Target damage simulations

A. Ushakov, S. Riemann

ILC Positron Source Group Meeting, 27 - 29 September 2006, Rutherford Appleton Laboratory

Helical Undulator

Undulator type	U250	U150
Undulator period, cm		1
Magnetic field, T	1.07	
K-value	1	
e - drive beam energy, GeV	250	150
Energy of 1 st harmonics cutoff, MeV	29.7	10.7
Mean photon energy, MeV	33.31	11.99
Number of photons, γ /(e $^-$ m)	2.575	

Target

Target thickness, X ₀	0.4
Target diameter, cm	39.5
Target-beam offset, cm	38
Spot size of photon beam, mm	0.7

Target type	W	Ti	Graphite
Target compound	75% W, 25% Re	90% Ti, 6% Al, 4% V	100% C (1.88 g/cm ³)
Target thickness, mm	1.36	14.83	91.51

Remarks

FLUKA calculations have been performed for unpolarized positron sources with following assumptions/simplifications:

- Positron source model has included only a target wheel (no capture section!).
- There was no magnetic field inside and outside the target.
- Transversal beam density distribution of incident photons is homogeneous (not Gauss profile).
- Photon beam has no divergence.
- Photon beam is at right angle to the target.
- Positron capture efficiency supposed to be of 35% (same for all undulator based sources).
- Remanent dose rate near the target has been estimated without taken into account any absorption.

Positron Yield

Black curve – all positrons; Blue curve – positrons emerging from the target with $r < 0.1 \, \mathrm{cm}$

Neutron Yield

Neutron Density (U150Ti)

Deposited Energy

Comparison of positron sources (unpolarized, undulator of 1 m)

Source type	U250C	U250Ti	U250W	U150C	U150Ti	U150W	
N _e ⁻ Undul., e ⁻ /s	2.82 · 10 ¹⁴						
$N_{e^+}^{Tgt\mapsto}$, e ⁺ /s	3.1 · 10 ¹³	5.5 · 10 ¹³	6.9 · 10 ¹³	8.1 · 10 ¹²	1.9 · 10 ¹³	2.8 · 10 ¹³	
$P_{\gamma}^{\mapsto Tgt}$, kW	3.9			1.4			
ΔE_{Tgt} , W	399	181	80	232	111	56	
N _n , n/s	4.1 · 10 ¹¹	1.0 · 10 ¹²	6.8 · 10 ¹¹	1.4 · 10 ¹¹	4.9 · 10 ¹¹	6.1 · 10 ¹¹	
A _{5000h} , GBq	263	100	131	104	56	159	
\dot{D}_{+1w} , mSv/h	0.4	6.1	2.2	0.2	2.6	2.7	

Comparison of positron sources (unpolarized)

Source type	U250C	U250Ti	U250W	U150C	U150Ti	U150W
$N_{e^+}^{IP}$, e ⁺ /s	2.82 · 10 ¹⁴					
	(2 · 10 ¹⁰ e ⁺ /bunch, 2820 bunch/train, 5 trains/s)					
$N_{e^+}^{DR}$, e ⁺ /s	4.23 · 10 ¹⁴					
	(50% safety factor)					
e ⁺ capt. efficiency, %	35					
$\begin{array}{c} N^{Tgt\mapsto}, e^+/s \\ Y^{Tgt}, e^+/\gamma \\ e^+, e^+/\gamma \\ N^{\mapsto Tgt}, \gamma/s \end{array}$	1.21 · 10 ¹⁵					
$Y_{e^+}^{Tgt}, e^+/\gamma$	0.0431	0.0752	0.0945	0.0112	0.0257	0.0391
$N_{\gamma}^{\mapsto Tgt}, \gamma/s$	2.8 · 10 ¹⁶	1.6 · 10 ¹⁶	1.3 · 10 ¹⁶	10.8 · 10 ¹⁶	4.7 · 10 ¹⁶	3.1 · 10 ¹⁶
$P_{\gamma}^{\mapsto Tgt}$, kW	149.4	85.7	68.2	207.8	90.2	59.4
$E_{\sim}^{\mapsto Tgt}$, J/bunch	10.60	6.08	4.83	14.74	6.40	4.21
$N \stackrel{\longleftarrow}{\stackrel{\vdash}{\vdash}} Undul$, e ⁻ /s $Y \stackrel{\longleftarrow}{\stackrel{\vdash}{\lor}} Undul$, $\gamma/(e^- m)$	2.82 · 10 ¹⁴					
$Y_{\gamma}^{Undul.}, \gamma/(e^-m)$	2.575					
L _{Undul.} , m	38.6	22.1	17.6	149.1	64.7	42.6
ΔE_{Tgt} , kW	15.4	4.0	1.4	34.6	7.2	2.4
$\langle \Delta E_{Tgt} \rangle$, J/(bunch mm ²)	2.84	0.74	0.25	6.37	1.33	0.44
N _n , n/s	1.6 · 10 ¹³	2.3 · 10 ¹³	1.2 · 10 ¹³	2.1 · 10 ¹³	3.2 · 10 ¹³	2.6 · 10 ¹³
A _{5000h} , GBq	10166 ± 154	2201 ± 90	2302 ± 56	15505 ± 84	3606 ± 198	6772 ± 173
\dot{D}_{+1w} , mSv/h	14 ± 1	135 ± 27	38 ± 4	24 ± 1	170 ± 7	116 ± 17

Radiation Damage

Wirth-Monasterio-Stein, Nov. 2005, UCB-NE-5015:

Total displacement in Ti-6Al-4V target by 5-11 MeV photon beam $(6.6 \cdot 10^{21} \, \gamma/\text{year} \text{ or } 3.7 \cdot 10^{23} \, \gamma/\text{(cm}^2 \, \text{year)})$ is 0.782 dpa/year.

Displacement rate produced by neutrons is of 0.176 dpa/year (22.5 %)

Total displacement: 1.185 \cdot 10 $^{-22}$ dpa/ γ 4.7 \cdot 10 16 γ/\rm{s} is required in order to get 2 \cdot 10 10 e $^+/\rm{s}$ at IP (U150Ti)

 \sim 25 h/0.5dpa in case of rotationless target

Target is off 40 cm beam axis could be used during 5.7 · 10⁴ h

