

PERANCANGAN DAN REALISASI TEMPAT SAMPAH PINTAR YANG DAPAT MENDETEKSI JENIS SAMPAH DENGAN METODE FUZZY MENGGUNAKAN SOLAR CELL SEBAGAI DAYA DENGAN USER INTERFACE SMARTPHONE ANDROID YANG TERINTEGRASI DENGAN JARINGAN KOMUNIKASI INTERNET

BIDANG KEGIATAN PROPOSAL TUGAS AKHIR PROGRAM STUDI D4 TEKNIK TELEKOMUNIKASI

Diusulkan oleh: Amanda Rahmat Hidayat; 151344003; 2015

POLITEKNIK NEGERI BANDUNG BANDUNG 2019

PENGESAHAN PROPOSAL TUGAS AKHIR

1. Judul Kegiatan : Perancangan dan Realisasi Tempat

Sampah Pintar Yang Dapat

Mendeteksi Jenis Sampah Dengan Metode Fuzzy Menggunakan Solar Cell Sebagai Daya Dengan User Interface Smartphone Android Yang Terintegrasi Dengan Jaringan

Tang Termlegrasi Dengan Jaringa

Komunikasi Internet

2. Bidang Kegiatan : Pengajuan Tugas Akhir Program

Studi D4 Teknik Telekomunikasi

3. Pengusul

a. Nama Lengkap : Amanda Rahmat Hidayat

b. NIM : 151344003 c. Jurusan : Teknik Elektro

d. Universitas/Institut/Politeknik : Politeknik Negeri Bandung

e. Alamat Rumah : Jalan Terusan Bumi Asri no.10

RT002/RW017 KP.Burujul Desa: Mekarrahayu, Kec: Margaasih

Kab.Bandung 40218

f. Nomor Tel/HP : 087822834418

g. Alamat email : amandarht@gmail.com

4. Dosen Pendamping

a. Nama Lengkap dan Gelar : Drs. Ashari, S.T, S.ST, M. Eng.

b. NIDN : 0012076005

c. Alamat Rumah : Jl. Budi Luhur No. 3 Cimahi

d. Nomot Tel/HP : 085221214733

5. Biaya Kegiatan Total

a. Kemristekdikti : Rp 2.501.900

b. Sumber Lain : -

6. Jangka Waktu Pelaksanaan : 5 bulan

Bandung, 28 Januari 2019

Pengusul,

(Amanda Rahmat Hidayat)

NIM. 151344003

DAFTAR ISI

PENGESAHAAN PROPOSAL TUGAS AKHIR	ii
DAFTAR ISI	iii
BAB I PENDAHULUAN	1
1.1. Latar Belakang Masalah	1
1.2. Batasan Masalah	2
1.3. Perumusan Masalah	2
1.4. Tujuan	2
1.5. Kegunaan Produk	2
1.6. <u>Luaran</u>	2
BAB II TINJAUAN PUSTAKA	3
BAB III TAHAP PELAKSANAAN	5
3.1. Perancangan	5
3.2. Realisasi	8
3.3. Pengujian	8
3.4. Analisis	9
3.5. <u>Evaluasi</u>	9
BAB IV BIAYA DAN JADWAL KEGIATAN	10
4.1. Anggaran Biaya	10
4.2. Jadwal Kegiatan	10
<u>DAFTAR PUSTAKA</u>	11
<u>LAMPIRAN-LAMPIRAN</u>	12
Lampiran 1. Biodata Pengusul dan Dosen Pembimbing	12
Lampiran 2. Justifikasi Anggaran Kegiatan	16
<u>Lampiran 3. Pembagian Tugas</u>	17
Lampiran 4. Surat Pernyataan Ketua Peneliti	18
Lampiran 5. Gambaran Teknologi yang Hendak Diharapkan	19

BAB 1 PENDAHULUAN

1.1. Latar Belakang Masalah

Indonesia adalah satu negara yang sering terjadi bencana banjir. Ini dikarenakan masyarakat Indonesia belum memiliki kesadaran terhadap kebersihan lingkungan, bahkan jika terdapat sampah dan tempat sampah berada didekatnya masyarakat masih membuang sampah sembarangan. Terdapat berbagai upaya pemerintah agar dapat mengurangi terjadinya bencana banjir seperti melakukan penataan di daerah aliran sungai secara terpadu sesuai dengan fungsi lahan sebagaimana mestinya, mengeruk sampah yang menyumbat gorong-gorong, mengadakan program pengerukan sungai hingga makin dalam, dan lain sebagainya (Staff PKK, 2016).

