Minimizing $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|$ by Landweber Iteration

Andersen Ang

Mathématique et recherche opérationnelle UMONS, Belgium

manshun.ang@umons.ac.be Homepage: angms.science

First draft: August 23, 2017 Last update: October 28, 2019

Least square

Problem setting : given $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, find $\mathbf{x} \in \mathbb{R}^n$ such that

$$f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$$

is minimized.

• If A is a square matrix (m=n) and non-singular, the sol. is

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}.$$

What about the general case $m \neq n$?

The minimizer of $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ is $\mathbf{x} = (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{b}$

$$\begin{array}{ccc} f(\mathbf{x}) & = & \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \\ & \stackrel{\mathsf{expand}}{=} & \mathbf{x}^\top \mathbf{A}^\top \mathbf{A} \mathbf{x} - 2 \mathbf{b}^\top \mathbf{A} \mathbf{x} + \mathbf{b}^\top \mathbf{b} \\ \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} & = & 2\mathbf{A}^\top \mathbf{A} \mathbf{x} - 2\mathbf{A}^\top \mathbf{b} \end{array}$$

Set $\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = 0$, we have the minimizer of $f(\mathbf{x})$ as

$$\mathbf{x} = (\mathbf{A}^{\top} \mathbf{A})^{-1} \mathbf{A}^{\top} \mathbf{b}.$$

i.e., $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ can be minimized by solving a linear system of equations

$$\mathbf{A}^{\top}\mathbf{A}\mathbf{x} = \mathbf{A}^{\top}\mathbf{b},$$

which is called the normal equation.

The problems of solving $\mathbf{A}^{\top}\mathbf{A}\mathbf{x} = \mathbf{A}^{\top}\mathbf{b}$

Solving the normal equation becomes problematic if :

- \bullet $\mathbf{A}^{\top}\mathbf{A}$ is not invertible
- $oldsymbol{\bullet}$ $\mathbf{A}^{\top}\mathbf{A}$ is ill-conditioned : the sol. will be numerically unstable
- n is big (so that $\mathbf{A}^{\top}\mathbf{A}$ is big) : the computational cost (memory and time) of inverting A^TA is too high.

In these cases, we have to bypass the normal equation by using iterative approaches.

The Majorization-Minimization algorithm

To apply MM algorithm to minimize $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$, find a majorizer $G_k(\mathbf{x})$ of $f(\mathbf{x})$ that satisfies the following conditions at all iteration k:

- $\bullet \ G_k(\mathbf{x}_k) = f(\mathbf{x}_k)$
- $G_k(\mathbf{x}) \geq f(\mathbf{x})$ for all \mathbf{x}
- ullet $G_k(\mathbf{x})$ should be "easier" to be minimized

Conceptually, $G_k(\mathbf{x})$ can be $f(\mathbf{x})$ plus a non-negative term. e.g. :

$$G_k(\mathbf{x}) = f(\mathbf{x}) + (\mathbf{x} - \mathbf{x}_k)^{\top} (\alpha \mathbf{I} - \mathbf{A}^{\top} \mathbf{A}) (\mathbf{x} - \mathbf{x}_k)$$

when $\mathbf{x} = \mathbf{x}_k$, $G_k(\mathbf{x}_k) = f(\mathbf{x}_k)$.

The majorizer $G_k(\mathbf{x}) = f(\mathbf{x}) + (\mathbf{x} - \mathbf{x}_k)^{\top} (\alpha \mathbf{I} - \mathbf{A}^{\top} \mathbf{A}) (\mathbf{x} - \mathbf{x}_k)$

To satisfy the condition $G_k(\mathbf{x}) \geq f(\mathbf{x})$:

$$(\mathbf{x} - \mathbf{x}_k)^{\top} (\alpha \mathbf{I} - \mathbf{A}^{\top} \mathbf{A}) (\mathbf{x} - \mathbf{x}_k)$$
 has to be non-negative

$$\iff$$
 $\mathbf{y} \top (\alpha \mathbf{I} - \mathbf{A}^\top \mathbf{A}) \mathbf{y} \ge 0$ for all \mathbf{y}

$$\iff$$
 $\alpha \mathbf{I} - \mathbf{A}^{\top} \mathbf{A}$ is positive semi-definite

$$\iff \alpha \geq \text{ largest eigenvalue of } \mathbf{A}^{\top} \mathbf{A}$$

We can set $\alpha = \lambda_{\max}(\mathbf{A}^{\top}\mathbf{A})$.

As G is quadratic, minimizer of G can be found by solving $\frac{\partial G}{\partial \mathbf{x}} = 0$. The solution is unique.

