Amendments to the Claims

1. (Currently amended) A compound of formula (I)

or a tautomer thereof or a pharmaceutically acceptable salt of said compound or tautomer.

wherein

R¹ is a cyclic group selected from R^A, R^B, R^C and R^D, each of which is optionally substituted with one or more R^Z groups;

R2 is hydrogen or C1-C2 alkvl;

R³ and R⁴ are each independently C₁-C₈ alkyl, C₂-C₈ alkenyl, C₂-C₈ alkynyl or C₃-C₁₀ cycloalkyl, each of which is optionally substituted with one or more R⁸ groups, or R^E, which is optionally substituted with one or more R⁹ groups, or hydrogen;

or -NR3R4 forms RF, which is optionally substituted with one or more R10 groups;

R5 is -Y-NR15R16;

 R^6 , which may be attached at N^1 or N^2 , is C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl or C_2 - C_6 alkynyl, each of which is optionally substituted by C_1 - C_6 alkoxy, $(C_3$ - C_6 cycloalkyl)methoxy, C_1 - C_6 haloalkoxy or a cyclic group selected from R^3 , R^K , R^L and R^M , or R^6 is R^N , C_3 - C_7 cycloalkyl or C_3 - C_7 halocycloalkyl, each of which is optionally substituted by C_1 - C_6 alkoxy or C_1 - C_6 haloalkoxy, or R^6 is hydrogen;

 R^7 is halo, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_3 - C_{10} cycloalkyl, C_3 - C_{10} halocycloalkyl, phenyl, OR^{12} , $OC(O)R^{12}$, NO_2 , $NR^{12}R^{13}$, $NR^{12}C(O)R^{13}$, $NR^{12}CO_3R^{14}$, C_3 - C_4 - C_5 - C_5 - C_5 - C_6 - C_7

 R^8 is halo, phenyl, C_1 - C_0 alkoxyphenyl, OR^{12} , $OC(O)R^{12}$, NO_2 , $NR^{12}R^{13}$, $NR^{12}C(O)R^{13}$, $NR^{12}CO_2R^{14}$, $C(O)R^{12}$, CO_3R^{12} ,

R9 is C1-C6 alkyl, C1-C6 haloalkyl or CO2R12;

 R^{10} is halo, $C_3\text{-}C_{10}$ cycloalkyl, $C_3\text{-}C_{10}$ halocycloalkyl, phenyl, $OR^{12},\,OC(O)R^{12},\,NO_2,\,NR^{12}R^{13},\,NR^{12}C(O)R^{13},\,NR^{12}CO_2R^{14},\,C(O)R^{12},\,CO_2R^{13},\,CONR^{12}R^{13},\,CN,\,\,cxo,\,\,C_1\text{-}C_6$ alkyl or $C_1\text{-}C_6$ haloalkyl, the last two of which are optionally substituted by R^{11} ;

R¹¹ is phenyl, NR¹²R¹³ or NR¹²CO₂R¹⁴;

R¹² and R¹³ are each independently hydrogen, C₁.C₆ alkyl or C₁-C₆ haloalkyl;

R14 is C1.C6 alkyl or C1-C6 haloalkyl;

R15 is selected from R17, R17C(O) and R18SO2, and

 R^{16} is selected from hydrogen, C_1 - C_6 alkyl optionally substituted with one or more R^{16} groups, C_1 - C_6 haloalkyl and C_3 - C_{10} cycloalkyl optionally substituted with one or more R^{20} groups.

or -NR ¹⁶R¹⁶ constitutes a 3- to 8-membered saturated ring which may optionally include containing one or more further heteroatoms in addition to said nitrogen selected from nitrogen, oxygen and sulphur, and which may optionally be substituted with one or more groups selected from R²¹, R²² and (C₁-C₆ alkoxy)C₁-C₆ alkyt;

R¹⁷ is hydrogen or R¹⁸;

