# **SBML Model Report**

# Model name: "Kowald2006\_SOD"



May 5, 2016

#### 1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by Enuo He<sup>1</sup> at March 28<sup>th</sup> 2007 at 12:43 a.m. and last time modified at October nineth 2014 at 3:46 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

| Element           | Quantity | Element              | Quantity |
|-------------------|----------|----------------------|----------|
| compartment types | 0        | compartments         | 1        |
| species types     | 0        | species              | 9        |
| events            | 0        | constraints          | 0        |
| reactions         | 17       | function definitions | 0        |
| global parameters | 18       | unit definitions     | 0        |
| rules             | 2        | initial assignments  | 0        |

#### **Model Notes**

This model is according to the paper from Axel Kowald Alternative pathways as mechanism for the negative effects associated with overexpression of superoxide dismutase.

Reactions from 1 to 17 are listed in the paper, note that for clarity species whose concentrations are assumed to be constant (e.g. water, oxygen, protons, metal ions) are omitted from the diagram. In the paper, v16 is a fast reaction, but we do not use fast reaction in the model.

Figure 2 has been reproduced by both SBMLodeSolver and Copasi 4.0.20 (development). Figure 3 has been obtained with Copasi 4.0.20 (development) using parameter scan.

<sup>&</sup>lt;sup>1</sup>BNMC, enuo@caltech.edu

The steady-state of [LOO\*] a little bit lower than showed on the paper, I guess it may be the simulation method used in the paper use fast reaction and also the reaction (5) listed on Page 831 on the paper is slightly different from equation (2) on Page 832. The rest of them are the quite the same.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

## 2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

#### 2.1 Unit substance

**Notes** Mole is the predefined SBML unit for substance.

**Definition** mol

#### 2.2 Unit volume

**Notes** Litre is the predefined SBML unit for volume.

**Definition** 1

#### 2.3 Unit area

**Notes** Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

**Definition** m<sup>2</sup>

#### 2.4 Unit length

**Notes** Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

**Definition** m

#### 2.5 Unit time

 $\mbox{\bf Notes}\,$  Second is the predefined SBML unit for time.

**Definition** s

# 3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

| Id                  | Name | SBO | Spatial Dimensions | Size | Unit  | Constant | Outside |
|---------------------|------|-----|--------------------|------|-------|----------|---------|
| compartment_0000001 | cell |     | 3                  | 1    | litre | Z        |         |

# **3.1 Compartment** compartment\_0000001

This is a three dimensional compartment with a constant size of one litre.

Name cell

# 4 Species

This model contains nine species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

| Id              | Name        | Compartment         | Derived Unit                      | Constant | Boundary<br>Condi-<br>tion |
|-----------------|-------------|---------------------|-----------------------------------|----------|----------------------------|
| species_0000001 | O2*-        | compartment_0000001 | $\text{mol} \cdot l^{-1}$         |          |                            |
| species_0000002 | Cu(II)ZnSOD | compartment_0000001 | $\text{mol} \cdot l^{-1}$         |          |                            |
| species_0000006 | H2O2        | compartment_0000001 | $\text{mol} \cdot l^{-1}$         |          |                            |
| species_0000007 | LOO*        | compartment_0000001 | $\text{mol} \cdot l^{-1}$         |          |                            |
| species_0000008 | НО*         | compartment_0000001 | $\text{mol} \cdot l^{-1}$         |          |                            |
| species_0000009 | LOOH        | compartment_000001  | $\text{mol} \cdot l^{-1}$         |          |                            |
| species_0000011 | L*          | compartment_0000001 | $\operatorname{mol} \cdot 1^{-1}$ |          |                            |
| species_0000016 | SODtotal    | compartment_0000001 | $\text{mol} \cdot l^{-1}$         |          |                            |
| species_0000017 | Cat         | compartment_0000001 | $\text{mol} \cdot l^{-1}$         |          |                            |

# **5 Parameters**

This model contains 18 global parameters.

