二、实数集的确界

1. 确界的概念

定义: 实数集 A 的最小上界称为**上确界**,记作 $\sup A$; 实数集 A 的最大下界称为**下确界**,记作 $\inf A$.

Note: 确界的唯一性 (确界的确定性、界的不确定性); 确界与最值的关系.

2. 确界的等价定义

定理: $M = \sup A \Leftrightarrow (1)$ 任给 $x \in A$,都有 $x \leq M$;(2)任给 $\varepsilon > 0$,都存在 $x_{\varepsilon} \in A$,使得 $x_{\varepsilon} > M - \varepsilon$;

 $m = \inf A \Leftrightarrow (1)$ 任给 $x \in A$,都有 $x \ge m$; (2)任给 $\varepsilon > 0$,都存在 $x_{\varepsilon} \in A$,使得 $x_{\varepsilon} < m + \varepsilon$.

例: 证明 $\inf_{n\in\mathbb{Z}^+}\left\{\frac{1}{n}\right\}=0$.

证: $\forall n \in \mathbb{Z}^+$, 都有 $\frac{1}{n} > 0$, 所以 0 是数集 $\{\frac{1}{n}\}$ 的一个下界.

对于 $\forall \ \varepsilon > 0$, 取 $n_0 = \left\lceil \frac{1}{\varepsilon} \right\rceil + 1$, 则 $n_0 \in Z^+$, $n_0 > \frac{1}{\varepsilon}$, 所以

$$\frac{1}{n_0} < \frac{1}{\varepsilon} = \varepsilon .$$

所以 0 是数集 $\{\frac{1}{n}\}$ 的最大下界. 故 $\inf_{n \in \mathbb{Z}^+} \left\{\frac{1}{n}\right\} = 0$.

例2: 设函数 f(x) 在 D 上有定义且有界,证明 $\sup_{x \in D} \{-f(x)\} = -\inf_{x \in D} \{f(x)\}$. (书上习题)

证: $i \mathbb{Z} m = \inf\{f(x)\}$, 则 $\forall x \in D$, 都有

$$f(x) \ge m$$
,

且对于 $\forall \varepsilon > 0$,都存在 $x_{\varepsilon} \in D$,使得

$$f(x_{\varepsilon}) < m + \varepsilon$$
.

所以 $-f(x) \leq -m$,且对于 $\forall \varepsilon > 0$,都存在 $x_{\varepsilon} \in D$,使得

$$-f(x_{\varepsilon}) > (-m) - \varepsilon$$
.

$$\#\sup_{x \in D} \{-f(x)\} = -m = -\inf_{x \in D} \{f(x)\} .$$

练习题: 设 A,B 为非空有界集,证明 $A \cup B$ 有界,且 $\inf A \cup B = \min \{\inf A,\inf B\}$.

三、确界存在公理(定理)

定理: 若实数集 A 有上界,则其在实数范围内有上确界;若实数集 A 有下界,则其在实数范围内有下确界.

Note: 确界存在定理、单调有界收敛定理、区间套定理是实数连续性常见的三个等价定理.