## **PCT**

## WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification <sup>6</sup>:
C12N 15/31, C07K 14/315, A61K 39/09, C12N 1/21

(11) International Publication Number:

WO 99/42588

A2 | (4

(43) International Publication Date:

26 August 1999 (26.08.99)

(21) International Application Number:

PCT/CA99/00114

(22) International Filing Date:

17 February 1999 (17.02.99)

(30) Priority Data:

60/075,425

20 February 1998 (20.02.98)

US

(71) Applicant (for all designated States except US): BIOCHEM VACCINS INC. [CA/CA]; 2323 boulevard du Parc Technologique, Sainte-Foy, Québec G1P 4R8 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BRODEUR, Bernard, R. [CA/CA]; 2401 rue Maritain, Sillery, Québec G1T 1N6 (CA). RIOUX, Clément [CA/CA]; 1012 Jean-Charles Cantin, Ville de Cap Rouge, Québec G1Y 2X1 (CA). BOYER, Martine [CA/CA]; Apt. 204, 25 des Mouettes, Beauport, Québec G1E 7G1 (CA). CHARLEBOIS, Isabelle [CA/CA]; 410 Mirabel, St-Nicolas, Québec G7A 2L5 (CA). HAMEL, Josée [CA/CA]; 2401 rue Maritain, Sillery, Québec G1T 1N6 (CA). MARTIN, Denis [CA/CA]; 4728-G rue Gaboury, St-Augustin-de-Desmaures, Québec G3A 1E9 (CA).

(74) Agents: CÔTE, France et al.; Swabey Ogilvy Renault, Suite 1600, 1981 McGill College Avenue, Montréal, Québec H3A 2Y3 (CA).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Published

Without international search report and to be republished upon receipt of that report.

(54) Title: GROUP B STREPTOCOCCUS ANTIGENS

#### (57) Abstract

Group B streptococcus (GBS) proteins and polynucleotides encoding them are disclosed. Said proteins are antigenic and therefore useful vaccine components for the prophylaxis or therapy of streptococcus infection in animals. Also disclosed are recombinant methods of producing the protein antigens as well as diagnostic assays for detecting streptococcus bacterial infection.

## FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AL Albania ES Spain LS Lesotho SI Slovenia AM Armenia FI Finland LT Lithuania SK Slovakia |                   |
|-------------------------------------------------------------------------------------------|-------------------|
| Tr Cintand 1 T Listuania CV Clayabic                                                      |                   |
| All Alliente                                                                              |                   |
| AT Austria FR France LU Luxembourg SN Senegal                                             |                   |
| AU Australia GA Gabon LV Latvia SZ Swazila:                                               | nd                |
| AZ Azerbaijan GB United Kingdom MC Monaco TD Chad                                         |                   |
| BA Bosnia and Herzegovina GE Georgia MD Republic of Moldova TG Togo                       |                   |
| BB Barbados GH Ghana MG Madagascar TJ Tajikista                                           | an                |
| BE Belgium GN Guinea MK The former Yugoslav TM Turkme                                     | nistan            |
| BF Burkina Faso GR Greece Republic of Macedonia TR Turkey                                 |                   |
| BG Bulgaria HU Hungary ML Mali TT Trinidac                                                | d and Tobago      |
| BJ Benin IE Ireland MN Mongolia UA Ukraine                                                |                   |
| BR Brazil IL Israel MR Mauritania UG Uganda                                               |                   |
| BY Belarus IS Iceland MW Malawi US United                                                 | States of America |
| CA Canada IT Italy MX Mexico UZ Uzbekis                                                   | stan              |
| CF Central African Republic JP Japan NE Niger VN Viet Na                                  | um .              |
| CG Congo KE Kenya NL Netherlands YU Yugosla                                               | avia              |
| CH Switzerland KG Kyrgyzstan NO Norway ZW Zimbab                                          | we                |
| CI Côte d'Ivoire KP Democratic People's NZ New Zealand                                    |                   |
| CM Cameroon Republic of Korea PL Poland                                                   |                   |
| CN China KR Republic of Korea PT Portugal                                                 |                   |
| CU Cuba KZ Kazakstan RO Romania                                                           |                   |
| CZ Czech Republic LC Saint Lucia RU Russian Federation                                    |                   |
| DE Germany LI Liechtenstein SD Sudan                                                      |                   |
| DK Denmark LK Sri Lanka SE Sweden                                                         |                   |
| EE Estonia LR Liberia SG Singapore                                                        |                   |

## GROUP B STREPTOCOCCUS ANTIGENS

5

### FIELD OF THE INVENTION

The present invention is related to antigens, more particularly protein antigens of group B streptococcus (GBS)

10 bacterial pathogen which are useful as vaccine components for therapy and/or prophylaxis.

### BACKGROUND OF THE INVENTION

15

Streptococcus are gram (+) bacteria that are differentiated by group specific carbohydrate antigens A through O found on their cell surface. Streptococcus groups are further distinguished by type-specific capsular polysaccharide

20 antigens. Several serotypes have been identified for the Group B streptococcus (GBS): Ia, Ib, II, III, IV, V, VI, VII and VIII. GBS also contains antigenic proteins known as "C-proteins" (alpha, beta, gamma and delta), some of which have been cloned.

25

30

35

Although GBS is a common component of the normal human vaginal and colonic flora this pathogen has long been recognized as a major cause of neonatal sepsis and meningitis, late-onset meningitis in infants, postpartum endometritis as well as mastitis in dairy herds. Expectant mothers exposed to GBS are at risk of postpartum infection and may transfer the infection to their baby as the child passes through the birth canal. Although the organism is sensitive to antibiotics, the high attack rate and rapid onset of sepsis in neonates and meningitis in infants results in high morbidity and mortality.

To find a vaccine that will protect individuals from GBS infection, researches have turned to the type-specific antigens. Unfortunately these polysaccharides have proven to be poorly immunogenic in humans and are restricted to the particular serotype from which the polysaccharide originates. Further, capsular polysaccharide elicit a T cell independent response i.e. no IgG production. Consequently capsular polysaccharide antigens are unsuitable as a vaccine component for protection against GBS infection.

Others have focused on the C-protein beta antigen which demonstrated immunogenic properties in mice and rabbit models. This protein was found to be unsuitable as a human vaccine because of its undesirable property of interacting with high affinity and in a non-immunogenic manner with the Fc region of human IgA. The C-protein alpha antigen is rare in type III serotypes of GBS which is the serotype responsible for most GBS mediated conditions and is therefore of little use as a vaccine component.

Therefore there remains an unmet need for GBS antigens that may be used as vaccine components for the prophylaxis and/or therapy of GBS infection.

## SUMMARY OF THE INVENTION

According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide having at least 70% identity to a second polypeptide comprising a sequence selected from the group consisting of:

SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5,

SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO:10,

SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15,

SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19,

```
SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41 and SEQ ID NO:44 or fragments, analogs or derivatives thereof.
```

In other aspects, there is provided vectors comprising polynucleotides of the invention operably linked to an expression control region, as well as host cells transfected with said vectors and methods of producing polypeptides comprising culturing said host cells under conditions suitable for expression.

15 In yet another aspect, there is provided novel polypeptides encoded by polynucleotides of the invention.

#### BRIEF DESCRIPTION OF THE DRAWINGS

20

25

```
Figure la is the DNA sequence of clone 1 (SEQ ID NO :1) with corresponding amino acid sequences for open reading frames; figure 1b is the amino acid sequence SEQ ID NO: 2; figure 1c is the amino acid sequence SEQ ID NO: 3; figure 1d is the amino acid sequence SEQ ID NO: 4; figure 1e is the amino acid sequence SEQ ID NO: 5; figure 1f is the amino acid sequence SEQ ID NO: 6;
```

Figure 2a is the DNA sequence of clone 2 (SEQ ID NO :7) with corresponding amino acid sequences for open reading frames; figure 2b is the amino acid sequence SEQ ID NO: 8; figure 2c is the amino acid sequence SEQ ID NO: 9; figure 2d is the amino acid sequence SEQ ID NO:10; figure 2e is the amino acid sequence SEQ ID NO:11; figure 2f is the amino acid sequence SEQ ID NO:12;

```
Figure 3a is the DNA sequence of clone 3 (SEQ ID NO :13)
     with corresponding amino acid sequences for open reading
     frames;
     figure 3b is the amino acid sequence SEQ ID NO:14;
    figure 3c is the amino acid sequence SEQ ID NO:15;
    figure 3d is the amino acid sequence SEQ ID NO:16;
    figure 3e is the amino acid sequence SEQ ID NO:17;
    figure 3f is the amino acid sequence SEQ ID NO:18;
    figure 3g is the amino acid sequence SEQ ID NO:19;
    figure 3h is the amino acid sequence SEQ ID NO:20;
10
    figure 3i is the amino acid sequence SEQ ID NO:21;
    Figure 4a is the DNA sequence of clone 4 (SEQ ID NO :22)
    with corresponding amino acid sequences for open reading
15
    frames;
    figure 4b is the amino acid sequence SEQ ID NO:23;
    figure 4c is the amino acid sequence SEQ ID NO:24;
    figure 4d is the amino acid sequence SEQ ID NO:25;
    figure 4e is the amino acid sequence SEQ ID NO:26;
20
    Figure 5a is the DNA sequence of clone 5 (SEQ ID NO :27)
    with corresponding amino acid sequences for open reading
    frames:
    figure 5b is the amino acid sequence SEQ ID NO:28;
    figure 5c is the amino acid sequence SEQ ID NO:29;
25
    figure 5d is the amino acid sequence SEQ ID NO:30;
    figure 5e is the amino acid sequence SEQ ID NO:31;
    Figure 6a is the DNA sequence of clone 6 (SEQ ID NO :32);
    figure 6b is the amino acid sequence SEQ ID NO:33;
30
    figure 6c is the amino acid sequence SEQ ID NO:34;
    figure 6d is the amino acid sequence SEQ ID NO:35;
    figure 6e is the amino acid sequence SEQ ID NO:36;
    Figure 7a is the DNA sequence of clone 7 (SEQ ID NO :37);
35
    figure 7b is the amino acid sequence SEQ ID NO:38;
```

```
figure 7c is the amino acid sequence SEQ ID NO:39; figure 7d is the amino acid sequence SEQ ID NO:40; figure 7e is the amino acid sequence SEQ ID NO:41;
```

5 Figure 8 is the DNA sequence of a part of clone 7 including a signal sequence (SEQ ID NO :42);

Figure 9 is the DNA sequence of a part of clone 7 without a signal sequence (SEQ ID NO :43);

10 Figure 9a is the amino acid sequence (SEQ ID NO:44);

Figure 10 represents the distribution of anti-GBS ELISA titers in sera from CD-1 mice immunized with recombinant GBS protein corresponding to the SEQ ID NO:39.

# DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to novel antigenic polypeptides of group B streptococcus (GBS) characterized by the amino acid sequence selected from the group consisting of:

SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO:10,

SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19,

SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:29,

SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39,

15 SEQ ID NO:40, SEQ ID NO:41 and SEQ ID NO:44 or fragments, analogs or derivatives thereof.

A preferred embodiment of the invention includes SEQ ID NO :39 and SEQ ID NO:44.

20

30

A further preferred embodiment of the invention is SEQ ID  ${\tt NO}$  :39.

A further preferred embodiment of the invention is SEQ ID NO :44.

As used herein, "fragments", "derivatives" or "analogs" of the polypeptides of the invention include those polypeptides in which one or more of the amino acid residues are substituted with a conserved or non-conserved amino acid residue (preferably conserved) and which may be natural or unnatural.

The terms «fragments», «derivatives» or «analogues» of polypeptides of the present invention also include polypeptides which are modified by addition, deletion,

substitution of amino acids provided that the polypeptides retain the capacity to induce an immune response.

By the term «conserved amino acid» is meant a substitution of one or more amino acids for another in which the antigenic determinant (including its secondary structure and hydropathic nature) of a given antigen is completely or partially conserved in spite of the substitution.

- For example, one or more amino acid residues within the sequence can be substituted by another amino acid of a similar polarity, which acts as a functional equivalent, resulting in a silent alteration. Substitutes for an amino acid within the sequence may be selected from other members of the class to which the amino acid belongs. For example, 15 the nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan and methionine. The polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine and glutamine. The positively charged (basic) 20 amino acids include arginine, lysine and histidine. The negatively charged (acidic) amino acids include aspartic acid and glutamic acid.
- 25 Preferably, derivatives and analogs of polypeptides of the invention will have about 70% identity with those sequences illustrated in the figures or fragments thereof. That is, 70% of the residues are the same. More preferably polypeptides will have greater than 95% homology. In another 30 preferred embodiment, derivatives and analogs of polypeptides of the invention will have fewer than about 20 amino acid residue substitutions, modifications or deletions and more preferably less than 10. Preferred substitutions are those known in the art as conserved i.e. the substituted residues share physical or chemical properties such as hydrophobicity, size, charge or functional groups.

Furthermore, in those situations where amino acid regions are found to be polymorphic, it may be desirable to vary one or more particular amino acids to more effectively mimic the different epitopes of the different GBS strains.

Also included are polypeptides which have fused thereto other compounds which alter the polypeptides biological or pharmacological properties i.e. polyethylene glycol (PEG) to increase half-life; leader or secretory amino acid sequences for ease of purification; prepro- and pro- sequences; and (poly) saccharides.

Moreover, the polypeptides of the present invention can be modified by terminal -NH<sub>2</sub> acylation (eg. by acetylation, or thioglycolic acid amidation, terminal carbosy amidation, e.g. with ammonia or methylamine) to provide stability, increased hydrophobicity for linking or binding to a support or other molecule.

20

25

10

Also contemplated are hetero and homo polypeptide multimers of the polypeptide fragments, analogues and derivatives. These polymeric forms include, for example, one or more polypeptides that have been cross-linked with cross-linkers such as avidin/biotin, gluteraldehyde or dimethyl-superimidate. Such polymeric forms also include polypeptides containing two or more tandem or inverted contiguous sequences, produced from multicistronic mRNAs generated by recombinant DNA technology.

Preferably, a fragment, analog or derivative of a polypeptide of the invention will comprise at least one antigenic region i.e. at least one epitope.

In order to achieve the formation of antigenic polymers

(i.e. synthetic multimers), polypeptides may be utilized having bishaloacetyl groups, nitroarylhalides, or the like,

where the reagents being specific for thio groups. Therefore, the link between two mercapto groups of the different peptides may be a single bond or may be composed of a linking group of at least two, typically at least four, and not more than 16, but usually not more than about 14 carbon atoms.

In a particular embodiment, polypeptide fragments, analogs and derivatives of the invention do not contain a methionine (Met) starting residue. Preferably, polypeptides will not incorporate a leader or secretory sequence (signal sequence). The signal portion of a polypeptide of the invention may be determined according to established molecular biological techniques. In general, the polypeptide of interest may be isolated from a GBS culture and subsequently sequenced to determine the initial residue of the mature protein and therefor the sequence of the mature polypeptide.

- According to another aspect, there is provided vaccine compositions comprising one or more GBS polypeptides of the invention in admixture with a pharmaceutically acceptable carrier diluent or adjuvant.
- Suitable adjuvants include oils i.e. Freund's complete or incomplete adjuvant; salts i.e. AlK(SO<sub>4</sub>)<sub>2</sub>, AlNa(SO<sub>4</sub>)<sub>2</sub>, AlNH<sub>4</sub>(SO<sub>4</sub>)<sub>2</sub>, Al(OH)<sub>3</sub>, AlPO<sub>4</sub>, silica, kaolin; saponin derivative; carbon polynucleotides i.e. poly IC and poly AU and also detoxified cholera toxin (CTB) and E.coli heat labile toxin for induction of mucosal immunity. Preferred adjuvants include QuilA<sup>TM</sup>, Alhydrogel<sup>TM</sup> and Adjuphos<sup>TM</sup>. Vaccines of the invention may be administered parenterally by injection, rapid infusion, nasopharyngeal absorption, dermoabsorption, or bucal or oral.

Vaccine compositions of the invention are used for the treatment or prophylaxis of streptococcus infection and/or diseases and symptoms mediated by streptococcus infection, in particular.

- in particular group A streptococcus (pyogenes), group B streptococcus (GBS or agalactiae), dysgalactiae, uberis, nocardia as well as Staphylococcus aureus. General information about Streptococcus is available in Manual of Clinical Microbiology by P.R.Murray et al. (1995, 6th Edition,
- ASM Press, Washington, D.C.). More particularly group B streptococcus, agalactiae. In a particular embodiment vaccines are administered to those individuals at risk of GBS infection such as pregnant women and infants for sepsis, meningitis and pneumonia as well as immunocompromised
- individuals such as those with diabetes, liver disease or cancer. Vaccines may also have veterinary applications such as for the treatment of mastitis in cattle which is mediated by the above mentioned bacteria as well as *E.coli*.
- The vaccine of the present invention can also be used for the manufacture of a medicament used for the treatment or prophylaxis of streptococcus infection and/or diseases and symptoms mediated by streptococcus infection, in particular group A streptococcus (pyogenes), group B streptococcus (GBS or agalactiae), dysgalactiae, uberis, nocardia as well as Staphylococcus aureus. More particularly group B
- Vaccine compositions are preferably in unit dosage form of about 0.001 to 100 µg/kg (antigen/body weight) and more preferably 0.01 to 10 µg/kg and most preferably 0.1 to 1 µg/kg 1 to 3 times with an interval of about 1 to 12 weeks intervals between immunizations, and more preferably 1 to 6

streptococcus, agalactiae.

weeks.

According to another aspect, there is provided polynucleotides encoding polypeptides of group B

- 5 streptococcus (GBS) characterized by the amino acid sequence selected from the group consisting of:
  - SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5,
  - SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO:10,
  - SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15,
- 10 SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19,
  - SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24,
  - SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:29,
  - SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:34,
  - SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39,
- 15 SEQ ID NO:40, SEQ ID NO:41 and SEQ ID NO:44 or fragments, analogs or derivatives thereof.

Preferred polynucleotides are those illustrated in figures la (SEQ ID NO: 1), 2a (SEQ ID NO: 7), 3a (SEQ ID NO: 13), 4a (SEQ ID NO: 22), 5a (SEQ ID NO: 27), 6a (SEQ ID NO: 32), 7a (SEQ ID NO: 37), 8 (SEQ ID NO: 42) and 9(SEQ ID NO: 43) which correspond to the open reading frames, encoding polypeptides of the invention.

- Preferred polynucleotides are those illustrated in figures la (SEQ ID NO: 1), 2a (SEQ ID NO: 7), 3a (SEQ ID NO: 13), 4a (SEQ ID NO: 22), 5a (SEQ ID NO: 27), 6a (SEQ ID NO: 32), 7a (SEQ ID NO: 37), 8 (SEQ ID NO: 42) and 9(SEQ ID NO: 43) and fragments, analogues and derivatives thereof.
  - More preferred polynucleotides of the invention are those illustrated in Figures 7 (SEQ ID NO : 37), 8 (SEQ ID NO : 42) and 9(SEQ ID NO : 43).
- Most preferred polynucleotides of the invention are those illustrated in Figures 8 (SEQ ID NO : 42) and 9 (SEQ ID NO :

43).

It will be appreciated that the polynucleotide sequences illustrated in the figures may be altered with degenerate codons yet still encode the polypeptides of the invention.

Due to the degeneracy of nucleotide coding sequences, other polynucleotide sequences which encode for substantially the same polypeptides of the present invention may be used in the practice of the present invention. These include but are not limited to nucleotide sequences which are altered by the substitution of different codons that encode the same amino acid residue within the sequence, thus producing a silent change.

15

10

Accordingly the present invention further provides polynucleotides which hybridize to the polynucleotide sequences herein above described (or the complement sequences thereof) having 50% and preferably at least 70% identity between sequences. More preferably polynucleotides are hybridizable under stringent conditions i.e. having at least 95% identity and most preferably more than 97% identity.

By capable of hybridizing under stringent conditions is meant annealing of a nucleic acid molecule to at least a region of a second nucleic acid sequence (whether as cDNA, mRNA, or genomic DNA) or to its complementary strand under standard conditions, e.g. high temperature and/or low salt content, which tend to disfavor hybridization of noncomplementary nucleotide sequences. A suitable protocol is described in Maniatis T. et al., Molecular cloning: A Laboratory Manual, Cold Springs Harbor Laboratory, 1982, which is herein incorporated by reference.

35

In a further aspect, polynucleotides encoding polypeptides

of the invention, or fragments, analogs or derivatives thereof, may be used in a DNA immunization method.

That is, they can be incorporated into a vector which is replicable and expressible upon injection thereby producing the antigenic polypeptide in vivo. For example polynucleotides may be incorporated into a plasmid vector under the control of the CMV promoter which is functional in eukaryotic cells. Preferably the vector is injected intramuscularly.

10

According to another aspect, there is provided a process for producing polypeptides of the invention by recombinant techniques by expressing a polynucleotide encoding said polypeptide in a host cell and recovering the expressed polypeptide product. Alternatively, the polypeptides can be produced according to established synthetic chemical techniques i.e. solution phase or solid phase synthesis of oligopeptides which are ligated to produce the full polypeptide (block ligation).

20

For recombinant production, host cells are transfected with vectors which encode the polypeptide, and then cultured in a nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the genes. Suitable vectors are those that are viable and replicable in 25 the chosen host and include chromosomal, non-chromosomal and synthetic DNA sequences e.g. bacterial plasmids, phage DNA, baculovirus, yeast plasmids, vectors derived from combinations of plasmids and phage DNA. The polypeptide sequence may be incorporated in the vector at the 30 appropriate site using restriction enzymes such that it is operably linked to an expression control region comprising a promoter, ribosome binding site (consensus region or Shine-Dalgarno sequence), and optionally an operator (control element). One can select individual components of the 35 expression control region that are appropriate for a given

host and vector according to established molecular biology principles (Sambrook et al, Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor, N.Y., 1989 incorporated herein by reference). Suitable promoters include but are not limited to LTR or SV40 promoter, E.coli lac, tac or trp 5 promoters and the phage lambda  $P_{\scriptscriptstyle L}$  promoter. Vectors will preferably incorporate an origin of replication as well as selection markers i.e. ampicillin resistance gene. bacterial vectors include pET, pQE70, pQE60, pQE-9, pbs, pD10 phagescript, psiX174, pbluescript SK, pbsks, pNH8A, 10 pNH16a, pNH18A, pNH46A, ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 and eukaryotic vectors pBlueBacIII, pWLNEO, pSV2CAT, pOG44, pXT1, pSG, pSVK3, pBPV, pMSG and pSVL. Host cells may be bacterial i.e. E.coli, Bacillus subtilis,

15 Streptomyces; fungal i.e. Aspergillus niger, Aspergillus nidulins; yeast i.e. Saccharomyces or eukaryotic i.e. CHO, COS.

Upon expression of the polypeptide in culture, cells are typically harvested by centrifugation then disrupted by 20 physical or chemical means (if the expressed polypeptide is not secreted into the media) and the resulting crude extract retained to isolate the polypeptide of interest. Purification of the polypeptide from culture media or lysate may be achieved by established techniques depending on the 25 properties of the polypeptide i.e. using ammonium sulfate or ethanol precipitation , acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, hydroxylapatite chromatography and lectin chromatography. Final 30 purification may be achieved using HPLC.

The polypeptide may be expressed with or without a leader or secretion sequence. In the former case the leader may be removed using post-translational processing (see US

4,431,739; 4,425,437; and 4,338,397 incorporated herein by reference) or be chemically removed subsequent to purifying the expressed polypeptide.

- 5 According to a further aspect, the GBS polypeptides of the invention may be used in a diagnostic test for streptococcus infection in particular GBS infection. Several diagnostic methods are possible, for example detecting streptococcus organism in a biological sample, the following procedure may be followed:
  - a) obtaining a biological sample from a patient;
  - b) incubating an antibody or fragment thereof reactive with a GBS polypeptide of the invention with the biological sample to form a mixture; and
- 15 c) detecting specifically bound antibody or bound fragment in the mixture which indicates the presence of streptococcus.

Alternatively, a method for the detection of antibody
20 specific to a streptococcus antigen in a biological sample containing or suspected of containing said antibody may be performed as follows:

- a) isolating a biological sample from a patient;
- b) incubating one or more GBS polypeptides of the invention or fragments thereof with the biological sample to form a mixture; and
- c) detecting specifically bound antigen or bound fragment in the mixture which indicates the presence of antibody specific to streptococcus.

30

35

25

One of skill in the art will recognize that this diagnostic test may take several forms, including an immunological test such as an enzyme-linked immunosorbent assay (ELISA), a radioimmunoassay or a latex agglutination assay, essentially to determine whether antibodies specific for the protein are present in an organism.

The DNA sequences encoding polypeptides of the invention may also be used to design DNA probes for use in detecting the presence of streptococcus in a biological sample suspected of containing such bacteria. The detection method of this invention comprises:

- a) isolating the biological sample from a patient;
- b) incubating one or more DNA probes having a DNA sequence encoding a polypeptide of the invention or fragments thereof with the biological sample to form a mixture; and
- c) detecting specifically bound DNA probe in the mixture which indicates the presence of streptococcus bacteria.
- The DNA probes of this invention may also be used for detecting circulating streptococcus i.e. GBS nucleic acids in a sample, for example using a polymerase chain reaction, as a method of diagnosing streptococcus infections. The probe may be synthesized using conventional techniques and may be immobilized on a solid phase, or may be labeled with a detectable label. A preferred DNA probe for this application is an oligomer having a sequence complementary to at least about 6 contiguous nucleotides of the GBS polypeptides of the invention.

25

10

Another diagnostic method for the detection of streptococcus in a patient comprises:

- a) labeling an antibody reactive with a polypeptide of the invention or fragment thereof with a detectable label;
- 30 b) administering the labeled antibody or labeled fragment to the patient; and
  - c) detecting specifically bound labeled antibody or labeled fragment in the patient which indicates the presence of streptococcus.

35

A further aspect of the invention is the use of the GBS

polypeptides of the invention as immunogens for the production of specific antibodies for the diagnosis and in particular the treatment of streptococcus infection. Suitable antibodies may be determined using appropriate screening methods, for example by measuring the ability of a particular antibody to passively protect against streptococcus infection in a test model. One example of an animal model is the mouse model described in the examples herein. The antibody may be a whole antibody or an antigenbinding fragment thereof and may in general belong to any immunoglobulin class. The antibody or fragment may be of animal origin, specifically of mammalian origin and more specifically of murine, rat or human origin. It may be a natural antibody or a fragment thereof, or if desired, a recombinant antibody or antibody fragment. The term 15 recombinant antibody or antibody fragment means antibody or antibody fragment which were produced using molecular biology techniques. The antibody or antibody fragments may be polyclonal, or preferably monoclonal. It may be specific for a number of epitopes associated with the GBS 20 polypeptides but is preferably specific for one.

EXAMPLE 1 Murine model of lethal Group B Streptococcus (GBS)
25 infection

The mouse model of GBS infection is described in detail in Lancefield et al (J Exp Med 142:165-179,1975). GBS strain C388/90 (Clinical isolate obtained in 1990 from the cephalorachidian fluid of a patient suffering from meningitis, Children's Hospital of Eastern Ontario, Ottawa, Canada) and NCS246 (National Center for Streptococcus, Provincial Laboratory of Public Health for Northern Alberta, Edmonton, Canada) were respectively serotyped as type Ia/c and type II/R.

30

To increase their virulence, the GBS strains C388/90 (serotype Ia/c) and NCS 246 (serotype II/R) were serially passaged through mice as described previously (Lancefield et al. J Exp Med 142:165-179, 1975). Briefly, the increase of virulence was monitored using intraperitoneal inoculations of serial dilutions of a subculture in Todd-Hewitt broth obtained from either the blood or spleen of infected mice. After the last passage, infected blood samples were used to inoculate Todd-Hewitt broth. After an incubation of 2 hours at 37°C with 7% CO<sub>2</sub>, glycerol at a final concentration of 10 10% (v/v) was added to the culture. The culture was then aliquoted and stored at -80° C for use in GBS challenge experiments. The number of cfu of GBS present in these frozen samples was determined. The bacterial concentration necessary to kill 100% (LD100) of the 18 weeks old mice were 15 determined to be 3.5X10<sup>5</sup> and 1.1X10<sup>5</sup> respectively for GBS strain C388/90 and NCS246, which corresponded to a significant increase in virulence for both strains. the LD100 recorded before the passages for these two strains 20 was higher than 10° cfu.

