

正本

. . .

昭和49年 4月23日

持許庁長官

-1. 発明の名称

> ADサシフェブロウ セイソウルリ 有機質配料の製造法

2. 発明者

3. 特許出願人

郵便番号 100

住 所 東京都千代田区大手町一丁目6番1号

名 称 (102)協和醱酵工業株式会社

代表者 髙 田

4. 添付書類の目録

(1) 明 細 春

1通

(2) 顯書副本

1 通

ner den 4

1.発明の名称

有機質肥料の製造法

2.特許請求の範囲

酸酵素液または廃液の生物学的処理化より生 する余剰汚泥を開放条件下で品数 / 3 0~250℃ に加熱して有機物が部分的に分解するまで焼成 するととを特徴とする有機質肥料または有機質 肥料原料の製造法。

よ発明の詳細な説明

本発明は各種服飾院被または廃液の生物学的 処理により生じる余剰所配から有機質配料また は有機型配料原料を製造する方法に関する。

酸酵扇液の肥料化は公客問題をクローズドシステムにより解決するための鍵として注目されつつある。しかし酸酵亮液の萎縮液は粘着性が大であるために、例えばスケールの生成などによって製造工程上の取扱いが困難をこと、およびその乾燥物は吸機性が大であることに問題が

19 日本国特許庁

公開特許公報

①特開昭 50-142366

43公開日 昭 50. (1975) 11.17

②特願昭 49-45054

②出願日 昭49.(1974)4.23

審査請求

(全6頁)

庁内整理番号 68/2 49

100日本分類
4 (2)

1 Int.C1? COSF 5/00

ある。からる問題の解決策として、硫酸などによる酸処理によつてそれらの物性を改善しようという試みがなされてきたが、このような強酸 - 加熱処理は装置上のトラブルが多発して円滑な製造が困難であり、かつ大量の強酸が使用されるために肥料中の無機成分の比率が高くならざるを得ず、有機質含量の高い肥料の製造は困難である。

本発明の目的は、とのようを従来法における 装置上、工程上および製品上の問題点を解決し て、容易に配効的にも優れた有機質配料または 有機質配料原料を製造することができる方法を 提供しようとするものである。

本発明者等はからる目的のために種々検討した結果、酸酵廃液または例えば活性汚泥法のどとき廃液の生物学的処理により生ずる余剰汚泥を開放条件下で品置/30~350℃に加熱して有機物を部分的に分解せしめる(以下本発明では半焼成という)本発明を完成した。

かゝる本発明によれば、強酸などの処理を必

要としないので、装置の腐蝕およびスケールの 付着などの工程上のトラブルが少くなり、連続 化が極めて容易になる。また、強酸およびその 中和のためのアルカリなどに由来する肥料中の 無機質含量をできるだけ少くすることが可能に たり、他の肥料成分との比率の調整が容易にな る。さらに重要をととは、本発明によりえられ る半焼成物は、胸椎酸の含有量が高くなり、か つ固化性かよび數湿性が少ない無色の取扱い容 ・- 易な物質に変化し、とれを肥料さたは土壌改良 剤として無用した場合、後に具体的に述べる如 く、元来融酵廃放または余剰汚泥が有している 発芽かよび初期生育への悪影響が全くなくなり、 むしろ土壌の団粒構造の形成、栄養物保持能の 向上等を促進して優れた配効を示すことが判明 した。

ťδ

本発明の被処理物である融酵廃液としては、 アルコール蒸溜廃液,アミノ酸,核酸阻差物質 などの各種の酵酵廃液が使用可能である。特に 廃糖費を主原料とする酸酢廃液は、元来発芽障 客性物質を多く含み、それからえられる肥料は一般に施用量に限界があつたが、本発明によりたられる肥料はそのような傾向が認められず、との点で廃額籤を使用した酸酵廃液に対して特に好ましい結果がえられる。また、廃液の生物学的処理によりえられる余剰汚泥としては、活性汚泥法、メタン酸酵法などの余剰汚泥を用いることができる。

からる服野廃液かよび余剰汚泥などは、通常 約30~40分(重量)に漁稲した後、濃紅液 をそのまり熱風乾燥器に導入して、品思/30 ~230℃、好ましくは、/30℃~200℃ で加熱半焼成処理を行わしめる。この処理条件 でえられる半焼成物は、元来酸酔廃液または余 剰汚泥に含まれていた有機物の適常約/0~ 30分(重量)程度が分解された黒色の粉体または固型物である。

