<u>Last time</u> suppose X = prod_{i in I} X_i

the box topology on X is gen by {prod i U i | U i open in X i for all i}

the <u>product topology</u> on X is gen by {prod_i U_i | U_i open in X_i for all i, $U_i \neq X_i$ for only fin many i}

if $I = \{1, ..., n\}$ and X i = R for all i, then $X = R^n$

here, box = product

Q1 is it the same as the analytic top? [yes]
[square balls are open in box top]
[prod's of anlyte opens are anlyte open]

Q2 any open set in R^n not of the form $U_1 \times U_2 \times ... \times U_n$?

[draw]

if $I = Z_+$ and $X_i = R$ for all i, then $X = R^\omega$

Q3 let $V = (-1, 1) \times (-1, 1) \times ...$ in R^{ω}

open in box topology? [yes] open in product topology? [no]

why not? $[V \neq \emptyset$, but no product basis elt sub V]

in general: prod top can be coarser than box top

<u>Df</u>	for all i' in I let pr_{i'} : prod_i X_i to X_{i'} be	but bigcap_{i' in J} pr_{i'}^{-1}(U_{i'}) = $\{(x_i) \mid x_{i'}\}$ in U_{i'} for all i' in J} = $\{prod_i U_i \mid U_i = X_i \text{ for all i notin J}\}$		
	the projection map $pr_{i'}((x_i)_i) = x_{i'}$		T contains the basis for the product top T contains the product top nilarly,	
<u>Thm</u>	the product topology on prod_i X_i is the coarsest s.t. pr_{i'} is cts for all i'	similarly		
<u>Pf</u>	suppose that T is a top on prod_i X_i in which pr_i' is cts for all i'	<u>Thm</u>	the subspace top on A sub X is the coarsest s.t. the inclusion of A is cts	
then pr_{i'}^{-1}(U_{i'}) in T for all i' and open U_{i'}		makes	subspace topology inclusion cts	product topology projections cts

so for any finite J sub I,

bigcap_ $\{i' \text{ in J}\}$ pr_ $\{i'\}^{-1}$ $\{U_{i'}\}$ is open

```
(Munkres §17, 21) suppose A sub X
```

- interior Int_X(A)
- = {a in X | have U open in X s.t. a in U sub A}
- = union of open sets of X that are subsets of A
- closure Cl_X(A)
- = X Int X(X A)
- $= X bigcup \{V sub X A and open in X\} V$
- = bigcap $\{V \text{ sub } X A \text{ and open in } X\} (X V)$
- = bigcap {Z sup A and closed in X} Z
- = intersection of closed sets of X containing A

[draw]

alternatively: Cl X(A)

 $= X - \{x \mid \text{have V open in X s.t. x in V sub } X - A\}$

= $\{x \mid no \ V \ open \ in \ X \ s.t. \ x \ in \ V \ sub \ X - A\}$

= {x | if V is open in X and x in V, then V intersects A}

Ex X = R $^{\infty}$ and A = R $^{\infty}$

Q what is the closure of R^{∞} in R^{ω} in the box top? in the product top?

consider x = (1, 1/2, 1/3, 1/4, ...)

in $CI_{R^{\omega}}(R^{\infty})$ for box? [draw]

no: x in $(0, 2) \times (0, 1) \times (0, 2/3) \times ...$

for prod	uct? s: suppose V open in R^ω and x in V	<u>Ex</u>	give X the indiscrete topology: then every sequence of pts converges to every pt of X at once!	
pick basis elt B s.t. x in B sub V B = prod_i B_i, where B_i ≠ R for only fin many i so B contains elts of R^∞ so V intersects R^∞		Df	X is <u>Hausdorff</u> iff, for all x ≠ y in X, there are disjoint open U and V s.t. x in U and y in V	
		<u>Thm</u>	if X is Hausdorff	
<u>Df</u>	a sequence x_1, x_2, of points in X <u>converges</u> to x iff, for all open V containing x		then any sequence in X converges to at most one pt	
	iff, for all open V containing x have N s.t. x_N, x_{N + 1}, in V	<u>Pf</u>	suppose $(x_n)_n$ converges to x and y suppose $x \ne y$: then have disj open U, V	
Q	can a sequence converge to more than one pt?		s.t. x in U and y in V if x_N, x_{N + 1}, in U, then notin V	