Relatório 2º projeto ASA 2021/2022

Grupo: al004

Aluno(s): Guilherme Leitão (99951) e Sebastião Carvalho (99326)

Descrição do Problema e da Solução

O problema pede-nos para descobrir qual/quais os ancestrais comuns mais próximos de dois vértices de uma dada árvore genealógica. Devido à natureza do problema, nos algoritmos DFS não foram usados tempos de descoberta e fecho. Primeiramente, realizámos a leitura do input e da construção da árvore sob a forma de um grafo, trocando o sentido dos arcos, ficando com o grafo transposto. De seguida verificamos se o grafo dado é um DAG, usando um algoritmo modificado da DFS para encontrar ciclos num grafo. Chamemos v1 e v2 aos vértices que pretendemos encontrar os ancestrais comuns. Primeiro realizamos uma DFS a começar no vértice v1 para achar todos os ancestrais desse vértice, ignorando quaisquer descendentes deste vértice. Nesta primeira DFS atribuímos a cor cinzenta à medida que descobrimos um vértice e a cor preta quando o "fechamos". Assim, no grafo, os nós pretos são ancestrais de v1. De seguida, fazemos uma segunda DFS começando no vértice v2, e sempre que encontramos um nó que esteja a preto, pintamo-lo de azul. Significa que encontrámos um ancestral comum a v1 e v2. Sempre que encontramos um ancestral comum, tentamos ver se o seu pai na DFS pode ser um vértice que também seja azul, alterando o pai desse vértice se a condição se verificar. Assim, todos os ancestrais comuns que têm um pai na segunda DFS que também é ancestral comum, não são de menor nível. Usando esse filtro, ficamos apenas com o conjunto de ancestrais comuns de menor nível.

Análise Teórica

Sendo V o número de vértices e E o número de arcos:

- Criação dos vértices Θ(V)
- Leitura simples dos dados de entrada, a depender linearmente de $E \Theta(E)$
- Verificação da não existência de ciclos O(V + E)
- Reinício dos vértices após verificação de ciclos Θ(V)
- Aplicação de duas DFS O(V + E)
- Remoção dos ancestrais comuns não de menor nível O (V)
- Apresentação dos dados (máximo V 2 ancestrais comuns de menor nível): é usado printf() - O(V)

Complexidade global da solução: O(V + E)

Avaliação Experimental dos Resultados

Para o problema foram utilizados inputs aleatórios de probabilidade de geração de arcos de 0.1.

A tabela seguinte mostra a relação entre o número de vértices V mais arestas E e t segundos que demora o programa a executar:

٧	
	100000
	200000
	300000
	400000
	500000
	600000
	700000
	800000
	900000
1	1000000

Ε	
	199972
	399974
	599972
	799970
	999972
	1199974
	1399971
	1599973
	1799974
	1999974

V + E	t/s
299972	0,204
599974	0,425
899972	0,657
1199970	0,851
1499972	1,1
1799974	1,354
2099971	1,556
2399973	1,736
2699974	1,887
2999974	2,184

No gráfico do problema podemos ver que ele tem uma dispersão aproximadamente linear em função de V + E. Logo, concluímos que os dados obtidos experimentalmente estão em concordância com os esperados.