 R^{18} is selected from C_1 - C_6 alkyl optionally substituted with one or more R^{19} groups, C_1 - C_6 haloalkyl and C_3 - C_{10} cycloalkyl optionally substituted with one or more R^{20} groups:

R¹⁹ is selected from R²¹, -NR²³R²⁴, -CO₂R²⁵, -CONR²⁶R²⁷, R²⁶ and phenyl optionally substituted by R²⁰:

R²⁰ is selected from R²¹, R²² and oxo;

R21 is oxo, hydroxy, C1-C6 alkoxy, C1-C8 (haloalkyl)oxy or C3-C7 cycloalkyloxy;

R²² is C₁-C₆ alkyl or C₁-C₆ haloalkyl;

R²³ and R²⁴ are each independently selected from hydrogen and C₁-C₆ alkyl;

or -NR²³R²⁴ constitutes an azetidine, pyrrolidine, piperidine or morpholine ring:

R25 is hydrogen or C1-C6 alkyl;

R²⁶ and R²⁷ are each independently selected from hydrogen and C₁-C₆ alkyl;

or -NR²⁶R²⁷ constitutes an azetidine, pyrrolidine, piperidine or morpholine ring;

R²⁸ is a saturated, unsaturated or aromatic heterocycle with up to 10 ring atoms, at least one of which is selected from nitrogen, oxygen and sulphur;

R²⁹ is selected from halo, R²¹ and R²²,

R^A and R^J are each independently a C₃-C₁₀ cycloalkyl or C₃-C₁₀ cycloalkenyl group, each of which may be either monocyclic or, when there are an appropriate number of ring atoms, polycyclic and which may be fused to either

- (a) a monocyclic aromatic ring selected from a benzene ring and a 5- or 6-membered heteroaromatic ring containing up to three heteroatoms selected from nitrogen, oxygen and sulphur, or
- (b) a 5-, 6- or 7-membered heteroalicyclic ring containing up to three heteroatoms selected from nitrogen, oxygen and sulphur;

 $\mathbf{R}^{\mathbf{B}}$ and $\mathbf{R}^{\mathbf{K}}$ are each independently a phenyl or naphthyl group, each of which may be fused to

- a C₅-C₇ cycloalkyl or C₅-C₇ cycloalkenyl ring,
- (b) a 5-, 6- or 7-membered heteroalicyclic ring containing up to three heteroatoms selected from nitrogen, oxygen and sulphur, or
- (c) a 5- or 6-membered heteroaromatic ring containing up to three heteroatoms selected from nitrogen, oxygen and sulphur;

R^c, R^t and R^N are each independently a monocyclic or, when there are an appropriate number of ring atoms, polycyclic saturated or partly unsaturated ring system containing between 3 and 10 ring atoms, of which at least one is a heteroatom selected from nitrogen, oxygen and sulphur, which ring may be fused to a C₀-C₇ cycloalkyl or C₀-C₇ cycloalkenyl group or a monocyclic aromatic ring selected from a benzene ring and a 5- or 6-membered heteroaromatic ring containing up to three heteroatoms selected from nitrogen, oxygen and sulphur;

R^o and R^M are each independently a 5- or 6-membered heteroaromatic ring containing up to three heteroatoms independently selected from nitrogen, oxygen and sulphur, which ring may further be fused to

(a) a second 5- or 6-membered heteroaromatic ring containing up to three heteroatoms selected from nitrogen, oxygen and sulphur;

- (b) C₅-C₇ cycloalkyl or C₅-C₇ cycloalkenyl ring;
- (c) a 5-, 6- or 7-membered heteroalicyclic ring containing up to three heteroatoms selected from nitrogen, oxygen and sulphur; or
 - (d) a benzene ring;

R^E, R^F and R^Q are each independently a monocyclic or, when there are an appropriate number of ring atoms, polycyclic saturated ring system containing between 3 and 10 ring atoms, of which at least one is a heteroatom selected from nitrogen, oxygen and sulphur;

R^H is a 5- or 6-membered heteroaromatic ring containing up to three heteroatoms independently selected from nitrogen, oxygen and sulphur; and

Y is a covalent bond, C1-C8 alkylenyl or C3-C7 cycloalkylenyl ;

a tautomer thereof or a pharmaceutically acceptable salt, solvate or polymorph of said compound or tautomer.

