Graficas usando "vectores" para 1 variable

En vez usar una variable simbólica aquí usaremos un vector para evaluar nuestra función en esos puntos

Vectores en Matlab

Comando plot()

Este comando funciona así, plot(vector,función,parámetros), el primer parámetro recibe el vector, el segundo parámetro recibe la función evaluada en los puntos del vector, y del tercer parámetro en adelante son para las propiedades de la grafica

Grafica para
$$f(x) = x^2$$

```
figure(1)
clear,clc,clf('reset')
x = -5:.1:5;
y = x.^2;
plot(x,y), grid on
```


Grafica para $f(x) = \sin(x)$ con puntos

```
figure(2)
clear,clc,clf('reset')
x = -10:pi/16:10;
y = sin(x);
plot(x,y,"ob","MarkerFaceColor","r")
grid on
```


Graficando ejes x,y en el plano

Grafica para $f(x) = \cos(x)$

```
figure(3)
clear,clc,clf('reset')
x = -10:pi/160:10;
y = cos(x);
plot(x,y,"k")
hold on, grid on

ejex = zeros(1,length(x));
ejey = linspace(min(y),max(y),length(ejex));
plot(x,ejex)
plot(ejex,ejey,"r")
```


Graficas usando matrices para 2 variables o más, aplicando los comandos Mesh() o Surf()

Pasamos de líneas en el plano, a planos en el espacio

```
figure(4)
clear,clc,clf('reset')
x = -10:pi/160:10;
y = cos(x);
plot(x,y,"k")
hold on, grid on
ejex = zeros(1,length(x));
ejey = linspace(min(y),max(y),length(ejex));
plot(x,ejex)
plot(ejex,ejey,"r")
rotate3d on
view([-58.50 21.00])
title('Hola Matlab');
xlabel('Eje x');
ylabel('Eje y');
zlabel('Eje z');
```


Planos en el espacio

```
figure(5)
clear,clc,clf('reset')
vec = -10:.5:10;
[X,Y] = meshgrid(vec);
Z = ones(length(X));
hold on
title('Hola Matlab');
xlabel('Eje x');
ylabel('Eje y');
zlabel('Eje z');
mesh(X,Y,Z*-10)
mesh(X,Y,Z*-5)
mesh(X,Y,Z*0)
mesh(X,Y,Z*5)
mesh(X,Y,Z*10)
hold off
view([-30.9 12.6])
```


Intersección de planos en el origen

```
figure(7)
clear,clc,clf('reset')
title('Hola Matlab');
xlabel('Eje x');
ylabel('Eje y');
zlabel('Eje z');
hold on, grid on

vec = -10:.5:10;

[X,Y] = meshgrid(vec);
Z = ones(length(X));

mesh(X,Y,Z)
mesh(X,Z,Y)
mesh(Z,X,Y)
view([-45.9 45.0])
```


Grafica del "sombrero mexicano"

```
figure(8), clear,clc,clf('reset')
[X,Y] = meshgrid(-8:.5:8);
R = sqrt(X.^2 + Y.^2) + eps;
Z = sin(R)./R;
surf(X,Y,Z)
```


Usando la propiedad "flat"

```
figure(9), clear,clc,clf('reset')
[x,y] = meshgrid(-8:.5:8);
R = 14*x.^2 - 2*x.^3 +2*y.^2 +4*x*y;

subplot(1,2,1);
mesh(x,y,R);
view([42 26])

subplot(1,2,2);
s=mesh(x,y,R);
s.FaceColor = 'flat';
view([42 26])
```

