Multiple testing

Justin Chumbley

Laboratory for Social and Neural Systems Research University of Zurich

With many thanks for slides & images to:

FIL Methods group

Overview of SPM - Random field theory

Error at a single voxel

Error at a single voxel

Error at a single voxel

Decision:

 H_0 , H_1 : zero/non-zero activation

Error at a single voxel

Decision:

 H_0 , H_1 : zero/non-zero activation

Error at a single voxel

Decision:

 H_0 , H_1 : zero/non-zero activation

Error at a single voxel

Decision:

 H_0 , H_1 : zero/non-zero activation

estimate

Decision rule (threshold) h, determines related error rates α_h , β_h

Convention: Penalize complexity Choose h to give acceptable α_h under H_0

Multiple tests

What is the problem?

Multiple tests

Penalize each independent opportunity for error.

$$p(1 \text{ or more } FP) = FWER_h$$

 $E(\frac{FP}{All \text{ positives}}) = FDR$

contrast of estimated parameters
$$t = \frac{}{ \begin{array}{c} \\ \text{variance} \\ \text{estimate} \end{array} }$$

Multiple tests

Bonferonni

$$FWER_{h} \leq N\alpha_{h}$$

$$FWER_{h} / N \leq \alpha_{h}$$

Convention: Choose h to limit $FWER_h$ assuming family-wise H_0

Issues

- 1. Voxels or regions
- 2. Bonferroni too harsh (insensitive)
 - Unnecessary penalty for sampling resolution (#voxels/volume)
 - · Unnecessary penalty for independence

- intrinsic smoothness
 - MRI signals are aquired in k-space (Fourier space); after projection on anatomical space, signals have continuous support
 - diffusion of vasodilatory molecules has extended spatial support
- · extrinsic smoothness
 - resampling during preprocessing
 - matched filter theorem
 - ightarrow deliberate additional smoothing to increase SNR
 - Robustness to between-subject anatomical differences

Acknowledge/estimate dependence Detect effects in smooth landscape, not voxels

- Apply high threshold: identify improbably high peaks
- Apply lower threshold: identify improbably broad peaks
- 3. Total number of regions?

Null distribution?

- 1. Simulate null experiments
- 2. Model null experiments

Use continuous random field theory

• image ≈ discretised continuous random field

Smoothness quantified: resolution elements ('resels')

- similar, but not identical to # independent observations
- · computed from spatial derivatives of the residuals

Euler characteristic

- threshold an image at high h# blobs = N_h

FWER
$$\approx E[N_h]$$

= p (blob)

Unified Formula

- General form for expected Euler characteristic
 - χ², F, & t fields

$$E[N_h(\Omega)] = \sum_d R_d(\Omega) \rho_d(h)$$

Small volumes: Anatomical atlas, 'functional localisers', orthogonal contrasts, volume around previously reported coordinates...

$R_d(\Omega)$: d-dimensional Minkowski functional of Ω

- function of dimension, space Ω and smoothness:

 $R_0(\Omega) = N(\Omega)$ Euler characteristic of

 $R_1(\Omega)$ = resel diameter

 $R_2(\Omega)$ = resel surface area

 $R_3(\Omega)$ = resel volume

 $\rho_d(\Omega)$: d-dimensional EC density of $Z(\underline{x})$

 function of dimension and threshold, specific for RF type:

E.g. Gaussian RF:

 $\rho_0(h) = 1 - \Phi(h)$

 $\rho_1(h) = (4 \ln 2)^{1/2} \exp(-h^2/2) / (2\pi)$

 $\rho_2(h) = (4 \ln 2) \exp(-h^2/2) / (2\pi)^{3/2}$

 $\rho_3(h) = (4 \ln 2)^{3/2} (h^2 - 1) \exp(-h^2/2) / (2\pi)^2$

 $\rho_4(h) = (4 \ln 2)^2 (h^3 - 3h) \exp(-h^2/2) / (2\pi)^{5/2}$

Euler characteristic (EC) for 2D images

$$E[N_h] = R(4 \log 2)(2\pi)^{-3/2} h \exp(-0.5h^2)$$

R = number of resels

h = threshold

Set h such that $E[N_h] = 0.05$

Example: For 100 resels, $E[N_h] = 0.049$ for a Z threshold of 3.8. That is, the probability of getting one or more blobs where Z is greater than 3.8, is 0.049.

