This notebook is written by Christoph Koutschan and Elaine Wong and accompanies the paper:

"Walsh functions, scrambled \$(0,m,s)\$-nets, and negative covariance: applying symbolic computation to quasi-Monte Carlo integration" by Jaspar Wiart and Elaine Wong.

The main reason to publish these computations is to provide a rigorous proof for Lemma 15 in the paper (Part 4). However, we feel there is some value to include the guessing and evidence for our conjecture, since it was a part of the research process (Parts 2 and 5). To run this notebook, the following packages must be downloaded (please see references for links) and placed in the correct folders.

In[•]:=

```
SetDirectory[NotebookDirectory[]];
<< RISC`HolonomicFunctions`;
<< RISC `Guess`;
```

HolonomicFunctions Package version 1.7.3 (21-Mar-2017) written by Christoph Koutschan Copyright Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria

```
?HolonomicFunctions for help.
--> Type
```

Package GeneratingFunctions version 0.8 written by Christian **Mallinger**

Copyright Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria

Guess Package version 0.52 written by Manuel Kauers Copyright Research Institute for Symbolic Computation (RISC),

Johannes Kepler University, Linz, Austria

/// Quiet[Import["Sigma.m"], General::shdw]

Sigma - A summation package by Carsten Schneider - © RISC - V 2.01 (May 12, 2016) Help

Part 0: Definitions

```
(* Definition 10.2
In[•]:=
        (note that the dimension s is implicit). *)
      psi[b_, c_, r_] :=
         -(1-b) \wedge (1-r) *
          Sum[(-b) ^i * Binomial[r-1, i], {i, 0, r-1-c}];
       (* Generalized Decay Function in Lemma 12. *)
      decay[a_{,}b_{,}k_{,}r_{,}x_{]} := a^{r}(bx)^{k}
       (* Main Polynomial: Equation 6 in Lemma 12. *)
      poly[a_, b_, m_, s_] :=
        Sum[Sum[Binomial[s, r] * Binomial[k-1, r-1] *
           psi[b, Max[k-m, 0], r] * decay[a, b, k, r, x],
          \{r, s\}], \{k, m+s-1\}]
       (* Main
        Polynomial: Separated terms without Max
          function *)
      polyfirst[a_, b_, m_, s_] :=
        -Sum[Sum[Binomial[s, r] *Binomial[k-1, r-1] *
            decay[a, b, k, r, x], \{r, s\}], \{k, m+s-1\}]
      polyinner[b, k, m, r] :=
        Sum[(-b) \wedge (i) * Binomial[r-1, i],
         \{i, r-k+m, r-1\}
      polylast[a_, b_, m_, s_] :=
         -Sum[Sum[Binomial[s, r] *Binomial[k-1, r-1] *
              (-(1-b)^{(1-r)}) * polyinner[b, k, m, r] *
             decay[a, b, k, r, x], \{r, s\}],
           \{k, m+1, m+s-1\}\};
```

Part 1: Numerical Checks and Intuition for a=(b-1)/b

Section 5 Figures for a=(b-1)/b

```
ln[\bullet]:= (* Figure 4a: b varies, a=(b-1)/b, m=3, s=3,
      scaling factor=(b^3-1)^(-1) *)
      mtest = 3; stest = 3;
      polylist =
        Table[(b ^ mtest - 1) ^ (-1) *
           poly[(b-1)/b, b, mtest, stest],
          {b, primes[[1;;16]]}];
      Plot[polylist, \{x, 0, 1\}, PlotRange \rightarrow \{-1.2, 0.3\},
       AxesLabel \rightarrow \{"x"\}, PlotStyle \rightarrow colorblend,
       AxesStyle → GrayLevel[0.3]]
       0.2
                             0.4
                                        0.6
                                                  8.0
      -0.2
      -0.4
Out[•]=
      -0.6
      -0.8
      -1.0
      -1.2<sup>L</sup>
```

-0.6

-0.8

-1.0

-1.2^L

```
In[*]:= (* Figure 4c: s varies, b=3, a=2/3, m=3,
      scaling factor=1/26 *)
     btest = 3; atest = (btest - 1) / btest; mtest = 3;
     polylist =
        Table[(btest^mtest - 1) ^ (-1) *
           poly[atest, btest, mtest, s], {s, 16}];
     Plot[polylist, \{x, 0, 1\}, PlotRange \rightarrow \{-1.2, 0.3\},
       AxesLabel \rightarrow {"x"}, PlotStyle \rightarrow colorblend,
       AxesStyle → GrayLevel[0.3]]
      0.2
                                      0.6
                                                8.0
      -0.2
     -0.4
Out[•]=
      -0.6
      -0.8
      -1.0
```

