1 Harmonischer Oszillator

Gegeben sei ein quantenmechanischer harmonischer Oszillator beschrieben durch die eine Wellenfunktion

$$\psi(x,0) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \left(\frac{m\omega}{\sqrt{2}\hbar}x^2 + \sqrt{\frac{3m\omega}{2\hbar}}x - \frac{1}{2\sqrt{2}}\right) e^{-\frac{m\omega}{2\hbar}x^2}$$

Und den Eigenfunktionen

$$\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega}{2\hbar}x^2}$$

$$\psi_1(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \sqrt{\frac{2m\omega}{\hbar}} x e^{-\frac{m\omega}{2\hbar}x^2}$$

$$\psi_2(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \frac{1}{\sqrt{2}} \left(\frac{2m\omega}{\hbar}x^2 - 1\right) e^{-\frac{m\omega}{2\hbar}x^2}$$

und der Energie

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega$$

a) Schreiben Sie die Wellenfunktion als eine Summe von Eigenfunktionen des harmonischen Oszillators und bestimmen Sie eine zeitabhängige Wellenfunktion $\psi(x,t)$.

Lösung: Durch scharfes hinsehen wieht man:

$$\psi(x) = \frac{\sqrt{3}}{2}\psi_1(x) + \frac{1}{2}\psi_2(x)$$

Der Faktor $\left(\frac{m\omega}{\pi\hbar}\right)^{1/4}e^{-\frac{m\omega}{2\hbar}x^2}$ kommt in allen Eigenfunktionen vor. Betrachte also nur die Klammer, ψ_1 ist die einzige Funktion die x^1 enthält und ψ_2 die einzige mit x^2 . Es gilt

$$\psi(x,t) = \sum_{k} N_k e^{-iE_k t/\hbar} |k\rangle = \sum_{k} N_k e^{-iE_k t/\hbar} \psi_k(x)$$

Es ist also

$$\psi(x,t) = N_0 e^{-iE_0 t/\hbar} \psi_0(x) + N_1 e^{-iE_1 t/\hbar} \psi_1(x) + N_2 e^{-iE_2 t/\hbar} \psi_2(x)$$
$$= \frac{\sqrt{3}}{2} e^{-\frac{3}{2}i\omega t} \psi_1(x) + \frac{1}{2} e^{-\frac{5}{2}i\omega t} \psi_2(x)$$

b) Berechnen Sie Orts- und Impulsmittelwert $\langle x \rangle = \langle \psi | x | \psi \rangle$ und $\langle p \rangle = \langle \psi | p | \psi \rangle$ im Zustand $\psi(x,t)$

Lösung:

$$\langle x \rangle = \int_{-\infty}^{\infty} x |\psi(x)|^2 dx = 0$$
 (ungerade Funktion)

Um $\langle p \rangle$ zu berechnen, kann man entweder $\psi(x)$ in Impulsdarstellung bringen (Fouriertransformation) oder man benutzt den Operator $\hat{p} = -i\hbar \frac{\partial}{\partial x}$

$$\langle p \rangle = \int_{-\infty}^{\infty} \psi^*(x) \hat{p} \psi(x) \, dx = -i\hbar \int_{-\infty}^{\infty} \psi^*(x) \frac{\partial}{\partial x} \psi(x) \, dx$$

Dieser Lösungsweg ist scheinbar nicht für die Klausur geeignet, da es augenscheinlich sehr aufwendig ist, $\psi(x)$ nach x abzuleiten. Die Multiplikation mit $\psi^*(x)$ und anschließende Integration sind mindestens ebenso aufwendig. Stattdessen:

$$\frac{d\langle x\rangle}{dt} = 0 \Rightarrow \langle p\rangle = 0$$

c) Überprüfen Sie Heisenbergs Prinzip

$$(\Delta x)^2 (\Delta p)^2 \ge \frac{\hbar^2}{4}$$

Lösung: Berechne zuerst $\langle x^2 \rangle$ und $\langle p^2 \rangle$:

$$\langle x^2 \rangle = \int_{-\infty}^{\infty} x^2 |\psi(x)|^2 dx = 2 \int_{0}^{\infty} x^2$$