Sistemes Intel·ligents – Examen Final (Bloc 1), 23 gener 2020 Test (1,75 punts) <u>puntuació</u>: max (0, (encerts – errors/3) * 1,75/6)

Cognoms:				Nom:						
Grup:	Α	В	С	D	Ε	F	G	4IA		

1) Considerant el següent arbre de cerca, quants nodes com a màxim s'emmagatzemen en memòria, aplicant un procediment de cerca en profunditat iterativa? (Assumiu que, a igual profunditat, es tria el node més a l'esquerra).

- A. 6
- B. 8
- C. 10
- D. Cap de les respostes anteriors és correcta.
- 2) Siga l'arbre de la figura on els nodes de traç gruixut són nodes meta, el valor dins del node és el valor de la funció heurística aplicada a cada node, i el valor de les arestes és el cost de l'operador corresponent. Indiqueu la resposta CORRECTA:

- A. L'heurística és admissible i consistent.
- B. L'heurística no és admissible ni consistent.
- C. Aplicant un algorisme de tipus A se troba la solució òptima.
- D. Cap de les opcions anteriors és correcta.
- 3) Siguen dues funcions d'avaluació, f1(n) = g(n) + h1(n) i f2(n) = g(n) + h2(n), tals que h1(n) és admissible i h2(n) no ho és. Indica la resposta CORRECTA:
 - A. L'ús d'ambdues funcions en un algorisme de tipus A garanteix, en cada cas, trobar la solució òptima.
 - B. Es garanteix que f2(n) generarà un menor espai de cerca que f1(n).
 - C. Només si h1(n) és una heurística consistent, f1(n) generarà un menor espai de cerca que f2(n).
 - D. Existeix algun node n per al qual $h2(n) > h^*(n)$.

- 4) En una cerca en graf (GRAPH-SEARCH) que aplica un algorisme de tipus A (f(n) = g(n) + h(n)), es té un node n en la llista CLOSED i un node n' en la llesta OPEN tal que n'=n. Indiqueu la resposta CORRECTA:
 - A. Si l'heurística és admissible, es compleix sempre h(n) < h(n').
 - B. Si l'heurística és consistent, es compleix sempre $g(n) \leftarrow g(n')$.
 - C. Independentment de si l'heurística és consistent o no, es compleix sempre $f(n) \leftarrow f(n')$.
 - D. Cap de les respostes anteriors és correcta.
- 5) Siguen n1 i n2 els dos únics nodes fill d'un node n el qual és un node MAX en un arbre de joc. Assumim que s'explora primer el node n1 i després n2. Indiqueu la resposta CORRECTA:
 - A. El valor definitiu del node n serà el màxim entre el valor definitiu de n1 i n2 només quan n1 i n2 són nodes terminals.
 - B. Quan es copia el valor de n1 al node pare n, aquest pot tenir associat un valor copiat anteriorment.
 - C. Quan es torne el valor de n1 al node pare n, es pot produir un tall beta en n.
 - D. Cap de les respostes anteriors és correcta.
- 6) Quina és la millor jugada per al node arrel MAX si apliquem un alfa-beta a l'arbre de joc?

- A. La branca A.
- B. La branca B.
- C. La branca C.
- D. La branca A o B.

Sistemes Intel·ligents – Examen Final (Bloc 1), 23 gener 2019 Problema: 2 punts

Es desitja formar dos grups de persones, un de persones que parlen rus i un altre grup de persones que parlen xinès. Es presenten diverses persones que acrediten domini d'un o els dos idiomes. El nivell de classificació del domini de la llengua és d'1 a 5, sent 1 el menor nivell i 5 el nivell màxim.

- P1 acredita xinès amb nivell 3 i rus amb nivell 1.
- P2 acredita rus amb nivell 4.
- P3 acredita rus amb nivell 1 i xinès amb nivell 2.
- P4 acredita xinès amb nivell 3.
- P5 acredita rus amb nivell 3.
- P6 acredita xinès amb nivell 2 i rus amb nivell 5.
- P7 acredita xinès amb nivell 4.
- P8 acredita rus amb nivell 3 i xinès amb nivell 2.

