Esame di Calcolo delle Probabilità e Statistica [2959]

Corso di Studi di Ingegneria Gestionale (D.M.270/04) (L)

Dipartimento di Meccanica, Matematica e Management Politecnico di Bari

Cognome:	A.A.: 2020/2021
Nome:	Docente: Gianluca Orlando
Matricola:	Appello: VIII Appello
Corso di studi:	Data: 19/11/2021

È richiesto di risolvere al massimo 3 dei 5 esercizi in un tempo massimo di 90 minuti.

Il punteggio massimo di ogni esercizio è di 10 punti.

Si può scegliere di rispondere a uno dei due quesiti teorici facoltativi. Il punteggio massimo per i quesiti teorici è di 6 punti.

Indicare esplicitamente sulla traccia gli esercizi e il quesito teorico da valutare.

Esercizio 1. Dei provini cilindrici di calcestruzzo mostrano le seguenti resistenze a compressione (in MPa):

Sapendo che il campione è estratto da una popolazione normale con media incognita μ e varianza nota $\sigma^2 = 4$, con che livelli di significatività si può accettare l'ipotesi $\mu = 25$? (Suggerimento: calcolare il p-value)

Esercizio 2. Consideriamo una moneta che è truccata con il 50% di probabilità. Se è truccata, esce sempre testa.

- 1. Osserviamo l'esito di un lancio: esce testa. Conoscendo questo esito, con che probabilità la moneta è effettivamente truccata? (Suggerimento: gli eventi elementari dello spazio campione si possono scrivere come coppie in cui il primo elemento stabilisce se la moneta è truccata, il secondo è l'esito del lancio)
- 2. Osserviamo l'esito di 3 lanci consecutivi indipendenti: esce testa in tutti e 3 i lanci. Conoscendo questo esito, con che probabilità la moneta è effettivamente truccata? (Suggerimento: capire come generalizzare la struttura degli eventi elementari)

Esercizio 3. Siano $\lambda, \mu \in \mathbb{R}$ due parametri e sia (X, Y) una variabile aleatoria bidimensionale discreta con le seguenti probabilità congiunte:

- 1. Calcolare Cov(X, Y).
- 2. Per quali valori di λ e μ le variabili aleatorie X e Y sono indipendenti?

Esercizio 4. Si consideri il seguente campione di dati:

Trovare eventuali dati anomali e sospetti e tracciare un box-plot.

Esercizio 5. Siano $a \in (0,1)$ e $b \in \mathbb{R}$ due parametri e sia X una variabile aleatoria distribuita con una densità di probabilità $f: \mathbb{R} \to \mathbb{R}$ definita da

$$f(x) := \begin{cases} b \, a^x & \text{per } x \ge 0 \\ 0 & \text{altrimenti.} \end{cases}$$

Trovare $a \in b$ tali che $\mathbf{E}(X) = 2$. (Suggerimento: $a^x = e^{x \ln a}$).

Quesito teorico 1. Siano X_1, X_2, \ldots, X_n variabili aleatorie indipendenti identicamente distribuite secondo una legge di Bernoulli con parametro p. Sia $Y = X_1 + \cdots + X_n$. Trovare $n \in p$ sapendo che $\mathbf{E}(Y) = \frac{4}{3}$ e $V(Y) = \frac{8}{9}$, motivando la risposta.

Quesito teorico 2. Dati $\mu \in \mathbb{R}$ e $\sigma > 0$, si consideri la funzione $f : \mathbb{R} \to \mathbb{R}$ definita da

$$f(x) := \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}.$$

Dimostrare che f è una densità di probabilità.