```
Titanic Survival Predictor
import pandas as pd
import numpy as np
```

df=pd.read_csv("https://sololearn.com/uploads/files/titanic.csv")

print(df) print(df.describe())

-						
D	Survived		Sex	Age	Siblings/Spouses	
0	nts/Childr 0	en \ 3	male	22.0	1	
0 1	1	1	female	38.0	1	
	1	3	female	26.0	Θ	
0 2 0 3 0 4						
3 0	1	1	female	35.0	1	
4 0	0	3	male	35.0	0	
882	0	2	male	27.0	0	
0 883	1	1	female	19.0	0	
0 884	0	3		7.0	1	
2						
885 0	1	1	male	26.0	0	
886 0	0	3	male	32.0	0	
•	Fanc					
0	Fare 7.2500					
1 2	71.2833 7.9250					
2	F2 1000					

3 53.1000 8.0500 4 882 13.0000 883 30.0000 884 23.4500 885 30.0000 886 7.7500

[887 rows x 7 columns]

Survived Pclass Age Siblings/Spouses

Parents/Children count 887.000000 887.000000	\ 887.00000	0 887.00000	887	.000000
mean 0.385569	2.30552	4 29.471443	3 0	.525366
0.383315 std 0.487004	0.83666	2 14.121908	3 1	.104669
0.807466 min 0.000000 0.000000	1.00000	0 0.42000	0	.000000
25% 0.000000	2.00000	0 20.250000) 0	.000000
0.000000 50% 0.000000 0.000000	3.00000	0 28.00000	0	.000000
75% 1.000000	3.00000	0 38.00000) 1	000000
0.000000 max 1.000000 6.000000	3.00000	0 80.000000	8	3.000000
Fare count 887.00000 mean 32.30542 std 49.78204 min 0.00000 25% 7.92500 50% 14.45420 75% 31.13750 max 512.32920				
<pre>print(df.head())</pre>				
Survived Pclas	ss Sex	Age Siblir	ngs/Spouses	Parents/Children
0 0	3 male	22.0	1	0
7.2500 1 1 71.2833	1 female	38.0	1	0
71.2633 2 1 7.9250	3 female	26.0	0	0
3 1	1 female	35.0	1	0
53.1000 4 0 8.0500	3 male	35.0	0	0
print(df.head(n=1	9))			
Survived Pclas	ss Sex	Age Siblir	igs/Spouses	Parents/Children
0 0	3 male	22.0	1	0
7.2500 1 1 71.2833	1 female	38.0	1	0

```
female 26.0
                                                    0
                                                                       0
          1
                  3
7.9250
                      female 35.0
                                                                       0
3
          1
                  1
                                                    1
53.1000
                  3
                        male 35.0
                                                    0
          0
                                                                       0
8.0500
                  3
                        male 27.0
                                                    0
                                                                       0
5
          0
8.4583
6
          0
                  1
                        male 54.0
                                                    0
                                                                       0
51.8625
          0
                  3
                        male
                               2.0
                                                    3
                                                                       1
21.0750
                                                                       2
                  3 female 27.0
                                                    0
          1
11.1333
                             14.0
                   2
                      female
                                                    1
                                                                       0
9
          1
30.0708
df["male"]=df["Sex"]=="male"
df.head()
   Survived Pclass
                               Age Siblings/Spouses Parents/Children
                         Sex
0
                             22.0
          0
                  3
                        male
                                                    1
                                                                       0
1
                      female 38.0
                                                    1
                                                                       0
          1
                  1
2
          1
                      female 26.0
                                                    0
                                                                       0
3
          1
                  1
                      female
                             35.0
                                                    1
                                                                       0
                  3
                        male 35.0
                                                    0
4
          0
                                                                       0
             male
      Fare
0
    7.2500
             True
  71.2833
1
            False
2
    7.9250
            False
3
   53.1000
            False
   8.0500
             True
col=df["Fare"]
col
0
        7.2500
1
       71.2833
2
        7.9250
3
       53.1000
4
        8.0500
```

. . .

13.0000

882

```
883
       30.0000
884
       23.4500
       30.0000
885
886
        7.7500
Name: Fare, Length: 887, dtype: float64
col=df["Fare"]
col
print(np.mean(col))
32.30542018038328
import numpy as np
print(np.mean(col))
32.30542018038328
col1=df[["Age", "Fare"]]
col1
      Age
              Fare
     22.0
0
           7.2500
1
     38.0
           71.2833
2
     26.0
           7.9250
3
     35.0
           53.1000
4
     35.0
            8.0500
     27.0
           13.0000
882
883
     19.0
          30.0000
884
     7.0 23.4500
885
     26.0
          30.0000
886
    32.0
            7.7500
[887 rows x 2 columns]
print(np.mean(col1))
        29.471443
Age
Fare
        32.305420
dtype: float64
print(np.percentile(col,25))
7.925
df
     Survived Pclass
                          Sex
                                     Siblings/Spouses
                                Age
Parents/Children \
                    3
                         male 22.0
                                                     1
0
1
            1
                    1 female 38.0
                                                     1
```

```
0
2
            1
                    3 female 26.0
                                                     0
0
3
            1
                    1 female 35.0
                                                     1
0
                         male 35.0
4
            0
                    3
                                                     0
0
. .
                         male 27.0
882
            0
                    2
                                                     0
0
                    1 female 19.0
883
            1
                                                     0
884
            0
                    3 female
                               7.0
                                                     1
2
                         male 26.0
885
            1
                    1
                                                     0
0
                                                     0
            0
886
                    3
                         male 32.0
0
        Fare
               male
      7.2500
               True
0
              False
1
     71.2833
2
      7.9250
              False
3
     53.1000
              False
4
     8.0500
               True
     13.0000
882
               True
883
     30.0000
              False
884
     23.4500
              False
885
     30.0000
               True
886
     7.7500
               True
[887 rows x 8 columns]
print(df["Fare"].values[:11])
[ 7.25
         71.2833 7.925 53.1 8.05 8.4583 51.8625 21.075
11.1333
 30.0708 16.7
print(df.shape)
(887, 8)
df
     Survived Pclass
                          Sex
                                Age Siblings/Spouses
Parents/Children \
                    3
                         male 22.0
                                                     1
0
```

```
1 female
                                                      1
1
            1
                                38.0
0
2
                    3 female
                                26.0
                                                      0
            1
0
3
                      female 35.0
                                                      1
            1
0
4
            0
                    3
                          male 35.0
                                                      0
0
                           . . .
882
            0
                    2
                          male
                                27.0
                                                      0
0
883
                    1 female 19.0
                                                      0
            1
0
884
            0
                    3 female
                                7.0
                                                      1
2
885
            1
                    1
                          male 26.0
                                                      0
0
886
            0
                    3
                          male 32.0
                                                      0
0
               male
        Fare
      7.2500
               True
0
1
     71.2833
              False
2
      7.9250
              False
3
     53.1000
              False
4
      8.0500
               True
         . . .
882
     13.0000
               True
883
     30.0000
              False
884
     23.4500
              False
885
     30.0000
               True
886
      7.7500
               True
[887 rows x 8 columns]
df["male"]=df["Sex"]=="male"
del(df["male"])
df
     Survived Pclass
                                 Age Siblings/Spouses
                           Sex
Parents/Children
                     3
                          male
                                22.0
                                                      1
0
1
                    1 female
                                38.0
                                                      1
            1
0
2
                    3 female 26.0
                                                      0
            1
0
3
            1
                    1 female 35.0
                                                      1
```

