# Implementacja algorytmu k-NN z regresją danych w języku Python

- Implementacja algorytmu k-NN z regresją danych w języku Python
  - Funkcja process
  - Normalizacja danych wejściowych
  - Podział danych na zbiory treningowe i testowe
  - Trenowanie modelu regresji k-nn z cross-validation
  - Testowanie modelu na zbiorze testowym
  - Zapisywanie wyników do pliku
  - Generowanie wykresu punktowego
- Analiza zestawów danych w regresji za pomocą algorytmu k-NN
  - autoMPG6
  - o california
  - o compactiv
  - o concrete
  - o delta ail
  - o delta elv
  - elevators
  - friedman
  - machineCPU
  - o pole
  - wankara
  - wizmir

W ramach prezentacji jednego z algorytmów uczenia maszynowego na zestawie danych regresji lub klasyfikacji, wybrałem algorytm k-najbliższych sąsiadów (k-NN) z regresją danych. W tym sprawozdaniu przedstawię szczegółowy opis implementacji tego algorytmu w języku Python z wykorzystaniem bibliotek **sklearn**, **pandas** oraz **matplotlib** do wizualizacji danych.

#### Funkcja process

Funkcja process przyjmuje ścieżkę do pliku CSV jako argument i odczytuje plik za pomocą biblioteki Pandas. Następnie wyodrębnia dane wejściowe i wyjściowe z pliku i przechowuje długość danych wejściowych w zmiennej size.

```
def process(f):
    name = os.path.basename(f)
    data = pd.read_csv(f)
    input = data.iloc[:, :-1].values
    ouput = data.iloc[:, -1].values
    size = len(input)
```

#### Normalizacja danych wejściowych

Dane wejściowe są normalizowane za pomocą klasy MinMaxScaler z biblioteki Scikit-learn. Metoda fit\_transform skaluje dane wejściowe do zakresu od 0 do 1.

```
scaler = MinMaxScaler()
inputs_normalized = scaler.fit_transform(input)
```

#### Podział danych na zbiory treningowe i testowe

Dane są dzielone na zbiory treningowe i testowe za pomocą funkcji train\_test\_split z biblioteki Scikit-learn. Parametr test\_size określa proporcję danych, która ma być użyta do testowania, a parametr random\_state zapewnia, że ten sam podział jest używany za każdym razem, gdy kod jest uruchamiany.

```
input_train, input_test, output_train, output_test = train_test_split(
    inputs_normalized,
    ouput,
    test_size=0.2,
    random_state=42,
    # shuffle = False # (if same order is required)
)
```

#### Trenowanie modelu regresji k-nn z cross-validation

Model regresji k-NN jest trenowany za pomocą **cross-validation**, aby znaleźć optymalną liczbę sąsiadów k. Do stworzenia modelu używana jest klasa KNeighborsRegressor z biblioteki Scikit-learn, a funkcja cross\_val\_score służy do przeprowadzenia walidacji krzyżowej z 5 podziałami. Metryka oceny neg\_mean\_squared\_error jest używana do oceny wydajności modelu. Słownik scores przechowuje wyniki RMSE dla każdej wartości k, a lista models przechowuje wytrenowane modele dla każdej wartości k. Funkcja min jest używana do znalezienia wartości k z najniższym wynikiem RMSE, a wyniki są drukowane na konsoli.

```
scores = {}
models = []
for k in range(1, 21):
    knn = KNeighborsRegressor(n_neighbors=k)
    cv_scores = cross_val_score(
        knn,
        inputs_normalized,
        ouput,
        cv=5,
        scoring="neg_mean_squared_error",
)
    rmse_scores = (-cv_scores) ** 0.5
    scores[k] = rmse_scores.mean()
    models.append(knn)
```

```
best_k = min(scores, key=scores.get)
print(
    "k =",
    best_k,
    "\nMean cross-validation score:",
    scores[best_k],
)
```

#### Testowanie modelu na zbiorze testowym

Model regresji k-NN z optymalną wartością k jest trenowany i testowany na zbiorze testowym. Metoda predict jest używana do wygenerowania prognoz dla zbioru testowego, a RMSE jest obliczane za pomocą średniego błędu kwadratowego (MSE) i pierwiastka kwadratowego.

```
knn = models[best_k - 1]
knn.fit(input_train, output_train)

output_pred = knn.predict(input_test)
mse = ((output_pred - output_test) ** 2).mean()
rmse = mse**0.5
print("Root Mean Squared Error:", rmse)
```

### Zapisywanie wyników do pliku

Wyniki są zapisywane do pliku tekstowego w katalogu output. Plik zawiera informacje o nazwie zestawu danych, RMSE, optymalnej wartości k, zakresie danych i rozmiarze zestawu danych. Przewidywane i rzeczywiste wartości dla zbioru testowego są również zapisywane do pliku.

```
dataset_range = (min(output_test), max(output_test))
with open(f"output/{name}.txt", "w") as f:
    f.write(
        f"Name:\t{name} \nRoot Mean Squared Error:\t{rmse}\nbest
k:\t{best_k}\ndata range:\t{dataset_range}\ndataset size:\t{size}\n"
    )
    f.write(f"Predicted Data\tRaw Data\n")
    for i in range(len(output_pred)):
        f.write("{:.2f}\t{:.2f}\n".format(output_pred[i], output_test[i]))
```

# Generowanie wykresu punktowego

Generowany jest wykres punktowy przewidywanych wartości w porównaniu do rzeczywistych wartości dla zbioru testowego i zapisywany jako plik PNG w katalogu output. Wykres jest tworzony za pomocą biblioteki **Matplotlib** i pokazuje zależność między prawdziwymi wartościami a przewidywanymi wartościami.

```
plt.clf()
plt.scatter(output_test, output_pred)
plt.xlabel("True Values")
plt.ylabel("Predictions")
plt.axis("equal")
plt.xlim(plt.xlim())
plt.ylim(plt.ylim())
plt.plot([-100, 100], [-100, 100])
plt.savefig(f"output/{name}.png")
```

# Analiza zestawów danych w regresji za pomocą algorytmu k-NN

#### autoMPG6

Dla zestawu danych **autoMPG6** optymalna liczba sąsiadów k wynosiła 7 a wartość RMSE wynosiła 2.676700853775874. Zestaw zawierał dane z zakresu: (12, 44), a ilość wierszy w tym zbiorze to 392. Możemy zauważyć tutaj że dane były dość dobrze zróżnicowane i można było z nich wyciągać odpowiednie wnioski aby w miarę dobrze przewidzieć wynik dla każdego wiersza.



## california

Dla zestawu danych **California** optymalna liczba sąsiadów k wynosiła 9 a wartość RMSE wynosiła 63076.29887951363. Zestaw zawierał dane z zakresu: (17500, 500001), a ilość wierszy w tym zbiorze to 20640. Był to największy pod względem ilości danych zbiór, jednak ponownie pomimo dużych wartości liczby były ze sobą na tyle powiązane że wyniki był dość dokładne.



# compactiv

Dla zestawu danych **Compactiv** optymalna liczba sąsiadów k wynosiła 3 a wartość RMSE wynosiła 3.2027397430276325. Zestaw zawierał dane z zakresu: (0.0, 99.0), a ilość wierszy w tym zbiorze to 8192.



#### concrete

Dla zestawu danych **Concrete** optymalna liczba sąsiadów k wynosiła 3 a wartość RMSE wynosiła 8.81998769161311. Zestaw zawierał dane z zakresu: (6.27, 81.75), a ilość wierszy w tym zbiorze to 1030. Był to zbiór dość podobny do poprzedniego zbioru compactiv, jednak jest on nieco mniec precyjny gdyż w odróżnieniu od poprzedniego dane są nieco bardziej rozrzucone przez co nasz RMSE jest o wiele wyższy dla mniejszego przedziału danych.



