

SN74AHCT1G04

SCLS319R - MARCH 1996 - REVISED FEBRUARY 2024

SN74AHCT1G04 Single Inverter Gate

1 Features

- Operating range 4.5V to 5.5V
- Max t_{pd} of 7.5ns at 5V
- Low power consumption, 10µA max I_{CC}
- ±8mA output drive at 5V
- Inputs are TTL-voltage compatible
- Latch-up performance exceeds 250mA per JESD

2 Applications

- Notebook PCs
- Electronic Points of Sale
- **Patient Monitoring**
- Motor Controls: AC Induction
- **Network Switches**
- Tests

3 Description

The SN74AHCT1G04 contains one gate. The device performs the Boolean function $Y = \overline{A}$.

Package Information

PART N	JMBER	PACKAGE ⁽¹⁾	PACKAGE SIZE(2)	BODY SIZE(3)	
SN74AHC1	T1C04	DBV (SOT-23, 5)	2.8mm x 2.8mm	2.9mm × 1.6mm	
SN/4AHC1 IG04	DCK (SC-70, 5)	2.00mm x 1.25mm	2.00mm × 1.25mm		

- For more information, see Section 11. (1)
- (2) The package size (length × width) is a nominal value and includes pins, where applicable.
- The body size (length × width) is a nominal value and does not include pins.

Table of Contents

1 Features1	7.3 Feature Description	8
2 Applications1	7.4 Device Functional Modes	8
3 Description1	8 Application and Implementation	9
4 Pin Configuration and Functions3	8.1 Application Information	9
5 Specifications4	8.2 Typical Application	
5.1 Absolute Maximum Ratings4	8.3 Power Supply Recommendations	
5.2 ESD Ratings	8.4 Layout	
5.3 Recommended Operating Conditions4	9 Device and Documentation Support	
5.4 Thermal Information5	9.1 Documentation Support	
5.5 Electrical Characteristics5	9.2 Receiving Notification of Documentation Updates	
5.6 Switching Characteristics5	9.3 Support Resources	. 12
5.7 Operating Characteristics5	9.4 Trademarks	
5.8 Typical Characteristics6	9.5 Electrostatic Discharge Caution	.12
6 Parameter Measurement Information7	9.6 Glossary	
7 Detailed Description8	10 Revision History	
7.1 Overview8	11 Mechanical, Packaging, and Orderable	
7.2 Functional Block Diagram8	Information	. 13

4 Pin Configuration and Functions

DBV OR DCK PACKAGE (TOP VIEW)

NC - No internal connection

Table 4-1. Pin Functions

	PIN		DESCRIPTION
NO.	NAME	TYPE ⁽¹⁾	DESCRIPTION
1	NC	_	No Connection
2	A	I	Input A
3	GND	_	Ground Pin
4	Y	0	Output Y
5	V _{CC}	_	Power Pin

(1) Signal Types: I = Input, O = Output, I/O = Input or Output

5 Specifications

5.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range		-0.5	7	V
V _I (2)	Input voltage range			7	V
V _O (2)	Output voltage range		-0.5	V _{CC} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-20	mA
I _{OK}	Output clamp current	$V_O < 0$ or $V_O > V_{CC}$		±20	mA
Io	Continuous output current	$V_{O} = 0$ to V_{CC}		±25	mA
	Continuous current through V _{CC} or GND			±50	mA
T _{stg}	Storage temperature range		-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Section 5.3 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

5.2 ESD Ratings

			VALUE	UNIT
	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾	±1500		
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾	±1000	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

5.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)(1)

		MIN ⁽¹⁾	MAX	UNIT
V _{CC}	Supply voltage	4.5	5.5	V
V _{IH}	High-level input voltage	2		V
V _{IL}	Low-level Input voltage		0.8	V
VI	Input voltage	0	5.5	V
Vo	Output voltage	0	V _{CC}	V
I _{OH}	High-level output current		-8	mA
I _{OL}	Low-level output current		8	mA
Δt/Δν	Input Transition rise or fall rate		20	ns/V
T _A	Operating free-air temperature	-40	125	°C

