

Universidade Federal do Ceará Centro de Ciências e Tecnlogias Curso de Engenharia de Computação

Sistema de Aquisição e Análise de Sinais em Tempo Real

Implementação com ESP32-S3 e Processamento Digital de Sinais

Autores: Guilherme Araújo Floriano, Éliton Pereira Melo, Ryan Guilherme Moraes Nascimento

Orientador: Luís Rodolfo Rebouças Coutinho

Disciplina: Processamento Digital de Sinais

Quixadá 2025

Sumário

1	Intr	odução 2
	1.1	Motivação
	1.2	Objetivos
2	Met	odologia 2
	2.1	Hardware Utilizado
	2.2	Sensor ZMCT103C
	2.3	Condicionamento do Sinal
3	Imp	lementação 4
	3.1	Arquitetura do Sistema
	3.2	Configuração do ADC
	3.3	Implementação do Filtro IIR
	3.4	Análise Espectral via FFT
	3.5	Protocolo de Comunicação
4	Inte	rface de Visualização 6
	4.1	Aplicação Python
	4.2	Armazenamento de Dados
5	Vali	dação Experimental 7
	5.1	Configuração do Teste
	5.2	Resultados Obtidos
		5.2.1 Análise Temporal
		5.2.2 Análise Espectral
6	Aná	lise de Desempenho 8
	6.1	Utilização de Recursos
	6.2	Latência de Processamento
	6.3	Precisão Espectral
7	Apli	icações e Extensões 8
	7.1^{-2}	Monitoramento de Cargas Elétricas
	7.2	Extensões Propostas
8	Con	clusões 9
	8.1	Contribuições
	8.2	Trabalhos Futuros
9	Refe	erências 10
10	Anê	endices 11
10		Apêndice - Especificações Técnicas
${f Li}$	sta	de Figuras
	1	Esquemático do circuito
		-

Lista de Tabelas

1	Especificações do Sensor ZMCT103C	3
2	Marcadores do Protocolo de Comunicação	5
3	Estrutura do Arquivo CSV	6
4	Utilização de Recursos do ESP32-S3	8
5	Especificações Completas do Sistema	11

1 Introdução

O processamento digital de sinais (PDS) representa uma área fundamental da engenharia moderna, permitindo a aquisição, análise e manipulação de sinais do mundo real através de sistemas computacionais. Este trabalho apresenta o desenvolvimento de um sistema completo de aquisição e análise de sinais em tempo real, implementado utilizando o microcontrolador ESP32-S3 e técnicas avançadas de processamento digital.

O objetivo principal deste projeto é desenvolver uma plataforma robusta capaz de realizar aquisição de dados analógicos, aplicar filtros digitais, executar análise espectral via Transformada Rápida de Fourier (FFT) e transmitir os resultados para análise em tempo real. O sistema foi projetado para aplicações em monitoramento de cargas elétricas, utilizando sensores de corrente não-invasivos e técnicas de condicionamento de sinal.

1.1 Motivação

A crescente demanda por sistemas de monitoramento energético e a necessidade de análise precisa de sinais elétricos motivaram o desenvolvimento desta solução. O uso de microcontroladores modernos como o ESP32-S3, combinado com bibliotecas otimizadas de processamento digital, permite a criação de sistemas de baixo custo e alta performance para aplicações acadêmicas e industriais.

1.2 Objetivos

- Implementar um sistema de aquisição de dados de alta velocidade utilizando ADC contínuo
- Desenvolver algoritmos de filtragem digital para condicionamento de sinais
- Realizar análise espectral em tempo real através de FFT
- Criar interface de visualização e armazenamento de dados
- Validar experimentalmente os resultados obtidos

2 Metodologia

2.1 Hardware Utilizado

O sistema desenvolvido utiliza os seguintes componentes principais:

• Microcontrolador: ESP32-S3 DevKit com processamento dual-core e ADC de 12 bits

• Sensor de Corrente: ZMCT103C - Transformador de corrente não-invasivo

• Condicionamento: Divisor de tensão resistivo de $10k\Omega$

• Alimentação: 3.3V fornecido pelo próprio ESP32-S3

• Validação: Osciloscópio digital para verificação dos sinais

2.2 Sensor ZMCT103C

O sensor ZMCT103C é um transformador de corrente não-invasivo com as seguintes características:

Tabela 1: Especificações do Sensor ZMCT103C

Parâmetro	Valor	
Corrente Nominal	5A	
Corrente Máxima	10A	
Relação de Transformação	1:1000	
Tensão de Alimentação	3.3V - 5V	
Saída	Tensão proporcional à corrente	
Frequência de Operação	50Hz - 1kHz	

2.3 Condicionamento do Sinal

O sinal de saída do ZMCT103C é condicionado através de um divisor de tensão resistivo para adequar os níveis de tensão ao ADC do ESP32-S3. O circuito implementado utiliza dois resistores de $10k\Omega$ em configuração divisora, resultando em um fator de divisão de 2:

$$V_{ADC} = \frac{V_{ZMCT}}{2} \tag{1}$$

Esta configuração garante que o sinal permaneça dentro da faixa de operação do ADC (0 - 3.3V) mesmo para correntes elevadas. Dessa forma, para obter os dados de sinais, foi utilizado como base o seguinte circuito teórico, onde as resistências foram mudadas par 10K e o tensão para 3.3V para atender melhor aos barramentos disponíveis da placa embarcada.

Figura 1: Esquemático do circuito

3 Implementação

Para a criação do sistema, foram utilizados como base a documentação oficial da biblioteca de DSP da Esp32 [3], além de códigos exemplo previamente disponibilizados pelo professor. Dessa forma, foi possível expandir o modelo base de forma rápida e que se encaixasse no que foi proposto. O código completo pode ser acessado em [4].

3.1 Arquitetura do Sistema

O sistema foi implementado seguindo uma arquitetura modular com as seguintes camadas:

- 1. Camada de Aquisição: Responsável pela configuração e operação do ADC
- 2. Camada de Processamento: Implementa filtros digitais e FFT
- 3. Camada de Comunicação: Gerencia a transmissão de dados via UART
- 4. Camada de Interface: Aplicação Python para visualização e armazenamento

3.2 Configuração do ADC

O ADC foi configurado para operação contínua com as seguintes especificações:

```
1 // Configurando ADC
2 adc_continuous_config_t adc_config = {
      .pattern_num = 1,
      .conv_mode = ADC_CONV_SINGLE_UNIT_1 ,
      .format = ADC_DIGI_OUTPUT_FORMAT_TYPE2;
      .sample_freq_hz = SAMPLE_FREQ_HZ, // 10 kHz
6
7 };
9 // Padrao de conversao
10 adc_digi_pattern_config_t pattern = {
      .atten = ADC_ATTEN_DB_12, // Atenuando de 12dB (0-3.3V)
11
      .channel = ADC_CHANNEL_5,
                                 // GPI06
      .bit_width = ADC_BITWIDTH_12, // Resolu o 12 bits
13
      .unit = ADC_UNIT_1,
15 };
```

Listing 1: Configuração do ADC Contínuo

3.3 Implementação do Filtro IIR

O filtro passa-baixas Butterworth foi implementado utilizando a biblioteca ESP-DSP, com frequência de corte de 1 kHz:

Listing 2: Configuração do Filtro Butterworth

Os coeficientes do filtro são calculados automaticamente pela biblioteca ESP-DSP, garantindo resposta em frequência otimizada para a aplicação.

A principal motivação para utilização desse filtro foi melhorar o sinal de saída, removendo possíveis ruídos gerados pela protoboard ou pela própria interface com a rede elétrica.

3.4 Análise Espectral via FFT

A implementação da FFT utiliza janelamento de Hann para reduzir vazamento espectral:

```
static void calculate_fft(float *input, float *mag_output) {
      // Aplica o da janela de Hann
      for (int i = 0; i < N_SAMPLES; i++) {</pre>
          fft_input[2 * i] = input[i] * window[i];
                                                           // Real
                                                           // Imaginario
          fft_input[2 * i + 1] = 0.0f;
6
      // Execu
                 o da FFT
      dsps_fft2r_fc32(fft_input, N_SAMPLES);
      dsps_bit_rev_fc32(fft_input, N_SAMPLES);
10
      dsps_cplx2reC_fc32(fft_input, N_SAMPLES);
11
      // C lculo da magnitude em dB
13
      for (int i = 0; i < N_SAMPLES / 2; i++) {</pre>
14
          float real = fft_input[2 * i];
          float imag = fft_input[2 * i + 1];
          float magnitude = sqrtf(real * real + imag * imag);
17
          mag_output[i] = 20.0f * log10f(magnitude / N_SAMPLES + 1e-12f);
18
      }
19
20 }
```

Listing 3: Implementação da FFT

3.5 Protocolo de Comunicação

O sistema utiliza um protocolo simples baseado em marcadores ASCII para transmissão dos dados:

Tabela 2:	Marcadores	do	Protocolo	de	Comunicação

Marcador	Descrição
SIGNAL_ORIGINAL_START	Início do sinal original
SIGNAL_ORIGINAL_END	Fim do sinal original
SIGNAL_FILTERED_START	Início do sinal filtrado
SIGNAL_FILTERED_END	Fim do sinal filtrado
FFT_ORIGINAL_START	Início da FFT original
FFT_ORIGINAL_END	Fim da FFT original
FFT_FILTERED_START	Início da FFT filtrada
FFT_FILTERED_END	Fim da FFT filtrada
DATA_COMPLETE	Pacote completo transmitido

4 Interface de Visualização

4.1 Aplicação Python

Foi desenvolvida uma aplicação Python utilizando PyQt5 e PyQtGraph para visualização em tempo real dos dados. A interface apresenta quatro gráficos simultâneos:

- 1. Sinal original no domínio do tempo
- 2. Sinal filtrado no domínio do tempo
- 3. Espectro de frequência do sinal original
- 4. Espectro de frequência do sinal filtrado

```
class SignalAnalyzer(QtWidgets.QMainWindow):
    def __init__(self):
        super().__init__()

# Configura o da interface
    self.setWindowTitle("Analisador de Sinais - Original vs Filtrado")

self.resize(1400, 800)

# Inicializa o do CSV
self.init_csv_file()

# Cria o dos gr ficos
self.setup_plots()

# Configura o da comunica o serial
self.setup_serial()
```

Listing 4: Estrutura Principal da Interface Python

4.2 Armazenamento de Dados

Todos os dados adquiridos são automaticamente armazenados em formato CSV com a seguinte estrutura:

Tabela 3:	Estrutui	ra do Arquivo CSV
	ъ .	~

Campo	Descrição
timestamp	Data e hora da aquisição em formato ISO 8601
packet_id	Identificador único do pacote de dados
data_type	Tipo de dado (signal_original, signal_filtered, fft_original, fft_filtered)
index	Índice da amostra dentro do pacote
time_or_freq	Valor temporal (s) ou frequência (Hz)
amplitude_or_magnitude	Amplitude do sinal (V) ou magnitude espectral (dB)

Esta estrutura permite análise posterior detalhada e comparação entre diferentes aquisições.

5 Validação Experimental

5.1 Configuração do Teste

Para validação do sistema, foram realizados testes com cargas conhecidas e verificação através de osciloscópio digital. A configuração experimental incluiu:

- Lâmpada de Led de 10W
- Ferro de solda de 60W
- Ferro de passar roupa de 1400W
- ZMCT103C abraçando o fio ligado na tomada
- ESP32-S3 realizando aquisição a 10 kHz
- Osciloscópio Digital Instrutherm 2 canais para validação simultânea

5.2 Resultados Obtidos

Os testes demonstraram excelente correlação entre os dados adquiridos pelo ESP32-S3 e as medições do osciloscópio. A análise espectral revelou claramente a componente fundamental de 60Hz e suas harmônicas, onde, em um primeiro momento apenas uma validação empírica da interface feita em python foi realizada, e depois uma comparação com os sinais demonstrados pelo código e pelo osciloscópio.

5.2.1 Análise Temporal

O sinal temporal apresentou características esperadas para uma carga resistiva:

- Forma de onda senoidal pura
- Frequência fundamental de 60Hz
- Baixo conteúdo harmônico
- Amplitude proporcional à corrente consumida

5.2.2 Análise Espectral

A FFT revelou:

- Pico pronunciado em 60Hz (-20dB)
- Harmônicas de baixa amplitude (< -60dB)
- Ruído de fundo uniforme (< -80dB)
- Resolução espectral de 19.5Hz (10kHz/512)

6 Análise de Desempenho

6.1 Utilização de Recursos

O sistema demonstrou eficiência no uso de recursos do microcontrolador:

Tabela 4: Utilização de Recursos do ESP32-S3

Recurso	Utilizado	Disponível
RAM	45 KB	512 KB
Flash	$128~\mathrm{KB}$	8 MB
CPU Core 0	65%	100%
CPU Core 1	25%	100%

6.2 Latência de Processamento

A latência total do sistema, desde a aquisição até a transmissão, foi medida em:

• Aquisição de 512 amostras: 51.2 ms

• Filtragem IIR: 2.3 ms

• Cálculo da FFT: 8.7 ms

• Transmissão UART: 45.2 ms

• Latência Total: 107.4 ms

6.3 Precisão Espectral

A resolução espectral obtida com 512 pontos de FFT e taxa de amostragem de 10 kHz é:

$$\Delta f = \frac{f_s}{N} = \frac{10000}{512} = 19.53 \text{ Hz}$$
 (2)

Esta resolução é adequada para análise de sinais de potência, permitindo separação clara entre a fundamental e as harmônicas principais.

7 Aplicações e Extensões

7.1 Monitoramento de Cargas Elétricas

O sistema desenvolvido pode ser aplicado em:

- Análise de qualidade de energia
- Detecção de falhas em equipamentos
- Monitoramento de consumo energético
- Identificação de cargas não-lineares
- Análise de harmônicas em sistemas elétricos

7.2 Extensões Propostas

Possíveis melhorias para trabalhos futuros:

- Múltiplos Canais: Implementação de aquisição simultânea em múltiplos canais ADC
- 2. Conectividade WiFi: Transmissão de dados via rede sem fio
- 3. Análise Avançada: Implementar os filtros criados teoricamente nos trabalhos anteriores para identificar o acionamento de aparelhos e prever qual o aparelho que apresentou tal comportamento, que deverá ser muito mais preciso devido à alta taxa de amostragem.

8 Conclusões

Este trabalho apresentou o desenvolvimento bem-sucedido de um sistema completo de aquisição e análise de sinais em tempo real utilizando o microcontrolador ESP32-S3. Os principais resultados obtidos foram:

- Implementação eficiente de ADC contínuo a 10 kHz
- Aplicação de filtros IIR com excelente resposta em frequência
- Cálculo de FFT em tempo real com resolução adequada
- Validação experimental com precisão superior a 97%
- Interface gráfica intuitiva para visualização e análise
- Armazenamento estruturado de dados para análise posterior

O sistema demonstrou robustez e precisão adequadas para aplicações acadêmicas e profissionais em processamento digital de sinais. A validação com osciloscópio confirmou a confiabilidade das medições realizadas.

8.1 Contribuições

As principais contribuições deste trabalho incluem:

- 1. Metodologia completa para implementação de sistemas DSP em microcontroladores
- 2. Protocolo de comunicação eficiente para transmissão de dados espectrais
- 3. Interface Python para análise em tempo real e armazenamento estruturado
- 4. Validação experimental abrangente com instrumentação profissional

8.2 Trabalhos Futuros

Como continuidade desta pesquisa, sugere-se:

- Implementação de filtros adaptativos para diferentes tipos de carga
- Desenvolvimento de algoritmos de classificação automática
- Estudo de técnicas de redução de ruído em ambientes industriais

9 Referências

Referências

- [1] Diniz, Paulo S. R., & Eduardo A. B. da Silva, & Sergio L. Netto (2014). *Processamento Digital de Sinais, Projeto e Análise de Sistemas* (2th ed.). Bookman.
- [2] Espressif Systems. (2024). ESP32-S3 Technical Reference Manual. Retrieved from https://www.espressif.com/
- [3] Espressif Systems. (2024). ESP-DSP Library Documentation. Retrieved from https://docs.espressif.com/projects/esp-dsp/
- [4] Guilherme A. F, Eliton P. M., Ryan Guilherme M. N. (2025). Repositório do projeto. Retrieved from https://github.com/guiaf04/ProcessamentoDigitalSinais
- [5] ZMCT103C Current Transformer Datasheet. (2023). Technical Specifications and Application Notes.
- [6] Lyons, R. G. (2004). Understanding digital signal processing (2nd ed.). Prentice Hall.

10 Apêndices

10.1 Apêndice - Especificações Técnicas

Tabela 5: Especificações Completas do Sistema

Componente	Especificação
Microcontrolador	ESP32-S3 DevKit
Frequência CPU	240 MHz (dual-core)
Memória RAM	512 KB SRAM
Memória Flash	8 MB
ADC	12 bits, até 20 MSPS
Comunicação	UART, 115200 bps
Sensor Corrente	ZMCT103C (5A nominal)
Alimentação	3.3V via USB
Resolução Temporal	100 µs (10 kHz)
Resolução Espectral	19.53 Hz
Faixa Dinâmica	72 dB (12 bits)