Einführung in Visual Computing

Geometric Transformations

Werner Purgathofer

Transformations in the Rendering Pipeline object capture/creation scene objects in object space modeling vertex stage viewing ("vertex shader") projection transformed vertices in clip space clipping + homogenization scene in normalized device coordinates viewport transformation rasterization pixel stage shading ("fragment shader") raster image in pixel coordinates

Geometric Transformations in the Rendering Pipeline object capture/creation scene objects in object space modeling vertex stage viewing ("vertex shader") projection transformed vertices in clip space clipping + homogenization scene in normalized device coordinates viewport transformation rasterization pixel stage shading ("fragment shader") raster image in pixel coordinates

Basic Transformations: Translation

translating a point from position P to P' with translation vector T

$$x' = x + t_x \qquad y' = y + t_y$$

$$P' = P + T$$

notation:
$$P = \begin{pmatrix} x \\ v \end{pmatrix}, P' = \begin{pmatrix} x' \\ v' \end{pmatrix}, T = \begin{pmatrix} t_x \\ t_y \end{pmatrix}$$

Basic Transformations: Translation

rigid body transformation

object transformed by transforming boundary points

Basic Transformations: Rotation

example:

rotation of an object by an angle θ around the pivot point (x_r, y_r)

Basic Transformations: Rotation

positive angle \Rightarrow ccw rotation

$$x = r \cdot \cos\phi \qquad y = r \cdot \sin\phi$$

$$x' = r \cdot \cos(\phi + \theta)$$

$$= \underline{r \cdot \cos\phi \cdot \cos\theta} - \underline{r \cdot \sin\phi \cdot \sin\theta}$$

$$= \underline{x} \cdot \cos\theta - \underline{y} \cdot \sin\theta$$

$$y' = r \cdot \sin(\phi + \theta)$$

$$= r \cdot \cos\phi \cdot \sin\theta + r \cdot \sin\phi \cdot \cos\theta$$

$$x' = x \cdot \cos \theta - y \cdot \sin \theta$$
$$y' = x \cdot \sin \theta + y \cdot \cos \theta$$

Basic Transformations: Rotation

formulation with a transformation matrix:

$$x' = x \cdot \cos \theta - y \cdot \sin \theta$$
$$y' = x \cdot \sin \theta + y \cdot \cos \theta$$

$$P' = R \cdot P \quad \text{with} \quad R = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

$$R \cdot P = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{pmatrix}$$

Basic Transformations: Scaling

$$x' = x \cdot s_x, \quad y' = y \cdot s_y$$

$$\begin{pmatrix} \mathbf{x'} \\ \mathbf{y'} \end{pmatrix} = \begin{pmatrix} \mathbf{s}_{\mathbf{x}} & \mathbf{0} \\ \mathbf{0} & \mathbf{s}_{\mathbf{y}} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$$

$$P' = S \cdot P$$

example: a line scaled using $s_x = s_y = 0.33$ is reduced in size and moved closer to the coordinate origin

Basic Transformations: Scaling

lacksquare uniform scaling: $\mathbf{S}_{\mathbf{X}} = \mathbf{S}_{\mathbf{y}}$

 \blacksquare differential scaling: $S_x \neq S_y$

fixed point:

Transformation Matrices

scaling

$$\begin{pmatrix} \mathbf{x'} \\ \mathbf{y'} \end{pmatrix} = \begin{pmatrix} \mathbf{s_x} & \mathbf{0} \\ \mathbf{0} & \mathbf{s_y} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \end{pmatrix}$$

rotation

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{array}{c} \bullet \quad \text{x-mirroring} \\ \text{y'} = \begin{pmatrix} x' \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} \end{array}$$

translation

$$(x' y') = (x + t_x, y + t_y)$$
 ...?

