11 Exercise solutions – Construction of scoring matrix

1. Scoring schemes for protein alignments

Calculate the score of the alignment by using different scoring schemes.

Seq1 R-HIC Seq2 RDDCC

(a) Use the identity with a simple scoring scheme as match: 1, mismatch: 0, and gap penalty: 0.

Solution: 2

(b) Use the genetic code.

TI' /		α 1	.,.		/D1 · 1
First	$Second\ position$				Third
position	T	$^{\mathrm{C}}$	Α	G	position
Т	F	S	Y	С	Т
	F	\mathbf{S}	Y	\mathbf{C}	С
1	${ m L}$	\mathbf{S}	Stop	Stop	A
	${ m L}$	\mathbf{S}	Stop	W	G
	L	Р	Н	R	Т
С	L	Р	$_{\mathrm{H}}$	\mathbf{R}	С
	${ m L}$	Р	Q	\mathbf{R}	A
	${ m L}$	Р	Q	\mathbf{R}	G
	I	Τ	N	S	Т
	I	${ m T}$	N	\mathbf{S}	С
A	I	${ m T}$	K	\mathbf{R}	A
	M	${ m T}$	K	\mathbf{R}	G
G	V	A	D	G	Т
	V	A	D	G	С
	V	A	\mathbf{E}	G	A
	V	A	E	G	G

A	Ala	Alanine
\mathbf{C}	Cys	Cysteine
D	Asp	Aspartic acid
\mathbf{E}	Glu	Glutamic acid
\mathbf{F}	Phe	Phenylalanine
G	Gly	Glycine
Η	His	Histidine
I	Ile	Isoleucine
K	Lys	Lysine
L	Leu	Leucine
\mathbf{M}	Met	Methionine
Ν	Asn	Asparagine
Ρ	Pro	Proline
Q	Gln	Glutamine
\mathbf{R}	Arg	Arginine
\mathbf{S}	Ser	Serine
\mathbf{T}	Thr	Threonine
V	Val	Valine
W	Trp	Tryptophan
Y	Tyr	Tyrosine

Solution: 9

CGU --- CAU AUU UGU CGU GAU GAU UGU UGU

(c) Use the AACH.

Solution: 3 + 0 + 1 + 1 + 3 = 8

2. Probabilities of accepted mutations

Use a phylogenetic tree below to calculate the probabilities of accepted mutations. The tree contains sequences of four OTUs.

- (a) Estimate the mutations and fill them in the boxes next to the edges.
- (b) Count the occurrences of mutations and fill them in the matrix. Note that a mutation $A \to B$ is equivalent with a mutation $B \to A$.

	A	С	G	Т
A		1		1
С	1		3	
G		3		
Т	1			

(c) Use the following definitions and calculate f_{CG} , f_C and f.

 f_{ab} : The number of mutations from a to b or from b to a

 f_a : Total number of mutations in which a takes part

f: Twice the total number of mutations

 $f_{CG}: 3$

 $f_C: 1+3=4$

f: 2(1+1+3) = 10

(d) Use the following definition and calculate p_C .

 p_a : The relative occurrence of a in the observed sequences

 $p_C: \ 3/12$

3. Relative mutability of PAM

Relative mutability is calculated from frequencies of estimated mutilation and background probabilities.

$$m_a: \frac{1}{100p_a} \times \frac{f_a}{f}$$

 f_a : Total number of point mutations in which a takes part

f: Twice the total number of point mutations

 p_a : Relative occurrence of a in the observed sequences

Assume that the frequencies are pre-calculated as follows.

• Frequencies of estimated mutations

$$f_A: 2, \quad f_G: 3, \quad f_C: 3, \quad f_T: 2$$

 $f: 10$

• Background probabilities

$$p_A: 3/10, \quad p_G: 2/10, \quad p_C: 4/10, \quad p_T: 1/10$$

(a) Calculate the probabilities of point mutations by $\frac{f_a}{f}$.

$$\frac{f_A}{f}: \ 2/10$$
 $\frac{f_G}{f}: \ 3/10$ $\frac{f_C}{f}: \ 3/10$ $\frac{f_T}{f}: \ 2/10$

(b) Calculate $100p_a$.

$$100p_A: 30$$
 $100p_G: 20$ $100p_C: 40$ $100p_T: 10$

(c) Calculate the relative mutability m_a .

$$m_A: \ 2/300 \ m_G: \ 3/200 \ m_C: \ 3/400 \ m_T: \ 2/100$$

4. Mutation probabilities of PAM

Mutation probabilities are calculated from relative mutability.

$$m_{ab}: m_a \times \frac{f_{ab}}{f_a}, \qquad m_{aa}: 1 - m_a$$

 f_{ab} : Total number of point mutations in which a takes part

 f_a : Twice the total number of point mutations

 m_a : Relative mutability of a

Assume that the frequencies are pre-calculated as follows.

• Frequencies of estimated mutations

 $f_{AC}: 8, \quad f_A: 32$

• Relative mutability

 $m_A: 0.004$

(a) Calculate M_{AC} .

Solution: $0.004 \times \frac{8}{32} = 0.001$

(b) Calculate M_{AA} .

Solution: 1 - 0.004 = 0.996

5. Odds ratios of PAM

Odds ratios are calculated from mutation probabilities and background probabilities.

$$O_{ab} = \frac{M_{ab}}{p_b} = m_a \times \frac{f_{ab}}{f_a} \times \frac{1}{f_b} = \frac{1}{100} \times \frac{f_{ab}}{f} \times \frac{1}{p_a p_b}$$

Assume that the frequencies are pre-calculated as follows.

$$f_{AC}: 16, \quad f: 400, \quad p_A: 0.2, \quad p_c: 0.4$$

(a) Calculate O_{AC} .

Solution: $(1/100) \times (16/400) \times (1/(0.2 \times 0.4)) = 0.005$

(b) Calculate O_{CA} .

Solution: 0.005

6. BLOSUM

BLOSUM uses several thousand blocks to calculate the probabilities of accepted mutation. Use the following definitions and Block1 & Block2 to solve the problems.

 f_{ab} : Frequencies of an observed pair a and b.

T: Total number of pairs from all blocks.

The number of pairs can be calculated as 1/2wm(m-1).

$$p_a: p_a = f_{aa} + \sum_{e \neq a} f_{ae}/2$$

 $e_{aa}:p_ap_a$

$$e_{ab}: p_a p_b + p_b p_a = 2p_a p_b$$

Block1 Block2 CAGC GGA GTAC GTA CAGC

(a) Count the occurrences of all pairs.

	Α	G	С	Т
A	2	2	0	2
G	2	2	2	1
С	0	2	4	0
Т	2	1	0	0

(b) Calculate T.

Solution:
$$(1/2 \times 4 \times 3 \times 2) + (1/2 \times 3 \times 2 \times 1) = 12 + 3 = 15$$

(c) Calculate f_{AA} and f_{AG} .

Solution:
$$f_{AA}: 2/15, \quad f_{AG}: 2/15$$

(d) Calculate p_A and p_G .

Solution:
$$p_A: 8/30, p_G: 9/30$$

(e) Calculate e_{AA} and e_{AG} .

Solution:
$$e_{AA}: 64/900, \quad e_{AG}: 144/900$$

(f) Calculate f_{AA}/e_{AA} and f_{AG}/e_{AG} .

Solution:
$$f_{AA}/e_{AA}: 1.875, \quad f_{AG}/e_{AG}: 0.833$$