02MIAR: Matemáticas para la IA

Álgebra lineal - Soluciones

- 1. Obténganse las normas 1, 2 e ∞ de los siguientes vectores:
 - a) $v_1 = (1, 0, 2)$.

De la definición de estas normas:

- $||v_1||_1 = |1| + |0| + |2| = 3$
- $||v_1||_2 = \sqrt{1^2 + 0^2 + 2^2} = \sqrt{5}$
- $||v_1||_{\infty} = \max\{|1|, |0|, |2|\} = 2$
- b) $v_2 = (-6, 5)$.

Aplicando las expresiones de arriba: $||v_2||_1 = 11$, $||v_2||_2 = \sqrt{61}$, $||v_2||_\infty = 6$.

c) $v_3 = (\sqrt{2}, -1, 0, 1)$.

Aplicando las expresiones de arriba: $||v_3||_1 = 2 + \sqrt{2}$, $||v_3||_2 = 2$, $||v_3||_{\infty} = \sqrt{2}$.

- 2. Calcúlese $u \cdot v$ en cada caso y determínese si u y v son perpendiculares.
 - a) u = (0, -1, 2), v = (1, 0, 0).

Recordad que dos vectores u y v son perpendiculares u ortogonales si $u \cdot v = 0$. En este caso, $u \cdot v = 0 \cdot 1 + (-1) \cdot 0 + 2 \cdot 0 = 0$. Sí son perpendiculares.

b) u = (-3, 1, 4), v = (1, 4, -2).

 $u \cdot v = -7$. No lo son.

c) $u = (\sqrt{2}, 1, 0), v = (-\sqrt{2}, 2, -3).$

 $u \cdot v = 0$. Sí lo son.

3. Compruebe que $u \cdot (v + w) = u \cdot v + u \cdot w$ siendo $u, v, w \in \mathbb{R}^n$.

Vamos a comprobar que se cumple la propiedad distributiva mediante las definiciones de suma y producto de vectores. ¡Recordad! Dados $u=(u_1,\ldots,u_n)\in\mathbb{R}^n$ y $v=(v_1,\ldots,v_n)\in\mathbb{R}^n$, entonces

$$u + v = (u_1 + v_1, \dots, u_n + v_n),$$
 (1)

$$u \cdot v = u_1 \cdot v_1 + \dots + u_n \cdot v_n. \tag{2}$$

Entonces, $u \cdot (v + w)$ es

$$u_1 \cdot (v_1 + w_1) + \dots + u_n \cdot (v_n + w_n).$$
 (3)

Y ahora podemos aplicar la propiedad asociativa para escalares (elementos de $\mathbb R$) para escribir $a\cdot (b+c)=a\cdot b+a\cdot c$ para cada componente del vector. El resultado es

$$u_1 \cdot v_1 + u_1 \cdot w_1 + \dots + u_n \cdot v_n + u_n \cdot w_n, \tag{4}$$

que es la expresión de $u\cdot v+u\cdot w$, que se puede observar fácilmente al reordernar la expresión anterior como

$$u_1 \cdot v_1 + \dots + u_n \cdot v_n + u_1 \cdot w_1 + \dots + u_n \cdot w_n. \tag{5}$$

02MIAR: Matemáticas para la IA

4. Sean $u, v, w \in \mathbb{R}^n$. Demuestra que si u es perpendicular a w y v es perpendicular a w, entonces u + v también es perpendicular a w.

Recordad que u es perpendicular a w signfica que $u \cdot w = 0$. Del mismo modo, v es perpendicular a w equivale a $v \cdot w = 0$. Por lo tanto, usando la propiedad distributiva

$$(u+v) \cdot w = u \cdot w + v \cdot w = 0 + 0 = 0.$$
 (6)

Es decir, u + v es perpendicular a w.

5. Sean u=(1,1,0), v=(0,1,1) y $w=(\alpha,2,\alpha)$ vectores de \mathbb{R}^3 . Encuentra para qué valores de α el conjunto $\{u,v,w\}$ es linealmente independiente.

