REDES DE COMPUTADORES Y LABORATORIO

Christian Camilo Urcuqui López, MSc

BIBLIOGRAFÍA

COMPETENCIAS

- Explicar cliente/servidor
 - ¿Qué es?
 - ¿Cuáles son los componentes básicos?
 - Tipos de ... Cliente/Servidor
 - ¿Cuáles son los mecanismos involucrados en una comunicación entre cliente/servidor?
- Explicar el uso de puertos y sockets.
 - Defina puerto y explique la asignación universal y dinámica.
 - Defina socket, ¿Qué elementos debe especificar una aplicación para crear un socket?
- Aplicar los métodos de Java para la comunicación entre un cliente (jueves y viernes)
 - Socket (cliente/servidor), Streams (flujos), Buffer
- Identificar los componentes de acceso al medio alambrado (viernes)

Aplicación

Front end vs. Back end.

Frontend

- Imágenes
- Lenguaje para estilos de la página CSS.
- HTML.
- Javascript, es un lenguaje que se ejecuta en el navegador web.

Backend

- La lógica del negocio, base de datos.
- Lenguajes más especializados, por ejemplo, C#, Python y Java. Estos se ejecutan en el servidor.
- Servidores e infraestructura que soporta la aplicación web.

Full Stack Software Engineer

Google

Technical Infrastructure Zürich, Switzerland

Google's software engineers develop the next-generation technologies that change how billions of users connect, explore, and interact with information and one another. Our products need to handle information at massive scale, and extend well beyond web search. We're looking for engineers who bring fresh ideas from all areas, including information retrieval, distributed computing, large-scale system design, networking and data storage, security, artificial intelligence, natural language processing, UI design and mobile; the list goes on and is growing every day. As a software engineer, you will work on a specific project critical to Google's needs with opportunities to switch teams and projects as you and our fast-paced business grow and evolve. We need our engineers to be versatile, display leadership qualities and be enthusiastic to take on new problems across the full-stack as we continue to push technology forward.

COMPONENTES BÁSICOS

- Presentación
- Procesamiento
- Datos

TIPOS DE ARQUITECTURA CLIENTE/SERVIDOR

Arquitectura de dos niveles

- Código cliente de la aplicación
- Servidor de base de datos

Arquitectura de tres niveles

- La capa de presentación
- La capa de funcionalidad
- La capa de lógica de los datos

Arquitectura de N-Niveles

Escalar vertical / horizontal

PUERTO

- Cantidad de puertos 65.536, de este total hay 1024 reservados.
- https://es.wikipedia.org/wiki/Anexo:N%C3%BAmeros de puertos de red

SOCKET

Una aplicación crea un socket al especificar tres elementos:

- Dirección IP del equipo.
- El puerto que la aplicación esté utilizando.
- El tipo de servicio (UDP o TCP) utilizado por la aplicación.

SERVIDOR/CLIENTE

- Un componente servidor que debe:
 - Establecer un ServerSocket asociado al puerto por el cual va a atender.
 - Utilizar el método accept() para "escuchar" las solicitudes del cliente y con él crear un Socket asociado a la solicitud.
 - Crear los flujos de entrada y salida que actuarán como canal de comunicaciones del lado del servidor.
 - Realizar el proceso solicitado por el cliente
 - Enviar los resultados al cliente
- Un componente servidor debe:
 - Crear un Socket asociado al servidor y al puerto donde se encuentra el servicio requerido.
 - Crear los flujos de entrada y salida que actuarán como canal de comunicaciones del lado del cliente.
 - Enviar al servidor los datos que necesite para procesar su solicitud (sí necesita).
 - Recibir la respuesta del servidor.

