

RAJARATA UNIVERSITY OF SRILANKA FACULTY OF APPLIED SCIENCES, MIHINTALE

B.Sc. (General) Degree

Second Year Semester I Examination - October 2014

MAA 2302 - Probability and statistics II

Answer Five Questions Only	Time allowed: Three Hours

- 1. Identify the choice that best completes the statement or answers the question.
 - The standard deviation of a standard normal distribution i.
 - a. is always equal to zero
 - b. is always equal to one
 - c. can be any positive value
 - d. can be any value

- X is a normally distributed random variable with a mean of 8 and a standard deviation of 4. ii. The probability that X is between 1.48 and 15.56 is
 - a. 0.0222
 - b. 0.4190
 - c. 0.5222
 - d. 0.9190
- A simple random sample of 100 observations was taken from a large population. The iii. sample mean and the standard deviation were determined to be 80 and 12 respectively. The standard error of the mean is
 - a. 1.20
 - b. 0.12
 - c. 8.00
 - d. 0.80
- The probability distribution of all possible values of the sample proportion p is the iv.
 - a. probability density function of p
 - b. sampling distribution of x
 - c. same as p, since it considers all possible values of the sample proportion
 - d. sampling distribution of p
- The sample statistic s is the point estimator of
 - a. m
 - b. s
 - c. x
 - d. p

- 2
- a) Define the following terms for two random variables X and Y.
 - (i) Covariance
 - (ii) Correlation coefficient
- b) Show that, in the usual notation,

$$Cov(X,Y) = E(XY) - E(X)(Y)$$

c) Let X and Y be continuous random variables with joint probability density function,

$$f(x,y) = \begin{cases} kx(x+y) & ; 0 < x < 1, 0 < y < 2 \\ 0 & ; otherwise \end{cases}$$

- (i) Determine the value of k.
- (ii) Find the marginal density functions of X and Y.
- (iii) Find Cov(X, Y) and conditional probability function of X given Y = y.
- d) Let Z = aX + bY. Determine the variance of Z in terms of σ_X , σ_Y and σ_{XY} .
- 3.
- a) Let X is a discrete random variable whose probability function is f(x). Suppose that a discrete random variable U is defined in terms of X by $U = \phi(X)$, where to each value of X there corresponding one and only one value of U and conversely, so that $X = \psi(U)$. Prove that the probability function for U is given by $g(u) = f[\psi(U)]$.
- b) Let Y be a random variable with density function

$$f_Y(y) = \begin{cases} 2(1-y) & \text{; } 0 < y < 1 \\ 0 & \text{; elsewhere} \end{cases}$$

Use the method of transformations to find the density functions of

- (i) U = 2Y 1
- (ii) $V = Y^2$
- c) Let X be a standard normal variable. Find the cumulative distribution function of $Y = X^2$. Hence find the density function of $Y = X^2$.