NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-763

Radiation Design Criteria Handbook

(NASA-CR-149510) RADIATION DESIGN CRITERIA HANDBOOK (Jet Propulsion Lab.) 349 p HC \$10.00 CSCL 20N

N76-28474

Unclas G3/33 47648

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

August 1, 1976

5. Report Date August 1, 1976
6. Performing Organization Code
8. Performing Organization Report No.
10. Work Unit No.
11. Contract or Grant No. NAS 7-100
13. Type of Report and Period Covered
Technical Memorandum
14. Sponsoring Agency Code

16. Abstract

reserve dedicate the

A. 1.

This handbook provides radiation design criteria for electronic parts applications in space environments. The data was compiled from the Mariner/Jupiter Saturn 1977 (MJS*77) electronic parts radiation test program. In this program selected radiation-sensitive device types were exposed to radiation environments compatible with the MJS*77 requirements under suitable bias conditions. A total of 189 integrated circuits, transistors, and other semiconductor device types were tested up to 1.5 x 10^5 rads(Si) generated from steady electron beam and Co^{60} sources.

17. Key Words (Selected by Author(s)	18. Distribution Statement			
Electronics and Electrical Engineering Quality Assurance and Reliability Space Radiation Mariner Jupiter/Saturn 1977 Project		Unclassified Unlimited		
19. Security Classif. (of this report)	20. Security C	classif. (of this page)	21. No. of Pages	22. Price
Unclassifie ⁻	assified	336		

Technical Memorandum 33-763

Radiation Design Criteria Handbook

Alan G. Stanley Keith E. Martin Sandra Douglas

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

August 1, 1976

PREFACE

The work described in this report was performed by the Astrionics Division of the Jet Propulsion Laboratory.

ACKNOWLEDGMENT

Grateful acknowledgment is made for the contribution to this report by personnel from the Jet Propulsion Laboratory (notably Daniel Bergens, Merrill Burnett, and Alan Yamakawa); The Boeing Co., Physical Sciences Section; General Electric Co., Space Systems Division, Systems Survivability and Reliability Components; and Hughes Aircraft, Radiation Effects Section.

CONTENTS

Inde	x of T	est Device Types	ix
I.	Intro	duction	1
II.	Use	of the Radiation Handbook in Circuit Design	5
	Α.	Bipolar Transistors	5
	В.	JFET's	10
	c.	Diodes, Rectifiers, and Zener Diodes	10
	D.	Linear IC	11
	E.	CMOS	1 1
III.	Irrac	diate-Anneal (IRAN) Screening	12
	Α.	Device Types	12
	В.	Program Constraints	13
	c.	Experimental Investigation	14
	D.	IRAN Test Devices	15
IV.	Test	Device Types Data Sheets	16
	Α.	Bipolar Transistors	16
	В.	JFET's	144
	C.	Integrated Circuits	156
	D.	Zener Diodes	214
	E.	Constant Current Diodes	227
	F.	Diodes and Rectifiers	229
	G.	Capacitors	233
	н.	Resistors	234
	I.	Optical Devices	24(
		1. Tests Using 0.32-cm (1/8-in.) Space	24(
		2. Tests Using 20-cm (d-in.) Space	242
		3. Conclusions	244
		4. Test Conditions	244

J.	CMOS	246
	l. Gate Turn-On Voltage	246
	2. Wafer Screening of I _{SS}	251
	3. Transmission Gate Leakage	261
	4. Multiplexer On-Resistance	264
	5. Propagation Time	264
	6. Dose Rate and Annealing Effects	266
	7. Conclusions	2 66
References		308
APPENDIX	ES	
A.	Vendor Identification Code	309
В.	Recommended Worst-Case Electronic Device	
ٿ .	Parameter Variations	311
С.	Parameter Values of IC Types Requiring Radiation Acceptance Prior to Flight Use	320
TABLES		
1.	Determination of final beta, given initial beta and damage factor	9
2.	Device type subject to IRAN	15
3.	LM139 quad comparator radiation test summary	199
4.	Electron radiation effects in Zener and reference diodes	215
5.	Rejection criteria for RCA CMOS wafer radiation screening	252
6.	Analysis of I _{SS} data	260
7.	CMOS wafer screening summary	261
8.	CMOS radiation characterization data at 150 krad(Si)	265
9.	Propagation time	267

B-1.	Worst-case parameter variations for transistors	312
B-2.	Worst-case parameter variations for resistors	314
B-3.	Worst-case parameter variations for fixed capacitors	315
B-4.	Worst-case parameter variations for diodes, Zener diodes	316
B-5.	Worst-case parameter variations for integrated circuits	318
B-6.	Worst-case parameter variations for CMOS integrated circuits	319
C-1.	Linear integrated circuits	322
FIGURES		
1.	Sample sheet	3
2.	Zener voltage change with energy	217
3.	Flux angle, electron beam at 60 deg	244
4.	Flux angle, electron beam at 45 deg	245
5.	N- and P-channel gate drive transfer characteristics	247
6.	Threshold voltage of N-channel transistor on test pattern TA 6372, preradiation	248
7.	Threshold voltage of N-channel transistor on test pattern TA 6372, postradiation	248
8.	Threshold voltage of P-channel transistor on test pattern TA 6372, preradiation	249
9.	Threshold voltage of P-channel transistor on test pattern TA 6372, postradiation	250
10.	Distribution of ΔV_{GS} at I_{DS} after 1.5 \times 1015 rad(Si)	250
11.	RCA CD4006, preradiation	253
12.	RCA CD4006, postradiation, group 1	254
13.	RCA CD4006, preradiation, group 2	254
14.	RCA CD4006, group 3	255

15.	Preradiation ISS current of CD4052A multiplexers with 950°C gate oxide anneal in forming gas	255
16.	Postradiation ISS current of CD4052A multiplexers with 950°C gate oxide anneal in forming gas	256
17.	Preradiation ISS current of CD4052A multiplexers with 950°C gate oxide anneal in nitrogen	256
18.	Postradiation ISS current of CD4052A multiplexers with 950°C gate oxide anneal in nitrogen	257
19.	Preradiation I _{SS} current of CD4049 with 950°C gate oxide anneal in forming gas	25 8
20.	Postradiation ISS current of CD4049 with 950°C gate oxide anneal in forming gas	258
21.	Preradiation ISS current of CD4049 with 950°C gate oxide anneal in nitrogen	259
22.	Postradiation I _{SS} current of CD4049 with 950°C gate oxide anneal in nitrogen	259
23.	Preradiation switch leakage current IL2 of CD4052A multiplexers with 950°C forming gas	262
24.	Postradiation switch leakage current IL2 of CD4052A multiplexers with 950°C gate oxide anneal in forming gas	263
25.	Preradiation switch leakage current IL2 of CD4052A multiplexers with 950°C gate oxide anneal in	200
	nitrogen	263
26.	Postradiation switch leakage current IL2 of CD4052A multiplexers with 950°C gate oxide anneal in	
	nitrogen	264

INDEX OF TEST DEVICE TYPESa

Bipolar Transistors

Device	Vendor	Page	Device	Vendor	Page
2N918	MOT	16	2N3805	FAS	85
2N930	TIX	17	2N4044	CTI	86
2N2060	TIX	18	2N5087	CTI	88
2N22Z2	MOT	19	KD6001	KMC	88
2N2222	TIX	22	MQ2219	MOT	89
2N2369	CTI	44	MQ2905	MOT	93
2N2369	MOT	46	M Q3467	MOT	98
2N2484	CTI	47	MQ3725	MOT	102
2N2484	TIX	49	PA7443	RAY	106
2N2605	CTI	53	SA2267	RAY	111
2N2605	TIX	54	14BB101	SOD	112
2N2658	SOD	35	96 S V131	SOD	114
2N2857	MOT	58	3029-201-1	RAY	115
2N2880	SOD	59	3029-202-1	RAY	117
2N2907	MOT	62	SD T3303	SOD	118
2N2907	TIX	66	SDT3304	SOD	120
2N2920	TIX	69	SD T3323	SOD	122
2N2946	TIX	72	SDT3403	SOD	125
2N2975	FAS	72	SD F4905	SOD	126
2N3057	RAY	74	SDT5553	SOD	128
2N3251	MOT	7 6	SDT5553	SOD	136
2N3350	TIX	77		(IRAN)	
2N3440	RCA	7 8	SDT8805	SOD	139
2N3497	MOT	78	SE7056	NSC	139
2N3499	MOT	7 9	SQ1079	MOT	140
2N3501	MOT	7 9	SS3137	MOT	141
2N3637	MOT	80			
2N3742	MOT	85			

^aSee Appendix A for vendor identification code.

JFET's

Device	Vendor	Page	Device	Vendor	Page
2N2608	12603 CTI 144		2N4393	SIL	149
2N2608	SIL	IL 144		SIL	150
2N3066	SIL	145	2N4856	SIL	150
2N3331	SIL	145	2N4856	TIX	151
2N3382	SIL	146	21.1858	TIX	151
2N3686	SOD	146	2N5196	SIL	152
2N3824	CTI	147	2N5520	SIL	153
2N4093	SIL	147	2N5556	MOT	154
2N4391	SIL	148	2N5906	SIL	154
2√4392	SIL	149	VCR3P	SIL	155
		Inte_rated	d Circuits		
AD550	ADI	156	H A27 00	HAR (TO-99)	177
DAC-01	PMI	158	IC⊥8007	(10-99) INL	170
DG125	SIL	159	ICL8007	INL	179 181
DG129	SIL	160		INL	183
DG129	SIL (IRAN)	161	ICL8038 LM101	NSC	184
DG133	SIL	161	LM101	NSC	186
DG133	SIL	163		(IRAN	100
2013	(IRAN)		LM102	NSC	187
DG141	SIL	164		(unhardened)	
DG141	SIL (IRAN)	165	LM102	NSC (hardened)	187
DG181	INL	165	LM103	NSC	188
DG181	SIL	166	LM105	NSC (unhardened)	188
DGM111	SIL	168	LM105	NSC	189
HA2520	HAR	170	TWILDS	(hardened)	107
HA2600	HAR	172	LM106	NSC	189
HA2620	HAR	173	LM108	NSC	190
HA2700	HAR	175		(unhardened)	
	(flatpack)		LM108	NSC (hardened)	191

Integrated Circuits (contd)

Device	Vendor	Page	Device	Vendor	Page
LM111	NSC (unhardened)	193	LM139	NSC (hardened)	2.06
LM111 NSC		194	LM139	SGN	208
	(IRAN)		LM139	TIX	209
LM124	NSC (unitardened)	194	LM710	NSC	211
LM124	NSC	197	LM723	NSC	212
13/11/4	(hardened)	* / 1	MIC236	MOT	213
LM139		198	MIC336	MOT	213
LM139	NSC (unhardened)	201			
		Zener	Diodes		
. 4M4. 7AZ	l MOT	218	1N4891	DIK	222
. 4M5. 1AZ	l MOT	218	1N4895	DIK	223
1 N829	MOT	219	1N4907	MOT	223
1N935	MOT	219	FCT1121	FAS	224
1N945	MOT	220	LVA3100	TRW	224
1N4569	DIK	220	M Z827	мот	225
1N4572	DIK	221	UZ8770	UΓR	225
1N4577	MOT	221	UZ8775	UrR	226
1N4581	DIK	222			
	Со	nstant Cur	rent Diodes		
1N5288	мот	227	1N5297	MOT	228
1N3290	мот	227	1N5300	МОТ	228
	I	Diodes and	Rectifiers		
1N4148	GEC	229	MV1404	мот	231
1N5711	HPA	229	UTR4320	UΓR	231
BC997	ГІХ	230	2N1878	UΓR	232
FJT1100	FAS	230			

7.

Capacitors

Device	Vendor	Page	Device	Vendor	Page
BIIB	CRC	233			
		Resis	tors		
CDP16-01	-103G DAL	234	LDP16-01-	153G DAL	237
CDP16-01	-104G DAL	234	SI -716-02-	473J DAL	237
CDP16-01	-223J DAL	235	MG720	CAD	238
CDP16-01	-563J DAL	235	MG750	CAD	238
CDP16-01	-683J DAL	236	MM125	CAD	239
CDP18-02	-393K DAL	236	MS176	CAD	239
······································		Optical I	Devices		
TIL23	TIX	240	TIL601	TIX	240
TIL24	LIX	240	LS600	TIX	240
		CM	IOS		
CD4001	RCA	270	CD4028	RCA	287
CD4602	RCA	271	CD4029	RCA	288
CD4006	RCA	272	CD4030	R CA	291
CD4011	RCA	273	CD4031	RCA	292
CD4012	RCA	274	CD4035	RCA	293
CD4013	RCA	275	CD4040	RCA	295
CD4014	RCA	277	CD4042	RCA	296
CD4015	RCA	278	CD4043	RCA	297
CD4016	RCA	279	CD4047	RCA	298
CD4017	RCA	280	CD4049	RCA	302
CD4019	RCA	281	CD4050	RCA	303
CD4021	RCA	283	CD4051	RCA	304
CD4023	R CA	284	CD4052	RCA	305
CD4025	RCA	2.85	CD4053	RCA	306
CD4027	RCA	286			

ABSTRACT

This handbook provides radiation design criteria for electronic parts applications in space environments. The data was compiled from the Mariner/Jupiter Saturn 1977 (MJS'77) electronic parts radiation test program. In this program selected radiation-sensitive device types were exposed to radiation environments compatible with the MJS'77 requirements under suitable bias conditions. A total of 189 integrated circuits, transistors, and other semiconductor device types were tested up to 1.5×10^5 rads(Si) generated from steady electron beam and Co 60 sources.

I. INTRODUCTION

In situ measurements of the Jovian trapped radiation were made by Pioneer 10 in December 1973 and by Pioneer 11 in December 1974. These measurements revealed a potentially hazardous environment for MJS'77 spacecraft electronics. During 1974 the MJS'77 project carried out an intensive study of the charged particles environment derived from those measurements and the effects of this environment on both spacecraft equipment and the Jupiter encounter aspects of the MJS mission. From this study the Mariner/Jupiter Saturn 1977 Radiation Control Requirements Document (PD 618-229, dated July 14, 1975) was developed. One of the requirements set forth is that the electronic piece parts used in the spacecraft perform within acceptable limits during and after Jupiter encounter and at Saturn. Because of resource limitations, the investigations were conducted with maximum use of existing literature and test results, limiting the JPL radiation test effort to known or suspected problem devices where adequate test data was not available.

This handbook is a summary of applicable data resulting from the MJS'77 radiation test effort. The information, presented according to device type (see Index, page), is intended to be useful to the engineer for circuit design. A complete detailed history file of the test results has been maintained and is available (contact: A. Stanley in the Parts Radiation Group of JPL Section 365).

In applying the data contained in the handbook, the user should be aware of inherent limitations; i.e., the data is intended as a guide and is valid only for the specific manufacturer's device at the stated conditions. When applying the data to circuit designs, the user is cautioned regarding extrapolation to lower fluences, different energies and different bias conditions. Device degradation is sensitive to measurement and bias conditions during irradiation. Also, different date codes may reflect process changes which could change the device sensitivity to radiation damage.

The radiation environments were in accordance with PD 618-229, using electrons from a Dynamitron at energies from 2 to 2.5 MeV, electrons from a Van de Graff generator at 3 and 5.5 MeV, and a cobalt 60 gamma source. The Dynamitron was used in those tests wherein the radiation source is not identified.

The major device types and features of the method used in presenting test results are given herein. Whenever deviations from this form occur because of the nature of the data or results obtained, they are further described for the specific device or parameters involved.

Data from different test runs of a given device parameter was combined where the tests and measurements were carried out under similar conditions. The data for the following test runs was combined for a given device type:

- (1) Same bias conditions during irradiation.
- (2) Same bias conditions during measurement of parameters.
- (3) Same fluence.
- (4) Characterization, non-lot screen and lot screen runs.
- (5) 2 to 2.5 MeV electron energy data (if other energies were used it will be so stated).
- (6) V_{CF} (saturated) for transistors.
- (7) V_{CF} (not saturated) for transistors.
- (8) Same manufacturer.
- (9) Hardened devices.
- (10) Unhardened devices.

A sample sheet is given in Fig. 1, with the major features indicated. An explanation of those features is given below.

(1) An outlier is here defined as a data point which does not fall within 3 σ of the mean value of that parameter at the lowest value of the independent variable (i.e., lowest value of the collector current I_C or fluence, where the parameter is measured as a function of I_C or fluence, respectively).

Fig. 1. Sample sheet

Once established as an outlier in this way, it is considered an outlier for all other values of the independent variable.

- (2) The data is calculated both with and without outliers whenever they exist.
- (3) The standard deviation σ is approximated by the following expression:

$$\sigma \approx \left(\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}\right)^{1/2}$$

where n is the number of data points, \bar{x} is the mean value of the set of data points, and x_i is a measured value of the parameter. This gives an unbiased approximation of σ , including cases where the sample size (n) is small.

- (4) The parts radiation characterization number evaluates the parts in accordance with criteria from Section VIII of PD 618-229. These criteria are repeated here.
 - Insensitive to radiation; no special attention required.
 - Insensitive to radiation except for high-precision applications. The application and degree of sensitivity are specified.
 - Sensitive to radiation, resulting in significant degradation of device parameters. A radiation screening or shielding program is required if a reasonable design safety margin is lacking.

The device undergoes catastrophic change and is no longer functional.

l See Ref. 1.

For transistors, in addition to the tabulated information, graphs are included giving $\Delta(1/h_{FE})$ as a function of collector current. In these graphs, only those calculated excluding the outliers are plotted. The outliers are indicated on the graphs (wherever dual populations occur, both are plotted).

II. USE OF THE RADIATION HANDBOOK IN CIRCUIT DESIGN

The data contained in the Radiation Handbook should be used when performing worst case analysis of electronic circuitry. If parts data does not appear in this handbook, then estimates must be made by Section 365. The data shows permanent damage to semiconductors in a radiation environment. The rate of impinging radiation or radiation flux should also be considered as this can cause a noise effect produced by the impinging particles on semiconductor devices. In addition, it should also be pointed out that low-energy electrons may be deposited and collected by electronic circuitry which can cause a buildup of voltages across high resistance circuits.

The worst case analysis is performed by degrading first for temperature and life (aging) and then for radiation to obtain the final degraded value. The following sections describe the method of calculating degradation.

A. BIPOLAR TRANSISTORS

The current gain of a transistor is determined as described in the following diagram:

Compare requirements with predictions and if there are problems, identify and study solutions.

The radiation derating is determined by the radiation damage coefficient $\Delta(1/h_{\rm FE})$, which is a result of parts testing. The equation for $h_{\rm FE}$ degradation is

$$\Delta \frac{1}{h_{FE}} = \frac{1}{h_{FE(final)}} - \frac{1}{h_{FE(initial)}}$$

where

- (1) h_{FE(final)} is the predicted gain to be applied to the circuit.
- (2) h_{FE(initial)} is the gain <u>after</u> degrading for temperature and life as per the MJS' 77 Radiation Controls Requirements.

 Document 618-229, Appendix D (set forth herein as Appendix B).
- (3) $\Delta (1/h_{FE})$ is the radiation degradation constant which is found in the handbook for each part and is a function of collector current I_C , radiation fluence, and bias conditions during irradiation. For instance, a 2N2222A device may have the following conditions for which the $h_{FE(final)}$ must be calculated at $I_C = 60 \, \mu a \, (V_{CE} = 8 \, V)$:

hFE(initial) = 100 after degrading for temperature and life

 $\Delta \frac{1}{h_{FE}}$ = 0.425; mean plus 3 σ at radiation electron fluence of 5 × 10¹² e/cm²

$$\Delta \frac{1}{h_{FE}} = \frac{1}{h_{FE(final)}} - \frac{1}{h_{FE(initial)}}$$

or,

$$\frac{1}{h_{FE(final)}} = \Delta \frac{1}{h_{FE}} + \frac{1}{h_{FE(initial)}}$$

$$h_{FE(final)} = \frac{1}{\Delta \frac{1}{h_{FE}} + \frac{1}{h_{FE(initial)}}}$$

$$h_{FE(final)} = \frac{1}{0.425 + \frac{1}{100}}$$

$$= 0.425 + 0.01$$

$$h_{FE(final)} = \frac{1}{0.435}$$

= 2.3 which is severe degradation in the worst case Under the conditions of $I_C = 20 \text{ mA}$, $V_{CE} = 20 \text{ V}$, $h_{FE(initial)} = 100 \text{ and at a fluence of } 5 \times 10^{12} \text{ e/cm}^2$

$$\Delta \frac{1}{h_{FF}} = 0.00441,$$

using the mean + 3σ value, then $h_{FE(final)}$ will be

$$h_{FE(final)} = \frac{1}{(0.00441) + \frac{1}{h_{FE(initial)}}}$$

$$= \frac{1}{0.00441 + 0.01} = \frac{1}{0.01441}$$

$$= 69.4$$

This demonstrates that radiation has a much greater influence on transistor performance at very low $I_{\mathbb{C}}$; therefore, low $I_{\mathbb{C}}$ applications should be avoided in radiation environments. In power devices this might be interpreted to mean that no problems exist, but it is really the emitter current density that determines the radiation damage. Therefore, power devices will also degrade severely if the emitter current density is low.

The above calculation can be made using Table 1 by going to $\Delta(1/h_{FE}) = 0.00441$ and $h_{FE} = 100$ and interpolating to find h_{FE} (final) = 69. In all cases, the h_{FE} of outliers or mavericks must either be considered or screened out of lots to be used in hardware expected to encounter radiation environment.

Table 1. Determination of final beta, given initial beta and damage factor (based on $\Delta 1/\beta = 1/\beta - 1/\beta o$)

8	333 313 286 250	222 200 182 167	154 133 118 105	95.2 87.0 80.0	69.0 64.5 60.6 57.1	51.3 44.4 36.4 30.8	28.7 23.5 19.1	13.8 10.8 9.76
350	294 3 278 3 256 2 227 2	204 2 185 2 170 1	145 1 127 1 112 1 101 1	-040	- 0 2 0	n - 0 =	.	5 - 5 2
300	263 2 250 2 233 2 208 2	189 2 172 1 159 1 147 1		5 5 5 5 5	4 4 60 0	70,70	26.1 26 23.1 23 18.8 18 15.8 15	90 7 9
25.0 3					8 8 8 5 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2 2 4 4 2 3 5 2 3 5 2 8 6 8	8 2 3 8	
	2 222 5 212 7 200 4 182	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 125 1 100 1 100 1 3 90.6	•	8 8 8 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8	.5 47.6 .3 34.5 .6 29.4	25.6 2 22.7 2 18.5 4 15.6	
0 200	175 175 167 167	1133	1 0 8 8	9 76.9 1 71.4 0 66.7 2 62.5	.9 58.8 .9 55.6 .3 52.6 .9 50.0	45 40 33 88	22 18 15	
170	156 152 145 135	112 1119 112 0 106	.7 31.7 .0 84.0 .2 77.5	6 67.1 0 62.0 5 59.2	55 52 50 47	38 27 27	24 21 17 15	5 11.6 3 10.4 8 9.44
150	139 135 130 122	115 109 103 198.0	2 2 2 5 5	8 8 8 8	50 84 94 46 84 84	42 37 31 27	2 2 2 5	13.0 11.5 10.3 9.28
140	132 128 124 116	1104 98.0 94.3	90.1 82.6 76.3	68.2 62.1 58.5 58.5	52.4 49.8 47.4 45.3	41.5 36.9 31.2 27.0	23.8 21.2 17.8 14.9	13.0 11.5 10.3 9.34
130	122 119 115 109	103 98.0 93.5 89.3	85.5 78.7 73.0 68.0	63.7 60.0 56.5 53.5	50.8 48.3 46.1	40.5 36.1 30.6 26.5	23.4 21.0 17.3 14.8	12.9 11.4 10.2 9.29
120	111 107 102	96.8 92.3 88.2 84.8	81.1 75.0 69.8 65.2	61.2 57.7 54.5 51.2	49.2 47.0 44.8 42.9	39.5 35.3 30.0 26.1	23.0 20.7 17.2 14.6	12.8 11.3 10.2 0.23
110	104 102 99.0	90.1 86.2 82.6 79.4	76.3 70.9 66.2 62.1	58.5 55.3 52.4 49.7	47.4 45.3 43.3 41.5	38.3 34.4 29.3 25.6	22.7 20.4 16.9 14.5	12.6 11.2 10.1 9.17
100	95.2 93.5 90.9 87.3	83.3 80.0 76.9	71.4 66.7 62.5 58.8	55.6 52.6 50.0 47.6	45.5 43.5 41.7 40.0	37.0 33.3 28.6 25.0	22.2 20.0 16.7	12.5 11.1 10.0 9.09
95	90.9 89.3 87.0	80.0 76.9 74.1	69.0 64.5 60.6 57.1	54.1 51.3 48.8 46.5	44.4 42.6 40.8 39.2	36.4 32.8 28.2 24.7	22.0 19.8 16.5	12.4 11.1 9.95 9.05
90	86.2 84.8 82.6 79.4	76.3 73.5 70.9 68.5	66.2 62.1 58.5 55.2	52.4 49.8 47.4 45.3	43.3 42.5 39.8 38.3	35.6 32.2 27.7 24.3	21.7 19.6 16.4 14.1	12.3 11.0 9.89
85	81.3 80.0 78.1 75.2	72.5 69.9 67.6 65.4	63.3 59.5 56.2 53.2	50.5 48.1 43.4	42.0 40.3 38.8 37.3	34.7 31.5 27.2 23.9	21.4 19.3 16.2 13.9	12.2 10.9 9.68 6.95
80	.6.9 75.8 74.1	69.0 66.7 64.5 62.5	60.6 57.1 54.1 51.3	48.8 46.5 44.4 42.6	40.8 39.2 37.7 36.4	33.9 30.8 26.7 23.5	21.0 19.0 16.0	12.1 10.8 9.76 8.89
75	72.5 71.4 69.9 67.6	63.3 61.4 59.5	54.6 54.6 51.8	47.0 44.8 42.9 41.1	39.5 38.0 36.6 35.3	33.0 30.0 29.6 23.1	22.8 18.8 15.8	12.0 10.7 9.68 8.83
70	67.6 66.7 65.4 63.4	61.4 59.6 57.9 57.2	54.7 51.9 49.3	44.9 42.9 41.2 39.5	38.1 36.6 35.1	32.0 29.2 25.5 22.6	20.3 18.4 15.6 13.5	11.8 10.6 9.59 8.75
65	62.9 61.7 61.0	57.5 55.9 54.4 52.9	51.6 49.0 44.6	42.7 41.0 39.4 37.4	36.5 35.2 34.0 32.9	30.9 28.3 24.7 22.0	19.8 18.0 15.3	11.7 10.5 9.49 8.67
09	58.1 57.5 56.6 55.0	53.6 52.2 50.8 49.5	48.4 46.2 44.1	40.5 39.0 37.5 36.1	34.9 33.7 32.6 31.6	29.7 27.3 24.0 21.4	19.3 17.6 15.0	11.5 10.3 9.38 8.57
55	3.3 2.9 52.1 51.8	49.5 48.3 47.2 46.1	45.1 43.1 41.3 39.7	38.2 36.8 35.5	33.1 32.1 31.1	4 5 5 60	18.7 17.2 14.7 12.8	11.3 10.2 9.25 8.46
95	48.85 47.6 5.5 6.5	4.4.4 4.3.5 42.6	41.7 40.0 38.5 37.0	35.7 34.5 33.3	31.3 30.3 29.4 28.6	27.0 25.0 22.2 20.0	18.2 1 16.7 14.3	11.1 10.0 8.09 8.33
45	44.1 43.7 43.1	41.3 40.5 39.7 38.9	38.2 36.8 35.5	33.1 32.1 31.1	29.2 28.4 27.6 26.9	25.5 23.7 1.2 9.2	17.5 16.1 13.9 12.2	9.8 8.9 8.2
\$	39.2 38.9 38.5	37.0 36.4 35.7 35.1	34.5 33.3 32.3	30.3 29.4 28.6 27.7	27.0 26.3 25.6	23.8 22.2 20.02 18.2	16.7 15.4 13.3 11.8	10.5 L 9.52 8.70 8.00
35	34.4 34.1 33.8	32.7 32.2 31.7	30.7 29.9 28.9 28.1	27.4 26.6 26.0 25.3	24.7 24.1 23.5 23.0		15.8 1 14.6 1 12.7 1	10.1 9.21 8.42 7.81
30	29.6 29.4 29.2 28.7	28.3 27.9 27.5 27.2	26.8 76.1 25.4 24.8	24.2 23.6 23.1 22.6	22.1 21.6 21.1 21.1 20.7	19.9 18.8 17.2 15.8	14.6 13.6 12.0 10.7	9.71 6.85 8.13 7.52
25	24.7 24.6 24.4 24.1	23.8 23.5 23.3 23.0	22.7 22.2 21.7 21.3	20.8 20.4 20.0 19.6	19.2 18.9 18.5 18.2	17.5 16.7 15.4 14.3	13.3 12.5 11.1 10.0	9.09 8.33 7.69 7.14
20	19.8 19.6 19.6	19.2 19.0 18.9 18.7	18.5 18.2 17.9 17.5	17.2 16.9 16.7 16.4	15.9 15.9 15.6	14.9 14.3 13.3 12.5	11.8 11.1 10.0 9.09	8.33 8 7.69 8 7.14 7
15	14.9 14.9 14.8	14.6 14.5 14.3	14.1 13.9 13.8 13.6	13.4 13.2 13.0 12.9	12.7 12.6 12.4 12.2	12.0 11.5 10.9 10.3	9.83 1 9.38 1 8.57 1 7.89 8	7.32 6.82 6.38 7.00
13	e: :: :: :: :: :: :: :: :: :: :: :: :: :	11.7 14.6 11.7 14.5 11.6 14.3 11.5 14.3	11.3	10.8 10.8 10.7 10.6	10.4	9.67 1 9.63 1 8.82 1	8.48 9 8.11 9 7.50 8 6.98 7	6.52 7 6.12 6 5.77 6 5.45 8
2	9.95 11.9 14.9 19.8 9.93 11.9 14.9 19.7 9.90 11.9 14.8 19.6 9.85 11.8 14.7 19.4	9.80 9.76 9.71 9.66	9.62 9.52 9.43 9.35	9.26 9.17 9.09 1.09	8.93 8.85 177 8.70	8.62 1 8.33 9 8.00 9 7.69 8	7.41 8 7.14 8 6.67 7 6.25 6	5.88 6 5.26 5 5.00 5
./	2000. 2000. 3 100. 3 2100.	.0025 .0035 .0035	200.	800. 800. 9 010. 8 110.	.012 8 .013 8 .014 8 .015		.035 7 .040 7 .050 6 .060 6	070. 080. 090. 090.
تنكا	- , , , ,	1.5 2 3 8	14 4 6 6	1 2 6 6	7 9 9 9	3 6 6 6	3.0.0.	

The above discussion applies to transistor h_{FE} when the transistor is not saturated and when it is saturated. The saturated h_{FE} , however, will be much lower because the I_B must be greater to lower the saturation V_{CE} . If, in switching applications, the $V_{CE(sat)}$ must be very small, then the designer must expect very low resultant h_{FE} due to low initial h_{FE} and allowances for mavericks. With regard to $I_{CBO},\ V_{BE},\$ and $V_{BE(sat)},\$ degrade for temperature and life and then add additional degradation due to radiation in accordance with this handbook for the part in question, being careful to select the appropriate bias conditions, measurement conditions and radiation fluence. In all cases, the $\overline{X}+3\sigma$ values should be used in the addition. Designers should allow for I_{CBO} as high as 100 μa , ΔV_{BE} as high as 0.2 V and $\Delta V_{CE(sat)}$ as high as 0.2 V.

B. JFET's

The radiation-sensitive parameters of JFET devices are the leakage current I_{GSS} and noise characteristics. In applying this handbook, the radiation degradation in I_{GSS} should be added to the effects of temperature. The noise in the device increases considerably while it is irradiated but will probably return to close to original noise characteristic when radiation ceases (i.e., radiation flux effect). If temperature-degraded I_{GSS} was calculated to be 0.5 nA at V_{GS} = 4 V, V_{DS} = O_V , radiation fluence = 5×10^{12} e/cm², and a handbook value of 0.1 nA, then the total would be 0.6 nA.

In N-channel JFET's there is a channeling effect which can cause very large leakage currents. With no radiation screening controls, this current (I_{CSS}) could be as high as 100 nA.

C. DIODES, RECTIFIERS, AND ZENER DIODES

In most applications, diodes and rectifiers do not degrade sufficiently to provide much concern. However, in applications where the circuit is particularly sensitive to forward or reverse characteristics due to circuit efficiency, extra care must be taken in the selection of devices with

Devices that are significantly more sensitive to radiation than the others.

minimum degradation. In these sensitive cases, the degradation is added to the parameter degradation with temperature. The parameters in question are V_F and I_R . Δ V_F usually changes by less than 50 mV in the MJS Jupiter environment. I_R changes by less than 10 μA . In the case of sensitive or precision applications of Zener diodes, V_Z does vary with radiation and must be accounted for by adding ΔV_Z due to radiation. ΔV_Z is less than 5 mV in Zeners less than 15 volts; it is less than 20 mV in Zeners less than 30 volts.

D. LINEAR IC

The primary parameters of interest are V_{OS}, I_{OS}, I_{BIAS}, V_{OL}, and these are highly influenced by a radiation environment. The degradation values listed in this handbook are changes or delta values due to radiation effects. These changes should be added to the other changes due to temperature effects. As a summary of these degradations, refer to Appendix C.

E. CMOS

The predominant parameters of interest in radiation are:

- (1) Propagation delay, which increases with radiation.
- (2) Device power consumption, which increases with radiation.
- (3) OFF leakages in multiplexers, which increase with radiation.
- (4) r_{ds} ON resistance, which increases with radiation.
- (5) Noise margin, which increases with radiation.

The effects of radiation are added after the effects of temperature and life are determined.

To improve the response of CMOS to radiation, better process controls must be instituted unless the degradation can be tolerated in the design. Radiation data should be taken on samples of all wafers of parts to be used in radiation environment. Refer to the data in this handbook on parts that have been tested.

III. IRRADIATE ANNEAL (IRAN) SCREENING

An extensive investigation of irradiation-anneal (IRAN) screening against total dose radiation effects was carried out as part of a program to harden the Mariner Jupiter/Saturn spacecraft against the Jupiter radiation belts. The method consists of irradiating semiconductor devices with cobalt-60 to a suitable total dose under representative bias conditions and separating the undesired tail of the distribution from the bulk of the parts by means of a predetermined acceptance limit. The acceptable devices are then restored to their preirradiation condition by annealing them at an elevated temperature.

Irradiate-anneal is the only known 100% radiation screen. It is mavericks. In general, this should be supplemented by a qualification test based on a diffusion-metallization lot, in which a few samples are irradiated to a total dose in excess of the project requirements. Failure to pass this test implies lot jeopardy and an extension of the delivery period by many months.

Since the lot screening method imposed intolerable time constraints, it was hoped that the irradiate-anneal technique might be employed to predict the radiation behavior of each device in a quantitative manner so that even lots of marginal radiation quality might be utilized at a somewhat lower yield. This requirement imposes far more severe constraints on the retracking of electrical parameters after the first and second irradiation than the elimination of mavericks.

A. DEVICE TYPES

IRAN was considered for device types that were determined to be more radiation-sensitive than allowable by the circuit and shielding analyses. However, such screening methods work only when the devices show a significantly varied response to a radiation exposure. The devices consist of linear bipolar devices, analog switches, n-channel JFETs, and bipolar transistors. The primary cause of radiation damage induced in these devices by ionizing radiation is the formation of inversion layers due to the

accumulation of positive charges in the silicon oxide insulator near the silicon-silicon oxide interface. This depends on the quality of the oxide, which is to a large extent an uncontrolled process variable.

Devices that are generically extremely sensitive to ionizing radiation (e.g., MOS devices) are poor candidates for the IRAN technique and must be shielded. An additional reason for excluding MOS devices is the difficulty of annealing out the radiation-induced interface states except at much higher temperatures. The important LM108 operational amplifier was excluded, because it had been possible to harden this device against ionizing radiation.

All n-channel JFET's with a lightly doped base region are likely to develop sizable gate leakage currents and were therefore considered to be candidat s for IRAN. It was considered preferable to redesign circuits, so that bipolar transistors could operate with minimum dc current gain rather than resort to IRAN.

B. PROGRAM CONSTRAINTS

The original requirement imposed on the devices was to survive a total dose of 125 krad (Si). This was later decreased to 60 krad (Si) as the result of a more precise definition of the Jovian radiation belt. For reliability reasons, a ceiling of 150°C was imposed on the annealing temperature of the devices. It was later discovered that this temperature is inadequate for complete annealing of all surface effects. Burn-in temperatures up to 300°C have been successfully employed in many high reliability programs, but this requires device construction analysis and thermal stress analysis for each device type before procurement. Such an investigation was ruled out because of timing constraints. The devices are annealed in an inert atmosphere for 96 hours. Experiments showed that longer annealing times did not cause any additional annealing.

High-temperature annealing was considered to be unnecessary for the JFETs. In these devices only the leakage currents are affected by the ionizing radiation. These are sasily controlled and not significant in those devices that pass the IRAN acceptance criteria.

C. EXPERIMENTAL INVESTIGATION

A series of investigations was carried out in order to obtain the following information:

- (1) What is the optimum dose for screening? Too low a dose may not reproduce the surface effects that cause degradation at higher doses; whereas too high a dose degrades the devices unnecessarily. The onset of surface effects caused by inversion layers depends on the impurity concentration in the silicon as well as the composition of the oxide at the silicon interface and can therefore not be uniquely determined.
- (2) What acceptance criteria can be applied? Unless there is complete retracking of all devices on reirradiation, the acceptance criteria must be considerably more tightly specified than the worst case conditions required by the application. On the other hand, tight specifications may cause severe yield penalties.
- (3) What is the annealing behavior? Do all the parameters anneal completely or is there some residual radiation damage? Are there i dications of anomalous annealing?
- (4) Do the parameters retract on reirradiation or do they exhibit memory effects? Do any of the devices show anomalous properties that could not have been predicted from the results of the first irradiation?

A series of experiments was conducted on each device type under consideration for IRAN. Non-flight parts had previously been exposed to 2.5 MeV electrons up to 10^{13} e/cm². These devices were annealed for 96 hours at 150° C approximately two to three months after the initial exposures. Most parameters annealed back to acceptable specification levels, but others did not return to their preirradiation values. Since high-energy electrons can induce a significant amount of displacement damage, it was decided to carry out additional experiments using a cobalt-60 source. The devices were irradiated to a total dose of either 50 or 125 krad(Si), annealed at 150° C for 96 hours a subsequently reirradiated with 2.5-MeV electrons, making measurements at four radiation levels from 5×10^{11} to 5×10^{12} e/cm².

D. IRAN TEST DEVICES

Only the flight device types listed in Table 2 were subjected to IRAN; the other device types tested were unsuitable for IRAN. The degradation that these devices will experience on reirradiation in the Jupiter environment is indicated as a function of fluence in separate tables following the normal radiation properties. After annealing, the dc parameters of all devices were remeasured to the original specification limits with the following exceptions:

NSC LM101, $I_{\rm B}$ increased from 75 to 100 nA NSC LM111, $I_{\rm B}$ increased from 100 to 400 nA $I_{\rm OS}$ increased from 10 to 25 nA

Table 2. Device type subject to IRAN

Device type	IRAN total dose, krad (Si)	Acceptance criteria	Annealing
2N4856	60	I _{GSS} at V _{GS} = -20V < 500pA	None
2N5196	60	I_{GSS} at $V_{GS} = -10V < 100pA$	None
2N5520	60	I_{GSS} at $V_{GS} = -10V < 100pA$	None
2N5556	60	I_{GSS} at $V_{GS} = -15V < 250pA$	None
DG129	50	I _S (off) < 3nA	96 hr at 150°C
DG133	50	I _S (off) < 3nA	96 hr at 150°C
DG141	50	I _S (off) < 5nA	96 hr a+ 150°C
LM101	125	$\Delta V_{OS} < 0.7 \text{mV}, \ \Delta I_{OS} < 2.5 \text{nA},$	96 hr at 150°C
		$\Delta I_{B} < 60 nA$	
LMIII	50	$I_{OS} < 20 \text{nA}, \ V_{OS} < 3 \text{mV}, \ I_{B} < i \mu A$	96 hr at 150°C
SDT5553	5	$h_{FE}^{}$ at $I_{C}^{} = 0.15 mA > 8$	96 hr at 150°C

IV. TEST DEVICE TYPES DATA SHEETS

A. BIPOLAR TRANSISTORS

2N918, Motorola

DEVICE :					Sample stan	Hean .	Kax.	Nin.	Hean +20	Hean +30	Accept Reject Criteri	
	(icn)	ΩkΥ	BLAS: IRRAD.	Biasi	Wers.							
(Infe)			15 -01 15 -51 Band			ia	0.02-18	C.C415	S.CU	J.J.479	C 0234	
		3	A. SY CHEC GAD	To - Q	Amio	3	0006	0.0.50	0.0083	0.0303	20341	
		2.5		1		3_	0.0178	20384	0.0062	C 0535	0.0504	l
	130 3					.c	0.0323	0.0605	0.00/6	0 07/ce	C C463	Ĺ
	!	1				3	C. N. 18	0.0417	ملادث ٥	3.236	0.0423	L
		2.2				_3	الحقودت	0.0293	c. cə59	C0937	0.119	L
(/hee	52	ر د		W. 54.	المديد ع	ئ	CWI	ii 215.	C.125	C. 2/65	كتمنا	L
		3					0000	0.0003	cark	JUNC58	C 0063	ļ
		4.0.				ــــــــــــــــــــــــــــــــــــــ	ల మను	0.0068	0.303	0089	13.21.12	
	1 2	î.				<u> </u>	C C144	v.c/25	0.012	U.C177	ضينندي	
		٤				3	1.2093	2.003	J 0088	حسد ب	00.34	
<u> </u>		-				.3	(1.0/3-)	0.00	20061	كتعنينا	2500	
- Thee		4-		Nic 51.	Ic ma	w				Vace X		
		4			L					سننت		
	<u> </u>	ک:				_3_	علالمذن					!
	ن مرد	3.0			<u> </u>	la				0.0021		·
	; ↓	3				3	بمديندم					
	1_1_	شم	<u> </u>		L	3_	0.176.41	0.00	C'CCA	C.CC85	<u>c 367</u>	
	 	-						!	 -	├		
	1											

JPL Technical Memorandum 33-763

2N930, Texas Instruments

Peremeter	Fluence	Operating Point		Sample	Nean	Hax.	Min.	Hean +20	Hean +30	Accept Reject Criteria
	elema	BIAS: IRRAD.	BIAS: MEAS.							
△ ('lh=L)	5 4013	VCE 3V.	Ic-aama	WIGH POP	0.03	0.0324	3.0006	C.0409	0.0514	
	¥	Ic OOlma	VCE . 3Y	4 48.78	0.00485	0.0023	0 0019	0.0099	2.0025	
	LXIO13		11		0.0645					
	<u> </u>		 	4 282	0.0945	COTT 8	O'COR	0.0140	0.0162	
& ('Infe)	5002		Ic OOIMA	(ott	020992	0.0324	0.0019	0.0285	A0378	
	1×1013		YCE .3Y	(o#	0.0378	U Oleled	Q00 64	0 0847	0.//3	
A C'Inrui	5x:5 ¹²		Tc.:C.Lm8	2 high	J.00835	0 0101	J.0064	0.0/35	0.0/61	
	,		VCL - 3 Y		0.00015					
1	[XIO13				1.018X					
<u> </u>			 		0.00%					
2(Thie)	5×10 ¹²		TC O.LmA	6*	0.0042	0.001	C.00/2	CISHO	CONT	
<u> </u>	TXIOL2		1CE - 21	lax	0.00525	0.0201	C. 2027	০.০১৭১	o <i>0</i> 317	
A C'INFE)	5×112		Ic · ImA	2 "16%	0.0030	0.0034	0.00%	0.004/	0.0047	
			VCE.3Y		0.00115					
	1×1013			7 808	0.00595	C.0064	0.2055	2,0022	0.0017	
			<u> </u>		वळा					
(Thre)	5xiCO		Tc - lmA	(c*	0.0018	0.0034	0.0006	0.0039	0.0050	
	111013	<u> </u>	VCE .3Y		0.0034					

Į

2N2060, Texas Instruments

Parameter	Fluence	Operating	<u> </u>	Sample size	Mean	Nex-	Mia.	Heen +20	Hean +3G	Accept Reject Criter
	C/C/m ²	BIAS: IRRAD.	BIAS: MEAS.	<u> </u>						
(infe)			YCE-74.TC-AOIMA	_, a	0.001	0.377	0.035	0.296	0.394	
	×.0.3	BAGE OPEN		13	0.250	0.830	V 048	0.733	0 975	
('INFE	5×,012		Ne 24: Ic Olm P	12	0.0356	0.135	0.0104	2.102	0.143	<u> </u>
	[X/013			15	0.0871	0.254	961.JT	0.233	∆.306	
∆(Unit)	خارريات	 	VCE-77, Ic In A	1.2	0.007	0.03%7	0.0030	0.0316	0.042	
	1×11013			1.7		0.0637				
_		 				-				
		-								

JPL Technical Memorandum 33-763

2N2222, Motorola

BOTORCLA MOTORCLA					PAGE 1056						
				Sannle				Kean		100 Pt Criteri	
Perezeter	Pluence		ag Point	5170	Mean	Max.	Min.	+26	+36	CFICAFI	
7.7.5	ļ	Btas: Irrad.	Bias: Mess.	i				! - -	}	1	
(LAFE)	5 = 10'2	Vc - 40V,	! VCE - 0.1V	: 13	.08/3	.2647	.016	-222	دود	·	
	!	Vr - OV.	Ic - 200,4	i						ļ	
	1 × 13,9	Vn-0v	<u> </u>	12	-/2	.3748	.024	33	.419	ļ	
(YDEE)	5 = 10'2		. Vcc = 0./2V	12	0/87	.054	.0045	.0454	0588		
	i		Ic 3nA		!					1	
	1 × 10'3		Ţ	13	.025	.072	.007	.0574	. 0266	ļ	
(KFE)	5 = 10.2		Vcs -0.36Y	12	. 00338	.0088	.00/8	.007.4	.00902		
]		Ic · 25mA]							
	1 × 10'3		T T	13	.004/5	.0//3	.2024	.02926	.0:5		
(1/2=6)	54157		Vce - 20V	12	.233	.6/62	.0333	.64	.85/	<u> </u>	
_	1		IC - 30MA					1			
<u> </u>	1 × 1013		17	/2	0.413	1.233	0.0456	1.2	459		
(/ FE)	5 *10 2	 	VCE - 8V	/4	.149	4725	0169	. 4/9	.549	 	
			Ic - 60 MA	1							
V	1 × 10 3			/2	.23	.763	.0349	,69/	922		
(4=2)	5 *12 '4		Vce - 20V	13	00363	.008	06/3	. 02631	00815	ļ	
	l	i	Ic - 20-9	1			i			1	
Ţ	1 × 10'3	V	↓ ¥	/2	. 62376	.0097	् ०८ नत	.00803	.0/02		
S		İ	_l	i			1		} L	!	

DEVICE T	TYPE: 24222 MOTOROLA PAGE 2066									3
Parameter	Pluence	Operating Point		Sample	Mean	Max.	Min.	Hean +20	Mean +30	Accept Reject Criteri
		BIAS : IRRAD.	BAS . MEAS.							L
Icao (A)	5 - 10 - 3	Vc • 60V		3 *	0.853	1.2	0.46	1.6	197	<u> </u>
		VE - OV		5	2,800	14,000	0.44	/5,300	21.600	L
<u> </u>	1 × 10'3	Va OV		_3 *_	0.773	/3_	ده ی	211	a 78	
				5	3,500	17,500	002	19,200	27,000	
IEBO(nA)	5 * 10 *			3*	2.53	7	0./a	10.3	14.2	<u> </u>
				. 5	9,610	48,000	C 12	50,500	7-1,000	
	1 × 10 13			3 ₹	0.223	046	0.04	0.653	.868	
				.5	28,000	140,000	0.04	/53,000	216,000	
*	OUTLIER	POPULATION		_a_	<u> </u>	İ		<u> </u>	l	
					I			L		
								1		
						i		l		I
								l	L	
	1			I				1		
	l									
								l		<u> </u>
							l	1		
	<u> </u>									
	1									
	t ——									T

JPL Technical Memorandum 33-763

2N2222, Texas Instruments

Texas Instruments initiated a process change in 1972 affecting the oxide passivation layer. As a result, the data for both the tables and graphs will be grouped as follows:

Parameter	Group	Date code range
$\Delta(1/h_{FE})$	1	1971 - 1972
	2	1973
	3	1974 - 1975
ICBO and IERO	1	1972
	2	1973 - 1975

The performance of this type of device at a $V_{CE} \stackrel{>}{=} 0.12$ volts is very unpredictable. The test results are questionable because the test instrumentation did not use separate voltage and current probes. Any small change in V_{CE} will cause a very large change in the gain at this operating point. Consequently, separate graphs were used for $V_{CE} = 0.1$ and 0.12 V if there was more than one value of V_{CE} at a given current level in order to prevent overlap of the data due to large error bars.

_	Fluence	: JNDDDD TEXAS INSTRUMENTS				1:437		Mean	Mean	Accept Reject
Parameter		Operating		size	Mean	Max.	Min.	+20-	+35	Criteria
ไล้มา-างเรา		BIAS: IRRAD.	BIAS: MESS.							<u> </u>
C. DEL		C 4OY	1.C=0.2m45xc.02)	3				0.0047		-
		K B GND	 	9	0.0034					
	2.5×10/2	 	 		0.0077					
	5/10-		In-Cama, Ver Of					0./377		
			Ic Own , Yee ar					0.0835		
_	1×1013		TC-02mH; YCL-0.1V	<u> </u>	10.0777	0.9/02.1	0.0015	0.92%	0.3430	
× / 1	11		£	-						
Tier 1			TC 2007, Ker 0.23		0.00024					 -
	1-2-2-	- 	 	ď				0.0041		
-	254d2		<u> </u>	9_	b.cc a7					<u> </u>
	2-03	·	IcamAlteraley		0.0116					
			To work yee: Course		0.0060					
	121013		TO SMA, YOU D. LOY		0.0179	0.0530	0.0010	0.0530	00215	<u> </u>
Y (IDEC)	242"		To 25mli He - 0.34	19	0.000024	0.00%	0	o rass	03:042	
	1.25.03				0.000087					
	25.37		J		0.0015					
	52.33		TENSMALLE COLY		120024					
			TC 25 mA. Yee A31A		0.00054					
	1 x 0/3		IC 250A, Ve 1.20		0.0037					
(Uhee)	5.0-		To 30, A.V. NY	11	0.1033	ひんかい	90007	0.4021	0.5515	
	111013	i .i.	1	11	0.2334	0.9469	0.00.00	0.1419	1. MN7	

Parameter	Eluence	Operating	Point	Sample size	Mean	Max.	Mio.	Hean +20	Heen +30	Accept Reject Criteri
971-1973	e cm2	BIAS: IRRAD.	BIAS! MENS.		1					-
Cinci)2	5000	VC -/OV	TC + (01) A: KE 8V		0.0714	0.5.8	000%	0.0071	0.3650	
_	3 ردر	IC W. GA'D	7		0.1604	C.5728	0.0016	0.5538	0.2504	
(Uhee)	54,312	 	IC DOWN VE DIV	11	00017	U005i	0,000	GC054	0.0020	
—	1 × 10/3				0.0034	00085	COO'	102/	0.000	
	<u> </u>				 	 -	 			
		 			ļ					
					-					
		 								
		L								
		ļ								
		 								

Parameter	Fluence	Operating		Sample size	Hean	Max.	Min.	Hean +2.0	Hean +30	Accept Reject Criteri
1973	e/cm2	BIAS: IBRAD.	BIAS! MEAS.							
M(INEE)		NC=40Y:	E . 0.2mn	19	00165	0.115	-0 0337	0.0966	0./367	
			VCE : O.WY		00U9					
	25.0				0.0052					
	£ x1013			_19_	0.01100	0.0496	0.00/3	০ <i>০শ</i> ত	0.05-13	
2 (TIDEE)			To ani ke aw	19	0.0083	0 38,1-1	-000	0.05.25	06817	
	1.25403			. 19	0.0082	0.0351	70 OLV-8	00400	0.0560	
	32×10,3	l			0.0033					
	7×1012		├── ┺──┤	_ ا	00113	20615	20174	C.0565	0.0220	ļ
X nee	5×,011		To 25me to 220	19	0.00006	0.00043	72.0030	0.0017	0.0005	
L	ت (سخکت ا			19	$0000^{\circ}B$	U 00084	0.00083	000/2	0.000	
	とりといる				0.00088					
					0000					
 	2×10/5				00013					
(Infe)	2210,		10 60. A.Ye. 20Y	. FI	0.0009	0.0084	0.30048	0.0024	0.0096	
	1.25/10/2		/ 1		0.0053					
	25×1012				0.0080					
					0.087					
	SXIDI				CIVID.					
					0.002					

Parameter	Zluence	Operating 1	Point	Sample	Hean	Hax.	Hin.	Hean,	Mean +3C	Accept Reject Criteri
1773	€/cm²	BIAS: IRRAD.	BIAS! MENS.							
4('Inst)		16-401 K Yak	Te IMAKE 201	19	0.00/2	مدویی	0.00060	ഗരാ	00027	
	1.35.10			18	0.00%	0.0031	0.001	0.003B	0.0034	
				19#	0.0019	0.0069	0.0011	0.001/2	0.0059	
	2.5.10/2			18	0.0035	0.0035	0.00/5	0.0038	0.0045	<u> </u>
				19*	0.0008	0.0068	0.0015	0.0051	0.0063	
	5×1012			17	0.0034	0.004	0.0023	0.00-19	0.0057	
					0.0040					├—
A(!bee)	5×10"		Tc:>YmA Yce:>XX	18	0.00007	0.2037	0.000/8	0.00039	0.0045	
				19*	h.00045	0.0034	0.0000	0.0000	0.0007	
	LJ5×10W			19	DOCO48	0.0002	0.00028	1.20068	0.00022	L
	2.52/2"			19	0.0007	0.0003	000036	0.0011	0.0013	
	-2×10,0			_19	COOL	0.0000	0.0006	0.0018	0000	
# QUIA	IER INC	LUBED								
					-		├	-		
	 -				-	-		-		
	 	 -		 		 		1		
			1		1	T	T	T		

Parameter	Fluence	Operating	Point	Sample	Mean	Nax.	Nia.	Heen +2 <i>G</i> *	Hean +30	Accept Reject Criteri
974-1975		BIAS: IRRAD	BIAS: MEAS							
(Thre)		VE - 05 V	Tc : 005min Yes : 0.5Y	6	00087	0.0012	00006	0.0014	0.0017	<u> </u>
X III E	1.251/012	IC COSMA		60	0.0012	0.0016	0.000%	0.008	0.0001	
	25713			6	0.0019	0.0034	0.00/2	0.0007	0.0031	
	5×/012			6	0.0030	0.0038	ರ ಯಾ	\$ 500 44	0.0050	
(Thee)	5×10"		To OlmAlte OSY	(0.	0.00048	0.0009	0	0.00107	0.00/4	
· \//\&_/	1.25×100		To the same of the	6	0.00098					
	25/100			14		0.0016				
	5 2,013			6	0.0025	0.0031	0.0018	0.004	0.0039	
A('Ibre)	540"	it 40 V Ve Va GA	Lite - asma: Ice - and	1.3	00539	0.450	-0.0304	0.1668	A.2233	
	1004		Tr ADMA tr. ADY		0.004	0.000da	0.00%	0.0071	0.0086	
	Jaskis"		Te. O. Jon A. Yes OLDY		0.0314	C.0840	-0.0030	0.0889	0.1177	<u>L.</u>
	25,00			13	ပင္သည္သည္	0.0911	10.0439	0.1/38	0.1571	L
			Ic A. Dmn Yes: A.D.Y	6	0.0088	0.0/36	0.0061	0.0145	0.0173	4
	25.0.5		TC: A 2mA to ALZY	13	0.0384	0.0851	0.0108	0.0250	0./233	
4 ('Ihre)	1 5×10"	16e-05V	JC-0.5m's Ka-05Y	6	0.00043	0.0006	0.0004	0.0006	0.00068	
	1,25×1012	1c.0.05mA		6	0.000	C.0008	0.0004	0.00085	0.0000	<u> </u>
	25100		T	6	0.00107	0.002	0.000	0.003	0.0014	1
	57102			_6_	0.0016	0.008	0.00	0.0000	0.0023	↓

The second of th

Parameter	Eluence	Operating	/AJSTRUM&ATT	Sample	Mean	Hax.	Min.	Hean +2G	Hann +3 CF	Accept Reject Criteri
924-1975	e/cm2	BIAS: IRRAD.	BLAST MEAS.							
A(VAFE)			YCLO: 37 AMC: OF	13_	0.063	120366	-0.0151	0.0516	0.0692	
	1		TO JUB I'VE DOXY	6	0.00007					
			TO DONA WE O DY	6	0.0019					
	1.251,012		To Smale OLDI	_13_	0.0180					
			Tcama: Yes 0.5Y	6	0.00038					
	251012	10-40% VE YO GAD	To JOA, YOU OLDY	13.	0.0151					
			Tc 2mA: Vc. 0.2Y	6	0.0046					
		Ve OAN IC OOSMA	TO . 2014 PORCY	10	OCC CO					
			To 2009 KE QUOV		0.0/53	0.0316	10.0040	0.0426	0.0562	
			Ic Jna: Ke asy		0,00099					
				<u></u>						
A(Thre)	5×i0 ¹¹	VC. 404 VE: VA. GAM	Tc: 25mg: Ves -0.264	10	00033	000057	0,00045	0.00065	രന്നു	
	1×1012		[25mA /ce-2344					0.0023		
	1.25×1012		Tr. JSmPryce a Jay	13				0.00/2		
	~12x1013			/3				0.0019		
			Tc. 25mA. VCE-0.34IV					0.0017		
	5×10 ¹³		L-25mh, YCE-0.26V					0.0007		
			The state of the s		1					
A ('INEE)	5×/011		TC-QOLOMA: VCS-20Y	15	0.0053	0000	0.20/3	1000	000	
	ייסאגסיין			/3				0.0185		
	2.5710 ¹²			13				0.0321		
	5×1012			13	0.0127	0.0520	0.0005	00481	0.0.23	

Parameter	Fluence	Operatin	g Point		Sample size	Mean	Max.	Hin.	Hean +2 <i>G</i>	Hean +3 G	Accept Reject Criteri
774-1975	e/cm2	BIAS: IRRAD.	Biasi	Mens.							
A(DEE)	5×10"	VC -/UY.	Tc ImA.Y	(r: 20)	/3	0.0017	0.0031	0 0010	00031	0 003	
	د صنحه ا	YE VIZ GAIS				020038					
	45:10,3				/3	0.0130	00366	0.0014	0.0423	0.05.20	
*	2,0,0				_/3_	0.0054	0.0084	0.0031	0.0101	00034	L
(INFE)	5×10"		Ic 22ml	Ke DOY	10	00033	0.00051	amaia	C 0006	0002	
	125×1013					0000					
	25,000					12.02091					
	2×10,5				/3	0.0013	C.W19	J.0004	0.0003	0.0029	
						 					
			 								
			_								
			 -								
											

_]			~ 114431	AL MEN	Sample	PAGE	-80£:	37	-,·		
Parameter	Fluence		Operating	Point		size	Hean	Hax.	1	Mean	Hean	Accep
- LT (24	C/cm2	Buc-:	ARAD.	Bias	S' MERS.		1	- MAX.	Min.	+20	+10	Crie
- COUNT	2,00	JK:-60	Ж	iVc.a	·60Y	1.5	0.32	1060	-1	+	+	┼—
	IXIOIS	VE V	COND .	-		14	0.40	1/1/2	-Cado	12	0.68	₩.
¥		 -		↓		54	14.20	73	Lusto	10.11	0.86	
		+	L	l			11111	1/2	مهرب	128	110.8	<u> </u>
(ALL COL)				VEB.	4/V	5	149	100	 	 	 	L
·	-1×1013					5	1.18	1.80	1012	N. 4.7.	306	
12		-				-	1.70	1.50	0.00	2.56	13.24	
13.95		l									 	
AP (NA)	5,210"	VC-15V		Vca.	KV	24	4 4222					
+- +	1 5240,5	Ve Va	GND			24	0.033	L 14	0.0100	0.135	0.183	
	9.2x1013	l				24	0.0357	C 142	0.0050	0.133	0.182	
*	54012					474	CO3/A	0.345	0.0100	1134	0163	
		-			·	24	0.0378	D-342	0.0020	0./39	0.1901	
							∔	[
_0.)	LIER	INICIA	NEN									
			000								-	
					-			T				
							T	_				
-						T				+		
												
										+		
	+				T		-					

The second of the contract of

JPL Technical Memorandum 33-763

JPL Technical Memorandum 33-763

JPL Technical Memorandum 33-763

•

11.50

!

2N2369, Circuit Technology

Par	eneter	Sineuce F/Cudz		perating			Sample size	Kean	Max.	Mia.	Magn +20	Hean +3T	Accept Reject Criter
Δ/11	hFE)	12/0/2	BIAS: I		BIASE	C-KOLA	×	0.00021	0.00/3	0	0.00/58	0.00199	
=1.7	Tre.	2540'2	100.00		182 (31)	· · · · ·	8		0.0023	0 0007	A 40 70	V VV 83	
		5×1012					S.	0.0033	0 00%	0 0027	V WA1	0.0045	
		5×10'3					8	0.0056	0.00%	3 OC 40	0.0072	0.0080	
Δ(١	per)	TYOIS			VCE . SY:	Te - 300. A	Я	0.000EE	0.00/3	0	0.0017	0.0020	
		2540'2			L	, ,	8	0.0017	0.0020	0.0007	0.0025	0.0030	
		5 NOIR					8	0.00.29	0.0035	0.0024	0.0036	0.00.39	
 	<u> </u>	51013				ļ	8_	0.0048	0.0060	0.00sb	0.0063	0.0070	
			 				<u> </u>	ļ — — —		 	 		
			 										
											<u> </u>		
			-				<u> </u>			 	 		
					!								
		 			-								

JPL Technical Memorandum 33-763

2N2369, Motorola

DEVICE TO	7A12	361 No	TOROLA	Bigg 1	d5_					3
Parameter	Fluence	Operating	Polet	Seeple	Mana	Max.	Min.	Heen 120	Henn +36	Accept Beject
	E/cm2	BIAS: IRRAD	Bias: Meas.			474.	918.	120	730	Criteri
A(DEE)	5×10"	Ver 5V. Ic. O	Ic. John ice 54	12	0.00	0.0112	CCCCS	C.0084	0.011	
	1.2543 ²			12	0.0043	0.0100	00012	0.0099	0.00%	
	NZXW,5			12	0.0024	0.0123	0000	0.0167	0.02/3	
k	22,00		 	12_	CA33	CCSS	$c.\infty$	OY3748	GG306	
A(Thee)	5715"		TC-JmA-YCF = A.4V	12	anso	OCCUS	canos	00042	0.000	
	ومعووا			12	anto	0.000	0.000	0.0105	0.0134	
	25.4.73			12	0.0079	0.0180	0.0033	0.0128	0.0338	
	: <u> </u>		 	12	0.0/37	2050	C-CC53	<u>୦.୦.୭</u> 69	00345	
A Ches)	5ד7"		TC+POAkerC+	12	W0022	0.0012	coos	0.0017	C C031	
	1.35 32			12	CACSI	0.0048	2006	CCC39	0001	
i	الاحداد			12	00038	0.0065	020/5	22765	0.0050	
<u>sk</u>	51.50			12	c mi	0.0097	06030	C.C/C3	0.0124	
OCINEE)	2x10'2		Terstonic Vice 464	12	24234	0.0059	c.0022	0.005%	C.0068	
				 	<u></u>					
			<u> </u>	├	ļ					

2N2484, Circuit Technology

Parameter	L Km² Pluence	Operating	Point	Sample size	Mean	Max-	Hin.	Hean +20	Hean +3 O	Accept Reject Criteri
4(1/4.72)	1x1D12	BIAS: IRCAD	BIAS: NEAS	6	0.00193	0.0036	2.0003	0.0042	0.00536	
1		VCE= GV	VCE-GV							
	2.5 10'2	Ic: 50 A	Ic: 50,1	6	0.00157	8 200.0	V007 9	D.00718	0.00848	
	57/012			6	0.00817	0.012	0.0056	0.0/27	0.015	
	/×/0°3			6	00/35	0.0196	0.0/02	0.0215	0.0254	
D(YA.7e)	1×1012	VCE : GV	VCF-61	6	V00(@8	0.0026	0.001	0.00=287	0.0397	
=	2.54/012	Ic SOn A	IC:100p.A	6	0.0035	2.005	0.002	0.00573	0.00685	
	5×012			6	0.00003	12.009	0.0015	0.00749	20111	
	12/013		-	6	0.0112	0.015	D. 0089	0.0/63	0.0(87	
Δ(% π)	14/0'2	VC= : 6V	YCE: 6V	6	0.00.617	0.00a 5	a. 0007	0.000	A.00339	
		Ic: 50 MA	Ic: ImA							
	2.5×10/2	 	}	6	0.00/75	0.0023	0.0019	G-00147	a. 00177	
163	5/1012			6	020255	0.0034	0.0015	0.0397	0.00469	
	1×1013	 -	 	6	0.00377	- ma-	0.0018	0.005 2/	0.00/.	

