

On Statistical Properties of Arbiter Physical Unclonable Functions

Phillip Gajland

Examiner: Prof. Dr. Elena Dubrova

Supervisor: Dr. Felipe Marranghello

TODAY

Motivation - Why should you care?

Background - What do you need to know?

Arbiter PUFs - What are they?

Example - How does it work?

Proof of Conflict - What's the problem?

Solution - How do we fix it?

Simulation - What did we do?

Results - What did we find?

Summary - In short?

Conclusion - And what?

MOTIVATION —

50 billion IoT devices by 2020

ŀ

MOTIVATION

50 billion IoT devices by 2020:

DDoS attacks e.g. Dyn cyberattack 2016

Intellectual property theft:

Unique device identifiers Secure key storage (not battery backed SRAM or eFuses)

Devices using PUFs:

Xilinx Zynq Ultrascale+ Altera Stratix 10 FPGAs

5

Figure: Altera Stratix 10 FPGA

BACKGROUND

BOOLEAN FUNCTIONS

Table: There are 2^{2^n} different n-variable Boolean functions.

No. of variables (n)	Number of different functions (f)
1	4 (0, 1, x, \bar{x})
2	16 (0, 1, $x_1, x_2, \overline{x_1}, \overline{x_2}, x_1 \oplus x_2$, etc)
3	256 (0, 1, x_1 , x_3 , $\overline{x_1}$, $\overline{x_2}$, $x_2 \oplus x_3$, etc)
4	65,536 (0, 1, x_1 , x_4 , $\overline{x_1}$, $\overline{x_2}$, $x_3 \oplus x_4$, etc)
:	:
n	$2^{2^{n}}$ (0, 1, $x_1, x_n, \overline{x_1}, \overline{x_2}, x_3 \oplus x_n$, etc)

3

PHYSICAL UNCLONABLE FUNCTIONS

Digital fingerprint for Integrated circuits

Manufacturing differences give rise to a race condition

Mapping between challenges and responses

Challenge Response Pair (CRP) can be evaluated in the form of a **Boolean Function**

ARBITER PUFS

Figure: Schematic of a switch block

11

ARBITER PUFS

Figure: Arbiter PUF operations

ARBITER PUFS

Figure: Multiple switch blocks in series form a PUF

EXAMPLE

$$d_{11}$$
 = 1.1 ns d_{13} = 1.0 ns d_{21} = 1.2 ns d_{23} = 0.8 ns d_{12} = 1.3 ns d_{14} = 1.5 ns d_{22} = 1.4 ns d_{24} = 0.9 ns

Figure: Delay Paths

EXAMPLE

$$d_{11}$$
 = 1.1 ns d_{13} = 1.0 ns d_{21} = 1.2 ns d_{23} = 0.8 ns d_{12} = 1.3 ns d_{14} = 1.5 ns d_{22} = 1.4 ns d_{24} = 0.9 ns

$$\begin{aligned} &(x_1,x_2) = (0,0): d_{11} + d_{21} < d_{12} + d_{22} \to 0 \\ &(x_1,x_2) = (0,1): d_{12} + d_{24} > d_{11} + d_{23} \to 1 \\ &(x_1,x_2) = (1,0): d_{14} + d_{21} > d_{13} + d_{22} \to 1 \\ &(x_1,x_2) = (1,1): d_{13} + d_{24} > d_{14} + d_{23} \to 0 \end{aligned}$$

Х	1 X	2	f
0)	0
0	1		1
1	. ()	1
1	. 1		0

The Boolean function induced by the PUF is $f(x_1, x_2) = x_1 \oplus x_2$, where " \oplus " denotes XOR.

16

TRUTH TABLE

Table: 4 Boolean functions induced by an arbiter PUF with one switch block.

	Chall		
	$x_1 = 0$	$x_1 = 1$	f(x ₁)
00	$d_{11} < d_{12}$	$d_{13} > d_{14}$	0
01	$d_{11} > d_{12}$	$d_{13} < d_{14}$	1
10	$d_{11} < d_{12}$	$d_{13} < d_{14}$	X ₁
11	$d_{11} > d_{12}$	$d_{13} > d_{14}$	<u>X</u> 1

TRUTH TABLE

Table: 16 functions induced by an arbiter PUF with two switch blocks.

