

Faculty of Computing and Information Technology

Department of Computer Science

Spring 2018

CPCS-214 Syllabus

Catalog Description

CPCS-214 Computer Organization and Architecture (I)

Credit: 3 (Theory: 3, Lab: 0, Practical: 1)

Prerequisite: CPCS-211

Classification: Department Required

The objective of this course is to explain how computers are designed and how they work. Students are introduced to modern computer principles using a typical processor. They learn how efficient memory systems are designed to work closely with the processor, and how input/output (I/O) systems bring the processor and memory together with a wide range of devices. The course emphasizes system-level issues and understanding program performance. Topics instructions sets, assembly language, internal representation, computer arithmetic, processor data path and control, memory hierarchy, I/O devices and interconnects, and an introduction to parallel processing.

Class Schedule

Lab/Tutorial 90 minutes 1 times/week

Meet 50 minutes 3 times/week or 80 minutes 2 times/week

Textbook

David A. Patterson, John L. Hennessy, , "Computer Organization and Design", Morgan Kaufmann; (2008-11-17)

ISBN-13 9780080922812 **ISBN-10** 0080922813

Grade Distribution

Week	Assessment	Grade %
3	Quiz 1	2.5
3	Graded Lab Work 1	2
4	Graded Lab Work 2	2
5	Graded Lab Work 3	2
5	Quiz 2	2.5
6	Graded Lab Work 4	2
7	Exam 1	15
8	Graded Lab Work 5	2
9	Quiz 3	2.5
11	Quiz 4	2.5
12	Exam 2	15
14	Lab Exam	15
16	Comprehensive Final Exam	35

Last Articulated

October 4, 2017

Relationship to Student Outcomes

a	b	c	d	e	f	g	h	i	j	k
X	X	X								

Course Learning Outcomes (CLO)

By completion of the course the students should be able to

- 1. Identify concpets related to computer technology and processors. (a)
- 2. Compile C/Java programs into MIPS assembly language. (c)
- 3. Trace the execution of a MIPS program and its data structures. (b)
- 4. Write assembly language program for certain programming oriented problem. (c)
- 5. Represent integer and floating-point numbers into IEEE single and double precision formats. (a)
- 6. Write MIPS codes for floating point operations. (b)
- 7. Identify the components and assess the CPU performance. (a)
- 8. Trace the execution of instructions on a single cycle datapath design supported with control signals. (b)
- 9. Explain performance issues of the single cycle datapath design and its trade-offs. (b)
- 10. Explain the principles of pipelined execution. (a)
- 11. Determine structural, data and control hazards in a MIPS codes (b)
- 12. Compare memory technologies available for computing systems, and the basic principle behind a memory hierarchy. (a)
- 13. Explain the and issues involved with cache memory. (b)
- 14. Explain the steps and issues involved with virtual memory. (b)
- 15. Explain the different multiprocessors and parallel processing architecutures, and parallel decomposition (b)

Coordinator(s)

Dr. Abdullah Almenbri, Associate Professor

Faculty of Computing and Information Technology

Department of Computer Science

Spring 2018

CPCS-214 Syllabus

Topics Coverage Durations

Topics	Weeks
Computer abstaction and technology	2
Performance	1
Instructions sets and assembly language	4
Arithmetic for computers	1
Basics of logic design	1
Processor	2
Pipelining	2
Memory hierarchy	1
Parallel processors	1