Learning from Measurements in Exponential Families

ICML - Montreal

June 16, 2009

Percy Liang

Michael Jordan

Dan Klein


```
\begin{array}{c} \text{target} \\ \text{predictor} \ p^* \end{array} \text{ } \begin{array}{c} \text{human} \\ \end{array}
```

```
Example:
```

```
y: Feat feat feat feat feat ... x: View of Los Gatos Foothills ... Avail avail avail ... size size size size ... Available July 1 ... 2 bedroom 1 bath ...
```


Types of information:

Labeled examples (specific) [standard supervised learning]

Types of information:

Labeled examples (specific) [standard supervised learning] Constraints (general) [Chang, et al., 2007; Druck, et al., 2008]

Types of information:

Labeled examples (specific) [standard supervised learning] Constraints (general) [Chang, et al., 2007; Druck, et al., 2008] **Measurements**: our unifying framework

Types of information:

Labeled examples (specific) [standard supervised learning] Constraints (general) [Chang, et al., 2007; Druck, et al., 2008] **Measurements**: our unifying framework

Outline:

1. Coherently learn from diverse measurements

Types of information:

Labeled examples (specific) [standard supervised learning] Constraints (general) [Chang, et al., 2007; Druck, et al., 2008] **Measurements**: our unifying framework

Outline:

- 1. Coherently learn from diverse measurements
- 2. Actively select the best measurements

- X_1 , Y_1
- X_2 , Y_2
- X_3 , Y_3
- ...
- X_i , Y_i
- ...
- X_n , Y_n

Measurement features: $\sigma(x,y) \in \mathbb{R}^k$

$$\sigma(|X_1|, |Y_1|)$$

$$\sigma(X_2, Y_2)$$

$$\sigma(X_3, Y_3)$$

$$\sigma(|X_i|$$
 , Y_i)

$$\sigma(|X_n|, |Y_n|)$$

Measurement features: $\sigma(x,y) \in \mathbb{R}^k$ Measurement values: $\tau \in \mathbb{R}^k$

$$au = \sum_{i=1}^n \sigma(X_i, Y_i) + \text{noise}$$

```
\sigma(\ X_1\ ,\ Y_1\ ) \ \sigma(\ X_2\ ,\ Y_2\ ) \ \sigma(\ X_3\ ,\ Y_3\ ) \ \cdots \ \sigma(\ X_i\ ,\ Y_i\ ) \ \cdots \ \sigma(\ X_n\ ,\ Y_n\ ) \ + \ \mathsf{noise}
```

Measurement features: $\sigma(x,y) \in \mathbb{R}^k$ Measurement values: $\tau \in \mathbb{R}^k$

$$au = \sum_{i=1}^n \sigma(X_i, Y_i) + \mathsf{noise}$$

$$X_i$$
 Y_i
 n

```
\sigma(\ X_1\ ,\ Y_1\ ) \ \sigma(\ X_2\ ,\ Y_2\ ) \ \sigma(\ X_3\ ,\ Y_3\ ) \ \cdots \ \sigma(\ X_i\ ,\ Y_i\ ) \ \cdots \ \sigma(\ X_n\ ,\ Y_n\ ) \ + \ \mathsf{noise}
```

$$\sigma(\ X_1\ ,\ Y_1\)$$
 $\sigma(\ X_2\ ,\ Y_2\)$
 $\sigma(\ X_3\ ,\ Y_3\)$
 \cdots
 $\sigma(\ X_i\ ,\ Y_i\)$
 $\sigma(\ X_n\ ,\ Y_n\)$
 $+$ noise

Measurement features: $\sigma(x,y) \in \mathbb{R}^k$ Measurement values: $\tau \in \mathbb{R}^k$

$$au = \sum_{i=1}^n \sigma(X_i, Y_i) + \text{noise}$$

Set σ to reveal various types of information about Y through τ

Fully-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = \text{View of Los } ..., y = * * * ...]$$

Fully-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = \text{View of Los } ..., y = * * * ...]$$

Partially-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = \textit{View of Los } ..., y_1 = *]$$

Fully-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = \text{View of Los } ..., y = * * * ...]$$