Homogeneous Coordinates (1)

instead of
$$\begin{pmatrix} x \\ y \end{pmatrix}$$
 use $\begin{pmatrix} x_h \\ y_h \\ h \end{pmatrix}$ with $x = x_h/h$, $y = y_h/h$ very often $h{=}1$, i.e. $\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$

in this way all transformations can be formulated in matrix form

Homogeneous Coordinates (2)

translation
$$\begin{pmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{1} \end{pmatrix} = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{t}_{\mathbf{x}} \\ \mathbf{0} & \mathbf{1} & \mathbf{t}_{\mathbf{y}} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{1} \end{pmatrix}$$

notation:

 $P' = T(t_x, t_y) \cdot P$

rotation

$$\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} \qquad P' = R(\theta) \cdot P$$

$$P' = R(\theta) \cdot P$$

scaling

$$\begin{pmatrix} \mathbf{x}' \\ \mathbf{y}' \\ \mathbf{1} \end{pmatrix} = \begin{pmatrix} \mathbf{s}_{\mathbf{x}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{s}_{\mathbf{y}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{1} \end{pmatrix}$$

$$P' = S(s_x, s_y) \cdot P$$

Inverse Matrices

translation

$$T^{-1}(t_x,t_y) = T(-t_x,-t_y)$$

rotation

$$R^{-1}(\theta) = R(-\theta)$$

scaling

$$S^{-1}(s_x, s_y) = S(1/s_x, 1/s_y)$$

Composite Transformations (1)

n transformations are applied after each other on a point P, these transformations are represented by matrices

$$M_1, M_2, ..., M_n$$

$$P' = M_1 \cdot P$$

$$P'' = M_2 \cdot P'$$

$$\cdots$$

$$P^{(n)} = M_n \cdot P^{(n-1)}$$

shorter:
$$P^{(n)} = (M_n \cdot ... (M_2 \cdot (M_1 \cdot P)) ...)$$

Composite Transformations (2)

$$P^{(n)} = (M_n \cdot ... (M_2 \cdot (M_1 \cdot P)) ...)$$

matrix multiplications are associative:

$$(\mathbf{M}_1 \cdot \mathbf{M}_2) \cdot \mathbf{M}_3 = \mathbf{M}_1 \cdot (\mathbf{M}_2 \cdot \mathbf{M}_3)$$

(but not commutative: $M_1 \cdot M_2 \neq M_2 \cdot M_1$)

Transformations are not commutative!

Reversing the order in which a sequence of transformations is performed may affect the transformed position of an object!

- in (a), an object is first translated, then rotated.
- in (b), the object is rotated first, then translated.

Composite Transformations (2)

$$P^{(n)} = (M_{n} \cdot ... (M_{2} \cdot (M_{1} \cdot P)) ...)$$

matrix multiplications are associative:

$$(\mathbf{M}_1 \cdot \mathbf{M}_2) \cdot \mathbf{M}_3 = \mathbf{M}_1 \cdot (\mathbf{M}_2 \cdot \mathbf{M}_3)$$

(but not commutative: $M_1 \cdot M_2 \neq M_2 \cdot M_1$)

therefore the total transformation can also be

written as:
$$P^{(n)} = (\mathbf{M_n \cdot ... \cdot M_2 \cdot M_1}) \cdot P$$

constant for whole images, objects, etc.!!!

Composite Transformations (3)

simple composite transformations

composite translations

$$T(t_{x2},t_{y2})\cdot T(t_{x1},t_{y1}) = T(t_{x1}+t_{x2},t_{y1}+t_{y2})$$

composite rotations

$$R(\theta_2) \cdot R(\theta_1) = R(\theta_1 + \theta_2)$$

composite scaling

$$S(s_{x2}, s_{y2}) \cdot S(s_{x1}, s_{y1}) = S(s_{x1} \cdot s_{x2}, s_{y1} \cdot s_{y2})$$

