Econ 7710 Assignment 7

The due date is Friday, December 1st

- 1. Using a sample of n two-dimensional observations $\{X_i\}_{i=1}^n$ construct a test with significance level α for the null hypothesis that this sample is generated by a uniformly distributed variable on $[0,1] \times [0,1]$ against the alternative hypothesis that the sample is generated by a uniformly distributed random variable on $[h, h+1] \times [h, h+1]$ for $h \geq 0$.
 - (a) Is the size of your test always equal to its significance level?
 - (b) Plot the graph of the power of your test as a function of h.
- 2. Consider the classical simple regression model

$$Y_i = \beta_0 + \beta_1 X_i + U_i$$

in which

$$E(U_i|X_i) = 0$$
 and $Var(U_i|X_i) = \sigma^2, Var(X_i) = \sigma_x^2$

Let $(X_i, Y_i, i = 1, ..., n)$ be i.i.d. Instead of regressing y_i on a constant and x_i , you regress x_i on a constant and y_i :

$$\min_{\hat{\alpha}_0, \hat{\alpha}_1} \sum_{i=1}^n \left(x_i - \hat{\alpha}_0 - \hat{\alpha}_1 y_i \right)^2$$

Is $1/\hat{\alpha}_1$ a consistent estimator of β_0 ? If not what does it converge to?