Untuk mengurangi bencana banjir tidak hanya dapat dilakukan oleh pemerintah saja, masyarakat pun juga harus melakukannya dengan membuang sampah pada tempatnya, lebih baik lagi jika masyarakat dapat mampu mendaur ulang sampah tersebut, sehingga dapat mengurangi tumpukan sampah yang ada di TPS (Tempat Pembuangan Sampah).

Terkadang masyarakat membutuhkan suatu yang berbeda dan unik agar semangat dalam menjaga lingkungan, salah satunya dalam membuang sampah pada tempatnya seperti Tugas Akhir yang telah dibuat yang berjudul "Rancang Bangun Sistem Smart Trash Can Berbasis Android ", Rancangan ini memiliki kelebihan yang unik yaitu dapat membuka tempat sampah otomatis dengan jarak objek ≤ 25 cm, dapat mendeteksi jika sampah didalam penuh dengan buzzer dan LED, dan menggunakan webserver dan android sebagai pengecekan tempat sampah penuh oleh petugas kebersihan (Al Mabrur, 2017). Rancangan ini memiliki kekurangan yaitu tidak dapat memisahkan sampah sesuai dengan jenisnya, tidak dapat membuka tempat sampah jika objek berada disamping atau dibelakang, dan tidak dapat menampung energi listrik menggunakan solar cell sehingga untuk menghidupkan perangkat tempat sampah harus dekat dengan sumber listrik.

Berdasarkan rancangan diatas yang telah dibuat, kami ingin mengembangkan rancangan tersebut dengan membuat tempat sampah pintar yang dapat mendeteksi jenis sampah organik dan anorganik, serta dapat membuka otomatis jika sampah tersebut sudah dideteksi jenis sampahnya. Selain itu tempat sampah dapat mendeteksi jika tempat sampah penuh serta dapat memberitahukan kepada petugas kebersihan dengan user interface smartphone android yang dapat menampilkan peta tempat sampah. Tempat sampah ini menggunakan solar cell yang digunakan sebagai sumber energi listrik untuk menjalankan perangkat dan dapat digunakan untuk mengisi daya baterai handphone.

1.2.Batasan Masalah

Berdasarkan uraian yang telah dikemukakan pada latar belakang, maka penulis membatasi masalah pada pendeteksian sampah yang hanya dapat mendeteksi sampah organik dan anorganik.

1.3.Perumusan Masalah

- 1. Bagaimana cara solar cell sebagai sumber energi listrik untuk menghidupkan perangkat dan dapat digunakan untuk mengisi daya baterai handphone?
- 2. Bagaimana alat dapat membedakan sampah organik dan anorganik serta bagaimana tempat sampah dapat membuka otomatis jika sudah terdeteksi jenis sampahnya?
- 3. Bagaimana cara mengetahui jika tempat sampah penuh?
- 4. Bagaimana petugas kebersihan dapat mengetahui dimana tempat sampah yang sudah penuh?

1.4.Tujuan

Tujuan dari pembuatan karya cipta ini adalah:

- 1. Solar cell dapat digunakan sebagai sumber energi listrik untuk menghidupkan perangkat dan dapat digunakan untuk mengisi daya baterai handphone.
- 2. Dapat mendeteksi jenis sampah organik dan anorganik. Dan tempat sampah dapat membuka otomatis jika sampah sudah terdeteksi jenisnya.
- 3. Dapat mengetahui tempat sampah bila sudah penuh dan dapat memberitahu kepada petugas kebersihan.
- 4. Dapat memberitahukan kepada petugas kebersihan dimana tempat sampah yang sudah penuh.

1.5.Kegunaan Produk

Perangkat yang akan kami buat ini akan digunakan pada daerah dimana masyarakatnya mempunyai kesadaran yang kurang terhadap lingkungan, seperti pada perkotaan, perumahan atau tempat tinggal lainnya. Perangkat ini akan membantu masyarakat yang belum mengetahui jenis sampah yang akan dibuang. Perangkat ini juga dapat menarik perhatian masyarakat karena tempat sampah ini dapat membuka dan menutup otomatis serta pada perangkat ini disematkan USB port yang dapat mengisi daya baterai Handphone. Pengiriman data informasi ke petugas kebersihan jika tempat sampah penuh sangat berguna agar tidak terjadi penumpukan sampah.

