G53FUZ Fuzzy Sets and Systems

Mamdani Inference and Defuzzification

Bob John *ASAP*

Inferencing Principles

Overview

- Inferencing principles
 - standard logical implication and inference
 - production rule inference
- Mamdani inference
 - process
 - worked examples
- Defuzzification
 - numeric defuzzification
 - linguistic defuzzification

Definition of Logical Implication

 Logical implication can be defined in terms of other primitives

$$-(p \Rightarrow q) \equiv ((\neg p) \lor q)$$

• Or as a truth table

р	q	$\neg p$	$p \wedge q$	$p \vee q$	$p \Rightarrow q$
F	F	Т	F	F	Т
T	F	F	F	Τ	F
F	Τ	T	F	Τ	Τ
T	Τ	F	Τ	Τ	Τ

Logical Inference

- Modus ponens
 - $-p \Rightarrow q, p; q$
 - $-((p \Rightarrow q) \land p) \perp q$
 - IF p THEN q; p is TRUE; hence q is TRUE
 - IF p THEN q; p is FALSE; hence q is ???
 - we will return to this question later
- Modus tollens
 - $-((p \Rightarrow q) \land \neg q) \perp \neg p$
 - IF p THEN q; q is FALSE; hence p is FALSE

If-Then Rules

- Inference is performed by utilising a set of rules connecting premises to conclusions
 - premise (if part) is called the antecedent(s)
 - conclusion (then part) is called the consequent(s)
- These rules are similar to the production rules of expert systems
- Inference is simplified by putting aside formal considerations of logical implication

Example

- IF raining THEN cloudy
 - modus ponens
 - it is raining: it must be cloudy
 - modus tollens
 - it is not cloudy: it is not raining
 - incorrect inference
 - it is not raining: it is not cloudy
 - correct inference
 - $((F \Rightarrow F): T) \text{ AND } ((F \Rightarrow T): T)$
 - it is not raining: it may or may not be cloudy

If-Then Rules

- Essential operation
 - each of the antecedent(s) is evaluated to a number
 in [0, 1] and combined into a single number
 - the truth of the rule premise
 - each of the consequent(s) is considered to be true to the same degree as the premise
- IF p THEN q
 - -p is **true**, hence q is **true**
 - -p is half true, hence q is half true
 - -p is **not true**, hence q is **not true**!

Does This Make Sense?

- IF p THEN q; p is FALSE, hence q is FALSE
 - IF it is raining THEN it is cloudy
 - it is NOT raining
 - hence it is NOT cloudy!?
 - NO: logically, you have no evidence to support the conclusion one way or another
- We need to specify alternative antecedents
 - IF it is NOT raining THEN it may be cloudy

Mamdani Inference Overview

Outline

- 1. Fuzzify inputs
- 4. Aggregate output
- 2. Combine inputs
- 5. (Defuzzify)
- 3. Perform implication

Background

- Mamdani introduced the first successful form of fuzzy inferencing in 1975
 - E.H. Mamdani and S. Assilian
 - "An experiment in linguistic synthesis with a fuzzy logic controller"; International Journal of Man-Machine Studies; Vol. 7, No. 1, pp. 1-13, 1975
- The fuzzy system was developed to control kiln temperature in a cement factory
 - it is based on pragmatic considerations rather than any theoretical correctness

Methodology

- · Comprises a set of rules of the form
 - IF x is A [AND/OR y is B ...] THEN z is C
 - IF crisp_input matches fuzzy_input_term AND/OR ...THEN add fuzzy output term to fuzzy output
- For each rule
 - for each antecedent
 - evaluate m.f. (μ) of the crisp input value at the fuzzy term
 - combine all μ using appropriate fuzzy operator
 - fire the consequence at strength of resultant truth
 - add the output term to a (fuzzy) output set
- Interpret the output set in some way

Example: Variables

- Age
 - -young = 1/0 + 1/10 + .75/20 + .5/30 + .25/40
 - $middle_aged = 0/30 + .5/40 + 1/50 + .5/60 + 0/70$
 - old = .25/60 + .5/70 + .75/80 + 1/90 + 1/100
- Height
 - short = 1/1.4 + .75/1.5 + .5/1.6 + .25/1.7 + 0/1.8
 - tall = .25/1.6 + .5/1.7 + .75/1.8 + 1/1.9 + 1/2.0
- Employ
 - bad = 0/0 + .5/1 + 1/2 + .5/3 + 0/4
 - fair = 0/3 + .5/4 + 1/5 + .5/6 + 0/7
 - -good = 0/6 + .5/7 + 1/8 + .5/9 + 0/10

Mamdani Example

Example: Rules

- Three rules
 - IF Age is young AND Height is tall THEN Employ is good
 - IF Age is middle_aged THEN Employ is fair
 - IF Age is old OR Height is short THEN Employ is bad
- Inputs
 - Age = 40 (years)
 - Height = 1.8 (metres)

