PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/53, 9/02, C12P 7/22, 7/02

A1

(11) International Publication Number: WO 96/14419

(43) International Publication Date: 17 May 1996 (17.05.96)

GB

(21) International Application Number: PCT/GB95/02588

3 November 1994 (03.11.94)

(22) International Filing Date: 2 November 1995 (02.11.95)

•

(71) Applicant (for all designated States except US): BRITISH

GAS PLC [GB/GB]; Rivermill House, 152 Grosvenor Road, London SW1V 3JL (GB).

(72) Inventors; and
(75) Inventors/Applicants (for US only): FLITSCH, Sabine, Lahja [GB/GB]; 14 West Saville Terrace, Edinburgh EH9 3DZ (GB). NICKERSON, Darren, Paul [CA/CA]; Holywell Manor, Manor Road, Oxford OX1 3UH (GB). WONG, Luet-Lok [GB/GB]; 29 Crotch Crescent, Oxford OX3 0JL (GB).

(74) Agent: MORGAN, David, J.; British Gas plc, Intellectual Property Dept., 59 Bryanston Street, London W1A 2AZ (GB).

(81) Designated States: AU, CN, CZ, JP, KR, NZ, PL, RU, SG, SK, UA, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: MUTANT MONO-OXYGENASE CYTOCHROME P-450cam

(57) Abstract

(30) Priority Data:

9422205.6

A mutant of the mono-oxygenase cytochrome P-450_{cam} in which the tyrosine residue at position 96 and/or the cysteine residue at position 334 is replaced by the residue of any amino acid except phenylalanine.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
Fl	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon				

Mutant mono-oxygenase cytochrome P-450cam

The present invention relates to a mutant of the mono-oxygenase cytochrome $P-450_{cam}$ and method of oxidising certain organic compounds with the mutant.

Mono-oxygenases catalyse the selective oxidation of non-functionalised hydrocarbons using oxygen¹, and are therefore of great interest for potential use in organic synthesis. However, progress in this area has been hampered by the difficulty in isolating sufficient quantities of enzyme and the associated electron-transfer proteins. Despite th availability of amino acid sequences of more than 150 different cytochrome P-450 mono-oxygenases, to date structural data of only three are available^{2,3,4}, and few have been successfully over-expressed in bacterial systems⁵.

One cytochrome P-450 mono-oxygenase, which is soluble and can be expressed in sufficient quantities, is the highly specific P-450_{cam} from P.putida which catalyses the regio- and stereoselective hydroxylation of camphor (1) to 5-exohydroxycamphor⁶. The high resolution crystal structure of P-450_{cam} has been determined², and since the mechanism of action of this bacterial enzyme is believed to be very similar to that of its mammalian counterparts, it has been used as a framework on which models of mammalian enzymes are based.

The nucleotide sequence and corresponding amino acid sequence of P-450_{cam} hav been described⁵. The location of an activ site of the enzyme is known and structure-function relationships have been investigated^{13,14}. Mutants of P-450_{cam} have been described, at the 101 and 185 and 247 positions¹⁵, and at the 87 position¹⁶. A mutant in which tyrosine 96 has been changed to phenyl alanine-96 has been described^{12,17,18}. But in all these cases the papers report effects of the mutations on the mechanisms of known oxidation reactions. There is no teaching or suggestion that mutation might be used to provide biocatalysts for oxidation of different substrates.

In an attempt to find new biocatalysts, we have initiated a project which aims to redesign the active site of $P-450_{cm}$, such that it is able to carry out specific oxidations of organic molecules which are not substrates for the wild-type protein. Our initial aim was to incorporate an "aromatic pocket" into the $P-450_{cam}$ active site, which would encourage the binding of substrates containing aromatic side-chains.

In addition, a surface residue remote from the active site was identified (cysteine-334) with effects on protein handling and stability. The cysteine is responsible for unwanted dimerisation of the protein during purification and an alanine residue was therefore substituted for the cysteine in order to improve both of these properties.

The three dimensional structure of P-450_{cm} shows the activ site to provide clos van der Waals contact with the hydrophobic groups of camphor as shown in Figure 1. Three aromatic residues (Y96, F87 and F98) are grouped together and line the substrate binding pocket, with a hydrogen bond between tyrosine 96 and the camphor carbonyl oxyg n maintaining the substrate in the correct orientation to ensure the regio-and stereo-specificity of the reaction. Replacement of any of these aromatic residues with a smaller, hydrophobic non-aromatic side-chain could provide the desired "aromatic pocket".

Molecular modelling was used to investigate the likely effects of point mutations to the three aromatic residues. The program GRID⁷ was used to calculate an energy of interaction between an aromatic probe and possible mutants of cytochrome P-450_{ce} where these residues were changed to alanine (F87A, Y96A and F98A). The results were then examined graphically using the molecular modelling package Quanta⁸.

