L3 GRAPHES - TD 3 PARCOURS EN PROFONDEUR

Exercice 1 Soit G le graphe présenté en Figure 1-(a). et soit H le graphe présenté en Figure 1-(b). Déroulez un exemple du parcours en profondeur sur G puis sur H en partant du sommet a. Donnez, pour chaque sommet les dates de débuts et de fins. Donnez également les forêts de parcours pour chacun des graphes.

Figure 1.

Exercice 2

- (1) Quelle est la complexité de l'algorithme du parcours en profondeur?
- (2) Dans un graphe orienté a-t-on un moyen de classer les différents types d'arcs rencontrés :
 - arcs liaison
 - arcs arrières
 - arcs avant et
 - arcs transverses

en utilisant les couleurs des sommets (i.e. Blanc , Gris ou Noir et/ou les dates de débuts et de fins.

(3) Modifiez l'algorithme du parcous en profondeur de manière à ce que, lorsque le graphe contient un circuit (ou un cycle), l'algorithme puisse exhiber le circuit.

Exercice 3 Donnez un contre exemple à la proposition suivante :

Dans un graphe orienté s'il existe un chemin entre un sommet $\mathfrak u$ et un sommet $\mathfrak v$ et si $d[\mathfrak u] < d[\mathfrak v]$ alors $\mathfrak v$ est un descendant de $\mathfrak u$.

Exercice 4 Soit G = (V, E) un graphe orienté sans circuit. Nous souhaitons rendre le graphe fortement connexe. Combien d'arcs doit on ajouter?

Exercice 5 Soit G = (V, E) un graphe orienté sans circuit. Est-ce que le graphe code la relation d'un ordre partiel P? Nous avons un arc de $\mathfrak a$ vers $\mathfrak b$ ssi $\mathfrak a <_P \mathfrak b$