-1.2^L

Part 2: Guess a Recurrence for the Polynomial in Lemma 12, Eq (6)

```
(* We generate data necessary for guessing
                       in all four variables. *)
                     (* We impose what we believe the shape of the
                        recurrence to be, and if such a recurrence exists,
                    the function will find one. *)
                    list =
                             (Table[poly[(b-1)/b, b, m, s], \{x, 2, 10\},
                                          {b, 2, 10}, {m, 10}, {s, 10}] // Together);
                    rec =
                        GuessMultRE[list,
                                 \{c[x, b, m, s], c[x, b, m, s+1], c[x, b, m, s+2],
                                     c[x, b, m, s+3], {x, b, m, s}, 4,
                                 StartPoint \rightarrow {2, 2, 1, 1}][[1]]
Out[\circ]= (1 + m + s) (-1 + x)^2 c[x, b, m, s] -
                         (-1 + x) (-4 - 2 m - 3 s + x + b x + m x + b m x + s x + b s x)
                            c[x, b, m, 1+s] +
                         (5 + m + 3 s - 3 x - 3 b x - m x - b m x - 2 s x - 2 b s x +
                                     b x^2 + b m x^2 + b s x^2) c[x, b, m, 2 + s] +
                         (2+s) (-1+bx) c[x, b, m, 3+s]
                     (* Since the recurrence only depends on s,
                    we make some subsitutions so that it looks
                        nicer for printing. *)
                    guessrec =
                        rec /. (Thread[c[x, b, m, s + \#] \rightarrow c[s + \#]] & /@
                                      (Range[4] - 1))
Out[\circ]= (1 + m + s) (-1 + x)^2 c[s] - (-1 + x)
                             (-4 - 2 m - 3 s + x + b x + m x + b m x + s x + b s x) c[1 + s] +
                         \left(\,5\,+\,\text{m}\,+\,3\,\,\text{s}\,-\,3\,\,x\,-\,3\,\,b\,\,x\,-\,\text{m}\,\,x\,-\,b\,\,\text{m}\,\,x\,-\,2\,\,\text{s}\,\,x\,-\,2\,\,b\,\,\text{s}\,\,x\,+\,b\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x^{2}\,+\,3\,\,x
                                     b m x^2 + b s x^2) c[2+s] + (2+s) (-1+b x) c[3+s]
```

Part 3: Solve the Recurrence and Simplify

a) Solve Recurrence

In[\bullet]:= (* We solve the recurrence and find that we are lucky to get a non-trivial solution.*) recsol = SolveRecurrence[rec == 0, c[s]]

Out[\bullet]= $\left\{ \{0, 1\}, \left\{0, \frac{\left(-1+b \times \right) \left(\frac{-1+x}{-1+b \times}\right)^{\$}}{\left(-1+b \times x\right)} \right\},$ $\left\{0, \left((1-b \times) \left(\frac{-1+x}{-1+b \times}\right)^{\$}\right) \left(\left(-1+b \times x\right) \left(-1+m+\iota_2\right)\right)\right\} \right\}$ $\left(\left(-1+b \times x\right) + \left(\left(-1+b \times x\right) \left(\frac{s}{\iota_1=1} \left(\frac{-1+x}{-1+b \times}\right)^{\iota_1}\right) \right)$ $\left(\left(-1+b \times x\right) + \left(\left(-1+b \times x\right) \left(-1+m+\iota_2\right)\right)\right) \right\}$ $\left(\left(-1+b \times x\right) + \left(\left(-1+b \times x\right) \left(-1+m+\iota_2\right)\right)\right)$ $\left(\left(-1+b \times x\right) + \left(\left(-1+b \times x\right) \left(-1+m+\iota_2\right)\right)\right)$

(* Combine all solutions together with initial
values using the following command. *)

? FindLinearCombination

FindLinearCombination[recSol,DATA,n,r, MinInitialValue->n0] tries to compute a linear comination of recSol such that it equals to the input DATA for all integers n>=n0; exactly r initial values are taken into consideration in order to accomplish this task (if r is the order of the recurrence, the correctness of the computation follows). By default MinInitialValues is set to Automatic: the starting point n0 is chosen automatically. DATA might be an expression that can be evaluated in n. Alternatively, DATA might be of the form {s,{a1,a2,a3,...}} where {a1,a2,...} are the initial values for n=s,s+1,s+2,... for some integer s; if DATA is of the form {a1,a2,...}, it is assumed that s=0. See also the option Substitution.

```
In[●]:= (* We use the separated version of the
                                      polynomial
                                       (so that Mathematica doesn't have to deal
                                                          with cases from the Max function). *)
                               inival =
                                            Table[
                                                   PowerExpand[
                                                                 FunctionExpand[polyfirst[(b-1)/b, b, m, i]] +
                                                                       polylast[(b - 1) / b, b, m, i]] // Simplify,
                                                     {i, 3}];
                                recsol =
                                      Together[FindLinearCombination[recsol,
                                                   {1, inival}, s, 3, MinInitialValue → 1]]
Out[•]= 1 - b^{m} x^{m} - \left(\frac{-1 + x}{-1 + b \cdot x}\right)^{s} + b^{m} x^{m} \left(\frac{-1 + x}{-1 + b \cdot x}\right)^{s} +
                                   b^{m} x^{m} \left( \frac{-1+x}{-1+b x} \right)^{s} \left( \sum_{l=1}^{s} \sum_{l=1}^{l-1} \left( -\frac{1}{l_{2}} \left( -1+b x \right) \left( -1+m+l_{2} \right) \right) \right) - \frac{1}{l_{2}} \left( -\frac{1}{l_{2}} \right) \right) \right) \right) \right) \right) \right)} \right)\right)\right)\right)
                                   b^{m} x^{m} \left( \sum_{l=1}^{s} \left( \frac{-1+x}{-1+bx} \right)^{l,1} \prod_{l=1}^{l-1} \left( -\frac{1}{l_{2}} \left( -1+bx \right) \left( -1+m+l_{2} \right) \right) \right)
```

