$\begin{tabular}{ll} A Generalized Probabilistic Gibbard-Satterthwaite \\ Theorem \end{tabular}$

Jonathan Potter jmp2909@rit.edu

November 15, 2012

 $\begin{array}{cc} Chair & {\rm Christopher\; Homan} \\ Reader & {\rm Ivona\; Bez\'{a}kov\'{a}} \\ Observer & {\rm Zack\; Butler} \end{array}$

Abstract

We study manipulation in election systems, looking specifically at random manipulation. This work is based on work by Friedgut, Kalai, and Nisan [FKN08] and by Xia and Conitzer [XC08], and we analyze these papers and attempt to improve upon their results. These authors condition their results on voting rules having certain properties, and we intend to look at what happens when these conditions are replaced by stronger or weaker conditions. Friedgut, Kalai, and Nisan's results hold only for elections with three candidates, and we would like to extend the results to any number of candidates. Xia and Conitzer's results hold only for election systems that satisfy their five properties and this excludes some common election systems. We would like to relax these conditions to capture more common election systems while still achieving the same results. We would like to tighten the bounds given by these two papers by a constant factor or by making them depend on the number of candidates.

Acknowledgements

I would like to thank my family.

Contents

1		$\operatorname{roduction}$	1				
	1.1	Structure of the Proof	4				
2	Preliminaries						
	2.1	Definitions	6				
3	Background						
	3.1	Brief History of Social Choice Theory	11				
	3.2	History of Manipulation	13				
4	Related Work						
5	Results						
	5.1	Lattice Theory	27				
	5.2	Main Theorem					
	5.3	Generalized Lemma 6 of Friedgut	31				
	5.4	Generalized Lemma 7 of Friedgut	32				
	5.5	Generalized Lemma 8 of Friedgut	35				
	5.6	Finished Step 3 of Friedgut					
	5.7	Main Theorem of Friedgut	39				
6	Cor	nclusion	41				

Chapter 1

Introduction

Election systems resembling what we know today date back to around 508 BC in Athens, Greece. The greeks used both the majority rule and the plurality systems which are very simple systems with one disadvantage being that each voter can only voice a preference for a single candidate. A more accurate way to represent each voter's opinion is with a ranked list of all candidates so, for instance, if candidates tie for first place, the tie can easily be broken by looking at voters' second choice, and then the third choice can be taken into account, etc. We call this ranked list a preference list.

There weren't many improved ideas for election systems until much later, in the 13th century when Ramon Llull studied election systems [HP01]. In 1770 Jean-Charles de Borda independently proposed an election system similar to Llull's, now called the Borda count, as a way of electing members of the French Academy of Sciences [Bor81]. In the Borda count system, each candidate receives points based on their rank in each voter's preference list, with the winner being the candidate to receive the most points. Majority rule, plurality, and the Borda count are a some examples of voting rules, but there are many others, each with various strengths and weaknesses. Therefore, it is useful to compare them to each other. The most obvious criteria for a good election system is fairness [CDE+06], because we would like the winning candidate to be the one which best represents the constituents' preferences. Fairness of an election system is easy to recognize if there are only two candidates: the candidate who is preferred by the majority of voters should win. But with a larger number of candidates, determining the fairness of an election system is not so obvious.

Marquis de Condorcet, a contemporary of Borda, was interested in the fairness of voting systems and he proposed that the winning candidate be the candidate who would win a head-to-head election against each of the other candidates. Such a winner is known as the *Condorcet winner*. Unfortunately, Condorcet also proved that a Condorcet winner does not always exist. Nevertheless, the Condorcet criterion was one of the first formal fairness criteria, and is still widely used today.

In 1950, Kenneth Arrow, an American economist who was interested in the fairness of social welfare functions, made a large contribution to the field of Social Choice Theory with his impossibility theorem [Arr50, Arr63]. This theorem demonstrates that no social welfare function can "fairly" convert the preferences of voters into a society-wide preference list by showing that no social welfare function can satisfy the following criteria (which will be further described in the next chapter): unrestricted domain, independence of irrelevant alternatives, unanimity, and non-dictatorship.

The work done by Condorcet and Arrow is widely regarded as being foundational to the modern field of Social Choice Theory, and marks a transition from viewing social choice as a purely practical problem to a more rigorous theoretical study.

The main problem we will be dealing with relating to the issue of fairness in social choice is that of manipulation (or strategic voting or tactical voting). Manipulation is when an individual purposefully misrepresents his preferences hoping to get a more favorable outcome in the election. One way to avoid manipulation would be to devise a voting rule that is non-manipulable. Unfortunately, the Gibbard-Satterthwaite theorem states that every voting rule which is not a dictatorship and under which any alternative can win is subject to manipulation [Gib73, Sat75, DS00]. This means that we cannot make manipulation impossible via a cleverly devised voting rule.

In an attempt to circumvent the Gibbard-Satterthwaite, Bartholdi, Tovey, and Trick studied the computational difficulty of finding a winner for various voting rules. For example, they showed that the Dodgson method mentioned above [Dod76] is actually infeasible to manipulate for the simple reason that figuring out the winner of the election is NP-hard. Therefore, it is not sufficient for a desirable voting rule to be hard to manipulate; it must also be also be efficient to determine a winner.

Many others have followed in the vein of searching for a computational barrier to manipulation, but the majority of computational results deals with the worst-case complexity of manipulation. In 2006, work by Conitzer and Sandholm [CS06] along with that of Procaccia and Rosenschein [PR06] showed that while manipulation can be hard in the worst case, it is much easier in the average case. In the next few years more work was done to

make this concern even more well-founded [PR07, EHRS07].

Work along these lines by Friedgut, Kalai, and Nisan [FKN08] in 2008 is the main inspiration for this thesis. Instead of studying worst-case manipulation, they performed a probabilistic analysis of random manipulation. That is, instead of a voter intelligently manipulating an election, which can be difficult in terms of worst-case complexity, he simply chooses his manipulation randomly (if his most preferred candidate is not winning already). They proved that even a random manipulation will succeed with non-negligible probability. This is significant because no matter how hard it is in the worst-case to find a profitable manipulation, if it is trivial to find a random manipulation, that could be enough.

More formally they defined a metric, manipulation power $M_i(f)$, of voter i on a social choice function f to be the probability that p'_i is a profitable manipulation by voter i, where p is a profile and p'_i is a preference list which are both chosen uniformly at random. Their main result is that there exists a constant C such that for 3 alternatives, n voters, and a neutral social choice function f which is ϵ -far from dictatorship ($\epsilon > 0$) then

$$\sum_{i=1}^{n} M_i(f) \ge C\epsilon^2$$

This means that when ϵ is fixed — it is once a voting rule is determined — then some voter has more than his share (a non-negligible amount) of manipulation power: $\max_i M_i(f) \ge \Omega(\frac{1}{n})$ [FKN08].

This result is incredibly powerful, but unfortunately is limited to social choice functions over 3 alternatives. The only assumptions are the *impartial culture* assumption, that votes are selected uniformly at random, and the neutrality of the social choice function.

The impartial culture assumption is widely used and though many argue that it is not realistic, it is very hard to determine a distribution that *would* be realistic. In this thesis we set out to remove the restriction to 3 alternatives, generalizing this result to any number of alternatives. Additionally, it would have been useful to remove the neutrality constraint, but that was not the main goal of our work.

Unfortunately for us, but fortunately for the field of social choice as a whole, Isaksson, Kindler, and Mossel have, independently during the writing of this thesis, published a brilliant generalization of the original theorem of Friedgut, Kalai, and Nisan and even improved slightly upon the results [IKM10]. Translating their results into the terminology we have been using,

they proved that for a neutral social choice function f with $m \ge 4$ alternatives and n voters that is ϵ -far from dictatorship, a uniformly chosen profile will be manipulable with probability at least $2^{-1}\epsilon^2 n^{-4} m^{-6} (m!)^{-3}$.

Later Friedgut et al. removed the neutrality constraint from their original theorem, and added an author [FKKN11].

Finally, Mossel and Rácz [MR11] took ideas from these two proofs and created a unified proof with the same results as Isaksson, Kindler, and Mossel, but without the neutrality constraint.

Though these results have independently achieved the goals we set out with, we believe that our work is still useful. At the very least ours simply stands as an alternate proof. However, our proof has the benefit that it uses very similar techniques to those of the original proof of Friedgut, Kalai, and Nisan. Additionally we believe that our proof is much simpler and easier to understand.

1.1 Structure of the Proof

The proof we are generalizing is broken up into three steps. In the original paper they are called Step 1, Step 2, and Step 3, but in [FKKN11] they are called the following respectively:

- 1. Applying a quantitative version of Arrow's impossibility theorem
- 2. Reduction from low manipulation power to low dependence on irrelevant alternatives
- 3. Reduction from low manipulation power to low dependence on irrelevant alternatives

In this thesis we will refer to them as Step 1, Step 2, and Step 3.

In the original paper, Friedgut, Kalai, and Nisan were able to generalize Step 1 and Step 2 as follows:

Lemma 1 (Generalized Step 1). For every fixed m and $\epsilon > 0$ there exists $\delta > 0$ such that if $F = f^{\otimes {m \choose 2}}$ is a neutral IIA GSWF over m alternatives with $f: \{0,1\}^n \to \{0,1\}$, and $\Delta(f,DICT) > \epsilon$, then F has probability of at least $\delta \geq (C\epsilon)^{\lfloor m/3 \rfloor}$ of not having a Generalized Condorcet Winner, where C > 0 is an absolute constant.

Lemma 2 (Generalized Step 2). For every fixed m there exists $\delta > 0$ such that for all $\epsilon > 0$ the following holds. Let f be a neutral SCF among m alternatives such that $\Delta(f, DICT) > \epsilon$. Then for all (a, b) we have $M^{a,b}(f) \geq \delta$.

Therefore we focus on generalizing Step 3. The original Step 3 was:

Lemma 3 (Non-General Step 3). For every SCF f on 3 alternatives and every $a, b \in A$, $M^{a,b} \leq \sum_i M_i \cdot 6$

And our generalization is:

Lemma 4 (Generalized Step 3). For every SCF f on m alternatives and every $a, b \in A$, $M^{a,b} \leq \sum_i M_i \cdot m!$

When we put together all 3 generalized steps we get our main result:

Theorem 5 (Main Result). There exists a constant C > 0 such that for every $\epsilon > 0$ the following holds. If f is a neutral SCF for n voters over 3 alternatives and $\Delta(f,g) > \epsilon$ for any dictatorship g, then f has total manipulatibility: $\sum_{i=1}^{n} M_i(f) \geq \frac{(C\epsilon)^{\lfloor m/3 \rfloor}}{m!}$.

