第一节、微分中值定理

- 一、罗尔定理
- 二、拉格朗日中值定理
- 三、柯西中值定理
- 四、小结
- 五、作业

ー、罗尔(Rolle)定理

1. 费马(Fermat)引理

1. 费与(Fermat) 引理
$$y = f(x) \times \bigcup (x_0) \text{ 有定义,}$$
 且 $f(x) \leq f(x_0), f'(x_0) \text{ 存在}$ $\Rightarrow f'(x_0) = 0$ (或 \geq)

证: 设 $\forall x_0 + \Delta x \in \bigcup (x_0), f(x_0 + \Delta x) \leq f(x_0),$

$$\text{II} f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

$$= \begin{cases} f'_{-}(x_{0}) \ge 0 & (\Delta x \to 0^{-}) \\ f'_{+}(x_{0}) \le 0 & (\Delta x \to 0^{+}) \end{cases} \Longrightarrow f'(x_{0}) = 0$$

2.罗尔(Rolle)定理

$$y = f(x)$$
 满足:

- (1) 在闭区间 [a,b] 上连续
- (2) 在开区间 (a,b) 内可导
- $(3) \quad f(a) = f(b)$

一一>在
$$(a,b)$$
内至少存在一点 ξ ,使 $f'(\xi)=0$.

证: 因 f(x) 在 [a,b] 上连续,故在 [a,b] 上取得最大值 M 和最小值 m

若 $\mathbf{M} = \mathbf{m}$, 则 $f(x) \equiv M$, $x \in [a,b]$, 因此 $\forall \xi \in (a,b)$, $f'(\xi) = \mathbf{0}$. 若 M > m,则 M 和 m 中至少有一个与端点值不等,不妨设 $M \neq f(a)$,则至少存在一点 $\xi \in (a,b)$,使 $f(\xi) = M$,则由费马引理得 $f'(\xi) = 0$.

注意:

1) 定理条件不全具备, 结论不一定成立.

例如,

$$f(x) = \begin{cases} x, & 0 \le x < 1 \\ 0, & x = 1 \end{cases}$$

$$f(x) = |x|$$

$$x \in [-1,1]$$

$$f(x) = x$$

$$x \in [0,1]$$

2) 定理条件只是充分的. 本定理可推广为

$$y = f(x)$$
在 (a,b) 内可导,且
$$\lim_{x \to a^{+}} f(x) = \lim_{x \to b^{-}} f(x)$$
 \to 在 (a,b) 内至少存在一点 ξ , 使 $f'(\xi) = 0$.

$$F(x) = \begin{cases} f(a^{+}), & x = a \\ f(x), & a < x < b \\ f(b^{-}), & x = b \end{cases}$$

证 F(x) 在 [a,b] 上满足罗尔定理.

例1.证明方程 $x^5 - 5x + 1 = 0$ 有且仅有一个小于1的正实根.

证: 1) 存在性.

设 $f(x) = x^5 - 5x + 1$,则 f(x) 在 [0,1] 连续,且 f(0) = 1, f(1) = -3. 由介值定理知存在 $x_0 \in (0,1)$,使 $f(x_0) = 0$,即方程有小于 1 的正根 x_0 .

2) 唯一性.

假设另有 $x_1 \in (0,1), x_1 \neq x_0$,使 $f(x_1) = 0$,:: f(x) 在以 x_0, x_1 为端点的区间满足罗尔定理条件,:: 在 x_0, x_1 之间至少存在一点 ξ ,使 $f'(\xi) = 0$.

但 $f'(x) = 5(x^4 - 1) < 0$, $x \in (0,1)$, 矛盾, 故假设不真!

二、拉格朗日中值定理

y = f(x) 满足:

- (1) 在区间 [a,b] 上连续
- (2) 在区间 (a,b)内可导

 \Longrightarrow 至少存在一点 $\xi \in (a,b)$, 使 $f'(\xi)$

证:问题转化为证
$$f'(\xi) - \frac{f(b) - f(a)}{b - a} = 0$$

作辅助函数 $\varphi(x) = f(x) - \frac{f(b) - f(a)}{b - a}x$ 显然 $\varphi(x)$ 在 [a,b]上连续 , 在 (a,b) 内可导,且

$$\varphi(a) = \frac{bf(a) - af(b)}{b - a} = \varphi(b)$$
, 由罗尔定理知至少存在一点 $\xi \in (a,b)$, 使 $\varphi'(\xi) = 0$, 即定理结论成立.

注: 1、上述定理称拉格朗日(Lagrange)中值 定理、对 $a \ge b$ 的情形仍成立.

2、定理的另种书写形式:

$$x_0, x_0 + \Delta x \in (a, b),$$

$$f(x_0 + \Delta x) - f(x_0) = f'(x_0 + \theta \Delta x) \cdot \Delta x$$
. (0 < \theta < 1)

也可写成
$$\Delta y = f'(x_0 + \theta \Delta x) \cdot \Delta x$$
 (0 < θ < 1).

增量Δy的精确表达式.

拉格朗日中值定理又称有限增量定理.

