ТЕОРИЯ ПРИНЯТИЯ РЕШЕНИЙ

Методические указания к выполнению практических работ

Для студентов, обучающихся по направлению подготовки 230100.62 – «Информатика и вычислительная техника»

Составитель В. О. Гроппен

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "СЕВЕРО-КАВКАЗСКИЙ ГОРНО-МЕТАЛЛУРГИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ)"

Кафедра автоматизированной обработки информации

ТЕОРИЯ ПРИНЯТИЯ РЕШЕНИЙ

Методические указания к выполнению практических работ

Для студентов, обучающихся по направлению подготовки 230100.62 – «Информатика и вычислительная техника»

Составитель В. О. Гроппен

Допущено редакционно-издательским советом Северо-Кавказского горно-металлургического института (государственного технологического университета)

Протокол заседания РИСа № 1 от 17.01.2014 г.

Репензент

кандидат технических наук, доцент Северо-Кавказского горно-металлургического института (государственного технологического университета) **Будаева А. А.**

Г87 **Теория принятия решений:** Методические указания к выполнению практических работ. Для студентов, обучающихся по направлению подготовки 230100.62 − "Информатика и вычислительная техника" / Сост. В. О. Гроппен; Северо-Кавказский горно-металлургический институт (государственный технологический университет). − Владикавказ: Северо-Кавказский горно-металлургический институт (государственный технологический университет). Изд-во «Терек», 2014. − 37 с.

Методические указания предназначены для выполнения практических работ по курсу «Теория принятия решений» для студентов по направлению подготовки 230100.62 «ИНФОРМАТИКА И ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА» и содержат необходимые материалы по выполнению практических работ.

Подготовлено кафедрой «Автоматизированной обработки информации».

УДК 004.021 ББК 73

Редактор Хадарцева Ф. С. Компьютерная верстка Цишук Т. С.

© Составление. ФГБОУ ВПО «Северо-Кавказский горно-металлургический институт (государственный технологический университет)», 2014

© Гроппен В. О., составление, 2014

Подписано в печать 01.09.2014. Формат 60х84 ¹/₁₆. Бумага офсетная. Гарнитура «Таймс». Печать на ризографе. Усл. п.л. 2,15. Уч.-изд. л. 1,89. Тираж 35 экз. Заказ № . Северо-Кавказский горно-металлургический институт (государственный технологический университет). Издательство «Терек». Отпечатано в отделе оперативной полиграфии СКГМИ (ГТУ).

362021, г. Владикавказ, ул. Николаева, 44.

Содержание

Практическая работа № 1	4
Практическая работа № 2	9
Практическая работа № 3	11
Практическая работа № 4	14
Практическая работа № 5	19
Практическая работа № 6	22
Практическая работа № 7	25
Практическая работа № 8	29
Практическая работа № 9	32
Литература	37

Цель: практическое усвоение методов принятия решений с помощью таксономии.

Длительность занятия – 2 часа.

Решаемые задачи: разделение объектов, характеризуемых однородными и неоднородными признаками, на произвольное и заданное число таксонов, выделение устойчивых таксонов, оценка качества различных процедур таксономии.

Используемые алгоритмы: Forel-1, Forel-2.

1. Алгоритм Forel-1

Предназначенный для группировки объектов в таких условиях, когда все характеристики объектов однородны, алгоритм FOREL-1, содержательное описание которого приводится ниже, обладает следующими свойствами:

- 1. Таксоны имеют форму гиперсферы.
- 2. Число таксонов зависит от радиуса гиперсферы R: чем он меньше, тем больше таксонов.

Алгоритм FOREL-1

Шаг 1. Все признаки объектов нормируются так, чтобы их значения были в диапазоне $0 \div 1$.

Шаг 2. $R_0 = +\infty$.

Шаг 3. Все точки считаем непомеченными.

Шаг 4. На множестве непомеченных точек выбирается произвольная x_i , после чего осуществляется переход к шагу 5. Если таковых точек нет, то перейти к шагу 8.

Шаг 5. Ищется максимальное расстояние от x_i до остальных точек:

$$R = \max_{j} L(x_i, x_j)$$

 \coprod ar 6. $R_0 = min(R_0, R)$ $R_0 = min$

Шаг 7. Точка x_i помечается. Если помечены все точки, то перейти к шагу 8, нет – к шагу 4.

 \coprod ar 8. R = R₀ – ε , (ε > 0).

Шаг 9. Если множество точек пусто. То перейти к шагу 16, нет – к шагу 10.

Шаг 10. Все точки считаем непомеченными.

Шаг 11. На множестве непомеченных точек выбирается произвольная точка $\mathbf{x_i}$.

Шаг 12. Определяется число $P(x_i)$ точек, расстояние которых до x_i не превышает R .

Шаг 13. Точку x_i считаем помеченной. Если помечены все точки, то перейти к шагу 14, нет – к шагу 11.

Шаг 14. Выбирается точка x_i , для которой справедливо:

$$P(x_j) = \max_i P\{x_i\} .$$

Шаг 15. Все точки, расстояние от которых до x_j не превышает \boldsymbol{R} , удаляются. Перейти к шагу 9.

Шаг 16. Конец алгоритма.

Задания: сгруппировать студентов по таксонам, если в матрице M строки соответствуют студентам, а столбцы — различным дисциплинам: в ячейке M(i,j) содержится оценка i-го студента по j-й дисциплине.

Задание № 1		Задание	Задание № 2			e № 3	Задание	e № 4
5	4	4	4		5	4	5	4
4	3	4	3		4	3	4	3
2	3	2	3		5	3	2	3
2	4	2	4		2	4	2	5
Задание	e № 5	Задание	e № 6		Задание	e № 7	Задание	e № 8
5	4	5	4		5	5	5	4
4	3	4	3		4	3	4	4
3	3	2	3		2	3	2	3
2	4	2	2		2	4	2	4
Задание	e № 9	Задание	e № 10		Задание	e №11	Задание	e №12
5	5	5	4		5	4	5	4
4	3	3	3		4	3	4	3
2	3	2	2		2	2	3	3
2	5	2	4		4	4	2	5
Задание	e № 13	Задание	e № 14		Задание	e № 15	Задание	e № 16
5	5	5	4		5	4	5	3
4	3	4	3		4	3	4	3
2	3	5	3		2	4	2	3
4	4	2	5		4	4	2	4

Задание	e № 17	7	Задание № 18		Задание № 19			Задание № 20		
5	4		5	5	2	4		3	4	
5	2		4	4	4	5		4	5	
2	3		2	3	2	3		3	3	
2	4		2	4	2	5		2	4	
Задани	e № 21	_	Задани	e № 22	Задание № 23			Задани	e № 24	
5	4		5	2	4	4		2	4	
3	3		4	3	4	3		4	3	
2	3		3	3	5	3		2	3	
4	4		2	2	2	4		2	5	

2. Алгоритм Forel-2

Предназначенный для группировки объектов в таких условиях, когда:

- все характеристики объектов однородны,
- число таксонов N задано:

алгоритм FOREL-2, содержательное описание которого приводится ниже, обладает таксонами, которые имеют форму гиперсферы.

Алгоритм FOREL-2

Шаг 1. Все признаки объектов нормируются так, чтобы их значения были в диапазоне $0 \div 1$.

Шаг 2. R0 = $+\infty$.

Шаг 3. Все точки считаем непомеченными.

Шаг 4. На множестве непомеченных точек выбирается произвольная x_i , после чего осуществляется переход к шагу 5. Если таковых точек нет, то перейти к шагу 8.

Шаг 5. Ищется максимальное расстояние от x_i до остальных точек:

$$R = \max_{i} L(x_i, x_i)$$

Шаг 6. $R_0 = \min(R_0, R)$.

Шаг 7. Точка x_i помечается. Если помечены все точки, то перейти к шагу $\mathbf{8}$, нет – к шагу $\mathbf{4}$.

