Lecture Notes for **Machine Learning in Python**

Professor Eric Larson

Adaptive Neural Network Optimization

Class Logistics and Agenda

- Agenda:
 - More optimization techniques
 - · Review
 - Adaptive Learning Strategies
 - Town Hall for MLP

Class Overview, by topic

Practical Initialization of Architectures

SQL programmers be like

Formative Self Test

- for adding Gaussian random variables, variances add together $\mathbf{a}^{(L+1)} = \varphi(\mathbf{W}^{(L)}\mathbf{a}^{(L)}) \text{ assume each element of } \mathbf{a} \text{ is Gaussian}$
- If you initialized the weights, **W**, with too large variance, you would expect the output of the neuron, $\mathbf{a}^{(L+1)}$, to be:
 - A. saturated to "1"
 - B. saturated to "0"
 - C. could either be saturated to "0" or "1"
 - D. would not be saturated

Formative Self Test

- for adding Gaussian distributions, variances add together $\mathbf{a}^{(L+1)} = \varphi(\mathbf{W}^{(L)}\mathbf{a}^{(L)}) \text{ assume each element of } \mathbf{a} \text{ is Gaussian}$
- What is the derivative of a saturated sigmoid neuron?
 - A. zero
 - B. one
 - C. $a \times (1 a)$
 - D. it depends

Practical Implementation of Architectures

Weight initialization

try not to **saturate** your neurons right away!

Weight initialization

try not to saturate your neurons right aways
$$\mathbf{a}^{(L+1)} = \boldsymbol{\varphi}(\mathbf{z}^{(L)})$$

$$\mathbf{z}^{(L)} = \mathbf{W}^{(L)} \mathbf{a}^{(L)}$$

$$\mathbf{z}^{(L)} = \mathbf{x}^{(L)} = \sum_{j} w_{ij} a_{j}^{(L)}$$

$$\mathbf{z}^{(L)} = \sum_{j} w_{ij} a_{j}^{(L)}$$

$$\mathbf{z}^{(L)} = \sum_{j} w_{ij} a_{j}^{(L)}$$
ach row is summed before sigmoid
$$\mathbf{z}^{(L)} = \mathbf{z}^{(L)} = \mathbf{z}^{(L)} = \mathbf{z}^{(L)}$$
want each $\mathbf{z}^{(L)} = \mathbf{z}^{(L)} = \mathbf{z}^{(L)}$ to be between $-\varepsilon < \Sigma < \varepsilon$ for

each row is summed before sigmoid

want each $z_i^{(L)}$ to be between - ε < Σ < ε for no saturation

solution: squash initial weights magnitude

 one choice: each element of W selected from a Gaussian with zero mean and specific standard deviation

$$w_{ij}^{(L)} \approx \mathcal{N}\left(0, 4 \cdot \sqrt{\frac{1}{n^{(L)}}}\right)$$

For a sigmoid if, $-\epsilon < z_i^{(L)} < \epsilon$ where $\epsilon = 4$ then $a^{(L+1)}$ is well distributed [0,1]

Glorot Weight Initialization

Understanding the difficulty of training deep feedforward neural networks

JMLR 2010 Xavier Glorot Yoshua Bengio DIRO, Université de Montréal, Montréal, Québec, Canada

Goal: We should not saturate feedforward or back propagated variance

Relate variance of current layer to variance in z, so $\sigma(z_i^{(L)})$ isn't saturated

try not to saturate
$$z_i^{(L)} = \sum_{j=1}^{n^{(L)}} w_{ij} a_j^{(L)}$$

 $|z_i^{(L)}| = \sum_{i=1}^{n^{(L)}} w_{ij} a_j^{(L)}$ break down feed forward by multiply in i^{th} row

$$\text{Var}[z_i^{(L)}] = \sum_{j}^{n^{(L)}} \underbrace{E[w_{ij}]^2 \text{Var}[a_j^{(L)}] + \text{Var}[w_{ij}] E[a_j^{(L)}]^2}_{\text{O, if uncorrelated}} + \text{Var}[w_{ij}] \text{Var}[a_j^{(L)}]$$
 assume expanding the expanding expanding the expanding expand

assume i.i.d. expand variance calc

$$\operatorname{Var}[z_i^{(L)}] = \sum_{j}^{n^{(L)}} \operatorname{Var}[w_{ij}] \operatorname{Var}[a_j^{(L)}] = n^{(L)} \operatorname{Var}[w_{ij}] \underbrace{\operatorname{Var}[a_j^{(L)}]}_{\text{at } 1} = n^{(L)} \operatorname{Var}[w_{ij}] \underbrace{\operatorname{Std}[z_i^{(L)}] = \sqrt{n^{(L)}} \cdot \operatorname{Std}[w_{ij}]}_{\text{Want to keep ~ 4}}$$

$$Std[z_i^{(L)}] = 4 = \sqrt{n^{(L)}} \cdot Std[w_{ij}]$$

$$Std[w_{ij}] = 4 \cdot \sqrt{\frac{1}{n^{(L)}}}$$

$$w_{ij}^{(L)} \sim \mathcal{N}\left(0, 4 \cdot \sqrt{\frac{1}{n^{(L)}}}\right)$$
 forward from sigmoid