JPL Technical Memorandum 33-763

2N2484, Texas Instruments

DEVICE TY	PE: JAI J4	184 TEXAS IN	STRUME	NTS.	Pac	E lot	£ 5				_3_
Pareneter	Tluence	Operating			Sample	Hean	Max.	Min.	Hean +20	Hean +3C	Accept Reject Criteri
			BIAS: 0	MERS.							
(INPE)		VCF . (W. IC . O			10	hamo	0.00044	70009	C/0023	000U	
	1.25×152				10	0.004	0.0406	a.00008	c.0398	0.0406	
	2.5×0-2				10	441138	02030	0.0010	0.00.00	0.0022	
	2xV35				10	0.0017	0.0070	c.000%	0.005/6	0.0075	
(IDEE)	5×3"		IC+100uA·\	te= GV	10	0.00036	0.0028	0	0.4001	0.0009	
	135100		,,,,,		10	0.00039	0.0023	-0.0000	0.00/8	0.000	
	ล.5ฆอ ^{เว}				10	0.00046	2000	0.00017	0.0017	0.000	
	54012				/0	0.00083					
A ('Inec.)	5×0"		Tc:/mA.V	CE- COV	10	0.000008	00002	0.00058	C-00049	0.00023	
	Luáx.ď°				10	0.00018	0.00065	COO	0.00056	0.00081	<u> </u>
	.ఎ.≾ <u>८.</u> ১ -				10	000002	0.00065	om	0.0000	0.00079	
	Ex1012				10	000000	20009	v.cc.sc	0.000	0.000	
(Cine)	5× 101		TC: (OmA.)	ke:/V	10	0.0030	Torics	C.CV23	10071	0.0122	
	1,45,10,4				10	00034	0.0130	0.0005	0.0109	0032	
	وان ۱۲۰ کام				10	0.00034	0.0030	70,000	0,0026	0.0037	
	5.02				10	0-0049	0,0020	0.0010	0.0083	3.0100	
CBO (nB)	5×10"	VCB - 30V	VCA 30	N.	1/	0.0239	0.148	0.0020	0.111	0.154	
		EMITTER CPEAL			-ii				0.158		
	2.5×10/2				-//	0.0461					
	5×1012				11	0.073	0.255	0.001	0.263	0359	

į

2N2605, Circuit Technology

Parame: ·	Fluence	ODS CTI	Point		Sample size	Hean	Max.	Min.	Hean +2 <i>G</i>	Hean +30	Accept Reject Criteri
	e/cm2	BIAS: IBROD.	BIAS!	Mans.							
4(Infe)	1×1013	Ver-64: Ic DOING			X	0.00103	0.0020	0.000.3	0.0000	0,00038	
	15×10°				Ŕ	0.0029	0.0060	0.0013	0.0064	0.0082	
	5 × 1019					0.0049					
	1 x 13			.		೦.೦೫ಎ					
2('DEE)	1× 1012		YCE GV I	c · AlmA	Ŕ	0.00055	0.0010	0.0009	0.0013	0.0015	
	2.5×/012			_	8	0.0015					
	5×10'2				Я	00008	0.0067	0.004	0.0060	0.00%	
	1×10/3					0.0043					
(hee)	1×1012		Yre=64:I	c = lmA	8	0.00036	0.0006	0.0002	0.0006	0.00078	
	254/512			_		h.00083					
	5×10/2					0.0016					
	141013			,	8	ე.თა?	0.0043	0.0018	0.0047	0.0057	
CE (381) (V)	1×1012		Ic - 0.15	nA:	8	0.0330	00334	0.03:2	0.0336	0.0343	
	2.5x100		In -0.0	Ame	Ř	00310	0.03.5	<u>ര</u> ്ഷാ	C-032L	J-0.387	
	5 ×1012				8	0.0389					
	LX/OB		,		- Š	0.0465					
		·					<u> </u>				

2N2605, Texas Instruments

Paraweter		GOS TEXA:	Sample	Hean	Max.	Min.	Hean +2.65	Hean +30	A :cept Reject	
	7	BIAS: IARAD.	·	- 0120	FIGER	FLEX.		720	730	Criteri
1 (Unse)	K 7//\3	Mar - MOV. To - Almi	Vec DV. Ic :0 Ima	6	0.0030	000	2001	00063	200	
	X_O13		4	6	0.0053					
(Thee)	2×10,5		Me DVIC IMA	lo	0.0019	0.0037	0.0008	00040	0.0051	
1	11/013			6	0.0033	0.0063	0.0014	0.0020	0.0089	
(Thee)	ZXIDIO		Vc NIC · 10mA	(0	0.0014	0.0009	2.000/a	0.0031	0.0030	
	-1x10 ₁₃			6_	0.0025					
										<u> </u>
								-		ļ
								<u> </u>		
 .					 					
					-				 -	
					1					

Ì

2N2658, Solitron

Parameter	Fluen	Tluence		Operating Point_		Sample St.4	Mean	Nay.	Min.	Hean +2.0	Maan +3 CT	Accept Reje Criteri	
	e/cm2	may	BIAS:	BRAD.	Bias	MAAS.							
((hee)	5=10	کدا د	VC 401	VE: CV.	Tc -ImA:	YCE: 40V	(a*	0.0762	0.1160	0 0442	0/38	C 160	
			Ic · h				2	0.109	0.1411	C.C767	0.200	0.246	
	<u></u>	<u> 55</u>					2	0.0292	0.1176	0.04/7	0.187	0.241	
	IXID-	25					6*	0.737	0.1901	0.0687	0.227	0.375	
		3					γ	0.165	0.177	0.1527	0.199	0.216	
	╽.	65					ີລ	0.141	0.1454	0.1369	0./53	059	
	1												
A(Thee)	5210	13	Vcc.3	JC-5mA	To SmA	· VCE . 3V	.3	agarye7	0,1000	0	0.00030	carry	
	1,254						3	00014					
	2540			:		1		0.0033					
	5210	ग						0.0151					
		Т											
2 (Thre)	Sxid	9.5	VC: 4/1	YE ON	Ic : 10mf	Like : MOY	6*	0.0169	0.0355	0.0099	0.0294	6.6357	
	LXIO!	125	Icil	NB.				00283					
		13						0.0551					
		55						0 049					
		\top				7							
(hie)	SXIN	0.5			Te : 100	A ICE : ION	lox	0.0059	0.0085	0.0037	0.000	2.0/20	
	11:0			·		· ·		0.0095					
	1	T				V						1	
* 0.5	IL IE R	٦.,	KRTION	• 1				 	<u> </u>				
					AL DAI	DAGE A	10 +:A1	BEEA	EXCL	NA F	Rom 7	1.F	
			ADUCA		· · · · · · ·	11111111111111111111111111111111111111	1117.8	1			11	-	

Parameter	Eluence	Operating Point		Sample	Hean	Max.	Mio.	Hean +20	Heen +30°	Accept Reject Criteria
	e contine	BIAS: IRRAD.	BIAS! MEAS.							
4. INTEL		16 -101 LE 01	IC HANDE YELL YOUR	1244	0.0034	$a_{n} x_{n}$	0.0031	come	C. CClda	
	20,032	IC WA		120#	تكدنا	u.co77	C.0038	J.0083	9.00%	
	3		To a Koma Nia - 404	٠,١	0.0017	0.0335	C 0199	0.0	0.0223	
	2.5			a)	סיטוא	0.0115	0.011	0.008	U.C/JO	
<u>('11e)</u>	2023 V.		c analicano	4≉Ω،	cano	OCC12	00043	2.75.43	20018	-
	د تا المعا				0 0035					
(v. (cac) (v)	2:30 2.5		C Dona	7	0.0547	0.0730	من:0.03	00887	ONYO	
	12.335		4	_1			عادد.د			
المندرية () ر ()	43.00	i	E-100m In 10m.	7	0.07.24	J. 28-4	C.Col8	C.084	0.5916	
	تم ثبت		4		0.0755	0.07865	2.0586	٥٩٢٥٥	مىلام	
(v kme) su	4.50		To at comp In 20mA		2.0948	04/35	2.2887	0.1/30	0.1210	
			•	_7	1.1997	0.,72	0.052			
2\re (1)	4, 7, 3		To IMA, ICE 410Y	-2	1725	18.9	15 10	*2675		
	1 4	1	!		11.00	11111	1.1.00	12.58		
	5.4		<u> </u>	ಎ	1535	169	/3.8	19.23		
								10.97		
** : -		HTAYL								
TH	CSTALE	S SHOW NY	JADINTION D	AMAGE	MA	ANE. LIE	EN EX	CLUBEL	FROM!	ThE

Parameter AVAL (V)	Fluence		Operating Point		Sample stre	Hean	Max.	Mia.	Hean +20	Heap +3C	Accept Reject Criteri
	e Km2	Te Y	BIASTIRAAD.	BIAS: MEAS.					-0-	30	
	12.03	3	VC 40Y IC INC	Toumh, Yes 404	. 2	12.4	1107	8.1	537	29.52	
		- 1							JŽ	-4.52	
		ي.		1	a)	43.7	15.7	13.5	20.45	24.13	L
						 			5 75	207	├—
YAL-U	1×10 ¹³	7		To 10mile 40V	م	5.0	10.0	0	17/4	26.31	
1				1					-9.4	1/2 41	
		55			J.	3	3	0	.0	0	
									0	3	
1.25.1	<u>د د ا</u>	3		IC MODAYCE 40Y	تم	-20.0	-	· 10 0	34.57	in 85	
										-10485	
		35			2	-JO	20	10		- 40	
									درہ	20	
[:30 (nN)	5*10"	-	k JON VA VE GAL	NCA - N	3	J (Osa	0.150	0.5.	203	0 #37	
	أدفيانا				.1	O INL	0.4.5			2.22	
	2.1.5				.3	8 743			23 4	304	
	50 34				.3	le Bran 7	1300	840	2254	2237	
		\vdash		 	-	 					<u> </u>

2N2857, Motorola

Parameter	E C.C.M.z	Operating Point		Sample	Hean	Nex.	Min.	Hean +2 G	He n +3.5	Accept Reject Criteri
		BLAST INGAL.	BIAS: MERS.							
a (" DEE)	5 = 1312	1c - 54, 46 - 0	YCE: SY TC: IMA		0.00468					
	1-1013	10.0	<u> </u>	6	0.00817	0.0125	0.0052	0.0134	0.0160	
A('INEE)	5×1012		ICE - SY: Te - Sme	6	0.00.28.2	0.0040	0.00-20	0.00.123	0.0049.3	
	1=10/3			6	0.00485	0.001°8	0.00.32	0.00754	0.00885	
A(Ihie)	2×10'2	<u> </u>	VEE SY:Te 10mg	6	0.0037	0.0030	0.0016	0.0037	200381	
<u> </u>	1510,3	•		<u></u>	0.003%	0.0053	4.0027	0.00573	0.00M	
		 								
					 					
		 			 					
		ļ		L						
		<u> </u>								

2N2880, Solitron

Parameter		85 SOLITRO Operating		PakaE Sample size	Hean	Hex.	His.	Hean +20	Hean +3CT	Accept Reject Criter
	ekmi	BIAS : IRRAD	AIAS : MEAS.							
(KEE)	5 = 1012	VC - IOV VE - OV	VCE-4V, Ic. Ind	6	.0756	.2003	.0305	.203	. 366	
		Ic- JoA	*	_6_	. /37	. 4368	.056	.43/	.578	
(YDEE)	5=1012		Vce . 44 Ic . 230A	6	.00785	.0/63	.00%		.0211	
+	1-103		<u> </u>	6	.0/22	.0/92	.0065	-	.0954	
(VDEE)	5=/0'*		VCE-AV IC-IA	6_	.02095	.00/8	.0001	.0033	.02383	
<u> </u>	1 × 10 '3			6.	.00322	.0034	-02/2	.00375	.02:054	 -
(YDEE)	5 4 /0 4		VCE AV IC 1000A	6	.0037	.2055	.00/	.00587	.00745	
4	/×/0"		+	_6	.00505	.2084	.00aR	.0.898	.0//_	
(/SEE)	5 = 10 **		VCL - AV: IC-50A	6	.0345	- 555	.076	.0577	.0743	
	1-10-3		<u> </u>	6_	0427	<i>-11</i> 2-	.0.96	.114	/5	
(KEE)	5 = 10.4		VCE-24 IC-200-A	6	.0017	.0033	.0004	.00.375	.00Y7B	
4	/ = /0'3		*	_6_	.00347	.0057	8100.	100657	.0076	
CELSADILY	5×/012		IC.SA:In.SOM	6	0.644	0.987	0.504	0.991	1.16	
4	1,10,3			<u> </u>	فتده	1.3	0.513	1.3	1.59	
Ms.	 			 -		 				

2N2907, Motorola

Parameter_	e/cm²	Operating	Point	Sample size	Hean	Hax.	Hin.	Heen +26	Hean +3C	Accept Reject Criter
4 (1/d re)	5×10'2	BIAS: IRRAD.	BIAS: MERS.	5	0.000 88	2.002	0.0002	0.00333	A00306	
	<u> </u>	Calketor: 121	Ic= 364A							
	12103	Can'ther - Base: GN D	VCC: IN V	5	0.00184	0.0042	70002	0.00466	0.006 <i>0</i> B	
(1/4.34)	541012	Collector: BY	Ic: ImH	5	0.0017	0.0025	0.001	0.0030/	0.0036-2	
.1.	I	emitter: GND				•				
	12 1013	BASE : GND		5	QD043	A-005.9	0.003	0.006 4 2	0.00753	
(1/22)	5>/0'2	Collector: 12V	Ic: /\mA	5	A00066	0.001	0.0004	0.0011	0.0015	
1		Ennouter GND		1						
	Jx 10.3	Base : (ND		5	0.0013	0-003 I	0.0009	0.00228	0.00471	
(//L·E)	5x102	Callector = DV	Ic: 40mA	5	0.00064	0.004	D- 0003	0.00/47	0.00128	
		Emmitter: GND								
	1=1013	Base: GND		5	0.00012	0.0016	0.0006	2.00.8	0.00315	
(H3E)	5×102	Collector= A2V	IC = 20mA	5	Broom 4	0-0004	0.0001	0.000508	0.000 (4.3.	
		EMITHER: GND								
4	11/013	BASE : GND		5	0.00044	0.0008	Δ.0001	0.001	0.00/95	<u></u>

DEVICE T	YPE: ~No	2907 110	torola	Pace a	of 9					3
Parameter	E/Cm²	Operating		Sample	Hean	Max.	Hio.	Hean +20	Mean +30	Accept Reject Criteri
M/A 72)	54/02	BIASTIARAD.	BIAS! MEAS.	5	0.0003-3	0.0005	0	O.000b76	0.000904	<u> </u>
	1×10/3	Contter: Base 6ND		5	0.000 6	0.00/	0.0003	0.00115	0.00143	
Ke(ad)	ō	Callector: L2V		5	0.037	0.046	0.03			
	511012	Emin, Her: GND Base = GND		5	0.041	0.049	0.036	0.051	0.056	
¥	1>10-3			5	0.014	0.053	0.039	0.547	0.06	
<u>(v)</u>	0	Callector: D.V.		5	0.05 48	0.065	0.047			
	52/012	BASE: GND	48: U. Jmn	5	0.0604	0.07	0.055	0.0734	0.199_	
1	1×10'3			5	0.064	0.074	1.058	0.0775	0.0842	ļ <u> </u>
Vectory)	0	Colk to DV		5	0./3.2	0.183	0.098			
_(v)	5210'2	Em. Her = GND BASE = GND	16: 5mH	5	0./38	0.188	0./05	0.205	0.239	
	J= /0'3			5	0.141	0./9/	0.108	0.208	0.21	

DEVICE T	TPE: 2No	2907 1	otorola	PAGE	<u>3 es 9</u>					3
Parameter	e/cm²	Operating	Point	Sample	Hean	Max.	Min.	Heen +20	Hean +3 CT	Accept Reject Criteri
(w/ant)	0	BIAS: IARAD.	BIAS! MEAS.	5	0.725	0.735				
_/v)			Ic= 10mA							
	51/012		IA= IMA	5	0.723	0.73	0.7/6	0.14	0.192	
		BASE F GND								
	12/0'3			5_	0.719	0.723	0.704	0.135	0.744	
Ver (and)	0	Corrector: 121	Ie: 100 mA	5	0.143	0.854	0.834			
(V)		Emitter = GND			V	V-037	<u> </u>		†	
	5×102	BASE = GND		5	0.847	0.851	0.84	0.856	0.86	
	/x/0/3			5	0.841	0.849	0.847	0.858	0.867	_
(se (god)	0	Callector = QV	IC=10 mA	5	0.709	0.717	0.704			
_(v)		Emitter : GND	10=0.5mA	<u> </u>	L		l		L	
+	54/012	BASE CAN	 	5_	27/5	0.7/9	0.109	0.722	0.726	├
V	10/013	.		5	0. 707	0.717	0.695	0.721	732	

Parameter	elema Fluence	Operating	Point	Sample size	Mean	Max.	Min.	Mean +20	Henn +3 5	Accept Reject Criters
Var (oot)	0	BIASTIBRAD.	BIAS! MEAS.	5	0.821	D. 13	0.818			
(v)		Collector: DV	1c=100 mA	l				İ	<u> </u>	
	511012	Emiter OND	18 = 5 mA	5	0. 83	0.838	0.8-24	0.84	0.846	
		BASE = GND								
	1×10'3			5	0.821	೧.83ಎ	0.814	0.836	0.843	<u> </u>
Iceo(nA)		A Harton FOIL	V40 - 50V							
TCOONN		Collector 50V	VCB= 50V	├ -		 	 	 	 	
		Emitter OV	 	1 4 4	 		├			
	57/014	Base : OV	 	4*	227	0.28	0.22	0.419	0.993	
		 	ļ			 	 	 -	ļ	
	1 × 10'3	 		4*	3,325	5.44	C. 23	0.498	0.585	
	* Oct/1	ec . One (Cale	ulations done	WHL	outlie	s erc	luded.)			
Iceo(nA)		(h/lector= 50V	VCB= 50V				ļ		-	
ì		Emitter CV	i	T				1		
	5×10°2	BASE: OV		5**	1.06	د.4	دد.۵	4.57	6.33	
<u> </u>	/×/0'3			5**	1.18	9.6	0, 23	5.01	6.92	
*	* Cala	ations done	1111 0 th	005 101	1. das	ļ	-	 	 	

NEWTCE 45	voc. ~2Nh	2907 Moto	mla	PAGE	Kof9	·				3
Parameter 1	elemi	Operating		Sample size	Hean	Hax.	Min.	Mean +20	Hean +2 CT	Accept Reject Criteri
TEBO	-		BIAS! MEAS.	1		!		Ĺ	<u> </u>	<u> </u>
(nA)		Collector: 50V		†		1				
MAI.	5x/0'2	Emitter : OV	VCD	5	0.17	0.22	0.72	0.257	0.301	T
	13//03			 	10	1				1
	1x/0'3	BASE: OV		5	0.186	0,22	0./3	0.3	0.314	
				├	 	 	<u> </u>	├	 -	-
				+		+		†		
								 	-	↓
					.		 	 	 	
				↓	 	 	 	 -	┼	
	 	 	 		 	 		+-	+	+
				+	1	 	1	 	 	
	 		 	1						
									 - -	-
			L					├		
			ļ	 	1		├	+-	┽	+
	<u> </u>			↓ —	 	 	+-	 	┼─ -	+
	 	ļ	 	+	+		+	+	 -	+
		 	 	+	+	+	+	+-	 -	_
		 	 	+	1	1	1		 	
		+		+			$\overline{}$	\top		

JPL Technical Memorandum 33-763

2N2907, Texas Instruments

Parameter		Operating		PAGE Sample size	Mean	Max.	Min.	Hean +20	Hean +30	Accept Reject Criter
	e/cm2	BIAS: IRRAD.	TOLAS: MEAS.							<u> </u>
(Inex)	1×10,5		To 200 A. Ke 1234	5	0.00051	0.0015	0.00006	00017	<u>o.ooə</u> 3	<u> </u>
	2.5×1012	VE . YO GNO		5 _	0.0013	0.0040	<i>0.00</i> 03	0.0045	0.0061	
	2×1013		TC : DMA. Mr. O. L.Y	ما	0. 218	0.0035	ODOLL	0.0041	<i>೦0</i> 05ಎ	
1	1×1013			4	0.0040	0.0077	0.0034	0.0090	Cenelis	
(IDEE)	J×/01-	 -	Iciona Varagy	5_	u.^^038	0.0012		0.0013		
	2.5×10'à			5	0.00092	0.005.7	0.0002	0.0030	0.0041	
	2×1015		IC NOWANCE = OWN	4	0.0008	0.001	0.0007	0.0012	OCOM	
	141013		<u> </u>	4	0.0014	0.0019	0.00:	2.0031	0.0025	
(Thee)	1×10/2		10-40mA: Nos - 0.361	5	0.0003	0.00:1	0	0.0013	0.0018	
· · · · · ·	25×103		J	.5	0.0009	0.0035	0.000	00000	C.0032	_ _
_	5×/0/2		To 40mA line Day	3*	0.0009	0.0013	0.0006	0.0016	0.0019	
	1×.03		ļ	4	6.2014	0.000	0.0011	0.0005	0.0030	
('IDEE)	5×1012	 	Tc:36 MH	4	0.0019	0.0025	0.0016	0.0027	0.0031	
	12/0/3		NCE /WY	4	0.0037	0.00-1	0.0033	0.0046	COOPT	├
Cines	5×1013		Ic:5mA	4_	a C0035	occos	0.000	0.000.1	0.0002	<u></u>
	1×1013		VCE = 10 V	4	c.0015	0.0016	OOO	10.0018	10.0090	4
(inft)	5×1012	 	Tc · NOMA	4	0 00043	0.0006	0.0003	0 00068	0.00080	
->1116.61	101013		VCE - 201	14	0.00083	0.0010	C0007	0.0011	0.0012	<u> </u>

Parameter	Fluence	Operating 1		Sample size	Hean	Hax,	Min.	Hean +20	Hean +3 C	Accept Reject Criteri
	C/2.00 -		BIAS! MEAS							ļ
KF (SAT)		Ve-124: VE-YA-GND	Ic . 10mA. In: ImA	4_	0.0458	0.053	acul			 -
(4)	1-1013		· · · · · · · · · · · · · · · · · · ·	4	0.049	0.057	०.०नम	<i>0.06</i> 02	<i>ጊ የ</i> ሚያ	
CE (SAT)	54,012	 	To - 10 mAire 05	4	دنده	0.022	0.055	0.0764	0.0835	
(4)	12:03			4	00065	0.078	0.058	@ 083 2	00915	
k (sau	5-1013	 	In word Je Sm	4	O.Hol	083	CJ49	0.190	0.206	
(11)	1.7.	 		4	0.166		0.15.5	0 201	0.319	<u> </u>
	13/-1	 						÷ 32	2.35	
AVOE SE	54012		IC=10mA JE IN A	4	-0.005	0003		Caxes		
- (X)	L			 -,- -	 			TO. C/2-		
	1200	 		1	0.0010	C-0/9	-2,005	1.0162 1.2.015	C.Cox	
1.1. (C)	5 2/3		IC-100mA In 1011	4/	:10027	0.003	70,007	2.0065	0.011	
AVEL (SAT)	541012	 	IC COMPLETE TO THE	1-7-	1540001	0.00.		1	10.0146	1
- (4) -	12.313	 	·	1	0	0.011	-0.008	0.0/59	0.0035	d
	78.50								10.003	
AVAC LUA:	5-/2-2	 	To: 10mH In 050	A 4	100005	0.000	0.003	0036	aucs:	
(/)	1	1	!					10.00-16	a.cox	
	12/3/3			14	10,003	o corlo	-0.2276	10/296	CCILOI	
	1							C. 160	10,00	4

Parameter	Fluence	Operating	NOTAJINEATIS.	Sample size	Mean	Max.	Min.	Mean +20	Hean +3 CT	Accept Reject Criteri
	CICM*	BIASTIRAGE.	BIAS: MEAS.					٠ يور ٠	- 30-	
VEE THT)			TC DOMA IA STUA	4	0.0055	0.0140	0	0.0178	0.0240	
١٧١	↓							70.0068	-0.0130	
i	1 × 1013			4	0,0007	0.006	-0.002	0.0083	0.000	
					<u> </u>			0.0062	-0.005	L
						ļ		+ 100	+.31	
anucas	<u> </u>	14504, 44 Ye = 0	YCB: 50Y	4	0.24	0.38	0.12	0.509	0.643	
				5 *	1.95	5.8	0.12	9.61	13.4	
	/×/×/3				C 368	0.42	0.14	0.555	0.698	
		 	<u> </u>	5*	2.101	12.1	0 14	1.3.4	188	
ERO (PA)	5*1012		Ven . 3.5Y	5_	48.2	78	25	92.3	114	
	1 × 1013		*	5	56	9/	28	109	/30	
י בידנ	iers in	CLUDED								
					<u> </u>					
					+		 	 		
						 -		 		

2N2920, Texas Instruments

Parameter	Fluence		perating	Point		Samp'e size	Mean	Max.	Min.	Hean +2G	Me≤n +3.07	Accept Reject Criteri
	e/cm2	BIAS:	FRAD.	12 AS:	MERS.							
4 (Thee)	25×1012	VC JOY	Va.VE-O	Ec Olmi	Yez-azy	12	0.001-1	30022	0.0008	2.0024	0.0008	1
<u> </u>	5×1012	L		ļ		اش_		0004				
2 CIDEE)	2513/2			ic ima	FE:C JA	13	0 00091	- XXII	0_	0.0014	0.0004	
*	2 210/3	ļ		ļ	L		0.0033					
Cinee)	ودادا	KE 84	Ic: 75uA	IC 254A	VCE RY	.a.	0.00047	20008	0.0002	0.0008	2.000	
	25400					12	1.00098					
	2×10/5	·				Z. roe.	0.0017	0.0020	0 1013	OWN	3.0023	
i		1					33137					Í
i							J.J096					
·	<u> </u>						0.09/4					
(Tree)	.0/2			ic iul.	fc. 2.Y.		LUXOV.	0.000	2.000	U CXXVII	0.0000	
	2.4.00		<u> </u>				J. N. Ye	3.3257	المحدد	72عادر د	2.000 23	
	5.04	İ				: 763	12006	0.0008	2.0004	0.00084	UN. 96	
						4E\$	3.32.12	0.0050	.: <i>1</i> 636	C-0059	0.0067	i
	1/ 3/3			L		2 66	2 245	C.0061	2,20,2	(كولاك نيات	± 0023	
<u> </u>	<u> </u>		<u>k</u>		<u> </u>	1 ki	100001	0.002	J1/28	1000141	ويقدي	
		 		}- 								
				 -								

JPL Technical Memorandum 33-763

	i	Operating 1	Paint		Sample	Nesa	Han	Hia.	H000 +2.07	Henn +3C	Accept Reject Criteri
Fluence		I BRAD		MERS.	1124	Leefe	REA	RLO.	-20	-35	Criteri
					6	1.150	1.975	0.477	2.14	2.63	
										-0.339	
18/013					ما	1.07	1.3/5	0.235	435	L-18	
				,					0.834	0.701	
52012			Vec : 8V	TelmA	la	1.36	2.907	O. Helo	3.09	3.%	
										-1.24	
11/013					6	1.14	1.364	0.235	169	197	
_ŧ	├ —¥	'					-		0.585	0.308	
	 										
	<u> </u>					ļ					
									-		
<u> </u>	<u> </u>					ļ					
	1 1					 					
	5 vict2	5×10 ¹² W6-8V	5×10 ¹² V6-8V IC-25µA	5 × 10 ¹² NE-8V TC-25 A NE-8V	5 × 10 × 25 × 4 × 25 × 4 × 25 × 4 × 25 × 4 × 25 × 4 × 25 × 4 × 25 × 4 × 25 × 4 × 25 × 25	5×10 ¹² NE-8V TC-25, A NE-8V-TC-25, A 6 5×10 ¹² NE-8V-TC-15, A 6	5×10 ¹² WE-RV.IC-25µA WE-RV.IC-25µA 6 1.150 5×10 ¹² WE-RV.IC-1µA 6 1.36	5 × 10 ¹² VE-RV IC-75 p. A KE-RV IC-25 p. A 6 1.50 1.975 1 × 10 ¹³ 6 1.07 1.315 5 × 10 ¹² VEE-RV IC-1 p. A 6 1.36 2.907	5×10 ¹² NE-8VIC-25, A NE-8VIC-25, A 6 1.150 1.975 0.477 1	5 × 10 ¹² YE-8N IC-25µ B YE-8N: IC-25µ B (o) 1.150 1.975 0.477 2.14 0.157 (2.15) 0.157 0.	5 × 10 ¹² YE-IN IC-25 µA YE-RY-IC-25 µA (o 1.150 1.1975 0.477 2.14 2.63 0.157 -0.339 1 2.10 ¹³ (o 1.09 1.315 0.935 1.3.5 1.48 0.834 0.201 5 × 10 ¹² YE-SY-IC+ MA (o 1.36 2.907 0.26 3.09 3.96 -0.371 -1.24

JPL Technical Memorandum 33-763

2N2946, Texas Instruments

DEVICE T	PE: 2N.29	LE TEXAS LA	STRUMENTS	PA	GE lo	£l				3_
Parameter	Eluence	Operating		Sample	Hean	Max.	Min.	Hean +2 O	Hean +30	Accept Reject Criteri
		BLASTIBERD.	1							
EC (SAT)			In= -/ 44 mA	6	1.74	1.87	1.64	1.94	204	
(MX)	125x10-3			10	176	1.87	1.66	1.94	204	
	25×102			6	1.78	1.89	1.69	1.96	2.24	
	5×10/2			6	/8/	1.91	173	196	2.03	
(A.1) OT		YB=5Y, YC=0	YL : 51 , YC . 0	5	9.99 A	£59%	2024	37 10 A	51/48	
1		NE - 7/24		5			0.0/00			
	2520013		!	5	0/33	0.270	0034	5.316	0 408	i
	-5xic			5	0 455	128	0.091	1.539	a.035	
			+	+						
		!	 	-	 					
			·							
				 	L					-
		!								
										
		<u> </u>	 							
	·									

2N2975, Fairchild Semiconductor

Parameter	Fluenc		Operating	Point		Sample size	Hean	Mex.	Min.	Hean +2 O	Hean +3.0	Accept Reject Criteri
	e cmª	λcγ	BIAS: IRRAD.	Biasi	Meas.							
(Thee)	55:513	2.5		VCE . 5.61	LTC MAR	ري	3.0,38	0.0318	3 0056	c 0227	0 0424	
			I Dun		, ., -	â	0.034	ואניט ס	500	J.J.35	0.0103	
		25					COIRS					
	12.3	35					0 0258	0 0326	0.076	20346	0.0390	
		.3		<u> </u>		۵	00297	20329	0.0364	O 0388	0.0434	
	1	5.5			·	-4	C.0455	ు యాచ	00375	2 C614	୦୦ ୧୫୩	-
Z DEF)	فاصدد	1		CE Sul	ic: 100 LA	I.a	0.0067	3.60	C.2046	عاديما	0.0118	
		3				_2	0.0095	SOLO.C.	3.00SU	00130	0.0154	
		22				â	0.0125	മക്ഷു	0.043	20131	0.0133	
	x 7/3	2.5					00112					
		3				si.	المتحيط	0.0126	امامد	20149	3.0167	<u> </u>
_	<u> </u>	5.5		<u> </u>			2.013					<u> </u>
('ihee)	240,7	25		Vice 5.6V	Ic : ImA	12	20031	250013	0.0024	CWH4	0050	
		3				. a	0.00.57	0.0044	<i>c.c</i> c3	1.0057	0 0067	
	k	5.5			l		0.0045	0 2046	00043	1 3649	CCCSI	
	13/013	2.5				_12	0.00-19	0.0055	0.0039	صلاب	anord.	
		3					0.000	2.0031	0.7059	ومدديث	2.0071	
	÷ 	2.2		ļ	.	4	2.3072	C'COLT	2,2029	2.2099	c.cu3	

DEVICE T	Plues			perating			Sample size	Nega	Hax.	Hin.	Heen +20	Mean +30	Accept Reject Criteri
	e icm	MeV	BIAS: I	ARAD.	Bus:	MERS.			L				
A ('INEE)							12_	0.0164	0.0383	0.0034	0.0356	2.0453	
		13		1 7		,	a		0.0398				ļ
		5.5					.S.	0.0471	0.0189	1.0450	0.0523	c 0549	L
	1X/O'3	2.5					12	0.0.288	0.04-13	0.0233	0.0435	0.0009	L
		3					2		0.047				ļ
	_	55					4	0.023	0.0637	C-0.394	C.0744	റ.0856	
A ('ihee)	25/01	2.5			Yce 35Y	Tc : 100 m F	1.3	0.0074	0.0116	0.0040	0.0139	0.017.2	
		1.3				,	J.		0.0133				
		45					ລ	0.015	0.0/55	0.0145	0.0164	0.0171	
	IXKY						12		0.0167				
		3					D D		0.0/53				i
	1	55					4		0.0303				
(Ther)	500	225			Ve - 36V	Tr: InA	12	0.0035	0.0060	0.0023	0.0059	0.0022	
		3				Γ	_ رہ		0.005				L
		15					2	0.0059	0.0065	0.0053	0 0076	0.0085	L
	/×/0'	2.5			Ĭ .		12		0.007				
		13			Ι	T	2	2.005	0.0058	0.00%	0.0023	0.0084	1
<u>_</u>		5-5		,		1	4_	0.0076	0.0085	0.007	0.0083	0.007	-
TOBO OF	52/2	125	Wr.e20	v	Vices - a2	e V	-11	1.820	15.8	0.0130	11.4	16.1	
1.			Ve Ve		1		11	19.9	174	0.0860	135	178	<u> </u>

2N3057, Raytheon

Parameter	Fluence	Operating	Point	Sample	Hean	Haz.	Min.	Heen +20	Hean +30	Accept Reject Criter
	e Icm2	BIAST BRAD.	BIAS: MEA	S						
المرارية	5 = 11312	YCE LASY IC ON	VER DENTE	5ml /a	20040	CCCT	0.00011	O.SCRO	يصود	
-	1-10-13			16			0.00008			
Δ´ WEE)	5×10 ¹²		Yes 1225Yes	00ma (a	0.0034	4,0059	C 00018	2.3081	0.0104	
<u> </u>	15.013			16			roomy			
1. (Thee)	Secole		CENTACY TO 1	90mA (c	ō 00097	c.00 24	TO CIRLO	0 0106	0.0163	l
-	1 / 1 7 / 3			le_			7،000			
(Inte)	.3×/O"	VCB -GOY.	KE-IV TO 40	2.6	0.0122	0.0202	0.0058	00030	0.0287	
	LASTION	163.0X					0,0225			
	2520°2			6	0./53	0.242	0.0908	2.24	0.320	
	5×1012				2.366	0.9253	0.3522	0.998	1.21	
TCAO (NA)	51.0"		VCB - 601		0.152	0.3	0.125	0.297	0.367	
	اع.×5×.۵′			6	0.187	J. 38	0.13	0.377	0.422	
	<u> </u>		—— — —	- 6			0.17			
*	27.0/2	<u> </u>	<u> </u>	<u> </u>	0.558	2.8	0.98	0.951	5	
					+ 					
				-	ļ					

2N3251, Motorola

DEVICE TO	(PE: 2013.	751 Mos	TOROLA	P#	CE! Of .	3		:			Accept
					Sample		ł	,	Mean	nean .	Reject
Parameter	Fluence	Operating	- •		Size	Mean	Max	Min.	+2.5	+10	Criter
	6 CWs	PLAST LARNO	حميد التاب	A'éas.		 		 	1		
TEE)	5×.0=	YC = 104, VE - VB -	YEE . ION,	1c - [mA	5	0.00035	00004	0.0003	200045	0 0005	
	1 10/3		· }		حـ	0.00085	0.0004	p. 00025	audyy	0 00/66	
(Thee)	5×10 P	·	40-104	Ic=5mH	5	0.00028	0.00034	0.00026	0 00035	400038	<u></u>
LUFEL	1×10/3	 	. PE-70 1,	10. 10.0	5	0 20053	n mag	0.0005	0.0006/	0.00065	
	7-10-		 			<u> </u>	-				
(TAFE)	51/0/2		TE = 10V:	Ic : DmA	5	00007	0.00038	0 000 16	0.32242	J 20050	
	/×1013				5	000053	0.0006	0.00048	0.00062	0 0006	
		1							1		
									1		
							•		·	L	
									•		
			.			ļ	, 4	1			
		·	+				ļ				<u> </u>
) 	+				· 	<u> </u>			
			J				 				
		i +				·		i	·		
							ļ	<u>+</u>			+
		ļ	4			ļ					
								 			
			 -								1
		<u> </u>				-		<u></u>	ļ		

2N3350, Texas Instruments

Parameter	E prese	Operating	Point	Sample size	Hean	Hax.	Min.	Hean +20	Hean +3 O	Accept Reject Criteri
		BIAS: IRRAD.	BIAS! MEAS.			L				
(Thee)	5=1012	WE -0.5V-TC-400-34	VCE =06V: To-0.00	10*	000230	0.0034	0.0016	0.00.366	C.0043.2	
<u>_</u>	1×1013			10*	1.00483	0.007.3	0.0033	0.008116	0.00983	ļ
(hre)	5×1012		16:05V:Ic :0.1mA	10*	0.0013.2	0.0020	0.00C i	0.00317	0.0036	
	1 1/0,3			10%		0.0039				
(Inte)	521012		We=0.5:Te = 1mA	10*	0.00099	0.0014	0.0006	0.00164	0.00191	
	1=1013				0.00181					
		FOUTLIER POP	water	2		L				
	OUTLEA	5 ALCAUDE			L	l		l		·
(INFE)	52/012	L	YCE -0.54; IC-101mB	12	0.0047	00226	0.00lb	0.0173	മമാദ്യം	L
_ _	INVOIS		¥	_ <u></u>	0.0093	0.0456	0.0033	0.0335	0.0457	Ļ
(Infe)	5×10'2		re-asviTe - Alma	ıa	0.0034	0.0121	0.0009	PO10 0	0.0147	
<u> </u>	14/013			12	0.0048	0.0211	0.0019	0.0160	مااحث	
(Inse)	5×1012		Ve-OSVIC-imA	12	0.0018	20075	0.0006	0.0059	0 00 29	
	1.013			-13	0.0030	0.0118	0.00/3	0.0091	ددرمه	
			<u> </u>		ļ					

2N3440, RCA

DEVICE T	TPE: 2013	440 KCA	YAG	Sample				Mean	Mean	Accept
Parameter	Fluence	Operating	Point		Hean	Mex.	Min.	+2 🗗		Reject CKileri
	e m2	BIAS: IRRAD.	BIRS! MERS.							 -
4("INFF)	7×11212	Ic = 1mA. 162 = 101	Ic: IMA YCE . IOY	4	400055	0.001	0.0002	0.0013	0.0015	
	1×10,3	Ic = 1mA, KCE = 10V	1	4	0.0010	മക്കു.	0.0001	0.0024	<i>v.0</i> 030	
		 								<u></u>
	·				 					
				' ——						
										ļ
										ļ
					}				 	1
		 			1					
										-
		ļ			 	<u> </u>	 	 		
		 	 	 	 	 -	 	i		
				 	<u> </u>	 			 	
			ļ	 				.L	 	1
			1	 						
								L	L	L

2N3497, Motorola

DEVICE 7	m: 2N 3	197	Noto	BOLA		B 10f	<u>'</u>					Accept
						Sample)		i .	Hean	Heaa	Reject
Peremater			ersting	Point		0120	Hean	Max.	Min.	+20	+30	Criteri
	e/cm2	BIAS: IP	RAD.	Busi	MERS.					-20	-34	
<u>CB0</u>	5 ×10"	Ka	60Y	Vca =	-60Y	4_	A458	0.57	0.35	0.625	0.784	· —
		VEB .	0		L					0.24	0/3/	-
	1.25×162					4	1.158	0.56	0.38	0.624	0.708	
										0.291		
	2.5×1012			Τ		4	0.468	0.56	0.39	0.623	0.699	
				T	Γ					0.313	0.234	
	5×1012					4	0.6	0,27	0.48	0.845	0.962	
				—		1				0.355	0.233	
March	5×10"	Vco=	704	Ic- Ku	4	7	0,00005	0000	0	0.0000	000036	
- > / 1/1/2-	125×10	Ven-	2	VCE		7	0.00007	0.000	amo	100W7	0.0008	
	25419		<u></u>	VCE	1	4	AMA	0.000	1 m	1.00gs	0.0009	
	611013		 	 -	 	1	A 40463	0.007	A MAN	A ANS	4.402	
*	5×1013	·	<u> </u>	 	¥	ļ 	TOTONIO 2	UALIZ	UNCO	LILLIA D.	L/AAA	
						 	 					
	 			 			 			 		
	 			∔		 	 					
	·								 	 	-	
	 			↓								
	L	<u> </u>				↓	 	 -	 	 -	ļ	
				<u> </u>		<u> </u>					 	∤
						L	<u> </u>	ļ			⊢ —	├ ─
3						<u> </u>			<u> </u>		-	├—
				1			I	I		I	I	l

2N3499, Motorola

DEVICE T	PE: 2039	/99 MOTOBOL	<u>A</u>	Sample	<u> </u>	í	 -	Mes a	Hean	Accept Reject
Parameter	Fluence	Operating	Point	eize	Mean	Max -	Mia.	+20	+30	Criteri
		BIAS: IARAD.	BIAS! MEAS.	L	<u> </u>	<u> </u>		 _	L	
CESSET) (Y)	0	NC -204: YE-VA-O	Ic.Soma:	6	0.0702	0.0752	1.0636		·	
	5×1012		IA - 5mA	6	0.0748	0.0825	0.0637	0.0876	Q'03-11	
-	1×10,3	 	-	<u>.</u>	0.0795	0.0855	0.030a	0.0940	0.1010	
(C.E. (SAY) (V)	0		Ic · KOma:	م	0.1010	0./070	0.09:2			
	2 x IV IS		In- Ont	6	0.1050	بالنها	0.0948	0.1180	0.1250	<u></u>
*	1×10,2	ļ		6			0.0991			
VcE(Set)(V)			Ic · 200mA	6	0.1520	0.1586	0.1410			
	5×1012		In . MmA	6_	0.1550	שי יש!	45410	عمدياها	סננוים	L
_ *	EIOIXL			<u> </u>	0.1590	0.1659	0.1469	0.1740	CHRIO	
				 	ļ		 	 		
		·		 	 	 	 			
					Ţ					
		 			 	 	 			

2N3501, Motorola

Parameter	Fluence	Operating	OLA PAG	Sample size	Hean	Max.	Nia.	Hean +20	Heen +3C	Accept Reject Criter
	erm2	BLAS: IRRAD	Bus: Meas							L
(Inft)	5,012	Ve - SON: NE - ON .	NEE: 501 TO DIME	3	0.0094	00476	0.0060	0023p	0.0254	
	1×1013	Ic :O.lmR		_3		0.0570				
(Ince)	54012		Mc:501.Tc:lmA	3	0.0089	0.0210	0.0031	00299	0.0405	
	1,10,3			_3		00733				
4 (hee)	5×/0 ¹²		NCE:SONJC: Das	.3	2002	00086	00043	CCNO	CCIG	
	1×/0/3			_3		0.0024				
CAO (AA)	5×1012	No : 504: Ve that C	Yea-504	3	24.4	450	0.20	69.6	822	
	TX/(2,3			3	62.1	115	0.34	186	246	
		<u> </u>			├			 		
	<u>-</u>		 			 		 	 	-
}		<u> </u>	 			 	 -		 -	\vdash
		ļ	<u> </u>		 	 -	 	 	 	-
	I ———							l		<u> </u>

2N3637, Motorola

	neter	Pluence	Operating		Sample	Mean_	Max.	Mia.	Hean +20	Mean -36	Accept Reject Crisesi
		* .0m*	BIAS: IBRAD.	BIAS! MEAS.						L	
7	uii.	1110		I. Simular IX	6	bacco		caci	6000	aillh	L
		الشنث اسا	Linna		_:c		2000		C.CC10.	car	!
		كتنت أ			<u>(c</u>	ווס גיסוו.	محتيث	OCCCIT	1112		Ĺ
	<u>*</u>		 		_10	بمصم	0.000	23327	1.200	Care	
<u> </u>	Luci	540"		To IMA NO IV	(a	000067	0.0003	10.0001	oiusi	((OC 20)	
	1	1.000			. Co	0 20033	0.0007	2.0097	Sazz	200	l
		15.00			60	O COLL	0.000	C. COCH	C 00/5	25012	
	*	تراديب			(c)	C 0014	०.००स	a	<u> </u>	C (():	
Z	.1.51.4	: 1.0"		To Dimb. his way	(0	carrie	LOOI	1	i. YC.1	aci to	
		1 55.05		1	(c		0.226		Cars		
		4.00			_ دی _	V.2266	3.25 Mg	Same	00018	CRIM	
		1.0%		To LIGHTLE CY	1.2	0.0075	د دی	c ccio	20233	Diene	
				to Osphie wy	1.2	J.100/2	0.00%	00000	محتسا	22259	
		2001		L. Omline CC	(c_	ممت	0,000	12001	ينتني	مجتعين	<u></u>
	ž			To DIMPL JUL 1004		<u> </u>	كالانت	and	الاستنا	تكتابس	
À٤	rsei	\$1.8 mg/		to induce 3CV	- i	omn	6.000	11332	(it w	0 000 1	
		13571310	l	<u> </u>	L	100015	50.04	ि उठ्या	33.75	2.00	L
		التراشد		1			12.0010		ان تشتر ا		
		5:05-		Year in man will	<u> </u>				0.023		<u> </u>
			l	To ma, We say	<u></u>				12025		****
	1		1 1	Ic IMA VCE 127	i in	13084	la ars	narry	10006	C 0007	†

Parameter	Eluence	3(037 Dic.)		Sample size	Nean	Hex.	Hia.	Heen +20	Heen +30	Accept Reject Criteri
	e/cm2	BIASTIARAD.	BIAS! MERS.							
2 Cines			IC IMA: KE WAY	(0	0.0013	منات م	OLOCIO	0.0012	0.00/9	
			Ic InA. CE. 1001	6	2000	مصصم	cicoca	0 <u>00</u> 11	<u>0.0013</u>	
Cinte	5 102		To MMA: KE JOY	(0	10.0008	C :007	2.004	20018	8,000	
			TO IOMA YOU DON	6	lo.amy	ഭരത്തം	10.0003	0.000	0.0007	1
	11/13		TO: 10mA, ice 201	(0	0.000	0.000	TC.0010	0.0001	0.0031	<u> </u>
			TO KOMA, VCE - MAY	4	0.0007	0.000	0.000	ଦ୍ରଦ୍ରେ	0.0010	
Cro(vB)	63.6	RULED INDUT:	100: (33V	7	38 4	30	1.4	207.5	292./	
ceconn		106-1901 TO CEE 300		7	25.9	140	1.5	8,061	122.3	
		TO WOULD IN CAUSING		2	1 2 .	435	1.2	1214		
		38 25% DU CYCLE		Ź	55/	ترون	20	.3.25.0	457.60	
					-		 	 		├
		 -	ļ		 -	 	 		_	
										ļ
			 		+	 		 	 	
			 	 	+	 	 		1	1

REPRODUCIBLITY OF THE ORIGINAL PAGE IS POOR

1 - ---

84 (-)

2N3742, Motorola

	EVICE T	PE: JAL3	742	Μοτο	HOLH	PA	6 <u>6 /01</u> Sample	<u> </u>		τ		<u> </u>	Accept
Pat	resector	Plueace	ون ا	erating	Pozat		size	Hean	Nav.	Nia.	Hoen +20	Heen +30	Reject
		erm2			3.45	MEAS.							
Δ(INFE)	1×10"	KE-1204		Ke .	WOV:	4	0.0186	0.059.2	0.002	0.0232	0./00	
		2.5 ×10"	Tc -0	· 25mh	Ic.	0.35~8	4	0.103	0.386	00024	0.481	0.669	
	<u> </u>	5 ×10"			L	<u> </u>	4_	0.219	0.8331	0.0048	104	1.45	
	<u> </u>	TxIOIS					4_	0.335	1.267	0.004	458	2.2	L
	—	5 20012					6				2.74		!
<u>5</u> _	<u> </u>	1×10'3	L				6	1.03	2.692	0.2054	2.85	3.75	
									L		<u> </u>	L	
			<u> </u>					ļ			<u> </u>	<u> </u>	
								ļ			ļ		
								L					
								ļ		 	 	<u> </u>	<u> </u>
							 	<u> </u>		L			<u> </u>
								ļ			ļ	<u></u> _	<u> </u>
										 			<u> </u>
												!	<u> </u>
			<u> </u>							ļ		 	
											L	ļ	
			<u> </u>		L						L		├
			ļ					ļ			i	ļ	-
								L	 _		L	 	
		· -	└		L			L			L		
								L		<u> </u>	L		!
		L	<u> </u>								L		<u> </u>

2N3805, Fairchild Semiconductor

DEVICE T	m: .7.U.3	805 DUAL	FAIRCHILD SE	EMICCA.	lui CTA F	e Ve	GE 101	(3. <u> </u>		3
Parameter	Fluence	Operacing		Sample size	Hean	Max.	Mia.	Kean +20	Hean +30	Accept Reject Criteri
		BIASTIRRAD.								_
4 (Thee)			YCE 16Y: IC: PA	6	0.00235	0.0033	0.005	0.00398	0.0117	
		Va. Q	1 /		0.00523					
A(Thee)	5710/2		VCE-64: IC: 20.A		0.0042	0.000	0,500	0.033	C.20268	
-	1×10/3		7, 7	6	0.00083					
4 (Thee)		 _ 	VCE=KoV; Tc 2000		0.00007					
-	_/xIO/3			6	0.0000	00039	0.000	0.0036	0.0043	
1 (Threi	5=100		VCE - HOV: To = ImA	_6	C.00072	0.000	0.0004	0.0001	0.00M	
	TXICI3			G	0.0033	0.0018	C.0008	0.000	0,000	
TOROUR	2×10/2	VCR-184. VE-0	VCB = 18V	4	0,23	0.3.30	0./25	0.412	0.490	
	1 1	VA=A'		6*	205	10,00			13.8	
	/ ×/0/3			4/	3.3	44	1.25	5.86	214	
			-	GX.	45.3	245	1.25	24/	339	
		* OUTCLER	5 INCLUDE	5/3						
					ļi	L	L	 -		
					i					

2N4044, Circuit Technology

Perameter	Fluence	O44 C.T.	Sample stre	Hean	Kax.	Hto.	Heen 420	Hean +30	Accept Reject Criteri	
	c/cm2	BIAS: LARAD.	B.AS. MEAS.					ļ		
1 (Thee)	واحتلانا	KE GY	Ic - 50 A	8	0.00031	0 0004	0.000	0.00051	0.000%	
		IC GOUA	YCE (pÝ	8_	0.00054	0.0007	0.0003	0.0008	0.000%	
	5x1013				C-00084					
	1 x10,3		-	8	0.00152	a 0018	0.0008	0.0019	a.:0225	
Cines)	1×10,3		IC = 160 MA	Я	V 0009	0.0003	0.0001	0.00035	000043	
	25×10 ¹³		YCK 6V	Ŕ	0.0004	0.0007	0.0003	0.0006	0.00029	
	SXLJIZ			8	0.000	0.4008	0.0005	0.00081	0000825	
	121.73			8	0.0084	0.000	0.000	0.000	0.0017	
					<u> </u>			± Jar	±.30	
FEIDICA	1 XIOI3		Ic = 50 ua	8	0.885	0.95	೧.೩೩	1.01	1.07	
			1co . 1604A		L			0.76	0.677	
	والالالالالا		VCE : 64	8	0.876	0.77	0.8	1.01	1.07	
			1					0.245	0.627	
	2x12,7		<u> </u>	8	0.855	0.97	0.72	1.0	1,08	
			<u> </u>					0.707	C 633	
	X1013			-8_	U 891	0.88	0.75		0.976	
			 	<u> </u>		 		1.71R	مامامان	
			 	 	 					
	L		<u> </u>	<u> </u>		!				

2N5087, Circuit Technology

DEVICE T	YP8: 215	087	CTI		PAG	£ 10£	L					3
Parameter	Fluence E/Cm ² /×/O ¹²	Operating Point				Sample size	Hean	Nax.	Hia.	Hean +20	Hean +3♂	Accept Reject Criteri
					MERS.				1.4			
A YNEE)		VCE = LV	Ic n.	45.64 I	· 70 A	Я	0.00056	0,000	0.0004	0.0011	0.0014	
	25×1012		19		7	Я	0.00/3	0.000	0.0004	0.0005	0.0031	
	5 ×1012					8	amai	0.00-13	0.0005	00045	0.0057	
	1×10/3					8	0.0038	0.0082	0.0014	0.0080	0.0101	
							T					
							1					
	 						T T	1				
												
	 						 			l		
		 					 	 				
		 						 				
						 	 	 	 	 	 	
	· 	 				 	 	 	 			
	 					 	 	 	 	 		
	·	 					 -	 	├			
	 	 		 -			 				 	
		<u> </u>					├	 		 -	ļ	
		 					├ ──	 -	 		<u> </u>	├
		 					ļ	├		 _		⊢—
		-	——-			 	<u> </u>	 		ļ		ļ
	!	 					├ ─		<u> </u>	ļ		<u> </u>
	<u> </u>						 	├ ─				L
		1				j .	1		i			ı

KD6001, KMC Semiconductor

Parameter	Ì	OOI KNC.		Sample size	Hean	Max.	Mia.	Heen +20	Hean +3C	Accept Reject Criter
	e/cm2	BIAS: IRRAD	BIAS! MERS			1		<u> </u>	<u></u>	L
4 (Thee)	5×10'2	KE SY ICIMA	Kersy Ic: ImA	6	0.0117	0.014	0.009	0 0162	0.3184	
	1 1013	ļ	1	6	0.0207	0.025	0.018	0.0364	0.0223	
		<u> </u>								
		ļ. <u></u> .			 			 -		├─
		 		 -			 	 	 	
					 		<u> </u>			
								 		_
• -					ļ	 		 	 	├-
	 	 		 	 	 	 	┼	 -	├-
	 	 		 	 	 		†		\vdash

MQ2219, Motorola

arameter	Fluence	Operating	Polat		Sample size	Hean	Max.	Hio.	Hean +2 <i>G</i>	Hean +3C	Accept Reject Criteria
	e/cm2	BIAS: IRRAD. BIAS: MEAS.									
(Thee)	5×10 ¹¹	VCF : 9 V. YNE : 0	Tc: 2mA: Y	CE-O-IV	20	0.0003	0.0020	0.0005	<i>0.0</i> 030	0.0006	
	1-92×10 ₁₃				20_	0.0007	0.0045	0.0015	0.0349	0.0050	!
	25404				20	0.0057	0.0079	0.000	0.0029	0.0090	
	7×10,5				l'a	0.0107	0.045	<i>0.00</i> 85	0.0143	0 CKC	
(Thee)	5×10"		Tc: KOMH.	Vice +OIV	20	17224	C-039-2	0,1340	0.0365	0.0435	
- IMEL	1.92×103		PI- 1/11111			0.0097					
	1.8639163		<u>├</u>			0.0312	0.1180	0.0024	110778	0.099%	
	2 5 013		1		30	0.0342	0.0490	0.0210	0.0541	2004)	
	3.5×100			,	16	0.0418	0.0394	0.0333	0.000	0.0705	
(115-4)			T- 1/2-1	.V- 000	/ 30	0.00021	1000	0.000.096	2003	nmx	
("IDEE)	-5×10"		Ic:40mi	EE-CHO!	~~	0.00047	0 000	0.00039	2000	2000	
	1.25.00		 -		20	0.0008	0.000	2 22260	A 2211	0.2013	1
-	52×33	 	 			0.00192	2 2215	0.000	4.00%	0.000	-
<u></u>	2210,9	 	 	<u></u>	16	Differen	دلالتان	USCOOM	C.C.C.		
(Thre)	5×10"		Ic wmA:	= 2417	30_	0,00062	0.0010	0.00/35	0.0016	00001	L
~ WE!	1.252 13				30	0.00013	0000	10.0059	6.0057	0.0086	<u></u>
	257:00			1	20	000	0.0038	0.0003	0.0047	0.0057	<u> </u>
	5× 0'2				16	0.0019	0.006	0.0037	0.0066	C.OC24	4
						-		-	├		

Parameter	PE: NOD	Operating Point				Sample size	Mean	Max.	Min.	Hean +2.0	Hean +3C	Accept Reject Criteri
	c/cm²	BIAS:	I RRAD	BIAS! MERS.								
4(:r		YOE 91	L. VCB. O	Tc:IOmA, Y	£ 2.41	_18	0.00036	00006	0.0001	0.00063	0.00077	
	1					<i>2</i> 0*	0.000	0.0039	O-0001	0.0022	<u>o cosc</u>	<u> </u>
	1.252012					20	A.00083	0.0019	0.0006	0.0012	0'00RT	
	25×1012					20	0.0015	0.0031	0.0011	0.000	0.0034	!
	5×1012				,	160	0.0023	0.0038	0.0017	0'003	0.0033	
	-32,0-								L			
(Thee)	5×10"			Tc-40mA	he: 244	20_	2.00028	0 00039	0.000/	0.00042	0.00048	L
CTREEL	1.25-1012					20	0.00052	0.0007	0.00033	0,00075	0.00087	<u> </u>
	2.5×1012			 		20	0.0008	0.001	0.00054	0.0011	0.0013	
 -				 		160	0.000	0.00H	A00087	0.0015	0,0017	
	2×1013	 	<u></u>	 -	<u> </u>	70	10.00.	0.001	City			
		├		 			 					
	ļ	├ ─		 			 		 			
		_					 -		 			
ATUO *	IERS /WC	LULE	Δ	 		 	 	 				
	<u> </u>	└		 		├	-	—		 		
	<u> </u>	L							 	┼	 -	1
		<u></u>		↓		ļ	 			├	 -	
						 			 		} -	}
				<u> </u>				↓	 	 	 -	┤ ───
							 	—	 		├	┼
						<u> </u>	1	L	ļ			

MQ2905, Motorola

_						Sampl				Hean	Hean	Accept Reject
Parameter .	Fluence	Opera	ting	Point		size	Mean	Max.	Min.	+20	+3.6	Criteri
	C/Cm ²	BIAS: IRRA	۸	Bus:	MERS		<u> </u>					
(عوال)	2×10,	VCE . 5 Y YEE	۵٤	Tc: Anh	62.0.14	10	ושמב כו	0.0014	·0.000	000/6	0.0000	
	192×193					20_	0.03.3	00:00	0.0242	0.0417	0.0463	
	22,120			<u> </u>		30	0.00-12	70033	-0.0023	-0.003	C.0010	L
	25,019			ļ		ಎ೦	20400	00533	0.0315	00527	<i>o.</i> J588	
(Thee)	5/10"			Tc. Ont	1 Kr (2-25)	1 160	0400/5	0.00021	0.00011	COCCA	COOC	
_ 1	Lucais ^a					. <u>20</u>	0.00030					
	25.10'2					ಎಂ	400053					
	2×10,5					ം?റ	0.0011					
∆(·/hee)	52,0"			Tc /50m/	9.16c 0.54	16	0,00034	000032	0.000/8	0.00034	0.00018	
	19271013				ï	20	acce/6					
\neg	2.57103					-3C	0.00023					
	2× 7,-					20	0.0013					
4 Thee	5×10"			To Chima	.¥c 3.•N		0.0033	c-00067		:0068	C.27785	L
	1,25:10"					20	accass	0.0010	0.0037	5	0.2033	
1.	25×1013					20	Cx CC97					
	Sylo ¹⁰					19	0.0010	0.0020	0.00/3	0.0001	0.0004	
		·				20*	0.00/8					
					*		1					
202		R /A'CLUD					 	<u> </u>		l		

areas tor	Thence	Operating Poiet				Sample size	Tean	Hex	Mia.	Heen 12.0	Mean 48.0	Accept Reject Criteri
	e/cma	MASSISSAN. BIAS			Meas.							
(IDEE)	5×/0"	NCF:5Y	YOU LO	To was I	CE J.4V	160	0.000/9	0.0005	0.00004	000045	0.00058	
	1,35xio13					20	amor	0.00045	0.000	000054	0.00071	
	2.5×100					20	DOON!R	0.0010	COM	0.0014	0.0019	
	_5xIB18			ļ	<u></u>	20	0000	0.0013	0.000	o'ळान	O'GOR	-
('hee)	5×0"			Tc:/OmA.	ka-24N		0,00022	00003	0.000	0.00033	am38	
	192x1013					.20	2000	0.0005	0,0001	accordi	4000	
	22×1010					20	annyla	0.0004	0.0003	00000	0.000	
*	SKIDIO			ļ		20	0.00071	0.0010	0,0005	0.000%	0.0005	
('Inse)	5×10"			Tc =d0aft	16:244	160	0.000064					
	TOZNOD				1	2 0	0.00016	000019	0.00011	0,0003	0.00020	
	2.5×10					20	0.0002	0.00031	0.000/6	0.00038	0.00036	
	2×100			ļ	Ŀ	30	Decorate	0,00057	0.00031	0:0006	byyys	
				 								
				上二								
				-								

JPL Technical Memorandum 33-763

MQ3467, Motorola

		Noto:			Sample				Hean	Mean	Accept Reject
Parameter		Operating	Point		aize	Mean	Max.	Min.	+20	+30	Criteri
		BIAS: IRRAD.	Busin	0605					 		
<u> (Inee)</u>		Yc = NOY;	KE DON	Ic · hna			0.0058				
_	1 × 1015	YE VA . GND	ļ			೧.೦೦ಗಎ					
			<u> </u>		_(c9#	0.0044	0.0179	0.0000	0.0095	OCINI	
	125×1013		↓	\perp	23	0.0002	0.0059	0.0011	0.0055	C 0068	
	25×1013		Ļ	L	91	0.0048	DOIH.	-20005	0.0100	0019	
					9.3*	0.0053	0.0345	70.0005	0.0139	0.0183	
	5×1012		<u> </u>		പ്പ	0.0041	0.4375	0.0017	0.0073	0.0089	
	121013		ļ	L	15	0.0008	0.0078	ం.ంగున	0.0083	0.0091	
i (Trai	5×10 ^{ll}		Nce=0.3V:I	c · WmA	23	0.00031	0.00024	0	0.00040	0.20010	<u> </u>
	I XIQ3				71		0.0038				
	r92×10/9				23	0.00047					
	2.5×10 th				93	0.00079					
			1		94#	0.00087					
	521013					0.0013					
(MEE)	5×1011		NCE (14N:I	6.= IOOm#	73	O. O. OOOOO	10.00038	0	0.000.20	0.00009	
	1×1015					0.00026			0.0006	0.00085	
			T			0.00049					
\neg	1.25 - 1012		1		2)3	0.00039					
	2,521013		 		83		0.00/3		0.0011		
			<u> </u>			0.00023			0.0023		
_	5×1012		†		23	0.00087					

Parameter	Fluence		Operating	Polat		Sample size	Hean	Nax.	Nto.	Heen +20	Hoan +307	Accept Reject Criteri
	€/cm ²	BIAS:	IRRAD.	BIASE	MERS.					L	L	
(IDEE)		10-1	6X:	NCE-DW	Ic 500m		0.00013					
	Trasking.	YE-Y	A-GND	<u> </u>			O.000k3					
	45 = 103					_23_	0.00097	0.005	0.00053	0.0016	C.CO19	<u> </u>
<u> </u>	- Zxid3					23	20016	0.0099	0.00091	-2:009-4	0.0008	
				 							 	
						<u> </u>					<u> </u>	
				ļ						ļ		<u> </u>
											 	
										 -	 -	
				 			 				 	
							L		l	L	l	

ŧ

∖¶

MQ3725, Motorola

		3725 Note		Sample Size		Max.	Nip,	Heen +20	Hean +3 CT	Accept Reject Criteri
Parameter	Eluence e/cm2	Operating BiAS: RRBD.		stze	Nean	ruex -	HIB.	¥2 <u>U</u>	+30	Criteri
4 ('Inte)		140 - 40 Y. V. VA - 6ND		24	0.0015	0.0238	0.00024	0.0039	0.0050	
	1 × 1012		11111		0.0310					
	1,25×1012				0.0049					
	2.5×10 ³			92				0.1990		
	5×10/2			_24				00436		
1	1xiO13		J	20	0.0516					
										J
4(' NEE)	5×10"	Vc = 40 V. VE = VA - CAL	Tc = 10mA. Vk = -0.3V	24	0.00073	0.0017	0.00006	0.0016	0.000	
	1×1013			68	0.000	0.0142	0.0004	00143	0.0182	
	1.35×1012			24	0.0017	0.0016	0.00049	0.0041	0.0053	
T	-2.5×10 ²			92	0.0151					
	T 1	K . 30V VE . VA . GALD	Ic: 10mA, ice: A Kay	160		0.0196		0.0217		
		Victory Ne Ma GND		24	0,000	00/39	0.0031	0.008	0.0161	
		VC 30VIVE VA GND			0.0141					
	<u> </u>		ļ	<u> </u>	}	\		}	<u> </u>	
1 (THEE)		NO YOU'VE NO GALD	IC COMPLYCE OAY	24	0.00043	$c \infty n$	0.00001	0.00028	0.0013	
	1×10,5		_		0 0000					
	1.25×1012				0.00087					
	2.5400			92_				10.008 <u>8</u>		,
	5×1013	AC SOLVE VA GND	IC-DOMAKE-DOY			10.0068		0.0075		
	 				0000			0.0073		
		VC 464, Ve to GAD			0.0003					
<u></u>	LXIO13	16-304, 16-16 GAA	TC_XXMILYCE · O-2X	_/10	0.0106	10.049.2	0_	0.03.20	0.0498	

Parameter	PE: MQ.		erating 1			Sample size	Mean	Max.	_Min.	Mean +2 <i>G</i> T	Hean +3CT	Accept Reject Criteri
	e/cm2	BLAS: IR	RAN.	Bias:	MERS.							
4 (Thre)		VC = 40Y.V				24	0.00042	0.0012	0.00017	0.0011	0.0014	
	TXIO13				, , ,		0.0014					
	1.2511012						0 00028					
	2.5410,3					92	4600.0	0.0001	0.00058	0.0049	0.000	
	521012	VC 304. Ve	VA GND	To:500mA	4E:05V		0.0003					
		Nc 40V. YE						0.0045				<u></u>
<u> </u>		K-314 VE					0.0038	0.0008	0.0009	0.0054	0.0066	
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,								± ac-		
NCE (SAT)	5×1012	No YOU'VE	KACAID	Tc - KOnA	TR MA	160-	0.0038	0.0050	0.0020	0.0005	0.000	
(v)										0.0031		
	121013					160_	0.0054	0.0080				
1.										0.0034		
VC+ (SAI)	5 1013			Tc : 500ml	Ta -50n	160	0.0118	0.0170	0.0000	C013T	0.0008	
(.vì										0.0045		
	1×1013					16	0.0134	0.000	0.0070	0.026	0.0248	
	1			,	,					0.0058		
VAE (SAT)	5×1012			Ic-ioom!	In Dma	10	0.000	0	0.004	0.0012	0.00.23	
(x)	1									0.00.33		
	1×1013					16	0.0016	0.0010	F0.0050			
										0.0046		

Parameter		Operating	POINE POINE	Sample size	Hean	Max.	Nia.	Hean +20	Hean +30	Accept Reject Critori
	ekm2	BIAS: IRRAD.	BIAS! MEAS.							
VBE (SAT)	5×1012	Vo : 30 V. Ve Ma GIUD	Ic:500mA:Ta:50mA	عا ل	0.0044	0.0080	0	C.CC87	CCUL	L
(V)	ı.				L				-63023	L
	1×1013			16	0.0040	0.0080	TO.CCIC	0.0092	0.0116	
	J								1.0033	
					I			ナンコー	+35	L
(An) 083	5×12/2		VCB = 30Y	16	935	360	190	359	-121	
	141013			160	3/1	535	210	533	643	<u> </u>

PA7443, Raytheon

Parameter	Pluence		perating			Sample	Hean	Max.	Min.	Hean.	Hean +3¢	Accept Reject Criter
	ekm2	BLAS: I	RAAN.	Biasi	WERS.							
4 (Thee)				Tc:O.5mA		80	0.040	0.0236	0.0005	00215	0.0252	
	4						0.0141					
	1×1013						0.0007					
				ļ,			0.090					
(INFE)	5×10"	VC-30Y	:Vr.Ya.:QI	Ic · ImA: Vo	νε:Δ2V	20	0.00038	0.00369	0.00085	000385	000459	
	LXIOIZ					.7a_	000387	ര.രാഹ	0.0013	0.00608	PC00-0	
	1.25200					ക	0.00441	0.00633	0.00178	000684	200806	
	2.5×10 ¹²						0.003					
	5×1012					20	0.0087	0.0117	0.0050	0.0191	0.0138	
J	1×1013						0.0133					
(JDEE)	5×10'2	VCE (35V	Ic 0.5 mA	Ic:5mA)	CL O/6V	80	0.007.3	0.0133	0.0002	0.0120	0.0144	
						818	0.0074	0.0150	0.0000	0.0/24	00149	
	1×10/3					80.	0.0099	0.0159	0.0049	0.0/50	0.0176	
							0.0100					
(Will	540"	NC:30N:	Ve Va GU	Ic ioma:	VCE CL3Y	30	0	0.0010	-0.00029	0.00085	0.0013	
	LIXIO ^{I3}					72	0.00125	00006	0.0007	0.0008	0.0033	
_ [1.25110					20	0.0005					
	2.5×100					92	0.00285	0.0057	0.00022	0.0051	0.00635	
1	57/012		,				0,00000	0.0042	0.0011	0.0040	0.0047	

Parameter	Fluence	443 FAC		Sample	Hean	Hax.	Min.	Hean +20	Heen +30	Accept Reject Criter
	e/cm2		BIAS! MEAS.							
CHIFE		Ve asy. Ic asou		80	20036	00052	vans	0,246	0.0000	
				RI¥		00146				
	141013			79		0.0053				
				81*		0.0080				
(I) NEL)	5×1011	VC:301:1/2 No GND	Ic: 100mh: Vre-0.4	20	0.0014	0.0019	000062	000003	000036	
	L×IOIS			72	0000	CWO	-0.0096	40032	0.0051	
	1.35×.3°			20	0.0000	0.0005	0.00097	0.0009	0.0033	L
	25000			91_	0.0000	0.0051	10,0031	02044	0.0056	
				92*	0.0023	0.0058	0.0031	020452	0.00574	
	5×1012			20_	0.0030	0.0038	0.0018	0.0041	0.0046	
(Thre)	5×1013	KE OSYTC: OSMA	To : 170mANce : 05	81	0.0030	20060	0.0004	0.000	20028	
	1×10/3			80	0.00354	0.000		0.0063	0.0077	
*	<u></u>		<u> </u>	81*	0.0036	0.0080	0	0.0065	0.0080	
(inse)		VC:30Y, VE VO GAVO	To 200mily to 04	W 20	00005	0.000845	0.0004	10011	0.0014	
	/ X/O'2			72	0.00058	0.0043	-c.0103	0.0043	<u>0.0078</u>	
	125,00			್ಷಂ	0.0015	C COLLA	0.00030	0.000.02	00005	<u> </u>
	2.52012					0.0/35				
						6.033 3				
_	5×15/2			120	0.0023	00032	0.00014	0.0038	0.00-16	L

Parameter	fluence		Operating			Sample size	Hean	Max.	Min.	Hean +20	Hean +3.07	Accept Reject Criteri
	EVW3	BLAS:	IBRAD.	Buss	MERS.	L	<u> </u>	<u> </u>	<u> </u>	ļ	L	
Chre	2 x10/2	Vczc	15Y;	TC-0-2/2/20	Alcera	80	0.0117	0.019-	0.0010	0024	00203	
	1-10.3	Ic.o.	SmA	 			0 0119	0.02.13	0.000	0.0180	فالذعم	
	1140.3			ļ	I	80	00139	0.0365	0.0100	וואיסיס	0.0276	
				ļ	<u></u>	<u> 81×</u>	0.0174	0.0324	വാഥ	0.0050	0.0089	<u> </u>
	<u> </u>	<u> </u>		ļ				 		ļ		└ ──
		 		ļ								
		L		L			L					
<u>* 0</u>	UTLIER IN	بنسهد	VED	ļ							ļ	
				<u> </u>								
				L								<u> </u>
				<u> </u>			L				[L
		l		İ								
								1				
]								Γ
				 					<u> </u>			
				1			 					

SA2267, Raytheon

DEVICE T		267 RAYTA		Sample sime	5 Mean_	Hex.	Mia.	Heen +26	Heen +3G	Accept Reject Criteri
	e/cm2	BIAS: LARAD.	BIAS: MEAS.							
MINEE	12/012	VCL. INV. IC O	Ic = IMA. KE A. DV	119	0.0014	0 0030	0.0004	C CO25	0.0031	
	J			124*	0.0015	0.005.7	0.0004	C-003L	2039	
	2.540,3			119	0.0041	0.0092	0.0016	0.0078	0096	
				124*		0.0121				
	22.012		to Imp. K. O.IV	24	C C199	00310	0.0120	2.03/4	0.0371	
	/×.5/3		¥			0.0510				
,			Ic-IMAJCE GOV		0.0125	0.0181	0.0074	2.0189	0.0220	
Three	INO-		IC : DmA. Vce : Q3V	119	000077	0.0017	0.00012	0.004	0.0017	
				16.34	600083	ama4	0.0003	0.0016	0.0020	
	2.540 ¹³			117	Sanan	0.0047	70,0024	0.0041	0.0052	
				194*		0.0509				
	571012		TC MOR to OWN			0.0087				
	1/33	· · · · ·				0.0024				
				14.1.	2.27.75					
4 (Thee)	5×1013		Ic On A YOU O.YOU	24	0/033	0.0057	0.0000	0.0051	0.0060	
	1×10 ¹³	f	A COUNTY OF THE PARTY OF THE PA	24	0.0007	0.0092	2000	med	2/1198	
	1			- OV-1	2	- W-1/2	7.7.7			
4 (Thre)	1×.013		TO KIMA YOU O 4	/23	0.000	0.0053	C.1188	1.048	1 1095	
	V.5-10	tt	,, B. W. 7.			0.0/5/				
		 				20580				
		 	 	10/13	CICIO 3 1	1	1.11.11.01	12.5.7.77		
* ^	DTLIERS	INCLUSED			 	\vdash		 		
	A1 5 15 12 2	TO STATE OF THE ST				 			 	

14BB101, Solitron

Parameter	L ICM2 Pluence	Operating	Point	Sample size	Hean	Max.	Mia.	Hean +2 <i>G</i>	Hean +3C	Accept Reject Criteri
1(/Aze)	1×1012	BIAS: IRRAD	BAS: MEAS	2	0.0056	0.0058	0.0054	0.00617	0.52095	
		VCE= 0.1V	VCE: 0.1 V		ļ					
	2.5×10/2	1c=133mA	Tc=133mA	3	0.0/15	0.0115	00112	0.0115	D. 0/15	
	51/012			ಎ	0,0159	0.0165	0.0159	0.0175	0.0183	
	12/0'3			a	0.0237	V-05-31	ए०३ <u>५३</u>	2023	0.0244	
∆(XI.€)	1 4/0/2	VC= : 0.1 V	Ves : 0-1V	عر	0.0035	0.0036	C.co.34	D. 00.3)&	a.w.3%	
	J.5×10'E	Ic: 133mH	Ic - 500 ml	2	0.006.55	00077	0.0054	0.0028	0.0114	
	5NO12			2	0.0101	0.0/0/	0.01	D.OIOA	0.0103	
	12/0/3			2	0.0167	0.0168	0.0165	0.0171	0.0173	
(1/L75)	/x/0/2	Vc. : 0.1 V	Vc & = 75 V	2	0.0034	0-00-	0.0028	0.00353	0.0041	
		Ic: 133 mA	1c: 375 mA							
	2.54/012		 	-2	0.0044	0.0049	0.0039	0.20581	0.00652	├
	5×1012			2	00035	8000.0	C-C-59	0.00762	A 10826	

JPL Technical Memorandum 33-763

96SV131, Solitron

DEVICE TO	PE: 965V	131 SOLITR	DN	PAGE	1094					3
1	e/cm2			Sample				Hean	Hean	Accept Reject
Parameter	Fluence	Operating		eize	Hean	Max.	Hin.	+25	+10	Criter
A/11	2.412	BIASTIARAD.	BIAS! MERS.						2 222	├
△('Inee)			REAZA!IC.AU	2	0.0036	0.0027	0.0035	0.002	0.0030	
		VA Gun theu	 			0.0041				
_*	1×10'3	49 RESISTOR	 		0.0061	0.0067	0.0022	0.0078	D-CORT	
∆('h∉)	25102		NE OSITE ION	2	0.0029	0.00.29	0.0029	00009	0.0039	
	12/016			2	0.0048	0.0049	0.0014	0.0052	0.0054	
1	1×1013			æ.		0.007				
(INFE)	J.5x/012		VC= 0.5V:Tc -25A	2	0.0055	0.0059	0.0050	0.0067	0.0074	┟──
	5×102		,			0.0105				
	/×/8/3		-	2		0.0162				
ce (Sat)(V)	0	 	Tc : 40A: Ta : IR	2	0.163	0.160	0.160	 -	 -	
	254012		Tc : 40A: Ta : IA	2		0.172		0.172	0.172	
	5=1012			2		0.178				
1	[#1013			2		0.185				
CE(SM)(V)	0		Ic:10A:Ja-1A	a	0.53	0.53	0,53	<u> </u>		
	25=10'2			a	0.558	0.560	0.555	1.565	0.568	
	5×1012			2	0.578		0.575			
	1203			2	0.600			0.619	0.636	
CER CAR	25×10'2	VE . OX, Ye . GOV	Ver: GOY	1	8.5	8.5	8.5	8.5	8.5	<u> </u>
	51/0'2	PASE GAIN THE	FAC- 4D		80	8.2	8.2	82	82	<u> </u>
	17/0'3	41 AES	Į.	1	240	240	240	240	240	

3029-201-1, Raytheon

3
\bot
28
*
9
13
3
دا
#

Parameter	1 km2	09-00/-/		Sample	Hean	Hax -	Min.	Hean +20	Hean +3 0°	Accept Reject Criteri
VCe(out)	0	BIAS: IRRAD.	BIAS! MERS.	24	0.34	0.412	0.3c		ļ —	├
(v)		Collector : 30 V	Ic: 500 mA							├
	5×1012	Emitter - GND	18: 50 mA	24	0.347	0.372	1.314	0.376	0.39	
		BASE : GND		L						├
	ציסואן			24	0.348	0.373	0.315	0.318	دوده	
12. (2.4)	0	Collector: 30V	Ta = 420 A	24	0.60	0.619	0.459			
<u>(v)</u> (v)	 	Con Her GND		187	0.00	3.01	W. W. C.			
CV)	51/012	BASE: GND	38. 70 mA	24	0.667	0.676	0.652	0.619	0.685	
										├
	1×1013	¥		24	0.666	0.674	0.656	0.675	0.68	
(beloat)	0	Collector - 30 V	Ic: 500mA	24	0.731	0.142	0.72			
(v)	 	Emitter: GND							<u> </u>	1
	5×1012	BASE GND		24	0.732	0.713	0.719	0.15	0.763	┼
	1=1013	 		24	0.729	0.739	0.721	D. 74	0.743	
				-	 -	-	<u> </u>		┼	
				1						Ţ
				+	 	+		 	 	+

Parameter	elome	29-20/-		Sample size	Нево	Hax.	Min.	Hean +20	Hean +30	Accept Reject Criteri
IC80		BLAS: ARAD.	BIAS: MENS.							
		Collector: 30V	VC8:30V						-	 -
	5×1012	Emitter GND		4 *	D. 91mA	LAMH	$\Delta T \partial_{\mu} A$	L.38LA	1.61 uA	
		BASE : GND		l						
	12/013		· · · · · · · · · · · · · · · · · · ·	4*	BuA	4.64A	3.2 AA	5 µA	5. GAph	
							_			<u> </u>
* 41.	A POD	lation.		I		` '				<u> </u>
	1									
IcBo	 	Callector 304	Ven: 30V	1				L		L
JCDO		Emitter GND			1					
- 	5×1012			gata	149.0	LACA	1.30A	1.80A	1.950A	
	3 4/0.	BASE: GND	 	-	1.331110	11.6111	11.21111			
-	3	 	 -	0 ##	2.36nA	3.0	2-0	300	3,350	
	11/0/3			-	A. Saule	3 nn	~ 54			1
	- A-	 		+						
* * La	W Po	pulation.		 		-	 		 	
Taba	 -	Collector 30V	VC8-30 V	+	1					
IcBo	 		*****	 	 	1		1		
	6344	courter GND	 	12 6	304nA	(300.00	1300	123000	IZOO A	
	5 1/012	BASE = GND	 	'~'	1304VH	IJAGO NA	10.250	10-2011		1
-	 	 		10 80	1	4.00 4	2 . 0	4070-0	4030-6	1
	12/013			1/2	11540vH	4000UH	K 00	73 // 00	1813000	1-
	 		 	 	+		 	ļ	 -	
	12/013	diors com		12 8	I240nA	4600nA	a2.oA	4970 nA	683 0⊅6	+

3029-202-1, Raytheon

Parameter	e/cm²	202-L RAYT		Sample size	Nean	Hax.	Min.	Hean +2 <i>G</i>	Hean +3.0	Accept Reject Criter
		BLAS: LARAD.	BIAS! MEAS.							
(Inse)	5×1012		YCE -CILLY: To -10mA	24	00038	0.0205	0.0034	0.0222	40294	
	1=10:3		_	24		0.0316				
V(DFE)	5=1012		Ve ADV Te 100mA	24	0.0043	0.0179	-0.0022	0.0126	0.0168	
	11/0'3					0.0/5/				
A (I hee)	5×102		VCE = 0.54: To =500=	24	0.0032	0.00%	-0.0016	0,0090	0.0119	
	1 * 10'3			24		0.0123				
ce(sm)(v)	5×0'2	 -	Ic : Wood In : Kind	24	0./33	C.150	0 1/8	0.147	0.15.3	
	1×1013			24		0./53				
O.E. (SOT XV)	51/0'2		 -	24	0.00	0.667	0.658	0.666	1.669	-
	11/013			24		0.667				
CE (SAT)(Y)	51/012		To :500=A To :50mA	24	0.304	0.336	0.277	0.331	0.351	
	1/1013					۵.339				
ev (SM) (V)	54/012			24	0.722	4.227	C.718	0.727	C.209	
	1 = 1013			24_	0.721	0.726	0.718	0.726	0.729	
Ceo InA)	SHO R		160 · 30 V	12	15.7	35	11	28.5	349	
	14/013	,		12	27.4	82	/5	651	84.0	

SDT3303, Solitron

Parameter	Fluence	Operating	Point	Sample size	Mean	Max.	Mia.	Hean +2♂	Hean +36	Accept Reject <u>Criteri</u>
	e/cm2	BIAS: IRRAD.	BIAS! MERS.							
((hee)	2×1015	12:301: YE + 0	Ic. 5mA, Ver. 2 V		0.00487	0.0052	0.004/6	0.00548	0.00578	
	1 × 10/3	VB · O	ļ	_3_	0.0107	0.0136	0.0082	0.052	00174	
(/hFE)	5×1012		To 10mA. Voe 2V	.3	0.00433	00045	0.0040	0.00491	0.0052	
	1×10 ¹³			_3_	0.0093	0.0105	0.0075	0.0125	००५५२	
(INFE)	5×100		Ic-100mA:Vre=2)	3	0.0032	20034	0.00007	000413	0.00457	
	1 ×10/3			_3	0.0071					
(/hee)	5×1012		Tc 200mA: KE:2V	3	0.000387	0.0032	2025	0.00302	0.0032	
	12/0/3			.3	0.00587	0.0067	0.0050	0.00257	O.OOM	<u> </u>
(VIDEL)	5×10 ¹³		To IA. YCE : 2Y	.3	0.0025	0.0027	0.0023	0.0022	0.003/	
	1×10/3			.3			0.00-17			
(Thee)	5×1012		Te WA: Yes 54	3	0.0025	0.0007	2.0034	0.00085	0.00300	
	/×/0/3			.3	0.0043	0.0050	0.0009	0.0067	0.00774	
CE (Set)	5×012		TC-2A.I.G.O.2A	3	0.350	0.409	0.267	05/3	0.594	
	1×1013			3			0.29.3			

		Operating	Point	Sample	Magn	Max.	Mio.	Heen +20	Hean +30	Accept Reject Criteri
	e/cm2	BIAS: IRRAD.	BIAS! MEAS.							
AF (SAT)	-DWO12	Vr = 304: VE = 0	TC-JA: TB-O.JA	3	0.964	1.993	0.936	1.000	1.050	
	1×1013	Va.o		.3	0.967	0.9%	0.936	1020	1.050	
CEO (nA)	5210'2	VCE - 30V .	VCEO :30V	.3	7.28	2600	41	3830	5020	
	IxId3	BASK OPEN		_3	877 ₄ A	2250	540	3090ma		
						<u> </u>				
										ļ
					 -					
										
										ļ

SDT3304, Solitron

DEVICE T	m: SDT	3304 50	LITRON		ACOF	1083					_3
	e/cm2				Sample	.			Mean	Hean	Reject
Perameter	Yluance	Operating			elze	Mean	Max.	Min.	+25	+3 &_	Criter
		BLAS: IRRAD.	Busi								
(INFE)	7×1015	VC = 30 V; VE = 0	VCE:30	Vite lan	3	0.00553					├
<u> </u>	1×1013	No O		<u> </u>	3	0.0121	0.0130	0.0105	0.0150	0.0164	
∆(¹/hF€)	5×1012		Vr. = 304	Tr- In-A	3	000347	0.0036	0.0033	0.00372	0.00322	
	1110,3		,		3	0.0076	0.0081	0.0070	0.00871	000927	
A('lbsE)	SXINZ		V 30V	Ic. 100mA	3	0.0025	0.0026	0.0023	0.00285	0.00303	_
111927	11/013				.3	0.00523	0.0055	0.0047	0.0066	0.0066	
A('hee)	Sxicia		Nee: 3V.	Tc = 200mB	3	0.00273	20029	0.0025	0.00315	0.00334	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1×1013		,		3	0.00587					
Δ('/hFE)_	2×/012	 	Yre 30V	Tasla	3	house	00019	0.0016	0.00315	0.0023	
TURE	1×1013				3	0.00397	০.ত্তনঃ	0.0036	0.00461	0.00493	—
Tesa (nA)	 	VCE . 30V:	YCEO	* 30V	 	 	-				
	5×1012	BASE OPEN			.3	Colo	106	34	139	176	
	1×10,3	Ţ	ļ.,		.3	3730	7200	1540	9810	12800	-

SDT3323, Solitron

DEVICE T		3323 So.		Sample size	F.G. Hean	Max.	Min.	Hean +20	Hean +30	Accept Reject Criter
Latemacet		BIAS: IRRAD.	BIAS! MERS	† 	1.73m2	144	11.00			
A(Thre)		WE - 30V	Tc = ImA.	8	200065	20015	amel	00014	0.0012	
-Cinter		BASE GND	Mr. SV	8	1000	amai	0.0008	0.0021	0.0035	
	25×1012	DASE - GIVI	1 1 1	R	0.0000	VW38	0.0014	00033	0.0037	
	5 XIO'3			S	00040	0.0024	0.0009	0.0058	aaa62	
∆(½h£E)	5×10 ¹¹		TC = NmA:	Я	0.00043	0.00078	0,000/2	0.00093	0,0013	
	1.25×1012		VCE-2Y	Я	p.00093	00013	0.0005	0.0016	0.000	<u> </u>
	2.5004			8	0.0017	രമാ	100001	0.00002	0.0032	
	5×10/2		—	8_	00030	0.0044	000	0.0049	0.0057	
4 (Thee)	510"		Tc-/00mA	8	2003	0.000%	0.000	0.00076	0.00099	
	1,2521012		Yce - 2Y	8	0.00067	0.0010	0.00033	0.0013	0.0015	
	2.5×103			X	0.0013	0.0018	ame	0.0020	00000	4
	5×10/2		+ - + - -	8	0.0004	0.003	0.0017	0.0037	0.0043	├
A(UhFE)	5xn"	 	Ic - / A	8	0.00022	0.0005	-0-0008	00007	0.00091	
	1.25m		VCE: 2V	8_	0.00049	0.4008	0.00011	0.001	0.004	┖—
	2.5=10			8	0-20084	0.0014	0.000	0006	0.0020	ا ــــــــــــــــــــــــــــــــــــ
	5×1013			8	0.0018	0.000	0.00	0.0029	0.0034	4—
A(/hre)	510"		Tc · 2A	8				0.00012		
	12511012		VCE . 5Y	8				0.0010		
	2.510			8				0.0015		
	5100		l Ł	8	0.0016	0.000	100011	0.0026	0.0030	

Parameter		Operatio	g Point	Sample else	Nean	Han.	Mio.	100a 120	Hean +30	Accept Reject Criteri
	e/cm2	BLAS: IRRAD.	BIAS! MERS.		<u> </u>					
CEO (nA	5×10"	VCE . 30Y	VOE0 : 301	5_	4.95		0.42	23.5	32,8	
	1,251/09	BASE FOR	N	<u> </u>	4.83			21.8		
	2,54012			_كـــــ	86,18	18	1.9_	21.7		
1	5x/0/2	.	1	15_	1207	4600	16,5	5/39	7/05	
				 	├	 		 		-
					├ —	<u> </u>	 			
				 	┼	 -		 		
										
								ļ	ļ	├
					-	-			 	-
				 -	 	 	-	-		
						 				
									├	-
	<u> </u>			+	-		┿		-	-
		 		+	 	1	 	1		
				Τ				l		L

REPRODUCIBULTY OF THE ORIGINAL PAGE BOT OF

JPL Technical Memorandum 33-763

Ì

EA:m2	0 terreting		Sample	1					Accept
SNO ₂	BIAS: IRGAN		etze	Hean	Han .	Wa.	Haen 426	Hean +9CT	to joet
SNO ₂		BIAS! MERS							
	Ver 111: Te 25mB		. 5_	0004K	00004	4000	C'Sind	0.0103	
655×100			5	hass	0.0078	A.0038	0.0092	O.Olla	<u> </u>
Epixi		*	5_	0.0028	0.0098	00035	0.0429	00124	
5×10 ¹²	 	Nes : IVII c : 120mA	5_	0.0008	O.Ontil	0.0068	0.0051	0.00%	
			5	0.0032	0.0048	a coox	0.0059	0.0069	<u> </u>
/x/0/3			5	0.0054	00066	0.0038	0.0085	0.0100	
	 			├──	 				
		<u> </u>	<u> </u>	 	 				
	 								
	 		 						<u> </u>
									<u> </u>
-	 		 - -	 	 				
		<u> </u>	 	 	 		 	 	
	 		1	 	\vdash				
	5x10 ¹² 655×10 ¹³ 7x70 ¹³	655×100	6.55×100	655×10 ⁰ 5	6.55×109 5 0.0032	6.55×10 ⁰ 5 0.0032 0.0048	6.55×10P 5 0.0032 0.0048 0.0034	6.55×10° 5 0.0032 0.0048 0.0034 0.0059	6.55×10° 5 0.0037 0.0048 0.0034 0.0058 0.0069

SDT4905, Solitron

Parameter	ekm²		perating i			Sample	Jof :	Hax-	Hio.	Hean +20	Hean +307	Accept Beject Criter
		BIAS: I		_	MEAS.							
A(Inse)	5×0'2	VE DV	Tc : 7	YCE 3	N:Te - ball	5	ודב.ס	0.3024	02348	0.329	325.0	Щ.
	14/013					5	0.33	0.3074 0.383	0.2853	O' 433	ONE	
A(VAFE)	-2×/O _{IS}			10.e • 7V	Tc.40mA	5	0.0085	0.0300	0.0031	0.0254	00341	
	1×1013					5	0.0123	0.034	0.0003	0.0300	0Δ388	
-		-		 			 		 		 	_
											├	ļ
				├─				_				_
							<u> </u>			 	-	
				-			 		 	-		
								—	 	 -		├
<u> </u>		\vdash		 			 	 				
						_	 		├			
							 	+		 	 	├─

the state of the second second

Prince to the trainer

and the control of th

SDT5553, Solitron

こうない ちょうちゃく ちゃくいいかん へいない かなあい はまか さみないから しょうしょうじゅうしゅん とうかっきかんがん

The state of the state of the state of

Á

The second of th

Pureactor	Pluance	Gperating	Point		Baup to stre	Hega	Nax.	Hio.	Hean 42,0	Hean +367	Accept Reject Cricer
	Chm2	BIAS: IREAD.	Bias: Ms	AS.							
(Thee)	5×100	Ves 20N: Ye serve	Versont I	-Olas	6	1.591	3.407	20538	4545	6.000	
	Ixlo ¹³	TP-00.1mA	T		6	1.9%9					
(these)	SXAD		VERANIZ:	Elm Q	4	0.5328	1.932	O.O.IR	1.992	al Roka	
	\x\O ₁₃		1			0.3856					
1 (1) (A) (A)	SNO		Best Vile	- /2-6	6	0.0594	a logil	0.005	0.169	0.3039	\vdash
	/x/0/3		1			0.0226				0.2519	
(/hee)	Stor		Ve=05V:Ic	202.0	4	2.015	WEDS	0.0019	20414	0.059/s	
	lx10 ¹³		1		6				0.0531		
(Thre)	5×100		Ven some Ten	044	4	Lang	2, 9207	A AU 99	24229	1.005	
	14/0/3		1		6				4.4466		
(These)	5400	 	hald Is .	mA	6	0.3699	0.608	0.017	0.8051	1-0727	
Ţ.	1403		,	\Box		03446					
(Thes)	5x/0 ^{/2}		Version To -	10mA	6	0.0465	0.0969	0.0045	0./330	0.1763	
	11/0/3		1		6	0.0610	OUNE	0.0072	0.1627	0.2/3/	
(1/ng)	SYNE		Versall Tons	SamA	6	0.0144	0.0305	0.0017	0.0103	0.0530	
1	11/013	11_	1 T		/9	0.0/95	0.0373	0.0030	0.0507	0.0663	

Passantes	Pluence	Operating 1	Point	Sample size	Hegn	Han.	Hia.	Hean 120	Hean 43.0°	Accept Reject Criter
	e/cm2	BIAS: IRRAD.	BIAS: MEAS.							
('hez)			Nee- 1764: Te-123	9	0.4009	V831	0.037	1.09/3	1.4945	
	I w 1013	Ic.O.lmA	1	6	0.4664					
(Thee)	5×10 ^u	ME SON: Te-O	VE - 05 1: Te-100m	4	00004	20008	1.0001	0.000	0.0013	
	_1				0.0013	20051	0.0001	0.0055	0.0076	
	POSKON P			4	0.000B	1.00/3	accod	0.0017	0.0024	
	J			5*	0.0009	0.0017	0.0004	5000	0.00.16	
	25,10,13			4	0.0016	0.0028	0.0007	0.0034	0.0048	
	L			5*	0.0050	0.097	0.0007	DOOM	0.0296	
	5×1012			4	0.00.37	2006	0.00/4	0.0084	0007	
				5#	0.0024					
(/hee)	580"		Ves: IV: Ic. 400mA	4	-00002	0	70,0004	0.000/	0.0002	
				5#	000006					
	1-25×1012			4		00005				
	I.			58	0.0007					
	25=10/2			3		0.0013			0.0008	
	ļ			44	0.0021	0000	0	0.0076	0.004	
	51012			4	0.0021	0.004/	0.0006	0.0050	OMIS	
				5#	0.003/	0.0094	0.0006	0.0105	0,040	
	# OUTLIE	INCLUDED								
										l

Parameter		Pluence		5553 So TRON PAG Operating Point			Sample size	Mean	Han.	Hlo.	Haen 42.6	Hean Haco	Accept Reject Griteri
		e/cm²	BIAS: LE	BIAS: IBRAD		BLAS! MERS.		0.0034	0.0048	<i>80</i> 0 <i>3</i> 0	00074	0.0083	
ان)4	DEE)	17101	Vec:130	VCE : 19W:		VE : 120Y:							
			Tc.o	25mA	Ic.O	9m26	3⊁	0.0020	0.014	മരാമ	0.0200	00.00	_
		2540"					2	0.0054	0.00%	0.003)	0.0116	0.047	
							3#	0.0%3	0.282	0.003	a.3220	0.4449	
		52011					~	0.0092	0.0132	0.0053	60305	40325	
							3*	0.383	0.6363	രത്താ	0.9423	1.304H	
		1×100					9	1538	4.3032	0.0092	4.8852	6.5596	
		25400				,	_5	3.3948	5.857	0.0853	7.638.3	9.7439	<u> </u>
		rad (Si)	_										
Δί	PE)	5×103	AC-54AI	c aAESmf	Mr.c. 12414:	Te-OUNTA	39	00042	0.0387	0.00033	20130	20363	
		1					441*	0.0647	644	0.000.33	0.491	0.704	
	-		1								l		
be i	3ATXV	5×1012	Nee solv:	IE 10	Tr a Some	Tr. 50	6	0.134	0.125	and	0.178	0201	
]		TC.40.1			,	4		0.81	0.1/9	0.194	0.220	<u></u>
	*	7 - 1,0		i				1					
Me(ser) (v)		5=1012			Tr =250m	LE Vins	6	0.0932	0.112	4079	0.16	0.178	
	I.	14013				ľ.	4	0.100			0.422		L
	*	1110			$\overline{}$								
To	a (nA)	Kame	NEA-136V	· VEOCV	*a+12	YaY	4	1810	4900	240	6020	8120	
-	1		1	1	1		60	1200	4900	2	4990	6890	
	${f o}$	15/013		\vdash			4	1600	6000	510	28.70	1/300	
	1	<u> </u>	1				Cort	2840	6000	3	RIOO	10200	
	*	- 4 A	INC		 			T					

the arrange of the angle of the second of th

and the second of all the many and the second of the secon

. .

