

CICLO DIAGNÓSTICO - QUÍMICA

TURMA IME-ITA

2022

DADOS

Constantes

• Constante dos Gases $R = 8.31 \,\mathrm{J}\,\mathrm{K}^{-1}\,\mathrm{mol}^{-1}$

Elementos

Elemento Químico	Número Atômico	Massa Molar $(\operatorname{g} \operatorname{mol}^{-1})$	Elemento Químico	Número Atômico	Massa Molar $(\operatorname{g} \operatorname{mol}^{-1})$
Н	1	1,01	Br	35	79,90
С	6	12,01	Nb	41	92,91
0	8	16,00	Sb	51	121,76
F	9	19,00	I	53	126,90
CI	17	$35,\!45$			

1ª QUESTÃO Valor: 2.00

O nióbio-92 e o bromo-80 são, respectivamente, isóbaro e isótono de um nuclídeo X.

- a) **Determine** o período e o grupo de X na tabela periódica.
- b) **Determine** configuração eletrônica de X em seu estado fundamental.
- c) **Determine** os números quânticos do elétron mais energético de X em seu estado fundamental.

2ª QUESTÃO Valor: 2,00

Um hidrocarboneto acíclico ${\bf X}$ possui densidade relativa ao ar menor que 4. Uma mistura de hexano contendo 10,15% em massa de ${\bf X}$ foi queimada com oxigênio em um recipiente selado. Após o resfriamento dos produtos verificou-se que havia $9,54\,{\rm g}$ de água e $5\,{\rm L}$ de uma mistura composta de 20% CO e 80% de ${\rm CO}_2$, em volume, a $300\,{\rm K}$ e $234\,{\rm kPa}$.

- a) **Determine** a fórmula empírica do hidrocarboneto desconhecido.
- b) Apresente todas as fórmulas estruturais possíveis para X.
- c) **Determine** o volume de oxigênio utilizado no experimento.

Quando HCl(g) e $I_2(s)$ reagem o equilíbrio a seguir é estabelecido.

$$2 \text{ HCl}(g) + I_2(s) \Longrightarrow 2 \text{ HI}(g) + \text{Cl}_2(g)$$
 $K_c = 1.60 \times 10^{-34}$

Em um primeiro experimento, $4\,L$ de HCl(g) a $1\,atm$ e $273\,K$ e $26\,g$ de $I_2(s)$ são adicionados a um recipiente de $12\,L$ com pistão e aquecidos a $25\,^{\circ}C$. Em um segundo experimento, $6\,L$ uma mistura equimolar de HI(g) e $Cl_2(g)$ a $1\,atm$ e $273\,K$ são adicionados ao mesmo recipiente e aquecidos a $25\,^{\circ}C$.

- a) **Determine** as quantidades de todas as espécies no equilíbro no primeiro experimento.
- b) **Determine** as quantidades de todas as espécies no equilíbro no segundo experimento.
- c) **Explique** o efeito da redução do volume na composição do equilíbrio.
- d) **Explique** o valor da constante de equilíbrio com base na reatividade das substâncias.

4ª QUESTÃO Valor: 2,00

Superácidos são definidos como ácidos mais fortes que o ácido sulfúrico 100%. Alguns superácidos possuem sínteses relativamente simples, como o $[{\rm H_2F^+}][{\rm SbF_6}^-]$, preparado pela reação entre o HF e o ${\rm SbF_5}$. Em um experimento, $3~{\rm mL}$ de ácido fluorídrico anidro foram postos para reagir com $10~{\rm mL}$ de ${\rm SbF_5}$.

- a) Apresente as estruturas moleculares para todas as espécies envolvidas na reação.
- b) Determine a geometria molecular para todas as espécies envolvidas na reação.
- c) **Determine** a massa de superácido preparada no experimento.

Dados

- Densidade do pentafluoreto de antimônio $ho_{\mathrm{SbF}_5} = 3.10\,\mathrm{g\,cm^{-3}}$
- Densidade do ácido fluorídrico $\rho_{\rm HF}=0.970\,{\rm g\,cm^{-3}}$

5^a QUESTÃO Valor: 2,00

A morfina e a codeína são compostos orgânicos da classe conhecida como opióides. Eles são fármacos amplamente utilizados no tratamento da dor.

- a) Identifique as funções orgânicas presentes nesses compostos.
- b) Identifique qual desses compostos é mais solúvel em água.
- c) **Determine** o número de estereoisômeros para esses compostos.
- d) Apresente um procedimento de separação desses compostos utilizando acetato de etila, solução de ácido clorídrico $1 \bmod L^{-1}$ e solução de hidróxido de sódio $1 \bmod L^{-1}$.

Morfina: éter, amina, álcool e fenol. Codeína: éter, amina e álcool. b) Morfina possui dois grupos OH e codeína apenas um. Portanto, morfina é mais solúvel em água. c) Ambos os compostos possuem cinco carbonos quirais. d) O número de possíveis isômeros opticamente ativos = 2n . Onde "n"é o número de carbonos assimétricos diferentes existentes na molécula. Assim, 2 5 = 32. e) • Dissolve-se a mistura de morfina e codeína em acetato de etila. • Em seguida, adiciona-se a solução de NaOH. Dessa forma, a morfina, que possui hidroxila fenólica, reage com o hidróxido de sódio, formando um ânion fenolato, que é solúvel em água. Nessas condições a morfina fica concentrada na solução alcalina e a codeína fica concentrada na solução de acetato de etila (podem ser separadas). • Após evaporação da fase orgânica (acetato de etila) obtém-se a codeína pura. • A solução alcalina contendo a morfina desprotonada é então neutralizada, utilizando-se a solução de HCl. Nessas condições, protona-se novamente o fenol o que faz com que o composto deixe de ser solúvel em água e possa ser obtido de forma pura.