

Past Papers Higher Chemistry

2022 Marking Scheme

Grade	Mark Required		% condidates cabiavina anada
Awarded	(/ ₁₂₀)	%	% candidates achieving grade
Α	84+	70.0%	34.9%
В	68+	56.7%	24.1%
С	53+	44.2%	19.3%
D	37+	30.1%	12.9%
No award	<37	<30.1%	8.8%

Section:	Multiple Choic	ce	Extended A	nswer	Assignment
Average Mark:	16.4	/25	55.1	/95	No Assignment in 2022

	202	2 Higher Chemistry Marking Scheme							
MC Qu	Answer	Reasoning							
1	D	☑A Boron is a covalent network due to its high melting point ☑B Neon is monatomic in Group O due to its full pouter shell ☑C Sodium is a metal and contains metallic bonding ☑D Sulphur has a covalent S ₈ structure and has LdF between molecules							
2	Α	☑A Forming a 2+ ion creates a full outer shell and a low 2 nd ionisation energy ☑B Forming a 3+ ion creates a full outer shell and a low 3 rd ionisation energy ☑C ionisation energy removes electrons and forms positive ions ☑D ionisation energy removes electrons and forms positive ions							
3	С	 ☑A Intermolecular forces decide the boiling point not the covalent bonds inside ☑B Intermolecular forces decide the boiling point not the covalent bonds inside ☑C Permanent dipole to permanent dipole attractions between polar covalent HCl molecules are stronger than London dispersion forces between H₂ molecules ☑D Van der Waals' forces are never stronger than covalent bonds 							
4	В	Agent Reducing Agent Oxidising Agent Action of Agent on Another Species reduces another species oxidises another species Action on Agent Itself agent is oxidised agent is reduced Effect on Electrons in Agent loss of electrons gain of electrons Likely Electronegativity of Agent low high Position in Electrochemical series top right bottom Left							
5	D	Redox: $Cr_2O_7^{2^-} + 14H^+ + 6Fe^{2^+} \longrightarrow 2Cr^{3^+} + 7H_2O + 6Fe^{3^+}$ Oxidation: $6Fe^{2^+} \longrightarrow 6e^- + 6Fe^{3^+}$ Reduction: $Cr_2O_7^{2^-} + 14H^+ + 6e^- \longrightarrow 2Cr^{3^+} + 7H_2O$							
6	A	Formula: $MgBr_2$ $MgSO_4$ Mole ratio: $1mol: 2mol$ $1mol: 1mol$ 4mol Br^- ions $2mol: 4mol$ 3mol Mg^{2^+} ions $2mol$ $1mol$ 1mol $SO_4^{2^-}$ ions $1mol: 1mol$							
7	D	Ester Link $H H H H O$ $H C C C C C H H H$ $H H H H O C C C H$ $H H H H H H$ C_5 carboxyl side C_3 alcohol side C_5 carboxyl side C_3 alcohol side C_5 carboxyl side C_5 carboxyl side C_5 carboxyl side							
8	C	Structure shown has formula C8H16O B 2-ethylhexanal has formula C8H16O C8H16O C8H16O D 5-methylheptan-3-one has formula C8H16O							
9	A	$\begin{array}{ c c c c c c }\hline \text{Name} & \text{Hydroxyl} & \text{Carboxyl} & \text{Amine} & \text{Carbonyl} \\ \hline \\ Functional \\ \text{Group} & -\text{OH} & \begin{matrix} O & H & O \\ & -C-\text{OH} & H-\text{N}-\end{matrix} & -C- \\ \hline \end{array}$							

