Sample solution for COMP30026 2024 A2

October 23, 2024

$\mathbf{Q4}$

Proposition. The language

$$L = \{a^n b^m \mid n, m \ge 0\}$$

 $is\ context\hbox{-} free.$

Proof. Let

$$A = \{a^n b^m \mid n, m \ge 0, 0 \cdot n + 1 \cdot m = 0\}$$

and

$$B = \{a^n b^m \mid n, m \ge 0, 1 \cdot n + 0 \cdot m = 0\}.$$

It is known that A and B are context-free languages.

Now, given any nonnegative integers n and m, we have $0 \cdot n + 1 \cdot m = 0$ if and only if m = 0. Thus,

$$A = \{a^n b^m \mid n, m \ge 0, m = 0\}$$

= $\{a^n b^0 \mid n \ge 0\}$
= $\{a^n \mid n \ge 0\}.$

Similarly, given any nonnegative integers n and m, we have $1 \cdot n + 0 \cdot m = 0$ if and only if n = 0, and so $B = \{b^m \mid m \ge 0\}$.

Since the context-free languages are closed under concatenation, the language $A\circ B$ is context-free. By the definition of concatenation of languages, we have

$$A \circ B = \{a^n b^m \mid n, m \ge 0\} = L,$$

and thus L is context-free, as desired.

$\mathbf{Q5}$

Proposition. The language $L = \{a^n b^m c^k \mid n, m, k \geq 0, nm = 2k\}$ is not regular.

Proof. Suppose to the contrary that L is regular. Let p be its pumping length. Let $s=a^{2p}bc^p$. Then $s\in L$ by definition, and since |s|=3p+1>p, by the pumping lemma for regular languages, there exist strings x,y,z such that s=xyz, where $|xy|\leq p$, and |y|>0, and $xy^iz\in L$ for all nonnegative integers i. In particular, $xz\in L$.

Since $|xy| \leq p$ and s = xyz, the string xy is a substring of the initial block of a's in s. Thus $xz = a^{2p-|y|}bc^p$. However, since |y| > 0, we have $(2p-|y|) \cdot 1 < 2p$ and thus $xz \notin L$ by definition. Contradiction! Hence L is not regular. \square

Q6

Proposition. Let $\Sigma = \{a, b\}$ and

 $L = \{w \in \Sigma^* \mid \text{for all nonempty } s \in \Sigma^*, \text{ the string sss does not occur in } w\}.$

The language L is not context-free.

Proof. Suppose to the contrary that L is context-free. Let p be its pumping length. Then, since L is known to be infinite, there must exist some string $s \in L$ of length at least p. Therefore, by the pumping lemma for context-free languages, there exist strings u, v, x, y, z such that s = uvxyz, where |vy| > 0 and $uv^ixy^iz \in L$ for all nonnegative integers i. In particular, $s' \in L$ where $s' = uv^3xy^3z$.

Since |vy| > 0, either v is nonempty or y is nonempty. If v is nonempty, then since vvv occurs in s', it follows that $s' \notin L$ by definition. If v is instead empty, then y is nonempty, and $s' \notin L$ by definition because yyy occurs in s'.

Thus $s' \notin L$ in all cases. Contradiction! Hence L is not context-free. \square