Agenda

- Yes Happy Valentine's day!
- 2. IMPORTANT correction from Tuesday's code
- 3. Interpreting coefficients from Poisson regressions
- 4. Over-dispersed Poisson regressions
- 5. Zero-inflated Poisson regressions
- 6. Over-dispersion and zero-inflation in R

Correction

All three models specified in Tuesday's lab omitted the link function (log)

Please use *corrected* lab 0212.html (online now)

```
In [8]: # build the model
# (NOTE this does not make any reference to our data `d`)
m1 <- alist(
    hours_games ~ dpois(lambda),
    lambda <- alpha,
    alpha ~ dnorm(3,1)
)</pre>
```



```
In [8]: # build the model
# (NOTE this does not make any reference to our data `d`)
m1 <- alist(
    hours_games ~ dpois(lambda),
    log(lambda) <- alpha,
    alpha ~ dnorm(3,1)
)</pre>
```


Interpreting coefficients

Model from last time

$$H_i \sim \mathsf{Pois}(\lambda_i)$$
 $\mathsf{log}(\lambda_i) = a + eta_M M_i + eta_G G_i$
 $a \sim \mathsf{Norm}(3,1)$
 $eta_M \sim \mathsf{Norm}(0,0.5)$
 $eta_G \sim \mathsf{Norm}(0,0.3)$

H_i

Hours of video games played last week

M_i

Student gender (indicator for boys)

Gi

Student's grade, centered at 10th

	Mean	90% credible interval	exp(Mean)
<u>a</u>	0.27	0.25 0.30	1.32
βм	1.11	1.09 1.14	3.05
$oldsymbol{eta}_{oldsymbol{G}}$	-0.14	-0.15 -0.13	0.87

Interpreting coefficients

Model from last time

$$H_i \sim \mathsf{Pois}(\lambda_i)$$
 $\mathsf{log}(\lambda_i) = a + \beta_M M_i + \beta_G G_i$
 $a \sim \mathsf{Norm}(3,1)$
 $eta_M \sim \mathsf{Norm}(0,0.5)$
 $eta_G \sim \mathsf{Norm}(0,0.3)$

	Mean	exp(Mean)
a	0.27	1.32
Вм	1.11	3.05
βG	-0.14	0.87

α (baseline)

A student who is not a boy (M_i =0) and is in grade 10 (G_i =0) is predicted to play about 1.32 hours of games per week.

β_M (gender)

Boys (M_i =1) are expected to spend about 3.05 times more time than non-boys (M_i =0) playing games.

β_G (grade)

A one-year increase in grade is associated with playing 0.87 times as much. This is a decrease of 13% each year.

H_i	\sim	Pois	$s(\lambda_i)$
• • /			- (

$$\log(\lambda_i) = \alpha + \beta M_i$$

 $a \sim \text{Norm}(3, 0.5)$ $\beta \sim \text{Norm}(0, 0.3)$

	Mean	exp(Mean)
a	0.27	1.32
β	1.11	3.05

Poisson regression

$$H_i \sim \mathsf{Pois}(\lambda_i)$$

$$\log(\lambda_i) = \alpha + \beta M_i$$

 $a \sim \text{Norm}(3, 0.5)$

 $eta \sim \mathsf{Norm}(\mathsf{0},\mathsf{0.3})$

Gamma-Poisson regression

$$H_i \sim \mathsf{Pois}(\lambda_i)$$

$$\log(\lambda_i) \sim \operatorname{Gamma}(\mu_i, \theta)$$

$$\mu_i = \alpha + \beta M_i$$

 $a \sim \text{Norm}(3, 0.5)$

 $\beta \sim \text{Norm}(0, 0.3)$

 $\theta \sim \text{Unif}(0, 10)$

Extra "dispersion" from gamma

Two students who look identical based on covariates can have different Poisson rates λ_i .

One more prior

A.K.A.

Negative-binomial regression

Over-dispersed Poisson regression

$$H_i \sim \operatorname{GammaPois}(\lambda_i, heta)$$
 $\log(\lambda_i) = a + \beta M_i$
 $a \sim \operatorname{Norm}(3, 0.5)$
 $\beta \sim \operatorname{Norm}(0, 0.3)$
 $heta \sim \operatorname{Unif}(0, 10)$

	Mean		90% credible interval		exp(Mean)
_	a	0.39	0.33	0.44	1.47
	β	1.09	1.01	1.16	2.96
θ measures extra dispersion	θ	0.35	0.34	0.36	

Outcome variable is result of one of two processes

Either the student does not own a game console ($c_i = 1$) or the student does own a console and plays at some rate λ_i ($c_i = 0$).

$$H_i egin{cases} = 0 & \text{if } c_i = 1 \ \sim \operatorname{Pois}(\lambda_i) & \text{if } c_i = 0 \end{cases}$$

Their chance of owning a console is modelled with p_i

$$H_i egin{cases} = 0 & ext{if } c_i = 1 \ \sim ext{Pois}(\lambda_i) & ext{if } c_i = 0 \end{cases}$$
 $c_i \sim ext{Bern}(p_i)$

$$H_i egin{cases} = 0 & ext{if } c_i = 1 \ \sim ext{Pois}(\lambda_i) & ext{if } c_i = 0 \end{cases}$$
 $c_i \sim ext{Bern}(p_i)$

 p_i is modelled as a linear function of family income

$$logit(p_i) = a_p + \beta_p W_i$$

$$H_i egin{cases} = 0 & ext{if } c_i = 1 \ \sim ext{Pois}(\lambda_i) & ext{if } c_i = 0 \end{cases}$$
 $c_i \sim ext{Bern}(p_i)$

 λ_i is modelled as a linear function of gender

$$logit(p_i) = a_p + \beta_p W_i$$
 $log(\lambda_i) = a_\lambda + \beta_\lambda M_i$

$$H_i egin{cases} = 0 & ext{if } c_i = 1 \ \sim ext{Pois}(\lambda_i) & ext{if } c_i = 0 \end{cases}$$
 $c_i \sim ext{Bern}(p_i)$

$$logit(p_i) = a_p + \beta_p W_i$$

 $log(\lambda_i) = a_\lambda + \beta_\lambda M_i$

$$a_{
ho} \sim ext{Norm}(0,1)$$
 $eta_{
ho} \sim ext{Norm}(0,2)$
 $a_{\lambda} \sim ext{Norm}(3,0.5)$
 $eta_{\lambda} \sim ext{Norm}(0,0.3)$

All four parameters need priors

Data story:

$$H_i egin{cases} = 0 & ext{if } c_i = 1 \ \sim ext{Pois}(\lambda_i) & ext{if } c_i = 0 \end{cases}$$
 $c_i \sim ext{Bern}(p_i)$

$$logit(p_i) = a_p + \beta_p W_i$$
$$log(\lambda_i) = a_\lambda + \beta_\lambda M_i$$

$$a_{
ho} \sim ext{Norm}(0,1)$$
 $eta_{
ho} \sim ext{Norm}(0,2)$
 $a_{\lambda} \sim ext{Norm}(3,0.5)$
 $eta_{\lambda} \sim ext{Norm}(0,0.3)$