推论: 若函数 f(x)在区间 I 上满足 $f'(x) \equiv 0$,则 f(x) 在 I 上必为常数.

证: 在 I 上任取两点 x_1, x_2 $(x_1 < x_2)$, 在 $[x_1, x_2]$

上用Lagrange中值公式,得

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1)$$
$$= 0 \qquad (x_1 < \xi < x_2)$$

$$\therefore f(x_2) = f(x_1)$$

由 x_1, x_2 的任意性知, f(x)在 I 上为常数.

例2. 证明等式 $\arcsin x + \arccos x = \frac{\pi}{2}, x \in [-1,1]$ $\arctan x + \operatorname{arccot} x = \frac{\pi}{2}, x \in (-\infty, +\infty)$

证: 设 $f(x) = \arcsin x + \arccos x$, 则在 (-1,1) 上

$$f'(x) = \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2}} \equiv 0$$

由推论可知 $f(x) = \arcsin x + \arccos x = C$ (常数)

$$\Rightarrow x = 0$$
, 得 $C = \frac{\pi}{2}$.

又 $f(\pm 1) = \frac{\pi}{2}$, 故所证等式在定义域 [-1,1] 上成立.

注: 欲证 $x \in I$ 时, $f(x) = C_0$, 只需证在 $I \perp f'(x) \equiv 0$, 且 $\exists x_0 \in I$, 使 $f(x_0) = C_0$.

例3. 证明不等式
$$\frac{x}{1+x} < \ln(1+x) < x \ (x > 0)$$
.

证: 设 $f(t) = \ln(1+t)$,则 f(t)在 [0,x]上满足

Lagrange 中值定理条件, 因此应有

$$f(x) - f(0) = f'(\xi)(x - 0), \quad 0 < \xi < x$$

$$\ln(1+x) = \frac{x}{1+\xi}, \qquad 0 < \xi < x$$

因为
$$\frac{x}{1+x} < \frac{x}{1+\xi} < x$$

故
$$\frac{x}{1+x} < \ln(1+x) < x$$
 $(x > 0)$

三、柯西(Cauchy)中值定理

f(x)及 F(x)满足:

- (1) 在闭区间[a,b] 上连续
- (2) 在开区间(a,b) 内可导
- (3)在开区间 (a,b) 内 $F'(x) \neq 0$

$$\Longrightarrow$$
至少存在一点 $\xi \in (a,b)$,使 $\frac{f(b)-f(a)}{F(b)-F(a)} = \frac{f'(\xi)}{F'(\xi)}$.

分析: $F(b) - F(a) = F'(\eta)(b-a) \neq 0$ $a < \eta < b$

要证
$$\frac{f(b)-f(a)}{F(b)-F(a)}F'(\xi)-f'(\xi)=0$$

$$\varphi'(\xi)$$

$$\Rightarrow \varphi(x) = \frac{f(b) - f(a)}{F(b) - F(a)} F(x) - f(x)$$

证:作辅助函数
$$\varphi(x) = \frac{f(b) - f(a)}{F(b) - F(a)}F(x) - f(x)$$

则 $\varphi(x)$ 在 [a,b] 连续,在 (a,b) 内可导,且

$$\varphi(a) = \frac{f(b)F(a) - f(a)F(b)}{F(b) - F(a)} = \varphi(b)$$

由罗尔定理,至少存在一点 $\xi \in (a,b)$ 使 $\varphi'(\xi) = 0$,即

$$\frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f'(\xi)}{F'(\xi)}.$$

思考: 柯西定理的下述证法对吗?

上面两式相比即得结论. 错!

柯西定理的几何意义:

$$\left|\frac{f(b)-f(a)}{F(b)-F(a)}\right| = \frac{f'(\xi)}{F'(\xi)}$$

弦的斜率 切线斜率

$$\begin{cases} x = F(t) & y \\ y = f(t) & f(b) \end{cases}$$

注意: $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{f'(t)}{F'(t)}$

例4. 设 f(x)在 [0,1]上连续,在 (0,1) 内可导,证明至少存在一点 $\xi \in (0,1)$,使 $f'(\xi) = 2\xi[f(1) - f(0)]$.

证: 结论可变形为

$$\frac{f(1)-f(0)}{1-0} = \frac{f'(\xi)}{2\xi} = \frac{f'(x)}{(x^2)'} \bigg|_{x=\xi}$$

设 $F(x) = x^2$,则f(x),F(x)在[0,1]上满足柯西中值

定理条件, 因此在(0,1)内至少存在一点 ξ , 使

$$\frac{f(1)-f(0)}{F(1)-F(0)} = \frac{f'(\xi)}{F'(\xi)} = \frac{f'(\xi)}{2\xi}$$

即
$$f'(\xi) = 2\xi[f(1) - f(0)]$$

四小结

1. 微分中值定理的条件、结论及关系

- 2. 微分中值定理的应用
 - (1) 证明恒等式
 - (2) 证明不等式
 - (3) 证明有关中值问题的结论

关键: 利用逆向思维 设辅助函数

五、作业

```
中值定理-1(周一):
习题3-1:1,2,4,6,7,8
中值定理-2(周三):
```

习题3-1:10,11,13,15,20