SCENE-Net V2: Interpretable Multiclass 3D Scene **Understanding with Geometric Priors**

Diogo Lavado, Cláudia Soares and Alessandra Micheletti

Introduction

Increasing the size of black-boxes to boost performance leads to diminishing returns, whereas white-boxes have domain constraints and simple designs.

Black-box vs White-box

Harnessing geometric information in 3D point clouds is the key to drive innovation.

We present an **interpretable** 3D semantic segmentation model that leverages geometric priors for feature extraction, has a compact design and competitive performance.

GENEOs

To build geometric priors, we leverage Group Equivariant Non-expansive Operators (GENEOs) [1].

These operators provide a measure of the world, analogous to patterns learnt by CNN kernels.

Unlike convolutional kernels, our GENEO-kernels are not blind to the underlying geometry of 3D scenes. They are parameterized with meaningful features.

SCENE-Net V2 is a gray-box model that pairs geometric interpretability and general application

White-box feature extraction phase with 540 meaningful shape parameters

Black-box classifier with **240K** parameters

In the GENEO Layer, we instantiate m GENEO-kernels from 6 families of geometric priors. Such families are defined by meaningful shape parameters, such as the radius of a cylinder. They are then combined into *n* observers through convex combinations, creating more complex feature extraction outputs.

A CNN-based feature extraction process with an analogous architecture contains 21.4K parameters.

Experiments

The Performance of SCENE-Net V2

Method	mIoU	#Parameters (M)	Paramete Efficiency
PointNet (Qi et al., 2017a)	44.58	0.40	7.96
PointNet++ (Qi et al., 2017b)	46.90	1.48	7.60
KPConv (Thomas et al., 2019)	57.58	14.9	8.03
RandLA-Net (Hu et al., 2020)	16.76	1.24	2.75
Point Transformer V1 (Wu et al., 2022)	62.67	12.8	8.81
Point Transformer V2 (Wu et al., 2023a)	65.58	46.2 x3	8.563
CNN Baseline	41.69	0.26	7.69
SCENE-Net V2 (Ours)	45.54+3	.8 0.2402	8.46
SCENE-Net V2 + CNN (Ours)	50.21+8	.5 0.26	9.27 +.7

- Our model surpasses a comparable CNN, where its feature extraction phase includes 40x more parameters.
- In SOTA methods, PTV2 has triple the parameters of PTV1 and achieves a less than 3% increase in mloU.
- increases the CNN performance by more than 8% with virtually no increase in model size.

Future

Work

Interpretability Analysis

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

(b) Model Prediction

Using our model as a geometric feature extractor

- Using SCENE-Net V2 as a feature extraction tool for SOTA benchmarks;
- Applying GENEOs directly onto raw 3D point clouds;

Acknowledgements: This research was funded by DM 351-2022 of the Italian Ministry of University and Research and with partial support from the Italian INDAM –GNAMPA group, by FCT I.P., through the strategic project NOVA LINCS (UIDB/04516/2020), "Sustainable Stone by Portugal" Nº C644943391-00000051/40 co-funded by Recovery and Resilience Plan and NextGeneration EU, and TaRDIS Horizon Europe (101093006).

[1] Bergomi, M. G., Frosini, P., Giorgi, D., and Quercioli, N. Towards a topological–geometrical theory of group equivariant non-expansive operators for data analysis and machine learning. Nature Machine Intelligence, 1(9):423–433, 2019

