Introduction to Abstract Algebra: Sheet 9

For discussion in week 9 skills sessions and week 10 tutorials

The problems marked with (SS) will be discussed in the Skills Session for Week 9. Please attempt these *before* your Skills Session. Some of the other problems will be discussed in your tutorial for Week 10. Please attempt all core problems *before* your tutorial.

Participation mark problems

Exercise 1. Let G be a group, and let \sim be the binary relation on G given by $x \sim y$ if there exists an isomorphism $\phi: G \to G$ such that $\phi(x) = y$. Is \sim an equivalence relation? Either prove it is or explain why it is not.

Exercise 2. Let G and H be groups, let $\phi: G \to H$ be a group homomorphism, and let $K = \ker \phi$. Let $g_1, g_2 \in G$. Show that $g_1 \in g_2K$ if and only if $\phi(g_1) = \phi(g_2)$.

Core problems

Exercise 3. Let G and H be groups, and let $\phi: G \to H$ be an isomorphism. Prove that G is abelian if and only if H is abelian.

Exercise 4. For each of the following relations \sim on a set S, determine whether or not \sim is reflexive, symmetric, transitive. For each property, either prove \sim has this property or give an example to show that \sim does not have the property.

- (i) $S = \mathbb{Z} \times \mathbb{Z}$, and \sim is the relation given by $(a,b) \sim (c,d)$ if ad = bc.
- (ii) S is the set of all subsets of $\{1,\ldots,n\}$. For subsets $A,B\in S$, we write $A\sim B$ if $A\subset B$.
- (iii) (SS) S is the set of all subgroups of \mathbb{Z}_{20} , and \sim is given by $H_1 \sim H_2$ if there exists an surjective homomorphism $H_1 \to H_2$.
- (iv) $S = S_5$, and $x \sim y$ if xy = yx.

Exercise 5. Find all the left cosets of each of the following:

- (i) the subgroup $\langle [5]_{15} \rangle = \{ [0]_{15}, [5]_{15}, [10]_{15} \}$ of \mathbb{Z}_{15} ;
- (ii) (SS) the subgroup $\langle [8]_9 \rangle$ of \mathbb{Z}_9^{\times} ;
- (iii) the subgroup $\{e, (2\ 3), (2\ 4), (3\ 4), (2\ 3\ 4), (2\ 4\ 3)\}$ of S_4 ;
- (iv) the subgroup $H = \{ f \in D_4 \mid f \text{ is a rotation or } f = e \} \text{ of } D_4.$

Exercise 6 (SS). Let G be a group, let H be a subgroup of G, and let $g \in G$. Show that the coset gH is a subgroup of G if and only if $g \in H$.

Exercise 7. Find the remainder of the following numbers after division by 13 without using a calculator. You can use the fact that $2023 = 7(17)^2$.

- (i) $(2023)^{240}$
- (ii) 5^{170}
- (iii) $(14)^{2023}$

Additional practice

Exercise 8. Note that \mathbb{R}^{\times} is a subgroup of \mathbb{C}^{\times} (the non-zero complex numbers under multiplication). Describe the left coset of \mathbb{R}^{\times} in \mathbb{C}^{\times} containing i.

Exercise 9. Consider the real vector space \mathbb{R}^2 as a group with respect to vector addition. Verify that the subset $H \subseteq \mathbb{R}^2$ consisting of those vectors (x, y) satisfying y = 3x is a subgroup, and describe the cosets of H. Draw a picture and observe that any two cosets are either equal or disjoint.

Exercise 10. Consider the nonzero complex numbers \mathbb{C}^{\times} as a group with respect to multiplication. Verify that the subset $H \subseteq \mathbb{C}^{\times}$ consisting of those complex numbers z satisfying |z| = 1 is a subgroup, and describe the cosets of H. Draw a picture and observe that any two cosets are either equal or disjoint.

Exercise 11. Let $H = \{ f \in S_n \mid f(1) = 1 \}$ be the subgroup of S_n defined in Sheet 8 Exercise 8. Show that fH = gH if and only if f(1) = g(1).

Exercise 12. Let G be a group. Define a binary relation on G by $x \sim y$ if there exists $g \in G$ such that $y = gxg^{-1}$.

- (i) Show \sim is an equivalence relation on G. The equivalence classes for this relation are called conjugacy classes.
- (ii) Describe the conjugacy classes of S_3 .
- (iii) Let Z_G be the center of G, as defined in Sheet 8. Show that $g \in Z_G$ if and only if its conjugacy class is $\{g\}$.
- (iv) Let $\phi: G \to H$ be a group homomorphism, and assume H is an abelian group. Show that if x and y are in the same conjugacy class, then $\phi(x) = \phi(y)$.
- (v) Find all homomorphisms $S_3 \to \mathbb{C}^{\times}$.