

UE Interfaçage Numérique

IntNum / Semestre 6
Institut d'Optique

- Génération de photons
- Conception optique / « Fabrication d'images »
- Acquisition de données
- Traitement des informations

Dong, Jing-Tao & lu, rs & Shi, Yan-Qiong & Xia, Rui-Xue & Li, Qi & Xu, Yan. (2011). Optical design of color light-emitting diode ring light for machine vision inspection. Optical Engineering - OPT ENG. 50. 10.1117/1.3567053.

Comment contrôler / piloter un système pour :

- Le rendre autonome?
- Acquérir des données ?

Comment acquérir une image numérique exploitable?

Comment préparer une image numérique pour un traitement?

Dong, Jing-Tao & lu, rs & Shi, Yan-Qiong & Xia, Rui-Xue & Li, Qi & Xu, Yan. (2011). Optical design of color lightemitting diode ring light for machine vision inspection. Optical Engineering - OPT ENG. 50. 10.1117/1.3567053.

IntNum / Semestre 6
Institut d'Optique

Spécificités d'un système embarqué

- regroupement d'un système matériel et d'un logiciel
- architecture spécifique / exécution d'un ensemble de tâches particulières
- réactif, autonome et en contact permanent avec son environnement

Programmation d'un système embarqué

Programmation d'un système embarqué

Programmation d'un système embarqué

Systèmes embarqués / TP

Arduino / Nucleo

Robotique

Communication

Rayonnement de LEDs

Arduino / Nucleo

Protocole Série

LEDs Puissance

Caméras et images

IntNum / Semestre 6
Institut d'Optique

Structure d'une caméra - stockage de charges

e2v sensor EV76C560ACT

IDS UI-1240SE-C-HQ

Quantification

Echantillonnage

Not so bad

e2v sensor EV76C560ACT

IDS UI-1240SE-C-HQ

Echantillonnage

8x Sampling

4x Sampling

16x Sampling

e2v sensor EV76C560ACT

IDS UI-1240SE-C-HQ

Images

Images

Nb of pixels = $h \times v$

Each pixel is converted into **n bits**.

Images

Traitement d'images

Image from the camera

- Noise
- Bad contrast
- Inhomogeneous Lighting
- ...

Desired image with objects with **well-defined contours**

- Homogeneous zones
- Transition zones

Images

Traitement d'images

UE Interfaçage Numérique

Déroulement et sujets

IntNum / Semestre 6
Institut d'Optique

Volume horaire de 46,5h pour **5 ECTS** (European Credit Transfer and Accumulation System)

16 % du S6

Comment **contrôler / piloter un système** pour :

- Le rendre autonome?
- Acquérir des données ?

Comment **acquérir une image** numérique exploitable ?

Comment **préparer une image** numérique pour un traitement ?

8 séances de TP

4h30 / en binôme

4 séances de TD

1h30

2 séances de TD Machine

1h30

Découverte de Matlab

Responsables

Fabienne BERNARD
Julien VILLEMEJANE

A choisir !!

Interfaçage Numérique / S6-FISE

Arduino / Nucleo

Robotique

Communication

Rayonnement de LEDs

Arduino / Nucleo

Protocole Série

LEDs Puissance

Camera et Images

Vision Industrielle

Traitement Images

Python

2 séances

2 séances

IHM sous Python

PyQt6

Images et OpenCV

OpenCV

A choisir !!

choisi

Rayonnement de LEDs

Arduino / Nucleo

Protocole Série

LEDs Puissance

Mini-projet: Pilotage servomoteur avec Arduino (Nucléo) / Récupération donnée photodiode / Pilotage LED de puissance / Acquisition de données sous Python et affichage

Robot

Arduino / Nucleo

Robotique

Mini-projet : Pilotage moteur avec Arduino (Nucléo) / Suivi de ligne / Détection d'obstacle Pilotage via une télécommande

Camera et Images

Vision Industrielle

Traitement Images

Python

Séance 1 : Prise en main interface / Paramètres d'une caméra CMOS / Impact de l'éclairage

Séance 2 : Prise en main d'OpenCV / Histogramme d'une image / Moyennage

choisin

séances

IHM sous Python

Python

PyQt6

Mini-projet: Développement d'une mini-interface sous PyQt6 (affichage d'un graphique, simulation...)

