Stream Databases – Apache Kafka & Apache Flink

INFO-F415 - Advanced Databases

Grégoire Jean-Nicolas (446638) Installé Arthur (495303) Vanderslagmolen Moïra (547486) Xu Ze-xuan (541818)

December 2024

Table of contents

Presentation of the concept of Stream databases

- Implementation of these concepts in Apache Kafka & Flink
- O3 Application

04 Benchmark

Stream databases

The technology

Traditional DBMS

- Widely used: Portable across different database systems and well documented.
- **Centralized storage:** Data are stored in tables with fixed schema. Optimized for structured data with strong consistency.
- **Batch processing:** Data are processed in bulk (collection of data), and traditional database management systems are not designed for real time or continuous data flow.
- Query Optimization: Most DBMS systems implement index research which optimizes queries.
- **Concurrency Control:** Implements concurrency control to prevent data corruption and data inconsistency.
- BackUps: DBMS facilitates utilization of replications of the data.

Strengths & Limitations

Strengths	Limitations
 Reliable and mature systems. Rich ecosystem and tooling (e.g., PostgreSQL, MySQL). Ideal for applications with predictable workloads. 	 Latency Scalability Real-Time Analytics Schema Rigidity (Limited flexibility to adapt to unstructured or semistructured data.)
	Long implementation

Waiting for the "batch" to be full

Stream databases

Use cases

Fraud Detection

IoT

Monitoring

Sensors

Chat

Transactions

Source:

The ISS coordinates and timestamp

Processing:

I want to know the ISS's velocity in real time.

Every time I receive a new coordinate, I calculate the velocity.

Sink:

Prints the velocity

Strengths & Limitations

Strengths	Limitations
 Real-Time Analytics and processing Low Latency Support Event-driven architecture 	 No complex operations by default Requires careful configuration for Data Reprocessing
Continuous QueringInfinite Data	Difficult to debugUses a lot of RAM

02

Implementation

Tools

- I. Apache Kafka
- 2. Apache Flink
- 3. Apache Kafka & Apache Flink

Advantages:

Permanent Storage
High-throughput and low-latency
Data consistency
Connect to almost anything

Disadvantages:

High resource consumption
Disk Space
Relies on Apache Zookeeper

Use cases of Kafka

HIGH THROUGHPUT

Deliver messages at networklimited speeds using a machine cluster, achieving latencies as low as 2 milliseconds.

SCALABLE

Scale production clusters to handle up to a thousand brokers, trillions of messages daily, petabytes of data, and hundreds of thousands of partitions, while supporting elastic expansion and contraction of storage and processing capacity.

PERMANENT STORAGE

Ensure safe storage of data streams with a distributed, durable, and fault-tolerant cluster architecture.

HIGH AVAILABILITY

Efficiently span clusters across availability zones or connect separate clusters across different geographic regions.

Stateful Stream Processing

Flink can group messages from sources based on tags, allowing it to apply the same code to each group independently.

Example: count the number of messages of each tag without requiring a dictionnary, as each groups is processed separently.

Timely Stream Processing

Flink can process message based on their event creation time.

This allows us to compare the current message with the previous one and decide whether to drop it or handle it differently if it is identified as a late message.

Exactly-Once Semantics

Flink ensure exactly-once state consistency even in case of failures. It guarantees that messages are neither duplicated or lost during processing.

Example: If a payment processing system crashes, Flink will ensure that no payment is couted twice or skipped.

Fault Tolerance

Flink ensures data consistency and recovery using checkpointing and state snapshots.

Stateful applications that process events from streams, triggering computations, state changes, or external actions in response.

Stream & Batch Analytics

Analytical jobs extract information and insight from raw data. Apache Flink supports traditional batch queries on bounded data sets and real-time, continuous queries from unbounded, live data streams.

Data Pipelines & ETL

Extract-Transform-Load (ETL) is a common approach to convert and move data between storage systems.

Flink & Kafka Structure

Sink

03

Application

Presentation of our Application

We developed an application that acts as a simulation of a "moderated" chat. We have different versions of the application that use different ways to gets messages and use different ways to process the messages.

Dataset: Sentiment140.csv

Description:

- Contains 1.6 million tweets collected via the Twitter API.
- Used for **sentiment analysis** tasks.

Data Fields:

- 1. **Target**: Sentiment label (0 = negative -> ":(" or 4 = positive -> ":) or nothing").
- 2. **IDs**: Tweet IDs (e.g., 2087).
- 3. **Date**: Timestamp of the tweet (e.g., Sat May 16 23:58:44 UTC 2009).
- 4. Flag: Query term (or "NO_QUERY" if none).
- 5. **User**: Twitter username (e.g., robotickilldozr).
- **6. Text**: The content of the tweet (e.g., "Lyx is cool").