Шаг 8. $R = R_0 - \varepsilon$, ($\varepsilon > 0$).

Шаг 9. Если множество точек пусто. То перейти к шагу **16,** нет - к шагу **10**.

Шаг 10. Все точки считаем непомеченными.

Шаг 11. На множестве непомеченных точек выбирается произвольная точка x_i .

Шаг 12. Определяется число $P(x_i)$ точек, расстояние которых до x_i не превышает R .

Шаг 13. Точку x_i считаем помеченной. Если помечены все точки, то перейти к шагу **14**, нет – к шагу **11**.

Шаг 14. Выбирается точка x_i , для которой справедливо:

$$P(x_j) = \max_i P\{x_i\} .$$

Шаг 15. Все точки, расстояние от которых до x_j не превышает R, удаляются. Перейти к шагу 9.

Шаг 16. Если число таксонов меньше N, то перейти к шагу 17, иначе – к шагу 19.

Шаг 17. $R = R_0 - \varepsilon$.

Шаг 18. Все точки возвращаются на «свои места», перейти к шагу 10.

Шаг 19. Если число таксонов равно N, то перейти к шагу 22, нет – к шагу 20.

Шаг 20. $\epsilon = \epsilon/2$.

Шаг 21. $R = R + \varepsilon$, перейти к шагу **18**.

Шаг 22. Конец алгоритма.

Задания: сгруппировать студентов по N таксонам, если:

- в матрице M строки соответствуют студентам, а столбцы различным дисциплинам: в ячейке M(i,j) содержится оценка i-го студента по j-й дисциплине;
 - для всех вариантов заданий $\varepsilon = 0,1;$
 - четным заданиям отвечает N = 2, нечетным -N = 3.

Задание № 1		Задани	Задание № 2			e № 3	Задание № 4		
5	4	4	4		5	4	5	4	
4	3	4	3		4	3	4	3	
2	3	2	3		5	3	2	3	
2	4	2	4		2	4	2	5	
Задание	e № 5	Задани	e № 6		Задание	e № 7	Задание	e № 8	
5	4	5	4		5	5	5	4	
4	3	4	3		4	3	4	4	
3	3	2	3		2	3	2	3	
2	4	2	2		2	4	2	4	

Задани	e № 9	Задани	re № 10		Задание № 11			Задание	e № 12
5	5	5	4		5	4		5	4
4	3	3	3		4	3		4	3
2	3	2	2		2	2		3	3
2	5	2	4		4	4		2	5
Задани	e № 13	Задани	re № 14	4	Задание	e № 15		Задание	e № 16
5	5	5	4		5	4		5	3
4	3	4	3		4	3		4	3
2	3	5	3		2	4		2	3
4	4	2	5		4	4		2	4
Задани	e № 17	Задани	re № 18	4	Задание	e № 19		Задание	e № 20
5	4	5	5		2	4		3	4
5	2	4	4		4	5		4	5
2	3	2	3		2	3		3	3
2	4	2	4		2	5		2	4
Задани	ие №21	Задан	ие №22	_	Задани	те №23		Задани	те №24
5	4	5	2		4	4		2	4
3	3	4	3		4	3		4	3
2	3	3	3		5	3		2	3
4	4	2	2		2	4		2	5

Цель: практическое усвоение методов принятия решений с помощью таксономии.

Длительность занятия – 2 часа.

Решаемые задачи: разделение объектов, характеризуемых однородными признаками, на таксоны и выделение устойчивых таксонов.

Используемые алгоритмы: Skat.

Алгоритм Skat

- Шаг 1. Определяется таксономия S для m объектов с помощью FOREL-1.
- Шаг 2. Используя центры таксонов в S, как новые стартовые точки для FOREL-1, определяются таксономии $S_1, S_2, \dots S_n$.

Шаг 3. Выбор устойчивых таксонов и конец алгоритма.

Запание № 1 Запание № 2

Задания: пользуясь алгоритмом **Skat,** провести <u>три</u> таксономии и выделить устойчивые и неустойчивые таксоны:

Запание № 4

Задани	JNº I	задани	e no z	_	<u> Задание</u>	5 M5 2	задание	3 JNº 4
5	4	4	4		5	4	5	4
4	3	4	3		4	3	4	3
2	3	2	3		5	3	2	3
2	4	2	4		2	4	2	5
Задание	e № 5	Задани	e № 6		Задание	e № 7	Задание	e № 8
5	4	5	4		5	5	5	4
4	3	4	3		4	3	4	4
3	3	2	3		2	3	2	3
2	4	2	2		2	4	2	4
Задание	e №9	Задани	e №10		Задание	e №11	Задание	e №12
5	5	5	4		5	4	5	4
4	3	3	3		4	3	4	3
2	3	2	2		2	2	3	3
2	5	2	4		4	4	2	5

Задание № 13 5 5 4 3 2 3 4 4	Задание № 14 5 4 4 3 5 3 2 5	3адание № 15 5 4 4 3 2 4 4 4	3адание № 16 5 3 4 3 2 3 2 4
Задание № 17	Задание № 18	Задание № 19	Задание № 20
5 4	5 5	2 4	3 4
5 2	4 4	4 5	4 5
2 3	2 3	2 3	3 3
2 4	2 4	2 5	2 4
Задание № 21	Задание № 22	Задание № 23	Задание № 24
5 4	5 2	4 4	2 4
3 3	4 3	4 3	4 3
2 3	3 3	5 3	2 3
4 4	2 2	2 4	2 5

Цель: практическое усвоение методов принятия решений с помощью таксономии.

Длительность занятия – 2 часа.

Решаемая задача: таксономия в λ-пространстве.

Используемые алгоритмы: Delta-1 и алгоритм определения λ -расстояний.

Используется гипотеза λ -компактности, которая формулируется следующим образом: реализация одного и того же образа обычно отражается в признаковом λ -пространстве в «близких» точках, образуя λ -компактные сгустки.

Назначение: распределение по W-таксонам объектов с неоднородными характеристиками.

Алгоритм DELTA-1

- Шаг 1. Ищется λ -расстояние между каждой парой объектов (см. ниже алгоритм определения λ -расстояний).
- Шаг 2. Строится полный взвешенный неориентированный граф G(X, U), вершины которого отвечают объектам, а рёбра (p,q) расстояние между X_p и X_q .
- Шаг 3. Алгоритмом Прима ищется минимальное связывающее подмножество рёбер, остальные рёбра удаляются.

Шаг 4. Полученный граф обозначить $G(X, U_0)$.

Шаг 5. i = 1.

Шаг 6. Выбор ребра (p, q) такого, что: $r(p,q) = \max_{(i,j) \in U_0} r(i,j)$.

Шаг 7. Ребро (p, q) отбрасывается: $U_0 = U_0 / (p,q)$.

Шаг 8. Если i = W, то перейти к шагу 10, нет – к шагу 9.

Шаг 9. i = i + 1, перейти к шагу 6.

Шаг 10. Конец алгоритма.

Алгоритм определения λ-расстояний

Используемые обозначения: r(i, j) – вес ребра (i, j); D – максимальный вес ребра; B – минимальный вес ребра.

Шаг 1. $\tau_{max} = -\infty$.

Шаг 2. Осуществляется нормирование длин ребер: $\forall (i,j): d(i,j) = \frac{r(i,j)}{D}.$ Шаг 3. Выбирается любая, ранее не просматривавшаяся пара точек p и q . Если таковых нет, то перейти к шагу 8.

Шаг 4. Среди смежных рёбер (p, q) выбирается самое короткое, длину которого обозначаем B_{\min} :

$$B_{\min} = \min_{i} \{ \min r(p, i); \min r(i, q) \}$$

IIIar 5.
$$\tau(p,q) = \frac{d(p,q)}{B_{\min}}$$
.

 $\coprod ar 6. \tau_{max} = max \{\tau_{max}; \tau(p, q)\}.$

Шаг 7. Перейти к шагу 3.