## delta ail

Dla zestawu danych **Delta\_ail** optymalna liczba sąsiadów k wynosiła 19 a wartość RMSE wynosiła 0.00017136252456243889. Zestaw zawierał dane z zakresu: (-0.0019, 0.0014), a ilość wierszy w tym zbiorze to 7129. Bardzo niski błąd RMSE wynika z tego że nasz przedział danych jest niesamowicie niski przez co o wiele ciężej zestawić ze sobą dane w czytelny sposób.



## delta elv

Dla zestawu danych **Delta\_elv** optymalna liczba sąsiadów k wynosiła 20 a wartość RMSE wynosiła 0.001416365462707129. Zestaw zawierał dane z zakresu: (-0.008, 0.008), a ilość wierszy w tym zbiorze to 9517. Ponownie jest on niemalże identyczny do swojego poprzednika delta\_ail jedyna znacząca różnica to że zakres danych jest nieco mniejszy mamy tam tylko zaokrąglenie do częsci tysięcznej w odróżnieniu do części dziesięciotysięcznej swojego poprzednika.



## elevators

Dla zestawu danych **elevators** optymalna liczba sąsiadów k wynosiła 7 a wartość RMSE wynosiła 0.0036329689292255137. Zestaw zawierał dane z zakresu: (0.012, 0.074), a ilość wierszy w tym zbiorze to 16599. Duży zestaw danych z jeszcze mniejszym zakresem danych niż poprzednicy, dzięki czemu dane można od siebie odróżnić i zidentyfikować efektywniej niż w poprzednich zestawach.



# friedman

Dla zestawu danych **friedman** optymalna liczba sąsiadów k wynosiła 8 a wartość RMSE wynosiła 1.8539789884921636. Zestaw zawierał dane z zakresu: (0.664014955, 28.5903858), a ilość wierszy w tym zbiorze to 1200.



## machineCPU

Dla zestawu danych **machineCPU** optymalna liczba sąsiadów k wynosiła 1 a wartość RMSE wynosiła 95.19178636035879. Zestaw zawierał dane z zakresu: (6, 1144), a ilość wierszy w tym zbiorze to 209. Bardzo mały zestaw danych, z którego ciężko wyciągać wnioski rozrzut danych jest dość spory, a stosunkowo wysokie.



## pole

Dla zestawu danych **pole** optymalna liczba sąsiadów k wynosiła 3 a wartość RMSE wynosiła 8.371910707173654. Zestaw zawierał dane z zakresu: (0.0, 100.0), a ilość wierszy w tym zbiorze to 14998. Bardzo ciekawy przykład, gdyż pomimo że dane skaczą w pozornie losowy sposób pomiędzy 0, a pełnymi wartościami podzielnymi przez 10. Dzięki dużej ilości danych w zbiorze algorytm jest w stanie dojść do stosunkowo poprawnych wniosków.



## wankara

Dla zestawu danych **wankara** optymalna liczba sąsiadów k wynosiła 8 a wartość RMSE wynosiła 1.9482245211827842. Zestaw zawierał dane z zakresu: (8.4, 78.9), a ilość wierszy w tym zbiorze to 1609. Dzięki dość wysokiemu współczynnikowi **k** wyniki są bardzo dokładne pomimo średniej ilości danych. Może to oznaczać także że powiązanie pomiędzy konkretnymi danymi wejściowymi jest mocno i dość oczywiste dla danych wyjściowych.



# wizmir

Dla zestawu danych **wizmir** optymalna liczba sąsiadów k wynosiła 10 a wartość RMSE wynosiła 1.7500007801070907. Zestaw zawierał dane z zakresu: (34.8, 88.6), a ilość wierszy w tym zbiorze to 1461.

