Continuité des fonctions vectorielles

Limites

Exercice 1 [01735] [Correction]

Etudier les limites en (0,0) des fonctions suivantes :

a)
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 b) $f(x,y) = \frac{x^2 + xy + y^2}{x^2 + y^2}$
c) $f(x,y) = \frac{x^2y}{x^2 + y^2}$ d) $f(x,y) = \frac{x^2y^2}{x^2 + y^2}$

Exercice 2 [01736] [Correction]

Étudier les limites en (0,0) des fonctions suivantes :

a)
$$f(x,y) = \frac{x^3}{y}$$
 b) $f(x,y) = \frac{x+2y}{x^2-y^2}$ c) $f(x,y) = \frac{x^2+y^2}{|x|+|y|}$

Exercice 3 [00478] [Correction]

Etudier les limites en (0,0) des fonctions suivantes :

a)
$$f(x,y) = \frac{x^3 + y^3}{x^2 + y^2}$$
 b) $f(x,y) = \frac{xy}{x^4 + y^4}$
c) $f(x,y) = \frac{x^2y}{x^4 + y^2}$ d) $f(x,y) = \frac{xy}{x - y}$

Exercice 4 [00068] [Correction]

Etudier les limites en (0,0) des fonctions suivantes :

a)
$$f(x,y) = \frac{\sin xy}{\sqrt{x^2 + y^2}}$$
 b) $f(x,y) = \frac{1 - \cos(xy)}{xy^2}$
c) $f(x,y) = x^y = e^{y \ln x}$ d) $f(x,y) = \frac{\sinh x \sinh y}{x + y}$

Exercice 5 [00480] [Correction]

Soit $f: \mathbb{R}^+ \times \mathbb{R}^{+\star} \to \mathbb{R}$ définie par $f(x,y) = x^y$ pour x > 0 et f(0,y) = 0.

- a) Montrer que f est une fonction continue.
- b) Est-il possible de la prolonger en une fonction continue sur $\mathbb{R}^+ \times \mathbb{R}^+$?

Exercice 6 [01737] [Correction]

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 et $F: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ définie par

$$F(x,y) = \frac{f(x^2 + y^2) - f(0)}{x^2 + y^2}$$

Déterminer $\lim_{(x,y)\to(0,0)} F(x,y)$.

Continuité

Exercice 7 [01738] [Correction]

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \begin{cases} \frac{1}{2}x^2 + y^2 - 1 & \text{si } x^2 + y^2 > 1\\ -\frac{1}{2}x^2 & \text{sinon} \end{cases}$$

Montrer que f est continue.

Exercice 8 [01739] [Correction]

Soient $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 et $F: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie par

$$F(x,y) = \begin{cases} \frac{f(x) - f(y)}{x - y} & \text{si } y \neq x \\ f'(x) & \text{si } y = x \end{cases}$$

Montrer que la fonction F est continue.

Exercice 9 [00481] [Correction]

Soient E un espace vectoriel normé et A une partie non vide de E. Pour $x \in E$, on pose

$$d(x, A) = \inf \{ ||x - a|| / a \in A \}$$

Montrer que l'application $x \mapsto d(x, A)$ est définie et continue sur E.

Exercice 10 [01741] [Correction]

Soit A une partie convexe non vide de \mathbb{R}^2 et $f: A \to \mathbb{R}$ une fonction continue. Soit a et b deux points de A et y un réel tels que $f(a) \leq y \leq f(b)$. Montrer qu'il existe $x \in A$ tel que f(x) = y.

Exercice 11 [00482] [Correction]

Soient $q: \mathbb{R}^2 \to \mathbb{R}$ continue et \mathcal{C} un cercle de centre O et de rayon R > 0.

- a) Montrer qu'il existe deux points A et B de $\mathcal C$ diamétralement opposés tels que q(A)=q(B).
- b) Montrer qu'il existe deux points C et D de C, se déduisant l'un de l'autre par un quart de tour tels que q(C) = q(D).

Exercice 12 [01112] [Correction]

Soient E_1 et E_2 deux parties fermés d'un espace vectoriel normé E telles que

$$E = E_1 \cup E_2$$

Montrer qu'une application $f: E \to F$ est continue si, et seulement si, ses restrictions f_1 et f_2 au départ de E_1 et de E_2 le sont.

Uniforme continuité

Exercice 13 [00693] [Correction]

Soit $g: \mathbb{R}^+ \to \mathbb{R}$ continue et intégrable.

a) Justifier

$$\forall \varepsilon > 0, \exists M \in \mathbb{R}, \left| \int_0^{+\infty} |g(t)| dt - \int_0^M |g(t)| dt \right| \leqslant \varepsilon$$

b) En déduire que toute primitive de g est uniformément continue.

Lipchitzianité

Exercice 14 [01734] [Correction]

Soient A une partie non vide de \mathbb{R}^2 et x un point de \mathbb{R}^2 . On note

$$d(x,A) = \inf_{a \in A} ||x - a||$$

Montrer que l'application $d: \mathbb{R}^2 \to \mathbb{R}$ est lipschitzienne.

Exercice 15 [00475] [Correction]

Soit E l'espace formé des fonctions réelles définies sur [a,b], lipschitziennes et s'annulant en a.

Montrer que l'application $N: E \to \mathbb{R}$ qui à $f \in E$ associe le réel

$$N(f) = \inf \{ k \in \mathbb{R}^+ / \forall x, y \in [a, b], |f(x) - f(y)| \le k |x - y| \}$$

définit une norme sur E.

Exercice 16 [03052] [Correction]

Soient A une partie bornée non vide d'un espace vectoriel normé (E, N) et \mathcal{L} le sous-espace vectoriel des applications lipschitziennes de A dans E.

- a) Montrer que les éléments \mathcal{L} sont des fonctions bornées.
- b) Pour $f \in \mathcal{L}$, soit

$$K_f = \left\{ k \in \mathbb{R}^+ / \forall (x, y) \in A^2, N(f(x) - f(y)) \leqslant kN(x - y) \right\}$$

Justifier l'existence de $c(f) = \inf K_f$ puis montrer $c(f) \in K_f$.

c) Soient $a \in A$ et $N_a : \mathcal{L} \to \mathbb{R}^+$ définie par

$$N_a(f) = c(f) + N(f(a))$$

Montrer que N_a est une norme sur \mathcal{L} .

d) Soient $a, b \in A$. Montrer que les normes N_a et N_b sont équivalentes.

Exercice 17 [00476] [Correction]

Soient E un espace vectoriel normé et $T:E\to E$ définie par

$$T(u) = \begin{cases} u & \text{si } ||u|| \leqslant 1\\ \frac{u}{||u||} & \text{sinon} \end{cases}$$

Montrer que T est au moins 2-lipschitzienne.

Exercice 18 [00477] [Correction]

Soit E un espace vectoriel réel normé. On pose

$$f(x) = \frac{1}{\max(1, ||x||)}x$$

Montrer que f est 2-lipschitzienne.

Montrer que si la norme sur E est hilbertienne alors f est 1-lipschitzienne.

Continuité et linéarité

Exercice 19 [00485] [Correction]

Soient E et F deux espaces vectoriels normés et $f \in \mathcal{L}(E, F)$.

On suppose que pour toute suite (u_n) tendant vers 0, $f(u_n)$ est bornée.

Montrer que f est continue.

Exercice 20 [00486] [Correction]

Montrer que N_1 et N_2 normes sur E sont équivalentes si, et seulement si, Id_E est bicontinue de (E, N_1) vers (E, N_2) .

Exercice 21 [02832] [Correction]

Soient d un entier naturel et (f_n) une suite de fonctions polynomiales de \mathbb{R} dans \mathbb{R} de degré au plus d. On suppose que cette suite converge simplement.

Montrer que la limite est polynomiale de degré au plus d, la convergence étant de plus uniforme sur tout segment.

Exercice 22 [03282] [Correction]

Soient E un espace normé de dimension finie et u un endomorphisme de E vérifiant

$$\forall x \in E, \|u(x)\| \leqslant \|x\|$$

Montrer que les espaces $\ker(u - \operatorname{Id})$ et $\operatorname{Im}(u - \operatorname{Id})$ sont supplémentaires.