Шаг 8. \forall (i, j) : τ (i, j) = τ (i, j) / τ _{max} τ – нормированная характеристика неоднородной плотности множества **A** в окрестностях ребра (*i*, *j*).

$$\forall (i,j) : \lambda(i,j) = \tau(i,j)^2 \cdot d(i,j),$$

где λ – расстояние между точками i и j .

Шаг 9. Конец алгоритма.

Задания: сгруппировать студентов по W таксонам, если:

- в матрице M строки соответствуют студентам: в ячейке M(i, 1) содержится средняя оценка i-го студента, а в ячейке M(i, 2) число пропущенных им занятий;
 - четным заданиям отвечает W = 2, нечетным W = 3.

Задани	Задание № 1		Задание № 2			Задание № 3			Задание № 4		
5	14		4	24		5	4		5	9	
4	32		4	31		4	20		4	35	
2	34		2	35		5	3		2	38	
2	4		2	40		2	14		2	50	
Задани	e № 5		Задани	e № 6		Задани	e № 7		Задание № 8		
5	7		5	4		5	5		5	14	
4	30		4	13		4	13		4	24	
3	38		2	31		2	23		2	33	
2	45		2	25		2	14		2	34	
Задани	e № 9		Задани	e № 10		Задани	e № 11		Задание № 12		
5	25		5	24		5	14		5	4	
4	33		3	33		4	23		4	13	
2	43		2	42		2	32		3	13	
2	45		2	45		4	34		2	25	

Задани	e № 13		Задани	e № 14	Задани	e № 15	Задани	e № 16
5	35		5	24	5	3	5	3
4	43		4	33	4	23	4	13
2	43		3	33	2	34	2	23
3	34		2	45	3	14	2	24
Задани	e № 17		Задани	e № 18	Задани	e № 19	Задани	e № 20
5	4		5	0	2	40	3	34
5	2		4	14	4	15	4	5
2	33		2	30	3	23	5	3
2	34		2	34	5	5	2	40
Задани	re № 21	•	Задани	re № 22	Задание № 23		Задание № 24	
5	2		5	1	4	14	2	41
3	30		4	3	3	31	4	23
2	43		3	23	5	3	5	3
4	4		2	42	2	42	3	35

Цель: практическое усвоение методов принятия решений с помощью таксономии.

Длительность занятия – 2 часа.

Решаемая задача: парное сравнение алгоритмов таксономии.

Используемый алгоритм: Gamma-1.

Назначение представленного ниже алгоритма Gamma-1 заключается в том, чтобы попарно сравнивать различные алгоритмы таксономии. Для формального описания этого подхода далее используются следующие обозначения:

 S_i – таксономия, полученная i-м алгоритмом; «p» и «q» – объекты; $r_i(p, q)$ – расстояние между «p» и «q», полученное i-м алгоритмом:

$$r_i(\, p, q) = \begin{cases} 0, \, \text{если} \,\, p \,\, \text{и} \,\, q \,\, \text{принадлежат одному таксону;} \\ 1, \, \text{если} \,\, p \,\, \text{и} \,\, q \,\, \text{не принадлежат одному таксону.} \end{cases}$$

(Очевидно, что $\forall p, r_{i}(p,p) = 0$).

Величины $r_i(p, q)$ образуют матрицу μ_i (m x m матрица).

Алгоритм Gamma-1

Шаг 1. Генерация матрицы μ_1 .

Шаг 2.. Генерация матрицы μ_2 .

Шаг 3. Определение максимального числа несовпадающих элементов β:

$$\beta = m(m-1).$$

Шаг 4. Генерация новой матрицы μ_3 , каждый элемент которой $r_3(p,q)$ равен

$$r_3(p, q) = \frac{1}{\beta} |r_1(p, q) - r_2(p, q)|$$

Шаг 5. Вычисление критерия F, представляющего собой нормированное расстояние Хемминга между μ_1 и μ_2 :

$$F = \sum_{p=1}^{m} \sum_{q=1}^{m} r_3(p, q).$$

Шаг 6. Конец алгоритма.

Задания: Пользуясь матрицами μ_1 , μ_2 , и μ_3 выбрать наилучшую таксономию по минимуму критерия F.

$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Задание 1	
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0 1 0 1 0	0 1 1 1 1	0 0 0 1 1
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 0 0 0 1	1 0 0 0 0	0 0 0 0 1
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\mu_1 =$	$0 \ 0 \ 0 \ 0 \ 1 \ \mu_2 =$	$1 \ 0 \ 0 \ 0 \ 0 \ \mu_3$	= 0 0 0 0 1
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 0 0 0 0		
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0 1 1 0 0	1 0 0 0 0	1 1 1 0 0
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Задание 2	
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0 1 1 1 1	
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 0 0 0 1	1 0 0 0 1	0 0 0 0 1
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\mu_1 =$	$0 \ 0 \ 0 \ 0 \ 1 \ \mu_2 =$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	= 0 0 0 0 1
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 0 0 0 0	1 0 0 0 0	1 0 0 0 0
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 1 1 0 0	1 1 0 0 0	1 1 1 0 0
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\mu1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\mu_1 =$		 	
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0 1 1 0 0		1 1 1 0 0
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\mu + =$			·
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0 1 1 1 0		
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$	μ_1 –		 	
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$				
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0 1 1 0 0		
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Задание 6	
$\mu_1 = \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0 1 0 1 0		0 0 1 1 1
1 0 0 0 0 1 1 0 0 0 0 1 0 0 0		1 0 0 0 1	1 0 0 0 1	0 0 0 0 1
1 0 0 0 0 1 1 0 0 0 0 1 0 0 0	$\mu_1 =$	$0 \ 0 \ 0 \ 0 \ 1 \ \mu_2 =$	$1 \ 0 \ 0 \ 0 \ 0 \ \mu_3$	= 1 0 0 0 1
0 1 1 0 0 1 1 0 0 0				
		0 1 1 0 0	1 1 0 0 0	1 1 1 0 0

μ_1 =	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3адание 7	0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0
μ_1 =	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0
$\mu_1\!=\!$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 адание 9 $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0
$\mu_1\!=\!$	$\begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix} \mu_2 =$	Задание 10 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0	0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0
μ_1 =	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Задание 11 0 1 1 1 1 1 0 0 0 0 1 0 0 0 1 µ ₃ =	0 0 0 1 1 0 0 1 0 1 0 1 0 1 0 1
	1 0 0 0 0 0 1 1 0 0	1 0 0 0 1 0 1 0 0 Задание 12	1 0 0 0 1 1 1 0 0

$\mu_1\!=\!$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3адание 13	0 0 1 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0
$\mu_1\!=\!$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Задание 14 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0	0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 1 1 1 0 0
μ_1 =	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Задание 15 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0	0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0
$\mu_1\!=\!$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Задание 16 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0	0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0
$\mu_l\!=\!$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Задание 17 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0	0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0
μ_1 =	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Задание 18 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0	0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0

