

图5.3.1 计数器的基本结构框图

二进制计数器

十进制计数器

任意进制计数器

(2) 按存储器的状态变 化是否同时进行

同步计数器

异步计数器

(3) 按逻辑功能

(1) 按模值

加法计数器

减法计数器

可逆计数器

5.3.1 同步计数器的分析

5.3.1 同步计数器的分析

例 同步二进制计数器

模值M=2ⁿ, 计数范围: 0~2ⁿ-1

图 5.3.2 用 JKFF 构成的同步计数器

5.3.1 同步计数器的分析

写出三组方程:

a. 各触发器的激励方程

$$J_3 = K_3 = Q_1^n Q_2^n$$
 $J_2 = K_2 = Q_1^n$

$$J_1 = K_1 = 1$$

5.3.1 同步计数器的分析

b. 各触发器的次态方程

$$Q_{3}^{n+1} = [Q_{1}^{n} Q_{2}^{n} \overline{Q}_{3}^{n} + \overline{Q}_{1}^{n} Q_{2}^{n} Q_{3}^{n}] \cdot CPV$$

$$Q_{2}^{n+1} = [Q_{1}^{n} \overline{Q}_{2}^{n} + \overline{Q}_{1}^{n} Q_{2}^{n}] \cdot CPV$$

$$Q_{1}^{n+1} = [\overline{Q}_{1}^{n}] \cdot CPV$$

c. 电路的输出方程

$$Z = \mathbf{Q}_1^n \mathbf{Q}_2^n \mathbf{Q}_3^n$$

5.3.1 同步计数器的分析

二进制同步加法计数器)。

5.3.1 同步计数器的分析

结论:

二进制同步加法计数器基本结构

a.
$$CP_1 = CP_2 = \dots = CP_n = CP$$

b. TFF形式

c.
$$T_1 = 1$$
, $T_i = \prod_{i=1}^{i-1} Q_i$ $(i = 2, 3, \dots, n)$

$$\mathbf{d.} \quad Z = \prod_{j=1}^n Q_j$$

每一位触发器在计数脉 冲作用下是否翻转,取 决于比它低的所有位 (在计数脉冲到来之前) 是否都处于1状态。

5.3.1 同步计数器的分析

结论:

二进制同步减法计数器基本结构

a.
$$CP_1 = CP_2 = \dots = CP_n = CP$$

b. TFF形式

c.
$$T_1 = 1$$
, $T_i = \prod_{j=1}^{l-1} \overline{Q}_j$ $(i = 2, 3, \dots, n)$

$$\mathbf{d.} \quad Z = \prod_{j=1}^{n} \overline{Q}_{j}$$

5.3.1 同步计数器的分析

同步计数器小结:

同步计数器的特点是:在计数过程中,应该翻转的触发器是同时翻转的,不需要逐级推移。因而同步计数器的稳定时间只取决于单级触发器的翻转时间(与位数多少无关),计数速度快。由于计数脉冲要同时加到各级触发器的CP输入端,就要求给出计数脉冲的电路具有较大的驱动能力。

- 5.3.2 同步计数器的设计
- 1. 用触发器和逻辑门构成的任意进制计数器
- 2. 用MSI二、十进制计数器构成的任意进制计数器

5.3.2 同步计数器的设计

1. 用触发器和逻辑门构成的任意进制计数器

设计步骤:

- (1) 列出计数器的状态转换表和各触发器的状态转换表,确定触发器个数;
- (2) 根据触发器的状态转换表,画出对应卡诺图,求各级触发器的激励方程和输出方程;
 - (3) 画出逻辑图。

- 5.3.2 同步计数器的设计
- 1. 用<u>触发器和逻辑门</u>构成的任意进制计数器 例1 试用JKFF和与非门设计按自然二进制码计 数的M=5的同步加法计数器。

解: (1)确定电路工作状态,求触发器级数。

$$\log_2 M \le n < \log_2 M + 1$$

取 n=3。

(2)设计各触发器的激励函数和电路的输出函数(综合表)。

综合表

•	Q_3^n	Q_2^n	Q_1^n	Q ₃	n+1 Q ₂	n+1 Q ₁	J_3	K ₃	J_2	K ₂	J_1	K ₁
•	0	0	0	0	0	1	0	Ø	0	Ø	1	Ø
	0	0	1	0	1	0	0	Ø	1	Ø	Ø	1
	0	1	0	0	1	1	0	Ø	Ø	0	1	Ø
	0	1	1	1	0	0	1	Ø	Ø	1	Ø	1
_	1	0	0	0	0	0	Ø	1	0	0	0	Ø
偏	1	0	1	0	1	1	Ø	1	1	Ø	Ø	0
离状	1	1	0	0	1	0	Ø	1	Ø	0	0	Ø
态		1	1	0	0	1	Ø	1	1	Ø	Ø	0

求各触发器的激励函数

$$J_3 = Q_2^n Q_1^n ; K_3 = 1$$

$$J_2 = Q_1^n \qquad ; \qquad K_2 = Q_1^n$$

$$J_1 = \overline{Q}_3^n$$
 ; $K_1 = \overline{Q}_3^n$

(3)作逻辑图

课本page130 例5.3.3 (自学)