In a bacterial challenge, a freshly thawed aliquot of a virulent GBS strain was adjusted to the appropriate bacterial concentration using Todd-Hewitt broth and 1ml was 25 injected intraperitoneally to each female CD-1 mouse. mice used for the passive protection experiments were 6 to 8 weeks old, while the ones used for the active protection experiments were approximately 18 weeks old at the time of the challenge. All inocula were verified by colony counts. 30 Animals were observed for any sign of infection four times daily for the first 48 h after challenge and then daily for the next 12 days. At the end of that period, blood samples were obtained from the survivors and frozen at -20°C. spleen obtained from each mouse that survived the challenge was cultured in order to identify any remaining GBS. 35

EXAMPLE 2 Immunization and protection in mice with formaldehyde killed whole GBS cells

- Formaldehyde killed GBS whole cells were prepared according to the procedures described in Lancefield et al (J Exp Med 142:165-179,1975). Briefly, an overnight culture on sheep blood agar plates (Quelab Laboratories, Montreal, Canada) of a GBS strain was washed twice in PBS buffer (phosphate buffered-saline, pH7.2), adjusted to approximately 3X10° cfu/mL and incubated overnight in PBS containing 0.3% (v/v) formaldehyde. The killed GBS suspension was washed with PBS and kept frozen at -80°C.
- 15 Female CD-1 mice, 6 to 8 weeks old (Charles River, St-Constant, Québec, Canada), were injected subcutaneously three times at two weeks interval with 0.1 ml of formaldehyde killed cells of GBS strain C388/90 (~6X10<sup>7</sup> GBS), or 0.1 ml of PBS for the control group. On the day before content immunization, Alhydrogel<sup>TM</sup> (Superfos Biosector, Frederikssund, Denmark) at a final concentration of 0.14 mg or 0.21 mg of Al, was added to these preparations and incubated overnight at 4°C with agitation. Serum samples were obtained from each mouse before the beginning of the immunization protocol and two weeks after the last injection. The sera were frozen at -20°C.

Eight mice in each control group injected with PBS and the group immunized with formaldehyde killed whole cells GBS strain C388/90 (Ia/c) were challenged with 1.5X104 cfu of GBS strain C388/90 (Ia/c) one week after the third injection. All mice immunized with the formaldehyde killed GBS whole cells survived the homologous challenge while, within 5 days after the challenge, only 4 out of the 8 mice injected with PBS survived from the infection. In order to increase the mortality rate in the control groups, the

bacterial suspension had to be adjusted according to the age of the mice at the time of the bacterial challenge. In subsequent challenge experiments, when mice were older than 15 weeks, the bacterial inoculum was increased to concentrations between 3.0X10<sup>5</sup> and 2.5X10<sup>6</sup> cfu.

Table 1 Immunization of CD1 mice with formaldehyde killed whole cells of GBS and subsequent homologous challenge [strain C388/90 (Ia/c)] and heterologous challenge [strain NCS246 (II/R)].

| antigenic preparations<br>used for immunization <sup>1</sup>              | number of living mice 14 days after the bacterial challenge (% Survival) |                                                 |  |  |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------|--|--|
|                                                                           | homologous challenge:<br>strain C388/90 (la/c)                           | heterologous challenge:<br>strain NCS246 (II/R) |  |  |
| 1st infection                                                             |                                                                          |                                                 |  |  |
| formaldehyde killed cells<br>of GBS strain C388/90<br>(la/c) <sup>2</sup> | 8/8 (100) <sup>3</sup>                                                   | n.d. <sup>5</sup>                               |  |  |
| control PBS                                                               | 4/8 (50)                                                                 | n.d.                                            |  |  |
| 2nd infection                                                             |                                                                          |                                                 |  |  |
| formaldehyde killed cells<br>of GBS strain C388/90<br>(la/c)              | 6/6 (100)⁴                                                               | 0/6 (0) <sup>6</sup>                            |  |  |
| control PBS                                                               | 2/6 (33)                                                                 | 0/6 (0)                                         |  |  |

¹ alhydrogel™ at a final concentration of 0.14 mg or 0.21mg of Al was used;

10

15

20

25

5

In another experiment, one group of 12 mice corresponding to a control group was injected with PBS, while a second group of 12 mice was immunized with formaldehyde killed whole cells of GBS strain C388/90 (Ia/c). Six mice from each of these two groups were challenged with 2.1X10<sup>6</sup> cfu of the GBS strain C388/90 (Ia/c) (Table I). As the first challenge experiment, all mice immunized with the GBS strain C388/90 (Ia/c) survived the homologous challenge. Only two out of the 6 mice injected with PBS survived the infection.

<sup>&</sup>lt;sup>2</sup> approximately 6X10<sup>7</sup> cfu;

intraperitoneal challenge with 1 mL Todd-Hewitt culture medium containing GBS C388/90 (la/c) suspension adjusted to 1.5X10<sup>4</sup> cfu;

<sup>&</sup>lt;sup>4</sup> intraperitoneal challenge with 1 mL Todd-Hewitt culture medium containing GBS C388/90 (la/c) suspension adjusted to 2.1X10<sup>6</sup> cfu;

<sup>&</sup>lt;sup>5</sup> not done;

<sup>&</sup>lt;sup>6</sup> intraperitoneal challenge with 1 mL Todd-Hewitt culture medium containing GBS NCS246 (II/R) suspension adjusted to 1.2X10<sup>5</sup> cfu.

The remaining 6 mice in both groups were then used one week later to verify whether this antigenic preparation could confer cross protection against strain NCS246 (II/R) which produce a serologically distinct capsule. None of the mice infected with this second GBS strain survived the infection. The later result suggested that most of the protective immune response induced by formaldehyde killed strain C388/90 is directed against the capsular polysaccharide and that it could be restricted to strains of that particular serotype. These results clearly indicated that this particular model of infection can be efficiently used to study the protection conferred by vaccination.

15

30

EXAMPLE 3 Immunization of rabbit with formaldehyde killed whole GBS cells and passive protection in mice

A New Zealand rabbit (2.5 kg, Charles River, St-Constant,

Québec, Canada) was immunized with formaldehyde killed
cells of GBS strain C388/90 (Ia/c) to obtain hyperimmune
serum. This rabbit was injected subcutaneously three
times at three weeks interval with approximately 1.5X10°
cfu of formaldehyde killed whole cells of GBS strain

C388/90 (Ia/c). Freund's complete adjuvant (Gibco BRL
Life Technologies, Grand Island, New York) was used as the
adjuvant for the first immunization, while Freund's
incomplete adjuvant (Gibco BRL) was used for the following
two injections. Serum samples were obtained before the

The ability of this particular rabbit hyperimmune serum to passively protect mice against a lethal infection with GBS

beginning of the immunization protocol and two weeks after

the last injection. The sera were frozen at -20°C.

was also evaluated. Intraperitoneal injection of mice with either 15 or 25  $\mu$ L of hyperimmune rabbit serum 18 hours before the challenge protected 4 out of 5 mice (80%) against the infection. Comparatively, survival rates lower than 20% were recorded for mice in the control group injected with PBS or serum obtained from a rabbit immunized with meningococcal outer membrane preparation. This result clearly indicates that the immunization of another animal species with killed GBS cells can induce the production of antibodies that can passively protect mice. This reagent will also be used to characterize clones.

Table 2 Passive protection of CD-1 mice conferred by rabbit serum obtained after immunization with formaldehyde killed group B whole streptococci (strain C388/90 (Ia/c)) antigenic preparation

| groups                                  | number of living mice 14 days after the bacterial challenge with GBS strain C388/90 (Ia/c) <sup>2</sup> | %<br>survival |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------|---------------|
| rabbit hyperimmune<br>serum²<br>- 25 μl | 4/5                                                                                                     | 80            |
| rabbit hyperimmune<br>serum¹<br>- 15 μl | 4/5                                                                                                     | 80            |
| control rabbit serum<br>- 25 μl         | 1/5                                                                                                     | 20            |
| control PBS                             | 1/10                                                                                                    | 10            |

Freund's complete adjuvant was used for first immunization, and Freund's incomplete adjuvant for the following two injections;

25

20

10

<sup>&</sup>lt;sup>2</sup> intraperitoneal challenge with 1 ml Todd-Hewitt culture medium containing GBS C388/90 (Ia/c) suspension adjusted to 2X10<sup>4</sup> cfu.

Recombinant production of His. Tag-GBS fusion EXAMPLE 4 protein

The coding region of a GBS gene was amplified by PCR (DNA Thermal Cycler GeneAmp PCR system 2400 Perkin Elmer, San Jose, CA) from the genomic DNA of GBS strain C388/90 (Ia/c) using the oligos that contained base extensions for the addition of the restriction sites BglII (AGATCT) and HindIII (AAGCTT), respectively. The PCR product was purified from agarose gel using a Qiaex II gel extraction kit from Qiagen 10 (Chatsworth, CA), digested with the restriction enzymes BglII and HindIII (Pharmacia Canada Inc Baie d'Urfe, Canada), and extracted with phenol:chloroform before ethanol precipitation. The pET-32b(+) vector (Novagen, Madison, WI) containing the thioredoxin-His. Tag sequence was digested 15 with the restriction enzymes BglII and HindIII, extracted with phenol:chloroform, and then ethanol precipitated. BglII-HindIII genomic DNA fragment was ligated to the BglII-HindIII pET-32b(+) vector to create the coding sequence for thioredoxin-His. Tag-GBS fusion protein whose gene was under 20 control of the T7 promoter. The ligated products were transformed into E.~coli strain XLI Blue MRF'  $(\Delta(\textit{mcr}A)$  183 $\Delta$ (mcrCB-hsdSMR-mrr)173 endAl supE44 thi-1 recAl gyrA96 relAl lac [F'proAB lacIqZΔM15Tn10 (Tetr)]c) (Stratagene, La Jolla, CA) according to the method of Simanis (Hanahan, D. DNA Cloning, 1985, D.M. Glover (ed.), pp. 109-135). The recombinant pET plasmid was purified using a Qiagen kit (Qiagen, Chatsworth, CA) and the nucleotide sequence of the DNA insert was verified by DNA sequencing (Taq Dye Deoxy Terminator Cycle Sequencing kit, ABI, Foster City, CA). 30 recombinant pET plasmid was transformed by electroporation (Gene Pulser II apparatus, BIO-RAD Labs, Mississauga, Canada) into  $E.\ coli$  strain AD494 (DE3) ( $\Delta ara^{-}leu7697$  $\Delta$ lacX74  $\Delta$ phoA PvuII phoR  $\Delta$ malF3 F'[lac\*(lacIq) pro] trxB::Kan (DE3)) (Novagen, Madison, WI). In this strain of

E. coli, the T7 promoter controlling expression of the fusion protein, is specifically recognized by the T7 RNA polymerase (present on the  $\lambda DE3$  prophage) whose gene is under the control of the lac promoter which is inducible by isopropyl- $\beta$ -D-thio-galactopyranoside (IPTG).

The transformant AD494(DE3)/rpET was grown at 37°C with agitation at 250 rpm in LB broth (peptone 10g/L, Yeast extract 5g/L, NaCl 10g/L) containing 100µg of ampicillin (Sigma-Aldrich Canada Ltd., Oakville, Canada) per mL until the A<sub>600</sub> reached a value of 0.6. In order to induce the production of the thioredoxin-His.Tag-GBS fusion protein, the cells were incubated for 2 additional hours in the presence of IPTG at a final concentration of 1mM. The bacterial cells were harvested by centrifugation.

The recombinant fusion protein produced by AD494 (DE3) /rpET32 upon IPTG induction for 2h was partially obtained as insoluble inclusion bodies which were purified from 20 endogenous E. coli proteins by the isolation of insoluble aggregates (Gerlach, G.F. et al 1992, Infect. Immun. 60:892). Induced cells from a 500 mL culture were resuspended in 20 mL of 25% sucrose-50mM Tris-HCl buffer (pH8.0) and frozen at -70°C. Lysis of cells in thawed 25 suspension was achieved by the addition of 5mL of a solution of lysozyme (10mg/mL) in 250mM Tris-HCl buffer (pH8.0) followed by an incubation of 10 to 15 min on ice, and the addition of 150mL of detergent mix (5 parts of 20mM Tris-HCl buffer [pH7.4]-300mM NaCl-2% deoxycholic acid-2% Nonidet P-40 and 4 parts of 100mM Tris-HCl buffer [pH8]-50mM EDTA-2% Triton X-100) followed by 5 min incubation on ice. sonication, protein aggregates were harvested by centrifugation for 30 min at 35,000 X g and a sample of the soluble cellular fraction was kept. The aggregated proteins 35 were solubilized in 6M guanidine hydrochloride. The

presence of the fusion protein in both the soluble and insoluble fractions was shown by Western Blot analysis using the serum of a mouse injected with formaldehyde killed cells of GBS strain C388/90 (Ia/c) that survived a bacterial challenge with the corresponding GBS strain.

The purification of the fusion protein from the soluble fraction of IPTG-induced AD494(DE3)/rpET was done by affinity chromatography based on the properties of the 10 His. Tag sequence (6 consecutive histidine residues) to bind to divalent cations (Ni2+) immobilized on the His.Bind metal chelation resin (Novagen, Madison, WI). The purification method used are those described in the pET system Manual, 6th Edition (Novagen, Madison, WI). Briefly, the pelleted cells obtained from a 100mL culture induced with IPTG was 15 resuspended in 4mL of Binding buffer (5mM imidazole-500mM NaCl-20mM Tris-HCl pH7.9), sonicated, and spun at 39,000  $\rm X$  g for 20 min to remove debris. The supernatant was filtered  $(0.45\mu\text{m}\text{ pore size membrane})$  and deposited on a column of 20 His.Bind resin equilibrated in Binding buffer. was then washed with 10 column volumes of Binding buffer followed by 6 column volumes of Wash buffer (20mM imidazole-500mM NaCl-20mM Tris-HCl pH7.9). The thioredoxin-His.Tag-GBS fusion protein was eluted with Elute buffer (1M 25 imidazole-500mM NaCl-20mM Tris-HCl pH7.9). The removal of the salt and imidazole from the sample was done by dialysis against 3 X 1 liter PBS at 4°C.

The quantities of fusion protein obtained from either the soluble or insoluble cytoplasmic fractions of *E. coli* were estimated by Coomassie staining of a sodium dodecyl sulfate (SDS)-polyacrylamide gel with serial dilutions of these proteins and a bovine serum albumin standard (Pierce Chemical Co. Rockford, Ill.).

35

EXAMPLE 5 Recombinant production of GBS protein under control of lambda  $P_L$  promoter

The DNA coding region of a GBS protein was inserted downstream of the promoter  $\lambda P$ , into the translation vector pURV22. This plasmid was derived from p629 (George et al, 1987, Bio/Technology 5:600) from which the coding region for a portion of the herpes simplex virus type I (HSV-I) glycoprotein (gD-1) was removed and the ampicillin resistance gene replaced by a kanamycin cassette obtained from the plasmid vector pUC4K (Pharmacia Biotech Canada Inc., Baie D'Urfe, Canada). The vector contained a cassette of the bacteriophage  $\lambda$  cI857 temperature sensitive repressor gene from which the functional P, promoter had been deleted. 15 The inactivation of the cI857 repressor by temperature increase from the ranges of 30-37°C to 37-42°C resulted in the induction of the gene under the control of  $\lambda$  P<sub>1</sub>. The translation of the gene was controlled by the ribosome binding site cro followed downstream by a BqlII restriction 20 site (AGATCT) and the ATG: ACTAAGGAGGTTAGATCTATG.

Restriction enzymes and T4 DNA ligase were used according to suppliers (Pharmacia Biotech Canada Inc., Baie D'Urfe, Canada; and New England Biolabs Ltd., Mississauga, Canada). 25 Agarose gel electrophoresis of DNA fragments was performed as described by Sambrook et al. ( Molecular cloning : A laboratory Manual, 1989, Cold Spring Harbor Laboratory Press, N.Y). Chromosomal DNA of the GBS bacteria was prepared according to procedures described in Jayarao et al 30 (J. Clin. Microbiol., 1991, 29:2774). DNA amplification reactions by polymerase chain reaction (PCR) were made using DNA Thermal Cycler GeneAmp PCR system 2400 (Perkin Elmer, San Jose, CA). Plasmids used for DNA sequencing were purified using plasmid kits from Qiagen (Chatsworth, CA). 35 DNA fragments were purified from agarose gels using Qiaex II

gel extraction kits from Qiagen (Chatsworth, CA). Plasmid transformations were carried out by the method described by Hanahan (DNA Cloning, Glover (ed.) pp, 109-135, 1985). The sequencing of genomic DNA inserts in plasmids was done using synthetic oligonucleotides which were synthesized by oligonucleotide synthesizer model 394 (the Perkin-Elmer Corp., Applied Biosystems Div. (ABI), Foster City, CA). The sequencing reactions were carried out by PCR using the Taq Dye Deoxy Terminator Cycle Sequencing kit (ABI, Foster City, CA) and DNA electrophoresis was performed on automated DNA 10 sequencer 373A (ABI, Foster City, CA). The assembly of the DNA sequence was performed using the program Sequencer 3.0 (Gene Codes Corporation, Ann Arbor, MI). Analysis of the DNA sequences and their predicted polypeptides was performed 15 with the program Gene Works version 2.45 (Intelligenetics, Inc., Mountain View CA).

The coding region of the GBS gene was amplified by PCR from GBS strain C388/90 (Ia/c) genomic DNA using oligos that contained base extensions for the addition of restriction 20 sites BglII (AGATCT) and XbaI(TCTAGA), respectively. The PCR product was purified from agarose gel using a Qiaex II gel extraction kit from Qiagen (Chatsworth, CA), digested with the restriction enzymes BglII and XbaI, and extracted with phenol:chloroform before ethanol precipitation. The pURV22 25 vector was digested with the restriction enzymes BglII and XbaI, extracted with phenol:chloroform, and ethanol precipitated. The BglII-XbaI genomic DNA fragment was ligated to the BglII-XbaI pURV22 vector in which the GBS gene was under the control of the  $\lambda PL$  promoter. The ligated 30 products were transformed into  $E.\ coli$  strain XLI Blue MRF'  $(\Delta (mcrA)183\Delta (mcrCB-hsdSMR-mrr)173 endAl supE44 thi-l recAl$ gyrA96 relA1 lac[F' proAB lac1qZAM15 Tn10(Tetr)]c) (Stratagene, La Jolla CA) according to the methods described in Hanahan, supra. Transformants harboring plasmids with the 35

insert were identified by analysis of lysed cells submitted to electrophoresis on agarose gel (Sambrook et al, <u>supra</u>). The recombinant pURV22 plasmid was purified using a Qiagen kit (Qiagen, Chatsworth, CA) and the nucleotide sequence of the DNA insert was verified by DNA sequencing.

The transformant XLI Blue MRF'/rpURV22 was grown at 34°C with agitation at 250 rpm in LB broth containing  $50\mu g$  of kanamycin per mL until the  $A_{600}$  reached a value of 0.6. In order to induce the production of the fusion protein, the cells were incubated for 4 additional hours at 39°C. The bacterial cells were harvested by centrifugation , resuspended in sample buffer, boiled for 10 min and kept at -20°C.

15

30

35

EXAMPLE 6 Subcloning GBS protein gene in CMV plasmid pCMV-GH

The DNA coding region of a GBS protein was inserted in phase downstream of the human growth hormone (hGH) gene which was under the transcriptional control of the cytomegalovirus (CMV) promoter in the plasmid vector pCMV-GH (Tang et al, Nature, 1992, 356:152). The CMV promoter is non functional in E. coli cells but active upon administration of the plasmid in eukaryotic cells. The vector also incorporated the ampicillin resistance gene.

The coding region of the gene was amplified by PCR from genomic DNA of GBS strain C388/90 (Ia/c) using the oligos that contained base extensions for the addition of the restriction sites BglII (AGATCT) and HindIII (AAGCTT). The PCR product was purified from agarose gel using a Qiaex II gel extraction kit from Qiagen (Chatsworth, CA), digested with the restriction enzymes BglII and HindIII, and extracted with phenol:chloroform before ethanol precipitation. The pCMV-GH vector (Laboratory of Dr. Stephen

A. Johnston, Department of Biochemistry, The University of Texas, Dallas, Texas) containing the human growth hormone to create fusion proteins was digested with the restriction enzymes BamHI and HindIII, extracted with phenol:chloroform, and ethanol precipitated. The 1.3-kb BglII-HindIII genomic DNA fragment was ligated to the BamHI -HindIII pCMV-GH vector to create the hGH-GBS fusion protein under the control of the CMV promoter. The ligated products were transformed into E. coli strain DH5 $\alpha$ [ $\phi$ 80 lacZ  $\Delta$ M15 endA1 recAl hsdR17 ( $^{r}K^{-m}K^{+}$ ) supE44 thi-1 $\lambda^{-}$  gyrA96 relA1  $\Delta$ (lacZYA-10 argF)U169] (Gibco BRL, Gaithersburg, MD) according to the methods described by Hanahan, supra. Transformants harboring plasmids with the insert were identified by analysis of lysed cells submitted to electrophoresis on agarose gel (Sambrook, J. et al , supra). The recombinant 15 pCMV plasmid was purified using a Qiagen kit (Qiagen, Chatsworth, CA) and the nucleotide sequence of the DNA insert was verified by DNA sequencing.

20

EXAMPLE 7 Immunological activity of GBS protein to GBS challenge

Four groups of 12 female CD-1 mice (Charles River, St
Constant, Quebec, Canada) of 6 to 8 weeks were injected subcutaneously three times at three week intervals with 0.1mL of the following antigenic preparations: formaldehyde killed cells of GBS strain C388/90 (~6X107 cfu), 20µg of thioredoxin-His.Tag-GBS fusion protein obtained from the insoluble (inclusion bodies) or 20µg of the fusion protein, affinity purified (nickel column), from the soluble cytoplasmic fraction in E.coli, or 20µg of affinity purified (nickel column) thioredoxin-His.Tag control polypeptide.

20µg of QuilA<sup>TM</sup> (Cedarlane Laboratories Ltd, Hornby, Canada)

was added to each antigenic preparation as the adjuvant. Serum samples were obtained from each mouse before immunization (PB) and on days 20 (TB1), 41 (TB2) and 54 (TB3) during the immunization protocols. Sera were frozen at -20°C.

An increase of the ELISA titers was recorded after each injection of the fusion protein indicating a good primary response and a boost of the specific humoral immune response 10 after each of the second and third administration. end of the immunization period, the means of reciprocal ELISA titers was 456,145 for the group immunized with 20µg of fusion protein obtained from inclusion bodies compared to 290,133 for the group of mice immunized with the protein from soluble fraction in E.coli. The latter result suggests 15 that the protein obtained from inclusion bodies could be more immunogenic than the soluble protein. Analysis of mice sera in ELISA using the affinity purified thioredoxin-His. Tag to coat plates showed that negligible antibody 20 titers are made against the thioredoxin-His. Tag portion of the fusion protein. The reactivity of the sera from mice injected with the recombinant fusion protein was also tested by ELISA against formaldehyde killed whole cells of GBS strain C388/90. The antibodies induced by immunization with 25 recombinant fusion protein also recognized their specific epitopes on GBS cells indicating that their conformation is close enough to the native streptococcal protein to induce cross-reactive antibodies.

30 To verify whether the immune response induced by immunization could protect against GBS infection, mice were challenged with 3.5X10<sup>5</sup> cfu of GBS strains C338/90(Ia/c) and 1.2X10<sup>5</sup> cfu of strain NCS246(II/R) the results of which are illustrated in tables 3 and 4 respectively. Mice immunized with control thioredoxin-His.Tag peptide were not protected against challenge with either GBS strain while those

immunized with formaldehyde killed C388/90 whole cells only provided protection against homologous challenge. The thioredoxin-His.Tag-GBS fusion protein of the invention protected mice from challenge with both GBS strains. Blood and spleen culture of these mice did not reveal the presence of any GBS.

PCT/CA99/00114 WO 99/42588

Table 3 Survival from GBS strain C388/90 (Ia/c) challenge<sup>1</sup>

| immunizing agent                                             | no. mice<br>surviving<br>challenge | %<br>survival |
|--------------------------------------------------------------|------------------------------------|---------------|
| thioredoxin-His.Tag²                                         | 1 / 6                              | 17            |
| formaldehyde killed C388/90<br>cells <sup>3</sup>            | 6 / 6                              | 100           |
| thioredoxin-His.Tag-GBS fusion (inclusion body preparation)4 | 6 / 6                              | 100           |
| thioredoxin-His.Tag-GBS fusion (cytoplasmic fraction)        | 6 / 6                              | 100           |

intraperitoneal administration with 1 ml Todd-Hewitt culture medium adjusted to 3.5X10<sup>5</sup> cfu;

 <sup>2 20</sup>μg administered; posterior legs paralyzed in surviving mouse; GBS detected in blood and spleen;
 3 6X10<sup>7</sup> cfu administered;

<sup>4 20</sup>µg administered.

Table 4 Survival from GBS strain NCS246 (II/R) challenge<sup>1</sup>

| immunizing agent                                                         | no. mice<br>surviving<br>challenge | % survival |
|--------------------------------------------------------------------------|------------------------------------|------------|
| thioredoxin-His.Tag²                                                     | 0 / 6                              | 0          |
| formaldehyde killed C388/90 cells <sup>3</sup>                           | 2 / 6                              | 34         |
| thioredoxin-His.Tag-GBS fusion (inclusion body preparation) <sup>2</sup> | 5 / 54                             | 100        |
| thioredoxin-His.Tag-GBS fusion (cytoplasmic fraction) <sup>2</sup>       | 6 / 6                              | 100        |

intraperitoneal administration with 1 ml Todd-Hewitt culture medium containing GBS NCS246(II/R) suspension adjusted to 1.2X10<sup>5</sup> cfu.

EXAMPLE 8 Immunization with recombinant GBS protein confers protection against experimental GBS infection

This example illustrates the protection of mice against fatal GBS infection by immunization with the recombinant protein corresponding to the SEQ ID NO:39.

- Groups of 10 female CD-1 mice (Charles River) were immunized subcutaneously three times at three-week intervals with 20 µg of recombinant protein purified from <a href="E.coli">E.coli</a> strain BLR (Novagen) harboring the recombinant pURV22 plasmid vector containing the GBS gene corresponding to SEQ ID NO:42 in
- 25 presence of 20  $\mu g$  of QuilA<sup>TM</sup> adjuvant (Cedarlane Laboratories Ltd, Hornby, Canada) or, as control, with

<sup>&</sup>lt;sup>2</sup> 20µg administered;

<sup>3 6</sup>X107 cfu administered;

<sup>10 4</sup> one mouse died during immunization.

QuilA<sup>TM</sup> adjuvant alone in PBS. Blood samples were collected from the orbital sinus on day 1, 22 and 43 prior to each immunization and fourteen days (day 57) following the third injection. One week later the mice were challenged with approximately 10<sup>4</sup> to 10<sup>6</sup> CFU of various virulent GBS strains. Samples of the GBS challenge inoculum were plated on TSA/5% sheep blood agar plates to determine the CFU and to verify the challenge dose. Deaths were recorded for a period of 14 days and on day 14 post-challenge, the surviving mice were sacrificed and blood and spleen were tested for the presence of GBS organisms. The survival data are shown in table 5.

Prechallenge sera were analyzed for the presence of antibodies reactive with GBS by standard immunoassays. Elisa and immunoblot analyses indicated that immunization with recombinant GBS protein produced in *E. coli* elicited antibodies reactive with both, recombinant and native GBS protein. Antibody responses to GBS are described in Example 9.

