Estructura de datos para buscar y listar archivos.

Santiago Escobar
Sebastian Giraldo
Luisa Maria Vasquez
Medellín, 31 de Octubre de 2017

Estructuras de Datos Diseñada

Gráfico 1: Representacion del arbol rojo-negro diseñado. Las "A" representan ficheros y las "D" directorios; la imagen auxliar representa el manejo de las colisiones en la estructura de datos.

Operaciones de la Estructura de Datos

Gráfico 2: Listado de contenidos de un fichero especifico.

	Inserción	Búsqueda
Caso promedio	O(log n)	O (log n)
Peor de los casos	O(log n)	O (log n)
Por decisión del usuario	No aplica	O(m)

Tabla 1: Complejidad de las operaciones de la estructura de datos.

Criterios de Diseño de la Estructura de Datos

- En la estructura de datos se requiere que la inserción sea rápida ya que se trabaja con grandes cantidades de datos.
- El árbol rojo-negro permite insertar y buscar con una complejidad de O(log n).
- Se tenía de necesidad de diferenciar los ficheros que tienen igual nombre sin tener que hacer un recorrido completo del árbol.
- Para evitar un recorrido total del árbol, los nombres de los ficheros contenidos en un directorio debían ser agregados como hijos de este al ser insertados.

Consumo de Tiempo y Memoria

Gráfico 3: Comparación de resultados de la primera estructura respecto a la final

- Estructura Final
- Estructura 1

	Datos 1	Datos 2	Promedio
Inserción	0,006 s	0,015 s	0,0105 s
Búsqueda	0,008 s	0,012 s	0,0235 s
Consumo de memoria	1,21 MB	9,53 MB	5,37 MB

Tabla 2: Consumo de memoria y tiempos de ejecución de la estructura de datos final.

Software Desarrollado

```
Digite el numero de la opcion que desea realizar

1. Insertar directorio

2. Insertar fichero

3. Buscar directorio o fichero

4. Buscar por ruta

5. Finalizar

4
Ingrese la ruta:
Proyecto/DataSets/treeEtc.txt

El archivo treeEtc.txt existe en:
Proyecto/DataSets/treeEtc.txt/
```

Gráfico 4: Búsqueda por ruta efectiva

```
Ingresa el nombre del directorio o fichero a buscar :
Plantillas

El archivo Plantillas existe en:
Proyecto/Plantillas/
Ingrese 1 si desea listar o ingrese otro número de no ser así, es O(n)

1
Ficheros existentes en: Plantillas

ED1-Guia-Proyecto-Entrega.doc

ED1-Plantilla-Eafit.pptx
ejemplo-de-un-reporte-con-plantilla-ACM.pdf
plantilla-ACM-en-Latex.zip
plantilla-ACM-en-Word.doc

SIG Proceedings Template-Jan2015 Zip
```

Gráfico 5: Listado de contenidos efectivo

Referencias

- Adkins, A. and Gonzalez-Rivero, J. Directory and Indez Data Structures. Franklin W Olin College of Engineering. Recuperado de: https://www.youtube.com/watch?v=1ZZV9QhGUmQ
- 2. Anderson-Fredd, S..B+ Trees. Baidu. Recuperado de : https://www.sci.unich.it/~acciaro/ bpiutrees.pdf
- 3. Martinez, P., Sanchez, J., and Gallardo, C. Listas. Estructuras de datos, 92-142. Recuperado de : http://ocw.upm.es/lenguajes-y-sistemas-informaticos/estructuras-de-datos/contenidos/tema3nuevo/Listas.pdf
- Vaca, C.. Estructuras de datos y algoritmos. Universidad de Valladolid. Recuperado de: https://www.infor.uva.es/~cvaca/asigs/doceda/ rojonegro.pdf