Glorot Weight Initialization

$$Std[z_i^{(L)}] = 4 = \sqrt{n^{(L)}} \cdot Std[w_{ij}]$$

$$w_{ij}^{(L)} \sim \mathcal{N}\left(0, 4 \cdot \sqrt{\frac{1}{n^{(L)}}}\right)$$
 forward from sigmoid

$$\mathbf{v}^{(L)} = \mathbf{a}^{(L)} (1 - \mathbf{a}^{(L)}) \mathbf{W}^{(L)} \cdot \mathbf{v}^{(L+1)}$$

want to keep variance of v stable magnitude → stable gradient

Similar calculation for back prop.

$$Var[v_i^{(L)}] = n^{(L+1)} Var[w_{ij}] Var[v_j^{(L+1)} \cdot a_j^{(L)} (1 - a_j^{(L)})]$$

$$\operatorname{Std}[v_i^{(L)}] = \sqrt{n^{(L+1)}} \cdot \operatorname{Std}[w_{ij}] \cdot 0.25$$
 want = 1

$$w_{ij}^{(L)} \sim \mathcal{N}\left(0, 4 \cdot \sqrt{\frac{1}{n^{(L+1)}}}\right)$$
 backward from sensitivity

$$w_{ij}^{(L)} \sim \mathcal{N}\left(0, 4 \cdot \sqrt{\frac{2}{n^{(L)} + n^{(L+1)}}}\right)$$
 compromise

$$w_{ij}^{(L)} \sim U \left[\pm 4\sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}} \right]$$
 if drawn from uniform dist.

Glorot Weight Initialization

Understanding the difficulty of training deep feedforward neural networks

Xavier Glorot Yoshua Bengio DIRO, Université de Montréal, Montréal, Québec, Canada

Starting gradient histograms per layer standard initialization

Figure 7: Back-propagated gradients normalized histograms with hyperbolic tangent activation, with standard (top) vs normalized (bottom) initialization. Top: 0-peak decreases for higher layers.

08. Practical_NeuralNets.ipynb

Demo

Beyond Sigmoid: Other Activations

New Activation: Hyperbolic Tangent

Basically a sigmoid from -1 to 1

New Activation: ReLU

A new nonlinearity: rectified linear units

it has the advantage of **large gradients** and **extremely simple** derivative

$$\frac{\partial}{\partial z}\phi(z) = \begin{cases} 1, & \text{if } z > 0 \\ 0, & \text{else} \end{cases}$$

Other Activation Functions

- Sigmoid Weighted Linear Unit SiLU
 - also called Swish
- Mixing of sigmoid, σ , and ReLU

$$\phi(z) = \sigma(z) \cdot z$$

Ramachandran P, Zoph B, Le QV. Swish: a Self-Gated Activation Function. arXiv preprint arXiv:1710.05941. 2017 Oct 16

Elfwing, Stefan, Eiji Uchibe, and Kenji Doya. "Sigmoid-weighted linear units for neural network function approximation in reinforcement learning." Neural Networks (2018).

Figure 1: The Swish activation function.

$$\frac{\partial \phi(z)}{\partial z} = \frac{\partial}{\partial z} \sigma(z) \cdot z$$

$$= z \cdot \left[\frac{\partial}{\partial z} \sigma(z) \right] + \sigma(z) \cdot \left[\frac{\partial}{\partial z} z \right]$$

$$= z \cdot \sigma(z) (1 - \sigma(z)) + \sigma(z)$$

$$= z \cdot \sigma(z) + \sigma(z) \cdot (1 - z \cdot \sigma(z))$$

$$= \phi(z) + \sigma(z) \cdot (1 - \phi(z))$$
₇₀

Glorot and He Initialization

We have solved this assuming the activation output is in the range -4 to 4 (for a sigmoid) and assuming that we use Gaussian for sampling.

This range is different depending on the activation and assuming Gaussian or Uniform sampling.

