MATH 425b MIDTERM EXAM 1 SOLUTIONS Spring 2016 Prof. Alexander

(1) Let $t_N = \sum_{n=1}^N a_n \phi_n$. Then from the proof of 8.11,

(*)
$$\int_{a}^{b} |f - t_{N}|^{2} dx = \int_{a}^{b} |f|^{2} dx - \sum_{n=1}^{N} |c_{n}|^{2} + \sum_{n=1}^{N} |c_{n} - a_{n}|^{2}.$$

By 8.12, we have $\int_a^b |f|^2 dx \ge \sum_{n=1}^N |c_n|^2$ so by (*),

(**)
$$\int_{a}^{b} |f - t_{N}|^{2} dx \ge \sum_{n=1}^{N} |c_{n} - a_{n}|^{2}.$$

By assumption the sum on the right in (**) includes a strictly positive term, so it does not approach 0 as $N \to \infty$. Therefore also the left side $\int_a^b |f - t_N|^2 dx \not\to 0$ as $N \to \infty$, that is, $t_N \not\to f$ in L^2 as $N \to \infty$.

- (2)(a) Since $a_n \to 0$, for all large n we have $|a_n| < 1$, so $|a_n|^{1/n} < 1$. Therefore $\limsup_n |a_n|^{1/n} \le 1$, so R > 1.
- (b) If $\sum_n a_n$ converges, then by Theorem 8.2, $f(x) \to \sum_n a_n$ as $x \nearrow 1$. But from the formula $f(x) = (1-x)^{-2/3}$, we have $f(x) \to \infty$ as $x \nearrow 1$, a contradiction. Therefore $\sum_n a_n$ diverges.
- (3) Note the assumption f(0) = 0 for all $f \in \mathcal{F}$ was added during the exam. By equicontinuity, there exists $\delta > 0$ such that

$$(\#) \quad |y - x| \le \delta \implies |f(y) - f(x)| \le 1 \quad \text{for all } f \in \mathcal{F}.$$

Hence $|f(n\delta) - f((n-1)\delta)| \le 1$ for all n, so by the triangle inequality and (#),

$$|f(n\delta)| \le |f(0)| + \sum_{j=1}^{n} |f(j\delta) - f((j-1)\delta)|$$

$$\le 0 + \sum_{j=1}^{n} 1$$

$$= n = \frac{1}{\delta} \cdot n\delta.$$

For general x we have $n\delta \leq x < (n+1)\delta$ for some n, so $|x-n\delta| < \delta$, so by (#), for all

 $f \in \mathcal{F}$,

$$|f(x)| \le |f(n\delta)| + |f(x) - f(n\delta)|$$

$$\le |f(n\delta)| + 1$$

$$\le \frac{1}{\delta} \cdot n\delta + 1$$

$$\le \frac{1}{\delta} x + 1.$$

This proves the result with $A = 1, B = 1/\delta$.

- (4)(a) Choose any function f in \mathcal{A} which is one-to-one and never 0 on [0,1), for example f(x) = 1 x. Since $f(x) \neq f(y)$ for all $x \neq y$, \mathcal{A} separates points. Since $f(x) \neq 0$ for all $x \in [0,1)$, \mathcal{A} vanishes at no point of [0,1).
- (b) Take any $g \notin \mathcal{A}$, for example $g(x) \equiv 1$. Given $f \in \mathcal{A}$, since $\lim_{x \to 1} f(x) = 0$ there exists $x \in [0,1)$ with f(x) < 1/2, and therefore

$$||f - g||_{\infty} \ge |f(x) - g(x)| > |\frac{1}{2} - 1| = \frac{1}{2}.$$

Thus there is no $f \in \mathcal{A}$ with $||f - g||_{\infty} < \frac{1}{2}$, so \mathcal{A} is not dense in $C_B[0, 1)$. This doesn't violate Stone-Weierstrass because the domain [0, 1) is not compact.