1.9 The Matrix of a Linear Transformation

McDonald Fall 2018, MATH 2210Q, 1.9Slides

1.9 Homework: Read section and do the reading quiz. Start with practice problems, then do

• Hand in: 1, 5, 13, 19, 23, 26, 34

• Recommended: 2, 15, 20, 32

Whenever a function is described geometrically or in words, we usually want to find a formula. In linear algebra, the same will be true for linear transformations. It turns out that *every* linear transformation from \mathbb{R}^n to \mathbb{R}^m is actually a matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$.

Example 1.9.1. Suppose that T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 such that

$$T\left(\left[\begin{array}{c}1\\0\end{array}\right]\right)=\left[\begin{array}{c}1\\2\\4\end{array}\right] \qquad \qquad T\left(\left[\begin{array}{c}0\\1\end{array}\right]\right)=\left[\begin{array}{c}7\\-8\\6\end{array}\right]$$

Find a formula for the image of an arbitrary \mathbf{x} in \mathbb{R}^2 , and a matrix, A, such that $T(\mathbf{x}) = A\mathbf{x}$.

Definition 1.9.2. The **identity matrix**, I_n , is the $n \times n$ matrix with ones on the diagonal $[\]$, and zeros everywhere else. For example

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Remark 1.9.3. The key to finding the matrix for a linear transformation is to see what it does I_n .

Theorem 1.9.4. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(\mathbf{x}) = A\mathbf{x} \text{ for all } \mathbf{x} \text{ in } \mathbb{R}^n$$

In fact, A is the $m \times n$ matrix whose jth column is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the jth column of the indentity matrix in \mathbb{R}^n :

$$A = \left[T(\mathbf{e}_1) \quad \cdots \quad T(\mathbf{e}_n) \right]$$

Definition 1.9.5. The matrix A in Theorem 1.9.4 is called the **standard matrix** for T.

Example 1.9.6. If $r \geq 0$, find the standard matrix for the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ by $\mathbf{x} \mapsto r\mathbf{x}$.

Example 1.9.7. Suppose $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation that rotates each point counter clockwise about the origin through an angle α . Find the standard matrix for T.

The following definitions should sound familiar.

Definition 1.9.8. A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be **onto** if each **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n . T is said to be **one-to-one** if each **b** in \mathbb{R}^m is the image of at most one **x** in \mathbb{R}^n .

Remark 1.9.9. T being *onto* is an *existence* question: for every **b** in \mathbb{R}^m , does an **x** exist such that $T(\mathbf{x}) = \mathbf{b}$? T being *one-to-one* is a *uniqueness* question: for every **b** in \mathbb{R}^m , if there is a solution to $T(\mathbf{x}) = \mathbf{b}$, is it unique?

Example 1.9.10. Let T be the transformation whose standard matrix is

$$A = \left[\begin{array}{rrr} 2 & 4 & 0 \\ 0 & 4 & 3 \\ -2 & 0 & 1 \end{array} \right]$$

Is T one-to-one? Is T onto?

Theorem 1.9.11. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is one-to-one if and only if the equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

Theorem 1.9.12. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation with standard matrix A. Then:

- (a) T is one-to-one if and only if the columns of A are linearly independent;
- (b) T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m .

Example 1.9.13. Let $T: \mathbb{R}^4 \to \mathbb{R}^3$ be the transformation that brings $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$ to $\begin{bmatrix} 2x_1 + 4x_4 \\ x_1 + x_2 + 3x_4 \\ -2x_1 + x_3 - 4x_4 \end{bmatrix}$.

Find a standard matrix for T and determine if T is one-to-one. Is T onto?

Example 1.9.14. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be the transformation that brings $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ to $\begin{bmatrix} x_1 - x_2 \\ -2x_1 + x_2 \\ x_1 \end{bmatrix}$.

Find a standard matrix for T and determine if T is one-to-one. Is T onto?

Remark 1.9.17. The following tables, taken from Lay's Linear Algebra book, illustrate common geometric linear transformations of the plane. Each shows the transformation of the unit square.