	Challenge				
	$x_2x_1 = 00$	$x_2x_1 = 01$	$x_2x_1 = 10$	$x_2x_1 = 11$	$f(x_1, x_2)$
0000	$d_{11} + d_{21} < d_{12} + d_{22}$	$d_{14} + d_{21} < d_{13} + d_{22}$	$d_{12} + d_{24} < d_{11} + d_{23}$	$d_{13} + d_{24} < d_{14} + d_{23}$	0
0001	$d_{11} + d_{21} < d_{12} + d_{22}$	$d_{14} + d_{21} < d_{13} + d_{22}$	$d_{12} + d_{24} < d_{11} + d_{23}$	$d_{13} + d_{24} > d_{14} + d_{23}$	X ₁ X ₂
0010	$d_{11} + d_{21} < d_{12} + d_{22}$	$d_{14} + d_{21} < d_{13} + d_{22}$	$d_{12} + d_{24} > d_{11} + d_{23}$	$d_{13} + d_{24} < d_{14} + d_{23} \\$	$\overline{X_1}X_2$
0011	$d_{11} + d_{21} < d_{12} + d_{22}$	$d_{14} + d_{21} < d_{13} + d_{22}$	$d_{12} + d_{24} > d_{11} + d_{23}$	$d_{13}+d_{24}>d_{14}+d_{23} \\$	Х2
0100	$d_{11} + d_{21} < d_{12} + d_{22}$	$d_{14} + d_{21} > d_{13} + d_{22}$	$d_{12} + d_{24} < d_{11} + d_{23}$	$d_{13} + d_{24} < d_{14} + d_{23}$	$X_1\overline{X_2}$
0101	$d_{11} + d_{21} < d_{12} + d_{22}$	$d_{14} + d_{21} > d_{13} + d_{22}$	$d_{12} + d_{24} < d_{11} + d_{23}$	$d_{13} + d_{24} > d_{14} + d_{23}$	X ₁
0110	$d_{11} + d_{21} < d_{12} + d_{22}$	$d_{14} + d_{21} > d_{13} + d_{22}$	$d_{12} + d_{24} > d_{11} + d_{23}$	$d_{13} + d_{24} < d_{14} + d_{23}$	$X_1 \oplus X_2$
0111	$d_{11} + d_{21} < d_{12} + d_{22}$	$d_{14} + d_{21} > d_{13} + d_{22}$	$d_{12} + d_{24} > d_{11} + d_{23}$	$d_{13}+d_{24}>d_{14}+d_{23} \\$	$x_1 + x_2$
1000	$d_{11} + d_{21} > d_{12} + d_{22}$	$d_{14} + d_{21} < d_{13} + d_{22}$	$d_{12} + d_{24} < d_{11} + d_{23}$	$d_{13} + d_{24} < d_{14} + d_{23} \\$	$\overline{X_1 + X_2}$
1001	$d_{11} + d_{21} > d_{12} + d_{22}$	$d_{14} + d_{21} < d_{13} + d_{22}$	$d_{12} + d_{24} < d_{11} + d_{23}$	$d_{13} + d_{24} > d_{14} + d_{23}$	$\overline{x_1 \oplus x_2}$
1010	$d_{11} + d_{21} > d_{12} + d_{22}$	$d_{14} + d_{21} < d_{13} + d_{22}$	$d_{12} + d_{24} > d_{11} + d_{23}$	$d_{13} + d_{24} < d_{14} + d_{23}$	$\overline{X_1}$
1011	$d_{11} + d_{21} > d_{12} + d_{22}$	$d_{14} + d_{21} < d_{13} + d_{22}$	$d_{12} + d_{24} > d_{11} + d_{23}$	$d_{13} + d_{24} > d_{14} + d_{23}$	$\overline{X_1} + X_2$
1100	$d_{11} + d_{21} > d_{12} + d_{22}$	$d_{14} + d_{21} > d_{13} + d_{22}$	$d_{12} + d_{24} < d_{11} + d_{23}$	$d_{13} + d_{24} < d_{14} + d_{23} \\$	<u>X</u> 2
1101	$d_{11} + d_{21} > d_{12} + d_{22}$	$d_{14} + d_{21} > d_{13} + d_{22}$	$d_{12} + d_{24} < d_{11} + d_{23}$	$d_{13}+d_{24}>d_{14}+d_{23} \\$	$X_1 + \overline{X_2}$
1110	$d_{11} + d_{21} > d_{12} + d_{22}$	$d_{14} + d_{21} > d_{13} + d_{22}$	$d_{12} + d_{24} > d_{11} + d_{23}$	$d_{13} + d_{24} < d_{14} + d_{23} \\$	X ₁ X ₂
1111	$d_{11} + d_{21} > d_{12} + d_{22}$	$d_{14} + d_{21} > d_{13} + d_{22}$	$d_{12} + d_{24} > d_{11} + d_{23}$	$d_{13} + d_{24} > d_{14} + d_{23}$	1

