda_2, ..., \lambda_n$,再由 定理4.2.4知它们的迹和行列式分别为 $\Sigma \lambda_i$ 和 $\Pi \lambda_i$.

例4.2.7 设
$$\begin{pmatrix} 3 & 2 & 2 \\ 2 & a & -1 \\ b & 3 & 1 \end{pmatrix}$$
与 $\begin{pmatrix} -2 & -8 & 6 \\ 10 & 12 & -3 \\ 5 & 10 & -5 \end{pmatrix}$ 相似,求 a , b 的值.

解 由于相似矩阵有相同的迹和行列式,故由3+a+1=-2+12+(-5) 可得a=1. 将 a=1 代入矩阵,再由行列式相等,得

$$\begin{vmatrix} 3 & 2 & 2 \\ 2 & a & -1 \\ b & 3 & 1 \end{vmatrix} = \begin{vmatrix} -2 & -8 & 6 \\ 10 & 12 & -3 \\ 5 & 10 & -5 \end{vmatrix} = 20,$$

即有 4(5-b)=20,解得 b=0. 故有 a=1, b=0.

例4.2.8 设 A^* 为3阶矩阵A的伴随矩阵, A^* 的特征值为-1,2,-2,求A+E的特征值.

解 设A*的特征值为 λ_1 = -1, λ_2 =2, λ_3 = -2,由 $A^*A=AA^*=|A|E$ 可知 $|A^*||A|=||A|E|=|A|^3$,故有 $|A^*|=|A|^2=\lambda_1\lambda_2\lambda_3=4$,从而 $|A|=\pm 2$. 设 ξ_1 , ξ_2 , ξ_3 分别为 A^* 的属于 λ_1 , λ_2 , λ_3 的特征向量,则有 $A^*\xi_i=\lambda_i\xi_i$, i=1,2,3,左乘A得 $|A|\xi_i=\lambda_iA\xi_i$,即 $A\xi_i=(|A|/\lambda_i)\xi_i$,故 $(A+E)\xi_i=(|A|/\lambda_i)\xi_i+\xi_i=(1+|A|/\lambda_i)\xi_i$,i=1,2,3,

从而 A+E 的特征值为 -1, 2, 0 或 3, 0, 2.

例4.2.9 设A为3阶矩阵, ξ_1 , ξ_2 , ξ_3 为3个线性无关的向量,且有关系: $A\xi_1=-3\xi_1+2\xi_2-\xi_3$, $A\xi_2=6\xi_1+\xi_2+2\xi_3$, $A\xi_3=\xi_1+\xi_2+3\xi_3$,求矩阵A的特征值与特征向量.

解设
$$P=(\xi_1, \xi_2, \xi_3)$$
,则有
$$AP=(-3\xi_1+2\xi_2-\xi_3, 6\xi_1+\xi_2+2\xi_3, \xi_1+\xi_2+3\xi_3)=(\xi_1, \xi_2, \xi_3)\begin{pmatrix} -3 & 6 & 1 \\ 2 & 1 & 1 \\ -1 & 2 & 3 \end{pmatrix}=PB.$$

又因为 ξ_1, ξ_2, ξ_3 线性无关,故P可逆,于是有 $P^1AP=B$,即 $A\sim B$.

现在求**B**特征值特征向量.由
$$\begin{vmatrix} \lambda + 3 & -6 & -1 \\ |\lambda E - B| = \begin{vmatrix} \lambda + 3 & -6 & -1 \\ -2 & \lambda - 1 & -1 \\ 1 & -2 & \lambda - 3 \end{vmatrix} = \begin{vmatrix} \lambda + 3 & -6 & -1 \\ -\lambda - 5 & \lambda + 5 & 0 \\ 1 & -2 & \lambda - 3 \end{vmatrix} = (\lambda + 5)(\lambda - 2)(\lambda - 4) = 0$$

解得特征值为: $\lambda = -5,2,4$.

対
$$\lambda$$
=-5, 由 $\begin{pmatrix} -2 & -6 & -1 \\ -2 & -6 & -1 \\ 1 & -2 & -8 \end{pmatrix}$ \rightarrow $\begin{pmatrix} 1 & 0 & -4.6 \\ 0 & 1 & 1.7 \\ 0 & 0 & 0 \end{pmatrix}$ 得特征向量 α_1 = $\begin{pmatrix} 46 \\ -17 \\ 10 \end{pmatrix}$.
対 λ =2, 由 $\begin{pmatrix} 5 & -6 & -1 \\ -2 & 1 & -1 \\ 1 & -2 & -1 \end{pmatrix}$ \rightarrow $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ 得特征向量 α_2 = $\begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$.
対 λ =4, 由 $\begin{pmatrix} 7 & -6 & -1 \\ -2 & 3 & -1 \\ 1 & -2 & 1 \end{pmatrix}$ \rightarrow $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ 得特征向量 α_3 = $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

由 $B\alpha=\lambda\alpha$ 可得 $AP\alpha=PB\alpha=\lambda P\alpha$, 故A有特征值 $\lambda=-5,2,4$,对应特征向量 $k_1P\alpha_1,k_2P\alpha_2,k_3P\alpha_3$.

定理4.2.6 设4是一个块对角矩阵

$$A = \begin{pmatrix} A_1 & & & \\ & A_2 & & \\ & & \ddots & \\ & & & A_m \end{pmatrix}$$

则A的特征多项式是 A_1, A_2, \ldots, A_m 的特征多项式的乘积,于是 A_1, A_2, \ldots, A_m 的所有特征值就是A的所有特征值.

