Исследование операций 2025 г.

специальность «Прикладная математика», 3 курс.

Лабораторная работа №4.

Задание 1

Баланс лесосырья в матричной транспортной задаче. После национализации природных ресурсов и производственных средств их переработки, возникла следующая задача.

В лесопромышленном регионе, например, РК, функционируют m лесозаготовительных предприятий (ЛЗП) и n лесоперерабатывающих предприятий (ЛПП), условно размещенных в различных населенных пунктах. Для каждого ЛЗП $i \in 1..m$ заданы r_i — условные затраты заготовки единицы лесосырья и b_i — верхние границы объемов заготовки. Для каждого ЛПП заданы s_j — доходы от продажи единицы продукции предприятия $j \in 1..m, t_j$ — нормативы расхода лесосырья на выработку единицы продукции, w_j — затраты производства единицы продукции и d_j — верхние границы объема ее производства.

Известны также c_{ij} — цены перевозки единицы лесосырья из пункта $i \in 1..m$ размещения ЛЗП в $j \in 1..n$ — пункт размещения ЛПП.

Построить математическую модель поиска наибольшего значения дохода лесопромышленного комплекса (ЛПК) региона с учетом затрат на заготовку, транспортировку и переработку лесопродукции в форме транспортной задачи, составить программу решения полученной задачи.

Задание 2

Мы можем все! Нет границам производственных мощностей! В лесопромышленном комплексе (ЛПК) региона функционируют m лесозаготовительных предприятий (ЛЗП) и n лесоперерабатывающих предприятий (ЛПП), условно размещенных в различных населенных пунктах. Для каждого ЛЗП $i \in 1...m$ заданы r_i — условные затраты заготовки единицы лесосырья и границы объемов заготовки b_i и B_i . Для каждого ЛПП заданы s_j — доходы от продажи единицы продукции предприятия $j \in 1..m, t_j$ — нормативы расхода лесосырья на единицу продукции, v_i — затраты на производство единицы продукции.

Известны также c_{ij} — цены перевозки единицы лесосырья из пункта $i \in 1..m$ размещения ЛЗП в $j \in 1..n$ — пункт размещения ЛПП.

Считая, что объемы переработки лесосырья для каждого предприятия ЛПК не ограничены, построить математическую модель поиска наибольшего значения дохода ЛПК региона с учетом затрат на заготовку, транспортировку и переработку лесопродукции, составить программу решения полученной задачи.

Задание 3

Неправильная задача. В лесопромышленном регионе функционируют m лесозаготовительных предприятий (ЛЗП) и n лесоперерабатывающих предприятий (ЛПП), условно размещенных в различных населенных пунктах. Для каждого ЛЗП $i \in 1..m$ заданы r_i — условные затраты заготовки единицы лесосырья без ограничения объема заготовки. Для каждого ЛПП заданы s_j — доходы от продажи единицы продукции предприятия $j \in 1..n, t_j$ — нормативы расхода лесосырья на единицу продукции, v_j — затраты производства единицы продукции, а также нижняя и верхняя границы объемов выработки продукции d_i и D_i .

Известны также c_{ij} — цены перевозки единицы лесосырья из пункта $i \in 1..m$ размещения ЛЗП в $j \in 1..n$ — пункт размещения ЛПП.

Построить математическую модель поиска наибольшего значения дохода региона с учетом затрат на заготовку, транспортировку и переработку лесопродукции. Составить программу решения полученной задачи. Что послужило основой названия задачи?

Задание 4

Не совсем линейные затраты заготовки. В лесопромышленном регионе функционируют m лесозаготовительных предприятий (ЛЗП) и n лесоперерабатывающих (ЛПП), размещенных в различных населенных пунктах и условно производящих некоторую однородную продукцию (например, пиломатериалы, бумагу или товарную целлюлозу).

Будем считать, что для каждого ЛПП заданы s_j — доходы от продажи единицы продукции предприятия $j \in 1..n, t_j$ — нормативы расхода лесосырья на единицу продукции, v_j — затраты производства единицы продукции и d_j — верхние границы объема ее производства.

Пусть известны c_{ij} — цены перевозки единицы лесосырья из пункта $i \in 1..m$ размещения ЛЗП в $j \in 1..n$ — пункт размещения ЛПП.

Затраты каждого ЛЗП $i \in 1..m$ на заготовку продукции зависят от объема, они составляют r_i на единицу объема лесосырья при условии, что этот объем не превосходит b_i , и R_i , если объем заготовки не превосходит верхнюю границу заготовки $B_i > b_i > 0$.

Построить математическую модель поиска наибольшего значения дохода региона с учетом затрат на заготовку, транспортировку и переработку лесопродукции в форме транспортной задачи, составить программу решения полученной задачи.

