$(\Delta - 1)$ -dicolouring of digraphs

A directed analogue of Borodin-Kostochka's Conjecture

A. Harutyunyan¹, K. Kawarabayashi², <u>L. Picasarri-Arrieta²</u>, G. Puig i Surroca¹

09/09/2025

¹LAMSADE, Université Paris Dauphine - PSL, Paris, France.

²National Institute of Informatics, Tokyo, Japan.

Definition

• $\omega(G)$: clique number of G

- $\Delta(G)$: maximum degree of G

• $\chi(G)$: chromatic number of G

Proposition: Every graph G satisfies $\omega(G) \leqslant \chi(G) \leqslant \Delta(G) + 1$.

Question: Does χ being close to $\Delta+1$ implies that ω is close to χ ?

Theorem (Brooks, 1941)

Definition

• $\omega(G)$: clique number of G

- \bullet $\Delta(G)$: maximum degree of G
- ullet $\chi(G)$: chromatic number of G

Proposition: Every graph G satisfies $\omega(G) \leq \chi(G) \leq \Delta(G) + 1$.

Question: Does χ being close to $\Delta + 1$ implies that ω is close to χ ?

Theorem (Brooks, 1941)

Definition

• $\omega(G)$: clique number of G

ullet $\Delta(G)$: maximum degree of G

ullet $\chi(G)$: chromatic number of G

Proposition: Every graph G satisfies $\omega(G) \leq \chi(G) \leq \Delta(G) + 1$.

Question: Does χ being close to $\Delta + 1$ implies that ω is close to χ ?

Theorem (Brooks, 1941)

Definition

• $\omega(G)$: clique number of G

- ullet $\Delta(G)$: maximum degree of G
- ullet $\chi(G)$: chromatic number of G

Proposition: Every graph G satisfies $\omega(G) \leq \chi(G) \leq \Delta(G) + 1$.

Question: Does χ being close to $\Delta + 1$ implies that ω is close to χ ?

Theorem (Brooks, 1941)

Definition

• $\omega(G)$: clique number of G

- ullet $\Delta(G)$: maximum degree of G

ullet $\chi(G)$: chromatic number of G

Proposition: Every graph G satisfies $\omega(G) \leq \chi(G) \leq \Delta(G) + 1$.

Question: Does χ being close to $\Delta + 1$ implies that ω is close to χ ?

Theorem (Brooks, 1941)

Definition

• $\omega(G)$: clique number of G

- \bullet $\Delta(G)$: maximum degree of G

ullet $\chi(G)$: chromatic number of G

Proposition: Every graph G satisfies $\omega(G) \leq \chi(G) \leq \Delta(G) + 1$.

Question: Does χ being close to $\Delta + 1$ implies that ω is close to χ ?

Theorem (Brooks, 1941)

Conjecture (Borodin and Kostochka, 1977)

For every graph G, if $\chi(G) \geqslant \Delta(G)$ and $\Delta(G) \geqslant 9$ then $\omega(G) \geqslant \Delta(G)$.

Remark: It is necessary to take $\Delta(G) \ge 9$.

- Borodin and Kostochka, 1977: If $\chi(G) \geqslant \Delta(G)$ then $\omega(G) \geqslant \frac{1}{2}(\Delta(G) + 1)$
- Kostochka, 1980: If $\chi(G) \geqslant \Delta(G)$ then $\omega(G) \geqslant \Delta(G) 28$.
- Mozhan, 1987: If $\chi(G) \geqslant \Delta(G)$ and $\Delta(G) \geqslant 31$ then $\omega(G) \geqslant \Delta(G) 3$

Conjecture (Borodin and Kostochka, 1977)

For every graph G, if $\chi(G) \geqslant \Delta(G)$ and $\Delta(G) \geqslant 9$ then $\omega(G) \geqslant \Delta(G)$.

Remark: It is necessary to take $\Delta(G) \geqslant 9$.

$$\Delta = 8$$

$$\omega = 6$$

$$\chi = 8$$

- Borodin and Kostochka, 1977: If $\chi(G) \geqslant \Delta(G)$ then $\omega(G) \geqslant \frac{1}{2}(\Delta(G) + 1)$.
- Kostochka, 1980: If $\chi(G) \geqslant \Delta(G)$ then $\omega(G) \geqslant \Delta(G) 28$.
- Mozhan, 1987: If $\chi(G) \geqslant \Delta(G)$ and $\Delta(G) \geqslant 31$ then $\omega(G) \geqslant \Delta(G) 3$

Conjecture (Borodin and Kostochka, 1977)

For every graph G, if $\chi(G) \geqslant \Delta(G)$ and $\Delta(G) \geqslant 9$ then $\omega(G) \geqslant \Delta(G)$.

Remark: It is necessary to take $\Delta(G) \geqslant 9$.

$$\Delta = 8$$

$$\omega = 6$$

$$\chi = 8$$

- Borodin and Kostochka, 1977: If $\chi(G) \geqslant \Delta(G)$ then $\omega(G) \geqslant \frac{1}{2}(\Delta(G) + 1)$.
- Kostochka, 1980: If $\chi(G) \geqslant \Delta(G)$ then $\omega(G) \geqslant \Delta(G) 28$
- Mozhan, 1987: If $\chi(G) \geqslant \Delta(G)$ and $\Delta(G) \geqslant 31$ then $\omega(G) \geqslant \Delta(G) 3$

Conjecture (Borodin and Kostochka, 1977)

For every graph G, if $\chi(G) \geqslant \Delta(G)$ and $\Delta(G) \geqslant 9$ then $\omega(G) \geqslant \Delta(G)$.

Remark: It is necessary to take $\Delta(G) \geqslant 9$.

$$\Delta = 8$$

- $\omega = 6$
- $\chi = 8$

- Borodin and Kostochka, 1977: If $\chi(G) \geqslant \Delta(G)$ then $\omega(G) \geqslant \frac{1}{2}(\Delta(G) + 1)$.
- Kostochka, 1980: If $\chi(G) \geqslant \Delta(G)$ then $\omega(G) \geqslant \Delta(G) 28$.
- Mozhan, 1987: If $\chi(G) \geqslant \Delta(G)$ and $\Delta(G) \geqslant 31$ then $\omega(G) \geqslant \Delta(G) 3$

Conjecture (Borodin and Kostochka, 1977)

For every graph G, if $\chi(G) \ge \Delta(G)$ and $\Delta(G) \ge 9$ then $\omega(G) \ge \Delta(G)$.

Remark: It is necessary to take $\Delta(G) \geqslant 9$.

$$\Delta = 8$$

$$\omega = 6$$

$$\chi = 8$$

- Borodin and Kostochka, 1977: If $\chi(G) \geqslant \Delta(G)$ then $\omega(G) \geqslant \frac{1}{2}(\Delta(G) + 1)$.
- Kostochka, 1980: If $\chi(G) \geqslant \Delta(G)$ then $\omega(G) \geqslant \Delta(G) 28$.
- Mozhan, 1987: If $\chi(G) \geqslant \Delta(G)$ and $\Delta(G) \geqslant 31$ then $\omega(G) \geqslant \Delta(G) 3$.

