Multivariate Statistik, Übung 11

HENRY HAUSTEIN

Aufgabe 1

Die Tabellen ergeben sich für die Studenten zu (der Durchschnittsrang ist $\bar{p}=\frac{21}{6}=\frac{7}{2})$

		I	3		
		4 Stunden	5 Stunden	\bar{p}_A	$\bar{p}_A - \bar{p} = \beta_{Ai}$
	ohne Hilfsmittel	3	4	$\frac{7}{2}$	0
A	Formelsammlung	5	6	$\frac{11}{2}$	2
	alles benutzen	1	2	$\frac{3}{2}$	-2
	$ar{p}_B$	10 3	<u>11</u> 3		
	$\bar{p}_B - \bar{p} = \beta_{Bj}$	$-\frac{1}{6}$	$\frac{1}{6}$		
		В			
		4 Stunden	5 Stunden	\bar{p}_A	$\bar{p}_A - \bar{p} = \beta_{Ai}$
	ohne Hilfsmittel	6	1	$\frac{7}{2}$	0
A	Formelsammlung	5	2	$\frac{7}{2}$	0
	alles benutzen	4	3	$\frac{7}{2}$	0
	$ar{p}_B$	5	2		
	$\bar{p}_B - \bar{p} = \beta_{Bi}$	$\frac{3}{2}$	$-\frac{3}{2}$		

Dem ersten Studenten sind die erlaubten Hilfsmittel wichtiger, dem zweiten Studenten die Zeit. Aggregation der Nutzenwerte und Bestimmung der relativen Wichtigkeit

$$\beta_{jm}^* = \beta_{jm} - \beta_j^{min}$$

$$\tilde{\beta}_{jm} = \frac{\beta_{jm}^*}{\max\{\beta_{A1}^*, \beta_{A2}^*, \beta_{A3}^*\} + \max\{\beta_{B1}^* + \beta_{B2}^*\}}$$

$$\bar{\beta}_{jm} = \frac{1}{2} \cdot \sum_{i=1}^{N_j} \beta_{ji}$$

Es ergibt sich

	β_{jm}^*		$\tilde{eta}_{\scriptscriptstyle J}$	$ar{eta}_{jm}$	
	Student 1	Student 2	Student 1	Student 2	
ohne Hilfsmittel	2	0	$\frac{6}{13}$	0	$\frac{3}{13}$
Formelsammlung	4	0	$\frac{12}{13}$	0	$\frac{6}{13}$
alles erlaubt	0	0	0	0	0
4 Stunden	0	3	0	1	$\frac{1}{2}$
5 Stunden	$\frac{1}{3}$	0	$\frac{1}{13}$	0	$\frac{1}{26}$

Die Wichtigkeiten sind dann

$$W_{j} = \frac{\max_{j} \left\{ \bar{\beta}_{jm} \right\}}{\max \left\{ \beta_{A1}^{*}, \beta_{A2}^{*}, \beta_{A3}^{*} \right\} + \max \left\{ \beta_{B1}^{*} + \beta_{B2}^{*} \right\}}$$

$$W_{A} = \frac{\frac{6}{13}}{\frac{6}{13} + \frac{1}{2}} = \frac{12}{25} = 48\%$$

$$W_{B} = \frac{\frac{1}{2}}{\frac{6}{13} + \frac{1}{2}} = \frac{13}{25} = 52\%$$

Aufgabe 2

Die traditionelle Conjoint-Analyse ist nur dann möglich, wenn 1 das am wenigsten bevorzugte Produkt ist. In der Aufgabe ist aber 1 das beste Produkt. Die Rangfolge muss also umgedreht werden (der Durchschnittsrang ist $\bar{p} = \frac{45}{9} = 5$):

