Machine Learning Project with Company Bankruptcy Prediction!

Goal: The main goal of this project is to use several BASELINE machine learning techniques such as ,KNN, LR, SVM etc. to identify whether the compancy with different accounting indicator has bankrupted or not and compare the f1-score for Bankruptcy with these techniques to find the best one. The reason that I did not do much optimal hyperparameter searching is because I first constucted a hyperparameter grid and applied like GridSearch and Recursive Feature Elimination (aka RFE) to find the optimas but it costs too much computer powers and my laptop was complaining me in angrt. But I do tried several models to apply GridSearch, pusedocodes as follows:

Tasks:

- 1. Split the data provided in the previous link into training, validation, and testing sets.
- 2. Analyze these data sets using different methods we learned in our class. You are expected to use at least three methods.
- 3. Report the performance (accuracy, F1-score, AUC) for each of your algorithms on the testing data.

Author: SHI BO

BU ID: U56082126

Date: 3/10/2021

Potential problems with dataset

For example:

- To many X-variables
- Unbalanced class
- · Variables probably correlated
- Latent outliers

ML techniques used:

There are the links that you can quickly navigate to the overall evaluations like AUC, ROC curve and so on.

- DNN
- LogisticRegression
- SVM
- KNN
- XGBoost
- DecisionTree
- RandomForest
- GradientBoosting
- MLP
- CatBoostClassifier

Index

- Packages
- ExploratoryDataAnalysis
- Class imbalance
- Oversampling(Finished coding but not used actually, since did not improve f1-score)
- OutliersRemoval(Dropped cuz no help for final result and changed original dataset)
- DimensionReduction
- Scaling
- <u>Implementation</u>

FinalResults

Method	Accuracy	Precision	Recall	AUC	F1-score (Label = 1)
DNN	0.96	0.92	1.00	0.96	0.09
LR	0.91	0.91	0.92	0.96	0.29
SVM	0.91	0.90	0.93	0.97	0.24
KNN	0.95	0.91	1.00	0.98	0.24
XGBoost	0.99	0.98	1.00	1.00	0.53
DecisionTree	0.94	0.93	0.96	0.94	0.33
RandomForest	0.98	0.96	1.00	1.00	0.25
GradientBoosting	0.95	0.94	0.97	0.99	0.38
MLP	0.95	0.93	0.98	0.98	0.25
CatBoosting	0.98	0.97	1.00	1.00	0.33
DecisionTree RandomForest GradientBoosting MLP	0.94 0.98 0.95 0.95	0.93 0.96 0.94 0.93	0.96 1.00 0.97 0.98	0.94 1.00 0.99 0.98	0.33 0.25 0.38 0.25

There is no doubt that the XGBoost wins this game!!!!!

Packages

```
In [1]: import warnings
         warnings. filterwarnings ("ignore")
         import numpy as np
         import pandas as pd
         import seaborn as sns
         sns. set(style="darkgrid")
         import matplotlib.pyplot as plt
         from xgboost import plot_tree, plot_importance
         from sklearn.model_selection import train_test_split
         import scikitplot as skplt # Package for ROC vurve
         from sklearn.metrics import confusion_matrix, classification_report, plot_confusion_matrix, fl_score, auc, roc_curve, roc_auc_scor
         e, precision_recall_curve
         from sklearn.metrics import precision_score, recall_score, fl_score
         from sklearn.metrics import accuracy_score
         from sklearn import metrics
         from xgboost import XGBClassifier
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.linear_model import LogisticRegression
         from sklearn.naive_bayes import MultinomialNB
         from sklearn.svm import SVC
         from imblearn.over_sampling import SMOTE
         from sklearn.preprocessing import MinMaxScaler
         from sklearn.preprocessing import StandardScaler
         from sklearn. model selection import GridSearchCV
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.ensemble import RandomForestClassifier
         from sklearn.ensemble import GradientBoostingClassifier
         from sklearn.neural_network import MLPClassifier
         from sklearn.linear_model import SGDClassifier
         from catboost import CatBoostClassifier
         import tensorflow as tf
         from tensorflow.keras.models import Sequential
         from tensorflow.keras.layers import Dense, Activation, Dropout
         from tensorflow.keras.callbacks import EarlyStopping
         from sklearn. decomposition import PCA
```