Chapter 2

Preliminaries

In this chapter we present up the formal definitions we will need for the rest of the thesis. These serve as a reference and an introduction to the technical work we have done in the following chapters. These definitions naturally lead into a few foundational lemmas which will be presented at the end of the chapter. Some definitions are very basic indeed and many will already be known to the reader, and so they are stated explicitly here simply to provide maximum clarity and a solid foundation upon which to present the rest of our work.

For additional definitions which are out of the scope of this thesis the reader may refer to textbooks on set theory [Kun80] and lattice theory [Bir95].

2.1 Definitions

We will begin with basic definitions regarding set theory and lattice theory, and then towards the end of the section we will transition to definitions from social choice theory.

Definition 2.1.1. A permutation of a set X is a bijective function from X to X.

Definition 2.1.2. A total ordering over a set X is a binary relation on X which is antisymmetric, transitive, and total.

Although technically permutations and total orderings are different constructs (bijective functions versus binary relations), they often have similar applications. For example, given a totally-ordered set X and a permutation

 σ on X, we can construct a total ordering $<_R = \{(x,y) \mid x,y \in X, \sigma^{-1}(x) < \sigma^{-1}(y)\}$ which is similar to σ . Likewise, for any well-ordered set X and a total ordering, $<_R$, over X, one could construct a permutation σ from $<_R$ where $\sigma: X \to X$ such that $\sigma(x) = y$ iff

$$|\{z \in X \mid z < x\}| = |\{z \in X \mid z <_R y\}|.$$

For countable sets we will sometimes view permutations and total orders as sequences of elements, using a subscript notation, provided our meaning is clear from context.

Definition 2.1.3. We use S(X) to denote the set of all permutations of X.

Definition 2.1.4. We use L(X) to denote the set of all total orders over X.

Definition 2.1.5. We define a *poset*, or *partially ordered set*, to be (X, \leq) where X is a set, and \leq is a binary relation on X which is antisymmetric, transitive, and reflexive. \leq is called a partial ordering because of the fact that not every pair of elements in X needs to be related by \leq , as opposed to a total ordering which must relate every pair.

Definition 2.1.6. For any poset (P, \leq) , a lower bound of a subset $X \subseteq P$ is an element $a \in P$ such that $a \leq x$ for every $x \in X$. A greatest lower bound is a lower bound that is greater than or equal to every other lower bound. We denote this greatest lower bound as $\inf_P X$ calling it the infimum [Bir67] and also as $\bigwedge_P X$ calling it the meet. When X contains only two elements, we can use the meet as a binary operator: $\bigwedge_P \{a,b\} = a \wedge_P b$. When P is obvious from context we will simply write $\inf X$ or $\bigwedge X$. If the infimum exists, it is unique because posets are antisymmetric. The infimum is the same as the supremum in the inverse order.

Definition 2.1.7. For any poset (P, \leq) , an upper bound of a subset $X \subseteq P$ is an element $a \in P$ such that $a \geq x$ for every $x \in X$. A least upper bound is an upper bound that is less than or equal to every other upper bound. We denote this least upper bound as $\sup_P X$ calling it the supremum [Bir67] and also as $\bigvee_P X$ calling it the join. When X contains only two elements, we can use the join as a binary operator: $\bigvee_P \{a,b\} = a \vee_P b$. When P is obvious from context we will simply write $\sup_P X$ or $\bigvee_P X$. If the supremum exists, it is unique because posets are antisymmetric. The supremum is the same as the infimum in the inverse order.

8

Definition 2.1.8. A poset, (P, \leq) , is a *lattice* if for any $x, y \in P$ both the meet and join of x and y exist. Note that the meet and join are unique by definition (if they exist).

Definition 2.1.9. The *transitive closure* of a binary relation R on a set X is the transitive relation R^t on X such that $R \subseteq R^t$ and R^t is minimal [LP98, p. 337].

Definition 2.1.10. For any poset (P, \leq) , let σ be a permutation of P. We define the *inversions* of σ to be a binary relation $\operatorname{Inv}_{\sigma}$ on P:

$$Inv_{\sigma} = \{(i, j) \mid i, j \in P, i < j, \sigma^{-1}(i) > \sigma^{-1}(j)\}.$$

We can read $i\operatorname{Inv}_{\sigma} j$ as "i is inverted with j in σ ". Inv is a transitive relation because for any $i, j, k \in P$ if $i\operatorname{Inv}_{\sigma} j$ and $j\operatorname{Inv}_{\sigma} k$ then i < j < k and $\sigma^{-1}(i) > \sigma^{-1}(k) > \sigma^{-1}(k)$ which means that $i\operatorname{Inv}_{\sigma} k$.

In addition, let (X, \leq') be a lattice such that the elements of X are permutations of P. For any $\sigma, \pi \in X$ we have [Mar94]:

$$\operatorname{Inv}_{\sigma \wedge \pi} = (\operatorname{Inv}_{\sigma} \cup \operatorname{Inv}_{\pi})^{t}.$$

Definition 2.1.11. For any poset (P, \leq) , let σ and π be a permutations of P. We define the *Kendall tau distance*, K, between σ and π to be the number of adjacent swaps one would have to make to get from σ to π or vice versa. More formally:

$$K(\sigma, \pi) = \sum_{\{i,j\} \in P} \overline{K}_{i,j}(\sigma, \pi)$$

where

$$\overline{K}_{i,j}(\sigma,\pi) = \begin{cases} 0 & \text{if } i \text{ and } j \text{ are in the same order in } \sigma \text{ and } \pi \\ 1 & \text{if } i \text{ and } j \text{ are in the opposite order in } \sigma \text{ and } \pi \end{cases}$$

Alternatively we can define the Kendall tau distance in terms of inversions

$$K(\sigma, \pi) = |\operatorname{Inv}_{\sigma} \triangle \operatorname{Inv}_{\pi}|$$

with \triangle denoting symmetric difference.

Definition 2.1.12. For any poset (P, \leq) , let $x, y \in P$. We say that x is a *predecessor* of y if x < y. We say that x is a *direct predecessor* of y if x is the greatest predecessor of y.

Definition 2.1.13. For any poset (P, \leq) , let $x, y \in P$. We say that x is a *successor* of y if x > y. We say that x is a *direct successor* of y if x is the least successor of y.

In the next couple of definitions and many of the lemmas in this section, we will be investigating lattices whose elements are permutations of a set. That is, given a set Y, we will study some of the properties of the lattice $(S(Y), \leq)$.

Definition 2.1.14 (\leq_s). Let (P, \leq) be a poset and let X = S(P). We define the partial ordering \leq_s on X such that for all $\sigma, \pi \in X$:

$$\sigma \leq_s \pi \iff \operatorname{Inv}_{\sigma} \subseteq \operatorname{Inv}_{\pi}.$$

Definition 2.1.15 (X^{ij}, \leq^{ij}) . Let Y be a set and let X = S(Y). Let (X, \leq) be a lattice. For any $i, j \in Y$ we define

$$X^{ij} = \{x \in X \mid x^{-1}(i) < x^{-1}(j)\}.$$

We then define the partial ordering, \leq^{ij} , over X^{ij} such that for $x, y \in X^{ij}$:

$$x \le^{ij} y \iff x \le y$$

We will now introduce some definitions having to do with social choice theory. Throughout this paper we will use n to represent the number of voters in an election, and m to represent the number of alternatives (candidates).

Definition 2.1.16. Let $C = \{1, ..., m\}$ be the set of all *alternatives* (candidates). We define the set of all *preference profiles* to be $P = L(C)^n$.

Definition 2.1.17. We define the set of all *preference lists* to be V = L(C). We can also view a preference list as a permutation on C; it will be obvious from context which approach we are using.

Definition 2.1.18. We define a voting rule, or social choice function (SCF), to be a function $f: P \to C$.

Definition 2.1.19. We define an *election* to be simply a voting rule paired with a profile: (f, p) where f is a voting rule and $p \in P$.

Definition 2.1.20. Let $v \in V$ be a preference list, and let $x, y \in C$ be two alternatives. Since v is actually a total ordering, we denote $(x, y) \in v$ by

and if this is the case we view x as being ranked above y in v and we say that x beats y, and denote this as

$$x \succ_v y$$
.

We view x as being ranked below y in v if

$$x >_v y$$

and we would say that x is beaten by y, we denote this as

$$x \prec_v y$$

Definition 2.1.21. For a set of candidates $D \subseteq C$, for a preference list $v \in V$ and a preference profile $p \in P$ we denote v and p restricted to D by $v|_D$ and $p|_D$ respectively. $v|_D$ means v after all the candidates who are not in D have been removed from the preference list. $p|_D$ means that every preference list in p has been restricted to D.

We will sometimes wish to restrict to every alternative except those in D in which case we will write $v|_{\overline{D}}$ where the universe is understood to be C.

Since we will often use restriction when comparing two preference lists we will write $x|_D = y|_D$ simply as $x =_D y$.

Definition 2.1.22. For any sequence v, and $i \in \{1, ..., |v|\}$ we will denote by v_{-i} , v with v_i removed.

Definition 2.1.23. A successful manipulation (or profitable manipulation) by voter i of a SCF f at profile x is a preference list x'_i such that

$$f((x_{-i}, x_i')) \succ_i f((x_{-i}, x_i)).$$

Chapter 3

Background

3.1 Brief History of Social Choice Theory

Election systems are not a recent invention. The earliest democracies resembling what we know today date back to around 508 BC in Athens, Greece. The general idea of elections was used even before that in many other parts of the world [dem11]. In Athens, the assembly was the core of democracy, and any male citizen of at least eighteen years of age was allowed to attend, and therefore, to vote [Hei52]. Athenians voted directly on public policy, instead of electing representatives, and voting was done by majority rule. Outside of the assembly, a process known as ostracism was used to exile individuals if necessary. This was done using the plurality voting rule, whereby each man wrote a name on a piece of pottery and the person with the most votes was exiled [OR02].

Both the majority rule and the plurality systems used in early Greek democracy were very simple. One drawback of these systems is that each voter could only voice a preference for a single candidate. A more accurate way to represent each voter's opinion is with a ranked list of all candidates. This way if candidates tie for first place, the tie can easily be broken by looking at the voter's second choice. If there is still a tie, then the third choice can be taken into account, and so forth. This ranked list is called a preference list.

In 1770 Jean-Charles de Borda proposed an election system, known now as the Borda count, as a way of electing members of the French Academy of Sciences [Bor81]. In the Borda count system, each candidate receives points based on their rank in each voter's preference list, i.e. for each first place ranking a candidate will get the most points, for each second place ranking

a candidate will get slightly less points, and so on. The winning candidate is the one who receives the greatest total number of points. It was around the time Borda proposed this system that election systems began to be studied academically, though recently it has been discovered that Ramon Llull came up with the Borda count even earlier, in the 13th century [HP01].

