

Benchmarking cases for WP3

HOCLOOP project - Task 3.2

Pietro Ungar Researcher SERG Group

1 Input Parameters

The benchmarking in $Task\ 3.2$ has the goal of comparing the results of the simulation of the different partners for the CO₂-based well. The geometry and the reservoir properties used for the benchmarking of the water-based case in $Task\ 2.2$ (Case-F, summarized in Table 1) will be used here has well.

Table 1: Main Parameters for Case F

Parameter	Value	Units	
WELL GEOMETRY			
Vertical Depth	3000	m	
Horizontal Length	3500	m	
DIAMETERS			
Tubing Internal $(d_{tub_{in}})$	0.1000	m	
Tubing External $(d_{tub_{out}})$	0.1300	m	
Casing Internal $(d_{cas_{in}})$	0.1617	m	
Casing External $(d_{cas_{out}})$	0.1778	m	
GEOLOGICAL DATA			
Surface Temperature	11	°C	
Geothermal Gradient	0.0325	°C/m	
Rock Thermal Conductivity (k_{rock})	2.4230	W/(m K)	
Rock Heat Capacity (c_{rock})	0.90267	kJ/(kg K)	
Rock Density (ho_{rock})	2600	kg/m^3	

As for the fluid inlet condition the inlet temperature has been considered to be 10°C while the inlet pressure has set to 0.1% more than the saturation pressure (\approx 45 bar) so that the fluid is a sightly super-cooled liquid (for numerical stability).

The inlet condition of the fluid are summarized in the Table 2:

Table 2: Fluid Inlet Condition

Parameter	Value	Units
Injection Temperature (T_{in})	10	°C
Injection Pressure (p_{in})	$1.001 \ p_{sat}(T_{in})$	bar
Flow rate (\dot{m})	10	kg/s

Finally, regarding the internal heat transfer, two cases have been provided:

Case 1: Internal heat transfer neglected

Case 2: Internal heat transfer evaluated with $k_{ins} = 0.1 \text{ W/(m*K)}$

Figure 1: Pressure and Temperature increase predicted with the UNIFI model. Plain line \rightarrow Case 1, Dashed line \rightarrow Case 2

2 First Results from UNIFI

The results from Case-1 and Case-2 has been updated on the HOCLOOP SharePoint (Work Packages / WP3 / Task3.2 / 0-Benchmarking / Results / UNIFI-results).

Pressure and Temperature increase predicted by the UNIFI code can be seen in Figure 1