

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- ✓ C.Maths
- Physics
- Chemistry

+ more

வடமாகாணக் கல்வித் திணைக்களத்துடன் இணைந்து தொண்டைமானாறு வெளிக்கள நிலையம் நடாத்தும்

Field Work Centre தவணைப் பரீட்சை, மார்ச் - 2019 Term Examination, March - 2019

தரம் :- 12 (2020)

இணைந்த கணிதம்

நேரம் :- 3 மணித்தியாலம் 10 நிமிடம்

அறிவுறுத்தல்கள்:

- பகுதி A இன் எல்லா வினாக்களுக்கும் விடை எழுதுக. ஒவ்வொரு வினாவுக்கும் விடைகளைத் தரப்பட்ட இடத்தில் எழுதுக. மேலதிக இடம் தேவைப்படுமெனின், நீர் மேலதிகத் தாள்களைப் பயன்படுத்தலாம்.
- பகுதி B இல் உள்ள 7 வினாக்களில் விரும்பிய 5 வினாக்களுக்கு மாத்திரம் விடை எழுதுக.
- ஒதுக்கப்பட்டநேரம் முடிவடைந்ததும் பகுதி A ஆனது பகுதி B யிற்கு மேலே இருக்கக்கூடியதாக இரு பகுதி<mark>களையும்</mark> இணைத்துப் பரீட்சை மண்டப மேற்பார்வையாளரிடம் கையளிக்க.
- வினாத்தாளின் பகுதி B யை மாத்திரம் பரீட்சை மண்டபத்திலிருந்து வெளியே எடுத்துச் செல்வதற்கு அனுமதிக்கப்படும்.

	இணைந்	தகணித ம்
பகுதி	வினாஎண்	கிடைத்தபுள்ளிகள்
	1	
	2	
	3	
	4	
A	5	
A	6	
	7	
	8	
	9	
	10	
	11	
	12	
	13	
В	14	
ь	15	
	16	
	17	
	மொத்தம்	

இஙகிப்ப	புள்ளிகள்
அறுவட	

	பகுத்–A
(1)	$k \in R$ இந்கு $f(x) = 4x^2 + 4(2k+1)x + (3k+2)^2$ எனக் கொள்வோம். $f(x)$ ஐ
	$\{2x+(2k+1)\}^2+ak^2+bk+c$ என்னும் வடிவில் எடுத்துரைக்க. இங்கு a,b,c
	துணியப்பட வேண்டிய மாறிலிகள் இதிலிருந்து $oldsymbol{x}$ இன் மெய்ப்பெறுமானங்களுக்கு
	f(x)>0 ஆகவுள்ள k ன் வீச்சைக் காண்க.
(2)	
(2)	பல்லுறுப்பி $2x^3 + ax^2 + 3x - 1$ ஐ $x^2 - 1$ இனால் வகுக்கும் போது பெறப்படும் மீதி $bx + 1$ எனின் மாறிலிகள் a, b இன் பெறுமானங்களைக் காண்க.
	u,v ളത വേവ്വവരാണ് u,v ഉത് വെവ്വവണ്ടായാണ് തന്ത്വത്.

(3)	$\lim_{x\to 0} \frac{1+x^2-\cos x}{x\sin x} = \frac{3}{2}$ எனக் காட்டுக.
	$\frac{x^2}{(x-1)(x+2)}$ ஐப் பகுதிப் பின்னங்களாக்குக. இதிலிருந்து $\frac{x-2}{(x-1)(x+2)}$ இன் பகுதிப்பின்னங்களை
(4)	$\frac{x}{(x-1)(x+2)}$ ஐப் பகுதிப் பின்னங்களாக்குக. இதிலிருந்து $\frac{x-2}{(x-1)(x+2)}$ இன் பகுதிப்பின்னங்களை
	எழுதுக.
	74 601 00

(5)	$log_2(x-3) - log_4(x+3) = 0$ ஐத் தீர்க்க.
(6)	துணிக்கை A ஆனது புள்ளி O வில் ஓய்விலிருந்து புறப்பட்டு $3\ ms^{-2}$ ஆர்முடுகலுடன் ஓர் நேர்ப்பாதையில் இயங்குகிறது. A புறப்பட்டு 2 செக்கனின் பின் துணிக்கை B , ஆனது அதே நேர்கோட்டில் $16\ ms^{-1}$ என்ற வேகத்துடன் O வைக் கடந்து சீரான வேகத்துடன்
	இயங்குகிறது. அவை இருமுறை சந்திக்கும் எனக்காட்டி அச்சந்தர்ப்பங்களுக்கிடையான
	தூரத்தைக் காண்க.

