資料探勘於實際數據之應用實作

製作人:楊翔斌

大綱

第一部分:資料探勘應用在類別變數預測-以鋼板缺陷類型為例

第二部分:資料探勘應用在連續變數預測-以台北市房屋價格為例

第三部分:利用CNN做圖片類別辨識別辨識

第四部分:利用LSTM做時間序列相關預測

第五部分:資料視覺化

第六部分:應用文字探勘於文章分類

第七部分:用決策樹作是否離職之分類

第一部分:資料內容

```
Classes 'data.table' and
                        'data.frame': 1941 obs. of
$ X Minimum
                             42 645 829 853 1289 430 413 190 330 74 ...
 $ x_Maximum
                              50 651 835 860 1306 441 446 200 343 90 ...
 $ Y_Minimum
                              270900 2538079 1553913 369370 498078 100250 138468 210936 429227 779144
 $ Y_Maximum
                              270944 2538108 1553931 369415 498335 100337 138883 210956 429253 779308
 $ Pixels Areas
                       : int
                              267 108 71 176 2409 630 9052 132 264 1506 ...
 $ X_Perimeter
                             17 10 8 13 60 20 230 11 15 46 ...
 $ Y_Perimeter
                       : int
                             44 30 19 45 260 87 432 20 26 167 ...
 $ Sum_of_Luminosity
                             24220 11397 7972 18996 246930 62357 1481991 20007 29748 180215 ...
                       : int
 $ Minimum_of_Luminosity: int
                             76 84 99 99 37 64 23 124 53 53 ...
 $ Maximum_of_Luminosity: int
                            108 123 125 126 126 127 199 172 148 143 ...
 $ Length_of_Conveyer
                       : int
                             1687 1687 1623 1353 1353 1387 1687 1687 1687 1687 ...
 $ TypeOfSteel_A300
                       : int
                             11100000000...
 $ TypeOfSteel_A400
                       : int
                             0001111111...
 $ Steel_Plate_Thickness: int
                              80 80 100 290 185 40 150 150 150 150 ...
 $ Edges_Index
                             0.0498 0.7647 0.971 0.7287 0.0695 ...
 $ Empty_Index
                             0.241 0.379 0.343 0.441 0.449 ...
                       : num
 $ Square_Index
                             0.1818 0.2069 0.3333 0.1556 0.0662 ...
 $ Outside_X_Index
                             0.0047 0.0036 0.0037 0.0052 0.0126 0.0079 0.0196 0.0059 0.0077 0.0095 ...
 $ Edges_X_Index
                             0.471 0.6 0.75 0.538 0.283 ...
 $ Edges_Y_Index
                       : num
                             1 0.967 0.947 1 0.989 ...
 $ Outside_Global_Index : num
 $ LogOfAreas
                              2.43 2.03 1.85 2.25 3.38 ...
 $ Log_X_Index
                             0.903 0.778 0.778 0.845 1.23 ...
 $ Log_Y_Index
                             1.64 1.46 1.26 1.65 2.41 ...
                             0.818 0.793 0.667 0.844 0.934 ...
 $ Orientation_Index
                       : num
                             -0.291 -0.176 -0.123 -0.157 -0.199 ...
 $ Luminosity_Index
                       : num
 $ SigmoidOfAreas
                             0.582 0.298 0.215 0.521 1 ...
 $ Pastry
                       : int
 $ Z_Scratch
                             0 0 0 0 0 0 0 0 0 0 ...
 $ K_Scatch
                             0000000000...
 $ Stains
                       : int
                             00000000
 $ Dirtiness
                             0000000000...
$ Bumps
                             0000000000...
$ Other_Faults
                                 00000000
                       : Factor w/ 8 levels "0"."Pastrv"."Z_Scratch"...: 2 2 2 2 2 2 2 2 2 ...
$ type
 - attr(*. ".internal.selfref")=<externalptr>
```

要預測的變量

方法簡述

數據預整理

數據分為訓練集 和測試集

以訓練集建立 預測模型

以測試集帶入 模型測試準確性

取得一模型,將 參數輸入獲得預 測值做參考

簡單多變數回歸法,準確率=70%

			•					
		predict						
	real	Pastry	z_scratch	K_Scatch	Stains	Dirtiness	Bumps	Other_Faults
4	Pastry	13	1	0	0	1	12	9
	z_5cratch	0	32	1	0	0	3	7
	K_5catch	0	0	75	1	0	2	3
	Stains	0	0	0	14	0	1	0
	Dirtiness	0	0	0	0	3	0	1
ı	Bumps	2	2	0	0	0	52	21
ı	Other_Faults	6	2	1	0	1	40	83

