Bayesian prevalence analysis of autism prevalence in Chile

Adele Tyson

2023-06-09

```
#source("Chile_prev.R", local = knitr::knit_global())
library(nleqslv) # Only needed for robince bayesian prevalence
library(janitor)
library(gridExtra)
library(readxl)
library(viridis)
library(wesanderson)
library(psych)
library(Hmisc)
library(poolr)
library(epitools)
library(corrplot)
library(caret)
library(mltools)
library(ggrepel)
library(rjags)
library(rstan)
library(posterior)
library(tidybayes)
library(bayesplot)
library(tidyverse)
```

Set up

Load data

```
school_dept_name = nom_deprov_rbd,
         school_dependency_code = cod_depe, # has categories 1-6, no1 and no2 here are no1 in grouped
         school dependency code grouped = cod depe2, # has categories 1-5
         school rurality code = rural rbd,
         school_operation_status = estado_estab,
         teaching_code1 = cod_ense, # min = 10, max = 910, eg preschool, special education hearing impa
         teaching_code2 = cod_ense2, # subject matter coding, 1-8
         teaching_code3 = cod_ense3, # age based coding, 1-7
         grade_code1 = cod_grado, # grade of schooling, 1-10, 21-25, 31-34, nests in teaching_code1
         grade_code2 = cod_grado2, # equivalent grade of schooling for adult special education, 1-8, 99
         grade_letter = let_cur, # refers to the class within the grade, close to start of alphabet is
         course_timing = cod_jor, # time of day, morning, afternoon, both, night, no info
         course_type = cod_tip_cur, # 0 = simple course, 1-4 = combined course, 99 = no info
         course_descr = cod_des_cur, # Description of course (TP secondary education only). O: Does not
         student_id = mrun,
         sex = gen_alu, # 0 = no info, 1 = male, 2 = female
         dob = fec_nac_alu,
         age_june30 = edad_alu, # age at 30th June 2021
         special_needs_status = int_alu, # integrated student indicator, 0 = no, 1 = yes. Mostly no
         special_needs_code = cod_int_alu, # ADHD, blindness, etc. 0 = none. 105 = autism, 203 = ADHD.
         student_region_code = cod_reg_alu,
         student_commune_code = cod_com_alu,
         student_commune_name = nom_com_alu,
         economic_sector_code = cod_sec,
         economic_specialty_code = cod_espe,
         economic branch code = cod rama,
         economic_profspec_code = cod_men,
         teaching_code_new = ens)
chile_stdpop_raw <- read_excel("04_Data/pop_chile_2021_single_age.xlsx") %>%
  clean_names()
chile_stdpop <- chile_stdpop_raw %>%
  filter(sex != 9) %>%
  rename("std pop" = "pop 2021") %>%
  mutate(pop_prop = std_pop / sum(std_pop))
chile_communes_raw <- read_excel("04_Data/commune_by_health_service.xlsx") %>%
  clean names()
chile_communes <- chile_communes_raw %>%
  mutate(comuna_upper = toupper(comuna)) %>%
  mutate(school_commune_name = ifelse(comuna_upper == "AISÉN", "AYSÉN",
                                      ifelse(comuna_upper == "LA CALERA", "CALERA",
                                             ifelse(comuna_upper == "COIHAIQUE", "COYHAIQUE",
                                                    ifelse(comuna == "Isla de Pascua", "ISLA DE PASCUA"
                                                           ifelse(comuna_upper == "MAULLÍN" , "MAULLIN"
                                                                  ifelse(comuna == "Pedro Aguirre Cerda
                                                                         ifelse(comuna_upper == "RÁNQUI
                                                                                ifelse(comuna_upper ==
                                                                                        ifelse(comuna_up
))) %>%
  rename("health_service_name" = "servicio_de_salud") %>%
```

```
select(school_commune_name, health_service_name)
```

Try Bayesian analysis of autism prevalence and specificity and sensitivity of school assessment "Bayesian Estimation of Disease Prevalence and the Parameters of Diagnostic Tests in the Absence of a Gold Standard" Lawrence Joseph, Theresa W. Gyorkos, Louis Coupal https://www.cambridge.org/core/journals/epidemiology-and-psychiatric-sciences/article/bayesian-approach-to-estimating-the-population-prevalence-of-mood-and-anxiety-disorders-using-multiple-measures/DB1D2CA6C27C7E8C85C60B62B969BB72

