ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНЬ	ЮЙ		
ПРЕПОДАВАТЕЛЬ			
доцент, канд. техн		подпись, дата	А. А. Востриков инициалы, фамилия
	ОТЧЕТ О ЛАЕ	БОРАТОРНОЙ РАБО	OTE № 1
СОСТАВЛЕНИ		ЕСКОЙ ПРИНЦИПІ ІМ КОМПЛЕКТУЮ	ИАЛЬНОЙ СХЕМЫ ПО ЩИМ
по курсу: ПРОЕКТ	ИРОВАНИЕ СИС	СТЕМ ОБРАБОТКИ И І	ТЕРЕДАЧИ ИНФОРМАЦИИ
РАБОТУ ВЫПОЛНИЛ	I		
СТУДЕНТ ГР. №	4941	подпись, дата	Н. С. Горбунов инициалы, фамилия

Цель работы: получение практического навыка составления схем электрических принципиальных при проектировании современных систем обработки и передачи информации на основе программно-управляемых вычислителей.

Задание: разработать схему электрическую принципиальную спецификацию (перечень элементов) электронного модуля системы (устройства) в соответствии с индивидуальным заданием. Привести обоснование выбора конкретного наименования вычислителя и других комплектующих, a также номиналы пассивных компонентов, присутствующих в спецификации.

Индивидуальное задание:

№	Напряжение	Тактирование	Цифровые	Аналогово-	Вход для	Доп.
	питания		интерфейсы	цифровое	детектирования	требования
	устройства,			преобразование	уровня	
	В				компаратором	
7	2.5-3.0	Внешний	SPI, RS-485	0B-10B	1	Встроенные
		генератор				часы
						реального
						времени на
						кристале

Выбор микроконтроллера

Микроконтроллер (далее МК) должен соответствовать таким условиям: иметь встроенный RTC, аппаратные реализации интерфейсов SPI, UART(USART), АЦП, хотя бы 1 аналоговый компаратор, напряжение питания 2.5 В - 3.0 В.

Этим требованиям полностью удовлетворяют микроконтроллеры семейства STM32, а именно линейка STM32L15xyz, где x-1 ил 2, y-C или R или V, z-6 или 8 или B. Микроконтроллеры выпускаются в 6 разных корпусах с разным количеством выводов. Был выбран МК с наименьшим количеством выводов, что позволит заменить на любую другую модель без

серьезного изменения электрической принципиальной схемы. Итого выбран STM32L151C6 в корпусе UFQFPN48 с 48 выводами.

Тактирование микроконтроллера

необходимо внешний генератор. заданию использовать документации МК ДЛЯ подключения внешнего на тактирования используется пин OSC-IN (№5). Так как тактовая частота не была указана – выбрал, самостоятельно основываясь на допустимом диапазоне 32КГц – 4.2МГц, 32.768КГц. Для этого использовал генератор таковой частоты ASVK -32.768kHz-Z-t-f-s-A-T, где t — диапазон температур, f -стабильность частоты, s – симметрия ^[2]. По рекомендации из документации на генератор добавлен шунтирующий конденсатор С7 по питанию на 0.01 пФ.

Рисунок 1. Внешний тактовый генератор

Для выбранного тактового генератора необходимо стабильное питание +3.3B. Для этого был выбран импульсный повышающий преобразователь

MAX856 [3]. Обвязка в виде танталовых конденсаторов C9 и C10, диод Шоттки D3 рекомендована документацией на преобразователь.

Аппаратный сброс микроконтроллера

Рисунок 2. Цепь аппаратного сброса

Согласно документации [1] на МК вход NRST уже имеет подтяжку к питанию.

Figure 20. Recommended NRST pin protection

Рисунок 3. Reference Design из документации на МК

Поэтому достаточно добавить кнопку сброса КЕҮ1, конденсатор С1, отсекающий нарастание напряжения при включении МК, и диод D2, разряжающий конденсатор, когда МК выключен.

