Math 111C HW4

Zih-Yu Hsieh

May 5, 2025

1

Question 1 Let F be a field and $f \in F[x]$ be an irreducible polynomial. Prove that all roots of f(x) in \overline{F} have the same multiplicity.

 $\mathbf{2}$

Question 2 (a) Let $\zeta_6 \in \mathbb{C}$ be a primitive 6^{th} root of unity. Find $m_{\zeta_6,\mathbb{Q}}(x)$.

(b) Let $m, n \in \mathbb{N}$ such that $m \equiv 2 \pmod{6}$ and $n \equiv 4 \pmod{6}$. Prove that $f(x) = x^m + x^n + 1$ is not irreducible over \mathbb{Q} .

Question 3 Prove that if F is an infinite field, then its multiplicative group F^{\times} is never cyclic.

Pf:

Suppose the contrary, that F is infinite while F^{\times} is cyclic, then there exists $a \in F^{\times}$, such that $F^{\times} = \langle a \rangle$ (under multiplication).

First, notice that $a \neq 0$ (since $a \in F^{\times}$) and $a \neq 1$ (since $\langle 1 \rangle = \{1\}$, if a = 1, then F^{\times} is finite, contradicting the assumption that $F = F^{\times} \cup \{0\}$ is infinite). Also, since F^{\times} must be infinite based on similar reason, then $a \neq -1$ (since $(-1)^2 = 1$, then $|\langle a \rangle| = |a| = 2$ as the order of a, showing that F^{\times} is again finite, which is a contradiction).

4

Question 4 Let K/F be a field extension and $m, n \in \mathbb{N}$. Let $\alpha, \beta \in K$ with $[F(\alpha) : F] = m$ and $[F(\beta) : F] = n$.

- (a) Show that $[F(\alpha, \beta) : F] \leq mn$.
- (b) If gcd(m, n) = 1, show that $[F(\alpha, \beta) : F] = mn$.

5

Question 5 Let K be a finite field. Show that K is not algebraically closed.