Sistemas Digitais

Apresentação

Grupo de Engenharia da Computação (GRECO)

Centro de Informática

Universidade Federal de Pernambuco

Abel Guilhermino da Silva Filho

Por que estudar sistemas digitais?

- Conhecer dispositivos que integram processadores de informação em nosso cotidiano.
- Entender o que é e porque a informação digital é mais eficiente na manipulação de técnicas para processar e utilizar informação.
- Conhecer e utilizar técnicas modernas que permitam desenvolver sistemas de tratamento de informação em problemas reais.
 - Metodologias de projetos
 - Ferramentas de CAD para desenvolver projetos
 - Linguagem para descrição de hardware (Verilog)*
- Começar a entender o funcionamento de computadores digitais a partir de seus fundamentos.
- Desenvolver projetos de "circuitos integrados" voltados para "Sistemas embarcados" (Embedded systems)

Sistemas embarcados

Um sistema é dito embarcado quando este é dedicado a uma única tarefa e interage continuamente com o ambiente a sua volta por meio de sensores e atuadores.

Características

- Possui componente programável
- Funcionalidade única e fixa
- Modo reativo responde a entradas externas
- E/S Intensivo
- Restrições de projeto mais rígidas:
 - · custo, tamanho, desempenho, potência dissipada, etc.
- Sistemas de tempo real:
 - fornecer resultados em tempo real
- Eficiência (estruturação, tamanho e velocidade) do código produzido (software).
- Podemos dizer que sistemas embarcados estão em quase em todos os lugares, mas são quase sempre imperceptíveis.

Onde estão os Sistemas embarcados?

Produtos de consumo Eletrodoméstico Telecomunicações Jogos eletrônicos Indústria automobilística Indústria aeronáutica

.

Como implementá-los ?

CIs? VLSI?

Organização típica de um sistema embarcado

Sistemas embarcados

(picture from ARTEMIS European Technology Platform)

Sistemas Embarcados Exemplo - Indústria automotiva

Example:

By 2010, electronics & software in cars will account for up to 40% of their value

ARTEMIS European Technology Platform

The DECOS projectProf. Hermann Kopetz - Vienna University of Technology,

Conexão com rede externa

Automação residencial Domicilar: (USA)

- 35 sistemas por residência em 1994

Mobile sensor network architecture

Mobile intelligent network

Wireless communication

Mercado Mundial de Sistemas Embarcados (2003, 2004 and 2009)

	2003 (\$ Millions)	2004 (\$ Millions)	2009 (\$ Millions)	AAGR% 2004-2009
Embedded Software	1,401	1,641	3,448	16.0
Embedded IC	34,681	40,539	78,746	14.2
Embedded Boards	3,401	3,693	5,950	10.0
Total	39,483	45,873	88,144	14.0

Source: BCC Research Group.

AAGR - Average Annual Growth Rate

Source: BCC Research Group

Sistemas embarcados

Como projetá-los?

Metodologia do curso

Como será lecionada a disciplina?

- A partir de um estudo de caso
 - Desenvolver o projeto de um sistema digital para um sistema embarcado
 - Aprender técnicas que nos auxiliem a desenvolver o projeto através de:
 - Aulas teóricas
 - Aulas práticas (laboratórios)
 - Desenvolver projetos em grupo
 - Demonstrações

Metodologia

- Disciplina baseada em problema
 - Discussão do problema
 - Possíveis soluções
 - Ferramentas de CAD
 - Projeto
 - Especificação
 - · Desenvolvimento
 - Implementação

Tipo de problema

 Desenvolver o controle de um pequeno Robô em uma plataforma de prototipação rápida.

Desenvolver o controle de uma máquina de vender refrigerantes em uma plataforma de prototipação rápida.

μComputador

CPU Memória I/O

.

motores

μComputador

Como implementar um µComputador? (Central Processing Unit + Memória + I/O)

- O que é uma CPU e como implementá-la?
- O que é memória e como implementá-la?
- O que são os dispos. I/O e como implementálos?

Via de dados

Via de endereços

Conjunto de instruções

Como testá-lo?