Use sensitivity and specificity of Social Attention and Communication Surveillance—Revised (SACS-R) tool "Diagnostic Accuracy of the Social Attention and Communication Surveillance—Revised With Preschool Tool for Early Autism Detection in Very Young Children" Josephine Barbaro, Nancy Sadka, Melissa Gilbert, et al https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2789926

```
chile_bayes_aut <- chile_merged %>%
  filter(age june30 >= 6 \& age june30 <= 18,
         #special_needs_status == 1,
         sex != 0) %>%
  mutate(autism = ifelse(special needs code == 105, 1, 0),
         age_cat = ifelse(age_june30 <= 8, 1, ifelse(age_june30 <= 11, 2, ifelse(age_june30 <= 14, 3, 4
         age_cat_name = ifelse(age_cat == 1, "6-8", ifelse(age_cat == 2, "9-11", ifelse(age_cat == 3, "
          # 1 = 6-8, 2 = 9-11, 3 = 12-14, 4 = 15-18
         age_cat_name = factor(age_cat_name, levels = c("6-8", "9-11", "12-14", "15-18")),
         ethnic_2_group = ifelse(ethnic_3_group == "Aymara", "Other ethnic group", ethnic_3_group),
         school_fee_temp = school_fee,
         school_fee = ifelse(school_fee == "", "No information",
                             ifelse(school_fee == "GRATUITO", "Free",
                                    ifelse(school_fee == "$1.000 A $10.000", "$1,000-$10,000",
                                           ifelse(school_fee == "$10.001 A $25.000", "$10,001-$25,000",
                                                   ifelse(school_fee == "$25.001 A $50.000", "$25,001-$5
                                                          ifelse(school_fee == "$50.001 A $100.000", "$5
                                                                 ifelse(school_fee == "MAS DE $100.000",
                                                                        ifelse(school fee == "SIN INFORM
         school_fee = factor(school_fee, levels = c("Free", "$1,000-$10,000", "$10,001-$25,000", "$25,0
         school_fee_group = ifelse(school_fee == "Free", "Free",
                                   ifelse(school_fee %in% c("$1,000-$10,000", "$10,001-$25,000", "$25,0
                                          ifelse(school fee == "$100,001+", "High",
                                                 ifelse(school_fee == "No information", "No information
         school_fee_group = factor(school_fee_group, levels = c("Free", "Low", "High", "No information"
  left_join(chile_communes, by = "school_commune_name") %>%
  select(school_region_name_abr,
    sex,
    sex_desc,
   age_june30,
    #edad_alu_2, # equal to age_june30
   age_cat,
   age_cat_name,
   school_rurality_code,
    #rural_rbd_2, # not quite equal to school_rurality_code as it has NA's
   pago_matricula,
   pago_mensual,
   school_fee,
   school fee group,
    school_fee_temp,
    ethnicity,
```

```
mapuche,
  nationality,
  ethnic_3_group,
  ethnic_2_group,
  #asd_chile, # equal to autism
  autism,
  school_commune_name,
  health_service_name
)

# Prevalence of autism in Chile dataset
sum(chile_bayes_aut$autism) / nrow(chile_bayes_aut) # 0.00476 = 0.476%, very low

## [1] 0.004760322

# Is prevalence the same across geographic regions, age, sex?
  n_std_pop <- sum(chile_stdpop$std_pop)</pre>
```

