

Electrical Resistance Change of Ceramic Matrix Composites in Response to Applied Load and Microstructural Damage

Craig Smith
Ohio Aerospace Institute

Greg Morscher
The University of Akron

Why Electrical Resistance?

It would be beneficial to accurately detect small-scale transverse matrix cracks in a CMC coupon or component

As cracks form, only bridging fibers can carry current → resistance increases

For MI SiC/SiC, the matrix is more conductive than the fibers, which should give high sensitivity to crack formation

This is a relatively simple technique compared to other inspection methods

Experimental Procedure

- Resistance measured by four-point probe method
- Silver paint on surface for lower contact resistance
- Grip region wrapped with copper mesh (Used as electrical contact)
 - Offers a simple way of attaching electrical leads for elevated temperature tests
 - For select room-temperature samples, voltage of the contour gage section was also monitored
- Gripped with ceramic wedge grips (for electrical insulation)
- Capacitance strain gage used with 1% range over 25mm
- Resistance monitored with Agilent 34420A micro-Ohm meter
- Acoustic emission monitored by 50kHz to 2MHz sensors just outside the gage section

Room Temperature Damage Characterization

Syl-iBN/ Slurry Cast MI Matrix Woven Composite ($f = 0.38$)

Sample	Max Stress, MPa	Stiffness, GPa	Initial Resistivity, $\Omega\text{-cm}$	Resistance change, %	Etched Crack Density, mm^{-1}	PL Stress, MPa	1 st Loud AE Event, MPa	Stress where Resistance is non-linear, MPa
1	247*	246	0.027	17.9	0.9	170	138	140
2	300*	237	0.025	78.5	3	180	132	140
3	430	323	0.026	504	10	NA	103	115
4	440	253	0.023	580	--	180	139	110
5	442	260	0.024	466	11.5	170	147	150

Note: all samples have eight plies with a BN interphase, 800 fibers per tow, and total fiber volume fraction of 0.38

* These samples were unloaded prior to failure to measure crack density

Room Temperature Damage Characterization

Syl-iBN/ Slurry Cast MI Matrix Woven Composite ($f = 0.38$)

PL Stress, MPa	1 st Loud AE Event, MPa	Stress where Resistance is non-linear, MPa
170	138	140
180	132	140
NA	103	115
180	139	110
170	147	150

w, and total fiber volume fraction of 0.38

Room Temperature Damage Characterization

GE Hi-NicS/ Pre-preg MI Matrix Laminate composite ($f = 0.22$)

Sample	Max Stress, MPa	Stiffness, GPa	Initial Resistivity, $\Omega\text{-cm}$	Resistance change, %	PL Stress, MPa	1 st Loud AE Event, MPa	Stress where Resistance is non-linear, MPa
0/90 balanced (0°)	274	288	0.024	118	248	208	230
0/90 balanced (+/-45°)	228	284	0.027	11.2	225	217	215
0/90 balanced (+20/-70°)	235	282	0.026	129	232	204	210
0/90 balanced (+70/-20°)	210	247	0.027	22.4	210	168	160
0/90 biased 2:1 in 0°	300	292	0.027	530	310	262	260

Note: all samples have eight plies with a BN interphase and total fiber volume fraction of 0.22

Room Temperature Damage Characterization

GE Hi-NicS/ Pre-preg MI Matrix Laminate composite ($f = 0.22$)

Sample
0/90 balanced (0)
0/90 biased 2:1

Note: all sample

PL Stress, MPa	1 st Loud AE Event, MPa	Stress where Resistance is non-linear, MPa
248	208	230
225	217	215
232	204	210
210	168	160
310	262	260

volume fraction of 0.22

The Need for a Model

Key Benefits

- Can be measured in-situ
- Resistance changes permanently for inspection at zero load
- The deviation from linearity correlates with the proportional limit stress
- Resistance is sensitive to crack formation
- Can be used at elevated temperature
- Repeatable

Key Concerns

- The data needs to be related to the microstructural changes in the material
- Many variables at room temperature
 - crack formation, crack growth, fiber/interphase sliding, fiber breaks
- Even more variables at elevated temp
 - creep of constituents, oxidation, change in resistivity with temperature
- Need to understand what effect each mechanism has on resistance

Model Development

- Current is applied at the MI matrix surface
- The matrix conductivity is an order of magnitude greater than the fibers (MI contains Si)
- Also, BN insulates the fibers from the matrix
- When the matrix is cracked, current must be transferred to the fibers
- The question is how?

Marshall, Cox, Evans 1985

Unit Cell for GE pre-preg MI

- The composite is treated as a series of concentric cylinders
- Fibers are surrounded by BN, then a Si rich region in the ply, then the bulk MI
- All the fibers are treated as one, while maintaining the same relative volume fractions for constituents
- 90° plies are neglected in this case, since the fibers will not bridge the cracks and they do not provide a continuous path (BN interphases in series)
- Each unit cell represents a specified length along the loading direction ($10 \mu\text{m}$)

Unit Cell for GE pre-preg MI

- Resistance along the length of each constituent:

$$R_c = \frac{\rho A_c}{L}$$

ρ is the constituent resistivity
 A_c is the cross-sectional area
L is the length of the unit cell

- Similar equations describe the resistance of the constituents in the transverse (radial) direction:

$$R_t = \frac{\rho A_s}{L}$$

A_s is $\frac{1}{2}$ of the mean surface area of the cylinder
 L_t is $\frac{1}{2}$ of the thickness of the cylinder

Material	Resistivity, $\Omega\text{-cm}$
GE 0/90 balanced composite, vf= 0.22	0.027 (measured directly)
Hi-Nicalon S fiber	0.1 (from literature)
GE MI SiC matrix	0.037 (measured directly)
Si rich region in ply	Initially Unknown- very low
BN interphase	Initially Unknown- very high

Model Parameters

- Current is applied to the first and last cells at the outer SiC layer
- Adjusting the BN resistivity has no effect on the un-cracked composite since the matrix resistivity is low
- Resistivity of the Si-rich region can be adjusted to fit the initial composite resistivity

Material	Resistivity, $\Omega\text{-cm}$
GE 0/90 balanced composite, $vf = 0.22$	0.027 (measured directly)
Hi-Nicalon S fiber	0.1 (from literature)
GE MI SiC matrix	0.037 (measured directly)
Si rich region in ply	0.0038 (from model)
BN interphase	Initially Unknown- very high

Model Description

Model Description

- The matrix and BN circuits are broken in the crack
- The fiber will de-bond from the BN and slide over a distance x^1
- An interfacial resistance is introduced between the BN and fiber
- The surrounding unit cells within the distance x^1 will all be affected

8 Stress profile in the fibres for a cracked laminate at an applied stress σ_c

$$u = \frac{\sigma^2 R}{4\tau v_f^2 E_f \left(1 + \frac{E_f v_f}{E_m (1 - v_f)} \right)}$$

Marshall, Cox, Evans 1985

Model Calibration

- Acoustic emission energy is used as an estimate of crack density as a function of stress
- The model introduces cracks at incremental stress levels, according to the AE data
- The cracks are randomly distributed and the overlap length can be specified
- The resistivity of BN is determined by setting $R_i=0$ and adjusting the BN
- If the value is too high, the model will be too sensitive to cracks
- The maximum BN resistivity was chosen such that the model would never overshoot the experiment in the extreme case of $R_i=0$

Material	Resistivity, $\Omega\text{-cm}$
GE 0/90 balanced composite, $vf= 0.22$	0.027 (measured directly)
Hi-Nicalon S fiber	0.1 (from literature)
GE MI SiC matrix	0.037 (measured directly)
Si rich region in ply	0.0038 (from model)
BN interphase	1500 (from model)

Model Results

- Interfacial resistance R_i is assumed to be uniform over the slip length x^1 , but changing with stress
- It is expected that the interfacial resistance increases due to relative sliding between fiber and matrix
- We see that R_i must be proportional to σ^2 to fit the experimental data

- Sliding distance of the fiber at the crack surface is proportional to σ^2

$$u = \frac{\sigma^2 R}{4\tau v_f^2 E_f \left(1 + \frac{E_f v_f}{E_m (1 - v_f)} \right)}$$

Marshall, Cox, Evans 1985

Model Results

- The difference in magnitude of R_i for the two composites is likely due to fiber roughness

Model Results

- By using the parabolic relationship for R_i , the model fits the experiment for the balanced 0/90 GE pre-preg composite at 98% of the strength
- The same parabolic function generated from the balanced composite was used to model an unbalanced 0/90 sample with 2:1 bias in the loading direction
- The model also fit this data, which indicates that the relationship is more than a mere curve fit

Conclusion

- Electrical resistance offers a way of monitoring damage in CMC's
- Several factors influence the electrical properties
- A discrete model has been developed to understand the mechanisms causing electromechanical changes
- The model verifies that the interfacial resistance is a function of stress squared, consistent with fiber sliding

Future Work

Examine the effect of the following:

- R_i varying along the slip length
- Fiber breaks
- Load-unload- reload
- Varying cross-section along the sample
- Temperature
- Creep
- Environment