Majority rule, plurality, and the Borda count are a few examples of voting rules, but there are many others. Given the large number of voting rules, and that each rule seems to have various strengths and weaknesses, it is useful to compare them to each other. The most obvious criteria for a good election system is fairness [CDE⁺06]. It seems natural that the election system which best represents the constituents' preferences is the best system. Fairness of an election system is easy to recognize if there are only two candidates: the candidate who is preferred by the majority of voters should win. But with a larger number of candidates determining the fairness of an election system is not so obvious.

Interest in the fairness of voting systems prompted Marquis de Condorcet, a contemporary of Borda, to propose that the winning candidate of an election be the candidate who would win a head-to-head election against each of the other candidates (1785). Such a winner is known as the Condorcet winner. Unfortunately, Condorcet also proved that a Condorcet winner does not always exist because majority preferences are intransitive in elections with more than two alternatives [lmdCC85, BNM+98]. In other words, it is possible to have alternative $a \succ (\text{beats})b, b \succ c, c \succ a$. A voting rule that gives the Condorcet winner if one exists is said to satisfy the Condorcet criterion. The Condorcet criterion was one of the first formal fairness criteria, and is still widely used today.

In 1876, Charles Dodgson (also known as Lewis Carroll) proposed an election system satisfying the Condorcet criterion known as Dodgson's method. Dodgson's method declares the winner to be whichever alternative can become a Condorcet winner with the fewest adjacent swaps in voters' preference lists [Dod76]. More precisely, given the original profile p, we select a profile p' such that p' has a Condorcet winner and the total Kendall tau distance (see Definition 2.1.11) between p and p' is minimum (compared to all possible profiles). Then the winner is the alternative that wins under p'. One major drawback of this method is that computing the winner is NP-hard [BTT89a].

In 1950, Kenneth Arrow, an American economist who was interested in the fairness of social welfare functions, made a large contribution to the field of Social Choice Theory with his impossibility theorem. Arrow's theorem [Arr50] (which he strengthened in 1963 [Arr63]) demonstrates that no social welfare function can "fairly" convert the preferences of voters into a societywide preference list. While "fair" is clearly subjective, he gave a list of basic properties which seem intuitively required for fairness:

Unrestricted domain (universality) All individual preferences are allowed, and yield a valid group preference.

Independence of irrelevant alternatives If all voters' preferences between alternatives x and y remain the same, the group preference between x and y is unchanged even if voters change their preferences regarding other alternatives.

Pareto principle (unanimity) Unanimity of individual preferences implies a group preference. E.g. if all individuals prefer alternative x to y, then the group will prefer x to y.

Non-dictatorship There is no voter whose preference always dictates the group preference.

Arrow proved that these properties are inconsistent: no voting system can satisfy all of these properties, hence, no social welfare function can be completely fair.

The work done by Condorcet and Arrow is widely regarded as being foundational to the modern field of Social Choice Theory, and marks a transition from viewing social choice as a purely practical problem to a more rigorous theoretical study.

3.2 History of Manipulation

One problem relating to the issue of fairness in social choice is that of manipulation (or strategic voting or tactical voting). Manipulation is when an individual purposefully misrepresents his preferences hoping to get a more favorable outcome in the election. For example, if a voter knows that his most preferred alternative has no chance of winning the election, he may instead say that he prefers a different alternative, so that even though his favorite alternative cannot win, at least his second choice alternative has a better chance of winning. This manipulation will benefit the voter but will not benefit society in general, because by lying about his preferences the voter has skewed the results of the election in his favor. Therefore, it is beneficial to search for ways to avoid manipulation in social choice.

One way to avoid manipulation would be to devise a voting rule that is non-manipulable. Unfortunately, in 1973 the Gibbard-Satterthwaite theorem was published which states that every voting rule satisfying the following properties is subject to manipulation.

Non-dictatorship (Defined above, in Arrow's theorem)

Non-imposition Every alternative has the possibility of winning.

It would certainly seem that any reasonable voting rule would need to satisfy both of these criteria, hence, any reasonable voting rule is manipulable [Gib73, Sat75, DS00]. This means that we cannot make manipulation impossible via a cleverly devised voting rule — a rather disappointing prospect.

Until this point in the history, social choice theory had been separate from computer science — and indeed computer science was a very young discipline at this point. A new sub-field of social choice theory was spawned, computational social choice theory, which applies the studies of computer science to social choice theory. In 1989, Bartholdi, Tovey, and Trick proposed a computational barrier to manipulation in election systems [BTT89b]. Instead of trying to make manipulation impossible, they endeavored to make it computationally intractable [CELM07]; even if a profitable manipulation exists it is of no use in practice if it is computationally infeasible to find. They were able to demonstrate that while many voting rules are easy to manipulate (a manipulation can be found in polynomial time), the problem of finding a manipulation for certain scoring rules is NP-complete. They called rules that can be manipulated in polynomial time vulnerable, and those for which manipulation is NP-hard resistant. For a formal definition of manipulation, see Definition 2.1.23.

This ushered in a new way to approach social choice: from a computational footing. Bartholdi, Tovey, and Trick also studied the computational difficulty of finding a winner for various voting rules. For example, they showed that the Dodgson method mentioned above [Dod76] is actually infeasible to manipulate for the simple reason that figuring out the winner of the election is NP-hard. Therefore, it is not sufficient for a desirable voting rule to be hard to manipulate; it must also be also be efficient to determine a winner.

In 1991, Bartholdi and Orlin [BO91] added to the above results by showing that the Single Transferable Vote (STV) rule was both resistant to manipulation, and quick to determine a winner. Although STV has problems of its own [Bra82, DK77, FB83, Hol89, Mou88], it is encouraging to see that it is possible for an efficient voting rule to resist manipulation.

In 2002, Conitzer and Sandholm took a slightly different approach [CS02] (which they later extended [CSL07]), studying coalition manipulation. Instead of a single voter manipulating an election, a group (coalition) of voters work together to manipulate an election. This vein of research has since been extended in various directions [CS03, EL05a, FHH06, HHR07, PRZ07, EL05b].

The work mentioned so far which attempts to erect a computational barrier to manipulation is encouraging, and may indeed provide ways to prevent manipulation in election systems. However it deals with the worst-case complexity of manipulation. In 2006, work by Conitzer and Sandholm [CS06] along with that of Procaccia and Rosenschein [PR06] showed that while manipulation can be hard in the worst case, it is much easier in the average case. In the next few years more work was done to make this concern even more well-founded [PR07, EHRS07]. Work along these lines by Friedgut, Kalai, and Nisan [FKN08] in 2008 is the main inspiration for this thesis, and has also spawned other work which will be discussed further in the Related Work chapter.

Chapter 4

Related Work

We will now take an in-depth look at some of the results leading up to and related to our own. Unless the reader is familiar with this topic area, he should refer to the Preliminaries chapter for definitions of any of our notation, or to the cited paper for notation specific to that paper. In general, an election will consist of a SCF f, a set of m alternatives C, n voters, and a profile $P \subseteq L(C)^n$.

Complexity theorists have analyzed many voting systems using computational complexity as a means of inhibiting manipulation [BTT89b, HHR09]. Friedgut, Kalai, and Nisan, on the other hand, took a probabilistic approach to this problem [FKN08]. Instead of studying worst-case manipulation, they performed a probabilistic analysis of random manipulation. That is, instead of a voter intelligently manipulating an election, which can be difficult in terms of worst-case complexity, he simply chooses his manipulation randomly (if his most preferred candidate is not winning already). They proved that even a random manipulation will succeed with non-negligible probability. This is significant because no matter how hard it is in the worst-case to find a profitable manipulation, if it is trivial to find a random manipulation, that could be enough.

More formally they defined a metric, manipulation power $M_i(f)$, of voter i on a social choice function f to be the probability that p'_i is a profitable manipulation by voter i, where p is a profile and p'_i is a preference list which are both chosen uniformly at random. Their main result is that there exists a constant C such that for 3 alternatives, n voters, and a neutral social choice function f which is ϵ -far from dictatorship ($\epsilon > 0$) then

$$\sum_{i=1}^{n} M_i(f) \ge C\epsilon^2$$

This means that when ϵ is fixed — it is once a voting rule is determined — then some voter has more than his share (a non-negligible amount) of manipulation power: $\max_i M_i(f) \ge \Omega(\frac{1}{n})$ [FKN08].

Besides the unfortunate limitation of 3 alternatives, these results are incredibly general. The only assumptions are the *impartial culture* assumption, that votes are selected uniformly at random, and the neutrality of the social choice function. The neutrality assumption was removed by Friedgut, Kalai, and Nisan in 2011 [FKKN11].

However, these results apply only to elections with a maximum of 3 alternatives, which is not useful for most practical applications, and is less satisfactory than a general solution from a practical and theoretical standpoint. Therefore many people have worked to generalize these results.

In 2008 Xia and Conitzer were able to prove a similar theorem for any number of candidates, but instead of neutrality they assumed 5 other conditions for the voting rule [XC08]:

Homogeneity For any $n \in \mathbb{N}$ we have:

$$f(P) = f\left(\bigcup_{i=1}^{n} P\right).$$

Anonymity The result of the election does not depend on the names of the voters. Formally, given a profile P and a permutation $\sigma(P)$: $f(P) = f(\sigma(P))$.

Non-imposition (Defined above, in the Gibbard-Satterthwaite theorem)

Canceling out Adding the set of all linear orders to the votes does not change the result. More formally, for any profile P we have that: $f(P) = f(P \cup L(C))$.

Stability Given alternatives $C = \{c_1, c_2, \dots, c_m\}$, there exists a profile P such that:

1. P and $D_m(P)$ are both stable (slight modifications don't change the winner)

2.
$$f(P) = c_1$$

3.
$$f(D_m(P)) = c_2$$

Where D_m is defined such that if $D_m(P) = P'$, then $P|_{C \setminus c_m} = P'|_{C \setminus c_m}$ and the position of c_m is uniformly distributed in P'. For a formal definition of D_m and of "stability", see the original paper [XC08].

However, these conditions are stricter than the neutrality assumption of Friedgut, Kalai, and Nisan, in the sense that they do not capture all of the "common" voting rules, e.g. Bucklin.

Around the same time Dobzinski and Procaccia published complementary results for two voters and social choice functions satisfying unanimity (the Pareto principle) [DP08]. They proved the following:

Theorem 6 (Dobzinski and Procaccia). Let f be a Pareto-optimal SCF and let $n=2, m \geq 3$, and $\delta < \frac{1}{32m^9}$. If f is δ -strategyproof then f is $16m^8\delta$ -dictatorial.

