2023 年度京都大学微分積分学(演義) B 第1回問題と宿題*

中安淳

2023年10月3日

問題 1

- (1) f(x) を有界でない区間 $[a,\infty)$ 上の連続関数とする (a は実数)。このとき広義積分 $\int_a^\infty f(x)dx$ が収束することの定義を答えよ。
- (2) 広義積分 $\int_0^\infty e^x dx$ は収束するかどうか答えよ。
- (3) 広義積分 $\int_0^\infty e^{-x} dx$ は収束するかどうか答えよ。
- (4) 広義積分 $\int_{1}^{\infty} \frac{1}{x^2} dx$ は収束するかどうか答えよ。
- (5) 広義積分 $\int_1^\infty \frac{1}{x} dx$ は収束するかどうか答えよ。

問題 2

次の級数の和を求めよ。

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)}.$$

問題 3

各項 a_n が 0 でない数列 $\{a_n\}$ に対して、二つの級数 $\sum a_n$ と $\sum a_n^{-1}$ のうち片方は発散することを示せ。

問題 4

X は 0 以上 100 以下の実数を、Y は 0 以上 30 以下の実数をそれぞれ動くとして次の問いに答えよ。

(1) 次の二つの集合を XY 平面に図示せよ。

講 =
$$\{(X,Y) \mid X \ge 0.8X + Y\}$$
,
演 = $\{(X,Y) \mid X \le 0.8X + Y\}$.

(2) 次の集合を XY 平面に図示せよ。

ただし、 $\max\{a,b\}$ で実数 a と b の大きい方を表す。

宿題 5

十進数の小数

$$0.d_1d_2d_3\cdots (d_1,d_2,d_3,\cdots = 0,\cdots,9)$$

の値を級数

$$\frac{d_1}{10} + \frac{d_2}{100} + \frac{d_3}{1000} + \dots = \sum_{n=1}^{\infty} \frac{d_n}{10^n}$$

の和として定義するとこれは 0 以上 1 以下の実数に収束することが知られている(証明不要)。ここで、循環小数

$$0.d_1 \cdots d_K d_1 \cdots d_K d_1 \cdots d_K \cdots$$

は有理数になることを示せ。

宿題 6

一辺の長さが 1 の正三角形を A_0 とする。 A_0 の各辺の真ん中にその辺の長さの 3 分の 1 の正三角形を A_0 の外側に付けて得られる多角形を A_1 とする。同様にして A_1 の各辺の真ん中にその辺の長さの 3 分の 1 の正三角形を A_1 の外側に付けて得られる多角形を A_2 とする。この操作を繰り返して、図形(の列) A_0,A_1,A_2,A_3,\cdots を得る時、 A_n の周の長さ L_n の $n\to\infty$ での極限と面積 S_n の $n\to\infty$ での極限を求めよ。

ヒント: 図形 A_n の極限はコッホ雪片と呼ばれるので、図形的イメージはそれを参考にする。