TRIGONOMETRY Chapter 9

Aplicaciones gráficas de los triángulos rectángulos notables

MOTIVATING STRATEGY

NO ERES LO QUE LOGRAS ... ERES LO QUE SUPERAS.

HELICO THEORY

APLICACIONES GRÁFICAS DE LOS TRIÁNGULOS RECTÁNGULOS NOTABLES

Veamos:

Resumiendo:

R.T	30°	60°	37°	53°	45°
sen	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	3 5	4 5	$\frac{1}{\sqrt{2}}$
cos	$ \begin{array}{c c} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \\ 1 \end{array} $	$\frac{\overline{2}}{\overline{2}}$	4 5 3 4	3 5	$\frac{1}{\sqrt{2}}$
tan	$\frac{1}{\sqrt{3}}$	$\sqrt{3}$	$\frac{3}{4}$	$\frac{4}{3}$	1
cot	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$	$\frac{4}{3}$	$\frac{3}{4}$	1
sec	$\frac{2}{\sqrt{3}}$	2	4 -3 -5 -4	4 3 3 4 5 3 5	$\sqrt{2}$
CSC	2	$\frac{2}{\sqrt{3}}$	5 -3	5 4	$\sqrt{2}$

De los triángulos mostrados, efectúe

$$F = a + b + m$$

Resolución:

En el ABC (Notable de 37° y

Se observa^{53°)}

$$5k = 20 \implies k = 4$$

Luego:

$$a = 4k = 4(4) \implies a = 16$$

$$b = 3k = 3(4) \implies b = 12$$

En el AMNO (Notable de 45°)

Se observa:

$$k\sqrt{2} = 8\sqrt{2} \implies k = 8$$

$$\mathbf{m} = \mathbf{k} \implies \mathbf{m} = 8$$

Piden:
$$F = 16 + 12 + 8$$

$$\therefore F = 36$$

Calcule a + b+ c en los siguientes triángulos:

Resolución:

En el ABC (Notable de 30° y

Se observa^{60°)}

$$3\sqrt{3} = \sqrt{3}k \implies k = 3$$

Luego:

$$a = 2k = 2(3)$$
 \Rightarrow $a = 6$

$$b = k = 1(3) \implies b = 3$$

En el \(\Delta MNO(Notable de 45\)

Se observa:

$$7\sqrt{2} = \sqrt{2}k$$
 \Rightarrow $k = 7$

$$\mathbf{c} = \mathbf{k}$$
 \Rightarrow $\mathbf{c} = 7$

Piden:
$$P = 6 + 3 + 7$$

La imagen muestra la ruta que debe tomar Juan para visitar a sus compañeros Thomas y María. Si Juan solo cuenta con tiempo suficiente para visitar a uno de ellos. ¿A quién

visitará Juan y por qué?

Resolución:

En el ABC(Notable 30° Y 60°)

Se observa:

$$2\sqrt{3} = \sqrt{3}h \implies h = 2$$

Luego:

$$AC = 2h = 2(2) \implies AC = 4km$$

$$BC = h = 1(2) \implies BC = 2km$$

Piden:

¿A quién visitará Juan y por qué?

∴ Visitará a María por estar más cerca

Del gráfico, calcule n²

Resolución:

En el ABC(Notable de 45°)

Se observa:

$$k = 6$$

Luego:

$$n = \sqrt{2}k$$

$$n = 6\sqrt{2}$$

Piden:

$$n^2 = \left(6\sqrt{2}\right)^2$$

$$n^2 = (6\sqrt{2})^2$$

$$n^2 = (6)^2 \times (\sqrt{2})^2$$

$$n^2 = 36 \times 2$$

 $\therefore n^2 = 72$

Del gráfico, calcule el valor de x

Resolución:

En el ABC(Notable de 30° y

Se observa: 0°)

$$5\sqrt{3} = \sqrt{3}k \implies k = 5$$

$$3x + 1 = 2k$$

$$3x + 1 = 2(5)$$

$$3x + 1 = 10$$

$$3x = 9$$

Dado los triángulos rectángulos ABC y MNP calcule el valor de $E = x + y\sqrt{2}$

Resolución:

En el ACB (Notable de 37° y

Se observa^{53°)}

$$3k = 12 \implies k = 4$$

Luego:

$$\mathbf{x} = \mathbf{5k} = \mathbf{5(4)} \implies \mathbf{x} = 20$$

En el AMNP (Notable de 45°)

Se observa: k = 2

Luego: $y = \sqrt{2}k$

Piden:
$$F = 20 + 2\sqrt{2} \times \sqrt{2}$$

$$F = 20 + 2(2)$$

 $\therefore F = 24$

Del gráfico, calcule el valor de x

Resolución:

En el ∆ABC (Notable 45°)

En el triángulo rectángulo notable de 45° los catetos son iguales.

Se observa:

$$AB = BC$$

$$2x + 3 = 6x - 9$$

$$12 = 4x$$

$$\therefore x = 3$$

Del gráfico, calcule el valor de y^2

Resolución:

En el ABC (Notable 30° Y 60°)

Se observa:
$$5\sqrt{3} = \sqrt{3}k \implies k = 5$$

Luego:
$$AC = 2k = 2(5)$$
 \longrightarrow $AC = 10$

En el ACD(Notable de

Se observa: 10

Luego:
$$y = \sqrt{2}k \implies y = 10\sqrt{2}$$

Piden:

$$n^{2} = (10\sqrt{2})^{2}$$

$$n^{2} = (10)^{2} \times (\sqrt{2})^{2}$$

$$n^2 = 100 \times 2$$

$$n^2 = 200$$