

Seminar Algorithms for Big Data

Fast Random Integer Generation in an Interval Based on a paper of the same title by Daniel Lemire

Lukas Geis Supervised by Dr. Manuel Penschuck

29th February 2024 · Algorithm Engineering (Prof. Dr. Ulrich Meyer)

We want to efficiently draw a uniform random integer in an interval.

We want to efficiently draw a uniform random integer in an interval.

Where do we need this?

Motivation

What is our goal?

We want to efficiently draw a uniform random integer in an interval.

Where do we need this?

Shuffling

We want to efficiently draw a uniform random integer in an interval.

Where do we need this?

- Shuffling
- Complex Graph Generators

TBD

TBD

Motivation

What is our goal?

We want to efficiently draw a uniform random integer in an interval.

Where do we need this?

- Shuffling
- Complex Graph Generators
- Sampling

Table of Contents

- 1 Preliminaries
 - Formal Definition
 - Operations
 - The Naive Approach
- 2 Unbiased Algorithms
 - The OpenBSD Algorithm
 - The Java Algorithm
 - The Bitmask Algorithm
- 3 Lemire's Algorithm
 - Multiply-And-Shift
 - The Algorithm
- 4 Conclusion

Formal Definition

GOETHE UNIVERSITÄT

Setting:

Formal Definition

Setting:

■ Input: upper bound of interval $n \in \mathbb{N}$

Formal Definition

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

But what if we want a random integer in [a, b) for $a, b \in \mathbb{N}$, 0 < a < b instead?

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

But what if we want a random integer in [a, b) for $a, b \in \mathbb{N}$, 0 < a < b instead?

We can map this to our setting by subtracting a!

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

But what if we want a random integer in [a, b) for $a, b \in \mathbb{N}$, 0 < a < b instead?

We can map this to our setting by subtracting a!

■ Set n = b - a and draw a uniform random integer $x \in [0, n)$

Setting:

- Input: upper bound of interval $n \in \mathbb{N}$
- **Output:** uniform random integer in interval [0, n)

But what if we want a random integer in [a, b) for $a, b \in \mathbb{N}$, 0 < a < b instead?

We can map this to our setting by subtracting a!

- Set n = b a and draw a uniform random integer $x \in [0, n)$
- Return x + a

Operations

Definition (Common Operations)

■ Integer-Division: $x \div y \qquad \coloneqq |x/y|$

- Integer-Division: $x \div y \qquad := |x/y|$
- Remainder-Operation: $x \mod y := x (x \div y)y$

- Integer-Division: $x \div y := |x/y|$
- Remainder-Operation: $x \mod y := x (x \div y)y$
- $x \gg W := x \div 2^W$ Bit-RightShift:

- $x \div y = |x/y|$ ■ Integer-Division:
- $x \mod y \coloneqq x (x \div y)y$ ■ Remainder-Operation:
- $x \gg W := x \div 2^W$ Bit-RIGHTSHIFT:
- $x \ll W := x \cdot 2^W$ Bit-LeftShift:

■ Integer-Division:
$$x \div y := \lfloor x/y \rfloor$$

■ Remainder-Operation:
$$x \mod y := x - (x \div y)y$$

■ Bit-RightShift:
$$x \gg W := x \div 2^W$$

■ Bit-LeftShift:
$$x \ll W := x \cdot 2^W$$

■ Bitwise-And:
$$x \& y$$

- Integer-Division: $x \div y := \lfloor x/y \rfloor$
- Remainder-Operation: $x \mod y := x (x \div y)y$
- Bit-RightShift: $x \gg W := x \div 2^W$
- Bit-LeftShift: $x \ll W := x \cdot 2^W$
- Bitwise-And: $x \& y \to x \mod 2^W := x \& (2^W 1)$

Definition (Common Operations)

- $x \div y := |x/y|$ ■ Integer-Division:
- $x \mod y := x (x \div y)y$ ■ Remainder-Operation:
- $x \gg W := x \div 2^W$ Bit-RightShift:
- $x \ll W := x \cdot 2^W$ Bit-LeftShift:
- $x \& y \rightarrow x \mod 2^W := x \& (2^W 1)$ Bitwise-AND:

Definition (Power Remainder)

For $W, n \in \mathbb{N}$, we write \mathcal{R}_n^W for $2^W \mod n$.

How do we get random numbers?

How do we get random numbers?

■ Generated by Pseudo-Random-Number-Generators (PRNGs)

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

 $rand() \mod n$

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

 $rand() \mod n$

Does this work?

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

 $rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

 $rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

Is this efficient?

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

$rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

Is this efficient?

■ No, we require one expensive integer division operation.

How do we get random numbers?

