Automata Theory and Formal Language Lab Session 4

 ${\bf Carlos~Gallardo~Polanco}\\ {\bf mail@mail.com}\\ {\bf https://github.com/gpcarlos95/TALFPractice}$

November 26, 2017

1 Exercises

Given the $RE\ E = (((00) * + (00) * 0)10 + ((11) * + (11) * 1)10)*$

- 1. Build a $\mathcal{E}-NFA$ thats accepts exactly the same language, following the method explained in class to convert from RE to $\mathcal{E}-NFA$.
- 2. Generate the equivalent DFA
- 3. Implement it in a programming language (Python, C/C++, Java) following the table method.

2 Solutions

1. Build a $\mathcal{E}-NFA$ thats accepts exactly the same language, following the method explained in class to convert from RE to $\mathcal{E}-NFA$.

To convert a RE to an $\mathcal{E}-NFA$ we'll follow the following equivalences:

• Union. If E1=0 and E2=0 then $E1\cup E2$ (E1+E2):

• Concatenation. If E1 = 0 and E2 = 0 then E1E2:

• Concatenation. If E = 0 then E*:

We'll divide the main RE into smaller REs:

$$E = ((((00)* + (00)*0)10 + ((11)* + (11)*1)10)*$$

$$E1 \qquad E2 \qquad E2*$$

$$E3 \qquad E4 \qquad E4$$

$$E5 \qquad E6 \qquad E8$$

$$E9 \qquad E9*=E$$

• *E*1 = 00

• E1* = (00)*

• E2 = 11

• E2* = (11)*

• E3 = (00) * 0

• E4 = (11) * 1

• E5 = (00) * + (00) * 0

• E6 = (11) * + (11) * 1

• E7 = ((00) * + (00) * 0)10

• E8 = ((11) * + (11) * 1)10

• E9 = (((00) * + (00) * 0)10 + ((11) * + (11) * 1)10)

• E9* = (((00)*+(00)*0)10 + ((11)*+(11)*1)10)* = E

2. Generate the equivalent DFA

To generate the equivalent DFA, we'll follow the **subset construction method**, so we'll need the equivalent NFA. In the table 1(a) we have the transition table of $\mathcal{E}-NFA$ and in the table 1(b) the closures.

Table 1: Transition Table of $\mathcal{E}\!-\!NFA$

(a) Transition Table of \mathcal{E} -NFA

States	0	1	ε
1			2 44
2			3 23
3			4 10
4			5 9
5	6		
6			7
7	8		
8			9
9			4 18
10			11 15
11	12		
12			13
13	14		
14			15
15			10 16
16	17		
17			18
18			19
19		20	
20			21
21	22		
22			43
23			24 30
24			25 29
25		26	
26			27
27		28	
28			29
29			24 38
30			31 35
31		32	
32			33
33		34	
34		0.1	35
35			30 36
36		37	30 00
37		01	38
38			39
39		40	0.0
40		10	41
41	42		
42	72		43
43			44

(b) Closures of $\mathcal{E}-NFA$

	States			
$\rightarrow *$				
	2	2 3 23 4 10 24 30 5 9 11 15 25 29 31 35 18 16 38 36 19 39		
	3	3 4 10 5 9 11 15 18 16 19		
	4	4 5 9 18 19		
	5	5		
	6	6 7		
	7	7		
	8	8 9 4 18 5 19		
	9	9 4 18 5 19		
	10	10 11 15 16		
	11	11		
	12	12 13		
	13	13		
	14	14 15 10 16 11		
	15	15 10 16 11		
	16	16		
	17	17 18 19		
	18	18 19		
	19	19		
	20	20 21		
	21	21		
*	22	22 43 44 1 2 3 23 4 10 24 30 5 9 18 19 11 15 25 29 31 35 16 38 36 39		
	23 24 25 29 38 39 30 31 35 36			
	24	24 25 29 38 39		
	25	25		
	26	26 27		
	27	27		
	28	28 29 24 38 25 39		
	29	29 24 38 25 39		
	30	30 31 35 36		
	31	31		
	32	32 33		
	33	33		
	34	34 35 30 36 31		
	35	35 30 36 31		
	36	36		
	37	37 38 39		
	38	38 39		
	39	39		
	40	40 41		
	41	41		
*	42	42 43 44 1 2 3 23 4 10 24 30 5 9 18 19 11 15 25 29 31 35 16 38 36 39		
*	43	43 44 1 2 3 23 4 10 24 30 5 9 18 19 11 15 25 29 31 35 16 38 36 39		
*	44	44 1 2 3 23 4 10 24 30 5 9 18 19 11 15 25 29 31 35 16 38 36 39		

