机器学习的数学笔记

目录

Notation	ii
	 1 1 3
2 主成分分析 2.1 主成分分析的数学原理	 6
**** **** =	 8 8 10
参考文献	15
索引	16

Notation

This section provides a concise reference describing notation used throughout this document. If you are unfamiliar with any of the corresponding mathematical concepts, Goodfellow *et al.* (2016) describe most of these ideas in chapters 2–4.

Numbers and Arrays

- a A scalar (integer or real)
- a A vector
- A A matrix
- A A tensor
- I_n Identity matrix with n rows and n columns
- I Identity matrix with dimensionality implied by context
- $\boldsymbol{e}^{(i)}$ Standard basis vector $[0,\dots,0,1,0,\dots,0]$ with a 1 at position i
- $\operatorname{diag}(\boldsymbol{a})$ A square, diagonal matrix with diagonal entries given by \boldsymbol{a}
 - a A scalar random variable
 - a A vector-valued random variable
 - A A matrix-valued random variable

Sets and Graphs

A A set

 \mathbb{R} The set of real numbers

 $\{0,1\}$ The set containing 0 and 1

 $\{0,1,\ldots,n\}$ The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

 $\mathbb{A}\backslash\mathbb{B}$ Set subtraction, i.e., the set containing the elements of

 \mathbb{A} that are not in \mathbb{B}

 \mathcal{G} A graph

 $Pa_{\mathcal{G}}(\mathbf{x}_i)$ The parents of \mathbf{x}_i in \mathcal{G}

Indexing

 a_i Element i of vector \boldsymbol{a} , with indexing starting at 1

 a_{-i} All elements of vector \boldsymbol{a} except for element i

 $A_{i,j}$ Element i,j of matrix \boldsymbol{A}

 $\boldsymbol{A}_{i,:}$ Row i of matrix \boldsymbol{A}

 $\boldsymbol{A}_{:,i}$ Column i of matrix \boldsymbol{A}

 $A_{i,j,k}$ Element (i,j,k) of a 3-D tensor **A**

 $\mathbf{A}_{:,:,i}$ 2-D slice of a 3-D tensor

 a_i Element i of the random vector \mathbf{a}

Linear Algebra Operations

 A^{\top} Transpose of matrix A

 A^+ Moore-Penrose pseudoinverse of A

 $m{A}\odot m{B}$ Element-wise (Hadamard) product of $m{A}$ and $m{B}$

 $\det(\mathbf{A})$ Determinant of \mathbf{A}

Calculus

do.	Calculus
$\frac{dy}{dx}$	Derivative of y with respect to x
$rac{\partial y}{\partial x}$	Partial derivative of y with respect to x
$ abla_{m{x}} y$	Gradient of y with respect to \boldsymbol{x}
$\nabla_{\boldsymbol{X}} y$	Matrix derivatives of y with respect to \boldsymbol{X}
$ abla_{\mathbf{X}}y$	Tensor containing derivatives of y with respect to ${\sf X}$
$rac{\partial f}{\partial oldsymbol{x}}$	Jacobian matrix $\boldsymbol{J} \in \mathbb{R}^{m \times n}$ of $f: \mathbb{R}^n \to \mathbb{R}^m$
$\nabla_{\boldsymbol{x}}^2 f(\boldsymbol{x})$ or $\boldsymbol{H}(f)(\boldsymbol{x})$	The Hessian matrix of f at input point \boldsymbol{x}
$\int f(oldsymbol{x}) doldsymbol{x}$	Definite integral over the entire domain of \boldsymbol{x}
$\int_{\mathbb{S}} f(oldsymbol{x}) doldsymbol{x}$	Definite integral with respect to \boldsymbol{x} over the set $\mathbb S$
Probability and Information Theory	
$\mathrm{a}\bot\mathrm{b}$	The random variables a and b are independent
$\mathrm{a}\bot\mathrm{b}\mid\mathrm{c}$	They are conditionally independent given c
P(a)	A probability distribution over a discrete variable
$p(\mathbf{a})$	A probability distribution over a continuous variable, or over a variable whose type has not been specified
$a \sim P$	Random variable a has distribution P
$\mathbb{E}_{\mathbf{x} \sim P}[f(x)]$ or $\mathbb{E}f(x)$	Expectation of $f(x)$ with respect to $P(x)$
Var(f(x))	Variance of $f(x)$ under $P(x)$
Cov(f(x), g(x))	Covariance of $f(x)$ and $g(x)$ under $P(x)$
$H(\mathbf{x})$	Shannon entropy of the random variable x
$D_{\mathrm{KL}}(P\ Q)$	Kullback-Leibler divergence of P and Q
$\mathcal{N}(m{x};m{\mu},m{\Sigma})$	Gaussian distribution over ${\boldsymbol x}$ with mean ${\boldsymbol \mu}$ and covariance ${\boldsymbol \Sigma}$