10	С	☑A C=C double bond in prenol molecule would decolourise bromine solution quickly ☑B C=C double bond in prenol molecule would decolourise bromine solution quickly ☑C Prenol would decolourise bromine solution and react with hot copper (II) oxide ☑D Prenol is a primary alcohol and would react with hot copper (II) oxide					
11	В	Palm oil has iodine number of 48 ∴ 48g of Iodine reacts with 100g of palm oil Olive oil has iodine number of 84 ∴ 84g of Iodine reacts with 100g of olive oil • palm oil must contain less C=C double bonds than olive oil as less iodine is required by palm oil to saturate the molecules completely. • palm oil must be more saturated than olive oil if it contains less C=C bonds • more saturated palm oil molecules fit together better would meaning palm oil molecules are closer together and raises melting point of palm oil.					
12	В	 ☑A head section is polar making it hydrophilic. ☑B hydrophilic head dissolves in water and hydrophobic tail dissolves in oil ☑C head section is polar would dissolve in water making it hydrophilic. ☑D head section is polar would dissolve in water. 					
13	D	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
14	С	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
15	В	 ☑ A Carbonyl group would be numbered C₂ to give functional group lowest numbering system ☑ B Secondary alcohol 4-methylpentan2-ol oxidises to form the ketone 4-methylpentan-2-one ☑ C Molecule is secondary alcohol and would oxidise to form a ketone not aldehyde ☑ D Molecule is secondary alcohol and would oxidise to form a ketone not aldehyde 					
16	С	 ☑ A the bottom of the meniscus should be used to measure the volumes in a burette ☑ B rinsing the burette with deionised water will result in the dilution of the next solution in burette ☑ C small volume of the reactant in the burette should be used to rinse the burette before use, the bottom of the meniscus should be used to measure volumes and draining a small volume of acid will remove any air bubble below the tap in the burette. ☑ D the bottom of the meniscus should be used to measure the volumes in a burette 					
17	В	 ☑A polar ethanol would not be a solvent to dissolve non-polar lycopene & beta-carotene ☑B pentane is non-polar and would be a good solvent for non-polar lycopene & beta-carotene ☑C polar propanoic acid would not be a solvent to dissolve non-polar lycopene & beta-carotene ☑D polar water would not be a solvent to dissolve non-polar lycopene & beta-carotene 					
18	D	rate = $\frac{1}{\text{time}}$ = $\frac{1}{0.004}$ = 250s					
19	A	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					

20	С	 ★ A No effect as neither Na⁺ or Cl⁻ ions is a reactant or product and don't react with a reactant/product ★ B H⁺ ions in HCl_(aq) increases concentration of a product : equilibrium shifts to left ★ C OH⁻ ions in NaOH_(aq) neutralises H⁺ in products : equilibrium shifts to right to replace H⁺ ions ★ D CH₃COO⁻ ions in CH₃COONa_(aq) increases concentration of product : equilibrium shifts to left 								
		Quantity	Measured	Α	В	С	D			
		Enthalpy of Reactants (kJ mol ⁻¹)	Where R starts on y-axis	30	30	30	30			
21	D	Activation Energy of Forward Reaction (kJ mol ⁻¹)	Difference between R and top of hill	80-30 = 50	110-30 = 80	110-30 = 80	140-30 = 110			
		Activation Energy of Reverse Reaction (kJ mol ⁻¹)	Difference between P and top of hill	80-40 = 40	110-40 = 70	110-70 = 40	140-70 = 70			
22	В	$\Delta H_1 = \Delta H_2 + \Delta H_3 + \Delta H_4$ $\Delta H_4 = \Delta H_1 - \Delta H_2 - \Delta H_3$ $\Delta H_4 = -210 - (-50) - (-86)$ $\Delta H_4 = -74 \text{kJ mol}^{-1}$ But ΔH for Z to Y = +74 kJ mol $^{-1}$ $\Delta H_3 = -86 \text{kJ mol}^{-1}$ $\Delta H_3 = -86 \text{kJ mol}^{-1}$								
23	A	50cm^3 diluted in a 250cm^3 standard/volumetric flask gives 1 in 5 dilution. 0.100 mol l ⁻¹ given 1 in 5 dilution results in solution becoming 0.02 mol l ⁻¹ (or $2.0 \times 10^{-2} \text{ mol l}^{-1}$)								
24	В									
25	A	☑A 10cm³ of water is better measured in a ☑B beakers are not as accurate as measuri ☑C Volumetric/standard flasks are used to ☑D Volumetric/standard flasks are used to	neasuring cylinder and titro ng cylinders for measuring vo make up solutions of accura	olumes tely know	n concent	ration	ask			

20	2022 Higher Chemistry Marking Scheme							
Long Qu	Answer	Reasoning						
1 a(i)	one answer from:	atoms/nuclei have the same electronegativity/ Bonding electrons same attraction for the bonding electrons the atoms).						
1a(ii)	greater nuclear charge	Across a period, the number of protons increases giving a greater nuclear charge. The greater nuclear charge pulls the outer electron shell further which reduces the size of the atom.						
1b(i)	Answer to include:	The energy required to remove 1 mole of electrons from one mole of atoms in the gaseous state.						
1b(ii)	One answer from:	More shells so increased screening/shielding covalent radius increases atom size increases more shells so attraction of [nucleus protons] for outer electrons decreases						
1c(i)	Answer to include:	Hydrogen bonding (1 mark) 1 mark for either: Hydrogen bonding occurs between hydrogen bonded to N, O or F (all 3 elements needed) The attraction between δ + end on a permanent dipole is strongly attracted to the δ - end of a neighbouring permanent dipole in molecules with hydrogen and a atom with high electronegativity						
1c(ii)	Answer to include:	1 st Mark: London dispersion forces become stronger (moving from HCl to HI) 2 nd Mark: Number of electrons increases (moving from HCl to HI)						
2a	3KClO ₄ + 8Al ↓ 3KCl + 4Al ₂ O ₃	3KClO ₄ + 8Al → 3KCl + 4Al ₂ O ₃						
2b(i)	1.35	gfm KClO ₄ = 122.6g no. of mol = $\frac{\text{mass}}{\text{gfm}}$ = $\frac{4.6}{122.6}$ = 0.0375mol $2 \text{KICIO}_3 \longrightarrow 3 \text{O}_2 + 2 \text{KCl}$ $\stackrel{2\text{mol}}{0.0375\text{mol}} \stackrel{3\text{mol}}{0.0563\text{mol}} \stackrel{0.0563\text{mol}}{\times} 24 \text{litres mol}^4 = 1.35 \text{litres}$ Volume = no. of mol × Molar Volume = 0.0563 _{mol} × 24 litres mol^4 = 1.35 litres						
2b(ii)	no effect	Catalysts speed up chemical reaction but do not get used up in that chemical reaction. The enthalpy change is the same for the catalysed and the non-catalysed route due to Hess's Law.						
2b(iii)	2595.6	5.5g 103kJ 1mol = 138.6g 103kJ × 138.6/5.5 = 2595.6kJ						
2b(iv)	Answer to include:	Increases the number of particles 1st Mark: With energy 2 equal to or greater or than the activation energy 2nd Mark: More successful collisions Increases the number of particles with (sufficient) energy to form an activated complex/to react						
2c	Sodium	Peak B at 590nm. Sodium gives a flame colour at 589nm.						
3	Open Question Answer to Include:	3 mark answer Demonstrates a good understanding of the chemistry involved. A good comprehension of the chemistry has provided in a logically correct, including a statement of the principles involved and the application of these to respond to the problem. 2 mark answer Demonstrates a reasonable understanding of the chemistry involved, making some statement(s) which are relevant to the situation, showing that the problem is understood. 1 mark answer Demonstrates a limited understanding of the chemistry involved. The candidate has made some statement(s) which are relevant to the situation, showing that the problem is understood.						

4a(i)	Ester link	—O—H	O - C - OH	O -C-O-	O -C-		
4a(ii)	Diagram showing:	Н	H H H C C C C H H H H	Н Н Н -ccc Н Н Н	ОН		
4a (iii)	Structure of Heptan-1-ol or other C7 alcohol listed:	ester with butanoic ac hydrolysis must have s heptan-1-ol 2-methylhexan-2-ol 2-methylhexan-3-ol 2-methylhexan-3-ol 2,2-dimethylpentan-1-ol 3,4-dimethylpentan-2-ol 2,3-dimethylpentan-3-ol 2,3,3-trimethylbutan-2-ol	total of 11 carbons. Foid being released during even carbons. There are heptan-2-ol 3-methylhexan-1-ol 3-methylhexan-3-ol 2,3-dimethylpentan-1-ol 4,4-dimethylpentan-2-ol 2,4-dimethylpentan-3-ol 3-ethylpentan-1-ol 2-ethyl-3-methylbutan-1-ol 2-ethyl-3-methylbutan-1-ol	g hydrolysis, the alcoho e 38 possible seven car heptan-3-ol 4-methylhexan-1-ol 4-methylhexan-2-ol 4-methylhexan-3-ol 2,4-dimethylpentan-1-ol 2,3-dimethylpentan-2-ol 4,4-dimethylpentan-2-ol 2,2,3-trimethylbutan-1-ol 3-ethylpentan-2-ol	l released by this		
4b(i)	35-45	Glyceryl trilaurate = 1.4 difference ∴ Estimate of nur	Glyceryl trilinoleate 57 carbons 19.3 in absorbance unit 17.5 absorbance unit in absorbance unit	ts (1.4 units above <i>G</i> ts = 24 x ^{1.4} / _{3.2} = 10 glyceryl trilaurate	2.5 carbons = 24 + 11 = 35		
4b(ii)	glyceryl trilinoleate	The lower the melting point, the higher the number of $C=C$ double bonds in molecule. Oil molecules do not fit as close together due to the change of direction in the carbon chain after a $C=C$ double bond. The further apart the molecules are, the lower the melting point as less energy is needed to separate the molecules into a liquid as there are weaker van der Waals' between oil molecules.					
4c(i)	by react with glycerol	Fatty acids from edible oils <u>react</u> with glycerol by condensation reaction. One or two fatty acids react with glycerol to form an emulsifier. This will leave at least one polar -OH group on the glycerol part of the molecule needed to form the hydrophilic head on the emulsifier.					
4c(ii)	Answer to include:	2 nd Mark: polarities Hydrop hydroca fatty	identifying that the 2 of or two parts that are h hobic part rbon chain acid chain polar part	nydrophobic/hydrophilio hydrophilio hydroxyl g	c part dissolves in		
5a	3-methylbutan-1-ol	HH-C-HH H-C-C-C-C-C-C H H H H 3-methylbutar	C—OH	nethyl -CH ₃ four	carbons on ain chain on C1		
5b(i)	C ₃ H ₇ OH ↓ C ₃ H ₆ O + 2H ⁺ + 2e ⁻	C ₃ H ₇ OH <u>Step 2</u> : Balance all o C ₃ H ₇ OH <u>Step 3</u> : Balance O o C ₃ H ₇ OH <u>Step 4</u> : Balance H o C ₃ H ₇ OH	atoms other than O or I atoms by adding H ₂ O to atoms by adding H* to the arge by adding electrons	C_3H_6O H (no change in this exit C_3H_6O the other side (no chain C_3H_6O he other side C_3H_6O C_3H_6O C_3H_6O C_3H_6O C_3H_6O	nge in this example)		

Ela	To manida litting	H ⁺ ions are a reactant on the left hand side of the equation. If the
5b(ii)	To provide H ⁺ ions	reactants are not acidified than one of the reactants will be absent and the chemical reaction will not proceed.
		Oxidising Agent Start Colour End Colour
		Acidified Dichromate Orange Green
5b(iii)	orange $ ightarrow$ green	Fehling's Solution Blue Brick Red (orange) Hot copper (II) oxide Black Brown
		Tollen's Reagent (Colourless) Silver mirror produced
		Oxidising Agent Reactant(s) Product(s)
		Acidified Dichromate $Cr_2O_7^{2-} + 14H^* + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$
5b(iv)	Tollen's Reagent	Fehling's Solution $Cu^{2+} + e^- \rightarrow Cu^+$ Hot copper (II) oxide $Cu^{2+} + 2e^- \rightarrow Cu$
		Tollen's Reagent $Ag^* + e^- \rightarrow Ag$
	tertiary alcohols	Primary alcohol → Aldehyde → Carboxylic acid
5b(v)	· · · · · · · · · · · · · · · · · · ·	Oxidation of Alcohols Secondary alcohol Ketone X [No oxidation]
	(do not oxidise)	Tertiary alcohol — X ▶ [No oxidation]
Eb.	1:10	Chemical Formula No. of O No. of H Oxygen: Hydrogen ratio
5b(vi)	1:8	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
•		An enzyme is a specially-shaped protein which acts as a biological
6a(i)	biological catalyst	catalyst, catalysing chemical reactions in the body at 37°C.
	one peptide link	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	circled:	$-\dot{N}$ $-\dot{C}$ $+\dot{C}$ $+\dot{C}$ $+\dot{C}$ $+\dot{C}$ $+\dot{C}$ $+\dot{C}$ $+\dot{C}$
	O H	CH ₂ CH ₂ H
6a(ii)A	ii ii	CH ₂ CH ₂
	C-N-	C=0 S
		о́н сн₃
		++0 ++0
		H-N-Ç-C-OH H-N-Ç-C-OH
		H-N-C-C-OH H-N-C-C-OH
6a(ii)B	one amino acid	or or H-N-C-C-OH
Ou(II)D	structure from:	CH ₂ CH ₂ CH ₂
		C=0
		OH CH₃
6a(ii)C		Essential amino acids are amino acids which must be obtained from your diet for
<u> </u>	obtained through diet	a healthy diet to be obtained. These amino acids cannot be made by the body.
6000	condensation	A condensation reaction occurs when two molecules join together to form
6a(ii)D	condensation	a bigger molecule and water is removed at the join. Other small molecules can also be removed instead of water.
6a(iii)	Answer to include:	1 st Mark: enzyme becomes denatured/enzyme changes shape 2 nd Mark: Intermolecular/hydrogen bonds are broken
= = ()		
		measuring
		oxygen cylinder
		syringe
6000	Answer to include	oxygen
6a(iv)	one of:) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		hydrogen peroxide hydrogen beake
		sweet potato
		potato
<u> </u>		1

6b(i)	one answer from:	To prevent to oxidise in place of the compounds to stop (oxidation of edible oils) unwanted oxidation they have been added to protect food acquiring a rancid flavour.						
6b(ii)	answer to include:	1st Mark: Vitamin C molecule is polar or Vitamin C can form hydrogen bonds due to its hydroxyl groups 2nd Mark: Vitamin C is soluble in water because of interactions of polar -OH groups in Vitamin C with polar -OH groups in water.						
6c	975g 2 marks for mass 1 mark for units	1kg body weight ↔ 3mg solanine 65kg body weight ↔ 3mg solanine × ⁶⁵ / ₁ =195g solanine 0.2mg solanine ↔ 1g of potato 195mg solanine ↔ 1g of potato × ¹⁹⁵ / _{0.2} = 975g of potato						
7a	0.203g	Heat Energy = Specific Heat Capacity \times Mass \times Change In Temperature $E_{h} = c \times m \times \Delta T$ $E_{h} = 4.18 \text{ kJ kg}^{-1} {}^{\circ}C^{-1} \times 0.1 \text{kg} \times 27^{\circ}C$ $E_{h} = 11.3 \text{ kJ}$ $gfm Heptane CH_{4} = (1x12) + (4x1) = 12 + 4 = 16g 1 \text{ mol } CH_{4} = 891 \text{ kJ} \xrightarrow{\bullet} 16g 11.3 \text{ kJ} \xrightarrow{\bullet} 16g \times \frac{11.3}{891} = 0.203g$						
7b	-816	Bond Breaking Steps (endothermic)Bond Forming Steps (exothermic) $4 \times C-H$ bonds $4 \times 412 \text{kJ} = 1648 \text{kJ}$ $2 \times C=O$ bonds $2 \times 804 \text{kJ} = 1608 \text{kJ}$ $2 \times O=O$ bond $2 \times 498 \text{kJ} = 996 \text{kJ}$ $4 \times O-H$ bonds $4 \times 463 \text{kJ} = 1852 \text{kJ}$ Total bond breaking $= 2644 \text{kJ}$ Total bond Forming $= 3460 \text{kJ}$ Enthalpy change $= \Sigma$ Bond Breaking Steps $= \Sigma$ Bond forming steps $= 2644 \times 3460 = -816 \text{kJ}$ mol $^{-1}$						
7c	17.6%	atom economy = $\frac{\text{mass of useful products}}{\text{total mass of reactants}} \times 100 = \frac{(3\times2)}{(1\times16) + (1\times18)} \times 100 = 17.6\%$						
7d	High Low	Change in Temperature Change In Pressure Maximising Yield of NO₂ = more reverse reaction Maximising Yield of NO₂ = more reverse reaction • reverse reaction is endothermic • reverse reaction increases pressure (1vol→2vol) • Increasing temperature favours the endothermic reaction • Decreasing pressure favours the pressure-increasing reaction • HIGH temperature increases yield of NO₂ • LOW pressure increases yield of NO₂						
7e (i)	-4632	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
7e (ii)	H H H 	Element Valency No of Bonds made by element C 4 4 N 3 3 H 1 1						

	increase	A catalyst increases the rate of both the forward and reverse reactions by lowering the activation energies of both the forward and reverse reactions.			
8a(i)	increase	The position of equilibrium is not changed but the time to get to equilibrium is			
,,,	no effect	shortened.			
8a(ii)	temperature temperature	 The forward reaction in the water-gas shift reaction is exothermic. Increasing the temperature favours the endothermic reaction Reverse reaction is endothermic Reverse reaction is favoured by increasing the temperature Less products formed as temperature increase Graph has decreasing slope as yield decreases as temperature increases 			
		gfm sorbic acid $C_6H_8O_2 = (6\times12)+(8\times1)+(2\times16) = 72 + 8 + 32 = 112$			
		no. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{7}{112} = 0.0625 \text{mol (available)}$			
		n KOH = volume × concentration = 0.25litres × 0.5mol l-1 = 0.125mol			
8b	Calculation showing:	$C_6H_8O_2 + KOH \longrightarrow H_2O + C_6H_7O_2$ 1mol 0.125mol (required)			
		Less no. of mol of sorbic acid available than is required			
		 Sorbic acid is limiting reactant and KOH is in excess 1% = 1g per 100cm³ 			
	_	$0.002\% = 0.002g \text{ per } 100\text{cm}^3$			
	2.52×10 ⁻⁵	100cm ³ = 0.002q			
8c	or	$ 330 \text{cm} ^3 = 0.002g \times 330 _{100} = 0.0066g$			
OC.	OI .				
	0.0000252	gfm = 261.8g			
		n o. of mol = $\frac{\text{mass}}{\text{gfm}} = \frac{0.0066}{261.8} = 2.52 \times 10^{-5} \text{ mol}$			
	non-water soluble	Essential oils are concentrated extracts of volatile, non-water soluble			
	or	aroma compounds from plants			
8d(i) A	volatile	mixtures of many different compounds.			
	or anoma	widely used in perfumes cosmetic products cleaning products flavourings in foods			
	aroma				
8d(i)B	tonnone	Terpenes are key components in most essential oils.			
Part I	terpene	Terpenes are unsaturated compounds formed by joining			
		together isoprene (2-methylbuta-1,3-diene) units.			
	correct structure	н—¢—н			
8d(i)B	drawn of				
Part II	2-methylbut-1,3-diene				
	2-memyibur-1,3-aiene	H-C CH2			
8d(i)B	3	Formula of zingiberene: $C_{15}H_{24}$ Formula of isoprene: C_5H_8 \therefore 3 isoprene units join together			
8d(ii) <i>A</i>	water or H ₂ O	The difference between the two molecules is the a $C=C$ double bond is formed in the product and an H atom was removed on one side where the $C=C$ double bond formed and a OH group was removed from the other side of where the $C=C$ double bond formed.			

8d(ii)B	Hydroxyl group <u>and</u> Carbonyl Group		—О—Н		- OH	O -C- carbonyl group	
9	Open Question Answer to Include:	Demonst the chen compreh provided including involved	3 mark answer crates a good understandir nistry involved. A good ension of the chemistry he in a logically correct, a statement of the princi and the application of the nd to the problem.	Demonstrates understanding involved, makin statement(s) w ples relevant to the	of the chemistry g some which are e situation,	1 mark answer Demonstrates a limited y understanding of the chemist involved. The candidate has m some statement(s) which are to the situation, showing that a little of the chemistry with problem is understood.	ry nade relevant
10a(i)	One from:		er the number of c the higher the er the number of fl the higher the	ODP uorine atoms	Higher th	e number of chlorine a the lower the ODP ne number of fluorine a the lower the ODP	
10a(ii)	1+5	_	•			nes and 2 bromines nes and 2 chlorines	
10a(iii)	Carbon dioxide and ammonia do not contain halogens or Carbon dioxide and ammonia do not damage the ozone layer		•		-	toms in their structu n atoms in their stru	
10b(i)	Species (atoms/molecules/particles) with unpaired electron	Free radicals are atoms or molecules that are highly reactive due to the					o the
10b(ii) <i>A</i>	Initiation		Step Initiation Propagation Termination	Reactants (before Arrow) No free radicals Reactant Side Free Radic Free radicals o Reactant Side	cals found on bo	Products (after Arrow) Free radicals on Product Side oth sides of arrow No free radicals on Product Side	
10b(ii)B	One from:		F ₂ +	•CH₃ —	→ CH → CH	H ₂ F + HF H ₂ F ₂ + F° H ₃ F + F° H ₂ F ₂ + H°	
10c	0.208		0.05kg <		kg difluoron kg pentaflu 25g 20 g mol ⁻¹		
11a(i)	water ^{and} carbon dioxide	carb	er (II) + ethanc oonate + acid carbonate + acid	oic — co	opper (II) thanoate	+ water + diox	bon xide dioxide
11 a(ii)	Cu ²⁺ (CH ₃ COO ⁻) ₂	Ethar	Formula of co	a formula o pper (II) e	of CH3CO thanoate	ns Cu ²⁺ ions O ⁻ and valency of is Cu(CH3COC is Cu ²⁺ (CH3CC	D).

		1 mark	1mark	1mark			
11b	Answer to include:	Dissolve oxalic acid (in a small volume of deionised water)	Transfer quantitatively oxalic acid solution to standard/volumetric flask including rinsings/washings	Fill volumetric/standard flask up to mark (with deionised water)			
11c(i)		Volumetric bulb pipette to be drawn showing: volumetric mark/line end of pipette must narrow to a point A graduated pipette would also be acceptable.					
11c(ii)	pink $ ightarrow$ colourless	Colour in conical flask at start: pink as sodium hydroxide solution is in conical flask at start and phenolphthalein is pink in alkaline conditions Colour in conical flask at end: colourless as sodium hydroxide in conical flask has been neutralised by the addition of oxalic acid from the burette. Phenolphthalein is colourless in acidic/neutral conditions					
11c(iii)	concordant	Results in a titration are described as concordant when the individual titres are within 0.2cm ³ of each other. This ignores the rough titre and any rogue results.					
11d	0.27		olume x concentration = 0.02675 litres $+ 2NaOH \longrightarrow Na_2C$ $2mol$ $0.00674mol$ $n = \frac{no. \text{ of mol}}{\text{volume}} = \frac{0.00674 \text{mol}}{0.025 \text{ litres}}$				