Conjecture (Reed, 1998)

Every graph G satisfies $\chi(G) \leqslant \left\lceil \frac{1}{2}(\Delta(G) + 1) + \frac{1}{2}\omega(G) \right\rceil$.

Consequence: If $\chi(G) \geqslant \Delta(G) + 1 - c$ then $\omega(G) \geqslant \Delta(G) - 2c$

Theorem (Reed, 1998)

There exists $\varepsilon>0$ s.t. every graph G satisfies $\chi(G)\leqslant \lceil (1-\varepsilon)(\Delta(G)+1)+\varepsilon\omega(G) \rceil$

Theorem (Reed, 1998)

For every graph G, if $\Delta(G) \geqslant \Delta_c$ and $\chi(G) \geqslant \Delta(G) + 1 - c$, then $\omega(G) \geqslant \Delta(G) - 2c$.

Consequence: If $\Delta(G)$ is large enough and $\chi(G) \geqslant \Delta(G)$ then $\omega(G) \geqslant \Delta(G) - 2$.

Theorem (Reed, 1999)

Conjecture (Reed, 1998)

Every graph G satisfies $\chi(G) \leqslant \left\lceil \frac{1}{2}(\Delta(G)+1) + \frac{1}{2}\omega(G) \right\rceil$.

Consequence: If $\chi(G) \ge \Delta(G) + 1 - c$ then $\omega(G) \ge \Delta(G) - 2c$.

Theorem (Reed, 1998)

There exists $\varepsilon>0$ s.t. every graph G satisfies $\chi(G)\leqslant \lceil (1-\varepsilon)(\Delta(G)+1)+\varepsilon\omega(G) \rceil$

Theorem (Reed, 1998)

For every graph G, if $\Delta(G) \geqslant \Delta_c$ and $\chi(G) \geqslant \Delta(G) + 1 - c$, then $\omega(G) \geqslant \Delta(G) - 2c$.

Consequence: If $\Delta(G)$ is large enough and $\chi(G) \geqslant \Delta(G)$ then $\omega(G) \geqslant \Delta(G) - 2$.

Theorem (Reed, 1999)

Conjecture (Reed, 1998)

Every graph G satisfies $\chi(G) \leqslant \left\lceil \frac{1}{2}(\Delta(G) + 1) + \frac{1}{2}\omega(G) \right\rceil$.

Consequence: If $\chi(G) \ge \Delta(G) + 1 - c$ then $\omega(G) \ge \Delta(G) - 2c$.

Theorem (Reed, 1998)

There exists $\varepsilon > 0$ s.t. every graph G satisfies $\chi(G) \leqslant \lceil (1 - \varepsilon)(\Delta(G) + 1) + \varepsilon\omega(G) \rceil$.

Theorem (Reed, 1998)

For every graph G, if $\Delta(G) \geqslant \Delta_c$ and $\chi(G) \geqslant \Delta(G) + 1 - c$, then $\omega(G) \geqslant \Delta(G) - 2c$.

Consequence: If $\Delta(G)$ is large enough and $\chi(G) \geqslant \Delta(G)$ then $\omega(G) \geqslant \Delta(G) - 2$.

Theorem (Reed, 1999)

Conjecture (Reed, 1998)

Every graph G satisfies $\chi(G) \leq \left[\frac{1}{2}(\Delta(G)+1) + \frac{1}{2}\omega(G)\right]$.

Consequence: If $\chi(G) \geqslant \Delta(G) + 1 - c$ then $\omega(G) \geqslant \Delta(G) - 2c$.

Theorem (Reed, 1998)

There exists $\varepsilon > 0$ s.t. every graph G satisfies $\chi(G) \leqslant \lceil (1 - \varepsilon)(\Delta(G) + 1) + \varepsilon\omega(G) \rceil$.

Theorem (Reed, 1998)

For every graph G, if $\Delta(G) \geqslant \Delta_c$ and $\chi(G) \geqslant \Delta(G) + 1 - c$, then $\omega(G) \geqslant \Delta(G) - 2c$.

Consequence: If $\Delta(G)$ is large enough and $\chi(G) \geqslant \Delta(G)$ then $\omega(G) \geqslant \Delta(G) - 2$.

Theorem (Reed, 1999)

Conjecture (Reed, 1998)

Every graph G satisfies $\chi(G) \leqslant \left\lceil \frac{1}{2}(\Delta(G) + 1) + \frac{1}{2}\omega(G) \right\rceil$.

Consequence: If $\chi(G) \ge \Delta(G) + 1 - c$ then $\omega(G) \ge \Delta(G) - 2c$.

Theorem (Reed, 1998)

There exists $\varepsilon > 0$ s.t. every graph G satisfies $\chi(G) \leqslant \lceil (1 - \varepsilon)(\Delta(G) + 1) + \varepsilon\omega(G) \rceil$.

Theorem (Reed, 1998)

For every graph G, if $\Delta(G) \geqslant \Delta_c$ and $\chi(G) \geqslant \Delta(G) + 1 - c$, then $\omega(G) \geqslant \Delta(G) - 2c$.

Consequence: If $\Delta(G)$ is large enough and $\chi(G) \geqslant \Delta(G)$ then $\omega(G) \geqslant \Delta(G) - 2$.

Theorem (Reed, 1999)

Conjecture (Reed, 1998)

Every graph G satisfies $\chi(G) \leqslant \left\lceil \frac{1}{2}(\Delta(G) + 1) + \frac{1}{2}\omega(G) \right\rceil$.

Consequence: If $\chi(G) \ge \Delta(G) + 1 - c$ then $\omega(G) \ge \Delta(G) - 2c$.

Theorem (Reed, 1998)

There exists $\varepsilon > 0$ s.t. every graph G satisfies $\chi(G) \leqslant \lceil (1 - \varepsilon)(\Delta(G) + 1) + \varepsilon\omega(G) \rceil$.

Theorem (Reed, 1998)

For every graph G, if $\Delta(G) \geqslant \Delta_c$ and $\chi(G) \geqslant \Delta(G) + 1 - c$, then $\omega(G) \geqslant \Delta(G) - 2c$.

Consequence: If $\Delta(G)$ is large enough and $\chi(G) \geqslant \Delta(G)$ then $\omega(G) \geqslant \Delta(G) - 2$.

Theorem (Reed, 1999)

Definition

 \bullet Biclique number $\overset{\leftrightarrow}{\omega}(D)$ of D: size of a largest biclique

$\overset{\leftrightarrow}{\omega}$ and $\vec{\chi}$

Definition

ullet Biclique number $\overleftrightarrow{\omega}(D)$ of D: size of a largest biclique

• k-dicolouring of D: partition of V(D) into k acyclic subdigraphs (i.e. no monochromatic directed cycle).

Definition

ullet Biclique number $\overleftrightarrow{\omega}(D)$ of D: size of a largest biclique

- k-dicolouring of D: partition of V(D) into k acyclic subdigraphs (i.e. no monochromatic directed cycle).
- Dichromatic number $\vec{\chi}(D)$ of D: minimum k s.t. D admits a k-dicolouring.

$\overset{\leftrightarrow}{\omega}$ and $\vec{\chi}$

Definition

ullet Biclique number $\overset{\longleftrightarrow}{\omega}(D)$ of D: size of a largest biclique

- k-dicolouring of D: partition of V(D) into k acyclic subdigraphs (i.e. no monochromatic directed cycle).
- **Dichromatic number** $\vec{\chi}(D)$ of D: minimum k s.t. D admits a k-dicolouring.