	Uniform	Gaussian		
Tanh	$w_{ij}^{(L)} \sim \sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$	$w_{ij}^{(L)} \sim \sqrt{\frac{2}{n^{(L)} + n^{(L+1)}}}$		
Sigmoid	$w_{ij}^{(L)} \sim 4\sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$	$w_{ij}^{(L)} \sim 4\sqrt{\frac{2}{n^{(L)} + n^{(L+1)}}}$		
ReLU SiLU	$w_{ij}^{(L)} \sim \sqrt{2} \sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$	$w_{ij}^{(L)} \sim \sqrt{2} \sqrt{\frac{2}{n^{(L)} + n^{(L+1)}}}$		

Summarized by Glorot and He

Activations Summary

	Definition	Derivative	Weight Init (Uniform Bounds)
sigmoid Sigmoid	$\phi(z) = \frac{1}{1 + e^{-z}}$	$\nabla \phi(z) = a(1 - a)$	$w_{ij}^{(L)} \sim \pm 4\sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$
Hyperbolic Tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	$\nabla \phi(z) = \frac{4}{(e^z + e^{-z})^2}$	$w_{ij}^{(L)} \sim \pm \sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$
ReLU	$\phi(z) = \begin{cases} z, & \text{if } z > 0 \\ 0, & \text{else} \end{cases}$	$\nabla \phi(z) = \begin{cases} 1, & \text{if } z > 0 \\ 0, & \text{else} \end{cases}$	$w_{ij}^{(L)} \sim \pm \sqrt{2} \sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$
SiLU	$\phi(z) = \frac{z}{1 + e^{-z}}$	$\nabla \phi(z) = \phi(z) + \sigma(z) \cdot (1 - \phi(z))$	$w_{ij} \sim \pm \sqrt{2} \sqrt{\frac{n^{(L)} + n^{(L+1)}}{n^{(L)}}}$

Demo

08. Practical_NeuralNets.ipynb

ReLU Nonlinearities Important for deep networks

More Adaptive Optimization

Going beyond changing the learning rate

Be adaptive based on Gradient Magnitude?

- Decelerate down regions that are steep
- Accelerate on plateaus

Momentum: be robust to abrupt changes in **steepness** (accumulate inverse magnitudes)

http://www.technologyuk.net/mathematics/differential-calculus/higher-derivatives.shtml 75

Be adaptive based on Gradient Magnitude?

Inverse magnitude of gradient in multiple directions?

$$\mathbf{W}_{k+1} \leftarrow \mathbf{W}_k + \eta \frac{1}{\sqrt{\mathbf{G}_k + \epsilon}} \odot \nabla J(\mathbf{W}_k)$$

Common Adaptive Strategies $W_{k+1} = W_k - \eta \cdot \rho_k$

Adjust each element of gradient by the steepness

 $\rho_k = \frac{1}{\sqrt{\mathbf{G}_k + \epsilon}} \odot \nabla J(\mathbf{W}_k) \quad \mathbf{G}_k = \gamma \cdot \mathbf{G}_{k-1} + \nabla J(\mathbf{W}_k) \odot \nabla J(\mathbf{W}_k)$ AdaGrad all operations are per element

$$\text{RMSProp} \\ \text{all operations are per element} \\ \rho_k = \frac{1}{\sqrt{\mathbf{V}_k + \epsilon}} \odot \nabla J(\mathbf{W}_k) \\ \mathbf{V}_k = \gamma \cdot \mathbf{V}_{k-1} + (1 - \gamma) \cdot \mathbf{G}_k$$

AdaDelta
$$\rho_k = \frac{\mathbf{M}_k}{\sqrt{\mathbf{V}_k + \epsilon}} \qquad \mathbf{M}_{k+1} = \gamma \cdot \mathbf{M}_k + (1 - \gamma) \cdot \nabla J(\mathbf{W}_k)$$

all operations are per element

- AdaM **G** updates with decaying momentum of J and J^2
- same as Adam, but with nesterov's acceleration NAdaM

None of these are "one-size-fits-all" because the space of neural network optimization varies by problem, AdaM is popular but not a panacea

Adaptive Momentum

All operations are element wise:

$$\beta_1 = 0.9, \, \beta_2 = 0.999, \, \eta = 0.001, \, \epsilon = 10^{-8}$$

$$k = 0, \mathbf{M}_0 = \mathbf{0}, \mathbf{V}_0 = \mathbf{0}$$

Published as a conference paper at ICLR 2015

ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION

For each epoch:

Diederik P. Kingma* University of Amsterdam, OpenAI

Jimmy Lei Ba" University of Toronto

$$\begin{array}{c|c} & \text{update iteration} & k \leftarrow k+1 \\ & \text{get gradient} & \nabla J(\mathbf{W}_k) \end{array} \quad \text{for large } k, \ \hat{\mathbf{M}} \approx \mathbf{M}, \ \hat{\mathbf{V}} \approx \mathbf{V} \\ & \text{accumulated gradient} & \mathbf{M}_k \leftarrow \beta_1 \cdot \mathbf{M}_{k-1} + (1-\beta_1) \cdot \nabla J(\mathbf{W}_k) \\ & \text{accumulated squared gradient} & \mathbf{V}_k \leftarrow \beta_2 \cdot \mathbf{V}_{k-1} + (1-\beta_2) \cdot \nabla J(\mathbf{W}_k) \odot \nabla J(\mathbf{W}_k) \end{array}$$

boost moments magnitudes (notice k in exponent)

$$\hat{\mathbf{M}}_k \leftarrow \frac{\mathbf{M}_k}{(1 - [\beta_1]^k)} \qquad \hat{\mathbf{V}}_k \leftarrow \frac{\mathbf{V}_k}{(1 - [\beta_2]^k)}$$

$$\hat{\mathbf{V}}_k \leftarrow \frac{\mathbf{V}_k}{(1 - [\beta_2]^k)}$$

update gradient, normalized by second moment similar to AdaDelta

$$\mathbf{W}_k \leftarrow \mathbf{W}_{k-1} - \eta \cdot \frac{\hat{\mathbf{M}}_k}{\sqrt{\hat{\mathbf{V}}_k + \epsilon}}$$

gradient with momentum

squared magnitude normalizer

Visualization of Optimization

https://ruder.io/optimizing-gradient-descent/

Takeaways:

- SGD slows tremendously on plateau
- 2. **Momentum** and **Nesterov** drastically overshoot
- 3. Adaptive strategies are similar

SGD

Momentum

- NAG

Adagrad

Adadelta

Rmsprop

Review

Review

$$\mathbf{W}_{k+1} = \mathbf{W}_k - \rho_k$$

Cross entropy

$$\mathbf{A}^{(3)} - \mathbf{Y}$$

new final layer update

Momentum

$$\rho_k = \alpha \nabla J(\mathbf{W}_k) + \beta \nabla J(\mathbf{W}_{k-1})$$

Nesterov's Accelerated Gradient

$$\rho_k = \beta \nabla J \left(\mathbf{W}_k + \alpha \nabla J(\mathbf{W}_{k-1}) \right) + \alpha \nabla J(\mathbf{W}_{k-1})$$
step twice

Mini-batching

←all data→

	batch 1	batch 2	batch 3	batch 4	batch 5	batch 6	batch 7	batch 8	batch 9
Epoch 1									
Epoch 2									
Epoch 3 Epoch 4									
Epoch 4									
•••									

shuffle ordering each epoch and update W's after each batch

Learning rate adaptation (eta)

$$\eta_e = \eta_0^{(1+e\cdot\epsilon)} \qquad \eta_e = \eta_0 \cdot d^{\lfloor \frac{e}{e_d} \rfloor}$$

Review: Activations Summary

	Definition	Derivative	Weight Init (Uniform Bounds)
Sigmoid	$\phi(z) = \frac{1}{1 + e^{-z}}$	$\nabla \phi(z) = a(1-a)$	$w_{ij}^{(L)} \sim \pm 4\sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$
Hyperbolic Tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	$\nabla \phi(z) = \frac{4}{(e^z + e^{-z})^2}$	$w_{ij}^{(L)} \sim \pm \sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$
ReLU	$\phi(z) = \begin{cases} z, & \text{if } z > 0 \\ 0, & \text{else} \end{cases}$	$\nabla \phi(z) = \begin{cases} 1, & \text{if } z > 0 \\ 0, & \text{else} \end{cases}$	$w_{ij}^{(L)} \sim \pm \sqrt{2} \sqrt{\frac{6}{n^{(L)} + n^{(L+1)}}}$
SiLU	$\phi(z) = \frac{z}{1 + e^{-z}}$	$\nabla \phi(z) = \phi(z) + \sigma(z) \cdot (1 - \phi(z))$	V

Revisiting Universality

 Neural networks can separate any data through multiple layers. The true realization of Rosenblatt:

"Given an elementary α -perceptron, a stimulus world W, and any classification C(W) for which a solution exists; let all stimuli in W occur in any sequence, provided that each stimulus must reoccur in finite time; then beginning from an arbitrary initial state, an error correction procedure will always yield a solution to C(W) in finite time..."

•Universality: No matter what function we want to compute, we know that there is a neural network which can do the job.

Universality

- •One nonlinear hidden layer with an output layer can perfectly train any problem with enough data, but might just be memorizing...
 - •... it might be better to have even more layers for decreased computation and generalizability

End of Session

- Now: Lab 4 Town Hall
- Next Time: Final Flipped Module!
- Then: Deep Learning

Town Hall