20

10

Table 5. Ability of recombinant GBS protein corresponding to SEQ ID NO: 39 to elicit protection against 8 diverse GBS challenge strains

10

|                        | Challenge   | strain |            |                |
|------------------------|-------------|--------|------------|----------------|
| Immunogen              | Designation | Type   | No. alive: | No. dead 1     |
| rGBS protein           | C388/90     | Ia/c   | 8 : 2      | (P<0.0001)     |
| none                   |             |        | 0:10       | ·              |
| rGBS protein           | NCS 246     | II/R   | 10:0       | (P=0.0012)     |
| none                   |             |        | 3:7_       |                |
| rGBS protein           | ATCC12401   | Ib     | 10 : 0     | (P=0.001)      |
| none                   |             |        | 3:7        |                |
| rGBS protein           | NCS 535     | V      | 10 : 0     | (P=0.01)       |
| none                   |             |        | 5:5        |                |
| rGBS protein           | NCS 9842    | VI     | 10 : 0     | (P<0.0001)     |
| none                   |             |        | 0:10       |                |
| rGBS protein           | NCS 915     | III    | 7 : 3      | $(P=0.0007)^2$ |
| NCS 915-F <sup>3</sup> |             |        | 1:9        | , , ,          |
| none                   |             |        | 4:6        |                |
| rGBS protein           | NCS 954     | III/R  | 7:3        | ( P=0.002)     |
| NCS 954-F              |             |        | 4:6        |                |
| none                   |             |        | 1:9        |                |
| rGBS protein           | COH1        | III    | 4:6        | (P=0.0004)     |
| COH1-F                 |             |        | 3:7        |                |
| none                   |             |        | 0:10       |                |

Groups of 10 mice per group were used, the number of mice surviving to infection and the number of dead mice are indicated. The survival curves corresponding to recombinant GBS protein-immunized animals were compared to the survival curves corresponding to mock-immunized animals using the log-rank test for nonparametric analysis.

All hemocultures from surviving mice were negative at day 14 20 post-challenge. Spleen cultures from surviving mice were negative except for few mice from experiment MB-11.

<sup>&</sup>lt;sup>2</sup> Comparison analysis to NCS915-F-immunized animals.

<sup>15</sup>  $^3$  Animals were immunized with formaldehyde-killed GBS in presence of QuilA<sup>TM</sup> adjuvant.

EXAMPLE 9 Vaccination with the recombinant GBS protein elicits an immune response to GBS

Groups of 10 female CD-1 mice were immunized subcutaneously 5 with recombinant GBS protein corresponding to SEQ ID NO:39 as described in Example 8. In order to assess the antibody response to native GBS protein, sera from blood samples collected prior each immunization and fourteen days after the third immunization were tested for antibody reactive 10 with GBS cells by ELISA using plates coated with formaldehyde-killed GBS cells from type III strain NCS 954, type Ib strain ATCC12401, type V strain NCS 535 or type VI strain NCS 9842. The specificity of the raised antibodies for GBS protein was confirmed by Western blot analyses to 15 GBS cell extracts and purified recombinant antigens. The results shown in Figure 10 clearly demonstrate that animals respond strongly to recombinant GBS protein used as immunogens with median reciprocal antibody titers varying between 12000 and 128000, for sera collected after the third immunization, depending of the coating antigen. All 20 preimmune sera were negative when tested at a dilution of 1 :100. GBS-reactive antibodies were detectable in the sera of each animal after a single injection of recombinant GBS protein.

Example 10 Antigenic conservation of the GBS protein of the present invention

Monoclonal antibodies (MAbs) specific to the GBS protein of the present invention were used to demonstrate that this surface antigen is produced by all GBS and that it is also antigenically highly conserved.

A collection of 68 GBS isolates was used to evaluate the
reactivity of the GBS-specific MAbs. These strains were
obtained from the National Center for Streptococcus,
Provincial Laboratory of Public Health for Northern Alberta,
Canada; Centre Hospitalier Universitaire de Quebec, Pavillon
CHUL, Quebec, Canada; American Type Culture Collection, USA;
Laboratoire de Sante Publique du Quebec, Canada; and Dept.

of Infectious Disease, Children's Hospital and Medical Center, Seattle, USA. All eight Mabs were tested against the following panel of strains: 6 isolates of serotype Ia or Ia/c, 3 isolates of serotype Ib, 4 isolates of serotype II,

20 14 isolates of serotype III, 2 isolates of serotype IV, 2 isolates of serotype V, 2 isolates of serotype VI, 2 isolates of serotype VII, 1 isolate of serotype VIII, 10 isolates that were not serotyped and 3 bovine S. agalactiae strains. MAb 3A2 was also reacted with additional GBS: 9

isolates of serotype Ia/c and 10 isolates of serotype V. The strains were grown overnight on blood agar plates at 37°C in an atmosphere of 5%  $CO_2$ . Cultures were stored at -70°C in heart infusion broth with 20% (v/v) glycerol.

To obtain the GBS protein-specific MAbs, mice were immunized three times at three-week intervals with 20  $\mu$ g of purified recombinant GBS protein (SEQ ID NO :44) in the presence of 20% QuilA<sup>TM</sup> adjuvant. Hybridoma cell lines were generated by fusion of spleen cells recovered from immunized mice with the nonsecreting SP2/O myeloma cell line as described

previously (Hamel, J. et al. 1987. J. Med. Microbiol. 23:163-170). Hybrid clone supernatants were tested for specific antibody production by ELISA using formaldehyde inactivated GBS and purified recombinant GBS protein (SEQ ID NO :39 or 44) as coating antigen, as previously described (Hamel, J. et al. 1987. J. Med. Microbiol. 23:163-170). Specific hybrid were cloned by limiting dilutions, expanded, and frozen in liquid nitrogen. Production of recombinant GBS protein was presented in Examples 4 & 5. Purified recombinant GBS protein or formaldehyde inactivated GBS were 10 resolved by electrophoresis by using the discontinuous buffer system of Laemmli as recommended by the manufacturer and then transfer onto nitrocellulose membrane for Western immunoblotting as described previously (Martin et al. 1992. 15 Infect. Immun. 60:2718-2725).

Western immunoblotting experiments clearly indicated that all eight MAbs recognized a protein band that corresponded to the purified recombinant GBS protein (SEQ ID NO :39). These MAbs also reacted with a protein band present in every GBS isolates tested so far. The reactivity of these GBS-specific MAbs are presented in Table 6. Each MAb reacted well with all 46 GBS. In addition, these MAbs also recognized the 3 S. agalactiae strains of bovine origin that were tested. MAb 3A2 also recognized nineteen GBS; 9 isolates of serotype Ia/c and 10 of serotype V. The other

These results demonstrated that the GBS protein (SEQ ID NO:39) was produced by all the 65 GBS and the three 3 S. agalactiae strains of bovine origin that were tested so far. More importantly, these results clearly demonstrated that the epitopes recognized by these eight GBS-specific MAbs were widely distributed and conserved among GBS. These results also indicated that these epitopes were not

MAbs were not tested against these additional strains.

20

restricted to serologically related isolates since representatives of all known GBS serotypes including the major disease causing groups were tested.

In conclusion, the data presented in this example clearly demonstrated that the GBS protein of the present invention is produced by all GBS and that it is antigenically highly conserved.

Reactivity of eight GBS protein-specific MAbs with different S. agalactiae strains as evaluated by Western immunoblots. Table 6.

|                               | و      |            |          |          |      |      |      | T            | ٦       |       |       |       | _    |
|-------------------------------|--------|------------|----------|----------|------|------|------|--------------|---------|-------|-------|-------|------|
| MAbs.                         | Rovine | (3)        | ٣        | 3        | 2    | 3    | -    | ,\<br>\<br>- | ~       | 3     | 3     |       | •    |
| by the                        | πOπΔI. | (26)       | 46       | 46       | 46   | 46   | 71   | 4.0          | 46      | 46    | 46    |       |      |
| agalactiae strains recognized |        | NT(10) 2   | 10       | 10       | 10   | 10   | 21.  | 10           | 10      | 10    | 10    | ,     |      |
| trains r                      |        | (1)        | 1        |          | -    | -    | 4    | -            |         | -     | -     | 7     |      |
| tiae s                        |        | VII<br>(2) | 2        | , ,      | 7 0  | 7 (  | 7    | 7            | 2       | 1     | 3 6   | 7     |      |
| agalac                        |        | IA (C)     | +        | 4 6      | 7    | 7    | 7    | 2            | C       | 3 0   | 7     | 7     |      |
| of s.                         |        |            | (2)      |          |      | 2 2  | 2 2  | 2            | 1       | 7 7   | 1     | 2     |      |
| serotype of                   |        |            | (4)      | 4        | 4    | 4    | 4    |              | 4       | 4     | 4     | 4     |      |
| each se                       |        | -          | (4)      | 4        | 4    | 4    | 4    | .            | 4       | 4     | 4     | 4     |      |
| Number of                     |        | l Ib       | (3)      | ٣        | 3    | 3    | -    | 7            | 3       | m     | 3     | 7     | ,    |
| Numh                          |        | Ia or      | Ia/c (6) | 9        | 9    | e    |      | ٥            | 9       | 9     | 9     |       | ٥    |
| Mabs                          |        |            |          | 3421     | 5012 | 2577 | 7700 | 8B9          | 8E11    | 12R12 | 18611 | 77107 | 2002 |
| L                             |        |            |          | <u> </u> |      |      | _i   |              | <u></u> | _1_   |       | _1.   |      |

1 Nine additional strains of serotype Ia/c and 10 strains of serotype V were recognized by MAb 3A2.

10 2 These strains were not serotyped

15

Ś

## WE CLAIM:

1. An isolated polynucleotide encoding a polypeptide having at least 70% identity to a second polypeptide having a sequence selected from the group consisting of:

```
SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41 and SEQ ID NO:44 or fragments, analogs or derivatives thereof.
```

- 2. A polynucleotide according to claim 1, wherein said polynucleotide encodes a polypeptide having at least 95% identity to the second polypeptide.
- An isolated polynucleotide encoding a polypeptide capable of generating antibodies having binding specificity for a polypeptide having a sequence selected from the group consisting of:

  SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41 and SEQ ID NO:44 or fragments, analogs or derivatives thereof.

4. An isolated polynucleotide that is complementary to the polynucleotide of claim 1.

- 5. An isolated polynucleotide that is complementary to the polynucleotide of claim 3.
- 6. The polynucleotide of claim 1, wherein said polynucleotide is DNA.
- The polynucleotide of claim 3, wherein said polynucleotide is DNA.
- 8. The polynucleotide of claim 1, wherein said polynucleotide is RNA.
- The polynucleotide of claim 3, wherein said polynucleotide is RNA.
- 10. A polynucleotide which hybridizes under stringent conditions to a second polynucleotide having a sequence selected from the group consisting of:

  SEQ ID NO: 1, SEQ ID NO: 7, SEQ ID NO: 13, SEQ ID NO: 22, SEQ ID NO: 27, SEQ ID NO: 32, SEQ ID NO: 37, SEQ ID NO: 42 and SEQ ID NO: 43 or fragments, analogues or derivatives thereof.
- 11. A polynucleotide which hybridizes under stringent conditions to a second polynucleotide having a sequence selected from the group consisting of :

  SEQ ID NO : 37, SEQ ID NO : 42 and SEQ ID NO : 43.
- 12. A polynucleotide according to claim 11 which hybridizes under stringent conditions to a second polynucleotide having the sequence SEQ ID NO : 37.

13. A polynucleotide according to claim 11 which hybridizes under stringent conditions to a second polynucleotide having the sequence SEQ ID NO : 42.

- 14. A polynucleotide according to claim 11 which hybridizes under stringent conditions to a second polynucleotide having the sequence SEQ ID NO : 43.
- 15. A polynucleotide according to claim 10 wherein said polynucleotide has at least 95% complementarity to the second polynucleotide.
- 16. A polynucleotide according to claim 11 wherein said polynucleotide has at least 95% complementarity to the second polynucleotide.
- 17. A vector comprising the polynucleotide of claim 1, wherein said polynucleotide is operably linked to an expression control region.
- 18. A vector comprising the polynucleotide of claim 3, wherein said polynucleotide is operably linked to an expression control region.
- 19. A host cell transfected with the vector of claim 17.
- 20. A host cell transfected with the vector of claim 18.
- 21. A process for producing a polypeptide comprising culturing a host cell according to claim 19 under conditions suitable for expression of said polypeptide.
- 22. A process for producing a polypeptide comprising culturing a host cell according to claim 20 under condition suitable for expression of said polypeptide.

23. An isolated polypeptide having at least 70% identity to a second polypeptide having a sequence selected from the group consisting of:

```
SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41 and SEQ ID NO:44 or fragments, analogs or derivatives thereof.
```

- 24. The isolated polypeptide of claim 23 having a sequence according to SEQ ID NO : 39.
- 25. The isolated polypeptide of claim 23 having a sequence according to SEQ ID NO : 44.
- 26. An isolated polypeptide capable of generating antibodies having binding specificity for a second polypeptide having a sequence selected from the group consisting of:

```
SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41 and SEQ ID NO:44 or fragments, analogs or derivatives thereof.
```

27. The isolated polypeptide of claim 26 having a sequence according to SEQ ID NO : 39.

28. The isolated polypeptide of claim 26 having a sequence according to SEQ ID NO : 44.

29. An isolated polypeptide having an amino acid sequence

- selected from the group consisting of:

  SEQ ID NO: 2, SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5,

  SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO:10,

  SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15,

  SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19,

  SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:24,

  SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:29,
  - SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:39,
  - SEQ ID NO:40 and SEQ ID NO:41 or fragments, analogs or derivatives thereof.
- 30. The isolated polypeptide of claim 29 having an amino acid sequence according to SEQ ID NO : 39.
- 31. An isolated polypeptide having an amino acid sequence according to SEQ ID NO : 44.
- 32. An isolated polypeptide according to any one of claims 29 to 31, wherein the N-terminal Met residue is deleted.
- 33. An isolated polypeptide according to any one of claims 29 to 30, wherein the secretory amino acid sequence is deleted.
- 34. A vaccine composition comprising a polypeptide according to any one of claims 23 to 31 and a pharmaceutically acceptable carrier, diluent or adjuvant.

35. A vaccine composition comprising a polypeptide according to claim 32 and a pharmaceutically acceptable carrier, diluent or adjuvant.

- 36. A vaccine composition comprising a polypeptide according to claim 33 and a pharmaceutically acceptable carrier, diluent or adjuvant.
- 37. A method for therapeutic or prophylactic treatment of streptococcal bacterial infection in an animal susceptible to streptococcal infection comprising administering to said animal a therapeutic or prophylactic amount of a composition according to claim 34.
- 38. A method for therapeutic or prophylactic treatment of streptococcal bacterial infection in an animal susceptible to streptococcal infection comprising administering to said animal a therapeutic or prophylactic amount of a composition according to claim 35.
- 39. A method for therapeutic or prophylactic treatment of streptococcal bacterial infection in an animal susceptible to streptococcal infection comprising administering to said animal a therapeutic or prophylactic amount of a composition according to claim 36.
- 40. A method according to any one of claims 37 to 39, wherein said animal is a bovine.
- 41. A method according to any one of claims 37 to 39, wherein said animal is a human.

42. A method according to any one of claims 37 to 39, wherein said bacterial infection is selected from the group consisting of group A streptococcus and group B streptococcus.

- 43. A method according to claim 42, wherein said bacterial infection is group B streptococcus.
- 44. Use of a vaccine composition according to claim 34 for the therapeutic or prophylactic treatment of streptococcal bacterial infection in an animal susceptible to or infected with streptococcal infection comprising administering to said animal a therapeutic or prophylactic amount of the composition.
- 45. Use of a vaccine composition according to any one of claims 35 to 36 for the therapeutic or prophylactic treatment of streptococcal bacterial infection in an animal susceptible to or infected with streptococcal infection comprising administering to said animal a therapeutic or prophylactic amount of the composition.
- 46. Use of a vaccine composition according to any one claims 23 to 31 for the manufacture of a vaccine for the therapeutic or prophylactic treatment of streptococcal bacterial infection in an animal susceptible to streptococcal infection comprising administering to said animal a therapeutic or prophylactic amount of the composition.
- 47. Use of a vaccine composition according to claim 32 for the manufacture of a vaccine for the therapeutic or

prophylactic treatment of streptococcal bacterial infection in an animal susceptible to streptococcal infection comprising administering to said animal a therapeutic or prophylactic amount of the composition.

48. Use of a vaccine composition according to claim 33 for the manufacture of a vaccine for the therapeutic or prophylactic treatment of streptococcal bacterial infection in an animal susceptible to streptococcal infection comprising administering to said animal a therapeutic or prophylactic amount of the composition.

| -             | 3 1         |         |           |           |              | AA1<br>N | rcg1<br>R | rtt:<br>F | ra<br>S           | GTTG<br>W  | GGC'<br>A | TAA<br>K  | AAA'<br>N         | TAAJ<br>K | ATTA<br>L   | TT2<br>L | AAT(      | CAA<br>N  | TG<br>G   | 60   |
|---------------|-------------|---------|-----------|-----------|--------------|----------|-----------|-----------|-------------------|------------|-----------|-----------|-------------------|-----------|-------------|----------|-----------|-----------|-----------|------|
| GATTCA<br>F   |             |         |           | CTA<br>L  |              |          | AAC:<br>T |           |                   | TATT<br>F  |           |           | AGT<br>V          |           |             | AT.      |           |           | TA<br>K   | 120  |
| AACCA(<br>P I | GAT'        |         | CCCI<br>P |           |              |          | CTA<br>Y  |           |                   | TTAT<br>I  |           |           | GAC<br>T          |           | ATGG<br>W   | AC'<br>T |           | GAT<br>M  | GG<br>A   | 180  |
| CATTAC<br>L ' | GTA<br>V    |         |           |           |              |          |           |           |                   | ATAG<br>R  |           |           | TTC<br>S          |           |             | TC:<br>S |           |           | 'AA<br>I  | 240  |
| TATTA'        |             |         | CCA(<br>Q |           |              |          | AAG<br>S  |           |                   |            |           | CCC<br>P  |                   |           |             | AG<br>S  | TCC<br>P  |           | GT<br>F   | 300  |
| TCTTT         |             |         | AAT'<br>I |           |              |          | TTT<br>L  |           |                   |            | TTA<br>Y  |           | TGT<br>V          |           | AGGA<br>G   | TT.<br>L | AAG<br>R  | AGA<br>E  | GA<br>T   | 360  |
| CCATC<br>I    | TCG<br>S    |         | GAC       |           |              |          | TAA<br>N  |           |                   |            |           |           |                   | AGT<br>V  |             | TT<br>F  | TTT<br>L  | AG1<br>V  | TAT<br>S  | 420  |
| CATCG<br>S    |             | AT<br>I | ACT<br>L  |           |              | CT<br>L  |           | TTA<br>Y  |                   |            |           | AAGA<br>E | AGA<br>D          | ATTA      | ATAG        | AA       | AGT       | 'ATC      | CTA       | 480  |
| GTGAT         | 'AGA        | .CT     | AAC       | AGT       | ATGA         | TA       | TGG       | TAT       | GT                | CAAA       | AGTA      | ATTT      | AGG               | SAGG      | AGAA        | GA       | M         | GTO       | T         | 540  |
| CTTTA<br>L    | ACA<br>T    | AT<br>I | AAT<br>I  | TAT<br>I  | TGCA<br>A    | AC<br>T  |           |           |                   | CTT        |           |           |                   | TTTA<br>Y |             | AT<br>M  | GTF       | ATT!      | -         | 600  |
| AGACO<br>T    |             | GC<br>A | CAC<br>T  |           | GTCA<br>S    |          |           |           |                   | GGAZ<br>K  |           |           |                   |           | GTCT<br>S   |          | AAGA<br>E | AAG:<br>E |           | 660  |
| TGTCA<br>S    | ATAT<br>Y   |         |           | CGI<br>V  |              |          |           |           |                   | AGA.       |           |           |                   | TAT<br>Y  |             | G<br>G   |           |           | TTG<br>G  | 720  |
| GCCT/         | ATT(<br>F   |         |           | TTT?<br>Y |              | TT<br>L  |           |           | TTT<br>S          |            |           |           | AG<br>E           |           | TTGTA<br>V  | G(<br>A  | CTG:<br>V | TTT<br>F  | TTT<br>L  | 780  |
| TAAT          | CAA'<br>N   |         | ATT<br>L  |           | ragti<br>V   |          |           |           |                   | GTG<br>A   |           |           |                   | TTG.      |             | A<br>K   |           |           |           | 840  |
| TAAA<br>K     | ACA<br>Q    |         |           | GTT:<br>L |              | 'A 1     |           | TAG<br>A  |                   |            |           |           |                   | TAT<br>F  |             | A T      | ACT.      | ACT       | TAG       | 900  |
| CCGT          | TCG.        | TTA     | AT        | GTT(      | GAAC         | G G      | CTT       | TTA       | GTA               | ATC        | TTA       | TTT       | TC                | TCA       | TAAT        | A C      | AGG       | TAG       | TTT       | 960  |
| AAGT          | AAT         | TTG     | TC'       | TTT       | AAAA         | A T      | AGT       | ATA       | ATA               | A TAA      | CTA       | CGA       | TT A              | CAA       | AGAG        | A G      | GTG       | ACI       | TTG       | 1020 |
| М             | Т           | E       | AG        | AAC'<br>N | TGGT'<br>W L | T A      | CAT<br>H  | ACT<br>T  | 'AA <i>I</i><br>K | A GAI<br>D | GGT<br>G  | TTCA<br>S | G AT              | TTA'<br>I | TATT:       | A T      | CGT<br>R  |           |           | 1080 |
|               |             | GTC     | AA        | CCG.<br>P | ATTG<br>I V  | т т      | TTT<br>F  | TTA<br>L  | CAT<br>H          | r GGC<br>G | CAAT<br>N | ragc<br>s | T T <i>F</i><br>L | AGT<br>S  | AGTC        | G C      | TAT<br>Y  | TTT<br>F  | rgat<br>D | 1140 |
| AAGC<br>K Q   | AAA:<br>I ( | DAT.    | CA        | TAT<br>Y  | TTTT<br>F S  | СТ       | 'AAG<br>K | TAT<br>Y  | TAC<br>Y          | C CAF      | AGT:<br>V | TATT<br>I | G TI<br>V         | TATO<br>M | GATA<br>D S | G I      | 'AGA<br>R | G<br>G    | SCAT<br>H | 1200 |
|               |             |         |           |           |              |          |           |           |                   |            |           |           |                   |           | AGCAG       |          |           |           |           |      |

| GATA      | ATC<br>I | TT.<br>L         | AG<br>V          | TTC.              | ATI<br>I     | CTA<br>L | GA<br>E   | G?      | TTA<br>I         | GAT<br>D | K<br>K           | ) A      | GTI<br>V         | 'ATA<br>I | ATT<br>L  | GG<br>V           | )AT      | GGC<br>G         | CA:      | rag<br>S            | CG?       | ATG<br>G    | GT                | GC(<br>A    | 3        | 1320 |     |
|-----------|----------|------------------|------------------|-------------------|--------------|----------|-----------|---------|------------------|----------|------------------|----------|------------------|-----------|-----------|-------------------|----------|------------------|----------|---------------------|-----------|-------------|-------------------|-------------|----------|------|-----|
| AAT'<br>N | TTA<br>L | GC<br>A          | TT<br>L          | TAG<br>V          | TT:          | rti<br>F | CA<br>Q   | A       | ACG<br>T         | ATC<br>M | F F              | T (      | CC <i>P</i><br>P | G<br>G    | TAT<br>M  | GG<br>V           | TT       | AGA<br>R         | G<br>G   | GCT<br>L            | TT:       | rgc<br>1    | TT.               | AA:<br>N    | Γ        | 1380 |     |
| TCA<br>S  |          |                  |                  | TGA<br>T          | CT           | TTA<br>I | CA<br>H   | T       | GGT<br>G         | CA(<br>Q | GCG<br>R         | A        | TGC<br>W         | TG<br>W   | GGA<br>D  | AT.<br>I          | TT(      | CTI<br>L         | TT.<br>L | AGT<br>V            | AA(<br>R  | GGA<br>I    | TT:               | GC(<br>A    | С        | 1440 |     |
| TAT<br>Y  | AAA<br>K | TT!<br>F         | CC               | TTC<br>H          | AC'          | TAT<br>Y | TT<br>L   | A       | GGG<br>G         | AA<br>K  | ACI<br>L         | `C       | TTI<br>F         | rcc<br>P  | GTA<br>Y  | ATA<br>M          | TG.      | AGC<br>R         | ÇA.<br>Q | AAA<br>K            | AG<br>A   | OTC<br>Q    | CAA<br>2          | GT<br>V     | Т        | 1500 |     |
| TTA<br>I  |          |                  |                  | TGT<br>L          | TG           | GA(<br>E | GGA<br>D  | T       | TTG<br>L         | AA(<br>K | GAT<br>I         | T        | AG:<br>S         | rcc<br>P  | AGC<br>A  | TG<br>D           | TA       | TT <i>F</i><br>L | ACA<br>Q | GCA<br>H            | TG'<br>V  | TG1         | rca<br>S          | AC<br>T     | Т        | 1560 |     |
| CCT<br>P  | GTZ<br>V | LAAI<br>M        | GG<br>V          | TTT<br>I          | TG           | GT:<br>V | rgg<br>G  | Α       | laa<br>N         | raa<br>K | GG <i>I</i><br>D | 4C       | AT.              | AAT<br>I  | TA!<br>K  | AGT<br>L          | TA       | AA:<br>N         | rca<br>H | TTC<br>S            | TA<br>K   | AG <i>I</i> | AAA<br>K          | CT<br>L     | T        | 1620 |     |
| GCI<br>A  | TC'<br>S | TT <i>F</i><br>Y | TTA<br>F         | TTC               | CA           | AG<br>R  | GGG<br>G  | G       | GA(              | STT<br>F | TT?<br>Y         | T        | TC'<br>S         | TTT<br>L  | 'AG'<br>V | TTG<br>G          | GC       | TT'              | rgg<br>G | GCA<br>H            | TC<br>H   | AC          | ATI<br>I          | TAT<br>I    | T        | 1680 |     |
| AAC<br>K  |          |                  |                  | CCC               | CAI<br>H     | GT<br>V  | TTI<br>F  | 1       | 'AA'<br>N        | TAT<br>I | TA!              | гт       | GC.<br>A         | AAA<br>K  | AA)<br>K  | AGT<br>F          | TT       | 'AT              | CAA<br>N | CGA<br>D            | TA<br>T   | .CG         | TTC<br>L          | SAA<br>K    | IA.      | 1740 |     |
|           |          |                  |                  | TT                |              |          |           |         | 'AA'<br>N        | TTG      | AA               | AA       | AG               | TCF       | AA,       | rca               | CI       | 'GA              | CTI      | CTG                 | TG        | AT'         | TA                | AAA         | T        | 1800 |     |
| TG.       | TAT      | TT.              | TTT              | AT                | ATC          | CTG      | TT:       | r :     | rag'             | TGC      | TT.              | AT       | TA               | TT.       | STT       | GAA               | M        | GA<br>I          | I        | CATI<br>H I         | TO        | K<br>K      | AC(<br>R          | GA <i>I</i> | r<br>AC  | 1860 |     |
| TA'       |          | CT               |                  | GA<br>E           | GC2<br>Q     | AAC<br>I | TA        | A A     | AGA<br>S         | GTC.     | STT<br>/         | TT<br>F  | TG               | GG(       | CAA<br>Q  | TTA<br>L          | T        | CTC              | CA       | ATG <i>I</i><br>M N | A AT      | rct<br>L    | TT'<br>F          | TC:         | rt<br>L  | 1920 |     |
| AA<br>I   |          | ATC              |                  | GT<br>V           | GG(          | GGG<br>V | STT.<br>I | A '     | TCG<br>A         | CTC      | STC<br>V         | TT<br>L  | AC<br>I          | CG        | ACA<br>T  | ACC<br>T          | G<br>G   | GAT<br>Y         | TA       | GAC:                | r Ti      | rgi<br>V    | 'AC<br>L          | TG          | A.A<br>N | 1980 | í   |
|           |          |                  | TT <i>I</i><br>L | A CG<br>R         | AT:<br>T     | CAC      | GAT<br>O  | A<br>K  | AAA<br>S         | AGC2     | AAA<br>K         | AG<br>R  | G:<br>Y          | TAT.      | TTA<br>I  | TTA<br>L          | Q<br>Q   | AG <i>P</i>      | CT.      | AGT'<br>S           | r G       | GT0<br>C    | ATS<br>I          | TC.         | A.A<br>N | 2040 | ,   |
| CA<br>T   | CT:      | rTI<br>F         | 'AA'<br>N        | r a <i>p</i><br>N | CT<br>L      | TG:      | rca<br>s  | .G<br>G | GA1<br>F         | TC       | GG1<br>G         | rgg<br>G | L<br>C           | ATI       | ATC<br>I  | GAT<br>D          | : A      | TTC              | GG<br>G  | TTG<br>L            | C G<br>R  | CAI<br>M    | r <b>G</b> G<br>A | CT          | TT<br>F  | 2100 | )   |
| TI<br>Y   | AT(      | GGI<br>G         | 'AAI<br>K        | A AA<br>K         | A <b>A</b> G | GT       | CAA<br>Q  | G<br>E  | AG <i>I</i><br>K | AAG      | AGT<br>S         | rga<br>D | C L              | CTA       | AGA<br>R  | AGA <i>I</i><br>E | A G<br>V | TG               | ACT<br>T | CGT<br>R            | T T<br>F  | TT:<br>L    | PAT<br>E          | CC          | TA<br>Y  | 2160 | )   |
| TC        | CTT.     | ATI<br>I         | TTC'<br>S        | T GO              | GTC<br>L     | TG       | TCA<br>S  | YT<br>F | TT?              | TTA      | AG'<br>S         | rgi<br>V | G<br>I           | ATI       | GC(<br>A  | CTT/<br>L         | A A<br>I | TC:              | ATG<br>M | AGC<br>S            | C A<br>H  | 'AT<br>I    | TTT<br>H          | TT<br>F     | 'CA<br>H | 2220 | 3   |
| T(        | GCC<br>A | AAI<br>K         | AGC<br>A         | T A               | GTC<br>/     | TT<br>/  | GAT<br>D  | TT<br>Y | AC'<br>Y         | TAT      | TA<br>Y          | TTI<br>L | r G<br>V         | GTA       | ATT.<br>L | TAA<br>I          | r G      | GT               | GC1<br>A | ragt<br>S           | r A'<br>M | GT.<br>Y    | AT:               | rt1<br>F    | P<br>P   | 228  | 0   |
| T         | GTT<br>V | 'AT'             | TTA<br>Y         | T T<br>W          | GG?          | ATT<br>I | TC:<br>S  | TG<br>G | GT<br>H          | CAI      | 'AA<br>K         | AG(<br>G | 3 A<br>S         | AG(       | CCA<br>H  | TTA<br>Y          | T T      | CTC              | GG#<br>G | AGAI<br>D           | r Ar<br>M | rgc<br>P    | CA'               | rc'i<br>s   | rag<br>S | 234  | 0   |
| T         | ACI<br>T | CG<br>R          | TAT<br>I         | 'A A<br>K         | AA'          | TTA<br>L | G<br>/GG  | TG<br>V | TT<br>V          | GT1      | rtc<br>S         | TT'<br>F | r r<br>H         | TT'       | TGA<br>E  | ATG<br>W          | G (      | GGA              | TG'<br>C | TGC(<br>A           | GG (<br>A | CCG<br>A    | CA                | GCI<br>A    | ATT<br>F | 240  | O   |
| Ť         | ATA      | TAL              | TAT              | c G               | GT'          | TAT      | TT.       | AA<br>M | TG               | GGG      | CAT              | TC       | A :              | CT.       | ACC       | AGT               | T'       | TAT              | 'AA<br>K | AAT:                | rt 1<br>L | TAC<br>P    | CA                | CT.         | ATT<br>F | 246  | i C |