Composite Transformations (4)

general pivot-point rotation

$$T(x_r, y_r) \cdot R(\theta) \cdot T(-x_r, -y_r) = R(x_r, y_r, \theta)$$

original position and pivot point

translation of object so that pivot point is at origin

rotation about origin

translation so that the pivot point is returned

Composite Transformations (5)

general fixed-point scaling

$$T(x_f, y_f) \cdot S(s_x, s_y) \cdot T(-x_f, -y_f) = S(x_f, y_f, s_x, s_y)$$

translate object so that fixed point is at origin

scale object with respect to origin

translate so that the fixed point is returned

Composite Transformations (6)

general scaling direction

$$R^{-1}(\theta) \cdot S(s_1, s_2) \cdot R(\theta)$$

translate by (3,4), then rotate by 45° and then scale up by factor 2 in x-direction

1.
$$M_1 = T(3,4) = \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix}$$

2.
$$M_2 = R(45^\circ) = \begin{cases} \cos 45^\circ - \sin 45^\circ & 0 \\ \sin 45^\circ & \cos 45^\circ & 0 \\ 0 & 0 & 1 \end{cases}$$

3.
$$M_3 = S(2,1) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 $\mathbf{M} = \mathbf{M}_3 \cdot \mathbf{M}_2 \cdot \mathbf{M}_1$

translate by (3,4), then rotate by 45° and then scale up by factor 2 in x-direction

$$\begin{split} \mathbf{M} &= \mathbf{M_3} \cdot \mathbf{M_2} \cdot \mathbf{M_1} = \\ &= \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos 45^\circ - \sin 45^\circ & 0 \\ \sin 45^\circ & \cos 45^\circ & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{pmatrix} = \\ &= \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos 45^\circ - \sin 45^\circ & 3\cos 45^\circ - 4\sin 45^\circ \\ \sin 45^\circ & \cos 45^\circ & 3\sin 45^\circ + 4\cos 45^\circ \\ 0 & 0 & 1 \end{pmatrix} = \\ &= \begin{pmatrix} 2\cos 45^\circ & -2\sin 45^\circ & 6\cos 45^\circ - 8\sin 45^\circ \\ \sin 45^\circ & \cos 45^\circ & 3\sin 45^\circ + 4\cos 45^\circ \end{pmatrix} = \\ &= \begin{pmatrix} 2\cos 45^\circ & -2\sin 45^\circ & 6\cos 45^\circ - 8\sin 45^\circ \\ \sin 45^\circ & \cos 45^\circ & 3\sin 45^\circ + 4\cos 45^\circ \end{pmatrix} = \\ &= \begin{pmatrix} \cos 45^\circ & -2\sin 45^\circ & 6\cos 45^\circ - 8\sin 45^\circ \\ \sin 45^\circ & \cos 45^\circ & 3\sin 45^\circ + 4\cos 45^\circ \end{pmatrix} = \\ &= \begin{pmatrix} \cos 45^\circ & -2\sin 45^\circ & 6\cos 45^\circ - 8\sin 45^\circ \\ \sin 45^\circ & \cos 45^\circ & 3\sin 45^\circ + 4\cos 45^\circ \end{pmatrix} = \\ &= \begin{pmatrix} \cos 45^\circ & -2\sin 45^\circ & 6\cos 45^\circ - 8\sin 45^\circ \\ \sin 45^\circ & \cos 45^\circ & 3\sin 45^\circ + 4\cos 45^\circ \end{pmatrix} = \\ &= \begin{pmatrix} \cos 45^\circ & -2\sin 45^\circ & 6\cos 45^\circ - 8\sin 45^\circ \\ \sin 45^\circ & \cos 45^\circ & 3\sin 45^\circ + 4\cos 45^\circ \end{pmatrix} = \\ &= \begin{pmatrix} \cos 45^\circ & -2\sin 45^\circ & 6\cos 45^\circ - 8\sin 45^\circ \\ \sin 45^\circ & \cos 45^\circ & 3\sin 45^\circ + 4\cos 45^\circ \end{pmatrix} = \\ &= \begin{pmatrix} \cos 45^\circ & -2\sin 45^\circ & 6\cos 45^\circ - 8\sin 45^\circ \\ \sin 45^\circ & \cos 45^\circ & 3\sin 45^\circ + 4\cos 45^\circ \end{pmatrix} = \\ &= \begin{pmatrix} \cos 45^\circ & -2\sin 45^\circ & 6\cos 45^\circ - 8\sin 45^\circ \\ \sin 45^\circ & \cos 45^\circ & 3\sin 45^\circ + 4\cos 45^\circ \end{pmatrix} = \\ &= \begin{pmatrix} \cos 45^\circ & -2\sin 45^\circ & 6\cos 45^\circ - 8\sin 45^\circ \\ \sin 45^\circ & \cos 45^\circ & 3\sin 45^\circ + 4\cos 45^\circ \end{pmatrix} = \\ &= \begin{pmatrix} \cos 45^\circ & -2\sin 45^\circ & 6\cos 45^\circ - 8\sin 45^\circ \\ \sin 45^\circ & \cos 45^\circ & 3\sin 45^\circ + 4\cos 45^\circ \end{pmatrix} = \\ &= \begin{pmatrix} \cos 45^\circ & -2\sin 45^\circ & \cos 45^\circ \\ \sin 45^\circ & \cos 45^\circ & \cos 45^\circ \\ \sin 45^\circ & \cos 45^\circ & \cos 45^\circ \end{pmatrix} = \\ &= \begin{pmatrix} \cos 45^\circ & -2\sin 45^\circ & \cos 45^\circ \\ \sin 45^\circ & \cos 45^\circ & \cos 45^\circ \\ \sin 45^\circ & \cos 45^\circ & \cos 45^\circ \\ \cos 45^\circ & \cos 45^\circ \\ \cos 45^\circ & \cos 45^\circ \\ \cos 45^\circ &$$