De la definición, u, v y w son linealmente independientes si

$$au + bv + cw = \vec{0}, \quad a, b, c \in \mathbb{R}$$
 (7)

tiene como única solución a=b=c=0. Si escribimos la ecuación (7) explícitamente, tenemos el sistema lineal de ecuaciones siguiente:

$$\begin{cases} a + \alpha c = 0, \\ a + b + 2c = 0, \\ b + \alpha c = 0. \end{cases}$$
(8)

Al resolverlo, obtenemos las ecuaciones $a=b=-\alpha c$, $c(1-\alpha)=0$. Estas ecuaciones tienen infinitas soluciones si $\alpha=1$. No obstante, si $\alpha\neq 1$ entonces necesariamente c=0, lo que implica a=b=0. En definitiva, los vectores anteriores son linealmente independientes para $\alpha\neq 1$.

De hecho, si sustituís $\alpha=1$ en el vector inicial, podéis comprobar rápidamente que w=u+v. Es decir que w es combinación lineal de u y v.

- 6. Compruebe las siguientes afirmaciones:
 - a) Los vectores $v_1=(1,1)$ y $v_2=(-1,1)$ son linealmente independientes Como en el ejercicio anterior, nos construimos el sistema de ecuaciones lineales resultante de hacer $\alpha v_1 + \beta v_2 = \vec{0}$ para $\alpha, \beta \in \mathbb{R}$. De este obtenemos que $\alpha = \beta$ y $\alpha = -\beta$. Esto solo es posible si $\alpha = \beta = 0$. Por lo tanto, son linealmente independientes.
 - b) Todo vector $v \in \mathbb{R}^2$ es combinación lineal de v_1 y v_2 . Esta afirmación se traduce en: $\forall v \in \mathbb{R}^2$, $\exists \alpha, \beta \in \mathbb{R} : v = \alpha v_1 + \beta v_2$. ¿Es eso verdad? Vamos a comprobarlo. Sea v = (a,b) un vector cualquiera de \mathbb{R}^2 , entonces

$$v = \alpha v_1 + \beta v_2 \tag{9}$$

implica que $a=\alpha-\beta$ y $b=\alpha+\beta$. Es decir, aislando α y β de las expresiones anteriores, podemos escribir cualquier vector $v=(a,b)\in\mathbb{R}^2$ como $\frac{1}{2}(a+b)v_1+\frac{1}{2}(b-a)v_2$.

7. Realícense las siguientes operaciones matriciales:

02MIAR: Matemáticas para la IA

a) $\begin{pmatrix} -2 & 1 & 0 \\ 4 & 0 & 2 \\ 0 & 0 & 1 \\ 4 & -3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 3 & 0 & 8 \\ -3 & 0 & -5 & 4 \\ 0 & 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -3 & -6 & -5 & -12 \\ 0 & 14 & 0 & 34 \\ 0 & 1 & 0 & 1 \\ 9 & 12 & 15 & 20 \end{pmatrix}$

$$\begin{pmatrix} -2 & 1 & 0 \\ 1 & 0 & 3 \\ 0 & -1 & 1 \end{pmatrix}^2 - 2 \begin{pmatrix} 1 & 0 & 3 \\ -3 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -2 & -3 \\ 4 & 0 & 3 \\ -1 & -3 & -4 \end{pmatrix}$$

c)
$$\det \begin{pmatrix} 1 & 0 & -2 \\ 4 & 3 & 0 \\ 0 & -3 & 8 \end{pmatrix} = 48$$

8. Sean $A, B \in \mathbb{R}^{n \times n}$ matrices cuadradas tales que $\det(A) = 2$ y $\det(B) = -3$. Obtén razonadamente el valor de $\det(12A^2B)$.

Mediante el Teorema visto en clase que nos dice que para matrices regulares $A, B \in \mathbb{R}^{n \times n}$ se cumple $\det(A \cdot B) = \det(A) \cdot \det(B)$, podemos obtener fácilmente que

$$\det(12A^2B) = 12^n \det(A)^2 \det(B) = -12^{n+1}.$$
 (10)

Fijáos que λA , para $\lambda \in \mathbb{R}$, multiplica todos los elementos de A por λ . Por lo tanto, λ aparecerá tantas veces en el determinante como filas tenga la matriz. Podéis hacer la comprobación para matrices 2×2 y 3×3 , o incluso demostrarlo para todo n mediante la definición del determinante.

