Lenguajes Formales y Computabilidad Definiciones y Convenciones: Combo 14

Nicolás Cagliero

June 24, 2025

Explique en forma detallada la notación lambda

Respuesta:

Dado un alfabeto finito Σ , las expresiones que usamos en notación lambda deben cumplir lo siguiente:

- Solo involucran variables numéricas $(x,y,z,t,k,x_1,x_2,y_1,etc)$ que se valuarán con números en ω , y variables alfabéticas $(\alpha,\beta,\gamma,\alpha_1,\alpha_2,\beta_1,etc)$ que se valuarán con palabras de Σ^*
- \bullet Para ciertas valuaciones de las variables, la expresión puede no estar definida. Por ejemplo Pred(x) con x=0
- ullet Toda expresión E debe cumplir alguna de las siguientes propiedades:
 - (a) Los valores que asuma E cuando hayan sido asignados valores de ω a sus variables numéricas y valores de Σ^* a sus variables alfabéticas de manera que E esté definida para esos valores, deberán ser siempre elementos de ω
 - (b) Los valores que asuma E cuando hayan sido asignados valores de ω a sus variables numéricas y valores de Σ^* a sus variables alfabéticas de manera que E esté definida para esos valores, deberán ser siempre elementos de Σ
- Las expresiones pueden ser escritas en lenguaje coloquial castellano.
- Las expresiones booleanas toman valores en $\{0,1\}\subseteq\omega$: 1 cuando sean verdaderas, 0 cuando sean falsas.

Las expresiones que cumplan estas propiedades serás llamadas "lambdificables respecto a Σ "

Ahora, sea E una expresión lambdificables respecto a Σ . Sea $x_1, \ldots, x_n, \alpha_1, \ldots, \alpha_m$, una lista de variables todas distintas tal que las variables numéricas que ocurran

en E están contenidas en la lista x_1,\ldots,x_n y las alfabéticas que ocurran en E están contenidas en α_1,\ldots,α_m . Entonces:

$$\lambda x_1, \ldots, x_n, \alpha_1, \ldots, \alpha_m[E]$$

denotará la función definida por:

- el dominio de $\lambda x_1, \ldots, x_n, \alpha_1, \ldots, \alpha_m[E]$ es el conjunto de las n+m-uplas $(k_1, \ldots, k_n, \beta_1, \ldots, \beta_m) \in \omega^n \times \Sigma^{*m}$ tales que E esté definida cuando le asignemos a cada x_i el valor k_i y a cada α_i el valor β_i
- $\lambda x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m[E](k_1,\ldots,k_n,\beta_1,\ldots,\beta_m)=$ valor que ocurre en E cuando asignamos a cada x_i el valor k_i y a cada α_i el valor β_i