

Classificação: Árvores de Decisão

(Decision Trees)

Funcionamento, exemplos, código e mais.

Tipos de nó

Decisão

Folhas

Tipos de nó

Decisão

Folhas

- Um algoritmo supervisionado
- Usado para classificação e regressão

O que compõem uma Árvore de Decisão

Folhas

Suponha uma base de dados com 1000 registros

- 500 pertencente a classe A
- 500 pertencente a classe B

Precisamos separar os dados de forma a diminuir a entropia / impureza nos próximos nós e folhas.

Classe A | Classe B

[500, 500]

Podemos realizar a divisão dos dados a partir de duas formas:

- Impureza de Gini
- Ganho de Informação (redução de entropia)

G.I. = Entropy
$$(S) - \Sigma \left(\frac{|Sv|}{|S|} \times Entropy(Sv) \right)$$

Entropy $(S) = -\Sigma pi \log_2 pi$

$$Gini = 1 - \sum pi^2$$

Jogar ou não tênis?

Vento	Umidade	Temperatura	Jogar
Fraco	Alta	Quente	Sim
Forte	Baixa	Quente	Não
Fraco	Baixa	Quente	Não
Fraco	Baixa	Fria	Sim
Forte	Baixa	Fria	Sim
Forte	Alta	Quente	Não
Fraco	Alta	Fria	Sim

$$Gini = 1 - \sum pi^2$$

Onde *pi* corresponde a proporção de dados em cada classe

A escolha dos atributos deve ser feita pensando em reduzir a entropia dos próximos nós e folhas.

7 Amostras [4 , 3]

Sim , Não

Jogar ou não tênis?

Vento	Umidade	Temperatura	Jogar
Fraco	Alta	Quente	Sim
Forte	Baixa	Quente	Não
Fraco	Baixa	Quente	Não
Fraco	Baixa	Fria	Sim
Forte	Baixa	Fria	Sim
Forte	Alta	Quente	Não
Fraco	Alta	Fria	Sim

3 registros "Sim" (3/4) 1 registros "Não" (1/4)

4 registros "Fraco" (4/7) 3 registros "Forte" (3/7)

$$Gini(Vento) = 1 - \sum pi^2$$

$$Gini(Vento|Fraco) = 1 - \left(\frac{3^2}{4} + \frac{1^2}{4}\right) = 0.375$$

Jogar ou não tênis?

Vento	Umidade	Temperatura	Jogar
Fraco	Alta	Quente	Sim
Forte	Baixa	Quente	Não
Fraco	Baixa	Quente	Não
Fraco	Baixa	Fria	Sim
Forte	Baixa	Fria	Sim
Forte	Alta	Quente	Não
Fraco	Alta	Fria	Sim

1 registros "Sim" (1/3) 2 registros "Não" (2/3)

4 registros "Fraco" (4/7) 3 registros "Forte" (3/7)

$$Gini(Vento) = 1 - \sum pi^2$$

$$Gini(Vento|Fraco) = 1 - \left(\frac{3^2}{4} + \frac{1^2}{4}\right) = 0,375$$

$$Gini(Vento|Forte) = 1 - \left(\frac{1^2}{3} + \frac{2^2}{3}\right) = 0,444$$

Gini Ponderada (VENTO) =
$$\frac{4}{7} \times 0.375 + \frac{3}{7} \times 0.444 = \mathbf{0}, \mathbf{404762}$$

Jogar ou não tênis?

Vento	Umidade	Temperatura	Jogar
Fraco	Alta	Quente	Sim
Forte	Baixa	Quente	Não
Fraco	Baixa	Quente	Não
Fraco	Baixa	Fria	Sim
Forte	Baixa	Fria	Sim
Forte	Alta	Quente	Não
Fraco	Alta	Fria	Sim

Temperatura = Fria
Amostras = 7
Valores = [4 , 3]
Classe = Sim

Não

Temperatura = Fria
Amostras = Sim

Não

Temperatura = Pria
Amostras = 3
Valores = [3 , 0]
Classe = Sim

Temperatura = Quente
Amostras = 4
Valores = [1 , 3]
Classe = Sim

Classe = Não

 $Gini\ Ponderada\ (Vento) = \mathbf{0}, \mathbf{404762}$

 $Gini\ Ponderada\ (Umidade) = 0,476$

Gini Ponderada (Temperatura) = 0,2143

Vento	Umidade	Temperatura	Jogar
Fraco	Baixa	Fria	Sim
Forte	Baixa	Fria	Sim
Fraco	Alta	Fria	Sim

Vento	Umidade	Temperatura	Jogar
Fraco	Alta	Quente	Sim
Forte	Baixa	Quente	Não
Fraco	Baixa	Quente	Não
Forte	Alta	Quente	Não

Menor impureza de Gini!

