Méthodes de conception de programmes

Devoir 2: 1, 2, 3... Arbres!

Alexandre Gobeaux^a, Louis Navarre^a, Gilles Peiffer^a

^aÉcole Polytechnique, Université catholique de Louvain, Place de l'Université 1, 1348 Ottignies-Louvain-la-Neuve, Belgique

Abstract

Ce papier donne les invariants de représentation, la fonction d'abstraction et les spécifications des fonctions insert et join pour une implémentation des arbres 2-3 basée sur Sedgewick and Wayne (2011) et Wikipedia contributors (2018).

1. Invariant de représentation

Commençons par définir quelques fonctions auxiliaires :

- $\operatorname{size}(T)$: donne le nombre de nœuds d'un arbre T;
- height(T): donne la hauteur d'un arbre T;
- type(T): donne le nombre de sours-arbres du nœud source de l'arbre T.

Afin d'alléger la notation de l'invariant de représentation ok(T), voici quelques fonctions supplémentaires.

- Si le nœud source de T est un 2-nœud, alors L et R dénotent respectivement le sous-arbre de gauche et de droite de T, alors que a dénote la donnée de son nœud source.
- Si le nœud source de T est un 3-nœud, alors L, M et R dénotent respectivement le sous-arbre de gauche, du milieu et de droite de T, alors que a < b sont les données du nœud source.

$$f(T) = \Big(\operatorname{size}(L) > 0 \wedge \operatorname{size}(R) > 0\Big) \wedge \Big(\operatorname{height}(L) = \operatorname{height}(R)\Big) \wedge \Big(\forall \lambda \in L, \varrho \in R : \lambda < a \leq \varrho\Big)\,, \tag{1}$$

$$\begin{split} g(T) &= \Big(\operatorname{size}(L) > 0 \wedge \operatorname{size}(M) > 0 \wedge \operatorname{size}(R) > 0\Big) \wedge \Big(\operatorname{height}(L) = \operatorname{height}(M) = \operatorname{height}(R)\Big) \wedge \\ \Big(\forall \lambda \in L, \mu \in M, \varrho \in R : \lambda < a \leq \mu < b \leq \varrho\Big) \,. \end{split} \tag{2}$$

L'invariant de représentation est alors donné par

$$\mathsf{ok}(T) \equiv \mathsf{size}(T) = 0 \lor (\mathsf{type}(T) = 2 \land f(T)) \lor (\mathsf{type}(T) = 3 \land g(T)) \,. \tag{3}$$

2. Fonction d'abstraction

La fonction d'abstraction abs() est donnée par

$$abs() = . (4)$$

3. Spécifications formelles

3.1. Spécification de insert

3.1.1. Précondition

3.1.2. Modifies

3.1.3. Postcondition

3.2. Spécification de join

3.2.1. Précondition

3.2.2. Modifies

3.2.3. Postcondition

Références

Sedgewick, R., Wayne, K., 2011. Algorithms, 4th Edition. Addison-Wesley, 21415 Network Place, Chicago, IL 60673, United States.

Wikipedia contributors, 2018. 2-3 tree — Wikipedia, the free encyclopedia. https://en.wikipedia.org/w/index.php?title=2%E2%80%933_tree&oldid=857850249, [Online; accessed 20-April-2019].

Email addresses: alexandre.gobeaux@student.uclouvain.be (Alexandre Gobeaux), navarre.louis@student.uclouvain.be (Louis Navarre), gilles.peiffer@student.uclouvain.be (Gilles Peiffer)