

Module 3/5 Critère précision de position

Contenu du module

Définition

Techniques de mesures

Mesures des sous-critères du critère précision de position

Indicateurs retenus

Définition de l'écart de position

$$X_m, Y_m, Z_m$$
: coordonnées mesurées

$$X_{ti}, Y_{ti}, Z_{ti}$$
 : coordonnées considérées comme exactes

$$e_i = |x_{mi} - x_{ti}|$$

$$e_{i} = \sqrt{(x_{mi} - x_{ti})^{2} + (y_{ti} - y_{mi})^{2}}$$

$$e_i = \sqrt{(x_{mi} - x_{ti})^2 + (y_{ti} - y_{mi})^2 + (z_{mi} - z_{ti})^2}$$

Dim 1

Dim 2

$$e_i = \sqrt{(x_{mi} - x_{ti})^2 + (y_{ti} - y_{mi})^2}$$

Dim 3

$M_{mi}(x_{mi},y_{mi},z_{mi})$

$$e_i = \sqrt{(x_{mi} - x_{ti})^2 + (y_{ti} - y_{mi})^2 + (z_{mi} - z_{ti})^2}$$

Définition du critère précision de position

Écart aux règles implicites ou explicites du schéma conceptuel

La précision absolue (ou externe)

La précision relative (ou interne)

√ La précision absolue (ou externe)

Document de référence

Document à contrôler

√ La précision relative (ou interne)

Document de référence

Document à contrôler

Précision absolue + Précision relative -

Cas 2

Précision absolue - Précision relative +

On compare les **écarts des paires de points** à la **moyenne des écarts**

Cas 1 : moyenne des écarts relatifs > 0, donc précision relative moyenne

Cas 2 : moyenne des écarts relatifs = 0, donc très bonne précision relative

Techniques de mesures

Règles de mise en correspondance (1/2)

Objets ponctuels

En rouge : réseau à contrôler

En noir : source de contrôle

Objets linéaires et surfaciques

Configurations complexes

Configurations à privilégier

Techniques de mesure

Incidence du référentiel utilisé

Source des données	Précision
Photogrammétrie, plan ou fichier métrique	0,5 à 1,5 m
Levé GPS dynamique, BD TOPO®, BD PARCELLAIRE® recalée	1,5 à 2,5 m
Orthophotographie, BD PARCELLAIRE®	2,5 à 5 m
Carte 1/25 000 (SCAN 25 _®), image satellite	5 m à 10 m
BD CARTO⊚	> 10 m

SCAN100® IGN

Mesures des sous-critères du critère précision de position

Les mesures de la précision absolue

Valeur moyenne des écarts de position

$$\overline{e} = \frac{1}{N} \sum_{i=1}^{N} e_i$$

Exemple:

points de référence : M1(1,1;7), M2(17,4;0,5), M3(9,4;4,3), M4(4,3;0,6)

points à contrôler : M1'(1,1;6,7), M2'(17;0,5), M3'(9,4;4,2), M4'(4,6;0,9)

$$e_1 = \sqrt{(1,1-1,3)^2 + (7-6,7)^2} = 0,36$$

$$e_2 = \sqrt{(17,4-17)^2 + (0,5-0,5)^2} = 0,4$$

$$e_3 = \sqrt{(9,4-9,4)^2 + (4,3-4,2)^2} = 0,1$$

$$e_4 = \sqrt{(4,3-4,6)^2 + (0,6-0,9)^2} = 0,42$$

Valeur moyenne des écarts de position

$$\bar{e} = \frac{0,36+0,4+0,1+0,42}{4} = 0,32$$

Les mesures de la précision absolue

Taux d'erreurs de position au dessus d'un seuil donné

t=
$$\frac{nombre(e_i > e_{seuil})}{n}$$

Exemple:

Document de référence : M1(1,1;7), M2(17,4;0,5), M3(9,4;4,3), M4(4,3;0,6) Document à contrôler : M1(1,1;6,7), M2(17;0,5), M3(9,4;4,2), M4(4,6;0,9)