Minimizer of G_k and the Landweber iteration

$$G_{k}(\mathbf{x}) = f(\mathbf{x}) + (\mathbf{x} - \mathbf{x}_{k})^{\top} (\alpha \mathbf{I} - \mathbf{A}^{\top} \mathbf{A}) (\mathbf{x} - \mathbf{x}_{k})$$

$$= \mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{x} - 2 \mathbf{b}^{\top} \mathbf{A} \mathbf{x} + c$$

$$+ \mathbf{x}^{\top} (\alpha \mathbf{I} - \mathbf{A}^{\top} \mathbf{A}) \mathbf{x} - \mathbf{x}^{\top} (\alpha \mathbf{I} - \mathbf{A}^{\top} \mathbf{A}) \mathbf{x}_{k} - \mathbf{x}_{k}^{\top} (\alpha \mathbf{I} - \mathbf{A}^{\top} \mathbf{A}) \mathbf{x} + c$$

$$= \mathbf{x}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{x} - 2 \mathbf{b}^{\top} \mathbf{A} \mathbf{x} + \mathbf{x}^{\top} (\alpha \mathbf{I} - \mathbf{A}^{\top} \mathbf{A}) (\mathbf{x} - 2 \mathbf{x}_{k}) + c$$

Take derivative, set to zero

$$2\mathbf{A}^{\top}\mathbf{A}\mathbf{x} - 2\mathbf{A}^{\top}\mathbf{b} + (\alpha\mathbf{I} - \mathbf{A}^{\top}\mathbf{A})(2\mathbf{x} - 2\mathbf{x}_{k}) = 0$$

$$\iff -\mathbf{A}^{\top}\mathbf{b} + \alpha\mathbf{x} - (\alpha\mathbf{I} - \mathbf{A}^{\top}\mathbf{A})\mathbf{x}_{k} = 0$$

$$\iff \mathbf{x} = \frac{1}{\alpha}\mathbf{A}^{\top}\mathbf{b} + \frac{1}{\alpha}(\alpha\mathbf{I} - \mathbf{A}^{\top}\mathbf{A})\mathbf{x}_{k}$$

$$\mathbf{x}_{k+1} = \mathbf{x}_{k} + \frac{1}{\alpha}\mathbf{A}^{\top}(\mathbf{b} - \mathbf{A}\mathbf{x}_{k})$$

By the convergence properties of MM algorithm, the Landweber iteration guarantees the value of $f(\mathbf{x}_k)$ decreases in each iteration.

The Landweber iteration bypasses the process of inverting $\mathbf{A}^{\top}\mathbf{A}$. It only requires multiplying \mathbf{A} by \mathbf{A}^{\top} .

Landweber iteration is a special case of Gradient Descent

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \frac{1}{\alpha} \mathbf{A}^{\top} (\mathbf{b} - \mathbf{A} \mathbf{x}_k)$$

$$= \mathbf{x}_k - \frac{1}{\alpha} \mathbf{A}^{\top} (\mathbf{A} \mathbf{x}_k - \mathbf{b})$$

$$= \mathbf{x}_k - \frac{1}{\alpha} \nabla f(\mathbf{x}_k)$$

$$= \mathbf{x}_k - t_k \nabla f(\mathbf{x}_k)$$

Hence Landweber iteration = Gradient descent with constant step size

$$t = \frac{1}{\alpha} = \frac{1}{\lambda_{\mathsf{max}}(\mathbf{A}^{\top}\mathbf{A})} = \frac{1}{\sigma_{\mathsf{max}}^2(\mathbf{A})} = \frac{1}{\|\mathbf{A}\|_2^2} = \frac{1}{L}$$

where $\|\mathbf{A}\|_2^2$ is exactly the Lipschitz constant L of $\nabla f(\mathbf{x}) = \mathbf{A}^{\top}(\mathbf{A}\mathbf{x} - \mathbf{b})$ (i.e. $f(\mathbf{x}) = \|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2$ is L-smooth.)

As Landweber iteration is a special case of gradient descent, all the convergence properties of gradient descent apply.

Last page

- Least square $\|\mathbf{A}\mathbf{x} \mathbf{b}\|_2^2$
- ullet If ${f A}$ is square and non-singular : ${f x}={f A}^{-1}{f b}$
- If ${\bf A}$ is non-square and ${\bf A}^{\top}{\bf A}$ is not ill-conditioned : ${\bf x}=({\bf A}^{\top}{\bf A})^{-1}{\bf A}{\bf b}$
- If \mathbf{A} is non-square and $\mathbf{A}^{\top}\mathbf{A}$ is ill-conditioned or has big size : Landweber iteration $\mathbf{x}_{k+1} = \mathbf{x}_k + \frac{1}{\lambda_{\max}(\mathbf{A}^{\top}\mathbf{A})}\mathbf{A}^{\top}(\mathbf{b} \mathbf{A}\mathbf{x}_k)$
- Landweber iteration is just a special case of gradient descent
 End of document