Exercice 23 [03717] [Correction]

E désigne un espace vectoriel normé par N.

Soient p et q deux projecteurs d'un \mathbb{K} -espace vectoriel E.

On suppose

$$\forall x \in E, N\left((p-q)(x)\right) < N(x)$$

Montrer que p et q sont de même rang.

Exercice 24 [03786] [Correction]

On munit $E = \mathcal{M}_p(\mathbb{C})$ de la norme

$$||M|| = \max_{1 \leqslant i, j \leqslant p} |m_{i,j}|$$

a) Soient X fixé dans \mathbb{C}^p et P fixé dans $\mathrm{GL}_p(\mathbb{C})$; montrer que

$$\phi(M) = MX$$
 et $\psi(M) = P^{-1}MP$

définissent des applications continues.

b) Montrer que

$$f(M,N) = MN$$

définit une application continue.

- c) Soit $A \in \mathcal{M}_p(\mathbb{C})$ telle que la suite ($||A^n||$) soit bornée; montrer que les valeurs propres de A sont de module inférieur à 1.
- d) Soit $B \in \mathcal{M}_p(\mathbb{C})$ telle que la suite (B^n) tende vers une matrice C. Montrer que $C^2 = C$; que conclure à propos du spectre de C?

Montrer que les valeurs propres de B sont de module au plus égal à 1

Exercice 25 [01012] [Correction]

Pour $a = (a_n) \in \ell^{\infty}(\mathbb{R})$ et $u = (u_n) \in \ell^1(\mathbb{R})$, on pose

$$\langle a, u \rangle = \sum_{n=0}^{+\infty} a_n u_n$$

- a) Justifier l'existence de $\langle a, u \rangle$.
- b) Montrer que l'application linéaire $\varphi_u: a \mapsto \langle a, u \rangle$ est continue.
- c) Même question avec $\psi_a : u \mapsto \langle a, u \rangle$.

Exercice 26 [03907] [Correction]

On note $E = \ell^{\infty}(\mathbb{R})$ l'espace vectoriel normé des suites réelles bornées muni de la norme N_{∞} . Pour $u = (u_n) \in \ell^{\infty}(\mathbb{R})$ on pose T(u) et $\Delta(u)$ les suites définies par

$$T(u)_n = u_{n+1} \text{ et } \Delta(u)_n = u_{n+1} - u_n$$

Montrer que les applications T et Δ sont des endomorphismes continus de E.

Exercice 27 [03908] [Correction]

Soit $E = \mathcal{C}([0,1], \mathbb{R})$ muni de $\|.\|_{\infty}$ définie par

$$||f||_{\infty} = \sup_{[0,1]} |f|$$

Etudier la continuité de la forme linéaire $\varphi: f \mapsto f(1) - f(0)$.

Exercice 28 [03909] [Correction]

Soient $E = \mathcal{C}^0([0,1],\mathbb{R})$ et $F = \mathcal{C}^1([0,1],\mathbb{R})$. On définit N_1 et N_2 par

$$N_1(f) = ||f||_{\infty} \text{ et } N_2(f) = ||f||_{\infty} + ||f'||_{\infty}$$

On définit $T:E\to F$ par : pour tout $f:[0,1]\to\mathbb{R},\,T(f):[0,1]\to\mathbb{R}$ est définie par

$$T(f)(x) = \int_0^x f(t) \, \mathrm{d}t$$

Montrer que T est une application linéaire continue.

Exercice 29 [03910] [Correction]

On munit l'espace $E=\mathcal{C}([0,1]\,,\mathbb{R})$ de la norme $\|\,.\,\|_2.$ Pour f et φ éléments de E on pose

$$T_{\varphi}(f) = \int_0^1 f(t)\varphi(t) dt$$

Montrer que T_{φ} est une forme linéaire continue.

Exercice 30 [03911] [Correction]

Soit $E = \mathcal{C}([0,1], \mathbb{R})$ muni de $\|.\|_1$ définie par

$$||f||_1 = \int_0^1 |f(t)| \, \mathrm{d}t$$

Etudier la continuité de la forme linéaire

$$\varphi: f \mapsto \int_0^1 t f(t) \, \mathrm{d}t$$

Exercice 31 [03912] [Correction]

Sur $\mathbb{R}[X]$ on définit N_1 et N_2 par :

$$N_1(P) = \sum_{k=0}^{+\infty} |P^{(k)}(0)| \text{ et } N_2(P) = \sup_{t \in [-1,1]} |P(t)|$$

- a) Montrer que N_1 et N_2 sont deux normes sur $\mathbb{R}[X]$.
- b) Montrer que la dérivation est continue pour N_1 .
- c) Montrer que la dérivation n'est pas continue pour N_2 .
- d) N_1 et N_2 sont-elles équivalentes?

Exercice 32 [03913] [Correction]

Soit $E = \mathcal{C}([0,1], \mathbb{R})$ muni de $\|.\|_{\infty}$.

Montrons que l'application $u: f \mapsto u(f)$ où u(f)(x) = f(0) + x(f(1) - f(0)) est un endomorphisme continu de E.

Exercice 33 [03914] [Correction]

Pour $a = (a_n) \in \ell^{\infty}(\mathbb{R})$ et $u = (u_n) \in \ell^1(\mathbb{R})$, on pose

$$\langle a, u \rangle = \sum_{n=0}^{+\infty} a_n u_n$$

a) Justifier l'existence de $\langle a, u \rangle$.

- b) Montrer que l'application linéaire $\varphi_u: a \mapsto \langle a, u \rangle$ est continue.
- c) Même question avec $\psi_a : u \mapsto \langle a, u \rangle$.

Exercice 34 [02741] [Correction]

Soit $K \in \mathcal{C}\left(\left[0,1\right]^2, \mathbb{R}\right)$ non nulle telle que

$$\forall (x, y) \in [0, 1]^2, K(x, y) = K(y, x)$$

On note $E = \mathcal{C}([0,1], \mathbb{R})$. Pour $f \in E$, soit

$$\Phi(f): x \in [0,1] \to \int_0^1 K(x,y)f(y) \mathrm{d}y \in \mathbb{R}$$

- a) Vérifier que $\Phi \in \mathcal{L}(E)$.
- b) L'application Φ est-elle continue pour $\|\cdot\|_{\infty}$? pour $\|\cdot\|_{1}$?
- c) Montrer que

$$\forall f, g \in E, (\Phi(f) \mid g) = (f \mid \Phi(g))$$

Soit

$$\Omega = \left[\max_{0 \leqslant x \leqslant 1} \int_0^1 |K(x, y)| \, \mathrm{d}y \right]^{-1}$$

d) Montrer

$$\forall \lambda \in]-\Omega, \Omega[, \forall h \in E, \exists! f \in E, h = f - \lambda \Phi(f)]$$

e) Si $\lambda \in \mathbb{R}^*$, montrer que :

$$\dim \ker(\Phi - \lambda \operatorname{Id}) \leqslant \frac{1}{\lambda^2} \iint_{[0,1]^2} K(x,y)^2 dxdy$$

Connexité par arcs

Exercice 35 [01147] [Correction]

Montrer qu'un plan privé d'un nombre fini de points est connexe par arcs.

Exercice 36 [01149] [Correction]

Montrer que l'image d'un connexe par arcs par une application continue est connexe par arcs.

Exercice 37 [01152] [Correction]

Soient A et B deux parties connexes par arcs d'un \mathbb{K} -espace vectoriel E de dimension finie.

- a) Montrer que $A \times B$ est connexe par arcs.
- b) En déduire que $A+B=\{a+b/a\in A,b\in B\}$ est connexe par arcs.

Exercice 38 [01148] [Correction]

Montrer que l'union de deux connexes par arcs non disjoints est connexe par arcs.

Exercice 39 [01153] [Correction]

Soient A et B deux parties fermées d'un espace vectoriel normé E de dimension finie. On suppose $A \cup B$ et $A \cap B$ connexes par arcs, montrer que A et B sont connexes par arcs.

Exercice 40 [01154] [Correction]

Soit E un espace vectoriel normé de dimension finie $n \ge 2$

Montrer que la sphère unité $S = \{x \in E / ||x|| = 1\}$ est connexe par arcs.

