MODUL PRAKTIKUM ALGORITMA PEMROGRAMAN 1

Institut Teknologi Sumatera 2018

PETUNJUK PRAKTIKUM

Tahap Pelaksanaan Praktikum

Praktikum dilaksanakan dalam 2 tahap yang dilaksanakan secara berturut-turut, yaitu:

- 1. Latihan (opsional)
- 2. Tugas Praktikum

Latihan

Tahap ini bersifat opsional! Bisa dilakukan secara formal di lab, bisa juga dilakukan di luar lab. Dilakukan sebelum Tugas Praktikum yang sebenarnya dikerjakan.

Tujuan	Mahasiswa berlatih mengetikkan contoh-contoh program yang sesuai		
	dengan topik yang diberikan dan mengamati hasil eksekusi sekaligus		
	untuk membiasakan dengan lingkungan praktikum		
Durasi	±60 menit		
Sifat	individual (boleh berdiskusi dengan teman dan asisten)		
Pelaksanaan	Mahasiswa mengerjakan latihan-latihan soal yang terdapat pada bab		
	LATIHAN:		
	1. Baca petunjuk pada soal-soal latihan.		
	2. Salin contoh-contoh program yang ada.		
	3. Compile dan buatlah executable file, lalu eksekusi/jalankan program		
	(jika kompilasi berhasil).		
	4. Amati hasil eksekusi dan bandingkan dengan petunjuknya.		
	5. Bahan latihan dapat dipilih sesuai dengan waktu yang tersedia.		

Tugas Praktikum

WAJIB dilakukan dilakukan di lab!

Tujuan	Mahasiswa mengerjakan tugas-tugas praktikum secara mandiri sesuai	
	dengan topik yang diberikan dan mengumpulkan hasilnya untuk	
	penilaian	
Durasi	±100 menit	
Sifat	individual (tidak diperkenankan bekerja sama dengan pihak mana pun),	
	tetapi masih boleh membuka material kuliah miliknya sendiri	
Pelaksanaan	Mahasiswa mengerjakan soal-soal praktikum untuk modul terkait yang	
	terdapat pada bab TUGAS PRAKTIKUM sesuai dengan petunjuk yang	
	ada dalam durasi yang ditetapkan.	

Petunjuk Penamaan dan Penulisan File Program (Untuk Peserta)

- 1. Pada setiap soal baik latihan maupun tugas praktikum, perhatikan petunjuk penamaan file.
- 2. Pada petunjuk penamaan file, gantilah <NIM> dengan NIM Anda masing-masing dan XX dengan nomor soal dalam 2 digit.

Contoh:

Jika file harus disimpan dengan format: LP1_Hello1_<NIM>.cpp dan NIM Anda adalah 19999888, maka nama file Anda adalah: LP1_Hello1_1999888.cpp

Jika file harus disimpan dengan format: P1_<NIM>_XX.cpp dan NIM Anda adalah 19999888 serta nomor soal yang sedang dikerjakan adalah 2, maka nama file Anda adalah: P1 19999888 02.cpp

3. Untuk setiap file source code program berikan identitas, minimum:

```
// NIM/Nama :
// Nama file :
// Tanggal :
// Deskripsi :
```

4. Simpan dan upload file source code hasil latihan dan praktikum pada direktori yang ditentukan asisten.

Petunjuk Kompilasi Menggunakan GNU C++

Untuk petunjuk membuka lingkungan *compiler*, silakan berkonsultasi dengan asisten. Contoh nama file source : **hello.cpp**

Compile program dan membentuk executable file, misalnya hello.exe:

```
>> g++ -c hello.cpp
>> g++ -c hello.exe hello.o
```

Compile program sekaligus membentuk *executable file*, misalnya **hello.exe**:

```
>> g++ -o hello.exe hello.cpp
```

Pemanggilan program, misalnya hello.exe:

```
>> hello
```

Petunjuk untuk Pengelola Praktikum

- 1. Untuk penyerahan materi praktikum ke mahasiswa, bagian LATIHAN dan bagian TUGAS PRAKTIKUM harus diletakkan dalam file terpisah.
- 2. LATIHAN bisa diletakkan dan dibuka kapan saja sepanjang semester sementara TUGAS PRAKTIKUM hanya dibuka pada saat pelaksanaan praktikum saja.
- 3. Satu sesi praktikum (100 menit) harap diberikan hanya satu versi TUGAS PRAKTIKUM.
- 4. Form penilaian praktikum untuk satu mahasiswa dapat dilihat di akhir dokumen ini.

