3. Six graphs of functions are below, along with six graphs of derivatives. Match the graph of each function with the graph of its derivative.

Original Functions:

Their derivatives:

B)

D)

¢

AP Calculus AB

2.1 Worksheet

Name _____

Date _____Period ____

Part I. Match the graphs of functions I, II, and III to the graphs of their derivatives A, B, and C.

I.

A.

II

B.

III.

C.

Part II. Create a chart to show intervals on which the function is increasing/decreasing and on which the derivative is positive/negative. Sketch the graph of the derivative on the same set of axes as the function.

1.

2

ADVERTISEMENT

Name:

Score:

Teacher:

Date:

Graph Derivatives

Using the graph of f(x), draw an approximate graph of f'(x).

1)
$$f(x) = \frac{1}{36}x^3 + \frac{1}{12}x^2 - \frac{2}{3}x$$

f(x)

2)
$$f(x) = -\frac{1}{2}x^2 + 4x$$

f(x)

The graph of f is given below. Sketch a possible graph of f ' and f".

5.

7.

8.

9.

The graph of f ' is given below. Sketch a possible graph of f.

10.

11.

12.

13.