Define some functions to keep code clean

```
get_grouped_prev <- function(x, stdpop, grouping_vars) {</pre>
  # Calculates sample prevalence, age- and sex-standardised prevalence and group weighting for supplied
  # x = chile_bayes_aut, needs columns called autism, count
  # stdpop = standard population with age and sex counts
  # grouping_vars = variables in x to group by
  n_stdpop <- sum(stdpop$std_pop)</pre>
  x grouped <- x %>%
   group_by(across(all_of(grouping_vars))) %>%
    summarise(count = n()) %>%
   pivot_wider(names_from = autism, values_from = count) %>%
   rename("n_noautism" = "0", "n_autism" = "1", "age" = "age_june30") %>%
   mutate(n_autism = ifelse(is.na(n_autism), 0, n_autism), # If there are no cases of autism in the gr
           sample_pop_size = n_noautism + n_autism, # Total sample population is autism cases + not cas
           sample_prevalence = n_autism / sample_pop_size) %>% # Prevalence of autism in the group
   left_join(stdpop, by = c("age", "sex")) %>%
   mutate(aut_prev_std = n_autism / sample_pop_size * pop_prop, # Prevalence of autism in the group, s
           w = std_pop / (sample_pop_size * n_stdpop), # Weight of the group using standard population
           w2 = pop_prop / sample_pop_size,
           \#sum\ std\ pop = sum(std\ pop)
           ) %>%
    ungroup()
  return(x_grouped)
get_adjusted_prev <- function(x, grouping_vars) {</pre>
  # Turns grouped prevalences into age- and sex- adjusted prevalences with Fay and Feuer Gamma confiden
  # x = output from get_grouped_prev
  x_adj <- x %>%
  group_by(across(all_of(grouping_vars))) %>%
  summarise(sum_sample_pop_size = sum(sample_pop_size),
            crude_rate = sum(n_autism) / sum(sample_pop_size),
            crude_count = sum(n_autism),
```

```
adjusted_rate = sum(n_autism / sample_pop_size * pop_prop),
            adjusted_count = round(adjusted_rate * sum_sample_pop_size, 0), # had to fudge this to get
            #adjusted_count = adjusted_rate * sum_sample_pop_size,
            var = sum(pop_prop^2 * n_autism / sample_pop_size^2),
            \#se2 = sqrt(sum((std_pop/sum(std_pop))^2 * n_autism/sample_pop_size^2)),
            ci_lower = ifelse(var == 0, 0, var / (2*adjusted_rate) * qchisq(p = 0.05/2, df = 2*adjusted
            ci_upper = (var + w_M^2) / (2*(adjusted_rate + w_M)) * qchisq(p = 1-0.05/2, df = 2*(adjusted_rate + w_M))
 arrange(across(all_of(grouping_vars)))
}
do_jags_rand_model <- function(x, feat, model, theta_mu, theta_sigma, pars, nBurn = 1000, nIter = 1000,
  \# x = output from get_adjusted_prev. Needs to have columns sum_sample_pop_size, adjusted_count
  # feat = feature being used as random effect
  # model = JAGS random effects model
  # theta_mu, theta_sigma = mean and sd of beta prior distribution
  # pars = model parameters to report
  # nBurn = number of burn-in samples
  # nIter = number of posterior iterations
  nFeat <- length(unique(x[[feat]]))</pre>
  FeatNames <- sort(unique(x[[feat]]))</pre>
  # Define beta prior
  theta_a <- theta_mu * (theta_mu * (1-theta_mu) / theta_sigma^2 - 1)
  theta_b <- (1 - theta_mu) * (theta_mu * (1-theta_mu) / theta_sigma^2 - 1)
  # Initial values for model chains
  rand_ini <- list(list(theta = rep(0.001, nFeat)), #, spec = 0.5, sens = 0.5),
                   list(theta = rep(0.01, nFeat))) #, spec = 0.9, sens = 0.9))
  # Run JAGS model
  rand_data <- list(theta_a = theta_a,</pre>
                    theta_b = theta_b,
                    n0bs = x$sum_sample_pop_size,
                    aut_sample = x$adjusted_count,
                    nFeat = nFeat)
  rand_jag <- jags.model(textConnection(model),</pre>
                         data = rand_data,
                         inits = rand_ini,
                         n.chains = 2,
                         quiet = TRUE)
  update(rand_jag, n.iter = nBurn)
  rand_sam <- coda.samples(model = rand_jag,</pre>
                           variable.names = pars,
                           n.iter = nIter)
  # Convergence checks
  if(convergence_checks) {
    print(mcmc_trace(rand_sam, paste0("theta[", 1:nFeat, "]"))) # Convergence looks fine and rhats <= 1
    print(mcmc_trace(rand_sam, paste0("aut_pred[", 1:nFeat, "]"))) # Convergence looks fine and rhats 
    rand_summ <- summary(subset_draws(as_draws(rand_sam), pars),</pre>
                         -quantile(.x, probs=c(0.025, 0.5, 0.975)),
```

```
~mcse_quantile(.x, probs=c(0.025, 0.5, 0.975)),
                         "rhat") %>%
      arrange(desc(rhat))
   print(rand_summ)
  # Extract posterior density
  prev_post <- as_tibble(as_draws_matrix(rand_sam), rownames = "Iteration") %>%
    select(c("Iteration", contains("theta["))) %>%
   pivot_longer(cols = contains("theta["),
                 names_to = "Feat",
                 values_to = "predicted_prev") %>%
    mutate(Feat_names = factor(Feat, levels = c(paste0("theta[",1:nFeat,"]")), labels = FeatNames)) %>%
    select(Iteration, Feat_names, predicted_prev)
 return(prev_post)
}
plot_post_density <- function(jags_post, sample_data, feat, theta_mu, theta_sigma) {</pre>
  # Plots posterior densities and their 95% credible intervals, and sample prevalence confidence interv
  # jags_post = output from do_jags_rand_model, ie posterior densities
  # sample data = output from get_adjusted_prev, ie sample prevalences with confidence intervals
  # feat = the same feature used as the random effect in do_jags_rand_model
  # theta_mu, theta_sigma = mean and sd of beta prior distribution used in do_jags_rand_model
  # calcuate posterior credible intervals
  post_ci <- jags_post %>%
  group_by(across(all_of(feat))) %>%
  summarise(post_lower = quantile(predicted_prev, 0.025),
            post_upper = quantile(predicted_prev, 0.975))
  print(ggplot() +
          geom\_density(data = jags\_post, aes(x = predicted\_prev)) +
          geom_vline(data = post_ci, aes(xintercept = post_lower), color = "blue", linetype = "dotted")
          geom_vline(data = post_ci, aes(xintercept = post_upper), color = "blue", linetype = "dotted")
          geom_vline(data = sample_data, aes(xintercept = ci_lower), color = "red", linetype = "dashed"
          geom_vline(data = sample_data, aes(xintercept = ci_upper), color = "red", linetype = "dashed"
          facet_wrap(as.formula(paste0("~", feat))) +
          labs(title = paste0("Prior mean = ", theta_mu, ", prior sd = ", signif(theta_sigma, 3))))
}
```

