Институт информационных и вычислительных технологий

Лабораторная работа №2 "Решение нелинейных уравнений методом простой итерации" по курсу "Вычислительные методы"

Выполнил: Студент Балашов С.А. Проверила: Старший преподаватель кафедры МКМ Шевченко О.В.

$MPI(f, \alpha, q, x_0, \varepsilon, x_{root}) := $	$ORIGIN \leftarrow 0$
$MPI\left(f, \alpha, q, x_0, \varepsilon, x_{root}\right) \coloneqq$	$x_l \leftarrow x_0$
	$x_m \leftarrow x_0 - \alpha \cdot f(x_0)$
	$x_r \leftarrow \mathbf{root} \left(f\left(x_{root} \right), x_{root} \right)$ $i \leftarrow 1$
	$i \leftarrow 1$
	$\Delta \leftarrow x_m - x_r $
	$egin{aligned} i \leftarrow 1 \ \Delta \leftarrow x_m - x_r \ while \left(x_l - x_m > \left rac{1-q}{q} \right \cdot arepsilon ight) \ x_l \leftarrow x_m \ x_m \leftarrow x_l - lpha \cdot f \left(x_l ight) \ \Delta \leftarrow x_m - x_r \ A_i \leftarrow i \ A_i, 0 \leftarrow i \ A_i, 1 \leftarrow x_m \ A_i, 2 \leftarrow \Delta \ i \leftarrow i + 1 \ x_m \end{aligned}$
	$x_l \leftarrow x_m$
	$x_m \leftarrow x_l - \alpha \cdot f(x_l)$
	$ \Delta \leftarrow x_m - x_r $
	$A_{i,0} \leftarrow i$
	$A_{\perp} \leftarrow x_m$
	$A \leftarrow A$
	$ i \leftarrow i + 1 $
	$res \leftarrow \begin{bmatrix} x_m \\ i \\ A \end{bmatrix}$
	$res \leftarrow \mid i \mid$

[-5.4;-5.3]	[2.1 ;2.2]	[0.2;0.3]			
f(-5.4) = -3.776	f(2.1) = -0.0635000000000005	f(0.2) = 0.592			
f(-5.3) = 2.48950000000001	f(2.2) = 2.15200000000001	f(0.3) = -0.95449999999999999999999999999999999999			
f'(-5.40) = 64.62	f'(2.10) = 20.745	f'(0.20) = -16.02			
f'(-5.39) = 64.22445	f'(2.11) = 21.02445	f'(0.21) = -15.91155			
f'(-5.38) = 63.8298	f'(2.12) = 21.3048	f'(0.22) = -15.8022			
f'(-5.37) = 63.43605	f'(2.13) = 21.58605	f'(0.23) = -15.69195			
f'(-5.36) = 63.0432	f'(2.14) = 21.8682	f'(0.24) = -15.5808			
f'(-5.35) = 62.65125	f'(2.15) = 22.15125	f'(0.25) = -15.46875			
f'(-5.34) = 62.2602	f'(2.16) = 22.4352	f'(0.26) = -15.3558			
f'(-5.33) = 61.87005	f'(2.17) = 22.72005	f'(0.27) = -15.24195			
f'(-5.32) = 61.4808	f'(2.18) = 23.0058	f'(0.28) = -15.1272			
f'(-5.31) = 61.09245	f'(2.19) = 23.29245	f'(0.29) = -15.01155			
f'(-5.30) = 60.705	f'(2.20) = 23.58	f'(0.30) = -14.895			
J (-3.30) = 00.703	J (2.20) – 23.30	J (0.30) = -14.093			
$m_1 = 60.705$	$m_2 = 20.745$	$m_3 = -16.02$			
$M_1 := 64.62$	$M_2 = 23.58$	$M_3 := -14.895$			
9	9	9			
$\alpha_1 \coloneqq \frac{2}{m_1 + M_1} = 0.015958507879513$	$\alpha_2\!\coloneqq\!\frac{2}{m_2\!+\!M_2}\!=\!0.045121263395375$	$\alpha_3\!\coloneqq\!\frac{2}{m_3\!+\!M_3}\!=\!-0.064693514475174$			
$q_1 \! := \! \left \frac{M_1 \! - \! m_1}{M_1 \! + \! m_1} \right \! = \! 0.031238779174147$	$q_2\!\coloneqq\!\left \!\frac{M_2\!-\!m_2}{M_2\!+\!m_2}\!\right \!=\!0.063959390862944$	$q_3\!\coloneqq\!\left \!\frac{M_3\!-\!m_3}{M_3\!+\!m_3}\!\right \!=\!0.036390101892285$			
$x_{01} = \frac{-5.4 - 5.3}{2} = -5.35$	$x_{02} = \frac{2.2 + 2.1}{2} = 2.15$	$x_{03} = \frac{0.2 + 0.3}{2} = 0.25$			
2 -5.35	x_{02} - 2.13	2 -0.25			
$x_{s1} = -5.4$	$x_{s2}\!\coloneqq\!2.1$	$x_{s3} := 0$			
$c_{b1} := \mathbf{root}(f(x_{s1}), x_{s1}) = -5.34048569379365$	$x_{b2} = \mathbf{root}(f(x_{s2}), x_{s2}) = 2.10305470170974$	$x_{b3} := \mathbf{root}\left(f\left(x_{s3}\right), x_{s3}\right) = 0.237430992083906$			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
$\widehat{y}_1 \coloneqq MPI\left(f, lpha_1, q_1, x_{01}, arepsilon, x_{s1} ight)^{\widehat{\widehat{\mathbb{Q}}}} = [6]$	$j_2 = MPI\left(f, \alpha_2, q_2, x_{02}, \varepsilon, x_{s2}\right)^{\widehat{\downarrow}} = \begin{bmatrix}10\end{bmatrix}$	j_3 := $MPI\left\langle f, lpha_3, q_3, x_{03}, arepsilon, x_{s3} \right\rangle \stackrel{\widehat{0}}{=} [6]$			
$x_1 - x_{b1} = 0$	$\left x_{2}\!-\!x_{b2}\right \!=\!0.0000000000014$	$\left x_{3}\!-\!x_{b3}\right \!=\!0.000000000000000$			
$x_{01} - x_{b1} \cdot q_1 = 0.000297215310575$	$\left x_{02}\!-\!x_{b2}\right \cdot q_2\!=\!0.003002592682524$	$\left x_{03}\!-\!x_{b3}\right \cdot q_3\!=\!0.000457387478752$			
k:=16	Максимальный корень при точности 10^-4	$k \coloneqq 16$ $n \coloneqq 13$			
	$x_{20}\!\coloneqq\!M\!P\!I\!\left(\!f,\alpha_{\!2},q_{\!2},x_{02},\varepsilon_{0},x_{s2}\!\right)^{\widehat{0}}\!\!=\!\left[2.10313916353119\right]$				
	$j_{20} = MPI(f, \alpha_2, q_2, x_{02}, \varepsilon_0, x_{s2}) = [2.1861631636115]$				
	$ x_{20} - x_{b2} = 0.000084461821451$				
	$\left x_{02}\!-\!x_{b2}\right \!\cdot\!q_{2}\!=\!0.003002592682524$				

