Deep Learning and Neural Networks

Topic 4: Optimization

Ricardo Abel Espinosa Loera, McS

Researcher in DL & Computer Vision

- Optimization algorithms are the basic engine behind deep learning methods that enable models to learn from data by adapting their parameters
- •They solve the problem of the minimization of an objective function that measures the mistakes made by the model
- o e.g. prediction error (classification), negative reward (reinforcement learning)
- Work by making a sequence of small incremental changes to model parameters that are each guaranteed to reduce the objective by some small amount

Recap

Recap

Training neural networks

Keras Implementation

```
model = Sequential()
model.add(Dense(H, input_dim=N))  # weight matrix dim [N * H]
model.add(Activation("tanh"))
model.add(Dense(K))  # weight matrix dim [H x K]
model.add(Activation("softmax"))
```


Largest difference between simple ML models and neural networks is:

Nonlinearity of neural network causes interesting loss functions to be non-convex

Logistic Regression Loss:

Linear Regression with Basis Functions:
$$E_{_{D}}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ \ t_{_{n}} - \mathbf{w}^{^{T}} \varphi(x_{_{n}}) \ \right\}^{^{2}}$$

Neural Network Loss:
$$J(\boldsymbol{\theta}) = -E_{\boldsymbol{x}, \boldsymbol{y} \sim \hat{p}_{data}} \log p_{\text{model}}(\boldsymbol{y} \mid \boldsymbol{x})$$

Use iterative gradient-based optimizers that merely drives cost to low value, rather than

- Exact linear equation solvers used for linear regression or
- convex optimization algorithms used for logistic regression or SVMs

Notation

Parameters:

$$heta \in \mathbf{R}^{n}$$
 dimension

Real-valued objective function :

$$h(\theta)$$

Goal of optimization:

$$\theta^* = \underset{\theta}{\operatorname{arg\,min}} h(\theta)$$

1D example objective function

Motivation Notation

Motivation Notation

NN training objective

 The standard neural network training objective is given by:

$$h(\theta) = \frac{1}{m} \sum_{i=1}^{m} \ell(y_i, f(x_i, \theta))$$

where:

 $\ell(y,z)$ is a loss function measuring disagreement between y and z

and

 $f(x,\theta)$ is a neural network function taking input x and outputing some prediction

Landscape of the training objective

Parameter space

Example space

Landscape of the training objective

Parameter space

Example space

Definition

Basic gradient descent iteration:

$$\theta_{k+1} = \theta_k - \alpha_k \nabla h(\theta_k)$$

Learning rate: α_k (aka "step size")

Gradient:
$$\nabla h(\theta) =$$

$$\frac{\partial h(\theta)}{\partial [\theta]_1}$$

$$\frac{\partial h(\theta)}{\partial [\theta]_2}$$

$$\vdots$$

$$\frac{\partial h(\theta)}{\partial [\theta]_n}$$

Intuition: Steepest Descent

$$\theta_{k+1} = \theta_k - \alpha_k \nabla h(\theta_k)$$

• Gradient direction $\nabla h(\theta)$ gives greatest reduction in $h(\theta)$ per unit of change* in θ .

• If $h(\theta)$ is "sufficiently smooth", and learning rate small, gradient will keep pointing down-hill over the region in which we take our step

Minimizing a local approximation

• 1st-order Taylor series for $h(\theta)$ around current θ is:

$$h(\theta + d) \approx h(\theta) + \nabla h(\theta)^{\top} d$$

- $\bullet \quad \text{For small enough} \quad d \quad \text{this will be a reasonable} \\ \text{approximation}$
- Gradient update computed by minimizing this within a sphere of radius $_r$:

$$-\alpha \nabla h(\theta) = \underset{d:||d|| \le r}{\operatorname{arg\,min}} \left(h(\theta) + \nabla h(\theta)^{\top} d \right)$$

where

$$r = \alpha \|\nabla h(\theta)\|$$

Problems and Limitations

Gradient Descent Technical Assumptions

• $h(\theta)$ has Lipschitz continuous derivatives (i.e. is "Lipschitz smooth"):

$$\|\nabla h(\theta) - \nabla h(\theta')\| \le L\|\theta - \theta'\|$$
 (an **upper bound** on the curvature)

