Hugging Face NLP course.

https://huggingface.co/course/chapter1/2?fw=pt

1. Transformer models

- NLP Natural language processing
 - NLP = ML ∩ linguistics.
 - Tasks: language translation, summarizing text, filling removed words, generating new text, etc.
 - Challanging because we need to model text somehow.
- Possibilities of Transformer models:
 - Summary
 - Translation from one lang to another
 - Classify sentiments
 - Classify area
 - Classify words
 - Continuing, generating text
 - Fill in masked
 - other
- Pipeline function: final object for a task (sentiment, zero-shot)

- o Uses diff models (gpt2, openai-gpt, etc.)
- Tasks: 'question-answering', 'summarization', 'translation', 'ner' (name entry recognition, classify words), 'zero-shot' (classify when no labels at train)
 - 'Zero-shot' no need for fine-tuning for tasks.
- How Transformers work?
 - Categories of NLP models:
 - GPT-like. Auto-regressive.
 - BERT-like. Auto-encoding.
 - BART/T5 like. Seq-to-seq.
 - First they're trained on language model (not useful in practice) then they're fined tued for a specific task (masked text, causual language model(next word)) by using labled data.

- They are big. Billions of params.
 - A lot of CO2 emmissions like a car in its lifetime but depends on carbon footprint. That's why use fine-tuning, transfer learning, also use random hyperparams search. To measure https://codecarbon.io/, https://mlco2.github.io/impact/.
- Transfer learning
 - Using other trained mode for other task fine tuning. Why? 1) Better performance, 2) less data and 3) less resources (time, etc) for new task.
- Transformer Architecture

Output
Probabilities

Uni-directional

Bi-directional

Decoder

Auto-regressive

Masked self-attention

Outputs
(shifted right)

o Parts:

- Encoder gets text input and generates 'understanding' of it.
- Decoder transforms input into another output.
- 3 architecture types: encoder only, decoder only, encoder and decoder (seq 2 seq).
- Attention layer. The main layer as it attends to specific context to build lanugage model, i.e. each word has not only its meaning but also depends on the surrounding context.
- Original architecture:

- Used for translation.
- Encoder attends all text (left and right) so can translater.
- Decoder attends only left output text till current i-th word and all input text.
- Checkpoint (like BERT_base) means a particular set of weights used to train architecture (BERT)
 while model can mean both.

Encoder models

- AKA bi-directional, auto-encoding models as they access all the input. Examples: BERT, ALBERT,
- Good to extract meaningful info, classify, etc
 - MLM guessing a randomly masked word.
 - Sentiment analysis
- Decoder models. AKA auto-regressive models (use previous output as input).
 - Attends only the words before current one. They mask the input, masking.
 - To generate text. NLG natural lang generation. Causal Language Model.
 - Examples: GPT-2, etc.
- Sequence-to-sequence models. AKA encoder-decoder models.
 - Trains decoder and encoder.

- To generate text based on other text
 - summary,
 - translation (encoder in English, and decoder in French, e.g.)
- They don't share weights.
- Examples: BART, T5.
- Bias and limitations. Can generate sexist, homophobic, etc. text as trained on data from all over the internet.

See quiz at https://huggingface.co/course/chapter1/10?fw=pt

Questions:

- What's NLP?
- What Transformer models can do?
- Three types of Transformers.
- What's transfer learning? Fine-tuning?
- Original architecture from All you need is attention paper.
- Encoder models. Their main props?
- Decoder models. Their main props?
- Seq2seq modesl. Their main props?

2. Using Transformers

- The Tranformers lib to handle the zoo of many NLP models.
- Pipeline func

transformers.AutoTokenizer and its from_pretrained(checkpoint) to load tokens of a model. Logits: it is from a model. Those are not predictions (it is not normalized).

Predicions: after softmax, those are probabilities.

- Tokenizer: splits words, maps those words (now tokens) to integers.
- Embeddings to convert token numbers into vectors
- Head receives hidden layers input, to specialize in tasks. Hidden state how model understands input; then hidden state passed to the head to perform a task.
- o logits un-normalized predictions (before softmax)

• Models.

- How to create a model? Use transformers.<Model>.from_pretrained(..)
- How to configure model? Use transformers.Model>Config
- How to save model? Use save_pretrained
- How to use model? Use transformers.
 Model>(<model config>)(<model_inputs>)

Tokenizers

- o Models needs number not words. So translate those to numbers. How? Depends on models.k
- · How:
 - Word-based. By spaces or by punctuation. Use a vocab to map to tokens. Limitted by vocab (10K or 500K), unknown words.
 - Character based.
 - Less size of vocab
 - Fewer unknown chars then.
 - How punctuation?
 - Subword tokenizer.
 - To fix issues in word-based and char based tokenizers.
 - Break into meaningful subwords if larger word.
 - Other: byte-level, wordpiece, other.
- Loading / saveing
 - AutoModel.from_pretrained(<checkpoing>)
 - transformers.<Model>Tokenizer , etc.
- Encoding.
 - How we make numbers from tokens: text to numbers.
 - It is ids = tokenizer.convert_tokens_to_ids(tokens)
- o Decoder.

- Reverse process. Use decoded_string = tokenizer:decode(<Vector here>)
- Multiple sentences.
 - Batching for parallel proc.
 - Models expect batche.
 - o If diff length? Padding (with '0') or truncate.
 - Attention layer should get attention mask to avoid this padding.
 - Long sentences? Truncates. Typically 512 or 1024.
- All together.

3. Fine-Tuning a pretraine model.

- This section is about how to load, preprocess a dataset used for our specific task. Then how to finetune our model for this dataset, how to train it.
- Processing the data. This is from a row text to batches. So that we can fine-tune our model for a task.
 - Loading datasets fom the Hub: Use DatasetDict from datasets.load_dataset() to download datasets from the Hub.
 - Preprocess: use transformers.AutoTokenizer. Check attention_mask. Use tokenizer of a checkpoint.
 - Dynamic padding. This makes the same size batches.
- Fine-tuning a model with the Trainer API or Keras.k
 - Use transformers.Trainer when have tokenizer, datasets (valid, train). Then .train(). Also give it an evaluation function as below.
 - Evaluation and metrics (to give it into Trainer())
 - Use trainer.predict() to get predictions.
 - Use evaluate lib to evaluate accuracy andother.
- Full training
 - (This repeats the steps above in one run)
 - Then we run training loop: batch, backward loss, learning rate, etc.
 - optimizations: AdamW, learning rate decay, etc.
 - Evaluation loop: on batches, then accumulate.
 - Speed up with Accelerate: trains multiple batches simultanuously on GPU.

•••				
•••				