

Analisis Kasus - Python

Bahan Kuliah ST1101_2C1 Pemrograman Lanjut

Sevi **Nurafni**

Fakultas Sains dan Teknologi Universitas Koperasi Indonesia 2024

Contoh-1: Memilih Mangga

 Analisis kasus dapat digunakan dalam kehidupan sehari-hari,

Contoh: memilih mangga

- Mangga yang sudah matang dan siap dimakan adalah mangga yang berwarna kuning
- Jika tidak berwarna kuning maka tidak matang

Pseudocode - Memilih Mangga


```
PillihMangga
```

```
If (ApakahKuning? = true) then

Matang
```

Else {ApakahKuning? = false} Tidak Matang

Analisis Kasus

- Memungkinkan kita membuat teks yang sama, namun menghasilkan eksekusi berbeda
- Sering disebut percabangan / kondisional
 - Dari satu langkah ada pilihan (bercabang) ke beberapa langkah
- Terdiri atas:
 - Kondisi: ekspresi yang menghasilkan true dan false
 - Aksi: statement yang dilaksanakan jika kondisi yang berpasangan dengan aksi dipenuhi

Analisis Kasus

- Analisis kasus harus memenuhi 2 kriteria:
 - COMPLETE: semua kasus terdefinisi secara lengkap
 - DISJOINT: tidak ada kasus yang tumpang tindih/overlapped
- Contoh: Diberikan sebuah bilangan bulat, misalnya A, nyatakan apakah bilangan tersebut adalah bilangan positif, negatif, atau nol
- Ada 3 kasus yang complete dan disjoint:
 - A > 0
 - A < 0
 - A = 0
 - Tidak ada kasus lain yang bisa didefinisikan dan ketiga kasus tersebut tidak tumpang tindih

Sintaks Umum

Python

```
if ( kondisi ):
    aksi-1
else: # kondisi = false
    aksi-2
```

Jika aksi-1 atau aksi-2 terdiri dari lebih dari 1 instruksi, perhatikan bahwa indentasi harus rapi

Pseudocode

```
if ( kondisi ) then
    aksi-1
else { kondisi=false }
    aksi-2
```


flowchart

Jenis Analisis Kasus

Satu Kasus

```
if ( kondisi ):
    aksi-1

# jika kondisi=false
# tidak didefinisikan aksi
```

Dua Kasus [Komplementer]

```
if ( kondisi ):
    aksi-1
else: # kondisi=false
    aksi-2
```

Banyak Kasus

Contoh: Positif, Negatif, atau Nol?

- Buatlah program yang menerima masukan sebuah integer, misalnya N, dan menentukan apakah N adalah bilangan bulat positif, negatif, atau nol
- Kasus:
 - Jika N > 0; cetak "positif"
 - Jika N < 0, cetak "negatif"
 - Jika N = 0; cetak "nol"

Contoh: Pseudocode + Flowchart

Pseudocode

```
input(N)
if (N > 0) then
     output("genap")
<u>else</u> <u>if</u> (N < 0) <u>then</u>
     output("negatif")
\underline{\text{else}} \{ N = 0 \}
     output("nol")
```


Contoh: Python


```
# Program Bilangan
# Input N. Tentukan apakah N positif, negatif, atau nol.
# KAMUS
# N : float
# ALGORITMA
N = int(input())
if (N > 0):
     print("positif")
elif (N < 0):
     print("negatif")
else: \# N = 0
     print("nol")
```

Latihan-1: Maksimum 2 bilangan

- Buatlah sebuah program yang membaca masukan 2 buah bilangan bulat, misalnya A dan B, dan tuliskan di antara kedua bilangan tersebut mana yang paling beasr
- Kasus:
 - Jika A > B, maka bilangan terbesar = A
 - Jika A < B, maka bilangan terbesar = B
 - Jika A = B, maka bilangan terbesar adalah A atau B (berarti output akan sama seperti salah satu dari 2 kasus di atas)

Latihan-2: Total Hambatan Seri

 Buatlah program yang menerima 3 buah hambatan (R1, R2, R3) dan menghasilkan hambatan total (RT) jika dirangkai seri.

$$RT = R1 + R2 + R3$$

 R1, R2, dan R3 tidak boleh bernilai negatif. Jika satu saja hambatan bernilai negatif, maka total hambatan tidak bisa dihitung dan tuliskan ke layar pesan kesalahan "Hambatan total tidak bisa dihitung".

SELAMAT BELAJAR