We will translate these results into the same terms used by Friedgut, Kalai, and Nisan so that we can easily compare the results. According to Dobzinski and Procaccia, being δ -strategyproof means that f is manipulable with probability at most δ . This means that if

$$\sum_{i=1}^{n} M_i(f) \le \delta$$

then f is $16m^8\delta$ -near to dictatorship. If we let $\epsilon = 16m^8\delta$ then we get

$$\sum_{i=1}^{n} M_i(f) \le \frac{\epsilon}{16m^8}$$

implies f is ϵ -near to dictatorship. Or

$$\sum_{i=1}^{n} M_i(f) \ge \frac{\epsilon}{16m^8}$$

implies f is ϵ -far from dictatorship. And since $\delta < \frac{1}{32m^9}$, we have $\epsilon < \frac{1}{2m}$.

Theorem 7 (Dobzinski and Procaccia re-worded). Let f be a Pareto-optimal SCF and let $n=2, m \geq 3$, and $\epsilon < \frac{1}{2m}$. If $\sum_{i=1}^{n} M_i(f) \geq \frac{\epsilon}{16m^8}$ then f is ϵ -far from dictatorship.

The limitation of these results to two voters makes them unsuitable for application to political elections because any political election with only two voters seems meaningless. However, Dobzinski and Procaccia point out that even without extending these results there are some social choice situations which have only two voters but many alternatives — indeed these results are more interesting as the number of alternatives becomes very large. One example of this would be a couple deciding where to eat dinner. There are only two "voters", but there can be a huge number of alternatives to choose from. This kind of situation can also occur among artificial intelligence agents deciding among a vast number of alternatives.

In 2010 Isaksson, Kindler, and Mossel published a brilliant generalization of the original theorem of Friedgut, Kalai, and Nisan and even improved slightly upon the results [IKM10]. Translating their results into the terminology we have been using, they proved that for a neutral social choice function f with $m \geq 4$ alternatives and n voters that is ϵ -far from dictatorship, a uniformly chosen profile will be manipulable with probability at least $2^{-1}\epsilon^2 n^{-4} m^{-6} (m!)^{-3}$. In other words

$$\sum_{i=1}^{n} M_i(f) \ge \frac{\epsilon^2}{2n^4 m^6 (m!)^3}.$$

This bound allows the manipulating voter to randomly permute his entire preference list, which is the case considered by Friedgut, Kalai, and Nisan. However if we restrict him to permuting only four adjacent alternatives, Isaksson, Kindler, and Mossel showed that the bound becomes polynomial in the number of alternatives:

$$\sum_{i=1}^{n} M_i(f) \ge \frac{\epsilon^2}{10^4 n^3 m^{30}}.$$

Isaksson, Kindler, and Mossel used purely geometric and combinatorial methods to achieve their results. One of the foundational techniques they employed was the canonical path method [JS93]. Given a graph G, the canonical path method attempts to give a lower bound on the 'surface area' of a subset of vertices, A. Surface area is defined as the number of vertices

in A which have an edge to at least one vertex outside of A. Given two vertices x, y such that $x \in A$ and $y \notin A$, we call the path between them the canonical path, and clearly this path must contain at least one surface vertex. Then by proving that each surface vertex lies on at most r canonical paths, we bound the surface area of A below by $\frac{|A||\overline{A}|}{r}$ because the total number of total canonical paths is $|A||\overline{A}|$.

The graph used by Isaksson, Kindler, and Mossel is very similar to the one used by Friedgut, Kalai, and Nisan. It is also similar to the one used for the results in this thesis, except that ours is directed, and is missing certain edges.

Next we define the boundary of f with respect to alternatives a, b as

$$B_i^{a,b}(f) = \{(x,x') \mid f(x) = a, f(x') = b, \forall j \neq i : x_j = x_i'\}.$$

For any distinct alternatives a, b, c, d we construct canonical paths between $B_i^{a,b}$ and $B_j^{c,d}$ such that each path passes through a manipulation point. These paths are called manipulation paths.

We define manipulation paths between pairs of profiles in $B_i^{a,b}$ and $B_j^{c,d}$. In the first half of the path we will preserve the order or a,b, while in the second half of the path we will only modify the order of a,b and not any other alternatives. The length of the manipulation path will be 2n-3 because we are not modifying the last two indices. For any pair of profiles $(x,x') \in B_i^{a,b}$ and $(z,z') \in B_j^{c,d}$ we formally define the manipulation path as follows. The manipulation path is of the form:

$$(x^{(0)}, x'^{(0)}), \dots, (x^{(n-2)}, x'^{(n-2)}), (z^{(n-2)}, z'^{(n-2)}), \dots, (z^{(0)}, z'^{(0)})$$

such that $(x^{(0)}, x'^{(0)}) = (x, x')$ and $(z^{(0)}, z'^{(0)}) = (z, z')$. For all $k \in \{0, ..., n-2\}$, for all $s \in \{0, ..., n-2\}$ such that $s \neq k$ we restrict the path so that:

$$(x_s^{(k)}, x_s^{\prime(k)}) = (x_s^{(k-1)}, x_s^{\prime(k-1)}) \tag{4.1}$$

$$(z_s^{(k)}, z_s^{\prime(k)}) = (z_s^{(k-1)}, z_s^{\prime(k-1)}). \tag{4.2}$$

Now at the k^{th} step we update the k^{th} index to have the same ordering of a, b as $(x_k^{(0)}, x_k'^{(0)})$ and the same ordering of all other alternatives as $(z_k^{(0)}, z_k'^{(0)})$:

$$(x_k^{(0)}, x_k'^{(0)}) =_{\{a,b\}} (x_k^{(k)}, x_k'^{(k)}) =_{\overline{\{a,b\}}} (z_k^{(0)}, z_k'^{(0)})$$

$$(4.3)$$

$$(x_k^{(0)}, x_k'^{(0)}) =_{\{a,b\}} (z_k^{(k)}, z_k'^{(k)}) =_{\overline{\{a,b\}}} (z_k^{(0)}, z_k'^{(0)}). \tag{4.4}$$

Note that by the pairwise notation for defining a path: $(x^{(0)}, x'^{(0)}), (x^{(1)}, x'^{(1)})$, we mean that we have two paths of equal length: $x^{(0)}, x^{(1)}$ and $x'^{(0)}, x'^{(1)}$.

Additionally, by the notation $x_k =_D z_k$ we mean that the preference lists x_k and z_k have the same ordering for every alternative in the set D (see Definition 2.1.21).

We will perform a small example to illustrate how the above rules work together in forming the manipulation path. We use n=4 voters which means we will have a manipulation path of length 2n-3=5. Here, for simplicity, we show only x and z but the example for x' and z' is exactly the same.

step	0	1	2	2	1	0
1 st index 2 nd index 3 rd index 4 th index	x_1	y_1	y_1	y_1	y_1	z_1
2^{nd} index	x_2	x_2	y_2	y_2	z_2	z_2
$3^{\rm rd}$ index	x_3	x_3	x_3	z_3	z_3	z_3
$4^{\rm th}$ index	x_4	x_4	x_4	z_4	z_4	z_4

Here y_i for $i \in \{1, 2, 3, 4\}$ represents the result of Equation 4.3 (or 4.4 depending on whether it's on the x side or the z side). Therefore y_i can be defined as

$$x_i =_{\{a,b\}} y_i =_{\overline{\{a,b\}}} z_i$$

or in other words we get y_i by taking z_i and swapping a, b if necessary to ensure that their order is the same as in x_i .

Another example of a manipulation path is illustrated in Figure 4.1. In order to keep the figure simple we use n=3 and m=4 and only show one dimension (the "front") of the graph, when in reality it would be 3-dimensional. Notice that the n-1 and n (in this case $2^{\rm nd}$ and $3^{\rm rd}$) indices of the nodes differ. In this highly simplified example the $1^{\rm st}$ index of x, $x^{(1)}$, and z are all the same. Usually they would be different, but still following the constraint

$$x =_{\{a,b\}} x^{(1)} =_{\overline{\{a,b\}}} z.$$

We will now go through the example table step by step for the x side (left half); the z side is simply a mirror image of what happens in the x side. At step 0 we have $x^{(0)} = x$ because we specified above that our initial value was $(x^{(0)}, x'^{(0)}) = (x, x')$. At step 1 we first use Equation 4.1 to essentially copy over every index from step 0 except index 1 (because it is the k^{th} index during this step). We then apply Equation 4.3 to index 1 to get y_1 . At step 2 we again use Equation 4.1 to copy over every index from step 1 except for index 2 for which we use Equation 4.3 to get y_2 . We don't modify the last two indices because these are the only ones on which x, x' and z, z' differ: recall that $(x, x') \in B_{n-1}^{a,b}$ and $(z, z') \in B_n^{c,d}$.

Figure 4.1: A visual example of a manipulation path.

Lemma 8 (Lemma 5.1 of Isaksson, Kindler, and Mossel). For any SCF f, distinct $i, j \in \{1, \dots, n\}$ and distinct alternatives $a, b, c, d \in C$ there exists a mapping $h: B_i^{a,b}(f) \times B_j^{c,d}(f) \to M$ where

$$M = \{x \in P \mid f \text{ is manipulable at } x\}$$

such that for any $x \in M$

$$|h^{-1}(x)| \le 2n(m!)^{n+4}$$

Proof. Without loss of generality, let i=n-1 and j=n. We construct a manipulation path between $(x,x')\in B_i^{a,b}(f)$ and $(z,z')\in B_j^{c,d}(f)$. Notice

that (x, x') takes the values (a, b) while (z, z') takes the values (c, d) because f(x) = a, f(x') = b, f(z) = c, and f(z') = d. Our claim is that along this manipulation path is an edge (u, u'), (v, v') such that either

- 1. at least one of u, u', v, v' is a manipulation point
- 2. f takes on at least three values on the points u, u', v, v'.

In explanation, notice that there are at most three possible situations, and at least one of the above claims holds for each:

- On the first half of the path the value of the pair changes from (a, b) to something else. If the first value changes to b or the second value changes to a then we have a manipulation point because the ranking of a, b doesn't change on the first half of the path. Otherwise the values change to something other than a or b, so f takes at least three values at this point.
- On the second half of the path the value of the pair changes from (c, d) to something else moving from the end towards the middle. If the first value changes to d or the second value changes to c then we have a manipulation point because the ranking of c, d doesn't change on the second half of the path. Otherwise the values change to something other than c or d, so f takes at least three values at this point.
- The middle edge $(x^{(n-2)}, x'^{(n-2)}), (z^{(n-2)}, z'^{(n-2)})$ connects a pair with values (a, b) and (c, d). Clearly f takes on at least three values at this point.

Notice that u, u', v, v' agree in all but two indices which will be either $\{n-1, k\}, \{n, k\}, \text{ or } \{n-1, n\}$ depending on whether (u, u'), (v, v') is on the first half, on the second half, or is the middle edge of the path respectively. For example, if (u, u'), (v, v') is on the first half of the path u, u' and v, v' will both differ on the n-1 index because both pairs are in $B_{n-1}^{a,b}$. Additionally, u, v and u', v' will each differ on k^{th} index because of the definition of the manipulation path.

