

Nombre: Dana Carolina Ramírez Velázquez

Código: 220286547

División: Tecnologías para la integración Ciber-Humana

Carrera: Ingeniería en computación

Materia: Seminario de Inteligencia Artificial

Tarea: Practica 2 Ejercicio 3

Fecha: 11/11/23

Introducción

- En esta práctica, se implementaron diferentes clasificadores:
 - Regresión logística (Logistic Regression)
 - K-Vecinos Cercanos (K-Nearest Neighbors)
 - Maquinas Vector Soporte (Support Vector Machines)
 - Naive Bayes
- Y se evaluaron los resultados con las siguientes métricas:
 - Accuracy
 - Precision
 - Sensitivity
 - Specificity
 - F1 Score

Desarrollo

- Utilizaremos la librería de sklearn para facilitar el uso de los clasificadores, así como de las métricas de evaluación, de esta manera, los resultados serán verificables.
- Resultados del dataframe de diabetes:

Informe de	cla	asificación: precision	recall	f1-score	support
	0	0.81	0.79	0.80	99
	1	0.64	0.67	0.65	55
ассига	су			0.75	154
macro a	vg	0.73	0.73	0.73	154
weighted a	να	0.75	0.75	0.75	154

Informe de c	lasificación: precision	recall	f1-score	support
0	0.76	0.66	0.71	99
1	0.51	0.64	0.56	55
accuracy			0.65	154
macro avg	0.64	0.65	0.64	154
weighted avo	0.67	0.65	0.66	154

-----Resultados de Maquinas vector soporte-----

Informe de	clasificación: precision		recall	f1-score	support
	0	0.62	0.77	0.69	99
	1	0.28	0.16	0.21	55
accurac macro av weighted av	/g	0.45 0.50	0.47 0.55	0.55 0.45 0.52	154 154 154

Informe de clasificación: precision recall f1-score support 0 0.74 0.73 0.75 99 1 0.53 0.51 0.52 55 0.66 154 accuracy 0.63 0.63 154 macro avg 0.63 weighted avg 0.66 0.66 0.66 154

-----Resultados de Red Neuronal-----

Informe (de cl	asificación: precision	recall	f1-score	support
	0	0.69	0.93	0.79	99
	1	0.67	0.25	0.37	55
ассигасу			0.69	154	
macro	avg	0.68	0.59	0.58	154
weighted	avg	0.68	0.69	0.64	154

· Resultados del dataframe de Calidad de vino

-----Resultados de K vecinos-----

__ _. Exactitud del modelo: <u>0.</u>49 ____. ------Resultados de Maquinas vector soporte------

0.40

0.27

980

980

accuracy

0.31

0.30

0.40

macro avg

weighted avg

Conclusiones:

En el caso del dataframe de diabetes, podemos notar que la regresión logística es el clasificador con el que se obtuvo un resultado un resultado más preciso y por otro lado, el clasificador de máquina vector soporte, obtuvo menos precisión.

En el caso del dataframe de la calidad del vino, Una red neuronal desempeñó un mejor trabajo que todos los otros clasificadores, y el que peor lo hizo fue, igualmente, el de máquina de vector soporte.

Había un tercer dataframe que no mostró resultados, esto debido a que los datos que se tenían no eran los indicados para ninguna de estas maneras de clasificar, gracias a esto sabemos que estos clasificadores NO son aplicables en cualquier tipo de dataset, es necesario conocer los datos que tenemos y que se puede, o no, lograr con estos.

Referencias:

• Mathivet, V. (2018). Inteligencia artificial para desarrolladores: conceptos e implementación en c. Ediciones ENI..

- Boden, M. A. (2017). Inteligencia artificial. Turner.
- Cerrillo Martínez, A. (2019). El impacto de la inteligencia artificial en el derecho administrativo; nuevos conceptos para nuevas realidades técnicas?.
- Leyva-Vázquez, M., & Smarandache, F. (2018). Inteligencia Artificial: retos, perspectivas y papel de la Neutrosofía. Infinite Study.
- Leyva-Vázquez, M., & Smarandache, F. (2018). Inteligencia Artificial: retos, perspectivas y papel de la Neutrosofia. Infinite Study.