Computable Structure Theory and Interactions

Technische Universität Wien

July 15-17, 2024

Approximately computable isomorphisms

Valentina Harizanov

George Washington University

Joint work with Wesley Calvert (SIU) and Doug Cenzer (U Florida).

Generic case complexity

- Complexity results in computable structure theory often depend on the behavior of the hardest instances of the problem.
- For problems on groups, Kapovich, Myasnikov, Schupp, and Shpilrain (2003) proposed using the notion of asymptotic density to see whether a partial algorithmic (partial computable) function could solve "almost all" instances of a problem.
- They showed that for a large class of finitely generated groups the classical decision problems, such as the word problem or the conjugacy problem, have linear time generic case complexity.

- Jockusch and Schupp (2012) introduced this topic to computability theory. They defined and investigated *generically computable* and *coarsely computable* sets of natural numbers.
- ullet For $A\subseteq \mathbb{N}$ and $n\geq 1,$ the density of a set A up to n, denoted by $ho_n(A),$ is

$$\frac{|A\cap\{0,1,2,\ldots,n-1\}|}{n}$$

- The (asymptotic) density of A is $\rho(A) = \lim_{n \to \infty} \rho_n(A)$. A is (asymptotically) dense if $\rho(A) = 1$.
- For example, $A = \{2^n : n \in \mathbb{N}\}$ has density 0.

Generically and coarsely computable sets of natural numbers (Jockusch and Schupp)

• S is generically computable if there is a partial computable function $\varphi:\mathbb{N}\to\{0,1\}$ such that: $dom(\varphi)$ is asymptotically dense, and for the characteristic function c_S , we have $c_S\upharpoonright dom(\varphi)=\varphi$.

(There may be no answers.)

• S is coarsely computable if there is a (total) computable function $\tau: \mathbb{N} \to \{0,1\}$ such that $\{a: c_S(a) = \tau(a)\}$ is asymptotically dense.

Equivalently, S is coarsely computable if there is a computable set T such that $S\triangle T=(S-T)\cup (T-S)$ has asymptotic density 0.

(There may be wrong answers.)

Asymptotic density in $\mathbb{N} \times \mathbb{N}$

• Let $D \subseteq \mathbb{N}$. Then D has asymptotic density δ in \mathbb{N} if and only if $D \times D$ has asymptotic density δ^2 in $\mathbb{N} \times \mathbb{N}$.

Hence: D is asymptotically dense in \mathbb{N} iff $D \times D$ is asymptotically dense in $\mathbb{N} \times \mathbb{N}$.

• There is a computable, dense, binary relation $R \subseteq \mathbb{N} \times \mathbb{N}$ such that for any infinite c.e. set $E \subseteq \mathbb{N}$, the product $E \times E$ is not a subset of R.

Generically computable structures

- Consider a structure $\mathcal A$ with a computable domain A (say $A=\mathbb N$): with finitely many functions $\{f_i:i\in I\}$, each f_i of arity p_i , and finitely many relations $\{R_j:j\in J\}$, each R_j of arity r_j .
- We call $\mathcal A$ generically computable if $\mathcal A$ has a substructure $\mathcal D$ with a c.e. domain D that is asymptotically dense, and partial computable functions $\{\phi_i:i\in I\}$ and $\{\psi_j:j\in J\}$ such that each ϕ_i agrees with f_i on D^{p_i} and each ψ_j agrees with c_{R_j} on the set D^{r_j} .

• \mathcal{A} is computable if its domain A is a computable set and each $f_i:A^{p_i}\to A$ is a computable function and each R_j is a computable relation (i.e., the characteristic function $c_{R_j}:A^{r_j}\to\{0,1\}$ is computable).

