Circuits and Systems - 1 - Week 9

P4.2.3 on Page 150

Compute v_1 and v_2 using nodal analysis technique. Assume all currents are entering node 2.

Figure: P4.2.3 on page 150

P4.2.3 on Page 150

KCL at node 1: KCL at node 2:

P4.3.1 on Page 151

Compute v_c

Figure: P4.3.1 on page 151

P4.3.1 on Page 151

Applying KCL at node \boldsymbol{b} and \boldsymbol{c} , we obtain the following:

P4.3.6 on Page 151

Determine $v_{\mathbf{1}}$ and $v_{\mathbf{2}}$

Figure: P4.3.6 on page 151

P4.3.6 on Page 151

Applying KCL at nodes 1 and 2, we obtain the following:

P4.3.10 on Page 152

Determine i_1 , i_2 and i_3 using Mesh Analysis Technique

Figure: P4.3.10 on page 152

P4.3.10 on Page 152

Apply KVL to loops, we obtain the following:

We will begin with Chapter 5 and cover the following topics:

- Source Transformations
- Norton Equivalent Circuit Representation
- Thevenin Theorem
- Maximum Power Transfer Theorem