-

かいこうじか しょうかい かぎょうかい 分かりでん 大学 かかくそうじゅう かまなす まっしゅう なもっからい おおし しいき しゅうしゃ

where the second of the contract of the contra

SDT5553, Solitron (IRAN reirradiation)

Pare	meter	Eluance	Operating	Point	Sample size	Mean	Max.	Hin.	Hean 426	Hean +36	Rejec Crite
		e/cm2	BIAS: IARAD.	BIAS! MENS.							
<u>۵(نا</u> ر	/EE)_	ויסואו	VCE . LIAV.	WE = 1241:	4_	0.0033	00046	0.0005	0.007/	0.0091	bes
		35x1011	Ic OUSMA	Tc-0.15mA	d	0.0105	0.0053	0.0010	0.0312	0.04/5	P
		511011			4	0.0308	0.0693	000004	0.09/6	0.4220	
		-ixiO ₁₉			4	0.0873	0.1610	0.0020	0.2523	0.3349	
40	hee)	/X/0"	 	YCE - 18V:	4	0.0016	0.0001	0-0008	0,000	0.0033	
		2.5×10"	 	Je · Im A	d	0.0043	0.0083	0.000	0.0113	0.0148	
		5×10"			4			0,002			
		INDIA			4			0.0042			
					 						
				 			ļ				
				 			 		 		
			ļ	 		 		 	 -		_
				<u> </u>							
-							i				

JPL Technical Memorandum 33-763

The state of the s

SDT8805, Solitron

And the contract of the contra

こと これの一大大学の大学の大学

Paremeter	Pluence) Perating		ON	Pacak Sample stre	tees	Hez.	Nia.	Hean 120	tieen 100	Accept Reject Criter
	rad (Si)	BIAS:	ARAD.	Bias:	Mens							
A(lines)	12.5%	UNPO	WEREN	Tc -2000	AAbe-IV	4		0.00054				
	313K					4	0.0000	0.00086	0.00083	0.0009%	0000	
	69.5X					4	0.00093	20013	OCOCH	and	0.1017	L
	192K		<u> </u>	ļ	<u> </u>	4	0.0011	0.0018	0/00/78	0.0020	0.0005	
							 					<u> </u>
	_			 								_
				<u> </u>								
				ļ			<u> </u>	L				
		ļ						<u> </u>				ļ
				 								
												-
				 -								
		_										
									·			
												<u> </u>

SE7056, National Semiconductor

	Zivence	7056 NS		Sample	/of /	Max.	Kin.	Haen 420	Heen +3©	Accept he ject Griter
	e/cm2	BIAS: IRRAD	BIRS! MERS.							
(hee)	ויסוא	VCE = 624V	Ic · O.ISmA:	6_	00011	0.0020	-2003	0.0036	0.004X	
	LYIOIA	Ic = O.ISmA	WE . 1241	6	0.0023	0.0034	-0-0013	CONGO	<u>0-0078</u>	
	2.5×1012			4_	0.0041	0.00/5	0.00:10	0.00%	0.0049	
	5×1012			10		A-0107				
	1XO13		<u> </u>	4	0.0148	0.0173	0,0131	0.0/88	82000	
				<u> </u>						
						<u> </u>	·	<u> </u>		L
-				<u> </u>						
		·					— —			
					 			·		
				 						┢
					 			 		\vdash
						├──	_			
					├ ──	-				├─
				 						├
				 	├──			<u> </u>		┝
				├	<u> </u>					<u> </u>

SQ1079, Motorola

STATES I	501		BOLA	PAGE.	(ot 4)			Heen	Heap	Accept Reject
Parameter	Pluence	Operating	Point	else	Hean	Has.	Min.	1 45 E	1 490	Criter
		BIASTIBEAD.	BIAS: MEN		1					
A ('her)	SINE	No. 3 Col. Yes O			A.CASHS	20130	A0037	4053	0.002	
71046.1	EMIKI	YA.O	1 4 4 5 1	113	0.00948					
	1-75-	100	 		1	, man	1		1	
A(thee)	SMDF	 	WE'THE TO SH	mg 12	0.00767	AAN-3	0.0022	2014	0.0193	
	JXIDIS	 	- 11.63 P	12	0.00947	100169	V-0023	0.04.7	0.0203	Γ
	15/0	 	 		1		1	1	1	_
A(thre)	5×100		Mr.AN:Ir-Si	n=8 10	0.00793	100180	15.00	10175	44222	
-rioser	1×10/3	 	121-121-12	1,2	0.0027	VV138	0.003	0.003	0.018/	
	1-10-				1	1				
refer (v)	0		To Month Too	12	0.149	0.170	0.127		1	
	SHOR			12	0.152	0.4.7	0./3/	0.177	10.18	
-1-	LEIO13			13	0.153	0.171	0./33	0.178	0.190	
		1			1					
VC=(SED(V)	0		Tc -500-1: To-5	12	0.431	10.443	0.382			
	2×1012			12	A432	0.44	0.397	0.43	0.479	
	14,013		1	12	0.435	0.44	0.405	10.463	0.477	I
	1		 							
Mostser)(v)	0		Tc 400-8:Ta-10	A 12	0.672	0.680	0.664			
	24 VIS		7	12	0.668	0.674	0.40	0.677	0.682	
	1:1013		1	12	0.14.2	0.677	0.650	0.683	0.681	
	1		1							
Ver (Sertly			To SOOM F. Too	0.0 12	0.746	0.756	0.734			
المستحد	5×0°			12			1.7.32		0.757	
	1×10'3	1	ा उ	12			0.797			

DEVICE T	m: Sak	STOROM PIC	LA	PAGE	2054					3
Parameter	e/cm2	Operating		Sample	Mean	Max.	Ma.	Hean 126	Hean +30	Accept Reject Crites
SELECTION	\$ rneppe			, <u>,,,,,,,</u>	10000	-	11781		1	
		BIAS: IRRAD	ALAS: MEAS.	 	10	7.8	4.8		1	1
yeb (ve)	-0.,	We 30V; VE O	W.B. JOY	12	6.42		50	8.10	0.22	+
	ZXIOIS	VB-0			4.35		4.8		125	
<u> </u>	1110,3	 		12_	6.58	11.5	4.X	10.2	1/22	┼
				├──				 -	 	┼
		<u> </u>					ļ	<u> </u>	├ ──	+
						``	L		↓	╀
					<u> </u>	L				_
									I	
		 			1					
		 		 						$\overline{}$
				 	 		 		 	1-
	<u>-</u>		ļ —————	┼──					┼─~	+
				├	ļ		├		 	+
	L								-	╄
		L	L	<u> </u>			L			
					L	L	l	<u></u>	L	
					I					<u> </u>
		1							T	1
		 		 		 	1		T	\top
		 	 	+	 					_
	ļ	 	<u> </u>	 	 		 		 	+
	ļ	 	 		 	 	 		+	+
				↓	!	├		├──	+	+
					<u> </u>			├ ─		┽
				1	1	1	l	1	1	1

SS3137, Motorola

DEVICE T	Pluence	0perating	Point	Sample	Mean	Max.	Hio.	Heen 426	Hean +36	Accept Reject Criter
		BIASTIARAD.	BIAS: MERS							
(Inee)		Y-50Y:	Merix Teron	6	00097	0.0020	0.0005	0.00.28	0.0037	
		B.E.GND				0.0035				
	1×10/3			و	0.00088	ဝကမ	0.0000	0.0019	0.0034	
A(Infe)	2.580'2		Yes . IV:	6	0.0001	0.0008	70,001	0.0018	0.0021	
	51/02		Te . 50mA	6	0.0002	വക്കാ	70.0000	0.0004	<u>aa</u> 033	
<u> </u>	1×10'3			و	0.0012	0.0022	-0.0002	0.0029	0.0037	
			<u> </u>							
										L
					L					
			<u> </u>		Ļ			ļ		
			<u> </u>					L		L
									L	
			<u> </u>					Ļ	L	
							<u> </u>			L
					<u> </u>					
					<u> </u>	L				L
					<u> </u>	<u> </u>		ļ		
	L		I		L					L

B. JFETs2N2608, Circuit Technology

Perameter		Operating	RCUT TECHA.	Sample	Mega	Hex.	Hin.	Heen 426	Heen +3C	Accept Reject Criteri
	€/cm²	BIAS: IRRAD.	BIAS: MERS.							
GES (NA)	-5×1012	Y65 : WY:	Y65: 4/ Yor O	7	0.09	0.098	0.084	0.101	0-107	
		YLE 5Y		8#	الله	0.26	0.084	0.232	لياندن	<u> </u>
	1x:33			7	0.101	0.122	_ വരു	0,435	اكلام	
<u> </u>				χ∗	O-401	2.5	0.089	<i></i>	<i>∂.</i> 95	
(110, 01	5×10 ¹³		VG::/WY: YDS:5V	7:	0.0649	0.069	0.058	0.0726	0.0244	
					0.104		0.058			
	11/1/3			7	0.159	0.17	0.14	0.18	0.19	
				8*	0.539	3.2	0.14	2.69	3.76	<u> </u>
(ua) 2a'	5×10 ¹²		YGS:O:I:LA	8	53.6	58	50	59.6	63.5	
	1×1.2,3		1' '	x	53	58	-/9	59.⊋	62.4	
										\vdash
					 - 	 				
							 			
			ļ		<u> </u>	ļ	 		ļ	

2N2608, Siliconix

DEVICE TY	PE: JNJ	608 SIL	CONIX	PAGE	Icf I					3
Parameter	Fluence	Operating		Sumple	Mean	Max.	H£a.	Mean +20	Hean +3C	Accept Reject Criters
			BIAS . MEAS.							
Ioss (n4)	5×10 12		V65 - 4V. V05 - 0V		777	/8	73	O3R	./67	
		Vas - 5V								
	1 = 10'8			_6_	- /.57		-3.8	1.4	3.83	
In(off)	5 = 10 '4		Vas = OV, I = JuA	6	.52	.85		. 916	1.11	
	1 > 10 '3		+	_6_	1.45	3.4	0.4	3.83	5.02	
(NO) <i>ea</i>	5 = 10 'A		V65 . 13V, Vas . 5V	6	1.580	2.000	1,400	3,100	3.350	
	1 = 10'3		*	6	1,300	1,600	200	1.870	2.100	
										_
										
A45.										

2N3066, Siliconix

DEVICE TO	m: JN3	1066 54	<i>ICCN</i> IX		PAGE	lof I					3
Parameter	Livence	Operating			Sampio etpo	Hegn	Haz.	Min.	Hean 120	Heen +3G	Accept Reject Criteri
		BIAS: IRAAD.	BIAS!	GERS.							
GSS (A)	.5×10 ¹²	Vas - 784: Yas - 0			9	00005	0.04	0.0089	0.0523	0.0673	
1	1XIQ3				9	0.119	0.14	0.0035	0.38	0.51	
									tac	±3@	
1 VP (mV)	5×1012		VGS =10Y	In the	9	-/./	-0.7	- 20	-01	0.3	
				7-					-21	-026	
	IXICI3				9	-1.7	-0.9	-5.0	1.0	24	
		J		,					-4.5	-5.9	
			Г								
								I			
								Ι			
				_				T			
				-		<u> </u>	T	T			
							1				
		<u> </u>									
							T	$\overline{}$			
							 				
					-			$\overline{}$			
		t —		_	-	1		 			

2N3331, Siliconix

	30.3	-25- 20.2 -16.8	-7.6			0120	Point	Operating	Eluence	Perameter
	-30-3		-26				BIAS! MEAS.	BIASTIRAAD.	enna	
_	30.3	-16.8		12	1.2	9	VDS: 75V	VGS=KY:	5xi0P	AVP (mv)
_							In loud	V03= -/5V	*	
	- 29 /	امىصد	-125	18	1.1	9			LXICIS	
		-/8.3								
\vdash	+30	+2-								
	5.59	2.8	-6.5	0.49	.2.86	8	VAS 10:		ZxIQI	IGS (nA)
	10.6	52	-15.5	0.49	-426	9*	VG5+15V			
	362	205	-3.66	0.23	-1.09	8			LKIOIS	
┼—	484	269	-5.8	0.73	-1.61	9#				<u> </u>
一	24/3	1.91	0.205	1.9	0.861	9	V03=75V:		5×10 ¹³	Ins(oss)
\sqsubset	7.//	5.34	0.22	6.1	1.78	9	VG5. +/5V		TXIC13	(va)
 	2,35	8.3	5.6	8.5	6.37	9	Y0915V:		5×10 ¹²	Toss (m/i)
	2.30	8.3	5.6	8.5		9	VGS: O	-	Ixid3	
上										
								S INCLUDED) OUTLIE	
╀	-					<u> </u>				
┼							<u> </u>			
	9.36	8.3	5.6	8.5	6.37	_	Y0915V;	23 IMOLUDED	IXIG3	Toss (mil

2N3382, Siliconix

Paramatur	Planers	Operation :		Sample sine	Masa	Max.	Nia.	Heen 42G	Hean +3.0	Accept Reject Criter
		Bues: IRRED.	Bigs ! Meas.		-	-	- ALM	740	73.5	1000
Coloff)(nil			V65.74: Y033V	6	αm	0.3	0.028	0.8/5	047	
	14143			6		0.25		0.851		
R (on)(C)	2210,3		Ves vo:To victor	(0	146	.231	84	252	304	_
Ţ	EKUIXI			6	148	233	84	ઝડર	304	
e (my)	SXIDIO		Vos-3V-To-lua	10	70.5	3.0	-3.0	4.5	2.0	
	<u> </u>		' '					3.5	-8.0	
	TXIQ13			6	-/2.0	79	-156	142.2	220.1	
<u> </u>			Ł					-166.7	244.1	

2N3686, Solitron

DEVICE T	78: JAJ 3	686 30	JIRON	<u> </u>	عوداد	٤١					<u> </u>
Patameter	Fluence	Operating 1	Point		Sample eice	Hean	Max.	Min.	Heen -20	Hean +367	Accept Reject Criter
	e/cm2	BIAS: IRRAD.	Biasi	MEDE.			 -				
m (Amhos)	SNOIS	Mose IN France			3	1060	1110	980	921	852	
	(VIOIS				.3	10/00		990	9.30	864	_
									†.2 r	+.30	Γ
OCOFF YOR	5xid/2		YAS FOY Y	6:76V	3	0.06	0.142	0.020			
	17/0/3				_3	0.502		0.7		متتع	
large Vourse	s Sxid2		102 -10V	Tom	3	243	230	200	2.44	254	
(nV)	/X/c/3		F= 30		_3_	2.20	2.30		2.40		
	rad(si)								,		
GLPA)	A35K		Y02-10Y		_5_	30	38	24	42.2	48.4	
	3/3K		Ing-2	OO.A	.5	24.2	ಎ೪	ai	32.1	36.1	
	GOEK				5	22.2	26	20	22.2	29.7	
	ISK				.5	50	65	45	66.9	75.3	
PZ										-	

2N3824, Circuit Technology

Parameter	Pluence	RD4 C.T		Page Sample sise	Heen	How.	Ma	Heen 120	Hean +3G	Accept Beject Criter
	C/Cm ²	BIAS: IRRAD.	Bias: Mess.							
Less (nA)	2x10,5	VGE-LON: YAS O	Vas = 127 Yos. O	x	0.223	0.56	0./2	0.506	0.648	
J.	IXIO13			<u>8</u>	0.941	1.32	409	/.83	ಎಎ೩	
LD COFF (RA	5×1012	- 	Vc= 22V: VAS= 5V	x	0.179	0.56	0.08	0.473	0.65	
	I A 10/3			8_	0.61	0.23	0.36	1.01	122	
(O)(uo)ea	5×M2	 	V65:0:Tn=/4A	X	16.9	18	160	18.2	18.8	
4	1 XIO13	I	/	8	Kolo	12	16	12.7	18.2	
					 		-			
			·				 	├		
								 		
										
							 -	 		
								 		
-		 						 		

2N4093, Siliconix

DEVICE TO	M8: 2V14	093 544	CONNY DOG	E 10f						3
Parameter	Fluence	Operatio	-	Sample	Hean	Max.	Mio.	Heen +2 <i>G</i>	Hean +3.6	Accept Reject Criteri
	e/cm2	BIAS: IRRAD.	BIAS! MERS.							
D (CFF)	5×1012	VOS:5V:	Von SV:	6	متصدما	0.1800	0.0200	0.2140	0.2620	
(nA)		In 100ml		6	0.4630	0.8500	0.0500	1.2000	1.5600	ļ
(m) ed	Sxis ¹²		Yes : OV:	10	42.1	62.74	28.18	68.3	81.9	
(\mathcal{O})	1×10/3		In . 100ma	6	42.2	62.95	28.26	68.3	क्राप	
	Dose ma(su)		- 		 					
(AQ) PEO		VG2 - 20V	Vas : TOOV	5	1650		1280			
	20.5K	VO- cak	VOS. OX	5	2600	3600	2130	3780	4360	<u> </u>
	91.3K			5	11800	24000	4900	26400	33700	
	122.5K			5	103000	24000	ممنوشا	269,000	351.000	1
*	185K		-	5	1000,000	218000	182,000	2490,000	3,200,00	
5										
		<u> </u>								
										-
		 		 	 	 	 	 		
				 	 	 	 			

2N4391, Siliconix

Parameter	1	Operating	VIX PAGE	Sample	Hean	Hex.	Min.	Haan 12G	Hean +3.0	Accept Enject Griteri
		BIAS: IRRAD.	BIAS! MENS.							
La(aeeYnA)		VOS: 20V	Y05-20Y	5	4.38	5.2	1.5	7.48	9.33	
1	TXIOI3	VGS - 15V	Y65 - 15V '	5	18.0	24.3	8.9	29.6	.35.5	
Yosawyoy	5×102	- -	In: IOHA	5	0.184	0.21	0.16	0.225	A 244	
- L	Tx10,3		7	-5	V185				0.24	
(O)(O)	7×10/3	 -	 	5	18.6	21	16	225	24.4	
	IxIO'3		1	5	18.2		16	22	24	
****								130	t 30	
$\Delta \Lambda b (\omega \Lambda)$	22/0/3		Y05 - 20V;	_5_	11.4	29	2.0	32.1	42.5	
	- 42		In= /OjuA					- 9.3	-/9.7	
	1×1013			_5_	9.6	12	3.0	20.6	26.2	
	<u> </u>		 +					-1.4	- 2.0	
4:			 -					1.25	+ 3 a	
C132(0E)			Vosio	_5_	2.65	2.71	256	2.28	2.84	
+_	IXIO13	¥	VGS · ISY	5_	2.74	2.92	-2.63	3.0	3.13	
icss (nA)	(iz) bor	· · · · · · · · · · · · · · · · · · ·								
SPEEARD.	GOK_	Y65- 20Y	VGS. WOY	.3	0.34	0.36	0.33	0.325	0.392	
MECRIFARA		102:0	VAS: 0	a	0.805	0.89	0.22	4.05	1.17	
SCREENEL	725k	l		3	0.73	0.82	0.67	0.889	0.968	
ARCOUNT				2	1.21	7.30	1.10	1.52	1.68	
SCREENED	91.3K			_3_	1.25	1.36	1.16	1.45	1.55	
W. CREEKA		i	1 1	J	2.15	2.30	2.0	2.57	2.79	

123.5K	Operating		Sample sise	Hean	Max.	Hin.	Heen +2G	Hean +3C	Accept Reject Criteri
md(s)	BIAS: IRRAD.	BIAS! MERS.				-			-
123.5K	K65 - 201;	Kes: 201	3	2.32	260	.7.20	2.20	2.99	
1	Vos-OV	YAS QV	2	4.25	4.50	400	4.9	5.31	
182K			_					7.25	ļ
			2	10.9	1/15	10,0	/2.7	136	├
			<u> </u>						
									
									
									ļ
	129/5K		YOS-ON YAS-OV	YOS-ON YAS-QV 2	185K Vas-ov 2 425	185K 108-0V 185 0V 2 425 450	185K 105-0V 105-0V 2 4.35 4.50 4.00	185K 108-0V 185 OV 2 4.25 4.50 4.00 4.96	185K VAS OV 2 425 450 400 49 5:31

2N4392, Siliconix

Persuater	Flueise	Operating	Point	Sample sise	Heen	Har.	Hin.	Nean 126	Heen +3C	Accept Be jest Criter
	md (Si)	BIAS: IBRAD.	BIAS! MEAS.							
[GSS(nA)	GOK	Van Fally Van OV	You - 201 You ou	5	0.801	1.5	0.185	1.64	205	
	23.5K			_5_	1.5	232	105	248	292	ļ
	91.3K			_5	245	4.5	1.2	4.94	6.22	
	1225K			_5_	60.09	/3.8	2.25	15.1	19.7	
	e/cm2									
	2×1015	VD3 .54; VB3 . 101	V62-154, Y05-5Y	6	7.64	285	0.068	29.3	40.1	
	rca (Si)									
	185k	Voscovillos-ON	Kas = 201 : Yas = 0.4	_5	20,2	60.0	5.5	65.3	82.2	
	e/cm2									
-₩	IXIOI3	YOS-504, YES-204	V65: 15Y; Y05:5Y	<u>le</u>	58.1	248	4.3	249	345	<u> </u>
Dalan	7×1015		Ypa: ~5 V ;	la	36.7	50	30	5.3	61.2	
(2)	1×/0,3		402-04: IP- Just		.38,3	40	30	18	67.1	
<u>> </u>		······································								
										
							L			

2N4393, Siliconix

Parameter	1	Operating	Point P	Sample else	Hean	Max.	Mio.	Mean +26	Hean +3C	Accept Reject Criter
	e/cm2	BIAS: IRRAD.	BIAS! MERS.							
In (ner)(nA)	SXIOIZ	VAS - 20 V .	Y02-204	6	233	2.86	1.7	3.25	3.71	
<u>.</u>	1x1Cl3	Yas. 184	YGS-75Y	6	10.9	13.0	7.7	14.9	16.9	
Toos (mA)	5xiO ¹³		V08 - 20V	6	14.8	21	8	24.0	29	
	IXIO13		Y65 . O	6	14.8	21	8	24.2	29	
								\$25	± 3a-	
<u> 110 (mY)</u>	2xiQ3	<u> </u>	Yosa JOY:	<u>_</u>	-1.6	_هـا	-10_	Cont	10.5	
			IN- OUA		<u> </u>	<u> </u>		-9.8	-/3.9	
	/XIOI3			6	-1.6	_عـا	-/0	6.4	10.5	
	 		 	<u> </u>	 			-9.8	-/.3.9	<u> </u>
os (ou) in	2×10/3		Yes: O	6	5.7	2.40	4.2	8.0	9.2	
	- 4		IP . /OOHA					3.4	2.2	
	IXIO13			6	5.6	25	4.7	2.8	8.2	
<u>-</u>			1					3.4	21	<u> </u>
		L						+ 30-	130	
(UKAO)	ZXIOG	LL	VGS. O	6	56.8	76	47	79.8	9/.3	
	IXIO13		In- 100MA	6	55.R	25.4	460	28.9	90.4	
	md(Si)									
085 (PA)	(AOK	Yas - 201:	VGR . DOY	_5_		6900		2960	9530	
	22.5K	Vasio '	Vos. OV	5_		5250				
	9/.3X		<u> </u>	_5		22300				
	133.2K	 	ļļ	5_		132000				
·	185 K		l J.	5	698000	980000	340000	1190000	1490.000	

2N4416, Siliconix

Parameter	PR: OA) A	Operation	Point	Sample else	Meso	Hase.	Hio.	Heen 26	Hean 3G	Accept Reject Criteri
	erm2	BIAS: IRRAD.	BIAS! MESS.							
2m(umbos)	5×/012	Vrs -10V:	YOR OY	la	3540	3747	3000	3060	RRIO	
	INOIS	VES-OV	In. 25mA	<u>lo</u>	3360	3767	2000	1900	ماهد.	
								+30-	+30	
Cres COES	ZxiQs		Voseti Kareny	_6_	344	368	3.35	_امك.3.	3.20	
	LXIOIS		E. WHA		3.83	2.84	3.14	5.83	6.83	
								-24	-30-	
Cras CpE	5 NOI2		Marchikar 5V		704	1.073	0.995	0.984	0.955	
	LXID'3		f . I CD Ha	la	_ماصد	1084	LOU	101	0.978	
	Dess									
	rad (Gi)		<u> </u>							
Ices(pA	JO-SK	V05 = 10 V :	YOS - 10N1	3	101	120	51	158	186	
	31.3K	Amc.S. eat	Ina - a.smA	5	144	184	32	250	308	
	62.5K		•	4	295	400	67	560	696	
	196k			5_	983	/380	သာသ	1930	240	
			!							
Σ										
			<u> </u>							
					L					
							L			

2N4856, Siliconix

	VICE T	Flue	1100		Operating	•	Point		Hean	Hax.	Mio.	Peso 42 <i>6</i>	Hean +3C	Accept Reject Criter
			eknt	BIAS:	IARAD.	P. 45	MERS							
655	(NA)	60K		¥5.	J0X	ن د د کلا	20Y:	201	0.401	0.816	0.141	0.681	1480	
				JOB :		VOS.	<u> </u>	2214	0.478	2.206	0.141	1.07	1.36	
\Box		79.5K				للسل		5	0.906	0.980	1.860	0.995	<i>L</i> .239	
		913K	Ĺˈ			.1		5	0.627	0.760	0.405	0.968	4.459	
		1335K						5	2.450	2620	2.330	2.672	2282	
		185K						5	10.60	14.70	8.20	15.62	18.13	
										Ĺ				<u> </u>
کما	OFF)		20	103	<u></u>	هنحطا	Y 65 17	4	4.35	10	2.0	11.89		
رک	180			Yes:	· 17Y		<u> </u>	<u>5*</u>	10548	50_	2.2	55229	223,95	
			17103				L	4	43.83	138.0	11.1	169.11	232.2	
			*			L.,		5*_	42546	1950.0	11.1	2/33.5	22827	
										<u> </u>			L	L
						<u> </u>				L				 _
										<u> </u>				
				<u> </u>										
			ļ			 			-	 	ļ			
			ļ	Ļ					 	 		<u> </u>		
		Щ.	<u> </u>						 			<u> </u>	ļ	
			<u> </u>			——			ļ	 -	ļ	ļ		
			 			┼			ļ					
			 			+				<u> </u>				
	تبعة	LLE	R //	1CCL	DEA	4				 _	ļ		<u> </u>	

2N4856, Texas Instruments

Perameter	Plyance	Operation		Sample size	Hean	Nax.	Min.	Mean/	/Hesel/	Accept Reject Criter
	ek m2	BIAS: IRRAD.	BIAS! MERS.							
OS (OFF)	2012 <u>-</u>	Y03-04-160-3	ON YOR IN YOUR	N 5	-22.3	2.0	-560	65.1	م بع ا	L
(DB)	1×1013			15	-135	-41	-240	284	359	ļ
Tess (nA)	5×1012		Yes - 304:105	0 6	8.95	11.5	5.5	13.6	16.0	
1	1×10/3			6	55.3	22.0	34.0	82.6	10-1	
				+	┼	 	 		- E	-
				 	 	_		 		
			_ 		 -		 			
				+	 	 			-	- -
						ļ				
		ļ		+	 -	ļ	ļ			<u> </u>
			- 	+ —	 	 			 	
				┿	 	 	ļ			
		<u> </u>		+	 -	 -				

2N4858, Texas Instruments

Parameter	Luence	Operating	Polat	Sample eise	Nego	Hez.	Hin.	Hean +26	Hean +3C	Accept Be ject Criter
	e/cm2	BIAS: IBRAD.	BIAS! MERS.							
GLOURES	_5×1012	YDG.O. VGG67	Vas:0. Vas: 67	V 5	0.325	0.67	0.042	0.84	1.09	
_1	1×1013			5	1.78	41	0.22	4.91	647	
NOSE)(DA)	5×1012		V05-124: V65: 17	v 5	0.348	0.54	CUB	0.221	0.917	
J	1×1013			5	1.34	2.35				
D(OFF)(1 A)	ว์สเก ล		Vos. 127: Vos. 1	N 5	0./19/	0.195	0.011	0.249	0.325	┝─
<u></u>	IziO ¹³			5			0.085		209	
DS(JAN)	2×10,3		Kar0: In:0.3m	15	421	48.1	35.97	51.60	564	\vdash
	1x10,3		,	5	42.3		35.8		.52.3	
				 -		 				-
				1						
				 						┝┷
				-	 		<u> </u>			_
_				-						
-				+	 					┝

2N5196, Siliconix

Paran		A			Operating 1			Sample sise	Hean	Max.	Mio.	Heen +2.0	Heen +3G	Accept Reject Criteri
		TOOS		BIAS:	BRAD.	BIAS!	nens.					<u> </u>		
659	(DH)	MOK		Yea I	אריבים אריבים	Vas-10	K. You CY	/25	0.01251	العدعم	മക്കാ	ರಿಲ್ವಾಸ್ಕ	০৩২৭২	O.L.
		7, 1						148"	0.0316	1.583	פססיס	205	<u> </u>	
		72N						/0_	മക്ഷദ	0.083	0.043			
. 1		9138						10	0.0725	0.118	0.055			L
		1225K						10	0.110	0 183	20مم	0.197	ं उसा	
		18514						10	0.392	0.530	0.142	0.619	ويندع	
			SUM ²	Ves ·	מיבפלינים	Vers 10V	:Vns: 10	ΙΩ	0.138	0.170	202	0.193	0.335	
			JNG3				1.	10	0.553		0.18	441	1. 29	
			1004											
		_	Drug ²		,	165-0Y	YOU . DOY	(0	1.910	2.5	1.1	3.0	3.5	
Daa	(CA)		IN/CE		 	193-111	100	6	1.94	2.5	1.1	2.95	3.45	
			12/635							-4				
	· •		5×03		 -		1	60	1.95	2.5		2.99	3.51	
D36.	لمت			\vdash				6	1,90	2.5	<u> </u>	2.910	3.18	!
		_	TXIQ		 		-		1/10/	4		\$ 20c	2.35	
095.	_				+		 		1.01	1.033	-,, 5	1.04	1,00	
	حكمم		2210				 		1.67	11933		0.929	0.763	
	 		₩		 		 	-	1.01	1 001	0.980		1.12	-
	├		ixid3		+		 -	6	1.01	ייי איי	ULIGO	0.237		
	<u> </u>	 					·			 		- 2	- 30	
_				—-	+	 	T		242	10.42.1	-/ 32	-1.48	-1.75	 - -
ber	(A)	-	250			101-50A	براتضي			.0.189				
	<u></u>	<u> </u>	12104		<u></u>		ــــــــــــــــــــــــــــــــــــــ	6	1-0.44	1-0-17X	<i>-1.2</i> 29	1,-72	-443	† —

Parameter		0perating 1		Sample size	Hean	Haz.	Mio.	N 40	Hean -30	Accept Reject Criteri
		BIAS: IRRAD.	BIAS! MERS.							
690 (Y)		V08-104: V66-10	Von=101/In:300	6	-0.944	-0.483	-1,299	-/.4/8	-1.25	
	1212/3			6_	-0.944	-0.484	-/.227	-/.48	-1.25	
- Vone	5×10/2			/0-	0.001	0,0045	70,00%	-00043	0.0067	
(۸)	1 × 1013			6_	0.0016	0.0078	-0.009	-0.0067	PO10.07	<u> </u>
gm,	2403			6	0.0051	0.0054	0.0048	0 0047	0.0045	
	IXIO13			6	0.0000	O'002H	O.COONE	0.0017	0.0045	
8 m2	Sxida			10	0.0051	0.0054	Ω.ΩΩ*B	0.0047	0.0016	
	1×1013			6	0,0051	0.0053	00048	ഹന്ദ	00042	_
0m /	- 13		 	6	005	101	0.9892		±3 a	-
8m.\8m2	2×10/2			 6	10.445	1.01	1	0.978	0. 70	
	I×IO13			6	0.992	الدا	0.980	TO2	103	
			¥						0.263	-
· · · · · · ·	5×1012		VD3-157-IN-904	12	18.3	26.0	120	2/2	3(2.1	
(DY)	7×10/3		WC 300Hz	la	240			الابناق	33.0	
				 		├	 			
	⊢ —			+	+	-	 			

2N5520, Siliconix

Parameter	Pluence	Operati	ng Point		Seeple eige	Hesa	Hage.	Hia.	Hean 120	Hean +3.0	Accept Beject Criter
	SV-WS	BIAS: IRABD.	Bias	: Mens							
300	DXO _{IS}	Vna =5V:	10:3	To -360.0	12	4.75	40		647		
bases (V)		The 25048	5.3	00 Hz	12	5.69	6.8	360	2.24	8.77	
				•					-26-	-34	
m, up Im	SNOW		Mos .	Niv-Jev	12	623	700	60	385	- ನನ್ನ	
(Ecotomy)	IXIO13			/	13	688	240	640	618	583	-
62 (V)	51100	 			6	1,49	2,23	0.759	0.4.23	-0.11	
-	I KIOIS			\top	لم	1.49		0.758			
1692 (V)	-5xiOG		+	+	6	1.49	കാദ	0.756	0.433	-QUIL	
I	1×1013		\neg		la	1,49	223	0.255	0.40	-0.12	
			\neg						\$2cc	£.3c	
ba (m)	2×10;5		Vos	· 5¥:	6	0.983	3.8	-1.1_	4.79	6.69	
T I				*OY					27.82	-4.73	
	/×/O'3				6	0.20	2.9	-28	6.02	R.A	
									-4.62	-2.09	
									*2=	+300	<u> </u>
(Am) sea	SHOIS.				12	2.39	3.70	1.10	4.16	304	<u> </u>
·	1×1013			1	12	2.39	3.25	110	4.17	306	├
			1								<u>L</u>

Parsanter		SOO SILIC				Sample	Hean	Hax-	Min.	Hean +2G	Hean +3C	Accept Reject Criteri
		BIAST IRRAD		Bies:	MERS.							
ces (nA)		165. 104:10		Ves-inti	VO-COV	10	0.065	മ മാള	0.053	נכאות	0.0908	
	225 K					10		0.138				
	91.3K					10	Out	0.195	مهدي	סובים	0.235	
	199.5K					_10_	0.274	0.330	0.204	0.320	0.418	
	€\Cm²											
	54012	التعلق الاكت معلا	W	ba:5%I	~. XV.n	12	O-331	1.28	00055	112	1.64	
	md (Si)		,		7							
	185K	Year DI Your	Y	VG5: 10V	V05-0V	10	0.691	0.940	0.505	0.987	7740	
\Box	e/cm2											
—	18/0/3	Mary Tais		Vos. 5V.	Tr-25a.A	13	600	50	0.0139	36060	51.9	
			7		- 7							
									<u>!</u>			
										L		
												L
										L		L
									L			
												L
		i										
												L
												L
								Γ.				L _

2N5556, Motorola

Parameter	Pluence	Operating	Point	Sample size	Nego	Hen.	Min.	Hean -20	Hean -3C	Accept Reject
	€ Km2	BIAS: IBRAD.	PLAS: MENS.							<u> </u>
dw(mwood)	5×1012	Y09-94:	VDS -9X	6	1910	וווג	1744	1570	HIO	<u> </u>
	12/013	IN-O.5mA	In . O. 513A	6	1920	בבוב	17110	1590	1430	
								+25	+30	<u> </u>
Das (m)	54/012		VP2-94:	40	1.69	2.34	0.75	3.13	3.84	
<u> </u>	14/013		V65 - 04	لم	1.68	2.31	0.75	3.11	3.83	
	100 (2º)	<u> </u>								<u> </u>
<u>cas (nA)</u>	GOK_	Year Tisk	V65 - 15Y	20	0.0202	مويده	-0.010	0.18%	0.239	
		YDS = CV	VO-24V	960	4.09	8654	-0.010	30.7	43.9	
	22.5K			4	0.196	0.378	0.150	0.31	0.34	
	91.3K			4	0.312	0.420	0.188	0.549	0.668	
	1225K	I.		4	0.588	0.950	0.280	1.150	1.440	
	300 to 900	Von 94: In OSal	Accorative seas	و	0.0000	o.ua	0.03	0	0.142	
	rad(Si)									
	185K	10: eat. 151. ina: 01	Kas: MY Yas:OV	4	1.320	ふろっ	C.480	2.920	3.270	
<u> </u>	NUBER	Mos - 91 In - 25ml	Vos-91-Tr-OOm	6	0.5	<u>ئ</u>	0.11	202	2.85	
)SE	54/012		Mo AN: In a Sm A	و	34.3	36.0	320	37.6	39.0	
OLTRICE (MI	14/013		. IOHZ	lo	39. 3	460	34.0	48.7	53.4	
066	5×Q12		America Clifford	٥	24.2	27.0	19.0	30.4	43.5	
MALE (m)	ניסונו		10045	6	200	32.0	11.0	34.9	39.0	
	<u> </u>									$ldsymbol{oxed}$
bac	1×1012		Non-94. In-05-0	_le	10.1	120	8.0	13.1	14.60	
OCTRGE (IN V	1×1013	1 1	IKHZ	6	11.2	12.0	9.0	13.8	15.2	1

2N5906, Siliconix

Pazamptez	Eluence	Operating	Polat	Sample oire	Hean	Hex.	Bla.	Hean +20	Heen +3G	Accept Reject Criter
	e _{icm2}	BIAS: IRRAD.	BIAS! MERS.							
GS (NH)	SHO2	Mas=KY. In . 50ma	Nos-esyl:To:50mA			0.032				
-	1×10/3	<u> </u>		15	0.00.92	0.105	0.043	D-134	العنده	
(1).20	5×1012		Yos: LOVIO: 50.A	11	1.18	2.011	0.573	a2.35	2.34	
	1110'3			1	1/18	2014	0.573	2.35	2.94	
FS/umba	-5×1013	 	YOS ISV. To: 504A	<u> </u>	liio	125	108.25	12/0	/.3/_	
	IXIO	ų.	/	11	115	125	105.13		131	
										
		<u> </u>			 					
										├
		· 				<u> </u>				-
		 	 	\vdash	 	 				
				 	-	ļ				-
				⊢—	┼──			——	—	├

VCR3P, Siliconix

Parameter .	Rivence	l	pereting 1			Saapto etmo	Hegn	Hex.	Hia.	/Mass/ 14:5/	145°/	Accep- Rejec Crite
	e/cm2	BIAS:	RAD.	Bies:	MEAS.							
(Am) a	2x10 ₁₃	402 J. V	65.457	VOS = 0.1	1. Jes:0	<u>(a</u>	-/.OX	-088	-7.30	1.48	1:69	
*	TXIQ ₁₃	┡╼╾┥		 	<u> </u>	_(0	-7.09	-0.90	-/.33	1.49	1.69_	_
(Hm)	5×IO ²			Vos-co.IV	YesyeV	4	-0.668	-0.54	-0.83	0.90%	403	
<u></u>	11103					6		-033				Ш
6 (mA)	5xiO ¹²			Vos.a.N.	Ves - 3V	6	-0.37/	-0.13	-0.41	0.453	0.545	
	Tx143				.	Lo	27.2%					
(Am)	5×M2			Vos="0/)		60	1.05	1,25	0.85	1.46	1.67	
	121013					4	1.06	0.8%	1.3	1.48	1.69	
(MA)	2×103			Vos. OJY:	Y 5.15V	6	0.645	0.790	0.530	0.869	0.981	
*	1.103					6_	0.652					
(mA)	2×1012			Vas. O.N.	Ka:34	6	200	0.400	0.028	0.441	4538	
-k	1×10/3				1	6	0.247	0.40	0.10	0.441	0.538	

C. INTEGRATED CIRCUITS

AD550, Analog Devices

The data presented are device linearity deltas; i.e., the effects of LSB current changes are subtracted out of the data. For total error for any given bit, the ΔI_{LSB} must be multiplied by the bit weighting and added to the value shown in the data. Parameter ΔV_{BE} was not stable due to servo loop biasing and collector-base leakage current problems. Parameters ΔV_{BE} and $\Delta (1/B)$ are for the DUT reference transistor.

Parameter	Fluence	Operating E	Point	Sample sire	Hean	Max.	Hin.	Hean +20	Heen +3G	Accept Reject Criter
	e/cm²	BIAST IRRAD.	BIAS! MEAS.							
LILSA	25×1013	TREE YOUNG	Incr .0.135mA	5	-0.146	70.11	-0.21	70.06.78	-0.0087	
(MA)		Emitea Rese 15V						-2.2013		
	5× 1013	YT: 5V ALL CHAREAS	V+ - 5V	5	-0.274	-0.18	-0.42	-A.A858	0.0038	
		Sweenes in MIT					L	V-1235		
	/×1013	APA OFF DUTPUT LIKE		5	-0.456	-022	-0.57	-0-3138	-00313	Ļ
		to CND				ļ <u></u>	 	-0.1893	-0.830R	<u> </u>
ΔI _{AIT} 3	25×1012			~	-0.012	0.04	-0./3	0.1276	A 1974	-
(AA)_	-a. F.U				15/11/51	0.03		-01516		_
	SxIOI2			5	0.012	0.05	-0.03	0.0234		
	1				<u> </u>	0.03		20484		
	171013			~	0.030	0.08		0.11		
							U.V.	-0.05		
. = .	2 2 2 2				<u> </u>				- 0.0.0.0	<u> </u>
AIBITA (MA)	22403	┝╼╌┼╌╌╾		5	-0.050	0.09	-0.33	0.3795		
<u> (^^_)</u>		 			4 000	-		70.379%		
i	2×00	 - 		_5_	-0.030	0.07	-0.17	0.1774		
	1×10'3	 		~	50 0.141	2 23	 	20:3124		
	1.10.	 			0.044	$\mu \omega s$	1 v.n	D. 1808		
	 		<u> </u>	<u> </u>		 	 	U. IKOK	O.aPDie	_
									$\overline{}$	

Pazameter	Eluence	Gperating	Point	Sample size	Nean	Hax.	_Nio.	Heen +20	Keen +\CT	Accept Reject Criter
	c/cm2		BIAS! MERS.				<u> </u>	-24	- 12	-
A I Aut.		INE YOUS MA		-5	-0.012	+0.20	-0.17	0.2922		
(MA)			Emissen Box 6 - 15V					6216.07		
	5×1012	Y*5Y: AL CLUMBER	V+ - 5V	5	20.082	10.15		0.3078		
		SWEETER IN DITTAGE						27.4718	D.61007	
	14,013	DEF GRENE HOLL		5_	-0.419	-0.03	-4.32	0.5372	1.0118	
		GND.						-1.3612	7.8358	
					<u> </u>					
21 to to th	2.5400			_5	7.803 a	2.8	0.70	J.9994	3.8975	
								C.5930		
-	Sylola			_5	2.4433	6.406	مدم	2.1444		
					!			-21.258		L
	الجاصاع)			_5	2.973	45.906		50.0.7		
- + - 		<u> </u>						-अम्म	-45/48	
A Yes	2.5202			- 5	+0.53	+ 2.01	-1:12	3,23	4.58	_,
(WV)	*									
	5>104			5	+0.56	-205	-1.16	3.06	4.31	
								-1.94	-3.19	
	/×/d/3			5	+0,68	-1.93	-0.19	2.22	2.99	
<u> </u>		<u>.</u>						-0.8%	-/.63	
										
								-O. X/o	-/.63	

erameter		Operating		Sample size	Hear	Hax.	Hio.	Neen +20	Heen +3G	Accept Reject Criter
	er ws	BIASTIBRAD.	Bigs: Mens							
(/B)	2.5×10 ²	TREE . O.DS MA	Ir. E. O. A.SmB	_5_	6.21	2.79	3.40	9.83	11.64	
(203)		EMITTER RES. @ 15Y	ETUTER RESOLET	V				J.53	0.78	
	571012	Y"SY AL CURRENT	V* *5V	5	م.ور	12.2	5.60	/5.33	12.98	
		SHUTEMEN AND DATE	<u> </u>	L	<u> </u>		L	4.68	2.02	<u> </u>
		AME OFF : ANTHON		5_	15.5	18.6	2.05	23.48	26.87	L
		La GND				<u> </u>		7.93	4.13	<u> </u>
					l	<u>i</u>				L
					I					
										
				1	T					
				1						
				†						
				1		 				
				1	1					
				†		T	 			
				 						
				1		1	-			
				+	 	 				
			·	 	 -	 	 			
				+	 	 	 	<u> </u>		_
				 	 			 		

DAC-01, Precision Monolithics

Passaneter	fluence	Operating	Point		Sample 4130	Hean	Hes.	Ma.	Heen +20	Hean +3G	Accept Reject Criteri
1	Ekm2	BIAS: IRRAD.	Bias:	MERS.					-36	-30-	
Supprise Zen	ייסער	Y==15Y	61,42	13.64	3	-0045	20033	0.0224	700-100	20021	
Chie Oesset	_		ـ هـ	بب					720379	-0.10h	
(A) (A)	1XIO12				_3	0.0983	<u> </u>	2010	0.04/2	70.0179	
			ļ			<u> </u>		<u> </u>	70-/52		
	A.5×10°				_3_	TOUS.	20.202	70.194D	0.0595	0146	
						ļ			_0.38∕°		
	5×1012				_6_	0.02(2)	0.1302	70.2940			
									-0.322		
	1 ×1013				_3_	0.0545	0.1945	CITO.	0.365	0.531	
			ļi				<u> </u>		-0.26	0.416	
Δ			├ ──			}		ļ			
geores year	520"		41.42	<u> 13,14</u>	_3_	00603	00228	00518			
SCHALL DEPART			10	00		<u> </u>			00390		
حبنا	1×10/2		 		_3_	0.0452	OTO	3010 1			
									70.00Ms	_	
	2540'2				_3		D1319	00011	וצפיט		
	-		 						20405		
	5×012		 		La_	0.049	0.2703	0.1376			
	100 - 40		 	<u> </u>	-		1		70-268		
	12/013		 		_3	a.4292	0.1147	DD38.			
		*			 -			├──	יטאט יסי	-0.409	

Parameter	Pluence	Operating	Potat	Sample size	Kean	Max.	Mio.	Hean +20	Hean +3G	Accept Reject Criteri
۵.	e/cm2	BIAS: IRRAD.	BIAS MEAS.					-26-	- 30-	
Em Scare	5×10"	Y = \$ 15 Y	41.12.13.14	3_	23.0282	-00625	20893	-0.0548	00459	
bunKE (VES)			0000		L			-0.1	-0.111	ļ
(A) (A)	1.×/012			_3	$\omega_{\mu\nu}$	70.087	01365	70.0689	70.04R	
									0.123	<u> </u>
	2.5×104			_3	20135	-0.05L	.O.3133			
					ļ	L	L		70.322	
	251015			6_	0.0883	00766	10:3III6	0.304	0.35	ļ
		ļ	 		ļ	ļ		-0.38		 _
	/×/0'3			3_	20-110-4	0.313	.0.646.	0.683		i
			<u> </u>	L	ļ	Ļ	L	-1.01	-143	ļ
Δ				ļ	ļ	L	<u> </u>			
Scare	5×10"		41,62,63,64	3_	0.0249	0.0679				
priver (yes					ļ			0.0924		
(A) (A)	1 10/2			3_	0.0803	ひつひな	മരാത			
					ļ	L	<u> </u>		70.0033	
 	25×1012	ļ		3_	P'0319	0.133				ļ
					 	ļ		0082		
	5=1012		l	_6_	0.0321	മഹാ	DM3			
		ļ			ļ.——				-0.438	
	14/013			_3_	5.0331	0.0888	70,2085			
	 	*	<u></u>	ļ <u> </u>			<u> </u>	~3 8	233	1

DG125, Siliconix

Perm	eter	Lineuce 6/20/5	Operating	Polat	Semple size	Hean	Max.	Nin.	Nean +2 <i>G</i>	Hozn +30	Re jec Crite
			BLAS: IRRAD.	BIAS! MEAS.							
Proper	DOW		S DY:0-DY:VEE-D								↓
	\sqcup		NC-1045 VIC 45V	L							↓_
			mulas bus-OKOST)		_6_	0.150	0.380				<u> </u>
		5 x 10 12	Mathe Arcon	VIN=4.1V	6	0.740	2_	0.290	_2	3.62	↓
	k	5,01XI	In-concept		_6_	1-06	1.70	0.70	_2	2.47	├
15(0	addi	0	102440	VS=-10V2V0=10V	6	0.158	0.260	0.090			
		5x10 ¹²		Y174-414	6	1.15	2.10	0.460	2.64	3.38	
		1XIO12			6	1.58	2.25	610	233	2.70	
In(or	(ADC	ō	1N2 Corti	10-10V: V3-10V	6	0-15	0.24	0.11			
		5x1012	1	AINSTIN	6	4.45	830	1.70	1040	1330	
		TXIOIS			6	6.53	10	4.40	1050		
To(d	OWA	0	10.6060	VO:-207:72-10A	6	0.145	0.240	0.110			┼─
		5x10 ²²		VIN=4.1V	6	4.32	830	0.84	10.50	13.70	\vdash
		LXION			6	6.05	9.80	4.20	1030	12.30	Ι
Io(cr)	roles	0	INEQUATED	O•2I:vOI=QV	6	-0.237	-0.140	-0.320			
	(00)	5x10'2		VIN= 0.5V	6	0.560		-0.070	1.42	1.84	
		TXIOI3			6	1.33	2.60	0.40	3.02		

Parameter	e/cm²	Operating	Point		Sample size	Jef 2	Nax.	Min.	Hean +20	Hean +3 C	Accept Reject Criteri
		BIAS: IRRAD.	BIASI	NEAS.		· · ·		11-21			1
in(chib(or)		2=-104: D=-104									
(DA)		VEE XIVE OF THE									
	0	In the MacCrick		15.0	6	-0.222	-0-120	-0.280			- -
	5x10 ¹²	Invitory - 4x (cm)	VINEO.	V	6	0.657	1.30	-0.040	1.63	2.12	
	LXIOS	(aa) veel			6	1.33	250	0.50	2.87	3.64	
(D-(MC)20)	0	IN-Ox(M)	V 02 - 10 V	· Porton	6	18.9	21.1	125			
	5x10'2		YIN=O.		6	23	32	15.3	383	459	
	111013		I		6	3)6	5552	104.6	737	917	
(inden)	0	10254/00	Vo: 10v	Am-z-P	6	18.8	20.5	167			
	5x1012		VIN-C	51/	6	334	585	52	7.25	996	i
	IXIO ²				6	463	658.9	286.8	767	918	
(chan) an	٥	IND-Corld	ND=10v	nr:el	6	6.12	6.30	5,90			
	5 XIC12		VIN-O.	5V	6	7.23	7.70	5	7.78	8.05	<u> </u>
	1 X 1013				6	7.25	8.70	7	9.42	10.30	
ins (mirls)	0	1112-411(00)	10=10A=	ZrmA	6	6.35	7.10	5.80			
	5x1012		VM-0.5		6	8.93	1140	6.70	12.60	14.50	
	TXW.s	1	1		6	8.72	10.90	5.20	12.70	14.70	

DG129, Siliconix

Parameter	Fluence		ting I	// X		Sample stre	Hean	Hax.	Hio.	hteen/	Hean +b07	Accept Reject Crites
	e/cm2	BIAST IRRA	D.	BIAS!	WERS.							
		D-S-KW: VA	ε ΔV:									_
		MC IDY YEE	· 18V		i							
(An) (An)	55013	INITO	Y	V5-10Y, V6	<u> 70Y</u>		-105	-0.68	-/.5	1.66	1.97	
-	/×/013				·/).8V	ــــــــــــــــــــــــــــــــــــــ	-23-25	-1.6	-3.4	3.16	3.40	
s (off)6A	50K red	/AL=+	₩			95	02201	0.71	0	0.8172	1.1165	
-	5×10 12					_:2	-/25	-/5	-23	<i>aa 1</i> 5	24.46	
	1×1013					10_	-53.1	-44	- 20	68.69	76.49	\vdash
NofE)(nA)	2×100	IN:	v	Vo. 5.14: 1	5 - 10V:		-101	-0.61	-45	168	2.01	
	TXIO13				.08V	Щ.	-2.22	-1.6	3.0	3./6	5.63.	⊢
(ast)(nA)	MO K red	/N:	+41/			160	0854	1.5	0.48	1.82	231	
	SXID!2					10	-12.5	-14	- 25	22.17	31.01	
	11/0/3			<u> </u>		10	-58.3	-47	-74	80.83 me.au	9209	├-
shult Infou	5×012	/AU:	οv	V0 - V2	- "ION	1	1.484	0.20		0,23	0.855	
(nA)	1×1013	-			·251		0.754	1.1_	0.57	4/5	4.3-/	⊢
don de Indon	5×10'2	IN:	4 1			10	0.76	2.50		2.03	244	
(nA)	121013	1				10	1.32	5.00	0.60	3.99	5.23	

Parameter	Tluence	Operating	OA/IX PA	Sample eize	Hean	Hex.	Mig.	Heen 420	Hean +3C	Accept Reject Griteri
	e/cm2	BIAS: IRRAD.	BIAS: MEAS.							<u> </u>
		D-SONY: VA: OV.								├ ──
		VOC DY YEE = -18								
ns (on)	SXID D	IN-CY	VA-KOVIS-KONA	_11	2741			33.49	36.53	
(2)	1×10/3		VIN. 3.5Y	_11_	22.19	341	243	.32	34.4	├ ──
					26.0	7.41	0.00	20.2	44.2	├─
<i>ya</i> (on)		/N=+4V		1	26.3		9. 9 8			
(v)	1×10/3			-11-	26.0	.30.3	9.98	.32.8	43.7	├─
					_					
					_					
					$\overline{}$					
									 	
					<u> </u>		ļ			├
					ļ					┼
				ļ	├			 	-	+
				├──	├	 	1		 	\vdash
			 		1	 				_
	·	 		-	 	1	 			
					 	$\overline{}$	1		Ι	

DG129, Siliconix, IRAN reirradiation

DEUTCO S	m. 061	عباری 29	IRAN A	•			nce 50	kad (.)G∞	3 _TRM
Parameter	<u>Pluence</u>	Operating 1	Point	Sample	Heap	Max.	Hin.	Hean 120	Heen +3(F	to jest
- (10)	erm_	BIAS: IRRAD.	BIAS! MERS	7.2	142.0	240.0	900	219.0	257.0	23,
(oH)	*# X 10	D: 5: 10V: IN :4V VA : 0V: Voc : 12X	Vs. 10V, Va. 101	-43	142.0	270.0	70.0	217.0	227.0	
- 1042	. **	Vec. 18V	1							
_	1.2× 10'2	***************************************		23	251.0	3.30.0	175.0	344.0	290.0	\sqcup
	V									├
				ļ	L					├
	2.4 × 10"			23	5840	865.0	2901	958.0	1150.0	├
					} -					
-				1	1290.0	2.22.0		1 340 0	1070 0	_
	4 K 10			 ~- -	1240.0	2100.0	3/2.0	2370.0	20.00	
		¥	- ¥		\vdash					
				 	T					
										├ ─
3					<u> </u>		<u> </u>			
		<u> </u>					`	<u> </u>	 	
				-	┼		 			-
		 		+	 	 	 	-		1
		 	 		 	1				
		-			İ					
							l			

DG133, Siliconix

Param					3	_	Point		E KGE Sample size	Nean	Max.	Mig.	Mass +25	/keen/	Accept Reject Criter
		md(S)	erne	BIA	5: IARA	Δ.	BIAS: ME	as.							
				D•S	· ICY. VR	<u>2</u> ΔΥ_									
					78V: Vbc										
T56	E KAA		5×162		IN C		YS.10V: YA.	WY	6	0.732		-7.5	1.85	2.4/	ļ
			/NO rd					8V	6	-2.22	-0.90	-50	5.95	7.81	
Tsloff	\ <u>\</u>	SOY		\vdash	/A/=*	47			91	0.0747	0.34	-0.16	0.352	0.491	
Storp		NO K		\Box					g	0.9025	1.25	0.62	1.38	1.62	L
		A.A.	5×10 ¹²	П					6	- 2.23	- 7.0	-8.7	3.28	9.2.	
			1 1/1013	П			,		6	-26.9	-120	-30-5	35.6	334	
Tilon	400		5404	╁┼	111-0	VC	V= 10V: Vb=	101	60	-0.612	-0.23	-1.4	1.69	<i>5.22</i>	
			MG				Viai-0		6		-0.4		3.27	5.04	-
Tr/OF	-)/-4		Sud	\vdash	/N-*	/V			6	-2.22	-6,4	- R.O	8.56	9.23	
			1414						6	-26.60	-18.5		32.2	43.2	┼
Zs/Jul	-To/as	_	52/34	H	W: O	V	W.16. 101	/ :	6	0.32	0.38	0./3	0.43/	0.54	
(nf			15.36				YAL 'a		6	0.5-1	0.9	0.2	0.985	1.21	
Te du V	To land		SX10/3	╁┤	11:	1/1		<u> </u>	10	C. 153	0.52		0.520	0.627	
_(n/)		1=10'3			1		<u> </u>	6	0.883	1.2	0.24	1.23	4.4	-

DEAICS 1	m: 16	/33	Scliconia	- PA	66.20	[4				_3
Parameter		Operating	Point	Sample size	Hean	Max.	Hio.	Hean +2.0	Mean +3 CT	Reject
(55(00)	_	BIAS: IRRAD.	BLAS! MERS.	6	26.8		25.4	1 70	730	Crice
(42)		D-5 - 10V	VD=10V							
	5×102	MERO ISV: No aco	Is: 70mA	6	27. 2	28.2	26.3	28.8	295	
	1×10'8	VR = OV	VIN: 2. SV							
1	1870 -	m,=0/(04)		6	/ .7نو	29.0	23.8	3/	33	
			-							
2s(on)	0	11120000	Vn: 10V				<u> </u>			_
(A)		1601	13: 10mA	6	<i>2</i> 6.7	27.7	26			
	5×/0'2		VIN: 2.5V	6	28.3	30 6	12 =	- ·	-	
			1		8(0.3	30.3	26.5	31./	30.4	
\ <u></u>	/x/013			6	28.3	29.8	26.7	30.6	3/. 7	
						<u> </u>	47.9.7	30.9	ے ماک	
									-	
										
									- $+$	
				$\overline{}$						

DEATCE L	PE: DG1	335	ILICONIX	Page	300	1				3
Perameter	Fluence	Operating		Sample	Hean	Mex.	Min.	Heas.	Hean 130	Accep Re jec
	S/cm2	BIAS: IRRAD.	BIAS! MERS.				GAU.	MEAN	MEAN	Crite
Da(Orr)d	0	D-SPHOME-OV:	VD - + IDV-TH-OV	6	1640	2500	1110	1-20	30-	
+	1 ×/0/3	YCE . +124. VEE - 781		6	27.8	41.6	1/2			
		DI' · OVOER			- ~~	7/.6	- <i>//</i> -X_	3.37	 	
Ω Ω	0	TAIZ-THOU	VertaT:Wased	6	2680	nom	830	├	_	├
	1 x/0'3		-	6	3.22	5.30		 	- -	├
					J. 6/2/	-2.42	02.20	0.306		-
D2(0EE)1020	_0		VO-1/01:TA1-0V	6	2210	2222		 		-
	1×/0/3		1 - 12 - 12 - 13 V	6	29.7	436				
					-4- <i>1</i>	730	13.5	3,26	 	-
Delaselin's	^		VA+ *AT: 101 00	6	1420					
+	15/0/3		101 101 101 191		_	2000	- 200 -	654		
				_6	2.65	4,20	1.90	0.399		
(v) (umber	$\overline{}$		Va - 101/2011 a - /			-		MEAN	MEAN	<u> </u>
	11/013		101-101/201-01	6	1.49	1.50	1.46			
	10111			4	1,53	1.56	1.49	1.59	1.62	
(x)(mm/a)	0		1 nd 15 hd		4-					
1	1×LD13		N : NT: 10 - 01	4	1.57	1.96	1.96			
	1,111		*	-6	152	1.54	1.48	1-57	1.59	
re(mon)(v)	0									
ILAUINDL IV	1×/0'3		100 - 101 : NO1 - ON	-4-	461	1.70	154			
*	17/0			-6	1.69	1.75	1.61	1.82	1.88	
w/mw/(Y)										
ALTONOM TA	IKIQ13		No ton the sal	4	1.59	1.64	1.53			
*	IF/O'S	NO DE ENGLA		-6-	466	1.62	4.59	4.24	1.29	

DEVICE TO	18: DG 13	ر بر به م	CONIX	Pone	4054	_				3
_	Fluence	Operating		Sample	Hean	Haz.	Hia.	Hean :##	Hean	Accept Raject Criter
	e/cm2	BIAS: IRRAD.	BIRS! MERS					maw - ac	man.	
w(max)(v			NO -101: TU'- OV	6	1.96	2.14	1.78			
1	18/013	This of ofe		6	1.57	1.59	1.53_	1.51	1.48	
Vixemini	0	TAIS 4 HAY ON	NO-101: 101-14	6	202	24	1.74			
	1x10,3			4-	1.54	1.57	1.45	1.45	ــانعه/ـــ	
w(max)(V)	0		100: NO: NO! SAT	6	delala	3.04	203		†	
<u>.</u>	INIUIS		*	<u>_</u> 6	1.68	1.76	1.58	152	144	
m(wex)(A)	٥		P. OI : DIG . O		2.88	3.97	1.96		- 45	
<u>_</u>	1×1013	 		<u>_</u>	1.64	168	1.50	1.54	1.48	1
+ MEASU	SED AT	WA OF EXPE	RIMENT			1_				
			 	ļ	 	├	 			
		1	i .							
										├

DG133, Siliconix, IRAN reirradiation

	eter			perating I	Point		Sample size	Hean	Hex-	Hio.	Haan +20°	Hean +35	Accept Reject Crites
		e/cm²	BIASEL	ARAD.	Biasi	MENS.		ļ					
		.5×10'2	0:5:10	V; IN: 4V	Vs -10	<u>V ; Vo-10V</u>	12	36.4	56.0	-17.3	60.9	73.1	240
-4	<u> (A</u>			: Vcc : 12V	Vini	.8V		 					-
		- 4	Vec	(8 <i>Y</i>				2:0-				(0.0	
		1.25×10			 -			3140	410.0	115.0	207.0	901.2	
-	-	-				 							_
	-	2.0704					12	1000	020 0	146.0		. // 20 /	
_		2.39 × 10'	 	 	 	 		687.0	7.30.0	170.0	1000.0	14307	1
	-							-					
┝──	-	5x10'2			12	0.000	27500	263.0	24000	45120			
		SXIO	 	 				2040.0	ماندند	203,0	3670.0	7: 10.0	—
ا	<u> </u>			¥	 	¥	 -	 	-			 	_
}					 			 					
├			-		 				 				
 			-										
 								1					
			1										
_													
		 	 				1	1					
 		-	 					1					
													T

DG141, Siliconix

BEVICE T	PE:	364	41		المعيية	WX.		10र्ड	,			· · · · · ·	3_
Parameter	Flue	nce		perating :	Point		Sample size	Neag	Max.	Min.	Hean +2.0	Hean +3 (5	Accept Reject Criter
			5.95:1		BIAS	MERS.							
				Ye al									
				Acc . 13A					<u> </u>				
Z OF KUM	 -	5×0		7. QX	48-10A' A		<u>_</u>	2.48	3.9	1.5	4.18	200	<u> </u>
<u> </u>		1×104	+	_ -\	- VIA	-0.8V	<u> </u>	6.27	7.3	4.7	8.34	9.38	
(Ac.\(130)E ¹	50K		Ш	V:+4/V			29	0.368	0.9.0	0.135	0.821	1.0.18	
		5×103					10	517	63	40	69.2	78	
	125K						_7	2.15	3.0	0.46	3.75	4.55	
)×.0/3	-		ļ	<u> </u>	6	154	200	-46	ಎಌ೦	327	<u> </u>
ID (OFF)		5409		N=01	Yp = 101: `	V5 = 10V	6	2.43	3.9	45	4.17	5.05	
(na)	<u> </u>	الم الم		<u> </u>	Airs.	0.84	6	6.93	لفل	4.5	12.3	15.1	
ID (OFF)(NA		520 ³	+-,	AL = +4/Y			(0	42.8	51	34	5/01	62.7	
		1×,013		Ţ			(o	1011	160	190	1:1	, RG	
S(ON)+ID(ON	-	5×16 ²	+ ,	N=0Y	Yp+Ys=	YOL	6	0.295	0.37	0.20	0.43	0.485	
104)		1.103		1		*2.5Y	6	0.60	0.77	0.45	0.855	0.983	
s (cu)+To(cu)		فكامة		N • • • N			(0	0.537	0.67	0.33	0.79	0.917	
(n A)	_	و0تج ت		<u> </u>	ļ		۵	1.91	1.40	0.27	1.9	2.27	
	├	 			 				 				

		0;ng	POINE PA	Sample size	Mean	Max.	Min.	Hean +2 <i>G</i>	Hean +3C	Accept Reject Criter
	e/cm2	BIAS: IR.F. D.	BIAS! MEAS.							<u> </u>
		D-5-104: YR-JY								
		NECT BY JOS + 131							<u></u>	1
Lusica	5×1012	N-OX	NO-DY IS - DOP	6	8.25	9.4/	7.3	9.7/		<u> </u>
ردی	1×1013	 		ے ک	8.38	9/	7.3	10.1	10.9	
ps. con	5-1.312	/N=+4/V		6	2.8	8.1	7.3	8.45	8.73	
5	1.73.3			(0	2.85	8.5	7.4	8.5	8.83	
		 								
		·								
				ļ				ļ. ——	<u> </u>	├ ─-
		 			 					
		 						<u> </u>		
		1					ļ			<u> </u>
					 	 	 	 	 	├
					 		 	 	 -	
		 			t					
		<u> </u>			T					1

DG141, Siliconix, IRAN reirradiation

D	MICE I	m DGI	HI Silicoc	IRAN Re			ence 5	O kcad	(si) Cd	ю	3 IRM
		Pluence	Operation !	Potat	Sample eige	Hean	Max.	Hin.	Hean 42ď	Hean 43.0	Accept Reject Criter
		e/cm²	BIAS: IRRAD.	BIAS! MEAS.							
<u>ت</u> هـ	(4 9	-5x10'2	DISTIDY INTHY	16 : 10 V · VO : 10V		0.324	0.48	0.054	0.568	0.687	4.5 01
_(<u>مم</u> _	<u> </u>	VRIOV: Vec :124	V.n. = 0.8 V					·		
	<u> </u>		Ves: 18V						<u></u>		<u> </u>
	Ļ	1.25× 11.0				0.729	1.2	0.115	1.31	1.6	<u> </u>
	Ь—										⊢-
	┞										- -
	┞—	2.5×10"				1.52	2.5	0.215	2.72	3.35	
	Ь—	<u> </u>			<u> </u>				ļ		
	<u> </u>										
	<u> </u>	5x 10 4				3.09	5.3	0.41	5.87	<u> </u>	- -
	<u> </u>	<u></u>	k								<u> </u>
				·		<u> </u>	<u> </u>				
						<u> </u>		 			
		<u> </u>									
						 					<u> </u>
											<u> </u>
				· · · · · · · · · · · · · · · · · · ·							 -
		}									
		 									├
		<u> </u>									
		 			L	 		 			
						 					
		 -									
						<u></u>					

DG181, Intersil

いっぱん 感じられ 等くもこれ かりて 前の サイト・マグ 大人用 オイン・サビング 製 製力 しる 響力 しゅゆう たもめ かいかんさん ほんしゅう しゅうしんしんし

