In [32]:

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib import rcParams
from matplotlib.cm import rainbow
%matplotlib inline
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn import datasets
from sklearn import linear_model
from sklearn.metrics import mean_squared_error
from sklearn.tree import DecisionTreeClassifier
```

In [33]:

```
data= pd.read_csv(r'C:\Users\ASUS\Downloads\archive (2)\heart.csv')
print(data)
```

	age :	sex	cp ti	restbps	chol	fbs	restecg	thalach	exang	oldpeak
\										
0	52	1	0	125	212	0	1	168	0	1.0
1	53	1	0	140	203	1	0	155	1	3.1
2	70	1	0	145	174	0	1	125	1	2.6
3	61	1	0	148	203	0	1	161	0	0.0
4	62	0	0	138	294	1	1	106	0	1.9
• • •	• • •	• • •	• •	• • •	• • •	• • •	• • •	• • •	• • •	• • •
1020	59	1	1	140	221	0	1	164	1	0.0
1021	60	1	0	125	258	0	0	141	1	2.8
1022	47	1	0	110	275	0	0	118	1	1.0
1023	50	0	0	110	254	0	0	159	0	0.0
1024	54	1	0	120	188	0	1	113	0	1.4
	slope	ca	thal	target						
0	2	2	3	0						
1	0	0	3	0						
2	0	0	3	0						
3	2	1	3	0						
4	1	3	2	0						
• • •	• • •		• • •	• • •						
1020	2	0	2	1						
1021										
	1	1	3	0						
1022	1	1 1	2	0 0						

[1025 rows x 14 columns]

In [34]:

data.head()

Out[34]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	tar
0	52	1	0	125	212	0	1	168	0	1.0	2	2	3	
1	53	1	0	140	203	1	0	155	1	3.1	0	0	3	
2	70	1	0	145	174	0	1	125	1	2.6	0	0	3	
3	61	1	0	148	203	0	1	161	0	0.0	2	1	3	
4	62	0	0	138	294	1	1	106	0	1.9	1	3	2	
4														•

In [35]:

```
data.tail()
```

Out[35]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal
1020	59	1	1	140	221	0	1	164	1	0.0	2	0	2
1021	60	1	0	125	258	0	0	141	1	2.8	1	1	3
1022	47	1	0	110	275	0	0	118	1	1.0	1	1	2
1023	50	0	0	110	254	0	0	159	0	0.0	2	0	2
1024	54	1	0	120	188	0	1	113	0	1.4	1	1	3

In [36]:

data.shape

Out[36]:

(1025, 14)

In [37]:

data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1025 entries, 0 to 1024 Data columns (total 14 columns):

рата	columns (totai	14 columns):		
#	Column	Non-I	Null Count	Dtype		
0	age	1025	non-null	int64		
1	sex	1025	non-null	int64		
2	ср	1025	non-null	int64		
3	trestbps	1025	non-null	int64		
4	chol	1025	non-null	int64		
5	fbs	1025	non-null	int64		
6	restecg	1025	non-null	int64		
7	thalach	1025	non-null	int64		
8	exang	1025	non-null	int64		
9	oldpeak	1025	non-null	float64		
10	slope	1025	non-null	int64		
11	ca	1025	non-null	int64		
12	thal	1025	non-null	int64		
13	target	1025	non-null	int64		
dtype	es: float6	4(1),	int64(13)			
memory usage: 112.2 KB						

In [38]:

data.isnull().sum() #to check for null values

Out[38]:

0 age sex 0 0 ср trestbps 0 chol 0 fbs 0 restecg 0 thalach 0 exang 0 oldpeak 0 slope 0 ca 0 thal target dtype: int64

In [39]:

data.describe()

Out[39]:

	age	sex	ср	trestbps	chol	fbs	re
count	1025.000000	1025.000000	1025.000000	1025.000000	1025.00000	1025.000000	1025.00
mean	54.434146	0.695610	0.942439	131.611707	246.00000	0.149268	0.52
std	9.072290	0.460373	1.029641	17.516718	51.59251	0.356527	0.52
min	29.000000	0.000000	0.000000	94.000000	126.00000	0.000000	0.00
25%	48.000000	0.000000	0.000000	120.000000	211.00000	0.000000	0.00
50%	56.000000	1.000000	1.000000	130.000000	240.00000	0.000000	1.00
75%	61.000000	1.000000	2.000000	140.000000	275.00000	0.000000	1.00
max	77.000000	1.000000	3.000000	200.000000	564.00000	1.000000	2.00
4							•

In [40]:

```
plt.figure(figsize = (10,10))
sns.heatmap(data.corr(),annot = True,cmap='viridis',linewidths=.5)
```

Out[40]:

<matplotlib.axes._subplots.AxesSubplot at 0x2caeb9d3760>

In [41]:

data.hist()

Out[41]:

array([[<matplotlib.axes._subplots.AxesSubplot object at 0x000002CAEB11FEE</pre> 0>, <matplotlib.axes._subplots.AxesSubplot object at 0x000002CAEB819A3</pre> 0>, <matplotlib.axes._subplots.AxesSubplot object at 0x000002CAEB93A7C</pre> 0>, <matplotlib.axes._subplots.AxesSubplot object at 0x000002CAECA0776</pre> 0>], [<matplotlib.axes._subplots.AxesSubplot object at 0x000002CAEB9B46A</pre> 0>, <matplotlib.axes._subplots.AxesSubplot object at 0x000002CAEB9EF07</pre> 0>, <matplotlib.axes._subplots.AxesSubplot object at 0x000002CAEB9EF25</pre> 0>, <matplotlib.axes._subplots.AxesSubplot object at 0x000002CAEB8AC3A</pre> 0>], [<matplotlib.axes._subplots.AxesSubplot object at 0x000002CAECFB99D 0>, <matplotlib.axes._subplots.AxesSubplot object at 0x000002CAED078E2</pre> 0>, <matplotlib.axes._subplots.AxesSubplot object at 0x000002CAED0B22B</pre> 0>, <matplotlib.axes._subplots.AxesSubplot object at 0x000002CAED0DC70</pre> 0>], [<matplotlib.axes._subplots.AxesSubplot object at 0x000002CAED109B8</pre> 0>, <matplotlib.axes._subplots.AxesSubplot object at 0x000002CAED137FD</pre> 0>, <matplotlib.axes._subplots.AxesSubplot object at 0x000002CAED1703A</pre> 0>, <matplotlib.axes._subplots.AxesSubplot object at 0x000002CAED1909A</pre> 0>]], dtype=object)

In [42]:

```
data['target'].value_counts() #how many ppl have heart disease
```

Out[42]:

526
 499

Name: target, dtype: int64

In [43]:

```
rcParams['figure.figsize'] = 8,6
plt.bar(data['target'].unique(),data['target'].value_counts(),color=['red','green'])
plt.xticks([0,1])
plt.xlabel('Target Classes')
plt.ylabel('Count')
plt.title('Count of each Target Class')
```

Out[43]:

Text(0.5, 1.0, 'Count of each Target Class')

In [44]:

```
x = data.drop(columns = 'target',axis = 1) #dropping row axis = 0
y = data['target']
```

In [45]:

```
print(x)
       age
             sex
                   ср
                        trestbps
                                    chol fbs
                                                 restecg thalach
                                                                       exang oldpeak
\
0
        52
               1
                    0
                              125
                                     212
                                              0
                                                        1
                                                                 168
                                                                            0
                                                                                    1.0
1
        53
               1
                    0
                              140
                                     203
                                              1
                                                        0
                                                                 155
                                                                            1
                                                                                    3.1
2
        70
               1
                    0
                              145
                                     174
                                              0
                                                        1
                                                                 125
                                                                            1
                                                                                     2.6
3
                                                         1
        61
               1
                    0
                              148
                                     203
                                              0
                                                                 161
                                                                            0
                                                                                    0.0
4
        62
               0
                    0
                              138
                                     294
                                                        1
                                                                 106
                                                                            0
                                                                                    1.9
                                              1
       . . .
             . . .
                   . .
                              . . .
                                     . . .
                                           . . .
                                                      . . .
                                                                 . . .
                                                                          . . .
                                                                                     . . .
1020
        59
               1
                    1
                              140
                                     221
                                              0
                                                        1
                                                                 164
                                                                            1
                                                                                    0.0
               1
                    0
                                     258
                                              0
                                                        0
                                                                            1
                                                                                    2.8
1021
        60
                              125
                                                                 141
        47
                    0
                                                                                    1.0
1022
               1
                              110
                                     275
                                              0
                                                        0
                                                                 118
                                                                            1
1023
        50
               0
                    0
                                     254
                                                        0
                                                                                    0.0
                              110
                                              0
                                                                 159
                                                                            0
                                                         1
1024
        54
               1
                    0
                              120
                                     188
                                              0
                                                                 113
                                                                            0
                                                                                    1.4
                    thal
       slope
               ca
0
            2
                 2
                        3
1
                0
                        3
            0
2
            0
                0
                        3
3
            2
                 1
                        3
4
            1
                 3
                        2
          . . .
                . .
                      . . .
            2
                0
                        2
1020
1021
            1
                 1
                        3
1022
            1
                 1
                        2
            2
                        2
1023
                 0
1024
            1
                 1
                        3
[1025 rows x 13 columns]
```

In [46]:

```
print(y)
0
        0
1
        0
2
        0
3
        0
4
        0
1020
        1
1021
        0
1022
        0
1023
        1
1024
Name: target, Length: 1025, dtype: int64
```

In [47]:

```
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,stratify=y,random_st
ate = 2)
```

```
In [49]:
print(x.shape,x_train.shape,x_test.shape)

(1025, 13) (820, 13) (205, 13)

In [72]:
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(x_train,y_train)

Out[72]:
LinearRegression()

In [73]:
y_predicted = model.predict(x_test)

In [74]:
print("MSE is:=",mean_squared_error(y_test,y_predicted))
```

MSE is:= 0.13612944595506918

In [75]:

```
model1 = DecisionTreeClassifier()
model1.fit(x_train,y_train)
prediction = model1.predict(x_test)
import sklearn as sklearn
sklearn.tree.plot_tree(model1,max_depth=None,feature_names = None,class_names=None,labe
l='all',filled=False,impurity=True,node_ids=False,proportion=False,rounded=False,precis
ion=3,ax=None,fontsize=None)
plt.title('Decision tree using Entropy',fontsize=22)
```

Out[75]:

Text(0.5, 1.0, 'Decision tree using Entropy')

Decision tree using Entropy


```
score = accuracy score(y test,prediction)
score
Out[76]:
1.0
In [77]:
model2 = LogisticRegression()
In [78]:
model2.fit(x_train,y_train) #find relationship btw feature and target
C:\anaconda\lib\site-packages\sklearn\linear_model\_logistic.py:762: Conve
rgenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown i
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-reg
ression
  n_iter_i = _check_optimize_result(
Out[78]:
LogisticRegression()
In [70]:
#Accuracy on training data
x_train_prediction = model2.predict(x_train)
training_data_accuracy = accuracy_score(x_train_prediction,y_train)
print('accuracy on training data:',training_data_accuracy)
accuracy on training data: 0.848780487804878
In [59]:
#Accuracy on testing data
x_test_prediction = model2.predict(x_test)
testing_data_accuracy = accuracy_score(x_test_prediction,y_test)
print('accuracy on training data:',testing data accuracy)
accuracy on training data: 0.8048780487804879
```

In [76]:

In [60]:

```
#predictive system

input_data = (71,0,0,112,149,0,1,125,0,1.6,1,0,2)
#change the ip data to numpy array
input_data_as_numpy_array = np.asarray(input_data)

#reshape the numpy array as we are predicting for only one instance
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1)

prediction = model2.predict(input_data_reshaped)
print(prediction)

if(prediction[0]==0):
    print("The person does not has heart disease.")

else:
    print("The person has heart disease.")
```

[1]

The person has heart disease.