b) Simplify to a Closed Form

These were deduced by hand using identities from the DLMF. However, we use Mathematica to numerically confirm the expressions to give us confidence.

```
In[⊕]:= (* Step 1: We try to make the solution look
          nicer by replacing the notation from Sigma
          to the more standard Mathematica notation. *)
        (* This gives us expression (8) *)
       simp1 =
           recsol /. Sigma`Summation`Objects`Private`MyPower →
                     Power /.
                 Sigma`Summation`Objects`Private`MyProduct →
                   Product /.
                Sigma`Summation`Objects`Private`i[1] → i /.
              Sigma`Summation`Objects`Private`MySum → Sum /.
            Sigma`Summation`Objects`Private`i[2] → j;
       simp1 = FunctionExpand[simp1]
Out[\bullet]= 1 - b^m x^m - \left(\frac{-1+x}{-1+bx}\right)^s + b^m x^m \left(\frac{-1+x}{-1+bx}\right)^s +
         b^{m} \ (-1 + x^{m}) \ + b^{m} \ x^{m} \ \left( \frac{-1 + x}{-1 + b \ x} \right)^{s} \ (-1 + (b \ x)^{-m}) \ -
         \left(b^{m} x^{m} (1 - b x)^{1+s} \left(\frac{-1 + x}{-1 + b x}\right)^{s} Gamma[1 + m + s]\right)
              Hypergeometric2F1[1, 1 + m + s, 2 + s, 1 - b x] /
           \left( \text{Gamma}\left[\, m\,\right] \; \text{Gamma}\left[\, 2\, +\, s\,\right] \,\right) \; + \; \left(\, b^{m} \; \left(\, 1\, -\, x\,\right)^{\, 1+s} \; \text{Gamma}\left[\, 1\, +\, m\, +\, s\,\right] \,\right)
              Hypergeometric2F1[1-m, 1+s, 2+s, 1-x]) /
           (Gamma[m] Gamma[2 + s])
```

```
Info: (* Step 2: Simplify Gammas and use a DLMF
         identity to convert the 2F1's into the
         regularized beta functions. *)
       (* We compare with simp1 to make sure we are
        on the right track. *)
      simp2 = (1 - (b \times) ^m) - (1 - (b \times) ^m) \left(\frac{-1 + x}{-1 + b \times}\right)^s +
          (bx)^m
           (x^{-m} (-1 + x^{m}) + x^{-m} BetaRegularized[1 - x, s + 1, m]) +
         (b x) ^{h} m \left( \frac{-1 + x}{-1 + b \cdot x} \right)^{s}
           ((b x) \wedge (-m) - 1 -
              (b \times) \land (-m) BetaRegularized[1 - b \times, s + 1, m])
      Table[FullSimplify[simp1 - simp2], {b, 2, 4},
        \{m, 4\}, \{s, 4\}
Out[\circ]= 1 - (b \times x) m - \left(\frac{-1+x}{-1+b \times x}\right)^s (1-(b \times x)^m) + (b \times x)^m
         (x^{-m} (-1 + x^{m}) + x^{-m} BetaRegularized[1 - x, 1 + s, m]) +
        (b x)^{m} \left(\frac{-1+x}{-1+b x}\right)^{s} (-1+(b x)^{-m}-
             (b x)^{-m} BetaRegularized [1 - b x, 1 + s, m]
\{0, 0, 0, 0, 0\}\}, \{\{0, 0, 0, 0\}, \{0, 0, 0, 0\},
         \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}, \{\{0, 0, 0, 0\},
         \{0, 0, 0, 0\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}
```

```
In[•]:= (* Step 3: Use symmetry of the normalized
                             beta function. *)
                    simp3 = (1 - b^m x^m) - (1 - b^m x^m) \left(\frac{-1 + x}{-1 + b^m}\right)^s +
                             b ^ m x ^ m
                                  ((x^{m}-1)x^{(m)}+
                                          x^{(-m)} (1 - BetaRegularized[x, m, s + 1])) +
                            b^m x^m \left(\frac{-1+x}{-1+bx}\right)^s
                                  ((b \times) \land (-m) - 1 -
                                           (b \times) \land (-m) BetaRegularized[1 - b \times, s + 1, m])
                    Table[FullSimplify[simp2 - simp3], {b, 2, 4},
                         \{m, 4\}, \{s, 4\}]
Out[\bullet]= 1 - b^m x^m - \left(\frac{-1 + x}{-1 + b \cdot x}\right)^s (1 - b^m x^m) + b^m x^m
                             (x^{-m} (-1 + x^{m}) + x^{-m} (1 - BetaRegularized[x, m, 1 + s])) +
                       b^{m} x^{m} \left(\frac{-1+x}{-1+bx}\right)^{s} (-1+(bx)^{-m}-
                                      (b x)^{-m} BetaRegularized [1 - b x, 1 + s, m])
Out[\bullet] = \{ \{ \{0, 0, 0, 0\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}, \{0, 0, 0\}
                             \{0, 0, 0, 0, 0\}\}, \{\{0, 0, 0, 0\}, \{0, 0, 0, 0\},
                             \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}, \{\{0, 0, 0, 0\},
                             \{0, 0, 0, 0\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}\}
  Info: (* Step 4: We simplify and put everything
                            together and this is our Q polynomial as
                             defined in the paper. *)
                    Q[b_{-}, m_{-}, s_{-}] := 1 - b \wedge m BetaRegularized[x, m, s + 1] -
                             \left(\frac{-1+x}{1+b^{2}}\right)^{s} BetaRegularized[1-bx, s+1, m]
                    Table [FullSimplify [simp3 - Q[b, m, s]], {b, 2, 4},
                         \{m, 4\}, \{s, 4\}\}
```