Functions

 $f: \mathbb{A} \to \mathbb{B}$ The function f with domain A and range B

 $f \circ g$ Composition of the functions f and g

 $f(x; \theta)$ A function of x parametrized by θ . (Sometimes we write f(x) and omit the argument θ to lighten notation)

 $\log x$ Natural logarithm of x

$$\sigma(x)$$
 Logistic sigmoid, $\frac{1}{1 + \exp(-x)}$

 $\zeta(x)$ Softplus, $\log(1 + \exp(x))$

 $||\boldsymbol{x}||_p$ L^p norm of \boldsymbol{x}

 $||\boldsymbol{x}||$ L^2 norm of \boldsymbol{x}

 x^+ Positive part of x, i.e., max(0, x)

 $\mathbf{1}_{\mathrm{condition}}$ is 1 if the condition is true, 0 otherwise

Sometimes we use a function f whose argument is a scalar but apply it to a vector, matrix, or tensor: $f(\boldsymbol{x})$, $f(\boldsymbol{X})$, or $f(\boldsymbol{X})$. This denotes the application of f to the array element-wise. For example, if $\mathbf{C} = \sigma(\boldsymbol{X})$, then $C_{i,j,k} = \sigma(X_{i,j,k})$ for all valid values of i,j and k.

Datasets and Distributions

 p_{data} The data generating distribution

 \hat{p}_{data} The empirical distribution defined by the training set

 \mathbb{X} A set of training examples

 $x^{(i)}$ The *i*-th example (input) from a dataset

 $y^{(i)}$ or $\boldsymbol{y}^{(i)}$ The target associated with $\boldsymbol{x}^{(i)}$ for supervised learning

X The $m \times n$ matrix with input example $x^{(i)}$ in row $X_{i,:}$

Chapter 1

逻辑回归

1.1 二项逻辑回归模型

二项逻辑回归模型是如下的条件概率分布

$$P(Y = 1|\mathbf{x}) = \frac{\exp(\boldsymbol{\theta}^T \mathbf{x} + b)}{1 + \exp(\boldsymbol{\theta}^T \mathbf{x} + b)}$$
$$P(Y = 0|\mathbf{x}) = \frac{1}{1 + \exp(\boldsymbol{\theta}^T \mathbf{x} + b)}$$

其中 $x \in \mathbb{R}^n$ 是输入变量, $Y \in \{0,1\}$ 是输出变量, $\theta \in \mathbb{R}^n$ 和 $b \in \mathbb{R}$ 是参数。 x和 θ 为n维列向量。

若令
$$\boldsymbol{\theta} = (\theta^{(1)}, ..., \theta^{(n)}, b)^T$$
, $\boldsymbol{x} = (x^{(1)}, ..., x^{(n)}, 1)^T$, 那么条件概率可以表示为
$$P(Y = 1 | \boldsymbol{x}) = \frac{\exp(\boldsymbol{\theta}^T \boldsymbol{x})}{1 + \exp(\boldsymbol{\theta}^T \boldsymbol{x})}$$

$$P(Y = 0 | \boldsymbol{x}) = \frac{1}{1 + \exp(\boldsymbol{\theta}^T \boldsymbol{x})}$$
 (1.1)