(7)	நிலத்தில் உள்ள புள்ளி ஒன்றிலிருந்து இரு துணிக்கைகள் நிலைக்குத்து தளத்தில் ஒரே
	வேகத்துடன் வீசப்படுகின்றன அவை கிடைத்தளத்திலுள்ள ஒரே புள்ளியை அடித்தால் வீசற்திசைகளுக்கிடையான வித்தியாசம் யாது
	வ சந்துகை களுக்கொண்ட வித்துவாசம் வாது
(8)	$ a,b = a \times b $ எனின் a,b க்கினு யான கோணக்கைக் காண்க
(8)	$\left \underline{a}.\underline{b} ight =\left a\ge b ight $ எனின் \underline{a} , \underline{b} க்கிடையான கோணத்தைக் காண்க.
(8)	$\left \underline{a}.\underline{b}\right = \left a \ge b\right $ எனின் \underline{a} , \underline{b} க்கிடையான கோணத்தைக் காண்க.
(8)	
(8)	
(8)	
(8)	
(8)	
(8)	
(8)	
(8)	
(8)	
(8)	
(8)	
(8)	
(8)	
(8)	
(8)	

	P,Q என்ற நிகர்த்த சமாந்தர விசைகளின் G ஐ சேர்க்க R ஆனது $rac{G}{P+Q}$ தூரத்தூடாக					_		
								•••••
								••••
								• • • • • •
								••••
			•••••	•••••	•••••			• • • • • •
								•••••
				•••••				• • • • • •
								•••••
							•••••	
					•••••			•••••
								•••••
))) P,Q என்ற ஒரு புள்ளியில் தாக்கும் விை பருமனில் இரட்டிக்கப்பட்டும் Q மாநாமலுட							
))) P,Q என்ற ஒரு புள்ளியில் தாக்கும் விமை பருமனில் இரட்டிக்கப்பட்டும் Q மாறாமலும காட்டுக.							
))	பருமனில் இரட்டிக்கப்பட்டும் $oldsymbol{Q}$ மாறாமலுட							
))	பருமனில் இரட்டிக்கப்பட்டும் $oldsymbol{Q}$ மாறாமலுட							
))	பருமனில் இரட்டிக்கப்பட்டும் $oldsymbol{Q}$ மாறாமலுட							
))	பருமனில் இரட்டிக்கப்பட்டும் $oldsymbol{Q}$ மாறாமலுட	ற இருப்பின்	புதிய	ഖിത	ளயுள்			
))	பருமனில் இரட்டிக்கப்பட்டும் Q மாறாமலுட காட்டுக.	ற இருப்பின்	புதிய	ഖിത	ளயுள்			
))	பருமனில் இரட்டிக்கப்பட்டும் Q மாறாமலுட காட்டுக.	ற இருப்பின்	புதிய	ഖിത	ளயுள்			
))	பருமனில் இரட்டிக்கப்பட்டும் Q மாறாமலுட காட்டுக.	ற இருப்பின்	புதிய	ഖിത	ளயுள்			
))	பருமனில் இரட்டிக்கப்பட்டும் Q மாறாமலுட காட்டுக.	ற இருப்பின்	புதிய	ഖിത	ளயுள்			
))	பருமனில் இரட்டிக்கப்பட்டும் Q மாறாமலுட காட்டுக.	ற இருப்பின்	புதிய	ഖിത	ளயுள்			
))	பருமனில் இரட்டிக்கப்பட்டும் Q மாறாமலுட காட்டுக.	ற இருப்பின்	புதிய	ഖിത	ளயுள்			
))	பருமனில் இரட்டிக்கப்பட்டும் Q மாறாமலுட காட்டுக.	ற இருப்பின்	புதிய	ഖിത	ளயுள்			
))	பருமனில் இரட்டிக்கப்பட்டும் Q மாறாமலுட காட்டுக.	ற இருப்பின்	புதிய	ഖിത	ளயுள்			
))	பருமனில் இரட்டிக்கப்பட்டும் Q மாறாமலுட காட்டுக.	ற இருப்பின்	புதிய	ഖിതം	ளயுள்			
))	பருமனில் இரட்டிக்கப்பட்டும் Q மாறாமலுட காட்டுக.	ற இருப்பின்	புதிய	ഖിതം	ளயுள்			
))	பருமனில் இரட்டிக்கப்பட்டும் Q மாறாமலுட காட்டுக.	ற இருப்பின்	புதிய	ഖിതം	ளயுள்			

6

வடமாகாணக் கல்வித் திணைக்களத்துடன் இணைந்து தொண்டைமானாறுவெளிக்கள நிலையம் நடாத்தும்

Field Work Centre

தவணைப் பரீட்சை, மார்ச் - 2019

Term Examination, March - 2019

தரம் :- 12 (2020)

இணைந்த கணிதம்

பகுதி – B

(11) (a) $a,b \in R \setminus \{0\}$ எனக் கொள்வோம். சமன்பாடு $ax^2 - 2bx - (a-b) = 0$ இன் தன்மை காட்டியை A, B என்பவற்றில் எழுதி இதிலிருந்து இச் சமன்பாட்டின் மூலங்கள் மெய்யானவை எனக்காட்டுக.

