Any-Precision LLM: Low-Cost Deployment of Multiple, Different-Sized LLMs

Yeonhong Park

Jake Hyun

i jakehyun@snu.ac.kr

SangLyul Cho

chosanglyul@snu.ac.kr

Bonggeun Sim

bg.sim@snu.ac.kr

Jae W. Lee

iaewlee@snu.ac.kr

 iaewlee@snu.ac.kr

Scenario #1: Different queries with different latency requirements

Scenario #1: Different queries with different latency requirements

Scenario #2: Dynamic fluctuation of system load and power budget

Scenario #2: Dynamic fluctuation of system load and power budget

Scenario #3: Speculative decoding

Research Question

How can we deploy <u>multiple</u>, <u>different-sized</u> LLMs in a memory-efficient way?

Solution: Any-Precision Quantization (Yu et al., 2021^[1])

Solution: Any-Precision Quantization (Yu et al., 2021^[1])

Potential Memory Saving of Any-Precision LLM (Llama-2-7B)

Supported bit-widths: {3, 6}

1.49X saving

Potential Memory Saving of Any-Precision LLM (Llama-2-7B)

Supported bit-widths: {3, 4, 8}

1.76X saving

Potential Memory Saving of Any-Precision LLM (Llama-2-7B)

Supported bit-widths: {3, 4, 5, 6, 8}

3.56X saving

1 High Training Cost
Original work adopts **QAT (quantization-aware training)** scheme for anyprecision quantization

(2) Memory Bandwidth Saving
Original work does not save any memory bandwidth, resulting in no performance improvement for LLM

2 Memory Bandwidth Saving

Original work does not save any memory bandwidth, resulting in **no performance improvement for LLM**

(2) Memory Bandwidth Saving

Original work does not save any memory bandwidth, resulting in no performance improvement for LLM

Low-Cost Deployment of Multiple, Different-Sized LLMs

We make a strong case for any-precision quantization of LLM that <u>does not</u> <u>require training</u> and leads to <u>real end-to-end inference speed-ups</u>.

- Lightweight method for any-precision quantization of LLMs leveraging posttraining quantization (PTQ) framework, called incremental upscaling
- Specialized software engine for efficient serving of any-precision LLM adopting a bitplane-based memory layout

Low-Cost Deployment of Multiple, Different-Sized LLMs

We make a strong case for any-precision quantization of LLM that <u>does not</u> <u>require training</u> and leads to <u>real end-to-end inference speed-ups</u>.

- Lightweight method for any-precision quantization of LLMs leveraging posttraining quantization (PTQ) framework, called incremental upscaling
- Specialized software engine for efficient serving of any-precision LLM adopting a bitplane-based memory layout

Quantize the model to the minimum supported bit-width (3-bit)

Selection of Backbone Quantization Method

 A particular quantization method must be adopted as a backbone for seed model generation and incremental upscaling (IU)

Which Quantization Method to Use?

 A particular quantization method must be adopted as a backbone for seed model generation and incremental upscaling (IU)

Requirement #1. Low-Cost

No training; PTQ (post-training quantization) methods

Which Quantization Method to Use?

 A particular quantization method must be adopted as a backbone for seed model generation and incremental upscaling (IU)

Requirement #1. Low-Cost

No training; PTQ (post-training quantization) methods

Requirement #2. High-Performance

Demonstrate SOTA results in terms of PPL/downstream task evaluation

Which Quantization Method to Use?

 A particular quantization method must be adopted as a backbone for seed model generation and incremental upscaling (IU)

Requirement #1. Low-Cost

No training; PTQ (post-training quantization) methods

Requirement #2. High-Performance

Demonstrate SOTA results in terms of PPL/downstream task evaluation

Requirement #3. Compatible with IU

Easily extended to support IU

Incremental Upscaling with SqueezeLLM

* SqueezeLLM: non-uniform quantization by weighted K-means clustering

Divide each cluster into two sub-clusters by weighted K-means clustering

Low-Cost Deployment of Multiple, Different-Sized LLMs

We make a strong case for any-precision quantization of LLM that <u>does not</u> <u>require training</u> and leads to a <u>real end-to-end inference speed-up</u>.

