

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

PHYSICAL SCIENCES: CHEMISTRY (P2)

2022

Stanmorephysics.com
TIME: 3 hours

This question paper consists of 16 pages and 4 data sheets.

INSTRUCTIONS AND INFORMATION

- 1. Write your centre number and examination number in the appropriate spaces on the ANSWER BOOK.
- 2. This question paper consists of NINE questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two subquestions, e.g. between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You may use appropriate mathematical instruments.
- 8. Show ALL formulae and substitutions in ALL calculations.
- 9. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 10. Give brief motivations, discussions, etc. where required.
- 11. You are advised to use the attached DATA SHEETS.
- 12. Write neatly and legibly.

Copyright reserved Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter (A-D) next to the question numbers (1.1 to 1.10) in the ANSWER BOOK, e.g. 1.11 E.

1.1	Which ONE of	the following com	pounds has the	LOWEST	melting	point?
-----	--------------	-------------------	----------------	---------------	---------	--------

Α	Hexane
	A SECTION AND A

В Ethane

C Butane anmorephysics.com

D Octane (2)

- When $CH_2 = CH_2$ is converted to CH_3CH_3 , the type of reaction is ... 1.2 st anmorek
 - Α hydration.
 - В hydrolysis.
 - C halogenation.
 - hydrogenation. D

(2)

- Which ONE of the following compounds in solution will change the colour of 1.3 bromothymol blue?
 - CH₃CH₂CHQ Α
 - В CH₃CH₂COOH
 - C

(2)

1.4 Two DIFFERENT samples of IMPURE CaCO₃ of EQUAL masses react with 0,1 mol·dm⁻³ H₂SO₄. Assume that the impurities do not react.

The graph below shows the volume of $CO_2(g)$ produced for each reaction.

When compared to reaction 2, which ONE of the following statements BEST explains the curve obtained for reaction 1?

- A The temperature is higher in reaction 1.
- B The surface area is greater in reaction 2.
- C The amount of impurities is greater in reaction 2.
- D The amount of impurities is greater in reaction 1.

1.5 The equation below represents a hypothetical reaction.

$$A(g) + B(g) \rightleftharpoons C(g)$$

$$\Delta H = -50 \text{ kJ} \cdot \text{mol}^{-1}$$

The activation energy for the REVERSE reaction is 110 kJ·mol⁻¹.

Which ONE of the following is the activation energy (in kJ·mol⁻¹) for the FORWARD reaction?

A 50

B 60

C 110

D 160

(2)

(2)

1.6 A reaction reaches equilibrium at 25 °C in a flask according to the following balanced equation:

$$Co(H_2O)_{6}^{2+}(aq) + 4C\ell^{-}(aq) \rightleftharpoons CoC\ell_{4}^{2-}(aq) + 6H_2O(\ell)$$
 $\Delta H > 0$ pink blue

Which ONE of the following will change the colour of the mixture from pink to blue?

- A Adding water
- B Cooling the flask
- C Adding NaOH(aq)
- D Adding $NH_4Cl(aq)$ (2)
- 1.7 Dilute nitric acid is added to distilled water at 25 °C.

How will this affect the hydronium ion concentration $[H_3O^+]$ and the ionisation constant (K_w) of water at 25 °C?

	[H₃O ⁺]	K _w	
Α	Increases	Increases	
В	Increases	Decreases	
С	Increases	Remains the same	
D	Remains the same	Remains the same	

(2)

1.8 Consider the ionisation reactions I and II.

I
$$H_2PO_4^- + H_2O(l) = H_3O^+(aq) + X$$

II
$$X + H_2O(\ell) \Rightarrow H_3O^+(aq) + Y$$

Which ONE of the following combinations represents the formulae of **X** and **Y** respectively?

	Χ	Y
Α	HPO ₄ ²⁻	PO ₄ ³⁻
В	HPO ₄ ²⁻	H₃PO₄
С	H₃PO₄	PO ₄ ³⁻
D	HPO ₄ ²⁻	H ₂ PO ₄

(2)

1.9 An electrochemical cell was set up using a $Hg(\ell)|Hg^{2+}(aq)|$ half-cell and another half-cell under standard conditions.

Which ONE of the following half-cells, when connected to the $Hg(\ell)|Hg^{2+}(aq)|$ half-cell, will result in the HIGHEST cell potential?

- A $A\ell(s)|A\ell^{3+}(aq)$
- B $Zn(s)|Zn^{2+}(aq)$
- C $Co(s)|Co^{2+}(aq)$

$$D Pt(s)|H_2(g)|H^+(aq)$$
 (2)

1.10 The following reaction takes place in an electrochemical cell:

$$CuCl_2(aq) \rightarrow Cu(s) + Cl_2(g)$$

Which ONE of the following is CORRECT for this cell?

- A It is a galvanic cell.
- B A power source is needed.
- C The reaction is spontaneous.
- D Copper acts as the oxidising agent. (2)

QUESTION 2 (Start on a new page.)

The letters **A** to **H** in the table below represent eight organic compounds.

Α	Br CH₃ CH₃CCH₂CHCHCH₃ CH₃ CH₃	В	H H H H H H H H H H H H H
С	Pent-2-ene	D CH ₃ CH ₂ CH ₂ CHO	
E	E Butan-2-one F 4,4-dimethylpent-2-yne		4,4-dimethylpent-2-yne
G	Butane	Н	CH ₃ CH ₂ CH ₂ COOH

2.1 Write down the LETTER that represents a compound that:

2.1.1	Is a ketone	(1)
2.1.2	Has the general formula C _n H _{2n-2}	(1)
2.1.3	Is an isomer of 2-methylbut-2-ene	(1)
2.1.4	Has the same molecular formula as ethyl ethanoate	(1)

- 2.2 Write down the:
 - 2.2.1 IUPAC name of compound **A** (3)
 - 2.2.2 STRUCTURAL FORMULA of compound **F** (3)
- 2.3 For compound **D**, write down the:
 - 2.3.1 Homologous series to which it belongs (1)
 - 2.3.2 NAME of its functional group (1)
 - 2.3.3 STRUCTURAL FORMULA of its functional isomer (2)
- 2.4 For compound **G**, write down:
 - 2.4.1 The IUPAC name of a chain isomer (2)
 - 2.4.2 A balanced equation, using molecular formulae, for its complete combustion

(3) **[19]**

QUESTION 3 (Start on a new page.)

Learners investigate factors that influence the boiling points of organic compounds. The boiling points of some organic compounds obtained are shown in the table below.

COMPOUND		MOLECULAR MASS (g·mol ⁻¹)	BOILING POINT (°C)	
Α	Propane	44	- 42	
В	Butane	58	- 0,5	
С	Pentane	72	36	
D	Methylbutane	72	28	
E	Ethanol	46	78	
F	Ethanal	44	20	

3.1	Define the term boiling point.		
3.2	The boiling points of compounds A , B and C are compared. 3.2.1 How do the boiling points vary from compound A to compound C ?		
		Choose from INCREASES, DECREASES or REMAINS THE SAME.	(1)
	3.2.2	Explain the answer to QUESTION 3.2.1.	(3)
3.3	The boilin	g points of compounds B, C and D are compared.	
	Is this a fa	air comparison?	
	Choose fr	om YES or NO. Give a reason for the answer.	(2)
3.4	The boilin	g points of compounds E and F are compared.	
	3.4.1	State the independent variable for this comparison.	(1)
	3.4.2	Write down the name of the strongest Van der Waals force present in compound F .	(1)
3.5	Which co	mpound, D or E , has a higher vapour pressure? Give a reason for er.	(2) [12]

QUESTION 4 (Start on a new page.)

4.1 Study the following incomplete equations for organic reactions I and II.

Compounds **P** and **Q** are ORGANIC compounds and **T** is an INORGANIC compound.

For reaction I, write down the:

- 4.1.1 Type of reaction that takes place (1)
- 4.1.2 IUPAC name of compound **P** (2)
- 4.1.3 NAME or FORMULA of compound **T** (1)

For reaction II, write down:

- 4.1.4 TWO reaction conditions needed (2)
- 4.1.5 The STRUCTURAL FORMULA of compound **Q** (2)

4.2 The cracking of a long chain hydrocarbon, $C_{10}H_{22}$, takes place in test tube **A**, as shown below.

Two STRAIGHT CHAIN organic compounds, **X** and **Z**, are produced in test tube **A** according to the following balanced equation:

$$C_{10}H_{22}(\ell) \rightarrow 2X(g) + Z(g)$$

4.2.1 State the function of the
$$Al_2O_3(s)$$
 in test tube **A**. (1)

The organic compounds, \mathbf{X} and \mathbf{Z} , are now passed through bromine water, $\mathrm{Br}_2(\mathrm{aq})$, at room temperature in test tube \mathbf{B} . Only compound \mathbf{X} reacts with the bromine water.

- 4.2.2 Apart from gas bubbles being formed, state another observable change in test tube **B**. (1)
- 4.2.3 Write down the TYPE of reaction that takes place in test tube **B**. (1)
- 4.2.4 Write down the molecular formula of compound **Z**. (3)
- 4.2.5 Write down the STRUCTURAL FORMULA of compound **X**. (3) [17]

QUESTION 5 (Start on a new page.)

Learners use the reaction of MgCO₃(s) with EXCESS dilute HC ℓ (aq) to investigate the relationship between temperature and the rate of a chemical reaction.

The balanced equation for the reaction is:

$$MgCO_3(s) + 2HC\ell(aq) \rightarrow MgC\ell_2(aq) + CO_2(g) + H_2O(\ell)$$

The results obtained are represented in the graph below.

Graph of average rate of production of CO₂ (in g·min⁻¹) versus temperature

- 5.1 Define the term *rate of reaction*.
- 5.2 State TWO conditions that must be kept constant during this investigation. (2)
- 5.3 Use the collision theory to explain the relationship shown in the graph.
- 5.4 The learners obtained the graph above using 5 g MgCO $_3$ (s) with EXCESS HCl at 40 °C.

Calculate the:

- 5.4.1 Time taken for the reaction to run to completion
- 5.4.2 Molar gas volume at 40 °C if 1,5 dm³ CO₂ is collected in a syringe (2)

(2)

(4)

(6)

The graph below represents the Maxwell-Boltzmann distribution curve for $CO_2(g)$ at 40 °C.

Redraw the graph above in the ANSWER BOOK. Clearly label the curve as A.

On the same set of axes, sketch the curve that will be obtained for the $CO_2(g)$ at 20 °C. Label this curve as **B**.

(2) **[18]**

QUESTION 6 (Start on a new page.)

6.1 Initially, 4 moles $H_2(g)$ and 4 moles $I_2(g)$ are allowed to react in a sealed 2 dm³ flask according to the following balanced equation:

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$
 $\Delta H < 0$

The graph below shows the concentrations of $H_2(g)$ and HI(g) versus time during the reaction.

