Đề cương ôn tập Nhập môn xử lý ảnh

=&=

A – Cấu trúc đề

- Đề thi gồm 2 câu: 1 câu lý thuyết (4đ) + 1 câu bài tập (6đ)

Thời gian suy nghĩ: 25 phútHình thức thi: vấn đáp

B - Lý thuyết

- 1) Tại sao cần phải xử lý ảnh số. Ứng dụng của xử lý ảnh. Cho ví dụ
- 2) Nêu cách biểu diễn ảnh số trên máy tính
- 3) Vẽ mô hình các bước cơ bản trong xử lý ảnh số
- 4) Các thành phần của hệ thống xử lý ảnh số
- 5) Số hóa ảnh là gì? Tại sao cần phải số hóa ảnh?
- 6) Định nghĩa lấy mẫu (sampling) và lượng tử (Quantization) trong xử lý ảnh?
- 7) Nêu khái niệm về điểm ảnh (pixel), mức xám (gray level), độ phân giải (resolution)
- 8) Trình bày về bộ lọc trong miền không gian (spatial filtering), lọc tuyến tính (linear filtering) và cách xử lý bộ lọc trong miền không gian (sparital filtering process).
- 9) Khái niệm biểu đồ Histogram? Xử lý cân bằng histogram (lý do cần cân bằng histogram, các bước xử lý)? Cho ví dụ cân bằng histogram?
- 10) Xử lý matching Histogram?
- 11) Các kỹ thuật, thuật toán nén ảnh đã học?
- 12) Mô tả mô hình 1 hệ thống xử lý ảnh cụ thể (Lấy ví dụ)
- 13) Khái niệm về mặt nạ? Cách sử dụng mặt nạ trong xử lý ảnh?
- 14) Trình bày phương pháp làm sắc nét một vùng ảnh?
- 15) Trình bày phương pháp làm mượt một vùng ảnh?
- 16) Trình bày về bộ lọc trung vị (Median Filters)?
- 17) Trình bày phép giãn ảnh? Cho ví dụ? Nhận xét kết quả?
- 18) Trình bày phép co ảnh? Cho ví dụ? Nhận xét kết quả?
- 19) Trình bày phép mở ảnh? Cho ví dụ? Nhận xét kết quả?
- 20) Trình bày phép đóng ảnh? Cho ví dụ? Nhận xét kết quả?
- 21) Trình bày quá trình lọc trên miền tần số? Có những kiểu lọc nào trên miền tần số?
- 22)Cho biết tác dụng của phân vùng ảnh trong xử lý ảnh số? Trình bày phương pháp gia tăng vùng? Cho ví dụ?
- 23)Cho biết tác dụng của phân vùng ảnh trong xử lý ảnh số? Trình bày phương pháp chia và hợp vùng? Cho ví dụ?
- 24) Trình bày quá trình nén ảnh theo chuẩn JPEG?
- 25) Trình bày các kỹ thuật cải thiện ảnh bằng các phép toán điểm ảnh?

- 26) Trình bày các kỹ thuật cải thiện ảnh bằng các phép toán số học và logic?
- 27) Trình bày các phương pháp phát hiện biên dựa trên đạo hàm đã học?
- 28) Cho biết tác dụng của phép biến đổi KL? Trình bày quá trình biến đổi KL?
- 29) Cho biết tác dụng của phép biến đổi Haar? Trình bày quá trình biến đổi KL?
- 30) Cho biết tác dung của kỹ thuật loc Canny? Trình bày kỹ thuật loc Canny?

C – Bài tập

Các dạng bài tập và bài tập mẫu

1) Cân bằng Histogram ảnh cho trước chọn L=16

2	3	3	2
2	4	2	5
8	5	3	4
4	5	4	5

2) Xử lý Histogram Matching

3) Làm mượt ảnh (4x4) với bộ lọc cho trước

$$I = \begin{bmatrix} 4 & 6 & 2 & 0 \\ 7 & 1 & 5 & 3 \\ 6 & 3 & 7 & 1 \\ 4 & 5 & 6 & 2 \end{bmatrix} \qquad H = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$H = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

4) Làm nhiễu ảnh (4x4) với bộ lọc trung vị, lọc cực tiểu, lọc cực đại với bộ lọc 3x3

$$I = \begin{bmatrix} 5 & 5 & 3 & 2 \\ 8 & 3 & 5 & 5 \\ 5 & 2 & 3 & 9 \\ 9 & 3 & 5 & 3 \end{bmatrix}$$

5) Làm sắc nét ảnh (4x4) với bộ lọc cho trước

$$I = \begin{bmatrix} 5 & 5 & 3 & 2 \\ 8 & 3 & 5 & 5 \\ 5 & 2 & 3 & 9 \\ 9 & 3 & 5 & 3 \end{bmatrix} \qquad H = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

6) Lọc nhiễu ảnh (4x4) với bộ lọc cho trước (yêu cầu xác định bộ lọc thuộc loại nào)

$$I = \begin{bmatrix} 8 & 10 & 3 & 4 \\ 6 & 8 & 10 & 5 \\ 20 & 30 & 6 & 6 \\ 2 & 7 & 10 & 5 \end{bmatrix} \qquad H = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

- a. Nhân chập *H* thường dùng cho bộ lọc ảnh nào?
- b. Tính kết quả của nhân chập H với ảnh I.
- 7) Các phép toán hình thái Cho ảnh A và phần tử cấu trúc (cửa sổ) B như sau

Sử dụng các toán tử hình thái sau để biến đổi đối tượng trong ảnh A theo phần tử cấu trúc B:

- Co (Erosion)
- Dãn (Dilation)
- Đóng (Closing)
- Mở (Opening)
- Tách biên ảnh

8) Mã hóa chuỗi ký tự bằng thuật toán Huffman

HELLOHELL

Tính tỷ lệ nén và độ dư thừa dữ liệu

9) Mã hóa chuỗi ký tự bằng thuật toán LZW

Dùng thuật toán LZW mã hóa chuỗi sau: A B C B C A B C A B C D Với từ điển: A-65; B-66; C-67; D-68 Tính tỷ lệ nén và độ dư thừa dữ liệu

10) Giải mã chuỗi ký tự bằng thuật toán LZW

Dùng thuật toán LZW giải mã chuỗi sau: $65\ 66\ 67\ 259\ 258\ 67\ 262\ 68$ Với từ điển: A-65; B-66; C-67; D-68 Tính tỷ lệ nén và độ dư thừa dữ liệu