しかし、ある他の服酔廃液・例えば糖繁を原料とするアルコール腺酔蒸溜廃液などは、加熱 半焼成の過程で著しく粘着性が高くなり、機械

的化半糖成が困難になる場合がある。とのよう な場合は、既被養解液を一旦、喫餐乾燥して約 よるの水分を含む粉末とし、さらに望ましくは 散粉末を例えば圧縮成型機によりフレーク状に 成型した後に、熱風乾燥物に導入して半禁成を 行わしめるとよい。

噴霧乾燥に際しては噴霧乾燥機の熱風入口温 変きがかも出口温度約 / 0 0 ℃程度で行う。

得られた酸野廃液の粉末を成型するにあたつては公知の各種の成形加工機が使用できるが、 操作および大量の連続処理が容易で、かつ摩擦 熱の発生による被処理物の膨脹が起らないよう にするため、通常圧縮成型方法が最も適してい る。その場合、圧縮度は高いほど次の半焼成工 想が容易に行いうる。

加熱に使用する熱風乾燥機は、公知の各種の 型式のものが使用可能であるが、特にロータリ ーキルン型熱風乾燥機またはパドル型熱風乾燥 機などを使用すれば、加熱半鏡成と同時に、半 焼成物の造粒が可能であり、かつ半鏡成物が機 内にスケールとして付着することが少く、さら に連続化できるので好意である。

加熱処理に要する時間は、加熱時の品温、核機箱被の機度および成分などによって大きく相違するが、前記の品温で均一に加熱する限り通常約ヶ分~/時間程度で半焼成は可能であり、均一な加熱が困難な場合でも加熱時間を延長するとによって最終的には目的とする半焼成物が得られる。加熱処理時の廃液のPBは3~6が適当であり、必要に応じて加熱的に機箱被でアンモニアまたは健康などを添加してPB機整を行うのかよい。

かくしてたられる半熱成物は倒素。リン酸,加里などの肥料成分を加えて有機質含有化成肥料 として調整するととができるが、これらの肥料成分の調整は加熱焼成処理前の廃液機能を中に添加するととによつて行う方がよい。すなわち、本発明の加熱焼成条件下では、添加したとれらの肥料成分は、新!表に示すように、加熱による影響を殆んど受けず、工程的には若しく

8 / 安

簡略化することができるからである。

つぎに、本発明にかける加熱焼成条件(品級)と、半焼成物の分析値かよび物性の関係を試験 / に示し、本発明の加熱焼成条件によりえられる半焼成物と、他の加熱条件で阿楝に処理した 場合について、対比して配効試験を行つた結果 を試験例2かよび3・に示す。

試験例/

直径70mの蒸発皿に、窒素・リン酸・加里 およびマグネシウムをそれぞれ当として約8分。 P20g として約8分。 E20として約8分かよび Mg0として約9分(いづれも重量分)含むよう に調整した糖素を原料としたダルタミン酸酸酐 筋液の乾燥物約1g8を乾燥器に入れ、つぎの ような温度条件下で2%時間加熱して半焼成を 行つた。その結果を第1表に示す。

処理 条件 (品配)	有機物 分解率		全銀業	400000	1	水形性 加里多	ОЪ	面化性	(2)
105°C	-	0.3	8.8	48	8.9	8,3	0.4	+	+
/30°C	8	4/	9.3	6.7	9./	9.3	0.03	±	±
/50C	"	7.3	9.1	17	100	9.9 .	003	_	-
200°C	35	24	8.7	46	11.0	11.2	002	-	-
230°C	46	37	7.7	2/	/3/	/37	0.01	-	-
300°C	36	0.1	6.7	0.3	162	167	t	-	<u> </u>
250C	70	0.1	0.#	0.2	6.2	160	t	-	-

註 /)有機物分解率:

加熱処理による有機物減量/処理前の有機物重量 但し、有機物重量は全固型分より、灰分か よび保安含量を差引いた値である。

註2)0D:処理物の粉砕品を、水/00ml 当り#9の割合で加え、30分間振量 後升過し、尹液を被長#20mm,/cm セルで吸光度を測定した値である。

註3)固化性:

処理物の粉砕品約100gをポリエチレン 袋に入れ、荷重100gをかけ、室型3gで にて3日間放置した後、固化性を判定した。

+・・・・・・著しく固化性を示したもの

±・・・・・若干励化性を示したもの

ー・・・・・固化性を配めないもの

註 ≠) 吸湿性:

処理物の粉砕品を、2 # 時間大気中に放置 した。

+ ・・・・・著しく潮解しべとべとになつた もの

士・・・・・若干潮無したもの

- ・・・・・変化が認められたいもの

第/表より明らかなように、品級!0±℃程 度では有機物の分解は殆んど起らず、脳核酸含量少くかつ固化性および数優性を有するが、品級!30~2±0℃の範囲内では有機物が部分 的に分解して解植酸含量が特異的に増大すると 共に、固化性・数優性が減少する。さらにとの 条件下では、加熱によるアンモニア懇望業が幾 分域少するけれども、他の無機肥料成分は殆ん ど影響がないことがわかつた。しかし、品温 300℃以上になると、有機物の分解が過度に なり、脳植酸含量および無機肥料成分が減少す る。

試験例2

試験例/でえられた各半焼成物を使用して発 芽障客試験を行つた。すなわち、シャーレド水 す 21 および供試各半焼成物を入れ、より粒の丸 葉小松菜の種子を揺在後、7日目の観察結果を 示すとつぎの通りである。

なお、無縁加区は半焼成物を添加するととな く同様に行つたものである。

16	区名	施肥量	発芽率	单 丈
		(昭/シヤーレ)	(\$)	(=)
1	無銹加区		100	265
2		10	98	. 28.5
3	4 a.m. 36 at 1964	50	98	28.5
.≉	/50°C半萘成物	100	96	.19.0
3		150	92	19.0
4		10	100	330
. 7	2000 24 15 15 15	50	98	28.5
1 8	200°C 半烧成物	100	98	260
,	· ·	150	96	19.0
10		10	98	29.0
11	2 4 600 34 44 - 114	30	98	28.0
/2	250°C半焼成物	100	94	245
13		150	7.2	163
14		10	98	26.5
15	/05℃加熱処理物	30	9#	27.5
16	(対照区)	100	48	7.5
17	,	150	. 0	_
18		10	100 .	28.5
17	330°C半饒成物	30	98	27.5
20	(対無区)	100	76	/20
2/		150	12	2/

註)/区⇒送使用した。草丈は平均値である。

第2表から、本発明に係る/10でおよび 200で半焼成区では施配力を多くしても発芽 障害を起していないが、対照区では施配力が多 くなると顕著に発芽障害が起ることが明らかで ある。

拡験例え

ワグネルポット(3000分の/8)に、火山灰土壌32以入れて、20粒の小松菜の種子を播進した場合の発芽および初期生育試験観察結果を第3表に示す。

館 3 5

	B	388	4日目	15	B E		30	日日	
区	8	発芽数	発芽数	発芽数	草丈	華太	兼巾	全生体	根段
名	£\	(本)	(本)	(本)	(cs)	(c=)	(æ)	重(8)	(cz)
	#8	8	19	19	123	18.5	3#	18.1	19.1
/30C	88	. 7	18	20	126	21.2	3.2	224	228
半焼成物	168	6	20	20	11.8	21.9	10	261	23/
2000	49	8	20	20	128	19.1	3.0	19.0	200
200°C	88	8	19	20	120	21.3	KS	27.8	230
半焼成物	168	6	19	20	147	24/	£3	3 0.7	225
Auc	#8	8	18	18	1,00	17.1	3.0	145	17.0
加美处理物	88	7	19	19	8.2	17.5	23	102	8.0
(対照区)	168	2	. 18	16	K#	4.9	1.6	20	4.5
MIOC	#8	6	20	20	11.6	172	42	141	18.0
辛烧成物	88	*	20	20	8.0	163	2.3	126	17.2
(対無区)	168	7	/8	19	7.7	148	3/	/24	140

註)/鉢2速使用した。

第3表より、対照区である103℃加熱 処理物かよび330℃半焼成物では無肥量 を多くすると初期生育が悪くなるが、本発 明によりよられた130℃かよび300℃ つぎに実施例を示す。

実施例 /

概繁を主原料とするリジン酸酢液をイオン交換物脂塔により処理した場合の流出廃液を固型分半の分になるまで海舶した。機縮液(300g)にアンモニアを加えてPBが付近に調整した後、無風入口ガス温度で300g)は口温度に多した小型パドン型熱風乾燥物に05g/minの速度で連続的に導入し、品温175~190℃で半焼成処理を行つた。このときの導入物の快内保有時間は平均30~40分程度であり、半焼成物は径約2~5 m程度の無色の粒状物として95kpたられた。