| TTGTATTGGT TGTGCCGTCG GGATTGTATC CCTTATTCCC GGTGGATTAG GAAGTTTTGA<br>C I G C A V G I V S L I P G G L G S F E                                                                                   | 2520         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| ATTAGTTCTA TTTACAGGGT TTGCTGCCGA GGGACTACCT AAAGAAACTG TGGTTGCATG L V L F T G F A A E G L P K E T V V A W                                                                                      | 2580         |
| GTTATTACTT TATCGTTTAG CCTACTATAT TATTCCATTC TTTGCAGGTA TCTATTTCTT L L L Y R L A Y Y I I P F F A G I Y F F                                                                                      | 2640         |
| TATCCATTAT TTAGGTAGTC AAATAAATCA ACGTTATGAA AATGTCCCGA AAGAGTTAGT I H Y L G S Q I N Q R Y E N V P K E L V                                                                                      | 2700         |
| ATCAACTGTT CTACAAACCA TGGTGAGCCA TTTGATGCGT ATTTTAGGTG CATTCTTAAT S T V L Q T M V S H L M R I L G A F L I                                                                                      | 2760         |
| ATTTTCAACA GCATTTTTTG AAAATATTAC TTATATTATG TGGTTGCAGA AGCTAGGCTT F S T A F F E N I T Y I M W L Q K L G L                                                                                      | 2820         |
| GGACCCATTA CAAGAACAAA TGTTATGGCA GTTTCCAGGT TTATTGCTGG GGGTTTGTTT D P L Q E Q M L W Q F P G L L L G V C F                                                                                      | 2880         |
| TATTCTCTTA GCTAGAACTA TTGATCAAAA AGTGAAAAAT GCTTTTCCAA TTGCTATTAT I L L A R T I D Q K V K N A F P I A I I                                                                                      | 2940         |
| CTGGATTACT TTGACATTGT TTTATCTTAA TTTAGGTCAT ATTAGTTGGC GACTATCTTT W I T L F Y L N L G H I S W R L S F                                                                                          | 3000         |
| CTGGTTTATT TTACTATTGT TAGGCTTATT AGTCATTAAG CCAACTCTCT ATAAAAAACA W F I L L L G L L V I K P T L Y K K Q ATTTATTTAT AGCTGGGAAG AGCGTATTAA GGATGGAATC ATTATCGTTA GTTTAATGGG                      | 3060         |
| F I Y S W E E R I K D G I I I V S L M G  AGTTCTATT TATATTGCAG GACTACTATT CCCTATCAGG GCTCATATTA CAGGTGGTAG  V L F Y I A G I                                                                     | 3120         |
| V L F Y I A G L L F P I R A H I T G G S  TATTGAACGC CTGCATTATA TCATAGCATG GGAGCCGATA GCATTGGCTA CGTTGATTCT I E R L H Y I L                                                                     | 3180         |
| TACTCTCGTT TATTTATGTT TGGTTAAGAT TTT1C11GG1 AAATCTTCTC ACATTCCTC                                                                                                                               | 3240         |
| TGTGTTCAAT GTGGATCGTT ATAAAAAACT ACTTCAAGCT TACCCTCCTT CTTGCGATAG                                                                                                                              | 3300         |
| CGGTTTAGCC TTTTTAAATG ATAAAAGGCT CTACTGGTAC CAAAAAAATG CAGAAAAAGGCT CTACTGGTAC CAAAAAAATG CAGAAAAAAGGCT CTACTGGTAC CAAAAAAAATG CAGAAAAAAAGGCT CTACTGGTAC CAAAAAAAAAGGCT CTACTGGTAC CAAAAAAAAAA | 3360<br>3420 |
| CGTTGCGTTC CAATTTGTAA TTGTCAATAA TAAATGTCTT ATTAAATGTCTT                                                                                                                                       | 3420         |
| TGATGACACT TATATTCGTG AAGCTATTGA ATGCTTTATT CATTGATT                                                                                                                                           | 3540         |
| D D T Y I R E A I E S F I D D A D K L D  CTATGACCTT GTTTTTTACA GTATTGGACA GAAGTTGACA CTACTTTTAC ATGAGTATGG Y D L V F Y S I G Q K L T L L H E Y G                                               | 3600         |
|                                                                                                                                                                                                |              |

| AGGGAATAAG TACAAACCTT<br>G N K Y K P F | TCAGAAATGC<br>R N A | CCTAAATAGA GTTGAAAAGG<br>L N R V E K D | ATGGTTTCTA 3720<br>G F Y |
|----------------------------------------|---------------------|----------------------------------------|--------------------------|
| TTTCGAAGTT GTACAATCGC<br>F E V V Q S P | CACATAGTCA<br>H S Q | AGAGCTACTA AATAGTTTGG<br>E L L N S L E | AAGAGATTTC 3780<br>E I S |
|                                        |                     | AGGTTTCTCA CTAGGATATT<br>G F S L G Y F |                          |
|                                        | TAGCTTTGGT<br>A L V | AAAAAATGCT GAACACGAAG<br>K N A E H E V |                          |
| TGCTAATATT ATGCCAAACT<br>A N I M P N Y | ATGAAAAGAG<br>E K S | TATTATCTCT ATTGATTTAA<br>I I S I D L M | TGCGTCACGA 3960<br>R H D |
| TAAACAGAAA ATTCCGAATG<br>K Q K I P N G | GCGTTATGGA<br>V M D | TTTCCTCTTT TTATCATTAT F L F L S L F    | TCTCTTATTA 4020<br>S Y Y |
|                                        |                     | GGGGATGGCA CCTTTATCAG<br>G M A P L S G |                          |
|                                        | AAGAGAGAAT<br>E R M | GGCGTATCTT GTCTATCATT A Y L V Y H F    |                          |
| TTTCTACTCA TTTAATGGTT                  |                     | TAAGAAGAAG TTTACACCAT<br>K K K F T P L |                          |
| ACGTTATATT TCTTGTTCTC                  |                     | GTTAATTTGT GCTATTTGTG<br>L I C A I C A |                          |
| GGAAGATAGT AAAATTAAGA<br>E D S K I K : |                     | AGCTTTATTT GGCAATTAAA                  | AAGAGCATGT 4320          |
| CATGCGACAT GCTCTTTTT                   | AATCATTTAA          | TACCATTGAT TGCTTGAATC                  | TACTTTATAA 4380          |
| TATGATGTGC TTTTAAATA                   | TGTTTAGCTA          | CTGTAGCTGC TGATTTATGC                  | TTTACAGCTA 4440          |
| CTTGGTAGTT CATTTCTTG                   | ATTTCTTTT           | CAGTGATATG ACCAGCAAGT                  | TTATTGAGAG 4500          |
| CTTTTTTTAC TTGA (SE                    | Q ID NO:1)          | •                                      | 4514                     |

FIG. la [clonel-dna/aa]

|             |              | ETC 1         | •          |            |       |
|-------------|--------------|---------------|------------|------------|-------|
| 575 (250    | 10 NO:2)     |               |            |            | 154   |
| KQED (SEQ   | TD NO.21     | ~             |            | OUTDALLIK  | 120   |
| FQTIQPFLPM  | TYSVSGLRET   | ISLTGDVNHQ    | WRMLVIFLVS | SMILALLIYR | 1 5 0 |
|             | HAIVEAGMON   | RIGSELSLLI    | LLFQLGSSAG | TYPIELSPKF | 100   |
| ILLTAWTT.MA | T.VTAT.VCWDN | DVCCET GT T T |            |            |       |
| SGKEPANRFS  | WAKNKLLING   | FIATLAATIL    | FFAVQFIGLK | PDYPGKTYFI | 50    |
|             |              |               |            |            |       |

FIG. 1b

| MSTLTIIIAT | LTALEHFYIM | YLETLATQSN   | MTGKIFSMSK | EELSYLPVIK | 50  |
|------------|------------|--------------|------------|------------|-----|
| LFKNQGVYNG | LIGLFLLYGL | YISQNQEIVA   | VFLINVLLVA | IYGALTVDKK | 100 |
| ILLKQGGLPI | LALLTFLF   | (SEQ ID NO:3 | 3)         |            | 118 |

FIG. 1c

| MTENWLHTKD  | GSDIYYRVVG | QGQPIVFLHG | NSLSSRYFDK | QIAYFSKYYQ | 50  |
|-------------|------------|------------|------------|------------|-----|
| VIVMDSRGHG  | KSHAKLNTIS | FRQIAVDLKD | ILVHLEIDKV | ILVGHSDGAN | 100 |
| LALVFQTMFP  | GMVRGLLLNS | GNLTIHGQRW | WDILLVRIAY | KFLHYLGKLF | 150 |
| PYMRQKAQVI  | SLMLEDLKIS | PADLQHVSTP | VMVLVGNKDI | IKLNHSKKLA | 200 |
| SYFPRGEFYS  | LVGFGHHIIK | QDSHVFNIIA | KKFINDTLKG | EIVEKAN    | 247 |
| (SEQ ID NO: |            |            |            |            | 411 |

FIG. 1d

| MIHLKRTISV | EQLKSVFGQL   | SPMNLFLIIL   | VGVIAVLPTT   | GYDFVLNGLL   | 50  |
|------------|--------------|--------------|--------------|--------------|-----|
| RTDKSKRYIL | QTSWCINTFN   | NLSGFGGLID   | IGLRMAFYGK   | KGQEKSDLRE   | 100 |
| VTRFLPYLIS | GLSFISVIAL   | IMSHIFHAKA   | SVDYYYLVLI   | GASMYFPVIY   | 150 |
| WISGHKGSHY | FGDMPSSTRI   | KLGVVSFFEW   | GCAAAAFIII   | GYLMGIHLPV   | 200 |
| YKILPLFCIG | CAVGIVSLIP   | GGLGSFELVL   | FTGFAAEGLP   | KETVVAWLLL   | 250 |
| YRLAYYIIPF | FAGIYFFIHY   | LGSQINQRYE   | NVPKELVSTV   | LQTMVSHLMR   | 300 |
| ILGAFLIFST | AFFENITYIM   | WLQKLGLDPL   | QEQMLWQFPG   | LLLGVCFILL   | 350 |
| ARTIDQKVKN | AFPIAIIWIT   | LTLFYLNLGH   | ISWRLSFWFI   | LLLLGLLVIK   | 400 |
| PTLYKKQFIY | SWEERIKDGI   | IIVSLMGVLF   | YIAGLLFPIR   | AHITGGSIER   | 450 |
| LHYIIAWEPI | ALATLILTLV   | YLCLVKILQG   | KSCQIGDVFN   | VDRYKKLLQA   | 500 |
| YGGSSDSGLA | FLNDKRLYWY   | QKNGEDCVAF   | QFVIVNNKCL   | IMGEPAGDDT   | 550 |
| YIREAIESFI | DDADKLDYDL   | VFYSIGQKLT   | LLLHEYGFDF   | MKVGEDALVN   | 600 |
| LETFTLKGNE | YKPFRNALNR   | VEKDGFYFEV   | VQSPHSQELL   | NSLEEISNTW   | 650 |
| LEGRPEKGFS | LGYFNKDYFQ   | QAPIALVKNA   | EHEVVAFANI   | MPNYEKSIIS   | 700 |
| IDLMRHDKQ  | ( IPNGVMDFLF | LSLFSYYQEK   | GYHYFDLGMA   | PLSGVGRVET   | 750 |
| SFAKERMAYI | . VYHFGSHFYS | FNGLHKYKKK   | FTPLWSERYI   | SCSRSSWLIC   | 800 |
| AICALLMEDS | s KIKIVK (S  | EQ ID NO:5)  |              |              | 816 |
|            |              | FIG          | . 1e         |              |     |
|            |              |              |              |              |     |
| MRILGAFLI  | F STAFFENITY | Y IMWLQKLGLI | PLQEQMLWQE   | PGLLLGVCFI   | 50  |
| LLARTIDQK  | V KNAFPIAIIV | V ITLTLFYLNI | _ GHISWRLSFV |              | 100 |
| IKPTLYKKQ  | F IYSWEERIKI | GIIIVSLMG    | / LFYIAGLLFE | PIRAHITGGSI  | 150 |
| ERLHYIIAW  | E PIALATLIL  | L TAATCTAKI  | C QGKSCQIGD  | / FNVDRYKKLL | 200 |

LLARTIDQKV KNAFPIAIIW ITLTLFYLNL GHISWRLSFW FILLLGLLV 100
IKPTLYKKQF IYSWEERIKD GIIIVSLMGV LFYIAGLLFP IRAHITGGSI 150
ERLHYIIAWE PIALATLILT LVYLCLVKIL QGKSCQIGDV FNVDRYKKLL 200
QAYGGSSDSG LAFLNDKRLY WYQKNGEDCV AFQFVIVNNK CLIMGEPAGD 250
DTYIREAIES FIDDADKLDY DLVFYSIGQK LTLLLHEYGF DFMKVGEDAL 300
VNLETFTLKG NKYKPFRNAL NRVEKDGFYF EVVQSPHSQE LLNSLEEISN 350
TWLEGRPEKG FSLGYFNKDY FQQAPIALVK NAEHEVVAFA NIMPNYEKSI 400
ISIDLMRHDK QKIPNGVMDF LFLSLFSYYQ EKGYHYFDLG MAPLSGVGRV 450
ETSFAKERMA YLVYHFGSHF YSFNGLHKYK KKFTPLWSER YISCSRSSWL 500
ICAICALLME DSKIKIVK (SEQ ID NO:6)

FIG. 1f

| >          |                                         | I I E        | A M K    |                         | LLE            | 60   |
|------------|-----------------------------------------|--------------|----------|-------------------------|----------------|------|
|            |                                         | E            | F D K    |                         | P Y W          | 120  |
|            | <b>-</b>                                | - <i>U</i> 3 | пАЕ      |                         | $C  \Gamma  K$ | 180  |
|            | 0                                       |              | эбгі     |                         | LFE            | 240  |
| _ •        |                                         | 2 1 1        | r 2 W E  | AAGTTGAACA<br>VEH       | T K T          | 300  |
|            |                                         | 5 1 n        | r Q K L  |                         | I V D          | 360  |
|            | v                                       | ., G L       | AKEH     | ATCTTTATCG<br>L Y R     | Y G K          | 420  |
|            | £ 5                                     | 0 1 K        | r A R G  |                         | DFE            | 480  |
| _          |                                         | D D A        | T H D R  | - <b>-</b>              | V V N          | 540  |
|            | _ •• ••                                 | 201          | K P G P  |                         | DII            | 600  |
|            |                                         | · 11 G       | O T I N  |                         | A I L          | 660  |
|            | ~                                       | 5            |          | ATGAGCGATT<br>M S D F   | r a d          | 720  |
|            |                                         | 2 M 1        | v r S    | AATGTTTCAT<br>N V S F   | ΙΙΗ            | 780  |
|            |                                         | - G V        | N G T    | GGAAAGACAA (<br>G K T T | LLD            | 840  |
|            | •                                       | r D G        | D R S    | CCTTTTTCAT (PFSS        | A N D          | 900  |
|            | - • • • • • • • • • • • • • • • • • • • | 2 - 1        | D F D    | GATTCTCAGA (            | I L D          | 960  |
|            |                                         | 2 11         | W T I    | AAAGAATATG A<br>K E Y E | LLL            | 1020 |
|            | - •                                     | 2 0 1        | L E K    | GTAATGGCAG A            | M D S          | 1080 |
|            |                                         | ·            | K I V    | TTATCCAAAT 1<br>L S K L | GIT            | 1140 |
| TGATTTGCAG | TTGTCGGTTG                              | GTGAATTATC   | 1.661.65 | CGAAGACGTG T<br>R R R V |                | 1200 |

| GCAAGTATTA          | TTAAATGA           | ATG CAGAT         | TTATT          | GCTCTTA                | GAC G        | AACCTACTA             | ACCACTTA            | GA 1260        |
|---------------------|--------------------|-------------------|----------------|------------------------|--------------|-----------------------|---------------------|----------------|
| Q V L               | L N D              | A D               | L L            | L L                    |              | P T N                 | H L                 | D              |
| TATTGACACT          | ATTGCATO           | GGT TAACO<br>L T  | AATTT<br>N F   | TTTGAAA<br>L K         | AAT A<br>N S | AGTAAAAAGA<br>S K K 1 | CAGTGCTT            | TT 1320<br>F   |
| TATAACTCAT          | GATCGTTA<br>D R Y  | ATT TTCT/<br>F L  | AGACAA<br>D N  | TGTTGCA<br>V A         | ACA C        | CGTATTTTTC<br>R I F I | AATTAGAT<br>L D     |                |
| GGCACAGAT:          | T ACAGAATA         | ATC AAGGO         | CAATTA         | TCAGGAT                | TAT (        | STCCGACTTO            | GTGCAGAA            | ACA 1440       |
| A Q I               | T E Y              | Q G               | N Y            | Q D                    |              | / R L I               | R A E               | Q              |
| AGACGAGCG'<br>D E R | GATGCTGO<br>D A A  | CTA GTTT          | ACATAA<br>H K  | AAAGAAA<br>K K         | ACAG (       | CTTTATAAA<br>L Y K (  | C AGGAACTA<br>D E L |                |
| TTGGATGCG<br>W M R  | T ACTCAGC          | CAC AAGC          | rcgtgc<br>R A  | AACGAAA<br>T K         | ACAA (       | CAGGCTCGT<br>O A R    | A TTAATCGT<br>I N R | TTT 1560<br>F  |
| TCAAAATCT           | A AAAAACG          | ATT TACA          | CCAAAC         | AAGCGAT                | TACA I       | AGCGATTTG             | S AAATGACA          | ATT 1620       |
| Q N L               | K N D              | L H               | Q T            | S D                    |              | S D L                 | E M T               | F              |
| TGAAACAAG           | T CGAATTG          | GGA AAAA          | GGTTAT         | TAATTT:                | IGAA .       | AATGTCTCT             | TTTCTTA             | DCC 1680       |
| E T S               | R I G              | K K               | V I            | N F                    | E            | N V S                 |                     | P              |
| AGATAAATC<br>D K S  | T ATCTTGA<br>I L K | AAG ACTT          | TAATTT<br>N L  | GTTAAT'                | TCAA .<br>Q  | AATAAAGAC<br>N K D    | C GTATTGG<br>R I G  |                |
| CGTTGGAGA           | T AATGGTG          | TTG GAAA          | GTCAAC         | CTTACT                 | TAAT         | TTAATTGTT             | C AAGATTT           | ACA 1800       |
| V G D               | N G V              | 'G K              | S T            |                        | N            | L I V                 | Q D L               | Q              |
| GCCGGATTC           | G GGTAATO          |                   | TGGTGA         | AACGAT                 | ACGT         | GTAGGTTAC             | T TTTCACA           | ACA 1860       |
| P D S               | G N V              |                   | G E            | T I                    | R            | V G Y                 | F S Q               | Q              |
| ACTTCATAA           | T ATGGATO          | GCT CAAF          | ACGTGT         | TATTAA                 | TATT.        | TTGCAAGAG             | G TTGCAGA           | TGA 1920       |
| L H N               | M D O              | S S K             | R V            | I N                    | Y            | L Q E                 | V A D               | E              |
| GGTTAAAAC<br>V K T  | S V C              |                   | CAAGTGT<br>S V | GACAGA<br>T E          | ACTA<br>L    | TTGGAACAA<br>L E Q    | T TTCTCTT<br>F L F  | TCC 1980<br>P  |
| ACGTTCGAC           | CA CATGGAM         | ACAC AAA:         | TTGCAAA        | ATTATO                 | AGGT         | GGTGAGAAA             | AA AAAGACT          | TTTA 2040      |
|                     | H G T              | r Q I             | A K            | L S                    | G            | G E K                 | K R L               | Y              |
| CCTTTTAA            | AA ATCCTG          | ATTG AAA<br>I E K | AGCCTAA<br>P N | TG <b>T</b> GTI<br>V L | PACTA<br>L   | CTTGATGAC<br>L D E    | C CGACAAA<br>P T N  | ATGA 2100<br>D |
| CTTAGATA'           | T GCTACA           | TTAA CTG          | ITCTTGA        | AAATTI                 | TTTTA        | CAAGGCTT'             | rg GTGGTC0          | CTGT 2160      |
| L D I               |                    | L T V             | L E            | N F                    | L            | Q G F                 | G G P               | V              |
| GATTACAG            | TT AGTCAC          | GATC GTT.         | ACTTTTT        | r agatai               | AAGTG        | GCTAATAA              | AA TTATTGO          | CGTT 2220      |
| I T V               | S H                | D R Y             | F L            | D K                    | V            | A N K                 | I I A               | F              |
| TGAAGATA            | AC GATATC          | CGTG AAT          | TTTTTG(        | TAATT                  | ATACT        | GATTATTT              | AG ATGAAA           | AAGC 2280      |
| E D N               | D I                | R E F             | F G            | N Y                    | T            | D Y L                 | D E K               | A              |
| ATTTAATG<br>F N E   | AG CAAAAT<br>Q N   | AATG AAG<br>N E V | TTATCA         | g taaaa<br>K K         | AAGAG<br>E   | AGTACCAA<br>S T K     | GA CAAGTC<br>T S R  |                |
| AAAGCAAA            | GT CGTAAA          | AAGAA TGI         | CTTACT         | T TGAAA                | AACAA        | . GAATGGGC            | GA CAATTG           | AAGA 2400      |
| K Q S               | R K                | R M S             |                | E K                    | Q            | E W A                 | T I E               | D              |
| CGATATTA            | TG ATATTO          | GAAA ATA          | CTATCA         | C TCGTA                | TAGAA        | AATGATAI              | GC AAACAT           | GTGG 2460      |

|                                                                                                                                     | C G                |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| TAGTGATTTT ACAAGGTTAT CTGATTTACA AAAGGAATTA GATGCAAAAA ATGAF<br>S D F T R L S D L Q K E L D A K N E                                 | AGCACT 2520<br>A L |
| TCTAGAAAAG TATGACCGTT ATGAGTACCT TAGTGAGTTA GACACATGAT TATCCLL E K Y D R Y E Y L S E L D T M I I R                                  |                    |
| ATTATTAAAA ATGATGACCA AGCAGTTGCA CAATTAATTC GACAAAGTTT ACGCG I I K N D D Q A V A Q L I R Q S L R A                                  |                    |
| GATTTAGATA AACCTGATAC AGCATATTCA GACCCTCACT TAGATCATTT GACCT D L D K P D T A Y S D P H L D H L T S                                  | CCATAC 2700        |
| TACGAAAAA TAGAGAAGTC AGGATTCTTT GTCATTGAGG AGAGAGATGA GATTA<br>Y E K I E K S G F F V I E E R D E I I                                | ATTGGC 2760        |
| TGTGGCGGCT TTGGTCCGCT GAAAAATCTA ATTGCAGAGA TGCAGAAGGT GTACA C G G F G P L K N L I A E M $\mathbb Q$ K V Y I                        |                    |
| GAACGTTTCC GTGGTAAGGG GCTTGCTACT GATTTAGTGA AAATGATTGA AGTAG<br>E R F R G K G L A T D L V K M I E V E                               | A                  |
| CGAAAAATTG GGTATAGACA ACTTTATTTA GAGACAGCCA GTACTTTGAG TAGGGG R K I G Y R Q L Y L E T A S T L S R A                                 | T                  |
| GCGGTTTATA AGCATATGGG ATATTGTGCC TTATCGCAAC CAATAGCAAA TGATCAAR V Y K H M G Y C A L S Q P I A N D Q                                 | G                  |
| CATACAGCTA TGGATATTIG GATGATTAAA GATTTATAAG TTGAAAGTGG ATTAGT $H$ T A $M$ D $I$ $W$ $M$ $I$ $K$ D $L$                               |                    |
| ATGGATTAAT TATTTTGAGA TAAGAGGAAA GAAAAGGAGA CATATATGGC ATATAT $m{	t M}$ A Y I                                                       |                    |
| TCTTATTTGA AAAGGTACCC CAATTGGTTA TGGCTTGATT TACTAGGAGC TATGCTS Y L K R Y P N W L W L D L L G A M L                                  | FTTTT 3180         |
| GTGACGGTTA TCCTAGGAAT GCCCACAGCC TTAGCGGGTA TGATTGATAA TGGCGT $V$ T $V$ I $L$ $G$ $M$ $P$ T $A$ $L$ $A$ $G$ $M$ $I$ $D$ $N$ $G$ $V$ | TTACA 3240         |
| AAAGGTGATC GGACTGGAGT TTATCTGTGG ACGTTCATCA TGTTTATATT TGTTGT K G D R T G V Y L W T F I M F I F V V                                 | TACTA 3300<br>L    |
| GGTATTATTG GGCGTATTAC GATGGCTTAC GCATCTAGTC GCTTAACGAC AACAATG I I G R I T M A Y A S S R L T T T M                                  | I                  |
| AGAGATATGC GTAATGATAT GTATGCTAAG CTTCAAGAAT ACTCCCATCA TGAATA R D M R N D M Y A K L Q E Y S H H E Y                                 | E                  |
| CAGATAGGTG TATCTTCACT AGTGACACGT ATGACAAGCG ATACTTTTGT TTTGAT Q I G V S S L V T R M T S D T F V L M                                 | Q                  |
| TTTGCTGAAA TGTCTTTACG TTTAGGCCTA GTAACTCCTA TGGTAATGAT TTTTAG ${ m F}$ A E M S L R L G L V T P M V M I F S                          | V                  |
| GTTATGATAC TAATTACGAG TCCATCTTTG GCTTGGCTTG                                                                                         | L                  |
| TTGGTAGGAG TCGTTTTATA TGTAGCTATA AAAACAAAAC                                                                                         |                    |

