සියලු ම හිමිකම් ඇවිරිණි / (மුගුට පුනිට්ටුල්කාංගුකා යනු / All Rights Reserved )

## (නව නිර්දේශය/பුනිய பாடத்திட்டம்/New Syllabus)

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

රසායන විදනව இரசாயனவியல் Chemistry



පැය දෙකයි இரண்டு மணித்தியாலம் Two hours

උපදෙස්:

- \* ආවර්තිතා වගුවක් සපයා ඇත.
- \* මෙම පුශ්න පතුය පිටු 09 කින් යුක්ත වේ.
- \* සියලුම පුශ්නවලට පිළිතුරු සපයන්න.
- ※ ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- \* පිළිතුරු පතුයේ නියමිත ස්ථානයේ ඔබේ විභාග අංකය ලියන්න.
- \* පිළිතුරු පතුයේ පිටුපස දී ඇති අනෙක් උපදෙස් සැලකිලිමත්ව කියවන්න.
- \* 1 සිට 50 තෙක් එක් එක් පුශ්නයට (1),(2),(3),(4),(5) යන පිළිතුරුවලින් **නිවැරදි හෝ ඉතාමත් ගැළපෙන** හෝ පිළිතුර තෝරා ගෙන, එය **පිළිතුරු පතුයේ පිටුපස දැක්වෙන උපදෙස් පරිදි කතිරයක්** (X) **යොද දක්වන්න**.

සාර්වතු වායු නියතය  $R=8.314\,\mathrm{J~K^{-1}~mol^{-1}}$  ඇවගාඩ්රෝ නියතය  $N_A=6.022\times10^{23}\,\mathrm{mol^{-1}}$ 

ප්ලෑන්ක්ගේ නියතය  $h = 6.626 \times 10^{-34} \text{ J s}$ ආලෝකයේ පුවේගය  $c = 3 \times 10^8 \text{ m s}^{-1}$ 

- පරමාණුක වපුහය හා සම්බන්ධ පහත දැක්වෙන සොයා ගැනීම් සලකන්න.
  - කැතෝඩ කිරණ නළය තුළ ධන කිරණ
  - II. සමහර නාාෂ්ටි වර්ග මගින් ඇති කරන විකිරණශීලීතාවය

ඉහත I සහ II හි සඳහන් සොයා ගැනීම් කළ විදාහඥයන් දෙදෙනා පිළිවෙළින්,

- (1) ජේ. ජේ. තොම්සන් සහ හෙන්රි බෙකරල්
- (2) එයුජන් ගෝල්ඩ්ස්ටයින් සහ රොබට් මිලිකන්
- (3) හෙත්රී බෙකරල් සහ එයුජන් ගෝල්ඩ්ස්ටයින්
- (4) ජේ. ජේ. තොම්සන් සහ අර්නස්ට් රුර්ෆ'ඩ්
- (5) එයුජන් ගෝල්ඩ්ස්ටයින් සහ හෙන්රි බෙකරල්
- **2.** මැංගනීස් පරමාණුවේ  $({
  m Mn},{
  m Z}=25)$  l=0 සහ  $m_{
  m r}=-1$  ක්වොන්ටම් අංක ඇති ඉලෙක්ටෝන සංඛාා පිළිවෙළින්,
  - (1) 6 සහ 4 වේ.

- (2) 8 සහ 12 වේ. (3) 8 සහ 5 වේ. (4) 8 සහ 6 වේ. (5) 10 සහ 5 වේ.
- 3.  ${f M}$  යනු ආවර්තිතා වගුවේ දෙවන ආවර්තයට අයත් මූලදුවාසයකි. එය ද්විධුැව සූර්ණයක් ඇති  ${f MCl}_2$  සහසංයුජ අණුව සාදයි. ආවර්තිතා වගුවේ M අයත් වන කාණ්ඩය වනුයේ,
  - (1) 2
- (2) 13
- (3) 14
- (4) 15
- (5) 16
- :O: 4. පෙරොක්සිනයිටුික් අම්ල අණුවක් (සූතුය  $ext{HNO}_4$ ,  $ext{}_{H-\ddot{\mathbf{O}}-\ddot{\mathbf{O}}-\ddot{\mathbf{N}}-\ddot{\mathbf{O}}}^{||}$ ) සඳහා ඇඳිය හැකි **අස්ථායි** ලුවිස් තිත්-ඉරි වසුහ සංඛ්යාව වනුයේ,
  - (1) 1
- (2) 2
- (3) 3
- (4) 4
- (5) 5

- 5. දී ඇති සංයෝගයේ IUPAC නාමය වනුයේ.
  - (1) 1-bromo-4-methyl-5-hydroxypent-1-en-3-one
  - (2) 5-bromo-1-hydroxy-2-methylpent-4-en-3-one
  - (3) 1-bromo-5-hydroxy-4-methylpent-1-en-3-one
  - (4) 5-bromo-2-methyl-3-oxopent-4-en-1-ol
  - (5) 1-bromo-4-methyl-3-oxopent-1-enol

- **6.**  $O_{-}O^{2-}$ ,  $F_{-}F_{-}S^{2-}$ ,  $Cl_{-}$ යන පුභේදවල අරයන් **අඩුවන** පිළිවෙළ වන්නේ,
  - (1)  $S^{2-} > Cl^{-} > O^{2-} > F^{-} > O > F$
  - (2)  $S^{2-} > Cl^{-} > O^{2-} > F^{-} > F > O$
  - (3)  $Cl^{-} > S^{2-} > O^{2-} > F^{-} > O > F$
  - (4)  $Cl^{-} > S^{2-} > F^{-} > O^{2-} > O > F$
  - (5)  $S^{2-} > Cl^{-} > O^{2-} > O > F^{-} > F$
- 7.  $T_{_1}({
  m K})$  උෂ්ණත්වයේදී සහ  $P_{_1}({
  m Pa})$  පීඩනයේදී දෘඪ-සංවෘත බඳුනක් තුළ පරිපූර්ණ වායුවක මවුල  $n_{_1}$  පුමාණයක් අඩංගු වේ. මෙම බඳුනට තවත් වැඩිපුර වායු පුමාණයක් ඇතුළු කළවිට නව උෂ්ණත්වය සහ පීඩනය පිළිවෙළින්  $T_{\gamma}$ සහ  $P_{\gamma}$ විය. දැන් භාජනය තුළ ඇති මුළු වායු මවුල පුමාණය වන්නේ,
- (1)  $\frac{n_1 T_1 P}{T_2 P_2}$  (2)  $\frac{n_1 T_1 P}{T_2 P_1}$  (3)  $\frac{T_2 P}{n_1 T_1 P_1}$  (4)  $\frac{n_1 T_2 P}{T_1 P_1}$  (5)  $\frac{n_1 T_2 P}{T_1 P_2}$
- 8. ආම්ලික  $K_{\gamma}\mathrm{Cr}_{\gamma}\mathrm{O}_{\gamma}$  දුාවණයක් භාවිත කර එතනෝල්  $(\mathrm{C}_{\gamma}\mathrm{H}_{\zeta}\mathrm{OH})$  ඇසිටික් අම්ලය  $(\mathrm{CH}_{\zeta}\mathrm{COOH})$  බවට ඔක්සිකරණය කිරීමේ පුති්කියාවේදී හුවමාරු වන සම්පූර්ණ ඉලෙක්ටේුා්න සංඛපාව වන්නේ,
  - (1) 6
- (2) 8
- (3) 10
- (4) 12
- (5) 14
- 9. ජලීය NaOH සමග පුතිකිුයා කළවිට ඇල්ඩෝල් සංඝනතයට භාජනය විය හැක්කේ පහත දැක්වෙන කුමන සංයෝගය ද?

- $10.~~{
  m AX(s)},~{
  m A}_2^{
  m Y(s)}$  හා  ${
  m AZ(s)}$  යනු ජලයෙහි අල්ප වශයෙන් දිය වන ලවණ වන අතර,  $25~^{\circ}{
  m C}$  දී ඒවායෙහි  $K_{SD}$  අගයන් පිළිවෙළින්  $1.6 \times 10^{-9}$ ,  $3.2 \times 10^{-11}$  සහ  $9.0 \times 10^{-12}$  වේ. 25 °C දී  $A^+$ (aq) කැටායනයෙහි සාන්දුණය අඩුවන පිළිවෙළට මෙම ලවණවල සංතෘප්ත දුාවණ තුනේ පෙළගැස්ම පහත සඳහන් කුමක් මගින් පෙන්වයි ද?
  - (1) AX(s) > A<sub>2</sub>Y(s) > AZ(s)
  - (2)  $A_{2}Y(s) > A\bar{X}(s) > AZ(s)$
  - (3)  $AX(s) > AZ(s) > A_2Y(s)$
  - (4)  $A_2Y(s) > AZ(s) > AX(s)$
  - (5)  $\tilde{AZ}(s) > A_2Y(s) > AX(s)$
- 11. පහත දැක්වෙන සංයෝග සලකන්න.

සාලප්ක්ෂ

අණුක ස්කන්ධය 86

86

86

86

88

මෙම සංයෝගයන්හි තාපාංක විචලනය වඩාත්ම හොඳින් පෙන්වනු ලබන්නේ,



**(1)** 







12. NaCl, Na¸S, KF හා KCl යන රසායනික විශේෂවල, සහසංයුජ ලක්ෂණ **වැඩිවන** පිළිවෙළ වනුයේ,

- (1) KF < NaCl < KCl < Na<sub>2</sub>S
- (2) KCl < NaCl < KF
- (3) KF < KCl < NaCl < Na $_2$ S
- (4)  $Na_2S$  < NaCl < KCl < KF
- (5) KF < Na<sub>2</sub>S < NaCl < KCl

13. 298 K දී  $H_2(g)$ , C(s) සහ  $CH_3OH(l)$  හි සම්මත දහන එන්තැල්පීන් පිළිවෙළින්  $-286~{
m kJ}~{
m mol}^{-1}$ ,  $-393~{
m kJ}~{
m mol}^{-1}$ සහ  $-726 \text{ kJ mol}^{-1}$ වේ.  $\text{CH}_2\text{OH}(l)$  හි වාෂ්පීකරණයේ එන්තැල්පිය  $+37 \text{ kJ mol}^{-1}$ වේ. 298 K දී **වායුමය**  $\text{CH}_2\text{OH}$ මවුල එකක උත්පාදන එන්තැල්පිය ( $kJ\ mol^{-1}$ ) වන්නේ,

- (1) -276
- (2) -239
- (3) -202
- (4) + 84
- (5) +202

14. පහත දක්වා ඇති තුලිත රසායනික සමීකරණයෙන් පෙන්වන ආකාරයට විදුලි ඌෂ්මකයක් තුළ පොස්පරස් පිළියෙල කරගත හැක.

$$2 \text{ Ca}_{3}(\text{PO}_{4})_{2} + 6 \text{ SiO}_{2} + 10 \text{ C} \rightarrow 6 \text{ CaSiO}_{3} + 10 \text{ CO} + \text{P}_{4}$$

 $ext{Ca}_{3}( ext{PO}_{4})_{2}$ , 620 g,  $ext{SiO}_{2}$  180 g සහ  $ext{C}$  96 g පුතිකිුයා කර වූ විට  $ext{P}_{4}$  50 g ලබා දුනි. මෙම තත්ත්ව යටතේ සීමාකාරී පුතිකාරකය (සම්පූර්ණයෙන් වැයවන පුතිකාරකය) සහ  $P_{_{\!\!4}}$  වල පුතිශත ඵලදාව (% yield) පිළිවෙළින්, (C = 12, O = 16, Si = 28, P = 31, Ca = 40)

- (1) Ca<sub>3</sub>(PO<sub>4</sub>) as 80.7%
- (2) SiO<sub>2</sub> සහ 80.7%

(3) C සහ 50.4%

(4) SiO සහ 40.3%

(5) C සහ 25.2%

15. එකම තත්ත්ව යටතේදී වෙනත් දෘඪ-සංවෘත භාජන දෙකක් තුළ සිදුවන පහත සමතුලිත දෙක සලකන්න.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) ; K_{P_1} = 3.0 \times 10^{-4}$$
  
 $NH_3(g) + H_2S(g) \rightleftharpoons NH_4HS(g); K_{P_2} = 8.0 \times 10^{-4}$ 

මෙම තත්ත්ව යටතේදීම  $2\mathrm{H_2S}(\mathrm{g})+\mathrm{N_2(g)}+3\mathrm{H_2(g)} \rightleftharpoons 2\mathrm{NH_4HS}(\mathrm{g})$  සමතුලිතය සඳහා  $K_P$  වන්නේ,

- (1)  $5.76 \times 10^{-12}$

- (2)  $7.2 \times 10^{-10}$  (3)  $1.92 \times 10^{-8}$  (4)  $3.40 \times 10^{-6}$  (5)  $3.75 \times 10^{-2}$

16. බෝමොබෙන්සීන්හි නයිටුාකරණ පුතිකිුිිිියාව සලකන්න. මෙම පුතිකිුිිිිිිිිිිිිිිිි සම්පුයුක්තතාවය මගින් ස්ථායි වූ කාබොකැටායන අතරමැදි සෑදේ. මෙම අතරමැදියන්හි සම්පුයුක්ත වූහයක් නොවන්නේ පහත දක්වා ඇති ඒවායින් කුමක් ද?







f 17. පුතිකියාවක් කාමර උෂ්ණත්වයේදී හා 1 atm පීඩනයේදී ස්වයංසිද්ධ නොවන අතර එම පීඩනයේදී හා ඉහළ උෂ්ණත්වයේදී ස්වයංසිද්ධ බවට පත්වේ. කාමර උෂ්ණත්වයේදී මෙම පුතිකිුයාව සඳහා පහත සඳහන් කුමක් නිවැරදි වේ ද? ( $\Delta H$  සහ  $\Delta S$ , උෂ්ණත්වය සහ පීඩනය සමග වෙනස් නොවේයැයි උපකල්පනය කරන්න).

- $\Delta G$
- $\Delta H$
- (1) ධන ධන ධන සෘණ
- ධන

 $\Delta S$ 

සු න

More Past Papers at

- ධන සෘණ (4) සෲණ ධන
- ධන
- (5) සෲණ
- සෘණ
- සෘණ

tamilguru.lk

18. u පුවේගයෙන් ගමන් කරන නියුටුෝනයක ඩිබොග්ලි තරංග ආයාමය $\,\lambda$  වේ. මෙම නියුටුෝනයේ චාලක ශක්තිය  $E\left(E=rac{1}{2}\,mv^2
ight)$  හතර ගුණයකින් වැඩි කළවිට නව ඩිබොග්ලි තරංග ආයාමය වන්නේ,

- (1)  $\frac{\lambda}{2}$
- (3)  $2\lambda$
- (4)  $4\lambda$
- (5)  $16\lambda$

19. පහත සඳහන් කුමක් මගින් MX ලවණයේ ජලීය දුාවණයක් විදායුත් විච්ඡේදනය කිරීම සඳහා ගොඩනගන ලද විදායුත් විච්ඡේදන කෝෂය නිවැරදිව පෙන්වා දෙයි ද?