PROOF OF CONFLICT

For
$$f(x_1, x_2) = x_1$$

$$d_{11} + d_{21} < d_{12} + d_{22}$$

$$d_{14} + d_{21} > d_{13} + d_{22}$$

$$d_{12} + d_{24} < d_{11} + d_{23}$$

$$d_{13} + d_{24} > d_{14} + d_{23}$$

$$-\Delta_{11-12} < \Delta_{13-14} < -\Delta_{11-12}$$

Hence, $f(x_1, x_2) = x_1$ can NOT be induced by a single arbiter PUF!

SOLUTION

XORED PUFS

Figure: Setup for two XORed arbiter PUFs

EXAMPLE

Two functions that can be induced by a single arbiter PUF:

$$f(x_1,x_2)=x_1\oplus x_2$$

$$f(x_1,x_2)=x_2$$

$$(x_1 \oplus x_2) \oplus x_2 = x_1 \oplus x_2 \oplus x_1 = \boldsymbol{x_1}$$

"Et Voilà!"

SIMULATION

- 1. Select **n** and **number of trials**
- 2. For each trial:
 - · Assign random values to the delays (Gaussian Distribution)
 - Evaluate the resulting truth table

We want uniform distribution!

Figure: Single Arbiter PUF

Figure: All functions are equally probable.

Figure: x_1 and $\overline{x_1}$ are not induced (100,000 trials).

Figure: 152 functions are not induced (1 million trials).

Figure: 63,654 functions are not induced (10 million trials).

Figure: Two XORed PUFs

Figure: All functions are equally probable.

Figure: All functions are induced (100,000 trials).

Figure: All functions excl. $x_1 \oplus x_2$ and $\overline{x_1 \oplus x_2}$ are induced (1 million trials).

Figure: 11,226 functions are not induced (100 million trials).

RESULTS

Figure: Three XORed PUFs

Figure: All functions are equally probable

Figure: All functions are induced (100,000 trials).

Figure: All functions are induced (1.5 million trials).

Figure: All functions excl. $x_1 \oplus x_3$ and $\overline{x_1 \oplus x_3}$ are induced (2 billion trials).

0.25

Number of Functions induced

Number of Variables

Table: Number of Impossible Functions

n	N	I
1	4	0
2	16	2
3	256	152
4	65,536	63,654
:	:	÷
n	2 ²ⁿ	$\geq 2^{2^{n-1}}-2$

N	I
4	0
16	0
256	2
65,536	11,226
:	:
2 ² n	???

N	I
4	0
16	0
256	0
65,536	2
:	:
2 ² n	???

(a) One single PUF

(b) 2 XORed PUFs (c) 3 XORed PUFs

IMPOSSIBLE FUNCTIONS

$$\begin{split} f(x_1,x_2) = \begin{cases} \overline{x_1} & \text{for } n=2 \text{ using 1 single PUF} \\ \\ f(x_1,x_2,x_3) = \begin{cases} \overline{x_1 \oplus x_2} & \text{for } n=3 \text{ using 2 XORed PUFs} \end{cases} \end{split}$$

$$f(x_1,x_2,x_3,x_4) = \begin{cases} \overline{x_1 \oplus x_3} \\ x_1 \oplus x_3 \end{cases} \quad \text{for } n = 4 \text{ using 3 XORed PUFs}$$

n XORed arbiter PUFs can induce all 2²ⁿ n-variable Boolean functions.

Figure: n XORed PUFs can induce all possible n-variable functions.

FUTURE WORK

Figure: Three arbiter PUFs MAJed

CONCLUSION

Functions induced by arbiter PUFs are **not uniformly** distributed

Potential weakness - could be used for targeted attacks

XORing PUFs can improve the distribution

ACKNOWLEDGEMENTS

Latex Beamer:

github.com/matze/mtheme

Graphics:

draw.io

Prof. Dr. Elena Dubrova Dr. Felipe Marranghello