| AC:<br>T | TATO<br>M |                  | rg<br>D  |             |           | CAA<br>N    | TCAA<br>Q  | Y<br>Y             | CGTT<br>V  |           | rga.<br>E |          |                   | TAAC!<br>T |           | GTT<br>L  | ACG<br>R  | CGT:<br>V         | rgtt<br>V    | 3720 |
|----------|-----------|------------------|----------|-------------|-----------|-------------|------------|--------------------|------------|-----------|-----------|----------|-------------------|------------|-----------|-----------|-----------|-------------------|--------------|------|
|          |           | CTT'             |          | CAAG<br>R   | AGA<br>E  | AGAA<br>N   | TTTT       | rcaj<br>Q          | ATCA<br>S  | CAJ<br>Q  | AAA<br>K  | ATT<br>F | TC<br>Q           | AAGT(<br>V | CGC'<br>A | raa<br>N  | CCA.<br>Q | ACGʻ<br>R         | TTAC<br>Y    | 3780 |
|          | AGA!<br>D |                  | rT<br>S  | _           |           |             | TTTT       |                    |            |           |           |          |                   | CAGA<br>E  |           |           | TTT<br>F  |                   |              | 3840 |
|          |           | TAT'<br>I        |          |             |           |             | GGC:       |                    |            |           |           |          |                   | TGGA'<br>D |           |           |           | AAG<br>R          |              | 3900 |
|          |           |                  |          |             |           |             | AGT'       |                    |            |           |           |          |                   | GCTT<br>F  |           |           | TCT<br>L  |                   | TTCA<br>S    | 3960 |
|          |           | GCT.             |          |             |           | ATCT<br>L   | TTT'       |                    |            |           | TCC<br>P  |          |                   | TGGT<br>V  | GGT.<br>V |           | AAG<br>S  |                   |              | 4020 |
|          |           | AGA<br>E         |          |             |           |             |            |                    |            |           |           |          |                   | ATGC<br>A  |           |           | TGT<br>V  |                   | GGAT<br>D    | 4080 |
| AC<br>T  |           | ACT<br>L         |          |             |           |             | AGA<br>E   |                    |            |           |           |          |                   | TCGC<br>A  |           |           |           |                   | AACA<br>T    | 4140 |
|          |           |                  |          | TT <b>T</b> |           |             | TAT        |                    |            |           |           |          |                   | CTGG<br>G  | AGA<br>E  |           |           | TGC<br>A          |              | 4200 |
|          |           | TTC<br>S         |          |             |           |             | AAA<br>K   |                    |            |           |           |          |                   | TGAT<br>I  | TCC<br>P  |           |           | TTA<br>Y          |              | 4260 |
|          |           | ACT<br>L         |          |             |           | TCTT<br>L   |            |                    |            |           | TGA<br>D  |          |                   |            | TTA<br>Y  |           | CCI       |                   | ATCA<br>S    | 4320 |
| CI<br>L  | TCG<br>R  | CC <i>P</i><br>Q | AA<br>K  | AGA<br>I    | TTG<br>G  | GAT1        | TAT<br>I   | CCC<br>P           | CCAA<br>Q  | AA<br>K   | AGC<br>A  | L<br>L   | r <b>T</b> T<br>L | TATI<br>F  | TAC<br>T  | AGG<br>G  | GA(       |                   | AGGA<br>G    | 4380 |
|          |           |                  |          |             |           |             |            |                    |            |           |           |          |                   | ATCI<br>L  |           |           |           | CGGI<br>V         | TGAT<br>D    | 4440 |
|          |           |                  |          | CTA<br>K    |           |             |            | TGA<br>E           |            |           |           |          |                   | CCTT       |           |           |           | ATTI<br>L         | AGCT<br>A    | 4500 |
|          |           | GTG(             |          |             |           |             | TGG<br>G   |                    |            |           |           |          |                   |            |           | TTGC<br>A |           | GGG(<br>A         | V<br>V       | 4560 |
| G:<br>V  | TAZ<br>K  | AAGZ<br>D        | OTA<br>E | CAG         | ATI<br>I  | TATI<br>Y   | A TAT      | TTT1<br>F          | TGAI<br>D  | G G?<br>D | ATT<br>S  | CAT<br>F | TTT<br>S          | CTG(<br>A  | CTC:<br>L | rcga<br>D | Y TT      | ATA <i>I</i><br>K | AGACA<br>T   | 4620 |
| D        | A         | T                | I        | L F         | R 1       | A R         | L          | K                  | E          | V         | T         | G        | D                 | S          | T         | V         | L         | I                 | V            | 4680 |
| G<br>A   | CTC.<br>Q | AAA<br>R         | GG(      | TG(         | GGTZ<br>G | ACGA<br>T I | AT T<br>M  | r <b>G</b> G?<br>D | ATGC:<br>A | r G       | ATC.<br>Q | AGA<br>I | ATT.<br>I         | TTG'       | TCC'      | TTGA<br>D | TG.<br>E  | AAG<br>G          | GCGAA<br>E   | 4740 |
| I        | V         | G                | 1        | R (         | G '       | т н         | A          | Q                  | L          | I         | E         | . N      | 1 1               | 1 A        | I         | Y         | R         | E                 |              |      |
|          |           |                  |          |             |           |             | A CC.<br>Q |                    |            |           |           |          |                   |            | GAT       |           |           |                   | AAAAA<br>K K | 4860 |

10/40

| ATCTGTTTTT<br>S V F | TTGAGATTAT GGTCTT                | TACCT A | AACTCGCTAC<br>T R Y | AAAGCTACTC<br>K A T L | TTTTCTTAGC<br>F L A | 4920 |
|---------------------|----------------------------------|---------|---------------------|-----------------------|---------------------|------|
| GATTTTTTG<br>I F L  | AAAGTTTTAT CTAGTT                | TTTAT ( | GAGTGTTCTG<br>S V L | GAGCCTTTTA<br>E P F I | TTTTAGGGTT<br>L G L | 4980 |
| AGCGATAACA<br>A I T | GAGTTGACTG CTAACC                | CTTGT T | GATATGGCT<br>D M A  | AAGGGAGTTT<br>K G V S | CTGGGGCAGA<br>G A E | 5040 |
| ATTGAACGTT<br>L N V | CCTTATATTG CTGGTA<br>P Y I A G I | ATTTT G | SATTATTTAT<br>I I Y | TTTTTCAGAG<br>F F R G | GTGTTTTCTA<br>V F Y | 5100 |
| TGAATTAGGT<br>E L G | TCTTATGGCT CAAATT<br>S Y G S N   | ` (SEQ  | ) ID NO:7)          |                       |                     | 5126 |

FIG. 2a

| NFDIETTTFE | AMKKHASLLE | KISVERSFIE | FDKLLLAPYW | RKGMLALIDS | 50  |
|------------|------------|------------|------------|------------|-----|
| HAFNYLPCLK | NRELQLSAFL | SQLDKDFLFE | TSEQAWASLI | LSMEVEHTKT | 100 |
| FLKKWKTSTH | FQKDVEHIVD | VYRIREQMGL | AKEHLYRYGK | TIIKQAEGIR | 150 |
| KARGLMVDFE | KIEQLDSELA | IHDRHEIVVN | GGTLIKKLGI | KPGPQMGDII | 200 |
| SQIELAIVLG | QLINEEEAIL | HFVKQYLMD  | (SEQ ID NO | :8)        | 229 |

## FIG. 2b

| MSDFLVDGLT | KSVGDKTVFS | NVSFIIHSLD | RIGIIGVNGT | GKTTLLDVIS | 50          |
|------------|------------|------------|------------|------------|-------------|
| GELGFDGDRS | PFSSANDYKI | AYLKQEPDFD | DSQTILDTVL | SSDLREMALI | 100         |
| KEYELLLNHY | EESKQSRLEK | VMAEMDSLDA | WSIESEVKTV | LSKLGITDLQ | 150         |
| LSVGELSGGL | RRRVQLAQVL | LNDADLLLLD | EPTNHLDIDT | IAWLTNFLKN | 200         |
| SKKTVLFITH | DRYFLDNVAT | RIFELDKAQI | TEYQGNYQDY | VRLRAEQDER | 250         |
| DAASLHKKKQ | LYKQELAWMR | TQPQARATKQ | QARINRFQNL | KNDLHQTSDT | 300         |
| SDLEMTFETS | RIGKKVINFE | NVSFSYPDKS | ILKDFNLLIQ | NKDRIGIVGD | 350         |
| NGVGKSTLLN | LIVQDLQPDS | GNVSIGETIR | VGYFSQQLHN | MDGSKRVINY | 400         |
| LQEVADEVKT | SVGTTSVTEL | LEQFLFPRST | HGTQIAKLSG | GEKKRLYLLK | 450         |
| ILIEKPNVLL | LDEPTNDLDI | ATLTVLENFL | QGFGGPVITV | SHDRYFLDKV | 500         |
| ANKIIAFEDN | DIREFFGNYT | DYLDEKAFNE | QNNEVISKKE | STKTSREKQS | 5 <b>50</b> |
| RKRMSYFEKQ | EWATIEDDIM | ILENTITRIE | NDMQTCGSDF | TRLSDLQKEL | 600         |
| DAKNEALLEK | YDRYEYLSEL | DT (SEO I  | D NO:9)    |            | 622         |

FIG. 2c

| MIIRPIIKND | DQAVAQLIRQ   | SLRAYDLDKP | DTAYSDPHLD | HLTSYYEKIE | 50  |
|------------|--------------|------------|------------|------------|-----|
| KSGFFVIEER | DEIIGCGGFG   | PLKNLIAEMQ | KVYIAERFRG | KGLATDLVKM | 100 |
| IEVEARKIGY | RQLYLETAST   | LSRATAVYKH | MGYCALSQPI | ANDQGHTAMD | 150 |
| IWMIKDL (S | SEQ ID NO:10 | O)         |            |            | 157 |

FIG. 2d

| MAYIWSYLKR | YPNWLWLDLL | GAMLFVTVIL | GMPTALAGMI  | DNGVTKGDRT  | 50  |
|------------|------------|------------|-------------|-------------|-----|
| GVYLWTFIMF | IFVVLGIIGR | ITMAYASSRL | TTTMIRDMRN  | DMYAKLQEYS  | 100 |
|            |            | FVLMQFAEMS |             |             | 150 |
| TSPSLAWLVA | VAMPLLVGVV | LYVAIKTKPL | SEROOTMLDK  | INOVVENIT   |     |
| GLRVVRAFAR | ENFQSQKFOV | ANQRYTDTST | GLEKITGITE  | DIEVOTATA   | 200 |
| TIINTIIINT |            | 2          | CHIMPIGHIE  | PPI AOTITAM | 250 |
| IVAIVWEALD | PLQRGAIKIG | DLVAFIEYSF | HALFSFLLFA  | NLFTMYPRMV  | 300 |
| VSSHRIREVM | DMPISINPNA | EGVTDTKLKG | HLEFDNVTFA  | YPGETESPVL  | 350 |
| HDISFKAKPG | ETIAFIGSTG | SGKSSLVNLI | PRFYDVTLGK  | ILVDGVDVRD  | 400 |
| YNLKSLRQKI | GFIPQKALLF | TGTIGENLKY | GKADATIDDL  | ROAVDISOAK  | 450 |
| EFIESHOEAF | ETHLAEGGSN | LSGGQKQRLS | TADAIIII    | *********** |     |
|            |            | PPOGÓVÓVES | TARAVVKDPD  | LYIFDDSFSA  | 500 |
| LDYKTDATLR | ARLKEVTGDS | TVLIVAQRVG | TIMDADQIIV  | LDEGEIVGRG  | 550 |
| THAQLIENNA | IYREIAESQL | KNQNLSEGE  | (SEQ ID NO: | 11)         | 579 |
|            |            | -          |             |             | _   |
|            |            |            |             |             |     |

FIG. 2e

| MRKKSVFLRL  | WSYLTRYKAT | LFLAIFLKVL | SSFMSVLEPF | ILGLAITELT | 50 |
|-------------|------------|------------|------------|------------|----|
|             |            | AGILIIYFFR |            |            | 92 |
| (SEQ ID NO: | :12)       |            |            |            | 22 |

FIG. 2f

| F           | G        | S         |         | TGCT<br>A |          |           | A 1     | ACAG<br>V         | TTC       | AAG<br>V   | TAA       | AG(      | GAG<br>E | AT<br>I  | TATI              | NAG!<br>S | rgaa<br>E    | GAA<br>E | AAA<br>N          | I                | TA:<br>W         | 60   |
|-------------|----------|-----------|---------|-----------|----------|-----------|---------|-------------------|-----------|------------|-----------|----------|----------|----------|-------------------|-----------|--------------|----------|-------------------|------------------|------------------|------|
| GGTT        |          | YTC(<br>R |         | GCTC<br>L | AG1<br>S | rTG(<br>C | C :     | rgcc<br>C H       | ATI       | ATTT<br>T  | CTA<br>S  | GC.      | TAC<br>Y | TC<br>S  | ATA<br>Y          | rtg(<br>W | GAAG<br>K    |          | ACC <i>I</i><br>P | AAC<br>T         | TT<br>W          | 120  |
| GGTA        | AGO      | CAT       | c i     | M         |          | L         |         |                   |           | AAAG<br>K  |           |          |          |          |                   |           | TATA<br>I    | TG#<br>D |                   |                  | AGC<br>S         | 180  |
| AAAG<br>K G |          |           |         | CAAA      | AG       | ccc       |         |                   |           | AAAC<br>N  |           |          |          |          | ATC <i>I</i><br>Q |           | TCAG<br>S    | TGC<br>A | TG/<br>E          | AAC<br>E         |                  | 240  |
| GGC#<br>G I | TC       | rct<br>s  | G<br>A  | CTGA<br>E | AC<br>Q  | AGA<br>I  | T       | CGT <i>I</i><br>V | AGT(<br>V | CAAA<br>K  |           |          |          |          | AAG(<br>G         |           | ATGT<br>V    | GA(      | CCT(<br>S         | CAC<br>i         |                  | 300  |
|             |          |           |         | ATCA<br>H |          |           |         | CAAT<br>N         |           |            | GTT<br>V  |          |          |          | ATG(              |           | TATT<br>I    | TAC<br>S | STG.              |                  | SAG<br>E         | 360  |
| TTGT<br>L I | ا ر      |           | T       | D         |          | CTA<br>N  | A       | ATT<br>Y          | CCG'<br>R | TTTT<br>F  | AA/<br>K  | ACA<br>Q | ATC<br>S | CAG<br>D | ACG'              |           | TCAA<br>N    | TG2<br>E | 'AAA'<br>I        |                  |                  | 420  |
| GAC(        | GT       | TAC       | G       | TTAT      |          | AAG<br>V  |         |                   | rgg<br>G  | CAAC<br>N  | TA:<br>Y  | TTA<br>Y | TGT<br>V | TTT<br>Y | ACC'              | TCA<br>K  | AGCC<br>P    | AG(<br>G | GTA<br>S          | GT:              | <b>A</b> AG<br>K | 480  |
| CGCI<br>R I |          |           | A       |           |          | CCA<br>K  |         |                   | ACA.<br>Q |            | GC:       |          |          |          |                   |           | AAGG<br>G    | AA<br>T  |                   | AA               |                  | 540  |
| GCTA        |          |           |         | AAG(<br>G |          |           |         |                   |           |            |           |          |          |          |                   |           | AAGT<br>V    |          | CGG<br>A          |                  |                  | 600  |
|             |          |           |         | AAA<br>R  |          |           |         |                   |           |            | AC.<br>T  |          |          |          |                   |           | TTTT         | TA<br>S  |                   |                  | ACA<br>T         | 660  |
| GAT.        |          | ATI<br>I  |         |           |          | TAC       |         | AGA<br>D          |           |            | TT.<br>L  |          |          |          |                   |           | ATCA<br>I H  | . CT     |                   |                  | TAT<br>Y         | 720  |
| ATT         |          |           |         |           |          | TG        |         | TCC<br>P          |           |            |           |          |          |          | CAC               |           | SCCTA<br>Y   | CT<br>W  |                   |                  | CAA<br>Q         | 780  |
| AAA<br>K    |          |           |         | GAG<br>G  | GT0      | CTA       | AG<br>R | ACC<br>P          | GTC<br>S  | TGAT<br>D  | TA<br>Y   | .CCC     | GCC<br>P | CGA<br>T | CAC<br>F          | CAC       | CCCC         | AG<br>G  |                   | GT               |                  | 840  |
| AAA<br>K    |          |           |         |           |          |           |         |                   |           | TAAC<br>N  |           |          |          |          |                   |           | CAGCO<br>P   |          | ATA<br>1          |                  |                  | 900  |
|             |          |           |         |           |          |           |         |                   |           |            |           |          |          |          |                   |           | AAACA<br>K H |          |                   |                  | GAT<br>D         | 960  |
|             |          |           |         |           |          |           |         |                   |           |            |           |          |          |          |                   |           | CGTC:        |          |                   |                  |                  | 1020 |
| TAC<br>Y    | CG:<br>R | rca'<br>H | TG<br>V | TGG<br>E  | AA(      | GAA<br>E  | GA<br>D | TGC<br>G          | GTT<br>L  | rgati<br>I | r TI<br>F | TG:<br>E | AAC<br>P | CGA      | CTC               | AAC<br>'  | GTGA:        | C C F    | AA!               | rc <i>i</i><br>s | N<br>N           | 1080 |
|             |          |           |         |           |          |           |         |                   |           |            |           |          |          |          |                   |           | CCAA(<br>P R |          |                   |                  | STTA<br>L        | 1140 |
| TCA<br>S    | ACC'     | TCT<br>L  | TG<br>E | AAA<br>1  | ATG<br>1 | GAA<br>E  | TT<br>L | AG(<br>A          | CAG<br>D  | ATCG/<br>R | A TA      | ACT<br>L | TAC      | ECTO     | G GCG             | CAA<br>Q  | ACTG.<br>T E | A GO     | GAC.              | AA'<br>N         | rgac<br>D        | 1200 |
| тCI         | 200      | ጥጥር       | AC      | : AGC     | -מכ      | ጥሮል       | AA      | AC                | CAT       | CAGA       | מ יד      | AAG      | ממ       | TC       | A CA              | CAT       | ACCT         | тт       | тт                | GG'              | TCAT             | 1260 |

S G S E H S K P S D K E V T H T F CGCATCAAAG CTTACGGAAA AGGCTTAGAT GGTAAACCAT ATGATACGAG TGATGCTTAT 1320 RIKA Y G K G L D G K P Y D T S GTTTTTAGTA AAGAATCCAT TCATTCAGTG GATAAATCAG GAGTTACAGC TAAACACGGA 1380 V F S K E S I H S V D K S G V T A GATCATTTCC ACTATATAGG ATTTGGAGAA CTTGAACAAT ATGAGTTGGA TGAGGTCGCT 1440 D H F H Y I G F G E L E Q Y E L D E V A AACTGGGTGA AAGCAAAAGG TCAAGCTGAT GAGCTTGCTG CTGCTTTGGA TCAGGAACAA N W V K A K G Q A D E L A A A L D GGCAAAGAAA AACCACTCTT TGACACTAAA AAAGTGAGTC GCAAAGTAAC AAAAGATGGT G K E K P L F D T K K V S R K V T K D G AAAGTGGGCT ATATGATGCC AAAAGATGGT AAGGACTATT TCTATGCTCG TGATCAACTT K V G Y M M P K D G K D Y F Y A R DOI. GATTTGACTC AGATTGCCTT TGCCGAACAA GAACTAATGC TTAAAGATAA GAAGCATTAC D L T Q I A F A E Q E L M L K D K K H Y CGTTATGACA TTGTTGACAC AGGTATTGAG CCACGACTTG CTGTAGATGT GTCAAGTCTG 1740 V D T G I E P R L A V D V S S L CCGATGCATG CTGGTAATGC TACTTACGAT ACTGGAAGTT CGTTTGTTAT CCCACATATT 1800 PMHAGNATYD TGSSFVIPHI GATCATATCC ATGTCGTTCC GTATTCATGG TTGACGCGCG ATCAGATTGC AACAGTCAAG 1860 D H I H V V P Y S W L T R D Q I A TATGTGATGC AACACCCCGA AGTTCGTCCG GATGTATGGT CTAAGCCAGG GCATGAAGAG 1920 Y V M Q H P E V R P D V W S K P G H E E TCAGGTTCGG TCATTCCAAA TGTTACGCCT CTTGATAAAC GTGCTGGTAT GCCAAACTGG 1980 S G S V I P N V T P L D K R A G M P N W CAAATTATCC ATTCTGCTGA AGAAGTTCAA AAAGCCCTAG CAGAAGGTCG TTTTGCAACA 2040 Q I I H S A E E V Q K A L A E G R F A T CCAGACGGCT ATATTTCGA TCCACGAGAT GTTTTGGCCA AAGAAACTTT TGTATGGAAA 2100 PDGY I FD PRD V L A K E T F V W K GATGGCTCCT TTAGCATCCC AAGAGCAGAT GGCAGTTCAT TGAGAACCAT TAATAAATCT D G S F S I P R A D G S S L R T I NKS GATCTATCCC AAGCTGAGTG GCAACAAGCT CAAGAGTTAT TGGCAAAGAA AAATACTGGT 2220 D L S Q A E W QQAQELL AKK NTG GATGCTACTG ATACGGATAA ACCCAAAGAA AAGCAACAGG CAGATAAGAG CAATGAAAAC 2280 DAT D T D K P K E K Q Q A D K S N E N CAACAGCCAA GTGAAGCCAG TAAAGAAGAA AAAGAATCAG ATGACTTTAT AGACAGTTTA 2340 Q Q P S E A S K E E K E S D D F I D S L CCAGACTATG GTCTAGATAG AGCAACCCTA GAAGATCATA TCAATCAATT AGCACAAAAA 2400 PDYG LDR ATL EDHI NQL AQK GCTAATATCG ATCCTAAGTA TCTCATTTTC CAACCAGAAG GTGTCCAATT TTATAATAAA 2460 ANIDPKY LIFQPEG VQF YN K

| AATGGTGAAT<br>N G E L  | TGGTAACTTA<br>V T Y    | TGATATCAAG<br>D I K           | ACACTTCAAC<br>T L Q Q   | AAATAAACCC<br>I N P     | TTAACCAAAA            | 2520 |
|------------------------|------------------------|-------------------------------|-------------------------|-------------------------|-----------------------|------|
| GAAGATCTCA             | TTGTTAAAGC             | ACTGCTTTGT                    | CAAAGCAAGT              | TACGGTGATT              | TTGAAGTCAT            | 2580 |
| TCTATGTAAC             | GAGTAGTGAT             | AAAAGTTGGA                    | TAATAGCGGT              | TTTCTTTTGC              | AAAGAAATGG            | 2640 |
| TATCCATGTT             | AGAATAGTAA             | AAAAAGAGGA                    | GGATTCTTGG              | ACTAATGTCA              | AATAAGTAGA            | 2700 |
| CAGAAAACTG             | TGTTATTTTA             | TTGCGTTAAA<br>I A N F         |                         | TCTTTCTGAT<br>E K Q     | TAGGGGTTAG<br>N P T L | 2760 |
| TCCTAGATTA<br>G L N    | GCCGTATGTG<br>A T H    | GGTTGTAATT<br>P N Y N         |                         | TTCTCAATGT<br>N E I     | ATTCAAAGCA<br>Y E F C | 2820 |
| GTCTAATTGA<br>D L Q    | ACCTGTTTGA<br>V Q K    | TATTTTGATA<br>I N Q Y         |                         | TTGATTTGTC<br>N I Q     | TATGCTTTAA<br>R H K L | 2880 |
| ATACTTGAAA<br>Y K F    | AATGCTTCAG<br>F A E    | TTACGGCATT<br>T V A N         |                         | TATCCAGGAT<br>Y G P     | TAGAAAAAGA<br>N S F S | 2940 |
| ATGCATGATA<br>H M<br>< | TTGGCACTGC             | ACCCTAATAG                    | TGAGACGCAA              | GAAAAACACT              | TTTAGGCAAT<br>A I     | 3000 |
|                        |                        | GCGACTGGTC<br>PSQD            |                         |                         | TAGTTTCATT<br>R T E N | 3060 |
| ATAAAATGTA<br>Y F T    | ATGTAATTTI<br>I Y N    | TAACAATATT<br>K V I N         |                         | TCTTTGTTGT<br>D K N     | ATTTTCTCCT<br>Y K R R | 3120 |
| ATTATGGAAA<br>N H F    | TAAAAGGTTT<br>Y F T    | CAGTCTTTAG<br>E T K L         |                         | AACCATTCAA<br>F W E     | TACAGGCATT<br>I C A N | 3180 |
| ATCTGCAGGT<br>D A P    | GTTCCTTTTC<br>T G K    | GAGACATTGA<br>R S M S         |                         | TCTTTTTCCG<br>D K E     | TGCAAGCCTG<br>T C A Q | 3240 |
| Y Y A                  | ATAGAAGTA<br>M<br>{    | r ACACTGAGCC                  | TTGGTCACTG              | : TGTAAGATTG            | CTCCTTTATT            | 3300 |
|                        | TAACTGATT              |                               | A GTACAAAATO<br>L V F D |                         | CAATCTGAGA<br>C D S   | 3360 |
| TAGTGTAAGO             |                        | r cggttatag <i>i</i><br>R N Y | A GATTCATAAT<br>L N M I |                         | TACAATTTAC<br>Y L K   | 3420 |
|                        |                        | G GTAATATCTO<br>T I D         |                         |                         | TTATCGGCAT<br>K D A   | 3480 |
| GGAAATCCCC<br>H G D I  | G ACTCAATTT<br>R S L K | A TTATCTGTT<br>N D T          | A AATAATAAG<br>L Y Y X  | TTTACCCAAA<br>A K G L   | A TTGGGAACTT<br>N P V | 3540 |
| TCTTGGTACO             |                        | A AGCCAGCCA<br>L W G          |                         |                         | ACTTTCTTTG<br>V K K   | 3600 |
| TATTAACAG<br>T N V     | T CAATCCGTG<br>T L G H | G ATTTTTTG.<br>I K K          | A GCAATCGTG             | T AATGGTACGA<br>T I T R | A TAGCCATAAA<br>Y G Y | 3660 |
| TAAAGTGAT<br>I F H     |                        | G AGCTGTTCA                   | A TTAATTCAA             | T AAGGTCATC             | T TTTTTTGCGG          | 3720 |

| CTTCTCATA             | C TCCTT          | TTTCC         | AACG   | GTAAT.               | A GGT      | CGACC         | GC TT        | GACCTTA         | A AACACI          | ירייי א | 3700 |
|-----------------------|------------------|---------------|--------|----------------------|------------|---------------|--------------|-----------------|-------------------|---------|------|
| AATGAAAACI            | T ATCGG          | STAGT         | TGTT   | TTTAT                | A GTC      | TTCCA         | CA AGO       | CTTGATA         | A GACTT           | CTAC    | 3780 |
| ATCGATTTCC<br>I S K   | TTATCA           | AAGCC         | TCGA'  | TACTT'               | ייייי יי   | ስ እ C እ C c   | ·            |                 | ar GACTIF         | · K     | 3840 |
|                       |                  |               |        | - 10                 | 11         | r r           | D            | V Q             | Loi               |         |      |
|                       |                  |               | _      |                      | G          | 1 I           | ĭ            | QK              | G V G             | $\circ$ |      |
| TGAAAACGAT<br>H F R   |                  |               | _      |                      | **         | L/ [A]        | w            | T Y             | I OS              | N       |      |
| TTTTTGATGC<br>N K I   |                  |               |        |                      | 11         | 14 2          | ĸ            | G A 1           | KKM               | D       | 4080 |
| ATGCAAGCCA<br>I C A   |                  |               |        | •                    | Α.         | v v           | V            | M               |                   |         | 4140 |
| TTCTAGTTTA            | CTAAAT'          | TTCA A        | ACAGG  | AGTGT                | TTTT       | CTTTT         | <<br>5 TCT   | CATTTT <i>I</i> | GGGATTO           | CAGT    | 4200 |
| GCCTATTGTT            | GTCATC           | AATT A        | ATTTT' | TCTAA                | ATTC       | CCCGG         | A CTT        | AAATTGI         | GACCCTT           | GGT     | 4260 |
| CGGAATGAAA            | GAGAAG:          | IGTT C        | CTTC   | AATCT                | TTCT       | TTTATI        | AAG          | rgaaaac         | GCAACAC           | TTT     | 4320 |
| TCTGTACAAC            |                  |               |        |                      | • д        | 1 1           | R            | KT              | мрт               | . 0     | 4380 |
| GTAGTTGAGA<br>Y N L   |                  |               |        |                      | 14         | MA NA         | н            | VY              | Dкт               | K       | 4440 |
| AAGAGCTAGT<br>L A L   |                  |               | -      |                      | E          | Q I           | V            | FE              | IKF               | AGC     | 4500 |
| ACGATACGTA<br>R Y T   |                  |               |        | _                    | ATAA(<br>Y | GGATAA<br>P Y | CCAG<br>G    | CCTGAC<br>A O   | TAAGCGA           | ACG     | 4560 |
| TGTGATTCCA .<br>T I G |                  |               |        |                      | _          | ьΩ            | N            | υF              | EKG               | ACG     | 4620 |
| ATCTGAATGG A<br>D S H |                  |               |        |                      | -          | 1 P           | i,           | S O             | $I A \cap$        | ĸ       | 4680 |
| AACGAGTTCA (<br>V L E |                  |               |        |                      | 5          | <u> </u>      | 1.           | ı E             | RNY               | 'AG     | 4740 |
| GTCAATGATG A          |                  |               |        |                      | 14         | G V           | K 1          | √ Y             | Tr I. D           | .GT     | 4800 |
| GACTAAGGCT I<br>V L A |                  | GTC TT        | TCTT(  | GCTT :               | AAATT<br>F | GCCTG<br>Q R  | TCTAA        | AGTGGT<br>L H   | TGGGAATA          | .GG     | 4860 |
| GGCTTCATTC I<br>A E N | TGCCTCI<br>K G F | rag aa<br>R s | TGTG(  | GTTT (               | GAAGG<br>F | TGGCT<br>T A  | TTCTC        | SATAAA<br>Y     | CAGAAACC<br>V S V | AA      | 4920 |
| ATTGAGTCGC T<br>N L R |                  | GC GT         | CGAA1  | rccg <i>i</i><br>I R | ACGAC      | GTGAA<br>R S  | AGTGT        | GATAC           | CTTCGTTA<br>G E N | TT      | 4980 |
| CAAGCATATT T<br>L C I | ΊGAΤΤΤΤ          | TC TG         | CATC   | ~~~~ -               |            |               | CTATC<br>S D | GAGAA .         | AAATTCTT<br>F I R | TT      | 5040 |

| AATAGTTTCT<br>I T E              | TCAAACTCCG TTTCAGA<br>E F E T E S           |              | GCTTGATAGT<br>A Q Y | AATAACTTGA 5100<br>Y Y S S |  |  |  |  |
|----------------------------------|---------------------------------------------|--------------|---------------------|----------------------------|--|--|--|--|
| GTGTGGCATA<br>H P M              | TTCAGCCAGC GACACAT<br>N L W R C M           |              | TATTTATCCT<br>Y K D | TATTAGCAGT 5160<br>K N A T |  |  |  |  |
| GATTATTTCC<br>I I E<br>(SEQ ID N | CTTTTTGTGC CATAATC<br>R K T G Y D<br>IO:13) |              | K P Y               | TAATT 5215<br>R I<br>      |  |  |  |  |
| FIG. 3a                          |                                             |              |                     |                            |  |  |  |  |
| FGSALSTVE                        | EV KEIISEENIW LY                            | RLSCCHFT SYS | YWKLPTW             | 40                         |  |  |  |  |