Part 4: Rigorously Deduce a

Recurrence for the Polynomial in Eq (6): Proof of Lemma 15

This section proves Lemma 15 in the paper.

Creative Telescoping for polyfirst

```
// (* summand1 *)

f[s_, k_, r_] :=
    Binomial[s, r] * Binomial[k-1, r-1] *
    decay[(b-1)/b, b, k, r, x];

(* innersum *)

F1[s_, k_] := Sum[f[s, k, r], {r, 1, s}];

(* outersum *)

G1[s_] := Sum[F1[s, k], {k, 1, m+s-1}];
```

```
(* Inner Sum *)
In[•]:=
       {Pinner1, Qinner1} =
         RISC`HolonomicFunctions`CreativeTelescoping[
          f[s, k, r], RISC`HolonomicFunctions`S[r] - 1,
          {RISC`HolonomicFunctions`S[k],
           RISC`HolonomicFunctions`S[s]}];
       (* Because the inner sum has natural
        boundaries
        (in particular, the summands evaluate to zero),
       the telescopers will annihilate the inner
        sum. *)
       anninner1 = Pinner1;
       (* The support gives an idea of the operators
        that we are dealing with in our annihilating
        ideal. *)
       Support[anninner1]
Out[\circ]= \{ \{ S_k, S_s, 1 \}, \{ S_s^2, S_s, 1 \} \}
      (* A quick check (with specialized values)
       shows that our anninner1 is correct. *)
     ApplyOreOperator[#, FFa[s, k]] & /@ anninner1;
      (Table[% /. FFa \rightarrow F1 /. subs /. k \rightarrow 18, {s, 10}] //
          Flatten // Union) === {0}
Out[•]= True
       (* Outer Sum *)
In[•]:=
       {Pouter1, Qouter1} =
         RISC`HolonomicFunctions`CreativeTelescoping[
          anninner1, RISC`HolonomicFunctions`S[k] - 1,
          {RISC`HolonomicFunctions`S[s]}];
       (* Symbolic
        Computation: Here we deal with unnatural
          boundaries and the fact that the telescoper
```

```
does not commute with the sum and make
   the appropriate adjustments *)
(* We first apply the certificates and then
 determine the collapsing sum
 (up to k=m+s-1). *)
outercert1 =
  With
   {delta = ApplyOreOperator[Qouter1[[1]],
      F1[s, k]]}, (delta /.k \rightarrow (s+m)) -
    (delta /. k \rightarrow 1);
(* Next, we determine the annihilator of
the collapsed sum and extra stuff that was
 added to Sum[P*F[s,k],\{k,1,m+s-1\}] so that
what remains is P*Sum[F[s,k],\{k,1,m+s-1\}]. *)
outerstuff1 = (1 - bx) F1[s + 1, m + s];
(* The inhomogenous part is the combination
of stuff we want to remove and the telescoped
 sum. *)
inhom1 = FunctionExpand[-outerstuff1 + outercert1];
(* It is important to note that inhom1 can
be simplified and rewritten so that we can
use the closure property of applying an
operator. *)
inhom1first = inhom1[[1;; 2]];
inhom1last = inhom1[[3;; 5]];
expr =
  ((-1+b)(1+m+s)/(b^2x))*(bx)^(1+m+s)
    Hypergeometric2F1[1-s, -m-s, 2, (-1+b)/b] +
   ((-1+b)(-m-bs)/b^2)*(bx)^(m+s)
    Hypergeometric2F1[1-s, 1-m-s, 2,
     (-1+b)/b] + ((-1+b)(1+s)(-1+bx)/b) *
    (b \times) \wedge (m + s) Hypergeometric2F1[1 - m - s,
     -s, 2, (-1+b)/b];
FullSimplify[expr - inhom1last] === 0
(* We rewrite expr as a combination of some
```

```
shifts (by observation). *)
hg[s, m] :=
 (b \times) \wedge (m + s) * Hypergeometric 2F1[1 - s, 2 - m - s,
   2, (b-1)/b
pf1 = HoldForm[(-1+b) (1+m+s) / (b^2 x * b x)];
pf2 = HoldForm[(-1+b) (-m-bs) / (b^2 * bx)];
pf3 = HoldForm[(-1+b)(1+s)(-1+bx)/(b*bx)];
op = pf1 RISC`HolonomicFunctions`S[m] ^2 +
   pf2 RISC`HolonomicFunctions`S[m] +
   pf3 RISC`HolonomicFunctions`S[s];
applyop = ReleaseHold[
   ApplyOreOperator[op, hg[s, m]]];
(* This allows us to compute the annihilator
 for inhom1 by computing the separate
 annihilators and applying the closure
 property. *)
anninhom1first = Annihilator[inhom1first,
   {RISC`HolonomicFunctions`S[s]}];
anninhom1last =
  DFiniteOreAction
   Annihilator[hg[s, m],
    {RISC`HolonomicFunctions`S[m],
     RISC`HolonomicFunctions`S[s]}],
   ReleaseHold[op]];
R1 = DFinitePlus[anninhom1first,
   {ToOrePolynomial[anninhom1last[[2]],
     OreAlgebra[RISC`HolonomicFunctions`S[s]]]}];
(* We now finally have a good annihilator
 for polyfirst. *)
annouter1 = ((# ** Pouter1[[1]]) & /@ R1);
(* The support gives an idea of the operators
 that we are dealing with in our annihilating
 ideal. *)
Support[annouter1]
```

```
Out[•]= True

Out[•]= {{S<sub>s</sub><sup>4</sup>, S<sub>s</sub><sup>3</sup>, S<sub>s</sub><sup>2</sup>, S<sub>s</sub>, 1}}

(* Another quick check confirms that we are on the right track. *)

ApplyOreOperator[#, GG1[s]] & /@ annouter1;

(Table[% /. GG1 → G1 /. subs, {s, 10}] // Flatten //

Union) === {0}

Out[•]= True
```

