

Renna Sultana

Department of Science and Humanities

MATRICES AND GAUSSIAN ELIMINATION

Renna Sultana

Department of Science and Humanities

MATRICES AND GAUSSIAN ELIMINATION:

Course Content: Elementary Matrices

lacktrians Elementary Matrix E_{ij} is obtained from the Identity Matrix I by using transformation $R_i - l_{ij} R_j$ where l_{ij} is the multiplier

i.e
$$I \rightarrow E_{ii}$$

Example: E_{32} is obtained as follows:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_3 - 2R_2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix} = E_{32}$$

MATRICES AND GAUSSIAN ELIMINATION:

Example: Consider the matrix
$$A = \begin{pmatrix} 3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1 \end{pmatrix} \xrightarrow{R_2 - 2/3R_1} \begin{pmatrix} 3 & 1 & 2 \\ 0 & -11/3 & -7/3 \\ 0 & 5/3 & 1/3 \end{pmatrix}$$

$$\frac{R_3 + (5/11)R_2}{0} \xrightarrow{R_3 + (5/11)R_2} \begin{pmatrix} 3 & 1 & 2 \\ 0 & -11/3 & -7/3 \\ 0 & 0 & -8/11 \end{pmatrix} = U$$

$$E = E_{21} = R_2 - (2/3)R_1$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ -2/3 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$F = E_{31} = R_3 - (1/3)R_1 \qquad G = E_{32} = R_3 + (5/11)R_2$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1/3 & 0 & 1 \end{pmatrix} \qquad = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 5/11 & 1 \end{pmatrix}$$

$$E_{32}E_{31}E_{21}A = U$$

MATRICES AND GAUSSIAN ELIMINATION:

PES UNIVERSITY ONLINE

Problems:

1. Which elimination matrices put A into upper triangular matrix U?

$$A = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix} \xrightarrow{R_2 + (1/2)R_1} \begin{pmatrix} 2 & -1 & 0 & 0 \\ 0 & 3/2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix} \xrightarrow{R_3 + (2/3)R_2} \begin{pmatrix} 2 & -1 & 0 & 0 \\ 0 & 3/2 & -1 & 0 \\ 0 & 0 & 4/3 & -1 \\ 0 & 0 & -1 & 2 \end{pmatrix}$$

$$E_{43} E_{32} E_{21} A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 3/4 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 2/3 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1/2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} A = U$$

MATRICES AND GAUSSIAN ELIMINATION:

2. Which elementary matrices convert
$$A = \begin{pmatrix} 0 & 2 & -6 & -2 & 4 \\ 0 & -1 & 3 & 3 & 2 \\ 0 & -1 & 3 & 7 & 10 \end{pmatrix}$$
 into upper triangular $\begin{pmatrix} 0 & 2 & 6 & 2 & 4 \end{pmatrix}$

matrix U?
$$\begin{pmatrix} 0 & 2 & -6 & -2 & 4 \\ 0 & -1 & 3 & 3 & 2 \\ 0 & -1 & 3 & 7 & 10 \end{pmatrix} \xrightarrow{R_2 + 1/2R_1} \begin{pmatrix} 0 & 2 & -6 & -2 & 4 \\ 0 & 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 6 & 12 \end{pmatrix}$$

THANK YOU

Renna Sultana

Department of Science and Humanities

rennasultana@pes.edu