Bayesian prevalence analysis

```
Set global parameters
```

```
n0bs <- nrow(chile_bayes_aut)
nIter <- 1000
nBurn <- 1000
pars <- c("theta_a", "theta_b", "theta", "aut_sample", "aut_pred")
theta_mu_prior <- 0.0046
theta_sigma_prior <- (0.0047-0.0045) / (2*1.96)</pre>
```

```
theta_mu_extrapolate <- c(0.005, 0.01, 0.015, 0.3) # 0.5%, 1%, 1.5%, 3% prevalence
theta_sigma_extrapolate <- c(rep(0.0001/1.96, 4)) # Same as chosen prior
#theta_mu <- c(theta_mu_prior, theta_mu_sens)
#theta_sigma <- c(theta_sigma_prior, theta_sigma_sens)
#theta_a <- theta_mu * (theta_mu * (1-theta_mu) / theta_sigma^2 - 1)
#theta_b <- (1 - theta_mu) * (theta_mu * (1-theta_mu) / theta_sigma^2 - 1)

rand_model <- "model {
  for(i in 1:nFeat) { # For each category in the feature grouping
      theta[i] ~ dbeta(theta_a, theta_b)
      aut_sample[i] ~ dbin(theta[i], nObs[i])
      aut_pred[i] ~ dbin(theta[i], nObs[i])
  }
}"</pre>
```

Common effects model with unadjusted sample prevalence

Random effects analysis

 $Standardise\ prevalence\ by\ Chile's\ age\ and\ sex\ based\ population\ sizes\ using\ https://seer.cancer.gov/seerstat/WebHelp/Rate_Algorithms.htm\ and\ https://wonder.cdc.gov/wonder/help/cancer/fayfeuerconfidenceintervals.pdf$

See https://github.com/Dpananos/bayes_multiple_measures/blob/master/analysis/sensitivity_analysis.R for more sensitivity analysis ideas

Random effect on region

Autism prevalence

Autism prevalence

Autism prevalence by sex

^{## &}lt;draws_matrix/draws/matrix>. Defaulting to continuous.

Prior mean = 0.0046, prior sd = 5.1e-05

Predictions for higher population prevalence - increase prior mean

Prior mean = 0.005, prior sd = 5.1e-05

- $\mbox{\tt \#\#}$ Don't know how to automatically pick scale for object of type
- ## <draws_matrix/draws/matrix>. Defaulting to continuous.

