Part III – Topics in Ergodic Theory (Ongoing course, rough)

Based on lectures by Dr. P. Varjú Notes taken by Bhavik Mehta

Michaelmas 2018

Contents

Index 4

Ergodic theory is all about measure preserving systems.

Definition (Measure preserving system). A **measure preserving system** (X, \mathcal{B}, μ, T) with X a set, \mathcal{B} a σ -algebra, μ a probability measure $(\mu(A) \geq 0 \ \forall A \in \mathcal{B} \ \text{and} \ \mu(X) = 1)$ and T is a measure preserving transformation. Recall a measure preserving transformation $T: X \to X$ is a measurable function such that $\mu(T^{-1}(A)) = \mu(A) \ \forall A \in \mathcal{B}$.

If Y is a random element of X with distribution μ , then T(Y) also has distribution μ .

Example. For example, consider a circle rotation. We have $X = \mathbb{R}/\mathbb{Z}$, \mathcal{B} is the Borel sets, μ the Lebesgue measure, and $T = R_{\alpha}$, with $x \mapsto x + \alpha$ and $\alpha \in \mathbb{R}/\mathbb{Z}$ is a parameter.

We also have the 'times 2 map', with the same X, \mathcal{B}, μ and $T = T_2, x \mapsto 2 \cdot x$.

Proof that T_2 is measure preserving. First check for intervals: Let I=(a,b), then $\mu(I)=b-a$. Also, $\mu(T_2^{-1}I)=\mu\left(\left(\frac{a}{2},\frac{b}{2}\right)\cup\left(\frac{a}{2}+\frac{1}{2},\frac{b}{2}+\frac{1}{2}\right)\right)=\frac{b}{2}-\frac{a}{2}+\frac{b}{2}-\frac{a}{2}=b-a$, as required. Now, let $U\subset\mathbb{R}/\mathbb{Z}$ be open. Then $U=I_1\sqcup I_2\sqcup\cdots$ is a disjoint union of intervals:

$$\mu(T^{-1}U) = \mu(\bigcup T^{-1}I_j)$$

$$= \sum \mu(T^{-1}I_j)$$

$$= \sum \mu(I_j)$$

$$= \mu(U).$$

Let $K \subset \mathbb{R}/\mathbb{Z}$ be a compact set.

$$\mu(T^{-1}K) = 1 - \mu((T^{-1}K)^c) = 1 - \mu(T^{-1}K^c) = 1 - \mu(K^c) = \mu(K).$$

Let $A \in \mathcal{B}$ be arbitrary. Let $\epsilon > 0$. $\exists U$ open and $\exists K$ compact such that $K \subset A \subset U$ and $\mu(U \setminus K) < \epsilon$.

$$\mu(K) = \mu(T^{-1}K) \le \mu(T^{-1}A) \le \mu(T^{-1}U) = \mu(U).$$

We also have $\mu(K) \leq \mu(A) \leq \mu(U)$. Since $\mu(U) - \mu(K) < \epsilon$, $|\mu(A) - \mu(T^{-1}A)| < \epsilon$. ϵ was arbitrary, so $\mu(A) = \mu(T^{-1}A)$.

The two examples generalise to the Haar measure on a topological group and to endomorphisms respectively.

In ergodic theory, we study the long term behaviour of orbits.

Definition (Orbit). The orbit of $x \in X$ is the sequence

$$x, Tx, T^2x, \dots$$

Some questions we might ask are:

- Let $A \in \mathcal{B}$ and $x \in A$. Does the orbit of x visit A infinitely often? (Recurrence)
- What is the proportion of times n such that $T^n x \in A$?
- What is $\mu(\{x \in A \mid T^n x \in A\})$ if n is large? (Mixing property)

Example. Let $A = [0, \frac{1}{4}) \subset \mathbb{R}/\mathbb{Z}$. Then $T_2^n x \in A \iff$ the n+1th and n+2th 'binary digits' of x are 0.

For some $x = 0.x_1x_2x_3..._2$, $x \in A$ corresponds to x_1, x_2 both being 0 and the doubling map sends x to $T_2x = x_2x_3..._2$, giving the property above.

For example, $x = \frac{1}{6} = 0.00101010..._2$ starts in A but never comes back to A. Also, we have $\mu(\lbrace x \in A \mid T_2^n x \rbrace) = \frac{1}{16}$ if $n \geq 2$.

Example (Markov shift). Let P_1, P_2, \ldots, P_n be a probability vector. Let $A \in \mathbb{R}_{\geq 0}^{n \times n}$ be the 'matrix of transition probabilities'. Assume

$$A\begin{pmatrix}1\\1\\\vdots\\1\end{pmatrix}=\begin{pmatrix}1\\1\\\vdots\\1\end{pmatrix}, (P_1 \quad P_2 \quad \dots \quad P_n) A=(P_1 \quad P_2 \quad \dots \quad P_n)$$

Take $X = \{1, ..., n\}^{\mathbb{Z}}$, \mathcal{B} the Borel σ -algebra generated by the product topology of the discrete topology on $\{1, ..., n\}$, $T = \sigma$ the shift map: $(\sigma x)_m = x_{m+1}$. Finally, set the measure

$$\mu(\{x \in X \mid x_m = i_0, x_{m+1} = i_1, \dots, x_{m+n} = i_n\}) = P_{i_0} a_{i_0 i_1} \cdots a_{i_{n-1} i_n}.$$

Theorem (Szemerédi). Let $S \subset \mathbb{Z}$ of positive upper Banach density. That is,

$$\bar{d}(S)\coloneqq \limsup_{N,M:M-N\to\infty}\frac{1}{M-N}\big|S\cap[N,M-1]\big|$$

and $\bar{d}(S) > 0$. Then S contains arbitrarily long arithmetic progressions. That is, $\forall l, \exists a \in \mathbb{Z}, d \in \mathbb{Z}_{>0}$,

$$a, a+d, \ldots, a+(l-1)d \in S.$$

Theorem (Furstenberg, multiple recurrence). Let (X, \mathcal{B}, μ, T) be a measure preserving system. Let $A \in \mathcal{B}$ such that $\mu(A) > 0$. Let $l \in \mathbb{Z}_{>0}$. Then

$$\liminf_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mu(A \cap T^{-n}A \cap \dots \cap T^{-(l-1)n}A) > 0.$$

Index

measure preserving transformation, 2 system, 2 orbit, 2