支援向量機法(SVM),準確率=76%

	test.pre	ed					
real	Pastry	Z_Scratch	K_Scatch	Stains	Dirtiness	Bumps	Other_Faults
Pastry	18	0	0	0	0	6	12
z_scratch	0	34	0	0	0	2	7
K_Scatch	0	0	75	1	0	0	5
Stains	0	0	0	14	0	1	0
Dirtiness	0	0	0	0	4	0	0
Bumps	2	5	0	0	0	47	23
Other_Faults	3	1	1	1	0	23	104

決策樹法

6

決策樹法,準確率=70%

		predict						
	real	Pastry	z_scratch	K_Scatch	Stains	Dirtiness	Bumps	Other_Faults
1	Pastry	14	2	2	0	0	2	16
	Z_Scratch	0	33	0	0	0	0	10
	K_Scatch	0	0	70	1	0	2	8
	Stains	0	0	0	12	0	2	1
H	Dirtiness	0	0	0	0	2	0	2
ı	Bumps	1	1	0	0	0	46	29
ı	Other_Faults	5 3	2	0	0	2	31	95
п			_			_		

隨機森林法,準確率=80%

	predict						
real	Pastry	z_scratch	K_Scatch	Stains	Dirtiness	Bumps	Other_Faults
Pastry	21	0	1	0	0	3	11
Z_Scratch	0	37	1	0	0	0	5
K_Scatch	0	0	79	0	0	0	2
Stains	0	0	0	14	0	1	0
Dirtiness	0	0	0	0	4	0	0
Bumps	3	0	1	0	1	49	23
Other_Faults	5 8	0	0	0	0	19	106

此部分用Python撰寫,python在類神經網路語法齊全。

9

xgboost,準確率=76 %

	real						
preidct	Bumps	Dirtiness	K_Scatch	Other_Faults	Pastry	Stains	Z_Scratch
Bumps	64	0	0	31	8	2	0
Dirtiness	1	15	0	2	2	0	0
K_Scatch	0	0	76	2	0	1	0
Other_Faults	26	0	2	145	9	1	3
Pastry	5	0	0	17	19	0	1
Stains	0	0	0	1	0	11	0
z_Scratch	0	0	1	1	0	0	40

第二部分:資料內容

```
Classes 'data.table' and 'data.frame': 4848 obs. of 29 variables:
                          : chr "The villages and towns urban district" "中正區" "中正區" "中正區" ...
 $ 鄉镇市區
                          : chr "transaction sign" "車位" "房地(土地+建物)" "房地(土地+建物)" ...
 $ 交易標的
 $ 土地區段位置/建物區段門牌: chr "land sector position/building sector house number plate" "臺北市中正區和平西路一段61~90號"
                             "land shifting total area (square meter)" "0.28" "0.02" "6.72" ...
 $ 土地移轉總面積(平方公尺) : chr
                         : chr "the use zoning or compiles and checks" "商" "住" "住" ...
 $ 都市土地使用分區
                         : chr "the non-metropolis land use district" NA NA NA ...
 $ 非都市土地使用分區
                         : chr "non-metropolis land use" NA NA NA ...
 $ 非都市土地使用編定
                          : chr "transaction year" "1051024" "1051024" "1051007" ...
 $ 交易年月日
                          : chr "month and day" "土地0建物0車位1" "土地1建物1車位0" "土地3建物1車位0" ...
 $ 交易筆棟數
                          : chr "transaction pen number" "地下一層,地下二層,地下三層,地下四層" "五層" "五層" ...
: chr "shifting level" "二十八層" "五層" "十二層" ...
: chr "total floor number" "其他" "華廈(10層含以下有電梯)" "住宅大樓(11層含以上有電梯)" ...
 $ 移轉層次
                                 "building state" "停車空間" NA "住家用" ...
 $ 主要用途
                          : chr "main use" "鋼骨鋼筋混凝土造" "加強磚造" "鋼筋混凝土造" ...
 $ 建築完成年月
                          : chr "main building materials" "930120" "560519" "681226" ...
 $ 建物移轉總面積(平方公尺) : chr "construction to complete the years" "40.77" "42.72" "72.47" ...
                         : chr "building shifting total area" "0" "3" "2" ...
 $ 建物現況格局-房
                         : chr "Building present situation pattern - room" "0" "1" "2" 
: chr "building present situation pattern - hall" "0" "1" "1"
 $ 建物現況格局-廳
 $ 建物現況格局-衛
 $ 建物現況格局-隔間
                         : chr "building present situation pattern - health" "有" "有" "有"
                          : chr "building present situation pattern - compartmented" "無" "有" "有" ...
 $ 有無管理組織
                           : chr "Whether there is manages the organization" "3100000" "51983" "12250000" ...
 $ 總價(元)
 $ 單價(元/平方公尺)
                         : chr "total price (Yuan)" NA "1217" "169035" ...
 $ 車位類別
                          : chr "the unit price (a Yuan/square meter)" "坡道平面" NA NA ...
 $ 車位移轉總面積(平方公尺) : chr "the berth category" "0" "0" "0" ...
                          : chr "berth shifting total area (square meter)" "3100000" "0" "0" ...
 $ 車位總價(元)
                           : chr "the berth total price (Yuan)" NA "親友、貴工或其他特殊關係間之交易。" NA ...
 $ 備註
                           : chr "the note" "RPSNMLMJJILFFAA96CA" "RPSNMLNJJILFFAA07CA" "RPPNMLPJJILFFAA96CA"
 $ 編號
                            : chr "serial number" NA NA NA ...
 $ V29
```