Partially-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = \text{View of Los } ..., y_1 = *]$$

Labeled predicate:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[x_i = \textit{View}, y_i = *]$$

Fully-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = View \ of \ Los \ ..., y = * * * ...]$$

Partially-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = \text{View of Los } ..., y_1 = *]$$

Labeled predicate:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[x_i = \textit{View}, y_i = *]$$

Label proportions:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[y_i = *]$$

Fully-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = \text{View of Los } ..., y = * * * ...]$$

Partially-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = \text{View of Los } ..., y_1 = *]$$

Labeled predicate:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[x_i = \textit{View}, y_i = *]$$

Label proportions:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[y_i = *]$$

Label preference:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[y_i = \text{FEAT}] - \mathbb{I}[y_i = \text{AVAIL}]$$

Fully-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = View \ of \ Los \ ..., y = * * * ...]$$

Partially-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = \text{View of Los } ..., y_1 = *]$$

Labeled predicate:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[x_i = View, y_i = *]$$

Label proportions:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[y_i = *]$$

Label preference:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[y_i = \text{FEAT}] - \mathbb{I}[y_i = \text{AVAIL}]$$

Can get measurement values τ without looking at all examples

Fully-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = View \ of \ Los \ ..., y = * * * ...]$$

Partially-labeled example:

$$\sigma_j(x,y) = \mathbb{I}[x = \text{View of Los } ..., y_1 = *]$$

Labeled predicate:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[x_i = View, y_i = *]$$

Label proportions:

$$\sigma_i(x,y) = \sum_i \mathbb{I}[y_i = *]$$

Label preference:

$$\sigma_j(x,y) = \sum_i \mathbb{I}[y_i = \text{FEAT}] - \mathbb{I}[y_i = \text{AVAIL}]$$

Can get measurement values au without looking at all examples

Next: How to combine these diverse measurements coherently?

Bayesian framework:

Bayesian framework:

Bayesian framework:

Exponential families:

$$p_{\theta}(y \mid x) = \exp\{\langle \phi(x, y), \theta \rangle - A(\theta; x)\}$$

Bayesian framework:

Exponential families:

$$p_{\theta}(y \mid x) = \exp\{\langle \phi(x, y), \theta \rangle - A(\theta; x)\}$$

 $\phi(x,y) \in \mathbb{R}^d$: model features

Bayesian framework:

Exponential families:

$$p_{\theta}(y \mid x) = \exp\{\langle \phi(x, y), \theta \rangle - A(\theta; x)\}$$

 $\phi(x,y) \in \mathbb{R}^d$: model features

 $\theta \in \mathbb{R}^d$: model parameters

Bayesian framework:

Exponential families:

$$p_{\theta}(y \mid x) = \exp\{\langle \phi(x, y), \theta \rangle - A(\theta; x)\}$$

 $\phi(x,y) \in \mathbb{R}^d$: model features

 $\theta \in \mathbb{R}^d$: model parameters

 $A(\theta;x) = \log \int \exp\{\langle \phi(x,y), \theta \rangle\} dy$: log-partition function

Variational formulation:

$$\min_{q \in \mathcal{Q}_{\theta,Y}} \mathsf{KL}\left(q(\theta,Y) \,||\, p(\theta,Y \mid \tau,X)\right)$$

Variational formulation:

$$\min_{q \in \mathcal{Q}_{\theta,Y}} \mathsf{KL}\left(q(\theta,Y) \,||\, p(\theta,Y \mid \tau,X)\right)$$

Approximations:

ullet $\mathcal{Q}_{\theta,Y}$: mean-field factorization of q(Y) and degenerate $\tilde{\theta}$

Variational formulation:

$$\min_{q \in \mathcal{Q}_{\theta,Y}} \mathsf{KL}\left(q(\theta,Y) \,||\, p(\theta,Y \mid \tau,X)\right)$$

Approximations:

- $\mathcal{Q}_{\theta,Y}$: mean-field factorization of q(Y) and degenerate $\tilde{\theta}$
- KL: measurements only hold in expectation (w.r.t. q(Y))