• $h(\theta)$ is strongly convex (perhaps only near minimum):

$$h(\theta+d) \geq h(\theta) + \nabla h(\theta)^\top d + \frac{\mu}{2} \|d\|^2 \quad \text{(a lower bound on the curvature)}$$

And for now: Gradients are computed exactly (i.e. not stochastic)

Gradient Descent
Convergence Theory: Upper Bounds

If previous conditions hold and we take $\alpha_k = \frac{Z}{L + \mu}$:

$$h(\theta_k) - h(\theta^*) \le \frac{L}{2} \left(\frac{\kappa - 1}{\kappa + 1}\right)^{2k} \|\theta_0 - \theta^*\|^2$$

where $\kappa = L/\mu$.

Number of iterations to achieve $h(\theta_k) - h(\theta^*) \le \epsilon$ is

$$k \in \mathcal{O}\left(\kappa \log \frac{1}{\epsilon}\right)$$

minimizer

Gradient Descent
Convergence Theory: useful in practice?

- Issues with bounds such as this one:
 - too pessimistic (they must cover worst-case examples)
 - some assumptions too strong (e.g. convexity)
 - other assumptions too weak (real problems have additional useful structure)
 - rely on crude measures of objective (e.g. condition numbers)
 - usually focused on asymptotic behavior
- The design/choice of an optimizer should always be informed by practice more than anything else. But theory can help guide the way and build intuitions.

Momentum Methods

Motivation

Motivation:

- the gradient has a tendency to flip back and forth as we take steps when the learning rate is large
- e.g. the narrow valley example
- The key idea:
 - accelerate movement along directions that point consistently down-hill across many consecutive iterations (i.e. have low curvature)
- How?
 - o treat current solution for θ like a "ball" rolling along a "surface" whose height is given by $h(\theta)$, subject the force of gravity

Momentum Methods

Motivation

Momentum Methods Motivation

- How to update the weights based on the loss function
- Learning rate (+scheduling)
- Stochastic gradient descent, momentum, and their variants
 - RMSProp is usually a good first choice
 - More info:
 - http://ruder.io/optimizing-gradient-descent/

Momentum Methods

Mathematical Formulation

Classical Momentum:

$$v_{k+1}=\eta_k v_k - \nabla h(\theta_k)$$
 $v_0=0$ Learning rate: α_k Momentum constant: η_k

Nesterov's variant:

$$v_{k+1} = \eta_k v_k - \nabla h(\theta_k + \alpha_k \eta_k v_k) \qquad v_0 = 0$$

$$\theta_{k+1} = \theta_k + \alpha_k v_{k+1}$$

Momentum Methods

Narrow 2D Valley Revisited

Gradient descent with large

learning rate

Gradient descent with small learning rate

Momentum method

Momentum Methods Upper Bounds

Given objective $h(\theta)$ satisfying same technical conditions as before, and careful choice of α_k and η_k , Nesterov's momentum method satisfies:

$$h(\theta_k) - h(\theta^*) \le L\left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa}}\right)^k \|\theta_0 - \theta^*\|^2 \qquad \kappa = \frac{L}{\mu}$$

Number of iterations to achieve $h(\theta_k) - h(\theta^*) \leq \epsilon$:

$$k \in \mathcal{O}\left(\sqrt{\kappa}\log\frac{1}{\epsilon}\right)$$

Momentum Methods 1st order methods and lower bounds

A first-order method is one where updates are linear combinations of observed gradients. i.e.:

$$\theta_{k+1} - \theta_k = d \in \text{Span}\{\nabla h(\theta_0), \nabla h(\theta_1), \dots, \nabla h(\theta_k)\}\$$

- Included:
 - gradient descent
 - momentum methods
 - conjugate gradients (CG)
- Not included:
 - preconditioned gradient descent / 2nd-order methods

