Deployment of Privacy-Preserving Machine Learning for Political Polling in the 2024 Presidential Election

Sam Buxbaum

Lucas M. Tassis, Lucas Boschelli, Giovanni Comarela, Mayank Varia, Mark Crovella, Dino P. Christenson

SysteMPC Workshop

July 10, 2025

• We build a system for securely predicting political preferences

- We build a system for securely predicting political preferences
- We collect and analyze data from almost 8000 unique users

- We build a system for securely predicting political preferences
- We collect and analyze data from almost 8000 unique users
- All analysis takes place under MPC

- We build a system for securely predicting political preferences
- We collect and analyze data from almost 8000 unique users
- All analysis takes place under MPC
- Learning algorithm follows a train-update loop until convergence

- We build a system for securely predicting political preferences
- We collect and analyze data from almost 8000 unique users
- All analysis takes place under MPC
- Learning algorithm follows a train-update loop until convergence
 - Train a logistic regression model on current predictions

- We build a system for securely predicting political preferences
- We collect and analyze data from almost 8000 unique users
- All analysis takes place under MPC
- Learning algorithm follows a train-update loop until convergence
 - Train a logistic regression model on current predictions
 - Update predictions and repeat

Web browsing behavior can predict voting results

- Web browsing behavior can predict voting results
- Quantifying the 'Comey letter' (Comarela et al.)

- Web browsing behavior can predict voting results
- Quantifying the 'Comey letter' (Comarela et al.)

Figure 8: Impact of the 'Comey letter' at the state level.

- Web browsing behavior can predict voting results
- Quantifying the 'Comey letter' (Comarela et al.)
 - The event was too close to the election for other polling methods to detect the effect

Figure 8: Impact of the 'Comey letter' at the state level.

Traditional Polling	VS	Web Behavior Analysis
Slow		Immediate
Expensive		Cheap
Coarse-grained insights		Fine-grained insights
	J	

What about privacy?

Users

Users

Built a Chrome plugin to monitor web behavior

Users

- Built a Chrome plugin to monitor web behavior
- Client-side secret sharing and encryption

Users

- Built a Chrome plugin to monitor web behavior
- Client-side secret sharing and encryption

Intermediate webserver

Users

- Built a Chrome plugin to monitor web behavior
- Client-side secret sharing and encryption

Intermediate webserver

Simplifies interaction with users

Users

- Built a Chrome plugin to monitor web behavior
- Client-side secret sharing and encryption

Intermediate webserver

- Simplifies interaction with users
- Collects basic metadata (e.g., for payment)

Users

- Built a Chrome plugin to monitor web behavior
- Client-side secret sharing and encryption

Intermediate webserver

- Simplifies interaction with users
- Collects basic metadata (e.g., for payment)

MPC backend

Users

- Built a Chrome plugin to monitor web behavior
- Client-side secret sharing and encryption

Intermediate webserver

- Simplifies interaction with users
- Collects basic metadata (e.g., for payment)

MPC backend

Trains a model on the data

Users

- Built a Chrome plugin to monitor web behavior
- Client-side secret sharing and encryption

Intermediate webserver

- Simplifies interaction with users
- Collects basic metadata (e.g., for payment)

MPC backend

- Trains a model on the data
- We use and augment the CrypTen MPC library

1. Data integrity matters

1. Data integrity matters

• Verifying user honesty in reporting their state of residence

1. Data integrity matters

- Verifying user honesty in reporting their state of residence
- How can we balance more extensive tracking with privacy?

1. Data integrity matters

- Verifying user honesty in reporting their state of residence
- How can we balance more extensive tracking with privacy?

2. Strengthen the threat model

1. Data integrity matters

- Verifying user honesty in reporting their state of residence
- How can we balance more extensive tracking with privacy?

2. Strengthen the threat model

AWS as a single point of trust

1. Data integrity matters

- Verifying user honesty in reporting their state of residence
- How can we balance more extensive tracking with privacy?

2. Strengthen the threat model

- AWS as a single point of trust
- Anonymous payments

Thank You!

sambux@bu.edu

