CS 97SI: INTRODUCTION TO PROGRAMMING CONTESTS

Computational Geometry

- Cross Product
 - Segment-Segment Intersection
- Convex Hull Problem
 - Graham Scan
- Sweep Line Algorithm
- Intersecting Half-planes
- A Useful Note on Binary/Ternary Search

Cross Product

- Arguably the most important operation in 2D geometry
 - We'll use it all the time

- Applications:
 - Determining the (signed) area of a triangle
 - Testing if three points are collinear
 - Determining the orientation of three points
 - Testing if two line segments intersect

Cross Product

□ Define $ccw(A, B, C) = (B - A) \times (C - A)$

Segment-Segment Intersection Test

- \square Given two segments AB and CD
- Want to determine if they intersect properly: two segments meet at a single point that are strictly inside both segments

Segment-Segment Intersection Test

- Assume that the segments intersect
 - $lue{}$ From A's point of view, looking straight to B, C and D must lie on different sides
 - Holds true for the other segment as well
- The intersection exists and is proper if:
 - \square ccw(A, B, C) \times ccw(A, B, D) < 0
 - \square AND $ccw(C, D, A) \times ccw(C, D, B) < 0$

Segment-Segment Intersection Test

- Determining non-proper intersections
 - We need more special cases to consider!
 - e.g. If ccw(A, B, C), ccw(A, B, D), ccw(C, D, A), ccw(C, D, B) are all zeros, then two segments are collinear
 - Very careful implementation is required

Convex Hull Problem

- \Box Given n points on the plane, find the smallest convex polygon that contains all the given points
 - For simplicity, assume that no three points are collinear

Simple $O(n^3)$ algorithm

- \square AB is an edge of the convex hull iff ccw(A, B, C) have the same sign for all other given points C
 - This gives us a simple algorithm

- \square For each A and B:
 - □ If ccw(A, B, C) > 0 for all $C \neq A, B$:
 - \blacksquare Record the edge $A \rightarrow B$
- Walk along the recorded edges to recover the convex hull

Faster Algorithm: Graham Scan

- We know that the leftmost given point has to be in the convex hull
 - We assume that there is a unique leftmost point
- Make the leftmost point the origin
 - $lue{}$ So that all other points have positive x coordinates
- \square Sort the points in increasing order of y/x
 - Increasing order of angle, whatever you like to call it
- Incrementally construct the convex hull using a stack

Incremental Construction

- We maintain a convex chain of the given points
- \square For each i, we do the following:
 - lacksquare Append point i to the current chain
 - If the new point causes a concave corner, remove the bad vertex from the chain that causes it
 - Repeat until the new chain becomes convex

 \square Points are numbered in increasing order of y/x

Add the first two points in the chain

- □ Adding point 3 causes a concave corner 1-2-3
 - □ Remove 2

□ That's better...

- Adding 4 to the chain causes a problem
 - □ Remove 3

■ Bad corner!

■ Bad corner again!

□ Done!

Pseudocode

- \square Set the leftmost point (0,0), and sort the rest of the points in increasing order of y/x
- □ Initialize stack S
- \Box For i = 1 ... n:
 - Let A be the second topmost element of S, B be the topmost element of S, C be the ith point
 - If ccw(A, B, C) < 0, pop S and go back
 - \square Push C to S
- \square Points in S form the convex hull

Sweep Line Algorithm

- A problem solving strategy for geometry problems
- The main idea is to maintain a line (with some auxiliary data structure) that sweeps through the entire plane and solve the problem locally
- We can't simulate a continuous process, (e.g. sweeping a line) so we define events that causes certain changes in our data structure
 - And process the events in the order of occurrence
- We'll cover one sweep line algorithm

Sweep Line Algorithm

- lacktriangleright Problem: Given n axis-aligned rectangles, find the area of the union of them
- We will sweep the plane from left to right
- Events: left and right edges of the rectangles
- The main idea is to maintain the set of "active" rectangles in order
 - $lue{}$ It suffices to store the y-coordinates of the rectangles

Pseudopseudocode

- □ If the sweep line hits the left edge of a rectangle
 - Insert it to the data structure
- □ Right edge?
 - Remove it
- Move to the next event, and add the area(s) of the green rectangle(s)
 - Finding the length of the union of the blue segments is the hardest step
 - lacksquare There is an easy O(n) method for this step

Notes on Sweep Line Algorithms

- Sweep line algorithm is a generic concept
 - Come up with the right set of events and data structures for each problem
- Exercise problems
 - Finding the perimeter of the union of rectangles
 - Finding all k intersections of n line segments in $O((n+k)\log n)$ time

Intersecting Half-planes

- \square Representing a half-plane: $ax + by + c \le 0$
- The intersection of half-planes is a convex area
 - □ If the intersection is bounded, it gives a convex polygon
- \square Given n half-planes, how do we compute the intersection of them?
 - □ i.e. Find vertices of the convex area
- □ There is an easy $O(n^3)$ algorithm and a hard $O(n\log n)$ one
 - We will cover the easy one

Intersecting Half-planes

- □ For each half-plane $a_i x + b_i y + c_i \le 0$, define a straight line e_i : $a_i x + b_i y + c_i = 0$
- \square For each pair of e_i and e_j :
 - lacksquare Compute their intersection $p=(p_x,p_y)$
 - \blacksquare Check if $a_k p_\chi + b_k p_\gamma + c_k \le 0$ for all half-planes
 - \blacksquare If so, store p in some array P
 - lacksquare Otherwise, discard p
- \square Find the convex hull of the points in P

Intersecting Half-planes

- The intersection of half-planes can be unbounded
 - But usually, we are given limits on the min/max values of the coordinates
 - Add four half-planes $x \ge -M$, $x \le M$, $y \ge -M$, $y \le M$ (for large M) to ensure that the intersection is bounded
- \square Time complexity: $O(n^3)$
 - Pretty slow, but easy to code

Note on Binary Search

 Usually, binary search is used to find an item of interest in a sorted array

- There is a nice application of binary search, often used in geometry problems
 - Example: finding the largest circle that fits into a given polygon
 - Don't try to find a closed form solution or anything like that!
 - Instead, binary search on the answer

Ternary Search

- Another useful method in many geometry problems
- $lue{}$ Finds the minimum point of a "convex" function f
 - Not exactly convex, but let's use this word anyway
- \square Initialize the search interval [s, e]
- \square Until e-s becomes small:
 - $m_1 = s + (e s)/3, m_2 = e (e s)/3$
 - □ If $f(m_1) \le f(m_2)$, then set e to m_2
 - $lue{}$ Otherwise, set s to m_1