Collaborative Filtering

EECS 349 Machine Learning
Bongjun Kim
Fall, 2015

What is Collaborative Filtering?

- Recommendation system
 - Amazon recommends items based on your purchase history and ratings

What is Collaborative Filtering?

- Recommendation system
 - Amazon recommends items based on your purchase history and ratings

View history Recommendation

Customers who watched this also watched

What is Collaborative Filtering?

Task: How do I predict what you'll like?

- Two approaches
 - User-based: You will like item A because users
 who are similar to you like item A.
 - Item-based: You will like item A because you like items that are similar to item A.

User-Based Collaborative Filtering

 Find users that is similar to you and you might like the item the user likes

I like..

- Star wars
- Star Trek
- Mission Impossible

I like..

- Star wars
- Star Trek
- Mission Impossible
- X-men

B is a user who has similar preference to **A**. So **A** would like "X-men" too!!

Item-Based Collaborative Filtering

 You might like items that are similar to items you already like

"Star Trek" is a movie similar to Star Wars because it has "star" in the name. Then, **A** would like "Star Trek" too!

Do you think **A** would also like "Dancing with the Star"?

Feature Selection

- Measuring similarity (of users or items)
 requires measuring their features.
 - implicit features number of clicks number of followers...
- Which features should I measure?
- explicit features
 user ratings
 review
 purchase history...
- Are there features that are (relatively)

 review insensitive to the particulars of the recommendation tasks?
- User ratings to items or their purchase history is one of the explicit features to measure user preference

USER-BASED COLLABORATIVE FILTERING

How do we find a user who is similar?

- Distance (or similarity) measure
 - N-dimensional space
- Example: movie ratings of 3 users
 - Ratings from 1 (dislike) to 5 (like)

	U1	U2	U3
Harry Potter	4	3	2
Star Wars	2	5	4

Which similarity measure to use?

- p-norm
 - Manhattan
 - Euclidian
- Pearson Correlation
- Cosine Similarity
- Etc...

Who is the most similar to John?

Example #1

	Inception	Begin again	Once
Brian	5	2	2
Bob	1	4	4
Cathy	2	3	3
John	5	1	2

- Manhattan Distance:

(John, Brian) =
$$0 + 1 + 0 = 1$$

(John, Bob) = $4 + 3 + 2 = 9$
(John, Cathy) = $3 + 2 + 1 = 6$

Q: Does Manhattan Distance measure similarities properly in this data set?

Who is the most similar to Adam?

Example #2

	Inception	Begin again	Once	Star wars
Bill	2	3	3	2
Brian	5	1	1	5
Adam	3	2	2	3

- Manhattan Distance:

$$(Adam, Bill) = 1 + 1 + 1 + 1 = 4$$

 $(Adam, Brian) = 2 + 1 + 1 + 2 = 6$

Q: Does Manhattan Distance measure similarities properly in this data set?

Different users may use different rating scales

Who is the most similar to Adam?

- Manhattan Distance:

$$(Adam, Bill) = 1 + 1 + 1 + 1 = 4$$

 $(Adam, Brian) = 2 + 1 + 1 + 2 = 6$

Q: Does Manhattan Distance measure similarities properly in this data set?

Different users may use different rating scales

Pearson Correlation

- Measure of correlation between two variables
- Pearson correlation coefficient
 - Range (-1, 1)
 - A perfect positive correlation: 1
 - A perfect negative correlation: -1

$$sim(\mathbf{u}, \mathbf{v}) = \frac{\sum_{i \in C} (r_{\mathbf{u},i} - \overline{r}_{\mathbf{u}})(r_{\mathbf{v},i} - \overline{r}_{\mathbf{v}})}{\sqrt{\sum_{i \in C} (r_{\mathbf{u},i} - \overline{r}_{\mathbf{u}})^2} \sqrt{\sum_{i \in C} (r_{\mathbf{v},i} - \overline{r}_{\mathbf{v}})^2}},$$

In Python,

- >> import scipy.stats
- >> scipy.stats.pearsonr(array1, array2)

Cosine Similarity

- Measure of similarity between two vectors
 - Range from -1 (opposite) to 1 (same)

Cosine similarity between vector a and b:

$$sim(a,b) = \frac{a \cdot b}{|a| * |b|}$$

Who is the most similar to Adam?

Example #2

	Inception	Begin again	Once	Star wars
Bill	2	3	3	2
Brian	5	1	1	5
Adam	3	2	2	3

- Pearson Correlation:

Q: Does Pearson Correlation measure similarities properly in this data set?