Prior mean = 0.01, prior sd = 5.1e-05

- $\mbox{\tt \#\#}$ Don't know how to automatically pick scale for object of type
- ## <draws_matrix/draws/matrix>. Defaulting to continuous.

Prior mean = 0.015, prior sd = 5.1e-05

- $\mbox{\tt \#\#}$ Don't know how to automatically pick scale for object of type
- ## <draws_matrix/draws/matrix>. Defaulting to continuous.

Prior mean = 0.3, prior sd = 5.1e-05

Random effect on health service

Show which regions each health service operates in

```
map_tab_df <- as.data.frame(table(chile_bayes_aut$school_region_name_abr, chile_bayes_aut$health_servic
ggplot(map_tab_df, aes(x = Var1, y = Var2, fill = Freq)) +
    geom_tile() +
    #scale_fill_gradient(low = "white", high = "blue") +
    scale_fill_viridis_c(option = "rocket", direction = -1) +
    theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
    scale_y_discrete(limits = rev(levels(map_tab_df$Var2))) +
    labs(x = "School region", y = "School health service", fill = "Freq")</pre>
```


Each health service operates in only one region, some regions (RM, VALPO, LAGOS, BBIO, ARAUC) have multiple health services.

Autism prevalence

Autism prevalence by sex

Prior mean = 0.0046, prior sd = 5.1e-05

Predictions for higher population prevalence - increase prior mean

Prior mean = 0.005, prior sd = 5.1e-05

- ## Don't know how to automatically pick scale for object of type
- ## <draws_matrix/draws/matrix>. Defaulting to continuous.

Prior mean = 0.01, prior sd = 5.1e-05

- ## Don't know how to automatically pick scale for object of type
- ## <draws_matrix/draws/matrix>. Defaulting to continuous.

Prior mean = 0.015, prior sd = 5.1e-05

- ## Don't know how to automatically pick scale for object of type
- ## <draws_matrix/draws/matrix>. Defaulting to continuous.

Prior mean = 0.3, prior sd = 5.1e-05

Random effect on rurality

Autism prevalence

Autism prevalence by sex

Autism prevalence


```
aut_prev_rural_adj <- get_adjusted_prev(aut_prev_rural, grouping_vars = "school_rurality_code")</pre>
aut_prev_rural_post <- do_jags_rand_model(x = aut_prev_rural_adj,</pre>
                              feat = "school_rurality_code",
                              model = rand_model,
                              theta_mu = theta_mu_prior,
                              theta_sigma = theta_sigma_prior,
                              pars = pars,
                              convergence_checks = FALSE) %>%
 rename("school_rurality_code" = "Feat_names")
plot_post_density(aut_prev_rural_post, aut_prev_rural_adj, feat = "school_rurality_code", theta_mu = th
## Warning: Combining variables of class <factor> and <integer> was deprecated in ggplot2
## 3.4.0.
## i Please ensure your variables are compatible before plotting (location:
## `combine_vars()`)
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: Combining variables of class <integer> and <factor> was deprecated in ggplot2
## i Please ensure your variables are compatible before plotting (location:
## `combine_vars()`)
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
```

generated.

Don't know how to automatically pick scale for object of type
<draws_matrix/draws/matrix>. Defaulting to continuous.

Prior mean = 0.0046, prior sd = 5.1e-05

Assuming 0 = city, 1 = rural. Narrower sample CI for city because sample size is bigger

Predictions for higher population prevalence - increase prior mean

Prior mean = 0.005, prior sd = 5.1e-05

Prior mean = 0.01, prior sd = 5.1e-05

Prior mean = 0.015, prior sd = 5.1e-05

Prior mean = 0.3, prior sd = 5.1e-05

Random effect on ethnicity

Only use regions with large Mapuche populations

Autism prevalence

Autism prevalence by sex

Don't know how to automatically pick scale for object of type

<draws_matrix/draws/matrix>. Defaulting to continuous.

