Project 3

Self Driving Cars

Vision Plus

Meet The Team

We are proud to introduce the dedicated and talented team behind our successful projects.

Teguh Imanto

Christian B Kuswandi

Robert Rasidy

Background & Problem Statement

Background

- Kemacetan dan kecelakaan lalu lintas adalah permasalahan utama di kota-kota besar dunia.
- Kelalaian pengemudi menjadi faktor utama penyebab kecelakaan.
- Menurut WHO, sistem lalu lintas merupakan salah satu sistem paling kompleks dan berbahaya.
- Self-driving car berbasis Al diharapkan mampu mengurangi dampak dari kelalaian manusia dengan memahami lingkungan secara otomatis.

Problem Statement

- Tingginya angka kecelakaan dan kemacetan lalu lintas di perkotaan.
- Kebutuhan akan sistem yang mampu mengenali objek dan memahami lingkungan jalan secara real-time.
- Tantangan dalam membangun model segmentasi objek yang akurat dan efisien untuk kendaraan otonom.

Objectives & Scope

Objective

- Mengimplementasikan algoritma segmentasi objek populer (FCN8s & U-Net).
- Melakukan tuning hyperparameter untuk mendapatkan performa terbaik.
- Mengevaluasi hasil eksperimen untuk menentukan algoritma terbaik.

Scope

- Fokus pada segmentasi objek dari citra jalanan perkotaan.
- Menggunakan data gambar dari perspektif mobil.
- Batasan: hanya menggunakan 3 algoritma (FCN8s, U-Net, PSPNet) serta satu jenis dataset (Cityscapes).
- Evaluasi terbatas pada performa segmentasi berdasarkan metrik umum.

Data Set

Sumber DataSet berasal dari : Cityscapes

https://www.cityscapes-dataset.com

Subset DataSet

https://drive.google.com/drive/folders/1z3JyQC8EK0 D9PEfWY5hMFmnyDhsxs4R5

Sample Images

Sample Data Set

No.	Model	Total Gambar	Train	Validation	Test
1	U-Net & FCN8s	468	294	73	101
2	PSPNet	1	-	-	-

Model Development

No	Model	Pretraine d	Epoch	Batch	Learning Rate		Test Dice	Test Loss	mloU	Train Time (s)	GPU
1	U-Net	False	10	8	0.001	Cross Entropy	0.9959	0.5492	0.3720	476.68	T4
2	FCN8s	False	10	8	0.001	Cross Entropy	0.9957	0.7012	0.3571	109.50	T4
3	PSPNet	ImageNet	10	16	0.0001	Cross Entropy	1	0.0016	1	125.56	

Data Augmentation

No	Model	Horizontal Flip	Random Brightness Contrast	Normalize
1	UNet & FCN8s	0.5	0.2	mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)
2	PSPNet	0	0	mean=(0.485,0.456,0.406) std = (0.229,0.224,0.225)

Model Evaluation & Comparison

Loss Comparison

Model	Training Loss	Test Loss	Test Dice Coefficient
UNet	0.5410	0.5492	0.9959
FCN8s	0.5086	0.7012	0.9957
PSPNet			

Grafik Training UNet

Grafik Result FCN8s

Grafik Result PSPNet

Confusion Matrix

Confusion Matrix

Image Visualization

Original Image

Overlay of Prediction

Image Visualization

Conclusion

- Telah dilakukan eksperimen segmentasi objek untuk self-driving car menggunakan dua model: U-Net dan FCN8s.
- Kedua model menunjukkan performa yang sangat tinggi dalam metrik Dice Coefficient (U-Net: 0.9959, FCN8s: 0.9957).
- U-Net menghasilkan performa lebih stabil dengan test loss yang lebih rendah (0.5492) dibanding FCN8s (0.7012), meskipun waktu latihnya lebih lama.
- Dari hasil evaluasi, U-Net dipilih sebagai model terbaik untuk tugas segmentasi objek pada dataset Cityscapes.

Future Development

- Penambahan jumlah data latih dan validasi untuk meningkatkan generalisasi model pada berbagai kondisi lingkungan.
- Eksplorasi model lain seperti DeepLabv3+ atau Mask R-CNN untuk segmentasi yang lebih kompleks.
- Optimasi model untuk inference real-time agar dapat diimplementasikan langsung pada kendaraan self-driving.
- Pengujian lanjutan dengan dataset lain seperti KITTI atau BDD100K untuk membandingkan robustitas antar domain.
- Integrasi model segmentasi dengan sistem kontrol kendaraan otonom untuk membentuk pipeline end-to-end.

Contact Us

Teguh Imanto

Christian B Kuswandi

Robert Rasidy

in Robert Rasidy

