Digital Control Systems Design

Renan G. Maidana renan.maidana@acad.pucrs.br

Porto Alegre, 2018

Recap

- So far, we have learned:
 - o What are dynamic systems
 - What are feedback control systems

Recap

- So far, we have learned:
 - What are dynamic systems
 - What are feedback control systems
 - How to model a dynamic system
 - Differential Equations
 - Transfer Functions
 - System Identification

$$m\ddot{x} + b\dot{x} + kx = u$$

Recap

- So far, we have learned:
 - What are dynamic systems
 - What are feedback control systems
 - o How to model a dynamic system
 - How to analyze a dynamic system's performance
 - In time (Rise and Settling times)
 - In amplitude (Steady-State error)
 - In stability

Finally...

- Given a dynamic system we want to control, we can:
 - Model its Transfer Function (or approximate it through identification)
 - Define stability and performance parameters
 - o Design a feedback control system which achieves our expectations

Finally...

- Given a dynamic system we want to control, we can:
 - Model its Transfer Function (or approximate it through identification)
 - o Define stability and performance parameters
 - o Design a feedback control system which achieves our expectations
- The running example in this part will be the angular speed of a DC motor shaft
 - Very useful in robotics (motor speed -> robot motion)

Running Example

• The DC motor angular speed can be modelled with regards to the input voltage

$$\frac{\dot{\theta}}{V} = \frac{K}{(Js+b)(Ls+R)+K^2}$$

J = Moment of inertia

b = Viscous damping ratio

K = Electromotive force constant

R = Armature resistance

L = Armature inductance

Running Example

- Let us assume the following constructive parameters:
 - o J = K = 0.01
 - \circ b = 0.1
 - o R = 1
 - o L = 0.5
- Thus, the running example's model is:

$$G(s) = \frac{2}{s^2 + 12s + 20.02}$$

- Normally, the constructive parameters are unknown in a motor, since we can't open it up and measure its individual parts
 - o Solution: Approximate a transfer function through IDENTIFICATION!

- We can start by analyzing the motor's **stability**
 - What are the poles and zeros of this system?

$$G(s) = \frac{2}{s^2 + 12s + 20.02} \quad \mbox{No zeros} \label{eq:Gs}$$
 Poles in -10 and -2

- We can start by analyzing the motor's **stability**
 - What are the poles and zeros of this system?

$$G(s) = \frac{2}{s^2 + 12s + 20.02} \quad {\rm Poles~in~-10~and~-2} \label{eq:Gs}$$

• Thus, the system is **stable**

- Now that we know it is stable, what is its closed-loop **steady-state response**?
 - What is the error to a step input?

$$e_{ss} = \lim_{s \to 0} \left(\frac{1}{1 + G(s)} \right)$$

- Now that we know it is stable, what is its closed-loop steady-state response?
 - What is the error to a step input?

$$e_{ss} = \lim_{s \to 0} \left(\frac{1}{1 + G(s)} \right)$$
 $e_{ss} = \frac{1}{1 + \frac{2}{20}} = 0.909$

- Now that we know it is stable, what is its closed-loop **steady-state response**?
 - What is the error to a step input?

$$e_{ss} = \lim_{s \to 0} \left(\frac{1}{1 + G(s)} \right)$$
 $e_{ss} = \frac{1}{1 + \frac{2}{20}} = 0.909$

- The angular velocity is 0.091 rad/s for an input of 1 V
 - This is 90.9% off from our desired output of 1 rad/s per 1 Volt

 If we plot the closed-loop response, we can visually verify both stability and steady-state error

- Conclusion:
 - \circ The system is stable, but it does not reach the desired steady-state response (1 rad/s per 1 V)
- How can we fix the steady-state error?

- A **PID Controller** is a general class of controllers which combine three types of compensation
 - Proportional (P)
 - o Integral (I)
 - Derivative (D)
- The Transfer Function for a PID controller is:

$$\frac{U(s)}{E(s)} = K_p + \frac{K_i}{s} + K_d s$$

where Kp, Ki and Kd are the controller gains

- A **PID Controller** is a general class of controllers which combine three types of compensation
 - o Proportional (P)
 - o Integral (I)
 - Derivative (D)

 By increasing the proportional gain, we alter the system's immediate response, decreasing the rise time and the steady-state error

- Typically, proportional compensation is not enough to eliminate the steady-state error completely
 - The **integral effect** brings the steady-state error to 0

 An interpretation for the integral action is that it acts by minimizing the amplitude error (in y)

- The integrator may introduce unwanted oscillatory behavior in the system
 - The **derivative effect** eliminates oscillations

 An interpretation for the derivative action is that it acts by minimizes the time error (in x)

• GIF:

 $https://upload.wikimedia.org/wikipedia/commons/3/33/PID_Compensation_Animated.gif$

• How do we implement a digital PID control loop?

```
# C(s)
def PID():
    global I

# Error
    e.append(r[-1] - y[-1])

# Integral
    I += e[-1]*T

# Derivative
    D = (e[-1]-e[-2])/T

# P + I + D
    u = Kp*e[-1] + Ki*I + Kd*D
    return u
```

To be applied to a properly discretized G(s) system

- How do we choose the Kp, Ki and Kd gains?
 - Lots of guess work!