Exercice 41 [01155] [Correction]

Soit E un espace vectoriel normé réel de dimension $n \geqslant 2$.

- a) Soit H un hyperplan de E. L'ensemble $E \backslash H$ est-il connexe par arcs?
- b) Soit F un sous-espace vectoriel de dimension $p \leq n-2$. L'ensemble $E \setminus F$ est-il connexe par arcs?

Exercice 42 [01156] [Correction]

Montrer que le sous-ensemble de $\mathcal{M}_n(\mathbb{R})$ formé des matrices diagonalisables est connexe par arcs.

Exercice 43 [01157] [Correction]

Montrer que $\mathrm{GL}_n(\mathbb{R})$ n'est pas connexe par arcs.

Exercice 44 [01158] [Correction]

Montrer que $\mathrm{GL}_n(\mathbb{C})$ est connexe par arcs.

Exercice 45 [03867] [Correction]

Montrer que $SO_2(\mathbb{R})$ est une partie connexe par arcs.

Exercice 46 [01151] [Correction]

Soit $f:I\to\mathbb{R}$ injective et continue. Montrer que f est strictement monotone. Indice : on peut considérer $\varphi(x,y)=f(x)-f(y)$ défini sur $X=\left\{(x,y)\in I^2, x< y\right\}$.

Exercice 47 [01150] [Correction]

Soit $f: I \to \mathbb{R}$ une fonction dérivable. On suppose que f' prend des valeurs strictement positives et des valeurs strictement négatives et l'on souhaite établir que f' s'annule.

- a) Etablir que $A = \{(x, y) \in I^2, x < y\}$ est une partie connexe par arcs de I^2 .
- b) On note $\delta: A \to \mathbb{R}$ l'application définie par $\delta(x, y) = f(y) f(x)$. Etablir que $0 \in \delta(A)$.
- c) Conclure en exploitant le théorème de Rolle

Exercice 48 [03737] [Correction]

[Théorème de Darboux]

Soit $f:I\to\mathbb{R}$ une fonction dérivable définie sur un intervalle I de $\mathbb{R}.$

- a) Montrer que $U = \{(x,y) \in I^2/x < y\}$ est une partie connexe par arcs de \mathbb{R}^2 .
- b) On note $\tau:U\to\mathbb{R}$ l'application définie par

$$\tau(x,y) = \frac{f(y) - f(x)}{y - x}$$

Justifier

$$\tau(U) \subset f'(I) \subset \overline{\tau(U)}$$

c) En déduire que f'(I) est un intervalle de \mathbb{R} .

Exercice 49 [04078] [Correction] On note $\mathcal N$ l'ensemble des matrices de $\mathcal M_n(\mathbb R)$ nilpotentes. Montrer que N est une partie étoilée.

Corrections

Exercice 1 : [énoncé]

- a) $f(0,1/n) = 0 \to 0$ et $f(1/n,1/n) = 1/2 \to 1/2$. Pas de limite en (0,0).
- b) $f(1/n, 0) \to 1$ et $f(1/n, -1/n) \to 1/2$. Pas de limite en (0, 0).
- c) $|f(x,y)| = |x| \frac{|xy|}{x^2 + y^2} \le \frac{1}{2} |x| \xrightarrow{(x,y) \to (0,0)} 0$ ou
- $f(x,y) = r\cos^2\theta\sin\theta \xrightarrow[(x,y)\to(0,0)]{} 0.$
- d) $|f(x,y)| \le |xy| \left| \frac{xy}{x^2 + y^2} \right| \le \frac{1}{2} |xy| \to 0$ ou $f(x,y) = r^2 \cos^2 \theta \sin^2 \theta \xrightarrow{(x,y) \to (0,0)} 0$.

Exercice 2 : [énoncé]

- a) $f(0,1/n) \to 0$ et $f(1/n,1/n^3) \to 1$. Pas de limite en (0,0)
- b) $f(0,-1/n)=2n\to +\infty$ et $f(0,1/n)=-2n\to -\infty$. Pas de limite en (0,0).
- c) $0 \le f(x,y) \le \frac{x^2 + 2|x||y| + y^2}{|x| + |y|} = |x| + |y| \to 0 \text{ ou } f(r\cos\theta, r\sin\theta) = O(r).$

Exercice 3 : [énoncé]

a) On écrit $x = r \cos \theta$ et $y = r \sin \theta$ avec $r = \sqrt{x^2 + y^2} \to 0$ et alors

$$f(x,y) = r(\cos^3 \theta + \sin^3 \theta) \xrightarrow[(x,y)\to(0,0)]{} 0$$

- b) $f(1/n,0) \to 0$ et $f(1/n,1/n^3) \to 1$. La fonction f n'a pas de limite en (0,0).
- c) $f(1/n,0)=0 \rightarrow 0$ et $f(1/n,1/n^2)=1/2 \rightarrow 1/2$. La fonction f n'a pas de limite en (0,0).
- d) $f(1/n,0) = 0 \to 0$ et $f(1/n + 1/n^2, 1/n) = \frac{1/n^2 + 1/n^3}{1/n^2} \to 1$. La fonction f n'a pas de limite en (0,0).

Exercice 4: [énoncé]

- a) $|f(x,y)| \le \frac{|xy|}{\sqrt{x^2+y^2}} = r|\sin\theta\cos\theta| \xrightarrow{(x,y)\to(0,0)} 0$
- b) $f(x,y) = x \frac{1 \cos(xy)}{x^2 y^2}$ or $\lim_{t \to 0} \frac{1 \cos t}{t^2} = \frac{1}{2}$ donc $f(x,y) \xrightarrow{(x,y) \to (0,0)} 0$.
- c) $f(1/n, 0) \to 1$ et $f(1/n, 1/\ln n) \to 1/e$. Pas de limite en (0, 0).
- d) Quand $x \to 0$, $f(x, -x + x^3) \sim -\frac{1}{x}$. La fonction f n'a pas de limite en (0,0).

Exercice 5 : [énoncé]

- a) $f(x,y) = \exp(y \ln x)$ est continue sur $\mathbb{R}^{+\star} \times \mathbb{R}^{+\star}$ par opérations sur les fonctions continues.
- Il reste à étudier la continuité aux points (0, b) avec b > 0.
- Quand $(x,y) \to (0,b)$ avec $(x,y) \in \mathbb{R}^{+\star} \times \mathbb{R}^{+\star}$ on a $y \ln x \to -\infty$ et donc $f(x,y) = x^y \to 0$.
- D'autre part, quand $(0, y) \rightarrow (0, b)$, on a $f(x, y) = 0 \rightarrow 0$.
- Ainsi f est continue en (0, b).
- b) Si l'on peut prolonger f par continuité à $\mathbb{R}^+ \times \mathbb{R}^+$ alors
- d'une part $f(0,0) = \lim_{y \to 0} f(0,y) = 0$ et d'autre part $f(0,0) = \lim_{x \to 0} f(x,x) = 1$.
- C'est absurde.

Exercice 6: [énoncé]

- Par le théorème des accroissements finis, il existe $c_{x,y} \in]0, x^2 + y^2[$ tel que F(x,y) = f'(c).
- Quand $(x,y) \to (0,0)$ alors $c_{x,y} \to 0$ puis $F(x,y) \to f'(0)$.

Exercice 7: [énoncé]

Notons

$$D = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 > 1\} \text{ et } E = \{(x, y) \in \mathbb{R}^2 / x^2 + y^2 \le 1\}$$

- f est continue en chaque point de D et E.
- Soit (x_0, y_0) tel que $x_0^2 + y_0^2 = 1$ (à la jonction de D et E).
- Quand $(x,y) \to (x_0,y_0)$ avec $(x,y) \in D$, on a

$$f(x,y) \to \frac{1}{2}x_0^2 + y_0^2 - 1 = -\frac{1}{2}x_0^2 = f(x_0, y_0)$$

Quand $(x,y) \to (x_0,y_0)$ avec $(x,y) \in E$, on a

$$f(x,y) \to -\frac{1}{2}x_0^2 = f(x_0, y_0)$$

Finalement $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = f(x_0,y_0)$ et donc f est continue en .

Exercice 8 : [énoncé]

Soit $a = (\alpha, \beta) \in \mathbb{R}^2$.

