Feature Specific Sentiment Analysis of Reviews

Subhabrata Mukherjee and Pushpak Bhattacharyya Dept. of Computer Science and Engineering, IIT Bombay

13th International Conference on Intelligent Text Processing and Computational Intelligence - CICLING 2012, New Delhi, India, March, 2012

MOTIVATION CONTD...

 Sentiment Analysis is always with respect to a particular entity or feature

Feature may be implicit or explicit

This work concerns explicit feature

MOTIVATION

□I have an **ipod** and it is a <u>great</u> buy but I'm probably the only person that <u>dislikes</u> the iTunes **software**.

Here the sentiment w.r.t ipod is positive whereas that respect to software is negative

ENTITY AND FEATURES

An entity may be analyzed from the point of view of multiple features

- Entity Titanic
- Features Music, Direction, Plot etc.

Given a sentence how to identify the set of features?

SCENARIO

Each sentence can contain multiple features and mixed opinions (positive and negative)

Reviews mixed from various domains

No prior information about set of features except the *target feature*

MAIN FEATURES OF THE ALGORITHM

Does not require any prior information about any domain

 Unsupervised – But need a small untagged dataset to tune parameters

- Does not require any prior feature set
- Groups set of features into separate clusters which need to be pruned or labeled

Opinion Extraction Hypothesis

"More closely related words come together to express an opinion about a feature"

- "I want to use Samsung which is a great product but am not so sure about using Nokia".
 - Here "great" and "product" are related by an adjective modifier relation, "product" and "Samsung" are related by a relative clause modifier relation. Thus "great" and "Samsung" are transitively related.
 - Here "great" and "product" are more related to Samsung than they are to Nokia
 - Hence "great" and "product" come together to express an opinion about the entity "Samsung" than about the entity "Nokia"

- "I want to use Samsung which is a great product but am not so sure about using Nokia".
 - Here "great" and "product" are related by an adjective modifier relation, "product" and "Samsung" are related by a relative clause modifier relation. Thus "great" and "Samsung" are transitively related.
 - Here "great" and "product" are more related to Samsung than they are to Nokia
 - Hence "great" and "product" come together to express an opinion about the entity "Samsung" than about the entity "Nokia"

- "I want to use Samsung which is a great product but am not so sure about using Nokia".
 - Here "great" and "product" are related by an adjective modifier relation, "product" and "Samsung" are related by a relative clause modifier relation. Thus "great" and "Samsung" are transitively related.
 - Here "great" and "product" are more related to Samsung than they are to Nokia
 - Hence "great" and "product" come together to express an opinion about the entity "Samsung" than about the entity "Nokia"

- "I want to use Samsung which is a great product but am not so sure about using Nokia".
 - Here "great" and "product" are related by an adjective modifier relation, "product" and "Samsung" are related by a relative clause modifier relation. Thus "great" and "Samsung" are transitively related.
 - Here "great" and "product" are more related to Samsung than they are to Nokia
 - Hence "great" and "product" come together to express an opinion about the entity "Samsung" than about the entity "Nokia"

"I want to use Samsung which is a great product but am not so sure about using Nokia".

- Here "great" and "product" are related by an adjective modifier relation, "product" and "Samsung" are related by a relative clause modifier relation. Thus "great" and "Samsung" are transitively related.
- Here "great" and "product" are more related to Samsung than they are to Nokia
- Hence "great" and "product" come together to express an opinion about the entity "Samsung" than about the entity "Nokia"

- "I want to use Samsung which is a great product but am not so sure about using Nokia".
 - Here "great" and "product" are related by an adjective modifier relation, "product" and "Samsung" are related by a relative clause modifier relation. Thus "great" and "Samsung" are transitively related.
 - Here "great" and "product" are more related to Samsung than they are to Nokia
 - Hence "great" and "product" come together to express an opinion about the entity "Samsung" than about the entity "Nokia"

"I want to use Samsung which is a great product but am not so sure about using Nokia".

- Here "great" and "product" are related by an adjective modifier relation, "product" and "Samsung" are related by a relative clause modifier relation. Thus "great" and "Samsung" are transitively related.
- Here "great" and "product" are more related to Samsung than they are to Nokia
- Hence "great" and "product" come together to express an opinion about the entity "Samsung" than about the entity "Nokia"

"Lwar Relative Clause Samsung which is a great product but am not so sure about using Nokia".

- Here "great" and "product" are related by an adjective modifier relation, "product" and "Samsung" are related by a relative clause modifier relation. Thus "great" and "Samsung" are transitively related.
- Here "great" and "product" are more related to Samsung than they are to Nokia
- Hence "great" and "product" come together to express an opinion about the entity "Samsung" than about the entity "Nokia"

Initially, all the Nouns are treated as features and added to the feature list F.

- Initially, all the Nouns are treated as features and added to the feature list F.
- □ F = { ipod, buy, person, software }

- Initially, all the Nouns are treated as features and added to the feature list F.
- □ F = { ipod, buy, person, software }
- Pruning the feature set
 - Merge 2 features if they are strongly related

- Initially, all the Nouns are treated as features and added to the feature list F.
- F = { ipod, buy, person, software }
- Pruning the feature set
 - Merge 2 features if they are strongly related
- "buy" merged with "ipod", when target feature = "ipod",
 - "person, software" will be ignored.

- Initially, all the Nouns are treated as features and added to the feature list F.
- F = { ipod, buy, person, software }
- Pruning the feature set
 - Merge 2 features if they are strongly related
- "buy" merged with "ipod", when target feature = "ipod",
 - "person, software" will be ignored.
- "person" merged with "software", when target feature = "software"
 - "ipod, buy" will be ignored.

Relations

- Direct Neighbor Relation
 - Capture short range dependencies
 - Any 2 consecutive words (such that none of them is a StopWord) are directly related
 - Consider a sentence S and 2 consecutive words.
 - □ If $w_i, w_{i+1} \notin Stopwords$, then they are directly related. $w_i, w_{i+1} \in S$
- Dependency Relation
 - Capture long range dependencies
- Let Dependency_Relation be the list of significant relations.
- □ Any 2 words w_i and w_j in S are directly related, if $\exists D_i$ s.t. $D_i(w_i, w_j) \in Dependency _Relation$

Graph representation

Given a sentence S, let W be the set of all words in the sentence S.

A Graph G(W, E) is constructed such that any $w_i, w_j \in W$ are directly connected by $e_k \in E$, if $\exists R_l \ s.t. \ R_l(w_i, w_j) \in R$.

Graph

Algorithm

i. Initialize *n* clusters $C_i \forall i = 1..n$

ii. Make each $f_i \in F$ the clusterhead of C_i . The target feature f_t is the clusterhead of C_t . Initially, each cluster consists only of the clusterhead.

Algorithm

Contd...

iii. Assign each word $w_j \in S$ to cluster C_k s.t. $k = \arg\min_{i \in n} dist(w_j, f_i)$,

Where $dist(w_j, f_i)$ gives the number of edges, in the shortest path, connecting w_i and f_i in G.

Algorithm

Contd...

iv. Merge any cluster C_i with C_t if, $dist(f_i, f_t) < \theta$,

Where θ is some threshold distance.

v. Finally the set of words $w_i \in C_t$ gives the opinion expression regarding the target feature f_t .

Evaluation - Dataset 1

- 2500 sentences
- Varied domains like antivirus, camera, dvd, ipod, music player, router, mobile
- Each sentence tagged with a feature and polarity w.r.t the feature
- Acid Test
 - Each Review has a mix of positive and negative comments

Parameter Learning

- Dependency Parsing uses approx. 40 relations.
- □ Relation Space $-(2^{40} 1)$
- Infeasible to probe the entire relation space.
- Fix relations certain to be significant
 - nsubj, nsubjpass, dobj, amod, advmod, nn, neg
- Reject relations certain to be non-significant

Parameter Learning Contd...

This leaves around 21 relations some of which may not be signficant.

 Compute Leave-One-Relation out accuracy over a training set.

Find the relations for which there is significant accuracy change.

Ablation test

Relations	Accuracy (%)
All	63.5
Dep	67.3
Rcmod	65.4
xcomp, conj_and	61.5
ccomp, iobj	
advcl, appos, csubj,	63.5
abbrev, infmod,	
npavmod, rel, acomp,	
agent, csubjpass,	
partmod, pobj, purpcl,	
xsubj	

Ablation test

Relations	Accuracy (%)
All	63.5
Dep	67.3
Rcmod	65.4
xcomp, conj_and	61.5
ccomp, iobj	
advcl, appos, csubj,	63.5
abbrev, infmod,	
npavmod, rel, acomp,	
agent, csubjpass,	
partmod, pobj, purpcl,	
xsubj	

Ablation test

Relations	Accuracy (%)
All	63.5
Dep	67.3
Rcmod	65.4
xcomp, conj_and	61.5
ccomp, iobj	
advcl, appos, csubj,	63.5
abbrev, infmod,	
npavmod, rel, acomp,	
agent, csubjpass,	
partmod, pobj, purpcl,	
xsubj	

Significant Relations Contd...

Relation Set	Accuracy
With Dep+Rcmod	66
Without Dep	69
Without Rcmod	67
Without Dep+Rcmod	68

Leaving out dep improves accuracy most

Significant Relations Contd...

Relation Set	Accuracy
With Dep+Rcmod	66
Without Dep	69
Without Rcmod	67
Without Dep+Rcmod	68

Leaving out dep improves accuracy most

Inter cluster distance

	Accuracy (%)
2	67.85
3	69.28
4	68.21
5	67.4

Inter cluster distance

	Accuracy (%)
2	67.85
3	69.28
4	68.21
5	67.4

Lexicon based classification

Domain	Baseline 1 (%)	Baseline 2 (%)	Proposed System (%)
Antivirus	50	56.82	63.63
Camera 1	50	61.67	78.33
Camera 2	50	61.76	70.58
Camera 3	51.67	53.33	60.00
Camera 4(Nikon)	52.38	57.14	78.57
DVD	52.21	63.23	66.18
IPOD	50	57.69	67.30
Mobile 1	51.16	61.63	66.28
Mobile 2	50.81	65.32	70.96
Music Player 1	50.30	57.62	64.37
Music Player 2	50	60.60	67.02
Router 1	50	58.33	61.67
Router 2	50	59.72	70.83

Lexicon based classification

Domain	Baseline 1 (%)	Baseline 2 (%)	Proposed System (%)
Antivirus	50	56.82	63.63
Camera 1	50	61.67	78.33
Camera 2	50	61.76	70.58
Camera 3	51.67	53.33	60.00
Camera 4(Nikon)	52.38	57.14	78.57
DVD	52.21	63.23	66.18
IPOD	50	57.69	67.30
Mobile 1	51.16	61.63	66.28
Mobile 2	50.81	65.32	70.96
Music Player 1	50.30	57.62	64.37
Music Player 2	50	60.60	67.02
Router 1	50	58.33	61.67
Router 2	50	59.72	70.83

Overall accuracy

Method	Average Accuracy(%)
Baseline 1	50.35
Baseline 2	58.93
Proposed System	70.00

Overall accuracy

Method	Average Accuracy(%)
Baseline 1	50.35
Baseline 2	58.93
Proposed System	70.00

Evaluation – Dataset 2

Extracted 500 sentences

Varied domains like camera, laptop, mobile

 Each sentence tagged with a feature and polarity w.r.t the feauture

Results

Method	Accuracy (%)
Baseline 1	68.75
Baseline 2	61.10
CFACTS-R	80.54
CFACTS	81.28
FACTS-R	72.25
FACTS	75.72
JST	76.18
Proposed System	80.98

Results

Method	Accuracy (%)
Baseline 1	68.75
Baseline 2	61.10
CFACTS-R	80.54
CFACTS	81.28
FACTS-R	72.25
FACTS	75.72
JST	76.18
Proposed System	80.98

Results

Method	Accuracy (%)
Baseline 1	68.75
Baseline 2	61.10
CFACTS-R	80.54
CFACTS	81.28
FACTS-R	72.25
FACTS	75.72
JST	76.18
Proposed System	80.98

CONCLUSIONS

 Incorporating feature specificity improves sentiment accuracy.

Dependency Relations capture long range dependencies as is evident from accuracy improvement.

Work to be extended for implicit features and domain dependent sentiment.