

Analog Circuit Design Mini Project

Group Members

Name	Enrollment no
Om Tayade	BT23ECE055
Soham Kale	BT23ECE057
Sanchit Thakare	BT23ECE058
Mohammed Aaquibuddin	BT23ECE059
Uday Gupta	BT23ECE060
Jaswanth Singh Rathod	BT23ECE069

Aim:

To design and implement a Band-Pass Filter using two 741 operational amplifiers (op-amps).

Apparatus Required:

- 2 × IC 741 Operational Amplifiers
- 2 × Potentiometers (1 MΩ each)
- Resistors: $1 k\Omega$, $10 k\Omega$
- Function Generator
- Dual DC Power Supply (±15V)
- Breadboard and Connecting Wires
- Capacitor 1000PF,100PF

Theory:

A **band-pass filter** is a frequency-selective circuit that allows signals within a specified **frequency range** (passband) to pass through while attenuating signals outside this range. The passband is defined by two cutoff frequencies:

- Lower cutoff frequency (f□)
- Higher cutoff frequency (f \square), where $f\square > f\square$

The **ideal band-pass filter** passes frequencies between $f \square$ and $f \square$ with minimal attenuation and suppresses others.

In this design, we create a **first-order band-pass filter** by cascading:

- A High-Pass Filter (HPF) attenuates low frequencies
- 2. A **Low-Pass Filter** (LPF) attenuates high frequencies

Each section uses a **741 op-amp** in an active configuration to provide gain and better frequency response.

This combination results in a **first-order band-pass filter** with a slope of:

- +20 dB/decade before f□
- 0 dB/decade within the passband
- –20 dB/decade after f□

This is known as a **wide band-pass** configuration, where the bandwidth is large compared to the center frequency. The use of op-amps allows precise control of gain and

frequency cutoffs by adjusting component values (resistors and capacitors).

Calculations:

For HPF:

$$fa = 159 HZ$$
 for R=1M Ohm

Gain =Af *
$$(f/fc) / (1+(f/fc)^2)^{1/2}$$

Gain=10.8 DB

For LPF:

Gain =Af
$$/(1+(f/fc)^2)^{1/2}$$

Gain =10.9 DB

Final Gain=10.8* 10.9=117

Final Gain (DB) =41.36 DB

Multisim Ckt Diagram:

Output Waveform:

Conclusion:

We have performed a Bandpass filter using a High Pass Filter and Low Pass Filter .To adjust the band pass width we have used a potentiometer of maximum resistance allowed 1M ohm.