Álgebra Lineal - Clase 13

Gabriela Jeronimo

FCEN-UBA

Segundo cuatrimestre 2020

Esquema de la clase

- Caracterización de matrices diagonalizables vía polinomio característico y autoespacios.
- Polinomio minimal de una matriz y de una transformación lineal.

Bibliografía recomendada.

G. Jeronimo, J. Sabia, S. Tesauri. *Algebra Lineal*. Cursos de Grado. Fascículo 2. Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2008.

Capítulo 6 (Secciones 6.2 y 6.3).

Suma directa de subespacios

Sean V un K-e.v. y S_1, S_2, \ldots, S_r subespacios de V. Se define la suma de S_1, S_2, \ldots, S_r como (el subespacio de V)

$$S_1 + S_2 + \cdots + S_r = \{s_1 + \cdots + s_r / s_i \in S_i, 1 \le i \le r\}.$$

Se dice que S_1, S_2, \ldots, S_r están en suma directa si, para cada $v \in S_1 + S_2 + \cdots + S_r$ existen únicos $s_i \in S_i$, $1 \le i \le r$, tales que $v = s_1 + \cdots + s_r$.

En este caso se nota $S_1 \oplus S_2 \oplus \cdots \oplus S_r = \bigoplus_{i=1}^r S_i$.

Son equivalentes:

i)
$$W = \bigoplus_{i=1}^{r} S_i$$
.

ii)
$$W = S_1 + \cdots + S_r$$
 y, para cada $1 \le j \le r$, vale $S_i \cap (S_1 + \cdots + S_{i-1} + S_{i+1} + \cdots + S_r) = \{0\}.$

iii) Si para cada
$$1 \le i \le r$$
, B_i es una base de S_i , entonces $B = B_1 \cup B_2 \cup \cdots \cup B_r$ es una base de W .

Espacios de autovectores y bases

Sea $A \in K^{n \times n}$. Para $\lambda \in K$ un autovalor de A, $E_{\lambda} = \{ v \in K^n / A.v = \lambda.v \} = \{ v \in K^n / (\lambda I_n - A).v = 0 \}.$

Proposición.

Sea $A \in K^{n \times n}$. Si $\lambda_1, \ldots, \lambda_r$ son autovalores distintos de A, entonces $E_{\lambda_1}, \ldots, E_{\lambda_r}$ están en suma directa.

Demostración.

Por inducción en r.

$$r=2$$
: $v \in E_{\lambda_1} \cap E_{\lambda_2} \Rightarrow A.v = \lambda_1.v \text{ y } A.v = \lambda_2.v$

$$\lambda_1.v = \lambda_2.v \Rightarrow (\lambda_1 - \lambda_2).v = 0 \stackrel{\lambda_1 \neq \lambda_2}{\Rightarrow} v = 0.$$

Luego, $E_{\lambda_1} \cap E_{\lambda_2} = \{0\}.$

$$r \Rightarrow r+1$$
: Sean $\lambda_1, \ldots, \lambda_r, \lambda_{r+1}$ autovalores distintos de A .

Veamos que $\forall 1 \leq i \leq r+1$, $E_{\lambda_i} \cap \bigoplus_{\substack{j=1 \ i \neq i}}^{r+1} E_{\lambda_j} = \{0\}$.

Sin pérdida de generalidad, supongamos que i = r + 1.

$$v \in E_{\lambda_{r+1}} \cap \bigoplus_{j=1}^r E_{\lambda_j} \Rightarrow v = v_1 + \cdots + v_r \text{ con } v_j \in E_{\lambda_j} \ \forall 1 \leq j \leq r.$$

$$\begin{array}{rcl} Av &=& Av_1+\cdots+Av_r\\ \lambda_{r+1}v &=& \lambda_1v_1+\cdots+\lambda_rv_r\\ \lambda_{r+1}v_1+\cdots+\lambda_{r+1}v_r &=& \lambda_1v_1+\cdots+\lambda_rv_r\\ (\lambda_{r+1}-\lambda_1)v_1+\cdots+(\lambda_{r+1}-\lambda_r)v_r &=& 0 \ \text{con} \ (\lambda_{r+1}-\lambda_j)v_j \in E_{\lambda_j} \ \forall j\\ \text{Además}, \ 0+\cdots+0 &=& 0, \ \text{con} \ 0 \in E_{\lambda_i} \ \forall 1 \leq j \leq r. \end{array}$$

Por HI, $E_{\lambda_1}, \dots, E_{\lambda_r}$ están en suma directa $\Rightarrow \forall 1 \leq i \leq r, (\lambda_{r+1} - \lambda_i)v_i = 0 \Rightarrow v_i = 0.$

Luego,
$$v = v_1 + \cdots + v_r = 0$$
.