We claim that there exists a manipulation point h((x, x'), (z, z')) = y which only differs from u, u', v, v' on two indices. If Case 1 above holds, then we can let y be whichever one of u, u', v, v' is a manipulation point.

If Case 2 holds then we apply the Gibbard-Satterthwaite to a restricted version of f, which we will call f', which is f restricted to the two indices on

which u, u', v, v' differ. We call these indices k, p. First we define a mapping $g: L(C)^2 \to L(C)^n$ which maps profiles from f' to f.

$$g(x)_q = u_q \ \forall q \notin \{k, p\}$$

$$g(x)_k = x_1$$

$$g(x)_p = x_2.$$

We define the set of alternatives to be C where |C|=m and we define $f':L(C)^2\to C$ such that

$$f'(x) = f(g(x)).$$

If we apply the Gibbard-Satterthwaite theorem [Gib73, Sat75] to f' we will see that f' is manipulable since it is not a dictator and it takes on at least 3 values (because Case 2 holds). Therefore some x is a manipulation point for f', so g(x) is a manipulation point of f. And in fact g(x) differs from u, u', v, v' on only two indices so y = g(x).

The final step in the proof is to count the maximum number of pairs that could have lead to the manipulation point y and that will be simply the number of inverses of the mapping function: $|h^{-1}(f)|$. To begin with, we know that the length of the manipulation path between (x, x') and (z, z') is 2n-3. This gives us 2n-3 possibilities for (u, u'), (v, v'). In addition, given y there are at most $(q!)^2$ possibilities for u because it differs from y on at most two indices. We find that there are at most $(q!)^n$ possibilities for x and x as follows. For any $x \in \{1, \ldots, n\}$ we will have either:

- $u_k = x_k$ if u is on the first half of the path and k is an index that hasn't been updated by update we mean that it has been made to conform to $x_k =_{\{a,b\}} u_k =_{\overline{\{a,b\}}} z_k$. In this case there are q! possibilities for z_k because it can be any preference list.
- $u_k = z_k$ if u is on the second half of the path and k is an index that hasn't been updated. In this case there are q! possibilities for x_k because it can be any preference list.
- $x_k =_{\{a,b\}} u_k =_{\overline{\{a,b\}}} z_k$ if k is an index that has been updated. In this case there are $\frac{q!}{2}$ possibilities for x_k because only the order of a, b needs to match u_k , and there are 2 possibilities for z_k because the order of every alternative besides a, b needs to match u_k .

No matter which of the previous cases hold for each k, the total number of possibilities for x and z is still bounded above by $(q!)^n$.

Lastly, given x and z there are at most q! possibilitites for each of x' and z' respectively, since edges of the border set differ only in one index. Summing these we get:

$$|h^{-1}| \le (2n-3)(q!)^2(q!)^n(q!)(q!)$$

 $|h^{-1}| \le (2n-3)(q!)^{n+4}.$

One of the open problems of Friedgut, Kalai, and Nisan was finding a way "to replace the neutrality condition with the weaker 'correct' condition: being far from having a range of size at most 2. [FKN08]" In 2011, Friedgut et al. successfully achieved this themselves with the help of one additional author [FKKN11]. Most of the work required to replace the neutrality condition focuses on the first step of the original theorem, and their results are as follows.

Theorem 9. There exist universal constants C, C' > 0 such that for every $\epsilon > 0$ and any n the following holds:

• If F is an SCF on n voters and three alternatives, such that the distance of F from a dictatorship and from having only two alternatives in its range is at least ϵ , then

$$\sum_{i=1}^{n} M_i(F) \ge C \cdot \epsilon^6.$$

• If, in addition, F is neutral (that is, invariant under permutation of the alternatives), then:

$$\sum_{i=1}^{n} M_i(F) \ge C' \cdot \epsilon^2.$$

Mossel and Rácz [MR11] took ideas from these two proofs and created a unified proof with the same results as Isaksson, Kindler, and Mossel, but without the neutrality constraint. This is a very useful result is as follows.

Theorem 10. Suppose we have $n \ge 1$ voters, $m \ge 3$ alternatives, and a $SCF \ f : L(C)^n \to C$ satisfying $\mathbf{D}(f, NONMANIP) \ge \epsilon$. Then

$$\mathbb{P}(\sigma \in M(f)) \ge \mathbb{P}(\sigma \in M_4(f)) \ge p\left(\epsilon, \frac{1}{n}, \frac{1}{m}\right)$$

for some polynomial p, where $\sigma \in L(C)^n$ is selected uniformly. In particular, we show a lower bound of $\frac{\epsilon^{15}}{10^{39}n^{67}m^{166}}$.

An immediate consequence is that

$$\mathbb{P}((\sigma, \sigma') \text{ is a manipulation pair for } f) \geq q\left(\epsilon, \frac{1}{n}, \frac{1}{m}\right)$$

for some polynomial q, where $\sigma \in L(C)^n$ is uniformly selected, and σ' is obtained from σ by uniformly selecting a coordinate $i \in \{1, \ldots, n\}$, uniformly selecting $j \in \{1, \ldots, n-3\}$, and then uniformly randomly permuting the following four adjacent alternatives in $\sigma_i : \sigma_i(j), \sigma_i(j+1), \sigma_i(j+2)$, and $\sigma_i(j+3)$. In particular, the specific lower bound for $\mathbb{P}(\sigma \in M_4(f))$ implies that we can take $q(\epsilon, \frac{1}{n}, \frac{1}{m}) = \frac{\epsilon^{15}}{10^{41}n^{68}m^{167}}$.

Above the distance between SCFs is defined to be the fraction of inputs on which they differ: $\mathbf{D}(f,g) = \mathbb{P}(f(\sigma) \neq g(\sigma))$, and for a class of SCFs G we take the SCF with the minimum distance: $\mathbf{D}(f,G) = \min_{g \in G} \mathbf{D}(f,g)$. NONMANIP is defined to be the set of SCFs which are either dictators or take at most two values. Finally, M(f) denotes the set of manipulation points of the SCF f, and for a given r, let $M_r(f)$ denote the set of r-manipulation points of f (we only allow permuting r adjacent alternatives instead of the entire preference list).

Chapter 5

Results

In this chapter we will attempt to generalize step 3 of Friedgut by way of generalizing Friedgut's Lemma 6, Lemma 7, and Lemma 8. However, we will begin the chapter with some general lattice theory results that we will need later on in the chapter.

5.1 Lattice Theory

We are not aware of any existing proofs of these lemmas, but some of them are fairly elementary and have a broad application, so they could have previously been proven by others.

First we will prove, in three steps, that our inversion lattice remains a lattice when we enforce an order between two neighboring elements in the order. Recall from Definition 2.1.8 that in order to be a lattice the join and meet must exist for every pair of elements. Therefore Lemma 11 proves that the join exists, Lemma 12 proves that the meet exists (with similar reasoning), and Proposition 13 combines both lemmas to prove that our structure is indeed still a lattice.

Lemma 11. Let (Y, \leq) be a poset and let X = S(Y). Let (X, \leq_s) be a lattice, with \leq_s defined as in Definition 2.1.14. Let Inv be the inversion binary relation over Y as defined in Definition 2.1.10. Let \vee and \vee^{ij} denote the join in (X, \leq_s) and (X^{ij}, \leq_s^{ij}) respectively. Then for any $i, j \in Y$, if i is either a direct successor or a direct predecessor of j according to \leq_s , it holds that for all $x, y \in X^{ij}$:

$$\exists (x \vee y) \implies \exists (x \vee^{ij} y).$$

Proof. Assume $\exists (x \lor y)$. Let $z = x \lor y$. Then z is an upper bound of $\{x, y\}$:

$$z \geq_s x$$
 and $z \geq_s y$.

And z is the least upper bound of $\{x,y\}$. For every $a \in X$:

$$(a \ge_s x \text{ and } a \ge_s y) \implies z \le_s a.$$

Since $x \in X^{ij}$, then $(i,j) \notin Inv_x$. Since $z \geq_s x$, then $(i,j) \notin Inv_z$, so $z \in X^{ij}$. By definition $z \geq_s x \implies z \geq_s^{ij} x$ and $z \geq_s y \implies z \geq_s^{ij} y$. Therefore z is an upper bound of $\{x,y\}$ in X^{ij} .

For any $a \in X^{ij}$ if a is an upper bound of $\{x,y\}$ in X^{ij} then clearly a is also an upper bound of $\{x,y\}$ in X. Therefore $z \leq_s a$, so $z \leq_s^{ij} a$, which means $z = x \vee^{ij} y$. So clearly $x \vee^{ij} y$ exists.

Lemma 12. Let Y be a set and let X = S(Y). Let (X, \leq_s) be a lattice with \leq_s defined as above. Let Inv be the inversion binary relation over Y as defined above. Let \wedge and \wedge^{ij} denote the meet in (X, \leq_s) and (X^{ij}, \leq_s^{ij}) respectively. Then for any $i, j \in Y$, if i is either a direct successor or a direct predecessor of j according to \leq_s , it holds that for all $x, y \in X^{ij}$:

$$\exists (x \land y) \implies \exists (x \land^{ij} y).$$

Proof. Assume $\exists (x \land y)$. Let $z = x \land y$. Then z is a lower bound of $\{x, y\}$:

$$z \leq_s x$$
 and $z \leq_s y$.

And z is the greatest lower bound of $\{x,y\}$: for every $a \in X$:

$$(a \leq_s x \text{ and } a \leq_s y) \implies z \geq_s a.$$

We will now detour to show that $z \in X^{ij}$. Since $z = x \wedge y$, then $\operatorname{Inv}_z = (\operatorname{Inv}_x \cup \operatorname{Inv}_y)^t$ [Mar94]. Because $x, y \in X^{ij}$ we know that $(i, j) \notin (\operatorname{Inv}_x \cup \operatorname{Inv}_y)$. Therefore, in order to have $(i, j) \in (\operatorname{Inv}_x \cup \operatorname{Inv}_y)^t$ we would need to have $(i, k) \in \operatorname{Inv}_x$ and $(k, j) \in \operatorname{Inv}_y$ for any $k \in Y$, which is impossible because i is either a direct successor or a direct predecessor of j. Therefore $(i, j) \notin \operatorname{Inv}_z$, so $z \in X^{ij}$.

By definition $z \leq_s x \implies z \leq_s^{ij} x$ and $z \leq_s y \implies z \leq_s^{ij} y$. Therefore z is a lower bound of $\{x,y\}$ in X^{ij} .