0

```
0
                         male 35.0
4
                    3
                                                       0
0
. .
882
                          male
            0
                     2
                                27.0
                                                       0
0
883
            1
                     1
                        female 19.0
                                                       0
884
            0
                     3 female
                                7.0
                                                       1
2
                          male
885
            1
                     1
                                26.0
                                                       0
0
886
            0
                     3
                          male 32.0
                                                       0
0
        Fare
0
      7.2500
1
     71.2833
2
      7.9250
3
     53.1000
4
      8.0500
         . . .
. .
882
     13.0000
883
     30.0000
884
     23.4500
885
     30.0000
      7.7500
886
[887 rows x 7 columns]
arr=df[["Pclass","Fare","Age"]].values
arr
                , 7.25 , 22.
array([[ 3.
                                   ],
       [ 1.
                , 71.2833, 38.
                                   ],
       [ 3.
                , 7.925 , 26.
                , 23.45
       [ 3.
                         , 7.
                                   ],
                , 30.
       [ 1.
                         , 26.
       [ 3.
                , 7.75
                         , 32.
                                   ]])
arr
               , 7.25 , 22.
array([[ 3.
                                   ],
               , 71.2833, 38.
       [ 1.
                                   ],
       [ 3.
                , 7.925 , 26.
                , 23.45
       [ 3.
                         , 7.
                , 30.
                         , 26.
       [ 1.
                         , 32.
       [ 3.
                , 7.75
                                   ]])
```

```
print(arr[0,1])
7.25
print(arr[0])
[ 3.
          7.25 22.
                       ]
print(arr[:,2])
[22.
         38.
                 26.
                        35.
                                35.
                                        27.
                                                54.
                                                         2.
                                                               27.
                                                                                       58.
                                                                       14.
                                                                                4.
 20.
         39.
                 14.
                        55.
                                 2.
                                        23.
                                                31.
                                                        22.
                                                                35.
                                                                       34.
                                                                               15.
                                                                                       28.
  8.
         38.
                26.
                        19.
                                24.
                                        23.
                                                40.
                                                        48.
                                                                18.
                                                                       66.
                                                                               28.
                                                                                       42.
                 18.
                        14.
                                        27.
                                                 3.
                                                               30.
                                                                               27.
 18.
         21.
                                40.
                                                        19.
                                                                       20.
                                                                                       16.
                                                               28.5
                                                46.
 18.
          7.
                 21.
                        49.
                                29.
                                        65.
                                                        21.
                                                                        5.
                                                                               11.
                                                                                       22.
 38.
                                                                       32.
                                                                               16.
                                                                                       21.
         45.
                  4.
                        64.
                                 7.
                                        29.
                                                19.
                                                        17.
                                                               26.
                                         0.83 30.
 26.
         32.
                25.
                        23.
                                28.
                                                        22.
                                                               29.
                                                                       31.
                                                                               28.
                                                                                       17.
 33.
         16.
                 20.
                        23.
                                24.
                                        29.
                                                20.
                                                        46.
                                                               26.
                                                                       59.
                                                                               22.
                                                                                       71.
 23.
         34.
                 34.
                        28.
                                29.
                                        21.
                                                33.
                                                        37.
                                                               28.
                                                                       21.
                                                                               29.
                                                                                       38.
                                20.
 28.
         47.
                 14.5
                        22.
                                        17.
                                                21.
                                                        70.5
                                                               29.
                                                                       24.
                                                                                2.
                                                                                       21.
 19.
         32.5
                 32.5
                        54.
                                12.
                                        19.
                                                24.
                                                         2.
                                                               45.
                                                                       33.
                                                                               20.
                                                                                       47.
 29.
                 23.
                                                                22.
         25.
                        19.
                                37.
                                        16.
                                                24.
                                                        40.
                                                                       24.
                                                                               19.
                                                                                       18.
 19.
         27.
                  9.
                        36.5
                                                22.
                                                        55.5
                                                               40.5
                                                                       27.
                                                                               51.
                                42.
                                        51.
                                                                                       16.
                                                17.
 30.
         37.
                  5.
                        44.
                                        26.
                                                         1.
                                                                 9.
                                                                               45.
                                40.
                                                                       48.
                                                                                       60.
 28.
         61.
                         1.
                                21.
                                        56.
                                                18.
                                                         5.
                                                               50.
                                                                       30.
                                                                               36.
                                                                                        8.
                  4.
                         4.
 39.
          9.
                  1.
                                39.
                                        26.
                                                45.
                                                        40.
                                                                36.
                                                                       32.
                                                                               19.
                                                                                       19.
                                                                               45.5
  3.
         44.
                 58.
                        28.
                                42.
                                                24.
                                                                17.
                                                                       34.
                                                                                       18.
                                        21.
                                                        28.
  2.
         32.
                26.
                        16.
                                40.
                                        24.
                                                35.
                                                        22.
                                                               30.
                                                                       22.
                                                                               31.
                                                                                       27.
 42.
         32.
                 30.
                        16.
                                27.
                                        51.
                                                22.
                                                        38.
                                                               22.
                                                                       19.
                                                                               20.5
                                                                                       18.
 12.
                29.
                        59.
                                 5.
                                        24.
                                                21.
                                                        44.
                                                                       19.
                                                                               33.
                                                                                       19.
         35.
                                                                 8.
                                                               54.
                                                                               29.
 18.
         29.
                22.
                        30.
                                44.
                                        25.
                                                24.
                                                        37.
                                                                                       62.
                                                                       18.
 30.
         41.
                 29.
                        38.
                                30.
                                        35.
                                                50.
                                                         3.
                                                               52.
                                                                       40.
                                                                               21.
                                                                                       36.
                                                                               45.
 16.
         25.
                58.
                        35.
                                28.
                                        25.
                                                41.
                                                        37.
                                                               33.
                                                                       63.
                                                                                       21.
  7.
         35.
                65.
                        28.
                                16.
                                        19.
                                                57.
                                                        33.
                                                               30.
                                                                               42.
                                                                                       22.
                                                                       22.
                                                23.5
 26.
         19.
                 36.
                        24.
                                24.
