Power-based number system for toki pona

jan loje, jan Tamalu March 12, 2024

1 Toki pona power-based number system

With the help of jan Tamalu (mistakes are mine only)

This system should be as far as possible:

- 1. based on the common positional-digit decimal system,
- 2. unambiguous,
- 3. easy to understand, learn, and use for all common non-scientific and non-mathematical purposes,
- 4. suitable for toki pona.

2 Vocabulary

The ideas for the choice of the names are indicated between square brackets []

1	wan	1	one
2	tu	П	two
3	sin	_'_	three [3 lines]
4	lipu		four [4 sides]
5	luka	7	five
6	pipi	₩	six [6 elements]
7	len	H	seven [4 sides + 3 lines]
8	musi	ಆ	eight; two circles look like a kind of 8
9	suli	\	nine [the "big" digit]
10	sewi	Ė	10 (base) followed by integer powers (1 is implicit): 2, 3, 4, [raise]
20	tu sewi	ПĊ	$two \times ten$
30	sin sewi	-'-广	three \times ten
100	sewi tu	iΠ	10^{2}
300	sin sewi tu	-'-宀	$three \times ten^2$
1000	sewi sin	∴ -'-	10^{3}
+	en	+	addition
-	weka	><	negative [subtract]
	sike	0	separator for decimal part
№	nanpa	#	number prefix (ordinal)*
#	mute		number prefix (cardinal)

^{*}NOTE: compare Philipino ika- or pang-, Malay and Indonesian ke-

3 Use

3.1 Prefixes (when needed)

Ordinal and cardinal numbers.

```
nanpa #: ordinal number
mute |||: cardinal number
ona li nanpa luka = it's the 5th (ordinal)
ona li mute luka = it's 5 (cardinal)
```

3.2 Positional digits

The values of digits are positional (common usage)

```
That is 212 = 2 \times 10^2 + 1 \times 10^1 + 2 \times 10^0

12 = wan \ tu

2024 = tu \ ala \ tu \ lipu
```

3.3 Numbers as powers of 10

sewi is the base 10 for all powers.

```
1000 = 10<sup>3</sup> = sewi sin

10 000 = 10<sup>4</sup> = sewi lipu

...

1 000 000 000 = 10<sup>9</sup> = sewi suli

jan li jo e $1,000,000,000

reading: jan li jo e mani Mewika pi mute sewi suli
```

3.4 Very large (or small) numbers

Very large (or small) numbers can be expressed easily.

```
a googol = 10^{100} = sewi wan ala ala or 10^{10^2} = sewi sewi tu
```

3.5 Composed numbers

Numbers with multiplicative and additive values.

```
The number to the left of sewi has multiplicative value. The additive value of a number (sequence) is stated explicitly with en. 4\ 000\ 000\ 012 = 4 \times 10^9 +\ 12 = lipu\ sewi\ suli\ en\ wan\ tu
```

3.6 Numbers with fractional parts

Number with a fractional part separated by a decimal point.

```
3.14 = \sin sike \ wan \ lipu 3.14 = 314 \times 10^{-2} = \sin \ wan \ lipu \ sewi \ weka \ tu
```

3.7 Numbers with negative exponents

Negative exponents are prefixed by weka.

 $6.62 \times 10^{-34} = pipi \ sike \ pipi \ tu \ sewi \ weka \ sin \ lipu$

3.8 Dates

ISO 8601 system

2024-05-12 = tenpo sike tu ala tu lipu en tenpo mun luka en tenpo suno wan tu 05-12 ona li kama lon = His birthday is May 12th

reading: tenpo mun luka en tenpo suno wan tu la ona li kama lon

3.9 Conflict with the current system

In other to reduce the conflict with the current system, the numbers could be written with the usual digits (0-9), i.e. not "spelled-out" in Toki Pona

Ex. 3: 04-3 ona li kama lon = His birthday is April 3rd reading: tenpo mun lipu en tenpo suno sin la ona li kama lon