Remark: Extensions of ω and χ .

Definition

• Biclique number $\overleftrightarrow{\omega}(D)$ of D: size of a largest biclique

- k-dicolouring of D: partition of V(D) into k acyclic subdigraphs (i.e. no monochromatic directed cycle).
- Dichromatic number $\vec{\chi}(D)$ of D: minimum k s.t. D admits a k-dicolouring.

Remark: Extensions of ω and χ .

$$\omega(G) = \overleftrightarrow{\omega}(\overleftrightarrow{G})$$
 and $\chi(G) = \overrightarrow{\chi}(\overleftrightarrow{G})$

In general: for any $f \colon \mathbb{N}^2 \to \mathbb{N}$ such that $\min(a,b) \leqslant f(a,b) \leqslant \max(a,b)$,

$$\Delta_f(D) = \max_{v \in V(D)} f(d^-(v), d^+(v)).$$

Definition

- Max-max-degree: $\Delta_{\max}(D) = \max_v(\max(d^-(v), d^+(v))).$
- Max-min-degree: $\Delta_{\min}(D) = \max_v(\min(d^-(v), d^+(v))).$
- Max-out-degree: $\Delta^+(D) = \max_v(d^+(v))$.
- Max-geometric-degree: $\tilde{\Delta}(D) = \max_{v} \sqrt{d^{-}(v) \cdot d^{+}(v)}$.

- for every graph G, $\Delta(G) = \Delta_f(\overrightarrow{G})$.
- for every digraph D, $\overleftrightarrow{\omega}(D) \leqslant \vec{\chi}(D) \leqslant \Delta_{\min}(D) + 1 \leqslant \Delta_{\max}(D) + 1$.

In general: for any $f \colon \mathbb{N}^2 \to \mathbb{N}$ such that $\min(a,b) \leqslant f(a,b) \leqslant \max(a,b)$,

$$\Delta_f(D) = \max_{v \in V(D)} f(d^-(v), d^+(v)).$$

Definition

- Max-max-degree: $\Delta_{\max}(D) = \max_v(\max(d^-(v), d^+(v))).$
- Max-min-degree: $\Delta_{\min}(D) = \max_v(\min(d^-(v), d^+(v)))$.
- Max-out-degree: $\Delta^+(D) = \max_v(d^+(v))$.
- Max-geometric-degree: $\tilde{\Delta}(D) = \max_{v} \sqrt{d^{-}(v) \cdot d^{+}(v)}$

- for every graph G, $\Delta(G) = \Delta_f(\overrightarrow{G})$.
- for every digraph D, $\overleftrightarrow{\omega}(D) \leqslant \overrightarrow{\chi}(D) \leqslant \Delta_{\min}(D) + 1 \leqslant \Delta_{\max}(D) + 1$.

In general: for any $f \colon \mathbb{N}^2 \to \mathbb{N}$ such that $\min(a,b) \leqslant f(a,b) \leqslant \max(a,b)$,

$$\Delta_f(D) = \max_{v \in V(D)} f(d^-(v), d^+(v)).$$

Definition

- Max-max-degree: $\Delta_{\max}(D) = \max_v(\max(d^-(v), d^+(v))).$
- Max-min-degree: $\Delta_{\min}(D) = \max_{v}(\min(d^{-}(v), d^{+}(v))).$
- Max-out-degree: $\Delta^+(D) = \max_v(d^+(v))$.
- Max-geometric-degree: $\tilde{\Delta}(D) = \max_{v} \sqrt{d^{-}(v) \cdot d^{+}(v)}$.

- for every graph G, $\Delta(G) = \Delta_f(\overrightarrow{G})$.
- for every digraph D, $\overleftrightarrow{\omega}(D) \leqslant \vec{\chi}(D) \leqslant \Delta_{\min}(D) + 1 \leqslant \Delta_{\max}(D) + 1$.

In general: for any $f \colon \mathbb{N}^2 \to \mathbb{N}$ such that $\min(a,b) \leqslant f(a,b) \leqslant \max(a,b)$,

$$\Delta_f(D) = \max_{v \in V(D)} f(d^-(v), d^+(v)).$$

Definition

- Max-max-degree: $\Delta_{\max}(D) = \max_v(\max(d^-(v), d^+(v))).$
- Max-min-degree: $\Delta_{\min}(D) = \max_{v}(\min(d^{-}(v), d^{+}(v))).$
- Max-out-degree: $\Delta^+(D) = \max_v(d^+(v))$.
- Max-geometric-degree: $\tilde{\Delta}(D) = \max_{v} \sqrt{d^{-}(v) \cdot d^{+}(v)}$

- for every graph G, $\Delta(G) = \Delta_f(\overrightarrow{G})$.
- for every digraph D, $\overleftrightarrow{\omega}(D) \leqslant \vec{\chi}(D) \leqslant \Delta_{\min}(D) + 1 \leqslant \Delta_{\max}(D) + 1$.

In general: for any $f \colon \mathbb{N}^2 \to \mathbb{N}$ such that $\min(a,b) \leqslant f(a,b) \leqslant \max(a,b)$,

$$\Delta_f(D) = \max_{v \in V(D)} f(d^-(v), d^+(v)).$$

Definition

- Max-max-degree: $\Delta_{\max}(D) = \max_v(\max(d^-(v), d^+(v))).$
- Max-min-degree: $\Delta_{\min}(D) = \max_{v}(\min(d^{-}(v), d^{+}(v))).$
- Max-out-degree: $\Delta^+(D) = \max_v(d^+(v))$.
- Max-geometric-degree: $\tilde{\Delta}(D) = \max_{v} \sqrt{d^{-}(v) \cdot d^{+}(v)}$.

- for every graph G, $\Delta(G) = \Delta_f(\overrightarrow{G})$.
- for every digraph D, $\overleftrightarrow{\omega}(D) \leqslant \overrightarrow{\chi}(D) \leqslant \Delta_{\min}(D) + 1 \leqslant \Delta_{\max}(D) + 1$.

In general: for any $f \colon \mathbb{N}^2 \to \mathbb{N}$ such that $\min(a,b) \leqslant f(a,b) \leqslant \max(a,b)$,

$$\Delta_f(D) = \max_{v \in V(D)} f(d^-(v), d^+(v)).$$

Definition

- Max-max-degree: $\Delta_{\max}(D) = \max_v(\max(d^-(v), d^+(v))).$
- Max-min-degree: $\Delta_{\min}(D) = \max_{v}(\min(d^{-}(v), d^{+}(v))).$
- Max-out-degree: $\Delta^+(D) = \max_v(d^+(v))$.
- Max-geometric-degree: $\tilde{\Delta}(D) = \max_{v} \sqrt{d^{-}(v) \cdot d^{+}(v)}$.