Variational formulation:

$$\min_{q \in \mathcal{Q}_{\theta,Y}} \mathsf{KL}\left(q(\theta,Y) \,||\, p(\theta,Y \mid \tau,X)\right)$$

Approximations:

- ullet $\mathcal{Q}_{\theta,Y}$: mean-field factorization of q(Y) and degenerate $\tilde{\theta}$
- KL: measurements only hold in expectation (w.r.t. q(Y))

Algorithm:

Apply Fenchel duality \rightarrow saddlepoint problem Take alternating stochastic gradient steps

(assume zero measurement noise)

$$\mathcal{P} \stackrel{\text{def}}{=} \{ p_{\theta}(y \mid x) : \theta \in \mathbb{R}^d \}$$

(assume zero measurement noise)

$$\mathbf{Q} \stackrel{\text{def}}{=} \{ q(y \mid x) : \mathbb{E}_q[\sigma] = \tau \}$$

$$\mathcal{P} \stackrel{\text{def}}{=} \{ p_{\theta}(y \mid x) : \theta \in \mathbb{R}^d \}$$

(assume zero measurement noise)

(assume zero measurement noise)

Interpretation:

Measurements shape Q Find model in P with best fit

Information geometry viewpoint

(assume zero measurement noise)

Interpretation:

Measurements shape Q Find model in P with best fit

Two ways to recover supervised learning:

1. Measure $\sigma = \phi$: $\mathcal{P} \cap \mathcal{Q}$ is the unique solution

Information geometry viewpoint

(assume zero measurement noise)

Interpretation:

Measurements shape *Q*

Find model in \mathcal{P} with best fit

Two ways to recover supervised learning:

- 1. Measure $\sigma = \phi$: $\mathcal{P} \cap \mathcal{Q}$ is the unique solution
- 2. Measure $\sigma = \{ \mathbb{I}[x = a, y = b] \}$: $\mathcal{Q} = \{ \text{empirical distribution} \}$, project onto \mathcal{P}

Guidelines:

To set σ , consider human (e.g., full labels)

Guidelines:

To set σ , consider human (e.g., full labels)

To set ϕ , consider statistical generalization (e.g., word suffixes)

Guidelines:

To set σ , consider human (e.g., full labels)

To set ϕ , consider statistical generalization (e.g., word suffixes)

Intuition: consider feature $f(x,y) = \mathbb{I}[x \in A, y = 1]$

Guidelines:

To set σ , consider human (e.g., full labels)

To set ϕ , consider statistical generalization (e.g., word suffixes)

Intuition: consider feature $f(x,y) = \mathbb{I}[x \in A, y = 1]$

If f is a measurement feature (direct):

"inputs in A should be labeled according to τ "

Guidelines:

```
To set \sigma, consider human (e.g., full labels) To set \phi, consider statistical generalization (e.g., word suffixes) Intuition: consider feature f(x,y)=\mathbb{I}[x\in A,y=1] If f is a measurement feature (direct): "inputs in A should be labeled according to \tau" If f is a model feature (indirect): "inputs in A should be labeled similarly"
```

n=1000 total examples (ads), 11 possible labels Model:

Conditional random field with standard NLP features

n=1000 total examples (ads), 11 possible labels

Model:

Conditional random field with standard NLP features

Measurements:

- fully-labeled examples
- 33 labeled predicates (e.g., $\sum_{i} \mathbb{I}[x_i = View, y_i = \text{FEAT}]$)

n=1000 total examples (ads), 11 possible labels

Model:

Conditional random field with standard NLP features

Measurements:

- fully-labeled examples
- 33 labeled predicates (e.g., $\sum_{i} \mathbb{I}[x_i = View, y_i = \text{FEAT}]$)

Per-position test accuracy (on 100 examples):

# labeled examples	10	25	100
General Expectation Criteria	74.6	77.2	80.5
Constraint-Driven Learning	74.7	78.5	81.7
Measurements	71.4	76.5	82.5

n=1000 total examples (ads), 11 possible labels

Model:

Conditional random field with standard NLP features

Measurements:

- fully-labeled examples
- 33 labeled predicates (e.g., $\sum_{i} \mathbb{I}[x_i = View, y_i = \text{FEAT}]$)

Per-position test accuracy (on 100 examples):

# labeled examples	10	25	100
General Expectation Criteria	74.6	77.2	80.5
Constraint-Driven Learning	74.7	78.5	81.7
Measurements	71.4	76.5	82.5

Able to integrate labeled examples and predicates gracefully

So far: given measurements, how to learn

Next: how to choose measurements?