All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs (SCBA004)

Product Folder Links: SN74AHCT1G04

⁽²⁾ The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

5.4 Thermal Information

		SN74AF	SN74AHCT1G04		
	THERMAL METRIC(1)	DBV	DCK	UNIT	
		5 P	PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	278	289.2		
R _{0JC(top)}	Junction-to-case (top) thermal resistance	180.5	205.8		
R _{0JB}	Junction-to-board thermal resistance	184.4	176.2	°C/W	
ΨЈТ	Junction-to-top characterization parameter	115.4	117.6	C/VV	
Ψ_{JB}	Junction-to-board characterization parameter	183.4	175.1		
R _{0JC(bot)}	Junction-to-case (bot) thermal resistance	N/A	N/A		

⁽¹⁾ For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

5.5 Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

DAD.	AMETED	TEST	V	TA	= 25°C		–40°C to	85°C	-40°C to 1	25°C	UNIT
PARAMETER		CONDITIONS	V _{cc}	MIN	TYP	MAX	MIN	MAX	MIN	MAX	UNIT
	High	I _{OH} = -50 μA		4.4	4.5		4.4		4.4		
V _{OH}	level output voltage	I _{OH} = -8 mA	4.5 V	3.94			3.8		3.8		V
		I _{OL} = 50 μA				0.1		0.1		0.1	
V _{OL}	output voltage	I _{OL} = 8 mA	4.5 V			0.36		0.44		0.44	V
I _I	Input leakage current	V _I = 5.5 V or GND	0 V to 5.5 V			±0.1		±1		±1	μΑ
I _{CC}	Supply current	$V_1 = V_{CC}$ or GND, $I_0 = 0$	5.5 V			1		10		10	μΑ
ΔI _{CC} ⁽¹⁾	Supply- Current Change	One input at 3.4 V, Other Inputs at V _{CC} or GND	5.5 V			1.35		1.5		1.5	mA
C _i	Input Capacita nce	V _I = V _{CC} or GND	5 V		4			10		10	pF

⁽¹⁾ This is the increase in supply current for each input at one of the specified TTL voltage levels, rather than 0 V or V_{CC}.

5.6 Switching Characteristics

over recommended operating free-air temperature range, V_{CC} = 5 V ± 0.5 V (unless otherwise noted) (see Load Circuit And Voltage Waveforms)

PARAMETER	FROM	то оитрит		T _A = 2	5°C	-40°C t	o 85°C	-40°C to	125°C	UNIT
PARAMETER	(INPUT)	(OUTPUT)	CAPACITANCE	TYP	MAX	MIN	MAX	MIN	MAX	ONIT
t _{PLH}	A or B	V	C _L = 15 pF	4.7		1	7.5	1	8	ns
t _{PHL}	AOIB	ı		4.7		1	7.5	1	8	
t _{PLH}	A or B	V	Y C _L = 50 pF	5.5		1	8.5	1	9	no
t _{PHL}	AUIB	ľ		5.5		1	8.5	1	9	ns

5.7 Operating Characteristics

 $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CO	ONDITIONS	TYP	UNIT
C _{pd}	Power dissipation capacitance	No load,	f = 1 MHz	14	pF

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

5.8 Typical Characteristics

Figure 5-1. TPD vs Temperature

6 Parameter Measurement Information

- C₁ includes probe and jig capacitance.
- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 1 MHz, $Z_O = 50 \Omega$, $t_r \leq$ 3 ns, $t_f \leq$ 3 ns.
- D. The outputs are measured one at a time with one input transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

Figure 6-1. Load Circuit And Voltage Waveforms

7 Detailed Description

7.1 Overview

The SN74AHCT1G04 device contains one inverter. This device has TTL input levels that allow up translation from 3.3 V to 5 V.