மேலே தரப்பட்ட சமன்பாட்டின் மூலங்கள் \propto , β (\propto > β) எனக் கொள்வோம்.

- i. $\propto +\beta, \propto \beta$ ஆகியவற்றை a, b சார்பில் எழுதுக. இதிலிருந்து $\propto -\beta$ இனைக் காண்க. மூலங்களுக்கு இடையேயான வேறுபாடு 2 எனின் a=b எனக் காட்டுக.
- ii. $(\alpha \beta)$, $(\alpha + \beta)$ மூலங்களாக உடைய சமன்பாட்டைக் காண்க.
- (b) f(x) இனை (x-1) ஆல் வகுக்கும் போது ஈவு g(x) உம் மீதி 1 உம் ஆகும். இங்கு $g(x)=x^2+px+6$ ஆகும். g(x) இனது ஒரு காரணி (x+2) எனின்
 - i. f(x) இனைக் காண்க.
 - ii. f(x) இனை $x^2 + x 2$ ஆல் வகுக்கவரும் மீதியைக் காண்க.
- (12) (a) முதற் கோட்பாடுகளிலிருந்து $\sin 2x$ இன் பெறுதியைக் காண்க.
 - (b) i) heta ஒரு பரமானமாக இருக்க $x=2\sin\theta$, $y=2+\cos\theta$ எனக் கொள்வோம். $\frac{dy}{dx}$ ஐ θ சார்பில் காண்க. $\frac{d^2y}{dx^2}=-\frac{1}{4}\sec^3\theta$ எனக் காட்டுக.
 - ii) $\sin x$ குறித்து $\cos^2 x$ இன் பெறுதியைக் காண்க.
 - (c) $y = \ln \mathbb{E}(\cos x)$ எனின், $\frac{d^3y}{dx^3} + 2\frac{d^2y}{dx^2}$ $\frac{dy}{dx} = 0$ எனக் காட்டுக.
- (13) (a) சைன் நெறியை கூறுக.

 Δ ABC இல் வழமையான குறியீடுகளுடன்

$$(i) \qquad \frac{a}{b+c} = \frac{\sin\frac{A}{2}}{\cos\left(\frac{B-C}{2}\right)} \quad எனவும்$$

(ii)
$$\frac{b-c}{b+c} = \tan\frac{A}{2} \tan\frac{B-C}{2}$$

(iii)
$$a(b-c)cosec \frac{A}{2}cot \frac{A}{2} = (b+c)^2 tan \left(\frac{B-C}{2}\right) sec \left(\frac{B-C}{2}\right)$$
 என்பதை உய்த்தறிக.

(b) ΔABC இல் $A\hat{B}C > A\hat{C}B$ ஆகும். BC இன் நடுப்புள்ளி D ஆகும். AD = m ஆகவும் AD ஆனது AB, AC என்பவந்றுடன் முறையே θ , \emptyset கோணங்களை அமைப்பின் ΔABD , ΔACD என்பவந்றுக்கு சைன்நெறியைப் பயன்படுத்துவதன் மூலம் $2m \left(\sin \theta - \sin \theta \right) = a \left(\sin B - \sin C \right)$ என நிறுவுக.

இதிலிருந்து $2m \sin\left(\frac{\theta-\emptyset}{2}\right) = (b-c) \sin\frac{A}{2}$ என நிறுவுக.

