

Grundlagen Rechnernetze und Verteilte Systeme

IN0010, SoSe 2019

Übungsblatt 4

20. Mai - 24. Mai 2019

Hinweis: Mit * gekennzeichnete Teilaufgaben sind ohne Lösung vorhergehender Teilaufgaben lösbar.

Aufgabe 1 Digitale Modulationsverfahren

Hinweis: Hierbei handelt es sich um eine Klausuraufgabe aus der Midterm 2012.

In dieser Aufgabe sollen die Vorgänge der Impulsformung im Basisband und der anschließenden Modulation erarbeitet werden. Dazu ist in Abbildung 1 der Signalraum eines digitalen Modulationsverfahrens gegeben. Außerdem sei die zu übertragende Bitfolge 01111001 gegeben. Als Grundimpuls für das Basisbandsignal soll der Rechtecksimpuls

$$rect(t) = \begin{cases} 1 & -T/2 \le t < T/2 \\ 0 & sonst \end{cases}$$

verwendet werden.

Abbildung 1: Signalraum und Sendegrundimpuls

- a)* Um welches Modulationsverfahren handelt es sich?
- b)* Tragen Sie in Abbildung 1a eine gültige Zuordnung von Codewörtern zu Symbolen ein.
- **c)*** Zeichnen Sie in Abbildung 1b den Sendegrundimpuls g(t) ein.
- d) Zeichnen Sie nun in Abbildung 2 das zu der gegebenen Bitfolge passende Basisbandsignal ein.

Das Basisbandsignal aus der vorherigen Teilaufgabe werde nun verwendet, um den Kosinusträger $s(t) = \cos(2\pi t/T)$ zu modulieren.

e) Zeichnen Sie das modulierte Signal ebenfalls in Abbildung 2 ein.

Abbildung 2: Lösungsblatt für Teilaufgaben d) und e)

Aufgabe 2 Erzielbare Datenraten mit IEEE 802.11a Wireless LAN

In dieser Aufgabe betrachten wir die physikalische Schicht von IEEE 802.11a (einem der WLAN-Standards). Diese verwendet Trägerfrequenzen zwischen 5127 MHz und 5910 MHz. Da die Regulierung der Funkfrequenzen landesabhängig ist, unterscheiden sich die verfügbaren Frequenzbereiche im internationalen Vergleich. In Deutschland beispielsweise steht lediglich der Bereich 5170 MHz bis 5330 MHz ohne Einschränkungen zur Verfügung. Dies entspricht einer Bandbreite von 160 MHz, welche in insgesamt 8 Kanäle zu jeweils 20 MHz unterteilt ist. Jeder Kanal ist wiederum in 64 Subcarrier zu je 312,5 kHz unterteilt (siehe Abbildung 3). Von diesen Subcarriern werden lediglich 48 zur Datenübertragung genutzt¹.

Abbildung 3: IEEE 802.11a Kanalaufteilung. Von den insgesamt 64 Subcarriern werden lediglich 48 (blau) zur Datenübertragung genutzt.

Datenrate [Mbit/s]	Modulation	Coderate
6	BPSK	1/2
9	BPSK	3/4
12	QPSK	1/2
18	QPSK	3/4
_ 24	16-QAM	1/2
36	16-QAM	3/4
48	64-QAM	2/3
54	64-QAM	3/4 🦰

Abbildung 4: Datenraten, Modulationsverfahren und Coderaten für IEEE 802.11a.

Die Symboldauer (zeitliche Ausdehnung eines Sendeimpulses) beträgt daher $1/312.5\,\mathrm{kHz} = 3.2\,\mu\mathrm{s}$. Um Störungen durch Reflexionen zu vermeiden, wird zwischen Symbolen ein zeitlicher Schutzabstand (engl. "Guard Interval") eingefügt. Die effektive Symboldauer beträgt daher $T_s = 4\,\mu\mathrm{s}$.

Die effektiv erzielbare Datenrate hängt nun vom verwendeten Modulationverfahren sowie der Coderate des Kanalcodes ab. Diese sind in Tabelle 4 aufgelistet.

