Group details

Group 10

Prathav Kevadiya - 202003020 Preet Mevawalla - 202003025 Prayag Patel - 202003048

Quantum Optimization Algorithm CS405 Quantum Computation

May 20, 2023

Dhirubhai Ambani Institute of Information and Communication Technology

Quantum Approximate Optimization Algorithm(QAOA)

QAOA is a variational algorithm that uses unitary $U(\beta,\gamma)$ where (β,γ) are the parameters to prepare the quantum state $|\psi(\beta,\gamma)\rangle$. This algorithm aims to find $(\beta_{opti},\gamma_{opti})$ such that the quantum state $|\psi\left(\beta_{opt},\gamma_{opt}\right)\rangle$ encodes the solution to the problem.

Max cut Problem

Problem Statement: A Max-Cut problem involves partitioning nodes of a graph into two sets, such that the number of edges between the sets is maximum. The example below has a graph with four nodes, and some of how it can be partitioned into two sets, "red" and "green" is shown.

Figure 1: number of edges between two sets in the figure, as we go from left to right, are 0, 2, 2, and 4

Quantum Approximate Optimization Algorithm(QAOA)

In QAOA, the following two gates are used to evolve the system's quantum state and optimize the objective function:

- 1. Problem unitary
- 2. Mixer unitary

Preparing the Problem Unitary

Problem Unitary: The problem unitary is a quantum gate that encodes the objective function of the optimization problem being solved(such as the Max-Cut problem). It is given by:

$$U(\gamma) = e^{-i\gamma H_P}$$

Here, H_P is the problem Hamiltonian.

where,
$$H_P = \frac{1}{2} \sum_{(i,j) \in E} Z_i \otimes Z_j$$

Problem Hamiltonian is a Hermitian matrix that represents the objective function in terms of Pauli-Z operators, i.e, for the edge between node 0 and node 1: $Z_0 \otimes Z_1 \otimes I_2 \otimes I_3$

Preparing the Problem Unitary

The effect of the problem unitary is to create a superposition of all possible solutions to the optimization problem, By applying the problem unitary multiple times with different values of γ .

$$U(\gamma) = e^{-i\gamma H_P} = e^{-i\gamma(Z_0 Z_1 + Z_0 Z_3 + Z_1 Z_2 + Z_2 Z_3)}$$

= $e^{-i\gamma Z_0 Z_1} e^{-i\gamma Z_0 Z_3} e^{-i\gamma Z_1 Z_2} e^{-i\gamma Z_2 Z_3}$

Preparing the Mixer Unitary

Mixer Unitary: The mixer unitary is a quantum gate that "mixes" the quantum state of the system and helps break any symmetries in the problem Hamiltonian.

$$U(\beta) = e^{-i\beta H_B}$$

Here H_B is the mixer Hamiltonian.

We can take mixer Hamiltonian as summation of tensor product between Pauli X gate of node and Identities of other nodes, for all nodes.

Preparing the Mixer Unitary

For example, for the node 0 ($X_0 \otimes I_1 \otimes I_2 \otimes I_3$).

$$U(\beta) = e^{-i\beta H_B} = e^{-i\beta(X_0 + X_1 + X_2 + X_3)} = e^{-i\beta X_0} e^{-i\beta X_1} e^{-i\beta X_2} e^{-i\beta X_3}$$

The effect of the mixer unitary is to create a superposition of all possible states that differ by a single bit flip (i.e., a single qubit being flipped from 0 to 1 or vice versa)

$$q_0 - \frac{R_X}{2^n \beta} - q_1 - \frac{R_X}{2^n \beta} - q_2 - \frac{R_X}{2^n \beta} - q_3 - \frac{R_X}{2^n \beta} - \frac{R_$$

Initial state

The initial state used during QAOA is usually an equal superposition of all the basis states i.e.

$$|\psi_0
angle = \left(rac{1}{\sqrt{2}}(|0
angle + |1
angle)
ight)^{\otimes n}$$

The QAOA circuit

The next step is to find the optimal parameters ($\beta_{opti}, \gamma_{opti}$) such that the expectation value is minimum.

Algorithm

- 1. Initialize $oldsymbol{eta}$ and $oldsymbol{\gamma}$ to suitable real values.
- 2. Repeat until some suitable convergence criteria is met:
 - 1. Prepare the state $|\psi(\beta,\gamma)\rangle$ using the QAOA circuit.
 - 2. Measure the state in standard basis.
 - 3. Compute $\langle \psi(\beta, \gamma) | H_P | \psi(\beta, \gamma) \rangle$.
 - 4. Find new set of parameters $(\beta_{\text{new}}\,,\gamma_{\text{new}}\,\,)$ using
 - a classical optimization algorithm.
 - 5. Set current parameters (β, γ) equal to the new parameters $(\beta_{\text{new}}, \gamma_{\text{new}})$.

Figure 2: A graph with 6 nodes and its corresponding max-cut bit string

References

- [1] Wolfe, Cameron R. "The Quantum Approximate Optimization Algorithm from the Ground Up." Medium, 16 July 2021, wolfecameron.medium.com/the-quantum-approximate-optimization-algorithm-from-the-ground-up-ba6e643b061d.
- [2] "Qaoa" QAOA Qiskit 0.43.0 Documentation, qiskit.org/documentation/stubs/qiskit.algorithms.minimumeigensolvers .QAOA.html. Accessed 14 May 2023.

Thank you!

Group 10
Prathav Kevadiya - 202003020
Preet Mevawalla - 202003025
Prayag Patel - 202003048