• Examples of computable structures:

$$(\mathbb{N},\equiv_m)$$

$$(\mathbb{Q},+)$$

 $\mathbb{Z}(p^n)$ the cyclic group of order p^n

 $\mathbb{Z}(p^\infty)$ the quasicyclic (Prüfer) p-group the set of rational numbers in [0,1) of the form $\frac{i}{p^k}$ with addition modulo 1

- (\mathbb{N}, R) , where R is a computable set (unary relation), is a computable structure.
- $\mathcal{A} = (\mathbb{N}, S)$ is a generically computable structure iff S is a generically computable set (following Jockusch and Schupp).
- A structure \mathcal{D} is computably enumerable if its domain D is c.e., and each function f_i is the restriction of a partial computable function to D, and each relation R_j is c.e.

Equivalence structures

- A structure $\mathcal{A} = (A, E)$ is an equivalence structure if E is an equivalence relation on A.
- The character $\chi(\mathcal{A})$ of \mathcal{A} is: $\{(k,n): k,n\geq 1\ \&$ there are $\geq n$ equivalence classes of size $k\}$ Bounded character: there is a bound on size k.
- If \mathcal{A} is c.e., then $\chi(\mathcal{A})$ is $\exists \forall$ -computable.
- $K \subseteq (\mathbb{N} \{0\}) \times (\mathbb{N} \{0\})$ is (an abstract) *character* if for all $n \ge 1$ and k: $(k, n + 1) \in K \Rightarrow (k, n) \in K$.

- For any $\exists \forall$ -computable set K that is a character, there is a computable equivalence structure \mathcal{A} with character $\chi(\mathcal{A}) = K$, which has infinitely many infinite equivalence classes.
- There are c.e. equivalence structures that are not isomorphic to computable structures (i.e., have no computable copies).

Generically computable equivalence structures

A surprising result:

• Every countable equivalence structure $\mathcal{A} = (A, E)$ has a generically computable (isomorphic) copy.

Abelian p-groups

- Let p be a prime number. A group \mathcal{A} is a p-group if the order of every element is a power of p.
- Suppose that A is a countable Abelian p-group isomorphic to a product of quasi-cyclic and cyclic groups:

$$\bigoplus_{\alpha} \mathbb{Z}(p^{\infty}) \oplus \bigoplus_{i \in \mathbb{N}} \mathbb{Z}(p^{k_i}).$$

 $\bigoplus_{\alpha} \mathbb{Z}(p^{\infty})$ is the divisible part.

 $\bigoplus_{i\in\mathbb{N}}\mathbb{Z}(p^{k_i})$ is the reduced part.

• Then the *character* of \mathcal{A} is $\chi(\mathcal{A}) = \{(k, n) : k, n \geq 1 \& \ card(\{i : k_i = k\} \geq n\}.$

- If \mathcal{A} is computable, then $\chi(\mathcal{A})$ is a $\exists \forall$ -computable set.
- Let \mathcal{A} be a computable equivalence structure with character K and α infinite equivalence classes. Then there exists a computable Abelian p-group isomorphic to $\oplus_{\alpha}\mathbb{Z}(p^{\infty})\oplus G$ where G is a direct sum of cyclic p-groups with character K.
- For any $\exists \forall$ -computable set K that is a character, there is a computable Abelian p-group \mathcal{A} with character K and the divisible part isomorphic to $\bigoplus_{\omega} \mathbb{Z}(p^{\infty})$.
- Every c.e. Abelian group is computably isomorphic to a computable group.

Generically computable Abelian groups

- ullet Every countable Abelian p-group has a generically computable copy. There are countable Abelian groups without generically computable copies.
- For an Abelian group \mathcal{A} , let $\mathcal{A}[p] = \{g \in A : p^n g = 0 \text{ for some } n\}.$
- A countable infinite Abelian group has a generically computable copy if and only if:
 - (i) For some prime p, $\mathcal{A}[p]$ is infinite; or
 - (ii) $\{q: A[q] \neq \{0\}\}$ has an infinite c.e. subset.

Σ_n generically c.e. structures

• For $n \geq 1$, a substructure \mathcal{B} of \mathcal{A} is a Σ_n elementary substructure if for every Σ_n formula $\theta(x_1, \ldots, x_m)$ and $b_1, \ldots, b_m \in B$:

$$\mathcal{A} \vDash \theta(b_1, \ldots, b_m)$$
 iff $\mathcal{B} \vDash \theta(b_1, \ldots, b_m)$.