Seuil admissible: 0,4 m

$$e_1 = \sqrt{(1,1-1,3)^2 + (7-6,7)^2} = 0,36$$

$$e_2 = \sqrt{(17,4-17)^2 + (0,5-0,5)^2} = 0,4$$

$$e_3 = \sqrt{(9,4-9,4)^2 + (4,3-4,2)^2} = 0,1$$

$$e_4 = \sqrt{(4,3-4,6)^2 + (0,6-0,9)^2} = 0,42$$

Taux d'erreurs de position au dessus d'un seuil donné

$$t = \frac{1}{4} = 25\%$$

Les mesures de la précision relative

Erreur horizontale relative

Erreur verticale relative

Classe de précision au sens de l'arrêté du 16 septembre 2003

https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000000794936

1ere condition : E_{moypos}

2eme condition : $T_{_{\! 1}} < N' < T_{_{\! 2}}$

3eme condition : Aucune valeur au dessus de T₂

On veut répondre à une classe de précision de 2,5m :

$$E_{moypos} < P \times (1 + \frac{1}{2 \times C^2})$$

avec C = 2 et
$$E_{\text{moypos}} = 2,6m$$

Exemple:

Point à contrôler : 2,2; 1.6; 1.5; 1.6; 2; 7; 2.3

Dans notre échantillon on a trouvé comme écart moyen de position :

$$E_{\text{movpos}} = 2,6m$$

Donc P >
$$\frac{2,6}{1,125}$$
 =2,31 OK OU PAS OK ?

Classe	0,2	0,5	1	2,5	5	10	20	50
P(m)								

.1	1	2	2
dimension	1	2	3
k	3,23	2,42	2,11

T1

$$T_1 < N' < T_2$$

$$T_1 = P \times k \times (1 + \frac{1}{2 \times C^2})$$

$$T_1 = P \times k \times 1,125 = 2,5 \times 2,42 \times 1,125 = 6,8$$

T2

$$T_2 = 1,5 \times T_1$$

$$T_2 = 1.5 \times 6.8 = 10.2$$

Exemple:

Ecarts mesurés 2,2; 1,6; 1,5; 1,6; 2,0; **7,0**; 2,3 Vérifions que P = 2,5m est acceptable

dimension	1	2	3	
k	3,23	2,42	2,11	

$$T_1 = 1,125 \times P \times k = 1,125 \times 2,5 \times 2,42 = 6,8$$

 $T_2 = 1,5 \times T_1 = 1,5 \times 6,8 = 10,2$

N Taille de l'échantillon	5 à 13	14 à 44	45 à 85	86 à 132	133 à 184	185 à 240	241 à 298	299 à 359	360 à 422	423 à 487		
N' Nombre maximal toléré	1	2	3	4	5	6	7	8	9	10		

1 seul écart est entre T1 et T2 : la valeur de 7m, donc on est dans les limites de l'acceptable Aucun écart n'est supérieur à T2

N Taille de l'échantillon	5 à 13	14 à 44	45 à 85	86 à 132	133 à 184	185 à 240	241 à 298	299 à 359	360 à 422	423 à 487
N' Nombre maximal toléré	1	2	3	4	5	6	7	8	9	10

1 seul écart est entre T1 et T2 : la valeur de 7m Aucun écart n'est supérieur à T2

Aucune valeur au dessus de T₂

Exemple:

Ecarts mesurés : 2,2 ; 1,6 ; 1,5 ; 1,6 ; 2,0 ; 7,0 ; 2,3 Vérifions que P = 2,5m est acceptable

$$T_1 = 1,125 \times P \times k = 1,125 \times 2.5 \times 2,42 = 6,8$$

 $T_2 = 1,5 \times T_1 = 1,5 \times 6,8 = 10,2$

Aucune valeur n'est supérieure à T₂

Les 3 conditions sont vérifiées, la classe de précision de **2,5m** est acceptable

Classe de précision au sens de l'arrêté du 16 septembre 2003

Valeur moyenne des écarts de position