                                        30.
                                                         2.
                                                               47.
                                                                       50.
                                                                               20.
                                                                                       24.
                         0.92 42.
                                                        30.
         46.
                 28.
                                        17.
                                                30.
                                                               24.
                                                                       18.
                                                                               26.
                                                                                       28.
 19.
 43.
         26.
                 24.
                        54.
                                31.
                                        40.
                                                22.
                                                        27.
                                                                30.
                                                                       22.
                                                                               20.
                                                                                       36.
 61.
         36.
                 31.
                        16.
                                28.
                                        45.5
                                                38.
                                                        16.
                                                               42.
                                                                       30.
                                                                               29.
                                                                                       41.
 45.
         45.
                        24.
                                28.
                                        25.
                                                36.
                                                        24.
                                                               40.
                                                                       34.
                                                                                3.
                                                                                       42.
                  2.
 23.
         43.
                 15.
                        25.
                                23.
                                        28.
                                                               22.
                                                                       23.
                                                                               40.
                                                                                       29.
                                                22.
                                                        38.
                                                               25.
 45.
         35.
                 27.
                        30.
                                60.
                                        35.
                                                22.
                                                        24.
                                                                       18.
                                                                               19.
                                                                                       22.
  3.
         25.
                 22.
                        27.
                                20.
                                        19.
                                                42.
                                                         1.
                                                               32.
                                                                       35.
                                                                               27.
                                                                                       18.
                                                28.
                                                                               31.
  1.
         36.
                 19.
                        17.
                                36.
                                        21.
                                                        23.
                                                               24.
                                                                       22.
                                                                                       46.
 23.
         28.
                39.
                        26.
                                21.
                                        28.
                                                20.
                                                        34.
                                                               51.
                                                                         3.
                                                                               21.
                                                                                        3.
 42.
                        22.
                                                                                       29.
         27.
                 33.
                                44.
                                        32.
                                                34.
                                                        18.
                                                               30.
                                                                       10.
                                                                               21.
 28.
         18.
                 54.
                        28.
                                19.
                                        28.
                                                32.
                                                        28.
                                                                33.
                                                                       42.
                                                                               17.
                                                                                       50.
 14.
                24.
                                                                       29.
                                                                                4.
                                                                                       13.
         21.
                        64.
                                31.
                                        45.
                                                20.
                                                        25.
                                                               28.
                                                                                       50.
 34.
          5.
                52.
                        36.
                                28.
                                        30.
                                                49.
                                                        24.
                                                               29.
                                                                       65.
                                                                               41.
 17.
         48.
                 34.
                        47.
                                48.
                                        34.
                                                38.
                                                        21.
                                                               56.
                                                                       22.
                                                                                0.75 39.
 38.
                 23.
                        22.
                                                29.
                                                        22.
                                                                 2.
                                                                               37.
         33.
                                40.
                                        34.
                                                                         9.
                                                                                       50.
                                                        19.
                                                                               71.
                                                                                       21.
 63.
         25.
                  8.
                        35.
                                58.
                                        30.
                                                 9.
                                                                21.
                                                                       55.
```

```
26.
         54.
                55.
                        25.
                               24.
                                       17.
                                               21.
                                                      21.
                                                              37.
                                                                      16.
                                                                             18.
                                                                                     33.
 37.
         28.
                26.
                        29.
                               66.
                                       36.
                                               54.
                                                      24.
                                                              47.
                                                                      34.
                                                                             30.
                                                                                     36.
 32.
         30.
                22.
                        35.
                               44.
                                       18.
                                               40.5
                                                      50.
                                                              49.
                                                                      39.
                                                                             23.
                                                                                      2.
 17.
         17.
                        30.
                                7.
                                       45.
                                               30.
                                                      69.
                                                              22.
                                                                      36.
                                                                              9.
                                                                                     11.
                24.
 32.
         50.
                64.
                        19.
                               27.
                                       33.
                                                8.
                                                      17.
                                                              27.
                                                                      21.
                                                                             22.
                                                                                     22.
 62.
         48.
                45.
                        39.
                               36.
                                       30.
                                               40.
                                                      28.
                                                              40.
                                                                      62.
                                                                             24.
                                                                                     19.
                32.
                        62.
                                                                      34.
                                                                             39.
 29.
         28.
                               53.
                                       36.
                                               22.
                                                      16.
                                                              19.
                                                                                     18.
 32.
         25.
                39.
                        54.
                                                      47.
                                                                      22.
                                                                             22.
                                                                                     35.
                               36.
                                       16.
                                               18.
                                                              60.
 52.
         47.
                40.
                        37.
                               36.
                                       31.
                                               49.
                                                      18.
                                                              49.
                                                                      24.
                                                                             42.
                                                                                     37.
 44.
         35.
                36.
                        30.
                               27.
                                       22.
                                                      39.
                                                              21.
                                                                             22.
                                                                                     35.
                                               40.
                                                                      18.
 24.
         34.
                26.
                         4.
                               26.
                                       27.
                                               42.
                                                      20.
                                                              21.
                                                                      21.
                                                                             61.
                                                                                     57.
 21.
         26.
                18.
                        80.
                                51.
                                       32.
                                               30.
                                                       9.
                                                              28.
                                                                      32.
                                                                             31.
                                                                                     41.
                         2.
                                        0.75 48.
 37.
         20.
                24.
                               32.
                                                      19.
                                                              56.
                                                                      21.
                                                                             23.
                                                                                     23.
 18.
                        18.
                                               32.
                                                      23.
                                                              58.
                                                                             40.
                                                                                     47.
         21.
                16.
                               24.
                                       27.
                                                                      50.
 36.
         20.
                32.
                        25.
                               49.
                                       43.
                                               48.
                                                      40.
                                                              31.
                                                                      70.
                                                                             31.
                                                                                     19.
         24.5
 18.
                18.
                        43.
                                36.
                                       28.
                                               27.
                                                      20.
                                                              14.
                                                                      60.
                                                                             25.
                                                                                     14.
                                                      60.
 19.
         18.
                15.
                        31.
                                4.
                                       37.
                                               25.
                                                              52.
                                                                      44.
                                                                             19.
                                                                                     49.
 42.
         18.
                35.
                        18.
                               25.
                                       26.
                                               39.
                                                      45.
                                                              42.
                                                                      22.
                                                                              4.
                                                                                     24.
                                               27.
 41.
                                                                             34.
                                                                                     50.
         48.
                29.
                        52.
                               19.
                                       38.
                                                      33.
                                                               6.
                                                                      17.
 27.
         20.
                        28.
                               25.
                                       25.
                                               29.
                                                                      23.
                                                                             23.
                30.
                                                      11.
                                                              41.
28.5
         35.
                        32.
                               45.
                                                              31.
                                                                      70.
                                                                                     30.
 48.
                20.
                                       36.
                                               21.
                                                      24.
                                                                             16.
 19.
         31.
                 4.
                         6.
                               33.
                                       23.
                                               48.
                                                       0.67 28.
                                                                      18.
                                                                             34.
                                                                                     33.
 23.
         41.
                20.
                        36.
                               16.
                                       51.
                                               46.
                                                      30.5
                                                              28.
                                                                      32.
                                                                             24.
                                                                                     48.
         29.
                        18.
                                               22.
                                                                             29.
                                                                                     35.
 57.
                54.
                               20.
                                        5.
                                                      43.
                                                              13.
                                                                      17.
 25.
         25.
                18.
                         8.
                                               20.
                                                              21.
                                                                      43.
                                                                             25.
                                                                                     39.
                                 1.
                                       46.
                                                      16.
                               34.
 49.
         31.
                30.
                        30.
                                       31.
                                               11.
                                                       0.42 27.
                                                                      31.
                                                                             39.
                                                                                     18.
 39.
         33.
                26.
                        39.
                                35.
                                        6.
                                               30.5
                                                      39.
                                                              23.
                                                                      31.
                                                                             43.
                                                                                     10.
         27.
 52.
                38.
                        27.
                                 2.
                                       36.
                                               23.
                                                        1.
                                                              19.
                                                                      62.
                                                                             15.
0.83
                                                      29.
 30.
         23.
                18.
                        39.
                               21.
                                       20.
                                               32.
                                                              20.
                                                                      16.
                                                                             30.
34.5
 17.
         42.
                18.
                        35.
                               28.
                                       40.
                                                4.
                                                      74.
                                                               9.
                                                                      16.
                                                                             44.
                                                                                     18.
                24.
                                                                      42.
                                                                             27.
 45.
         51.
                        30.
                                41.
                                       21.
                                               48.
                                                      14.
                                                              24.
                                                                                     31.
 23.
          4.
                26.
                        47.
                                33.
                                       47.
                                               28.
                                                      15.
                                                              20.
                                                                      19.
                                                                             23.
                                                                                     56.
                22.
 25.
         33.
                        28.
                               25.
                                       39.
                                               27.
                                                      19.
                                                               7.
                                                                      26.
                                                                             32.
                                                                                    ]
arr
                              , 22.
array([[ 3.
                       7.25
                                          ],
         [ 1.
                     71.2833, 38.
                                          ],
                       7.925 , 26.
         [ 3.
                                          ],
         . . . ,
         [ 3.
                     23.45
                                 7.
                                          ],
         [ 1.
                     30.
                                26.
                                          ],
         [ 3.
                      7.75
                              , 32.
                                          ]])
arr[:,0]
array([3., 1., 3., 1., 3., 3., 1., 3., 3., 2., 3., 1., 3., 3., 3., 2.,
3.,
```

```
2., 3., 3., 2., 2., 3., 1., 3., 3., 3., 1., 3., 3., 1., 1., 3.,
2.,
       1., 1., 3., 3., 3., 3., 3., 2., 2., 3., 3., 3., 3., 3., 3., 3.,
3.,
       1., 2., 1., 1., 2., 3., 2., 3., 3., 1., 1., 3., 1., 3., 2., 3.,
3.,
       3., 2., 3., 2., 3., 3., 3., 3., 3., 2., 3., 3., 3., 3., 1., 2.,
3.,
       3., 3., 1., 3., 3., 3., 1., 3., 3., 3., 1., 1., 2., 2., 3., 3.,
1.,
       3., 3., 3., 3., 3., 3., 3., 1., 3., 3., 3., 3., 3., 3., 2., 1.,
3.,
       2., 3., 2., 2., 1., 3., 3., 3., 3., 3., 3., 3., 2., 2., 2.,
1.,
       1., 3., 1., 3., 3., 3., 3., 2., 2., 3., 3., 2., 2., 2., 1., 3.,
3.,
       3., 1., 3., 3., 3., 3., 3., 2., 3., 3., 3., 3., 1., 3., 1., 3.,
1.,
       3., 3., 3., 1., 3., 3., 1., 2., 3., 3., 2., 3., 2., 3., 1., 3.,
1.,
       3., 3., 2., 2., 3., 2., 1., 1., 3., 3., 3., 2., 3., 3., 3., 3.,
3.,
       3., 3., 3., 3., 1., 3., 2., 3., 2., 3., 1., 3., 2., 1., 2., 3.,
2.,
       3., 3., 1., 3., 2., 3., 2., 3., 1., 3., 2., 3., 2., 3., 2., 2.,
2.,
       2., 3., 3., 2., 3., 3., 1., 3., 2., 1., 2., 3., 3., 1., 3., 3.,
3.,
       1., 1., 1., 2., 3., 1., 1., 3., 2., 3., 3., 1., 1., 1., 3., 2.,
1.,
       3., 1., 3., 2., 3., 3., 3., 3., 3., 3., 1., 3., 3., 3., 2., 3.,
1.,
       1., 2., 3., 3., 1., 3., 1., 1., 1., 3., 3., 3., 2., 3., 1., 1.,
1.,
       2., 1., 1., 1., 2., 3., 2., 3., 2., 2., 1., 1., 3., 3., 2., 2.,
3.,
       1., 3., 2., 3., 1., 3., 1., 1., 3., 1., 3., 1., 1., 3., 1., 2.,
1.,
       2., 2., 2., 2., 2., 3., 3., 3., 3., 1., 3., 3., 3., 3., 1., 2.,
3.,
       3., 3., 2., 3., 3., 3., 3., 1., 3., 3., 1., 1., 3., 3., 1., 3.,
1.,
       3., 1., 3., 3., 1., 3., 3., 1., 3., 2., 3., 2., 3., 2., 1., 3.,
3.,
       1., 3., 3., 3., 2., 2., 2., 3., 3., 3., 3., 3., 2., 3., 2., 3.,
3.,
       3., 3., 1., 2., 3., 3., 2., 2., 2., 3., 3., 3., 3., 3., 3., 2.,
2.,
       3., 3., 1., 3., 2., 3., 1., 1., 3., 2., 1., 2., 2., 3., 3., 2.,
3.,
```

```
1., 2., 1., 3., 1., 2., 3., 1., 1., 3., 3., 1., 1., 2., 3., 1.,
3.,
       1., 2., 3., 3., 2., 1., 3., 3., 3., 3., 2., 2., 3., 1., 2., 3.,
3.,
       3., 3., 2., 3., 3., 1., 3., 1., 1., 3., 3., 3., 3., 1., 1., 3.,
3.,
       1., 3., 1., 3., 3., 3., 3., 3., 1., 1., 2., 1., 3., 3., 3., 3.,
1.,
       1., 3., 1., 2., 3., 2., 3., 1., 3., 3., 1., 3., 3., 2., 1., 3.,
2.,
       2., 3., 3., 3., 3., 2., 1., 1., 3., 1., 1., 3., 3., 2., 1., 1.,
2.,
       2., 3., 2., 1., 2., 3., 3., 3., 1., 1., 1., 1., 3., 3., 3., 2.,
3.,
       3., 3., 3., 3., 3., 3., 2., 1., 1., 3., 3., 3., 2., 1., 3., 3.,
2.,
       1., 2., 1., 3., 1., 2., 1., 3., 3., 3., 1., 3., 3., 2., 3., 2.,
3.,
       3., 1., 2., 3., 1., 3., 1., 3., 3., 1., 2., 1., 3., 3., 3., 3.,
3.,
       2., 3., 3., 2., 2., 3., 1., 3., 3., 3., 1., 2., 1., 3., 3., 1.,
3.,
       1., 1., 3., 2., 3., 2., 3., 3., 3., 1., 3., 3., 3., 1., 3., 1.,
3.,
       3., 3., 2., 3., 3., 3., 2., 3., 3., 2., 1., 1., 3., 1., 3., 3.,
2.,
       2., 3., 3., 1., 2., 1., 2., 2., 2., 3., 3., 3., 3., 1., 3., 1.,
3.,
       3., 2., 2., 3., 3., 3., 1., 1., 3., 3., 3., 1., 2., 3., 3., 1.,
3.,
       1., 1., 3., 3., 3., 2., 2., 1., 1., 3., 1., 1., 1., 3., 2., 3.,
1.,
       2., 3., 2., 3., 2., 2., 1., 3., 2., 3., 2., 3., 1., 3., 2., 2.,
2.,
       3., 3., 1., 3., 3., 1., 1., 1., 3., 3., 1., 3., 2., 1., 3., 2.,
3.,
       3., 3., 2., 2., 3., 2., 3., 1., 3., 3., 3., 1., 3., 1., 1., 3.,
3.,
       3., 3., 3., 2., 3., 2., 3., 3., 3., 3., 1., 3., 1., 1., 3., 3.,
3.,
       3., 3., 3., 1., 3., 2., 3., 1., 3., 2., 1., 3., 3., 3., 2., 2.,
1.,
       3., 3., 3., 1., 3., 2., 1., 3., 3., 2., 3., 3., 1., 3., 2., 3.,
3.,
       1., 3., 1., 3., 3., 3., 3., 2., 3., 1., 3., 2., 3., 3., 3., 1.,
3.,
       3., 3., 1., 3., 2., 1., 3., 3., 3., 3., 3., 2., 1., 3., 3., 3.,
1.,
       2., 3., 1., 1., 3., 3., 3., 2., 1., 3., 2., 2., 2., 1., 3., 3.,
3.,
```

