Estrategias para la exploración coordinada multi-VANT

Luis Alberto Ballado Aradias

CINVESTAV UNIDAD TAMAULIPAS

Cd. Victoria, Tamaulipas - 11 de septiembre de 2023

- 1 Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Hipótesis y Objetivos
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Resumen

† Inspecciones con VANT basadas en los mejores casos de uso https://enterprise-insights.dji.com/blog/complete-guide-to-drone-inspections

- 1 Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Hipótesis y Objetivos
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

 Coordinación eficiente para la exploración multi-VANT

†Ilustración Multi-VAN https://dronevideos.com/

- Coordinación eficiente para la exploración multi-VANT
- Optimizar la cobertura en entornos complejos

†Exploración VANT en entorno 3D. https://www.theengineer.co.uk/content/news/ prometheus-drones-to-explore-subterranean-environ

- Coordinación eficiente para la exploración multi-VANT
- Optimizar la cobertura en entornos complejos
- Toma de decisiones colaborativa y asignación de tareas

†Exploración VANT en entorno 3D. https://www.theengineer.co.uk/content/news/ prometheus-drones-to-explore-subterranean-environ

- Coordinación eficiente para la exploración multi-VANT
- Optimizar la cobertura en entornos complejos
- Toma de decisiones colaborativa y asignación de tareas
- Evasión de obstáculos y coordinación en tiempo real

†https://acl.mit.edu/projects/ real-time-planning-obstacle-avoidance-uavs

- Coordinación eficiente para la exploración multi-VANT
- Optimizar la cobertura en entornos complejos
- Toma de decisiones colaborativa y asignación de tareas
- Evasión de obstáculos y coordinación en tiempo real
- Fusión de información (sensores y navegación)

 † Crazyflie drone <code>https://www.bitcraze.io/</code>

- 1 Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Hipótesis y Objetivos
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Arquitectura híbrida

TParadigmas de arquitectura

https://cs.brown.edu/people/tdean/courses/

[‡]Propuesta de una arquitectura de automóvil autónoma Curiel-Ramirez et al. (2019)

Multi-robots

Conjunto de robots que pueden cooperar y comunicarse entre sí para realizar ciertas tareas.

Ventajas

- Redundancia y tolerancia a fallos
- Distribución de carga de trabajo
- Esfuerzo colaborativo

Desventajas

- Complejidad computacional
- Comunicación
- Mantenimiento

[†]Enjambre de drones

https://www.navalnews.com/naval-news/2022/03/naval-group-teaming-with-french-startup-to-dev

Panorama Planificación de trayectorias

Figura: Clasificación del enfoque de planificación de rutas¹

¹Different Cell Decomposition Path Planning Methods for Unmanned Air Vehicles - A Review Debnath et al. (2020)

Representación del ambiente 3D

[†]Mapa probabilistico 3D (Octomap)

- 1 Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Hipótesis y Objetivos
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Planteamiento del problema

- Dada un área de interés desconocida en un espacio cerrado que se desea explorar denotada como \mathcal{A} , tal que $\mathcal{A} \subset \mathbb{R}^3$.
- Un voxel v que representa el espacio contenido en A que es obtenido dividiendo recursivamente el área de interés A en ocho partes de igual tamaño, el voxel puede tomar los valores de libre o ocupado denotados como v_{libre}, v_{occ}.
- Un conjunto de VANTS autónomos denotado como $\mathcal{V} = \{V_1, V_2, V_3, ..., V_n\}$, siendo n el número total de VANTS disponibles, así como una configuración inicial q cuya cardinalidad es el número de VANTS disponibles denotado como $q = \{q_1, q_2, q_3, ..., q_n\}$.

La región ocupada son obtenidas mediante un sensor basado en un modelo de ocupación probabilístico.

Determinar el conjunto de tareas para cada VANT, así como el conjunto de rutas que maximize el área explorada minimizando el tiempo y la energía consumida.

