Восходящий разбор

Теория формальных языков *2021 г*.

Детерминированные КС-языки

Язык L обладает префикс-свойством (prefix-free), если $\forall w(w \in L \Rightarrow \forall v(v \neq \varepsilon \Rightarrow wv \notin L)).$

Детерминированные КС-языки

Язык L обладает префикс-свойством (prefix-free), если $\forall w(w \in L \Rightarrow \forall v(v \neq \varepsilon \Rightarrow wv \notin L)).$

Детерминированные языки с префикс-свойством — языки, распознаваемые DPDA с допуском по пустому стеку.

Рассмотрим язык α^+ . Предположим, он распознаётся DPDA с допуском по пустому стеку. Тогда на элементе α стек уже обязательно пуст. А значит, работа DPDA не может быть продолжена, и элемент $\alpha\alpha$ не может быть им распознан.

Детерминированные КС-языки

Язык L обладает префикс-свойством (prefix-free), если $\forall w(w \in L \Rightarrow \forall v(v \neq \varepsilon \Rightarrow wv \notin L)).$

Детерминированные языки с префикс-свойством — языки, распознаваемые DPDA с допуском по пустому стеку.

Рассмотрим язык L, $w_1, w_1w_2 \in L$, $w_2 \neq \varepsilon$. Предположим, он распознаётся DPDA с допуском по пустому стеку. Тогда на элементе w_1 стек уже обязательно пуст. А значит, работа DPDA не может быть продолжена, и элемент w_1w_2 не может быть им распознан.

Эндмаркеры

Рассмотрим язык α^+ \$ (алфавит терминалов $\Sigma = \{\alpha, \$\}$). В этом языке ни одно слово не является префиксом другого.

Эндмаркеры

Рассмотрим язык $\{w\$ \mid w \in L\}$ (алфавит терминалов $\Sigma = \Sigma_L \cup \{\$\}$, $\$ \notin \Sigma_L$). Независимо от L, в этом языке ни одно слово не является префиксом другого.

 Хорошие новости: любой детерминированный КС-язык легко преобразовать в язык, распознаваемый DPDA с допуском по пустому стеку.

Эндмаркеры

Рассмотрим язык (алфавит терминалов). этом языке ни одно слово не является префиксом другого.

- Хорошие новости: любой детерминированный КС-язык легко преобразовать в язык, распознаваемый DPDA с допуском по пустому стеку.
- Плохие новости: существенно неоднозначные контекстно-свободные языки с префикс-свойством. Стандартный пример: $\{a^nb^nc^md\} \cup \{a^mb^nc^nd\}$.

Языки нередуцируемых префиксов

Определим понятие свёртки — перехода справа налево в правиле переписывания $A \to \alpha$. Что можно сказать о всех возможных префиксах сентенциальных форм, порождаемых грамматикой G, к которым нельзя применить ни одну свёртку?

Языки нередуцируемых префиксов

Определим понятие свёртки — перехода справа налево в правиле переписывания $A \to \alpha$. Что можно сказать о всех возможных префиксах сентенциальных форм, порождаемых грамматикой G, к которым нельзя применить ни одну свёртку?

Такие с.ф. образуют регулярный язык. Идея обоснования: в распознающем их PDA из стека ничего не читается, т.е. PDA учитывает только символы сент. формы и свои состояния.

Описание конструкции

- Отмеченная позиция в правиле: •. В правиле с правой частью $\xi_1 \dots \xi_n$ есть n+1 таких позиций.
- Правило $A \to \alpha \bullet B\beta$ и правило $B \to \bullet \gamma$ одно и то же множество переходов по символу, не приводящих к редукции \Rightarrow в одном состоянии.
- При чтении элемента правой части сдвигаем вправо на позицию.

0	$S' \to \bullet S$ $S \to \bullet (S)$ $S \to \bullet \alpha$
1	$S' \to S \bullet$
2	$S \to (\bullet S)$
3	S o a ullet

$$S' \to S \quad S \to \alpha \quad S \to (S)$$

0	$S' \rightarrow \bullet S$
	$S \to \bullet(S)$
	$S \to ullet a$
1	S' o S ullet
2	$S \to (\bullet S)$
	$S \to \bullet(S)$
	$S \to ullet a$
3	S o a ullet
4	$S \to (S ullet)$

$$S' \rightarrow S \quad S \rightarrow \alpha \quad S \rightarrow (S)$$

0	$S' \to \bullet S$ $S \to \bullet (S)$
	` ′
	$S \rightarrow \bullet a$
1	S' o S ullet
2	$S \to (\bullet S)$
	$S \to \bullet(S)$
	$S \rightarrow ullet a$
3	S o a ullet
4	$S \to (S \bullet)$
5	$S \to (S) \bullet$

- \bullet Финальное (свёртка в S').
- Не финальное, но свёртка.
- 3 Сдвиг по символу сентенциальной формы.

Что хранить в стеке PDA, построенного по такому автомату?

- \bullet Финальное (свёртка в S').
- Не финальное, но свёртка.
- 3 Сдвиг по символу сентенциальной формы.

