Started on	Wednesday, 20 February 2019, 10:55 AM
State	Finished
Completed on	Wednesday, 20 February 2019, 11:55 AM
Time taken	1 hour

Grade 90.00 out of 100.00

Question 1

Correct

Mark 10.00 out of 10.00

Q1b

Consider the sinusoidal voltage $v(t) = 100 \cos(240 \pi t + 45^{\circ}) V_{rms}$.

a) What is the maximum amplitude of the voltage?

$$V_{\rm m} = \boxed{141.42}$$
 V

b) What is the frequency of v(t) in hertz?

$$f = 120$$
 \checkmark Hz

c) What is the frequency of v(t) in radians per second?

$$\omega = \boxed{753.98}$$
 \checkmark rad/sec

d) What is the phase angle in radians?

$$\varphi$$
 (phi) = 0.785 \checkmark radians

e) What is the period in milliseconds?

Numeric Answer

a)
$$V_m = 141.4214 \text{ V}$$

b)
$$f = 120 \text{ Hz}$$

c)
$$\omega = 753.9822 \text{ rad/sec}$$

d)
$$\varphi$$
 (phi) = 0.7854 radians

Correct

Marks for this submission: 10.00/10.00.

Incorrect

Mark 0.00 out of 10.00

Q2d

Given:
$$x(t) = 350 \cos(300 t + 15^{\circ}) + 375 \cos(300 t + 50^{\circ})$$

Use the concept of the phasor to combine this sinusoidal function into a single trigonometric expression in the form similar to $x(t) = A \cos(\omega t + \theta^{\circ})$.

Magnitude A of
$$x(t) = \begin{bmatrix} 150 \end{bmatrix}$$

Angle
$$\theta$$
 of $x(t) = \begin{bmatrix} 180 \\ \hline \end{pmatrix}$ Degrees

Numeric Answer

$$x(t) = 691.4857 \cos(300 t + 33.1229^{\circ})$$

Incorrect

Marks for this submission: 0.00/10.00.

Question 3

Correct

Mark 15.00 out of 15.00

Q3e

Assume the operational amplifier is ideal.

Given $v_g(t) = 30.0 \text{ V}$ (a constant voltage)

Find the steady-state output $v_0(t)$.

$$v_0(t) = 9$$
 Volts

Numeric Answer

 $v_0(t) = 9.0 \text{ V}$ since the opamp is in the linear region.

Correct

Marks for this submission: 15.00/15.00.

Correct

Mark 15.00 out of 15.00

Q4a

Find the phasor voltages \boldsymbol{V}_0 and \boldsymbol{V}_1 . I suggest you use the Node Method.

Express your answer as a positive magnitude and then the angle in the appropriate quadrant.

Numeric Answer

 $V_0 = 15.811$ at angle 18.43° Volts

V₁ = 50.0 at angle -53.13° Volts

Correct

Marks for this submission: 15.00/15.00.

Correct

Mark 15.00 out of 15.00

Q5b

Given:

The voltage source V_g = 160 at angle 0° V_{rms} and the voltage V_0 = 64.7821 at angle -58.24° V_{rms} .

Find the average and reactive power for the voltage source V_g .

"+" = absorbed and "-" = delivered

Numeric Answer

$$S_g = -1,611.5346 + j705.0451 \text{ VA}$$

Correct

Marks for this submission: 15.00/15.00.

Question 6

Correct

Mark 5.00 out of 5.00

Q₆b

What is the phase sequence of each of the following sets of voltages?

$$v_a = 820 \cos(\omega t - 46^\circ) \text{ V}$$
 $v_b = 820 \cos(\omega t + 74^\circ) \text{ V}$ $v_c = 820 \sin(\omega t - 76^\circ) \text{ V}$

acb – Negative Phase Sequence: ▼

Correct answer is acb - Negative Phase Sequence

Correct

Marks for this submission: 5.00/5.00.

Correct

Mark 15.00 out of 15.00

Q7c

Given: $V_{a'n} = 160$ at angle $20^{\circ} V_{rms}$ in a balanced three phase system with a positive phase sequence.

The source and load are Y connected.

$$Z_{qa} = 1 + j 15 \Omega$$
 $Z_{ia} = 20 + j 6 \Omega$ $Z_{A} = 9 + j 9 \Omega$

Calculate the single phase equivalent line currents $\rm I_{aA}, \, I_{bB}$ and $\rm I_{cC}.$

$$I_{aA} = 3.77$$
 at angle -25 \checkmark ° (Degrees) A_{rms}
 $I_{bB} = 3.77$ at angle -145 \checkmark ° (Degrees) A_{rms}
 $I_{cC} = 3.77$ at angle 95 \checkmark ° (Degrees) A_{rms}

Calculate the line to line voltages $\rm V_{AB}, \, \rm V_{BC}, \, and \, \rm V_{CA}.$

$$V_{AB} = 83.12$$
 at angle 50 \checkmark ° (Degrees) V_{rms}
 $V_{BC} = 83.12$ at angle -70 \checkmark ° (Degrees) V_{rms}
 $V_{CA} = 83.12$ at angle 170 \checkmark ° (Degrees) V_{rms}

$$I_{aA} = 3.7712$$
 at angle -25° A_{rms}

$$I_{bB} = 3.7712$$
 at angle -145° A_{rms}

$$I_{\rm cC} = 3.7712$$
 at angle 95° $A_{\rm rms}$

$$V_{AB} = 83.1384$$
 at angle 50° V_{rms}

$$V_{BC} = 83.1384$$
 at angle -70° V_{rms}

$$V_{CA} = 83.1384$$
 at angle $170^{\circ} V_{rms}$

Correct

Marks for this submission: 15.00/15.00.

Correct

Mark 15.00 out of 15.00

Q8c

The total apparent power supplied in a balanced three-phase Y- Δ (wye to delta) system is 3,600 VA. The source line to neutral voltage is 240 V_{rms}. The line impedance is negligible and the power factor angle of the load is 25° leading.

Determine the impedance of each phase of the delta-connected load.

$$Z_{\Delta,load}$$
 = 130.5083 - j 60.8570 Ω (Ohms)

Correct

Marks for this submission: 15.00/15.00.

■ Quiz 3 - Chapter 10

Jump to... ▼

Quiz 4 - Chapter 12 ▶