Relatório Trabalho Sprint 1

Instituto Superior de Engenharia do Porto

André Barros - 1211299

Carlos Lopes - 1211277

Ricardo Moreira - 1211285

Tomás Lopes – 1211289

Tomás Russo - 1211288

Índice

Introdução	3
US401	4
Disposição do espaço interior	4
Visão 3D da zona A e B	4
Vista lateral do armazém e visão 3D da estrutura	5
US402	6
Materiais do telhado	6
Materiais da porta	6
Materiais das paredes exteriores	6
US403	7
Materiais das paredes interiores	7
Materiais das portas de acesso	7
US404	8
Resistências das zonas C e D	9
Resistências da zona E	9
Resistências da estrutura	10
Conclusão	12

Introdução

Neste documento está presente a resposta ao problema proposto no *Sprint* 1, na unidade curricular de FSIAP: elaborar uma estrutura com dimensões 20mX10mX5m que representa um armazém agrícola. O seu espaço interior está dividido em 5 zonas diferentes (A, B, C, D, E). Em particular, a zona A terá uma porta de acesso ao exterior, pois será a zona de distribuição dos produtos e de acesso às restantes divisões. Este espaço terá uma temperatura de 5ºC abaixo da temperatura ambiente considerada.

A zona B, que não contém nenhuma ligação as restantes zonas (só com o exterior), vai armazenar os produtos e os excedentes de produção. Tal como a zona A, esta terá uma temperatura de 5ºC abaixo da temperatura ambiente considerada.

Já a zona C suportará temperaturas de -10°C. Para além disso, na zona D a temperatura interior será de 0°C e, por fim, na zona E, estará a uma temperatura de 10°C.

Este documento irá conter um croqui para uma melhor compreensão da estrutura bem como os seus requisitos adicionais. Para além disso, também a escolha dos materiais considerados para cada região, bem como as suas caraterísticas e valores de referência. Por fim serão apresentados os cálculos realizados para determinar as respetivas resistências térmicas.

Nesta *User Story* o objetivo era desenhar a estrutura do armazém com os seguintes requisitos:

- 20mX10mX5m (comprimento, largura, altura);
- Telhado de dupla inclinação;
- Zona A com porta de subir de grandes dimensões com acesso ao exterior;
- Zona B com porta de acesso ao exterior;
- 2 Janelas no mínimo;
- No interior existem 5 zonas.

Disposição do espaço interior

Figura 1 - Disposição do espaço interior do armazém

Visão 3D da zona A e B

Figura 2 - Visão 3D das zonas A e B

Vista lateral do armazém e visão 3D da estrutura

Figura 3 - Corte lateral e visão 3D do armazém

Nesta User Story o objetivo era escolher os materiais a usar na estrutura das paredes exteriores, bem como no telhado, janelas e portas.

Desta forma, foram escolhidos os seguintes materiais:

Materiais do telhado

Para o telhado foi usado uma configuração de dupla folha de zinco com polistereno.

Quanto a condutividade térmica temos que:

• Zinco: $100 \frac{W}{mK}$

Polistereno: $0.04 \frac{W}{mK}$

Quanto a espessura, as duas camadas de zinco vão ter ambas 1.5mm de espessura e o polistereno vai medir 40mm, totalizando assim um telhado de 43mm de espessura.

Figura 4 - Corte lateral da estrutura do telhado

Materiais da porta

Para a porta foi escolhido um material único, madeira leve cuja condutividade térmica é de 0.14 $\frac{W}{mV}$ e vai ter 35mm de espessura.

Materiais das paredes exteriores

Para as paredes exteriores, e dadas as necessidades térmicas deste edifício foi usada uma configuração de 4 materiais distintos de forma a tentar maximizar a capacidade de manter o edifício das temperaturas necessárias, desta forma a lista de materiais, e as suas respetivas condutividades térmicas, é a seguinte:

Capoto: $0.023 \frac{W}{mK}$ Tijolo: $0.6 \frac{W}{mK}$

Wallmate: 0.0356 $\frac{W}{mK}$

Gesso cartonado: 0.25 $\frac{W}{mK}$

A ordem de disposição é a ordem pela qual estão apresentados na lista anterior, sendo que o capoto fica na parte exterior e o gesso cartonado, ou pladour, fica do lado interior do edifício. As espessuras dos materiais são, respetivamente: 50mm, 180mm, 40mm e 12.5mm, totalizando assim uma espessura total das paredes exteriores de 28.25cm.

Nesta *User Story* o objetivo era escolher os materiais a usar na estrutura das paredes interiores, bem os materiais a utilizar na constituição das portas de acesso.

Assim, escolhemos os seguintes materiais:

Materiais das paredes interiores

As paredes interiores são constituídas por 3 materiais: gesso com 60mm de espessura de cada lado, poliestireno (EPS) com 40mm de espessura de cada lado e tijolo isolante com 180mm de espessura, totalizando 380mm de espessura de parede.