Si $\alpha \neq \beta$ alors au voisinage de a,

$$F(x,y) = \frac{f(y) - f(x)}{y - x} \xrightarrow[(x,y) \to a]{} \frac{f(\beta) - f(\alpha)}{\beta - \alpha} = F(\alpha, \beta)$$

Si $\alpha = \beta$ alors:

Quand $(x,y) \to a$ avec x = y, $F(x,x) = f'(x) \to f'(\alpha) = F(a)$.

Quand $(x,y) \to a$ avec $x \neq y$, par le théorème des accroissements finis

$$F(x,y) = f'(c)$$

avec c compris entre x et y. Par le théorème des gendarmes, $c \to \alpha$ et par composition

$$F(x,y) \to f'(\alpha) = F(a)$$

Finalement F est continue en tout $a \in \mathbb{R}^2$.

Exercice 9: [énoncé]

La partie $\{\|x-a\|/a\in A\}$ est une partie de $\mathbb R$ non vide et minorée par 0 donc sa borne inférieure existe. Ainsi l'application $x\mapsto d(x,A)$ est bien définie. Soient $x,x'\in E$. Pour tout $y\in A$, $\|x-y\|\leqslant \|x-x'\|+\|x'-y\|$ donc $d(x,A)\leqslant \|x-x'\|+\|x'-y\|$ puis $d(x,A)-\|x-x'\|\leqslant \|x'-y\|$ et $d(x,A)-\|x-x'\|\leqslant d(x',A)$. Ainsi $d(x,A)-d(x',A)\leqslant \|x-x'\|$ et par symétrie $|d(x,A)-d(x',A)|\leqslant \|x-x'\|$. Finalement $x\mapsto d(x,A)$ est 1 lipschitzienne donc continue.

Exercice 10: [énoncé]

Soit $\varphi:[0,1]\to\mathbb{R}^2$ définie par $\varphi(t)=a+t.(b-a)$.

Par composition $f \circ \varphi$ est continue sur le segment [0,1].

Comme $(f \circ \varphi)(0) = f(a)$ et $(f \circ \varphi)(1) = f(b)$, par le théorème des valeurs intermédiaire, il existe $t \in [0, 1]$ tel que $(f \circ \varphi)(t) = y$.

Pour $x = \varphi(t) \in A$ on a y = f(x).

Exercice 11: [énoncé]

a) Soit $f: t \mapsto g(R\cos t, R\sin t)$. f est continue et 2π périodique.

Soit $h: t \to f(t+\pi) - f(t)$. h est continue et $h(0) + h(\pi) = f(2\pi) - f(0) = 0$ donc h s'annule.

b) Soit $h: t \mapsto f(t+\pi/2) - f(t)$. h est continue et

 $h(0) + h(\pi/2) + h(\pi) + h(3\pi/2) = 0$ donc h s'annule.

Exercice 12 : [énoncé]

L'implication directe est immédiate. Inversement, supposons f_1 et f_2 continue. Soit $a \in E$.

Si $a \in E_1 \cap E_2$ alors la continuité de f_1 et de f_2 donne

$$f(x) \xrightarrow[x \to a, x \in E_1]{} f(a)$$

et

$$f(x) \xrightarrow[x \to a, x \in E_2]{} f(a)$$

donc

$$f(x) \xrightarrow[x \to a, x \in E]{} f(a)$$

Si $a \in E_1 \setminus E_2$ alors il existe $\alpha > 0$ tel que $B(a, \alpha) \subset C_E E_2$ et donc $B(a, \alpha) \subset E_1$. Puisque f coïncide avec la fonction continue f_1 sur un voisinage de a, on peut conclure que f est continue en a.

Le raisonnement est semblable si $a \in E_2 \setminus E_1$ et tous les cas ont été traités car $E = E_1 \cup E_2$.

Exercice 13 : [énoncé]

- a) Par convergence, $\lim_{M\to +\infty} \int_0^M |g(t)| \, \mathrm{d}t = \int_0^\infty |g(t)| \, \mathrm{d}t$ d'où le résultat.
- b) Soit f une primitive de g. On peut écrire $f(x) = \int_0^x g(t) dt + C$.

Pour tout $x \leq y \in \mathbb{R}$ on a alors : $|f(y) - f(x)| \leq \int_x^y |g(t)| dt$.

Soient $\varepsilon > 0$ et M tel qu'introduit ci-dessus.

Si $x \geqslant M$ alors

$$|f(y) - f(x)| \leqslant \int_{M}^{+\infty} |g(t)| dt \leqslant \varepsilon$$

De plus, la fonction $t \mapsto |g(t)|$ étant continue sur le segment [0, M+1], elle y est bornée par un certain A et on a donc $|f(y) - f(x)| \le A|y-x|$ pour tout $x \le y \in [0, M+1]$

Par suite, pour $\alpha = \min(1, \varepsilon/A) > 0$, on a pour tout $x \leq y \in \mathbb{R}$,

$$|y - x| \le \alpha \Rightarrow |f(y) - f(x)| \le \varepsilon$$

La fonction f est donc uniformément continue.

Exercice 14 : [énoncé]

Pour tout $a \in A$,

$$d(x, A) \le ||x - a|| \le ||x - y|| + ||y - a||$$

donc

$$d(x, A) - ||x - y|| \le d(y, A)$$

puis

$$d(x, A) - d(y, A) \leqslant ||x - y||$$

Par symétrie,

$$|d(x,A) - d(y,A)| \leqslant ||x - y||$$

Ainsi $x \mapsto d(x, A)$ est lipschitzienne.

Exercice 15 : [énoncé]

L'ensemble

$$A = \{k \in \mathbb{R}^+ / \forall x, y \in [a, b], |f(x) - f(y)| \le k |x - y| \}$$

est une partie de \mathbb{R} , non vide (car f est lipschitzienne) et minorée par 0. Par suite $N(f) = \inf A$ existe.

Montrons que cet inf est en fait un min.

Pour $x, y \in [a, b]$ distincts, on a pour tout $k \in A$,

$$\frac{|f(x) - f(y)|}{|x - y|} \le k$$

En passant à la borne inf, on obtient

$$\frac{|f(x) - f(y)|}{|x - y|} \le N(f)$$

puis

$$|f(x) - f(y)| \le N(f)|x - y|$$

Cette identité est aussi valable quand x = y et donc $N(f) \in A$.

Par conséquent l'application $N: E \to \mathbb{R}^+$ est bien définie.

Supposons N(f) = 0.

Pour tout $x \in [a, b], |f(x)| = |f(x) - f(a)| \le 0. |x - a| \text{ donc } f = 0.$

Pour $\lambda = 0$, on a évidemment $N(\lambda f) = |\lambda| N(f)$.

Pour $\lambda \neq 0$:

Pour $x, y \in [a, b]$, l'inégalité

$$|f(x) - f(y)| \leq N(f)|x - y|$$

entraîne

$$|\lambda f(x) - \lambda f(y)| \le |\lambda| N(f) |x - y|$$

On en déduit $N(\lambda f) \leq |\lambda| N(f)$.

Aussi, l'inégalité

$$|\lambda f(x) - \lambda f(y)| \le N(\lambda f) |x - y|$$

entraîne

$$|f(x) - f(y)| \le \frac{N(\lambda f)}{|\lambda|} |x - y|$$

On en déduit $N(f) \leq N(\lambda f)/|\lambda|$ et finalement $N(\lambda f) = |\lambda| N(f)$. Enfin, pour $x, y \in [a, b]$,

$$|(f+g)(x) - (f+g)(y)| \le |f(x) - f(y)| + |g(x) - g(y)| \le (N(f) + N(g))|x - y|$$
donc $N(f+g) \le N(f) + N(g)$.

Exercice 16: [énoncé]

a) Soient $x_0 \in A$ et $M \in \mathbb{R}$ tels que pour tout $x \in A$, $||x|| \leq M$. Pour $f \in \mathcal{L}$, en notant k le rapport de lipschitzianité de f,

$$||f(x)|| \le ||f(x_0)|| + ||f(x) - f(x_0)|| \le ||f(x_0)|| + k ||x - x_0|| \le ||f(x_0)|| + 2kM$$

b) L'ensemble K_f est une partie de \mathbb{R} , non vide (car f est lipschitzienne) et minorée par 0.