Modul 1 : Percabangan 1 + Flowchart

A. Percabangan

Percabangan adalah suatu proses pemilihan aksi di antara beberapa alternatif yang diberikan.

Terdiri atas:

Kondisi: ekspresi yang menghasilkan true dan false

Aksi: statement yang dilaksanakan jika kondisi yang berpasangan terpenuhi

```
1. Struktur if (1 kondisi):
   if (kondisi){
       aksi;
                              // aksi dilakukan jika kondisi terpenuhi
2. Struktur if (2 kondisi):
   if (kondisi){
       aksi_1;
                            // aksi_1 dilakukan jika kondisi terpenuhi
   } else {
                              // aksi_2 dilakukan jika kondisi tidak terpenuhi
       aksi_2;
3. Struktur if (3 atau lebih kondisi):
   if (kondisi_1){
       aksi_1;
                              // aksi_1 dilakukan jika kondisi_1 terpenuhi
   } else if(kondisi_2){
       aksi 2;
                              // aksi_2 dilakukan jika kondisi_2 terpenuhi
   } else if(kondisi_3){
       aksi_3;
                              // aksi_3 dilakukan jika kondisi_3 terpenuhi
4. Struktur switch:
   switch(variabel){
                              // variabel bertipe ordinal
       case value_1:
                              // value_1, value_2, dst bersifat konstan
           statement_1;
               break;
                              // break berguna untuk keluar dari switch
       case value_2:
           statement_2;
               break;
       default:
           statement_3;
   }
```

B. Flowchart

Flowchart adalah adalah suatu bagan dengan simbol-simbol tertentu yang menggambarkan urutan proses secara mendetail dan hubungan antara suatu proses (instruksi) dengan proses lainnya dalam suatu program.

	Flow Direction symbol Yaitu simbol yang digunakan untuk menghubungkan antara simbol yang satu dengan simbol yang lain. Simbol ini disebut juga connecting line.		Simbol Manual Input Simbol untuk pemasukan data secara manual on-line keyboard
	Terminator Symbol Yaitu simbol untuk permulaan (start) atau akhir (stop) dari suatu kegiatan		Simbol Preparation Simbol untuk mempersiapkan penyimpanan yang akan digunakan sebagai tempat pengolahan di dalam storage.
	Connector Symbol Yaitu simbol untuk keluar - masuk atau penyambungan proses dalam lembar / halaman yang sama.		Simbol Predefine Proses Simbol untuk pelaksanaan suatu bagian (sub-program)/prosedure
	Connector Symbol Yaitu simbol untuk keluar - masuk atau penyambungan proses pada lembar / halaman yang berbeda.		Simbol Display Simbol yang menyatakan peralatan output yang digunakan yaitu layar, plotter, printer dan sebagainya.
	Processing Symbol Simbol yang menunjukkan pengolahan yang dilakukan oleh komputer		Simbol disk and On-line Storage Simbol yang menyatakan input yang berasal dari disk atau disimpan ke disk.
	Simbol Manual Operation Simbol yang menunjukkan pengolahan yang tidak dilakukan oleh computer		Simbol magnetik tape Unit Simbol yang menyatakan input berasal dari pita magnetik atau output disimpan ke pita magnetik.
\bigcirc	Simbol Decision Simbol pemilihan proses berdasarkan kondisi yang ada.		Simbol Punch Card Simbol yang menyatakan bahwa input berasal dari kartu atau output ditulis ke kartu
	Simbol Input-Output Simbol yang menyatakan proses input dan output tanpa tergantung dengan jenis peralatannya		Simbol Dokumen Simbol yang menyatakan input berasal dari dokumen dalam bentuk kertas atau output dicetak ke kertas.

LATIHAN

Latihan 1. Input dan Output

Nama file: LP1_<NIM>_01.cpp

Deskripsi:

Buatlah program yang digunakan untuk menerima masukan sebuah **nama** orang (bertipe string) dan **umur** dari orang tersebut (bertipe integer) dan menampilkan ke layar:

Halo, nama!

Umurmu adalah umur tahun.