Creative Telescoping for polylast

```
(* Inner Sum *)
In[•]:=
       {Pinner2, Qinner2} =
         RISC`HolonomicFunctions`CreativeTelescoping[
          h[s, k, r], RISC`HolonomicFunctions`S[r] - 1,
          {RISC`HolonomicFunctions`S[k],
           RISC`HolonomicFunctions`S[s]}];
       (* Because the inner sum has natural
        boundaries
        (in particular, the summands evaluate to zero),
       the telescopers will annihilate the inner
        sum. *)
       anninner2 = Pinner2;
       (* The support gives an idea of the operators
        that we are dealing with in our annihilating
        ideal. *)
       Support[anninner2]
Out[\bullet]= \{\{S_s^2, S_k, S_s, 1\}, \{S_k S_s, S_k, 1\}, \{S_k^2, S_k, S_s, 1\}\}
 In[*]:= (* Always good to keep checking... *)
     ApplyOreOperator[#, HH[s, k]] & /@ anninner2;
      (Table[% /. HH \rightarrow H /. subs /. k \rightarrow 18, {s, 10}] //
          Flatten // Union) === {0}
Out[•]= True
       (* Outer Sum *)
In[•]:=
       (* Timing[
        {Pouter2,Qouter2}=
          CreativeTelescoping[anninner2,S[k]-1,
            {S[s]}];] *)
       (* This took about 70 seconds so we save
        it for future use. *)
       (* {Pouter2,Qouter2}>>"qouter2.m" *)
       {Pouter2, Qouter2} = Import["ctouter2.m"];
```

```
(* We can extract coefficients from the
telescoper, which will be used later. *)
Pouter2coeff = OrePolynomialListCoefficients[
   Pouter2[[1]]];
(* Symbolic Computation
 I: Here we deal with the fact that the
   telescoper does not commute with the sum
   and make the appropriate adjustments *)
(* We first apply the certificates and then
 determine the collapsing sum
 (up to k=m+s-1). *)
outercert2 =
  With
   {delta = ApplyOreOperator[Qouter2, HH[s, k]]},
   (delta /. k \rightarrow (m+s)) - (delta /. k \rightarrow (m+1))];
(* Next we determine the stuff that must
 be removed to take into account the extra
 shifts when moving the telescopers outside
 of the sum. *)
outerstuff2 =
  Total[Pouter2coeff[[1;;3]]*
    Table [Sum[HH[s+i, k], \{k, m+s, m+s+i-1\}],
     {i, 3, 1, -1}]];
(* The inhomogenous part is the combination
 of stuff we want to remove and the telescoped
 sum. *)
inhom2 = -outerstuff2 + outercert2;
```

```
(* Symbolic Computation
    II: Here we try to avoid Mathematica's use
        of 2F1s and DifferenceRoots by rewriting
        all the inhomogenous parts as an operator. *)
    (* In this way,
    we can determine the annihilator for inhom2,
    and then consequently for polylast. *)
```

```
(* We first note that the pieces that don'
  t have 2F1s evaluate to 0:
 this corresponds to evaluating the sum with
  the certificates at the lower boundary. *)
posfree =
  Position[FreeQ[#, Hypergeometric2F1] & /@
      (List @@ inhom2[[1]] /. HH → H), True] //
   Flatten;
Last /@ (List @@ inhom2[[1, posfree]])
{inhom2[[1, posfree]] /. HH → H // Cancel //
  FunctionExpand}
(* We remove those zero pieces and proceed
 to determine an annihilator for the rest
 of inhom2. *)
inhom2rest =
  (inhom2[[1, Complement[Range[9], posfree]]]);
(* We first rewrite all these parts as an
 opertor (by observation) *)
newop =
  Oouter2 -
   Sum[Coefficient[Pouter2[[1]],
      RISC`HolonomicFunctions`S[s], i] **
     RISC HolonomicFunctions S[s] ^ i **
     Sum[RISC`HolonomicFunctions`S[k]^j,
      {j, 0, i-1}, {i, 3};
(* Check! *)
Together[
 inhom2rest - ApplyOreOperator[newop, HH[s, k]] /.
  k \rightarrow (m + s)
(* And now comes the big computation. *)
(* Timing[
R2act=DFiniteOreAction[anninner2, newop];] *)
(* The above took 619 seconds. *)
(* Timing[
 R2=DFiniteSubstitute[R2act, {k→(m+s)}];] *)
```

```
(* This above took 107860 seconds!! So we
   save it. *)
(* R2>>"ctR2.m"; *)
R2 = Import["ctR2.m"];
annouter2 = {R2[[1]] ** Pouter2[[1]]};
(* The support gives an idea of the operators
   that we are dealing with in our annihilating
   ideal. *)
Support[annouter2]
```