(1) අනෝඩය + - කැතෝඩය





(4) අනෝඩය – + කැතෝඩය



- 20. පහත දක්වා ඇති කුමන පුකාශය කාබොක්සිලික් අම්ලයක් සහ ඇල්කොහොලයක් අතර සිදුවන එස්ටරයක් සැදීමේ පුතිකිුයාව පිළිබඳව නිවැරදි වේ ද?
  - (1) සමස්ත පුතිකිුිිියාව කාබනයිල් සංයෝගයක නියුක්ලියෝෆිලික ආකලන පුතිකිුියාවකි.
  - (2) එය ඇල්කොහොලය නියුක්ලියෝෆයිලයක් ලෙස කියාකරන පුතිකියාවකි.
  - (3) එය කාබොක්සිලික් අම්ලයේ O—H බන්ධනය බිඳෙමින් සිදුවන පුතිකිුයාවකි.
  - (4) එය ඇල්කොහොලයේ C—O බන්ධනය බිඳෙමින් සිදුවන පුතිකිුයාවකි.
  - (5) එය අම්ල-භස්ම පුතිකිුයාවකි.
- **21.** ඉහළ උෂ්ණත්වවලදී  $\mathrm{CH_3OH}(l)$  1 mol ක් පහත පරිදි වියෝජනය වේ.

$$CH_2OH(l) \rightarrow CO(g) + 2H_2(g); \Delta H = +128 \text{ kJ}$$

පහත සඳහන් කුමක් ඉහත පුතිකිුයාව සඳහා අ**සත**z වේ ද? (H=1,C=12,O=16)

- (1)  $CH_3OH(g)$  1 mol වියෝජනය වනවිට අවශෝෂණය වන තාපය  $128~\mathrm{kJ}$  ට වඩා අඩුවේ.
- (2)  $CO(g) + 2H_2(g)$  හි එන්තැල්පිය  $CH_3OH(l)$  හි එන්තැල්පියට වඩා වැඩි වේ.
- (3) CO(g) 1 mol සැදෙන විට 128 kJ ක තාපයක් පිට වේ.
- (4) පුතිකුියක මවුලයක් වියෝජනයේදී  $128 \; \mathrm{kJ}$  ක තාපයක් අවශෝෂණය වේ.
- (5) ඵල 32~g සැදෙන විට 128~kJ ක තාපයක් අවශෝෂණය වේ.
- 22. පහත දැක්වෙන ඒවායින් **වැරදි** පුකාශය හඳුනාගන්න.
  - (1) නයිටුජන්වල [N(g)] ඉලෙක්ටුෝන ලබාගැනීමේ ශක්තිය ධන වේ.
  - (2)  $\operatorname{BiCl}_3(\operatorname{aq})$  දාවණයක් ජලයෙන් තනුක කරන විට සුදු අවක්ෂේපයක් දෙයි.
  - (3)  $H_{\gamma}S$  වායුවට ඔක්සිකාරකයක් සහ ඔක්සිහාරකයක් යන දෙආකාරයටම කිුියා කළ හැක.
  - (4)  $ilde{ ext{He}}$  වල සංයුජතා ඉලෙක්ටුෝනයකට දැනෙන සඵල නාෳෂ්ටික ආරෝපණය ( $ilde{ ext{Z}}^*$ )  $ilde{ ext{2}}$ ට වඩා අඩු ය.
  - (5) ඉහළ උෂ්ණත්වයකට රත් කළ වුවද ඇලුමිනියම්,  ${
    m N}_2$  වායුව කෙරෙහි නිෂ්කිුය වේ.
- 23. 298 K දී දුබල අම්ලයක් වන HA හි තනුක ජලීය දුාවණයක සාන්දුණය  $C \mod {
  m dm}^{-3}$  වන අතර එහි අම්ල විඝටන නියතය  $K_a$  වේ. මෙම දුාවණයෙහි pH පහත සඳහන් කුමන පුකාශනය මගින් ලබාදෙයි ද?
  - (1)  $pH = \frac{1}{2}pK_a \frac{1}{2}\log C$
  - (2)  $pH = -\frac{1}{2}pK_a \frac{1}{2}\log C$
  - (3)  $pH = -\frac{1}{2}pK_a + \frac{1}{2}\log C$
  - (4)  $pH = -\frac{1}{2}pK_a \frac{1}{2}\log(1/C)$
  - (5)  $pH = \frac{1}{2}pK_a \frac{1}{2}\log(1/C)$

 $oldsymbol{24.}$   $oldsymbol{H_1O_1}$  දාවණයක පුබලතාව, සාමානා උෂ්ණත්වයේදී හා පීඩනයේදී (සා.උ.පී.) ලබාදෙන  $oldsymbol{O_1}$  වායුවේ පරිමාව අනුව පුකාශ කළ හැක. උදාහරණයක් වශයෙන්, **පරිමා පුබලතාව** 20 වන  $\mathrm{H_2O_2}$  (20 volume strength  $\mathrm{H_2O_2}$ ) දාවණයකින් ලීටරයක් සා.උ.පී. දී  $O_2$  ලීටර 20 ක් ලබා දෙයි.  $(2 \, {
m H}_2 {
m O}_2({
m aq}) 
ightarrow \tilde{2} \, {
m H}_2^2 {
m O}(l) + {
m O}_2({
m g}))$  (වායු මවුල්යක් සා.උ.පී. හිදී ලීටර 22.4 ක පරිමාවක් ගන්නා බව උපකල්පනය කර්න්න.)

f X ලෙස නම් කර ඇති බෝතලයක  $f H_2O_2$  දාවණයක් අඩංගු ය. මෙම f X දාවණයෙන්  $25.0\,{
m cm}^3$  තනුක  $f H_2SO_4$  හමුවේ  $1.0~{
m mol}~{
m dm}^{-3}~{
m KMnO}_4$  සමග අනුමාපනය කළවිට, අන්ත ලක්ෂාය එළඹීමට අවශා වූ පරිමාව  $25.0~{
m cm}^3$  විය. X දාවණයේ පරිමා පුබලතාව වනුයේ,

(1) 15

(3) 25

(4) 28

**25.**  $M(OH)_2(s)$  යනු 298 K දී  $M^{2+}(aq)$  හා  $OH^-(aq)$  අයන අතර පුතිකිුයාව මගින් සෑදුණු ජලයේ අල්ප වශයෙන් දියවන ලවණයකි. pH = 5 දී ජලයෙහි  $M(OH)_{2}(s)$  හි දුාවාතාවය ( $mol\ dm^{-3}$ ) වන්නේ, (298 K  $\xi$ ,  $K_{sp_{M(OH)_2}} = 4.0 \times 10^{-36}$ )

(1)  $\sqrt{2} \times 10^{-18}$ 

(2)  $2 \times 10^{-18}$ 

(3)  $1 \times 10^{-18}$  (4)  $\sqrt[3]{2} \times 10^{-12}$  (5)  $1 \times 10^{-12}$ 

**26.** 298 K දී සම්මත හයිඩුජන් ඉලෙක්ටුෝඩයක්, සම්මත Mg-ඉලෙක්ටුෝඩයක් හා ලවණ සේතුවක් භාවිතයෙන් ගොඩනගන ලද සම්මත ගැල්වානි කෝෂයක් පහත සඳහන් කුමක් මගින් නිවැරදිව දැක්වෙයි ද?

 $(1)\ \ Mg(s)\,\big|\,Mg^{2+}\,(aq,1.00\ mol\ dm^{-3})\,\big|\,H^{+}\,(aq,1.00\ mol\ dm^{-3})\,\big|\,H_{2}(g)\,\big|\,Pt(s)$ 

(2)  $Pt(s) \mid H_2(g) \mid H^+(aq, 1.00 \text{ mol dm}^{-3}) \mid Mg^{2+}(aq, 1.00 \text{ mol dm}^{-3}) \mid Mg(s)$ 

(3) Mg(s),  $Mg^{2+}$  (aq, 1.00 mol dm<sup>-3</sup>)  $\|H^{+}$ (aq, 1.00 mol dm<sup>-3</sup>)  $H_{2}(g)$  Pt(s)

(4)  $Mg(s) | Mg^{2+} (aq, 1.00 \text{ mol dm}^{-3}), H^{+}(aq, 1.00 \text{ mol dm}^{-3}), H^{2}_{3}(g) | Pt(s)$ 

(5) Pt(s),  $H_2(g) \mid H^+(aq, 1.00 \text{ mol dm}^{-3}) \parallel Mg^{2+}(aq, 1.00 \text{ mol dm}^{-3})$ , Mg(s)

**27.**  $298 ext{ K}$  දී ඩයික්ලෝරෝමීතේන් සහ ජලය අතර ඒකභාස්මික කාබනික අම්ලයක වාාප්ති සංගුණකය  $K_D$  නිර්ණය කිරීම සඳහා පහත කුමය භාවිත කරන ලදී.  $0.20~{
m mol~dm}^{-3}$  අම්ලයෙහි ජලීය දුාවණයකින්  $50.00~{
m cm}^3$  ක් ඩයික්ලෝරෝමීතේන්  $10.00~{
m cm}^3$  ක් සමග හොඳින් මිශු කර ස්තර දෙක වෙන් වීමට තබන ලදී. ඉන්පසු ප්ලාස්කුවේ පහළ ඇති ඩයික්ලෝරෝමීතේන් ස්තරය ඉවත් කරන ලදී. ජලීය ස්තරයෙහි ඉතිරිව ඇති අම්ලය උදාසීන කිරීම සඳහා  $0.02\,\mathrm{mol}\,\mathrm{dm}^{-3}\,\mathrm{NaOH(aq)}$  දාවණයකින්  $10.00\,\mathrm{cm}^3$  ක් අවශා විය. (කාබනික ස්තරයේදී අම්ලය ද්විඅවයවීකරණය නොවේ යැයි උපකල්පනය කරන්න.) **ඩයික්ලෝරෝම්තේන් හා ජලය** අතර  $298~{
m K}$  දී අම්ලයෙහි  $K_D$  වනුයේ,

(1) 0.05

(2) 0.25

(3) 4.00

(4) 20.00

(5) 245.00

**28.** දෙන ලද උෂ්ණත්වයකදී දෘඪ-සංවෘත භාජනයක් තුළ  $C_2H_4(g) + 3O_2(g) \to 2CO_2(g) + 2H_2O(g)$  පුතිකිුිිියාව සිදු වේ. යම් කාලයකට පසු  $\mathrm{C_2H_4(g)}$  වැය වීමට සාපේක්ෂව පුතිකිුයාවේ ශීඝුතාවය x mol  $\mathrm{dm}^{-3}\mathrm{s}^{-1}$  බව සොයාගන්නා ලදී. පහත සඳහන් කුමක් මගින් එම කාලය තුළදී පුතිකිුයාවේ  $O_2(g)$  වැයවීමේ,  $\mathrm{CO}_2(g)$  සෑදීමේ හා  $\mathrm{H}_2\mathrm{O}(g)$  සෑදීමේ ශීඝුතා පිළිවෙළින් පෙන්වයි ද?

ශීඝුතාව / mol dm<sup>-3</sup>s<sup>-1</sup>

 $O_{\gamma}(g)$   $CO_{\gamma}(g)$   $H_{\gamma}O(g)$ 

(1)

(2)

(3)

(4)

(5)

 $\mathbf{M}(\mathbf{g}) + \mathbf{Q}(\mathbf{g}) \rightarrow \mathbf{R}(\mathbf{g}) + \mathbf{Z}(\mathbf{g})$ 

 ${f M}$  හා  ${f Q}$  හි සාන්දුණ පිළිවෙළින්  $1.0 imes 10^{-5} \, {
m mol \ dm}^{-3}$  හා  $2.0 \, {
m mol \ dm}^{-3}$  වනවිට පුතිකියාවේ ශීඝුතාවය  $5.00 imes 10^{-4} ext{mol dm}^{-3} \, ext{s}^{-1}$  වේ.  $f M}$  හි සාන්දුණය දෙගුණ කළවිට පුතිකිුයාවේ ශීඝුතාවය දෙගුණ විය. මෙම තත්ත්ව යටතේදී පුතිකුියාවේ වේග තියතය වන්නේ,

(1)  $2.5 \times 10^{-4} \,\mathrm{s}^{-1}$ 

(2)  $12.5 \text{ s}^{-1}$ 

(3)  $25 \,\mathrm{s}^{-1}$ 

(4)  $50 \,\mathrm{s}^{-1}$ 

 $(5) 500 \,\mathrm{s}^{-1}$ 

30. පහත දැක්වෙන පුතිකිුිිිිිිිිිි අනුකුමය සලකන්න.

$$\begin{array}{c}
CO_2H \\
Cl_2/AlCl_3
\end{array}
\qquad P \qquad \begin{array}{c}
1. \text{ LiAlH}_4 \\
\hline
2. \text{ H}^+/\text{H}_2O
\end{array}
\qquad Q$$

P සහ Q පිළිවෙළින් විය හැක්කේ,

(1) 
$$CO_2H$$
 CHO  $CI$ 

$$(2) \quad \begin{array}{c} \text{CO}_2\text{H} & \text{CH}_2\text{OH} \\ \\ \text{Cl} & \\ \end{array}$$

(4) 
$$\underset{\text{Cl}}{\text{COCl}}$$
  $\underset{\text{Exp}}{\text{CHCl}}$ 

- අංක 31 සිට 40 තෙක් එක් එක් පුශ්නය සඳහා දී ඇති (a),(b),(c) සහ (d) යන පුතිචාර හතර අතුරෙන්, එකක් හෝ වැඩි සංඛාාවක් හෝ නිවැරදි ය. නිවැරදි පුතිචාරය/පුතිචාර කවරේ දැ'යි තෝරා ගන්න.
  - (a) සහ (b) පමණක් නිවැරදි නම් (1) මත ද
  - (b) සහ (c) පමණක් නිවැරදි නම් (2) මත ද
  - (c) සහ (d) පමණක් නිවැරදි නම් (3) මත ද
  - (d) සහ (a) පමණක් නිවැරදි නම් (4) මත ද

**වෙනත්** පුතිචාර සංඛ්යාවක් හෝ සංයෝජනයක් හෝ නිවැරදි නම් (5) මත ද

පිළිතුරු පතුයෙහි දැක්වෙන උපදෙස් පරිදි ලකුණු කරන්න.

### ඉහත උපදෙස් සම්පිණ්ඩනය

| 1 | (1)                              | (2)                                                | (3)                                                | (4)                                                | (5)                                                                |
|---|----------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------|
|   | (a) සහ (b)<br>පමණක්<br>නිවැරදියි | ( <i>b</i> ) සහ ( <i>c</i> )<br>පමණක්<br>නිවැරදියි | ( <i>c</i> ) සහ ( <i>d</i> )<br>පමණක්<br>නිවැරදියි | ( <i>d</i> ) සහ ( <i>a</i> )<br>පමණක්<br>නිවැරදියි | <b>වෙනත්</b> පුතිචාර සංඛ <b>ා</b> වක් හෝ<br>සංයෝජනයක් හෝ නිවැරදියි |

- $31. \ 3d$ -ගොනුවේ මූලදුවා සහ ඒවායේ සංයෝග පිළිබඳව පහත දැක්වෙන කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
  - (a) 3d-ගොනුවේ මූලදුවා අතුරෙන්,  $\mathbf{Sc}$  ආන්තරික මූලදුවායක් ලෙස නොසැලකේ.
  - (b) පරමාණුවල ( $\operatorname{Sc}$  සිට  $\operatorname{Cu}$  දක්වා) අරයන් වමේ සිට දකුණට අඩු වේ.
  - $(c) [Ni(NH_3)_2]^{2+}$ වල පාට නිල් වන අතර  $[Zn(NH_3)_4]^{2+}$  අවර්ණ වේ.
  - (d)  $K_2$ NiCl $_4$ වල IUPAC නම වන්නේ dipotassium tetrachloronickelate(II).
- 32. පහත දැක්වෙන අණුව සඳහා කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?

