23.58. IDENTIFY: We are modeling electrical power lines as conducting cylinders.

SET UP and **EXECUTE:** (a) Estimate: About 22 ft \approx 7.0 m.

(b) We want the linear charge density λ . $\Delta V = \int E_r dr = \int_{0.02 \text{ m}}^{7 \text{ m}} \frac{\lambda}{2\pi \epsilon_0} dr = \frac{\lambda}{2\pi \epsilon_0} \ln(7/0.02)$. Solving

for λ using V = 22 kV gives $\lambda \approx 210$ nC/m which rounds to 200 nC/m.

- (c) We want E. $E = \frac{\lambda}{2\pi \epsilon_0 r}$. Using $\lambda = 210 \text{ nC/m}$ and r = 7 m gives $E \approx 540 \text{ V/m}$.
- 23.61. (a) IDENTIFY: The potential at any point is the sum of the potentials due to each of the two charged conductors.

SET UP: For a conducting cylinder with charge per unit length λ the potential outside the cylinder is given by $V = (\lambda/2\pi \epsilon_0) \ln(r_0/r)$ where r is the distance from the cylinder axis and r_0 is the distance from the axis for which we take V = 0. Inside the cylinder the potential has the same value as on the cylinder surface. The electric field is the same for a solid conducting cylinder or for a hollow conducting tube so this expression for V applies to both. This problem says to take $r_0 = b$.

EXECUTE: For the hollow tube of radius b and charge per unit length $-\lambda$: outside

$$V = -(\lambda/2\pi \in 0) \ln(b/r)$$
; inside $V = 0$ since $V = 0$ at $r = b$.

For the metal cylinder of radius a and charge per unit length λ :

outside $V = (\lambda/2\pi \in 0) \ln(b/r)$, inside $V = (\lambda/2\pi \in 0) \ln(b/a)$, the value at r = a.

- (i) r < a; inside both $V = (\lambda/2\pi \in 0) \ln(b/a)$.
- (ii) a < r < b; outside cylinder, inside tube $V = (\lambda/2\pi \in_0) \ln(b/r)$.
- (iii) r > b; outside both the potentials are equal in magnitude and opposite in sign so V = 0.
- **(b)** For r = a, $V_a = (\lambda/2\pi \in_0) \ln(b/a)$.

For
$$r = b$$
, $V_b = 0$.

Thus
$$V_{ab} = V_a - V_b = (\lambda/2\pi \in_0) \ln(b/a)$$
.

(c) IDENTIFY and SET UP: Use $E_r = -\frac{\partial V}{\partial r}$ to calculate E.

EXECUTE:
$$E = -\frac{\partial V}{\partial r} = -\frac{\lambda}{2\pi \in_0} \frac{\partial}{\partial r} \ln\left(\frac{b}{r}\right) = -\frac{\lambda}{2\pi \in_0} \left(\frac{r}{b}\right) \left(-\frac{b}{r^2}\right) = \frac{V_{ab}}{\ln(b/a)} \frac{1}{r}.$$

(d) The electric field between the cylinders is due only to the inner cylinder, so V_{ab} is not changed, $V_{ab} = (\lambda/2\pi \epsilon_0) \ln(b/a)$.

EVALUATE: The electric field is not uniform between the cylinders, so $V_{ab} \neq E(b-a)$.

23.62. IDENTIFY: The wire and hollow cylinder form coaxial cylinders. Problem 23.61 gives

$$E(r) = \frac{V_{ab}}{\ln(b/a)} \frac{1}{r}.$$

SET UP:
$$a = 145 \times 10^{-6} \text{ m}, b = 0.0180 \text{ m}.$$

EXECUTE:
$$E = \frac{V_{ab}}{\ln(b/a)} \frac{1}{r}$$
 and

$$V_{ab} = E \ln(b/a)r = (2.00 \times 10^4 \text{ N/C})(\ln (0.018 \text{ m/}145 \times 10^{-6} \text{ m}))0.012 \text{ m} = 1157 \text{ V}.$$

EVALUATE: The electric field at any r is directly proportional to the potential difference between the wire and the cylinder.