Задание 5

Привередливый потребитель. В лесопромышленном регионе, например, РК, функционируют m лесозаготовительных предприятий (ЛЗП) и n лесоперерабатывающих (ЛПП), условно размещенных в различных населенных пунктах. Для каждого ЛЗП $i \in 1..m$ заданы r_i — условные затраты заготовки единицы лесосырья и b_i — верхние границы объемов заготовки. Для каждого ЛПП заданы s_j — доходы от продажи единицы продукции предприятия $j \in 1..n, w_j$ — затраты производства единицы продукции и d_j — верхние границы объема ее производства.

Известны также c_{ij} — цены перевозки единицы лесосырья из пункта $i \in 1..m$ размещения ЛЗП в $j \in 1..n$ — пункт размещения ЛПП. Кроме того, имеются определенные предпочтения потребителей по отношению к поставщикам продукции, что выражается в форме зависимости t_{ij} — нормативов расхода лесосырья на выработку единицы продукции от индекса поставщика $i \in 1..m$.

Построить математическую модель поиска наибольшего значения дохода ПЛК региона с учетом затрат на заготовку, транспортировку и переработку лесопродукции в форме задачи линейного программирования, составить программу решения полученной задачи.

Задание 6

Двухэтапная транспортная задача. Где перерабатывать? В лесопромышленном регионе функционируют m лесозаготовительных предприятий (ЛЗП) и n лесоперерабатывающих (ЛПП), условно производящих некоторую однородную продукцию (например, пиломатериалы, бумагу или товарную целлюлозу), а также имеется k заказчиков, размещенных в различных населенных пунктах, которые приобретают произведенную продукцию в объеме g_q , $1 \le q \le k$.

Для каждого ЛЗП $i\in 1..m$ заданы r_i — условные затраты заготовки единицы лесосырья и b_i — верхние границы объемов заготовки. Для каждого ЛПП заданы s_j — доходы от продажи единицы продукции предприятия $j\in 1..n,\,w_j$ — затраты производства единицы продукции, t_j — нормативы расхода лесосырья на выработку единицы продукции.

Будем считать, что нормативы расхода лесосырья не зависят от индекса предприятия и составляют t единиц лесосырья на единицу продукции.

Известны также c_{ij} — цены перевозки единицы лесосырья из пункта $i \in 1..m$ размещения ЛЗП в $j \in 1..n$ — пункт размещения ЛПП, и C_{jq} — цены перевозки единицы продукции из пункта $j \in 1..n$ в $q \in 1..k$ — пункт размещения потребителя.

Построить математическую модель поиска наибольшего дохода ПЛК региона с учетом затрат на заготовку, транспортировку и переработку лесосырья и продукции предприятий в форме транспортной задачи, составить программу решения полученной задачи.

Задание 7

Двухэтапная транспортная задача. Ограниченные мощности переработки.

В лесопромышленном регионе функционируют m лесозаготовительных предприятий (ЛЗП) и n лесоперерабатывающих (ЛПП), условно производящих некоторую однородную продукцию (например, пиломатериалы, бумагу или товарную целлюлозу), а также имеется k заказчиков, размещенных в различных населенных пунктах, которые приобретают произведенную продукцию в объеме g_a , $1 \le q \le k$.

Для каждого ЛЗП $i\in 1..m$ заданы r_i — условные затраты заготовки единицы лесосырья и b_i — верхние границы объемов заготовки. Для каждого ЛПП заданы s_j — доходы от продажи единицы продукции предприятия $j\in 1..n,\ t_j$ — нормативы расхода лесосырья на выработку единицы продукции, w_j — затраты производства единицы продукции, и d_j — верхние границы объема ее производства.

Известны также c_{ij} — цены перевозки единицы лесосырья из пункта $i \in 1..m$ размещения ЛЗП в $j \in 1..n$ — пункт размещения ЛПП, и C_{jq} — цены перевозки единицы продукции из пункта $j \in 1..n$ в $q \in 1..k$ — пункт размещения потребителя.

Построить математическую модель поиска наибольшего дохода ПЛК региона с учетом затрат на заготовку, транспортировку и переработку лесосырья и продукции предприятий в форме транспортной задачи, составить программу решения полученной задачи.

Задание 8

Двухэтапная транспортная задача. Введение нижней границы выработки продукции по $Л\Pi\Pi$.

В лесопромышленном регионе функционируют m лесозаготовительных предприятий (ЛЗП) и n лесоперерабатывающих (ЛПП), условно производящих некоторую однородную продукцию (например, пиломатериалы, бумагу или товарную целлюлозу), а также имеется k заказчиков, размещенных в различных населенных пунктах, которые приобретают произведенную продукцию в объеме g_a , $1 \le q \le k$.