Estes materiais apresentam as seguintes condutividades térmicas:

• Gesso: $0.025 \frac{W}{mK}$

• Poliestireno: $0.004 \frac{W}{mK}$

• Tijolo isolante: $0.014 \frac{W}{mK}$

Figura 5 - Corte lateral das paredes interiores

Materiais das portas de acesso

As portas de acesso são constituídas por 2 materiais: poliestireno (EPS) com 50mm de espessura e folha de alumínio com 2,5mm de espessura de cada lado, totalizando 60mm de espessura. Estes materiais apresentam as seguintes condutividades térmicas:

• Alumínio: 204 $\frac{W}{mK}$

• Poliestireno: $0.004 \frac{W}{mK}$

Figura 6 - Corte lateral das portas de acesso

Na US404, o objetivo passa por calcular as resistências térmicas de cada parede do nosso armazém. De maneira a permitir que as dimensões de cada estrutura possam ser modificadas, os cálculos de todos os valores de resistência foram efetuados com recurso ao MS Excel.

Constantes			
Largura (m)	10	Largura Porta Armazém (m)	
Comprimento (m)	20	Altura Porta Armazém (m)	
Altura (m)	5		
		Largura Porta Receção (m)	
Largura Porta Int. (m)	1	Altura Porta Receção (m)	
Altura Porta Int. (m)	2,5		
		Largura Janela (m)	
		Altura Janela (m)	

Figura 7 - Definição das medidas de cada estrutura do armazém

Para o cálculo da resistência térmica de cada parede, devemos primeiramente calcular separadamente a resistência térmica de cada elemento constituinte dessa parede, isto é, fazer o cálculo da resistência da parede isolada (assumindo que no lugar de cada elemento existe um "buraco" - o que na prática significa que a área desse "buraco" será descontada da área total da parede), e fazer o cálculo de cada elemento presente na parede (janela, porta, etc.). A fórmula a usar no cálculo da resistência é $R=\frac{\Delta x}{k\,A}$, onde R representa a resistência a determinar, Δx a espessura do elemento, k a condutividade térmica do mesmo, e A a área.

Quando o elemento cuja resistência queremos obter possui camadas de diferentes materiais (as paredes, por exemplo, possuem três materiais em sequência), devemos calcular a resistência de cada camada individualmente. Como os materiais estão dispostos "em série", em que o fluxo de calor é perpendicular ao alinhamento dos materiais, podemos utilizar a analogia de resistências elétricas em série, em que a resistência total equivalente é soma de todas as resistências individuais dos seus materiais constituintes.

Figura 8 - Disposição dos elementos A e B "em série" e respetiva analogia elétrica

Já quando queremos determinar a resistência de um elemento cujos constituintes estão dispostos de maneira que o fluxo de calor "se divida" entre eles (uma parede que possui uma janela, por exemplo), devemos também calcular a resistência de cada elemento individualmente. No entanto, a obtenção da resistência total equivalente deverá ser feita recorrendo a uma analogia elétrica em que as resistências estão dispostas em paralelo, sendo o valor da mesma, R_{eq} , obtido através da fórmula $\frac{1}{R_{eq}} = \frac{1}{R_A} + \frac{1}{R_B}$, em que R_A é a resistência do constituinte A (a janela, tendo em conta o exemplo anterior) e R_B a resistência do constituinte B (a parede, sem levar em consideração a janela).

Figura 9 - Disposição dos elementos A e B "em paralelo" e respetiva analogia elétrica

Resistências das zonas C e D

A zona C, tal como comprova o croqui, possui duas paredes com uma porta cada, sendo que as duas restantes paredes não possuem qualquer elemento. A zona D possui exatamente as mesmas características, sendo, portanto, exatamente iguais os cálculos das resistências.

Para as paredes exteriores, sem portas, basta calcular a resistência da parede simples. Como esta possui várias camadas, calculamos a resistência de cada camada e depois somamo-las de maneira a obter a resistência total da parede.

Para o cálculo da resistência das paredes interiores (as que possuem uma porta de alumínio e EPS), como mencionado anteriormente, devemos calcular a resistência a parede sem a porta, e a resistência individual da porta. Depois, aplicamos a analogia das resistências em paralelo para obter a resistência total de cada parede.

Parede Interior				
	Área Superfície (m²)	Material	Resistência Térmica (K/W)	Resistência Térmica Total (K/W)
		Gesso	1,011E-02	
Parede Interior	47,5	Poliestireno	4,211E-02	
		Tijolo Isolante	2,707E-02	6,843E-02
Portas	2.5	Poliestireno (EPS)	0,5	
Portas	2,5	Aluminio	9,804E-06	
Parede Exterior				
	Área Superfície (m²)	Material	Resistência Térmica (K/W)	Resistência Térmica Total (K/W)
		Capoto	1,087E-01	
Parede Exterior	20	Wallmate	5,618E-02	1,674E-01
		Gesso cartonado	2,5E-03	

Figura 10 - Cálculo das resistências das paredes interiores e exteriores das zonas C e D

Resistências da zona E

A zona E é composta por três paredes sem qualquer constituinte, e uma parede com uma porta. O cálculo das resistências é semelhante ao das zonas C e D.