- 6.1.1 Write down the value of **Y**. (1)
- 6.1.2 State Le Chatelier's principle. (2)
- 6.1.3 Changes were made to the temperature of the flask at time t_2 .

Was the flask HEATED or COOLED? (1)

- 6.1.4 Fully explain the answer to QUESTION 6.1.3. (3)
- The equation below represents the reversible reaction that takes place when $NO_2(g)$ is converted to $N_2O_4(g)$.

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

Initially, \mathbf{x} mol of $NO_2(g)$ is sealed in a 1 dm³ container at 350 K. When equilibrium is established at this temperature, 0,81 mol $N_2O_4(g)$ is present in the container.

- 6.2.1 Write down the meaning of the term *reversible reaction*. (1)
- Show that the equilibrium constant for this reaction is given by $\frac{0.81}{(x-1.62)^2}$ (5)

0.79 moles of $N_2O_4(g)$ is now added to the equilibrium mixture above. When the NEW equilibrium is established at 350 K, it is found that the amount of $NO_2(g)$ increased by 1,2 moles.

6.2.3 Calculate the value of x.

(6) **[19]**

QUESTION 7 (Start on a new page.)

- 7.1 Two acids, HX and HY, of EQUAL CONCENTRATIONS are compared. The pH of HX is 2,7 and the pH of HY is 0,7.
 - 7.1.1 Define an *acid* in terms of the Lowry-Brønsted theory. (2)
 - 7.1.2 Which acid, HX or HY, is STRONGER? Give a reason for the answer. (2)
 - 7.1.3 Acid HX ionises in water according to the following equation:

$$HX(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + X^-(aq)$$

The K_a value for the reaction is 1,8 x 10⁻⁵ at 25 °C.

Is the concentration of the hydronium ions HIGHER THAN, LOWER THAN or EQUAL TO the concentration of HX? Give a reason for the answer.

(2)

Learners add 150 cm³ of a sodium hydroxide solution, NaOH, of unknown concentration to 200 cm³ of a 0,03 mol·dm⁻³ hydrochloric acid solution, HCℓ, as illustrated below. They find that the pH of the final solution is 2. Assume that the volumes are additive.

The balanced equation for the reaction is:

$$HC\ell(aq) + NaOH(aq) \rightarrow NaC\ell(aq) + H_2O(\ell)$$

Calculate the:

7.2.1 Concentration of the H_3O^+ ions in the final solution (3)

7.2.2 Initial concentration of the NaOH(aq) (7)
[161]

QUESTION 8 (Start on a new page.)

8.1 An electrochemical cell is set up using an aluminium rod, Al, and a gas X.

The initial emf measured under standard conditions is 2,89 V.

8.1.1	State the standard conditions under which this cell operates.	(3)
8.1.2	Use a calculation to identify gas X.	(5)
8.1.3	Write down the FORMULA of the reducing agent in this cell.	(1)
8.1.4	Write down the half-reaction that takes place at the cathode.	(2)

8.1.5 Write down the cell notation for this cell. (3)

Which container, ZINC or COPPER, will be more suitable to store an aqueous solution of nickel ions, Ni²⁺?

Refer to the Table of Standard Reduction Potentials to fully explain the answer in terms of the relative strengths of reducing agents.

(4) **[18]**

QUESTION 9 (Start on a new page.)

The simplified diagram below represents an electrochemical cell used for the electrolysis of a concentrated sodium chloride solution, NaCl(aq). X and Y are carbon electrodes.

- 9.1 Define the term *electrolysis*. (2)
- 9.2 Chlorine gas, $C\ell_2(g)$, is released at electrode **X**.

Write down the:

- 9.2.1 Letter (**X** or **Y**) of the electrode where oxidation takes place (1)
- 9.2.2 Half-reaction that takes place at electrode **Y** (2)
- 9.2.3 Direction in which electrons flow in the external circuit
 - Choose from **X** to **Y** OR **Y** to **X**. (1)
- 9.2.4 Balanced equation for the net (overall) cell reaction that takes place in the cell (3)
- 9.3 How will the pH of the electrolyte change during the reaction?
 - Choose from INCREASES, DECREASES or REMAINS THE SAME. (1)
- 9.4 Give a reason for the answer to QUESTION 9.3. (1) [11]

TOTAL: 150

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	pθ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	T ₀	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$			
$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$			
$\frac{\mathbf{c_a v_a}}{\mathbf{c_b v_b}} = \frac{\mathbf{n_a}}{\mathbf{n_b}}$	$pH = -log[H_3O^+]$			
$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298$	3 K			
$E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode} / E^{\theta}_{sel} = E^{\theta}_{katode} - E^{\theta}_{anode}$				
or/of $E_{cell}^\theta = E_{reduction}^\theta - E_{oxidation}^\theta / E_{sel}^\theta = E_{reduksie}^\theta - E_{oksidasie}^\theta$				
or/of $E_{cell}^\theta = E_{oxidisingagent}^\theta - E_{reducingagent}^\theta / E_{sel}^\theta = E_{oksideemiddel}^\theta - E_{reduseemiddel}^\theta$				
$n = \frac{Q}{e}$ or/of $n = \frac{Q}{q_e}$				

2 SCANSC TABLE 3: THE PERIODIC TABLE OF ELEMENTS TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE

Downloade	d from Sta	umor ephysis	s com
(VII)	9,0 4,0 9,0 19 7,7 7,7 7,7 7,7 7,7 7,7 7,7 7,7 7,7 7,	2,5 8,8 Br 35,7 2,7 2,8 3,5 2,5 3,5 2,5 3,5 3,5 2,5 3,5 3,5 3,5 3,5 3,5 3,5 3,5 3,5 3,5 3	2,5 At 70 X,5 At
16 (<u>VI</u>)	3,5 3,5 ∞ O 0	2,1 Se 7,9 Te 7,9 Te 728 Te 72	0,0 PO 84 E3
(3)	0,8 1,2 N X 4 & C &	33 3,0 AS 75 1,9 Sb 122	88 B. 7. 83 T. 7. 83 T. 7. 84 T. 7. 84 T. 7. 84 T. 7. 84 T. 7. 85
4 (VI)	1,8 2,5 8,7 8,8 2,5 8,8 8,8 8,9 8,9 8,9 8,9 8,9 8,9 8,9 8,9	1,8 Ge 1,8 50 1,8 50 119	82 4,° Pb 207 67 HO
13	1,6 2,0 A 13 P 5,0	6, τ τ, τ 8, τ 6, τ 7, τ 8, τ 7, τ 1, τ 7, τ 1, τ 1, τ	81 204 204 66
12		9'1 2'1	80 Hg 201 Th
5		29 1,9 Cu 63,5 47 47 108	79 Au 197 64 64
10	Symbol Simbool mic mass	8,1 2,2 Pd 63 106 8 E 8	78 Pt 195 63 F.
9 c number omgetal	Symbol 3,5 Simbool 3,5 live atomic mass	8,1 S,2 CO 23 TA 45 103	192 192 62 Sm
8 Atomic r Atoom	egativity egatiwiteit egatiwiteit egatiwiteit 63,5 Approximate relative atomic mass Benaderde relatiewe atoommassa	8,1 S,2 2,2 Fe 2,0 101	76 OS 190 61 Pm
~	legativity 9. Capatiwiteit 6. Capatiwiteit 6. Capation Approximate relate Benaderde relatie	25 15 Mn 55 19 TC	75 Re 186 60
6 EUTEL	Electronegativity Elektronegatiwiteit Approxim Benaderd	6 Cr 7,6 Cr 52 42 42 42 96	74 W 184 184 Pr
5 6 KEYISLEUTEL	Electr Elektro	6 23 V 5 4 4 4 4 4 5 4 5 4 6 6 6 6 6 6 6 6 6 6	73 Ta 181 181 Ce
4		22 4, Ti 48 40 40 91	72 F. Hf 179
ო		21 7,2 SC 7,2 39 89	57 La 139 89 Ac
(j) 5	9 6 12 12 12 24 24	Ca Ca 38 Sr 88	56 Ba 137 137 88 88 226
- = - T -	i I	€ ス & 8 % % % % % % % % % % % % % % % % % % %	CS CS 133 4.9 P.9 P.9 P.9 P.9 P.9 P.9 P.9 P.9 P.9 P
۲,2	0°1 6°0	8,0 8,0	۲٬0 ۲٬0

71 Lu 175	
70 Yb 173	102 No
69 Tm 169	101 M d
68 Er 167	100 Fm
67 Ho 165	ES ES
66 Dy 163	8 C 8
65 Tb 159	97 BK
64 Gd 157	e Ca
63 Eu 152	95 Am
62 Sm 150	94 Pu
61 Pm	93 N
60 Nd 441	92 U 238
59 Pr 141	91 Pa
58 Ce 140	90 Th 232