1.1.1 模型的参数估计

对于给定的训练集 $\mathbb{X} = \{(\boldsymbol{x}_1, y_1), ..., (\boldsymbol{x}_N, y_N)\}$,可应用极大似然估计法估计模型参数。

为表示方便,令
$$P(Y=1|\mathbf{x})=\pi(\mathbf{x}), P(Y=0|\mathbf{x})=1-\pi(\mathbf{x})$$
,似然函数为
$$L(\boldsymbol{\theta})=\prod_{i=1}^{N}\left(\pi(\mathbf{x}_{i})\right)^{y_{i}}\left(1-\pi(\mathbf{x}_{i})\right)^{1-y_{i}}$$

那么对数似然函数为

$$\log L(\boldsymbol{\theta}) = \sum_{i=1}^{N} \left(y_i \log \pi(\boldsymbol{x}_i) + (1 - y_i) \log(1 - \pi(\boldsymbol{x}_i)) \right)$$

$$= \sum_{i=1}^{N} \left(y_i \log \frac{\pi(\boldsymbol{x}_i)}{1 - \pi(\boldsymbol{x}_i)} + \log(1 - \pi(\boldsymbol{x}_i)) \right)$$

$$= \sum_{i=1}^{N} \left(y_i (\boldsymbol{\theta}^T \boldsymbol{x}_i) - \log(1 + \exp(\boldsymbol{\theta}^T \boldsymbol{x}_i)) \right)$$
(1.2)

1.1.1.1 参数估计:梯度下降法

根据公式 (1.2), 对数似然函数对 θ 的偏导为

$$\nabla_{\boldsymbol{\theta}} \log L(\boldsymbol{\theta}) = \sum_{i=1}^{N} \left(y_i \boldsymbol{x}_i - \frac{\exp(\boldsymbol{\theta}^T x_i) \boldsymbol{x}_i}{1 + \exp(\boldsymbol{\theta}^T \boldsymbol{x}_i)} \right)$$
$$= \sum_{i=1}^{N} \left(y_i - \pi(x_i) \right) x_i$$

由此此处求对数似然函数的最大值,故需要沿着梯度上升的方向进行迭代,迭代公式为

$$\theta := \theta + \alpha \frac{\partial}{\partial \theta} \log L(\theta)$$

$$= \theta + \alpha \sum_{i=1}^{N} (y_i - \pi(\mathbf{x}_i)) \mathbf{x}_i$$
(1.3)

其中α称为学习率,是一个正常数。

公式 (1.3)可以用矩阵表示

$$\boldsymbol{\theta} \coloneqq \boldsymbol{\theta} + \alpha X^T \boldsymbol{\Lambda} \tag{1.4}$$

其中
$$\mathbf{\Lambda} = \begin{pmatrix} y_1 - \pi(\mathbf{x}_1) \\ y_2 - \pi(\mathbf{x}_2) \\ \dots \\ y_N - \pi(\mathbf{x}_N) \end{pmatrix}_{N \times 1}$$
 , X 是由训练数据构成的 $N \times (n+1)$ 矩阵(每一行对应一

1.1.1.2 参数估计: 随机梯度下降法

梯度下降算法在每次更新回归系数时需要遍历整个数据集,当数据集数量庞大或者

特征过多时,该方法的计算复杂度太高。改进方法是每次迭代仅用一个样本来更新回归 系数,称为随机梯度下降法。

具体而言,对于训练集中的每一个样本 (x_i, y_i) ,计算该样本梯度,并依据迭代公式:

$$\boldsymbol{\theta} \coloneqq \boldsymbol{\theta} + \alpha \left(y_i - \pi(\boldsymbol{x}_i) \right) \boldsymbol{x}_i \tag{1.5}$$

与公式 (1.3)相比,随机梯度下降的迭代公式 (1.5)中

- 误差变量是数值,而不是向量
- 不再有矩阵变换的过程

所以随机梯度下降算法的计算效率较高,缺点是存在解的不稳定性(如解存在周期性波动)的问题。为了解决这一问题,并进一步加快收敛速度,可以通过随机选取样本来更新回归系数。

