Damped Lyman Alpha Systems

Observing the Cosmic Dawn 2023

Shreyam Parth Krishna

Summary

- What are Damped Lyman Alpha (DLA) Systems?
- How are they found?
- Formlism for Measuring Neutral Gas Content of the Universe
- Measurement of the Neutral Hydrogen Cosmological Mass density at z =5

What are Damped Lyman Alpha Systems?

 $N(HI) \ge 2 \times 10^{20} cm^{-2}$ Distant galaxy Background quasar To Earth Intervening gas Hydrogen emission from quasar Hydrogen absorption 'Metal' absorption lines

5000

Observed Wavelength [Angstroems]

4000

6000

$N(HI) \ge 2 \times 10^{20} cm^{-2}$

1: Wolfe et. al. 2005

Voigt Profile

$$V(x;\sigma,\gamma) \equiv \int_{-\infty}^{\infty} G(x';\sigma) L(x-x';\gamma) dx'$$

$$G(x;\sigma) \equiv \frac{e^{-x^2/(2\sigma^2)}}{\sigma\sqrt{2\pi}} \qquad L(x;\gamma) \equiv \frac{\gamma}{\pi(x^2+\gamma^2)}$$

Most atomic transitions : $\tau_{v} >> 1$ core and $\tau_{v} << 1$ wings - correspond to velocity & N(HI)

$$\Delta \nu_{\tau=1} \propto \Delta v_D \times [\ln N(X^j)]^{1/2}$$

DLA wings:

$$\tau_{\rm v} \sim 1$$

Prominent wings irrespective of velocity

$$\Delta \nu_{\tau=1} \propto [A_{21}f21 \times N(HI)]^{1/2}$$

Probe of Gas in Early Universe

Properties of DLAs

- Mostly consist of neutral or singly ionized gas.
- Metal poor, but floor in metallicity
- Ionised and neutral gas not well mixed.
- Low fraction of molecular gas due to low dust content.

How are they found?

- 1) Take Quasar spectrum
- Fit continuum blueward of Lyman Alpha line
- Absorption feature with W_r > 5 Å between z_{min} and z_{max} determined by spectra quality and QSO redshift
- 4) Fit Voigt profile for N(HI)
- 5) Metal lines (outside Lyman α forest) for redshift determination where possible.

Formalism for Measuring the Neutral Gas Content of the Universe

Density of the neutral gas in the universe:

$$\Omega_g \equiv \frac{H_0}{c} \frac{\mu m_h}{\rho_{crit}} \int_{N_{min}}^{N_{max}} dNNf(N, X)$$

Cosmic column density distribution:

$$f(N,X) \equiv (c/H_0)n_{co}(N,X)A(N,X)$$

1: Prochaska et. al. 2005

Measurement of the Neutral Hydrogen Cosmological Mass density at z =5 (Crighton et. al. 2015)

- 163 QSOs from the Giant Gemini GMOS (GGG) survey, z_{emis} b/w 4.4 and 5.4
- 59 with higher resolution spectroscopy true noise sample & Mocks true properties sample
- DLA = $N(HI) > 10^{20.3} \text{ cm}^{-2}$
- f^{DLA}_{HI} measured and corrected $f_{DLA} = f_{meas} \times k(N_{HI}) = f_{meas} \times \frac{k_{real}}{k_{found}}$
- f^{DLA}_{HI} converted to Ω^{DLA}_{HI} , further converted to Ω_{HI}

ID of DLAs:

- 1) Fit Continuum
- 2) Identify DLA region between Lyman α and Lyman β lines
- 3) Use higher order Lyman lines to refine z, $N_{\rm HI}$

Completeness and purity

Biased results wrt low N(HI)

HI Column density distribution

Cosmic HI Density

Predictions by Theory