For any $a \in X^{ij}$ if a is a lower bound of $\{x,y\}$ in X^{ij} then clearly a is also a lower bound of $\{x,y\}$ in X. Therefore $z \geq_s a$, so $z \geq_s^{ij} a$, which means $z = x \wedge^{ij} y$. So clearly $x \wedge^{ij} y$ exists.

Proposition 13. Let Y be a set and let X = S(Y). Let (X, \leq_s) be a lattice with \leq_s defined as above. Let Inv be the inversion binary relation over Y as defined above. Then for any $i, j \in Y$, if i is either a direct successor or a direct predecessor of j according to \leq_s , it holds that (X^{ij}, \leq_s^{ij}) is a lattice.

Proof. We know that $\exists (x \lor y)$ and $\exists (x \land y)$ because (X, \leq_s) is a lattice. Therefore by lemma 11 and lemma 12 we have $\exists (x \lor^{ij} y)$ and $\exists (x \land^{ij} y)$ respectively. So (X^{ij}, \leq_s^{ij}) is a lattice, by definition of a lattice.

Now we will show that a "grid" of lattices is also a lattice. For example, suppose we have the lattice in Figure 5.1. The top element is the greatest, and the arrows show the "less than" relationship between elements. Each column of numbers represents a ranking of alternatives 1, 2, 3 in which we don't care about the relationship between alternative 1 and 2 so we simply replace alternative 2 with 1 in the ranking. All this aside though, this proof is valid for any lattice.

Figure 5.1: A single dimension of lattice.

If we were to make that lattice into a 2-dimensional "grid" it would look like Figure 5.2. This would be the case if we only had two voters (n = 2).

Proposition 14. Let (X, \leq) be a lattice. Let X^n be the set of all n-tuples of elements of X. Let \leq^n be defined as: for all $x, y \in X$ and all $i \in \{1, \ldots, n\}$

$$x \leq^n y \iff x_i \leq y_i.$$

Figure 5.2: A 2-dimensional version of the lattice from Figure 5.1.

Then (X^n, \leq^n) is a lattice.

Proof. By definition of a lattice, (X^n, \leq^n) is a lattice if for any two elements $s, t \in S^n$, $s \vee t$ exists and $s \wedge t$ exists.

First we show that $s \vee t$ exists. We define $u \in X^n$ such that $u_i = s_i \vee t_i$, $\forall i \in \{1, ..., n\}$, and we show that $u = s \vee t$. Because $u_i = s_i \vee t_i$, we have

$$u_i \ge s_i$$
 and $u_i \ge s_i$

so

$$u >^n s$$
 and $u >^n t$

meaning that u is an upper bound for s and t. Suppose there is some $v \in X^n$ which is also an upper bound for s and t. Then $\forall i \in \{1, ..., n\}$ we have

$$v_i \geq s_i$$
 and $v_i \geq t_i$

so since $u_i = s_i \vee t_i$, then $u_i \leq v_i$. Therefore $u \leq^n v$, i.e. u is the least upper bound of $\{s,t\}$.

Second we show that $s \wedge t$ exists (by the same argument). We define $u \in X^n$ such that $u_i = s_i \wedge t_i$, $\forall i \in \{1, ..., n\}$, and we show that $u = s \wedge t$.

Because $u_i = s_i \wedge t_i$, we have

$$u_i \leq s_i$$
 and $u_i \leq s_i$

SO

$$u \leq^n s$$
 and $u \leq^n t$

meaning that u is a lower bound for s and t. Suppose there is some $v \in X^n$ which is also a lower bound for s and t. Then $\forall i \in \{1, ..., n\}$ we have

$$v_i \leq s_i$$
 and $v_i \leq t_i$

so since $u_i = s_i \wedge t_i$, then $u_i \geq v_i$. Therefore $u \geq^n v$, i.e. u is the greatest lower bound of $\{s,t\}$.

5.2 Main Theorem

Friedgut's main theorem is proved in three steps; the first two are already generalized. Therefore to generalize the main theorem we need only generalize the third step. This step is comprised of Lemma 6, Lemma 7, and lemma 8 which we will generalize one at a time. Therefore, Step 3 of Friedgut is our main theorem:

Theorem 15 (Lemma 3 of Friedgut). For every SCF f on m alternatives and every $a, b \in C$:

$$M^{a,b}(f) \le m! \cdot \sum_{i} M_i(f)$$

For the rest of the proof we will fix a SCF f.

5.3 Generalized Lemma 6 of Friedgut

For any preference profile $p \in P$ there are $(\frac{m!}{2})^n$ profiles x such that $x|_{\{a,b\}} = p|_{\{a,b\}}$. This is because there are m! possible preference lists; half of them will have the preference between a and b that agrees with $p|_{\{a,b\}}$ and half will disagree. For each voter this gives $\frac{m!}{2}$ possible preference lists which gives $(\frac{m!}{2})^n$ profiles comprised of these preference lists.

Definition 5.3.1. Let C be a set of alternatives. Let $a, b, c \in C$ be any three alternatives. Let $p \in L(C)^n$ be a preference profile for n voters, and let f be a SCF. We define

$$A_c^{a,b}(p) = \{x \in L(C)^n \mid x|_{\{a,b\}} = p|_{\{a,b\}}, f(x) = c\}$$

Therefore we can rewrite $M^{a,b}(f)$ as follows.

Lemma 16 (Lemma 6 of Friedgut). Let C be a set of alternatives. Let $a, b \in C$ be any two alternatives. Let m = |C| and let n be the number of voters. Let f be a SCF. We have

$$M^{a,b}(f) = E_{p \in L(C)^n} \left[\frac{|A_a^{a,b}(p)|}{\left(\frac{m!}{2}\right)^n} \cdot \frac{|A_b^{a,b}(p)|}{\left(\frac{m!}{2}\right)^n} \right]$$

Proof. This is just a rewording of the definition of $M^{a,b}(f)$.

5.4 Generalized Lemma 7 of Friedgut

We now attempt to relate $M_i(f)$ to A.

Let n be the number of voters. Let $C = \{1, ..., m\}$ be a set of alternatives, and let $a, b \in C$ be any two alternatives. We define an anonymized version of the alternatives as $C' = \{c_1, ..., c_m\}$, totally ordered as $c_1 < ... < c_m$.

Definition 5.4.1. C' is isomorphic to C and we define the mapping function $g^{a,b}: C \to C'$ such that

$$g^{a,b}(x) = \begin{cases} c_x & \text{if } x \in C \setminus \{1, 2, a, b\} \\ c_1 & \text{if } x = a \\ c_2 & \text{if } x = b \\ c_a & \text{if } x = 1 \\ c_b & \text{if } x = 2 \end{cases}$$

We define $G^{a,b}:L(C)\to L(C')$ such that

$$G^{a,b}(x) = (g^{a,b}(x_1), \dots, g^{a,b}(x_m))$$

Definition 5.4.2. We define the partial ordering, \leq_s^G , on L(C) such that for all $x, y \in L(C)$:

$$x \leq_s^g y \iff g^{a,b}(x) \leq_s g^{a,b}(y)$$

Clearly $(L(C), \leq_s^G)$ is a lattice.

Definition 5.4.3. We define the partial order $(\leq_s^G)^n$ on $L(C)^n$ such that for all $x, y \in L(C)^n$ and all $i \in \{1, ..., n\}$:

$$x(\leq^G_s)^n y \iff x_i \leq^G_s y_i$$

Clearly $(L(C)^n, (\leq_s^G)^n)$ is a lattice.

Definition 5.4.4. Let $p \in L(C)^n$. We define the *upper edge border* of $A_a^{a,b}(p)$, denoted $\partial A_a^{a,b}(p)$, to be the set of directed edges whose tail is in $A_a^{a,b}(p)$ and whose head is not in $A_a^{a,b}(p)$. Formally, for all $i \in \{1, \ldots, n\}$:

$$\partial_i A_a^{a,b}(p) = \{(x_{-i}, x_i, x_i') \mid (x_{-i}, x_i) \in A_a^{a,b}(p), (x_{-i}, x_i') \notin A_a^{a,b}(p), x_i <_s^G x_i'\}$$

and

$$\partial A_a^{a,b}(p) = \bigcup_j \partial_j A_a^{a,b}(p)$$

We define the upper edge border of $A_b^{a,b}(p)$ analogously.

Lemma 17. Let $p, p' \in L(C)^n$ be profiles such that for all $i \in \{1, ..., n\}$:

$$p_{-i} = p'_{-i} \text{ and}$$
$$p_i|_{a,b} = p'_i|_{a,b}$$

If either

$$(x_{-i}, x_i, x_i') \in \partial_i A_a^{a,b}(p)$$
 or $(x_{-i}, x_i, x_i') \in \partial_i A_b^{a,b}(p)$

then the pair p, p' corresponds to at least one successful manipulation.

Proof. By definition of the upper edge border we have

$$x_i \leq_s^G x_i'$$

And by definition of $A_a^{a,b}$ and $A_b^{a,b}$ we have

$$x_i|_{\{a,b\}} = x_i'|_{\{a,b\}}$$

For $(x_{-i}, x_i, x_i') \in \partial_i A_a^{a,b}(p)$, we know that $f((x_{-i}, x_i)) = a$ and $f((x_{-i}, x_i')) = t$ for $t \in C \setminus \{a\}$. If $t \succ_{x_i} a$ then x_i' is a successful manipulation of (x_{-i}, x_i) . Otherwise, $a \succ_{x_i} t$. If this is the case, then we know that $(a, t) \notin Inv_{x_i}$, and because $x_i \leq_s^G x_i'$ we have $(a, t) \notin Inv_{x_i'}$, which means $a \succ_{x_i'} t$. Therefore x_i is a successful manipulation of (x_{-i}, x_i') .

And analogously for $(x_{-i}, x_i, x_i') \in \partial_i A_b^{a,b}(p)$, either x_i' is a successful manipulation of (x_{-i}, x_i) or x_i is a successful manipulation of (x_{-i}, x_i') . \square

Lemma 18 (Lemma 7 of Friedgut).

$$M_i(f) \ge \frac{1}{m!} \left(\frac{m!}{2}\right)^{-n} E_x \left[|\partial_i A_a^{a,b}(p)| + |\partial_i A_b^{a,b}(p)| \right]$$

Proof. Recall the definition of $M_i(f)$: given a profile $p \in P$ and vote $p'_i \in V$ chosen uniformly at random, $M_i(f)$ is the probability that p'_i is a successful manipulation of p by voter i. Therefore to lower bound $M_i(f)$ we start with p and p'_i chosen uniformly at random. We can think of these as two distinct profiles, p and p', where $p' = (p_{-i}, p'_i)$.

Clearly $p_{-i}|_{\{a,b\}} = p'_{-i}|_{\{a,b\}}$, but we will have $p_i|_{\{a,b\}} = p'_i|_{\{a,b\}}$ only with probability $\frac{1}{2}$, and we condition the following on this being the case. So we have $p|_{\{a,b\}} = p'|_{\{a,b\}}$.

