Flerdimensjonal analyse (MA1103)

Øving 4

Oppgave 1 (2.5: 1)

Regn ut de annenordens partiellderiverte til funksjonene:

- a) $f(x,y) = 3x^2y + 2y^2x$
- b) $f(x,y) = x\sin(y)$

Oppgave 2 (Eksamen 05/2013 Oppgave 1)

Fra fysiske lover kan en se at om K er et homogent legeme i \mathbb{R}^3 , så må temperaturen T = T(x, y, z, t) i K være en løsning til varmelikningen

$$\frac{\partial T}{\partial t} = k \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right)$$

der (x, y, z) er posisjonen i legemet, t er tiden, og k er en materialkonstant. Vis at T(x, y, z, t) = 2x - y + z er en løsning til varmelikningen.

Oppgave 3 (2.5: 2)

Regn ut de partiellderiverte:

- a) $\frac{\partial^3 f}{\partial x \partial z \partial x}$ når $f(x, y, z) = x^2 y e^{xz}$
- b) $\frac{\partial^4 f}{\partial u \partial z \partial x \partial z}$ når $f(x, y, z) = x^2 y^3 \cos(xyz)$

Oppgave 4 (2.7: 1)

La $f(u,v)=u^2+v, g(x,y)=2xy, h(x,y)=x+y^2$. Bruk kjerneregelen til å finne de partiellderiverte av k(x,y)=f(g(x,y),h(x,y)).

Oppgave 5 (2.7: 5)

Vi har to derivarbare funksjoner $\mathbf{G}: \mathbb{R}^2 \to \mathbb{R}^3$ og $\mathbf{F}: \mathbb{R}^3 \to \mathbb{R}^2$. Anta at $\mathbf{G}(1, -2) = (1, 2, 3)$ og at

$$\mathbf{G}'(1,-2) = \begin{pmatrix} 1 & -2 \\ 3 & 1 \\ 2 & -1 \end{pmatrix}, \quad \mathbf{F}'(1,2,3) = \begin{pmatrix} 2 & 1 & 4 \\ 0 & 2 & 2 \end{pmatrix}.$$

Finn Jacobi-matrisen til den sammensatte funksjonen $\mathbf{H}(\mathbf{x}) = \mathbf{F}(\mathbf{G}(\mathbf{x}))$ i punktet (1, -2).

Oppgave 6 (2.6: 1)

Finn Jacobi-matrisen til funksjonene.

- a) $\mathbf{F}(x,y) = (x^2y, x + y^2).$
- b) $\mathbf{F}(x, y, z) = (e^{x^2y+z}, xyz^2).$

Oppgave 7 (2.5: 4)

I denne oppgaven skal vi se på en funksjon $f: \mathbb{R}^2 \to \mathbb{R}$ slik at $\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0)$. Funksjonen er gitt ved

$$f(x,y) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2} & \text{når} & (x,y) \neq (0,0), \\ 0 & \text{når} & (x,y) = (0,0). \end{cases}$$

- a) Vis at f(x,0) = 0 for alle x og at f(0,y) = 0 for alle y. Bruk dette til å vise at $\frac{\partial f}{\partial x}(0,0) = 0$ og $\frac{\partial f}{\partial y}(0,0) = 0$.
- b) Vis at for $(x, y) \neq (0, 0)$ er

$$\frac{\partial f}{\partial x}(x,y) = \frac{y(x^4 + 4x^2y^2 - y^4)}{(x^2 + y^2)^2},$$
$$\frac{\partial f}{\partial y}(x,y) = -\frac{x(y^4 + 4x^2y^2 - x^4)}{(x^2 + y^2)^2}.$$

c) Vis at $\frac{\partial^2 f}{\partial u \partial x}(0,0) = -1$ ved å bruke

$$\frac{\partial^2 f}{\partial y \partial x}(0,0) = \lim_{h \to 0} \frac{\frac{\partial f}{\partial x}(0,h) - \frac{\partial f}{\partial x}(0,0)}{h}.$$

Vis på tilsvarende måte at $\frac{\partial^2 f}{\partial x \partial y}(0,0) = 1.$

Oppgave 8 (2.7: 8)

Temperaturen T i et område avhenger av posisjonen; vi kan tenke oss at den er gitt som en deriverbare funksjon T = f(x, y) av to variable der x og y er vanlige korrdinater. Vi innfører nå polarkoordinater r og θ på vanlig måte slik at $x = r\cos(\theta), y = r\sin(\theta)$. Vi får da temperaturen som en funksjon $T(r, \theta) = f(r\cos(\theta), r\sin(\theta))$ av r og θ .

a) Vis at

$$\begin{split} \frac{\partial T}{\partial r} &= \frac{\partial f}{\partial x} \cos(\theta) + \frac{\partial f}{\partial y} \sin(\theta), \\ \frac{\partial T}{\partial \theta} &= -\frac{\partial f}{\partial x} r \sin(\theta) + \frac{\partial f}{\partial y} r \cos(\theta). \end{split}$$

b) En radiomerket fugl beveger seg i området. Radiosignalene viser hvordan avstanden r og vinkelen θ varierer med tiden; vi har r = g(t) og $\theta = h(t)$. Vis at temperaturendringene fuglen opplever er gitt ved

$$T'(t) = \left(\frac{\partial f}{\partial x}\cos(\theta) + \frac{\partial f}{\partial y}\sin(\theta)\right)g'(t) + \left(-\frac{\partial f}{\partial x}r\sin(\theta) + \frac{\partial f}{\partial y}r\cos(\theta)\right)h'(t)$$
 der vi må sette inn $r = g(t), \theta = h(t), x = g(t)\cos(h(t)), y = g(t)\sin(h(t)).$