たられた半焼成物の分析値を、同じ機縮液を 品温 / / 0℃で乾燥してえられた固型物の分析 値と対比して示せば第4要のとかりである。

您 # 数

E g	分析性	水分	有 檢 物 分解率 #	胸椎酸 含量多	T - M	A - À ≉	T-P	W-K	рн
本务	明製品	0.#	1.0	64"	743	10.4		3.8	3.0
	で乾燥物 対照)	0.9	الت	0.7	143	120	-	3.5	4.6

註)T-N:全選素、A-N:アンモニア製選素 T-P:全リン酸、W-X:水溶性加里

また、本発明製品(半焼成物)と対照物 (//ので乾燥物)の発芽および初期生育試験 として、まののの分の/**のワグネルポットに、 火山灰土壌まよなを入れて、よの粒の小松菜の 種子を播種して行つた場合の観察結果を餌ま表 に示す。

まの収むよび過燐酸石灰まの収を加えてよく混合した。との混合物を熱風入口温度300℃、出口温度170℃に調整した小型ロータリーキルン型熱風乾燥機に入れ、品配約200℃の条件下で1時間加熱して半焼成を行い、径約3~7無程度の無色塊状の半焼成物380%をえた。えられた半焼成物の分析値はつぎの通りである。

* 分	0. 3 %
有機物分解率	175
腐植散含量	± # #
全 엻 🛊	25%
アンモニア態窟素	1. 3 %
金 燍 酸 、	125
全加 里	€. 3 %
水溶性加里	7. 8 %
. р Н	26

えられた半焼成物を使用し、寺屋3年子大根 を対象作物として、網状コンクリート种規模の 肥効試験を行つた結果を第6表に示す。

註)各本の3 8 施肥量区には過燐酸石灰/8 と硫酸加里の28,68 施肥量区には過燐酸石灰28と硫酸加里の48,/28 施肥量区には過燐酸石灰38と硫酸加里の88 を剛然として添加して行つた。

実施例よ

糖蜜を主原料とするアルコール酸酵素瘤廃液を固型分半の多に機能し、機能液 5001に 3m5以下に粉砕した樹皮粉末 2004、破安

なお対照として加熱温度を品温 / / 0 ℃に割 整して、全く同様にしてえられた乾燥物を使用 した。

館 4 楽

B		33日目	70日目	80日目		
通	E 1	生育障害	草女	肢根株数	根部収量	
区分布配	E	株 数 (本)	(m)	(本)	(8)	
// <i>0</i> C乾燥物	800	0.	18	3	105	
(対照)	1,600	7	15	/	50	
1	3,200	10	8	3	#3	
• .	800	0	25	. /	260	
本発明製品	1,600	0	28	0.	3#0	
	3,200	0	33	0	373	

実施例ま

廃精密のアルコール蒸和系被を固型分 * 0 \$ となるまで機能した。機能被 2 \$ 0 \$ を無異人口型度 3 0 0 ℃,出口温度 1 0 0 ℃の条件下に保持したデイスク方式のスプレードライヤーに

て乾燥し、水分含量3 % の粉末 / / の いを得た。 とれをロールプレッシャーに浮統的に供給して 板状に圧縮成型した後、粗砕した。粗砕物を熱 風入口ガス温度3 2 0 ℃,出口温度 / 7 0 ℃に 保持したロータリーキルンに / 0 分間入れ、出 口品温約 2 3 0 ℃の条件下で、加熱して半額成し、半焼成物 7 0 いを得た。その分析値はつぎ のとかりである。

水 分 のよう
 有機物分解率 30%
 脳 極限合置 44/5
 全 強 課 0.3%
 全 嫌 課 0.3%
 全 加 里 / よ3%
 水 存性加里 / 449%
 カ 日 43%

特許出顧人 (/02)協和服**帶工業株式会社** 代表者 高 田 弘 よ台記以外の英明会

キタフ シ キョクワチョク

住 房 山口県防府市協和町は書きる

氏名 复居 二

タイプラウ 住所 山口県警園町ノノノ

氏名 安戸 麓

住 所 山口県防府市協和町2番9号