شماره دانشجویی:

معماري كامپيوتر

آزمون میان ترم – آذر ۱۴۰۱

سوال اول- در شکل ۱ بخشی از مسیر داده یک پردازنده را میبینید.

در هر زمان یکی از ثباتهای IR ،AC ،DR ،PC ،AR و TR یا حافظه می توانند دادهٔ خود را روی گذرگاه قرار دهند. کنترل این گذرگاه (انتخاب دادهای که روی آن قرار می گیرد) توسط سه بیت s1 ،s2 و s1 انجام می شود. برای مثال، اگر S2 انجام محتوای AC روی گذرگاه قرار می گیرد.

انتخابِ آدرسِ حافظه توسط ثباتِ AR انجام می شود. بنابراین اگر s2s1s0=111، محتوای خانهای از حافظه که آدرسِ آن در AR است (M[AR]) روی گذرگاه قرار می گیرد.

با فعال کردن ورودی (LD (load) می توان محتوای گذرگاه را روی همه حافظه و ثباتها (به جز AC) ذخیره کرد. INC بعضی از ثباتها (از جمله PC ،AR و AC) قابلیت شمارش رو به بالا هم دارند که با فعال کردن بیت (increment) انجام می شود. محتوای همین ثباتها را می توان با فعال کردن بیت ِ CLR (clear) صفر کرد.

 T_2 نام کامل هر ثبات و توصیف RTL عمل دستور CMA در شکل دیده می شود. در این توصیف عملیاتی که در T_2 انجام می شود مربوط به کدگشایی دستورات است که جزیبات آن اینجا اهمیتی ندارد. تنها مورد قابلِ اعتنا این است که بیتهای T_2 و T_3 براساس نوع دستور مقداردهی می شوند.

AR (Address Register)

PC (Program Counter)

DR (Data Register)

AC (Accumulator)

IR (Instruction Register)

TR (Temporary Register)

INPR (Input Register)

OUTR (Output Register)

E (Extended Bit)

RTL for CMA (Complement Accumulator):

 T_0 : AR \leftarrow PC

 T_1 : IR \leftarrow M[AR], PC \leftarrow PC+1

 T_2 : ... ; decode the instruction

 rB_9T_3 : AC \leftarrow not (AC)

الف- توضیح دهید که در T_0 و T_0 (در مجموع) چه کاری انجام می شود؟

ب- توصیف RTL خطِ بعد از T_2 را در هر یک از دستورات زیر بنویسید و توضیح دهید با اجرای این خط کدامیک از خطوط کنترلی در شکل فعال می شوند.

یکی از این دو:

دستور CLA: Clear AC (وقتی انجام می شود که r و B₁₁ فعال شود)

دستور INC: Increment AC (وقتی انجام می شود که r و B_5 فعال شود)

یکی از این سه:

دستور SZA: Skip next instruction if AC is Zero: (وقتى انجام مى شود كه r و B_2 فعال شود) دستور SNZ: Skip next instruction if AC is negative: (وقتى انجام مى شود كه r و B_3 فعال شود) دستور SPA: Skip next instruction if AC is positive: (وقتى انجام مى شود كه r و B_4 فعال شود)

ج- توضیح دهید آیا ممکن است RTLهای زیر در یک clock انجام شود؟ چرا؟

یکی از این چند مورد:

 $TR \leftarrow DR+1$

 $DR \leftarrow TR+1$

PC ← AR+1

 $AR \leftarrow PC+1$

یکی از این چند مورد:

 $DR \leftarrow DR+1$

 $TR \leftarrow TR+1$

 $AR \leftarrow AR+1$

یکی از این چند مورد:

 $AC \leftarrow TR$

AC ← IR

AC ← PC

یکی از این چند مورد:

 $PC \leftarrow 0$, $PC \leftarrow AC$

 $DR \leftarrow 0$, $DR \leftarrow AC$

 $AR \leftarrow 0$, $AR \leftarrow AC$ $TR \leftarrow 0$, $TR \leftarrow AC$ سوال دوم - بلوک دیاگرام مسیر داده و کنترل پردازنده MIPS را در شکل ۲ مشاهده می کنید. عملیات کنترل در sll ین شکل توسط تعدادی سیگنال کنترلی انجام می شود که در جداول ۱ و ۲ آمده است. اگر بخواهیم دستورالعمل ارا هم به مجموعه دستورالعملها اضافه کنیم، چه تغییراتی باید در شکل و جداول بدهیم؟ چه قابلیتهایی باید به ALU اضافه کنیم؟