The mutant F98A appeared to have the strongest binding interaction within the active site cavity accessible to the aromatic probe, with that of Y96A being slightly smaller, and that of F87A being substantially less. It was decided in th first instance to mutate tyrosine 96 to alanine as it is more central to the binding pocket, whereas phenylalanine 98 is in a groove to one side. Also, removal of tyrosine 96 should

decrease th specificity of the enzyme towards camph r due to the loss of hydrogen bonding to th substrate.

According to one aspect of the present invention a mutant of the mono-oxygenase cytochrome P-450_{cem} is provided in which th tyrosine residue at position 96 and/or the cysteine residue at position 334 is replaced by the residue of any amino acid except phenylalanine.

According to another aspect of the present invention a mutant of the mono-oxygenase cytochrome P-450_{cam} is provided in which the tyrosine residue at position 96 and/or the cysteine residue at position 334 is replaced by another amino acid residue, which mutant has the property of catalysing the oxidation of any one of the following:- polycyclic aromatic hydrocarbons, linear or branched alkanes, diphenyl and biphenyl compounds including halogenated variants of such compounds and halogenated hydrocarbons.

According to yet another aspect of the present invention a method is provided of oxidising a compound selected from a polycyclic aromatic hydrocarbon, a linear or branched alkane, a diphenyl or biphenyl compound including a halogenated variant of such a compound or a halogenated hydrocarbon, the method comprising contacting the selected one of the compounds under oxidising conditions with mono-oxygenase cytochrome P-450_{cm} in which the tyrosine residue at position 96 and/or the

cysteine residue at position 334 is replaced by another amino acid residue.

Preferably the amino acid is selected from any one of th following:- alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, proline, serine, threonine, tryptophan, tyrosine and valine except that in the case of the tyrosine residue at position 96, the amino acid is not tyrosine and in the case of the cysteine residue at position 334, the amino acid is not cysteine.

The amino acid which replaces tyrosine at position 96 is conveniently one of the small hydrophobic amino acids, e.g. alanine, glycine, valine, leucine or isoleucine, with alanine being preferred as exemplified below.

Alternatively the amino acid replacing tyrosine at position 96 may be one of the charged amino acids, e.g. a negatively charged acid such as aspartic acid or glutamic acid for hydrogen bonding to a positively charged substrate; or a positively charged compound such a lysine, arginine or histidine for hydrogen bonding to a negatively charged substrate which are not members of the camphor family.

The mutation at position 96 is believed to be the key which enabl s the mutant enzymes to catalyse the oxidation of a relatively wide range of organic substrates. Other amino

acids adjacent to the active site of the enzyme may also be mutated in order to change the shape and specificity of th active site. These other amino acids include those at positions 87, 98, 185, 244, 247, 295 and 297. It is envisaged that the amino acid at one or more of these positions may be replaced by: a small hydrophobic amino acid so as to enlarge the active site; or a large hydrophobic amino acid so as to reduce the size of the active site; or by an amino acid having an aromatic ring to bond to a corresponding aromatic ring of a substrate.

Regarding the oxidising reactions, the conditions are described in the literature references attached. The enzyme system typically includes putidaredoxin and putidared xin reductase together with NADH as co-factors in addition to the mutant enzyme. Various classes of organic compounds are envisaged:-

i) The organic compound is an aromatic compound, either a hydrocarbon or a compound used under conditions in which it does not inactivate or denature the enzyme. Since the mutation has been effected with a view to creating an aromatic-binding pocket in the surface of the enzyme, the mutant enzyme is capable of catalysing oxidation of a wide variety of aromatic compounds. Oxidation of example aromatic and polyaromatic compounds is demonstrated in the experimental section below and is believed very

surprising given that the wild-type enzyme catalys s the oxidisation of only members of the camphor family.

ii) The organic compound may be a hydrocarbon, e.g. aliphatic or alicyclic, carrying a functional group. An aromatic protective group is added to the functional group prior to the oxidation reaction and removed from the functional group after the oxidation reaction. A suitable aromatic group is a phenyl group. The aromatic protection group is expecteed to hold the substrate in place. Thus the protecting group serves two purposes: firstly it makes the substrate more hydrophobic and hence increases binding to the hydrophobic enzyme pocket; secondly it holds the substrate in place at the active site. with the correct aromatic protection group, both regioand stereo-selective hydroxylation of the substrate may be achieved. The example of cyclohexylbenzene is described in the experimental section below.

Examples of monofunctionalised hydrocarbons are cyclohexyl, cyclopentyl and alkyl derivatives (Scheme 1). The oxidation products of these compounds are valuabl starting materials for organic synthesis, particularly when produced in a homochiral form. A range of aromatic protecting groups are envisaged, e.g. benzyl or naphtyl ethers and benzoyl or naphthoyl esters and amides (Scheme 1). Of interest are also benzoxazole groups as carboxyl protecting groups and N-benyl oxazolidine groups as

ald hyde protecting groups. Both can be easily cleaved after the enzymatic oxidation and hav previously b en described in the literature for the microbial oxidations of aldehydes and acids.