- 5.3.2 同步计数器的设计
- 1. 用触发器和逻辑门构成的任意进制计数器
- 2. 用MSI二、十进制计数器构成的任意进制计数器

指导思想: 顺序计数的过程中跳过N-M个状态。

指导思想:级联多个N后,跳过多余状态。

- 5.3.2 同步计数器的设计
- 1. 用触发器和逻辑门构成的任意进制计数器
- 2. 用MSI二、十进制计数器构成的任意进制计数器
 - (1)复0法

例 试用74161用复0法设计M=6的计数器。

解:74161为异步复0方式,起跳状态为S₆,

即: (0110)2。 电路图如下所示:

电路的工作波形图

采用异步复0法时 ,触发器不能同时复0引起的现象。

(a) 电路

能可靠复0的异步复位电路

(b)波形图

- 5.3.2 同步计数器的设计
- 1. 用触发器和逻辑门构成的任意进制计数器
- 2. 用MSI二、十进制计数器构成的任意进制计数器
 - (1)复0法
 - (2) 置数法(利用置数控制端,并行输入端)
 - ①反馈置0法
 - ②置最小数法
 - ③置最大数法

加法计数器状态转移表

Q_3	Q_2	Q ₁
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0

减法计数器状态转移表

Q_3	Q_2	Q ₁
1	1	1
1	1	0
1	0	1
1	0	0
0	1	1

电路的状态转移表

CP↓的个		$Z=Q_3Q_2$		
数	Q_3	Q_3 Q_2 Q_1		Q ₁
0	0	0	0 —	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	0
4	1	0	0	0
5	1	0	1	0
6	1	1	0	0
7	1	1	1 —	1

电路的状态转移图

电路的工作波形图

5.3.3 MSI同步计数器

1.4位二进制同步加法计数器74161

①符号:

CR: 异步清0控制端

P、T: 工作模式控制端

L_n: 同步置数控制端

74161 逻辑符号

(c) 简化符号

5.3.3 MSI同步计数器

1.4位二进制同步加法计数器74161

CR	\overline{L}_{D}	P(S ₁)	T(S ₂)	СР	D_3	D_2	D ₁	D_0	Q_3^{n+}	${\bf Q}_2^{n+1}$	${\overset{-1}{Q}}_1^{n+}$	Q_0^{n+1}	功能
0	Ø	Ø	Ø	Ø	Ø	Ø	Ø	Ø	0	0	0	0	异步清除
1	0	Ø	Ø	↑	d_3	d_2	d ₁	d_0	d_3	d_2	d_1	d_0	同步并入
1	1	1	1	↑	Ø	Ø	Ø	Ø	00	00	~ '	1111	计数
1	1	0	1	Ø	Ø	Ø	Ø	Ø	Q ₃ ⁿ	Q_2^n Q_0^n	Q ₁ ⁿ	Q ₀ ⁿ	保持
1	1	Ø	0	Ø	Ø	Ø	Ø	Ø	Q_3^n	Q_2^n Q_0^n	Q_1^n	Q n 0	

②功能表

$$\mathbf{Q}_{\mathbf{CC}} = \mathbf{Q}_3 \mathbf{Q}_2 \mathbf{Q}_1 \mathbf{Q}_0 \mathbf{T}$$

1.4位二进制同步加法计数器74161

74161的异步级联方式

CP [↑]	74161(2)	74161(1)	<u>CP</u> ↑	74161(2)	74161(1)	<u> </u>
0	0000	0000	16	0001	0000	
1	0000	0001			•	
•		•			•	
15	0000	1111	255	1111	1111	34

5.3.3 MSI同步计数器

1.4位二进制同步加法计数器74161

例 试用74161用置0法设计M=6的计数器。

解:74161为同步置数方式,反馈状态为:

$$S_{M-1}$$
, $\mathbb{P}: S_5$, $5=(0101)_2$,

电路图如图所示:

例 试用74161用置最小数法实现M=12的计数器。

解: 74161为同步置数方式,最小数为:

 $N-M=16-12=4 = (0100)_{2}$

工作状态转移表和电路接法下所示:

状态转移表

电路图

例 试用74161用置最大数法设计M=12的计数器。

解: 74161为同步置数方式,反馈状态为:

 S_{M-2} , $\mathbb{P}: S_{10}$, $10=(1010)_{2}$,

电路及工作状态转移表分别下所示:

\					
	Q_3	Q_2	Q_1	Q_0	状态转移路线
	0	0	0	0	
	0	0	0	1	
	0	0	1	0	
	0	0	1	1	
	0	1	0	0	
	0	1	0	1	
	0	1	1	0	
	0	1	1	1	
	1	0	0	0	
	1	0	0	1	
	1	0	1	0	一 起跳状态
	1	0	1	1	跳
	1	1	0	0	过
	1	1	0	1	状
	1	1	1	0	态
	1	1	1	1	

状态转移表

