Empirical Comparison of Option Pricing Models

Andrea Donazzan, Amadeus Lars Linge *IEDA 4520*

Content

- Monte Carlo Pricing Models
- Pricing with Machine Learning
- Data Collection
- Calibration
- Results

Pricing Models

European Options:

- Black Scholes Model (GMB)
- Merton's **Jump Diffusion** (GMB with Poisson)

American Options:

- Cox-Ross-Rubinstein Model (Binomial Tree)
- Longstaff-Schwartz Model (Least Squares Monte Carlo)

Black Scholes

$$S(t_{i+1}) = S(t_i) \exp\left(\left(\mu - rac{\sigma}{2}
ight) \Delta t + \sigma \sqrt{\Delta t} Z_{i+1}
ight)$$

Jump Diffusion

$$egin{aligned} S(t_{i+1}) &= S(t_i) \exp\left(\left(\mu - rac{\sigma}{2}
ight) \Delta t + \sigma \sqrt{\Delta t} Z_{i+1} + a N_{i+1} + b \sqrt{N_{i+1}} Z_{i+1}'
ight) \ & ext{with } N_i \sim \operatorname{Pois}(\lambda \Delta t) \end{aligned}$$

American Options

Allow for early exercise

Value at each time step: maximum between early exercise value and continuation value.

For an **American call** option:

$$O_t^i = \max\left(\underbrace{(S_t^i - K)^+}_{ ext{early exercise}}, \, \underbrace{e^{-(T-t)r}(E[S_T|S_t^i] - K)^+}_{ ext{continuation value}}
ight)$$

Binomial Trees 1: Simulate Stock Value

Stock price can:

- ullet Move up to uS_0 with probability q
- ullet Move down to dS_0 with probability (1-q)

$$u=e^{\sigma\sqrt{\Delta t}} \qquad d=e^{-\sigma\sqrt{\Delta t}}=rac{1}{u} \qquad q=rac{e^{r\Delta t}-d}{u-d}$$

Fill the best outcome nodes with $S_{i,0}=uS_{i-1,0}$ and the others with $S_{i,j}=dS_{i-1,j-1}$

	0	1	2	3	4
0	1.000	0.000	0.000	0.000	0.000
1	1.221	0.819	0.000	0.000	0.000
2	1.492	1.000	0.670	0.000	0.000
3	1.822	1.221	0.819	0.549	0.000
4	2.226	1.492	1.000	0.670	0.449

Binomial Trees 2: Compute Option Price

Start from end of tree and move upwards:

At maturity, compute value as $\max(S_{T,j}-K,0)$

For each previous node compute

$$O_{i,j} = \max \left(e^{-r\Delta t} (q O_{(i+1),j} + (1-q) O_{(i+1),(j+1)}), \; S_{i,j} - K
ight)$$

	0	1	2	3	4
0	0.302	0.000	0.0	0.0	0.0
1	0.427	0.104	0.0	0.0	0.0
2	0.598	0.162	0.0	0.0	0.0
3	0.827	0.252	0.0	0.0	0.0
4	1.126	0.392	0.0	0.0	0.0

Why do we need the Longstaff-Schwartz algorithm?

- ullet How can we evaluate the **continuation value** $E[S_T|S_t^i]$?
 - Nested Monte Carlo simulations → **unfeasible** for large numbers
- Binomial Tree: discretization error if used with long time steps.
 - Will **underestimate** the number of **early exercise opportunities** as it only provides two outcomes for the value of the underlying.

Time complexity: $O(2^n)$

LSMC explanation: an example

We take as example an **American call** option with 1 year maturity, exercisable at times 1,2,3:

$$S_0=1,~K=1.1,~r=0.1,~\sigma=0.2$$

	t = 0	t = 1	t = 2	t = 3
0	1.0	1.15	0.92	1.05
1	1.0	1.20	1.19	1.33
2	1.0	0.96	0.97	1.04
3	1.0	0.96	1.19	1.46
4	1.0	1.04	1.02	0.99
5	1.0	1.07	1.02	1.08
6	1.0	1.13	1.18	1.36
7	1.0	1.08	1.18	1.19

Setup cash flow matrix:

Determine expected payoff at maturity.