FIG. 3b

(SEQ ID NO:14)

MGLATKDNQI AYIDDSKGKA KAPKTNKTMD QISAEEGISA EQIVVKITDQ 50 GYVTSHGDHY HFYNGKVPYD AIISEELLMT DPNYRFKQSD VINEILDGYV 100 IKVNGNYYVY LKPGSKRKNI RTKQQIAEQV AKGTKEAKEK GLAQVAHLSK 150 EEVAAVNEAK ROGRYTTDDG YIFSPTDIID DLGDAYLVPH GNHYHYIPKK 200 DLSPSELAAA QAYWSQKQGR GARPSDYRPT PAPGRRKAPI PDVTPNPGQG 250 HOPDNGGYHP APPRPNDASQ NKHQRDEFKG KTFKELLDQL HRLDLKYRHV 300 350 EEDGLIFEPT QVIKSNAFGY VVPHGDHYHI IPRSQLSPLE MELADRYLAG QTEDNDSGSE HSKPSDKEVT HTFLGHRIKA YGKGLDGKPY DTSDAYVFSK 400 450 ESIHSVDKSG VTAKHGDHFH YIGFGELEQY ELDEVANWVK AKGQADELAA ALDQEQGKEK PLFDTKKVSR KVTKDGKVGY MMPKDGKDYF YARDQLDLTQ 500 IAFAEQELML KDKKHYRYDI VDTGIEPRLA VDVSSLPMHA GNATYDTGSS 550 FVIPHIDHIH VVPYSWLTRD QIATVKYVMQ HPEVRPDVWS KPGHEESGSV 600 IPNVTPLDKR AGMPNWQIIH SAEEVQKALA EGRFATPDGY IFDPRDVLAK 650 ETFVWKDGSF SIPRADGSSL RTINKSDLSQ AEWQQAQELL AKKNTGDATD 700 TDKPKEKQQA DKSNENQQPS EASKEEKESD DFIDSLPDYG LDRATLEDHI 750 793 NOLAOKANID PKYLIFOPEG VQFYNKNGEL VTYDIKTLQQ INP (SEQ ID NO:15)

FIG. 3c

| MTDPNVPERO | SDVINEILDG |            |            |            |     |
|------------|------------|------------|------------|------------|-----|
|            |            | YVIKVNGNYY | VYLKPGSKRK | NIRTKQQIAE | 50  |
| QVAKGTKEAK | EKGLAQVAHL | SKEEVAAVNE | AKRQGRYTTD | DGYIFSPTDI | 100 |
| IDDLGDAYLV | PHGNHYHYIP | KKDLSPSELA |            |            |     |
| PTPAPGRRKA | PIPDVTPNPG |            | 2          |            | 150 |
|            |            | QGHQPDNGGY |            | SQNKHQRDEF | 200 |
|            | QLHRLDLKYR | HVEEDGLIFE | PTQVIKSNAF | GYVVPHGDHY | 250 |
| HIIPRSQLSP | LEMELADRYL | AGQTEDNDSG | SEHSKPSDKE |            |     |
| KAYGKGLDGK | PYDTSDAYVF |            | SGVTAKHGDH |            | 300 |
| QYELDEVANW | VKAKGQADEL |            |            | FHYIGFGELE | 350 |
|            |            | AAALDQEQGK | EKPLFDTKKV | SRKVTKDGKV | 400 |
| GYMMPKDGKD | YFYARDQLDL | TQIAFAEQEL | MLKDKKHYRY | DIVDTGIEPR | 450 |
| LAVDVSSLPM | HAGNATYDTG | SSFVIPHIDH | IHVVPYSWLT |            |     |
| MQHPEVRPDV | *****      |            |            | RDQIATVKYV | 500 |
| LAEGRFATPD |            | SVIPNVTPLD | KRAGMPNWQI | IHSAEEVQKA | 550 |
|            | GYIFDPRDVL | AKETFVWKDG | SFSIPRADGS | SLRTINKSDL | 600 |
| SQAEWQQAQE | LLAKKNTGDA | TDTDKPKEKO | QADKSNENQQ |            |     |
| SDDFIDSLPD |            |            |            |            | 650 |
| ELVTYDIKTL |            |            | IDPKYLIFQP | EGVQFYNKNG | 700 |
| D I KI L   | QQINP (SEQ | TD NO:16)  |            |            | 715 |
|            |            |            |            |            |     |

FIG. 3d

| MHSFSNPGYP    | YDNAVTEAFF | KYI.KHROTI | NR KHYQNIKQVQ |            |    |
|---------------|------------|------------|---------------|------------|----|
| YNNYNPHTAN    | IGITONOVED | MI BIGINGI | AK KHIQNIKQVQ | LDCFEYIENF | 50 |
| - THE THE HIN | TGTIPNOKEE | NYFNAIK    | (SEQ ID NO:17 | 7)         | 77 |

FIG. 3e

| MAYYQACTEK     | DIIRSMSRKG | TPADNACTEW | FUTUT MEET | F YFHNRRKYNK  |    |
|----------------|------------|------------|------------|---------------|----|
| DSTTNTUKNY     | TTEVATERNA | W          | THIVEKIET  | F YEHNRRKYNK  | 50 |
| DDT1141 A1(141 | TILINETRIO | QRLNDQSPVQ | YRKLIA (   | SEQ ID NO:18) | 26 |

FIG. 3f

| MENHFIYGYR | TTTDIIVVTU        | CT MILLIAM |             |             |     |
|------------|-------------------|------------|-------------|-------------|-----|
| 2112       | TINDDUNTH         | GTIANIKKAA | RIMKNNGWL   | RTRTKKVPNL  | 5.0 |
| GKAYYLTDNK | LSRDFHADKP        | KEKLVTDITY | LYFGNCKIV   | SSIMNLYNRE  |     |
| IIAYTISDCO | חיים זעז חייים אז | OT WE DE   | TIT ONCKET  | POSTMULINKE | 100 |
|            | PIDIVIDILIN       | QLKLPK (SE | EQ ID NO:19 | 9)          | 126 |

FIG. 3g

19/40

| MVKKAYSWET | KLACIDMKKA | GKSNRVIMET | LGIKNNSQIY | TWMKWYENEE | 50 |
|------------|------------|------------|------------|------------|----|
| LYRFHQGVGK | QYTYGKGLEH | LSEVEQLQLQ | VDLLKKYRGL | IRKSIK     | 96 |
| (SEQ ID NO | :20)       |            |            |            |    |

FIG. 3h

IRYPKASSGD YGTKREIITA NKDKYSISKM CRWLNMPHSS YYYQAVESVS 50
ETEFEETIKR IFLDSESRYG SRKIKICLNN EGITLSRRRI RRIMKRLNLV 100
SVYQKATFKP HSRGKNEAPI PNHLDRQFKQ ERPLQALVTD LTYVRVGNRW 150
AYVCLIIDLY NREIIGLSLG WHKTAELVKQ AIQSIPYALT KVKMFHSDRG 200
KEFDNQLIDE ILEAFGITRS LSQAGYPYDN AVAESTYRAF KIEFVYQETF 250
QLLEELALKT KDYVHWWNYH RIHGSLNYQT PMTKRLIA (SEQ ID NO:21) 288

FIG. 3i

| AATTTGAAA<br>N L K |          |          |          | GAGCAATAT          | CAGCAACAGT<br>A T V     | TTATGGTAAA<br>Y G K  | 60  |
|--------------------|----------|----------|----------|--------------------|-------------------------|----------------------|-----|
|                    |          |          |          |                    | G CGACTTATTT            | AGCTCTTTAT<br>A L Y  | 120 |
|                    |          |          |          |                    | TAGATGTTAC<br>D V T     | AGCCAACATT<br>A N I  | 180 |
| ATTCACGAA          |          |          |          |                    | r atgaagatga<br>y e d d | CTGTATGGGA<br>C M G  | 240 |
| CCATTGAGG<br>P L S |          |          |          | TTTGATGAA<br>F D E | A CTAATGATGA<br>I N D D | TAATACTATC<br>N T I  | 300 |
|                    |          |          |          | GATGCTAAA<br>D A K | CTATCCAAAC<br>I Q T     | TAAGCTTGAG<br>.K L E | 360 |
|                    |          |          |          | TCTGACCAT<br>S D H | G AACACACACC<br>E H T P | ACACTATGTA<br>H Y V  | 420 |
| CCTATGGA           |          |          |          |                    | T ATGAAAAGCA<br>Y E K Q | AACTGGTCTT<br>T G L  | 480 |
|                    |          |          |          |                    | C GCTTACTTGA<br>R L L E | ACGGGGTGTT<br>R G V  | 540 |
|                    |          |          |          |                    | C ATCAAGCTAA<br>H Q A N | TGAGTACATG<br>E Y M  | 600 |
| CCTTTAGA           | TTATA AA | TTCCG TT | CGGCTGCT | ATCTACGC           | G AAGCTATCTA            | TGAATTAATC           | 660 |

20/40

| P         | L                | E         | N        | I           | F            | R            | S            | I           | A A         | ]       | I y         | Y         | А        | Ε        | A                 | I                | Y        |          | E          | L              | I     |       |
|-----------|------------------|-----------|----------|-------------|--------------|--------------|--------------|-------------|-------------|---------|-------------|-----------|----------|----------|-------------------|------------------|----------|----------|------------|----------------|-------|-------|
| A.A<br>K  | ATA<br>•         | AAA       | TA       | ATC         | CTT          | AAA          | TA.          | AAI         | TATGI       | rg A    | ATCA        | TAF       | GAI      | 'A A     | AAGO              | GT               | GGT      | G 1      |            | ACA            | TGA   | A 720 |
| AG        | TGT              | CTT       | rg       | CCT         | CTT          | rtc <i>i</i> | A TA         | AGG         | TTAG        | A T     | TTG         | GA        | GAC      | T T      | TAT               | GA(              | CTG.     | A C      | TT         | GGA<br>E       | AAA   | A 780 |
| TA<br>I   | TAT<br>I         | TAA.<br>K | AG<br>A  | CAAT        | r<br>Laal    | AAA          | TG           | TTA         | CACA        | G A     | ATC         | :AA       | AAT      | T A      | -                 |                  | ->       |          |            |                |       | 3 940 |
| CC        | TTT              | STTT      | rG       | СТСС        | -יייר        | ממידי        | <u> አ</u> ክር | -<br>- תר   | ~ ~ ~       |         |             | , I       | N        | I        | T                 | Ε                | N        |          | G          | I              | D     |       |
|           |                  |           |          |             |              |              |              |             | - •         | _       | 14          | -         | L        | V        | G                 | Q                | Α        |          | Ρ          | G              | Τ.    |       |
|           |                  |           |          |             |              |              |              |             | GGAA<br>K   | D       | 11          | -         | , ,      | _        | D                 | R                | L        |          | R          | 0              | W     |       |
|           |                  |           |          |             |              |              | _            | -           | ACCA'       | 5       | G           | L         | . 1      | :        | Α                 | V                | L        |          | Ρ          | L              | D     |       |
|           |                  |           |          |             |              |              |              | _           | CAGG?<br>G  | ט       | -           | F         | 1        | -        | ĸ                 | ĸ                | G        | Ī        | -          | Α              | F     | 1080  |
|           |                  |           |          |             |              |              |              | _           | AAATO<br>M  | -       | 14          | v         | Ų        | ?        | L                 | T                | L        | I        |            | V              | G     | 1140  |
|           | Y<br>Y           | GCT<br>A  | C 2<br>Q | AGAA.<br>K  | ATA:<br>Y    | TTA<br>Y     | TCT<br>L     | TGG<br>G    | SAAGO<br>S  | TC<br>S | CGC<br>A    | CAC.<br>H | ATA<br>K | A.A      | LAAI<br>N         | CT <i>I</i><br>L | AAC<br>T | AG       | AA         | ACA<br>T       | GTT   | 1200  |
|           |                  |           |          |             |              |              |              |             | TATT.<br>Y  | ~       | -           | т         | V        |          | н                 | Р                | S        | P        | , ;        | R              | N     | 1260  |
|           |                  |           |          |             |              |              |              |             | GTTT<br>F   | _       | 1           | D         | L        |          | 1                 | V                | D        | L        | . (        | O .            | K     | 1320  |
| ATA       | GTA              | GCA(      | 3 A      | I I         | בדדב         | AA           | ACAT         | א ידיי      | n c c n     | TA      | GGA         | GTI       | rgg      | TA       | TGA<br>R          | GAG              | AT       | AA       | TC         | -<br>ATC'<br>L | TAC   | 1380  |
|           |                  |           |          |             |              |              | _            | •           | ACGG<br>T A |         |             | <u>r</u>  | D        | CT.      | 1                 | TTA<br>N         |          | G        | F          | Т              | G     | 1440  |
| GTG.<br>E | AAT:<br>F        | TAT<br>I  | ' C      | ACGA        | CAG          | AA           | CATI         | ттс         | GATT<br>D L | יאיד    | י איז       | 7 7 m     |          |          |                   |                  |          |          |            |                | _     | 1500  |
|           |                  |           |          | AGTG<br>S A | CTT.         | TA           | TGTC<br>C Q  | AA.<br>H    | AAAA<br>I > | AT<br>I | GAT1        | TAT<br>Y  | CT<br>L  | TAI<br>N | ATC <i>I</i><br>Q | AGA.<br>K        | AA       | TA:<br>Y | rge<br>G   | AA.<br>N       | ATC   | 1560  |
| GAT!      | TA <i>F</i><br>K | AAA<br>K  | A        | GGAA        | <b>ምም</b> ር: | ממ           | 7            | ~~~         | TATT        |         |             |           |          |          |                   |                  | AT       | ATI      | rtt        | 'AGA<br>D      | TT    | 1620  |
| ATT1      | TAAA<br>K        | AAA<br>N  | T        | AAAG.       | AAT:         | TT (         | SATT         | TAZ         | AAAC<br>L   | יי עיד  | · · · · · · |           | ΑT       | CCF      | ATCA<br>H         | LATA             | AT .     | GG1      | ľAG        | GTA            | ጥር    | 1680  |
| ATTA<br>Y | ATCT<br>L        | GCA<br>Q  | AC       | GAAG        | AAG          | CT C         | TGA          | AAC         |             | C D D   |             |           |          |          |                   |                  |          |          |            |                |       | 1740  |
| AATO      | GTA              | TGG       | AA       | TTT         | GCCA         | A TA         | GGC          | CGT         | GTG         | GAA     | GCG         | CA        | CG       | TTI      | 'TAG              | CTC              | CA (     | CTI      | TG.        | АТТ            | ΔT    | 1800  |
| GGTT      | TTC              | GTA       | AG       | TTA         | AACI         | T A          | GAT          | GTA         | .GA.A       | GAT     | 'TTA        | AA        | AC       | CGI      | TTG               | AAA              | AC (     | GCA      | AT'        | TGA            | AG    | 1860  |
| CGCA      | TTT              | TCA       | TA       | AAG         | ATGI         | TA           | TCT          | <b>A</b> AG | GGG         | TTA     | GCT         | TT:       | rg .     | AAC      | TAA               | AT <i>P</i>      | C C      | ממר      | <b>ል</b> ጥ |                | d) d) | 1020  |

| TATCTATATG            | GGAATGAAAA          | ACTTTATCGC          | TATGCTTTAG            | AGATACTCAA        | ACAGCTTGGT          | 1980 |
|-----------------------|---------------------|---------------------|-----------------------|-------------------|---------------------|------|
| TGTAAACAAT            | ACTCTATAGG          | CTCTGACGGT          | CATATTCCTG            | AACATTTTTG        | TTATGAATTT          | 2040 |
| GATAGACTTC            | AAGGTCTGCT          | AAAGGACTAT          | CAAATTGATG            | AAAATCATTT        | GATATGAGGA          | 2100 |
| AATTTTTGAT            | AAAAAAGCTA          | GGCAATATTG          | CTTAGCTTTT            | TTGTAATGCT        | ATTGATAGTT          | 2160 |
| TTAGTGAAAA            | TTTCAAAAAA          | ATAAAGAAAT          | CATTTACTTG            | TTGCAAGCGC        | TTGCGTAAAT          | 2220 |
| TGTTATGATT            | TTATTGGTAA          | CAATTCATTA          | AAAAAGGAGA            | ATGATATGAA<br>M K | R K D               | 2280 |
| LFGD                  | K Q T               |                     | I R K L               | S V G             | V A S               | 2340 |
| VTTG                  | V C I               | TTTTCTTCAT<br>F L H | S P Q V               | F A E             | E V S               | 2400 |
| GTTTCTCCTG            | CAACTACAGC          | GATTGCAGAG          | TCGAATATTA            | ATCAGGTTGA        | CAACCAACAA          | 2460 |
| V S P A               | T T A               | I A E               | S N I N               | Q V D             | N Q Q               |      |
| TCTACTAATT            | TAAAAGATGA          | CATAAACTCA          | AACTCTGAGA            | CGGTTGTGAC        | ACCCTCAGAT          | 2520 |
| S T N L               | K D D               | I N S               | N S E T               | V V T             | P S D               |      |
| ATGCCGGATA            | CCAAGCAATT          | AGTATCAGAT          | GAAACTGACA            | CTCAAAAGGG        | AGTGACAGAG          | 2580 |
| M P D T               | K Q L               | V S D               | E T D T               | Q K G             | V T E               |      |
| CCGGATAAGG            | CGACAAGCCT          | GCTTGAAGAA          | AATAAAGGTC            | CTGTTTCAGA        | TAAAAATACC          | 2640 |
| P D K A               | T S L               | L E E               | N K G P               | V S D             | K N T               |      |
| TTAGATTTAA            | AAGTAGCACC          | ATCTACATTG          | CAAAATACTC            | CCGACAAAAC        | TTCTCAAGCT          | 2700 |
| L D L K               | V A P               | S T L               | Q N T P               | D K T             | S Q A               |      |
| ATAGGTGCTC<br>I G A P | CAAGCCCTAC<br>S P T | CTTGAAAGTA<br>L K V | GCTAATCAAG<br>A N Q A |                   | TGAAAATGGT<br>E N G | 2760 |
| TACTTTAGGC            | TACATCTTAA          | AGAATTGCCT          | CAAGGTCATC            | CTGTAGAAAG        | CACTGGACTT          | 2820 |
| Y F R L               | H L K               | E L P               | Q G H P               | V E S             | T G L               |      |
| TGGATATGGG            | GAGATGTTGA          | TCAACCGTCT          | AGTAATTGGC            | CAAATGGTGC        | TATCCCTATG          | 2880 |
| W I W G               | D V D               | Q P S               | S N W P               | N G A             | I P M               |      |
| ACTGATGCTA            | AGAAAGATGA          | TTACGGTTAT          | TATGTTGATT            | TTAAATTATC        | TGAAAAACAA          | 2940 |
| T D A K               | K D D               | Y G Y               | Y V D F               | K L S             | E K Q               |      |
| CGAAAACAAA            | TATCTTTTTT          | AATTAATAAC          | AAAGCAGGGA            | CAAATTTAAG        | CGGCGATCAT          | 3000 |
| R K Q I               | S F L               | I N N               | K A G T               | N L S             | G D H               |      |
| CATATTCCAT            | TATTACGACC          | TGAGATGAAC          | CAAGTTTGGA            | TTGATGAAAA        | GTACGGTATA          | 3060 |
| H I P L               | L R P               | E M N               | Q V W I               | D E K             | Y G I               |      |
| CATACTTATC            | AACCCCTCAA-         | AGAAGGGTAT          | GTCCGTATTA            | ACTATTTGAG        | TTCCTCTAGT          | 3120 |
| H T Y Q               | P L K               | E G Y               | V R I N               | Y L S             | S S S               |      |
| AACTATGACC            | ACTTATCAGC          | ATGGCTCTTT          | AAAGATGTTG            | CAACCCCYTC        | AACAACTTGG          | 3180 |
| N Y D H               | L S A               | W L F               | K D V A               | T P S             | T T W               |      |
| CCAGATGGTA<br>P D G S | GTAATTTTGT<br>N F V | GAATCAAGGA<br>N O G | CTATATGGAA            | GGTATATTGA        | TGTATCACTA          | 3240 |

| AAAACTAACG CCAAAGAGAT TGGTTTTCTA ATCTTAGATG AAAGTAAGAC AGGAG $K$ T $N$ A $K$ E $I$ G F $L$ I $L$ D E $S$ K T G D                                                                                                                                                                                  | D A            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| GTGAAAGTTC AACCCAACGA CTATGTTTTT AGAGATTTAG CTAACCATAA CCAAA $f V \ K \ V \ Q \ P \ N \ D \ V \ F \ R \ D \ L \ A \ N \ H \ N \ Q \ I$                                                                                                                                                            | F              |
| GTAAAAGATA AGGATCCAAA GGTTTATAAT AATCCTTATT ACATTGATCA AGTGC.<br>V K D K D P K V Y N N P Y Y I D Q V Q                                                                                                                                                                                            | L              |
| AAGGATGCCC AACAAATTGA TTTAACAAGT ATTCAAGCAA GTTTTACAAC TCTAGA                                                                                                                                                                                                                                     | G              |
| GTAGATAAAA CTGAAATTTT AAAAGAATTG AAAGTGACTG ATAAAAATCA AAATGO<br>V D K T E I L K E L K V T D K N Q N A                                                                                                                                                                                            | I              |
| CAAATTTCTG ATATCACTCT CGATACTAGT AAATCTCTTT TAATAATCAA AGGCGA ${\sf Q}$ I S D I T L D T S K S L L I I K G D                                                                                                                                                                                       | F              |
| AATCCTAAAC AAGGTCATTT CAACATATCT TATAATGGTA ACAATGTCAT GACAAGN PKQGHFNISYNGNNVMTR                                                                                                                                                                                                                 | Q              |
| TCTTGGGAAT TTAAAGACCA ACTTTATGCT TATAGTGGAA ATTTAGGTGC AGTTCT<br>S W E F K D Q L Y A Y S G N L G A V L                                                                                                                                                                                            | N              |
| CAAGATGGTT CAAAAGTTGA AGCCAGCCTC TGGTCACCGA GTGCTGATAG TGTCAC $\mathbb Q$ $\mathbb D$ $\mathbb G$ $\mathbb S$ $\mathbb K$ $\mathbb V$ $\mathbb E$ $\mathbb A$ $\mathbb S$ $\mathbb L$ $\mathbb W$ $\mathbb S$ $\mathbb P$ $\mathbb S$ $\mathbb A$ $\mathbb D$ $\mathbb S$ $\mathbb V$ $\mathbb T$ | M              |
| ATTATTTATG ACAAAGATAA CCAAAACAGG GTTGTAGCGA CTACCCCCCT TGTGAA I I Y D K D N Q N R V V A T T P L V K                                                                                                                                                                                               | N              |
| AATAAAGGTG TTTGGCAGAC GATACTTGAT ACTAAATTAG GTATTAAAAA CTATAC ${\sf N}$ K G V W Q T I L D T K L G I K N Y T                                                                                                                                                                                       | G              |
| TACTATTATC TTTACGAAAT AAAAAGAGGT AAGGATAAGG TTAAGATTTT AGATCC'<br>Y Y Y L Y E I K R G K D K V K I L D P                                                                                                                                                                                           | Y              |
| GCAAAGTCAT TAGCAGAGTG GGATAGTAAT ACTGTTAATG ATGATATTAA AACGGCTA K S L A E W D S N T V N D D I K T A                                                                                                                                                                                               | K              |
| GCAGCTTTTG TAAATCCAAG TCAACTTGGA CCTCAAAATT TAAGTTTTGC TAAAATT A A F V N P S Q L G P Q N L S F A K I                                                                                                                                                                                              | A              |
| AATTTTAAAG GAAGACAAGA TGCTGTTATA TACGAAGCAC ATGTAAGAGA CTTCACTN F K G R Q D A V I Y E A H V R D F T                                                                                                                                                                                               | S              |
| GATCGATCTT TGGATGGAAA ATTAAAAAAT CAATTTGGTA CCTTTGCAGC CTTTTCADD R S L D G K L K N Q F G T F A A F S                                                                                                                                                                                              | E              |
| AAACTAGATT ATTTACAGAA ATTAGGAGTT ACACACATTC AGCTTTTACC GGTATTG<br>K L D Y L Q K L G V T H I Q L L P V L                                                                                                                                                                                           | S              |
| TATTTTTATG TTAATGAAAT GGATAAGTCA CGCTCAACAG CTTACACTTC CTCAGACY FYVNEM DKSRSTAYTSSD                                                                                                                                                                                                               | N              |
| AATTACAATT GGGGCTATGA CCCACAGAGC TATTTTGCTC TTTCTGGGAT GTATTCA N Y N W G Y D P Q S Y F A L S G M Y S                                                                                                                                                                                              | E              |
| AAACCAAAAG ATCCATCAGC ACGTATCGCC GAATTAAAAC AATTAATACA TGATATTK PKD PSA RIA ELKQLIH DI                                                                                                                                                                                                            | TCAT 4440<br>H |

| AAACGTGGCA            | TGGGGGTTAT | ACTTGATGTC          | GTCTATAATC | ACACTGCAAA | AACTTATCTC          | 4500 |
|-----------------------|------------|---------------------|------------|------------|---------------------|------|
| K R G M               | G V I      | L D V               | V Y N H    | T A K      | T Y L               |      |
| TTTGAGGATA<br>F E D I |            | TTATTATCAC<br>Y Y H |            |            | ACCAAGAGAA<br>P R E | 4560 |
| AGTTTTGGAG            | GGGGACGTTT | AGGAACCACT          | CATGCAATGA | GTCGTCGTGT | TTTGGTTGAT          | 4620 |
| S F G G               | G R L      | G T T               | H A M S    | R R V      | L V D               |      |
| TCCATTAAAT            | ATCTTACAAG | TGAATTTAAA          | GTTGATGGTT | TCCGTTTTGA | TATGATGGGA          | 4680 |
| S I K Y               | L T S      | E F K               | V D G F    | R F D      | M M G               |      |
| GATCATGATG            | CGGCTGCGAT | TGAATTAGCT          | TATAAAGAAG | CTAAAGCTAT | TAATCCTAAT          | 4740 |
| D H D A               | A A I      | E L A               | Y K E A    | K A I      | N P N               |      |
| ATGATTATGA            | TTGGTGAGGG | CTGGAGAACA          | TTCCAAGGCG | ATCAAGGTCA | GCCGGTTAAA          | 4800 |
| M I M I               | G E G      | W R T               | F Q G D    | Q G Q      | P V K               |      |
| CCAGCTGACC            | AAGATTGGAT | GAAGTCAACC          | GATACAGTTG | GCGTCTTTTC | AGATGATATT          | 4860 |
| P A D Q               | D W M      | K S T               | D T V G    | V F S      | D D I               |      |
| CGTAATAGCT            | TGAAATCTGG | TTTTCCAAAT          | GAAGGTACTC | CAGCTTTCAT | CACAGGTGGC          | 4920 |
| R N S L               | K S G      | F P N               | E G T P    | A F I      | T G G               |      |
| CCACAATCTT            | TACAAGGTAT | TTTTAAAAAT          | ATCAAAGCAC | AACCTGGGAA | TTTTGAAGCA          | 4980 |
| P Q S L               | Q G I      | F K N               | I K A Q    | P G N      | F E A               |      |
| GATTCGCCAG            | GAGATGTGGT | GCAGTATATT          | GCTGCACATG | ATAACCTTAC | CTTGCATGAT          | 5040 |
| D S P G               | D V V      | Q Y I               | A A H D    | N L T      | L H D               |      |
| GTGATTGCAA<br>V I A K |            | (SEQ ID NO          | 0:22)      |            |                     | 5058 |

