13 Tue

3/2

<u>thm</u> (Young 1950)

- 1. If $\rho(B_{\omega}) < 1$, then $0 < \omega < 2$.
- 2. Assume A is symmetric, block tridiagonal, and positive definite (defined later).

Then $\omega_* = \frac{2}{1 + \sqrt{1 - \rho(B_J)^2}}$ is the <u>optimal SOR parameter</u> in the sense that $\rho(B_{\omega_*}) = \min_{0 \le \omega \le 2} \rho(B_\omega) = \omega_* - 1 < \rho(B_{GS}) < \rho(B_J) < 1.$

pf: Math 571 (sometimes)

return to example :
$$\omega_* = \frac{2}{1 + \sqrt{1 - \rho(B_J)^2}} = \frac{2}{1 + \sqrt{1 - (\frac{1}{2})^2}} = \frac{4}{2 + \sqrt{3}} = 1.0718$$

Hence optimal SOR converges faster than GS.

 $\underline{\text{def}}: A \text{ is positive definite} \text{ if } x^T\!Ax > 0 \text{ for all } x \neq 0$

$$\underline{\text{ex }1} : A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
 is positive definite

$$\underline{\mathbf{pf}} : x^{T} A x = (x_{1}, x_{2}) \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = (x_{1}, x_{2}) \begin{pmatrix} 2x_{1} - x_{2} \\ -x_{1} + 2x_{2} \end{pmatrix}
= 2(x_{1}^{2} + x_{2}^{2}) - 2x_{1}x_{2} = x_{1}^{2} + x_{2}^{2} + (x_{1} - x_{2})^{2} \ge 0$$

If $x \neq 0$, then either $x_1 \neq 0$ or $x_2 \neq 0$, but in any case we have $x^T A x > 0$. ok

$$\underline{\text{ex } 2} : A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
 is positive definite : hw

$$\underline{\text{ex } 3} : A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \text{ is } \underline{\text{not}} \text{ positive definite}$$

$$\underline{\mathbf{pf}} : x^{T}\!\!Ax = (x_1, x_2) \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1^2 + x_2^2 + 4x_1x_2 : \text{ indefinite}$$

for example :
$$x = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \Rightarrow x^T\!\!Ax = 1$$
 , $x = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \Rightarrow x^T\!\!Ax = -2$ ok

$$\frac{\text{ex } 4}{A_h} = \frac{1}{h^2} \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & -1 \\ & & & -1 & 2 \end{pmatrix} : \text{ dimension } n \times n \text{ , } h = \frac{1}{n+1}$$

The matrix A_h represents the finite difference operator $-D_+D_-$; A_h is symmetric, tridiagonal, and positive definite, and hence Young's theorem applies.

<u>note</u>: The real advantage of iterative methods, in comparison with direct methods, is for BVPs in more than one dimension.

3.9 two-dimensional BVP

problem: A metal plate has a square shape. The plate is heated by internal sources and the edges are held at a given temperature. Find the temperature at points inside the plate.

$$D = \{(x,y): 0 \leq x,y \leq 1\}$$
 : plate domain

 $\phi(x,y)$: temperature

f(x,y): heat sources, g(x,y): boundary temperature

Then $\phi(x,y)$ satisfies the following two equations.

1.
$$-\Delta \phi = -\nabla^2 \phi = -\left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2}\right) = f \text{ for } (x, y) \text{ in } D : \underline{\text{Poisson equation}}$$

Laplace operator

(note: This equation arises in many areas, e.g. if f is a charge/mass distribution, then ϕ is the electrostatic/gravitational potential.)

2.
$$\phi = g$$
 for (x, y) on ∂D : Dirichlet boundary condition

finite-difference scheme

$$h = \frac{1}{n+1}$$
: mesh size , $(x_i, y_j) = (ih, jh)$, $i, j = 0, ..., n+1$: mesh points

$$\underline{\text{ex}}: n = 3, h = \frac{1}{4}$$

ordering of mesh points: w_{11}, w_{12}, \ldots

$$-\left(D_{+}^{x}D_{-}^{x}w_{ij}+D_{+}^{y}D_{-}^{y}w_{ij}\right)=f_{ij} : \text{ finite-difference equations}$$

$$-\left(\frac{w_{i+1,j}-2w_{ij}+w_{i-1,j}}{h^{2}}+\frac{w_{i,j+1}-2w_{ij}+w_{i,j-1}}{h^{2}}\right)=f_{ij}$$

$$\frac{1}{h^{2}}\Big(4w_{ij}-w_{i+1,j}-w_{i-1,j}-w_{i,j+1}-w_{i,j-1}\Big)=f_{ij}$$

$$i,j+1$$

$$i,j-1$$

$$i,j-1$$

$$5-\text{point stencil}$$

Consider what happens near the boundary.

$$(i,j) = (1,1) \Rightarrow \frac{1}{h^2} (4w_{11} - w_{21} - w_{01} - w_{12} - w_{10}) = f_{11}$$
$$\Rightarrow \frac{1}{h^2} (4w_{11} - w_{21} - w_{12}) = f_{11} + \frac{1}{h^2} (g_{01} + g_{10})$$

Write the equations for w_{ij} in matrix form.

