Национальный исследовательский ядерный университет $M U \Phi U$

1-ый курс Весенний семестр

Линейная алгебра

Студент: Куликов Ф. Е. Преподаватель: Иванова Т. М.

Содержание

ПРЕДИСЛОВИЕ	2
ЛЕКЦИЯ 1.	3
§1. ЛЗ и ЛНЗ строк (столбцов) матрицы	3
§2. Ранг матрицы	4
§3. Элементарные преобразования строк \setminus Столбцов матрицы	6
ЛЕКЦИЯ N.	8

ПРЕДИСЛОВИЕ

Книга составлена автором по прочитанным весной 2023 года лекциям Ивановы Татьяны Михайловны с целью предоставления более удобного доступа к информации для обучающихся студентов. Большинство информации достаточно строго следует лекционному изложению, однако присутствуют и добавленные автором пояснения и дополнительные примеры, некоторые из которых могут быть помечены отдельно.

Несмотря на аккуратность и многие проверки, присутствие опечаток и ошибок всё равно вероятно и при замечании таких просьба написать на почту: marrs73@ya.ru или лучше в вк: id615227395.

Приятного ознакомления!

ЛЕКЦИЯ 1.

ЛИНЕЙНАЯ ЗАВИСИМОСТЬ. РАНГ МАТРИЦЫ. ЭЛЕМЕНТАРНЫЕ ПРЕОБРАЗОВАНИЯ МАТРИЦ.

§1. ЛЗ и ЛНЗ строк (столбцов) матрицы

Любую матрицу можно представить набором её строк или столбцов. Условимся обозначать строки, как $\vec{a_i}$, а столбцы a_i . Тогда:

$$A = (a_{ij})_m^n = (a_1 a_2 \dots a_n) = \begin{pmatrix} \overrightarrow{a_1} \\ \overrightarrow{a_2} \\ \vdots \\ \overrightarrow{a_n} \end{pmatrix}$$

Выберем $a_{j_1}, a_{j_2}, \ldots, a_{j_k}$ - столбцы A, где $1 \leq j_1 < j_2 < \cdots < j_k \leq n$ - получим систему стобцов (**ССтб**). Аналогично со строками (**ССтр**).

Почти все свойства строк и столбцов идентичны, так что чаще будет рассматриваться лишь что-то одно из них. Стоит заметить, что оба данных объекта представляют собой наборы чисел с классически определёнными на них операциями, так что рассматривать их можно и отдельно от матриц.

Определение: Линейная зависимость столбцов

ССтб называется ЛЗ (линейно зависимой), если \exists нетривиальный набор $\lambda_1, \lambda_2, \dots, \lambda_k : \lambda_1 a_{j_1} + \lambda_1 a_{j_2} + \dots + \lambda_1 a_{j_k} = 0$

$$0$$
—нулевой столбец := $\begin{pmatrix} 0 \\ 0 \\ \cdots \\ 0 \end{pmatrix}$

0-нулевой столбец := $\begin{pmatrix} 0 \\ \dots \end{pmatrix}$ Нетривиальный набор - набор, содержащий хотя бы один ненулевой элемент

Определение: Линейная независимость столбцов

ССтб называетсся **ЛНЗ (линейно независимой)**, если равенство $\lambda_1 a_{j_1} + \lambda_1 a_{j_2} + \downarrow$ $\cdots + \lambda_1 a_{j_k} = 0$ достигается только при $\lambda_1 = \lambda_2 = \dots = 0$ (при тривиальном наборе)

Лемма №1 Если ССтб содержит нулевой столбец, то она ЛЗ.

Лемма №2 Если ССтб включает ЛЗ подсистемой, то она ЛЗ.

Следствие ∀ подсистема ЛНЗ ССтб является ЛНЗ. # Упр. Доказать от противного.

Теорема: Критерий ЛЗ

ССтб ЛЗ \Leftrightarrow один из них является **ЛК** (линейной комбинацией) других.