Please turn over

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

BEL 4A: STANDAARD-REDUKSIEPOTENSIA					
Half-reactions/ <i>Halfreaksies</i> E^{θ} (V					
F ₂ (g) + 2e ⁻	=	2F-	+ 2,87		
Co ³⁺ + e ⁻	==	Co ²⁺	+ 1,81		
$H_2O_2 + 2H^+ + 2e^-$	- =	2H₂O	+1,77		
$MnO_{4}^{-} + 8H^{+} + 5e^{-}$	==	Mn ²⁺ + 4H ₂ O	+ 1,51		
$C\ell_2(g) + 2e^-$	=	2Cℓ ⁻	+ 1,36		
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	-	2Cr ³⁺ + 7H ₂ O	+ 1,33		
O ₂ (g) + 4H ⁺ + 4e ⁻	-	2H ₂ O	+ 1,23		
$MnO_2 + 4H^{\dagger} + 2e^{-}$	-	Mn ²⁺ + 2H ₂ O	+ 1,23		
Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20		
$Br_2(\ell) + 2e^{-\ell}$		2Br ⁻	+ 1,07		
$NO_{3}^{-} + 4H^{+} + 3e^{-}$	==	$NO(g) + 2H_2O$	+ 0,96		
Hg ²⁺ + 2e⁻	==	Hg(l)	+ 0,85		
Ag⁺ + e⁻	==	Ag	+ 0,80		
$NO_{3}^{-} + 2H^{+} + e^{-}$	===	$NO_2(g) + H_2O$	+ 0,80		
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77		
O ₂ (g) + 2H ⁺ + 2e ⁻		H ₂ O ₂	+ 0,68		
l ₂ + 2e ⁻	₩	21-	+ 0,54		
Cu ⁺ + e ⁻	#	Cu	+ 0,52		
SO ₂ + 4H ⁺ + 4e ⁻	==	S + 2H ₂ O	+ 0,45		
2H ₂ O + O ₂ + 4e ⁻	=	40H	+ 0,40		
Cu ²⁺ + 2e ⁻	=	Cu SO ₂ (a) + 2H ₂ O	+ 0,34		
$SO_4^{2-} + 4H^+ + 2e^-$	=	$SO_2(g) + 2H_2O$	+ 0,17		
Cu ²⁺ + e ⁻ Sn ⁴⁺ + 2e ⁻	===	Cu [†] Sn ²⁺	+ 0,16		
Sn + 2e S + 2H + 2e		Sn⁻ H₂S(g)	+ 0,15 + 0,14		
2H ⁺ + 2e ⁻	≠	⊓ ₂ S(g) H₂(g)	0,00		
Fe ³⁺ + 3e ⁻	**	Fe	- 0,06		
Pb ²⁺ + 2e ⁻	==	Pb	- 0,13		
Sn ²⁺ + 2e		Sn	- 0,14		
Ni ²⁺ + 2e ⁻	===	Ni	- 0,27		
Co ²⁺ + 2e ⁻	=	Co	- 0,28		
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40		
Cr ³⁺ + e ⁻	qui.	Cr ²⁺	- 0,41		
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44		
Cr ³⁺ + 3e ⁻	#	Cr Zn	- 0,74		
Zn ²⁺ + 2e⁻ 2H ₂ O + 2e⁻	=	Zn $H_{\alpha}(\alpha) + 2OH^{-}$	- 0,76 - 0,83		
2H ₂ O + 2e Cr ²⁺ + 2e ⁻	==	H₂(g) + 2OH⁻ Cr	- 0,83 - 0,91		
Mn ²⁺ + 2e ⁻	44 44	Mn	- 1,18		
Al ³⁺ + 3e	==	Αℓ	- 1,66		
Mg ²⁺ + 2e ⁻		Mg	- 2,36		
Na ⁺ + e ⁻	==	Na	- 2,71		
Ca ²⁺ + 2e ⁻	=	Са	- 2,87		
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89		
Ba ²⁺ + 2e ⁻	#	Ва	- 2,90		
Cs ⁺ + e ⁻	***	Cs K	- 2,92 2 93		
K ⁺ + e ⁻ Li ⁺ + e ⁻	=	K Li	- 2,93 - 3.05		
Li + e	=	<u>Li</u>	- 3,05		