## FIG. 4a

| NLKAELSVED | EQYTATVYGK | SAHGSTPQEG         | VNGATYLALY | LSQFDFEGPA | 50  |
|------------|------------|--------------------|------------|------------|-----|
| RAFLDVTANI | IHEDFSGEKL | GVAYEDDCMG         | PLSMNAGVFQ | FDETNDDNTI | 100 |
| ALNFRYPQGT | DAKTIQTKLE | ${\tt KLNGVEKVTL}$ | SDHEHTPHYV | PMDDELVSTL | 150 |
| LAVYEKQTGL | KGHEQVIGGG | TFGRLLERGV         | AYGAMFPGDE | NTMHQANEYM | 200 |
| PLENIFRSAA | IYAEAIYELI | K (SEQ ID          | NO:23)     |            | 221 |

### FIG. 4b

| MTDLEKIIKA  | IKSDSQNQNY | TENGIDPLFA | APKTARINIV | GQAPGLKTQE | 50  |
|-------------|------------|------------|------------|------------|-----|
| ARLYWKDKSG  | DRLRQWLGVD | EETFYHSGKF | AVLPLDFYYP | GKGKSGDLPP | 100 |
| RKGFAEKWHP  | LILKEMPNVQ | LTLLVGQYAQ | KYYLGSSAHK | NLTETVKAYK | 150 |
| DYLPDYLPLV  | HPSPRNQIWL | KKNPWFEKDL | IVDLQKIVAD | ILKD       | 194 |
| (SEQ ID NO: | :24)       |            |            |            |     |

FIG. 4c

| MRDNHLHTYF | SYDCQTAFED | YINGFTGEFI | TTEHFDLSNP   | YTGQDDVPDY | 50  |
|------------|------------|------------|--------------|------------|-----|
| SAYCQKIDYL | NQKYGNRFKK | GIEIGYFKDR | ESDILDYLKN   | KEFDLKLLSI | 100 |
| HHNGRYDYLQ | EEALKVPTKG | AFSRLL (SE | EQ ID NO:25) | <b></b>    | 126 |

FIG. 4d

| MYDYDT ECDY | OMOVERTOR  |            | •          |              |     |
|-------------|------------|------------|------------|--------------|-----|
| MKRKDLFGDK  |            | VGVASVTTGV | CIFLHSPQVF | AEEVSVSPAT   | 50  |
| TAIAESNINQ  | VDNQQSTNLK | DDINSNSETV | VTPSDMPDTK | QLVSDETDTQ   | 100 |
| KGVTEPDKAT  | SLLEENKGPV | SDKNTLDLKV | APSTLQNTPD | KTSQAIGAPS   | 150 |
| PTLKVANQAP  | RIENGYFRLH | LKELPQGHPV | ESTGLWIWGD | VDQPSSNWPN   | 200 |
| GAIPMTDAKK  | DDYGYYVDFK | LSEKQRKQIS | FLINNKAGTN | LSGDHHIPLL   | 250 |
| RPEMNQVWID  | EKYGIHTYQP | LKEGYVRINY | LSSSSNYDHL | SAWLFKDVAT   | 300 |
| PSTTWPDGSN  | FVNQGLYGRY | IDVSLKTNAK | EIGFLILDES | KTGDAVKVOP   | 350 |
| NDYVFRDLAN  | HNQIFVKDKD | PKVYNNPYYI | DQVQLKDAQQ | IDLTSIQASF   | 400 |
| TTLDGVDKTE  | ILKELKVTDK | NQNAIQISDI | TLDTSKSLLI | IKGDFNPKQG   | 450 |
| HFNISYNGNN  | VMTRQSWEFK | DQLYAYSGNL | GAVLNQDGSK | VEASLWSPSA   | 500 |
| DSVTMIIYDK  | DNQNRVVATT | PLVKNNKGVW | QTILDTKLGI | KNYTGYYYLY   | 550 |
| EIKRGKDKVK  | ILDPYAKSLA | EWDSNTVNDD | IKTAKAAFVN | PSQLGPQNLS   | 600 |
| FAKIANFKGR  | QDAVIYEAHV | RDFTSDRSLD | GKLKNQFGTF | AAFSEKLDYL   | 650 |
| QKLGVTHIQL  | LPVLSYFYVN | EMDKSRSTAY | TSSDNNYNWG | YDPQSYFALS   | 700 |
| GMYSEKPKDP  | SARIAELKQL | IHDIHKRGMG | VILDVVYNHT | AKTYLFEDIE   | 750 |
| PNYYHFMNED  | GSPRESFGGG | RLGTTHAMSR | RVLVDSIKYL | TSEFKVDGFR   | 800 |
| FDMMGDHDAA  | AIELAYKEAK | AINPNMIMIG | EGWRTFQGDQ |              | 850 |
| WMKSTDTVGV  | FSDDIRNSLK | SGFPNEGTPA | FITGGPQSLQ | GIFKNIKAQP   | 900 |
| GNFEADSPGD  | VVQYIAAHDN | LTLHDVIAKS | I (SEQ ID  |              | 931 |
|             |            |            | . ~        | <del>-</del> | J   |

FIG. 4e

| AATTCAAAGT          | TTGACAGAAG            | GTCAACTTCG          | TTCTGATATC          | CCTGAGTTCC             | GTGCTGGTGA          | 60   |
|---------------------|-----------------------|---------------------|---------------------|------------------------|---------------------|------|
| I Q S<br>>          | LTEG                  | <b>.</b>            | S D I               | PEFR                   | 5 5                 |      |
| TACTGTACGT<br>T V R | GTTCACGCTA<br>V H A K | AAGTTGTTGA<br>V V E | AGGTACTCGC<br>G T R | GAACGTATTC<br>E R I Q  |                     | 120  |
| AGGTGTTGTT<br>G V V | ATCTCACGTA<br>I S R K | AAGGTCAAGG<br>G Q G | AATCTCAGAA<br>I S E | ATGTACACAG<br>M Y T V  | TACGTAAAAT<br>R K I | 180  |
| TTCTGGTGGT<br>S G G | ATCGGTGTAG<br>I G V E | AGCGTACATT<br>R T F | CCCAATTCAC<br>P I H | ACTCCTCGTG<br>T P R V  | TTGATAAAAT<br>D K I | 240  |
| CGAAGTTGTT<br>E V V | CGTTATGGTA<br>R Y G K | AAGTACGTCG<br>V R R | TGCTAAACTT<br>A K L | TACTACTTAC<br>Y Y L R  |                     | 300  |
| AGGTAAAGCT          | GCACGTATTA            | AAGAAATCCG          | TCGTTAATTT          | TGATGATCAG             | ATTTTAAAAA          | 360  |
| TGCTTGGTTG          | TTTGAGGATA            | GTAACTATGT          | TTTAAAACTG          | GACAACCAAG             | ACGTAAAAAA          | 420  |
| TCTGCCTGTG          | GGCAGTTTTT            | TTACTAGGTC          | CCCTTAGTTC          | AATGGATATA<br>. H I Y  | ACAACTCCCT<br>C S G | 480  |
| CCTAAGGAGT<br>G L S | AATTGCTGGT<br>Y N S T | TCGATTCCGG<br>R N R | CAGGGGACAT<br>C P V | ATTCATTGCA<br>Y E N C  | TGTAAATAGC<br>T F L | 540  |
| GGTTTAGAGC<br>P K S | TATTTTGCCC<br>S N Q G | CAAATTTCTC<br>L N R | TGATTAAGTT<br>Q N L | TATCGTTCCT<br>K D N R  | ATCTTTTTGT<br>D K Q | 600  |
| TCTTGTAATT<br>E Q L | GATGTGCGTA<br>Q H A Y | AACTTCTAAA<br>V E L | GTGATATTTA<br>T I N | AATTCTCGTG<br>L N E H  | ATCTAAAACT<br>D L V | 660  |
| TGAGAGATGG<br>Q S I | AAATTAGATA<br>S I L Y | GCTTGCAAAT<br>S A F | GTATGCCTGA<br>T H R | GAGAGTGCAC<br>L S H V  | TCGTACCTCG<br>R V E | 720  |
| CGACCAGTTA<br>R G T | TTTTTCGGAT<br>I K R I | AGTTTTATTG<br>T K N | ACTGCATTAT<br>V A N | TTGAAAGTTT<br>N S L K  | GTCGAATAAT<br>D F L | 780  |
| CTGTCGTTTT<br>R D N | TATTTTTTGT<br>K N K T | AAATTCATGC<br>F E H | AAAAAAAATA<br>L F F | ATGTATCATT<br>L .T D N | GTCAATTGGT<br>D I P | 840  |
| ATATTTCTGA<br>I N R | TACTACTTTT<br>I S S K | GTTTTTTGTT<br>N K T | GGCAGGTATC<br>P L Y | TTTGGTTGAA<br>R Q N F  | ATGATAATCC<br>H Y D | 900  |
| CAAGTTTTAT<br>W T K | TAATTGATAA<br>N I S L | ATATTTGTTA<br>Y K N | GTGTAATCAA<br>T Y D | TATCATTAAC<br>I D N V  | TGTTAAACCT<br>T L G | 960  |
| AAACATTCAG<br>L C E | CGAAGCGCAT<br>A F R M | GCCAGTTTTA          | GCGATGAGGT          | ATAACGCTGC             | ATACGATTGA          | 1020 |
| TGTTGTGATT          | - 1                   | AATTTTTATC          | AAGCGTAAGT          | ATTCATTGGT             | TTCAAGAAAT          | 1080 |
| TTTATCTCTA          | TTTACGCCCC            | TTATTTTTTG          | CTTTAACCTT          | AGTGAATAAA             | CAAAAATTTT          | 1140 |
| TTTCTATATA          | TCCCTCGTGA            | ACAGCCATGG          | ATACGCAGGC          | TTTTACATGT             | ATGTTAAAAC          | 1200 |
| GCTTTACTGT          | ATCTTGCACA            | TGCGTTTGAC          | TATAATGATT          | TATGACTTGT             | TGATATTTAG          | 1260 |

| TGGAAGTAA  | r attgcaaagt | AATATATTTC   | CTATTATATG | TTTATACGAT | ATTCGATATT | 1320 |
|------------|--------------|--------------|------------|------------|------------|------|
| CCCACCCGT  | GTCGCGTTTA   | CGGAAATACG   | CCATTGATAT | ACTCCACATT | AGCTAAAGAA | 1380 |
| CAGGGTGTT  | AAGGCTACCT   | TGATGGAAAA   | GGCTCTCTTA | GAGATATTTG | TAAATGGTAT | 1440 |
| GATATCTCA  | GTCGCTCTGT   | TCTCCAAAAG   | TGGATAAAAC | GGTATACTAG | TGGTGAAGAC | 1500 |
| TTGAAAGCC  | CTAGTAGAGG   | ATATAGCCGT   | ATGAAACAAG | GAAGGCAAGC | CACATTTGAA | 1560 |
| GAACGTGTAG | AGATTGTTAA   | CTACACCATT   | GCCCATGGGA | AAGACTATCA | AGCAGCTATT | 1620 |
| GAGAAGTTTC | GTGTTTCCTA   | CCAACAAATT   | TATTCTTGGG | TGCGTAAGCT | TGAGAAGAAT | 1680 |
| GGCTCACAAG | GTTTGGTTGA   | TAGACGTGTG   | AAAGGGTTGG | AGAGTAGGCC | TGATTTAACC | 1740 |
| GAGATTGAGO | AACTTTAACT   | CAAGATTAAA   | CAATTGGAGG | AACGTAATCG | TCTCTTAGAA | 1800 |
| ATCGAGGTTA | GTTTACTAAA   | AAAGTTAGAA   | GACATCAAAC | GAGGAAACAG | ACGGTAAGAC | 1860 |
| TAGGTAAGCA | TTTAGCGGAG   | TTCCAAGTAA   | TCAAGAATTA | TTACGATGAG | GAATCTAATG | 1920 |
| TGCCTATTCA | GGCCTTATGC   | CAACTCTTGA   | AGGGGTCTCG | TTCAGGCTAT | TACAAGTGGC | 1980 |
| TCAATCGTCA | AAAAACAGAT   | TTTGAGACAA   | AAAATACAAA | GCTAATGGCT | AAAATCAAGG | 2040 |
| AACTTCGTAG | ACTCTACAAT   | GGTATCTTAG   | GTTATCGCCG | TATGACAACA | TTTATTAATC | 2100 |
| GTCAACTTGG | GACAACTTAA   | AACAAGAAAC   | GGATTCGTTG | ATTGATGAAC | ATTCTGGGGA | 2160 |
| TTAGTTCAGT | CATTCGTCGT   | GTTAGCCATG   | CTTGTACAAA | AGCTGGTGAC | AGATTTTACG | 2220 |
| AAGAAAATAT | TCTTAATCGT   | GAATTTACAG   | CCACAGCTCA | TAACCAGAAA | TGGTGCACAG | 2280 |
| ATGTCACCTA | TCTTCAATAC   | GGTCTGGGAG   | CTAAAGCTTA | TCTCAGTGCG | ATTAAAGACC | 2340 |
| TGTATAACGG | TTCTATTATC   | GCTTATGAGA   | TTAGTCACAA | CAATGAAATC | CACTTGTTAT | 2400 |
| GAAGACCATT | AAAAAGGGGC   | TAGAGCTCAA   | TCCAGGAGCC | ACACCTATCA | TCCATAGCGA | 2460 |
| TTGAGGTAGT | CAATATACTT   | CCAAAGAATA   | CCGTTATATC | ATACAACAAG | CTGGTCTGAC | 2520 |
| CTTATCCATG | TCCCGGATTG   | GCAAATGTAT   | TGATAATGCA | CCAACTGAAA | GTTTCTTTGG | 2580 |
|            | ACTGAGTCTT   |              |            |            |            | 2640 |
| TGATGTGGCA | CGTTATATCG   | AATTCTACAA   | CACACAACGT | TATCAATCAA | AATTAAACAA | 2700 |
| CCTGACTCCT | CTAGAATTCA   | GGAATCAGGT   | TGCATAACTT | ATCTTTTATT | ATTTGACTGT | 2760 |
| CTACTTGACA | GGGAGCCGTT   | CAGATTGCTT   | AACCTTTCTA | AATTTGCTAA | AATAGCTACA | 2820 |
| AGAAAACGAG | CCATTTAATG   | CTTATTTCTT   | ATACTGTCTT | GCCTCACGCT | CTCCTCGACC | 2880 |
|            | CGTGAGGCTT   |              |            |            |            | 2940 |
|            | GAGCCATCAA   |              |            |            |            | 3000 |
|            | TATATAAAA    |              |            |            |            | 3060 |
| ATGCCGCCCA | AAAGAACGTT   | AATAAAACAT . | AAACTACTAT | GTTAGCATAA | GACTTTATTT | 3120 |

| TTACAACTGA ATTTCATATA                  | AATGGATTAG                | AGTAAGGGAT            | AAAAGAAATT          | AGCATAGCTC          | 3180 |
|----------------------------------------|---------------------------|-----------------------|---------------------|---------------------|------|
| TTTTGAAAAT AAAAAAATTA                  | ATATAATATG                | GAAAAAATTT            | TATTTCATAA          | ACGTTTCATA          | 3240 |
| AAAGGTATGT AATCTAGTAT                  | TTAGGCAACA                | CTATTTTGTC            | ACTGGTGTCT          | AGTAACTTAT          | 3300 |
| AGATTGATAA TTTTACTAGT                  | AAACGTAATT                | CTTCGCTTTA            | AGAGTTAAAT          | GTCTATTTAT          | 3360 |
| TGTAAGCTAA ATTGGGAGGT                  | GAACTTATGT                | AAAATTAGAT            | AGGTACTGTC          | AAGTACGGGA          | 3420 |
| TGATTATTGA AACAGCCAGT                  | ATGCATCATA                | AAATCTGTAT            | TGCTTAATAA          | CTATTTCCTT          | 3480 |
| AACCAGACAT CAGTTCATTG                  | TTTATCATCG                | CTACCCTAAG            | TCTAGTTTTT          | TCAATAGAGC          | 3540 |
| ATTAGGTAGT TTTTGATAAT                  | AAAACTATAT                | AAACATGAGA            | ATTAGATTTC          | GTATTGCATT          | 3600 |
| CTTCATAATG AGTTATTTGA                  | GATTTTCCTT                | TGAATAAATA            | GATACGAAAT          | TCAGTAACTT          | 3660 |
| CATATATAAA CGGCTCTATC                  | ATTGAGATAG                | TTTGTCAAAT            | GAAGAAATTT          | TTAATGGAAA          | 3720 |
| TAGTTTTAAA AACATTAGTT                  | GTAGGCGATG                | TAAAAATATT            | AATCCAGTGG          | ATGCAATAGT          | 3780 |
| TGCGGAGTAA AAATAGAGAG                  | GAGTAATTAG                | GAAGTGATAA            | AAAATGCTAT          | AGCATATATT          | 3840 |
| ACCAGAAAAA AAAATAGAAC                  | ACTTATTATA                | TTTGCTATTT            | TAACAATTGT          | TCTTTCTTGC          | 3900 |
| TTGTATTCAT GTTTAACAAT                  | AATGAAATCA<br>M K S<br>l> | AGTAATGAAA<br>S N E I | TAGAAAAGGC<br>E K A | TTTATATGAA<br>L Y E | 3960 |
| AGTTCTAATT CTTCAATATC<br>S S N S S I S | AATTACAAAA<br>I T K       | AAAGATGGTA<br>K D G K | AATATTTTAA<br>Y F N | TATTAATCAA<br>I N Q | 4020 |
| TTTAAGAATA TTGAAAAAAT<br>F K N I E K I | AAAAGAGGTT<br>K E V       | GAAGAAAAA<br>E E K I  | TATTTCAATA<br>F Q Y | TGATGGATTA<br>D G L | 4080 |
| GCAAAATTGA AAGATCTTAA<br>A K L K D L K | AGTAGTTAGT<br>V V S       | GGTGAGCAAA<br>G E Q S | GTATAAATAG<br>I N R | AGAAGATTTA<br>E D L | 4140 |
| TCTGACGAAT TTAAAAATGT<br>S D E F K N V | TGTTTCACTA<br>V S L       | GAAGCTACAA<br>E A T S | GTAATACTAA<br>N T K | AAGAAATCTT<br>R N L | 4200 |
| TTATTTAGTA GTGGAGTATT<br>L F S S G V F | TAGTTTTAAA<br>S F K       | GAAGGAAAAA<br>E G K N | ATATAGAAGA<br>I E E | AAATGATAAG<br>N D K | 4260 |
| AATTCAATTC TTGTTCATGA<br>N S I L V H E | AGAATTTGCT<br>E F A       | AAACAAAACA<br>K Q N K |                     | GGGTGATGAA<br>G D E | 4320 |
| ATTGATCTTG AATTACTAGA<br>I D L E L L D | TACGGAAAAA<br>T E K       | AGTGGAAAAA<br>S G K I | TAAAAAGTCA<br>K S H | TAAATTTAAA<br>K F K | 4380 |
| ATTATAGGAA TCTTTTCTGG<br>I I G I F S G | TAAAAAACAG<br>K K Q       | GAAACATATA<br>E T Y T | CAGGATTATC<br>G L S | ATCTGATTTT<br>S D F | 4440 |
| AGCGAAAATA TGGTTTTTGT<br>S E N M V F V | AGATTATTCA<br>D Y S       | ACTAGCCAAG<br>T S Q E | AAATATTAAA<br>I L N | TAAATCAGAG<br>K S E | 4500 |
| AATAATAGAA TTGCAAATAA<br>N N R I A N K | AATTTTAATG<br>I L M       | TATTCTGGTA<br>Y S G S | GTTTAGAATC<br>L E S | TACAGAGCTT<br>T E L | 4560 |
| GCCTTAAACA AATTGAAAGA                  | CTTTAAAATT                | GATAAGTCAA            | AGTATTCTAT          | TAAGAAAGAT          | 4620 |

| A        | L         | N         | K        | L          | K                | D         | F         | K                 | I         | D        | K                 | S                 | K       | Y          | s         | I        | К         | K                 | D         |      |
|----------|-----------|-----------|----------|------------|------------------|-----------|-----------|-------------------|-----------|----------|-------------------|-------------------|---------|------------|-----------|----------|-----------|-------------------|-----------|------|
|          | 11        | ^         | r        |            | £                | ٥         | L         | £                 | S         | V        | S                 | G                 | I       | K          | Н         | Ι        | I         | K                 | I         | 4680 |
| ••       | •         | •         | ٠        |            | 1.1              | ш         | G         | G                 | 1         | V        | V                 | L                 | S       | L          | Ι         | L        | I         | L                 | W         | 4740 |
| TI<br>L  | AAC<br>R  | GAG?<br>E | AAA<br>R | GAAT<br>I  | TT <i>P</i><br>Y | ATGA<br>E | TAA<br>I  | 'AGG<br>G         | TATA<br>I | TT<br>F  | TTT<br>L          | ATC<br>S          | TA<br>I | TTGG<br>G  | AAC<br>T  | AAC<br>T | TAA<br>K  | GAT<br>I          | ACAA<br>Q | 4800 |
| I<br>I   | TAT<br>I  | AA1<br>R  | GC<br>Q  | AATI<br>F  | TAT<br>I         | TATT<br>F | TGA<br>E  | GTT<br>L          | AATA<br>I | TT<br>F  | CAT.<br>I         | ATC<br>S          | AA<br>I | TACC<br>P  | AAG<br>S  | TAT<br>I | AAT<br>I  | ATC<br>S          | CTCC      | 4860 |
| TT<br>L  | 'AT'<br>F | TTT<br>L  | PAT<br>G | GGAA<br>N  | TCI<br>L         | ACT<br>L  | ATT<br>L  | AAA<br>K          | AGTA<br>V | AT<br>I  | TGT.<br>V         | AGA<br>E          | AG<br>G | GATT<br>F  |           | TAA<br>N | CTC<br>S  | AGA<br>E          | GAAC<br>N | 4920 |
| TC<br>S  | AA:<br>M  | GAT<br>I  | TT<br>F  | TCGG<br>G  | TGG<br>G         | AAG<br>S  | TTT.<br>L | AAT<br>I          | AAAT<br>N | AA<br>K  | AAG<br>S          | CAG<br>S          | TT<br>F | TTAT       | GTT.<br>L | AAA<br>N | CAT       | AAC<br>T          | AACA<br>T | 4980 |
| CT<br>L  | TGC<br>A  | AGA<br>E  | AA<br>S  | GTTA<br>Y  | TTT<br>L         | 'AAT<br>I | ATT.      | AAT.<br>I         | AAGT<br>S | AT'<br>I | TAT'              | TGT<br>V          | TT<br>L | TATC:      | AGT<br>V  | TGT<br>V |           | GGC<br>A          |           | 5040 |
| TC<br>S  | ATI<br>L  | IAA'      | 'AT<br>L | TATT<br>F  | TAA<br>K         | GAA<br>K  | ACC:      | ACA.<br>Q         | AGAA<br>E | AT.      | ATT!<br>L         | ATC<br>S          | AA<br>K | AAAT<br>I  | AAG'<br>S |          | GGA       | GCA               | ATA       | 5100 |
| .,       | GGA<br>D  | +         | 'AT<br>L | TAGA<br>E  | AAT<br>I         | AAA<br>K  | GAA:<br>N | TGT:<br>V         | AAAT<br>N | TA(<br>Y | CAG:              | rta<br>Y          | CG<br>A | CAAA?<br>N | TC'<br>S  | TAA<br>K | AGA<br>E  | AAA<br>K          |           | 5160 |
| TT<br>L  | GTC<br>S  | AGG<br>G  | AG<br>V  | TAAA<br>N  | TCA<br>Q         | AAA<br>K  | ATT:      | IGA<br>E          | ACTT<br>L | GG2<br>G | AAA(<br>K         | GTT'<br>F         | TT<br>Y | ATGC(      | SAT<br>I  | AGT<br>V | AGG<br>G  |                   | GTCA<br>S | 5220 |
| GG.<br>G | AAC<br>T  | AGG<br>G  | AA<br>K  | AATC<br>S  | CAC<br>T         | ACT<br>L  | TCT:      | rtc<br>S          | CTTA<br>L | CT:<br>L | rgc <i>i</i><br>A | AGG2<br>G         | AC<br>L | TTGAT<br>D | raaz<br>K | AGT<br>V | TCA.      |                   |           | 5280 |
| AA.<br>K | AAT<br>I  | CTT<br>L  | GT<br>F  | TTAA<br>K  | GAA<br>N         | TGA<br>E  | AGA:      | TATA<br>I         | AGAA<br>E | AA(<br>K | Saaa<br>K         | AGG <i>I</i><br>G | T.<br>Y |            | 'AA'<br>N |          | CAG<br>R  | AAA)<br>K         |           | 5340 |
| AA'      | TAT<br>I  | ATC<br>S  | TT<br>L  | TGGT:<br>V | ATT<br>F         | TCA<br>Q  | AAA:<br>N | TAT<br>Y          | TAAT<br>N | TTA<br>L | ATA<br>I          | AGAT<br>D         | TT<br>Y | ATTTA<br>L | TC(<br>S  |          | GAT:      | rga <i>i</i><br>E |           | 5400 |
| •        | 1         |           | ٧        | TAAA'<br>N | r                | 5         | V         | ט                 | £         | S        | I                 | L                 | F       | E          | L         | G        | L         | D                 | K         | 5460 |
| •        | ¥         | _         | 10       |            | 14               | ٧         | [4]       | r                 | Ļ         | S        | G                 | G                 | Q       | Q          | Q         | R        | V         | A                 | I         | 5520 |
| SC:      | rag<br>R  | GGC.<br>A | AC<br>L  | TGGT?<br>V | ATC:<br>S        | AGA<br>D  | TGCC<br>A | CCC <i>F</i><br>P | ATA<br>I  | ATA<br>I | L<br>L            | AGCI<br>A         | G<br>D  | ATGAG<br>E | CCI<br>P  | TAC      | CGG1<br>G | raac<br>N         | CTA<br>L  | 5580 |
| A(       | CAG       | TGT       | TA       | CTGC       | rggz             | AGA       | AATA      | ATI               | . (       | SEC      | ) IC              | ) NC              | :2      | <b>7</b>   |           |          |           |                   |           | 5607 |

