

Navidut Tauhid

UCC Consultant and Cloud Architect

https://www.linkedin.com/in/naveedtauheed/

- Used widely
- Improve decision-making accuracy
- Model architecture
- Challenges

Ensemble models

Group of models

Best outcomes

Combine predictions of multiple models

Accurate and robust decisions

Base models

Combination methods

Meta-learner

Base model:

- Form a group of generative models
- Realistic images of cats
- Train two GANs for cat images
- First cats with short hair
- Second cats with long hair
- Two GANs base models

Combination method

Combines base models
Techniques: averaging, stacking, voting
Use stacking for GAN outputs
Create a single image by averaging
Features from both original images

Meta-learner:

- Optional component
- Optimizes combining models
- Select the best GAN for the given image

Combination Models - Disadvantages

Complexity: to train and interpret

Data requirements: more than individual models

Computational cost: more for combination models

Demo

Review of successful combination models use cases

Summary

Combination model:

- Combination models use cases
- Enhance decision-making accuracy
- Group of individual models
- Collaborate for optimal outcomes

Components:

- Base models
- Combination methods,
- Meta-learner

Challenges:

- Complexity, data requirements, computational cost