Table 4: Properties of each parameter.

| Id                   | Name       | SBO | Value               | Unit | Constant                     |
|----------------------|------------|-----|---------------------|------|------------------------------|
| k1                   | k1         |     | $6.6 \cdot 10^{-7}$ |      |                              |
| k2                   | k2         |     | $1.6 \cdot 10^9$    |      | $\overline{\mathbf{Z}}$      |
| k3                   | k3         |     | $1.6 \cdot 10^9$    |      | $\overline{\mathbf{Z}}$      |
| k4                   | k4         |     | 100000.000          |      | $\overline{\mathbf{Z}}$      |
| k5                   | k5         |     | 20000.000           |      | $\overline{\mathbf{Z}}$      |
| k6                   | k6         |     | 1.000               |      | $\overline{\mathbf{Z}}$      |
| k7                   | k7         |     | $3.4 \cdot 10^{7}$  |      | $\overline{\mathbf{Z}}$      |
| k9                   | k9         |     | 1000000.000         |      | $\overline{\mathbf{Z}}$      |
| k10                  | k10        |     | 1000.000            |      | $\overline{\mathbf{Z}}$      |
| k11                  | k11        |     | $2.5 \cdot 10^{8}$  |      | $\overline{\mathbf{Z}}$      |
| k12                  | k12        |     | 0.380               |      | $   \overline{\mathscr{L}} $ |
| k13a                 | k13a       |     | 0.009               |      | $   \overline{\mathscr{L}} $ |
| k13b                 | k13b       |     | 0.009               |      | $ \overline{\mathbf{Z}} $    |
| k17                  | k17        |     | 30000.000           |      | $\overline{\mathbf{Z}}$      |
| k18                  | k18        |     | 7.000               |      | $\overline{\mathbf{Z}}$      |
| k19                  | k19        |     | 88000.000           |      | $\overline{\mathbf{Z}}$      |
| HO2star              | HO2*       |     | 0.000               |      |                              |
| ${\tt Cu\_I\_ZnSOD}$ | Cu(I)ZnSOD |     | 0.000               |      |                              |

# 6 Rules

This is an overview of two rules.

#### 6.1 Rule HO2star

Rule HO2star is an assignment rule for parameter HO2star:

$$HO2star = \frac{[species\_0000001]}{100} \tag{1}$$

**Notes** HO2\*=O2\*/100

#### 6.2 Rule Cu\_I\_ZnSOD

Rule  $Cu_I_ZnSOD$  is an assignment rule for parameter  $Cu_I_ZnSOD$ :

$$Cu.I.ZnSOD = [species\_0000016] - [species\_0000002]$$
 (2)

Derived unit  $mol \cdot l^{-1}$ 

 $\textbf{Notes} \ \ Cu(I)ZnSOD = SODtotal - Cu(II)ZnSOD$ 

# 7 Reactions

This model contains 17 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

| N⁰ | Id                    | Name | Reaction Equation SBO                                                                                                          |
|----|-----------------------|------|--------------------------------------------------------------------------------------------------------------------------------|
| 1  | reaction-<br>_0000001 | v1   | $\emptyset \longrightarrow \text{species\_0000001}$                                                                            |
| 2  | ${\tt reaction\_0}$   | v2   | $species\_0000001 + species\_0000002 \longrightarrow \emptyset$                                                                |
| 3  | reaction_1            | v3   | $\begin{array}{c} \text{species\_0000001} \longrightarrow \text{species\_0000006} \\ + \\ \text{species\_0000002} \end{array}$ |
| 4  | reaction_2            | v4   | $\begin{array}{c} \text{species\_0000001} & + \\ \text{species\_0000007} \longrightarrow \text{species\_0000009} \end{array}$  |
| 5  | reaction_3            | v5   | species_0000001 + species_0000006 → 2 species_0000008                                                                          |
| 6  | ${\tt reaction\_4}$   | v6   | $species\_0000006 \xrightarrow{species\_0000002} 2 species\_0000008$                                                           |
| 7  | $reaction_5$          | v7   | $species\_0000006 \xrightarrow{species\_0000017} \emptyset$                                                                    |
| 8  | ${\tt reaction\_6}$   | v9   | species_0000008 $\longrightarrow \emptyset$                                                                                    |
| 9  | $reaction_7$          | v10  | $\emptyset \longrightarrow \text{species\_0000011} + \text{species\_0000006}$                                                  |
| 10 | $reaction_8$          | v11  | $species\_0000008 \longrightarrow species\_0000011$                                                                            |
| 11 | ${\tt reaction\_9}$   | v12  | species_0000009 $\longrightarrow \emptyset$                                                                                    |
| 12 | ${\tt reaction\_10}$  | v13a | $\emptyset \longrightarrow \text{species\_}0000002$                                                                            |
| 13 | ${\tt reaction\_11}$  | v13b | $species\_0000002 \longrightarrow \emptyset$                                                                                   |
| 14 | ${\tt reaction\_12}$  | v17  | $species\_0000011 \longrightarrow species\_0000007$                                                                            |
| 15 | reaction_13           | v18  | $\begin{array}{c} species\_0000007 \longrightarrow species\_0000011 \\ + species\_0000009 \end{array}$                         |
| 16 | ${\tt reaction\_14}$  | v19  | 2 species_0000007 $\longrightarrow \emptyset$                                                                                  |
| 17 | fast                  | v16  | $species\_0000001 \rightleftharpoons \emptyset$                                                                                |