挑選適當參數以建立預測總價的模型

方法簡述

數據預分類

數據預處理

數據分為訓練集 和測試集

依照交易標的先分類

- 1. 土地
- 2. 单位
- 3. 土地+建物
- 4. 土地+建物+車位
- 5. 建物

- 1. 處理遺漏值
- 2. 處理離群值 3. 選擇適當變數

以訓練集建立 預測模型

以測試集帶入 模型測試準確性 取得一模型,將 參數輸入獲得預 測值做參考

資料視覺化

方法	預測項目	均方根誤差
Lasso回歸	土地	15,553,052
xgboost	土地	3,427,291
支援向量機法(SVM)	土地	7,985,620

第三部分:資料內容(1/2)

訓練集圖檔

wod097.jp

g

wod096.jp

wod099.jp

wod098.jp

wod100.jp

wod091.jp

tou100.jpg

wod092.jp

wod093.jp

g

wod094.jp

wod095.jp

測試集圖檔

第三部分:資料內容

利用CNN(卷積神經網路Convolutional Neural Networks)訓練模型做不同種類鳥之辨識。

方法簡述

移除不適當圖, 分為訓練集和測試集

以Keras建立 CNN模型

- 1. 擷取各圖的特徵做為變數
- 2. 建立適當類神經網路 3. 選擇適當參數(激發函數、優化器)

以測試集帶入 模型測試準確性 取得一模型,將 參數輸入獲得預 測之類別做參考

模型A

訓練越多次準確率 越高(針對訓練集圖)

19

將測試的圖片以 模型B去判讀 對角線為正確預 測的部分 正確率:37%

predict	0	1	2	3	4	5
label /						
0.0	3	0	3	0	4	2
1.0	2	5	3	2	1	0
2.0	0	1	3	3	0	4
3.0	3	2	2	4	0	0
4.0	2	0	1	0	8	1
5.0	0	0	4	1	3	3

亦可以從其他預 測錯誤的案例來 推知,當模型預 測為2時,較不 容易辨別實際為 哪一類型。

predict	0	1	2	3	4	5
label						
0.0	3	0	3	0	4	2
1.0	2	5	3	2	1	0
2.0	0	1	3	3	0	4
3.0	3	2	2	4	0	0
4.0	2	0	1	0	8	1
5.0	0	0	4	1	3	3

模型C

用其他優化器,在運行50 次後得到之結果

第三部分:資料內容(2/2)

