- 1. A z-polarized plane TEM wave, generated by a surface current on the y=0 m plane, is propagating in vacuum (i.e., $v=c\approx 3\times 10^8$ m/s and $\eta=\eta_o\approx 120\pi\,\Omega$) in the -y direction. The electric field is observed to vary with time at y=0 according to $E_z(0,t)=4\triangle(\frac{t-t_1}{\tau})-2\triangle(\frac{2(t-t_2)}{\tau})$ V/m, where $t_1=1~\mu s,~t_2=2.5~\mu s,~\tau=2~\mu s$ and $\Delta(\frac{t}{\tau})$ is the unit triangle function centered on the origin (t=0) with width τ .
 - a) Determine and plot the surface current density $\mathbf{J_s}(t)$ on the y=0 plane which gives rise to the observed field.
 - b) Determine the vector wavefield $\mathbf{E}(y,t)$ written explicitly in terms of all space and time variables y and t.
 - c) Determine the accompanying wavefield $\mathbf{H}(y,t)$.
 - d) Determine the maximum value of Poynting vector $\mathbf{E} \times \mathbf{H}$.
 - e) What trajectory function y = y(t) describes instantaneous locations of the peak of $\mathbf{E} \times \mathbf{H}$.
 - f) Plot $E_z(y,t)$ vs t at y=-1500 m.
 - g) Plot $H_x(y,t)$ vs y at $t=12 \,\mu s$.
- 2. In a homogeneous loss-less dielectric with $\epsilon = \epsilon_r \epsilon_o$ and $\mu = \mu_r \mu_o$ a plane TEM wave with the following components is observed:

$$\mathbf{E} = \hat{x} \frac{1}{2} u \left(t - \frac{z}{c/2}\right) + \hat{y} g \left(t - \frac{z}{c/2}\right) \frac{\mathbf{V}}{\mathbf{m}}$$

and

$$\mathbf{H} = \hat{x}(\frac{10z}{c} - 5t) + \hat{y}\frac{1}{120\pi}u(t - \frac{2z}{c})\frac{A}{m},$$

where u(t) denotes the unit-step function and c is the speed of light in free space. Using the above information,

- a) Determine the intrinsic impedance η for the medium.
- b) Determine the propagation velocity v.
- c) Determine ϵ_r and μ_r .
- d) Determine function g(t).
- 3. We have on the x=0 plane a pulse of sheet current $\mathbf{J}_s(t)=-\hat{z}\,2\,t\,\operatorname{rect}(\frac{t}{\tau})\,\mathrm{A/m}$, where $\tau=2\,\mu\mathrm{s}$ (note that the current source is centered around t=0). Regions adjacent to the current sheet are vacuum.
 - a) Determine and plot $E_z(x,t)$ and $H_y(x,t)$ vs t for x=-1200 m.
 - b) Determine and plot $E_z(x,t)$ and $H_y(x,t)$ vs x for $t=5\,\mu s$.
 - c) Determine and plot $E_z(x,t)$ and $H_y(x,t)$ vs x for $t=1\,\mu s$.
 - d) Determine the TEM wave energy radiated per unit area (in J/m^2 units) by the current pulse $J_s(t)$.

Hint: integrate the power injected per unit area, $-\mathbf{J}_s \cdot \mathbf{E}$, over the duration of pulse $\mathbf{J}_s(t)$.

- 4. For each of the four plane waves (in free space) described by
 - a) $\mathbf{E}_1 = -4\cos(\omega t \beta z)\hat{y}\,\mathrm{V/m}$
 - b) $\mathbf{E}_2 = E_o \cos(\omega t \beta x)\hat{y} E_o \sin(\omega t \beta x)\hat{z}$
 - c) $\mathbf{H}_3 = \cos(\omega t + \beta z + \frac{\pi}{3})\hat{x} + \sin(\omega t + \beta z \frac{\pi}{6})\hat{y}$ A/m
 - d) $\mathbf{H}_4 = \cos(\omega t \beta z \frac{\pi}{2})\hat{x} + \sin(\omega t \beta z)\hat{y}$ A/m:
 - i. Determine the expression for **H** or **E** that accompanies the given wave field.
 - ii. Find the instantaneous power that crosses a 1 m² area in the xy-plane from -z to +z.
 - iii. Find the time averaged power that crosses a 1 m² area in the xy-plane from -z to +z.
- 5. An infinite plane current sheet of uniform, time-varying density $\mathbf{J_s}(t) = 2\cos(6\pi \times 10^8 t)\hat{y}$ A/m exists at the x=2 m plane within a perfect dielectric medium having an electric permittivity of $\epsilon = \frac{9}{4}\epsilon_0$ and a magnetic permeability of $\mu = \mu_0$. Answer the following questions (using appropriate units) about the plane TEM waves which will propagate away from this surface current source.
 - a) What is the magnitude and direction of the wave propagation velocity $\mathbf{v_p}$ of the TEM wave through the dielectric medium?
 - b) What is the wave number β and wavelength λ of the TEM wave?
 - c) What is the intrinsic impedance η of the dielectric medium?
 - d) Write the expressions for wavefields **E** and $\tilde{\mathbf{E}}$ (the phasor of **E**) and **H** and $\tilde{\mathbf{H}}$ (the phasor of $\tilde{\mathbf{H}}$) in terms of ω , β , and η for each of the regions x > 2 and x < 2 on either side of the current sheet source.
 - e) Verify that the TEM wave satisfies the Poynting theorem, $\nabla \cdot (\mathbf{E} \times \mathbf{H}) + \frac{\partial}{\partial t} (\frac{1}{2} \epsilon \mathbf{E} \cdot \mathbf{E} + \frac{1}{2} \mu \mathbf{H} \cdot \mathbf{H}) + \mathbf{J} \cdot \mathbf{E} = 0$, in the region x > 2. **Hint**: you should be able to prove this for a TEM wave propagating at an arbitrary frequency ω in an arbitrary perfect dielectric in terms of μ and ϵ in order to avoid explicit use of constants found in parts (a-c).
 - f) What is the time-averaged power transported by the TEM wave across a square surface on the x = 4 m plane having area A = 2 m²?