Для каждого ЛЗП $i \in 1..m$ заданы r_i — условные затраты заготовки единицы лесосырья и b_i — верхние границы объемов заготовки. Для каждого ЛПП заданы s_j — доходы от продажи единицы продукции предприятия $j \in 1..n, t_j$ — нормативы расхода лесосырья на выработку единицы продукции, w_j — затраты производства единицы продукции, а также нижняя и верхняя границы объемов выработки продукции d_j и D_j .

Известны также c_{ij} — цены перевозки единицы лесосырья из пункта $i \in 1..m$ размещения ЛЗП в $j \in 1..n$ — пункт размещения ЛПП, и C_{jq} — цены перевозки единицы продукции из пункта $j \in 1..n$ в $q \in 1..k$ — пункт размещения потребителя.

Построить математическую модель поиска наибольшего дохода ПЛК региона с учетом затрат на заготовку, транспортировку и переработку лесосырья и продукции предприятий в форме задачи линейного программирования. Получится ли транспортная задача? Составить программу решения полученной задачи.

Задание 9

Двухпродуктовая транспортная задача. Сплошная заготовка.

В лесопромышленном регионе функционируют m лесозаготовительных предприятий (ЛЗП) и n лесоперерабатывающих (ЛПП). Каждое ЛЗП ведет заготовку лесосырья, следуя установленной сплошной технологии рубки, при этом $\alpha_1 \geq 0$ — доля лиственной и $\alpha_2 \geq 0$ — доля хвойной древесины ($\alpha_1 + \alpha_2 = 1$) от объема заготовки. Условно назовем эти виды древесины видами лесосырья 1 и 2.

Для каждого ЛЗП $i \in 1..m$ заданы r_i — условные затраты заготовки единицы лесосырья и b_i — верхние границы объемов заготовки. Для каждого ЛПП заданы d_{1j}, d_{2j} — потребности в лесосырье 1 и 2 видов.

Считая, что c_{ij} — цены перевозки единицы лесосырья из пункта $i \in 1...m$ размещения ЛЗП в $j \in 1...n$ — пункт размещения ЛПП не зависят от вида сырья, построить математическую модель минимизации затрат на перевозку всех видов лесосырья для обеспечения потребителей

в форме задачи линейного программирования. Получится ли транспортная задача? Составить программу решения полученной задачи.

Задание 10

Двухпродуктовая транспортная задача. Ограничение потоков.

В лесопромышленном регионе функционируют m лесозаготовительных предприятий (ЛЗП) и n лесоперерабатывающих (ЛПП). Каждое ЛЗП ведет заготовку двух видов лесосырья, например, лиственной и хвойной древесины. Пусть для каждого ЛЗП $i \in 1..m$ заданы r_{1i} — условные затраты заготовки единицы лесосырья первого вида и r_{2i} — второго, а также верхние границы объемов заготовки b_{1i} и b_{2i} соответственно. Для каждого ЛПП введем d_{1j} и d_{2j} — потребности в лесосырье 1 и 2 видов.

Пусть c_{ij} — цены перевозки единицы лесосырья из пункта $i \in 1..m$ размещения ЛЗП в $j \in 1..n$ — пункт размещения ЛПП не зависят от вида сырья.

Построить математическую модель минимизации затрат на перевозку всех видов лесосырья для обеспечения потребителей в форме транспортной задачи при условии, что объемы перевозки по всем видам продукции в сумме ограничены значением f_{ij} . Составить программу решения полученной задачи.

Задание 11

Транспортная задача по критерию времени.

Подобные задачи возникают в критической ситуации, например, в случае военной угрозы. Пусть имеется m пунктов размещения некоторого однородного продукта, например, тактических ракет с ядерными боеголовками с запасами $b_i, i \in 1..m$, и n потребителей, в данном случае транспортно раздельно размещенных стартовых площадок, которым необходимо $d_j, j \in 1..n$, единиц продукта.

Известно t_{ij} — минимальное время перемещения любого количества продукта из пункта $i \in 1..m$ в пункт $j \in 1..n$. Рассчитать план наискорейшего перемещения всего объема продукта.

Построить математическую модель этой задачи. Получится ли задача линейного программирования? Составить программу решения полученной задачи.

Задание 12

Транспортно-производственная сетевая задача – 1.

В некоторых пунктах $i \in V$ лесопромышленного региона действуют лесозаготовительные предприятия (ЛЗП), в других — лесоперерабатывающие (ЛПП). Имеется граф G = (V, E) транспортных связей пунктов региона, для вершин которого заданы мощности b_i , для дуг $u \in E$ цены c_u перевозки единицы продукции. Мощности пунктов различаются знаком: объем рубки пункта производства лесосырья $b_i < 0$, потребления ЛПП $b_i \ge 0$.

