CURS 0x04

CIRCUITE SECVENȚIALE

Circuitele combinaționale sunt eficiente (în general) dar au o problema majoră: sunt one-shot

- nu putem itera
- nu permit niciun fel de "logică internă" sau "memorie internă"
- nu există o stare internă a circuitului
- sunt prea simple, asociază o funcție logică a intrărilor cu o ieșire (după un anumit timp)
- unele lucruri nu pot fi implementate folosind doar logică combinațională

Circuitele secvențiale adresează unele dintre limitările circuitelor combinaționale

Avantajele circuitelor secvențiale:

- avem stare internă
- exemplu: avem un registru în care memorăm count-ul curent
- avem variabila de timp
- intrările/ieșirile nu sunt fixe
- număr variabil de pași în rezolvare

SR Latch - Set-Reset Latch

memorează un bit de informație

S	R	Q	Q
0	0	latch	latch
0	1	0	1
1	0	1	0
1	1	0	0

nu se schimbă nimic aici punem "0" în memorie aici punem "1" în memorie stare invalidă

D Latch

memorează un bit de informație cu un singur input D

E de la Enable, adică activare dacă E = 0 nu se întâmplă nimic

D Flip-Flop

pentru sincronizare

exemplu:

este un counter pe 2 biți