

Diagram czynności/aktywności

Wprowadzenie do Inżynierii Oprogramowania 2018/2019

Radosław Zajdel Instytut Geodezji i Geoinformatyki, pok. 329a radoslaw.zajdel@upwr.edu.pl

Czym jest diagram czynności

- Diagram czynności do jeden z rodzajów diagramów języka UML opisujący dynamikę systemu
- Diagram czynności do graficzne przedstawienie sekwencyjnych i (lub) współbieżnych przepływów sterowania oraz danych pomiędzy uporządkowanymi ciągami czynności, akcji i obiektów

Do czego stosujemy diagramy czynności

- Wysokopoziomowe procesy "biznesowe"
- Systemy i podsystemy
- Scenariusze przypadków użycia
- Procesy systemowe charakteryzujące się dużą liczbą równoległych czynności i sytuacji decyzyjnych
- Operacje
- Algorytmy

Podstawowe pojęcia

- Diagramy czynności składają się z następujących podstawowych elementów:
 - Czynności
 - Akcje
 - Przepływy sterowania
 - Początek
 - Koniec
 - Zakończenie przepływu

Czynności

 Czynności (ang. activities) to określone zachowanie żłożone z logicznie uporządkowanych ciągów podczynności, akcji oraz obieków w celu wykonania pewnego procesu

Do rozbicia procesów stosujemy dekompozycję czynności

Dekompozycja czynności

- Czynności są więc dekomponowane na zhierarchizowane podczynności/akcje
- Notacja czynności będącej przedmiotem dekompozycji jest oznaczana dodatkowym symbolem w prawej dolnej części
- Proces dekompozycji może być kontynuowany aż do poziomu akcji

Akcje

- Akcje to elementarne jednostki specyfikacji zachowania
- "Operacje atomowe", które nie mogą być zdekomponowane

 Upraszczając: diagramy czynności przedstawiają przepływy sterowania i danych pomiędzy logiczne uporządkowanymi ciągami akcji. Kontekst akcji stanowią czynności, uogólniające ich zagnieżdżoną sekwencję Wylicz płacę brutto

płaca := liczbaGodzin *
stawkaGodzinowa;

 $f(x) := ax^2 + bx + c;$

Czynności, podczynności, akcje

Czynności i akcje

Kryterium	Czynność	Akcja
Istota	Podzielna	Niepodzielna, nie ulega przerwaniu
Poziom ogólności	Ogólna	Szczegółowy przypadek, może być konsekwencją czynności
Dekompozycja	Dozwolona	Niedozwolona
Czas realizacji	Znaczący	Nieznaczny

Początek, koniec, zakończenie przepływu

 Początek: Punkt rozpoczęcia przepływu inicjujący funkcjonowanie diagramu czynności. <u>Standardowo</u> w diagramie występuje jeden początek

Początek

 Koniec: Punkt zatrzymania wszystkich przepływów sterowania i danych na diagramie czynności. Zazwyczaj więcej niż jeden koniec.

 Zakończenie przepływu: Punkt zatrzymania wybranego przepływu sterowania. Na jednym diagramie czynności może wystąpić więcej niż jedno zakończenie przepływu, może też nie być go wcale. Koniec

Zakończenie przepływu

Zaawansowane składniki diagramu

- Przepływy danych i przepływy sterowania
- Partycje diagramów czynności
- Obszary rozszerzenia
- Obszar przerwania
- Manipulator wyjątków

Przepływ sterowania

 Przepływ sterowania to relacja między dwoma czynnościami bądź akcjami, wskazująca, że po wykonaniu źródłowej czynności albo akcji sterowanie zostanie przekazane do docelowej czynności albo akcji

- Znacznik sterowania (przepływ sterowania przesyła znaczniki sterowania (aktualnie wykonywana czynność lub akcja).
 - Brak interpretacji graficznej, to tylko abstrakcyjne pojęcie)
- Przepływ decyzyjny: decyzje, łączniki i złączenia
- Przepływ współbieżny: rozwidlenia i scalenia

