Fine-Grained Long-Range Prediction of Resource Usage

Ivan, Petru, and Zebo

Outline

1. Goal

2. Data

3. Model

4. Tuning

Goal

Scenario

Scenario

Premise

Knowing the future is useful

Prediction

Prediction

Objective

Predict the future resource usage

Means

Machine-learn from data

Data

Google Cluster Usage

- 1 month
- 1,000 users
- 700,000 jobs
- o 13,000 machines

Google Cluster Usage

Task Resource Usage

- 200 GB
- 25,000,000 tasks
- 1,300,000,000 records
- CPU, memory, and disk usage
- Max and mean over 5-minute intervals

Task Resource Usage

Problem

 Need fast access to individual traces to streamline machine learning

Divide & Conquer

 Preselect individual traces and store them in separate databases

Divide & Conquer

 Job #7
 →
 DB #7

 Job #42
 →
 DB #42

 Job #221B
 →
 DB #221B

 Job #735
 →
 DB #735

Divide & Conquer

Model

Problem

Design an adequate predictive model

Premise

 Artificial neural networks are the state-of-the-art

Architecture

The Neural Network Zoo (click me)

Architecture

Unrolling

Training

Software

Fig. 1: A timeline showing the release of machine-learning libraries discussed in section I in the last 25 years.

Software

Source: https://github.com

TensorFlow

- Google Brain
- Open source
- Flexible & efficient
- Scalable & portable
- User-friendly (show demo)

Tuning

Problem

Decide on the hyperparameters

Configuration Selection

Exploration

Exploitation

Parameter 1

Exploration & Exploitation

Figure 2: Empirical evaluation of various search methods on 117 datasets. Search methods were executed for a one hour duration for each dataset, continuously reporting their best identified models throughout this time window. Models were evaluated using an unseen test set. Results are reported for random search ('random'), random search run on two machines ('random_2x'), and two Bayesian optimization methods ('SMAC', 'TPE'). (a) Average rank of test error across all datasets, where lower is better. The rank for each dataset is based on the average test error across 20 trials. (b) Average test error for 20 randomly sampled datasets after one hour of execution. See Figure A.3 for corresponding results for all 117 datasets.

Hyperband

- Pure exploration
- Adaptive resource allocation
- 5–30× speedup over state-of-the-art Bayesian optimization algorithms

Hyperband

	s=4		s=3		s=2		s=1		s = 0	
$\mid i \mid$	$\mid n_i \mid$	r_i	n_i	r_i						
0	81	1	27	3	9	9	6	27	5	81
1	27	3	9	9	3	27	2	81		
$\mid 2 \mid$	9	9	3	27	1	81				
3	3	27	1	81						
4	1	81								

Table 1: The values of n_i and r_i for the brackets of Hyperband corresponding to various values of s, when R=81 and $\eta=3$.

Conclusion

1. Goal

2. Data

3. Model

4. Tuning

Thank you! Questions?