Characteristics of Big Data and Dimensions of Scalability

Pejman Rasti

Email: prasti@esaip.org
pejman.rasti@univ-angers.fr

Course Website: Access from your "Moodle" portal

1

40 ZETTABYTES
[AT DRILLING SIGNAPTES]
of data will be created by 2020, an increase of 300 times from 2005

S BILLION PEDPLE have cell phones SCALE OF DATA

Most companies in the U.S. have at least 100 TERABYTES

[100 DERABYTES]

Most companies in the U.S. have at least 100 TERABYTES

[100 DERABYTES]

3

Characteristics of Big Data

2

4

5 6

Valence

7 8

Volume

Volume = Size

9

But how much date are we talking about?

1000 MBs ~= couple of volumes of Encyclopedias

A DVD ~= 5 GBs

1 TB ~= 300 hours of good quality video

LHC ~= 15 PBs a year

11 12

The Digital Universe 2009-2020

Exponential data growth!

13 14

Relevance of Volume for Us?

15 16

Challenges: Storage and more...

Processing Big Data

17 18

Scalability - Variety

Variety == Complexity

Data were confined only to tables

vendor	Model	Price	Mileage	VIII Code
Chevrolet	Corvette	17226	25965.0	LLAKAWAZDZ ^
Chevrolet	Corvette	34229	46429.0	RCPNSRYGXOE II
Chevrolet	Corvette	27982	50209.0	NWLGCEVEHGI
Chevrolet	Corvette	51825	72998.0	NGVZSCIZGSM
Chevrolet	Corvette	52845	34364.0	PSDRUYYOUG.
Chevrolet	Malbu	37874	37273.0	VLFPQPWNEFC
Chevrolet	Malbu	15600	71441.0	EXL/GDW025/
Chevrolet	Malbu	52447	46700.0	NLMGJZAKBPD
Chevrolet	Malbu	27129	36254.0	OPPLIENTE:
Chevrolet	Malbu	28846	77162.0	WRCOOFREZLI
Chevrolet	Malibu	46165	60590.0	HJETTHQHSEJE
Chevrolet	Malbu	18263	37790.0	JI MHNAFSHVC *

19

Today, Data are more heterogeneous

20

22

Axes of Data Variety

Structural	Semantic
Variety –	Variety - how to
formats and	interpret and
models	operate on data
Media Variety -	Availability
Media Variety – medium in	Availability Variations –
medium in	Variations –

Variety within a Type

· Think of an email collection

- Table-like part

from: Banikumar Maiti (GMAIL) -banikumar maiti@gmail.com>
to: Reghu Rajan <reghurajan@gmail.com>
cc: Amamath Gupta <aguptasd@gmail.com>
date: Tue, Feb 2, 2016 at 2:29 PM
secting mailed-by; gmail.com
signed-by: gmail.com
signed-by: gmail.com

21

Variety within a Type

- · Think of an email collection
 - Sender, receiver, date... Well-structured
 - Unstructured Text

Dear All,

I would like to congratulate you for putting together a wonderful show.

It was only possible by your hard work.

Dearwing of an UNIQUE show! This credit goes to Zubair. You dreamed about it and made it happen.

Variety within a Type

- Think of an email collection
 - Sender, receiver, date...

 We
 - Body of the email
 - Media

Variety within a Type

- · Think of an email collection
 - Sender, receiver, date...

Body of the email

- Attachments Multi-media
- Who-sends-to-whom

Variety within a Type

- · Think of an email collection
 - Sender, receiver, date...
 - Body of the email
 - Attachments Multi-media
 - Who-sends-to-whom Network
 - A current email cannot reference a past email

25

Variety within a Type

- · Think of an email collection
 - Sender, receiver, date...
 - Body of the email
 - Attachments Multi-media
 - Who-sends-to-whom Network
 - A current email cannot reference a past email

- Real-Time? Availability

Scalability Issues

- · Impact of data variety
 - Harder to ingest
 - Difficult to create common storage
 - Difficult compare and match data across variety
 - Difficult to integrate
 - Management and policy challenges

27

28

26

Velocity

Velocity == Speed

$$\overline{v} = \frac{\Delta x}{\Delta t}$$

Speed of creating data Speed of storing data Speed of analyzing data

29

How to decide what to pack?

Use weather information of last year at this time?

How to decide what to pack?

Use weather information of last month?

OR

Use weather status of this week or today?

33 34

Real-time Processing

Batch Processing

Collect Data

35 36

39 40

By 2015 the number of networked devices will be double the entire global population. All sensor data has uncertainty. The total number of social media accounts exceeds the entire global population. This data is highly uncertain in both its expression and content. Data quality solutions exist for enterprise data like customer, product, and address data, but this is only a fraction of the total enterprise data. Social Media to the content of the data of the data of the content of the total enterprise data.

When sentiment analysis doesn't work?

44 45

Veracity == Quality

Accuracy of data

Reliability of the data source

Context within analysis

Uncertainty

Provenance

46 47

Valence – Measure of Connectivity

Data Connectivity

- •Two data items are connected when they are related to each other
- Valence
 - Fraction of data items that are connected out of total numbe possible connections

Why worry about Valence?

Valence increases over time

Valence: Challenges

- · More complex data exploration algorithms
- · Modeling and prediction of valence
- · Group event detection
- Emergent behavior analysis

50

51

52

53

Eglence Inc. Big Data Case:

Catch The Pink Flamingo

54 55

4/7/2020

56 57

58 59

60 61

Data Source

Machine	User activity logs	
People	Twitter conversations	
Organization	User demographic info Game stats	

Dimension	
Volume	 Big daily workload and associated data on players and game stats
Variety	Multiple types of data
Velocity	Real-time analysis of usage activity
Veracity	Demographic info not accurate
Valence	Connections between players

62 63

64 65

Book Recommendations

66 67

Find Potential Audience for a Book

Market a New Book

68 69

Actionable Information

Historical data

Prediction

Prediction

Action

70 71

Data Science is Team Work!

72 73

Five P's of Data Science

74 75

76 77

Let's not dive into the techniques
yet! What is the problem at
large? How do you see yourself
solving it?

78 79

82 83

Define the Problem

84 85

88 89

Steps in the Data Science Process

90 91

94 95

100 101

102 103

106 107

Exploring Data

108 109

Describe Your Data

110 111

112 113

Pre-processing Data

114 115

118 119

120 121

Dimensionality Reduction

Data Manipulation

122 123

Always Remember!

Garbage in = Garbage out

Data preparation is very important for meaningful analysis!

124 125

Categories of Analysis Techniques

126 127

Regression

Goal: Predict numeric value

Seniors
Adults
Teenagers

Goal: Organize similar items into groups

Clustering

128 129

Association Analysis

Graph Analytics

Goal: Use graph structures to find connections between entities

130 131

Select technique Build model Validate model

Evaluation of Results

132 133

Classification & Regression

Clustering

134 135

Association Analysis & Graph Analytics **S**

Validate

Determine Next Steps

Repeat analysis?

Take deeper dive?

Act on results?

136 137

Select technique

Build model

Evaluate

Classification Regression Clustering Association Analysis **Graph Analytics**

Computational Big Data Science Big Data Engineering

What to Present

138 139

What to Present

140 141

Visualization Tools

Present

142 143

144 145

Copyright: University of California San Diago