$$E = \frac{1}{2} \int \frac{1}{2} \int$$

Λ				T		a	/ ~	Se	enza	fare c	conti	aggi	untivi	ci ac	corgi	iamo	che I	la traccia	è posit	tiva e	quindi	il siste	ma ir	nstabile) .	
-			A	_	, ب	2	6			上.			_	0			<	ste								
			1 1		-	2	5			1	` (7		U			0	(31-6)	wa							
	Anal	izziamo	ora	il pun	to mov	imento	del s	istema	a Use	eremo	nii)	ı di u	n met	hodo		Prim	no m	netodo								
•			1	pa			/ \	1	<i>x</i> . C 0.	•	1	. di di	Ĉ	16		1	-					- (
2	2)	02	= [c	sok	· ·	7, ((F)	16	X	w	te		0		e_	Þ	2r	Ol,	=16) <	Der		, 7		, _	
					movi	mento	libero									l		movim	ento fo	rzato				asform		ik
		•	F	h 2h	ρV	2/10		الم	1	J													<u> </u>	aplace		
				101			- P L		L (1																
				1	1 (•		\	_															(
				0/1	*	SI	-H)=	D												51	+5	7.	: Th	.CA	-
					, T	5	2	- h	\ 7												Las	somma	a deg	li auto	valori	e la
				de	+ 1	7-7	4			_	0										trac	cia di .	A /	Λ		
						. 2	_	5 ~	5																	
				10	1 2	16	_)	1 4	12		\cap	\														
				(>	+0)(>	ー フ,) ' -	16						/							S =	: 1			
				2	_								2	5 7		9-8	?		3 F	1		-	•			
				5	-3	5+	- 2 :	<i>⇒</i> 0)	=>	-5	\$ =		<u>~</u>	<u> </u>		~~	_ = .	١ ح							
					0	A										2			_2_		\	· _ =	: 2	_		
					7	4															` _	2				
) V	→ A.	28° (M,	7	7 -	1.		ر	, P			· ·		in rosso	-					oni agg	iuntiv	⁄e,
				~ v					\sim $^{\circ}$		•		- 1-	(/	0	nor	n imp	ortanti pe	er la so	luzion	e dell'e	serciz	10)			

		Λ	١			, 1		
6	•	A	t	0	re	汁	0	h
					Ū			Ċ

Chiamiamo l'autovettore z per abitudine, potete chiamarlo come volete

$$5_1 = 1$$

Per autovettore si intende quel vettore che moltiplicato per la matrice o per l'autovalore da lo stesso risultato. Ci sono altri modi per ricavare gli autovettori.

$$\begin{bmatrix} -2 & 6 \end{bmatrix} \begin{bmatrix} 21 \\ 22 \end{bmatrix} = \begin{bmatrix} 21 \\ 22 \end{bmatrix}$$

$$\begin{cases} -2Z_1 + 6Z_2 = Z_1 = \\ -2Z_1 + 5Z_2 = Z_2 \end{cases}$$

Scegliamo quindi un autovettore qualunque:

$$6Z_2 = 3Z_1 \Rightarrow 5Z_1 = 2Z_2$$
Una volta risolta la prima

equazione, la seconda è

inutile, il sistema deve essere singolare.

islutite

$$Sz = 2: \begin{bmatrix} -2 & 6 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = 2 \begin{bmatrix} z_1 \\ z_2 \end{bmatrix}$$

$$\begin{cases} -2z_1 + 6z_2 = 2z_1 & \Rightarrow \\ -2z_1 + 5z_2 = 2z_2 \end{cases}$$

$$\begin{cases} -2z_1 + 5z_2 = 2z_2 \\ + 5z_2 = 2z_2 \end{cases}$$

$$Scegliamo un autovettore qualuqnue$$

$$Scegliamo un autovettore qualuqnue$$

$$Scegliamo un autovettore qualuqnue$$

$$Scegliamo un autovettore qualuqnue$$

· Notrice objetousli 27 seite accostiamo in una matrice glNautovettori (ricordando l'ordine che abbiamo usato)!

Sutrections (da ricordare l'ordine!)

(stesso ordine della matrice T)

in rosso: informazioni aggiuntive che ci ricordano di fare attenzione all'ordine degli autovettori e autovettori: l'ordine in cui si mettono gli autovettori nella matrice diagonalizzante, è l'ordine con cui compaiono sulla matrice diagonalizzata gli autovalori.

$$T = \begin{bmatrix} 1 & 1 & 2 & 3 \\ -3 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & -3 \\ -1 & 2 \end{bmatrix}$$

det(T)

Matrice dei complementi algebrici: per una

matrice 2x2 (solo e soltanto 2x2)

è calcolabile scambiando di posto i termini nella diagonale principale e invertendo i segni dei termini nella diagonale secondaria.