 (Original) A compound according to claim 1 wherein R¹ is R⁸, which is optionally substituted with one or more R⁷ groups.

- 3. (Original) A compound according to claim 1 wherein R^1 is R^D , which is optionally substituted with one or more R^7 groups.
- $\label{eq:continuous} 4. \mbox{ (Original)} \mbox{ A compound according to claim 1 wherein R^7 is halo, C_1-C_6 alkyl, C_1-C_6 haloalkyl, OR^{12} or $CONR^{12}R^{13}$.}$
 - 5. (Original) A compound according to claim 1 wherein R² is hydrogen.
- 6. (Original) A compound according to claim 1 wherein R³ is hydrogen, C₁-C₈ alkyl, which is optionally substituted with one or more R⁵ groups, or R^E, which is optionally substituted with one or more R³ groups; and wherein R^E is a monocyclic or, when there are an appropriate number of ring atoms, polycyclic saturated ring system containing between 3 and 7 ring atoms, of which at least one is a heteroatom selected from nitrogen, oxygen and sulphur.
- (Original) A compound according to claim 1 wherein R⁴ is hydrogen, C₁-C₆ alkyl, C₁-C₆ haloalkyl, C₂-C₆ alkenyl or C₂-C₆ alkynyl.
- 8. (Original) A compound according to claim 1 wherein –NR³R⁴ forms R^F, which is optionally substituted with one or more R¹⁰ groups and wherein R^F is a monocyclic or, when there are an appropriate number of ring atoms, polycyclic saturated ring system containing between 3 and 10 ring atoms containing at least one nitrogen atom and optionally one other atom selected from oxygen and sulphur.
 - (Original) A compound according to claim 1 wherein Y is C₁-C₆ alkylenyl.
- 10. (Original) A compound according to claim 1 wherein R^{15} is $R^{17}C(O)$ or $R^{18}SO_2$ and R^{16} is hydrogen or C_1 - C_6 alkyl.
- 11. (Original) A compound according to claim 1 wherein R 15 is R 17 and R 16 is hydrogen or C $_1$ -C $_6$ alkyl.
- 12. (Currently amended) A compound according to claim 1 wherein -NR¹⁶R¹⁸ constitutes a 3- to 8-membered saturated ring which may optionally include containing one or more further heteroatoms in addition to said nitrogen selected from

Patent Application Attorney Docket No. PC25571A

nitrogen, oxygen and sulphur, and which may optionally be substituted with one or more groups selected from R^{21} , R^{22} and $(C_1-C_6$ alkoxy) C_1-C_6 alkyl.

- (Original) A compound according to claim 1 wherein R⁶ is positioned on N¹.
- 14. (Original) A compound according to claim 1 wherein

 R^6 is C_1 - C_6 alkyl or C_1 - C_6 haloalkyl, each of which is optionally substituted by C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy or a cyclic group selected from R^1 , R^1 and R^M , or R^6 is R^N or hydrogen:

RJ is a C3-C7 monocyclic cycloalkyl group;

R^L and R^N are each independently a monocyclic, saturated or partly unsaturated ring system containing between 4 and 7 ring atoms, of which at least one is a heteroatom selected from nitrogen, oxygen and sulphur; and

 R^{M} is a 5- or 6-membered heteroaromatic ring containing up to three heteroatoms independently selected from nitrogen, oxygen and sulphur.