1.6.Luaran

Luaran yang diharapkan dari pembuatan proposal ini adalah suatu perangkat yang dapat menarik minat masyarakat agar dapat membuang sampah pada tempatnya dan dapat menambah kesadaran masyarakat terhadap lingkungan disekitarnya.

BAB 2 TINJAUAN PUSTAKA

2.1 Tinjauan Pustaka

Penelitian terlebih dahulu sangat penting untuk menemukan perbedaan maupun persamaan dengan perancangan yang akan dilakukan, dan juga sebagai perbandingan sekaligus landasan dalam perancangan ini. Perancangan yang berhubungan dengan topik yaitu Rancang Bangun Sistem Smart Trash Can Berbasis Android, Rancangan ini memiliki kelebihan yaitu dapat membuka tempat sampah otomatis dengan jarak objek ≤ 25 cm, dapat mendeteksi jika sampah didalam penuh dengan indikator buzzer dan LED, dan menggunakan webserver serta android sebagai pengecekan tempat sampah penuh oleh petugas kebersihan (Al Mabrur, 2017). Rancangan ini memiliki kekurangan juga yaitu tidak dapat memisahkan sampah sesuai dengan jenisnya serta tidak dapat membuka tempat sampah jika objek berada disamping atau dibelakang, dan tidak dapat menampung energi listrik menggunakan solar cell sehingga untuk menghidupkan perangkat tempat sampah harus dekat dengan sumber listrik.

Perancangan lainnya yaitu Proyek Akhir Tempat Sampah Pintar Menggunakan Mikrokontroler ATMega8535, Rancangan ini memiliki kelebihan yaitu dapat membuka tempat sampah otomatis dengan jarak objek ≤ 77cm (Nurcahyono). Rancangan ini memiliki kekurangan juga yaitu tidak bisa terkoneksi dengan petugas kebersihan sehingga jika sampah penuh, petugas kebersihan harus mengecek manual, lalu tidak dapat memisahkan sampah sesuai dengan jenisnya dan tidak dapat menampung energi listrik menggunakan solar cell sehingga untuk menghidupkan perangkat tempat sampah harus dekat dengan sumber listrik.

Rancangan berikut ini berjudul Perancangan dan Pembuatan Smart Trash Bin Berbasis Arduino Uno di Universitas Maarif Hasyim Latif, Rancangan ini memiliki kelebihan yaitu dapat membuka tempat sampah otomatis dengan jarak objek ≤ 30 cm dan dapat mendeteksi jika sampah dalam keadaan penuh dengan menggunakan indikator buzzer dan LED (Sukarjadi et al, 2017). Rancangan ini juga memiliki kekurangan yaitu tidak bisa terkoneksi dengan petugas kebersihan sehingga jika sampah penuh, petugas kebersihan harus mengecek manual, lalu tidak dapat memisahkan sampah sesuai dengan jenisnya dan tidak dapat menampung energi listrik menggunakan solar cell sehingga untuk menghidupkan perangkat tempat sampah harus dekat dengan sumber listrik.

Salah satu rancangan lainnya yaitu Automated Waste Segregator. proyek ini hanya dapat memisahkan sampah kering, sampah basah, dan logam (Chandramohan *et al*, 2014). Rancangan ini memiliki kekurangan yaitu tidak bisa terkoneksi dengan petugas kebersihan sehingga jika sampah penuh,

petugas kebersihan harus mengecek manual, lalu tidak dapat memisahkan sampah sesuai dengan jenisnya, dan tidak dapat menampung energi listrik menggunakan solar cell sehingga untuk menghidupkan perangkat tempat sampah harus dekat dengan sumber listrik.

Dalam pendeteksian jenis sampah digunakan berbagai cara salah satunya menggunakan sensor proximity kapasitif dan sensor proximity induktif, sensor ini mempunyai kekurangan yaitu dalam pendeteksian hanya bisa jarak yang pendek dan memiliki persoalan bagi material yang memiliki konstanta dielektrik yang sama dengan udara yaitu 1,0005 (Rismana, 2013). Pendeteksian lainnya yaitu dapat memanfaatkan teori dielektrik yang menggunakan dua buah plat berdekatan yang berfungsi sebagai kapasitor dengan menggunakan metode fuzzy. Metode Fuzzy digunakan untuk menangani fuzziness (kesamaran) dengan cara merepresentasikan nilai yang bersifat linguistik. Misalnya besar, kecil, sedang, pelan, agak cepat, cepat dan sebagainya (Permana, 2012).

