# Natural Language Processing Regular Expression

BMI701 Introduction of Biomedical Informatics Lab Session 5

Wei-Hung Weng October 20, 2016

HMS DBMI — MGH LCS





#### How?

- Collecting / preprocessing data (> 50% of your time)
  - Regular expression!
- NLP with or without linguistic analysis
- Exploratory analysis, statistics, missing value & outlier
- Annotation and analysis
- Modeling
- Evaluation

### Important Feature in Text

- Part-Of-Speech Tagging (POS): syntactic roles (noun, adverb...)
- Chunking (CHUNK): syntactic constituents (noun phrase, verb phrase...)
- Name Entity Recognition (NER): person/company/location...
- Semantic Role Labeling (SRL): semantic role
- Word sense disambiguation (WSD)
- Co-reference resolution (pronoun)

Collobert, Weston 2009

## **So Many Features**

| Predicate and POS tag of predicate                   | Voice: active or passive (hand-built rules)        |  |
|------------------------------------------------------|----------------------------------------------------|--|
| Phrase type: adverbial phrase, prepositional phrase, | Governing category: Parent node's phrase type(s)   |  |
| Head word and POS tag of the head word               | Position: left or right of verb                    |  |
| Path: traversal from predicate to constituent        | Predicted named entity class                       |  |
| Word-sense disambiguation of the verb                | Verb clustering                                    |  |
| Length of the target constituent (number of words)   | NEG feature: whether the verb chunk has a "not"    |  |
| Partial Path: lowest common ancestor in path         | Head word replacement in prepositional phrases     |  |
| First and last words and POS in constituents         | Ordinal position from predicate + constituent type |  |
| Constituent tree distance                            | Temporal cue words (hand-built rules)              |  |
| Dynamic class context: previous node labels          | Constituent relative features: phrase type         |  |
| Constituent relative features: head word             | Constituent relative features: head word POS       |  |
| Constituent relative features: siblings              | Number of pirates existing in the world            |  |

Collobert, Weston 2009

#### Important Feature in Text

- Large scale hand-made feature engineering!
- Task-specific engineering limits NLP scope
- We want to avoid task-specific engineering
- Can we find unified hidden representations? Can we build unified NLP architecture?

#### **Text Processing**

- Text segmentation
  - Alphabetic or Non-alphabetic (Chinese / Japanese / Tibetan...)
  - Separated characters may be meaningless
  - New York-New Haven (the same characters in different order)
- Stemming and Lemmatization (grammar)
  - Different words, same or similar meanings
  - 'imaging', 'imagination', 'image'
  - 'be', 'am', 'is', 'are'
- Part-of-speech (POS) tagging
  - NN, VV, ...
  - For semantic analysis
- Stopwords: meaningless
  - Frequent but meaningless or not important

#### **Word Representation Models**

- Bag-of-words
  - One-hot encoding representation
  - Simple but useful

  - Zipf's Law (Zipf 1949)
  - Words with high term frequencies may be just common terms
  - Tf-idf: importance estimation
  - Problem: no word sequence meaning

## Zipf's Law



http://wugology.com/zipfs-law/

### **Word Representation Models**

- n-gram model
  - Google Ngram Viewer
  - Continuous words
  - Some words are meaningful only when they are observed together
  - Information of word phrase
  - Bag-of-words (n-grams)
    - I like dog
    - BoW: ['I', 'like', 'dog']
    - BoW + n-gram: ['I', 'like', 'dog', 'I like', 'like dog', 'I like dog'] (unigram + bigram + trigram)
- More semantic approach
  - Vectorizing the words
  - Neural word embedding
  - Using neural network to derive vector
  - Compute embedding vectors in a hidden space for words
  - Word2vec (Mikolov 2013)

#### Text Processing Using R

- tm package in R (Feinerer, Hornik 2014)
- Steps
  - 1. Convert to lower case
  - 2. Remove punctuation, numbers, URLs, emoji
  - 3. Remove stopwords
  - 4. Lemmatization, stemming
  - 5. Tokenization
  - 6. POS tagging (optional, not in tm)
  - 7. Convert to document-term matrix

## **Text Mining**

- Wordcloud (wordcloud)
- Frequency plot (ggplot2)
- Unsupervised learning
  - k-means clustering (fpc, cluster)
  - ...
- Supervised learning
  - Decision tree (rpart)
  - Support vector machine (caret)
  - ...
- github.com/ckbjimmy/bmi701lab/blob/master/lab05.R

# Regular Expression

- Crazy regex
- Some tools that can help you
  - regex101
  - regexr
- Regex cheatsheet

## **Regular Expression**

| Pattern                     | Meaning                     | Example        |
|-----------------------------|-----------------------------|----------------|
|                             | all characters              | echocardiogram |
| cardi                       | phrase 'cardi'              | cardi          |
| .*cardi                     | 0 or more characters before | echocardi      |
| [a-z]*cardi                 | 0+ lower case (only) before | echocardi      |
| [A-Z]*cardi                 | 0+ upper case (only) before | cardi          |
| [aeiou]*cardi               | 0+ aeiou (only) before      | ocardi         |
| [aA-zZ]+cardi               | if we use 'xcardiogram'     | xcardi         |
| $[aA\text{-}zZ]\{2,\}cardi$ | if we use 'xcardiogram'     | -              |
| cardi gram                  | catches 'cardi' or 'gram'   | cardi, gram    |
| \d                          | catches any digit           | -              |
| \d3, 5                      | catches 3 to 5 digits       | -              |

• github.com/ckbjimmy/bmi701lab/blob/master/lab05.R

#### **Next Week**

- More word representation models
- MetaMap
- cTAKES

## Take Home Message

- Bag-of-words
- Regular expression
- Contact
  - Github repository
  - ckbjimmy@gmail.com
  - Linkedin: Wei-Hung Weng