El patró per a la formació dels dos grups és el següent:

(grups rus p^{m} xinès q^{m}) on $p,q \in \{P1,P2,P3,P4,P5,P6,P7,P8\}$

- 1) (0,5 punts) Escriu la Base de Fets corresponent a la situació inicial que es mostra a dalt assumint que els grups inicialment estan buits. Inclou els patrons addicionals que necessites per a representar la informació estàtica del problema, així com els fets associats a aquests patrons.
- 2) (0,8 punts) Escriu una única regla per a afegir una persona al grup de xinès o rus, comprovant que la persona acredita l'idioma corresponent amb un nivell mínim de 2 i que aquesta persona no està ja apuntada a cap grup.
- 3) (0,7 punts) Escriu una regla que mostre un missatge per pantalla indicant el nombre de persones en cada grup quan s'hagen aconseguit almenys tres persones en cadascun d'ells.

Examen final de SIN: bloc 2

ETSINF, Universitat Politècnica de València, 23 de gener de 2020

Cogn										n: [
Grup	: □3	\mathbf{A}	⊐ 3E	3 🗆	3C	□ 3I) 🗆	3 E	□ 3F	$\Box 3$	\mathbf{G}	□ 4I A	A		
Test	(1,75)	pun	ts)												
Marca c	` '		,	na únic	ca opci	ió. Pu	ntuaci	ó: max	$\mathbf{x}(0,(\mathbf{enc}))$	certs —	errors ,	(3) · 1	, 75 / 6)).	
1 Sigue ment.	n C, L, S La seua	varial proba	bles a abilita	leatòri ıt conj	ies que unta v	prenen e donad	valors a en la	s en {r a següe	as,nuv, nt taula	PLU}, {	DIA, NI	т}, і {	$_{ m SEG,AC}$	c}, respec	ctiva
	$ \begin{array}{c} s \\ l \\ c \\ \hline P(s, l) \end{array} $	I I	SEG DIA RAS	SEG DIA NUV	SEG DIA PLU 0.07	SEG NIT RAS	SEG NIT NUV	SEG NIT PLU 0.06	ACC DIA RAS 0.01	ACC DIA NUV 0.01	ACC DIA PLU 0.03	ACC NIT RAS	ACC NIT NUV	ACC NIT PLU 0.05	
Quina A) (B) (C) (D) ().03.).05.	obabil	itat c	ondici	onal P	C = PI	LU S =	= ACC, <i>I</i>	L = DIA)?:					
mínir un cla següe A) g B) g C) g	n risc d' ϵ	$\operatorname{P}(c \mid \mathbf{y})$ $\operatorname{P}(c \mid \mathbf{y})$ $\operatorname{OSP}(c \mid \mathbf{y})$ $\operatorname{OSP}(c \mid \mathbf{y})$	$egin{array}{l} \operatorname{de} \ \widetilde{\mathbf{B}} \ \operatorname{ten} \ C \ \operatorname{is} \ no \ \mathbf{b} \ (c \mid \mathbf{y}) \ \end{array}$	ayes e. C Fune seria g	n <i>C</i> cl cions <i>I</i> general	asses. A Discrimi ment co	Amb al <i>nants</i> , rrecta	gunes definit	assump per \hat{c} =	cions, a = arg ma	quest $ax_{1 \le c \le 1}$	classifi $_{C}g_{c}(\mathbf{y})$	cador (lassificad coincideix ca quina c	am
que n Quina A) : B) : C) :		Iltima, egüent $C \cdot N$. $(C-1)$ $C' \cdot N$,	de l'a safir $(x) \cdot N$. on C	algoris macion " és ta	me Perns és <i>in</i>	cceptró $ncorrect$ $1 \leq C' \leq$	aplicat a ? $\leq C$.	a <i>S</i> . I	En dita	iteració	es mo	odifique	en k ve	ació quals ctors de p -èsima.	
l'exec d'atu d'imp const A) B)	ució d'ac rada de p	quest a article article anteix ≤ 0.5 . ≤ 1.0 . ≤ 2.0 .	algoris ons en en te l'atur	sme s'l aques rmes c	ha arri t node d'entro	bat a u i se sap pia) en	n nod que el	${ m e}t{ m que}$ ${ m seu}{ m con}$	inclou junt de	N(t) d possibl	lades. es <i>"spl</i> a	Es pre its " pre	tén av n valor	lasses. Du aluar el c s de decre de valors	$ m_{rite}$
(repro C-mit següe A)	gura a la esentats ijanes, el nts afirm Les mitj La suma	mitjan punt acions anes d	içant (3,0) s és ce e clús	els sín es ca: rta): ter no	nbols onvia do	• i ∘). el clúste en.	Si, dı	ırant l	'execuci	ió de l'	algoris	me	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3	x_1

C) La suma d'errors quadràtics decreix.