Что хранить в стеке PDA, построенного по такому автомату?

 Хранить сами сентенциальные формы плохо проблема с извлечением нескольких подряд символов.

- \bullet Финальное (свёртка в S').
- Не финальное, но свёртка.
- 3 Сдвиг по символу сентенциальной формы.

Что хранить в стеке PDA, построенного по такому автомату?

- Хранить сами сентенциальные формы плохо проблема с извлечением нескольких подряд символов.
- Логично хранить последовательности последних символов с.ф., которые могут привести к разным свёрткам, закодированными одним символом стека.

- \bullet Финальное (свёртка в S').
- Не финальное, но свёртка.
- 3 Сдвиг по символу сентенциальной формы.

Что хранить в стеке PDA, построенного по такому автомату?

- Хранить сами сентенциальные формы плохо проблема с извлечением нескольких подряд символов.
- Логично хранить последовательности последних символов с.ф., которые могут привести к разным свёрткам, закодированными одним символом стека.
- А это в точности состояния автомата.

PDA по LR(0)-автомату

Общая конструкция

- При каждом сдвиге кладём в стек номер состояния, в которое приходим в конечном автомате.
- При каждой свёртке извлекаем из стека n символов, где n длина правой части β правила $A \to \beta$, после чего переходим в состояние с номером n+1-ого символа в стеке по символу A.

Пример построения PDA

0	$S' \rightarrow \bullet S$	
	$S \to \bullet(S)$	
	$S \rightarrow ullet a$	
1	$S' \to S ullet$	$S \rightarrow S'$
2	$S \to (\bullet S)$	
	$S \to \bullet(S)$	
	$S \rightarrow ullet a$	
3	$S \rightarrow a \bullet$	$a \rightarrow S$
4	$S \to (S ullet)$	
5	$S \to (S) \bullet$	$(S) \rightarrow S$
	'	'

Пример построения PDA

Пример построения PDA

PDA или DPDA?

- Если есть ε -переходы, то нет никаких других.
- ullet Если есть arepsilon-переход, то он единственный из данного состояния.

PDA или DPDA?

- Если есть ε-переходы, то нет никаких других. Если делается свёртка, то нельзя сделать сдвиг.
- Если есть ε-переход, то он единственный из данного состояния. Если делается свёртка одного типа, то нельзя сделать свёртку другого типа.
- Допуск по пустому стеку \Rightarrow DPDA для языков с префикс-свойством.
- DPDA с допуском по пустому стеку распознают те же языки, что и LR(0)-разбор.
- В конструкции LR(0)-автомата часто навязывается эндмаркер ⇒ изначальная грамматика может описывать не LR(0)-язык!

Отказ от эндмаркера и SLR

- Используем ту же конструкцию автомата.
- Разрешим при возможности сделать свёртку вида $\beta \to A$ заглянуть в множество FOLLOW(A), чтобы понять, какую свёртку делать (и делать ли).

Отказ от эндмаркера и SLR

- Используем ту же конструкцию автомата.
- Разрешим при возможности сделать свёртку вида $\beta \to A$ заглянуть в множество FOLLOW(A), чтобы понять, какую свёртку делать (и делать ли).

Здесь есть конфликт свёрток для S' (по $V \to id \bullet$ и $T \to id \bullet$), но $FOLLOW_1(V) \cap FOLLOW_1(T) = \emptyset \Rightarrow$ эта грамматика — SLR(1).

Коллапс линейных парсеров

Теорема

Для всякого языка из класса DCFL существует распознающая его SLR(1)-грамматика.

Теоретический парсеров

коллапс линейных

Теорема

Для всякого языка из класса DCFL существует распознающая его SLR(1)-грамматика.

Следует из теоремы:

Для всякого языка из класса DCFL существует распознающая его LR(k)-грамматика.

LR(k)-распознаватели

Грамматика G = LR(k), тогда и только тогда, когда для всех пар сентенциальных форм xy, xy', порождаемых правосторонним разбором, где y, $y' \in \Sigma^+$, таких что xy допускает правую свёртку в префиксе y по правилу ξ_1 , а xy' — свёртку где угодно по правилу ξ_2 , и первые k символов y и y' совпадают, $\xi_1 = \xi_2$.

Грамматика G - LR(k), тогда и только тогда, когда для всех пар сентенциальных форм xy, xy', порождаемых правосторонним разбором, где $y, y' \in \Sigma^+$, таких что xyдопускает правую свёртку в префиксе y по правилу ξ_1 , а xy' — свёртку где угодно по правилу ξ_2 , и первые kсимволов y и y' совпадают, $\xi_1 = \xi_2$.

$$\begin{array}{lll} S' \rightarrow S & S \rightarrow L = R; & S \rightarrow R; \\ L \rightarrow id & L \rightarrow *R & R \rightarrow L \end{array}$$

Поскольку $= \in FOLLOW_1(R)$, возникает конфликт вида сдвиг-свёртка при попытке анализа с.ф. L. Ho lookahead у L, порождённой посредством $S \to L = R$, и посредством $S \to R$; $\to L$;, будет разный.

