Math 4000/6000 - Homework #2

posted August 30, 2018; due at the start of class on September 11, 2018

Mathematics is not a deductive science — that's a cliché. When you try to prove a theorem, you don't just list the hypotheses, and then start to reason. What you do is trial and error, experimentation, guesswork. — Paul Halmos

Assignments are expected to be neat and stapled. **Illegible work may not be marked**. Starred problems (*) are required for those in MATH 6000 and extra credit for those in MATH 4000.

1. Let $a, b \in \mathbb{Z}$, not both zero. In class, we defined gcd(a, b) to be the largest common divisor of a and b. It was then a theorem that the number d = gcd(a, b) satisfies

$$d$$
 divides a and b , and every common divisor of a and b divides d . (\dagger)

Show that gcd(a, b) is the *only* positive integer d that satisfies (†).

Remark. This exercise shows that (\dagger) could have been taken as the **definition** of gcd(a, b). That is the approach followed in your textbook.

- 2. Exercise 1.2.4, + the following part (c): Prove or give a counterexample: If $d = \gcd(a, b)$, then $\gcd(a/d, b) = 1$.
- 3. Exercise 1.2.8.

Hint: You may want to start by proving the following lemma: gcd(A, B) > 1 if and only if there is a prime p dividing both A and B.

- 4. Let a and b be positive integers with gcd(a,b) = 1. Prove that if n is an integer for which $a \mid n$ and $b \mid n$, then $ab \mid n$.
- 5. Using the unique factorization theorem, prove that the only pair of integers a and b satisfying the equation

$$a^3 = 9b^3$$

is a = 0, b = 0.

- 6. Exercise 1.3.12.
- 7. (Divisibility in Pythagorean triples) Recall that an ordered triple of integers x, y, z is called **Pythagorean** if $x^2 + y^2 = z^2$.
 - (a) Show that in any Pythagorean triple, at least one of x, y, z is a multiple of 3.
 - (b) Do part (a) again but with "3" replaced by "4", and then do it once more with "3" replaced by "5".
- 8. In your last HW, you proved that gcd(a, b) can always be expressed in the form ax + by, with $x, y \in \mathbb{Z}$. In fact, the Euclidean algorithm gives us a method of finding x and y. We illustrate with the example of x = 942 and y = 408. Here the Euclidean algorithm runs as follows:

$$942 = 408 \cdot 2 + 126$$

$$408 = 126 \cdot 3 + 30$$

$$126 = 30 \cdot 4 + 6$$

$$30 = 6 \cdot 5 + 0.$$

In particular, gcd(942,408) = 6. So there should be $x, y \in \mathbb{Z}$ with 942x + 408y = 6.

We can find x, y by backtracking through the algorithm. First,

$$6 = 126 + 30(-4)$$
, so we get 6 as a combination of 126, 30.

Next,

$$6 = 126 + (408 - 126 \cdot 3)(-4)$$

= $408(-4) + 126(13)$, so we get 6 as a combination of 408, 126.

Continuing,

$$6 = 408(-4) + (942 - 408 \cdot 2)(13)$$

= $942 \cdot 13 + 408(-30)$, so we get 6 as a combination of 942, 408.

- (a) Using this method, find integers x and y with $17x + 97y = \gcd(17, 97)$.
- (b) Find integers x and y with $161x + 63y = \gcd(161, 63)$.
- 9. Let $m \in \mathbb{Z}^+$. Suppose we wish to find all integers x that solve the congruence $ax \equiv b \pmod{m}$, where $a, b \in \mathbb{Z}$ are given. Let $d = \gcd(a, m)$. Show:
 - (a) If $d \nmid b$, then there are no integer solutions.
 - (b) If $d \mid b$, then there does exist a solution. Moreover, if x_0 is any solution, then the set of all solutions consists precisely of those $x \equiv x_0 \pmod{m/d}$.

Hint: (a) and (b) were illustrated in class with specific examples. Show that the method used in those examples goes through in general.

- 10. (Fermat's little theorem again) Complete the proof from class that when p is prime, $a^p \equiv a \pmod{p}$ for all integers a. Remember that in class, we only handled the case when $a \in \mathbb{Z}^+$.

 Hint: Don't reinvent the wheel. Find a way to deduce the general result from the case handled
- 11. Exercise 1.3.20(a,c,e,g)

in class.

- 12. Exercise 1.3.21(a,c,e,g)
- 13. (*) Suppose a, b are positive integers with gcd(a, b) = 1. Find, with proof, all possible values of gcd(a + b, a b).
- 14. (*) Define the *n*th **Fermat number** by the rule $F_n = 2^{2^n} + 1$. Prove that for any two distinct nonnegative integers m and n, we have $gcd(F_m, F_n) = 1$.