Berdasarkan rancangan diatas yang telah dibuat, kami ingin mengembangkan rancangan tersebut dengan membuat tempat sampah pintar yang dapat mendeteksi jenis sampah organik dan anorganik menggunakan meode fuzzy, serta dapat membuka otomatis jika sampah tersebut sudah dideteksi jenis sampahnya. Selain itu tempat sampah dapat mendeteksi jika tempat sampah penuh serta dapat memberitahukan kepada petugas kebersihan dengan user interface smartphone android yang dapat menampilkan peta tempat sampah. Tempat sampah ini menggunakan solar cell yang digunakan sebagai sumber energi listrik untuk menjalankan perangkat dan dapat digunakan untuk mengisi daya baterai handphone.

BAB 3 TAHAP PELAKSANAAN

Pendeteksian jenis sampah Pendeteksian jenis sampah Sensor Berat Sensor Ultrasonik Pintu Sampah Motor DC Mikrokontroler Driver Solar Cell

Gambar 3.1. Blok diagram keseluruhan Sistem.

Blok digram diatas menggambarkan alur proses keseluruhan sistem itu berjalan. Berikut penjelasan dari masing-masing sistem yang akan dirancang:

1) Solar cell

Gambar 3.2. Flowchart solar cell.

Flowchart diatas menunjukkan proses solar cell akan memberikan sumber energi listrik ke perangkat.

Gambar 3.3. Flowchart Pendeteksian Jenis Sampah.

Perancangan pendeteksian sampah organik dan anorganik dengan pemanfaatan teori dielektrik yang menggunakan dua buah plat berdekatan yang berfungsi sebagai kapasitor. Konstanta dielektrik dapat dikaitkan dengan permitivitas bahan, menghasilkan persamaan untuk kapasitor plat sejajar.

$$C = \frac{\mathcal{E}_{o}A}{d}$$

$$C = \text{Kapasitas Kapasitor (Farad)}$$

$$\mathcal{E}_{o} = \text{permitivitas ruang hampa}$$

$$A = \text{Luas penampang } (m^{2})$$

$$d = \text{jarak keping (m)}$$

setelah penyisipan dielektrik besarnya permitivitas bahan adalah

 $E = E_o E_r$ E = permitivitas bahan $E_o = permitivitas ruang hampa$ $E_r = permitivitas relatif$

Permitivitas relatif tergantung dari jenis bahan. Pendeteksian jenis sampah dilanjutkan dengan rangkaian pembangkit clock dengan menggunakan IC555 yang dapat menghasilkan pulsa clock sehingga dapat diketahui frekuensi yang dihasilkan dari suatu bahan.

Pendeteksian jenis sampah dapat menggunakan metode fuzzy. Metode Fuzzy digunakan untuk menangani fuzziness (kesamaran) dengan cara merepresentasikan nilai yang bersifat linguistik. Pada metode fuzzy terdapat himpunan fuzzy, Himpunan ini didasarkan pada gagasan untuk memperluas jangkauan fungsi karakteristik sedemikian sehingga fungsi tersebut akan mencakup bilangan real pada interval [0,1]. Nilai keanggotaannnya menunjukkan bahwa suatu item dalam semesta pembicaraan tidak hanya berada pada 0 atau 1, namun juga nilai yang terletak diantaranya. Dengan kata lain, nilai kebenaran suatu item tidak hanya bernilai benar atau salah. Nilai 0 menunjukkan salah, nilai 1 menunjukkan benar dan masih ada nilai-nilai yang terletak antara benar dan salah (Gautama, 2017). Dengan himpunan ini dapat dikatakan bahwa nilai 0 digunakan untuk menunjukkan jenis sampah organik dan nilai 1 digunakan untuk menunjukkan jenis sampah anorganik. Sehingga dengan menggunakan metode ini dapat meminimalisir kesalahan pendeteksian jenis sampah.

3) Pemberitahuan penumpukan sampah

Gambar 3.4. Flowchart Pemberitahuan penumpukan sampah.