- Lightweight method for any-precision quantization of LLMs leveraging posttraining quantization (PTQ) framework, called incremental upscaling
- Specialized software engine for efficient serving of any-precision LLM adopting a bitplane-based memory layout

Bitpacking-based vs Bitplane-based

Supported bit-widths: {3, 4, 8}

32

Supported bit-widths: {3, 4, 8}

Supported bit-widths: {3, 4, 8}

Selected bit-width: 3

35

Selected bit-width: 4

Overview of Our Specialized Engine

Selected bit-width: 8

Five step thread-level operations assuming a bit-width of 4

Load **input activations and weights** from global memory

Align the bits of each weight contiguously (bit-level transpose)

Get addresses for centroid table lookup by

- 1) Shift & Mask
- 2) Add offset (base address)

Fetch centroids and perform MAC

Uncoalesced memory access

Uncoalesced memory access

-> Weight bitplane layout optimization

Key Result #1:

A set of quantized models generated from incremental upscaling match the SOTA quantization results

Key Result #2:

Our engine matches or even outperforms existing engines while providing memory-efficient any-precision support

Key Result #1:

A set of quantized models generated from incremental upscaling match the SOTA quantization results

Key Result #2:

Our engine matches or even outperforms existing engines while providing memory-efficient any-precision support

Perplexity on Wikitext-2

		3-bit	4-bit	5-bit	6-bit	7-bit	8-bit	FP16
Llama-2-7B	SqLLM	6.13	5.61	5.50	5.47	5.47	5.47	
	SqLLM+IU		5.62	5.50	5.47	5.47	5.47	5.47
	Δ		↑ 0.01	-	-	-	-	

Upscaled models (SqLLM+IU) match independently quantized models (SqLLM)

Similar trends observed for other datasets (PTB, C4) and other models (Mistral, OPT)

Zero-shot Task Accuracy

* Average accuracy across five tasks (ARC-easy/challenge, HellaSwag, PIQA, WinoGrande)

		3-bit	4-bit	5-bit	6-bit	7-bit	8-bit	FP16
Llama-2-7B	SqLLM	66.2	68.3	68.6	68.8	68.9	68.9	
	SqLLM+IU		68.2	68.8	68.9	68.9	69.0	69.0
	Δ		↓ 0.01	↑ 0.02	↑ 0.01	-	↑ 0.01	

Upscaled models (SqLLM+IU) match independently quantized models (SqLLM)

Similar trends observed for other models (Mistral, OPT)

Key Result #1:

A set of quantized models generated from incremental upscaling match the SOTA quantization results

Key Result #2:

Our engine matches or even outperforms existing engines while providing memory-efficient any-precision support

Kernel Microbenchmark (GEMV)

* Speedup over cuBLAS FP16 baseline

			(1, 4096) x (4096, 4096)							(1, 110) x (80	t 6-bit 7-bit 8-bit						
			3-bit	4-bit	5-bit	6-bit	7-bit	8-bit	3-bit	4-bit	5-bit	6-bit	7-bit	8-bit				
	RTX 4090	Ours	3.99×	3.03×	2.61×	2.18×	1.87×	1.56×	4.45×	3.42×	2.74×	2.28×	2.08×	1.81×				
78	KIX 4090	SqLLM	3.69×	3.07×	-	-	-	-	4.22×	3.17×	-	-	-	-				
	RTX 4070 Laptop	Ours	4.97×	3.73×	3.01×	2.51×	2.10×	1.76×	5.29×	3.66×	3.05×	2.52×	2.13×	1.87×				
		SqLLM	4.74×	3.66×	-	-	-	-	5.29×	3.93×	ı	-	-	-				
	Jetson AGX Orin	Ours	3.84×	3.02×	2.56×	2.33×	2.10×	1.78×	4.35×	2.96×	2.54×	2.52×	2.16×	1.86×				
		SqLLM	3.15×	1.94×	-	-	-	-	3.36×	2.04×	-	-	-	-				

Our kernel outperforms for the most cases even with any-precision support

End-to-End Speedup

Generation throughput of Llama-2-7B using our kernel integrated with TensorRT-LLM

What's Next?

Next Step: Any-Precision LLM for Datacenter Settings

Next Step: Any-Precision LLM for Datacenter Settings

Summary

Any-precision LLM is a memory-efficient and cost-effective solution for deployment of multiple, different sized LLMs.

- **Reduce memory cost** of deployment of multiple LLMs by any-precision quantization
- Propose lightweight any-precision quantization scheme for LLMs which produces quantized models with SOTA results
- Propose **specialized software engine** for efficient serving of any-precision LLMs
- Currently exploring ways to extend this concept to datacenter settings