• A structure \mathcal{A} is Σ_n generically c.e. if \mathcal{A} has a c.e. substructure \mathcal{D} with an asymptotically dense domain D, such that \mathcal{D} is also a Σ_n elementary substructure of \mathcal{A} .

Σ_n generically c.e. equivalence structures and Abelian p-groups

- ullet Σ_{n+1} generically c.e. structure $\Rightarrow \Sigma_n$ generically c.e. structure
- Every c.e. structure is Σ_n generically c.e. for any n.
- A function $h: \mathbb{N}^2 \to \mathbb{N}$ is a Khisamiev s_1 -function if $h(i,t) \leq h(i,t+1)$ for all i,t $m_i = \lim_{t \to \infty} h(i,t)$ exists for each i, and $m_0 < m_1 < \cdots < m_i < \cdots$

• Let $\mathcal{A} = (A, E)$ be a c.e. equivalence structure with no infinite equivalence classes and an unbounded character.

Then there is a computable s_1 -function h such that \mathcal{A} contains an equivalence class of size m_i for each $i \in \mathbb{N}$.

- We say that a character K has an s_1 -function h (as above) if $(m_i, 1) \in K$ for each i.
- For every $\exists \forall$ -computable character K that is either bounded or has a computable s_1 -function, there is a computable equivalence structure \mathcal{A} with character K and no infinite equivalence classes.

- An equivalence structure $\mathcal{A} = (\mathbb{N}, E)$ has a Σ_1 generically c.e. copy iff at least one of the following conditions holds:
 - 1. $\chi(A)$ is bounded;
 - 2. $\chi(A)$ has a $\exists \forall$ -computable sub-character K with a computable s_1 -function;
 - 3. $\chi(A)$ has a $\exists \forall$ -computable sub-character H, and A has an infinite class;
 - 4. A has infinitely many infinite classes.
- An equivalence structure A has a Σ_2 generically c.e. copy iff
 - (i) A has a c.e. copy iff
 - (ii) A has a Σ_3 generically c.e. copy.

- Let \mathcal{A} be an Abelian p-group that is a product of quasi-cyclic and cyclic groups. Then \mathcal{A} has a Σ_1 generically c.e. copy iff at least one of the following conditions holds:
 - 1. $\chi(A)$ is bounded;
 - 2. $\chi(A)$ has a $\exists \forall$ -computable subset K with a computable s_1 -function;
 - 3. A has a divisible component.
- \bullet \mathcal{A} is Σ_2 generically c.e. if and only if \mathcal{A} has a computable copy.

Computable isomorphisms

- A computable structure A is *computably categorical* if for any computable isomorphic copy of A there is a computable isomorphism.
- ullet A computable equivalence structure ${\cal A}$ is computably categorical iff
 - ${\cal A}$ has finitely many finite equivalence classes, or
 - \mathcal{A} has finitely many infinite classes, bounded character, and at most one finite $k \geq 1$ with infinitely many classes of size k.

• (Goncharov; Smith)

A computable Abelian p-group \mathcal{A} is computably categorical iff \mathcal{A} is isomorphic to:

 $\oplus_{\alpha}\mathbb{Z}(p^{\infty})\oplus G$ where $\alpha\leq\omega$ and G is finite, or

 $\oplus_n \mathbb{Z}(p^{\infty}) \oplus G \oplus \oplus_{\omega} \mathbb{Z}(p^k)$ where $n, k \in \mathbb{N}$ and G is finite.

• We have a number of examples of structures that are not computably categorical but are generically computably categorical.

Generically computable isomorphisms

- ullet An isomorphism $F: \mathcal{A}
 ightarrow \mathcal{B}$ is generically computable if there are
 - a c.e. set C of asymptotic density 1 and
 - a partial computable function ψ with $C = dom(\psi)$ such that:
 - (1) C is the domain of a substructure C of A,
 - (2) $F(x) = \psi(x)$ for all $x \in C$,
 - (3) the image F[C] has asymptotic density 1.

