Super-Resolution Reconstruction in HAADF STEM

P. Binev¹ <u>F. Blanco-Silva</u>¹ D. Blom² W. Dahmen³ R. Sharpley¹ T. Vogt²

 $^{1}\mathrm{IMI}$ University of South Carolina

 2 NanoCenter University of South Carolina

³Institut für Geometrie und Praktische Mathematik RWTH Aachen University

Outline

Goals and Obstacles

Background and Motivation

Nonlocal-Means Super-resolution reconstruction

Basic Algorithm

Diagnosis algorithm: Fusion + deblurring

Reconstruction algorithm:

 $NLMdiagnostics + registration + NLM + \cdots$

Super-resolution Image Reconstruction

Definition

Technique to obtain, from a sequence of observed multiple signals, a single one with enhanced spatial resolution.

 ${\bf High-Angle~Annular~Dark-Field~Scanning~Transmission~Electron~Microscopy}$

Z-contrast micrograph of a MoVTeNb-oxide M1.

Issues: distorsions, noise

High-dose micrograph (detail)

Low-dose micrograph (detail)

Super-resolution goal in HAADF-STEM: Summary

Goal

Obtaining a HIGH RES image from a timeseries of low dose LOW RES micrographs. Combined energy dose of LOW RES timeseries will be lower than equivalent single frame HIGH RES output.

Issues

- Rastering defects produced by external sources.
- Low SNR
- Time-series:
 - Global drift of the sample.
 - ▶ Localized jittering of the sample.
 - Occasional change of intensity in consecutive frames.

Observation Model

Observation Model

Methods based on subpixel motion

Relies on accurate registration methods based on robust motion

- Segmentation
- ► Multiple object motion
- Occlusions
- Transparency
- **.** . . .

Methods based on subpixel motion

Relies on accurate registration methods based on robust motion

- Segmentation
- ▶ Multiple object motion
- Occlusions
- Transparency

Motionless methods

Relies on patch-average image sequence restoration

- Space-time adaptation
- ▶ Moving-window varying size 3D transform-based
- Sparse and redundant representations
- Non-local means

...

Blind SR Image Reconstruction

If the blurring processes H_t are unknown, their identification is incorporated to the reconstruction procedure.

▶ Blind multichannel algorithms

Each observed image is a linear combination of the polyphase components of the HR signal.

- -Wirawan et al. '89
- Parametric blur identification and regularization
 - —Nguyen et al.'01

Buades, Coll, Morel'05

source

target

Buades, Coll, Morel'05

For each pixel p {

Buades, Coll, Morel'05

For each pixel p {

- ullet Take neighborhood centered in p: N_p
- ullet Take patch centered in p: R_p

 $\stackrel{\circ}{p}$

Buades, Coll, Morel'05

For each pixel p {

- Take neighborhood centered in p: N_p
- Take patch centered in p: R_p For each pixel p' in N_n {

}

Buades, Coll, Morel'05


```
e.g. {\rm dist}(p,p') = \|R_p - R_{p'}\|_2^2
```

```
°p
```

```
For each pixel p {
• Take neighborhood centered in p: N_n
• Take patch centered in p: R
For each pixel p' in N_n
    • Compute a distance dist(p,p')
        between R_n and R_{n'}.

    Compute weight w(p,p') from dist(p,p')

    • stack = \sum w(p,p') * source(p');
              p' \in N_n
    • totalweight = \sum w(p, p');
                     p' \in N_n
```

Buades, Coll, Morel'05

 \mathring{p}

```
For each pixel p {
• Take neighborhood centered in p: N_n
• Take patch centered in p: R
For each pixel p' in N_n
    • Compute a distance dist(p,p')
        between R_n and R_{n'}.

    Compute weight w(p,p') from dist(p,p')

    • stack = \sum w(p,p') * source(p');
              p' \in N_n
    • totalweight = \sum w(p, p');
                     p' \in N_n
```

Buades, Coll, Morel'05


```
p p
```

```
For each pixel p {
• Take neighborhood centered in p:
• Take patch centered in p: R
For each pixel p' in N_p {
    • Compute a distance dist(p,p')
         between R_p and R_{p'}.

    Compute weight w(p,p') from dist(p,p')

    • stack = \sum w(p,p') * source(p');
               p' \in N_p
    • totalweight = \sum w(p, p');
                      p' \in N_n
• Compute the restored value (normalization)
    target(p) = \frac{stack}{totalweight};
```

DISCIPLINARY MATHEMATICS INSTITUT

Buades, Coll, Morel'05


```
For each pixel p {
• Take neighborhood centered in p:
• Take patch centered in p: R
For each pixel p' in N_p {
    • Compute a distance dist(p,p')
         between R_p and R_{p'}.

    Compute weight w(p,p') from dist(p,p')

    • stack = \sum w(p,p') * source(p');
               p' \in N_p
    • totalweight = \sum w(p, p');
                       p' \in N_p
• Compute the restored value (normalization)
    target(p) = \frac{stack}{totalweight};
                                     RDISCIPLINARY MATHEMATICS INSTITUT
```

Buades, Coll, Morel'05

source

target


```
For each pixel p {
• Take neighborhood centered in p:
• Take patch centered in p: R
For each pixel p' in N_p {
    • Compute a distance dist(p,p')
         between R_p and R_{p'}.

    Compute weight w(p,p') from dist(p,p')

    • stack = \sum w(p,p') * source(p');
               p' \in N_p
    • totalweight = \sum w(p, p');
                      p' \in N_p
• Compute the restored value (normalization)
    target(p) = \frac{stack}{totalweight};
```

TERDISCIPLINARY MATHEMATICS INSTITUT

Nonlocal-Means Super-resolution reconstruction

Protter, Elad, Takeda, Milanfar'09

Fusion

Normalization

Fusion

Normalization

Fusion

Normalization example

Deblurring normalized sequences

usually, $\operatorname{prior}(X)$ is one of $||X||_0$, $||X||_1$, $||\nabla X||_2$, etc

Given a time-series of micrographs $\{y_t\}_{t=1,\dots,N}$

Given a time-series of micrographs $\{y_t\}_{t=1,\dots,N}$ "simple" diagnosis NLM $\to \{Z_t\}_{t=1,\dots,N}$

Given a time-series of micrographs $\{y_t\}_{t=1,...,N}$

- 1. "simple" diagnosis NLM $\rightarrow \{Z_t\}_{t=1,\dots,N}$
- 2. Use diagnosis time-series to:
 - Feature tracking to register $\{y_t\}$.
 - ▶ Localized alignment.
 - ► Improve **distance** notion (factor-out local distorsions).

Given a time-series of micrographs $\{y_t\}_{t=1,...,N}$

- "simple" diagnosis NLM $o \{\overline{Z}_t\}_{t=1,...,N}$
- 2. Use diagnosis time-series to:
 - Feature tracking to register $\{y_t\}$.
 - ► Localized alignment.
 - ▶ Improve **distance** notion (factor-out local distorsions).
- 3. Reiterate NLM.

- L "simple" diagnosis NLM $\rightarrow \{Z_t\}_{t=1,...,N}$
- 2. Use diagnosis time-series to:
 - Feature tracking to register $\{y_t\}$.
 - ► Localized alignment.
 - ► Improve distance notion (factor-out local distorsions).
- 3. Reiterate NLM.
- 4. Deblurring.

Punch line

Thank you!

