Daily Maths Questions

Ieng-Duan

Lobb Street Brunswick Australia

Question 1

Question 2

Question 3

Find the indefinite integral of the following

$$\int e^{e^{2016x} + 6048x} dx \tag{0.0.1}$$

Solution

It's important to realise that $6048 = 3 \times 2016$. Let u = 2016x, then we have

$$\int e^{e^{2016x} + 6048x} dx = \int e^{e^u + 3u} du \frac{1}{2016}$$
$$= \frac{1}{2016} \int e^{e^u} (e^u)^3 du.$$

Let $w = e^u$, we have

$$\frac{1}{2016} \int e^{e^{u}} (e^{u})^{3} du = \frac{1}{2016} \int e^{w} w^{3} dw \frac{du}{dw}
= \frac{1}{2016} \int e^{w} w^{3} dw \frac{1}{\frac{dw}{du}}
= \frac{1}{2016} \int e^{w} w^{3} dw \frac{1}{w}
= \frac{1}{2016} \int e^{w} w^{2} dw
= \frac{1}{2016} (e^{w} w^{2} - 2 \int e^{w} w dw)
= \frac{1}{2016} (e^{w} w^{2} - 2 [e^{w} w - \int e^{w} dw])
= \frac{1}{2016} (e^{w} w^{2} - 2 e^{w} w + e^{w})
= \frac{1}{2016} (e^{e^{u}} (e^{u})^{2} - 2 e^{e^{u}} e^{u} + e^{e^{u}})
= \frac{1}{2016} (e^{e^{2016x}} (e^{2016x})^{2} - 2 e^{e^{2016x}} e^{2016x} + e^{e^{2016x}})
= \frac{1}{2016} (e^{e^{2016x} + 4032x} - 2 e^{e^{2016x} + 2016x} + e^{e^{2016x}}).$$

Question 4

Find the indefinite integral of the following

$$\int \frac{x^{-\frac{1}{2}}}{1+x^{\frac{1}{3}}} dx \tag{0.0.2}$$

Solution

The idea is to substitute x with another variable that will make the new variable have integer powers. A common multiple of 2 and 3 is 6, hence let $u = x^{\frac{1}{6}}$, then $x = u^6$, and we have

$$\int \frac{x^{-\frac{1}{2}}}{1+x^{\frac{1}{3}}} dx = \int \frac{u^{-3}}{1+u^2} du \frac{dx}{du}$$

$$= \int \frac{u^{-3}}{1+u^2} 6u^5 du$$

$$= 6 \int \frac{u^2}{1+u^2} du$$

$$= 6 \int 1 - \frac{1}{1+u^2} du$$

$$= 6u - 6\tan^{-1}(u) + C$$

$$= 6x^{\frac{1}{6}} - 6\tan^{-1}(x^{\frac{1}{6}}) + C.$$