- for every graph G, $\Delta(G) = \Delta_f(\overleftrightarrow{G})$.
- for every digraph D, $\overrightarrow{\omega}(D) \leqslant \overrightarrow{\chi}(D) \leqslant \Delta_{\min}(D) + 1 \leqslant \Delta_{\max}(D) + 1$

In general: for any $f \colon \mathbb{N}^2 \to \mathbb{N}$ such that $\min(a,b) \leqslant f(a,b) \leqslant \max(a,b)$,

$$\Delta_f(D) = \max_{v \in V(D)} f(d^-(v), d^+(v)).$$

Definition

- Max-max-degree: $\Delta_{\max}(D) = \max_v(\max(d^-(v), d^+(v))).$
- Max-min-degree: $\Delta_{\min}(D) = \max_{v}(\min(d^{-}(v), d^{+}(v))).$
- Max-out-degree: $\Delta^+(D) = \max_v(d^+(v))$.
- Max-geometric-degree: $\tilde{\Delta}(D) = \max_{v} \sqrt{d^{-}(v) \cdot d^{+}(v)}$.

- for every graph G, $\Delta(G) = \Delta_f(\overrightarrow{G})$.
- for every digraph D, $\overleftrightarrow{\omega}(D) \leqslant \vec{\chi}(D) \leqslant \Delta_{\min}(D) + 1 \leqslant \Delta_{\max}(D) + 1$.

Directed Brooks' Theorems

Theorem (Mohar, 2010)

For every connected digraph D, if $\vec{\chi}(D) = \Delta_{\max}(D) + 1$ then D is a directed cycle, a symmetric odd cycle, or a complete digraph.

 $\Delta_{\max} = 2$, $\vec{\chi} = 3$

 $\Delta_{\mathrm{max}} = n - 1$, $\vec{\chi} = n$

Remark: holds also for $\tilde{\Delta}$ and Δ^+ , but not for Δ_{\min} .

Theorem (P., 2023)

For every digraph D, if $\vec{\chi}(D) = \Delta_{\min}(D) + 1$ then $\overleftrightarrow{\omega}(D) \geqslant \frac{1}{2}(\Delta_{\min}(D) + 1)$.

Directed Brooks' Theorems

Theorem (Mohar, 2010)

For every connected digraph D, if $\vec{\chi}(D) = \Delta_{\max}(D) + 1$ then D is a directed cycle, a symmetric odd cycle, or a complete digraph.

 $\Delta_{\rm max} = 2$, $\vec{\chi} = 3$

 $\Delta_{\max} = n - 1$, $\vec{\chi} = n$

Remark: holds also for $\tilde{\Delta}$ and Δ^+ , but not for Δ_{\min} .

Theorem (P., 2023)

For every digraph D, if $\vec{\chi}(D) = \Delta_{\min}(D) + 1$ then $\overset{\leftrightarrow}{\omega}(D) \geqslant \frac{1}{2}(\Delta_{\min}(D) + 1)$.

Directed Brooks' Theorems

Theorem (Mohar, 2010)

For every connected digraph D, if $\vec{\chi}(D) = \Delta_{\max}(D) + 1$ then D is a directed cycle, a symmetric odd cycle, or a complete digraph.

 $\Delta_{\rm max}=2$, $\vec{\chi}=3$

$$\Delta_{\max} = n - 1$$
, $\vec{\chi} = n$

Remark: holds also for $\tilde{\Delta}$ and Δ^+ , but not for Δ_{\min} .

Theorem (P., 2023)

For every digraph D, if $\vec{\chi}(D) = \Delta_{\min}(D) + 1$ then $\overset{\leftrightarrow}{\omega}(D) \geqslant \frac{1}{2}(\Delta_{\min}(D) + 1)$.

An analogue of Reed's conjecture for digraphs

Conjecture (Kawarabayashi and P., 2025)

Every digraph D satisfies $\vec{\chi}(D) \leqslant \lceil \frac{1}{2}(\tilde{\Delta}(D) + 1) + \frac{1}{2} \overleftrightarrow{\omega}(D) \rceil$.

Theorem (Kawarabayashi and P., 2025)

There exists $\varepsilon>0$ s.t. every digraph D satisfies $\vec{\chi}(D)\leqslant \lceil (1-\varepsilon)(\tilde{\Delta}(D)+1)+\varepsilon \overset{\longleftrightarrow}{\omega}(D) \rceil$

Corollary

For every digraph D, if $\vec{\chi}(D) \geqslant \tilde{\Delta}(D)$ then $\overset{\leftrightarrow}{\omega}(D) \geqslant \tilde{\Delta}(D) - 2/\varepsilon$.

But $\vec{\chi}(D)\geqslant \tilde{\Delta}(D)$ does not imply $\overset{\leftrightarrow}{\omega}(D)\geqslant \tilde{\Delta}(D)$, even for large values of $\tilde{\Delta}$, because of

$$H_{\Delta} = \vec{C}_3 \boxplus \overleftrightarrow{K}_{\Delta - 2}.$$

An analogue of Reed's conjecture for digraphs

Conjecture (Kawarabayashi and P., 2025)

Every digraph D satisfies $\vec{\chi}(D) \leqslant \lceil \frac{1}{2}(\tilde{\Delta}(D) + 1) + \frac{1}{2} \overleftrightarrow{\omega}(D) \rceil$.

Theorem (Kawarabayashi and P., 2025)

There exists $\varepsilon > 0$ s.t. every digraph D satisfies $\vec{\chi}(D) \leqslant \lceil (1 - \varepsilon)(\tilde{\Delta}(D) + 1) + \varepsilon \overset{\leftrightarrow}{\omega}(D) \rceil$.

Corollary

For every digraph D, if $\vec{\chi}(D) \geqslant \tilde{\Delta}(D)$ then $\overleftrightarrow{\omega}(D) \geqslant \tilde{\Delta}(D) - 2/\varepsilon$.

But $\vec{\chi}(D) \geqslant \tilde{\Delta}(D)$ does not imply $\overset{\longleftrightarrow}{\omega}(D) \geqslant \tilde{\Delta}(D)$, ever for large values of $\tilde{\Delta}$, because of

$$H_{\Delta} = \vec{C}_3 \boxplus \overleftrightarrow{K}_{\Delta-2}.$$

An analogue of Reed's conjecture for digraphs

Conjecture (Kawarabayashi and P., 2025)

Every digraph D satisfies $\vec{\chi}(D) \leqslant \lceil \frac{1}{2}(\tilde{\Delta}(D) + 1) + \frac{1}{2} \overleftrightarrow{\omega}(D) \rceil$.

Theorem (Kawarabayashi and P., 2025)

There exists $\varepsilon > 0$ s.t. every digraph D satisfies $\vec{\chi}(D) \leqslant \lceil (1 - \varepsilon)(\tilde{\Delta}(D) + 1) + \varepsilon \overset{\leftrightarrow}{\omega}(D) \rceil$.

Corollary

For every digraph D, if $\vec{\chi}(D) \geqslant \tilde{\Delta}(D)$ then $\overleftrightarrow{\omega}(D) \geqslant \tilde{\Delta}(D) - 2/\varepsilon$.

But $\vec{\chi}(D) \geqslant \tilde{\Delta}(D)$ does not imply $\overset{\longleftrightarrow}{\omega}(D) \geqslant \tilde{\Delta}(D)$, ever for large values of $\tilde{\Delta}$, because of

$$H_{\Delta} = \vec{C}_3 \boxplus \overleftrightarrow{K}_{\Delta-2}.$$

An analogue of Reed's conjecture for digraphs

Conjecture (Kawarabayashi and P., 2025)

Every digraph D satisfies $\vec{\chi}(D) \leqslant \lceil \frac{1}{2}(\tilde{\Delta}(D) + 1) + \frac{1}{2} \overleftrightarrow{\omega}(D) \rceil$.