Removing the \mathcal{E} -transition, we obtain the transition table 2 of NFA.

	States	0	1
$\rightarrow *$	1	6 12 17	20 26 32 37 40
	2	6 12 17	20 26 32 37 40
	3	6 12 17	20
	4	6	20
	5	6	
	6	8	
	7	8	
	8	6	20
	9	6	20
	10	12 17	
	11	12	
	12	14	
	13	14	
	14	12 17	
	15	12 17	
	16	17	
	17		20
	18		20
	19		20
	20	22	
	21	22	
*	22	6 12 17	20 26 32 37 40
	23		26 32 37 40
	24		26 40
	25		26
	26		28
	27		28
	28		26 40
	29		26 40
	30		32 37
	31		32
	32		34
	33		34
	34		32 37
	35		32 37
	36		37
	37		40
	38		40
	39		40
	40	42	
	41	42	
*	42	6 12 17	20 26 32 37 40
*	43	6 12 17	20 26 32 37 40
*	44	6 12 17	20 26 32 37 40

Table 2: Transition Table of NFA

And the NFA:

Following the **subset construction method**, we obtain the table 3(a) and we can rename the states like in the table 3(b).

(b)

Table 3: Transition Table of DFA

(a) Transition Table of DFA				
	States	0	1	
$\rightarrow * A$	1	6_12_17	20_26_32_37_40	
В	6_12_17	8_14	20	
C	20_26_32_37_40	22_42	28_34_40	
D	8_14	6_12_17	20	
\mathbf{E}	20	22	Dead	
* F	22_42	6_12_17	20_26_32_37_40	
G	28_34_40	42	26_40_32_37	
* H	22	6_12_17	20_26_32_37_40	
* I	42	6_12_17	20_26_32_37_40	
J	26_40_32_37	42	28_34_40	
	Dead	Dead	Dead	

Transition Table of DFA (Renamed					
	States	0	1		
$\rightarrow *$	A	В	С		
	В	D	E		
	С	F	G		
	D	В	E		
	E	Н	Dead		
*	F	В	С		
	G	I	J		
*	Н	В	С		
*	I	В	С		
	J	I	G		
	Dead	Dead	Dead		

Following the **state minimization algorithm** for DFAs, we obtain the table 4 where X are all initial pairs of distinguishable states, X are all pairs of distinguishable states in the first round and O are all pairs of equivalent states.

Table 4: Minimization Table of DFA

The Minimum-state DFA is:

Table 5: Minimum-state Table of DFA

(a) Minimum-state Table of DFA

	States	0	1
$\to *$	A_I_H_F	B ₋ D	C_J_G
	B ₋ D	B ₋ D	E
	E	A_IH_F	Dead
	$C_{-}J_{-}G$	A_IH_F	C_J_G
	Dead	Dead	Dead

(b) Minimum-state Table of DFA (Renamed)

	States	0	1
$\rightarrow *$	A	В	С
	В	В	D
	D	Α	Dead
	С	A	С
	Dead	Dead	Dead

3. Implement it in a programming language (Python, C/C++, Java) following the table method.