Since continuation value is zero = payoff of a vanilla European option

	0	1	2	3
0	0.0	0.0	0.0	0.00
1	0.0	0.0	0.0	0.23
2	0.0	0.0	0.0	0.00
3	0.0	0.0	0.0	0.36
4	0.0	0.0	0.0	0.00
5	0.0	0.0	0.0	0.00
6	0.0	0.0	0.0	0.26
7	0.0	0.0	0.0	0.09

- One time step back: consider the paths were the option is in the money at t=T-1.
- Discount the future $\operatorname{\mathbf{cash}}$ flow of holding the option: $y_{t=2,i}=e^{-r}\pi_{t=3,i}$
- Get value of underlying at time T-1

	Disc val	S_2
0	0.23	1.19
1	0.35	1.19
2	0.25	1.18
3	0.09	1.18

ullet Regress $y_{t=2}$ on a set of basis functions of $S_{t=2}$ to obtain the **continuation value**

$$\hat{C}_{t,i} = \sum_{j=0}^n a_{t,j} B_j(S_{t,i})$$

The parameters a_t are obtained minimizing

$$rac{1}{I}\sum_{i=0}^{I}\left(y_{t,i}-\hat{C}_{t,i}
ight)^{2}$$

If $S_{t,i} > \hat{C}_{t,i}$, fill cash flow matrix with resulting cash flow from this path.

Repeat until t=0.

	Continue val	P_2
0	0.227	0.086
1	0.348	0.087
2	0.251	0.075
3	0.090	0.076

Pricing with Machine Learning

Splitting the data

4 sets of data in total for training:

- European Options: calls/puts
- American Options: calls/puts

```
from sklearn.model_selection import train_test_split

X_train_calls, X_test_calls, y_train_calls, y_test_calls = train_test_split(X_calls, y_calls, test_size=0.25)

X_train_puts, X_test_puts, y_train_puts, y_test_puts = train_test_split(X_puts, y_puts, test_size=0.25)

Train calls: (27187, 5)
Test calls: (9063, 5)
Train puts: (18194, 5)
Test puts: (6065, 5)
```

Models

```
DTR - Decision Tree Regressor
XGBr - Xtreme Gradient Booster
```

Supervised Learning Models

```
(S0, K, T, sigma, r) --> option price
```

DecisionTreeRegressor

```
DTR_calls = DecisionTreeRegressor(max_depth=24, min_samples_leaf=1)
DTR_calls.fit(X_train_calls, y_train_calls)
DTR1_pred = DTR_calls.predict(X_test_calls)
```


XGBr

- Advanced verison of GBM
- Ensemble of decision trees
- Handles missing data
- Uses L1 and L2 regularization (Lasso- and Ridge-regularization)
- Tree pruning
- Parallelized

```
XGBr = xg.XGBRegressor(learning_rate=0.1, gamma= 0.001,
max_depth= 5, min_child_weight= 6,
subsample= 1, n_estimators=900)

XGBr.fit(X_train_calls, y_train_calls)
XGBr_pred = XGBr.predict(X_test_calls)
```


Pipeline

```
def model(pipeline, parameters, X_train, y_train, X, y, figname):
    grid_obj = GridSearchCV(estimator = pipeline, param_grid = parameters, cv = 5,
                            scoring = 'r2', verbose = 0, n_jobs = 1, refit = True)
    grid obj.fit(X train, y train)
    print("Best Param:", grid_obj.best_params_)
    estimator = grid obj.best estimator
    shuffle = KFold(n splits = 5, shuffle = True, random state = 0)
    cv_scores = cross_val_score(estimator, X, y.ravel(), cv=shuffle, scoring='r2')
   y pred = cross val predict(estimator, X, y, cv = shuffle)
```

XGBr optimal parameters

Best Param: {'xgb__colsample_bytree': 1, 'xgb__gamma': 0.01, 'xgb__max_depth': 5, 'xgb__min_child_weight': 3, 'xgb__subsample': 0.6}

DecisionTreeRegressor optimal parameters

Best Param: {'dt__max_depth': 16, 'dt__min_samples_leaf': 1}

Data Collection

Goal: build database with market price of options and information about underlying