Enveloped Model Evaluation Functions

```
In [2]: | def evaluation(y_true, y_pred):
             precision_micro = precision_score(y_true, y_pred, average='micro')
             recall_micro = recall_score(y_true, y_pred, average='micro')
             fl_micro = fl_score(y_true, y_pred, average='micro')
             print (100*"*")
             print("precision_micro:", precision_micro, end="\t")
             print("recall_micro:", recall_micro, end="\t")
             print("f1_micro:", f1_micro)
             precision_macro = precision_score(y_true, y_pred, average='macro')
             recall_macro = recall_score(y_true, y_pred, average='macro')
             fl_macro = fl_score(y_true, y_pred, average='macro')
             print("precision_macro:", precision_macro, end="\t")
             print("recall_macro:", recall_macro, end="\t")
             print("f1_macro:", f1_macro)
             print (100*"*")
             return fl_macro
         def model_eval(algo, X_train, y_train, X_test, y_test):
             algo. fit (X_train, y_train)
             y_train_ypred = algo.predict(X_train)
             y_train_prob = algo.predict_proba(X_train)[:,-1]
             #TEST
             y_test_ypred = algo.predict(X_test)
             y_test_prob = algo.predict_proba(X_test)[:,-1]
             y_probas = algo.predict_proba(X_test)
             auc = metrics.roc auc score(y test, y test prob)
             print("auc:", auc)
             acc_score = accuracy_score(y_test, y_test_ypred)
             print("accuracy score:", acc_score)
             #Confussion Matrix
             plot_confusion_matrix(algo, X_test, y_test)
            plt.show()
             print('='*100)
             evaluation(y_test, y_test_ypred)
             print('='*100)
             print('Classification Report: \n', classification_report(y_test, y_test_ypred, digits=3))
             print('='*100)
               ROC Curve
             fpr, tpr, thresholds = roc_curve(y_test, y_test_prob)
             skplt.metrics.plot_roc(y_test, y_probas, figsize=(8,6))
               PR Curve
             skplt.metrics.plot_precision_recall(y_test, y_probas, figsize=(8,6))
```

ExploratoryDataAnalysis

```
In [3]: data = pd. read_csv("./data/data.csv", encoding="utf_8_sig")
data.head()
```

Out[3]:

	Bankrupt?	ROA(C) before interest and depreciation before interest	ROA(A) before interest and % after tax	ROA(B) before interest and depreciation after tax	Operating Gross Margin	Realized Sales Gross Margin	Operating Profit Rate	Pre-tax net Interest Rate	After-tax net Interest Rate	Non-industry income and expenditure/revenue	 Net Income to Total Assets	Tot asse to GN prid
0	1	0.370594	0.424389	0.405750	0.601457	0.601457	0.998969	0.796887	0.808809	0.302646	 0.716845	0.0092
1	1	0.464291	0.538214	0.516730	0.610235	0.610235	0.998946	0.797380	0.809301	0.303556	 0.795297	0.00832
2	1	0.426071	0.499019	0.472295	0.601450	0.601364	0.998857	0.796403	0.808388	0.302035	 0.774670	0.04000
3	1	0.399844	0.451265	0.457733	0.583541	0.583541	0.998700	0.796967	0.808966	0.303350	 0.739555	0.0032
4	1	0.465022	0.538432	0.522298	0.598783	0.598783	0.998973	0.797366	0.809304	0.303475	 0.795016	0.00387

5 rows × 96 columns

Missing Values

```
In [4]: missing = data.isna().sum(axis = 1).reset_index();missing.columns = ['Variables','Missing Value']
missing = missing.sort_values("Missing Value", ascending = False)
if ((missing["Missing Value"] > 0 ).sum()) == 0:
    print("There is no missing values in dataset")
missing
```

There is no missing values in dataset

Out[4]:

	Variables	Missing Value
0	0	0
4554	4554	0
4552	4552	0
4551	4551	0
4550	4550	0
2270	2270	0
2269	2269	0
2268	2268	0
2267	2267	0
6818	6818	0

6819 rows × 2 columns

Correlation Map

Out[5]: <matplotlib.axes._subplots.AxesSubplot at 0x28db4322d08>

Class imbalance

There is a imbalance in our data, we should focus on "Label == 1" f1-score.

```
In [43]: sns.countplot(data=data, x='Bankrupt?')
plt.title('Bankruptcy Counts', fontsize = 15)
plt.show()

pair = sns.pairplot(data = data.iloc[:,0:5:2], hue = 'Bankrupt?')
plt.show()
```



```
In [262]: X = data.drop(["Bankrupt?"], axis=1)
y = data["Bankrupt?"].values
```

Most of the features are uncorrelated with each other but there are also few of them correlated

so that we could use PCA to reduce the dimension.

```
In [263]: def correlation_counts(data):
    cormet = data.corr().round(3).abs()
    upper_tri = np.triu_indices(n=cormet.shape[0])
    corr_v = cormet.to_numpy()[upper_tri]
    plt.hist(x=corr_v, bins=30, range=[0.00, 0.99])
    plt.xlabel("Correlation")
    plt.ylabel("Counts")
    plt.grid(True)
    plt.title("Correlation Frequency distribution", fontsize = 20)
    plt.show()
correlation_counts(X)
```


Oversampling

```
In [264]: # using smote oversampling to correct unbalanced data
#smote = SMOTE()
#X, y=smote.fit_resample(X, y)
#sns. countplot(x=y)
#plt. title('Bankruptcy Counts after Correction', fontsize = 15)
#plt. show()

#Split data into 60:20:20
#x_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, random_state=42)
#x_train, x_valid, y_train, y_valid = train_test_split(x_train, y_train, test_size=0.25, stratify=y_train, random_state=42)

#print(x_train.shape)
#print(x_valid.shape)
#print(x_test.shape)
#len(X)/len(y) == 1 #True for data is balanced
```

OutliersRemoval

```
In [265]: #def rm outliers(data):
                #data = sorted(data)
                #Q1, Q3 = np. percentile (data, [25, 75])
                \#IQR = Q3 - Q1
                \#1ow = Q1 - IQR * 1.5
                \#up = Q3 + IQR * 1.5
                #return low, up
            #Update data which value exceed upper or lower bound to its upper or lower bound!
            #def update(data):
                #for i in data.columns:
                    #low, up = rm_outliers(data[i])
                    #data[i] = np. where (data[i] > up, up, data[i])
                    #data[i] = np. where (data[i] < low, low, data[i])
                    #return data
            \#X = update(X)
            \#X. plot(kind="box", figsize = (18, 5))
            #plt.xticks([])
            #print("WE ARE DONE WITH OUTLIERS!")
```

Scaling

Scaling data for DNN

```
In [266]: # Use MinMaxScaler to scale data since there are huge ranges between those data
# We need this scaling for DNN
scaler=StandardScaler()
X_scale=scaler.fit_transform(X)

x_train, x_test, y_train, y_test = train_test_split(X_scale, y, test_size=0. 2, stratify=y, random_state=42)
x_train, x_valid, y_train, y_valid = train_test_split(x_train, y_train, test_size=0. 25, stratify=y_train, random_state=42)

print(x_train. shape)
print(x_valid. shape)
print(x_test. shape)

(4091, 95)
(1364, 95)
(1364, 95)
(1364, 95)
```

DimensionReduction

```
In [267]:
           #56 principle components account for 99% explained data total variance
           pca = PCA(n_components=56, svd_solver='full')
           X_train = pca.fit_transform(x_train)
           X_valid = pca.fit_transform(x_valid)
           X_test = pca.fit_transform(x_test)
           print(X_train.shape)
           print(X_valid.shape)
           print(X_test.shape)
           plt.figure(figsize = (8,6))
           plt.title("PCA")
           plt.plot(pca.explained_variance_ratio_.cumsum())
           plt.xlabel("Number of priciple components")
           plt.ylabel("Cumulative Explanation")
           plt.axhline(y=0.99, color='r', linestyle='--')
           plt.show()
```

(4091, 56) (1364, 56) (1364, 56)

We can easily observe that after PCA, all data correlations are removed.