Доказательство:

 \Rightarrow ССтб ЛЗ \Rightarrow З нетривиальный набор $\lambda_1,\lambda_2,\ldots,\lambda_k$: выполняется (1). БОО (без ограничения общности) $\lambda_1 \neq 0$, тогда $a_{j_1} = -\frac{\lambda_2}{\lambda_1} a_{j_2} - \ldots - \frac{\lambda_k}{\lambda_1} a_{j_k}$

$$\leftarrow \text{ BOO } a_{j_1} = \beta_2 a_{j_2} + \dots + \beta_k a_{j_k}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$1 * a_{j_1} - \beta_2 a_{j_2} - \dots - \beta_k a_{j_k} = 0$$

$$\downarrow \qquad \qquad \downarrow$$

 $Tогда(1; -\beta_2; ...; \beta_k)$ — нетривиальный набор и ССтб ЛЗ. **Q.Е.D.**

§2. Ранг матрицы

Определение: Минор матрицы

Рассмотрим $A=(a_{ij})_m^n$; Возьмём $k\in\mathbb{N}:1\leq k\leq min(m,n)$

Выберем $1 \le i_1 < i_2 < \dots < i_k \le m, \quad 1 \le j_1 < j_2 < \dots < j_k \le n$ Число $M^{j_1j_2\dots j_k}_{i_1i_2\dots i_k} = \det \begin{pmatrix} a_{i_1j_1} & \dots & a_{i_1j_k} \\ \dots & \dots & \dots \\ a_{i_kj_1} & \dots & a_{i_kj_k} \end{pmatrix}$ называется минором k-го порядка матрицы А.

Пример:
$$\mathbf{A}=egin{pmatrix}1&2&3&4&4\\6&6&7&8&8\\6&8&10&12&12\end{pmatrix}$$
 $(M_1=M_1^1=1\\(M_1=M_1^2=2\\(M_2=M_{13}^{14}=\begin{vmatrix}1&4\\6&12\end{vmatrix}=12$

Обозначение минора матрицы порядка k: (M_k)

Определение: Ранг матрицы

Пусть A - матрица. Если $A=\Theta,$ то её ранг полагается равным 0.

Пусть A - матрица. Если A — О, 10 со рам $\exists (M_r \neq 0)$ Если $A \neq \Theta$, то $r \in \mathbb{N}$ назовём рангом A, если $\exists (M_r \neq 0)$ $\forall (M_{r+1} = 0)$ (или их нет)

Обозначения ранга матрицы A: Rg A, rg A, Rang A, rank A

Лемма Если в матрице A все $(M_k = 0, \text{ то все } (M_{k+1} \text{ (если они есть}) = 0)$ Доказательство:

Если $\exists (M_{k+1}, \text{ его можно разложить по } \forall \text{ строке столбцу} \Rightarrow \text{ он будет } ЛК миноров } (M_k,$ которые все = $0 \Rightarrow (M_{k+1} = 0)$

Определение: Базисный минор

Пусть Rang A = r > 0, Тогда $\forall (M_r \neq 0)$ называется базисным минором. А строки и столбцы, на которых он расположен, называются **базисными столб**цами \ строками матрицы А.

Теорема: Две теоремы о базисных столбцах

- 1° Базисные ССтб (ССтр) ЛЗ
- 2° Любой Стб \ любая Стр матрицы А может быть представлена ЛК базисных Стб \ Стр этой матрицы.

1° . Доказательство:

Допустим, что базисная ССтб ЛЗ. Тогда по критерию ЛЗ один из них является ЛК других, тогда и в базисном миноре это будет выполнено. Но тогда этот минор = 0 (По свойству det) \Rightarrow противоречие. След. ССтб \ ССтр - ЛНЗ. Q.E.D.

2° . Доказательство:

Пусть $M_{i_1...i_r}^{j_1...j_r} \neq$ (т.е. это базисный минор)

Рассмотрим
$$\mathbf{B} = \begin{pmatrix} a_{i_1j_2} & \dots & a_{i_1j_r} & a_{i_1j} \\ \dots & \dots & \dots & \dots \\ a_{i_rj_1} & \dots & a_{i_rj_r} & a_{rj} \\ a_{ij_1} & \dots & a_{ij_r} & a_{ij} \end{pmatrix}$$
, где $i = \overline{1,m}; j = \overline{1,n}$

Если
$$\begin{cases} i \notin \{i_1, ..., i_r\} \\ j \notin \{j_1, ..., j_r\} \end{cases} \Rightarrow det(B) = (M_{n+1} = 0)$$

Если
$$\begin{cases} i \notin \{i_1, ..., i_r\} \\ j \notin \{j_1, ..., j_r\} \end{cases} \Rightarrow det(B) = (M_{n+1} = 0)$$
 Если
$$\begin{bmatrix} i \in \{i_1, ..., i_r\} \\ j \in \{j_1, ..., j_r\} \end{cases} \Rightarrow det(B) = 0, \text{ т.к. содержит одинаковые столбцы строки}$$