Perancangan penumpukan sampah dibutuhkan sensor ultrasonik yang bisa mendeteksi jarak sampah. Sampah akan dideteksi terlebih dahulu oleh sensor ultrasonik, apakah sampah sudah berada cukup dekat dengan atap tempat sampah. Jika data sudah menunjukan tempat sampah penuh maka pengiriman notifikasi kepada petugas kebersihan menggunakan modul WIFI dengan user interface android pada petugas kebersihan. User interface tersebut dapat menampilkan tempat sampah mana yang sudah penuh dan menampilkan peta lokasi tempat sampah tersebut, dengan hal ini petugas kebersihan dapat melakukan pekerjaan yang lebih efektif.

3.2. Realisasi

Blok diagram yang sudah ada akan dibuat desain skema dan di realisasikan pada PCB. Perancangan solar cell sebagai sumber energi listrik untuk menghidupkan perangkat disimpan pada bagian atas casing sensor pendeteksi tempat sampah. Perancangan pendeteksi tempat sampah disimpan diatap tempat sampah dan dibuat casing. Motor DC untuk membuka menutup pintu tempat sampah disimpan didalam tempat sampah dekat pintu sampah. Sensor ultrasonik sebagai pendeteksi jika tempat sampah sudah penuh disimpan didalam tempat sampah dan Modul Wifi sebagai pengiriman informasi kepada petugas kebersihan disimpan didalam tempat sampah.

3.3. Pengujian

Pengujian dilakukan dimulai dari setiap bagian-bagian perangkat agar dapat mengetahui kondisinya. Berikut bagian-bagian yang akan diuji:

1. Pengecekan pada rangkaian solar cell, apakah solar cell dapat menerima dan menyimpan energi dari matahari. Pengecekan dilakukan pada kondisi cuaca panas dan saat hujan.

- 2. Pengecekan pada rangkaian sensor pendeteksi tempat sampah yang dapat mendeteksi jenis sampah organik dan anorganik yang akan dibuang pada tempat sampah. Rangkaian ini akan diuji dengan cara menentukan bahan sampah yang akan dibuang dengan mendekatkan beberapa jenis sampah pada rangkaian sensor. Apakah sensor dapat membedakan jenis sampah berbahan organik dan anorganik. Dan pengecekan motor DC apakah dapat berjalan jika sampah sudah diketahui jenisnya.
- 3. Pengecekan sensor ultrasonik untuk mendeteksi banyaknya sampah pada jarak tertentu dan modul WIFI yang dapat mengirimkan informasi kepada petugas kebersihan jika tempat sampah sudah penuh. Sistem pengiriman informasi kemudian akan diuji dengan cara memasukan sampah kedalam tempat sampah hingga jarak tertentu, dan sensor ultrasonik mendeteksi jaraknya hingga pengiriman informasi kepetugas kebersihan.
- 4. Pengecekan pada user interface android. Aplikasi android ini dilengkapi dengan peta yang dapat memudahkan petugas kebersihan untuk mengetahui tempat dimana tempat sampah itu berada.

3.4. Analisis

Solar cell dapat mengubah energi cahaya matahari menjadi energi listrik dengan menggunakan prinsip efek photovoltaic. Efek ini terjadi karena adanya suatu hubungan atau kontak dari dua elektroda sehingga muncul tegangan listrik. Pendeteksian jenis sampah menggunakan kapasitor keping sejajar yang terdiri dari dua keping atau pelat konduktor yang sejajar, masingmasing pelat mempunyai luas penampang yang sama besar dan kedua pelat terpisah sejauh jarak tertentu. Dengan teori dielektrik, bahan isolator yang disisipkan dalam ruang antar plat-plat sebuah kapasitor dapat diketahui nilai permitivitasnya. Contoh bahan dielektrik adalah kertas, karet, kaca, dan udara. Pendeteksian jenis sampah ini dapat menggunakan metode fuzzy. Metode Fuzzy digunakan untuk menangani fuzziness (kesamaran) dengan cara merepresentasikan nilai yang bersifat linguistik. Dengan himpunan pada metode fuzzy ini dapat dikatakan bahwa nilai logik 0 digunakan untuk menunjukkan jenis sampah organik dan nilai logik 1 digunakan untuk menunjukkan jenis sampah anorganik. Sehingga dengan menggunakan metode ini dapat meminimalisir kesalahan pendeteksian jenis sampah.