Parede Interior				
	Área Superfície (m²)	Material	Resistência Térmica (K/W)	Resistência Térmica Total (K/W)
	2.5	Poliestireno (EPS)	0,5	
Portas	2,5	Aluminio	9,804E-06	
Daniela lateniana/		Gesso	1,011E-02	6,843E-02
Parede Interior c/	47,5	Poliestireno	4,211E-02	
porta	porta	Tijolo Isolante	2,707E-02	
Davada Interior com		Gesso	9,600E-03	
	porta 50	Poliestireno	0,04	7,531E-02
porta		Tijolo Isolante	2,571E-02	
Parede Exterior				
	Área Superfície (m²)	Material	Resistência Térmica (K/W)	Resistência Térmica Total (K/W)
		Capoto	1,087E-01	
Parede Exterior	20	Wallmate	5,618E-02	1,674E-01
		Gesso cartonado	2,5E-03	

Figura 11 - Cálculo das resistências das paredes interiores e exteriores da zona E

Resistências da estrutura

Para o cálculo das resistências dos elementos que compõem a estrutura, devemos primeiramente fazer o cálculo das paredes exteriores das zonas A e B que contêm as portas, de forma semelhante às anteriores.

Parede Exterior Z	ona A (receção)			
	Área Superfície (m²)	Material	Resistência Térmica (K/W)	Resistência Térmica Total (K/W)
		Capoto	4,726E-02	
Parede Exterior	46	Wallmate	2,443E-02	E 636E 03
		Gesso cartonado	1,087E-03	5,636E-02
Porta	4	Madeira Leve	0,25	
Parede Exterior Z	ona B (armazém)			
	Área Superfície (m²)	Material	Resistência Térmica (K/W)	Resistência Térmica Total (K/W)
		Capoto	6,039E-02	
Parede Exterior	Parede Exterior 36	Wallmate	3,121E-02	2 0145 05
		Gesso cartonado	1,389E-03	3,014E-06
Porta	14	Madeira Leve	3,014E-06	

Figura 12 - Cálculo das resistências das paredes exteriores da estrutura (das zonas A e B)

Seguimos para o cálculo das paredes exteriores, considerando as janelas que podem existir em cada uma.

Parede Exterior se	em Janelas			
	Área Superfície (m²)	Material	Resistência Térmica (K/W)	Resistência Térmica Total (K/W)
	,	Capoto	2,174E-02	(. ,
Parede Exterior	100	Wallmate	1,124E-02	3,348E-02
		Gesso cartonado	5,0E-04	
Parede Exterior c/	Janelas Área Superfície (m²)	Material	Resistência Térmica (K/W)	Resistência Térmica Total (K/W)
	Area Superficie (III)	Capoto	2,264E-02	(, ,
Parede Exterior	96	Wallmate	1,170E-02	
		Gesso cartonado	5,208E-04	2 2225 02
		Alumínio	1,055E-05	3,332E-02
Janela	4	Vidro	2,5E-03	
		Ar	1,5	

Figura 13 - Cálculo das resistências das paredes exteriores da estrutura

Em último lugar, fazemos o cálculo da estrutura do telhado. Como este possui uma dupla inclinação, determinamos a resistência de cada folha do telhado. Depois, recorremos à analogia das resistências em paralelo para calcular a resistência total.

Telhado					
	Área Superfície (m²)	Material	Resistência Térmica (K/W)	Resistência Térmica Total (K/W)	
Talkada	202.05	Zinco	6,686E-08	2.4515.02	
Telhado	203,96	Polistereno	4,903E-03	2,451E-03	

Figura 14 - Cálculo da resistência do telhado

Conclusão

Neste primeiro *Sprint* do Projeto Integrador, e na componente da unidade curricular de FSIAP, foi proposto a elaboração de um croqui de uma possível estrutura para um armazém agrícola, assim como a definição e proposta de possíveis materiais a serem usados nas paredes, portas e janelas desse armazém. Para além disso, foi ainda pedida a apresentação dos cálculos das resistências térmicas de todos os constituintes da estrutura do armazém.

Dado como concluída a realização deste trabalho, podemos concluir que cumprimos todos os objetivos a que nos propusemos inicialmente, destacando a elevada qualidade dos artefactos apresentados. Todos os elementos da equipa contribuíram em partes iguais no que toca ao desenvolvimento do projeto, fazendo com que o resultado apresentado tenha sido bastante satisfatório.