1 Section F1: Product Attributes Table

The product attributes are given below for Product Type: solid

Name	Product Id	API	Solubility	Cleanability	PDE	Min	Max	Min	Strength
			Factor	Factor		TD	TD	BS	
Product1	P1	API1	1	1	0	180	360	440000	400
Product2	P2	API2	3	3	0	180	360	210000	400
Product3	P3	API3	5	3	0	300	600	200000	400
Product4	P4	API4	2	5	1	150	300	200000	400

2 Section F2: Equipment Attributes Table

The equipment attributes are given below:

Equipment Id	Equipment Name	Surface Area
EQ1	Equipment1	10000
EQ2	Equipment2	20000
EQ3	Equipment3	40000

3 Section F3: Equipment Group Attributes

The Equipment Group attributes are given below:

Name	Group Id	Product Type	Equipments
Train1	EqGrp1	solid	Equipment1, Equipment2, Equipment3

4 Section F4: PE Matrix

The PE (Product-Equipment) relationship is described by the table given below:

Product Id	Equipment Used	Surface Area
P1	EQ1, EQ2, EQ3	70000
P2	EQ1, EQ2	30000
P3	EQ1, EQ3	50000
P4	EQ1, EQ2, EQ3	70000

The PE (Product-Equipment) relationship is described by the table given below:

Product Id	Equipment Used	Surface Area
Equipment1	P1, P2, P3, P4	10000
Equipment2	P1, P2, P4	20000
Equipment3	P1, P3, P4	40000

5 Section F5: Calculation Variables

The various variables used in the evaluation of the worst case limits and molecules are given in the table given below:

Name	Short Name	Unit	Description	Default Value
Body weight (for LD50 dose)	bw	kg	body weight of patient taking next	60
			product	
Equipment Verification Period	verifyPeriod	month	The frequency at which equipment	3
			needs to be verified.	
Modification factor	mf		Cumulative modifying factor, selected	1000
			by the toxicologist. generally no more	
			than 1000	
Safety Factor - Solids	sf_solid		Safety Factor for Solids drug dosage	1000

6 Section F6: MAC Formula

The below set of formula are used to calculate the MAC Limits. Please note that the MAC Surface Area is taken as the default limit here.

Name	Sampling	Product	Formula	Description	
	Type	Type			
MAC_dosage	swab	solid	(1 / sf_solid) * (min_td_a) * (1	based on minimum daily dose of the	
			/ max_td_b) * (min_bs_b) * (1 /	drug active in a maximum daily dose	
			area_shared)	of the next drug product	
MAC_general	swab	solid	$(1 / 1e+5) * (min_bs_b) * (1 /$	general 10ppm limit to be considered	
			area_shared)	when it is lower than dosage/toxicity	
				based limits or when dosage/toxicity	
				data is not available	
MAC_toxicity	swab	solid	(pde_a) * (1 / max_td_b) *	based on Risk-MaPP Acceptable Daily	
			$(\min_b s_b) * (1 / area_shared)$	Exposure (ADE) approach	

7 Section F7: Sampling Paramters

The Sampling Parameters used in the protocol workflow is as:

Sampling Parameter	value
swab	40
sda	20

8 Section G2: Risk Formula

Risk Priority Number(s) are defined as per the formula given in the table below:

Name	Description	Rank	Formula
RPN_overall	risk evaluation from multiple risk factors	1	R1*R2*R3*R4

9 Section H: Current Cleaning Limit Policy

Current Cleaning Limit Policy given in the table below:

Name	Description
Default	Recommended cleaning limit policy based on latest regulatory guideline. Acceptance limit
	is always equal to HBEL based limit and site acceptance limit is either based on dosage
	based limit if it significantly lower than HBEL or is a lower ratio of HBEL itself