

연관성 분석(Association Analysis) / 장바구니 분석(Market Basket Analysis):

전설처럼 회자 되는 맥주와 기저귀 ~

- 상품과 상품사이에 어떤 연관이 있는지 찾는 룰기반의 알고리즘
- 거래형식의 데이터에서 아이템 클러스터 파악

여기서 연관이란~

- 함께 구매 되었는지의 정도(얼마나 자주)
- A상품 구매후 B 아이템을 구매하는지

위 규칙을 찾아내는 것으로 어떤 상품들이 한 바구니 안에 담기는지 살펴보는 모습과 비슷하다고 해서 흔히 장바구니 분석(Market Basket Analysis)이라고 많이들 불리고 있음

- 전설처럼 회자되는 일화로 월마트에서 맥주를 구매할때 기저귀를 같이 구매하는 경향이 크다는 것을 확인
- 이후 이 둘을 함께 진열하는 전략을 세움

- 연관규칙의 활용
 - ✓ 교차판매(Cross Selling)
 - ✓ 묶음판매(Bunding)
 - ✓ 상품진열(Inventory Display)
 - ✓ 쿠폰 제공
 - ✓ 온라인 상품 추천

● 측정도구

- ✓ 지지도(support)
- ✓ 신뢰도(confidence)
- ✓ 향상도(lift)

● 연관규칙 생성 과정(비지도 학습방법)

✓ 지지도(support)

- 빈발 아이템 세트(frequent item set,많이 팔리는 물건들)를 근거로 후보규칙들의 집합 결정
- 사전에 정의한 지지도(support) 값에 의해 후보군 결정

✓ 신뢰도(confidence)

- 규칙의 불확실성을 평가하기 위해 신뢰도 사용
- 최소기준 신뢰도 값을 설정
- 조건부 확률

√ 향상도(lift)

- 임의로 조합된 규칙과의 비교를 통해 해당 규칙이 얼마나 실제적인 연관성을 가지는지 파악
- ✓ 대표 알고리즘: Apriori Algorithm / FP-Growth Algorithm

후보 규칙생성

● 후보 규칙생성

- ✓ 아이템 사이의 규칙들을 if-then 형식으로 표시
- ✓ 아이템 세트(item sets) : 아이템 들의 집합
 - If 조건부 then 결론부
 - {Item set A} => {Item set B}
- ✓ If 계란 then 맥주 : {계란} => {맥주}
- ✓ If 계란 and 맥주 then 기저귀 : {계란, 맥주} => {기저귀}
- ✓ 빈발 아이템 집합들(frequent item sets)
 - Apriori 알고리즘을 이용하여 빈도수가 높은 조합 생성
 - 지지도(support)를 이용

User item	라면	버터	业 0	우유	콜라
user_1	_	0	0	0	_
user_2	_	0	-	0	0
user_3	_	0	0	_	0
user_4	0	_	_	0	0
user_5	0	0	0	_	_

2/5=40% 4/5=80% 3/5=60% 3/5=60% 3/5=60%

- ✓ 지지도(support) s(X→Y) = X와 Y를 모두 포함하는 거래 수 / 전체 거래 수 = n(X∪Y) / N
- ✓ 신뢰도(Confidence) c(X→Y) = X와 Y를 모두 포함하는 거래 수 / X가 포함된 거래 수 = n(X∪Y) / n(X)
- ✓ 향상도(Lift) = $\frac{P(Y|X)}{P(Y)} = \frac{P(X,Y)}{P(X)P(Y)} = \frac{X,Y}{X}$ 동시 포함 거래수 × 전체거래수

User item	라면	버터		우유	콜라
user_1	_	0	0	0	_
user_2	_	0	_	0	0
user_3	_	0	0	_	0
user_4	0	-	-	0	0
user_5	0	0	0	_	_

2/5=40% 4/5=80% 3/5=60% 3/5=60% 3/5=60%

✓ 지지도(support) s(X→Y) = X와 Y를 모두 포함하는 거래 수 / 전체 거래 수 = n(X∪Y) / N

n(1번,3번,5번) / N => 3 / 5 = 0.6

User item	라면	버터		우유	콜라
user_1	-	0	0	0	_
user_2	-	0	-	0	0
user_3	_	0	0	_	0
user_4	0	-	_	0	0
user_5	0	0	0	_	_

2/5=40% 4/5=80% 3/5=60% 3/5=60% 3/5=60%

✓ 신뢰도(Confidence) c(X→Y) = X와 Y를 모두 포함하는 거래 수 / X가 포함된 거래 수 = n(X∪Y) / n(X) n(1번,3번,5번) / n(1번,3번,5번) => 3 / 3 = 1

