Листок 1. Многообразия и поверхности Гладкие многообразия

Крайний срок сдачи 25.09.2020

Задачи со звездочками можно сдавать и после дедлайна.

- 1. Задайте гладкий атлас (карты, гладкость перехода между картами) на множестве невырожденных треугольников в плоскости с вершиной в (0,0) и углом $\frac{\pi}{3}$ при этой вершине.
 - 2. (а) Напишите формулы, задающие стереографические проекции двумерной сферы

$$x^2 + y^2 + z^2 = 1$$

на плоскость z=0 из полюсов и определите с помощью них атлас.

(б) Напишите аналогичные формулы для n-мерной сферы S^n :

$$(x^0)^2 + (x^1)^2 + \ldots + (x^n)^2 = 1,$$

и определите с помощью них атлас S^n .

- (в) Докажите, что атлас S^n состоит как минимум из двух карт.
- **3.** Введите на множестве всех прямых на плоскости естественную топологию и структуру гладкого многообразия, так, чтобы оно было гомеоморфно листу Мёбиуса.
- **4.** Нарисуйте на плоскости множество точек, которое (a)* может быть образом непрерывной кривой, но не может быть образом гладкой кривой (Ответ необходимо обосновать!); (б) может быть гладкой, но не может быть образом регулярной кривой.
 - **5.** Пусть $f: \mathbb{R}^n \to \mathbb{R}$ гладкая функция,

$$\Sigma_C = \{ x \in \mathbb{R}^n \mid f(x) = C \}$$

её множество уровня и grad $f(x) \neq 0$, $x \in \Sigma_C$. Докажите, что в этом случае на Σ_C можно ввести структуру гладкого (n-1)-мерного многообразия.

- 6. Докажите, что у регулярной поверхности существует гладкий атлас.
- 7. Пусть (M,A) и (\tilde{M},\tilde{A}) многообразия с заданными на них гладкими $C^{(k)}$ -структурами. Гладкие структуры (M,A) и (\tilde{M},\tilde{A}) считаются изоморфными, если существует такое $C^{(k)}$ -отображение $f:M\to \tilde{M}$, которое имеет обратное $f^{-1}:M\to \tilde{M}$ также $C^{(k)}$ -отображение в атласах A,\tilde{A} .
- (а) Покажите, что гладкая структура на \mathbb{R} , заданная картой $\varphi(x)=x^{2k+1}$, изоморфна, но не равна, гладкой структуре на \mathbb{R} , заданной картой $\psi(x)=x^{2n+1},\,k\neq n.$
 - (б) Покажите, что на $\mathbb R$ все структуры одинаковой гладкости изоморфны.
- (в)* Покажите, что на окружности S^1 любые две $C^{(\infty)}$ -структуры изоморфны. (Отметим, что это свойство остается верным вплоть до сферы S^6 , а на сфере S^7 , напротив, существуют неэквивалентные $C^{(\infty)}$ -структуры.)
- 8.* Докажите, что гладкая замкнутая кривая на плоскости, не имеющая самопересечений, имеет не менее четырёх экстремумов кривизны.