μ Computador

Particionor o problema

μComputador

- Como desenvolver o problema?
 - Estudar metodologias de projetos
 - Estudar linguagens para descrição do problema
 - Estudar tecnologia de implementação
 - Estudar técnicas de validação do problema

-

Projetar o controle de um pequeno Robô

Background

- Circuitos combinacionais
 - » Somador, ULA, Multiplixadores, decodificadores,
- Circuitos seqüenciais
 - » Contador, unidade de controle, registrador, memória
- Uso de ferramentas de CAD p/desenvolver projetos
- · Linguagens de especificação de hardware

μComputador

Idéias

- Implementação em hardware
- Em que linguagem a máquina será especificada?
 - Esquemático
 - · Linguagem de Programação
 - C
 - Pascal
 - C++
 -
 - · Linguagem para descrição de hardware
 - verilog
 - VHDL
 - Handel-C
 - SystemC
 -

μComputador

- Como abordar o problema?
- Abstrair a tecnologia
 - Uma metodologia
 - Particionamento
 - descrição
 - · gerência
 - · documentação
 - Escolher ambiente de projeto
 - · Ferramentas de síntese
 - Ferramentas para validação (validar o projeto)

Sistemas Embarcados Metodologia de Projeto

Ciclo Inicial de Projeto

Sistemas Embarcados

Implementação do µComputador em uma plataforma de

hardware Especificação

Requisitos

- -via de dados
- -Memória
- -I/O
- -Power
- -Freqüência

–

Comportamental

```
Process(d,clk)
Begin
if clk='1' then
Q<=d;
end if;
end Process;
```

Estrutural

Validação

Simulação

Layout

μComputador

Descrição

ASIP = Application Specific Integrated Circuit

FPGA = Field Programmable Gate Array

O que é Circuito Integrado?

O que é Circuito Integrado?

- É um conjunto de elementos básicos: resistores, capacitâncias, díodos e transistores, etc. fabricados sobre único pedaço de material semicondutor (Sílicio, Germânio, Arsianeto de Galium, etc), que pode implementar várias funções lógicas digitais e/ou funções analógicas integradas.
- Funções como:
 - Operações aritméticas
 - Controle
 - Memória
 - -

Recursos

Altera Quartus+II

Entradas:

- -Esquemática
- -VHDL

The first state of the control of th

simulação

Implementação

Plataforma de desenvolvimento Máquina de vender BomBom - Exemplo

SoC – System on Chip

Máquina de vender bombons

- Implementar uma máquina que vende bombons, com as seguintes funcionalidades:
 - A máquina aceita moedas de 5 e 10 centavos
 - O valor de cada bombom é de 15 centavos
 - A máquina não dá troco, mas guarda os 5 centavos caso o cliente deposite duas moedas de 10 Centavos
 - O bombom é liberado automaticamente assim que o valor atinge um valor igual ou maior que 15C.

Projeto

Arquitetura do computador

Arquitetura do computador

- PC program counter (contador de programa) indica a próxima instrução a ser executada.
- IR Instruction register (registrador de instrução) recebe a instrução a ser decodificada pela CPU.
- AC Acumulador (registrador auxiliar). Guarda temporariamente valores sendo calculados.
- MAR Registrador que indica a próxima posição de memória a ser referenciada. Conectado ao barramento de endereços.
- MDR Registrador usado para receber ou transmitir dados.
 Conectado ao barramento de dados.
- ALU (ULA) Unidade Lógica e Aritmética (+, -, >, <, AND, OR, ...)

Componentes de uma CPU

- Algumas funções da ULA
 - -Somar números
 - -Subtrarir números
 - -Comparar números
 - -Processar informações

Reg

- Registrador (PC, AC, MBR, MAR,..) \ 2a unidade
 - Armazena informações
 - Memória?

Control Unit

- Unidade de controle
 - Máquina de estados

Como projetar e integrar estes circuitos visando uma aplicação específica?

