Econometrics 710 Final Exam, Spring 2016

Be sure and write complete answers. Be specific about estimators and covariance matrix estimators.

1. Consider the model

$$y_i = x_i'\beta + e_i$$

$$E(e_i|x_i) = 0$$

with y_i scalar and x_i a k vector. You have a random sample $(y_i, x_i : i = 1, ..., n)$. You are interested in estimating the regression function $m(x) = E(y_i|x_i = x)$ at a fixed vector x and constructing a 95% confidence interval.

- (a) Write the standard estimator of m(x).
- (b) Write out the standard asymptotic confidence interval for m(x).
- (c) Describe the percentile bootstrap confidence interval for m(x).
- (d) Describe the percentile-t bootstrap confidence interval for m(x).

2. Consider the model

$$y_{it} = x'_{it}\beta + u_i + e_{it}$$
$$E(z_{it}e_{it}) = 0$$

for i = 1, ..., n and t = 1, ..., T. The individual effect u_i is treated as fixed. Assume x_{it} and z_{it} are $k \times 1$ vectors.

Write out an appropriate estimator for β . You do not need to examine its distributional (e.g. asymptotic) properties.

3. Take the model

$$y_{i} = \pi_{i}\beta + e_{i}$$

$$\pi_{i} = E(x_{i}|z_{i}) = \gamma'z_{i}$$

$$E(e_{i}|z_{i}) = 0$$

where y_i , x_i and π_i are scalars, and z_i is a k vector. β is scalar and γ is $k \times 1$. The sample is $(y_i, x_i, z_i : i = 1, ..., n)$ with π_i unobserved.

Consider the estimator $\widehat{\beta}$ for β by OLS of y_i on $\widehat{\pi}_i = z_i'\widehat{\gamma}$ where $\widehat{\gamma}$ is the OLS coefficient from the regression of x_i on z_i

- (a) Show that $\widehat{\beta}$ is consistent for β
- (b) Find the asymptotic distribution $\sqrt{n}\left(\widehat{\beta}-\beta\right)$ as $n\to\infty$ assuming that $\beta=0$.
- (c) Why is the assumption $\beta = 0$ an important simplifying condition in part (b)?
- (d) Using the result in (c), construct an appropriate asymptotic test for the hypothesis $H_0: \beta = 0$

- 4. You are at a seminar where a colleague presents a simulation study of a test of a hypothesis H_0 with nominal size 5%. Based on B = 100 simulation replications under H_0 the estimated size is 7%. Your colleague says: "Unfortunately the test over-rejects."
 - (a) Do you agree or disagree with your colleague? Explain. Hint: Use an asymptotic (large B) approximation.
 - (b) Suppose the number of simulation replications were B = 1000 yet the estimated size is still 7%. Does your answer change?
- 5. Consider the model

$$y_i = x_i'\beta + e_i$$

$$E(z_i e_i) = 0$$

$$R'\beta = 0$$
(1)

with y_i scalar, x_i a k vector and z_i an ℓ vector with $\ell > k$. The matrix R is $k \times q$ with $1 \le q < k$. You have a random sample $(y_i, x_i, z_i : i = 1, ..., n)$.

For simplicity, assume the "efficient" weight matrix $W = (E(z_i z_i' e_i^2))^{-1}$ is known.

- (a) Write out the GMM estimator $\hat{\beta}$ of β given the moment conditions (1) but ignoring constraint (2).
- (b) Write out the GMM estimator $\widetilde{\beta}$ of β given the moment conditions (1) and constraint (2).
- (c) Find the asymptotic distribution of $\sqrt{n}\left(\widetilde{\beta}-\beta\right)$ as $n\to\infty$ under the assumption that (1) and (2) are correct.