

Meng-Gen Tsai plover@gmail.com

August 27, 2021

Contents

Chapter 1: Homology Groups of a Simplicial Complex	2
§1. Simplices	2
Exercise 1.1	2

Chapter 1: Homology Groups of a Simplicial Complex

§1. Simplices

Exercise 1.1.

Verify properties (1)-(3) of simplices:

- (1) The barycentric coordinates $t_i(x)$ of x with respect to a_0, \ldots, a_n are continuous functions of x.
- (2) σ equals the union of all line segments joining a_0 to points of the simplex s spanned by a_1, \ldots, a_n . Two such line segments intersect only in the point a_0 .
- (3) σ is compact, convex set in \mathbb{R}^N , which equals the intersection of all convex sets in \mathbb{R}^N containing a_0, \ldots, a_n .

Proof of property (1).

- (1) Let σ be the *n*-simplex spanned by a_0, \ldots, a_n . It suffices to show that $t_i(x)$ is linear. Therefore $t_i(x)$ is automatically continuous (Theorem 9.7 in the textbook: *Rudin, Principles of Mathematical Analysis, 3rd edition*).
- (2) Let

$$E = \left\{ x = \sum_{i=0}^{n} \widetilde{t}_{i}(x) a_{i} : \widetilde{t}_{i}(x) \in \mathbb{R} \right\} \supseteq \sigma$$

be the plane spanned by a_0, \ldots, a_n . $\widetilde{t_i}(x)$ is well-defined on E and thus $\widetilde{t_i}|_{\sigma} = t_i$ (since $\{a_0, \ldots, a_n\}$ is geometrically independent in \mathbb{R}^N). So it suffices to show that $\widetilde{t_i}$ is linear.

(3) Suppose $x = \sum_{i=0}^{n} \widetilde{t_i}(x) a_i \in E$ and $y = \sum_{i=0}^{n} \widetilde{t_i}(y) a_i \in E$. Then

$$x + y = \sum_{i=0}^{n} (\widetilde{t}_i(x) + \widetilde{t}_i(y))a_i.$$

Note that the coefficient of a_i is uniquely determined by x+y. Thus $\widetilde{t}_i(x+y)=\widetilde{t}_i(x)+\widetilde{t}_i(y)$. Similarly, $\widetilde{t}_i(rx)=r\widetilde{t}_i(x)$ for $r\in\mathbb{R}$. Hence \widetilde{t}_i is linear.

Proof of property (2).

- (1) Show that σ equals the union of all line segments joining a_0 to points of the simplex s spanned by a_1, \ldots, a_n . Nothing to do when n = 0. Assume $n \geq 1$. Let σ' be the union of all line segments joining a_0 to points of the simplex s spanned by a_1, \ldots, a_n .
- (2) Write one line segment L joining a_0 to a point $\sum_{i=1}^n t_i a_i \in s$ as

$$L = \left\{ t_0 a_0 + (1 - t_0) \sum_{i=1}^n t_i a_i : 0 \le t_0 \le 1 \right\}.$$

For each point x of L, each coefficient of a_i is ≥ 0 (i = 0, ..., n) and the sum of them is $t_0 + (1 - t_0) \sum_{i=1}^n t_i = t_0 + (1 - t_0) = 1$. Hence $L \subseteq \sigma$ and thus $\sigma' \subseteq \sigma$.

(3) Conversely, given $x = \sum_{i=0}^{n} t_i a_i \in \sigma$. If $t_0 = 1$, then x is in the line segment joining a_0 to a_1 . If $0 \le t_0 < 1$, then write x as

$$x = t_0 a_0 + (1 - t_0) \sum_{i=1}^{n} \frac{t_i}{1 - t_0} a_i.$$

Note that $\sum_{i=1}^{n} \frac{t_i}{1-t_0} a_i \in s$. Hence x is in some line segment joining a_0 to points of the simplex s. Therefore $\sigma \subseteq \sigma'$.

(4) Show that two such line segments intersect only in the point a_0 . Suppose L_1 (resp. L_2) is the line segment joining a_0 to $x \in s$ (resp. $y \in s$). If there is one point $z \neq a_0$ on $L_1 \cap L_2$, then

$$z = t_0 a_0 + (1 - t_0)x = s_0 a_0 + (1 - s_0)y$$

for some $0 \le t_0, s_0 < 1$. $t_0 = s_0$ since $z \in \sigma$ is in a simplex. Hence x = y or $L_1 = L_2$.

Proof of property (3).

(1) Show that σ is compact. Let Δ be the standard simplex defined by

$$\Delta = \left\{ (t_0, \dots, t_n) \in \mathbb{R}^{n+1} : \sum_i t_i = 1, t_i \ge 0 \right\}.$$

 Δ is compact in \mathbb{R}^{n+1} since Δ is closed and bounded. Consider the map $\alpha: \Delta \to \sigma$ defined by

$$(t_0,\ldots,t_n)\mapsto \sum_{i=0}^n t_i a_i.$$

Similar to the proof of property (1), α is continuous. Hence the continuous image of a compact set is compact.

(2) Show that σ is convex. Given any $x = \sum_i t_i a_i \in \sigma$ (with $\sum_i t_i = 1$), $y = \sum_i s_i a_i \in \sigma$ (with $\sum_i s_i = 1$) and $0 < \lambda < 1$, it suffices to show that

$$\lambda x + (1 - \lambda)y \in \sigma.$$

In fact,

$$\lambda x + (1 - \lambda)y = \lambda \sum_{i} t_i a_i \in \sigma + (1 - \lambda) \sum_{i} s_i a_i$$
$$= \sum_{i} (\lambda t_i + (1 - \lambda)s_i)a_i,$$

where each $\lambda t_i + (1 - \lambda)s_i \ge 0$ and

$$\sum_{i} (\lambda t_{i} + (1 - \lambda)s_{i}) = \lambda \sum_{i} t_{i} + (1 - \lambda) \sum_{i} s_{i} = \lambda + (1 - \lambda) = 1.$$

So $\lambda x + (1 - \lambda)y \in \sigma$.

(3) Let $\mathscr C$ be the collection of all convex sets in $\mathbb R^N$ containing a_0,\ldots,a_n . Show that $\sigma=\bigcap_{E\in\mathscr C}E$. By (2), $\sigma\in\mathscr C$ and thus $\sigma\supseteq\bigcap_{E\in\mathscr C}E$. Conversely, suppose $E\in\mathscr C$. The convexity of E implies that $\sum_i t_i a_i\in E$ whenever $\sum_i t_i=1$ and $t_i\geq 0$. Hence $\sigma\subseteq E$ and thus $\sigma\subseteq\bigcap_{E\in\mathscr C}E$.