Chapter 12 - Textsuche

Lineares Programm

Lineare Ungleichung:

$$y := \mathbf{u}^t \mathbf{x} + u \ge 0$$

Ungleichungssystem mit l linearen Ungleichungen

$$y_i := \mathbf{a}_i^t \mathbf{x} + a_i \ge 0$$

bilden konvexes Polyeder S, Simplex!

Def.

lineare Zielfunktion $z := \mathbf{z}^t \mathbf{x}$. Lineares Programm:

$$z := \mathbf{z}^t \mathbf{x} = \max!$$

$$\mathbf{y} := A\mathbf{x} + \mathbf{a} \ge 0$$

Schematische Normalform:

Eckentausch

AUSTAUSCH:

Eingabe:

$$A = [a_{ij}]_{i,j=1,1}^{m,n}$$

Ausgabe:

:
$$A' = [a'_{ij}]_{i,j=1,1}^{m,n}$$

For
$$i \neq r$$
, $j \neq s$

$$a'_{ij} \leftarrow a_{ij} - \frac{a_{is}a_{rj}}{a_{rs}}$$
For $i = r$, $j \neq s$ (Pivotzeile)
$$a'_{ij} \leftarrow -\frac{a_{ij}}{a_{rs}}$$
For $i \neq r$, $j = s$ (Pivotspalte)
$$a'_{ij} \leftarrow \frac{a_{ij}}{a_{rs}}$$
For $i = r$, $j = s$ (Pivot)
$$a'_{ij} \leftarrow \frac{i}{a_{rs}}$$

Simplex

Algorithmus:

Eingabe:

Normalform B eines lin. Programms

Ausgabe:

Normalform generated part , sodass z(0)=c=max