1. Fundamentals - Page 1

1. Fundamentals (Recap)

1.1 Representing Physics

a) Scalar Quantities "s"

4) represented by a (real) number and a unit

eg.
$$m[kg]$$
, $d[m]$, $t[s]$, $k[m]$, $b[m]$, $E[S]$, $P[W]$

b) Vector Quantities "v", "v", "v"

L) represented by numerical vectors / coordinates + unit

e.g.,
$$r [m]$$
, $v [s]$, $a [s^2]$,

e.g.,
$$\vec{r}$$
 [m], \vec{v} [s], \vec{a} [sz], \vec{w} [rad], \vec{v} [rad], \vec{r} [N], \vec{p} [Nm]

- · These are physical quantities that can be measured.
- · A physical vektor (quantity) i can be expressed as a numerical vector vertor of 3 coordinates in a given coordinate system C.

() Coordinate System "C"

"A set of independent mutually or thogonal unit vectors ?;"

$$\vec{v} = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

1.2 Coordinate Transformations

two coordinate systems C&D

$$\vec{V} = \begin{bmatrix} \vec{V} \cdot \vec{d}_1 \\ \vec{V} \cdot \vec{d}_2 \\ \vec{V} \cdot \vec{d}_3 \end{bmatrix}$$

$$|\vec{v}| \Rightarrow |\vec{v}| = A_{DC} |\vec{v}|$$

$$= \frac{1}{2} c \vec{v} = \begin{bmatrix} \vec{d}_1 \cdot \vec{c}_1 & \vec{d}_2 \cdot \vec{c}_3 \\ \vec{d}_1 \cdot \vec{c}_2 & \vec{d}_2 \cdot \vec{c}_3 \end{bmatrix}$$

$$d_3 \cdot C_1$$
 $d_3 \cdot C_2$
 $d_4 V_2$

$$\Rightarrow c\vec{v} = A_{cp} \vec{v}_{p}$$

Since
$$\vec{c}_i \cdot \vec{d}_j = \vec{d}_j \cdot \vec{c}_i \Rightarrow A_{DC} = A_{CD} = A_{CD} \Rightarrow A_{CD} = 1$$

$$A_{DC} = A_{CD}^{T} = A_{CD}^{-1}$$

for
$$\vec{c}_{1} = \vec{0}$$

$$\vec{C}_{i} = A_{DC} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} =$$

for
$$\vec{c}_{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \implies \vec{c}_{i} = A_{DC} \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = "first column of Aoc"$$

Similar for Gia

⇒ The columns of ADC are the basis vectors in coordinates of D:

$$A_{DC} = \begin{bmatrix} \vec{c}_1 & \vec{c}_2 & \vec{c}_3 \end{bmatrix}$$

1.3 Derivatives of Vectors

$$\vec{u}(t) \rightarrow \frac{d\vec{u}}{dt} - \lim_{\Delta t \to 0} \frac{\vec{u}(t+\Delta t) - \vec{u}(t)}{\Delta t} = \vec{u}(t)$$

a) For Physical Vectors (ū)

in an inertial frame of reference

b) For Coordinates (ii)

$$\vec{u} = (\vec{u}) - (\widetilde{\omega}_{1c})\vec{u} = (\vec{u}) - (\widetilde{\omega}_{1c})\vec{u}$$
with $\widetilde{\omega}_{1c} = A_{c1} A_{1c}$

Wic means: angular velocity of Cagainst 1 expressed in C.

$$\widetilde{\omega}_{ic} = A_{ic} c \widetilde{\omega}_{ic}$$

$$\widetilde{\omega}_{ic} = A_{ic} c \widetilde{\omega}_{ic} A_{ci}$$

1.4 Rigid Body Motion

must preserve distances ?
 → describe via orthonormal transformations

$$d = \|\vec{u}\| = \sqrt{\vec{u}} \cdot \vec{u} = const$$

$$d = (\vec{u} \cdot \vec{u})^{T} (A_{CB} g \vec{u}) = g \vec{u}^{T} A_{CB} A_{BC} c \vec{u} = g \vec{u}^{T} g \vec{u}$$

must preserve handedness (no inversion / reflection)
 → det (ABC) = +1

Body-fixed cosys B
[given by rotation AIB]
Body-fixed point B
[given by translation FIB]

a) Motion of Points on Body

Q is body-fixed

position:

velocity:

acceleration: Ba = BaB + (To FBQ)=

$$\vec{a}_{\alpha} = \vec{a}_{\beta} + (\vec{\beta} \hat{\vec{\Omega}}_{\beta} + \vec{\beta} \hat{\vec{\Omega}}_{\beta}^{2})_{\beta} \vec{r}_{\beta} q$$

rigid body motion defined by

$$\cdot \vec{a}_{B}$$
, $\hat{\vec{\Omega}}_{B}$ $(\vec{\vec{l}}_{B})$

$$\vec{B} \vec{r}_{1Q} = \vec{B} \vec{r}_{1B} + \vec{B} \vec{r}_{BQ}$$

$$\vec{B} \vec{v}_{Q} = \vec{B} \vec{v}_{B} + \vec{B} \vec{L}_{B} \vec{B} \vec{r}_{BQ}$$

$$\vec{B} \vec{a}_{Q} = \vec{B} \vec{a}_{B} + (\vec{B} \vec{L}_{B} + \vec{B} \vec{L}_{B}) \vec{b} \vec{r}_{BQ}$$