$LR(k) \rightarrow LR(1)$, Mickunas-Lancaster-Shneider

$$\begin{array}{cccc} S' \rightarrow S & S \rightarrow Abb & S \rightarrow Bbc \\ A \rightarrow \alpha A & A \rightarrow \alpha & B \rightarrow \alpha B \\ & B \rightarrow \alpha & \end{array}$$

He LR(1), из-за свёрток $A \to a$, $B \to a$. Используем трансформацию присоединения правого контекста:

$$\begin{array}{lll} S' \rightarrow S & S \rightarrow [Ab]b & S \rightarrow [Bb]c \\ [Ab] \rightarrow \alpha [Ab] & [Ab] \rightarrow \alpha b & [Bb] \rightarrow \alpha [Bb] \\ & [Bb] \rightarrow \alpha b & \end{array}$$

$LR(k) \rightarrow LR(1)$, Mickunas-Lancaster-Shneider

$$S' \rightarrow S$$
 $S \rightarrow bSS$ $S \rightarrow a$
 $S \rightarrow aac$

He LR(1), конфликт свёртки на префиксе ba с контекстом a. Используем трансформацию уточнения правого контекста:

$$\begin{array}{lll} S \rightarrow bS\alpha[\alpha/S] & S \rightarrow bSb[b/S] & S \rightarrow \alpha & S \rightarrow \alpha\alphac \\ [\alpha/S] \rightarrow \epsilon & [\alpha/S] \rightarrow \alphac & [b/S] \rightarrow S\alpha[\alpha/S] & [b/S] \rightarrow Sb[b/S] \end{array}$$

Теперь присоединим правые контексты:

Лемма о накачке для DCFL

Теорема (S. Yu)

Пусть L — DCFL. Тогда существует такая длина накачки p, что для всех пар слов w, $w' \in L$, таких что $w=xy \ \& \ w'=xz$, |x|>p и первые буквы y, z совпадают, выполнено одно из двух:

- lacktriangle существует накачка только префикса x (в привычном смысле);
- 2 существует разбиение $x=x_1x_2x_3$, $y=y_1y_2y_3$, $z=z_1z_2z_3$ такое, что $|x_2x_3|\leqslant p$, $|x_2|>0$, и $\forall i(x_1x_2^ix_3y_1y_2^iy_3\in L\ \&\ x_1x_2^ix_3z_1z_2^iz_3\in L).$

Лемма о накачке для DCFL

Теорема (S. Yu)

Пусть L — DCFL. Тогда существует такая длина накачки p, что для всех пар слов $w,w'\in L$, таких что $w=xy\ \&\ w'=xz,\ |x|>p$ и первые буквы y,z совпадают, выполнено одно из двух:

- lacktriangle существует накачка только префикса x (в привычном смысле);
- $oldsymbol{2}$ существует разбиение $x=x_1x_2x_3$, $y=y_1y_2y_3$, $z=z_1z_2z_3$ такое, что $|x_2x_3|\leqslant \mathfrak{p},\,|x_2|>0$, и $orall i(x_1x_2^ix_3y_1y_2^iy_3\in L\ \&\ x_1x_2^ix_3z_1z_2^iz_3\in L).$

Рассмотрим язык $\{a^nb^n\}\cup\{a^nb^{2n}\}$, положим $x=a^nb^{n-1}$, $y=b,\,z=b^{2n-1}$, где n-1>p. Тогда в случае 2 придётся накачивать в x только b, а в случае 1 нет подходящей накачки.

Замыкания DCFL

- Замкнуты относительно дополнения (смена конечных состояний в DPDA).
- Замкнуты относительно пересечения с регулярным языком.
- Не замкнуты относительно объединения (см. $\{a^nb^n\}\cup\{a^nb^{2n}\}$).
- Не замкнуты относительно пересечения.

Замыкания DCFL

- Замкнуты относительно дополнения (смена конечных состояний в DPDA).
- Замкнуты относительно пересечения с регулярным языком.
- Не замкнуты относительно объединения (см. $\{a^nb^n\}\cup\{a^nb^{2n}\}$).
- Не замкнуты относительно пересечения.
- Не замкнуты относительно гомоморфизмов. См. $\{ca^nb^n\} \cup \{a^nb^{2n}\}.$
- Не замкнуты относительно конкатенации. См. $L_1 = \{c \, a^n b^n\} \cup \{a^n b^{2n}\}, \ L_2 = c^*.$

Иерархия Хомского revisited

Утверждения ниже касаются только языков (не грамматик)!

- RegL ⊂ CFL;
- RegL ⊂ DCFL;
- DCFL ⊂ CFL;
- RegL ⊂ LL(1);
- LR(0) не сравним с RegL;
- LR(0) не сравним с LL(k);
- $LL(k) \subset LL(k+1)$;
- LL(k) ⊂ LR(1);
- LR(k) = SLR(1) = DCFL.

