## FcVch XY a Ubi hYbh]cb

Le système étudié est un robot industriel illustré sur la figure ci-après, destiné à la manutention de pièces lourdes. Ce robot a une structure en parallélogramme déformable qui lui permet de déplacer son poignet dans l'aire de travail.



On associe à chaque solide i une base orthonormée directe  $B_i(\vec{x_i}, \vec{y_i}, \vec{z})$ 

Le mouvement de 1/0 est une rotation d'axe  $(A, \vec{z})$ ; on pose  $\alpha = (\vec{x_0}, \vec{x_1})$ .

Le mouvement de 2/0 est une rotation d'axe  $(A, \vec{z})$ ; on pose  $\beta = (\vec{x_0}, \vec{x_2})$ .

Le mouvement de 1/3 est une rotation d'axe  $(B, \vec{z})$ ,

Le mouvement de 2/4 est une rotation d'axe  $(E, \vec{z})$ ,

Le mouvement de 3/4 est une rotation d'axe  $(C, \vec{z})$ ,

Par ailleurs : 
$$\vec{CB} = D.\vec{x_3}$$
,  $\vec{BJ} = H.\vec{x_3}$ ,  $\vec{AB} = L.\vec{x_1}$ ,  $\vec{EA} = D.\vec{x_2}$  et  $\vec{EC} = L.\vec{x_4}$ 

Les mouvements du robot sont commandés par 2 moteurs :

- Le solide 1 a son mouvement de rotation commandé par un moteur M1 tel que :

$$\alpha \in \left[\frac{\pi}{3}, \frac{2\pi}{3}\right]$$

- Le solide 2 a son mouvement de rotation commandé par un moteur M2 tel que :

$$\beta \in \left[ \frac{-\pi}{4}, \frac{\pi}{4} \right]$$

- 1. Que peut-on dire sur les bases  $B_1$ ,  $B_2$ ,  $B_3$  et  $B_4$ ? En déduire les 2 figures de changement de base définissant les 2 paramètres d'orientation.
- 2. Déterminer les torseurs cinématiques  $\{\mathcal{V}_{4/2}\}$  et  $\{\mathcal{V}_{2/0}\}$ .
- 3. En déduire le torseur cinématique  $\{\mathcal{V}_{4/0}\}$ .
- 4. Déterminer les torseurs cinématiques  $\{\mathcal{V}_{3/1}\}$  et  $\{\mathcal{V}_{1/0}\}$ .
- 5. En déduire le torseur cinématique  $\{\mathcal{V}_{3/0}\}$ .
- 6. Déterminer le vecteur vitesse  $\vec{V}$  ( $J \in 3/0$ ) en utilisant la relation de composition des vitesses et la relation du champ des vecteurs vitesse d'un solide.
- 7. Déterminer la trajectoire de  $J \in 3/0$  lorsque le moteur M2 est à l'arrêt et  $\beta = 0$ .
- 8. Déterminer la trajectoire de  $J \in 3/0$  lorsque le moteur M1 est à l'arrêt et  $\alpha = \frac{\pi}{3}$ .