DEVICE T			erating	Point		Sample size	Hean	Han -	Min.	Mean +ko-l	Hean	Accept Reject Criter
	e/cm2	BIAS: IR	RAD	Busi	MERS					' '		
		SUPPORTO	٧٥٢			FALL	PHEES	LATCHE	IN OR	E POS	THAL_	
		SURVEY	V01.0	L		NY CA	& DEVI	CE LAT	CHED A	LORE.	Pesis	4
		D. Da - 30	الخما ١٥٥			** 04	LEVE	LATE	HEA IN	الم لمص	5171	4;
		4c - 154, Ve	EV'ESY_				ERS C	HTCHED	IN OF	<u> </u>	27420-1	
		Y4. 25 Y . 1	A · SAID					ļ				ļ
Sloff)	2.5×10"	مبلات إ	۸5.5٠	14-101-1	لاهت ده		20.013					-
	5×3"		<u> </u>	YEC-LOY,	YEE : JAY		20-703					
	* 1× 1/2			Y VAL	34	-4-		-0.046				
**	* 1.17.70,5		<u> </u>	ļ		4	-LISmA	-L.LmB	·1.2mA	LLJ2mA	1.32m0	-
. (OFF)	25×10"	Va	170.			6	Siko.o-	70,008	ملا.ن	0.158	0.217	
	#5×10"					6	20.0023	2023	2.034	0.034	ייסס	
	# 1×1012	<u> </u>			<u> </u>		C.C317	C-643	ےمدین	0.0621	<i>1</i> 2 <i>0749</i>	<u> </u>
	#35×10/3	 		 		6_	- JLYomH	-1 mA	-1.ImA	L/3mA	1.12ml	
DICEL,	145×#3"	Va	: 5¥	VS= 10V.)	NOV.	4	C033	20031	10.036	0.0373	C.C395	
	במיעב			VCC - IOV		1	-0.05	.0.042	-0062	0.0682	۵.0723	
1	# 1×10'3				:31		0.135	-0.11	-0.17	0.188	הובים	
9.0	12.5×1012		<u> </u>			4	-1.0mH	-1.0 A	-1.0 mA	In A	10m A	
(OFF)	2.5%/0"	Yıa	1.0			6	2020	-0.012	7.032	C 0353	04428	
	A SXIC!					6	0000					
	# IXIO12				<u> </u>	6	0.0517	0.042	0.06	00671	0.0249	<u></u>
1. 804	- 5×1012	1	l.	1	1.	6	-/mA	- /nA	-/niA	1mA	Ima	l

O

Paremeter	Fluence		perating	Point		8600 le 8000 le	Hean	Max.	Min.	Hees +2.67	Hean +30	Accept Reject Criteria
	E/cm2	BIAS:	IAS: IRRAD.		BIRS! MERS.							
		S. JOK LO JOY										
			CLO+ION									
		D. D. 30001064										
			VEE - 754									
			LOSY: VROGON									
[sloule Inlew]	258011		-	VD-19.	2.51	4	1.92	4.5	0.07	6.30	8.52	
(ng) .	DXIO				Y8.0°	4	0.513	0.7	24	0.787	0.925	
	# 1×1012					4	-0.013	0.006	-0.05	4.0382	0.0632	
AM	#25×1013		-			4	0.25	3،0	0.7	0.33	0.375	
[c(m)t[v(m)	258D"		/A1=O			60	0.0847	0.1	0.074	0.104	0.113	
	5×10"					6	L. 208	0.38	1.03	0.521	0.622	
	+1×1012					6	0.0505	30.0	£ 034	0.0854	0.03	
***	2.5×1012					-6-	0.252			മ.ദാഴ		
[40]247	a.5xio ^r	VIN:5Y		VD - 25V	:In:10mF	4	32.6	425	25.5	426	35-2	
(\mathcal{D})	5×10"			VINE	0.84	4	41	20	30.9	79.7	99	
	+ 1×10/2					4	26.9	30.9	21.8	34.4	38.2	
	14.25×1012					4_	28.7	29.9	22.7	30.7	31.6	
The CON)	2520		luzo			- 6	25	27.5	23.4	3.8	30.5	
(D) m	-3×10"	<u> </u>				6	L	24/8.2	<u>~25.3</u>		1390	
	PALON	Ц			1	6	748	248	248	248	748	
****	2.5×1012	l L	L		l.	6	22.2	33./	22.1	34.4	36.7	1

DG181, Siliconix

Parameter	Fluence	Operating Point				Sample size	Hean	Hax.	Min.	He-10	Head	Accept Reject Criter
	CKDIZ	51-52-104 10-104 D1-10-3-1000664 Ver-164, VEE - 154										
				<u> </u>								
		Y5x-1						<u> </u>				┞ -
S (OFF)	2540"	<u> Visi</u>	<u> 57 </u>	K+KX-2V	بلاتك		, מאר ע	-0.13	20.25	<i>ڪيا</i> ھي	0.305	
<u> (24) </u>	"סובב		ļ	Vec-104	iee - 204	_6_	C. 288	20.18	مادست	0.425	०.५१४	ļ
	1×10/a		<u> </u>	VW - 3		6	0.5.23	0.36	20.68	0.765	0.882	
	ವಿನಿಜರ್	+	<u>. </u>			6	-J. RE	-1.7	-5.6	5.26	_7.19	
S (OFF)	×35/2"	Vin	YO.			4	0.132	-0.09	طارن	0.201	0.235	
(AA)	52/0"					4	0.1163	_سود	ימים	2.254	0.300	ļ
	17/014			<u> </u>		4	CA13	-0.16	-C-3L	C 380	0 452	
<u>_</u>	2,5,0,3	-		ļ	<u> </u>	4	-0.54	-0.38	- 7-24	امد	1.25	
E (OFF)	42=103	VIN	YO:	Va - 104 . Ye - 104		4	-4290	-57	-/3000	16100	22:30	
(nH)	18/0/3	Д	<u> </u>	ACE: NA		4	-9270	- 1900	7/6,000	23800	3100	
S(OFF)	1.500	VIN	· •IV	Y.A 2V		4	-2840	-53	- 8000	99-10	13500	
(nA)	12/013	$oldsymbol{oldsymbol{arphi}}$				4_	-8970	-1900	-32000	22100	لات اولا	
D (CIT)	25" 10"	L VIN	·5¥	15 - 10Y	XO-10X	6	0.1.152	0.034	12.056	D 2598	2004	
(NA)	540"			Be wil	lee in	- (0	-0.09	70.07	11 21	ובנים	21.16	
	14/0/3			تحديد ا	31	6	20.00	70.17	20.27	0.298	الخندا	
	25-10-2		L	Ţ		6	2840	0.084	-1.15	1.65	20.6	

REALCH II	PE: DG1	التـــــام	LICONIX	Sec. le	2300			h1	Neen	Accept
Parameter	Plusace	Operating	Poter	SEE, LE	Hono	Nax.	Min.	Mann de de	1 i a 1a	Reject Criteri
	e Cm2		BIAS MEAS	****	CATALON	mag.	11411	- 364	3171	CYLER
	- 32111	2-2-6 10,0A							T	
		2 Dr. 3000 664			1					
		Mc By Jee 154	i							
		Y SY YR GAID								
Tolofe	25×.5"	T — T — — — — — — — — — — — — — — — — —	NP - ION - NO - ION	4	724295	OUNG	20.032	0.0355	0.0385	
(44)	5.40"		tec . DV . KE . LOV		2.0503					
1	1×/0,5		Vin '3V	4		0.065				
+	2540'3			4_		C.095				
INICEE)	4.50/23	· VINTO	YES ION VETION:	4	0 605	-0.2	1.7	במנ	3.8	
Cani	1×10'3		Vice OV ice Dry		-1.19		-3.0		4.74	
	1		VIN : DV		T-11	-			1	
li.(OFF)	15000	VIN 4/V		4	5.58	-3.5	- 9.5	11.0	13.7	
	14/513			4	29.3	_25	:38	4/.2 mgay	4/2./ menu *3er	
54. A T 4.A	75 - 24		10.16 = 75V	la	0.0237	- 0/4	- 0.01			-
Sionsbellotes (c.i.)	. <u>a. 5. 3.</u>		VIN - 0.8X		0.0338				1	
- 1951	1517.5	 	1111-0-44		0.063			0.114		
		1	<u> </u>	<u>e</u>	0.08		20.02			
	- Crack				1			V. 33al	7.37	
ic constrained	25×.5"	لا ت نمیا		4	0.0385	0.05	0.028	0.0548	C 2652	
(''	5×			4	0.0-/85				0.0210	
	1000		L -	4	Cros-	لد اتل	0.07	0.169	0.0	L
	ن ^ي ن. <u> </u>	1 - 1	<u> </u>	4_	0.548	0.67	0.44	0.722	0.392	<u> </u>

Paragi ter	Fluence	Operati	ag Point		Sample size	Noan	Hax .	Min.	Head & O	Head 45/5	Accept Reject Criteri
	e/cm2	PIAS: IARAD.	جهبد <i>ت</i> اً .	: MEAS.							
		5. 52 10K10									
		1. Nz . 3007 Lo	CA								
		to EISM. Nes : 2	Ω·								
		W	10								
nont-Inland	452012	Vm=0	No: Vs	- 75V i	4	-3220	-/3	10000	J24ba	17000	
	121013		- V.	148.00	4	-/5,700	-690	-350v	44100	58400	
أسماعتجرهما	4.5×10'2	V123 - 4	Υ .		4	5-18	• 2.1	-1700	1020	11800	
Lan	171013			—	4	2287_	6200	210	8310	11.100	
(0x (0n)	-i-5810"	VIND: 5	V VD = -!	25Y	6	24,2	26.3	21.9	٠ 2.3	28.9	
(D)	570"		Is-m	nA	6	29.9	33.4	28.5	33.2	35.6	
'	INIDIA		Year		6_	3.5	41.1	249	44	50.2	
	2.5 102	<u> </u>			6	24.2	26.L	20.2	-24.8	JR.	ļ <u>.</u>
(os (on)	2500"	Z:MIK	<u>, </u>		4	24.9	26.3	234	22.3	28.6	
(2)	5×10"			_I	4_	22.1	28.5	26.4	29	صد	
	INION				1	26.7	28.1	25.6		29.9	
	2.501013				4	26.5	₂ 28	25.9	كتلات	285	
رمعرص	4.5.02	Vini: C			4	134	14.5	12.6	15	15.8	
α	11/613	I			14	لتعال	144	12.3	15	15.9	
		Vent	W		1 4	1//3	14.8	13.2	15.2	165	
1.	2 0 40	i i.	- 1	i.	i 4/	14.1	14.6	/3.3	75.2	15.8	ł

DGM111, Siliconix

Parameter	Fluence	Operating		Sample stee	Heen	Hax.	Nia.	Heen 42 <i>6</i>	Nean +3.0°	Accept Reject Griteri
	e km²	BIRS: IRRAD.	BIAS! MEAS.							L
		5-0-104;lk:15								
		Ar-421. ACE-121								
(s (oce)	5×1012	Note 41	A-10/ 40-10M	9	438	2.0	0.9	2.19	4.51	 -
(AA)	_1×1013	├ - 	Acc 121 Acc . 121	9	2.86	4.2	<i>1.</i> R	4.65	5.54	 -
			<u> </u>							
Store		Viay-O		9	98.1	160	<u></u>	213	27.1	
(44)	121013	 	 	9	-51_	250	15	300	324	
OFF)	52100	1W=41		9	0.818	1.1	0./.	1.2	1.37	
(nHi)	INDIS			9	100	15	0.28	1.25	3.01	
In (OFF)	5×10 ¹²	VIN-O		9	946	160	12	202	255	
(nH)	ING3			9	165	295	56	331	-//.3	
D (OFF)	58104	PASSIVE	Ma-GND. Kerky	8	CQ323	7,044	0.033	00-4-3	0.0508	
(NA)	1×1012		Vo-intton 5KA	8	C.OGJR	0.085	0.04	0.0979	Olile	
	2.5×/2³		VEE: BY VEST	Я	0.121	0.181	0.05	0.236	0.279	
	2×145		YAL - LIV, YELE - OV	8	סווב ים	<i>0.3</i> .	0.099	7.331	0.4/9	
		<u> </u>								
										-
	!		<u> </u>	<u> </u>	 					

		<u> </u>				Sample Sample				Нева	Hees	icept Reject
Parameter	Pluence		ting			size	Mean	Hax.	Hia.	+25	+36	Cr: tark
		BLAS: LAGA		BIASE	YIGAS.							
		ان دین							<u> </u>			
		VEE : 15V YE			1 AV			- 220	4 4 2	2 2 2 1 2	0.0300	
I (OFF)	2×10		(')	VS GAIR;		8	0.032		_	0.03-28		
-44	1×10'2			ACC-121		8_	0.0314			VO-184		
	1.5 × 1012				±41A			0.031		0033		├─
	7.2×10/2	┝╼┋╼╾╌┤				18	ਹ-ਲਮ			0.586	ļ	\vdash
-+-	3×1012			 		18_	0.313	3		3.24	4.4	
-	1×10.3		Ь——			/0_	5.49	7.5	.3/	8.9	10.6	
(nA)	3×10"	View =	05Y			8				0.0202		
(nA)	1×10/2			<u></u>		8	ए अन्तर			معتص		
	15×1012					4	0.0005	0.004	0.003	0.0063	0.009	
	25=1012					18	0.040	0.082	4.007	0.0903	0.115	
	5×10/2	<u> </u>				18_	0.105			عاليها		L
	12/43	-	<u>. </u>	<u> </u>	<u></u>	10	0.18	031	0.013	0.345	0.427	
		S.D. DL IV.	KY									
		NEC KY, YLE	15Y									
المرساد المراسات	5×0'2	VINTE	_	Y0-45=10		9	0.269	0.10	-0.01	0.697	0.911	
(nai	171513			VCC-EN.Y		9	1.12	1.8	C-18	23	و.د	
					12V2A	q	0.43:	1.05	- 0 11	1.49	1.98	-
George Securi	7×1013	Year'	٠		 	1 7 -	0.531	3.2	20.11	3.87	4.91	

Parameter	Luence	Operating	Polat	Sample size	Noon	Hex.	Nie.	Heen 42 <i>G</i>	Hean +3G	Accept Reject Critori
	CKMZ	BIAS: IRRAD.	BLAS! MERS.							
		5:1-10 Kliv . 151							<u> </u>	
		14 154 V - 754					L			Ļ
المعتمي		YIN: 4X	MoulON: Is I ma	9	62.8	79_	58	83.2	91	L
(73)	3، د		X = PX ARE PX	<u>9</u>	70.3	-18	(el	84.4	91.4	
			Viv. 524			ļ				
DS (CN)	24 1/3	VIN.O		9_	59.7	P-4	56	65.00	2.30	
$\overline{(v)}$	1×/- 1	<u> </u>	<u> </u>	<u> </u>	64.9	48	59_	70.4	73.4	
(00)		PASSIVE	is-GNA VCC-15Y	8	95.1	100-5	90	102	105	
(2)	1×1012		No DYLLONSK CL	Я	108	124	100.5	123	141	
	3540'z		NEE : YEN JIMITASY	8	141	175	ובו	180	200	
	515'2		-	8	199	2775	1525	289	334	
(as(on)	5×1011	DIOV S'GNA: K-SV	YS GANL YOUN	8	KJ.24	9465	78.20	53.34	98.37	<u> </u>
(\mathfrak{V})		YEE BY KE BY	VIN: 0.5V	8	86.15	96.30		92.52	103.21	
	15-10'2	IN -4.14		4	109.3R	100	1005	145	137.1	
	25×1012			18	M8.08	129	84.47		185.38	
	5=10'2			18	/38/42	310	98.92	254.69		
	10/3			10	295.1	8.24.5	1020	7923		
										

Parameter			perating	Point		sample size	Nega	Hex.	Nia.	Hean +2G	Hean +3G	Accept Reject Criteri
	e Km2	BIASTI	ARAD	Busic	MERS.				l			
rz(Övi)	53.0"	D-OV.Z	CNDIF	LYS-GAD,	10. 201					111.85		-
(v)	IzIO12				<u> </u>	<u> </u>	1025.1			160.25		
	1.5×10/2		سنطعلا			4				2223		
	425×1012	├──-					26-24					
	-2×10,5	├				_/8	2544.5	35B0		654.Z		
k	1 ×/0/3					10	543.2	838	290.5	906.3	Z0828	
								}				
												
					!				L	L		i

HA2520, Harris

				لىكتىم			Sample		ELET PAC	Ţ	Hean	Neen	Accept Reject
Par	3636				Operating			Mean	Max.	Hin.	*25°	+10	Cara
						BIAS! ME			1				
appa	(my)		סכ	Ν÷	OBKLAGAID		<u></u>	0.494	0.635	0.247		1.90	├
		\vdash		45.5		 			1	-	1.207		
			-000	DICT	FELDHACH	 	<u> </u>	1.33	1.3K)	1.159	1.32	4.45	 -
		ļ			 	 			-		1.37	0:11	├ ──
		50x			 		- 6	1:2/8/5	1.6068	0.832		2011	
		-			 				 		0-600	4.33	 -
		-	250		 -			1.82	2.23%	1644		5.24	ļ
			-4-			<u> </u>			 		1.90	1.20	
-			5×10 ²			ļ	<u> </u>	1,68	2.98	-0.63	حلايق	1.72	 -
			<u> </u>						<u> </u>		7. 198	-1.44	<u> </u>
		<i>1</i> 251	\vdash		└ ──		<u> </u>	1.889	3.902	-/.9/_	6.100	8:00	
		-							<u> </u>		24342	-4438	
		150K					3	1.42	1.651	0.693	2.109	2.550	<u> </u>
		-								<u> </u>	0.185	20-20	<u> </u>
		—	/2/2 ^{/3}				8	1.3	3.48	-1.229	9/5	6.11	
			-					<u> </u>	L		-1.33	3.55	
Yos.	(my)		240	15 - 1	5Y	SUD COURT	r 3	0872	1.118	0.672	1.32	15	
									<u> </u>	<u></u>	0.423	1.198	L
			INION		<u></u>		3	169	d.259	L385	2.68	3/8	
							i				0.622	0.19%	
[25×4				.3	299	3.766	2.49	4.35	5.13	
			1								1.63	C.72'1	
			בייביים				.3	3.99	4.799	3.65	4.68	5.00	
_	,			١.,	<u>:</u>		1				. 93	2.95	

Parameter	Plac	000		Operating	Point	_	Sample size	Hean	Hax.	Mia.	Hean HLG	11000 +3C	Accept Reject Criteri
	1005	etcni	BIAS:	JARAD.	BIAS	. Mers.					- 24	-3-	
المحامدا		5-10	INT : IC	MK LAGIN			ره	4.33	3.63	در. د	الدع	8.65	<u> </u>
	\Box		72 - *J	5Y							-3.54	3.98	L
		أمعكال	DK2	FLLLAGE	L		6	1.55	5.45	-6.90	ua	15.8	L
l		_								<u></u>	-8.1	-/29	L
	SOK.				<u> </u>		Co	-8.54	5.83	•गाना	12.75	23.40	
	4									<u> </u>	-22.83	-40.48	L
		22-10					6	448	263	-6.23	/3.2	19.0	
		_									-10.8	-10.8	
		2002					/4	-3.87	2012	32.27	248	39./	<u> </u>
											5.83.5	-46.9	
	مكت	•					9	-/283	-1.95	-22.53	2.963	8.36	
											-2842	-36.00	
	KOK						.3	-264	219	-10.12	10.57	17.17	
	1										·A.85	-22.46	
		12/013					8	- 11.8	50.19	-49.28	50.0	80.9	
											- 23.2	105.0	
Mar (DA)	L	'دينک	Ys . 1	ΔY	500.0	OUTPUT	97	-318	0.3	-9.16	203	124	
				L	1	COHO					C/1.6	-/R. R	
		שמעו					3	-355	-0.57	7.76	3.94	269	
											-11.0	-1.8	
		232.01					3	-6.08	-3	-11.2	2.8	7.25	
											-15.0	-19.4	
		22/0				<u> </u>	3	- 9.84	-3.25	-17.93	5.00	125	
🗓	· '		Ι.	J.		1. 1					-24.7	نه ڼه .	[

DEALCR A	rre:	HA ~2	530	HANR	٠	Pase :	-£4						
Parameter	ľ			perating !			Sample	Nean	Hax.	Nio.	Hean +2:0	Heen +30°	Accept Reject Criteria
	_		BIAS:		Biasi	Meas.	- 	-			- 20-	- 30	
ATALAN				OK to GIN			6	96.5	D4.95	57.8	108.0	114.0	
			41.14								35 J	79.3	
				Fus. and			(0	222.0	231.6	മാവട	343	JE W	
		J									၁၀၁	192	
	SOK.						la	205.3	Bleele	83.0	363.3	442.4	
	1										47.2	-31.9	<u> </u>
		25.2					6	.359	385.5	53a.7	403	425	L
	<u> </u>	4						<u> </u>			315	293	<u> </u>
		K _{P/O} L					14	322	5847	141.8	205	820	
							<u> </u>		L		32.9	-4730	
	L)Sk	Ľ					6	3-18-0	446.3	265.5	495.8	203.0	
	<u> </u>							<u> </u>			<i>2</i> 200.3	1205	
	150K						3_	223.6	3385	خ.مالا	435.8	541.9	
	1	<u> </u>						<u> </u>	<u> </u>		11.4	- 94.8	<u> </u>
	<u> </u>	1=1013					8	382	التعتكف	1860.1	229	54.2	
7		<u> </u>						<u> </u>			34.9	-/37	<u> </u>
متوزمه	<u> </u>	550	V9 - 1	54	20025	TISTU	_3	///3	116.4	82.4		159	
		 - -		i		CAD		<u> </u>	ļ		(ote.7	483	<u> </u>
		تكريعا					3_	190	223	155.6	267	304	
	<u> </u>	┸┸			L		<u> </u>	L	<u> </u>		/25	89.3	
	<u> </u>	تعجنم			└ ──┼		_3	396	450.10	3228		204	
	Ь—	┷							!		Scal	198	
		تبينا		 			<u> </u>	613	<u> 16802</u>	مدصح	793	883	├
<u> </u>	<u> </u>			<u> </u>	L		L	<u></u>	<u> </u>		433	343	Ļ

Parameter	Flues	ece .	0	perating i	Point		Sample size	Hean	Nax.	Min.	Naan -20	Mean -3G	Accept Reject Criteri
	radis	eknt	BIAS: II	RAD.	BIAS	MEAS.							
Suew Plotte					Shout	2.5%	- 3	/0S.	135	100	27.5	45	
. e (Alba						gune has	.3	102	1.75	wc.	225	_کسے	
1976		5,143					3_	/39	167	125	5c_	66	
FALL (Ypz	•	i iO					3	139	نعنا	125	20	66	ļ
YENLONGO	1.50K		11/2 - 10/7	Kłocud	لده (م	ا لموما	اه	78.85	81.06	77. lala	76.38	75.14	
(dR)		540	VE !!	V2			. 3	75.33	28.41	73./6	69.85	67.10	
	Tr.Si	L		ELDSACE	L	L	(a	24.73	760.65	73.24	21.84		<u> </u>
	<u> </u>	l∗id³		<u> </u>	 	<u>k</u>	3	FAULE	74.90	EBULE			
	<u> </u>	u			1.500	ALORD	_2_	72.24	72.23	71.84			
OPENLOOP	50K				₀2mA	LOAD	6_	5.16	-3-3	:23	- 7.9	- 9.2	
SAN IDE	1	שאכ					3	-2.87	-6.6	202	-105	-11.8	
	125K					Li	6	- 2.9	-8,0	-105	-10.9	-//.8	
	·	1x4Q ₂				<u> </u>	_3	FAILED	-10.10	FAILED	Am chald	44 7 4 4 17	<u> </u>
	<u> </u>										MISSEL		
HASE SHIFT			Va = 1/	<u> </u>			_5_	₹2.26°	-260	-30°	3.62		ļ
	↓	হনত্ত					5	-28°	-07.60	-3.0°	3./20	ە?∕كەت	<u> </u>
	 	ızd					_5_	-2.83	-776.	-3.0°	3./8°	3.36	
	-												

HA2600, Harris

Parameter	Fluence	Operating	Point	Sample size	Hean	Max.	Hio.	Heen +RG	Hean +3G	Accept Reject Critor
	e km²	BLASTIBRAD.	BIAS! MEAS.					-20	- 35-	
Wos Cont	الم ^ر د.×55س	INT WORKE GAID		4	0.0125	0.02	0.01	0.0375	0.0305	
		N2 · */5Y						0 0075	C.CO.3	
	50 A Add	IOKE FREDERICK		6	0.1583	0.3290	0.028	0.3-184	0.4435	
								-0031R	0.1207	
	2542/2			4	0.045	0.06	الحصو	0.065	ಎಂಎ	
								രകാട	0.015	
	5×,5/2			16	0.030	0.302	1.403	0.741	443	
								70.505	-1.19	
	A25K rod			9	C=58	2.073	0.4.6	2.1467	u.9 g u	
								1,,,307		
	1×1013			7.5	0.672	3.433	-0.155	2.78	3.84	
<u> </u>				<u> </u>				7.44	<i>ಎ.49</i>	
Ics(na)	1.252.012			4	0.838	.3	-/,3	5.41	2. 7	
								-3.74	-6.02	
	5CK rad			9	7.98	14.44	0.02	18.223	24.34	
								-2.943	-8.434	
	25×102			4	0.87	3.38	-1.34	5.97	8.51	
				L				-4.23	-6.77	
	54/1.12			15	-5.80	ລລ.ວສ	-37.505	27./	43.6	
								·38.8	-55.3	
	~25K red			9	4.217	35.92	-2233	-/1.857	60.677	
		k						-33.43	-52.243	

Parameter	Pluence	Ора	rating	Point		Sample size	Hean	Max.	Nia.	Hean +2 <i>G</i>	Head +3G	Accept Reject Griter
	E/Cin2	BIAS: IN	AAD.	BIAS:	MERS.					-30-	1 20	
Marcoll.	/×10/3	WE : COXE	GAD			15	0.681	16.92	-31.264	466	62_	
		VE: 154, 100	QPECOB.	CA						-40-2	-60.6	
				<u></u>						120	+30	<u> </u>
Marga I	14521012			L		4_	0.633	1.21	0.28	1.46	1.85	
	50 Krad			<u> </u>		6	6.548	20.055	3.525	10.937	13.210	
	2.52/312					4	0.875	1.62	يوشرو	203	عارند	
	5-32					/5	5.83	62.35	-0.80	32.5	53	
	125 Kmd					9	8.759	32.24	/.88	42.58	Chals.	
	12/0/3					<u> </u>	0.5	48.78	C.3371	20.3	55.1	L
		'								-2-	- 3	
A RETE	5×1012	CHECKED	ELINED	SYLVEN	T:2:5°b	3_	6.8	7	(a. 7	6.45	6.28	
Award) Hode	1×10'3	IN YEAR COR	3392	مسيريم	ic sopie	- 2	5.8	6.3	53	4.39	3.68	
RATE!	5=1012					3_	7.9	8.3	2.2	7.21	6.86	
Yunes) Fore	1 * 10,13				<i>.</i>	2	2	7.7	6.3		403	
Pinloceton	50K rad	N2 = 100K 6	مهم	- 2mA	4060	(0	1045	119.4	100.8	89.85	82.54	-
(dp)	35004	V* + 15V:	CK-SZ			3	101.13		994		96.03	
		FACO BAC				.3	100.2	1016			95.29	
	ME Krod					(0	103.6		98.34	86.17	28.65	
	1×1513					3	98.6	992		25.2		

DEVICE T	188: HA	2600 H	AARIS		PAG	<u>6 304</u>	23			
Parameter		Operating	-, -	Sample size	Nesa	Max.	Win.	Maan -20	Hean	Accept Reject Criteri
	C/Cm2	BIAS: IRRAD.	BIAS! ME	١٢.		1				
Denlos	SAKIMA	IN2 - MOKEN	A AMAJA	40 /0	-4.48	- 4.2	-6.6	-25	-26	
AM (AR)	25×100	YE : TKY, NKO		.3				-2.1	-2.6	1
		FEEDMACK	h	.3		-1.2		=.3.6	-4.4	
	125Kmd			6*	0015	7	1 300	1		
						 	 		i	
					 	 -	 	 	t	i
						 				
			 		 			 		 -
			 		 	 	 	 	 -	
		# FAH ED	ļ		 	 -	 	 	 	ļ
		<u> </u>	ļ		 		 -	ļ		
						 	 		 	
			ļ		}	ļ	ļ	ļ		!
					<u> </u>			<u> </u>		<u> </u>
						L		<u> </u>	L	ļ
					L	<u> </u>	<u> </u>			
					L	<u></u>	<u>L</u>	L		<u> </u>
										1
					1			1		
							1		 	
				- 	 	 	 	 		
					 		 		 	

HA2620, Harris

DEVICE TO	Pluence	Operating		Sample size	Hean	Hax.	Hin.	Hean +2 <i>G</i>	Hean +36	Accept Reject Criter
	ekm2	BIAS: IRRAD.	BIAS! MERS.					35	- 35	
Mos(my)		INT HOOK to GAR		6	.0598	C.117	0.03	0.1292	0.1639	
		V* . */5Y			1			-0.0095	-0.044	
	5 7/0/2	IOK O FEED AACH		6	7/83	0.043	-3.656	0.82	2.15	
								-4.48	·5.8ı	
	ISOKINA			10	0.073	1.867	-1.760	1.810	2.674	
								- 1.664	-2533	
	120013			6	-1.69	0.019	-3,498	0.83	209	
								-4.21	-5.47	
										
(المن جحدًا	50 K rod		L	6	-1.0788	2.25	-6.68	5.483		L
				<u> </u>				- 2.841	CEEN	
	5×4 2			5_	-5.43	0.82	-9.60	وعا	11.5	
'			<u> </u>			ļ		-11.7	-16.3	
	5×1012		 	6 *	27.1	124.63	-9.62	127	344	
			 	ļ	L			-//8	-190	
	150 Kmd	 	<u> </u>	10_	10.222	-0.000	-27.1	8.119	12.29	
		 						:28:36	.3273	
	ליסואן.	ļ	L	6	-2.84	0.78	7.3.12	8.0	134	Ļ
		*OUTHER INCH	LOCA CHAY HAY	E AGE	CAUSE	o Ax		-/3.2	-19.1	
		 -	MERONREMENT			ļ	 	*2a-	+3 0	ļ
Ja (nA)	SOKMA		ļ	6			044		7.7722	
	5×1012	<u> </u>	ļ	-6-	120 L	28.2			82.9	<u> </u>
	150 K vd	 	L	10	4167	5.94	-0.24	. 2848 ما	2004	
.	1×1015		l	6	26.2	58.1	3.41	63.6	82.4	L

Parameter	Eluence	Operating 1	Point	Sample size	Hean	Max.	Hto.	Maan 26	Hean 30°	Accept Reject Criteri
	e/cm2	BIASTIARAD.	BIAS! MERS.							I
MEN PRIE	25×1012	V2 . ± 10V	Nº MAP WOLETA	9	26.5	296	22.2	22.3	20.2	
SE (VLOSE	SXIOIS		OUTPUT SAMES SV	9	26.1	78.6	213	215	19,2	
	1×10/3			9	-25.2	27.6	20.10	21.1	18.8	
SIEL RATE	25402			9	-25.4	-21.9	-226	-28.6	-30,2	
FALL (Vinsec)	Z XIC, J			9	-25.2	-21.2	-26.7	-28.6	-30.2	
	1xIQ3			9	-246	-/9.9	-34.3	-28.6	-30.6	
DENTOPEA	2.5xpQ	SUPPLY VOLTAGE	Ruse	.3_	104.9	שניו	23.4	849	24.9%	
<u>(ae)</u>	₹×iO ₁₃	±/5Y	-	.3⊭_						<u> </u>
Jerntooble	25×d2		2mALONO	(o*						
OPENLOOP	25-100		R4.00	3	-6.23	-1.0	-15.8	-,226	-30.6	
con (ab)	ZXIQO			3*						
	2.5×10 [©]	1	2mAL0A0	6=						
ese Some	∂2×10¦3	Y± - ± 10Y	Vt·†D1	3	757	8023	6832	625.5	552.4	
Васоплити	ZXID19		OUT. VOLTAGE SAME		707		655	5450	1639	
(KH2)	INO13		= max = ~ €V	_3_	216_	780.1	6026	519.3	431.2	

Parameter		Opeza:ing	PAGE 3	Sample size	Hean	Hax.	Mio.	Hean -20	Mean -3G	Accept Reject Criteri
	ekm2	BIAS: IBRAD.	BIAS! MERS.							
SHALL SHAR	25×10 th	Y±=±IOY	N= + ± ION	6	22	29.3	ಎಎ	21.2		
BANDLUCKH.	SXIDE		OUT. VOLTAGE SHARE	. 6	27.5	223	/بکت	23.2		
(WHS)	IXIOIS	-	10 mV	_6	ماريكات	ລ9	21.9	20.8	_/29_	
					ļ	-				
			 							
										
			 		<u></u>					
							<u>.</u>			
										
			+			 -		-		

HA2700, Harris, Flatpack

Paramet							Sample size	Mean	Hax.	Mia.	Hean +26	Kean +3 C	Accept Reject Criteri
	\neg	e/CI	na	BIAS: LE	LRAD.	BIAS! MEAS.					~vo	3c-	
Albs (n	_	_		14:1 : 100			25	0 183	0.469	0.001	0.441	0.570	
	_	J		Vt.tK							-0.0%	0.005	
	T	1.25		DIGI F			25	0.564	1.41	0.001	1.323	1.227	
	\neg										-C.J44	-0.648	
_	_	2.5×	ديم,				43	1,673	3,84	0,001	3.753	4.79	
_	_	ا	•								-0.407	-1.45	
	_						45#	2.022	11.40	COCI	5.96	7 92	
	_										-191	-3.88.	
	_	5 4	مرع				40 \$	4.66	8.94	-0.003	9. 1/8	11.89	
	-							7.00.0			-0.165	-2.58	
	┪						45*4	5.25	45.4	-0.003			
	-						7.12		1.7.			-4.39	
	_		013		!		30	8.51	153	4.04		16 29	
	-+		<u> </u>				100	- K-11	-1-1-1		3.33		
	┪			 									
ΔΙοςί	. 41	5×	~ 11				24	-0.431	Oile	4.36	0.468	0.917	
7102 C	nen	_7×	-				~7_	V. 61	0,718	1	-/.33		
_	\neg)-25×	-0.726	0.110	-28	w.35	3.89	
-	\dashv		 -				- A-16-			 /	-3.8	-5.34	
	—i		×1013				24	-0.908	131	-4.37		2.66	1
	-	داميا	1	 			1 22	12.00	-4	7,32		- 4.47	
			 				25*	-1,23	1,31	-9,04			
-+	\dashv			 			1 82.J.V	-1,8-3	1131		-5.23		

DEVICE I	re: HH∠	200 HARR.S	LIMMECK	Sample	€ 20f4			Hean	Hean	Accept
Parameter	Fluence	Operating	Polnt	size	Mean	Mux.	Mtn.	+25	+30	Criteri
	e/cm2	BIAS: IRRAD.	BIAS! MEAS.						-30	
Mos(nA)	2,5410,5	NE EKOK to(A)		4/	-1.44	1.71	-6.00	12 ام	" <u>" " " "</u>	
		N== = 15Y		ļ				-5.06	م 84عت	
		WK12 FEELBACK		45*	-1.44	8.34	-12.24		8.44	
									اكبلاء	
	5×,312			40\$	-4,20	3.81	-9.7 9	∂.≾۱	552	
								-1071	_	
				-45*\$	-4.33	17.79	20,31		/3,84	
									8ء.نہ۔	
	/X/O13			20	-597	14.39	-/5.89	ופיסו	18.93	
		 						-22,14	-30-63	
AJR(r. A.	5×10"			24	-0.500	3016	-5.8	3.94	6.12	
			l					-1.96	-2.19	
		•		₹ 32.	O.CW	12.53	-584	القيف إ	12.21	
					L			-618		
	الماركة المار			25	-::05	1.CZ	-981		1293	 -
								-10.37		
'	2.5:1012	<u></u>		45	1.34	15.21	-6.60			 —
	+			 	L			-831	-14.03	
	2×1013			45\$	9.40	32.5~	-2.1	200	34.3	ļ
	-							-2.2	-/5.5	 -
	1×10/2			20	ಎಗ್ಡ	45	3.59		32.58	
<u>v</u>					└			-02060	-/3,97	

Parameter	PE: HAJ?		erating I				Sample	Mean	Max.	HLa.	hean -20	Hean30	Accept Reject Criteri
	e/cm2	BIAS: IP	RAD.	Bı	AS: ME	ns.							
PENLOOPGEN	SONOIS	INT = 100	KLOGND	Ave	ROCED C	VER	4_	9/0.10	107.8	83.6	70.8	57.9	ļ
(dB)	2×10/3	Y= = ±15	٧	POY	to ion s	WING	4**						
	1×1013	IOK & F	EEDBACK	Н	RLIG		4**						
PENLOOP GAIN	5×1011			H	2mA	LOAD	4	108.8	110	1023	106.5	105.4	
(dB)	מטיכנין.			П			4	99.65	101.2	784	923	96.2	
	2.5×10 ²			П			8**						L
	2×10,5						2**	**	CATAST	ROPHIC	REDUC	TION O	ε
	IXIOS						4*		८ वस्य	YOUTE	6E Su	HAIG II	4
									NEGA	TIME	PRECTI	W	
DPENLOOP GN	2.5×012				5m	ALOAD	4**						<u> </u>
(dB)	5×1012						4**						
	1×1013			J		¥	4**						
DPENLOOP(-N	1 5×10"			-10	י אַ	مما	16	109.45	115.9	103.7	103.4	100.4	
(dB)	J			+10			I/a	1086	114	1025	102.1	98.9	
	1.25×10/2			-10	N		160	1019	1079	93.6	925	87.8	
				+IC	N .		160	101.1	106	94.9	34.1	90.6	
	2.5×1012			-10	V	<u> </u>	160*	96	1001	825	88.2	84.4	
	1			+1	KC		16	923	97.6	_ജ3.ഒ		28,5	
	5×1012			-16		L	162		92.7	82.4	79.4	25_	
I	1			+10	N	<u> </u>	160	84	90	724	75.2	70,8	<u> </u>

Parameter	Fluence	Operating	Point			Sample	Hean	Hax.	Mia.	Hean	Mean —30	Accept Reject Criter
	e/cm²	BIAS: IRRAD.	_	AS! MEN								
OPENLAGE	25x/00	INT MOKE GA	_			4	-20.25	-10.4	-340	-48.7	-61.9	
HALL (dR)		AF . L. RA	_	Lo-10X -	,	4**	XX CAT	STROPHK	REDUC	TOON OF	OUTEU	Ł
		INKS FEFDRACE	1 54	INVS			YOUTAGE	SWAY	A (A) .	EGATIVE	NRECT	DN_
Open Lone	ZXIOII			2mA L	2AD	4	-908	- 7.4	-126	-13.9	-163	<u> </u>
SAIN (dB)					Ш	4	-18.18	-14.8	-23.1	-35.3	-28.7	
	SQKIQ13		L.,			8**						
					_							
OPENLOOP	5×10"		-01	amai	400	15	-5.9	-2.2	-10.3	-/in3	-/2/5	└
AIN (dB)			<u> </u>		Ц	16 #	-6.7	-2.7	-19.0	-M.5	-18,4	L_
			+10	<u>/</u>	Ш	//•	-4.93	-1.1	-21	-8,9	-10.8	<u> </u>
	192400		10	L		16_	<i>-14</i> ~3	-6.6	-34./	-27.2	-33.2	↓
		L	110	Y		_//a	-125	- 2.7	-/8.1	-18.2	-21.1	↓
	2.5×100		<i>-10</i>	V	[ot]	16*	FALED	FANED	-29.0			└ ─
			110	<u>Y</u>		_16_	-22.9	- 9.60	-26.7	-25.8	-342	┞—
	5×1013		-10	Υ		1680						├
			+10	<u>, </u>	L.,	160	ELILED	FAILED	-410			
* 4 DEVICES	FRILED	TO GREWICE'S TO	EA	GGDEN	4	EALE	<u>≠</u>	OUTU	ER_LAK	LUDED		
			1_		_					ToxT		├
SUPPLY	2.5×1012		↓			4_	83.25		66	1.33.4	158.7	-
WHENT IN			١		_	4	NY 30	162	Cala_	203.8		
	1×1013		┡-			4_	16.75	165	49	195.6	~342_	├
		Ĺ	!		_							-

HA2700, Harris, TO-99 + D1P

The second of the contract of

Param		Flues		200 HANRIS	•	Sample	Nuan	Max.	Mio.	Head +2.0	Hean +3 CT	Accept Reject Criter
		rad(S _i)	ekm	BIAS: IRRAD.	BIAS: MEAS.					- 25-	-30	
1 Vcs				INS: WOK to GNE		14	0.0916	0.708	0.05	0.181	0.226	
				V2.15V						0.0003	0.0423	
			-25-10	10 KD FLLEN	,	14	0.217	0.486	0.096		1	
[1				0.0000	-0.109	
		50K				1 (0	0.171	0.285	0.134	0.285	0.342	
						Γ				0.0572	0,00032	
			25-10			25	0.342	0.684	0.111	0.619	0.803	
										0.0354	-0.118	
						36*	0.367	0.978	0.111	0.758	0.953	
. 🗆			Ţ							0.0238	-0.219	
			5×102			260	0.78%	<i>i</i> 2.3_	0.201	1.83	2.35	
Ţ			-							-0,257	0.279	
Ī		ISOK				5	0.25	0.356	0.062	0.475	0.591	
		J,								0.017		
			ا×نطع			[/ ₂]	0,991	1.915	0.33	1,92	2.39	
			\downarrow							0.0616	-0.403	L
									L			
SOL	(nA)		5×10"			14	2 2	0.34	-0.5	0.355	0.583	
					<u> </u>		L			2559	-0.287	<u> </u>
\perp I		L	نبددا		L	14	-0.218	0.94	-1.91	1.18	1.88	<u> </u>
									L	-1.60	-2.34	ļ
I		SOK	<u> </u>		<u> </u>	6	0.08	7.32	-0.61	1.57	231	L
				l	L		<u> </u>	<u></u>		-1.01	-1,65	L

Paramet		luga		Operating		Sample size	Mean	Max.	Nia.	Nean +2 of	Hean +3CT	Accept Reject Criteri
	100	161	ernè	BIAS: IRRAD.	BIAS! MERS.					4	-3∕5	
Josep	L(A.	_	2540	INT : KOOK LO GUD		~2/4	0.363	2.04	-3.21	.97	3,09	
			-	Vt - 145V					<u> </u>	-2.5	-3. lal	
			5-00-2	IOKO FEEDBACK		26	-0.476	2.88	-400	2.86	-/53	
						<u> </u>				-3.80	-5.48	ļ
		OK.	_			5	0.332	1.4/6	-0.28	1/88		Ь—
							L	<u> </u>		-1.21	<i>-1,99</i>	
			1×10 ³			12	-0.43	4.4	-2:35	3.63		
		_	_		 -	 	 			-4.47	-6.5	
ΔΙαίτ	(A		לאס"			14	V.CoKo	0.45	-1,89	1.04		
			_		 _		<u> </u>	<u> </u>		·2-34	-3.18	
┷-			usn			14	-1.06	4.25	-4.66		6.75	ļ
			_				ļ	L	ļ	-6.07	- 8.87	<u> </u>
	—		25-15		<u> </u>	26	-2.26	8.83	- 8.85		9.5	
			_			ļ	ļ	<u> </u>		-10.9	-/50,	├ -
			2.00			25_	-4.16	5.235	-11.85	54/	9.74	├
			╙┼		 		!			-13.4	-18.1	
	-4-		\vdash			Jak	-3.44	14.69	: 4.84	8,22	14.1	
	. —			l ———	 _				 -	-15.2	-21.0	
	5	Ж.	ļ		<u> </u>	5	-3.00	-1:Col	- 4.666		0.66	 -
		_	L.,	·		 		<u> </u>	├	-5.8/		
			/×ø′			12	- 11.3	-4.73	22.04	-1.66		! —

Parameter	Fluence	Operating	Point	Sample size	Mean	Max.	Mia.	Hean -20	Hean -30	Accept Reject Crityr
		BIAS: IRRAD.	BIAS! MERS							
PENLOOP(SHE	1.2521013		R=	3	114.2	115.8	113	111.3	109.9	
(dB)	7 × 10/0			3	Пıa	115	109.8	106.6	103.9	
	T x iO ₁₃			9	1036	109.2	97.8	96.4	929	ļ <u>.</u>
PENLORE GAIN			2 mA LOA	3 4	1165	118.8	115.4	//3.3	111.7	
(dR)	1.25×10 ²			14	112.6	1144	1//	109.5	107.9	
	25×1012			4	ICRA	1022	106.6	106	104.8	
	2×1019			14	103.4	107	100.4	9296	8525	
	1×1013			6	99	101.2	942	93.7	91.1	
penlace Ga. s	25×100		4 mA LOAD	6	1080	114.8	101.8	85.5	29.3	
(dB)	5 x/00			6	105.9	1/3	99.6	93.2	87.7	
	1×103			6	10510	1/9	96.4	88.4	79.8	
DENILOPEGAN (CLP)	14013		5mAL >	6	98.8	101.4	9.3	92.4	88.3	
ACEUN LOOP	25×d2		R _m , co	13	-2.53	-48	-3.0	-3.9	-4.60	
AD) WAR				1.3	-4,23	-40	-5.2	-6.00	-6.7	
	1 × 10/3		.	3_	- 9.3	- 8.4	- <i>9.</i> 8	-10.9	-//.8	
70ben Pade	5×10"		2mA LOA		-2.0	-0.8	-4.2	-5.1	-6.7	
(AD) LAIN	1.95 -1013			4	-5.9	-4.4	-9,0	-10.1	-62.3	

Parameter	Fluence	Operating	Point	Sample size	Mean	Max.	Hin.	Hean - 26	Hean -30	Accept Reject Criteri
	e/cm2	BIAS: IRRAD.	BIAS: MENS.							
MENILOGE	SYNDE		2 mft LOAD	4	-10.1	-2.5	-13.4	-15.7	-185	<u> </u>
SAIN (dB)	2xiO ₁₉		<u> </u>	4	-15.1	-12.8	-19.6	-81.3	-24.4	L
VOBEN LOOP	25×1012		4 ma LOAD	6	-41	-2.0	-54	-7.2	-87	
SAN (CIB)	SXIOR			la	70.2	-4.60	-24	-8.8	-10.1	
	IXIO'3			6	-9.9	-8.4	-11.0	-11.8	-62.8	
								+20-	+30	
SLEW PLACE	22400		81 west: 2:52	_2_	_دا	_5_	_5_	_5_	_5_	Ĺ
CISE (VLGE	15×10'a		السلير حيواه عي مره	_2_ن	ےکا	5_	5	5	_5	Ĺ. <u></u>
	1×1013		wer Ries to tre	2	_ک_	-5	_5_	5	5	
SLEW RATE	22×10/2		Sugar	2	8.3	8.3	8.3	8.3	83	
FRU (Vhae)	5×1012			2	9.5	10	-	10.9	11.60	
	IXIOIS			Š	10	10		10	10	
		\								
			 							

ICL8007, Intersil

Parameter	Eluence	Jereting Point		Sample eige	Heen	Hex.	Min.	Hean 1267	Hega +3G	Accept Rejout Crites
	e _{/Cm²}	BIAS: IRRAD. BIAS	. Meas.					?	-30	
Vos. (my)	254012	Dowe Sugar + Sty VC		3	60	9.51	4.31	18.1	15.1	
		IAP + 4N						-0.053	-3.08	
	5×1012	OUTPUT SHORTED		3	6.84	15.3	2.53	215	28.8	
		To JN						- 7.81	-15.1	
	LXICIS			.3	143	2742	39.22	383	502	
								-96.8	-217	
	2.5×10.13	Prince Supery Ope		.3	3.46	9,5	0.22	13.9	19.2	
								-202	-423	
	2×10/2			3	0.7/8	1.22	0.432	459	2.03	
									-0.595	
	1×1013			3	1.34	2.03/0	0.813		3,23	
									-0.597	
Vosley	5xIO"	IND-COMITEN		6	A.289	0.847	-0.018	0.906	1,21	
		1000 of Bross Car	7					-0.328		
	1.25×102	Vt - *15V		(0	C340	1.03		1.11	1.38	
		JOK FEEDBACK				بمعتب		0.011		
	2.5×10/2			(0	- 4.0%	0.607	-8.67	2.22	6.12	
						10000		-109		
	SXIO'S			6	-16.38	1.04	:36.99	-		
				T	7900	****	. المستقيد	-47.9		

Parameter	Zluence	Operating 1	Point	Saupla sice	Hean	Hex.	Nia.	Hean +2G	Haan +367	Accept Reject Criters
	C/Cm2	BIAS: IRRAD.	BIAS! ILAS					.92-	- 34-	
$\Delta Tos(nA)$	5×OI	INF : IMATO GNO		6	-0.008	0.039	-0.07L	0.062	0.05	
		1000 PF PLYPISS CH		<u></u>	!		<u> </u>	:O.O83	-0.121	
	12371013	V= = ±/5Y		<u> </u>	-0000	0.038	-007	0.024	0.1/3	
	<u> </u>	IOK FEEDRACK				!	<u> </u>	-0.027	<i>-0.117</i>	
	22xiq2	 		<u></u>	0.054	ಒಳಿತ	-0.20	0.131	0.208	
		<u> </u>			<u></u>	<u> </u>		D228	-0.35	L
	2×1012			6	-0.203	-0.113	-0.225	-0.069	-0.000	
			L		<u> </u>			2.337	·0.403	
		<u> </u>					L			<u></u>
$\Delta I_{R}(nR)$	ZXIO"		CORMON MODE		2017	0.0%	-0.002	0.087	$O_{i}/23$	
	 		VOLTAGE . O					20.054	70,089	<u> </u>
	المحديد			-6-	معروم	0.036	-0.019	0.037	0.054	
			·		<u> </u>			15000	-0.048	J
	254012			6	0.033	OTO	-0.009	STED	O.Kol	<u> </u>
						Ļ		-0053		
	ZXIC13	L		6_	0110	0.148	0.059	0.465	<i>7.197</i>	<u> </u>
	<u> </u>		<u> </u>	Ļ			<u> </u>	0.035	2003م	!
		ļi					ļ			<u> </u>
<u> Alacen</u>	SZEIDIO	POLICE SUPPLY 1/19		_3	0.025	5.2	-3.15	5.8	14.7	 _
		IN+ - +4Y	YOUTRGE . O				ļ	· 9.2	-14.6	<u> </u>
	Szioia	OURPLY SWORTED	 	3	421	Z-235	عدد	6.20	2.19	
ļ		TO 1115		ļ	<u> </u>	<u> </u>	Ļ	222	_/_23_	
	IXIO13	 		3	23.2	71.6	<u>-85</u>	108	151	<u> </u>
	1 1	1 1	l Ji	l	J	ł	l .	-619	- 104	ı

Paran	ICE T	Liven			Operating		RSIL	Sample eige	30 € 4 Hean	Mez.	Nia.	Heen 42©	Hean +30	Accept Reject Criteri
		e/c	m ²	BIAS:	IRRAD.	BIAS	MERS.	<u> </u>					34	ļ
Ia	(PA)	2.5	NO12	PAWER	SUPPLY	Course	A MODE	_3	0.492	2.275	-05	_3. <i>l</i> a	543	 -
\equiv				OF	r p	VOLTA	GF = 0					- አንረራ	-4.15	<u> </u>
		.5×	0,3				L	13_	<u>10.067</u>	1.08	-0.56	1.87	28	-
\Box									<u> </u>		L	-/.85	-278	 -
		/x	<i>[[</i>]3					_3	-1.9	0.9	-5.23		8.44	
		,	,			<u></u>	<u></u>		<u> </u>			-8.79	الحارجات	—
														-
		2.5	XIC13	PureS	URANY = 2/5V	Common	Mhoe Yours	3	6.18	20.5	-1.45	30.9	-13.3	ऻ—
				/N+ = +		+ 8						-18.5		
		5×1	Ü	CATTRUT	SHOETEA			3_	_محما	45.3	6.7	عل الحما	.39_	ļ
			,	::3	/N-			1				- 246-	1.3.9.	├
\Box		12/0	2/3					_3_	21.7	64.1	-10.6	283	135-	-
\neg		,							<u> </u>	<u></u>	<u></u>	125	:.120	↓
\Box		2.5	טאני	Pow	SUPPLY			_3_	9.23	18.3	0.5		i. tuu	┞
		L	*	_OF						<u></u>	<u> </u>	.3"	122	⊢
		[/ x	1013			I		3	11.1	20.6	سين	, ₁	36.1	↓
								L				Litel	-2.25	ļ
\Box		LX	1013					3	5.7	10.05	-/.7	18.6	25	├
			1		Ţ	L	1		<u> </u>	_	L	-218	-/.3.6	↓
										<u></u>	<u> </u>		↓	—
		2.5	×10'2	POWER	Supply + to	Commo	M MODE	3	-/3.4	0.7	-41.25		58.9	
		T		141+ .			<u>ند</u> ۰ ۲۷	L				-(e). Lo	-65.7	—
		L		OUTPU	I SHORTED			L	·			L	<u> </u>	
		Γ		70		1				1				ᅩ -

Parameter	Pluence	Operating	Point	PAGE Sample size	Hava	Nes.	Hia.	Heen 120	Heen + 5	Accept he jest Griteri
	c/cm ²	BIAS: IRRAD.	BIAS! MEAS.					-24		
II (PA)	5×1012	POWER SHERY : 15	COMMON MODE	3	-4.28	15.2	-38.7	24	83.4	
		IN+ + +4Y	VOCTOGE - 84					.63.7	-53.1	
	1×1013	OUTENT SHOOTS TO		L3_	-14.1	10.3	-52.8	53.7	87.6	<u> </u>
	7	111-		J	L			-5:3	-116	<u> </u>
	خر5٠١٥٠	POWER SUPRIOFF		1.3	- 3.88	3.8	-19.1	14.4	26	
					L			-32.1	-43.8	
	511012			3	-6.1	4.94	-14.4	13.8	237	
								-26	:35.9	
	IxIQ3			13	-10.2	3.25	-224	15.5	3.	
				T				-35.9	-48.7	
				—	<u> </u>					
- M = C. M	201013	BLER SUPPLY : 1 KY	WE . + 164	13	3.22	3.6		.7 88	4.18	
mA)		1N* · +4Y		+~	1			2,66	-235	
<u> </u>	1 5 1012	ONT PUT SHOPTES		3	3.67	4.5	31	4.28	4.58	
	-3.41 <u>-</u>	TO IN		+	1		1	3.06	2.25	
	121013	10.0		1 3	3,23	3.5	28	3.99	5.37	
-+	1-1-11-	 	 +	+ '	11/2			2.412	12.1	1
_	254.02	PLACE SUPPLY CFF	 	1-3	3.43	3.60	3.2		4.06	
_	43,03	TOWN TOWN OFF	 	+				300	2.81	
_	5x.0'2	 	h	1 3	3.4	3.6	3.	3.93	11/9	1
	1-3×0-	 	 	+	1-4-7	1 2 2		ا ما ال	2.61	1
	2.5×103	 	 	1-3	3.3	3.5	3	3.83		
	- 57210-	 	——————————————————————————————————————	-	 			1272	اك ثم	

ICL3018, Intersil

The data presented are device linearity deltas; i.e., the effects of LSB current changes are subtracted out of the data. For total error for any given bit, the ΔI_{LSB} must be multiplied by the bit weighting and added to the value shown in the data. Parameter ΔV_{BE} was not stable due to servo loop biasing and collector-base leakage current problems. Parameters ΔV_{BE} and ΔA_{CB} are A_{CB} the DUT reference transistor.

Parameter	Pluence	Operating	Point	Sample size	Mean	Hax.	Mio.	Hean +26	Hean +3G	Accept Reject Criteri
	e/cm2	BIAS: IRRAD.	BIAS! MERS.					-94-	- 30	
Juso (Wil	2500	IAm. "0425 mA		14	-0.0158	+0.02	-0.09	0.0516	0.0853	
		ENTER RESC XXV						0.0833	وطلاءه	
	2×10,3	14-54 M. CURRENT	V+ +5V	14	0/633	+0.02	-1.29	0.5605	0.9224	
		SWITCHES WINT ARE	L					-0.8871		
	1/1013	OFF GRANIKO to		14	6.25		-253	-2.576	-0.4912	
		GND.						-10.91	12.999	
ATAITS	2.5×104			14	+0.0075	+0.03	-0.01	0.0383	0.0537	
(MA)	,							0.0333	O-0387	
	5×/0/9			14	0	+0.09	-0.05	0.04.88	0./032	
								0.0688		
	12/0/3			14	+ C.0423	1.15	-/./00	1.4479		
Ţ,						_		1,3513		
ATAITS	25404			14	+0.0390	+0.09	-0.01	0.125	0.1679	
(MA)								-0.0466	-11-0895	
	5×10 13			14	1.003	10.16	-0.29	0.2519	0.3687	
								-0.2153		
	1×10/3			14_	-0.4083	4.39	-4.60			
								3.4045		

Pasaceter	Zlueoce	Operating	Point	Saspte etze	Hean	Hau.	Hio.	Heen 1867	Hean 1967	Accept Boject Orites
	E/cm2	BIAS: IRRAD.	BIAS! MERS.					-90	-34-	
A TATE	2.5=104	Ter O.O.S.mA	TREE - 0.125 mA	14	+0.0908	10.26	-0.0.2	0.278	0.3705	
(AA)		SMITTER PRES TISY						2.097	P09140	
	54012	YEAR CHARGE	V**5Y	14	0.0633	+0.36	-0.46	0.490	0-2045	
		SWEMER IN DUT						70.3465	70.5799	
	/x/0/3	ARE DEE: OWNERING		14	0.4883	551	-9.50	8.097)	حموس	
		16 640						-7.1205	10.9349	
			<u> </u>							
ΔI	25,10	<u> </u>		14	+0.811	+1.70	•0.02	1.793	2.284	
								-0.171	7	
	5×10th			14	30.83	295.0	0.40	206.25	29996	
	4		i			L		144.59	233.30	
	1 1313	1		14	975.7	4605			5062-3	
								1253.0	-3115.9	
						<u> </u>		<u> </u>		
A VAC (DV)	2.5×10	*		14	-0.8309	2.30	-3.0	2.505		
		 			ļ				2.83-K	
 -	5,012	 		14	-0.97	2.2	-40			<u> </u>
		 	<u> </u>		L		<u> </u>	-5.61	- 7.93	<u> </u>
	1447'3	 	<u> </u>	17	-2.7	2.0	6.0	æ./_	_6.4 <u>8</u>	
			<u> </u>		 	L		- 7.5	-9.9	
							 -		ļ	
		 					L			

DEVICE T	Fluence	Operating			Sample size	Neso	Hax.	_Hio.	Hean +2.0	Hean +3G	Accept Reject Criters
	e/cm2	BLASTIARAD.	Busi	MERS					-94	-347-	
(1/B)		IREF. : 0. 125 mf			_/4_	5.783	11.9	0.20	14.125	18-936	
(٢٠٥٠٩)		Course Bes. 8 16 V	Enurse P	ESE XY					-2.559		
		Y'- 5Y: AL CUAPENT	Y*-5¥		_4	12.233	17.1	6.6		2-1.60	
		SWITCHES IN NOT	-					<u> </u>		4 6	
	1×103	ABE OFFICE PUTIK	-		14_	68.483	94.3	 -		110:30	
		TO GND	<u></u>			 		 	13×22	17.63	
								 			<u> </u>
						<u> </u>			ļ		<u> </u>
						 			ļ		ļ
								ļ			
											ļ
		<u> </u>				L			L		L
								L			
											<u> </u>
								<u> </u>			L
				1							
						L				L	

ICL8038, Intersil

こうちゃから 東 こうときゅう 一番ない まってい かんしゅう しゅうかん ちゅうしゅ

かいしょう しゅう とうこうかん かんしゅうかい こうしゅうしょう しゅうしゅう かいしょう しゅうじょ しゅうしゅう しゅうしゅう しゅうしゅう アンドラスト アンドラスト アンドラスト アンドラスト アンドラスト アンドラスト アンドラスト アンドラスト アンドラスト アンドラスト アンドラスト アンドラスト アンドラスト アンドラスト

Pytamater	Piuence	Operating	Potet	Sample	Hean	Mare.	ma.	Hean 48.67	Hann +3CT	Accept Reject Criteri
	e/cm2	BIAS: IRRAD.	Bus: Mens					-36	-34	
18uppy	5,8012	YIM-GAID	MKHe: 304	6	-0.05	0	-0.1	0.0585	0.843	
Conservint			VH-05	8				-0/595	0.21/3	
	1×10 ₁₉			6	00333	0_	-0.1	0.0699	0.125	
	J							-0.1346	70.1282	
A Sugary	Such	 	Vm -1.75	y (a	-0.0833	-	-0.3	0.0622	م بطعط	-
Cusported				' 	- Constant			78.2338		
CARRENTE	NAMA3		 	6	72,0348	0	0.2	0.1399		
									0.2782	
4 Seery	5200		Var. 30	1 6	0.4333	0	0.1	0.0699	0.1215	
Canonina								-0./344	-0.1813	
	MOG			6	700333	0	70.1	A 0699	0.1205	
				1				70.1366	V 1883	
A Swar	SKOG		Viet OV	10	700666		-0.1	0.0366	0.0883	
Countest in 8	1							75.4492		
	1×10/3			1/4	0.03	0	Fa.7_	0.0595		
								10.1595		
VERGORACA	58109		Yes: Od	W 6	203	-0.034	2034	-0.0229	2000	
OUT (KB2)			1 200		1-2-6-			C.0320		
1004	LXIDIS			6	70.0%	0.033	20.04	00332		
		 	 	 " -	1220	_تحديسم		0.0852		

Parameter	Fluence	Operation		TERSIA.		Sample size	Hean	Hax.	M1a.	Hean +9.65	Hean +3C	Accept Reject Criteri
	ekm2	BIAS: IRRAD.		M. Leave	SAS.					<u> </u>		L
A FREAMON	5402	VILL - GALD		OKHa: 3	VC	6	0.0036	OIII.	20.05	0-109L	0.865	
Just (Kita)				1100	1.201		<u> </u>		L	-0.Ub5	-0./7.79	
	12/013					<u></u>	20106	C-1040	-0.045	0.050	0.14.28	
			-	<u> </u>			ļ	<u> </u>	} -	20,6363	20.1842	
A FREQUENCY	54012		\perp	Vias	- 3.0v	6	8210.0	0.008	70.051	00348	0.0457	
Our (KHz)			\Box							0.0585	0.0794	
	17/OIS					la	70.024	10.004	-0.036	4100.0	0089	
	<u> </u>		4	 						-0.0526	D.0469	
A FREMEN	5×10/2		+	VW	2OV	(0	72.0206	-0.009	-0.029	-00063	A0009	
OUT (KHA)			Т							70.035	2042	
	12/0/3		T			6	72, 296	0.010	70002	0.0222	0.038/	
1			Ŧ							0.044		
A VOUT (Y)	52/0/2		1			6	0	0	0	0	0	
_	1x1d3	- 1	7	•	\Box	6	O	0	0	0	0	
			+									
			1									
			+						 		 	
			+									

LM101, National Semiconductor

Patameter	Yluen		0	pereting	Potet		Sample	Hean	Max.	Mia,	Heen +26	1600 48.0°	Accept Bajoct Cricer
	Strip.	4	Bias: L	RADIAT	(OA)						-30-	-30	
Va) ROV L						Y KIK BERGARI	6-	-0%6	EQ1.03	10643	0.105	0.387	
			OLE E	(7) 160 L	NAME !	Comp					-A 635	TARAS.	
	5×0						6	<i>3.0</i> 3	6.22	0.085	6.35	8.52	
											-231	-447	
		1.256					498#	0.397	%078	-10.38	47	241	
		<u>.</u>									-1011	-481	
	IXIO ^{I®}						9	3.75	9.28	0.348	9.25	12.7	
											22.24	-524	
							7			•		,	
Vm)ed/A	1more				VAL SU	mas.	.3	0./46	0.277	0.034	0.399	0.536	
						BEAM ON						-0.384	
	2×100					PStot/sec.	3	0.338	0.553	8406	0.817	1.06	
											-0./61	-0.405	
	5×0						3_	2.54	5.41	0.238	7.54	10.1	
											-2.48	- 4.99	
	/x/0 ³						3	5.03	9.38	238	125	16.2	
						<u></u>						-6.17	
*8 OUT		!					<u> </u>					-	
XOUT	IER9	المها	TUDED										

Parameter	Eluen	DB	Operating	Point	Sample size	Heen	Nex-	Ma.	Hean +2G	Mean +3CT	Accept Beject Criter
	eor	act.	BIAST IRRADIAT	ION					-94	- 30	
Pa) ROI A			INE: MOK LOGAL		6	0.058	4.95	-3.6	5.84	8.72	
		Н	IOK FEEDBACK						-5.22	-8.61	
	Sylde		OJAF BETWEEN 6	MACE & Comp.	G	-25.2	19.6	-/02.3	621	106.0	
			/-						-114.0	-158.0	
		135K			499	-0.633	33.84	39.23	7.09	11.0	
		Н							-8.36	-/22	
	/x/D ⁰				6	-222	74.7	-215.8	172	271	
Ţ	\Box								-226	-326	
											
		-									
(AveoIA	1xInD			IN SITU TIERS.	.3	5.63	18.3	-1.1	22.6	38.6	
				WITH BEAM ON					-/6.3	-27.3	
	Sylo	_		AT SUES Street free	.3	3.13	6,8	1.1	9.5	42.7	
									-3.23	-6.41	
	5xxo ^{ti}	\vdash			.3	-20.6	1/0	-71.5		116	
$\neg au$						77.7			-1/2	-/57	
	140			 	.3	-69.7	17.4	-/88.5		250	
		1		 					-283	-389	
		 									
		- -									
		 		 							

The second of th

Parameter	Tipes	ice :	Operation	Point	Sample	Hean	Hax.	Hio.	Hean 126	Hean +9G	Accept Reject Criteri
	Ckm2	245	Bias: Irrapia:	ION					-52	- 30	
(Ba) AI			INT - DOKL GN		6	-/3.6	2.49	-35	10.7	~22 R	
		I	DR FEEDBAC						-37.9	-50	
	2xiQ ₃			PRIACE & Comp.	6	522	80.1	43.1	85	99	
		Γ							29.3	15.4	
		KOSK			497	41.5	28.2	15.3	644	25.9	
		П							/8.5	6.96	
	IXID				6	94.3	1125	26.5	124	13R	
Ţ									64.9	50.2	
hee Sage	586				10	2.28	12.75	4.0	12.9	15.7	
APPER L'AR									1.68	-1.12	
I MOIS					12*	8.44	150	4.0	15.9	19.60	
(p. A)									0.987	-2.24	
	/x106				10	205	/3.5	3.5	13.8	17.1	
									0.33	-363	
	LT				12#	8.79	18.0	3.5	19.0	24.0	
	J								-1.37	-6.45	
									120	+.30	
JELL BRIE	5×id			2V MAR 2-5% NE	. 3	0.333	0.56	0.19	0.23	0.23	
use (Mase	LXIO			CYCLE SO. BUSE	3	0.337		0.14	032	Outole	
Face (Muse)	546				3	0.66	1.25	0.28	J.7.	ລຸລຸເ	
7	IxIO3				3	0.53	1.0	0.2	7.37	1.78	
# INCLE			RREATT BULGE	UNSTABLE C	WOITIO	/ 海	ONE O	THER	INICLI	A & A	

Parameter	Tluence	Operating		Sample size	Hean	Maz.	His.	Hean -26	Hean →3CT	Accept Reject Criteri
	erm2	BIAS: IRRAD.	BIAS! MERS.							
PrulopeGnu		Ya . 157	Riso	3_	98.1			93.3	90.9	
(48)	TXIO ₁₃		¥	3 *	FAILED	95.8	EAUED			
Prulme Gen	52100		RA. D.SK	6	99.2	108.8	92.6	86.8	80.6	
(d B)	/×10'3		<u> </u>	6*	FRUED	/03	FAUED			
OPENLOS	2×143		R. oo	3	-2.3	-60	-100	-/1.95	-14.3	
SAIN (dR)				.3*	DIVED.					
Mentage	ZX/012		R 25K	6	- 2.5	3.8	-12,4	-145	-129	-
EAN (dB)	באואן			6#	PAUED.	FAILED				
	·									
					 -					
										-
		200 22 4 4 7		0. 30						
# ONE	EVICE F	ALED LATCH	VED TO SUP	7_7	<u> </u>					

のでは、「大きないと、これでは、大きないと、大きないないできない。 できない はんしゅう できない はんしゅう できない はんしゅう できない はんしゅう できない はんしゅう はんしゅん はんしゃん

LM101, National Semiconductor, IRAN reirradiation

DEVICE TO	m: /./)	UN NSC	. Page Info	J TA	OAT CO.A	WE L	KVmA	(5) C#	,	3 Iraa i
Patanéter	Pluance	Operating 1		Sample	Hean	Hax.	Nia.	Haas 4267	Heen +367	Accept Reject Criter
	€/Cm²	BIAS: IRRAD.	BIAS : MERS.					-20	-36	
(Yuised/L	5×10"	INIZ - KYOK ŁOGAD		.37	മരവ	1,351	-0.7/3	0.571	0.830	
		V± . ±KY						2.468		
	1.25×183	INKEL FEEDBACK		.37	0.0997	0.849	-0117	0.384	0.536	
								C184	0.3%	
	2.2x1012			36_	0.312	0.251	0.045	0.663	0.838	
								-0039		
				.37×	0.363	2.55	0.045			
				<u> </u>				-0.336		
	2×100			37	2.189	7,389	-3693			
_ - }					<u> </u>			-,2.407	<u>-4.705</u>	
Ios(nf)	540"			36	-0.273	0,660	-1.54	0.516	0.9/0	
									-1.456	
				37*	-0.098	6,3	-1.54	2.168	3.30	
								-2.36		
_	192×10.9			37	-0-141	USA	-/55	0.781	439	
									-ಎ.ಎ2	
	25×10°			36	<u>-0.58</u>	45	-4.11	1.91	3.16	
								-3.02		
			_	37×	-1.79	45	-#538		20/6/	
	<u> </u>				202			-/c.72	-24/9	
	ביטגי			37	-5/3	:339	-1051			
-7-	<u> </u>	LIERS INCL			 			· <i>n.c.</i> 3	-13.08	

DEVICE T	75 2	LM	01_	NSC.	PAGE FOR	2 I	RAN F	LUENCE	- 625/	K mad (S	i) Co6	O IRR
Parameter			İ	perating		Sample etse	Hean	Max.	Min.	Hean +20	Mean	Accept In ject Criter
	C/(.m2	BIASL	ARRD.	BIAS! MERS.					-20-		
In (nA)	5×I	۵"	1N± : DC	K LOGNI		37	1629	24.93	ລລ	2204		
			V2 . 1/	5Y							0.162	
	1.25	×100	MKD	FEEDPRCH		37	33,73	549	12.92	55,06	65.70	
										12.41		
	25	202				37	5741	8236	29.19	9.3.70	111.85	
							,			aLLI	8.96	
	5×	00				.37	97.43	145.10	5.58	16254	19509	
<u>_</u>				,							-0,222	
				•								
		\neg										
							77					

LM102, National Semiconductor, unhardened

Parameter		OD NSC. (Sample	tieen	Hez.	Kin.	Hean 126	Hean 49.5	Accept Reject
	E/Cm2	BIAST IRRAD.	BIRE! MERS.					-9/c	-3-	
Vos.(m)	SXIOIS	W- BOKEO GND	Vs: &/5Y	3	-1.13	1.4	-2.9	3.37	5.60	
		12 - 2 KV-Ray - 37 L.F						-543	-288	
$oldsymbol{ol}}}}}}}}}}}}}}}}}$		to 8: Out · Momesto		4*	-4.1	1.4	-13	8.3	14.5	
-		IN.						-Kant	-227	
	IXIDIS			3	-293	0.9	-5.2	3.92	2.35	
 								-9.79	-19.0	
				4*	-9,9	0.9	:30.8	185		<u> </u>
*								-38.3	<u>-325</u>	
IR (nA)	5×10 ¹²			4	<i>-</i> ≾.9	-3.5	-2.Kg	-744	-0.947	
				-7-	7,7	3.3	7.76	-9 9		
	Ixid'3			4	-125	- 8.90	-22.9/		6.61	
								33.6		
										<u> </u>
										<u> </u>
COUTLI	R INCL	WED .								_
										_
										

LM102, National Semiconductor, hardened

Parameter		Operating 1		Sample stee	Hean_	Max.	Min.	Heen 12G	Heen 43G	Accept Reject Criter
	ercm2	BIAS: IRRAD	BIAS! MERS.					-,2⊤	-30-	
AYOS IN	ZXIJIS	INI:MOK EAGNIN	Vs. ± 121	6	2.48	4.22	0.78	5.06	636	
		VE: 1/2V						-0.109	-1.4	
	9.18×10 ¹⁰			6	2.53	4.1	Oldo	5.03	6.39	
				l				0.0259	7.23	
	IXIO'S			6	251	4.06	0.61	5.01	6.26	
								0.00628		
An)aTA	5x1012			6	-6.01	-5.1%	-2605	3.98	-2.96	
									-2.05	
	9.184100			10	-11.9	-112-25	-14/4/16	-8.4	-6.62	
								-15.4	-12.3	
	1×1015			4	-129	-11.12	-/5.53		-23/	
	J		J						-181	
									7.00	
					\					
				1						
										

LM103, National Semiconductor

Paran		PE: LM /		perating	SC. Polat		Sample Stro	Mean	Max.	Hio.	Mean +2.07	Mean +3G	Accept Reject Criter
		ermi	BIAST	RAD.	Bias	MERS.					- 94-	-36-	<u> </u>
AYE C	(Yet	58100	In-	ONA	Iz-	0.01mA	3	0.90	39	-0.3	4.32	60.10	
				,							-J.57	-4.30	Ц
		1×10/3					3	2.57	6.8	-0.1	9.98	1369	<u> </u>
					 	<u></u>				ļ	-4.85	-8.55	
ΔVz ((Val	5×10 ¹²			Izec).ImA	3	4.87	55	3.9	6.57	7.42	
											3.17	2.32	
		1×10/3					_3	9.3	//./	25	12.9	14.7	
						Ţ					5.7	3.9	
ΔV2(mV)	54/012			I. a	lm A	3	15.5	12.6	624	22.9	2640	
											8.2	4.5	
		/x/0.43					.3	24.2	223	d1.7	30.4	33.2	
1						<u> </u>					19.1	16.2	
													_
	\equiv									 			
					 		-	 -					
							 			├ ──			├

LM105, National Semiconductor, unhardened

<u>D</u> i	EVICE T	PE:	<u>ረጠ/ረ</u>	S UNHARDE	NED.	NSC.	Pe	10	1_	,	,		<u> </u>
Par	meter	Flue	nce	Operating 1	Point	1	Sample size	Keen	Max.	Min.	Hean	Meen +607	Accept Reject Criter
		codsi	e cm²	BIASTIARAD.	Buss	Mens.							
(Lou	LHEG.			CHRENT LIMIT 1/20 &			ها	- 4.73	0.10	-4.7	5.11	6.80	
_	TOTAL .			REGUNDADATE		AM	(0	-5.00	-0.70	-18.10	18.54	25.31	
	(Vm	SOK		BoossesOurers · ON:			10	0.10	6.4	-120	14.0	21.0	
			ふかげ	PARCOTHERE, OA:			_ (a_	-6,28	-470	-201	20.36	27.15	
		MOK		COMPENSATION SWATE	4		4	-14.7	11.0	- 75.0	95.9	136.5	
				47 of to REG CARRE			9	-7.47	٥	-22.3	20-26	مامل عال	
			/×/d3				_3_	-5.9	-0.6	-9.7	15.4	20.1	
ζ <u>ι</u> ,,,	e Rec		5×0"		VIN. 85	V: Ta-5mf	(a	-1.9	0.1	-5.3	5.68	7.5.7	
	(Vm)		25.0		Your "		(0	-5,08		-190	18.94	25.87	
		KOK					6	-0.5	5.5	-11.9	141	21.0	
			25.05				6	-6,85	-45	20/6	20.88	22.90	
		NOOK					N	14.1	60.0	-15.0	78.5	110.7	
			54/00				9	- 237	0.30	-23.1	20.87	22.62	
J			1008				.9	-5.43	-0.50	-8.7	14.1	18.5	
χ_{L}	u Ris		5×0"		VIN: 40Y	IL-5mA	6	-1,60	40	-24	2:14	10.82	
	(Var.)		1351/		Your	ΔY	la	-/.32	40	-3.7	4.94	6.77	
		50%					10	0.9	60	-8.6	II.a	163	
			2500				6	-6.38	-0.4	-73,2	23.35	3/.83	
		MCK.					4	-6.7	q	-19.0	235	320	
			5200				9	-6.1	-0.9	-22.4	19.35	25.97	
			1×100			L	_3_	-3.43	-1.60	- 4.5	6.62	8.22	