С другой стороны, det B разложим по последней строке:

$$0 = \det B = \alpha_1 a_{ij_1} + \dots + \alpha_r a_{ij_r}$$

Соответствующие алгебраические дополнения $\alpha = M^{j_1 \dots j_r}_{i_1 \dots i_r} \neq 0$ Кроме того, эти алгебраичекие дополнения одни и те же $\forall i=\overline{1,m}$

$$\begin{split} & \Rightarrow 0 = \alpha_1 a_{j_1} + \ldots + \alpha_r a_{j_r} + \alpha a_j \quad (\alpha \neq 0) \\ & \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \\ & \Rightarrow \ a_j = -\frac{\alpha_1}{\alpha} a_{j_1} - \ldots - \frac{\alpha_r}{\alpha} a_{j_r} = \lambda a_{j_1} + \ldots + \lambda_r a_{j_r} \\ \downarrow & \qquad \downarrow \qquad \downarrow \end{split}$$

Для строк аналогично. **Q.E.D**

Теорема: Следствие ЛЗ из вырожденности матрицы

 $A=(a_{ij})_n^n$ - квадратная и вырожденная \Leftrightarrow ССтб \ССтр матрицы A - ЛЗ.

Доказательство:

A - вырожденная, т.е. $\det A = 0$. (Рассмотрим случай ненулевой матрицы, т.к. с ней всё очевидно). Поскольку A - квадратная, то её единственный минор $(M_n = \det A = 0 \Rightarrow$ Rang $A=r < n \Rightarrow (M_r \neq 0$ - базисный минор. Туда входят не все Стб \ Стр, при этом любой Стб \ Стр выражается через базисные ⇒ ССтб \ССтр - ЛЗ

Пусть ССтб \ССтр - ЛЗ, тогда одна \один из них является ЛК других \Rightarrow det A = 0 по свойству det

Сл Квадратная матрица А невырождена ⇔ её Стр \Стб - ЛНЗ

Теорема: ЛЗ столбцов матрицы количеством большим ранга матрицы.

Если Rang A = r, то любые r+1 Стб (Стр) - ЛЗ (Если найдутся)

Доказательство: (Для столбцов)

Если m = **r**. Допустим, что $\exists (r+1)$ ЛНЗ столбец, тогда $\forall r$ столбцов из этих r+1 будет также ЛНЗ. Тогда возьмём эти ЛНЗ r столбцов и r=m строк матрицы A. Поскольку это будет квадратная матрица r-го порядка и её ССтб - ЛНЗ, то это будет ($M_r \neq 0$, т.е. базисный минор \Rightarrow все стобцы матрицы A выражаются через выбранные r столбцов, в том чиле и (r+1)-ый столбец, который мы не брали \Rightarrow противоречие, r+1 ССтб - Лз Пусть $m \geq r+1$ и $\exists (r+1)$ ЛНЗ Стб.

Тогда берём эти (r+1) столбцов и любые (r+1) строк. Получаем квадратную матрицу (r+1), которая не вырождена $\Rightarrow \exists (M_{r+1} \neq 0 \Rightarrow RangA > r$ - противоречие. Q.E.D

Теорема: Вычисление ранга через количество ЛНЗ столбцов

Rang A =
$$\begin{cases} \text{max кол-ву ЛНЗ столбцов в A} \\ \text{max кол-ву ЛНЗ строк в A} \end{cases}$$

Доказать в качестве упражнения

§3. Элементарные преобразования строк \ Столбцов матрицы

- 1. Перестановка местами двух строк \ столбцов матрицы
- 2. Умножение строки \ столбца на \forall число $\neq 0$
- 3. Прибавление к одной строке другой строки, умноженной на \forall число (аналогично для столбцов)

Определение: Эквивалентные матрицы

Матрица В полученная элементарными преобразованиями из матрицы A называется **эквивалентной** ей.