Preguntas de investigación

Con base en lo anterior, surgen las siguiente preguntas de investigación:

- ¿Qué estrategias pueden emplearse para optimizar la asignación de tareas y coordinación entre los múltiples VANTS para el problema de exploración de un ambiente desconocido en interiores sin señal GPS?
- ¿Cómo se pueden diseñar algoritmos rápidos para la planificación de rutas que guie de forma efectiva los múltiples VANTS, considerando la evasión de obstáculos, optimizando la cobertura del área a explorar?
- ¿Qué mecanismos de coordinación y comunicación pueden facilitar la colaboracion y el intercambio rápido de información entre múltiples VANTS durante las misiones de exploración?
- ¿Cómo asegurar que la información que aporte cada uno de los VANTS se integre correctamente a la información ya conocida para generar mapas precisos y completos del entorno explorado?

- 1 Resumen
- 2 Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Hipótesis y Objetivos
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Hipótesis

La implementación de una arquitectura descentralizada integrada de algoritmos para la detección y evasión de obstáculos, toma de decisiones, navegación e inteligencia colectiva para los múltiples VANTS. Así como un enfoque de fusión de datos que integre la información de los sensores de los múltiples VANTS, mejorará la efectividad y conducirá a mejores resultados de exploración en entornos dinámicos e inciertos, incluida una mayor cobertura del área explorada, una mejor recopilación de datos en comparación con un enfoque de un solo VANT.

General

Proponer una arquitectura de software descentralizada capaz de resolver los problemas de localización, mapeo, navegación y coordinación multi-VANT en ambientes desconocidos y dinámicos para tareas de exploración en interiores.

- ① General Proponer una arquitectura de software descentralizada capaz de resolver los problemas de localización, mapeo, navegación y coordinación multi-VANT en ambientes desconocidos y dinámicos para tareas de exploración en interiores.
- Particulares
 - Desarrollo de un algoritmo para la asignación de tareas.

- ① General Proponer una arquitectura de software descentralizada capaz de resolver los problemas de localización, mapeo, navegación y coordinación multi-VANT en ambientes desconocidos y dinámicos para tareas de exploración en interiores.
- 2 Particulares
 - Desarrollo de un algoritmo para la asignación de tareas.
 - Desarrollo de un algoritmo de planificación de rutas.

- ① General Proponer una arquitectura de software descentralizada capaz de resolver los problemas de localización, mapeo, navegación y coordinación multi-VANT en ambientes desconocidos y dinámicos para tareas de exploración en interiores.
- Particulares
 - Desarrollo de un algoritmo para la asignación de tareas.
 - Desarrollo de un algoritmo de planificación de rutas.
 - Construcción de mapas.

- 1 Resumen
- Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Hipótesis y Objetivos
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Metodología/Cronograma

	Cuatrimestre 1 ^a		Cuatrimestre 2 ^b			Cuatrimestre 3 ^c						
	1	2	3	4	1	2	3	4	1	2	3	4
Etapa 1												
E1.A1. Revisión literatura relevante ^d												
E1.A2. Selección de algoritmos												
E1.A3. Diseño de la arquitectura de software												
E1.A4. Documentación Etapa 1												
E1.A5. Revisión de tesis Etapa 1												
Etapa 2												
E2.A1. Selección Simulador												
E2.A2. Visualización de datos ^e												
E2.A3. Control de desplazamientos												
E2.A4. Desarrollo de algoritmo de exploración												
E2.A5. Implementación y simulación ^g												
E2.A6. Desarrollo de coordinación												
E2.A7. Implementación y sumulación ^h												
E2.A8. Documentación Etapa 2												
E2.A9. Revisión de tesis Etapa 2												
Etapa 3												
E3.A1. Experimentación de solución												
E3.A2. Recopilación resultados												
E3.A3. Documentación Etapa 3												
E3.A4. Revisión de tesis												
E3.A5. Divulgación ⁱ												
E3.A6. Proceso de titulación												

^aCorrespondiente a los meses de Septiembre, Octubre, Noviembre, Diciembre del 2023