1.2 Softmax回归模型

Softmax模型是二项回归模型在多分类问题上的推广,在多分类问题中,类标签Y可以取两个以上的值。

假设Y的取值集合是 $\{1,2,...,K\}$,Softmax模型是如下的条件概率分布

$$P(Y = k | \boldsymbol{x}) = \frac{\exp(\boldsymbol{\theta}_k^T \boldsymbol{x})}{\sum_{j=1}^K \exp(\boldsymbol{\theta}_j^T \boldsymbol{x})}$$
(1.6)

其中 $\theta_1,...,\theta_K \in \mathbb{R}^{n+1}$ 是模型的参数。

为方便起见,下文用矩阵 $\Theta_{K\times(n+1)}$ 表示全部的模型参数

$$oldsymbol{\Theta} = \left[egin{array}{c} oldsymbol{ heta}_1^T \ dots \ oldsymbol{ heta}_K^T \end{array}
ight]$$

1.2.1 模型的参数估计

令 $P(Y = k | x) = \pi_k(x)$,与二项逻辑回归类似,Softmax的似然函数可以表示为

$$L(\boldsymbol{\Theta}) = \prod_{i=1}^{N} \prod_{k=1}^{K} (\pi_k(\boldsymbol{x}_i))^{\mathbf{1}_{y_i = k}}$$

对数似然函数为

$$\log L(\boldsymbol{\Theta}) = \sum_{i=1}^{N} \sum_{k=1}^{K} \mathbf{1}_{y_i = k} \log \pi_k(\boldsymbol{x}_i)$$
(1.7)

1.2.1.1 参数估计:梯度下降法

首先求

$$\frac{\partial \pi_k(\boldsymbol{x}_i)}{\partial \boldsymbol{\theta}_k} = \frac{\boldsymbol{x}_i \exp(\boldsymbol{\theta}_k^T \boldsymbol{x}_i) \left(\sum_{j=1}^K \exp(\boldsymbol{\theta}_j^T \boldsymbol{x}) - \exp(\boldsymbol{\theta}_k^T \boldsymbol{x}_i)\right)}{\left(\sum_{j=1}^K \exp(\boldsymbol{\theta}_j^T \boldsymbol{x})\right)^2}$$
(1.8)

故根据公式(1.7),得到Softmax模型的对数似然函数的梯度

$$\nabla_{\boldsymbol{\theta}_{k}} \log L(\boldsymbol{\Theta}) = \sum_{i=1}^{N} \mathbf{1}_{y_{i}=k} \frac{1}{\pi_{k}(\boldsymbol{x}_{i})} \frac{\partial \pi_{k}(\boldsymbol{x}_{i})}{\partial \boldsymbol{\theta}_{k}}$$

$$= \sum_{i=1}^{N} \mathbf{1}_{y_{i}=k} \frac{1}{\pi_{k}(\boldsymbol{x}_{i})} \frac{\boldsymbol{x}_{i} \exp(\boldsymbol{\theta}_{k}^{T} \boldsymbol{x}_{i}) \left(\sum_{j=1}^{K} \exp(\boldsymbol{\theta}_{j}^{T} \boldsymbol{x}_{i}) - \exp(\boldsymbol{\theta}_{k}^{T} \boldsymbol{x}_{i})\right)}{\left(\sum_{j=1}^{K} \exp(\boldsymbol{\theta}_{j}^{T} \boldsymbol{x}_{i})\right)^{2}}$$

$$= \sum_{i=1}^{N} \mathbf{1}_{y_{i}=k} \frac{\boldsymbol{x}_{i} \left(\sum_{j=1}^{K} \exp(\boldsymbol{\theta}_{j}^{T} \boldsymbol{x}) - \exp(\boldsymbol{\theta}_{k}^{T} \boldsymbol{x}_{i})\right)}{\sum_{j=1}^{K} \exp(\boldsymbol{\theta}_{j}^{T} \boldsymbol{x})}$$

$$= \sum_{i=1}^{N} \mathbf{1}_{y_{i}=k} \boldsymbol{x}_{i} \left(1 - \pi_{k}(\boldsymbol{x}_{i})\right)$$

$$= \sum_{i=1}^{N} \mathbf{1}_{y_{i}=k} \boldsymbol{x}_{i} \left(1 - \pi_{k}(\boldsymbol{x}_{i})\right)$$

