

Aula 1 - Geometria Molecular

A geometria molecular estuda a forma tridimensional das moléculas no espaço. A determinação de tal geometria é baseada na teoria VSEPR, ou seja, Teoria da Repulsão dos Elétrons da Camada de Valência.

Teoria VSEPR

- Pares eletrônicos da camada de valência de um átomo central, estejam ou não fazendo ligação química, comportamse como nuvens eletrônicas que se repelem mutuamente, ficando com a maior distância angular possível uns dos outros.
- Uma nuvem eletrônica pode ser constituída por uma ligação simples, dupla, tripla ou mesmo por um par de elétrons não-ligantes, ou seja, aqueles que não estão comprometidos numa ligação química.
- Para determinar a geometria de uma molécula devemos contar a quantidade de nuvens eletrônicas ao redor do átomo central e também a quantidade de ligantes neste mesmo átomo.
- Vale lembrar que qualquer molécula biatômica (ex.: H₂, Cl₂, N₂, ...) são todas lineares.

Número de nuvens ao redor do átomo central	Fórmula eletrônica	Orientação das nuvens (pares eletrônicos)	Disposição dos ligantes	Geometria Molecular
2	o∰c∰o H⊙c∰N	Linear A —	O = C = O $H - C = N$	Linear
3	O S O O O O O O O O O O O O O O O O O O	Trigonal plana (Triangular)		Angular Trigonal plana
4	HOOOH 2 ligantes HOOHH 3 ligantes HOOHH 4 ligantes	Tetraédrica	+ O H H H H C H	Angular Piramidal Tetraédrica

Aula 2 - Hibridização

- Por definição a Hibridização é a mistura dos orbitais atômicos e sua consequente mudança/alteração para formação de ligações covalentes. Vale lembrar que um orbital atômico é uma região onde se tem a máxima probabilidade de se encontrar um elétron.
- O processo de hibridização ocorre sempre por uma promoção inicial de um elétron para um nível mais alto de energia seguido de uma mistura (hibridização).
- Quanto misturamos um certo número de orbitais atômicos, conseguimos o mesmo número de orbitais híbridos. Cada orbital híbrido é equivalente entre si, mas apontam em direções opostas no espaço.

Tipos de Hibridização

- Há três tipos básicos de hibridização (existem outros): Hibridização sp³, sp² e sp
- Existe uma regra prática para reconhecermos o tipo de hibridização de um átomo. Para isso devemos contar o número de nuvens eletrônicas ao redor do átomo de interesse.
 - Hibridização ${\rm sp^3-4}$ nuvens ao redor do átomo Hibridização ${\rm sp^2-3}$ nuvens ao redor do átomo

 - Hibridização sp 2 nuvens ao redor do átomo

Aula 4 - Polaridade de Ligações

- As ligações químicas podem ser descritas como Polares ou Apolares.
- Toda ligação iônica é polar. De fato a ligação iônica apresenta a máxima polaridade dentre as ligações, uma vez que é formada pela interação entre íons (cátions e ânions).
- Para as ligações covalentes compartilhamento de pares eletrônicos entre átomos devemos verificar se existe ou não diferença de eletronegatividade entre os átomos da molécula.
- Vale lembrar que a eletronegatividade é uma propriedade periódica que indica uma capacidade em atrair um par eletrônico de uma ligação covalente para si.
- Ordem crescente de eletronegatividade: F > O > N > Cl > Br > I > S > C > P > H > metais
- Ligações Covalentes Apolares: átomos ligados de igual eletronegatividade. Exemplos:

H-HCI-CI Br-Br

Ligações Covalentes Polares: átomos ligados de eletronegatividade diferente. Exemplos:

H-CI H-0-H H-Br

Aula 5 - Polaridade de Moléculas

- As moléculas são divididas em Polares e Apolares.
- É interessante notar que todo hidrocarboneto é APOLAR.
- A determinação correta da polaridade das moléculas envolve o cálculo do momento resultante de dipolo. O momento de dipolo é um vetor que aponta sempre na direção do átomo mais eletronegativo da ligação covalente.
- Ordem crescente de eletronegatividade: F > O > N > CI > Br > I > S > C > P > H > metais
- Fazendo a soma vetorial dos momentos de dipolos, temos dois resultados possíveis com as seguintes interpretações química da polaridade da molécula:

 $\stackrel{\rightarrow}{\mu} = 0 \implies \text{Molécula APOLAR}$

 $\stackrel{'}{\mu_{r}} \neq 0 \quad \Rightarrow \quad \text{Molécula POLAR}$

Fórmula	Geometria	→ μ _R	Polaridade
НСℓ	+δ -δ μ	$\overrightarrow{\mu_R} \neq 0$	Polar
CO ₂	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overrightarrow{\mu_R} = 0$	Apolar
H₂O	-δ -δ μ +δ +δ	µ _R ≠ 0	Polar

Regra prática para determinação da polaridade de moléculas

 Pela regra prática podemos determinar rapidamente a polaridade de moléculas. Basta para isso contar o número de nuvens eletrônicas ao redor do átomo central e o número de ligantes IGUAIS conectados a estes átomos.

> Moléculas Apolares n° de nuvens = n° de ligantes IGUAIS

 $\begin{tabular}{ll} Moléculas Polares \\ n^\circ \ de \ nuvens \ \neq \ n^\circ \ de \ ligantes \ IGUAIS \end{tabular}$

Aula 7 - Forças Intermoleculares

 As forças intermoleculares, também chamadas de interações ou ligações intermoleculares, são forças que mantém moléculas unidas no estado sólido e no estado líquido. No estado gasoso, devido à distância entre as partículas e também a sua velocidade, não falamos destas forças.

- Para determinarmos corretamente o tipo de interação entre moléculas, devemos conhecer antes a suas polaridades.
- Três tipos de forças intermoleculares você deve reconhecer:
 - Ocorre entre moléculas apolares:
 - 1. Dipolo Induzido Dipolo Induzido
 - Ocorrem entre moléculas polares:
 - 2. Dipolo Permanente Dipolo Permanente
 - 3. Pontes de Hidrogênio

<u>Dipolo Induzido – Dipolo Induzido</u>

Também chamada de Dipolo Instantâneo ou Forças de London, ocorre entre moléculas apolares.

Disponível em: http://www.10emtudo.com.br/_img/upload/aula/_1888_36.gif

Exemplos: O gelo-seco (CO₂), o iodo (I₂), as pedras de naftalina e as de cânfora. Outros exemplos: H_2 , N_2 , O_2 , F_2 , $C\ell_2$, Br_2 , P_4 , S_8 , CH_4 e todos os hidrocarbonetos.

<u>Dipolo Permanente – Dipolo Permanente</u>

Ocorre entre **moléculas**: o polo positivo de uma molécula atrai o polo negativo de outra molécula e assim sucessivamente, por toda a extensão do líquido ou do sólido.

Exemplo: Moléculas de cloreto de hidrogênio no estado líquido.

Ligação ou Pontes de Hidrogênio

É um caso particular das forças de dipolo permanente (dipolo-dipolo), no qual a intensidade é tão grande que recebe um nome particular. Ocorre em moléculas que apresentam átomos de hidrogênio (elemento com baixa eletronegatividade) com elementos muito eletronegativos, no caso, flúor, oxigênio ou nitrogênio.

Exemplos:

HF

<u>H₂O</u>

água no estado líquido

água no estado sólido

<u>NH</u>3

Disponível em: http://3.bp.blogspot.com/-X3lsm5zXkoE/UGZ11eheALI/AAAAAAAAAAAAJk/qwzTk4eGC-s/s1600/blog.bmp