PHẦN B. NHIỆT HỌC

CHƯƠNG: MỞ ĐẦU

- 0-1. Có 40
g khí ${\rm O}_2$ chiếm thể tích 3l ở áp suất 10
at.
 - a. Tính nhiệt độ của khí
 - b. Cho khối khí giãn nở đẳng áp tới thể tích 4l. Hỏi nhiệt độ của khối khí sau khi giãn nở.

<u>Giải</u>

a. Phương trình Mendeleev – Crapayron pV=m/ μ RT

Nhiệt độ khối khí $T_1 = \mu p_1 V_1 / R = 292,5 K$.

b. Quá trình đẳng áp: V/T=const

Nhiệt độ khối khí $T_2=T_1V_2/V_1=390K$

- 0-2. Có 10g khí H_2 ở áp suất 8,2
at đựng trong một bình thể tích 20l.
 - a. Tính nhiệt độ của khối khí
 - b. Hơ nóng đẳng tích khối khí này đến áp suất của nó bằng 9at. Tính nhiệt độ của khối khí sau khi hơ nóng

$Gi \mathring{a} i$

- a. Nhiệt độ khối khí $T_1 = \mu p_1 V_1 / R = 388K$.
- b. Quá trình đẳng tích: p/T=const

Nhiệt độ khối khí $T_2=T_1p_2/p_1=425K$ (lấy 1at=9,81Pa)

0-3. Có 10g khí đựng trong một bình, áp suất 10⁷Pa. Người ta lấy bình ra một lượng khí cho tới khi áp suất của khí còn lại trong bình bằng 2,5.10⁶Pa. Coi nhiệt độ khí không đổi. Tìm lượng khí đã lấy ra

<u>Giải</u>

Phương trình Mendeleev – Crapayron cho khối khí trước và sau khi lấy khí $p_1V=m_1/\mu$ RT, $p_2V=m_2/\mu$ RT,

$$\frac{p_1}{m_1} = \frac{p_2}{m_2} = \frac{p_1 - p_2}{m_1 - m_2}$$

Khối lượng khí đã lấy:

$$\Delta m = m_1 - m_2 = \left(1 - \frac{p_2}{p_1}\right) m_1 = 7,5 \text{kg}$$

0-4. Có 12g khí chiếm thể tích 4l ở 7°C. Sau khi hơ nóng đẳng áp, khối lượng riêng của nó bằng 6.10⁻⁴g/cm³. Tìm nhiệt độ của khối khí sau khi hơ nóng.

<u>Giải</u>

Trước khi hơ nóng

$$pV=m/\mu RT_1$$
 (1)

Sau khi hơ nóng pV=m/µ RT $_2$

$$p = \rho RT_2/\mu \tag{2}$$

Lấy (1)/(2)
$$T_2 = \frac{m}{\rho V} T_1 = \frac{m}{\rho V} (t_1 + 273) = 1400 K$$

- 0-5. Có 10 g khí Oxy ở nhiệt độ 10°C, áp suất 3at. Sau khi hơ nóng đẳng áp, khối khí chiếm thể tích 10l. Tìm:
 - a. Thể tích khối khí trước khi giãn nở.
 - b. Nhiệt độ khối khí sau khi giãn nở.
 - c. Khối lượng riêng khối khí trước khi giãn nở.
 - d. Khối lượng riêng khối khí sau khi giãn nở.

<u>Giải</u>

- a. Thể tích khí trước khi giãn nở: $V_1 = \mu p / RT_1 \approx 2,4\ell$
- b. Nhiệt độ khí sau khi giãn nở: $T_2=T_1V_2/V_1\approx 1170K$
- c. Khối lượng riêng của khí trước khi giãn nở: $\rho_1 = \frac{m_1}{V_1} = 4,14 \, \text{kg/m}^3$
- d. Khối lượng riêng của khí sau khi giãn nở: $\rho_1 = \frac{m_1}{V_2} = 1 \, \text{kg/m}^3$
- 0-6. Một bình chứa một khí nén ở 27°C và áp suất 40at. Tìm áp suất của khí khi đã có một khối lượng khí thoát ra khỏi bình và nhiệt độ hạ xuống tới 12°C.

<u>Giải</u>

 $Phương\ trình\ Mendeleev-Crapayron$

$$p_1 V = \frac{m}{\mu} RT$$

$$p_2 V = \frac{m/2}{\mu} R(T - \Delta T)$$

$$\Rightarrow p_2 = \frac{T - \Delta T}{2T} p_1 \approx 19at$$

0-7. Một khí cầu có thể tích 300m³. Người ta bơm vào khí cầu khí hyđrô ở 20°C dưới áp suất 750mmHg. Nếu mỗi giây bơm được 25g thì sau bao lâu thì bơm xong?

$Gi \mathring{a} i$

___ Khối lượng khí cần bơm

$$m = \frac{\mu PV}{RT}$$

Thời gian cần bơm

$$t = \frac{m}{\Delta m} = \frac{\mu pV}{\Delta mRT}$$

Thay **số** p=750mmHg=1,05Pa, T=273+20=293K, V=300m³, R=8,31J/molK, μ =2g, Δ m=25g. Nhận được t \approx 990s

0-8. Cho tác dụng H2SO4 với đá vôi thu được 1320cm3 khí CO2 ở nhiệt độ 22oC và 1000mmHg. Hỏi lượng đá vôi đã tham gia phán ứng.

<u>Giải</u>

Phản ứng

$$CaCO_3 + H_2SO_4 \rightarrow CaSO_4 + CO_2 + H_2O$$

Số mol CO₂ sinh ra bằng số mol của CaCO₃ tham gian phản ứng. Khối lượng của CaCO₃ tham gian phản ứng:

$$m = n_{CaCO_3}.M_{CaCO_3} = n_{CO_2}.100 = \frac{pV}{RT}100$$

Thay số p=1000mmHg=1,33.10⁵ Pa , $V = 1,32.10^{-3} \text{ m}^3$ m $\approx 7,18\text{g}$

0-9. Có hai bình cầu được nối với nhau bằng một ống có khoá, chứa cùng một chất khí. áp suất ở bình thứ nhất bằng 2.105Pa, ở bình thứ hai là 106Pa. Mở khóa nhẹ nhàng để hai bình thông nhau sao cho nhiệt độ khí không đổi. Khi đã cân bằng, áp suất ở hai bình là 4.105Pa. Tìm thể tích của bình cầu thứ hai , biết thể tích của bình thứ nhất là 15l.

<u>Giải</u>

Tổng số mol khí trước và sau khi mở khóa không đổi (và nhiệt độ cũng không đổi) nên:

$$\frac{p_1 V_1}{RT} + \frac{p_2 V_2}{RT} = \frac{p(V_1 + V_2)}{RT}$$

Vây, thể tích của bình cầu thứ hai.

$$\rightarrow V_2 = \frac{p - p_1}{p_2 - p} V_1 = 5 \text{dm}^3$$

0-10. Có hai bình chứa hai thứ khí khác nhau thông với nhau bằng một ống thủy tinh có khóa. Thể tích của bình thứ nhất là 2 lít, của bình thứ hai là 3 lít. Lúc đầu ta đóng khóa, áp suất ở hai bình lần lượt là 1 at và 3at. Sau đó mở khóa nhẹ nhàng để hai bình thông nhau sao cho nhiệt độ vẫn không thay đổi. Tính áp suất của chất khí trong hai bình khí khi thông nhau.

<u>Giải</u>

Tương tự bài tập 0-9, ta có:

$$\frac{p_1 V_1}{RT} + \frac{p_2 V_2}{RT} = \frac{p(V_1 + V_2)}{RT}$$

$$\to p = \frac{p_1 V_1 + p_2 V_2}{V_1 + V_2} = 1,6at$$

Khoa Vât Lí, trường ĐH Khoa Hoc, ĐH Thái Nguyên

0-11.Một ống thủy tinh tiết diện đều, một đầu kín một đầu hở. Lúc đầu người ta nhúng đầu hở vào một chậu nước sao cho nước trong và ngoài ống bằng nhau, chiều cao còn lai của ống bằng 20cm. Sau đó người ta rút ống lên một đoan 4cm (hình 0-1). Hỏi mức nước ở trong ống dâng lên bao nhiều, biết rằng nhiệt độ xung quanh không đổi và áp suất khí quyển là 760mmHg.

<u>Giải</u>

Goi độ cao cột nước trong ống là x Áp suất trong ống sau khi nâng lên

$$p = (p_o - x)(cmH_2O)$$

Đinh luật Bơilơ - Mariôt cho khối khí bi giam

$$p_o l = p(l+4-x) = (p_o - x)(l+4-x)$$

Thay số: $p_o = 760 \text{mmHg} = 1033 \text{cmH}_2\text{O}$, 1 = 20 cm

$$x^2 - 1057x + 4132 = 0 \rightarrow x = 3,95cm$$
; (x = 1053cm > 1+4 loai)

Hình B.1

<u>Giải</u>

Áp suất khí bên trong phong vũ biểu

$$p' = p_o - p = 10 \text{mmHg} = 1360 \text{Pa}$$

Khối lượng riêng của khí
$$\rho = \frac{\mu(p_o - p)}{RT_o} = \frac{29.1360}{8,31.273} \approx 17g/m^3$$

0-13. Có 8g khí ôxy hỗn hợp với 22g khí cácbonníc (CO2). Xác định khối lương của 1 kilômol hỗn hợp đó.

<u>Giải</u>

Khối lượng của 1 mol hỗn hợp

$$\overline{\mu} = \frac{m}{n} (g/mol) = \frac{m_1 + m_2}{\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2}} (kg/kmol) = \frac{8 + 22}{8/32 + 22/44} = 40kg/kmol$$

Một hỗn hợp khí có 2,8kg Nitơ và 3,2kg Ôxy ở nhiệt độ 17°C và áp suất 4.10^5 N/m². Tìm thể tích của hỗn hợp đó.

Giải

Thể tích hỗn hợp

$$V = \frac{nRT}{p} = \frac{\left(\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2}\right)RT}{p} = \frac{\left(\frac{2800}{28} + \frac{3200}{32}\right).8,31.(273 + 17)}{4.10^5} \approx 1,2m^3$$

0-15. Khí nổ là một hỗn hợp gồm một phần khối lượng hyđô và tám phần khối lượng Ôxy. Hãy xác định khối lượng riêng của khí nổ đó ở điều kiện thường.

$Gi \mathring{a} i$

Theo bài 13, khối lượng mol của chất nổ

$$\overline{\mu} = \frac{m_1 + m_2}{\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2}} = \frac{1 + m_2 / m_1}{\frac{1}{\mu_1} + \frac{m_2 / m_1}{\mu_2}} = \frac{1 + 8}{1/2 + 8/32} = 12g/\text{mol}$$

Khối lượng riêng của hỗn hợp

$$\rho = \frac{\overline{\mu}p_o}{RT_o} = \frac{12.1,01.10^5}{8,31.273} \approx 534g/m^3$$

CHƯƠNG 8: NGUYÊN LÝ THỨ NHẤT CỦA NHIỆT ĐỘNG LỰC HỌC

- 8-1. 160g khí oxy được nung nóng từ nhiệt độ 50°C đến 60°C. Tìm nhiệt lượng mà khí nhận được và độ biến thiên nội năng của khối khí trong hai gúa trình
 - a. Đẳng tích; b. Đẳng áp

Giải:

a. Quá trình đẳng tích

$$\Delta Q = \Delta U = \frac{m}{\mu} C_{V} \Delta T = \frac{m}{\mu} \frac{5}{2} R \Delta T = \frac{160}{32} \cdot \frac{5}{2} \cdot 8.31 \cdot (60 - 50) \approx 1040 J \approx 250 cal$$

b. Quá trình đẳng áp

Độ biến thiên nội năng

$$\Delta U = \frac{m}{\mu} C_{V} \Delta T = 250 cal$$

Nhiệt lượng khí nhận vào

$$\Delta Q = \Delta U + A = \frac{m}{\mu} C_{V} \Delta T + p \Delta V = \frac{m}{\mu} (C_{V} + R) \Delta T = \frac{m}{\mu} \frac{7}{2} R \Delta T$$

Thay số

$$\Delta Q = \frac{160}{32} \cdot \frac{7}{2} \cdot 8.31 \cdot (60 - 50) \approx 1454 J \approx 350 cal$$

8-2. Tìm nhiệt dung riêng (gam) đẳng tích của một chất khí đa nguyên tử, biết rằng khối lượng riêng của khí đó ở điều kiện chuẩn là ρ =7,95.10⁻⁴ kg/cm³.

<u>Giải</u>

Với khí đa nguyên tử, nhiệt dung riêng mol đẳng tích $C_v = 3R(J/molK)$

Ở điều kiện tiêu chuẩn

$$p_{o}V_{o} = \frac{m}{\mu}RT_{o} \rightarrow \mu = \frac{\rho RT_{o}}{p_{o}}$$

Nhiệt dung riêng gam đẳng tích

$$c_v = \frac{C_v}{\mu} = \frac{p_o C_v}{\rho RT} = \frac{3p_o}{\rho T} \approx 1400 J/kgK$$

8-3. Tìm nhiệt dung riêng (gam) đẳng áp của một chất khí, biết rằng khối lượng của một kilômol khí đó là $\mu=30$ kg/kmol. Hệ số Poátxông (chỉ số đoạn nhiệt) $\gamma=1,4$.

Giải:

Nhiệt dung riêng mol đẳng áp:

$$C_p = C_V + R$$

Với
$$\gamma = \frac{C_p}{C_V} \implies C_p = \frac{\gamma R}{\gamma - 1}$$

Nhiệt dung riêng gam đẳng áp:

$$c_p = \frac{C_p}{\mu} = \frac{\gamma R}{\mu (\gamma - 1)} = \frac{1,4.8,31}{30.10^{-3}.(1,4-1)} = 969,5J/kgK$$

- 8-4. Một bình kín chứa 14g khí Nitơ ở áp suất 1
at và nhiệt độ 27^{0} C. Sau khi hơ nóng, áp suất trong bình lên tới 5
at. Hỏi:
 - a. Nhiệt độ của khí sau khi ho nóng?
 - b. Thể tích của bình?
 - c. Độ tăng nội năng của khí?

Giải:

a. Quá trình đẳng tích, nhiệt độ khối khí sau khi hơ nóng là T_2

$$\frac{p_1}{T_1} = \frac{p_2}{T_2} \rightarrow T_2 = \frac{p_2}{p_1} T_1 = 1500 \text{K}$$

b. Thể tích bình

$$V = \frac{mRT_1}{\mu p_1} = 12,721$$

c. Độ tăng nội năng của khối khí:

$$\Delta U = \frac{m}{\mu} C_v (T_2 - T_1) = \frac{m}{\mu} \frac{5}{2} R \left(\frac{p_2}{p_1} - 1 \right) T_1 = 12,46 \text{kJ}$$

 $(N_2$ là khí lưỡng nguyên tử i=5, $C_v = 5R/2)$

8-5. Nén đẳng tích 3l không khí ở áp suất 1
at. Tìm nhiệt tỏa ra biết rằng thể tích cuối cùng bằng 1/10 thể tích ban đầu.

Giải

Nguyên lý thứ nhất của nhiệt động lực học, nhiệt lượng mà khối khí nhận được

$$\Delta Q = A' + \Delta U$$

Quá trình đẳng nhiệt nên $\Delta U = nC_v \Delta T = 0$

Nhiệt lượng mà khối khí nhận được

$$\Delta Q = A' = \int_{V_1}^{V_2} p dV = \int_{V_1}^{V_2} p V \frac{dV}{V} = p_1 V_1 \ln \frac{V_2}{V_1}$$

$$\Delta Q = 9.81.10^4.3.10^{-3} \ln \frac{1}{10} \approx -676J$$

Dấu "-" chỉ ra rằng quá trình thực sự tỏa nhiệt.

8-6. Một bình kín thể tích 2l, đựng 12g khí nitơ ở nhiệt độ 10°C. Sau khi hơ nóng, áp suất trung bình lên tới 10⁴mmHg. Tìm nhiệt lượng mà khối khí đã nhận được, biết bình giãn nở kém.

<u>Giải</u>

Bình giãn nở kém, thể tích của bình không đổi, quá trình là đẳng tích.

Nguyên lý I nhiệt động lực học

$$\Delta Q = A + \Delta U = \Delta U = \frac{m}{\mu} \frac{iR}{2} (T_2 - T_1)$$

$$\Delta Q = \frac{i}{2} \left(\frac{m}{\mu} R T_2 - \frac{m}{\mu} R T_1 \right) = \frac{i}{2} \left(p_2 V - \frac{m}{\mu} R T_1 \right)$$

 $(N_2 là khí lưỡng nguyên tử i=5, C_V = 5R/2)$

Thay số $p_2=10^4$ mmHg=1,33.10⁶Pa, V=2.10⁻³m³, T_1 =283K. $\Delta Q = 4,1$ kJ

- 8-7. Hơ nóng 16 gam khí Ôxy trong một bình khí giãn nở kém ở nhiệt độ 37^{0} C, từ áp suất 10^{5} N/m² lên tới 3.10^{5} N/m². Tìm:
 - a. Nhiệt độ của khối khí sau khi hơ nóng;
 - b. Nhiệt lượng đã cung cấp cho khối khí.

Giải:

a. Bình kín, giãn nở kém, quá trình đẳng tích, nhiệt độ khối khí sau khi hơ nóng là ${\bf T}_2$

$$\frac{p_1}{T_1} = \frac{p_2}{T_2} \rightarrow T_2 = \frac{p_2}{p_1} T_1 = \frac{3.10^5}{10^5} (273 + 37) = 930K$$

b. Nhiệt lượng đã cung cấp cho khí bằng nhiệt lượng mà khí nhận được trong quá trình đẳng tích trên

$$\Delta Q = \Delta U = \frac{m}{\mu} C_{V} R (T_{2} - T_{1}) = \frac{m}{\mu} \frac{i}{2} R T_{1} \left(\frac{p_{2}}{p_{1}} - 1 \right)$$
$$\Delta Q = \frac{16}{32} \frac{5}{2} .8,31. (273 + 37) \left(\frac{3.10^{5}}{10^{5}} - 1 \right) \approx 6,4 \text{kJ}$$

8-8. Sau khi nhận được nhiệt lượng Q=150cal, nhiệt độ của m=40,3g khí Oxi tăng từ t_1 = 16°C tới t_2 =40°C. Hỏi quá trình hơ nóng đó được tiến hành trong điều kiên nào?

$Gi \mathring{a} i$

Nhiệt lượng mà khí nhận được

$$Q = \frac{m}{\mu} C_x \Delta T \to C_x = \frac{\mu Q}{m(t_2 - t_1)}$$

$$C_x = \frac{32.150.4,18}{40,3.(40 - 16)} = 20,77 \text{ J/mol K}$$

Nhiệt dung riêng mol đẳng tích của Oxi:

$$C_V = \frac{iR}{2} = \frac{5.8,31}{2} = 20,77 \text{ J/mol K} = C_x$$

Như vậy $C_x = C_v$, quá trình là đẳng tích.

- 8-9. 6,5g hyđrô ở nhiệt độ 27°C, nhận nhiệt lượng giãn nở gấp đôi, trong điều kiên áp suất không đổi. Tính
 - a. Công mà khí sinh ra.
 - b. Độ biến thiên nội năng của khối khí.
 - c. Nhiệt lượng đã cung cấp cho khối khí.

Giải:

a. Công sinh ra

A =
$$p(V_2 - V_1) = p(2V_1 - V_1) = \frac{m}{\mu} RT_1$$

A = $\frac{6.5}{2}$.8,31.(273 + 27) \approx 8,1.10³ J

b. Độ biến thiên nội năng của khối khí:

$$\Delta U = \frac{m}{\mu} C_V (T_2 - T_1) = \frac{i}{2} \left(\frac{m}{\mu} R T_2 - \frac{m}{\mu} R T_1 \right) = \frac{i}{2} \left(2 p V_1 - p V_1 \right) = \frac{i}{2} \frac{m}{\mu} R T_1$$

$$\Delta U = \frac{5}{2} \cdot \frac{6.5}{2} \cdot 8.31 \cdot (273 + 27) \approx 20.2 \cdot 10^3 J$$

c. Nhiệt lượng đã cung cấp cho khối khí chính xác bằng nhiệt lượng mà khí nhận được. Theo nguyên lý I

$$\Delta Q = A + \Delta U = 8,1.10^3 + 20,2.10^3 = 28,3.10^3 J$$

(Đối với nguyên tử hy
đrô (lưỡng nguyên tử) số bậc tự do nguyên tử i=5)

- 8-10. 10g khí oxy ở 10° C, áp suất 3.10^{5} Pa. Sau khi hơ nóng đẳng áp, thể tích khí tăng đến 10l. Tìm:
 - a. Nhiệt lượng mà khối khí nhận được
 - b. Nội năng của khối khí trước và sau khi hơ nóng

<u>Giải</u>

a. Theo nguyên lý I, nhiệt lượng mà khối khí nhận được trong qúa trình đẳng áp

$$Q = A + \Delta U = \frac{m}{\mu} C_p (T_2 - T_1) = \frac{i+2}{2} \left(\frac{m}{\mu} R T_2 - \frac{m}{\mu} R T_1 \right) = \frac{i+2}{2} \left(p V_2 - \frac{m}{\mu} R T_1 \right)$$

$$Q = \frac{5+2}{2} \left(3.10^5 . 10.10^{-3} - \frac{10}{32} . 8,31. (273+10) \right) \approx 7,9.10^3 J$$

b. Nội năng của khối khí trước khi hơ nóng

$$U_{1} = \frac{m}{\mu} C_{V} T_{1} = \frac{m}{\mu} \frac{i}{2} R T_{1}$$

$$U_{1} = \frac{10}{32} \cdot \frac{5}{2} \cdot 8,31 \cdot (273 + 10) \approx 1,8 \cdot 10^{3} J$$

Nội năng của khối khí sau khi hơ nóng

$$U_2 = \frac{m}{\mu} C_V T_2 = \frac{m}{\mu} \frac{i}{2} R T_2 = \frac{i}{2} p V_2$$

$$U_2 = \frac{5}{2} .3.10^5 .10.10^{-3} = 7,5.10^3 J$$

(Đối với nguyên tử oxy (lưỡng nguyên tử) số bậc tự do nguyên tử i=5)

8-11. Một thủy lôi chuyển động trong nước nhờ không khí nén trong bình chứa của thủy lôi phụt ra phía sau. Tính công do khí sinh ra. Biết rằng thể tích của bình chứa là 5lít, áp suất của không khí nén từ áp suất 100atm giảm tới 1atm.

<u>Giải</u>

Khí phụt ra phía sau là môi trường nước rất lớn và có nhiệt độ coi như không đổi. Do đó quá trình giãn nở khí của thủy lôi trong nước coi là quá trình đẳng nhiệt (gần đúng là thuận nghịch).

Công do khí sinh ra: $A = p_1 V_1 \ln \frac{p_1}{p_2} = 1.9,81.10^4.5.10^{-3} \ln 100 \approx 2,26.10^3 J$.

- 8-12. 2 kmol khí các
bonic được hơ nóng đẳng áp cho đến khi nhiệt độ tăng thêm 50°C. Tìm
 - a. Độ biến thiên nội năng của khối khí
 - b. Công do khí giãn nở sinh ra
 - c. Nhiệt lượng truyền cho khí

<u>Giải</u>

a. Độ biến thiên nội năng của khối khí

$$\Delta U = \frac{\text{m}}{\mu} \frac{\text{iR}}{2} \Delta T = 2.10^3 \frac{6.8,31}{2}.50 \approx 2500 \text{kJ}$$

(khí ${\rm CO_2}$ là khí đa nguyên tử (chính xác là 3) nên số bậc tự do của phân tử là 6)

b. Công do khí giãn nở sinh ra

$$A = p(V_2 - V_1) = \frac{m}{\mu} R(T_2 - T_1)$$

$$A = 2.10^3.8,31.50 \approx 830 \text{kJ}$$

- c. Nhiệt lượng truyền cho khí bằng nhiệt lượng mà khí nhận được $Q = \Delta U + A = 2500 + 830 = 3330 kJ$
- 8-13. 7 gam khí cácbonic được hơ nóng cho tới khi nhiệt độ tăng thêm 10°C trong điều kiện giãn nở tự do. Tìm công do khí sinh ra và độ biên thiên nội năng của nó.

<u>Giải</u>

Giãn nở tự do có nghĩa là đẳng áp (giãn nở trong khí quyển, áp suất bằng áp suất khí quyển)

Công do khí sinh ra khi giãn nở

$$A = p(V_2 - V_1) = \frac{m}{\mu} RT_2 - \frac{m}{\mu} RT_1 = \frac{m}{\mu} R(T_2 - T_1)$$

$$A = \frac{7}{44}.8,31.10 \approx 13,2J$$

Độ biến thiên nội năng của khối khí

$$\Delta U = \frac{\text{m iR}}{\mu} \frac{\text{iR}}{2} \Delta T = \frac{7}{44} \cdot \frac{6.8,31}{2} \cdot 10 \approx 39,7 \text{J}$$

(khí ${\rm CO_2}$ là khí đa nguyên tử (chính xác là 3) nên số bậc tự do của phân tử là 6)

- 8-14. 10g khí oxy ở áp suất 3at và nhiệt độ 10°C được hơ nóng đẳng áp và giãn nở tới thể tích 10l. Tìm:
 - a. Nhiệt lượng cung cấp cho khối khí.
 - b. Độ biên thiên nội năng của khối khí.
 - c. Công do khí sinh ra khi giãn nở.

Giải.

a. Nhiệt lượng cung cấp cho khí bằng nhiệt lượng mà khí nhận vào

$$Q = A + \Delta U = \frac{m}{\mu} C_p (T_2 - T_1) = \frac{i+2}{2} \left(\frac{m}{\mu} R T_2 - \frac{m}{\mu} R T_1 \right) = \frac{i+2}{2} \left(p V_2 - \frac{m}{\mu} R T_1 \right)$$

$$Q = \frac{5+2}{2} \left(3.9,81.10^4.10.10^{-3} - \frac{10}{32}.8,31.(273+10) \right) = 7,8.10^3 J$$

b. Độ biến thiên nội năng

$$\Delta U = \frac{m}{\mu} C_V (T_2 - T_1) = \frac{m}{\mu} \frac{C_V}{C_p} C_p (T_2 - T_1) = \frac{i}{i+2} Q = 5,5.10^3 J$$

c. Công do khí sinh ra khi giãn nở

Khoa Vật Lí, trường ĐH Khoa Học, ĐH Thái Nguyên

$$A = Q - \Delta U = 2.3 \cdot 10^3 J$$

8-15. Một chất khí đựng trong một xilanh đặt thẳng đứng có pittông khối lượng không đáng kể di động được. Hỏi cần phải thực hiện một công bằng bao nhiều để nâng pittông lên cao thêm một khoảng $h_1 = 10cm$ nếu chiều cao ban đầu của cột không khí là $h_o = 15cm$, áp suất khí quyển là $p_o = 1at$, diện tích mặt pittông $S = 10cm^2$. Nhiệt độ của khí coi là không đổi trong suốt quá trình.

Giải:

Công do khí sinh ra

$$A_o = p_o V_o \ln \frac{V_1}{V_o} = p_o V_o \ln \frac{h_o + h_1}{h_o}$$

Hay, khi biến đổi khí nhận vào một công:

$$-A_o = p_o V_o \ln \left(\frac{h_o}{h_o + h_1} \right)$$

Công của áp suất khí quyển : $A_k = p_o Sh_1$

Công cần thực hiện bao gồm công truyền cho khí và công thắng khí quyển

$$A' = A_k - A = p_o S \left(h_1 - h_o \ln \left(1 + \frac{h_1}{h_o} \right) \right)$$

$$A' = 1.9, 8.10^4. 10. 10^{-4} \left(10. 10^{-2} - 15. 10^{-2}. \ln \left(1 + \frac{10}{15} \right) \right) \approx 2,3J$$

8-16. 2m³ khí giãn nở đẳng nhiệt từ áp suất p=5at đến áp suất 4at. Tính công do khí sinh ra và nhiệt lượng cung cấp cho khí trong quá trình giãn nở.

<u>Giải</u>

Theo nguyên lý I

$$Q = A + \Delta U$$

$$\Delta U = 0$$

$$Q = A = \int_{V_1}^{V_2} p dV = p_1 V_1 \ln \frac{V_2}{V_1} \qquad \stackrel{p_1 V_1 = p_2 V_2}{=} \qquad p_1 V_1 \ln \frac{p_1}{p_2}$$

$$Q = A = 2.5.9,81.10^4. \ln \frac{5}{4} = 2,2.10^5 J$$

- 8-17. Một khối khí N₂ ở áp suất p₁=1at có thể tích V₁=10l được giãn nở tới thể tích gấp đôi. Tìm áp suất cuối cùng và công do khí sinh ra nếu giãn nở đó là:
 - a. Đẳng áp.
 - b. Đẳng nhiệt
 - c. Đoạn nhiệt

Giải

a. Quá trình đẳng áp

Áp suất cuối $p_2=p_1=1$ at.

Công do khí sinh ra

$$A = p_1 \Delta V = 1.9,81.10^4 \cdot (2.10.10^{-3} - 10.10^{-3}) \approx 980J$$

b. Quá trình đẳng nhiệt

Áp suất cuối p₂:

$$p_1V_1 = p_2V_2 \rightarrow p_2 = \frac{V_1}{V_2}p_1 = 0.5at$$

Công do khí sinh ra

A =
$$p_1 V_1 \ln \frac{V_2}{V_1} = 1.9,81.10^4.10.10^{-3}.\ln 2 = 680J$$

c. Quá trình đoạn nhiệt

+Áp suất

$$p_1 V_1^{\gamma} = p_2 V_2^{\gamma} \rightarrow p_2 = p_1 \left(\frac{V_1}{V_2}\right)^{\gamma}$$

Đối với N₂,

$$\gamma = \frac{i+2}{i} = \frac{5+2}{2} = 1,4$$

Nên

$$p_2 = 1/2^{1.4} = 0.38at$$

+ Công do khí sinh ra

$$Q = A + \Delta U \rightarrow A = -\Delta U = \frac{m}{\mu} C_V (T_1 - T_2) = \frac{i}{2} \left(\frac{m}{\mu} R T_1 - \frac{m}{\mu} R T_2 \right)$$

$$A = \frac{i}{2} (p_1 V_1 - p_2 V_2) = \frac{i}{2} \left(p_1 V_1 - \left(\frac{V_1}{V_2} \right)^{\gamma} V_2 \right) = \frac{i}{2} p_1 V_1 \left(1 - \left(\frac{V_1}{V_2} \right)^{\gamma - 1} \right)$$

$$A = \frac{5}{2} 9,81.10^4.10.10^{-3} (1 - 2^{-0.4}) \approx 590 J$$

- 8-18. Nén 10g khí oxy từ điều kiện tiêu chuẩn tới thể tích 4l. Tìm:
 - a. Áp suất và nhiệt độ của khối khí sau mỗi quá trình nén đẳng nhiệt và đoạn nhiệt
 - b. Công cần thiết để nén khí trong mỗi trường hợp. Từ đó, suy ra nên nén theo cách nào thì lợi hơn.

<u>Giải</u>

Thể tích khí ban đầu

$$V_1 = \frac{10}{32}.22,4 = 71$$

- a. Quá trình nén đẳng nhiệt:
- Áp suất cuối quá trình là p₂:

$$p_1 V_1 = p_2 V_2 \rightarrow p_2 = p_1 \frac{V_1}{V_2}$$

$$p_2 = 10^5 \cdot \frac{7}{4} \approx 1,7.10^5 \text{ Pa}$$

Hoặc có thể tính nhờ phương tình trạng thái:

$$p_1 V_1 = p_2 V_2 = \frac{m}{\mu} RT_1 \rightarrow p_2 = \frac{mRT_1}{\mu V_2}$$

 $p_2 = \frac{10.8,31.273}{32.4 \cdot 10^{-3}} \approx 1,7.10^5 Pa$

- Nhiệt độ khí không đổi $T_2 = T_1 = 273K$
- Công nén khí bằng và ngược dấu với công khí sinh ra

$$A_2 = -A = -p_1 V_1 \ln \left(\frac{V_2}{V_1}\right) = -\frac{m}{\mu} R T_1 \ln \left(\frac{V_2}{V_1}\right)$$

$$A_1 = -\frac{10}{32}.8,31.273. \ln \frac{4}{7} \approx 397 J$$

b.

- Áp suất p₂:

$$p_1 V_1^{\gamma} = p_2 V_2^{\gamma} \rightarrow p_2 = p_1 \left(\frac{V_1}{V_2}\right)^{\gamma} = 10^5 \left(\frac{7}{4}\right)^{1,4} = 2,2.10^5 \text{ Pa}$$

- Nhiệt dộ T_2

$$T_1 V_1^{\gamma - 1} = T_2 V_2^{\gamma - 1} \longrightarrow T_2 = T_1 \left(\frac{V_1}{V_2}\right)^{\gamma - 1} = 273 \left(\frac{7}{4}\right)^{1,4 - 1} \approx 341 K$$

- Công nén khí bằng và ngược dấu với công khí sinh ra

$$A_2 = -\frac{p_1 V_1}{\gamma - 1} \left(1 - \left(\frac{V_1}{V_2} \right)^{\gamma - 1} \right) = -\frac{10^5 \cdot 7 \cdot 10^{-3}}{1 \cdot 4 - 1} \left(1 - \left(\frac{7}{4} \right)^{1 \cdot 4 - 1} \right) \approx 439 J > A_1$$

Vậy nén đẳng nhiệt thì tốt hơn

8-19. Người ta muốn nén 10 lít không khí đến thể tích 2 lít. Hỏi nên nén đẳng nhiệt hay nén đoạn nhiệt?

Giải

Công nén khí theo quá trình đẳng nhiệt (bằng và ngược dấu với với công mà khí sinh ra):

$$A_1 = -p_1 V_1 \ln \left(\frac{V_2}{V_1} \right) = p_1 V_1 \ln \left(\frac{V_1}{V_2} \right)$$
 (1)

Tương tự, đối với quá trình đoạn nhiệt:

$$\Delta Q = A + \Delta U = 0 \rightarrow A = -\Delta U$$

Công nén khí trong trường hợp này, tương tự như đã làm với bài $8.17\ {\rm ta}\ {\rm có}$

$$A_{2} = -A = \Delta U = -\frac{i}{2} p_{1} V_{1} \left(1 - \left(\frac{V_{1}}{V_{2}} \right)^{\gamma - 1} \right)$$
 (2)

Từ (1) và (2)

$$\frac{A_2}{A_1} = \frac{i}{2} \cdot \frac{(V_1 / V_2)^{\gamma - 1} - 1}{\ln(V_1 / V_2)} = \frac{5}{2} \cdot \frac{(10 / 2)^{1, 4 - 1} - 1}{\ln(10 / 2)} \approx 1, 4 > 1$$

Vậy nén theo quá trình đẳng nhiệt tốn ít công hơn, do đó lợi hơn.

8-20. Giãn đoạn nhiệt một khối không khí sao cho thể tích của nó tăng gấp đôi. Hãy tính nhiệt độ khối không khí đó ở cuối quá trình, biết rằng lúc đó nó có nhiệt độ 0°C.

<u>Giải</u>

Phương trình cho quá trình đoạn nhiệt

$$p_{1}V_{1}^{\gamma} = p_{2}V_{2}^{\gamma} \rightarrow (p_{1}V_{1})V_{1}^{\gamma-1} = (p_{2}V_{2})V_{2}^{\gamma-1} \rightarrow T_{1}V_{1}^{\gamma-1} = T_{2}V_{2}^{\gamma-1}$$

$$\rightarrow T_{2} = T_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1} = 273\left(\frac{1}{2}\right)^{1,4-1} \approx 207K$$

8-21. 7,2 lít khí oxy được nén đoạn nhiệt đến thể tích 1 lít, lúc đó áp suất của khí nén là 16at. Hỏi áp suất ban đầu?

<u>Giải</u>

Phương trình (xem phụ lục) cho quá trình đoạn nhiệt

$$p_1 V_1^{\gamma} = p_2 V_2^{\gamma} \rightarrow p_2 = p_1 \left(\frac{V_1}{V_2}\right)^{\gamma} = 16 \cdot \left(\frac{1}{7,2}\right)^{1,4} \approx 1$$
at

- 8-22. 1kg không khí ở nhiệt độ 30°C và áp suất 1,5at được giãn đoạn nhiệt đến áp suất 1at. Hỏi:
 - a. Thể tích không khí tăng lên bao nhiều lần?
 - b. Nhiệt độ không khí sau khi giãn?
 - c. Công do không khí sinh ra khi giãn nở?

<u>Giải</u>

a. Từ phương trình

$$p_1 V_1^{\gamma} = p_2 V_2^{\gamma} \rightarrow \frac{V_2}{V_1} = \left(\frac{p_1}{p_2}\right)^{1/\gamma} = \left(\frac{1.5}{1}\right)^{1/1.4} \approx 1.33$$

Thể tích tăng khoảng 1,33 lần

b. Phương trình cho quá trình đọan nhiệt

$$p_{1}V_{1}^{\gamma} = p_{2}V_{2}^{\gamma} \to T_{1}^{\gamma}p_{1}^{1-\gamma} = T_{2}^{\gamma}p_{2}^{1-\gamma} \to T_{2} = T_{1}\left(\frac{p_{1}}{p_{2}}\right)^{\frac{1-\gamma}{\gamma}}$$
$$T_{2} = (273 + 30)\left(\frac{1.5}{1}\right)^{\frac{1-1.4}{1.4}} \approx 270K$$

c. Công do khí sinh ra

$$A = -\Delta U = \frac{m}{\mu} \frac{iR}{2} (T_1 - T_2)$$

Khoa Vật Lí, trường ĐH Khoa Học, ĐH Thái Nguyên

Đối với không khí µ=29g/mol, bậc tư do của phân tử i=5

$$A = \frac{10^3}{29} \frac{5.8,31}{2} . (303 - 270) \approx 2,4.10^4 J$$

8-23. Chứng minh rằng đối với một khí lý tưởng xác định có phương trình:

$$pV = \frac{2}{i}U$$

U là nội năng của khối khí ấy, i là bậc tự do.

Gi $\ddot{a}i$

Nội năng khí lý tưởng

$$U = \frac{i}{2} nRT$$

Phương trình Mendeleev - Crapayron

$$pV = nRT$$

Do đó

$$pV = \frac{2}{i}U$$

- 8-24. Một kilômol khí N_2 (μ =28kg/kmol) ở điều kiện tiêu chuẩn giãn đoạn nhiệt sao cho thể tích của nó tăng lên 5 lần. Tìm:
 - a. Công do khí thực hiện.
 - b. Độ biên thiên nội năng của khối khí.

<u>Giải</u>

a. Nhiệt độ khí sau khi nén là T_2 :

$$p_{1}V_{1}^{\gamma} = p_{2}V_{2}^{\gamma} \rightarrow T_{1}V_{1}^{\gamma-1} = T_{2}V_{2}^{\gamma-1}$$

$$\rightarrow T_{2} = T_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1} = 273 \cdot \left(\frac{1}{5}\right)^{1,4-1} \approx 143,4K$$

Công do khí thực hiện

$$A = -\Delta U = \frac{m}{\mu} \frac{iR}{2} (T_1 - T_2)$$

A =
$$10^3 \cdot \frac{5.8,31}{2} (273 - 143,4) \approx 2,7.10^6 \text{ J}$$

b. Độ biến thiên nội năng của khối khí bằng và ngược dấu với công do khí sinh ra

$$\Delta U = -A = -2,7.10^6 J$$

8-25. Không khí trong xilanh của một động cơ đốt trong được nén đọan nhiệt từ áp suất 1at đến áp suất 35at. Tính nhiệt độ của nó ở cuối quá trình nén biết rằng nhiệt độ ban đầu của nó là 40°C

<u>Giải</u>

Phương trình cho quá trình đoạn nhiệt

Khoa Vât Lí, trường ĐH Khoa Hoc, ĐH Thái Nguyên

$$p_1 V_1^{\gamma} = p_2 V_2^{\gamma} \to T_1^{\gamma} p_1^{1-\gamma} = T_2^{\gamma} p_2^{1-\gamma} \to T_2 = T_1 \left(\frac{p_1}{p_2}\right)^{\frac{1-\gamma}{\gamma}}$$
$$T_2 = (273 + 40) \left(\frac{1}{35}\right)^{\frac{1-1.4}{1.4}} \approx 865 K = 592^{\circ} C$$

8-26. Một khối khí giãn nở đoạn nhiệt, thể tích của nó tăng gấp đôi, nhưng nhiệt độ tuyệt đối của nó giảm đi 1,32 lần. Tìm số bậc tự do của phân tử khí đó.

$Gi \mathring{a} i$

Từ phương trình

$$p_{1}V_{1}^{\gamma} = p_{2}V_{2}^{\gamma} \rightarrow T_{1}V_{1}^{\gamma-1} = T_{2}V_{2}^{\gamma-1} \rightarrow \gamma - 1 = \frac{\ln(T_{2}/T_{1})}{\ln(V_{1}/V_{2})}$$

$$\xrightarrow{\gamma-1=2/i} i = \frac{2\ln(V_{1}/V_{2})}{\ln(T_{2}/T_{1})} = \frac{2.\ln(1/2)}{\ln(1/1,32)} = 5$$

Số bậc tự do khí là 5.

- 8-27. Một chất khí lưỡng nguyên tử có thể tích $V_1=0.5l$, áp suất $p_1=0.5atm$ bị nén đoạn nhiệt tới thể tích V_2 và áp suất p_2 . Sau đó người ta giữ nguyên thể tích V_2 và làm lạnh nó tới nhiệt độ ban đầu. Khi đó áp suất của khí là $p_o=1atm$
 - a. Vẽ đồ thị của quá trình đó.
 - b. Tìm thể tích V_2 và áp suất p_2

$Gi \mathring{a} i$

a. Đồ thị của quá trình:

b. Quá trình 3-1 đẳng nhiệt nên :

$$p_o V_3 = p_1 V_1 \rightarrow V_3 = \frac{p_1}{p_0} V_1 = 0.251 = V_2$$

Quá trình 1-2 đoạn nhiệt nên:

$$p_1 V_1^{\gamma} = p_2 V_2^{\gamma} \rightarrow p_2 = \left(\frac{V_1}{V_2}\right)^{\gamma} p_1 = \left(\frac{p_0}{p_1}\right)^{\gamma} p_1$$

 $p_2 = 2^{1,4}.0,5 \approx 1,32at$

Khoa Vật Lí, trường ĐH Khoa Học, ĐH Thái Nguyên

(Khí lưỡng nguyên tử i=5 nên $\gamma = \frac{i+2}{i} = \frac{5+2}{5} = 1,4$)

8-28. Khi nén đoạn nhiệt 1kmol khí lưỡng nguyên tử, người ta đã tốn công 146kJ. Hỏi nhiệt độ của khí tăng lên bao nhiều?

Hình 8-1

<u>Giải</u>

Khí nhận một công A=146kJ (sinh công -A=-146J), độ tăng nội năng khí bằng công nhận vào của khí

Nhiệt độ khí tăng 7°C.

- 8-29. Một lượng khí oxy chiếm thể tích V_1 =3l ở nhiệt độ 27°C và áp suất p_1 =8,2.10⁵Pa. Ở trạng thái thứ hai, khí có các thông số V_2 =4,5l và p_2 =6.10⁵Pa (hình 8.1). Tìm nhiệt lượng mà khí sinh ra khi giãn nở, và độ biến thiên nội năng của khối khí. Giải bài toán trong trường hợp biến đổi khối khí từ trạng thái 1 tới trạng thái 2 theo hai con đường:
 - a. ACB
 - b. ADB

<u>Giải</u>

a. Quá trình ACB

- AC đẳng tích:

$$Q_{AC} = \Delta U = \frac{m}{\mu} \frac{iR}{2} (T_C - T_A) = \frac{i}{2} \left(\frac{m}{\mu} R T_C - \frac{m}{\mu} R T_A \right)$$

$$Q_{AC} = \frac{i}{2} (p_2 - p_1) V_1 = \frac{5}{2} (6.10^5 - 8.2.10^5) 3.10^{-3} = -1650 J$$

- Quá trình CB đẳng áp: $C_p = C_V + R$

$$Q_{CB} = \frac{m}{\mu} (C_V + R)(T_B - T_C) = \frac{i+2}{2} \left(\frac{m}{\mu} R T_B - \frac{m}{\mu} R T_C \right)$$
$$Q_{CB} = \frac{i+2}{2} p_2 (V_2 - V_1) = \frac{5+2}{2} 6.10^5 (4,5-3) 10^{-3} = 3150 J$$

- Cả quá trình

$$Q_{ACB} = Q_{AC} + Q_{CB} = -1650 + 3150 = 1500J$$

Quá trình ACB khí nhận lượng nhiệt $Q_{ACB} = 1500J$ Độ biến thiên nội năng:

$$\Delta U_{AB} = \frac{m}{\mu} C_V (T_B - T_A) = \frac{i}{2} (p_2 V_2 - p_1 V_1)$$

$$\Delta U_{AB} = \frac{5}{2} (6.10^5.4, 5.10^{-3} - 8, 2.10^5.3.10^{-3}) = 600J$$

Công khí thực hiện trong quá trình biến đổi:

$$A_{ACB} = A_{CB} = p_2(V_2 - V_1)$$

 $A_{ACB} = 6.10^5 \cdot (4,5.10^{-3} - 3.10^{-3}) = 900J$

b. Quá trình ADB

Nhiệt

- Quá trình AD đẳng áp

$$Q_{AD} = \frac{m}{\mu} (C_V + R) (T_D - T_A) = \frac{i+2}{2} \left(\frac{m}{\mu} R T_D - \frac{m}{\mu} R T_A \right)$$

$$Q_{AD} = \frac{i+2}{2} p_1 (V_2 - V_1) = \frac{5+2}{2} 8,2.10^5 (4,5-3) 10^{-3} = 4305 J$$

- DB đẳng tích:

$$Q_{DB} = \Delta U = \frac{m}{\mu} \frac{iR}{2} (T_B - T_D) = \frac{i}{2} \left(\frac{m}{\mu} R T_A - \frac{m}{\mu} R T_C \right)$$

$$Q_{DB} = \frac{i}{2} (p_2 - p_1) V_2 = \frac{5}{2} (6.10^5 - 8.2.10^5) 4.5.10^{-3} = -2475 J$$

- Cả quá trình

$$Q_{ADB} = Q_{AC} + Q_{CB} = 4305 - 2475 = 1830J$$

Đô biến thiên nôi năng:

$$\Delta U_{AB} = \frac{m}{\mu} C_{V} (T_{B} - T_{A}) = \frac{i}{2} (p_{2} V_{2} - p_{1} V_{1})$$

$$\Delta U_{AB} = \frac{5}{2} (6.10^{5}.4, 5.10^{-3} - 8, 2.10^{5}.3.10^{-3}) = 600J$$

Công khí thực hiện trong quá trình:

$$A_{ADB} = A_{AD} = p_1(V_2 - V_1)$$

 $A_{ADB} = 8,2.10^5.(4,5.10^{-3} - 3.10^{-3}) = 1230J$

8-30. Một kmol khí (khối lượng mol μ) thực hiện một chu trình ABCD như hình dưới, trong đó AB, CD là hai quá trình đẳng nhiệt, ứng với nhiệt độ T_1 và T_2 , BC và DA là hai qua trình đẳng tích ứng với hai thể tích V_2 và V_1 .

- a. Chứng minh rằng $\frac{p_A}{p_B} = \frac{p_D}{p_C}$
- b. Tính công và nhiệt trong cả chu trình.

Giải:

a. Áp dụng liên tiếp các phương trình của các quá trình đẳng nhiệt:

$$\frac{p_A}{p_B} = \frac{V_B}{V_A} = \frac{V_C}{V_D} = \frac{p_D}{p_C} \qquad (\text{dpcm})$$

b. Công của chu trình bằng công trên các quá trình AB và CD, các quá trình còn lại công bằng không.

$$A = A_{AB} + A_{CD} = p_A V_A \ln \frac{V_2}{V_1} + p_D V_D \ln \frac{V_1}{V_2} \qquad = \qquad \frac{m}{\mu} R(T_2 - T_1) \ln \frac{V_2}{V_1}$$

Nhiệt khí nhận trong cả chu trình¹:

$$Q = A = \frac{m}{\mu} R(T_2 - T_1) \ln \frac{V_2}{V_1}$$

8-31. Một khối khí thực hiện một chu trình như hình vẽ dưới, trong đó 1-2 và 3-4 là hai quá trình đẳng nhiệt ứng với các nhiệt độ T_1 và T_2 , 2-3 và 3-4 là các quá trình đoạn nhiệt. Cho $V_1=2l, V_2=5l$, $V_3=8l$, $p_1=7atm$. Tìm:

 1 Trong một chu trình kín $\Delta \text{U=0},$ do đó $\textit{Q} = \textit{A} + \Delta \textit{U} = \textit{A}$

- a. p_2, p_3, p_4, V_4, T_2
- b. Công khí thực hiện trong từng quá trình và trong toàn chu trình.
- c. Nhiệt mà khối khí nhận được hay tỏa ra trong từng quá trình đẳng nhiệt.

Giải:

a. $p_2 = \frac{V_1}{V_2} p_1 = 2.7atm$, coi không khí là khí lưỡng nguyên tử: i=5, ta có:

$$p_{3} = \left(\frac{V_{2}}{V_{3}}\right)^{\gamma} p_{2} = 1,45atm$$

$$T_{2} = T_{1} \left(\frac{V_{2}}{V_{3}}\right)^{1-\gamma} = 331K; p_{4} = p_{1} \left(\frac{T_{2}}{T_{1}}\right)^{\frac{\gamma-1}{\gamma}} = 3,6atm$$

$$V_{4} = \frac{p_{3}}{p_{4}} V_{3} = 3,2l$$

b. Công thực hiện trên từng quá trình:

$$A_{12} = p_1 V_1 \ln \frac{V_2}{V_1} = 1300 J$$

$$A_{23} = \frac{p_2 V_2}{\gamma - 1} \left(1 - \frac{T_2}{T_1} \right) = 620 J$$

$$A_{34} = p_2 V_2 \ln \frac{V_4}{V_3} = -1070 J$$

$$A_{41} = \frac{p_2 V_2}{\gamma - 1} \left(1 - \frac{T_1}{T_2} \right) = -620 J$$

Công khí thực hiện trong cả chu trình:

$$A = A_{12} + A_{23} + A_{34} + A_{41} = 230J$$

c. Nhiệt mà khí nhận trong từng quá trình đoạn nhiệt:

Khoa Vật Lí, trường ĐH Khoa Học, ĐH Thái Nguyên

$$Q_{12} = A_{12} = 1300J$$
, khí nhận nhiệt. $Q_{34} = A_{34} = -1070J$, khí nhả nhiệt.

8-32. Trong một bình có 20g N_2 và 32 g oxy. Tìm độ biên thiên nội năng của hỗn hợp khí đó khi làm lanh nó xuống 28°C .

<u>Giải</u>

Độ giảm nội năng

$$\Delta U = \frac{m_o}{\mu_o} \frac{iR}{2} \Delta T + \frac{m_N}{\mu_o} \frac{iR}{2} \Delta T$$

$$\Delta U = \left(\frac{32}{32} + \frac{20}{28}\right) \frac{5.8,31}{2} (273 + 28) \approx 10000J$$

8-33. Giản đồ công tác theo lý thuyết của một máy nén được vẽ trên hình 8 – 4. (giản đồ thực nghiệm có các góc tròn hơn). Đoạn AB ứng với quá trình nén đẳng nhiệt không khí, BC quá trình đẩy không khí vào bình chứa (áp suất không đổi); CD – giảm đột ngột áp suất trong xilanh của máy nén khi đóng van thoát và mở van nạp; DA – cho không khí vào ở áp suất 1at. Hãy chứng minh rằng công của máy nén sau một chu trình bằng công đối với quá trình đẳng nhiệt và được biểu diễn bằng diên tích ABGF.

Giải

Công A của máy nén bằng công khí nhận được và bằng diện tích ABCD

$$A = dt(ABCDA) = dt(ABHA) + dt(BCDHB)$$

$$dt(BCDHB) = (p_2 - p_1)V_2 = p_1V_1 - p_1V_2 = p_1(V_1 - V_2) = dt(AFGH)$$

$$\rightarrow$$
 A = dt(ABHA)+dt(AFGH)=dt(ABGF) (dpcm)

8-34. Vẽ các đồ thị của những quá trình đẳng tích, đẳng áp, đẳng nhiệt vào đoạn nhiệt của giản đồ

a. Giản đồ T,p

- Quá trình đẳng tích : p/T=const, có đồ thị biểu diễn là đường thẳng qua gốc tạ độ (đường 1)
- Quá trình đẳng áp: áp suất không đổi, có đồ thị biểu diễn là đường thẳng song song với OT (đường 2)
- Quá trình đẳng nhiệt: nhiệt độ không đổi, có đồ thị biểu diễn là đường thẳng song với Op.
- Quá trình đoạn nhiệt. Sự phụ thuộc p
 vào T cho bởi phương trình $p = {\rm const.T}^{\frac{\gamma}{\gamma-1}}$

(vì do
$$pV^{\gamma} = c_1 \left(= const\right) \rightarrow c_1 = \frac{\left(pV\right)^{\gamma}}{p^{\gamma-1}} = \left(nR\right)^{\gamma} \frac{T^{\gamma}}{p^{\gamma-1}} \rightarrow p = const.T^{\frac{\gamma}{\gamma-1}}\right)$$

Phương trình này có đồ thị (4) là một đường cong đi qua gốc tọa độ b. Giản đồ T,V

- Quá trình đẳng tích: thể tích không đổi, có đồ thị biểu diễn là đường thẳng song song với OT (đường 1)
- Quá trình đẳng áp : V/T=const, có đồ thị biểu diễn là đường thẳng qua gốc tạo độ (đường 2)
- Quá trình đẳng nhiệt: T=const, có đồ thị biểu diễn là đường thẳng song với OV.
- Quá trình đoạn nhiệt. Sự phụ thuộc V vào T cho bởi phương trình

$$V = const. T^{\frac{1}{\gamma - 1}}.$$

(vì do
$$pV^{\gamma} = c(=const) \rightarrow c = (pV)V^{\gamma-1} = (nR)TV^{\gamma-1} \rightarrow V = const.T^{-\frac{1}{\gamma-1}}, \gamma > 1$$
)

Phương trình này có đồ thị (4) là một đường cong dạng hypecbol tiệm cận với hai trục tọa độ (đường 4).

c. Trong một quá trình bất kỳ : $U = \frac{m}{\mu}RT$, các quá trình đẳng tích, đẳng áp, đoạn nhiệt đường biểu diễn là đường thẳng qua gốc tọa độ (đường 1,2,4), quá trình đẳng nhiệt được cho bởi đường nằm ngang (đường 3).

d. Giản đồ U,V (U khác T một hằng số $\frac{m}{\mu}C_v$, do đó ta chỉ cần kéo dài thêm một tỉ số $\frac{m}{\mu}C_v$ đối với trục T ở đồ thị T,V sẽ nhận được đồ thị U,V)

CHƯƠNG 9: NGUYÊN LÝ THỨ HAI CỦA NHIỆT ĐỘNG LỰC HỌC

9-1. Một máy hơi nước có công suất 14,7kW, tiêu thụ 8,1kg than trong một giờ. Năng suất tỏa nhiệt của than là 7800kcal/kg. Nhiệt độ của nguồn nóng 200°C, nhiệt độ của nguồn lạnh là 58°C. Tìm hiệu suất thực tế của máy. So sánh hiệu suất đó với hiệu suất lý tưởng của máy nhiệt làm việc theo chu trình Cácnô với những nguồn nhiệt kể trên.

$Gi\mathring{a}i$

Hiệu suất thực tế của máy

$$h = \frac{Q_{coich}}{Q_{toanphan}} 100\% = \frac{14,7.3600}{8,1.7800.4,18} 100\% \approx 20\%$$

Hiệu suất lý tưởng theo chu trình Cácnô

$$h_{lt} = \frac{T_n - T_l}{T_n} 100\% = \frac{200 - 58}{200 + 273} 100\% \approx 30\%$$

Hay

$$h = \frac{2}{3}h_{lt}$$

9-2. Các ngoại lực trong máy làm lạnh lý tưởng thực hiện một công bằng bao nhiều để lấy đi một nhiệt lượng 10⁵J từ buồng làm lạnh, nếu nhiệt độ của buồng là 263K, còn nhiệt độ của nước làm lạnh là 285K.

<u>Giải</u>

Hệ số làm lạnh của động cơ

$$\varepsilon = \frac{Q_2}{A}$$

Nếu máy chạy theo chu trình Cácnô ngược thì:

$$\varepsilon = \frac{T_2}{T_1 - T_2}$$

Suy ra

$$\rightarrow A = \left(\frac{T_1}{T_2} - 1\right)Q_2 = \left(\frac{285}{263} - 1\right)10^5 \approx 8365(J)$$

- **9-3.** Một động cơ nhiệt lý tưởng chạy theo chu trình Cácnô, nhả cho nguồn lạnh 80% nhiệt lượng mà nó thu được của nguồn nóng. Nhiệt lượng thu được trong một chu trình là 1,5kcal. Tìm:
 - a. Hiệu suất động cơ.
 - b. Công mà động cơ sinh ra trong một chu trình

<u>Giải</u>

a. Hiệu suất của động cơ

$$\eta = \frac{A}{Q_1} 100\% = \left(1 - \frac{Q_2}{Q_1}\right) 100\% = (1 - 0.8) 100\% = 20\%$$

- c. Công mà động cơ sinh ra trong một chu trình A= ηQ_1 =0,2.1,5=0,3kcal=12,54kJ
- **9-4.** Một động cơ nhiệt làm việc theo chu trình Cácnô, sau mỗi chu trình sinh một công A=7,35.10⁴J. Nhiệt độ của nguồn nóng là 100°C, nhiệt độ của nguồn lạnh là 0°C. Tìm:
 - a. Hiệu suất động cơ.
 - b. Nhiệt lượng nhận được của nguồn nóng sau một chu trình.
 - c. Nhiệt lượng nhả cho nguồn lạnh sau một chu trình.

<u>Giải</u>

a. Hiệu suất của động cơ

$$\eta = \left(1 - \frac{T_2}{T_1}\right)100\% = \left(1 - \frac{273}{100 + 273}\right)100\% \approx 26,8\%$$

b. Nhiệt lượng nhận được của nguồn nóng sau một chu trình $Q_1 = A/\eta = 7,35.10^4/0,268 \approx 27,42.10^4(J)$

c. Nhiệt lượng nhả cho nguồn lạnh sau một chu trình. $Q_2 = Q_1 - A = 27,42.10^4 - 7,35.10^4 = 20,07.10^4 (J)$

9-5. Nhiệt độ của hơi nước từ lò hơi vào máy hơi nước là t_1 =227°C, nhiệt độ của bình ngưng là t_2 =27°C. Hỏi khi tốn một nhiệt lượng Q=1kcal thì thu được một công cực đại theo lý thuyết bằng bao nhiêu?

<u>Giải</u>

Công cực đại theo lý thuyết thu được khi động cơ làm việc theo chu trình Cácnô thuận nghịch với hiệu suất lý tưởng

$$\eta = 1 - \frac{\mathrm{T_2}}{\mathrm{T_1}}$$

Mặt khác

$$\eta = \frac{A}{Q} \rightarrow A = \left(1 - \frac{T_2}{T_1}\right)Q = \left(1 - \frac{27 + 273}{227 + 273}\right)I = 0.4(\text{kcal}) = 1.672(\text{kJ})$$

9-6. Một chu trình Cácnô thực hiện giữa hai máy điều nhiệt nhiệt độ t₁=400°C, t₂=20°C. Thời gian để thực hiện chu trình đó là τ=1s. Tìm công suất (sinh công) làm việc của động cơ theo chu trình ấy, biết tác nhân là 2kg không khí, áp suất cuối quá trình giãn đẳng nhiệt bằng áp suất ở đầu quá trình nén đoạn nhiệt. Cho không khí có μ =29kg/kmol.

<u>Giải</u>

Nhiệt lượng nhận được của động cơ trong một chu trình là nhiệt nhận được trong quá trình 1-2 (hình vẽ)

$$Q_1 = \frac{m}{\mu} RT_1 \ln \frac{p_1}{p_2}$$

Quá trình 4-1 đoạn nhiệt nên

$$p_1V_1^{\gamma} = p_4V_4^{\gamma} \rightarrow p_1^{1-\gamma}T_1^{\gamma} = p_4^{1-\gamma}T_4^{\gamma}$$

Khoa Vât Lí, trường ĐH Khoa Hoc, ĐH Thái Nguyên

Theo giả thiết $p_2=p_4$, $T_4=T_2$

$$\rightarrow \frac{p_1}{p_2} = \left(\frac{T_1}{T_2}\right)^{\frac{\gamma}{\gamma - 1}}$$

Do đó

$$Q_1 = \frac{m}{\mu} \frac{\gamma}{\gamma - 1} RT_1 \ln \frac{T_1}{T_2}$$

Công sinh ra trong một chu trình

$$A = \eta Q_1 \qquad = \frac{T_1 - T_2}{T_1} \qquad \frac{T_1 - T_2}{T_1} Q_1 = \frac{m}{\mu} \frac{\gamma}{\gamma - 1} R(T_1 - T_2) \ln \frac{T_1}{T_2}$$

$$A = \frac{2000}{29} \cdot \frac{1.4}{1.4 - 1} 8.31.(400 - 20) \ln \left(\frac{400 + 273}{20 + 273}\right) \approx 634(kJ)$$

Công suất của động cơ

$$P = \frac{A}{\tau} = 634(kW)$$

- **9-7.** Một máy làm lạnh làm việc theo chu trình Cacnô nghịch, tiêu thụ công suất 36800W. Nhiệt độ của nguồn lạnh là -10°C, nhiệt độ nguồn nóng là 17°C. Tính:
 - a. Hệ số làm lạnh của máy.
 - b. Nhiệt lượng lấy được của nguồn lạnh trong 1s.
 - c. Nhiệt lượng nhả cho nguồn nóng trong 1 giây.

<u>Giải</u>

a. Hệ số làm lạnh của máy

$$\varepsilon = \frac{Q_2}{A} = \frac{T_2}{T_1 - T_2} = \frac{-10 + 273}{17 - (-10)} = 9,74$$

b. Nhiệt lượng lấy được của nguồn lạnh trong 1s

$$Q'_2 = \varepsilon A = \varepsilon Pt = 9,74.36800.1 \approx 3,6.10^5 (J) \approx 86000 cal$$

c. Nhiệt lượng nhả cho nguồn nóng trong 1 giây

$$Q_1 = A + Q'_2 = (\varepsilon + 1)Pt = (9.74 + 1)36800.1 \approx 4.10^5 J \approx 9.5.10^4 cal$$

9-8. Khi thực hiện chu trình Cácnô, khí sinh công 8600J và nhả nhiệt 2,5kcal cho nguồn lạnh. Tính hiệu suất của chu trình.

<u>Giải</u>

Hiệu suất của chu trình

$$\eta = \frac{A}{Q_1} 100\% = \frac{A}{A + Q_2} 100\% = \frac{8600}{8600 + 2,5.10^3.4,18} 100\% \approx 45\%$$

9-9. Khi thực hiện chu trình Cácnô, khí nhận được nhiệt lượng 10kcal từ nguồn nóng và thực hiện công 15kJ . Nhiệt độ của nguồn nóng là 100°C. Tính nhiệt độ của nguồn lạnh

Giải

Hiệu suất của chu trình Các nô

$$1 - \frac{T_2}{T_1} = \frac{A}{Q} \to T_2 = \left(1 - \frac{A}{Q}\right)T_1 = \left(1 - \frac{15.10^3}{10.10^3.4,18}\right)(273 + 100) = 239K$$

- **9-10.** Một máy nhiệt lý tưởng, chạy theo chu trình Cácnô, có nguồn nóng ở nhiệt đô 117°C và nguồn lanh ở nhiệt đô 27°C. Máy nhân của nguồn nóng là 63000cal/s. Tính:
 - a. Hiệu suất của máy.
 - b. Nhiệt lương nhả cho nguồn lanh trong một giây.
 - c. Công suất của máy.

<u>Giải</u>

a. Hiệu suất của máy là hiệu suất của chu trình Cácnô

$$\eta = 1 - \frac{T_2}{T_1} = 1 - \frac{27 + 273}{117 + 273} \approx 23\%$$

b. Nhiệt lượng nhả cho nguồn lạnh trong một giây là Q_2

$$1 - \frac{Q_2}{Q_1} = 1 - \frac{T_2}{T_1} \rightarrow Q_2 = \frac{T_2}{T_1}Q_1 = \frac{27 + 273}{117 + 273}63000 \approx 48000 \text{cal/s}$$

c. Công suất máy là P bằng công máy sinh ra trong một giây
$$P = \frac{A}{\tau} = \frac{Q_1 - Q_2}{\tau} = \frac{63000 - 48000}{1} 4,18 \approx 63 \text{kW}$$

9-11. Một máy làm lạnh lý tưởng, chạy theo chu trình Cácnô ngược lấy nhiệt từ nguồn lạnh 0°C nhả cho bình nước sôi ở 100°C. Tính lượng nước cần làm đông ở nguồn lanh để có thể biến 1kg nước thành hơi ở bình sôi. Cho biết nhiệt nóng chảy riêng của nước đá là λ=3,35.10⁵J/kg, và nhiệt hóa hơi riêng của nước là L=2,26.10⁶J/kg.

Giải

Có thể hình dung máy lạnh này như sơ đồ đã nêu ở phần tóm tắt lý thuyết. Nhiệt nhận từ nguồn lạnh Q_2 , nhả ra nguồn nóng là Q_1 :

$$\frac{Q_2}{Q_1 - Q_2} = \frac{T_2}{T_1 - T_2} \to Q_2 = \frac{T_2}{T_1} Q_1 \tag{1}$$

Nhiệt lương cần làm bay hơi nước:

$$Q_1 = Lm (2)$$

Khối lượng nước cần làm nóng chảy là m':

$$Q_2 = \lambda m' \tag{3}$$

Từ (1) (2) và (3) ta có:

$$m' = \frac{L}{\lambda} \frac{T_2}{T_1} m = \frac{2,26.10^6}{3,35.10^5} \cdot \frac{273}{373} \cdot 1 \approx 4,93 \text{kg}$$

9-12. Một kmol khí lý tưởng thực hiện một chu trình gồm 2 quá trình đẳng tích và hai quá trình đẳng áp. Khi đó thể tích của khí thay đổi từ V_1 =25m³ đến V_2 =50m³ và áp suất từ p_1 =1at đến p_2 =2at. Hỏi công thực hiện bởi chu trình này nhỏ hơn bao nhiêu lần công thực hiện bởi chu trình Cácnô có các đường đẳng nhiệt ứng với nhiệt độ lớn nhất và nhỏ nhất của chu trình nói trên, nếu khi giãn đẳng nhiệt thể tích tăng lên gấp đôi?

$Gi \mathring{a} i$

Công thực hiện trong cả chu trình: $A = (p_2 - p_1)(V_2 - V_1)$

Trong chu trình Cácnô, nhiệt độ nguồn nóng ứng với điểm (V_2,p_2) , nguồn lạnh với (V_1,p_1) . Trong một chu trình tác nhân nhận nhiệt $p_2V_2\ln\frac{V_2}{V_1}$ với hiệu suất:

$$\eta = \frac{T_2 - T_1}{T_2} = \frac{p_2 V_2 - p_1 V_1}{p_2 V_2}$$

Công khí sinh ra trong một chu trình:

$$A' = \eta Q_1 = (p_2 V_2 - p_1 V_1) ln \frac{V'_2}{V'_1}$$

$$\rightarrow \frac{A'}{A} = \frac{(p_2 V_2 - p_1 V_1) \ln \frac{V_2'}{V_1'}}{(p_1 - p_2)(V_2 - V_1)} = 2,1$$

9-13. Một máy hơi nước làm việc theo chu trình như hình vẽ 9-1

- a. Thoạt tiên hơi nước từ nồi hơi vào xilanh, áp suất hơi nước tằng từ $p_{\scriptscriptstyle 0}$ tới $p_{\scriptscriptstyle 1}$, thể tích không đổi và bằng $V_{\scriptscriptstyle 0}$ (nhánh AB).
- b. Hơi nước tiếp tục đi vào, pittông chuyển động từ trái sang phải (nhánh BC) với áp suất hơi không đổi là p_1 và thể tích tăng lên V_1 .
- c. Xilanh đóng van lại, pittông chuyển động tiếp tục sang phải khi đó xảy ra quá trình giãn đoạn nhiệt (Nhánh CD);
- d. Khi đến vị trí cuối cùng bên phải, thì hơi nước trong xilanh đi vào nguồn lạnh, khi đó áp suất hơi giảm xuống p_o , còn thể tích không đổi bằng V_2 , (nhánh DE).

e. Pittông chuyển động ngược lại, đẩy hơi nước còn lại trong xilanh ra ngoài, khi đó áp suất không đổi bằng p_o , thể tích giảm từ V_2 tới V_o (nhánh EA).

Hãy tính công mà máy nhiệt sinh ra mỗi chu trình, nếu V_o =0,5l; V_1 =1,5l; V_2 =3l; p_o =1at; p_1 =12at và hệ số đoạn nhiệt là γ =1,33.

Giải

Công khí thực hiện trên từng quá trình riêng biệt:

+ Quá trình A-B và D-E đẳng tích, khí không sinh công

$$A_{AB} = A_{DE} = 0$$

+ Quá trình BC, khí giãn nở đẳng áp, sinh công

$$A_{BC} = p_1(V_1 - V_0) = 12.9,8.10^4 (1,5 - 0,5).10^{-3} = 1176(J)$$

+ Quá trình CD khí giãn nở đọan nhiệt, theo công thức (P.6) phần phụ lục, công sinh ra trong quá trình giãn nở đoạn nhiệt:

$$A_{CD} = \frac{p_1 V_1}{\gamma - 1} \left(1 - \left(\frac{V_1}{V_2} \right)^{\gamma - 1} \right) = \frac{12.9, 8.10^4 \cdot 1, 5.10^{-3}}{1,33 - 1} \left(1 - \left(\frac{1,5}{3} \right)^{1,33 - 1} \right) \approx 1093(J)$$

+ Quá trình EA khí biến đổi đẳng áp, công thực hiện

$$A_{EA} = p_0 (V_0 - V_2) = 9.8.10^4 (0.5 - 3).10^{-3} \approx -245(J)$$

Công mà máy nhiệt sinh ra trong mỗi chu trình làm việc chính bằng công thực hiên bởi khí

$$A = A_{AB} + A_{BC} + A_{CD} + A_{DE} + A_{EA} = 0 + 1176 + 1093 + 0 - 245 = 2024(J)$$

- **9-14.** Hình vẽ 9-2 trình bày giản đồ lý thuyết của động cơ đốt trong bốn kỳ.
 - a. Trong quá trình đầu tiên, hỗn hợp cháy được nạp vào xilanh, khi đó p_o =const và thể tích tăng từ V_2 tới V_1 . (nhánh AB);
 - b. Trong quá trình thứ hai (nhánh BC), hỗn hựop cháy được nén đoạn nhiệt từ thể tích V_1 tới V_2 . Khi đó nhiệt độ tăng từ T_o đến T_1 và áp suất từ p_o đến p_1 ;

Khoa Vât Lí, trường ĐH Khoa Hoc, ĐH Thái Nguyên

- c. Tiếp theo là quá trình đốt cháy nhanh hỗn hợp cháy bằng tie lửa điện; khi đó áp suất tăng từ p_1 tới p_2 , thể tích không đổi và bằng V_2 (nhánh CD), nhiệt độ tăng tới T_2 ;
- d. Tiếp theo là quá trình giãn đoạn nhiệt $\,$ từ thể tích V_2 tới V_1 (nhánh DE), nhiệt độ giảm xuống T_3 ;
- e. ở cuối cùng của pittông (điểm E), van mở, khí thoát ra ngoài, áp súat giảm nhanh tới p_o , thể tích không đổi và bằng V_1 . (nhánh EB).
- f. Cuối cùng là quá trình nén đẳng áp ở áp suất p_o (nhánh BA).

Hãy tính hiệu suất của chu trình nếu hệ số nén ε = V_1/V_2 =5 và hệ số đoạn nhiệt là γ =1,33.

<u>Giải</u>

Nhiệt tác nhân nhận trong cả chu trình chính bằng nhiệt tác nhân nhận trong quá trình CD:

$$Q_1 = Q_{CD} = nC_V (T_D - T_C)$$

Trên EB tác nhân tỏa nhiệt (nhiệt nhận vào sẽ có dấu âm):

$$Q_2 = nC_V (T_B - T_E)$$

Hiệu suất của động cơ:

$$\eta = 1 + \frac{Q_2}{Q_1} = 1 + \frac{T_B - T_E}{T_D - T_C} = 1 + \frac{nR(T_B - T_E)}{nR(T_D - T_C)} = 1 + \frac{p_o V_1 - p_4 V_1}{p_2 V_2 - p_1 V_2} = 1 + \frac{V_1}{V_2} \frac{p_o - p_4}{p_2 - p_1}$$
(1)

Mặt khác:

$$p_1V_2^{\gamma} = p_oV_1^{\gamma}; \ p_2V_2^{\gamma} = p_4V_1^{\gamma} \rightarrow (p_2 - p_1)V_2^{\gamma} = (p_4 - p_o)V_1^{\gamma}$$

$$\rightarrow \frac{p_o - p_4}{p_2 - p_1} = -\left(\frac{V_2}{V_1}\right)^{\gamma} = -\varepsilon^{-\gamma} \tag{2}$$

Thay (2) vào (1):

$$\eta = 1 - \varepsilon^{1-\gamma} = 1 - 5^{1-1,33} = 41,2\%$$

- **9-15.** Tìm hiệu suất của động cơ đốt trong, cho biết hệ số đoạn nhiệt là 1,33 và hệ số nén bằng:
 - a. $V_1/V_2=4$; b. $V_1/V_2=6$; c. $V_1/V_2=8$;

<u>Giải</u>

Theo bài 9-14 ta tính được lần lượt cho các quá trình cụ thể

a.
$$\eta = 1 - \varepsilon^{1-\gamma} = 1 - 4^{1-1,33} = 36,7\%$$

b.
$$\eta = 1 - \varepsilon^{1-\gamma} = 1 - 6^{1-1,33} = 44,6\%$$

c.
$$\eta = 1 - \varepsilon^{1-\gamma} = 1 - 8^{1-1,33} = 49,6\%$$

9-16. Chu trình của động cơ điezen bốn kỳ được trình bày trên hình 9-3

Hình 9-3

- a. Nhánh AB ứng với quá trình nạp không khí, áp suất p_o=1at;
- b. Nhánh BC không khí được nén đoạn nhiệt tới áp súat p₁.
- c. ở cuối kỳ nén, nhiên liệu được phun vào xilanh, nhiên liệu cháy trong không khí nóng, khi đó pittông chuyển động sang phải, đầu tiên là đẳng áp (nhánh CD), sau đó là đoạn nhiệt (nhánh DE);
- d. Ở cuối quá trình đoạn nhiệt, van thoát mở, áp suất giảm xuống p_o (nhánh EB);
- e. Nhánh BA ứng với quá trình đẩy khí ra khỏi xilanh. Tình hiệu suất của động cơ diezen.

<u>Giải</u>

Trong một chu trình, tác nhân chỉ nhận nhiệt trên quá trình CD:

$$Q_1 = Q_{CD} = nC_p (T_D - T_C)$$

Nhả nhiệt:

$$Q_2 = Q_{EB} = nC_V (T_B - T_E)$$

Hiệu suất :

$$\eta = 1 + \frac{Q_{2}}{Q_{1}} = 1 + \frac{1}{\gamma} \frac{T_{B} - T_{E}}{T_{D} - T_{C}} = 1 + \frac{1}{\gamma} \frac{p_{o} V_{2} - p_{2} V_{2}}{p_{1} V_{3} - p_{1} V_{1}} = 1 + \frac{1}{\gamma} \frac{V_{2}}{V_{1}} \frac{p_{o} / p_{1} - p_{2} / p_{1}}{V_{3} / V_{1} - 1}$$

$$\eta = 1 + \frac{\varepsilon}{\gamma} \frac{p_{o}}{\beta - 1} \frac{p_{2}}{\beta - 1} \tag{1}$$

Trong đó $\varepsilon = V_2 / V_1$

Mặt khác

$$p_{o}V_{2}^{\gamma} = p_{1}V_{1}^{\gamma} \rightarrow \frac{p_{o}}{p_{1}} = \left(\frac{V_{1}}{V_{2}}\right)^{\gamma} = \varepsilon^{-\gamma};$$

$$p_{2}V_{2}^{\gamma} = p_{1}V_{3}^{\gamma} \rightarrow \frac{p_{2}}{p_{1}} = \left(\frac{V_{3}}{V_{2}}\right)^{\gamma} = \left(\frac{V_{3}}{V_{1}}\frac{V_{1}}{V_{2}}\right)^{\gamma} = \beta^{\gamma}\varepsilon^{-\gamma}$$

$$V \acute{o}i \quad \beta = \frac{V_{3}}{V_{1}}$$

$$(2)$$

Thay (2) vào (3) và biến đổi ta nhận được:

$$\eta = 1 - \frac{\beta^{\gamma} - 1}{\gamma \varepsilon^{\gamma - 1} (\beta - 1)}$$

9-17. Một máy hơi nước chạy theo chu trình stilin gồm hai quá trình đẳng nhiệt và hai quá trình đẳng tích như hình 9-4. Tính hiệu suất của chu trình đó. So sánh hiệu suất đó với hiệu suất chu trình Cácnô có cùng nhiệt độ của nguồn nóng và nguồn lạnh.

<u>Giải</u>

Nhiệt tác nhận nhận được trong một chu $\$ trình làm việc bao gồm qúa trình 2-3 và 3-4

$$Q_{23} = nC_v (T_1 - T_2)$$

$$Q_{34} = A_{34} = nRT_1 \ln \left(\frac{V_2}{V_1} \right)$$

Công tác nhân sinh ra (bằng công động co sinh ra) trong một chu trình làm việc

$$A = A_{12} + A_{23} + A_{34} + A_{41} = nRT_2 \ln \left(\frac{V_1}{V_2}\right) + 0 + nRT_1 \ln \left(\frac{V_2}{V_1}\right) + 0 = nR(T_1 - T_2) \ln \left(\frac{V_2}{V_1}\right)$$

Hiệu suất của động cơ

$$\eta = \frac{A}{Q_{23} + Q_{34}} = \frac{T_1 - T_2}{T_1 + \frac{C_V}{R} \frac{(T_1 - T_2)}{\ln(V_2 / V_1)}} < \frac{T_1 - T_2}{T_1} = \eta_{Carnot}$$

Vậy động cơ làm việc theo chu trình Stilin có hiệu suất nhỏ hơn khi làm việc theo chu trình Carnot.

9-18. Tính độ biến thiên entrôpy khi hơ nóng đẳng áp 6,5g hiđrô, thể tích khí tăng gấp đôi.

<u>Giải</u>

Độ biến thiên entropy trong qúa trình đẳng áp

$$dS = \frac{\delta Q}{T} = \frac{nC_p dT}{T}$$

Khoa Vật Lí, trường ĐH Khoa Học, ĐH Thái Nguyên

Cả quá trình entropy biến thiên một lượng

$$\Delta S = \int dS = nC_p \int_{T_1}^{T_2} \frac{dT}{T} = \frac{m}{\mu} \frac{i+2}{2} R \ln \frac{T_2}{T_1}$$

Mặt khác, quá trình đẳng áp nên

$$\frac{T_2}{T_1} = \frac{V_2}{V_1} = 2$$

Với Hiđrô i=5

$$S = \frac{6.5}{2} \cdot \frac{5+2}{2} \cdot 8.31 \cdot \ln(2) = 65.52(J/K)$$

9-19. Tính độ tăng entrôpy khi biến đổi 1g nước ở 0°C thành hơi ở 100°C.

<u>Giải</u>

Độ biến thiên entropy khi nước được làm nóng tới 100°C

$$dS = \frac{\partial Q}{T} = \frac{mCdT}{T} \to \Delta S_1 = \int dS = mC \int \frac{dT}{T} = mC \ln \left(\frac{T_2}{T_1}\right)$$
$$\Delta S_1 = 10^{-3}.4180. \ln \left(\frac{100 + 273}{0 + 273}\right) = 1.3$$

Độ biến thiên entropy trong quá trình nước hóa hơi ở 100° C

$$\Delta S_2 = \int \frac{\mathcal{Q}}{T_2} = \frac{Lm}{T_2} = \frac{2,26.10^6.10^{-3}}{373} \approx 6,1$$

Độ biên thiên entropy trong cả quá trình

$$\Delta S = \Delta S_1 + \Delta S_2 \approx 7.4(J/K)$$

9-20. Tính độ biến thiên entrôpy khi giãn đẳng nhiệt 10,5g khí Nitơ từ thể tích 2l tới thể tích 5l.

<u>Giải</u>

Ta có

$$\Delta S = \int \frac{\partial Q}{T} = \frac{\Delta Q}{T} = \frac{m}{\mu} R \ln \left(\frac{V_2}{V_1} \right) = \frac{10.5}{28} .8,31. \ln(5/2) \approx 2.9 (J/K)$$

- **9-21.** 10g ôxy được hơ nóng từ t_1 =50°C tới t_2 =150°C. Tính độ biến thiên entrôpy nếu quá trình hơ nóng là:
 - a. Đẳng tích;
- b. đẳng áp.

<u>Giải</u>

a. Quá trình đẳng tích

$$\Delta S = \int \frac{\delta Q}{T} = \int \frac{\delta A + dU}{T} = \frac{m}{\mu} C_{V} \int \frac{dT}{T} = \frac{m}{\mu} \frac{i+2}{2} R \ln \frac{T_{2}}{T_{1}}$$

$$\Delta S = \frac{10}{32} \frac{5}{2} .8,31. \ln \left(\frac{150 + 273}{50 + 273} \right) \approx 1,7 (J/K)$$

b. Đẳng áp

Khoa Vật Lí, trường ĐH Khoa Học, ĐH Thái Nguyên

$$\Delta S = \int \frac{\partial Q}{T} = \frac{m}{\mu} C_p \int \frac{dT}{T} = \frac{m}{\mu} \frac{i+2}{2} R \ln \left(\frac{T_2}{T_1} \right)$$
$$\Delta S = \frac{10}{32} \frac{5+2}{2} .8,31. \ln \left(\frac{150+273}{50+273} \right) \approx 2,4(J/K)$$

9-22. Tính độ biến thiên entrôpy khi biến đổi 6g khí hyđrô từ thể tích 20lít, áp suất 1,5at đến thể tích 60lít, áp suất 1at.

$Gi \mathring{a} i$

Vì độ biến thiên entropy chỉ phụ thuộc vào trạng thái đầu và cuối nên ta có thể chọn cho khí một cách biến đổi bất kỳ mà không ảnh hưởng tới kết quả. Chẳng hạn, cho khí biến đổi đẳng tích tới áp suất 1at, sau đó giãn đẳng áp tới thể tích 60l.

+ Với quá trình thứ nhất (quá trình đẳng tích):

$$\Delta S_1 = \int \frac{\partial Q}{T} = nC_V \int \frac{dT}{T} = \frac{m}{\mu} C_V \ln \left(\frac{T_2}{T_1} \right) = \frac{m}{\mu} C_V \ln \left(\frac{p_2}{p_1} \right)$$

+ Với quá trình thứ hai (quá trình đẳng áp):

$$\Delta S_2 = \int \frac{\partial Q}{T} = nC_p \int \frac{dT}{T} = \frac{m}{\mu} C_p \ln \left(\frac{T_2}{T_1} \right) = \frac{m}{\mu} C_p \ln \left(\frac{V_2}{V_1} \right)$$

Độ biến thiên entropy của cả quá trình

$$\Delta S = \Delta S_1 + \Delta S_2 = \frac{m}{\mu} \left(C_p \ln \left(\frac{V_2}{V_1} \right) + C_V \ln \left(\frac{p_2}{p_1} \right) \right)$$

$$\Delta S = \frac{6}{2} \left(\frac{5+2}{2} .8,31. \ln \left(\frac{60}{20} \right) + \frac{5}{2} .8,31. \ln \left(\frac{1}{1,5} \right) \right) \approx 71 (J/K)$$

- **9-23.** Một kilômol khí lưỡng nguyên tử được hơ nóng, nhiệt độ tuyệt đối của nó được tăng lên 1,5 lần. Tính độ biến thiên entrôpy nếu quá trình hơ nóng là:
 - a. Đẳng tích;
- b. Đẳng áp

$Gi \mathring{a} i$

a. Quá trìn đẳng tích

$$\Delta S_1 = \int \frac{\partial Q}{T} = nC_V \int \frac{dT}{T} = \frac{m}{\mu} C_V \ln \left(\frac{T_2}{T_1} \right) = \frac{m}{\mu} \frac{i}{2} R \ln \left(\frac{T_2}{T_1} \right)$$

$$\Delta S_1 = 10^3 \cdot \frac{5}{2} \cdot 8.31 \cdot \ln(1.5) \approx 8.4 \cdot 10^3 (\text{J/K})$$

b. Quá trìn đẳng tích

$$\Delta S_{2} = \int \frac{\partial Q}{T} = nC_{p} \int \frac{dT}{T} = nC_{p} \ln \left(\frac{T_{2}}{T_{1}} \right) = n \frac{i+2}{2} R \ln \left(\frac{T_{2}}{T_{1}} \right)$$

$$\Delta S_{2} = 10^{3} \cdot \frac{5+2}{2} \cdot 8.31 \cdot \ln(1.5) \approx 11.8 \cdot 10^{3} (J/K)$$

9-24. 22g khí nitơ được hơ nóng, nhiệt độ tuyệt đối của nó tăng gấp 2,1 lần và entrôpy tăng lên 4,19cal/K. Xét xem quá trình hơ nóng là đăng tích hay đẳng áp?

$Gi\dot{a}i$

Giả sử nhiệt dung của quá trình biến đổi là C, khi đó

$$\Delta S = \int \frac{\partial Q}{T} = nC \int \frac{dT}{T} = \frac{m}{\mu} C \ln \left(\frac{T_2}{T_1} \right)$$

$$\rightarrow C = \frac{\mu \Delta S}{m \ln(T_2/T_1)} = \frac{28.4,19}{22.\ln(2.1)} \approx 7(\text{cal/K}) \approx 29(\text{J/K})$$

Đối với Nitơ

$$C_{V} = \frac{iR}{2} \approx 21(J/mol); C_{p} = \frac{(i+2)R}{2} \approx 29(J/mol)$$

Vậy quá trình hơ nóng là quá trình đẳng áp

9-25. Độ biến thiên entrôpy trên đoạn giữa hai quá trình đoạn nhiệt trong chu trình Cácnô bằng 1kcal/độ. Hiệu nhiệt độ giữa hai đường đẳng nhiệt là 100°C. Hỏi nhiệt lượng đã chuyển hóa thành công trong chu trình này

<u>Giải</u>

Gọi nhiệt độ của hai đường đẳng nhiệt là T_1 và T_2 ($T_1 > T_2$)

Công thực hiện trong chu trình bằng hiệu của nhiệt nhận vào thực sự và nhiệt tỏa ra thực sự trong một chu trình (chính bằng tổng nhiệt lượng *nhận vào* trong cả chu trình)

$$A = Q_1 + Q_2$$

Trong chu trình Carnot

$$\eta = \frac{Q_1 + Q_2}{Q_1} = \frac{T_1 - T_2}{T_1} \rightarrow \frac{Q_1}{T_1} = \frac{Q_2}{T_2} = \frac{Q_1 - Q_2}{T_1 - T_2} = \frac{A}{T_1 - T_2}$$

Trong quá trình đẳng nhiệt (giữa hai quá trình đoạn nhiệt), độ biến thiên entropy là

$$\Delta S = \int \frac{\partial Q}{T} = \frac{Q_1}{T_1} = \frac{Q_2}{T_2}$$

Nên

$$A = (T_1 - T_2)\Delta S = 100(kcal) = 418(kJ)$$

9-26. Bổ 100g nước đá ở 0°C vào 400g nước ở 30°C trong một bình có vỏ cách nhiệt lý tưởng. Tính độ biến thiên entrôpy của hệ trong quá trình trao đổi nhiệt. Từ đó suy ra rằng nhiệt chỉ truyền từ vật nóng sang vật lạnh. Cho biết nhiệt nóng chảy riêng của nước đá ở 0°C là λ=80kcal/kg; nhiệt dung riêng của nước là 1kcal/kgđộ.

<u>Giải</u>

Nhiệt độ cân bằng T của hệ sau khi trao đổi nhiệt xác định từ phương trình cân bằng nhiệt

$$\lambda m_1 + c m_1 (t - t_1) = c m_2 (t_2 - t) \rightarrow t = \frac{c (m_2 t_2 + m_1 t_1) - \lambda m_1}{c (m_1 + m_2)}$$
$$t = \frac{1(400.30 + 100.0) - 80.100}{1(100 + 400)} = 8(^{\circ}C) = 281(K)$$

Đối với nước đá, độ tăng entropy bao gồm độ tăng do nóng chảy và độ tăng do tăng nhiệt đô

$$\Delta S_1 = \int_1 \frac{\partial Q}{T} + \int_2 \frac{\partial Q}{T} = \frac{\Delta Q}{T_1} + cm_1 \int_{T_1}^T \frac{dT}{T} = \frac{\lambda m_1}{T_1} + cm_1 \ln \left(\frac{T}{T_1}\right)$$

Với T =281(K) là nhiệt độ cân bằng của hệ.

Đối với nước bị lạnh đi, entropy sẽ giảm, độ biến thiên khi này là

$$\Delta S_2 = \int \frac{\partial Q}{T} = cm_2 \int_{T_2}^{T} \frac{dT}{T} = cm_2 \ln \left(\frac{T}{T_1} \right)$$

Độ biên thiên entropy của hệ là

$$\Delta S = \Delta S_1 + \Delta S_2 = \frac{\lambda m_1}{T_1} + cm_1 \ln \left(\frac{T}{T_1}\right) + cm_2 \ln \left(\frac{T}{T_2}\right)$$

$$\Delta S = \frac{80.0,1}{(0+273)} + 1.0,1. \ln \left(\frac{281}{0+273}\right) + 1.0,4. \ln \left(\frac{281}{30+273}\right) \approx 0,002 (kcal/K)$$

Ta thấy $\Delta S>0$, điều đó chứng tỏ nhiệt chỉ có thể truyền từ vật nóng sang vật lanh

* Để chứng minh nhiệt chỉ có thể truyền từ vật nóng sang vật lạnh ta có thể làm như sau: Xét hệ hai vật cô lập, năng lượng của hệ bảo toàn (nếu quá trình ta xét chỉ liên quan đến sự truyền nhiệt thì nhiệt được bảo toàn)

$$Q = Q_1 + Q_2 = const \rightarrow \delta Q_1 = -\delta Q_2$$

Trong đó $\partial\!\!\!\!Q_1,\;\partial\!\!\!\!Q_2$ là độ biến thiên nhiệt lượng của vật 1 và 2.

Độ biến thiên entropy

$$dS = dS_1 + dS_2 = \frac{\partial Q_1}{T_1} + \frac{\partial Q_2}{T_2}$$

Theo (*) ta có

$$dS = \delta Q_1 \left(\frac{1}{T_1} - \frac{1}{T_2} \right) = \frac{(T_2 - T_1) \delta Q_1}{T_1 T_2} > 0 \rightarrow (T_2 - T_1) \delta Q_1 > 0$$

Nếu $T_2 > T_1$ thì $\delta Q_1 > 0$ tức là vật 1 nhận nhiệt hay nhiệt truyền từ vật 2 sang vật 1

Nếu $T_2\!\!<\!\!T_1$ thì $\delta Q_1\!\!<\!\!0$ tức là vật 1 tỏa nhiệt hay nhiệt truyền từ vật 1 sang vât 2

Vậy nhiệt chỉ có thể truyền từ vật nóng sang vật lạnh

9-27. Tính độ biến thiên entrôpy của một chất khí lý tưởng khi trạng thái của nó thay đổi từ A tới B (hình 9-5) theo:

Hình 9-5

a. Đường ACB

b. Đường ADB

Cho biết: V_1 =3l; p_1 =8,31.10⁵N/m²; V_2 =4,5l; t_1 =27°C, p_2 =6.10⁵N/m²

Giải

Độ biến thiên entropy không phụ thuộc vào quá trình biến đổi như thế nào, mà chỉ phụ thuộc vào trạng thái đầu và trạng thái cuối, nên:

$$\begin{split} \Delta S &= \Delta S_{AC} + \Delta S_{CB} = nC_V \int_A^c \frac{dT}{T} + nC_p \int_C^B \frac{dT}{T} = nC_V \ln \left(\frac{T_C}{T_A}\right) + nC_p \ln \left(\frac{T_B}{T_C}\right) \\ A &- C \text{ và } C - B \text{ dằng áp nên} \\ &\frac{T_C}{T_A} = \frac{p_2}{p_1} \text{ ; } \frac{T_B}{T_C} = \frac{V_2}{V_1} \\ Do \text{ d\'o} \\ \Delta S &= n \frac{i}{2} R \ln \left(\frac{p_2}{p_1}\right) + n \frac{i+2}{2} R \ln \left(\frac{V_2}{V_1}\right) = \frac{p_1 V_1}{T_1} \left(\frac{i}{2} \ln \left(\frac{p_2}{p_1}\right) + \frac{i+2}{2} \ln \left(\frac{V_2}{V_1}\right)\right) \\ \Delta S &= \frac{8,31.10^5.3.10^{-3}}{(27+273)} \left(\frac{6}{2} \ln \left(\frac{6.10^5}{8,31.10^5}\right) + \frac{6+2}{2} \ln \left(\frac{4,5}{3}\right)\right) \approx 5,4(J/K) \end{split}$$

9-28. Có hai bình khí, bình thứ nhất có thể tích V₁=2l chứa khí Nitơ ở áp suất p₁=1at, bình thứ hai có thể tích V₂=3l chứa khí CO ở áp suất p₂=5at. Cho hai bình thông với nhau và đặt chúng trong một vỏ cách nhiệt lý tưởng. Tính độ biến thiên entrôpy của hệ khi hai khí trộn lẫn vào nhau, biết nhiệt độ ban đầu trong hai bình bằng nhau và bằng 27°C.

<u>Giải</u>

Khi giãn nở vào nhau các chất khí không sinh công, nhiệt lại bị cách nên quá trình đạt được trạng thái cuối cùng có nhiệt độ không đổi (lưi ý, đây không phải là quá trình đoạn nhiệt thuận nghịch). Entropy thay đổi một lượng (tính bằng con đường đẳng nhiệt)

$$\Delta S = \Delta S_1 + \Delta S_2 = \int_1 \frac{\partial Q}{T} + \int_2 \frac{\partial Q}{T}$$

Quá trình đẳng nhiệt

Khoa Vật Lí, trường ĐH Khoa Học, ĐH Thái Nguyên

$$\begin{split} Q &= A = pV \ln \frac{V_2}{V_1} \\ \Delta S &= \frac{p_1 V_1}{T} \ln \left(\frac{V_1 + V_2}{V_1} \right) + \frac{p_2 V_2}{T} \ln \left(\frac{V_1 + V_2}{V_2} \right) \\ \Delta S &= \frac{9.8 \cdot 10^4 \cdot 2.10^{-3}}{273 + 27} \ln \left(\frac{2+3}{2} \right) + \frac{5.9.8 \cdot 10^4 \cdot 3.10^{-3}}{273 + 27} \ln \left(\frac{2+3}{3} \right) \approx 3.1 (J/K) \end{split}$$

9-29. 200g sắt ở 100°C được bỏ vào một nhiệt lượng kế chứa 300g nước ở 12°C. Entrôpy của hệ này thay đổi như thế nào khi cân bằng nhiệt?

Giải

Sau khi trao đổi nhiệt hệ sẽ cân bằng ở nhiệt độ t°C. Phương trình cân bằng nhiệt

$$c_1 m_1(t_1 - t) = c_2 m_2(t - t_2) \rightarrow t = \frac{c_1 m_1 t_1 + c_2 m_2 t_2}{c_1 m_1 + c_2 m_2}$$
$$t = \frac{460.0, 2.100 + 4180.0, 3.12}{460.0, 2 + 4180.0, 3} \approx 18(^{\circ}C)$$

Độ biến thiên entropy của hệ bao gồm sự giảm entropy của miếng sắt và sự tăng entropy của khối nước

$$\Delta S = c_1 m_1 \int \frac{dT}{T} + c_2 m_2 \int \frac{dT}{T} = c_1 m_1 \ln \left(\frac{T}{T_1} \right) + c_2 m_2 \ln \left(\frac{T}{T_2} \right)$$

$$\Delta S = 460.0, 2. \ln \left(\frac{18 + 273}{100 + 273} \right) + 4180.0, 3. \ln \left(\frac{18 + 273}{12 + 273} \right) \approx 3,3 (J/K)$$

Vậy sau khi cân bằng nhiệt entropy của hệ tăng lên một lượng 3,3(J/K)

CHƯƠNG 10: CHẤT KHÍ

- **10-1.** Có 10g khí He chiếm thể tích 100cm³ ở áp suất 10⁸N/m². Tìm nhiệt độ của khí trong hai trường hợp
 - a. Coi khí He là lý tưởng
 - b. Coi khí He là khí thực

<u>Giải</u>

a. Khí He lý tưởng, nhiệt độ được xác định từ phương trình Menđeleev – Crapayron

$$T = {pV \over (m/\mu)R} = {10^8.100.10^{-6} \over (10/4).8,31} \approx 481(K)$$

b. Khí He khí thực, nhiệt độ được xác định từ phương trình Van de Walls

$$\left(p + \frac{m^2}{\mu^2} \frac{a}{V^2}\right) \left(V - \frac{m}{\mu}b\right) = \frac{m}{\mu}RT \to T = \frac{1}{R} \left(\frac{\mu p}{m} + \frac{m}{\mu} \frac{a}{V^2}\right) \left(V - \frac{m}{\mu}b\right)$$

$$T = \frac{1}{8,31} \left(\frac{4.10^8}{10} + \frac{10}{4} \frac{4,1.10^{-4}}{(100.10^{-6})^2}\right) \left(100.10^{-6} - \frac{10}{4}2,3.10^{-5}\right) \approx 205K$$

Đối với He

$$a = 4,121.10^{-4} \text{Jm}^3 / \text{kmol}^2; b = 2,3.10^{-5} \text{m}^3 / \text{kmol}^2$$

- 10-2. Trong một bình thể tích 10lít chứa 0,25kg khí nitơ ở nhiệt độ 27°C.
 - a. Tìm tỉ số giữa nội áp và áp suất do khí tác dụng lên thành bình
 - b. Tìm tỉ số giữa cộng tích và thể tích của bình

<u>Giải</u>

Các hằng số Van de Walls của khí Nitơ ²

$$a = 0.141 \text{Jm}^3 / \text{mol}^2$$
; $b = 3.92.10^{-5} \, \text{m}^3 / \text{mol}$

Phương trình Van de Walls

$$\left(p + \frac{m^2}{\mu^2} \frac{a}{V^2}\right) \left(V - \frac{m}{\mu}b\right) = \frac{m}{\mu}RT$$
 (1)

a. Tỉ số giữa nội áp và áp suất do khí tác dụng lên thành bình

Nội áp p'=
$$\frac{m^2}{\mu^2}\frac{a}{V^2}$$

Chia hai vế của (1) cho p' ta có:

$$\left(\frac{p}{p'} + 1\right)\left(V - \frac{m}{\mu}b\right) = \frac{\mu V^2 RT}{am} \to \frac{p}{p'} = \frac{RV^2 T}{\frac{m}{\mu}a\left(V - \frac{m}{\mu}b\right)} \to \frac{p'}{p} = \frac{ma}{\mu RV^2 T}\left(V - \frac{m}{\mu}b\right) \tag{2}$$

$$\frac{p'}{p} = \frac{250.0,141}{28.8,31.0,01^2.300} \left(0,01 - \frac{250}{28}.3,92.10^{-5}\right) \approx 4,9\%$$

² N.I.Kosin, M.G. Sirkevich, Số tay vật lý cơ sở, NXB công nhân kỹ thuật Hà Nội 1980, trang 106. Khoa Vật Lí, trường ĐH Khoa Học, ĐH Thái Nguyên

b. Tỉ số giữa cộng tích và thể tích của bình

Cộng tích

$$V' = \frac{m}{\mu}b$$

Tỉ số

$$\frac{V'}{V} = \frac{mb}{\mu V} = \frac{250.3,92.10^{-5}}{28.0,01} = 3,5\%$$

10-3. Tìm áp suất của khí cacbonic ở 3°C nếu biết khối lượng riêng của nó ở nhiệt độ đó là 550kg/m³.

Giải

Phương trình Van de Walls

$$\left(p + \frac{m^2}{\mu^2} \frac{a}{V^2}\right) \left(V - \frac{m}{\mu}b\right) = \frac{m}{\mu}RT \rightarrow \left(p + \frac{\rho^2 a}{\mu^2}\right) \left(1 - \frac{\rho}{\mu}b\right) = \frac{\rho}{\mu}RT$$

$$\rightarrow p = \frac{RT}{(\mu/\rho - b)} - \frac{\rho^2 a}{\mu^2}$$

Thay số

$$p = \frac{8,31.(273+3)}{(0,028/550-3,92.10^{-5})} - \left(\frac{550}{0,028}\right)^2.0,141 \approx 1,4.10^8 \text{ (Pa)}$$

10-4. Thể tích của 4g khí oxy tăng từ 1 đến 5 dm³. Xem khí oxy là thực. Tìm công của nội lực trong quá trình giãn nở đó.

<u>Giải</u>

Nội áp

$$p' = \left(\frac{m}{\mu}\right)^2 \frac{a}{V^2}$$

Công của nội lực

A'=
$$\int p' dV = \left(\frac{m}{\mu}\right)^2 \int_{V_1}^{V_2} \frac{adV}{V^2} = a \left(\frac{m}{\mu}\right)^2 \left(\frac{1}{V_1} - \frac{1}{V_2}\right)$$

A'= $0.138 \left(\frac{4}{32}\right)^2 \left(\frac{1}{0.001} - \frac{1}{0.005}\right) \approx 1.7(J)$

10-5. Tính nội áp của khí cácbonic lúc khối lượng riêng của nó là $550 {\rm kg/m^3}$. Cho biết đối với khí cacbonic có: $T_{\rm k}{=}304 {\rm K}$ và $p_{\rm k}{=}7,4.10^6 {\rm N/m^2}$

$Gi \mathring{a} i$

Nội áp của khí Cacbonic

$$p' = \frac{m^2}{\mu^2} \frac{a}{V^2} = \frac{\rho^2}{\mu^2} \frac{27RT_k^2}{64p_k}$$

Nhưng do

$$a = \frac{27RT_k^2}{64p_k}$$

Nên

$$p' = \left(\frac{550}{0,044}\right)^2 \frac{27.8,31.304^2}{64.7,4.10^6} \approx 6,8.10^6 (Pa)$$

10-6. Tính khối lượng nước cần cho vào một cái bình thể tích 30cm³ để khi đun nóng tới trạng thái tới hạn nó chiếm toàn bộ thể tích của bình.

Giải

Gọi khối lượng nước cần cho vào bình là m. Khi đun nóng tới trạng thái tới hạn, thể tích của bình là thể tích tới hạn, nên

$$V = V_k = \frac{m}{\mu} V_{ok} = \frac{m}{\mu} 3b \rightarrow m = \frac{\mu V}{3b}$$

Hằng số Van de Walls của nước b=30,5.10⁻⁶m³/mol, ta tính được m=5,9g

10-7. Xác định khối lượng riêng của hơi nước ở điểm tới hạn theo giá trị cộng tích b=0,03m³/kmol.

$Gi \mathring{a} i$

Cộng tích

$$V_k = \frac{m}{\mu} V_{ok} = \frac{m}{\mu} 3b \rightarrow \rho_k = \frac{m}{V_k} = \frac{\mu}{3b} = \frac{0.018}{3.0.03 \cdot 10^{-3}} = 200 (kg / m^3)$$

- **10-8.** Đối với khí cacbonic : $a=3,64.10^5 Jm^3/kmol^2$, $b=0,043m^3/kmol$. Hỏi:
 - a. 1g cácbonic lỏng có thể tích lớn nhất là bao nhiêu?
 - b. Áp suất hơi bão hòa lớn nhất là bao nhiêu?
 - c. CO_2 lỏng có nhiệt độ cao nhất là bao nhiêu?
 - d. Cần phải nén khí $\dot{\rm CO}_2$ với áp suất bằng bao nhiêu để thành $\dot{\rm CO}_2$ lỏng ở nhiệt độ 31°C và 50°C.

<u>Giải</u>

a. Thể tích lớn nhất của cácboníc lỏng ứng với trạnh thái tới hạn (suy ra từ các đường đẳng nhiệt Van de Walls)

$$V_k = \frac{m}{\mu} V_{ok} = \frac{3bm}{\mu} \approx \frac{3.0,043.10^{-3}}{44.10^{-3}} \approx 2,93.10^{-3} \text{ m}^3 / \text{kg}$$

$$(b=0.043 \text{ m}^3/\text{kmol} = 0.043.10^{-3} \text{m}^3/\text{mol})$$

b. Áp suất hơi bão hoà cực đại ứng với điểm ba (suy ra từ các đường đẳng nhiệt Van de Walls)

$$p_k = \frac{a}{27b^2} = \frac{0.364}{27(0.043.10^{-3})^2} \approx 7.4.10^6 (Pa)$$

 $(a=3,64.10^5 Jm^3/kmol^2=0,364 Jm^3/mol)$

c. Nhiệt độ cao nhất mà nitơ còn ở thể lỏng ứng với nhiệt độ điểm ba

$$T_{k} = \frac{8a}{27Rb} = \frac{8.0,364}{27.8,31.0,043.10^{-3}} \approx 304K = 31^{\circ} (C)(!)$$

d. Cácboníc lỏng ở 31°C cần nén tới áp suất bằng áp suất tới hạn $p_k = 7.4.10^6 (Pa)$

Đó cũng là nhiệt độ lớn nhất mà cácboníc ở thể lỏng ở mọi áp suất. Với nhiệt độ 51°C là không thể thực hiện hoá lỏng với bất cứ áp suất nào

- **10-9.** Để nghiên cứu trạng thái tới hạn nhà vật lý học Nga A. Vênariuyt dùng một cái hộp trong đó có đựng một ống chứa ete được hàn kín. Hơ nóng hộp để quan sát trạng thái tới hạn.
 - a. ở 20° C, ête nước phải chiếm một thể tích bằng bao nhiêu phần trăm thể tích của ống để khi đến nhiệt độ tới hạn, ống chứa đầy ête ở trạng thái tới hạn? Biết rằng khối lượng 1 kmol ête là 74kg/kmol, khối lượng riêng của ête ở 20° C bằng 714kg/m³. Đối với ête T_k = 193° C, p_k = $35,9.10^{5}$ N/m²;
 - b. Nếu thể tích của ống lớn hay nhỏ hơn thể tích ête tới hạn thì sẽ xảy ra hiện tượng gì khi nhiệt độ nâng lên?

$Gi \mathring{a} i$

a. Gọi thể tích và khối lượng ête đổ vào ống là V và m, thể tích của nó ở trạng thái tới hạn là $V_{\rm k}$ (do đó cũng là thể tích của ống). Ta có

$$V_{k} = \frac{m}{\mu} V_{ok} = \frac{m}{\mu} 3b = \frac{m}{\mu} 3b \frac{RT_{k}}{8p_{k}}$$

$$V = \frac{m}{\rho} \rightarrow \frac{V}{V_k} = \frac{8\mu p_k}{3\rho RT_k} = \frac{8.0,074.34,9.10^5}{3.714.8,31.(273+193)} \approx 25\%$$

- b. Khi thể tích của ống nhỏ hơn thể tích V_k thì chưa đun ete lên tới trạng thái tới hạn ete đã chiếm đầy ống.
- c. Khi thể tích của ống lớn hơn thể tích V_k thì chưa đun ete lên tới trạng thái tới hạn ete đã bay hơi hết.

CHƯƠNG 11: CHẤT LỎNG

11-1. Xác định công cần thiết để biến một giọt nước 1g thành sương mù (nghĩa là để tách giọt nước đó thành những giọt nhỏ) đường kính 0,2μm. Diện tích bề mặt của giọt nước lúc đầu coi như không đáng kể so với tổng diện tích bề mặt của giọt sương mù.

Gi $\mathring{a}i$

Khối lượng của một giọt sương mù

$$m = \frac{4}{3}\pi \rho r^3$$
 (r là bán kính giọt sương)

Số giọt sương được tạo thành từ giọt nước

$$N = \frac{M}{m} = \frac{3M}{4\pi\rho r^3}$$

Diện tích bề mặt của một giọt $s = 4\pi r^2$, vậy diện tích bề mặt tổng cộng

$$S = sN = \frac{3M}{\rho r} = \frac{6M}{\rho d}$$
 (d=2r là đường kính giọt sương)

Công cần thiết để biến giọt thành sương mù tối thiểu bằng năng lượng mặt ngoài

A =
$$\sigma$$
S = $\frac{6\sigma M}{\rho d}$
A = $\frac{6.0,073.0,001}{1000.2,10^{-6}}$ = 2,19(J)

11-2. Hai giọt thủy ngân với bán kính mỗi giọt là 1mm nhập lại thành một giọt lớn. Hỏi nhiệt độ của giọt thủy ngân tăng lên bao nhiều? Cho biết thủy ngân có suất căng mặt ngoài σ=0,5N/m, khối lượng riêng ρ=13,6.10³kg/m³, nhiệt dung riêng c=138J/kgđộ.

Giải

Gọi bán kính của giọt nhỏ là r
, của giọt lớn được tạo thành là R. Ta có:

$$\frac{4}{3}\pi R^{3}\rho = 2\frac{4}{3}\pi r^{3}\rho \rightarrow R = r\sqrt[3]{2}$$

Nhập làm một, diện tích mặt ngoài của giọt lớn sẽ nhỏ hơn tổng diện tích mặt ngoài của hai giọt nhỏ, năng lượng bề mặt sẽ giảm. Độ giảm năng lượng bề mặt này sẽ bằng nhiệt lượng của giot lớn nhận được.

$$(2.4\pi r^2 - 4\pi R^2)\sigma = \text{mc}\Delta t$$
; $m = 2\frac{4}{3}\pi \rho r^3$

Do đó

$$\Delta t = \left(1 - \frac{\sqrt[3]{4}}{2}\right) \frac{3\sigma}{c\rho r} = \left(1 - \frac{\sqrt[3]{4}}{2}\right) \frac{3.0,5}{138.13,6.0,001} \approx 1,65.10^{-4} (^{\circ}\text{C})$$

11-3. Tính công cần thực hiện để thổi một bong bóng xà phòng đạt đến bán kính r=7cm. Suất căng mặt ngoài của nước xà phòng là σ =4.10⁻²N/m. áp suất khí quyển p_o=1,01.10⁵N/m².

Gi $\mathring{a}i$

Ta coi nhiệt độ của khí trong quá trình thổi là không đổi (quá trình đẳng nhiệt). Công cần thổi bong bóng bằng công tạo ra mặt ngoài (bằng năng lượng mặt ngoài) A_1 , và công nén đẳng nhiệt A_2 của một lượng khí đúng bằng lượng khí trong bong bóng ở cuối quá trình từ khí quyển vào.

$$A_1 = 2.\sigma 4\pi r^2 = 8\sigma\pi r^2$$

$$A_2 = pV \ln \frac{p}{p_o}$$

 p_o là áp suất khí quyển, p là áp suất khí trong bong bóng

Để tính p, ta chú ý màng xà phòng gồm hai mặt phân cách, mỗi mặt phân cách (mặt khum) sẽ gây ra ra áp suất phụ "ép" vào tâm với giá trị tính theo công thức Laplace

 $p_p = 2\sigma/r$. áp suất phụ tổng cộng do màng xà phòng gây ra cho khí bên trong bao gồm áp suất do mặt cong phía ngoài và mặt cong phía trong (với bán kính xấp xỉ bán kính mặt cong ngoài) và áp suất khí quyển cộng lại:

$$p = \frac{4\sigma}{r} + p_o$$

Do đó

$$A_{2} = \left(p_{o} + \frac{4\sigma}{r}\right) \frac{4}{3} \pi r^{3} \ln \left(\frac{p_{o} + 4\sigma/r}{p_{o}}\right) = \frac{4}{3} \pi r^{3} p_{o} \left(1 + \frac{4\sigma}{p_{o}r}\right) \ln \left(1 + \frac{4\sigma}{p_{o}r}\right)$$

Vì do $x = \frac{4\sigma}{p_0 r} \ll 1$ nên $(1+x)\ln(x+1) \approx (1+x)x \approx x$ nên ta có

$$A_2 \approx \frac{16\sigma\pi^2}{3}$$

Vậy công tổng cộng

$$A = A_1 + A_2 = 8\sigma\pi r^2 + \frac{16\sigma\pi r^2}{3} = \frac{40\sigma\pi r^2}{3}$$

$$A = \frac{40.0,04.3,14.0,07^2}{3} \approx 8,2.10^{-2} (J)$$

11-4. Một cái khung làm bằng những đoạn dây kim loại cứng. Đoạn dây AB linh động, dài l=15cm. Khung được phủ một màng xà phòng có suất căng mặt ngoài σ =0,045N/m (h 11-3). Tính công cần thực hiện để kéo AB ra một đoạn Δx =4cm.

Hình 11-4

Giải

Lực tối thiểu kéo AB bằng lực căng mặt ngoài tác dụng lên AB, công của lực này (cũng chính bằng năng lượng mặt ngoài đã được tăng lên do tăng diện tích bề mặt màng)

$$A = Fs = \sigma I \Delta x = 0.045.0.15.0.04 = 5.4.10^{-4} (J)$$

11-5. Có một khung hình chữ nhật chiều dài l=10cm. Đoạn dây AB linh động chia khung đó thành hai khung nhỏ hình vuông (h 11-4). Hỏi đoạn AB sẽ dịch chuyển về phía nào và dịch chuyển một đoạn bằng bao nhiều nếu hai khung hình vuông đó được phủ bằng hai màng chất lỏng khác nhau có suất căng mặt ngoài tương ứng là: σ_1 . =0,06N/m và σ_2 =0,04N/m.

Giải

Xét về mặt năng lượng, năng lượng mặt ngoài của hệ ban đầu là $(\sigma_1 + \sigma_2)$ S (S là diện tích nửa hình chữ nhật). Hệ cân bằng ở vị trí sao cho năng lượng mặt ngoài của hệ hai màng xà phòng là nhỏ nhất, có nghĩa là dây AB sẽ chuyển động về phía làm màng xà phòng có suất căng mặt ngoài lớn hơn. Kết quả là dây AB sẽ chuyển động đến tận cùng bên phía màng có sức căng mặt ngòai lớn hơn

11-6. Để xác định lực căng mặt ngoài của rượu người ta làm như sau: cho rượu trong một cái bình chảy nhỏ giọt ra ngoài theo một ống nhỏ thẳng đứng có đường kính d=2mm. Thời gian giọt này rơi theo giọt kia là τ =2 giây. Người ta thấy rằng sau thời gian Δt=780 giây thì có Δm=10 gam rượu chảy ra. Tính suất căng mặt ngoài của rượu. Coi chỗ thắt của giọt rượu khi nó bắt đầu rơi có đường kính bằng đường kính của ống nhỏ giọt.

Giải:

Khối lượng của một giọt rượu

$$m = \frac{\tau \Delta m}{\Delta t} \tag{1}$$

Giọt (bắt đầu) nhỏ xuống khi:

$$\pi\sigma d = mg = \frac{\tau \Delta mg}{\Delta t} \rightarrow \sigma = \frac{\tau \Delta mg}{\pi d\Delta t}$$

Thay số
$$\sigma = \frac{2.10.10^{-3}.9.8}{3.14.2.10^{-3}.780} \approx 0.04 \text{N/m}$$

11-7. Một sợi dây bạc đường kính d=1mm, được treothẳng đứng. Khi làm nóng chảy được 12 giọt bạc thì sợi dây bạc ngắn đi một đoạn h=20,5cm. Xác định suất căng của mặt ngoài bạc ở thể lỏng? Cho biết khối lượng riêng của bạc ở thể lỏng là ρ=9300kg/m³ và xem rằng chỗ thắt của giọt bạc khi nó bắt đầu rơi có đường kính bằng đường kính của sợi dây bạc.

$Gi \mathring{a} i$

Khối lượng của bạc đã hoá lỏng $M = \rho \frac{\pi d^2}{4} h$

Khối lượng của một giọt bạc lỏng

$$m = \frac{M}{k} = \frac{\rho \pi d^2 h}{4k} \tag{1}$$

Giọt (bắt đầu) nhỏ xuống khi:

$$\pi\sigma d = mg = \frac{\rho \pi d^2 h}{4k} g \rightarrow \sigma = \frac{\rho g dh}{4k}$$

Thay số

$$\sigma = \frac{\rho g dh}{4k} = \frac{9300.9,8.10^{-3}.0,205}{4.12} \approx 0,39 (N/m)$$

11-8. Có một ống mao dẫn đường kính ngoài d=3mm, một đầu được bịt kín. Đầu bịt kín đó đựng một ít thủy ngân (h 11-5). Khối lượng của ống mao dẫn và thủy ngân là 0,2g. Đầu bịt kín của ống mao dẫn trong nước. Xem nước làm ướt hoàn toàn ống mao dẫn và nước có suất căng mặt ngoài σ=0,073N/m, có khối lượng riêng ρ=10³kg/m³.

Hình 11-5

Giải

Hệ (ống mao dẫn+ Thuỷ ngân) chịu tác dụng của lực căng mặt ngoài và trọng lực hướng xuống, lực Acsimet hướng lên, khi cân bằng thì

$$\sigma\pi d + mg = \rho\pi \frac{d^2}{4} h \to h = \frac{4(\pi\sigma d + mg)}{\pi\rho g d^2}$$
$$h = \frac{4(3,14.0,073.0,003 + 0,0002.9,8)}{3,14.1000.9,8.(0,003)^2} \approx 3,8cm$$

11-9. Để chứng minh lực căng mặt ngoài, người ta đổ nước vào một cái dây bằng lưới sắt mà các sợi lưới đã được phủ một lớp parafin. Các lỗ của lưới sắt có dạng hình tròn đường kính d=0,2mm. Hỏi chiều cao lớn nhất của mức nước đổ vào dây mà nước chảy ra theo các lỗ đó?

Giải

Nước còn đọng được trên dây là do lực căng mặt ngoài xuất hiện tại mặt thoáng nơi tiếp xúc của vòng dây và nước. Nước sẽ nhỏ xuống khi sức căng mặt ngoài không còn đủ sức giữ nó nữa. Khi đó

$$\rho g h \pi d^2 / 4 \le \sigma \pi d \to h \le \frac{4\sigma}{\rho g d} = \frac{4.0,073}{1000.10.0,0002} \approx 15 (cm)$$

11-10. Trong một ống mao dẫn hở đặt thẳng đứng, đường kính trong 1mm có một giọt nước. Hỏi khối lượng của giọt nước phải như thế nào để mặt khum bên dưới của giọt nước là: mặt lõm, mặt phẳng, mặt lồi?

Giải

Có thể hiệu định tính là giọt nước sẽ đi dần tới phía đáy ống mao dẫn. Độ khum (lõm) của mặt bên dưới sẽ "kém hơn" mặt phía trên (mặt phía trên luôn luôn là mặt cầu với đường kính bằng đường kính của ống mao dẫn). Khi khối lượng của giot nước càng lớn đô cong mặt khum bên dưới càng giảm, đến khi

khối lượng giọt nước đạt tới giá trị m_o nào đó mặt khum này sẽ là mặt phẳng, lớn hơn giá trị này mặt khum trở thành mặt lồi. Ta có

$$m_{_{0}}g = \sigma \pi d \rightarrow m_{_{0}} = \frac{\pi \sigma d}{g} = \frac{3,14.0,073.0,001}{9,8} \approx 2,34.10^{-5} \,\text{kg}$$

Vậy nên:

- Khi m< $2,34.10^{-5}$ kg mặt khum bên dưới là mặt lõm
- Khi m= $2,34.10^{-5}$ kg mặt khum bên dưới là mặt phẳng
- Khi m> $2,34.10^{-5}$ kg mặt khum bên dưới là mặt lồi
- **11-11.** Hai ống mao dẫn có đường kính trong lần lượt là 0,5mm và 1mm nhúng trong một bình đựng chất lỏng. Tính hiệu các mức chất lỏng trong hai ống mao dẫn nếu:
 - a. Chất lỏng đó là nước.
 - b. Chất lỏng đó là thủy ngân

Giải

a. Khi nhúng hai ống trong nước, nước sẽ dâng lên. Độ dâng lên của nước trong từng ống là

$$h = \frac{4\sigma}{\rho gd}$$

Hiệu các mức chất lỏng trong hai ống mao dẫn là

$$\Delta h = \frac{4\sigma}{\rho g} \left(\frac{1}{d_2} - \frac{1}{d_1} \right) = \frac{4.0,073}{1000.9,8} \left(\frac{1}{0,0005} - \frac{1}{0,001} \right) \approx 3(cm)$$

b. Khi nhúng hai ống trong thuỷ ngân, thuỷ ngân trong ống sẽ hạ xuống. Độ hạ xuống của thuỷ ngân trong từng ống là h. Cân bằng giữa áp suất thuỷ tĩnh và áp suất phụ cho điểm bên trong chất lỏng ngay tại mặt khum ta có

$$\rho gh = \frac{2\sigma}{d/2} \rightarrow h = \frac{4\sigma}{\rho gd}$$

Hiệu các mức chất lỏng trong hai ống mao dẫn là

$$\Delta h = \frac{4\sigma}{\rho g} \left(\frac{1}{d_2} - \frac{1}{d_1} \right) = \frac{4.0,5}{13600.9,8} \left(\frac{1}{0,0005} - \frac{1}{0,001} \right) \approx 1,5 \text{(cm)}$$

11-12. Một ống được nhúng thẳng đứng trong một bình dựng chất lỏng. Hỏi chiều cao của cột nước trong ống thay đổi như thế nào nếu ống mao dẫn và bình được nâng lên nhanh dần đều với gia tốc a=g? Hạ xuống nhanh dần đều với gia tốc a=g/2?

Giải:

Khi bình và ống được nâng lên với gia tốc a, áp suất của điểm bên trong ống ngang mặt thoáng chất lỏng ngoài ống bao gồm áp suất khí quyển, áp suất thuỷ tĩnh của cột nước, áp suất phụ gây bởi mặt khum và áp suất gây ra

do lực quán tính³. áp suất này có giá trị bằng áp suất tại những điểm ngang bằng với nó ở ngoài ống

$$p_o = p_o - p_p + \rho g h + \rho \gamma h \rightarrow h = \frac{p_p}{\rho (g + \gamma)}$$

Khi ống mao dẫn và bình không chuyển động $(\gamma = 0)$ thì

$$h_o = \frac{p_p}{\rho g}$$

Do đó:

$$\frac{h}{h_0} = \frac{g}{g + \gamma}$$

Khi nâng lên $\gamma = g$

$$\frac{h}{h_o} = \frac{1}{2}$$

Khi hạ xuống: $\gamma = -g/2$

$$\frac{h}{h_a} = 2$$

11-13. Có hai ống mao dẫn lồng vào nhau, đồng trục, nhúng thẳng đứng vào một bình nước. Đường kính trong của ống mao dẫn nhỏ, bằng bề rộng của khe tạo nên giữa hai ống mao dẫn. Bỏ qua bề dày của ống mao dẫn trong. Hỏi mức chất lỏng trong ống nào cao hơn, cao hơn bao nhiêu lần?

<u>Giải</u>

Độ dâng của nước trong ống mao dẫn trong

$$h_1 = \frac{4\sigma}{\rho gd}$$
 (d là đường kính trong của ống mao dẫn trong)

Đường kính trong của ống mao dẫn ngoài theo giả thiết ta tính được là 3d. Độ dâng của nước trong ống mao dẫn ngoài là h_2 . Khi cân bằng tổng lực căng mặt ngoài ở hai đường tiếp xúc giữa mặt thoáng của nước với các ống mao dẫn trong và ngoài (thẳng đứng hướng lên) bằng trọng lực của cột nước dâng lên (thẳng đứng hướng xuống).

$$\sigma \pi d + \sigma \pi 3 d = (\pi (3d)^2 / 4 - \pi d^2 / 4) h_2 \rho g \rightarrow h_2 = \frac{2\sigma}{\rho g d}$$

Do đó

$$\frac{\mathbf{h}_1}{\mathbf{h}_2} = 2$$

Khoa Vât Lí, trường ĐH Khoa Hoc, ĐH Thái Nguyên

 $^{^3}$ Trong hệ quy chiếu gắn với bình+ống mao dẫn, áp suất do lực quán tính gây ra được hiểu thông thừơng bằng áp lực của nó $\rho\gamma$ hS lên diện tích phần tiếp xúc của nó S với tiết diện ấy hay $p_{ol} = \rho\gamma$ h

Vậy nước dâng lên trong ống mao dẫn ở trong cao hơn 2 lần so với độ dâng của "khe" mao dẫn giữa hai ống.

11-14. Có hai tấm thủy tinh phẳng đặt song song cách nhau một khoảng d=0,2mm, nhúng thẳng đứng vào trong một chất lỏng. Xác định khối lượng riêng của chất lỏng đó nếu biết rằng chiều cao của khối chất lỏng giữa hai tấm thủy tinh dâng lên một đoạn h=3,2cm. Suất căng mặt ngoài của chất lỏng là 0,027N/m. Xem chất lỏng làm ướt hoàn toàn thủy tinh.

Giải

Độ dâng của mức chất lỏng trong ống là h, ta có

$$2b\sigma = hdb\rho g \rightarrow \rho = \frac{2\sigma}{ghd} = \frac{2.0,027}{9,8.0,032.0,0002} \approx 861(kg/m^3)$$

11-15. Hiệu mức thủy ngân trong hai nhánh của ống mao dẫn hình chữ U có đường kính trong d_1 =1mm và d_2 =2mm là Δh =1cm. Xác định suất căng mặt ngoài của thủy ngân. Cho biết khối lượng riêng của thủy ngân là 13,6.10³kg/m³.

Giải

Cân bằng áp suất cho điểm ngay dưới mặt phân cách của nhánh lớn ta có

$$\frac{4\sigma}{d_1} = \frac{4\sigma}{d_2} + \rho g \Delta h \rightarrow \sigma = \frac{\rho g \Delta h d_1 d_2}{4(d_2 - d_1)}$$
$$\sigma = \frac{13600.9, 8.0, 01.0, 001.0, 002}{4(0,002 - 0,001)} \approx 0,67 (N/m)$$

11-16. Khối lượng riêng của không khí trong một cái bong bóng ở dưới đáy của một hồ nước sâu 6m lớn gấp 5 lần khối lượng riêng của không khí ở khí quyển (ở nhiệt độ bằng nhiệt độ ở đáy hồ). Xác định bán kính bong bóng.

Giải

Gọi bán kính của bong bóng là R, áp suất bên trong bong bóng là:

$$p = p_o + \frac{2\sigma}{r} + \rho g h \tag{1}$$

Từ phương trình Menđêleep – Clapêrôn suy ra⁴ khối lượng riêng của khí bên trong và bên ngoài bong bóng lần lượt là $\rho = \frac{\mu p}{RT}$ và $\rho_{\rm o} = \frac{\mu p_{\rm o}}{RT}$

Từ đó
$$n = \frac{\rho}{\rho_0} = \frac{p}{p_0}$$
 (2)

Thay (1) vào (2)

$$n = 1 + \frac{2\sigma}{p_o r} + \frac{\rho gh}{p_o} \rightarrow r = \frac{2\sigma}{(n-1)p_o - \rho gh}$$

Thay số: $r = \frac{2.0,073}{(5-1).10^5 - 1000.9,8.6} = 0,4 \mu m$

11-17. Trên mặt nước người ta để một cái kim có bôi một lớp mỡ mỏng (để cho khỏi bị nước làm ướt). Kim có đường kính lớn nhất là bao nhiêu đểnó có thể được giữ ở trên mặt nước mà không bị chìm xuống dưới? Cho biết khối lượng riêng của thép làm kim là ρ=7,7k.10³kg/m³.

Gi $\dot{a}i$

Để kim không bị chìm thì áp suất do trong lượng của kim tại mặt tiếp xúc giữa kim và nước phải nhỏ hơn áp suất gây ra bởi mặt cong của nước và áp suất do lực đẩy Acsimet tác dụng lên kim.

$$\frac{\sigma}{r} \ge \frac{mg - F_A}{S} \ge \frac{mg - m(\rho_l / 2\rho_r)g}{2rl} \tag{1}$$

trong đó r, l, ρ_r , ρ_l thứ tự là bán kính, chiều dài, khối lượng riêng của kim và của nước. Còn khối lượng của kim: $m = \pi r^2 l \rho_r$

(2)

Thay (2) vào (1)

$$2r = d \le \sqrt{\frac{16\sigma}{\pi(2\rho_r - \rho_1)g}} = \sqrt{\frac{16.0,073}{3,14.(2.7,7-1).9,8.10^3}} \approx 1,6mm$$

Hết

⁴
$$pV = \frac{m}{\mu}RT \rightarrow \rho = \frac{m}{V} = \frac{\mu p}{RT}$$

Khoa Vât Lí, trường ĐH Khoa Hoc, ĐH Thái Nguyên

PHŲ LŲC

A. Quá trình đoạn nhiệt

Trong quá trình đoạn nhiệt

$$\delta Q = 0 \rightarrow pdV + nC_v dT = 0$$
 (P1)

Hệ số đoạn nhiệt

$$\gamma = \frac{C_p}{C_V} = \frac{C_V + R}{C_V} \to \frac{C_V}{C_V} = \frac{R}{\gamma - 1}; C_p = \frac{\gamma R}{\gamma - 1}$$
(P2)

Thế vào (1), và lưu ý phương trình Mendeleev – Crapayron $pV = nRT \rightarrow pdV + Vdp = nRdT$

Cho ta

$$pdV + \frac{1}{\gamma - 1} (pdV + Vdp) = 0$$
$$\rightarrow \gamma pdV + Vdp = 0 \rightarrow d(pV^{\gamma}) = 0$$

Hay

$$pV^{\gamma} = const$$

Đây là phương trình cho quá trình đoạn nhiệt

Hay cũng có thể viết cách khác

$$pV^{\gamma} = (pV)V^{\gamma-1} = nR(TV^{\gamma-1}) \rightarrow TV^{\gamma-1} = const$$
 (P3)

$$pV^{\gamma} = \frac{(pV)^{\gamma}}{p^{\gamma-1}} = (nR)^{\gamma} \frac{T^{\gamma}}{p^{\gamma-1}} \rightarrow p^{1-\gamma}T^{\gamma} = const$$
 (P4)

Công trong quá trình đoạn nhiệt

$$A = -\Delta U \stackrel{(2)}{=} - nC_{V}\Delta T = -\frac{1}{\gamma - 1}nR\Delta T$$

Do

$$nR\Delta T = nR(T_2 - T_1) = p_2V_2 - p_1V_1$$

Nên

$$A = \frac{p_1 V_1 - p_2 V_2}{\gamma - 1} \tag{P5}$$

Cũng có thể viết

$$A = \frac{1}{\gamma - 1} nRT_1 \left(1 - \frac{T_2}{T_1} \right) \stackrel{(3)}{=} \frac{p_1 V_1}{\gamma - 1} \left(1 - \left(\frac{V_1}{V_2} \right)^{\gamma - 1} \right)$$
 (P6)

. . .

B. Các hằng số Van đe Walls xác định qua các thông số tới hạn p_k , T_k , V_k

Phương trình Van de Walls cho một mol khí thực

$$\left(p + \frac{a}{V^2}\right)\left(V - b\right) = RT \rightarrow p = \frac{RT}{V - b} - \frac{a}{V^2}$$

Tại điểm ba

$$p_k = \frac{RT_k}{V_k - b} - \frac{a}{V_k^2} \tag{P7}$$

$$\frac{\partial \mathbf{p}}{\partial \mathbf{V}}\Big|_{\mathbf{V}_{k}=0} = 0 \rightarrow -\frac{\mathbf{R}\mathbf{T}_{k}}{\left(\mathbf{V}_{k} - \mathbf{b}\right)^{2}} + \frac{2\mathbf{a}}{\mathbf{V}_{k}^{3}} = 0 \rightarrow \frac{\mathbf{R}\mathbf{T}_{k}}{\left(\mathbf{V}_{k} - \mathbf{b}\right)^{2}} = \frac{2\mathbf{a}}{\mathbf{V}_{k}^{3}}$$
(P8)

$$\frac{\partial^{2} p}{\partial V^{2}}\Big|_{V_{k}=0} = 0 \to \frac{2RT_{k}}{(V_{k} - b)^{3}} - \frac{6a}{V_{k}^{4}} = 0 \to \frac{RT_{k}}{(V_{k} - b)^{3}} = \frac{3a}{V_{k}^{4}}$$
 (P9)

Chia (P9) cho (P8) ta nhận được

$$V_k = 3b \tag{P10}$$

Thế (P10) vào (P7) ta nhận được

$$p_{k} = \frac{RT_{k}}{(V_{k} - b)^{2}} (V_{k} - b) - \frac{a}{V_{k}^{2}} \to p_{k} = \frac{a}{27b^{2}}$$
 (P11)

Từ (P10) và (P8) ta nhận được

$$T_k = \frac{8a}{27bR} \tag{P12}$$

Các hằng số Van de Walls

Từ (P7) và (P8) ta có

$$p_{k} = \frac{RT_{k}}{V_{k} - b} - \frac{2a}{V_{k}^{3}} \frac{V_{k}}{2} \to b = \frac{RT_{k}}{8p_{k}}$$
(P13)

Hằng số a được tìm từ (P11) và (P12)

$$a = 27b^{2}p_{k} = \frac{27R^{2}T_{k}^{2}}{64p_{k}}$$
 (P14)

Hết