and so

$$\int_{B_R} |u - u_{B_R}|^{1*} dx = \left(1 - \frac{\mathcal{L}^N(B_R \cap E)}{\mathcal{L}^N(B_R)}\right)^{1*} \mathcal{L}^N(B_R \cap E) + \left(\frac{\mathcal{L}^N(B_R \cap E)}{\mathcal{L}^N(B_R)}\right)^{1*} \mathcal{L}^N(B_R \setminus E).$$

If $\mathcal{L}^N(B_R \cap E) \leq \mathcal{L}^N(B_R \setminus E)$, then

$$\left(\int_{B_R} |u - u_{B_R}|^{1*} dx\right)^{1/1*} \ge \frac{\mathcal{L}^N(B_R \setminus E)}{\mathcal{L}^N(B_R)} (\mathcal{L}^N(B_R \cap E))^{1/1*}$$

$$\ge \frac{1}{2} (\mathcal{L}^N(B_R \cap E))^{1/1*}$$

$$= \frac{1}{2} \min\{\mathcal{L}^N(B_R \cap E), \mathcal{L}^N(B_R \setminus E)\}^{1/1*}.$$

The other case is analogous.

By applying Poincaré's inequality for balls (see the previous exercise), we get that the left-hand side of the previous inequality is bounded from above by $c||D(\chi_E)||(B_R)$, and so

$$\frac{1}{2}\min\{\mathcal{L}^N(B_R\cap E), \mathcal{L}^N(B_R\setminus E)\}^{1/1^*} \le c\|D(\chi_E)\|(B_R)$$
$$\le c\|D(\chi_E)\|(\mathbb{R}^N).$$

Hence, the claim is proved.

By letting $R \to \infty$ in the previous inequality and using Proposition B.9, it follows that either E or $\mathbb{R}^N \setminus E$ has finite Lebesgue measure. \square

Thus, we have shown that the Sobolev–Gagliardo–Nirenberg embedding theorem in BV implies the isoperimetric inequality. Next we show that the opposite is also true.

Theorem 14.45. Assume that the isoperimetric inequality (14.45) holds for all sets with finite perimeter. Then there exists a constant c = c(N) > 0 such that

$$||u||_{L^{1^*}(\mathbb{R}^N)} \le c||Du||(\mathbb{R}^N)$$

for all $u \in BV(\mathbb{R}^N)$.

Proof. Assume first that $u \geq 0$ and that $u \in C^{\infty}(\mathbb{R}^N) \cap W^{1,1}(\mathbb{R}^N)$. For $t \in \mathbb{R}$, define $A_t := \{x \in \mathbb{R}^N : u(x) > t\}$. Then by the coarea formula (14.42) and the isoperimetric inequality (14.45),

(14.46)
$$\int_{\mathbb{R}^N} \|\nabla u\| \, dx = \int_0^\infty P(A_t) \, dt \ge \frac{1}{c} \int_0^\infty (\mathcal{L}^N(A_t))^{1/1^*} \, dt.$$