		Задание 19	
	0 1 0 1 0	0 1 1 1 1	0 0 0 1 1
	1 0 0 0 1	1 0 0 0 1	0 0 0 0 1
$\mu_1 =$	$0 \ 0 \ 0 \ 0 \ 1 \ \mu_2 =$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 1
	1 0 0 0 0	1 0 1 0 0	1 0 0 0 0
	0 1 1 0 0	1 1 0 0 0	1 1 1 0 0
		Задание 20	
	0 1 0 1 0	0 1 1 1 1	0 0 0 1 1
	1 0 0 0 1	1 0 1 0 0	0 0 0 0 1
$\mu_1 =$	$0 \ 0 \ 0 \ 0 \ 1 \ \mu_2 =$	$1 1 0 0 0 \mu_3 =$	0 0 0 0 1
	1 0 0 0 0	1 0 0 0 0	1 0 0 0 0
	0 1 1 0 0	1 0 0 0 0	1 1 1 0 0
		Задание 21	
	0 1 0 1 0	0 1 1 1 1	0 0 1 1 1
	1 0 0 0 1	1 0 0 0 0	0 0 0 0 1
$\mu_1 =$	$0 \ 0 \ 0 \ 0 \ 1 \ \mu_2 =$	$\frac{1}{1} \frac{0}{0} \frac{0}{0} \frac{0}{0} \frac{0}{0} = \frac{1}{100} \frac{0}{0} = $	1 0 0 0 1
	1 0 0 0 0	1 0 0 0 0	1 0 0 0 1
	0 1 1 0 0	1 0 0 0 0	1 1 1 1 0
		2 22	
		Задание 22	
	0 1 0 1 0	3адание 22 0 1 1 1 1	0 0 1 1 1
	1 0 0 0 1	0 1 1 1 1 1 0 0 0 0	0 0 0 0 1
μ_1 =	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 1 1 0 0 0 1
μ_1 =	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 1 1 0 0 0 1 1 0 0 0 0
μ_1 =	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 1 1 0 0 0 1
$\mu_l\!=\!$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 1 1 0 0 0 1 1 0 0 0 0
μ_1 =	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 1 1 0 0 0 1 1 0 0 0 0
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 3адание 23 0 1 1 1 1 1 0 1 0 0	0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1
$\mu_1 \! = \!$ $\mu_1 \! = \!$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 3адание 23 0 1 1 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 $\mu_3 =$	0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 3адание 23 0 1 1 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 1 0 0 0 0	0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 0 0	0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0
μ_1 =	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 3адание 24 0 1 1 1 1 1 1 0 0 0 0 0	0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0	0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
μ_1 =	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 3адание 24 0 1 1 1 1 1 1 0 0 0 0 0	0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Цель: практическое усвоение методов принятия решений бинарным сравнением объектов.

Длительность занятия – 2 часа.

Решаемая задача: ранжирование, осуществляемое парным сравнением альтернатив.

Используемый алгоритм: упорядочение вершин ориентированного графа без контуров.

Пусть альтернативы, как отмечалось выше, отображаются вершинами ориентированного графа G(X, U), дуги которого отображают отношения парного предпочтенья. Для выделения сравнимых и несравнимых альтернатив, отношения предпочтения между которыми заданы в виде ориентированного графа без контуров G(X, U), можно воспользоваться приводимой ниже процедурой.

Алгоритм

Шаг 1. i = 1.

Шаг 2. На множестве вершин полученного графа выбираем вершины источники. Если таковые отсутствуют, перейти к шагу 7.

Шаг 3. Выбранные на предыдущем шаге вершины считаем принадлежащими i-му ярусу.

Шаг 4. i = i + 1.

Шаг 5. Выбранные на шаге 2 последней итерации вершины удаляются из графа.

Шаг 6. Перейти к шагу 2.

Шаг 7. Конец алгоритма.

Результат работы алгоритма: упорядочение вершин графа, которому отвечает упорядочение альтернатив в соответствии с убыванием их приоритета.

Ограничения к применению: граф не должен содержать контуров.

Задания: Упорядочить вершины орграфов, заданных матрицей инциденций M:

M =

3	адани	ie 1		
0	1	1	1	0
0	0	1	1	1
0	0	0	1	1
0	0	0	0	1
0	0	0	0	0

M =

	Задаг	ние 2		
0	0	1	1	1
1	0	1	1	1
0	0	0	1	1
0	0	0	0	1
0	0	0	0	0

	Задани	e 3			,	Задан	ие 4		
M =	0 0	1 1	0	M =	0	1	1	0	1
	0 0	1 0	1		0	0	1	1	1
	0 0	0 1	1		0	0	0	0	1
	0 1	0 0	1		1	0	0	0	1
	1 0	0 0	0		0	1	0	0	0
	Задани	e 5			,	Задан	ие 6		
M =	0 1	1 1	0	M =	0	0	1	1	1
	0 0	1 1	1		1	0	1	1	1
	0 0	0 1	1		0	0	0	1	1
	0 0	0 0	1		0	0	0	0	1
	0 0	0 0	0		0	0	0	0	0
	Задани	e 7				Задан	ие 8		
M =	0 1	1 1	0	M =	0	0	1	1	0
	0 0	1 0	1		1	0	1	1	1
	0 0	1 1	1		0	0	0	1	1
	0 0	0 0	1		0	0	0	0	1
	0 0	0 0	0		1	0	0	0	0
	_								
	Задани	e 9			3	Вадани	те 10		
M =	0 1	1 1	0	M =	0	0	1	1	1
M =	0 1 0 0	1 1 1 1	1	M =	0	0	1 0	1	1
M =	0 1 0 0 0 0	1 1 1 1 0 0	1	M =	0 1 0	0 0 1	1 0 0	1	1
M =	0 1 0 0 0 0 0 0	1 1 1 0 0 0 0 0	1 1 1	M =	0 1 0 0	0 0 1 0	1 0 0 0	1 1 0	1 1 1
M =	0 1 0 0 0 0	1 1 1 1 0 0	1	M =	0 1 0	0 0 1	1 0 0	1	1
	0 1 0 0 0 0 0 0	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 0		0 1 0 0 0	0 0 1 0 0	1 0 0 0	1 1 0 0	1 1 1 0
M = $M =$	0 1 0 0 0 0 0 0 0 1	1 1 1 1 0 0 0 0 0 0 0 0	1 1 1 0	M = $M =$	0 1 0 0 0	0 0 1 0 0 8адани	1 0 0 0 0 0	1 0 0	1 1 1 0
	0 1 0 0 0 0 0 0 0 1 0 0	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 0		0 1 0 0 0	0 0 1 0 0 0 8адани 0	1 0 0 0 0 0 0	1 0 0	1 1 1 0
	0 1 0 0 0 0 0 0 1 0 0 1	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 0		0 1 0 0 0 1 0	0 0 1 0 0 0 8адани 0 0	1 0 0 0 0 0 ete 12 1 1	1 0 0	1 1 1 0
	0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 0		0 1 0 0 0 1 0	0 0 1 0 0 8адани 0 0 0	1 0 0 0 0 0 et 12 1 1 0	1 0 0 1 0	1 1 0
	0 1 0 0 0 0 0 0 1 0 0 1	1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 0		0 1 0 0 0 1 0	0 0 1 0 0 0 8адани 0 0	1 0 0 0 0 0 ete 12 1 1	1 0 0	1 1 1 0
M =	0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 3адание	1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0	1 1 1 0 0 0 1 1 1	M =	0 1 0 0 0 1 0 0 0	0 0 1 0 0 8адани 0 0 0 1 0	1 0 0 0 0 0 4e 12 1 1 0 0	1 0 0 1 0 1 0	1 1 0
	0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 3адание 0 1	1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0	1 1 0 0 0 1 1 1 0		0 1 0 0 0 1 0 0 0	0 0 1 0 0 8адани 0 0 1 0	1 0 0 0 0 0 1e 12 1 1 0 0 0	1 0 0 1 0 1 0	1 1 0 1 1 1 1 1 0
M =	0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0	1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0	1 1 1 0 0 0 1 1 1 0	M =	0 1 0 0 0 1 0 0 0	0 0 1 0 0 8адани 0 0 1 0 8адани 0	1 0 0 0 0 0 ee 12 1 1 0 0 0	1 0 0 1 0 1 0 0	1 1 0 1 1 1 1 1 0
M =	0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 3адание 0 1 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0	1 1 1 0 0 0 1 1 1 0	M =	0 1 0 0 0 1 0 0 0	0 0 1 0 0 8адани 0 0 1 0 8адани 0 0	1 0 0 0 0 0 et 12 1 1 0 0 0	1 0 0 1 0 1 0 0	1 1 0 1 1 1 1 1 0
M =	0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0	1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0	1 1 1 0 0 0 1 1 1 0	M =	0 1 0 0 0 1 0 0 0	0 0 1 0 0 8адани 0 0 1 0 8адани 0	1 0 0 0 0 0 ee 12 1 1 0 0 0	1 0 0 1 0 1 0 0	1 1 0 1 1 1 1 1 0

