Einführung in die Algebra

Arthur Henninger

October 8, 2024

Contents

Kapitel 1	1.1	Gruppen Grundbegriffe	Seite 22
Kapitel 2		Ringe	Seite 7
Kapitel 3		Körper	Seite 8
Kapitel 4		Galoistheorie	Seite 9

Gruppen

1.1 Grundbegriffe

Definition 1.1: (abelsche) Gruppe

Eine Gruppe ist eine Menge G zusammen mit einer Abbildung

sodass:

1) Assoziativität

$$\forall a, b, c \in G : (a \cdot b) \cdot c = a \cdot (b \cdot c).$$

2) Existenz eines linksneutralen Elements:

$$\exists e \in G : \forall a \in G : e \cdot a = a.$$

3) Existenz von Linksinversen:

$$\forall a \in G \exists b \in G : b \cdot a = e.$$

Bemerkung 1.2

Eine Gruppe Gheißt
 <u>abelsch</u> oder <u>kommutativ,</u> wenn zusätzlich gilt:

4) Kommutativität:

$$\forall a, b \in G : a \cdot b = b \cdot a.$$

Notation 1.2

Wir schreiben $a \cdot b = ab$ und $a^n = \underbrace{a \cdot \ldots \cdot a}_{n \text{ mal}} \forall n \in \mathbb{N} \setminus \{0\}$ und falls G abelsch ist $a + b := a \cdot b, n \cdot a = a^n$

Lemma 1.3

Sei G eine Gruppe. Dann gilt

(1) $G \neq \emptyset$

(2) Linksinverse sind eindeutig und rechtsinvers, d.h.

$$\forall a, b, c \in G : ba = ca = e \implies b = c \text{ und } ab = e.$$

(3) Das linksneutrale Element ist eindeutig und rechtsneutral, d.h.

$$\forall e' \in G \text{ mit } e' \cdot a = a \forall a \in G \text{ gilt } e = e' \text{ und } a \cdot e = a \forall a \in G.$$

Proof: (1) Da $e \in G$ ist $G \neq \emptyset$

(2) Seien $a,b \in G$ mit ba = e. Sei $a' \in G$ das linksinverse zu b also a'b = e. Dann gilt

$$ab = eab = a'$$
 ba $b = a'eb = a'b = e$.

Also ist b rechtsinvers zu a.

Sind $b, c \in G$ mit ba = ca = e. Dann gilt

$$c = ec = bac = be = bab = eb = b$$
.

(3) Seien $a, b \in G$ mit ba = ab = e. Dann ist

$$ae = aba = ea = a$$
.

Also ist *e* rechtsneutral.

Ist $e' \in G$ ein linksneutrales Element, dann gilt e = e'e = e'.

Notation 1.4

Für $a \in G$ schreiben wir a^{-1} für das Inverse (rechts- und links-) von a und $a^{-n} = (a^{-1})^n$. Wir nennen das (links- und rechts-) Neutrale Element $e \in G$ auch Einheit oder Eins.

Fakt 1.5

Analog zu 1.3:

Sei G eine Gruppe. Dann gilt

- $(1) (a^{-1})^{-1} = a$
- (2) $(ab)^{-1} = b^{-1}a^{-1}$
- (3) Ist ab = ac, so ist b = c
- (4) Ist $a^2 = a$, so ist a = e.

Definition 1.6: Untergruppe

Sei G eine Gruppe. Eine Untergruppe von G ist eine Teilmenge $H\subseteq G$ sodass

- (1) $e \in H$
- (2) $\forall a \in H \text{ ist } a^{-1} \in H$
- (3) $\forall a, b \in H \text{ ist } ab \in H$.

Dann ist H mit $\cdot|_{H\times H}$ selbst eine Gruppe.

Bemerkung 1.7

Schneller: $\emptyset \neq H \subseteq G$ ist eine Untergruppe $\iff \forall a, b \in H : ab^{-1} \in H$.

Definition 1.8: Gruppenhomomorphismus und Gruppenisomorphismus

Eine Abbildung $\varphi:G_1\to G_2$ zwischen zwei Gruppen G_1 und G_2 heißt

1) Gruppenhomomorphismus (oder Homomorphismus oder Morphismus), falls

$$\varphi(ab) = \varphi(a) \cdot \varphi(b) \forall a, b \in G_1.$$

2) Gruppenisomorphismus (oder Isomorphismus), falls φ ein bijektiver Homomorphismus ist.

 G_1 und G_2 heißen dann isomorph und wir schreiben $G_1\cong G_2$, falls ein Isomorphismus zwischen den Gruppen existiert.

Bemerkung 1.9

Sei $\varphi:G_1\to G_2$ ein Homomorphismus:

(1) φ ist ein Isomorphismus

$$\iff \exists \psi: G_2 \to G_1 \text{ Hom.}$$
 mit $\varphi \circ \psi = \text{Id}$
$$\varphi \circ \psi = \text{Id}.$$

 $(\Leftarrow$ ist klar, für \Longrightarrow prüft man, dass φ^{-1} ein Hom. ist)

(2) $\varphi(e) = e$, denn

$$\varphi(e)^2 = \varphi(e^2) = \varphi(e) \implies \varphi(e) = e.$$

(3) $\varphi(a^{-1}) = \varphi(a)^1$, denn

$$e = \varphi(e) = \varphi(aa^{-1}) = \varphi(a)\varphi(a^{-1}).$$

(4) φ ist injektiv $\iff \varphi^{-1}(e) = \{e\}, \text{ denn:}$

Für
$$a \neq b \in G_1$$
 mit $\varphi(a) = \varphi(b)$ gilt $\varphi(\underbrace{ab^{-1}}_{\neq e}) = e$.