Increasing strength of reducing agents/Toenemende sterkte van reduseermiddels

Increasing strength of oxidising agents/Toenemende sterkte van oksideermiddels

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Li^{+} + e^{-}$ $K^{+} + e^{-}$ $Cs^{+} + e^{-}$ $Ba^{2+} + 2e^{-}$ $Sr^{2+} + 2e^{-}$ $Ca^{2+} + 2e^{-}$ $Na^{+} + e^{-}$ $Mg^{2+} + 2e^{-}$ $A\ell^{3+} + 3e^{-}$ $Mn^{2+} + 2e^{-}$ $Cr^{2+} + 2e^{-}$	1 1 1 1 1 1 1 1	Li K Cs Ba Sr Ca Na	- 3,05 - 2,93 - 2,92 - 2,90 - 2,89 - 2,87 - 2,71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$K^{+} + e^{-}$ $Cs^{+} + e^{-}$ $Ba^{2+} + 2e^{-}$ $Sr^{2+} + 2e^{-}$ $Ca^{2+} + 2e^{-}$ $Na^{+} + e^{-}$ $Mg^{2+} + 2e^{-}$ $A\ell^{3+} + 3e^{-}$ $Mn^{2+} + 2e^{-}$ $Cr^{2+} + 2e^{-}$	1 1 1 1 1 1 1 1	K Cs Ba Sr Ca Na	- 2,93 - 2,92 - 2,90 - 2,89 - 2,87 - 2,71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Cs^{+} + e^{-}$ $Ba^{2+} + 2e^{-}$ $Sr^{2+} + 2e^{-}$ $Ca^{2+} + 2e^{-}$ $Na^{+} + e^{-}$ $Mg^{2+} + 2e^{-}$ $A\ell^{3+} + 3e^{-}$ $Mn^{2+} + 2e^{-}$ $Cr^{2+} + 2e^{-}$	1 1 1 1 1 1 1	Cs Ba Sr Ca Na	- 2,92 - 2,90 - 2,89 - 2,87 - 2,71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Ba^{2+} + 2e^{-}$ $Sr^{2+} + 2e^{-}$ $Ca^{2+} + 2e^{-}$ $Na^{+} + e^{-}$ $Mg^{2+} + 2e^{-}$ $A\ell^{3+} + 3e^{-}$ $Mn^{2+} + 2e^{-}$ $Cr^{2+} + 2e^{-}$	1 1 1 1 1	Ba Sr Ca Na	- 2,90 - 2,89 - 2,87 - 2,71
$Sr^{2+} + 2e^{-} \implies Sr$ $Ca^{2+} + 2e^{-} \implies Ca$ $-2,87$ $Na^{+} + e^{-} \implies Na$ $-2,71$ $Mg^{2+} + 2e^{-} \implies Mg$ $-2,36$ $A\ell^{3+} + 3e^{-} \implies A\ell$ $-1,66$ $Mn^{2+} + 2e^{-} \implies Mn$ $-1,18$ $Cr^{2+} + 2e^{-} \implies Cr$ $-0,91$ $2H_{2}O + 2e^{-} \implies H_{2}(g) + 2OH^{-}$ $-0,76$ $Cr^{3+} + 3e^{-} \implies Cr$ $-0,74$ $Fe^{2+} + 2e^{-} \implies Fe$ $-0,44$ $Cr^{3+} + e^{-} \implies Cr^{2+}$ $-0,41$ $Cd^{2+} + 2e^{-} \implies Cd$ $-0,40$ $Co^{2+} + 2e^{-} \implies Sn$ $-0,14$ $Cd^{2+} + 2e^{-} \implies Sn$ $-0,14$ $Pb^{2+} + 2e^{-} \implies Pb$ $-0,13$ $Fe^{3+} + 3e^{-} \implies Fe$ $-0,06$ $2H^{+} + 2e^{-} \implies H_{2}(g)$ $S + 2H^{+} + 2e^{-} \implies H_{2}(g)$ $S^{4+} + 4H^{+} + 2e^{-} \implies SO_{2}(g) + 2H_{2}O$ $-0,17$ $Cu^{2+} + 2e^{-} \implies Cu^{+}$ $SO_{2}^{4+} + 4H^{+} + 2e^{-} \implies SO_{2}(g) + 2H_{2}O$ $-0,17$ $-0,27$ $-0,14$ $-0,27$ $-0,14$ $-0,27$ $-0,14$ $-0,15$ $-0,14$ $-0,15$ $-0,14$ $-0,15$ $-0,14$ $-0,15$ $-0,14$ $-0,15$ $-0,14$ $-0,15$ $-0,14$ $-0,15$ $-0,15$ $-0,16$ $-0,17$ $-0,18$ $-0,19$ $-$	$Sr^{2+} + 2e^{-}$ $Ca^{2+} + 2e^{-}$ $Na^{+} + e^{-}$ $Mg^{2+} + 2e^{-}$ $A\ell^{3+} + 3e^{-}$ $Mn^{2+} + 2e^{-}$ $Cr^{2+} + 2e^{-}$	1 1 1 1	Sr Ca Na	- 2,89 - 2,87 - 2,71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Ca^{2+} + 2e^{-}$ $Na^{+} + e^{-}$ $Mg^{2+} + 2e^{-}$ $A\ell^{3+} + 3e^{-}$ $Mn^{2+} + 2e^{-}$ $Cr^{2+} + 2e^{-}$	==	Ca Na	- 2,87 - 2,71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Na^{+} + e^{-}$ $Mg^{2+} + 2e^{-}$ $A\ell^{3+} + 3e^{-}$ $Mn^{2+} + 2e^{-}$ $Cr^{2+} + 2e^{-}$	==	Na	- 2,71
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$Mg^{2+} + 2e^{-}$ $A\ell^{3+} + 3e^{-}$ $Mn^{2+} + 2e^{-}$ $Cr^{2+} + 2e^{-}$	=		i .
$A\ell^{3+} + 3e^{-} = A\ell$ $Mn^{2+} + 2e^{-} = Mn$ $Cr^{2+} + 2e^{-} = Cr$ $2H_2O + 2e^{-} = H_2(g) + 2OH^{-}$ $2r^{2+} + 2e^{-} = Cr$ $-0,91$ $2H_2O + 2e^{-} = H_2(g) + 2OH^{-}$ $-0,83$ $2r^{2+} + 2e^{-} = Cr$ $-0,74$ $Cr^{3+} + 3e^{-} = Cr$ $-0,44$ $Cr^{3+} + e^{-} = Cr^{2+}$ $-0,41$ $Cd^{2+} + 2e^{-} = Cd$ $-0,40$ $Co^{2+} + 2e^{-} = Co$ $Ni^{2+} + 2e^{-} = Ni$ $-0,27$ $Sn^{2+} + 2e^{-} = Sn$ $-0,14$ $Pb^{2+} + 2e^{-} = Pb$ $-0,13$ $Fe^{3+} + 3e^{-} = Fe$ $2H^{2}(g)$ $S^{4} + 2e^{-} = H_2(g)$ $Sn^{4+} + 2e^{-} = Sn^{2+}$ $Cu^{2+} + e^{-} = Cu^{+}$ $Cu^{2+} + e^{-} = Cu^{+}$ $Cu^{2+} + 2e^{-} = Cu$ $2H_2O + O_2 + 4e^{-} = AOH^{-}$ $SO_2 + 4H^{+} + 4e^{-} = S + 2H_2O$ $Cu^{+} + e^{-} = Cu$ $1_2 + 2e^{-} = Cu$ $1_3 + 40H^{-}$ $1_3 + 4_3$	$A\ell^{3+} + 3e^-$ $Mn^{2+} + 2e^-$ $Cr^{2+} + 2e^-$		Mg	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Mn ²⁺ + 2e ⁻ Cr ²⁺ + 2e ⁻	=	Λ0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cr ²⁺ + 2e ⁻			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$Zn^{2+} + 2e^{-} \Rightarrow Zn$ $-0,76$ $Cr^{3+} + 3e^{-} \Rightarrow Cr$ $-0,74$ $Fe^{2+} + 2e^{-} \Rightarrow Fe$ $-0,44$ $Cr^{3+} + e^{-} \Rightarrow Cr^{2+}$ $-0,41$ $Cd^{2+} + 2e^{-} \Rightarrow Cd$ $-0,40$ $Co^{2+} + 2e^{-} \Rightarrow Cd$ $-0,28$ $Ni^{2+} + 2e^{-} \Rightarrow Ni$ $-0,27$ $Sn^{2+} + 2e^{-} \Rightarrow Sn$ $-0,14$ $Pb^{2+} + 2e^{-} \Rightarrow Pb$ $-0,13$ $Fe^{3+} + 3e^{-} \Rightarrow Fe$ $-0,06$ $2H^{+} + 2e^{-} \Rightarrow H_{2}(g)$ $0,00$ $S + 2H^{+} + 2e^{-} \Rightarrow H_{2}(g)$ $0,00$ $S + 2H^{+} + 2e^{-} \Rightarrow Sn^{2+}$ $+0,15$ $Cu^{2+} + e^{-} \Rightarrow Cu^{+}$ $+0,16$ $SO_{4}^{2\Box} + 4H^{+} + 2e^{-} \Rightarrow SO_{2}(g) + 2H_{2}O$ $+0,17$ $Cu^{2+} + 2e^{-} \Rightarrow Cu$ $+0,34$ $2H_{2}O + O_{2} + 4e^{-} \Rightarrow 4OH^{-}$ $+0,40$ $SO_{2} + 4H^{+} + 4e^{-} \Rightarrow S + 2H_{2}O$ $+0,45$ $Cu^{+} + e^{-} \Rightarrow Cu$ $+0,54$	21120 1 20			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$7n^{2+} + 2e^{-}$			
$Fe^{2^{+}} + 2e^{-} \implies Fe$ $Cr^{3^{+}} + e^{-} \implies Cr^{2^{+}}$ $-0,44$ $Cd^{2^{+}} + 2e^{-} \implies Cd$ $-0,40$ $Co^{2^{+}} + 2e^{-} \implies Co$ $Ni^{2^{+}} + 2e^{-} \implies Ni$ $Sn^{2^{+}} + 2e^{-} \implies Sn$ $-0,14$ $Pb^{2^{+}} + 2e^{-} \implies Pb$ $-0,13$ $Fe^{3^{+}} + 3e^{-} \implies Fe$ $2H^{+} + 2e^{-} \implies H_{2}(g)$ $S + 2H^{+} + 2e^{-} \implies H_{2}S(g)$ $Sn^{4^{+}} + 2e^{-} \implies Sn^{2^{+}}$ $Cu^{2^{+}} + e^{-} \implies Cu^{+}$ $SO_{4}^{2\square} + 4H^{+} + 2e^{-} \implies SO_{2}(g) + 2H_{2}O$ $Cu^{2^{+}} + 2e^{-} \implies Cu$ $2H_{2}O + O_{2} + 4e^{-} \implies 4OH^{-}$ $SO_{2} + 4H^{+} + 4e^{-} \implies S + 2H_{2}O$ $Cu^{+} + e^{-} \implies Cu$ $1_{2} + 2e^{-} \implies Cu$ $1_{3} + 2e^{-} \implies Cu$ $1_{4} + 2e^{-} \implies Cu$ $1_{5} $				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			i	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$Ni^{2+} + 2e^{-} \Rightarrow Ni$ $-0,27$ $Sn^{2+} + 2e^{-} \Rightarrow Sn$ $-0,14$ $Pb^{2+} + 2e^{-} \Rightarrow Pb$ $-0,13$ $Fe^{3+} + 3e^{-} \Rightarrow Fe$ $-0,06$ $2H^{+} + 2e^{-} \Rightarrow H_{2}(g)$ $0,00$ $S + 2H^{+} + 2e^{-} \Rightarrow H_{2}S(g)$ $+0,14$ $Sn^{4+} + 2e^{-} \Rightarrow Sn^{2+}$ $+0,15$ $Cu^{2+} + e^{-} \Rightarrow Cu^{+}$ $+0,16$ $SO_{4}^{2\Box} + 4H^{+} + 2e^{-} \Rightarrow SO_{2}(g) + 2H_{2}O$ $+0,17$ $Cu^{2+} + 2e^{-} \Rightarrow Cu$ $+0,34$ $2H_{2}O + O_{2} + 4e^{-} \Rightarrow 4OH^{-}$ $+0,40$ $SO_{2} + 4H^{+} + 4e^{-} \Rightarrow S + 2H_{2}O$ $+0,45$ $Cu^{+} + e^{-} \Rightarrow Cu$ $+0,52$ $I_{2} + 2e^{-} \Rightarrow 2I^{-}$ $+0,54$ $O_{2}(g) + 2H^{+} + 2e^{-} \Rightarrow H_{2}O_{2}$ $+0,68$				
$Sn^{2+} + 2e^{-} \Rightarrow Sn$ $-0,14$ $Pb^{2+} + 2e^{-} \Rightarrow Pb$ $-0,13$ $Fe^{3+} + 3e^{-} \Rightarrow Fe$ $-0,06$ $2H^{+} + 2e^{-} \Rightarrow H_{2}(g)$ $0,00$ $S + 2H^{+} + 2e^{-} \Rightarrow H_{2}S(g)$ $+0,14$ $Sn^{4+} + 2e^{-} \Rightarrow Sn^{2+}$ $+0,15$ $Cu^{2+} + e^{-} \Rightarrow Cu^{+}$ $+0,16$ $SO_{4}^{2\Box} + 4H^{+} + 2e^{-} \Rightarrow SO_{2}(g) + 2H_{2}O$ $+0,17$ $Cu^{2+} + 2e^{-} \Rightarrow Cu$ $+0,34$ $2H_{2}O + O_{2} + 4e^{-} \Rightarrow 4OH^{-}$ $+0,40$ $SO_{2} + 4H^{+} + 4e^{-} \Rightarrow S + 2H_{2}O$ $+0,45$ $Cu^{+} + e^{-} \Rightarrow Cu$ $+0,52$ $I_{2} + 2e^{-} \Rightarrow 2I^{-}$ $+0,54$ $O_{2}(g) + 2H^{+} + 2e^{-} \Rightarrow H_{2}O_{2}$ $+0,68$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$Fe^{3+} + 3e^{-} \implies Fe$ $2H^{+} + 2e^{-} \implies H_{2}(g)$ $S + 2H^{+} + 2e^{-} \implies H_{2}S(g)$ $Sn^{4+} + 2e^{-} \implies Sn^{2+}$ $Cu^{2+} + e^{-} \implies Cu^{+}$ $+ 0,15$ $Cu^{2+} + 2e^{-} \implies SO_{2}(g) + 2H_{2}O$ $+ 0,17$ $Cu^{2+} + 2e^{-} \implies Cu$ $2H_{2}O + O_{2} + 4e^{-} \implies 4OH^{-}$ $SO_{2} + 4H^{+} + 4e^{-} \implies S + 2H_{2}O$ $Cu^{+} + e^{-} \implies Cu$ $1_{2} + 2e^{-} \implies 2I^{-}$ $O_{2}(g) + 2H^{+} + 2e^{-} \implies H_{2}O_{2}$ $+ 0,54$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		=	Fe	- 0,06
$Sn^{4+} + 2e^{-} \Rightarrow Sn^{2+} + 0,15$ $Cu^{2+} + e^{-} \Rightarrow Cu^{+} + 0,16$ $SO_{4}^{2\square} + 4H^{+} + 2e^{-} \Rightarrow SO_{2}(g) + 2H_{2}O + 0,17$ $Cu^{2+} + 2e^{-} \Rightarrow Cu + 0,34$ $2H_{2}O + O_{2} + 4e^{-} \Rightarrow 4OH^{-} + 0,40$ $SO_{2} + 4H^{+} + 4e^{-} \Rightarrow S + 2H_{2}O + 0,45$ $Cu^{+} + e^{-} \Rightarrow Cu + 0,52$ $I_{2} + 2e^{-} \Rightarrow 2I^{-} + 0,54$ $O_{2}(g) + 2H^{+} + 2e^{-} \Rightarrow H_{2}O_{2} + 0,68$	2H ⁺ + 2e ⁻	=	H ₂ (g)	
$Sn^{4+} + 2e^{-} \Rightarrow Sn^{2+} + 0,15$ $Cu^{2+} + e^{-} \Rightarrow Cu^{+} + 0,16$ $SO_{4}^{2\square} + 4H^{+} + 2e^{-} \Rightarrow SO_{2}(g) + 2H_{2}O + 0,17$ $Cu^{2+} + 2e^{-} \Rightarrow Cu + 0,34$ $2H_{2}O + O_{2} + 4e^{-} \Rightarrow 4OH^{-} + 0,40$ $SO_{2} + 4H^{+} + 4e^{-} \Rightarrow S + 2H_{2}O + 0,45$ $Cu^{+} + e^{-} \Rightarrow Cu + 0,52$ $I_{2} + 2e^{-} \Rightarrow 2I^{-} + 0,54$ $O_{2}(g) + 2H^{+} + 2e^{-} \Rightarrow H_{2}O_{2} + 0,68$	S + 2H ⁺ + 2e ⁻	=	H ₂ S(g)	+ 0,14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Sn ⁴⁺ + 2e⁻	=	Sn ²⁺	+ 0,15
$Cu^{2+} + 2e^{-} \Rightarrow Cu + 0.34$ $2H_2O + O_2 + 4e^{-} \Rightarrow 4OH^{-} + 0.40$ $SO_2 + 4H^{+} + 4e^{-} \Rightarrow S + 2H_2O + 0.45$ $Cu^{+} + e^{-} \Rightarrow Cu + 0.52$ $I_2 + 2e^{-} \Rightarrow 2I^{-} + 0.54$ $O_2(g) + 2H^{+} + 2e^{-} \Rightarrow H_2O_2 + 0.68$	Cu ²⁺ + e ⁻	=	Cu [⁺]	+ 0,16
$2H_{2}O + O_{2} + 4e^{-} \implies 4OH^{-} + 0,40$ $SO_{2} + 4H^{+} + 4e^{-} \implies S + 2H_{2}O + 0,45$ $Cu^{+} + e^{-} \implies Cu + 0,52$ $I_{2} + 2e^{-} \implies 2I^{-} + 0,54$ $O_{2}(g) + 2H^{+} + 2e^{-} \implies H_{2}O_{2} + 0,68$	SO ² □ + 4H ⁺ + 2e ⁻	=	SO ₂ (g) + 2H ₂ O	+ 0,17
$SO_2 + 4H^+ + 4e^- \Rightarrow S + 2H_2O$ + 0,45 $Cu^+ + e^- \Rightarrow Cu$ + 0,52 $I_2 + 2e^- \Rightarrow 2I^-$ + 0,54 $O_2(g) + 2H^+ + 2e^- \Rightarrow H_2O_2$ + 0,68	Cu ²⁺ + 2e ⁻	==	Cu	+ 0,34
$Cu^{+} + e^{-} \Rightarrow Cu + 0,52$ $I_{2} + 2e^{-} \Rightarrow 2I^{-} + 0,54$ $O_{2}(g) + 2H^{+} + 2e^{-} \Rightarrow H_{2}O_{2} + 0,68$	$2H_2O + O_2 + 4e^-$	=	40H~	+ 0,40
$I_2 + 2e^- \Rightarrow 2I^- + 0,54$ $O_2(g) + 2H^+ + 2e^- \Rightarrow H_2O_2 + 0,68$	SO ₂ + 4H ⁺ + 4e ⁻	==	S + 2H ₂ O	+ 0,45
$O_2(g) + 2H^+ + 2e^- \Rightarrow H_2O_2 + 0.68$	Cu⁺ + e⁻	=	Cu	+ 0,52
		#	21-	+ 0,54
$Fe^{3+} + e^{-} \Rightarrow Fe^{2+} + 0,77$		==		+ 0,68
_		==	Fe ²⁺	+ 0,77
$NO_3^{\Box} + 2H^+ + e^- \Rightarrow NO_2(g) + H_2O + 0.80$	$NO_{3}^{\Box} + 2H^{+} + e^{-}$	==	$NO_2(g) + H_2O$	+ 0,80
		=	Ag	+ 0,80
$Hg^{2^+} + 2e^- \Rightarrow Hg(\ell) + 0.85$	Hg ²⁺ + 2e⁻	=	Hg(ℓ)	+ 0,85
$NO_3^{\Box} + 4H^+ + 3e^- \Rightarrow NO(g) + 2H_2O + 0.96$	NO $_{3}^{\Box}$ + 4H ⁺ + 3e ⁻	₩.	NO(g) + 2H ₂ O	+ 0,96
· ·		=	2Br⁻	+ 1,07
<u> </u>		=	· ·	+ 1,20
1	_	=	Mn ²⁺ + 2H ₂ O	+ 1,23
_		===		+ 1,23
$Cr_2O_7^{2\square} + 14H^+ + 6e^- \Rightarrow 2Cr^{3+} + 7H_2O$ + 1,33	$Cr_2O_7^{2\Box} + 14H^+ + 6e^-$	=	2Cr ³⁺ + 7H ₂ O	+ 1,33
$C\ell_2(g) + 2e^- \Rightarrow 2C\ell^- + 1,36$	$Cl_2(g) + 2e^{-}$	==	2Cℓ ⁻	+ 1,36
$MnO_{4}^{\Box} + 8H^{+} + 5e^{-} \Rightarrow Mn^{2+} + 4H_{2}O + 1,51$	MnO	=	Mn ²⁺ + 4H ₂ O	+ 1,51
$H_2O_2 + 2H^+ + 2e^- \Rightarrow 2H_2O$ +1,77	H ₂ O ₂ + 2H ⁺ +2 e	=		+1,77
$Co^{3+} + e^{-} = Co^{2+} + 1,81$	Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81
$F_2(g) + 2e^- \Rightarrow 2F^- + 2.87$	$F_{0}(a) + 2e^{-}$	=		+ 2,87