^bCorrespondiente a los meses de Enero, Febrero, Marzo, Abril del 2024

Correspondiente a los meses de Mayo, Junio, Julio, Agosto del 2024

^dRevisión de alertas de trabajos relacionados sobre la exploración y colaboración multi-VANT, evaluación de aptitudes en trabajos recientes Visualización Octomas en Simulador

fUn VANT

[§]Se considera un solo agente que resuelva la tarea de exploración autónoma con evación de obstáculos

hSe considerán los múltiples-VANT que resuelva la tarea de exploración autónoma con evación de obstáculos Abjerto a espacios de divulgación de acuerdo con las actividades de retribución social

- 1 Resumen
- Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Hipótesis y Objetivos
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Estado del Arte

REFERENCIA	REPRESENTACION	BUSQUEDA	Control de trayectoria	
Cieslewski et al. (2017)[2]	Octomap	Basado en fronte- ras	Control directo de velocidad	
Usenko et al. (2017)[14]	Cuadrícula egocéntrica	Offline RRT*	Curvas de Bezier	
Mohta et al. (2017)[10]	mapa 3D-Local y 2D- Global	A*	Progración cuadrática	
Lin et al. (2017)[8]	3D voxel array TSDF	A*	Optimización cuadrática	
Papachristos et al. (2017)[12]	Octomap	NBVP	Control directo de veloci- dad	
Oleynikova et al. (2018)[11]	Voxel Hashing TSDF	NBVP	Optimización cuadrática	
Gao et al. (2018)[7]	Mapa de cuadrícula	Método de marcha rápida	Optimización cuadrática	

REFERENCIA	MAPA	Planificador de ru- tas	Control trayectoria	
Florence et al. (2018)[6]	Busqueda basada en visibilidad	2D A*	Control MPC	
Selin et al. (2019)[13]	Octomap	NBVP	Control directo de veloci- dad	
McGuire et al. (2019)[9]	NA	SGBA	Control directo de veloci- dad	
Collins and Michael (2020)[3]	KD Tree + Mapa en Vo- xel	Búsqueda en Grafo	Movimientos suaves	
Campos-Macías et al. (2020)[1]	Octree	RRT	Basado en contornos	
Zhou et al. (2023)[15]	Octomap HGrid	NBVP	Control directo de veloci- dad	

- 1 Resumen
- Descripción del proyecto
- 3 Antecedentes y motivación para el proyecto
- 4 Planteamiento del problema
- 6 Hipótesis y Objetivos
- 6 Metodología
- Estado del Arte
- 8 Contribuciones o resultados esperados

Contribuciones o resultados esperados

- 1 Documentación y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas multi-VANT
 - Protocolo de comunicación y coordinación descentralizados multi-VANT que formaran parte de la arquitectura de software

Contribuciones o resultados esperados

- 1 Documentación y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas multi-VANT
 - Protocolo de comunicación y coordinación descentralizados multi-VANT que formaran parte de la arquitectura de software
- 2 Validación de la solución en un simulador

Contribuciones o resultados esperados

- 1 Documentación y códigos liberados
 - Algoritmo para la exploración multi-VANT
 - Algoritmo para la planificación de rutas multi-VANT
 - Protocolo de comunicación y coordinación descentralizados multi-VANT que formaran parte de la arquitectura de software
- 2 Validación de la solución en un simulador
- 3 Tesis impresa

