Chapter 9

The Discrete Logarithm (DL) Problem

- DL is the underlying one-way function for:
 - 1. Diffie-Hellman key exchange.
 - 2. DSA (digital signature algorithm).
 - 3. ElGamal encryption/digital signature scheme.
 - 4. Elliptic curve cryptosystems.
 - 5.
- DL is based on finite groups.

9.1 Some Algebra

Further Reading: [Big85].

9.1.1 Groups

Definition 9.1.1 A group is a set G of elements together with a binary operation "o" such that:

- 1. If $a, b \in \mathcal{G}$ then $a \circ b = c \in \mathcal{G} \rightarrow (closure)$.
- 2. If $(a \circ b) \circ c = a \circ (b \circ c) \rightarrow (associativity)$.
- 3. There exists an identity element $e \in \mathcal{G}$: $e \circ a = a \circ e = a \rightarrow (identity).$
- 4. There exists an inverse element \tilde{a} , for all $a \in \mathcal{G}$: $a \circ \tilde{a} = e \rightarrow (inverse)$.

Examples:

1.
$$\mathcal{G} = Z = \{\dots, -2, -1, 0, 1, 2, \dots\}$$

 $\circ = \text{addition}$

(Z, +) is a group with e = 0 and $\tilde{a} = -a$

$$2. \mathcal{G} = Z$$

 $\circ = \text{multiplication}$

 (Z, \times) is NOT a group since inverses \tilde{a} do not exist except for a = 1

3. $\mathcal{G} = \mathcal{C}$ (complex numbers u + iv)

 $\circ = \text{multiplication}$

 (\mathcal{C}, \times) is a group with e = 1 and

$$\tilde{a} = a^{-1} = \frac{u - iv}{u^2 + v^2}$$

Definition 9.1.2 " Z_n^* " denotes the set of numbers $i, 0 \le i < n$, which are relatively prime to n.

Examples:

1.
$$Z_9^* = \{1, 2, 4, 5, 7, 8\}$$

2.
$$Z_7^* = \{1, 2, 3, 4, 5, 6\}$$

Multiplication Table

* mod 9	1	2	4	5	7	8
1	1	2	4	5	7	8
2	2	4	8	1	5	7
4	4	8	7	2	1	5
5	5	1	2	7	8	4
7	7	5	1	8	4	2
8	8	7	5	4	7 5 1 8 4 2	1

Theorem 9.1.1 Z_n^* forms a group under modulo n multiplication. The identity element is e = 1.

Remark:

The inverse of $a \in \mathbb{Z}_n^*$ can be found through the extended Euclidean algorithm.

9.1.2 Finite Groups

Definition 9.1.3 A group (\mathcal{G}, \circ) is **finite** if it has a finite number of g elements. We denote the cardinality of \mathcal{G} by $|\mathcal{G}|$.

Examples:

1.
$$(Z_m, +)$$
: $a + b = c \mod m$

$$Question: \text{ What is the cardinality } \rightarrow |Z_m| = m$$

$$Z_m = \{0, 1, 2, \dots, m-1\}$$

2. (Z_p^*, \times) : $a \times b = c \mod p$; p is prime $Question: \text{ What is the cardinality } \to |Z_p^*| = p-1$ $Z_p^* = \{1, 2, \dots, p-1\}$

Definition 9.1.4 The **order** of an element $a \in (\mathcal{G}, \circ)$ is the smallest positive integer o such that $a \circ a \circ \ldots \circ a = a^o = 1$.

Example: (Z_{11}^*, \times) , a = 3

Question: What is the order of a = 3?

$$a^{1} = 3$$

$$a^2 = 3^2 = 9$$

$$a^3 = 3^3 = 27 \equiv 5 \mod 11$$

$$a^4 = 3^4 = 3^3 \cdot 3 = 5 \cdot 3 = 15 \equiv 4 \mod 11$$

$$a^5 = a^4 \cdot a = 4 \cdot 3 = 12 \equiv 1 \mod 11$$

$$\Rightarrow \operatorname{ord}(3) = 5$$

Definition 9.1.5 A group \mathcal{G} which contains elements α with maximum order $ord(\alpha) = |\mathcal{G}|$ is said to be **cyclic**. Elements with maximum order are called **generators** or **primitive elements**.

Example: 2 is a primitive element in Z_{11}^*

$$|Z_{11}^*| = |\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}| = 10$$

$$a = 2$$

$$a^2 = 4$$

$$a^3 = 8$$

$$a^4 = 16 \equiv 5$$

$$a^5 = 10;$$

$$a^6 = 20 \equiv 9$$

$$a^7 = 18 \equiv 7$$

$$a^8 = 14 \equiv 3;$$

$$a^9 = 6$$

$$a^{10} = 12 \equiv 1$$

$$\underline{a^{11} = 2 = a}.$$

$$\Rightarrow \operatorname{ord}(a=2) = 10 = |Z_{11}^*|$$

$$\Rightarrow$$
 (1) $|Z_{11}^*|$ is cyclic

 \Rightarrow (2) a = 2 is a primitive element

Observation (important): 2^i ; i = 1, 2, ..., 10 generates all elements of Z_{11}^*

Some properties of cyclic groups:

- 1. The number of primitive elements is $\Phi(|\mathcal{G}|)$.
- 2. For every $a \in \mathcal{G}$: $a^{|\mathcal{G}|} = 1$.
- 3. For every $a \in \mathcal{G}$: ord(a) divides $|\mathcal{G}|$.

Proof only for (2): $a = \alpha^i$

$$a^{|\mathcal{G}|} = (\alpha^i)^{|\mathcal{G}|} = (\alpha^{|\mathcal{G}|})^i \doteq 1^i = 1.$$

Example: Z_{11}^* ; $|Z_{11}^*| = 10$

1.
$$\Phi(10) = (2-1)(5-1) = 1 \cdot 4 = 4$$

2.
$$a = 3 \rightarrow 3^{10} = (3^5)^2 = 1^2 = 1$$

3. homework ...

9.2 The General DL Problem

Given a cyclic subgroup (\mathcal{G}, \circ) and a primitive element α . Let

$$\beta = \underbrace{\alpha \circ \alpha \dots \alpha}_{i \quad times} = \alpha^i$$

be an arbitrary element in \mathcal{G} .

General DL Problem:

Given
$$\mathcal{G}$$
, α , $\beta = \alpha^i$, find i .

$$i = \log_{\alpha}(\beta)$$

Examples:

Let
$$i = 7$$
: $\beta = 7 \cdot 2 \equiv 3 \mod 11$

Question: given
$$\alpha = 2$$
, $\beta = 3 = i \cdot 2$, find i

Answer:
$$i = 2^{-1} \cdot 3 \mod 11$$

Euclid's algorithm can be used to compute i thus this example is NOT a one-way function.

2.
$$(Z_{11}^*, \times)$$
; $\alpha = 2$; $\beta = \underbrace{2 \cdot 2 \cdot \ldots \cdot 2}_{i \text{ times}} = 2^i$
 $\beta = 3 = 2^i \mod 11$

$$\beta = 3 = 2^i \mod 11$$

Question:
$$i = \log_2(3) = \log_2(2^i) = ?$$

Very hard computational problem!

Attacks for the DL Problem 9.3

1. Brute force:

check:

$$\alpha^1 \stackrel{?}{=} \beta$$

$$\alpha^2 \stackrel{?}{=} \beta$$

$$\alpha^i \stackrel{?}{=} \beta$$

Complexity: $\mathcal{O}(|\mathcal{G}|)$ steps.

Example: DL in $Z_p^* \approx \frac{p-1}{2}$ tests

minimum security requirement $\Rightarrow p-1 = |\mathcal{G}| \ge 2^{80}$

2. Shank's algorithm (Baby-step giant-step) and Pollard's-ρ method:

Further reading: p. 165 in [Sti95].

Complexity: $\mathcal{O}(\sqrt{|\mathcal{G}|})$ steps (for both algorithms).

Example: DL in $Z_p^* \approx \sqrt{p}$ steps

minimum security requirement $\Rightarrow p-1 = |\mathcal{G}| \ge 2^{160}$

3. Pohlig-Hellman algorithm:

Let $|\mathcal{G}| = p_1 \cdot p_2 \cdot \cdot \cdot \underbrace{p_l}_{largest \ prime}$ Complexity: $\mathcal{O}(\sqrt{p_l})$ steps.

Example: DL in Z_p^* : p_l of (p-1) must be $\geq 2^{160}$

minimum security requirement $\Rightarrow p_l \ge 2^{160}$

4. Index-Calculus method:

Further reading: [AM97].

Applies only to \mathbb{Z}_p^* and Galois fields $\mathrm{GF}(2^k)$

Complexity: $\mathcal{O}\left(e^{(1+\mathcal{O}(1))\sqrt{\ln(p)\ln(\ln(p))}}\right)$ steps.

Example: DL in Z_p^* : minimum security requirement $\Rightarrow p \geq 2^{1024}$

Remark: Index-Calculus is more powerful against DL in Galois Fields $GF(2^k)$ than against DL in \mathbb{Z}_p^* .

9.4 Diffie-Hellman Key Exchange

Remarks:

- Proposed in 1976 in Diffie-Hellman paper.
- Used in many practical protocols.
- Can be based on any DL problem.

9.4.1 Protocol

Set-up:

- 1. Find a large prime p.
- 2. Find a primitive element α of Z_p^* or of a subgroup of Z_p^* .

Protocol:

Session key $k_{ses} = k_{AB} = \alpha^{a_B \cdot a_A} = \alpha^{a_A \cdot a_B} \mod p$.

9.4.2 Security

Question: Which information does Oscar have?

Answer: α, p, b_A, b_B .

Diffie-Hellman Problem:

Given $b_A = \alpha^{a_A} \mod p$, $b_B = \alpha^{a_B} \mod p$, and α find $\alpha^{a_A \cdot a_B} \mod p$.

One solution to the D-H problem:

- 1. Solve DL problem: $a_A = \log_{\alpha}(b_A) \mod p$.
- 2. Compute: $b_B^{a_A}=(\alpha^{a_B})^{a_A}=\alpha^{a_A\cdot a_B} \mod p$. Choose $p\geq 2^{1024}$.

Note:

There is no proof that the DL problem is the only solution to the D-H problem! However, it is conjectured.