On en déduit que $c(f) = \inf K_f$ existe dans \mathbb{R}^+ .

Pour $x, y \in A$ distincts, on a pour tout $k \in K_f$

$$\frac{N(f(x) - f(y))}{N(x - y)} \leqslant k$$

En passant à la borne inférieure, on en déduit

$$\frac{N(f(x) - f(y))}{N(x - y)} \leqslant c(f)$$

et donc $N(f(x) - f(y)) \le c(f)N(x - y)$ et cette relation est aussi valable quand x = y.

Ainsi $c(f) \in K_f$

c) L'application N_a est bien définie de \mathcal{L} vers \mathbb{R}^+ .

Si $N_a(f) = 0$ alors c(f) = 0 et N(f(a)) = 0.

Par suite f est constante et f(a) = 0 donc f est la fonction nulle.

 $N_a(\lambda f) = c(\lambda f) + |\lambda| N(f(a))$

Montrons $c(\lambda f) = |\lambda| c(f)$.

Pour $\lambda = 0$, la propriété est immédiate.

Pour $\lambda \neq 0$.

Pour tout $x, y \in A$,

$$N(f(x) - f(y)) \le c(f)N(x - y)$$

donne

$$N(\lambda f(x) - \lambda f(y)) \le |\lambda| c(f) N(x - y)$$

On en déduit $c(\lambda f) \leq |\lambda| c(f)$.

De façon symétrique, on obtient $c(f) \leq c(\lambda f)/|\lambda|$ et on peut conclure $c(\lambda f) = |\lambda| \, c(f)$.

On en déduit $N_a(\lambda f) = |\lambda| N_a(f)$.

$$N_a(f+g) \leqslant N(f(a)) + N(g(a)) + c(f+g)$$

Montrons $c(f+g) \le c(f) + c(g)$.

Pour tout $x, y \in A$,

$$N((f+g)(x)-(f+g)(y)) \le N(f(x)-f(y))+N(g(x)-g(y)) \le (c(f)+c(g))N(x-y)$$

On en déduit $c(f+g)\leqslant c(f)+c(g)$ et on peut conclure

 $N_a(f+g) \leqslant N_a(f) + N_a(g).$

Finalement N_a est une norme sur \mathcal{L} .

d) $N(f(a)) \le N(f(b)) + N(f(a) - f(b)) \le N(f(b)) + ||a - b|| c(f)$.

On en déduit $N_a \leq (1 + ||a - b||) N_b$ et de façon symétrique,

 $N_a \leqslant (1 + ||b - a||) N_a.$

Exercice 17: [énoncé]

Pour $u, v \in B(0, 1)$, on a

$$||T(u) - T(v)|| = ||u - v|| \le 2 ||u - v||$$

Pour $u, v \notin B(0, 1)$, on a

$$||T(u) - T(v)|| = \left\| \frac{u}{||u||} - \frac{v}{||v||} \right\| = \frac{||||v|| ||u - ||u|| ||v||}{||u|| ||v||}$$

or

$$||v|| u - ||u|| v = ||v|| (u - v) + (||v|| - ||u||) v$$

donc

$$||T(u) - T(v)|| \le \frac{||u - v||}{||u||} + \frac{|||v|| - ||u|||}{||u||} \le 2 ||u - v||$$

 $\operatorname{car} |||v|| - ||u||| \le ||v - u|| \text{ et } ||u|| \ge 1.$

Pour $u \in B(0,1)$ et $v \notin B(0,1)$,

$$||T(u) - T(v)|| = \left| |u - \frac{v}{||v||} \right| = \frac{||||v|| |u - v||}{||v||} = \frac{|||v|| - 1| ||u|| + ||u - v||}{||v||} \leqslant 2 ||u - v||$$

$$\operatorname{car} ||v|| - 1| = ||v|| - 1 \le ||v|| - ||u|| \le ||v - u|| \text{ et } ||v|| \ge 1$$

Exercice 18 : [énoncé]

Si $||x||, ||y|| \le 1$ alors ||f(y) - f(x)|| = ||y - x||.

Si $||x|| \le 1$ et ||y|| > 1 alors

$$||f(y) - f(x)|| = \left\| \frac{y}{||y||} - x \right\| = \left\| \frac{y}{||y||} - y + y - x \right\| \leqslant ||y|| - 1 + ||y - x|| \leqslant 2 ||y - x||$$

Si ||x||, ||y|| > 1 alors

$$||f(y) - f(x)|| = \left\| \frac{y}{||y||} - \frac{x}{||x||} \right\| = \left\| \frac{y - x}{||y||} + x \left(\frac{1}{||y||} - \frac{1}{||x||} \right) \right\| \leqslant \frac{||y - x||}{||y||} + \frac{|||x|| - ||y|||}{||y||} \leqslant 2$$

Au final f est 2-lipschitzienne.

Supposons maintenant que la norme $\| \cdot \|$ soit hilbertienne.

Si $||x||, ||y|| \le 1$ alors

$$||f(y) - f(x)|| = ||y - x||$$

Si $||x|| \le 1$ et ||y|| > 1 alors

$$||f(y) - f(x)||^2 - ||y - x||^2 = 1 - ||y||^2 - 2\frac{||y|| - 1}{||y||}(x | y)$$

Or $|(x | y)| \le ||x|| ||y|| \le ||y||$ donc

$$||f(y) - f(x)||^2 - ||y - x||^2 \le 1 - ||y||^2 + 2(||y|| - 1) = -(1 - ||y||)^2 \le 0$$

Si ||x||, ||y|| > 1 alors

$$||f(y) - f(x)||^2 - ||y - x||^2 = 2 - ||y||^2 - ||x||^2 - 2 \frac{||x|| ||y|| - 1}{||x|| ||y||} (x | y)$$

Or $|(x | y)| \le ||x|| \, ||y|| \, \text{donc}$

$$||f(y) - f(x)||^2 - ||y - x||^2 = 2 - ||y||^2 - ||x||^2 + 2(||x|| ||y|| - 1) = -(||x|| - ||y||)^2 \le 0$$

Au final f est 1-lipschitzienne.

Exercice 19 : [énoncé]

Par contraposée. Supposons que f ne soit par continue., l'application linéaire f n'est donc pas continue en 0 et par suite il existe $\varepsilon > 0$ vérifiant

$$\forall \alpha > 0, \exists x \in E, ||x|| \leq \alpha \text{ et } ||f(x)|| > \varepsilon$$

Pour $\alpha = 1/n$, il existe $x_n \in E$ tel que $||x_n|| \le 1/n$ et $||f(x_n)|| > \varepsilon$.

Considérons alors $y_n = \sqrt{n}x_n$.

On a $||y_n|| \le 1/\sqrt{n}$ donc $y_n \to 0$ et $||f(y_n)|| > \sqrt{n\varepsilon} \to +\infty$.

Ainsi (y_n) est une suite convergeant vers 0 dont la suite image $(f(y_n))$ n'est pas bornée.

Exercice 20: [énoncé]

La continuité de l'application linéaire Id_E de (E,N_1) vers (E,N_2) équivaut à l'existence d'un réel $\alpha \geqslant 0$ vérifiant $N_2(x) \leqslant \alpha N_1(x)$ pour tout $x \in E$. La propriété annoncée est alors immédiate.

Exercice 21: [énoncé]

Considérons $\alpha_0, \dots, \alpha_d$ des réels deux à deux distincts et $\varphi : \mathbb{R}_d[X] \to \mathbb{R}^{d+1}$ définie par

$$\varphi(P) = (P(\alpha_0), \dots, P(\alpha_d))$$

L'application φ est un isomorphisme de \mathbb{R} -espaces vectoriels de dimensions finies, c'est aussi une application linéaire continue car les espaces engagés sont de dimensions finies et il en est de même de φ^{-1} .

