Simple Neural Networks and Neural Language Models

Units in Neural Networks

Neural Network Unit

This is not in your brain

Neural unit

Take weighted sum of inputs, plus a bias

$$z = b + \sum_{i} w_{i} x_{i}$$

$$z = w \cdot x + b$$

Instead of just using z, we'll apply a nonlinear activation function f:

$$y = a = f(z)$$

Non-Linear Activation Functions

We're already seen the sigmoid for logistic regression:

Sigmoid

$$y = \sigma(z) = \frac{1}{1 + e^{-z}}$$

Final function the unit is computing

$$y = \sigma(w \cdot x + b) = \frac{1}{1 + \exp(-(w \cdot x + b))}$$

Final unit again

Suppose a unit has:

$$W = [0.2, 0.3, 0.9]$$

$$b = 0.5$$

What happens with input x:

$$x = [0.5, 0.6, 0.1]$$

$$y = \sigma(w \cdot x + b) =$$

Suppose a unit has:

$$w = [0.2, 0.3, 0.9]$$

 $b = 0.5$

What happens with the following input x?

$$x = [0.5, 0.6, 0.1]$$

$$y = \sigma(w \cdot x + b) = \frac{1}{1 + e^{-(w \cdot x + b)}} = \frac{1}{1 + e^{-(w \cdot x + b)}}$$

Suppose a unit has:

$$w = [0.2, 0.3, 0.9]$$

 $b = 0.5$

What happens with input x:

$$x = [0.5, 0.6, 0.1]$$

$$y = \sigma(w \cdot x + b) = \frac{1}{1 + e^{-(w \cdot x + b)}} = \frac{1}{1 + e^{-(.5*.2 + .6*.3 + .1*.9 + .5)}} = \frac{1}{1 + e^{-(.5*.2 + .6*.3 + .1*.9 + .5)}}$$

Suppose a unit has:

$$w = [0.2, 0.3, 0.9]$$

 $b = 0.5$

What happens with input x:

$$x = [0.5, 0.6, 0.1]$$

$$y = \sigma(w \cdot x + b) = \frac{1}{1 + e^{-(w \cdot x + b)}} = \frac{1}{1 + e^{-(.5*.2 + .6*.3 + .1*.9 + .5)}} = \frac{1}{1 + e^{-0.87}} = .76$$

Non-Linear Activation Functions besides sigmoid

Most Common:

tanh

ReLU Rectified Linear Unit

Simple Neural Networks and Neural Language Models

The XOR problem

The XOR problem

Minsky and Papert (1969)

Can neural units compute simple functions of input?

AND				OR			XOR		
x 1	x 2	у	x1	x2	у	2	x 1	x2	У
	0		0	0	0		0		
	1		0	1	1	(Ø	1	1
			1	0	1	_	1	•	1
1	1	1	1	1	1		1	1	0

Perceptrons

A very simple neural unit

- Binary output (0 or 1)
- No non-linear activation function

$$y = \begin{cases} 0, & \text{if } w \cdot x + b \le 0 \\ 1, & \text{if } w \cdot x + b > 0 \end{cases}$$

Easy to build AND or OR with perceptrons

$$y = \begin{cases} 0, & \text{if } w \cdot x + b \le 0 \\ 1, & \text{if } w \cdot x + b > 0 \end{cases}$$

AND

OR

x2

Easy to build AND or OR with perceptrons

$$y = \begin{cases} 0, & \text{if } w \cdot x + b \le 0 \\ 1, & \text{if } w \cdot x + b > 0 \end{cases}$$

AND

OR

x2

Easy to build AND or OR with perceptrons

$$y = \begin{cases} 0, & \text{if } w \cdot x + b \le 0 \\ 1, & \text{if } w \cdot x + b > 0 \end{cases}$$

AND

OR

x2

Not possible to capture XOR with perceptrons

try for yourself!

Why? Perceptrons are linear classifiers

Perceptron equation given x_1 and x_2 , is the equation of a line

$$w_1 x_1 + w_2 x_2 + b = 0$$

(in standard linear format: $x_2 = (-w_1/w_2)x_1 + (-b/w_2)$)

This line acts as a decision boundary

- 0 if input is on one side of the line
- 1 if on the other side of the line

Decision boundaries

XOR is not a **linearly separable** function!

Solution to the XOR problem

XOR can't be calculated by a single perceptron XOR can be calculated by a layered network of units.

	3	XOR		ReLU y_1
•	x1	x 2	у	1 -2 0
•	0	0	0	ReLU (h_1) (h_2)
	0	1	1	
	1	0	1	1 1 1 0
	1	1	0	X_1 X_2
			-	-1

Solution to the XOR problem

XOR can't be calculated by a single perceptron XOR can be calculated by a layered network of units.

XOR						
x1	x 2	y				
0	0	0				
0	1	1				
1	0	1				
1	1	0				

The hidden representation h

a) The original *x* space

b) The new (linearly separable) h space

(With learning: hidden layers will learn to form useful representations)

Simple Neural Networks and Neural Language Models

Feedforward Neural Networks

Feedforward Neural Networks

Can also be called multi-layer perceptrons (or MLPs) for historical reasons

Binary Logistic Regression as a 1-layer Network

(we don't count the input layer in counting layers!)

Multinomial Logistic Regression as a 1-layer Network

Fully connected single layer network

Reminder: softmax: a generalization of sigmoid

For a vector z of dimensionality k, the softmax is:

softmax(z) =
$$\left[\frac{\exp(z_1)}{\sum_{i=1}^{k} \exp(z_i)}, \frac{\exp(z_2)}{\sum_{i=1}^{k} \exp(z_i)}, \dots, \frac{\exp(z_k)}{\sum_{i=1}^{k} \exp(z_i)} \right]$$

$$\operatorname{softmax}(z_i) = \frac{\exp(z_i)}{\sum_{j=1}^k \exp(z_j)} \quad 1 \le i \le k$$

Example:

$$z = [0.6, 1.1, -1.5, 1.2, 3.2, -1.1]$$

softmax
$$(z) = [0.055, 0.090, 0.006, 0.099, 0.74, 0.010]$$

Two-Layer Network with scalar output

Output layer (σ node)

hidden units (σ node)

Two-Layer Network with scalar output

Output layer (σ node)

hidden units (σ node)

Two-Layer Network with scalar output

Output layer (σ node)

hidden units (σ node)

Two-Layer Network with softmax output

Output layer (σ node)

hidden units (σ node)

Multi-layer Notation

Multi Layer Notation

$$z^{[1]} = W^{[1]}a^{[0]} + b^{[1]}$$
 $a^{[1]} = g^{[1]}(z^{[1]})$
 $z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$
 $a^{[2]} = g^{[2]}(z^{[2]})$
 $\hat{y} = a^{[2]}$

for i in 1..n $z^{[i]} = W^{[i]} a^{[i-1]} + b^{[i]}$ $a^{[i]} = g^{[i]}(z^{[i]})$ $\hat{\mathbf{v}} = a^{[n]}$

Replacing the bias unit

Let's switch to a notation without the bias unit Just a notational change

- 1. Add a dummy node $a_0=1$ to each layer
- 2. Its weight w₀ will be the bias
- 3. So input layer $a^{[0]}_0=1$,
 - And $a^{[1]}_0=1$, $a^{[2]}_0=1$,...

Replacing the bias unit

Instead of:

$$x = x_1, x_2, ..., x_{n0}$$

$$h = \sigma(Wx + b)$$

$$h_j = \sigma \left(\sum_{i=1}^{n_0} W_{ji} x_i + b_j \right)$$

We'll do this:

$$x = x_0, x_1, x_2, ..., x_{n0}$$

$$h = \sigma(Wx)$$

$$\sigma\left(\sum_{i=0}^{n_0} W_{ji} x_i\right)$$

Replacing the bias unit

Instead of:

We'll do this:

Simple Neural Networks and Neural Language Models

Applying feedforward networks to NLP tasks

Use cases for feedforward networks

Let's consider 2 (simplified) sample tasks:

- 1. Text classification
- 2. Language modeling

State of the art systems use more powerful neural architectures, but simple models are useful to consider!

Classification: Sentiment Analysis

We could do exactly what we did with logistic regression

Input layer are binary features as before Output layer is 0 or 1

Sentiment Features

Var	Definition
$\overline{x_1}$	count(positive lexicon) ∈ doc)
x_2	$count(negative lexicon) \in doc)$
<i>x</i> ₃	<pre> 1 if "no" ∈ doc 0 otherwise </pre>
x_4	$count(1st and 2nd pronouns \in doc)$
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$
x_6	log(word count of doc)

Feedforward nets for simple classification

Just adding a hidden layer to logistic regression

- allows the network to use non-linear interactions between features
- which may (or may not) improve performance.

Even better: representation learning

The real power of deep learning comes from the ability to **learn** features from the data

Instead of using hand-built humanengineered features for classification

Use learned representations like embeddings!

Neural Net Classification with embeddings as input features!

Issue: texts come in different sizes

This assumes a fixed size length (3)! Kind of unrealistic.

Some simple solutions (more sophisticated solutions later)

- 1. Make the input the length of the longest review
 - If shorter then pad with zero embeddings
 - Truncate if you get longer reviews at test time
- 2. Create a single "sentence embedding" (the same dimensionality as a word) to represent all the words
 - Take the mean of all the word embeddings
 - Take the element-wise max of all the word embeddings
 - For each dimension, pick the max value from all words

Reminder: Multiclass Outputs

What if you have more than two output classes?

- Add more output units (one for each class)
- And use a "softmax layer"

$$\operatorname{softmax}(z_i) = \frac{e^{z_i}}{\sum_{j=1}^k e^{z_j}} \quad 1 \le i \le D$$

Neural Language Models (LMs)

Language Modeling: Calculating the probability of the next word in a sequence given some history.

- We've seen N-gram based LMs
- But neural network LMs far outperform n-gram language models

State-of-the-art neural LMs are based on more powerful neural network technology like Transformers

But simple feedforward LMs can do almost as well!

Simple feedforward Neural Language Models

Task: predict next word w_t

given prior words w_{t-1} , w_{t-2} , w_{t-3} , ...

Problem: Now we're dealing with sequences of arbitrary length.

Solution: Sliding windows (of fixed length)

$$P(w_t|w_1^{t-1}) \approx P(w_t|w_{t-N+1}^{t-1})$$

Neural Language Model

Why Neural LMs work better than N-gram LMs

Training data:

We've seen: I have to make sure that the cat gets fed.

Never seen: dog gets fed

Test data:

I forgot to make sure that the dog gets ____

N-gram LM can't predict "fed"!

Neural LM can use similarity of "cat" and "dog" embeddings to generalize and predict "fed" after dog

Simple Neural Networks and Neural Language Models

Training Neural Nets: Overview

Intuition: training a 2-layer Network

Intuition: Training a 2-layer network

For every training tuple (x, y)

- Run *forward* computation to find our estimate \hat{y}
- Run backward computation to update weights:
 - For every output node
 - Compute loss L between true y and the estimated \hat{y}
 - For every weight w from hidden layer to the output layer
 - Update the weight
 - For every hidden node
 - Assess how much blame it deserves for the current answer
 - For every weight w from input layer to the hidden layer
 - Update the weight

Reminder: Loss Function for binary logistic regression

A measure for how far off the current answer is to the right answer

Cross entropy loss for logistic regression:

$$L_{\text{CE}}(\hat{y}, y) = -\log p(y|x) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

$$= -[y\log\sigma(w\cdot x+b)+(1-y)\log(1-\sigma(w\cdot x+b))]$$

Reminder: gradient descent for weight updates

Use the derivative of the loss function with respect to weights $\frac{d}{dw}L(f(x;w),y)$

To tell us how to adjust weights for each training item

Move them in the opposite direction of the gradient

$$w^{t+1} = w^t - \eta \frac{d}{dw} L(f(x; w), y)$$

For logistic regression

$$\frac{\partial L_{\text{CE}}(\hat{y}, y)}{\partial w_{j}} = [\sigma(w \cdot x + b) - y]x_{j}$$

Where did that derivative come from?

Using the chain rule! f(x) = u(v(x)) $\frac{df}{dx} = \frac{du}{dv} \cdot \frac{dv}{dx}$ Intuition (see the text for details)

Derivative of the weighted sum

Derivative of the Activation

Derivative of the Loss

$$\frac{\partial L}{\partial w_i} = \frac{\partial L}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial w_i}$$

How can I find that gradient for every weight in the network?

These derivatives on the prior slide only give the updates for one weight layer: the last one!

What about deeper networks?

- Lots of layers, different activation functions?
- Solution in the next lecture:
- Even more use of the chain rule!!
- Computation graphs and backward differentiation!

Simple Neural Networks and Neural Language Models

Computation Graphs and Backward Differentiation

Why Computation Graphs

For training, we need the derivative of the loss with respect to each weight in every layer of the network

 But the loss is computed only at the very end of the network!

Solution: error backpropagation (Rumelhart, Hinton, Williams, 1986)

- Backprop is a special case of backward differentiation
- Which relies on computation graphs.

Computation Graphs

A computation graph represents the process of computing a mathematical expression

Example: L(a,b,c) = c(a+2b)

$$d = 2*b$$

Computations:

$$e = a+d$$

$$L = c * e$$

Example: L(a,b,c) = c(a+2b)

$$d = 2*b$$

Computations:

$$e = a+d$$

$$L = c * e$$

Backwards differentiation in computation graphs

The importance of the computation graph comes from the backward pass

This is used to compute the derivatives that we'll need for the weight update.

Example
$$L(a,b,c) = c(a+2b)$$

$$d = 2*b$$

$$e = a+d$$

$$L = c*e$$

We want:
$$\frac{\partial L}{\partial a}$$
, $\frac{\partial L}{\partial b}$, and $\frac{\partial L}{\partial c}$

The derivative $\frac{\partial L}{\partial a}$, tells us how much a small change in a affects L.

The chain rule

Computing the derivative of a composite function:

$$f(x) = u(v(x)) \qquad \frac{df}{dx} = \frac{du}{dv} \cdot \frac{dv}{dx}$$

$$f(x) = u(v(w(x))) \qquad \frac{df}{dx} = \frac{du}{dv} \cdot \frac{dv}{dw} \cdot \frac{dw}{dx}$$

Example L(a,b,c) = c(a+2b)

$$d = 2*b$$

$$e = a+d$$

$$L = c * e$$

$$\frac{\partial L}{\partial c} = e$$

$$\frac{\partial L}{\partial a} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial a}$$

$$\frac{\partial L}{\partial b} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial d} \frac{\partial d}{\partial b}$$

Example

$$L(a,b,c) = c(a+2b)$$

$$d = 2*b$$

$$e = a+d$$

$$L = c * e$$

$$\frac{\partial L}{\partial a} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial a} \\
\frac{\partial L}{\partial b} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial d} \frac{\partial d}{\partial b}$$

$$L = ce$$
: $\frac{\partial L}{\partial e} = c, \frac{\partial L}{\partial c} = e$

$$e = a + d$$
: $\frac{\partial e}{\partial a} = 1, \frac{\partial e}{\partial d} = 1$

$$d = 2b : \frac{\partial d}{\partial b} = 2$$

Example

c=-2

$$\frac{\partial L}{\partial a} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial a}$$

$$\frac{\partial L}{\partial b} = \frac{\partial L}{\partial e} \frac{\partial e}{\partial d} \frac{\partial d}{\partial b}$$

$$L = ce$$
: $\frac{\partial L}{\partial e} = c, \frac{\partial L}{\partial c} = e$

$$e = a + d$$
: $\frac{\partial e}{\partial a} = 1, \frac{\partial e}{\partial d} = 1$

$$d=2b$$
: $\frac{\partial d}{\partial b}=2$

Example

Backward differentiation on a two layer network

Backward differentiation on a two layer network

$$z^{[1]} = W^{[1]}\mathbf{x} + b^{[1]}$$

$$a^{[1]} = \text{ReLU}(z^{[1]}) \qquad \frac{d \text{ReLU}(z)}{dz} = \begin{cases} 0 & \text{for } z < 0 \\ 1 & \text{for } z \ge 0 \end{cases}$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]}) \qquad \frac{d\sigma(z)}{dz} = \sigma(z)(1 - \sigma(z))$$

$$\hat{y} = a^{[2]}$$

Backward differentiation on a 2-layer network

Starting off the backward pass: $\frac{\partial L}{\partial z}$

(I'll write a for $a^{[2]}$ and z for $z^{[2]}$)

$$L(\hat{y}, y) = -(y \log(\hat{y}) + (1 - y) \log(1 - \hat{y}))$$

$$L(a, y) = -(y \log a + (1 - y)\log(1 - a))$$

$$\frac{\partial L}{\partial z} = \frac{\partial L}{\partial a} \frac{\partial a}{\partial z}$$

$$\frac{\partial L}{\partial a} = -\left(\left(y\frac{\partial \log(a)}{\partial a}\right) + (1-y)\frac{\partial \log(1-a)}{\partial a}\right)$$
$$= -\left(\left(y\frac{1}{a}\right) + (1-y)\frac{1}{1-a}(-1)\right) = -\left(\frac{y}{a} + \frac{y-1}{1-a}\right)$$

$$= -\left(\left(y\frac{1}{a}\right) + (1-y)\frac{1}{1-a}(-1)\right) = -\left(\frac{y'}{a} + \frac{y-1}{1-a}\right)$$

$$\frac{\partial a}{\partial z} = a(1-a) \qquad \frac{\partial L}{\partial z} = -\left(\frac{y}{a} + \frac{y-1}{1-a}\right)a(1-a) = a-y$$

$$z^{[1]} = W^{[1]}\mathbf{x} + b^{[1]}$$
 $a^{[1]} = \text{ReLU}(z^{[1]})$
 $z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$
 $a^{[2]} = \sigma(z^{[2]})$
 $\hat{\mathbf{v}} = a^{[2]}$

Summary

For training, we need the derivative of the loss with respect to weights in early layers of the network

But loss is computed only at the very end of the network!

Solution: backward differentiation

Given a computation graph and the derivatives of all the functions in it we can automatically compute the derivative of the loss with respect to these early weights.