Wir betrachten zunächst nur die maximale Übertragungsrate $r_{max} = 54 \text{ Mbit/s}$.

a)* Wieviele Bit werden pro Sendesymbol übertragen?

b) Wie viele Bit werden bei Verwendung von 48 Subcarriern insgesamt pro Symboldauer übertragen?

n? 6.48=288

c) Der in Teilaufgabe b) berechnete Wert bezieht sich auf Kanalwörter, d. h, es ist Redundanz enthalten. Bestimmen Sie Menge an übertragenen Nutzdaten pro Symboldauer. $\frac{258}{4} = \frac{216}{100}$

d) Bestätigen Sie unter Verwendung des Ergebnisses aus Teilaufgabe c) die maximale Datenrate $r_{\text{max}} = 54 \,\text{Mbit/s}$.

e)* Bestimmen Sie nun unter Verwendung von Hartleys Gesetz die minimal notwendige Bandbreite B_{min} , die notwendig ist, um unter Verwendung von 64 unterscheidbaren Symbolen eine Datenrate von 54 Mbit/s zu erreichen.

erreichen. $C_{H} = 2 \cdot 8 \cdot 602 \cdot 64 \Rightarrow 8 = 45 \cdot 105 = 45 \cdot 1042 \cdot 105 = 45 \cdot 1042 \cdot 1$

Hinweis: Gehen Sie vereinfachend von der gesamten Kanalbandbreite von $B = 20 \, \text{MHz}$ aus.

g) Die Signalleistung beim Empfänger betrage nun $45\,\mu\text{W}$. Das Rauschen habe eine Leistung von $15\,\mu\text{W}$. Welches Modulationsverfahren und welche Coderate werden unter diesen Bedingungen zum Einsatz kommen?

Hinweis: Gehen Sie vereinfachend von der gesamten Kanalbandbreite von $B = 20 \, \text{MHz}$ aus.

 $20.10^{6} \times log_{2}(1+\frac{45}{15})=40.10^{6} \text{ bit/s} \Rightarrow 36 \Rightarrow 6 \text{ QAM}$ andere Sind with Carrichbar

¹Die übrigen sind entweder nicht belegt oder werden zur Übertragung sog. Pilotsymbole verwendet, welche der Kanalschätzung dienen. Dies vernachlässigen wir in dieser Aufgabe.

Aufgabe 3 ALOHA

ALOHA (hawaiisch: "Hallo") ist eines der ältesten Medienzugriffsverfahren und wurde 1971 an der Universität von Hawaii entwickelt, um die Hawaii-Inseln über eine Funkverbindung mit einer zentralen Vermittlungsstation zu verbinden. Die Trennung der zwei Kommunikationsrichtungen von den Inseln zur Vermittlungsstation und zurück erfolgte durch Frequenzduplex (FDD). Die Steuerung des Medienzugriffs war denkbar einfach: Sobald ein Sender Daten erhalten hatte, durfte dieser zu senden beginnen. Da aber keine Richtfunkantennen eingesetzt wurden und alle Sender auf den Inseln dieselbe Frequenz verwendeten, konnte es zu Kollisionen kommen, wenn sich zwei Übertragungen zeitlich überschnitten.

Zwei Jahre später wurde Slotted ALOHA eingeführt, bei dem die Sender nur noch zu Beginn fester Zeitschlitze (engl. *time slots*) anfangen durften zu senden. Die Vermittlungsstation übertrug dafür auf dem Rückkanal ein Taktsignal zur Synchronisation.

Wir wollen nun eine eigene Strategie definieren, die wir p-persistentes Slotted ALOHA nennen. Liegen Daten vor, so sendet eine Station mit Wahrscheinlichkeit p im nächsten Slot bzw. verzögert die Übertragung mit Wahrscheinlichkeit 1-p um einen Slot. Folgende Ausgangssituation sei gegeben:

- Es gibt *n* Nutzer, die saturiert sind, d. h. es liegen stets Daten zum Senden vor.
- Jeder Nutzer fängt mit Wahrscheinlichkeit p im nächsten möglichen Zeitschlitz an zu senden.
- Die Dauer eines Sendevorgangs entspricht der Länge eines Zeitschlitzes.
- a)* Wie groß ist die Wahrscheinlichkeit, dass in einem Zeitschlitz eine kollisionsfreie Übertragung stattfindet?
- **b)** Bestimmen Sie das p^* , so dass die Wahrscheinlichkeit einer kollisionsfreien Übertragung maximiert wird.
- c) Bestimmen Sie nun die maximale Kanalauslastung bei n Nutzern.
- d) Bestimmen Sie nun die maximale Kanalauslastung bei einer sehr großen Anzahl von Nutzern.

Hinweis:
$$\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x$$