Таблица №1

Отрезок локализации	m	М	alpha	q	Найденное приближение	Абсолютная погрешность
[-5.4;-5.3]	60.705	64.62	0.01596	0.03124	-5.34048569379365	0
[2.1;2.2]	20.745	23.58	0.04512	0.06396	2.10305470170974	0.00000000000014
[0.2;0.3]	-16.02	-14.895	-0.06469	0.03639	0.237430992083906	0.000000000000006

Таблица№2

3.1 Скор	ость достижения точ	ности 10^-13	3.2 Скорость достижения точности 10^-4			
Корень	Результат	Итерация	Корень	Результат	Итерация	
x_1	-5.34048569379365	6	x_1	-5.34048587682282	2	
x_2	2.10305470170975	10	x_2	2.10313916353119	2	
x_3	0.237430992083912	6	x_3	0.237431646790866	2	

3.3 Согласно полученным результатам, поиск второго (максимального) корня занимает больше итераций, чем поиск остальных корней, которые ищутся с одной скоростью.

3.4 Скорость убывания погрешности для 1 корня			3.4 Скорость убывания погрешности для 2 корня			3.4 Скорость убывания погрешности для 3 корня		
Δx_k	Δx_{k1}	δ	Δx_k	Δx_{k1}	δ	Δx_k	Δx_{k1}	δ
0	0.000000183029177	0	0	0.000084461821453	0	0	0.000000654706963	0
0.000000183029177	0.000000001119641	163.471306427685	0.000084461821453	0.000005072672834	16.6503585421255	0.000000654706963	0.000000006435325	101.736425588451
0.000000001119641	0.000000000000685	163.451240875912	0.000005072672834	0.000000304912214	16.6365025770991	0.000000006435325	0.000000000063259	101.729793389083
0.000000000000685	0.0000000000000042	163.095238095238	0.000000304912214	0.000000018328821	16.6356698011291	0.000000000063259	0.000000000000062	102.03064516129
0.0000000000000042	0	∞	0.000000018328821	0.000000001101784	16.6355846518011	0.000000000000062	0.000000000000008	77.5
			0.000000001101784	0.000000000066232	16.6352216451262			
		+	0.000000000066232	0.000000000003983	16.6286718553854			
			0.000000000003983	0.000000000000241	16.5269709543568			
			0.0000000000000241	0.0000000000000016	15.0625			

3.5 Судя по полученным результатам, я могу сделать вывод, что у каждого поиска корня собственная скорость убывания погрешности. Сделаю предположение, что это связано с разными для каждого корня значениями q и alpha, которые зависят от производной функции на определенных отрезках локализации.