- Generated by Pseudo-Random-Number-Generators (PRNGs)
- Generated as W-bit words, i.e. unsigned integers in $[0, 2^W)$ (typically $W \in \{32, 64\}$)

$rand() \mod n$

Does this work?

 \blacksquare Yes, the generated number is in [0, n).

Is this efficient?

■ No, we require one expensive integer division operation.

Is the generated number uniform in [0, n)?

Preliminaries

The Naive Approach

GOETHE UNIVERSITÄT

In general, applying $x \mod n$ to $[0, 2^W)$ yields

GOETHE UNIVERSITÄT

The Naive Approach

In general, applying $x \mod n$ to $[0, 2^W)$ yields

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

In general, applying $x \mod n$ to $[0, 2^W)$ yields

$$\underbrace{ \begin{array}{c|c} 2^W \text{ values} \\ \hline n \text{ values} & n \text{ values} \\ \hline 0,1,\ldots,n-1,0,1,\ldots,n-1,\ldots,0,1,\ldots,n-1, \\ (2^W \div n) \cdot n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline 0,1,\ldots,n-1, \\ \hline 0,1,\ldots,n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline 0,1,\ldots,n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline 0,1,\ldots,n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline 0,1,\ldots,n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline 0,1,\ldots,n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline 0,1,\ldots,n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline 0,1,\ldots,n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline 0,1,\ldots,n-1, \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c} n \text{ values} \\ \hline \end{array}}_{n \text{ values}} \underbrace{ \begin{array}{c|c}$$

We have a leftover interval that introduces bias.

Every approach that maps every integer in $[0, 2^W)$ to a single number in [0, n)

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

Every approach that maps every integer in $[0, 2^W)$ to a single number in [0, n) does not generate uniform random integers in one step

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

Every approach that maps every integer in $[0, 2^W)$ to a single number in [0, n) does not generate uniform random integers in one step whenever n does not divide 2^W .

In general, applying $x \mod n$ to $[0, 2^W)$ yields

We have a leftover interval that introduces bias.

Every approach that maps every integer in $[0, 2^W)$ to a single number in [0, n) does not generate uniform random integers in one step whenever n does not divide 2^W .

Idea: Use rejection sampling to achieve uniformity!

7/16

The OpenBSD Algorithm

GOETHE UNIVERSITÄT

■ We shift the rejection interval to the left:

■ We shift the rejection interval to the left:

■ We shift the rejection interval to the left:

$$\underbrace{0,1,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{R}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}}$$

Algorithm:

■ We shift the rejection interval to the left:

$$\underbrace{0,1,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{R}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}}$$

- Algorithm:
 - Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$

■ We shift the rejection interval to the left:

$$\underbrace{0,1,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{R}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}},\underbrace{\mathcal{R}_{n}^{W},\ldots,n-1,0,\ldots,\mathcal{R}_{n}^{W}-1}_{\substack{\mathcal{L}_{n}^{W}\text{ values}}}$$

- Algorithm:
 - Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
 - \blacksquare Return $x \mod n$

The OpenBSD Algorithm

GOETHE UNIVERSITÄT

Algorithm:

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Algorithm:

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Efficiency

Algorithm:

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Efficiency

We require 2 integer division operations:

The OpenBSD Algorithm

Algorithm:

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Efficiency

We require 2 integer division operations:

 \blacksquare one for computing \mathcal{R}_n^W

The OpenBSD Algorithm

Algorithm:

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Efficiency

We require 2 integer division operations:

- \blacksquare one for computing \mathcal{R}_n^W
- \blacksquare and one for computing $x \mod n$.

Algorithm:

- Generate a uniform random number $x \in [0, 2^W)$ until $x \geq \mathcal{R}_n^W$
- \blacksquare Return $x \mod n$

Efficiency

We require 2 integer division operations:

- \blacksquare one for computing \mathcal{R}_n^W
- \blacksquare and one for computing $x \mod n$.

Can we do better?

The Java Algorithm

The Java Algorithm

GOETHE UNIVERSITÄT FRANKFURT AM MAIN

The Java Algorithm

The Java Algorithm

The Java Algorithm

The Java Algorithm

The Java Algorithm

The Java Algorithm

■ Consider $x - (x \mod n)$ for $x \in [0, 2^W)$:

 \blacksquare Map every number to the next-smallest multiple of n

The Java Algorithm

- \blacksquare Map every number to the next-smallest multiple of n
- Only numbers in leftover interval mapped to $2^W \mathcal{R}_n^W > 2^W n$

The Java Algorithm

- \blacksquare Map every number to the next-smallest multiple of n
- Only numbers in leftover interval mapped to $2^W \mathcal{R}_n^W > 2^W n$
- Algorithm:

The Java Algorithm

- \blacksquare Map every number to the next-smallest multiple of n
- Only numbers in leftover interval mapped to $2^W \mathcal{R}_n^W > 2^W n$
- Algorithm:
 - (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$