3.5. Evaluasi

Diharapkan perangkat ini dapat menarik minat masyarakat yang kurang memiliki kesadaran terhadap lingkungan sekitarnya, juga dapat membantu masyarakat yang sedang membutuhkan listrik untuk mengisi daya baterai handphone.

BAB 4 BIAYA DAN JADWAL KEGATAN

4.1 Anggaran Biaya

Tabel 4.1. Ringkasan Anggaran Biaya

No	Jenis Pengeluaran	Biaya (Rp)
1	Peralatan penunjang	1.196.900
2	Bahan habis pakai,	530.000
3	Perjalanan	250.000
4	Lain – lain	525.000
	Total	2.501.900

Terbilang: Terbilang Dua Juta Lima Ratus Seribu Sembilan Ratus Rupiah

4.2 Jadwal Kegiatan

Tabel 4.2. Jadwal Kegiatan Penelitian

No.	Kegiatan		Waktu Pengerjaan (Minggu)																		
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1.	Perancangan																				
2.	Survey Komponen																				
3.	Implementasi Alat																				
4.	Tahap Analisis																				
5.	Pengujian Alat																				
6.	Evaluasi																				
7.	Pembuatan Laporan Akhir																				

DAFTAR PUSTAKA

- Al Mabrur, Muhammad Mukrim. 2017. Rancang Bangun Sistem *Smart Trash Can* Berbasis Android. Makassar: UIN Alauddin Makassar.
- Chandramohan, Amrutha. dkk. 2014. Automated Waste Segregator. India: Rashtreeya Vidyalaya College of Engineering (R.V.C.E.)
- Gautama, Elliana. 2017. "Metode Fuzzy Logic (Logika Fuzzy) untuk Mendukung Keputusan". Available: https://dosen.perbanas.id/metode-fuzzy-logic logika-fuzzy-untuk-mendukung-keputusan/.
- Nurcahyono, Paulus Edi. Proyek Akhir Tempat Sampah Pintar Menggunakan Mikrokontroler Atmega8535. Eprints@UNY.
- Rismana, Diky. 2013. Sensor Proximity(Kedekatan). Bekasi: Universitas Islam 45 Bekasi.
- Permana, Febri Puguh. 2012. "Fuzzy Logic: Kelebihan dan Kekurangan". Available: http://febripuguhpermana.blogspot.com/2012/01/fuzzy-logic kelebihan-dan-kekurangan.html.
- Staff PKK. 2016." Tindakan Yang Dilakukan Untuk Mengurangi Dampak Banjir". (Tips Siaga Bencana). Available: http://pusatkrisis.kemkes.go.id/tindakan-yang dilakukan-untuk-mengurangi-dampak-banjir.
- Sukarjadi, Deby Tobagus Setiawan, Arifiyanto, dan Moch. Hatta. 2017.

 Perancangan dan Pembuatan Smart Trash Bin Berbasis Arduino Uno Di
 Universitas Maarif Hasyim Latif. Engineering and Sains Journal: Volume
 1, Nomor 2, Hal 101-110.

Lampiran 1. Biodata Pengusul dan Dosen Pendamping

1. Biodata Pengusul

A. Identitas Diri

1	Nama Lengkap	Amanda Rahmat Hidayat
2	Jenis Kelamin	Laki – Laki
3	Program Studi	D4 – Teknik Telekomunikasi
4	NIM	151344003
5	Tempat dan Tanggal Lahir	Bandung, 28 Juli 1997
6	E-mail	amandarht@gmail.com
7	Nomor Telepon/HP	087822834418

B. Kegiatan Kemahasiswaan Yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam kegiatan	Waktu dan Tempat
1	Kunjungan Industri 1.0	Peserta	2016/Indosat
2	Kunjungan Industri 2.0, Pelatihan Pengenalan Sistem Komunikasi Kabel Laut serta Praktek Penyambungan & Pengukuran Sinyal Optic	Peserta	30 Oktober 2017 / Indosat SKKL Ancol
3	Seminar Telco Knowledge III	Peserta	09 Januari 2016/POLBAN
4	Pelatihan Bela Negara dan Kedisiplinan Mahasiswa POLBAN	Peserta	11 September 2015/Pusdikhub Cimahi
5	ESQ Character Building	Peserta	4 – 5 September 2015/POLBAN
6	Program Pengenalan Kehidupan Kampus 2015 dan LKMM Pra Dasar dengan Tema "The Power Of Doing Good"	Peserta	16 – 20 Agustus 2015/POLBAN
7	Butterfly Act Learning Re- Creation The Power Of Doing Good PPKK POLBAN 2015	Peserta	17 – 18 Agustus 2015/POLBAN
8	Kegiatan Pendidikan Karakter Melalui Mentoring Agama Semester Genap	Peserta	Tahun 2015/POLBAN