- (a) P,Q,R සහ S වශයෙන් ලේබල් කර ඇති පරමාණු සරල රේඛාවක පිහිටයි.
- (b) Q,R,S සහ T වශයෙන් ලේබල් කර ඇති පරමාණු සරල රේඛාවක පිහිටයි.
- (c) R,S,T,U සහ V වශයෙන් ලේබල් කර ඇති පරමාණු එකම තලයේ පිහිටයි.
- (d) R,S,T සහ U වශයෙන් ලේබල් කර ඇති පරමාණු සරල රේඛාවක පිහිටයි.
- 33. 500 K දී  $N_2(g)$  මවුල 0.01 ක්,  $H_2(g)$  මවුල 0.10 ක් සහ  $NH_3(g)$  මවුල 0.40 ක්,  $1.0 \text{ dm}^3$  දෘඪ-සංවෘත භාජනයක් තුළට ඇතුළු කර පහත සමතුලිතතාවය එළඹීමට ඉඩ හරින ලදී.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
  $K_C = 2.0 \times 10^2 \text{ mol}^{-2} \text{ dm}^6$ 

ආරම්භයේ සිට සමතුලිතතාවය දක්වා මෙම පද්ධතියේ වෙනස්වීම් පිළිබඳ පහත දැක්වෙන කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?  $Q_{\mathcal{C}}$  යනු පුතිකිුයා ලබ්ධිය වේ.

- (a) ආරම්භයේදී  $Q_C > K_C$ ;  $\mathrm{NH_3}(\mathrm{g})$  මගින්  $\mathrm{N_2}(\mathrm{g})$  හා  $\mathrm{H_2}(\mathrm{g})$  සෑදීම ආරම්භ වී පද්ධතිය සමතුලිතතාවයට එළඹේ.
- (b) ආරම්භයේදී  $Q_C < K_C$ ;  $\mathrm{NH}_3^-(\mathrm{g})$  මගින්  $\mathrm{N}_2^-(\mathrm{g})$  හා  $\mathrm{H}_2^-(\mathrm{g})$  සෑදීම ආරම්භ වී පද්ධතිය සමතුලිතතාවයට එළඹේ.
- (c) ආරම්භයේදී  $Q_C < K_C$ ;  $N_2(g)$  හා  $H_2(g)$  පුතිකියා කර  $NH_3(g)$  සෑදී පද්ධතිය සමතුලිතතාවයට එළඹේ.
- (d) ආරම්භයේදී  $Q_C > K_C$ ;  $ar{ ext{N}_2(g)}$  හා  $ar{ ext{H}_2(g)}$  පුකිකියා කර  $ar{ ext{NH}_3(g)}$  සෑදී පද්ධතිය සමතුලිතතාවයට එළඹේ.

34.  ${f P}$  සංයෝගය සහ HCl අතර ඇල්කයිල් හේලයිඩයක් සෑදෙන පුතිකිුයාව පිළිබඳව පහත දැක්වෙන කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?  ${f CH}_3$ 



- (a) පුධාන ඵලය වන්නේ 2-chloro-2-methylbutane ය.
- (b) මෙම පුතිකිුයාවේදී අතරමැදියක් ලෙස ද්විතියික කාබොකැටායනයක් සැදේ.
- (c) පුතිකිුයාවේ එක් පියවරකදී, HCl බන්ධනය බිදී ක්ලෝරීන් මුක්ත බණ්ඩකයක්  $(Cl^{ullet})$  ලබා දේ.
- (d) පුතිකිුයාවේ එක් පියවරකදී, කාබොකැටායනයක් සමග නියුක්ලියෝෆයිලයක් පුතිකිුයා කරයි.
- 35. දී ඇති උෂ්ණත්වයකදී රේචනය කළ සංවෘත බඳුනක් තුළ දුව දෙකක් මිශු කිරීමෙන් සාදන ලද ද්වයංගී දුාවණයක් රවුල් නියමයෙන් සෘණ අපගමනයක් දක්වයි. පහත සඳහන් කුමන පුකාශය/පුකාශ මෙම පද්ධතිය සඳහා නිවැරදි වේ ද?
  - (a) මිශුණයෙහි මුළු වාෂ්ප පීඩනය එම මිශුණය පරිපූර්ණ ලෙස හැසිරුණේ නම් බලාපොරොත්තු විය හැකි මුළු වාෂ්ප පීඩනයට වඩා අඩු ය.
  - (b) මිශුණය සෑදෙන විට තාපය පිට වේ.
  - (c) මිශුණයෙහි වාෂ්ප කලාපයෙහි ඇති අණු සංඛාාව එම මිශුණය පරිපූර්ණ ලෙස හැසිරුණේ නම් බලාපොරොත්තු විය හැකි අණු සංඛාාවට වඩා වැඩි ය.
  - (d) මිශුණය සැදෙන විට තාපය අවශෝෂණය වේ.
- **36.** CFC, HCFC සහ HFC සම්බන්ධයෙන් පහත දැක්වෙන කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
  - (a) CFC සහ HCFC යන සංයෝග කාණ්ඩ දෙකටම ඉහළ වායුගෝලයේදී (ස්තර ගෝලය) ක්ලෝරීන් මුක්ත බණ්ඩක නිපදවීමේ හැකියාව ඇත.
  - (b) HFC සහ HCFC යන සංයෝග කාණ්ඩ දෙකටම ඉහළ වායුගෝලයේදී (ස්තර ගෝලය) ක්ලෝරීන් මුක්ත බණ්ඩක නිපදවීමේ හැකියාව ඇත.
  - (c) CFC, HCFC සහ HFC යන සංයෝග කාණ්ඩ තුනම පුබල හරිතාගාර වායුන් වේ.
  - (d) CFC,HCFC සහ HFC යන සංයෝග කාණ්ඩ තුනම ඕසෝන් වියන ක්ෂයවීමට සැලකිය යුතු ලෙස දායක වේ.
- 37. හැලජන, උච්ච වායු සහ ඒවායේ සංයෝග පිළිබඳව පහත දැක්වෙන කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
  - (a) හයිපොක්ලෝරස් අයනය ආම්ලික දාවණවල වේගයෙන් ද්විධාකරණය වේ.
  - (b) Xe,  $F_2$  වායුව සමග සංයෝග ශ්රණියක් සාදන අතර, ඒවා අතුරෙන් Xe $F_2$ වලට තලීය සමචතුරසුාකාර ජාාමිතියක් ඇත.
  - (c) හයිඩුජන් හේලයිඩ අතුරෙන් මවුලයක් සඳහා වැඩිම බන්ධන විඝටන ශක්තිය ඇත්තේ  $\operatorname{HF}$ වලට ය.
  - (d) ලන්ඩන් බලවල පුබලතාව වැඩි වීම හේතු කොටගෙන හැලජනවල තාපාංක කාණ්ඩයේ පහළට වැඩි වේ.
- 38. කාමර උෂ්ණත්වයේදී කිුයාත්මක වනවිට ඩැනියෙල් කෝෂය පිළිබඳව පහත සඳහන් කුමන පුකාශය/පුකාශ නිවැරදි වේ ද? ( $E_{cell}^{\circ}$  =  $+1.10~\mathrm{V}$ )
  - (a) ශුද්ධ ඉලෙක්ටෝන පුවාහය Zn සිට Cu දක්වා සිදු වේ.
  - (b)  $\operatorname{Zn}^{2+}(\operatorname{aq}) + 2\operatorname{e} \rightleftharpoons \operatorname{Zn}(\operatorname{s})$  සමතුලිතතාවය දකුණට නැඹුරු වේ.
  - (c) ලවණ සේතුවක් තිබීම නිසා දුව-සන්ධි විභවයක් ඇති වේ.
  - (d)  $\operatorname{Cu}^{2+}(\operatorname{aq}) + 2\operatorname{e} \Longrightarrow \operatorname{Cu}(\operatorname{s})$  සමතුලිතතාවය දකුණට නැඹුරු වේ.
- $oldsymbol{39}$ . නියත උෂ්ණත්වයකදී පරිපූර්ණ හා තාත්ත්වික වායූන් සඳහා පහත සඳහන් කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
  - (a) ඉතා ඉහළ පීඩනවලදී තාත්ත්වික වායුවක පරිමාව පරිපූර්ණ වායුවක පරිමාවට වඩා වැඩි වේ.
  - (b) ඉහළ පීඩනවලදී තාත්ත්වික වායු පරිපූර්ණ වායු ලෙස හැසිරීමට නැඹුරු වේ.
  - (c) ඉතා ඉහළ පීඩනවලදී තාත්ත්වික වායුවක පරිමාව පරිපූර්ණ වායුවක පරිමාවට වඩා අඩු වේ.
  - (d) අඩු පීඩනවලදී තාත්ත්වික වායු පරිපූර්ණ වායුලෙස හැසිරීමට නැඹුරු වේ.
- 40. සමහර කාර්මික කිුිිියාවලි හා සම්බන්ධව පහත දැක්වෙන කුමන පුකාශය/පුකාශ නිවැරදි වේ ද?
  - (a) සෝල්වේ කිුයාවලිය මගින්  ${
    m Na_2CO_3}$  නිෂ්පාදනය හා සම්බන්ධ පළමු පියවර දෙක තාප අවශෝෂක වේ.
  - (b) බුයින්වල  ${
    m Mg}^{2+}$ ,  ${
    m Ca}^{2+}$  හා  ${
    m SO}_4^{2-}$  අයන පැවතීම, පටල කෝෂ කුමය යොදා ගැනීමෙන් NaOH නිෂ්පාදනයට බාධා පමුණුවයි.
  - (c) ඔස්වල්ඩ් කුමය මගින් නයිටුික් අම්ල නිෂ්පාදනය හා සම්බන්ධ පළමු පියවර උත්පේරකයක් හමුවේ වාතයේ ඇති  $O_2$  මගින්  $NH_2$  වායුව ඔක්සිකරණය කර  $NO_2$  වායුව ලබාදීම වේ.
  - (d) හේබර්-බොෂ් කුමය යොදා  $\mathrm{NH_{3}}$  වායුව නිෂ්පාදනයේදී ඉහළ උෂ්ණත්ව හා අඩු පීඩන තත්ත්ව යොදාගනී.

• අංක 41 සිට 50 තෙක් එක් එක් පුශ්නය සඳහා පුකාශ දෙක බැගින් ඉදිරිපත් කර ඇත. එම පුකාශ යුගලයට හොඳින්ම ගැළපෙනුයේ පහත වගුවෙහි දැක්වෙන පරිදි (1),(2),(3),(4) සහ (5) යන පුතිචාරවලින් කවර පුතිචාරය දැ'යි තෝරා පිළිතුරු පතුයෙහි උචිත ලෙස ලකුණු කරන්න.

| පුතිචාරය | පළමුවැනි පුකාශය | දෙවැනි පුකාශය                                              |
|----------|-----------------|------------------------------------------------------------|
| (1)      | සතා වේ.         | සතාෳ වන අතර, පළමුවැනි පුකාශය නිවැරදිව පහදා දෙයි.           |
| (2)      | සතා වේ.         | සතා වන නමුත් පළමුවැනි පුකාශය නිවැරදිව පහදා <b>නොදෙයි</b> . |
| (3)      | සතා වේ.         | අසතා වේ.                                                   |
| (4)      | අසතා වේ.        | සතා වේ.                                                    |
| (5)      | අසතා වේ.        | අසතාා වේ.                                                  |

|     | පළමුවැනි පුකාශය                                                                                                                                           | දෙවැනි පුකාශය                                                                                                                                                                                                                           |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 41. | ${ m Cr}$ සහ ${ m Mn}$ හි ඔක්සයිඩ අතුරෙන්, ${ m CrO}$ සහ ${ m MnO}$ ආම්ලික වන අතර, ${ m CrO}_3$ සහ ${ m Mn}_2{ m O}_7$ භාස්මික වේ.                        | Cr සහ Mn වල ඔක්සයිඩවල ආම්ලික/භාස්මික<br>ස්වභාවය, ලෝහයේ ඔක්සිකරණ අංකය මත රඳා පවතී.                                                                                                                                                       |
| 42. | HA(aq) දුබල අම්ලයක් එහි සෝඩියම් ලවණය<br>NaA(aq) සමග මිශු කිරීමෙන් ආම්ලික ස්වාරක්ෂක<br>දාවණයක් පිළියෙල කළ හැකි ය.                                          | $OH^-(aq)$ හෝ $H^+(aq)$ අයන ස්වාරක්ෂක දාවණයකට එකතු කළවිට, එකතු කරන ලද $OH^-(aq)$ හෝ $H^+(aq)$ අයන පුමාණ පිළිවෙළින්; $OH^-(aq) + HA(aq) \rightarrow A^-(aq) + H_2O(I)$ හා $H^+(aq) + A^-(aq) \rightarrow HA(aq)$ පුතිකියා මගින් ඉවත් වේ. |
| 43. | හුමාල ආසවනය මගින් 100°C වලට වඩා අඩු<br>උෂ්ණත්වයකදී ශාකවලින් සගන්ධ තෙල් නිස්සාරණය<br>කළ හැකිය.                                                             | සගන්ධ තෙල් සහ ජලය මිශුණය නටන උෂ්ණත්වයේදී,<br>පද්ධතියෙහි මුළු වාෂ්ප පීඩනය බාහිර වායුගෝලීය<br>පීඩනයට වඩා අඩු ය.                                                                                                                           |
| 44. | දී ඇති උෂ්ණත්වයකදී හා පීඩනයකදී වෙනස්<br>පරිපූර්ණ වායූන් දෙකක මවුලික පරිමාවන් එකිනෙකින්<br>වෙනස් වේ.                                                       | 0°C උෂ්ණත්වයේදී හා 1 atm පීඩනයේදී පරිපූර්ණ<br>වායුවක මවුලික පරිමාව 22.4 dm³ mol -1 වේ.                                                                                                                                                  |
| 45. | C=C බන්ධනයක් සහිත සියලුම සංයෝග පාරතිුමාන<br>සමාවයවිකතාවය පෙන්වයි.                                                                                         | එකිනෙකෙහි දර්පණ පුතිබිම්බ නොවන ඕනෑම<br>සමාවයවික දෙකක් පාරතිුමාන සමාවයවික වේ.                                                                                                                                                            |
| 46. | බෙන්සීන්හි හයිඩුජනීකරණය ඇල්කීනවල<br>හයිඩුජනීකරණයට වඩා අපහසු ය.                                                                                            | බෙන්සීන්වලට හයිඩුජන් ආකලනය වීම ඇරෝමැටික<br>ස්ථායිතාවය නැති වීමට හේතු වේ.                                                                                                                                                                |
| 47. | සල්ෆියුරික් අම්ල නිෂ්පාදනයේදී $\mathrm{SO}_3$ වායුව සහ ජලය<br>අතර සිදුවන පුතිකිුයාව තාප අවශෝෂක වේ.                                                        | $\mathrm{SO_3}$ වායුව සාන්දු $\mathrm{H_2SO_4}$ සමග පුතිකිුයා කළවිට ඕලියම් ලබා දේ.                                                                                                                                                      |
| 48. | ඇමෝනියා සහ ඇල්කයිල් හේලයිඩයක් අතර සිදුවන<br>පුතිකිුයාවෙන්, පුාථමික, ද්විතියික සහ තෘතියික<br>ඇමීනවල සහ චාතුර්ථ ඇමෝනියම් ලවණයක<br>මිශුණයක් ලැබේ.            | පුාථමික, ද්විතියික සහ තෘතියික ඇමීනවලට<br>නියුක්ලියෝෆයිල ලෙස පුතිකිුයා කළ හැක.                                                                                                                                                           |
| 49. | P+Q  ightarrow R යනු $P$ පුතිකියකයට සාපේක්ෂව පළමු පෙළ පුතිකියාවක් වේ නම් $P$ හි සාන්දුණයට එරෙහි ශීඝුතාවය පුස්තාරය මූල ලක්ෂාය හරහා යන සරල රේඛාවක් ලබාදෙයි. | පළමු පෙළ පුතිකිුියාවක ආරම්භක ශීඝුතාවය<br>පුතිකිුියකය/පුතිකිුියක සාන්දුණයෙන් ස්වායත්ත වේ.                                                                                                                                                |
| 50. | අධික වාහන තදබදය සහිත නගරයක, හොඳින් ඉර<br>පායා ඇති දිනයක, පුකාශ රසායනික ධූමිකාව පුබලව<br>දැකිය හැක.                                                        | පුකාශ රසායනික ධූමිකාව මුළුමනින්ම ඇතිවන්නේ<br>රථවාහන අපවාහ පද්ධති මගින් පිටකරන සියුම් අංශු<br>සහ ජල බිඳිති මගින් සූර්ය කිරණ පුකිරණ කිරීම<br>හේතුවෙනි.                                                                                    |