1., 1., 3., 2., 3., 3., 3., 3., 1., 2., 3., 3., 2., 3., 3., 2., 1., 3., 1., 3.]) mask=arr[:,0]<18print(mask) True True True True True [True True

True

True True	True									
True True	True									
True True	True -	True _								
True True	True	True	True					True	True	True
True True	True									
True True True	True									
True	True	True	True	True	True	True	True	True	True	True
True True	True									

True True	True									
True True	True									
True True	True -									
True True	True	True	True					True	True	True
True True	True									
True True True	True									
True	True	True	True	True	True	True	True	True	True	True
True True	True									

True True1 True mask array([True, True. True. True, True. True, True. True, True. True, True. True. True, True. True. True, True. True, True,

```
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                  True,
True,
                        True,
        True,
                                         True,
                True,
                                 True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                  True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                                 True,
                                                 True.
                                                         True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True.
                                                 True.
                                                         True,
                                                                 True.
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                  True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
                                                         True,
        True,
                True,
                        True,
                                 True,
True,
                                         True,
                                                 True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
                        True,
                                 True,
True,
        True,
                True,
                                         True,
                                                 True,
                                                         True,
                                                                  True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
        True,
                                 True,
True,
                True,
                        True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
                True,
                        True,
True,
        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
                True,
                                 True,
                                                         True,
True,
        True.
                        True,
                                         True,
                                                 True,
                                                                 True.
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
                                 True,
True,
        True,
                                                         True,
                True,
                        True,
                                         True,
                                                 True,
                                                                  True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
                        True,
                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                                         True,
                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                  True,
                True,
                                         True,
True,
        True,
                        True,
                                 True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                  True,
                True,
                                 True,
                                                         True,
                                                                 True,
True,
        True,
                        True,
                                         True,
                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                         True,
                                                                 True,
                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True.
                                                         True,
                                                                 True,
True,
        True.
                True,
                        True,
                                 True,
                                         True.
                                                 True,
                                                         True,
                                                                 True.
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                         True,
                                                                  True,
                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
        True,
True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                  True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True,
                                                         True,
                                                                 True,
True,
        True,
                True,
                        True,
                                 True,
                                         True,
                                                 True.
                                                         True,
                                                                  True,
```

```
True,
       True,
               True,
                       True,
                               True,
                                      True,
                                              True,
                                                      True,
                                                             True,
True,
       True,
               True,
                       True,
                              True,
                                      True,
                                              True,
                                                      True,
                                                             True,
                               True,
True,
       True,
               True,
                       True,
                                      True,
                                              True,
                                                      True,
                                                             True,
True,
       True,
               True,
                       True,
                               Truel)
```

arr[mask]

```
array([[ 3.
                         , 22.
                    7.25
                , 71.2833, 38.
        [ 1.
                                     ],
        [ 3.
                    7.925 , 26.
        [ 3.
                   23.45
                             7.
                 , 30.
        [ 1.
                             26.
                           , 32.
        [ 3.
                    7.75
                                     ]])
```

final=arr[arr[:,0]<18].sum()</pre>

final

56841.0777

#SCATTER PLOT

import matplotlib.pyplot as plt
c=plt.scatter(df["Age"],df["Fare"])
plt.xlabel("Age")
plt.ylabel("Fare")

Text(0, 0.5, 'Fare')

#SCATTER PLOT

```
import matplotlib.pyplot as plt
c=plt.scatter(df["Age"],df["Fare"],c=df["Pclass"])
plt.xlabel("Age")
plt.ylabel("Fare")
plt.plot([0,80],[85,5])
```

<matplotlib.collections.PathCollection at 0x8b2a0f0>

#HISTOGRAM

```
import matplotlib.pyplot as plt
d=plt.hist(df["Fare"])
e=df.hist(figsize=(20,30))
print(d)
print(e)
(array([728., 106., 31., 2., 11., 6.,
                                             0.,
                                                  0.,
                  51.23292, 102.46584, 153.69876, 204.93168, 256.1646
array([ 0.
       307.39752, 358.63044, 409.86336, 461.09628, 512.3292 ]), <a
list of 10 Patch objects>)
[[<matplotlib.axes. subplots.AxesSubplot object at 0x08BB8B70>
  <matplotlib.axes. subplots.AxesSubplot object at 0x08BD7BF0>]
 [<matplotlib.axes._subplots.AxesSubplot object at 0x08BF7CD0>
  <matplotlib.axes._subplots.AxesSubplot object at 0x08C18DB0>]
 [<matplotlib.axes. subplots.AxesSubplot object at 0x08C3AE90>
  <matplotlib.axes. subplots.AxesSubplot object at 0x08C5AF70>]]
```


#BOX PLOT import seaborn as sns

```
g=sns.boxplot(x="Sex",y="Age", data=df)
g
```

<matplotlib.axes._subplots.AxesSubplot at 0xba6e690>

#SUMMARISING DATA

import pandas as pd
h=pd.crosstab(df["Fare"],df["Sex"])
h

Sex	female	male
Fare 0.0000	0	15
4.0125	0	1
5.0000	0	1
6.2375	0	1
6.4375	0	1
227.5250		· · · · 1
247.5208	1	1
262.3750	2	0
263.0000	2	2
512.3292	1	2

[248 rows x 2 columns]

#COUNT PLOT

import seaborn as sns

```
i=sns.countplot(x="Pclass",hue="Sex", data=df)
i
```

<matplotlib.axes._subplots.AxesSubplot at 0xbac80d0>

PAIR PLOT

```
import seaborn as sns
j=sns.pairplot(df)
j
```

<seaborn.axisgrid.PairGrid at 0xbb29990>

print(df.head())

Surviv Fare	ved	Pclass	Sex	Age	Siblings/Spouses	Parents/Children
0 7.2500	0	3	male	22.0	1	Θ
1 71.2833	1	1	female	38.0	1	Θ
71.2033 2 7.9250	1	3	female	26.0	0	Θ
3 53.1000	1	1	female	35.0	1	Θ
4 8.0500	0	3	male	35.0	0	0

```
import pandas as pd
df["male"]=df["Sex"]=="male"
df.head()
   Survived Pclass
                        Sex
                              Age Siblings/Spouses Parents/Children
\
0
          0
                  3
                       male
                             22.0
                                                   1
                                                                     0
1
                     female
                                                   1
                                                                     0
          1
                  1
                             38.0
2
          1
                     female
                             26.0
                                                   0
                                                                     0
3
          1
                  1
                     female
                             35.0
                                                   1
                                                                     0
4
                  3
                       male 35.0
                                                   0
                                                                     0
          0
      Fare
             male
    7.2500
             True
0
1
   71,2833
            False
2
            False
   7.9250
3
            False
   53.1000
    8.0500
             True
k=df[["Pclass", "Sex", "Age", "Siblings/Spouses", "Parents/
Children", "Fare", "male"]].values
array([[3, 'male', 22.0, ..., 0, 7.25, True],
       [1, 'female', 38.0, ..., 0, 71.2833, False],
       [3, 'female', 26.0, ..., 0, 7.925, False],
       [3, 'female', 7.0, ..., 2, 23.45, False],
       [1, 'male', 26.0, ..., 0, 30.0, True],
       [3, 'male', 32.0, ..., 0, 7.75, True]], dtype=object)
y=df["Survived"].values
У
array([0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0,
1,
       1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,
1,
       0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1,
1,
       0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,
1,
       0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1,
0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0,
0,
```

```
1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
0,
       0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0,
0,
       0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0,
1,
       0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0,
1,
       0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1,
0,
       0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0,
0,
       0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1,
0,
       1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0,
1,
       1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1,
0,
       0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0,
0,
      0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0,
1,
       1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0,
0,
      0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0,
0,
       0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0,
0,
       1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0,
0,
       0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0,
1,
       0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1,
0,
       1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
1,
       0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0,
0,
       1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
0,
       0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0,
1,
       0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0,
1,
       0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0,
0,
       1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,
0,
      0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0,
0,
```

```
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0,
1,
       1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0,
0,
       1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1,
1,
       0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0,
       1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
0,
       1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0,
       0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1,
1,
       0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0,
0,
       1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0,
0,
       0, 0, 0, 1, 0, 1, 0], dtype=int64)
#SKLEARN MODULE
#BUILD LOGICAL REGRESSION MODEL WITH SKLEARN
from sklearn.linear model import LogisticRegression
model=LogisticRegression()
x=df[["Fare", "Age"]].values
y=df["Survived"].values
model.fit(x,y)
print(model.coef ,model.intercept )
[[ 0.01611624 -0.01585256]] [-0.49616551]
E:\anaconda\lib\site-packages\sklearn\linear model\logistic.py:432:
FutureWarning: Default solver will be changed to 'lbfgs' in 0.22.
Specify a solver to silence this warning.
  FutureWarning)
#MAKE PREDICTIONS WITH THE MODEL
from sklearn.linear model import LogisticRegression
model=LogisticRegression()
x=df[["Fare", "Age", "Pclass"]].values
y=df["Survived"].values
model.fit(x,y)
output=model.predict([[200.0,80.0,2]])
print(output)
print(model.predict(x[:5]))
print(y[:5])
```

```
[0]
[0 \ 1 \ 0 \ 1 \ 0]
[0\ 1\ 1\ 1\ 0]
E:\anaconda\lib\site-packages\sklearn\linear model\logistic.py:432:
FutureWarning: Default solver will be changed to 'lbfgs' in 0.22.
Specify a solver to silence this warning.
FutureWarning)
from sklearn.linear model import LogisticRegression
model=LogisticRegression()
x=df[["Age", "Fare", "male", "Pclass", "Siblings/Spouses", "Parents/Childre
n"]].values
y=df["Survived"].values
model.fit(x,y)
print(model.predict(x))
print(y[:6])
[0\ 1\ 1\ 1\ 0\ 0\ 0\ 0\ 1\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 0\ 1\ 1\ 0\ 0
0 0
0 1
1 1
0 0
```

```
0 0
1010100000110101000001101100000010000
1 1
1 1
01
E:\anaconda\lib\site-packages\sklearn\linear model\logistic.py:432:
FutureWarning: Default solver will be changed to 'lbfgs' in 0.22.
Specify a solver to silence this warning.
 FutureWarning)
[0 1 1 1 0 0]
from sklearn.linear model import LogisticRegression
model=LogisticRegression()
x=df[["Age", "Fare", "male", "Pclass", "Siblings/Spouses", "Parents/Childre
n"]].values
y=df["Survived"].values
model.fit(x,y)
y pred=model.predict(x)
print((y_pred).sum())
print((y==y pred).sum())
print(y.sum())
#print((y==y_pred).sum()/y.shape[0])
#print(model.score(x,y))
#print(y.shape[0])
E:\anaconda\lib\site-packages\sklearn\linear model\logistic.py:432:
FutureWarning: Default solver will be changed to 'lbfgs' in 0.22.
Specify a solver to silence this warning.
 FutureWarning)
298
713
342
```

Breast cancer Predictor

```
from sklearn.datasets import load_breast_cancer cancer_data=load_breast_cancer()
print(cancer_data.keys()) print(cancer_data["DESCR"])
import pandas as pd
from sklearn.datasets import load breast cancer
cancer data=load breast cancer()
df=pd.DataFrame(cancer data["data"],columns=cancer data["feature names
"1)
print(df.head())
   mean radius mean texture mean perimeter
                                                 mean area
                                                            mean
smoothness \
                                        122.80
         17.99
                        10.38
                                                    1001.0
0.11840
                                        132.90
         20.57
                        17.77
                                                    1326.0
1
0.08474
2
         19.69
                        21.25
                                        130.00
                                                    1203.0
0.10960
         11.42
                        20.38
                                         77.58
                                                     386.1
0.14250
         20.29
                        14.34
                                        135.10
                                                    1297.0
0.10030
                      mean concavity mean concave points
   mean compactness
                                                              mean
symmetry \
0
            0.27760
                               0.3001
                                                    0.14710
0.2419
1
            0.07864
                               0.0869
                                                    0.07017
0.1812
            0.15990
                               0.1974
                                                    0.12790
2
0.2069
                               0.2414
            0.28390
                                                    0.10520
0.2597
            0.13280
                               0.1980
                                                    0.10430
0.1809
   mean fractal dimension
                             ... worst radius worst texture worst
perimeter
                   0.07871
                                         25.38
                                                         17.33
                             . . .
184.60
                   0.05667
                                         24.99
                                                         23.41
                             . . .
158.80
                   0.05999
                                         23.57
                                                         25.53
152.50
                   0.09744
                                         14.91
                                                         26.50
98.87
                   0.05883
                                         22.54
                                                         16.67
152.20
```

```
worst area
              worst smoothness
                                  worst compactness
                                                      worst concavity
0
       2019.0
                          0.1622
                                              0.6656
                                                                0.7119
       1956.0
                          0.1238
                                              0.1866
                                                                0.2416
1
2
       1709.0
                          0.1444
                                              0.4245
                                                                0.4504
3
                          0.2098
                                              0.8663
        567.7
                                                                0.6869
4
       1575.0
                          0.1374
                                              0.2050
                                                                0.4000
                                          worst fractal dimension
   worst concave points worst symmetry
0
                 0.2654
                                  0.4601
                                                           0.11890
1
                 0.1860
                                  0.2750
                                                           0.08902
2
                 0.2430
                                  0.3613
                                                           0.08758
3
                 0.2575
                                  0.6638
                                                           0.17300
4
                                  0.2364
                                                           0.07678
                 0.1625
[5 rows x 30 columns]
import pandas as pd
from sklearn.datasets import load breast cancer
cancer data=load breast cancer()
df=pd.DataFrame(cancer data["data"],columns=cancer data["feature names
"1)
print(df.head())
   mean radius mean texture mean perimeter
                                                mean area
                                                           mean
smoothness \
         17.99
                        10.38
                                        122.80
                                                   1001.0
0.11840
                        17.77
1
         20.57
                                        132.90
                                                   1326.0
0.08474
                        21.25
2
         19.69
                                        130.00
                                                   1203.0
0.10960
3
         11.42
                        20.38
                                        77.58
                                                    386.1
0.14250
                        14.34
         20.29
                                        135.10
                                                   1297.0
4
0.10030
                     mean concavity
   mean compactness
                                      mean concave points
                                                            mean
symmetry
                              0.3001
                                                   0.14710
0
            0.27760
0.2419
            0.07864
                              0.0869
                                                   0.07017
1
0.1812
            0.15990
                              0.1974
                                                   0.12790
0.2069
3
            0.28390
                              0.2414
                                                   0.10520
0.2597
            0.13280
                              0.1980
                                                   0.10430
0.1809
```

```
mean fractal dimension ... worst radius worst texture worst
perimeter \
                                         25.38
                   0.07871
                                                        17.33
184.60
                   0.05667
                                                        23.41
1
                                         24.99
                            . . .
158.80
                                                        25.53
                   0.05999
                                         23.57
2
152.50
3
                  0.09744
                                         14.91
                                                        26.50
98.87
                   0.05883
                                         22.54
                                                        16.67
152.20
   worst area worst smoothness worst compactness worst concavity \
0
       2019.0
                          0.1622
                                              0.6656
                                                                0.7119
1
                          0.1238
                                              0.1866
       1956.0
                                                                0.2416
2
                          0.1444
                                              0.4245
       1709.0
                                                                0.4504
3
        567.7
                          0.2098
                                              0.8663
                                                                0.6869
4
       1575.0
                          0.1374
                                              0.2050
                                                                0.4000
                                          worst fractal dimension
   worst concave points worst symmetry
0
                 0.2654
                                  0.4601
                                                           0.11890
1
                 0.1860
                                  0.2750
                                                           0.08902
2
                 0.2430
                                  0.3613
                                                           0.08758
3
                 0.2575
                                  0.6638
                                                           0.17300
4
                                                           0.07678
                 0.1625
                                  0.2364
[5 rows x 30 columns]
import pandas as pd
from sklearn.datasets import load breast cancer
cancer data=load breast cancer()
print(cancer data["target names"])
df["result"]=cancer data["target"]
print(df.tail())
['malignant' 'benign']
     mean radius mean texture mean perimeter
                                                  mean area
                                                             mean
smoothness \
           21.56
                          22.39
564
                                          142.00
                                                     1479.0
0.11100
           20.13
                          28.25
565
                                          131.20
                                                     1261.0
0.09780
566
           16.60
                          28.08
                                          108.30
                                                      858.1
0.08455
567
           20.60
                          29.33
                                          140.10
                                                     1265.0
0.11780
                          24.54
568
            7.76
                                          47.92
                                                      181.0
0.05263
```

	· ·	ss mean	concavity	mean cond	cave points	mean
symmetry 564 0.1726	0.1159	90	0.24390)	0.13890	
565 0.1752	0.1034	40	0.14400)	0.09791	
566 0.1590	0.102	30	0.09251	L	0.05302	
567 0.2397	0.2770	90	0.35140)	0.15200	
568 0.1587	0.0436	62	0.00000)	0.00000	
mean worst area		imension	woı	rst texture	worst peri	meter
564 2027.0	a (0.05623		26.40	1	.66.10
565 1731.0		0.05533		38.25	1	.55.00
566 1124.0		0.05648		34.12	1	.26.70
567 1821.0		0.07016		39.42	1	.84.60
568 268.6		0.05884		30.37		59.16
wors 564 565 566 567 568	smoothnes 0.1410 0.1160 0.1139 0.1650 0.0899	00 60 90 00	0.23	1130 9220 9940 5810	concavity 0.4107 0.3215 0.3403 0.9387 0.0000	\
worst result	t concave	points w	worst symm	netry worst	fractal di	mension
564 0	(0.2216	Θ.	2060		0.07115
565 0	(0.1628	Θ.	2572		0.06637
566 0	(0.1418	0	2218		0.07820
567 0	(0.2650	Θ.	4087		0.12400
568 1	(0.0000	Θ.	.2871		0.07039