Bayesian decision theory

What do we do with an (approximate) posterior $p(Y, \theta \mid X, \tau)$?

Bayesian decision theory

What do we do with an (approximate) posterior $p(Y, \theta \mid X, \tau)$?

Bayes-optimal predictor:

average over X', max over \hat{Y}' , average over Y' of reward

Bayesian decision theory

What do we do with an (approximate) posterior $p(Y, \theta \mid X, \tau)$?

Bayes-optimal predictor:

average over X', max over \hat{Y}' , average over Y' of reward

 $R(\sigma, \tau) =$ expected reward of Bayes-optimal predictor (i.e., how happy we are with the given situation)

Utility of measurement (σ, τ) :

$$U(\sigma,\tau) = \underbrace{R(\sigma,\tau)}_{\text{reward}} - \underbrace{C(\sigma)}_{\text{cost}}$$

Utility of measurement (σ, τ) :

$$U(\sigma,\tau) = \underbrace{R(\sigma,\tau)}_{\text{reward}} - \underbrace{C(\sigma)}_{\text{cost}}$$

When considering σ , don't know τ , so integrate out:

$$U(\sigma) = E_{p(\tau|X)}[U(\sigma,\tau)]$$

Utility of measurement (σ, τ) :

$$U(\sigma,\tau) = \underbrace{R(\sigma,\tau)}_{\text{reward}} - \underbrace{C(\sigma)}_{\text{cost}}$$

When considering σ , don't know τ , so integrate out:

$$U(\sigma) = E_{p(\tau|X)}[U(\sigma,\tau)]$$

Utility of measurement (σ, τ) :

$$U(\sigma,\tau) = \underbrace{R(\sigma,\tau)}_{\text{reward}} - \underbrace{C(\sigma)}_{\text{cost}}$$

When considering σ , don't know τ , so integrate out:

$$U(\sigma) = E_{p(\tau|X)}[U(\sigma,\tau)]$$

Choose best measurement feature σ :

$$\sigma^* = \operatorname{argmax}_{\sigma} U(\sigma)$$

n=1000 total examples (sentences), 45 possible labels Model: Indep. logistic regression with standard NLP features

n=1000 total examples (sentences), 45 possible labels Model: Indep. logistic regression with standard NLP features Measurements:

- fully-labeled examples
- labeled predicates (e.g., $\sum_{i} \mathbb{I}[x_i = the, y_i = DT]$)

Use label entropy as surrogate for assessing measurements

n=1000 total examples (sentences), 45 possible labels Model: Indep. logistic regression with standard NLP features Measurements:

- fully-labeled examples
- labeled predicates (e.g., $\sum_{i} \mathbb{I}[x_i = the, y_i = DT]$)

Use label entropy as surrogate for assessing measurements Test accuracy (on 100 examples):

(a) Labeling examples

n=1000 total examples (sentences), 45 possible labels Model: Indep. logistic regression with standard NLP features Measurements:

- fully-labeled examples
- labeled predicates (e.g., $\sum_i \mathbb{I}[x_i = the, y_i = DT]$)

Use label entropy as surrogate for assessing measurements Test accuracy (on 100 examples):

(a) Labeling examples

(b) Labeling word types

n=1000 total examples (sentences), 45 possible labels Model: Indep. logistic regression with standard NLP features Measurements:

- fully-labeled examples
- labeled predicates (e.g., $\sum_i \mathbb{I}[x_i = the, y_i = DT]$)

Use label entropy as surrogate for assessing measurements Test accuracy (on 100 examples):

(a) Labeling examples

(b) Labeling word types

Measurements

Bayesian model

variational approx. — Bayesian model