9. Sea

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right).$$

- a) Comprueba que $\det A = \det A'$. Siendo $A' = A^{\top}$ la matriz traspuesta de A. De la definición del determinante podéis ver que ambos cálculos dan ad-bc.
- b) Deduce entonces que A es regular si y sólo si A' es regular. Basta con usar el Teorema de la matriz inversa $(A \text{ regular/invertible si y solo si } \det(A) \neq 0)$. De este se concluye que A' es invertible si y solo si $\det(A') \neq 0$ si y solo si $\det(A) \neq 0$ si y solo si A es invertible.
- 10. Demuestra, usando las identidades trigonométricas convenientes, los enunciados (a) y (b) siguientes, siendo $f_{\theta}(x,y) = (x\cos\theta y\sin\theta, x\sin\theta + y\cos\theta)$:
 - a) $||f_{\theta}(v)||_{2} = ||v||_{2}, \forall v \in \mathbb{R}^{2}, \forall \theta \in \mathbb{R}.$ Explícitamente, $||f_{\theta}(v)||_{2} = x^{2}(\cos\theta)^{2} + y^{2}(\sin\theta)^{2} - 2xy\cos\theta\sin\theta + x^{2}(\sin\theta)^{2} + y^{2}(\cos\theta)^{2} + 2xy\sin\theta\cos\theta = (x^{2} + y^{2})((\cos\theta)^{2} + (\sin\theta)^{2}) = x^{2} + y^{2} = ||v||_{2}.$

02MIAR: Matemáticas para la IA

b) $f_{\alpha} \circ f_{\beta} = f_{\alpha+\beta}, \forall \alpha, \beta \in \mathbb{R}.$

De la definición de f_{θ}

$$f_{\alpha} \circ f_{\beta} = f_{\alpha}(f_{\beta}(v)) = f_{\alpha}(x\cos\beta - y\sin\beta, x\sin\beta + y\cos\beta)$$
 (11)

$$= ((x\cos\beta - y\sin\beta)\cos\alpha - (x\sin\beta + y\cos\beta)\sin\alpha, \tag{12}$$

$$(x\cos\beta - y\sin\beta)\sin\alpha + (x\sin\beta + y\cos\beta)\cos\alpha). \tag{13}$$

Usando las identidades $\cos(\alpha+\beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$ y $\sin(\alpha+\beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$ se obtiene

$$f_{\alpha} \circ f_{\beta} = (x\cos(\alpha + \beta) - y\sin(\alpha + \beta), x\sin(\alpha + \beta) + y\cos(\alpha + \beta)), \tag{14}$$

que es exactamente la definición de $f_{\alpha+\beta}$.

c) Comprueba que la aplicación $f_{\theta}: \mathbb{R}^2 \to \mathbb{R}^2$ es lineal.

Tenemos que comprobar que $f_{\theta}(au+bv)=af_{\theta}(u)+bf_{\theta}(v)$, $\forall a,b\in\mathbb{R}$, $\forall u,v\in\mathbb{R}^2$. Fijáos que es equivalente a probar por separado $f_{\theta}(au)=af_{\theta}(u)$ y $f_{\theta}(u+v)=f_{\theta}(u)+f_{\theta}(v)$.

De la definición, para $u = (u_1, u_2)$ y $v = (v_1, v_2)$,

$$f_{\theta}(au) = f_{\theta}(au_1, au_2) = (au_1 \cos \theta - au_2 \sin \theta, au_1 \sin \theta + au_2 \cos \theta) = af_{\theta}(u)$$
 (15)

$$f_{\theta}(u+v) = f_{\theta}(u_1+v_1, u_2+v_2) \tag{16}$$

$$= ((u_1 + v_1)\cos\theta - (u_2 + v_2)\sin\theta, (u_1 + v_1)\sin\theta + (u_2 + v_2)\cos\theta)$$
 (17)

$$= (u_1 \cos \theta - u_2 \sin \theta, u_1 \sin \theta + u_2 \cos \theta) \tag{18}$$

$$+ (v_1 \cos \theta - v_2 \sin \theta, v_1 \sin \theta + v_2 \cos \theta) \tag{19}$$

$$= f_{\theta}(u) + f_{\theta}(v) \tag{20}$$

d) Halla la representación matricial de $f_{\pi/4}$, i.e., la matriz $M \in \mathbb{R}^{2\times 2}$ tal que $f_{\pi/4}(v) = Mv$ para todo $v \in \mathbb{R}^2$.