Spatial extent: similar

Voxel, cluster and set level tests

Statistics: p-values adjusted for search volume

set-level		cluster-level					peak-level					mm	mn
þ	C	P _{FWE-∞ n}	Q _{EDR-corr}	Ĥ _E	Puncom	ρ _{POE-com}	ij _{FDH-cor}	, Т	(Z <u>_</u>)	P_{uncorr}		"""	
0.000	16	0.000	0.000	138	0.000	0.000	0.000	11.04	7.64	0.000	-34	-70	-2
						0.0DD	0.009	7.31	5.90	0.000	-44	-74	-2
		0.000	0.000	452	0.000	0.000	0.000	9.82	7.14	0.000	6	16	4
		0.000	0.000	300	0.000	0.000	0.000	9.14	6.84	0.000	44	16	
						0.041	0.833	5.29	4.64	0.000	38	12	1
		0.000	0.000	173	0.000	0.000	0.009	7.39	5.95	0.000	44	-58	-2
						0.000	0.009	7.35	5.93	0.000	52	-58	-2
						0.002	0.087	6.42	5,38	0.000	50	-66	-2
		0.000	0.000	112	0.000	0.000	0.025	6.93	5.69	0.000	-2	-66	-2
						0.012	0.418	5.73	4.94	0.000	4	-76	-2
						0.014	0.472	5.65	4.89	0.000	z	-86	-2
		0.013	0.374	3	0.257	0.010	0.406	5.77	4.97	0.000	-52	20	
		0.000	0.019	20	0.008	0.011	0.406	5.76	4.96	0.000	10	-10	
		0.008	0.263	5	0.148	0.016	0.472	5.63	4.87	0.000	-8	-16	1
		0.000	0.012	24	0.004	0.016	0.472	5.61	4.86	0.000	44	4	2
						0.035	0.736	5.34	4.68	D. 000	46	6	2
		0.006	0.231	6	0.116	0.018	0.472	5.59	4.84	0.000	-6	-48	
		0.026	0.520	1	0.520	0.021	0.538	5.52	4.80	0.000	-6	-54	
		0.026	0.520	1	0.520	0.030	0.713	5.40	4.72	0.000	6	-84	

fable shows 3 local maxima more than 8.0mm apart

Height threshold: T = 5.21, p = 0.000 (0.050) Extent threshold: k = 0 voxels, p = 1.000 (0.050) Expected voxels per cluster, $4 \Leftrightarrow = 2.519$ Expected number of clusters, $4 \Leftrightarrow = 0.05$ EVED: 5.213, FDRp: 5.702, FWEC: 1, FDRc: 20

Degrees of freedom = [1.0, 45.0] FWHM = 9.8 10.6 15.6 mm mm mm; 4.9 5.3 3.9 {voxels} Volume: 880432 = 55027 voxels = 472.2 resels Voxel size: 2.0 2.0 4.0 mm mm mm; (resel = 102.26 voxels) Page 1

Detect an effect of unknown extent & location

There is a multiple testing problem ('voxel' or 'blob' perspective).

Further reading

- Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Comparing functional (PET) images: the assessment of significant change. J Cereb Blood Flow Metab. 1991 Jul;11(4):690-9.
- Genovese CR, Lazar NA, Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage. 2002 Apr;15(4):870-8.
- Worsley KJ Marrett S Neelin P Vandal AC Friston KJ Evans AC. A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping 1996;4:58-73.