- iii) The organic compound is a C5 to C12 aliphatic or alicyclic hydrocarbon. Oxidation of cyclohexane and linear hydrocarbons is demonstrated in the experimental section below and once again it is believed quite surprising given that the wild-type enzyme catalyses the oxidation of only members of the camphor family.
- iv) The organic compound is a halogenated aliphatic or alicyclic hydrocarbon. Oxidation of lindane (hexachlorocyclohexane) is also described below.

Reference is directed to the accompanying drawings in which Figure 2 is a gas chromatograph of diphenylmethane (A) and hydroxylated product formed following incubation with $P-450_{cm}$ Y96A mutant.

Based on the above considerations, mutant proteins were constructed which contained alanine, lysine, valine, or phenylalanine instead of tyrosine at position 96 (Y96). Additional mutants were constructed in which these active site replacements were combined with the surface mutation of cysteine at position 334 to alanine. Lastly several active site mutations and the surface mutation were combined in one

protein to constitute a multiple mutant enzyme. The g ness encoding cytochrome P-450_{cam}, and its natural electron-transfer partners puridaredoxin and putidaredoxin reductase, were amplified from the total cellular DNA of P. Putida using the polymerise chain reaction (PCR). The expression vector/E. coli host combinations employed were pRH1091° in strain JM109 for P-450_{cam}, pUC 118 in strain JM109 for putidaredoxin, and pGLW11 in strain DH5° for putidaredoxin reductas. Oligonucleotide-directed site-specific mutagenesis was carried out using an M13mp19 subclone by the method of Zoller and Smith¹⁰, and mutant selection was by the method of Kunkel¹¹.

The mutant Y96A was shown to catalyse the hydroxylation of camphor (1), although compared to the wild-type enzyme the reaction was less selective, similar to that reported for the mutant Y96F¹². This decrease in selectivity can be attributed to the loss of the hydrogen bond between Y96 and camphor. The properties of wild-type and Y96A proteins were further investigated with a variety of binding and activity assays.

Binding of potential substrates was investigated by spectroscopic methods. The wild-types enzyme in the absence of substrate is in the 6-co-ordinated, low-spin form with a weakly bound water occupying the sixth co-ordination site, and shows a characteristic Sorét maximum at 391 nm. Binding of the substrate analogues adamantanone (2), adamantane (3) and norbornan (4) also fully converted the haem to the high-spin

form. However, diphenylmethane (5) did not give a shift in the absorption spectrum.

The Y96A mutant, while giving the same results for compounds (3) and (4), was not fully converted to the high-spin form even when (1) and (2) were added in excess. Most interestingly however, and in contrast to the wild-type, Y96A showed partial conversion to the haem to the high-speed form with diphenylmethane, indicating binding of this compound to the mutant protein.

As expected, the dissociation constants (K_{app}) for camphor and adamantanone are increased in Y96A. On the other hand, the K_{app} values for the hydrophobic substrates adamantane and norbornane are reduced, indicating that the enzyme pocket has become more selective for hydrophobic substrates. The greatest change in binding was obtained with diphenylmethane, which bound poorly to wild-type protein, but showed greatly enhanced affinity for the Y96A mutant (Table 1).

Once binding of diphenylmethane by the Y96A protein had been established, catalytic substrate turnover was investigated. The mutant protein was reconstituted with putidaredoxin and putidaredoxin reductase. Diphenylmethane (5) was added and the mixture was incubated with NADH and oxygen.

A solution containing 10 μ M putidaredoxin, 2 μ M putidaredoxin reductase, 1 μ M cytochrome P-450_{cam} mono-oyxgenase (wild-type

or mutant) and 1 mM diphenylmethane in 100 mM KC1, 20 mM KH₂PO₄pH7.4 was preincubated at 25°C in a shaker for 5 min. The enzymatic reaction was initiated by firstly adding NADH to a total concentration of 2 mM. Further four aliquots of NADH (to increase the NADH concentration by 1 mM each time) wer added in intervals of 5 min and the reaction quenched after 30 min by adding 0.5 ml chloroform. The chloroform layer was analysed by gas chromatography.

Organic extracts of the crude incubation mixture were analysed by gas chromatography. Only one major new peak was detected by GC (see Figure 2), which had the same retention time as an authentic sample of para-hydroxydiphenylmethane (6). Th other aromatic hydroxylation products, the ortho and meta isomers, had different retention times. Further confirmation of the identity of the product as structure (6) was provided by mass spectrometry, which gave the correct mass peak at 184.

