EECS 16A Spring 2020

Designing Information Devices and Systems I Discussion 7B

1. Series and Parallel Combinations

For the resistor network shown below, find an equivalent resistance between the terminals A and B using the resistor combination rules for series and parallel resistors.

2. Series And Parallel Capacitors

Derive C_{eq} for the following circuits.

(a)

(b)

3. Superposition

For the following circuits:

- i. Use the superposition theorem to solve for the voltages across the resistors.
- ii. For parts (a) and (b) only, find the power dissipated/generated by all components. Is power conserved?

(a)

(c)

4. Current Sources And Capacitors

For the circuits given below, give an expression for $v_{\text{out}}(t)$ in terms of I_s , C_1 , C_2 , and t. Assume that all capacitors are initially uncharged, i.e. the initial voltage across each capacitor is 0V.

(b)

