Epreuve écrite

Examen de fin d'études secondaires 2008 Numéro d'ordre du candidat Section: BC **Branche: CHIMIE** 8 pts (QC8) I. Composés azotés QC5 1. Etudier les propriétés physiques des amines. QC3 2. Faire une étude comparée de la force basique des amines aliphatiques. 15 pts (QC11; ANN4) II. Mécanisme réactionnel et isomérie 1. Réaction du bromure d'hydrogène avec l'hex-1-ène. a) Dresser l'équation de la réaction et donner les noms des deux produits envisageables. QC2 QC1 b) Enoncer la règle de Markownikoff. c) Détailler le mécanisme réactionnel et expliquer la formation d'un produit majoritaire « A » et QC8 minoritaire « B ». d) Quel type d'isomérie existe entre « A » et « B » ? ANN1 e) Représenter « B » en projection de Newman selon l'axe C₁→ C₂ dans la conformation la plus stable. ANN1 Donner les formules semi-développées et les noms de deux isomères de chaîne de « A ». ANN2 17 pts (ANN14; AN3) III. Composés oxygénés 1. On fait réagir un monoalcool « C » à chaîne aliphatique saturée avec un excès de sodium. On obtient un sel qui renferme 23,96 % de sodium. ANN₂ a) Dresser l'équation de cette réaction en utilisant les formules générales. AN3 b) Déterminer la formule brute de l'alcool « C ». c) Dresser les formules semi-développées et donner les noms de tous les alcools qui correspondent à ANN4 cette formule brute. d) Sachant que l'alcool « C » est optiquement actif représenter les deux énantiomères par leur formule spatiale et donner leur configuration en nomenclature CIP. ANN2 2. Un alcool « D » de formule brute C₃H₅O est soumis à l'oxydation catalytique par le dioxygène. On

a) Donner la formule semi-développée de l'alcool « D » et dresser les équations de son oxydation

ANN₂

obtient un acide carboxylique

catalytique par le dioxygène.

- b) Un alcool « E », isomère de « D » est traité par une solution acidulée de permanganate de potassium.
- Dresser les systèmes rédox qui traduisent cette réaction.

ENNA

Quelle observation peut-on faire si on fait réagir le produit de cette réaction avec le réactif de
 Schiff ?

IV. Acides, bases et sels

7 pts (AN7)

- La novocaïne, utilisée comme anesthésique local par les dentistes, est une base faible (pK_a = 8,95).
 Calculer le rapport entre la concentration de cette base et de son acide conjugué dans le plasma sanguin (pH = 7,40) d'un patient.

 AN2
- 2. Un bécher contenant 250 mL d'une solution d'hydroxyde de sodium 0,01 M est resté sur un élément chauffant pendant la nuit. 200 mL d'eau se sont évaporés. Calculer le pH de la solution finaleAN2
- 3. On dilue 60 mL d'acide nitrique à 65 % en masse (p = 1,40 g/cm³) de manière à obtenir 1,5 L de solution. Calculer le pH de la solution obtenue.

V. Titrage

13 pts (ANN3 ; AN10)

1. Pour déterminer la concentration molaire c₀ d'une solution d'acide méthanoïque, on prélève 10 mL de cette solution dans un bécher et on ajoute de l'eau distillée jusqu'à obtention de 50 mL de solution. Ensuite, on réalise la titration de cette solution avec une solution de NaOH 0,1 M. La courbe de l'évolution du pH en fonction du volume de NaOH ajouté est représentée ci-dessous.

- a) Justifier que la réaction entre l'acide méthanoïque et NaOH est totale.
- b) Déterminer la concentration molaire initiale c₀ de la solution d'acide méthanoïque.

AN1

AN2

Tableau des pKa (abréviations : ac. = acide ; cat. = cation ; an. = anion)