QUIÉN ES QUIÉN EN EL MUNDO DE LAS TELECOMUNICACIONES

- La ITU tiene cerca de 200 miembros gubernamentales.
- La ITU cuenta también con más de 700 miembros de sectores y asociados. Entre ellos se incluyen las compañías telefónicas (como AT&T, Vodafone, Sprint), los fabricantes de equipo de telecomunicaciones (como Cisco, Nokia, Nortel), los distribuidores de computadoras (como Microsoft, Agilent, Toshiba), los fabricantes de chips (como Intel, Motorola, TI) y demás compañías interesadas (como Boeing, CBS, VeriSign).
- ITU-T, Sector de estandarización de telecomunicaciones
- ITU-R, sector de radiocomunicaciones

QUIÉN ES QUIÉN EN EL MUNDO DE LOS ESTÁNDARES INTERNACIONALES

- Los estándares internacionales son producidos por la ISO (Organización Internacional de Estándares, del inglés International Standards Organization)
- El **NIST** (**Instituto Nacional de Estándares y Tecnología**, del inglés *National Institute of Standardsand Technology*) forma parte del Departamento de Comercio
- El **IEEE** (**Instituto de Ingenieros Eléctricos y Electrónicos**, del inglés *Institute of Electrical and Electronics Engineers*), la organización profesional más grande del mundo. Además de publicar muchas revistas y organizar numerosasconferencias cada año.
- Internet Engineering Task Force (IETF) es una organización internacional abierta de <u>normalización</u>, que tiene como objetivos el contribuir a la ingeniería de <u>Internet</u>, actuando en diversas áreas, como transporte, encaminamiento, seguridad.

UNIDADES MÉTRICAS DE INFORMACIÓN EN COMUNICACIONES

- Las unidades mayores a 1 se escriben en mayúsculas (KB, MB, etc.). Una excepción (por razones históricas) es kbps para kilobits/segundo.
- Para medir los tamaños de memoria, disco, archivos y bases de datos, en la práctica común de la industria las unidades tienen significados ligeramente distintos. Así, kilo significa 2¹⁰ (1024) en vez de 10³ (1000), ya que las memorias son siempre una potencia de dos. Por ende, una memoria de 1 KB contiene 1024 bytes, no 1000 bytes. Observe también que se utiliza una letra "B" mayúscula que significa "bytes" (unidades de ocho bits), en vez de una "b" minúscula que

significa "bits"

Ехр.	Explícito	Prefijo	Ехр.	Explícito	Prefijo
10-3	0.001	mili	10³	1000	Kilo
10-6	0.000001	micro	10 ⁶	1000000	Mega
10 ⁻⁹	0.00000001	nano	10 ⁹	1000000000	Giga
10-12	0.000000000001	pico	10 ¹²	100000000000	Tera
10-15	0.00000000000001	femto	10 ¹⁵	1 000 000 000 000 000	Peta
10-18	0.00000000000000000000001	atto	10 ¹⁸	1 000 000 000 000 000 000	Exa
10-21	0.0000000000000000000000000001	zepto	10 ²¹	1 000 000 000 000 000 000 000	Zetta
10-24	0.0000000000000000000000000000000000000	yocto	1024	1 000 000 000 000 000 000 000 000	Yotta

MEDIOS MAGNÉTICOS

Nunca subestime el ancho de banda de una camioneta repleta de cintas que va a toda velocidad por la carretera.

(Andrew S. Tanenbaum)

akifrases.com

CAPA FÍSICA

Medios de transmisión guiados

Cable de cobre y fibra óptica

Medios de transmisión no guiados

 Transmisión inalámbrica terrestre, los satélites y los láseres a través del aire

TIPOS DE ENLACES — MEDIO ALAMBRADO

- Los enlaces que se pueden utilizar en ambas direcciones al mismo tiempo, como un camino de dos carriles, se llaman enlaces **full-dúplex**.
- Los enlaces que se pueden utilizar en cualquier dirección, pero sólo uno a la vez, como una vía de ferrocarril de un solo sentido, se llaman enlaces half-dúplex.
- Hay una tercera categoría que consiste en enlaces que permiten tráfico sólo en una dirección, como una calle de un solo sentido. A éstos se les conoce como enlaces simplex.

CABLE COAXIAL

Figura 2-4. Un cable coaxial.

LECTURAS

Material utilizado	1. Arboleda, L. (2012). Programación en Red con Java. 2. Harold, E. (2004). Java network programming. " O'Reilly Media, Inc.". 3. Tanenbaum, A. S. (2003). Redes de computadoras. Pearson educación.	
Actividades DESPUÉS clase	A1. Leer del libro 3 las páginas 77-78, 82-85	