Bibliografía I

- L. Campos-Macías, R. Aldana-López, R. Guardia, J. I. Parra-Vilchis, and D. Gómez-Gutiérrez. Autonomous navigation of MAVs in unknown cluttered environments. *Journal of Field Robotics*, 38(2):307–326, may 2020. doi: 10.1002/rob.21959. URL https://doi.org/10.1002/rob.21959.
- T. Cieslewski, E. Kaufmann, and D. Scaramuzza. Rapid exploration with multi-rotors: A frontier selection method for high speed flight. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 2135–2142, 2017. doi: 10.1109/IROS.2017.8206030.
- M. Collins and N. Michael. Efficient planning for high-speed mav flight in unknown environments using online sparse topological graphs. In 2020 IEEE International Conference on Robotics and Automation (ICRA), pages 11450–11456, 2020. doi: 10.1109/ICRA40945.2020.9197167.
- L. A. Curiel-Ramirez, R. A. Ramirez-Mendoza, J. Izquierdo-Reyes, M. R. Bustamante-Bello, and S. A. Navarro-Tuch. Hardware in the loop framework proposal for a semi-autonomous car architecture in a closed route environment. *International Journal on Interactive Design and Manufacturing (IJIDEM)*, 13(4): 1647–1658, Oct. 2019. doi: 10.1007/s12008-019-00619-x. URL https://doi.org/10.1007/s12008-019-00619-x.
- S. K. Debnath, R. Omar, S. Bagchi, E. N. Sabudin, M. H. A. S. Kandar, K. Foysol, and T. K. Chakraborty. Different cell decomposition path planning methods for unmanned air vehicles-a review. In *Lecture Notes in Electrical Engineering*, pages 99–111. Springer Nature Singapore, July 2020. doi: 10.1007/978-981-15-5281-6.8. URL https://doi.org/10.1007/978-981-15-5281-6.8.
- P. R. Florence, J. Carter, J. Ware, and R. Tedrake. Nanomap: Fast, uncertainty-aware proximity queries with lazy search over local 3d data, 2018.
- F. Gao, W. Wu, Y. Lin, and S. Shen. Online safe trajectory generation for quadrotors using fast marching method and bernstein basis polynomial. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages 344–351, 2018. doi: 10.1109/ICRA.2018.8462878.
- Y. Lin, F. Gao, T. Qin, W. Gao, T. Liu, W. Wu, Z. Yang, and S. Shen. Autonomous aerial navigation using monocular visual-inertial fusion. *Journal of Field Robotics*, 35(1):23–51, July 2017. doi: 10.1002/rob.21732. URL https://doi.org/10.1002/rob.21732.
- K. N. McGuire, C. D. Wagter, K. Tuyls, H. J. Kappen, and G. C. H. E. de Croon. Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment. Science Robotics, 4(35):eaaw9710, 2019. doi:10.1126/scirobotics.aaw9710. URL https://www.science.org/doi/abs/10.1126/scirobotics.aaw9710.
- K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni, K. Saulnier, K. Sun, A. Zhu, J. Delmerico, K. Karydis, N. Atanasov, G. Loianno, D. Scaramuzza, K. Daniilidis, C. J. Taylor, and V. Kumar. Fast, autonomous flight in GPS-denied and cluttered environments. *Journal of Field Robotics*, 35 (1):101–120, Dec. 2017. doi: 10.1002/rob.21774. URL https://doi.org/10.1002/rob.21774.
- H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto. Safe local exploration for replanning in cluttered unknown environments for microaerial vehicles. *IEEE Robotics and Automation Letters*, 3(3):1474–1481, jul 2018. doi: 10.1109/lra.2018.2800109. URL https://doi.org/10.1109/lra.2018.2800109.

Bibliografía II

- C. Papachristos, S. Khattak, and K. Alexis. Uncertainty-aware receding horizon exploration and mapping using aerial robots. In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages 4568–4575, 2017. doi: 10.1109/ICRA.2017.7989531.
- M. Selin, M. Tiger, D. Duberg, F. Heintz, and P. Jensfelt. Efficient autonomous exploration planning of large-scale 3-d environments. *IEEE Robotics and Automation Letters*, 4(2):1699–1706, 2019. doi: 10.1109/LRA.2019.2897343.
- V. Usenko, L. von Stumberg, A. Pangercic, and D. Cremers. Real-time trajectory replanning for MAVs using uniform b-splines and a 3d circular buffer. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, sep 2017. doi: 10.1109/iros.2017.8202160. URL https://doi.org/10.1109/iros.2017.8202160.
- B. Zhou, H. Xu, and S. Shen. Racer: Rapid collaborative exploration with a decentralized multi-uav system. *IEEE Transactions on Robotics*, 39(3):1816–1835, 2023. doi: 10.1109/TRO.2023.3236945.