acides forts (plus forts que H₃O⁺) HI, HBr, HCl, HClO₄, HNO₃, H₂SO₄

bases de force négligeable

cat. hydronium	H₃O ⁺	H ₂ O	eau	-1,74
ac. chlorique	HClO₃	ClO ₃ -	an. chlorate	-1,00
ac. trichloroéthanoïque	CCl₃COOH	CCl ₃ COO ⁻	an. trichloroéthanoate	0,70
ac. iodique	HIO ₃	IO ₃	an. iodate	0,80
cat. hexaqua thallium III	[Tl(H ₂ O) ₆] ³⁺	[TI(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo thallium III	1,14
ac. oxalique	нооссоон	HOOCCOO-	an. hydrogénooxalate	1,23
ac. dichloroéthanoïque	CHCl₂COOH	CHCl₂COO ⁻	an. dichloroéthanoate	1,26
ac. sulfureux	H ₂ SO ₃	HSO₃⁻	an. hydrogénosulfite	1,80
an. hydrogénosulfate	HSO₄ ⁻	SO ₄ ²⁻	an. sulfate	1,92
ac. chloreux	HClO ₂	ClO ₂	an. chlorite	2,00
ac. phosphorique	H ₃ PO ₄	H₂PO₄⁻	an. dihydrogénophosphate	2,12
ac. fluoroéthanoïque	CH₂FCOOH	CH₂FCOO⁻	an. fluoroéthanoate	2,57
cat. hexaqua gallium III	[Ga(H ₂ O) ₆] ³⁺	[Ga(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo gallium III	2,62
cat. hexaqua fer III	[Fe(H ₂ O) ₆] ³⁺	[Fe(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo fer III	2,83
ac. chloroéthanoïque	CH₂CICOOH	CH₂CICOO⁻	an. chloroéthanoate	2,86
ac. bromoéthanoïque	CH₂BrCOOH	CH₂BrCOO ⁻	an. bromoéthanoate	2,90
cat. hexaqua vanadium III	[V(H ₂ O) ₆] ³⁺	[V(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo vanadium III	2,92
ac. nitreux	HNO ₂	NO ₂ -	an. nitrite	3,14
ac. iodoéthanoïque	CH₂ICOOH	CH₂ICOO⁻	an. iodoéthanoate	3,16
ac. fluorhydrique	HF	F ⁻	an. fluorure	3,17
ac. acétylsalicylique	C ₈ H ₇ O ₂ COOH	C ₈ H ₇ O ₂ COO⁻	an. acétylsalicylate	3,48
ac. cyanique	HOCN	OCN ⁻	an. cyanate	3,66
ac. méthanoïque	НСООН	HCOO ⁻	an. méthanoate	3,75
ac. lactique	CH₃CHOHCOOH	CH₃CHOHCOO ⁻	an. lactate	3,87
ac. ascorbique	C ₆ H ₈ O ₆	C ₆ H ₇ O ₆ ⁻	an. ascorbate	4,17
ac. benzoïque	C ₆ H ₅ COOH	C ₆ H ₅ COO⁻	an. benzoate	4,19
cat. anilinium	C ₆ H ₅ NH ₃ ⁺	C ₆ H ₅ NH ₂	aniline	4,62

ac. éthanoïque	CH₃COOH	CH ₃ COO ⁻	an. éthanoate	4,75
ac. propanoïque	CH₃CH₂COOH	CH₃CH₂COO ⁻	an. propanoate	4,87
cat. hexaqua aluminium	[Al(H ₂ O) ₆] ³⁺	[Al(OH)(H ₂ O) ₅] ²⁺	cat. pentaqua hydroxo aluminium	4,95
cat. pyridinium	C ₅ H ₅ NH ⁺	C ₅ H ₅ N	pyridine	5,25
cat. hydroxylammonium	NH₃OH ⁺	NH₂OH	hydroxylamine	6,00
dioxyde de carbone (aq)	CO ₂ + H ₂ O	HCO ₃ -	an. hydrogénocarbonate	6,12
ac. sulfhydrique	H ₂ S	HS ⁻	an. hydrogénosulfure	7,04
an. hydrogénosulfite	HSO₃⁻	SO ₃ ²⁻	an. sulfite	7,20
an. dihydrogénophosphate	H ₂ PO ₄ ⁻	HPO ₄ ²⁻	an. hydrogénophosphate	7,21
ac. hypochloreux	HCIO .	CIO ⁻	an. hypochlorite	7,55
cat. hexaqua cadmium	[Cd(H ₂ O) ₆] ²⁺	[Cd(OH)(H ₂ O) ₅] ⁺	cat. pentaqua hydroxo cadmium	8,50
cat. hexaqua zinc	$[Zn(H_2O)_6]^{2+}$	$[Zn(OH)(H_2O)_5]^+$	cat. pentaqua hydroxo zinc	8,96
cat. ammonium	NH ₄ ⁺	NH ₃	ammoniac	9,20
ac. borique	H ₃ BO ₃	H ₂ BO ₃	an. borate	9,23
ac. hypobromeux	HBrO	BrO ⁻	an. hypobromite	9,24
ac. cyanhydrique	HCN	CN ⁻	an. cyanure	9,31
cat. triméthylammonium	(CH ₃) ₃ NH ⁺	(CH ₃) ₃ N	triméthylamine	9,87
phénol	C ₆ H ₅ OH	C ₆ H ₅ O⁻	an. phénolate	9,89
an. hydrogénocarbonate	HCO ₃ -	CO ₃ ²⁻	an. carbonate	10,25
ac. hypoiodeux	HIO	IO-	an. hypoiodite	10,64
cat. méthylammonium	CH ₃ NH ₃ ⁺	CH ₃ NH ₂	méthylamine	10,70
cat. éthylammonium	CH₃CH₂NH₃ ⁺	CH ₃ CH ₂ NH ₂	éthylamine	10,75
cat. triéthylammonium	(C ₂ H ₅) ₃ NH ⁺	(C ₂ H ₅) ₃ N	triéthylamine	10,81
cat. diméthylammonium	(CH ₃) ₂ NH ₂ ⁺	(CH₃)₂NH	diméthylamine	10,87
cat. diéthylammonium	(C ₂ H ₅) ₂ NH ₂ ⁺	(C ₂ H ₅) ₂ NH	diéthylamine	11,10
an. hydrogénophosphate	HPO ₄ ²⁻	PO ₄ ³⁻	an. phosphate	12,32
an. hydrogénosulfure	HS ⁻	S ²⁻	an. sulfure	12,90
eau	H ₂ O	OH ⁻	anion hydroxyde	15,74

	bases fortes
acides de force négligeable	(plus fortes que OH ⁻) O ²⁻ , NH ₂ ⁻ , anion alcoolate RO ⁻)

TABLEAU PERIODIQUE DES ELEMENTS

					_												<i></i>					
	ΠΛ	4,0	T O	2	20,2	S S	10	39,9	A	18	83,8	Ż	36	131,3	X	54	(222)	2	98			
	VII	:			19,0	Щ	6	32,5	ō	17	6'62	Ā	35	126,9	H	53	(210)	At	85			
sipaux					16,0	0	8	32,1	ഗ	16	0'62	Se	34	127,6	a e	52	(503)	Ро	84			
groupes principaux	>				14,0	Z	7	31,0	۵	15	74,9	As	33	121,8	Sb	51	209,0	<u>'</u>	83			
grou	Ν				12,0	ပ	9	28,1	S	14	72,6	ge	32	118,7	S	20	207,2	<u>0</u>	82			
					10,8	Ω	5	27,0	A	13	2,69	g B	31	114,8	Ę	49	204,4		81			
										=	65,4	Z	30	112,4	3	48	200,6	J	80			
										_	63,5	5	29	107,9	Ag	47	197,0	Au	79			
											58,7	Z	28	106,4	Pd	46	165,1	古	78	(281)	Ds	110
								aires		II/	58,9	ර	27	102,9	쫀	45	192,2	L	77	(568)	Ĭ	109
								groupes secondaires			55,8	Fe	26	101,1	Z	44	190,2	SO.	9/	(569)	E E	108
								groupes		=	54,9	Ē	25	(26)	<u>م</u>	43	186,2	Re	75	(564)	찚	107
										>	52,0	<u></u> ნ	24	95,9	2	42	183,9	3	74	(592)	Sg	106
-										>	50,9	>	23	92,9	2	41	180,9	E	73	(595)	٥	105
										2	47,9	-	22	91,2	Ŋ	40	178,5	Ï	72	(261)	¥	104
Xn.		•								=	45,0	Sc	21	6,88	>	33	138,9	T C	22	227,0	Ac	89
groupes principaux			-		9,0	B	4	24,3	S)	12	40,1	Ö	20	9,78	ş	38	137,3	Ba	56	226,0	Ra	88
groupes		1,0	I		6,9		က	23,0	Z	F	39,1	¥	19	85,5	8	37	132,9	S	55	(223)	ŭ	87
			-			7			က			4			5			9			7	

	140,1	140,9	144,2	(145)	150,4	152,0	157,3	158,9	162,5	164,9	167,3	68,6	173,0	175,0
anthanides	9	ዾ፟	Nd Pm	٦	Sm	<u>Б</u>	n Sm Eu Gd Tb Dy	2	٥	웃	/ Ho Er	Ĕ	N Yb Lu	3
	28	29	09	61	62	63	64	65	99	29	89	ര	20	7.1
	232,0	231,0		237,0	(244)	(243)	(247)	(247)	(251)	(254)		_		(256)
ctinides	£	۵	2	2	2	Am	p Pu Am Cm	ᄶ	ل	ES	Ē	Z	§ N	
	06	91	92	93	94	92	96	26	86	66	100	101	102	103