Rule 1

- Antecedent 1
 - Age is young: $\mu_{young}(40) = 0.25$
- Antecedent 2
 - *Height* is *tall*: $\mu_{tall}(1.8) = 0.75$
- Rule strength = Ante₁ AND Ante₂
 - $-\min(0.25, 0.75) = 0.25$
- Consequent
 - Employ is good
 - min(0.25, 0/6 + .5/7 + 1/8 + .5/9 + 0/10)
 - 0/6 + 0.25/7 + 0.25/8 + 0.25/9 + 0/10

Rule 3

- Antecedent 1
 - $Age \text{ is old: } \mu_{old}(40) = 0$
- Antecedent 2
 - Height is short: $\mu_{short}(1.8) = 0$
- Rule strength = Ante₁ OR Ante₂
 - $-\max(0,0)=0$
- Consequent
 - Employ is bad
 - min(0.0, 0/0 + .5/1 + 1/2 + .5/3 + 0/4)
 - 0/0 + 0/1 + 0/2 + 0/3 + 0/4

Rule 2

- Antecedent 1
 - Age is middle_aged: $\mu_{middle_aged}(40) = 0.5$
- Antecedent 2
 - BLANK
- Rule strength = Ante₁
 - -0.5
- Consequent
 - Employ is fair
 - min(0.5, 0/3 + .5/4 + 1/5 + .5/6 + 0/7)
 - 0/3 + 0.5/4 + 0.5/5 + 0.5/6 + 0/7

Rule Combination

- The three rule results
 - $-R_1: 0/6 + 0.25/7 + 0.25/8 + 0.25/9 + 0/10$
 - $R_2: 0/3 + 0.5/4 + 0.5/5 + 0.5/6 + 0/7$
 - $-R_3: 0/0 + 0/1 + 0/2 + 0/3 + 0/4$
- Rule combination
 - $\max(R_1, R_2, R_3)$
 - $\max(0/6 + 0.25/7 + 0.25/8 + 0.25/9 + 0/10, 0/3 + 0.5/4 + 0.5/5 + 0.5/6 + 0/7, 0/0 + 0/1 + 0/2 + 0/3 + 0/4)$
 - $\max(0)/0 + \max(0)/1 + \max(0)/2 + \max(0,0)/3 + \max(.5,0)/4 + \max(.5)/5 + \max(.5)/6 + \max(.25,0)/7 + \max(.25)/8 + \max(.25)/9 + \max(0)/10$
 - -0/0+0/1+0/2+0/3+.5/4+.5/5+.5/6+.25/7+.25/8+.25/9+0/10

Operators

- Mamdani inference features union and intersection operators, both in two places
 - intersection
 - combining antecedents joined by AND
 - implication operator to derive each consequent
 - union
 - · combining antecedants joined by OR
 - operator used to combine all consequents overall
- Operator families should be used consistently
 - in practice, often AND-OR pair is varied independently of implication/combination

Defuzzification

- In general, the result of Mamdani inference is a complex output fuzzy set
 - what does this mean?
- Often, for example in Mamdani's case, a single (crisp) number is required for output
 - the fuzzy output set is converted to a number
 - this process is termed defuzzification
- Mamdani chose to use a method whereby the centre of the area under the output set is used
 - this is called the *centroid* or *centre-of-gravity*

Defuzzification

The Problem

 The result of Mamdani inference is one or more arbitrary output fuzzy set(s)

Defuzzification

- There are two principal forms of defuzzification
 - numeric defuzzification
 - linguistic defuzzification
- Numeric defuzzification
 - often, a single (crisp) number is required as output
 - · e.g. fuzzy control
 - there are many different options
 - COG (centroid), mean-of-maxima, centre-of-area
- Linguistic defuzzification
 - a linguistic term representing the output set is found
 - some form of similarity or distance metric used

Centre of Gravity

• The imaginary balance point of the shape

Numeric Defuzzification

Example

• Recall, our actual output set

Centroid

$$= .5*4 + .5*5 + .5*6 + .25*7 + .25*8 + .25*9$$

$$.5 + .5 + .5 + .25 + .25 + .25$$

$$= 13.5 / 2.25$$

$$= 6$$

Mean of Maxima

• The mean of the x's which attain the maximal membership grade

Example

• Recall, our actual output set

Mean of Maxima

$$- \max(\mu) = 0.5$$

$$- x(\mu = 0.5) = \{ 4, 5, 6 \}$$

$$- \max(4,5,6)$$

$$= 5$$

Comparison

Smallest/Largest of Maxima

• The smallest or largest of x's with the maximal grade

Example

- Recall, our actual output set
 - -0/0 + 0/1 + 0/2 + 0/3 + .5/4 + .5/5 + .5/6 + .25/7 + .25/8 + .25/9 + 0/10
 - -.5/4 + .5/5 + .5/6 + .25/7 + .25/8 + .25/9
- Smallest of Maxima
 - $-\min(4,5,6) = 4$
- Largest of Maxima
 - $-\max(4,5,6)=6$

