1

Funções e Modelos

Novas Funções a Partir de Conhecidas

Duas funções f e g podem ser combinadas para formar novas funções f+g, f-g, fg e flg de forma similar àquela pela qual somamos, subtraímos, multiplicamos e dividimos números reais. As funções soma e diferença são assim definidas

$$(f+g)(x) = f(x) + g(x), \quad (f-g)(x) = f(x) - g(x)$$

Se o domínio de f é A e o domínio de g é B, então, o domínio de f + g é a intersecção $A \cap B$, pois tanto f(x) quanto g(x) devem ser definidos.

Por exemplo, o domínio de $f(x) = \sqrt{x}$ é $A = [0, \infty)$ e o domínio de $g(x) = \sqrt{2-x}$ é $B = (-\infty, 2]$, de modo que domínio de $(f+g)(x) = \sqrt{x} + \sqrt{2-x}$ é $A \cap B = [0, 2]$.

Analogamente, as funções produto e quociente são definidas por

$$(fg)(x) = f(x)g(x)$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

O domínio de fg is $A \cap B$, mas não podemos dividir por zero e, assim, o domínio de flg é $\{x \in A \cap B \mid g(x) \neq 0\}$. Por exemplo, se $f(x) = x^2$ e g(x) = x - 1, então o domínio da função racional $(flg)(x) = x^2l(x - 1)$ é $\{x \mid x \neq 1\}$, ou $(-\infty, 1) \cup (1, \infty)$.

Existe outra maneira de combinar duas funções para obter uma nova função. Por exemplo, suponha que $y = f(u) = \sqrt{u}$ e $u = g(x) = x^2 + 1$. Como y é uma função de u e u é, por sua vez, é uma função de x, segue que, afinal de contas, y é uma função de x. Computamos isso pela substituição:

$$y = f(u) = f(g(x)) = f(x^2 + 1) = \sqrt{x^2 + 1}$$

Este procedimento é chamado composição pois a nova função é composta das funções dadas f e g.

Em geral, dadas quaisquer duas funções f e g, começamos com um número x no domínio de g e encontramos sua imagem g(x). Se este número g(x) estiver no domínio de f, podemos calcular o valor de f(g(x)).

O resultado é uma nova função h(x) = f(g(x)) obtida pela substituição g por f. É chamada de *composição* (ou *composta*) de f e g e é denotada por $f \circ g$ ("f círculo g").

Definição Dadas duas funções f e g, a função composta $f \circ g$ (também chamada de composição de f e g) é definida por

$$(f \circ g)(x) = f(g(x))$$

O domínio de $f \circ g$ é o conjunto de todos os x no domínio de g tais que g(x) está no domínio de f.

Em outras palavras, $(f \circ g)(x)$ é definida sempre que tanto g(x) quanto f(g(x)) estiverem definidas.

A Figura 11 mostra como visualizar $f \cdot g$ em termos de máquinas.

A máquina $f \cdot g$ é composta pela máquina g (primeiro) e a seguir pela máquina f.

Figura 11

Exemplo 6

Se $f(x) = x^2$ e g(x) = x - 3, encontre as funções compostas $f \cdot g$ e $g \cdot f$.

Solução:

Temos

$$(f \circ g)(x) = f(g(x)) = f(x-3) = (x-3)^2$$

$$(g \circ f)(x) = g(f(x)) = g(x^2) = x^2 - 3$$

Lembre-se de que a notação $f \circ g$ significa que a função g aplicada primeiro, e depois f é aplicada. No Exemplo 6, $f \circ g$ é a função que *primeiro* subtrai 3 e *então* eleva ao quadrado; $g \circ f$ é a função que *primeiro* eleva ao quadrado e *então* subtrai 3.

É possível fazer a composição de três ou mais funções. Por exemplo, a função composta $f \circ g \circ h$ pode ser encontrada calculando-se primeiro h, então g e depois f, como a seguir:

$$(f \circ g \circ h)(x) = f(g(h(x)))$$