CS 536: Regression and Error

16:198:536

- A Small Regression Example Consider regression in one dimension, with a data set $\{(x_i, y_i)\}_{i=1,\dots,m}$.
 - Find a linear model that minimizes the training error, i.e., \hat{w} and \hat{b} to minimize

$$\sum_{i=1}^{m} (\hat{w}x_i + \hat{b} - y_i)^2. \tag{1}$$

- Assume there is some true linear model, such that $y_i = wx_i + b + \epsilon_i$, where noise variables ϵ_i are i.i.d. with $\epsilon_i \sim N(0, \sigma^2)$. Argue that the estimators are unbiased, i.e., $\mathbb{E}\left[\hat{w}\right] = w$ and $\mathbb{E}\left[\hat{b}\right] = b$. What are the variances of these estimators?
- Assume that each x value was sampled from some underlying distribution with expectation $\mathbb{E}[x]$ and variance Var(x). Argue that in the limit, the error on \hat{w} and \hat{b} are approximately

$$\operatorname{Var}(\hat{w}) \approx \frac{\sigma^2}{m} \frac{1}{\operatorname{Var}(x)}$$

$$\operatorname{Var}(\hat{b}) \approx \frac{\sigma^2}{m} \frac{\mathbb{E}\left[x^2\right]}{\operatorname{Var}(x)}.$$
(2)

- Argue that recentering the data $(x_i' = x_i \mu)$ and doing regression on the re-centered data produces the same error on \hat{w} but *minimizes* the error on \hat{b} when $\mu = \mathbb{E}[x]$ (which we approximate with the sample mean).
- Verify this numerically in the following way: Taking $m=200, w=1, b=5, \sigma^2=0.1.$
 - * Repeatedly perform the following numerical experiment: generate $x_1, \ldots, x_m \sim \text{Unif}(100, 102), y_i = wx_i + b + \epsilon_i$ (with ϵ_i as a normal, mean 0, variance σ^2), and $x'_i = x_i 101$; compute \hat{w}, \hat{b} based on the $\{(x_i, y_i)\}$ data, and \hat{w}', \hat{b}' based on the $\{(x'_i, y_i)\}$ data.
 - * Do this 1000 times, and estimate the expected value and variance of \hat{w} , \hat{w}' , \hat{b} , \hat{b}' . Do these results make sense? Do these results agree with the above limiting expressions?
- Intuitively, why is there no change in the estimate of the slope when the data is shifted?
- Consider augmenting the data in the usual way, going from one dimensions to two dimensions, where the first coordinate of each \underline{x} is just a constant 1. Argue that taking $\Sigma = X^{T}X$ in the usual way, we get in the limit that

$$\Sigma \to m \begin{bmatrix} 1 & \mathbb{E}[x] \\ \mathbb{E}[x] & \mathbb{E}[x^2] \end{bmatrix}$$
 (3)

Show that re-centering the data $(\Sigma' = (X')^T(X')$, taking $x_i' = x_i - \mu$), the condition number $\kappa(\Sigma')$ is minimized taking $\mu = \mathbb{E}[x]$.