Обозначение: А ~ В

Лемма $A \sim B \Rightarrow B \sim A$, т.е. отношение эквивалентности матриц симметрично. Доказать в качестве упражнения

Также стоит заметить, что отношение эквивалентности матриц является отношением эквивалентности в общем смысле, т.к. кроме симметричности для него также выполняется рефлексивность и транзитивность. Об отношениях эквивалентности

Теорема: Инвариантность ранга относительно элементарных преобразований

Если
$$A \sim B$$
, то Rang(A) = Rang(B)

Доказательства:

 1° и 2° - не изменяют количества ЛНЗ строк \ столбцов и следовательно по теореме о связи ранга и количества ЛНЗ столбцов матрицы эти преобразования не повышают

ранга.

 3° для строк:

$$A = \begin{pmatrix} \overrightarrow{a_1} \\ \overrightarrow{a_2} \\ \vdots \\ \overrightarrow{a_n} \end{pmatrix}$$
 БОО В $= \begin{pmatrix} \overrightarrow{a_1} + \lambda \overrightarrow{a_2} \\ \overrightarrow{a_2} \\ \vdots \\ \overrightarrow{a_n} \end{pmatrix}$ Пусть Rang A = r, тогда $\forall (M_{r+1}^A = 0)$

Рассмотрим соответствующий (M_{r+1}^B :

- 1) Не включает 1-ую Стр \Rightarrow $(M_{r+1}^B=(M_{r+1}^A=0$ 2) Включает первую, но не включает вторую \Rightarrow $(M_{r+1}^B=\lambda(M_{r+1}^A=0$
- 3) Включает и первую, и вторую строки:

$$(M_{r+1}^{B} = (M_{r+1}^{A} + \lambda det(C) = 0 + \lambda * 0 = 0,$$
 (т.к. C имеет две одинаковых строки)

Тогда
$$\begin{cases} A \sim B \Rightarrow RgB \leq RgA, \text{ т.к. } \forall (M_{r+1}^B = 0 \\ \text{С другой стороны, } B \sim A \Rightarrow RgA \leq RgB \end{cases} \Rightarrow RgA = RgB,$$

т.е. ни одно из элементарных преобразований матриц не изменяет их ранга. Q.E.D.

ЛЕКЦИЯ N.

ЛИНЕЙНЫЕ ФОРМЫ. СОПРЯЖЁННОЕ ПРАВИЛО. КОЭФФИЦИЕНТЫ ЛИНЕЙНОЙ ФОРМЫ.

Определение: Функционал

Пусть $\mathbb V$ - ЛП над $\mathbb K$ и задан закон f, ставящий любому $x \in \mathbb V$ в соответствие единственный скаляр из поля $\mathbb K$. Иными словами, f - функция из $\mathbb V$ в $\mathbb K$ (f: $\mathbb V \to \mathbb K$). Такие функции в линейной алгебре называют функционалами

Комментарий: B более общем смысле функционалами называют функции, c числовым множеством значений O функционалах.

Пример:

 $J: \mathbb{V} \to \mathbb{R}$, где \mathbb{V} - множество геометрических векторов. J(x) = |x|, т.е. J сопоставляет каждому вектору его модуль. Тогда J является функционалом (формой), однако не является линейной формой, т.к. J(x+y) в общем случае не равно J(x)+J(y).

Определение: Линейный функционал. Линейная форма

Функционал f: $\mathbb{V} \to \mathbb{K}$, для которого выполняются два свойства:

$$1^{\circ} \ \forall x_1, x_2 \in \mathbb{V} \ f(x_1 + x_2) = f(x_1) + f(x_2)$$

$$2^{\circ} \ \forall x \in \mathbb{V} \ \forall \lambda \in \mathbb{K} f(\lambda x) = \lambda f(x)$$

называется линейным функционалом или же линейной формой (ЛФ)

Примеры:

- 1) Линейный функционал: onpedeлённый интеграл $\mathbb{V}=C[a,b],\ \mathbb{K}=\mathbb{R},\ \text{тогда}\ \forall x\in\mathbb{V}$ функция $f(x)=\int_a^b x(t)\mathrm{d}t$ будет линейной формой, т.к:
 - 1. Значения определённого интеграла являются элементами поля вещественных чисел (т.е. f - уже функционал)
 - 2. $\forall x_1, x_2 \in C[a,b]$ $\int_a^b (x_1 + x_2) = \int_a^b x_1 + \int_a^b x_2$ по известному правилу суммы интегралов.
 - 3. $\forall x \in C[a,b] \ \ \forall \lambda \in \mathbb{R} \ \ \int_a^b \lambda x = \lambda \int_a^b x$ по правилу вынесения константы за знак интеграла.