Using the above experimental techniques, the inventors have investigated a considerable number of organic compounds as substrates for both the wild-type P-450_{cam} enzyme and also the mutant version Y96A. Further work has included mutants designated Y96V; Y96L; Y96F; C334A; the combined mutant F87A, Y96G, F193A and the combined active site and surface mutants of Y96A, C334A; Y96V, C334A; Y96L, C334A; Y96F, C334A; F87A, Y96G, F193A, C334A.

The results for Y96A ar set ut in Tabl 2, in which structurally related molecul s are grouped togeth r. Those substrates where oxidation has been demonstrated by means of NADH turnover are marked with a + sign.

Spin high/low: numbers shows the percentage of P-450 (OD₄₁₇ 0.2-0.4) converted from the low- to high-spin equilibrium state in the presence of 200 μ M test compound, in phosphate buffer (40 mM phosphate, 68 mM potassium, pH 7.4). Spin state equilibrium is assessed with a UV/vis spectrophotometer: low spin at OD₄₁₇ and high spin at OD₃₉₂ nd; not done.

Vs DTT: numbers show the percentage displacement of DTT (200 μ M) bound to P-450 by competition with test compounds (200 μ M) in phosphate buffer. DTT binding to P-450 results in absorbance peaks at OD₃₇₄ and OD₄₆₁, so displacement is measured with a UV/vis spectrophotometer.

Examples are included in Table 2(a) to 2(h) for each class of compounds identified in points i) to iv) above.

Reaction products for some substrate compounds have been purified by high performance liquid chromatography and identified by mass spectroscopy, nuclear magnetic resonance, and/or co-elution. Table 3 details the NADH consumption for oxidation of small linear, branched and cyclic hydrocarbons by the mutant Y96A, C334A. Table 4(a) to 4(h) details the

13

product distributions for mutant and substrat combinations where this has been elucidated to date.

Scheme 1:

Hydrocarbons		
-z	Protecting Group	
- ОН	O Ph/Napht	O Ph/Napht
- NH ₂	H PhyNapht	
- СООН	O	
- CHO	O N Bz	

15

Table 1:

 $K_{app} (\mu M)^a$

	WT	Y96A
1	6.3	12
<u>2</u>	12	28
<u>3</u>	8.4	1.4
<u>4</u>	330	92
<u>5</u>	>1500°	73
	2 3 4	 WT 1 6.3 2 12 3 8.4 4 330

^a Values are the average of two independent measurements using the method of Sligar (S.G. Sligar, *Biochemistry*, **1976**, *15*, 5399 - 5406). The value of K_{app} is strongly dependent on the concentration of K^* in the buffer. At $[K^*]>150$ mM, K_{app} for camphor is 0.6 μ M for both wildtype and Y96A. Data in this table were determined at $[K^*]=70$ mM in phosphate buffer, pH 7.4, in order to avoid salting out of substrates at higher ion concentrations.

^b Saturation not reached.

			Table	2(a)					
P450cam-substrate interactions	te interactions	Wild type	уре	Mutant Y96A	Y96A	Wild type	be	Mutant Y96A	96A
Subgroup: 1-ring	55	∆Spin high/low	Vs DTT	∆Spin high/low	Vs DTT	NADH turnover?	607	NADH turnover?	607
	Вепzепе	•	,						
	Toluene		,	30	30				
	Ethylbenzene			40	40				
	Slyrene		,	30	30				
	Cyclohexene		S.	40	40				
	1,3-Cyclohexadiene	pu	pu	þu	þ				
	1,4-Cyclohexadiene		Ŋ	15	50				
\bigcirc	Cyclohexane	•	ı	09	09			+	
5	Hexane			20	09			+	
	Methylcyclohexane	20	20	00	20				
	(S)-(+)-Carvone	10	09	10	80				

SUBSTITUTE SHEET (RULE 26)

		Table	2 (b)					
P450cam-substrate Interactions	Wild type	type	Mutant Y96A	Y96A	Wild type	/pe	Mutant Y96A	₩,
Subgroup: 2-ring, Naphthalene	ΔSpin high/low	Vs DTT	∆Spin high/low	Vs DTT	NADH turnover?	607	NADH tumover?	607
Naphthalene Naphthalene			15	20				
1-Ethylnaphthalene	•	•	S	50				
	•		0	20				
2-Naphthylacetate		ĸ		S				
1-Naphthylacetate	1	S)		S				
1-Naphthylpropionate		20	0	20				
1-Naphithylbutyrate	•	2		S.				
Naphthylphenylketone		٠n	,	ĸ				
1,2-Dihydronaphthalene	S	50	30	06				
1,2,3,4-Tetrahydro naphtihalene	S	01	40	40				