23.66. (a) **IDENTIFY:** Calculate the potential due to each thin ring and integrate over the disk to find the potential. *V* is a scalar so no components are involved.

SET UP: Consider a thin ring of radius y and width dy. The ring has area $2\pi y dy$ so the charge on the ring is $dq = \sigma(2\pi y dy)$.

EXECUTE: The result of Example 23.11 then says that the potential due to this thin ring at the point on the axis at a distance x from the ring is

$$dV = \frac{1}{4\pi \epsilon_0} \frac{dq}{\sqrt{x^2 + y^2}} = \frac{2\pi\sigma}{4\pi \epsilon_0} \frac{y \, dy}{\sqrt{x^2 + y^2}}.$$

$$V = \int dV = \frac{\sigma}{2\epsilon_0} \int_0^R \frac{y \, dy}{\sqrt{x^2 + y^2}} = \frac{\sigma}{2\epsilon_0} \left[\sqrt{x^2 + y^2} \right]_0^R = \frac{\sigma}{2\epsilon_0} (\sqrt{x^2 + R^2} - x).$$

EVALUATE: For $x \gg R$ this result should reduce to the potential of a point charge with $Q = \sigma \pi R^2$.

$$\sqrt{x^2 + R^2} = x(1 + R^2/x^2)^{1/2} \approx x(1 + R^2/2x^2)$$
 so $\sqrt{x^2 + R^2} - x \approx R^2/2x$.

Then $V \approx \frac{\sigma}{2 \in_0} \frac{R^2}{2x} = \frac{\sigma \pi R^2}{4\pi \in_0 x} = \frac{Q}{4\pi \in_0 x}$, as expected.

(b) IDENTIFY and **SET UP:** Use $E_x = -\frac{\partial V}{\partial x}$ to calculate E_x .

EXECUTE:
$$E_x = -\frac{\partial V}{\partial x} = -\frac{\sigma}{2 \epsilon_0} \left(\frac{x}{\sqrt{x^2 + R^2}} - 1 \right) = \frac{\sigma x}{2 \epsilon_0} \left(\frac{1}{x} - \frac{1}{\sqrt{x^2 + R^2}} \right).$$

23.67. IDENTIFY: We must integrate to find the total energy because the energy to bring in more charge depends on the charge already present.

SET UP: If ρ is the uniform volume charge density, the charge of a spherical shell of radius r and thickness dr is $dq = \rho 4\pi r^2 dr$, and $\rho = Q/(4/3 \pi R^3)$. The charge already present in a sphere of radius r is $q = \rho(4/3 \pi r^3)$. The energy to bring the charge dq to the surface of the charge q is Vdq, where V is the potential due to q, which is $q/4\pi \in_0 r$.

EXECUTE: The total energy to assemble the entire sphere of radius R and charge Q is sum (integral) of the tiny increments of energy.

$$U = \int V dq = \int \frac{q}{4\pi \in_0 r} dq = \int_0^R \frac{\rho \frac{4}{3} \pi r^3}{4\pi \in_0 r} (\rho 4\pi r^2 dr) = \frac{3}{5} \left(\frac{1}{4\pi \in_0} \frac{Q^2}{R} \right)$$

where we have substituted $\rho = Q/(4/3 \pi R^3)$ and simplified the result.

23.68. IDENTIFY: Divide the rod into infinitesimal segments with charge dq. The potential dV due to the segment is $dV = \frac{1}{4\pi \epsilon_0} \frac{dq}{r}$. Integrate over the rod to find the total potential.

SET UP: $dq = \lambda dl$, with $\lambda = Q/\pi a$ and $dl = a d\theta$.

