

SCARA Robot

KINEMATIC MODELING AND SIMULATION

Mateus Seixas <mateus_seixas@hotmail.com.br>

Orientador: Marco Reis

Robótica e Sistemas Autônomos, Senai Cimatec

Sistema FIEB

Artigo de Referência

Kinematic Modeling and Simulation of a SCARA Robot by Using Solid Dynamics and Verification by MATLAB/Simulink

M. S. Alshamasin, F. Ionescu, R. T. Al-Kasasbeh 2009

Robôs SCARA

SELECTIVE COMPLIANCE ARTICULATED ROBOT ARM

- Alta velocidade
- Alta precisão
- Melhor repetibilidade entre manipuladores
- 4 graus de liberdade

Aplicações

istema FIEB SENAI CIMATEC

A Importância das Simulações

As simulações possuem as seguintes vantagens:

- Fáceis de montar
- Baixo custo
- Resultados rápido

Poranto podem ser utilizadas para:

- Prever o comportamento do robô
- Programar off-line
- Avaliar layout
- Fazer estudos de viabilidade
- Otimizar o planejamento de trajetória

SCARA Robot : Mateus Seixas

5 de 18

Cinemática Direta x Cinemática Inversa

SCARA Robot : Mateus Seixas

6 de 18

Cinemática Direta

NOTAÇÃO DENAVIT-HARTENBERG

Tem como objetivo obter o conjunto de equações que descreve a cinemática direta de um robô.

Cada junta do robô é descrita através de 4 parâmetros:

- \bullet θ Ângulo de rotação da junta
- d Deslocamento da junta
- a Comprimento do elo
- \bullet α Ângulo de torção da junta

SCARA Robot : Mateus Seixas

7 de 18

Cinemática Direta

NOTAÇÃO DENAVIT-HARTENBERG

SCARA Robot : Mateus Seixas

Notação Denavit-Hartenberg

SENAI CIMATEC

Notação Denavit-Hartenberg

i	$\theta_{\rm i}$	d _i	$\mathbf{a_i}$	$\alpha_{\rm i}$
1	θ_1	0	L_1	0
2	θ_2^-	0	L_2	0
3	0	d_3	0	<u>0</u>
4	θ_4	d_4	0	0

Sistema FIEB SENAI CIMATEC

Notação Denavit-Hartenberg

MATRIZ DE TRANSFORMAÇÃO HOMOGÊNEA

• Matriz de transformação da junta (i-1) e i:

$$T_i^{i-1} = Rot(z, \theta_i) \cdot Trans(z, d_i) \cdot Trans(x, a_i) \cdot Rot(x, \alpha_i)$$

• Matriz de transformação homogênea:

$$T_n^0 = T_1^0 \cdot T_2^1 \cdot T_3^2 \cdots T_n^{n-1}$$

Cinemática Inversa

A cinemática inversa tem como objetivo encontrar deslocamentos angulares e lineares das juntas a partir da pose do end effector.

A matriz de transformação homemogênea é igual ao produto das matrizes de transformação de uma junta para outra:

$$T_4^0 = T_1^0 \cdot T_2^1 \cdot T_3^2 \cdot T_4^3$$

Logo, solucionando para a junta 4, por exemplo:

$$T_4^3 = (T_3^2)^{-1} \cdot (T_2^1)^{-1} \cdot (T_1^0)^{-1} \cdot T_4^0$$

DINÂMICA

Para o estudo da dinâmica do robô é necessário modelar:

- Atuadores
- Transmissões
- Juntas

Resultados

 $\theta_1 = 1.6493$ rad e $\theta_2 = 1.475 - 2.6178$ rad

Matlab

SD Software

Resultados

 $\theta_1 = 3.0142 - 0.794125$ rad e $\theta_2 = 2.4495696$ rad

Matlab

SD Software

Resultados

 $\theta_1 = 0.232 - 2.4695$ rad e $\theta_2 = 1.3521 - 2.0944$ rad

Matlab

SD Software

Conclusão

- Foi desenvolvido um completo modelo matemático
- As equações de cinemática direta e inversa foram obtidas através da notação de Danevit-Hartenberg
- Foram feitas simulações em Matlab e Solid Dynamics Software
- Os resultados de ambos softwares foram concordantes

Sistema FIEB SENAI CIMATEC

Dúvidas?

mateus_seixas@hotmail.com.br