છ
~
•
Ť
ab
Ē

P450cam-substrate interactions	Wild type	ype	Mutant Y96A	Y96A	Wild type	2	Mutant Y96A	96A
Subgroup: 2-ring, DPM	∆Spin high/low	Vs DTT	ΔSpin high/low	Vs DTT	NADH tumover?	GC?	NADH turnover?	GC7
Diphenylmethane		S	45	Pu .			+	+
Oiphenylether	5	ĸ	20	20				
Benzophenone		20		20				
Cyclohexylphenylketone-	<u>6</u>	30	09	Þ				
Phenylbenzoate		S						
N-Phenylbenzylamine	e e	5	45	pu				
Bibenzyl Bibenzyl	,		55	55				
Cás-Stilbene		20	40	20				
Biphenyl Biphenyl	•	50		06				
Cyclohexylbenzene	50	50	80	b				
(T) trans-Stilbene	•	•	•					
Benzylether		S	55	P				

_
ש
•
N
•
\vdash
Д
4
H

		F	Table	2 (d)					
P450cam-substrate Interactions	leractions	Wild type	ype	Mutant Y96A	Y96A	Wild type	e	Mutant Y96A	6A
Subgroup: 3-ring		ASpin high/low	Vs DTT	∆Spin high/low	Vs DTT	NADH turnover?	GC?	NADH turnover? (603
	Anthracene								
	. Phenanthrene		•	20	20			+	
	Fluorene				20				
	남 2-Fluorencarboxaldehyde	уде			20				
	9-Fluorenone	•	20		S				
	Anthrone	•	s		ъ				
	Anthraquinone								
	,CH ₂ CH ₃ 2-Ethylanthraquinone	JB						·	

0
_
7
•
-
_
_
Д
_
•
H

P450cam-substrate interactions	nteractions	Wild type	ype	Mutant Y96A	Y96A	Wild type	ed.	Mutant Y96A	96A
Subgroup: 4,5-ring		∆Spin high/low	Vs DTT	ΔSpin high/low	Vs DTT	NADH turnover?	gc?	NADH turnover?	300
	Chrysene			,	•				
	1,2-Benzanthracene		•	,					
	Fluoranthene		ഹ	50	10				
	Pyrene*	•	•						
	Perylene*	•							

Table 2(f)

P450cam-substrate interactions	Wild type	type	Mutant Y96A	Y96A	Wild type	D	Mutant Y96A	96A
Subgroup: Cyclic Alkanes	ASpin high/low	Vs DTT	ASpin Vs DTT ASpin Vs DTT high/low	Vs DTT	NADH Iurnover? GC?	603	NADH turnover? GC?	607
The Construction of the Co	7	7	7	7				
Co-Decarry Orona primariente	2	2	2	2				
trans-Decahydro naphthalene	20	10	06	70				
Cyclohexane			09	09			+	
Methylcyclohexane	20	20	100	70				

			Table	2(g)					
P450cam-substrate interactions	ractions	Wild type	type	Mutant Y96A	Y96A	Wild type	ype	Mutant Y96A	796A
Subgroup: n-Alkanes	n-Alkanes	ASpin high/low	Vs DTT	ΔSpin high/low	Vs DTT	NADH turnover?	600	NADH turnover?	GC?
	n-Pentane	•	r.	55	40			+	.
	n-Hexane	•	•	09	40			+	
	n-Heptane	ທ	ស	09	40			+	
	n-Octane	•	S.	80	45			+	
	n-Nonane	•	•	20	45			+	
	п-Dесапе	pu	þ	2	pu				
	n-Undecane	þ	힏	20	20				
	n-Dodecane	þ	5	ις.	ر ک				
CH ₃ (CH ₂) ₁₄ CH ₃	n-Hexadecane			•	•				
CH ₃ (CH ₂) ₁₅ CH ₃	n-Heptadecane		1		•				
CH ₃ (CH ₂) ₁₁ OSO ₃ ,Na	Na SDS	•	20	•	89				
CH ₃ (CH ₂), CH=CH(CH ₂), CO ₂ H Oleic acid*	7CO₂H Oleic acid⁵	•	10?	•	203				
((CH ₃) ₂ CH(CH ₂) ₃ CH(CH;	[(CH ₃) ₂ CH(CH ₂) ₃ CH(CH ₃)(CH ₂) ₃ CH(CH ₃)CH ₂ CH ₂ ·] ₂	ટ ા							
	Squalane	ı	•	•	20				
	Soprene		•	0	0				

(F)
Ñ
Φ
ᅻ
Д
4
H

P450cam-substrate interactions	ite interactions	Wild type	ype	Mutant Y96A	Y96A	Wild type	/pe	Mutant Y96A	79€A
Subgroup: Camphor-like	phor-like	ASpin Vs DTT high/low	Vs DTT	ASpin Vs DTT high/low	Vs DTT	NADH turnover? GC?	607	NADH turnover? GC?	607
>									
*	(1R)-(-)-Camphorquinone	08	80	08	80				
A C	(1R)-(-)-Fenchone	40	02	20	90				
· 🞝	Dicyclopentadiene	20	80	8	06				

Table 3

Turnover of Small Alkanes by P450cam Mutants all mutants listed below als contain the C334A mutation.

