Для расчета длины пробега используется $\Sigma(E) = \Sigma_{\phi \text{ото}}(E) + \Sigma_{\kappa \text{омптон}}(E) + \Sigma(E)_{\text{ораз. пар.}}$

Сечения взаимодействий фотонов для алюминия, железа свинца и воздуха

Энергия	Сечения взаимодействия фотонов $(cm^2/2)$					
фотонов,	Комптоновского		Фотоэффекта		Образования	
МэВ	рассеяния		$\Sigma_{\phi o \tau o}$ (E)		электронно-	
	$\Sigma_{\text{комптон}}$ (E)				позитронной пары	
					Σ(Е) ораз. пар.	
	Fe	Al	Fe	Al	Fe	Al
0.008	0.181	0.187	315	49.1	0.0	0.0
0.01	0.180	0.186	169.	25.7	0.0	0.0
0.015	0.177	0.183	54.	7.52	0.0	0.0
0.02	0.174	0.179	24.3	3.06	0.0	0.0
0.03	0.167	0.173	7.73	0.826	0.0	0.0
0.04	0.162	0.168	3.32	0.324	0.0	0.0
0.05	0.157	0.163	1.68	0.157	0.0	0.0
0.06	0.153	0.158	0.960	0.0875	0.0	0.0
0.08	0.144	0. 150	0.404	0.0348	0.0	0.0
0.1	0.138	0.143	0.204	0.0170	0.0	0.0
0.15	0.124	0.129	0.0591	0.00469	0.0	0.0
0.2	0.114	0.118	0.0245	0.00193	0.0	0.0
0.3	0.0991	0.102	0.00722	0.000551	0.0	0.0
0.4	0.0887	0.092	0.00327	0.000228	0.0	0.0
0.5	0.0811	0.0893	0.00181	0.000114	0.0	0.0
0.6	0.0749	0.0777	0.00115	0.0000672	0.0	0.0
0.8	0.0659	0.0681	0.000582	0.0000312	0.0	0.0
1.0	0.0592	0.0614	0.000354	0.0000109	0.0	0.0
1.5	0.0481	0.0498	0.000162	0.000004	0.000345	0.000167
2.0	0.0410	0.0424	0.000100	0.0000001	0.00133	0.00067
3.0	0.0322	0.0335	0.00054	0.000000	0.00371	0.00191

Энергия	Эффективные сечения взаимодействия (см²/г)					
фотонов,	Комптоновского		Фотоэффекта		Образования	
МэВ	рассеяния				электронно-	
					позитронной пары	
	Свинец	Воздух	Свинец	Воздух	Свинец	Воздух
0.02	0.147	0.186	83.1	0.497	0.0	0.0
0.03	0.142	0.180	28.5	0.131	0.0	0.0
0.04	0.138	0.174	13.2	0.0508	0.0	0.0
0.05	0.134	0.169	7.21	0.0245	0.0	0.0

0.06	0.130	0.164	4.39	0.0135	0.0	0.0
0.08	0.123	0. 156	1.97	0.00529	0.0	0.0
0.1	0.117	0.148	5.23	0.00254	0.0	0.0
0.15	0.106	0.123	1.8	0.000278	0.0	0.0
0.2	0.0968	0.122	0.843	0.000278	0.0	0.0
0.3	0.0843	0.106	0.289	0.0000762	0.0	0.0
0.4	0.0756	0.0953	0.141	0.0000098	0.0	0.0
0.5	0.0689	0.0868	0.0823	0.0000051	0.0	0.0
0.6	0.0637	0.0803	0.0538	0.0000031	0.0	0.0
0.8	0.0561	0.0705	0.0285	0.0000015	0.0	0.0
1.0	0.0503	0.0636	0.0180	0.0000009	0.0	0.0
1.5	0.0410	0.0515	0.00858	0.0000004	0.00159	0.0000968
2.0	0.0349	0.0438	0.00523	0.0000003	0.005	0.000387
3.0	0.0274	0.0346	0.00282	0.0000001	0.0115	0.00112