对于任意第k个分类的参数 θ_k ,可沿着梯度上升的方向进行迭代

$$\boldsymbol{\theta}_k := \boldsymbol{\theta}_k + \alpha \sum_{i=1}^N \mathbf{1}_{y_i = k} \boldsymbol{x}_i \left(1 - \pi_k(\boldsymbol{x}_i) \right)$$
 (1.10)

公式 (1.10)的迭代关系用矩阵可以表示为

$$\boldsymbol{\theta}_k \coloneqq \boldsymbol{\theta}_k + \alpha X^T \boldsymbol{\Lambda} \tag{1.11}$$

其中
$$\Lambda = \begin{pmatrix} \mathbf{1}_{y_1=k} \left(1 - \pi_k(\boldsymbol{x}_1)\right) \\ \mathbf{1}_{y_2=k} \left(1 - \pi_k(\boldsymbol{x}_2)\right) \\ \dots \\ \mathbf{1}_{y_N=k} \left(1 - \pi_k(\boldsymbol{x}_N)\right) \end{pmatrix}_{N \times 1}$$
, X 是由训练数据构成的 $N \times (n+1)$ 矩阵(每一行对应一个样本,每一列对应样本的一个维度,其中还包括一维常数项)。

Chapter 2

主成分分析

2.1 主成分分析的数学原理

2.1.1 几个重要的定理

Lemma 2.1.1. Σ为对称矩阵,如果 u^* 是如下优化问题的解

$$oldsymbol{u}^* = \mathop{arg\max}_{\|oldsymbol{u}\|=1} \left(oldsymbol{u}^Toldsymbol{\Sigma}oldsymbol{u}
ight)$$

那么 u^* 是 Σ 的特征向量。

证明. 实际上约束条件 $\|u\|=1$ 等价于 $u^Tu=1$ 利用拉格朗日乘子法,得到

$$G(\boldsymbol{u}; \lambda) = \boldsymbol{u}^T \boldsymbol{\Sigma} \boldsymbol{u} + \lambda (\boldsymbol{u}^T \boldsymbol{u} - 1)$$

对G求u的偏导得到

$$\frac{\partial}{\partial u}G(u;\lambda) = 2\Sigma u + 2\lambda u = 0$$
$$\Rightarrow \Sigma u = -\lambda u$$

所以u是矩阵 Σ 的特征向量,对应的特征值为 $-\lambda$

2.1.2 主成分分析的算法

假设

- 存在n个原始数据,每个数据有p个特征,用矩阵表示为 $\mathbf{Z}_{n\times p}=(\mathbf{z}_1,\mathbf{z}_2,...,\mathbf{z}_n)^T$, 其中 \mathbf{z}_i 为p维列向量。
- Z的协方差矩阵已知,用 $\Sigma_{p\times p}$ 表示

主成分分析(PCA)的原理是将高纬度的原始数据映射到低纬度空间中: 低纬空间中 第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴选取的是与第一个坐标轴正交且具有最大方差的方向,依次类推,我们可以取到这样的个坐标轴。

主成分分析(PCA)的算法如下

1. 将数据中心化变换为 $X_{n\times p}=(x_1,x_2,...,x_n)^T$, 其中 $X=Z-\mathbb{E}Z$ (具体而言 $x_i=z_i-\mu$, $\mu=\frac{1}{n}\sum_{i=1}^nz_i$),由此可知X的均值和方差为

$$\mathbb{E}X = 0$$
$$VarX = Var(Z - \mathbb{E}Z) = VarZ = \Sigma$$

2. 用 $u_{p\times 1}$ 表示某投影方向上的单位向量,那么 x_i 在u 上的投影可以表示为

$$=oldsymbol{x}_i^Toldsymbol{u}$$

那么数据集X在u 上的投影向量为Y = Xu,可知Y的均值和方差为

$$\mathbb{E} Y = \mathbb{E} X u$$

 $\operatorname{Var} Y = \operatorname{Var} X u = u^T (\operatorname{Var} X) u = u^T \Sigma u$

