Python – Lektion 12 Data Handling und Visualisierung mit NumPy/Pandas

Disclaimer

Die Vertraulichkeitsklasse dieser Daten ist "intern-erweitert".

Sie dürfen die Daten als OST-Angehörige nutzen, aber nicht an Dritte weitergeben oder veröffentlichen.

- Pandas
 - Series Objekt
 - DataFrame Objekt

- Pandas
 - Series Objekt

Datenarray mit zugehörigem Index (Labelindex und **Positionsindex**)
Series Objekt

Artikelnummer
"124-503"
"495-958"
"595-838"
"123-030"
"938-439"

- Pandas
 - Series Objekt

Datenarray mit zugehörigem Index (**Labelindex** und Positionsindex) **Series Objekt**

Index	Artikelnummer
"Hammer"	"124-503"
"Flachzange"	"495-958"
"Pinzette"	"595-838"
"Messer"	"123-030"
"Klebeband"	"938-439"

Pandas

 DataFrame Objekt
 Aneinanderreihung von Series Objekten, die sich denselben Index teilen (Label- und Positionsindex)

DataFrame Objekt

Artikelnummer	Preis	
"124-503"	10.00	
"495-958"	24.00	
"595-838"	14.90	
"123-030"	8.90	
"938-439"	4.90	
	"124-503" "495-958" "595-838" "123-030"	

Heutiges Thema

Data Analysis mit Pandas & Numpy am Beispiel einer linearen Regressionsanalyse

- Regressionsanalyse
 - Statistisches Analyseverfahren
 - Modelliert Beziehungen zwischen Variablen
- Beispiele für Beziehungen zwischen...
 - ... Werbeausgaben und Einnahmen eines Unternehmens
 - ... Medikamentendosierung und Blutdruck eines Patienten
 - ... Düngemittel/Wassermenge und Ernteerträge
 - Trainigsmethode und Leistung eines Sportlers

Mathematisch ausgedrückt:

$$y_i = f(x_i) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i,2} + \cdots + \beta_p x_{i,p} + \varepsilon_i$$

 y_i Output, abhängige Variable, Antwort (Ernteerträge) $x_{i,p}$ Input, unabhängige Variable, Feature (Düngemittel, Wassermenge) $\beta_0,\beta_1,\ldots\beta_p$ Regressionskoeffizienten ε_i Störterm p Anzahl unabhängige Variablen $i=1\ldots n$ Anzahl Beobachtungen

Voraussetzungen/Annahmen:

- Linearer Zusammenhang zwischen x und y
- ▶ Fehlerterme sind normalverteilt
- Unabhängigkeit der Beobachtungen und der Variablen
- Fehlerterme haben für jeden Wert von *x* eine konstante Varianz

Wir beschränken uns auf eine unabhängige Variable:

$$y_i = f(x_i) = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Regressionskoeffizienten so berechnen, dass der Fehler ε_i minimal wird:

Grafisch (bei einer unabhängigen Variable):

Wir beschränken uns auf eine unabhängige Variable:

$$y_i = f(x_i) = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Regressionskoeffizienten so berechnen, dass der Fehler ε_i minimal wird:

$$\varepsilon_i = y_i - \beta_0 - \beta_1 x_i$$

Grafisch (bei zwei unabhängigen Variablen):

Wir beschränken uns auf eine unabhängige Variable:

$$y_i = f(x_i) = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Regressionskoeffizienten so berechnen, dass der Fehler ε_i minimal wird:

$$\varepsilon_i = y_i - \beta_0 - \beta_1 x_i$$

Man suche das Minimum der Summe der quadrierten Fehler für alle Beobachtungen $i=1,\ldots,n$ (OLS - Ordinary Least Squares)

$$\min_{\beta_0,\beta_1} Q(\beta_0,\beta_1) \quad \text{fuer} \quad Q(\beta_0,\beta_1) = \sum_{i=1}^n \varepsilon_i^2 = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

Wir beschränken uns auf eine unabhängige Variable:

$$y_i = f(x_i) = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Regressionskoeffizienten so berechnen, dass der Fehler ε_i minimal wird:

$$\varepsilon_i = y_i - \beta_0 - \beta_1 x_i$$

Partielle Ableitungen sind beim Minimum Null:

$$\frac{\partial Q(\beta_0, \beta_1)}{\partial \beta_0} = \sum_{i=1}^n -2(y_i - \beta_0 - \beta_1 x_i) = 0$$

$$\frac{\partial Q(\beta_0, \beta_1)}{\partial \beta_1} = \sum_{i=1}^n -2x_i (y_i - \beta_0 - \beta_1 x_i) = 0$$

Lösung für die Regressionskoeffizienten:

$$\beta_0 = \bar{y} - \beta_1 \bar{x}$$

$$\beta_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$

wobei

$$\bar{x}_i = \frac{1}{n} \sum_{i=1}^n x_i$$
 $\bar{y}_i = \frac{1}{n} \sum_{i=1}^n y_i$

http://localhost:8888/notebooks/regressionsanalyse.ipynb