- (c) x > 0 இற்கு $tan^{-1}(2x) + tan^{-1}(3x) = \frac{\pi}{4}$ ஐத் தீர்க்க.
- (14) (a) $Cos^2\theta + Cos^2\left(\theta + \frac{2\pi}{3}\right) + cos^2\left(\theta \frac{2\pi}{3}\right) = \frac{3}{2}$ எனக் காட்டுக.
 - (b) $\propto = \sin^{-1}\left(\frac{1}{\sqrt{10}}\right)$ எனில் $3 \sin 2\theta + 2 \sin^2 \theta = 2$ எனும் சமன்பாட்டின் சில தீர்வுகள் \propto வை சார்ந்தன எனவும் சில தீர்வுகள் \propto வை சாராதவை எனவும் காட்டுக.
 - (c) பின்வரும் சமன்பாடுகளை தீர்க்க.
 - (i) $tan^2\theta (1 \sqrt{3})\tan\theta + \sqrt{3} = 0$
 - (ii) Cos 6x Cos 2x Cos 3x Cos x = 0
 - (d) x > 0 இந்கு $9\cos(2\sin^{-1}x) = 1$ ஐத் தீர்க்க.
- (15) கிடைத்தரையில் உள்ள புள்ளியொன்றிலிருந்து நிலைக்குத்தாக மேல்நோக்கி ஒருதுணிக்கை புவியீர்ப்பின் கீழ் u வேகத்துடன் எறியப்படுகின்றது. இத்துணிக்கை எறியப்பட்டு t ($t < \frac{u}{g}$) நேரத்தின் பின் இன்னொரு துணிக்கை அதே புள்ளியிலிருந்து அதே வேகம் u உடன் முதலாம் துணிக்கையை நோக்கி எறியப்படுகின்றது.
 - a. இரு துணிக்கைகளின் இயக்குகத்துக்குமான வேகநேர வரைபுகளை ஒரே வரிப்படத்தில் வரைக.
 - b. i) வேக நேர வரைபில் இருந்து முதலாம் துணிக்கை எறியப்பட்ட கணத்திலிருந்து மோதும் வரையான நேரத்தைக் கணிக்க.
 - ii) இரண்டு துணிக்கைகளும் சந்திக்கும் போது இரண்டாவது துணிக்கை தரையில் இருந்து எவ்வளவு உயரத்தில் இருக்குமெனக் காண்க.
 - c. முதலாவது துணிக்கை எறியப்பட்டு $\frac{4u}{3g}$ நேரத்தில் இரு துணிக்கைகளும் சந்திக்குமெனில்
 - i. $t = \frac{2u}{3g}$ எனவும்
 - ii. சந்திக்கும் போது இரண்டாம் துணிக்கை தரையில் இருந்து எவ்வளவு உயரத்தில் இருக்குமென உய்த்தறிக.
- (16) ஒரு துணிக்கை u வேகத்துடன் சாய்வாக வீசப்படுகின்றது. எறியற் புள்ளியூடான கிடைவீச்சு $R=rac{u^2\sin 2 heta}{g}$ எனக் காட்டுக. ஒரே வீச்சைப் பெறுவதற்கு இருவேறு திசைகளில் வீசலாம் எனக் காட்டுக. இத்திசைகளில் வீசும் போது அடைந்த அதியுயரங்கள் முறையே h_1,h_2 ஆகவும் இவற்றை அடையும் ஒத்த நேரங்கள் t_1,t_2 ஆகவும் இருப்பின் $R=4\sqrt{h_1\ h_2}=2\ g\ t_1\ t_2$ எனக் காட்டுக.
- (17) (a) $\underline{a} \neq 0, \underline{b} \neq 0, \underline{a} \nparallel \underline{b}$ ஆகவும் $\lambda \underline{a} + \mu \underline{b} = \underline{0}$ ஆகவும் இருப்பின் $\lambda = 0, \mu = 0$ எனக் காட்டுக.
 - $A,\ B$ என்ற புள்ளிகளின் O குறித்த தானக்காவிகள் $\underline{a},\underline{b}$ ஆகும். $\overrightarrow{OC}=\frac{1}{2}\,\underline{b},\ D$ என்பது A,B இன் நடுப்புள்ளி $CD,\ AC$ என்பன M இல் இடைவெட்டுகின்றன. $OM=\mu\ OD,MC=\lambda\ AC$ எனின்
 - (i) \overrightarrow{OM} , \overrightarrow{MC} என்பவற்றை \underline{a} , \underline{b} இல் தருக.
 - (ii) காவிக்கூட்டலைப் பிரயோகித்து λ,μ வைக் காண்க.
 - (iii) AC, OD என்பன ஒன்றையொன்று பிரிக்கும் விகிதத்தை உய்த்தறிக.

- (b) ஒரு புள்ளியில் தாக்கும் விசைகள் $P,\ Q$ இன் விளையுள் R. விசைகளின் தளத்திலுள்ள ஓர் புள்ளி குற்றி P,Q என்பவற்றின் திருப்பு திறன்களின் அட்சரகணித கூட்டுத் தொகை. அதே புள்ளி பற்றி அதே போக்கில் R இன் திருப்பு திறனுக்கு சமன் எனக்காட்டுக.
- (c) ABCDEFGH ஓர் ஒழுங்கான எண்கோணி $2,4\sqrt{2}$, 4N விசைகள் முறையே \overrightarrow{AC} , \overrightarrow{AE} , \overrightarrow{AG} வழியே தாக்குகின்றன. விளையுளின் பருமனையும் விளைவுள் AB உடன் அமைக்கும் கோணத்தையும் காண்க.

ூலங்கையின் உயர்தர கணித விஞ்ஞான

பிரிவிற்கான இணையதளம்

SCIENCE EAGLE www.scienceeagle.com

- Biology
- C.Maths
- Physics
- Chemistry
 - + more