Chapter 3

附录:信息熵

假设 1X 是一个取有限值的离散随机变量(本文只考虑离散情况),概率分布为P。

那么 $I(X = x_i) = -\log P(X = x_i)$ 称为事件 x_i 的自信息量,随机变量X的熵定义为X的自信息量的数学期望,即

$$H(X) = \mathbb{E}(I(X)) = -\sum_{x} P(x) \log P(x)$$

熵反映的是随机变量不确定程度的大小:熵的值越大,不确定程度越高。

3.1 相关概念

3.1.1 条件熵

条件熵是指在联合概率空间上熵的条件自信息的数学期望。在已知X时,Y的条件熵为

$$H(Y|X) = \mathbb{E}_{x,y}I(y_j|x_i) = -\sum_{x}\sum_{y}P(x,y)\log P(y|x)$$
 (3.1)

Lemma 3.1.1. 与公式 (3.1)等价的定义为给定X条件下Y的条件分布概率的熵的数学期望

$$H(Y|X) = \mathbb{E}_{\mathbf{x}} H(Y|X=x) = \sum_{x} P(x) H(Y|X=x)$$

¹本章参考了信息论与编码(http://www.docin.com/p-957983839-f6.html)和信息论基础(https://wenku.baidu.com/view/5319fed3b9f3f90f76c61b1a.html)

证明.

$$H(Y|X) = -\sum_{x} \sum_{y} P(x,y) \log P(y|x)$$

$$= -\sum_{x} \sum_{y} P(x)P(y|x) \log P(y|x)$$

$$= -\sum_{x} P(x) \sum_{y} P(y|x) \log P(y|x) \quad (P(x) - y + x)$$

$$= \sum_{x} P(x)[-\sum_{y} P(y|x) \log P(y|x)]$$

$$= \sum_{x} P(x)H(Y|X = x)$$

H(Y|X)的含义是已知在X发生的前提下,Y发生**新带来的熵**。

3.1.2 相对熵

相对熵,也称KL散度,交叉熵等,定义为两个概率分布之比的数学期望。 设Q(x), P(x)是随机变量X中取值的两个概率分布,则P对Q的相对熵是

$$D_{\mathrm{KL}}(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)} = \mathbb{E}_{\mathbf{x}} \log \frac{P(x)}{Q(x)}$$
(3.2)

相对熵可以用来度量两个随机变量的"距离"。

Lemma 3.1.2. 相对熵恒大于等于零。

证明. 对于任意分布P,Q,根据公式 (3.2),可知

$$D_{\mathrm{KL}}(P||Q) = \sum_{x} P(x) \log \frac{P(x)}{Q(x)}$$

$$= -\sum_{x} P(x) \log \frac{Q(x)}{P(x)}$$

$$\geq -\log(\sum_{x} P(x) \frac{Q(x)}{P(x)}) \quad (対-logx 应用Jensen 不等式)$$

$$= -\log \sum_{x} Q(x)$$

$$= -\log 1$$

$$= 0$$

3.1.3 互信息

两个随机变量X,Y的**互信息**,定义为X,Y的联合分布和独立分布乘积的相对熵

$$I(X,Y) = D_{KL}(P(X,Y)||P(X)P(Y))$$
 (3.3)

Lemma 3.1.3. 互信息与条件熵满足如下关系

$$H(X|Y) = H(X) - I(X,Y) \tag{3.4}$$

证明. 根据公式 (3.2)以及互信息的定义可知

$$I(X,Y) = \sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

那么

$$H(X) - I(X,Y) = -\sum_{x} P(x) \log P(x) - \sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

$$= -\sum_{x} \left(\sum_{y} P(x,y)\right) \log P(x) - \sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

$$= -\sum_{x,y} P(x,y) \log P(x) - \sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)}$$