Combine above computations to get a recurrence for poly (Eq 6)

```
In[•]:= (* Because the sum of two holonomic functions
      is still holonomic,
     we apply the corresponding closure property
      to get the annihilator for poly. *)
     annfinal = DFinitePlus[annouter1, annouter2];
     Support[annfinal]
     (* Check *)
     ApplyOreOperator[annfinal, PP[30/31, 31, 15, s]];
     (Table[% /. PP \rightarrow poly /. subs, {s, 10}] // Flatten //
         Union) === {0}
Out[\bullet]= \{\{S_s^5, S_s^4, S_s^3, S_s^2, S_s, 1\}\}
Out[•]= True
In[∘]:= (* We convert now our guessrec to an OrePolynomial
      so that we can compare. *)
     guessrecpoly = ToOrePolynomial[guessrec, c[s]];
     (* Check *)
     ApplyOreOperator[guessrecpoly,
        PP[30/31, 31, 15, s]];
     (Table[% /. PP \rightarrow poly /. subs, {s, 10}] // Flatten //
         Union) === {0}
Out[•]= True
In[•]:= (* And the last
      step: is our computed recurrence a left
         multiple of the guessed one? Yes, yes it is! *)
     OreReduce[annfinal[[1]], {guessrecpoly}]
Out[•]= 0
```

```
(* We check to see that the recurrences
      produces the same result given a finite
      number of initial values. *)
     annrec = ApplyOreOperator[annfinal[[1]], c[s]];
     subs = \{b \to 31, m \to 15, x \to 5/7\}; numic = 6;
     len = 50;
     (* Initial conditions from poly. *)
     subsic[b_, m_, x0_] :=
       Thread[Table[c[i], {i, numic}] →
          Table[poly[(b-1)/b, b, m, s] /.x \rightarrow x0,
           {s, numic}]];
     sublist = subsic@@ ({b, m, x} /. subs);
     subguess = sublist[[1;; 4]];
     (* Use both recurrences to generate lists up
      to 50 terms using the initial conditions. *)
     Do [
      subguess =
       Append[subguess,
          Solve[guessrec = 0, c[s + 3]][[1]] /.s \rightarrow s0/.
            subguess /. subs] // Flatten;
      sublist =
       Append[sublist,
          Solve[annrec = 0, c[s + 5]][[1]] /. s \rightarrow s0 /.
            sublist /. subs] // Flatten,
      {s0, 2, len}]
     (* Compare *)
     Union[subguess - sublist[[1;; Length[subguess]]]]
Out[•]= { 0 }
```

Part 5: Experiments for the General Case

We comment that a = (b-1) / b is a bit special.

Table[CylindricalDecomposition[

Out[•]=
$$\left\{a = \frac{1}{2}, a = \frac{2}{3}, a = \frac{4}{5}, a = \frac{6}{7}, a = \frac{10}{11}, a = \frac{12}{13}, a = \frac{16}{17}, a = \frac{18}{19}, a = \frac{22}{23}, a = \frac{28}{29}, a = \frac{30}{31}, a = \frac{36}{37}, a = \frac{40}{41}, a = \frac{42}{43}, a = \frac{46}{47}, a = \frac{52}{53}\right\}$$

Section 6 Figures

However, we can still provide some experimental evidence that the result holds for different values of a. We will use the same color setup as in Part 1.

```
ln[\bullet]:= (* Figure 5: a varies, b=3, m=3, s=3,
      scaling factor=1/26 *)
      btest = 3; mtest = 3; stest = 3;
      polylist =
        Table[(btest^mtest - 1) ^ (-1) *
           poly[a, btest, mtest, stest],
          {a, 1/16, 1, 1/16}];
      Plot[polylist, \{x, 0, 1\}, PlotRange \rightarrow \{-1.2, 0.3\},
       AxesLabel \rightarrow \{"x"\}, PlotStyle \rightarrow colorblend,
       AxesStyle → GrayLevel[0.3]]
       0.2
                                                   8.0
                                                             1.0
      -0.2
      -0.4
Out[•]=
      -0.6
      -0.8
      -1.0
      -1.2<sup>L</sup>
```