Definition 1.10: Kern und Bild

Sei $\varphi: G_1 \to G_2$ ein Homomorphismus.

(1) Der Kern von φ ist

$$\operatorname{Ker}(\varphi) = \{ a \in G_1 : \varphi(a) = e \}.$$

(2) Das Bild von φ ist

$$\operatorname{Im}(\varphi) = \{ b \in G_2 : \exists a \in G_1, \varphi(a) = b \}.$$

Aus 1.9 (4) folgt dann: φ injektiv \iff Ker $(\varphi) = \{e\}$

Lemma 1.11

Sei $\varphi:G_1\to G_2$ ein Homomorphismus. Dann sind $\operatorname{Ker}(\varphi)\subseteq G_1,\operatorname{Im}(\varphi)\subseteq G_2$ Untergruppen.

Proof: Klar ist $Ker(\varphi)$, $Im(\varphi) \neq \emptyset$. Für $a, b \in Ker(\varphi)$ gilt:

$$\varphi(ab^{-1}) = \varphi(a)\varphi(b^{-1})$$

$$= \varphi(a)\varphi(b)^{-1}$$

$$= ee^{-1}$$

$$= e$$

$$\implies ab^{-1} \in \text{Ker}(\varphi).$$

Für $c, d \in \text{Im}(\varphi)$, wähle $a, b \in G_1$ mit $\varphi(a) = c, \varphi(b) = d$. Dann gilt

$$\varphi(ab^{-1}) = \varphi(a)\varphi(b^{-1})$$

$$= \varphi(a)\varphi(b)^{-1}$$

$$= cd^{-1}$$

$$\implies cd^{-1} \in \operatorname{Im}(\varphi).$$

Beispiel 1.12

(1) Die triviale Gruppe ist $G = \{e\}$ mit der eindeutigen Abbildung

$$G \times G \rightarrow G$$
.

Bis auf Isomorphie gibt es nur eine Gruppe mit einem Element.

(2) Sind G_1 und G_2 Gruppen, so ist $G = G_1 \times G_2$ mit

$$G \times G \to G$$

$$(a_1, a_2), (b_1, b_2) \mapsto (a_1b_1, a_2b_2)$$

eine Gruppe. Sind G_1,G_2 abelsch, dann schreiben wir

$$G_1 \oplus G_2 := G_1 \times G_2$$
.

(3) Ist K ein Körper, so sind

$$(K, +)$$
 und $(K \setminus \{0\}, \cdot)$

Gruppen.

- (4) Die Paare $(\mathbb{N}, +)$, $(\mathbb{Z} \setminus \{0\}, \cdot)$ sind jeweils keine Gruppen, sondern sogenannte <u>Monoide</u> da lediglich Inverse fehlen.
- (5) \forall Mengen M ist

$$Bij(M) = \{f : M \to M : f \text{ bijektiv } \}$$

mit Komposition eine Gruppe.

- (6) Die symmetrische Gruppe aus n Elementen ist $S_n = \text{Bij}(\{1, \dots, n\})$.
- (7) Die Abbildung

$$\operatorname{sgn}: S_n \to (\{\pm 1\}, \cdot)$$

ist ein Homomorphismus. Die alternierende Gruppe auf n Elementen ist $A_n := \operatorname{Ker}(\operatorname{sgn}) \subseteq S_n$.

- (8) Die linearen Gruppen $Gl_n(K)$, $SL_n(K)$, $O_n(K)$, $SO_n(K)$, $U_n(K)$, etc. sind Gruppen (wobei teilweise nicht jeder Körper die Grundlage für die Gruppen bilden kann oder Skalarprodukte existieren müssen).
- (9) Ist K ein Körper, so ist die Automorphismengruppe von K

$$\operatorname{Aut}(K) = \left\{ \varphi : K \to K : \varphi \in \operatorname{Bij}(K), \varphi(a+b) = \varphi(a) + \varphi(b), \varphi(ab) = \varphi(a)\varphi(b) \forall a,b \in K \right\}.$$

(10) Allgemeiner: Ist $\mathscr C$ eine Kategorie, sodass $\forall A, B \in \mathrm{Ob}(\mathscr C)$ die Abbildungen zwischen A und B eine Menge $\mathrm{Hom}_{\mathscr C}(A,B)$ bilden. Dann ist

$$\operatorname{Aut}_{\mathscr{C}}(A) = \{ \varphi : A \to A : \varphi \text{ invertierbar} \} \subseteq \operatorname{Hom}(A, A)$$

eine Gruppe via Komposition. Beispiele sind

- Bij(M) mit $\mathcal{C} = Mengen$
- $\operatorname{Gl}_n(M)$ mit $\mathcal{C}=$ endlich dimensionale Vektorräume
- Aut(M) mit $\mathcal{C} = K\ddot{o}rper$

Ringe

Körper

Galoistheorie