Session 2022-03-30

Raspberry Pi Introduction

Welcome! The Raspberry Pi (RPi) is a great tool to empower your creativity. Discover the multiple possibilities this single board computer brings to you.

Interactive link https://doc.clickup.com/36177258/d/h/12g1ba-160/beb602325a60716

Compare boards

You could use the following table to quickly compare two versions of the RPi.

Raspberry Pi 3 Model B	Raspberry Pi 4 Model B
Broadcom BCM2837	Broadcom BCM2711
Quad-Core 64bit @ 1.2GHz	Quad-core 64bit @ 1.5GHz
Cortex A53 (ARM v8)	Cortex A72 (ARM v8)
1GB LPDDR2 SDRAM	2GB, 4GB or 8GB LPDDR4
100 Base Ethernet	Gigabit Ethernet
Official page	Official page

Terminology

- **RPi**: Raspberry Pi is a series of small single-board computers (SBCs) developed in the United Kingdom by the Raspberry Pi Foundation in association with Broadcom.
- **SBC**: Single board computer is a complete computer built on a single circuit board, with microprocessor(s), memory, input/output (I/O), and other features required of a functional computer. [source]

Pin-out

A great advantage about RPi is that you can interact with the hardware. Also, consider using a hat for this purpose.

Friendly orientation

The image is of the RPi 3, but it applies to the RPi 4. More details https://medium.com/youngwonks/raspberry-pi-3-pinout-50b904ed41f0

Interactive guide

More details https://pinout.xyz/

Raspberry Pi GPIO BCM numbering


```
# https://gpiozero.readthedocs.io/en/stable/installing.html
sudo apt update
sudo apt install python3-gpiozero
pinout
```

Other considerations

Take note of the white pins. More details https://projects.raspberrypi.org/en/projects/physical-computing/1

For older versions

Setup

Requirements

Basic elements

- · Raspberry Pi 3 Model B
- SD card 32GB
- Power cable 2.5A MicroUSB

There are two options; please make sure to have one of the following options.

- 1. External monitor option
 - a. HDMI monitor
 - b. HDMI cable
 - c. USB keyboard
- 2. Ethernet cable option
 - a. Ethernet Cable
 - b. A computer with an RJ45 port

Installation Steps

1. Download Raspberry Pi Imager

Download for Windows

- 2. Install the application. Use default options
- 3. Open Raspberry Pi Imager
- 4. Choose Raspberry Pi OS (other) > Raspberry Pi OS Lite(64-bit)

Raspberry Pi OS Lite (64-bit)

A port of Debian Bullseye with no desktop environment (Compatible with Raspberry Pi 3/4/400)

Released: 2022-01-28

Online - 0.4 GB download

5. Select your SD as storage

- 6. Click on Gear Icon 🜣
- 7. Use the following values.
 - O Disable overscan
 - Set hostname
 - *Enable SSH*
 - **Use password authentication**
 - Allow public-key authentication only
 - Set username and password
 - Username: pi
 - Password: raspberry
 - Oconfigure wifi
 - O Set locale settings

- Play sound when finished✓ Eject media when finished
- 8. Click on WRITE > YES

Login instructions

Get the ip of the raspberry from the powershell ping raspberrypi.local -4

- Connect the external devices
 - a. Option A: Connect a keyboard, power, and monitor
 - b. Option B: Connect ethernet to your computer and power
 - i. Open a PowerShell
 - ii. Install 64-but x86 PuTTY with default options
 - iii. Open PuTTY
 - iv. Set Host Name raspberrypi.local
 - v. Connection type ssh
 - vi. Click on **Save** and then **Open**
 - vii. Click on **Accept** in the Security Alert
- 2. Set credentials
 - a. raspberrypi login (login as): pi
 - b. Password: raspberry
- 3. Optional, turn off the RPi shutdown now

You can also connect via ssh pi@raspberrypi.local

Wi-Fi instructions

1. Set country code ISO 3166-1

```
sudo raspi-config nonint do_wifi_country MX
```

2. Open the *wpa_supplicant.conf*, the purpose is to use this file to configure your Wi-Fi connections. This process is similar when you put the connections on your smartphone

sudo nano /etc/wpa_supplicant/wpa_supplicant.conf

1. Add network configuration

Wireless network wpa_passphrase "network_name"

```
network={
    ssid="network_name"
    scan_ssid=1
    psk=e647e6a0df46537ad98c7687fa75fa33f0e0489f80fec9ed0180058647724073
}
```

PEAP network echo -n "plaintext_password" | iconv -t utf16le | openssl md4

```
network={
    ssid="<<network_name>>"
    priority=1
    proto=RSN
    key_mgmt=WPA-EAP
    pairwise=CCMP
    auth_alg=OPEN
    eap=PEAP
    identity="<<user_name>>"
    password=hash:<<the_hash>>
    phase1="peaplabel=0"
    phase2="auth=MSCHAPV2"
}
```

1. Apply changes

```
sudo reboot
```

Switch a LED

1. Open a python shell

1. Declare LED

```
from gpiozero import LED
led = LED(14)
```

1. Turn on LED

```
led.on()
```

1. Turn off LED

```
led.off()
```

1. Exit

exit()

VSCode setup

- 1. Download VS Code
- 2. Install Remote SSH Extension
- 3. Add ssh project
- 4. Open workspace folder
- 5. Run python scripts as python blink_simple.py

Node-RED installation

bash <(curl -sL https://raw.githubusercontent.com/node-red/linuxinstallers/master/deb/update-nodejs-and-nodered) Then you can start the service with

node-red-start

More details at https://nodered.org/docs/getting-started/raspberrypi

Other resources

https://github.com/raspberrypilearning/physical-computing-guide/blob/master/pull_up_down.md https://gpiozero.readthedocs.io/en/stable/

System monitor

htop