Интерфейс SPI

В МК аппаратно реализован данный интерфейс (SPI 4-Wire).

Рисунок 4. Вывод SPI на внешние контакты схемы

Интерфейс RS-485

Для реализации интерфейса rs-485 необходимо использовать конвертер. Был выбран TD321D485H-A, как один из самых простых и доступных. Напряжение питания +3.3B

TD321D485H-A подключается к выходам аппаратного интерфейса USART MK.

Рисунок 5. Реализация интерфейса RS-485

Компаратор

В МК реализован аналоговый компаратор для детектирования уровня. Согласно документации ^[1] были выбраны выходы, способные программно

использовать внутренний компаратор (РА1 и РА2) и выведены на внешние контакты.

Рисунок 6. Вывод компаратора

АЦП

МК имеет встроенный 12 битный АЦП, способный работать как с внешним, так и с внутренним опорным напряжением. Для измерения напряжения 0В-10В необходимо программно настроить внутренне опорное напряжение на +3.6В. Входной сигнал будет подаваться через резистивный делитель.

Расчёт резистивного делителя:

$$\frac{U_{\text{Вых}}}{U_{\text{Bx}}} = \frac{R2}{R1 + R2}$$
$$\frac{R2}{R1 + R2} = 0.33$$
$$R2 = (R1 + R2) * 0.33$$

Удобнее взять R2 которое делится на 33 из номинального ряда E24 При R2 = 3300 Ом

$$3300 = (R1 + 3300) * 0,33$$

 $R1 = 6700$

Так как такого номинала в ряду нет, тогда соберем из двух: 5100 + 1600

Рисунок 7. Резистивный делитель напряжения на вход АЦП

Расчет напряжения пробоя конденсаторов

Максимальное напряжение в цепи 3,3B, тогда напряжение пробоя минимум должно быть +20% = 3,96B

Расчет мощности резисторов

R1: Напряжение в цепи 10B, сопротивление R1 5100 Ом

$$W = \frac{U^2}{R} = \frac{100}{5100} = 0.019 \text{ BT}$$

R2: Напряжение в цепи 10B, сопротивление R2 1600 Ом

$$W = \frac{U^2}{R} = \frac{100}{1600} = 0,0625 \text{ BT}$$

R3: Напряжение в цепи 10B, сопротивление R3 3300 Ом

$$W = \frac{U^2}{R} = \frac{100}{3300} = 0.03 \text{ BT}$$

Перечень используемых компонентов

Имя	PartNumber	Корпус (посадочное	Примечание
		место)	
U1	STM32L151C6T6	UFQFPN48	x - 1/2, y - C/R/V, z -
			6/8/B
U2	TD321D485H-A	8-pin NSOIC	
U3	ASV-24.000MHZ-E-T	4pin OSC-SMD	
U4	MAX856ESA+	SOIC-8	
X1	DT-26 32.768KHz	OSC-TH	

D1	1N5817	SOD-323	
D2	1N4148	DO-35	

Имя	Номинал	Номинальный ряд	Напряжение пробоя	Тип
C1, C3	68мкФ	E6	>3,96B	Танталовый
C2, C8, C9,	0.1мкФ	E3	>3,96B	Керамический
C10, C11,				
C12, C13,				
C14				
C6	0.1мкФ	E3	>3,96B	Электролитический
C4, C5	1.1пкФ	E24	>3,96B	Керамический
C7	0.01мкФ	E3	>3,96B	Керамический

Имя	Номинал, Ом	Номинальный ряд	Корпус	Мощность, Вт
R1	5100	E24		0,125
R2	1600	E24		0,125
R3	3300	E24		0,125

Имя	PartNumber	Номинал
L1	LQH43CN470K	47 мГн

Электрическая принципиальная схема

Список использованных источников

- 1. STM32L151x6/8/B STM32L152x6/8/B Datasheet DocID17659 Rev 12.-ST.-133 c.
- 2. ASVK Series Datasheet Abracon, 2009 2c
- 3. MAX856/MAX858 Datasheet Maxim 12c