LM105, National Semiconductor, hardened

PEVICE T	PB: LN)/	OF HARDEN	n Nec	Pusi	lcs i					3
Paravoter	Zluence	Operating		Sample size	Hean	Haz.	Hio.	Mass/	Mass 4507	Accept Reject Criteri
-M	e/cm2	BIAS: IRRAD.	BIAS! MENS.							
Aconi, mai		CURREAT LIMIT 'NS		6	-1.65	-0.6	-2.5	2.92	3,55	
العنا	1:103	to Recognism:	Tre 10mB	6	-2.97	-0.4	-4.7	5.98	7.48	
		CODESTER OFFICE ON								
ALNE REG	2×10/3	United Jupat OV	Yes 254:	6_	-1,47	-0.5	-23	2.71	_3.33	
(VVII)	1×1013	CONTRACTION SUITED	AME-II W	6	·2.52	1.4	45	6.71	8.81	
		47 pf to pre Our								
ALMIC RE	3×W12		VIN- 40V:	6_	-0.567		-2.9		/3.3	
للامتك	1×1013		I. 5mA	6	-3./2	-0.7	-45	6.25	2,83	
					ļ	<u> </u>				
* Yevi	CS REPE	SEAT THE C	HANGE IN	OLTAGE	PROD	UCENT	Y IRR	DIATED	<u> </u>	
	L									
								ļ		
										
										<u> </u>
										
				-	ļ	ļ <u></u> -		<u> </u>		
				 	ļ	ļ		 		
		<u> </u>			 -		 	<u> </u>		
		 -		├				 		
				 	 			\vdash	<u> </u>	
		L	<u> </u>	L	L	L				

LM106, National Semiconductor

Parameter	Zluence	Operating	Point	Sample size	Hean	Hax.	Min.	Hean 126	Hean +3C	Accept Reject Criter
	C/cm2	BIAS: JARAD.	BIRS! MERS.					-2-	-30-	
Van Soll	ZXIOI3	V£:±JOV	Vr.0.74	10	70.0083	0.039	-0.047	0.05	0.0291	
								TOME		
	LxIQ13			10	70,000%	0.066	70.053	0.0800	0.631	
		- i		 	<u> </u>	<u> </u>		70.08I4	<u>-0./22</u>	
Igs(µA)	5×Id2			10	0.185	1,59	-0.09	1.18	1.68	
								-0.812	-4.3/	
	IXIA'3			10	-0.003	0.2	-0.09	0.127		
								10.183	<u>-0.224</u>	
In (un)	5×1012		 	4	0.833	4.28	0.48	452	1.94	
						_4.5.4.			-0.255	
	1 XIM3		1.	4	1,23	1.99	0.62			
								0.0/02		
				 						

LM108, National Semiconductor, unhardened

Parameter		Option of			Sample	Hean	Haz.	. Mila	H ∰ b +2.6°	130	Accept Reject Crick
	e/cm²	Bus: (Ro.		Øs.					-y-	-37-	
(m) zell		INT IMO FORM			8	-2498	- 8.07	-50.8	6.87	22.29	
		DODGE AYOUS CAR		-					-56.X3	-20.25	
	5×1312	IOK ELEDBACK			8	51.61	5/3.89	-495.5	904.6	133104	
		COURT MONTER								7/327.8	
	1410/3	COMPJ. OPEN			8	161.18	502.87	-66.99	650.5	895.17	
	,		-							-57.281	
Wos (my)	25x10"		Ps:In	12 sol	4	0.045	0.08	0.018	0/103	0./31	
				٥					-0.013	-0.041	
	5210"				4	-0.0%	0023	-0,60	0.086	0.68	
	+		4							20	
	1.25×10²				4	-0.162	-0.001	-0.242	0.041	0.43	
									-0.366		
	といxice				22	-12.79	-1.36	-45.4	2.2	ح.الہ	
										-56.8	
	5 - 102				18	-135.17	504.7	-4485			
									-7-14.8	-1049.16	
	1×1013				18	ጸዓ.ሬን	Sur?	-231.3	1028.6	898.1	
									- 449.4	-7189	
Jos(na)	₹27×10 ₁]	4	0.046	0.07				
										-0.025	
	SxIC"				4	محسم	0.075	O.IOR	0.322	0.397	
	!↓		L	1			l		0.001	-0.054	L.—

Perameter	Eluence	Operating	Point	Sample:	Mean	Haz	Mio.	Hean 42 CT	Hean +3C	Accept Reject Criter
	e/cn/2	BIAS: IRRAD.	BIAS! MERS.					ኒ	-34=	
Josina)		INE IND LOCAL		4	0.615	0.981	0.421	1.13	1.39	
		MODE BYPASSON	0					0.0	-O.//a	
	2.5 ×1012	INK FALLBACK		ລລ	0.495	3.55	-2.23	4.39	6.34	
		COMP. I - MODOF 608						-340	-5.35	
		COMP.2 SPEN		12	-0.137	3.9%	3607	4.06	600	
								-3.79	-5.75	
	1×10,3			18	0.135	9,0	-867	9,38	M.O	
1	J							-9.11		
(An) aT	2.5xp"			4	0.226	0.35/0	0.159	0.407	0.498	
						. يوسي مي د			-0.045	
	ZYIO"			4	0.785	1.19	O.SHR	437	167	
								0.95		
	Lackd			4	2.23	3.28	1.67	3.70	4113	
	100					_ايالانايا		0.76	0.021	
	: Sxida			مر	3.93	9.5	0.53		,	
		 						0.94		
	SXIO	 		17	-0.605	0.72	- 2. 14		2,50	
		 						-2.68		
_	_			184	0.263	1494	-3./4		11.58	
1		1	<u> </u>		لمتعيب	بصب			-11.08	
										

Parameter	Eluanos	Operating 1	Point	Sample	Hean	6 .	A.	H @ in +267	19 En	Vales.
	e/cm2	BIAS: IRRAD	BIAR! MIRS.	ži .				2	-30	
Jacob	BOKL	ILE I MOLAGAY	RS: I Mes	17	20.343	4.94	239	608	904	7
		OCCUP RYPIGS CHE	.0					-657	-2.29	
		IDIS FREDRACK		18+*	-3.29	4.94	-5	23.3/	3661	
		Come) - 1000 of 1000						-29.90	-43,20	
		COMPZ - CARN								
A RATE	2xlo13		SYMPIT 2524							
BE (Vleed	INIG		CALLES SAME A	2 3×	* F	AILED				
			0 0							
LOW RATE	SKIOD			3.	<u> </u>					
Mr. Char	1 XIOIS		- in	3×	*	FAILE	2			
				(38)	<u> </u>	 -				
PEN LOOP	NONO P	19. ±15V	_OmALeaD		<u> </u>					
AIN	SXIO LO			1.3+	× F	PILED				
				-	 	ļ				
				 	└					
				-	<u> </u>					<u> </u>
	**	UTLYER INC	WEDED	 	ļ					
					├					
				 	├ ──	}	 -			
				- 	 	 				
				-	├ ──	 			 	<u> </u>
					 	 				

LM108, National Semiconductor, hardened

Parameter	Zluence	Operating 1	Point	Sample stre	Mean	Hex.	Min.	Heen 42 <i>6</i>	Hass +36	Accept No ject Criter
	C/c.m2	BIAS: IRRAD	BIAS! MEAS.					-,20"	-30-	
Alba (my	SNOIL	IAE - IMOLOGAIN	IN E BYPASA	197	-0.0019	0.0330	0.040	0.038	0.0596	
		Vz.zKV	/					20.0470	-0.0685	
	ראסייד. הסראסייד	DKD seedback		27	0.0010	0.0890	-0.0790	0.07	0.1441	
		Cimel MilloElaX						0.0957	70.1411	
	2.2×100	CAMPA + OPEN		60	-00209	Valed	-0.093	0.179	0.320	
								-0.235	-0.336	
	5×1012			(02)	20.0631	0.330	0.415	0.232	0.379	
								0.35%	-0.504	
	LXIOIS			35	-0.234	Olles	-0.730	0.242	0.980	
								-0.210	-1094B	
				ļ						
Ios(nA)	בסיום"			L22_	20-0001	0.109	-0.04	ځون د	C-0945	
	_							20.043	0.0948	
	1.232.03			27	0.0045	O.IOR	-0.078	0.054	0.659	
								-0.072		
	シジェラ			62	0.019	0.252	-0.198	0169	2008	
								-0.119		
	2×:03			62	0.0538	0.550				
		<i></i>			 			-0.2W		
	, x10 ₁₉			35	CHASS	DAMS				
								-2 490	-0.483	

Parameter	T lu it os		Op ar ae1	ag P	oint		Sample eize	Nean_	Max.	% a.	Hean 426	Hean +36	Accept Re act Cri
	€/cm	BIAS	BRADE	AT	04)						-34	-36-	
$I_{O(n)}$						MG CAR	27	20292	0.636	-3.339	1.425	2.098%	
		V2 . 2		ıκ	2 60	A STATE OF			!	I	-1.367		
	1,250/	Come	1 - 1000 oF	to	7		25	0.50%	0.934	0.262	0.235	TiOO3	
			3 APEA								0.168	0.0011	
							J7#	18850	1.773	0262	1.294	1.646	
									L		75.//73	-/2/20	
	25×10	2		\Box			60	4.335	2.51	0.584	2.261	0.204	
											0.4098	-0.053	
							6D*	1.411	3, 222	0.584	2.453	3.224	
				T							0.170	0.451	
	5×O ⁴						40	3 043	5.72	1.39	5.12	4.15	
		1		T							0.969	-0.0626	
				寸			/#0×	3.212	8.876	4.39	5.98	2.369	
				7							0.44	0.946	
	1×1d	3		\neg			35	2.114	1269	3.04	42.22	14.85	
	*	OUTLIE	RS INC	٠,,	Δ3.G]	1.955	-0.624	
				T	:						+-20	+3:	
eu Bene	2.54	7 2		ķ	8V we	or ·	ว	0,122	0.733	0.111	0./53		
SE OLUSO	5×10					ucucie		PILO	0.135	044	0.135		
\Box''	LXIC	13		_	SQUARE.		ว	0.109	0.114	0.103	0.124	0.132	
				T	0								
ALL RATE	25×10	2					2	0135	0.140	0./29	0./50	0./58	
يد الأمو	6×10	2		\Box			ລ				0.140		
."	1×10			Т		ļ,	J.				0.131		

Paramet: r	Fluence	Operating	Point	Sample size	Mean	Max.	Min.	Meen →2 <i>G</i>	Mean -30	Accept Reject Criteri
	e/cm2	BIAS: IBRAD.	BIAS! MENS.							
WilcomGan			R	33	116.853	129.127	106.927	/A3 .460	96.767	
(dB)	5x/012				112 591					
	IX/OI3				१०१ (२)					
DENIONE GRAN	2.5×10°		R SK	34	102.783	113.046	98.060	25.234	835/3	
(dR)	5×1013		2m A Séas	34			93.553			
	3יכואו			34			85.05			
AORIAI LOGO	2511012		RLIO	.3.3	-0.119	11.4	- 12.0	-//, 3	-Ko.9	
SALL (COB)				34	-4.20		222.9			
	11/0/3			34	-15.2		- 32.6			
A OPEN LODE	25000		BL-5K	34	32.8	4.6	-6.1	- 2.2	- 9.4	
GAN (dB)	SXICH		2 mA LOAD	.34	-6.2	11.4	-/3.1	-16.2	-20,9	
-	121018			34	-/4	ಎ.8	-23.40			
					·					
						-				

LM111, National Semiconductor, unhardened

	noter	Plue			CUA)		NEW	PAGE 1 Sample size	Mean	Max.	Mile	Hean 120	Hean +3CT	Accept Beject Criteri
		rado)	ekm²		BRADIA'							50	3	
ΔĪο	s(nA)				IN SAID		130mV	181	- 2.34	13.82	-52.14	8.27	16.1	
							+ +15V					-22.9	-30.2	
		•	SNICE					6	- 9.33	12.0	-43.0	33.8	55.4	
												-59.5	-74.1	
				O	TPUT • GN	NN T	Sami	_ 5	-1:2:	20	-34.0	21.60	39.5	
							<u>. </u>					-49.10	-625	
		こうべく			BUT-15	4110-	30mV	6	-37.9	36.8	-92.79	54.4	101	
		-										-/30	-126	
			Š					6	12.5	55.0	-32.0	84.8	1/8	
												- 49.8	-83.5	
				ON	TAIT 'GAD	41N + +	VMOC	_ 5	-23.4	140	-520	28.1	53.9	
					Ι							-24.9	-/01	
1865	(MV)	50K			UTPUT **!!!	NIN.	30mV	180	0.835	1.764	-0.58	1.84	235	
]					L							-0.175	-0.68	
			5×c					9	1.38	0.0	L.5	2.36	2.85	
												0.408	0.07%	
				00	PUT-GU	141-	\$2m√	\ \	U-04	0.8	-0.5	0.5	0.771	
												-0.58	-0.851	
		⁄∂5K		OUT	AT: KY	115-	130mV	lo	2.13	3.002	4497	3.32	3.92	
		L.L		L								0.935	0.339	
			INIO					6	2.75	3.7	1.4	4,28	5.05	
												1,22	0.452	
				OU	PuT - GA	۲N +	₹0mV	5	0.16	0.5	-0.1	0.62	0.851	
	i					1]					-0.3	-0.531	

Peremeter	Zlue	noe	Operating	Point		Sample size	Hean	Kax.	Min.	Heen +20	Heen +3.57	Accept Reject Criteri
	745	€Ko7	BIAS: IARADIAT	ION						-20-	•	
In (un	31		/AP-GAD: 14,7,5 V		30 mY	175	-0.344	-0.127	-0.492	-0.167	70.078	
				OUTPUT"						-0.521		
_						181*	70,315	0.298	0.492	0,056	0.241	
	Ţ		ļ — Ţ				!			-0.685	70,871	
		Sword		<u> </u>		6	-0.990	-0,475	-/.302	-0.38/	00743	
		$-\!$			k	ļ	L			-1.60	-191	
		-	OUTSITE GAR	IN " 17	YmC	5_	-0.895	2.52-/	<i>-/./8</i> 8	-0.42	-0.182	
		k			<u>. </u>					1.37	-1.61	
	JACK		CUTENT: TKY	IN 1	Ony	_6	0.242	70.3-/2	-1408	70,226	10.031	
	4					<u> </u>				-1.257	-1.515	
		VVO'3		<u> </u>		<u>(a</u>	-1.1	-0.543	-1.569	-0.335	100993	
		Щ				L	<u> </u>		<u> </u>	-4.82		
		щ	OUTPUT -GAID	W * +5	Omy	5	-1.00	-0.642	-/.389	20-130	-0./28	
		-		}	L			<u> </u>		-/,6	-49_	
										+ 25	130	
CSWM May		540"	Airo And Kila			5	0032	0.05	0.0	0.058	0.071	L
(mA)			NOW ON BURNE			ت	0.025	009	0.06	0.117	L 12	
			GITH SWE CHERENE			5_	0,126	0.15		0.184		
		Carlos	MARKE PLACE			5	Outo	0.23	0.13	0.264	0.306	

LM111, National Semiconductor, IRAN reirradiation

Parameter		Operating		Sumple	Kees	Maca.	Hin.	Haen 42.6	Hean +307	Acce Reje Crit	pt et
		BIAS: IRRAD.	BIAS! MERS.								
Vos (my)	ZKIO	V=:KY:INF-GAT		12	2800	4338	a.290	1.568	7823	وكا	ď
		VMOET = "14:		12	11211	2.423	1.494	2944	3661		L
	SVXIV3			La.	2.393	3.283	0.488	4.815	6002		L
	2×100			<u>-2</u>	3.233	5.868	1.140	2359	9./23	L.	Ŀ
								2cr			_
Jos (nA)	ZXIO [®]			L)	-18.24	2.23	-30.87	-41.47	-5-09	K20	A
	1.92 × 193			1,2	0.23	-211	. 22.83	-82.50	-MO.H		L
	2.5×1013			l)	-80.58	-/9.35	-13474	-/60.90	201.09		L
	£ > 1010			12	-132-31						
								tala:			Ξ
Ta(LL)	SKIO!			Ja	106.94	293.40	-163.00			KI ,	ū
								-26274			Γ
	1~25×100			12	-48M	BRAK	-433.50				Γ
								98.12			Γ
	10 ¹² دند			12	-149.74	129.9K					Γ
								-51.059			Γ
	5×1010			ıa	-136-29	797.94					Γ
		J.						-612.12			Γ
											_
											_
			·								_
			· · · · · · · · · · · · · · · · · · ·								_

LM124, National Semiconductor, unhardened

Parameter	Finence	Operating		Sample size	AC-E Hean	Max.	Min.	Heen +26	Heen +3C	Accept Reject Criter
	e/cm2	BLAS: IRRAD.	3,45: MERS.					-90-	ķ	
Albe (m)		INT : WYK LOGAID		14	במעל	2048	2358	0.735	0.254	
		OK FEELPACK						-0.440	-0.459	
	المحتديدا	V51		14	0.053	0.391	0.593	0.543	0. 282	
					<u> </u>			0.437	1820	
	-45.No			14	0.293	1.616	0.497	1.998	2600	
;					<u> </u>			-23 412	-1.04	<u> </u>
	2MQ3			14	/-335	2.531	-0.443	3.//3	4.001	
<u>+</u>	-				ļ	<u> </u>		-0.443	-633/	
(Vo- (m)	5×0'2		R2 = 10K: Y = -15	17	-4.500	-2857	10.67	0.488	.2. 9 2. 3	
ر بردیدی <u>برد</u> د. ا	.,		Y* +/5V			1		-9.492		
	/X/013			16st	2069	-5.078	- 9.78			
-¥								-9.30	-10.41	
(kame)	540"		Ratikal 15Y	14	-0.144	0.030	-0.450	0.163	a 316	
			V* *154					70.450	74603	
	こうさいい			14	0.00	0.360				
	-								-0.258	
	25 20			14	062)	1.57	057	1.889	2.48	
								0.491	1.086	
	54.514			14	1.261	3.12	-0.54	3.27	4.22	
<u> </u>					L	L		-0.2%	·1.75	

Parameter	Eluence	Operating	Polat	Sample sice	Mean	Нам.	Ma.	Heen H2G	Hean +3G	Accept Reject Criteri
	ekm2	BIAS: IBRAD.	BIAS! MERS.			<u> </u>		-96-	-3(<u> </u>
Androta	_5×0"	INT = DOK to GNID	Ra +OK, i O	14	0.711	7.14	-3.09	6.03	8.70	
_		ICK FELDGREK	<u> </u>		!			-4.61	-2.27	<u></u>
	ومتكت	X+ · +124		14	-401	13.18	-18.19	16.11	24.67	<u> </u>
		 					L	-18.14		
	25×1012			14	-562	19.83	-51.8/2			
							<u> </u>	-4942		ļ
	5×10/3			14	10006	29.28	· 89.69	59.78	95.8	
		 			 			-84/3	ביסביד	 -
ATOS(NH)	2×0,17		Book Y- VSY	.12	-456	2.1-15	-26.J2	// 23	17.62	
			4121					-/4.3X		
	1×1013			16am	2363	13.85	-962	10.25	No.76	
1			4					-/2278	-18.68	
Joseph	520"		R3-1K:Y - 75Y	М	1,223	5.20	-1.70	5.30	7.33	
	*		V+- :/51					72.23	424	
	125×104			14	0.743	12.60	-/2/	15.10to	23.86	
	*							72.14	-25.35	
	22577			14	-5.76	19.10	-4990	36.75	58.30	
									-62.83	
	2×12/=			14	12.01	720	-82.30	5241	9211	
	L 4	*			L			-81-62		l

Parameter	Flue	nce		Operating 1	Poiat		Sample size	Neso	Max.	Mto.	Heen +20	Hean +36	Accept Reject Criteri
	ejo	m2	BIAS:	IRRAD.	Buss	MERS.					.94	-30-	
ATA(nA)				OK E-GND			14	-/3.49	-11:62	-Ke.4Ko	-10.40	- 8.86	
				EDPACK							-K-57	-/8./2	Ĺ
	1	ziO3	V+ : +	157			H	-28.24	-24.41	-35.4/	-12.62	16.58	Ĺ
		َـــــا							l		-32.01	-41.10	
	2.5	درم					14	-47.79	-35.57	-64.69	-30.06	-21./9	
								L			62.23	2/39	
	_5×	242					14	-2491	-5383	-9232	-4/30	-28.92	
						¥					105.5	ANK	
AJA (nA)	5x	دان			Ra- 101	(. Y = :/5V	17	-10.75	4.81	2435	2.80	9.52	
						215Y						-31.08	[
	141	013					17	-///3	1.50	-425	18.50	33.00	
												-5°.5×	
4Ta(nA)	SAL	2"			Razik	-/57	14	-8.78	-6.90	-1110	-5.92	-4.60	
					1+						-11.50		
	1.25	M0					14	-23.27	-/28	-31.40			
											:34.32		
	ددد	an)					14	-42.32	-30.80	500			
											-58.90		
	SIA	10					14	6223	-16.3	- 906			
J		L		,		1						-111.93	

Parameter	Theace	Operating	foint	Sample size	Nesa	Kex.	Min.	Hous +20	Hean +3CT	Accept Beject Griteri
	ekm2	BIASTIARAD.	BIAS! MERS.				Ĺ	-025-	-30-	
OLTEAT	5×1011	INT BOX LOCKED	AT-60X.MP:O	14	-0.0013	-00011	-2002	-00005	-0.0003	
MINEAL SHAW		IOK FEEDBACK						200000	-000	L
(Am)	12500	V+ = +/5X		M	2000	10000	-0.0033	20072	con	L
	4						Ĺ	0.0031	20033	
	23xiV2			14	100000	02001	-00062	00050	20.000	
					L			-0.0063	0.0066	
	52,00			22	-01022	00050	-00001	00017	-0.003	
	+							2006		
	12.015			8	0.009	-0000	-0.000	0000	-0000	
				ļ				0069	-0.W98	
VARENT.	SXIO"	<u> </u>	M-0:M-12	1 14	-00011	0	-0.002	-0.0000	0.0001	
WHENTOWN								~ \033	-0.0007	
Has	المتحسر ماسخسا			14	61000	0	0.0030	-0.0009	OCYY.	
	+							0.0033	-04-04/	
	متاتيس الم			14	100000	0	-0.0040	00007	0.0001	l
								120.45	-c.000s/	
	5003			21	100030		0.000	C-0004	العمص	
				1			L	0000	1800-0-	
				الا تراث	-00033	COHO	0.0050	0.0044	CAC 22	
				1				0.0022	CLLA	
-	BOIXI			8	-00003	C 0110	2000-10	C-2091	0.01.39	
_ •		k		1	1			0.009	0.0142	

Persector	Tluence_	Operating	Point			Sample size	Hean	Max.	Mia.	Meen -20	Mean 	Accept Reject Criter
		BIAS: IRRAD.	Buss	MERS	4		<u> </u>					<u> </u>
OBENIMECAN		Y+=+15Y	ZmAio	4D + 10	N.	_8	99.03		92.20	925L	Sh.25	!
(dr)	2x1Q ₂		1_	Sw		8	99.30	2000	98.06	9249	96.82	
	1×10/3	ļ -	╂┼		4	8	95.32	52.07	<u>-93.//6</u>	52.40	50.91	
	ಎನಸರ್		11:	ION SW	VAJE	8_	104.60	106,00	102.47	102.24	101.02	
	ム×IOE		Π			8		99.18				
	IXICI3		H		\Box	8		84.45				
	S.CXIOG		20	Pean to P	LAY	8	103.05	/0325	וב.נמ	101.76	101.10	
	2×10/2		$\Pi = \Pi$			8_	-98.27	100,25	95.54	95.44	9403	
	TXIO13				\dashv	8	8260	88.39	86.03	85.86	8433	
AOPEN LOOP	25.00		1	CVSWID		8	-0.57	0.65	-1.20	2255	-353	
BOLLINE					\neg	8	-030	0.99	-1.72	2.24	-3.3/4	
	EIGIX!				7	8		-0.99				
	2.5×10 ²		-1	2V Swin	مد	8	-1.80	0		-4.59		
	5×1012					8	-10.19	-624	-1497	-15.23	-18.49	
-	1×10/3			1	4	8_		-20.59				-
	25*10'2		20	/ Practo	Pak	8	-1.99		-401	- 4.9%	6.45	
$\bot \bot \bot$	2×1012					8	-6.72		-10.01		-13.12	
1	E OLXI				Т	8		-14.94	-20.4/	-2/05	-22.8%	

en de de la composition de la company de la company de la company de la company de la company de la company de

LM124, National Semiconductor, hardened

Parameter		Operating		Sample size	Hean	Max.	Nig.	Neen +26	Hean +3 CT	Accept Rejuct Criteri
	e 1cm2	BIAS: IRAND.	BIAS! MERS.					- 26	-3a-	
A Vos.(my)		INF - 1020 to GND		19	-1,539	-0 3965	·J.895	-0.0406	0.2582	
		Y: FY; Or IM LOIN			I			-3.238	-40323	
	1×1013			19	F-4.019	-2.080	- 7.490	-0.438	/.353	
		<u> </u>						-2/60/	- <i>9</i> .392	
A Tos(nA)	5800			19	-2.565	1.01	-0.2/	6.054	(0.3/3	
a rosunu	-34/U-	 			-4:X43	10.07	Z.oHo_		-15.191	
	1×1013	 -		19	-1.778	15 21	- /3 /	バンドラ		┝──
	12/0 -			-17	-7. 7.7X	1239	- 1.3.66			
		i			 			-18.704	-27.17	
ATAME	5×100			19	-143.5	-/3/63	152.99	-/32.9/	-672.6	
								-154.10		
	1×1013			19	-253.7	-7AJ-8	-Non.la	203	-236.6	
								مهريع	<u>-220. 9</u>	
hand man	r 2×10/3	102 - 100K to 6NiD	INT LOVE INTEGAN	7	-0.005V	0.0032	·0.0084	-0.0011	0.0011	
THE COMA)		12.12 YOUT - KOKENIN						-0.0103		
1	1×1013			7	ONO S	-00080				
									0000	
Casters Canness	54,012	 	INT: GAID INT = L.JY	- -	-0.000		-1,100	0.0006	0.0011	
Source (mit)			CIT SWITCH TOND		LINE I			-0-0C/1		
AMERICAN TO SERVICE	1×10/3	1-1-	THE COURT	7	10.0012	-0.0013				
			+		1			-00033		

Parameter	Eluence	Operati	ng Point	Sample size	Hesa	Max.	Nia.	Heen -20	Heen -30	Accept Reject Criteri
		BIAS: JARAD.	BIAS: MERS.	ļ		<u> </u>				
PENLOCE CAN		V+ - + 15Y	200ALOAD +PON	8	98.12	100.0	97.07		85.26	L
(de)	2×1013		Swine		5660	1000	54.88	2301	9/52	<u> </u>
	1×10/3			- 8×	 	<u> </u>				
	25×10 ¹²		TOV SWIN	8	92.95	98.79	9238	96,98	9/0.36	-
	SXICIO			8	86.15	82.95		ጸ 3.፯3	נגעצ	
	17103			8*						
	25×1012		20V Bardo Rear	8	98.88	100.0	97.20	5231	56.53	
	521012			R	50.14		88.88			
*	1×1C13			8*						
Decidos	2.5×10^{2}		+101.54:1016	8	20065	1.62	-1.07	-1.78	-2/63	
AN (dB)			1	8	-1.59	1.62	-288		-6.48	
	2.5×10 ²		-/OVSWIAK	2**	- 2,23	-6-25	-8.64	- 8.91	- 9.25	
	マ×10/5			7**			- 19.24			
	ಎ.≾×ıoʻ⊃		JOV BOX TO BE	8	-4.10	- 3.10	-5.02	.5.36	-5.99	
	2210/2		1 1	8	-1284	-11.40	-43.91	-14.32	-/5./3	L

LM139, National, Signetics, and Texas Instruments

The data presented herein represents eight radiation tests for various vendors and date codes using different bias and measurement conditions. In all cases, two sections (of the four-section device type) were tested. Device failure is defined as saturation of the null amplifier during do measurements; i.e., the device output is latched to the positive supply voltage. Table 3 is a summary of the number of failures versus fluence for the various experimental conditions and device lots.

National Semiconductor made various attempts to harden the LM139 with only partial success. Several radiation tests were performed on these experimental devices, but only one lot (E2035, tested 11-25-75) was available for flight use and consequently included herein.

The second second

通の ことはないのはないの 1、 2 mm mg

Table 3. LM139 quad comparator radiation test summary

をはないます。は、いろうと、これはないないでは、これのないないとのできないというというないというというというないないというというないないできないというないないないないないないないというというないという

1,22/3 NSC Sanderd France Process Sanderd								Action during	more than a				Pailures .	Suspense le			
Manufacture Process Linking According Conting						11.72	000 441G	dition derive	1 registion	Z GN	11017	11000		26 w 1012	21012	2101 4 9	_
NSC Standard 406 +15 +1.4 1. +90 mV On 6	Test date	Manufacturer	Process	Date code	voltage. V	voltage, V		Condition	Outputs	Devices	ZE3/B	*/cm²	e/cm2	2 m5/e	Z=====================================	e/cm2	
NSC Standard 402 115 10.7 11 190 mV Off 6 1 1 1 1 100 mV Off 6 1 1 1 1 100 mV Off 6 1 1 1 1 100 mV Off 6 1 1 1 1 1 100 mV Off 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12/20/74	NSC	Standard	ş	ş.	+1.4	<u> </u>	+50 mV	δ	۰					١.	•	-
NSC Standard 402 +15							±	Cnd									
NSC Standard 402 +15 +15 +17 +19 +10 +10 +19 +19							7-	.130 mV	35	٠				•	•	•	-
NSC Standard 402 +15 +0.7 1- +50 mV On 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							?	Cod					•	ė			
Secondaria Sec	3/50/15	NSC	Standard	405	+15	10.7	<u>-</u>	450 mV	క	•	•	•	•		•	•	
Secondaria Sec				pue			<u>:</u>	Cud									
NSC (LM39) 403 115 40.7 1- 450 mV On 6 6 6 6 6 6 6 6 6 6				205				Vm 061-	Off.	•	•	•	~	•	•		•
NSC Standard 40% +15 +0.7 1- +50 mV On 6 - 0 NSC Standard 40% +15 +0.7 1- +50 mV On 3 - 0 NSC Standard 40% +15 +0.7 1- +50 mV On 3 - 0 NSC Standard 40% +15 +0.7 1- +50 mV On 3 - 0 NSC Standard 40% +15 +0.7 1- +50 mV On 3 - 0 NSC Standard 40% +15 +0.7 1- +50 mV On 3 - 0 NSC Standard 40% +15 +0.7 1- +50 mV On 3 - 0 NSC Standard 40% +15 +0.7 1- +50 mV On 3 - 0 NSC Standard 40% +15 +0.7 1- +50 mV On 3 - 0 NSC Standard 1417 +15 +0.7 1- +50 mV On 3 - 0 NSC Standard 1417 +15 +0.7 1- +50 mV On 3 - 0 NSC Standard 1417 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 1417 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 1417 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 1417 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 1417 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 1417 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 1417 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 1417 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 1417 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 1417 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 1417 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 1417 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 1417 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 1417 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 1417 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 1417 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 1417 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 140 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 140 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 140 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 140 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 140 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 140 +15 +0.7 1- +50 mV On 5 - 0 NSC Standard 140 +15 +0.7 1- +50 mV On 5 - 0 NSC							7	Gnd									-
Standard NSC Standard 406 +15 +0.7 11 50mV 14 50mV 15 60md 2 60md 2 60md 2 70md 2 70md 2 70md 2 70md 2 70md 2 70md 2 70md 2 70md 2 70md 2 70md 2 70md 2 70md 2 70md 2 70md 2 70md 3 70mV 406 +15 +0.7 11 0pen 1 70md 2 70md 3 70mV 400mV	4/14/75	NSC	(LM339)		•15	+0.7	<u>-</u>	+ 50 mV	ő	•	•	•	•	•	•	_	•
NSC Standard 40h +15 +0.7 1- +50 mV 1.35C Standard 40h +15 +0.7 1- +50 mV 2- +50 mV 2- +50 mV 2- +50 mV 2- +50 mV 2- +50 mV 2- +50 mV 2- +50 mV 2- +50 mV 2- +50 mV 2- +50 mV 2- +50 mV 2- +50 mV 3- +50 mV 40h +15 +0.7 1- +90 mV 40h +15 +0.7 1- +90 mV 2- Gnd 2- Gnd 3- +50 mV 40h +15 +0.7 1- +90 mV 40h +15 +0.7 1- +90 mV 40h +15 +0.7 1- +90 mV 40h +15 +0.7 1- +90 mV 40h +15 +0.7 1- +90 mV 40h +15 +0.7 1- +90 mV			Standard				<u> </u>	Gnd									
NSC Standard 406 +15 +0.7 1- +50 mV 15 Cond 16 Cond 17 Cond 18 Cond 19 Cond 19 Cond 19 Cond 19 Cond 19 Cond 19 Cond 20 Cond 21 Cond 22 Cond 23 Cond 24 Cond 25 Cond 26 Cond 27 Cond 28 Cond 29 Cond 29 Cond 29 Cond 29 Cond 29 Cond 29 Cond 29 Cond 29 Cond 29 Cond 29 Cond 29 Cond 29 Cond 20 Cond 20 Cond 20 Cond 21 Cond 22 Cond 23 Cond 24 Cond 25 Cond 25 Cond 26 Cond 27 Cond 28 Cond 29 Cond 29 Cond 29 Cond 29 Cond 29 Cond 20							?	Gnd)jo	•	٠	e	•	•	•	•	
NSC Standard 40k +15 +0.7 1- +50 mV 1.SSC Standard 40k +15 +0.7 1- +50 mV 2- Gnd 2- Gnd 2- Hordened Lut + 15 +0.7 1- horn Mass) NSC Hardened Lut + 15 +0.7 1- horn Mass) SGN Standard 7437 +15 +0.7 1- Gnd 2- Gnd 2- Gnd 2- Gnd 2- Gnd 2- Gnd 2- Gnd 2- Gnd 2- Gnd 2- Gnd 2- Gnd 2- Gnd							5 +	450 mV									
15. Cad 2- Gad 2- Gad 3- Gad 3- Gad 3- Gad 406	11/1/15	NSC	Standard		+15	+0.7	<u>-</u>	. 50 mV	క			•		•	•	•	
2- Grid 2- 450 mV 2- 450 mV 2- 450 mV 1							=	Cnd									
SC Standard 406 115 +0.7 1- NSC Standard 406 115 +0.7 1- NSC Standard 406 115 +0.7 1- Mean) NSC Hardened Ltst +15 +0.7 1- E2035 1- SGN Standard 7437 +15 +0.7 1- Cond 2- Cond							-7	Cnd	ŏ	•		۰	•	y	•	m	•
SGN Standard 40% +15 +0.7 1- 1- 1- 1- 1- 1- 1- 1							÷	+50 mV									
1+ b 2- b 2+ b 2	11/6/75	:SC	Standard		\$1.	+0.7	<u>.</u>		50% duty	~		•	•	•	•	•	•
2- b 2- b 2- c 3- c 3- c 3- c 3- c 3- c 3- c 3- c 3							±	۵	~ pulse								
SCN Standard 406 +15 +0.7 1- (during mass) 1- mass) 1- mass) 1- pen mass) 1- 1- open 1- to open							7:	ء	91 95			•		•	n	•	•
. VSC Standard 406 +15 +0.7 - (during 1- maas 1- 1- 1- 1- 1- 1- 1- 1-							?	•	pules								
Iduring Iduring Idure	11/6/75	vsc	Standa rd		\$1.	+0.7	<u>.</u>										
5 NSC Hardened Lut + +15 +0.7 1- 50 mV E2035 1+ 0pen 1- 50 mV Cand 2- Gnd SGN Standard 7437 +15 +0.7 1- +50 mV 1+ Gnd 2- Gnd 2- Gnd 2- Gnd 2- Gnd					(during mess)		=	cheu	11ve	~	•	•		•	•	•	•
5 NSC Hardened Lut 115 +0.7 1- 50 mV E2035 115 Cmd 2- Cmd 2- Cmd 2- 450 mV SGN Standard 7437 115 +0.7 1- 550 mV Cmd 1- 550 mV Cmd Cmd Cmd Cmd Cmd Cmd Cmd Cmd Cmd Cmd							<u>.</u> :	uado	passive	•	•	•		•	•	•	•
E2035 1+ Gnd 2- Gnd 2+ +50 mV SGN Standard 7437 +15 +0.7 1- +50 mV 1+ Gnd 2- Gnd 2- Gnd 2- Gnd 2- Gnd	52/57/11	NSC	Hardened		+15	+0.7	: -	· 50 mV	ర్	-	•	•		•	•	G	•
2- Gpd 2+ +50 mV SGN Standard 7437 +15 +0.7 1- +50 mV 1+ Gpd 2- Gpd 2- Gpd 2- Gpd 2- Cpd							:	Cnd									
24 +50 mV SGN Standard 7437 +15 +0.7 1- +50 mV 1+ Gnd 2- Gnd 2+ +50 mV							7	G)jo	•	•	•	•	•	•	•	•
SGN Standard 7437 +15 +0.7 1- +50 mV 1+ Gnd 2- Gnd 2- Gnd 2+ +50 mV							†	VE 05+									
Gnd Gnd +50 mV	1/8/18	SGN	Standard		• 1 •	+0.7	<u>.</u>	→ 50 mV	ě	ĸ		•	•		•	•	•
Cnd +90 mV							±	Cad									
							-7	Cud) ,	50	•	•	•	•	•	40	•
							÷2	+ 50 mV									

*Null amplifier saturated during dc measurements for one or more parameters, by the follow, 50° duty cycle, laput (1+) = 50 mVdc, laput (2-) = 0 to 100 mV, 56 µs pulse every 3 s. Input (2-) = 50 mV dc.

No supply voltage applied during irradiation.

日本のはないでは、日本のははないできないというないないできないできないできないという

Conclusions reached were as follows:

- (1) The LM139 type device is very sensitive to radiation damage.
- (2) The devices biased "off" during radiation are more sensitive to degradation than devices biased "on" during irradiation.
- (3) Device degradation may vary significantly between different date codes.
- (4) The degradation for the devices pulsed at 50% duty cycle is comparable to the devices biased "on" during radiation.
- (5) The degradation for the devices pulsed at 56μ sec every 3 sec is comparable to the devices biased "off" during irradiation.
- (6) The parameter degradation of the devices irradiated passively was slightly worse than the devices biased "on" during irradiation.
- (7) The hardened National Semiconductor devices, using the same bias conditions, did not fail until 5×10^{12} e/cm², whereas the standard devices failed at 2.5×10^{12} e/cm². The hardened devices showed significantly greater degradation in sink current than the unhardened devices.
- (8) The low failure rate for the 12/20/74 test was due to use of a supply voltage of 5 instead of 15 volts.

LM139, National Semiconductor, unhardened

Parc	meter	Flue	nce	Bias Con	dition	Blas Cond		Sample size	Nean	1 e f 11 Nax.	Nin.	Hean +2 <i>G</i> *	Nesa +30	Accept Reject Criteri
		er	m²	Supply Vole (V)	Total or	4	Output					-20-	-,₹ረተ	
11/09	(m)	25	1O"	15	+0.7	-/30m	OFF	8	-0.1	-0.08	-012	-0.06	-0.04	
						GND						-0.14	- Ouko	
				/5	107	+50mV	011	3	-0.033	Q	-0.07	0.037	0.072	
			,			AND						-0.104	-0.152	
		5x	0 "	15	+0.7	-/30mV	OFF	3	-0.427	.0.19	-0.70	-0.087	0.34	
]						YOUR						-0.94	-1,20	
				15	±0.7	GAID	OFF	9	1.68	8.35	-3.63	×.79	12.24	
						+50ml						-5.36	88.8	
				15	+0.7	+50mV	ON	12	-0.053	0.31	-0.3	0.23	0.37	
						GND						-0.34	0.48	
				15	+0.7		50% cuty	.3	0.1	0,2	0	0.3	0.4	
							ANCHE E					-0.1	-0.2	
				15	10.7		56490c	_3	0.5	0.6	0.4	0.7	0.8	
							Pulse					0.3	0.2	
			Ĺ	15	+0.7	PASS	IVE	6	-0.55	-0.1	-0.8	-0.017	0.249	i
												-1.08	-7.35	
			0/2	75	+0.7	- 130mV	OFF	3*						Г · —
						GND			* OUTP	UT LAT	HED TO	POSITIVE	SUPP	Y
				/5	10.7	GND	CFF	6**	OUTPUT	LATCHED	TO POS	TIVE S	LIPPLY	
						+50mV			ONS	DEVIC	£S			l
				15	+0.7	+50niV	ON	8.*	D. 038	0.18	-0.18	0.24	0.58	
,	4					GND						-0.32	· 0.15	

Paramet	-	Plue	LM nce	Bias Con	dicion	G POINT: Bias Con During		Sample size	Hean	Нах.	Kin.	Heen +20	Head +30	Accept Reject Criteri
		<r< th=""><th>33</th><th>Supply Volt (V)</th><th>Pall O</th><th>10+</th><th>Outout</th><th></th><th></th><th></th><th></th><th>-20-</th><th>-34</th><th></th></r<>	33	Supply Volt (V)	Pall O	10+	Outout					-20-	-34	
Nostr	(Ya	1,25	r)Os	15	+0.7	GND	OFF	3	38.97	49.41	32.6	57.2	66.3	
	_1	\Box				+50mV						20.7	11.60	
				/5	+0.7	+5QmY	ON	3	-0.67	-0.40	-1.0	-0.056	0.25	
						GND						-1.28	-1.58	
				15	±0.7		50% duty	_3	0	0.4	-0.2	0.69	1,05	
							4500%					-0.69	-1.04	
				/5	±0.7		56нзес	3	42.6	71	28.4	90.8	1124	
							Pulse					4.3	-/7.3	
\Box				75	10.7	PASS		6	-0,38	0.5	-0.8	0.58	107	
												7.35	-7.83	
	—	2.5*	10,3	/5	t0.7	GND	OFF	9 *	* ALL O	EVIKES A	ATCHEDT			PLY
	T					±50mY								
\neg	T			15	+0.7	+50m/	ON	9	-0.206	1.34	- 2.0	488	2.92	
					10.1	GND			1 2/12	1/1/1	- 67.5	-2.29	-3.33	1
	\neg			15	+0.7	CORNEL	50% duty	72	-0.1	0.5	-0.6	1.01	1.52	
\neg	\neg				-		cus/560					-1,21	-1.77	
				15	+0.7		56 изес	3**	** W!	A. Alar	NUM			
							Pulse							
	一			15	+0.7	DAS	SIVE	(0	-0.017	1.5	-1.0	2.013	3.03	\vdash
			<u>. </u>									-2.05		
		5×10	2/2	5	+1.4	-/30mV	000	6	0.432	4.33	-0.05	464	2.25	†
					14.7	GAID			1			-0.28	-/.39	
	_			ζ.	+14	t50mV	QN	(p	10.4	43.7	-2.67	45.8	63.5	
			<u> </u>			GND			1			-25.1	-42.8	1

DEVICE T	Pluence	Bias Cor	OPENTI dition	Blas Con	dition	Sample	Hean	Hex.	Min.	Mean +RG	Hean +3C	Accept Reject Criter
		Supply Wolf (V)	Pall or	_ ##:_	Outout					-20	-30	
(Vancoll	2x1015	15	+0.7	GND	OFF	9#	* ALL	DEVICE	LATE	HED TO	Posm	VE
				+50mV			Ø	UPPLY				
		15	+0.7	+50mV	ON	g	-036	3.22	-3.8	3.58	5.65	
				GND						-4.3	-628	
		15	+0.7		500 dely	7	-0.37	0.6	-/.3	1.53	2.48	
					CVOON'S					-2.27	-3.22	
		15	10.7		56 µsec	3#	** (Jus A	DT M	144		
					PUISE							
		15	+0.7	PAS	SIVE	6	0.92	4.7	10.4	904	/3./	
	J									-22	- 11.3	
	/XID/3	5	+1.4	- /30mV	OFF	64	7.73	4.10	A.OR	4.49	6.17	
		í		GND							-3.90	
		5	+1.4	+SOmV	(40	62	15.4	49.8	0.32	56.3	76.7	
				GNN						-25.4	-45.9	
						* ONE	DEVICE	LATCH	A 773 /	OSTINE	SUPPL	Y
Joseph)	2540"	15	+0.7	-/.30mV	OFF	_3	-0.87	-0.8	-7.0	-0.64	-0.20	
				GND						- 1.1	-10	
		15	+0.7	+50mV	ON	3	-0.63	0.1	-1.1	0.65	1.30	
				GNO						-1.9	-256	
	5×10"	15	+0.7	-/30mV	OFF	3	31	-0.6	-3.4	0.22	al	
				GNO						- 4.9	-6.3	
		15	t0.7	GND	OFF	9	-0.56	2.4	-50	4.26	6.67	
				+50m7				[-5.37	-7.78	

	rre: L/N		<u>NS.</u>		NHARD			1 1 1 1 1	4 of 11			Accept
Paramoter	Fluence	Bias Cor	adition	G POINT: Bias Con During		Sample	Hean	Max -	Min.	Heen +20	Hean +3 C	Reject
	erm2	Supply Volt (V)	Bull or		Outout				1	-20-	30	Tanan.
AJos(nA)		15	t0.7	+50mV		/2	-0.48	3./	-6.0	3.88	6.00	
				GND						-4.83		
		15	±0.7		50% che	_3_	-0.67	1.0	-4.0	5.11	7.99	
					Custe fr					-6.44	-933	
		15	t0.7		56psec	3	-1.5	1.0	-3.5	3.08	5.37	
					PUISE					-6.08	-8.37	
		15	+0.7	PAS	SIVE	(0	9.05	12	2	12.57	14.33	
										5.53	3.22	
	1 ×1013	15	+0.7	-/30aV	OFF	3×						
	L			GAID			*OUTP	JT LATE	HED TO	POSITIV	E SUP	RY_
		15	+0.7	GND	OFF	GXX				0 70 F		
				+50mY								
		15	10.7	±.50mY	ON	8.5	1.99	5.5	- 3.7	8.98	12.5	
				GND		- & I	CATHER	EXCLU	Dr.A	-5	-8.5	
	125x 30	/5	10.7	GND	CFF	3_	96.7	131	58	170.1	206.7	
				150m¥						23.3	13.4	
		15	10.7	t5DmY	ענ	ے۔	-80	-3_	-16	6	/3	
				GND						- 22	.29	
		15	+0.7		50% det	3	3.62	4.0	30	4.82	5.40	
					45.65 F.					3.51	1.93	
		1/5	t 0.7		Nosser	- 3	125.8	158,5	87	178.1	2343	
					PUISE					535	124	
		/5	t0.7	PA	SYYE	<u> </u>	14	23	2	26.9	33.3	
1	T -	1			ı		1		I	,,,	· 5,35	

Parasoter	Eluence		Bias Cor During F	dition	G POINT: Bias Con During 1		Sample size	Noan	Nax.	Nia.	Neen +20	Hean +30	Accept Reject Criter
	ecni	,	Supply Volt (V)	Wall or	14:	Outout					-20	-30-	
IJos (NA)	2.5%	10,3	15	+0.7	GND	DEF	٩×	* ALL	DENKL	LITTE	de la 70	POSIT	uc
					+50m1			5.4	r.Y				
			_/5	+13.7	+ 50aV	ION	9	-0.18	2340	- 34/	43.3	65	
					GND						-43.6	-65.3	
			15	t0.7		22346	3	3.0	ن م	2.4	2.23	9.78	
						"isone					-0.467	-252	
			15	10.7		56 year	3**	XX (A	ILL AK	T NU	44	,	
						purd							
			/5	+0.7	PAS	NYC	6	34.4	68	17.6	71.6	90.2	
											2.21	-21.3	
	510	2	5	11.4	-/30mY	OFF	6	265	34	-7.6	39.5	55.5	
					CND						-24.5	-40.2	
1			5	+/4	t SOMV	ON	60	47.35	أدمد	-11.5	220.5	310	
					GNL						- 4728		
			/5	10.7	GND	CEE	9*	ALL D	VICE S.	LITCHE	0 TO A		
					+50ml			SULP	Y				
			/5	+0.7	+5CmV	CIJ	9	10.7	545	-425	68.4	92.2	
					GNU						-42	-25.9	
			./5	10.7		30% 1.4	3	.32	alil	25	529	63.3	
						KONA					11.1	1.679	
			75	10.7		36/ 354	3**	y *	WILL	Nor	VULL		
						pulse							
			/5	10.7	PAS	SIVE	Co	106.3	192	50	22.45	280,6	
T	T					!					- 5.84	-6' 7	

Parameter	Fluen	ce	Bies Con	dition	G POINT: Bias Con: During 1		Sample size	Mean	AGE (Hin.	Mean +20	Hean +30	Accept Reject Criteri
	erc	m2	Supply Vole (V)	Patt or	- H	Output					-21-	-30	
A Tos (III)		O13	5	+1.4	-130aV	OFF	6*	15.2	58.2	-9.1	620	928	
					GND						-36,60	-624	
			5	11.4	t50mY	ON	64	584	333.1	- 72	328.1	538	
		,	Ĺ <u> </u>		GNA						-261.4	-421.3	
							Y ONE	VEAICE	A RTCH	0 70	POSITIV	e Sup	PLY
(Amail	25	iOii	15	±0.7	-/30e.Y	OFF	3	4.87	11.1	0.8	15.8	21.3	
					GND						-64	-11.6	
			15	10.7	+ 50mY	ONL	.3	2.47	. 9.1		142	20	
		,			GAID						-2.3	-15.1	
	.5«v	O ^t	15_	10.7	-130aV	OFF	_3_	29.3	43.1	13.6	59	23.9	
					GNI						-0.36	-15.2	
			15	±0.7	GND	OFF	9	0.49	53	-36	69.9	104.6	
					+ 50m1						-68.9	-1036	
			_/5	10.7	#50mV	an	12	2.39	56	-36,5	653	96.7	
					GND						-60.5	- 92	
			15_	+0.7		50% duly	3	20	86	58	98.8	1/5.3	
		Ш				C8560 %					412	26.2	
		L_	/5	+0.7		56 ysec	_3	663	83	56_	93.9	102.7	
						pulse		i			38.7	24.9	
		 	15	t0.7		SSIVE	_6_	63.8	78	47	90.60	1001.1	
											37	23.10	

الروائع والأنافق العراد ويداء بعانوا الرائد والعقادا الواد المقادا المائد والدوائعا والادائه والادائه

	noter	Fluer		39	dition	G POINT: Blas Cond		Sample size	Nean	Hax.	7 o ∫ Hin.	Hean +2.0T	Hean +30	Accept Reject Criters
		en	m²	Supply Vol	Matt C	##-	Outout					-20-	- 35	
\Ia	(nA)	_/x/	012	15	+0.7	-/3/mY	OFF	3∗_						
						GNA						POSITIVE		
				/5	+0.7	GND	OFF	60	**.3 D	VCE	ATCH#	TOPOS	TIVE SI	PPLY
						+50m								
				15	+0.7	+50mV	22	9	-6.69	103.6	-820	1148	175.5	<u> </u>
		,				GNA						-Y38'Y	-128.9	<u> </u>
		1,25	(O'2	15	t0.7	GND	OFF	3	167.9	185	140	216.2	241.1	
						+50m						119,2	14.8	!
				15	+0.7	+50mV	QN)	3	1/6.7	146	98	الكفار	19.3.8	
						GND						65,2	.17.5	<u></u>
\neg				/5	t0.7		50% duly	3	176.7	218	147	250.5	287.1	L
							CHER CO					100.8	65.9	<u></u>
	_			15	t0.7		56 M Sec.	.3	219.3	239	200	258.3	277.8	
		_	1		1		PLINE					150.3	1628	<u> </u>
			;	15	+0.7	PASS	IVE	6	183.7	222	124	2223	36.6	
_					1	1						95	50.2	
		25	KIO ¹³	15	+0.2	GND	OFF	9*	* ALL	DEVICE	LATCH	-3 70	Pa: ITI	£
		1		1		+50mV			SU	PLY				L
		1		/5	+0.7	#50mV	CN	9	5.69	285	-22/5	4024	6083	-
_						GNO						-396	-596.9	
		1	1	15	±0.7	1	50% A. U	.3	3343	400	290	450.4	508.4	1
		1		1	1		CHCK					2183	160.3	
_		$\overline{}$	\vdash	15	+0.2		Stusec	3**	74	DILL 1	VOT A	ULL		
		†	1.	1			PUBE							!

Parame		Flue		Bias Con	OPERATIN	G POINT: Bias Cond During I		Sample size	Mean	Hex.	Min.	Heen +20	Hean +30	Accept Reject Criteri
		er	n2	Supply Volt (V)	Mull or	## -	Output	'				-25	<u>· 3₫-</u>	ļ
JBO	nA)	2.5	Š	1.5	t0.7	PAS	SIVE	6	385.2	4/20	263	566.3	10565	
												225.1	11-1.8	 -
		511	٥,9	5	+14	- 1.30mV	OFF	6	291,2	4125	21960	4.38.6	-ರಬ-ತ	<u> </u>
\Box						GND						143.2	70_	
				K.	+1.4	7.50mV	۱۸۱	(a	229.3	359.9	1670	4265	522 /	
						GNL						/32./	585	
				15	10.7	GND	OFF	9+	* ALL	DEVICES	LATCHE	D TO	20517	
						#50mV			50	PPLY				
				15	+0.7	15Unix	ON.	9	111.8	/333.3	-406.9	1222	1860	L
						GND						-/053.5	-/630	<u> </u>
\neg				15	10.7		3572 Ave	.3	532.3	610	4260	(0/07.7	235.4	
							CHCHE					297	337.3	
_			_	15	+0.2		Souse	3**	* * (4)	LL NO	T NUL	L		
_		_				1	PUISE							
_			_	15	+0.2	PASS	NE	6	665.2	718	598	748.1	2374	
_												5822	540	
_		/x	013	3	+14	-/30 MY	DEE	68	1868	654.8	403.1	6265	786.3	
_						GND						287.1	187.3	
				5	+14	+50ml	ON	600	498.9	595.7	431.7	(0627	253.7	
		_				GNU						340.1	2.15	
+		Н				1 200	1	& ONE	DEVICE	LATCH	A TO	PLSITI	IE SL	ille
					·									Ι

Parameter	PE: LM	Bias Cos Durina M	OPERATION dition	Blas Con		Sample size	Negr.	Max.	Nin.	Hean -20	Hean -30	Accept Reject Criteri
	e/1/12	Supply Volt (V)	Will or		Outout							
JURENIE ZIWK	25×10"	15	1.5	-/20mX	OFF	_3	10.34	11.14	9,29	8.44	7.49	
TRHEM: (DA)		15	1.5	+3871		_3	10.26	11.04	8.03	8.40	7.47	
	5*10"	15	1. S	-EKRY	OFF.		9.63	10.54	8.47	2.51	Gitto	
		15	1.5	1899 A	OFF	9_	44.0	18.57	7.18	228	N .	
		15	1.5	+SOLEA	ON	ia_	10.58	12.38	6.82	3.39		
		15	1.5		50 ays.	_3	14.68	19.90	10.63	517	<u> ७.सम</u>	
		15	1.5		Se hace	3	15.75	20.14	12.56	7.90	3.97	
		15	1.5	PAS	SIVE	(0_	15.30	18.57	12:24	2.20	7.05	
	I XIOIS	15	1.5	-/30mV	OFF	3>*	7.74	2.36	7.12	5.99	سيد	
	4	15	1.5	300	DEE	9.4	\$ 400	ikes P	AILED			
		15	1.5	+\$0m/v	CN_	19	8.24	13.43	5.31	3.43	1.02	
		15	1.5		SCAL STON	3 4	10.28	14,2	7.12	3.07	*	
		15	1.5		So nesc Plass	.3	11.27	14.86	7.96	4.52	183	
		15	1.5	PAS		(0	10,26	1.3.5	7.43	1.74	1,99	
	ور ماد چاند	15	1.5	SOMY	OFF	9	ALL DE	VICES	LATCHE D	IO 1405	11116_3	INNEX
		15	1.5	120 mV	ON	9	5.42	8.82	3.34	1.23	0.01	
		15	1.5		SCHOOL DUTY	.3	6,55	2,00	1.47	1.95	¥	
		15	1.5		56 Hair	.3	WILL	NOT !	UULL			
<u> </u>	*	75	1.5	PA	IVE	(0	دمم.	8.57	3.67	1.66	*	
	* VALLY	С.НА	AKOE L	SUGA								
	** 1 15		ILEA									

Parameter	PE: L/)	Bias Cos During H	OPERATIN dition	C POINT: Bias Cond	iltion	Sample size	Nean	Max.	Min.	Hean -20	Hean 30	Accept Reject Criteri
	EKML	Supply Volt (V)	fight ~	#:	Output							<u> </u>
) THUTSIAN	5×100	15	1.5	escent escent	OFF	9	ALL DE	VICE	LATCHE	TO AUS	ITIVE :	the
PRELAT (TA)		/5	1.5	12×16	ON OF V	9	3.72	6.52	1.90	0.79	*	i
		15_	1.5		CHILE	3	3.68	4.8%	256	/_37	Diad	
		15	1.5		56 M346	_3_	WILL	NOT	NULL			
		15	1.5	PASS	IVE	6	<i>ā</i> .93	404	1.59	لوزره	#	
40	2.5xiCV	15	1.5	- '32 N	CFF	3	e0.40	-0,26	-0.65	-0.90	-110	
Manua Sing	N.SKICH	15	1.5	+30'DV		3			-0.68		-0.76	
cental (m.)			1.5	- 130.50	USE	3	-1,28	-1.10	-147	-1.65	-1.84	
	5×10"	15	1.5	530 N		9		-1.54	-487	-7.65 -5.28	-6.5d	
_			1.5	#30m√ #30m√	Off		-3.22 -3.63	-0.48	-5.01	-4/86	- (a.11	
		15 15	1.5	GNO	CAL	<u>الها</u>	- 4.74	-4.53	-5.01	-5.45	-0.17 -2.2.3	
		15	1.5		56 11 30 5	3	-4.88	-4.21	-5.66	- (0.14)	- 2.32	<u>'</u>
		15	1.5	PASS		6	-4.71	- 4.12	-357	10.08		
_	IXIO'2	/5	1.5	· 40 PT	GEE	.3××		-2.78	-2.82	-286	- 788	
	1.610 -	13	1.50	24.0 24.0 74.0	CEE	77.	1	EVICES	PALEC			-
		15	1.5	+30/nV	ZN.	المار	-45%	.2.59	-10.08		מג עו	
		15	1.5		Erecz.	.3	-9.15		1-10.87		-1207	
-		15	1.5		36 13	3			16,00			
		15	1.5	PASS		6		-8.63	,		-625	
	* VALUE		Ket 41	SIGN								
	# /DEVI	1										

Parameter	El Jence	Bias Con Dering N	dition	G POINT: Bias Con During		Sample eise	Hean	Hez.	Nin.	Hean 20	Hean - 307	Accept Reject Criteri
	%cm2	Supply Volt (V)	Pall or	#:	Outsout							
Americans	25XIOI2	15	1.5	SY Y	OFF	9				o Med		22Y_
erly maj		15	1.80	*20/11Y	_ אס	9	-2.95	-5.29	-14.47	-15.30	-19:01	
		<u> </u>	1.5		30% DUSY	_3	-10.88	-10.71	Kells	-18.49	<i>-21.</i> 3	
		15	1.5		SO H SOC	3_	WILL	NOT	NUL			
		15	1.5	_Pa	SWE	Lo	-/3.98	-1226	-14.64	-15.24	-Heid	
	5×1012	کار	1.5	GNDV	OFF	9_	ALL NO	1555 4	TEMEN	200sc	AK. 16	PRY
		15	1.5	+ 20m	ON	9	-9.71	-451	-18.12	-19.59	-MA	
		15	1.5		TRACE	3	-15.75	-1262	-20,21	-23.62	27.65	
		<i>1</i> 5	1.5		36 MSEC	3	1414	NOT	NULL			
f -		15	1.5	PAS	SIVE	6		-14.6	-18.66	-20.04	-2156	
		I										
												.
		T										Γ.
							T					r –
									·			
		1			i							
		1					 -			1		
		+	-				 					

LM139, National Semiconductor, hardened

DEVICE T	re: Lin	134 HORDEN	ED NSC	μa	GE 10	£3				4
Faramater	Fluence	Operating		Sample	Mean	Hax.	Mio.	Hean +20	Hean +3C	Accept Reject Criteri
	erm2	BIAS: IRGAD.	BIAS! MEAS.					-25	-3a-	
A YOS (my)		V5++15V	Vauce +0.74	3	-0/3	-0.1	-0.2	-0.018	C.C328	
		JN -+50mY	VS=+/6Y					0.249		
	125110	INT. GAID		3	-0.4	-0.4	-0.4	1.0.4	-04	
		QUITEUT . ON						-0.4	-0.4	
	251100			.3.	-0.9	-0.6	-1.2	-03	0	
								-7.5	-/.8	
	511012			3	-0.83	-0.6	-42	-0.19	0.437	
								-1.48	-/.R	
	5×10"	14-640		_3	0.1	10.5	0.7	1.49	2.18	
		IN+ + 50mV						-1,29	-1.9%	
	1.25732	OUTPUT COSE		_3	0.97	ا آھا۔	0.8	:38	1.59	
			<u> </u>					0.55	0.34	
	25-100			3	11.8	20.4	3.0	29.2	37.9	
								-5.6	-14.3	
	5:1012			3*	<u>₩</u> F	ALLED				
A Tos (na)	5*10"	N2 - +/6V		.3	-0.67	6	-1.0	0.4/28	1.02	
		IN+50mY						-/. 82	-2.4	
	1.25/102	1N+ : GND		.3	-41	-1.0	-2.0	4.49	8.22	
	1	OUTPUT: ON						-102.69	·16.98	
	2.510			3	-14.7	- ጽ	-26	1.37	2.39	
	لم							-3-17	-43.7	
	5×1012			_3	-28	-16	-44	0.84	15.3	
	↓	1	<u> </u>		i	1		-56.8	-7/3	

	luence	39 HARDEA	4,	Sample etze	Невр	Hax.	Min.	Hean -20	Heen - 307	Accept Reject Criteri
	e/cm ²	BIAS: IRRAD.	BIAS! MERS.							
LITERET SAIK	S NO"	VS:+15Y	Y5 + 15Y	_3	6.92		6.37	5.94	5.16	
URBEATT (ME	1-25×100	IN- + +50mY	YHULL=1.5Y	_3	4.55	4.85	4.00	3.60	342	
		IN+ GAD		.3	3.33	3.64	282	2.52	2.11	
	2410,5	IAO TUATUA		3	2.65	ಎ.೪೧	æ.31	5.04	1.7.3	_
	5×10"	IN GND		.3	6.97		6,36			
	192×193	IN+++50mV		.3_	4.5%	4.86	1.96	.3.5a	3.00	
		OUTPUT OFF		.3		3.65	224	247	203	
	2210,3			3.*	F 0 1		م⊊ہ∻	YKES	EVICED	
MORRE SILIK	5310"	Vs+15V		3	-4.49	-1.15	-4/.82	-546	-5.50	
URREAT (MA)		IN- +50mY		3	-6,86	-6.38	- 2.19	- 2.20	8.43	
		IN+ GND		3	- 8.08	- 2.59	-8.33	-8.53	2.35	L
	221013	OUTPUT! OM		-3	-8.23	-8.33	-206	-247	- 1.24	
_	5×10"	M 6ND		.3	4.49	-41.11	-4.86	-5.24	-5.62	
		IN+ = +50mY		.3			- 2,26			
		AUTAUT CEE		3	-8.12	-2.61	- S.	-9.01	-9.410	
	5003		1	.3 ×	<u> </u>	ļ	* ~2	DEVICE	S FAU	<u> </u>
		ļ		 	 	— —	 			
					1		<u> </u>			1

100

į,

ŀ

į

į,

LM139, Signetics

Parameter	Etyence	9 S.GAIE		Sample size	Hean	Haz.	Hio.	Heen +EC	Hean +3C	Accept Reject Griter
		BIAS: IRRAD	BIAS! MERS					- 5/2	-35	
Nos(my)		Va - + 15V	VALKA - 10.7 V	5_	0.1	<u> 15</u>	-0.9	1.92	2.83	
	*	/Al = +50mV	Ys : +/5Y		<u> </u>			-/.20	<u>ده). د -</u>	
	LANG	INT - GAID		5_	3.62	19.7	-0.9	بهاراها	30.4	├──
		ONTPUT : ON						-14.4	-93-4	-
_	~72×10,3			5_	-5.2	·0.3	-21.9	13.5	228	├ -
_	1						Ļ	-23.9	-33.0	
_	210,3			15	-5.58	-43_	-21.9	12.7	21.8	├
								23.8	-33_	₽
_	Kuna I	IN- GND		1.5	1,36	4.1	0.1	4.5	602	!
	_5×0'	1N2 - 150mY		1				-128	-3-35	1
	12 3.5	OUTPUT OFF	 	1	2.14	6.5	04	7.33	9.92	
_	14.3-	OUTPUT - OFF	 	1	1	1		-3.05	-5.64	
	*	 	-	1	6726	232.1	9.8	3/25	4124	L
	72m ₃	 	 	+	TALL.	1		1.623	-151-2	
-	- * .	 	 	5.	1 1		OT 50			
	2×10,3	*		1 35	 "					
		V	 	13	-234	1,7	-10.8	239	123	
Les(nA)	5×0"	. Va + +/5Y	+	 ``	100.33	1"	1	7/2/	-16.9	
		/AI- +50m	 	1.5	-0.84	3-2	-24	3.75	604	
	121012	IN+ · GND	 	 1	10.00	1~~	-	-5.43	-7.72	
		ONTENT - OVI	 	 	-4.28	14.3	17.2	16.4	26.8	Γ
	2.500	1	 	+-3	7-7-96	1 "	1//	1-25	-35.3	T
			 	15	-5.28	148	-12.7	19.1	34.5	_
	5×104		}		477.74	1/ 7/ 0	1-1-1-	-30-6		_

	Pluence	Operating 1	TICS PACE	Sample	Mean	Max.	Hip.	Heen +2CT	Heen +3G	Accept Reject Criteri
acoutter		BIAS: IRRAD	BIAS: MEAS					-20-	-30	
Tos(nA)		Vs : 1/5Y	Ymm - +074	5	1.32	4.9	-1.3	661	9.25	
TOSCHE	-240-	IN- GND	Y2 - +/5 Y					-3.97	6.61	
	12/0/2	IN+ . + 50mY	13.	5	2.66	12.7	-3.9	160	22.7	
	13/0-	OUT PUT OFF						-10.7	-12.4	
	2.5×10 ³	Surely Dee		3	26.4	54.9	8.3	68.3	83.5	<u> </u>
	2.3310							-15.6	-36.5	L
	5xi0'3			<×	* W	LL NOT	SINK	CUAR	ENT	
	_5X/O"			1						<u></u>
		No augy		400	23.10	39.4	14.3	42.4	59.3	<u> </u>
(Ac) PI	_5×10"_	V8 - 115 Y	 	1 7.72	-مستوا			-0.00	-12.1	
		IN- +SOMY	 	1/24	539	913	223	117.5	149.0	
	1×1012	IN+ GND	 	111	1			-9.66	-414	l
	ا خي ا	ONTENT . ON	 	4**	123.9	209.7	54.1	3869	348.3	\square
	J.5×103		 	1755	100.	1		-39.0		Γ
	- t	 	 	400	200.6	322.1	89.3	443.6	565.1	1
	2510,3		 	1.75		1		-42.4	-//43.9	1
	- k-	 	 	1	42.2	/39.2	14	53.4		
	SHO _H	INT · CAID	 	1	1	1		-52.7	-110.3	1
	+ + + -	1Nº +50mV	 	15	10/3	2804	26	3,00	415.6	4
-+-	TXIQ	OUTPUT OFF	 	+	T*****	1		-108.6		
	 		}	ــ د	200	444.1	58.9	5/5.9		3
	2.5xid	1	 		1	1		-115.8	223.7	ــــــــــــــــــــــــــــــــــــــ
_	5103		 	5*	1	AL NOT	844	Cua	deut	

	Thence	39 SIGA			Sample else	tiean	Max.	Hla.	Hean - 20	Heen -30	Accept Reject Griter
	e/cm2	BIAS: IRRAD.	Bias:	Mans.							
ITENT SAW	2×100	YS:+KY	Yset	15Y	5	20.58	22.3	163	55	62.9	
		INT- +SOMY			_5	19.9	21.9	128	14.7	12.1	
	25×10	IN+- GND			<u>5</u>	18.74	20.9	14.8	13/0	11.0	
	.5×/Nº	OUTPUT ON	\vdash		5	17.84	205	13.9	425	5.8	 -
	5×10°	W-GND			5	20.14	224	Kend	15.4	12.7	
	IXID,2	1814 - 450mY	$\sqcup \!\!\! \perp$		_۲_		22.0		14.6	12.0	
		OUTPUT - OFF			<u>ح</u>			14.9			
٠,	ZXID				_5_	0.08	VV82	0.020	Ce063	0055	
ORBITS IN	5×10"	YS=+BY			5	28.0	70.5	-2.1	-227	-296	
MREATING	1×10,5	1A1 = +50mY			_5	-1.56	-0.9	-3.3	362	465	
	_227NO	IN+ - GND			3	-2.22	-/.8	-46	-5.15	-632	<u> </u>
	ZXIO	OUTPUT = CAL			_5_	-3.60	-52./	-5.6	6.55	802	
	520"	IN GNO			5	-0.52	-0.5	-2./	-2.3/	3.0	
		IAIT - +5Cmil			_5	-1.6	-0.9	-3.3			<u> </u>
	25100	CLIPUT · CFF			-5	22%			<u>-3.35</u>		<u> </u>
	5211/2	<u></u>	ابا	<u> </u>	<u> </u>	-2/5	-/6.6	7.33. ر	<u> </u>	729.7	
											I -

LM139 (LM2901), Texas Instruments

mediated and the second of the second of the second between the second of the second of the second of the second

•

Parameter	Fluence	Operating	Polat	Sample utos	Heen	Hex.	RID.	Heen 426	Heen +3C	Accept Reject Griter
	€Æm²	BIAS: IRRAD	BIAS: MEAS.					-2 a	- iir	
A Vos (m)	5×10"	Y3:+KY	Vaux - 1474	_3	-0067	G	-0.1	0.049	0.107	
		1A\ = +50mV						-0.183	20.240	
	1922CC	INT GAIN		3	-0.43	-0.3	-0.2	0.029	0259	
		CLTPLE · ON	<u>i</u>	<u></u>				-0.825	-7.7.3	
	25×10'3			_3	-103	70.8	-1.5	-0.23	21129	
					L			-/.84/	ڪنمھ-	
	5×1012			.3	-/93	-65	-25	-0.91	-0.39	L
								-2.86	-3.47	
	.5×10 ¹¹	IN GND	<u> </u>	_3	0.32	0.4	<u>ೂ.ಎ</u>	1.498	0.643	
		IN+ + +50mY						0036	70.08	
	192×100	AUTHUT • OFF		3	0.77	1.3	0.4	157	1.98	
							<u> </u>	-0.04	20:00	
	J.5x012			3	167	25	0.7	3.48		
								1-0.118	-1.06	
	5000			_3	ఎ.9	3.9	1.9	4.9	5.9	
\				L			<u> </u>	0.90	-0.1	
	-									
(An) POT	540"	Ya -+157	<u> </u>	_3_	-11.7	-1.0	-19	2.24	Ka.7	L
		1N=+50mY		<u> </u>		<u> </u>	ļ	-30.6	-40	
	1,25100	INT GAID	L	3_	-26.7	8	~/8	33.9		<u> </u>
		CAD'T TURTIO						- 82.2		L
	3.521013		L	3	-39	_38	-24_	85.4		
4				<u> </u>				-/23. <i>4</i>	~2 /0.7	

	25/0,5	BIRST IRRAD. INTERPLET OFF INTERPLET OFF		3 3 3	-69 20-3 233 5143	71 95 069	-/50 -/50 -/9 -185			
	22x02 2x02 2x103	IN CARLAGOS ON IN CARLAGOS ON IAI - GA'S IAI - FSOMY		.3_	20:3 233	95 a	49 185	-312.5 116.7 23.97 319.5 146.5	-434.2 137.9 0.29 3628	
	25×102	M' GAY	Ys - 1/5Y	_3	233	ə %9	185	116.7 23.97 319.5 146.5	1329 0.79 3628	
	1.25×10°	141° + +50mY		_3	233	ə %9	185	23.97 319.5 146.5	0.79 3628	
	52.103							319.5 146.5	3628	
	25×10 ³	OUTPUT : OFF						1465		
				.3	2H'3	629	600		മാഹ	ŀ
				_3	54.3	K29				
	<u></u>		1 1					J3556	526-3	
	C			<u> </u>				473	4524	
ii_	- CARC			3	-846-3	.744	-030	-522.5	-348.1	
	_ k _				<u> </u>		 	-2/65	-\394	
IA (nA)	"מעכ	VR + 15Y		3	154.3.	./8.3	105	7102	2834	
	- N	/A'~50mY		L				68.5	25.6	
	19240 _{,9}	IN+ = GAID		3	324	460	231	623:	218.1	
		CUTPAT = ON		L				124.6	-0.063	
	32×100			_3	626.3	854	371	عمدنا	1473	
				L				142.1	-120.5	
	24IOI3			_3	985.3	/285	458	1900	2360	
								69.1	-389	
	5×10"	IN GAIL		_3	ಎ೦೨	549	144	321.6	327.9	
		181 : 150mY		ļ				96.4	40.1	
	1.35-10	CUTAUT . OFF		_3	268-3	669	322	3225	1082 56.6	

Pasameter	Zluence	090/ (4		Sample stre	Hean	Here.	Mlo.	Heats +20	Hean +3CT	Accept Reject Criteri
	e/cm2	BIAST IBRAD.	BIAS! MEAS.					-20-	-30	
(na)	25400	YS. + 15Y	YOULS +0.74	.3	1085	1270	225	1709	2020	<u> </u>
		IN. GND	Vs. 1/5Y					461.4	150	
	5×1012	1AH= +50mY		3	16dal	1896	1204	2454	2850	
		OUTPUT! OFF						869	473	
								-24	-3-	
ARRA SHIK	5710	Ys: 16V	V3 : +KV	3	1885	21-18	17.910	16.02	14.61	<u> </u>
C. PRENT (m)	Lixida	INT +SOMY	VNOLL = 1.5V	3	15.40	12,28	13.14	10.19	257	Ĺ
	ふんどろ	MT = GAID		.3_	11.79	Ila Ila	8.5%	3.94	0,019	
		OUTPUT: ON		3	9.08	14.86	551	*	*	
					<u> </u>					ļ
	"סוגס	IN GND		_3	18.9	19.9%	1806		16.0	ļ
[]	IXIOIS	Vallet +50mV		_3	15.33	17.51	13.74	الطائلا	9.47	<u> </u>
	2.540	OUTPUT - OFF		3	11.51	14.98	8.99	5.29	218	
	2XIVI3			.3	8.23	43.55	5.79	4.31	*	
			XYALUE CHAN	ڪ ڪئي	וכם א					Ļ
MOTERT Sur	-5xXVV	VS-1KY		_3			:394			
URREATT (TO	בטוגו	/A) - +50mV		_3	-6.21	-4.46	- 8.76	-10.23	-17.98	
	SAIDIO	M' - GND	L	_3	-9.84		-/3.34			
	SWA	OUTPUT! ON		3_	-1256	-2.88	16.39	- <i>21.2</i> 0	-25.51	
	5×100	IN" GND		3	-3.18	-2.39	-4.14	-4.95	-5.84	
		1N+++50mV		3	-6.75	-4.84	-9.00	-11.06	-13.3.	
\neg	2.5×1012	CUTPUT : OFF		.3	-10.57	-7.37	-13.84	1704	Bucke	
	5×1010		J.	3	-13.36	-8.8A	-17.04	-31.23	-25.92	i

LM710, National Semiconductor

大学の出来できた。 (Miller Miller) こうかん こうがん こうがん こうかん (Miller) こうかん (Miller) かんしょう かんかい こうかん (Miller) かんしょう しゅうかん (Miller) かんしゅう しゅうかん (Miller) かんしゅう しゅうかん (Miller) かんしゅう しゅうかん (Miller) かんしゅう (Miller) かんしゅんしゅう (Miller) かんし

Parameter	Pluesce	Operation		ME /	Sample	Magn	Max.	Ma.	Hean +2.07	Hean +367	Accept Reject Criteri
	< /cm²	BIAS: IRRADIA	DON_						-50	-36-	L _
$\Delta Vos(m)$	~25×012	YELOW NOTON	IN 7	YnDP	٦	0.035	0.05	0.02	0.0774	0.0986	
		Your O. 7Y	1						0.0024	COST	
	2250,3		11145	YmO.	2_	20.05	0.06	-0.15	0.0223	0.0859	
									0.232	20.296	L
	2×0,5		10-13	OmV	<u> </u>	0.07	20.0	0.06	0.0283	0.112	
									00412	20326	<u> </u>
	2×1013		IN-+50	Yan	2	-0.1	70.05	-0.15	andry	0.112	
									27.241	0.3/2	
	5×1012	Ymn 154	IN - 13	OmV_	3	200	20.008	2033	0.005	0.0125	
			1			1			-0.045	00525	
	_5×1012		IN - + 5	VmD.	3	0,2283	0.019	70.393			
						Γ				70. SM9	
	S'9×10,5		14- 13	Pm7	.3	TO 4334	20011	70.036	0.0034	0.0150	
								Ī	0.0478		
	8.24012		IN- **5	vmo	.3	20.1423	0.008	0.461	0.3970	0.6494	
									20.6918	70.9641	
	1×10/3	Vn.u0.2V	10. 1.	YmQE	a	0.115	0.19	0.11	0.129	0.134	
									0.101	0.0938	
	/x/0/3		IN - +50	Vane	a	70.09	0.03	70,45	0.0797		
			T				<u> </u>		-0.84	70.345	
	124013	Van - 157	N -134	Ym¢.	.3	70.02	70,009	70.008	70,0003		
	-	1							0039		
5	/×10/3		IN- + +	YearO	_3	70./683	0.003	0.54	0.4281	0.2364	
									0.748	-4.0691	

Pasameter .	Pluence	Operating	Potat	Sample etse	Hean	Max.	Hio.	Hean 426	Hoen +3G	Accept Reject Criter
	Ckm2	BIAS: IRRANIAT	ion					2962	- 30-	
Joseph)	2.5×1012	A	IN X30mV		0.2	0.3	0.1	0.483		<u> </u>
ľ		V004-0.74						200828	0.004	
	25210'3		IN- *+50mY	a	-0.4	ــــــــــــــــــــــــــــــــــــــ	-0.7	0.449	0.823	
				<u> </u>	L	J		-1.35	-1.67	
	5×1012		16: 130my	٦	0.2	0.4	0	0.766	106	
					L			0.3de	0.649	
L	521013		IN - +60 my	l d	0.65	-0.3	-10		4.830	
	4							-1.604	70.13	
	5xIO'2	Ymus : 164	/N " 7/30my	3	-0.37	-0.23	72.30	-0.1978	-0.1618	L
				I				72.3401	10.3781	
	5×1012		1N" - 750mV	3	7. 4233	-043	3.69	25051	4.4493	<u> </u>
								5.3518	-2316	
	SUND'S		IN" BOMY	3	70.304	70.26	-0.36	لناهين	70,1534	
	<u>:</u>							20.4421	O. 4998	
	8.2=143		IN - 150mY	1.3	-1.27_	-0.39	-4.47	2.906	5.2453	L
		<u> </u>			<u></u>			64469	8.7853	
	144013	Van - 0.74	IN - 730ml	<u> </u>	0.35	0.6	0.1	1.06	1.41	
	<u> </u>			<u> </u>				2357	0.711	
	/x/0'3		IN +50mV	12	70.8	-0.5	-1.1	0.0485	1,65	
	 			<u> </u>				0.423	20.07	<u> </u>
	11/0/3	Vous 15V	IN : 130mV	3	2516.00	20.34	20,49	وومدور	O. 1881	
								73.57.24	D6384	
	1×1013		W-150mV	3_	1.89.33	2013	4.80	3.125	5.203	
Ţ	1 1			1				69/24	7.4170	

Parameter	Pluence		Operation	g Point		Sample size	Kean	Nax.	Min.	Mean +20	Hoan +3G	Accept Reject Criteri
	e/cm2		BIAS: IRRADI	LONTE					L			<u> </u>
(Hay AIA	2.5 40	Ų	V-74.47-12	4 IN-	730mV	2	4.3	1.4	1.2	1.583	1.744	
			Variateon	۷	+			<u> </u>	1	1.0171	0.3757	<u> </u>
	2.5×10	12		100-01	Vmoc.	. 2	1.5	1.6	1.4	1.723	1.924	Ь—
					¥			<u> </u>		1.21	1.3757	
	5×1012	_		المستنظلية	30mY	-2	1.8	3.0	1.6	2.306	2.6-19	<u> </u>
		_					١		L	+	0.95/4	 _
	54.013	<u> </u>		IN-+	50 my	2_	1.85	1.0	1.8	1.991	a.c6a	L
									<u> </u>	1.109	1.638	
	5×10	2	Vanceray	IN-	7/30mY	٠.	70.633	2.91	المحدد	5.54.4.	5.658	<u> </u>
	-,							l		TO SOR	28255	<u> </u>
	5×/0	2		IN"=+	50mY	3	-2.883	7.68	-5.18	1.0%	0858	1
					I				<u> </u>	-6.86	38525	<u> </u>
	8,2×,21	2		/N* *	-/30my	3	7./733	2.36	-4.57	4.9473	8/022	<u></u>
	-				<u> </u>					-2-94	10.354	
	S'9XID	ż		- 'AI	+50mY	3	عامالاصال-	-2.28	6.19	0.315	30359	L
	1				<u> </u>		Γ			-8668	285	1
	1×/0/3		Vrue - 0.74	IN7	JOMY.		2.5	3.0	2.4	2.783	3321	
										2.217	25757	<u> </u>
	1×1013			N_=	+50m1		2.7	2.2	2.2	2.7	2.2.	
					1					× 2	7.7	
	/×/0'	3	Vn. 4.5V	IN"-	730mY	3	116	213	٠ <u>٠</u> ٠٠٠٠	4.759	2.369	
		_								-7.67?	10.189	
	12/3/	,		IN-+	50 mY	.3	-3.9966	255	6.75	0.2243	3.1597	
	1				1					-82/2	111:531	

LM723, National Semiconductor

DEVICE T	re: LM	723 NSC		PAGE	10f1					:₹_
Parameter	Pluence	Operating	Point	Sample	Heen	Hax.	Hin.	Hean +2.07	Hean +3C	Accept Beject Criteri
	€kcm²	BIAS: IRRAD.	BIAS: MEAS.					-يكو-	-30-	
A Von(m)			Y VIALE + 15V. YOUT : 62Y	3	-1.67	,	- 3	2.95	5.26	
a April 1			I -040 = /5 mA		1.00			-6 29	- 8,59	
	14,33		,	3	-467	~.3	-60	-461	-0.0841	
								- 2.22		
You (mY	2 x10/3		Vial=30V: Yout >28	3			-4	21.1	30.6	
			I MAN : 3 TO A					-12.1	-Nola	
	1×1013			.3	0	13	-8	22.7	34.1	
			+					-ಬಎ.7	-34.1	
VREE (my	_5×Id²		Vine = *15V Your + LOV	3	a.87	8.2	0.9	9.68	1307	
		<u> </u>	ILAN . 15 MA					-3.95		L
	1×10/3			_3	3,00	7.2	-0.3	1047	14.49	<u> </u>
			<u> </u>					-4.66	- 8.49	
LINE Rea	5800	Ym • + DV	Vm - 1210/5 V	.3	70.00046	0.0397	0.0219	0.05.33	0.0803	
(%)		10ur - +5Y	Your of Y: Icom Son					-0.0546		
	1×1013	ILMA · IMA		_3_	0.0119	0.0377	_0_	0,0404	0.054	
								2016	D.0309	
LOAD REG	5×O ²		VIN: 454. Vout : +54	3	-0 0192	-0.0/38	-0.2219	-0.0089	-0.000	
(%)	-		THAT . I MA MUST						-242331	<u> </u>
	1×1013		50mA DAX	_3	0.0145	0.0252	20.0059	0.0498	0.0625	L
1.		1 1	l Ŀ		1			0.0009	0.0385	

MIC236, Motorola

DEVICE TY	198: MIC	പ്രീം നാ	IOROAR	PAGE .)	130					a2
Parameter	Fluence	Operating		Sample size	Mean	Max.	Mia.	Hean +26	Hean +3C	Accept Reject Critorie
	ekme	BIAS: IRRAD.	BIAS! MENS.					. 20-	· 20-	
AREL BALL	5×012	WC 64		7	1.73	2.8	0.6	3.35	4.16	
(wx)	4				 	<u> </u>		0.109	0.201	
AREE+SIG PO	5×0'2			7	0.6	0.9	0.3	1.0	1.2	
(mx)								o.a	٥٠٥	
%Det.	-5×10 ¹²		<u> </u>	7	0.686	4.8	0.0	4.31	10.43	
Sensitivity								-2.94	-4.76	
		 	 				 -	 		
							 	 		
								ļ		
							 	 		<u> </u>
								<u> </u>		
								ļ		
			 	 	 	<u></u>		├	 	
ક્ક										
		 			 	<u> </u>		<u> </u>	 -	├
							<u> </u>			
		<u> </u>	1	<u> </u>			L	<u> </u>		

MIC336, Motorola

Parameter	Pluence	336 Mc		PAGE Sample	Mean	Max.	Mio.	Hean +20	Hean +3C	Accept Reject Criteri
	e ICWs	BIAS: IRRAD.	BIAS! MERS.					-20-	- 30	
AREE BALL	SKIDIO	Vcc6 V		160	0.156	0.5	-0.4	0.698	0.968	
(km)							I		0.626	
Rees Sec Bar	ביסאל.			J(a	0.175	0.5	-0.3	0.651	0.889	
(my)	*						ļ	70.301	70.539	
& DEZ.	2×10,5			160	0.888	2.1	0	5.74	S.Ho	
CABITIVETY								-3.94	-س39	<u> </u>
·			 	├──	 	 	-	+-		
			 	 	-		 	 	<u> </u>	├
								 		
							 	 		
ts -										
				 			 	+	 -	
				<u>L</u>	L		<u> </u>	J	L	<u> </u>

D. ZENER DIODES

The radiation analysis carried out by General Electric largely from neutron data indicated potential shifts in Zener voltage sufficient to cause problems in some applications. Electron irradiation at 2.2 MeV caused relatively minor shifts in the Zener voltage at fluences up to $1 \times 10^{13} \text{ e/cm}^2$. Additional measurements were therefore carried out with 3 and 5.5 MeV electrons using the high voltage Van deGraaff at Notre Dame University.

