Segurança Informática e nas Organizações - Resumos $2\,$

José Mendes 107188 2023/2024

1 Criptografia Assimétrica

1.1 Criptografia Assimétrica (de blocos)

Usa um par de chaves:

- Chave privada: pessoal, não transmissível;
- Chave pública: disponível a todos;

Permite:

- Confidencialidade sem qualquer exchange of secrets prévia;
- Autenticação
 - De conteúdos (integridade dos dados);
 - De origem (atenticação da source, ou assinatura digital);

1.2 Operaçõees de uma Cifra Assimétrica

Confidentiality

Authentication (signature)

1.3 Use Cases: Comunicação Segura

Comunicação segura com um target (Bob)

- A Alice encrípta o plaintext ${\bf P}$ com a chave pública do Bob, ${\bf Kpub_Bob}$
 - Alice: $C = \{P\}_{kpub_bob}$
- O Bob decifra o ciphertext C com a sua chave privada, Kpriv_Bob
 - Bob: $P' = \{C\}_{kpriv_bob}$
- P' deve ser igual a **P** (é necessário verificar)
- Kpub_Bob precisa de ser conhecida pela Alice

1.4 Cifras Assimétricas

Vantagens:

- São um mecânismo de autenticação fundamental;
- Permitem explorar caracteristicas que não são possíveis com cifras simétricas;

Desvantagens:

- Performance;
- Normalmente não são muito eficientes e consomem muita memória;

Problemas:

- Distribuição confiável de chaves públicas;
- O lifetime do par de chaves é limitado;

Abordagens: problemas matemáticos complexos

- Logaritmos discretos de números grandes;
- Factorização inteira de números grandes;

Algoritmos mais comuns:

- RSA;
- ElGamal;
- Eliptic Curves (ECC);

Outras tecnicas com pares assimétricos de chaves:

• Diffie-Hellman (key agreement);

1.5 RSA (Rivest, Shamir, Adelman, 1978)

Chaves:

- Privada: (d, n)
- Pública: (e, n)

Encriptação da chave pública (confidencialidade)

- \bullet $C = P^e \mod n$
- \bullet $P = C^d \mod n$

Encriptação da chave privada (assinatura)

- $\bullet \ C = P^d \ mod \ n$
- $P = C^e \mod n$

P, C are numbers $0 \le P$, C < n

Complexidade Computacional

- Logaritmo discreto;
- Factorização inteira;

Seleção de Chaves

- n grande (centenas ou milhares de bits);
- $n = p \times q$ com **p** e **q** sendo números primos grandes (secretos);
- Escolher um **e** co-primo de $(p-1) \times (q-1)$;
- Computar **d** tal que $e \times d \equiv 1 \pmod{(p-1) \times (q-1)}$;
- Discartar **p** e **q**;
- O valor de ${\bf d}$ não pode ser facilmente computado a partir de ${\bf e}$ e ${\bf n}$ (apenas de ${\bf p}$ e ${\bf q}$);

1.5.1 RSA - Exemplo

1.6 Encriptação Hibrida

Mistura criptografia simétrica com assimétrica

- Usa o melhor dos dois mundos, evitando os problemas;
- Cifra assimétrica: usa chaves públicas (mas é lenta);
- Cifra simétrica: Rápida (mas com métodos fracos de troca de chaves);

Método

- Obtém K_{pub} do destinatário;
- Gera uma chave simétrica aleatória K_{sym} ;
- Calcula $C1 = E_{sym}(K_{sym}, P)$;
- Calcula $C2 = E_{asym}(K_{pub}, K_{sym});$
- Envia C1 + C2;
 - C1 é o texto encriptado com a chave simétrica;
 - C2 é a chave simétrica encriptada com a chave pública do destinatário (pode também conter um IV);

1.7 Randomização de encriptações assimétricas

Resultado de encriptações assimétricas não deterministico (não é prevísivel)

- $\bullet\,$ N encriptações do mesmo valor, com a mesma chave, deve produzir N resultados diferentes;
- Objetivo: Previnir a descoberta de valores encriptados através de tentativa e erro;

Abordagens: Concatenação de um valor a encriptar com dois valores, um fixo (para controlo de integridade) e outro aleatório (para randomização);

