Rodovia

 $Nome\ do\ arquivo:$ rodovia.c, rodovia.cpp, rodovia.pas, rodovia.java, rodovia.js $\ ou$ rodovia.py

O reino de Nlogonia é composto por N cidades, numeradas de 1 a N, e M rodovias **direcionadas**, ou seja, é possível usar a rodovia (x, y) para ir da cidade x à cidade y, porém não na outra direção.

Vamos definir o valor da conectividade do reino como o número de pares ordenados (x, y), com $x \neq y$, tais que é possível viajar de x a y (talvez indiretamente, passando por outras cidades intermediárias pelo caminho). Na figura acima, por exemplo, o valor da conectividade é 11, sendo que os pares em questão são: (1,3), (1,4), (1,6), (3,1), (3,4), (3,6), (5,2), (5,4), (6,1), (6,3) e (6,4).

O governo de Nlogonia está planejando construir uma única nova rodovia (A, B), também direcionada. Muitas discussões estão sendo feitas para escolher a rodovia ideal, porém no momento, o maior receio é se há alguma possibilidade de ser feita uma escolha que seja considerada redundante pelos habitantes do reino. Em particular, foi dada a você a tarefa de descobrir se existe algum par (A, B) de cidades tal que:

- $A \neq B$
- Não existe nenhuma rodovia (x, y) originalmente no reino, com x = A e y = B.
- Caso adicionarmos a rodovia (A, B), o valor da conectividade do reino permanecerá o mesmo.

Também foi pedido que, caso existam pares que cumpram todas as condições, você deve informar algum deles. Caso tenha mais de um par válido, você pode escolher qualquer um deles.

Entrada

A primeira linha da entrada contém dois inteiros N e M, indicando o número de cidades e rodovias. Seguem M linhas contendo dois inteiros x_i e y_i cada, indicando que existe uma rodovia que pode ser usada para viajar da cidade x_i à cidade y_i .

Saída

Caso exista algum par que satisfaça todas as condições, seu programa deve imprimir qualquer um desses pares, em uma única linha. Caso contrário, imprima -1.

Restrições

- $\bullet \ 1 \leq N \leq 200000$
- $\bullet \ 1 \leq M \leq 400000$
- $x_i \neq y_i$
- Nenhuma rodovia é dada mais de uma vez na entrada, ou seja, $(x_i, y_i) \neq (x_j, y_j)$, se $i \neq j$. Note porém que é possível que ambas as rodovias (x, y) e (y, x) sejam dadas.

Informações sobre a pontuação

- Para um conjunto de casos de testes valendo 31 pontos, vale que a conectividade inicial do reino é igual a N*(N-1). Ou seja, existe algum caminho entre todos os pares de cidades.
- Para outro conjunto de casos de testes valendo 33 pontos, vale que se existe uma rodovia de x para y, então também existe uma rodovia de y para x.
- Para outro conjunto de casos de testes valendo 36 pontos, nenhuma restrição adicional.

Exemplos

Exemplo de entrada 1	Exemplo de saída 1
4 3	-1
1 2	
2 4	
1 4	

Exemplo de entrada 2	Exemplo de saída 2
4 4	2 3
1 2	
2 4	
1 4	
4 3	