证明 将单位矩阵E按分块形式写成

$$E = \begin{pmatrix} E_1 & & & & \\ & E_2 & & & \\ & & \ddots & & \\ & & & E_m \end{pmatrix}$$

则

$$\lambda E - A = \begin{pmatrix} \lambda E_1 - A_1 & & & \\ & \lambda E_2 - A_2 & & \\ & & \ddots & \\ & & \lambda E_m - A_m \end{pmatrix}$$

因此

$$|\lambda E - A| = |\lambda E_1 - A_1| |\lambda E_2 - A_2| \dots |\lambda E_m - A_m|.$$

例4.2.10 设 $A \in \mathbb{R}^{m \times n}$, $B \in \mathbb{R}^{n \times m}$, 证明 $\lambda^n |\lambda E_m - AB| = \lambda^m |\lambda E_n - BA|$.

证明 容易验证
$$\begin{pmatrix} E_m & -A \\ O & E_n \end{pmatrix} \begin{pmatrix} AB & O \\ B & O \end{pmatrix} = \begin{pmatrix} O & O \\ B & BA \end{pmatrix} \begin{pmatrix} E_m & -A \\ O & E_n \end{pmatrix}.$$

因
$$\begin{pmatrix} E_m & -A \\ O & E_n \end{pmatrix}$$
可逆,由上式可知 $\begin{pmatrix} AB & O \\ B & O \end{pmatrix}$ 和 $\begin{pmatrix} O & O \\ B & BA \end{pmatrix}$ 相似,从而有

$$\begin{vmatrix} \lambda E_{m+n} - \begin{pmatrix} AB & O \\ B & O \end{pmatrix} = \begin{vmatrix} \lambda E_{m+n} - \begin{pmatrix} O & O \\ B & BA \end{pmatrix},$$

$$\begin{vmatrix} \lambda E_m - AB & O \\ -B & \lambda E_n \end{vmatrix} = \begin{vmatrix} \lambda E_m & O \\ -B & \lambda E_n - BA \end{vmatrix},$$

故
$$\lambda^n |\lambda E_m - AB| = \lambda^m |\lambda E_n - BA|$$
.

由例4.2.10 可知,AB与BA有相同的非零特征值,且tr(AB)=tr(BA).

因为: $\lambda^n |\lambda E_m - AB| = \lambda^m |\lambda E_n - BA| = \lambda^k g(\lambda)$, 则 $|\lambda E_m - AB| = \lambda^{k-n} g(\lambda)$, $|\lambda E_n - BA| = \lambda^{k-m} g(\lambda)$.

补充例4C 设n阶可逆矩阵A的每一行的和为5,证明 A^{-1} 每一行的和为0.2.

证明 设 $\alpha=(1,1,...,1)^{\mathrm{T}}\in \mathbf{R}^{n}$,则有 $A\alpha=5\alpha$,两边左乘 A^{-1} 得 $\alpha=5A^{-1}\alpha$, 或 $A^{-1}\alpha=0.2\alpha$, 即 A^{-1} 每一行的和为 0.2.

补充例4D 设A为可逆矩阵,证明若 λ 是矩阵 $\begin{pmatrix} O & A \\ A^{-1} & O \end{pmatrix}$ 的特征值,则有 $\lambda^2=1$. 证明 设A为n阶矩阵,再设 $B=\begin{pmatrix} O & A \\ A^{-1} & O \end{pmatrix}$ 的属于 λ 的特征向量为 $\xi=\begin{pmatrix} \alpha \\ \beta \end{pmatrix} \neq \theta, \alpha, \beta \in \mathbb{R}^n$. 由 $B\xi=\lambda\xi$ 得: $A\beta=\lambda\alpha$, $A^{-1}\alpha=\lambda\beta$,

于是有 $\beta = A^{-1}A\beta = \lambda A^{-1}\alpha = \lambda^2\beta$,同理可得 $\alpha = \lambda^2\alpha$, 因为 $\xi \neq \theta$,故 α 和 β 不全为 θ ,于是有 $\lambda^2=1$.

- 补充例4E 若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,求行列式 $|B^{-1}-E|$.
- 解 因为 $A\sim B$,故B的特征值等于A的特征值, B^{-1} 的特征值则为2,3,4,5, B^{-1} -E的特征值为1,2,3,4,于是 $|B^{-1}-E|=1\times 2\times 3\times 4=24$.

- 补充例4F 设3阶矩阵A满足 |3E+A|=0, $AA^{T}=4E$, |A|<0,求A的伴随矩阵 A^* 的全部特征值.
- 解 因为|A|<0,故A可逆,有 A^* = $|A|A^{-1}$,于是 A^* 的特征值为 A^{-1} 特征值乘以|A|. 由 AA^{T} =4E,两边取行列式得 $|A|^{2}$ = $|A| \times |A^{T}|$ = $|AA^{T}|$ =|4E|= $4^{3}|E|$ =64,再由 |A|<0得|A|=-8. 由|3E+A|=0知|-3E-A|=|-3E-A| |=0,故A与 A^{T} 有特征值-3,而 A^{-1} 有特征值-1/3. 由 AA^{T} =4E又可得 $A(0.25A^{T})$ =E,故 A^{-1} = $0.25A^{T}$ 有特征值0.25*(-3)=-3/4.
 - 由|A|=-8,故 $|A^{-1}|$ = $|A|^{-1}$ =-1/8= $\lambda_1\lambda_2\lambda_3$ =(-1/3)(-3/4) λ_3 ,于是 λ_3 =-1/2.最后有 A^* 的特征值为 $|A|\lambda$,即:8/3,6,4.

补充例4F的推导图示:

$$\lambda(A^*) = \lambda(|A|A^{-1}) = |A|\lambda(A^{-1})$$