In [268]: correlation_counts(pd.DataFrame(X_train))

Implementation

DNN

```
In [269]: | # Use Earlt stopping to eliminate useless epochs
            model_stop = EarlyStopping(monitor='val_accuracy',
                                       mode='max',
                                        verbose=1,
                                       patience=5,
                                       restore_best_weights=True)
            #I chose Dropout = 0.1 to decrease the probability of overfitting
            model = Sequential()
            model. add (Dense (units=128, activation='relu'))
            model. add (Dropout (0.50))
            model. add (Dense (units=64, activation='relu'))
            model. add (Dropout (0.50))
            model.add(Dense(units=1, activation='sigmoid'))
            # compile ANN
            model.compile(loss='binary_crossentropy',
                          optimizer='adam',
                          metrics = ['accuracy'])
```

Restoring model weights from the end of the best epoch. Epoch 00007: early stopping

In [271]: | model. summary()

Model: "sequential_10"

Layer (type)	Output	Shape	Param #
dense_30 (Dense)	(None,	128)	12288
dropout_20 (Dropout)	(None,	128)	0
dense_31 (Dense)	(None,	64)	8256
dropout_21 (Dropout)	(None,	64)	0
dense_32 (Dense)	(None,		65

Total params: 20,609 Trainable params: 20,609 Non-trainable params: 0

```
In [272]: #This part of codes is from our lecture
    pd. DataFrame(mymodel.history).plot(figsize=(8, 5))
    plt.grid(True)
    plt.gca().set_ylim(0, 1)
    plt.show()
```



```
In [273]: y_pred = model.predict(x_test)
y_pred = (y_pred > 0.5)
print(classification_report(y_test, y_pred))
sns.heatmap(confusion_matrix(y_test, y_pred, normalize='true'), annot=True)
print("We have f1-score: ",f1_score(y_test, y_pred))
```

	precision	recall	f1-score	support
0 1	0. 97 0. 67	1.00 0.05	0. 98 0. 09	1320 44
accuracy macro avg weighted avg	0. 82 0. 96	0. 52 0. 97	0. 97 0. 53 0. 95	1364 1364 1364

We have f1-score: 0.08510638297872342


```
In [274]: fpr, tpr, _ = roc_curve(y_test, y_pred)
with plt.style.context('ggplot'):
    plt.figure(figsize=(7,4))
    plt.plot(fpr, tpr, [0,1], [0,1])
    plt.grid(True)
    plt.title('ROC Curve')
    plt.xlabel('False positive rate')
    plt.ylabel('True positive rate')
    plt.legend(['DNN(tanh)', 'Guessing'])
```


LogisticRegression

```
In [228]: print('='*100)
    print("Use lr to evaluate on the validation set")
    lr_model = LogisticRegression()
    model_eval(lr_model, x_train, y_train, x_valid, y_valid)
    print('='*100)
    print("Use lr to evaluate on the test set")
    model_eval(lr_model, x_train, y_train, x_test, y_test)
```

Use lr to evaluate on the validation set

auc: 0.8194559228650139

accuracy score: 0.9706744868035191

fl micro: 0.9706744868035191 precision_micro: 0.9706744868035191 recall_micro: 0.9706744868035191 fl_macro: 0.6476817770889836 precision_macro: 0.8084656084656086 recall_macro: 0.6003787878787878

Classification	Report:			
	precision	recal1	f1-score	support
0	0.974	0.996	0.985	1320
1	0.643	0.205	0.310	44
accuracy			0.971	1364
macro avg	0.808	0.600	0.648	1364

0.971

1364

0.963

Use 1r to evaluate on the test set

0.963

auc: 0.934263085399449

weighted avg

accuracy score: 0.9633431085043989

precision_micro: 0.9633431085043989 recall_micro: 0.9633431085043989 fl_micro: 0.9633431085043989

precision_macro: 0.6796021616649419 recall_macro: 0.6075757575757575 fl_macro: 0.6334515747608298