Increasing strength of reducing agents/Toenemende sterkte van reduseermiddels

Increasing strength of oxidising agents/Toenemende sterkte van oksideermiddels

basic education

Department: **Basic Education** REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS SENIORSERTIFIKAAT-EKSAMEN/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

> PHYSICAL SCIENCES: CHEMISTRY (P2) FISIESE WETENSKAPPE: CHEMIE (V2)

> > 2022

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

Approved: DBE

DBE CM

DBE IM

Approved: Umalusi Modertors

MEdello

3/06/2022

06/2022

3/06/2022

3/06/2022

These marking guidelines consist of 16 pages./ Hierdie nasienriglyne bestaan uit 16 bladsye.

Please turn over/Blaai om asseblief

Physical Sciences P2/Fisiese Wetenskappe V2 SC/NSC/SS/NSS - Marking Guidelines/Nasienriglyne

DBE/2022

(2)

(2)

(3)

QUESTION 1/VRAAG 1

B√√

1.1

1.8

1.2	$D\checkmark\checkmark$	(2)
		,

1.7
$$C \checkmark \checkmark$$
 (2)
1.8 $A \checkmark \checkmark$

QUESTION 2/VRAAG 2

2.2 2-bromo-2,4,5-trimethylhexane/2-broom-2,4,5-trimetielheksaan 2.2.1

Marking criteria: Nasienkriteria: Correct stem i.e. hexane. ✓

- All substituents (bromo and trimethyl) correctly identified. ✓
- IUPAC name completely correct including numbering, sequence, hyphens and commas. <
- Korrekte stam d.i. heksaan. √
- Alle substituente (bromo and trimetiel) korrek geïdentifiseer. ✓
- IUPAC-naam heeltemal korrek insluitende volgorde, koppeltekens en kommas. ✓

DEPARTMENT OF BASIC EDUCATION

PRIVATE BAG X895, PRETORIA 0001

2022 -06- 03

APPROVED MARKING GUIDELINE PUBLIC EXAMINATION

Copyright reserved/Kopiereg voorbehou

Physical Sciences P2/Fisiese Wetenskappe V2 SC/NSC/SS/NSS - Marking Guidelines/Nasienriglyne DBE/2022

2.2.2

Marking criteria/Nasienkriteria:

- Five C atoms in longest chain + triple bond. ✓
 - Vyf C-atome in langste ketting + drievoudige binding.
- Two methyl substituents. ✓ Twee metielsubstituente.
- Whole structure correct. Hele struktuur korrek. ✓

IF/INDIEN

- More than one functional group/wrong functional group: Meer as een funksionele groep/foutiewe funksionele groep/
- If condensed structural formulae used/Indien gekondenseerde struktuurformules Max/Maks.: $\frac{2}{3}$ gebruik:
- 2.3
- 2.3.1 Aldehyde/Aldehied ✓

(1)

(3)

2.3.2 Formyl/Formiel ✓ (1)

(2)

2.3.3

stanni Marking criteria/Nasienkriteria:

- Functional group. ✓ Funksionele groep.
- Whole structure correct. Hele struktuur korrek. ✓

IF/INDIEN

- More than one functional group/wrong functional group: Meer as een funksionele groep/foutiewe funksionele groep:
- If condensed structural formulae used/Indien gekondenseerde struktuurformules gebruik: Max/Maks.: 1/2

2.4

- 2.4.1 Methyl√propane√/2-methylpropane/Metielpropaan/2-metielpropaan
- (2)
- 2.4.2 $2C_4H_{10} + 13O_2 \checkmark \rightarrow 8CO_2 + 10H_2O \checkmark$ Bal. ✓

Ignore phases./Ignoreer fases.

Marking criteria/Nasienkriteria:

- Reactants √ Products √ Balancing: ✓ Balansering Reaktanse Produkte
- Ignore double arrows./Ignoreer dubbelpyle.
- Marking rule 6.3.10/Nasienreël 6.3.10.

IF: Structural formula for C₄H₁₀ Max. 2/3

INDIEN: Structural formula for C₄H₁₀ Max. 2/3

(3) [19]

Physical Sciences P2/Fisiese Wetenskappe V2 4 SC/NSC/SS/NSS – Marking Guidelines/Nasienriglyne

DBE/2022

QUESTION 3/VRAAG 3

3.1 Marking criteria/Nasienkriteria

If any one of the underlined key phrases in the **correct context** is omitted, deduct 1 mark. Indien enige van die onderstreepte frases in die **korrekte konteks** uitgelaat is, trek 1 punt af.

(2)

3.2

3.2.1 Increases/Neem toe ✓

(1)

3.2.2 From A to C:

• <u>Increase in molecular mass/size/chain length/surface area/number of C atoms.</u> ✓

imorephysics.com

- <u>Strength of the intermolecular forces increases/More sites for London forces.</u> ✓
- More energy is needed to overcome/break intermolecular forces. ✓

PRIVATE BAG X886, PRETORIA 0001

2022 -06- U 3

APPROVED MARKING GUIDELINE
PUBLIC EXAMINATION

OR

From C to A:

- <u>Decrease in molecular mass/size/chain length/surface area/number of C</u> atoms. ✓
- <u>Strength of the intermolecular forces decreases/Less sites for London forces.</u> ✓
- Less energy is needed to overcome/break intermolecular forces. ✓

Van A na C:

- <u>Verhoging in molekulêre massa/molekulêre grootte/kettinglengte/reaksie-oppervlak/aantal C-atome</u>. ✓
- <u>Sterkte van die intermolekulêre kragte verhoog./Meer punte</u> vir Londonkragte. √
- Meer energie benodig om intermolekulêre kragte te oorkom/breek. ✓

OF

Van C na A:

- <u>Verlaging in molekulêre massa/molekulêre grootte/kettinglengte/reaksie-oppervlak/aantal C-atome.</u> ✓
- <u>Sterkte van die intermolekulêre kragte verlaag./Minder punte</u> vir Londonkragte. ✓
- Minder energie benodig om intermolekulêre kragte te oorkom/breek. √ (3)

3.3 No / Nee ✓

More than one independent variable./Molar mass and chain length (surface area) are changing. \checkmark

Meer as een onafhanklike veranderlike./Molêre massa (reaksie-oppervlak) en kettinglengte verander.

(2)

(1)

[12]

(1)

(2)

(2)

(2)

Physical Sciences P2/Fisiese Wetenskappe V2 SC/NSC/SS/NSS - Marking Guidelines/Nasienriglyne

- 3.4 3.4.1 Functional group/homologous series/type of intermolecular forces/type of (1) compound ✓ Funksionele groep/homoloë reeks/soort intermolekulêre kragte/tipe verbinding
- 3.4.2 <u>Dipole-dipole</u> forces/<u>Dipool-dipoolkragte</u> ✓

3.5 ○ D / methylbutane / metielbutaan ✓ ower boiling point/Weaker intermolecular forces ✓

Laer kookpunt/Swakker intermolekulêre kragte nmorephysics.com

QUESTION 4/VRAAG 4

4.1 4.1.1 Dehydrohalogenation/elimination/dehydrobromination • Dehidrohalogenering/eliminasie/dehidrobrominering

4.1.2 2-methylbut-2-ene / 2-methyl-2-butene ✓ ✓ Marking criteria/Nasienkriteria 2-metielbut-2-een / 2-metiel-2-buteen ✓ ✓ Methylbutene/metielbuteen ✓

IUPAC name correct/IUPAC-naam korrek √

IF/INDIEN

Any error, e.g. hyphens omitted and/or incorrect sequence/Enige fout, bv. koppeltekens weggelaat en/of verkeerde volgorde: Max/Maks: 1/2

4.1.3 Water/H₂O ✓ (1)

4.1.4 Heat/Hitte ✓ (Concentrated) sulphuric acid/catalyst ✓ (Gekonsentreerde) swawelsuur/katalisator

ACCEPT/AANVAAR: High temperature/ <u>Hoë temperatuur</u>

4.1.5 0 Η

Marking criteria/Nasienkriteria Whole structure correct/Hele struktuur korrek: $\frac{2}{2}$

 Only functional group correct:/Slegs funksionele groep korrek: Max/Maks.: 1/2

More than one functional group/Meer as een funksionele groep

4.2 4.2.1 Catalyst/Lowers the activation energy./Increases the rate of the reaction. ✓ Katalisator/Verlaag die aktiveringsenergie./Laat reaksietempo toeneem. (1)

Physical Sciences P2/Fisiese Wetenskappe V2 6 SC/NSC/SS/NSS – Marking Guidelines/Nasienriglyne

DBE/2022

4.2.2 The bromine water/Br₂/solution decolourises. ✓ *Die broomwater/Br₂/oplossing ontkleur.*

OR/OF

Bromine water/Br₂/solution changes from brown/reddish to colourless. *Broomwater/Br*₂/oplossing verander van bruin/rooi na kleurloos.