- A simple example of a computable equivalence structure that is not computably categorical is one which consists only of infinitely many classes of size 1 and infinitely many classes of size 2.
 Call such an equivalence structure a (1,2)-equivalence structure.
- For an equivalence structure A, denote by A(k) the set of elements belonging to classes of size k.
- For a finite set $H \subseteq \mathbb{N} \{0\}$, we say that \mathcal{A} has generic character H if for each $k \in H$, the set $\mathcal{A}(k)$ has positive asymptotic density, and the union $\bigcup_{k \in H} \mathcal{A}(k)$ has asymptotic density 1.

- If \mathcal{A} and \mathcal{B} are computable (1,2)-equivalence structures, each having generic character $\{2\}$, then \mathcal{A} and \mathcal{B} are generically computably isomorphic.
- If \mathcal{A} and \mathcal{B} are isomorphic computable equivalence structures with finitely many infinite classes, such that the set of elements that belong to infinite classes has asymptotic density 1 in each structure, then \mathcal{A} and \mathcal{B} are generically computably isomorphic.

ullet A computable Abelian p-group ${\cal G}$

$$\bigoplus_{i\in\mathbb{N}}\mathbb{Z}(p)\oplus\bigoplus_{i\in\mathbb{N}}\mathbb{Z}(p^2)$$

is not computably categorical.

- If \mathcal{A} and \mathcal{B} are computable groups isomorphic to \mathcal{G} such that the elements of height 1 are asymptotically dense in each of them, then \mathcal{A} and \mathcal{B} are generically computably isomorphic.
- The height (p-height) of a group element x is the largest n such that $p^n \mid x$.

- If F is a generically computable isomorphism, then F^{-1} also is.
- For transitivity we need to preserve density.
- A function F mapping A_1 to A_2 is density preserving if for any subset X of A_1 of density p, the image F[X] has density p.
- If $F_1: \mathcal{A}_1 \to \mathcal{A}_2$ and $F_2: \mathcal{A}_2 \to \mathcal{A}_3$ are generically computable and density preserving isomorphisms, then the composition $F_2 \circ F_1: \mathcal{A}_1 \to \mathcal{A}_3$ also is.

Coarsely computable structures

• A structure \mathcal{A} is coarsely computable if there are a computable structure \mathcal{E} and a dense set D such that the structure \mathcal{D} with domain D is a substructure of both \mathcal{A} and of \mathcal{E} , and all relations and functions agree on D:

$$\mathcal{D}\subseteq egin{array}{c} \mathcal{A} \\ \mathcal{E} \end{array}$$

ullet $\mathcal{A}=(\mathbb{N},S)$ is a coarsely computable structure iff S is a coarsely computable set.

There is a generically computable structure that is not coarsely computable, and vice versa.

There is an equivalence structure with no coarsely computable copy.

Coarsely computable groups

- ullet Every countable Abelian p-group has a coarsely computable copy.
- There is a Σ_1 coarsely c.e. Abelian group with no Σ_1 generically c.e. copy.
- Let \mathcal{A} be an Abelian p-group with no elements of infinite height and with an unbounded character $\chi(\mathcal{A})$ that does not have a computable s_1 -function. Then the following are equivalent:
 - 1. \mathcal{A} has a Σ_2 coarsely c.e. copy.
 - 2. $\chi(A)$ is $\exists \forall$ -computable, and for some k, A has infinitely many components of type $\mathbb{Z}(p^k)$.

- Let \mathcal{A} be an Abelian p-group with no elements of infinite height such that its character $\chi(\mathcal{A})$ is either bounded or has a computable s_1 -function. Then the following are equivalent:
 - 1. \mathcal{A} has a Σ_2 coarsely c.e. copy.
 - 2. $\chi(\mathcal{A})$ is $\exists \forall$ -computable.
 - 3. A has a computable copy.

Coarsely computable isomorphisms

- ullet An isomorphism $F: \mathcal{A} \to \mathcal{B}$ is coarsely computable if there are
 - a set C of asymptotic density 1 and
 - a (total) computable function θ such that:
 - (1) C is the domain of a substructure C of A,
 - (2) $F(x) = \theta(x)$ for all $x \in C$,
 - (3) the image F[C] has asymptotic density 1.
- Weakly coarsely computable: if F is just a bijection while F[C] is still the domain of a substructure C_1 of B.