TIL di
$$\pi$$
 $m_{L}(t) = 2^{At} \pi(0) = \begin{bmatrix} M_{\text{atrice lunga}} \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = movimento libero di x

$$= \begin{bmatrix} 4e^{t} - 3e^{2t} \\ 2e^{t} - 2e^{2t} \end{bmatrix} t > 0 \qquad \qquad m_{L2}(t)$$$

sostituisco i valori di alfa beta e gamma:

Antitrasformo con le trasformate notevoli:

$$n_{+1}(t) = (-\frac{5}{2} + 4e^{-\frac{3}{2}}e^{-\frac{3}{2}}) sos(t)$$

Bisogna ora rifare l'antitrasformazione secondo Heaviside anche per la seconda componente, da fare a casa...

Quindi il movimento finale è la somma del vettore movimento libero e del vettore movimento forzato:

$$\mathcal{H}(t) = \mathcal{M}_{L}(t) + \mathcal{M}_{F}(t)$$

Fine primo metodo.

$$\begin{array}{c} X_{L}(s) = (sI - A)^{-1} \Re(0) = \begin{bmatrix} s \\ 0 \\ s \end{bmatrix}^{-1} \begin{bmatrix} m_{0A} \\ m_{0Z} \end{bmatrix} \text{ isaciamo } \chi(0) \text{ indicato con lettere.} \\ \text{perché ci stiamo riferendo a un generico } \chi(0) \\ = \frac{1}{52} \begin{bmatrix} s \\ 0 \\ s \end{bmatrix} \begin{bmatrix} m_{0A} \\ m_{0Z} \end{bmatrix} = \begin{bmatrix} 1/s \\ 1/s^{2} \end{bmatrix} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} \\ \frac{1}{32} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} = \begin{bmatrix} 1/s \\ 1/s^{2} \end{bmatrix} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} = \begin{bmatrix} 1/s \\ 1/s \end{bmatrix} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} = \begin{bmatrix} 1/s \\ 1/s \end{bmatrix} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} = \begin{bmatrix} 1/s \\ 1/s \end{bmatrix} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} = \begin{bmatrix} 1/s \\ 1/s \end{bmatrix} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} = \begin{bmatrix} 1/s \\ n_{0Z} \end{bmatrix} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} = \begin{bmatrix} 1/s \\ n_{0Z} \end{bmatrix} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} = \begin{bmatrix} 1/s \\ n_{0Z} \end{bmatrix} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} = \begin{bmatrix} 1/s \\ n_{0Z} \end{bmatrix} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} = \begin{bmatrix} 1/s \\ n_{0Z} \end{bmatrix} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} = \begin{bmatrix} 1/s \\ n_{0Z} \end{bmatrix} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} = \begin{bmatrix} 1/s \\ n_{0Z} \end{bmatrix} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} = \begin{bmatrix} 1/s \\ n_{0Z} \end{bmatrix} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} = \begin{bmatrix} 1/s \\ n_{0Z} \end{bmatrix} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} = \begin{bmatrix} 1/s \\ n_{0A} \end{bmatrix} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} = \begin{bmatrix} 1/s \\ n_{0A} \end{bmatrix} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} = \begin{bmatrix} 1/s \\ n_{0A} \end{bmatrix} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} = \begin{bmatrix} 1/s \\ n_{0A} \end{bmatrix} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} = \begin{bmatrix} 1/s \\ n_{0A} \end{bmatrix} \begin{bmatrix} n_{0A} \\ n_{0A} \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} n_{0A} \\ n_{0Z} \end{bmatrix} = \begin{bmatrix} 1/s \\ n_{0A} \end{bmatrix} \begin{bmatrix} n_{0A} \\ n_{0A} \end{bmatrix} \\ \frac{1}{3} \begin{bmatrix} n_{0A} \\ n_{$$

E3]
$$n = f(x)$$

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 \\$$

 $i \frac{\partial}{\partial x} = - \frac{\partial}{\partial x} + 0$ FdT 6(5)? Schens 2 loboceu? (y = 2 m $G(s) = C(sT-A)^{-1}b+d=[02][s+107^{-1}]+0$ $\simeq \frac{1}{(s+1)(s+3)} \begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} s+3 & 0 \\ 0 & s+1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 0 & 2(s+1) \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ = (5+t) (5+3) = 5+3 concellazione polo/zero

Dod Sist. scolere (TIF, can sleven Folt) porte vescosta "

m severble $\begin{cases}
\hat{n} = An + bv \\
14 = Cn + dv
\end{cases}$

$$\begin{array}{c}
E G \\
\hat{n} = A \pi \\
A = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} & \pi(G) = \begin{bmatrix} 2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \\
A = \begin{bmatrix} 1 & -2 \\ 0$$

a Autovaloni di A:
$$1 \mp j2$$

b. Autovaloni di A: $1 \mp j2$

c. Aut

or
$$\mathcal{H}_{L}$$
 di \mathcal{H}_{L} $\mathcal{H$