(1)

4.2.3 Addition/halogenation/bromination ✓ *Addisie/halogenering/brominering*

(1)

4.2.4 $C_2H_6 \checkmark \checkmark \checkmark$ (3 or/of 0)

OR/OF

C₄H₁₀

OR/OF

C₆H₁₄

IF structural/condensed formulae: (2 or 0)

INDIEN struktuurformules/gekondenseerde formules gebruik: (2 of 0)

(3)

4.2.5 Marking criteria

- Correct functional group i.e. double bond. ✓
- Correct number of C atoms in relation to answer in Q4.2.4. ✓
- Whole structure correct. √
 IF condensed/molecular formulae used: Max. ²/₃

Nasienkriteria

- Korrekte funksionele groep d.i. dubbelbinding. √
- Korrekte aantal C-atome na aanleiding van antwoord in V4.2.4. √
- Hele struktuur korrek. √

INDIEN gekondenseerde/molekulêre formules gebruik: Maks. ²/₂

IF C2H6 in QUESTION 4.2.4/INDIEN C2H6 in VRAAG 4.2.4:

IF C₄H₁₀ in QUESTION 4.2.4/ INDIEN C₄H₁₀ in VRAAG 4.2.4:

IF C₆H₁₄ in QUESTION 4.2.4: INDIEN C₆H₁₄ in VRAAG 4.2.4:

(3) **[17]**

Physical Sciences P2/Fisiese Wetenskappe V2 7 SC/NSC/SS/NSS – Marking Guidelines/Nasienriglyne DBE/2022

QUESTION 5/VRAAG 5

5.1 **NOTE/LET WEL**

Give the mark for <u>per unit time</u> only if in context of reaction rate. Gee die punt vir <u>per eenheidtyd slegs indien in konteks met reaksietempo.</u>

ANY ONE:

- Change in concentration ✓ of products/reactants per (unit) time. ✓
- <u>Change in amount/number of moles/volume/mass</u> of products or reactants per (unit) time.
- <u>Amount/number of moles/volume/mass of products formed/reactants used per (unit) time.</u>
- Rate of change in concentration/amount/number of moles/volume/ mass. ✓ ✓ (2 or 0)

ENIGE EEN:

- <u>Verandering in konsentrasie</u> van produkte/reaktanse <u>per (eenheid)</u> tyd.
- <u>Verandering in hoeveelheid/getal mol/volume/massa</u> van produkte of reaktanse <u>per (eenheid) tyd.</u>
- <u>Hoeveelheid/getal mol/volume/massa van produkte gevorm/reaktanse gebruik per (eenheid) tyd.</u>
- Tempo van verandering in konsentrasie/ hoeveelheid/getal mol/volume/massa. (2 of 0)
- 5.2 Surface area / state of division / particle size (of MgCO₃) ✓
 - Concentration (of HCℓ) ✓
 - Reaksieoppervlak/toestand van verdeeldheid/deeltjie-grootte (van MgCO₃)
 - Konsentrasie (van HCl)
- At a higher temperature particles move faster/have a higher kinetic energy. ✓
 - More molecules have enough/sufficient kinetic energy for an effective collision. ✓
 - OR <u>More molecules have kinetic energy/E_k equal to or greater than the activation energy</u>.
 - More effective collisions per unit time/second. ✓
 OR Frequency of effective collisions increases.
 - Reaction rate increases. ✓
 - By 'n hoër temperatuur beweeg die deeltjies vinniger/het die deeltjies hoër kinetiese energie. √
 - <u>Meer molekule het genoeg/voldoende kinetiese energie/E_k vir 'n</u> effektiewe botsing. ✓
 - **OF** <u>Meer molekule het kinetiese energie gelyk aan of groter as die aktiveringsene</u>rgie.
 - Meer effektiewe botsings per eenheidtyd/sekonde. ✓
 OF Frekwensie van effektiewe botsings verhoog.
 - Reaksietempo neem toe. ✓

(2)

(2)

(4)

Physical Sciences P2/Fisiese Wetenskappe V2 SC/NSC/SS/NSS - Marking Guidelines/Nasienriglyne

DBE/2022

5.4.1 Marking criteria

- Formula: $n = \frac{m}{M}$
- Substitution of 84 g·mol⁻¹ in n = $\frac{m}{M}$ \checkmark
- · Use mole ratio: $n(MgCO_3)_{used} = n(CO_2)_{produced} \checkmark$
- Substitution of 44 g·mol⁻¹ in n = or to calculate rate in mol·min⁻¹. ✓
- · Correct substitution of 0,5 in rate equation. <
- Final answer: 5,238 to 5,28 min ✓

Nasienkriteria

- Formule: $n = \frac{m}{M} \checkmark$
- Vervanging van 84 g·mol⁻¹ in $n = \frac{m}{M} \checkmark$
- Gebruik molverhouding: $n(MgCO_3)_{gebruik} = n(CO_2)_{berei} \checkmark$
- Vervanging van 44 g·mol⁻¹ in $n = \frac{m}{M}$
- of om tempo te bereken in mol·min⁻¹. ✓ Korrekte vervanging van
- tempovergelyking. ✓
- Finale antwoord: 5,238 tot 5,28 min ✓

$$n(MgCO_3) = \frac{m}{M} \checkmark$$

$$= \frac{5}{84} \checkmark$$

$$= 0.06 \underline{mol} \quad (0.0595 \underline{mol})$$

 $n(CO_2)_{produced/gevorm} = n(MgCO_3) \checkmark = 0.06 \text{ mol}$

$$n(CO_2) = \frac{m}{M}$$

 $0.06 = \frac{m}{44}$

$$m(CO_2) = 2,64 g$$

Ave rate/gem tempo =
$$\frac{\Delta m(CO_2)}{\Delta t}$$

 $0.5 \checkmark = \frac{2.64}{\Delta t}$

$$0.5 \checkmark = \frac{\Delta t}{\Delta t}$$

$$\Delta t = 5.28 \text{ min } \checkmark$$

Ave rate/gem tempo in mol·min-1: $\frac{0.5}{44}$ = 0.0114 mol·min⁻¹

Ave rate/gem tempo =
$$\frac{\Delta n(CO_2)}{\Delta t}$$

$$0.0114 = \frac{0.06}{\Delta t}$$

$$\Delta t = 5, 28 \text{ min } \checkmark$$

5.4.2 POSITIVE MARKING FROM QUESTION 5.4.1. POSITIEWE NASIEN VANAF VRAAG 5.4.1.

Marking criteria

• Substitution of n(CO₂) AND 1,5 dm³ in

$$n = \frac{V}{V_m}$$
. \checkmark

- · Final answer:
- \25 to 25,21 dm³·mol⁻¹√

- Nasienkriteria
- Vervanging van n(CO₂) EN 1,5 dm³ in

$$n = \frac{V}{V_m}$$
.

· Finale antwoord:

25 dm³ tot 25,21 dm³·mol⁻¹ √

$$n = \frac{V}{V_{m}}$$

$$0.06 = 1.5$$

 $V_m = 25 \text{ dm}^3 \cdot \text{mol}^{-1} \checkmark (25,21 \text{ dm}^3 \cdot \text{mol}^{-1})$

ACCEPT/AANVAAR: 25 dm³

(2)

(6)

Physical Sciences P2/Fisiese Wetenskappe V2 9 SC/NSC/SS/NSS – Marking Guidelines/Nasienriglyne DBE/2022

Kinetic energy/Kinetiese energie

Marl	king criteria/Nasienkriteria			
1	Curve B has a higher peak to the left of curve A .	1		
'	Kurwe B het hoër piek aan die linkerkant van kurwe A.	ľ		
Curve B is below curve A beyond the peak of curve		/		
	2 Curve B is below curve A beyond the peak of curve A./Kurwe B is onder kurwe A na die piek van kurwe A.			
	TH graphs not labelled (A and B): no marks			
Indie	n BEIDE grafieke nie benoem nie (A en B): geen punte			

(2) **[18]**

QUESTION 6/VRAAG 6

6.1.1 2 (mol·dm⁻³) ✓

(1)

6.1.2 Marking criteria/Nasienkriteria:

If any one of the underlined key phrases in the **correct context** is omitted, deduct 1 mark./Indien enige van die onderstreepte frases in die **korrekte konteks** uitgelaat is, trek 1 punt af.

When the equilibrium in a closed system is disturbed, the system will re-instate a (new) equilibrium \checkmark by favouring the reaction that will cancel/oppose the disturbance. \checkmark

<u>Wanneer die ewewig in 'n geslote sisteem versteur word</u>, sal die sisteem 'n (nuwe) <u>ewewig instel</u> deur die reaksie te bevoordeel wat die <u>versteuring kanselleer/teenwerk</u>.

(2)

6.1.3 Cooled/Afgekoel √

(1)

- 6.1.4 A decrease in temperature favours the exothermic reaction./An increase in temperature favours the endothermic reaction. ✓
 - The forward reaction is favoured./HI concentration increases./Equilibrium (position) shifts to the right. ✓
 - The forward reaction is exothermic./Reverse reaction is endothermic. ✓
 - Afname in temperatuur bevoordeel die eksotermiese reaksie./Toename in temperatuur bevoordeel die endotermiese reaksie. ✓
 - Die voorwaartse reaksie word bevoordeel./ HI-konsentrasie neem toe./Die ewewigs(posisie) skuif na regs. ✓
 - Voorwaatse reaksie is eksotermies./Die terugwaartse reaksie is endotermies. √

(3)

Physical Sciences P2/Fisiese Wetenskappe V2 10 SC/NSC/SS/NSS - Marking Guidelines/Nasienriglyne

DBE/2022

6.2

6.2.1 Products can be converted back to reactants. ✓

Both forward and reverse reactions can take place.

OR

A reaction which can take place in both directions.

Produkte kan omgeskakel word na reaktanse. ✓

OF

Beide voor-en terugwaartse reaksies kan plaasvind.

OF

'n Reaksie wat in beide rigtings kan plaasvind.