Predictions for higher population prevalence - increase prior mean

Don't know how to automatically pick scale for object of type

 $\mbox{\tt \#\#}$ Don't know how to automatically pick scale for object of type

Random effect on economic status - all economic groups

Autism prevalence

Autism prevalence by sex

Economic status (all)

```
ggplot(data = aut_prev_econ) +
  geom_col(aes(x = as.factor(school_fee), y = sample_prevalence, group = sex, fill = as.factor(sex)), p
  scale_fill_manual(values = c("#03CEA4", "#802392")) +
  theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
  labs(title = "Autism prevalence",
       x = "Economic status (all)",
       y = "Sample prevalence",
      fill = "Sex")
```


Economic status (all)

 $\mbox{\tt \#\#}$ Don't know how to automatically pick scale for object of type

Predictions for higher population prevalence - increase prior mean

 $\mbox{\tt \#\#}$ Don't know how to automatically pick scale for object of type

Random effect on economic status - free education, low status, high status and no information

Autism prevalence

Economic status (grouped)

Autism prevalence by sex

Autism prevalence

Economic status (grouped)

Don't know how to automatically pick scale for object of type

Predictions for higher population prevalence - increase prior mean

- ## Don't know how to automatically pick scale for object of type
 ## <draws_matrix/draws/matrix>. Defaulting to continuous.

Random effect on sex

```
chile_stdpop_f <- chile_stdpop %>%
 filter(sex == 2) \%%
  mutate(pop_prop = std_pop / sum(std_pop))
chile_stdpop_m <- chile_stdpop %>%
 filter(sex == 1) %>%
 mutate(pop_prop = std_pop / sum(std_pop))
aut_prev_f <- chile_bayes_aut %>%
 filter(sex == 2) %>%
 get_grouped_prev(stdpop = chile_stdpop_f, grouping_vars = c("age_june30", "sex", "autism"))
## `summarise()` has grouped output by 'age_june30', 'sex'. You can override using
## the `.groups` argument.
aut_prev_adj_f <- get_adjusted_prev(aut_prev_f, grouping_vars = c()) %>% mutate(sex = 2)
aut_prev_m <- chile_bayes_aut %>%
 filter(sex == 1) \%%
get_grouped_prev(stdpop = chile_stdpop_m, grouping_vars = c("age_june30", "sex", "autism"))
## `summarise()` has grouped output by 'age_june30', 'sex'. You can override using
## the `.groups` argument.
aut_prev_adj_m <- get_adjusted_prev(aut_prev_m, grouping_vars = c()) %>% mutate(sex = 1)
```

```
aut_prev_sex_adj <- rbind(aut_prev_adj_m, aut_prev_adj_f)</pre>
# have to put m first because 1 comes before 2 and otherwise will mess up naming in do_jags_rand_model
aut_prev_sex_post <- do_jags_rand_model(x = aut_prev_sex_adj,</pre>
                              feat = "sex",
                              model = rand_model,
                              theta_mu = theta_mu_prior,
                              theta_sigma = theta_sigma_prior,
                              pars = pars,
                              convergence_checks = FALSE) %>%
 rename("sex" = "Feat_names")
plot_post_density(aut_prev_sex_post, aut_prev_sex_adj, feat = "sex", theta_mu = theta_mu_prior, theta_s
## Warning: Combining variables of class <factor> and <numeric> was deprecated in ggplot2
## 3.4.0.
## i Please ensure your variables are compatible before plotting (location:
   `combine_vars()`)
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Warning: Combining variables of class <numeric> and <factor> was deprecated in ggplot2
## i Please ensure your variables are compatible before plotting (location:
## `combine_vars()`)
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## Don't know how to automatically pick scale for object of type
## <draws_matrix/draws/matrix>. Defaulting to continuous.
```