Classification Report:

	precision	recal1	f1-score	support
0	0.975	0.988	0.981	1320
1	0.385	0. 227	0.286	44
accuracy			0.963	1364
macro avg	0.680	0.608	0.633	1364
weighted avg	0.956	0.963	0.959	1364

KNN

Out[230]: Text(0, 0.5, 'Error Rate')


```
In [231]: knn_model = KNeighborsClassifier(n_neighbors = 6)
    print('='*100)
    print("Use knn to evaluate on the validation set")
    model_eval(knn_model, x_train, y_train, x_valid, y_valid)
    print('='*100)
    print("Use knn to evaluate on the test set")
    model_eval(knn_model, x_train, y_train, x_test, y_test)
```

Use knn to evaluate on the validation set

auc: 0.7553374655647384

accuracy score: 0.968475073313783

precision micro: 0.968475073313783 recall_micro: 0.968475073313783 f1_micro: 0.968475073313783

fl macro: 0.5703999941403533 precision_macro: 0.7709758921991788 recall_macro: 0.5443181818181818

Classification Report: precision recall f1-score support 0 0.971 0.998 0.984 1320 1 0.571 0.091 0.157 44 0.968 1364 accuracy 0.771 0.544 0.570 1364 macro avg weighted avg 0.958 0.968 0.957 1364

Use knn to evaluate on the test set

auc: 0.7972710055096419

accuracy score: 0.9714076246334311

precision_micro: 0.9714076246334311 recall_micro: 0.9714076246334311 fl_micro: 0.9714076246334311 precision_macro: 0.914569954732077 recall macro: 0.5678030303030304 fl_macro: 0.6103627853831111

Classification	Report: precision	recall	f1-score	support
0	0.972	0.999	0.985	1320
1	0.857	0.136	0. 235	44
accuracy			0.971	1364
macro avg	0.915	0.568	0.610	1364
weighted avg	0.968	0.971	0.961	1364

SVM

```
In [279]: svm = SVC(probability = True, kernel = 'linear', C = 1, gamma = 1e-3)

print('='*100)
print("Use SVM to evaluate on the validation set")
model_eval(svm, x_train, y_train, x_valid, y_valid)
print('='*100)
print("Use svm to evaluate on the test set")
model_eval(svm, x_train, y_train, x_test, y_test)
```

Use SVM to evaluate on the validation set

auc: 0.8261707988980715

accuracy score: 0.9706744868035191

precision_micro: 0.9706744868035191 recall_micro: 0.9706744868035191 f1_micro: 0.9706744868035191 precision_macro: 0.8609882005899705 recall_macro: 0.56742424242424 f1_macro: 0.6079107738300563

Classification Report: precision recall f1-score support 0 0.972 0.998 0.985 1320 1 0.750 0.136 0.231 44 1364 0.971 accuracy

0.567

0.971

0.608

0.961

1364

1364

Use svm to evaluate on the test set

0.861

0.965

auc: 0.896926652892562

macro avg
weighted avg

accuracy score: 0.967741935483871

precision_macro: 0.7362962962962 recall_macro: 0.57689393939393 f1_macro: 0.612449954797882

Classification	Report: precision	recall	f1-score	support
0	0.973	0.995	0.984	1320
1	0.500	0. 159	0. 241	44
accuracy			0.968	1364
macro avg	0.736	0.577	0.612	1364
weighted avg	0.957	0.968	0.960	1364

XGBoost

```
In [283]: xgb = XGBClassifier(n_estimators = 1000)
    print('='*100)
    print("Use XGBoost to evaluate on the validation set")
    model_eval(xgb, x_train, y_train, x_valid, y_valid)
    print('='*100)
    print("Use XGBoost to evaluate on the test set")
    model_eval(xgb, x_train, y_train, x_test, y_test)
```

Use XGBoost to evaluate on the validation set

[23:54:31] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

auc: 0.9162190082644628

accuracy score: 0.9699413489736071

 precision_micro:
 0.9699413489736071
 recall_micro:
 0.9699413489736071
 f1_micro:
 0.9699413489736071

 precision_macro:
 0.7814970086029958
 recall_macro:
 0.6109848484848485
 f1_macro:
 0.6562478870469061