Turnover rate measured as NADH consumption rate (nmole NADH/nmole P450cam/s).

Alkane Main chain length	substrate: Name	Wild type	Y96A
C4	n-butane	-	-
C4	2-methyl butane	background	4.6
C4	2,3-dimethyl butane	background	16.8
C4	2,2-dimethyl butane	background	14.0
C5	n-pentane	background	5.8
C5	2-methyl pentane	3.8	11.7
C5	3-methyl pentane	1.3	14.2
C5	2,4-dimethyl pentane	0.2	12.6
C5	2,2-dimethyl pentane	5.2	12.8
C5	2,2,4-trimethyl pentane	0.9	5.3
C5	3-ethyl pentane	background	16.2
C6	n-hexane	background	6.0
C6	2-methyl hexane	background	10.6
C 7	n-heptane	2.7	4.4
C7	2-methyl heptane	background	2.1
C 7	4-methyl heptane	1.4	10.2
C8	n-octane	background	5.8
C7	cycloheptane	4.4	42.5

Product structures and distributions following oxidation of substrates with P450cam active site mutants.

[&]quot;background" - typical background NADH oxidation rate is 0.07 nmole NADH (nmole P450cam)⁻¹ sec⁻¹

ō

PCT/GB95/02588

25

Table 4(a)

Product structure and distributions following oxidation of substrates with P450cam active site mutants. All mutants shown below also contain tl C334A mutation.

	.s: Y96Y	28	39	01	23	12.5	+ + +	
	Tenutan Y96L	38	23	23	91	10.4	DorL	
(0)	(%) 10r Y96F	54	27	9	13	1.1		
Decducto	Y96A Y96F Y96L Y	20	20	15	45	7.4	P450cam	
	WT	43	20	25	12	8.0	Izene $\frac{7}{P45}$	st on
Jongano	cts	L 3-01	3-01	Trans	Gis- 4-ol	Total products(area/10 ⁵) 0.8	Cyclohexylbenzene	chemically most reactive position
Cyclohovylhonzono	Products	Dort	"LorD			Total produc	Cyc	cher

rable 4(b)

Products (%) for mutants:		25	75	36	cam
Phenylcyclohexene P	Products WT	3-one (A) 24	3-ol (B) 76	Total products(area/10 ⁶) 42	chemically reactive positions

able 4(c)

Naphthalene Products	WT	Y96A	Product Y96F	196X X96L	Products (%) for mutants: WT Y96A Y96F Y96L Y96V F	nts: F87A-F96G- F193A
₹————————————————————————————————————	100	001	001	100	100	100
\$\frac{7}{\oldsymbol{0}}\$	0	0	0	0	0	0
roducts ea/10 ⁵)	(0.016)		2.4	0.7	1.4	0.1
- &		·		₹{		
6 5 4	P450cam Mutants	am its				

Table 4(d)

Phenanthrene Products	WT	Y96A	Produc Y96F	ts (%) Y96L	Products (%) for mutants: Y96A Y96F Y96L Y96V F87 F19	iants: F87A-F96G- F193A
V	38	49	41	35.5	41	27
æ	15	23	31	41	38	41
Ö	12	13	5	6	=	3
Q	35	15	23	14.5	01	29
Total products 0.075 7.0 (area/10 ⁶)	0.075	7.0	4.5	2.8	1.6	0.065
Phenanthrene 8 7 6 5 4 4			P450cam mutants	†	4 hydrox	4 hydroxylated products

rable 4(e)

Fluoranthene		Pr	Products (%) for mutants:	%) for	mutan	ts:
Products	WT	Y96A	Y96F	X96L	V96Y	Y96A Y96F Y96L Y96V F87A-F96G- F193A
A	0	84	,	•	ı	0
В	0	91	ı	1	1	100
Total products 0 (area/10 ⁶)	0	2.7	1	1	,	0.2
Pluoranthene		2 , — 4	P450cam mutants	am Its	2 hydr	2 hydroxylated products

rable 4(f)

Demond		P	Products (%) for mutants:	(%) for	· miltan	ts:
ryrene Products	WT	X96A	Y96A Y96F	T96A	A96A	Y96L Y96V F87A-F96G- F193A
A	0	40	43	23	30	33
8	0	43.6	29	64.5	55	40
ပ	0	2	12.5	7.9	12	20
D	0	11.4	15.5	4.6	3	7
Total products 0 (area/10 ⁶)	0 8 0	1.2	1.5	1.5	1.6	0.02
Pyrene 8		3	P450cam mutants	am ts	4 hydrc	4 hydroxylated products

(B)
4
•
P
6
Ħ

|--|

Table 4(h)

Hexane Products 2-hexanone 3-hexanol 3-hexanol	Products (%) for mutants: Y96F Y96A 10 15 16 28 24 26 50 32	or mutants:
Kelative activity		y y C
	7.8	6.67

2-Methyl hexane	Products (%) for mutants:	or mutants:
Products	Y96F	Y96A
2-methyl-2-hexanol	72	74
5-methyl-2-hexanone	91	14
2-methyl-3-hexanol	7	4
5-methyl-2-hexanol	5	8
Relative activity		
(WT = 1)	2.3	2.6

REFERENCES

- 1. "Cytochrome P-450: Structure, Mechanism, and Biochemistry", ed. P R Ortiz de Montellano, Plenum Press, New York, 1986.
- T L Poulos, B C Finzel and A J Howard, J. Mol. Biol., 1987, 195, 687-700.
- 3. J A Peterason, U.-Y. Lu, J Geisselsoder, S Graham-Lorence, C Carmona, F Witney, and M C Lorence, J. Biol. Chem., 1992, 267, 14193-14203.
- 4. K G Ravichandran, S S Boddupali, C A Hasemann, J A Peterson, and J Deisenhofer, Science, 1993, 261, 731-736.
- 5. B P Unger, I C Gunsalus, and S G Sligar, J. Biol. Chem., 1986, 261, 1158-1163; J S Miles, A W Munro, B N Rospendowski, W E Smith, J McKnight, and A J Thomson, Biochem. J., 1992, 288, 503-509; T H Richardson, M J Hsu, T Kronbach, H J Barnes, G Chan, M R Waterman, B Kemper, and E F Johnson, Arch. Biochem. Biophys., 1993, 300, 510-516; S S Boddupalli, T Oster, R W Estabrook, and J A Peterson, J Biol. Chem., 1992, 267, 10375-10380; H Li K Darish and T L Poulos, J Biol. Chem., 1991, 266-11909-11914.

- I C Gunsalus and G C Wagner, Methods Enzym 1., 1978, 52, 166-188.
- 7. P J Goodford, J Med. Chem., 1985, 28, 849-857.
- 8. Quanta 4.0, Molecular Simulations Inc., 16 New England Executive Park, Burlington, MA 01803-5297.
- 9. J E Baldwin J M Blackburn, R J Heath, and J D Sutherland, Bioorg, Med. Chem. Letts. 1992, 2, 663-668.
- 10. M J Zoller and M Smith, Nucleic Acids Res., 1982, 10, 6487.
- 11. T A Kunkel, Proc. Natl. Acad. Sci., 1985, 82, 488-492.
- 12. C Di Primo, G Hui Bin Hoa, P. Douzou, and S Sligar, J. Biol. Chem., 1990, 265, 5361-5363.
- 13. D Filipovic, Biochemical and Biophysical Research Communications, Vol. 189, No. 1, 1992, November 30, 1992, pages 488-495.
- 14. S G Sligar, D Filipovic, and P S Stayton, Methods in Enzymology, Vol. 206, pages 31-49.
- 15. P J Loida and S G Sligar, Protein Engineering, Vol. 6, No. 2, pages 207-212, 1993.

- 16. S F Tuck t al., Th Journal of Biological Chemistry, Vol. 268, No. 1, January 5, 1993, pages 269-275.
- 17. W M Atkins and S G Sligar, The Journal of Biological Chemistry, Vol. 263, No. 35, 15 December 1988, pages 18842-18849.
- 18. W M Atkins and S G Sligar, Biochemistry 1990, 29, 1271-1275.

CLAIM8

1. A mutant of the mono-oxygenase cytochrome P-450_{cm} in which the tyrosine residue at position 96 and/or the cysteine residue at position 334 is replaced by th residue of any amino acid except phenylalanine.

- 2. A mutant of the mono-oxygenase cytochrome P-450_{cem} in which the tyrosine residue at position 96 and/or the cysteine residue at position 334 is replaced by another amino acid residue, which mutant has the property of catalysing the oxidation of any one of the following:-polycyclic aromatic hydrocarbons, linear or branched alkanes, diphenyl and biphenyl compounds including halogenated variants of such compounds and halogenated hydrocarbons.
- 3. A mutant as claimed in claim 1 or claim 2 in which th amino acid is selected from any one of the following:-alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, proline, serine, threonine, tryptophan, tyrosine and valine except that in the case of the tyrosine residue at position 96, the amino acid is not tyrosine and in the case of the cysteine residue at position 334, the amino acid is not cysteine.