> = 구매비율(빵, 버터) / 구매비율(빵) 60% / 60% = 1

User item	라면	버터		우유	콜라
user_1	_	0	0	0	_
user_2	_	0	_	0	0
user_3	_	0	0	_	0
user_4	0	_	_	0	0
user_5	0	0	0	_	_

✓ 향상도(Lift) =
$$\frac{P(Y|X)}{P(Y)} = \frac{P(X,Y)}{P(X)P(Y)} = \frac{X,Y}{X} = \frac{X,Y}{X} = \frac{X}{X} = \frac{X}$$

✓향상도lift(빵 -> 버터) = 구매비율(빵,버터)
구매비율(빵)×구매비율(버터) =
$$\frac{60}{60 \times 80} \times 100 = 1.25$$

실 습

from mlxtend.frequent_patterns import association_rules association_rules(itemset, metric="confidence", min_threshold=0.1)											
	antecedents	consequents	antecedent	support	consequent	support	support	confidence	lift	leverage	conviction
0	(버터)	(빵)		0.8		0.6	0.6	0.75	1.25	0.12	1.6
1	(빵)	(버터)		0.6		0.8	0.6	1.00	1.25	0.12	inf

User item	기저귀	맥주	바나나	우유
user_1	0	0	0	0
user_2	0	-	0	_
user_3	-	-	0	0
user_4	0	0	0	0
user_5	0	0	_	_
user_6	-	-	0	0
user_7	0	0	0	_
user_8	_	_	0	_

정말 기저귀를 구매한 사람이 맥주도 함께 구매한게 맞아?

User item	기저귀	맥주	바나나	우유
user_1	0	0	0	0
user_2	0	_	0	_
user_3	_	-	0	0
user_4	0	0	0	0
user_5	0	0	_	_
user_6	_	_	0	0
user_7	0	0	0	_
user_8	_	_	0	_

User item	기저귀	맥주	바나나	우유
user_1	0	0	0	0
user_2	0	1	0	-
user_3	-	-	0	0
user_4	0	0	0	0
user_5	0	0	-	-
user_6	_	-	0	0
user_7	0	0	0	-
user_8	_	-	0	_

5/8=62%

4/8=50%

7/8=87%

4/8=50%

기저기와 함께 팔린 상품

4건

4건

2건

User item	기저귀	맥주	바나나	우유
user_1	0	0	0	0
user_2	0	-	0	-
user_3	-	-	0	0
user_4	0	0	0	0
user_5	0	0	-	-
user_6	-	-	0	0
user_7	0	0	0	-
user_8	-	-	0	-

5/8=62%

4건

4/8=50%

기저기와 함께 팔린 상품

2건

신뢰도(기저귀
$$\rightarrow$$
 맥주) $=\frac{ 구매비율(기저귀, 맥주)}{ 구매비율(기저귀)} = \frac{50\%}{62\%} = 0.8$

신뢰도(기저귀
$$\rightarrow$$
 바나나) $=\frac{ 구매비율(기저귀,바나나)}{ 구매비율(기저귀)} = \frac{50\%}{62\%} = 0.8$

신뢰도(기저귀
$$\rightarrow$$
 우유) $=\frac{\text{구매비율}(기저귀.우유)}{\text{구매비율}(기저귀)} = \frac{25\%}{62\%} = 0.4$

User item	기저귀	맥주	바나나	우유
user_1	0	0	0	0
user_2	0	-	0	-
user_3	-	-	0	0
user_4	0	0	0	0
user_5	0	0	-	-
user_6	-	-	0	0
user_7	0	0	0	-
user_8	-	-	0	-

5/8=62%

기저기와 함께 팔린 상품

4건

2건

나가는 상품 이지는 않을까?

바나나는 항상 잘

신뢰도(기저귀
$$\rightarrow$$
 맥주) $=\frac{ 구매비율(기저귀, 맥주)}{ 구매비율(기저귀)} = \frac{50\%}{62\%} = 0.8$

신뢰도(기저귀
$$\rightarrow$$
 바나나) = $\frac{ 구매비율(기저귀, 바나나)}{ 구매비율(기저귀)} = \frac{50\%}{62\%} = 0.8$

$$=\frac{25\%}{62\%}=0.4$$

신뢰도(기저귀
$$\rightarrow$$
 우유) $=\frac{ -\text{대비율}(기저귀, 우유)}{ -\text{대비율}(기저귀)} = \frac{25\%}{62\%} = \frac{25\%}{62\%}$

향상도*Lift*(기저귀 → 우유)

상품의 판매 빈도 까지 고려하는 지표는 없을까?

향상도
$$Lift($$
기저귀 \rightarrow 맥주) $= \frac{ }{ } \frac{$

위 방법이 사실상 추천 알고리즘의 시작 ~

잘 팔리는데는 이유가 있다.