En notant f la limite simple de (f_n) , on a $\varphi(f_n) \to (f(\alpha_0), \dots, f(\alpha_d))$. En notant P l'élément de $\mathbb{R}_d[X]$ déterminé par $\varphi(P) = (f(\alpha_0), \dots, f(\alpha_d))$, on peut écrire $\varphi(f_n) \to \varphi(P)$. Par continuité de l'application φ^{-1} , on a donc $f_n \to P$ dans $\mathbb{R}_d[X]$. En choisissant sur $\mathbb{R}_d[X]$, la norme équivalente $\|\cdot\|_{\infty,[a,b]}$, on peut affirmer que (f_n) converge uniformément vers P sur le segment [a,b]. En particulier (f_n) converge simplement vers P et en substance P = f.

Exercice 22 : [énoncé]

Soit $x \in \ker(u - \operatorname{Id}) \cap \operatorname{Im}(u - \operatorname{Id})$.

On peut écrire x = u(a) - a pour un certain $a \in E$ et on a u(x) = x. Pour tout $k \in \mathbb{N}$, la propriété $u^k(x) = x$ donne

$$u^{k+1}(a) - u^k(a) = x$$

En sommant ces relations pour k allant de 0 jusqu'à n-1, on obtient

$$u^n(a) - a = nx$$

et donc

$$||x|| = \frac{1}{n} ||u^n(a) - a|| \le \frac{1}{n} (||u^n(a)|| + ||a||) \le \frac{2}{n} ||a|| \to 0$$

Ainsi x = 0 et donc $ker(u - Id) \cap Im(u - Id) = \{0\}.$

De plus, par la formule du rang

$$\dim \ker(u - \operatorname{Id}) + \dim \operatorname{Im}(u - \operatorname{Id}) = \dim E$$

et donc les deux espaces $\ker(u - \operatorname{Id})$ et $\operatorname{Im}(u - \operatorname{Id})$ sont supplémentaires.

Exercice 23 : [énoncé]

Par l'absurde, supposons $rgp \neq rgq$ et, quitte à échanger, ramenons-nous au cas où rgp < rgq.

Par la formule du rang

$$\dim E - \dim \ker p < \operatorname{rg} q$$

et donc

$$\dim E < \dim \ker p + \operatorname{rg} q$$

On en déduit que les espaces $\ker p$ et $\mathrm{Im} q$ ne sont pas supplémentaires et donc il existe un vecteur $x \neq 0_E$ vérifiant

$$x \in \ker p \cap \operatorname{Im} q$$

On a alors

$$(p-q)(x) = p(x) - q(x) = -x$$

donc

$$N((p-q)(x)) = N(x)$$

Or

$$N((p-q)(x)) < N(x)$$

C'est absurde.

Exercice 24: [énoncé]

- a) Les applications ϕ et ψ sont linéaires au départ d'un espace de dimension finie donc continues.
- b) L'application f est bilinéaire au départ d'un produit d'espaces de dimensions finies donc continue.
- c) Soit λ une valeur propre de A et X un vecteur propre associé

$$AX=\lambda X$$
 avec $X\neq 0$

On a alors

$$A^n X = \lambda^n X$$

donc

$$|\lambda^n| \|X\|_{\infty} = \|A^n X\| \le p \|A^n\| \|X\|_{\infty}$$

avec
$$||X||_{\infty} = \max_{1 \le j \le p} |x_j| \ne 0.$$

On en déduit que la suite (λ^n) est bornée et donc $|\lambda| \leq 1$.

d) $B^n \to C$ donc par extraction $B^{2n} \to C$. Or $B^{2n} = B^n \times B^n \to C^2$ donc par unicité de la limite $C = C^2$. On en déduit que $\operatorname{Sp} C \subset \{0,1\}$ car les valeurs propres figurent parmi les racines du polynôme annulateur $X^2 - X$.

Puisque la suite (B^n) converge, elle est bornée et donc les valeurs propres de B sont de modules inférieurs à 1.

Exercice 25: [énoncé]

- a) On a $|a_n u_n| \leq ||a||_{\infty} |u_n|$ et $\sum |u_n|$ converge donc par comparaison de séries à termes positifs, $\sum a_n u_n$ est absolument convergente et donc convergente.
- b) $|\langle a, u \rangle| \le \sum_{n=0}^{+\infty} |a_n u_n| \le \sum_{n=0}^{+\infty} ||a||_{\infty} |u_n| = ||a||_{\infty} ||u||_1$.

On en déduit que φ_n est continue.

c) Par l'inégalité $|\langle a, u \rangle| \leq ||a||_{\infty} ||u||_{1}$, on obtient que ψ_a est continue.

Exercice 26: [énoncé]

Pour tout $u \in \ell^{\infty}(\mathbb{R})$, on a $|T(u)_n| \leq N_{\infty}(u)$ et $|\Delta(u)_n| \leq 2N_{\infty}(u)$ donc $T(u), \Delta(u) \in \ell^{\infty}(\mathbb{R})$.

Les applications T et Δ sont bien à valeurs dans $\ell^{\infty}(\mathbb{R})$, de plus elles sont clairement linéaires et

$$N_{\infty}(T(u)) \leqslant N_{\infty}(u) \text{ et } N_{\infty}(\Delta(u)) \leqslant 2N_{\infty}(u)$$

donc elles sont aussi continues.

Exercice 27 : [énoncé]

Pour tout $f \in E$,

$$|\varphi(f)| \le |f(1)| + |f(0)| \le 2 ||f||_{\infty}$$

donc φ est continue.

Exercice 28: [énoncé]

L'application T est bien définie et est clairement linéaire. Pour tout $x \in [0,1]$, $|T(f)(x)| \leq xN_1(f)$ donc

$$N_2(T(f)) = ||T(f)||_{\infty} + ||f||_{\infty} \le 2N_1(f)$$

Ainsi T est continue.

Exercice 29 : [énoncé]

 $T_\varphi:E\to\mathbb{R}$ est bien définie et est clairement linéaire. Par l'inégalité de Cauchy-Schwarz,

$$|T_{\varphi}(f)| \leqslant \|\varphi\|_2 \|f\|_2$$

donc T_{φ} est continue.

Exercice 30 : [énoncé]

Pour tout $f \in E$,

$$|\varphi(f)| = \int_0^1 |tf(t)| \, \mathrm{d}t \le ||f||_1$$

donc φ est continue.

Exercice 31 : [énoncé]

a) L'application $N_1 : \mathbb{R}[X] \to \mathbb{R}^+$ est bien définie car la somme se limite à un nombre fini de termes non nuls.

Si $N_1(P) = 0$ alors

$$\forall k \in \mathbb{Z}, P^{(k)}(0) = 0$$

or

$$P = \sum_{k=0}^{+\infty} \frac{P^{(k)}(0)}{k!} X^k$$

donc P = 0. Soient $P, Q \in \mathbb{R}[X]$.

$$N_1(P+Q) = \sum_{k=0}^{+\infty} \left| P^{(k)}(0) + Q^{(k)}(0) \right| \le \sum_{k=0}^{+\infty} \left| P^{(k)}(0) \right| + \left| Q^{(k)}(0) \right|$$

donc

$$N_1(P+Q) \le \sum_{k=0}^{+\infty} |P^{(k)}(0)| + \sum_{k=0}^{+\infty} |Q^{(k)}(0)| = N_1(P) + N_1(Q)$$

Soient $P \in \mathbb{R}[X]$ et $\lambda \in \mathbb{R}$

$$N_1(\lambda P) = \sum_{k=0}^{+\infty} \left| \lambda P^{(k)}(0) \right| = |\lambda| \sum_{k=0}^{+\infty} \left| P^{(k)}(0) \right| = |\lambda| \, N_1(P)$$

Finalement N_1 est une norme.

L'application $N_2 : \mathbb{R}[X] \to \mathbb{R}^+$ est bien définie car une fonction continue sur un segment y est bornée.

Si $N_2(P) = 0$ alors

$$\forall t \in [-1, 1], P(t) = 0$$

Par infinité de racines P = 0. Soient $P, Q \in \mathbb{R}[X]$.

$$N_2(P+Q) = \sup_{t \in [-1,1]} |P(t) + Q(t)| \leqslant \sup_{t \in [-1,1]} |P(t)| + |Q(t)|$$

donc

$$N_2(P+Q) \le \sup_{t \in [-1,1]} |P(t)| + \sup_{t \in [-1,1]} |Q(t)| = N_2(P) + N_2(Q)$$

Soient $P \in \mathbb{R}[X]$ et $\lambda \in \mathbb{R}$.

$$N_2(\lambda P) = \sup_{t \in [-1,1]} |\lambda P(t)| = \sup_{t \in [-1,1]} |\lambda| |P(t)| = |\lambda| \sup_{t \in [-1,1]} |P(t)| = |\lambda| N_2(P)$$

Finalement N_2 est aussi norme.

b) Notons $D: \mathbb{R}[X] \to \mathbb{R}[X]$ l'opération de dérivation.

$$\forall P \in \mathbb{R}[X], N_1(D(P)) = \sum_{k=0}^{+\infty} \left| D(P)^{(k)}(0) \right| = \sum_{k=0}^{+\infty} \left| P^{(k+1)}(0) \right| \leqslant \sum_{k=0}^{+\infty} \left| P^k(0) \right| = N_1(P)$$

donc l'endomorphisme D est continu pour la norme N_1 .

c) Soit $P_n = X^n$. On a $D(P_n) = nX^{n-1}$ donc $N_2(P_n) = 1$ et $N_2(D(P_n)) = n \to +\infty$.

Par suite l'endomorphisme D n'est pas continu pour N_2 .

d) Par ce qui précède, les normes ne sont pas équivalentes. Néanmoins

$$P = \sum_{k=0}^{+\infty} \frac{P^{(k)}(0)}{k!} X^k \text{ donc}$$

$$|P(t)| \le \sum_{k=0}^{+\infty} \frac{|P^{(k)}(0)|}{k!} \le N_1(P)$$

donc

$$N_2(P) \leqslant N_1(P)$$

C'est là la seule (et la meilleure) comparaison possible.

Exercice 32 : [énoncé]

u est clairement un endomorphisme de E.

$$u(f)(x) = (1 - x)f(0) + xf(1)$$

donc

$$|u(f)(x)| \le (1-x)|f(0)| + x|f(1)| \le (1-x)||f||_{\infty} + x||f||_{\infty} = ||f||_{\infty}$$

Ainsi $||u(f)|| \leq ||f||$. L'endomorphisme u est continu.

Exercice 33: [énoncé]

a) On a $|a_n u_n| \leq ||a||_{\infty} |u_n|$ et $\sum |u_n|$ converge donc par comparaison de séries à termes positifs, $\sum a_n u_n$ est absolument convergente et donc convergente.

$$|\langle a, u \rangle| \le \sum_{n=0}^{+\infty} |a_n u_n| \le \sum_{n=0}^{+\infty} ||a||_{\infty} ||u_n|| = ||a||_{\infty} ||u||_1$$

On en déduit que φ_u est continue.

c) Par l'inégalité $|\langle a, u \rangle| \leq ||a||_{\infty} ||u||_{1}$, on obtient que ψ_a est continue.

Exercice 34 : [énoncé]

- a) Pour $f \in E$, $\Phi(f) \in E$ car $(x,y) \mapsto K(x,y)f(y)$ est continue et on intègre sur un segment. La linéarité de Φ est évidente.
- b) On a

$$\|\Phi(f)\|_{\infty} \leqslant \|K\|_{\infty} \|f\|_{\infty}$$

et

$$\|\Phi(f)\|_1 \leqslant \iint_{[0,1]^2} |K(x,y)f(y)| \, \mathrm{d}x \mathrm{d}y \leqslant \|K\|_\infty \, \|f\|_1$$

donc Φ est continue pour $\|\cdot\|_{\infty}$ et $\|\cdot\|_{1}$.

c) On a

$$(\Phi(f) \mid g) = \iint_{[0,1]^2} K(x,y) f(y) g(x) dx dy = (f \mid \Phi(g))$$

car

$$\forall (x, y) \in [0, 1]^2, K(x, y) = K(y, x)$$

d) Rappelons que l'espace normé $(E, ||||_{\infty})$ est complet.

Avec plus de finesse que dans les inégalités du b), on peut affirmer $\|\Phi(f)\|_{\infty} \leqslant \Omega^{-1} \|f\|_{\infty}$.

Pour $h \in E$ et $|\lambda| < \Omega$, L'application $T : f \mapsto \lambda \Phi(f) + h$ est $\lambda \Omega$ -lipschitzienne avec $|\lambda \Omega| < 1$. Par le théorème du point fixe dans un espace complet, l'application T admet un unique point fixe et donc il existe un unique $f \in E$ vérifiant $h = f - \lambda \Phi(f)$.

e) Soit (f_1, \ldots, f_p) une famille orthonormée d'éléments de $\ker(\Phi - \lambda \mathrm{Id})$. Soit

$$y \in [0,1]$$
 fixé et $\varphi : x \mapsto K(x,y)$. On peut écrire $\varphi = \sum_{j=1}^{p} \mu_j f_j + \psi$ avec $\psi \in \text{Vect}(f_1, \dots, f_p)^{\perp}$ et

$$\mu_j = (f_j \mid \varphi) = \int_0^1 K(x, y) f_j(x) \, \mathrm{d}x = \lambda f_j(y)$$

Par orthogonalité

$$\int_0^1 \varphi^2(x) \, \mathrm{d}x = \sum_{j=1}^p \mu_j^2 + \|\psi\|_2^2 \geqslant \sum_{j=1}^p \mu_j^2$$

En intégrant on obtient

$$\iint_{[0,1]^2} K(x,y)^2 \, \mathrm{d}x \, \mathrm{d}y \geqslant \sum_{j=1}^p \int_0^1 \lambda^2 f_j^2(y) \, \mathrm{d}y = \lambda^2 p$$

car les f_j sont unitaires. Par suite $\ker(\Phi - \lambda \operatorname{Id})$ est de dimension finie et sa dimension vérifie l'inégalité proposée.

Exercice 35 : [énoncé]

Notons P_1, \ldots, P_n les points à exclure.

Considérons une droite \mathcal{D} ne passant par aucun des points P_1, \ldots, P_n . Cette droite est une partie connexe.

Considérons un point A du plan autre que P_1, \ldots, P_n . Il existe une infinité de droites passant par A et coupant la droite \mathcal{D} . Parmi celles-ci, il y en a au moins une qui ne passe par les P_1, \ldots, P_n . On peut dont relier A à un point de la droite \mathcal{D} .

En transitant par cette droite, on peut alors relier par un tracé continu excluant les P_1, \ldots, P_n , tout couple de points (A, B) autres que les P_1, \ldots, P_n .

Exercice 36 : [énoncé]

L'image d'un arc continu par une application continue est un arc continu. Ainsi si X est connexe par arcs et f continue définie sur X alors pour tout $f(x), f(y) \in f(X)$, l'image par f d'un arc continu reliant x et à y est un arc continue reliant f(x) à f(y) et donc f(X) est connexe par arcs.

Exercice 37 : [énoncé]

a) Soient $(a,b) \in A \times B$ et $(a',b') \in A \times B$. Par la connexité de A et B, il existe $\varphi: [0,1] \to A$ et $\psi: [0,1] \to B$ continues vérifiant $\varphi(0) = a, \varphi(1) = a'$ et $\psi(0) = b, \psi(1) = b'$. L'application $\theta: [0,1] \to A \times B$ définie par $\theta(t) = (\varphi(t), \psi(t))$ est continue et vérifie $\theta(0) = (a,b)$ et $\theta(1) = (a',b')$. Ainsi $A \times B$ est connexe par arcs.

b) A+B est l'image de $A\times B$ par l'application continue $(x,y)\mapsto x+y$ de $E\times E$ vers $E,\,A+B$ est donc connexe par arcs.

Exercice 38 : [énoncé]

Si les deux points à relier figurent dans un même connexe par arcs, le problème est résolu. Sinon, on transite par un point commun au deux connexes pour former un arc reliant ces deux points et inclus dans l'union.

Exercice 39 : [énoncé]

Il nous suffit d'étudier A.

Soient $a, a' \in A$. $A \subset A \cup B$ donc il existe $\varphi : [0, 1] \to A \cup B$ continue telle que $\varphi(0) = a$ et $\varphi(1) = a'$.

