CSF 373/2-7/27.02.2024/

Substitution Method

- Guess the form of the solution
- Use mathematical induction to find constants and show that the solution works.

$$\Rightarrow$$
 T(n) = 2T($\lfloor n/2 \rfloor$) + n

=> Cruess: T(n) = 0 (n/gn)

Now, trequires to prove that, T(m) & cnlgn; e>0

Lets, m(n); $m = \lfloor n/2 \rfloor$

> T (1m/2]) & c[n/2] lg [n/2]

⇒ T(n) ≤ 2 (c Ln/2] log Ln/2] + n

 \leq (n | g(n/2) + n = cn | gn - cn | g2 + n

= enlgn - enth

= enlgn; (>1

5 7 (n) & cn (gn (Proved)

Marten Method

Then,
$$T(n) = \theta(n^{\log_b a} - \epsilon)$$
; $\epsilon > 0$

Case-2:

If
$$f(n) = \theta(n^{\log_b a})$$

Then, $f(n) = \theta(n^{\log_b a} \log_2 n)$

Case-3:

Then,
$$af(n/b) \leq c \cdot f(n)$$
; $c < 1$