7.2 Functional Block Diagram

Figure 7-1. Logic Diagram (Positive Logic)

7.3 Feature Description

- V_{CC} is optimized at 5 V
- Allows up voltage translation from 3.3 V to 5 V
 - Inputs accept V_{IH} levels of 2 V
- · Slow edge rates minimize output ringing
- · Inputs are TTL-Voltage compatible

7.4 Device Functional Modes

Table 7-1. Function Table

INPUT ⁽¹⁾ A	OUTPUT ⁽²⁾
Н	L
L	Н

- (1) H = High Voltage Level, L = Low Voltage Level, X = Don't Care
- (2) H = Driving High, L = Driving Low, Z = High Impedance State

Product Folder Links: SN74AHCT1G04

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

8.1 Application Information

SN74AHCT1G04 is a low-drive CMOS device that can be used for a multitude of inverting type applications where output ringing is a concern. The low drive and slow edge rates will minimize overshoot and undershoot on the outputs. The input switching levels have been lowered to accommodate TTL inputs of 0.8 V V_{IL} and 2 V V_{IH} . This feature makes it Ideal for translating up from 3.3 V to 5 V. Figure 8-2 shows this type of translation.

8.2 Typical Application

Figure 8-1. Typical Application Schematic

8.2.1 Design Requirements

This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads, so routing and load conditions should be considered to prevent ringing.

8.2.2 Detailed Design Procedure

- Recommended Input Conditions
 - For rise time and fall time specifications, see $\Delta t/\Delta V$ in the Section 5.3 table.
 - For specified High and low levels, see V_{IH} and V_{IL} in the Section 5.3 table.
 - Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid V_{CC}.
- 2. Recommend Output Conditions
 - Load currents should not exceed 25 mA per output and 50 mA total for the part.
 - Outputs should not be pulled above V_{CC}.

8.2.3 Application Curves

Figure 8-2. 3.3-V to 5-V Translation

8.3 Power Supply Recommendations

The power supply can be any voltage between the MIN and MAX supply voltage rating located in the Section 5.3 table.

Each V_{CC} pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, 0.1 μ F is recommended. If there are multiple V_{CC} pins, 0.01 μ F or 0.022 μ F is recommended for each power pin. It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1 μ F and 1 μ F are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results.

8.4 Layout

8.4.1 Layout Guidelines

When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used, or when only 3 of the 4-buffer gates are used. Such input pins should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states.

Specified in Figure 8-3 are rules that must be observed under all circumstances. All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or V_{CC} , whichever makes more sense or is more convenient. It is acceptable to float outputs unless the part is a transceiver. If the transceiver has an output enable pin, it will disable the outputs section of the part when asserted. This will not disable the input section of the I/Os so they also cannot float when disabled.

8.4.1.1 Layout Example

Figure 8-3. Layout Diagram

9 Device and Documentation Support

9.1 Documentation Support

9.1.1 Related Documentation

For related documentation, see the following:

- Texas Instruments, CMOS Power Consumption and Cpd Calculation application note
- Texas Instruments, *Designing With Logic* application note
- Texas Instruments, Thermal Characteristics of Standard Linear and Logic (SLL) Packages and Devices application note
- Texas Instruments, Implications of Slow or Floating CMOS Inputs application note

9.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

9.3 Support Resources

E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

9.4 Trademarks

E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

9.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

9.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

10 Revision History

Changes from Revision Q (October 2023) to Revision R (February 2024)

Page

Updated thermal values for DBV package from RθJA = 208.2 to 278, RθJC(top) = 76.1 to 180.5, RθJB = 52.5

Changes from Revision P (December 2014) to Revision Q (October 2023)

Page

- Updated thermal values for DCK package from RθJA = 287.6 to 289.2, RθJC(top) = 97.7 to 205.8, RθJB = 65

Product Folder Links: SN74AHCT1G04

11 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Copyright © 2024 Texas Instruments Incorporated

Submit Document Feedback

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2024, Texas Instruments Incorporated