Example

- Recall, our actual output set
 - -0/0 + 0/1 + 0/2 + 0/3 + .5/4 + .5/5 + .5/6 + .25/7 + .25/8 + .25/9 + 0/10
 - -.5/4 + .5/5 + .5/6 + .25/7 + .25/8 + .25/9
- Bisector
 - area = 2.25; half-area = 1.125
 - bisector = 5 + (0.125 / 0.5) + 0.5
 - bisector = 5.75 ?
 - no simple formula for bisector

Bisector

- The value of x which splits the total area into two equal subareas
- $_{\neg}$ usually very similar result to the $\emph{centroid}$

Problems

- Information is lost
 - this is inevitable when reducing to a single number

Problems

- Information is lost
 - this is inevitable when reducing to a single number
 - e.g. these quite different shapes have same x_a

Metrics Illustrated

Other Metrics

- Membership grade at defuzzification point (μ_g) provides an indication of confidence in the result
- Maximum membership grade (μ_h , height) — provides a direct measure of strength of rules fired
- Normalised area

$$A = \frac{\sum_{i=1}^{N} \mu_i}{N}$$

Fuzzy entropy

$$S = \frac{\sum_{i=1}^{N} \left(-\mu_{i} \ln(\mu_{i}) - (1 - \mu_{i}) \ln(1 - \mu_{i})\right)}{N}$$

Metric Values

set	x_g	μ_g	μ_h	Α	S
А	3	0.95	1.00	0.07	0.06
В	40	0.80	0.80	0.32	0.50
С	40	0.80	0.80	0.05	0.08
D	50	0.90	0.90	0.12	0.15
E	50	0.16	0.50	0.19	0.60
F (singleton)	80	1.00	1.00	0.00	0.00
unknown 1.0/x	50	1.00	1.00	1.00	0.00
indeterm. 0.5/x	50	0.50	0.50	0.50	1.00
undefined 0/x	50	0.00	0.00	0.00	0.00

Linguistic Defuzzification

Similarity Measures

• Euclidean distance

$$\delta^2 = \sum_{i=1}^N (\mu_i - \eta_i)^2$$

- where η_i is membership grade of linguistic term
- minimum will determine the best match
- Degree of overlap

$$\gamma = \frac{|A \cap B|}{|A \cup B|}$$

- maximum will determine the best match

Linguistic Approximation

- A similarity measure is used to compute the distance between
 - the actual output set
 - the set of all terms of the linguistic variable
 - collection of primitive terms, connectives and hedges
- Search to find the best term while limiting the complexity to produce comprehensible output
 - e.g. medium or high may be preferred to not extremely low or fairly medium or fairly high
- Special level sets may also be included in search

Examples

- A is best approximated by low or high
- B is best approximated by mid
- C is best approximated by undefined (0/x)

Example - Sets

Recall, our output set

$$-.5/4 + .5/5 + .5/6 + .25/7 + .25/8 + .25/9$$

- Recall, the output sets for Employ
 - -bad = 0/0 + .5/1 + 1/2 + .5/3 + 0/4
 - fair = 0/3 + .5/4 + 1/5 + .5/6 + 0/7
 - -good = 0/6 + .5/7 + 1/8 + .5/9 + 0/10
- And, three level sets
 - undefined= 0/0 + 0/1 + 0/2 + ... + 0/8 + 0/9 + 0/10
 - indeterminate = .5/0 + .5/1 + .5/2 + ... + .5/8 + .5/9 + .5/10
 - unknown = 1/0 + 1/1 + 1/2 + ... + 1/8 + 1/9 + 1/10

Example - Similarities

X	output	bad	dist(bad)	fair	dist(fair)	good	dist(good)	undefined	d(undefined)	indet.	d(indet.)	unknown	d(unknown)
0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.25	1.00	1.00
1	0.00	0.50	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.25	1.00	1.00
2	0.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.25	1.00	1.00
3	0.00	0.50	0.25	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.25	1.00	1.00
4	0.50	0.00	0.25	0.50	0.00	0.00	0.25	0.00	0.25	0.50	0.00	1.00	0.25
5	0.50	0.00	0.25	1.00	0.25	0.00	0.25	0.00	0.25	0.50	0.00	1.00	0.25
6	0.50	0.00	0.25	0.50	0.00	0.00	0.25	0.00	0.25	0.50	0.00	1.00	0.25
7	0.25	0.00	0.06	0.00	0.06	0.50	0.06	0.00	0.06	0.50	0.06	1.00	0.56
8	0.25	0.00	0.06	0.00	0.06	1.00	0.56	0.00	0.06	0.50	0.06	1.00	0.56
9	0.25	0.00	0.06	0.00	0.06	0.50	0.06	0.00	0.06	0.50	0.06	1.00	0.56
10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.50	0.25	1.00	1.00
		Σ	2.44		0.44		1.44		0.94		1.44		7.44

• The best linguistic match is 'fair'

Example - Plots

Summary

- Lecture summary
 - Mamdani inference uses a heuristic approximation of inference, inspired by production rules
 - with reasonable choices of variables, terms and rules, it produces reasonable results
 - defuzzification is required as the output is fuzzy
 - there are alternative numeric and linguistic methods
 - no defuzzification technique is 'correct'
- Next lecture
 - Sugeno inference