			В			
		250g	500g	750g	\bar{p}_A	$\bar{p}_A - \bar{p} = \beta_{Ai}$
	Bio-Flakes	7	9	1	$\frac{17}{3}$	$\frac{2}{3}$
A	Bio-Pads	4	3	2	3	-2
	Bio-Balls	5	8	6	$\frac{19}{3}$	$\frac{4}{3}$
	$ar{p}_B$	$\frac{16}{3}$	$\frac{20}{3}$	3		
	$\bar{p}_B - \bar{p} = \beta_{Bj}$	$\frac{1}{3}$	$\frac{5}{3}$	-2		

Berechnung der relativen Wichtigkeit

	β_{jm}^*	$ ilde{eta}_{jm}$	$ar{eta}_{jm}$	W_{j}
250g	$\frac{8}{3}$	$\frac{8}{21}$	$\frac{8}{21}$	
500g	0	0	0	$\frac{10}{21} = 47.6\%$
750g	$\frac{10}{3}$	$\frac{10}{21}$	$\frac{10}{21}$	
Bio-Flakes	$\frac{7}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	
Bio-Pads	$\frac{11}{3}$	$\frac{11}{21}$	$\frac{11}{21}$	$\frac{11}{21} = 52.4\%$
Bio-Balls	0	0	0	

Die Art ist wichtiger als die Größe der Packung. Bei mehreren befragten Personen muss zwischendurch noch der Mittelwert über die normierten Teilnutzen berechnet werden; bei mehr Eigenschaften müssen noch mehr β 's berechnet werden.

Aufgabe 3

- (a) Jede der drei Eigenschaften hat 3 Ausprägungen, es gibt also $3 \cdot 3 \cdot 3 = 27$ Stimuli.
- (b) Es gibt $\binom{27}{3}$ = 2925 Möglichkeiten aus 27 Stimuli 3 auszuwählen.
- (c) Es gibt 27 $(3 \cdot 3 \cdot 3)$ mögliche Autos für Alternative 1. Da es keine Überlappungen gegen soll, hat man für Alternative 2 nur noch 2 Kaufpreise, 2 PS-Zahlen und 3 Kraftstoffarten zur Auswahl, also insgesamt $2 \cdot 2 \cdot 2 = 8$ Autos. In der dritten Alternative bleibt dann nur noch ein Auto mit dem letzten Kaufpreis, der letzten PS-Zahl und der letzten Kraftstoffart. Man hat also $27 \cdot 8 \cdot 1 = 216$ mögliche Choice-Sets ohne Überlappung.
- (d) Wenn wir jeder Person nur 10 Choice-Sets vorlegen dürfen, brauchen wir $\frac{216}{10} = 21.6$ Personen. Also müssen wir mindestens 22 Personen befragen.
- (e) Um den zentrierten Nutzen zu bestimmen, müssen wir von jedem Nutzenwert den mittleren Nutzen einer Eigenschaft abziehen (bei der *none*-Option muss die Summe der mittleren Nutzen aller Eigenschaften abgezogen werden). Die mittleren Nutzen sind:

$$\bar{\beta}_1 = \frac{21}{3} = 7$$

$$\bar{\beta}_2 = \frac{9}{3} = 3$$

$$\bar{\beta}_3 = \frac{6}{3} = 2$$

$$\bar{\beta}_1 + \bar{\beta}_2 + \bar{\beta}_3 = 7 + 3 + 2 = 12$$

Es ergibt sich

	zentrierter Teilnutzen	Wichtigkeit
15 T€	2.8	
20 T€	4.2	54.4 %
25 T€	-7	
86 PS	-3	
104 PS	1.2	23.3 %
132 PS	1.8	
Benzin	1.4	
Diesel	1.6	22.3 %
Erdgas	-3	
none	-14.8	

Der Kaufpreis ist am wichtigsten. Die none-Option hat den geringsten Teilnutzen, jedes Auto hat einen höheren Teilnutzen (selbst ein $25.000 \in$ teures Erdgas-Fahrzeug mit nur 86 PS) und würde eher gekauft werden als gar kein Auto zu haben.