| Nº Id | Name | Reaction Equation | SBO |
|-------|------|-------------------|-----|
|       |      |                   |     |

#### 7.1 Reaction reaction\_0000001

This is an irreversible reaction of no reactant forming one product.

#### Name v1

## **Reaction equation**

$$\emptyset \longrightarrow \text{species\_0000001}$$
 (3)

#### **Product**

Table 6: Properties of each product.

|                 | · · · · · · · · · · · · · · · · · · · |     |
|-----------------|---------------------------------------|-----|
| Id              | Name                                  | SBO |
| species_0000001 | O2*-                                  |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_1 = \text{vol}\left(\text{compartment\_0000001}\right) \cdot \text{k1}$$
 (4)

# 7.2 Reaction reaction\_0

This is an irreversible reaction of two reactants forming no product.

#### Name v2

## **Reaction equation**

$$species\_0000001 + species\_0000002 \longrightarrow \emptyset$$
 (5)

#### **Reactants**

Table 7: Properties of each reactant.

| Id              | Name        | SBO |
|-----------------|-------------|-----|
| species_0000001 | O2*-        |     |
| species_0000002 | Cu(II)ZnSOD |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_2 = \text{vol}(\text{compartment\_0000001}) \cdot \text{k2} \cdot [\text{species\_0000001}] \cdot [\text{species\_0000002}]$$
 (6)

#### 7.3 Reaction reaction\_1

This is an irreversible reaction of one reactant forming two products.

#### Name v3

## **Reaction equation**

$$species\_0000001 \longrightarrow species\_0000006 + species\_0000002$$
 (7)

#### Reactant

Table 8: Properties of each reactant.

| Id              | Name | SBO |
|-----------------|------|-----|
| species_0000001 | O2*- |     |

## **Products**

Table 9: Properties of each product.

| Id                                 | Name | SBO |
|------------------------------------|------|-----|
| species_0000006<br>species_0000002 |      |     |

## **Kinetic Law**

**Derived unit** contains undeclared units

$$v_3 = \text{vol} (\text{compartment\_0000001}) \cdot \text{k3} \cdot [\text{species\_0000001}] \cdot \text{Cu\_I\_ZnSOD}$$
 (8)

#### 7.4 Reaction reaction\_2

This is an irreversible reaction of two reactants forming one product.

#### Name v4

## **Reaction equation**

$$species\_0000001 + species\_0000007 \longrightarrow species\_0000009$$
 (9)

## **Reactants**

Table 10: Properties of each reactant.

| Id              | Name | SBO |
|-----------------|------|-----|
| species_0000001 | O2*- |     |
| species_0000007 | LOO* |     |

#### **Product**

Table 11: Properties of each product.

| Id              | Name | SBO |
|-----------------|------|-----|
| species_0000009 | LOOH |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_4 = vol\left(compartment\_0000001\right) \cdot k4 \cdot [species\_0000001] \cdot [species\_0000007] \tag{10}$$

## 7.5 Reaction reaction\_3

This is an irreversible reaction of two reactants forming one product.