運算過程:運算兩周期,共約22小時。

預測值對實際值作圖

Age: 72.0 Predicted Age: 86.6

Age: 60.0 Predicted Age: 78.9

Age: 168.0 Predicted Age: 163.2

Age: 138.0 Predicted Age: 113.3

Age: 216.0 Predicted Age: 199.9

Age: 42.0 Predicted Age: 61.9

Age: 50.0 Predicted Age: 61.8

Age: 36.0 Predicted Age: 97.3

運算過程:運算三周期,共約44小時。

Epoch 1/3

mae_months: 38.7718 - val_loss: 0.8370 - val_mae_months: 64.4920

Epoch 00001: val_loss improved from inf to 0.83697, saving model to

bone age weights.best.hdf5

Epoch 2/3

mae_months: 27.8057 - val_loss: 0.2818 - val_mae_months: 34.6985

Epoch 00002: val_loss improved from 0.83697 to 0.28182, saving model to

bone_age_weights.best.hdf5

Epoch 3/3

mae_months: 24.1946 - val_loss: 0.3845 - val_mae_months: 42.2493

由以上可以看出模型訓練準確度提高,但是預測未知圖片時誤差變大,表示已經過度學習,若要再精準預測則要考慮調整其他參數,而非增加訓練時間。

預測值對實際值作圖:與26頁圖相比誤差較大

Age: 216.0 Predicted Age: 252.7

Age: 60.0 Predicted Age: 62.5

Age: 168.0 Predicted Age: 261.8

Age: 186.0 Predicted Age: 215.9

Age: 60.0 Predicted Age: 85.1

Age: 60.0 Predicted Age: 100.0

Age: 150.0 Predicted Age: 143.2

運算過程:運算六周期,共約12小時,採用另一種模型計算。

```
Epoch 1/6
16.8291
Epoch 00001: val loss improved from 0.07636 to 0.06927, saving model to bone age weights.best.hdf5
Epoch 2/6
16.4281
Epoch 00002: val loss improved from 0.06927 to 0.06918, saving model to bone age weights.best.hdf5
Epoch 3/6
13.9336
Epoch 00003: val loss improved from 0.06918 to 0.04864, saving model to bone_age_weights.best.hdf5
Epoch 4/6
13.7648
Epoch 00004: val loss improved from 0.04864 to 0.04800, saving model to bone age weights.best.hdf5
Epoch 5/6
13.2270
Epoch 00005: val_loss improved from 0.04800 to 0.04522, saving model to bone_age_weights.best.hdf5( 較佳)
Epoch 6/6
14.2945
```

將圖片之特徵繪製成attention map

Hand Image Age:14.50Y

Attention Map Pred:14.18Y

Hand Image Age:3.00Y

Attention Map Pred:2.36Y

Hand Image Age:14.00Y

Attention Map Pred:14.71Y

程式汲取的特徵以直觀來看與原圖較相符 ,這些案例所預測的值較準

將圖片之特徵繪製成attention map

Hand Image Age:5.00Y

Attention Map Pred:3.85Y

Hand Image

Hand Image Age:13.00Y

取得之特徵與原圖較比較無相關, 以這樣的特徵去預測所得到之值誤差較大

預測值對實際值作圖:與其他圖相比誤差較小, MAE為13.2

Age: 4.0 Predicted Age: 6.6

7 2502

Age: 36.0 Predicted Age: 26.9

Age: 96.0 Predicted Age: 85.3

Age: 132.0 Predicted Age: 119.4

Age: 198.0 Predicted Age: 212.6

Age: 162.0 Predicted Age: 154.3

Age: 228.0 Predicted Age: 214.3

第四部分:資料內容

	and the site of							
J	Index	Global_active_power	Global_reactive_power 🛆	Voltage	Global_intensity	Sub_metering_1	Sub_metering_2	Sub_metering_3
ł	2006-12-16 17:42:00	3.266	0	237.13	13.8	0	0	18
	2006-12-16 17:43:00	3.728	0	235.84	16.4	0	0	17
ı.	2006-12-16 17:44:00	5.894	0	232.69	25.4	0	0	16
ı.	2006-12-16 17:45:00	7.706	0	230.98	33.2	0	0	17
I.	2006-12-16 17:46:00	7.026	0	232.21	30.6	0	0	16
١.	2006-12-16 17:47:00	5.174	0	234.19	22	0	0	17
ı.	2006-12-16 17:48:00	4.474	0	234.96	19.4	0	0	17
ı.	2006-12-16 17:49:00	3.248	0	236.66	13.6	0	0	17
Ì.	2006-12-16 17:50:00	3.236	0	235.84	13.6	0	0	17
Ì.	2006-12-16 17:51:00	3.228	0	235.6	13.6	0	0	17
	2006-12-16 17:52:00	3.258	0	235.49	13.8	0	0	17