- If there is a weakly coarsely computable isomorphism from A to a computable structure, then A is coarsely computable.
- If a structure A is coarsely computable, then there is a density preserving weakly coarsely computable isomorphism from A to a computable structure.
- Let \mathcal{A} and \mathcal{B} be isomorphic equivalence structures with generic character $\{1\}$.

Then there is a (density preserving) coarsely computable isomorphism between A and B.

Not necessarily true for generically computable isomorphism.

THANK YOU!

- Proof Sketch for: If $\mathcal{A} = (A, +^{\mathcal{A}})$ is a c.e. Abelian group, then there is a computable group \mathcal{C} with universe \mathbb{N} and a computable isomorphism $f: \mathcal{C} \cong \mathcal{A}$.
- Let $f: \mathbb{N} \to A$ be a computable bijection (1-1 computable enumeration of A).

Define $+^{\mathcal{C}}$ so that f is an isomorphism: $i +^{\mathcal{C}} j = f^{-1}(f(i) +^{\mathcal{A}} f(j))$.

- Proof Sketch for: Any countable Abelian p-group \mathcal{A} has a subgroup \mathcal{B} which is isomorphic to a computable group.
- Case 1: Every element of \mathcal{A} has finite height. Every $\mathbb{Z}(p^k)$ has a subgroup of type $\mathbb{Z}(p)$. So, \mathcal{A} has a subgroup \mathcal{B} isomorphic to $\bigoplus_{i\in\mathbb{N}}\mathbb{Z}(p)$.
- Case 2: A has a divisible subgroup B.
- ullet Case 3: ${\mathcal A}$ has no divisible subgroup, but has an element a of infinite height.

Can prove that there is an element b such that $C = \{x : px = b\}$ is infinite.

C generates an infinite subgroup $\mathcal B$ with elements of bounded order.

• Proof Sketch for: Every countable Abelian p-group \mathcal{A} has a generically computable copy \mathcal{C} .

ullet $\mathcal A$ has a subgroup $\mathcal B$ isomorphic to a computable group.

Obtain a computable group \mathcal{D} isomorphic to \mathcal{B} with dense and coinfinite domain D.

Extend \mathcal{D} to a generically computable \mathcal{C} isomorphic to \mathcal{A} .

• Proof Sketch for: A is Σ_2 generically c.e. $\Rightarrow A$ has a computable copy

Let D be a dense c.e. set with $\mathcal{D} = (D, +^{\mathcal{A}}) \prec_2 \mathcal{A}$. Let $K = \chi(\mathcal{D})$. K is $\exists \forall$ -computable since \mathcal{D} is c.e. $\chi(\mathcal{D}) = \chi(\mathcal{A})$ since $\mathcal{D} \prec_2 \mathcal{A}$.

- ullet Case 1: K is bounded. Then ${\mathcal A}$ has a computable copy.
- Case 2: K is unbounded and \mathcal{D} has no divisible component. Then K has a computable s_1 -function, so \mathcal{A} has a computable copy.
- Case 3: K is unbounded and \mathcal{D} has a divisible component. Then \mathcal{A} also has a divisible component. Hence \mathcal{A} has a computable copy.

Consider

$$\bigoplus_{i\in\mathbb{N}}\mathbb{Z}(p)\oplus\bigoplus_{i\in\mathbb{N}}\mathbb{Z}(p^2).$$

- Every element of the first factor has order 0 or p. The set of elements of order p^2 is computable.
- Every element of height 1 must belong to the second factor.
 The set of elements of height 1 is c.e.

• Example: Look at $\mathbb{Z}(2) \oplus \mathbb{Z}(4) = \{0, 1\} \times \{0, 1, 2, 3\}$.

Elements of order 2: (0,2), (1,0), (1,2).

Elements of order 4: (0,1), (0,3), (1,1), (1,3).

Elements of height 1: (0,2)