The Java Algorithm

- \blacksquare Map every number to the next-smallest multiple of n
- Only numbers in leftover interval mapped to $2^W \mathcal{R}_n^W > 2^W n$
- Algorithm:
 - (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
 - (2) Return r if $x r > 2^W n$ else goto (1)

The Java Algorithm

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r > 2^W n$ else goto (1)

The Java Algorithm

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r > 2^W n$ else goto (1)

Efficiency

The Java Algorithm

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r > 2^W n$ else goto (1)

Efficiency

■ At least one integer division operation

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x-r>2^W-n$ else goto (1)

- At least one integer division operation
- Number of integer divisions operations equal to number of rounds

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r > 2^W n$ else goto (1)

- At least one integer division operation
- Number of integer divisions operations equal to number of rounds
- Return number in round if $x < 2^W \mathcal{R}_n^W$

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r > 2^W n$ else goto (1)

- At least one integer division operation
- Number of integer divisions operations equal to number of rounds
- Return number in round if $x < 2^W \mathcal{R}_n^W$
- Happens with probability $\frac{2^W \mathcal{R}_n^W}{2^W} > \frac{1}{2}$

Algorithm:

- (1) Draw $x \in [0, 2^W)$ and compute $r = x \mod n$
- (2) Return r if $x r > 2^W n$ else goto (1)

- At least one integer division operation
- Number of integer divisions operations equal to number of rounds
- Return number in round if $x < 2^W \mathcal{R}_n^W$
- Happens with probability $\frac{2^W \mathcal{R}_n^W}{2^W} > \frac{1}{2}$
- Expected number of integer division operations is $\frac{2^W}{2^W \mathcal{R}_n^W} < 2$

Unbiased Algorithms

The Bitmask Algorithm

GOETHE UNIVERSITÄT

 \blacksquare Consider the binary representation of n:

 \blacksquare Consider the binary representation of n:

 \blacksquare Consider the binary representation of n:

■ Every number $x \le n$ only needs the last $\lfloor \log_2 n \rfloor + 1$ bits

 \blacksquare Consider the binary representation of n:

$$n \quad \stackrel{\text{binary}}{\longrightarrow} \quad \underbrace{\underbrace{0}_{, \dots, 0}^{2^{\lfloor \log_2 n \rfloor}}, \underbrace{0}_{1}, \underbrace{0}_{1}, \dots, \underbrace{0}_{1}^{2^1}, \underbrace{0}_{0/1}^{2^0}}_{\text{series of 0's and 1's}}$$

- Every number $x \le n$ only needs the last $\lfloor \log_2 n \rfloor + 1$ bits
- Get these bits with a bitwise-AND with

$$2^{\lfloor \log_2 n \rfloor + 1} - 1 \xrightarrow{\text{binary}} \underbrace{0, \dots, 0}_{\text{only 0's}}, \underbrace{\frac{2^{\lfloor \log_2 n \rfloor}}{1, 1, \dots, 1}, \frac{2^1}{1}}_{\text{only 1's}}, \underbrace{\frac{2^0}{1, \dots, 0}}_{\text{only 1's}}$$

Unbiased Algorithms

The Bitmask Algorithm

GOETHE UNIVERSITÄT

■ How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?

Unbiased Algorithms

The Bitmask Algorithm

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's!

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's!

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's!

$$n \quad \stackrel{\text{binary}}{\longrightarrow} \quad \underbrace{0, \dots, 0}_{\ell \text{ 0's}}, \underbrace{1}_{\ell \text{ 0's}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}$$

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's!

$$n \xrightarrow{\text{binary}} \underbrace{0, \dots, 0}_{\ell \text{ 0's}}, \underbrace{1}_{\text{series of 0's and 1's}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}$$

GOETHE UNIVERSITÄT

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's!

$$n \xrightarrow{\text{binary}} \underbrace{0, \dots, 0}_{\ell \text{ 0's}}, \underbrace{1}_{\text{log}_{2} n}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}$$

Algorithm:

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's!

$$n \quad \stackrel{\text{binary}}{\longrightarrow} \quad \underbrace{0, \dots, 0}_{\ell \text{ 0's}}, \underbrace{1}_{\text{core}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}$$

- Algorithm:
 - (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's!

$$n \xrightarrow{\text{binary}} \underbrace{0, \dots, 0}_{\ell \text{ 0's}}, \underbrace{1}_{\text{core}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}$$

- Algorithm:
 - (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$

- How can we compute $2^{\lfloor \log_2 n \rfloor + 1}$?
- Count the number ℓ of leading 0's!