目標:以LSTM法,透過學習其他參數的特徵搭配時間序列,預測Global_active_power在不同時間的值。

此範例在營業額對時間(月、季…)或是某原物料價隨時間變化上應用廣泛。

資料內容

Global_active_power對時間做圖,此參數是要預測的對象

預測結果 In [102]: print('Test RMSE: %.3f' % rmse)
Test RMSE: 0.614

第五部分:資料內容

	cement	blast_furnace_slag	fly_ash	water	superplasticizer	coarse_aggregate	fine_aggregate	age	concrete_compressive_strength
0	540.0	0.0	0.0	162.0	2.5	1040.0	676.0	28	79.99
1	540.0	0.0	0.0	162.0	2.5	1055.0	676.0	28	61.89
2	332.5	142.5	0.0	228.0	0.0	932.0	594.0	270	40.27
3	332.5	142.5	0.0	228.0	0.0	932.0	594.0	365	41.05
4	198.6	132.4	0.0	192.0	0.0	978.4	825.5	360	44.30
5	266.0	114.0	0.0	228.0	0.0	932.0	670.0	90	47.03
6	380.0	95.0	0.0	228.0	0.0	932.0	594.0	365	43.70
7	380.0	95.0	0.0	228.0	0.0	932.0	594.0	28	36.45
8	266.0	114.0	0.0	228.0	0.0	932.0	670.0	28	45.85
9	475.0	0.0	0.0	228.0	0.0	932.0	594.0	28	39.29

目標:以plotly套件繪製常用之統計圖表。

3D圖

將水泥數據中cement及fly_ash做xy軸, 對concrete_compressive_strength做圖 互動網頁版請參閱https://plot.ly/~sigmaplot/13.embed

3D散佈圖

將水泥數據中cement及fly_ash做xy軸, 對concrete_compressive_strength做點散佈圖 互動網頁版請參閱https://plot.ly/~sigmaplot/23.embed

將水泥數據中個參數畫成直方圖,可在圖例中點選要選擇之數據 如下圖只顯示部分類別的數據

互動網頁版請參閱https://plot.ly/~sigmaplot/19.embed

boxplot

可以透過此圖了解數據集各變數基本敘述統計資料及約略資料分佈,並且可以看出離群值。

互動網頁版請參閱https://plot.ly/~sigmaplot/27.embed

以cement及fly_ash做散佈圖,並以concrete_compressive_strength。 之數值大小以顏色深淺做表示。 互動網頁版請參閱https://plot.ly/~sigmaplot/31.embed

以cement及fly_ash做散佈圖,並以concrete_compressive_strength。 之數值大小以元圈大小做表示。

互動網頁版請參閱https://plot.ly/~sigmaplot/35.embed

對不同季的營業費用做成長條圖,可透過點選圖表看到詳細數字, 在圖例可以選擇該組數據是否顯示。 互動網頁版請參閱https://plot.ly/~sigmaplot/41.embed

不同格式的圓餅圖展示,可透過點選圖表看到詳細數字,在圖例可以選擇該組數據是否顯示。

互動網頁版請參閱https://plot.ly/~sigmaplot/45.embed

2D密度 分布圖

兩組數據除了用長條圖表示,其中的關聯性用中間分布圖表示, 顏色越深表試關聯性越大,可藉由此圖看出關聯性的差異。 互動網頁版請參閱https://plot.ly/~sigmaplot/49.embed

