

عنوان بحث: آنتروپی

گلناز بغدادی

تابستان ۱۴۰۰

تعریف آنتروپی

- o بینظمی (آشفتگی)
 - عدم قطعیت
- o معیاری از اشتباهات تصادفی موجود
 - تنوع وضعیتهای خُرد در سیستم

روش محاسبه آنتروپی

- o متغیر تصادفی X
- o N حالت گسسته وجود دارد.
- ۵ میتواند به یکی از حالتها تعلق داشته باشد.
 - o احتمال وقوع هر حالت pi
- $H(X) = -\sum_{i} p_{i} \log p_{i}$ آنتروپی برابر است با

آنتروپی فرکانسی Spectral Entropy

محاسبه تبدیل فوریه سیگنال

$$\hat{P}(\omega_i) = rac{1}{N} ig| X(\omega_i) ig|^2$$
 wi محاسبه توان سیگنال در باندهای فرکانسی مختلف \circ

$$p_i = rac{\hat{P}(\omega_i)}{\sum_i \hat{P}(\omega_i)}$$
 محاسبه مقدار طیف توان نرمالیزه شده \circ

$$H = -\sum_{i=1}^{n} p_i \log p_i$$
 محاسبه آنتروپی فرکانسی \circ

مثال: تغییرات آنتروپی سیگنالهای مغزی ERP به محرکهای مختلف

Jadav, G. M., Lerga, J., & Štajduhar, I. (2020)

مثال: تغییرات آنتروپی سیگنالهای با ظهور مولفههای متناوب

	Complexity Indices	Abbreviations	Year	Description
Time domain _ entropy	Approximate entropy	ApEn	Pincus (1991) [51]	Needs only a small dataset and is effective for discriminating the signal from random signals. A higher value indicates more irregularity.
	Sample entropy	SampEn	Richman (2000) [52]	The exact value of the negative average natural logarithm of the conditional probability. A higher value indicates less predictable signals.
	Permutation entropy	PeEn	Bandt (2002) [27]	Only considers the grades of the samples but not their metrics. A higher value indicates a more irregular signal.
	Multiscale entropy	MEn	Costa (2005) [53]	Can be observed at multiple different scales of signal change.
	Fuzzy entropy	FuzzyEn	Chen (2007) [54]	Provides a mechanism for measuring the degree to which a pattern belongs to a given class.
Frequency domain entropy	Renyi entropy	ReEn	Renyi (1977) [55]	Forms the basis of the concept of generalized dimensionality. If the Renyi entropy is high, the signal has high complexity.
	Spectral entropy	SpecEn	Powell (1979) [56]	Predictability according to an analysis of the spectral content of a signal. A high value indicates a more irregular and less predictable signal.
_	Tsallis entropy	TsEn	Tsallis (1998) [57]	Explores the properties of a probability distribution from a new mathematical framework.

```
> Out = func_FE_ShannEn(input,n);
```

- Out = approximateEntropy(input);
- Out = sampen(input,2,0.2,'euclidean');
- \rightarrow Out = pec(input,2,1);
- > Out = func_FE_FuzzEn(input,2,0.2);
- ➤ for tau=1:40

[e,A,B] = multiscaleSampleEntropy(input,2,0.2,tau);

F(tau)=e;

end