$$= -\sum_{x,y} P(x,y) \left(\log P(x) + \log \frac{P(x,y)}{P(x)P(y)}\right)$$

$$= -\sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(y)}$$

$$= -\sum_{x,y} P(x,y) \log P(x \mid y)$$

$$= H(X|Y) \quad (根据公式(3.1))$$

3.2 熵的性质

X的熵具有如下几个性质

- 非负性: $H(X) \ge 0$.
- 对称性: 当随机变量的概率取值任意互换时, 熵不变。

$$H(p_1, p_2...p_n) = H(p_2, p_1...p_n) = H(p_3, p_1...p_n) = ...$$

- 可加性: 如果随机变量X, Y相互独立,则H(X, Y) = H(X) + H(Y)。
- 极值性: 对于任意概率分布 $P(X = x_i) = p_i$ 和 $P(Y = y_i) = q_i$, i = 1...n, 都有

$$H(X) = -\sum_{i=1}^{n} p_i \log p_i \le -\sum_{i=1}^{n} p_i \log q_i$$
 (3.5)

当X和Y的概率分布相同时,公式(3.5)取等号。

该性质表明,任意概率分布,它对其他概率分布的自信息取数学期望时,必大于它本身的熵。

• 凸性: 对于任意概率分布 $P(X = x_i) = p_i$ 和 $P(Y = y_i) = q_i$, i = 1...n, 假设随机变量Z的分布为 $P(Z = z_i) = \gamma_i = \alpha p_i + (1 - \alpha)q_i$, $\alpha \in [0, 1]$, 那么Z的熵满足

$$H(Z) \ge \alpha H(X) + (1 - \alpha)H(Y) \tag{3.6}$$

Theorem 3.2.1 (最大熵定理). 离散随机变量X的概率分布为 $P(X=x_i)=p_i, i=1...n$,那么

$$H(X) \le \log n \tag{3.7}$$

当 $p_1 = p_2 = \dots = \frac{1}{n}$ 时,等号成立。

证明. 求熵的最大值等价于以下优化问题

$$\max \quad H(x) = -\sum_{i=1}^{n} p_i \log p_i$$

$$s.t. \quad \sum_{i=1}^{n} p_i = 1$$

利用拉格朗日乘子法构造函数

$$G(p,\lambda) = -\sum_{i=1}^{n} p_i \log p_i + \lambda \left(\sum_{i=1}^{n} p_i - 1\right)$$
 (3.8)

 $^{^2}$ 实际上这种非负性对于离散随机变量X成立,对连续随机变量X不一定成立。这是本文只考虑离散情况的原因。

公式 (3.8)中分别对 p_i 和 λ 求导,令其为零,得到

$$\frac{\partial G(p,\lambda)}{\partial p_i} = -\log p_i - 1 + \lambda = 0$$

$$\sum_{i=1}^{n} p_i - 1 = 0$$
(3.9)

由 $-\log p_i - 1 + \lambda = 0$ 可得到 $p_i = e^{\lambda - 1}, i = 1, 2..n$, 由此可知 $p_1 = p_2 = ... = \frac{1}{n}$

Lemma 3.2.1 (熵的强可加性). 当随机变量X, Y相关的情况下,联合熵满足强可加性,即

$$H(X,Y) = H(Y) + H(X|Y)$$

 $H(X,Y) = H(X) + H(Y|X)$ (3.10)

证明.

$$\begin{split} H(Y) + H(X|Y) &= -\sum_{y} P(y) \log P(y) - \sum_{x} \sum_{y} P(x,y) \log P(x|y) \\ &= -\sum_{x} \sum_{y} P(x,y) \log P(y) - \sum_{x} \sum_{y} P(x,y) \log P(x|y) \\ &= -\sum_{x} \sum_{y} P(x,y) \log P(x,y) \\ &= H(X,Y) \end{split}$$

同理可证

$$H(X,Y) = \!\! H(X) + H(Y|X)$$

Lemma 3.2.2 (熵的凸性). 证明公式 (3.6)

证明.