	Зад	ани	e 15					Задані	ие 16		
M =	0	1	0	1	1	M =	0	0	1	0	1
	0 (0	1	1	1		1	0	0	1	1
	1 (0	0	0	1		0	1	0	1	1
	0 (0	1	0	1		1	0	0	0	1
	0 (0	0	0	0		0	0	0	0	0
								n	1.0		
1.6		ани				1.6		Задані			
M =	\vdash	1	1	1	0	M =	0	0	1	1	1
		0	1	1	1		1	0	0	1	1
		0	0	1	0		0	1	0	1	1
		0	0	0	1		0	0	0	0	0
	1 (0	1	0	0		0	0	0	1	0
	Зап	ани	e 19					Задані	ле 20		
M =		1	1	1	0	M =	0	0	1	0	1
-/		0	1	1	0	1/1	1	0	1	1	1
		0	0	0	1		0	0	0	1	1
		0	1	0	1		1	0	0	0	1
	\vdash	1	0	0	0		0	0	0	0	0
					1 -				<u> </u>		
	Зад	ани	e 21					Задані	ие 22		
M =	0	1	1	1	0	M =	0	0	1	1	0
	0 (0	1	1	0		1	0	1	0	1
	0 (0	0	1	1		0	0	0	1	1
		0	0	0	1		0	1	0	0	1
	0	1	0	0	0		1	0	0	0	0
	207		a 2 2					20 2022	ro 24		
M =		ани 1		1	Λ	M =		Задані 0		1	1
<i>IVI</i> —		0	1	1	0	<i>IVI</i> —	0	0	1	1	1
		0	0	1	1		0	0	0	1	1
		0	0	0	0		0	0	0	0	1
	\vdash	0	0	0	0		0	0	0	0	0
	1 (U	U	U	U		U	U	U	U	U

Цель: практическое усвоение методов принятия решений бинарным сравнением объектов при наличии противоречий.

Длительность занятия – 2 часа.

Решаемая задача: ранжирование, осуществляемое парным сравнением альтернатив методом Делфи. 4 этапа "Дельфи":

- 1) Раздача анкет, сбор оценок, их обобщение и определение разброса мнений.
- 2) Сообщение итогов и запрос объяснений причин индивидуального отклонения от средней или медианной оценки первой итерации.
 - 3) Сообщение всех объяснений и запрос контраргументов на них.
 - 4) Сообщение возражений и запрос новых оценок альтернатив.

Используемые подходы:

- 1. решение задачи на разрыв контуров на взвешенном орграфе удаляется подмножество дуг с минимальным суммарным весом;
- 2. упорядочение вершин полученного ориентированного графа без сильносвязных компонент с помощью алгоритма, рассмотренного на предыдущем занятии.

Пусть альтернативы, как отмечалось выше, отображаются вершинами ориентированного графа G(X, U), дуги которого отображают отношения парного предпочтенья. Для выделения сравнимых и несравнимых альтернатив, отношения предпочтения между которыми заданы в виде ориентированного графа без контуров G(X, U), можно воспользоваться приводимой ниже процедурой.

Результат работы алгоритма: упорядочение вершин графа, которому отвечает упорядочение альтернатив в соответствии с убыванием их приоритета.

Ограничения к применению: отсутствуют.

Задания: Упорядочить вершины орграфов, заданных матрицей инциденций M:

	3	адани	ie I			
M =	0	1	1	1	0	M =
	2	0	1	1	1	
	0	0	0	1	4	
	0	0	3	0	1	
	0	0	1	0	0	

Задание 2												
0	0	1	1	1								
1	0	1	1	1								
0	4	0	1	1								
0	0	0	0	1								
2	0	0	0	0								

	3	адани	1e 3					Задан	ие 4		
M =	0	0	1	1	4	M =	0	1	1	2	1
	0	0	1	0	1		0	0	1	1	3
	0	0	0	1	1		0	0	0	0	1
	0	1	5	0	1		1	0	0	0	1
	1	0	0	0	0		3	1	0	0	0
	3	адани	те 5					Задан	ие 6		
M =	0	1	1	1	0	M =	0	2	1	1	1
	4	0	1	1	1		1	0	1	1	1
	0	0	0	1	1		0	0	0	1	1
	0	0	2	0	1		0	2	0	0	1
	0	3	0	0	0		3	0	0	1	0
	3	адани	те 7					Задан	ие 8		
M =	0	1	1	2	0	M =	0	0	1	1	3
	0	0	1	0	1		1	0	1	1	1
	0	0	1	1	1		0	2	0	1	1
	1	4	0	0	1		0	0	0	0	1
	0	0	0	3	0		1	0	3	0	0
	3	адани	те 9					Задані	ие 10		
M =	0	1	1	1	0	M =	0	0	1	1	1
M =	0 3	1 0	1	1	2	M =		0	1 2	1	1
M =	0 3 0	1 0 0	1 1 0	0	2	M =	0 1 0	0 0 1	1 2 0	1	1
<i>M</i> =	0 3 0 0	1 0 0 5	1	1 0 0	2 1 1	M =	0 1 0 0	0	1 2	1 1 0	1
M =	0 3 0	1 0 0	1 1 0	0	2	M =	0 1 0	0 0 1	1 2 0	1	1
	0 3 0 0	1 0 0 5	1 1 0 0	1 0 0	2 1 1		0 1 0 0 5	0 0 1 2	1 2 0 0	1 1 0	1 1 1
M = $M =$	0 3 0 0	1 0 0 5 1	1 1 0 0	1 0 0	2 1 1	M = $M =$	0 1 0 0 5	0 0 1 2 0	1 2 0 0	1 0 3	1 1 1
	0 0 0 0 0	1 0 0 5 1	1 1 0 0 0	1 0 0 0	2 1 1 0		0 1 0 0 5	0 0 1 2 0 3адани 0	1 2 0 0 0	1 0 3	1 1 1 0
	0 0 0 0 3a 0 0	1 0 0 5 1 1 1 0	1 0 0 0 e 11 1 0	1 0 0 0	2 1 1 0		0 1 0 0 5	0 0 1 2 0 3адани 0 0	1 2 0 0 0 0 4e 12 1 1	1 0 3	1 1 1 0
	0 0 0 0 0	1 0 0 5 1 мдани 1 0 1 2	1 0 0 0 e 11 1 0 0	1 0 0 0	2 1 1 0 0 0 1 1		0 1 0 0 5	0 0 1 2 0 3адани 0 0 0	1 2 0 0 0 0 1 1 1 0 0	1 0 3 1 3	1 1 0
	0 0 0 0 3a 0 0	1 0 0 5 1 1 1 0	1 0 0 0 e 11 1 0	1 0 0 0	2 1 1 0		0 1 0 0 5	0 0 1 2 0 3адани 0 0	1 2 0 0 0 0 4e 12 1 1	1 0 3	1 1 1 0
M =	0 0 0 0 0 0 0 0 0	1 0 0 5 1 мдани 1 0 1 2 1	1 0 0 0 0 e 11 1 0 0 0	1 0 0 0 0	2 1 1 0 0 0 1 1 1 0	M =	0 1 0 0 5 5 0 1 0 0 2	0 0 1 2 0 3адани 0 0 0 1 0	1 2 0 0 0 0 1 1 1 0 0	1 0 3 1 3 1 0	1 1 0
	0 0 0 0 0 0 0 0 0 0	1 0 0 5 1 лдани 1 0 1 2 1	1 1 0 0 0 0 e 11 1 0 0 0 3	1 0 0 0 0	2 1 1 0 0 0 1 1 1 0		0 1 0 0 5 1 0 0 2	0 0 1 2 0 3адани 0 0 1 0	1 2 0 0 0 0 4e 12 1 1 0 0 0	1 0 3 1 3 1 0	1 1 0 1 1 1 1 1 0
M =	0 0 0 0 0 0 0 0 0 0	1 0 0 5 1 адани 1 0 1 2 1	1 1 0 0 0 e 11 1 0 0 0 3	1 0 0 0 0	2 1 1 0 0 0 1 1 0	M =	0 1 0 0 5 0 1 0 0 2	0 0 1 2 0 3адани 0 0 0 1 0 3адани 0 0	1 2 0 0 0 0 me 12 1 1 0 0 0 me 14 1 1 1	1 0 3 1 3 1 0 0	1 1 0 1 1 1 1 1 0
M =	0 0 0 0 0 0 0 0 0 0	1 0 0 5 1 1 0 1 2 1 1 1 0 2 1	1 0 0 0 0 e 11 1 0 0 0 3 e 13 1 1	1 0 0 0 0	2 1 1 0 0 0 1 1 0	M =	0 1 0 5 5 0 1 0 2	0 0 1 2 0 3адани 0 0 0 1 0 3адани 0 0	1 2 0 0 0 0 me 12 1 1 0 0 0 me 14 1 1 0 0 0	1 0 3 1 0 0	1 1 0 1 1 1 1 0
M =	0 0 0 0 0 0 0 0 0 0	1 0 0 5 1 адани 1 0 1 2 1	1 1 0 0 0 e 11 1 0 0 0 3	1 0 0 0 0	2 1 1 0 0 0 1 1 0	M =	0 1 0 0 5 0 1 0 0 2	0 0 1 2 0 3адани 0 0 0 1 0 3адани 0 0	1 2 0 0 0 0 me 12 1 1 0 0 0 me 14 1 1 1	1 0 3 1 3 1 0 0	1 1 0 1 1 1 1 1 0

