Contents

1	Wor	king with Unlabeled Data – Clustering Analysis	1
	1.1	Grouping objects by similarity using k-means	1
		1.1.1 k-means clustering using scikit-learn	1

ii CONTENTS

Chapter 1

Working with Unlabeled Data – Clustering Analysis

1.1 Grouping objects by similarity using k-means

1.1.1 k-means clustering using scikit-learn

Algorithm 1: The k-means algorithm

- 1 begin
- Randomly pick k centroids from the examples as initial cluster centers;
- 3 repeat
- 4 Assign each example to the nearest centroid, $\mu^{(i)}$, $j \in \{1, ..., k\}$;
- Move the centroids to the center of the examples that were assigned to it:
- **until** the cluster assignments do not change or a user-defined tolerance or maximum number of iterations is reached;
- 7 end

A problem with k-means is that one or more clusters can be empty.

Feature scaling

When we are applying k-means to real-world data using a Euclidean distance metric, we want to make sure that the features are measured on the same scale and apply z-score standardization or min-max scaling if necessary.