Hiperparâmetros de uma árvore

Principais hiperparâmetros para pré-poda:

Min_samples_split: Número mínimo de elementos que um nó precisa ter para permitir que haja uma divisão.

Ex: Min_Samples_split = 20

Este nó passa a ser uma folha e não pode mais ser dividido.

Min_samples_leaf = Número mínimo de elementos necessários dentro de uma folha. Caso a divisão de um nó anterior acarrete em um número menor que este parâmetro em qualquer folha, a divisão não é realizada

Ex: Min_Samples_leaf = 10

Esta divisão NÃO vai ocorrer, pois uma das folhas receberá 9 objetos, valor menor que o parâmetro (10).

Hiperparâmetros de uma árvore

Principais hiperparâmetros para pré-poda:

Max_depth = defini a profundidade máxima da árvore (níveis).

Ex: Max depth= 2

Mesmo que haja condições para que a árvore continue crescendo, esta árvore chegará apenas até o nível 2 de profundidade.

- Não é sensível a outliers. A árvore consegue lidar bem e "desprezar" dados com características muito diferentes dos demais dados.
- Facilmente interpretável e pode ser implantada com simples regras if/else.

Desvantagens

- Podem apresentar baixo viés e alta variância, ou seja, tem alto risco de overfitting na etapa de treinamento.
- Pode ser instável, isto é, pequenas variações no conjunto de treino podem produzir grandes variações na árvore final.

Técnicas de podagem da árvore e evolução do modelo para Random Forest.

Para se aprofundar mais

- Como funciona o corte de variáveis contínuas.
- Conhecer os tipos e evoluções de árvores (ID3, C4. 5, CART, CHAID, MARS)

Modelo

Objetivo Resumido

Árvore de Decisão

Cria uma árvore de decisão sobre os dados. O objetivo é criar divisões nos dados da melhor maneira possível, de modo que no topo da árvore (raiz) estejam todos os dados e na base da árvore (folhas) estejam as classes dos dados. O objetivo é criar regras nas quais os dados serão submetidos (regras If/Else) até que seja classificado com uma determinada classe.

Tipo	Classificação
Categoria	Supervisionado

- Dentro do Scikit Learn, os dados precisam ser numéricos

Hiperparâmetros

- Profundidade máxima
- Min sample split
- Min_sample_leaf

Funcionamento detalhado (Steps, informações detalhadas etc.)

Premissas para o

funcionamento

STEPS:

- 1. Com base nos dados de entrada, é realizado um cálculo sobre todos os atributos para avaliar qual deles possui menor índice de impureza. Esse atributo é posicionado como raiz da árvore de decisão com uma regra bem definida (maior que, menor que, igual a, diferente de etc.)
- 2. São geradas então duas sub-árvores, uma quando a condição for verdadeira, outra quando a condição for falsa.
- 3. Com todos os dados que foram separados no nó, as etapas 1 e 2 são repetidas inúmeras vezes até que sejam atingidos quaisquer um dos parâmetros de parada da árvore.

As árvores possuem um nó raiz (topo da árvore), nós internos e folhas, onde os objetos são classificados.

Vantagens

- Robusta a outliers. A árvore consegue lidar bem e "desprezar" dados com características muito diferentes dos demais dados.
- Facilmente interpretável e pode ser implantada com simples regras if/else.

Desvantagens

- Podem apresentar baixo viés e alta variância, ou seja, tem alto risco de overfitting na etapa de treinamento.
- Pode ser instável, isto é, pequenas variações no conjunto de treino podem produzir grandes variações na árvore final.

Como avaliar o desempenho

- O desempenho durante o teste pode ser medido com cálculos de acurácia, precisão, recall, curva ROC etc.

Como corrigir ou compensar desvantagens

Técnicas de pré-poda ou pós-poda podem ser aplicados para aumentar o poder de generalização do algoritmo, encontrando um melhor equilíbrio entre viés e variância.

Obrigado!

youtube.com/@Tech_dados

linkedin.com/in/itallo-dias/