Reflection

about **y**-axis:

$$Rf_{y} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

about x-axis:

$$Rf_{x} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

reflection about the axis with angle $\boldsymbol{\alpha}$

reflection about the axis with angle α

- **1.** rotation by $-\alpha$
- 2. mirroring about x-axis
- **3.** rotation by $+\alpha$

reflection about the axis with angle α

1.
$$M_1 = R(-\alpha) = \begin{bmatrix} \cos(-\alpha) & -\sin(-\alpha) & 0 \\ \sin(-\alpha) & \cos(-\alpha) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

2.
$$M_2 = S(1,-1) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

3.
$$M_3 = R(\alpha) =$$

$$\begin{pmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$P' = M_3 \cdot (M_2 \cdot (M_1 \cdot P)) = (M_3 \cdot M_2 \cdot M_1) \cdot P$$

reflection about the axis with angle α

$$\begin{split} & \mathbf{M_3} \cdot \mathbf{M_2} \cdot \mathbf{M_1} = \\ & = \begin{pmatrix} \cos\alpha & -\sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos(-\alpha) & -\sin(-\alpha) & 0 \\ \sin(-\alpha) & \cos(-\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix} = \\ & = \begin{pmatrix} \cos\alpha & \sin\alpha & 0 \\ \sin\alpha & -\cos\alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} \cos\alpha & \sin\alpha & 0 \\ -\sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos^2\alpha - \sin^2\alpha & 2\sin\alpha\cos\alpha & 0 \\ 2\sin\alpha\cos\alpha & \sin^2\alpha - \cos^2\alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \cos^2\alpha & \sin^2\alpha & 0 \\ \sin^2\alpha & -\cos^2\alpha & 0 \\ 0 & 0 & 1 \end{pmatrix} \end{split}$$

Other Transformations: Reflection about a Point

reflection about origin

$$Rf_{O}(=R(180^{\circ})) = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Werner Purgathofer 30

Reflection with Respect to a General Line

reflection with respect to the line y=mx+b

$$T(0,b) \cdot R(\theta) \cdot S(1,-1) \cdot R(-\theta) \cdot T(0,-b)$$
$$m = tan(\theta)$$

