Micromanipulateur compact pour la chirurgie endoscopique (MC²E) – Sujet

Concours Commun Mines Ponts 2016.

Mise en situation

Le robot MC²E est utilisé par des chirurgiens en tant que troisième main lors de l'ablation de la vésicule biliaire. La cinématique du robot permet de garantir que le point d'insertion des outils chirurgicaux soit fixe dans le référentiel du patient.

Le robot est constitué de 3 axes de rotations permettant de mettre en position une pince. La pince est animée d'un mouvement de translation permettant de tirer la vésicule pendant que le chirurgien la détache du foie.

L'axe en translation du MC^2E est asservi en effort constant pour tirer (ou pousser) la vésicule au fur et à mesure que le chirurgien utilise son bistouri pour détacher la vésicule du foie. Le diagramme des exigences au dos décrit les principales exigences auxquelles est soumis le MC^2E .

Objectif

Modéliser et valider l'asservissement en effort. On cherche à savoir si l'asservissement réalisé permet d'obtenir un effort constant sur l'effecteur.

Modèle de connaissance de l'asservissement

L'équation de mouvement est définie par l'équation différentielle suivante : $J \frac{d^2 \theta_m(t)}{dt^2} = C_m(t) - C_e(t)$ avec :

- ▶ *J*, inertie équivalente à l'ensemble en mouvement, ramenée sur l'arbre moteur;
- ▶ $C_e(t)$, couple regroupant l'ensemble des couples extérieurs ramenés à l'arbre moteur, notamment fonction de la raideur du ressort.

On notera $\theta_m(p)$, $\Omega_m(p)$, $C_m(p)$ et $C_e(p)$ les transformées de Laplace des grandeurs de l'équation de mouvement. On pose $C_e(t) = K_{C\theta}\theta_m(t)$ où $K_{C\theta}$ est une constante positive. On a de plus $\frac{\mathrm{d}\theta_m(t)}{\mathrm{d}t} = \omega_m(t)$. La régulation se met alors sous la forme du schéma-blocs à retour unitaire simplifié que l'on admettra :

FIGURE 1 – Modèle simplifié du montage du capteur d'effort.

Avec :

- $ightharpoonup C_e(p)$, couple de sortie mesuré par le capteur d'effort situé sur le MC²E;
- $C_c(p)$, couple de consigne;
- $ightharpoonup C_m(p)$, couple moteur;
- $ightharpoonup H_{cor}(p)$, fonction de transfert du correcteur.

Dans un premier temps, on prendra $H_{cor}(p) = 1$.

Question 1 Déterminer les expressions des fonctions de transfert $H_1(p)$, $H_2(p)$ et $H_3(p)$.

C1-02

C2-04

Question 2 Donner l'expression de la fonction de transfert en boucle fermée $H_{BF}(p)$ de l'asservissement d'effort.

Question 3 Quel sera le comportement de cet asservissement en réponse à un échelon d'amplitude C_0 ? Conclure.

Pour remédier au problème ainsi mis en évidence, le concepteur a choisi de mettre en place une boucle interne numérique, dite tachymétrique, de gain *B*. On s'intéresse ici à la définition analytique de *B*. Le schéma-blocs modifié est donné figure suivante.

FIGURE 2 – Régulation avec retour tachymétrique

On règle B de telle façon que, pour $H_{\text{cor}}(p) = 1$, la fonction de transfert en boucle ouverte, notée $H_{\text{BO}}(p)$, puisse être mise sous la forme suivante : $H_{\text{BO}}(p) = \frac{1}{(1+\tau p)^2}$.

Question 4 Donner l'expression analytique du gain B, en fonction de J et $K_{C\theta}$, permettant d'obtenir cette forme de fonction de transfert. En déduire l'expression analytique de la constante de temps τ .

Les exigences du cahier des charges sont données plus loin (exigences 1.2.2.1 à 1.2.2.4).

Afin de répondre à ces exigences, on choisit un correcteur proportionnel-intégral de gain K_i et de constante de temps T_i . Le schéma-blocs de la régulation se met sous la forme de la figure qui suit.

FIGURE 3 – Régulation avec correcteur PI.

Question 5 Donner l'expression de l'erreur statique en réponse à un échelon d'amplitude C_0 . Conclure vis-à-vis du cahier des charges.

On souhaite régler le correcteur pour que le système asservi ait une fonction de transfert en boucle fermée d'ordre 2 de la forme : $\frac{K_{\rm BF}}{1+\frac{2\xi_{BF}}{\omega_{\rm 0BF}}p+\frac{p^2}{\omega_{\rm 0BF}^2}}.$

Question 6 Proposer une expression simple pour la constante de temps T_i .

Les courbes de la réponse fréquentielle en boucle ouverte pour $K_i = 1$ et les réponses fréquentielles en boucle fermée pour différentes valeurs de K_i sont données ci-dessous.

Question 7 En s'appuyant sur les diagrammes ci-dessous, proposer un choix de réglage pour K_i permettant (si possible) de vérifier toutes les performances.

Retour sur le cahier des charges

Question 8 Remplir le tableau et conclure sur la validation des critères de performance. Tracer l'allure de la réponse temporelle à un échelon C_{c0} en indiquant toutes les valeurs caractéristiques nécessaires.

Critère	Valeur	Valeur système	Écart
	CDCF	réglé	
Marges de gain			
Marges de phase			
Dépassement			
T5 %			
Erreur statique			

Éléments de correction

1.
$$H_1(p) = \frac{1}{Jp}$$
, $H_2(p) = \frac{1}{p}$, $H_3(p) = K_{C\theta}$.
2. $H_{BF}(p) = \frac{K_{C\theta}}{Jp^2 + 2K_{C\theta}}$.
3. Sinus d'amplitude $C_0/2$ et de pulsation ω_0 .

2.
$$H_{BF}(p) = \frac{K_{C\theta}}{Jp^2 + 2K_{C\theta}}$$
.

4.
$$\tau = \sqrt{\frac{J}{K_{C\theta}}}$$
 et $B = 2\sqrt{JK_{C\theta}}$.
5. Erreur statique nulle.

- 6. $\tau = T_i$. 7. $K_i = 0, 4(<1,58)$. 8. .

