Table 4-1 DETERMINATION OF BOUNDARY-VALUE RELATIONSHIPS

Problem description	Substitution	Boundary conditions	Remarks
1. $x(t_f)$, t_f both specified (<i>Problem I</i>)	$ \delta \mathbf{x}_f = \delta \mathbf{x}(t_f) = 0 \mathbf{x}^*(t_0) = \mathbf{x}_0 \delta t_f = 0 \mathbf{x}^*(t_f) = \mathbf{x}_f $	$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\mathbf{x}^*(t_f) = \mathbf{x}_f$	2n equations to determine 2n constants of integration
2. $x(t_f)$ free; t_f specified (Problem 2)	$\delta \mathbf{x}_f = \delta \mathbf{x}(t_f)$ $\delta t_f = 0$	$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\frac{\partial g}{\partial \mathbf{x}}(\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f) = 0$	2n equations to determine 2n constants of integration
3. t _f free; x (t _f) specified (<i>Problem 3</i>)	$\delta \mathbf{x}_f = 0$	$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\mathbf{x}^*(t_f) = \mathbf{x}_f$ $g(\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f)$ $- \left[\frac{\partial g}{\partial \dot{\mathbf{x}}} (\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f) \right]^T \dot{\mathbf{x}}^*(t_f) = 0$	$(2n + 1)$ equations to determine $2n$ constants of integration and t_f
4. t_f , $\mathbf{x}(t_f)$ free and independent (Problem 4)	1	$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\frac{\partial}{\partial \mathbf{x}} (\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f) = 0$ $g(\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f) = 0$	$(2n + 1)$ equations to determine $2n$ constants of integration and t_f
5. t_f , $\mathbf{x}(t_f)$ free but related by $\mathbf{x}(t_f) = \mathbf{\theta}(t_f)$ (Problem 4)	$\delta x_{f} = \frac{d\theta}{dt}(t_{f}) \delta t_{f} \dagger \begin{array}{c} \mathbf{x}^{*}(t_{0}) = \mathbf{x}_{0} \\ \mathbf{x}^{*}(t_{f}) = \theta(t_{f}) \\ \mathbf{g}(\mathbf{x}^{*}(t_{f}), \dot{\mathbf{x}}^{*}(t_{f}), \\ + \left[\frac{\partial \mathbf{g}}{\partial \dot{\mathbf{x}}}(\mathbf{x}^{*}(t_{f}), \dot{\mathbf{x}}^{*}(t_{f}), \\ \end{array}\right]$	$\mathbf{x}^*(t_0) = \mathbf{x}_0$ $\mathbf{x}^*(t_f) = \boldsymbol{\theta}(t_f)$ $g(\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f)$ $+ \begin{bmatrix} \frac{\partial}{\partial \dot{\mathbf{x}}} (\mathbf{x}^*(t_f), \dot{\mathbf{x}}^*(t_f), t_f) \end{bmatrix}^T \begin{bmatrix} d\boldsymbol{\theta} \\ d\boldsymbol{t} \end{bmatrix} (t_f) - \dot{\mathbf{x}}^*(t_f) \end{bmatrix} = 0 \dagger$	$(2n + 1)$ equations to determine $2n$ constants of integration and t_f
$\uparrow \frac{d\theta}{dt}$ denotes the $n \times 1$ column vector $\left[\frac{d\theta_1}{dt} \frac{d\theta_2}{dt} \cdots \frac{d\theta_n}{dt}\right]^T$.	nn vector $\left[\frac{d\theta_1}{dt} \frac{d\theta_2}{dt}\right]$	$\frac{d\theta_n}{dt}$	