

MICROSTRUCTURE AND MECHANICAL BEHAVIOR OF TIG WELDED MONEL AND INCONEL WELDMENTS

A PROJECT REPORT

Submitted by

AKASH DEEP RAJKHOWA

VISHVAPRIYAN.K

OLIVER JACK A

MUTHUSELVAN

in partial fulfillment for the award of the degree

of

BACHELOR OF ENGINEERING

in

JANSONS INSTITUTE OF TECHNOLOGY, COIMBATORE

ANNA UNIVERSITY:: CHENNAI 600 025

APRIL 2021

ANNA UNIVERSITY: CHENNAI 600 025

BONAFIDE CERTIFICATE

Certified that this project report "MICROSTRUCTUE AND MECHANICAL BEHAVIOUR OF TIG WELDED MONEL AND INCONEL WELDMENTS" is the bonafide work of "AKASH DEEP RAJKHOWA (711117114003), K. VISHVAPRIYAN (711117114049), OLIVER JACK. A (711117114901), M.MUTHUSELVAM (711117114301)" who carried out the project work under my supervision.

SIGNATURE SIGNATURE Dr.M.MUTHUKUMARAN Mr.R.DARSHANKUMAR HEAD OF THE DEPARTMENT. SUPERVISOR, ASSISTANT PROFESSOR, PROFESSOR, DEPARTMENT OF MECHANICAL DEPARTMENT OF MECHANICAL ENGINEERING, ENGINEERING, JANSONS INSTITUTE OF TECHNOLOGY, JANSONS INSTITUTE OF TECHNOLOGY, COIMBATORE. COIMBATORE.

Submitted for the practical viva-voce held on _____

Internal Examiner

External Examiner

ACKNOWLEDGEMENT

It is a great pleasure that we would like to express our most sincere heartfelt gratitude to **Rtn.MPHF.T.S.NATARAJAN** Chairman, Jansons Foundation, **Shri.T.N.KALAIMANI** and **Shri.T.N.THIRUKUMAR**Vice Chairmen, Jansons Foundation for their constant support and encouragement.

We also express our gratitude to **Shri.S.MOHAN**, CEO, Jansons Institute of Technology for his devote of inspiration for us.

We express our gratitude to **Dr.V.NAGARAJAN**, Principal, Jansons Institute of Technology, for his constant motivation in all student endeavors.

We wish to express our grateful thanks to **Dr.M.MUTHUKUMARAN**, Professor and Head, Department of Mechanical Engineering for his encouragement and interest towards this project.

We heartily express our thanks to the project coordinator **Mr.R.DARSHANKUMAR**, Assistant Professor, Department of Mechanical Engineering for his guidance and suggestions during this project work.

We are deeply indebted to our project Supervisor **Dr.L.ANOJ KUMAR**, Assistant Professor, Department of Mechanical Engineering for his kind advice and valuable guidance in carrying out this project work.

Last but not least, we would like to express our warm thanks to the people who helped and contributed great ideas and advices, especially our department faculties and technical staffs.

ABSTRACT

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
NO.	BONOFIDE CERTICATE	NO. ii
	ACKNOWLEDGEMENT	iii
	ABSTRACT	iv
	TABLE OF CONTENT	V
	LIST OF TABLES	vii
	LIST OF FIGURES	viii
	NOTATIONS	ix
01	INTRODUCTION	
	1.1 INTRODUCTION TO WELDING	
	1.2 OBJECTIVE	
	1.3 DISSERTATION OUTLINE	

02 LITERATURE SURVEY

03 DETAIL ABOUT MONEL AND INCONEL

- 3.1. WELDING MICROSTRUCTURE AND MECHANICAL BEHAVIOR
- 3.2. CHARACTERIZATION OF WELDMENT
- 3.3. THEORY OF DEFORMATION IN METALS
- 3.4. MACRO & MICRO STRUCTURE OF WELDMENTS
- 3.5. HOT CRACKING
 - 3.5.1. Cold cracking
 - 3.5.2. Strain aging cracking
 - 3.5.3. Strengthening of materials
 - 3.5.4. Dissimilar Metal Welding
- 3.6 SELECTION OF MATERIALS
 - 3.6.1. Monel
 - 3.6.2 Properties
- 3.7 APPLICATION
- 3.8 MISCELLANEOUS
- 3.9 INCONEL
 - 3.9.1 Properties
 - 3.9.2 Applications
 - 3.9.3 Inconel is also used in the automotive industry
 - 3.9.4. Inconel alloys
 - 3.9.5 Mechanical properties

04 METHODOLOGY

- 4.1 COMPUTATIONAL METHODOLOGY
- **4.2 WELDING PROCESS**
- 4.3 TUNGSTEN INERT GAS (TIG) WELDING
- 4.4 PROCESS CHARACTERISTICS
- 4.5 MATERIALS
 - 4.5.1 Aluminum and magnesium
 - 4.5.2 Steels
 - 4.5.3 Dissimilar metals
- **4.6 PROCESS VARIATIONS**
 - 4.6.1 Pulsed-current
 - 4.6.2 Dabber

4.7 MANDATOTY COMPONENTS

- 4.7.1 Example of real time approach of Welding torch
- 4.7.2. Example of real time approach of Power source
- 4.7.3 Example of real time approach of Arc starting
- 4.7.4 Example of real time approach of Electrodes
- 4.7.5 Example of real time approach of Shielding gas
- 4.7.8 Applications
- 4.8 EXAMPLE OF REAL TIME APPROACH OF SAFETY
- 4.9 WORKING
- 05 RESULT AND ANALYSIS
- 06 CONCLUSION
- 07 REFERENCES