How to predict ratings to unrated items

- User-based K- Nearest Neighbor Collaborative recommendation: items you might like, is presents top k items
 - 1) Define a similarity measure prediction: how much you will like items, using some rating scale
 - 2) Pick k users that had similar preferences to those of current user
 - 3) Compute a prediction from a weighted average of k nearest neighbors' ratings (see the next slide)

You need to do experiments to find optimal k value.

How to predict ratings to unrated items

Prediction for the rating of user a for item p.

Similarity between user a and user b

Let's practice user-based k-NN CF

- In this practice and our homework, we will use much simpler way to compute a prediction of rating
 - 1) Define a similarity measure
 - Pick k users that had similar preferences to those of current user
 - 3) Pick the mode of the top k nearest neighbors as the predicted rating
 - ex) If you pick 3 neighbors and their ratings to the target item are (2, 2, 3), then the prediction will be 2.

Practice: User-based k-NN CF (k=1)

Example #1: How would John rate Star wars?

	Inception	Begin again	Once	Star wars
Brian	5	2	2	4
Bob	1	4	4	2
Cathy	2	3	3	1
John	5	1	2	3

Manhattan Distance:

(John, Brian) = 0 + 1 + 0 =1 (John, Bob) = 4 + 3+ 2 =9

(John, Cathy) = 3 + 2 + 1 = 6

The nearest neighbor: Brian John's rating to Star wars: 4

Practice: User-based k-NN CF (k=1)

Example #2: How would John rate Avatar?

	Inception	Begin again	Once	Star wars	Avatar
Brian	2	3	3	1	4
Bob	5	1	1	5	2
Cathy	5	1	2	4	1
John	3	2	2	3	?

Manhattan Distance:

The nearest neighbor: Cathy John's rating to Avatar: 1

Pearson Correlation Coefficient

$$(John, Brian) = -0.90$$

$$(John, Bob) = 1.0$$

$$(John, Cathy) = 0.95$$

The nearest neighbor: Bob John's rating to Avatar: 2

ITEM-BASED COLLABORATIVE FILTERING

How to predict ratings to unrated items

- Item-based K- Nearest Neighbor Collaborative Filtering
 - 1) Define a similarity measure between items
 - 2) Pick k items rated by the current user similar to the target item
 - 3) Compute a prediction from a weighted average of the k similar items' ratings

Let's practice item-based k-NN CF

- In this practice and our homework, we will use much simpler way to compute a prediction of rating
 - 1) Define a similarity measure between **items**
 - Pick k items rated by the current user similar to the target item
 - 3) Pick the mode of the top k nearest neighbors as the predicted rating
 - ex) If you picked 3 items and current user's ratings to the 3 items are (2, 2, 3), then the prediction will be 2.

Practice: Item-based k-NN CF (k=1)

Example #1

	Inception	Begin again	Once	Star wars
Brian	5	2	2	4
Bob	1	4	4	2
Cathy	2	3	3	1
John	5	1	2	?

Manhattan Distance:

(Star wars, Inception) = 1 + 1 + 1 = 3(Star wars, Begin again) = 1 + 2 + 2 = 5(Star wars, Once) = 2+2+2=6

The most similar item to Star wars: Inception John's rating to Star wars: 5

The Cold Start Problem

 What if this user has never rated anything before?

What if nobody has rated this item before?

- Additional information. For example,
 - Ask users to rate some initial items
 - Demographic information for users
 - Content analysis or metadata for items

Missing values

- Missing values in user-rating matrix
 - What if two users have rated different sets of things? How do we compare them?
 - What if two items have been rated by disjoint sets of users? How do we compare them?

Dealing with missing values

Example

	Inception	Begin again	Once	Star wars	Avatar
Brian	2	?	3	?	4
Bob	5	1	1	5	2
Cathy	5	?	2	2	1
John	5	?	2	3	?

Dealing with missing values

Example

	Inception	Begin again	Once	Star wars	Avatar
Brian	2	0	3	0	4
Bob	5	1	1	5	2
Cathy	5	0	2	2	1
John	5	0	2	3	?

Dealing with missing values

- Discarding the person/item from comparison?
 - It does not solve cold start problem
 - What if the data set is so sparse?
- Putting in a crazy number (-1000) for missing values?
- Putting in a random number?
- Putting in a mean (median) value?
 - Mean value of what set?
- Other advanced imputation technique?

Make a decision

Which similarity (or distance) measure to use?

How many neighbors to pick?

How to weight neighbors chosen?

User-based or item-based?

How to deal with missing values?