(1)

6.2.2 Marking criteria

- a) $\Delta n(N_2O_4) = n(N_2O_4)_{eq} n(N_2O_4)_{ini.} \checkmark$
- b) USING ratio: $n(NO_2) : n(N_2O_4) = 2 : 1 \checkmark$
- c) $n(NO_2)_{eq} = n(NO_2)_{ini} \Delta n(NO_2) \checkmark$
- d) Divide BOTH by 1 dm³ √
- e) Correct Kc expression (formulae in square brackets). ✓

Nasienkriteria:

- (a) $\Delta n(N_2O_4) = n(N_2O_4)_{\text{ewe}} n(N_2O_4)_{\text{aanv.}} \checkmark$
- (b) GEBRUIK verhouding: $n(NO_2): n(N_2O_4) = 2: 1 \checkmark$
- (c) $n(NO_2)_{\text{ewe}} = n(NO_2)_{\text{aanv}} \Delta n(NO_2) \checkmark$
- (d) Deel BEIDE deur 1 dm³ ✓
- (e) Korrekte K_c uitdrukking (formules in vierkantige hakies). ✓

	NO ₂	N ₂ O ₄	
Initial amount (moles) Aanvangshoeveelheid (mol)	х	0	(b)
Change in amount (moles) Verandering in hoeveelheid (mol)	1,62	0,81 ^(a)	ratio verhouding
Equilibrium amount (moles) Ewewigshoeveelheid (mol)	$x - 1,62 \stackrel{(c)}{\checkmark}$	0,81	
Equilibrium concentration (mol·dm ⁻³) <i>Ewewigskonsentrasie (mol·dm</i> ⁻³)	x – 1,62	0,81	(d) ÷ dm³ √

$$K_c = \frac{[N_2O_4]}{[NO_2]^2} \checkmark (e)$$

$$= \frac{(0.81)}{(x-1.62)^2}$$

Wrong or no K_c expression/Verkeerde of geen K_cuitdrukking: Max./Maks. 4/5

(5)

Physical Sciences P2/Fisiese Wetenskappe V2 11 SC/NSC/SS/NSS – Marking Guidelines/Nasienriglyne

DBE/2022

6.2.3 <u>POSITIVE MARKING FROM QUESTION 6.2.2</u> <u>POSITIEWE NASIEN VAN VRAAG 6.2.2.</u>

Marking criteria

- a) Add 0,79 mol to $n(N_2O_4)_{ini}$.
- b) <u>USING</u> ratio: $n(NO_2)$: $n(N_2O_4) = 2$: 1 to calculate $\Delta n(N_2O_4)$ as 0,6 mol. \checkmark
- c) $n(NO_2)_{eq} = n(NO_2)_{ini} + \Delta n(NO_2)$ $n(N_2O_4)_{eq} = n(N_2O_4)_{ini} - \Delta n(N_2O_4)$
- d) Substitution of concentrations into correct K_c expression. ✓
- e) Equating K_c expresssion from Q6.1.3 and Q6.2.3. ✓
- f) Final answer: 12,42 √ (Range: 11,27 12,42)

Nasienkriteria:

- (a) Voeg 0,79 mol by n(N₂O₄)_{aanv.} √
- (b) <u>GEBRUIK</u> verhouding: $n(NO_2)$: $n(N_2O_4) = 2$: 1 om $\Delta n(N_2O_4)$ as 0,6 mol te bereken. \checkmark
- (c) $n(NO_2)_{\text{ewe}} = n(NO_2)_{aanv} + \Delta n(NO_2)$ $n(N_2O_4)_{\text{ewe}} = n(N_2O_4)_{aanv} - \Delta n(N_2O_4)$
- (d) Vervanging van konsentrasies in korrekte K₅-uitdrukking.
- (e) Stel K_c-uitdrukking van Q6.1.3 en Q6.2.3 gelyk aan mekaar. ✓
- (f) Finale antwoord: 12,42 ✓ (Gebied: 11,27 – 12,42)

	-	
APPROVED MARKING GUIDELINE	PUBLIC EXAMINATION	
4	1	

PRIVATE BAG X895, PRETORIA 0001

EDUCATION

	NO ₂	N ₂ O ₄	
Initial amount (moles) Aanvangs hoeveelheid (mol)	x – 1,62	0,81 <u>+ 0,79</u> ✓ = 1,6	(a
Change in amount (moles) Verandering in hoeveelheid (mol)	1,2	0,6 ✓	(1
Equilibrium amount (moles) Ewewigshoeveelheid (mol)	x - 1,62 <u>+1,2</u>	1 (c)	
Equilibrium concentration (mol·dm ⁻³) <i>Ewewigskonsentrasie (mol·dm⁻³)</i>	x - 0,42	1	

$$K_{c} = \frac{[N_{2}O_{4}]}{[NO_{2}]^{2}}$$

$$\frac{(0.81)}{(x-1.62)^{2}} \stackrel{\text{(e)}}{=} \frac{1}{(x-0.42)^{2}} \checkmark \text{(d)}$$

$$x = 12.42 \text{ (mol)} \checkmark \text{(f)}$$

Wrong K_c expression/Verkeerde K_{c^-} uitdrukking: Max./Maks. $^4/_6$

No K_c expression/Geen K_c- uitdrukking: ⁶/₆

(6) **[19]**

(2)

QUESTION 7/VRAAG 7

7.1

7.1.1 An acid is a proton (H⁺ ion) donor. ✓ ✓ 'n Suur is 'n protondonor/skenker of H⁺-ioon donor/skenker.

7.1.2

HY✓

For the SAME acid concentration:

Lower pH / higher H⁺ or H₃O⁺ concentration / more ionised. ✓ *Vir DIESELFDE suurkonsentrasie:*Laer pH / hoër H⁺/H₃O⁺ konsentrasie / meer geïoniseer.

(2)

7.1.3 Cower than./Laer as ✓

 $K_a < 1$ / HX ionises incompletely. / HX has a small K_a value. / HX is a weak acid. \checkmark

 $K_a < 1$ / HX ioniseer onvolledig. / HX het 'n klein K_a -waarde. / HX is 'n swak suur.

(2)

Physical Sciences P2/Fisiese Wetenskappe V2 12 SC/NSC/SS/NSS – Marking Guidelines/Nasienriglyne

DBE/2022

7.2

7.2.1 pH =
$$-\log[H_3O^+]$$
 OR/OF $[H_3O^+] = 10^{-pH}$ \checkmark $2 \checkmark = -\log[H_3O^+]$ $[H_3O^+] = 0.01 \text{ mol·dm}^{-3}$ \checkmark $(1 \times 10^{-2} \text{ mol·dm}^{-3})$

(3)

7.2.2 <u>POSITIVE MARKING FROM QUESTION 7.2.1</u>. POSITIEWE NASIEN VAN VRAAG 7.2.1.

Marking criteria for OPTION 1:

- Substitute c(HCℓ)_{excess} and 0,35 dm³ to calculate n(HCℓ)_{excess}.√
- Substitute to calculate n(HCℓ)_{initial} ✓
- n(HCℓ)_{react} = n(HCℓ)_{ini} n(HCℓ)_{excess}. ✓ ✓
- Use ratio: n(NaOH) = n(HCℓ) ✓
- Substitute 0,15 dm³ in c = $\frac{n}{V}$.
- Final answer: 0,02 mol·dm⁻³ √
 or 0,0167 mol·dm⁻³ or 0,017 mol·dm⁻³

Nasienkriteria vir OPSIE 1:

- Vervang c(HCl)_{cormaat} en 0,35 dm³ om n(HCl)_{cormaat} te bereken.√
- Vervang om n(HCℓ)_{aanv} te bereken. ✓
- n(HCl)_{rea} = n(HCl)_{aanv} − (HCl)_{oormaat}√√
- Gebruik verhouding: n(NaOH) = n(HCℓ) √
- Vervang 0,15 dm³ in $c = \frac{n}{V}$ \checkmark
- Finale antwoord: 0,02 mol·dm⁻³ √
 of 0,0167 mol·dm⁻³ of 0,017 mol·dm⁻³

OPTION 1/OPSIE 1

$$n(HC\ell)_{\text{excess/oormaat}} = cV$$

$$= \underbrace{0.01 \times 0.35}_{3.5 \times 10^{-3} \text{ mol}}$$

$$n(HC\ell)_{\text{initial/aanv}} = cV$$

$$= 0.03 \times 0.2 \checkmark$$

$$= 0.006 \text{ mol}$$

$$n(HC\ell)_{\text{reacted/reageer}} = \underbrace{0.006 - 3.5 \times 10^{-3}}_{0.0025 \text{ mol}} \checkmark \checkmark$$

$$= 0.0025 \text{ mol}$$

$$n(NaOH)_{\text{reacted/reageer}} = n(HC\ell)_{\text{reacted/reageer}} = 0.0025 \text{ mol} \checkmark$$

c(NaOH) = $\frac{n}{V}$ = $\frac{0,0025}{0.15^{\checkmark}}$

= 0,02 mol·dm⁻³ ✓

(0,0167 mol·dm⁻³ or/of 0,017 mol·dm⁻³)

DEPARTMENT OF BASIC EDUCATION

PRIVATE BAG X895, PRETORIA 0001

2022 -06- 03

APPROVED MARKING GUIDELINE
PUBLIC EXAMINATION

Physical Sciences P2/Fisiese Wetenskappe V2 13 SC/NSC/SS/NSS – Marking Guidelines/Nasienriglyne

DBE/2022

OPTION 2/OPSIE 2

Concentration ratio in final solution: Konsentrasie verhouding in finale oplossing:

 $HCl: H_3O^+ = 1: 1 \checkmark$

Thus/dus [HC ℓ] = 0,01 mol·dm⁻³ \checkmark \checkmark

 $[HC\ell]_{react} = [HC\ell]_{initial} - [HC\ell]_{excess}$ $= \underbrace{0.03 - 0.01}_{0.02} \checkmark \checkmark$ $= 0.02 \text{ mol·dm}^{-3}$

Concentration ratio in final solution: Konsentrasie verhouding in oorspronklike oplossing:
HCl: NaOH = 1:1 ✓

Marking criteria

- Ratio HCℓ: H₃O⁺ = 1:1 √
- c(HCℓ)_{excess} = 0,01 (mol·dm⁻³) √√
- $n(HC\ell)_{react} = n(HC\ell)_{ini} (HC\ell)_{excess}. \checkmark \checkmark$
- Use ratio: n(NaOH) = n(HCℓ) ✓
- Final answer: 0,02 mol·dm⁻³ √

Nasienkriteria

- Verhouding HCℓ: H₃O⁺ = 1:1 ✓
- $c(HC\ell)_{oormaat} = 0.01 \ (mol \cdot dm^{-3}) \ \checkmark \ \checkmark$
- n(HCℓ)_{reag} = n(HCℓ)_{aanv} -(HCℓ)_{oormaat}. ✓ ✓
- Gebruik verhouding: n(NaOH) = n(HCℓ) √
- Finale antwoord: 0,02 mol·dm⁻³ ✓