Other Transformations: Shear (1)

x-direction shear

- along x-axis
- reference line y=0

Other Transformations: Shear (2)

general x-direction shear

- along x-axis
- reference line y=y_{ref}

(1	$\mathbf{sh}_{\mathbf{x}}$	$-\mathbf{sh}_{\mathbf{x}}\cdot\mathbf{y}_{\mathbf{ref}}$
0	1	0
$\bigcup_{i=1}^{n} 0_{i}$	0	1

Other Transformations: Shear (3)

general y-direction shear

- along y-axis
- reference line x=x_{ref}

$$\begin{pmatrix} 1 & 0 & 0 \\ sh_y & 1 & -sh_y \cdot x_{ref} \\ 0 & 0 & 1 \end{pmatrix}$$

Transformation between Coordinate Systems

$$\mathbf{M}_{\mathbf{x}\mathbf{y},\mathbf{x}'\mathbf{y}'} = \mathbf{R}(-\mathbf{\theta}) \cdot \mathbf{T}(-\mathbf{x}_0,-\mathbf{y}_0)$$

a Cartesian x'y' system positioned at (x_0,y_0) with orientation θ in an xy Cartesian system

position of the reference frames after translating the origin of the x'y' system to the coordinate origin of the xy system

Affine Transformations

$$x' = a_{xx}x + a_{xy}y + b_{x}$$
$$y' = a_{yx}x + a_{yy}y + b_{y}$$

- \blacksquare collinear \Rightarrow points on a line stay on a line
- \blacksquare parallel lines \Rightarrow parallel lines
- ratios of distances along a line are preserved
- finite points \Rightarrow finite points
- any affine transformation is a combination of translation, rotation, scaling, (reflection, shear)
- translation, rotation, reflection only:
 - angle, length preserving

3D Transformations

- all concepts can be extended to 3D in a straight forward way
- plus projections 3D → 2D

3D Translation (1)

translation vector (t_x, t_y, t_z)

$$x' = x + t_x$$
, $y' = y + t_y$, $z' = z + t_z$

$$\begin{bmatrix} \mathbf{x'} \\ \mathbf{y'} \\ \mathbf{z'} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \mathbf{t_x} \\ 0 & 1 & 0 & \mathbf{t_y} \\ 0 & 0 & 1 & \mathbf{t_z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \\ 1 \end{bmatrix}$$

$$\mathbf{P'} = \mathbf{T}(\mathbf{t}_{\mathbf{x}}, \mathbf{t}_{\mathbf{y}}, \mathbf{t}_{\mathbf{z}}) \cdot \mathbf{P}$$

3D Translation (2)

objects are translated by translating boundary points

inverse of translation:

$$T^{-1}(t_x,t_y,t_z) = T(-t_x,-t_y,-t_z)$$

3D Rotation: Angle Orientation

- 3 options for rotation axis
- positive angle ⇒ counterclockwise rotation

3D Rotation: Coordinate Axes (z-axis)

$$x' = x \cdot \cos \theta - y \cdot \sin \theta$$
$$y' = x \cdot \sin \theta + y \cdot \cos \theta$$
$$z' = z$$

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos\theta - \sin\theta & 0 & 0 \\ \sin\theta & \cos\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$P' = R_z(\theta) \cdot P$$

3D Rotation: Coordinate Axes (x-axis)

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\mathbf{P'} = \mathbf{R}_{\mathbf{x}}(\mathbf{\theta}) \cdot \mathbf{P}$$

3D Rotation: Coordinate Axes (y-axis)

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$\mathbf{P'} = \mathbf{R}_{\mathbf{y}}(\mathbf{\theta}) \cdot \mathbf{P}$$

3D Rotation: Axis Parallel to x-Axis

3D Rotation around Arbitrary Axis

an axis of rotation (dashed line) defined with points P_1 and P_2 . The direction of the unit axis vector ${\bf u}$ determines the rotation

direction.

