МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Информационные технологии и прикладная математика» Кафедра 810 «Информационные технологии в моделировании и управлении»

Лабораторная работа №1 по курсу «Основы Python, Java и Scala, платформы CUDA для анализа данных»

Изучение технологии CUDA

Выполнил: А.С.Бобряков Группа: М8О-103М-19

Преподаватель: А.Ю. Морозов

Условие

Цель работы – установить программное обеспечение для запуска CUDA, разобраться в основе синтаксиса и настроек.

Вариант задания 1. Сложение векторов.

Программное и аппаратное обеспечение

Видеокарта: NVIDIA GeForce GTX 1060 3Gb

Компоненты	Подробности	
GeForce GTX 1060 3GB	Версия драйвера: 441.	22
	Тип драйвера: Stan	dard
	Версия API Direct3D: 12	
	Уровень возможносте 12_1	L
	Ядра CUDA: 1152	2
	Тактовая частота гра 1594	· МГц
	Скорость передачи д 8.01	Гбит/с
	Интерфейс памяти: 192	бит
	Пропускная способнос 192.	19 ГБ/с
	Доступная графическ 11237	МБ
	Выделенная видеопам 3072 М	I5 GDDR5
	Системная видеопамя 0 МБ	
	Разделяемая системна 8165 М	15
	Версия BIOS видео: 86.06.	3C.00.7D
	IRQ: Not use	ed

Процессор: Intel® CoreTM i7-8700K CPU @ 3.70GHz

<u>**Apyroe**</u>: OC Windows, IDE – Clion EAP,

Метод решения

Задача установки программного обеспечения для CUDA выполнена на OC Windows под IDE CLion EAP (2020г) путем чтения документации на сайте компании JetBrains.

Задача сложения двух векторов выполнена путем стандартного сложения двух векторов из курса алгебры 8 класса по формуле сложения двух векторов.

Описание программы

В программе использован макрос для CUDA на листинге 1.

Листинг 1 – Макрос для CUDA для отлова ошибок.

Программа требует на вход размер векторов и сами вектора, после чего запускает ядро с логикой сложения полученных векторов.

Результаты

Время работы ядра в зависимости от конфигурации представлены в Таблице 1. Таблица 1. Время выполнения ядра программы в зависимости от конфигурации.

Число потоков	32	128	512	1024
Число блоков				
32	3.809600	1.619968	1.524544	1.524192
128	1.628160	1.526592	1.527168	1.861088
512	1.540608	1.538976	1.524704	1.556896
1024	1.552768	1.562336	1.531904	1.548288

Ha CPU время выполнения 0.020000.

Выводы

Область применения реализованного алгоритма – учебное изучение основ CUDA. Типовые задачи, решаемые этим методом – алгебраические действия с матрицами. Возникшие проблемы – практическая невозможность установить платформу CUDA на нормальную IDE именно под ОС Windows.

Результат работы на CPU значительно лучше, чем результаты с различной конфигурацией по GPU на тестируемой машине.