Кроме того, для каждого ЛЗП заданы r_i — условные затраты заготовки единицы лесосырья и b_i — верхние границы объемов заготовки.

Построить математическую модель минимизации затрат на заготовку и транспортировку лесосырья, составить программу решения полученной задачи.

Задание 13

Транспортно-производственная задача – 2.

В некоторых пунктах $i \in V$ лесопромышленного региона действуют лесозаготовительные предприятия (ЛЗП), в других — лесоперерабатывающие (ЛПП). ЛПП, используя заготовленное лесосырье, производят некоторую однородную взаимозаменяемую продукцию: целлюлозу или пиломатериалы и др.

Будем считать, что нормативы расхода лесосырья не зависят от номера предприятия и составляют t единиц лесосырья на единицу продукции. Имеется граф G = (V, E) транспортных связей пунктов региона, для вершин которого заданы мощности b_i , для дуг $u \in E$ цены c_u перевозки любого лесосырья. Мощности пунктов различаются знаком: объем рубки пункта производства лесосырья $b_i < 0$, потребления ЛПП $b_i \ge 0$.

Пусть для каждого ЛЗП заданы r_i — условные затраты заготовки единицы лесосырья и B_i — верхние границы объемов заготовки. Для каждого ЛПП заданы w_j — затраты производства единицы продукции и D_i — верхние границы объемов производства.

Построить математическую модель минимизации затрат на заготовку и транспортировку лесосырья, составить программу решения полученной задачи в предположении, что всем предприятиям в целом необходимо произвести Q единиц продукции.

Задание 14

Многопродуктовая транспортная сетевая задача.

В некоторых пунктах $i \in V$ лесопромышленного региона действуют лесозаготовительные предприятия (ЛЗП), в других — лесоперерабатывающие (ЛПП). ЛПП, используя заготовленное лесосырье, производят различную продукцию, для изготовления которой требуется лесосырье различных видов $q \in \{1, ..., k\}$ (балансы, пиловочник, хвойное или лиственное сырье и др.).

Имеется граф G=(V,E) транспортных связей пунктов региона, для вершин которого заданы мощности b_{qi} — производство лесосырья различного вида, для дуг $u \in E$ заданы цены c_u перевозки единицы (любого вида) лесосырья и d_u — верхние границы возможной перевозки лесосырья по дуге $u \in E$.

Мощности пунктов различаются знаком: объем рубки пункта производства лесосырья $b_{qi} < 0$, объем потребления ЛПП $b_{qi} \geq 0$.

Построить математическую модель поиска наименьших затрат на транспортировку лесосырья, составить программу решения полученной задачи.

Задание 15

Многопродуктовая транспортно-производственная сетевая задача. Случай пропорциональности заготовки.

В некоторых пунктах $i \in V$ лесопромышленного региона расположены лесозаготовительные предприятия (ЛЗП), в других — лесоперерабатывающие (ЛПП), которые осуществляют рубку древесины k видов (балансы, пиловочник, хвойное или лиственное сырье и др.). Лесосырье в количествах $b_{qi} \geq 0, 1 \leq q \leq k$ требуется переработчикам для производства продукции.

ЛЗП ведут заготовку лесосырья, следуя технологии сплошной рубки, при этом $\alpha_{iq} \geq 0$ — доля лесосырья вида q (балансов, пиловочника, хвойной или лиственной древесины и др.) в общем объеме рубки, ограниченном сверху значением b_i — верхней границей объемов заготовки. Очевидно, $\sum_{q=1}^k \alpha_{iq} = 1$ для каждого пункта заготовки. Для каждого ЛЗП $i \in V$ установим r_i — условные затраты заготовки единицы лесосырья.

 $\Pi\Pi\Pi$ региона, используя заготовленное лесосырье, производят различную продукцию, для изготовления которой требуется лесосырье различных видов $q \in \{1, \ldots, k\}$.

Имеется граф G=(V,E) транспортных связей пунктов региона, для вершин которого заданы мощности b_{qi} — производство лесосырья различного вида, для дуг $u \in E$ заданы цены c_u перевозки единицы (любого вида) лесосырья и d_u — верхние границы возможного объема производства.

Мощности пунктов различаются знаком: объем рубки пункта производства лесосырья $b_{qi} < 0$, потребления ЛПП $b_{qi} \geq 0$.

Построить математическую модель минимизации затрат на заготовку и транспортировку лесосырья, составить программу решения полученной задачи в предположении, что всем предприятиям в целом необходимо произвести Q единиц продукции. Будет ли полученная задача транспортной? Задачей линейного программирования?