By lemma 17, each $(x_{-i}, x_i, x_i') \in (\partial_i A_a^{a,b}(p) \cup \partial_i A_b^{a,b}(p))$ corresponds to at least one successful manipulation. Note that if $(x_{-i}, x_i, x_i') \in \partial_i A_a^{a,b}(p)$ then $(x_{-i}, x_i', x_i) \notin \partial_i A_a^{a,b}(p)$.

Therefore we can lower bound $M_i(f)$ by the probability that an edge is in either $\partial_i A_a^{a,b}(p)$ or $\partial_i A_b^{a,b}(p)$. The total possible number of edges is

$$\frac{m!}{2} \cdot \frac{m!}{2} \cdot \left(\frac{m!}{2}\right)^{n-1} = \frac{m!}{2} \left(\frac{m!}{2}\right)^n$$

So the probability that a randomly chosen edge is in either $\partial_i A_a^{a,b}(p)$ or $\partial_i A_b^{a,b}(p)$ is

$$\frac{2}{m!} \left(\frac{2}{m!} \right)^n \cdot E \left[|\partial_i A_a^{a,b}(p)| + |\partial_i A_b^{a,b}(p)| \right]$$

Note that we can sum the probabilities for $\partial_i A_a^{a,b}(p)$ and $\partial_i A_b^{a,b}(p)$ because they are disjoint by the definition of the upper edge border; an edge cannot satisfy both $(x_{-i},x_i)\in A_a^{a,b}(p)$ and $(x_{-i},x_i)\in A_b^{a,b}(p)$ simultaneously because if $f((x_{-i},x_i))=a$ then $f((x_{-i},x_i))\neq b$ and vice versa.

We conditioned our analysis on $p_i = p'_i$, so then, our lower bound becomes

$$M_i(f) \ge \frac{1}{2} \cdot \frac{2}{m!} \left(\frac{2}{m!}\right)^n \cdot E\left[\left|\partial_i A_a^{a,b}(p)\right| + \left|\partial_i A_b^{a,b}(p)\right|\right]$$

And simplified

$$M_i(f) \ge \frac{1}{m!} \left(\frac{2}{m!}\right)^n \cdot E\left[\left|\partial_i A_a^{a,b}(p)\right| + \left|\partial_i A_b^{a,b}(p)\right|\right]$$

Summing over i we get

Corollary 19 (Corollary 1 of Friedgut).

$$\frac{1}{m!} \cdot \left(\frac{m!}{2}\right)^{-n} E_p[|\partial A_a^{a,b}(p)| + |\partial A_b^{a,b}(p)|] \le \sum_i M_i(f)$$

5.5 Generalized Lemma 8 of Friedgut

In this section we will fix candidates a, b and profile p, and for the sake of readability we will define the following.

First, we revise our previous definition to allow us to limit A and B to a specific set of lattice nodes, here referred to as X:

$$A_c^{a,b}(p,X) = \{x \in X \mid x|_{\{a,b\}} = p|_{\{a,b\}}, f(x) = c\}$$

Next we define shorthand for A and B:

$$A(X) = A_a^{a,b}(p, X)$$

$$B(X) = A_b^{a,b}(p, X)$$

and when we refer to A and B without parameters, we assume they are only limited to valid profiles:

$$A = A(V^n)$$

$$B = B(V^n)$$

We also rename the orderings:

$$\leq \text{is } \leq_s^G$$

 $\leq^n \text{is } (\leq_s^G)^n$

And finally, we recall (V^n, \leq^n) is our *n*-dimensional lattice, and that A and B reside in this space:

$$A\subseteq V^n$$

$$B \subseteq V^n$$

Lemma 20. For every disjoint A, B we have that

$$|\partial A| + |\partial B| \ge \left(\frac{2}{m!}\right)^n |A| \cdot |B|$$

Proof. We define A' to be a consolidation of A as follows. We start with A' = A. We iterate over $i \in \{1, ..., n\}$ and $(j_1, ..., j_{i-1}, j_{i+1}, ..., j_n) \in V^{n-1}$ and $k \in V$. We can view $p = (j_1, ..., j_{i-1}, k, j_{i+1}, ..., j_n)$ as a profile, i.e. $p \in P$. Let the current dimension be represented by the set $D = \{x | x \in V^n, x_{-i} = p_{-i}\}$. Let $z = \bigvee D$.

We know that either $z \notin A(D)$ or $z \notin B(D)$ because A, B are disjoint. If $z \notin A(D)$ then for each $x \in A'(D) \backslash B'(D)$ replace x with any $y \in B' \backslash A'$ (unless $B' \backslash A' = \emptyset$). Otherwise $z \notin B$ then for each $x \in B'(D) \backslash A'(D)$ we replace x with $y \in A' \backslash B'$ (unless $A' \backslash B' = \emptyset$). When we are finished with this, we have that either $A' \subseteq B'$ or $B' \subseteq A'$.

Note: in the Friedgut paper, he mentions the following condition, which I don't think holds here, but I'm not sure if we need it.

$$|\partial A'| \le |\partial A|$$
 and $|\partial B'| \le |\partial B|$

We will now show that

$$|A' \backslash A| \le |\partial A|$$
 and $|B' \backslash B| \le |\partial B|$

The only way for an element y' to be in $A' \setminus A$ is that we shifted it during one of the above iterations. We define y to be the original element before it was shifted to y'. We also (lazily) define i and D to be the same as they were in whichever iteration caused y to shift to enter $A' \setminus A$. Since $z = \bigvee D$ and $z \notin A(D)$, we know that $y_i \leq z_i$. So the edge $(z_{-i}, z_i, y_i) \in \partial_i A$ and therefore $(z_{-i}, z_i, y_i) \in \partial_i A$ as well.

Since every profile in $A' \setminus A$ corresponds to at least one profile in ∂A we know that

$$|A' \backslash A| < |\partial A|$$

and likewise for B':

$$|B'\backslash B| < |\partial B|$$

Since for any two votes $v_1, v_2 \in A \cup B$ we have $v_1|_{\{a,b\}} = v_2|_{\{a,b\}}$ we can define a new set

$$P' = \{ x \in P \mid x|_{\{a,b\}} = p|_{\{a,b\}} \}$$

and view A, B, A', and B' as residing in P' without losing any information. This is because any element in A, B, A', or B' cannot possibly be in $P \setminus P'$: by definition the elements of these sets agree with $p|_{\{a,b\}}$. Clearly $|P'| = (\frac{m!}{2})^n$. For any vote $v \in P'$, let $E_{A'}$ be the event that v is in A', and let $E_{B'}$ be

the event that v is in B'. Then

$$P(E_{A'} \cap E_{B'}) = P(E_{A'})P(E_{B'}|E_{A'})$$

Clearly

$$P(E_{A'} \cap E_{B'}) = \frac{|A' \cap B'|}{|P'|} \tag{5.1}$$

$$P(E_{A'}) = \frac{|A'|}{|P'|} \tag{5.2}$$

$$P(E_{B'}) = \frac{|B'|}{|P'|} \tag{5.3}$$

Since either $A' \subseteq B'$ or $B' \subseteq A'$, we have

$$P(E_{B'}|E_{A'}) \ge P(E_{B'})$$

Therefore

$$P(E_A \cap E_B) > P(E_A)P(E_B)$$

So by substitution from equations 5.1, 5.2, and 5.3 we get

$$\frac{|A' \cap B'|}{\left(\frac{m!}{2}\right)^n} \ge \frac{|A'|}{\left(\frac{m!}{2}\right)^n} \frac{|B'|}{\left(\frac{m!}{2}\right)^n}$$
$$= \frac{|A|}{\left(\frac{m!}{2}\right)^n} \frac{|B|}{\left(\frac{m!}{2}\right)^n}$$

However A and B are disjoint so

$$A' \cap B' \subseteq (A' \backslash A) \cup (B' \backslash B)$$

which completes the proof as follows

$$|A' \cap B'| \le |A' \setminus A| + |B' \setminus B|$$

$$|A' \cap B'| \le |\partial A| + |\partial B|$$

$$\frac{|A||B|}{\left(\frac{m!}{2}\right)^n} \le |\partial A| + |\partial B|$$

$$\left(\frac{2}{m!}\right)^n |A| \cdot |B| \le |\partial A| + |\partial B|$$

$$|\partial A| + |\partial B| \ge \left(\frac{2}{m!}\right)^n |A| \cdot |B|$$

5.6 Finished Step 3 of Friedgut

Lemma 6, 7, and 8 fit together as follows. First we define the variables L_6 , L_7 , and L_8 to be variable values that multiply each of the lemmas respectively. The values of these variables will change depending on the value of m, so we evaluate the lemmas in terms of these variables to be more general. We can define the lemmas in terms of these variables:

$$M^{a,b} = E[|A||B|] \cdot L_6$$
 lemma 6
$$L_7 \cdot E[|\partial A| + |\partial B|] \le \sum_i M_i$$
 lemma 7
$$\frac{1}{L_8} \cdot (|\partial A| + |\partial B|) \ge |A||B|$$
 lemma 8

Now we can solve for the result of step 3.

$$M^{a,b} = E[|A||B|] \cdot L_6 \qquad \text{by lemma 6}$$

$$M^{a,b} \leq E[|\partial A| + |\partial B|] \cdot \frac{L_6}{L_8} \qquad \text{by lemma 8}$$

$$M^{a,b} \leq \sum_i M_i \cdot \frac{L_6}{L_7 L_8} \qquad \text{by lemma 7}$$

If we can fully generalize this step and capture all of the v_i 's our results

will, possibly, look like this:

$$L_6 = \left(\frac{m!}{2}\right)^{-2n}$$

$$L_7 = \frac{1}{m!} \left(\frac{m!}{2}\right)^{-n}$$

$$L_8 = \left(\frac{m!}{2}\right)^{-n}$$

So we have that

$$\frac{L_6}{L_7 L_8} = \left(\frac{m!}{2}\right)^{-2n} \cdot m! \left(\frac{m!}{2}\right)^n \cdot \left(\frac{m!}{2}\right)^n$$

$$= \left(\frac{m!}{2}\right)^{-2n} \cdot m! \cdot \left(\frac{m!}{2}\right)^{2n}$$

$$= m!$$

And the final result for step 3 becomes

$$M^{a,b} \le \sum_{i} M_i \cdot m!$$

5.7 Main Theorem of Friedgut

Now we can use the Friedgut's generalized steps 1 and 2 along with our generalized version of step 3 to prove a general version of Friedgut's main theorem. We will restate Friedgut's generalized lemmas from step 1 and 2.