# ආවර්තිතා වගුව

| [ | 1  |    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 2   |
|---|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1 | H  |    |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     | He  |
| • | 3  | 4  |     |     |     |     |     |     |     |     |     | 1   | 5   | 6   | 7   | 8   | 9   | 10  |
|   | -  |    |     |     |     |     |     |     |     |     |     |     | В   | C   | N   | 0   | F   | Ne  |
| 2 | Li | Be |     |     |     |     |     |     |     |     |     |     |     |     |     |     | 17  |     |
|   | 11 | 12 |     |     |     |     |     |     |     |     |     |     | 13  | 14  | 15  | 16  | 17  | 18  |
| 3 | Na | Mg |     |     |     |     |     |     |     |     |     |     | Al  | Si  | P   | S   | Cl  | Ar  |
|   | 19 | 20 | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32  | 33  | 34  | 35  | 36  |
| 4 | K  | Ca | Sc  | Ti  | v   | Cr  | Mn  | Fe  | Co  | Ni  | Cu  | Zn  | Ga  | Ge  | As  | Se  | Br  | Kr  |
| • | 37 | 38 | 39  | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54  |
| _ |    | i  |     |     |     |     |     |     | Rh  | Pd  | Ag  | Cd  | In  | Sn  | Sb  | Te  | I   | Xe  |
| 5 | Rb | Sr | Y   | Zr  | Nb  | Mo  | Tc_ | Ru  | Kli | ru  | Ag  | Cu  |     |     |     |     |     |     |
|   | 55 | 56 | La- | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 84  | 85  | 86  |
| 6 | Cs | Ba | Lu  | Hf  | Ta  | W   | Re  | Os  | Ir  | Pt  | Au  | Hg  | Tl  | Pb  | Bi  | Po  | At  | Rn  |
|   | 87 | 88 | Ac- | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 |
| 7 | Fr | Ra | Lr  | Rf  | Db  | Sg  | Bh  | Hs  | Mt  | Ds  | Rg  | Cn  | Nh  | Fl  | Mc  | Lv  | Ts  | Og  |

| 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69  | 70 | 71 |
|----|----|----|----|----|----|----|----|----|----|----|----|-----|----|----|
|    | Ce |    |    |    |    |    |    |    |    |    |    | Tm  |    |    |
| 89 | 90 |    |    |    |    |    |    |    |    |    |    | 101 |    |    |
| Ac | Th |    |    |    |    |    |    |    |    |    |    | Md  |    |    |

සියලු ම හිමිකම් ඇවිරිනි / (முழுப் பதிப்புநிமையுடையது / $All\ Rights\ Reserved$ )

### නව නිර්දේශය/பුනිய பாடத்திட்டம்/New Syllabus

අධානයන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

රසායන විදනවIIஇரசாயனவியல்IIChemistryII

02 S II

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අ**මතර කියවීම කාලය** - **මිනිත්තු 10** යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

විහාග අංකය : .....

අමතර කියවීම් කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුවත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදා ගන්න.

- 💥 ආවර්තිතා වගුවක් 15 වැනි පිටුවෙහි සපයා ඇත.
- \* ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- \* සාර්වතු වායු නියතය,  $R = 8.314 \,\mathrm{J} \,\mathrm{K}^{-1} \,\mathrm{mol}^{-1}$
- \* ඇවගාඩ්රෝ නියතය,  $N_A = 6.022 \times 10^{23} \; \mathrm{mol}^{-1}$
- ※ මෙම පුශ්න පතුයට පිළිතුරු සැපයීමේදී ඇල්කයිල් කාණ්ඩ සංක්ෂිප්ත ආකාරයකින් නිරුපණය කළ හැකි ය.



- A කොටස වපුහගත රචනා (පිටු 02 08)
- \* සියලුම පුශ්නවලට මෙම පුශ්න පතුයේම පිළිතුරු සපයන්න.
- \* ඔබේ පිළිතුරු එක් එක් පුශ්නයට ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බවද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බවද සලකන්න.
  - B කොටස සහ C කොටස රචනා (පිටු 09 14)
- \* එක් එක් කොටසින් පුශ්න **දෙක** බැගින් තෝරා ගනිමින් පුශ්න **හතරකට** පිළිතුරු සපයන්න. මේ සඳහා සපයනු ලබන කඩදාසි භාවිත කරන්න.
- \* සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු A, B සහ C කොටස් තුනට පිළිතුරු, A කොටස මුලින් තිබෙන පරිදි එක් පිළිතුරු පතුයක් වන සේ අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B සහ f C කොටස් **පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

#### පරීක්ෂකවරුන්ගේ පුගෝජනය සඳහා පමණි

| කොවස | පුශ්න අංකය | ලැබූ ලකුණු |
|------|------------|------------|
|      | 1          |            |
|      | 2          |            |
| A    | 3          |            |
|      | 4          |            |
|      | 5          |            |
| В    | 6          |            |
|      | 7          |            |
|      | 8          |            |
| C    | 9          |            |
|      | 10         |            |
|      | එකතුව      |            |

|           | එකතුව |
|-----------|-------|
| ඉලක්කමෙන් |       |
| අකුරින්   |       |

**සංකේත අං**ක

| උත්තර පතු පරීක්ෂක l |  |
|---------------------|--|
| උත්තර පතු පරීක්ෂක 2 |  |
| පරීක්ෂා කළේ :       |  |
| අධීක්ෂණය කළේ :      |  |

### A කොටස - වපුහගත රචනා

පුශ්න හතරටම මෙම පතුයේම පිළිතුරු සපයන්න. (එක් එක් පුශ්නය සඳහා නියමිත ලකුණු පුමාණය 100 කි.)

මෙම තීරයේ කිසිවක් නො ලියන්න

- 1. (a) පහත දැක්වෙන පුශ්නවලට තික් ඉරි මත පිළිතුරු සපයන්න.
  - (i)  $Na^+, Mg^{2+}$  සහ  $F^-$  යන අයන තුන අතුරෙන්, **කුඩාම** අයනික අරය ඇත්තේ කුමකට ද? ..........
  - (ii) C,N සහ O යන මූලදුවා තුන අතුරෙන්, **වැඩීම** දෙවන අයනීකරණ ශක්තිය ඇත්තේ කුමකට ද? ......
  - (iii)  $H_2O$ , HOCl සහ  $OF_2$  යන සංයෝග තුන අතුරෙන්, **වඩාත්ම** විදයුත් සෘණ ඔක්සිජන් පරමාණුව ඇත්තේ කුමක ද? ......
  - (iv) Be, C සහ N යන මූලදුවා තුන අතුරෙන්, වායුමය අවස්ථාවේදී පරමාණුවකට ඉලෙක්ටෝනයක් එකතු කළ විට  $[Y(g) + e o Y^{\bar{}}(g); Y = Be, C, N]$  ශක්තිය පිටකරනුයේ කුමක් ද? .......
  - (v) NaF, KF සහ KBr යන අයනික සංයෝග තුන අතුරෙන්, ජලයේ **වැඩීම** දුංවාතාව ඇත්තේ කුමකට ද?
  - (vi) HCHO,  $\mathrm{CH_3F}$  සහ  $\mathrm{H_2O_2}$  යන සංයෝග තුන අතුරෙන්, **පුවලම** අන්තර්-අණුක බල ඇත්තේ කුමකට ද?

(ලකුණු 24 යි)

(b) (i)  $N_2O_3^{2-}$ අයනය සඳහා **වඩාත්ම** පිළිගත හැකි ලුවිස් තිත්-ඉරි වහුනය අඳින්න. එහි සැකිල්ල පහත දක්වා ඇත.

(ii) මෙම අයනය සඳහා තවත් ලුවිස් තිත්-ඉරි වයුහ (සම්පුයුක්ත වයුහ) **තුනක්** අඳින්න. ඉහත (i) හි අඳින ලද වඩාත්ම පිළිගත හැකි වයුහය සමග සංසන්දනය කිරීමේදී ඔබ විසින් අඳින ලද වයුහවල සාපේක්ෂ ස්ථායිතාවයන් සඳහන් කිරීමට එම වයුහ යටින් '**අඩු ස්ථායි**' හෝ '**අස්ථායි**' වශයෙන් ලියා දක්වන්න.

(iii) පහත සඳහන් ලුවිස් තිත්-ඉරි වාුුහය සහ එහි ලේබල් කරන ලද සැකිල්ල පදනම් කරගෙන දී ඇති වගුව සම්පූර්ණ කරන්න.

$$Cl - N^1 - N^2 - C^3 - C^4 - N$$

|                                     | $N^1$ | N <sup>2</sup> | $O^3$ | C <sup>4</sup> |
|-------------------------------------|-------|----------------|-------|----------------|
| පරමාණුව වටා VSEPR යුගල්             |       |                |       |                |
| පරමාණුව වටා ඉලෙක්ටෝන යුගල් ජනාමිතිය |       |                |       |                |
| පරමාණුව වටා හැඩය                    |       |                |       |                |
| පරමාණුවේ මුහුම්කරණය                 |       |                |       |                |

කරන්න.

| ● කොටස් (iv`  | ) සිට (vii), ඉහ                                   | ත (iii) කොටසෙහි දෙන ල                                         | ද ලුවිස් තිත්-ඉරි     | ර වසුහය මත පදනම් වේ. පරමාණු ලේබල         | - A        |
|---------------|---------------------------------------------------|---------------------------------------------------------------|-----------------------|------------------------------------------|------------|
| කිරීම (iii) ෙ | කාටසෙහි ආක                                        | <b>ා</b> රයටම වේ.                                             |                       |                                          | ì          |
| (iv) පහ       | ත දැක්වෙන ද                                       | පරමාණු දෙක අතර $\sigma$ බ $z$                                 | ත්ධන සෑදීමට අ         | සහභාගි වන පරමාණුක/මුහුම් කාක්ෂික         | ٥          |
| හඳු           | නාගන්න.<br>Cl—N <sup>1</sup>                      | Cl                                                            | » r1                  |                                          |            |
| II.           | N¹ O                                              | N <sup>1</sup>                                                | О                     | •••••                                    |            |
| III.          | $N^1$ — $N^2$                                     | N <sup>1</sup>                                                | N <sup>2</sup>        |                                          |            |
| IV.           | $N^2$ — $O^3$                                     | N <sup>2</sup>                                                | O <sup>3</sup>        |                                          |            |
| V.            | $O^{3}-C^{4}$                                     | O <sup>3</sup>                                                | C <sup>4</sup>        |                                          | l          |
| VI            | . C <sup>4</sup> —N                               | C <sup>4</sup>                                                | N                     |                                          |            |
| (v) පෘ        | ාත දැක්වෙන ප                                      | රමාණු දෙක අතර $\pi$ බන්ධ                                      | න සෑදීමට සහභ          | ාාගි වන පරමාණුක කාක්ෂික හඳුනාගන්ෂ        | <b>)</b> . |
|               |                                                   | N <sup>1</sup>                                                | _                     |                                          |            |
| II            | . C <sup>4</sup> —N                               | C <sup>4</sup>                                                | N                     |                                          |            |
|               |                                                   | C <sup>4</sup>                                                | N                     |                                          |            |
| (vi) N        | <sup>1</sup> , N <sup>2</sup> , O <sup>3</sup> සහ | ${f C}^4$ පරමාණු වටා ආසත්න                                    | බන්ධන කෝණ             | සඳහන් කරන්න.                             |            |
|               | $N^1$                                             | , N <sup>2</sup>                                              | , O <sup>3</sup> .    | , C <sup>4</sup>                         |            |
| (vii) N       | $^{1}$ , $N^{2}$ , $O^{3}$ සහ                     | $\mathrm{C}^4$ පරමාණු විදායුත් සෘණත                           | ාව <b>වැඩිවන</b> පිළි | වෙළට සකසන්න.                             |            |
|               |                                                   | <                                                             |                       | (ලකුණු 56                                | 3)         |
| (c) පහත ස     | දෙහන් තොරතු                                       | රු සලකන්න.                                                    |                       |                                          |            |
|               |                                                   | රමාණු සංයෝජනය වී $\sigma$ බ $$ B ලෙස නිරූපණය කරනු ල           |                       | විෂමජාතීය ද්විපරමාණුක ${f AB}$ අණුව සාද  | 3.         |
|               |                                                   | පුත් සෘණතාවය <b>B</b> වල එම<br>ාණුවේ විද <u>ය</u> ුත් සෘණතාවය | අගයට වඩා අ            | අඩු ය $(X_A < X_B)$ .                    |            |
|               |                                                   |                                                               | B අණුවේ A             | සහ ${f B}$ පරමාණු අතර අන්තර්-නාෳෂ්ටි     | ක          |
|               | දුර (d <sub>A–B</sub>                             |                                                               |                       |                                          |            |
|               | $d_{A-B} = r$                                     | $A + r_B - c(X_B - X_A)$                                      |                       |                                          |            |
|               |                                                   | ණුක අරය; c = 9 pm                                             |                       | 10                                       |            |
|               |                                                   | sහ r පිකෝමීටරවලින් (pm                                        |                       |                                          |            |
|               |                                                   |                                                               |                       | ්නවලට පිළිතුරු සපයන්න.                   |            |
| (i) A         | A සහ B අතර                                        | $\sigma$ බන්ධන වර්ගය හඳුනාග                                   | ැනීමට යොදාග           | න්නා නම කුමක් ද?                         |            |
| (ii) <i>A</i> | ∆B අණුවෙහි ස                                      | ාාගික ආරෝපණ (δ+ සහ                                            | δ–) ස්ථානගත           | වී ඇත්තේ කෙසේදැයි පෙන්නුම් කරන්          | <br>න.<br> |
| (iii) A       | \B අණුවේ ද්වි                                     | ධැව ඝූර්ණය (µ) ගණනය :                                         | කිරීමට භාවිත ස        | තරන සමීකරණය ලියා එහි දිශාව පෙන් <b>ද</b> | ුම්        |