[5 rows x 31 columns]

import pandas as pd
from sklearn.datasets import load_breast_cancer

```
from sklearn.linear model import LogisticRegression
cancer data=load breast cancer()
df=pd.DataFrame(cancer data["data"],columns=cancer data["feature names
"1)
df["target"]=cancer data["target"]
model=LogisticRegression()
x=df[cancer data["feature names"]].values
y=df["target"].values
model.fit(x,y)
print(model.predict([x[0]]))
print(y[0])
print(model.score(x,y))
[0]
0.9578207381370826
E:\anaconda\lib\site-packages\sklearn\linear model\logistic.py:432:
FutureWarning: Default solver will be changed to 'lbfgs' in 0.22.
Specify a solver to silence this warning.
  FutureWarning)
import pandas as pd
from sklearn.metrics import
accuracy score, precision score, recall score, f1 score
from sklearn.linear model import LogisticRegression
model=LogisticRegression(solver="liblinear")
df=pd.read_csv("https://sololearn.com/uploads/files/titanic.csv")
df["male"]=df["Sex"]=="male"
x=df[["Pclass","male","Age","Siblings/Spouses","Parents/Children","Far
e"]].values
y=df["Survived"].values
model.fit(x,y)
y pred=model.predict(x)
print("Accuracy:",accuracy_score(y,y_pred))
print("Precision:",precision score(y,y pred))
print("Recall:", recall_score(y, y_pred))
print("F1:",f1 score(y,y pred))
Accuracy: 0.8038331454340474
Precision: 0.7818791946308725
Recall: 0.6812865497076024
F1: 0.728125
from sklearn.metrics import confusion matrix
print(confusion matrix(y,y pred))
print(confusion_matrix(y_pred,y))
```

```
[[480 65]
 [109 233]]
[[480 109]
 [ 65 23311
import pandas as pd
from sklearn.linear model import LogisticRegression
from sklearn.model selection import train test split
df=pd.read csv("https://sololearn.com/uploads/files/titanic.csv")
df["male"]=df["Sex"]=="male"
x=df[["Pclass", "male", "Age", "Siblings/Spouses", "Parents/Children", "Far
e"]].values
y=df["Survived"].values
x_train,x_test,y_train,y_test=train_test_split(x,y)
print("whole dataset:",x.shape,y.shape)
print("training dataset:",x train.shape,y train.shape)
print("test dataset:",x test.shape,y test.shape)
whole dataset: (887, 6) (887,)
training dataset: (665, 6) (665,)
test dataset: (222, 6) (222,)
import pandas as pd
from sklearn.linear model import LogisticRegression
from sklearn.model selection import train test split
from sklearn.metrics import
accuracy score, precision score, recall score, f1 score
df=pd.read csv("https://sololearn.com/uploads/files/titanic.csv")
df["male"]=df["Sex"]=="male"
x=df[["Pclass", "male", "Age", "Siblings/Spouses", "Parents/Children", "Far
e"]].values
y=df["Survived"].values
x_train,x_test,y_train,y_test=train_test_split(x,y)
model=LogisticRegression(solver="liblinear")
model.fit(x_train,y_train)
y pred=model.predict(x test)
print("Accuracy:",accuracy score(y test,y pred))
print("Precision:",precision_score(y_test,y_pred))
print("Recall:", recall_score(y_test, y_pred))
print("F1:",f1 score(y test,y pred))
Accuracy: 0.7837837837837838
Precision: 0.8028169014084507
Recall: 0.6263736263736264
F1: 0.7037037037037038
#USING A RANDOM STATE
import pandas as pd
from sklearn.linear model import LogisticRegression
from sklearn.model selection import train test split
from sklearn.metrics import
```

```
accuracy score, precision score, recall score, f1 score
df=pd.read csv("https://sololearn.com/uploads/files/titanic.csv")
df["male"]=df["Sex"]=="male"
x=df[["Pclass", "male", "Age", "Siblings/Spouses", "Parents/Children", "Far
e"11.values
y=df["Survived"].values
x train,x test,y train,y test=train test split(x,y,random state=27)
model=LogisticRegression(solver="liblinear")
model.fit(x train,y train)
y pred=model.predict(x test)
print("Accuracy:",accuracy_score(y_test,y_pred))
print("Precision:",precision_score(y_test,y_pred))
print("Recall:", recall_score(y_test, y_pred))
print("F1:",f1 score(y test,y pred))
Accuracy: 0.7882882882882883
Precision: 0.7368421052631579
Recall: 0.6746987951807228
F1: 0.7044025157232704
import pandas as pd
from sklearn.linear model import LogisticRegression
from sklearn.metrics import precision score, recall score
from sklearn.model selection import train test split
df=pd.read csv("https://sololearn.com/uploads/files/titanic.csv")
df["male"]=df["Sex"]=="male"
x=df[["Pclass","male","Age","Siblings/Spouses","Parents/Children","Far
e"]].values
y=df["Survived"].values
x train,x test,y train,y test=train test split(x,y,random state=27)
model=LogisticRegression(solver="liblinear")
model.fit(x_train,y_train)
ypred=model.predict proba(x test)[:,1]
print("precision:",precision score(y test,y pred))
print("Recall:", recall_score(y_test, y_pred))
print("F1:",f1 score(y test,y pred))
precision: 0.7368421052631579
Recall: 0.6746987951807228
F1: 0.7044025157232704
import pandas as pd
from sklearn.linear model import LogisticRegression
from sklearn.model selection import train test split
from sklearn.metrics import recall score,
precision recall fscore support
sensitivity score = recall score
```

```
def specificity score(y true, y pred):
    p, r, f, s = precision recall fscore support(y true, y pred)
    return r[0]
df = pd.read csv('https://sololearn.com/uploads/files/titanic.csv')
df['male'] = df['Sex'] == 'male'
X = df[['Pclass', 'male', 'Age', 'Siblings/Spouses',
   'Parents/Children', 'Fare']].values
v = df['Survived'].values
X_train, X_test, y_train, y_test = train_test_split(X, y,
random state=5)
model = LogisticRegression(solver="liblinear")
model.fit(X train, y train)
y pred = model.predict(X_test)
print("sensitivity:", sensitivity_score(y_test, y_pred))
print("specificity:", specificity_score(y_test, y_pred))
sensitivity: 0.6097560975609756
specificity: 0.9285714285714286
import pandas as pd
from sklearn.model selection import train test split
from sklearn.tree import DecisionTreeClassifier
model=DecisionTreeClassifier()
df = pd.read csv('https://sololearn.com/uploads/files/titanic.csv')
df['male'] = df['Sex'] == 'male'
X = df[['Pclass', 'male', 'Age', 'Siblings/Spouses',
'Parents/Children', 'Fare']].values
y = df['Survived'].values
X train, X test, y train, y test = train test split(X, y,
random state=5)
model.fit(x train,y train)
print(model.predict([[3,True,22,1,0,7.25]]))
[0]
```