DIGITALNA ELEKTRONIKA

AUDITORNE YJEŽBE

a RAZNIM SUSTAVIMA BROJEVNIM BROJEVI 12 (helsadecimalni) 2 1011 (linama) (dekadski) 325 2322120 1616 16 16° 10 10 10° > težine 8421 100 10 1 2562 16 1 1.8+0.4+1.2+1.1=11 3.102+2.101+5.10° = ... 1.16+2.1 = 18 (ali ovo je dekadski) ZNAMENKE: ZNAMENKE: ZNAMENKE: 012 ... 9 ABCDEF 012 --- 9 01 -> digitalna tehnita -ima/nema struje --svijetli/ne svijetli lampica 1, sat HEX. -> BIN. -> DEK. tela hex linarnih HEKSA DECIMALNE 016 = 04 Ox C4 znamenlei za ZNAMENKE: kodirati sih 16 hex. mamenke! 0 - 0000 1100 0100 ALGORITAM 3×2 + + + + 1-0001 0 2 16 12 24 48 98 196 SUKCESIVNOG 2 - 0010 1 3 6 12 24 49 98 (196) MNOZENJA 3 -0011 1x2=2 3=1+2 4-0100 10001 5-0101 128 6-0110 64 64 32 16 8 2 7-0111 8-4000 196 W 9-1001 Ox A9 10-1010 11 - 1011 128 1010 1001 12 - 1100 32 2 4 10 20 42 84 168 125 10 21 42 84 169 13 -1101 14-1110 169 F 15 - 1111 0×13D ove nule ne treta 256 BIN DEC. H pisati 32 0000 0 16v 10 2 4 8 18 38 78 158 316

24 9 19 39 79 188 (317)

317

DEK. -> BIN, -> HEX.

ALGORITAM SUKCESIVNOG DIJELJENJA

218

$$2.18:2=0$$
 $1.09:2=1$
 $54:2=0$
 $27:2=1$
 $13:2=1$
 $6:2=0$
 $3:2=1$
 $1:2=1$

$$128$$
 101010
 64
 32
 16
 8
 1
 250
 38
 218

W

W

$$71$$
 $71:2=1$
 $35:2=1$
 $17:2=1$
 $8:2=0$
 $4:2=0$
 $1:2=1$
 0

► ALGEBARSKI

· OSNOVNI POSTUPAK (NALAŽENJE SUSJEDNOSTI)

npr, PDNO; $X_1 \times_2 \times_3 V \times_1 \times_2 \times_3 = \times_1 \times_2 (\times_3 V \times_3) = X_1 \times_2 \cdot 1 = X_1$

· POMOÉNI POSTUPAK (PROSIRENJE PONO):

- POSTOJEĆIM ČLANOM XVX = X , X·X = X
- REDUNDANTNIM ELANOM R (O ile 1)

Wakon toga provesti osnovni postupak:

$$=D \Rightarrow =D \Rightarrow =D$$

VEITCHEV DIJAGRAM

- zaokružiti sve jedinice što manjim brojem što većih povišina - samo susjedne možemo minimizirati

ZAOKRUŽĖNĖ POVRŠINĖ: (mintermi) \Rightarrow otpadaju one varijable Egie se mijenjaju na zaokruženoj površin $X_1 \times_2 \times_3 V \times_4 \times_2 \times_3 = \times_4 \times_2$ $X_2 \times_3 V \times_4 \times_2 \times_3 = \times_4 \times_2 (X_3 V \times_3) = X_4 \times_2 (X_2 V \times_4) = \times_4 (X_2 V \times_4) = \times_$

Pringer: PDNO
\times_2 \times_3 \times_3
prosirenje redundantnim clanom
ALGEBARSKI:
⇒ OSNOVNI POSTUPAK: X1 X2 X1 X2 → 2 polja zasterucien (na osnovu susjednosti)
X ₁ -> 4 polja zaokružena
- POMOÉNI POSTUPAK (PROSIRENJE PONO)
- POSTOJEĆIM ČLANOM XXXXXX
opet omouri postupak: $\overline{X_1} \overline{X_2} \overline{X_3} \ V(\overline{X_1} \overline{X_2} \overline{X_3}) = \overline{X_2} \overline{X_3}$
otpada
- REDUNDANTNIM CLANOM: X, X2 X3
opet osnomi poshipak (vidi gore 4)
-> opet osnomi poshepat (vidi gore b)
$\widehat{\kappa_{i}} \overline{\star_{3}} \vee \overline{\star_{i}}$
https://tams www.informatik.uni-hamburg.de/apple

POSTUPCI

KOD

MINIMIZACIJE:

PAUDEU LOGICKIH VRATA

	R	EALI	ZACIJA E	BOOLE-onh	FORCE	FOMOCO LOGICKIH VKATK			
	^	~~	~~~~	~~~~	EKSKLUZIVNO ILI	> sad svi neg	<u>Irani</u>		
×		X2	(AND)	1L1 (OR)	(XOR)	NI	NILI	POJACALO	INVERTOR
-)	0	0	0	0	1	Λ		
()	1	0	1	1	1	O		
	1	0	0	1	1	1 1	O		
,	1	1	1	1	0	0	0		
Perron			1	3)-	SUMATOR		D-	0 -> 0	-Do-
			→ kas množenje	-> ekrivalent zbrajanju	PO MODULU	- koristit ćemo	označava negaciju	A -> 1	1->0
			V	1 1	O⊕ 0 = 0		. () 4	1	
					1 10 0=1				
					1 1 1 = 0				

- > minterm i PDNO -> 1 i ILI vrata (i negacija)
- tu uskacu NI i NILI tzv. POTPUNI SKUP FUNKCIJA (svaki od njih)
 (pomoću njih možemo izraziti bilo koju f-ju
- -> DE MORGANOVI TEOREMI (vidi str. 8)

$$V_1D$$
, $n=2$
 $n=3$
 $n=4$
 $(n=5)$

DEMORGANOVI TEOREMI:

$$\begin{cases}
\overline{X_1 \vee X_2} = \overline{X_1 \cdot X_2} \\
\overline{X_1 \cdot X_2} = \overline{X_1} \vee \overline{X_2}
\end{cases}$$

P(x) = & (MiVTi) = V mi. Ti

-> koristimo jer na čipu može liti samo 1 tip log wat a NI i NILI čine ; potpuni skup funkcij