$$H(Z) = -\sum_{i=1}^{n} \gamma_{i} \log \gamma_{i}$$

$$= -\sum_{i=1}^{n} \alpha p_{i} \log \gamma_{i} - \sum_{i=1}^{n} (1 - \alpha) q_{i} \log \gamma_{i}$$

$$= -\sum_{i=1}^{n} \alpha p_{i} \log \left(\gamma_{i} \frac{p_{i}}{p_{i}} \right) - \sum_{i=1}^{n} (1 - \alpha) q_{i} \log \left(\gamma_{i} \frac{q_{i}}{q_{i}} \right)$$

$$= -\alpha \sum_{i=1}^{n} p_{i} \log p_{i} - (1 - \alpha) \sum_{i=1}^{n} q_{i} \log q_{i} - \alpha \sum_{i=1}^{n} p_{i} \log \frac{\gamma_{i}}{p_{i}} - (1 - \alpha) \sum_{i=1}^{n} q_{i} \log \frac{\gamma_{i}}{q_{i}}$$

$$= \alpha H(X) + (1 - \alpha) H(Y) - \alpha \sum_{i=1}^{n} p_{i} \log \frac{\gamma_{i}}{p_{i}} - (1 - \alpha) \sum_{i=1}^{n} q_{i} \log \frac{\gamma_{i}}{q_{i}}$$

$$(3.11)$$

其中公式 (3.11)的倒数第二项

$$-\alpha \sum_{i=1}^{n} p_i \log \frac{\gamma_i}{p_i} = \alpha \left(-\sum_{i=1}^{n} p_i \log \gamma_i + \sum_{i=1}^{n} p_i \log p_i \right)$$

$$\geq 0 \quad (根据公式 (3.5)))$$

同理可知公式 (3.11)的倒数第一项

$$-(1-\alpha)\sum_{i=1}^{n} q_i \log \frac{\gamma_i}{q_i} \ge 0$$

所以得到

$$H(Z) \ge \alpha H(X) + (1 - \alpha)H(Y)$$

Theorem 3.2.2. 条件熵小于无条件熵,即 $H(X|Y) \leq H(X)$

证明.

$$\begin{split} H(X|Y) - H(X) &= -\sum_{x,y} P(x,y) \log P(x|y) + \sum_{x} P(x) \log P(x) \\ &= -\sum_{x,y} P(x,y) \log P(x|y) + \sum_{x} \left(\sum_{y} P(x,y) \right) \log P(x) \\ &= -\sum_{x,y} P(x,y) \log P(x|y) + \sum_{x,y} P(x,y) \log P(x) \\ &= -\sum_{x,y} P(x,y) \left(\log P(x|y) - \log P(x) \right) \\ &= -\sum_{x,y} P(x,y) \log \frac{P(x,y)}{P(x)P(y)} \\ &= -\sum_{x,y} P(x,y) \log P(x,y) - \left(-\sum_{x,y} P(x,y) \log P(x) P(y) \right) \\ &\leq 0 \quad (根据熵的极值性) \end{split}$$

3.2.1 整理得到的公式

根据本节内容整理得到的重要公式

• 根据条件熵定义可得

$$H(X|Y) = H(X,Y) - H(Y)$$
 (3.13)

根据互信息定义展开可得

$$H(X|Y) = H(X) - I(X,Y)$$
 (3.14)

根据公式 (3.13)和公式 (3.14)得到的对偶形式

$$H(Y|X) = H(X,Y) - H(X)$$

$$H(Y|X) = H(Y) - I(X,Y)$$

多数文献将下式作为互信息的定义公式

$$I(X,Y) = H(X) + H(Y) - H(X,Y)$$

• $H(X|Y) \leq H(X)$

参考文献

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. ii

索引

Conditional independence, iv Covariance, iv

Derivative, iv Determinant, iii

Element-wise product, see Hadamard product

Graph, iii

Hadamard product, iii Hessian matrix, iv

Independence, iv Integral, iv

Jacobian matrix, iv

Kullback-Leibler divergence, iv

Matrix, ii, iii

Norm, v

Scalar, ii, iii

Set, iii

Shannon entropy, iv

Sigmoid, v

Softplus, v

Tensor, ii, iii

Transpose, iii

Variance, iv

Vector, ii, iii