Multiclass SVM Statistical Machine Learning Ryan Haunfelder

Multiclass SVMs

- SVMs were originally designed for binary classification.
- There are numerous methods for extending them for use with multiclass problems where $\mathcal{G} = \{1, 2, \dots G\}$.
 - One-against-all
 - One-against-one
 - Directed acyclic graph SVM (DAGSVM)
 - All-together methods

One-against-all

• The one-against method will fit G separate SVMs classifying each group vs the rest of the data. Thus, G programs are fit to the data $(j \in \mathcal{G})$,

$$\min_{\beta_0,\beta} \frac{\|\beta\|}{2} + C \sum_i \xi_i^j
f_j(X_i) \ge 1 - \xi_i^j \quad \text{if } Y_i = j
f_j(X_i) \le -(1 - \xi_i^j) \quad \text{if } Y_i \ne j$$

• A point is classified to the group which has the largest decision function. I.e. class= $\underset{j}{argmax}\hat{f}_{j}(X_{i})$.

Glass Example: One-against-all

• The glass data contains chemical analysis of 7 different types of glass. Potential features include refractive index (RI) and elemental composition (here we will investigate Aluminum-Al). Correct classification is helpful in crime scene analysis.

One-against-one

• Another approach is to define machines for all $\frac{k(k-1)}{2}$ pairs of classes.

$$\begin{aligned} & \min_{\beta_0,\beta} \frac{\|\beta\|}{2} + C \sum_i \xi_i^{jk} \\ & f_{jk}(X_i) \ge 1 - \xi_i^{jk} \quad \text{if } Y_i = j \\ & f_{jk}(X_i) \le -(1 - \xi_i^{jk}) \quad \text{if } Y_i = k \end{aligned}$$

- A new point is classified by obtaining class vote from each classifier and choosing the class with the most votes. This strategy leads to issues with potential ties.
- This is the default method of the svm function in the e1071 package.

Glass Example: One-against-one

Directed acyclic graph SVM (DAGSVM)

 A directed acyclic decision graph is created with nodes representing one-vs-one SVMs. The path taken through the DAG is called the evaluation path.

 This is advantageous because it allows for analysis of generalization. Let,

$$\epsilon_j(\mathcal{G}) = P\{x : x \text{ in class j and } x \text{ is misclassified by } G$$

or x is misclassified as class j by G

Directed acyclic graph SVM (DAGSVM)

• If we are able to correctly distinguish class j from the other classes in a random m-sample with a DDAG G over N classes containing K decision nodes with margins γ_i at node i, then with probability $1-\delta$,

$$\epsilon_j(G) \leq \frac{130R^2}{m} \left(D' \log 4em \log 4m + \log \frac{2(2m)^{N-1}}{\delta} \right)$$

where $D' = \sum \frac{1}{\gamma_i^2}$ and R is the radius of a ball containing the support of the distribution.

All-together Methods

• Cranmer and Singer and Weston and Watkins propose an approach with a single optimization problem.

Problem	One-against-one		DAG		One-against-all		[25], [27]		C&S	
	(C, γ)	rate								
iris	$(2^{12}, 2^{-9})$	97.333	$(2^{12}, 2^{-8})$	96.667	$(2^9, 2^{-3})$	96.667	$(2^{12}, 2^{-8})$	97.333	$(2^{10}, 2^{-7})$	97.333
wine	$(2^7, 2^{-10})$	99.438	$(2^6, 2^{-9})$	98.876	$(2^7, 2^{-6})$	98.876	$(2^0, 2^{-2})$	98.876	$(2^1, 2^{-3})$	98.876
glass	$(2^{11}, 2^{-2})$	71.495	$(2^{12}, 2^{-3})$	73.832	$(2^{11}, 2^{-2})$	71.963	$(2^9, 2^{-4})$	71.028	$(2^4, 2^1)$	71.963
vowel	$(2^4, 2^0)$	99.053	$(2^2, 2^2)$	98.674	$(2^4, 2^1)$	98.485	$(2^3, 2^0)$	98.485	$(2^1, 2^3)$	98.674
vehicle	$(2^9, 2^{-3})$	86.643	$(2^{11}, 2^{-5})$	86.052	$(2^{11}, 2^{-4})$	87.470	$(2^{10}, 2^{-4})$	86.998	$(2^9, 2^{-4})$	86.761
segment	$(2^6, 2^0)$	97.403	$(2^{11}, 2^{-3})$	97.359	$(2^7, 2^0)$	97.532	$(2^5, 2^0)$	97.576	$(2^0, 2^3)$	97.316
dna	$(2^3, 2^{-6})$	95.447	$(2^3, 2^{-6})$	95.447	$(2^2, 2^{-6})$	95.784	$(2^4, 2^{-6})$	95.616	$(2^1, 2^{-6})$	95.869
satimage	$(2^4, 2^0)$	91.3	$(2^4, 2^0)$	91.25	$(2^2, 2^1)$	91.7	$(2^3, 2^0)$	91.25	$(2^2, 2^2)$	92.35
letter	$(2^4, 2^2)$	97.98	$(2^4, 2^2)$	97.98	$(2^2, 2^2)$	97.88	$(2^1, 2^2)$	97.76	$(2^3, 2^2)$	97.68
shuttle	$(2^{11}, 2^3)$	99.924	$(2^{11}, 2^3)$	99.924	$(2^9, 2^4)$	99.910	$(2^9, 2^4)$	99.910	$(2^{12}, 2^4)$	99.938

References I

Koby Crammer and Yoram Singer.

On the learnability and design of output codes for multiclass problems.

Machine Learning, 47:201–233, 2002.

Chih-Wei Hsu and Chih-Jen Lin.

A comparison of methods for multiclass support vector machines

IEEE Transactions on Neural Networks, 13:415–425, 2002.

JC Platt, N Cristianini, and J Shawe-Taylor.

Large Margin DAGs for Multiclass Classification.

nips, pages 547-553, 1999.