HEVC 高层语法

对于只对 HEVC 的应用感兴趣,而对于 HEVC 编码不感兴趣的读者,只看这一节应该就足够了。这一节讲的是 HEVC 与 H.264/AVC 码流在使用时的区别。与 H.264/AVC 相同,HEVC 也分为视频编码层(Video Coding Layer, VCL)和网络虚拟层(Network Abstraction Layer, NAL)。原始视频经过 VCL 层,被编码成视频数据,然后经过 NAL 层,封装成一个个 NAL 包。这一节主要讲 H.264/AVC 与 HEVC 在 NAL 层上的区别。

H.264/AVC 的视频参数存在于 SPS(Sequence Parameter Set)和 PPS(Picture Parameter Set)两种 NAL 包中。在 HEVC 中,新增了一种 VPS(Video Parameter Set)包含视频的一些全局信息,如 Profile、Level 等。

HEVC 的 NAL 包结构与 H.264/AVC 的不同,表 1-1 和表 1-2 显示了 NAL 包头的区别。可以看到,HEVC 中 NAL 头变为了两字节长度,同时加入了该 NAL 所在的时间层的 id,去掉了表示是否被参考的 nal_ref_idc,将是否被参考的信息定义在了 nal unit type 中,即只有某些类型的 NAL 包被参考。

由于今年来并行技术的兴起,同时语法元素解析在硬件实现中通常是瓶颈,HEVC 在高层语法中加入了大量对并行的支持。包括传统的 Slice,和新的 Tiles、WPP(Wavefront Parallel Processing)和 Dependent Slices 技术。这些技术使得一帧之内的语法元素不是从头到尾的依赖关系,可以并行地编码和解码。这些技术使得较高复杂度的 CABAC 熵编码方式也能应用在实时编码的场景下。传统的 CAVLC 熵编码方式因此有被淘汰的趋势。CAVLC 在 HEVC 里不再存在于块一级的编码中,仅在头信息编码中使用。这些支持并行的技术细节比较多,仅仅某些具体的场景才会用到,这里都不进行具体介绍了。以后有机会笔者会通过另外的文章进行详细说明。

nal_unit(NumBytesInNALunit) {	С	Descriptor
forbidden_zero_bit	All	f(1)
nal_ref_idc	All	u(2)
nal_unit_type	All	u(5)
NumBytesInRBSP = 0		
nalUnitHeaderBytes = 1		
if(nal_unit_type == 14 nal_unit_type == 20) {		
nal_unit_header_svc_extension() /* specified in Annex G */		
nalUnitHeaderBytes += 3		
}		
$for(\ i = nalUnitHeaderBytes;\ i < NumBytesInNALunit;\ i++\)\ \{$		
$if(i + 2 < NumBytesInNALunit && next_bits(24) == 0x000003) \{$		
rbsp_byte[NumBytesInRBSP++]	All	b(8)
rbsp_byte[NumBytesInRBSP++]	All	b(8)
i += 2		
emulation_prevention_three_byte /* equal to 0x03 */	All	f(8)
} else		
rbsp_byte[NumBytesInRBSP++]	All	b(8)
}		
}		

表 1-1 H.264 NAL 结构

nal_unit(NumBytesInNALunit) {	Descriptor
nal_unit_header()	
NumBytesInRBSP = 0	
for(i = 2; i < NumBytesInNALunit; i++) {	
$if(\ i+2 < NumBytesInNALunit\ \&\&\ next_bits(\ 24\) == 0x000003\)\ \{$	
rbsp_byte[NumBytesInRBSP++]	b(8)
rbsp_byte[NumBytesInRBSP++]	b(8)
i += 2	
emulation_prevention_three_byte /* equal to 0x03 */	f(8)
} else	
rbsp_byte[NumBytesInRBSP++]	b(8)
}	
}	

nal_unit_header() {	
forbidden_zero_bit	f(1)
nal_unit_type	u(6)
nuh_reserved_zero_6bits	u(6)
nuh_temporal_id_plus1	u(3)
}	

表 1-2 HEVC NAL 结构