Lemma 21 (Lemma 1 of Friedgut). For every fixed m and $\epsilon > 0$ there exists $\delta > 0$ such that if $F = f^{\otimes {m \choose 2}}$ is a neutral IIA GSWF over m alternatives with $f: \{0,1\}^n \to \{0,1\}$, and $\Delta(f,DICT) > \epsilon$, then F has probability of at least $\delta \geq (C\epsilon)^{\lfloor m/3 \rfloor}$ of not having a Generalized Condorcet Winner, where C > 0 is an absolute constant.

Lemma 22 (Lemma 2 of Friedgut). For every fixed m there exists $\delta > 0$ such that for all $\epsilon > 0$ the following holds. Let f be a neutral SCF among m alternatives such that $\Delta(f, DICT) > \epsilon$. Then for all (a, b) we have $M^{a,b}(f) \geq \delta$.

And we restate our generalized version of Friedgut's Lemma 3.

Lemma 23 (Lemma 3 of Friedgut). For every SCF f on m alternatives and every $a, b \in A$, $M^{a,b} \leq \sum_i M_i \cdot m!$

With these three lemmas we can now prove a generalized version of Friedgut's main theorem.

Theorem 24 (Theorem 1 of Friedgut). There exists a constant C > 0 such that for every $\epsilon > 0$ the following holds. If f is a neutral SCF for n voters over 3 alternatives and $\Delta(f,g) > \epsilon$ for any dictatorship g, then f has total manipulatibity: $\sum_{i=1}^{n} M_i(f) \geq \frac{(C\epsilon)^{\lfloor m/3 \rfloor}}{m!}$.

Proof. Lemma 22 gives us

$$M^{a,b}(f) \ge \delta$$

and by substituting the result from Lemma 21 for δ we get

$$M^{a,b}(f) \ge \delta \ge (C\epsilon)^{\lfloor m/3 \rfloor}$$

 $M^{a,b}(f) \ge (C\epsilon)^{\lfloor m/3 \rfloor}$

We then relate $M^{a,b}$ to M_i by Lemma 23

$$\sum_{i=1}^{n} M_i(f) \cdot m! \ge M^{a,b}(f) \ge (C\epsilon)^{\lfloor m/3 \rfloor}$$

$$\sum_{i=1}^{n} M_i(f) \cdot m! \ge (C\epsilon)^{\lfloor m/3 \rfloor}$$

$$\sum_{i=1}^{n} M_i(f) \ge \frac{(C\epsilon)^{\lfloor m/3 \rfloor}}{m!}$$

Chapter 6

Conclusion

Placeholder.

Bibliography

- [Arr50] K.J. Arrow. A difficulty in the concept of social welfare. The Journal of Political Economy, 58(4):328–346, 1950.
- [Arr63] K.J. Arrow. Social choice and individual values. Number 12. Yale Univ Pr, 1963.
- [Bir67] G. Birkhoff. Lattice theory. American Mathematical Society, 1967.
- [Bir95] G. Birkhoff. *Lattice theory*, volume 25. Amer Mathematical Society, 1995.
- [BNM+98] D. Black, R.A. Newing, I. McLean, A. McMillan, and B.L. Monroe. The theory of committees and elections. Kluwer Academic Pub, 1998.
- [BO91] J.J. Bartholdi and J.B. Orlin. Single transferable vote resists strategic voting. *Social Choice and Welfare*, 8(4):341–354, 1991.
- [Bor81] J.C. Borda. Mémoire sur les élections au scrutin. *Histoire de lacadémie royale des sciences*, 2:85, 1781.
- [Bra82] S.J. Brams. The ams nomination procedure is vulnerable to truncation of preferences. *Notices of the American Mathematical Society*, 29(2):136–138, 1982.
- [BTT89a] J. Bartholdi, C.A. Tovey, and M.A. Trick. Voting schemes for which it can be difficult to tell who won the election. *Social Choice and welfare*, 6(2):157–165, 1989.
- [BTT89b] J.J. Bartholdi, C.A. Tovey, and M.A. Trick. The computational difficulty of manipulating an election. *Social Choice and Welfare*, 6(3):227–241, 1989.

[CDE+06] Y. Chevaleyre, P.E. Dunne, U. Endriss, J. Lang, M. Lemaitre, N. Maudet, J. Padget, S. Phelps, J.A. Rodriguez-Aguilar, and P. Sousa. Issues in multiagent resource allocation. Special Issue: Hot Topics in European Agent Research II Guest Editors: Andrea Omicini, 30:3–31, 2006.

- [CELM07] Y. Chevaleyre, U. Endriss, J. Lang, and N. Maudet. A short introduction to computational social choice. SOFSEM 2007: Theory and Practice of Computer Science, pages 51–69, 2007.
- [CS02] V. Conitzer and T. Sandholm. Vote elicitation: Complexity and strategy-proofness. In *PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE*, pages 392–397. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2002.
- [CS03] V. Conitzer and T. Sandholm. Universal voting protocol tweaks to make manipulation hard. Arxiv preprint cs/0307018, 2003.
- [CS06] V. Conitzer and T. Sandholm. Nonexistence of voting rules that are usually hard to manipulate. In *Proceedings of the National* Conference on Artificial Intelligence, volume 21, page 627. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.
- [CSL07] V. Conitzer, T. Sandholm, and J. Lang. When are elections with few candidates hard to manipulate? *Journal of the ACM* (*JACM*), 54(3):14, 2007.
- [dem11] Democracy. Encyclopedia Britannica, 2011. Retrived from http://www.britannica.com/EBchecked/topic/157129/ democracy.
- [DK77] G. Doron and R. Kronick. Single transferrable vote: an example of a perverse social choice function. *American Journal of Political Science*, pages 303–311, 1977.
- [Dod76] C.L. Dodgson. A method of taking votes on more than two issues. *The theory of committees and elections*, pages 222–234, 1876.
- [DP08] S. Dobzinski and A. Procaccia. Frequent manipulability of elections: The case of two voters. *Internet and Network Economics*, pages 653–664, 2008.

[DS00] J. Duggan and T. Schwartz. Strategic manipulability without resoluteness or shared beliefs: Gibbard-Satterthwaite generalized. *Social Choice and Welfare*, 17(1):85–93, 2000.

- [EHRS07] G. Erdélyi, L. Hemaspaandra, J. Rothe, and H. Spakowski. On approximating optimal weighted lobbying, and frequency of correctness versus average-case polynomial time. In *Fundamentals* of Computation Theory, pages 300–311. Springer, 2007.
- [EL05a] E. Elkind and H. Lipmaa. Hybrid voting protocols and hardness of manipulation. *Algorithms and Computation*, pages 206–215, 2005.
- [EL05b] E. Elkind and H. Lipmaa. Small coalitions cannot manipulate voting. Financial Cryptography and Data Security, pages 578–578, 2005.
- [FB83] P.C. Fishburn and S.J. Brams. Paradoxes of preferential voting. Mathematics Magazine, 56(4):207–214, 1983.
- [FHH06] P. Faliszewski, E. Hemaspaandra, and L.A. Hemaspaandra. The complexity of bribery in elections. In PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, volume 21, page 641. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.
- [FKKN11] E. Friedgut, G. Kalai, N. Keller, and N. Nisan. A quantitative version of the gibbard-satterthwaite theorem for three alternatives. *Arxiv preprint arXiv:1105.5129*, 2011.
- [FKN08] E. Friedgut, G. Kalai, and N. Nisan. Elections can be manipulated often. In IEEE 49th Annual IEEE Symposium on Foundations of Computer Science, 2008. FOCS'08, pages 243–249, 2008.
- [Gib73] A. Gibbard. Manipulation of voting schemes: a general result. Econometrica: journal of the Econometric Society, 41(4):587–601, 1973.
- [Hei52] William Heinemann. Aristotle in 23 Volumes, volume 20. Harvard University Press, 1952. Translated by H. Rackham.

[HHR07] E. Hemaspaandra, L.A. Hemaspaandra, and J. Rothe. Anyone but him: The complexity of precluding an alternative. *Artificial Intelligence*, 171(5):255–285, 2007.

- [HHR09] E. Hemaspaandra, L.A. Hemaspaandra, and J. Rothe. Hybrid elections broaden complexity-theoretic resistance to control.

 Mathematical Logic Quarterly, 55(4):397–424, 2009.
- [Hol89] R. Holzman. To vote or not to vote: what is the quota? Discrete Applied Mathematics, 22(2):133–141, 1989.
- [HP01] G. Hägele and F. Pukelsheim. Llull's writings on electoral systems. *Studia Lulliana*, 41(97):3–38, 2001.
- [IKM10] M. Isaksson, G. Kindler, and E. Mossel. The geometry of manipulation: A quantitative proof of the gibbard-satterthwaite theorem. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages 319–328. IEEE, 2010.
- [JS93] M. Jerrum and A. Sinclair. Polynomial-time approximation algorithms for the ising model. SIAM Journal on computing, 22(5):1087–1116, 1993.
- [Kun80] K. Kunen. Set theory: An introduction to independence proofs, volume 102. Elsevier Science, 1980.
- [lmdCC85] M. le marquis de Condorcet and A.N. Caritat. Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix. 1785.
- [LP98] R. Lidl and G. Pilz. Applied abstract algebra. Springer Verlag, 1998.
- [Mar94] G. Markowsky. Permutation lattices revised. *Mathematical Social Sciences*, 27(1):59–72, 1994.
- [Mou88] H. Moulin. Condorcet's principle implies the no show paradox. Journal of Economic Theory, 45(1):53–64, 1988.
- [MR11] E. Mossel and M.Z. Rácz. A quantitative gibbard-satterthwaite theorem without neutrality. *Arxiv preprint arXiv:1110.5888*, 2011.

[OR02] JJ OConnor and EF Robertson. The history of voting. Retrived from http://www-gap.dcs.st-and.ac.uk/~history/HistTopics/Voting.html, 2002.

- [PR06] A.D. Procaccia and J.S. Rosenschein. Junta distributions and the average-case complexity of manipulating elections. In *Proceedings of the fifth international joint conference on Autonomous agents and multiagent systems*, pages 497–504. ACM, 2006.
- [PR07] A.D. Procaccia and J.S. Rosenschein. Average-case tractability of manipulation in voting via the fraction of manipulators. In *Proc. AAMAS*, volume 7, 2007.
- [PRZ07] A.D. Procaccia, J.S. Rosenschein, and A. Zohar. Multi-winner elections: Complexity of manipulation, control and winner-determination. In *Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI)*, pages 1476–1481, 2007.
- [Sat75] M.A. Satterthwaite. Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions* 1. *Journal of Economic Theory*, 10(2):187–217, 1975.
- [XC08] L. Xia and V. Conitzer. A sufficient condition for voting rules to be frequently manipulable. In *Proceedings of the 9th ACM Conference on Electronic Commerce*, pages 99–108. ACM, 2008.