Random effect on region, sexes separate

```
Need sex specific priors - use age-adjusted prevalence from above
```

```
theta_mu_prior_f <- aut_prev_adj_f$adjusted_rate</pre>
theta_sigma_prior_f <- sqrt(aut_prev_adj_f$var)</pre>
theta_mu_prior_m <- aut_prev_adj_m$adjusted_rate</pre>
theta_sigma_prior_m <- sqrt(aut_prev_adj_m$var)</pre>
# Females
aut_prev_region_f <- chile_bayes_aut %>%
 filter(sex == 2) %>%
 get_grouped_prev(stdpop = chile_stdpop_f, grouping_vars = c("school_region_name_abr", "age_june30", "
## `summarise()` has grouped output by 'school_region_name_abr', 'age_june30',
## 'sex'. You can override using the `.groups` argument.
aut_prev_region_adj_f <- get_adjusted_prev(aut_prev_region_f, grouping_vars = "school_region_name_abr")</pre>
aut_prev_region_post_f <- do_jags_rand_model(x = aut_prev_region_adj_f,</pre>
                               feat = "school_region_name_abr",
                               model = rand_model,
                               theta_mu = theta_mu_prior_f,
                               theta_sigma = theta_sigma_prior_f,
                               pars = pars,
                               convergence_checks = FALSE) %>%
```

```
rename("school_region_name_abr" = "Feat_names")

plot_post_density(aut_prev_region_post_f, aut_prev_region_adj_f, feat = "school_region_name_abr", theta

## Don't know how to automatically pick scale for object of type

## <draws_matrix/draws/matrix>. Defaulting to continuous.
```



```
# Males
aut_prev_region_m <- chile_bayes_aut %>%
 filter(sex == 1) %>%
  get_grouped_prev(stdpop = chile_stdpop_m, grouping_vars = c("school_region_name_abr", "age_june30", "
## `summarise()` has grouped output by 'school_region_name_abr', 'age_june30',
## 'sex'. You can override using the `.groups` argument.
aut_prev_region_adj_m <- get_adjusted_prev(aut_prev_region_m, grouping_vars = "school_region_name_abr")</pre>
aut_prev_region_post_m <- do_jags_rand_model(x = aut_prev_region_adj_m,
                              feat = "school_region_name_abr",
                              model = rand_model,
                              theta_mu = theta_mu_prior_m,
                              theta_sigma = theta_sigma_prior_m,
                              pars = pars,
                              convergence_checks = FALSE) %>%
  rename("school_region_name_abr" = "Feat_names")
plot_post_density(aut_prev_region_post_m, aut_prev_region_adj_m, feat = "school_region_name_abr", theta
```

Don't know how to automatically pick scale for object of type
<draws_matrix/draws/matrix>. Defaulting to continuous.

Prior mean = 0.0046, prior sd = 5.1e-05

Maybe need different extrapolation priors for females?

- ## Don't know how to automatically pick scale for object of type
- ## <draws_matrix/draws/matrix>. Defaulting to continuous.

- ## Don't know how to automatically pick scale for object of type
- ## <draws_matrix/draws/matrix>. Defaulting to continuous.

 $\mbox{\tt \#\#}$ Don't know how to automatically pick scale for object of type

- $\mbox{\tt \#\#}$ Don't know how to automatically pick scale for object of type
- ## <draws_matrix/draws/matrix>. Defaulting to continuous.

- ## Don't know how to automatically pick scale for object of type
- ## <draws_matrix/draws/matrix>. Defaulting to continuous.

Random effect on ethnicity, sexes separate

Need sex-specific priors

```
# Females
aut_prev_ethnic_f <- chile_bayes_aut %>%
 filter(sex == 2) %>%
 get_grouped_prev(stdpop = chile_stdpop_f, grouping_vars = c("ethnic_2_group", "age_june30", "sex", "a
## `summarise()` has grouped output by 'ethnic_2_group', 'age_june30', 'sex'. You
## can override using the `.groups` argument.
aut_prev_ethnic_adj_f <- get_adjusted_prev(aut_prev_ethnic_f, grouping_vars = "ethnic_2_group")
aut_prev_ethnic_post_f <- do_jags_rand_model(x = aut_prev_ethnic_adj_f,</pre>
                              feat = "ethnic_2_group",
                              model = rand_model,
                              theta_mu = theta_mu_prior_f,
                              theta_sigma = theta_sigma_prior_f,
                              pars = pars,
                              convergence_checks = FALSE) %>%
  rename("ethnic_2_group" = "Feat_names")
plot_post_density(aut_prev_ethnic_post_f, aut_prev_ethnic_adj_f, feat = "ethnic_2_group", theta_mu = th
## Don't know how to automatically pick scale for object of type
## <draws_matrix/draws/matrix>. Defaulting to continuous.
```



```
# Males
aut_prev_ethnic_m <- chile_bayes_aut %>%
  filter(sex == 1) %>%
  get_grouped_prev(stdpop = chile_stdpop_m, grouping_vars = c("ethnic_2_group", "age_june30", "sex", "a
## `summarise()` has grouped output by 'ethnic_2_group', 'age_june30', 'sex'. You
## can override using the `.groups` argument.
aut_prev_ethnic_adj_m <- get_adjusted_prev(aut_prev_ethnic_m, grouping_vars = "ethnic_2_group")</pre>
aut_prev_ethnic_post_m <- do_jags_rand_model(x = aut_prev_ethnic_adj_m,</pre>
                              feat = "ethnic_2_group",
                              model = rand_model,
                              theta_mu = theta_mu_prior_m,
                              theta_sigma = theta_sigma_prior_m,
                              pars = pars,
                              convergence_checks = FALSE) %>%
  rename("ethnic_2_group" = "Feat_names")
plot_post_density(aut_prev_ethnic_post_m, aut_prev_ethnic_adj_m, feat = "ethnic_2_group", theta_mu = th
## Don't know how to automatically pick scale for object of type
```


 $\mbox{\tt \#\#}$ Don't know how to automatically pick scale for object of type

 $\mbox{\tt \#\#}$ Don't know how to automatically pick scale for object of type

<draws_matrix/draws/matrix>. Defaulting to continuous.

- ## Don't know how to automatically pick scale for object of type
 ## <draws_matrix/draws/matrix>. Defaulting to continuous.

- ## Don't know how to automatically pick scale for object of type
 ## <draws_matrix/draws/matrix>. Defaulting to continuous.

Random effect on economic status, sexes separate

```
# Females
aut_prev_econ_f <- chile_bayes_aut %>%
 filter(sex == 2) %>%
 get_grouped_prev(stdpop = chile_stdpop_f, grouping_vars = c("school_fee", "age_june30", "sex", "autis
## `summarise()` has grouped output by 'school_fee', 'age_june30', 'sex'. You can
## override using the `.groups` argument.
aut_prev_econ_adj_f <- get_adjusted_prev(aut_prev_econ_f, grouping_vars = "school_fee")</pre>
aut_prev_econ_post_f <- do_jags_rand_model(x = aut_prev_econ_adj_f,</pre>
                              feat = "school_fee",
                              model = rand_model,
                              theta_mu = theta_mu_prior_f,
                              theta_sigma = theta_sigma_prior_f,
                              pars = pars,
                              convergence_checks = FALSE) %>%
 rename("school_fee" = "Feat_names")
plot_post_density(aut_prev_econ_post_f, aut_prev_econ_adj_f, feat = "school_fee", theta_mu = theta_mu_p
## Don't know how to automatically pick scale for object of type
## <draws_matrix/draws/matrix>. Defaulting to continuous.
```



```
# Males
aut_prev_econ_m <- chile_bayes_aut %>%
  filter(sex == 1) %>%
  get_grouped_prev(stdpop = chile_stdpop_m, grouping_vars = c("school_fee", "age_june30", "sex", "autis
## `summarise()` has grouped output by 'school_fee', 'age_june30', 'sex'. You can
## override using the `.groups` argument.
aut_prev_econ_adj_m <- get_adjusted_prev(aut_prev_econ_m, grouping_vars = "school_fee")</pre>
aut_prev_econ_post_m <- do_jags_rand_model(x = aut_prev_econ_adj_m,</pre>
                              feat = "school_fee",
                              model = rand_model,
                              theta_mu = theta_mu_prior_m,
                              theta_sigma = theta_sigma_prior_m,
                              pars = pars,
                              convergence_checks = FALSE) %>%
  rename("school fee" = "Feat names")
plot_post_density(aut_prev_econ_post_m, aut_prev_econ_adj_m, feat = "school_fee", theta_mu = theta_mu_p.
## Don't know how to automatically pick scale for object of type
## <draws_matrix/draws/matrix>. Defaulting to continuous.
```


Maybe need to redefine gamma upper CI for female 1,000-10,000 because there are 0 cases.

```
# Females
for(j in 1:length(theta_mu_extrapolate)) {
  aut_prev_econ_post_f <- do_jags_rand_model(x = aut_prev_econ_adj_f,</pre>
                                              feat = "school_fee",
                                              model = rand_model,
                                              theta_mu = theta_mu_extrapolate[j],
                                              theta_sigma = theta_sigma_extrapolate[j],
                                              pars = pars,
                                              convergence_checks = FALSE) %>%
    rename("school_fee" = "Feat_names")
  plot_post_density(aut_prev_econ_post_f,
                    aut_prev_econ_adj_f,
                    feat = "school_fee",
                    theta_mu = theta_mu_extrapolate[j],
                    theta_sigma = theta_sigma_extrapolate[j])
}
```


Prior mean = 0.3, prior sd = 5.1e-05

Could do random effect on sex and region together