CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 17 GENNAIO 2017

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza (I, II o recupero). Non è necessario consegnare la traccia.

Esercizio 1. Dare la definizione di polinomio irriducibile (a coefficienti in un campo).

Esercizio 2. Dati gli insiemi $S := \{1, 3, 8, 15, 22\}$ e $X := \{3, 5, 7\}$, si determinino, elencandone gli elementi:

$$A = \{ p \in X \mid (\exists x \in S)(p|x) \};$$

$$B = \{ p \in X \mid (\exists ! x \in S)(p|x) \};$$

$$D = \{ p \in X \mid (\forall x \in S)(p \nmid x) \};$$

$$D = \{ p \in X \mid (\forall x \in S)(p \mid x) \}.$$

- (i) L'insieme costituito da alcuni di questi quattro insiemi è una partizione di X. Determinarlo.
- (ii) Detta F questa partizione, descrivere l'insieme delle coppie ordinate in $X \times X$ che costituisce la relazione di equivalenza corrispondente a F.

Esercizio 3. Si consideri l'applicazione $f: x \in \mathbb{N} \mapsto \operatorname{rest}(x,8) \in \{0,1,2,3,4,5,6,7,8\}.$

- (i) f è iniettiva? f è suriettiva?
- (ii) Detto σ il nucleo di equivalenza di f, quante sono le classi di equivalenza in \mathbb{N}/σ ? Descrivere esplicitamente gli elementi di ciascuna classe.
- (iii) Scrivere un'applicazione biettiva da $[0]_{\sigma}$ a $[1]_{\sigma}$.

Definiamo la relazione d'ordine Σ in \mathbb{N} ponendo, per ogni $x, y \in \mathbb{N}$,

$$x \Sigma y \iff (x = y \vee f(x) \text{ divide propriamente } f(y)).$$

- (iv) Si determinino in (\mathbb{N}, Σ) gli eventuali elementi minimali, massimali, minimo, massimo. (\mathbb{N}, Σ) è un reticolo?
- (v) Disegnare il diagramma di Hasse di (L, Σ) , dove $L = \{0, 1, 2, 3, 4, 5, 6, 7\}$. Stabilire se (L, Σ) è un reticolo e, nel caso, se è distributivo, complementato, booleano.

Esercizio 4. Si consideri l'operazione binaria * definita in \mathbb{Z}_{20} da:

$$(\forall a, b \in \mathbb{Z}_{20}) \qquad a * b = ab - a + \bar{3}b - \bar{6}.$$

- (i) Per ogni $a \in b$ in \mathbb{Z}_{20} , calcolare $a * \bar{0} \in \bar{0} * b$.
- (ii) Sfruttando quanto appena fatto,
 - (a) calcolare $\bar{1} * \bar{0} = \bar{0} * \bar{1}$; decidere se * è commutativa;
 - (b) calcolare $(\bar{0} * \bar{1}) * \bar{0} = \bar{0} * (\bar{1} * \bar{0})$; decidere se * è associativa;
 - (c) determinare tutti i $b \in \mathbb{Z}_{20}$ tali che $\bar{0} * b = \bar{0}$. Usare questo risultato per stabilire se $(\mathbb{Z}_{20}, *)$ è dotata di elementi neutri a destra;
 - (d) stabilire se $(\mathbb{Z}_{20}, *)$ è dotata di elementi neutri a sinistra.

Sia $Y = \{[n]_{20} \mid n \in \mathbb{Z} \land n \equiv_5 2\}$. È possibile dimostrare che, per ogni $a \in \mathbb{Z}_{20}$ e $b \in Y$,

$$a * b = ab - a - b + \bar{2}. \tag{P}$$

Utilizzando questa proprietà (\mathcal{P}) :

- (iii) verificare che Y è una parte chiusa di $(\mathbb{Z}_{20}, *)$;
- (iv) stabilire se l'operazione indotta da * su Y è associativa e se è commutativa. (Y,*) ha elemento neutro?
- (v) Nel caso la domanda abbia senso, per ciascuno di $\overline{7}$ e $\overline{12}$ stabilire se è invertibile in (Y, *) e, se lo è, trovarne l'inverso.
- (vi) Dimostrare la proprietà (\mathcal{P}) .

Esercizio 5. Per ogni primo (positivo) p si consideri il polinomio

$$f_p = x^4 + x^3 - \overline{35}x^2 - \overline{36}x + \overline{34} \in \mathbb{Z}_p[x].$$

Dopo aver enunciato il teorema di Ruffini generalizzato,

- (i) lo si usi per determinare l'insieme T dei primi p tali che f_p sia divisibile (in $\mathbb{Z}_p[x]$) per $x^2 \overline{1}$.
- (ii) Per ogni $p \in T$ si scriva f_p come prodotto di polinomi monici irriducibili in $\mathbb{Z}_p[x]$.