توجه کنید فرمت دستور sll به شکل زیر است:

شکل ۲- بلوک دیاگرام مسیر داده و کنترل پردازنده ساده MIPS

جدول ۱- شرح ارتباط سیگنالهای واحد ALU Control در شکل ۲

Instruction opcode	ALUOp	Instruction operation	Funct field	Desired ALU action	ALU control input
LW	00	load word	XXXXXX	add	0010
SW	00	store word	XXXXXX	add	0010
Branch equal	01	branch equal	XXXXXX	subtract	0110
R-type	10	add	100000	add	0010
R-type	10	subtract	100010	subtract	0110
R-type	10	AND	100100	AND	0000
R-type	10	OR	100101	OR	0001
R-type	10	set on less than	101010	set on less than	0111

در شکل ۲	Control	های واحد	سيگنال	ا التياط	۲- شاح	حدوا
1 ()200 30	Control	عای ور حد	سيحس		, , ,	بعول

Input or output	Signal name	R-format	1w	SW	beq
Inputs	Op5	0	1	1	0
	Op4	0	0	0	0
	Op3	0	0	1	0
	Op2	0	0	0	1
	Op1	0	1	1	0
	Op0	0	1	1	0
Outputs	RegDst	1	0	Х	Х
	ALUSrc	0	1	1	0
	MemtoReg	0	1	Х	Х
	RegWrite	1	1	0	0
	MemRead	0	1	0	0
	MemWrite	0	0	1	0
	Branch	0	0	0	1
	ALUOp1	1	0	0	0
	ALUOp0	0	0	0	1

سوال سوم - دو پیادهسازی مختلف M1 و M2 از یک مجموعه دستورات یکسان را درنظر بگیرید. این مجموعه دستورات شامل سه رده دستورالعمل B ، A است. جدول B تعداد متوسط چرخههای ساعت را برای هر کدام از این ردهها در هر یک از ماشینهای M1 و M2 نشان می دهد. نرخ ساعت در M1 و M2 به ترتیب M2 و M3 گیگاهرتز است.

جدول ٣

Class	CPI on M1	CPI on M2	C1 usage	C2 Usage	C3 Usage
A	2	1	40%	40%	50%
В	3	2	40%	20%	25%
C	5	2	20%	40%	25%

C3 و C3 و C4 اتوسط سه کامپایلر C4 و C5 و C5 او C5 و C5 او C5 دروه بر این، جدول C5 درصد استفاده از دستورات هر یک از ردههای C5 توسط سازندگان C5 توسط یک گروه نشان می دهد. کامپایلر C5 توسط سازندگان C5 توسط یک گروه مستقل ارائه شده است. فرض کنید تعداد دستورات برنامههایی که با این کامپایلرها تولید می شود، برابر است و تنها تفاوت آنها درصد استفاده از دستورات هر رده است. با توجه به این نکته، به سوالات زیر پاسخ دهید.

 $^{-1}$ متوسط اجرای یک دستور از یک برنامه که با $^{-1}$ کامپایل شده است، روی $^{-1}$ چند نانوثانیه طول می کشد؟ $^{-1}$ متوسط اجرای یک دستور از یک برنامه که با $^{-1}$ کامپایل شده است، روی $^{-1}$ چند نانوثانیه طول می کشد؟ $^{-1}$ متوسط اجرای یک دستور از یک برنامه که با $^{-1}$ کامپایل شده است، روی $^{-1}$ چند نانوثانیه طول می کشد؟ $^{-1}$ متوسط اجرای یک دستور از یک برنامه که با $^{-1}$ کامپایل شده است، روی $^{-1}$ چند نانوثانیه طول می کشد؟ $^{-1}$ متوسط اجرای یک دستور از یک برنامه که با $^{-1}$ کامپایل شده است، روی $^{-1}$ چند نانوثانیه طول می کشد؟ $^{-1}$ متوسط اجرای یک دستور از یک برنامه که با $^{-1}$ کامپایل شده است، روی $^{-1}$ چند نانوثانیه طول می کشد؟ $^{-1}$ متوسط اجرای یک دستور از یک برنامه که با $^{-1}$ کامپایل شده است، روی $^{-1}$ چند نانوثانیه طول می کنید، چرا؟ $^{-1}$