Classification Report:
 precision recall f1-score support
 0 0.975 0.995 0.985 1320
 1 0.588 0.227 0.328 44

macro avg 0.781 0.611 0.656 1364 weighted avg 0.962 0.970 0.963 1364

1364

0.970

Use XGBoost to evaluate on the test set

[23:54:35] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.3.0/src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.

auc: 0.9313705234159779

weighted avg

accuracy

accuracy score: 0.9765395894428153

Classification Report: precision recall f1-score support 0 0.981 0.995 0.988 1320 1 0.750 0.409 0.529 44 0.977 1364 accuracy 1364 macro avg 0.865 0.702 0.759

0.977

1364

0.973

0.973

DecisionTree

```
In [284]: DTC = DecisionTreeClassifier()
    print('='*100)
    print("Use DecisionTree to evaluate on the validation set")
    model_eval(DTC, x_train, y_train, x_valid, y_valid)
    print('='*100)
    print("Use DecisionTree to evaluate on the test set")
    model_eval(DTC, x_train, y_train, x_test, y_test)
```

Use DecisionTree to evaluate on the validation set

auc: 0.634090909090909

accuracy score: 0.9508797653958945

precision_micro: 0.9508797653958945 recall_micro: 0.9508797653958945 f1_micro: 0.9508797653958945 precision_macro: 0.6208659889811438 recall_macro: 0.63409090909091 f1_macro: 0.6270714737507906

Classification	Report: precision	recall	f1-score	support
0 1	0. 976 0. 265	0. 973 0. 295	0. 975 0. 280	1320 44
accuracy macro avg weighted avg	0. 621 0. 953	0. 634 0. 951	0. 951 0. 627 0. 952	1364 1364 1364

Use DecisionTree to evaluate on the test set

auc: 0.6583333333333333

accuracy score: 0.9552785923753666

Classification Report:

	precision	recal1	f1-score	support
0	0.978	0.976	0.977	1320
1	0.319	0.341	0.330	44
accuracy			0.955	1364
macro avg	0.649	0.658	0.653	1364
weighted avg	0.957	0.955	0.956	1364

RandomForest

```
In [285]: RFC = RandomForestClassifier()
    print('='*100)
    print("Use RandomForest to evaluate on the validation set")
    model_eval(RFC, x_train, y_train, x_valid, y_valid)
    print('='*100)
    print("Use RandomForest to evaluate on the test set")
    model_eval(RFC, x_train, y_train, x_test, y_test)
```

Use RandomForest to evaluate on the validation set

auc: 0.9173725895316803

accuracy score: 0.9721407624633431

Classification Report: precision recall f1-score support 0 0.973 0.998 0.986 1320 1 0.800 0.182 0.296 44 0.972 1364 accuracy 0.887 0.590 1364 macro avg 0.641 weighted avg 0.968 0.972 0.964 1364

Use RandomForest to evaluate on the test set

auc: 0.9111053719008264

accuracy score: 0.969208211143695

precision_macro: 0.777983234714004 recall_macro: 0.57765151515151 f1_macro: 0.6171407185628743

Classification Report:

	precision	recall	f1-score	support
0	0.973	0.996	0.984	1320
1	0. 583	0.159	0.250	44
accuracy			0.969	1364
macro avg	0.778	0.578	0.617	1364
weighted avg	0.960	0.969	0.961	1364

GradientBoosting

```
In [286]: GBC = GradientBoostingClassifier()
    print('='*100)
    print("Use GradientBoostingClassifier to evaluate on the validation set")
    model_eval(GBC, x_train, y_train, x_valid, y_valid)
    print('='*100)
    print("Use GradientBoostingClassifier to evaluate on the test set")
    model_eval(GBC, x_train, y_train, x_test, y_test)
```