| <b>(</b> i      | IV) පහත දැ<br>පුතිශතය                                                            | ක්වේද<br>ගණ:                                                                                                                                                                          | න දත්ත උපයෝගී<br>නය කරන්න.                                                                                                                                                                                                                      |                                                                                                                         | 4 % - 11 1 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 % - 0.0 | අගවාක සට                   | 92                                  |
|-----------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------------|
|                 | H <sub>2</sub> වල අ                                                              | අන්තර්                                                                                                                                                                                | ර-නාෂ්ටික දුර $\left(	extbf{d}_{	extbf{H-J}} ight)$                                                                                                                                                                                             | $_{\rm H}$ )= 74 pm                                                                                                     | F වල විදයුත් ඍණතාවය                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 4.0                      |                                     |
|                 | $F_2$ වල අ                                                                       | ‡න්තර්                                                                                                                                                                                | -නාෂ්ටික දුර $(\mathbf{d}_{	extbf{F-F}})$                                                                                                                                                                                                       | = 144  pm                                                                                                               | HFවල ද්විධුැව ඝූර්ණය                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $= 6.0 \times 10$          | <sup>-30</sup> C m                  |
|                 |                                                                                  |                                                                                                                                                                                       | සෘණතාවය                                                                                                                                                                                                                                         |                                                                                                                         | ඉලෙක්ටුෝනයක ආරෝපණ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            | 0 <sup>-19</sup> C                  |
|                 |                                                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                                                 |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                     |
|                 |                                                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                                                 |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                     |
|                 |                                                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                                                 |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                     |
|                 |                                                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                                                 |                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |                                     |
| 20              | ) ට අඩු ය. <b>A</b>                                                              | . සීමිත                                                                                                                                                                               | ් ජලය පුමාණයක් ස                                                                                                                                                                                                                                | )ලදුවාාවල ක්ෙ<br>ාහ <b>B, C</b> සහ l                                                                                    | ලා්රයිඩ වේ. මෙම මූලදුවාවල<br>D වැඩිපුර ජලය සමග පුතිකිය                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ි<br>පරමාණුක <sub>ව</sub>  | මු <b>20</b> යි)<br>කුමාංක<br>බාදෙන |
| 20              | ) ට අඩු ය. <b>A</b><br>ලවල ( <b>P</b> <sub>1</sub> – <b>P</b>                    | . සීමිත                                                                                                                                                                               | <i>p-</i> ගොනුවට අයත් මූ<br>ජලය පුමාණයක් ස<br>්තර පහත දී ඇත.                                                                                                                                                                                    | සහ B, C සහ 1                                                                                                            | D වැඩිපුර ජලය සමග පුතිකිු                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ි<br>පරමාණුක <sub>ව</sub>  | § <b>20</b> යි)<br>කුමාංක           |
| 20              | ) ට අඩු ය. <b>A</b>                                                              | . සීමිත<br>ඉ) විස්                                                                                                                                                                    | ජලය පුමාණයක් ස<br>කර පහත දී ඇත.                                                                                                                                                                                                                 | හ <b>B, C</b> සහ l<br><b>ඵලව</b> ල                                                                                      | D වැඩිපුර ජලය සමග පුතිකිුං<br><b>ල විස්තර</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ි<br>පරමාණුක <sub>ව</sub>  | § <b>20</b> යි)<br>කුමාංක           |
| 20              | ) ට අඩු ය. <b>A</b><br>ලවල ( <b>P</b> <sub>1</sub> – <b>P</b>                    | . සීමිත<br>ලා විස්<br>P <sub>1</sub>                                                                                                                                                  | ජලය පුමාණයක් ස<br>කර පහත දී ඇත.<br>ජාල සහසංයුජ වුහු                                                                                                                                                                                             | හන <b>B</b> , C සහ l<br><b>ඵලව</b><br>හයක් ඇති සං                                                                       | D වැඩිපුර ජලය සමග පුතිකිුං<br><b>ල විස්තර</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ි<br>පරමාණුක <sub>ව</sub>  | § <b>20</b> යි)<br>කුමාංක           |
| 20              | ට අඩු ය. A<br>ලවල (P <sub>1</sub> – P <sub>1</sub><br>සංයෝගය<br>A                | ලීම ත<br>ලා විස්<br>P <sub>1</sub><br>P <sub>2</sub>                                                                                                                                  | ජලය පුමාණයක් ස<br>තර පහත දී ඇත.<br>ජාල සහසංයුජ වුපුෘ<br>පුබල ඒකභාස්මික අ                                                                                                                                                                        | හන <b>B</b> , C සහ l<br><b>එළව</b><br>හයක් ඇති සං<br>අම්ලයක්                                                            | D වැඩිපුර ජලය සමග පුතිකිුං<br><b>ල විස්තර</b><br>යෝගයක්                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ි<br>පරමාණුක <sub>ව</sub>  | § <b>20</b> යි)<br>කුමාංක           |
| 20              | ) ට අඩු ය. <b>A</b><br>ලුවල ( <b>P</b> <sub>1</sub> – <b>P</b>                   | සීමිත<br>ල) විස්<br>P <sub>1</sub><br>P <sub>2</sub><br>P <sub>3</sub>                                                                                                                | ජලය පුමාණයක් ස<br>කර පහත දී ඇත.<br>ජාල සහසංයුජ වුහු                                                                                                                                                                                             | හන <b>B</b> , C සහ l<br>එලව<br>හයක් ඇති සං<br>අම්ලයක්<br>ත්වන වායුවක්                                                   | D වැඩිපුර ජලය සමග පුතිකිුං<br><b>ල විස්තර</b><br>යෝගයක්                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ි<br>පරමාණුක <sub>ව</sub>  | § <b>20</b> යි)<br>කුමාංක           |
| 20              | ව අඩු ය. A<br>ලවල (P <sub>1</sub> – P <sub>1</sub><br>සංයෝගය<br>A<br>B           | සීමිත<br>9) විස්<br>P <sub>1</sub><br>P <sub>2</sub><br>P <sub>3</sub><br>P <sub>4</sub>                                                                                              | ජලය පුමාණයක් ස<br>කර පහත දී ඇත.<br>ජාල සහසංයුජ වුපු<br>පුබල ඒකභාස්මික ර<br>රතු ලිටීමස් නිල් ගැ                                                                                                                                                  | එලව<br>හයක් ඇති සං<br>අම්ලයක්<br>න්වන වායුවක්                                                                           | D වැඩිපුර ජලය සමග පුතිකිුං<br><b>ල විස්තර</b><br>යෝගයක්                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ි<br>පරමාණුක <sub>ව</sub>  | § <b>20</b> යි)<br>කුමාංක           |
| 20              | ට අඩු ය. A<br>ලවල (P <sub>1</sub> – P <sub>1</sub><br>සංයෝගය<br>A                | සීමිත<br>P <sub>9</sub> ) විස්<br>P <sub>1</sub><br>P <sub>2</sub><br>P <sub>3</sub><br>P <sub>4</sub>                                                                                | ජලය පුමාණයක් ස<br>තර පහත දී ඇත.<br>ජාල සහසංයුජ වුපුෘ<br>පුබල ඒකභාස්මික අ<br>රතු ලිටීමස් නිල් ගෘ<br>විරංජන ලක්ෂණ ස                                                                                                                               | එලව<br>හයක් ඇති සං<br>අම්ලයක්<br>ත්වන වායුවක්<br>හිත සංලයාගය                                                            | D වැඩිපුර ජලය සමග පුතිකිුං<br><b>ල විස්තර</b><br>යෝගයක්                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ි<br>පරමාණුක <sub>ව</sub>  | § <b>20</b> යි)<br>කුමාංක           |
| 20              | ව අඩු ය. A<br>ලවල (P <sub>1</sub> – P <sub>1</sub><br>සංයෝගය<br>A<br>B           | ළීම්ත<br>9) විස්<br>P <sub>1</sub><br>P <sub>2</sub><br>P <sub>3</sub><br>P <sub>4</sub><br>P <sub>5</sub><br>P <sub>6</sub><br>P <sub>7</sub>                                        | ජලය පුමාණයක් ස<br>තර පහත දී ඇත.<br>ජාල සහසංයුජ වනු<br>පුබල ඒකභාස්මික ශ<br>රතු ලිටීමස් නිල් ගෘ<br>විරංජන ලක්ෂණ ස<br>තිුිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිි                                                                                       | එළව<br>හයක් ඇති සං<br>අම්ලයක්<br>ත්වත වායුවක්<br>හිත සංයෝගය<br>ශ්<br>අම්ලයක්                                            | D වැඩිපුර ජලය සමග පුතිකිුං<br><b>ල විස්තර</b><br>යෝගයක්<br>යක්                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ි<br>පරමාණුක <sub>ව</sub>  | § <b>20</b> යි)<br>කුමාංක           |
| 20<br>එල්       | ට අඩු ය. A<br>ලවල (P <sub>1</sub> – P<br>සංයෝගය<br>A<br>B<br>C<br>D              | ල් සීම්ත<br>ඉ) විස්<br>P <sub>1</sub><br>P <sub>2</sub><br>P <sub>3</sub><br>P <sub>4</sub><br>P <sub>5</sub><br>P <sub>6</sub><br>P <sub>7</sub><br>P <sub>8</sub><br>P <sub>9</sub> | ජලය පුමාණයක් ස<br>තර පහත දී ඇත.<br>ජාල සහසංයුජ වනු<br>පුබල ඒකභාස්මික ශ<br>රතු ලිටීමස් නිල් ගෘ<br>විරංජන ලක්ෂණ ස<br>නිහාස්මික අම්ලයක්<br>පුබල ඒකභාස්මික ශ<br>ආමලික KMnO <sub>4</sub> දුය<br>කලිල ඝනයක්<br>පුබල ඒකභාස්මික ශ                       | එලව<br>හයක් ඇති සං<br>අම්ලයක්<br>න්වන වායුවක්<br>හිත සංයෝගය<br>ශ්<br>අම්ලයක්<br>වෙණයක් අවර්                             | D වැඩිපුර ජලය සමග පුතිකිුග<br><b>ල විස්තර</b><br>යෝගයක්<br>කක්<br>ණ කරන වායුවක්                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ල පරමාණුක ද<br>යා කළවිට ලබ | § <b>20</b> යි)<br>කුමාංක           |
| 20<br>එල්<br>(i | ට අඩු ය. A<br>ලවල (P <sub>1</sub> – P <sub>1</sub><br>සංයෝගය<br>A<br>B<br>C<br>D | ළුම්ත<br>P <sub>9</sub> ) විස්<br>P <sub>2</sub><br>P <sub>3</sub><br>P <sub>4</sub><br>P <sub>5</sub><br>P <sub>6</sub><br>P <sub>7</sub><br>P <sub>8</sub><br>P <sub>9</sub>        | ජලය පුමාණයක් ස<br>තර පහත දී ඇත.<br>ජාල සහසංයුජ වුපුෘ<br>පුබල ඒකභාස්මික ද<br>රතු ලිටීමස් නිල් ගෘ<br>විරංජන ලක්ෂණ ස<br>තිහාස්මික අම්ලයක්<br>පුබල ඒකභාස්මික ද<br>ආම්ලික KMnO <sub>4</sub> දුය<br>කලිල ඝනයක්<br>පුබල ඒකභාස්මික ද<br>හඳුනාගන්න (රසාය | වෙන B, C සහ ව<br>එලව<br>හයක් ඇති සං<br>අම්ලයක්<br>න්වන වායුවක්<br>න්වත සංයෝගය<br>ශ්රීත සංයෝගය<br>අම්ලයක්<br>වෙණයක් අවර් | D වැඩිපුර ජලය සමග පුතිකිුග<br><b>ල විස්තර</b><br>යෝගයක්<br>කක්<br>ණ කරන වායුවක්                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ල පරමාණුක ද<br>යා කළවිට ලබ | දු 20 යි)<br>කුමාංක<br>බාදෙන        |
| 20<br>එල්<br>(i | ට අඩු ය. A<br>ලවල (P <sub>1</sub> – P <sub>1</sub><br>සංයෝගය<br>A<br>B<br>C<br>D | ළුම්ත<br>P <sub>9</sub> ) විස්<br>P <sub>2</sub><br>P <sub>3</sub><br>P <sub>4</sub><br>P <sub>5</sub><br>P <sub>6</sub><br>P <sub>7</sub><br>P <sub>8</sub><br>P <sub>9</sub>        | ජලය පුමාණයක් ස<br>තර පහත දී ඇත.<br>ජාල සහසංයුජ වුපුෘ<br>පුබල ඒකභාස්මික ද<br>රතු ලිටීමස් නිල් ගෘ<br>විරංජන ලක්ෂණ ස<br>තිහාස්මික අම්ලයක්<br>පුබල ඒකභාස්මික ද<br>ආම්ලික KMnO <sub>4</sub> දුය<br>කලිල ඝනයක්<br>පුබල ඒකභාස්මික ද<br>හඳුනාගන්න (රසාය | වෙන B, C සහ ව<br>එලව<br>හයක් ඇති සං<br>අම්ලයක්<br>න්වන වායුවක්<br>න්වත සංයෝගය<br>ශ්රීත සංයෝගය<br>අම්ලයක්<br>වෙණයක් අවර් | <ul> <li>ව වැඩිපුර ජලය සමග පුතිකිුංග</li> <li>ම විස්තර</li> <li>යෝගයක්</li> <li>ණ කරන වායුවක්</li> <li>ත්න).</li> <li>D:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ල පරමාණුක ද<br>යා කළවිට ලබ | දු 20 යි)<br>කුමාංක<br>බාදෙන        |