Theorem (Kawarabayashi and P., 2025)

There exists $\varepsilon > 0$ s.t. every digraph D satisfies $\vec{\chi}(D) \leqslant \lceil (1 - \varepsilon)(\tilde{\Delta}(D) + 1) + \varepsilon \overset{\leftrightarrow}{\omega}(D) \rceil$.

Corollary

For every digraph D, if $\vec{\chi}(D) \geqslant \tilde{\Delta}(D)$ then $\overleftrightarrow{\omega}(D) \geqslant \tilde{\Delta}(D) - 2/\varepsilon$.

But $\vec{\chi}(D) \geqslant \tilde{\Delta}(D)$ does not imply $\overset{\longleftrightarrow}{\omega}(D) \geqslant \tilde{\Delta}(D)$, even for large values of $\tilde{\Delta}$, because of

$$H_{\Delta} = \vec{C}_3 \boxplus \overleftrightarrow{K}_{\Delta-2}.$$

Conjecture (Harutyunyan, Kawarabayashi, P., Puig i Surroca)

The following hold for every digraph D.

- If $\vec{\chi}(D) \geqslant \tilde{\Delta}(D)$ and $\tilde{\Delta}(D) \geqslant 9$ then $\overleftrightarrow{\omega}(D) \geqslant \tilde{\Delta}(D)$ or $H_{\tilde{\Delta}(D)} \subseteq D$.
- If $\vec{\chi}(D) \geqslant \Delta^{\!+\!}(D)$ and $\Delta^{\!+\!}(D) \geqslant 9$ then $\overleftrightarrow{\omega}(D) \geqslant \Delta^{\!+\!}(D)$ or $H_{\Delta^{\!+\!}(D)} \subseteq D$.

Гheorem (Harutyunyan, Kawarabayashi, P., Puig i Surroca)

The following hold for every digraph D

- If $\vec{\chi}(D) \geqslant \tilde{\Delta}(D)$ and $\tilde{\Delta}(D) \geqslant 10^{10^{10}}$ then $\overleftrightarrow{\omega}(D) \geqslant \tilde{\Delta}(D)$ or $H_{\tilde{\Delta}(D)} \subseteq D$.
- If $\vec{\chi}(D)\geqslant \Delta^{\!+\!}(D)$ and $\Delta^{\!+\!}(D)\geqslant 10^{10^{10}}$ then $\overset{\leftrightarrow}{\omega}(D)\geqslant \Delta^{\!+\!}(D)$ or $H_{\Delta^{\!+\!}(D)}\subseteq D$
- If $\vec{\chi}(D) \geqslant \Delta_{\min}(D)$ and $\Delta_{\min}(D) \geqslant 10^{10^{10}}$ then $\overset{\leftrightarrow}{\omega}(D) \geqslant \frac{1}{2}(\Delta_{\min}(D) 1)$.

Conjecture (Harutyunyan, Kawarabayashi, P., Puig i Surroca)

The following hold for every digraph D.

- If $\vec{\chi}(D) \geqslant \tilde{\Delta}(D)$ and $\tilde{\Delta}(D) \geqslant 9$ then $\overleftrightarrow{\omega}(D) \geqslant \tilde{\Delta}(D)$ or $H_{\tilde{\Delta}(D)} \subseteq D$.
- If $\vec{\chi}(D) \geqslant \Delta^+(D)$ and $\Delta^+(D) \geqslant 9$ then $\overset{\leftrightarrow}{\omega}(D) \geqslant \Delta^+(D)$ or $H_{\Delta^+(D)} \subseteq D$.

Theorem (Harutyunyan, Kawarabayashi, P., Puig i Surroca)

The following hold for every digraph D

- If $\vec{\chi}(D) \geqslant \tilde{\Delta}(D)$ and $\tilde{\Delta}(D) \geqslant 10^{10^{10}}$ then $\overset{\leftrightarrow}{\omega}(D) \geqslant \tilde{\Delta}(D)$ or $H_{\tilde{\Delta}(D)} \subseteq D$.
- If $\vec{\chi}(D) \geqslant \Delta^{\!+\!}(D)$ and $\Delta^{\!+\!}(D) \geqslant 10^{10^{10}}$ then $\overset{\leftrightarrow}{\omega}(D) \geqslant \Delta^{\!+\!}(D)$ or $H_{\Delta^{\!+\!}(D)} \subseteq D$.
- If $\vec{\chi}(D) \geqslant \Delta_{\min}(D)$ and $\Delta_{\min}(D) \geqslant 10^{10^{10}}$ then $\overset{\leftrightarrow}{\omega}(D) \geqslant \frac{1}{2}(\Delta_{\min}(D) 1)$.

Conjecture (Harutyunyan, Kawarabayashi, P., Puig i Surroca)

The following hold for every digraph D.

- If $\vec{\chi}(D) \geqslant \tilde{\Delta}(D)$ and $\tilde{\Delta}(D) \geqslant 9$ then $\overleftrightarrow{\omega}(D) \geqslant \tilde{\Delta}(D)$ or $H_{\tilde{\Delta}(D)} \subseteq D$.
- If $\vec{\chi}(D) \geqslant \Delta^+(D)$ and $\Delta^+(D) \geqslant 9$ then $\overset{\leftrightarrow}{\omega}(D) \geqslant \Delta^+(D)$ or $H_{\Delta^+(D)} \subseteq D$.

Theorem (Harutyunyan, Kawarabayashi, P., Puig i Surroca)

The following hold for every digraph D.

- If $\vec{\chi}(D) \geqslant \tilde{\Delta}(D)$ and $\tilde{\Delta}(D) \geqslant 10^{10^{10}}$ then $\overleftrightarrow{\omega}(D) \geqslant \tilde{\Delta}(D)$ or $H_{\tilde{\Delta}(D)} \subseteq D$.
- If $\vec{\chi}(D) \geqslant \Delta^+(D)$ and $\Delta^+(D) \geqslant 10^{10^{10}}$ then $\overset{\leftrightarrow}{\omega}(D) \geqslant \Delta^+(D)$ or $H_{\Delta^+(D)} \subseteq D$.
- If $\vec{\chi}(D) \geqslant \Delta_{\min}(D)$ and $\Delta_{\min}(D) \geqslant 10^{10^{10}}$ then $\overset{\leftrightarrow}{\omega}(D) \geqslant \frac{1}{2}(\Delta_{\min}(D) 1)$.

Conjecture (Harutyunyan, Kawarabayashi, P., Puig i Surroca)

The following hold for every digraph D.

- If $\vec{\chi}(D) \geqslant \tilde{\Delta}(D)$ and $\tilde{\Delta}(D) \geqslant 9$ then $\overleftrightarrow{\omega}(D) \geqslant \tilde{\Delta}(D)$ or $H_{\tilde{\Delta}(D)} \subseteq D$.
- If $\vec{\chi}(D) \geqslant \Delta^+(D)$ and $\Delta^+(D) \geqslant 9$ then $\overset{\leftrightarrow}{\omega}(D) \geqslant \Delta^+(D)$ or $H_{\Delta^+(D)} \subseteq D$.

