PMOS_5T_OPAMP

- due date: 06/14 -

Student ID: 201939664

Name: 이주용

1. Schematic

2. AC simulation

DC gain & -3db Frequency & Unity Gain Frequency

3. Specs Table

Tail current & Load Devices						
pmos tail	M_3	pmos input	M_1	nmos load	M_2	
Id	1.2E-3	Id	600.0E-6	Id	600.0E-6	
multi	50	multi	30	multi	24	
Total Width	5E-6	Total Width	10E-6	Total Width	6E-6	
length,pb	5E-6	length,pb	1.0E-6	length,nb	2E-6	
rout,sim	1.2E+3	rout,sim	8.59E+3	rout,sim	13.7E+3	
gm/id	2.53	gm/id	14.5	gm/id	8.1	
		ld/w, gmid sim	1.94	ld/w, gmid sim	4.28	
Final Width	250 E-6	Final Width	300E-6	Final Width	144E-6	

Bias cire	cuit	Result		
Iref	600.000E-6	DC gain (db)	32.23	
Multi	25	f_{-3db} [MHz]	1.23	
Iref/Multi	24E-6	Unity Gain Frequency [MHz]	49.6	
		Gain-Band width	EO 42	
		product[MHz]	50.43	

Hand Calculation

$$f_{-3db} = 1.25 \, [MHz], \; r_{op}//r_{on} = 5.3 \, [K\Omega], \; g_{mp} = 7.54 \, [ms], \; \; \mathsf{A_v} = 40$$

4. Design Process

 g_m/id – based design은 회로의 동작점을 Lookup Table 기반으로 설정하는 것을 의미한다. 이 과정에서 소자의 g_m 과 length, width를 정할 수 있다.

1) g_m/I_D simulation

$$A_v \cong g_{mp}(r_{op}//r_{on})$$

원하는 DC gain과 GBW를 맞추기 위해선 $r_{op}//r_{on}$ 을 감소시켜 BW를 증가시킴과 동시에 g_{mp}

를 통해 이득을 맞추어 주어야 한다. 따라서 초기 gm/l $_D$ simulation 설정 시 M_1 은 비교적 큰 값으로 M_2 는 비교적 작은 값으로 설정한다. (일정한 I_D 에서 M_2 의 g_m 이 감소하면 M_2 의 V_D 는 증가해 M_1 의 channel length modulation 효과가 커져 r_{op} 는 감소한다, M_2 는 V_{ov} 와 V_{DS} 가 동시에 증가해 r_{on} 는 크게 변하지 않을 것이다.)

2) gm/w simulation

 g_m/I_D 에서 설정한 g_m 을 가지는 V_{GSQ} 를 설정하기 위해 g_m/w 를 통해 w를 결정한다. $(g_m/I_D, g_m/w$ 설계에서 V_{DS} 값은 영향이 작으므로 포화영역을 유지하는 임의의 값으로 설정한다)

3) AC simulation

- Simulation을 통해 DC gain을 확인하고 알맞지 않다면 M_2 의 L값으로 r_{on} 을 조절한다. (이 때 M_1 의 V_{DS} 변동으로 r_{op} 값도 바뀌지만 L값 변화에 의한 r_{on} 변동이 dominant할 것이다)
 - \rightarrow M_1 의 L값을 조절할 수도 있지만 이는 g_{mp} , r_{op} 를 모두 변동시켜 바람 직 하지 않다고 판단했다. (마찬가지의 이유로 W값을 변동시키는 것은 g_{mp} , r_{op} , r_{op} , r_{op} 모두를 변동시키기에 바람 직 하지 않다.)
- Band Width를 증가시키기 위해 I_B 를 증가시켜 $r_{on}//r_{op}$ 를 감소시킨다 이때 M_1 , M_2 , M_3 의 W도 I_B 와 같은 비율로 증가시킨다. (g_m/I_D) 에서 설정한 동작점을 유지하기 위해 w도 같이 증가시켜야 한다.)
 - \rightarrow g_m은 I_D의 증가로 sqrt하게 커지고 w의 증가로 sqrt하게 커지는 동시에 r_o 는 I_D의 증가로 반비례하게 감소하므로 DC gain은 일정하게 유지된다.

$$g_m = \sqrt{2\mu_n C_{ox} \frac{w}{L} I_{D(sat)}}, \quad r_o = \frac{1}{\lambda I_{D(sat)}}$$

Discussion

1. 전류 복사를 하기 위해선 M₃도 포화영역에서 동작점을 설정해야 된다.

만약 M_3 의 w는 유지한 상태로 I_B 만 증가한다면 M_{3B} 의 g_m 은 sqrt하게만 증가하므로 증가한 I_B 를 맞추기 위해 M_{3B} 의 V_{SD} 은 sqrt하게 증가한다. 즉, M_{3A} 의 V_G 가 감소해 V_{ov} 가 증가하는데 V_{SD} 는 M_1 에 의해 일정하게 유지돼 M_{3A} 는 linear region으로 빠진다.

2. V_{out}의 출력 범위는 M₁, M₂ 의 V_{ov}에 의해 다음과 같이 제한된다.

$$V_{G(M2)} - V_{TH(M2)} \le V_{out} \le V_{G(M1)} + V_{TH(M1)}$$

 $Let V_{G(M1)} = V_{cm} = 1 [V]$

따라서 V_{out}의 최대 전압 범위를 얻기 위해서는 V_{out}의 DC전압을 중간 값에 맞출 필요가 있다. 하지만 이는 불필요하게 전력소모를 증가시킬 수 있다.

→ V_{out}의 출력 범위가 이 영역을 벗어나면 선형성이 깨져 출력의 왜곡이 발생한다.

3. Parameter review

 M_3 의 W 값은 주어진 bias 전류에서 포화 상태를 유지하는 작은 값으로 설정한다. L 값은 channel length modulation 효과를 줄이기 위해 큰 값으로 설정하는 것이 유리할 것이다.

M₁의 W값은 gmp를 최대화하기 위해 커야 한다. L 값은 BW를 늘리기 위해 작아야 한다.

 M_2 의 W값은 V_{out} 의 DC voltage를 결정한다. 포화상태를 유지하는 적절한 값으로 설정한다. L 값은 BW를 늘리기 위해 작아야 한다.