Number theory in cryptography

- Exercise set 3 -

The exercises T3.1 a), b) and T3.5 have to be handed in on Tuesday, 12th March 2024, 8:30 at latest. As usual, theoretical exercises have to be uploaded on **Moodle**, as a PDF file (e.g., a scan of a handwritten version or a PDF obtained from a LaTeX file). Programming exercises have to be done in the relevant file in the CoCalc project.

THEORETICAL QUESTIONS

- **T 3.1** For an integer $n \ge 1$, let $\ell(n)$ be the shortest length of an addition chain $a_0 = 1 < a_1 < ... < a_{\ell(n)} = n$ (i.e., for every integer k such that $1 \le k \le \ell(n)$ there are indices $0 \le i, j < k$ such that $a_i + a_j = a_k$).
- a) Show that if $2^s \leqslant n < 2^{s+1}$ and $s \geqslant 1$ then $s \leqslant \ell(n) \leqslant 2s$.
- b) Prove that if $r \ge 1, s \ge 0$ are integers such that $2^{rs} \le n < 2^{r(s+1)}$ then there is an addition chain¹ for n of length at most $(r+1)s+2^r-2$ and which starts with $a_i=i$ for all $i \in \{0, ..., 2^r-2\}$, that is:

$$a_0 = 1$$
, $a_1 = 2$, $a_2 = 3$, ..., $a_{2^r - 2} = 2^r - 1$.

Hints: proceed by induction on s. In the induction step, you can work with the euclidean division of n by 2^r (and use the induction hypothesis on the quotient).

- c) By choosing $r = \lceil \log(\log(n)) \rceil$ for $n \ge 3$ in b), where $\log = \ln$ is the logarithm in base e, deduce that for large enough n we have $\ell(n) \le \log_2(n)(1+f(n))$ where f is a function such that $\lim_{n \to +\infty} f(n) = 0$. Note: we also denote this by $\ell(n) \le \log_2(n)(1+o(1))$.
- **T 3.2** (optional) Find an addition chain $a_0 = 1 < a_1 < ... < a_8 = 63$ of length 8 for n = 63.
- **T 3.3** Let p be a prime. We refer to a set of integers $\{b_1, \ldots, b_{p-1}\}$ as a complete residue system mod p if the set $\{b_1 \mod p, \ldots, b_{p-1} \mod p\}$ is a permutation of $\{1, \ldots, p-1\}$.
- a) Let $\{b_1, \ldots, b_{p-1}\}$ be a complete residue system. Show that if a is an integer that is relatively prime to p then $\{ab_1, \ldots, ab_{p-1}\}$ is again a complete residue system.
- b) Use (a) to deduce Fermat's little theorem, i.e., if gcd(a, p) = 1 then $a^{p-1} \equiv 1 \pmod{p}$.
- c) How can you prove Euler's theorem with a similar idea?
- **T 3.4** Let p be a prime. For $0 \le k \le p$, consider the binomial coefficients

$$\binom{p}{k} = \frac{p!}{k!(p-k)!}.$$

- a) Prove that if 0 < k < p then $\binom{p}{k}$ is divisible by p.
- b) Use (a) to show that if x and y are arbitrary integers then

$$(x+y)^p \equiv x^p + y^p \mod p.$$

To be very precise for the case s=0, we should say "there is an addition chain for $\max\{n, 2^r-1\}$ ".

c) Use (b) and induction to show that if x_1, \ldots, x_k are integers then

$$(x_1 + x_2 + \dots + x_k)^p \equiv x_1^p + \dots + x_k^p \mod p.$$

Use that to give another proof of Fermat's little theorem.

- **T 3.5** Let $\varphi(n)$ be the Euler totient function (i.e., the number of integers in $\{1, 2, \dots, n\}$ that are coprime to n). Show that $\sum_{d|n} \varphi(d) = n$.
- **T 3.6** Recall how the RSA algorithm works. Moreover, given an odd integer N which is known to be a product of two distinct primes p,q, prove that computing $\phi(N) := (p-1)(q-1)$ is equivalent to factoring N. Note: this does *not* mean that breaking RSA is equivalent to factoring N.

PROGRAMMING EXERCISES

- **P 3.1** Here, you will do some basic SAGE exercises related to some bit operations:
- a) Write a simple one-line command (in SAGE) that calculates $3^{4324324}$ modulo $2^{1000000}$ using the Python/SAGE generic % (modulo) operator. Time the calculation. You probably notice that it is quite slow. Using the Python "AND" operator &, show how to write another one-line command that speeds this up. Give a short justification of why you are getting the same answer. Now, implement a function myLSB(N, k) that takes as input integers N and k and outputs the k least significant bits in the binary representation of N.
- b) Recall Python's right-shift (* k) and left-shift (* k) operators (look them up in the Python manual or on a search engine). Implement a function myMSB(N, k) that takes an integer N and an integer k and returns the k most significant bits of the binary representation of N.