Theorem (Harutyunyan, Kawarabayashi, P., Puig i Surroca)

The following hold for every digraph D.

- If $\vec{\chi}(D) \geqslant \tilde{\Delta}(D)$ and $\tilde{\Delta}(D) \geqslant 10^{10^{10}}$ then $\overleftrightarrow{\omega}(D) \geqslant \tilde{\Delta}(D)$ or $H_{\tilde{\Delta}(D)} \subseteq D$.
- If $\vec{\chi}(D) \geqslant \Delta^+(D)$ and $\Delta^+(D) \geqslant 10^{10^{10}}$ then $\overset{\leftrightarrow}{\omega}(D) \geqslant \Delta^+(D)$ or $H_{\Delta^+(D)} \subseteq D$.
- If $\vec{\chi}(D) \geqslant \Delta_{\min}(D)$ and $\Delta_{\min}(D) \geqslant 10^{10^{10}}$ then $\overset{\leftrightarrow}{\omega}(D) \geqslant \frac{1}{2}(\Delta_{\min}(D) 1)$.

- 1. Proof of a **Dense Decomposition Lemma** for digraphs of bounded maximum degree.
- 2. Proof of the result for $\tilde{\Delta}$
 - i. Apply the DDL to a minimum counterexample to restrain its possible structure
 - ii. Show that a (pseudo-) random colouring uses at most $\lceil \bar{\Delta} 1 \rceil$ colours with positive probability.
- 3. For $\Delta^{\!+}\!,$ show that a (well-chosen) minimum counter-example satisfies $\Delta^{\!+}\!\geqslant ilde\Delta$
- 4. Derive the result for Δ_{\min} from the one for Δ^+ .

- 1. Proof of a **Dense Decomposition Lemma** for digraphs of bounded maximum degree.
- 2. Proof of the result for $\tilde{\Delta}$.
 - i. Apply the DDL to a minimum counterexample to restrain its possible structure.
 - ii. Show that a (pseudo-) random colouring uses at most $\lceil \Delta 1 \rceil$ colours with positive probability.
- 3. For $\Delta^{\!+}\!,$ show that a (well-chosen) minimum counter-example satisfies $\Delta^{\!+}\!\geqslant ilde\Delta$
- 4. Derive the result for Δ_{\min} from the one for Δ^+ .

- 1. Proof of a **Dense Decomposition Lemma** for digraphs of bounded maximum degree.
- 2. Proof of the result for $\tilde{\Delta}$.
 - i. Apply the DDL to a minimum counterexample to restrain its possible structure.
 - ii. Show that a (pseudo-) random colouring uses at most $\lceil \tilde{\Delta} 1 \rceil$ colours with positive probability.
- 3. For Δ^+ , show that a (well-chosen) minimum counter-example satisfies $\Delta^+\geqslant ilde{\Delta}.$
- 4. Derive the result for Δ_{\min} from the one for Δ^+ .

- 1. Proof of a Dense Decomposition Lemma for digraphs of bounded maximum degree.
- 2. Proof of the result for $\tilde{\Delta}$.
 - i. Apply the DDL to a minimum counterexample to restrain its possible structure.
 - ii. Show that a (pseudo-) random colouring uses at most $\lceil \tilde{\Delta} 1 \rceil$ colours with positive probability.
- 3. For Δ^+ , show that a (well-chosen) minimum counter-example satisfies $\Delta^+ \geqslant \tilde{\Delta}$.
- 4. Derive the result for Δ_{\min} from the one for Δ^+ .

- 1. Proof of a Dense Decomposition Lemma for digraphs of bounded maximum degree.
- 2. Proof of the result for $\tilde{\Delta}$.
 - i. Apply the DDL to a minimum counterexample to restrain its possible structure.
 - ii. Show that a (pseudo-) random colouring uses at most $\lceil \tilde{\Delta} 1 \rceil$ colours with positive probability.
- 3. For Δ^+ , show that a (well-chosen) minimum counter-example satisfies $\Delta^+ \geqslant \tilde{\Delta}$.
- 4. Derive the result for Δ_{\min} from the one for Δ^+ .

A Dense Decomposition Lemma for digraphs

Lemma (Dense Decomposition)

For every $0 < \varepsilon < \frac{1}{2}$ and $\omega(1) \leqslant d \leqslant o(\Delta_{\max})$, there exists Δ_0 s.t. every digraph D with $\Delta_{\max}(D) = \Delta_{\max} \geqslant \Delta_0$ admits a vertex-partition $V(D) = (X_1, \dots, X_t, S)$ s.t.:

- 1. for every $i \in [t]$, $\Delta_{\max} \frac{3}{\varepsilon}d < |X_i| < \Delta_{\max} + 1 + 4d$;
- 2. for every $i \in [t]$ and $u \in V(D)$, $u \in X_i$ iff $|N^+(u) \cap X_i| \ge (1 \varepsilon)\Delta_{\max}$; and
- 3. vertices in S are d-sparse.

A Dense Decomposition Lemma for digraphs

Lemma (Dense Decomposition)

For every $0 < \varepsilon < \frac{1}{2}$ and $\omega(1) \leqslant d \leqslant o(\Delta_{\max})$, there exists Δ_0 s.t. every digraph D with $\Delta_{\max}(D) = \Delta_{\max} \geqslant \Delta_0$ admits a vertex-partition $V(D) = (X_1, \dots, X_t, S)$ s.t.:

- 1. for every $i \in [t]$, $\Delta_{\max} \frac{3}{\varepsilon}d < |X_i| < \Delta_{\max} + 1 + 4d$;
- 2. for every $i \in [t]$ and $u \in V(D)$, $u \in X_i$ iff $|N^+(u) \cap X_i| \ge (1 \varepsilon)\Delta_{\max}$; and
- 3. vertices in S are d-sparse.

Dense Decomposition Lemma - Sketch of proof

- For every d-dense vertex $v \in \mathcal{D}$, construct X_v as follows.
 - 1. Start with $X_v = N^+[v]$.
 - 2. Remove from X_v all vertices u with $|N^+(u) \cap X_v| < (1 \varepsilon)\Delta$.
 - 3. Add to X_v all vertices u with $|N^+(u) \cap X_v| \geqslant (1-\varepsilon)\Delta$.

Dense Decomposition Lemma – Sketch of proof

- For every d-dense vertex $v \in \mathcal{D}$, construct X_v as follows.
 - 1. Start with $X_v = N^+[v]$.
 - 2. Remove from X_v all vertices u with $|N^+(u) \cap X_v| < (1 \varepsilon)\Delta$.
 - 3. Add to X_v all vertices u with $|N^+(u) \cap X_v| \ge (1 \varepsilon)\Delta$.
- At most $O(d/\varepsilon)$ vertices are removed / added at steps 2 and 3.

