Problem Set 7

D. Zack Garza

October 26, 2019

Contents

1	Regular Problems	1
	1.1 Problem 1	1
	1.1.1 Case 1: $p = q$	1
	1.1.2 Case 2: $p > q$	1
2	Qual Problems	2

1 Regular Problems

1.1 Problem 1

We want to show that G has a non-trivial normal subgroup, noting that $\#G = p^2q$ where p = 2, q = 3, we will proceed by showing that either n_p or n_q must be 1.

We immediate note that we have

$$n_p \equiv 1 \mod p$$

$$n_q \equiv 1 \mod q$$

$$n_p \mid q \qquad \qquad n_q \mid p^2,$$

which immediately forces

$$n_p \in \{1, q\}, \quad n_1 \in \{1, p, p^2\}.$$

Proceeding by cases:

1.1.1 Case 1: p = q.

Then $\#G = p^3$ and G is a p-group. But every p-group has a non-trivial center $Z(G) \leq G$, and the center is always a normal subgroup.

1.1.2 Case 2: p > q.

In this case we have

2 Qual Problems