SHENDUO ZHANG

September 25, 2020 (GMT+8) zhangshenduo@gmail.com

Problem 1

Let S[a, b] be the set of all the measurable function taking finite value almost everywhere. Denote

$$\rho(f,g) := \int_{a}^{b} \frac{|f-g|}{1+|f-g|} d\mu \tag{1}$$

Prove that

- 1. convergence in ρ is equivalence in convergence in measure.
- 2. prove this metric space is complete.

Solution 1.a $f_n \to f$ under $\rho \Leftrightarrow \forall \epsilon > 0$, $\int_{M_{\epsilon,n} \cup M_{\epsilon,n}^c} \frac{|f_n - f|}{1 + |f_n - f|} d\mu \to 0$ where $M_{\epsilon,n} := \{x \in [a,b] : |f_n(x) - f(x)| > \epsilon\}$ and the complementary is defined with respect to [a,b]. Whereas $\frac{|f_n - f|}{1 + |f_n - f|}$ is non-negative on [a,b], one has $I_n := \int_{M_{\epsilon,n}} \frac{|f_n - f|}{1 + |f_n - f|} d\mu \to 0$ as well as $\int_{M_{\epsilon,n}^c} \frac{|f_n - f|}{1 + |f_n - f|} d\mu \to 0$. Also note that $\frac{|f_n - f|}{1 + |f_n - f|} \ge \frac{\epsilon}{1 + \epsilon} > 0$ on $M_{\epsilon,n}$ for the monotoncity of $x \mapsto 1 - \frac{1}{1 + x}$. Combined we get

$$0 = \lim_{n \to \infty} I_n \ge \frac{\epsilon}{1 + \epsilon} \lim_{n \to \infty} \mu(M_{\epsilon,n}) \ge 0 \tag{2}$$

We have $\lim_{n\to\infty} \mu(M_{\epsilon,n}) = 0$ which would give the claim.

Solution 1.b

Let f_n be a Cauchy sequence in S[a, b], and from the proposition 1, we define f to be the pointwise limit of f_n under measure, which means that $|f_n(x) - f(x)| \to 0$ as $n \to \infty$ almost everywhere in [a, b]. So we only need to prove that this f is inside S[a, b].

$$|f(x)| = |f(x) - f_n(x) + f_n(x)| \le |f(x) - f_n(x)| + |f_n(x)|$$

 $\forall x \in [a, b]$ let $\epsilon = 0.01$, we can take an n_0 such that $\forall n \geq n_0$, we have $|f(x) - f_n(x)| \leq \epsilon$. And use $f_n \in S[a, b]$ to conclude $|f_n|$ is bounded almost everywhere by some $M < \infty$. Hence |f| is bounded by M + 0.01 almost everywhere.

Problem 2

 $L^p(E)$, $1 \le p < \infty$, define

$$\rho(f,g) = \left(\int_{E} |f - g|^{p} d\mu \right)^{1/p} \tag{3}$$

prove ρ is a metric.

Solution 2.a First we restrict our definition of the metric to classes of function, where a class if defined to be functions that equal to each other almost everywhere on E. This would satisfy $\rho(f,g) \geq 0$ particularly for the equality hold implying f = g. $\rho(f,g) = \rho(g,f)$ is obvious. So it only suffices to verify the triangular inequality, which also follows from Minkovskii inequality

$$\rho(f,h) + \rho(h,g) = \left(\int_{E} |f - h|^{p} d\mu\right)^{1/p} + \left(\int_{E} |h - g|^{p} d\mu\right)^{1/p} \ge \left(\int_{E} (|f - h| + |h - g|)^{p} d\mu\right)^{1/p}$$

$$\ge \left(\int_{E} |f - g|^{p} d\mu\right)^{1/p}$$
(5)

where the second inequality follows from $|a| + |b| \ge |a - b|$. Now we prove the Minkovskii inequality. Let 1/p + 1/q = 1

$$\int_{a}^{b} |f+g|^{p} dt = \int_{a}^{b} |f+g|^{p-1} |f+g| dt
\leq \int_{a}^{b} |f+g|^{p-1} (|f|+|g|) dt
\leq (\int_{a}^{b} |f|^{p} dt)^{1/p} (\int_{a}^{b} |f+g|^{q(p-1)} dt)^{1/p} + (\int_{a}^{b} |g|^{p} dt)^{1/p} (\int_{a}^{b} |f+g|^{q(p-1)} dt)^{1/p}
= (\int_{a}^{b} |f+g|^{p} dt)^{1/q} ((\int_{a}^{b} |f|^{p} dt)^{1/p} + (\int_{a}^{b} |f|^{p} dt)^{1/p})$$

Problem 3

Suppose (X, ρ) is a metric space, $A \in X$ is a closed set $\iff A$ contains the limit points for all convergent sequence in A.

Solution 3.a \Rightarrow : Let $A \in X$ be close, then A^c is open. For all convergent sequence $\{x_n\} \in A$, suppose it converge to a limit point $x \in A^c$. Due to the openess assumption, there is a ball B(x,r) such that $B(x,r) \cap A = \emptyset$, hence $B(x,r) \cap \{x_n\} = \emptyset$, which would implies $\{x_n\} \nrightarrow x$, a contradiction.

 \Leftarrow : Suppose $A \in X$ is not close, then A^c is not open. Which means there is some $y \in A^c$ such that $\forall r > 0, B(y,r) \cap A \neq \emptyset$. Take $r = \frac{1}{n}$, we obtain a sequence $\{y_n\}$ such that $y_n \to y$ and $\{y_n\} \in A, y \in A^c$ which contradicts A contains all limit points for convergent sequence.

Problem 4

On C[a, b], define

$$\rho(x,y) := \sup_{t \in [a,b]} |x(t) - y(t)| \tag{6}$$

prove the metric space is complete.

Solution 4.a Let f_n be a Cauchy sequence in C[a,b]. Let $x \in [a,b], \epsilon > 0$, we have

$$|f_n(x) - f_m(x)| \le d(f_n, f_m) \le \epsilon, \quad \forall n, m \ge n_0 \in \mathbb{N}$$
 (7)

So $f_n(x)$ is a Cauchy sequence in \mathbb{R} which is convergent. Let $f(x) = \lim_{n \to \infty} f_n(x)$. Since $\forall x \in [a, b]$,

$$|f_n(x) - f_m(x)| \le \epsilon \quad \forall n, m \ge n_0 \in \mathbb{N}$$
 (8)

Let $m \to \infty$ one has

$$|f_n(x) - f(x)| \le \epsilon \quad \forall n, m \ge n_0 \in \mathbb{N}$$
 (9)

which indicates that

$$d(f_n, f) \le \epsilon \quad \forall n \ge n_0 \tag{10}$$

Let $n \to \infty$ to obtain $f_n \to f$ under ρ .

Next it suffices to show f is continuous. Which means $\forall \epsilon > 0$, we need to find δ such that

$$|f(x) - f(x_0) < \epsilon, |x - x_0| < \delta \tag{11}$$

Use $3 - \epsilon$ technique,

$$|f(x) - f(x_0)| = |f(x) - f_m(x) + f_m(x) - f_m(x_0) + f_m(x_0) - f(x_0)|$$

$$\leq |f(x) - f_m(x)| + |f_m(x) - f_m(x_0)| + |f_m(x_0) - f(x_0)|$$

$$\leq \epsilon/3 + \epsilon/3 + \epsilon/3$$

$$= \epsilon$$

for the last inequality, we need to take the largest n_0 for both $|f_n(x)-f(x)| \leq \epsilon$ and $|f_n(x_0)-f(x_0)| \leq \epsilon$ as well as a δ such that $|f_m(x)-f_m(x_0)| \leq \epsilon/3$. And we can do this for the claim we have proved and the fact $f_n \in C[a,b]$.

Problem 5

 (X, ρ) , let $A \in X$ prove that diam $A = \operatorname{diam} \bar{A}$.

Solution 5.a $A \subset \bar{A} \Rightarrow \text{diam} A \leq \text{diam} \bar{A}$

For the equality to hold, it only suffices to prove the inequality from the other direction. $\forall x, y \in \bar{A}, \exists \{x_n\}, \{y_n\} \in A \text{ such that } x_n \to x, y_n \to y.$ One has the following inequality from triangular inequality

$$\rho(x,y) \le \rho(x,x_n) + \rho(y,y_n) + \rho(x_n,y_n) \tag{12}$$

Taking the supremum over $x, y \in \bar{A}$ and take the limit we have

$$\operatorname{diam} \bar{A} \le \lim_{n \to \infty} \rho(x_n, y_n) \le \operatorname{diam} A \tag{13}$$

for which the claim follows.

Problem 6

Let (X, ρ) be a metric space, prove that,

 $E \in X$ is no-where dense $\iff \forall \overline{B(x,r)}$, there is an open ball $B(x',r') \in B(x,r)$ such that $\overline{B(x',r')} \cap \overline{E} = \emptyset$.

Solution 6.a \Rightarrow : Suppose it's not true, then we have a close ball $\overline{B(x,r)}$ such that $\forall B(x',r') \in B(x,r), \overline{B(x',r')} \cap \overline{E} \neq \emptyset$. Then let $r_n = \frac{1}{n}$, we can construct a sequence $\{x_n\} \in B(x',r') \subset X$ where $\lim_{n\to\infty} x_n = x \in \overline{B(x',r')}$ and $x \in E$ as well. This is contradiction to the fact that E shall be no-where dense.

 \Leftarrow : This is trivial because if E is not nowhere dense, its closure \bar{E} has an interior point x, which means there's an open ball $B(x,r) \subset \bar{E}$. Any closed ball contained in this open ball in also a subset of \bar{E} which contradicts $\overline{B(x',r')} \cap \bar{E} = \emptyset$.