$$n \xrightarrow{\text{binary}} \underbrace{0, \dots, 0}_{\ell \text{ 0's}}, \underbrace{1}_{\text{series of 0's and 1's}}, \underbrace{0/1, \dots, 0/1}_{\text{series of 0's and 1's}}, \underbrace{0}_{\text{series of 0's and 1's}}$$

- Algorithm:
 - (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
 - (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
 - (3) Return b if b < n else goto (2)

Unbiased Algorithms

The Bitmask Algorithm

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

Efficiency

 \bullet b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} - 1 < 2n$

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

Efficiency

■ b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} - 1 < 2n$ success probability at least $\approx \frac{1}{2}$

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

- b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1 < 2n$ — success probability at least $\approx \frac{1}{2}$
- At most 2 rounds in expectation

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

- b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1 < 2n$ success probability at least $\approx \frac{1}{2}$
- At most 2 rounds in expectation
- No integer division at all

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

- b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1 < 2n$ success probability at least $\approx \frac{1}{2}$
- At most 2 rounds in expectation
- No integer division at all
- Computation of leading 0's requires clz instruction/algorithm

Algorithm:

- (1) Compute ℓ and $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1$
- (2) Draw $x \in [0, 2^W)$ and compute $b = x \& \mathcal{M}$
- (3) Return b if b < n else goto (2)

- b at most $\mathcal{M} = 2^{\lfloor \log_2 n \rfloor + 1} 1 < 2n$ success probability at least $\approx \frac{1}{2}$
- At most 2 rounds in expectation
- No integer division at all
- Computation of leading 0's requires clz instruction/algorithm
- Roughly as expensive as a div instruction

Lemire's Algorithm

$$(\texttt{rand()} \cdot n) \gg W$$

$$(\mathtt{rand()} \cdot n) \div 2^W$$

$$(\underbrace{\mathtt{rand()}}_{\in [0,2^W)} \cdot n) \div W$$

$$\underbrace{\left(\mathtt{rand}\left(\right)\cdot n\right)}_{\in\left[0,n\cdot2^{W}\right)}\div W$$

$$\underbrace{\left(\mathtt{rand}\left(\right)\cdot n\right)}_{\in\left[0,n\cdot2^{W}\right)}\div W$$

$$n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$$

$$\underbrace{\left(\operatorname{rand}\left(\right)\cdot n\right)}_{\in\left[0,n\cdot2^{W}\right)}\div W$$

- $n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$
- 2W bits enough to represent rand() $\cdot n$

■ Map rand() to [0, n) divisionless with $(rand() \cdot n) \gg W$:

$$\underbrace{(\mathtt{rand}()\cdot n) \div W}_{\in [0,n)}$$

- $n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$
- 2W bits enough to represent rand() $\cdot n$

■ Map rand() to [0, n) divisionless with $(rand() \cdot n) \gg W$:

$$\underbrace{(\mathtt{rand}()\cdot n) \div W}_{\in [0,n)}$$

- $n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$
- 2W bits enough to represent rand() $\cdot n$

Is this uniform?

■ Map rand() to [0, n) divisionless with $(rand() \cdot n) \gg W$:

$$\underbrace{(\mathtt{rand()} \cdot n) \div W}_{\in [0,n)}$$

- $n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$
- 2W bits enough to represent rand() $\cdot n$

Is this uniform?

■ Mapping is deterministic!

■ Map rand() to [0, n) divisionless with $(rand() \cdot n) \gg W$:

$$\underbrace{(\mathtt{rand()} \cdot n) \div W}_{\in [0,n)}$$

- $n < 2^W \Longrightarrow n \cdot 2^W < 2^W \cdot 2^W = 2^{2W}$
- 2W bits enough to represent rand() $\cdot n$

Is this uniform?

- Mapping is deterministic!
- \blacksquare Mapping can not be uniform for all n!

The Algorithm

The Algorithm

Conclusion

Conclusion

Summary

expected number of integer division operations maximum number of Unbiased? integer division operations

Conclusion

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	X

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	X
Multiply-and-Shift	0	0	X

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	Х
Multiply-and-Shift	0	0	×
OpenBSD	2	2	1

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	X
Multiply-and-Shift	0	0	×
OpenBSD	2	2	✓
Java	$\frac{2^W}{2^W - (2^W \mod n)}$	∞	✓

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	X
Multiply-and-Shift	0	0	X
OpenBSD	2	2	✓
Java	$\frac{2^W}{2^W - (2^W \mod n)}$	∞	✓
Bitmask	0	0	✓

	expected number of integer division operations	maximum number of integer division operations	Unbiased?
Modulo Reduction	1	1	X
Multiply-and-Shift	0	0	X
OpenBSD	2	2	✓
Java	$\frac{2^W}{2^W - (2^W \mod n)}$	∞	✓
Bitmask	0	0	✓
Lemire	$\frac{n}{2W}$	1	/

