Deep Active Learning for Named Entity Recognition

Yanyao Shen‡^a, Hyokun Yun†, Zachary C. Lipton†, Yakov Kronrod†, Animashree Anandkumar†

‡ University of Texas at Austin † Amazon Web Services

shenyanyao@utexas.edu, {yunhyoku,liptoz,kronrod,anima}@amazon.com

^athe work was done while at Amazon

Introduction

- 1. Over the past several years, a series of papers have used deep neural networks (DNNs) to advance the state-of-the-art in named entity recognition (NER) over shallow models.
- CoNLL-2003 English dataset: **0.4%** improvement (F1 score), small dataset, 0.2M words.
- OntoNotes-5.0 English dataset: 2.24% improvement (F1 score), large dataset, 1.09M words.
- 2. **Goal:** train DNNs using fewer samples.

Approach: active learning.

Practice: crowdsourcing platforms – Mechanical Turk.Impact: reduce sample requirements, lower the labeling costs.

3. Effectiveness of deep active learning:

almost same accuracy with about 25-30% training data using active learning.

Model Architecture

1. Character-Level CNN Encoder

2. Word-Level CNN Encoder

3. Tag LSTM Decoder

Active Learning

Under the uncertainty sampling framework, we explain three active learning strategies and how we use them in the sequential tagging task with NN-based models.

1. Least Confidence (LC):

$$1 - \max_{y_1, \dots, y_n} \mathbb{P}\left[y_1, \dots, y_n \mid \left\{\mathbf{x}_{ij}\right\}\right]. \tag{1}$$

- Intuition: sort examples in descending order by the probability of *not* predicting the most confident sequence from the current model.
- In practice: approximate (1) with the probability of a greedily decoded sequence.

2. Maximum Normalized Log-Probability (MNLP):

LC can be equivalently written as:

$$\max_{y_1,\dots,y_n} \mathbb{P}\left[y_1,\dots,y_n \mid \left\{\mathbf{x}_{ij}\right\}\right]$$

$$\Leftrightarrow \max_{y_1,\dots,y_n} \prod_{i=1}^n \mathbb{P}\left[y_i \mid y_1,\dots,y_{n-1},\left\{\mathbf{x}_{ij}\right\}\right]$$

$$\Leftrightarrow \max_{y_1,\dots,y_n} \sum_{i=1}^n \log \mathbb{P}\left[y_i \mid y_1,\dots,y_{n-1},\left\{\mathbf{x}_{ij}\right\}\right]. \tag{2}$$

Normalize (2) as follows, and we get Maximum Normalized Log-Probability method:

$$\max_{y_1,\dots,y_n} \frac{1}{n} \sum_{i=1}^n \log \mathbb{P}\left[y_i \mid y_1,\dots,y_{n-1}, \left\{\mathbf{x}_{ij}\right\}\right].$$

- Intuition: (2) contains summation over words, LC naturally favors longer sentences.
- Our preliminary experiments verify that LC disproportionately selects longer sentences.

3. Bayesian Active Learning by Disagreement (BALD):

We sort the samples by $\frac{1}{n} \sum_{j=1}^{n} f_j$, where

$$f_i = 1 - \frac{\max_y \left| \left\{ m : \operatorname{argmax}_{y'} \mathbb{P}^m \left[y_i = y' \right] = y \right\} \right|}{M},$$

 $\mathbb{P}^1, \mathbb{P}^2, \dots \mathbb{P}^M$ are models sampled from the posterior. f_i is the measure of the ith word. $|\cdot|$ denotes cardinality of a set.

- Intuition: the fraction of models which disagreed with the most popular choice for each word.
- In practice: use Monte Carlo dropout to sample from model posterior with M=100.

Other techniques in deep active learning:

- 1. **Incremental training** of DNNs while actively selecting samples.
- 2. Use word-level budget in each round of selection.

Results

Figure 1: OntoNotes-5.0 English

Figure 2: OntoNotes-5.0 Chinese

1. Comparisons of selection algorithms:

- Among active learners, MNLP slightly outperformed others in early rounds.
- Impressively, active learning algorithms achieve 99% performance of the best deep model trained on full data using only 24.9% of the training data on the English dataset and 30.1% on Chinese.
- Also, 12.0% and 16.9% of training data were enough for deep active learning algorithms to surpass the performance of the shallow models trained on the full training data.

Figure 3: Genre distribution of top 1k sentences chosen by an active learning algorithm.

2. Detection of under-explored genres:

- Experiment description: we design the experiment to better understand how DAL chooses informative examples.
- ✓ Select three datasets with same size but consist of different genres.
- ✓ Calculate the distribution of the top-1k samples for models trained with each dataset.
- Impressively, although we did not provide the genre of sentences to the algorithm, it was able to automatically detect underexplored genres.
- As is shown in Figure 3, A model trained using newswire (nw) data is more inclined to select uncertainty samples from broadcast conversation (bc) and telephone conversation (tc).

Conclusions

- We proposed deep active learning algorithms for NER, and empirically demonstrated that they achieve state-of-the-art performance with **much less data** than models trained in the standard supervised fashion.
- The proposed deep active learning algorithms are able to extend to other applications easily.

Future Work

- Explore the effectiveness of subset selection in DAL setting.
- Combine with crowdsourcing and overcome label ambiguity.
- Extend to other applications.