The Zener voltage was determined both before and after radiation at a fixed current level by means of in situ measurements. This made it possible to determine the radiation-induced change in the Zener voltage to an accuracy of ±1 mV by relatively simple means. The experiment lasted less than one half hour and the radiation-induced thermal heating is not significant, so that thermal changes during the time of the experiment may be ignored. The absolute value of the Zener voltage, which is a strong function of the Zener current, has been determined to an accuracy of about ±10 mV.

The results of the measurements are summarized in Table 4. It may be noted that the majority of the devices tested do not change by more than the experimental error at a fluence of $5 \times 10^{12} \text{ e/cm}^2$ for all energies up to 5.5 MeV. Three device types showed a significant linear change in Zener voltage with electron energy, as shown in Fig. 2. One of the device types indicated a positive voltage shift, whereas the other two indicated a negative voltage shift. These changes are attributed to bulk radiation damage.

Some devices of the 1N829 showed changes as great as 12 mV, whereas the remainder stayed within ±1 mV. The anomalously large changes were not energy-dependent, and are therefore considered to be due to a surface ionization effect.

Very few of the Unitrode U28770 and U28775 high voltage Zener diodes were available for testing, and these showed shifts from -14 to -120 mV. The 14-mV value is within experimental error. In cases where very few devices were available, devices were first irradiated to a fluence of 1×10^{13} e/cm at 2.2 MeV and then reirradiated at a later data with 3.0

Table 4. Electron radiation effects in Zener and reference diodes

Device type	Manu- facturer	v _z ,	IZ, mA	Max, ΔV_Z at 5×10^{12} e/cm ² , mV	Electron energy range, MeV
Fievices with Zener vol	tage chan	ge with	nin me	easurement acc	uracy of ±1 mV
1N945 TC Zener	МОТ	11.7	7.5	-1	2.2 - 5.5
1N4569 TC ref. diode	DIK	6.4	0.5	-2	2.2, 5.5
1N4572 TC ref. diode	DIK	6.4	1.0	-1.9	2.2 - 5.5
1N4577 TC ref. diode	MOT	6.4	2.0	0	2.2
1N4895A TC Zener (ultrastable)	DIK	6.35	7.5	-1	2.2, 5.5
MZ827 TC Zener	мот	6.2	7.5	-1	2.2 - 5.5
.4M4.7AZ1 non-comp. Zener	МОТ	4.7	5	+2	2.2 - 5.5
.4M5.1AZ1 non-comp. Zener	мот	5.1	5	±1	2.2 - 5.5
•	age chang	ge with	in mea	asurement accu	iracy of ±1 mV,
Zener Devices with Zener volt	age chang	ge with	in mea	asurement accu	iracy of ±1 mV,
Zener Devices with Zener volt but with mavericks	age chang s showing	ge with	in mea	asurement accurgy-independer	aracy of ±1 mV, nt change
Zener Devices with Zener volt but with mavericks 1N829 TC Zener	age chang s showing MOT	ge with greate	in mea er ene 5.5	asurement accurrgy-independen	uracy of ±1 mV, nt change 2.2 - 5.5
Zener Devices with Zener volt but with mavericks 1N829 TC Zener	age chang s showing MOT	ge with greate 6.2	in mea er ene 5.5	asurement accurgy-independer -2 -12 change with en	uracy of ±1 mV, nt change 2.2 - 5.5
Zener Devices with Zener volt but with mavericks 1N829 TC Zener Devices with	age chang s showing MOT	ge with greate 6.2	in mea er ene 5.5 oltage	asurement accurgy-independer -2 -12 change with en	aracy of ±1 mV, at change 2.2 - 5.5
Zener Devices with Zener volt but with mavericks 1N829 TC Zener Devices with 1N935 TC ref. diode	age chang s showing MOT	ge with greate 6.2 ener vo	in mea er ene 5.5 oltage 1.0,	asurement accurgy-independer -2 -12 change with en	aracy of ±1 mV, at change 2.2 - 5.5
Zener Devices with Zener volt but with mavericks 1N829 TC Zener Devices with 1N935 TC ref. diode	age chang s showing MOT linear Z	ge with greate 6.2 ener vo	in mea er ene 5.5 oltage 1.0,	asurement accurry-independent -2 -12 change with en -ve (see Fig. 2)	ergy 2.2 - 5.5
Zener Devices with Zener volt but with mavericks 1N829 TC Zener Devices with 1N935 TC ref. diode	age chang s showing MOT linear Z MOT	ener vo	in means of the service of the servi	change with ency eye (see Fig. 2)	ergy 2.2 - 5.5

a Maverick.

Table 4 (contd)

Device type	Manu- facturer	v _z ,	I _Z , mA	Max. ΔV_Z at 5×10^{12} e/cm ² , mV	Electron energy range, MeV
Devices with significa	nt Zener v	olt¤ge	change	e measured on	ly at 2.2 MeV
1N4581 TC ref. diode	DIK	6.6	4.0	-4	2.2
1N4891 TC ref. diode (ultrastable)	DIK	6.4	2.0	-12	2.2
(uttrastable)			7.5	-8	
Hi	gh surge no	n-con	npensa	ted Zeners	
UZ8770	UTR	70	0.05	+i4 ş	2.2
UZ8775	UTR	75	0.1	+220	2.2 - 5.5

or 5.5 MeV electrons. No conclusions could be drawn from the data obtained from the second irradiation, primarily because most of the Zener voltage shifts were within experimental error.

An attempt was made to measure changes in the temperature coefficient of the temperature-compensated (TC) Zener diodes produced by a fluence of 1×10^{13} e/cm² at energies of 2.2, 3.0 and 5.5 MeV. These measurements could not be carried out in situ and were therefore subject to many systematic errors. The main conclusion is that the pre-irradiation temperature coefficient of different devices of one type varies within one order of magnitude, whereas the radiation-induced changes are less than 50% of the initial value. The temperature coefficient from -50 to +25°C decreases with radiation, whereas the temperature coefficient from 25°C to 75°C increases with radiation. No correlation with electron energy could be detected.

į.

. . .

Į,

4

;

÷

ŕ

4

F

Fig. 2. Zener voltage change with energy

(e)

.4M4.7AZ1, Motorola

Pares	eter				Operating	Point		Sample size	Hean	Hax.	Min.	Hean +20	Mean +3.67	Accept Reject Criter
		MeV	S/Cm ²	BIAS:	IRRAD.	Bias	: MERS.					- 20	-34-	
AN _E	(Kan)	د,د	540	Te.	5mA	Ig.	5mA	3_	0.162	-0.1	-0.2	-0.05	0.0065	
_											<u> </u>	-0.28	-0.34	
1		4	11/0/3			<u> </u>		13_	-0:/3	0.1	-0.2	-0.018	0.040	Ļ
			1			-	 			-	 	0.25	70.31	
Δ٧2	(MV)	3.0	SNO					3		3	-/	5	7_	
												- 3	- 5	
			INIOB					3_	-/	0	-2		٦	
			├- ₩			├─	 -					- 3	-4	
1 Ve.	(Ym)	5.5	5×0°					4	0.5	. 2	-/	3.08	4.37	
												-2.08	-3.37	
	• 1	\perp	/x/d3					4/	/25	2	0	3./6	4.12	
	٠	*				<u> </u>	<u> </u>				ļ	-0.66	-1.62	
			 			 		 			 	 		
						=								
			-			├		├			 	 		
		L	<u> </u>					<u> </u>			ļ			
			┸					<u> </u>				 		

.4M5.1AZ1, Motorola

Parameter			Operatio			Sample size	Negn	Max.	Min.	Hean 120	Hean +30	Accept Reject Criter
	MEY	∈/ Cm ²	BIASTIRRAD.	Bias	: MERS.			L	<u> </u>	-20-	- 4-	
AVE(my)	2.2	5×102	Iz · 5mA	Te	5mA	3_	0.467	0:5	0.4	0.58	0.64	
	Ш	1		\Box	<u> </u>	<u> </u>				0.35	0.29	
		1×10/3				3_	0.5	0.5	0.5	0.5	0.5	L
	14	 			 	<u> </u>	 -		 	0.5	0.5	
Vz (mV)	3.0	5,0				3	<i></i>	2	0	3_	4	
		F			1	L			I	-/	-02	<u> </u>
	\prod	1=1013				.3	0.33		-/	2.64	3.80	
	1	+			<u> </u>			ļ	<u> </u>	-1.98	-3,63	
ME (WA)	55	50,00				4	-0.75	6	1-2	1.16	2.12	
	П	+		Π					I	-J. 66	-3.40	
	П	INIOS				4	-0.25	0	T-/	0.75	1.25	
	1				1				Ī	-1.25	-1.25	
						<u> </u>			<u> </u>			
	_									ļ		
		-							ļ	<u> </u>		
		+	 			 	 	 	 	+	 	

1N829, Motorola

	meter	Flue	nce	1 NOTORO. Operating	Point		Sample size	Hean	Max.	Min.	Heen +2.07	Heen +3C	Accept Reject Criter
		meV	ekw,	BIAS: IRRAD	Buas						-25	-35	
Δ¥2	(Va)	حدد	546	IzeTC.O	Ta AT	TC-O	3	-3.867	-0.40	-10.7	7.97	/3.89	! —
		$\sqcup \bot$	L.		 		Ļ				-15.20		ļ
		Ш	1-103				3	- 7.033	-0.90	-19.1		24/32	
_		1	1				-	-			22.93	38.38	
ΔVZ	(my)	3	570		+		12	-1.0	0	-20	1.83	3.24	
		П	П							i	-3.83	-5.24	
			1×163				2	-2.0	-1.0	-3.0	0.83	2.24	
		1	I								-4.83	-6.24	
ΔVa	(my)	5.5	5=1013		+		.3	-5.33		-120	(421	11.99	
315	111111	1			$\overline{}$	<u> </u>	1		3/15	1		-27.65	
		Н-	1=10		 		3	-8.62	-3.0	20.6			
										1		-38.//	
		-	+			· -	 	-	<u> </u>		<u> </u>		
							I					<u> </u>	
		-	\vdash		+		 				 		
		-	+		 		\vdash	 -		 		\vdash	
		\vdash	-		1		1	1	1		\vdash		

1N935, Motorola

DE	VICE T	PE:	EPM	2_2	OZOBO	LA_	PAGE							2
Para	meter	Plue	nce	0	perating	Point		Sample size	Hean	Hax.	Hin.	Hean +20	Hean +30	Reject Criter
		Mey	ekm2	BLAS:	RRAD.	BIAS!	Meas.					-32	-35	
ΔVz	(mv)	2.2	5=10	Izil	mA	Iz.	mA	3	-10.7	:28	-/3./	-5.33	-2.64	L
			4	1								-/6.07	1/5.76	
		П	14/03					3	70.05	-/3.8	-25.1	-8.57	-232_	
,		I	1			Ţ	V					-://57	-37.32	 -
4¥2	(mV)	30	54.04			Tz .	mA	.3	-42/47	-11	-/4/	-9.6	-8.1	
												-15.7	-17.0	l
		П	11/10/3					3	-/8.47	·	. 2/	-/3,6	-11.1	
		П	4				J					7.فدة	26.2	
4 V>	(m/)	+	5004			Iz :	75mA	.3	-19.3	-/6	-25	-9.5	-4.5	
		IТ	1			T	<u> </u>				1	-29.2	-34/	1
		\sqcap	INO3			1		.3	-22	-24	-32	-15	-2.92	L
		I	1									-4/3	-50	
4 Y z	(OV)	5.5	5"/0"			Iz.	/mA	.3	20.67	-17	-25	126	- 8, 5	
		П				1	1					28.7	:32.8	<u> </u>
		П	12,33					.3	-30.3	-26	1-32	-18.6	- 62.2	L
		H	I			Ī	-					-462.1	/2.9	
SV2	(mV)		30,00			Ta:	7.5mA	3	-26	- 18	-30	-12.1	-5.2	
	l		1				1			L	1	-32.2	16.8	1
		Π	1403				1	.3	-40	-32_	-47	24.9	-124	
		П	TI.			T	I			í		-55.1	-626	

1N945, Motorola

the state of the state of the state of the state of

A STATE OF THE STA

かいこう くいき から 関係の主義 ぜいじゅん ひいり けんてき しゅうかいき マーン・キャラ かんしゅうしゅう しゅうしゅうしゅうしゅうしゅうしゃ

DEVICE T				NOTORO	_	Pac	E lof Sample	Mean_	Kex.	Min.	Hean	Hean -20	2 Aucept Reject Griter
	Mex	erm				MERS.					4	35	
(m) sy A	2.2	5200	Iz.	7.7 . 8	T.	25mA	3	-0.067	٥	-0.1	0.049	0.107	
				Ι		1					-0.18		
	-	Ix(d3				I	3	-0.1	-0.1	-0.1	-0.1		
(Vm) 51 A	3.0	546		 		 	 -, -	-,	-/		- /	-/	
	L	1103						-1	-1	-7	-/	-/	
AVZ (mY)	55	SXA		 		 	 	-/-	-/	-/	-/	-/	
		11/13		<u></u>				0	Ü	0	0	0	
		\vdash						<u> </u>	<u> </u>	 			
	-	-			-			ļ		ļ			Ì
	ļ	-					ļ	<u> </u>			ļ		
	<u> </u>	<u> </u>			 		 -						
	-						 	-	 	 			
	!	↓			 		↓	<u> </u>		<u> </u>		<u> </u>	i ——

1N4569, Dickson

Parameter				perating		Not lat	Sample eize	Mean	_Max.	Min.	Hean +20	Mean +36	Accept Reject Criter
	Mey	ekm²	BIAST	BRAD.	Bias	MEAS.					-24	307	
(Vm) sV	2.0	520'	Iz 6	TC • 0	Ia (Ðπ0	3	-0.067	1.3	-1.8	3.10	4.68	
	Ш					1					-3,23	-4.81	
	Ш	יאענו!			<u> </u>	 	.3	-0.60	0.70	-2.4	2,62		
	1	-			 	 			ļ	 -	3.82	-2.43	
Ne(mv)	3.0	540					ع	-1.0	0	م.د-	1.83	3.24	
		<u> </u>	L			<u> </u>						<u>-</u> 5⊷24	
	ш	14/0/3			 		~	-2.0	-40	-3.0	1:83		
	 -		_		 	 -	-			 	-483	6.04	
A Vz (mv)	5.5	Sadi				1	3	-1.3	-/_	-~	-0.18	0.40	
	П										-2.19		
	; ↓	11100					3	-267	-2	-4	-0.36		
	┷	<u> </u>		<u></u>	i	₩					-4.98	-6.43	
		-	<u> </u>		<u> </u>						 		
				_									_
	╁	┼──			 - -			 	 		 	 	<u> </u>
					匚								
	\vdash	\vdash			 								
	↓		├		├ ──		├ ──			├ ──	 -	 	ļ

1N4572, Dickson

Parameter	Flu	ence		perating			Fample .ise	Nean	Max.	Min.	Heen +26	Hean +3C	Accept Reject Criter
	DeV	ekm²	BIAS: II	ARAD.	BIAS	: MEAS.					-20-	-30-	
VainY)	المالا	5×102	Ta - Ir	A	Iz.	l m A	3	-1	0.40	-1.90	0.59	1.38	
	$\perp \perp$				ـ ــــــــــــــــــــــــــــــــــــ	<u> </u>					-253	3.3	L
	44	1×103			<u> </u>	<u> </u>	_3	-453	-0.70	20يم	0.55	1.59	<u> </u>
k_		<u> </u>			┼	 	 				-3.61	- 4.66	-
V= (m)	30	5400					n2	-0.50	0	-/	0.91	1.62	
	4					ļ	<u> </u>		ļ	ļ	-191		
	44	1.13					-2	-1.5	-/-	2	DD86		└ ─
	┿	.	-+			 	<u> </u>				2.91	-3·62)	
Vz my	55	510					7_	-/.5	-/	-2	-0.08	0.62	
	44				<u> </u>						-in 9/		<u> </u>
	Н-	14/0/3			ļ	<u> </u>	1 2	<u>-2</u>	-1	-3	0.83		L
	┿		,		 	<u> </u>	<u> </u>		ļ	ļ	/.23	-6-24	├
					<u> </u>						\vdash		
	$oxed{\Box}$												
	+	-			 		-			ļ	 	 	
	┿	<u> </u>			 _		ļ			 -		ļ	
	+	├──	 		 		├ -	 	 	├	 	 	

1N4577, Motorola

DEVICE T	ME: IN 45	77 Mor	OROLA PAC	of lof						<u>a</u>
Parameter		Or ating		Sample	Неар	Max	Man.	Hean +2(T	Hean +3C	Accept Reject Critor
	6/CW2		BIAS! MEAS.					-25	- 30-	
ΔYz	5×1012	Izia ma		3	-0.04	0	-01	0.0658	0.1187	L
(mV)	<u> </u>			L	L			0.145		
	1×1013			-3-	-0.0	0	-0.4	0.2		L
<u></u>		 	 		<u> </u>		 	-0.6	-0.8	∤
			 	 	 -		!	 		
				1			 			
			ļ	↓	 _		 -			<u> </u>
				 -			 	ļi		<u> </u>
	 		 	 			 	 		
				 			 			├─
							1	<u> </u>		
							<u> </u>			
		<u></u>		↓_			 	 		
	 		 	 		ļ	 	 	<u> </u>	
		 		 		<u> </u>	 	 		├-
	 	 		 	 	 	├ ──	1		
		<u> </u>	 	 			 	 		

1N4581, Dickson

Parameter		Operating	POLOE	Sample sime	Hean	Max.	Ma.	Heen 42G		Accept Reject Criter
	&VW5	BIAS: IRRAD	BIAS: MEAS.					-24	30	
(WA)	SHOU	Iz-4mA	Te-4ma	3	70-3	-0.3	1.0.7	200999		
Costs	1 10,3	 	1 1	3	-0.767	-0.5	-/.0	70.323	-0.600	-
1									-452%	
			 		<u> </u>	<u> </u>	├ ──	ļ	<u> </u>	-
		 	1	 	 	 	 			
							<u> </u>			
							ļ			
			 	├		 -	├─-			
			 	 	 	—	 	-		
		 	-	<u> </u>			 			
		 	 	┼						
		 	 	 		<u> </u>		ļ		
			 	 -			 			-
		<u> </u>	<u>† </u>	 				1		

1N4891, Dickson

Pazzaetez		Operating	Point	Sample else	Hean	Naz.	Mig.	Heen HEGT	Hean +3G	Reject Criter
	exm2	BIASTIBRAD	BIAS: M	ins.				-27-	-35-	
ــــ ټلا۵	52/012	Iz. 2mA	Ta · 2m	A 3	0.8446	-0.6	-1.0	-0.4047		
(MA)		┡—┼— -	 			<u> </u>	↓	-1.3785		<u> </u>
—	12/0/3		 	3	-/.333	-40	-:20	-0-6309		L
<u></u>	<u> </u>	 	 		 			20357	-2.3868	-
AVE	521012		Te-250	A 3	-0.7	-0%	70.8	0.1999	70.3999	
(my)	<u> </u>	 			L		<u> </u>	-0.900d	1.000	
	121013		ֈ		-1-X666	-1.1	-1.4	-0.961		
		 	<u> </u>		 		 	-45721	- <i>1.7.34</i> 9	├
			1				<u> </u>			
		 	 		 		 		 	├┈
			 		 -	-	 -	ļ		-
			1			L				
			-				 	-		
		 	 			 	 			
		T	1				1	T		

1N4895, Dickson

DEATOR 1	ŀ					Pa	Sample	1	l		Hean	Heen	Accept Reject
Parameter				Operating			şize_	Itaan	Haz.	No.	45	+35	Criteri
5KA	- ALIA	3 2	Tar	25 m A	T2. 2	Smarky	, , , , , , , , , , , , , , , , , , , 	-43	-03	-03	-0.3	-0.3	
(Va)	INOG	2.2					1	-0.9	-0.9	-0.9	-0.2	-0.7	
ΛVz	SHIP	44	 	<u> </u>	 -			-/	-/	-/	-/	-1	
(NA)	12/013	55					1	-4	-4	-4	-4	-4	
, 	 - -	-			ļ			<u> </u>	-				├
	 	┢	 		┼			\vdash	-	 			
							L					<u> </u>	↓
		├	-		├		 	 	 	 	 		┼
	 	 			 		 	1	 	 			\dagger
	<u> </u>	┡	<u> </u>					ļ	<u> </u>		ļ		
	-	┢	 -		 		├	-	 			 	├
		\vdash			†		 	 					
		\Box											ļ
		⊢			<u> </u>		-		-		 		├
	 	╁	 		+	· ·			 	\vdash	 		
	T	T											

1N4907, Motorola

	TR: /			illatar Operacing		PAGE	Sample size	Mean	Kax.	Mio.	Haen +20	Mean +3 G	Accept Reject Criteri
	m-V	€/cm²		IRRAD.		: MEAS.					-26-	-347	
Wz(mt)	2.2	42.0	Iz.	2mA	Iz á	Am)	3	-4/	-J	1-8	2.93	6.39	
				1		L					-10.93	-14.39	
		1º/d3					_3	-267	-4	-14	3.35		
	┸	-				 				<u> </u>	-18.68	-24.19	
Wa (mYu	3.0	SIR			1		3	- 7	-(a	-9	-3.54	-1.80	
				<u> </u>							-1246	-62.20	
	Щ	200		 			_3	-/2	-//_	-/3	-/0	-9_	
	₊	├-		 	 	 					-14	-15	
(km) SV2	55	5,04					4	-14,25	-9	-,23	-/88	4.30	
1.				l	1						-76.60	-3.180	
		203					4	-23.25	-14	-33	-6.80	1.17	L
	1	<u> </u>			-	-					-38.20	-46.67	
	_	 			+								
	 		ļ			<u>.</u>	 			 	 		
										<u> </u>			
					-								<u> </u>
	₩-	+			 		 	<u> </u>	Ь—	 	ļ		├

FCT1121, Fairchild Semiconductor

	rick T				FAIRCE		Enuca	Sample size	PAGE	Icf1	Hia.	Heen +2/5	Hean +3 CT	Accept Reject Criteri
		MeY	erm	BIAS:	BRAD.	Bies	MEAS.					-50-	-34	
1/2	(MY)	2.2	Sude	In : (Aml-C	Iz.c	AmL	3	0.1	0.4	-0.1	0.63	0.89	
	<u> </u>	Ш					<u></u>	1				-0.43	-0.49	
	<u> </u>	Щ	121013					3	C-2)	0.6	0_	0.89	1.24	<u> </u>
	<u></u>	4	1			_						-0.49		
41/2	(my)	3.0	5×10 [®]					٦	1.95	4	-0.1	2.25	10.65	
												-3,85	-6.75	
			IXID					a	Q	.5	-/		14.23	
		+	4									-6.49	-10.73	
sVΔ	(m)	5.5	5× <i>i</i> Ó ²			 		ລ	1.5	2.0	40	9.7	11.9	
	Ī. —	П										/.3	-/1.86	
			IXIO					a l	5	6	4	7.8	9.3	
		4	1			<u> </u>						2.2	0.76	
						 		 						
						 		 			 			
		-	\vdash			 -					 	\vdash		 -
		\vdash	1			_		 			 	-		\vdash
			1			 					-	├ ──		

LVA3100, TRW

DEAICE LA	PE: LVA	3100 <u> </u>	RLL PAGE	iof Sample		i	Т	Haan	Kean	Accept
Parameter	Fluence	Operating	Point	aize	Mean	Max.	Min.	+26		Reject Criteri
	6 kms	BIAS: IBRAD.	BIAS! MERS.							
NOCE YOUTHE	5×10/2	Tz - 4004A	Ta-400.A. ICHa	3	0.2233	0.30	0.14	0.3837	0.4639	
(end And)			Cree Fac Scare	3	0-3366			0.4467	0.5517	
Price Aprime			Ta - 400 MA IKHA	3	O.2166			0.3283		
(hycus)	11/0/3		Citie Fine Scale	3	0.3183	0.29	0.13	0.3809	0.4622	
angun.	5×1012		SHE LO 100KHZ	3	15.23	22.6		28.36		
Part (m/m²)	1×10,3	 *		3	15,23	23.2	9.4	29.52	.36.66	
							<u> </u>			
						<u> </u>				

MZ827, Motorola

	VICE T			Ì	Note		Page	Sample stre	Hean	Max.	Min.	Hean +26	Hean +367	Accept Reject Criteri
					ARAD.		Meas.	-			1	-94	-35	T T
ΔVz	(mV)	22	5402	Iz-	7.5mA	I.	2.5mA	.3	0	0	6	0	0	
					L							0	0	
			DX/OB					3	۵	0	0	O	ပ	<u> </u>
	<u></u>	1	<u> </u>			<u> </u>	ļ				<u> </u>	<u> e </u>	9	├ ──
ΔVz	(mV)	3.0	SUP		<u> </u>			3	-/	-1	-1	-/	-/	
												-/	-1	
			12/03					3	-0.67	O	-/	0.49	1.07	
	<u></u>		<u> </u>								ļ	-7.82	-240	<u> </u>
1/2	(mY)	55	51/0					4	-0.25	0	-/	0.75	1.25	
			1									-1.25	-1.75	
		<u>'</u>	14/13				L							
	<u>. </u>	<u>_</u>	-	· · · · ·	<u>. </u>	,	<u>. </u>					-		-
_														
		-	-			ļ		 			 -	+		-
_														
—		-	+								 	 	 	
		┪	1	\vdash				-			† 	 		

UZ8770, Unitrode

DEAICE 1	YPE: []	2.8	1770	UNITRODE	PAGE	lof I					a
Parameter	1			ng Point	Sample	Mean	Hax.	Mia.	Mean +20	Hean +3C	Accept
				BIAS: MENS		1			1.0	1.75	1
ΔVz	Kung	2.2	Ta - 50	A Iz. SOMA:0	19.	14	14	14	14	14	
(my)	LXACO	22				190	190	190	190	190	
sγΔ	5×10 ²	_									↓
(mV)	DIANA 3	22	 		- _/ -	-20	- 20	-20	-20	-20	
	,140-	2.3	*	*		-20		-~0	-~0		
	1					\vdash	 		— —		
						 			 	 	†
						1					1
							1		1		
							1	1			1
							1	1			
										1	1
								l			
										L	1
						<u> </u>				Ĺ	
	ļ	لـــا				↓	<u> </u>		<u> </u>		<u> </u>
		_				ļ	↓		<u> </u>	 	↓
		_				— -	 	<u> </u>	└	ļ	↓
		_				├	 	1	-		1
	<u> </u>	\vdash		 		┼	 		 		┼
	i				_ـــــــ	├		L	Ļ		

UZ8775, Unitrode

Parameter			Operating		Sample size	Mean	Hax.	Mio.	Hoan +20	Hean +3G	Accept Reject Criter
	Mex	e/cm2	BIAS: IRRAD.	BIAS! MEAS					-24		
(Vm) SY	2.2	Sxe	J.z - 0.1 mA	Tz . O. I mA	3	14.67	17.0	13.0	15.83		
	Щ			 					10.5	8.4	├ ─
	Ц.	17/03			3	15.07	ಎಎ	-8-	29.86		├
	1			 					1.78	-5.62	
Vz (mv.	3.0	5×02		$\pm \pm \pm$	2	0	0	0	0	0	
		IJ							0	0	
		1×103			2	-15	-10	-20	-0.858	6.21	
	I.								-29.14	-36.21	
(kg)5//	5.5	52/4		1	2	105	220	-10	4303	582.9	
	l	1							5223.3	343.9	
	\prod	1×103			_ ລ	/55	3/0	Δ	523.4	812.6	
	1	1							283.4	-502.6	-
	 	-		 							
	├-	-		 	+				 		
	L								<u> </u>		

E. CONSTANT CURRENT DIODES

1N5288, Motorola

Ç¢m². Fluence	0		(OlU Point		Sample size	Hean	10f Mrs.	Min.	Heen 120	+307	Accept Reject Criter
	BLAS: L	ARAD.	Bias	Mens.		ii			-20-	₩	
5x10'2	V=6V		V=6,		3	107000693	0	0.002	0-00KH	0.0028	L
									0-00398		
TXIQG					3_	٥	0		0	<u> </u>	L
									0_	0	
											Ĺ
					1						
						 			-		
								—			
			 		 						
					 	 					
						 		 			_
											
			-			 					 -
					 -	 					
			<u> </u>		— —	├ ──		 			
			ļ		 -	 					ļ
					 -	└ ──		 			
					<u> </u>						
		5x1012 V=6V	SAID'2 V=6V	SAKOZ V=6V V=6,	SALO'Z V=6V N=6v	5x10 ¹² Bras: Laran Bras: Mens 3	5x10 ² Rias; 1880 Rias; 1860 3 10x10066)	5x10 ¹² Blas: Larad. Blas: Mers. 3 (0x10046) O	5x10 ⁻² 1x10 ⁻² 3 0 0 0 0 0 0 0 0 0	5/10 ² V=6V V=6, 3 000060 0 0.002 0.0084	SAIC V = 6V V = 6V S CADDON O O O O O O O O O O O O O O O O O O

1N5290, Motorola

DEVICE I	18: IN 5	290 Noto!	<u> </u>	<u> </u>	AGE 1	of 1				
	Finence			Sample stre	Hean	Haz.	Min.	Hean +20	Heen +3C	Accept Reject Criteri
		RIAS: IRBAN	BIAS: MENS.					-20-	4	
Δœu (um	5x10 ¹²	V=4V	V=4V	0		Ú		C.	J	
(MA)								0	a	
	DNO-S			0	C	С	Q	၀	0	
								0	U	
										<u> </u>
			<u> </u>	<u> </u>						
				L						
		_ 								
					Γ					
			 							

1N5297, Motorola

1	Fyll⊤	97 <u>Moto</u>		Sample	1,11,4	105		Hean	Hean	Accept
Parameter	Pluence			etze	Mean	Mex.	Min.	+20	+30	Criter
		BIAS: IRRAD.	BIAS: MERS.					-20	-36∼	
طب النجيا	$-5x_{1}^{2}$	V=5v	V=5.V	3	70.00657	٥	-0.02	00164	0.00	
(A.m)								0.0.248	-DOAR3	
	1X10/3			3	-0.001	0	1-0.02	0.0164	0.02%	
V			*					TO_0298	-0.043	
										
			 				 	 		
				 	 		 	 		
					├		 			
			 	 	┝─┤		 			
					 		├─ ─	 -		
			- 		 		├			
				├ ──	 		<u> </u>	L		
			-l							
			<u> </u>	<u> </u>						
			<u> </u>							
								<u>[</u>]		
			T				1			
			1							
				 	!			 		

1N5300, Motorola

DEVICE TO	PE: IN 5	200	MOTO	PLOS			PAGE	105	<u> </u>			
Daggerates	Fluence Pluence		perating			Sample	Mean	Max.	Min.	Hean +26	Heen	Accept Be ject Criter
	610-104	D.ac.	ARAD.	Bias	Mene		''''			-20		
A Denk Culina	5x102	V=61	/ DDH)	V=61		3	-0.00055	0	-0.01	0.0083		
(Am)										-0.049	-0000	
-	BOIXI					3	-0.00333	0	-0.01	0.000	0.04	
$\overline{}$			/							-DOMA	-0.020	
												<u> </u>
												L
												<u> </u>
						L				L		
				L		<u> </u>			<u> </u>			
									L			
									L			
										L		ļ
									<u> </u>			<u> </u>
				I		1	1 1		I	I :		I

F. DIODES AND RECTIFIERS

1N4148, GE

Permeter	Plusace	148 G.E. Operating	Point	Sample eise	Mean	Nax.	Min.	Hean +2/F	Hean +3C	Accept Reject Griter
	e/cm²	BIAS: IRRAD.	Bus: Mens.					-20-	8	
$(An):aI\Delta$	5x10 ¹²	VR-15V	YR=16V	6	0.383	06	2.2	0.704	0.864	
۴ -	-								-0.0923	
	INION		1	6	0.933	2	0.5	2.06	2.63	
								-0.196	-0.76	
							<u> </u>			
Vir:(nA)	<u>5x10"</u>		Vr. 0,15v	6	C.833	10	-4	11.2	164	<u> </u>
					لــــــا		<u> </u>	-9.55		
	1 X10/3		 	6	75.83	G	-18	697		<u> </u>
<u> </u>		<u> </u>	<u> </u>				 	-18.6	-25	
	_		ļ	ļ						L
				└	 			ļ		
			ļ	ļ	 		 -			
				ļ <u>.</u>	 					
			 		┝──┤					
			 	├	┞──┤			 		ļ
			 	 	╂╼╼═╂			 		
			 		├──-		 			ļ
			 		├──┤			 		
,				 	 					
			 	 -				 		
			 	 				 - 		
			 -	 				\vdash		
			ļ		Ь					L

1N5711, Hewlett-Packard

DEVICE T	Pluenc		// Op	ereting		Pag	Sample stare	Hean	Hax.	Min.	Hean +2 <i>G</i>	Hean +307	Accept Reject Criteri
	e/cm2	E C	BIAS: IP	RAD.	Bies:	Meas.							
ANE CUA	51/012	3	IF .O.	45mA	IFO.	45mA	3	70.0333	0.6	-0.7	1.22	192	
		5.5					.3	0.967			-0.851		
	17105	۳					3_	0.267		-0.6	1.88		
	4	15					3	7,03	-0.9		-0.52/		
								L					Ĺ
		П											
										<u> </u>			
										[
										<u> </u>			
		П								I			F
										<u> </u>			

BC997, Texas Instruments

Parameter	Pluence		Operating	Point		ac Insti	Hean	Hex.	Mia.	Political Mann	Hean +30	Accept Reject Criter
	e/cm²	BIAS:		Biasi	MERS.					-20-	-30	
Al leadage (if	5x1012	VR2		YR - 24	CC±390	24	-0.383	-0.2	-0.7	-0.103	0.038	
_	DOIXI			 	 	24	-0442	-0.3	-0.8	-0.153	-0.800	
	1,10		t —	 	<u> </u>	_49_	U.7-22		Uab.	-0.73	-0.B74	
				ļ					 -	<u> </u>		
				 			<u> </u>		<u> </u>			
									 			
		 		-					 			
		<u> </u>							 -	<u></u>		
									 	 		
				-								
							·					
		ļ		 -					ļ			
				 -						ļ		
				 					<u> </u>			
		L		i								

FJT1100, Fairchild Semiconductor

Parameter	Fluence	Орн	erating Po	int		Sample etse	Hean	Max.	Mio.	Heen +26	Hean +3C	Accept Reject Criter
	e/cm2	BIAS: IR	RAD. 1	Lesi	MERS.					-20-	-30	
DINKUE)	5×10,5	VR-IOV		VR = 10	V	3	0.006	800.0	0.004	0.01	0.012	
										0.002	Q	
	1x10/3					_3_	0.003	VOIT	100.Or	0.0181	0.02%	
					,					-0.013	-0.01%	
							-1					
						\vdash						
				-								
			$\overline{}$									
						 						
					 -							
										i		

MV1404, Motorola

Parameter	Pluence	Operatio	g Polat		Sample sise	Hean	Max.	Mtn.	Hean +26	Heen +367	Accept Be jost Critur
	6/CW3	BIAS: IRRAD.	Biest	MERS.					<u>-77-</u>	-3-	
LEAKAGE	5×100	VR - IOV	NB 427:	oc. ±3%	(o	0.128	ይልይ	204		0.443	
CURRENT									0.0013K		
(AA)	IXIOIS				-to	0.2	0.3	0.03	OAIS		
_	k	 	- 						-0.CUZ	-0.117	
	5xid3		NR -8-5Y	ACC. ±3%	6.	0.143	0.3	-0.2	0.537	0.234	
	T								2051	-0.448	
	1×1013				6	0.0883	0.33	-0.3	0.56	0.796	
<u> </u>	<u> </u>		Γ.	,					-0.383	-0.619	
A DIONE	2×10/2		VR -1-5V: F	•IMHa	<u> </u>	1.53	3.8	- 7	9.%	14,2	
APPOITANCE			Acc.	_					-6.89	-//./	
(PF)	IXIO13				6	1.58	3.7	-6.5	9.55	43.5	
									-6.38	-10.4	ļ
	.5×10 ¹³		VR-8,5V:	C-10002	6	02	0.60	-0.1	0.75/	1/43	
	l		ACC.	_					-0.351	70/627	
	11103				6	0.0833	0.5	-0.3	0.6006	0.898	
Ţ	J	J								-0.23	
			 			-		 		 -	
			1								

UTR4320, Unitrode

Parameter	Fluenc		Operat	ine	Point		Sample size	Mean	Max.	Min.	Hean +20	Mean +30	Accept Reject Criter
		_	BLAS: JARAD		BIAS:	MERS.							
VE (mV)			If:50m		IF . S		.3	620	6756	lela7.3	680	684	
		15	Ī				3	477	6844	10102.8	694	702	
	/X/013	3					3	620	675.6	6625	6.79	684	<u> </u>
.		5.5			Γ.,		3	672	684.1	667.4	694	702	
E(mY)	J×jd3	3			IF : 100	.fmc	3	208	713	705	717	721	
-		55			ļ.,		3_	7.20	73-/	705	749	763	
F (mY)	1×10 ³	3			$I_F \cdot a$	20mil	3	760	764	756	768	27.2	
		35					3	728	801	758	821	249	
VE (mV)	1310'3	3		_	IF. 5	Amac	3	845	871	832	890	9/2	
-		5.5				L	3	859	894	833	922	954	 -
E(mY)	1×10,5	1			I.	I A	3	882	168	865	9/1	925	
		5.5					3	922	969	892	1000	1050	
VF (my)	ixiO ¹²	3	 		Ir: S	Α .	.3	947	960	9,22	991	1010	
	<u> </u>	22				<u> </u>	3	1000	1060	920	1100	1160	
<u> </u>	 	<u> </u>											
							<u></u>		ļ		L		↓

2N1878, Unitrode

Pare	Teten			perating	Polat		Sample oigo	Hean	Hex.	Nia.	Hean 120	+30	Accept Reject Criter
		e/cm2	BIAS: L	ARAD.	Bias	I MERS.						-30	
ANG.	n Young	<u> 5x10¹²</u>	Anne V	50V:	Lucos V	esov:	3	-0.022	-0.05	-0.108	0-0279	0.078	
	3		Te ·Te	۰	B.	<u> </u>					-0.03	-0.222	
		TXVO			Re:	360 S-	3	-0426	-0.125	-0.553	0.000%	0.20%	
			}	 	 	 					-086	-1.08	
AI.		5×10 ¹²			 	 	8	0.422	0.19	0.04	1.08.2	0.34	
GATE	Cuessa				T	Ī					-0.0.70		
	(nA)					1	3	0.557	0.2	0.29	1.02	レング	
						*						70./37	
			ļ		├								
3													
					├		[ļ
					 								
													
					l								

REPRODUCIBILITY OF THE ORIGINAL PAGE IS FOOR

G. CAPACITORS

B11B, Component Research, Teflon capacitors

DEVICE TO		Operating	Point	Sample sise	Mean	Max.	Min.	Hean +2.05	Hean +3.6	Accept Reject Criteri
	eicmz	BIASTIBRAD.	BIAS! MERS.	<u> </u>	<u> </u>		<u> </u>	-22-	-30	
COSLE				<u> </u>			<u> </u>			
APACITALY	5×1012	1C-101			_5_	0	-10	595	11.4	
(aF)			J				<u> </u>	<u>- 110 </u>	-21.4	L
	12/013			6	-3.33	10	1-10	اعا	حماهم	
								-19.7	-27.8	
0.05 L.F							Γ			L
CAPACITRAC	5×1012			10	11.7	વ	Γ_{0}	26.2	34.2	
			i					-3,39		
	17/0/3			16	-1,67	10	-10	18	27.8	
						- 1-7			-31.0	
			<u> </u>	<u> </u>			 			
				1			1			
		 	 	 	<u> </u>		 	1		
		 	 	 -			├	 		
		 	 	 				 		├─-
			 				 	├ ───┤		
			 	┿──				 		
.			 	 			├ -			 -
i		 	·	├ ──	 -		├ -	 		
			 	 			 -			
		 		 			↓	 		<u> </u>
				 	ļ		ļ	ļ		
				<u> </u>			<u> </u>	↓		L
			1					<u> </u>		L
							i			

H. RESISTORSCDP16-01-103G, Dale Electronics

Peremeter	Fluence	16-01 -10.30 Operating 1	Point	Sample	Hean	Max.	. Mia.	Heen +26	watu	Accept Reject Criter
OK 2 5%	e/cm2	BIASTIARAD.	BIAS! MENS.					-26	-36	
(Ke)	**************************************	ISYN. Acares Re		 	 					<u> </u>
(KN)	3×10	DVDC. Research	<u></u>	16	0.00128	_0.0076	0.0018			
								0.00405	0.00672	
	1 × 10'3			Jib.	0.00101	0.0068	70.002	0.0062	0.0088	
								0.00418		
				 						
										
				├──						
	_			}				<u> </u>		
				 		 '	L			_
				 						
					l1					
								L		
<u> </u>		ļ <u>.</u>		<u> </u>				 		
				——	 	-	ļ	ļ		
				<u> 1</u>	<u> </u>					

CDP16-01-104G, Dale Electronics

Parameter	e/cm*	16-01-104G		Sample size	Hear	Hex.	Hio.	Hean +2 <i>G</i> T	Hean +3G	Accept Reject Criteri
00K+3%		BiASI ISRAD.	BIAS! MENS.					26	∙36	
MA 0		9		L						
(Kv)	5×10'2	ISYNC ACROSS RE		16	0.0114	0.026	-0.024	0.0108	0.012	
								<u>00336</u>	0.0447	
	1 X 10'2			16	TO. 0:79	-0.011	-0.029	0.00883	0.00427	
									-0.0316	
				<u> </u>			<u> </u>			
				 						
				 	í					
				ļ			ļ			
				 						
				†- 	-					
,										
·				 						
				 						
				 	L					
				├	├					

CDP16-01-223J, Dale Electronics

Parameter		00001111111111111111111111111111111111		Sample else	Hean	ρφ! Hex.	H1a.	Haen 42.0	Hean +3C	Accept Reject Criteri
21Kt5%	ekn2	BIAS: IARAD.						20		
DCResist	oc fr							<u></u>		
<u>(Kむ)</u>	<u>5×10'~</u>	LTYDE Armen Bra		16	0.002	0.007		0.00843		
 			· · · · · · · · · · · · · · · · · · ·	 				0.00442	∆.∧∆ 767	
	LXIO'3			16	0.60221	0.006	0.063	0.00756	0.0102	
	4							70.00294		
								ļ		
				 						
				 				L .⊸		
				 	——			 		
	i			 	-					
				!	 					
				-						
				 						<u> </u>
					-			\vdash		

CDP16-01-563J, Dale Electronics

DEVICE T	TRE: CDP	16-01-563:	T Dale	Electri Sample	oics.	- 19	lotl	Heen	Heen	Accept Reject
Parameter	Pluence	Operating 1	Point	etze	Hean	Max.	Hia.	+26	+30	Criter
S6K2 5%	<1cm2	BIASTIRRAD.	BLAS: MEAS.	<u> </u>				-26	٠3٥	
ADC PENIND	uce.	1								
(KG)	5×10'2	ISYN MADES RE		16	200369	0.001	-0.011	0.00265	0.00578	
								-0.01	عوره.ه	
	1 11 10 19	 		 						
	1 X10"	 		16	10.0065	70.004	-0.013			
		<u> </u>		 				-0.0UB	-0.0141	
	i			<u> </u>	-			 		├
				 						
			- 	 _	 					
	! 			ļ	<u> </u>					<u> </u>
	 			├						
				 -	 -					
				 	 			-		
				 	 					
				 	† 		-			

CDP16-01-683J, Dale Electronics

(KA) 5×/0"	0.0644
(KA) 5×10 ⁻¹ SYNC METER BET 16 TO 0103 G.O TO 070 G.O.251 A. TO 0464 TO	0.0644
1 X/0 ⁻¹⁸ 16 0.00% 0.0 70.077 0.027 0.	0.0644
1 x/0's 16 0.00963 0.0 70.077 0.027	
7,0463 7	
	
	\longrightarrow
	-

CDP18-02-393K, Dale Electronics

Pazza	etur	Fluence	Operating	Polat	Sample	Hegn	Hax.	Min.	Heen	Hean +30°	Accept Reject Criter
	_	ĺ	BIAST IRRAD						-26	-36	
DC 0	-	-			L						_
CK4	a)	5 × 10'*	MYD' ACAMORE		24	0.0079	0.023	-0.021	0.0104	0.0197	
\Box	_					 			70.0264	70.0356	
	_	1 X10.3		 	34	0.0461	204	-0.026	0.742	1.09	_
\dashv	_	1.40			1 - 24	W. U. 781			7.649	-0.997	
	٠		*								
					_						
_	_										
											
				 				-			
	_				_	 -					
	_			 	 						_
	_			 	 	 					
					i	 					
						 					
				 	 						
	_	 -		 	1	1					
		} -			 	 		1—			
_				 	 	 	┝──				
			 	 	+	 	\vdash				
	_				 	 				\vdash	_

LDP16-01-153G, Dale Electronics

		T	DAIR ELE	Sample				Mass	Heen	Ac oap
Parameter	Pluence	Operating 1	Polat	else	Heen	Nex-	Min.	+26		to ject
15N25%	e/cm2	BIAST IRRAD.	BIAS: MERS.					-20	-3a-	
M. Rosedone	54.012	ISVOC ALBORA RES		160	0.0039	0.0000	70.0000	00019	0.0012	
$(\kappa\Omega)$				L				0.0096		
	ביטוא ו			140	2003	-2000	120090	00015	0.0000	<u> </u>
								0.00%	0.0109	
										<u> </u>
						· -				ī
										
				 						
				†						\vdash
				 	—					┢──
				 	 					┝
				 	 	-				┢──
				 		├──	\vdash			
					├		 			

SDP16-02-473J, Dale Electronics

DEVICE T	TPE: SD	P 16-02-473	T Dale Elec	trooics	Ja	1 o t 1				1
Parameter	İ	Operating		Sample	Hean	Hex.	Min.	Hean +20	Hean +3C	Accept Reject Criter
47K\$5%	ermz	BIAS: IRRAD.						-26	-36	
ADC Boson	AICE							<u></u>		
(KD)	5×10°	15VDC pcRoss Pes		29	2.00183	0.025	70.003	0.012	ודוס.מ	
	<u> </u>	 						*C. 00233	70.0134	
	1 × 10-			29	2000862	0.025	-0.003	0.0111	0.0162	
	1							0.009.15		
					 					
		 						ļi		
				<u> </u>						
	 		_		 		<u> </u>			
		 								
	 									
	<u> </u>	 		<u> </u>	 					
	 	<u> </u>		 						
					 		ļ			L
	 	 		 						
	—	 		 				-		

MG720, Caddock Electronics

DEVICE TIPE: M&720 CADDOCK Electronics pales										1
Paraneter	Fluence C/Cm ²	Operating Point		Sample	Kean	Haz.	Hin.	Hean +26	Hean +30	ASSES Criteri
		Bien: Irred.	Bins: Hees.					-26	-36	
		V=3000 V		5	-0.002	0.0	-0.01			
(ரிவ)	1							0.0109		
_	1 X 10'3		 	5		0	0	0	0	
	4							0	0	
										L
		_			├ ─ -		L			
								ļ		
			<u> </u>	- 						├
					 			 		 -
			 	 	 i		 	 		
				 						
			 	1						
							Ĭ <u></u>			
							<u> </u>	ļ		<u> </u>
		ļ	 	 	 -		ļ	ļ	L	
			<u> </u>	 	├ ──┤		 	 		⊢
			 	┿	├		├	I		
		<u> </u>	 		 		 	-		
			 		 				-	
				+	+		├─-	 		

MG750, Caddock Electronics

DEVICE TIPE: MG750 Caddock Electropics pgloff											1
Parameter	Pluence	•			Sample	Hean	Maz.	Min.	Hean +26	Hean +3c	ASTES Criteri
		Operating Point									
		Bias:	Irred.	Blas: Heas.				L	-26	- 36	
M. Rose	E 5×10'2	Ic:	12 mA		5	0.18	0.3	0.0	0.399	0.509	
(WY)	£ 5×10'2		<u> </u>		.				-0.0391	-0.149	
	1 × 10'5				+5	0	0		0	0	
	1								0	a	
	1.5 × 10°				-5	0.04	0.2	0.0	0.219	0 308	 -
										-0.228	
											
					+		 		 		
					 		 		 		ļ
					+				!		
					_				Ī		
	-				+				 		
cs					-						
											<u> </u>
					4						
									!	L	

MM125, Caddock Electronics

Fernance	Pluence	Operati	addock Electro	Sample	Hean	Hax.	Hin.	Hean +2 <i>G</i>	1700	Accept Reject Criter
	e/cm2	BIAS: IRRAD	BIAS! MEAS.					-20	-36	
DC Processes	25 X /O'E	I: 0.15m		5	10.0126	0.0	0 054	0.0339	0.0572	
(KV)	1							0.0591	0.0824	
	1×10'3			5	00016	0.046				
<u> </u>	<u> </u>	<u></u>		L				0.0535	-0.081	
								L		
				<u> </u>	<u> </u>					<u> </u>
										<u></u>

MS176, Caddock Electronics

Parameter	Pluence	Operating	ddock Elec	Sample size	Hean	Haz.	Min.	Hean +26	Hean +30	Accept Criteri
	e/cm2	Bies: Irrad.	Bias: Mess.					-26	-36	T
N. Jones	25×1012	No VOLTRAC APPLIED		_4_	0.5	1.0	0.0	1.65	2.23	<u> </u>
(A)	<u> </u>							0.655	-1.23	
	1 × 10'5			4	1.25	2.0	0.0	3.16	4 12	
	1							-0.665		
				 				 		
				+	<u> </u>			 	<u> </u>	
	ļ	ļ		- 	<u> </u>			 	ļ	ļ
	 	 		 	ļ		├	- 		├
·_		 		+	-			 	 	
					ļ			 	<u> </u>	↓
		 		+				 		├
_		 		+				+	 	 -
	ļ							-		
5	 	 			├ ──	<u> </u>		┼	├	├
				+	 		 	+		ļ
							 		 -	1

I. OPTICAL DEVICES

The Texas Instruments Types TIL23 and TIL24 light sources and types TIL601 and LS600 light detectors were evaluated in the JPL Dynamitron using a 2.5-MeV electron beam. Two of the tests used a 0.32-cm (1/8-in.) spacing between the source and detector in order to evaluate the spacecraft usage conditions. Three tests used a spacing of 20 cm (8 in.) in order to allow shielding and consequently evaluation of the source or detector separately. Ir addition, various angles were used during irradiation in order to reduce the amount of shielding caused by the lens material. All of the Levices were measured in situ, within a period of 5 minutes, with the beam off.

1. Tests Using 0.32-cm (1/8-in.) Space

Test results using a 0.32-cm (1/8-in.) space between the light source and detector with both device types irradiated at the same time unshielded were as follows:

Test No. 1. Four TIL23 light sources and four LS600 light detectors were tested on April 15-29, 1975. The test circuit is shown below:

Due to the close spacing between the TIL23 source and LS600 detector and the presence of the glass window, there is an undetermined amount of shielding of the device from the electron beam. Consequently, exposures at a number of incidence angles for the electron beam were used (i.e., 45, 90, and 135°), as shown below, during the test.

Device		С: (Ф -	irrent fluenc	measured at poin e, e/cm²; φ = flu	t (Δ), μ x, e/c	A m ² /s)		Beam	Date,
S N	Φ = 0 Φ = 0	Φ = 1 × 10 12 φ = 1 × 109	۵,00	$\Phi = 2.5 \times 10^{12}$ $\Phi = 1.5 \times 10^{9}$	۵,5	$\phi = 5 \times 10^{12}$ $\phi = 2.5 \times 10^9$	۵. ۳	Angle, deg	1975
12	350	213	-39	120	-66	55	-84	45	4-15
1	470	390	-17	320	-32	234	- 50	135	4-16
2	282	205	-27	134	- 53	75	-73	45	4-16
3	60	213	-28	0.36 ^a	a	19	-68	90	4-29
					<u> </u>				

^{*}Data invalid; the device accidentally pulled out of position during irradiation.

Test No. 2. Four LS600 light detectors and four TIL24 light sources were exposed on January 22, 1975, to the electron beam at a 60° angle (see Fig. 3). The fluence was 5×10^{12} and 1×10^{13} e/cm² with a flux rate of 2.5×10^{9} e/cm²/s. There was no significant change in the output level as measured at point B for any of the devices tested. Although the test devices were undoubtedly severely degraded (as indicated from previous test experience), there was still sufficient pulsed output after radiation exposure to trigger the 2N2222A transistor "on," therefore maintaining a constant output at point B. The test circuit is shown below:

2. Tests Using 20-cm (8-in.) Space

Test results using 20 cm (8 inch) of spacing between the light source and detector with one of the device types shielded during irradiation were as follows:

Test No. 1. Four TIL23 light sources were exposed to the electron beam at an angle of 45 deg as shown in Fig. 4 with the detector shielded. The test circuit is shown below:

Device		output voltage m fluence, e/cm ²		-	
S/N	Φ = 0 φ = 0		Δ,%	$ \Phi = 1 \times 10^{13} \\ \Phi = 3.6 \times 10^{19} $	Δ,%
5	0.240	0.014	-94.2	0.004	-98.3
6	Ò.360	0.022	-94.0	0.006	-98.3
7	0.140	0.014	-90.0	0.005	-96.4
8	1.900	0.116	-94.0	0.038	-98.0

Test No. 2. Four TIL601 light detectors were exposed on January 22, 1975, to the electron beam at a 45-deg angle as shown in Fig. 4 with the light source shielded. The test circuit is shown below:

	ΤΙ: (Φ	L601 current mea = fluence, e/cm ²	sured at p ; ϕ = flux	, e/cm ² /s)	
Device S/N	Φ = 0 φ = 0	$\Phi = 5 \times 10^{12}$ $\Phi = 3.6 \times 10^{9}$	Δ,%	$ \Phi = 1 \times 10^{13} \Phi = 3.6 \times 10^{19} $	Δ,%
1	250.0	129.0	-48.4	38.0	-85.0
2	96.0	19.2	-80.0	8.0	-91.7
3	160.0	65.0	-59.4	19.0	-88.1
4	112.0	78.0	-30.4	53.0	-52.7

Test No. 3. Four TIL24 light sources were exposed to the electron beam at an angle of 45 deg as shown in Fig. 4 with the detector shielded. The test circuit is shown below:

Device	TIL2.	4 voltage measure fluence, e/cm ² ;	ement at p φ = flux,	ooint (A , mV e/cm ² /s)	
S/N	Φ = 0 φ = 0	$\Phi = 5 \times 10^{12}$ $\Phi = 3.6 \times 10^{9}$	Δ,%	$\Phi = 1 \times 10^{13}$ $\Phi = 3.6 \times 10^{9}$	۵,%
1	0.318	0.047	-85.2	0.015	-95.3
2	0.218	0.010	-95.4	0.003	-98.6
9	0.384	0.030	-92.2	0.009	-97.7
10	3.000	0.208	-93.1	0.016	-99.5

1 25.1

3. Conclusions

- (1) These types of optical devices are very sensitive to radiation-induced damage.
- (2) The light sources are more sensitive to radiation damage than the detectors.
- (3) There is increased light scatter due to the degraded source lens.
- (4) There is more apparent degradation with 20-cm (8-in.) spacing between the source and detector than with 0.32-cm (1/8-in.) spacing because the light from the source decreases as the square of the distance from the detector, and any increase in light scatter will exhibit more effect as the distance is increased.

4. Test Conditions

The device shown in Fig. 3 was irradiated with the axis of the electron beam at 60 deg to the axis of the device as shown in the diagram in order to avoid the glass lid.

Fig. 3. Flux angle, electron beam at 60 deg

No other components of the experiment were changed. A cosine variation in fluence with incident angle was used. The Faraday cup readings of fluence were thus twice the fluence required (i.e., 10^{13} and 2×10^{13} e/cm²). The effective value of the fluence on the device was obtained as of these values (i.e., 5×10^{12} and 10^{13} e/cm²). This was done by using a time exposure twice as long rather than doubling the flux rate. Thus the effective flux rate at the device was one-half that in the test requirements.

The device shown in Fig. 4 was irradiated with the axis of the electron beam at 45 deg to the axis of the device as shown in the diagram in order to avoid the glass lid.

Fig. 4. Flux angle, electron beam at 45 deg

A cosine variation in fluence with incident angle was used. The Faraday cup readings of fluence were thus 1.4 times the fluence required (i.e., 0.707×10^{12} and 1.41×10^{13} e/cm²). The effective value of the fluence on the device was obtained as 0.707 of these values (i.e., 5×10^{12} and 10^{13} e/cm²). This was done by using a time exposure 1.4 times as long rather than increasing the flux rate. Thus the effective flux rate at the device is 0.707 times that in the test requirements.

J. CMOS

Large quantities of CMOS devices comprising 28 different logic functions are used in the spacecraft. Devices fabricated by the standard commercial process could not withstand a dose of 150 krad(Si) under normal bias conditions due to shift of the n-channel gate turn-on voltage toward O V accompanied by a large increase in the supply current. By reducing the gate oxide annealing temperature (Ref. 2) it was found possible to fabricate devices that were still functional after irradiation to 150 krad(Si) though somewhat degraded in the device characteristics. A program was developed to monitor the radiation properties of the production line that included wafer lot sampling of changes in the quiescent supply current, test pattern sampling, and final device parameter characterization. All irradiations were carried out under representative usage bias conditions using a cobalt-60 source.

The four basic CMOS failure modes in an ionizing radiation environment have been identified by Burghard and Gwyn (Refs. 3 and 4) with their associated causes as follows:

- (1) Failure to switch V_{Tn} V_{TP}
- (2) Excessive leakage V_{Tn}
- (3) Speed re faction V_{TP}
- (4) Noise immunity V_{TN} V_{TP}

The arrows indicate a decrease or increase in V_{T} .

1. Gate Turn-on Voltage

Three to five test pattern dice were selected at random from each metallization lot. The test pattern dice contain individual N- and P-channel transistors and MOS capacitors. Measurement of I_{DS} versus V_{GS} of the two transistors was made before and after a dose of 1.15×10^5 rad(Si). A typical set of curves is shown in Fig. 5. The results for the N-channel transistor are particularly striking. The true gate turn-on voltage V_{Tn} at low currents is less than 1 V before irradiation and shifts to -0.6 V at 150 krad. At higher current levels V_{Tn} stays well above zero, as shown in Fig. 6, and does not shift significantly after irradiation (see Fig. 7).

Fig. 5. N- and P-channel gate drive transfer characteristics

Fig. 6. Threshold voltage of N-channel transistor on test pattern TA 6372, 950°C gate oxide anneal in forming gas, preradiation

Fig. 7. Threshold voltage of N-channel transistor on test pattern TA 6372, 950°C gate oxide anneal in forming gas, postradiation

On the other hand, V_{TP} at 10 μA shows a bimodal distribution after irradiation, which may explain the lack of control of the propagation time (see Figs. 8 and 9). The distribution in the relative shift in the gate turn-on voltages is shown in Fig. 10.

The gate turn-on voltage is the most direct way of radiation-screening CMOS devices. However, the approach adopted in the MJS project was to monitor the quiescent supply current, which is related to V_{Tn} at low currents but does not control V_{Tp} . Moreover, there is no correlation in the behavior of these two parameters, since V_{Tn} at 150 krad(Si) is primarily a function of radiation induced oxide states, whereas V_{Tp} is a function of radiation-induced interface states.

The gate turn-on voltage V_T is the parameter directly afferced by ionizing radiation. The V_T is, however, a transistor parameter, not a circuit parameter. The transfer characteristics of any CMOS circuit allow considerable shift in V_{Tm} or V_{Tp} before the circuit function ceases. The V_{Tn} may even cross O V and be slightly negative before functional failure occurs.

Fig. 8. Threshold voltage of P-channel transistor on test pattern TA 6372, 950°C gate oxide anneal in forming gas, preradiation

Fig. 9. Threshold voltage of P-channel transistor on test pattern TA 6372, 950°C gate oxide anneal in forming gas, postradiation

Fig. 10. Distribution of $\Delta \rm V_{GS}$ at $\rm I_{DS}$ after 1.5 \times 10 15 rad(Si)

2. Wafer Screening of I_{SS}

Wafer screening consisted of irradiating five circuit devices or seven in the case of the three multiplexers from each wafer that would be used for the JPL product. The quiescent supply current I_{SS} was measured with all input terminals to ground and with all input terminals connected to 10 V. Rejection was based on an I_{SS} measurement after 150 krad(Si). The rejection criteria are given in Table 5. These criteria have considerable margin to functional failure.

The rejection rate at 150 krad was less than 10% for some simple circuits (gates and flipflops) and greater for complex and large-area circuits (counters, shift registers, multiplexers and buffers). More than 2700 wafers have now been screened in this manner.

The test dice were not specially screened for I_{SS} before irradiation. As indicated in Fig. 11, 75% of the devices (Group 1) had leakage currents below 1 nA, another 20% (Group 2) possessed greater leakage currents, but sufficiently low to pass the JPL specifications, whereas the remaining 5% (Group 3) would have been rejected in pre-irradiation screening. The post-irradiation data for Group 1 (Fig. 12) shows a reasonable Gaussian distribution, but with the rejection limit set so as to cause a 12% rejection rate. The more than 10,000-fold increase in I_{SS} appears to be the best that can be achieved on this type with the modified annealing process, and is attributed to the shift in V_{Tn} toward O V. Group 2, with marginal pre-irradiation properties produced a post-irradiation yield of only 66% (see Figs. 13 and 14).

A preliminary study on the variation of I_{SS} over a given wafer after irradiation indicates a tight distribution in some wafers, while other wafers exhibit a great deal of variability. This is in agreement with the general lot variability of the product observed during radiation screening.

The distribution of I_S has been analyzed for a number of different device types and for both forming gas and nitrogen annealing. The results for the CD4052 and CD4049 are shown in Figs. 15 through 22. The data indicates a number of bimodal distributions caused by lack of process control, but that nitrogen annealing offers a substantially better product. The data that has been analyzed in this manner is summarized in Table 6.

Table 5. Rejection criteria for RCA CMOS wafer radiation screening

Туре	I _{SS} (post-radiation), μA	I _{L1}	I _{L2}
CD 4001	> 2.5 μA		
4002	2.5		
4006	30		
4011	2.5		
4012	2.5		
4013	7.5		
4014	50		
4015	50		
4016	7.5		
4017	50		
4019	7.5		
4021	50		
403	2.5		
4025	2.5		
4027	7.5		
4028	7.5		
4029	50		
4030	5.0		
4031	100		
4035	50		
4040	50		
4042	25		
4043	25		
4047	50		
4049	7.5		
4050	7.5		
4051	50	100 nA	>3µA/100 µA
4052	50	100 nA	100 nA
4053	50	100 nA	100 nA

 $\rm I_{SS}$ is quiescent supply current measured with all inputs low ($\rm I_{SS1})$ and all inputs high ($\rm I_{SS2})$.

 I_L is off-leakage current through all transmission gates (switches) in parallel. $I_{L,l}$ is measured with all switch inputs high (10 V) and the switch common to ground through the current meter. $I_{L,2}$ is measured with the switch common high and all switch inputs to ground through the current meter.

Fig. 11. RCA CD4006, preradiation, ISS1

Fig. 12. RCA CD4006, postradiation I_{SS1} of units with preradiation $I_{SS1} < 1~\text{mA}$

Fig. 13. RCA CD 4006, preradiation, group 2

Fig. 14. RCA CD4006, group 3

Fig. 15. Preradiation ISS current of CD4052A multiplexers with 950°C gate oxide anneal in forming gas

Fig. 16. Postradiation I_{SS} current of CD4052A multiplexers with 950°C gate oxide anneal in forming gas

Fig. 17. Preradiation I_{SS} current of CD4052A multiplexers with 950°C gate oxide anneal in nitrogen

Fig. 18. Postradiation I_{SS} current of CD4052A multiplexers with 950°C gate oxide anneal in nitrogen

Fig. 19. Preradiation I_{SS} current of CD4049 with 950°C gate oxide anneal in forming gas

Fig. 20. Postradiation ISS current of CD4049 with 950°C gate oxide anneal in forming gas

Fig. 21. Preradiation I_{SS} current of CD4049 with 950°C gate oxide anneal in nitrogen

Fig. 22. Postradiation ISS current of CD4049 with 950°C gate oxide anneal in nitrogen

Table 6. Analysis of I_{SS} data

Device type	Function	Annealing gas	Distribution	Peak of prime devices	Other peaks, µA	Rejection limit, µA
CD4006	18-stage shift register	Forming gas	Gaussian	10 μΑ		30
CD 4019	Quad And-Or gate	Forming gas	Gaussian	5 nA		7.5
		Nitrogen	Gaussian	20 nA		7.5
CD 4027	Dual flipflop	Forming gas	Gaussian	20 rA		7.5
CD 4029	Up/down counter	Forming gas	Bimodal	50 nA	20	50
		Nitrogen	Bimodal	5 nA 50 nA	2	50
CD 4049	Hex-buffer	Forming gas	Bimodal	50 nA	2	7.5
		Nitrogen	Quasi- Guassian	20 nA	2	7.5
CD 4052	Multiplexer	Forming gas	Bimodal	3 nA	2 30	50
		Nitrogen	Gaussian	500 nA		50

It is evident that the rejection limits do remove lots with lack of surface control. The rejection limits were chosen to screen out wafers with catastrophic devices or with I_{SS} higher than acceptable to the project systems designers. The yield figures of the wafer screening program are summarized in Table 7.

Increases in I_{SS} are a problem for the user (subsystem designer) only when the total for a subsystem exceeds the current available for the power supply, or when the subsystem power limitation is exceeded. Therefore, it is the average of the increases that is of interest, not the individual increases in I_{SS} . All the RCA CMOS that will be supplied are from wafers whose test samples had a post-150 krad I_{SS} of less than 100 times the 25°C specification limit-ST 11868 or MIL-STD-38510 or equivalent (see Table 5).

Table 7. CMOS wafer screening summary

2793 wafers radiated (over 200 lots)
2162 wafers accepted (77.4%)

Forming gas vs N2, anneal

	Wafers accepted	Wafers radiated	Accepted,
Forming gas	1049	1406	74.6
Nitrogen ^a	1078	1296	83.2

 $^{^{}a}$ Excluding 5 bad lots at beginning of N_{2} anneal

In many cases the post-rad I_{SS} was much less than 100 times the specification limit. Therefore, the total post-150 krad I_{SS} for a subsystem should not exceed 100 times the sum of the specification limits for each device in the subsystem. The above statement should be true even though the wafer s reening does not guarantee that every device will have a post-rad I_{SS} less than the 100 × limit, because of the averaging effect. It should be pointed out that 100 times the sum of the specification limits for each device in the subsystem cannot be used to establish the maximum current required from the power supply since this is quiescent current. The operating current of the subsystem will be higher because it is proportional to the clock or operating frequencies of the subsystem.