Przepływ decyzyjny

- Decyzje stanowią dwa lub więcej przepływów sterowania, z których tylko jeden może zostać zrealizowany. Decyzja ma 1 przepływ wejściowy i przynajmniej 2 przepływy wyjściowe. Wybór przepływu zależy od warunku.
- Złączenie Zawiera szereg przepływów wejściowych oraz 1 przepływ wyjściowy

Decyzja przykład

 Warunki umieszczamy w nawiasach kwadratowych przy przepływie

Łącznik

 Opisywany diagram uszczegóławiający wprowadza pojęcie łącznika. Umożliwia on przerwanie przepływu sterowania i wznowienie go w innym miejscu diagramu czynności. Łączniki są szczególnie użyteczne w efektywniejszym organizowaniu i zwiększaniu przejrzystości złożonego diagramu czynności

Złączenie

Przepływy współbieżne

- Przepływy współbieżne mogą przyjmować postać rozwidlenia lub scalenia
- Rozwidlenie: jeden przepływ wejściowy przechodzi w co najmniej dwa przepływy wynikowe. Oznacza to skopiowanie znacznika sterowania i przekazanie poszczególnych kopii do wszystkich współbieżnych przepływów
- Scalenie: wiele przepływów współbieżnych do jednego wynikowego

Scalenie cd.

- W przypadku scalenia możemy zdefiniować specyfikę scalenia, którą jako ograniczenie zapisuje się na diagramie czynności na wysokości scalenia
- Jest to wyrażenie przyjmujące tylko dwie wartości – prawda lub fałsz
- Znacznik sterowania jest przekierowywany do przepływu wynikowego tylko i wyłącznie w przypadku prawidłowości wyrażenia. Jeżeli wartością jest fałsz, znacznik sterowania jest niszczony.

Algorytmy

- Diagram czynności obliczania średniej arytmetycznej zorientowany na akcje
- Język UML 2.0 wprowadził opcje generowania kodu z diagramów

Partycje diagramów czynności

- Istnieje możliwość uwzględnienia w diagramach kolejnych elementów opisu takich jak miejsce realizacji czynności lub wskazanie instancji klasyfikatora odpowiedzialnej za jej funkcjonowanie. Dzieje się to dzięki partycjom
- Partycja jest mechanizmem grupowania elementów diagramu czynności powiązanych przepływami sterowania, pełniących określoną wspólną rolę na diagramie

- Na diagramie procesu obsługi kina uwzględniono trzy instancje klasyfikatorów:
 - Widz,
 - Kasjer
 - SystemObsługiKomple ksuKinowego

Obszar rozszerzenia

- Obszar rozszerzenia jest ściśle zdefiniowanym fragmentem diagramu czynności z jednoznacznie wyspecyfikowanymi wejściami i wyjściami, wykonywanym wielokrotnie, stosownie do liczby elementów na wejściu
- Wejścia i wyjścia obszaru rozszerzenia nazywane są przekaźnikami rozszerzenia. Zawierają one zbiory danych o ustalonej liczbie elementów tego samego typu.
- Obszar rozszerzenia przyjmuje na diagramie graficzną postać czynności z krawędziami kreślonymi linią przerywaną.

- Przez poszczególne przekaźniki rozszerzenia przechodzą oznaczone strzałkami kolejno wykonywane przepływy danych. W obszarze rozszerzenia można zapisać typ realizowanego rozszerzenia:
 - Sekwencyjne (stream)
 - Współbieżne (prallel)
 - Iteracyjne (iterative)
- W obszarze rozszerzenie występować może szereg czynności lub akcji. Możliwe jest również ograniczenie obszaru do jednej czynności.

Proces tworzenia diagramu czynności

- 1. Zidentyfikowanie podstawowych czynności i sygnałów na podstawie scenariusza przypadku użycia
- 2. Połączenie czynności i sygnałów za pomocą przepływów sterowania
- 3. Opcjonalne przeprowadzenie dekompozycji czynności do poziomu akcji
- 4. Identyfikacja decyzyjnych i współbieżnych przepływów sterowania
- 5. Ewentualna specyfikacja partycji diagramu

Opracowano na podstawie: "Język UML 2.0 w modelowaniu systemów informatycznych"