Images et OpenCV

Python

OpenCV

Séance 1 : Pré-traitement d'images (moyennage, seuillage, erosion...) – traitements bas niveau

Séance 2 : Détection de formes, couleurs... / Filtrage par TF2D / Bruits

(R)obot

(D)iag Ray

(C)améra

(I)hm (I)mage 4 x 2 séances de TP

4 bancs pour chaque bloc

	B1à4	B5à8	B9à12	B13à16
Séance 1	R	D	С	1
Séance 2	R	D	C	I
Séance 3	R	D	1	C
Séance 4	R	D	1	C
Séance 5	C	1	R	D
Séance 6	C	1	R	D
Séance 7	I	С	R	D
Séance 8	I	C	R	D

Rayonnement de LEDs

Arduino / Nucleo

Protocole Série

LEDs Puissance

Mini-projet: Pilotage servomoteur avec Arduino (Nucléo) / Récupération donnée photodiode / Pilotage LED de puissance / Acquisition de données sous Python et affichage

Radiation Characteristics 7). 8)

 $I_{\text{erel}} = f(\phi)$

Robot

Arduino / Nucleo

Robotique

Mini-projet : Pilotage moteur avec Arduino (Nucléo) / Suivi de ligne / Détection d'obstacle

Camera et Images

Vision Industrielle

Traitement Images

Python

TP 1 : Prise en main interface / Paramètres d'une caméra CMOS / Impact de l'éclairage

TP 2 : OpenCV / Histogramme d'une image / Détection de formes, couleurs... / Filtrage par TF2D

IHM sous Python

Python

PyQt6

Mini-projet : Développement d'une mini-interface sous PyQt6 (affichage d'un graphique, simulation...)

Images et OpenCV

Python

OpenCV

Séance 1 : Pré-traitement d'images (moyennage, seuillage, erosion...)

Séance 2 : Détection de formes, couleurs...

UE Interfaçage Numérique

Modalités

IntNum / Semestre 6
Institut d'Optique

Volume horaire de 46,5h pour **5 ECTS** (European Credit Transfer and Accumulation System)

16 % du S6

Module d'enseignement s'inscrivant dans le

déploiement de l'approche par compétences

https://tinyurl.com/APC-IOGS

8 séances de TP

4h30 / en binôme

4 séances de TD

1h30

2 séances de TD Machine

1h30

Découverte de Matlab

Responsables

Fabienne BERNARD
Julien VILLEMEJANE

Valider une solution technologique intégrant des fonctionnalités optiques/photoniques

établir les grandes lignes d'un protocole de test

réaliser un **test sommaire** d'une partie des fonctionnalités

mesurer des grandeurs caractéristiques des performances

rédiger une **analyse partielle et préliminaire** des résultats des tests

rédiger une **brève auto-analyse** de la conformité aux besoins

Travailler en équipe dans le cadre de projets de recherche, de **développement**, de production, de stratégie industrielle ou d'innovation

établir une liste des savoir-faire personnels (déjà acquis ou à acquérir) utiles à un projet collectif

paramétrer la structure **d'organisation du travail** d'équipe

prendre en main les **outils** pour la mettre en oeuvre rapidement

participer à la **rédaction collective** de compte-rendus ou de rapports internes

solliciter des **personnes ressources** de façon pertinente

Travail en séance

- Suivre les sujets de TP/mini-projets
- Utiliser une plateforme de travail collaboratif

(Notion, Teams...)

- Compte-rendu / Résultats
- Suivi du travail
- Documenter les tests réalisés pour valider les fonctionnalités mise en œuvre

Livrables

- Test individuel (environ 2h) sur les systèmes embarqués
- **DISC**

DISC

Document Individuel de Suivi de Compétences

► Diaporama commenté

Valider une solution technologique

Travailler en équipe

Validation UE

- Être présent·es et actif·ves
 à toutes les séances de TD et de TP
- Fournir l'ensemble deslivrables

Approche par Compétences

DISC

Document Individuel de Suivi des Compétences

- Revendiquer un niveau de compétences
- Accumuler des preuves (liens vers les preuves)

Format: Diaporama commenté

+ lieu de stockage de l'ensemble des preuves

Séance « APC » et DISC (TD)

- Groupe 1 19 février 2025
- Groupe 2 30 janvier 2025
- Groupe 3 13 février 2025
- Groupe 4 19 février 2025
- Groupe 5 12 février 2025

Séance de présentation (TD)

Présentation d'une ébauche de votre DISC

Version finale sur eCampus / Individuel!

26 mai 2025