	38	адани	e 15					Задані	ие 16		
M =	0	1	0	1	1	M =	0	2	1	0	1
	0	0	1	1	1		1	0	0	1	1
	1	0	0	0	1		0	1	0	1	1
	0	5	1	0	1		1	1	0	0	1
	1	0	1	0	0		1	0	0	3	0
	2,	адани	a 17					Задані	ro 10		
M =				1	2	M =		<u>Задані</u>		1	1
<i>IVI</i> —	0	0	1	1	1	<i>IVI</i> —	1	0	0	1	1
	0	0	0	1	3		2	1	0	1	1
	0	0	0	0	1		0	0	0	0	4
	1	0	1	0	0		1	0	0	1	0
	1	U	1	U	U		1	10	0	1	U
	3	адани	e 19					Задані	ие 20		
M =	0	1	1	1	0	M =	0	0	1	2	1
	0	0	1	1	3		1	0	1	1	1
	4	0	0	2	1		0	0	0	1	1
	0	0	1	0	1		1	0	0	0	1
	0	1	0	0	0		1	0	3	2	0
	3,	адани	e 21					Задані	ze 22		
M =	0	1	1	1	0	M =	0	0	1	1	7
1/2	4	0	1	1	0	1/1	1	0	1	4	1
	0	3	0	1	1		0	0	0	1	1
	0	1	0	0	1		0	1	2	0	1
	0	1	0	2	0		1	0	1	0	0
		I		I				1 -	J		
	3	адани	e 23					Задані	ие 24		
M =	0	1	1	1	2	M =	0	3	1	1	5
	2	0	1	1	1		1	0	1	1	1
	0	0	0	1	1		3	0	0	1	1
	0	3	0	0	0		0	0	0	0	1
	1	0	4	0	0		2	0	0	4	0

Цель: практическое усвоение методов принятия решений голосованием.

Длительность занятия – 2 часа.

Решаемая задача: определить оптимальные стратегии коалиций при подведении итогов голосования методом абсолютного большинства.

Выполняются следующие правила голосования:

- 1) Голосование является открытым.
- 2) Перед каждым туром может сниматься с голосования:
 - a) тот претендент, кто набрал наименьшее число голосов на предыдущем туре;
 - b) тот претендент, которого убирает "своя" коалиция.
- 3) Реализуется один из вариантов: а) либо b).

Далее рассмотрен пример, в котором расстановка сил и предпочтения коалиций отображаются ниже таблицей 7.1.

			T	абл.	7.1.
1	2	3	4	5	- Номер коалиции
4	4	4	4	2	- Число членов коалиции
a	b	d	а	С)
b	С	b	С	d	альтернативы упорядке
С	а	С	b	b	убывания приоритетов
d	d	a	d	a	J

Каждая коалиция может реализовать одну из трех стратегий поведения в каждом туре выборов (на каждой итерации):

- а) выступить самостоятельно;
- б) объединиться с другой коалицией, если упорядочение альтернатив у них совпадает;
 - в) снять с голосования "своего" кандидата.

Комбинируя эти стратегии на каждом туре голосования, можно построить дерево вариантов, анализ которого позволяет выборщикам определить оптимальные стратегии.

Ниже приводится пример анализа такого рода.

Рис. 7.1. Анализ голосования с помощью дерева вариантов.

Задания: определить выигрывающие коалиции и не имеющие шансов выиграть анализом таблицы M:

		Зада	ани	e 1				Зад	ани	ie 2			3	Вада	ниє	e 3	
	1	2	3	4	5		1	2	3	4	5		1	2	3	4	5
	3	4	4	4	2		4	5	4	4	2		4	4	4	2	2
M =	а	b	d	а	С	Μ-	а	b	d	а	С	M —	а	b	d	а	С
М –	b	С	b	С	d	M =	b	С	b	С	d	M =	b	С	b	С	d
	С	а	С	b	b		С	а	С	b	b		С	а	С	b	b
	d	d	а	d	а		d	d	а	d	а		d	d	а	d	а

		3a	дан	ие 4	4			3a)	цани	1e 5			,	Зада	ани	e 6	
	1	2	3	4	5		1	2	3	4	5		1	2	3	4	5
	4	3	4	3	2		4	4	5	4	2		2	4	4	2	2
M =	а	b	d	а	С	M =	а	b	d	а	С	M =	а	b	d	а	С
	b	С	b	С	d		b	С	b	С	d	.,_	b	С	b	С	d
	С	а	С	b	b		С	а	С	b	b		С	а	С	b	b
	d	d	a	d	а		d	d	а	d	а		d	d	а	d	а
		20	пол	ие ′	7			201	цани	0			,	20 п	ани	a 0	
	1	2	дан 3	ие 4	5		1	2 2	<u>з</u> ани	4	5		1	2	ани 3	4	5
	4	3	4	2	2		2	4	4	3	2		3	4	4	3	2
	a	b	d	a	C		a	b	d	a	C		a	b	d	a	C
M =	b	С	b	С	d	M =	b	С	b	С	d	M =	b	С	b	С	d
lVI —	С	а	С	b	b	lVI —	C	а	С	b	b	IVI —	С	а	С	b	b
	d	d	а	d	a		d	d	a	d	a		d	d	а	d	а
				·						l							
		3a,	дан	ие 1	0			Зад	ани	e 11			3	ада	ниє	: 12	
	1	2	3	4	5		1	2	3	4	5		1	2	3	4	5
											_						5
	3	4	3	4	2		3	4	3	3	2		4	3	4	4	Э
	3 a	4 b	3 d	4 a	2 c		3 a	4 b	3 d	3 a	2 c		4 a	3 b	4 d	4 a	С
M =				_		M =						M =					
M =	а	b	d	а	С	M =	а	b	d	а	С	M =	а	b	d	а	С
M =	a b	b c	d b	a c	c d	M =	a b	b c	d b	a c	c d	M =	a b	b c	d b	а	c d
M =	a b c	b c a d	d b c a	a c b	c d b	M =	a b c d	b c a d	d b c	a c b	c d b	<i>M</i> =	a b c d	b c a d	d b c	a c b	c d b
M =	a b c	b c a d	d b c a	a c b	c d b a	M =	a b c d	b c a d	d b c a	a c b	c d b a	M =	a b c d	b c a d	d b c a	a c b d	c d b
M =	a b c d	b c a d	d b c a	а c b d	c d b a 3	M =	a b c d	b c a d	d b c a	a c b d	c d b a	M =	a b c d	b c a d	d b с а	a c b d	c d b a
M =	a b c d	b c a d 3a; 2	d b с а	а с b d	c d b a 5	M =	a b c d	b c a d Зад	d b c а	a c b d	c d b a 5 2	M =	a b c d 1 1	b c a d	d b c а	a c b d	c d b a 5
M = $M =$	a b c d	b c a d	d b c a	a c b d	c d b a 3	M = $M =$	a b c d	b c a d	d b c a	a c b d	c d b a	M = $M =$	a b c d	b c a d	d b с а	a c b d	c d b a

