Is Technology Polarising Australia's Work Force?

Alex Cooper Honours Candidate Macquarie University

August 2013

Wage inequality has risen since the 1980s

Composition–adjusted changes in weekly real wages by percentile 1982–2010

Real cost of computation has decreased exponentially

The 'task approach'

Price per computation/second, 2006 USD (Nordhaus 2007)

Does technological change explain rising inequality?

Three approaches:

The 'canonical' model: skill-biased technical change (SBTC)

Does technological change explain rising inequality?

Three approaches:

The 'canonical' model: skill-biased technical change (SBTC)

The 'task approach'

The relationship between ICT investment and occupational changes

Does technological change explain rising inequality?

Three approaches:

The 'canonical' model: skill-biased technical change (SBTC)

The 'task approach'

The relationship between ICT investment and occupational changes

Further research: job 'task content' and wages

The 'canonical model:' skill-biased technical change

The 'canonical model:' skill-biased technical change

Low-skilled labour (L) Technology (AL)

The 'task approach

Production function:

$$F = \left[\left(A_L L \right)^{\frac{\sigma - 1}{\sigma}} + \left(A_H H \right)^{\frac{\sigma - 1}{\sigma}} \right]^{\frac{\sigma}{(\sigma - 1)}}$$

We assume $\sigma > 1$.

The 'canonical model:' skill-biased technical change

When high-skilled technology is increasing, ceteris paribus,

- Increasing inequality, driven by skill demand.
- Rising college/education premium.
- Monotone wage growth in skills.

- Empirically successful, e.g.
 - Katz and Murphy (1992)
 - Card and Lemieux (2001)

College wage premium

Education Wage Premium 1981–2010

Full-time wage/salary earners. 2013 AUD, CPI deflator. Source: Acemoglu and Autor (2011), ABS cat. 6543.0, 6541.0, 6503.0.

College wage premium

Education Wage Premium 1981-2010

Full-time wage/salary earners. 2013 AUD, CPI deflator. Source: Acemoglu and Autor (2011), ABS cat. 6543.0, 6541.0, 6503.0.

Non-monotone wage growth in time

Cumulative change in composition-adjusted real weekly earnings 5th, 50th, 95th percentile; logarithms

Full-time wage/salary earners. 2013 AUD, CPI deflator. Source: ABS cat. 6543.0, 6541.0, 6503.0.

Wage growth by wage percentile and sex

Changes in log weekly real wages by percentile relative to median, by sex, 1982–2010 (Australia)

Failure of the SBTC model: summary

- No clear 'college premium' in Australia (see Coelli 2007)
 - Education a poor proxy for skills ('credentialism')?
 - Expanding supply of college-educated workers?
 - Does not appear to be driving inequality trend

Failure of the SBTC model: summary

- No clear 'college premium' in Australia (see Coelli 2007)
 - Education a poor proxy for skills ('credentialism')?
 - Expanding supply of college-educated workers?
 - Does not appear to be driving inequality trend
- Wage growth is non-monotone
- Non-monotone wage growth across earnings spectrum

Failure of the SBTC model: summary

- No clear 'college premium' in Australia (see Coelli 2007)
 - Education a poor proxy for skills ('credentialism')?
 - Expanding supply of college-educated workers?
 - Does not appear to be driving inequality trend
- Wage growth is non-monotone
- Non-monotone wage growth across earnings spectrum
- Despite composition adjustment, male and female wage profiles differ

Could job composition explain the trend?

Employment Share by Major Occupational Group, 1996–2013

Autor, Levy, and Murnane (QJE 2003)

 Recall 'canonical' approach: factors produce output via production function F

capital, labour
$$\stackrel{F}{\longrightarrow}$$
 output.

Technology is factor-augmenting (labour and capital complements)

Autor, Levy, and Murnane (QJE 2003)

 Recall 'canonical' approach: factors produce output via production function F

capital, labour
$$\stackrel{F}{\longrightarrow}$$
 output.

- Technology is factor-augmenting (labour and capital) complements)
- ALM: factors produce tasks, which produce output:

capital, labour
$$\longrightarrow$$
 tasks $\stackrel{F}{\longrightarrow}$ output.

Technology can be complementary or a substitute

- lobs have different task content
- Capital can substitute for only certain 'routine' tasks.
 - Typically 'middle-skill,' like clerical work
- Michaels et al (2013) expand the canonical model with 'middle-skilled' labour
 - Three kinds of labour: H, M, L, and ICT capital C.
 - Capital C and M are perfect substitutes
 - Middle-skilled workers compete with ICT capital

The 'task approach'

• The canonical approach

The canonical approach

The 'task approach' 000000000

Production function with three types of labour and ICT capital C:

$$Y = \left[\underbrace{(A_L L)^{\frac{\sigma-1}{\sigma}}}_{\text{low}} + \underbrace{(A_M M + C)^{\frac{\sigma-1}{\sigma}}}_{\text{medium}} + \underbrace{((A_H H)^{\mu} + C^{\mu})^{\frac{\sigma-1}{\mu\sigma}}}_{\text{high}}\right]^{\frac{1}{\sigma-1}}$$

Production function with three types of labour and ICT capital C:

$$Y = \left[\underbrace{(A_L L)^{\frac{\sigma-1}{\sigma}}}_{\text{low}} + \underbrace{(A_M M + C)^{\frac{\sigma-1}{\sigma}}}_{\text{medium}} + \underbrace{((A_H H)^{\mu} + C^{\mu})^{\frac{\sigma-1}{\mu\sigma}}}_{\text{high}}\right]^{\frac{1}{\sigma-1}}$$

- Comparative statics: if C increases exogenously, then:
 - high-skilled wage share should increase, and
 - medium-skilled wage share should decrease.