Momentum Methods Comparison

To achieve $h(\theta_k) - h(\theta^*) \le \epsilon$ the number of iterations k satisfies:

- (Worst-case) lower bound for 1st-order methods: $k \in \Omega\left(\sqrt{\kappa}\log\frac{1}{\epsilon}\right)$
- Upper bound for gradient descent: $k \in \mathcal{O}\left(\kappa\log\frac{1}{\epsilon}\right)$
- Upper bound for GD w/ Nesterov's momentum: $k \in \mathcal{O}\left(\sqrt{\kappa}\log\frac{1}{\epsilon}\right)$

Momentum Methods

Comparison

Momentum Methods

Comparison

2nd Order Methods Limitations of 1st order methods

 For any 1st-order method, the number of steps needed to converge grows with "condition number":

$$\kappa = rac{L}{\mu}$$
 Min curvature

- This will be very large for some problems (e.g. certain deep architectures)
- 2nd-order methods can improve (or even eliminate) this dependency

2nd Order MethodsDerivation of Newton's Method

Approximate $h(\theta)$ by its 2nd-order Taylor series around current θ :

$$h(\theta + d) \approx h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} H(\theta) d$$

Minimize this local approximation to obtain:

$$d = -H(\theta)^{-1} \nabla h(\theta)$$

Update current iterate with this:

$$\theta_{k+1} = \theta_k - H(\theta)^{-1} \nabla h(\theta_k)$$

1 2nd Order Methods

2D Narrow Valley Revisited (again)

2nd Order MethodsComparison to Gradient Descent

Maximum allowable global learning rate for GD to avoid divergence:

$$lpha=1/L$$
 L is maximum curvature aka "Lipschitz constant"

Gradient descent implicitly minimizes a bad approximation of 2nd-order Taylor series:

$$h(\theta + d) \approx h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} H(\theta) d$$
$$\approx h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} (LI) d$$

LI is too pessimistic / conservative an approximation of $H(\theta)$! Treats all directions as having max curvature.

2nd Order MethodsLocal Quadratic Approximation

- Quadratic approximation of objective is only trustworthy in a local region around current θ
- Gradient descent (implicitly) approximates the curvature everywhere by its global max (and so doesn't have this problem)
- Newton's method uses $H(\theta)$, which may become an underestimate in the region we are taking our update step

Solution: Constrain update d to lie in a "trust region" R around, where approximation remains "good enough"

2nd Order Methods Trust regions and "damping"

• If we take $R = \{d : ||d||_2 \le r\}$ then computing

$$\underset{d \in R}{\operatorname{arg\,min}} \left(h(\theta) + \nabla h(\theta)^{\top} d + \frac{1}{2} d^{\top} H(\theta) d \right)$$

is often equivalent to

$$-(H(\theta)+\lambda I)^{-1}\nabla h(\theta) = \operatorname*{arg\,min}_{d} \left(h(\theta)+\nabla h(\theta)^{\top}d+\frac{1}{2}d^{\top}(H(\theta)+\lambda I)d\right)$$
 for some λ .

 λ depends on r in a complicated way, but we can just work with λ directly

2nd Order MethodsAlternative Curvature Matrices

 $H(\theta)$ does not necessarily give the best quadratic approximation for optimization. Different replacements for $H(\theta)$ could produce:

2nd Order MethodsAlternative Curvature Matrices

- The most important family of related examples includes:
 - Generalized Gauss-Newton matrix (GGN)
 - Fisher information matrix
 - "Empirical Fisher"
- Nice properties:
 - always positive semi-definite (i.e. no negative curvature)
 - give parameterization invariant updates in small learning rate limit (unlike Newton's method!)
 - work much better in practice for neural net optimization

2nd Order Methods Limitations

- ullet For neural networks, $heta \in {
 m I\!R}^n$ can have 10s of millions of dimensions
- We simply cannot compute and store an $n \times n$ matrix, let alone invert it!
- To use 2nd-order methods, we must simplify the curvature matrix's
 - computation,
 - o storage,
 - o and inversion

This is typically done by approximating the matrix with a simpler form.

