Flett 中值定理及相关问题

问题 1 设函数 g(x) 在 [a,b] 上连续,且 g(a)=0, $\int_a^b g(t)\mathrm{d}t=0$,试证: 存在 $\xi\in(a,b)$, 使

$$g(\xi) = \frac{1}{\xi - a} \int_a^{\xi} g(t) dt.$$

证 作辅助函数

$$\varphi(x) = \begin{cases} \frac{1}{x-a} \int_a^x g(t) dt, & a < x \le b, \\ 0, & x = a, \end{cases}$$

因 $\lim_{x\to a^+} \varphi(x) = \lim_{x\to a^+} \frac{1}{x-a} \int_a^x g(t) dt = \lim_{x\to a^+} g(x) = g(a) = 0 = \varphi(a)$,故 $\varphi(x)$ 在 [a,b] 上连续,在 [a,b] 内可导,且 $\varphi(a) = \varphi(b) = 0$,由 Rolle 定理知: $\exists \xi \in (a,b)$,使 $\varphi'(\xi) = 0$,即

$$g(\xi) = \frac{1}{\xi - a} \int_a^{\xi} g(t) dt.$$

众所周知,g(x) 的平均值函数 $\varphi(x)$ 相比 g(x) 要少许多不规则性. 几何上,若曲线 y=g(x) 震荡,上述结果表明曲线 y=g(x) 与 $y=\varphi(x)$ 皆从 (a,0) 点出发,必在某点 $(\xi,g(\xi))$ 回合.

问题 2 设函数 g(x) 在 [a,b] 上连续,且 g(a)=0 , g(b)=0 , 试证:存在 $\xi \in (a,b)$, 使

$$g(\xi) = \frac{1}{\xi - a} \int_a^{\xi} g(t) dt.$$

证 若存在子区间[a,c] \subset [a,b] , 其上g(x) \equiv 0 ,则结论自明.

设 $g(x) \neq 0, x \in (a,c)$, 而 $g(c) = 0, a < c \le b$. 不妨设 g(x) > 0 , 则 g(x) 在 [a,c] 上 的最大值 M 必在开区间 (a,c) 内某点 x_0 点取得.

作辅助函数
$$F(x) = g(x) - \frac{1}{x-a} \int_a^x g(t) dt$$
 ,则

$$F(x_0) = g(x_0) - \frac{1}{x_0 - a} \int_a^{x_0} g(t) dt > 0 ,$$

$$F(c) = g(c) - \frac{1}{c-a} \int_a^c g(t) dt = -\frac{1}{c-a} \int_a^c g(t) dt < 0$$
,

由连续函数的介值定理知 $\exists \xi \in (a,c)$,使 $F(\xi) = 0$,即 $g(\xi) = \frac{1}{\xi - a} \int_a^{\xi} g(t) dt$.

Flett 中值定理: 设 f(x) 在 [a,b] 上可微,且 f'(a) = f'(b) ,则存在 $\xi \in (a,b)$ 使

$$f'(\xi) = \frac{f(\xi) - f(a)}{\xi - a}.$$

证 以下假定 f'(a) = f'(b) = 0 (不然考虑函数 f(x) - xf'(a)), 作辅助函数

$$\psi(x) = \begin{cases} \frac{f(x) - f(a)}{x - a}, & a < x \le b, \\ 0, & x = a, \end{cases}$$

则 $\psi(x)$ 在[a,b]上连续,在(a,b]上可微,且

$$\psi'(x) = \frac{f'(x)}{x-a} - \frac{f(x) - f(a)}{(x-a)^2}, \quad a < x \le b.$$

若 $\psi(b)=0$,则由 Rolle 定理知习 $\xi\in(a,b)$,使 $\psi'(\xi)=0$,即 $f'(\xi)=\frac{f(\xi)-f(a)}{\xi-a}$.

若
$$\psi(b) > 0$$
,则 $\psi'(b) = \frac{f'(b)}{b-a} - \frac{f(b)-f(a)}{(b-a)^2} = -\frac{\psi(b)}{b-a} < 0$,必存在 $x_1 \in (b-\delta,b)$,

 $\psi(x_1) > \psi(b)(>0 = \psi(a))$,又由介值定理存在 $x_2 \in (a, x_1)$,使得 $\psi(x_2) = \psi(b)$,依然由由 Rolle 定理得结论.

若 $\psi(b)$ <0,类似证明.