FREE RESOLUTIONS OVER A COMPLETE HYPERSURFACE (AND FRIENDS)

Based on "Homological algebra on a complete intersection, with an application to group representations." by David Eisenbud

David DeMark

MATH 8212 University of Minnesota

2 May 2018

Throughout this talk, we let...

Throughout this talk, we let...

• (A, \mathfrak{m}) be a regular local ring

Throughout this talk, we let...

- (A, \mathfrak{m}) be a regular local ring
- x_1, \ldots, x_n a regular sequence of finite length

Throughout this talk, we let...

- \bullet (A, \mathfrak{m}) be a regular local ring
- x_1, \ldots, x_n a regular sequence of finite length
- $B := A/\langle x_1, \ldots, x_n \rangle$

Throughout this talk, we let...

- (A, \mathfrak{m}) be a regular local ring
- x_1, \ldots, x_n a regular sequence of finite length
- $B := A/\langle x_1, \ldots, x_n \rangle$

Such a *B* is a *complete intersection of codimension n*.

Throughout this talk, we let...

- (A, \mathfrak{m}) be a regular local ring
- x_1, \ldots, x_n a regular sequence of finite length
- $B := A/\langle x_1, \ldots, x_n \rangle$

Such a B is a complete intersection of codimension n. We shall study the structure of B-free resolutions of B-modules, relating these to their liftings to A.

CLARIFICATION: B-FREE

We do **NOT** mean...

CLARIFICATION: B-FREE

FIGURE: Another "B-Free" Object.

SET-UP

Let M be a B-module, and \mathbf{F} a free resolution of B.

$$\textbf{F}:\ldots \xrightarrow{\partial_3} F_2 \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\partial_0} 0$$

SET-UP

Let M be a B-module, and \mathbf{F} a free resolution of B.

$$\textbf{F}:\ldots \xrightarrow{\partial_3} F_2 \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\partial_0} 0$$

SET-UP

Let M be a B-module, and \mathbf{F} a free resolution of B.

$$\textbf{F}:\ldots \xrightarrow{\partial_3} F_2 \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\partial_0} 0$$

Let $\tilde{\partial}_i$ denote an arbitrary lifting of