Tahun Akademik	
2015/2016 POLBAN	

C. Penghargaan Yang Pernah Diterima

No.	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
	-	-	-

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Proposal Tugas Akhir Program Studi D4 Teknik Telekomunikasi.

Bandung, 28 Januari 2019

Pengusul,

PH

Amanda Rahmat Hidayat

2. Biodata Dosen Pendamping

A. Identitas Diri

1	Nama Lengkap	Drs. Ashari, S.T, S.ST, M. Eng.
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Telekomunikasi
4	NIDN	0012076005
5	Tempat dan Tanggal Lahir	Kebumen, 12 Juli 1960
6	E-mail	asharipolban@gmail.com
7	Nomor Telepon/HP	085221214733

B. Riwayat Pendidikan

Gelar Akademik	S1	S2	S3
Nama Institusi	IKIP Yogyakarta, UNJANI, ITB	UGM	-
Jurusan	Pendidikan Teknik Elektronika, Teknik Elektro, Teknik Elektronika	Teknik Elektronik Elektro Minat Utama Teknologi Informasi	-
Tahun Masuk-Lulus	1983,1999,2002	2012	-

C. Rekam Jejak Tri Dharma PT

C.1. Pendidikan/Pengajaran

No	Nama Mata Kuliah	Wajib/Pilihan	SKS
1	Pemeliharaan Perangkat Telekomunikasi	Wajib	2
2	Bengkel Elektronika dan Telekomunikasi	Wajib	4
3	Elektronika Telekomunikasi	Wajib	2 & 4

C.2. Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1	Pengembangan Sistem Pengontrolan Intensitas		
	dan ON-OFF Lampu-Lampu Penerangan via		
	Jala-Jala Listrik Secara terdistribusi	DIPA POLBAN	2018
	Menggunakan Modem PLCC untuk Aplikasi		
	SMARTHOME		

C.1. Pengabdian Kepada Masyarakat

No	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
1	Perencanaan, Instalasi, Pengoperasian dan	Yayasan YBTMA	2018
	perawatan Sound System di Lingkungan Masjid	Tayasan TBTMA	2016

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Proposal Tugas Akhir Program Studi D4 Teknik Telekomunikasi.

Bandung, 28 Januari 2019 Pembimbing,

Drs. Ashari, S.T, S.ST, M. Eng.

Lampiran 2. Justifikasi Anggaran Kegiatan

1. Jenis Perlengkapan	Volume	Harga Satuan (Rp)	Nilai (Rp)	
ARDUINO MEGA	1 buah	169.900	169.900	
ADK-R3	1 buan	109.900	169.900	
Tempat sampah	2 buah	150.000	300.000	
LCD	1 buah	50.000	50.000	
Modul Wifi	1 buah	50.000	50.000	
Sensor Ultrasonik	2 buah	17.000	34.000	
Motor DC	2 buah	15.000	30.000	
Casing	1 buah	200.000	200.000	
Solar cell	1 buah	40.000	40.000	
USB Port	1 buah	40.000	40.000	
Plat	2 buah	15.000	30.000	
IC555	1 buah	3.000	3.000	
Protoboard	2 buah	75.000	150.000	
Obeng kecil	1 set	100.000	100.000	
SUB TOTAL (Rp)			1.196.900	
2. Bahan Habis	Volume	Harga Satuan (Rp)	Nilai (Rp)	
Timah	1 roll	85.000	85.000	
Lotfet	1 buah	80.000	80.000	
Soldering Stand	1 buah	100.000	100.000	
PCB	1 buah	100.000	100.000	
Kabel Jumper	15 buah	10.000	150.000	
Resistor (Varian)	1 Set	10.000	10.000	
Kapasitor	1 set	5000	5.000	
SUB TOTAL (Rp) 530			530.000	
3. perjalanan	Volume	Harga Satuan (Rp)	Nilai (Rp)	
Keperluan pembelian bahan	10	20.000	200.000	
parkir	10	5.000	50.000	
		SUB TOTAL (Rp)	250.000	
4. Lain-Lain	Volume	Harga Satuan (Rp)	Nilai (Rp)	
Tinta printer	4 set	50.000	200.000	
Kertas HVS A4	2 rim	40.000	80.000	
Penulisan laporan	1 set	245.000	245.000	
		SUB TOTAL (Rp)	525.000	

