

Tópicos em Computação Evolucionária: Mecanismos de Diversidade

Gisele L. Pappa

Mecanismos de Diversidade

- Em algoritmos evolucionários, a população normalmente converge para uma população uniforme, com muitas cópias do mesmo indivíduo
- Evolução natural mantém a diversidade das espécies
 - Cada espécie ocupa um nicho ecológico
- Solução: modificar os algoritmos para utilizar um método de *niching*, simulando uma competição por recursos limitados

Introdução a métodos de Niching

Motivação para Niching

- Reduz a velocidade de convergência da população para um único indivíduo (evitando convergência prematura)
- Encontra um conjunto de soluções ótimas ou quaseótimas, ao invés de uma solução ótima

Motivação para Niching

- Onde utilizar niching
 - Otimização de funções multi-modais (muita soluções ótimas)
 - Otimização de funções multi-objetivas (soluções avaliadas de acordo com vários critérios)

Métodos de Niching

- 2 tipos principais:
 - Fitness sharing
 - Crowding

Fitness Sharing (1)

- Modifica apenas a maneira como a fitness de um indivíduo é determinada, o resto da evolução não é alterada
- Seja: F_i a fitness original do indivíduo i
 F_i a fitness compartilhada de um indivíduo i
 NC_i a contagem de nicho do indivíduo i, onde
 NC mede a saturação de um nicho

$$F_i' = F_i / NC_i$$

Fitness Sharing (2)

- Seja SH uma função de compartilhamento, medindo a similaridade entre dois indivíduos
- A contagem de nicho (NC) de um indivíduo é a soma das funções compartilhadas (SH) (das similaridades) entre o indivíduo *i* e todos os indivíduos da população (incluindo ele mesmo), ou seja

$$F_i' = \sum_{\substack{j=1 \ j=1}}^{N} \overline{SH(i,j)}$$

onde N é o número de indivíduos da população

Fitness Sharing (3)

- SH retorna um número entre [0..1]
 - Similaridade é inversamente proporcional a distância
- Seja d_{ij} a distância entre dois indivíduos i, j
 - Se $d_{ij} = 0$ (os indivíduos são idênticos), o valor da SH é 1
 - Se d_{ij} é maior ou igual a um limiar de distância, θ_{share} , o valor da SH é 0 (i e j estão em nichos diferentes)
 - Se $0 < d_{ij} < \theta_{share}$, então a função retorna um valor intermediário, entre 0 e 1

Fitness Sharing (3)

- Seja d_{ij} a distância entre dois indivíduos i, j
 - Se $d_{ij} = 0$ (os indivíduos são idênticos), o valor da SH é 1
 - Se d_{ij} é maior ou igual a um limiar de distância, θ_{share} , o valor da SH é 0 (i e j estão em nichos diferentes)
 - Se $0 < d_{ij} < \theta_{share}$, então a função retorna um valor intermediário, entre 0 e 1

$$SH(d_{ij}) = \begin{cases} 1 - (d_{ij}/\theta_{share})^{\alpha}, \text{ se } d_{ij} < \theta_{share} \\ 0, \text{ nos outros casos} \end{cases}$$

• α é um parâmetro, que normalmente recebe valor 1

Fitness Sharing (4)

- 2 maneiras de medir a distância entre dois indivíduos
 - Compartilhamento de fenótipo ou de genótipo
- Compartilhamento de genótipo: considera o material genéticos dos indivíduos
 - Exemplo: distância de Hamming (se codificação binária é utilizada)
 - Número de bits diferentes

$$d_{1,1} = 0; d_{1,2} = 2; d_{1,3} = 1$$

Fitness Sharing (5)

- Compartilhamento de fenótipo: considera os indivíduos decodificados (soluções candidatas)
 - Exemplo: decodificar 5 bits em uma variável x
- $d_{i,j} = |x_i x_j|$, onde |x| é o valor absoluto de x

material genético decodificando x

$$d_{1,1} = 0; d_{1,2} = 1; d_{1,3} = 16$$

- Ind. 1 é mais similar ao indivíduo 2 que ao indivíduo 3 de acordo com a distância de fenótipos.
- Ind.1 é mais similar ao indivíduo 3 que ao indivíduo 2 de acordo com a distância de genótipos.

Fitness Sharing (6)

• Exemplo do efeito da fitness compartilhada (quanto maior a fitness, melhor o indivíduo)

$indiv_i$	F_{i}	NC_i	F_i
1	10	2.5	4
2	12	4	3
3	6	1	6
4	$\mid \stackrel{\smile}{8} \mid$	2	4

O valor de F_i ' é utilizado para seleção.

- Indivíduos 1 e 2 tem uma fitness original alta, mas são penalizados pelo valor alto de NC
- Indivíduo 3 tem a melhor função compartilhada

Fitness Sharing (7)

- Vantagens
 - Conceitualmente simples, boa metáfora do niching natural
 - Tenta distribuir indivíduos proporcionalmente ao fitness do pico onde se encontram

Fitness Sharing (7)

- Desvantagens
 - Dificuldade de ajustar o valor do parâmetro θ_{share} : idealmente, requer conhecimento sobre o número e o tamanho dos picos, o que não é realista em problemas difíceis
 - Solução : ajustar dinamicamente o valor de θ_{share} durante a busca
 - Computacionalmente caro: precisa calcular a distância entre pares de indivíduos
 - Solução possível : computar o valor da função de compartilhamento baseado em uma amostra da população

Crowding

- Ideia básica: os novos indivíduos são inseridos na próxima geração substituindo pais similares
- Ao contrário de *fitness sharing*, *crowding* não aloca indivíduos proporcionalmente a fitness do pico
- Utiliza uma função de distância para determinar quando dois indivíduos são similares

Crowding Deterministico

- Agrupa os indivíduos da população em pares
- Cruza todos os pares
 - Probabilidade de cruzamento = 1
- Muta os indivíduos gerados pelos pares
- Cada indivíduo compete com um pai
 - Indivíduos são forçados a competir com o pai menos distante
- O vencedor é inserido na nova população

Leitura Recomendada

• Sareni, B.; Krahenbuhl, L., "Fitness sharing and niching methods revisited," *IEEE Transactions on Evolutionary Computation*, vol.2, no.3, pp.97-106, 1998

Tópicos em Computação Evolucionária: Mecanismos de Diversidade

Gisele L. Pappa