Program:

```
#include <iostream>
using namespace std;

int main (){
    // Kamus
    string nama;
    int umur;

    // Algoritma
    cout << "Masukkan Nama :";
    cin >> nama;
    cout << "Masukkan Umur :";
    cin >> umur;
    cout << "Halo, " << nama << "!" << endl;
    cout << "Umurmu adalah " << umur << " tahun." << endl;
    return 0;
}</pre>
```

Input		put	Output
	Nama	Umur	
Eko		17	Halo, Eko!
			Umurmu adalah 17 tahun
Citra		20	Halo, Citra!
			Umurmu adalah 20 tahun

Latihan 2. Menentukan Kelulusan Mata Kuliah (Percabangan IF-ELSE)

Nama file: LP1_<NIM>_02.cpp

Deskripsi:

Buatlah program untuk menentukan kelulusan dari input nilai UTS dan UAS yang dimasukkan mahasiswa. Presentasi nilai UAS 60% dan nilai UTS 40%. Jika nilai akhir >=60, maka mahasiswa dinyatakan lulus mata kuliah Algoritma Pemrograman. Jika nilai akhir < 60, maka mahasiswa dinyatakan tidak lulus mata kuliah Algoritma Pemrograman.

Program:

```
#include <iostream>
using namespace std;
int main(){
    // Kamus
    string nama;
    float UTS, UAS, total;
    // Algoritma
    cout << "Masukkan nama anda\t : "; cin >> nama;
cout << "Masukkan nilai UTS\t : "; cin >> UTS;
    cout << "Masukkan nilai UAS\t : "; cin >> UAS;
    total = (0.6 * UAS) + (0.4 * UTS);
    if (total >= 60){
         cout << "Selamat " << nama << ", anda lulus mata kuliah Algoritma
        Pemrograman dengan nilai akhir " << total << endl;
    } else {
        cout << "Maaf " << nama << ", anda tidak lulus mata kuliah</pre>
        Algoritma Pemrograman. Nilai akhir anda " << total << "." << endl;
    return 0;
}
```

Input			Output
Nama	UTS	UAS	Output
Amir	65	55	Maaf Amir, anda tidak lulus mata kuliah Algoritma Pemrograman. Nilai akhir anda 59.
Lisa	55	70	Selamat Lisa, anda lulus mata kuliah Algoritma Pemrograman dengan nilai akhir 64

Flowchart:

Latihan 3. Menentukan Wujud Air (Percabangan IF-ELSE-IF)

Nama file: LP1_<NIM>_03.cpp

Deskripsi:

Buatlah program untuk menentukan wujud air (uap, cair, es) jika temperaturnya berbeda (dalam Celcius). Jika temperatur > 100 maka wujud air adalah gas, jika temperatur < 0 wujud air adalah es/beku, jika temperaturnya diantara kedua tersebut maka wujud airnya adalah cair.

Program:

```
#include <iostream>
using namespace std;
int main(){
    // Kamus
    int suhu;
    // Algoritma
    cout << "Masukkan temperatur dalam satuan Celcius : ";
    cin >> suhu;
    if (suhu >= 100){
        cout << "Wujud air adalah gas";
    } else if (suhu <= 0){</pre>
        cout << "Wujud air adalah es";</pre>
    } else {
        cout << "Wujud air adalah cair";
    return 0;
}
```

Input	Output
124	Wujud air adalah gas
-18	Wujud air adalah es
88	Wujud air adalah cair

Flowchart:

Latihan 4. Memilih Warna (Percabangan SWITCH)

Nama file: LP1_<NIM>_04.cpp

Deskripsi:

Buatlah program untuk memilih warna dengan memasukkan input antara 1-5.

Program:

```
#include <iostream>
using namespace std;
int main(){
    // Kamus
    int pilih;
    // Algoritma
    cout << "Warna :\n";</pre>
    cout << "1. Merah\n";</pre>
    cout << "2. Biru\n";</pre>
    cout << "3. Hijau\n";</pre>
    cout << "4. Kuning\n";</pre>
    cout << "5. Putih\n";</pre>
    cout << "Pilih wana favoritmu : ";</pre>
    cin >> pilih;
    switch (pilih){
        case 1 : cout << "Merah melambangkan keberanian"; break;</pre>
        case 2 : cout << "Biru melambangkan kelembutan"; break;</pre>
        case 3 : cout << "Hijau melambangkan keseimbangan"; break;</pre>
        case 4 : cout << "Kuning melambangkan Kebijaksanaan"; break;</pre>
        case 5 : cout << "Putih melambangkan kesucian"; break;</pre>
        default : cout << "Nomor salah. Silahkan pilih dari pilihan di atas";</pre>
    return 0;
}
```

Input	Output		
1	Merah melambangkan keberanian		
7	Nomor salah. Silahkan pilih dari pilihan di atas		

Flowchart:

