Baltic Way 2020 — P4

Jonathan Kasongo

July 8, 2025

Baltic Way 2020 - P4

Find all $f : \mathbb{R} \to \mathbb{R}$ such that f(f(x) + x + y) = f(x + y) + yf(y).

Solution

Let's call the equation in the problem statement (*). Clearly f(x) = 0 is a solution, we prove that it is the only one. We first prove the following claim,

Claim: If f isn't injective then f(x) = 0 is the only solution.

Proof: Assume that f is not an injection. Then there must exist $a \neq b$ such that f(a) = f(b), for some real a, b. Using (*) and the property f(a) = f(b), we must have f(f(a) + a + b) = f(a + b) + bf(b) = f(b + a) + af(a) = f(f(b) + b + a). But that means that we must have $af(a) = bf(b) \iff f(a)[a-b] = 0$. So either a = b (which is impossible since we assumed $a \neq b$) or f(a) = 0. Now put x = a into (*), f(f(a) + a + y) = f(a + y) + yf(y). But since f(a) = 0 we have to have yf(y) = 0 for all real y, that is f(y) = 0 for all non-zero y. We now prove that f(0) = 0 by contradiction. Suppose that $f(0) = c \neq 0$. Then plugging in x = y = 0 into the equation in the problem statement gives f(f(0)) = f(0) = c, that is $f(c) = c \neq 0$, but we already know that only non-zero value in the image of f(x) occurs at x = 0, so c = 0 a contradiction. So we have shown that f(x) = 0 for all real x under the assumption that f(x) = 0 for all real x under

Plug in y = 0 into (*) to find that f(f(x) + x) = f(x). Now if f were injective then we get that $f(f(x) + x) = f(x) \iff f(x) + x = x \iff f(x) = 0$. This finishes the proof that f(x) = 0 for all real x.