Fluid & blood

Dr. Philip Hung

Outline

- body fluid
 - body composition
 - difference of body composition in gender, age, and body size
 - body fluid compartment
 - chemical composition of body fluid
 - different solution for fluid imbalance
- blood
 - function
 - physical characteristics
 - RBC
 - WBC

Body composition

- during aging, there is a decrease in lean body mass in favor of fat.
- elderly therefore have less body water than the young one

A fat man contains less water (%) Women contains less water (%) than a thin man. than men.

Body fluid: different compartments

Body fluid: chemical composition

- extracellular fluid: relatively high in
 - sodium ions, Na⁺
 - calcium ions, Ca²⁺
 - chloride ions, Cl⁻
 - bicarbonate ions, HCO_3
- intracellular fluid: relatively high in
 - potassium ions, K⁺
 - magnesium ions, Mg²⁺
 - phosphate ions, PO₄³-
 - sulfate ions, SO_4^{2-}

Infusion solutions used for fluid imbalance

Isotonic

if solution has the osmolarity the same
 as that inside the cell & blood

 if solution has the osmolarity higher than that inside the cell & blood [more concentrated]

Hypotonic

 if solution has the osmolarity lower than that inside the cell & blood [less concentrated]

Questions...

Which of the solutions is preferred in the following situations?

- hyponatremia (blood sodium lower than normal range)

 [hypo-= "lower"; natr-= "sodium"; -emia = "in blood"]
- hypernatremia
- bleeding

Way of thinking:

• water follows s _ _ _ or s _ _ _ _

Osmolarity OR osmolality

Both indicate total concentration of all solutes...but...

- osmola<u>r</u>ity
 - = <u>number</u> of all solute particles **per unit volume** (Osm/L) [Note: volume changes with environmental temperature]
- osmolality
 - = <u>number</u> of all solute particles **per unit weight** (Osm/kg) [Note: weight does not change with environmental temperature]

Crystalloid VS colloid infusion solution

Crystalloid:

- has solutes which can pass through cell membrane, so fluid (solute+water) can translocate among blood, ISF and even intracellular fluid (ICF)
- e.g. isotonic crystalloid solution (0.9% saline, 5% dextrose[glucose])

Colloid:

- has solutes which are too big to pass through cell membrane, so fluid stay in blood
- is also called as volume or plasma expander
- e.g. albumin (hypertonic [20%] or isotonic [4%]) for hypoalbuminemia or hypovolemia

Blood

- River of life that surges within each of us
- Blood is life-sustaining transport vehicle of cardiovascular system

Transport

- oxygen, minerals, nutrients
- metabolic wastes
- hormones

Regulation

maintains body temperature

Protection

- protects from blood loss
- prevents infections

Blood: physical characteristics

- sticky, opaque (non-transparent)
- ~8% of body weight
- male: 5 6 L; female: 4 5 L
 - e.g. 70 kg man, his blood: ~ 5.6 L
- color depends on O₂ content
 - high O₂ level: scarlet red
 - low O₂ level: dark red
- pH: 7.4 (7.35 7.45), i.e.
 - slightly alkaline

Blood: composition

Other than lymph, blood is only fluid tissue

- matrix, i.e. fluid component / plasma
- formed elements, i.e. blood cells
 - red blood cells (erythrocytes)
 - white blood cells (leukocytes)
 - platelets (thrombocytes) for blood coagulation

Blood: composition

RBC/erythrocyte

Structural characteristics

- to facilitate efficient gas transport:
 - is biconcave
 - so more surface area for gas exchange
 - has no nucleus & no organelles
 - so more hemoglobin is packed inside cell
 - has no mitochondria,
 - \diamond so does not consume O_2
- is flexible / change shape when passing through capillaries

Hemoglobin

- consists of four subunits /polypeptide chains (two alpha & two beta) & four heme groups
 - each heme binds to _ _ _ oxygen molecule

Leukocytes

- responsible for inflammation, phagocytosis, fever & adaptive immunity
- from most abundant to least abundant
 - Never Neutrophil
 - Let Lymphocyte, e.g. B cell, T cell
 - Monkeys Monocytes/macrophage
 - Eat Eosinophil
 - BananasBasophil

Additional info: other leukocyte: mast cell & natural killer cell

Neutrophil

- most abundant leukocyte in blood
- "bacterial slayer"
- phagocytic

Neutrophil (60 – 70%)

- multilobed nucleus,
- pale red & blue cytoplasmic granules

Monocytes/macrophage

- largest of all leukocytes
- various cellular targets
- when entering tissue,
 - differentiate into macrophage
 - > chief phagocytic
 - > prefer to reside in tissue

Monocyte (3 – 8%)

- kidney-shaped nucleus
- pale blue cytoplasm

Eosinophil

- phagocytic
- target parasitic worms
- induce allergies and asthma by stimulating basophils

Eosinophil (2 - 4%)

- bilobed nucleus
- red cytoplasmic granules

Basophil

- phagocytic
- release heparin to counteract blood clotting
- release histamine (inflammatory chemicals) to
 - induce vasodilation
 - attract leukocytes to inflamed sites

Basophil (0.5 - 1%)

- bilobed nucleus
- purplish-black cytoplasmic granules

Lymphocytes

- non-phagocytic
- crucial to adaptive immunity, e.g. T cell & B cell
- rather **found in lymphoid tissues** than blood circulation

Lymphocyte (20 - 25%)

- large spherical nucleus,
- thin rim of pale blue cytoplasm

Additional info:

- natural killer cell,
 - lymphocyte, but rather important in innate immunity
 - kill cancer cell or virus-infected cell by inducing apoptosis (programmed cell death)

Additional info: lymphoid tissues

