MINISTERUL EDUCAȚIEI, CERCETĂRII, TINERETULUI ȘI SPORTULUI

Olimpiada de Fizică - Etapa națională 1 – 6 aprilie 2012 Ilfov

Barem de evaluare şi de notare

Se punctează în mod corespunzător oricare altă modalitate de rezolvare, care conduce la rezultate corecte

Problema a II-a A. Oscilații în electrostatică

Nr. item	Sarcina de lucru nr.1		Punctaj
1.a.	Pentru:		3,00p
	imaginea sarcinii electrice în sfera metalică legată la Pământ		
		0,40p	
	$r_1 = \sqrt{R^2 + d'^2 - 2R \cdot d' \cdot \cos \psi}$		
	$r_2 = \sqrt{R^2 + d^2 - 2R \cdot d \cdot \cos \psi}$		
	expresia potențialului unui punct de pe suprafața sferei, situat în planul care		
	conține axul de simetrie pentru problemă $V = \frac{1}{4\pi \cdot \varepsilon_0} \cdot \left(\frac{q}{r_2} + \frac{q'}{r_1}\right)$	0,30p	
	■ condiția de legare a sferei la pământ V = 0	0,20p	
		0,20p	
	$ \frac{q}{\sqrt{R^2 + d'^2 - 2R \cdot d' \cdot \cos \psi}} + \frac{q'}{\sqrt{R^2 + d^2 - 2R \cdot d \cdot \cos \psi}} = 0, $	0,30p	
	punctele care se află atât pe suprafața sferei cât și pe axul de simetrie al sistemului ($\psi = \pi$ și respectiv $\psi = 0$) $R^2 + d^2 - 2R \cdot d = \left(\frac{q}{q'}\right)^2 \cdot \left(R^2 + {d'}^2 - 2R \cdot d'\right)$ $R^2 + d^2 + 2R \cdot d = \left(\frac{q}{q'}\right)^2 \cdot \left(R^2 + {d'}^2 + 2R \cdot d'\right)$	0,20p	

$$- 0 < d' < R \text{ si } d > R > 0$$

$$\begin{cases}
-R + d = \left(-\frac{q}{q'}\right) \cdot \left(R - d'\right) \\
\left(R + d\right) = \left(-\frac{q}{q'}\right) \cdot \left(R + d'\right)
\end{cases}$$

$$0,20p$$

$$d' = \frac{R^2}{d}$$

$$q' = -q \frac{R}{d}$$
 0,20p

demonstrarea faptului că valorile q', d' determină potențial nul pentru *oricare* dintre punctele suprafeței sferice

$$r_1 = \sqrt{(R \cdot \sin\psi \cdot \cos\phi + d')^2 + (R \cdot \sin\psi \cdot \sin\phi)^2 + (R \cdot \cos\psi)^2}$$

$$r_2 = \sqrt{(R \cdot \sin\psi \cdot \cos\phi + d)^2 + (R \cdot \sin\psi \cdot \sin\phi)^2 + (R \cdot \cos\psi)^2}$$

$$\begin{cases} r_1 = \sqrt{R^2 + d'^2 + 2 \cdot R \cdot d' \cdot \sin \psi \cdot \cos \phi} \\ r_2 = \sqrt{R^2 + d^2 + 2 \cdot R \cdot d \cdot \sin \psi \cdot \cos \phi} \end{cases}$$
 0,20p

expresia potenţialul punctului
$$M \begin{cases} V_M = \frac{1}{4\pi \cdot \varepsilon_0} \cdot \left(\frac{q}{r_2} + \frac{q'}{r_1}\right) \\ V_M = \frac{1}{4\pi \cdot \varepsilon_0} \cdot \left(\frac{q}{r_2} + \frac{q'}{(R/d) \cdot r_2}\right) \end{cases}$$
 0,20p

$$V_{M} = \frac{1}{4\pi \cdot \varepsilon_{0}} \cdot \left(\frac{q}{r_{2}} - \frac{(R/d) \cdot q}{(R/d) \cdot r_{2}}\right) = 0$$
valorile q' , d' asigură potențial nul tuturor punctelor de pe suprafața sferei

1.b. Pentru:

expresia forței de interacțiune dintre sarcina inductoare şi sarcina imagine

$$F = \frac{1}{4\pi \cdot \varepsilon_0} \cdot \frac{q \cdot q'}{(d - d')^2}$$
0,30p

$$F = -\frac{1}{4\pi \cdot \varepsilon_0} \cdot \frac{q^2 \cdot R \cdot d}{\left(d^2 - R^2\right)^2}$$
 0,10p

	expresia <i>modulului</i> forței de interacțiune dintre sarcină și sfera metalică $ F = \frac{1}{4\pi \cdot \varepsilon_0} \cdot \frac{q^2 \cdot R \cdot d}{\left(d^2 - R^2\right)^2}$	0,30p	
Nr. item	Sarcina de lucru nr.2		Punctaj
2.a.	Pentru:	0,20p	1,60p
	$F = \frac{1}{4\pi \cdot \varepsilon_0} \cdot \frac{q^{-1} R \cdot d}{\left(d^2 - R^2\right)^2}$ $d = \sqrt{\ell^2 + L^2 - 2 \cdot \ell \cdot L \cdot \cos \alpha}$	0,10p	
	$F = \frac{1}{4\pi \cdot \varepsilon_0} \cdot \frac{q^2 \cdot R \cdot \sqrt{\ell^2 + L^2 - 2 \cdot \ell \cdot L \cdot \cos \alpha}}{\left(\ell^2 + L^2 - 2 \cdot \ell \cdot L \cdot \cos \alpha - R^2\right)^2}$	0,20p	
	$ \begin{cases} \frac{L}{\sin \beta} = \frac{\ell}{\sin(\pi - \gamma)} = \frac{d}{\sin \alpha} \\ \frac{L}{\sin \beta} = \frac{\ell}{\sin(\alpha + \beta)} = \frac{d}{\sin \alpha} \end{cases} $	0,20p	
	$\beta = \arcsin\left(\frac{L}{d} \cdot \sin\alpha\right) = \arcsin\left(\frac{L}{\sqrt{\ell^2 + L^2 - 2 \cdot \ell \cdot L \cdot \cos\alpha}} \cdot \sin\alpha\right)$	0,10p	
	mărimea componentei perpendiculare pe fir $F_{\perp} = F \cdot \sin \gamma = F \cdot \sin(\alpha + \beta)$	0,30p	
	$ sin \gamma = \frac{\ell}{d} \cdot sin \alpha = \frac{\ell \cdot sin \alpha}{\sqrt{\ell^2 + L^2 - 2 \cdot \ell \cdot L \cdot cos \alpha}} $	0,20p	
		0,30p	

2.b. Pentru: 1,70p

expresia forței de revenire (componenta perpendiculară pe fir a forței de

interactione) $F_{\perp} = \frac{1}{4\pi \cdot \varepsilon_0} \cdot \frac{q^2 \cdot R \cdot \ell \cdot \alpha}{\left(\ell^2 + L^2 - 2 \cdot \ell \cdot L - R^2\right)^2}$, 0,20p

în situația în care unghiurile $\, \alpha \,$ sunt suficient de mici

$$\begin{cases} F_{\perp} = \frac{1}{4\pi \cdot \varepsilon_0} \cdot \frac{q^2 \cdot R \cdot \ell \cdot \alpha}{\left((\ell - L)^2 - R^2\right)^2} \\ F_{\perp} = \wp \cdot \alpha \end{cases}$$
0,20p

"constanta de elasticitate" a forței de revenire $\wp = \frac{1}{4\pi \cdot \varepsilon_0} \cdot \frac{q^2 \cdot R \cdot \ell}{\left((\ell - L)^2 - R^2\right)^2}$

- $d = \ell L$ 0,10p
- expresia momentului de inerție al particulei încărcate cu sarcina q, aflată în mişcare circulară față de punctul fix al firului de care este legată $J=m\cdot L^2$ 0,20p
- expresia momentului forței de revenire $\aleph = -F_{\perp} \cdot L$ 0,20p
- ecuația mişcării particulei încărcate pe traiectoria circulară $\aleph = J \cdot \varepsilon$, unde ε este accelerația unghiulară a mişcării 0,20p
- ecuația oscilației armonice $\begin{cases} \wp \cdot \alpha = -m \cdot L \cdot \varepsilon \\ \varepsilon + \frac{\wp}{m \cdot L} \cdot \alpha = 0 \end{cases}$ 0,20p

pulsația oscilației armonice

$$\omega = \sqrt{\frac{\wp}{m \cdot L}}$$

$$\bullet = \frac{R}{(\ell - L)^2 - R^2} \sqrt{\frac{q \cdot \ell}{4 \cdot \pi \cdot \varepsilon_0 \cdot m \cdot L}}$$