- 4. A mutant as claimed in any of claims 1 to 3 in which the amino acid residue at one or m re of the positi ns 87, 98, 185, 244, 247, 295 and 297 is replaced by anoth r amino acid residue.
- 5. A method of oxidising a compound selected from a polycyclic aromatic hydrocarbon, a linear or branched alkane, a diphenyl or biphenyl compound including a halogenated variant of such a compound or a halogenated hydrocarbon, the method comprising contacting th selected one of the compounds under oxidising conditions with mono-oxygenase cytochrome P-450_{cem} in which the tyrosine residue at position 96 and/or the cysteine residue at position 334 is replaced by another amino acid residue.
- 6. A method as claimed in claim 5 in which the amino acid is selected from any one of the following:- alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, glycine, histidine, isoleucine, leucine, lysine, methionine, proline, serine, threonine, tryptophan, tyrosine and valine except that in the case of the tyrosine residue at position 96, the amino acid is not tyrosine and in the case of the cysteine residue at position 334, the amino acid is not cysteine.
- 7. A method as claimed in claim 5 or claim 6 in which the amino acid residue at one or more of the positions 87,

98, 185, 244, 247, 295 and 297 is replaced by another amino acid residue.

- 8. A mutant of the mono-oxygenase cytochrome P-450_{cem} substantially as hereinbefore described with reference to the accompanying drawings and/or examples.
- 9. A method of oxidising a compound selected from a polycyclic aromatic hydrocarbon, a linear or branched alkane, a diphenyl or biphenyl compound including a halogenated variant of such a compound or a halogenated hydrocarbon substantially as hereinbefore described with reference to the accompanying drawings and/or examples.

1/2

INTERNATIONAL SEARCH REPORT

PC'i pplication No

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/53 C12N9/02

C12P7/22

C12P7/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C12P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
X	JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 263, no. 35, 15 December 1988 pages 18842-18849, W.M. ATKINS ET AL. 'The role of active site hydrogen bonding in cytochrome P-450 cam as revealed by site-directed mutagenesis.' cited in the application	2,8	
Υ	see the whole document	1,3-7	
X	THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 265, no. 10, 5 April 1990 pages 5361-5363, C. DI PRIMO ET AL. 'Mutagenesis of a single hydrogen bond in cytochrome p450 alters cation binding and heme solvation.' cited in the application	2,8	
Y	see the whole document	1,3,4	
	-/		

Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
* Special categories of cited documents: A document defining the general state of the art which is not considered to be of particular relevance E earlier document but published on or after the international filing date L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O document referring to an oral disclosure, use, exhibition or other means P document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention. "X" document of particular relevance; the claimed invention cannot be considered nowel or cannot be considered to involve an inventive step when the document is taken alone. "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 27 March 1996	Date of mailing of the international search report 2 2, 04, 35
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Riptwijk Tel. (+31-70) 340-2040, Tk. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Hix, R

Form PCT/ISA/210 (second sheet) (July 1992)

Intern val Application No PCT/GB 95/02588

		/GB 33/02300
	BOB) DOCUMENTS CONSIDERED TO BE RELEVANT	Relevant to claim No.
Category *	Citation of document, with indication, where appropriate, of the relevant passages	
X	BIOCHEMISTRY, vol. 29, no. 5, 6 February 1990 pages 1271-1275, W. M. ATKINS ET AL. 'Tyrosine-96 as a natural spectroscopic probe of the cytrochrome P-450cam active site'	2,8
Y	cited in the application see the whole document	1,3,4
Y	THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 268, no. 1, 5 January 1993 pages 269-275, S. F. TUCK ET AL. 'Active sites of the cytochrome p450cam {CYP101} F87W and F87A mutants.' cited in the application see the whole document	1,3-7
E	WO,A,95 34679 (US HEALTH ;GONZALEZ FRANK J (US); IDLE JEFFREY R (GB)) 21 December 1995 see the whole document	1-9
P,A	WO,A,95 16041 (CIBA GEIGY AG; ROYAL VETERINARY & AGRICULTURA (DK); KOCH BIRGIT MA) 15 June 1995 see the whole document	1-9
A	PSYCHIATRIC GENETICS 4 (4). 1994. 215-218. ISSN: 0955-8829, DAWSON E ET AL 'An association study of debrisoquine hydroxylase (CYP2D6) polymorphisms in schizophrenia.' see the whole document	1-9
A	THE LANCET, vol. 339, no. 8806, 6 June 1992 pages 1375-1377, C.A.D. SMITH ET AL 'Debrisoquine hydoxylase gene polymorphism and susceptibility to Parkinson's disease.' see the whole document	1-9

2

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

.formation of

family members

Interr nal Application No
PCT/GB 02588

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO-A-9534679	21-12-95	AU-B-	2860295	05-01-96
WO-A-9516041	15-06-95	AU-B-	1108295	27-06-95

Form PCT/ISA/210 (patent family annex) (July 1992)

THIS PAGE BLANK (USPTO)