 $[NaOH] = 0.02 \text{ mol} \cdot dm^{-3} \checkmark$

OPTION 3/OPSIE 3

$$\frac{c_1V_1}{c_2V_2} = \frac{n_1}{n_2}$$

$$\frac{c_1(200)}{(0,01)(350)}\checkmark = \frac{1}{1}\checkmark$$

 $c_1 = 0.0175 \text{ mol} \cdot \text{dm}^{-3}$

$$\begin{split} c(HC\ell)_{react} &= c(HC\ell)_{ini} - c(HC\ell)_{excess} \\ &= \underbrace{0,03 - 0,0175}_{0,0125} \, \checkmark \, \checkmark \\ &= 0,0125 \,\, \text{mol·dm}^{-3} \end{split}$$

$$\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$$

$$\frac{(0,0125)(200)}{c_b(150)\checkmark} = \frac{1}{1}\checkmark$$

 $c(NaOH) = 0.0167 \text{ mol} \cdot dm^{-3} \checkmark$

(0,0167 mol·dm⁻³ orlof 0,017 mol·dm⁻³)

Marking criteria

- Substitute 350 cm³ in $\frac{c_1V_1}{c_2V_2} = \frac{n_1}{n_2} \checkmark$
- Ratio of HCℓ: H₃O⁺ = 1:1 √
- n(HCℓ)_{react} = n(HCℓ)_{ini} -(HCℓ)_{excess}. ✓ ✓
- Use ratio: n(NaOH) = n(HCℓ) ✓
- Substitute 150 cm³ in $\frac{c_1V_1}{c_2V_2} = \frac{n_1}{n_2} \checkmark$
- Final answer: 0,02 mol·dm⁻³
 or 0,0167 mol·dm⁻³
 or 0.017 mol·dm⁻³

Nasienkriteria

- Vervang 350 cm³ in $\frac{c_1 V_1}{c_2 V_2} = \frac{n_1}{n_2} \checkmark$
- Verhouding HCl: H₃O⁺ = 1:1 √
- n(HCℓ)_{reag} = n(HCℓ)_{aanv} -(HCℓ)_{oormaat}.√√
- Gebruik verhouding: n(NaOH) = n(HCℓ) √
- Vervang 150 cm³ in $\frac{c_1V_1}{c_2V_2} = \frac{n_1}{n_2} \checkmark$
- Finale antwoord: 0,02 mol·dm⁻³ ✓ of 0,0167 mol·dm⁻³ of 0,017 mol·dm⁻³

[16]

(7)

Physical Sciences P2/Fisiese Wetenskappe V2 SC/NSC/SS/NSS - Marking Guidelines/Nasienriglyne DBE/2022

QUESTION 8/VRAAG 8

8.1

8.1.1 Temperature/Temperatuur: 25 °C/298 K ✓ Pressure/Druk: 101,3 kPa/1 atmosphere ✓ Concentration/Konsentrasie: 1 mol·dm⁻³ ✓

(3)

8.1.2

OPTION 1/OPSIE 1

$$E_{cell}^{\theta} = E_{reduction}^{\theta} - E_{oxidation}^{\theta} \checkmark$$

$$2,89 \checkmark = E_{reduction}^{\theta} - (-1,66) \checkmark$$

$$E_{reduction}^{\theta} = 1,23 (V) \checkmark$$

X is O₂/oxygen/suurstof ✓

[X marked independently/ X onafhanklik nagesien]

Notes/Aantekeninge

- · Accept any other correct formula from the data sheet./Aanvaar enige ander korrekte formule vanaf gegewensblad.
- Any other formula using unconventional abbreviations, e.g. E°_{cell} = E°_{OA} - E°_{RA} followed by correct substitutions:/Enige ander formule wat onkonvensionele afkortings gebruik bv. $E^{\circ}_{sel} = E^{\circ}_{OM} - E^{\circ}_{RM}$ gevolg deur korrekte vervangings:

OPTION 2/OPSIE 2

O₂(g) + 4H⁺ + 4e⁻
$$\rightarrow$$
 2H₂O
Al(s) \rightarrow Al³⁺(aq) + 3e⁻

$$E^{\theta} = +1,23 \ V \ \checkmark$$

$$E^{\theta} = +1,66 \text{ V} \checkmark$$

$$4Al(s) + 3O_2(g) + 12H^+ \rightarrow 4Al^{3+}(aq) + 6H_2O$$
 $E^{\theta} = +2,89 (V) \checkmark$

X is O₂/oxygen/suurstof √

[X marked independently/X onafhanklik nagesien]

(5)

8.1.3 Al <

(1)

8.1.4 $O_2(q) + 4H^+ + 4e^- \rightarrow 2H_2O \checkmark \checkmark$

Ignore phases./Ignoreer fases.

Marking criteria/Nasienkriteria:

•
$$2H_2O \leftarrow O_2(g) + 4H^+ + 4e^- + (\frac{2}{2})$$
 $O_2(g) + 4H^+ + 4e^- \Rightarrow 2H_2O$
 $O_2(g) + 4H^+ + 4e^- \leftarrow 2H_2O + (\frac{0}{2})$ $2H_2O \Rightarrow O_2(g) + 4H^+ + 4e^-$

$$O_2(g) + 4H^+ + 4e^- \rightleftharpoons 2H_2O$$

$$(\frac{7}{2})$$

- Ignore if charge omitted on electron./Ignoreer indien lading weggelaat op elektron.
- If charge (+) omitted on H⁺/ Indien lading (+) weggelaat op H⁺: Max./Maks: 1/2

Example/Voorbeeld: $O_2(g) + 4H + 4e^- \rightarrow 2H_2O \checkmark$

(2)

OR/OF

 $A\ell(s) \mid A\ell^{3+}(aq) \mid \mid O_2(g) \mid H^+(aq) \mid H_2O(\ell) \mid C(s)$

OR/OF

Al | Al³⁺ || O₂ | H⁺ | H₂O | Pt

(3)

Physical Sciences P2/Fisiese Wetenskappe V2 15 SC/NSC/SS/NSS – Marking Guidelines/Nasienriglyne

DBE/2022

8.2 Copper/Koper ✓

- <u>Cu is a weaker reducing agent than Ni</u> ✓ and <u>will not reduce Ni²⁺</u> (to Ni). / <u>Cu will not be oxidised</u> (to Cu²⁺). ✓
- <u>Zn is a stronger reducing agent than Ni</u> √and <u>will reduce Ni²⁺</u> (to Ni). / <u>Zn will be oxidised</u> (to Zn²⁺).
- <u>Cu is 'n swakker reduseermiddel as Ni</u> en <u>sal nie Ni²⁺</u> (na Ni) <u>reduseer nie</u>. / <u>Cu sal nie geoksideer word nie</u> na (Cu²⁺).
- <u>Zn is 'n sterker reduseermiddel as Ni</u> en <u>sal Ni²⁺</u> (na Ni) <u>reduseer. / Zn sal geoksideer word</u> (na Zn²⁺).

NOTE/LET WEL:

The mark for 'reduce' can be awarded at any ONE of the two comparisons. Die punt vir 'reduseer' kan toegeken word by ENIGEEN van die twee vergelykings.

(4) [18]

QUESTION 9/VRAAG 9

9.1 Marking criteria/Nasienkriteria:

If any one of the underlined key phrases in the **correct context** is omitted, deduct 1 mark./Indien enige van die onderstreepte frases in die **korrekte konteks** uitgelaat is, trek 1 punt af.

ANY ONE/ENIGE EEN:

- The chemical process in which <u>electrical energy is converted to chemical energy</u>. ✓ ✓
- The use of <u>electrical energy to produce a chemical change</u>.
- Decomposition of an ionic compound by means of electrical energy.
- The process during which an <u>electric current passes through a solution/ionic liquid/molten ionic compound.</u>
- Die chemiese proses waarin <u>elektriese energie omgeskakel word na</u> chemiese energie. ✓ ✓
- Die gebruik van <u>elektriese energie om 'n chemiese verandering te weeg te bring</u>.
- Ontbinding van 'n ioniese verbinding met behulp van elektriese energie.
- Die proses waardeur 'n <u>elektriese stroom deur 'n</u> <u>oplossing/ioniese vloeistof/gesmelte ioniese verbinding</u> beweeg.

9.2 9.2.1 X ✓ PRIVATE BAG X895, PRETORIA 0001

PRIVATE BAG X895, PRETORIA 0001

2022 -06- U 3

APPROVED MARKING GUIDELINE

PUBLIC EXAMINATION

(2)

(1)

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

Physical Sciences P2/Fisiese Wetenskappe V2 SC/NSC/SS/NSS - Marking Guidelines/Nasienriglyne DBE/2022

9.2.2
$$2H_2O(\ell) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$$

Ignore phases/Ignoreer fases tarmore physics.com

Marking criteria/Nasienkriteria:

- $H_2(g) + 2OH^-(aq) \leftarrow 2H_2O(\ell) + 2e^- (\frac{2}{2}) 2H_2O(\ell) + 2e^- \Rightarrow H_2(g) + 2OH^-(aq) (\frac{1}{2})$ $H_2(g) + 2OH^-(aq) \rightleftharpoons 2H_2O(\ell) + 2e^- (\frac{0}{2}) \quad 2H_2O(\ell) + 2e^- \leftarrow H_2(g) + 2OH^-(aq)(\frac{0}{2})$
- Ignore if charge omitted on electron./Ignoreer indien lading weggelaat op elektron.
- If charge (-) omitted on OH- /Indien lading (-) weggelaat op OH-: Example/Voorbeeld: $2H_2O(\ell) + 2e^- \rightarrow H_2(g) + 2OH(aq) \checkmark$

Max./Maks:

X to/na Y ✓ 9.2.3

(1)

(2)

9.2.4
$$2H_2O(\ell) + 2C\ell^-(aq) \checkmark \rightarrow C\ell_2(g) + H_2(g) + 2OH^-(aq) \checkmark Bal \checkmark$$

OR/OF

 $2H_2O(l) + 2NaCl(aq) \rightarrow Cl_2(g) + H_2(g) + 2NaOH(aq)$

Ignore phases/Ignoreer fases

Marking criteria/Nasienkriteria:

- Reactants ✓ Products ✓ Balancing: ✓ Produkte Reaktanse Balansering
- Ignore double arrows./Ignoreer dubbelpyle.
- Marking rule 6.3.10/Nasienreël 6.3.10.

(3)

9.3 Increases / Toeneem ✓

- (1)
- 9.4 Solution becomes basic / alkaline OR NaOH / OH[−] (ions) form ✓ Oplossing word basies / alkalies OF NaOH / OH (-ione) vorm

(1) [11]

150

TOTAL/TOTAAL:

