Коллоквиум по Математическому анализу-2, семестр 2

Виноградова Дарья, Залялов Александр, Миронов Алексей, Стрельцов Артём, Т

Содержание

28	Дайте определение элемента площади 2-мерной поверхности в \mathbb{R}^3 и поверхностного интеграла 1-го рода	2
29	Дайте определение элемента k -мерного объёма k -мерного многообразия в \mathbb{R}^n и интеграла 1-го рода по k -мерному многообразию	2
30	Объясните, что такое грассманово умножение, грассмановы переменные, грассмановы мономы	2
31	Объясните, что такое дифференциальная форма ранга k , и как вычисляется интеграл (2-го рода) от k -формы ω по k -мерному многообразию $\Omega\subseteq\mathbb{R}^n$. Запишите вычислительную формулу для поверхностного интеграла 2-го рода	3
32	Что такое ориентация k -мерного многообразия? Как изменится интеграл 2-го рода от дифференциальной формы при смене ориентации многообразия (б. д.)?	4
33	Дайте определение согласованных ориентаций многообразия и его границы. Дайте определение дифференциала от k -формы. Запишите общую формулу Стокса.	4
34	Выведите из общей формулы Стокса частные случаи: формулу Ньютона-Лейбница, формулу	5

28 Дайте определение элемента площади 2-мерной поверхности в \mathbb{R}^3 и поверхностного интеграла 1-го рода

Пусть имеется двумерная поверхность $\Omega\subseteq\mathbb{R}^3$ и у неё зафиксирована параметризация $\varphi:M\to\Omega,M\subseteq\mathbb{R}^2$. Будем обозначать координаты в \mathbb{R}^3 как (x,y,z), а в \mathbb{R}^2 — как (u,v). Неформально говоря, элементом площади в точке поверхности называется площадь бесконечно малого параллелограмма со сторонами, направленными параллельно касательным векторам в этой точке. Можно провести аналогию с одномерными интегралами, где мы приближаем функцию с помощью ломаной с маленькими звеньями, и сказать, что мы приближаем поверхность маленькими чешуйками в форме параллелограммов. Запишем теперь формулу для элемента площади в точке (u,v)

$$dS = S(P(\varphi'_u(u, v), \varphi'_v(u, v))) dudv;$$

Здесь φ_u', φ_v' — трёхмерные векторы (так как φ имеет три координаты), именно они являются касательными в данной точке; P — параллелограмм, натянутый на векторы; S — площадь. Из линейной алгебры мы знаем, что площадь параллелограмма можно считать как корень из определителя матрицы Грама его сторон. Это даёт нам новую формулу для элемента площади.

$$dS = \sqrt{EG - F^2} du dv;$$

Здесь
$$E = \langle \varphi_u', \varphi_u' \rangle = \|\varphi_u'\|^2, G = \langle \varphi_v', \varphi_v' \rangle = \|\varphi_v'\|^2, F = \langle \varphi_u', \varphi_v' \rangle.$$

Теперь мы можем естественным образом определить поверхностный интеграл 1-го рода от функции $f: \mathbb{R}^3 \to \mathbb{R}$ по Ω .

$$\iint\limits_{\Omega} f(x,y,z)\mathrm{d}S := \iint\limits_{M} f(\varphi(u,v))\sqrt{E(u,v)G(u,v)-F^{2}(u,v)}\mathrm{d}u\mathrm{d}v;$$

Здесь мы опираемся на параметризацию при определении интеграла. Можно проверить, что при смене параметризации значение интеграла 1-го рода не изменится.

29 Дайте определение элемента k-мерного объёма k-мерного многообразия в \mathbb{R}^n и интеграла 1-го рода по k-мерному многообразию

Пусть имеется k-мерное многообразие $\Omega \subseteq \mathbb{R}^n$ и у него зафиксирована параметризация $\varphi: M \to \Omega, M \subseteq \mathbb{R}^k$. Будем обозаначать координаты в \mathbb{R}^n как $x = (x_1, \dots, x_n)$, а в \mathbb{R}^k — как $t = (t_1, \dots, t_k)$. Аналогично предыдущему билету, определим элемент k-мерного объёма в точке t.

$$dVol_k = S(P(\varphi'_{t_1}(t), \dots, \varphi'_{t_k}(t)))dt_1 \dots dt_k;$$

Запишем теперь формулу для интеграла 1-го рода от функции $f:\mathbb{R}^n \to \mathbb{R}$ по $\Omega.$

$$\int_{\Omega} f(x) dVol_k := \int_{M} f(\varphi(t)) S(P(\varphi'_{t_1}(t), \dots, \varphi'_{t_k}(t))) dt_1 \dots dt_k;$$

Опять же, можно проверить, что интеграл 1-го рода не зависит от параметризации.

30 Объясните, что такое грассманово умножение, грассмановы переменные, грассмановы мономы

Пусть у нас имеется набор символов a_1, \ldots, a_n — грассмановых переменных и мы умеем брать их линейные комбинации. То есть, например, у нас есть отдельные элементы $a_2-a_1, 0, -5a_3$ и т. п. Теперь мы хотим ввести новую операцию — научиться умножать наши элементы друг на друга. Наше умножение будет обозначаться символом \wedge и называться грассмановым умножением. Умножение будет удовлетворять всем стандартным требованиям, кроме коммутативности, которую мы заменим на более странное свойство 4:

- 1. $(x \wedge y) \wedge z = x \wedge (y \wedge z)$;
- 2. $(x+y) \wedge z = x \wedge z + y \wedge z$;

3.
$$z \wedge (x + y) = z \wedge x + z \wedge y$$
;

4.
$$a_i \wedge a_j = -a_j \wedge a_i$$
;

Обратите внимание, пункты 1-3 относятся к любым элементам, а пункт 4 только к исходным a_1, \ldots, a_n . Простые следствия из свойств: $0 \wedge x = 0, a_i \wedge a_i = 0$. Для примера посчитаем «квадрат» элемента $a_1 \wedge a_2 + a_3$.

$$(a_1 \wedge a_2 + a_3) \wedge (a_1 \wedge a_2 + a_3) = a_1 \wedge a_2 \wedge (a_1 \wedge a_2 + a_3) + a_3 \wedge (a_1 \wedge a_2 + a_3) = 0 + a_1 \wedge a_2 \wedge a_3 + a_3 \wedge a_1 \wedge a_2 + 0 = 0$$

$$= a_1 \wedge a_2 \wedge a_3 - a_1 \wedge a_3 \wedge a_2 = a_1 \wedge a_2 \wedge a_3 + a_1 \wedge a_2 \wedge a_3 = 2a_1 \wedge a_2 \wedge a_3;$$

Определение. Грассмановым мономом степени k называется элемент вида $\alpha a_{i_1} \wedge \ldots \wedge a_{i_k}$, где $i_1, \ldots i_k \in \{0, \ldots, n\}$, α — некоторый коэффициент.

Заметим, что если среди $i_1, \ldots i_k$ есть повторения, то моном равен нулю. Переменные в грассмановом мономе можно отсортировать, возможно, поменяв при этом знак. Точнее, при сортировке моном домножится на -1 в степени равной числу инверсий, то есть на знак перестановки.

31 Объясните, что такое дифференциальная форма ранга k, и как вычисляется интеграл (2-го рода) от k-формы ω по k-мерному многообразию $\Omega \subseteq \mathbb{R}^n$. Запишите вычислительную формулу для поверхностного интеграла 2-го рода

Определение. Дифференциальной формой ранга k (или дифференциальной k-формой) на $M \subseteq \mathbb{R}^n$ называется выражение вида $\sum_{\{i_1,...,i_k\}\subseteq\{1,...,n\}} f_{i_1...i_k}(x) \mathrm{d} x_{i_1} \wedge \ldots \wedge \mathrm{d} x_{i_k}$, где $f_{i_1...i_k}$ — некоторые дифференцируемые функции $f_{i_1...i_k}: M \to \mathbb{R}$.

Если вам очень понравился предыдущий билет, можно сказать, что это сумма грассмановых мономов степени k от переменных $\mathrm{d}x_1,\ldots\mathrm{d}x_n$ с дифференцируемыми функциями в качестве коэффициентов. Можно считать, что среди чисел i_1,\ldots,i_k нет повторений, так как мономы с повторениями всё равно зануляются.

Пусть имеются k-мерное многообразие $\Omega \subseteq \mathbb{R}^n$ с параметризацией $\varphi: M \to \Omega, M \subseteq \mathbb{R}^k$ и дифференциальная k-форма $\omega = \sum_{\{i_1, \dots, i_k\} \subseteq \{1, \dots, n\}} f_{i_1 \dots i_k}(x) \mathrm{d} x_{i_1} \wedge \dots \wedge \mathrm{d} x_{i_k}$ на Ω . Определим интеграл (2-го рода) ω по Ω .

$$\int_{\Omega} \omega := \int_{M} \sum_{\{i_1, \dots, i_k\} \subseteq \{1, \dots, n\}} f_{i_1 \dots i_k}(\varphi(t)) d\varphi_{i_1} \wedge \dots \wedge d\varphi_{i_k};$$

Поясним, что творится в этой формуле. Во-первых, $\varphi_i:M\to\mathbb{R}$ — это функция, соответствующая i-й координате φ . Во-вторых, $\mathrm{d}\varphi_i$ — это привычный дифференциал функции нескольких переменных, но теперь мы говорим, что это линейная комбинация грассмановых переменных $\mathrm{d}t_1,\ldots,\mathrm{d}t_k$. Когда мы грассманово перемножим эти дифференциалы, у нас останется выражение вида $f(t)\mathrm{d}t_1\wedge\ldots\wedge\mathrm{d}t_k$. Это так, ведь в любом слагаемом результата будут перемножаться k переменных, одинаковые занулятся, останутся только слагаемые с различными, возможно, не в том порядке. Но мы можем привести порядок к правильному. После этих преобразований мы считаем интеграл как обычный кратный интеграл.

$$\int_{M} f dt_{1} \wedge \ldots \wedge dt_{k} = \int_{M} f dt_{1} \ldots dt_{k};$$

Для случая k=2 это всё можно записать в следующую формулу.

$$\iint_{\Omega} P \, \mathrm{d}y \wedge \, \mathrm{d}z + Q \, \mathrm{d}z \wedge \, \mathrm{d}x + R \, \mathrm{d}x \wedge \, \mathrm{d}y = \iint_{M} \begin{vmatrix} P & Q & R \\ \frac{\partial \varphi_1}{\partial u} & \frac{\partial \varphi_2}{\partial u} & \frac{\partial \varphi_3}{\partial u} \\ \frac{\partial \varphi_1}{\partial v} & \frac{\partial \varphi_2}{\partial v} & \frac{\partial \varphi_3}{\partial v} \end{vmatrix} \mathrm{d}u \, \mathrm{d}v;$$

Обратите внимание, при Q стоит $dz \wedge dx$, а не $dx \wedge dz$.

 $^{^{1}}$ Часто ограничиваются гладкими функциями.

32 Что такое ориентация k-мерного многообразия? Как изменится интеграл 2-го рода от дифференциальной формы при смене ориентации многообразия (б. д.)?

Пусть $\Omega \subseteq \mathbb{R}^n - k$ -мерное связное² многообразие, и у него имеются две параметризации $\varphi: M \to \Omega, \psi: N \to \Omega; M, N \subseteq \mathbb{R}^k$. Предположим, что функция замены координат $c = \varphi^{-1} \circ \psi$ биективна и непрерывно дифференцируема.

$$M \stackrel{c}{\longleftarrow} N$$

Посмотрим на якобиан J(c). Если бы где-то он был равен нулю, в окрестности этой точки c была бы необратима. Значит он не равен нулю нигде. Поскольку J(c) непрерывен и Ω связно, из этого следует, что он имеет постоянный знак. Тогда если он положителен, будем говорить, что φ и ψ задают одну и ту же ориентацию, а если отрицателен — то разные. Таким образом мы определяем ориентацию как отношение эквивалентности с двумя классами на параметризациях многообразия.

Ориентация задаёт ориентацию на любом касательном пространстве $T_x\Omega$ как на векторном пространстве. Если мы назвали ориентацию некоторой параметризации положительной, то назовём положительным базис $T_x\Omega$, полученный из её производных.

При смене параметризации на имеющую противоположную ориентацию интеграл 2-го рода меняет знак.

33 Дайте определение согласованных ориентаций многообразия и его границы. Дайте определение дифференциала от k-формы. Запишите общую формулу Стокса.

Будем обозначать границу многообразия Ω как $\partial\Omega$. Заметим, что если у k-мерного многообразия есть граница, то она имеет размерность k-1.

Определение. Будем говорить, что ориентации Ω и $\partial\Omega$ согласованы, если для любой точки $x \in \partial\Omega$ для любого положительного базиса $v_1, \dots v_{k-1}$ в $T_x\partial\Omega$, базис $v_1, \dots, v_{k-1}, \vec{n}$ положительн в $T_x\Omega$, где \vec{n} — это вектор в $T_x\Omega$, перпендикулярный $T_x\partial\Omega$ и смотрящий наружу³ Ω .

Мы привыкли, что дифференциал суммы равен сумме дифференциалов. Поэтому для определения дифференциала от дифференциальной формы достаточно определить дифференциал от грассманова монома.

$$d(fdx_{i_1} \wedge \ldots \wedge dx_{i_k}) := df \wedge dx_{i_1} \wedge \ldots \wedge dx_{i_k};$$

Замечание. Дифференциал k-формы является (k+1)-формой.

Для примера посчитаем дифференциал от дифференциала некоторой функции $f: \mathbb{R}^n \to \mathbb{R}$.

$$d(df) = d\left(\sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j} dx_j \wedge dx_i;$$

При этом слагаемые вида $\frac{\partial^2 f}{\partial x_i \partial x_i} dx_i \wedge dx_i$ сразу зануляются, а слагаемые вида $\frac{\partial^2 f}{\partial x_i \partial x_j} dx_j \wedge dx_i$ сократятся с $\frac{\partial^2 f}{\partial x_j \partial x_i} dx_i \wedge dx_j$. Значит d(df) = 0.

Пусть теперь $\Omega \subseteq \mathbb{R}^n - k$ -мерное многообразие с согласованными ориентациями на самом многообразии и на границе, а $\omega - \mu$ дифференциальная (k-1)-форма на Ω . Тогда верна (общая) формула Стокса:

$$\int_{\partial\Omega}\omega=\int_{\Omega}\mathrm{d}\omega;$$

 $^{^{2}}$ Напомним, многообразие называется гладким, если любые две его точки можно соединить проходяще по нему непрерывной кривой.

 $^{^3}$ Это можно формализовать, например, как отрицательное скалярное произведение с любым вектором, соединяющим x и точку из окрестности x из Ω . Но лектор это никак не формализовал.

34 Выведите из общей формулы Стокса частные случаи: формулу Ньютона-Лейбница, формулу Грина, формулу Гаусса-Остроградского.

Формула Ньютона-Лейбница, n=k=1

Пусть наше многообразие это отрезок на прямой [a;b]. Его границей будет множество из двух точек $\{a,b\}$. Заметим, что точка — это нульмерное многообразие и по нему можно интегрировать 0-формы (то есть просто функции). При чём этот интеграл будет с точностью до знака (знак как всегда определяется ориентацией) равен значению функции в точке. Если на отрезке мы берём стандартную ориентацию «слева направо», то для границы это будет означать взятие b с плюсом и a с минусом. Итак, формула Стокса принимает следующий вид:

$$F(b) - F(a) = \int_{a}^{b} \mathrm{d}F;$$

Перепишем в более привычную запись.

$$\int_{a}^{b} F'(x) dx = F(b) - F(a);$$

Формула Грина, n=k=2

Дифференциальная 1-форма в \mathbb{R}^2 имеет вид P dx + Q dy. Посчитаем её дифференциал

$$d(Pdx + Qdy) = \left(\frac{\partial P}{\partial x}dx + \frac{\partial P}{\partial y}dy\right) \wedge dx + \left(\frac{\partial Q}{\partial x}dx + \frac{\partial Q}{\partial y}dy\right) \wedge dy = \frac{\partial P}{\partial y}dy \wedge dx + \frac{\partial Q}{\partial x}dx \wedge dy =$$

$$= \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right)dx \wedge dy;$$

Формула Стокса принимает следующий вид:

$$\int_{\partial U} P dx + Q dy = \iint_{U} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy;$$

Здесь условие согласованности ориентации можно сформулировать как «при обходе ∂U по заданной параметризации U всегда находится слева».

Формула Гаусса-Остроградского, n=k=3

Дифференциальная 2-форма в \mathbb{R}^3 имеет вид $P\mathrm{d}y\wedge\mathrm{d}x+Q\mathrm{d}z\wedge\mathrm{d}x+R\mathrm{d}x\wedge\mathrm{d}y$. Посчитаем её дифференциал.

$$d(Pdy \wedge dz + Qdz \wedge dx + Rdx \wedge dy) = \frac{\partial P}{\partial x} dx \wedge dy \wedge dz + \frac{\partial Q}{\partial y} dy \wedge dz \wedge dx + \frac{\partial R}{\partial z} dz \wedge dx \wedge dy =$$

$$= \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) dx \wedge dy \wedge dz;$$

Формула Стокса принимает следующий вид:

$$\iint\limits_{\partial V} P \mathrm{d}y \wedge \mathrm{d}x + Q \mathrm{d}z \wedge \mathrm{d}x + R \mathrm{d}x \wedge \mathrm{d}y = \iiint\limits_{V} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) \mathrm{d}x \mathrm{d}y \mathrm{d}z;$$