Consecuencia.

Si $\lambda_1, \ldots, \lambda_r \in K$ son autovalores distintos de $A \in K^{n \times n}$ y, para cada $1 \le j \le r$, B_j es una base de E_{λ_i} , entonces $\bigcup_{i=1}^r B_i$ es l.i.

Dimensión de autoespacio y multiplicidad

Proposición.

Sea $A \in K^{n \times n}$ y sea $\lambda \in K$ un autovalor de A. Si m es la multiplicidad de λ como raíz de \mathcal{X}_A , entonces $\dim(E_{\lambda}) \leq m$.

Demostración.

Sea
$$f_A: K^n \to K^n$$
, $f_A(x) = A.x$.

Sean
$$s = \dim(E_{\lambda})$$
 y $\{v_1, \dots, v_s\}$ una base de E_{λ} .

La extendemos a $B = \{v_1, \dots, v_s, v_{s+1}, \dots, v_n\}$ una base de K^n .

$$f_A(v_i) = \lambda v_i \ \forall 1 \leq i \leq s.$$

$$|f_A|_B = \begin{pmatrix} \overbrace{\lambda \quad 0 \quad \cdots \quad 0} \\ 0 \quad \ddots \quad \ddots \quad \vdots \\ \vdots \quad \ddots \quad \ddots \quad 0 \\ 0 \quad \cdots \quad 0 \quad \lambda \\ 0 \quad M \end{pmatrix},$$

$$\mathcal{X}_{f_A} = \det \left(\begin{array}{cccc} & \xrightarrow{s \times s} & & \\ \hline X - \lambda & 0 & \cdots & 0 & \\ & 0 & \ddots & \vdots & & \\ \vdots & & \ddots & \vdots & & \\ 0 & \cdots & 0 & X - \lambda & & \\ & 0 & & & XI_{n-s} - M \end{array} \right)$$

$$= (X - \lambda)^{s} \det(XI_{n-s} - M)$$

$$= (X - \lambda)^s Q.$$

Por hipótesis, mult $(\lambda, \mathcal{X}_A) = m$, es decir, $\mathcal{X}_A = (X - \lambda)^m P$ con $P \in K[X]$ tal que $P(\lambda) \neq 0$.

$$(X - \lambda)^s Q = \mathcal{X}_{f_A} = \mathcal{X}_A = (X - \lambda)^m P$$
 y $X - \lambda \nmid P$.

$$\Rightarrow s \leq m$$
, es decir, dim $(E_{\lambda}) \leq \text{mult}(\lambda, \mathcal{X}_{A})$.

Caracterización de matrices diagonalizables

Teorema.

Sea $A \in K^{n \times n}$ y sean $\lambda_1, \dots, \lambda_r$ todos los autovalores de A en K, con $\lambda_i \neq \lambda_j$ si $i \neq j$. Son equivalentes:

- i) A es diagonalizable en $K^{n \times n}$.
- ii) $\bigoplus_{i=1}^r E_{\lambda_i} = K^n$.
- iii) $\mathcal{X}_A = (X \lambda_1)^{a_1} \dots (X \lambda_r)^{a_r} \text{ y } a_i = \dim(\mathcal{E}_{\lambda_i}) \ \forall 1 \leq i \leq r.$

Demostración.

i) \Rightarrow ii) A es diagonalizable en $K^{n \times n} \Rightarrow \exists B = \{v_1, \dots, v_n\}$ base de K^n formada por autovectores de A.

Para cada $v_j \in B$, $\exists i$, $1 \leq i \leq r$, tal que $v_j \in E_{\lambda_i} \Rightarrow v_j \in \bigoplus_{i=1}^r E_{\lambda_i}$.

$$\Rightarrow K^n = \langle v_1, \dots, v_n \rangle = \bigoplus_{i=1}^r E_{\lambda_i}.$$

ii)
$$\Rightarrow$$
 iii) $\forall 1 \leq i \leq r$, $\dim(E_{\lambda_i}) \leq \operatorname{mult}(\lambda_i, \mathcal{X}_A)$. Si $K^n = \bigoplus_{i=1}^r E_{\lambda_i}$,

$$n=\dim K^n=\sum\limits_{i=1}^r\dim(E_{\lambda_i})\leq \sum\limits_{i=1}^r\operatorname{mult}(\lambda_i,\mathcal{X}_A)\leq \operatorname{gr}(\mathcal{X}_A)=n.$$

$$\Rightarrow$$
 los \leq deben ser $=$. Sea $a_i = \text{mult}(\lambda_i, \mathcal{X}_A) \ \forall 1 \leq i \leq r$.

