2B-1-d

Spatial optimization of a portfolio of centralised and decentralised technologies for planning sustainable sanitation

WET2022-Online 9-10 July, 2022

The University of Tokyo Vajira Lasantha, Kiyo Kurisu, Kensuke Fukushi

Problem

Can we provide a better sanitation service for the urban and peri-urban areas of the developing world with highly dynamic and heterogeneous characteristic, by applying a portfolio of centralised and decentralised sanitation technologies? How to find the optimum spatial distribution of alternatives when using a portfolio approach?

Proposed solution

A framework to evaluate a diverse portfolio of sanitation technology alternatives in terms of the overall sustainability and the suitability to a location Optimised sanitation plans under different development scenarios, produced using the evaluation framework.

Sanitation technology alternatives are pre-selected. For alternative i in a set of n.

Econ. Evaluation Score of Score of alt i

Envt. Score of 7 + W_{soc} X alt i

Economic

appropriateness and its spatial distribution, evaluated by

- The life-cycle cost of complete service coverage with an individual technology
- Cost of Alt 1 centralised estimated using a data-driven prediction model
- Costs of other alternatives estimated based on per capita costs

Environmental

appropriateness and its spatial distribution, based on four criteria,

- 1. Capacity for reception of effluent from onsite systems, mapped based of population density and impervious surfaces
- Suitability of soil for onsite disposal

Optimised sanitation plan

for the considered scenario

Surface water pollution risk

Pre-selected WWTP locations

Water reuse potential

Social

appropriateness and its spatial distribution, evaluated by The expected rate of service adoption, estimated based on the socioeconomic level of the households.

Mapped based on a socioeconomic index derived from 70 variables of household and population statistics.

Conclusions & Recommendations

Optimised sanitation plans are found to be a mix of multiple technologies in most scenarios Recommended to consider portfolio approaches to sanitation supported by scenario analysis

> Score of alt i

Study area Gampaha District, Sri Lanka Growing urban centres & expanding peri-urban zone

regionalise the

alternatives

Optimisation result for the considered Median filter to scenario reduce noise and

Selected sanitation technology alternatives

Centralised Sewerage gravity sewers, forced mains, central wastewater treatment

Simplified Sewerage Interceptor tanks, smallbore sewers, semi-central WWTPs

Septic Tanks + Faecal **Sludge Management** Septic tanks, sludge transport and treatment

Improved Septic Tanks

Septic tanks, anaerobic ilters, disinfection

Sanitation development scenarios

Defined by the weightages applied to the three scores Result shown here are for a scenario which gives equal preference for economic and environmental factors irrespective of the rate of adoption considered the social score. Defined by W_{econ} , W_{envt} , $W_{soc} = (10, 10, 0)$

In the optimum sanitation technology grid A, value of grid cell $a_{j,k} = \max_{i \in n} (S_{i_{j,k}})$

Interactive tool for exploring different scenarios