TOTAL 1+2+3+4 (Rp)	2.501.900	
Terbilang Dua Juta Lima Ratus Seribu Sembilan Ratus Rupiah		

Lampiran 3. Pembagian Tugas

No	Nama/NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/minggu)	Uraian Tugas
1	Amanda Rahmat Hidayat	D4 Teknik Telekomunikasi	Teknik Elektro	20 Jam	Program dan Mikrokontroler

LAMPIRAN 4. SURAT PERNYATAAN PELAKSANA

KEMENTERIAN RISET, TEKNOLOGI, DAN PENDIDIKAN TINGGI POLITEKNIK NEGERI BANDUNG

Jalan Gegerkalong Hilir, Ds. Ciwaruga, Bandung 40012, Kotak Pos 1234, Telepon (022) 2013789, Fax. (022) 2013889

Homepage: www.polban.ac.id Email: polban@polban.ac.id

SURAT PERNYATAAN PELAKSANA

Saya yang menandatangani Surat Pernyataan ini:

Nama : Amanda Rahmat Hidayat

NIM : 151344003

Program Studi : Teknik Telekomunikasi

Jurusan : Elektro

Dengan ini menyatakan bahwa proposal Tugas Akhir saya dengan judul "Perancangan Dan Realisasi Tempat Sampah Pintar Yang Dapat Mendeteksi Jenis Sampah Dengan Metode Fuzzy Menggunakan Solar Cell Sebagai Daya Dengan User Interface Smartphone Android Yang Terintegrasi Dengan Jaringan Komunikasi Internet" yang diusulkan untuk Tugas Akhir tahun anggaran 2019 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Bandung, 28 Januari 2019

Yang mengajukan,

(Amanda Rahmat Hidayat)

NIM. 151344003

Rangkaian pendeteksi sampah

Pintu Deteksi Sampah

Pintu Sampah

Organik

Anorganik

Lampiran 5. Gambaran Teknologi yang Hendak Diterapkembangkan

Deskripsi Sistem:

Terdapat dua buah tempat sampah yang masing-masing berbeda jenis sampahnya, realisasi tempat sampah ini baiknya berada pada perkotaan, perumahan atau tempat tinggal masyarakat yang masih memiliki kesadaran yang kurang terhadap lingkungannya. Tempat sampah ini dilengkapi sensor pendeteksi jenis sampah yang dapat mendeteksi jenis sampah yang akan dibuang, sensor ini disimpan dalam sebuah casing yang akan ditempatkan diatas tempat sampah. Sampah yang akan dibuang dimasukan terlebih dahulu kedalam pintu deteksi sampah untuk ditentukan jenis sampahnya, jika sensor sudah mendeteksi jenis sampahnya maka pintu tempat sampah itu akan membuka otomatis sesuai dengan jenisnya. sensor ultrasonik akan mendeteksi tempat sampah jika sudah penuh pada masing-masing tempat sampah, jika tempat sampah sudah penuh maka perangkat akan mengirimkan informasi dengan aplikasi android kepada petugas kebersihan agar sampah yang menumpuk tersebut segera diambil oleh truk sampah

5.4. Tampilan User Interface Android

Deskripsi Tampilan User Interface Android:

Nomor Gambar	Nama Halaman	Deskripsi
A	Masuk	Menu masuk user. tidak senua orang bisa masuk ke menu utama, hanya petugas kebersihan yang sudah memiliki username yang terdaftar saja.
В	Menu Utama	Terdapat 4 button yang dapat diklik, terdapat button exit yang jika diklik akan keluar dari menu utama.
С	Pemberitahuan	Menu untuk mengetahui jika tempat sampah penuh.

D	Data Tempat Sampah	Menu untuk mengetahui tempat sampah yang	
		terdaftar pada aplikasi.	
Е	Peta Tempat Sampah	Menu untuk mengetahui lokasi tempat	
		sampah yang terdaftar pada aplikasi.	