Clustering Methods

A Case Study on Student Profiles in Educational Datasets

Agenda

- Introduction to student profiles
 - With an example of a sample dataset
- Clustering
 - Why needed?
 - A practical introduction to some clustering methods
- · 2-step clustering for extracting student profiles
- Live coding: clustering + neural network using PyTorch
- Challenge: at home!

Attribution

The contents of this talk are mainly based on the findings from the following publications:

- [1] Paola Mejia-Domenzain, Mirko Marras, Christian Giang, and Tanja Käser. *Identifying and Comparing Multi-dimensional Student Profiles Across Flipped Classrooms*. AIED 2022, Durham, UK.
- [2] Paola Mejia-Domenzain, Mirko Marras, Christian Giang, Alberto Cattaneo, and Tanja Käser. *Evolutionary Clustering of Apprentices' Self-Regulated Learning Behavior in Learning Journals*. IEEE Transactions on Learning Technologies, vol. 15, no. 5, October 2022.
- [3] Paola Mejia-Domenzain, Eva Laini, Seyed Parsa Neshaei, Thiemo Wambsganss, and Tanja Käser. *Visualizing Self-Regulated Learner Profiles in Dashboards: Design Insights from Teachers*. AIED 2023, Tokyo, Japan.
- [4] Eva Laini. Co-Designing a Teacher Tool for Visualizing Self-Regulated Learning Behaviors. EPFL Master Thesis, 2023.

Student Collected Features

$\overline{\text{Dimension}^a}$	Feature	Description				
Effort	Total time online [8]	Sum of session durations				
	Total video clicks [8]	Video events (play, pause, stop, seek)				
Consistency	Mean session duration [8]	Time measured in minutes				
	Relative time online	Unit vector of total time online				
	Relative video clicks	Unit vector of total video clicks				
Regularity	Periodicity of week day [6]	Studying on certain day(s) of the week				
	Periodicity of week hour [6]	Studying at certain hours of the day				
	Periodicity of day hour [6]	Studying on certain day(s) & hours of the week				
Proactivity	Content anticipation [17]	Fraction of videos (from subsequent weeks) watched before the scheduled due date				
	Delay in lecture view [6]	Time interval between the first views and the due date of videos of prior weeks				
Control	Fraction spent [20]	Real time spent watching the video divided by its duration, averaged across videos				
	Pause action frequency [15]	Mean number of pauses divided by the time spent watching a video per video				
	Average change rate [20]	Mean playback speed used to watch videos				
Assessment	Competency strength [17]	Highest grade achieved by the student on a quiz divided by the number of attempts				
	Student shape [17]	Student's tendency of obtaining the maximum grade in a quiz in the first attempt				

Student Collected Features (cont.)

Profile		%		Dimension								
	LA	FP	PC	Effort	Consistency	Regularity	Proactivity	Control	Assessment			
\overline{A}	24			Lower	Uniform	Lower Peaks	Delayed	Lower	Lower			
B	18	28	35	Lower	Uniform	Lower Peaks	Delayed	Higher	Higher			
C	19		18	Higher	Uniform	Higher Peaks	Anticipated	Higher	Higher			
D	21			Lower	Uniform	Higher Peaks	Delayed	Higher	Higher			
E	18			Lower	Uniform	Higher Peaks	Anticipated	Higher	Higher			
F		15	27	Higher	Midterm	Higher Peaks	Delayed	Higher				
G		25		Higher	Midterm	Lower Peaks	Anticipated	Higher				
H		14		Lower	Midterm	Lower Peaks	Delayed	Lower				
I		18		Higher	Midterm	Higher Peaks	Anticipated	Higher				
J			20	Lower	Midterm	Lower Peaks	Anticipated	Lower				

From [1]

Student Behavior	Profile A	Profile B	Profile C	Profile D Less up-to-date		
r Proactivity	More up-to-date	More up-to-date	Less up-to-date			
T Effort	Higher intensity	Lower intensity	Higher intensity	Lower intensity		
	Constant work	Work before exams	Constant work	Work before exams		
■ Control	Fast with pauses	Fast with pauses	Slow watchers	Slow watchers		
☼ Regularity	Peak before class	Peak before class	Peak before class	No peaks		

Sample Dataset

Computer-generated, for this talk

dataset

id	time_online	video_clicks	content_anticipation	delay_lectures	fraction_spent	average_grade
0	140	605	21	3	29	18
1	179	523	21	5	92	16
2	247	573	28	6	34	15
3	492	1054	77	1	82	19
4	193	716	29	6	86	17
5	486	986	79	4	92	19
6	270	663	24	5	107	16
7	98	644	28	3	59	16
8	252	680	20	7	104	17
9	279	502	29	5	27	15

Why needed?

