How similar are these two species?

AGCCCTAAGGGCTACCTAGCTT

DNA:

DNA:

GACAGCCTACAAGCGTTAGCTTG

How similar are these two species?

AGCCCTAAGGGCTACCTAGCTT

DNA:

GACAGCCTACAAGCGTTAGCTTG

Pretty similar, their DNA has a long common subsequence:

AGCCTAAGCTTAGCTT

- Subsequence:
 - BDFH is a subsequence of ABCDEFGH
- If X and Y are sequences, a common subsequence
- is a sequence which is a subsequence of both.
 - BDFH is a common subsequence of ABCDEFGH and of ABDFGHI
- A longest common subsequence...
 - ...is a common subsequence that is longest.
 - The longest common subsequence of ABCDEFGH and ABDFGHI is ABDFGH.

Steps for applying Dynamic Programming

• Step 1: Identify optimal substructure.

- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.

Step 1: Optimal substructure

Prefixes:

Notation: denote this prefix **ACGC** by Y₄

- Our sub-problems will be finding LCS's of prefixes to X and Y.
- Let C[i,j] = length_of_LCS(X_i, Y_j)

Examples:
$$C[2,3] = 2$$

 $C[4,4] = 3$

Optimal substructure ctd.

- Subproblem:
 - finding LCS's of prefixes of X and Y.
- Why is this a good choice?
 - As we will see, there's some relationship between LCS's of prefixes and LCS's of the whole things.
 - These subproblems overlap a lot.

Steps for applying Dynamic Programming

Step 1: Identify optimal substructure.

- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.

Goal

• Write C[i,j] in terms of the solutions to smaller subproblems

Two cases

- Our sub-problems will be finding LCS's of prefixes to X and Y.
- Let C[i,j] = length_of_LCS(X_i, Y_j)

Case 1: X[i] = Y[j]

- Then C[i,j] = 1 + C[i-1,j-1].
 - because $LCS(X_i,Y_j) = LCS(X_{i-1},Y_{j-1})$ followed by

Two cases

- Our sub-problems will be finding LCS's of prefixes to X and Y.
- Let C[i,j] = length_of_LCS(X_i, Y_j)

Case 2: X[i] != Y[j]

- Then C[i,j] = max{ C[i-1,j], C[i,j-1] }.
 - either $LCS(X_i,Y_j) = LCS(X_{i-1},Y_j)$ and \top is not involved,
 - or $LCS(X_i,Y_j) = LCS(X_i,Y_{j-1})$ and A is not involved,
 - (maybe both are not involved, that's covered by the "or")

Recursive formulation of the optimal solution

Case 1

 X_i
 A
 C
 G
 G
 A

 Y_i
 A
 C
 G
 C
 T
 T
 A

Case 2

Steps for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.

LCS DP

- LCS(X, Y):
 - C[i,0] = C[0,j] = 0 for all i = 0,...,m, j=0,...n.
 - **For** i = 1,...,m and j = 1,...,n:
 - **If** X[i] = Y[j]:
 - C[i,j] = C[i-1,i-1] + 1
 - B[i,i] = "▼"
 - Else:
 - If C[i-1, j] >= C[i, j-1]
 - C[i, j] = C[i-1, j]
 - B[i, i] = "↑"
 - Else:
 - C[i,j] = C[i, j-1]
 - B[i,j] = "←"
 - Return C and B

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1]+1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

LCS DP

- LCS(X, Y):
 - C[i,0] = C[0,i] = 0 for all i = 0,...,m, j=0,...n.
 - **For** i = 1,...,m and j = 1,...,n:
 - **If** X[i] = Y[i]:
 - C[i,j] = C[i-1,j-1] + 1
 - B[i,i] = "▼"
 - Else:
 - If C[i-1, i] >= C[i, j-1]
 - C[i, i] = C[i-1, i]
 - B[i, i] = "↑"
 - Else:
 - C[i,i] = C[i, j-1]
 - B[i,i] = "←"
 - Return C and B

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1]+1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

Running time: O(nm)

