Statistics for Business and Economics 6th Edition

Chapter 1

Why Study Statistics?

Chapter Goals

After completing this chapter, you should be able to:

- Explain how decisions are often based on incomplete information
- Explain key definitions:
 - Population vs. Sample
 - Parameter vs. Statistic
 - Descriptive vs. Inferential Statistics
- Describe random sampling
- Explain the difference between Descriptive and Inferential statistics

Dealing with Uncertainty

Everyday decisions are based on incomplete information

Consider:

- The price of IBM stock will be higher in six months than it is now.
- If the federal budget deficit is as high as predicted, interest rates will remain high for the rest of the year.

Dealing with Uncertainty

(continued)

Because of uncertainty, the statements should be modified:

- The price of IBM stock is *likely* to be higher in six months than it is now.
- If the federal budget deficit is as high as predicted, it is *probable* that interest rates will remain high for the rest of the year.

Key Definitions

- A population is the collection of all items of interest or under investigation
 - N represents the population size
- A sample is an observed subset of the population
 - n represents the sample size
- A parameter is a specific characteristic of a population
- A statistic is a specific characteristic of a sample

Population vs. Sample

Population

Values calculated using population data are called parameters

Sample

Values computed from sample data are called statistics

Examples of Populations

- Names of all registered voters in the United States
- Incomes of all families living in Daytona Beach
- Annual returns of all stocks traded on the New York Stock Exchange
- Grade point averages of all the students in your university

Random Sampling

Simple random sampling is a procedure in which

- each member of the population is chosen strictly by chance,
- each member of the population is equally likely to be chosen,

and

 every possible sample of n objects is equally likely to be chosen

The resulting sample is called a random sample

Descriptive and Inferential Statistics

Two branches of statistics:

- Descriptive statistics
 - Collecting, summarizing, and processing data to transform data into information
- Inferential statistics
 - provide the bases for predictions, forecasts, and estimates that are used to transform information into knowledge

Descriptive Statistics

- Collect data
 - e.g., Survey

- Present data
 - e.g., Tables and graphs

- Summarize data
 - e.g., Sample mean = $\frac{\sum X_i}{n}$

Inferential Statistics

- Estimation
 - e.g., Estimate the population mean weight using the sample mean weight
- Hypothesis testing
 - e.g., Test the claim that the population mean weight is 120 pounds

Inference is the process of drawing conclusions or making decisions about a population based on sample results

The Decision Making Process

Chapter Summary

- Reviewed incomplete information in decision making
- Introduced key definitions:
 - Population vs. Sample
 - Parameter vs. Statistic
 - Descriptive vs. Inferential statistics
- Described random sampling
- Examined the decision making process