

Dinámica de sistemas mecánicos

Cinemática de partículas

Jonathan Camargo jon-cama@uniandes.edu.co

Temas

- Partícula
- Posición
- Sistemas de coordenadas
- Transformación de sistema de coordenadas
- Derivada de un vector

Proyecto Intermedio

Partícula

Partícula

Punto en el espacio No orientación Solo posición y masa

Partícula

Punto en el espacio No orientación Solo **posición** y masa

$$\mathbb{R}^2$$
 (o \mathbb{R}^3)

$$\widehat{\alpha}_1 = \cos \theta \, \widehat{b}_1 - \sin \theta \, \widehat{b}_2$$

$$\widehat{\alpha}_2 = \sin \theta \, \widehat{b}_1 + \cos \theta \, \widehat{b}_2$$

$$\vec{r} = (r_1 \cos\theta + r_2 \sin\theta) \hat{b}_1 + (r_2 \cos\theta - r_1 \sin\theta) \hat{b}_2$$

$$A[r] = [r] = [r]$$

$$\begin{bmatrix} \vec{r} \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \end{bmatrix}$$

$$\begin{bmatrix} \vec{r} \end{bmatrix} = \begin{bmatrix} 6 & R^A \end{bmatrix} \begin{bmatrix} A & [\vec{r}] \end{bmatrix}$$

Cartesiano

Polar

n-t

Derivada de un vector

Movimiento = cambio de posición

Derivada de un vector

Derivada de un vector

En coordenadas polares

$$\vec{r} = r \hat{\mathbf{U}}_{r}$$

$$\frac{d\hat{r}}{dt} = \dot{r} \hat{\mathbf{U}}_{r} + r \frac{d\hat{\mathbf{U}}_{r}}{dt} = \dot{r} \hat{\mathbf{U}}_{r} + r \frac{d\hat{\mathbf{U}}_{r}}{dt}$$

$$\frac{d\hat{r}}{dt} = \dot{r} \hat{\mathbf{U}}_{r} + \dot{r} \frac{d\hat{\mathbf{U}}_{r}}{dt} = \dot{r} \hat{\mathbf{U}}_{r} + \dot{r} \frac{d\hat{\mathbf{U}}_{r}}{dt} +$$