$$u = \frac{P_2 - P_1}{|P_2 - P_1|} = (a, b, c)$$

3D Rotation around Arbitrary Axis - Overview

3. rotate object around z-axis

4. rotate axis to original orientation

5. translate axis to original position

3D Rotation around Arbitrary Axis — Step 1

step 1: translation $T(-x_1, -y_1, -z_1)$

Werner Purgathofer 47

3D Rotation around Arbitrary Axis – After Step 1

3. rotate object around z-axis

4. rotate axis to original orientation

5. translate axis to original position

3D Rotation around Arbitrary Axis – Step 2

step 2: rotation so that u coincides with z-axis (done with 2 rotations)

step 2a: $R_x(a)$: $u \rightarrow xz$ -plane

step 2b: $R_y(b)$: $u \rightarrow z$ -axis

Werner Purgathofer 49

3D Rotation around Arbitrary Axis — Step 2

step 2a:

$$u = (a,b,c)$$

$$u' = (0,b,c)$$

$$|u'| = d = \sqrt{b^2 + c^2}$$

$$\cos \alpha = c/d$$

3D Rotation around Arbitrary Axis — Step 2

step 2b:

$$u' = (0,b,c)$$

 $|u'| = d$
 $u'' = (a,0,d)$

$$\cos \beta = d$$

 $\sin \beta = -a$

$$R_{y}(\beta) = \begin{bmatrix} a & 0 & a & 0 \\ 0 & 1 & 0 & 0 \\ a & 0 & d & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3D Rotation around Arbitrary Axis — After Step 2

3. rotate object around z-axis

4. rotate axis to original orientation

5. translate axis to original position

3D Rotation around Arbitrary Axis – Step 3

step 3:

- u is aligned with z-axis
- rotation around z-axis

Werner Purgathofer 53

3D Rotation around Arbitrary Axis – After Step 3

3. rotate object around z-axis

4. rotate axis to original orientation

5. translate axis to original position

3D Rotation around Arbitrary Axis

step 4: undo rotations of step 2

step 5: undo translation of step 1

$$R(\theta) = T^{-1}(P_1) \cdot R_x^{-1}(\alpha) \cdot R_y^{-1}(\beta) \cdot R_z(\theta) \cdot R_y(\beta) \cdot R_x(\alpha) \cdot T(P_1)$$

$$\text{steps: 5 4a 4b 3 2b 2a 1}$$

inverse of rotation:

$$R_x^{-1}(\theta) = R_x(-\theta) = R_x^{T}(\theta)$$

Werner Purgathofer 55

3D Scaling with respect to Origin

doubling the size of an object also moves the object farther away from the origin

$$\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

$$P' = S \cdot P$$

$$T(x_F, y_F, z_F) \cdot S(s_x, s_y, s_z) \cdot T(-x_F, -y_F, -z_F)$$

$$T(x_F, y_F, z_F) \cdot S(s_x, s_y, s_z) \cdot T(-x_F, -y_F, -z_F)$$

$$T(x_F, y_F, z_F) \cdot S(s_x, s_y, s_z) \cdot T(-x_F, -y_F, -z_F)$$

Werner Purgathofer 59

$$T(x_F, y_F, z_F) \cdot S(s_x, s_y, s_z) \cdot T(-x_F, -y_F, -z_F)$$

$$T(x_F, y_F, z_F) \cdot S(s_x, s_y, s_z) \cdot T(-x_F, -y_F, -z_F)$$

$$\begin{bmatrix} s_{x} & 0 & 0 & (1-s_{x})x_{F} \\ 0 & s_{y} & 0 & (1-s_{y})y_{F} \\ 0 & 0 & s_{z} & (1-s_{z})z_{F} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3D Reflection

reflection with respect to

- point
- line (180° rotation)
- plane, e.g., xy-plane: RF_z

$$RF_{z} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

3D Shear

example: shear relative to z-axis with a=b=1