15. (Original) A compound according to claim 1 wherein

R³ is hydrogen, C₁-C₄ alkyl, which is optionally substituted with one or more R⁵ groups, or R⁵, which is optionally substituted with one or more R⁵ groups;

R4 is hydrogen, C1-C6 alkyl or C1-C6 haloalkyl;

or $-NR^3R^4$ forms R^F , which is optionally substituted with one or more R^{10} groups;

 R^6 is C_1 - C_4 alkyl or C_1 - C_4 haloalkyl, each of which is optionally substituted by C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy or a cyclic group selected from R^J , R^L and R^M , or R^6 is R^N or hydrogen;

RA is a monocyclic C3-C8 cycloalkyl group;

RB is phenvi:

Patent Application Attorney Docket No. PC25571A

R^c is a monocyclic saturated or partly unsaturated ring system containing between 3 and 8 ring atoms, of which at least one is a heteroatom selected from nitrogen, oxygen and sulphur;

R⁰ is a 5- or 6-membered heteroaromatic ring containing up to three heteroatoms independently selected from nitrogen, oxygen and sulphur:

R^E is a monocyclic saturated ring system containing between 3 and 7 ring atoms, of which at least one is a heteroatom selected from nitrogen, oxygen and sulphur;

R^F is a monocyclic or, when there are an appropriate number of ring atoms, polycyclic saturated ring system containing between 3 and 10 ring atoms, of which at least one is a heteroatom selected from nitrogen, oxygen and sulphur;

RJ is cyclopropyl or cyclobutyl;

R^L and R^N are each independently a monocyclic saturated ring system containing either 5 or 6 ring atoms, of which at least one is a heteroatom selected from nitrogen, oxygen and sulphur;

 R^{M} is a 5- or 6-membered heteroaromatic ring containing a heteroatom selected from nitrogen, oxygen and sulphur; and

Y is C₁-C₆ alkylenyl.

16. (Currently amended) A compound according to claim 15 wherein R^1 is a cyclic group selected from R^A , R^B , R^C and R^D , each of which is optionally substituted with one or more R^7 groups;

 R^7 is halo, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, OR^{12} or $CONR^{12}R^{13}$;

 R^8 is halo, phenyl, C_1 - C_6 alkoxyphenyl, OR^{12} , $NR^{12}R^{13}$, $NR^{12}CO_2R^{14}$, CO_2R^{12} , $CONR^{12}R^{13}$, R^6 or R^4 , the last two of which are optionally substituted with one or more R^9 groups;

RA is a monocyclic C₅-C₇ cycloalkyl group:

R^B is phenyl;

R^c is a monocyclic saturated ring system containing between 5 and 7 ring atoms, of which at least one is a heteroatom selected from nitrogen, oxygen and sulphur:

R^D is a 5-membered heteroaromatic ring containing a heteroatom selected from nitrogen, oxygen and sulphur and optionally up to two further nitrogen atoms in the ring, or a 6-membered heteroaromatic ring containing including 1, 2 or 3 nitrogen atoms:

R^E is a monocyclic saturated ring system containing between 3 and 7 ring atoms containing one nitrogen atom;

R^F is a monocyclic or, when there are an appropriate number of ring atoms, polycyclic saturated ring system containing between 3 and 10 ring atoms containing at least one nitrogen atom and optionally one other atom selected from oxygen and sulphur:

R^G is a monocyclic saturated ring system containing between 3 and 7 ring atoms, of which at least one is a heteroatom selected from nitrogen, oxygen and sulphur;

R^H is a 5- or 6-membered heteroaromatic ring containing up to two nitrogen atoms; and

Y is -CH2-.

17. (Currently amended) A pharmaceutical composition comprising a compound of fermula-(I) as claimed in claim 1, or a pharmaceutically acceptable salt salts, solvates or polymorphs thereof, and a pharmaceutically acceptable diluent or carrier.

18. (Canceled)

20. (Currently amended) A method of treating a disorder or condition in a mammal, which method comprises administering to said mammal a compound of Claim 1 or a pharmaceutically acceptable salt thereof, or a pharmaceutical composition comprising a compound of Claim 1 or a pharmaceutically acceptable salt thereof and a

Patent Application Attorney Docket No. PC25571A

<u>pharmaceutically acceptable diluent or carrier</u>, accerding to claim 18, wherein the disorder or condition is hypertension.