Full-stack Quantum Machine Learnig

Matteo Robbiati

28 September 2023

A snapshot of Quantum Computing

ightharpoonup Classical bits are replaced by **qubits**: $|q\rangle=\alpha_0\,|0\rangle+\alpha_1\,|1\rangle$;

- **?** Classical bits are replaced by **qubits**: $|q\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$;
- we modify the qubits state by applying unitaries, which we call gates;

- ightharpoonup Classical bits are replaced by **qubits**: $|q\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$;
- we modify the qubits state by applying unitaries, which we call gates;
- we extract information by calculating expected values:

$$\langle q_i | \mathcal{C}^{\dagger}(\theta) \hat{O} \, \mathcal{C}(\theta) | q_i \rangle$$
,

with $C(\theta)$ parametric circuit, $|q_i\rangle$ initial qubit's state and \hat{O} arbitrary observable.

Quantum Machine Learning

Quantum Machine Learning - doing ML using QC

Machine Learning

 \mathcal{M} : model;

O: optimizer;

 \mathcal{J} : loss function. (x,y): data

Quantum Computation

Q: qubits;

 \mathcal{S} : superposition;

 \mathcal{E} : entanglement.

Quantum Machine Learning - operating on qubits

Machine Learning

 \mathcal{M} : model;

 \mathcal{O} : optimizer; \mathcal{J} : loss function.

(x,y): data

Quantum Computation

Q: qubits;

 \mathcal{S} : superposition;

 \mathcal{E} : entanglement.

 $|0\rangle$ $R_s(\theta_\delta)$ $R_s(\theta_\delta)$ $R_s(x)$

Quantum Machine Learning - natural randomness

Quantum Machine Learning - encoding the problem

Quantum Machine Learning!

Full-stack QML

Some results

High level API: Qibo

- </> define prototypes;
- </> implement training loop;
- </>> simulate training.

Calibration: Qibocal

- calibrate qubits;
- generate platform configuration;

Execution: Qibolab

- allocate calibrated platform;
- compile and transpile circuits;
- execute the model and return results.

Parameter	Value
$N_{ m data}$	50
$N_{ m shots}$	500
MSE	50
Electronics	Xilinx ZCU216
Training time	2h

Determining Probability Density Functions (PDF) by fitting the corresponding Cumulative Density Function (CDF) using an adiabatic QML ansatz.

Algorithm's summary:

1. we optimize the parameters θ of the following adiabatic evolution:

$$H_{\rm ad}(\tau;\theta) = [1 - s(\tau;\theta)]\hat{X} + s(\tau;\theta)\hat{Z}$$
 (1)

in order to approximate some target CDF values with $\hat{F}(x_k \equiv \tau) = \langle \psi(\tau) | \hat{Z} | \psi(\tau) \rangle$;

- 2. we derivate from $H_{\rm ad}$ a circuit $C(\tau; \theta)$ whose action on the GS of \hat{X} returns $|\psi(\tau)\rangle$;
- 3. the circuit at step 2. can be used to calculate the CDF;
- 4. we compute the PDF by derivating ${\cal C}$ with respect to au using the Parameter Shift Rule.

Use Variational Quantum Circuits to calculate multi-dimensional integrals of the form:

$$I(\alpha) = \int_{x_3}^{x_b} g(\alpha; \mathbf{x}) d^n \mathbf{x}.$$
 (2)

Algorithm's summary:

- inspired by arXiv:2211.02834, we train the derivative of a VQC with respect to the integral variables x to approximate the integrand g(x);
- 2. the derivatives are computed using the Parameter Shift Rule and this allows the same circuit \mathcal{C} to be used for approximating any integrand marginalisation and the primitive!
- 3. thanks to 2., it's much more convenient to compute Eq. (2) when varying α .

• Cleaning up the parameters space with a real time error mitigation strategy in order to overcome Noise-Induced Barren Plateaus (NIBP) when training a QML model.

Algorithm's summary:

1. we mitigate all the expected values E through Clifford Data Regression (CDR):

$$E_{\rm mit} = \alpha_{\rm cdr} E_{\rm noisy} + \beta_{\rm cdr};$$
 (3)

- 2. reduced CDR computational cost by updating $(\alpha, \beta)_{cdr}$ periodically during the training;
- 3. the mitigation removes the bounds and accelerate the training process.