1a unidade

Placa de prototipação da Altera (DE2)

Placa para teste

Recursos de laboratórios

Laboratório Hardware

- Cerca de 20 Máquinas
- 10 Kits de desenvolvimento de sistemas digitais
 - ·Quartus II Development Software
 - ·DE2 Education Board
 - ByteBlaster download cable

Laboratórios:

- Mais de 80 Máquinas
 - ·Quartus II Development Sof

Recursos disponíveis para o curso

- Sala de aula (30-40s)
- Laboratório (20-30hs)
 - Digilab para aulas práticas em bancadas
 - Microcomputador (PC)
 - Ferramentas de CAD para projetos de Sistemas digitais Quartus II nos laboratórios de graduação
 - Placa de prototipação da Altera (DEII)
- Página WEB da disciplina www.cin.ufpe.br/~agsf
- 4 monitores da disciplina

Programa do curso

- 1ª Unidade
 - Introdução à circuitos digitais
 - Evolução do circuito integrado
 - · Ferramentas de trabalho
 - Codificação numérica e simbólica
 - · Representação de informação digital
 - Códigos ASCII, EBCDII, Gray, etc.
 - Conversão AD, D/A(conceitos básicos)
 - Operações lógicas e funções básicas
 - · Simbologia de Portas lógicas
 - · Forma canônica de funções
 - Comportamento dinâmico e características básicas de circuitos digitais

Programa do curso

- Álgebra de Boole
 - Postulados e teoremas, Lógica multi-nível
 - Hierarquia em projetos
- Mintermos e Maxtermos
- Arranjos AND-OR OR-AND
- Mapa de Karnaugh
- Circuitos Combinacionais
 - Comparadores, MUX, DEMUX, Decodificadores
- Circuitos Aritméticos (Somadores, Subtratores, etc)
- Ferramenta de CAD para projetos de Circuitos Integrados Digitais - ALTERA (Quartus II)
- Projeto da 1a. Unidade
- Laboratório
- Prova Escrita

Programa do curso

2ª Unidade

- Circuitos Sequenciais
 - Flip-flops, registradores, contadores
 - Máquinas de Estados
- Linguagem para descrição de hardware
 - Verilog
- Introdução
 - · CPU
 - Unidade de controle
- Projeto da 2a. Unidade
- Laboratório
- Prova Escrita

Referências

- Sistemas Digitais Princípios e Aplicações. Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss. 10° Edição; Pearson Prentice Hall, 2008.
- VHDL Descrição e Síntese de Circuitos Digitais. Roberto D'Amore; LTC 2005.
- Introdução aos Sistemas Digitais , Milos Ercegovac, Tomas Lang, Jaime H. Moreno, Editora Bookman.
- Contemporary Logic Design, Randy H. Katz, The Benjamin/Cummings Publishing Company, Inc.
- Principles of Digital Design, Daniel D. Gajski, Prentice Hall.
- Introduction to Computer Engeneering Hardware and Software Design, Taylor L. Booth, John Wiley & Sons.
- Circuitos Digitais e Microprocessadores, Herbert Taub, MacGraw-Hill.
- Manuais Técnicos da Altera
 - · Design kit
 - VHDL

Sistema de avaliação

- 2 Provas escritas (60%)
- 2 Projetos (40%)
- A média de cada unidade é dada por:

0,6*nota do exercício+0,4*(nota do projeto da unidade) www.cin.upfe.br/~agsf

Datas dos exercícios escolares:

- 1o. Exercício escolar: 11/12 (Projeto 19/12 tarde)
- 20. Exercício escolar: 29/01 (Projeto 31/01)
- Segunda Chamada: 05/02 (Assunto Todo)
- Exercício Final: 14/02 (Assunto Todo)
- Monitoria: Segunda (13-15hs) Quarta (10-12hs)

Disciplinas básicas na área de sistemas embarcados

Áreas de atuação profissional

- Telecomunicações
 - Wireless application
 - · Embedded mobile computing
- Redes de computadores
 - Internet, Middleware
 - -
- Jogos
- E-commerce
- Robótica
- Equipamentos médicos
- Biotecnologia (sensores, biosegurança)
- Controle industrial
- Indústria automobilística
- Processamento de sinais em geral
 - Imagem, som