Motivation

 Typical objectives in machine learning are an average over training cases of case-specific losses:

$$h(\theta) = \frac{1}{m} \sum_{i=1}^{m} h_i(\theta)$$

ullet can be **very** big, and so computing the gradient gets expensive:

$$\nabla h(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla h_i(\theta)$$

Stochastic Methods Mini Batching

- ullet Fortunately there is often significant statistical overlap between $h_i(heta)$'s
- Early in learning, when "coarse" features of the data are still being learned, most $\nabla h_i(\theta)$'s will look similar
- Idea: randomly subsample a "mini-batch" of training cases $S\subset\{1,2,...,m\}$ of size $b\ll m$, and estimate gradient as:

$$\widetilde{\nabla}h(\theta) = \frac{1}{b} \sum_{i \in S} \nabla h_i(\theta)$$

Mini Batching

Stochastic Methods Stochastic Gradient Descent

Stochastic gradient descent (SGD) replaces $\nabla h(\theta)$ with its mini-batch estimate $\nabla h(\theta)$, giving:

$$\theta_{k+1} = \theta_k - \alpha_k \widetilde{\nabla} h(\theta_k)$$

- To ensure convergence, need to do one of the following:
 - Decay learning rate: $\alpha_k = 1/k$
 - Use "Polyak averaging": $\bar{\theta}_k=rac{1}{k+1}\sum_{i=0}^k heta_i$ or $\bar{\theta}_k=(1-eta) heta_k+eta \bar{ heta}_{k-1}$
 - Slowly increase the mini-batch size during optimization

Convergence

- Stochastic methods converge slower than corresponding non-stochastic versions
- Asymptotic rate for SGD with Polyak averaging:

Gradient estimate covariance matrix

$$E[h(\theta_k)] - h(\theta^*) \in \frac{1}{2k} \operatorname{tr} \left(H(\theta^*)^{-1} \Sigma \right) + \mathcal{O} \left(\frac{1}{k^2} \right)$$

Iterations to converge:

$$k \in \mathcal{O}\left(\operatorname{tr}\left(H(\theta^*)^{-1}\Sigma\right)\frac{1}{\epsilon}\right) \qquad \text{vs} \qquad k \in \mathcal{O}\left(\sqrt{\kappa}\log\frac{1}{\epsilon}\right)$$

Stochastic Methods Stochastic 2nd order and momentum methods

- Mini-batch gradients estimates can be used with 2nd-order and momentums methods too
- Curvature matrices estimated stochastically using decayed averaging over multiple steps
- No stochastic optimization method that sees the same amount of data can have better asymptotic convergence speed than SGD with Polyak averaging
- But... pre-asymptotic performance usually matters more in practice. So stochastic 2nd-order and momentum methods can still be useful if:
 - the loss surface curvature is bad enough and/or
 - the mini-batch size is large enough

Experiements on Deep Nets

experiment

- Adam
- K-FAC + momentum
- Momentum

Details

- Mini-batch size of 512
- Imagenet dataset
- 100 layer deep convolutional net without skips or batch norm
- Carefully initialized parameters

Experiments on Deep Nets

OptimizationSummary

- Optimization methods:
 - enable learning in models by adapting parameters to minimize some objective
 - main engine behind neural networks
- 1st-order methods (gradient descent):
 - take steps in direction of "steepest descent"
 - o run into issues when curvature varies strongly in different directions
- Momentum methods:
 - use principle of momentum to accelerate along directions of lower curvature
 - obtain "optimal" convergence rates for 1st-order methods

Optimization

Summary

2nd-order methods:

- improve convergence in problems with bad curvature, even more so than momentum methods
- require use of trust-regions/damping to work well
- also require the use of curvature matrix approximations to be practical in high dimensions (e.g. for neural networks)

Stochastic methods:

- use "mini-batches" of data to estimate gradients
- asymptotic convergence is slower
- pre-asymptotic convergence can be sped up using 2nd-order methods and/or momentum