- We want to group students (unsupervised) into several profiles, such that we can predict the average grade for each student
- Data is given as numbers, but desired as discrete outputs
- We can group the number points close to each other as one label
- Research [3, 4] has shown that clustering student attributes has a positive effect on teachers to spark a range of potential interventions for students and course modifications, if presented in a correct way

- Good clustering: high intra-cluster and low inter-cluster similarity
- Clustering is a data segmentation (partition) method
- Should be robust to outliers
- We discuss three methods briefly
 - K-Means
 - K-Modes
 - DBSCAN

K-Means

- Used for continuous data
- Choose k centers randomly
- Find euclidean distance of all data points to all centers
- Assign each data point to a cluster to which it is closer
- Change the cluster center to the mean of all data points of that cluster
- Continue until the centers don't change further

K-Means (cont.)

Source: https://upload.wikimedia.org/wikipedia/commons/e/ea/K-means convergence.gif

K-Modes

- The same, but calculates the "mode" instead of the mean
- K-modes method is usually applied to categorical data, while K-means method is applied to numerical data

Clustering DBSCAN

- Density-Based Spatial Clustering of Applications with Noise
- Finds data points that are "dense" and assigns them to a cluster
- Useful for data points with arbitrary shape

DBSCAN (cont.)

Source: https://towardsdatascience.com/overview-of-clustering-algorithms-27e979e3724d

Two-step Clustering

			datas	et										
id	time_online	video_clicks	content_anticipation	delay_le	ctures	frac	ction	_sp	ent ave	erage_grade				
0	140	605	21		3				29	18				
1	179	523	21		5				92	16				
2	247	573	28		6				34	15				
3	492	1054	77		1				82	19				
4	193	716	29		6				86	17				
5	486	986	79		rofile		%				Dime	nsion		
6	270	663	24			LA I	FP 1	PC	Effort	Consistency	Regularity	Proactivity	Control	Assessment
7	98	644	28			$\overline{24}$			Lower	Uniform	Lower Peaks	Delayed	Lower	Lower
8	252	680	20		B	18 :	28	35	Lower	Uniform	Lower Peaks	Delayed	Higher	Higher
g	279	502	29		C	19		18	Higher	Uniform	Higher Peaks	Anticipated	Higher	Higher
					D	21			Lower	Uniform	Higher Peaks	Delayed	Higher	Higher
					E	18			Lower	Uniform	Higher Peaks	Anticipated	Higher	Higher
					\boldsymbol{F}		15	27	Higher	Midterm	Higher Peaks	Delayed	Higher	
					G	:	25		Higher	Midterm	Lower Peaks	Anticipated	Higher	
					H		14		Lower	Midterm	Lower Peaks	Delayed	Lower	
					I		18		Higher	Midterm	Higher Peaks	Anticipated	Higher	
					J			20	Lower	Midterm	Lower Peaks	Anticipated	Lower	

Two-step Clustering (cont.)

- We present a simplified model of the approach used in [1]
- Two-step clustering of the dataset
 - Finding categorical labels for the dimensions, from the raw numbers
 - Finding student profiles from the categorical labels of the dimensions
- <u>Ideal outcome</u>: finding student profiles with different ranges of average grade
 - Conclusion 1: the value of dimensions have correlation with grades
 - Conclusion 2: finding correct labels in an unsupervised manner
 - Conclusion 3: the possibility to predict student grades with ML
 - Predict profile, not the grade directly, for higher accuracy

Live Coding

Challenge: At Home!

- Train two similar ML models to predict the grade from a) the raw values of the dataset, and b) the value of the dimensions (effort, control, etc.) — one of them was trained in the talk!
 - Compare the accuracy of the two models (maybe you can reach 100%!) Do the accuracies differ? (As our sample dataset is computer-generated and not real, there is no guarantee on which model has a higher accuracy)
- Use at least one another different types of model (e.g. a classical model.) for each of the two training approaches, and compare the results by providing plots/graphs