1.7.1 OAEP (Optimal Asymmetric Encryption Padding)

MGF: Mask Generation Function

• Similar to Hash, but with variable size

1.8 Diffie-Hellman Key Agreement (1976)

1.8.1 DH Key Agreement: MitM Attack

1.9 Eliptic Curve Cryptography (ECC)

Curvas elipticas são funções específicas

- Têm um gerador **G**;
- ullet Uma chave privada K_{priv} , é um inteiro com um máximo de bits permitidos pela curva;
- Uma chave pública K_{pub} , é um ponto $(x,y) = K_{priv} \times G$
- Dada K_{pub} , deve ser computacionalmente dificil determinar K_{priv} ;

Curves o NIST curves (15) o P-192, P-224, P-256, P-384, P-521 o B-163, B-233, B-283, B-409, B-571 o K-163, K-233, K-283, K-409, K-571 Other curves o Curve25519 (256 bits) o Curve448 (448 bits)

1.10 ECDH: DH com ECC

1.11 Encriptação de chave pública com ECC

Mistura encriptação hibrida com EDHC

Método

- Obtém K_{pub_recv} do destinatário;
- Gera um random K_{priv_send} com um correspondente K_{pub_send} ;
- Calcula $K_{sym} = K_{priv_send} \times K_{pub_recv};$
- $C = E(P, K_{sym});$
- Envia $C + K_{pub_send}$;
- Destinatário calcula $K_{sym} = K_{pub_send} \times K_{priv_recv};$
- $P = D(C, K_{sum});$

2 Assinaturas digitais

2.1 Cifras Assimétricas (de blocos)

Usa pares de chaves:

- Uma chave privada (pessoal, não transmissível);
- Uma chave pública (disponível a todos);

Permite:

- Confidencialidade sem qualquer exchange of secrets prévia;
- Autenticação
 - De conteúdos (integridade dos dados);
 - De origem (atenticação da source, ou assinatura digital);

2.2 Assinaturas Digitais

Encrypt / decrypt (RSA) Sign / verify (ElGamal, EC) decrypt(public key) verify(public key) signature signature

Autenticação de conteúdos de um documento - Garante a sua integridade (não se alterou);

Autenticação do autor - Garante que a identidade do criador/origem;

Previnir repudiação de assinaturas

- Non-repudiation (o autor não pode negar a autoria);
- Autores genuínos não podem negar a autoria (apenas a identidade do autor pode gerar uma dada assinatura);

Aboradgens

- Encriptação/Decifração assimétrica ou assinatura/verificação;
- Funções digest (apenas para performance);

Signing:
$$A_x(doc) = info + E(K_x^{-1}, digest(doc + info))$$

$$A_x(doc) = info + S(K_x^{-1}, digest(doc + info))$$

$$info = signing context, signer identity, K_x$$

$$Verification:$$

$$D(K_x, A_x(doc)) \equiv digest(doc + info)$$

$$V(K_x, A_x(doc), doc, info) \Rightarrow True / False$$

2.2.1 Encriptação/Decifração signatures

2.2.2 Assinatura digital num email: Multipart content, signature w/ certificate

```
From - Fri Oct 02 15:37:14 2009
Date: Fri, 02 Oct 2009 15:35:55 +0100
From: =?ISO-8859-1?Q?Andr=E9_Z=FAquete?= <andre.zuquete@ua.pt>
Reply-To: andre.zuquete@ua.pt
Organization: IEETA / UA
MIME-Version: 1.0
To: =?ISO-8859-1?Q?Andr=E9_Z=FAquete?= <andre.zuquete@ua.pt>
Subject: Teste
Content-Type: multipart/signed; protocol="application/x-pkcs7-signature"; micalg=sha1; boundary="-----ms050405070101010502050101"
This is a cryptographically signed message in MIME format.
-----ms050405070101010502050101
Content-Type: multipart/mixed;
 boundary="-----060802050708070409030504"
This is a multi-part message in MIME format.
       -----060802050708070409030504
Content-Type: text/plain; charset=ISO-8859-1
Content-Transfer-Encoding: quoted-printable
Corpo do mail
------060802050708070409030504-
----ms050405070101010502050101
Content-Type: application/x-pkcs7-signature; name="smime.p7s"
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename="smime.p7s"
Content-Description: S/MIME Cryptographic Signature
MIAGCSqGSIb3DQEHAqCAMIACAQExCzAJBgUrDgMCGgUAMIAGCSqGSIb3DQEHAQAAoIIamTCC
BUkwggSyoaMCAQICBAcnIaEwDQYJKoZIhvcNAQEFBQAwdTELMAkGA1UEBhMCVVMxGDAWBgNV\\
KoZIhvcNAQEBBQAEgYCofks852BV77NVuww53vSxO1XtI2JhC1CDlu+tcTPoMD1wq5dc5v40
Tgsaw@N8dqgVLk8aC/CdGMbRBu+J1LKrcVZa+khnjjtB66HhDRLrjmEGDNttrEjbqvpd2Q02
vxB3iPT1U+vCGXo47e6GyRydqTpbq0r49Zqmx+IJ6Z7iigAAAAAAA==
-----ms050405070101010502050101--
```