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

$$if i = 0 or j = 0$$

$$if X[i] = Y[j] and i, j > 0$$

$$if X[i] \neq Y[j] and i, j > 0$$

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

$$if i = 0 or j = 0$$

$$if X[i] = Y[j] and i, j > 0$$

$$if X[i] \neq Y[j] and i, j > 0$$

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

$$if i = 0 or j = 0$$

$$if X[i] = Y[j] and i, j > 0$$

$$if X[i] \neq Y[j] and i, j > 0$$

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1]+1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

$$if i = 0 or j = 0$$

$$if X[i] = Y[j] and i, j > 0$$

$$if X[i] \neq Y[j] and i, j > 0$$

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1]+1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

$$if i = 0 or j = 0$$

$$if X[i] = Y[j] and i, j > 0$$

$$if X[i] \neq Y[j] and i, j > 0$$

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1]+1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

$$if i = 0 or j = 0$$

$$if X[i] = Y[j] and i, j > 0$$

$$if X[i] \neq Y[j] and i, j > 0$$

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

$$if i = 0 or j = 0$$

$$if X[i] = Y[j] and i, j > 0$$

$$if X[i] \neq Y[j] and i, j > 0$$

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1]+1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

$$if i = 0 or j = 0$$

$$if X[i] = Y[j] and i, j > 0$$

$$if X[i] \neq Y[j] and i, j > 0$$

 $C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

$$if i = 0 or j = 0$$

$$if X[i] = Y[j] and i, j > 0$$

$$if X[i] \neq Y[j] and i, j > 0$$

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1]+1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

$$if i = 0 or j = 0$$

$$if X[i] = Y[j] and i, j > 0$$

$$if X[i] \neq Y[j] and i, j > 0$$

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

$$if i = 0 or j = 0$$

$$if X[i] = Y[j] and i, j > 0$$

$$if X[i] \neq Y[j] and i, j > 0$$

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

$$if i = 0 or j = 0$$

$$if X[i] = Y[j] and i, j > 0$$

$$if X[i] \neq Y[j] and i, j > 0$$

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1]+1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

$$if i = 0 or j = 0$$

$$if X[i] = Y[j] and i, j > 0$$

$$if X[i] \neq Y[j] and i, j > 0$$

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1]+1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1],C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

$$if i = 0 or j = 0$$

$$if X[i] = Y[j] and i, j > 0$$

$$if X[i] \neq Y[j] and i, j > 0$$

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

$$if i = 0 \text{ or } j = 0$$

$$if X[i] = Y[j] \text{ and } i, j > 0$$

$$if X[i] \neq Y[j] \text{ and } i, j > 0$$

$$C[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0 \\ C[i-1,j-1] + 1 & \text{if } X[i] = Y[j] \text{ and } i,j > 0 \\ \max\{C[i,j-1], C[i-1,j]\} & \text{if } X[i] \neq Y[j] \text{ and } i,j > 0 \end{cases}$$

$$if i = 0 or j = 0$$

$$if X[i] = Y[j] and i, j > 0$$

$$if X[i] \neq Y[j] and i, j > 0$$

Steps for applying Dynamic Programming

- Step 1: Identify optimal substructure.
- Step 2: Find a recursive formulation for the length of the longest common subsequence.
- Step 3: Use dynamic programming to find the length of the longest common subsequence.
- Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.

Example G G Α G X G G

Table B

Example X A C G G A Y A C T G

Example G G Α G X G

Table B

Example G G Α G X G

Table B

Example 2 x A B C B D A B Y B D C A B A

Steps for applying Dynamic Programming

Step 4: If needed, keep track of some additional info so that the algorithm from Step 3 can find the actual LCS.

Algorithm

```
PRINT-LCS(B, X, i, j)
1 if i == 0 or j == 0
       return
                               // the LCS has length 0
3 if B[i,j] == " \setminus "
       PRINT-LCS(B, X, i, -1 j -1)
       print X[i] // same as Y[i]
6 elseif B[i,j] == "\uparrow"
       PRINT-LCS(B, X, i, -1 j)
8 else
       PRINT-LCS(B, X, i, j - 1)
```