Use GradientBoostingClassifier to evaluate on the validation set

auc: 0.9332214187327824

accuracy score: 0.9706744868035191

precision_micro: 0.9706744868035191 recall_micro: 0.9706744868035191 f1_micro: 0.9706744868035191 precision_macro: 0.7998887240356083 recall_macro: 0.6113636363636363 f1_macro: 0.6591704147926036

Classification Report: precision recall f1-score support 0 0.975 0.995 0.985 1320 1 0.625 0.227 0.333 44 0.971 1364 accuracy 0.800 0.611 0.659 1364 macro avg weighted avg 0.963 0.971 0.964 1364

Use GradientBoostingClassifier to evaluate on the test set

auc: 0.9269111570247934

accuracy score: 0.9706744868035191

Classification Report:

	precision	recal1	f1-score	support
0	0.976	0.994	0.985	1320
1	0.600	0. 273	0. 375	44
accuracy			0.971	1364
macro avg	0.788	0.633	0.680	1364
weighted avg	0.964	0.971	0.965	1364


```
In [287]: MLP = MLPClassifier()
    print('='**100)
    print("Use MLP to evaluate on the validation set")
    model_eval(MLP, x_train, y_train, x_valid, y_valid)
    print('='**100)
    print("Use MLP to evaluate on the test set")
    model_eval(MLP, x_train, y_train, x_test, y_test)
```

Use MLP to evaluate on the validation set

auc: 0.7850034435261708

accuracy score: 0.9640762463343109

precision_micro: 0.9640762463343109 recall_micro: 0.9640762463343109 f1_micro: 0.9640762463343109 precision_macro: 0.6873039581777446 recall_macro: 0.6079545454545454 f1_macro: 0.6357135460099962

Classification Report: recall f1-score precision support 0 0.975 0.989 0.982 1320 1 0.400 0.227 0.290 44 0.964 1364 accuracy 0.687 0.608 0.636 1364 macro avg

0.964

1364

0.959

Use MLP to evaluate on the test set

0.956

auc: 0.8448347107438016

weighted avg

accuracy score: 0.9604105571847508

precision_micro: 0.9604105571847508 recall_micro: 0.9604105571847508 f1_micro: 0.9604105571847508 precision_macro: 0.6476154833190761 recall_macro: 0.5950757575757576 f1_macro: 0.6148343373493975

Classification Report:

	precision	recal1	f1-score	support
0	0.974	0. 986	0.980	1320
1	0.321	0.205	0.250	44
accuracy			0.960	1364
macro avg	0.648	0.595	0.615	1364
weighted avg	0.953	0.960	0.956	1364

CatBoostClassifier

```
In [290]: CAT = CatBoostClassifier(n_estimators=300, verbose = 0)
    print('='*100)
    print("Use CAT to evaluate on the validation set")
    model_eval(CAT, x_train, y_train, x_valid, y_valid)
    print('='*100)
    print("Use CAT to evaluate on the test set")
    model_eval(CAT, x_train, y_train, x_test, y_test)
```

Use CAT to evaluate on the validation set

auc: 0.9442665289256199

accuracy score: 0.9721407624633431

precision micro: 0.9721407624633431 recall_micro: 0.9721407624633431 fl_micro: 0.9721407624633431 fl macro: 0.6652976882345344 precision_macro: 0.8445502645502645 recall_macro: 0.6121212121212121

Classification Report: recall f1-score precision support 0 0.975 0.997 0.986 1320 1 0.714 0.227 0.345 44 0.972 1364 accuracy

0.612

0.972

0.665

0.965

1364

1364

Use CAT to evaluate on the test set

0.845

0.966

auc: 0.9350034435261708

macro avg weighted avg

accuracy score: 0.9699413489736071

precision_micro: 0.9699413489736071 recall_micro: 0.9699413489736071 fl_micro: 0.9699413489736071 precision_macro: 0.7814970086029958 recall macro: 0.6109848484848485 fl macro: 0.6562478870469061

Classification Report:

	precision	recal1	f1-score	support
0	0.975	0.995	0.985	1320
1	0.588	0. 227	0.328	44
accuracy			0.970	1364
macro avg	0.781	0.611	0.656	1364
weighted avg	0.962	0.970	0.963	1364

In []: