

Bridging Psychometric and Cognitive Models of (General) Intelligence

A Simulation Approach to Investigate Process Overlap Theory

Han Hao

Claremont Graduate University

April 15, 2022

Agenda

- The Conventional Theories of Intelligence
 - Psychometric theories
 - Cognitive theories
 - Problems with the conventional theories
- Process Overlap Theory (POT) to Bridge the Gaps
 - Study 1: A Simulation Study of POT
 - Study 2: A Network of POT Simulation
 - Study 3: The Latent Network of Kane et al. (2004): An Inspection from POT perspective

- Defined to explain the patterns and variations of human intellectual behaviors
 - On different occasions, in different domains, as judged by different criteria.
- Most definitions rely on observations of human performance in specific intellectual activities

Boring (1923): Intelligence is what the intelligence tests test

- Various definitions, robust patterns
 - Positive manifold of mental ability tests
- Two broad branches of conventional theories

Cognitive theories

• Investigate correlational relationships and individual differences in performance of (cognitive) tests that require cognitive activities to understand the "map of mind" (Sternberg, 2012, p.19)

Correlational data, latent variable models

- Spearman's theory of general Intelligence
 - One-factor model of Intelligence
- Thurstone's Primary Mental Abilities
 - Multi-factor models of Intelligence
- The Cattell-Horn-Carroll Theory
 - Carroll's Three-Stratum Theory
 - Cattell-Horn's Gf-Gc Theory

- Spearman's theory of general Intelligence
 - One-factor model of Intelligence
- Thurstone's Primary Mental Abilities
 - Multi-factor models of Intelligence
- The Cattell-Horn-Carroll Theory
 - Carroll's Three-Stratum Theory
 - Cattell-Horn's Gf-Gc Theory

- Spearman's theory of general Intelligence
 - One-factor model of Intelligence
- Thurstone's Primary Mental Abilities
 - Multi-factor models of Intelligence
- The Cattell-Horn-Carroll Theory
 - Carroll's Three-Stratum Theory
 - Cattell-Horn's Gf-Gc Theory

Cognitive theories

• Investigate the specific roles of cognitive processes in intelligent activities as basic components in information processing

 Reductionism: What is the most influential cognitive process in intelligence?

 Experimental data from cognitive tasks, (computational) cognitive models

Cognitive theories

- What is general intelligence?
 - Processing Speed
 - Moderately correlated with Intelligence
 - Working Memory
 - Strongly correlated with intelligence
 - Executive Functions
 - correlated with intelligence, but evidence is mixed

Problems with The Conventional Theories

- Psychometric Theories: "The Common-Cause premise Problem"
 - The common variance among the measures is regarded as a general source that causes the communality of the individual differences
 - But a latent factor != a cognitive process/function

- Cognitive Theories: "The Measurement Problem"
 - In empirical research, it is usually challenging to associate the differences in cognitive tasks to specific cognitive processes as most cognitive tasks are complex in nature

Process Overlap Theory (POT)

- Kovacs & Conway (2016; 2019)
 - A unified theory of intelligence based on the sampling theories (Thomson, 1916)
 - Attempts to explain inter-individual differences in intelligence in terms of intra-individual psychological processes
 - Proposes an alternative cognitive foundation of positive manifold of intelligence (formative g)

Process Overlap Theory (POT)

A Sampling framework of Cognitive Processes

Processes

Process Overlap Theory (POT)

- The Sampling Mechanism of POT:
 - Domain-specific and domain-general processes are sampled in an overlapping manner across a battery of tests
 - Executive attention processes (as domain-general processes) are sampled more often than domain-specific processes across different tasks
 - EF processes are also sampled more often in fluid reasoning tasks than in domain-specific tasks (e.g., math knowledge, grammar sensitivity, etc.)

POT-IRT Model (POT-I)

$$P(U_{pi} = 1 \mid \Theta_{plm}, a_{il}, b_{il}) = \prod_{l=1}^{D} \frac{e^{\sum_{m=1}^{C} a_{il}(\Theta_{plm} - b_{il})}}{1 + e^{\sum_{m=1}^{C} a_{il}(\Theta_{plm} - b_{il})}}$$

where:

 Θ_{plm} = the process score for the p^{th} person on the m^{th} process of the l^{th} domain

 $a_{il}=$ the discrimination parameter for the l^{th} domain on the i_{th} item

 $b_{il}=$ the difficulty parameter for the l^{th} domain on the i_{th} item

D = number of domains tapped by the item

 ${\cal C}=$ number of processes in the given domain tapped by the item

POT – Structural Model (POT-S)

POT – Structural Model (POT-S)

Study I: A Simulation of POT

Simulating the Sampling Mechanisms (POT-I)

Investigate the Psychometric Model of the Simulation (POT-S)

Study I: A Simulation Study of POT

- Purpose: Proposing a simulation approach based on POT algorithm of process sampling and demonstrating:
 - A) "g" can emerge from the simulated test scores in the absence of a general cognitive ability
 - B) the broad ability factors can emerge by introducing a distinction between domain-general and domain-specific processes, and how they are sampled by different types of tests

Study I: Sampling Algorithm

Compensatory processes (within a domain):

$$\theta = a \cdot x^T = \sum_{k=1}^{\infty} a_k \, \mathbf{x}_k$$

Non-compensatory processes (across domains):

$$P = \prod_{k=1}^{n} p_k$$

Study I: Procedure – 1/5

- Step 1: Specify the cognitive processes and tests
- Simulate a sample of 1000 subjects performing 9 tests, each has 100 items
 - 3 fluid reasoning tests, 3 verbal tests, 3 spatial tests
- Each subject has a set of 60 cognitive processes
 - 15 Executive Function Processes
 - 15 Fluid Reasoning Processes, 15 Verbal Processes, and 15 Spatial Processes
- Each individual subject has an ability level on each process (orthogonal and normally distributed)
 - A 1000 x 60 Matrix

Study I: Procedure – 2/5

Step 2: Apply 2 specific sampling algorithms to the simulated processes

- We compared two algorithms on the same set of simulated processes: a POT sampling algorithm (POT) and a general sampling algorithm (GSM)
- In the GSM algorithm,
- All 60 processes are sampled with equal probability (p = .10) across every task and item
 - For a specific item, about 60*0.10 = 6 processes are expected to be sampled

Study I: Procedure -2/5 (continued)

- In the POT algorithm,
- For an item in Gf tests, domain-general (EF) processes are sampled with greater probability (p = .28) than domain-specific (Fluid Reasoning) processes (p = .12)
 - On average, 4 EF (15*0.28) + 2 Fluid (15*0.12) processes are expected to be sampled for an item
- For an item in verbal/spatial tests, domain-general (EF) processes are sampled with smaller probability (p = .12) than domain-specific (Verbal/Spatial) processes (p = .28)
 - On average, 2 EF (15*0.28) + 4 specific (15*0.12) processes are expected to be sampled for an item

Study I: Procedure – 3 & 4/5

Step 3: Achieve latent traits that are reflected in specific tasks

- For GSM, all 6 processes are summed and standardized to calculated the corresponding "latent trait" required for an item
- For POT, the processes within a domain (e.g., verbal processes sampled for a verbal item) are summed and standardized as the dimensional "latent trait"

Step 4: Generate the item/task level responses

- "Latent traits" are converted to probabilities by IRT functions and are used to generate binary responses of items (0s and 1s)
- "1PL" for the IRT functions of simulated items, $\alpha = 1$, $b \sim N(0, 1)$

Study I: Procedures – 5/5

- Step 5: Fit the psychometric models
- Two simulated Datasets (GSM & POT):
 - Two 1000 x 9 matrices with total scores of the 9 tests based on the simulated responses of 9*100 items
- Two Types of Models:
 - General factor model: 9 items loading onto a general factor
 - Higher-order factor model: 3 subfactors loading onto a higher-order factor

Study I: Results

Study I: Results

Fit indices for the one factor model and the hierarchical three factor model based on the POT and GSM algorithms

	$\chi^2(df)$	p-value	CFI	RMSEA	SRMR
POT One Factor	1985.39 (27)	<.001	.54	.27	.16
POT Three Factor	19.15 (24)	.740	1.00	.01	.01
GSM One Factor	9.58 (27)	.999	1.00	.00	.01
GSM Three Factor	9.58 (24)	.999	1.00	.00	.01

Note: $\chi^2(df)$ = Chi-Square (degree of freedom). CFI = comparative fit index. RMSEA = root mean square error of approximation. SRMR = standardized root mean square residual.

Study I: Results (POT Algorithm)

Study I: Results (GSM Algorithm)

Study I: Summary

 The positive manifold emerged from the simulated test scores in the absence of a general cognitive ability, as if there were a general intelligence at play

 By specifying domain-specific/domain-general processes, a higherorder structure can be achieved (POT-S)

Study I: Summary

- However,
 - POT interprets the higher-order g as a formative factor instead of a reflective one
 - The g factor is the outcome, not the resource, of the common variances in test scores
 - Thus, a conventional latent factor model is not fully compatible with POT

POT-S is not enough.

Study 2: A Network of POT Simulation

Apply a Psychometric Network to the Simulation (POT-N)

Combine Latent Factor Modeling and Network Modeling

Study 2: A Network of POT Simulation

 Purpose: Extending the original simulation results by applying a network structure to the psychometric model of POT (POT-N)

- Why POT-N?
 - An alternative representation to the positive manifold
 - Shifts the main emphasis from a common cause to the direct mutual associations among specific cognitive measures

Study 2: A Network of POT Simulation

- We apply two types of network models:
 - Psychometric network of the 9 tests (regular graphic model)
 - Latent network model of the 3 types of tests (latent factors + graphic network)

Study 2: A Network of POT Simulation (a = 0.70)

Study 2: A Network of POT Simulation (a = 0.70)

Study 2: Summary

- The psychometric network models offer an alternative perspective to investigate the correlational structure of individual differences in cognitive abilities without a common cause assumption
- The latent network model combines the benefits of both latent factor models and psychometric networks
 - The latent broad ability factors retain the benefits of latent factor models to account for measurement errors of tasks
 - The network structure among broad abilities rejects the notion of general intelligence as a common cause of positive manifold

Study 3: A Network Model of Working Memory and Reasoning

Re-analyze Kane et al. (2004) WM and Gf data from a Network Perspective Based on POT

Study 3: The Network Model of Kane et al. (2004)

- Applying this (latent) network framework to an empirical dataset with working memory and reasoning tasks
- Explain the network patterns observed in the framework from an exploratory perspective based on POT

Study 3: The Network Model of Kane et al. (2004)

- Applying this (latent) network framework to an empirical dataset with working memory and reasoning tasks
- Explain the network patterns observed in the framework from an exploratory perspective based on POT

				Skewnes	
Task	Label	M	SD	S	Kurtosis
Word Span	wor	0.78	0.11	-0.46	0.22
Letter Span	let	0.78	0.10	-0.29	-0.31
Digit Span	dig	0.80	0.10	-0.39	0.26
Ball Span	bal	0.58	0.12	-0.12	0.82
Array Span	arr	0.65	0.16	-0.76	1.26
Matrix Span	mat	0.51	0.15	-0.14	-0.15
Operation Span	оре	0.65	0.17	-0.47	0.05
Counting Span	cou	0.69	0.15	-0.26	-0.39
Reading Span	rea	0.67	0.16	-0.32	-0.13
Navigation Span	nav	0.48	0.18	0.10	-0.44
Symmetry Span	sym	0.47	0.20	0.26	-0.58
Rotation Span	rot	0.61	0.18	-0.29	-0.45
ETS Inference	etsin	0.61	0.22	-0.35	-0.58
AFOQT Analogies	afqan	0.56	0.22	-0.12	-0.54
Remote Associates	remass	0.46	0.17	-0.21	-0.18
ETS Nonsense Syllogisms	etssy	0.54	0.17	0.26	-0.22
AFOQT Reading Comprehension	afqrc	0.51	0.26	0.16	-1.03
ETS Paper Folding	papfo	0.60	0.24	-0.25	-0.63
DAT Space Relations	datsr	0.57	0.21	-0.23	-0.52
AFOQT Rotated Blocks	afqrb	0.37	0.23	0.48	-0.37
ETS Surface Development	etssd	0.60	0.25	-0.10	-1.02
ETS Form Board	etsfb	0.39	0.24	0.37	-0.72
WASI	wasim	0.69	0.14	-0.53	0.75
RAPM	raven	0.55	0.15	-0.58	0.66
BETA III	beta3	0.86	0.13	-1.80	5.05

Study 3: The Network Model of Kane et al. (2004)

- Applying this (latent) network framework to an empirical dataset with working memory and reasoning tasks
- Explain the network patterns observed in the framework from an exploratory perspective based on POT

- WM-Verbal
- WM-Spatial
- STM-Verbal
- STM-Spatial
- Reasoning-Verbal
- Reasoning-Spatial
- Reasoning-Matrix

```
model DF AIC BIC RMSEA Chisq Chisq_diff DF_diff p_value
Initial Network Model 0 -7645.38 -6434.52 ~ 0
Final Network Model 248 -7855.23 -7502.36 0.026 286.14 286.14 248 0.048
Initial Latent Network 254 -7799.65 -7467.53 0.035 328.68 42.53 6 < 0.0001
Final Latent Network 265 -7786.39 -7492.32 0.040 363.94 35.26 11 0.00022
```

Note: Chi-square difference test assumes models are nested.

Takeaways

- Study 1: A Simulation of POT
 - Simulated a cognitive mechanism based on POT and reflected it in psychometric models
 - Demonstrated that the positive manifold and a higher-order structure of psychometric intelligence can be achieved without a common resource
- Study 2: A network of POT Simulation
 - Proposed a network perspective of psychometric intelligence
 - Combined latent factor modeling and network modeling
- Study 3: The Latent Network of Kane et al. (2004)
 - Revisited a correlational dataset of cognitive abilities from an exploratory, network perspective
 - Emphasized more on the roles of specific abilities

Going Forward...

- Update the sampling mechanisms (associating the mechanisms to more behavioral and neural observations)
- Test different assumptions of cognitive theories using the sampling mechanisms and IRT parameters
- Network modeling on different samples of tests and subjects
- Integrate the drift-diffusion model

显 Thank you!

Download slides at:

https://hanhao23.github.io/files/HHCogForum04152022.pdf