For a=1 (the next logical choice for decay), we observe some erratic behavior in our domain. In such a situation, a recurrence of order 4 was found, but only with trivial solutions.

```
ln[•]:= (* Figure 6a: b varies, a=1, m=3, s=3,
      scaling factor=(b^3-1)^(-1) *)
      atest = 1; mtest = 3; stest = 3;
      polylist =
        Table[(b ^ mtest - 1) ^ (-1) *
           poly[atest, b, mtest, stest],
          {b, primes[[1; 16]]}];
      Plot[polylist, \{x, 0, 1\}, PlotRange \rightarrow \{-1.2, 0.3\},
       AxesLabel \rightarrow \{"x"\}, PlotStyle \rightarrow colorblend,
       AxesStyle → GrayLevel[0.3]]
       0.2
                             0.4
                                        0.6
                                                  8.0
      -0.2
      -0.4
Out[•]=
      -0.6
      -0.8
      -1.0
      -1.2<sup>L</sup>
```

```
In[⊕]:= (* Figure 6b: m varies, a=1, b=3, s=3,
     scaling factor=(3^m-1)^(-1) *)
     atest = 1; btest = 3; stest = 3;
     polylist =
        Table[(btest^m-1)^(-1)*
           poly[atest, btest, m, stest], {m, 16}];
     Plot[polylist, \{x, 0, 1\}, PlotRange \rightarrow \{-1.2, 0.3\},
       AxesLabel \rightarrow \{"x"\}, PlotStyle \rightarrow colorblend,
       AxesStyle → GrayLevel[0.3]]
      0.2
                                                8.0
     -0.2
     -0.4
Out[•]=
     -0.6
     -0.8
     -1.0
```

-1.2^L

```
ln[•]:= (* Figure 6c: s varies, a=1, b=3, m=3,
      scaling factor=1/26 *)
      atest = 1; btest = 3; mtest = 3;
      polylist =
        Table[(btest^mtest - 1) ^ (-1) *
           poly[atest, btest, mtest, s], {s, 16}];
      Plot[polylist, \{x, 0, 1\}, PlotRange \rightarrow \{-1.2, 0.3\},
       AxesLabel \rightarrow {"x"}, PlotStyle \rightarrow colorblend,
       AxesStyle → GrayLevel[0.3]]
       0.2
                                        0.6
                                                  8.0
                             0.4
      -0.2
     -0.4
Out[•]=
      -0.6
      -0.8
      -1.0
      -1.2<sup>[</sup>
```

