

MEMORANDUM REPORT ARBRL-MR-02853

SIMULATION OF LOW LEVEL EXPLOSIVES BLAST LOADINGS AT FULL SCALE BY MODIFICATIONS TO BRL DUAL SHOCK TUBE FACILITY

Edmund J. Gion

July 1978

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND

BALLISTIC RESEARCH LABORATORY

ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

	BEFORE COMPLETING FORM
	O. 3. RECIPIENT'S CATALOG NUMBER
MEMORANDUM REPORT/ARBRL-MR-Ø2853	(7)
TITLE (and Subtitle)	TYPE OF REPORT & PERIOD COVERED
SIMULATION OF LOW LEVEL EXPLOSIVES BLAST	+ /
LOADINGS AT FULL SCALE BY MODIFICATIONS TO BRL	Final rept;
DUAL SHOCK TUBE FACILITY.	6. PERFORMING ORG. REPORT NUMBER
The Committee of the Co	
AUTHOR(a)	B. CONTRACT OR GRANT NUMBER(8)
The second secon	
Edmund 1 (Cian	
Edmund J. Gion	
U.S. Army Ballistic Research Laboratory	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
ATTN: DRDAR-BLL	
Aberdeen Proving Ground, MD 21005	
I. CONTROLLING OFFICE NAME AND ADDRESS .S. Army Armament Research & Development Command	JULM 1978
S. Army Ballistic Research Laboratory	13 NUMBER OF PAGES
TTN: DRDAR-BL	12
perdeen Proving Ground, MD 21005 4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
Ch I	
(12)440.	UNCLASSIFIED
	154. DECLASSIFICATION DOWNGRADING
()	SCHEDULE
DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unlimit	,
(8) SBIE (9)AD-E430	104
(18) SBIE (19) AD-E4/30 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different to	104
(8) SBIE (9)AD-E430 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different to	104
(18) SBJE (19)AD-E4/30 T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different to	104
18 SBIE (19) AD-E4/30 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 different for the	104
18 SBJE (19) AD -E 4/30 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in the supplementary notes 8. SUPPLEMENTARY NOTES	104
18 SBJE (19) AD -E4/30 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different to the abstract entered in Block 20, if different entered in Block 20, if different entered in Block 20, if different entered in Block 20, if dif	104
B. SUPPLEMENTARY NOTES 8. SUPPLEMENTARY NOTES 8. KEY WORDS (Continue on reverse side if necessary and identity by block number Shock Tubes Blast Waves	104
B. SUPPLEMENTARY NOTES 8. SUPPLEMENTARY NOTES 8. KEY WORDS (Continue on reverse side if necessary and identity by block number Shock Tubes Blast Waves Simulated Blast Waves	104
B. SUPPLEMENTARY NOTES 8. SUPPLEMENTARY NOTES 8. KEY WORDS (Continue on reverse side if necessary and identity by block number Shock Tubes Blast Waves Simulated Blast Waves	104
B. SUPPLEMENTARY NOTES 8. SUPPLEMENTARY NOTES 8. KEY WORDS (Continue on reverse side if necessary and identity by block number Shock Tubes Blast Waves Simulated Blast Waves Blast from Explosives	104
B. SUPPLEMENTARY NOTES 8. SUPPLEMENTARY NOTES 8. KEY WORDS (Continue on reverse side if necessary and identity by block number Shock Tubes Blast Waves Simulated Blast Waves Blast from Explosives	101/
8. SUPPLEMENTARY NOTES 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identity by block number Shock Tubes Blast Waves Simulated Blast Waves Blast from Explosives 9. ADSTRACT (Continue on reverse side if necessary and identity by block number of the state	101/ from Report)
8. SUPPLEMENTARY NOTES 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identity by block number Shock Tubes Blast Waves Simulated Blast Waves Blast from Explosives 9. ADSTRACT (Continue on reverse side if necessary and identity by block number A concept is described permitting "full scal	(ner) e' testing of walls, of 3.7m
8. SUPPLEMENTARY NOTES 8. SUP	(ner) e' testing of walls, of 3.7m
B. SUPPLEMENTARY NOTES 8. SUP	(ner) e' testing of walls, of 3.7m
B. SUPPLEMENTARY NOTES 8. SUP	(ner) e' testing of walls, of 3.7m adings with pressures
B. SUPPLEMENTARY NOTES 8. SUP	(ner) e' testing of walls, of 3.7m adings with pressures tube with modification was

3 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFICATION OF THIS PAGE (When Date Entered)

cont.

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered

It is added to the 2.4m driver section to accommodate full scale test dimensions. The normal straight shock tube operating cycle is then extended by testing at a location where the reflected expansion waves from the breech overtake and weaken the shock. The resulting pressure loading is a decaying pulse (i.e., blast-wave type) with determinable duration.

A requirement on the loading duration may conversely be used to specify the appropriate tube lengths involved. The methods are described which account for the differences in operation between a straight and an areachanged shock tube, which apparently have not been done before for the subsonic conditions encountered here.

TABLE OF CONTENTS

		Page
	LIST OF FIGURES	. 5
	LIST OF TABLES	. 7
I.	INTRODUCTION	. 9
II.	DETERMINATION OF DRIVER PRESSURE	. 10
III.	DETERMINATION OF POSITIVE PULSE DURATION	. 16
	A. Wave Advance in the Straight Shock Tube	. 16
	B. Determination of Wave Speeds	. 17
	C. Sample Calculated Wave Speeds and Results	. 21
IV.	CONCLUSIONS	. 24
	ACKNOWLEDGMENT	. 25
	LIST OF REFERENCES	
	DISTRIBUTION LIST	

NTIS	White Section
DDC	Buff Section
UNANNOUS	NCED 🗆
JUSTIFICA	TION
BY	
DISTRIBUT	TION/AVAILABILITY CODES
DISTRIBUT	TION/AVAILABILITY CODES VAIL and/or SPECIAL

78 09 12 017

LIST OF FIGURES

Figure		Page
1.	BRL Dual Shock Tube Facility	26
2.	Wave Diagram of Idealized Shock Tube with Area Change at Diaphragm	26
3.	Graphical Solution to Equation (8): Curves Z_{3a} and Z_{3} as a Function of Mach number	
4.	Driver Pressure - Testing Pressure for 2.4m: 3.7m (8':12') Area Changed Shock Tube	27
5.	Wave Interactions and Pressures at Stations x: Straight Shock Tube	28
6.	Wave Diagram Illustrating Driver Tube Lengths Relationship	28

5

1. INTRODUCTION

Recently, the Army has shown interest in minimizing "collateral damage" to civilian areas and to friendly troops. This interest has created a need for facilities to permit "full scale" testing under simulated low-level blast loadings caused by explosive charges. ("Full scale" walls would be of realistic sizes wherein regular construction materials and methods are useable.) The need for such facilities apparently has not been met satisfactorily. Facilities exist, e.g. the DASACON conical tube at Dahlgren, Virginia, permitting full scale testing; yet operationally they may have shortcomings: expense of operation in terms of manpower and/or energy requirements or, inadequate simulation of the waveform characteristics of conventional explosive blast waves. In response to an Army request involving such full scale testing, we have studied a possible modification of the 2.4m (8') tube portion of the existing BRL Dual Shock Tube Facility^{1,2}, Figure 1 from Reference 1, to give the desired testing parameters - acceptance of walls to 3.7m (12') height, subjected to peaked pressure pulses up to 70 kPa (10 psi) of ∿ 50ms positive duration.

Testing beyond the open end was not considered because of the jet-like characteristics of the flow emitted. Close in, pressures are uneven across a planar surface immersed normal to the flow, a result predicted from a simple model, and found in early experiments by Bertrand². Farther away, when the shock is more planar, the desired pressure levels are not assured under the tube's operating limits.

The modification considered is basically an adjustment on the driver/driven tube lengths and test station location to give the desired pressure wave form, and is a somewhat natural extension of the classical shock tube operation cycle, but with an area change. The peaked pressure waveform is obtained by testing at stations within a distance interval defined by the intersection of the leading and trailing waves of the breech-reflected expansion fan with the primary shock. The interaction of the expansion waves with the shock weakens it, thereby giving the desired decaying pressure pulse. The flow in an equivalent straight shock tube is used to follow the wave processes. Specifying the desired positive duration of the peaked wave then determines the appropriate tube lengths, for the straight tube, then, by imposing a simple physical requirement, these tube lengths can be carried over to determine the desired area-changed tube lengths.

^{1.} B. P. Bertrand, "BRL Dual Shock Tube Facility," BRL MR 2001, U. S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, August 1969. AD 693264.

^{2.} B. P. Bertrand, "Proposed Improvement of BRL Dual Shock Tube Facility," BRL Technical Note No. 1733, U. S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, April 1970. AD 871736.

The driving pressures for the area-changed shock tube are computed following the methods of Alpher and White, who also treated area-changed shock tubes but whose interests were in stronger shocks, with the driver tube looking into a smaller area driven tube. The principal features of our calculations apparently have not previously been done explicitly for the subsonic flows occurring here and up to the wave interaction regions involved. Results are presented of calculations for the driver pressures for the 2.4m tube for several test conditions, involving two different (larger) areas of driven tube.

II. DETERMINATION OF DRIVER PRESSURE

The flow situation for the area-changed tube is depicted in Figure 2, along with its wave diagram or x-t plot. Following Alpher and White, we may write the expression for the diaphragm pressure ratio $\rm p_{4c}/\rm p_1$, after the diaphragm is broken and flow processes are established, as (ideal, one-dimensional flow throughout)

$$\frac{P_{4c}}{P_1} = \frac{P_{4c}}{P_{3a}} \frac{P_{3a}}{P_3} \frac{P_3}{P_2} \frac{P_2}{P_1} \tag{1}$$

The pressure ratios in the expression are interpreted to be

 p_{4c}/p_{3a} - the pressure (ratio) required to expand unsteadily the gas in region 4 from rest to a Mach number M_{3a} ;

 $\rm p_{3a}/\rm p_{3}$ - the pressure required to expand steadily the gas from $\rm M_{3a}$ to $\rm M_{3}^{*};$

 p_3/p_2 - the pressure across the contact surface separating driver- from driven-gas, with $p_3 = p_2$;

 p_2/p_1 - the pressure required to compress the test gas in region 1 through the shock of strength M_1 or M_2 .

Assuming the processes are isentropic and accounting for the steady or unsteady nature, we may write Equation (1) as

^{3.} R. A. Alpher and D. R. White, "Flow in Shock Tubes with Area Change at the Diaphragm Section," J. Fluid Mech 3, 457-70 (1958).

^{*}For subsonic flow M < 1, a steady expansion is more efficient in the conversion of thermal to kinetic energy than an unsteady expansion.

^{4.} E. L. Resler, Shao-Chi Lin, and Arthur Kantrowitz, "The Production of High Temperature Gases in Shock Tubes," J. Appl. Phys. 23, 1390-99 (1952).

LIST OF TABLES

Table	Page
IA	Parameters for Test Flows
IB	Calculated Nozzle Mach Numbers and Driver Pressures
II	Calculated (Absolute) Driver Pressures for 1.7m(5½) Diameter Tube Operating in Tailored-Interface Mode

$$\frac{P_{4c}}{p_{1}} = \left\{ (1 + \frac{\gamma_{4}^{-1}}{2} M_{3a}) \left[\frac{2 + (\gamma_{4}^{-1}) M_{3}^{2}}{2 + (\gamma_{4}^{-1}) M_{3a}^{2}} \right]^{\frac{1}{2}} \right\} \frac{p_{2}}{p_{1}}$$
 (2)

In regular shock tube testing, the gases in regions 1 and 4 are usually specified, as is the desired test overpressure; thus a driver pressure can be determined. In the area-changed tube the unknowns are p_{4c} as well as M_3 and M_{3a} . Equations to connect these are the expression for isentropic nozzle flow in terms of the nozzle areas:

$$\frac{A_4}{A_1} = \frac{M_3}{M_{3a}} \left[\frac{2 + (\gamma_4 - 1) M_{3a}^2}{2 + (\gamma_4 - 1) M_3^2} \right]$$
 (3)

and an expression connecting M3 with the driven gas:

$$M_{3} = \frac{u_{3}}{a_{3}} = \frac{u_{3}/a_{1}}{a_{3}/a_{1}} = \frac{u_{2}/a_{1}}{(a_{3}/a_{3}a_{2}) \cdot (a_{3}/a_{4}) \cdot (a_{4}/a_{1})}$$
(4)

where a similar decomposition into steady-unsteady processes as in Equation (1) is made, and results in:

$$M_{3} = \frac{(u_{2}/a_{1})(a_{1}/a_{4})}{\frac{2+(\gamma_{4}-1) M_{3a}^{2}}{[2+(\gamma_{4}-1) M_{3}^{2}]} \frac{1}{2}} \frac{2}{2+(\gamma_{4}-1) M_{3a}}$$
(5)

We now combine Equation (5) with Equation (2) and rewrite (2) as

$$\frac{p_{4c}}{p_1} = \frac{(u_2/a_1) (a_1/a_4)}{M_3} \qquad p_2/p_1$$
 (6)

Equations (5), (6) and (3) may then be used to determine the required driver pressure p_{4c} , knowing the desired testing pressure p_2/p_1 and the nozzle area ratio A_4/A_1 . Solution techniques - e.g. the Newton-Raphson method or iteration - may be used on this system of equations.

We have used a graphical procedure offering some simplicity and utility to the worker at the site. This is now illustrated. From Equation (3) we have

$$\left(\frac{A_4}{A_1} \frac{M_{3a}}{M_3}\right)^{\frac{\gamma_4 - 1}{\gamma_4 + 1}} = \left[\frac{2 + (\gamma_4 - 1) M_{3a}^2}{2 + (\gamma_4 - 1) M_3^2}\right]^{1/2},$$

which, on substituting into Equation (5), gives

$$M_{3} = \frac{(u_{2}/a_{1}) (a_{1}/a_{4})}{\frac{\gamma_{4}-1}{\gamma_{4}+1}} \left(\frac{A_{4}}{A_{1}} \frac{M_{3a}}{M_{3}}\right)^{\frac{\gamma_{4}-1}{\gamma_{4}+1}} \frac{2}{2+(\gamma_{4}-1) M_{3a}}$$
(7)

Or rearranging

$$\frac{\frac{\gamma_{4}^{-1}}{\gamma_{4}^{+1}}}{\frac{(\alpha_{4}/A_{1})}{(\alpha_{2}/a_{1})}} \frac{\frac{2}{\gamma_{4}^{+1}}}{M_{3}} = \frac{2 + (\gamma_{4}^{-1}) M_{3a}}{\frac{\gamma_{4}^{-1}}{\gamma_{4}^{+1}}} M_{3a}$$
(8)

The right hand side of Equation (8) determines a curve Z_{3a} plotted vs Mach number; similarly, the left hand side determines a curve Z_3 (a straight line on a log-log plot). Thus for given p_2/p_1 or (u_2/a_1) (a_1/a_4) - and A_4/A_1 , the points $Z_3 = Z_{3a}$ determine the Mach numbers M_{3a} and M_3 upstream and downstream, respectively, of the nozzle, and in particular M_3 of Equation (6) and, thereby, the required driver pressure p_{4c} .

Some sample values have been calculated for their specific interest and to illustrate the procedure. An attractive feature is that different area ratios and test pressures are reflected only in a change in (straight line) intercept (for the same gases) of the $\rm Z_3$ curve. The area ratios considered were for 2.4m (8') diameter driver tube and Case (a)-3.7m (12') and Case (b) - 4.6m (15')

diameter driven tubes, with ϵ test overpressure p_{2g} = 73 kPa (10.6 psi). Gases had

$$\gamma_4 = \gamma_1 = 7/5$$
; $a_4 = a_1$.

Case (c) is similar to (a) but p_{2g} = 34.5 kPa (5.0 psi). The values for the various quantities entering into the construction of the graph are tabulated in Table IA.

TABLE IA - PARAMETERS FOR TEST FLOWS

Case	(A ₄ /A ₁)	^u 2/a ₁	M ₁	$2(A_4/A_1)^{1/6}(u_2/a_1)$	p ₂ /p ₁
a	0.444	0.4022	1.27	4.346	1.72
b	0.284	0.4022	1.27	4.033	1.72
c	0.444	0.219	1.14	7.982	1.34

The graphs for these cases are plotted in Figure 3 as functions of Mach number.

For the three cases the Mach numbers determined are tabulated in Table IB as well as the driver pressures (absolute) as determined from Equation (6).

TABLE IB - CALCULATED NOZZLE MACH NUMBERS AND DRIVER PRESSURES

Case	(kPa) p _{4c}	(psi)	∿ M _{3a}	∿ M ₃	
a	800	116	0.6	0.50	
b	1564	227	0.68	0.55	
c	252	37	0.40	0.25	

From these sample cases, it is seen that a 2.4m diameter driver section coupled to a 3.7m diameter driven section to give test overpressures up to 70 kPa (10 psi) is well within the 1100 kPa operating limits of the present TBD 2.4m shock tube. A 4.6m driven section at this overpressure could not be accommodated, however. For reference we have considered a range of test over-pressures \mathbf{p}_{2g} and their required driver pressures \mathbf{p}_{4c} for the 2.4m: 3.7m (8':12')

area-changed tube. Results are plotted as Figure 4.* Maximum $\rm p_{2g}$ is seen to be \sim 93 kPa (13.5 psi) for the 1100 kPa driver operating limit.

In addition, some cases have also been treated involving the 1.7m (5 1/2) diameter tube of the BRL Dual Shock Tube Facility, to illustrate the obtainable test pressures, along with associated driver pressures. Wave durations were not worked out. The 1.7m tube has provision for heating of the driver gas to eliminate the contact surface discontinuity, i.e. for tailoring of the interface.

For small disturbances, identity of the acoustic impedance ρa across the interface assures that waves are transmitted without change. For the same gas on either side of the interface, the requirement reduces to identity of the sound speeds. Hence, also, in the tailored-interface mode

$$u_2/a_2 = u_3/a_3 = M_3$$

With the desired test condition (hence M_3) known, one may enter the plot of Figure 3 to select a particular pair (there is a range) M_3 , M_{3a} for which $\mathrm{Z}_3=\mathrm{Z}_{3a}$, as required by Equation (8) in the solution for p_{4c} . Through this point $(\mathrm{M}_3,\mathrm{Z}_3)$ is passed a straight line paralleling previously computed straight-line Z_3 curves for other conditions; and this gives the intercept value, from which the driver sound speed ratio $\mathrm{a}_4/\mathrm{a}_1$ is determinable. Consequently, the driver gas temperature or the heating may be determined. Then the driver pressure including the heating is again determined from Equation (6). Three sample cases are given in the following Table II, for the 1.7m tube coupled to a 3.7m diameter driven tube, with $\mathrm{T}_1=300^\circ\,\mathrm{K}$.

^{*}Because of the relatively large exponent occurring in Equation (6), small rounding errors in the early stages of calculations can yield variations from our final results. The accuracy conforms to the approximate nature of the inquiry, and does not appear to be the limiting feature in the tube modification.

CALCULATED (ABSOLUTE) DRIVER PRESSURES FOR 1.7m (5½,) DIAMETER TUBE OPERATING IN TAILORED-INTERFACE MODE TABLE II.

c	(psi)	205	102	154
P _{4c}	(kPa)	1413	703	1001
	p_{4c}/p_1	13.95	9.55 1.319 522 6.96	7.1 1.400 588 10.47 1061
	T ₄ °K	645	522	288
	a_4/a_1	1,466	1,319	1.400
) M_1 P_2/p_1 a_2/a_1 u_2/a_1 M_3 $^{\circ}M_{3a}$ Intercept a_4/a_1 T_4 $^{\circ}K$ p_4c/p_1 (kPa) (psi) value	5.62 1.466 645 13.95 1413	9.55	7.1
	∿M3a	0.43	0.25	0,39
	M ₃	1.27 1.72 1.083 0.4022 0.3714 0.43	1.136 1.34 1.043 0.213 0.2043 0.25	1,199 1,510 1,062 0,3041 0,2864 0,39
	u_2/a_1	0.4022	0,213	0,3041
	a^{2/a_1}	1.083	1,043	1,062
	P_2/P_1	1.72	1.34	1.510
	N I	1.27	1.136	1,199
	(psi)		5.0	
P	Case (kPa) (psi)	73.0 10.6	2 34.5 5.0	3 51.7 7.5
	Case	-	2	3

III. DETERMINATION OF POSITIVE PULSE DURATION

A. Wave Advance in the Straight Shock Tube

We turn now to questions on the positive duration of the desired peaked wave. As mentioned in the Introduction, we rely on the interaction between the incident shock S and the reflected rarefaction wave R from the breech to weaken the shock pressure, thus giving the peaked pressure wave form. The wave diagram of Figure 5, for a straight shock tube, illustrates a possible set of events and the pressures at various stations x. For sufficiently strong rarefaction waves the shock reduces to one of the characteristics of the rarefaction wave exiting from the interaction region; for weak rarefaction waves overtaking the shock, a weakened shock with lowered shock pressures emerges⁵. In both instances we may take the peaked wave's positive duration as the interaction time of the shock with the reflected expansion fan from the driver breech. The problem, therefore, is to determine this time from the operation cycle of our area-changed shock tube.

As a point of departure, we make use of calculations involving a straight shock tube chosen to give the <u>same downstream conditions</u> as the area-changed tube. The interaction problem and the relevant times will be solved for the straight tube. Then asking for a simple physical requirement enables a transforming of the computed numbers to the actual tube.

Most of the features of the wave interaction problem in the straight shock tube are well known. The interactions delineate in the (x,t) - plane a number of regions of shock tube flow. These have been labeled in the Figure 5 according to standard practice. We focus on the interactions involving the reflected leading and trailing waves of the expansion fan connecting straight shock tube regions 4 and 3. Where and when these overtake the incident shock wave tell a) where a test wall should be placed to experience a peaked pressure pulse and b) what positive duration is to be expected. Conversely, if the positive duration is specified, the problem formulation allows driver and driven lengths to be determined.

Thus, considering the propagation of the forward-facing, reflected rarefaction waves R, we note that they will first interact at the contact surface K. This interaction may lead to weak reflected rarefaction or compression waves, but always to a transmitted rarefaction wave. The transmitted rarefaction wave thus continues onward, overtakes and interacts with the primary shock. This interaction gives rise to four possibilities depending on relative strengths of the

^{5.} I. I. Glass and J. G. Hall, <u>Handbook of Supersonic Aerodynamics</u>, <u>Section 18</u>, <u>Shock Tubes</u>, <u>NAVORD Report 1488 (Vol. 6)</u> 1959.

interacting waves: strong rarefaction wave relative to shock gives 1) reflected rarefaction or 2) compression waves and a transmitted rarefaction wave; or weak rarefaction wave relative to shock gives 3) reflected rarefaction or 4) compression waves and a transmitted (weakened) shock. The different initial conditions required to achieve these cases could be a means of achieving different pressure pulses with changed wave slopes, if desirable. For this study it turns out that the last-named interactions did not have to be considered in such detail.

B. Determination of Wave Speeds

The progress of the R $_{\star}$ wave* from the breech after reflection requires knowledge of its wave speed C through the various uniform regions. The wave speed is obtained from the Riemann invariants governing the simple flow. Across the backward facing R $_{\star}$ wave connecting regions 3 and 4:

$$\frac{2}{\gamma_4 - 1} \quad a_4 = u_3 + \frac{2}{\gamma_4 - 1} \quad a_3 = a_3 \quad (M_3 + \frac{2}{\gamma_4 - 1})$$

$$u_4 = 0$$

$$\frac{a_4}{a_3} = \frac{\gamma_4 - 1}{2} \quad M_3 + 1 \quad ,$$

$$u_3 = \frac{2}{\gamma_4 - 1} \quad (a_4 - a_3) \quad ,$$

$$\frac{p_4}{p_3} = (\frac{a_4}{a_3})^{\frac{2\gamma_4}{\gamma_4 - 1}};$$

Wave Speeds:

$$C_3 = u_3 - a_3$$
, $C_4 = -a_4$

Across the forward-facing R wave connecting 3 with 5:

^{*}The notation is R = rarefaction, S = shock, and arrows indicate direction; and $C_4 = vave$ speed of backward-facing wave in region 4.

$$u_{5} - \frac{2}{\gamma_{4}-1} a_{5} = u_{3} - \frac{2}{\gamma_{4}-1} a_{3} = a_{3} (M_{3} - \frac{2}{\gamma_{4}-1})$$

$$a_{5}/a_{3} = 1 - \frac{\gamma_{4}-1}{2} M_{3}$$

$$u_{5} = 0$$

$$\frac{2\gamma_{4}}{\gamma_{4}-1}$$

$$\frac{p_{5}}{p_{3}} = (\frac{a_{5}}{a_{3}})$$

Wave speeds: $C_{+} 3 = u_{3} + a_{3}$; $C_{+} 5 = + a_{5}$

Farther along, the interaction R, $K \leftarrow \begin{cases} weak \ R \leftarrow KR \\ or \\ weak \\ compress. wave, S \leftarrow KR \end{bmatrix}$

If we assume the result R_{\downarrow} KR $_{\downarrow}$, our calculations lead to a contradiction in the pressures across the wave as well as in the slopes of leading and trailing wave. In this regard, the criteria and outcome for this interaction, as stated by Courant and Friedricks, page 180, give an incorrect result here, whereas those by Glass and Hall, page 95-6, and Landau and Lifshitz (for acoustic waves) page 255-6, predict the results we indeed find.

The interaction results, then, in reflected compression waves coalescing to a shock and a transmitted rarefaction wave. For the weak waves expected here, the compression waves have the same properties as weak shocks. Hence we assume the shock wave equations are applicable and also that entropy changes across the "forming shock" may be neglected, i.e., the process is also assumed to be isentropic.

With these assumptions, regions 5 and 6 are connected by

^{6.} R. Courant and K. D. Friedrichs, <u>Supersonic Flow and Shock Waves</u>, Interscience Publishers, Inc., New York (1948).

^{7.} L. D. Landau and E. M. Lifshitz, <u>Fluid Mechanics</u>, Pergamon Press Ltd., London, 1959.

$$u_6 = u_5 - u_5 \left(\frac{p_6}{p_5} - 1\right) \sqrt{\frac{2/\gamma_4}{(\gamma_4 + 1) (p_6/p_5) + (\gamma_4 - 1)}}$$

$$\frac{p_6}{p_5} = \left(\frac{a_6}{a_5}\right)^{\frac{2\gamma_4}{\gamma_4 - 1}}$$

and

using the isentropic assumption.

On the other side of the contact surface, across the transmitted forward-facing R_{\rightarrow} connecting regions 2 and 7, one has

$$u_2 - \frac{2}{\gamma_1 - 1}$$
 $a_2 = u_7 - \frac{2}{\gamma_1 - 1}$ a_7

and

$$\frac{\frac{2\gamma_1}{\gamma_1 - 1}}{\frac{p_7}{p_2}} = (\frac{a_7}{a_2})$$

where the known conditions for region 2 are obtained from the shock strength $\rm p_2/\rm p_1$ or $\rm M_s$, i.e., from tables of straight shock tube properties.

The first equation is recast into more useful form:

$$u_7 = u_2 + \frac{2}{\gamma_1 - 1} a_2 \left[(\frac{p_7}{p_2}) - 1 \right] ,$$

and making use of equalities across the contact surface

$$u_6 = u_7, p_6 = p_7; p_3 = p_2$$

results in

$$u_7 = u_2 + \frac{2}{\gamma_1 - 1} a_2 \left[\left(\frac{p_7}{p_5} \cdot \frac{p_5}{p_3} \right) - 1 \right] = u_6$$

$$= u_5 - a_5 \left(\frac{p_7}{p_5} - 1 \right) \sqrt{\frac{2/\gamma_4}{(\gamma_4 + 1) (p_7/p_5) + (\gamma_4 - 1)}},$$

yielding a single equation for p_7/p_5 in terms of previously determined quantities. Solution then permits the calculation of particle and sound speeds u_6 , a_6 and u_7 , a_7 applicable for these regions.

The transmitted leading and trailing waves of the expansion then propagate onward with velocities $(\mathbf{u_2} + \mathbf{a_2})$ and $(\mathbf{u_7} + \mathbf{a_7})$, respectively, to interact with the shock giving the locations within which one may expect a peaked wave, and also determining its duration. Specific cases of test conditions must now be entered to obtain actual numbers. The problem formulation is usually done in non-dimensional coordinates

 $X=\frac{x}{L}$, $\tau=\frac{at}{L}$ where L and a are convenient reference length and sound speed, respectively. The non-dimensional time interval between intersection of leading and trailing waves of the expansion with the shock thus yields the reference length, if we set the real time interval equal to the pulse duration. The numbers as yet apply to a straight shock tube, chosen to give the desired equivalent downstream conditions.

In converting over to the area-changed shock tube, we recognize that the driver lengths should <u>not</u> in general be equal, since different pressure ratios are involved across the diaphragm. Thus, velocities and wave speeds must be different; and, the wave speed in the area-changed tube must slow down in the steady, subsonic expansion to match the downstream conditions set for the equivalent straight shock tube.

The wave diagram in Figure 6 shows a possible wave-speed comparison (as seen from numbers to be given later) and illustrates how a simple conversion of tube lengths may be made: we demand that the <u>real</u> times be equal, for both straight and area-changed shock tubes, for the leading wave of expansion to be reflected from breech and to travel back to the diaphragm station. The flows to the leading waves are then identical beyond, neglecting the time required in traversing the short transition piece (which implies an assumption on the length of this piece).

This particular calculation may be done analytically for the intersection point of leading with trailing wave of the reflected expansion 8 and wave progress then continued at constant speed to the diaphragm station X = 0 at τ_{o} .

From the nondimensional times

$$\Delta \tau = \frac{a_4 \Delta t}{L_4}$$

the real times for the arrival at X = 0 are equated

$$\Delta t = \frac{L_4 \Delta \tau}{a_4} \bigg|_{str} = \frac{L_4 \Delta \tau}{a_4} \bigg|_{c}$$

to arrive at driver length conversion.

C. Sample Calculated Wave Speeds and Results

The actual test conditions are used in the calculations outlined. As a specific example, we choose the test condition $p_{2g} = 73 \text{ kPa (10.6 psi)}$. For this case the previously obtained flow parameters are given to an equivalent straight shock tube:

$$M_1 = 1.27$$
 $\gamma_1 = \gamma_4 = 7/5$ $p_2/p_1 = 1.72$ $u_2 = 0.4022a_1 = u_3$ $M_3 = u_3/a_3 = 0.5$ $(M_{3a} = 0.6 \text{ for } A_4/A_1 = 0.444)$ $a_3 = 0.8044a_1$

With these conditions, the driver sound speed is

$$a_4 = 0.88484a_1$$

^{8.} R. K. Lobb, "On the Length of a Shock Tube," <u>UTIA Report 5</u>, Institute of Aerophysics, University of Toronto, 1950.

Then the wave speeds for the reflected expansion are

$$C_{+}3 \equiv u_{3} + a_{3} = (0.4022 + 0.8044)a_{1} = 1.2066a_{1}$$
 $C_{+}5 \equiv u_{5} + a_{5} = 0.72396 a_{1}$
 $C_{+}2 \equiv u_{2} + a_{2} = (0.4022 + 1.083)a_{1} = 1.4852a_{1}$
 $C_{+}7 \equiv u_{7} + a_{7} = (-0.0610 + 0.9911)a_{1} = 0.9301 a_{1}$
 $(C_{-}4 \equiv u_{4} - a_{4} = -0.88484 a_{1})$
 $(C_{-}3 \equiv u_{3} - a_{3} = -0.4022a_{1})$

With these results, one is in position to follow the rarefaction wave from diaphragm break to its interaction with the primary shock.

A characteristics calculation with desk calculator yields the extent of the breech reflection, for leading (l) and trailing (t) waves:

The intersection point \mathbf{X}_3 of reflected leading wave with trailing wave is found to be

$$X_3 = -0.6094; \tau_3 = 1.5151.$$

Continuing, the reflected leading and trailing waves moving with velocities C₂3 and C₅, respectively, overtake the contact surface K moving with velocity u₂. We have bypassed a detailed (but more accurate) characteristics calculation, and have followed both waves' arrival only up to the leading wave's intersection with K, at X_K :

$$\tau_{K,\ell} = 3.0302$$
 $X_{K} = 1.21876,$
 $\tau_{K,t} = 5.21607$

This procedure, as seen by inspection of the wave diagram, Figure 5,

should give a lower estimate on the actual trailing wave's intersection point with K and hence an upper estimate to be made on the tube lengths.

Beyond the contact surface K, the transmitted leading and trailing waves of the rarefaction move to intersection with the shock, with velocities C_+^2 and C_+^7 , respectively. The procedure for this interaction is again to follow the rarefaction waves only up to the leading wave's intersection X_s with shock. Here also a detailed characteristics calculation is bypassed in the interest of simplicity. Similarly, a lower estimate on actual intersection position and time is expected for the trailing wave. The results then are

$$\tau_{s, \ell} = 15.2495$$

 $X_{s} = 19.367,$ $\tau_{s, t} = 24.728$

The (nondimensional) interaction time

$$\Delta \tau = \tau_{s,t} - \tau_{s,\ell} \equiv \frac{a_1 \Delta t}{L_4}$$

thus fixes the desired peaked wave's duration (which may be transmitted with some positive pressure, depending on conditions, nevertheless). Choosing the wave duration Δt = 50 ms then determines the required (straight tube) driver length: $L_4 = \frac{a_1}{\Delta \tau} \frac{50 \ (10^{-3})}{\Delta \tau}$

$$L_{4 \text{ str}} = \frac{1}{\Delta \tau}$$
 $L_{4 \text{ str}} = 1.77 \text{m} (5.80 \text{ ft.}) (a_{1} = 335 \text{ m/s or})$

1100 ft/s)

The test wall is placed at $\mathbf{X}_{\mathbf{S}}$, where the leading wave of the rarefaction intersects the primary shock and determines the driven tube length $\mathbf{L}_{\mathbf{l}}$:

$$L_1 = X_s L_4 = 19.367 (1.77m)$$

 $L_1 = 34.3m (112.3 ft);$

as we have remarked earlier, L_1 as determined is probably an upper estimate.

These numbers are as yet based on the straight shock tube with downstream conditions identical to the desired conditions. To maintain this identity through wave speeds and interaction points in the wave diagram, we asked that the real times be equal after diaphragm break - for straight and for area-changed tube - for the leading waves of the expansions to travel back to the diaphragm station. Thus, using the numbers appropriate for the straight tube and for the area-changed tube for the case considered in the beginning of this section and following the procedure outlined earlier, we arrive at

$$\Delta t = L_{4c} \frac{\Delta \tau_c}{a_{4c}} = L_{4} \operatorname{str} \frac{\Delta \tau_{str}}{a_{4 \text{ str}}}$$

and with numbers inserted

or

$$\Delta t = L_{4c} \frac{1.756}{a_1} = L_{4 \text{ str}} \frac{1.7747}{0.88484} a_{1}$$

$$L_{4c} = 1.142 L_{4 \text{ str}}$$

For $L_{4 \text{ str}} = 1.77 \text{m} (5.80 \text{ ft}),$

$$L_{4c} = 2.02m (6.62 ft)$$

Then, having forced this partial simultaneity on driver wave motions, we are assured that the downstream behavior in the two shock tubes will be reasonably matched. Hence the driven tube length is as computed- 34.3m (112 ft).

IV. CONCLUSIONS

Using an extension of the normal straight shock tube operating cycle, we have determined appropriate tube lengths and driver pressures for requisite operation/modification of an existing BRL 2.4m (8') shock tube to permit full scale testing. Walls and structures of 3.7m (12') height are acceptable for simulated blast loadings of $\sim\!\!70$ kPa (10 psi) having pulse durations of 50 ms. Other loadings and the appropriate tube lengths are derivable without difficulty using the procedures developed.

The results are based on idealized shock tube operation, with approximations introduced to obviate the need for an extensive computer program. In an actual design to the full sized tube, one

should expect departures from such ideal operation due to boundary layer growth and imperfect diaphragm effects such as non-instantaneous opening and loss of energy to the opening process.

Due to the relatively short length of driver required, a much smaller prototype tube with required area change ratio could be constructed from BRL existing shock tubes, and the wave characteristics determined empirically and compared with calculations, to see what modifications should be incorporated into the full sized facility.

ACKNOWLEDGMENT

The author thanks Dr. K. S. Fansler for helpful discussion and clarification of ideas.

Figure 1. BRL Dual Shock Tube Facility

Figure 2. Wave Diagram of Idealized Shock Tube with Area Change at Diaphragm

Figure 3. Graphical Solution to Equation (8): Curves $\rm Z_{3a}$ and $\rm Z_{3}$ as a Function of Mach Number

Figure 4. Driver Pressure - Testing Pressure for 2.4m: 3.7m (8':12') Area Changed Shock Tube

Figure 5. Wave Interactions and Pressures at Stations x: Straight Shock Tube

Figure 6. Wave Diagram Illustrating Driver Tube Lengths Relationship

REFERENCES

- B. P. Bertrand, "BRL Dual Shock Tube Facility," BRL MR 2001, U. S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, August 1969. AD 693264.
- B. P. Bertrand, "Proposed Improvement of BRL Dual Shock Tube Facility," BRL Technical Note No. 1733, U. S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, April 1970. AD 871736.
- 3. R. A. Alpher and D. R. White, "Flow in Shock Tubes with Area Change at the Diaphragm Section," J. Fluid Mech 3, 457-70 (1958).
- 4. E. L. Resler, Shao-Chi Lin, and Arthur Kantrowitz, "The Production of High Temperature Gases in Shock Tubes," J. Appl. Phys. 23, 1390-99, (1952).
- 5. I. I. Glass and J. G. Hall, <u>Handbook of Supersonic Aerodynamics</u>, Section 18, Shock <u>Tubes</u>, NAVORD Report 1488 (Vol. 6) 1959.
- 6. R. Courant and K. D. Friedrichs, <u>Supersonic Flow and Shock Waves</u>, Interscience Publishers, Inc., New York (1948).
- 7. L. D. Landau and E. M. Lifshitz, <u>Fluid Mechanics</u>, Pergamon Press Ltd., London, 1959.
- 8. R. K. Lobb, "On the Length of a Shock Tube," <u>UTIA Report 5</u>, Institute of Aerophysics, University of Toronto, 1950.

No. of		No. of	
Copies	Organization	Copies	Organization
	Commander Defense Documentation Center ATTN: DDC-TCA Cameron Station Alexandria, VA 22314	5	Director Defense Intelligence Agency ATTN: DT-1C DT-7D/E. O. Farrell DT-2/Wpns & Sys Div Technical Library
3	Director Defense Advanced Research Projects Agency ATTN: Tech Lib NMRO PMO 1400 Wilson Boulevard Arlington, VA 22209	6	DI-7E Washington, DC 20301 Director Defense Nuclear Agency ATTN: SPTD/Mr. J. Kelso STSI/Archives SPAS/Mr. J. Moulton
4	Director of Defense Research and Engineering ATTN: DD/TWP DD/S&SS DD/I&SS AD/SW Washington, DC 20301	6	STSP STVL/Dr. La Vier RATN/Cdr Alderson Washington, DC 20305 Director Defense Nuclear Agency ATTN: DDST/Mr. P. Haas
1	Director Weapons Systems Evaluation Gp ATTN: Document Control Washington, DC 20305		DDST/Mr. M. Atkins STTL/Tech Lib (2 cys) SPSS (2 cys) Washington, DC 20305
1	Director Institute for Defense Analyses ATTN: IDA Librarian, Ruth S. Smith 400 Army-Navy Drive Arlington, VA 22202	2 s	Commander Field Command, DNA ATTN: FCPR FCTMOF Kirtland AFB, NM 87115 Chief
2	Asst. to the Secretary of Defense (Atomic Energy) ATTN: Document Control Donald R. Cotter Washington, DC 20301		Las Vegas Liaison Office Field Command TD, DNA ATTN: Document Control P.O. Box 2702 Las Vegas, NV 89104
	31	1	Commander Field Command, DNA Livermore Branch ATTN: FCPRL P.O. Box 808 Livermore, CA 94550

No. o Copie:		No. of Copies	
copie	organización	copies	organization
1	Director Defense Communications Agency ATTN: Code 930 Washington, DC 20305	1	Commander US Army Aviation Research and Development Command ATTN: DRSAV-E 12th and Spruce Streets
3	Director Joint Strategic Target Planning Staff JCS ATTN: Sci & Tech Info Lib JLTW-2 DOXT Offutt AFB, Omaha, NB 68113	1	St. Louis, MO 63166 Director US Army Mobility Research and Development Laboratory Ames Research Center Moffett Field, CA 94035
1	Director National Security Agency ATTN: E. F. Butala, R15 Fort George G. Meade, MD 20755	6	Commander US Army Electronics Research and Development Command ATTN: DELSD-L DRDEL-SA, W.S. McAfee
2	Director Defense Civil Preparedness Agency ATTN: Mr. George Sisson/RF-SF Technical Library Washington, DC 20301	₹	R. Freiberg DELSD-EI, J. Roma DELSD-EM, A. Sigismondi C. Goldy Fort Monmouth, NJ 07703
1	Commander US Army Materiel Development and Readiness Command ATTN: DRCDMD-ST, N. Klein 5001 Eisenhower Avenue Alexandria, VA 22333	1	Commander US Army Communications Rsch and Development Command ATTN: DRDCO-SGS Fort Monmouth, NJ 07703 Commander
1	Commander US Army Materiel Development and Readiness Command ATTN: Technical Library		US Army Missile Research and Development Command ATTN: DRDMI-R Redstone Arsenal, AL 35809
1	5001 Eisenhower Avenue Alexandria, VA 22333 Commander US Army Materiel Development and Readiness Command ATTN: W. H. Hubbard 5001 Eisenhower Avenue Alexandria, VA 22333	2	Commander US Army Missile Materiel Readiness Command ATTN: DRSMI-AOM DRSMI-XS, Ch Scientist Redstone Arsenal, AL 35809

No. of		No. of	
Copies	Organization	Copies	
Rese ATTN:	der y Tank Automotive arch & Development Cmd DRDTA-UL , MI 48090	5	Commander US Army Harry Diamond Lab ATTN: DRXDO-TI DRXDO-TI/012 DRXDO-NP DRXDO-RBH
Rese ATTN:	der y Mobility Equipment arch & Development Cmd DRXFB-RT/Dr. K. Oscar elvoir, VA 22060		Mr. P. A. Caldwell DELHD-RBA, J. Rosado 2800 Powder Mill Road Adelphi, MD 20783
	y Armament Research Development Command	3	Commander US Army Materials and Mechanics Research Center ATTN: Technical Library John Mescall Richard Shea Watertown, MA 02172
1 Comman US Arm Read ATTN:	NJ 07801 der y Armament Materiel iness Command DRSAR-LEP-L, Tech Lib sland, IL 61299	2	Commander US Army Natick Research and Development Command ATTN: DRXRE, Dr. D. Sieling DRXNM-UE Arthur Johnson Natick, MA 01762
Waterv	y Watervliet Arsenal liet, NY 12189	1	Commander US Army Foreign Science and Technology Center ATTN: Rsch & Concepts Branch
	der y Harry Diamond Labs Mr. James Gaul		220 Seventh Street, NE Charlottesville, VA 22901
	Mr. L. Belliveau Mr. J. Gwaltney Mr. F. N. Wimenitz Mr. Bill Vault ower Mill Road i, MD 20783	1	Commander US Army Training and Doctrine Command ATTN: ATCD-SA, Mr. Oscar Wells Fort Monroe, VA 23651

No. of		No. of	
Copie	s Organization	Copies	Organization
2	Director US Army TRADOC Systems Analysis Activity ATTN: LTC John Hesse ATAA-SL, Tech Lib White Sands Missile Range NM 88002	2	Deputy Chief of Staff for Operations and Plans ATTN: Technical Library Dir of Chemical and Nuclear Operations Department of the Army Washington, DC 20310
2	Commander US Army Nuclear Agency ATTN: ACTA-NAW Technical Library 7500 Backlick Rd, Bldg 2073 Springfield, VA 22150	2	Director US Army BMD Advanced Technology Center ATTN: CRDABH-X CRDABH-S Huntsville, AL 35807
1	Commander Combined Arms Combat Developments Activity ATTN: ATCA-CO, L. C. Pleger Fort Leavenworth, KS 66027	1	Program Manager US Army BMD Program Office ATTN: John Shea 5001 Eisenhower Avenue Alexandria, VA 22333
1	Commander US Army Engineering Center ATTN: ATSEN-SY-L Fort Belvoir, VA 22060	1	Commander US Army BMD Systems Command ATTN: BMDSC-TFN, N. J. Hurst P. O. Box 1500 Huntsville, AL 35807
1	Commander US Army Logistics Center ATTN: ATCL-SCA Mr. Robert Cameron Fort Lee, VA 23801	1	Commander US Army Research Office P. O. Box 12211 Research Triangle Park NC 27709
1	Interservice Nuclear Weapons School ATTN: Tech Lib Kirtland AFB, NM 87115	2	Office, Chief of Engineers Department of the Army ATTN: DAEN-MCE-D DAEN-RDM
2	HQDA (DAMA-AR; NCL Div) Washington, DC 20310		890 S. Pickett Street Alexandria, VA 22304

DISTRIBUTION ETST					
No. of No. of					
Copies Organization		Copies	Organization		
5	Commander	3	Commander		
	US Army Engineer Waterways		Naval Facilities Engineering		
	Experiment Station		Command		
	ATTN: Tech Library William Flathau		ATTN: Code 03A Code 04B		
	John N. Strange		Technical Library		
	Guy Jackson		Washington, DC 20360		
	Leo Ingram		washington, be 20000		
	P. O. Box 631	2	Commander		
	Vicksburg, MS 39180		Naval Sea Systems Command		
			ATTN: ORD-91313 Library		
1	Division Engineer		Code 03511		
	US Army Engineering Division		Department of the Navy		
	Ohio River		Washington, DC 20362		
	ATTN: Docu Cen				
	P. O. Box 1159	2	Commander		
	Cincinnati, OH 45201		Naval Ship Engineering Center		
	District - France		ATTN: Technical Library NSEC 6105G		
1	Division Engineer US Army Engineering Division		Hyattsville, MD 20782		
	ATTN: HNDSE-R, M. M. Dembo		Hyactsville, MD 20782		
	Huntsville Box 1600	1	Commander		
	Huntsville, AL 35804		David W. Taylor Naval Ship		
			Research & Development Ctr		
1	Chief of Naval Material		ATTN: L42-3 Library		
	ATTN: MAT 0323		Bethesda, MD 20084		
	Department of the Navy				
	Arlington, VA 22217	2			
			Naval Ship Research and		
2	Chief of Naval Operations		Development Ctr Facility		
	ATTN: OP-03EG		Underwater Explosions Rsch Div		
	OP-985F		ATTN: Code 17, W.W. Murray Technical Library		
	Department of the Navy Washington, DC 20350		Portsmouth, VA 23709		
	washington, bc 20330		Portismouth, VA 23703		
1	Chief of Naval Research	1	Commander		
	ATTN: N. Perrone		Naval Surface Weapons Ctr		
	Department of the Navy		ATTN: DX-21, Library Br.		
	Washington, DC 20360		Dahlgren, VA 22448		

1 Commander

Naval Electronic Systems Cmd

ATTN: PME 117-21A Washington, DC 20360

3 Commander Naval Surface Weapons Center ATTN: Code WAS01/Navy Nuclear Programs Office Code WX21, Tech Lib Code 240, C.J. Aronson Silver Spring, MD 20910 1 Commander Naval Weapons Center ATTN: Code 535, Tech Lib China Lake, CA 93555 2 Commander Naval Weapons Evaluation Facility ATTN: Document Control R. Hughes Kirtland AFB Albuquerque, NM 87117 4 Officer-in-Charge Civil Engineering Laboratory Naval Construction Battalion Center ATTN: Stan Takahashi R. J. Odello John Crawford Technical Library Port Huememe, CA 95041 2 Commander Naval Postgraduate School ATTN: Code 2124, Tech Rpts Lib Monterey, CA 93940 1 HQ USAF (PRE) Washington, DC 20330 AFSC (DLCAW; Tech Lib) Andrews AFB Washington, DC 20331 AFSC (DLCAW; Tech Lib) Eglin AFB, FL 32542 2 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 2 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 3 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 4 AFAUL (ATRD, R. Brandt) Eglin AFB, FL 32542 5 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 5 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 5 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 6 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 7 AFAUL (ATRD, R. Brandt) Eglin AFB, FL 32542 8 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 8 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 8 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 8 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 8 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 8 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 8 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 8 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 8 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 8 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 8 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 8 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 8 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 8 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 8 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 8 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 8 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 8 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 8 AFATL (ATRD, R. Brandt	No. o Copie		No. of Copies	
Naval Weapons Center ATTN: Code 533, Tech Lib China Lake, CA 93555 2 Commander Naval Weapons Evaluation Facility ATTN: Document Control R. Hughes Kirtland AFB Albuquerque, NM 87117 4 Officer-in-Charge Civil Engineering Laboratory Naval Construction Battalion Center ATTN: Stan Takahashi R. J. Odello John Crawford Technical Library Port Huememe, CA 93041 2 Commander Naval Research Laboratory ATTN: Code 2027, Tech Lib Code 8440, F. Rosenthal Washington, DC 20375 3 Director Strategic Systems Projects Ofc ATTN: NSP-43, Tech Lib NSP-273 NSP-272 Department of the Navy Washington, DC 20360 AFSC (DLCAW; Tech Lib) Andrews AFB Washington, DC 20331 AFSC (DLCAW; Tech Lib) Andrews AFB Washington, DC 20331 AFSC (DLCAW; Tech Lib) Andrews AFB Washington, DC 20331 AFSC (DLCAW; Tech Lib) Andrews AFB Washington, DC 20331 AFSC (DLCAW; Tech Lib) Andrews AFB Washington, DC 20331 AFSC (DLCAW; Tech Lib) Andrews AFB Washington, DC 20331 AFSC (DLCAW; Tech Lib) Andrews AFB Washington, DC 20331 AFSC (DLCAW; Tech Lib) Andrews AFB Washington, DC 20331 AFSC (DLCAW; Tech Lib) Andrews AFB Washington, DC 20331 AFSC (DLCAW; Tech Lib) Andrews AFB Washington, DC 20331 AFSC (DLCAW; Tech Lib) Andrews AFB Washington, DC 20331 AFSUL (ATRD, R. Brandt) Eglin AFB, FL 32542 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 AFAL (BL') EMRC	3	Naval Surface Weapons Center ATTN: Code WA501/Navy Nuclear Programs Office Code WX21, Tech Lib Code 240, C.J. Aronson		Naval Postgraduate School ATTN: Code 2124, Tech Rpts Lib Monterey, CA 93940 HQ USAF (IN)
2 Commander Naval Weapons Evaluation Facility ATTN: Document Control R. Hughes Kirtland AFB Albuquerque, NM 87117 4 Officer-in-Charge Civil Engineering Laboratory Naval Construction Battalion Center ATTN: Stan Takahashi R. J. Odello John Crawford Technical Library Port Huemene, CA 93041 2 Commander Naval Research Laboratory ATTN: Code 2027, Tech Lib Code 8440, F. Rosenthal Washington, DC 20360 AATTC (ADBRL-2; Tech Lib) Eglin AFB, FL 32542 2 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 2 RADC (EMTLD, Docu Lib; EMREC, R. W. Mair) Griffiss AFB, NY 13340 2 RADC (EMTLD, Docu Lib; EMREC, R. W. Mair) Griffiss AFB, NY 13340 3 AFWL/SUL Kirtland AFB, NM 87117 4 AFWL/DE-I Kirtland AFB, NM 87117 5 Director Strategic Systems Projects Ofc ATTN: NSP-43, Tech Lib NSP-273 NSP-272 Department of the Navy Washington, DC 20360 1 AFWL/DEV (M. A. Plamondon)	1	Naval Weapons Center	1	
Naval Weapons Evaluation Facility ATTN: Document Control R. Hughes Kirtland AFB Albuquerque, NM 87117 4 Officer-in-Charge Civil Engineering Laboratory Naval Construction Battalion Center ATTN: Stan Takahashi R. J. Odello John Crawford Technical Library Port Huememe, CA 93041 2 Commander Naval Research Laboratory ATTN: Code 2027, Tech Lib Code 8440, F. Rosenthal Washington, DC 20375 3 Director Strategic Systems Projects Ofc ATTN: NSP-43, Tech Lib NSP-272 Department of the Navy Washington, DC 20360 APACT (ADBRL-2; Tech Lib Eglin AFB, FL 32542 2 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 2 AFATL (ATRD, R. Brandt) Eglin AFB, FL 32542 3 AFAUC (EMTLD, Docu Lib; EMREC, R. W. Mair) Griffiss AFB, NY 13340 4 AFWL/SUL Kirtland AFB, NM 87117 4 AFWL/DEV Kirtland AFB, NM 87117 5 AFWL/DEX Kirtland AFB, NM 87117 5 AFWL/DEV (Jimmie L. Bratton) Kirtland AFB, NM 87117 5 AFWL (R. Henny) Kirtland AFB, NM 87117			2	Andrews AFB
Kirtland AFB Albuquerque, NM 87117 4 Officer-in-Charge Civil Engineering Laboratory Naval Construction Battalion Center ATTN: Stan Takahashi R. J. Odello John Crawford Technical Library Port Hueneme, CA 93041 2 Commander Naval Research Laboratory ATTN: Code 2027, Tech Lib Code 8440, F. Rosenthal Washington, DC 20375 3 Director Strategic Systems Projects Ofc ATTN: NSP-43, Tech Lib NSP-272 Department of the Navy Washington, DC 20360 2 RADC (EMTLD, Docu Lib; EMREC, R. W. Mair) Griffiss AFB, NY 13340 4 AFWL/SUL Kirtland AFB, NM 87117 AFWL/DE-I Kirtland AFB, NM 87117 1 AFWL/DEX Kirtland AFB, NM 87117 1 AFWL/Robert Port Kirtland AFB, NM 87117 1 AFWL/DEV (Jimmie L. Bratton) Kirtland AFB, NM 87117 1 AFWL (R. Henny) Kirtland AFB, NM 87117	2	Naval Weapons Evaluation Facility ATTN: Document Control	2	ADTC (ADBRL-2; Tech Lib)
Civil Engineering Laboratory Naval Construction Battalion Center ATTN: Stan Takahashi R. J. Odello John Crawford Technical Library Port Huemene, CA 93041 2 Commander Naval Research Laboratory ATTN: Code 2027, Tech Lib Code 8440, F. Rosenthal Washington, DC 20375 3 Director Strategic Systems Projects Ofc ATTN: NSP-43, Tech Lib NSP-273 NSP-272 Department of the Navy Washington, DC 20360 EMREC, R. W. Mair) Griffiss AFB, NY 13340 Kirtland AFB, NM 87117 AFWL/SUL Kirtland AFB, NM 87117 AFWL/DE-I Kirtland AFB, NM 87117 AFWL/Robert Port Kirtland AFB, NM 87117 AFWL/DEV (Jimmie L. Bratton) Kirtland AFB, NM 87117 AFWL (R. Henny) Kirtland AFB, NM 87117		Kirtland AFB	2	
R. J. Odello John Crawford Technical Library Port Hueneme, CA 93041 2 Commander Naval Research Laboratory ATTN: Code 2027, Tech Lib Code 8440, F. Rosenthal Washington, DC 20375 3 Director Strategic Systems Projects Ofc ATTN: NSP-43, Tech Lib NSP-273 NSP-272 Department of the Navy Washington, DC 20360 Kirtland AFB, NM 87117 AFWL/DEV Kirtland AFB, NM 87117 AFWL/DEV (Jimmie L. Bratton) Kirtland AFB, NM 87117 AFWL (R. Henny) Kirtland AFB, NM 87117	4	Civil Engineering Laboratory Naval Construction Battalion Center		EMREC, R. W. Mair) Griffiss AFB, NY 13340
Port Huememe, CA 93041 Kirtland AFB, NM 87117 AFWL/DEX Kirtland AFB, NM 87117 AFWL/DEX Kirtland AFB, NM 87117 AFWL/Robert Port Kirtland AFB, NM 87117 AFWL/Robert Port Kirtland AFB, NM 87117 AFWL/Robert Port Kirtland AFB, NM 87117 AFWL/DEV (Jimmie L. Bratton) Kirtland AFB, NM 87117 AFWL/DEV (Jimmie L. Bratton) Kirtland AFB, NM 87117 AFWL (R. Henny) Kirtland AFB, NM 87117 AFWL (R. Henny) Kirtland AFB, NM 87117		R. J. Odello		
Naval Research Laboratory ATTN: Code 2027, Tech Lib Code 8440, F. Rosenthal Washington, DC 20375 Director Strategic Systems Projects Ofc ATTN: NSP-43, Tech Lib NSP-273 NSP-272 Department of the Navy Washington, DC 20360 Kirtland AFB, NM 87117 AFWL/DEV (Jimmie L. Bratton) Kirtland AFB, NM 87117 AFWL (R. Henny) Kirtland AFB, NM 87117			1	
Code 8440, F. Rosenthal Washington, DC 20375 Director Strategic Systems Projects Ofc ATTN: NSP-43, Tech Lib NSP-273 NSP-272 Department of the Navy Washington, DC 20360 1 AFWL/Robert Port Kirtland AFB, NM 87117 AFWL/DEV (Jimmie L. Bratton) Kirtland AFB, NM 87117 AFWL (R. Henny) Kirtland AFB, NM 87117	2	Naval Research Laboratory	1	
Strategic Systems Projects Ofc ATTN: NSP-43, Tech Lib NSP-273 NSP-272 Department of the Navy Washington, DC 20360 Kirtland AFB, NM 87117 AFWL (R. Henny) Kirtland AFB, NM 87117		Code 8440, F. Rosenthal	1	
NSP-273 NSP-272 NSP-272 Department of the Navy Washington, DC 20360 1 AFWL/DEV (M. A. Plamondon)	3	Strategic Systems Projects Ofc		
Washington, DC 20360 1 AFWL/DEV (M. A. Plamondon)		NSP-273 NSP-272	1	
			1	

No. of Copies		No. of Copies	
	Commander-in-Chief Strategic Air Command ATTN: NRI-STINFO Lib XPFS Offut AFB, NB 68113	1	US Energy Research and Development Administration Albuquerque Operations Office ATTN: Doc Control for Tech Lib P.O. Box 5400 Albuquerque, NM 87115
2	ADC (XP; XPQDQ) Wright-Patterson AFB, OH 45433	3 1	US Energy Research and Development Administration
1	AFIT (Lib Bldg. 640, Area B) Wright-Patterson AFB, OH 45433	3	Nevada Operations Office ATTN: Doc Control for Tech Lib
1	AFML (MAMD/Dr. T. Nicholas) Wright-Patterson AFB, OH 45433		P.O. Box 14100 Les Vegas, NV 89114
1	ASD (Tech Lib) Wright-Patterson AFB OH 45433	5	Director Lawrence Livermore Laboratory ATTN: L. W. Woodruft/L-96 Tech Info Dept L-3
4	FTD (TDFBD; TDPMG; ETET/ CPT R. C. Husemann; TD-BTA/Lib)		D. M. Norris/L-90 Ted Butkovich/L-200 J. R. Hearst/L-205
	Wright-Patterson AFB OH 45433		P.O. Box 808 Livermore, CA 94550
1	Director US Bureau of Mines ATTN: Tech Lib Denver Federal Center Denver, CO 80225	4	Director Lawrence Livermore Laboratory ATTN: Jack Kahn/L-7 J. Carothers/L-7 Robert Schock/L-437
1	Director US Bureau of Mines Twin Cities Research Center		R. G. Dong/L-90 P.O. Box 808 Livermore, CA 94550
	ATTN: Technical Library P. O. Box 1660 Minneapolis, MN 55111	4	Director Los Alamos Scientific Laboratory ATTN: Doc Control for Rpts Lib
1	US Energy Research and Development Administration Divison of Headquarters Svcs ATTN: Docu Control for Classified Technical Lib Library Branch G-043 Washington, DC 20545		R. A. Gentry G. R. Spillman Al Davis P.O. Box 1663 Los Alamos, NM 87544