## Name v5

## **Reaction equation**

$$species\_0000001 + species\_0000006 \longrightarrow 2 species\_0000008$$
 (11)

## **Reactants**

Table 12: Properties of each reactant.

| Id              | Name | SBO |
|-----------------|------|-----|
| species_000001  | O2*- |     |
| species_0000006 | H2O2 |     |

#### **Product**

| Table | 13: | Pro | perties | of | each | product. |
|-------|-----|-----|---------|----|------|----------|
|       |     |     |         |    |      |          |

| Id              | Name | SBO |
|-----------------|------|-----|
| species_0000008 | НО*  | _   |

**Derived unit** contains undeclared units

$$v_5 = \text{vol} \left( \text{compartment\_0000001} \right) \cdot \text{k5} \cdot \left[ \text{species\_0000001} \right] \cdot \left[ \text{species\_0000006} \right]$$
 (12)

# 7.6 Reaction reaction\_4

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

#### Name v6

## **Reaction equation**

$$species\_0000006 \xrightarrow{species\_00000002} 2 species\_0000008$$
 (13)

#### Reactant

Table 14: Properties of each reactant.

| Id              | Name | SBO |
|-----------------|------|-----|
| species_0000006 | H2O2 |     |

#### **Modifier**

Table 15: Properties of each modifier.

| Id              | Name        | SBO |
|-----------------|-------------|-----|
| species_0000002 | Cu(II)ZnSOD |     |

## **Product**

Table 16: Properties of each product.

|                 | 1    |     |
|-----------------|------|-----|
| Id              | Name | SBO |
| species_0000008 | НО*  |     |

**Derived unit** contains undeclared units

$$v_6 = \text{vol}(\text{compartment\_0000001}) \cdot \text{k6} \cdot [\text{species\_0000006}] \cdot [\text{species\_0000002}]$$
 (14)

## 7.7 Reaction reaction\_5

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name v7

#### **Reaction equation**

$$species\_0000006 \xrightarrow{species\_0000017} \emptyset$$
 (15)

#### Reactant

Table 17: Properties of each reactant.

| Id              | Name | SBO |
|-----------------|------|-----|
| species_0000006 | H2O2 |     |

#### **Modifier**

Table 18: Properties of each modifier.

| Id              | Name | SBO |
|-----------------|------|-----|
| species_0000017 | Cat  |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_7 = \text{vol} \left( \text{compartment\_0000001} \right) \cdot \text{k7} \cdot \left[ \text{species\_0000006} \right] \cdot \left[ \text{species\_0000017} \right]$$
 (16)

#### 7.8 Reaction reaction\_6

This is an irreversible reaction of one reactant forming no product.

Name v9

#### **Reaction equation**

$$species\_0000008 \longrightarrow \emptyset$$
 (17)

#### Reactant

Table 19: Properties of each reactant.

| Id              | Name | SBO |
|-----------------|------|-----|
| species_0000008 | НО*  |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_8 = \text{vol}(\text{compartment\_0000001}) \cdot \text{k9} \cdot [\text{species\_0000008}]$$
 (18)

#### 7.9 Reaction reaction\_7

This is an irreversible reaction of no reactant forming two products.

Name v10

#### **Reaction equation**

$$\emptyset \longrightarrow \text{species\_0000011} + \text{species\_0000006}$$
 (19)

## **Products**

Table 20: Properties of each product.

| Id              | Name | SBO |
|-----------------|------|-----|
| species_0000011 | L*   |     |
| species_0000006 | H2O2 |     |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_9 = \text{vol} (\text{compartment} \_0000001) \cdot \text{k}10 \cdot \text{HO2star}$$
 (20)

#### 7.10 Reaction reaction\_8

This is an irreversible reaction of one reactant forming one product.

#### Name v11

## **Reaction equation**

$$species\_0000008 \longrightarrow species\_0000011 \tag{21}$$

#### Reactant

Table 21: Properties of each reactant.

| Id              | Name | SBO |
|-----------------|------|-----|
| species_0000008 | НО*  |     |

#### **Product**

Table 22: Properties of each product.

| Id              | Name | SBO |
|-----------------|------|-----|
| species_0000011 | L*   |     |

### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{10} = \text{vol} (\text{compartment\_0000001}) \cdot \text{k11} \cdot [\text{species\_0000008}]$$
 (22)

## 7.11 Reaction reaction\_9

This is an irreversible reaction of one reactant forming no product.

## Name v12

## **Reaction equation**

$$species\_0000009 \longrightarrow \emptyset$$
 (23)

#### Reactant

Table 23: Properties of each reactant.

| Id              | Name | SBO |
|-----------------|------|-----|
| species_0000009 | LOOH |     |

Derived unit contains undeclared units

$$v_{11} = \text{vol}(\text{compartment\_0000001}) \cdot \text{k12} \cdot [\text{species\_0000009}]$$
 (24)

## **7.12 Reaction** reaction\_10

This is an irreversible reaction of no reactant forming one product.