3. Transmission Gate Leakage

The multiplexers CD4051, CD4052, and CD4053 were subjected to an additional screen. The off leakage current through all transmission gates in parallel was required to be less than 100 $^{\rm a}$ A measured with all switch inputs at 10 V and the outputs at ground (I $_{\rm L1}$), and less than 100 nA for the CD 4052 and CD4053, and 3 $\mu{\rm A}$ for the CD4051, with all switch outputs at 10 V and the inputs at ground (I $_{\rm L2}$). This resulted in a yield of about 50% for these device types.

The design requirements for I_{L2} in the CD4051 are more lenient than in the other multiplexers in this project. The 3 μA criterion for I_{L2} of the CD4051 was necessary to get any yield from the early production of these

devices. In subsequent forming gas lots I_{L2} dropped below $l\mu A$ typically, and when the gate oxide anneal was changed to nitrogen, I_{L2} dropped below 100 nA typically. The $3\mu A$ screening rejection criterion was reduced to 100 nA for the nitrogen annealed product.

Figures 23 and 24 show the distribution of the I_{L2} leakage current before and after irradiation, respectively, for devices annealed in forming gas. It may be seen that prime pre-irradiation devices show a bimodal distribution after irradiation, resulting in a high yield loss. This problem was solved by switching to nitrogen annealing. The pre-irradiation distribution (Fig. 25) was the same as before, but the post-irradiation data (Fig. 26) shows a more Gaussian distribution, though with a few outliers beyond $1~\mu A$. The I_{SS} data for the same devices, shown in Figs. 15 through 18, exhibits a very similar behavior.

The I_LTG of the flight multiplexers is not expected to exceed the values in Table 5 for forming gas-annealed product or 40 nA for nitrogenannealed product at 150 krads. Most of the 4051 product will be forming

Fig. 23. Pr radiation switch leakage current I_{L2} of C_D4052A multiplexers with 950°C forming gas

Fig. 24. Postradiation switch leakage current I_{L2} of CD4052A multiplexers with 950°C gate oxide anneal in forming gas

Fig. 25. Preradiation switch leakage cu "ent I_{L2} of CD4052A multiplexers with 950 gate oxide anneal in nitrogen

Fig. 26. Postradiation switch leakage current I_{L2} of CD4052A multiplexers with 950°C gate oxide anneal in nitrogen

gas-annealed. The 4052 produc: will be a combination of forming gas- and nitrogen-annealed devices, and the 4053 product will be entirely nitrogen-annealed.

4. Multiplexer On-Resistance

The on-resistance of the multiplexers increases less than 5% at 75 krads and 10% at 150 krads.

5. Propagation Time

A complete electrical characterization of some of the CMOS devices was carried out for 122 at the Naval Research Laboratory using an EH4600 series computer-controlled test system at a total dose of 7.5×10^4 and 1.5×10^5 rad(Si). The parameters tested and some typical results are

shown in Table 8. It may be noted that radiation causes a significant increase in the propagation time. It was established that there is no correlation between the radiation effects on propagation delay and quiescent supply current I_{SS} .

Table 8. CMOS radiation characterization data at 150 krad(Si)

	Tests (At V _{DD} = 1		40)11		4029	4035	4050
1.	Functional (go/r V ₀ < 5 V = "0" V ₀ > 5 V = "1"	no go)				All pas	sed	
2.	DC margin (go/ V ₀ < 1 V = "0" V ₀ > 9 V = "1"	no go)				All pas	sed	
3.	Δt _{PLH} (%)	Average	26.	9 ^a		13.8 ^b	48.8 ^c	10.6 ^d
	30 pF load	Maximum	30)		37	55	18
3a.	Δt _{PLH} (%)	Average				26 ^e		
	30 pF load	Maximum				37		
4.	Δt PHL (%)	Average	6.2	a		28.2 ^b	32.8 ^c	35.6 ^d
	30 pF load	Maximum	8.8	}		31	37	50
4a.	Δt _{PHL} (%) 30 pF load	Average Maximum				19 ^e 33		
5.	ΔV drop in outp isters at minime sink current spe RCA manual	um source/				< 0.1 < 0.1		<0.1 <0.1
6.	Range of maxim scent supply cur		from: to:	56 470 0	X			25X 3400X

^aPropagation time measurement from pin 2 to pin 3 (in to out).

^bPropagation time measurement from pin 15 to pin 6 (CL. to Q₁).

^cPropagation time measurement from pin 6 to pin 1 (CL. to Q₁).

dPropagation time measurement from pin 3 to pin 2 (in to out).

ePropagation time measurement from pin 15 to pin 7 (CL. to carry out).

A more detailed analysis was carried out on additional measurements made at the Hughes (Fullerton) Facility (see Table 9). The propagation time after irradiation appears to be within the JPL specification limits, but the data shows large increases in propagation time. These are primarily influenced by outliers whose change may be up to one order of magnitude worse than the mean.

6. Dose Rate and Anne ling Effects

Srour (Ref. 5) recently reviewed experimental observations on doserate dependence of the shift in $V_{\rm T}$ in MOS devices. The dependence is a faction of the dose rate, the bias conditions during radiation and also the nature of the gate oxide. Srour irradiated N- and P-channel transistors on a commercial CMOS inverter using a Co^{60} source at rates of 0.23 and 22 rad(Si)/s. He observed a marked rate effect. Annealing the devices at room temperature for 140 hours (the time it takes to perform an irradiation to 1.2 \times 10 rads at a rate of 0.23 rad/s) following a higher ionization rate irradiation brought the high and low dose-rate results into agreement.

Yamakawa (Ref. 6) measured rate effects in I_{SS} of CMOS devices with a 950°C gate-oxide anneal temperature at 113 and 7.6 rad/s at a total dose of 1.5×10^5 rad(Si). The bias conditions were as described in the wafer screen. The two dose rates represent the screening conditions and the Jovian radiation environment respectively. There was a strong annealing effect after radiation, but no rate effect could be detected. Additional experiments on the propagation time showed no annealing for several days, in agreement with the hypothesis that the propagation time is governed by interface states.

7. Conclusions

The radiation resistance of CMOS devices with a gate oxide annealing temperature of 950°C appears to be adequate for the MJS project, because the devices will be exposed to a total dose of less than 1.25 × 10⁵ krad and because no severe constraints have been imposed on the quiescent supply current.

Preliminary data indicate that the substitution of forming gas by nitrogen in the gate oxide annealing step has a very beneficial effect on

Table 9. Propagation time

					Propagation time, ns	n time, ns		
				Mean	uı	Max.	, x	
Device type	Parameter	Capaci- tance CL, pF	Specified limit	Pre- irradiate	1.5 × 10 ⁵ rad	Pre- irradiate	1.5 × 10 ⁵ rad	△ Max.
CD4019	t _{P1} H	32		46.1	54.3	70.0	91.0	27
		51	125	56.9	62.2	78.0	102	27
	tpHI	32		64.7	86.1	0.92	102.0	28
	1	51	125	73.4	9.96	86.0	116.0	30
CD4025	t prin	31		46.9	64.7	52	20	18
	•	53	65	70.3	94	74	102	30
	t PH I	31		39.2	44	48	54	21
	1	53	55	51	58.6	62	72	30
CD4027	t PI.H	30		81.5	85.6	116	94	16
		50	120	95.9	66	134	108	16
	t PHI.	30		66.5	76.5	88	06	16
		20	160	79.2	901	91.8	106	19
CD4029	t _{PLH}	31		236	249	280	400	120
		51	260	260	273	330	440	140
	t PHI.	31		221	241	280	470	190
	! :	51	260	242	292	320	520	220

Table 9 (contd)

					and the second s			
				Mean	u	Max	×	
Device type	Parameter	Capaci- tance CL, pF	Specified limit	Pre- irradiate	1.5 X 105 rad	Pre- irradiate	1.5 X 105 rad	△ Max.
CD4051	t or u	30		72.0	73.4	06	06	12
		51	400	74.6	75	80	92	10
	tpHI	30		205	207	218	245	45
		51	1000	208	509	222	248	45
CD4052	t pr	31		193	224	330	375	09
		52	400	198	529	335	380	20
	t phi	31		395	395	570	520	55
		52	1000	467	464	720	9	40

reducing the post-radiation quiescent supply current and transmission gate leakage currents of the multiplexers and on producing a more homogeneous product.

The wafer screening of I_{SS} is expensive but necessary in view of the lack of safety margin shown in the distribution, the presence of outliers and bimodal distributions. For future programs, radiation screening of N-channel and P-channel test transistors associated with each wafer should be considered, since the absolute values of post-irradiation V_{Tn} and V_{Tp} are more fundamental parameters directly related to oxide and interface states. At present V_{Tp} is not screened, and this produces a barely tolerable variation in the propagation time. In future programs other process controls involving capacitor measurements should be considered in direct collaboration with the manufacturers. Such controls have been described in a paper by Gregory (Ref. 4).

Finally, any future programs with a radiation environment in excess of that encountered by MJS or with more stringent design requirements must use the radiation hard dry gate oxide process developed at RCA, Somerville, with DNA support, or equivalent, since the 950° C annealed process cannot survive a total dose much greater than 1.5×10^{5} rad(Si).

Peremeter	Fluence	Operating	Point	Sample size	Hean	Max.	Hig.	Hean +20	Hean +3C	Accept Reject Criter
r (V)	ind (Si)	BIAS: IBRAD.	BIAS: MEAS.					. 70-	-34	
-CHPAINEL	_	Yon = 10V.	Iss mud borny	10	1.29	1.34	1.23	1:32	1.41	L
	l J	ALL MAINTS // IV	1				<u> </u>	_/	112	<u> </u>
	7.5×104			9	0.19	0.43	-0.3	9.729	1.0	
	است							20.36		<u> </u>
	151105			10	70.337	-0.29	-0.49	-0.27		<u> </u>
							 	-0404	-0.437	<u> </u>
CHANNE			Too://Jua.100://3	10	-/. 8 7	-7.23	-/ 96	-1.72	-164	
	.[1	712	7.11			-2.43		
	2.5×10			9	-1.47	0.01	-2-22	0.609	*1.65	
	1111				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			-3.56		
	1.5×105			10.	0 /02	0.75	0.02	0./68		
						U17.1		0.0459		
Ari (12.73)		 	V00:10V. C. 300F	10#	56.6	63.9	52.0	61.5	63.9	<u> </u>
-			1	112.74				51.8		
	7.51.04			9**	83.7	267	554	7210		
								-42.9	-/06	
Ī	1.5×105			/O#	61.8	66.8	57.3	66.4	8.80	
Į.								57.1	548	
CAIE	DEVICE	FAILED								

Parameter	Fluence	Operating			Sample size	<i>¥ ∂o</i> f o Hean	Нах.	Nia.	Heen +20	Mean +30	Accept Reject Criteri
	md (Si)	BIAS: IRRAD.	RIAS	: MERS.					-34-	35	
PHL (ng)				CL-30 pF	10 11	.33.6	49.4	24.8		41.9	
	1	ALL LUBUTS 1/0V							24/	19.4	
	7.5×104				9**	31.3	111.0	21.2	*597	*23.9	
									2.92		
	1.5×105				/O#X	√ 26Ω	36.9	18.9	.3.3.5		<u> </u>
4	Ţ		L,						18.6	14.9	
			I								
	1	 									
# ONE	VENICE F		t								
				. COVII N	EVICE						
77 0	ERSURE	ENTS TAKE	II OA	CAH D	E VICE						
		1					·——				
	 	1	ı								
			<u> </u>		-				 		
											<u> </u>

CD4002, RCA

Paramater	Fluence	Operating 1	Point		Sample size	Mean	Max.	Hin.	Hean +2G	Hean +3G	Accept Reject Criter
4 (V)	(Je) foot	BIAS: IRRAD.	BIAS:	MERS.					-20	-35	
N-Cronel	Ö	VOD = IDV ;	1551011	BaVDO=IOV	5	ر -	3	00.0	2.09	2.53	
		All INPUTS-10V							0.309	-0-136	
	7.5×10"				10	1.03	1.22	-0.H	1.85	226	
									0.203	-0-209	
	1.5x105				10	1.02	1.21	-0.12	1.83	2.23	
			<u> </u>						0.25	-0.188	
		i									
P. Crand	0		Augi=nof	YOU=OOV	10	-1.43	-0.13	-1.6	-0.5A	-0.050	
									-237	-2.84	
	7.5x104				0	-1.96	70-06	-2.32	ž	0.05%	
									-3.5	-397	
	1.5x105				0	-2.26	-0.08	-2.73	-0.633	811.0	
				,					-3.84	-4.63	
TPLH (ne.)	0		ע פו = סמע	: C-30d	10#	51.4	525	433	18	64.4	
									44.7	414	
	7.5xio4				10#	59.1	69.1	201	61.3	71.5	
		-							50.8	46.7	
	1.5x105				10*	721	5553	57.5	182	237	
				,					-37,8	-928	
1.80	LEASURE A	EATS TAKE	עם נ	10 7	EVICES					L	

Parameter	YPE: CD	Ор	erating	Point_		Sample size	2 of 2	Max.	Mia.	Heen +2.07		Accept Reject Criter
	Md(Sù		RAL	Busi	Mens.					4	-30-	<u> </u>
IPHL(V2)		100 - 10 V	.	700=10	N. CO.	¥01	39.2	43.5	343		45.4	L
	ļ	Allment	Zalox							<u>35.1</u>	23	L
	7.5x104	 		 _		10*	47.2	433.1	_37.5	135	178	
										-402		<u> </u>
	1.5x105	└				10*	45.7	49.7	41	49.6	51.5 39.8	
		<u></u>								41.8	39.8	
				ŧ .				• .				

					C ANNI	Cample	`			Mean	Xean	\$8522E
reren		Pluence	Operation			8120	Kean	Maz.	Win.	+25	+30	Criters
	(V	Logici)	Riam: Irrad.	Blas: F			1 42	ļ <u></u>		-20	-30	:
гф	WK1	<u> </u>		Tss.		10	1.42	1,48	1.32		1.6	<u> </u>
-+		> 5.440H	UT INDAL : TOX	100.	φÝ	9		. 22		1.3	1.24	•
-+		7.5x104		 	 	Ľ	1115	1.39	0.87	1.54	1.23	:
		<u></u>		 			A 00A			0.33	0.528	
-+		1.5×105			 	10	0.892	1.3	0.59	1.49	1.79	ļ. . .
<u>.</u>		¥	 	 	↓					0.244	-0.0052	1
-Cra	nie!	Q		Ino.	10µA	10	- 1.84	-1.75	-5'03	-1.65	-1.55	<u> </u>
_			<u> </u>	Von -	YOL !					-203	<u>-2.13</u>	! . -
\rightarrow		7.5 x 104		ļ		٩	-2.38	-1.5	-3.03	-1.5	-100	i
	-			<u> </u>	1					-3.22	-3.71	l .
		1.5x105	<u> </u>	<u> </u>	↓↓	_10	-2.72	-1.55	-3.55		LOL	
				ļ	k				-	-3.85	-4.42	i •
PU	(a)	0_		YOO . IC	v.C-304	JO#	138	168	114.9	160	172	!
				CLOCK IN	TO an					1/5	104	1
_		7.51104		<u></u>		9 :	148	180	126	125	189	, .
-4		*			LI					121	108	
		1.3xiO⁵		 	 	IOX.	157	201	133	186	<u> 20</u> 1	
1		<u>+</u>	<u> </u>	 -	<u>k</u>					128	_113	
5				1	1							

araneter	Fluence	Operati	ng Point	Sample size	Hean	Haz.	Min.	Year +26	Hean +30	ASSET Criter:
	rad (Si)	Bias: Irrad.	Bias: Yeas.		i	,			1	1
LT BH(VZ)	0	NOD=10V	VOD = IDV_C+30of	10*	128	145	109.9	143	151	ì
		ALL INPUTS - 10 V	CLOCK M TO RM					1/2	105	1
	7.5x104			9*	139	IdH	1/5.9	161	172	
								117	106	
	1.5x105			10+	151	180	125	174	186	
<u> </u>		<u> </u>	<u> </u>			!		127	طنا	
			ļ			-			,	ļ
										ļ
									<u> </u>	ļ
		 							<u> </u>	<u> </u>
			 							ļ
		 	 						<u> </u>	
		ļ				ļ				ļ
		 	 						ļ	├ -
			 						 -	ļ
		 	 -							
			+						 	
		 	 		 					
 +		 	 						!	
		: -	 						 	
	··	 	+						 	-
									<u> </u>	

CD4011, RCA

Pera	meter	Pluence	Operating	Point		Sample eize	Mean	Max.	Min.	Mean +20	Hean +3C	Accept Reject Criter
VT.	\mathbf{v}	rad (Si)	BIAS: IRRAD.	BIAS	MERS.					-25	·3a	
na	weel			Isa.	· IOug	10	1.23	126	119	128	/ 31	
	<u> </u>		A 11 1112 - 106	100:	ION					112	114	
		75×134			<u> </u>	10	0.729	0.96	0 67	0 182	108	
	-			<u></u>						0 596		L
	<u> </u>	1: 105				9	D. 499	0.74	0.37	70.735	*0.853	
			L	ļ`	<u> </u>					୦.ಎଜ୍ର	0.1/4	<u> </u>
			<u> </u>							 		
-	لتبيي			<u> </u>		10	-1.81	-1.74	-1 44			
				100.	ION					-1 94	13)	<u> </u>
	·	75 / 21				13	*2 2d	-4 14	-2 41	-2 11	2.2	
	t			 		9				7 . 40		
	 	11.		 			-2.59	-3.41	<u>-2.7.</u>	-2:40		
	. ــــــــــــــــــــــــــــــــــــ	<u> </u>		ئـــــا						-2.28	-2.88	
	3-6-1	. 0		Voc .	7.3 V.		403	4/10		453	20 1 10	
		1			30 PF.					7	3- 1	
		7:101			o B to	16 **	40.4	55.0	4.2	=2.0	: 43	
				12-y-m	. Y					40.0	`	
	<u> </u>	151/2				9**	51.2	60.5	456	*57.8	* (0).1	
		با							Ĺ	44.6	414	Ĺ
<u>*</u>	ONE	DEVICE	FAILED									

P aram eter	Fluence	Operating	PAGE 20	Sample size	Kean	Max.	Mio.	Hean +20	Mean +3 CT	Accept Reject Griteri
	rad (SI)	BIAS: IRRAD.	BLAS! MEAS.					-26	-30	
لتكويع		Voc: *10V	Vec 13V.	10##	22.1	424	22.7	407	449	
		Au 101	CL . 30 PF.		L			225	9.2	l
	7-2104		Inpute as E to	_/C:₹¥	3.7 4	44.1	24.0	42 -	47.1	
	<u> </u>	ļ	Cutp.: Y		ļ		ļ	27.	/ 9.10	
	1.5 * 13	 	ļ - 	9**	34.3	45.5	244	* 44.3		<u> </u>
	├	<u> </u>	<u> </u>	<u> </u>			L	241	_/9	
	t	I.	1	I	l i				i	ŀ
				 						
		FAILE-D								
		FAILED	ON EACH DE	VICE						
			ON EACH DE	VICE						
			ON EWN DE	VICE						
			ON EWH DE	VICE						
			ON ENCH DE	VICE						
			ON ENCH DE	VICE						
			ON ENH DE	VICE						
			ON EACH DE	VICE						
			ON ENH DE	VICE						
			ON ENH DE	VICE						
			ON ENH DE	VICE						
			ON ENH DE	VICE.						

CD4012, RCA

DAYICS	7YP4.: (1)	1012 R.C.H.	950° CA	NNEAL Searle	IAI _T	. NITRO	DOEN	Yean	Fean	33234
Tereseter	Pluence	Oreratir	e Point	eise	Hean	Maz.	Min.	+26	7 30	Criter
Vr (v)	rad(Si)	Bias: Irrad.	Bins: Meas.					-20	-30	1
Frank	0	SADE 10AF	IS - 10 LALYDO-10V	10	[.]	1,24	0.87	1.36	1.40	
	Redisor	DILIND TO THE	, , , , , , , , , , , , , , , , , , , ,					0.863	0.739	, +
	2.5x104			IQ	0.639	0.78	0.45	0.257	0.966	<u>. </u>
	ii							0421	0.312	
	1.5XIO5			_10_	0.33)	0.54	0.09	0-635	0.786	<u> </u>
<u> </u>			· •					0.0294	-Qe122	•
								!		! •
P. Unamel	0		NON-1014 & HOUSE COOL	_10_	-1.81	-1.63	-50	-1.54	-1.4	<u></u>
			ļ <u>'</u>		-			-2.08	-2.22	·
	7.5×104			_10_	18	-0.78	-2.26		-0-67	-
			 - 					-2.74	-3.45	·
- -	1.51105			_10_	-20)	-1,92	-2.32			·
<u> </u>			<u> </u>					-2.3	-2.41	: -
					2			329		
TPLH (n'	0		1400=10 N; CL=30pF	10#	31.5	47.7	27	- 4.4	- 7 1	
	i							25.	22	
	7.5x10"		· 	10±	_33_1	70-7	261	38.8	416	-
	1.5 4105			- , _ ; -	33.7	42.5	28.8	39.2	247	
	1.5x105	· 	+	LIOX	<u> </u>	74.5	YOU	22.3	25.5	!
-	 		· · · · · · · · · · · · · · · · · · ·				1	&L &_	بعديد	1
		<u> </u>	1				<u> </u>			
	ļ		1					·		-
·	 	···	 							• -

-X-5: (D	4012 RCA		PW7E	202					т .
Pluence	Operating	r Point		Hean	Maz.	Min.		1	ASSEE Criter
	Bias: Irrad.	Bles: Yeas.							1
(,	100=10 V:	VDD=DV:(-	300 10+	49.1	62.2	40		63	:
	A' NPUTS 10Y	100						35.2	
7.5x104				46.3	58.5	35.5	55	545	
		1					37.6	33.2	
1.5 x105			10 ±	44.7	57	36.5		57.5	1
		<u> </u>					36.2	الماك	!
								 	1
							1		1
						!	T		
		1							;
		,		1					7
	1	 	- ;						i
		 							
		1							†
						 			
		 		-		 			
									
		·					ļ ·		•
		+		ļ					
		ļ						<u></u>	↓
	ļ							! •	ļ
	1					<u> </u>	·		
	L							<u> </u>	
		1							
		 							†·
	Pluence Pad (SI)	1.5 x 105	Pluence Overating Point Oct (Si) Bias: Irrad. Bias: Yeas. (VOD=10V; VOD=10V; (P.') INPVTS-10V	Pluence	Pluence Overating Point size Hean Dod (Si) Bias: Irrad. Bias: Meas. (VDD=10 V2 VDD=10 V3 (1-30) /0# 49.1 2.5x/04	Pluence Oversting Point Size Mean Maz.	Pluence Operating Point size Hean Max. Min. Dod (SI) Bias: Irrad. Bias: Mess.	Pluence Oversting Point size Hean Haz. Hin. +26 Dod (SI) Bias: Irrad. Bias: Meas25 (VDD=10 V: VDD=0V:(-300 /05 49.1 62.2 40 58.4 39.8 39.8 39.5 55.2 35.5 55.1 35.6 35.6 35.6 35.6 35.6 35.6 35.6 35.6	Pluence Overating Point size Hean Naz. Min. +26 +36 Dod (SI) Bias: Irrad. Bias: Mess20 -30 (VDDFIOY: VDD=0Y3(1-300 /0# 49.1 62.2 40 58.4 63. 3.5x104

CD4013, RCA

Parameter	Pluence	Operating :	Point	Sample	Mean	Max.	Min.	Hean +26	Hean +3 CT	Accept Reject Criter
tr (y)	Mod (Si)	BIAS: IRRAD.	BIAS! MEAS.				<u> </u>	-20	-36-	
J-CHANNEL	٥	100 · 101	Iss · · Dua	5	1,60	1.63	1.61	1.64	1.65	
	Ţ	ALL INPUTS NOV						1.61	1.6	L -
	2.5×/04	LL		5_	1,23	1.25	1.2	1.27	1.29	
								1.19	1.12	
]	15×105			15	0.90%	0.95	0.9	0.962	1.98	
			L	<u> </u>	ļ		 	082	0.872	ļ
CHANGEL	0		Ton: 10 MA	5	-2.08	-2.07	-2.09	-,202	-206	
			VAA: 10 V					-202		
	2.5×10			5	-224	-,2,22	-2.25	-221	-2.2	l
	J							-226	-2.28	
	1.5 = 105			5	-2.3	22.28	-2.31	-2.28	-226	
	<u>_</u>							-2.33		
PLH (ns)	1 0		Mar. 10V: Cc · 300	5*	810	9,2	72	9.3	98.6	
			A CLOCK INPUT					70.8	45.2	
	7.5×104		TO GA	5×	.83	929	76.6	95.9	100	
								'n	636	
	1.58105	!		5×	842	9,2	76.5	92.5	98.2	
J		J						698	642	<u> </u>
		ASURE MENTS	TAKEN ON S) CENIC	 -		 -	 		

Parameter	Eluence	Operating	Point		Sample size	Megn	Mex.	Min.	Hean +20	Hean +3C	Accept Reject Criter
	(is)	BIAS: IRRAD.	Buss	MERS.					- 24-	-30-	<u> </u>
PLH (ng)	٥	. YOL • ACK	Y00 - 10V:	C30eF	5*	1.30	134	125	136	1.39	ļ
		ALL INPUTS-10Y	Ke Croc	KINNE					124	121	↓
	7.5×04		TO	Zu)	_5*	/38	/33_	16229	/35	/.39	↓
									121_	//8	↓
	15×105				5.*	127	/32_	121.9	/.3.3	/36	↓
	<u> </u>	 	ļ <u> </u>	<u> </u>			 -		191	11.8	┼─
PLH (ns)	0	 	100 · 001	Cc-30oF	_5	71.2	73.8	68.5	76	78.4	
				TOOR					664	641	
	2.5*10"				.5	20.7	23.3	68	75.4	77.8	
									(ela	63.7	
	15:105		Ĭ		5	20.2	22.6	62.7	75:7	27	<u> </u>
	*					<u> </u>			65.7	634	' -
TPLH(ns)	0		More rod:	(L:30eF	5*	Slede	59.1	53	60.7	62.7	1
	\mathbf{I}^-			(ADIT					52.5	50.5	<u> </u>
	2.5×10				5*	56.3	58.7	52.7	60.5	62.5	<u> </u>
	<u> </u>		I						52.2	50.2	<u> </u>
	1.5/105				5*	55.9	58.2	52.5	60	42.1	L
			<u> </u>		<u> </u>	<u> </u>	 		51.7	49.7	┼
		SUREMENTS T	<u> </u>		DEVICE	 _	ļ	├ ──	 	₩-	┼

Peren		Zlu		OI3 RCP		Point		Sample size	Hean	Hex.	Hio.	Hean がか	Hean +30	Accept Reject Criteri
		Log	(Si)	BIAS: IRRAD		Bias	MERS.					-2-	·3σ	
PHL	(en)	-		NOT : TOX		mo. KI	LC. 30e	5*	/03	107.9	99.9	/08	111	 -
				ALL INPUTS "						L		28.4	26_	ļ
		2.5	×104			to (5*	100	105	92	10.5	102	├ -
												95.4	83.1	ļ
_		1.50	405					5*	98.7	101.9	96	100	104	!
	_	,	,									95	93.1	
														
PHL	(en)		<u> </u>			V00:10	V: Cc -300	5*	115	117	109.9	131	124	
							CK INDIE					109	106	├ ─
$\neg +$		7.	5×104		_	TO	رمة	5*	113	169	107.9	.120	123	
_	_									i		107	104	
\neg		15	× 105					5*.	119	116.9	1063	119	122	ļ
				1			1					106	103	
		_	-										<u> </u>	↓
TPIII	(ns)		0			Voi: 10	1. C300	5	104	106	99.9		1/3	
11.00	11121		1				TO Gn			L		98.2	55.3	┿
\neg		5,	5×104			-	1	5_	102	104	98	102	110	
_		1-"						L	I			25.8	83	↓
\neg		1.5	×/05					5	101	/03	98	105	108	
		۳,	1	1			1					95.8	93.4	┷
		_							1			<u> </u>		
		<u> </u>	10 0	SASUREMEN'	_	man	ON 5	DENIC	45	L	İ			

Parameter	Tluence	Operating 1	PAGE 4	Sample	Hean	Hex.	Min.	Hean +20	Hean +30	Accept Reject Criteri
	Tod (Si)	BIAS: IRRAD.	BIAS! MEAS.			İ		-94	- 30	
PHL (AS)			100-104: C300E	5*	_ نتجل	1269	_119_	127	1.30	↓
	I ↓		() RESET TOTAL						1160	├ ─
	7.5×104			5 *	191	196	116.9	127	/.30	
					L	L	<u> </u>	115	_//.3	
	1.5xi(3			5*	نس	123.9	1169	عدا ا	128	—
								116	113	<u> </u>
							Ī			
	X 10 0	ASURE MEATS	TAMEN ON	5 00	VICES.					<u> </u>
	 	ASSIST THE AIRS	TAREAL DIN		-					
		 				1				i
	1									
					T	1				Γ

C_4014, RCA

Paramet et	Pluence	0/4 RCA Operating		Sample eize	Hean	Nex.	Min.	Heen 12 <i>6</i>	Hean +30	Accept Reject Criteri
Vr (V)	rad(Si)	BIAS: IRRAD.	BIAS! MEAS				_	ķ	-30	
+Crancel	٥	100 - 10V=	Iss - 104		1.49	1.55	1.41	1.58	1.63	
		ALL INPUTUTORY					L	3	1.35	L
	romo _a			10	.49	1.35	1.71	1.58	1.63	<u> </u>
		 	ļļ				L	1.34	1,34	
	1.52105			10	1.55	1.63	1.47	1.66	بيدا	<u> </u>
		 	ļ <u> </u>					1.44	1.34	
Darid	()	 	Too. 1048	10	-1.7	7.56	-/-87	-1.48	-1.37	
			YOU : DY					-191	-2.02	
	7.5 x/U			10	- 2.02	-0.75	-2.34	-/.	-0.439	
								-2.95	- 3.41	L
	1.5005			10	-237	-0.75	-2.7	-1.21	-0.633	L
<u> </u>	-		<u> </u>	<u> </u>				-3.52	-4.1]
TPLH(DS)	0	 	V00-10VEL-300	10+	168	1929	/439	195	202	 -
1			CLOCK IN TO Q					141	1.2.	i
	7.5X:04			10 t	178	2069	152	207	221	
			L					150	135	L
	1.5.405			10¥	195	.236	163	23C	247	L
4	<u>.</u>	<u></u>	·					100	143	<u> </u>
		 					 	 -	<u> </u>	
W 30.		ENTS TAKEN	l	-	\vdash			 -	\vdash	

Parameter .	Fluence	OPERATION OPERATIONS		Sample else	Hean	Max.	M:a.	Heen +20	Hean +36	Accept Reject Criter
	rad(Si)	BLAS: IRRAD	BIAS! MEAS.					-2°	-30	<u> </u>
(DHLm)	, O	YOU = IOV:	100-104 CL -300	107	142	1669	1219	164	175	<u>L </u>
		BLLINE, T. 10Y	CLOCK IN TO QA					120	103	<u> </u>
	7.5x/04			- EÙ#	.5!	1259	/32	172	183	
								129	118	L.
	1.5×105			10*	163		138.9	192	207	1
1				,				ž	110	l
					i	↓				↓ —
			!							ļ
					i					<u> </u>
¥ 30	mieasure	MENTS TAKE	N ON 10 D	EVICES						<u> </u>
			ļ	 						 -
			ļ		i	↓		· !		↓
			ļ			\				!
			<u> </u>					L l		↓
) 	 -i					├
			 	L	i					↓
			L							↓
								Li		-
			L	l	lacksquare]				⊢ −
			ļ	<u> </u>	igsquare					·
		ı	I]	!1					<u>-</u> -
										
										<u> </u>

CD4015, RCA

arameter	Pluence	Operating 1	Point	Sample gire	Kean	Hax.	Bla.	Heen 120	Heap +3.07	Accept Reject Criter
V+(V)	Md (Si)	BIAS : IRRAD	BIRS : M	EAS.				-20	-30	
·Con . e.	_ Q		Is 1 100	A 10	1.41	1.64	0.98	1.79	1.99	
i		LH north = 10V						1.03	0.835	
	7.5×104	7		10	1.32	1.6	0.95	1.69	1.88	
		<u>: </u>						0.942	0.754	
	1.5×105			10	1.26	1.58	0.94	1.66	1.87	<u> </u>
<u>_</u>	<u>:</u>		<u> </u>					0.854	0.651	
·Some	0		Teo : 10	GA 10	-20	-1.25	-2.55	-1.02	0.533	
			Ven : 101					-2.97	-3.46	
	7.57 104			10	72.44	7.21	3.15	7.01	-0.42	
								*3.79	-4.46	└
	15×105			10	-2.72	7.19	-3.6	-1.03	-0.179	L
•			<u> </u>			-		~4 42	-5.26	
PL 5 65	0	 	V00:104:	10 *	141	182	103	183	204	
			CL = 30 0	E				98.4	77.2	
	7.5 4/0 4		CLOCK IN T		160	217	22.9	221	251	
			1					98.4	62.2	┞—
	15×105			10*	123	256	1269	256	291	
					 			110	24.1	├
		REMEATS T	<u> </u>		 	—	 		 	

Parameter	Fluence		reting !			E 2 f 2 Sample oise	Hean	Hax.	Min.	Hean +RO	+3.07	Accept Reject Criteri
	rod(si)	BIAS: IRR	AD.	Buas	: MERS.					-26	-36	
PHL(65)	0	V00 - 10	V:	Vop :	iOV:	10 *	131	163	112	162	177	<u> </u>
		All monts	: 10V	Č.	300F					100	85.1	ļ
	75×104			CLOCK	IN TO QA	10*	141	175	119	172	187	
											95.5	
	15× .25					LOR	149	185	22.9	181	197	
1		7		Γ.	,					116	99.9	
												L
* 90			e 71	W.F. A.	241 #	DE V						
¥ 8c	MEASU	R E.MEA∏	S 7/	KEAJ	ON K	DEVIC	6s_					
* 80	MEASU	RE-MEAT	s T	KEAJ	ON K	DEVIC	6S					
* 80	MEASU	₽£ MEA∏	s T	KEAJ	ON K	DEVIC	65					
* 80	MEASU	R €MEA∏	S. 7/	KEAJ	ON K	DEVIC	6 S					
* 80	MEASU	REMEAT	S TA	KEAJ	ON K	DEVIC	ćs_					
* 80	MEASU	R& M€ A∏	S TE	KEAJ	ON N	DEVIC	£S_					
* 80	MEAS	R€.ME.A∏	S TE	KEAJ	ON K	DEVIC	£\$					
* 80	MEAS	re mean	S TE	KEAJ	ON K	DE.VIC	6S					
* 80	MEASU	re mean	s Te	KEAJ	ON K	DE.YAC	65					
* 80	MEASU	R€.MEA∏	S. TA	KEAJ	ON K	DE.VIA	6.5					
* 80	MEASU	RE MEAT	S. TA	KEAJ	ON K	DEVIC	68					
¥ 8c	MEASU	RE MEAT	T T T T T T T T T T T T T T T T T T T	KEAJ	ON K	DEVIC	68					
* 80	MEASU	RE MEAT	T T T T T T T T T T T T T T T T T T T	KEAJ	ON K	DEVIC	£\$.				,	
* 80	MEASU	RE ME A II	S TE	KEAJ	ON K	DEVIC	68					

لملي

CD4016, RCA

Parameter	gluence	Operating	Polat		Sample size	Hean	Hau.	Hio.	Heen +20	Hean +3G	Accept Reject Criter
F (X)	rad(Si)	BIAS: IRRAD.	Bias:	MERS.					-34-	-30-	
J CHIMBA	<u> </u>	Noc. ICY	Tas Mark	<u> Year ody</u>	10	1.18	ددرر	<u>//3</u>	/.23	1.26	
		ALLINGUES 10Y							1.63	110	<u> </u>
	7.5×104				10	1.21	1.26	1.15	1.27	/.3/	
									1.15	1.11	
	1,5×1,05				10	1.26	4.54	1.20	1.34	/.38	<u> </u>
4		 							1.19	1.15	-
CHANNEL	9		In Onf	YOL OOV:	10	-1.65	-1.57	-1.76	-1.54	-1.42	
,									-1.76	-/82	
	75×.04				10	-1.96	· //87	-,202	-7.85	-1.79	
	.,								-202	2/3	
	15105				10	- 2.18	· 2.11	-2.34	-2.05	- 1.98	
									- ₆ 2.30		
PLH (D3)	0	 	, kor. out	ر مدر کار م	107	12.7	39.5	9.8	24.7	30.6	
	J		SWITCHIS	, ,					0.242	-5.24	
	1.51.54		Switch		10*	11.4	/3./	0.3	15.4	12.4	
				1					7.47	5.49	
	1:54:05				10#	12.60	13.7	11.2	43.8	14.3	
	4								11.4	10.8	
***		TS TAKEN ON	10 0	VICES		 -					

Parametex	Eluence	Operating	Point		Sample else	Hean	Hex.	Min.	Hean +26	Heen +36	Accept Reject Crites
	rad (SI)	BLAS: IBRAD.	BIAS:	MEAS.					-yr	3-	
TPLH (15		Y00 - 10 Y	Vm-10Y:	C+ 300F	10±	22.2	44.6	12.6	30.6	32.8	
		ALL MPUTS 10V	CONFEDE A	IPUT TO					Ц.9	6.67	<u> </u>
	7.5×104		Swace	OUTE:	10x	£.t⊊	ما.3.دم	.20.5	23.4	24.2	
		l							30.3	19.4	
	1.5×105		L		_IOH_	20.9	24.2	21.5	24.4	25.2	
<u> </u>	<u></u>	 	<u> </u>						a)1.4	-20·la	
PHL (ng)	0		Von: KOV: K	-300F	/2×	11.1	33.5	9.0	20.6	25.4	
			BUTCH	INPUT IC					1.58	-3./8	
	75×104		Switch	OUTAR)	10 x	10.3	11.7	O.J	14.0	15.8	
									6.62	4.84	
	1.5×105				10*	10.9	12.2	9.3	125	13.3	
<u> </u>									9.22	8.39	
PHL (ng)	0		Nov. 101.	15:30aF	-102	15.5	220	/3.5	۵/.8	24.9	
			CONTROL						9.26	6.12	
	2.5x104		-	Опцыя)	10#	154	16.8	14.0	16.7	17.4	
									14.1	13.4	
	1.5×105	LL_			101	llo.L	17.7	145	17.6	18.3	
<u> </u>	<u> </u>	-	,						14.7	14.0	 -
X 40 m	75.106	WIS TAKEN	-	O DEV							

CD4017, R

Permeter	Timence	Operating	Polet		Sample else	Nean	Hez.	Hia.	Hean +2 <i>G</i>		Accept Beject Criter
(V) 1	Pod(Si)	BIAS: IRRAD.	Bies	MEAS.					-90-	-30	— —
-CHAME	0	ADV = NO.K :	Tes/	OuA_	10	1.94	2.08	1.61	-221	2.34	
		ALL INDIES: AN	VD0 -16	2					1.67	1.54	<u> </u>
	2540				10	1.45	1.56	1.34	1.59	1.65	
									1.30	1.25	
	12×102				_/0_	1,2!	43_	1.12	1.35_	1.40	
<u> </u>				<u></u>		├	 		1.0%	0.927	
CHPANEL	0		Too - /6	100	10	-232	-22	-249	-2.13	-202	
VI BANK			Voo - K	7					-251	-261	
_	25×104		1		10	-249	-232	-2.7	-2.28	-2.18	
									-2.7	-2.8	
	15×105				10	-253	-239	-2.75	-2.3	-219	
1									-2.76	-2.87	
<u> </u>		 -	YOD: AOY:	020	<i>I</i> ∩≠	315	406	2419	380	443	_
BH (ve)		 		K /APUT	10-	-313	700	W-31. 1	250	217	_
$\overline{}$	7.52.09	 	TO		10+	323	430	2299		4/33	
	1,3510	 			70 :-	1		1	249	212	
	1.5×105	 			10*	329	463	245.9		450	
*									248	308	
		EASUREMENTS.							 		

Paren		Zlo		0/7 RCA	Point		Sample	E 20 F.	Hax.	Hin.	Hean +2¢	Mean +3C	Accept Reject Criter
	~~	Md	(Si)	BLAS: IRRAD.	Bies: f	MERS.					-24	-3~	
PLH		_		YOU - AdV	Vnov.toV: C	4.30eF	10	155	171.9	142	171	179	
\Box				ALL INPUTS . MY							/38	130	
	_	25	404		TO CARR		10_	155	173.9	148	123	183	
\Box											138	129	
		15	×105				10	154	175	149	174	183	<u> </u>
											139	_30_	<u> </u>
													<u> </u>
PLH	(50)		٥		7:VO-10V:C	4.300F	IOF	294	391	150.9	39/	445	
\perp	•	_ ,			C. RESE	T TO			·		176	192	
		25	2104		_ ar	<u></u>	10.*	285	393.9	148	3%	450	
											173	117	
		15	×105		1.		10*	286	393.9	148	398	453	
		ĺ				<u> </u>					174	118	
				<u> </u>	<u> </u>				<u> </u>		<u> </u>	 	├
БЯŁ	ردم)	_	λ	 	120 · 10/1		N##	୬୦୳	268	175	244	264	 ——
_		_	<u> </u>		(A, CLOC	,		<u> </u>	<u> </u>		164	144	
_		7.5	<u>Szicki</u>		<u>το 0</u>	(u)	10**	200	261	170	232	256	┼──
-			<u>k</u>					1.00			162	143	├
_		1.	5×105	 	—	 	ION H	199	258	171	236	254	
_+		٠	<u> </u>	*		¥			├	ļ	163	145	├
		*	<u> 90</u>	m <i>easureme</i> at	_			ARES	 				
		**	-100	MEASUREMENT	TAKE.		10.	EVICE					

DEVICE 1	113:	CD	1017	RCA	<u> </u>			30£3					<u>3</u>
Parameter	S.pa	000a		Operating	Point		Sample	Mean	Han.	Hia.	Heen +26	Hean +20	Accept Reject Criter
	Co	1(51)	BIAS:	BRAD.	Bus:	MERS.					- 20	- 30	
PHL (ne			100.00		MODELOV:C		10	171	189	163	188	196	
				PUTS: 101							155	146	
L	2.5	YO4			TO CAR	EY OUTPO	9	173	193	164.9	190	199	
	L.										154	145	
	1.5	xiO ⁵					10	174	194	166	193	202	
	_										156	146	
	L_				L								
PHL (ng)	عــا				PV-VOX-C	L.300F	ION	219	291	180	261	283	
	<u> </u>				C, RES	ET TO					176	155	
	2.5	×104			٥		LO*	209	2729	125.9	249	269	
	L										169	14/8	
	1.5	×105			L	LI	IOH	204	268.9	175	243	262	
<u></u>	L				,						Lelo	147	
	<u> </u>												
	<u> </u>												<u> </u>
	*	50 n	EASU	E/DEATTS	TAKE	M OV	10 DE	UCES					
	<u> </u>												<u> </u>
	<u> </u>												<u> </u>
	├								 				<u> </u>
	┞—												<u> </u>
	├												├
	├								 -				
	├ —												<u> </u>

CD4019, RCA

Pasameter	Fluence	Operating	Point	Sample size	Hean	Max.	Hin.	Heen 42.0	Hean +3CT	Accep Rejec Crite
t+ (v)	Nod (Si)	BLAS: LARAD.	BIAS! MERS.					-54	-36	
-Cedavie		YEL: DY:	Tes - Markon - iov	9	Lela	1.82	1.17	211	2.34	
		ALL INDUTS: 10V						1.2	0.98	<u> </u>
	25404			_8	1.58	1.75	1.15	*203	*2.26	
↓			 					1,12	0.90	<u> </u>
+	1.5×10 ⁵			9	1.6	1.82		2.13	239	<u> </u>
<u> </u>	k	 	L			<u> </u>	<u> </u>	1.09	0.83	<u> </u>
									4.55	<u> </u>
CHANNEL	9		too:10H8/Arc:10A	_9	-2.23	-1.25	2368	-/.28		├—
	27 104	 					-	-3./9		├
 i	7.57.104			_8_	252	-/.23	-3.08		-4.69	├─
+	1.57105	 	 	9	- 2 6 7	~1.3	7.65			
+	1.57/09				-2.8 x		:3:55.	-462	-0.35 -5.50	╌
	<u> </u>							7.60	13.30	
(En) HX	0		NOO'DY CA 300F	9++	60.8	648	54	65.5	62.9	<u> </u>
******	.].	· · · · · · · · · · · · · · · · · · ·	KIND ITS A TO		0.00	TO CO.	137	56.1	53.7	
	7,5,2104		ACSOCIATED OLDRIG	8**	63.2	68.5	57		24.5	\Box
			Υη.)					58.5	35.9	
	15405			92.4	67	72.1	5%2	229	25.8	
· ·								61.1	58.2	
6. + 4	NE DEVIC	E FAILED								

Personeter	Etuenoe	9 RCA	Point	Sample	Hean	Max.	Hia,	Heen +20	Hean +3F	Accept Beject Crises
	nd (si)	BIAS: IRRAD.	BIAS! MERS.					-32	-:35-	└ ──
PLH (ne)	0	YAN : KON :	YOU - 104: CL - 300F	944	63.2	66.4	583	62.2	69.1	ــــ
		ALL LAPUTS - IOY	CALAUTS KA TO					59.3	523	
	2.5×10		RECURED ASSES	8++	65.9	20.3	59.9		*23.8	<u> </u>
			Yn					60,6	58	
	1.501.05			9xx	69.7	245	<u>63.9</u>	25.2	729	
			•					64.9	669	├
PAH (NS)	-5	 	Non-104: Cr. 300F	9**	524	634	50.4	63.6	66.2	
			CAPUTS B TO					51.2	48.1	L
	7.5×104		ASSOCIATE A CUITOR	8##	59.7	65	5.3	65.5	*68.4	
			Yn)					539	50.9	
	/ 5×/53			9**	62.7	68.3	55	68.8	71.9	
								56,6	53.5	
Pun (iis)	0		Noo-101, Ca-300F	9**	58.9	63.7	54/	63.8	66.3	
	1		Cunts Kh TO					54	545	
	2.5×104		ASSOCIATED OURAS	Rev	61.9	62	52	*621	62.7	
	1		Υη)					56.6	34	L
	1.5×.35			9**	65.5	71.1	59.4	71.5	74.5	<u> </u>
								59.5	56.5	┼—
+ ONE	DEVICE F	AU 60								

Parameer	Zluence	Operating	Point	Sample else	Hean	Hax.	Min.	Heen +2C	Hean +3C	Accept Reject Criter
	Pod (Si)	BIAS: IRRAD.	BIAS! MEAS					-20-	-36-	
PHL (na)	<u> </u>	YDQ = 40Y:	Y00-104; C300F	9**	98.9	118_	77.6	117.5	126.8	
		ALL INDITIS . IDV	UNPUTS A TO					80.3	21	
	25×104		ASSOCIETED OUTER	214	08.7	120.9	99	1,20,5	136.4	
			Yn)					92	261	
	1.5×10 ⁵			9 × ×	123.7	143.9	108.9	141.3	120.1	
								106.1	97.3	
										-
CEA) JHS	_		1/20-101/: C=300E	9,,	102.1	135	26_	125	/339	
			CAIRTS KO to					87.3	80.3	⊢
	7.5804	*	ASSOCIATED OUTRE	SHH	115.6	<u> </u>	1019	7/22.4		
\perp								101.9	95	⊢
	1.5405			9**	131	157.9	115.9		160.7	├
					ļi			111.2	101.3	├
		 			-					├
PHLINS			Y00-40 4; Cc = 30pF	9**	93.4	121.9	624		_	├─
	-		MIPHOS B TO					29	4/.8	!-
_	7.57104		ASSOCIATED OUTPET	N##	101.9	126	69.3			├
			_ ζύ/					67.6	20.4	╌
	1.5×105	 		94#	118.4	147	72.2	1484		┰
		 			 		├	82 <u>4</u>	7/8	┼
	E DEVICE		ON EACH DE		├ ──			├─		┼─

DEVICE TO	ar CD	1019 RC	1	Page	4084					
Parameter	Eluence	Operating		Saupte size	Henn	Hez.	Mia.	Hean i20	Heen 43(T	Accept Reject Oritoria
	rad(Si)	BIAS: IRRAD.	BIRS! MERS					-20-		
TPHL (ns)			NOD=101: Ce = 30=5	94 4	926	119	20.5		132.2	
	1	ALL IMPUTS - MY	LAPORS Kb to					66.2		
	2.5×104		ASSOCIATED OFFRI	* * * R	1039	1/8	77.5	1.55.1	*/3/.3	
			Yn					856	26.4	<u> </u>
	1.5x10 ⁵			911#	118.5	145	98_	1406	151.6	<u> </u>
4	-				<u> </u>			96.5	25.5	<u> </u>
								ļ	<u> </u>	<u> </u>
. + ONE	DEVICE !	AILED								
** 4 me	MOUREME	NTS TAKEN O	WEACH DEVICE				<u> </u>		<u> </u>	
							<u> </u>			
									<u> </u>	
							L	L	<u> </u>	
										
		 	<u> </u>							
		f -				Ī				
<u> </u>		 					T			
		f						<u> </u>		<u> </u>

CD4021, RCA

	• • •							PAG	E lot-	•	
DEVICE T	m. CN4	SOI RCA	950	OP A416	1601	IN FO	emials	GAS			3_
Paramter		Operating 1			Sample	Hean	Naz.	Min.	Hean +2.0	Heen +30	Accept Beject Criter
tr (V)		BIAST IRRAD	Bus:	Mene			,,,,,,,,		-20-	- 30	
I-CHAUNE		1 .	Iss -m	-	10	1.396	465	72.31	2.6	3.20	
		ALL INJECTS - KOY					77.4.	-	0.182		
	75×104	1201113-701	- Y		9	1.28	1:61	-0-34	251		
	1.									-0.57	
	1.5×105				5	1.15	1,58	-0.3	2.22		
	J								-0.47	-/28	
CHANNEL	0		Tag- 10	uA	10	-1.61	0.14	-1.98	-0.35	0.07	
	\Box		Vno. 10	ý I					-2.86	:3.49	
	7.5204				9	204	0.13	-2.61	10.04	3.66	
									-3.84	-4.74	
	15405				_5	-262	0.08	-347	0.45	7.98	
				<i>.</i>						- 2.33	
PLH (ne)			Van My:	CL-300F	10*	194	222.9	150	230.5	253.7	<u> </u>
			(CLOCK II	IPUT TO GA					/32/0	114.4	
	7.52104				9#	200.2	241.9	169	*250	2219	
										625.5	
	15×105				54	218	259.9	106.9	389.4	325	<u> </u>
			L	/					46.4	110.6	<u> </u>
	N -	 	<u> </u>					<u> </u>		├	├
	_	EVICE FAILE				 					
,		SUREMENTS									├

PHI (NR) O NON- INV NAME OF THE PROPERTY OF TH	Perageter	Rineace	Operating		Pacac Sampla sizo	Heap	Max.	Hin.	Heen +26	Heen +367	Accept Saject Criter
PHI (NS) O NON- ION IND. (C. 300 IC 158.3 123.9 136. 183.6 196.0 2 133.1 120.4 125.1 191 152.9 223.2 2012.2 146.9 132.9 146.9		<u> (i2) 661</u>		BIAS! MERS.					-20-	30-	
2.5x 10 ⁴ 133.1 130.4 125.1 191 153.9 133.2 133.9 146.9 146.9 146	PHL (ns)	4	100 - 10A	VAN 104: C. 300	1	158.3	123.9	136	183.6	196.2	
# ONE DEVICE PARED # ONE DEVICE PARED # TO DEVICE PARED			ALL IMPUTS- MV	CLOCK HAPIT TO C							
# ONE DEVICE FAVED		25×10			94	175.1	191	1529	203.2	*217.2	
* ONE DEVICE PARED											
* CALL DEVICE FALED	_	1.5x105			5*	215.5	243	1239	VD7/1	303.9	
* CALL DEVICE FALED											
	- 1										
	3 me			N EACH DEV	RE						
	3 me			N EACH DEN	ICE.						

CD4023, RCA

Parameter	Fluence	4023 RCR Operating		Sample	Hean			Hean	Heen	Accept Re jec
H(U)	(hd(si)	BIAS: IRRAD.	BIAS: MENS	9220	- HEED	Mex.	Min.	-20	-30	Crite
Chance	U	V00=/0V		9	1.4	1.55	1,29		-30	╁
		BILINDUTS IDV	Ton - 1048	1-1-		1.30	1624	1-6	- !•/-	⊢
	2.5x/04	TITLINGUIS TO Y	400-104	8	0.683	0.79	242	100	70 00 4	├
	1.	 		-	0,683	0.7	0.64	4817		├
\neg	1.5x/05			9	0.377		-		0'481	├
		 		<u> </u>	0.311	0.46	0.21			
		 						0-312	0.132	├
-Chamel	0	 	Tro : /0 4 A	9	-1.98	-13	-215	-1 (8	1 711	
- Cranical		 		4	-1-40	-1.76	-215	-1.68		\vdash
	7.53104	 	100 - 40X	8	- 3 ()	2.2	2 22	-228	-2.42	⊢
\neg					-2.61	-2.51	-0.73	<u> </u>		 -
	1.5x/05			9	32.			-2.28	-2,84	
	100000			<u> </u>	-306	-2.95	-3,31		-28	<u> </u>
-*		 						-3.24	-3.32	
PLH (nS)	0		Non-10: C =20 C	0	100	F1 6	<u> </u>		50 -	⊢—
1212	Y		100-104- C-304	9**	48.1	565	41.1	548	_58.2	<u> </u>
	7.5 X/04	 			70.5			414	361	
	-/ • -/////	 		8**	525	663	-50.7	الجيء		
	1.5005	 		6.	750		40 .	43.9	46	
-	- IO- AIG-	 		94%	67.8	93.9	58-6	79.4	86	
*		*	V	 				55.6	49.5	
-	. A CHICE	FAILED								

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

eremeter	Pluence	Ор	ereting	Point_		PRGE Sample size	Mean	Max.	Mio.	Hean +2 <i>G</i>	Hean +3.67	Accept Reject Criter
	rod (su)	BIAS: IR	AAD.	Busi						-20	-30′	
PHLOS	<u> </u>	V00-10V		AUD - 10 A	کو نگ	9×*	43.8	506	34.8	51.8	55,7	
		ALL IND	<u> 10v</u>	<u> </u>	<u> </u>					35.8	318	L
	7-5 10			<u> </u>		8**	45.5	54.1	36.	*54.3		
										36.8	35.4	
	451105	 				9**	_53,1	4443	37.9	142	186	
		↓ ¥								-35.4	-79.7	.
		ľ		1					}	1		
												
* ON	E DEVI	E FAI	ŒŊ									
	E DEVI			N ON	EACH	DEVICE						
				N ON	EACH	DEVICE						
				N ON	EACH	DEVICE						
				N and	EACH	DEVICE						
				N ON	EACH	DEVICE						
				N ON	EACH	DEVICE						
				N ON	EACH	DEVICE						
				N ON	EACH	DEVICE						
				N OAL	EACH	DEVICE						
				N ON	EACH	DEVICE						
				N and	EACH	DEVICE						
				N ON	EACH	DEVICE						
				N ON	EACH	DEVICE						

CD4025, RCA

Parameter	Fluence	25 RCA	950°C. A	Sample	Kean	Max.	Min.	Hean +2G	Hean +30	Accept Reject Criter
4(1)	rad(Si)	BLASTIBRAD.	BIAS! MEAS.	T				-20	-30	
n-cucimel		Von: IDV:	Iss-10, A; You	N 4	1.33	1.36	164	1.37	1.39	
		All INPUTS - IDY	/ / /					1.28	1,26	
	7.5x/04			4	1.06	1.09	603	1.12	1.15	
									0.725	
	1.5x105			4	1.01	1.05	0.96	1.1	1.15	
			<u> </u>	<u></u>		L	L	0.923	0.878	
P-Channel	0		Indication in	<u>4</u>	-1.81	-1.75	-1.86	-1.72	-1.67	
			1 ' 5					-191	-1.96	
	3.5x104			4	-233	-2.24	-2.37	-2.21	-2.15	
				<u> </u>				-2.44		
	1.51105	li	<u> </u>	4	-266	-253	-2,23	-247		
			<u> </u>	<u> </u>				-2.84	-293	L
			<u> </u>	<u> </u>						
JATH(02)			1005-104-200p	44	72.9	98	62.5	29.6	98	
					L		L	لمعاف	47.8	L
	25x104			<u> </u>	88.1	103	70.5	109	119	
		ļ	 					676	523	<u> </u>
	1.5105		 i	4×	ICI	113.	76.6	_115_	122	
				 			 _	86.4	73-7	
		NEATTS TAKE	İ				<u> </u>			! -

DEALGE 1	12: C) 403	s RCA		PAGE	3015			 7		
inequate"	Fluence	Operating	Point	Sample size	Hean	Nax.	Min.	Hean +20	Hean +3C	Accept Reject Criteri
	Daci (Su)	BIAS: IRRAD.	BIAS: MERS.					-20-	-9>	
[EM_15]	Δ	ADD-10AT	Monetow Cle301	F AM	524	60.6	1	619	66.7	
	L	All INDUTS-10V						43	98.2	
	2.5x/C4			44	54.7	64.8	42.4	66	71.7	
								403	37.7	
	i.5x10*	<u> </u>		44	58.9	70.5	423	70.3	25.9	<u> </u>
		<u> </u>						426	41.9	L
		ļ. <u></u>			<u> </u>					<u> </u>
× 36	maasure	MEATS TH	cen on 40	EVICES.	<u> </u>					<u> </u>
			<u> </u>							
			J	<u> </u>						
										<u> </u>
		1	J							
					<u>L. </u>					<u> </u>
					L					
										<u> </u>
					L					<u> </u>
										L
					L					L
										L
										1

CD4027, RCA

	004	100m 000	0-100					PAGE TO	10		2
Parameter	Pluence	OD7 RCA		A	Sample size	/ FORIT	Max.	AS	Hean 42 <i>6</i>	Heen +30	Accept Reject Criteri
(V) Th	ma (Su)	BIAS: IRRAD.	BIAS! ME	as.					्रो	- 3σ	
A CHANNEL	0	100·10 V.	Jan Musik		10	4.38	1.50	0.26	1.68	1.84	
		ALL INPUSTION							1.02	0.91	
	1.5×105				10	1.11	1.42	-0.17	2.16	2.69	
			1						<u> 00547</u>	-0.47/	
CHRMNEA	0_		Inc:Mul.Yo	NY O	10	-1.95	-1.8	-2.05	-1.27	-1.69	
									-202	-2.15	
	1.5×105				10	-2.42	- 1.68	- 2.76	-1.64	-/	
-k									-3.50	-3.24	
PLH (ns)	٥		Yno: 10X. Ca	:30.2F	10 R	95.5	119.0	74.5	115.0	1540	
			CLOCK TO	الف					26.5	62.1	
	1.5×105				10 ¥	1050	126	82	/23	132	
	le	 							82.5	28,6	⊢
Par (ne)	0		VOL. 10Y,CL.	300F	10 ×	94.7	115.9	7628	114	124	
	k		SET TO	77					25.2	65.5	
	1.5403				10*	104	12in	725	124	/33	
			 						85.1	25.5	
PLH (ns)	3		Man rolli Ce	30AE	10 *	168	189.9	150	182	186	
			(CLOCK TO	<u>a)</u>					14/8	139	
i	1.5 × 105				101	182	208	155	207	219	
	1	120 MEASURE IN	ATTE TOK	ام دی	N 10 D	LUFER			158	145	1

Parameter	PR: CD4	O27 RC. Operating	Point	Samia size	<i>Jc</i> ∙{ <i>J</i>	Max.	Min.	Hean +20	1840 +30	Accept Reject Orina
	rod (S.)	BLAS: IRRAD.	BIAS! MEAS.					:24	-35	
PLH (ng)		Npo-101	100:104.CL.300F	10#	74.1	106.9	64.6	943	104.0	<u> </u>
		ALL INPUTS IN	(RESET TO TO					53.8	43.7	l
	1.5×105			/04	87.3	112	67.5	.111	123	<u> </u>
<u>.</u>	<u> </u>							63.2	51.1	
PHL (ng)	0		Non-104, Ca-30pF	10*	116	1.34	104	1.30	/37	
			(CLOCK TO CA)					100	94.7	
	1.5×105	<u> </u>		/0.X	128	141	//3	142	150	
	 -		<u> </u>					114	107	 -
PHL (ns)	0		YOD 104: Cc. 300f	/0*	/53	175	1.36.9	/72	181	
			(RESET TO (3)					/34/	125	
	1.5×103			10*	174	198	150.9	196	207	<u> </u>
	k					-		752	141	
PHL(va)	0		YOU'DY, C300F	/O¥	156	/85	136.9	128	190	
			(CLOCK TO TO)					43.3	121	L
	1.5400			_/O*	171	199.9	147	193	204	
₩								149	/38_	
والارتاعي	G		You /OY: Ca - 300	/ O*	155	184	/.38	127	189	
			(SET TO 6)					/.32	120	<u> </u>
	15×105			10#	17/	201	148	193	205	
	li	+20 MEASURETHEA	TO TAKEN ON IC	DENICE	e	1		1-18	136	ľ

CD4028, RCA

		; 1		Sample	ř. '	'	pgB	Xean	Kean	RESECT
Parameter	Pluence	Joeratin		8120	Kean	Yaz.	Min.	+36	+35	Criter
Vr (V)	(iz)bea	Bine: Irrad.	Bias: Meas.					رمر	-30	,
N-Channel	<u> </u>	ADD-10A*	Iss- DuA	٩	1.84	i96	1.73	1.98	2.05	
	<u></u>	Allindatz=10x	VOI - 04K					_1 . 69_	_662	1
	7.5x104	L		_9_	1,84	1,99	1.36	221	2.4	<u></u>
			 					1-46	_1+28	
	1.5,103		<u> </u>	_9_	1.97	2.15	1.5	2,34	2.53	
	*		 		ļ			166	1.41	1
		 _								!
D-Chound			700 - 10ph	9_	-265	-203	-29	-2.14	-1.88	
			Y00 : 00V			· · · ·		-317	-3.42	ļ
	7.5×104	 		_9	-3.11	-1.7	-3.5	-501	-1,42	<u> </u>
	<u> </u>		 					-4.2	-4.75	
	1.5×105		 	9	-348	-1.87	-3.82		-1462	 -
. +	<u> </u>	 	+	L	L			-4.72	-5.34	
TPLHOS	0		700-104 5 C = 30gft	٥.	134	152	114.9	152	161	
-11-11-11-1	<u> </u>				/31_		11161	116	107	
		·	pobru BBZ na soutern	2 x.x	74	939	634	4.68	924	
				(L. N. dt			%	58,4	50.6	
	7.58104			9.	153	170	131	173	183	-
				4- 4 -				133	_ 123	
				9 **	85.7	103	613	110	122	
								61.8	49.9	

'efaneter	Pluen			O cerat in	g Point		Sample sise	Kean	Note.	lin.	Tean	Heen +35	ASTER! Criter
	Tod ((12	Bies: Ir	red.	Bias: M	ms.					-20-	-30	
BrHQ0	1.5	40 5	VOD-101	•	Yes-lav	C -380f	9.	174	194	147	197	209	
			Allingur		Ans 88 (m)						150	158	
							Juin	96.B	114.9	70.8	119	130	
<u> </u>	¥					L					74.8	هڙڪ.	ļ <u>.</u>
DHI (ng)	-						9*	115	134	1009	132	140	<u> </u>
PHT (12)	Ť				 		/=	7/5	1517	1091	99	90.8	
_	1				-		714	78.3	104	639	104	117	<u> </u>
	1	,			1	1					522	39.2	
	7.5	UOT					9#	123	141	1029	140	148	
1			!		1	t				-104	105	8.08	
							9+ ×	939	116.9	70.8	/23	138	-
		,			1						64.8	50.2]
	1.5	105					92	/3/	/50	1/39	149	: 758	
											112	103	
							900	109	134	225	/38	152	I
					,	2					80	655	
 -	! -		<u> </u>		 						<u></u>		
1 3/-	-	4100	DOC 4 175	TANE	N ON	9 Ac	ree.				 -	 -	-
× 27					EN OA						1	l	
	I		3		1			i			1	!	1

CD4029, RCA

Parameter	Eluence	Operating	Point	1	Samp to	Span	Nec .	Hin.	Heen 12 6 7	Hean 1367	Accept Reject Criter
/T (X)	red(S)	BIAS: IRRAN	Bus:	MSAS.					-27-	-37-	Ĺ.,
V-CHANNEL		Y00=10Y	Jec	10 uA	10	4.84	1.27	448	201	2.14	
		AL MARE -AL	V00 . /	οV					1.64	154	L.
	25×104		\Box		10	1.53	1.84	1.07	1.96	2/2	<u> </u>
									1.11	1.889	
	1.5×105				10	1.50	2.22	1.83	224	2.61	
					<u> </u>				0.251	0.329	<u> </u>
2 CHANNEZ	0	 	Tage /	Qu.A	10	-27V	- 1.89	-249	-1,85	-1.65	
	T.		V00 ·	,						-2.82	
	7.5×104	1	1 1		10	-2.22	-242	-3.05		-1.87	
\neg	771378						10,100			-3.47	
	15xm5				10	-2.83	-0/	-3.49		0.346	
-									-49	-5.99	
PLH (ng)	0	 	V. n. 47 V	C300	10 *	177	20.9	150	205	2/8	├
1				UP CLOSE			- A-4.7.		150	132	
	7.5004	 		PUT CO		188	230	159.9		239	
$\neg \vdash$	1	 	100		-11-18	1-100		1	154	/32	
	1.5xcs	1	 	 	IOR	200	277	1/09	246	269	
									154	131	
								<u> </u>			├ ─
* 80	MASURE	EASTS TOKEN	ON KO	DEVICE							

	Bipance	Operating		Pagas all Stable	D en	Hax.	Mio.	Nam 1903	dean 438	Accept Djeet Criter
	red (Si)	BIOT: IDOOD	Bus : Mass					.27-	-3-	
PLH (ne)		YON - 1014:	VAN-101-C+ = 30	108	180	202	1528	0/3	عود	<u> </u>
		ALL MARKS:/AY	COUNT BONNE					1460	130	
	2.5x10		CLOCK TO DUSES	100	2/3	1822	Kez	592	784	<u> </u>
			المما	J	<u> </u>			-Icolo.	-356	<u> </u>
	15 D		J	100	304	2029	121	-0255_	280	
_			<u> </u>					/53_	124	—
				<u> </u>	<u> </u>	<u> </u>				<u> </u>
Put (na)	<u> </u>		MAD-104; Ca 2300		217	2349	/87_	244	252	<u> </u>
			PREMY ENIOLE		<u> </u>			191_	727	₩-
	25×104		TO BUTPUT ON	1088	~234	266	199.9		220	—
4-4			L]				192	1481	
4	15×105			/OBX	251	3149	213.9	300	332	╄——
<u>+</u>	<u> </u>		 	 		 -	 	POL	176	┼─╴
PAN (ps)	0		Va0:/0V: C4:30	a 10-5	252	220	012.7	288	306	_
			COUNT UP C					4/7	199	Γ_{-}
	7.5104		TO CARRY OUT	100	285	309	242.9	303	342	
	,							242	228	
	15 XIOS			1000	324	320.9	282	374	399	
								274	249	ـــــ
¥ 80 m	EASUREM	ENTS TAKEN O			L			<u> </u>	<u> </u>	╄-
** 40	MEASURE	PRESETS TAKEN	ON IO DE	KES	L.				<u> </u>	<u> </u>

Person	E luanos	Operating	Polat		Sample Oten	Hean	Reg.	Min.	Hann 42.00	thes +347	Accept Reject
	rad(Sv)	BIAS: IBAAD	Bus:	DAGAG.					-20-	-30	
PLH (09)		VA = AAY	VOO-10V:	C4300	10.	180	199	155	205	216	
		ALL INIBITS ! DV	COUNT D	OWAL					159	142	
	2500		CLOGA T	O CARRY	1000	197	2349	164	23.3	450	<u> </u>
			OUT/	out)					161	144	
	1500				10.00	215	281	123	268	295	
									LOL	/34	
PLH(06)	0		V20°40 V:	C+=30a	: 10	268	2929	2369	799	3/5	
	J		(PRESET	ENSE					237	272	
	7.5x105		TO CARRY		0	298	303	263	339	359	
									253	789	
	15NOS				10	339	387	296	394	401	
	_								284	257	
ONJ (ne)	0		Yna-KW	C. 30-5	10*	134	/529	113.9	467	168	
			COUNT U		_				111	99.4	
	7,5x10		TO OUT			149	180.9	126	176	/89	
									122	109	
	1,5×105				10#	120	ala	145	200	_2/8	
									/.38	/29	
. 2) m 600 u	PERFAITS TON	541 0	11/0	E VICE						

A gramater		Operating	Point		Sample sise	Nean	Hex.	Kia.	Heen +2CF	Heen 	Accept Beject Criteri
	_	BIAS: JARAD.	Bust 0	NERS.					-27-	·.*C	<u> </u>
PHLCOS	0	VAD- 10 V	Van=dov:	4.370	10 *	/32	/52		156	_/68	Ь—
		AL INAUTS . K)	KOOUATE DO	444					108	96.3	—
	2.5x04		CLOCA TO		10#	14/2	180	123.9	175	189	⊢ −
	Ţ		(00)						120	106	├ -
	1.5x/05				10*	169	206		200	مارچہ	
	*								/38	193	
PHALIDS		 	YDD: IOV:	0.130.0	10**	144	/27	/22.9	176	192	
PHYCUS			PRESET A		11.75.6				112	86.6	
	75		TO OUT		/0##	/59	20/.9	/36	196	215	
	7.5×04	 	HO OWN	OL CAL	JUFR	137	-Sea./	71,152	122	104	
_	1/5x10 ⁵	 			/O##	181	236	154	228	252	T^-
1	Latio		ļ .	,	- IORK	101	- SA NA		134	111	
			141	1 11	10.0	0.40	259	231.9	262	111	┼
(PHL (ne.)			Y00-10V; (104	247	~37	ـ تاداهـ	231	223	
	<u> </u>		COULT UP		100.0	744		-243.9	280	300	
	2.5×104	 	TO CARRY	OMBR	10.	266	2823	-33.7	24/	229	+ ~~
	-			 	100	 -		221	308	345	$\overline{}$
	1-2×102	 			1000	225_	.33/_	~//		245	-
	<u> </u>	 	 	* -	 	├		 	262	W7:1	+
\$ 80 me	SUREMEA	TS TAKENO	N 10 DE	VK.ES	<u> </u>	├					_

mviCi ii				Operating	Point	PAGE	Sample eise	Hean	Mgz.	Nie.	Heen 42 <i>G</i>	Heen +3¢	Accept Reject Criteri
			BIASE	IARAD.	Bues	MARS.					-24-	-31-	<u> </u>
PHL (na)			Y00.	oV		V. C4300F	101	162	170_	159	_الآل	124	
			44.	NPUTS . /OV	CONT	DOMAN					158	155	
	2.5	XIO4				TO CARRY	101	128	189	176	190	195	
	_]		<u> </u>		OUTE	7					167	الم	├
	1.52	10 ⁵				L	1044	<i>3</i> 05	217.9	199	220	228	├
1	,					k					190	183	├
					ļ. —	V 0 70		.3.2.2	22.10	292.9	349	.362	├
BHT (Ug				├		NC+3	_	-2010	-2-24/2	~7~.7	225	281	
	_	-	_	├	_	ENABLE			320	318	-383	409	┼──
	2.5	YO'Y	├	├	TO CA	BRY OUTBE	0	347	370	-218-	310	292	_
)		├	├	├			329	447	342	432	466	
		XIO2	├ -	∔				377	447	7347	321	292	\vdash
<u> </u>	-	<u>, </u>	├ ─ं	*		<u> </u>					-36//-	W/W	1-
4 00	<u> </u>		<u> </u>		+	- 40 4							\vdash
** NO	nie	ASUR	MEN	ITS TAK	AL OV	O O D	KES_						
	├		├─		+			 	-				
	├─		├		-			 	-				
	├─		├		+								\top
	 		┼		┼			 		 			
	⊢		┼		 				1				
			╁──		┿								Τ
			4		4				——	+			_

CD4030, RCA

Parameter	Tluence	Operating	Point	Sample	Hean	Max.	Min.	Hean +20	Heen +3C	Accept Reject Criter
fr (A)	Nod (Si)	BLAS: LARAD.	BIAS! MEAS.					- 20	-35	
VI-CHANNE			Tas IOUR YOUR	M 5	1,28	1.42	1,22	1.44	450	
		ALL IMPUTS 'MY	/					1.12	1.04	
	7.5×104	<u> </u>	i	5	1,04	1.19	0.22	1.21	1.29	
	7	i 1						0.862	1282	
	1.5 ×10 ⁵			5	0.868	1.09	0.28		1.26	<u> </u>
+		 				 	ļ	0.607	0.477	<u> </u>
CHANNEL	0		Iro : Man Hoo : K	w 5	-2.24	-901	-2.47	-1.88	-1.71	
								-2.59	-2.26	
	7.5×104			_5	- 2.44	-2.23	-2.64	-2.11	-1.95	
	J							-276	-2.92	
	1.5×103			5_	-254	-23%	-273			
				Ţ <u> </u>				-2.82	-2.9%	
PLH (ne)	-0		Vina: ION, Cu-301	OF 51	43.1	626	19.5	80.2	99.5	
								5.51	-/3.3	
	25204			54	44.5	71.1	206	83	102	<u> </u>
								5.98	-13.3	
	1,5×105			15x	45.4	720	21.2	845	154	
\				+	ļ .			6.32	-1.3.2	
				1						

Parameter	Eluence	030 RCA	g Point	Sumple stre	Meao	Mex.	Mig.	Hean +20	Hean +3.07	Accept Reject Griter
	red (Si)	BIAS: IRRAD.	BIAS MEAS					-25-	-36	
PHL (ns)	9	MOC-DY	YED: 104:CL:300	54	546	69.8	46.9	64.4	69.3	
	1	ALL MPUTS : 10	4					44.9	40.0	
	7.5404			5*	53.6	20.3	45.1	64.8		
								40.4	36.8	
	15×103			5×	_3_	71	44	45.6		<u> </u>
		k		ļ	L			40.4	34.1	
	l .			1				1		i
				<u> </u>						
# RO	MEASUR	MEAITS TA	KEN ON SOE	KES						
3.80	MEASUR	IMEAITS TA	KEAL OAL S.DE	KES						
3.80	MEASUR	MEAITS TA	KEAL ON SOS	res_						
* 80	MEASUR	meairs ta	HEAL DAL S.DE	KES						
* 80	MEASUE	imeairs ta	HEAL DAL SIDE	res_						
	MEASUR	MEAILS TA	NEAL ON 506	KES						
	ME ASUE	AT ZILASMI	NEAL OAL 5.06	KES.						
* 80	ME ASUR	AT ZILASMI	NEAL OAL 5.06	KES						
* 90 *	MERSUR	SMEALTS TA	HEAL GAL S.D.S.	KES.						
* 90 *	MERSUR	MEAITS TA	MAL DAL SDE	ICES.						
* 80	ME ASUE	MEAITS TA	MELL DAL SDE	KES						
*80	ME ASUE	MEAITS TA	NEAL OAL 506							
3.80	MEASUR	MENTS TA	NELL OAL 506	res.						
3.80	ME ASUE	SMEANTS TA	KEAL DAL SDE	IEES.						

