Lösningsförslag till tentamen i Linjär algebra II, 24 april 2019

- (1) (a) Determinanten räknas ut och blir $-a^3-2a^2+a=-a(a-1)^2$. Lösningarna är a=0 och a=1.
 - (b) Man kan enkelt visa att vektorerna (1,2,3,4), (1,1,2,3) och (1,1,1,1) är linjärt oberoende. Detta medför att om determinanten är skild från noll rangen är 4 och om determinanten är lika med noll då är rangen 3.
- (2) (a) Man har F(1) = (2t a) = -a + 2t, $F(t) = (2t a)(t + 1) t^2 = -a + (2 a)t + t^2$, $F(t^2) = (2t a)(t + 1)^2 2t^3 = -a + (2 2a)t + (4 a)t^2$, vilket ger

$$A = \begin{pmatrix} -a & -a & -a \\ 2 & 2-a & 2-2a \\ 0 & 1 & 4-a \end{pmatrix}$$

Då de två första kolonnerna alltid är linjärt oberoende och $\operatorname{rang}(A) = \dim V(A)$ så måste $\operatorname{rang}(A) \geq 2$.

(b) Sarrus regel ger $\det(A) = -a^2(a-2)$. Om $a \neq 0, 2$ så är $\det(A) \neq 0$. Det följer att A är inverterbar i detta fall, så att $V(A) = \mathbb{R}^3$ och $N(A) = \{0\}$. Om a = 0 så är $\det(A) = 0$, vilket medför att rang(A) = 2, se ovan. Då $\dim V(A) = \operatorname{rang}(A) = 2$ så ges en bas för V(A) av två linjärt oberoende kolonner i A, t.ex. $(0,2,0)^{tr}$ och $(0,2,1)^{tr}$, vilka representerar polynomen 2t och $2t + t^2$ resp. Dimensionssatsen ger $\dim N(A) = 3 - \dim V(A) = 1$ och man har

$$(x,y,z) \in N(A) \leftrightarrow A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \leftrightarrow (x,y,z) = \alpha(-3,4,-1), \alpha \in \mathbb{R}.$$

så att polynomet $-3 + 4t - t^2$ bildar en bas i N(A).

På samma sätt är dim $V(A) = \operatorname{rang}(A) = 2$ och dim $N(A) = 3 - \dim V(A) = 1$ då a = 2. En bas bas för V(A) ges av två oberoende kolonner i A, t.ex $(-2,2,0)^{tr}$ och $-2,0,1)^{tr}$, vilka representerar polynomen -2 + 2t respektive $-2 + t^2$. Dessutom gäller

$$(x,y,z) \in N(A) \leftrightarrow A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0 \leftrightarrow (x,y,z) = \alpha(1,-2,1), \alpha \in \mathbb{R}.$$

så att polynomet $1 - 2t + t^2$ bildar en bas i N(A).

(3) Svar

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -2 & 2 \end{pmatrix} = \begin{pmatrix} -\frac{1}{3\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{2}{3} \\ \frac{1}{3\sqrt{2}} & \frac{1}{\sqrt{2}} & -\frac{2}{3} \\ -\frac{2\sqrt{2}}{3} & 0 & \frac{1}{3} \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}.$$

(4) Det är lätt att kontrollera att planet H som spänns upp av vektorerna (1,1,0,0), (0,1,1,0), (0,0,1,1) ges av ekvationen $x_1 - x_2 + x_3 - x_4 = 0$ eftersom vektorerna är linjärt oberoende och varje vektor uppfyller ekvationen. Normalen till H ges av v = (1,-1,1,-1). Avståndet från p = (3,2,-1,2) till H ges av

$$|\langle p, v \rangle| / |v| = |3 - 2 - 1 - 2|/2 = 1.$$

(5) Den karakteristiska ekvationen ger $0 = \det(A - \lambda E) = -\lambda^3 - 3\lambda^2 + 9\lambda - 5 = -(\lambda - 1)^2(\lambda + 5)$ vilket ger egenvärden 1 med multiplicitet 2 och -5. Egenvektorerna med egenvärde 1 är icke-triviala lösningar till systemet

$$\begin{pmatrix} -1 & -1 & 2 \\ -1 & -1 & 2 \\ 2 & 2 & -4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0,$$

d.v.s (x, y, z) = s(2, 0, 1) + t(0, 2, 1) där $s, t \in \mathbb{R}$ och $s^2 + t^2 \neq 0$, Egenvektorerna med egenvärde -5 är icke-triviala lösningar till systemet

$$\begin{pmatrix} 5 & -1 & 2 \\ -1 & 5 & 2 \\ 2 & 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 0,$$

d.v.s (x, y, z) = r(-1, -1, 2) där $0 \neq r \in \mathbb{R}$. Sätt $u_1 = (2, 0, 1)$, $u_2 = (0, 2, 1)$, $u_3 = (-1, -1, 2)$. Då A är symmetrisk så är u_3 ortogonal mot både u_1 och u_2 . Det återstår att normera u_1 och u_2 . Gram-Schmidts ortogonalisering ger:

 $v_1 = \frac{u_1}{|u_1|} = \frac{1}{\sqrt{5}}(2,0,1), \quad u_2' = u_2 - \langle u_2, v_1 \rangle v_1 = \frac{2}{5}(-1,5,2), \quad v_2 = \frac{u_2'}{|u_2'|} = \frac{1}{\sqrt{30}}(-1,5,2).$

Till slut $v_3 = \frac{u_3}{|u_3|} = \frac{1}{\sqrt{6}}(-1, -1, 2)$. Då är v_1, v_2, v_3 egenvektorer till A som bildar en ON-bas i \mathbb{R}^3 .

(6) Vi använder Gausselimination och får

$$\begin{cases} x & +y & +z=2 \\ x & +2y & +2z=3 \\ 2x & +3y & +az=b. \end{cases} \leftrightarrow \begin{cases} x & +y & +z=2 \\ y & +z=1 \\ y & +(a-2)z=b-4. \end{cases} \leftrightarrow \begin{cases} x & =1 \\ y & +z=1 \\ (a-3)z=b-5. \end{cases}$$

Ifall $a \neq 3$ gäller x = 1, $y = \frac{a-b+2}{a-3}$, $z = \frac{b-5}{a-3}$.

Ifall $a = 3, b \neq 5$ lösningar saknas.

Ifall $a=3,\ b=5$ finns det en familj av lösningar given av $x=1,\ y=1-z$ där z är ett godtyckligt reellt tal.