Non-linear Least-Squares Fitting 2015-16 MSc Ecology, Evolution and Conservation, Silwood Park

Samraat Pawar

Department of Life Sciences
(Silwood Park)

Imperial College London

February 15, 2016

OUTLINE

- Why Non-Linear Least Squares regression / fitting?
- The NLLS fitting method
- NLLS in R
- Afternoon practicals overview (two examples)

LINEAR MODELS ARE GREAT

- These are *all* good linear models (huh?!)
- The data can be modelled as linear combination of variables and coefficients
- Easily fitted using Ordinary Least Squares (OLS) regression
- Linear models can include curved relationships (e.g. polynomials)
- OK, so then why Non-Linear Least Squares (NLLS) fitting?

WHY NLLS? – FIRST, WHAT MAKES A MODEL NON-LINEAR?

• OLS regression can be used to fit both linear and nonlinear *equations* that *intrinsically linear*

e.g., Straight line:
$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

e.g., Polynomial: $y_i = \exp(\beta_0) + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i$

- Indeed, for OLS to work, we need *intrinsic linearity* i.e., the equation to be fitted (model) should be *linear in the parameters*
- Are these models linear in their parameters?
 - $y_i = \beta_0 + \beta_1 x_i^{\beta_2} + \varepsilon_i$
 - $y_i = \beta_0 e^{\beta_2 x_i} + \varepsilon_i$

NO!

Recall what the Least Squares method does:

• Consider a predictor *x*, data *y*, *n* observations, and a model that we want to fit to the data:

$$f(x_i, \boldsymbol{\beta}) + \varepsilon_i$$
 where $\boldsymbol{\beta} = (\beta_1, \beta_2, \dots, \beta_k)$ are the model's k parameters

• The objective is to find estimates of values of the k parameters $(\hat{\beta}_j)$ that minimize the sum (S) of squared residuals (r_i) (AKA RSS): $S = \sum_{i=1}^n |y_i - f(x_i, \beta)|^2 = \sum_{i=1}^n r_i^2$

$$y_1 = \beta_0 + \beta_1 x_1 + \varepsilon_i$$

$$9.50 = 5 + 4 \times 1 + 0.50$$

 $11.00 = 5 + 4 \times 2 - 2.00$
 $19.58 = 5 + 4 \times 3 + 2.58$
 $20.00 = 5 + 4 \times 4 - 1.00$

$$\beta_0 = 5; \beta_1 = 4$$

THE LINEAR LEAST-SQUARES SOLUTION

OLS minimizes the *sum* of the *squared* residuals

That's all well and good, but we can use maths instead of brute-force computation!

- Our model is $f(x_i, \beta) + \varepsilon_i$
- We want to find estimates of values of the parameters $(\hat{\beta}_j)$ that *minimize* the sum (*S*) of squared residuals (r_i) (AKA "RSS") $S = \sum_{i=1}^{n} [y_i f(x_i, \beta)]^2 = \sum_{i=1}^{n} r_i^2$
- For this we can solve $\frac{\partial S}{\partial \beta_i} = 0, j = 0, 1, 2, \dots, k$ to find the *minimum*
- That is, we need to solve $\frac{\partial \sum_{i=1}^{n} r_i^2}{\partial \beta_i} = 0$
- Or, $2\sum_{i=1}^{n} r_i \frac{\partial r_i}{\partial \beta_i} = 0$

- Thus, solving $2\sum_{i=1}^{n} r_i \frac{\partial r_i}{\partial \beta_i} = 0$ boils down to finding the "gradient" $\frac{\partial r_i}{\partial \beta_i}$
- This is not a problem in linear models, because this gradient is fully solvable as the equation is *intrinsically linear*
- That is, the solution of $\frac{\partial r_i}{\partial \beta_i}$ is simple (enough)

- For example, if $f(x_i, \beta) + \varepsilon_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
- That is, our model is $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ (Linear Regression)
- Then we want to solve $\frac{\partial S}{\partial \beta_0} = \sum_{i=1}^n \frac{\partial [y_i (\beta_0 + \beta_1 x_i)]^2}{\partial \beta_0} = 0$ $\frac{\partial S}{\partial \beta_1} = \sum_{i=1}^n \frac{\partial [y_i (\beta_0 + \beta_1 x_i)]^2}{\partial \beta_1} = 0$