Production function with three types of labour and ICT capital C:

$$Y = \left[\underbrace{(A_L L)^{\frac{\sigma-1}{\sigma}}}_{\text{low}} + \underbrace{(A_M M + C)^{\frac{\sigma-1}{\sigma}}}_{\text{medium}} + \underbrace{((A_H H)^{\mu} + C^{\mu})^{\frac{\sigma-1}{\mu\sigma}}}_{\text{high}}\right]^{\frac{1}{\sigma-1}}$$

- Comparative statics: if C increases exogenously, then:
 - high-skilled wage share should increase, and
 - medium-skilled wage share should decrease.
- We form three groups of occupations:
 - High-skilled—managers and professionals
 - Middle-skilled—clerical and sales workers
 - Low-skilled—labourers, tradespersons, transport workers

Production function with three types of labour and ICT capital C:

$$Y = \left[\underbrace{(A_L L)^{\frac{\sigma-1}{\sigma}}}_{\text{low}} + \underbrace{(A_M M + C)^{\frac{\sigma-1}{\sigma}}}_{\text{medium}} + \underbrace{((A_H H)^{\mu} + C^{\mu})^{\frac{\sigma-1}{\mu\sigma}}}_{\text{high}}\right]^{\frac{1}{\sigma-1}}$$

- Comparative statics: if C increases exogenously, then:
 - high-skilled wage share should increase, and
 - medium-skilled wage share should decrease.
- We form three groups of occupations:
 - High-skilled—managers and professionals
 - Middle-skilled—clerical and sales workers
 - Low-skilled—labourers, tradespersons, transport workers
- For each industry we compute:
 - Skill group wage share (Survey of Income and Housing)
 - ICT capital stock/value added ratio (National Accounts)

ICT capital (equipment) and wage shares by group

Problems with this result

• Model gives only wage share, not wage

Model gives only wage share, not wage

The 'task approach' 000000000

• ICT investment endogenous, with no obvious instruments

- Model gives only wage share, not wage
- ICT investment endogenous, with no obvious instruments

- Tests have low power
 - few industry groups
 - occupational groupings too simplistic

Problems with this result

- Model gives only wage share, not wage
- ICT investment endogenous, with no obvious instruments

- Tests have low power
 - few industry groups
 - occupational groupings too simplistic
- Conflicting results with other ICT capital measures (software, computer peripherals)

Problems with this result

- Model gives only wage share, not wage
- ICT investment endogenous, with no obvious instruments
- Tests have low power
 - few industry groups
 - occupational groupings too simplistic
- Conflicting results with other ICT capital measures (software, computer peripherals)
- No obvious way to deflate ICT capital for consistent comparison

A more sophisticated approach

Following Firpo, Fortin, & Lemieux (2011),

- Labour market as Roy model
 - Self-selection into occupations by comparative advantage

A more sophisticated approach

Following Firpo, Fortin, & Lemieux (2011),

- Labour market as Roy model
 - Self-selection into occupations by comparative advantage
- Assume that ICT investment reduces demand for 'routine' and 'off-shoreable' occupations

A more sophisticated approach

Following Firpo, Fortin, & Lemieux (2011),

- Labour market as Roy model
 - Self-selection into occupations by comparative advantage
- Assume that ICT investment reduces demand for 'routine' and 'off-shoreable' occupations
- For these occupations, we predict:
 - high-quality workers self-select out of these occupations
 - a wage compression in these occupations at higher quantiles

Data

- O*NET: Occupational task database
 - Developed by US Department of Labor
 - Details work activities by occupation
- ② David Autor's work type data categories
 - Routine/non-routine and 'off-shoreable'
 - Manually mapped to ANZSCO categories
- Australian Bureau of Statistics
 - Census of Population and Housing for wages and occupations

O*NET Data Example

Job Title	Gather	Analyze	Think	Handle
	Data	Data	Creatively	Moving
				Objects
CEOs	5.03	4.82	5.1	1.1
Economists	5.88	6.58	5.38	0.54
Dancers	3.88	1.96	4.37	2.63
Programmers	4.91	5.05	5.96	0.44
Tellers	2.91	2.65	2.21	2.74
Surgeons	5.72	5.49	4.67	3.62
Bakers	2.8	3.29	2.93	5.06
Receptionists	3.1	2.45	2.54	2.88
Typists	4.35	1.52	3.9	1.43

Table: O*NET Work Activity Example (Levels, Scale 0-7)

Summary

 Skill-biased technical change does not appear to explain widening inequality in Australia

- Changes in occupational composition seem important
- Correlation between 'polarisation' and ICT capital
- Further work will focus on changes in wage structure and 'task content' of jobs

Questions

and

I'd love your feedback.

References

Acemoglu, D., & Autor, D. H. (2011). Skills, Tasks and Technologies: Implications for Employment and Earnings. In D. Card & O. Ashenfelter (Eds.), Handbook of labor economics, volume 4, part b (Chap. 12, Vol. Volume 4, pp. 10431171). Elsevier

The 'task approach'

Autor, D. H., Levy, F., & Murnane, R. J. (2003). The skill content of recent technological change: An empirical exploration. The Quarterly Journal of Economics, 118(4), 12791333.

Card, D., & Lemieux, T. (2001, May). Can Falling Supply Explain the Rising Return to College for Younger Men? A Cohort-Based Analysis. The Quarterly Journal of Economics, 116(2), 705746

Firpo, S., Fortin, N., & Lemieux, T. (2011). Occupational tasks and changes in the wage structure. Institute for the Study of Labor.

Katz, & Murphy, K. J. (1992). Changes in Relative Wages, 1963-1987: Supply and Demand Factors. Quarterly Journal of Economics, 107, 3578.

Spare Slides

ICT capital (software) and wage shares

ICT capital (computers and peripherals) and wage shares