Name v13a

#### **Reaction equation**

$$\emptyset \longrightarrow \text{species\_0000002}$$
 (25)

#### **Product**

Table 24: Properties of each product.

| Id              | Name        | SBO |
|-----------------|-------------|-----|
| species_0000002 | Cu(II)ZnSOD |     |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_{12} = \text{vol} \left( \text{compartment\_0000001} \right) \cdot \text{k13a} \cdot \text{Cu\_LZnSOD}$$
 (26)

## 7.13 Reaction reaction\_11

This is an irreversible reaction of one reactant forming no product.

Name v13b

## **Reaction equation**

$$species\_0000002 \longrightarrow \emptyset$$
 (27)

#### Reactant

Table 25: Properties of each reactant.

| Id              | Name        | SBO |
|-----------------|-------------|-----|
| species_0000002 | Cu(II)ZnSOD |     |

**Derived unit** contains undeclared units

$$v_{13} = \text{vol}(\text{compartment}\_0000001) \cdot \text{k}13\text{b} \cdot [\text{species}\_0000002]$$
 (28)

#### 7.14 Reaction reaction\_12

This is an irreversible reaction of one reactant forming one product.

#### Name v17

## **Reaction equation**

$$species\_0000011 \longrightarrow species\_0000007 \tag{29}$$

#### Reactant

Table 26: Properties of each reactant.

| Id              | Name | SBO |
|-----------------|------|-----|
| species_0000011 | L*   |     |

# **Product**

Table 27: Properties of each product.

| Id              | Name | SBO |
|-----------------|------|-----|
| species_0000007 | LOO* |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{14} = \text{vol}(\text{compartment}\_0000001) \cdot \text{k}17 \cdot [\text{species}\_0000011]$$
 (30)

#### 7.15 Reaction reaction\_13

This is an irreversible reaction of one reactant forming two products.

Name v18

## **Reaction equation**

$$species\_0000007 \longrightarrow species\_0000011 + species\_0000009$$
 (31)

#### Reactant

Table 28: Properties of each reactant.

| Id              | Name |  |
|-----------------|------|--|
| species_0000007 | LOO* |  |

#### **Products**

Table 29: Properties of each product.

| Id              | Name | SBO |
|-----------------|------|-----|
| species_0000011 | L*   |     |
| species_0000009 | LOOH |     |

#### **Kinetic Law**

**Derived unit** contains undeclared units

$$v_{15} = \text{vol}(\text{compartment\_0000001}) \cdot \text{k18} \cdot [\text{species\_0000007}]$$
 (32)

## 7.16 Reaction reaction\_14

This is an irreversible reaction of one reactant forming no product.

Name v19

#### **Reaction equation**

$$2 \operatorname{species\_0000007} \longrightarrow \emptyset \tag{33}$$

#### Reactant

Table 30: Properties of each reactant.

| Id              | Name |  |
|-----------------|------|--|
| species_0000007 | LOO* |  |

**Derived unit** contains undeclared units

$$v_{16} = \text{vol}(\text{compartment}_{0000001}) \cdot \text{k}_{19} \cdot [\text{species}_{0000007}]^2$$
 (34)

#### 7.17 Reaction fast

This is a reversible reaction of one reactant forming no product.

Name v16

**Notes** Reaction 16 showed in the paper is a fast equilibrium reaction. HO2\* =,, H+,, + ,,O2\*-,... So in the equation (1) in the paper, you will see there is one item k10\*,,HO2\*,... However, most simulation software does not support fast reaction yet, so curator creat this fake v16 reaction in order to make the final ODE correct.

