

Pokshana Ahmed

CALCULUS 2

Date: 10/10/2022

PARABOLIC CYLINDER

(variable) =
$$(variable)^2$$
 it could be $\begin{cases} x = y^2 \\ y = x^2 \end{cases}$ $\begin{cases} x = (y-1)^2 \end{cases}$

REMINDER (parabola) $y = a(x-h)^2 + K$ $(h_1 \times)$

 $EX: y=x^2 \rightarrow parabolik cylinder around Z-axis$

 $\frac{z=0}{2}$ $y=x^2 \rightarrow \text{parabola in the } (x,y)$ plane whose vertex is (0,0)

and opens in the y-axis

(2) ELLIPSOID

$$\frac{\chi^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \qquad \longrightarrow \text{ ellipsoid el center } (0,0,0)$$

 \rightarrow The intercepts are $(\pm a,0,0)$, $(0,\pm b,0)$, $(0,0,\pm c)$

EX1:
$$X^{2} + \frac{y^{2}}{4} + \frac{z^{2}}{q} = 1$$

 $(\pm 1, 0, 0)$
 $(0, \pm 2, 0)$
 $(0, 0, \pm 3)$

EX2:
$$(x-2)$$
 + $(y+1)^2$ + $z^2 = 1$ — ellipsoid centered at $(2,-1,0)$

•
$$x=2$$
 and $z=0$ \Rightarrow $(y+1)^2=4$ \Rightarrow $y+1=2$ or $y+2=2$ \Rightarrow $y=1$ or $y=-3$

.
$$y=-1$$
 and $z=0$ => $(x-2)=13$. so $x=5$ or $x=-1$. $(-1,-1,0)$, $(5,-1,0)$

3 PARABOLOID

$$\frac{2}{C} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

•
$$z=0$$
 • $z=1$

$$x^{2}+y^{2}=0$$

$$(0,0,0)$$
• $z=1$

$$(0,0,1)$$
• $z=1$

$$(0,0,1)$$
• $z=1$

EX: 2
$$X^{2} + \frac{y^{2}}{q} = \frac{z}{2}$$

$$2x^{2} + \frac{2}{q}y^{2} = z$$

$$\frac{x^{2}}{4} + \frac{y^{2}}{92} = z$$

so this is actually an elliptic parabula

STEP 1.
$$x=0 \implies z=\frac{2}{9}y^2$$
 parabula around $z=axis$ with vertex $(0,0,0)$

STEP2. $y=0 \Rightarrow Z=2x^2$ parabola around z-axis in the $(x \ge)$ plane

CALCULUS 2

Date: 10 / 10 / 2022

4 CONE

(variable) = a(variable) + b(variable)

GENERAL

) this determines our axis

ex1: $z^2 = x^2 + y^2 \rightarrow a$ circular cone around z-axis

For x=0: $z^2=y^2$ $z^2=x^2$ $z=\pm y$ $z=\pm x$ (eq. straigth)

line

ex2: $Z = \sqrt{X^2 - y^2} \longrightarrow Z > 0 \longrightarrow Z^2 = X^2 + y^2$ excutar cone with Z > 0 $Z = -\sqrt{X^2 + y^2} \longrightarrow Z \le 0$

so circular cone upper plane

Ex3: $4x^2 + 9z^2 = 9y^2$ $y^2 = \frac{4}{9}x^2 + z^2$

=> elliptic cone around y-axis

MULTIVARIABLE FUNCTION

 $\begin{array}{ccc} D & & R \\ (x,y) \longrightarrow z & f(x,y) \\ (x,y,z) \longrightarrow & \end{array}$

DOMAIN AND RANGE

(1) $f(x,y) = x^2 + y^2$

Domain: (x,y) plane

Range:

 $[0, +\infty)$

 $(2) \quad f(x,y) = \frac{x}{4}$

Domain: (x,y) plane except the x-axis

she could ask to olraw the olomain

Range: $(-\infty; +\infty)$

 $(3) f(x,y) = \frac{3}{xy}$

Domain: (xy) plane - {x-axis and y-axis}

Range: R* { z-axis without 0}

(a) $f(x,y) = \sin(xy)$ Domain: (xy) plane

Range: [-1,1] along z-axis

(5) $f(x, y) = \sqrt{y - x^2}$ Domain: y>X2

Range: [0;+∞]