3 Derivação de chaves

Algotitmos de cifras requerem chaves de tamanho fixo - 56, 128, 256,... bits;

Podemos derivar chaves de múltiplas origens- shared secrets, passwords geradas por humanos, PIN codes e secrets de tamanho pequeno;

Origem original pode ter baixa entropia - reduz a dificuldade de ataques de força bruta, no entanto, devemos ter uma relação forte para uma chave útil;

Por vezes percisamos de múltiplas chaves do mesmo material - enquanto não permite encontrar o material (a password, outra chave) de uma chave nova;

3.1 Prepósitos de derivação de chaves

Refroço de chaves: aumenta a segurança de uma password

- Nomralmente definido por humanos;
- Tornando ataques de dicionário nada práticos;

Expansão de chaves: aumenta o tamanho de uma chave

- Expande o tamanho que serve o algoritmo;
- Eventualmente deriva outras chaves relacionadas para outros algoritmos (ex: MAC);

3.2 Derivação de chaves

Derivação de chaves requer a existência de:

- Um salt que trona a derivação única;
- Um problema difícil;
- Um nível de complexidade escolhido;

Dificuldade de Computação

• A transformação requer recursos computacionais relevantes;

Dificuldade de Memória

- A transformação requer recursos de armazenamento relevantes;
- Limita os ataques usando aceleração de hardware;

3.3 Derivação de chaves: PKBDF2

Password Based Key Derivation Function 2

Produz uma chave a partir de uma password, com uma dificuldade escolhida

$$K = PBKDF2(PRF, Salt, rounds, dim, password)$$

- PRF Pseudo-Random-Function: função digest;
- Salt Valor aleatório;
- Rounds O custo computacional (dezenas ou centenas de milhares);
- Dim Tamanho do resultado pretendido;

Operação: calcula operações ROUNDS x DIM a partir do PRF utilizando o SALT e a PASSWORD - um tamanho maior de rounds aumenta a custo;

3.4 Derivação de chaves: Scrypt

Produz uma chave com um custo de armazenamento escolhido

K = scrypt(password, salt, n, p, dim, r, hLen, Mflen)

- Salt Valor aleatório;
- n Parâmetro de custo;
- **p** Parâmetro de paralelismo $p \leq (2^{32} 1) \times hLen/Mflen;$
- dim Tamanho do resultado pretendido;
- r Tamanho do bloco a usar (default: 8);
- hLen Tamanho do da função digest (32 para SHA256);
- Mflen Bytes na internal mix (default: $8 \times r$);

4 Gestão de chaves assimétricas

4.1 Problemas a resolver

Garante um uso correto do par de chaves assimétricas

- Privacidade das chaves privadas
 - Garante a autenticidade;
 - Previne a repudiação de assinaturas digitais;
- Distribuição correta de chaves públicas
 - Garante confidencialidade;
 - Garante a correta validação de assinaturas digitais;

Evolução temporal da entidade \longleftrightarrow mapeamento de pares chave

- Para combater ocurrência catastróficas (ex: perda de chaves privadas)
- Para combater os requisitos de exploitations normais (ex: refresh do par de chaves para reduzir riscos personificação)

Garante a correta geração de pares de chaves

- Geração aleatória de valores secretos, de forma a poderem ser facilmente previstos;
- Aumentar a eficiência sem reduzir a segurança
 - Tornar mecânismos de segurança mais eficientes;
 - Aumentar a performance;

4.2 Objetivos