1	2	3	4	5	6	7	8	9
w_{11}	w_{12}	w_{13}	w_{21}	w_{22}	w_{23}	w_{31}	w_{32}	w_{33}
4	-1		-1					-
-1	4	-1		-1				
	-1	4			-1			
$\overline{-1}$			4	-1		-1		
	-1		-1	4	-1		-1	
		-1		-1	4			-1
			-1			4	-1	
				-1		-1	4	-1
					-1		-1	4

$$A_h w_h = f_h , A_h = \begin{pmatrix} T & -I & & & \\ -I & T & -I & & & \\ & \ddots & \ddots & \ddots & \\ & & \ddots & \ddots & -I \\ & & & -I & T \end{pmatrix}$$

 $T: n \times n$, symmetric, tridiagonal

 $A_h: n^2 \times n^2$, symmetric, block tridiagonal, positive definite (pf: omit)

temperature distribution on a metal plate: no heat sources, one side heated

differential equation : $\phi_{xx} + \phi_{yy} = 0$

boundary conditions : $\phi(x,1)=1$, $\phi(x,0)=\phi(0,y)=\phi(1,y)=0$

finite-difference scheme : $D_+^x D_-^x w_{ij} + D_+^y D_-^y w_{ij} = 0$

<u>above</u>: solution of linear system $A_h w_h = f_h$ for given mesh size h <u>below</u>: number of iterations k required for each method initial guess = zero vector, stopping criterion: $||r_k||/||r_0|| \le 10^{-4}$

Jacobi	h	k	$\rho(B)$
	1/4	26	0.7071
	1/8	96	0.9239
	1/16	334	0.9808
Gauss-Seidel	h	k	$\rho(B)$
	1/4	15	0.5000
	1/8	51	0.8536
	1/16	172	0.9619
optimal SOR	h	$\mid k \mid$	$\rho(B)$
	1/4	9	0.1716
	1/8	18	0.4465
	1/16	34	0.6735

note

- 1. For each method, more iterations are needed as the mesh size $h \to 0$. Hence refining the mesh yields a more accurate solution of the BVP, but the computational cost increases.
- 14 Tue 3/9
- 2. For a given mesh size h, SOR converges the fastest, then GS, and then J.
- 3. Explicit formulas for $\rho(B)$ can be derived in this example. (Math 571)

$$\rho(B_J) = \cos \pi h \, \sim \, 1 - \frac{1}{2} \pi^2 h^2$$

$$\rho(B_{GS}) = \cos^2 \pi h \, \sim \, 1 - \pi^2 h^2$$

$$\rho(B_{\omega_*}) = \frac{2}{1 + \sqrt{1 - \rho(B_J)^2}} - 1 = \frac{1 - \sin \pi h}{1 + \sin \pi h} \sim \frac{1 - \pi h}{1 + \pi h} \sim 1 - 2\pi h$$

This shows that $\rho(B) \to 1$ as $h \to 0$ (confirming that the iteration slows down as the mesh is refined). The formulas also show that $\rho(B_{\omega_*}) < \rho(B_{GS}) < \rho(B_J) < 1$ (confirming that SOR converges the fastest, then GS, and then J).

4. Consider what happens if Gaussian elimination is used instead of J/GS/SOR.

- a) A_h is a <u>band matrix</u>, i.e. $a_{ij} = 0$ for |i j| > m, where m is the <u>bandwidth</u> (in this example we have m = 3).
- b) As the elimination proceeds, zeros inside the band can become non-zero (this is called <u>fill-in</u>), but zeros outside the band are preserved. Hence we can adjust the limits on the loops to reduce the operation count for Gaussian elimination from $O(n^3)$ to $O(nm^2)$.
- c) Due to fill-in, more memory needs to be allocated than is required for the original matrix A_h . This is a disadvantage in comparison with iterative methods like J/GS/SOR which preserve the <u>sparsity</u> of A_h .

final comments on linear systems

1. <u>comparison of operation counts</u>: two-dimensional BVP

mesh size : $h = \frac{1}{n+1}$

typical equation : $\frac{1}{h^2}(4w_{ij}-w_{i+1,j}-w_{i-1,j}-w_{i,j+1}-w_{i,j-1})=f_{ij}$ vector w_{ij} has length n^2

matrix A_h has dimension $n^2 \times n^2$ and bandwidth m = n

a) Gaussian elimination : $O((n^2)^3) = O(n^6)$ ops

banded Gaussian elimination : $O(n^2m^2) = O(n^4)$ ops

b) iterative methods

cost per iteration : $O(n^2)$ ops (roughly the same for J/GS/SOR)

stopping criterion : $\frac{||r_k||}{||r_0||} = \epsilon \implies \rho(B)^k = \epsilon \implies k = \frac{\log \epsilon}{\log \rho(B)}$

J, GS
$$\Rightarrow \rho(B) \sim 1 - ch^2 \Rightarrow \log \rho(B) \sim \log(1 - ch^2) \sim -ch^2$$

 $\Rightarrow k \sim \frac{\log \epsilon}{-ch^2} = O(n^2) \text{ iterations}$

$$\Rightarrow$$
 total cost = $O(n^2) \times O(n^2) = O(n^4)$ ops

SOR
$$\Rightarrow \rho(B) \sim 1 - ch$$

$$\Rightarrow k \sim \frac{\log \epsilon}{-ch} = O(n)$$
 iterations

$$\Rightarrow$$
 total cost = $O(n^2) \times O(n) = O(n^3)$ ops

2. <u>developments after SOR</u>

conjugate gradient method

FFT = fast Fourier transform

multigrid

GMRES

preconditioning : $Ax = b \rightarrow PAx = Pb$

software

parallel

15 Thu 3/11