제 1과목 - 알고리즘 <part2. 알고리즘 순서도작성>

I3. 자료처리 알고리즘 – 버블정렬

오늘의 핵심내용

데이터 정렬 알고리즘 중 버블정렬 알고리즘 학습

flag 비트를 이용한 버블정렬 알고리즘

▶ 버블정렬 – 첫 번째 자료와 인접한 두 번째 자료와 비교,또 두 번째 데이터와 세 번째 데이터 순으로 비교하여 정렬하는 알고리즘

예) 입력된 12,23,5,43,7을 차례대로 오름차순 정렬하는 과정

A(I)	A(2)	A(3)	A(4)	A(5)
12	23	5	43	7

STEP 1. 첫번째 자료 12를 두 번째 자료 23과 비교→12가 작으므로 변화 없음

A(I)	A(2)	A(3)	A(4)	A(5)
12	23)	5	43	7

두 번째 자료 23과 A(3) 비교 A(2) 값이 크므로 자리변동

A(I)	A(2)	A(3)	A(4)	A(5)
12	23 5	5 23	43	7

A(3)값과 A(4)값 비교 A(3)값이 작으므로 변동없음

A(I)	A(2)	A(3)	A(4)	A(5)
12	5	23	4321	7

A(4) 값과 A(5) 값 비교 A(4) 값이 크므로 자리변동

A(I)	A(2)	A(3)	A(4)	A(5)
12	5	23	43 7	43

1회전 결과
가장 큰 값이
맨 뒤에 표시

A(I)	A(2)	A(3)	A(4)	A(5)
12	5	23	7	43

STEP 2) 첫 번째 자료와 두 번째 자료를 비교하여 자리변동 작업 계속 수행

A(I)	A(2)	A(3)	A(4)	A(5)
12	5	23	7	43

A(1)과 A(2) 비교시 A(1)이 크므로 자리변동	A (I)	A(2)	A(3)	A(4)	A(5)
	12 5	23 12	23	7	43
		\mathcal{F}			

A(2)와 A(3)비교시 A	(2)가 작으므로 변동없음
-----------------	----------------

A(I)	A(2)	A(3)	A(4)	A(5)
5	12	23	7	43

A(3)과 A(4) 비교시 A(3) 값이 크므로 자리변동	A(I)	A(2)	A(3)	A(4)	A(5)
	5	12	23 7	23	43

2회전 결과 두 번째 큰 값이 맨 뒤 두 번째에 표시

A(I)	A(2)	A(3)	A(4)	A(5)
5	12	7	23	43

STEP 3) 첫 번째 자료부터 인접한 두 번째 자료와의 값 비교 통해 정렬작업 계속 수행

A(I)	A(2)	A(3)	A(4)	A(5)
5	12	7	23	43

A(1)과 A(2) 비교시 A(1)이 작으므로 변동없음

A (I)	A(2)	A(3)	A(4)	A(5)
5 \	12	7	23	43
	J			

A(2)와 A(3)비교시 A(2)가 크므로 자리변동

A (1)	A(2)	A(3)	A(4)	A(5)
5	12 7	12	23	43

3회전 결과 세번째 큰 값표시

A(I)	A(2)	A(3)	A(4)	A(5)
5	7	12	43	23

STEP 4) 이미 3회전 결과 정렬이 마쳐진 상태이지만 특별한 조치가 없으면 무의미한 4회전을 수행하게 됨

4회전 결과 자리변동 없게 됨

A(I)	A(2)	A(3)	A(4)	A(5)
5	7	12	43	23

* N개 자료를 입력 받아 배열에 저장한 후 저장된 자료를 오름차순으로 정렬하는 순서도

1. 배열에 저장된 10개 자료를 순서대로 정렬하는 순서도 작성

2. 플래그 비트를 이용한 버블정렬 ->플래그 비트를 이용하면 정렬이 모두 완료되면 더 이상무의미한 정렬작업을 수행하지 않고 작업을 마무리할 수 있어서 수행속도의 단축을 가져옴.

학습목표: 버블정렬(bubble sort)

핵심콕!콕! 문제

문제) 다음은 배열 A(10)에 기억된 10개의 수치 데이터에 대해 버블 정렬을 이용하여 오름차순으로 정렬하는 알고리즘이다.

<처리조건>

- ▶ 사용되는 변수는 아래와 같다.
- ▶ N-정렬하고자 하는 수치 데이터의 개수
- ▶I 정렬의 회전 수를 계산하기 위한 변수
- ▶ J 배열의 첨자 지정을 위한 변수
- ▶ FLAG 임의의 회전 작업 시 데이터의 교환이 발생하지 않을 경우 비교가 반복되는 것을 방지하기 위한 변수
- ➤ TM 두 변수의 값을 서로 바꾸기 위한 변수

정답을 확인해요.

^{답:} (1) 답 - 0

- (2) 답 J=J+1
- (3) 답 A(J)
- (4) 답 A(J+1)
- (5) 답 FLAG

flag 비트는 초기값 0이죠? 자리변동이 발생할 경우 flag비트는 1로 변경되구요. flag가 0인 상태를 그대로 유지한다는것은 자리변동이 없음을 의미하는거죠^^