A Possible Recurrence for general a

In fact, for general a, the guessed recurrence produced only produced trivial results, and this did not motivate us to pursue the investigation further using this technique.

```
Out[\bullet] = -(1 - b + a b) (1 + s)
                       (1 - b + abx) (1 - bx + abx) c[x, b, m, s] +
                     (6-12\ b+4\ a\ b+6\ b^2-4\ a\ b^2-a\ b\ m+a\ b^2\ m+4\ s-
                               8 b s + 3 a b s + 4 b^{2} s - 3 a b^{2} s - 6 b x + 9 a b x +
                               12 b^2 x - 18 a b^2 x + 5 a^2 b^2 x - 6 b^3 x + 9 a b^3 x -
                               3 a^{2} b^{3} x + a b m x - a^{2} b^{2} m x - a b^{3} m x + a^{2} b^{3} m x -
                               4 b s x + 6 a b s x + 8 b^{2} s x - 12 a b^{2} s x + 4 a^{2} b^{2} s x -
                               4 b^3 s x + 6 a b^3 s x - 2 a^2 b^3 s x - 4 a b^2 x^2 + 3 a^2 b^2 x^2 +
                               4 a b^3 x^2 - 5 a^2 b^3 x^2 + a^3 b^3 x^2 - a b^2 m x^2 + a^2 b^2 m x^2 +
                               a b^3 m x^2 - a^2 b^3 m x^2 - 3 a b^2 s x^2 + 2 a^2 b^2 s x^2 +
                               3 a b^3 s x^2 - 4 a^2 b^3 s x^2 + a^3 b^3 s x^2) c[x, b, m, 1 + s] +
                     \left( -12 + 24 \ b - 5 \ a \ b - 12 \ b^2 + 5 \ a \ b^2 + 2 \ a \ b \ m - 2 \ a \ b^2 \ m - 12 \ b^2 + 2 \ a \ b \ m - 2 \ a \ b^2 \ m - 12 \ b^2 \ m - 12 \ b^2 + 2 \ a \ b \ m - 2 \ a \ b^2 \ m - 12 \ 
                               6 s + 12 b s - 3 a b s - 6 b^{2} s + 3 a b^{2} s + 12 b x -
                               12 a b x - 24 b^2 x + 24 a b^2 x - 3 a^2 b^2 x + 12 b^3 x -
                               12 a b^3 x + 2 a^2 b^3 x - 2 a b m x + a^2 b^2 m x + 2 a b^3 m x -
                               a^{2}b^{3}mx + 6bsx - 6absx - 12b^{2}sx + 12ab^{2}sx -
                               2 a^{2} b^{2} s x + 6 b^{3} s x - 6 a b^{3} s x + a^{2} b^{3} s x + 5 a b^{2} x^{2} -
                               2 a^{2} h^{2} x^{2} - 5 a h^{3} x^{2} + 3 a^{2} h^{3} x^{2} + 2 a h^{2} m x^{2} -
                               a^{2}b^{2}mx^{2} - 2ab^{3}mx^{2} + a^{2}b^{3}mx^{2} + 3ab^{2}sx^{2} -
                               a^{2}b^{2}sx^{2}-3ab^{3}sx^{2}+2a^{2}b^{3}sx^{2}) c[x, b, m, 2+s] +
                     (-1 + b) (-10 + 10 b - 2 a b + a b m - 4 s + 4 b s - a b s +
                               10 b x - 5 a b x - 10 b^2 x + 5 a b^2 x - a b m x -
                               a b^2 m x + 4 b s x - 2 a b s x - 4 b^2 s x + 2 a b^2 s x +
                               2 a b^2 x^2 + a b^2 m x^2 + a b^2 s x^2) c[x, b, m, 3 + s] +
                     (-1+b)^{2}(3+s)(-1+bx)c[x, b, m, 4+s]
```

```
In[●]:= (* Since the recurrence only depends on s,
               we make some subsitutions so that it looks
                  nicer for printing. *)
               guessreca =
                  reca /.
                      (Thread[c[x, b, m, s+\#] \rightarrow c[s+\#]] \& /@
                             (Range[5] - 1))
Out[\ \ ] = -(1-b+ab)(1+s)(1-b+abx)(1-bx+abx)c[s] +
                   \left(\,6\,-\,12\;b\,+\,4\;a\;b\,+\,6\;b^2\,-\,4\;a\;b^2\,-\,a\;b\;m\,+\,a\;b^2\;m\,+\,4\;s\,-\,8\;b\;s\,+\,\right.
                            3 a b s + 4 b^2 s - 3 a b^2 s - 6 b x + 9 a b x + 12 b^2 x -
                            18 a b^2 x + 5 a^2 b^2 x - 6 b^3 x + 9 a b^3 x - 3 a^2 b^3 x +
                            a b m x - a^{2} b^{2} m x - a b^{3} m x + a^{2} b^{3} m x - 4 b s x +
                            6 a b s x + 8 b^2 s x - 12 a b^2 s x + 4 a^2 b^2 s x - 4 b^3 s x +
                            6 a b^3 s x - 2 a^2 b^3 s x - 4 a b^2 x^2 + 3 a^2 b^2 x^2 +
                            4 a b^3 x^2 - 5 a^2 b^3 x^2 + a^3 b^3 x^2 - a b^2 m x^2 + a^2 b^2 m x^2 +
                            a h^3 m x^2 - a^2 h^3 m x^2 - 3 a h^2 s x^2 + 2 a^2 h^2 s x^2 +
                            3 a b^3 s x^2 - 4 a^2 b^3 s x^2 + a^3 b^3 s x^2 + c [1 + s] +
                   \left( -12 + 24 \ b - 5 \ a \ b - 12 \ b^2 + 5 \ a \ b^2 + 2 \ a \ b \ m - 2 \ a \ b^2 \ m - 12 \ b^2 + 2 \ a \ b \ m - 2 \ a \ b^2 \ m - 12 \ 
                            6 s + 12 b s - 3 a b s - 6 b^2 s + 3 a b^2 s + 12 b x -
                            12 a b x - 24 b^2 x + 24 a b^2 x - 3 a^2 b^2 x + 12 b^3 x -
                            12 a b^3 x + 2 a^2 b^3 x - 2 a b m x + a^2 b^2 m x + 2 a b^3 m x -
                            a^{2}b^{3}mx + 6bsx - 6absx - 12b^{2}sx + 12ab^{2}sx -
                            2 a^{2} b^{2} s x + 6 b^{3} s x - 6 a b^{3} s x + a^{2} b^{3} s x + 5 a b^{2} x^{2} -
                            2 a^{2} h^{2} x^{2} - 5 a h^{3} x^{2} + 3 a^{2} h^{3} x^{2} + 2 a h^{2} m x^{2} -
                            a^{2}b^{2}mx^{2} - 2ab^{3}mx^{2} + a^{2}b^{3}mx^{2} + 3ab^{2}sx^{2} -
                            a^{2} b^{2} s x^{2} - 3 a b^{3} s x^{2} + 2 a^{2} b^{3} s x^{2}) c [2 + s] +
                   (-1 + b) (-10 + 10 b - 2 a b + a b m - 4 s + 4 b s - a b s +
                            10 b x - 5 a b x - 10 b^{2} x + 5 a b^{2} x - a b m x -
                            a b^2 m x + 4 b s x - 2 a b s x - 4 b^2 s x + 2 a b^2 s x +
                            2 a b^2 x^2 + a b^2 m x^2 + a b^2 s x^2 ) c [3 + s] +
                   (-1+b)^{2}(3+s)(-1+bx)c[4+s]
                (* Solving the recurrence produces only trivial
                  solutions. *)
```

 $In[\bullet] := recsola = SolveRecurrence[guessreca == 0, c[s]]$ $Out[\bullet] = \left\{ \{0, 1\}, \left\{ 0, \frac{1}{abx} (-1 + bx) \left(\frac{-1 + bx - abx}{-1 + bx} \right)^{\$} \right\}, \{1, 0\} \right\}$

Export to PDF