Thanks to Marios Michailidis, Data Scientist at H2O ai, Volos, Greece. Source: https://www.kaggle.com/datasets/kazanova/sentiment140

Apache Kafka

producer.py

Producer using kafka:

Send the messages (records) in format JSON from a source, here a CSV

Kafka.java

Consumer using kafka

Receive the records in format JSON

Producer using Kafka

producer.py

- 1. producer <- create kafka producer linked
 with broker at localhost:9092</pre>
- 2. data <- extract data from file
 cleaned chat.csv</pre>
- 3. For each row in data:
- 4. message <- row in json format
- 5. producer send message to kafka topic
 "chat"

Kafka is able to act as a producer of a datastream which sends to a kafka topic that temporarly stores the message and waits until a consumer connects to the topic.

Each consumer will always receive all the messages retained in the topic from the start.

"0","1467810369","Mon Apr 06 22:19:45 PDT
2009","NO_QUERY","_TheSpecialOne_","Awww, lol, that's a
bummer. You should got David Carr of Third Day to do
 it.;D"

Step 2. Transform the CSV in a JSON record:

{"target": 0, "id": 1467810369, "date": Mon Apr 06
 22:19:45 PDT 2009, "flag": NO_QUERY, "user":
 "_TheSpecialOne_", "text": "Awww, lol, that's a
bummer. You shoulda got David Carr of Third Day to do
 it.;D"}

Step 3. The Producer send IMMEDIATELY the JSON record to the topic named chat

Consumer using Kafka

```
Kafka.java
1. Class Kafka:
      function connectToBroker():
       topic <- "chat"
      props <- property
         props set kafka broker to
  "localhost: 9092"
6.
       props set group ID to "kafka"
          props set how value are encoded and
  decoded
8.
          consumer <- kafka consumer with
  property props
9.
          consumer link itself to topic
10.
          return consumer
```

Kafka is also able to act as a consumer that will get datastreams from a topic and will process them before getting the next one.

ConnectToBroker configure a consumer which is connected to the topic "chat" at the server at the ip localhost: 9092 and will output the key and the value as two separeted string.

Step 1. Read the Record received on the topic chat:

{"target": 0, "id": 1467810369, "date": Mon Apr 06 22:19:45 PDT 2009, "flag": NO_QUERY, "user": "_TheSpecialOne_", "text": "Awww, lol, that's a bummer. You shoulda got David Carr of Third Day to do it. ;D"}

TheSpecialOne is not banned lol is an illegal word

Step 3. Outputs the message on the terminal

Consumer using Kafka

Our consumer extract all the banned words from our banlist.txt and then try to extract new datastreams from the topic. Finaly, we call processMessage to process the message with the banned words list.

Consumer using Kafka

```
Utils.java
1. Class Utils:
      bannedUsers <- list
      function processMessage (message, bannedWords):
          dict <- convert message into dictionnary
          user <- get user of the message from dict
6.
          if (is user in bannedUsers)):
               show the message in red with the text part hidden
               stop the function
          if (does the message contains banned words):
10.
               ban the user
11.
               show the message in red with the text part hidden
12.
               stop the function
13.
           show the user with the message
```

ProcessMessage checks if the user should be banned and check if the message contains banned words. If the message does not contains any banned words, it normally displays the message with the username in front. It only displays "Message contains banned word".

Apache Flink

Source in Flink

```
Flink.java

1. Class Flink:
2.    function main():
3.    env <- create a flink environment
4.    banList <- extract words from banlist.txt
5.    banListStream <- create datastream from Banlist
6.    descriptor <- create a state descriptor using banlist
7.    broadcastBanList <- set the banListStream with descriptor
8.    messages <- create datastream from chat.csv</pre>
```

The Flink's producer gets each row of a csv file as a data stream. It will be used by the consumer part.

Processing and Sink in Flink

```
Flink.java
1. ProcessFunction <- function BroadcastProcessFunction():
     banList.
    banUserList.
    @Override
    function processElement(message,output):
            columns // split message into user, date,
  message, ...
8.
           if checkIsUserBanned
                  continue:
10.
            if checkMessageIsBanned
                   continue:
11.
12.
             print(message)
13.
      @Override
      function processBroadcastElement (bannedWords, ctx,
14.
  output):
15.
            banList <- bannedWords
16.
            banUserList <- create empty set</pre>
```

Flink's Steps

Step 1. Transform CSV into a Datastream

Step 2. Process each line of the CSV (through Broadcast ProcessFunction)

Step 3. Check if the user is banned or if the message contains an illegal word

Step 4. Outputs the message on the terminal

For creating the moderated chat using mixed kafka-flink, we use kafka for the producer and flink for the consumer and a kafka topic to setup the simulated chat.

Kafka & Flink's Steps

Step 1 (Kafka). Read one line of the CSV:

Step 2 (Kafka). Transform the CSV in a JSON record:

Step 3 (Kafka). The Producer send IMMEDIATELY the JSON record to the topic named chat

Step 1 (Flink). Connect to the topic of Kafka

Step 2 (Flink). Create a sink that when invoked, process the record received

Kafka topic ingestion rate benchmark

Kafka End-to-End Latency Quantiles

Kafka Topic fetch rate Benchmark

Benchmark for Flink

Benchmark for Kafka-Flink

Thank you for your attention! :D