De la definición, la representación matricial es

$$M_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}. \tag{21}$$

Para $\theta=\pi/4$,

$$M_{\pi/4} = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}. \tag{22}$$

- 11. Sea $T:\mathbb{R}^2 \to \mathbb{R}^2$ la aplicación lineal dada por T(1,0)=(1,1) y T(0,1)=(-1,1), calcule:
 - a) T(x,y) para todo $(x,y) \in \mathbb{R}^2$:

Como (x,y)=x(1,0)+y(0,1) y T es lineal, tenemos que T(x,y)=xT(1,0)+yT(0,1). Por tanto

$$T(x,y) = (x - y, x + y)$$

02MIAR: Matemáticas para la IA

b) La representación matricial de T i.e., la matriz $M \in \mathbb{R}^{2 \times 2}$ tal que T(v) = Mv:

Llamemos $e_1 = (1,0)$, $e_2 = (0,1)$, entonces M es la matriz $(T(e_1)|T(e_2))$, escribiendo $T(e_1)$, $T(e_2)$ como vectores columna, i.e.,

$$M = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}. \text{ Si } v = \begin{pmatrix} x \\ y \end{pmatrix}, Mv = x \begin{pmatrix} 1 \\ 1 \end{pmatrix} + y \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} x-y \\ x+y \end{pmatrix} = T(v).$$

12. Diagonaliza, de ser posible, las matrices siguientes:

a)
$$A = \begin{pmatrix} 0 & 2 \\ -1 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad C = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

En primer lugar, para cada matriz M, debemos hallar su polinomio característico $p_M(\lambda)=\det(M-\lambda I)$ y entonces hallar el conjunto de autovalores reales de M $\sigma(M):=\{\lambda\in\mathbb{R}:p(\lambda)=0\}.$ Y en segundo lugar verificar si hay una base de autovectores:

(a)
$$p_A(\lambda) = \lambda^2 - 3\lambda + 2 = (\lambda - 1)(\lambda - 2)$$
. Por tanto $\sigma(A) = \{1, 2\}$.

Ahora, para cada $\lambda \in \sigma(A)$ hallemos un autovector asociado v_{λ} i.e., una solución no trivial $(\neq \vec{0})$ de $(A-\lambda I)v=\vec{0}$. Equivalentemente, buscamos $v_{\lambda}=(x,y)$ solución no trivial del sistema

$$\begin{cases}
-\lambda x + 2y &= 0 \\
-x + (3 - \lambda)y &= 0
\end{cases}$$

Resolviendo el sistema encontramos $v_1=(2,1)$ y $v_2=(1,1)$. De modo que la matriz invertible P tal que $P^{-1}AP={\rm Diag}\,(1,2)$ es

$$P = \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}\right).$$

Y Diag $(1,2)=(d_{ij})$ es la matriz diagonal con entradas $d_{11}=1, d_{22}=2$ y $d_{ij}=0$ para $i\neq j$.

(b) $p_B(\lambda)=\lambda^2$, por lo que $\sigma(B)=\{0\}$ i.e., $\lambda=0$ es autovalor doble (de multiplicidad algebraica 2).

Resolviendo el sistema asociado a $Bv=\vec{0}$ encontramos que cualquier autovector es múltiplo de v=(0,1). De modo que B no es diagonalizable.

(c) $p_C(\lambda) = \lambda^2 - 2\lambda + 2$, cuyo discriminante $\Delta = -4$, por lo que no hay soluciones reales a la ecuación característica $p_C(\lambda) = 0$. Así pues, C no es diagonalizable.

02MIAR: Matemáticas para la IA

b)

$$A = \left(\begin{array}{rrr} -3 & 2 & 2\\ -2 & 1 & 2\\ -1 & 0 & 2 \end{array}\right)$$

En este caso $p_A(\lambda)=-\lambda^3+\lambda=-\lambda(\lambda^2-1)$, por lo que $\sigma(A)=\{0,\pm 1\}$. Al ser tres autovalores distintos tendremos una base de autovectores y por tanto A es diagonalizable. Hallemos la matriz invertible P tal que $P^{-1}AP={\rm Diag}\,(-1,0,1)$.

Recordemos que $P=(v_{-1}|v_0|v_1)$ donde los autovectores v_λ están dispuestos como columnas. Y cada v_λ es una solución no trivial de $A-\lambda I_3=\vec{0}$. Resolviendo los sistemas asociados encontramos la matriz

$$P = \left(\begin{array}{ccc} 3 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 1 \end{array}\right).$$