Si φ ne prend pas de valeurs dans B alors φ reste dans A et résout notre problème. Sinon posons $t_0 = \inf\{t \in [0,1] / \varphi(t) \in B\}$ et $t_1 = \sup\{t \in [0,1] / \varphi(t) \in B\}$. φ étant continue et A, B fermés,

$$\varphi(t_0), \varphi(t_1) \in A \cap B$$

 $A \cap B$ étant connexe par arcs, il existe $\psi : [t_0, t_1] \to A \cap B$ continue tel que $\psi(t_0) = \varphi(t_0)$ et $\psi(t_1) = \varphi(t_1)$. En considérant $\theta : [0, 1] \to \mathbb{R}$ définie par $\theta(t) = \psi(t)$ si $t \in [t_0, t_1]$ et $\theta(t) = \varphi(t)$ sinon, on a $\theta : [0, 1] \to A$ continue et $\theta(0) = a, \ \theta(1) = a'$.

Ainsi A est connexe par arcs.

Exercice 40 : [énoncé]

Soient $a, b \in S$.

Si $a \neq -b$. On peut alors affirmer que pour tout $\lambda \in [0,1]$, $(1-\lambda)a + \lambda b \neq 0$. L'application $\lambda \mapsto \frac{1}{\|(1-\lambda)a + \lambda b\|}((1-\lambda)a + \lambda b)$ est alors un chemin joignant $a \ a \ b$ inscrit dans S.

Si a=-b, on transite par un point $c\neq a,b$ ce qui est possible car $n\geqslant 2$.

Exercice 41 : [énoncé]

a) Non. Si on introduit f forme linéaire non nulle telle que $H = \ker f$, f est continue et $f(E \backslash H) = \mathbb{R}^*$ non connexe par arcs donc $E \backslash H$ ne peut l'être. b) Oui. Introduisons une base de F notée (e_1, \ldots, e_p) que l'on complète en une

base de E de la forme (e_1, \ldots, e_p) que

Sans peine tout élément $x = x_1e_1 + \cdots + x_ne_n$ de $E \setminus F$ peut être lié par un chemin continue dans $E \setminus F$ au vecteur e_n si $x_n > 0$ ou au vecteur $-e_n$ si $x_n < 0$ (prendre $x(t) = (1-t)x_1e_1 + \cdots + (1-t)x_{n-1}e_n + ((1-t)x_n + t)e_n$).

De plus, les vecteurs e_n et $-e_n$ peuvent être reliés par un chemin continue dans $E \setminus F$ en prenant $x(t) = (1-2t)e_n + (t-t^2)e_{n-1}$. Ainsi $E \setminus F$ est connexe par arcs.

Exercice 42: [énoncé]

Notons \mathcal{D}_n la partie de $\mathcal{M}_n(\mathbb{R})$ étudiée et montrons que toute matrice de \mathcal{D}_n peut-être reliée par un chemin continu inscrit dans \mathcal{D}_n à la matrice I_n ce qui suffit pour pouvoir conclure.

Soit $A \in \mathcal{D}_n$. Il existe $P \in GL_n(\mathbb{R})$ telle que $P^{-1}AP = D$ avec D diagonale. Considérons alors $\gamma : [0,1] \to \mathcal{M}_n(\mathbb{R})$ définie par $\gamma(t) = PD(t)P^{-1}$ avec $D(t) = (1-t)D + tI_n$.

L'application γ est continue, à valeurs dans \mathcal{D}_n avec $\gamma(0) = A$ et $\gamma(1) = I_n$: elle résout notre problème.

En fait

$$\gamma(t) = (1-t)A + tI_n$$

est un paramétrage du segment $\left[I_n,A\right]$ et l'ensemble des matrice diagonalisable apparaît comme un étoilé.

Exercice 43: [énoncé]

L'application $\det: \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ est continue et l'image de $\mathrm{GL}_n(\mathbb{R})$ par celle-ci est \mathbb{R}^* qui n'est pas connexe par arcs donc $\mathrm{GL}_n(\mathbb{R})$ ne peut l'être.

Exercice 44: [énoncé]

Pour montrer que $GL_n(\mathbb{C})$ est connexe par arcs, il suffit d'observer que toute matrice $A \in GL_n(\mathbb{C})$ peut être relier continûment dans $GL_n(\mathbb{C})$ à la matrice I_n . Soit $A \in GL_n(\mathbb{C})$. La matrice A est trigonalisable, il existe P inversible telle que $B = P^{-1}AP = (b_{i,j})$ soit triangulaire supérieure à coefficients diagonaux non nuls. Nous allons construire un chemin continue joignant I_n à B dans $GL_n(\mathbb{C})$ puis en déduire un chemin joignant I_n à A lui aussi dans $GL_n(\mathbb{C})$.

Pour i > j, posons $m_{i,j}(t) = 0$.

Pour i < j, posons $m_{i,j}(t) = tb_{i,j}$ de sorte que $m_{i,j}(0) = 0$ et $m_{i,j}(1) = b_{i,j}$. Pour i = j, on peut écrire $b_{i,i} = \rho_i e^{i\theta_i}$ avec $\rho_i \neq 0$. Posons $m_{i,i}(t) = \rho_i^t e^{it\theta_i}$ de sorte que $m_{i,i}(0) = 1$, $m_{i,i}(1) = b_{i,i}$ et

$$\forall t \in [0,1], m_{i,i}(t) \neq 0$$

L'application $t \mapsto M(t) = (m_{i,j}(t))$ est continue, elle joint I_n à B et ses valeurs prises sont des matrices triangulaires supérieures à coefficients diagonaux non nuls, ce sont donc des matrices inversibles.

En considérant $t \mapsto PM(t)P^{-1}$, on dispose d'un chemin continu joignant I_n à A et restant inscrit dans $\mathrm{GL}_n(\mathbb{C})$.

On peut donc conclure que $GL_n(\mathbb{C})$ est connexe par arcs.

Exercice 45: [énoncé]

On sait

$$SO_2(\mathbb{R}) = \left\{ \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} / \theta \in \mathbb{R} \right\}$$

Par ce paramétrage, on peut affirmer que $SO_2(\mathbb{R})$ est connexes par arcs, car image continue de l'intervalle \mathbb{R} par l'application

$$\theta \in \mathbb{R} \mapsto \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$

Exercice 46: [énoncé]

X est une partie connexe par arcs (car convexe) et φ est continue donc $\varphi(X)$ est une partie connexe par arcs de \mathbb{R} , c'est donc un intervalle.

De plus $0 \notin \varphi(X)$ donc $\varphi(X) \subset \mathbb{R}^{+\star}$ ou $\varphi(X) \subset \mathbb{R}^{-\star}$ et on peut conclure.

Exercice 47: [énoncé]

- a) A est une partie convexe donc connexe par arcs.
- b) L'application δ est continue donc $\delta(A)$ est connexe par arcs c'est donc un intervalle de \mathbb{R} . Puisque f' prend des valeurs strictement positives et strictement négative, la fonction f n'est pas monotone et par conséquent des valeurs positives et négatives appartiennent à l'intervalle $\delta(A)$. Par conséquent $0 \in \delta(A)$.
- c) Puisque $0 \in \delta(A)$, il existe $a < b \in I$ tels que f(a) = f(b). On applique le théorème de Rolle sur [a, b] avant de conclure.

Exercice 48: [énoncé]

- a) La partie U est convexe donc connexe par arcs.
- b) Par le théorème des accroissements finis, un taux de variation est un nombre dérivé et donc

$$\tau(U) \subset f'(I)$$

De plus, tout nombre dérivé est limite d'un taux de variation, donc

$$f'(I) \subset \overline{\tau(U)}$$

c) Puisque l'application τ est continue sur U connexe par arcs, son image $\tau(U)$ est un connexe par arcs de \mathbb{R} , c'est donc un intervalle. L'encadrement précédent assure alors aussi que f'(I) est aussi un intervalle de \mathbb{R} .

Exercice 49 : [énoncé]

On vérifie aisément

$$\forall A \in \mathcal{N}, \forall \lambda \in \mathbb{R}, \lambda.A \in \mathcal{N}$$

On a donc immédiatement

$$\forall A \in \mathcal{N}, [O_n, A] \subset \mathcal{N}$$

L'ensemble \mathcal{N} est donc étoilé en O_n (au surplus, c'est un ensemble connexe par arcs).