Divide et impera

Luca Becchetti

Presentazione tratta dalle slide che accompagnano il testo Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Analisi (alternativa) del Merge Sort

 Sia T(n) il costo (nel caso peggiore) per ordinare un array di dimensione n

$$T(n) \leq \left\{egin{array}{l} b, \ se \ n \leq 1 \ 2T(n/2) + cn, \ se \ n > 1 \end{array}
ight.$$

Consideriamo due passi della ricorsione

$$T(n) \le 2T(n/2) + cn \le 2^2T(n/2^2) + 2(cn/2) + cn = 2^2T(n/2^2) + 2cn$$

Dopo i passi

$$T(n) \leq 2^i T(n/2^i) + icn$$

Analisi del Merge Sort (cont.)

- Quando fermarsi?
 - Argomento (n) della funzione ≤ 1
 - Quindi: $n/2^i \le 1$ → soddisfatta se $i \ge log_2 n$
- Quindi \rightarrow T(n) $\leq 2^{\log n}$ T(1) + cnlog₂n \leq bn + cnlog₂n = O(nlog n)
- Abbiamo risolto una (dis)equazione di ricorrenza → T(n) ≤ 2T(n/2) + cn
- Esercizio: scrivere l'equazione di ricorrenza che dà il costo della ricerca binaria in un array ordinato e risolverla

Divide et impera senza ricorsione

 Per n abbastanza grande, si consideri il seguente algoritmo di ordinamento

```
SplitAndMerge(array a, k)
b = []
for i = 0 to k-1
  temp = sort(a[in/k ... (i+1)n/k - 1]) // quadratico
b = merge(b, temp)
return b
```

Supponiamo n divisibile per k per semplicità

Analisi di MergeAndSplit

Sia T(n) il costo nel caso peggiore

Merge Sort

Algorithm *mergeSort(S)* **Input** sequence *S* with *n* elements Output sequence S sorted according to C if S.size() > 1 $(S_1, S_2) \leftarrow partition(S, n/2)$ $mergeSort(S_1)$ $mergeSort(S_2)$ $S \leftarrow merge(S_1, S_2)$

Merge

Date due liste ordinate con n₁ e n₂ elementi → lista ordinata di n₁ + n₂ elementi

- Operazione fondamentale
- Sue varianti usate nei motori di ricerca

Merge → algoritmo (in Java)

```
/** Merge contents of arrays S1 and S2 into properly sized array S. */
       public static <K> void merge(K[] S1, K[] S2, K[] S, Comparator<K> comp) {
         int i = 0, j = 0;
         while (i + j < S.length) {
            if (j == S2.length || (i < S1.length && comp.compare(S1[i], S2[j]) < 0))
 5
                                     // copy ith element of S1 and increment i
              S[i+j] = S1[i++];
            else
              S[i+j] = S2[j++];
                                                      // copy jth element of S2 and increment j
 9
10
    S_1 \mid 2 \mid 5 \mid 8 \mid 11 \mid 12 \mid 14 \mid 15
                                                    S_1 \mid 2 \mid 5 \mid 8 \mid 11 \mid 12 \mid 14 \mid 15
                                                        0 1 2 3 4 5 6
                                                    S<sub>2</sub> | 3 | 9 | 10 | 18 | 19 | 22 | 25
    S_2 \mid 3 \mid 9 \mid 10 \mid 18 \mid 19 \mid 22 \mid 25
              2 3 4 5 6 7 8 9 10 11 12 13
                                                                 3 4 5 6 7 8 9 10 11 12 13
     S 2 3 5 8 9
                                                       2 3 5 8 9 10
                      i+j
                                                                         i+j
```

Algoritmo Merge Sort (in Java)

```
/** Merge-sort contents of array S. */
      public static <K> void mergeSort(K[] S, Comparator<K> comp) {
 3
        int n = S.length:
        if (n < 2) return;
                                                              // array is trivially sorted
        // divide
        int mid = n/2;
 6
        K[] S1 = Arrays.copyOfRange(S, 0, mid);
                                                            // copy of first half
        K[] S2 = Arrays.copyOfRange(S, mid, n);
                                                             // copy of second half
        // conquer (with recursion)
        mergeSort(S1, comp);
                                                             // sort copy of first half
10
11
        mergeSort(S2, comp);
                                                              // sort copy of second half
12
        // merge results
        merge(S1, S2, S, comp);
                                                // merge sorted halves back into original
13
14
```

Analisi dell'algoritmo Merge Sort

Albero di ricorsione (merge sort tree)

- Esecuzione descritta da un albero binario
- Ogni nodo rappresenta una chiamata ricorsiva del merge sort
 - La radice rappresenta l'invocazione iniziale
 - Foglie → istanze di dimensione 1 (o 0)

Partizione

Chiamate ricorsiva, partizione

Chiamate ricorsiva, partizione

Chiamate ricorsiva, caso base

Chiamate ricorsiva, caso base

Merge

Chiamata ricorsiva, caso base, merge

Merge

Chiamata ricorsiva, merge, merge ...

Merge

Analisi

- Altezza dell'albero di ricorsione → O(log n)
- Lavoro totale svolto nei nodi a profondità i

Analisi (cont.)

- Lavoro complessivo a profondità i → O(n)
- O(log n) livelli → complessità O(n log n)

prof.	#seq s	dim.
0	1	n
1	2	<i>n</i> /2
i	2^i	$n/2^i$
• • •	•••	•••

Altre considerazioni

- Memoria aggiuntiva necessaria per effettuare il merge
- Analisi del costo usando la ricorrenza
 - Sia T(x) il costo nel caso peggiore del Merge Sort per ordinare un array di x elementi
 - T(n) ≤ 2 T(n/2) + cn, dove c è una costante Ricorsione Merge
 - La disugualianza sopra può essere risolta
 - Il risultato in forma chiusa è O(n logn) come già sappiamo