EXHIBIT 1

Table 1: SEQ IDs of Claim 29 of Present Application

SEQ ID	Primer sequence:	GC (%)
SEQID 8	aagctttctaggaggtacagttattagtca	36,67
SEQID 9	ataaaacataggggttctaaaatagaaggc	33,33
SEOID 11	ttaaacaatggattaagtataggggtacta	30
SEQID 14	gggaacagttattagttatgttaattcctg	33,33
SEQID 18	tgatggaggtgattggaagcaaattgttat	36,67
SEQID 19	tgaaatttctgcaagggtctgtaatatgtt	33,33
SEOID 20	atggaggtgattggaagcaaattgttatgt	36,67
SEQID 23	tcctgcgataccaacaatagagtttataa	33,33
SEQID 24	ctgcgataccaacaatagagtttataa	32,14
SEQID 30	tgagccttattagctttttacaaggatgta	33,33
SEQID 32	acagtttttaaaagggtgttatatcatg	30
SEQID 32	gggtgttatatcatgtgtaaattctaaa	30
SEQID 34		30
	aaagggtgttatatcatgtgtaaattct	
SEQID 36	tttaatgcagtttatgcaaggtgtggttat	33,33
SEQID 37	tgatttaatagatgatggaggaaactggaa	33,33
SEQID 38	tgcagtttatgcaaggtgtggttatttcat	36,67
SEQID 39	ttaatagatgatggaggaaactggaaacat	33,33
SEQID 41	gcatttcttacaaggagctattatatccta	33,33
SEQID 42	aaggcaaatgtccatgtctcaatggataaa	36,67
SEQID 43	tgtaaacattacaagcgagcacaaaaaagg	36,67
SEQID 45	tatttcatatgtaaactccaccagccactt	36,67
SEQID 46	aatttaggtgtagtaaatgtgatgaaggcg	36,67
SEQID 49	cctgatgcactttatgcaaggtacaataat	36,67
SEQID 53	cagtaaatttgaagacacaggaaattggaa	33,33
SEQID 55	atatgaaacagtggataaaatttaggagca	30
SEQID 56	acgccaaatgaatatgtctcaatggattaa	33,33
SEQID 57	cgccaaatgaatatgtctcaatggattaaa	33,33
SEQID 58	tttaagggcactaaaggaatttcttaaagg	33,33
SEQID 61	agggcactaaaggaatttcttaaaggaaca	36,67
SEQID 62	cattatctatgtcagcctggataaggtata	36,67
SEQID 63	gcacaaagaaaatcattatctatgtcagcc	36,67
SEQID 64	aaatcattatctatgtcagcctggataagg	36,67
SEQID 65	aaacatatgaatattggacaatggatacag	30
SEQID 66	gaaagaaacatatgaatattggacaatgg	30
SEQID 69	gatgaatatgaaacaatggataaagcatgt	30
SEQID 72	aaacaatggataaagcatgtatgtagcaag	33,33
SEQID 74	ttagctttttaggaggtgtagtgctatcat	36,67
SEQID 81	tttcaagggtctgtcatttcatttgtgaat	33,33
SEQID 87	agcctgctacattttttacaaggaactgta	36,67
SEQID 92	gtaccatttattagtgcccttaaattgttt	30
SEQID 95	gagccttataaattttttccaagggtcagt	36,67
SEQID 96	ccttataaattttttccaagggtcagtcat	33,33
SEQID 100	caaggatgtgtaatatcatatgtaaacgcc	36,67
SEQID 101	aggagactggagaacaatagtaaagctatt	36,67
SEQID 105	tcaatgccgcaatggattaaatttagatgc	36,67
SEQID 107	aaatgactatggcgcaatggattaggttta	36,67
SEQID 108	attaggtttagatgtgataaatgtgacgat	30,07
SEQID 100	atgtgatttaactaatgatggtggtaattg	30
SEQID 110	taatqatqqtqqtaattqqaaaqatattqt	30
SEQID 111 SEQID 112		33,33
SEQID 112 SEQID 113	taaacaaatgtcaatggcacaatggataca	33,33
	ttaattagatttttgcaagggtgcgttatt	
SEQID 114	agaaaatcactaacaatgtcagcatggatt	33,33
SEQID 116	ttgcgataccagggtattaactttatgtat	33,33
SEQID 117	gaggtacagttattagtcatgtaaattcca	33,33
SEQID 118	taagtttttggggggaacagttattagttatg	34,38
SEQID 122	aggcggtaccatattatcatatgtaaatgc	36,67
SEQID 124	gagttttatacatttcctacaaggtgcaat	33,33
SEQID 125	tatttgcaatgagcctaatgaagtttatgc	33,33
SEQID 126	gagtttaattaggttcttaagtggatgtgtaa	31,25
SEQID 128	agtcttataaagttttttcaagggtctgtc	33,33
SEQID 130	tgagccttataaattttttccaagggt	33,33
SEQID 132	tgagtcttatacatttcttgcaaggcacaa	36,67
SEQID 133	aatgcactttttacaaggtacagtaatttc	30
SEQID 135	taattagatttttgcaagggtgcgtt	34,62

Mean	33,74
standard deviation (std)	2,5
relative standard deviation (= std/mean)	
[%]	7,4%
minimum	30
maximum	36,67
range (max-min)	6,67

Table 2: Probes of Thunnissen et al.

SEQ ID NO	Sequence without spacer	GC (%)
24	AGAGGAGCAGGACAATG	55
25	TGAAGACGAGGAGGACAATG	50
26	CCATTAAAGGTGTCCGAAGC	50
27	AGATGTGTCAAAAGCCAAAG	40
28	CGAGGAGGAGCATGGAAACC	60
29	CCATTAACTGTGTCAGAGAC	45
30	ATTGACAGTATCACAAGCTA	35
31	CAGACCTACGTGACCATATA	45
32	ACATGGCATACAGACATTAA	35
33	GAGGAAAATGGAAACCCTAG	45
34	TAGTAAACGACTTTGTGATC	35
35	AGCACTGGAAATATCCAGGG	50
36	CTTTATTGTATACAGCCAAA	30
37	AGTAATGGAAATCCACTATA	30
38	TAGCACATGTTTGTCTGATC	40
39	AGAATACTATGAACAAGACA	30
40	AGATGTTTCAAAGGCTAAAG	35
41	AACATTGGAAACATGTAGAG	35
42	GAAATGTATACGATATGAAT	25
43	ACATGGTATTACCAAACTAA	30
44	TTTTGTTTTACAAAGCAAAG	25
45	TTTAGCGCTGAACGACAACG	50
46	TGTTATTACACAAAGCAAAG	30
47	GTTTCTTTACAAGGACGTGG	45
48	AGAGGATCAGGAAGACAATG	45
49	CTATAATGTATACAGCCAGA	35
50	AGACATTAATGAACACATAA	25
51	AGAGGGATCTGATCAACAGG	50
52	CTTTGTATTATAAAGCTAAA	20
53	AGTTTTTTTCCACCACTTG	35
54	AGAACATTATGAACAGGACA	35
55	AGAGGGACCTGACGAACAGG	60
56	AGTAATGGGAACCCACTATA	40
57	TATATGCACTAAATGATGTA	25
58	TTTAGAATTGCATCAAGAGG	35
59	AACATTACGAGACTGATAGT	35

Mean	38,61
standard deviation (std)	10,0
relative standard deviation (=	
std/mean) [%]	26,0%
minimum	20
maximum	60
range (max-min)	40