第六部分: 資料內容

Index	authors	category	date	headline	link	short_description	text	words
0	Melissa Jeltsen	CRIME	2018-05-26 00:00:00	There Were 2 Mass Shootin	https:// www.huffingt	She left her husband. He	There Were 2 Mass Shootin	[87, 95, 260 917, 2154, 6
1	Andy McDonald	ENTERTAINMENT	2018-05-26 00:00:00	Will Smith Joins Diplo	https:// www.huffingt…	Of course it has a song.	Will Smith Joins Diplo	[34, 1516, 2197, 20046,
2	Ron Dicker	ENTERTAINMENT	2018-05-26 00:00:00	Hugh Grant Marries For	https:// www.huffingt…	The actor and his longtime	Hugh Grant Marries For …	[5201, 5146, 8954, 8, 1,
3	Ron Dicker	ENTERTAINMENT	2018-05-26 00:00:00	Jim Carrey Blasts 'Cast	https:// www.huffingt…	The actor gives Dems a	Jim Carrey Blasts 'Cast…	[2198, 9428, 2458, 47694,
4	Ron Dicker	ENTERTAINMENT	2018-05-26 00:00:00	Julianna Margulies Us…	https:// www.huffingt…	The "Dietland" a	Julianna Margulies Us…	[36179, 26511, 1605,
5	Ron Dicker	ENTERTAINMENT	2018-05-26 00:00:00	Morgan Freeman 'Dev	https:// www.huffingt…	"It is not right to equ	Morgan Freeman 'Dev…	[3894, 11482 20047, 10, 2
6	Ron Dicker	ENTERTAINMENT	2018-05-26 00:00:00	Donald Trump Is Lovin' Ne…	https:// www.huffingt…	It's catchy, all right.	Donald Trump Is Lovin' Ne…	[55, 20, 7, 14367, 27, 3.
7	Todd Van Luling	ENTERTAINMENT	2018-05-26 00:00:00	What To Watch On Amazon Pr	https:// www.huffingt…	There's a great mini-s	What To Watch On Amazon Pr	
8	Andy McDonald	ENTERTAINMENT	2018-05-26 00:00:00	Mike Myers Reveals He'd	https:// www.huffingt…	Myer's kids may be pushi…	Mike Myers Reveals He'd	[735, 11483, 775, 2459, 9.
9	Todd Van Luling	ENTERTAINMENT	2018-05-26 00:00:00	What To Watch On Hulu That	https:// www.huffingt…	You're getting a re…	What To Watch On Hulu That	
10	Sebastian Murdock	ENTERTAINMENT	2018-05-26 00:00:00	Justin Timberlake V	https:// www.huffingt	The pop star also wore a	Justin Timberlake V	[1331, 5377, 3831, 453, 1.
11		WORLD NEWS	2018-05-26 00:00:00	South Korean President Me	https:// www.huffingt	The two met to pave the	South Korean President Me	[430, 2128, 72, 2284, 28

文本之類別

以文本之內容 預測其類型

方法簡述

將資料集整理成適當 之X及Y的模式做訓練 運用TextCNN、Bidirectional GRU及AttentionLSTM等模型, 將數據帶入訓練及測試

比較不同方法所 得預測值與 實際值之差異

TextCNN

由loss圖表中,可以看出在訓練模型期間並未發生overfitting。

Bidirectional GRU

由loss圖表中,可以看出在訓練模型期間並未發生overfitting。

AttentionLSTM

由loss圖表中,可以看出在訓練模型期間並未發生overfitting。

第七部分:資料內容

0 1 2 3 4 5 6				average_monthy_nours	ume_spend_company	Work_accident	1011	promotion_last_5years	sales	salary
2 3 4 5 6 7	0.38	0.53	2	157	3	0	1	0	sales	low
3 4 5 6 7	0.80	0.86	5	262	6	0	1	0	sales	medium
4 5 6 7	0.11	0.88	7	272	4	0	1	0	sales	medium
5 6 7	0.72	0.87	5	223	5	0	1	0	sales	low
6 7	0.37	0.52	2	159	3	0	1	0	sales	low
7	0.41	0.50	2	153	3	0	1	0	sales	low
	0.10	0.77	6	247	4	0	1	0	sales	low
	0.92	0.85	5	259	5	0	1	0	sales	low
8	0.89	1.00	5	224	5	0	1	0	sales	low
9	0.42	0.53	2	142	3	0	1	0	sales	low
10	0.45	0.54	2	135	3	0	1	0	sales	low
11	0.11	0.81	6	305	4	0	1	0	sales	low
12	0.84	0.92	4	234	5	0	1	0	sales	low
13	0.41	0.55	2	148	3	0	1	0	sales	low
14	0.36	0.56	2	137	3	0	1	0	sales	low
15	0.38	0.54	2	143	3	0	1	0	sales	low
16	0.45	0.47	2	160	3	0	1	0	sales	low
17	0.78	0.99	4	255	6	0	1	0	sales	low
18	0.45	0.51	2	160	3	1	1	1	sales	low
19	0.76	0.89	5	262	5	0	1	0	sales	low

未離職,是要預 測之項目。 以這些參數建構預測模型

此參數為離職與

58

第七部分:資料內容

以決策樹建構預測模型:

	實際在職	實際離職
預測在職	2, 263	31
預測離職	55	651

準確率:0.97,可以由決策樹圖了解各參數影響離職的重要性,例如:滿意度的高低在此例為最重要,次重要的是當滿意度<0.465,可依照做專案數量做分類,而若當滿意度>0.465,可依照待公司之時間長短做分類,可依此方式了解其中因果關係。