TRIGONOMETRY Chapter 8

APLICACIONES GRÁFICAS DE LOS TRIÁNGULOS RECTÁNGULOS NOTABLES

¿Dados TRES segmentos de recta podrá siemp: construirs triáncals?

10*cm*

MOTIVATING STRATEGY

En este caso deberá elegirse uno de los segmentos, por ejemplo el mayor.

Usando una regla y compás, trazar un triángulo.

Repite estos pasos con otros segmentos, como por ejemplo: 10 cm, 4 cm y 3 cm. Coméntame tus resultados en la próxima clase!

HELICO THEORY

APLICACIONES GRÁFICAS DE LOS TRIÁNGULOS RECTÁNGULOS NOTABLES

Veamos:

Resumiendo:

R.T	30°	60°	37°	53°	45°
sen	$\frac{1}{2}$ $\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{3}{5}$	4 5	$\frac{1}{\sqrt{2}}$
cos	$\begin{array}{c} \sqrt{3} \\ \hline 2 \\ \hline 1 \\ \hline \end{array}$	$\frac{1}{2}$	$\frac{4}{5}$	$\frac{3}{5}$	$\frac{1}{\sqrt{2}}$
tan	$\frac{1}{\sqrt{3}}$	$\sqrt{3}$	$\frac{3}{4}$	$\frac{4}{3}$	1
cot	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$	$\frac{4}{3}$ $\frac{5}{4}$	3	1
sec	$\frac{2}{\sqrt{3}}$	2	$\frac{5}{4}$	5 3	$\sqrt{2}$
CSC	2	$\frac{2}{\sqrt{3}}$	$\frac{5}{3}$		$\sqrt{2}$

Del gráfico, calcule el perímetro del triángulo rectángulo ACB.

Resolución:

En el AACB (Notable de 37° y 53°)

Se observa:

$$3k = 18m \implies k = 6m$$

Luego:

$$AB = 5k = 5(6m) \Longrightarrow AB = 30m$$

$$AC = 4k = 4(6m) \Rightarrow AC = 24m$$

$$2p = 30m + 24m + 18m$$

$$\therefore 2p = 72m$$

En el triángulo rectángulo ABC, se tiene que AC = 10 cm. Calcule la longitud del

Resolución:

En el ABC (Notable de 37° y 53°)

Se observa: $5k = 10cm \implies k = 2cm$

Luego:

$$BC = 3k = 3(2cm) \Rightarrow BC = 6cm$$

En el ABDC (Notable 30° Y 60°)

Se observa: $2k = 6cm \implies k = 3cm$

Luego: DB = x = k

 \therefore DB = 3cm

Resolución:

En el ABDC (Notable de 30° y 60°)

Se observa:

$$2k = 4 \implies k = 2$$

Luego:

$$BD = y = k\sqrt{3} \implies BD = 2\sqrt{3}$$

$$\cos \beta = \frac{2\sqrt{3}}{8/4}$$

$$\therefore \cos\beta = \frac{\sqrt{3}}{4}$$

Resolución:

En el ABCD (Notable de 45°)

En el triángulo notable de 45° los catetos son iguales.

Se observa:

$$DC = BC \implies BC = 3$$

$$\tan \beta = \frac{3}{9}$$

$$\therefore \tan\beta = \frac{1}{3}$$

Resolución:

En el ABCD (Notable de 30° y 60°)

$$BC = K$$

$$DC = k\sqrt{3}$$

$$\rightarrow$$
 AD = $k\sqrt{3}$

$$\cot \alpha = \frac{2k\sqrt{3}}{k}$$

$$\therefore \cot \alpha = 2\sqrt{3}$$

Dos barras metálicas se encuentran apoyadas en su parte superior, tal como

muestra la figura. Calcule sen θ .

Resolución:

En el ABHA (Notable de 30° y 60°)

Se observa:

$$2k = 30cm \implies k = 15cm$$

Luego:

$$BH = k\sqrt{3} \implies BH = 15\sqrt{3}cm$$

Calculamos:
$$sen\theta = \frac{15\sqrt{3}cm}{45cm}$$

$$\therefore \operatorname{sen}\theta = \frac{\sqrt{3}}{3}$$

El siguiente gráfico muestra un jardín que tiene forma triangular. Para cercarlo con un alambre se ha colocado tres estacas que están representadas por los vértices A, B y C. Calcule la cotangente del ángulo formado por los alambres en la estaca A.

Resolución:

En el \triangle CHB (Notable de 30° y 60°)

Se observa:
$$2k = 8 \implies k = 4$$

Luego:

$$CH = K \implies CH = 4$$

$$BH = k\sqrt{3} \implies BH = 4\sqrt{3}$$

Calculamos:
$$\cot A = \frac{\sqrt[5]{10\sqrt{3}}}{\sqrt[4]{2}}$$

$$\therefore \cot A = \frac{5\sqrt{3}}{2}$$