No. of Copies		No. c Copie	
	Director National Aeronautics and Space Administration Scientific and Technical Information Facility P.O. Box 8757	1	The BDM Corporation ATTN: Richard Hensley P.O. Box 9274 Albuquerque International Albuquerque, NM 87119
	Baltimore/Washington International Airport, MD	21240 2	The Boeing Company ATTN: Aerospace Library R. H. Carlson
	Aerospace Corporation ATTN: Tech Info Services (2 cys)		P.O. Box 3707 Seattle, WA 98124
	P. N. Mathur P.O. Box 92957 Los Angeles, CA 90009	1	Brown Engineering Co., Inc. ATTN: Manu Patel Cummings Research Park Huntsville, AL 35807
	Agbabian Associates ATTN: M. Agbabian 250 North Nash Street El Segundo, CA 90245	2	California Research and Technology, Inc. ATTN: Ken Kreyenhagen Technical Library
	Analytic Services, Inc. ATTN: George Hesselracher 5613 Leesburg Pike		6269 Variel Avenue Woodland Hills, CS 91364
	Falls Church, VA 22041	1	ATTN: Technical Library
	Applied Theory, Inc. ATTN: John G. Trulio 1010 Westwood Blvd.		P.O. Box 235 Buffalo, NY 14221
	Los Angeles, CA 90024	1	Corporation
	Artec Associates, Inc. ATTN: Steven Gill 26046 Eden Landing Road Hayward, CA 94545		ATTN: Robert Crawford 1200 University N.E. Albuquerque, NM 87102
1	AVCO Corporation ATTN: Res Lib A830, Rm 720 201 Lowell Street Wilmington, MA 01887	1	EG&G, Incorporated Albuquerque Division ATTN: Technical Library P.O. Box 10218 Albuquerque, NM 87114
	The BDM Corporation ATTN: Technical Library A. Lavagnino 1920 Aline Avenue Vienna, VA 22180	38	The Franklin Institute ATTN: Zemons Zudans 20th Street and Parkway Philadelphia, PA 19103

DISTRIBUTION LIST					
No. o	f	No. of			
		Copies			
Copies Organization C			Organization		
1	General American Trans Corporation General American Research Division ATTN: G. L. NEIDHARDT 7449 N. Natchez Avenue Niles, IL 60648	2	Martin Marietta Aerospace Orlando Division ATTN: G. Fotieo Mail Point 505, Craig Luongo P.O. Box 5837 Orlando, FL 32805		
1	General Electric Company-TEMPO ATTN: DASIAC P.O. Drawer QQ Santa Barbara, CA 93102	3	McDonnell Douglas Astronautics Corporation ATTN: Robert W. Halprin Mr. C. Gardiner Dr. P. Lewis		
2	Hazeltine Corp. ATTN: Carl Meinen Greenlawn, NY 11740		5301 Bolsa Avenue Huntington Beach, CA 92647		
1	J. H. Wiggins Co., Inc. ATTN: John Collins 1650 South Pacific Cost Highway	2	Merrity Cases, Inc. ATTN: J. L. Merritt Technical Library P.O. Box 1206 Redlands, CA 92373		
	Redondo Beach, CA 90277				
6	Kaman Avidyne ATTN: Dr. N. P. Hobbs (4 cys) Mr. S. Criscione Mr. John Calligeros 83 Second Avenue)	Meteorology Research, Inc. ATTN: W. D. Green 454 West Woodbury Road Altadena, CA 91001		
	Northwest Industrial Park Burlington, MA 01830	1	The Mitre Corporation ATTN: Library P.O. Box 208 Redford MA 01770		
3	Kaman Sciences Corporation ATTN: Library P. A. Ellis	2	Bedford, MA 01730 Pacifica Technology		
	F. H. Shelton 1500 Garden of the Gods Road Colorado Springs, CO 80907	-	ATTN: G. Kent R. Bjork P.O. Box 148 Del Mar, CA 92014		
1	Lockheed Missiles & Space Co. ATTN: Technical Library P.O. Box 504 Sunnyvale, CA 94088	4	Physics International Corp. ATTN: E. T. Moore Dennis Orphal Coye Vincent F. M. Sauer		
			2700 Merced Street		
			San Leandro, CA 94577		
	39				

No. of Copies		No. of Copies	
4	Physics International Corp ATTN: Robert Swift Charles Godfrey Larry Behrmann Technical Library 2700 Merced Street San Leandro, CA 94577	2	Science Applications, Inc. ATTN: Technical Library P.O. Box 3507 Albuquerque, NM 87110 Science Applications, Inc. ATTN: R. Seebaugh
5	R&D Associates ATTN: Dr. H. L. Brode Dr. Albert L. Latter C. P. Knowles William B. Wright Henry Cooper P.O. Box 9695	1	John Mansfield 1651 Old Meadow Road McLean, VA 22101 Science Applications, Inc. 8201 Capwell Drive Oakland, CA 94621
	Marina del Rey, CA 90291	2	Science Applications, Inc. ATTN: Technical Library
4	ATTN: Jerry Carpenter Sheldon Schuster J. G. Lewis	1	Michael McKay P.O. Box 2351 La Jolla, CA 92038 Systems, Science & Software
	Technical Library P.O. Box 9695 Marina del Rey, CA 90291	4	ATTN: Donald R. Grine Ted Cherry Thomas D. Riney
1	The Rand Corporation ATTN: C. C. Mow 1700 Main Street Santa Monica, CA 90406	3	Technical Library P.O. Box 1620 La Jolla, CA 92037 Terra Tek, Inc.
6	Sandia Laboratories ATTN: Doc Control for 3141 Sandia Rpt Collecti A. J. Chaban M. L. Merritt L. J. Vortman		ATTN: Sidney Green Technical Library A. H. Jones 420 Wakara Way Salt Lake City, UT 84108
	W. Roherty L. Hill Albuquerque, NM 87115	2	Tetra Tech, Inc. ATTN: Li-San Hwang Technical Library 630 North Rosemead Blvd.
1	Sandia Laboratories Livermore Laboratory ATTN: Doc Control for Tech P. O. Box 969 Livermore, CA 94550	Lib	Pasadena, CA 91107

No. of				
No. of Copies Organization	No. of Copies Organization			
organization	copies organización			
7 TRW Systems Group ATTN: Paul Lieberman Benjamin Sussholtz Norm Lipner William Rowan Jack Farrell	2 Battelle Memorial Institute ATTN: Technical Library R. W. Klingesmith 505 King Avenue Columbus, OH 43201			
Pravin Bhutta Tech Info Ctr/S-1930 One Space Park Redondo Beach, CA 92078	<pre>1 California Institute of</pre>			
1 TRW Systems Group ATTN: Greg Hulcher San Bernardino Operations P.O. Box 1310 San Bernardina, CA 92402 2 Union Carbide Corporation	2 COSMIC ATTN: L. C. Gadol 112 Barrow Hall University of Georgia Athens, GA 30602			
2 Union Carbide Corporation Holifield National Laboratory ATTN: Doc Control for Tech Lib Civil Defense Research Proj P.O. Box X Oak Ridge, TN 37830	<pre>Denver Research Institute University of Denver ATTN: Mr. J. Wisotski</pre>			
1 Universal Analytics, Inc. ATTN: E. I. Field 7740 W. Manchester Blvd. Playa del Rey, CA 90291	3 IIT Research Institute ATTN: Milton R. Johnson R. E. Welch Technical Library 10 West 35th Street			
<pre>1 Weidlinger Assoc. Consulting Engineers ATTN: M. L. Baron 110 East 59th Street New York, NY 10022</pre>	Chicago, IL 60616 2 Lovelace Foundation for Medical Education ATTN: Asst. Dir. of Research/ Robert K. Jones			
1 Westinghouse Electric Company Marine Division ATTN: W. A. Votz Hendy Avenue	Technical Library 5200 Gibson Blvd., SE Albuquerque, NM 87108			
Sunnyvale, CA 94008	<pre>1 Massachusetts Institute of Technology Aeroelastic and Structures Research Laboratory ATTN: Dr. E. A. Witmer Cambridge, MA 02139</pre>			
Al				

No. o Copie		No. of Copies	Organization
	Southwest Research Institute ATTN: Dr. W. E. Baker A. B. Wenzel 8500 Culebra Road San Antonio, TX 78206 Stanford Research Institute ATTN: Dr. G. R. Abrahamson Carl Peterson 333 Ravenswood Avenue Menlo Park, CA 94025	Dir, U ATTN Cdr, U	Proving Ground JSAMSAA N: Dr. J. Sperrazza Mr. R. Norman, GWD JSATECOM N: DRSTE-SG-H
1	University of Dayton Industrial Security Super. KL-505 ATTN: H. F. Swift 300 College Park Avenue Dayton, OH 45409		

Consulting Engineering Services
ATTN: Nathan M. Newmark
1211 Civil Engineering Building
Urbana, IL 61801

The University of New Mexico

l University of Illinois

- The Eric H. Wang Civil
 Engineering Research Facility
 ATTN: Larry Bickle
 Neal Baum
 University Station
 Box 188
 Albuquerque, NM 87131
- 2 Washington State University Administration Office ATTN: Arthur Miles Hohorf George Duval Pullman, WA 99163