Используется ранее доказанный факт того, что C[a, b] (множество функций, непрерывных на отрезке от a до b) c операциями сложения функций и умножения функции на число является ЛП над $\mathbb R$

2) Линейный функционал: Взятие первой координаты вектора. \mathbb{V} - ЛП, $\varepsilon = \{e_1, e_2, ..., e_n\}$ — базис в нём.

Тогда
$$\forall x \in \mathbb{V} \Rightarrow x = [\varepsilon] \xi = (e_1, e_2, ..., e_n) \begin{pmatrix} \xi_1 \\ \xi_2 \\ ... \\ \xi_n \end{pmatrix} \quad f(x) = \xi_1 \in \mathbb{K}$$
 - Линейная форма.

8

Можно проверить это самостоятельно аналогично первому пункту

Определение: Совокупность ЛФ

Множество всевозможных $\Pi\Phi$, действующих в V, обозначим \mathbb{V}^* $Tor\partial a \ sanucb \ x \in \mathbb{V}^*$ обозначает. что x - линейная форма.

Определение. Пусть $f_1, f_2 \in \mathbb{V}^*$.

Будем говорить, что $f_1 = f_2$, если $\forall x \in \mathbb{V} \Rightarrow f_1(x) = f_2(x)$. Такие ЛФ называются равными.

Определение. Рассмотрим ЛФ $\Phi: \forall x \in \mathbb{V} \Rightarrow \Phi(x) = 0$. Назовём её нуль-формой. Упраженение: Доказать, что $\Phi \in \mathbb{V}^*$

Определение. Пусть $f_1, f_2 \in \mathbb{V}^*$, тогда $f = f_1 + f_2$ (сумма функционалов), если $\forall x \in \mathbb{V} \Rightarrow f(x) = f_1(x) + f_2(x)$. m.e. $(f_1 + f_2)(x) = f_1(x) = f_2(x)$

Определение. Пусть $f_1 \in \mathbb{V}^*, \lambda \in \mathbb{K}$, тогда $f_=\lambda f_1$ (умножение на скаляр), если $\forall x \in \mathbb{V} \Rightarrow f(x) = \lambda f_1(x)$ (т.е. $(\lambda f_1)(x) = \lambda f_1(x)$)

Теорема: О сопряжённом пространстве к V

С введёнными линейными операциями \mathbb{V}^* образует ЛП над тем же полем $\mathbb{K},$ что и $\mathbb{V}.$ Это ЛП называется пространством сопряжённым к \mathbb{V}

Доказательство:

Для доказательства того, что \mathbb{V}^* - ЛП требуется проверить все 8 аксиом ЛП. Для этого подтвердим сначала, что введённые на сопряжённом к \mathbb{V} пространстве операции сложения и умножения на скаляр не выводят за ЛП. Иными словами, их результат также должен являться линейной формой:

- 1) Сумма линейных форм.
 - $\forall x, y \in \mathbb{V}$ $(f_1 + f_2)(x + y) \stackrel{\text{def}}{=} f_1(x + y) + f_2(x + y) \stackrel{\text{лин}}{=} f_1(x) + f_1(y) + f_2(x) + f_2(y) \stackrel{\text{def}}{=} (f_1 + f_2)(x) + (f_1 + f_2)(y)$
 - $\forall x \in \mathbb{V} \ \forall \lambda \in \mathbb{K} \ (f_1 + f_2)(\lambda x) \stackrel{\text{def}}{=} f_1(\lambda x) + f_2(\lambda x) \stackrel{\text{лин}}{=} \lambda f_1(x) + \lambda f_2(x) = \lambda (f_1(x) + f_2(x)) \stackrel{\text{def}}{=} \lambda (f_1 + f_2)(x)$ Следовательно сумма линейных форм - линейная форма.
- 2) Произведение линейной формы на скаляр.
 - $\forall x, y \in \mathbb{V} \ \forall \lambda \in \mathbb{K} \ (\lambda f_1)(x+y) \stackrel{\text{def}}{=} \lambda f_1(x+y) \stackrel{\text{лин}}{=} \lambda f_1(x) + \lambda f_1(y) \stackrel{\text{def}}{=} (\lambda f_1)(x) + (\lambda f_1)(y)$
 - $\forall x \in \mathbb{V} \ \forall \mu, \lambda \in \mathbb{K} \ (\lambda f_1)(\mu x) \stackrel{\text{def}}{=} \lambda f_1(\mu x) \stackrel{\text{лин}}{=} \lambda \mu f_1(x) \stackrel{\text{def}}{=} \mu(\lambda f_1)(x)$ Следовательно произведение линейной формы на скаляр также является линейной формой.
- 3) Теперь перейдём к самим аксиомам ЛП. Упражнение: доказать $1^{\circ}, 2^{\circ}, 5^{\circ} - 8^{\circ}$ самостоятельно
- 3° : Ф играет роль нейтрального элемента:

$$\begin{cases} \forall f \in \mathbb{V}^* \\ \forall x \in \mathbb{V} \end{cases} \Rightarrow f(x) = f(x) + 0 = f(x) + \Phi(x) \stackrel{\text{def}}{=} (f + \Phi)(x)$$

Используется введённое определение равенства линейных форм

$$4^\circ: \forall f \in \mathbb{V}*$$
 рассмотрим $\widetilde{f} = -1*f \in \mathbb{V}*$ Тогда $\forall x \in \mathbb{V} \Rightarrow (f+\widetilde{f})(x) \stackrel{\mathrm{def}}{=} f(x) + (\widetilde{f})(x) = 0 = \Phi(x)$ $\Rightarrow \forall f \in \mathbb{V}^* \ \exists \widetilde{f} \in \mathbb{V}^*: f+\widetilde{f} = \Phi \ (\widetilde{f}$ - противоположная форма)

Q.E.D.

Теорема: Размерность сопряжённого пространства

Если dim $\mathbb{V}=n<+\infty,$ то dim $\mathbb{V}^*=n$

Доказательство:

Пусть $\varepsilon = \{e_1, ..., e_n\}$ - базис в \mathbb{V} . Тогда рассмотрим $g_k \in \mathbb{V}^*$: $\forall i, k = \overline{1, n} \Rightarrow g_k(e_i) = \delta_{ik}$ (здесь δ_{ik} – Дельта Кронекера)

Тогда $\forall x \in \mathbb{V} \Rightarrow x = e_1 \xi_1 + ... + e_n \xi_n \Rightarrow g_k(x) = g_k(e_1 \xi_1 + ... + e_n \xi_n) = \xi_1 g_k(e_1) + ... + \xi_n g_k(e_n) = \xi_k g_k(e_k) = \xi_k$ (т.е. извлекает k-ую координату x в фиксированном базисе).

Покажем, что $G=\{g_1,...,g_n\}$ —ЛНЗ. Пусть $\lambda_1g_1+...+\lambda_ng_n=\Phi$

Тогда $(\lambda_1 g_1 + ... + \lambda_n g_n)(e_i) = \Phi(e_i) = 0$

 $(\lambda_1 g_1 + \dots + \lambda_n g_n)(e_i) = \lambda_1 g_1(e_i) + \dots + \lambda_n g_n(e_i) = \lambda_i g_i(e_i) = \lambda_i$

Тогда перебирая $e_1, ..., e_n$, получии, что равенство $(\lambda_1 g_1 + ... + \lambda_n g_n)(e_i) = 0$ выполняется $\Leftrightarrow \lambda_1 = ... = \lambda_n = 0 \Rightarrow G$ - ЛНЗ

Теперь покажем, что $\forall f \in \mathbb{V}^* \exists \alpha_1, ..., \alpha_n \in \mathbb{K} : f_1 = \alpha_1 g_1 + ... + \alpha_n g_n$. Пусть $x = \xi_1 e_1 + ... + \xi_n e_n$ - произвольный элемент в \mathbb{V} . Тогда $f(x) = f(\xi_1 e_1 + ... + \xi_n e_n) \stackrel{\text{лин}}{=} \xi_1 f(e_1) + ... + \xi_n f(e_n) = f(e_1) g_1(x) + ... + f(e_n) g_n(x) = \alpha_1 g_1(x) + ... + \alpha_n g_n(x) = (\alpha_1 g_1 + ... + \alpha_n g_n)(x)$ Поскольку это верно $\forall x \in \mathbb{V} \Rightarrow f = \alpha_1 g_1 + ... + \alpha_n g_n \Rightarrow G = \{g_1, ..., g_n\}$] - базис в $\mathbb{V}^* \Rightarrow dim \mathbb{V}^* = n$

Q.E.D