c d

а

d а

b b a

d

а

С а С

d d b a

c b

d

		Зад	цані	ие 1	6			Зад	ани	e 17	7		3	ада	ние	18	
	1	2	3	4	5		1	2	3	4	5		1	2	3	4	5
	4	5	7	4	2		4	5	7	4	4		4	5	4	4	3
M =	а	b	d	а	С	M =	а	b	d	а	С	M =	а	b	d	а	С
171	b	С	b	С	d	171	b	С	b	С	d	171	b	С	b	С	d
	С	а	С	b	b		С	а	С	b	b		С	а	С	b	b
	d	d	а	d	а		d	d	а	d	а		d	d	а	d	а
						,						•					
		Зад		ие 1		İ		Зад	ани	e 20)		3	ада	ние	21	
	1	2	3	4	5		1	2	3	4	5		1	2	3	4	5
	3	5	4	4	5		2	4	6	4	3	M =	4	4	2	3	3
M =	а	b	d	а	С	M =	а	b	d	а	С		а	р	р	а	С
	b	С	b	С	d		b	С	b	С	d		b	С	b	С	d
	С	а	С	b	b		С	а	С	b	b		С	а	С	b	b
	d	d	а	d	а		d	d	а	d	а		d	d	а	d	а
						'											
		Зад	цані	ие 2	2	i		Зад	ани	e 23	3		3	ада	ние	24	
	1	2	3	4	5		1	2	3	4	5		1	2	3	4	5
	4	5	5	3	2		4	5	4	4	7		5	4	3	4	5
M=	а	b	d	а	С	M=	а	b	d	а	С	M=	а	b	d	а	С
	b	С	b	С	d		b	С	b	С	d		b	С	b	С	d
	С	а	С	b	b		С	а	С	b	b		С	а	С	b	b

d d

d

а

d

d

а

d

а

а

d d

d

а

а

Цель: практическое усвоение методов принятия решений с помощью игровых моделей.

Длительность занятия – 2 часа

Решаемая задача: матричная антагонистическая игра двух лиц с нулевой суммой и полной информацией.

Алгоритм задачи:

- 1. Преобразование игры отбрасыванием доминируемых стратегий.
- 2. Поиск гарантирующих стратегий.
- 3. Поиск седловой точки.

Теоретические основы

- 1. Стратегии i и j называются соответственно доминирующей и доминируемой, если каждый элемент i-ой стратегии "лучше" одноименного элемента j-ой стратегии (рис. 6.1~a-e). Это позволяет игнорировать доминируемые стратегии и, таким образом, облегчить поиск оптимальных стратегий игроков.
- 2. Ситуация (пара стратегий) называется равновесной, если соответствующий ей элемент $a_{i,j}$ матрицы игры является одновременно наибольшим в своем столбце и наименьшим в своей строке. Легко убедиться, что применительно к матрице, изображенной на рис. 6.2, таковой является $\max_i \min_j = a_{i,j} = a_{2,2} = 2$ седловая точка стратегия, выгодная обоим игрокам.
- 3. Стратегия называется гарантирующей, если, пользуясь ею, выигрывающий игрок не может выиграть меньше некоторой величины, а проигрывающий проиграть больше того, что гарантирует эта стратегия.
- 4. Игры с полной информацией, т. е. такие, в которых каждый игрок знает возможности и "наклонности" противника, реализуются как в чистых, так и в смешанных стратегиях. В первом случае каждый игрок в ходе игры может придерживаться только одной, выбранной им, стратегии, а во втором нескольких стратегий, применительно к которым фиксируются лишь вероятности их выбора. Примером матричных игр в чистых стратегиях может служить игра, в которой каждый игрок имеет право сделать только один ход, а случай, когда игроками поочередно делается несколько ходов, соответствует смешанным стратегиям.

Ниже приведен пример преобразования матричной игры с нулевой суммой в эквивалентную, в котором игра определяется матрицей М,

строки которой соответствуют стратегиям максимизирующего игрока, а столбцы – минимизирующего.

Puc. 8.1. Преобразование матричной игры отбрасыванием доминируемых стратегий.

Гарантирующей является q-я стратегия максимизирующего игрока, для которой справедливо:

$$\min_{j} r(q, j) = \max_{i} \min_{j} r(i, j).$$

Самостоятельно дать формальное определение гарантирующей стратегии минимизирующего игрока. Седловой точке соответствуют совпадающие гарантирующие стратегии игроков.

Задание: В каждом из приведенных ниже заданий игра определяется матрицей M, строки которой соответствуют стратегиям максимизирующего игрока, а столбцы — минимизирующего. Требуется:

- Упростить игру, отбросив доминируемые стратегии.
- Найти седловую точку (если она есть).
- Найти гарантирующие стратегии игроков.

	Задание 1					Зад	цани	ие 3			Зад	цані	ие 4	ļ					
6	12	10	8	7	2	12	10	8	7	6	12	10	8	7	6	12	10	8	7
7	11	3	11	9	7	11	3	11	9	17	11	3	14	9	19	11	3	11	9
9	16	5	13	14	9	8	5	13	14	9	8	5	13	14	9	8	5	13	14
10	9	10	8	11	16	9	10	8	11	16	9	17	8	11	16	9	14	8	13
8	2	4	15	10	8	2	9	15	10	8	2	4	15	10	8	2	4	15	10
3a,	цані	ие 5		l l		Зад	цані	ие 6		Зад	цани	ие 7			Зад	цані	ие 8	3	
3a,	цані 12		8	7	2	3a,	цані 10	ие 6 8	7	3a,	цани 12	ие 7 10	8	17	Зад 16	цані 12	ие 8 10	18	17
-		_		7					7 9				8	17 9		цані 12 11			17 19
-	12	10	8	7 8 14			10	8	7		12	10	8 11 13	17 9 14	16	12 11 18	10 13		17 19 14
6 7	12	10 3 5	8 11	_	7	12 11	10 3	8 11	7	7	12 11	10	11	_	16 17	12 11	10 13	18 11	

Задание 9	Задание 10	Задание 11	Задание 12
16 12 10 8 17	6 12 10 18 7	26 12 10 8 7	6 12 10 8 27
7 11 13 11 9	17 11 3 11 19	7 11 13 11 19	7 11 23 11 9
9 18 5 13 14	9 8 5 13 14	9 8 5 13 14	9 8 15 13 14
16 9 10 18 11	16 9 10 8 11	16 9 10 8 11	16 9 10 18 11
8 2 4 15 10	8 12 14 15 10	8 22 41 15 10	8 2 24 15 10
Задание 13	Задание 14	Задание 15	Задание 16
26 12 10 8 7	6 12 10 8 17	26 12 10 8 7	26 12 10 8 17
7 11 3 11 9	27 11 13 11 9	17 11 23 11 9	37 11 3 11 39
9 8 15 13 14	9 8 5 13 14	9 8 5 13 14	9 28 5 13 14
16 9 10 28 11	16 9 10 38 11	16 9 10 28 11	16 19 10 8 11
8 2 4 15 10	8 32 24 15 10	8 2 4 15 10	8 42 4 15 10
Задание 17	Задание 18	Задание 19	Задание 20
16 12 10 8 71	26 12 10 8 7	36 12 10 8 7	56 12 10 80 37
17 11 33 11 9	7 11 33 11 9	17 11 33 11 9	72 11 23 11 19
29 8 15 13 14	9 8 5 13 14	9 8 25 13 14	91 81 55 13 14
16 9 10 8 11	16 9 10 80 11	16 9 10 8 11	16 92 10 98 11
8 2 42 15 10	8 2 4 15 10	8 24 54 15 10	18 42 43 15 10
Задание 21	Задание 22	Задание 23	Задание 24
46 12 10 18 27	62 12 10 8 7	6 12 10 28 7	16 10 10 0 5
	102 112 10 0 7	0 12 10 20 7	16 12 10 8 7
7 11 3 11 9	71 11 13 11 9	7 11 3 11 9	16 12 10 8 7 7 11 3 11 9
7 11 3 11 9 19 8 5 13 14			
-	71 11 13 11 9	7 11 3 11 9	7 11 3 11 9

Цель: практическое усвоение методов принятия решений в ситуациях, сводимых к задачам дискретной оптимизации, методами динамического программирования

Длительность занятия – 2 часа.