Stock data: yfinance Option data: yahooquery

```
def BS(S0, K, T, sigma, r, type):
```

Option Chain:

			contractSymbol	strike	currency	lastPrice	change	percentChange	volume	openInterest	bid	ask	contractSize	lastTradeDate	impliedVolatility		
symbol	expiration	optionType															
AAPL	2023-11- 24	calls	AAPL231124C00050000	50.0	USD	141.35	0.0	0.0	6.0	0	0.0	0.0	REGULAR	2023-11-20 20:54:50	0.000010		
		calls	AAPL231124C00075000	75.0	USD	100.21	0.0	0.0	1.0	0	0.0	0.0	REGULAR	2023-11-03 18:07:22	0.000010		
				calls	AAPL231124C00090000	90.0	USD	81.35	0.0	0.0	1.0	0	0.0	0.0	REGULAR	2023-11-01 14:00:00	0.000010
		calls	AAPL231124C00095000	95.0	USD	77.10	0.0	0.0	0.0	0	0.0	0.0	REGULAR	2023-10-25 14:10:07	0.000010		
		calls	AAPL231124C00100000	100.0	USD	85.83	0.0	0.0	7.0	0	0.0	0.0	REGULAR	2023-11-10 19:30:52	0.000010		
	2026-01- 16	puts	AAPL260116P00250000	250.0	USD	75.00	0.0	0.0	0.0	0	69.3	73.5	REGULAR	2023-09-13 18:50:54	0.286048		

Modifying Option Chain

Add price of underlying, maturity, variablility, mean returns.

```
import Data
Data.GetData('2018,11,22', '2022,11,22', 252, False)
```

	symbol	optionType	expiration	strike	lastPrice	lastTradeDate	inTheMoney	maturity	S0	sigma	returns	method
0	AAPL	puts	2024-06-21	280.0	143.10	2022-11-09	True	590	134.120331	0.346374	0.297289	Α
1	AMZN	calls	2024-01-19	1040.0	1499.75	2022-06-03	False	595	122.349998	0.343390	0.138612	Α
2	AMZN	calls	2024-01-19	1800.0	882.51	2022-06-03	False	595	122.349998	0.343390	0.138612	Α
3	AMZN	calls	2024-01-19	2000.0	757.85	2022-06-03	False	595	122.349998	0.343390	0.138612	Α
4	AMZN	calls	2024-01-19	2150.0	653.86	2022-06-03	False	595	122.349998	0.343390	0.138612	Α
					•••					•••		
1448	^SPX	puts	2026-12-18	5900.0	1579.20	2022-07-25	True	1607	3966.840088	0.230712	0.112161	E
1449	^SPX	puts	2026-12-18	7000.0	2527.00	2022-10-13	True	1527	3669.909912	0.231177	0.085586	Е
1450	^SPX	puts	2026-12-18	7200.0	2605.90	2022-09-29	True	1541	3640.469971	0.230415	0.084374	Е
1451	^SPX	puts	2026-12-18	8800.0	4088.31	2022-06-23	True	1639	3795.729980	0.231362	0.102437	Е
1452	^SPX	puts	2026-12-18	9000.0	4261.30	2022-06-23	True	1639	3795.729980	0.231362	0.102437	Е

Jump Diffusion Calibration

Parameters:

- $\lambda \rightarrow$ rate of Poisson process
- a and $b \rightarrow$ size of the jump

Test different values for each parameter holding the other two constant Compute mean squared error of estimated prices

```
df = df.sample(n)
lamb_values = np.linspace(0,0.4, iterations)
for i in range(iterations):
   lamb = lamb_values[i]
   errors.append(compute_errors(lamb, a, b))
```


$$\lambda = 0.15, a = -0.1, b = 0.05$$

Error given interest rate

Error given volatility

Results

Algorithm runtime

Option prices: Predicted against Market

Distribution of errors

	Average	MSE	Std Dev
BS	0.0664	0.2289	0.4738
MJD	0.0211	0.1910	0.4365
LSMC	-0.0215	0.0254	0.1580
BIN	-0.0196	0.0242	0.1545
DTR	-0.0307	0.0334	0.1802
XGBr	-0.0009	0.4305	0.6561

