Remark #1: One application where solving nonlinear equation of the form f(x) = 0 arises is: Optimization problem minimize $\phi(x)$ All critical paints x satisfy this e.g., local maxima/

can be generalized Remark #2: Newton's method to multiple dimensions: $\underline{x} \in \mathbb{R}^2$ For example: f(z) = 0 $\begin{pmatrix}
f_{1}(x_{1}, x_{2}) \\
f_{2}(x_{1}, x_{2})
\end{pmatrix} = 0$ 2×1 $\int_{\Gamma} (x_1, x_2) = 0$

$$f_{2}(x_{1},x_{2})=0 \qquad \left| f_{2}(x_{1},x_{2}) \right|^{2\times 1}$$
• For multivariate optimization problem: min $\phi(x)$

$$\frac{x}{x} \in \mathbb{R}^{n}$$
Critical points solve: $\nabla \phi(x) = \left(\frac{2\phi}{2x_{1}}\right) = 0$

 $\nabla \phi(\underline{x}) = \frac{2\phi}{2x}$ Gradient of ϕ

local minima/maxima/saddles

method for the multivariate case f(x) = 0occomes: [Vf(xk)]-1 f(xk) nxI nxl NXI nxn Vector rector vector matrix

where
$$\nabla f(x_n) := \begin{bmatrix} \frac{3f_1}{3x_1} & \frac{3f_1}{3x_n} \\ \frac{3f_1}{3x_n} & \frac{3f_1}{3x_n} \end{bmatrix}$$

of f evaluated at Z_k

When $f \equiv \nabla \phi$ then the recursion becomes:

 $\frac{x}{x+1} = \frac{x}{x} - \left[\nabla^2 \phi(x_k)\right]^{-1} \nabla \phi(x_k)$

Fixed point recursion/algorithm: (Back to our 1D problem) Same moth problem: solve for a real root of f(x) = 0x = g(x)IDEA: Resorite f(x) = 0 as Algorithm: Make an imitial gulss x

Then do: $\chi_{K+1} = g(\chi_{K})$,
for K = 0, 1, 2, ...

Theorem: Suppose $g \in \mathbb{C}^1$, and where r = g(r). S:= | g'(r) K1 • Then the fixed point recursion convenges to x = r (locally) for x_0 close to r.

· Local rate of convergence is linear:

exti & Sex for K large enough

Multiple ways to write
$$x = g(x)$$
 for the same $f(x) = 0$:

Example:
$$f(x) = x^3 + x - 1 = 0$$

 $f(0) = -1 < 0 \Rightarrow \text{ there is a real}$
 $f(1) = +1 > 0 \Rightarrow \text{ root in } [0, 1]$

One way to rewrite:
$$x = g(x) = 1-x^3$$

Another way: $x = g_2(x) = (1-x)^{1/3}$

Another vary:
$$x = \frac{1}{x^2 + 1} = 4_3(x)$$

Yet another vory:

$$x = \frac{1+2x^3}{1+3x^2}$$

$$\text{Example:} \quad f(x) = \cos(x) - x = 0$$

Simply do: $\chi_{K+1} = g(x) = cos(x)$ $\chi_{K+1} = g(x) = cos(x)$

$$f'(x) = -\sin(x)$$

$$\Rightarrow |g'(x)| = |\sin(x)| < 1 \quad \forall \quad x \in [0, \frac{\pi}{2}]$$

 $\Rightarrow |g'(x)| = |\sin(x)| \leq 1 \quad \forall \quad x \in [0, \frac{\pi}{2}]$ $\therefore \text{ The recursion } \chi_{k+1} = \cos(\chi_k) \text{ will converge for any } \vdots$ $\text{initial guess } \chi_0 \in [0, \frac{\pi}{2}].$

Two results on fixed point recursion: #1 (Existence) A continuous function must have at least one fixed point. For theme exists at least one solution $x \in [a,b]$ for the equation x = g(x).

#2: (Vniqueness) Contraction mapping theorem (1D): [Sufficient condition for uniqueness] If there exists $\lambda \in [0,1]$ such that

 $|g(x) - g(y)| \le \lambda |x-y|$ for all $x, y \in [q,b]$ Here equation x = g(x) has unique fixed point in [a,b]. Example: Kepleris equation in celestial mechanics $z = m + \xi \sin(x) + g(x)$ Unown parameters $0 \le \xi \le 1$

Prove that Kepleri's equation has a unique fixed point

Proof:
$$|g(x) - g(y)|$$
 $= \mathcal{E} | \text{Sim}(x) - \text{Sim}(y)|$

Because $\text{Sim}(\cdot)$ is continuous and differentiable in any interval $[x,y]$, hence by mean value theorem (earlier lectures), there exists $e \in [x,y]$

Such that

 $\text{Sim}(x) - \text{Sim}(y) = \text{Cos}(e)(x-y)$
 $\Rightarrow | \text{Sim}(x) - \text{Sim}(y)| = | \text{Cos}(e)| | x-y|$
 $\text{Simea} | \text{Cos}(e)| \leq | x-y|$

|g(x) - g(y)| = E | sin(x) - sin(y) | $\leq \left| \left| \left| \left| \left| \left| \left| \left| \left| \right| \right| \right| \right| \right| \right|$

But the problem tells that O < E < 1 (given)

. By contraction mapping theorem, we

Conclude that g(x) has unique fixed point.