Effects of increasing a parameter independently ^{[21][22]}								
Parameter	Rise time	Overshoot	Settling time	Steady-state error	Stability			
K_p	Decrease	Increase	Small change	Decrease	Degrade			
K_i	Decrease	Increase	Increase	Eliminate	Degrade			
K_d	Minor change	Decrease	Decrease	No effect in theory	Improve if K_d small			

- The search state-space for guessing the PID gains is huge, typically involving:
 - Altering one of the gains
 - Applying the tuned control
 - Recording the controlled system output
 - Seeing if the control achieved the desired closed-loop behavior

- Alternatively, there are tuning methods for PID controllers:
 - Ziegler-Nichols
 - o Cohen-Coon
- In the Ziegler-Nichols method, we use the open-loop step response to approximate the expected response to a PID

• In the Ziegler-Nichols method, we use the **open-loop** step response to approximate the expected response to a PID

$$k_p = k \qquad \qquad k_i = \frac{k}{T_i} \qquad \qquad k_d = kT_d$$

$$100\%$$

$$63\% \qquad \qquad k \qquad T_i \qquad T_d$$

$$P \qquad \qquad PT \qquad PT \qquad PT \qquad \qquad PT \qquad P$$

• Applied to the **OPEN LOOP** system, that is:

- Ziegler-Nichols
 - First, we find T as the difference between the time for 63% and the time for 10%:

T = 0.608 - 0.129 = 0.479 s

- Ziegler-Nichols
 - First, we find T as the difference between the time for 63% and the time

for 10%:

$$T = 0.608 - 0.129 = 0.479 s$$

 The dead-time (τ) is the time for the response to achieve 10%, in this case,

 $\tau = 0.129 \text{ s}$

- Ziegler-Nichols
 - \circ The slope λ is the amplitude difference between the upper and lower times, divided by the time elapsed (in this case, T)

$$\lambda = \frac{0.063 - 0.0103}{0.479} = 0.11$$

• The slope also gives us the declivity of the time response, or how fast it changes in time

- Ziegler-Nichols
 - Finally, the gains for the PID can be found using the table

$$Kp = k = 10.9$$

 $Ki = k/Ti = 42.248$
 $Kd = k \times Td = 0.703$

		k		T_d
	P	1/λ		2.
	PI	0.9/λ	3τ	
	PID	$1/\lambda$ $0.9/\lambda$ $1.2/\lambda$	2τ	$\tau/2$
$k_p = k$	$k_i = \frac{k}{T_i}$		k_d	$=kT_d$

• Ziegler-Nichols

$$Kp = k = 10.9$$

 $Ki = k/Ti = 42.248$
 $Kd = k \times Td = 0.703$

- Good response!
 - o Steady-state error is zero
 - o Stable
- The rise time and oscillatory behavior are still a bit lacking
 - Ziegler-Nichols provides only an approximation of the ideal gains!!
 - Some manual tuning is still required

• Ziegler-Nichols (after manual fine-tuning)

$$Kp = 25.9$$

 $Ki = 48.2$
 $Kd = 0.803$

- The desired rise time, overshoot and steady-state error depend on the control system designed
 - Manually fine-tune your PID to whatever you want the system behavior to be

- There are many tuning methods out there
 - The Cohen-Coon method for example:

	,	k	T_i	T_d
oon	P	$\frac{1}{K} \left(1 + \frac{0.35\theta}{1 - \theta} \right) \frac{T}{\tau}$		
9	PI	$\frac{0.9}{K} \left(1 + \frac{0.92\theta}{1 - \theta} \right) \frac{T}{\tau}$	$\frac{3.3-3.0\theta}{1+1.2\theta}\tau$	
Cohen-	PID	$\frac{1.35}{K} \left(1 + \frac{0.18\theta}{1 - \theta} \right) \frac{T}{\tau}$	$\frac{2.5-2.0\theta}{1-0.39\theta}\tau$	$\frac{0.37(1-\theta)}{1-0.81\theta}\tau$
				$\theta = \frac{\tau}{\tau + T}$

- If a certain method is not working, maybe another will do the trick
 - Other examples:
 - o AMIGO
 - o Ziegler-Nichols with Critical Gain
 - \circ Etc

- The integral effect piles up because the controller output is not able to bring the steady-state error to 0 in a timely manner
 - Even with positive error, the accumulated integral takes a while to go back to normal, introducing overshoot effects

0.2

Sample based Offset=0 T=5.000

Anti-Windup

• To avoid this, we limit the integrator influence if the actuator is saturated

Anti-Windup logic:

- If actuation is within limits
 - We can integrate
- If actuation has exceeded upper saturation limit
 - But error is negative
 - Integral effect will be subtracted, so we can integrate
 - Else, do not integrate
- If actuation has exceeded lower saturation limit
 - But error is positive
 - Integral effect will be added, so we can integrate
 - Else, do not integrate

If the controller output is saturated, the integral effects (positive and negative) will pile up, causing the controller to have an unaccounted inertia

Anti-Windup

