基 礎 徹 底 演 習 問題プリント

微分法・積分法③

49

2 次関数 $f(x) = \frac{1}{2}x^2 + 1$ を考え、放物線 C: y = f(x) 上に 2 点 P (4t, f(4t))、

Q(-t, f(-t)) をとり、2点P, Qにおける放物線Cの接線をそれぞれl, mとする。ただし、t>0 とする。

2直線 lとm が直交するとき $t = \frac{P}{1}$ であり、このとき

直線 l の方程式は $y = \begin{bmatrix} \dot{p} \\ \dot{p} \end{bmatrix} x - \begin{bmatrix} \dot{z} \\ \dot{z} \end{bmatrix}$, 直線 m の方程式は $y = \begin{bmatrix} \dot{z} \\ \dot{z} \end{bmatrix} x + \begin{bmatrix} \dot{p} \\ \dot{z} \end{bmatrix}$

と 2 直線 l, m によって囲まれた図形のうち, $x \ge 0$ を満たす部分の面積を Sとすると

$$S = \frac{522}{925}$$

である。

ア	イ	ウ	エ	オ	カ	キ	ク	ケ	コ	サ	シ	ス	セ	ソ	タ	チ

年 組 番 名前

50

円 C_1 : $x^2+y^2=4$ 上に点 A ($\sqrt{3}$, 1) をとる。また、円 C_1 と放物線 C_2 : $y=ax^2+b$ は点 A において共通の接線 l をもつとする。ただし、a、b は定数とする。

- (1) 円 C_1 上の点 A における接線 l の方程式は、 $y = \boxed{P} \sqrt{\boxed{1}} x + \boxed{\boxed{p}}$ である。
- (2) 直線lは、放物線 C_2 の点Aにおける接線でもあるから、a、bの値は

$$a = \begin{array}{|c|c|c|}\hline & \pm & \\\hline & b & \\\hline \end{array}$$
, $b = \begin{array}{|c|c|c|}\hline & \pm & \\\hline & 7 & \\\hline \end{array}$

である。

(3) 点 A を通り x 軸に平行な直線を m とする。

直線 m と放物線 C_2 によって囲まれた図形の面積を S とすると, $S = \boxed{}$ ケ $\boxed{}$ であり,円 C_1 と放物線 C_2 によって囲まれた図形の面積を T とすると,

ア	1	ウ	エ	オ	カ	+	ク	ケ	コ	サ	シ	ス	セ