Pravilnost QR iteracije

Trditev 1. Naj bo A_i zaporedje iz QR iteracije matrike A.

- 1. A_{i+1} je ortogonalno podobna A_i
- 2. A_i izračunan s QR iteracijo je enak $Z_i^T A Z_i$, kjer je Z_i matrika dobljena z ortogonalno iteracijo z $Z_0 = I_n$. Torej A_i konvergirajo proti Schurovi formi za A.

Dokaz. Ker velja $A_{i+1} = R_{i+1}Q_{i+1} = Q_{i+1}^T A_{i+1}Q_{i+1}$, prvi del trditev sledi.

Drugi del dokažimo z indukcijo. Za i=0 trditev očitno velja. Predpostavimo, da velja za nek i, tj. $A_i=Z_i^TAZ_i$, in dokažimo veljavnost za i+1. Iz ortogonalne iteracije velja $AZ_i=Z_{i+1}R_{i+1}$. Od tod sledi $Z_i^TAZ_i=Z_i^TZ_{i+1}R_{i+1}$. Torej je po indukcijski predpostavki $A_i=Z_i^TZ_{i+1}R_{i+1}$. Iz enoličnosti QR razcepa do množenja vrstic R in stolpcev Q z ± 1 , velja, da je $\left(Z_i^TZ_{i+1}\right)R_{i+1}$ ravno QR razcep matrike A_i . Torej je

$$A_{i+1} = R_{i+1}(Z_i^T Z_{i+1}) = (Z_{i+1}^T Z_i Z_i^T A Z_i)(Z_i^T Z_{i+1}) = Z_{i+1}^T A Z_{i+1},$$

kar konča dokaz.

Trditev 2. Naj bo A_i zaporedje iz QR iteracije z enojnimi premiki. Potem je A_{i+1} je ortogonalno podobna A_i .

Dokaz. Velja

$$A_{i+1} = R_{i+1}Q_{i+1} + \sigma_i I_n = Q_{i+1}^T (A_i - \sigma_i I_n) Q_{i+1} + \sigma_i I_n = Q_i^T A_i Q_i,$$

kar konča dokaz.