CSE340: Theory of Computation (Final Exam – Part 2)

21st November, 2021

Subjective Questions

Total Points: 55

Question 1. (10 points) Design the context-free grammar (CFG) for the following language,

$$L = \{w \in \{a,b\}^* \mid w \text{ has more } a\text{'s than } b\text{'s}\}$$

Solution:

Question 2. (10 points) Design a PDA for the language $L = \{0^p 1^q 0^r 1^s \mid p = q \text{ and } r \neq s\}$

Question 3. (10 points) An weight function in a graph G = (V, E) is a function $w : E \to \mathbb{N}$ that assigns a non-negative integer to every edge in G. A graph with a weight function is called a weighted graph. The weight of a walk in G is the sum of the weights of the edges in the walk.

 $\mathsf{TSP} = \{ \langle G, w, B \rangle \mid G \text{ is a weighted directed graph with weight function } w \text{ and } G \text{ has a walk of weight at most } B, \text{ that visits every vertex in } G \text{ and returns to the starting vertex} \}$

Prove that TSP is NP-complete.

(Hint: You can give a reduction from the HamPath problem.)

Solution:

Showing that TSP is in NP

Certificate: A sequence of vertices $\sigma = \langle u_1, u_2, \dots, u_k \rangle$

Verifier's Algorithm:

Input: $\langle G = (V, E), w, B, \sigma \rangle$

- 1. Check if the sequence σ forms a walk in G. If not then Reject.
- 2. Check if every vertex in G is part of σ . If not then Reject.
- 3. Check if $u_1 = u_k$. If not then Reject.
- 4. Check if $\sum_{i=1}^{k-1} w(u_i, u_{i+1}) \leq B$. If not then Reject, else Accept.

The above algorithm clearly runs in polynomial time.

Choosing a suitable NP-complete problem

Consider the problem HamPath discussed in lectures.

 $\mathsf{HamPath} = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph having a Hamiltonian path from } s \text{ to } t \}.$

We will show that

HamPath
$$\leq_p$$
 TSP.

The reduction function f

Input: An instance of HamPath, $\langle G = (V, E), s, t \rangle$

- 1. Construct graph $H = (V_H, E_H)$ as follows: $V_H = V \cup \{x\}$, $E_H = E \cup \{(x, s), (t, x)\}$. That is, we add a vertex x and the directed edges (x, s) and (t, x) to the graph G to obtain H.
- 2. For every edge $e \in E_H$, set w(e) = 1.
- 3. Set B = |V| + 1.

Output: $\langle H, w, B \rangle$

Time complexity of the reduction

The construction of $\langle H, w, B \rangle$ can be achieved in linear time in the size of G.

Proof of correctness

If there is a Hamiltonian path P in G from s to t, then adding the edges (x,s) and (t,x) to P, creates a closed walk of length |V| + 1 in H that visits every vertex in H.

On the other hand, suppose there is a walk C of weight at most |V|+1 in H, that visits every vertex in H and returns to the starting vertex. Firstly C must visit every vertex exactly once since in H there are exactly |V|+1 vertices. This implies that C is a cycle. Secondly C must include the edges (x,s) and (t,x), since these are the only two edges incident on the vertex x. Now if we remove (x,s) and (t,x) from C, we get a path C from C0 to flength C1, that visits every vertex in C2. Hence this is a Hamiltonian path in C3.

Question 4. Consider the following two languages

$$\begin{array}{lll} L_1 &=& \{\langle M_1, M_2\rangle \mid M_1, M_2 \text{ are two TMs and } L(M_1) \subseteq L(M_2)\} \\ L_2 &=& \{\langle D_1, D_2\rangle \mid D_1, D_2 \text{ are two DFAs and } L(D_1) \subseteq L(D_2)\} \end{array}$$

(a) (7 points) Show that L_1 is undecidable.

Solution: Consider the undecidable language

$$\mathsf{E}_\mathsf{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}.$$

Claim 1. $\mathsf{E}_{\mathsf{TM}} \leq_m L_1$.

We will construct a computable function f that takes as input $\langle M \rangle$ and produces an output $\langle M_1, M_2 \rangle$ such that $L(M) = \emptyset \iff L(M_1) \subseteq L(M_2)$.

The reduction function f

Input: $\langle M \rangle$

- 1. Set $M_1 := M$.
- 2. Set M_2 to be a TM that rejects all strings $(L(M_2) = \emptyset)$.

Output: $\langle M_1, M_2 \rangle$

Proof of correctness

Now,

$$L(M) = \emptyset \iff L(M_1) = \emptyset \iff L(M_1) \subseteq L(M_2)$$

Therefore, $\mathsf{E}_{\mathsf{TM}} \leq_m L_1$. This proves that L_1 is undecidable.

(b) (6 points) Show that L_2 is decidable.

Solution:

Algorithm for L_2

Input: $\langle D_1, D_2 \rangle$

- 1. Construct a DFA D_3 , such that $L(D_3) = L(D_1) \cap L(D_2)$. (This is possible since we know that regular languages are closed under intersection.)
- 2. Apply the algorithm for EQ_{DFA} (discussed in lectures), to the input $\langle D_1, D_3 \rangle$ and Output the answer.

Proof of correctness

Now,

$$L(D_1) \subseteq L(D_2) \Longleftrightarrow L(D_1) \cap L(D_2) = L(D_1)$$

This is precisely what we check in the above algorithm.

(Note: One can also use union or set difference instead of intersection to design an algorithm for L_2 .)

Question 5. In this question, for two languages L_1 and L_2 , if $L_1 \leq_m L_2$ then we denote it by $L_1 \longrightarrow L_2$. Consider the relation between the languages given by the following diagram.

Consider the following 4 class of languages:

- Dec: decidable languages
- TR': undecidable but Turing recognizable languages
- coTR': undecidable but co-Turing recognizable languages
- NTR: neither Turing recognizable nor co-Turing recognizable languages

Now for each of the following languages, mention which of the above class does it belong to by giving proper justification.

(a) (3 points) A

Solution: TR'

Since $A_{TM} \leq_m A$, therefore A is undecidable. Moreover since $\overline{B} \leq_m A_{TM}$, B is co-Turing recognizable. Also we have $\overline{A} \leq B$. Hence A is Turing recognizable. Therefore A is in TR'.

(b) (3 points) B

Solution: coTR'

Since $\overline{A_{TM}} \leq_m B$, therefore B is undecidable. Moreover since $\overline{B} \leq_m A_{TM}$, B is co-Turing recognizable. Therefore B is in coTR'.

(c) (3 points) C

Solution: Dec

Since $C \leq_m A_{TM}$ and $C \leq_m \overline{A_{TM}}$, it is both Turing recognizable and co-Turing recognizable. Hence C is in Dec.

(d) (3 points) D

Solution: NTR

Since B is undecidable and both $B \leq_m D$ and $\overline{B} \leq_m D$, therefore D is in NTR.