• And, solving

$$\frac{\partial S}{\partial \beta_0} = \sum_{i=1}^n \frac{\partial [y_i - (\beta_0 + \beta_1 x_i)]^2}{\partial \beta_0} = 0$$
$$\frac{\partial S}{\partial \beta_1} = \sum_{i=1}^n \frac{\partial [y_i - (\beta_0 + \beta_1 x_i)]^2}{\partial \beta_1} = 0$$

just boils down to solving two simultaneous equations because $\frac{\partial r_i}{\partial \beta_i}$ is simple *because* the model is intrinsically linear:

$$-n\beta_0 + \sum_{i=1}^n y_i + \beta_1 \sum_{i=1}^n x_i = 0$$

$$\sum_{i=1}^n x_i y_i - \beta_0 \sum_{i=1}^n x_i + \beta_1 \sum_{i=1}^n x_i^2 = 0$$

• That is, we need to solve $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ (this is what R solves when you use lm())

THE LINEAR LEAST-SQUARES SOLUTION

There is only one unique solution, which gives the OLS fitted parameter values for $\beta = (\beta_0, \beta_1)$:

- So, then, in an intrinsically non-linear model such as $y_i = \beta_0 e^{\beta_2 x_i} + \varepsilon_i$ the derivatives $\frac{\partial r_i}{\partial \beta_i}$ are naughty
- That is, they are functions of both x and the parameters β_j , so the gradient equations do not have a solution like the OLS case
- ullet So the nice trick of solving Y=Xeta+arepsilon is impossible *mathematically*

SO — ENTER NLLS!

But we can use a computer!

- Choose initial values for the β_i 's
- Then, "refine" the parameters *iteratively* by calculating $\frac{\partial r_i}{\partial \beta_j}$ approximately this approximation is the *Jacobian* (the gradient), which is a matrix of the $\frac{\partial r_i}{\partial \beta_i}$'s
- Whether a refinement has taken place in any step of the iteration is determined by re-calculating the residuals at that step
- Eventually, if it all goes well, we find a combination of β_j 's that is *very close* to the desired solution $\frac{\partial S}{\partial \beta_i} = 0, j = 0, 1, 2, \dots, k$

ENTER NLLS!

The end result is (approximately) the same:

OK, FINE, WHY WOULD \overline{I} EVER NEED TO WORRY ABOUT NLLS?

- Many observations in biology are just not well-fitted by a linear model
- That is, the underlying biological phenomena are not well-described by a linear model
- Examples:
 - Logistic growth model
 - Michaelis-Menten biochemical kinetics (two parameters V_{\max} and K_m : $v = \frac{V_{\max}[S]}{K_m + |S|}$
 - Responses of metabolic rates to changing temperature (practical 1)
 - Consumer-Resource (e.g., predator-prey) functional responses (practical 2)
 - Time-series data (e.g., fitting sinusoidal function)

EXAMPLE 1: TEMPERATURE AND METABOLISM

$$B = B_0 e^{-\frac{E}{kT}} f(T, T_{pk}, E_D)$$

T = temperature(K)

 $k = \text{Boltzmann constant (eV K}^{-1})$

E = Activation energy (eV)

 T_{pk} = Temperature of peak performance

 $\dot{E_D}$ = Deactivation energy (eV)

(J H vant Hoff 1884, S Arrhenius 1889)

- Surely there is more to thermal responses?
 - Oxygen limitation
 - Complexity of metabolic network
 - Hormonal regulation
- What about alternative models?

EXAMPLE 2: FUNCTIONAL RESPONSES

$$f(x_R) = \frac{ax_R^{q+1}}{1+hax_R^{q+1}}$$
 (Holling, 1959)

 x_R = Resource density (Mass / Area or Volume)

a = Search rate (Area or Volume / Time)

h = Handling time

q =Shape parameter (dimensionless)

Density of prey population

Note that:

- NLLS fitting can yield h < 0, q < 0, or both
- h < 0 is biologically impossible but indicates an upward curving response
- q < 0 is biologically unlikely as it indicates a decline in search rate with resource density (but is useful as a measure of deviation away from a type III response)

NLLS FITTING IN R

So the general procedure is:

- Start with an initial value for each parameter in the model
- Generate the curve defined by the initial values
- Calculate the residual sum-of-squares (RSS)
- Adjust the parameters to make the curve come closer to the data points This the tricky part
- Adjust the parameters again so that the curve comes even closer to the points (RSS decreases)
- 6 Repeat 4–5
- Stop simulations when the adjustments make virtually no difference to the RSS

NLLS FITTING IN R

The tricky part — adjust parameters to make curve come closer to the data points (step 4) has at least two algorithms:

- The Gauss-Newton algorithm is the default in the nls package (part of the stats base package) — good in many cases, but doesn't work very well if the model is mathematically weird (the optimization landscape is difficult) and the starting values for parameters are far-off-optimal
- The Levenberg-Marquardt (LM) switches switches between Gauss-Newton and "gradient descent" and is more robust against starting values that are far-off-optimal — available in R through the the minpack. 1m package
 - http://cran.r-project.org/web/packages/minpack.lm
- The command is nlsLM

NLLS FITTING IN R

- Once the algorithm as converged (hopefully but you may be surprised how well it usually works), you need to get the goodness of fit measures
- First, of course, examine the fits visually
- Also, report the best-fit results, including:
 - Sums of deviations of the data points from the final model fit (final RSS)
 - R^2
 - Estimated coefficients
 - For each coefficient, standard error (can be used for CI's), t-statistic and corresponding (two-sided) p-value
- The function summary.nls will give you all these measures
- Remember, the precise parameter values you obtain will depend in part on the initial values chosen and the convergence criteria
- You may also want to compare multiple models...

NLLS ASSUMPTIONS

NLLS-regression has all the assumptions of OLS-regression:

- No (in practice, minimal) measurement error in explanatory variable (*x*-axis variable)
- Data have constant normal variance errors in the *y*-axis are homogeneously distributed over the *x*-axis range
- The measurement/observation error distribution is Gaussian for example, what would the error distribution of this non-linear model be: $y_i = \beta_0 e^{\beta_2 x_i} + \varepsilon_i$
- What if the errors are not normal? use maximum likelihood instead! (e.g., using nlm for optimizing/fitting)

COMPARING MODELS

You can use information theory (including AIC and BIC) to compare models. The lower the AIC or BIC, the better. This is how you can calculate these (using \mathbb{R} syntax):

- residuals = Observations Predictions
- rss = sum(residuals ^ 2)
- Then, AIC is n * log((2 * pi) / n) + n + 2 + n * log(rss) + 2 * k (what is n and k?)
- And BIC is n + n * log(2 * pi) + n * log(rss / n) + (log(n)) * (k + 1)
- For both AIC and BIC, If model **A** has AIC lower by 2-3 or more than model **B**, its better Differences of less than 2-3 dont really matter

Also note that:

• $R^2 = 1 - (rss/tss)$, where tss is total sum of squares: tss = sum((Observations - mean(Predictions)) ^ 2)

PRACTICAL 1: FITTING THERMAL RESPONSES

- Use nls (or nlsLM) to fit the ThermRespData.csv dataset to the model: $B = B_0 e^{-\frac{E}{kT}} f(T, T_{vk}, E_D)$
- Plot the data and output coefficient estimates and fit stats to a file
- Here's an example of how a fitted curve looks (only two fitted parameters are shown):

PRACTICAL 2: FITTING FUNCTIONAL RESPONSES

• Use nls (or nlsLM) to fit CRat.csv dataset to the model:

$$f(x_R) = c = \frac{ax_R^{q+1}}{1 + hax_R^{q+1}}$$
(c is consumption rate)

- Plot the data and output coefficient estimates and fit stats to a file
- Here's an example of how a fitted curve looks:

PRACTICALS: GENERAL INSTRUCTIONS

- You can choose either practical, or do both
- Make sure you have a good look at the data first by plotting them up in a loop
- Keep workflow organized in Code, Results, Data!
- You may also find your own model to fit some data related to your interests or project
- Your demonstrators and I will help you get started in any case

YOU CAN ALSO USE MIXED-EFFECTS MODELS IN NLLS

- You can use mixed-effects modelling with NLLS in R
- The package is nlme https://stat.ethz.ch/R-manual/R-devel/library/nlme/html/nlme.html
- You are probably stuck with the Gauss-Newton algorithm with nlme though...

READINGS

 Motulsky, Harvey, and Arthur Christopoulos. Fitting models to biological data using linear and nonlinear regression: a practical guide to curve fitting. OUP USA, 2004.