

Portfolio Optimisation with Sequential Monte Carlo

Yow Tzu Lim (ytl13@imperial.ac.uk) Supervisor: Dr. Nikolas Kantas Imperial College London

About

Portfolio optimisation is about efficiently allocating resources to achieve optimal investment objectives. Two usual objectives are maximising return and minimizing the returns.

This project views portfolio optimisation problem as a finite horizon control optimisation problem, and uses sequential monte carto (SMC) to search for the optimised control (investment decision).

Porfolio Optimisation

We begin to view the market consisting of N investible instruments. The price of an instrument S_i is assumed to follow an arithmetic Brownian motion as follows:

$$dS(t) = \mu dt + \sigma dW(t) \tag{1}$$

with initial condition $S_0 > 0$, μ is the average rate of return and σ is the volatility (risk).

Let u(t) denote the number of shares of the asset one holds, then the value of the corresponding asset is a process X(t) that evolves according to

$$dX(t) = \mu u(t)dt + \sigma u(t)dW(t)$$
 (2)

The objective is to maximize the expected return over a fixed time interval [0, T], at the same time minimizing the financial risk.

Stochastic Control

In control theory, performance is often expressed in terms of total reward (or total cost), J_x , which is an expectation of some function.

Decision maker cannot see the future, current decisions affect only future states and observations. Some possible settings include:

1. Total cost function (additive vs. multiplicative)

$$J_X^a = E_X[\sum_{n=1}^T j_i^a(X_n, U_n, Y_n)]$$
 (3)

$$J_X^a = E_X[\prod_{n=1}^T j_n^a(X_n, U_n, Y_n)]$$
 (4)

where j_n^a is stage cost at time n.

- 2. Finite/infinite horizon T.
- 3. Open loop vs. closed loop (feedback).
- 4. Perfect vs. imperfect observation.

References

- [1] A. Doucet, S. Godsill, C. Andrieu On Sequential Monte Carlo Sampling Methods for Bayesian Filtering. Statistics and Computing, vol. 10, no. 3, pp.197 -208, 2000
- [2] N. Kantas, P. Del Moral, R. Vinter Particle methods for Stochastic Regulation: towards an application for power scheduling Technical Report, Imperial College, 2011
- [3] M. Fischer and G. Livieri Continuous time meanvariance portfolio optimization through the mean field approach. Pre-print, 2014
- [4] E. Ikonen Particle Filtering for Open-Loop Process
 Control 2006

Open loop control as Bayesian filtering

An example of non-linear time-varying dynamic system:

$$X_n = F_n(X_{n-1}, U_n)$$
$$Y_n = h_n(X_n)$$

where X_n are the markov chain state spaces, Y_n are the observations and U_n are the controls.

Let A_n and B_n be symmetric and semi-definite positive covariance matrices, a simple possible **finite horizon cost function** as follows:

$$J(U_{1:T}, Y_{1:T}) = \sum_{n=1}^{T} ||U_n||_{A_n}^2 + \sum_{n=1}^{T} ||Y_n - Y^{ref}||_{B_n}^2$$
(5)

where Y^{ref} represent the reference target output, and $||U||_A^2 = U^T A^{-1} U$.

Objective: Search for an optimal policy (sequence of investment decisions) that minimize the cost control function, given some observations.

Seguntial Monte Carlo (SMC)

A swarm of particles (samples), that evolves towards the target distribution throughout sequence of intermediate distributions $\{\pi_n\}_{n < T}$.

The particles that approximates the intermediate distributions π_n are construsted based on the particles from π_{n-1} via sampling and re-sampling.

Optional step: MCMC step can be adeed to each iteration to improve diversity of the particles.

SMC Algorithm for estimating open loop controls

For each time step $n \in 1 \dots T$,

- 1. For $i \in 1...N$, where N is number of particles,
 - (a) If n == 1, initialize $x^i = x_0$, $y^i = h(x_0)$ and $J_T^i = 0$.
 - (b) Generate random $u^i \sim N(0, A_n)$.
 - (c) Store action to a list $u_n^i = u^i$.
 - (d) Evaluate $J_y = \|y_n^{ref}\|_{B_n}^2$, $J_T^i = \|u^i\|_{A_n}^2$ and calculate the cost $J_T^i = J_T^i + J_Y^i + J_U^i$
 - (e) Set weight $p_{un}^i = \exp(-\frac{\beta}{2}J_Y)$.
- 2. Normalize resampling probabilities: For $i \in 1...N$, $p^i = \frac{p_{un}^i}{\sum_{i=1}^N p_{un}^i}$
- 3. Resample: For $i \in 1...N$, select particles with replacement according to p^i .
- 4. Compute model for next time step n: $x^i = f(x^i, u^i)$ and $y^i = h(x^i)$.

Find $i^* = \arg \min_i J_T^i$. The solution for the optimal control is v^{i^*} .

Evaluation criteria

Compare the performance against other optimisation algorithms, e.g., genetic algorithms:

- 1. Performance of the resulting policy
- 2. Computation complexity (many subroutines here can execute in parallel.)