Parameter	Fluence	Operating	Polet		Sample eine	Hess	Mex.	Mio.	Hean +20	Heen +3CT	Accept Beject Crite
4 (A)	rod(Si)	BIAS: IRRAD	Bias:	MEAS.					ķ	- 347	
U-CHANAEL			Iss.		10	1.26	1.3	1.21	1.33	1.36	
1		ALL INPUTS . MOV							1.19	45	
	7.5×10				9_	0.60	1.07	-0.16	1.42	*1.80	
									-0.22	-0.63	
	1.5×105				10	0.63	1.0	0.28	1.09	1.32	
				,					0.12	-0.06	
										L	
CHANNEL	0		Too =	OnA	10	-1.69	-1.64	-/.8/	-1.58	-/.52	
			100·	ر الان					-1.80	-1,86	
	25 x104				9	7.70	0.0	-233	*0.14	1.02	
	_ ,								-3.52	-4.50	Ĺ.,
	1.5×105				10	-2.25	-0.02	267	-0.67	0.12	
									-3.23	-4.62	
											L
PrH(va)	9		YOO-DV:	C - 300A	10	290.8	.3,28.9	258	.338.6	360.60	<u> </u>
			COCK T	2 Carried					2429		
	7.5×104				9	308.8	359	280	*352	381.1	<u> </u>
			<u> </u>							738.4	
	1.5×105		L		_0_	335.7	384.9	300	39/.3	419.1	<u> </u>
			L	<u> </u>		L			280	2522	<u> </u>
		<u> </u>								L	<u> </u>

Perameter	Livence	Operating	Point	Sample	Mean	Max.	Min.	Heen +2 <i>G</i>	Hean +30	Accept Reject Criteri
	Cad(Si)	BIAS: IRRAD.	BIAS: MERS					-»Xr	∴3π	
PLH (119)		YAD DY	VDD:104.Cx:300F	10	.332	365	291	368.8	3922	
	,	ALL INPUTS: JOY	CLOCK TO GOLTER					2251	2547	
	254104			9	332/	379.9	304	*324.7	*396	
								2825	2682	
	1.5×.05			10	3434	39/	3/09	3%.2	4/22.6	
			4					290.5	2641	
PLH (n3)	9		VAD-DV. CL: 300F	.10	175.9	223.9	/55	2028	~226.8	
	,		CLOCK TO DELEVER					141.9	/ ₂ 25	
	25×104		CLOCK OUTPUT)	9_	185.7	2219	16/29	222.3	240.6	
	+							149.2	130.9	
	1.5x 105	1		10	195.9	2329	171.9	232.3	فمصرتم	
	—							1526		
Phr(va)	_ ۵		VDN-104:C1-300F	19	284.7	32/4	252.9	.333.1	3523	
			CLOCK TO QCIENT				_	236.3	212	
	25x104			9	238.2	347.9	268.9	34Ko.J	362.8	
	_							251.3	227.60	L
	1.5%,05			10	3.3.4	359	277.9	3684	395.9	
		<u> </u>						258.5	2.1	

DEVICE T	.	CD4K	156	RCA_				PAGE 3	e£3.				
Patemeter	Zlo	ence .		pereting 1	Point	_	Sample	Hean	Max.	Nia.	Heen +20	Heen +3CT	Accept Beject Criteri
	rad	(S)	BIAS: I	Rean.	Bias	MERS.					-24-	-37	
PHL(ng)			VAA-AOV			C 300	10	2235	256	1949		285.9	
						Dame					181.8	161	
	25	404					_9	2349	225	208.9	275.5	295.8	
	,	,									194.2	1239	
	45	2001					10	253.1	ລາເງ	222.9	ລາງຊຸລ	332.2	
											2021	184.1	
													ļ
PHL (va)						:C=:30pF		9227	3769	<u>,222.9</u>	309	336	
					Crock 1	o Deine					301.3	1743	ļ
_	2.5	POIX	\vdash		CLOCK	Δυτένπ	9	2249	.331_	242	303.1		
			 									2008	
	ىكىل	405					10	288.8	.355	261		3234	
			├ ┈┈¥			<u> </u>					235.9	201.4	
			 										ļ
			ļ		<u> </u>					ļ,			 -
<u>*</u>	M	<u>- 74</u>	VICE .	EALLER									├─
								 					-
			 -					├				<u> </u>	
			 					┝─┤					├
_			 		<u> </u>			-					
			 					├──┤					├──
												_	
			 										

CD4035, RCA

DEV	ICE T	es: CD	4035 RC	<u>A</u>	950°G		EAL IA	J FOR	MING	GAS		Accept
	eter	Pluence				Sample				Heen	Heen	Reject
\ \(\)			Operating			oise	Mean	Mar.	Hip.	+2 <i>6</i> *	+36*	Criter
			BIASTIRRAD.	Bussi			1110		1-31			
M - 71	Crus)	o	ADD: 10A:	Tas-	7-7-1	10	1.45	1.54	1-21	1.59	1.66	├─
	 	2.5x104	All INPUTS-10V	100.	ON		1.55		1,32	1.79	1.25	
	$\vdash \dashv$	V:JAIO.	 	 	-	10	1.33	168	124	1-31	1.19	
	\vdash	1.5×105			 		1 11 1	1.59	1-14	1.79	1.87	
	,	1.3110-	 	 		10	144	1,37		1.15	1.01	-
			 -	 	'					1-13	<u></u>	
P.Ch	Owel	0		Too	N. A	10	-1-87	-1.72	201	-1.68	-1.58	
				NV0.10						- 207	-2.17	
		7.5x104		1		10	30.E-	-2.97	•3.2	-291	~2.83	
										-3.25	-3.34	
		1.5x108				10	15.6	-294	-3.45	-3-01		
			Ţ		,					+3.61	-376	
TPLE	(CO)	0	REDURING BY LAND TO CO	100 = 10 V	: (Je)()6	10+	108	118	96	119	J25	
					,					922	91.7	
			: Rees west mon			10 *	146	162	129	161	169	
										130	122	
			:TKINDULTNOO			10*	73.9	929	68.5	83.9	88.9	
			J							639	58_	
]											<u> </u>
<u> </u>	40	MEHSUR	EMENTS TA	KENI O	N 10	DEVK.	ES					
								L				

Param	eter	Flue		Operating 1			PAGE Sample size	Mean	Hex.	Min.	Hean 420	Hean +3G	Accept Reject Criteri
		Ibd.	<u>(نک)</u>	BIAS: IRRAD	BIAS! N						-20-	-30	
<u> 191</u>	HOD	_2.5	71/04	MUDADA (TIT MAIL 40 OU	JOOTOVSC	49012	103-	149	الما	135	162	169	
											196	130	<u> </u>
				Oceania real:			10#	201	238	רנו_	230	244	<u> </u>
			<u> </u>								172	158_	<u> </u>
	\Box			- jik marun			10+	119	132	112	129	134	
			_								1/0	/05	<u> </u>
		15	x <i>1</i> 05	operson soll:			10*	159	171	1439	172	179	
											147	140	<u> </u>
				RESET APPER TO DO			10#	214_	2489	189	245	260	
											184	169	
			Ī	Ode man str			10#	129	. 140	120	138	142	
,	,										120	115	
IPHI	(vs)	- (5	Clock infor infin			10#	125	134	112	137	143	
				,							113	107	
				RESET IMPORTED DO			10#	149	168	131	168	177	
			Γ	, , , , , ,							130	120	
				TVC 16PUT FORD			10#	944	1009	77.1	107	113	
	,			T,		,					82.1	76	
* 4	<i>b v</i>	NEAS.	URE	BENTS TAKE	N ON	10 DE	VICES						

Pazani	ter	Ylue		Operating I			Sample eize	3 of 3	Hex.	Nio.	Heen +2.07	Hean +3G	Accept Reject Criter
	-3	1,00	CSU	BIAS: IRRAD.	Buss	Mens.	• • •	44.3	1250	11. 60	-25 <u>-</u>	-30	
KH	.UZV	-47	NO.	And those Rock of the Control	ADI≅QQA	to plan	10.4	162	1259	1459	147	185	
\dashv				Bornerali	 		10+	198	2369	1719	232	248	
_				3,121			10.8				165	149	1
丁				:T/Lacres 10 Qu			104	128	136	121.9	136	139	
		,	,	7,,							121	117	
		_15/	d05	Chulmen mon			10¥	165	רכו	149	180	188	
\Box											150	192	
				add room read:			IO.	205	2409	178	239	257	
										,	0	159	<u></u>
				a Dat rusus A.F.:			10.5	136	142	129	143	147	ــــــ
			<u> </u>	1		.					129	125	
									ļ				<u> </u>
						. 40							├ ─
<u> </u>	יט	re ai	SUPE	meute Tak	ENOL	10 1	EVICE		 -				
													

CD4040, RCA

DAY CE T	rr: CD40	40 RCA	950°C ANN	EAL /	V FORI	TING (6A5	PAGE 10	,F3	3
Prita eter		Operating		Sample	Hean	Max.	Mio.	Hean +20	Heen +30	Accept Reject Criter
Tx . Tr	10d (Si)	BIAS: IRRAD.	BIAS! MEAS.					-200	-34	
S: ANNEL			Iss FRUA YOU'N	(0.	1.52	1.74	0.98	2.16	2.45	
		ALL INPUTS . ION	, ,					0.985	0.691	
	7.5×104			(o_	0.76	1.74	-0.1	2.65	3.59	
								-1./3	-2.07	<u> </u>
	1.5 × 105			6	0 295	2.01	-0.1	2.77	3.75	L
			*					-1.18	-2/6	_
2.CHANNEL			In Curive OV	6	-1.96	- 1.14	-2.33	-1.12	-0.682	
			7					-28/	-3-25	
	7.5×101			60	-0.83	0.09	-265		3.3/	
	7.15.6.1							-3.59	-497	
	1.5× 103			6	-4.22	0.02	-3.05		3,24	Γ
	132.11				7.07			-428	-5.28	
PUL (ns)		 - 	Von: 104. CL + 300F	6	168	186	150	191	203	-
121: 202			(CLOCK TO Q)	-	100	7.30	1.75	144	/32	
	7.5 × 104		1	(0	192	223	171	227	245	1
	1		 		1.7.5	~~.		156	138	
	1.5×105	 		6	219	260	192	265	288	
								172	149	
,	-	<u></u>	 		 	 				├
		 			+		 			

	Luence	Operating	Point	i	eize	Mean	Max.	Min.	Hean +2 G	Hean +30	Reject Criter
	ma (31)	BIAS: IRRAD.	Bias:	MERS.							
LH (22)			Non-AOV.	CL - 300F	(c *	70.9	98 o	55.9	82.7	104	L
		ALL INPUTS:10Y	COLT	(itipo					49.1	38.2	
	25×104		,		(c *	945	125	69.7	125	NO	
	<u> </u>								64.3	49.2	
	1.5×105				to it	1/5	/53	23	147	162	
—									83 9	68.2	
(ea) AHS			1400=10A(C. 300E	6	/32	144	129	148	154	-
2021	- 1		CLOCK	7.1		13.7		1182	125	420	
	15x10				60	148	152	135	161	162	
	7								/35	129	L
	15× 5				6	/58	168	148	172	179	
*									145	/38	
الملكة	0	 	NW-101/1	2:300 F	(o *	50.5	63	325	61.1	66.3	
احسم			(0) To						39.9	34.6	
\dashv	25×104			9	(a#	54.4	62.9	.39.8	105.7	71.4	
									43	323	
1	5×105				(a*	528	23.3	41.5	20	76.2	
Ţ	—								45.5	32.3	

Parameter	Pluance	042 RCA			Sample size	Hea.1	Max.	Min.	Hean +20	Hean +3C	Accept Reject Criter
Yr (Y)	md (si)	BIAS: IRRAD.	Bias	MERS.					-26	-30	
V-Channe		Von : 101/:		10 ua:	4	1.17	1.42	0.95	1.57	1.77	
		All woulds : IOV							0.776	0.577	
	7.5× 104				4	0.738	0.99	0.27	1.39	1.71	
	<u> </u>								0.0877	0.237	
	1.5× 105				4	0.523	0.64	0.4	0.745	0.857	<u> </u>
									0.3	0.188	
	}		<u> </u>	4							
O. Charme	<u> </u>	┢╼╌┼┈╌╌		*10 MB;	_ ч	-1.61	1.25	2.24	0.738		
	 	 	Von +	IOV		ļI			2.48	2.91	
 -	7.5×104	┝──┼──	[-		4		<u>~0.13</u>	-2.1	0.516	1.33	├
	 	 				├ ──			-2.74	-3.55	
	1.5 10		-		4	-1.1	0.23	<i>-2.07</i>	0.435		├ ─-
	 	 	ļi	k					-2.63	3.39	
PLHGS	0		100 1121	V. Cr. 30m	44	118	131	99 9	135	144	
	1			N TO RA-	->				99.9	91.1	
			CTOCKIN	ro a.	- 44	170	196.9	150.9	195	207	
		l i							146	134	
	7.5×104				4×	118	133	100.9	137	146	
_ 1									99.7	904	
1					4×	173	201	1529	198	211	
									147	135	

	1	PE: <u>CD4</u>		perating !		PAGE	Sample size	Mean	Nax.	MLa.	Mean +2 <i>G</i>	Неве +3 <i>0</i> °	Accept Reject Criter
Contre	ued:	nod (Si)	BIAS: I	BPAD.	Biast	MERS.					:26	-36	
TPLE	(65)	1.5×105	Vac s	IQV:	Van · IOV	CL 3Cer	4/4	116	131	99.9	134	143	<u> </u>
				ts iov							99.2	89.2	
							44	173	201.9	152.9	198	210	ļ
			<u> </u>		├	L					148	135	├
PHL	(05)	0			V00-10V	Cs 30e	યું	131	145	120	147	155	
					CLOCK	INTOR	, , ,				116	108	L
					CLOCK IN	TO Am	> 4×	178	205	156	202	215	L
					L						153	140	L
		7.5×104					4×	134	147	120	151	159	L
								ļ			_117	108	<u> </u>
			<u> </u>		<u> </u>		4#	175	203	154	201	2/3	L
					<u> </u>						150	137	↓
		1.5x 105		ļ			44	133	147	119	151	159	↓
											116	107	
		,					4/4	172	199	1509	196	208	├
	·—		ـــــا	k	ļ	k		<u> </u>			147	35	
		70.500 15				. 4 .	5,100 5 5	 				 	
	المت	MEASUE	E TELL		<u> </u>		E VICES		 				
													\Box
			,		1			l			ı	.	1

CD4043, RCA

Parameter	PE: (D	Operating		Sample	Mean	Max.	<i>TROGE</i> Hig.	Hean +20	Nean +30	Accept Reject Criter
V- (v)	rad (Si)	BIAS: IRRAD.	BIAS: MEAS.					-20-	-30	
-Channe	0	VOD-10 V:	155= -/Ouft:	10	1.3	1.5	0.84		1.89	
		All inputs - iOV						0.898	0.7	
	7.5x104			10	408	1.4	0.54	1.58	1.83	
								0.585	0.336	
	1.5x105			10	0.867	1.05	0.32	1.31	1,53	
	_							0.425	0.204	
	3NO5			5	0.568	2.8	0.26	0.935		
			*					0.201	0.0125	
								Ţ		L
Channel	0		Ino = 710 with:	10	-2.1	7.28	-273	-1.13	-0.651	
			VD0 = 10 V					-3.06	-3.54	
	7.5x04			10	-1,99	-0.69	2	-6.565	9	
								-3.42	- 4.14	
	1.5×105			10	-1.96	-0.45	-295	-0.318	0.459	<u></u>
				L				- 3.58	-4.39	
	31105			5	-5.01	-0.4	-2.96	0.0488		
			•					-4.06	-5,09	<u> </u>
PLH(VZ)	Q		VOD-10 V:(V-30A	10k:	78.2	103	69.2	98.7	109	<u> </u>
			SET OR RESET T	oon-	77			57.7	424	<u> </u>
			ENASLE IN TO Q	1000	77.7	1010	686	99.2	110	<u> </u>
	×	<u> </u>	1	1				56.3	45.6	<u> </u>

		HEY3 RCD		Sample	205			Mean	Hean	Accept
Parameter	Pluence	Operating	T	size	Mean	Max.	Min.	+20	+30	Criters
	Log(Si)	BIAS: IREAD.	Bus: MEAS.	 				-26~	-30	
LATH (UZ)	ַיטואָכּיז	A00 = 10 A .	100-1045 COOK	10+	75.8	1,31.3	67.5		ाव्स	
		All IMPUT = 16V	 	II				569	475	ļ
		-		/O+x	76.8	100.8	68	97.1	107	↓
			 	 _			<u>-</u>	564	46.2	İ
	1.5×105		<u> </u>	10x	142	157	138	156	164	<u> </u>
			 					/28	120	<u> </u>
				10 ¥±	74.7	1019	67.3	95	105	<u> </u>
								54.5	44.4	L
	2xiC2			5*	69.2	79,8	646	76.5	807	
								610	58.2	
				511	72	91	66.7	82.8	88.2	
\downarrow	v	L						61.2	35.8	
Ca) JHP	_ 0		voc-10 v (L=30d	10#	144	157.9	13	158	166	
			SET OR RESET TO					130	122	
			ENABLE IN TO RA		79.5	106.9	20.5	103	115	
								55.8	44	
	7,5104			10*	143	1529	129	158	165	
								/28	121	
			•	(CAN	773	106	80	99.8	111	
<u> </u>	1/							54.9	436	
4 9 m.c	20.105.00	UTS TAKEN C	MERCH DEN	200						

Perameter	Fluence	OH3 RCA Operating	Point	PAGE .	Mean	Max.	Min.	Hoan +2.0	Hean +30	Accept Reject Criteri
	Md (Si)	BIAS: IRRAD.	BLAS! MERS.					-20-	-30	CITTLE
TPHL (NS)	1.5x105	ACC. IDA:	YDD=104-30-30-5	10*	142	157	128	156	164	
		All inputs=10V					12.2	128	120	
	\vdash			10 +*	74.7	P.101	67.3	95	105	
								54.5	444	1
	3 1105			5 *	142	156	_/32	156	163	
								129	122	
				511	69.2	75.9	65.5	76	79.4	
,√	¥							624	-59	
	¥								<u> </u>	
* 8 m	EUZAKFW	ATS TAKEN	ON EACH DEVI	c <i>E</i>				6 <u>2</u> .4 ₹.	_59	
+ 8 m	Werzneei Euzakew	ATS TAKEN	NERCH DEVI	c <i>E</i>					_59	
+ 8 m	easuren Measurei	NEATS TAKEN	ON EACH	c <i>E</i>					.59	
+ 8 m	MEASURE!	ATS TAKEN	ON EACH DEVI	c <i>E</i>					59	
* 8 m	easurem Measurem	ENTS TAKEN	ON EACH DEVI	c <i>E</i>					_59	
* 8 m	EASUREM MEASURE	ENTS TAKEN	ON EACH DEVI	c <i>E</i>					.59	
+ 8 m	easuren Measure	ATS TAKEN O	DE ERCH DEVI	c <i>E</i>					.59	
+ 8 m	EASUREM MEASURE	ATS TAKEN	N ON ERCH	c <i>E</i>					.59	
+ 8 m	EASUREM MEASURE	ATS TAKEAL	N ERCH DEVI	c <i>E</i>					59	
* 8 m	EVZ778ET	ATS TAKEAL	NEACH DEVI	c <i>E</i>					59	
* 8 m	EASUKEW WEASURE	ATS TAKEAL	NEACH DEVI	c <i>E</i>					59	
* 8 m	EASUKEW MEASURE	ATS TAKEN	NEACH DEVI	c <i>E</i>					59	

CD4047, RCA

25	.07		BIAS: MERS. TSS: WILLA VLD: /JY	9	0.484 . 984		0.14	0.439	-3 c 0.251 0.051	Criter
25)00 - 10 Y:	Jag / //JuA	9				0 128	0.051	
150	.07				0.484	0.87	0.07			
150	\Box				0.484	0.87	0.07	111		
15		1		-				1 444	1.42	
								20.639	-0.45	
CHURANA O			املا	9_	0.459	0.69	-0.05	0.898	1.12	
CHBPINAT O				_				S-0199	-0°9	
	<u> </u>		Top - ICMA	9	- J ₄ (a)	-1.52	-48	-1.45	-/.38	
			V02: 10'1					-4.22	-184	
7.5	104			9	-/ 23	-/.63	-1.94		-1.48	
								-1.9	-1.99	
	105			9	-/ 72	-1.69	-1.96	-/162	-154	
	-							-1.92	20.0	
PLH (75)			YOU'N' CL. BOUF	9	275	344	240	332	368	
	·		(OLDE BUILD)					213	الملاز	
	×104			9	274	.338	240	333	3600	
								214	185	
- 1.57	105			9	ఎ%	334	3.27	330	359	
	-		<u>*</u>					213	184	

Parameter	Fluence	Operating	Point	Sample size	Hean	Nax.	Nin.	Hean +20	Hean +30°	Accept Reject Criter
	rod (SJ)	BIAS: IRRAD.	BIAS! MEAS.					-24	-3√-	↓
PLH (ns)		YOU : VOY	YND: 104: CL : 300F	9	اما	187	149	184	196	
		ALL INPUTS . INY	(PIN 8 to 13)					/37	اعالم	
	25×104			<u> </u>	161	186	148	184	196	
	<u> </u>							132	196	
	1.5×105			9_	159	184	148	182	124	₩-
•	-							/32	<i>⊺∂</i> 5…	+-
PLH (ng)	0		VDO=104: Cc : 300F	9_	263	325	229	319	348	
			(PIN (D TO 10)					207	129	
	25×154			9.	263	318	229	3/5	342	
								210	183	
•	1.5 105			9	261	317	229	314	341	
								209	182	
PLH (13)		 	100 W. C. 3W	9	152	170	141	169	178	
1			(PIN 6 TO 13)					4.34	126	I
	7.5×104			9	153	170	142	/20	128	<u> </u>
	1							/35	122	<u> </u>
	15×105			9	/52	169	141	169	127	
	Ţ	-	<u> </u>				<u> </u>	1.35	126	
		ļ			┼— —				 	\vdash

Peremeter	Eluence	Operating 1	Point	Sarple size	Henn	Наж.	Min.	Hean +2 or	Hean +3 (T	Accept Reject Criteri
	rad (Si)	BIASTIARAD.	BIAS! MEAS.					-24-	- 3∢−	<u> </u>
PLH (ns)			VON-1011:CL:300	9_	233	290	199	288	315	L
		ALL INPUTS . KN						128	151	<u> </u>
	2.5×104			9	232	288	195	286	.SAS.	
	1							178	151	<u> </u>
	1.5x105			9	231	286	198	285	312	
	-		- 4					127	150	↓
				<u> </u>						
PLH (ns)	0		VDQ +104; Cx = 300	9_	ماها	145	114	145	154	├
			(PIN 4 TO 13)			I		106	96.2	├
	7.5×104			19	125	144	114	144	153	⊢ —
								106	96.5	
	15×105			9	124	149	113	145	152	
				<u> </u>				105	96	├
PLH (ns)			Y00 - 104; Cz - 30 p	- 4	226	281	193	279	376	
FER CIS		 	(Pin Sto 10)		- 40/0			172	145	
	2.5×104		CEN TIO IOI	9	224	279	193	228	304	
	- ASERS!			 	- W-7	~~		171	144	Γ
_	1.5×105			9	222	277	192	275	302	
								169	143	
										ļ

Parameter	Tlue	nce	Operating	Point		Sample size	Mean	Max.	Hin.	Hean +20	Hean +3C	Accept Reject Criteri
	rad	(Si)	BIAS: IRRAD.	BIAS	MERS.					-20-	-30	
PAH (ns)			Y00 = 10 Y:	100.00x:0	1.30eF	9	117	137	102	/37	146	
			ALL INPUTS : 10Y	(PINS	(51 01					98.1	884	
	2.5	XIOH				9	116	136	107	136	146	├
		,								96.9	87.1	├
	1.5	1105				9	115	1.34	106	134	143	├
+							 -			92	87.8	
PLH (ng)	_			A00. WA:	C 30.0F	9	131	158	112	159	124	
PAR USI	_	Ĺ		(P/N 19						102	88.1	
	7.5	×104		11/2	10.702	9	133	158	115	159	172	
	_ <i></i> _	1-10								102	93.7	
_		XIC2	l	 		9	/33	159	1160	159	172	
		VIO.								107	94.3	
PLH (ng)		<u> </u>		KON: OOK	C 200	9	131	151	117	151	Kel	\vdash
Ert (US)		┪	 	(Pin			131	-1-21		110	100	
	3	5×104	 	(PIX	المال	9	136	155	120	157	167	
	-	340.	 	+	 	 	100			115	104	
	1.5	×103	 	 		4	135	156	ادا	156	167	
	1	J.								ाय	103	
									<u> </u>		├──	┼
	├-			-								

		1		Sample		i 1		Hean	Hean	Accept Reject
	luence	Operating I	oint	size	Mean	Max.	Hin.	12.5	+30	Criteri
lr	70d. (51)	BIAST IRRAD.	BIAS! MEAS.					<u>-25-</u>	3∕⊤	
PHL(ns)	٥	YOL : 04Y	YDD = MY.C c . 30 pt	9	244	300	216	296	322	
		ALL JUPUTS - JOY	(PIN & to 11)					192	166	
	25.804			9	241	295	214	292	318	
								190	164	
	1,5 2105			9	ر 332م	290	212	<i>,7</i> 87_	312	<u> </u>
								182	161	
									<u> </u>	
TPHLINA	0		YDD:104: C 300F	9	232	278	206	277	297	<u> </u>
			(PIN 6 to II)					187	165	
	7.5×104			9	230	276	205	225	298	1
	T							/85	160	
	1.5×105			9	227	272	203	271	293	
1	1		1					189	160	
PHLIng	0		100-104;CL-300F	9	203	249	179	248	220	
			(PIN 4 TO II)					158	/.35	
	25×104		1	19	200	246	דרו	245	268	
	1							154	/31	
	1,5×105			9	196	242	175	241	263	ļ
1	1,		1					152	130	
										<u> </u>
				T					<u> </u>	

Parameter	Eluence	Operating		Sample size	Nean	Max.	Min.	Hean +2 <i>G</i>	Hean +3CT	Accept Reject Crites
	rad (Si)	BIAS: IRRAN.	BIRS! MERS.					-26-	-30-	
PHL (na)		VAN = 10V	VON INV. CL. 300F	9_	196	243	123	241	263	
		ALL INPUTS:/ON	(PINSTO II)					151	128	
	25,404			9	193	238	172	237	259	
	↓							148	1.26	
	1.5×105			9	189	ગુસ્	170	233	254	
								146	125	
										<u> </u>
PHL(ns)	<u> </u>		VDD:10V:C1:30pF	9	92./	11.3	87	114	183	
			(PILLET CILLY)					79.8	71.1	
	25×104			9	96.3.		87_	114	103	
	+							28.9	69.2	
_	1.5×105			9	943	113	86	_//3_	/22	
¥	-	 	-					259	-66.7	├ —
PHL (ns)		 	Vm • WY: Cc • 300F	9	132	149	/20	149	158	
			(PIN 9 TO 10)				7.115.4	115	100	
	7.5×104			9	134	149	121	150	158	
	Ţ							//8	110	
	1.5×105			9	/30	14/8	119	148	/57	
			*					1/3	IN	

Parameter	Eluence	Operating	Point	Sample size	Mean	Hax.	Hin.	Heen +2 <i>G</i>	Hean +3C	Accept Reject Criteri
		BIAS: IRRAD.	BIAS: MERS.					-20	- 3-	
IME CONSTIN	<u>t </u>	NPO-10A	YDD: INV. C 300F	9	2.62	2.733	2588	2.71	2.75	
TOUT PLICATE	N	ALL INPUTS: 10 Y	MONOGRAPUE HEND					2.54	2.5	
FACTORS.	7.5×104			9	2.63	2691	مارھ	2.69	2.72	
								2.57	2.54	
_	15,502			9	2.63	2674	26	2.68	2.71	
		ļ						2.58	2.56	
1			100.101.Cr.300F	9	4.59	4.612	4,500	4.64	467	
		-	ASTABLE PERIOD		7.01	7.00	4/25/2/	4.53	4.5	 -
	25×104		PUZINOTE LEKIZION	9	4.59	4.612	4.55		4.65	
					4.01	1,010	3033	4.55	4.53	
	151:05			9	4.6	01.2	4.577			
			1 1		7.40	7.0.16	3077	4.57	4.55	
		<u></u>	VAD: 104.Cc300F	9	1.86	201	4283	1.99	2.05	
			(T. PRIME PERNO)					1.72	1.lole	
	25,10			9	1.82	1987	1,81	1.98	203	
								1.77	1.72	
	151105			9	189	1.972	1.82	2.0	2.05	
_×		*						1.78	1.72	

Parameter	Zluence	Operation	Polat		Sample size	Mean	Nex-	Kin.	¥8a⊪ 42.66	Hean +3CF	Accept Reject Griect
·	nd(Si)	BIAS: IRRAN	Bias	Mean					-20	-30-	
IDE CONSTIN		Y02 - 10 V		CustoF	9_	1.01	1.046	0.236		1.11	L
WITE LICETOR	<u> </u>	ALL INPUTS . A	y (To P	ACO.					0.941	0.918	<u></u>
FACTO AB	7.5.404				9	0.994	1.030	0.800		1.09	<u> </u>
									0.938		
	1.5×105				9	0.989	1.030	0.836		1.07	
	<u> </u>	ļ	——•	L					⊘.83 4∕	0.90%	
	0		V00:00V	C. 300	9	1.21	1262	1.184	125	1,27	
	1		(7,	(comas					1.17	1.15	
	25404	I			9	/.23	1,28	1,204	/ ₂ 28	7.3	
									1119	1.16	
	1.5×105				9	1,25	1.234	/.2/8	12	/32	
1		4	· .						1,2	1.18	
			 								
											
			1								<u> </u>
			+			 	 	 	-		
		 	+					 			

CD4049, RCA

Parameter	Fluence	Operating	Point	Sample	Mean	Haz.	Min.	Hean +26	Mean +3C	Acespt Reject Criter
AF (A)	ma(Si)	BIAS: IRRAD.	BIAS! MENS					-20	-30	
Channel			Tas. 10.A:	10	1.08	1.24	0.96	122	1.29	
	ı	All mosts : 101						0.731	C. 59	
	7.5×104	L		9	0.891	0 97	0.78	1.02	1.33	
								0.762	0.098	
	1.5 110 5			10	0.821	0.96	0.05	1.01	1.1	
	1							0.654	0.565	
Channel	0		TOO : IOUA	10.	-1.57	-1.48	-1.76	-136	-1 26	
	ı		VON - 104					-1.78	-1 88	
	7.5 × 10 4			9.	-2.01	- 1.89	-2.35	-169	-1.53	
	L L							72.34	.2.5	
	1.5×105			10	-2.09	-0.14	-2.71	0.677	00315	
								•2.51	رړ ۲۰	
·PLH (oS)	0		V00 - 10V	10.0	47 6	63.6	43.4	55.1	-F 1	-
7 511 11 12			C- 30 es	///	7/-	-8-1-9-	73.7	40.1	34 4	
\neg	7.5 10		15.7.20.88	7 .	50.7	74.3	45.9		676	
	J.				1	77.2		79.5	33.8	
1.	154108	· · ·	†	103	54.0	94.9	47.8	71.1	74.7	
	1			1			1.0	6.3	28.2	
	-									

Parametar	Fluence	4049 RCF		Sample size	Hean	Max.	MLO.	Hean +2 <i>G</i>	Heath +3.07	Accept Reject Criter
	Md(Si.	BIAS: IRRAD.	BIAS! MEAS.	L				-25	+26	
PHL (ns)		Vec : 10V	Var : 10V	100	11.2	13.0	85	13.3	14.4	
	<u></u>	All regula - 101	Ch : 3000	ļ				9.04	7 98	
	Z.5x10.1	 	Ļ <u> </u>	9.	11.5	13.5	8.8	13.5	14.6	
	<u></u>			 				9.38	5.24	 -
	1.5×105	ļ		10+	11.9	14.0	9.2	14.0	150	├
		<u> </u>		ļ				9.74	8.68	├
					ļ					
		ļ	ļ	 		 				├
		ļ	 	ļ						-
		 		├						
		<u> </u>		 						
* (c m	ASURE M	LITS TAKEN	THE ENCH COL	KE_	 -	ļ		-		
	 	<u> </u>	ļ <u> </u>	 -	 -	 				
		 -		├ ──	 -			├─-		_
		 	 		 					
	 	 	 			 				
	 	 		-		 			<u> </u>	-
	 	 	 	 	'	+	<u> </u>	 	 	
	 	 	 	+		 	 	 		_
		 	}	+	├			 		
		 		+	 	 	 	 		
		1					•			

CD4050, RCA

Perameter	Fluence	Operating	Point	Sample size	Mean	Hem.	Mia.	19han +2 <i>C</i> 7	+30	Accept Reject Crites
VT (V)	Pad (Si)	BIAS: IRRAD.	BIAS! MEAS.					-20	-30	_
<u> Issuras r</u>		A00-10A	Iss. JOHA.	10	1.17	1.22	1.09	125	1.29	L
	<u> </u>	All INF	YON - 00K					Jel	1,06	<u> </u>
	7.5>104	ļ		10	طائق ۱	24.	0-6:	್ತಿ ಇಟ್	1.02	
	<u></u>	L						Ko.C	0.541	
	1.5x105		 	_10_	0.64		0.45	$\nabla 133$	1,14	!
<u> </u>		l	<u> </u>					77.70	2-145	
(1.40)		 	Tra: 10 4A	10	-1,68	-1.54	-1.79	-1.52	-1.44	
	<u> </u>	 	VOD - 10 Y		1700		-10.7.1	-1.83	-1.91	t
- -	7.5 x10"	 	1400 · 10 x	10,	-226	-2.14	-2.57	-202	-19	-
	1	 	!					-2.5	-262	
	1.5405	 	 	IG	-263	-248	-295	2-16	-2.23	
	1									
CDHITI		 	V00 = 10 v. (1	104	4340	51	37.4	49.6	52-5	
TIRUS	 		ADD-10 ACT TO	_1119	7040	-"	3/63	37.7	34.7	-
	7.5xlG	 	i	10.4	464	53.1	40.2	52.4	56.2	
								398	36.6	
	1.5x105			IC x	48.2	556	ا الم	35.6	59.2	
	_ le							41	2/3	L

Parameter				Raca			PACE 2 Sample	Hean	Haz.	Hto.	Hean +20	Hean +3©	Accept Reject Criteri
	ſΩ(BIAS:		Busi	MERS					-20	-30	
TPHL (ns)		0	Y00-10			م05نمي _ر	IO3	244	35.2	18	31.7	35.1	L
	L,			Z-10V		,					2_	13.3	<u> </u>
	7.	Pake					D¥.	28.6	45	الما	لملات	43.1	ļ
									L		18.9	1401	L
	I.	5x105					10 x	338	53	24.2	46.2	52.4	<u> </u>
	Ξ,	L		· ·	I			L	<u> </u>	L	21.4	15.2	! —
					1			1	1	1 1	1		1
	1.		L		1		l	I					
	-		V		 								
¥ (0 W.F	490	> F foot	_	TAKEA	000	EAR	EVICE						
* Co.W.E	494	: >E.fini	_	TAKEA	ر دره ر	E NACH _	EVICE						
* 6 W.E	494	· PE fine	_	TAKEA	000	EARH)EVICE						
* Co **	434)Enn	_	TAKEA	0~	E ABO	DE VICE						
* (a w.	100	PERM	_	TAKEA	0~	E.A.B.H.	X VICE						
* (a w.	494)EIM	_	TAKEA	011	£. A&4+	X VICE						
* (0 ¥6	204) <u>F. 1981</u>	_	TAKEA	000	E.A.B.	X VICE						
* (a **	494	14 C	_	TAKEA	000	E.A.Ber	X VICE						
* (a * 6	494	: YE DAN	_	TAKEA	000	E.A.	X VICE						
* 6 *	1	: \chi	_	TAKEA	000	E A Bet	X VICE						
* 6 *6	434	100 3 × 1	_	TAKEA	000	EART	XE VICE						
* (a **	49	MAT 24	_	TRKEA	000		XEVICE.						
* (0 **	496	MAT 24 :	_	TRKEA	000		X VICE						
* (o **	A35	: >E.Del	_	TRKEA	000	EAM	X VICE						

CD4051, RCA

								Pase	of 2	-
DEVICE TY	PE: CD 4	MI RCA	950°C		W F	RMING	GAS			Accept
Ì				Sample				Mean	Meen	Reject
Perspeter	Fluence	Operation		0120	Mean	Max.	Min.	+20-	+30	Criter
AL(X)		BIAS: IRRHD.	Bus: Ma			123		-20-	-30_	├──
COMM	0	NO-10A	F22 - 10 M	A: 10	143	1,33	0.75	1.49	1.67	├
		fill income the	100.101				- 5 31	0.772	2.75	├─
	7.51104	 	 - -		<u>0-8</u> 4	138	-031			
_		 		- 	. 900		-0.31	-0210	-1.04	
	1.5×105	ļ	 	10	0.898	1.48	-0.51	-0.408		_
		 						-0.40	1.00	
PronorD ²		 	Tag : 110 a	10	-2,35	-2.03	-2.92	-1.76	-1.47	
			Von - JOY					-2.94	-3.24	
	7.5x104			10	-1.85	0.15	-2.75	0.283	1.35	
								-3.99	-5.06	
	1.5x/05			10	-1.99	0.14	-2.99	0.29	1,43	_
—			J					-4.28	-5,42	
		6								L
TPU (6)	0	ADDRESS KONSON	E-12: VOI - 001	407	172	298	76.6	292	352	
			<u> </u>	- 🛶		L		51.5	-8.64	ļ
		- Designation			209	412	149	332	394	ļ —
		1	 -			L	<u> </u>	85.1	234	├
	7.5 NO	in in inches		101	133_	3019	79.8	290	349	₩
						L		56	-3.3	
		- Income		101	219	4319	156	350	416	₩-
	<u> </u>	ATTE TANKAL	\			<u> </u>		38	22.5	₩

-20 305 564 373	-36 ⁻	T
56.4	367	
272	-57	<u> </u>
-12/2	444	L
879	167	├
344	406	
	33.9	
298	354	\Box
76	20.4	
362	430	
29.9	218	
296	351	Γ
78	235	
381	452	
99	284	Γ
310	368	<u> </u>
769	18.6	L
		Ļ
 		$\vdash =$
		Ε
	298 76 362 39.9 1 296 78 381 99 310	926 309 298 354 76 204 362 430 899 288 296 351 78 235 381 455 99 284 310 368

CD4052, RCA

CHARLES THE PROPERTY OF THE PR

Parameter	Elvence	Operating	•		Sample size	1_FORI	Mex.	Min.	Hean +2G	Heen +30	Accept Reject Criter
dτ (Λ)	nd(si)	BIAS: IRRAD.	Bias: Meas.						-20-	-30	<u></u>
L CHANNEL	0	VAV : VAV	Issa -/	Or A	<u>x</u>	1.34	1.41	1,26	1.40	1.52	
		ALL IMPUTS ! LOY	Y00:10	V					1.22	Lille	
	75,404		lacksquare		7	1.19	1.49	· 0·I	72.34	*292	
	_ _								0.04	-0.53	<u> </u>
	15×105				_8	1,27	1.52	-0.02	2.3∕a	28/	L_
	k	<u> </u>	 						0.12	23.3%	├
-CHANNEL	0		100.	OnA	8	241	-JQI	-223	-1.92	-1.9	├─
			T.	úν			<u> </u>		-2.26	-2333	
	25×104		1		7	-205	0.06	-2 48	£0.19	10.35	
									-3.90	-4.86	
	1.5×10				8	- 2.23	0.04	-267	-0.39		
*									-4.07		
PLH (ng)	_	 	NOV-10/1	130vE	8★	182	rad	29.5	294	350	├
	1		CONTROL			12.00	NAGT.		20.7	148	
	25×04		TO OU		*/*	188	280	91	*301	7352	
	J.		1		- //				26	19.8	
	1.5×105				8*	196	ລຊລອ	96	.3/3	37/	
	1										
# CAN	E DEVIC	FALLED		*							
# CN	E DENIC	<u> </u>	41.041	COCH					79.4	સં	F

Parameter	Fluence	Operating Point		Sample Stuence Operating Point size	Hean Ne	Nex.	Hio.	Heen +2G	Hean +3G	Accept Reject Criteri	
	rad (SI)	BLAS: IRRAD.	Buss	MERS.					-20-	30	L
PLH (ng)		Mon. 101	VAN-AN	C:3/10F	8*	Nº8.	338.9	192.9	381_	438	
		ALL INDUISE AY	(MHIB)	TUPUL					155	98.7	
	25-10		TO	(TUSTUC	2*	പ്പാദ	3569	184	*409	*473	<u> </u>
									/50	84.9	└
	15×10 ⁵				8*	291	323	185.9		4960	├
	- •		<u> </u>	-					124	85~2	
TPHL (ns)	0		Noo: 10	V. Ca :320	= Solintr	197	281	1089	304	357	
			_	x 1115/41					90.7	325	
	7.5× 104			(marun	7 * *	203	2969	113.9		*366	
	· ·								943	39.9	Γ
	1.5 × 105				8##	212	3/3	119	326	383	
*			,						923	40-2	
PHA (05)	\circ		/vv:W/	C+300F	8#	270	357.9	178	4//3	4/84	
	j.			INPUT					122	55.1	
	25×10+			(TUSTUC	7#	283	3%.9	169	+4.39	*517	
	<u> </u>								122	48.9	
	152105				84	295	393	1719		537	
	¥.	<u> </u>							134	52.1	
* 6	WE DEVI	CE FANED									
#	2 MEASU	REMEATS THE	EN CA	I EKH	EYKE		L				

CD4053, RCA

Parameter	Fluence	Operating	<u>9.50°C. AA</u> Polot	Sample	Hean	Nex.	Nio.	Hean +2 <i>G</i>	Hean +3C	Accept Reject Criter
T (Y)		BLAS: IRRAD.	BIAS: MERS.					-v2a-	-30	
U CHRANEL		NDC-101	Iss. MuA.	9	1.08	1.51	-0.36	2.39	3.04	
		ALL INPUTS = MY						20.218	-0.869	
	2.52104			9	0.893	456	-0.35	2.52	3.34	
	*							70.235	-/.55	
	1.5×105			8	LH	1.61	-0.1	2.61	3.36	
								-0.389	-1.14	
							Ļ		ļ	<u> </u>
CHANNEL	<u> </u>		IN-10 MA	9	-1.28	0.28	-2.47	0.249	1.26	
			101 - 00K					-3.8	-485	
	25×104			9	-1.64	0.39	-263	4.05	2.4	
								-4.33		
	1.5×105			8	-204	0.1	-282	*0.58	*/.89	
<u> </u>	<u> </u>		<u> </u>					-4,66	-5.97	
PLH (ns)	_		YDD: 10Y: Cx:30pf	9 **	1622	185.9	50.6	196.9	216.8	├──
1			CINHUBIT INPUT TO	7,1	1.3.//2/	سجمد	1.77.18	1/24	925	
	25×104		Orabia)	9**	142	120	115.9	124	188	
								120	106	
	1.5×105			8***	150	125.9	119		F193	
Ţ								121	102	
# ONE	DEVICE	FALLED								
D 14 54	mr. a.g., e	MENTS TAKE	AL OAL 9 DEV	1065						

Parameter		4053 RCA PAGE 201		Sample	Hean	Hex-	Mto.	Hean +2C	Hees +3C	Accept Inject Criteri
		BIAS: IRRAD.	BIAS: MERS					- ₂	- 30-	
PLH (ns)		YON : AAY	YOD : NOY: Cc : 300F	9**	153	250	489	247	310	
- V-			(CONTROL MIPUTE					48.1	-4/8	
	25×104	111111111111111111111111111111111111111	TO OUTPUT	9=+	155	254.9	504	262	3/5	
								48.1	-5.39	
	15×105			8+++	162	223	13.5	*:2c	337	
<u> </u>								48.5	- 8.29	
_										
PHL (ns)	0		MAD + MY: C. = 3006	9**	150	173.9	6X0	175	/87	
1115			WHENT INPUT TO					126	114	
	2.5×104		OUTPUT)	9**	136.3	K2	1029	160.7	1229	
	77-56-01		Calledia		7.71.07.0			110	95.8	
	1.52105	 	 	8***	:39	152.9	112	+165	* /28	
	TITALICE.			- Gras	15.1	1.11.1		//3	99.9	
			 *							
TPHL (ns)	^	 	Mon MICL 300F	9**	1/01	252	56.5	264	315	
LPHC Char			CONTROL INPUTS	1.50	7.02			58.1	6.77	r -
 -	2.5×104		TO OUTPUT)	9**	160	255.9	56.8	263	3/4	
	77330	—						52.6	6.23	
	/5×105			8***	121	278.9	601	*280	*334	
* ^*	E DEVICE	511160		-				61.7	7.17	
			ON 9 DEVICES							
- FF - 57	MENSOR	THE STATE OF THE S	ON & DEVI	100						1

REFERENCES

- 1. Munroe, Theory of Probability, McGraw-Hill, New York, 1951.
- 2. Reiss, E.M., and Vincoff, M.N., "Effects of Variation of Gate-Oxide Anneal Temperature or Radiation Resistance and Reliability of C/MOS Devices," paper presented at 1975 IEEE Annual Conference on Nuclear and Space Radiation Effects, July 14-17, at Humboldt State University, Arcata, Calif.
- 3. Burghard, R.A., Gwyn, C.W., "Radiation Failure Modes in CMOS Integrated Circuits," <u>IEEE Trans. Nucl. Sci.</u>, NS-20, Vol. 6, pp. 300-306, Dec. 1973.
- 4. Gregory, B. L., "Process Controls for Radiation-Hardened Aluminum Gate Bulk Silicon CMOS," paper presented at 1975 IEEE Annual Conference on Nuclear and Space Radiation Effects, July 14-17, at Humboldt State University, Arcata, Calif.
- 5. Srour, J.R., et al., "Radiation Effects on Oxides, Semiconductors, and Devices," HDL-CR-75-171-1, Harry Diamond Laboratory, Washington, D.C., May 1975.
- 6. Yamakawa, K.A., "Rate/Anneal Measurements in RCA CMOS," IOM 365-F-44-75, Jet Propulsion Laboratory, Pasadena, Calif., June 5, 1975 (an internal document).

APPENDIX A
VENDOR IDENTIFICATION CODE

JPL alphabetical code	FSCM number	Vendor
ADI	24355	Analog Devices, Inc., Norwood, Mass
ANA	31855	Analog Technology Corporation
CAD	19647	Caddock Electronics, Div of Globe Union, Inc.
CRC	12517	Component Research Company. Inc.
CTI		Circuit Technology, Inc.
DAL	91637	Dale Electronics, Inc., Subs. of the Lionel Corporation
DIK	12954	Dickson Electronics Corporation
EXR	52063	Exar Integrated Systems, Inc.
FAS	07263	Fairchild Semiconductors, Div of Fairchild Camera and Instrument Corp.
GEC	09214	General Electric Company, Semi- conductor Products Dept.
HAR	91417	Harris Semiconductor (Radiation, Inc.)
HON	91929	Honeywell, Inc., Microswitch Division
HPA	28480	Hewlett-Packard Company
INL	32293	Intersil Inc., Cupertino, Cal.
КМС	20754	KMC Semiconductor
MOT	14713	Motorola Semiconductor Products, Inc.
NSC	27014	National Semiconductor Corporation
PMI	06665	Precision Monolithics, Inc., Santa Clara, California

JPL alphabetical code	FSCM number	Vendor
RAY	49956	Raytheon Company
RCA	02735	RCA Corp., Solid State Division Somerville, N. J.
SET	14099	Semtech Corporation
SGN	18324	Signetics Corp., Subs. of Corning Glass Works
SIL	17856	Siliconix, Inc.
SOD	13327	Solitron Devices, Inc.
TIX	01295	Texas Instruments, Inc., Semi- conductor Components Div.
TRW	01281	TRW Semiconductor, Inc., (PSI)
UTR	12969	Unitrode Corp.
WEC	05277	Westinghouse Electric Corp., Semiconductor Division

APPENDIX B

RECOMMENDED WORST-CASE ELECTRONIC DEVICE PARAMETER VARIATIONS

The purpose of this appendix is to provide recommendations to aid the circuit designer in the worst-case analysis of circuits. The worst case parameter variations contained in Tables B-1 through B-6 for transistors, resistors, fixed capacitors, diodes, TTL (transistor-transistor logic) and linear integrated circuits, and CMOS integrated circuits are recommendations only and not hard requirements.

These tables do not include radiation-induced degradation. Radiation degradation should be added to the variations in these tables on an individual part basis where part data is available. Estimates should be made otherwise. Section 153 should be contacted when the worst-case analysis is to be performed.

Table B-1. Worst-case parameter variations for transistors

As an aid to the circuit designer's worst-case analyses, the maximum expected parameter variations for system life and temperature are given. It is noted that all parameter changes are based on the specific value given in the application of JPL ST or manufacturer specifications, except for h_{FE} . For this parameter the variation is from the design value as established by appropriate design curves at 25°C and the design value of I_{C} . For the cases of saturated switches, the parameter changes of h_{FE} will be established from the minimum value specified in the manufacturer specifications, or ST. The data below applies to all transistors listed in the approved parts list.

Parameter	Variations	Conditions	Remarks
$^{ m h}_{ m FE}$	0.9%/°C	For temperature	Change trom design value mfr. spec.
	-25%	For life	value mir. spec.
BV _{CBO}	-10%	For life and temperature	Change from min. value in mfr. spec.
BV _{EBO}	-10%	For life and temperature	Change from min. value in mfr. spec.
BV _{CEO}	-30%	For life and temperature	Change from min. value in mfr. spec.
V _{CE(SAT)}	+15%	For life	Change from max. value in mfr. spec.
	+0.2mV/°C	For temperature	m mar, spec.
V _{BE} (SAT)	+15%	For life and temperature	Change from max. value in mfr. spec.
ICBO	doubles every 10°C increase	For temperature	Change from max. value in mfr. spec. at 25°C
	+100%	For life	
I _{EBO}	doubles every 10%	For temperature	Change from max. value in mfr. spec. at 25°C
	+100%	For life	Added to temperature effects

Table B-1 (contd)

Parameter	Variations	Conditions	Remarks
ICES	30X	For life and temperature	Change from max. value in mfr. spec.
$\mathbf{t_r}$	+10%	Forfe and temperature	Change from max. value in mfr. spec.
^t d	+10%	For life and temperature	Change from max. value in mfr. spec.
t _s	+10%	For life and temperature	Change from max. value in mfr. spec.
$^{\mathrm{t}}\mathrm{_{f}}$	+10%	For life and temperature	Change from max. value in mfr. spec.
C _{obo}	±5%	For life and temperature	Change from max. value in mfr. spec.
C _{ibo}	+5%	For life and temperature	Change from max. value in mfr. spec.
$\mathbf{f}_{\mathbf{T}}$	-25%	For life and temperature	Change from min. value in mfr. spec.

Table B-2. Worst-case parameter variations for resistors

Part description:		Manufacturer's	Toler	ance, %
General, class, type	Manufacturer	type number	Purchase	Design ^{a, b}
Carbon comp.	ABC	RCR05	±5	±25
Carbon comp.	ABC	RCR07	± 5	±25
Carbon comp.	ABC	RCR20	±5	±25
Precision WW	SHA	HR series	±0.1	±0.5
Metal film	MEP ANG	RNC55H	±1	±2.5
Metal film	MEP ANG	RNC60H	±1	±2.5
Power wirewound	DAL	RWR series	±l	±2.5
Metal glaze	CAD	MG, MH series	±l	±10
Metal glaze	CAD	MM series	±l	±10
Metal film fixtrim	ANG	IV-5		±1.5
HI RES (10 ¹² ohms)	PYR	HR600	±5	±10
Ultra high res.	WEL	M51	±1	± 5
Ultra high res.	WEL	MH51	±10	±15

^aDesign tolerance includes purchase, temperature, and end-of-life tolerances except where noted.

^bDesign tolerance does not include temperature and voltage coefficient effects for which the JPL ST or mfg. spec. should be consulted.

Table B-3. Worst-case parameter variations for fixed capacitors

Part description:	Non-Seature	Manufacturer¹s	Toler	ance, %
General, class, type	Manufacturer	type number	Purchase	Design ^a
Solid tantalum	SPR	CSR13 - KS	±10	±20
Ceramic	AUX	CKR05BX - KS	±10	±25
Ceramic	AUX	CKR06BX - KJ	±10	±25
Ceramic	AUX	CKR11BX - KR	±10	±25
Ceramic	AUX	CKR12BX - KR	±10	±25
Ceramic	AUX	CKR14BR - KR	±10	±30
Ceramic	AUX	CKR15BR - KR	±10	±30
Ceramic, temp. comp.	AUX	ML10 MC70 ML11 MC90	± 5	±12
Ceramic, HV disc.	ERIE	800 series	±10	±17
Glass	CGW	CYFR series	±1	±2.1
Ceramic, CYL, AX,	AUX	HRMC 706A, 206A, 866A, 906A	TBD	TBD
Porcelain	VIT	VY series	TBD	TBD
Polysulfone	CRC	MP series	TBD	TBD
MICA	ELM	HRDM	TBD	TBD

^aDesign tolerance includes purchase, temperature, and end-of-life tolerances except where noted.

Table B-4. Worst-case parameter variations for diodes, Zener diodes

As an aid to the circuit designer's worst-case analyses, the maximum expected parameter variations for system life and temperature are given. It is noted that all parameter changes are based on the specific value given in the applicable manufacturer's specification or JPL ST.

		Diodes	
Parameter	Variation	Conditions	Remarks
v _F	±10%	For life	Change from value in mfr. spec.
	+150 mV	For temperature	
С	+25%	For life and temperature	Change from value in mfr. spec.
$\mathbf{t_r}$	+10%	For life and temperature	Change from value in mfr. spec.
I_R	10X	For life	Change from value in mfr. spec.
	(a)	For temperature	Change from value in mfr. spec.
$\mathbf{B}_{\mathbf{V}}$	- 40%	For life and temperature	Change from value in mfr. spec.
		Zener dio	des
v _{zt}	±5%	For life and temperature	Added to tolerance in mfr. spec.
$z_{z_{\bar{I}}}$	+10%	For life and temperature	Change from value in mfr. spec.
^T C	+10%	For life and temperature	Change from value in mfr. spec.
I_R	30X	For temperature	Change from value in mfr. spec.
	10 X	For life	
$v_{\mathbf{F}}$	+10%	For life and temperature	Change from value in mfr. spec.
· F	+10%		Change from value in hir. spec

^aDoubles for every 10°C increase in temperature.

Table B-4 (contd)

Parameter	Variation	Conditions	Remar).
V _Z T	±2X	For line and temperature	Change to tolerance in mfr. spec
I _R	30X	For temperature	Change from value in mfr. spec.
	10X	For life	
Z _Z T	+10%	For life and temperature	Change from value in mfr. spec.
Temp. Coef.	+10%	For life	Added to temperature coefticient for temperature variations

Note: Consult with part specialists on life stability factors.

Table B-5. Wor case parameter variations for integrated circuits

As an aid to the circuit designer's worst-case analyses, the maximum expected parameter variations for system lie and temperature are given. All parameter changes listed are based on the specific value given in the applicable JPL ST. The data below apply to all IC's listed in the approved parts list.

Parameter	Variations, %	Conditions
V _{OUT(0)}	±15	Life and temperature
V _{OUT(1)}	±15	Life and temperature
IN()	±75	Life and temperature
IN(0)	±20	Life and temperature
IOUT(1	# 20	Life and temperature
Ios	±25	Life and temperature
T _{PDH}	±50	Life and temperature
T _{PDL}	±50	Life and ten process
I cc	±25	Life and temperature
Clock pulse width	±50	Life and temperature
	Linear IC's	
^A vol	±40	Life and temperature
vos	±20	Life and temperature
I _{IN}	±30	Life and temperature
EO	-10	Life and temperature
^J BIAS	+10	Life and temperature
ΔV _{OS} /Δ	+40	Life and temperature
^I os	+10	Life and temperature
I _{cc}	+20	Life and temperature
I _{EE}	+20	Life and temperature

Table B-6. Worst-case parameter variations for CMOS integrated circuits

As an aid to the circuit designer's worst-case analyses, the maximum expected parameter variations for system life and temperature are given. All parameter changes listed are based on the specific value given in the applicable specification control drawing. The data below apply to all CMOS listed in the approved parts lists.

Variations, % (life)	Variations, %/°C (temperature)	Remarks
+5	+0.1	No DC load
-1	-0.01	No DC load
±10	-0.5	
±50	+10	Quiescent current
10	0.4	
	(life) +5 -1 ±10 ±50	(life) (temperature) +5 +0.1 -1 -0.01 ±10 -0.5 ±50 +10

APPENDIX C

PARAMETER VALUES OF IC TYPES REQUIRING RADIATION ACCEPTANCE PRIOR TO FLIGHT USE

The various approaches being used to establish radiation acceptability of certain IC types prior to flight use are the following:

- (1) Use a modified or standard manufacturing process combined with a sample radiation test of each lot built.
- (2) Irradiate/anneal (IRAN) all of the devices to be used.
- (3) IRAN a sample from each lot. In this case, the devices subjected to IRAN as well as the lot balance are considered suitable for flight.

The starting values of the device parameters and the parameter changes due to the Jovian environment are related to the radiation acceptance approach employed. For the sake of completeness, IC's that were not radiation-screened but were used by the subsystems, are included.

All IC types (except CMOS) currently being subjected to one of the above approaches to establish radiation acceptability prior to flight use are listed in Table C-1 together with the specific parameters being controlled. Room temperature parameter values are given for the following cases.

Initial: Starting worst case values of parameters when the devices are supplied to JPL.

Post-IRAN: Worst case parameter values after devices have been subjected to IRAN. Hence, for devices subjected to IRAN, these would be the parameter values at the time of initial installation into flight hardware.

Post-Jupiter: Anticipated worst case parameter values after devices have been through the Jovian environment. Values are given for assumed doses of 12.5, 30, 60 and 125 krads.

Note that for some device types the parameter values may exceed the manufacturer's normally specified limit when the devices are initially installed. Subsystems requiring better parameter values than those in the table must

resort to shielding. Parameters other than those listed in the table may also be affected by radiation, but have not been identified via the GE circuit analyses as being critical to the applications and are not subject to control.

Table C-1. Worst-case parameter values of MJS'77 flight part integrated circuits

	table C-1:	worst-tase parameter values of must it might part megrated circuits	railleter	varas	CCTAT TO	right pari	rinegrai	ea circuits	
	Manu-	Parameter	1	Initial	Post-		Post-Jup	Post-Jupiter values	
Fart type	facturer	controlled	פי	value	IRAN	12.5 krad	30 krad	60 krad	125 krad
AD550	ADI	$\Delta^{ m I}_{ m LSB}$	(hA)					0, 3	0.6
		$^{\mathrm{l}}_{\mathrm{BIT}_{1}}$	(hA)					0.5	0.7
		$\Delta I_{ m BIT}_2$	(h A)					0, 55	0.4
		$^{\Delta I}_{ m BIT_3}$	(µA)					0.25	0,15
		$\Delta I_{ m L}$	(nA)					4	10
		ΔV _{BE}	(mV)					z.	ιC
		$\Delta 1/h_{ m FE}$						1.2×10^{-3}	1.8×10^{-3}
DAC-01	PMI	Bipolar zero scale oífset							
		ΔV_{OS1OSF}^+	(mV)			-110	-180	-400	-530
		ΔV _{0Sl 0SF} - Full-scale voltage	(mV)			110	240	370	530
		ΔV_{FS}^{+}	(mV)			-120	-180	-400	-530
		ΔV_{FS}^{-}	(mV)			100	170	360	510

٠.	

Table C-1 (contd)

rart type	Manu-	Para	Parameter	H	Initial Post-	Post-		Post-Jup	Post-Jupiter values	
	facturer	con	controlled	ֿס	value	IRAN	12.5 krad 30 krad 60 krad	30 krad	60 krad	125 krad
DG129	SIL	Is, off	įţţ	(Ar.)	1	-	2	9	7.5	15ª
DG133	SIL	I _S , off	įţį	(nA)	1	-	7	9	7.5	15
DG141	SIL	Is, off	ij	(nA)	m	m	Ŋ	15	30	09
DG181	SIL	ls, off	ìff	(nA)		•	0.5	1.0	7.5	Failed
		I _D , off	jjc	(nA)	-	•	0.2	0.4	2.0	Failed
DGM111	SIL	I _S , off	įį	(nA)			•	•	ŧ	30
		I _D , off	jţţ	(Pu)			1		•	260
		$^{ m I}_{ m D}$, off	jjc	(nA) ^c			0.05	90 .0	8.0	ហ
		r _{DS} , on		(ohms)			ı	•	•	100
		^r DS' on		(ohms)			120	250	250	1000

^a25 nA for nonscreened parts.

 $^{b}S = D=-10 \text{ V}.$

 $^{\text{c}}$ S = GND, D=10 V.

Table C-1 (contd)

	Manu-	Parameter	H	Initial	Post-		Post-Jupi	Post-Jupiter values	
Fart type	facturer	controlled	ק	value	IRAN	12.5 krad	30 krad	60 krad	125 krad
			No-loac	No-load conditions	suc				
HA9-2520	HAR	so _v	(mV)	œ		6	9.5	10.6	16.5
0969-9 V II		ΔV _{OS}	(mV)			 1	1.5	2.6	% 5.
		Ios	(nA)	25		33.7	41	99	75
		$\Delta^{ m I}_{ m OS}$	(nA)			8.7	16	41	90
		$^{ m I}_{ m B}$	(nA)	200		315	460	650	1100
		$\Delta I_{ m B}$	(nA)			115	260	450	006
		α,	00-ohm	500-ohm output load	oad				
		so _v	(mV)	8 mV		9.6	11.2	13.1	16.5
		ΔV_{OS}	(mV)			1.6	3.2	5.1	8.5
		$^{ m I}$	(nA)	25 nA		45	45	99	75
		$^{\Delta I}_{OS}$	(nA)			20	20	41	90
		$^{\mathrm{I}}_{\mathrm{B}}$	(nA)	200 nA		360	520	800	1100
		$\Delta I_{ m B}$	(nA)			160	320	009	006
		AOL, 2mA	(dB)			ı	1	0.2	9

Table C-1 (contd)

HA9-2600 1	Mann-	Parameter	L	Initial	Post-		Post-Jupiter values	iter values	
	facturer	controlled		value	IRAN	12,5 krad	30 krad	60 krad	125 krad
	HAR	v _{OS}	(mV)	4,			4.05	4.5	0.7
		$^{\Delta V}_{ m OS}$	(mV)				0.05	0.5	3.0
		$^{ m I}_{ m OS}$	(nA)	10			18	35	75
		$^{\Delta I}_{ m OS}$	(nA)				∞ 0	25	65
		$^{ m I}_{ m B}$	(nA)	10			12	24	75
		$\Delta I_{ m B}$	(nA)				7	14	9
		A _{OL} , 2mA	(dB)					06	75
								50 krad	
HA9-2620	HAR	v _{OS}	(mV)	4				4.2	10
0707-7411		ΔV _{OS}	(mV)					0.2	9
		$^{\mathrm{I}}$ os	(nA)	15				27	55
		$^{\Delta I}_{ m OS}$	(nA)					12	40
		$^{\mathrm{I}}_{\mathrm{B}}$	(nA)	15				23	100
		$\Delta I_{ m B}$	(nA)					œ	85

Table C-1 (contd)

	facturer	controlled	· 10	value	IRAN			60 krad	125 krad
200000	~					12.5 krad	30 krad	~~~~	
nA2-2020 (contd)		A _{OL} , 2mA	(dB)					85	85
		Large signal bandwidth (kHz)						550	450
		Small signal bandwidth (MHz)						18	18
HA2-2700 Ha	Harris	v os	(mV)	٣	m	3.4	4,	5	00
		ΔV_{OS}	(mV)			0.4	-	7	Ŋ
		$^{ m I}$	(nA)	10	10	11	14	16	18
		$^{\Delta I}_{ m OS}$	(nA)			1	4,	9	œ
		$^{ m I}_{ m B}$	(nA)	20	20	24	30	40	45
		$\Delta I_{ m B}$	(nA)			4,	10	20	25
		A _{OL} , 2mA	(dB)			110	100	06	80
HA9-2700 Ha	Harris	VOS	(mV)	m		4	9	12	28
		ΔV_{OS}	(mV)				æ	9.0	25
		$_{\rm SO_I}$	(nA)	10		12.0	13.1	20	30
		$\Delta^{ m I}_{ m OS}$	(nA)			7	3.1	10	20

Table C-1 (contd)

ŗ	Manu-	Parameter	H	Initial	Post-		Post-Jupi	Post-Jupiter values	
Part type	facturer	controlled	ف	value	IRAN	12.5 krad	30 krad	60 krad	125 krad
HA9-2700	Harris	$^{ m I}_{ m B}$	(nA)	20		32	40	45	09
(conta)		$\Delta I_{ m B}$	(nA)			12	20	25	40
		AOL, 2mA	(dB)			100	06	Ö	יט
ICL8007AM	Intersil	v os	(mV)	20		21.3	21.4	35	Failed
		ΔVOS	(mV)			1.3	1.4	15	Failed
		$^{ m I}_{ m OS}$	(pA)	0.2		42	42	150	Failed
		$I_{ m B}$	(pA)	0.5		36	39	71	Failed
ICL8018	Intersil	ΔI_{LSB}	(hA)					0.12	1.3
ICL8020		$\Delta^{ m I}_{ m BIT}_3$	(µA)					90 0	0.11
		$\Delta^{ m I}_{ m BIT}_2$	(hA)					0.17	0.37
		$\Delta^{ m I}_{ m BIT}$	(h.A)					0.38	0.71
		${\bf a_{\rm I}}_{\rm L}$	(nA)					2.3	294
		$\Delta V_{ m BE}$	(mV)					9	œ
		$\Delta 1/h_{ m FE}$						2×10^{-3}	2.5×10^{-3}
								İ	:

dCatastrophic reduction in output voltage swing in negative direction.

Table C-1 (contd)

ICL8038 Intersil ΔV_{OUJ} LM101AF, NSC V_{OS} LM101AH, ΔV_{OS} LM101AH, ΔV_{OS} LM101 NSC V_{OS} LM101 NSC V_{OS}	Parameter	er	Initial	Post-		Post-Jupiter values	ter values	
Intersil	controlled	eđ	value	IRAN	12.5 krad	30 krad	60 krad	125 krad
NSC	AV OUT	(\(\)						0
NSC NSC	ΔFreq. out	(kHz)						0.2
NSC	v os	(mV)	7	7	٣	41	5	12
NSC	so,	(mV)			1	7	٣	10
NSC	SO	(nA)	10	0 :	13	14	16	25
NSC	so	(nA)			æ	4	9	15
NSC	, a	(nA)	75	100	135	168	212	300
NSC	В	(nA)			35	89	112	200
NSC						25 krad	50 krad	
ΔV _C	N _{OS}	(mV)	2	None			2.8	10.6
	vos						0.8	8.6
so _I	SO	(nA)	10				18.8	168
$^{\Delta I}_{OS}$	SO	(nA)					& &	158
$^{\rm I}{}_{\rm B}$	В	(nA)	22				125	151
$\Delta I_{ m B}$	æ	(nA)					50	92

Table C-1 (contd)

D tag	Manu-	Parameter		Initial	Post-		Post-Jupi	Post-Jupiter values	
ratitype	facturer	controlled		value	IRAN	12.5 krad	30 krad	60 krad	125 krad
LM102F	NSC	so _v	(mV)	4					12
		$^{\Delta V}_{ m OS}$	(mV)						œ
		$^{\mathrm{I}}_{\mathrm{B}}$	(nA)	ю					12
		$\Delta I_{ m B}$	(nA)						6
LM103	NSC	ΔV _Z , 0.01 mA (mV)	(mV)						6.1
		ΔV_Z , 0.1 mA	mA (mV)						7.5
		ΔV _Z , 1.0 mA	mA (mV)						27
LM105	NSC	$\Delta Load_{AEG}$	(mV)			2	25.5	28	140
		$\Delta L^{ m ine}_{ m REG}$	(mV)			11	56	32	112
TM106	NSC	$^{ m V}_{ m OS}$	(mV)	æ					3.1
		ΔV _{OS}	(m V)						0.1
		$^{ m I}_{ m OS}$	(hA)	8					4.7
		$^{\Delta I}_{ m OS}$	(h4)						1.7
		$^{\mathrm{I}}_{\mathrm{B}}$	(hA)	20					22
		$\Delta I_{ m B}$	(hd)						8

Table C-1 (contd)

	Manu-	Parameter	, L	Initial	Post-		Post-Jup	Post-Jupiter values	
Part type	facturer	controlled	7 1	value	IRAN	12.5 krad	30 krad	60 krad	125 krad
LM108AH	NSC	N _{OS}	(mV)	6.0		1.0	1.1	1.35	1.65
(Hard)		ΔV _{OS}	(mV)			0.1	0.2	0.45	0.75
		$^{\mathrm{I}}$	(nA)	0.5		9.0	0,65	8.0	1.1
		ΔIOS	(nA)			0.1	0.15	0.3	9.0
		$^{ m I}_{ m B}$	(nA)	4. 0		9	9	8.5	13
		$\Delta I_{ m B}$	(nA)			7	2	4.5	6
		A _{OL} , 2 mA	(dB)			•		95	84
LM108	NSC	sO _V	(mV)	2.0		2.3	2.5	59	1052
(Unhard)		ΔV_{OS}	(mV)			0.3	0.5	57	1050
		I os	(nA)	0.2		9.0	1.6	9.9	6.7
		$^{\Delta I}_{ m OS}$	(nA)			0.4	1.4	6.4	6.5
		IB	(nA)	2.0		3.7	6.5	13.3	13.6
		$\Delta I_{ m B}$	(nA)			1.7	4.5	11.3	11.6
		A _{OL} , 2 mA	(4P)			1		ı	Failed

Ç.

	Manu-	Parameter		Initial	Post-		Post-Jupiter values	er values	
	facturer	controlled		value	IRAN	12, 5 krad	30 krad	60 krad	125 krad
LM108H N	NSC	N OS	(mV)	7		2, 1	2.2	2.5	2.8
		$^{\Delta V}_{OS}$	(Tr.V)			6, 1	0.2	0, 5	0.8
		$^{ m I}_{ m OS}$	(nA)	0, 5		9.0	0,65	0.8	1, 1
		$^{\Delta I}$ OS	(nA)			0. 1	0.15	0.3	9.0
		$\mathbf{I}_{\mathbf{B}}$	(nA)	4,		9	9	8,5	13
		ΔIB	(nA)			2	7	4.5	6
		A _{OL} , 2 mA	(qp)			ı	1	95	84
LM 108He N	NSC	N OS	(mV)	2		2.1	2.2	3.4	3.4
lot C1233A)		δν os	(mV.)			0, 1	0.2	1.4	1.4
LM111F N	NSC	S O	(mV)	æ	٣	4, 5	9	œ	σ
(IRAN)		$ \Delta^{V}$ $ \Delta^{V}$	(mV)			1,5	e	2	¥
		$_{ m SO}$	(nA)	10	25	75	145	225	335
		so	(nA)			50	120	200	310
		$^{\mathrm{I}}_{\mathrm{B}}$	(\ u)	100	400	200	1100	1250	1300
:	á	$\Delta I_{\mathbf{B}}$	(nA)			300	700	850	006

Othes parameters are the same as for the hardened LM108.

Table C-1 (contd)

	Manu-	Parameter	neter	Initial	Post-		PostJupit	Post-Jupiter values	
Part type	facturer		olled	value		12,5 krad	30 krad	50 krad	125 krad
LMIII	NSC	V OS	(mV)	3				5,5	8
(Non-IKAN)		ΔV OS	(mV)					2.5	4
		$^{ m I}_{ m OS}$	(nA)	10				45	190
		$^{\Delta I}$ OS	(nA)					35	180
		- B	(HA)	0, 1				1.1	2.1
		$\Delta I_{f B}$	(MA)					-	2
								60 krad	
LM124F	NSC	so v	(mV) ^f	ıΩ		9	σο.	10	15
		ΔV_{OS}	(mV)			-	શ	ιΛ	10
		los	(nA)	30		45	69	110	150
		ΔI_{OS}	(nA)			15	30	80	120
		I _B	(nA)	150		210	270	350	450
		$\Delta I_{ m B}$	(nA)			09	120	200	300
		Sink	(5K load)				No change	nge	
		Source	(5K load)				No change	nge	
$f_{V}^{\dagger} = 15 V,$	V = 0 V.	l							

Table C-1 (contd)

of the first county become in the second

D C	Manu-	Parameter	r	Initial	Post-		Post-Jupiter values	er values	
rart type	facturer	controlled	T	value	IRAN	12, 5 krad	30 krad	60 krad	125 krad
LM139	NSC	no 'SO'	(m ⁷ /)	5		5,5	7.0	9.0	12.0
(Onnara)		$\Delta^{ m V}_{ m OS}$, on	(mV)			0.5	2.0	4.0	7.0g
		V OS' off	(mV)	S		17.5	Failed	Failed	Failed
		ΔV_{OS} : off	(mV)			12, 5	Fa iled	Failed	Failed
		IOS, on	(nA)	25		35	55	95	375
		ΔI_{OS} , on	(nA)			10	30	70	350
		los, off	(nA)	52		35	Failed	Failed	Failed
		Δl _{OS} , off	(nA)			10	Failed	Failed	Failed
		Ig, on	(nA)	100		210	400	750	2100
		$\Delta I_{ m B}$, on	(nA)			110	300	650	2000
		l _B , off	(nA)	100		210	Failed	Failed	Failed
		$\Delta I_{ m B}$, off	(nA)			110	Failed	Failed	Failed
		ΔI _{Sink} , on	(mA)			-7.0	-14	-22	-28
		ΔI _{Sink} , 50% duty cycle	(mA)			-6.0	-14	-22	-23
		ΔI _{Sink} , off	(mA)			-7.0	Failed	Failed	Failed
g Null voltage =	e = 0.7 V.								

Table C-1 (contd)

Part type	Manu-	Parar	rameter	Initial	Post-		Post-Jupi	Post-Jupiter values	
216	facturer	contr	controlled	value	IRAN	12, 5 krad	30 krad	60 krad	125 krad
LM139 (Unhard)	NSC	V OS, on	(rnV)	5		5,3	5,5	5.6	6.0
Flight Lot		ΔV _{OS} , on	(mV)			0.3	0, 5	9.0	1.0
		yoo, oo	(mV)	Ŋ		5,5	Failed	Failed	Failed
		do 'SO V∆	(mV)			0, 5	Failed	Failed	Failed
		los, on	(nA)	25		28	34	47	105
		ΔI_{OS} , on	(nA)			3	5	22	80
		$_{ m IOS}$, off	(nA)	25		59	Failed	Failed	Failed
		ΔI_{OS} , off	(nA)			4	Failed	Failed	Failed
		IB, on	(nA)	100		190	230	315	525
		$\Delta I_{\mathbf{B}^{oldsymbol{\prime}}}$ on	(nA)			06	130	215	425
		I _B , off	(nA)	100		160	Failed	Failed	Failed
		$\Delta I_{\mathbf{B}}$, off	(nA)			09	Failed	Failed	Failed
		ΔI _{Sink} , on	(mA)			4-	-7	6-	-11
		ΔI_{Sink} , off	(mA)			4.	Failed	Failed	Failed

Table C-1 (contd)

LM139 NSC (Hard)		merer	Initial F	ost-		Fost-Jupiter values	contax toll	
		controlled		IRAN 1	2,5 krad	30 krad	60 krad	125 krad
	V _{OS} , on	(mV)	æ.	5.	. 5	5.5	2	7
	ΔV_{OS} , on	(mV)		0.	.5	0.5	2	7
	V OS' off	(mV)	5	7.	. 2	7.2	45	Failed
	ΔV_{OS} , off	(mV)		7	2.2	2.2	40	Failed
	los, on	(nA)	25	2	27.5	45	75	100
	$^{ m \Delta I}_{ m OS}$, on	(nA)		2,	5.	20	90	25
	$_{ m OS}$ off	(nA)	25	7	70	70	125	Failed
	$\Delta I_{ m OS}$, off	(nA)		4,	5	45	100	Failed
	$^{ m I}_{ m B}$, on	(nA)	100	2	250	420	550	609
	$\Delta I_{ m B}$, on	(nA)		7	150	320	450	200
	$^{ m I}_{ m B}$, off	(nA)	100	2	250	450	009	Failed
	$\Delta I_{\mathbf{B}}$, off	(nA)		1	150	350	500nA	Failed
	Sink, on	(mA)		S.	4.	3.0	2.0	1.7
	ΔI_{Sink} , on	(mA)		٠ <u>٠</u>	5	-8.2	-9.4	6.6-
	I _{Sink} , off	(mA)		ູ່ເດັ		3.0	2.0	Failed
	ΔI _{Sink} , off	(mA)		-5.	7	-8,3	-9.5	Failed

Table C-1 (contd)

Part type	Manu-	ji,	Parameter	Initial	Post-	Post-Jup	Post-Jupiter values	
	facturer		controlled	value	IRAN	12,5 krad 30 krad	60 krad	125 krad
LM710	NSC	so ^v	(mV)	2.0			2, 1	2.6
		Δ^{V} OS	(mV)				0, 1	9.0
		$^{\rm I}$ os	(hA)	3.0			3,9	10, 5
		$^{\Delta I}_{OS}$	(µA)				6.0	7.5
		$^{\mathrm{I}}_{\mathrm{B}}$	(hA)	20.0			22.0	6.62
		$\Delta I_{\mathbf{B}}$	(hA)				2.0	6.6
I.M723	NSC	ΔV_{out}	(mV)					31
		ΔV_{REF}	(mV)					1.1
		ΔLine Reg	(%) g					0.09
		\DLoad Reg	(%)					0.04