Real-Time Image Processing

Zusammenfassung

Joel von Rotz / Quelldateien

Inhaltsverzeichnis -

Nichtlineare Filter

Rangordnungsoperatoren	1
Median Filter	1
Min/Max Filter	1
Morphologische Operationen	1
$Dilation \oplus \ldots \ldots \ldots \ldots \ldots \ldots$	1
Erosion —	1
Öffnung ●	1
Schliessung •	1
ourier Transformation	1
Repetition	1
Transformationen Aperiodischer Signale	1
Transformationen Periodischer Signale	1
A.1.	

NOTICE FROM LANDLORD

Nichtlineare Filter -

Rangordnungsoperatoren

Median Filter

Min/Max Filter

Morphologische Operationen

Dilation \oplus

$$I \oplus h = \left\{ (m, n) | (\hat{h})_{m,n} \cap I \neq \{\} \right\}$$

Erosion —

1

$$I - h = \{(m, n) | (\hat{h})_{m,n} \subset I\}$$

Öffnung •

Schliessung o

Fourier Transformation -

Repetition

Transformationen Aperiodischer Signale

$$x \to f$$
: $\hat{h}(f) = \int_{-\infty}^{+\infty} h(x) \cdot e^{-j \cdot 2\pi f x} dx$

$$f \to x$$
: $h(x) = \int_{-\infty}^{+\infty} \hat{h}(x) \cdot e^{-j \cdot 2\pi f x} df$

Transformationen Periodischer Signale

Abtastung

$$x \to f$$
: $\hat{h}(f) = \sum_{n=-\infty}^{\infty} h_n \cdot e^{-j \cdot 2\pi \cdot f \cdot n \cdot x_s} dx$

$$f \to x$$
: $h_n = \frac{1}{f_s} \int_0^{f_s} h(x) \cdot e^{-j \cdot 2\pi \cdot n \cdot x_s \cdot f} df$