|            | (iii) පහත                | සඳහන්                 | ් පුතිකිුයා සඳහා තුලි                                                | දිත රසායනික සමීකරණ ලියන්න.                                                                                                                  |                      | මෙම<br>තීරයේ<br>කිසිවක්<br>නො ලියන්න |
|------------|--------------------------|-----------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------|
|            | I. :                     | P <sub>1</sub> සම     | စ NaOH(aq)                                                           |                                                                                                                                             |                      | Ç.                                   |
|            | II.                      | <br>P <sub>3</sub> සම | യ Mg                                                                 |                                                                                                                                             |                      |                                      |
|            | III.                     |                       | ග ආම්ලික K <sub>2</sub> Cr <sub>2</sub> O.                           | 7                                                                                                                                           |                      |                                      |
|            |                          | • • • • • • •         |                                                                      |                                                                                                                                             | (ලකුණු <b>50</b> යි) |                                      |
|            | (b) $Al_2(SO_4)_2$ ,     | H <sub>2</sub> SO     | A, Na <sub>2</sub> S <sub>2</sub> O <sub>2</sub> , BaCl <sub>2</sub> | ,, Pb(Ac) <sub>2</sub> සහ KOH වල ජලීය දාවණ අඩංගු <b>P,</b> C                                                                                |                      |                                      |
|            | (පිළිවෙළින් ෙ            | නාවේ)                 | ලෙස ලේබල් කර අ                                                       | ැති බෝතල්, ශිෂායෙකුට ලබා දෙන ලදී. ඒවා හ                                                                                                     | ඳුනාගැනීම සඳහා       |                                      |
|            | වරකට දුාව<br>(Ac - ඇසිෙෙ | •                     | _                                                                    | වන් ලැබුණු සමහර පුයෝජනවත් නිරීක්ෂණ පහත                                                                                                      | ) දකථා ඇත.           |                                      |
|            |                          |                       | මිශු කළ දුාවණ                                                        | නිරීක්ෂණ                                                                                                                                    | 7                    |                                      |
|            | ·                        | I                     | T + R                                                                | පැහැදිලි අවර්ණ දුාවණයක්                                                                                                                     | -                    |                                      |
|            |                          | II                    | P+R                                                                  | සුදු අවක්ෂේපයක්                                                                                                                             |                      |                                      |
|            |                          | III                   | T + S                                                                | සුදු ජෙලටිනීය අවක්ෂේපයක්                                                                                                                    |                      |                                      |
|            |                          | IV                    | U + R                                                                | සුදු අවක්ෂේපයක්                                                                                                                             |                      |                                      |
|            |                          | V                     | P+Q                                                                  | සුදු අවක්ෂේපයක්, රත් කළවිට කළුපැහැ ගනී                                                                                                      |                      |                                      |
|            |                          | VI                    | P + U                                                                | සුදු අවක්ෂේපයක්, රත් කළවිට දුවණය වේ                                                                                                         |                      |                                      |
|            | (i) <b>P</b> සිට         | U හඳු                 | තාගත්ත.                                                              |                                                                                                                                             |                      |                                      |
|            | P:                       | •••••                 | •••••                                                                | Q: R:                                                                                                                                       |                      |                                      |
|            | <b>S</b> :               | • • • • • • •         |                                                                      | T: U:                                                                                                                                       |                      |                                      |
|            | (ii) ඉහත                 | [ සිට '               | VI දක්වා ඇති එක් ස                                                   | එක් පුතිකිුයාව සඳහා තුලිත රසායනික සමීකරණ                                                                                                    | දෙන්න.               |                                      |
|            | I:                       |                       | •••••                                                                |                                                                                                                                             |                      |                                      |
|            | II:                      |                       |                                                                      |                                                                                                                                             | ·····                |                                      |
|            | III:                     |                       | •••••                                                                |                                                                                                                                             |                      |                                      |
|            | IV:                      |                       |                                                                      |                                                                                                                                             |                      |                                      |
|            | V:                       | සුදු අව               | ටක්ෂේපය සෑදීම:                                                       |                                                                                                                                             |                      |                                      |
|            |                          |                       | -                                                                    |                                                                                                                                             |                      | ( )                                  |
|            | VI:                      |                       |                                                                      |                                                                                                                                             |                      | 100                                  |
|            |                          | (සැ.යු. :             | අවක්ෂේප 🌡 යනුණ                                                       |                                                                                                                                             | (ලකුණු 50 යි)        | 100                                  |
| <b>3</b> . | 1.0 dm³ තුළ              | E AB <sub>2</sub>     | (s) වැඩිපුර පුමාණය                                                   | නම් ලවණයෙහි සංතෘප්ත ජලීය දුාවණයක්, 25 <sup>0</sup> ර<br>ක් මන්ථනය කිරීමෙන් සාදන ලදී. මෙම සංතෘප්ස<br>10 <sup>-3</sup> mol බව සොයා ගන්නා ලදී. |                      |                                      |
|            | (i) 25 °C                | දී ඉහස                | ා පද්ධතියේ $\mathrm{AB}_2(\mathrm{s})$                               | හි දුාවාහතාව හා සම්බන්ධ සමතුලිතය ලියා දක්වන්                                                                                                | ත.                   |                                      |
|            | <br>(ii) 25 °C           | දී ඉහත                | o (i) හි ලියන ලද ස®                                                  | <br>මතුලිතතාවයේ සමතුලිතතා නියතය සඳහා පුකාශන                                                                                                 |                      |                                      |
|            | •••••                    | • • • • • • •         |                                                                      |                                                                                                                                             |                      |                                      |

|     | (iii)        | 25 °C දී ඉහත (ii) හි සඳහන් කළ සමතුලිතතා නියතයේ අගය ගණනය කරන්න.                                                                               | නිර<br>කිසි<br>නෙ |
|-----|--------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|     |              |                                                                                                                                              |                   |
|     |              |                                                                                                                                              |                   |
|     |              |                                                                                                                                              |                   |
|     |              |                                                                                                                                              |                   |
|     |              |                                                                                                                                              |                   |
|     |              |                                                                                                                                              |                   |
|     | (iv)         | $AB_2$ හි වෙනත් සංතෘප්ත ජලීය දාවණයක්, $25~^{\circ}\mathrm{C}$ දී ආසුැක ජලය $2.0~\mathrm{dm}^3$ තුළ $AB_2(\mathrm{s})$ වැඩිපුර                |                   |
|     |              | පුමාණයක් මන්ථනය කිරීමෙන් සාදා ගන්නා ලදී. මෙම පද්ධතිය සඳහා සමතුලිතතා නියතයේ අගය                                                               |                   |
|     |              | හේතු දක්වමින් පුරෝකථනය කරන්න.                                                                                                                |                   |
|     |              |                                                                                                                                              |                   |
|     |              |                                                                                                                                              |                   |
|     | (v)          | $25~^\circ\mathrm{C}$ හි පවතින $\mathrm{AB}_2$ හි ජලීය සංකෘප්ත දුාවණයකට $\mathrm{NaB}(\mathrm{s})$ නැමැති පුබල විදුසුත් විච්ඡේදකයක           |                   |
|     | (.,          | ස්වල්ප පුමාණයක් එකතු කරන ලදී. $A^{2+}(aq)$ වල සාන්දුණය වැඩිවේ ද, අඩුවේ ද යන වග හේතු                                                          |                   |
|     |              | දක්වමින් පුරෝකථනය කරන්න.                                                                                                                     |                   |
|     |              |                                                                                                                                              |                   |
|     |              |                                                                                                                                              |                   |
|     |              | (ලකුණු <b>60</b> යි)                                                                                                                         |                   |
| (b) | ජලීර         | ා දුාවණයකදී පුොපනොයික් අම්ලය ( $\mathrm{C_2H_5COOH}$ ) පහත දැක්වෙන ආකාරයට අයනීකරණය වේ.                                                       |                   |
| (0) | -0-          | $C_2H_5COOH(aq) + H_2O(l) \rightleftharpoons C_2H_5COO^-(aq) + H_3O^+(aq)$                                                                   |                   |
|     |              | $25$ °C දී $K_a$ (පොපනොයික් අම්ලය) = $1.0 \times 10^{-5}$ වේ.                                                                                |                   |
|     | <i>(</i> :)  | $25~^\circ\mathrm{C}$ දී ඉහත පුතිකිුයාවේ සමතුලිතතා නියතය සඳහා පුකාශනය ලියා දක්වන්න.                                                          |                   |
|     | (1)          | ) 25 °C ද ඉහත් පුත්කුයාවේ සම්තුල්තිතා නියකය සඳහා පුක්කෙන්ස ලසා දක්වෙන.                                                                       |                   |
|     |              |                                                                                                                                              |                   |
|     | <b>/::</b> \ | <br>) 25 °C දී C <sub>2</sub> H <sub>5</sub> COOH වලින් 0.74 cm³ ආසුැත ජලයේ දුවණය කිරීමෙන් C <sub>2</sub> H <sub>5</sub> COOH හි 100.0 cm³ ක |                   |
|     | (11)         |                                                                                                                                              | 1                 |
|     |              | ජලීය දුාවණයක් සාදාගන්නා ලදී. 25 °C දී මෙම දුාවණයේ pH අගය ගණනය කරන්න.                                                                         |                   |
|     |              | (C = 12; O = 16; H = 1; C2H5COOH වල ඝනත්වය 1.0 g cm-3 ලෙස සලකන්න.)                                                                           |                   |
|     |              |                                                                                                                                              |                   |
|     |              |                                                                                                                                              |                   |
|     |              |                                                                                                                                              |                   |
|     |              |                                                                                                                                              | - 1               |

More Past Papers at tamilguru.lk

100

(ලකුණු 40 යි.)

| <b>අම</b> ම |
|-------------|
| තීරයේ       |
| කිසිවක්     |
| නො ලියන්න   |
|             |

4. (a)  ${\bf A}$ ,  ${\bf B}$ ,  ${\bf C}$  සහ  ${\bf D}$  යනු අණුක සූතුය  ${\bf C}_6{\bf H}_{10}$  සහිත ව්යුහ සමාවයවික වේ. මේවායින් එකක්වත් පුකාශ සමාවයවිකතාවය නොපෙන්වයි.  ${\bf A}$ ,  ${\bf B}$ ,  ${\bf C}$  සහ  ${\bf D}$  යන සමාවයවික හතරම,  ${\rm HgSO_4}/$  තනුක  ${\rm H_2SO_4}$  සමග පිරියම් කළවිට ලබාදෙන ඵල 2,4-ඩයිනයිටුොෆෙනිල්හයිඩුසීන් (2,4-DNP) සමග පුතිකියා කර වර්ණවත් අවක්ෂේප ලබා දෙයි.

ඇමෝනීකෘත  $AgNO_3$  සමග A පමණක් අවක්ෂේපයක් ලබා දෙයි. A සඳහා එක් ස්ථාන සමාවයවිකයක් පමණක් ඇති අතර, එය B වේ. B යනු C හි දාම සමාවයවිකයක් වේ. C,  $HgSO_4$ / තනුක  $H_2SO_4$  සමග පුතිකිුයා කර E සහ F ඵල දෙක ලබා දෙයි. D,  $HgSO_4$ / තනුක  $H_2SO_4$  සමග පුතිකිුයා කර, එක් ඵලයක් පමණක් ලබාදෙන අතර, එය E වේ.

(i)  ${f A},{f B},{f C},{f D},{f E}$  සහ  ${f F}$  වල වනුහයන් පහත දී ඇති කොටු තුළ අඳින්න.



 $(ii)~{
m H_2}/{
m Pd ext{-BaSO}_4}$  / ක්විනොලීන් සමග  ${
m A,B,C}$  සහ  ${
m D}$  සංයෝග වෙන වෙනම පුතිකිුයා කළවිට, කුමන සංයෝගය පාරතිුමාන සමාවයවිකතාවය නොපෙන්වන ඵලයක් ලබාදෙන්නේ ද?

(iii) f A වැඩිපුර f HBr සමග පුතිකිුයා කර ලබාදෙන f G ඵලයේ වපුහය පහත දී ඇති කොටුව තුළ අඳින්න.



(iv)  ${f E}$  පහත දී ඇති පුතිකිුිිියාවලදී ලබාදෙන  ${f X}$  සහ  ${f Y}$  එලවල වසුහ අදාළ කොටු තුළ අදිත්න.



old X සහ old Y එකිනෙකින් වෙන් කර හඳුනාගැනීමට පරීක්ෂාවක් නම් කරන්න.

(ලකුණු 60 යි.)

(b) (i) දී ඇති කොටු තුළ K,L සහ M සංයෝගවල වහුහ ඇඳීමෙන් සහ P,Q සහ R පුතිකාරක/උත්පේුරක දෙමින් පහත දී ඇති පුතිකුියා අනුකුම තුන සම්පූර්ණ කරන්න.

මෙම තීරයේ කිසිවක් නො ලියන්න





(ii) පුතිකියා I - VI අතුරෙන් තෝරාගනිමින් පහත දක්වා ඇති එක් පුතිකියා වර්ගය සඳහා **එක් (01)** නිදසුනක් බැගින් දෙන්න.

නියුක්ලියෝෆිලික ආකලනය ......

නියුක්ලියෝෆිලික ආදේශය .....(ලකුණු 10 යි)

100

### නව නිර්දේශය/பුதிய பாடத்திட்டம்/New Syllabus

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2020 கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2020 General Certificate of Education (Adv. Level) Examination, 2020

රසායන විදූනාව II

இரசாயனவியல் II Chemistry II



\* සාර්වනු වායු නියතය  $R=8.314~{
m J~K}^{-1}_{
m mol}^{-1}$  \* ඇවගාඩ්රෝ නියතය  $N_A=6.022~{
m x~10}^{23}_{
m mol}^{-1}$ 

### B කොටස — රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 150** බැගින් ලැබේ.)

5. (a)  $\mathrm{XY}_2\mathrm{Z}_2(\mathrm{g})$  නමැති සංයෝගය  $300~\mathrm{K}$  ට වඩා ඉහළ උෂ්ණත්වවලට රත්කළ විට පහත පරිදි වියෝජනය වේ.

$$XY_2Z_2(g) \stackrel{\Delta}{\rightleftharpoons} XY_2(g) + Z_2(g)$$

 $XY_2Z_2(g)$  හි 7.5~g ක සාම්පලයක් රේචනය කරන ලද  $1.00~\mathrm{dm}^3$  දෘඪ-සංවෘත බඳුනක් තුළ තබා උෂ්ණත්වය  $480~\mathrm{K}$  දක්වා වැඩිකරන ලදී.

 $\mathrm{XY_2Z_2(g)}$  හි මවුලික ස්කන්ධය  $150~\mathrm{g~mol}^{-1}$  වේ.  $480~\mathrm{K}$  හිදී RT හි ආසන්න අගය ලෙස  $4000~\mathrm{J~mol}^{-1}$  යොදාගන්න. සියලුම වායුන් පරිපූර්ණ වායු ලෙස හැසිරෙන බව උපකල්පනය කරන්න.

- (i) වියෝජනය වීමට පෙර භාජනය තුළ ඇති  $\mathrm{XY}_2\mathrm{Z}_2(\mathrm{g})$  මවුල සංඛාාව ගණනය කරන්න.
- (ii) ඉහත පද්ධතිය  $480~{\rm K}$  දී සමතුලිතතාවයට එළඹි විට භාජනය තුළ ඇති මුළු මවුල පුමාණය  $7.5\times 10^{-2}~{\rm mol}$  බව සොයාගන්නා ලදී.  $480~{\rm K}$  දී සමතුලිතතා මිශුණය තුළ ඇති  ${\rm XY}_2{\rm Z}_2({\rm g}), {\rm XY}_2({\rm g})$  සහ  ${\rm Z}_2({\rm g})$  හි මවුල සංඛාහ ගණනය කරන්න.
- (iii)  $480~{
  m K}$  දී මෙම පුතිකිුයාව සඳහා සමතුලිතතා නියතය  $K_{_{C}}$  ගණනය කරන්න.
- $({
  m iv})$   $480~{
  m K}$  දී සමතුලිතතාවය සඳහා  ${
  m \emph{K}}_{
  m \emph{p}}$  ගණනය කරන්න.

(ලකුණු 75 යි)

- (b) ඉහත (a) හි විස්තර කළ පුතිකියාව වන  $XY_2Z_2(g) \to XY_2(g) + Z_2(g)$  සඳහා 480 K හිදී,  $XY_2Z_2(g)$ ,  $XY_2(g)$  සහ  $Z_2(g)$  හි ගිබ්ස් ශක්තීන් (G) පිළිවෙළින්  $-60 \text{ kJ mol}^{-1}$ ,  $-76 \text{ kJ mol}^{-1}$  සහ  $-30 \text{ kJ mol}^{-1}$  වේ.
  - (i)  $480~\mathrm{K}$  දී පුතිකිුයාවෙහි  $\Delta G~\mathrm{(kJ~mol}^{-1}$  වලින්) ගණනය කරන්න.
  - (ii) ඉහත පුතිකුියාවෙහි  $480~{
    m K}$  දී  $\Delta S$  හි විශාලත්වය  $150~{
    m J~K}^{-1}~{
    m mol}^{-1}$ වේ.  $\Delta S$  සඳහා නිවැරදී ලකුණ (+ හෝ –) භාවිත කරමින්  $480~{
    m K}$  දී පුතිකුියාව සඳහා  $\Delta H$  ගණනය කරන්න.
  - (iii) ඉහත (ii) හි ලබාගත්  $\Delta H$  හි ලකුණ (+ හෝ –) අනුව මෙම පුතිකිුිිියාව තාපදායක ද තාපාවශෝෂක ද යන වග පැහැදිලි කරන්න.
  - (iv)  $480 \ {\rm K} \ {\rm \r{q}} \ {\rm XY}_2({\rm g})$  හා  ${\rm Z}_2({\rm g})$  මගින්  ${\rm XY}_2{\rm Z}_2({\rm g})$  සෑදීමේදී එන්තැල්පි වෙනස අපෝහනය කරන්න.
  - $(v)\ XY_2Z_2(g)$  හි X-Z බන්ධනයෙහි බන්ධන එන්තැල්පිය  $+250\ kJ\ mol^{-1}$  වේ නම් Z-Z බන්ධනයෙහි බන්ධන Y එන්තැල්පිය ගණනය කරන්න.  $(XY_2Z_2(g)$  හි වසුහය Z-X-Z බව සලකන්න.)
  - (vi) වායුමය  $XY_2Z_2$  වෙනුවට දුව  $XY_2Z_2$  භාවිත කළේනම්, එවිට  $XY_2Z_2(l) \to XY_2(g) + Z_2(g)$  පුතිකිුයාව සඳහා ලැබෙන  $\Delta H$  හි අගය ඉහත (ii) හි ලබාගත්  $\Delta H$  හි අගයට සමාන ද, නැතහොත් වඩා විශාල ද හෝ කුඩා ද යන වග හේතු දක්වමින් පහදන්න. (ලකුණු 75 යි)

 ${f 6}$ .  ${f (a)}$  දී ඇති  ${f T}_C$ ෂ්ණත්වයේදී සංවෘත බඳුනක් තුළ සිදුවන පහත දක්වා ඇති පුතිකිුිිිිියාව සලකන්න.

$$2N_2O_5(g) \rightarrow 4NO_2(g) + O_2(g)$$

- (i) පුතිකිුයාවේ දක්වා ඇති එක් එක් සංයෝගයට අදාළව පුතිකිුයාවේ ශීඝුතාව සඳහා පුකාශන **තුනක්** ලියන්න.
- (ii) මෙම පුතිකියාව, T උෂ්ණත්වයේදී,  $N_2O_5(g)$  හි  $0.10\,\mathrm{mol}\,\mathrm{dm}^{-3}$  ආරම්භක සාන්දුණයක් සහිතව සිදු කරන ලදී.  $400\,\mathrm{s}$  කාලයකට පසුව ආරම්භක පුමාණයෙන්  $40\%\,\mathrm{m}$  වියෝජනය වී ඇති බව සොයාගන්නා ලදී.
  - I. මෙම කාල පරාසයේදී  $N_2O_5(g)$  වියෝජනය වීමේ සාමානා ශීඝුතාව (average rate of decomposition) ගණනය කරන්න.
  - II.  $NO_2(g)$  සහ  $O_2(g)$  සැදෙන සාමානා ශීසුතාවයන් (average rates of formation) ගණනය කරන්න.
- (iii) වෙනත් පරීක්ෂණයකදී, මෙම පුතිකිුයාව සඳහා  $300~{
  m K}$  දී ආරම්භක ශීඝුතා මනින ලද අතර, එහි පුතිඵල පහත දක්වා ඇත.

| $[N_2O_5(g)]$ / mol dm <sup>-3</sup>                  | 0.01                   | 0.02                   | 0.03                   |  |  |
|-------------------------------------------------------|------------------------|------------------------|------------------------|--|--|
| ආරම්භක ශීසුතාව / mol dm <sup>-3</sup> s <sup>–1</sup> | $6.930 \times 10^{-5}$ | $1.386 \times 10^{-4}$ | $2.079 \times 10^{-4}$ |  |  |

300 K දී පුතිකියාව සඳහා ශීඝුතා පුකාශනය වනුත්පන්න කරන්න.

- (iv) වෙනත් පරීක්ෂණයක්  $300~{\rm K}$  දී  ${
  m N_2O_5(g)}$  හි  $0.64~{
  m mol~dm}^{-3}$  ආරම්භක සාන්දුණයක් සහිතව සිදු කරන ලදී.  $500~{
  m s}$  කාලයකට පසුව ඉතිරි වී ඇති  ${
  m N_2O_5(g)}$  සාන්දුණය  $2.0\times 10^{-2}~{
  m mol~dm}^{-3}$  බව සොයාගන්නා ලදී.
  - I.  $300~{
    m K}$  දී පුතිකිුයාවේ අර්ධ-ජීව කාලය  $(t_{1/2})$  ගණනය කරන්න.
  - II. 300 K දී පුතිකිුයාවේ ශීඝුතා-නියතය ගණනය කරන්න.
- (v) මෙම පුතිකිුයාව පහත සඳහන් මූලික පියවර සහිත යන්තුණයක් හරහා සිදුවේ.

පියවර  $1: N_2O_5(g) \Rightarrow NO_3(g) + NO_2(g)$  : වේගවත් පියවර  $2: NO_3(g) + NO_2(g) \rightarrow 2NO_2(g) + O(g)$  : සෙමින්

පියවර 3 :  $N_2O_5(g)$  + O(g) ightarrow  $2NO_2(g)$  +  $O_2(g)$  : වේගවත්

ඉහත යන්තුණය පුතිකිුයාවෙහි වේග නියමයට අනුකූල වන බව පෙන්වන්න. (ලකුණු 80 යි)

- (b) T උෂ්ණත්වයේදී  ${f A}$  සහ  ${f B}$  නමැති දුව දෙකක් රේචනය කළ සංවෘත බඳුනක් තුළ මිශු කිරීමෙන් පරිපූර්ණ ද්වයංගී දුව මිශුණයක් සාදන ලදී. T උෂ්ණත්වයේදී සමතුලිතතාවයට එළඹි පසු වාෂ්ප කලාපයෙහි  ${f A}$  සහ  ${f B}$  හි අාංශික වාෂ්ප පීඩන පිළිවෙළින්  $P_{{f A}}$  සහ  $P_{{f B}}$  වේ. දාවණය තුළ  ${f A}$  සහ  ${f B}$  හි මවුලභාග පිළිවෙළින්  $X_{{f A}}$  සහ  $X_{{f B}}$  වේ.
  - (i)  $P_{\bf A} = P_{\bf A}^{\circ} X_{\bf A}$  බව පෙන්වන්න. (සමතුලිත අවස්ථාවේදී වාෂ්පීකරණයේ හා ඝනීභවනයේ ශීසුතාවයන් සමාන බව සලකන්න.)
  - (ii)  $300 \, \mathrm{K}$  දී ඉහත පද්ධතියේ මුළු පීඩනය  $5.0 \times 10^4 \, \mathrm{Pa}$  වේ.  $300 \, \mathrm{K}$  හිදී සංශුද්ධ  $\mathbf{A}$  සහ  $\mathbf{B}$  හි සංකෘප්ත වාෂ්ප පීඩන පිළිවෙළින්  $7.0 \times 10^4 \, \mathrm{Pa}$  හා  $3.0 \times 10^4 \, \mathrm{Pa}$  වේ.
    - I. සමතුලිත මිශුණයෙහි දුව කලාපයේ ඇති A හි මවුලභාගය ගණනය කරන්න.
    - II. සමතුලිත මිශුණයෙහිදී A හි වාෂ්ප පීඩනය ගණනය කරන්න. (ලකුණු 70 යි)

7. (a) (i) විදයුත් විච්ඡේද හා ගැල්වානී කෝෂවල ගුණ සංසන්දනය කිරීම සඳහා පහත වගුව පිටපත් කර දී ඇති පද යොදා සම්පූර්ණ කරන්න.

පද: ඇනෝඩය, කැතෝඩය, ධන, ඍණ, ස්වයංසිද්ධ, ස්වයංසිද්ධ නොවන

|    |                                         | විදුපුත් විවිපේද කෝෂය | ගැල්වානී කෝෂය |
|----|-----------------------------------------|-----------------------|---------------|
| A. | ඔක්සිකරණ අර්ධ පුතිකිුිිිියාව සිදු වන්නේ |                       |               |
| B. | ඔක්සිහරණ අර්ධ පුතිකිුයාව සිදු වන්නේ     |                       |               |
| C. | $E_{ m cell}^{ m o}$ හි ලකුණ            |                       |               |
| D. | ඉලෙක්ටුෝන ගලා යන්නේ                     | සිට දක්වා             | සිට දක්වා     |
| E. | කෝෂ පුතිකිුයාවෙහි ස්වයංසිද්ධතාවය        |                       |               |

(ii) පහත දැක්වෙන පරිදි  $300~{
m K}$  දී Zn(s) ඇනෝඩයක්, භාස්මික ජලීය විදයුත් විච්ඡේදෳයක් හා වාතයේ ඇති  $O_2(g)$  වායුව ලබාගැනීමට උපකාරී වන සවිවර Pt කැතෝඩයක් භාවිතයෙන් විදයුත් රසායනික කෝෂයක් ගොඩනගන ලදී. කෝෂය කිුිියාත්මක වනවිට ZnO(s) සෑදේ.

$$E_{\rm ZnO(s)\,|\,Zn(s)\,|\,OH^-(aq)}^{\circ} = -1.31\,{
m V}$$
 සහ  $E_{\rm O_2(g)\,|\,OH^-(aq)}^{\circ} = +0.34\,{
m V}$  Zn = 65 g mol $^{-1}$ , O = 16 g mol $^{-1}$  සහ

1 F = 96,500 C බව දී ඇත.

- අැනෝඩය හා කැතෝඩය මත සිදුවන අර්ධ පුතිකියා ලියා දක්වන්න.
- II. සම්පූර්ණ කෝෂ පුතිකිුයාව ලියා දක්වන්න.
- III.  $300\,\mathrm{K}$  දී කෝෂයේ විභවය  $E^\circ$  ගණනය කරන්න.
- IV. ඉලෙක්ටුෝඩ අතර  $OH^-(aq)$  හි ගමන් මගෙහි දිශාව සඳහන් කරන්න.
- m V.~~300~K දී කෝෂය m 800~s කාලයක් තුළ කිුයාත්මක වනවිටදී  $m O_2(g)~2~mol$  වැය වේ.
  - A. කෝෂය හරහා ගමන් කරන ඉලෙක්ටුෝන මවුල සංඛ්‍යාව ගණනය කරන්න.

ඇනෝඩය

- B. සෑදෙන ZnO(s) හි ස්කන්ධය ගණනය කරන්න.
- ${f C}.$  කෝෂය තුළින් ගමන් කරන ධාරාව ගණනය කරන්න.

(ලකුණු 75 යි)

සව්වර

කැතෝඩය

විදුසුත්

විච්ඡේදාය

 $oxed{(b)} \ \mathbf{M(NO_3)}_{\mathbf{n}}$  ලවණය ආසුැත ජලයේ දුවණය කළවිට  $oxed{P}$  නම් වර්ණවත් සංකීර්ණ අයනය සැදේ.  $oxed{M,3d}$  ගොනුවට අයත් ආන්තරික මූලදුවෳයකි.  $oxed{P}$  පහත දැක්වෙන පුතිකිුයාවලට භාජනය වේ.



f T සහ f U මූලදුවා හතරක් බැගින් අඩංගු සංගත සංයෝග වේ. f P, f R සහ f S සංකීර්ණ අයන වේ.

- (i)  ${f M}$  ලෝහය හඳුනාගන්න.  ${f P}$  සංකීර්ණ අයනයේ  ${f M}$  වල ඔක්සිකරණ අවස්ථාව දෙන්න.
- (ii)  $\mathbf{M}(NO_3)_n$  හි n වල අගය දෙන්න.
- (iii) P සංකීර්ණ අයනයේ M වල සම්පූර්ණ ඉලෙක්ටුෝනික විනාහසය ලියන්න.
- (iv) P,Q,R,S,T සහ U වල රසායනික සූතු ලියන්න.
- (v) P,R,S,T සහ U වල IUPAC නම් ලියන්න.
- (vi) P වල වර්ණය කුමක් ද?
- (vii) පහත I හා II හිදී ඔබ බලාපොරොත්තු වන නිරීක්ෂණ මොනවා ද?
  - I. කාමර උෂ්ණත්වයේදී f P අඩංගු ආම්ලික දුාවණයකට  $H_{\gamma}S$  වායුව යැවූ විට
  - II. I න් ලැබෙන මිශුණයේ දුවණය වී ඇති  $H_{\gamma}S$  ඉවත් කිරීමෙන් පසු තනුක  $HNO_3$  සමග රත්කළ විට
- (viii) ජලීය දාවණයක පවතින M<sup>n+</sup> වල සාන්දුණය නිර්ණය කිරීමට කුමවේදයක් පහත දැක්වෙන රසායනික දවා උපයෝගී කරගනිමින්, තුලිත රසායනික සමීකරණ ආධාරයෙන් කෙටියෙන් විස්තර කරන්න.

KI,  $Na_2S_2O_3$  සහ පිෂ්ටය

(ලකුණු **7**5 යි)

#### C කොටස \_ රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 150** බැගින් ලැබේ.)

8. (a) (i) එකම කාබනික ආරම්භක සංයෝගය ලෙස  ${
m CH_2CH_2OH}$  භාවිත කරමින්  ${
m G}$  සංයෝගය සංශ්ලේෂණය කිරීම සඳහා පුතිකිුයා අනුකුමයක් පහත දී ඇත.

A,B,C,D,E සහ F සංයෝගවල වයුහ ඇඳිමෙන් සහ පියවර 1-7 සඳහා සුදුසු පුතිකාරක ලැයිස්තුවේ දී ඇති ඒවායින් පමණක් තෝරාගෙන ලිවීමෙන්, මෙම පුතිකියා අනුකුමය සම්පූර්ණ කරන්න.

$$CH_3CH_2CH_2OH \xrightarrow{B\omega DO \ 1} A \xrightarrow{B\omega DO \ 2} B \xrightarrow{B\omega DO \ 3} C$$

$$CH_3CH_2CH_2OH \xrightarrow{B\omega DO \ 4} A \xrightarrow{B\omega DO \ 2} B \xrightarrow{B\omega DO \ 3} C$$

$$E \xrightarrow{B\omega DO \ 5} CH_3CH_2CH_2CH_2CH_2CH_3 \xrightarrow{B\omega DO \ 6} F \xrightarrow{B\omega DO \ 7} CH_3CH_2CH_2CH_3$$

$$CH_3 \xrightarrow{CH_3} CH_3$$

$$CH_3 \xrightarrow{CH_3} G$$

$$CH_3 \xrightarrow{CH_$$

(ii) පහත දැක්වෙන පුතිකිුයා දාමය සලකන්න.

 $\mathbf{G},\mathbf{H}$  සහ  $\mathbf{K}$  සංෂයා්ගවල වුනුහ අඳින්න.  $\mathbf{X},\mathbf{Y}$  සහ  $\mathbf{Z}$  පුතිකාරක දෙන්න.

 ${f K}$ , NaNO $_2$  / තනුක HCl සමග පුතිකිුයා කළ විට බෙන්සිල් ඇල්කොහොල් (  ${f CH}_2{
m OH}$  ) ලබා දෙන බව සලකන්න.

(ලකුණු 24 යි)

(b) (i) පහත දැක්වෙන පරිවර්තනය **තුනකට නොවැඩි** පියවර සංඛාෟවකින් සිදු කරන්නේ කෙසේදැයි පෙන්වන්න.

(ii) පහත පුතිකිුයාව සලකන්න.

මෙම පුතිකුියාව සිදු කිරීම සඳහා අවශා වන  ${f P}$  සහ  ${f Q}$  රසායනික දුවායන් හඳුනාගන්න. මෙම පුතිකුියාවේ යන්තුණය ලියන්න. (ලකුණු 20 යි)

- (c) (i) බෙන්සීන්වලට වඩා ෆීනෝල් ඉලෙක්ටොෆිලික ආදේශ පුතිකිුයාවලදී පුතිකිුයාශීලී වන්නේ මන්දැයි ඒවායේ සම්පුයුක්ත දෙමුහුම් සලකමින් පැහැදිලි කරන්න.
  - (ii) සුදුසු පුතිකියාවක් අනුසාරයෙන් ෆීනෝල් සහ බෙන්සීන් අතර ඉහත (i) හි දක්වා ඇති පුතිකියාශීලිතාවයේ වෙනස විදහා දක්වන්න.
  - (iii) ඔබ ඉහත (ii) හි විස්තර කරන ලද පුතිකිුයාවේ ඵලයේ/ඵලයන්හි වහුහය/වහුහ අඳින්න. (ලකුණු 34 යි)

9. (a) (i) පහත දැක්වෙන ගැලීමේ සටහනේ දී ඇති  ${f A} - {f Q}$  දක්වා ඇති දුවා (substances) වල රසායනික සූතු ලියන්න.

 $(\mathbf{a} \mathbf{x} \cdot \mathbf{G} \cdot \mathbf{A} - \mathbf{Q}$  දක්වා දුවා හඳුනාගැනීම සඳහා රසායනික සමීකරණ සහ හේතු බලාපොරොත්තු නොවේ.) කොටුව (කඩ ඉරි) තුළ දැක්වෙන සංකේතවලින් ඝන, අවක්ෂේප, දුාවණ සහ වායු නිරූපණය වේ.



- (ii) A වල සම්පූර්ණ ඉලෙක්ටුෝනික විනාහසය ලියන්න.
- (iii)  ${f D},{f F}$  බවට පරිවර්තනය කිරීමේදී  ${f E}$  හි කාර්යය සඳහන් කරන්න. සඳහන් කළ කාර්යය සඳහා අදාළ තුලිත රසායනික සමීකරණ දෙන්න. (ලකුණු 75යි)
- (b)  $\mathbf{X}$  ඝනයේ  $\mathrm{Cu}_2\mathrm{S}$  සහ  $\mathrm{CuS}$  පමණක් අඩංගු වේ.  $\mathbf{X}$  වල අඩංගු  $\mathrm{Cu}_2\mathrm{S}$  පුතිශතය නිර්ණය කිරීමට පහත දැක්වෙන කි්යාපිළිවෙළ යොදාගන්නා ලදී.

### තියාපිළිවෙළ

f X ඝනයෙහි  $1.00\,g$  කොටසක් තනුක  $H_2SO_4$  මාධායේදී  $0.16\,mol\,dm^{-3}\,KMnO_4\,100.00\,cm^3$  මගින් පිරියම් කරන ලදී. මෙම පුතිකියාව  $Mn^{2+},Cu^{2+}$  සහ  $SO_4^{2-}$  එල ලෙස ලබා දුනි. ඉන්පසු මෙම දුාවණයේ ඇති වැඩිපුර  $KMnO_4$   $0.15\,mol\,dm^{-3}\,Fe^{2+}$  දුාවණයක් සමග අනුමාපනය කරන ලදී. අනුමාපනය සඳහා අවශා වූ පරිමාව  $35.00\,cm^3$  වෙයි.

- (i) ඉහත කියාපිළිවෙළේදී සිදුවන පුතිකියා සඳහා තුලිත අයනික සමීකරණ ලියන්න.
- (ii) ඉහත (i) හි පිළිතුරු පදනම් කරගෙන පහත දැක්වෙන ඒවායේ මවුල අනුපාතය නිර්ණය කරන්න.
  - I. Cu<sub>2</sub>S జుల KMnO<sub>4</sub>
  - II. CuS සහ KMnO<sub>4</sub>
  - III. Fe<sup>2+</sup> జున KMnO<sub>4</sub>
- (iii) X හි  $Cu_2S$  වල පුතිශතය බර අනුව ගණනය කරන්න. (Cu=63.5, S=32)

(ලකුණු 75 යි)

- ${f 10.}\;(a)$  පහත සඳහන් පුශ්න ටයිටේනියම් ඩයොක්සයිඩ්  $({
  m TiO_2})$  වල ගුණ සහ එහි නිෂ්පාදනය ''ක්ලෝරයිඩ් කිුියාවලිය'' මගින් සිදු කිරීම මත පදනම් වේ.
  - (i) මෙම කිුියාවලිය සඳහා භාවිත වන අමුදුවා නම් කරන්න.
  - (ii) නිසි අවස්ථාවන්හි තුලිත රසායනික සමීකරණ භාවිත කරමින්  ${
    m TiO}_2$  නිෂ්පාදන කිුිිියාවලිය කෙටියෙන් විස්තර කරන්න.
  - (iii) TiO, වල ගුණ **තුනක්** සඳහන් කර, එක් එක් ගුණයට අදාළ භාවිතයක් බැගින් දෙන්න.
  - (iv) ශුී ලංකාවේ  $TiO_2$  නිෂ්පාදන කර්මාන්ත ශාලාවක් ස්ථාපිත කිරීමට ඔබ සලකා බලන්නේ නම්, සපුරාලිය යුතු අවශාතා **තුනක්** සඳහන් කරන්න.
  - (v) ඉහත (ii) හි විස්තර කළ නිෂ්පාදන කුියාවලිය ගෝලීය උණුසුම සඳහා දායකවන්නේ ද? ඔබේ පිළිතුර සාධාරණීකරණය කරන්න. (ලකුණු 50 යි)
  - (b) හරිතාගාර ආචරණයෙහි වෙනස්වීම හේතුකොටගෙන වර්තමානයේ පෘථිවිගෝලයේ උණුසුම් වීම කාර්මික විප්ලවයට පෙර පැවැති තත්ත්වයට වඩා සැලකිය යුතු ලෙස වැඩි වී ඇත.
    - (i) හරිතාගාර ආචරණය යනුවෙන් අදහස් වන්නේ කුමක්දැයි කෙටියෙන් පැහැදිලි කරන්න.
    - (ii) පෘථිවිගෝලය උණුසුම් වීම නිසා සිදුවන පුධාන පාරිසරික ගැටලුව හඳුනාගන්න.
    - (iii) ගෝලීය උණුසුම ඉහළ යාමට දායක වන **පධාන** ස්වාභාවික වායුන් **දෙකක්** සඳහන් කරන්න.
    - (iv) ඔබ (iii) හි සඳහන් කළ වායුන් **දෙක** පරිසරයට මුදාහැරීමට ක්ෂුදු ජීවීන් දායක වන ආකාරය කෙටියෙන් පැහැදිලි කරන්න.
    - (v) ඉහත (iii) හි සඳහන් කළ වායුවලට අමතරව ගෝලීය උණුසුම ඉහළ යාමට සෘජුවම දායක වන කෘතිම වාෂ්පශීලී සංයෝග කාණ්ඩ **දෙකක්** නම් කර, එක් කාණ්ඩයකින් එක් සංයෝගය බැගින් තෝරාගෙන ඒවායේ වාූහ අඳින්න.
    - (vi) ඉහත (v) හි සඳහන් කළ සංයෝග කාණ්ඩ දෙක අතුරෙන් ඉහළ වායුගෝලයේ ඕසෝන් වියෝජනය උත්ජේරණයට දායක වන **එක්** සංයෝග කාණ්ඩයක් හඳුනාගන්න.
    - (vii) කොවිඩ්-19 අධිවසංගතය හේතුවෙන් කාර්මික කටයුතු අඩාල වීම නිසා බොහෝ රටවල ගෝලීය පාරිසරික පුශ්න තාවකාලිකව සමනය වී ඇත. ඔබ ඉගෙන ගත් පුධාන ගෝලීය පාරිසරික පුශ්න **දෙකක්** අනුසාරයෙන් මෙම පුකාශය සනාථ කරන්න. (ලකුණු **50** යි)
  - (c) පහත සඳහන් පුශ්න දී ඇති බහුඅවයවක මත පදනම් වේ.
    - පොලිවයිනයිල් ක්ලෝරයිඩ් (PVC), පොලිඑතිලීන් (PE), පොලිස්ටයිරීන් (PS), බේක්ලයිට්, නයිලෝන් 6.6, පොලිඑතිලීන් ටෙරිප්තැලේට් (PET), ගටා පර්චා (Gutta percha)
    - (i) ඉහත සඳහන් බහුඅවයවක **හතරක** පුනරාවර්තී ඒකක අඳින්න.
    - (ii) ඉහත සඳහන් බහුඅවයවක හත (7)
      - I. ස්වාභාවික හෝ කෘතිුම බහුඅවයවක
      - II. ආකලන හෝ සංඝනන බහුඅවයවක

ලෙස වර්ගීකරණය කරන්න.

- (iii) බේක්ලයිට් සෑදීමේදී භාවිත වන ඒක අවයවක **දෙක** නම් කරන්න.
- (iv) බහුඅවයවක ඒවායේ තාපජ ගුණ අනුව වර්ග දෙකකට බෙදිය හැක. එම වර්ග **දෙක** සඳහන් කරන්න. PVC සහ බේක්ලයිට් මින් කුමන වර්ගයන්ට අයත්දැයි ලියන්න.
- (v) ඉහත ලැයිස්තුවෙහි බහුඅවයවක **තුනක්** සඳහා භාවිත **එක** බැගින් සඳහන් කරන්න.

(ලකුණු 50 යි)

\* \* \*

More Past Papers at

tamilguru.lk

# ආවර්තිතා වගුව

| !                | 1                               |                                        |     |     |     |     |     |     |      |     |     |                                               |                    |                      |                                         |     |                    | 2                                                                                                                                      |
|------------------|---------------------------------|----------------------------------------|-----|-----|-----|-----|-----|-----|------|-----|-----|-----------------------------------------------|--------------------|----------------------|-----------------------------------------|-----|--------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 1                | Н                               |                                        |     |     |     |     |     |     |      |     |     |                                               |                    |                      |                                         |     |                    | He                                                                                                                                     |
| _                | 3                               | 4                                      |     |     |     |     |     |     |      |     |     |                                               | 5                  | 6                    | 7                                       | 8   | 9                  | 10                                                                                                                                     |
| 2                | Li                              | Be                                     |     |     |     |     |     |     |      |     |     |                                               | В                  | C                    | N                                       | 0   | F                  | Ne                                                                                                                                     |
|                  | 11                              | 12                                     |     |     |     |     |     |     |      |     |     |                                               | 13                 | 14                   | 15                                      | 16  | 17                 | 18                                                                                                                                     |
| 3                | Na                              | Mg                                     |     |     |     |     |     |     |      |     |     |                                               | Al                 | Si                   | P                                       | S   | Cl                 | Ar                                                                                                                                     |
|                  |                                 |                                        | 21  | 22  | 23  | 24  | 25  | 26  | 27   | 28  | 29  | 30                                            | 31                 | 32                   | 33                                      | 34  | 35                 | 36                                                                                                                                     |
| 4                |                                 |                                        |     |     |     |     |     |     |      | i   | l   | 1                                             | Ga                 | Ge                   | As                                      | Se  | Br                 | Kr                                                                                                                                     |
| •                |                                 |                                        |     |     |     |     |     |     |      | -   |     |                                               | 49                 | 50                   | 51                                      | 52  | 53                 | 54                                                                                                                                     |
| 5                | _                               | i                                      | '   |     |     |     |     |     | l '  | 1   | 1 . |                                               | In                 | Sn                   | Sb                                      | Te  | I                  | Xe                                                                                                                                     |
| ,                | h                               |                                        | -   |     |     | -   |     |     |      |     |     |                                               |                    |                      | 83                                      | 84  | 85                 | 86                                                                                                                                     |
| 6                | 1                               |                                        | l   |     | 1   |     |     | l   |      | 1   |     | ]                                             |                    | 1                    |                                         | Po  | At                 | Rn                                                                                                                                     |
| O                | Cs                              | Da                                     | Lu  | 111 | Ia  |     | NC  | US  | - 11 | 11  | Au  |                                               |                    |                      |                                         |     |                    |                                                                                                                                        |
|                  | 87                              | 88                                     | Ac- | 104 | 105 | 106 | 107 | 108 | 109  | 110 | 111 | 112                                           | 113                | 114                  | 115                                     | 116 | 117                | 118                                                                                                                                    |
| 7                | Fr                              | Ra                                     | Lr  | Rf  | Db  | Sg  | Bh  | Hs  | Mt   | Ds  | Rg  | Cn                                            | Nh                 | Fl                   | Mc                                      | Lv  | Ts                 | Og                                                                                                                                     |
| 4<br>5<br>6<br>7 | 19<br>K<br>37<br>Rb<br>55<br>Cs | 20<br>Ca<br>38<br>Sr<br>56<br>Ba<br>88 |     |     |     |     |     | İ   | 1    |     |     | 30<br>Zn<br>48<br>Cd<br>80<br>Hg<br>112<br>Cn | Ga 49 In 81 Tl 113 | 50<br>Sn<br>82<br>Pb | <b>As</b> 51 <b>Sb</b> 83 <b>Bi</b> 115 | -   | Se 52 Te 84 Po 116 | Se         Br           52         53           Te         I           84         85           Po         At           116         117 |

| 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68  | 69  | 70  | 71  |
|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|
| La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Но | Er  | Tm  | Yb  | Lu  |
| 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
| Ac | Th | Pa | U  | Np | Pu | Am | Cm | Bk | Cf | Es | Fm  | Md  | No  | Lr  |