260

Calcule $\mathbf{u} \times \mathbf{v}$, donde $\mathbf{u} = 2\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}$ y $\mathbf{v} = -3\mathbf{i} - 2\mathbf{j} + \mathbf{k}$.

SOLUCIÓN
$$\blacktriangleright$$
 $\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 4 & -5 \\ -3 & -2 & 1 \end{vmatrix} = (4 - 10)\mathbf{i} - (2 - 15)\mathbf{j} + (-4 + 12)\mathbf{k}$
= $-6\mathbf{i} + 13\mathbf{i} + 8\mathbf{k}$

El siguiente teorema resume algunas propiedades del producto cruz. Su demostración se deja como ejercicio (vea los problemas 41 al 44 de esta sección).

Teorema 4.4.2

Sean **u**, **v** y **w** tres vectores en \mathbb{R}^3 y sea α un escalar, entonces:

- i) $\mathbf{u} \times \mathbf{0} = \mathbf{0} \times \mathbf{u} = \mathbf{0}$
- ii) $\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$ (propiedad anticonmutativa para el producto vectorial).
- iii) $(\alpha \mathbf{u}) \times \mathbf{v} = \alpha (\mathbf{u} \times \mathbf{v})$
- iv) $\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$ (propiedad distributiva para el producto vectorial).
- v) $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$ (esto se llama triple producto escalar de \mathbf{u} , \mathbf{v} y \mathbf{w}).
- vi) $\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{v} \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{0}$ (es decir, $\mathbf{u} \times \mathbf{v}$ es ortogonal a \mathbf{u} y a \mathbf{v}).
- vii) Si tanto u como v no son el vector cero, entonces u y v son paralelos si y sólo si $\mathbf{u} \times \mathbf{v} = \mathbf{0}$.

El inciso vi) del teorema 4.4.2 es el que se usa con más frecuencia. Se vuelve a establecer como sigue:

El producto cruz $\mathbf{u} \times \mathbf{v}$ es ortogonal tanto a \mathbf{u} como a \mathbf{v} .

Vector normal

Regla de la mano derecha

Se sabe que $\mathbf{u} \times \mathbf{v}$ es un vector ortogonal a \mathbf{u} y v, pero siempre habrá *dos* vectores unitarios ortogonales a \mathbf{u} y v (vea la figura 4.27). Los vectores \mathbf{n} y $-\mathbf{n}$ (\mathbf{n} por la letra inicial de **normal**) son ambos ortogonales a \mathbf{u} y v. ¿Cuál tiene la dirección de $\mathbf{u} \times \mathbf{v}$? La respuesta está dada por la **regla de la mano derecha**. Si se coloca la mano derecha de manera que el índice apunte en la dirección de \mathbf{u} y el dedo medio en la dirección de \mathbf{v} , entonces el pulgar apuntará en la dirección de $\mathbf{v} \times \mathbf{v}$ (vea la figura 4.28).

Una vez que se ha estudiado la dirección del vector $\mathbf{u} \times \mathbf{v}$, la atención se dirige a su magnitud.

Figura 4.27

Existen exactamente dos vectores, \mathbf{n} y $-\mathbf{n}$, ortogonales a dos vectores no paralelos \mathbf{u} y \mathbf{v} en \mathbb{R}^3 .

 $\mathbf{v} \times \mathbf{u}$

Figura 4.28

La dirección de **u** × **v** se puede determinar usando la regla de la mano derecha.