D) Només canvia la suma d'errors quadràtics d'un dels clústers.

- A) En l'algorisme de re-estimació per Viterbi es compta el nombre de vegades que s'ha utilitzat cada transició entre estats, a partir de les seqüències d'estats trobades mitjançant l'algorisme de Viterbi. Posteriorment, es normalitzen els comptadors obtinguts.
- B) En l'algorisme de re-estimació per Viterbi es compta el nombre de vegades que cada símbol ha sigut emès en cada estat, a partir de les seqüències d'estats trobades mitjançant l'algorisme de Viterbi. Posteriorment, es normalitzen els comptadors obtinguts.
- C) L'algorisme de re-estimació per Viterbi consisteix a aplicar únicament l'algorisme de Viterbi i calcular la probabilitat que el model de Markov genere cada seqüència de símbols d'entrenament.
- D) En l'algorisme de re-estimació per Viterbi és important la inicialització dels paràmetres del model.

Problema (2 punts)

Siga $\lambda \in \mathbb{R}^+$. Diguem que una variable aleatòria $x \in \{0, 1, 2, \ldots\}$ és Poisson (λ) si la seua funció de massa de probabilitat és:

$$p_{\lambda}(x) = \frac{\exp(-\lambda) \lambda^{x}}{x!}$$

La distribució de Poisson s'empra per a modelizar la probabilitat que un esdeveniment donat ocórrega un cert nombre de vegades en un context prefixat. El paràmetre λ pot interpretar-se com la mitjana d'ocurrències d'aquest esdeveniment. Per exemple, x podria ser el nombre de trucades telefòniques que rebem en un dia o el nombre d'ocurrències d'una certa paraula en un document donat. La figura a la dreta mostra $p_{\lambda=4}(x)$ per a tot $x \in \{0,1,\ldots,11\}$.

Siga un problema de classificació en C classes per a objectes representats mitjançant una característica de tipus comptador, $x \in \{0, 1, 2, \ldots\}$. Per a tota classe c, suposem donades:

- La seua probabilitat a priori, P(c).
- La seua funció de (massa de) probabilitat condicional, $P(x \mid c)$, la qual és Poisson (λ_c) amb λ_c coneguda.

Es demana:

- 1. (0.5 punts) Siga el cas particular: C=2, $P(c=1)=P(c=2)=\frac{1}{2}$, $\lambda_1=1$, $\lambda_2=2$ i x=2. Determina la probabilitat incondicional d'ocurrència de x=2, P(x=2).
- 2. (0.5 punts) En el cas particular anterior, troba la probabilitat a posteriori $P(c=2 \mid x=2)$, així com la probabilitat d'error si x=2 es classifica en la classe c=2.
- 3. (0.5 punts) Més generalment, per a qualsevol nombre de classes C i qualsevol probabilitats a priori, considera el cas en el qual, donat un cert $\tilde{\lambda} \in \mathbb{R}^+$, $\lambda_c = \tilde{\lambda}$ per a tot c. En tal cas, existeix una classe que no depèn de x, c^* , en la qual es pot classificar tot x amb mínima probabilitat d'error. Determina-la.
- 4. (0.5 punts) En el cas general, prova que el classificador de Bayes per a aquest problema pot expressar-se com un classificador basat en funcions discriminants lineals com segueix (ln indica logaritme natural):

$$c^*(x) = \underset{c}{\arg\max} \ g_c(x) \quad \text{con} \quad g_c(x) = w_c \, x + w_{c0}, \quad w_c = \ln \lambda_c \quad \text{y} \quad w_{c0} = \ln p(c) - \lambda_c$$