Dense Decomposition Lemma - Sketch of proof

- For every d-dense vertex $v \in \mathcal{D}$, construct X_v as follows.
 - 1. Start with $X_v = N^+[v]$.
 - 2. Remove from X_v all vertices u with $|N^+(u) \cap X_v| < (1 \varepsilon)\Delta$.
 - 3. Add to X_v all vertices u with $|N^+(u) \cap X_v| \ge (1 \varepsilon)\Delta$.
- At most $O(d/\varepsilon)$ vertices are removed / added at steps 2 and 3.
- Vertices outside $\bigcup_{v \in \mathscr{D}} X_v$ are sparse.

Dense Decomposition Lemma – Sketch of proof

- For every d-dense vertex $v \in \mathcal{D}$, construct X_v as follows.
 - 1. Start with $X_v = N^+[v]$.
 - 2. Remove from X_v all vertices u with $|N^+(u) \cap X_v| < (1 \varepsilon)\Delta$.
 - 3. Add to X_v all vertices u with $|N^+(u) \cap X_v| \ge (1 \varepsilon)\Delta$.
- At most $O(d/\varepsilon)$ vertices are removed / added at steps 2 and 3.
- Vertices outside $\bigcup_{v \in \mathscr{D}} X_v$ are sparse.
- For every $u, v \in \mathcal{D}$, if $X_u \cap X_v \neq \emptyset$ then $u \in X_v$ and $v \in X_u$.

Theorem

For every digraph D, if $\vec{\chi}(D) \geqslant \tilde{\Delta}(D)$ and $\tilde{\Delta}(D) \geqslant 10^{10^{10}}$ then $\overleftrightarrow{\omega}(D) \geqslant \tilde{\Delta}(D)$ or $H_{\tilde{\Delta}(D)} \subseteq D$.

Claim: If D is a minimum counterexample, then $\Delta_{\max}(D) \leqslant \tilde{\Delta}(D) + 1$. (Because $(\tilde{\Delta} - 1)(\tilde{\Delta} + 2) > \tilde{\Delta}^2$.)

Claim: For every $i \in [t]$, $D[X_i]$ has no matching of size $2\varepsilon\Delta$

Theorem

For every digraph D, if $\vec{\chi}(D) \geqslant \tilde{\Delta}(D)$ and $\tilde{\Delta}(D) \geqslant 10^{10^{10}}$ then $\overset{\leftrightarrow}{\omega}(D) \geqslant \tilde{\Delta}(D)$ or $H_{\tilde{\Delta}(D)} \subseteq D$.

Claim: If D is a minimum counterexample, then $\Delta_{\max}(D) \leqslant \tilde{\Delta}(D) + 1$.

(Because $(\tilde{\Delta}-1)(\tilde{\Delta}+2)>\tilde{\Delta}^2$.)

Claim: For every $i \in [t]$, $\bar{D}[X_i]$ has no matching of size $2\varepsilon \tilde{\Delta}$.

Theorem

For every digraph D, if $\vec{\chi}(D) \geqslant \tilde{\Delta}(D)$ and $\tilde{\Delta}(D) \geqslant 10^{10^{10}}$ then $\overset{\leftrightarrow}{\omega}(D) \geqslant \tilde{\Delta}(D)$ or $H_{\tilde{\Delta}(D)} \subseteq D$.

Claim: If D is a minimum counterexample, then $\Delta_{\max}(D) \leqslant \tilde{\Delta}(D) + 1$.

(Because $(\tilde{\Delta}-1)(\tilde{\Delta}+2)>\tilde{\Delta}^2$.)

Claim: For every $i \in [t]$, $\bar{D}[X_i]$ has no matching of size $2\varepsilon \tilde{\Delta}$.

Number of forbidden colours:

 $\bullet \leqslant 2\varepsilon\tilde{\Delta}$

Theorem

For every digraph D, if $\vec{\chi}(D) \geqslant \tilde{\Delta}(D)$ and $\tilde{\Delta}(D) \geqslant 10^{10^{10}}$ then $\overset{\leftrightarrow}{\omega}(D) \geqslant \tilde{\Delta}(D)$ or $H_{\tilde{\Delta}(D)} \subseteq D$.

Claim: If D is a minimum counterexample, then $\Delta_{\max}(D) \leqslant \tilde{\Delta}(D) + 1$.

(Because $(\tilde{\Delta}-1)(\tilde{\Delta}+2)>\tilde{\Delta}^2$.)

Claim: For every $i \in [t]$, $\bar{D}[X_i]$ has no matching of size $2\varepsilon \tilde{\Delta}$.

Number of forbidden colours:

- $\leq 2\varepsilon\tilde{\Delta}$
- $\bullet \, \leqslant 4\varepsilon\tilde{\Delta}$

Theorem

For every digraph D, if $\vec{\chi}(D) \geqslant \tilde{\Delta}(D)$ and $\tilde{\Delta}(D) \geqslant 10^{10^{10}}$ then $\overset{\leftrightarrow}{\omega}(D) \geqslant \tilde{\Delta}(D)$ or $H_{\tilde{\Delta}(D)} \subseteq D$.

Claim: If D is a minimum counterexample, then $\Delta_{\max}(D) \leqslant \tilde{\Delta}(D) + 1$.

(Because $(\tilde{\Delta}-1)(\tilde{\Delta}+2)>\tilde{\Delta}^2$.)

Claim: For every $i \in [t]$, $\bar{D}[X_i]$ has no matching of size $2\varepsilon \tilde{\Delta}$.

Number of forbidden colours:

- $\leq 2\varepsilon\tilde{\Delta}$
- $\leqslant 4\varepsilon\tilde{\Delta}$
- $\bullet \leqslant (\tilde{\Delta} + 1) 3 = \tilde{\Delta} 2$

Proof for $\tilde{\Delta}$: applying the DDL – what we actually obtain

Lemma

If D is a minimum counterexample with dense decomposition (X_1, \ldots, X_t, S) , then each X_i contains at least $\frac{1}{3}|X_i|$ saviours.

- s is dominated by X_i ,
- $d^+(s) = \lceil \tilde{\Delta} \rceil$,
- x_s, y_s have at most $\log^4 \tilde{\Delta}$ neighbours in X_i .

Proof for $\tilde{\Delta}$: applying the DDL – what we actually obtain

Lemma

If D is a minimum counterexample with dense decomposition (X_1, \ldots, X_t, S) , then each X_i contains at least $\frac{1}{3}|X_i|$ saviours.

- s is dominated by X_i ,
- $d^-(s) = \lceil \tilde{\Delta} \rceil$,
- x_s, y_s have at most $\log^4 \tilde{\Delta}$ neighbours in X_i .

1. Colour uniformly at random with $\{1, \lceil \tilde{\Delta} - 1 \rceil \}$.

1. Colour uniformly at random with $\{1, \lceil \tilde{\Delta} - 1 \rceil \}$.

- 1. Colour uniformly at random with $\{1, \lceil \tilde{\Delta} 1 \rceil \}$.
- 2. **Uncolour** every vertex with both an in-neighbour and an out-neighbour of the same colour.

- 1. Colour uniformly at random with $\{1, \lceil \tilde{\Delta} 1 \rceil \}$.
- 2. **Uncolour** every vertex with both an in-neighbour and an out-neighbour of the same colour.

Claim: A sparse vertex v has at least three repeated colours in its out-neighbourhood with probability at least $1 - e^{\log^2 \tilde{\Delta}}$.