Решаемая задача: модифицированная задача о ранце.

Суть метода: В основе метода лежит принцип оптимальности Беллмана, в соответствии с которым оптимальная стратегия обладает тем свойством, что независимо от начального состояния и начального решения задачи, последующие решения должны составлять оптимальную стратегию лишь в рассматриваемый момент времени. Иными словами, оптимальная стратегия в каждый момент времени определяется лишь состоянием системы, но не ее предысторией.

Ниже рассматривается использование динамического программирования применительно к задаче с небулевыми переменными вида:

$$\begin{cases} 5x_1 + 2x_2 + 9x_3 + 7x_4 \to \max; \\ 4x_1 + 2x_2 + 2x_3 + 4x_4 \le 6; \\ \forall i, x_i \in \{0, 1, 2\} \end{cases}$$

При этом на каждой i-й итерации (рис.9.1–рис. 9.4) рассматривается изменение значений только i-й переменной.

Рис. 9.1. Первая переменная последовательно принимает значения 0, 1, 2.

Рис. 9.2. Вторая переменная последовательно принимает значения 0, 1, 2.

Рис. 9.3. Третья переменная пробегает значения 0, 1, 2.

Рис. 9.4. Четвертая переменная пробегает значения 0, 1, 2:

Puc. 9.5. Критический путь из s в t.

В результате слияния вершин графа, изображенного на рис. 9.3, объединенных ломанными линиями, получаем новый граф G(X, U) (рис.9.4): оптимальный вектор переменных $\overrightarrow{X}_{\text{опт}} = \{0, 1, 0, 0\}$; $F_{\text{п опт}} = 20$.

Задание: решить, пользуясь рассмотренным выше методом, задачи вида:

$$\begin{cases} \sum_{i=1}^{n} a_i x_i \to \max; \\ \sum_{i=1}^{n} b_i x_i \le B; \\ \forall i : x_i \in X_i. \end{cases}$$

Задание 1	Задание 2	Задание 3
i 1 2 3 4 5	i 1 2 3 4 5	i 1 2 3 4 5
a_i 6 2 4 7 1	$a_i 6 2 4 7 1$	a_i 5 2 4 7 1
b_i 2 3 5 4 7	$b_i 6 3 5 4 7$	b_i 2 4 5 4 7
$B = 19 x_i = 2 0 1 $	$B = 19 \ x_i = 2 \ 0 \ 1$	$B = 19 x_i = 2 0 1$
Задание 4	Задание 5	Задание 6
i 1 2 3 4 5	i 1 2 3 4 5	i 1 2 3 4 5
$a_i 6 2 4 5 1$	$a_i 6 2 4 7 1$	$a_i \ 6 \ 2 \ 4 \ 5 \ 1$
b_i 2 3 5 4 6	$b_i \ 1 \ 3 \ 5 \ 4 \ 7$	b_i 2 3 5 4 5
$B = 18 x_i = 2 0 1$	$B = 17 x_i = 2 0 1$	$B = 16 x_i = 2 0 1$
Задание 7	Задание 8	Задание 9
i 1 2 3 4 5	i 1 2 3 4 5	i 1 2 3 4 5
$a_i 6 2 4 7 1$	$a_i 6 2 3 7 1$	$a_i \ 6 \ 2 \ 4 \ 7 \ 1$
b_i 2 3 5 4 7	$b_i \ 2 \ 3 \ 5 \ 4 \ 1$	b_i 2 3 5 4 3
$B = 15 x_i = 2 0 1$	$B = 13 x_i = 2 0 1 $	$B = 14 x_i = 2 0 1$
Задание 10	Задание 11	Задание 12
i 1 2 3 4 5	i 1 2 3 4 5	i 1 2 3 4 5
a_i 6 2 4 7 1	<i>a_i</i> 6 5 4 7 1	$a_i \ 6 \ 2 \ 4 \ 7 \ 1$
b_i 6 3 5 4 7	$b_i \ 8 \ 3 \ 5 \ 4 \ 7$	b_i 2 3 5 4 7
$B = 19 x_i = 2 0 1$	$B = 21 x_i = 2 0 1$	$B = 22 x_i = 2 0 1$
Задание 13	Задание 14	Задание 15
i 1 2 3 4 5	i 1 2 3 4 5	i 1 2 3 4 5
a_i 6 2 4 7 1	$a_i 6 2 4 7 1$	$a_i \ 6 \ 2 \ 4 \ 7 \ 1$
b_i 2 3 5 4 7	b_i 2 2 5 4 7	$b_i \ 2 \ 3 \ 5 \ 4 \ 6$
$B = 25 x_i = 2 0 1$	$B = 24 x_i = 2 0 1$	$B = 23 x_i = 2 0 1$

Зад	ани	e 16			
i	1	2	3	4	5
a_i	6	2	4	7	1
b_i	2	3	5	6	7
B=	22	$x_i =$	2	0	1

Зад	ани	e 17			
i	1	2	3	4	5
a_i	6	2	4	7	1
b_i	1	3	5	2	7
B=	21	$x_i =$	2	0	1

Задание 18								
i	1	2	3	4	5			
a_i	6	2	4	7	1			
b_i	2	3	5	4	7			
B=	20	$x_i =$	2	0	1			

Задание 21

Зад	ани	e 19			
i	1	2	3	4	5
a_i	6	2	4	7	1
b_i	2	3	5	4	7
B=	27	$x_i =$	2	0	1
Зад	ани	e 22			
i	1	2	3	4	5
a_i	6	2	4	7	1

_	Зад	ани	e 20			
	i	1	2	3	4	5
	a_i	6	2	4	7	1
	b_i	5	3	2	4	7
	B=	19	$x_i =$	2	0	1
	Зад	ани	e 23			
	i	1	2	3	4	5
	a_i	6	2	4	7	1
	b_i	2	9	5	4	7

i	1	2	3	4	5				
a_i	6	2	4	7	1				
b_i	6	3	5	2	7				
B=	20	$x_i =$	2	0	1				
Зад	Задание 24								
i	1	2	3	4	5				
a_i	6	2	4	7	1				
b_i	2	3	5	4	6				
B=	30	$\chi_i =$	2	0	1				

Литература

- 1. *Будаева А. А., Гроппен В. О.* Принятие решений: теория, технология, приложения. Владикавказ: Изд-во "Фламинго", 2009, 182 с.
- 2. *Гроппен В. О.* Принципы принятия решений с помощью эталонов // Журнал РАН "Автоматика и телемеханика". 2006. № 4. С. 167–184.
- 3. *Гроппен В. О.* Решение задач многокритериальной оптимизации методом эталонов // Телекоммуникации и информатизация образования. 2006. № 2 (33). С.14–31.
- 4. *Гроппен В. О.* Основы теории принятия решений. Владикавказ: Изд-во "Терек", 2004. С. 106.