DOCUMENTS ET CALCULATRICES NON AUTORISÉS

LA PRÉCISION DES RAISONNEMENTS ET LE SOIN APPORTÉ À LA RÉDACTION SERONT PRIS EN COMPTE DANS LA NOTATION

Exercice 1

E est un espace préhilbertien réel muni d'un produit scalaire noté $(\cdot|\cdot)$

1. Soit $B \subset E$. Compléter :

$$B^{\perp} = \dots$$

$$x \in B^{\perp} \iff \dots$$

- 2. Soient $f_1, f_2 \in E$ et $F = \text{Vect}(f_1, f_2)$. Montrer, uniquement en utilisant la définition de l'orthogonal d'un ensemble, que $F^{\perp} = \{f_1, f_2\}^{\perp}$.
- 3. On suppose dans cette question que E est de dimension finie. Soient u un vecteur non nul de E, $H = (\text{Vect}(u))^{\perp}$ et p la projection orthogonale sur H. Soit $v \in E$. Déterminer une expression de p(v) en fonction de v et de u.

Exercice 2

Soient \mathbb{R}^3 , muni du produit scalaire canonique, \mathcal{B} la base canonique de \mathbb{R}^3 et $f \in \mathcal{L}(\mathbb{R}^3)$ tel que :

$$\operatorname{Mat}_{\mathcal{B}}(f) = \frac{1}{6} \begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \\ -1 & -2 & 1 \end{pmatrix}.$$

Montrer que f est une projection orthogonale par rapport à un sous-espace vectoriel F que vous préciserez.

Exercice 3

Soit $E = \mathcal{C}^2([0,1],\mathbb{R})$ l'espace vectoriel des fonctions de classe \mathcal{C}^2 sur l'intervalle [0,1]. On considère l'application φ définie par :

$$\forall f, g \in E, \quad \varphi(f, g) = \int_0^1 (fg + f'g').$$

Soient $g_1, g_2 \in E$ telles que $g_1 : x \mapsto e^x$ et $g_2 : x \mapsto e^{-x}$.

On considère les sous-espaces vectoriels F et G définis par :

$$F = \{ f \in E, \ f(0) = f(1) = 0 \} \text{ et } G = \text{Vect}(g_1, g_2).$$

1. Montrer que φ est un produit scalaire.

Dans la suite de l'exercice, on note ce produit scalaire $(\cdot|\cdot)$ et on munit E de ce produit scalaire.

2. Soit $f \in E$. Montrer que :

$$(f|g_1) = ef(1) - f(0)$$
 et $(f|g_2) = -e^{-1}f(1) + f(0)$

- 3. Montrer que $G^{\perp} = F$.
- 4. Soient p la projection orthogonale sur G et $h \in E$ telle que $h: x \mapsto 1$. On va déterminer p(h) par deux méthodes.
 - (a) On note (a,b) le couple de coordonnées du vecteur p(h) dans la base (g_1,g_2) de G.
 - i. Montrer que le couple (a, b) est solution du système :

$$\begin{cases} a + b = 1 \\ ea + e^{-1}b = 1 \end{cases}.$$

- ii. En déduire p(h).
- (b) i. Montrer que la famille (g_1, g_2) est une famille orthogonale.
 - ii. En déduire une base orthonormée de G.
 - iii. Calculer p(h).