iii)
$$\Rightarrow$$
 i) $\mathcal{X}_A = (X - \lambda_1)^{a_1} \dots (X - \lambda_r)^{a_r}$ y $a_i = \dim(E_{\lambda_i})$.

$$B_i$$
 base de E_{λ_i} $\forall 1 \leq i \leq r \Rightarrow B = \bigcup_{j=1}^r B_j$ base de $\bigoplus_{j=1}^r E_{\lambda_j}$.

$$\#B = \sum_{i=1}^r \#B_i = \sum_{i=1}^r a_i = \operatorname{gr}(\mathcal{X}_A) = n \Rightarrow \dim\left(\bigoplus_{i=1}^r E_{\lambda_i}\right) = \dim K^n.$$

$$\Rightarrow \bigoplus^r E_{\lambda_i} = K^n$$
.

 $\stackrel{i=1}{\stackrel{\sim}{=}}$ B base de K^n formada por autovect. de $A\Rightarrow A$ diagonalizable. \square

Ejemplos.

1.
$$A = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
 en $\mathbb{R}^{4 \times 4}$ y en $\mathbb{C}^{4 \times 4}$.

$$\mathcal{X}_A = (X-1)^3(X-2)$$

▶
$$E_1 = \{x \in \mathbb{R}^4 / (I_4 - A).x = 0\} = \langle (0, 1, 0, 0), (0, 0, 1, 0) \rangle$$

 $\dim(E_1) = 2 \langle 3 = \text{mult}(1, \mathcal{X}_A)$
 $\Rightarrow A \text{ no es diagonalizable en } \mathbb{R}^{4 \times 4} \text{ ni } \mathbb{C}^{4 \times 4}.$

2.
$$A = \begin{pmatrix} 0 & 0 & 8 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 en $\mathbb{R}^{3 \times 3}$ y $\mathbb{C}^{3 \times 3}$.

▶
$$\mathcal{X}_A = X^3 - 8 = (X - 2)(X^2 + 2X + 4)$$
 no tiene todas sus raíces en $\mathbb{R} \Rightarrow A$ no es diagonalizable en $\mathbb{R}^{3 \times 3}$.

▶ $\mathcal{X}_A = X^3 - 8 = (X - 2)(X + 1 - \sqrt{3}i)(X + 1 + \sqrt{3}i)$ tiene tres raíces distintas en $\mathbb{C} \Rightarrow A$ es diagonalizable en $\mathbb{C}^{3\times3}$.

Polinomio minimal de una matriz

Sea $P \in K[X]$, $P = a_0 + a_1X + \cdots + a_rX^r$. Dada $A \in K^{n \times n}$, definimos

$$P(A) = a_0 I_n + a_1 A + \cdots + a_r A^r \in K^{n \times n}.$$

Dada una t.l. $f: V \rightarrow V$, con V es un K-e.v., definimos

$$P(f) = a_0 i d_V + a_1 f + \cdots + a_r f^r \in \operatorname{Hom}_{\mathcal{K}}(V, V),$$

donde, para $k \in \mathbb{N}$, $f^k = \underbrace{f \circ f \circ \cdots \circ f}_{k \text{ veces}}$ es la composición.

Si $P, Q \in K[X]$, $A \in K^{n \times n}$ y $f : V \to V$ t.l., entonces:

- ightharpoonup (P+Q)(A) = P(A) + Q(A) y (P,Q)(A) = P(A).Q(A).
- $(P+Q)(f) = P(f) + Q(f) \text{ y } (P.Q)(f) = P(f) \circ Q(f).$

Lema.

Sea $A \in K^{n \times n}$. Existe $P \in K[X]$, $P \neq 0$, tal que P(A) = 0.

Demostración.

 $\{I_n,A,A^2,\ldots,A^{n^2}\}\subseteq K^{n\times n}$ es l.d., porque tiene n^2+1 elementos y $\dim(K^{n\times n})=n^2$.

$$\Rightarrow \exists a_0, a_1, \dots, a_{n^2} \in K$$
 no todos nulos, tales que $\sum_{i=0}^{n^2} a_i A^i = 0$.
Si $P = \sum_{i=0}^{n^2} a_i X^i \in K[X]$, vale $P \neq 0$ y $P(A) = 0$.

Definición.

Sea $A \in K^{n \times n}$. Llamamos polinomio minimal de A, y lo notamos m_A , al polinomio mónico de grado mínimo en K[X] que anula a A.

Existencia. $H = \{ \operatorname{gr}(P) : P \in K[X], P \neq 0, P(A) = 0 \} \subseteq \mathbb{N}_0$ es no vacío. Sean $r = \min(H)$ y $P_0 \in K[X]$ tal que $P_0(A) = 0$ y $\operatorname{gr}(P_0) = r$. $\Rightarrow Q = \frac{1}{\operatorname{cp}(P_0)} P_0 \in K[X]$ es mónico, Q(A) = 0 y $\operatorname{gr}(Q) = \operatorname{gr}(P_0)$.

Unicidad. Sea $P \in K[X]$ mónico, $P \neq Q$, gr(P) = r y P(A) = 0. (P - Q)(A) = 0, $P - Q \neq 0$ y gr(P - Q) < r (porque P y Q son ambos mónicos), lo que contradice que $r = \min(H)$.

Ejemplo. Sea $A = \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix}$. Calcular m_A .

▶
$$\{I_2, A\}$$
 es l.i. $\Rightarrow \exists P \in \mathbb{R}[X]$ tal que $gr(P) = 1$ y $P(A) = 0$.

Consideramos $\{I_2, A, A^2\}$ para buscar $P = a_0 + a_1X + X^2$ que anule a A:

$$a_0 I_2 + a_1 A + A^2 = 0$$

$$a_0 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + a_1 \begin{pmatrix} -1 & 0 \\ 1 & -1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} = 0$$

$$\iff \begin{cases} a_0 - a_1 + 1 &= 0 \\ a_1 - 2 &= 0 \end{cases} \iff a_0 = 1, a_1 = 2.$$

$$\Rightarrow P = 1 + 2X + X^2 \text{ cumple } P(A) = 0.$$

Luego, $m_A = X^2 + 2X + 1$.

Propiedades del polinomio minimal

Proposición.

Sea $A \in K^{n \times n}$ y sea $P \in K[X]$. Entonces $P(A) = 0 \iff m_A \mid P$.

Demostración.

- $(\Leftarrow) m_A \mid P \Rightarrow \exists Q \in K[X] \text{ tal que } P = Q. m_A.$ $\Rightarrow P(A) = (Q. m_A)(A) = Q(A). m_A(A) = Q(A). 0 = 0.$
- (\Rightarrow) $P \in K[X] \Rightarrow \exists Q, R \in K[X]$ tales que $P = Q \cdot m_A + R$ con R = 0 o $gr(R) < gr(m_A)$. $0 = P(A) = Q(A) \cdot m_A(A) + R(A) = Q(A) \cdot 0 + R(A) = R(A) \cdot m_A$ polinomio de grado mínimo que anula a $A \Rightarrow R = 0$.

Proposición.

Sea $A \in K^{n \times n}$ y sea $\lambda \in K$. Entonces: λ es autovalor de $A \iff \lambda$ es raíz de m_A .

Demostración.

(⇒) Sea $\lambda \in K$ un autovalor de A.

$$\exists Q \in K[X] \text{ y } R \in K \text{ tales que } m_A = Q.(X - \lambda) + R.$$

$$\Rightarrow 0 = m_A(A) = Q(A).(A - \lambda I_n) + R. I_n.$$

$$\lambda$$
 autovalor de $A \Rightarrow \exists v \in K^n$, $v \neq 0$, tal que $A \cdot v = \lambda \cdot v$.

$$\Rightarrow 0 = Q(A).(A - \lambda I_n).v + R.v = Q(A).(Av - \lambda v) + R.v$$

= Q(A).0 + R.v = R.v.

$$R.v = 0, R \in K, v \neq 0 \Rightarrow R = 0.$$

$$\Rightarrow m_A = Q.(X - \lambda)$$
 y λ es raíz de m_A .

(⇐) Sea
$$\lambda \in K$$
 una raíz de m_A .

$$m_A = (X - \lambda).Q \Rightarrow (A - \lambda I_n).Q(A) = m_A(A) = 0.$$

$$\operatorname{\sf gr}(Q)=\operatorname{\sf gr}(m_A)-1\Rightarrow Q(A)\neq 0$$

$$\Rightarrow \exists w \in K^n \text{ tal que } Q(A).w \neq 0.$$

$$v = Q(A).w \Rightarrow (A - \lambda I_n).v = (A - \lambda I_n).Q(A).w = 0.w = 0$$

$$\Rightarrow$$
 $A.v = \lambda.v \Rightarrow \lambda$ es un autovalor de A .