- ullet The expected number of repeated colours is large; \Rightarrow conclude with Talagrand's Inequality.
- ullet In particular, w.h.p., the colouring can be extended to v.

- s is uncoloured
- \bullet x_s and y_s remain coloured, and
 - the colour of x_s and y_s appear in $N^+(s) \cap X_i$.
- The expected number of actually saving saviours is large;
 ⇒ conclude with Azuma's Inequality.
- ullet In particular, w.h.p., the colouring can be extended to X_i .
- Each **bad event** occurs with probability at most $e^{-\log^2 \Delta} = p$ and is mutually independent from all others, except $\gamma = O(\tilde{\Delta}^5)$ of them.
- Since $e \cdot p \cdot (\gamma + 1) \leq 1$, conclude with Lovász Local Lemma

- s is uncoloured,
- ullet x_s and y_s remain coloured, and
- the colour of x_s and y_s appear in $N^+(s) \cap X_i$.
- The expected number of actually saving saviours is large;
 ⇒ conclude with Azuma's Inequality.
- In particular, w.h.p., the colouring can be extended to X_i .
- Each bad event occurs with probability at most $e^{-\log^* \Delta} = p$ and is mutually independent from all others, except $\gamma = O(\tilde{\Delta}^5)$ of them.
- Since $e \cdot p \cdot (\gamma + 1) \leq 1$, conclude with Lovász Local Lemma.

- s is uncoloured,
- ullet x_s and y_s remain coloured, and
- the colour of x_s and y_s appear in $N^+(s) \cap X_i$.
- The expected number of actually saving saviours is large;
 ⇒ conclude with Azuma's Inequality.
- In particular, w.h.p., the colouring can be extended to X_i .
- Each bad event occurs with probability at most $e^{-\log^2 \Delta} = p$ and is mutually independent from all others, except $\gamma = O(\tilde{\Delta}^5)$ of them.
- Since $e \cdot p \cdot (\gamma + 1) \leq 1$, conclude with Lovász Local Lemma

- s is uncoloured,
- ullet x_s and y_s remain coloured, and
- the colour of x_s and y_s appear in $N^+(s) \cap X_i$.
- The expected number of actually saving saviours is large;
 ⇒ conclude with Azuma's Inequality.
- In particular, w.h.p., the colouring can be extended to X_i .
- Each **bad event** occurs with probability at most $e^{-\log^2 \tilde{\Delta}} = p$ and is mutually independent from all others, except $\gamma = O(\tilde{\Delta}^5)$ of them.
- Since $e \cdot p \cdot (\gamma + 1) \leq 1$, conclude with **Lovász Local Lemma**.

Problem

For every $\Delta \geqslant \Delta_k$, the set of $(\Delta + 1 - k)$ -critical digraphs with maximum degree Δ is finite.

Remark: open for any $\Delta \in \{\Delta_{\max}, \tilde{\Delta}, \Delta^{+}\}$. This might hold whenever $(k+1)(k+2) \leqslant \Delta$.

Conjecture (Erdős and Neumann-Lara, 1979)

Oriented graphs D have dichromatic number at most $O\left(\dfrac{\Delta(D)}{\log \Delta(D)}\right)$

Remark: open for any $\Delta \in \{\Delta_{\max}, \tilde{\Delta}, \Delta^{+}, \Delta_{\min}\}.$

Problem (Kawarabayashi and P., 2025)

Oriented graphs D have dichromatic number at most $(1 - \varepsilon)\Delta^{+}(D) + O(1)$.

Remark: Oriented graphs D satisfy $\vec{\chi}(D) \leqslant \frac{2}{3} \Delta_{\max}(D) + O(1)$ and $\vec{\chi}(D) \leqslant \frac{\sqrt{2}}{2} \tilde{\Delta}(D) + O(1)$

Problem

For every $\Delta \geqslant \Delta_k$, the set of $(\Delta + 1 - k)$ -critical digraphs with maximum degree Δ is finite.

Remark: open for any $\Delta \in \{\Delta_{\max}, \tilde{\Delta}, \Delta^{+}\}$. This might hold whenever $(k+1)(k+2) \leqslant \Delta$.

Conjecture (Erdős and Neumann-Lara, 1979)

Oriented graphs D have dichromatic number at most $O\left(\frac{\Delta(D)}{\log \Delta(D)}\right)$.

Remark: open for any $\Delta \in \{\Delta_{\max}, \tilde{\Delta}, \Delta^{\!\scriptscriptstyle{+}}\!, \Delta_{\min}\}.$

Problem (Kawarabayashi and P., 2025)

Oriented graphs D have dichromatic number at most $(1 - \varepsilon)\Delta^{+}(D) + O(1)$.

Remark: Oriented graphs D satisfy $\vec{\chi}(D) \leqslant \frac{2}{3} \Delta_{\max}(D) + O(1)$ and $\vec{\chi}(D) \leqslant \frac{\sqrt{2}}{2} \tilde{\Delta}(D) + O(1)$

Problem

For every $\Delta \geqslant \Delta_k$, the set of $(\Delta + 1 - k)$ -critical digraphs with maximum degree Δ is finite.

Remark: open for any $\Delta \in \{\Delta_{\max}, \tilde{\Delta}, \Delta^{+}\}$. This might hold whenever $(k+1)(k+2) \leqslant \Delta$.

Conjecture (Erdős and Neumann-Lara, 1979)

Oriented graphs D have dichromatic number at most $O\left(\frac{\Delta(D)}{\log \Delta(D)}\right)$.

Remark: open for any $\Delta \in \{\Delta_{\max}, \tilde{\Delta}, \Delta^{\!+}\!, \Delta_{\min}\}.$

Problem (Kawarabayashi and P., 2025)

Oriented graphs D have dichromatic number at most $(1 - \varepsilon)\Delta^{+}(D) + O(1)$.

Remark: Oriented graphs D satisfy $\vec{\chi}(D) \leqslant \frac{2}{3} \Delta_{\max}(D) + O(1)$ and $\vec{\chi}(D) \leqslant \frac{\sqrt{2}}{2} \tilde{\Delta}(D) + O(1)$.

Problem

For every $\Delta \geqslant \Delta_k$, the set of $(\Delta + 1 - k)$ -critical digraphs with maximum degree Δ is finite.

Remark: open for any $\Delta \in \{\Delta_{\max}, \tilde{\Delta}, \Delta^{+}\}$. This might hold whenever $(k+1)(k+2) \leqslant \Delta$.

Conjecture (Erdős and Neumann-Lara, 1979)

Oriented graphs D have dichromatic number at most $O\left(\frac{\Delta(D)}{\log \Delta(D)}\right)$.

Remark: open for any $\Delta \in \{\Delta_{\max}, \tilde{\Delta}, \Delta^{\!+\!}, \Delta_{\min}\}.$

Problem (Kawarabayashi and P., 2025)

Oriented graphs D have dichromatic number at most $(1 - \varepsilon)\Delta^{+}(D) + O(1)$.

Remark: Oriented graphs D satisfy $\vec{\chi}(D) \leqslant \frac{2}{3} \Delta_{\max}(D) + O(1)$ and $\vec{\chi}(D) \leqslant \frac{\sqrt{2}}{2} \tilde{\Delta}(D) + O(1)$.