EXECUTE:
$$dV = \frac{1}{4\pi \in_0} \frac{dq}{r} = \frac{1}{4\pi \in_0} \frac{\lambda dl}{a} = \frac{1}{4\pi \in_0} \frac{Q}{\pi a} \frac{dl}{a} = \frac{1}{4\pi \in_0} \frac{Q}{\pi a} \frac{d\theta}{a}.$$

$$V = \frac{1}{4\pi \in {}_{0}} \int_{0}^{\pi} \frac{Q \, d\theta}{\pi a} = \frac{1}{4\pi \in {}_{0}} \frac{Q}{a}.$$

23.72. IDENTIFY: We are dealing with a charged bar in an external electric field. **SET UP** and **EXECUTE:** (a) We want V as a function of y. E is constant so $V_y - V_0 = -E_y y$, which gives $V(y) = V_0 - E y$.

Figure 23.72

(b) We want the potential energy. Refer to Fig. 23.72. $U = \int V dq$. $dq = \lambda dl$ with $\lambda = Q/L$, and

$$dl\cos\theta = dy. \quad U = \int_{0}^{L\cos\theta} (V_0 - Ey)(Q/L) \frac{dy}{\cos\theta} = \frac{\frac{Q}{L} \left(V_0 y - \frac{Ey^2}{2} \right)}{\cos\theta} \bigg|_{0}^{L\cos\theta} = Q \left(V_0 - \frac{EL\cos\theta}{2} \right).$$

- (c) We want V_0 so U = 0 when $\theta = 0^\circ$. $Q\left(V_0 \frac{EL\cos\theta}{2}\right) = 0$ gives $V_0 = EL/2$.
- (d) We want the angular speed ω at $\theta = 0^{\circ}$ if the bar is released from rest at $\theta = 90^{\circ}$. Energy conservation gives $U_0 + K_0 = U_{90} + K_{90}$. We can neglect gravity, so $\frac{1}{2}I\omega^2 = QV_0$. Using the result from
- (c) and $I = 1/3 \ ML^2$ gives $\omega = \sqrt{\frac{3QE}{ML}}$.
- (e) We want the frequency f of oscillation. Apply $\Sigma \tau_z = I\alpha_z$. $-QE\frac{L}{2}\sin\theta = \frac{1}{3}ML^2\frac{d^2\theta}{dt^2}$. This gives

$$\frac{d^2\theta}{dt^2} = -\left(\frac{3QE}{2ML}\right)\sin\theta \approx -\left(\frac{3QE}{2ML}\right)\theta \text{ for small amplitude oscillations. } \omega = \sqrt{\frac{3QE}{2ML}} \text{ , so }$$

$$f = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{3QE}{2ML}}.$$

23.81. IDENTIFY: We are dealing with a heart cell that is modeled as a cylindrical shell of charge.

SET UP:
$$E = \frac{\lambda}{2\pi \in_0 r}$$
.

EXECUTE: (a) We want the charge Q. Using $E = \frac{\lambda}{2\pi \epsilon_0 r}$ with $\lambda = Q/L$, we have

$$\Delta V = \int E_r dr = \int \frac{\lambda}{2\pi \epsilon_0} dr = \int_a^b \frac{Q/L}{2\pi \epsilon_0} dr = \frac{Q/L}{2\pi \epsilon_0} \ln(b/a).$$
 Solving for Q and using $\Delta V = 90.0$ mV, $a = 0.0$ mV, $a = 0.0$

9.0 μ m, $b = 10.0 \mu$ m, and $L = 100 \mu$ m gives $Q = 4.75 \times 10^{-15} \text{ C}$.

- **(b)** We want the electric field just inside the membrane at $r = a = 9.0 \ \mu \text{m}$. Using $E = \frac{Q/L}{2\pi \epsilon_0 a}$ gives $E = 94.9 \ \text{kV/m}$.
- (c) We want to find out how much charged moved across the cell wall. The potential went from -90.0 mV to +20.0 mV, so $\Delta V = 110 \text{ mV}$. Using information from (a) gives $Q = \frac{(2\pi \epsilon_0)(\Delta V)L}{\ln(b/a)}$.

With $\Delta V = 110 \text{ mV}$ and the given numbers, we get $Q = 5.81 \times 10^{-15} \text{ C}$.

(d) We want to know how many Na⁺ ions crossed the boundary. $N = \frac{5.81 \times 10^{-15} \text{ C}}{1.60 \times 10^{-19} \text{ C/ion}} = 36,300.$