第十八章 隐函数定理及其应用

第四节 条件极值

条件极值问题

定义: 点 (x_0,y_0) 是函数 z=f(x,y) 在条件

$$\varphi(x,y) = 0$$

下的极值点的含义是: $\varphi(x_0, y_0) = 0$, 且 (x_0, y_0) 是区域

$$E = \{(x,y)|(x,y) \in U((x_0,y_0)), \varphi(x,y) = 0\}$$

中函数 z = f(x, y) 的极值点.

条件极值问题

定理: 设函数 z = f(x,y) 定义在区域 Ω 中并且可微, 函数 $\varphi(x,y)$ 也

在 Ω 中有定义且可微. 若点 (x_0,y_0) 是函数 z=f(x,y) 在条件 $\varphi(x,y)=0$

下的极值点,则必存在常数 λ 使得

$$\left(\frac{\partial f}{\partial x} + \lambda \frac{\partial \varphi}{\partial x}\right)\Big|_{(x_0, y_0)} = 0, \qquad \left(\frac{\partial f}{\partial y} + \lambda \frac{\partial \varphi}{\partial y}\right)\Big|_{(x_0, y_0)} = 0.$$

3 / 11

条件极值问题

定理: 设函数 z = f(x, y) 定义在区域 Ω 中并且可微, 函数 $\varphi(x, y)$ 也 在 Ω 中有定义且可微. 若点 (x_0, y_0) 是函数 z = f(x, y) 在条件 $\varphi(x, y) = 0$

$$\left(\frac{\partial f}{\partial x} + \lambda \frac{\partial \varphi}{\partial x}\right)\Big|_{(x_0, y_0)} = 0, \qquad \left(\frac{\partial f}{\partial y} + \lambda \frac{\partial \varphi}{\partial y}\right)\Big|_{(x_0, y_0)} = 0.$$

实际上,构造拉格朗目函数

下的极值点. 则必存在常数 λ 使得

$$L(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y),$$

求它的稳定点.

例题: 求曲线 xy = 1 上点到原点距离(平方)最小的点.

例题: 求曲线 xy=1 上点到原点距离(平方)最小的点.

条件极值问题

定义: 点
$$(x_1^0, x_2^0, \dots, x_n^0)$$
 是函数 $y = f(x_1, x_2, \dots, x_n)$ 在条件

$$\varphi_k(x_1, x_2, \dots, x_n) = 0, \quad k = 0, 1, \dots, m \quad (m < n)$$

下的极值点的含义是: $\varphi_k(x_1^0, x_2^0, \cdots, x_n^0) = 0$, 且 $(x_1^0, x_2^0, \cdots, x_n^0)$ 是区域

$$E = \{(x_1, \dots, x_n) | (x_1, \dots, x_n) \in U((x_1^0, \dots, x_n^0)), \varphi_k(x_1, \dots, x_n) = 0\}$$

中函数 $y = f(x_1, x_2, \dots, x_n)$ 的极值点.

5 / 11

条件极值问题

定理: 设函数 $y = f(x_1, x_2, \dots, x_n)$ 定义在区域 Ω 中并且可微, 函数 $\varphi_k(x_1, x_2, \dots, x_n), 1 \le k \le m$, 在 Ω 中可微. 若点 $(x_1^0, x_2^0, \dots, x_n^0)$ 是函 数 $y = f(x_1, x_2, \dots, x_n)$ 在条件 $\varphi_k(x_1, x_2, \dots, x_n) = 0, k = 1, 2, \dots, m$ (m < n) 下的极值点, 且雅可比矩阵

$$\frac{\partial(\varphi_1,\varphi_2,\cdots,\varphi_m)}{\partial(x_1,x_2,\cdots,x_n)},$$

的秩为 m, 则存在一组常数 $\lambda_1, \lambda_2, \dots, \lambda_m$ 使得

$$\left(\frac{\partial f}{\partial x_i} + \sum_{k=1}^m \lambda_k \frac{\partial \varphi_k}{\partial x_i}\right)\Big|_{(x_1^0, \dots, x_n^0)} = 0, \quad i = 1, 2, \dots, n.$$

条件极值问题

定理: 设函数 $y = f(x_1, x_2, \dots, x_n)$ 定义在区域 Ω 中并且可微, 函数 $\varphi_k(x_1, x_2, \dots, x_n)$, $1 \le k \le m$, 在 Ω 中可微. 若点 $(x_1^0, x_2^0, \dots, x_n^0)$ 是函数 $y = f(x_1, x_2, \dots, x_n)$ 在条件 $\varphi_k(x_1, x_2, \dots, x_n) = 0$, $k = 1, 2, \dots, m$, (m < n) 下的极值点, 且雅可比矩阵

$$\frac{\partial(\varphi_1,\varphi_2,\cdots,\varphi_m)}{\partial(x_1,x_2,\cdots,x_n)},$$

的秩为 m, 则存在一组常数 $\lambda_1, \lambda_2, \cdots, \lambda_m$ 使得

$$\left(\frac{\partial f}{\partial x_i} + \sum_{k=1}^m \lambda_k \frac{\partial \varphi_k}{\partial x_i}\right)\Big|_{(x_1^0, \dots, x_n^0)} = 0, \quad i = 1, 2, \dots, n.$$

$$L = f(x_1, x_2, \cdots, x_n) + \sum_{k=1}^n \lambda_k \varphi_k(x_1, x_2, \cdots, x_n).$$

例题: 要设计一个容积为 V 的长方形开口水箱, 试问水箱的长、宽、高 备为多少时, 其表面积最小?

例题: 已知抛物面

$$x^2 + y^2 = z$$

被平面

$$x + y + z = 1,$$

截成一个椭圆,求这个椭圆到原点的最长与最短距离.

8 / 11

例题: 求

$$f(x, y, z) = xyz$$

在条件

$$\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{r}, \ (x > 0, y > 0, z > 0, r > 0)$$

下的极小值,并证明不等式

$$3\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)^{-1} \le \sqrt[3]{abc},$$

其中 a,b,c 为任意正实数.

◆ロト ◆個ト ◆差ト ◆差ト 差 めので

例题: 求函数

$$E(x,y) = x^2 - y^2$$

在条件

$$x^2 + y^2 \le 4,$$

下的最值问题.

本节作业

作业:

第 160 页: 第1题: (1)、(2).

第 160 页: 第3题.