#### **Reaction equation**

$$species\_0000001 \rightleftharpoons \emptyset$$
 (35)

#### Reactant

Table 31: Properties of each reactant.

| Id              | Name | SBO |
|-----------------|------|-----|
| species_0000001 | O2*- |     |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_{17} = k10 \cdot HO2star \cdot vol (compartment\_0000001)$$
 (36)

# 8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions > 0 for certain species.

## 8.1 Species species\_0000001

Name 02\*-

Initial concentration  $0 \text{ mol} \cdot 1^{-1}$ 

This species takes part in six reactions (as a reactant in reaction\_0, reaction\_1, reaction\_2, reaction\_3, fast and as a product in reaction\_0000001).

$$\frac{d}{dt} \text{species} \ 0000001 = |v_1| - |v_2| - |v_3| - |v_4| - |v_5| - |v_{17}|$$
(37)

#### **8.2 Species** species\_0000002

Name Cu(II)ZnSOD

Initial concentration  $5 \cdot 10^{-6} \text{ mol} \cdot 1^{-1}$ 

This species takes part in five reactions (as a reactant in reaction\_0, reaction\_11 and as a product in reaction\_1, reaction\_10 and as a modifier in reaction\_4).

$$\frac{d}{dt} \text{species} \ 0000002 = v_3 + v_{12} - v_2 - v_{13}$$
 (38)

## 8.3 Species species\_0000006

Name H2O2

Initial concentration  $0 \text{ mol} \cdot 1^{-1}$ 

This species takes part in five reactions (as a reactant in reaction\_3, reaction\_4, reaction\_5 and as a product in reaction\_1, reaction\_7).

$$\frac{d}{dt} \text{species} \ 0000006 = |v_3| + |v_9| - |v_5| - |v_6| - |v_7|$$
(39)

#### **8.4 Species** species\_0000007

Name LOO\*

Initial concentration  $0 \text{ mol} \cdot l^{-1}$ 

This species takes part in four reactions (as a reactant in reaction\_2, reaction\_13, reaction\_14 and as a product in reaction\_12).

$$\frac{d}{dt} \text{species} \ 0000007 = |v_{14}| - |v_{4}| - |v_{15}| - 2|v_{16}| \tag{40}$$

## 8.5 Species species\_0000008

Name HO\*

Initial concentration  $0 \text{ mol} \cdot l^{-1}$ 

This species takes part in four reactions (as a reactant in reaction\_6, reaction\_8 and as a product in reaction\_3, reaction\_4).

$$\frac{d}{dt} \text{species} \ 0000008 = 2 \ v_5 \ + 2 \ v_6 \ - \ v_8 \ - \ v_{10}$$
 (41)

## 8.6 Species species\_0000009

Name LOOH

Initial concentration  $0 \text{ mol} \cdot l^{-1}$ 

This species takes part in three reactions (as a reactant in reaction\_9 and as a product in reaction\_2, reaction\_13).

$$\frac{d}{dt} \text{species} 0000009 = |v_4| + |v_{15}| - |v_{11}|$$
(42)

### 8.7 Species species\_0000011

Name L\*

Initial concentration  $0 \text{ mol} \cdot l^{-1}$ 

This species takes part in four reactions (as a reactant in reaction\_12 and as a product in reaction\_7, reaction\_8, reaction\_13).

$$\frac{d}{dt} \text{species} \ 0000011 = |v_9| + |v_{10}| + |v_{15}| - |v_{14}|$$
(43)

# 8.8 Species species\_0000016

Name SODtotal

Initial concentration  $10^{-5} \text{ mol} \cdot 1^{-1}$ 

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}\_0000016 = 0 \tag{44}$$

# 8.9 Species species\_0000017

Name Cat

Initial concentration  $10^{-5} \text{ mol} \cdot l^{-1}$ 

This species takes part in one reaction (as a modifier in reaction\_5).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}\_0000017 = 0\tag{45}$$

 $\mathfrak{BML2}^{d}$  was developed by Andreas Dräger<sup>a</sup>, Hannes Planatscher<sup>a</sup>, Dieudonné M Wouamba<sup>a</sup>, Adrian Schröder<sup>a</sup>, Michael Hucka<sup>b</sup>, Lukas Endler<sup>c</sup>, Martin Golebiewski<sup>d</sup> and Andreas Zell<sup>a</sup>. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

<sup>&</sup>lt;sup>a</sup>Center for Bioinformatics Tübingen (ZBIT), Germany

<sup>&</sup>lt;sup>b</sup>California Institute of Technology, Beckman Institute BNMC, Pasadena, United States

<sup>&</sup>lt;sup>c</sup>European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

<sup>&</sup>lt;sup>d</sup>EML Research gGmbH, Heidelberg, Germany