B. Atomul de beriliu

D. Alomai de beraid				
Nr. item	Sarcina de lucru nr.1		Punctaj	
1.a.	Pentru: expresia sarcinii electrice pozitive, cu distribuție sferică din interiorul suprafeței	0,20p	1,00p	
1.b.	a aplicarea teoremei Gauss $E(r) = \begin{cases} \frac{e}{\pi \cdot \varepsilon_0} \cdot \frac{r}{a^3} & r \leq a \\ \frac{e}{\pi \cdot \varepsilon_0 \cdot r^2} & r > a \end{cases}$ Pentru:	0,80p	1,00p	
	condiția ca, forța de atracție a unui electron spre centrul sarcinii pozitive să fie compensată de forța de respingere electrostatică a celorlalți trei electroni	0,20p	•	
	configurația spațială - un tetraedru regulat având în vârfuri sarcini negative, cufundat în interiorul norului sferic de sarcină pozitivă configurația plană:	0,20p		
	— un pătrat având în vârfuri sarcini negative, cufundat în interiorul norului sferic de sarcină pozitivă			
	 un triunghi echilateral având în centru şi în vârfuri sarcini negative, cufundat în interiorul norului sferic de sarcină pozitivă (figura 3). 	0,40p		

	configurația liniară - patru sarcini electrice negative dispuse simetric față de centrul sferei, cufundate în interiorul norului sferic de sarcină pozitivă		
		0,20p	
1.c.	Pentru:		1,00p
	Varianta I de răspuns - configurația "pătrat"		
	oversajilo modulolar fortalar da rappingara		İ
	expresiile modulelor forțelor de respingere $F_2 = F_3 = \frac{e^2}{4\pi\varepsilon_0} \cdot \frac{1}{2x^2}$	0,20p	
	$F_1 = \frac{e^2}{4\pi\varepsilon_0} \cdot \frac{1}{4x^2},$ unde x este lungimea distanței de la vârful pătratului la centrul său		
	expresiile modulelor pentru rezultantele forțelor de respingere $F_{23} = \frac{e^2}{4\pi\varepsilon_0} \cdot \frac{\sqrt{2}}{2x^2}$	0,20p	
	$F_{123} = \frac{e^2}{4\pi\varepsilon_0 \cdot x^2} \cdot \left(\frac{1+2\sqrt{2}}{4}\right)$		
	expresia forței de atracție a norului de sarcină pozitivă $F_0 = \frac{e^2}{\pi \varepsilon_0} \cdot \frac{x}{a^3}$	0,20p	
	• condiția de echilibru pentru oricare dintre electroni $F_{123} = F_0$	0,10p	
	$x = \frac{a}{2} \cdot \sqrt[3]{\frac{1+2\sqrt{2}}{2}}$	0,10p	
	expresia lungimii latura pătratului în vârful cărora s-ar afla electronii $\ell_{patrat} = \frac{a\sqrt{2}}{2} \cdot \sqrt[3]{\frac{1+2\sqrt{2}}{2}}$	0,10p	
	■ mărimea unghiurilor din vârfurile pătratului 90°	0,10p	

Varianta a II-a de răspuns - configurația "triunghi echilateral"

expresiile modulele forțelor de respingere

$$F_B = F_C = \frac{e^2}{4\pi\varepsilon_0} \cdot \frac{1}{3x^2}$$

$$F_E = \frac{e^2}{4\pi\varepsilon_0} \cdot \frac{1}{x^2},$$
0,20p

unde x este lungimea distanței de la vârful la centrul triunghiului

expresiile modulelor pentru rezultantele forțelor de respingere

$$F_{BC} = \frac{e^2}{4\pi\varepsilon_0} \cdot \frac{\sqrt{3}}{3x^2}$$

$$F_{ABE} = \frac{e^2}{4\pi\varepsilon_0 \cdot x^2} \cdot \left(\frac{3+\sqrt{3}}{3}\right)$$
0,20p

- expresia forței de atracție a norului de sarcină pozitivă $F_0 = \frac{e^2}{\pi \varepsilon_0} \cdot \frac{x}{a^3}$ 0,20p
- condiția de echilibru pentru oricare dintre electroni $F_{ABE} = F_0$ 0,10p

$$x = a \cdot \sqrt[3]{\frac{3+\sqrt{3}}{12}}$$
 0,10p

expresia lungimii laturii triunghiului echilateral în vârful cărora s-ar afla

electronii
$$\ell_{triunghi} = a\sqrt{3} \cdot \sqrt[3]{\frac{3+\sqrt{3}}{12}}$$

- mărimea unghiurilor din vârfurile triunghiului echilateral 60° 0,10p
 - Observație: forțele de respingere din partea celor trei electroni din vârfurile triunghiului care sunt egale în modul, coplanare şi care fac între ele unghiuri egale cu 120° dau o rezultantă nulă indiferent de lungimea laturii triunghiului echilateral

TOTAL Problema a II-a 10p

© Barem de evaluare şi de notare propus de:

Conf. univ. dr. Adrian DAFINEI - Facultatea de Fizică – Universitatea București