FIG. 5a

| IQSLTEGQLR | SDIPEFRAGD | TVRVHAKVVE         | GTRERIQIFE | GVVISRKGQG   | 50  |  |  |  |  |  |
|------------|------------|--------------------|------------|--------------|-----|--|--|--|--|--|
| ISEMYTVRKI | SGGIGVERTF | PIHTPRVDKI         | EVVRYGKVRR | AKLYYLRALQ   | 100 |  |  |  |  |  |
| GKAARIKEIR | R (SEQ ID  | NO:28)             |            |              | 111 |  |  |  |  |  |
|            |            | _                  |            |              |     |  |  |  |  |  |
|            |            | FIG. 5             | b          |              |     |  |  |  |  |  |
|            |            |                    |            |              |     |  |  |  |  |  |
|            |            |                    | FNQRYLPTKN |              | 50  |  |  |  |  |  |
|            |            |                    | IRKITGREVR |              | 100 |  |  |  |  |  |
| YLISISQVLD | HENLNITLEV | YAHQLQEQKD         | RNDKLNQRNL | GQNSSKPLFT   | 150 |  |  |  |  |  |
| CNEYVPCRNR | TSNYSLGGSC | YIH (SEQ           | ID NO:29)  | •            | 173 |  |  |  |  |  |
| D-0 5      |            |                    |            |              |     |  |  |  |  |  |
| FIG. 5c    |            |                    |            |              |     |  |  |  |  |  |
|            | *          | T million City Thi |            | ADDEDICT DOV | 50  |  |  |  |  |  |
|            |            |                    | INQFKNIEKI |              |     |  |  |  |  |  |
|            |            |                    | VSLEATSNTK |              | 100 |  |  |  |  |  |
|            |            | •                  | GDEIDLELLD |              | 150 |  |  |  |  |  |
| KFKIIGIFSG | KKQETYTGLS | SDFSENMVFV         | DYSTSQEILN | KSENNRIANK   | 200 |  |  |  |  |  |
| ILMYSGSLES | TELALNKLKD | FKIDKSKYSI         | KKDNKAFEES | LESVSGIKHI   | 250 |  |  |  |  |  |
| IKIMTYSIML | GGIVVLSLIL | I:LWLRERIYE        | IGIFLSIGTT | KIQIIRQFIF   | 300 |  |  |  |  |  |
| ELIFISIPSI | ISSLFLGNLL | LKVIVEGFIN         | SENSMIFGGS | LINKSSFMLN   | 350 |  |  |  |  |  |
| ITTLAESYLI | LISIIVLSVV | MASSLILFKK         | PQEILSKIS  |              | 389 |  |  |  |  |  |
| (SEQ ID NO | :30)       |                    |            |              |     |  |  |  |  |  |
|            |            | FIG. 5             | 5d         |              |     |  |  |  |  |  |
|            |            |                    |            |              |     |  |  |  |  |  |
|            |            |                    |            | GTGKSTLLSL   | 50  |  |  |  |  |  |
| LAGLDKVQTG | KILFKNEDIE | KKGYSNHRKN         | NISLVFQNYN | LIDYLSPIEN   | 100 |  |  |  |  |  |
| IRLVNKSVDE | SILFELGLDK | KQIKRNVMKL         | SGGQQQRVAI | ARALVSDAPI   | 150 |  |  |  |  |  |
| ILADEPTGNL | DSVTAGEII  | (SEQ ID NO         | :31)       |              | 169 |  |  |  |  |  |

FIG. 5e

| CATATGACAA TATTTTTCAA AGTCTACATC ACTTACTCGC CTGTCGTGGA AAATCTGGCA   | 60         |
|---------------------------------------------------------------------|------------|
| ATACATTAAT CGACCAATTA GTTGCTGATG GTTTACTTCA TGCAGATAAT CACTACCATT   |            |
| TITICAATGG GAAGTCTCTG GCCACTTTCA ATACTAACCA ATTGATTCGC CAACTTCTCT   | 120        |
| AIGIIGAAAT ATCCTTAGAT ACTATGTCTA GTGGTGAACA TGATTTAGTA AAACTTAAGA   |            |
| TATCAGACC CACTACCGAG CATACTATCC CCACGATGAT GACAGCTAGG CCCTAGGAG     | 240        |
| AAGGIAICAA TGATCCTGCC GCAGACCAAA AAACATACCA AATGGAGGGT GGGTTAGAA    | 300        |
| THAACAGCC TAAACACATA CAAGTTGACA CAAAACCATT TAAACAACAA CTAAAAACATA   | 360        |
| CITCAAAAII ACCCATCAGC CCTGCAACTG AAAGCTTCAC ACACATTCAC ACTTATTA CTC | 420        |
| TCAATGACTA TITTCTTTCT CGTGGTTTTG CTAATATATA CGTTTCACCT CTCCCTACTC   | 480        |
| CIGGCICIAC GGGTTTCATG ACCAGTGGGG ATTACCAACA AATACAAGC TTTAAAGCAC    | 540        |
| TCATTGATTG GTTAAATGGT AAGGTTACTG CATTCACAAG TCATAAACCA CATAAACAAC   | 600        |
| TCAAGGCTGA TTGGTCAAAC GGCCTTGTAG CAACCACAGG TAAATCTTAT CTCCCTACCA   | 660        |
| IGICAACTGG TTTAGCAACA ACTGGCGTTG AGGGGCTGAA AGTCATTATC CCTCAACGG    | 720        |
| CAATCTCCAC ATGGTATGAT TATTATCGAG AAAATGGGCT TGTGTGTAGT CCACGGGGGT   | 780        |
| ACCCCGGTGA AGATTTAGAC GTTTTTAACAG AATTAACATA CTCACGAAAC CTCTTTACCTC | 840        |
| GIGATTACAT CAAAAACAAC GATTGCTATC AAGCATTGTT AAATGAACAA TGAAAACCAA   | 900<br>960 |
| IIGACCGICA AAGIGGGGAT TACAACCAAT ACIGGCATGA CCGIDATIAC CORRESON     | 1020       |
| ICAAIAATGI CAAAAGTCGA GTAGTTTACA CTCATGGACT ACAGGATTGG AATGTTA      | 1020       |
| CAAGACATGI CTACAAAGTT TTCAATGCAT TGCCTCAAAC CATCAAAAA GAGGTTTTTT    | 1140       |
| TACATCAAGG TCAACATGTG TATATGCATA ATTGGCAGTC GATTCATTTT CCTCARA      | 1200       |
| IGAAIGCCII ACIAAGCCAA GAACTACTIG GCATTGACAA TCATTTCCAA TTAGAACAA    | 1260       |
| TCATTIGGCA AGATAATACT ACTGAGCAAA CTTGGCAAGT TTTAGATCCT TTGGCAGCAA   | 1320       |
| ACCAICAGA GCAAATTGGT TTAGGTGATA GTAAAAAACT TATTGATAAC CATTATGAGA    | 1380       |
| AAGAAGCCII IGATACTTAT TGTAAAGACT TCAATGTGTT CAAAAATCAT CTTTTCAAGG   | 1440       |
| GAAATAATAA AACCAATCAA ATCACTATTA ATCTTCCTCT AAAGAAAAT TATCTCCTCA    | 1500       |
| AIGGACAGIG CAAACTCCAT CTACGTGTTA AAACTAGTGA CAAAAAGGCC ATTTTATCAG   | 1560       |
| CCCAAATCII AGACTATGGT CCTAAAAAAC GATTCAAAGA TACACCAACC ATCAAATTGT   | 1620       |
| TAAACAGCCI TGATAATGGT AAAAATTTTG CCAGAGAAGC TTTACGTGAA CTCCCCTTTTA  | 1680       |
| CIAAAGAICA TTATCGTGTC ATCAGTAAAG GTGTCTTGAA CCTTCAAAT CCTAGAGAG     | 1740       |
| TACTIACAAT TGAGGCTATC GAGCCAGAAC AATGGTTTGA TATCGAGTTT ACCCTGAAC    | 1800       |
| CAAGIAIAIA ICAATTGAGT AAAGGTGATA ATCTAAGGAT TATCCTTTAT ACAAGGAT     | 1860       |
| IIGAACAIAC CATICGAGAT AATGCTAGTT ACTCTATAAC AGTAGATTTC ACTCAATGTT   | 1920       |
| ATTIAACTAT CCCAACTAAT CAAGGAAATT AACTTATGAA ACTTCTTACT AAACAACTA    | 1980       |
| IIGAIGAILE TCAACACTTT TGGTACCAGA TCAATTTATT ACAAGACACT AACTTGGGAG   | 2040       |
| CAGITITICA CCATGATAAT AAAAACATTC CACAGGTTGT TGCAACTATT CTTCATGATT   | 2100       |
| TACAAGGIIC CGGAAGTTCG AATCATTTCT GGTATTTTGG CAATACTACT CATACTTCT    | 2160       |
| TOCTIAIGAT TGCTCATTTA AATCGAAAAT TCTATATTCA GGTTAATTTA AAGCAGTTA    | 2220       |
| ACTITICACT CAATTTAATA GCTATAAATA ATTGGAAGAG TCTCCTCCAA ACTGAACTTC   | 2280       |
| AAGCTCTAAA CGATACCCTA GCAATATTC AATAAATAAG GTAGAATGGA GTGACAAAGC 2  | 2340       |
| AACGCGAGGG AGACTGATTA ATGTCATCTT ATTGGAATAA CTATCCTGAA CTTAAAAAAA 2 | 2400       |

| ATATTGATGA | AACCAATCAA  | CTAATTCAAG  | AAAGAATACA  | GGTCAGAAAT   | AAAGATATTG   | 2460 |
|------------|-------------|-------------|-------------|--------------|--------------|------|
| AAGCGGCGCT | AAGCCAACTC  | ACAGCTGCGG  | GAGGAAAACA  | GCTCAGACCA   | GCATTCTTTT   | 2520 |
| ACCTTTTTTC | TCAACTTGGT  | AATAAGGAGA  | ATCAAGATAC  | TCAGCAACTA   | AAGAAAATCG   | 2580 |
|            |             |             |             | TGATGATGTC   |              | 2640 |
|            |             |             |             | TGGCAAAGAC   |              | 2700 |
|            |             |             |             | TTTAGAATCT   |              | 2760 |
| CACCATTTAT | GAGGATTAAT  | GCAAAATCTA  | TGCGTAAAAT  | TCTCATGGGA   | GAATTGGACC   | 2820 |
| AGATGCACCT |             |             |             | CTATTTACGT   |              | 2880 |
| GTAAGACAGC | CGAACTCTTT  | AAATTAGCTA  | GCAAAGAAGG  | AGCTTACTTT   | GGTGGTGCAG   | 2940 |
| AGAAGGAGGT |             |             |             | CATTGGTATG   |              | 3000 |
|            |             |             |             | ATTTAATAAG   |              | 3060 |
|            |             |             |             | TGCCATTGAA   |              | 3120 |
|            |             |             |             | TACTGAAGAC   |              | 3180 |
|            |             |             |             | TCGCCATCTA   |              | 3240 |
|            |             |             |             | GAACTCTGCA   |              | 3300 |
|            |             |             |             |              | AAACATTCCA   | 3360 |
| CAATGCTAGA | AAAGCAGTTA  | GGGAATGTTT  | TTTTATTATC  | ATTTATTTAT   | CGCACCTATC   | 3420 |
|            |             |             |             | •            | ACTACTTTGA   | 3480 |
| GACAATTCTT |             |             |             |              | TAAGATACGA   | 3540 |
| TCAGCATGTT | CAATACCTTT  | TAAGTGATGI  | GTAATCCAA   | CTAAGGTCTT   | ACCTTCCAAT   | 3600 |
|            |             | TAAGGCTTGT  |             |              | AACAGTTGGC   | 3660 |
|            |             |             |             |              | AATTCTATGC   | 3720 |
|            |             |             |             |              | ACCATCTGAT   | 3780 |
|            |             |             |             |              | ATCTTCTTCA   | 3840 |
|            |             |             |             |              | AAGGTAGGGC   | 3900 |
| GCTTGTTGT  |             |             |             |              | A AACATCAGCA | 3960 |
| CCGCCTAGG  |             |             |             |              | ACTAGCTAAG   | 4020 |
| GTACTCTTG  |             |             |             |              | TTTAATATCC   | 4080 |
| AAATCTAAA' | T GATGCAAAA | C CCATTTCTC | T TGTGGCTTA | T ACTGGAAAC' | r TAAATTCTTG | 4140 |
| ACGGAAAAA  | T CATATGGCT | T ATTAGGCAA | T T (SEQ I  | D NO:32)     |              | 4171 |
|            |             |             |             |              |              |      |

FIG. 6a

| YDNIFQSLHH   | LLACRGKSGN   | TLIDOLVADO   | : II UA DAIME            | FNGKSLATFN    |     |
|--------------|--------------|--------------|--------------------------|---------------|-----|
| TNQLIREVVY   | VEISLDTMSS   | GFHDI WYWAT  |                          |               |     |
| GINDPAADOK   | TYOMEGALAV   | ACUAL AVAIL  | IRPTTEHTIP<br>KPFKEEVKHP | TMMTASPYHQ    | 100 |
| SETHIDSVSI   | NDVEL CDCD   | KÖNKHIÖADT   | KPFKEEVKHP               | SKLPISPATE    | 150 |
| TOWI NOVIMA  | NDIFLSRGFA   | NIYVSGVGTA   | GSTGFMTSGD               | YQQIQSFKAV    | 200 |
| IDWLNGKVTA   | FTSHKRDKQV   | KADWSNGLVA   | TTGKSYLGTM               | STGLATTGVE    | 250 |
| GLKVIIAEAA   | ISTWYDYYRE   | NGLVCSPGGY   | PGEDLDVLTE               | I.TVCDNT T NO | 300 |
| DYIKNNDCYQ . | ALLNEQSKAI   | DRQSGDYNQY   | WHDRNYLTHV               | NNVKSRVVYT    |     |
| HGLQDWNVKP   | T            |              | HQGQHVYMHN               |               | 350 |
| NALLSQELLG : |              | IWQDNTTEQT   | WQVLDAFGGN               |               | 400 |
| KKLIDNHYDK I |              |              |                          |               | 450 |
| GQCKLHLRVK T | TSDKKAILSA   | OTINVERVE    | NNKTNQITIN               | LPLKKNYLLN    | 500 |
| REALRELPFT F | KDHYRVISKC   | VINI ONDER!  | FKDTPTIKFL               | NSLDNGKNFA    | 550 |
| REALRELPFT F |              | ATMT DAKI DL | LTIEAIEPEQ               | WFDIEFSLQP    | 600 |
| SIYQLSKGDN I | SECTION 1    | EHTIRDNASY   | SITVDLSQSY               | LTIPTNQGN     | 649 |
| (SEQ 15 NO:3 | )3)          | FIG. 6       | _                        |               |     |
|              |              | 116. 6       | 5                        |               |     |
|              |              |              |                          |               |     |
| MKLLTKERFD D | SQHFWYQIN I  | LLOESNEGAV   | FDHDNKNIPQ '             |               |     |
| GSGSSNHFWY F | GNTTDTSII. N | TAHI NDVEV   | TOWN                     | VVATIVDDLQ    | 50  |
| KSLLQTQLEA L | NDTLATEO     | /SEO IS TO   | TQVNLKDFDF 1             | ALNLIAINNW    | 100 |
|              |              | (SEC ID NO   | :34)                     |               | 119 |
|              |              | FIG. 6c      |                          |               |     |
|              |              | - 10. 00     | •                        |               |     |
|              |              |              |                          |               |     |

MSSYWNNYPE LKKNIDETNQ LIQERIQVRN KDIEAALSQL TAAGGKQLRP 50
AFFYLFSQLG NKENQDTQQL KKIAASLEIL HVATLIHDDV IDDSPLRRGN 100
MTIQSKFGKD IAVYTGDLLF TVFFDLILES MTDTPFMRIN AKSMRKILMG 150
ELDQMHLRYN QQQGIHHYLR AISGKTAELF KLASKEGAYF GGAEKEVVRL 200
AGHIGFNIGM TFQILDDILD YTADKKTFNK PVLEDLTQGV YSLPLLLAIE 250
ENPDIFKPIL DKKTDMATED MEKIAYLVVS HRGVDKARHL ARKFTEKAIS 300
DINKLPQNSA KKQLLQLTNY LLKRKI (SEQ ID NO:35) 326

FIG. 6d

| LPNKPYDFSV     | KNLSFQYKPQ | EKWVLHHLDL | DIKEGEKIAI | LGRSGSGKST | 50  |  |
|----------------|------------|------------|------------|------------|-----|--|
| LASLLRGDLK     | ASQGKITLGG | ADVSIVGDCI | SNYIGVIQQA | PYLFNTTLLN | 100 |  |
| NIRIGNQDAS     | EEDVWKVLER | VGLKEMVTDL | SDGLYTMVDE | AGLRFSGGER | 150 |  |
| HRIALARILL     | KDVPIVILDE | PTVGLDPITE | QALLRVFMKE | LEGKTLVWIT | 200 |  |
| HHLKGIEHAD     | RILFIENGQL | ELEGSPQELS | QSSQRYRQLK | AADDGDL    | 247 |  |
| (SEQ ID NO:36) |            |            |            |            |     |  |

FIG. 6e

| AATTCTATTT GGAGGTTTTT CTTGAATAAA TGGTTAGTTA AGGCAAGTTC CTTAGTT                           | CTT CO   |
|------------------------------------------------------------------------------------------|----------|
| TIAGGIGGTA TGGTTTTATC TGCGGGTTCC CGAGTTTTAG CGGATACTTA TCTCCC                            |          |
| ATTGATAATG GTAGAATTAC AACAGGTTTC AATGGTTATC CTGGACATTC TCCCCTC                           | ~~ ·     |
| TAIGCIGITE CGACTGGAAC GATTATTAGG GCAGTGGCAG ATGGTACTCT CARACTER                          |          |
| GGAGCIGGAG CCAACTTTC TTGGATGACA GACTTAGCAG GAAATTGTCT CATGATT                            |          |
| CAIGCGGAIG GAAIGCAIAG IGGITACGCI CAIAIGICAC GIGIGGIGGC TACCACH                           | 222      |
| GAAAAAGICA AACAAGGAGA TATCATCGGT TACGTAGGAG CAACTGGTAT CCCCACC                           | 202      |
| CCICACCTIC ATTITGAATT TITACCAGCT AACCCTAATT TICAAAATGG TITCGATT                          | 202      |
| CGIATCAATC CAACGTCACT AATTGCTAAC GTTGCGACCT TTAGTGCAAA AACGCAAC                          | 707 540  |
| TCAGCTCCAA GCATTAAGCC ATTACAATCA GCTCCTGTAC AGAATCAATC TACTAAA                           | 100 m    |
| AAAGTGTATC GAGTAGATGA ATTACAAAAG GTTAATGGTG TTTGGTTACT CAAAAAAG                          |          |
| ACCUTAACGC CGACTGGGTT TGATTGGAAC GATAATGGTA TACCAGCATC ACADAMAG                          |          |
| GAGGITGATG CTAATGGTAA TTTGACAGCT GACCAGGTTC TTCAAAAACC TCCTTACA                          | ,        |
| ATCTTAATC CTAAAACTCT TAAGACTGTA GAAAAACCCA TCCAACCAAC ACCTGCTT                           |          |
| ACTIGGGCIA AGACACGCII IGCIAAIGGI AGIICAGIII GGCIICCGI TCLOLO                             |          |
| CAAGAACIGC ITTACAAATA GTTTGAGGTA TTGATTCATT GTTTTAAATC ACACTTTT                          |          |
| TACTAACTAA GTACAATTTC TTTAAACCGT CTGAAAATAA TTTTATAGTC CACTAAAC                          | mc       |
| IGAIAIIAIA GICTCGGACT AATAAAAAGG AAATAGGAAT IGAAGCAATG AAAAAGA                           | ma       |
| AAAAGGIACI AIIGACATCG ACAATGGCAG CTTCGCTATT ATCAGTCGCA ACTCTTCG                          | 30 1110  |
| CACAAGAAAC AGATACGACG TGGACAGCAC GTACTGTTTC AGAGGTAAAC CCTCATTTT                         | CC 1000  |
| TAMAGCAAGA CAATAAATCA TCATATACTG TGAAATATGG TGATACACTA ACCCTTAM                          | mm 1000  |
| CAGAAGCAAI GICAATTGAT ATGAATGTCT TAGCAAAAAT TAATAACATT CCACATA                           | a        |
| AICTIATITA TOOTGAGACA ACACTGACAG TAACTTACGA TOAGAGAGT CATACTCC                           | CN 1300  |
| CIICAATGAA AATAGAAACA CCAGCAACAA ATGCTGCTGG TCAAACAACA CCTACTGCT                         | 70 1440  |
| ATTIGAAAAC CAATCAAGTT TCTGTTGCAG ACCAAAAAGT TTCTCTCAAT ACAATTTTC                         | 20 1500  |
| AAGGIATGAC ACCAGAAGCA GCAACAACGA TTGTTTCGCC AATGAAGACA TATTCTTCT                         | PC 1560  |
| CGCCAGCTTT GAAATCAAAA GAAGTATTAG CACAAGAGCA AGCTGTTAGT CAAGGAGC                          | 1.00     |
| CIAATGAACA GGTATCAACA GCTCCTGTGA AGTCGATTAC TTCAGAAGTT CCACGAGG                          | 7. 7.000 |
| AAGAGGAAGT TAAACCAACT CAGACGTCAG TCAGTCAGTC AACAACAGTA TCAGGGGGG                         |          |
| CIGITGOCGC TGAAACACCA GCTCCAGTAG CTAAAGTAGC ACCGCTAACA ACTGTAGG                          |          |
| CCCCIAGAGT GGCAAGTGTT AAAGTAGTCA CTCCTAAAGT AGAAACTCCT CCAMGAGC                          |          |
| AGCAIGIAIC AGCICCAGCA GTTCCTGTGA CTACGACTTC AACAGCTACA CAGACTACA                         |          |
| TACAAGCGAC TGAAGTTAAG AGCGTTCCGG TAGCACAAAA AGCTCCAAGA GGAAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG |          |
| TAGCACAACC AGCTTCAACA ACAAATGCAG TAGCTGCACA TCCTGAAAAT CCAGGGGGGG                        |          |
| AACCICATGT TGCAGCTTAT AAAGAAAAAG TAGCGTCAAC TTATGGAGTT AATGAATTG                         |          |
| GIACAIACCG TGCAGGTGAT CCAGGTGATC ATGGTAAAGG TTTAGCACTC CAGTTTA                           |          |
| TAGGIAAAA CCAAGCACTT GGTAATGAAG TTGCACAGTA CTCTACAGA AATTAGGGA                           |          |
| CARACAT TICATATGTT ATCTGGCAAC AAAAGTTTTA CTCAAATACA AAAAGTTTTA                           |          |
| AIGGACCIGC TAATACTIGG AATGCAATGC CAGATCGTGG TGGCGTTACT CGGAAGG                           |          |
| ATGACCATGT TCACGTATCA TTTAACAAAT AATATAAAAA AGGAAGCTAT TTGGCTTCT                         | T 2400   |
|                                                                                          |          |

| TTTTATATGC | CTTGAATAGA | CTTTCAAGGT | TCTTATCTAA | AATTATTTTT | ATTGAGGAGA | 2460 |
|------------|------------|------------|------------|------------|------------|------|
| TTAAGCTATA | AGTCTGAAAC | TACTTTCACG | TTAACCGTGA | CTAAATCAAA | ACGTTAAAAC | 2520 |
| TAAAATCTAA | GTCTGTAAAG | ATTATTGAAA | ACGCTTTAAA | AACAGATATA | ATAAGGTTTG | 2580 |
| TAGATATCTA | AAATTAAAA  | AGATAAGGAA | GTGAGAATAT | GCCACATCTA | AGTAAAGAAG | 2640 |
| CTTTTAAAAA | GCAAATAAAA | AATGGCATTA | TTGTGTCATG | TCAAGCTTTG | CCTGGGGAGC | 2700 |
| CTCTTTATAC | TGAAAGTGGA | GGTGTTATGC | CTCTTTTAGC | TTTGGCAGCT | CAAGAAGCAG | 2760 |
| GAGCGGTTGG | TATAAGAGCC | AATAGTGTCC | GCGACATTAA | GGAAATTCAA | GAAGTTACTA | 2820 |
| ATTTACCTAT | CATCGGCATT | ATTAAACGTG | AATATCCTCC | ACAAGAACCA | TTTATCACTG | 2880 |
| CTACGATGAC | AGAGGTGGAT | CAATTAGCTA | GTTTAGATAT | TGCAGTAATA | GCCTTAGATT | 2940 |
| GTACACTTAG | AGAGCGTCAT | GATGGTTTGA | GTGTAGCTGA | GTTTATTCAA | AAGATAAAAG | 3000 |
| GGAAATATCC | TGAACAGTTG | CTAATGGCTG | ATATAAGTAC | TTTTGAAGAA | GGTAAAAATG | 3060 |
| CTTTTGAAGC | AGGAGTTGAT | TTTGTGGGTA | CAACTCTATC | TGGATACACA | GATTACAGCC | 3120 |
| GCCAAGAAGA | AGGACCGGAT | ATAGAACTCC | TTAATAAGCT | TTGTCAAGCC | GGTATAGATG | 3180 |
| TGATTGCGGA | AGGTAAAATT | CATACTCCTA | AGCAAGCTAA | TGAAATTAAT | CATATAGGTG | 3240 |
| TTGCAGGAAT | TGTAGTTGGT | GGTGCTATCA | CTAGACCAAA | AGAAATAGCG | GAGCGTTTCA | 3300 |
| TCTCAGGACT | TAGTTAAAAG | TGTTACTCAA | AAATCAAAAT | CAAAATAAAA | AAGGGGAATA | 3360 |
| GTTATGAGTA | TCAAAAAAAG | TGTGATTGGT | TTTTGCCTCG | GAGCTGCAGC | ATTATCAATG | 3420 |
| TTTGCTTGTG | TAGACAGTAG | TCAATCTGTT | ATGGCTGCCG | AGAAGGATAA | AGTCGAAATT | 3480 |
| (SEQ ID N  | 10:37)     |            |            |            |            |      |

## FIG. 7a

| NSIWRFFLNK | WLVKASSLVV  | LGGMVLSAGS | RVLADTYVRP | IDNGRITTGF | 50  |
|------------|-------------|------------|------------|------------|-----|
| NGYPGHCGVD | YAVPTGTIIR  | AVADGTVKFA | GAGANFSWMT | DLAGNCVMIQ | 100 |
| HADGMHSGYA | HMSRVVARTG  | EKVKQGDIIG | YVGATGMATG | PHLHFEFLPA | 150 |
| npnfqngfhg | RINPTSLIAN  | VATFSGKTQA | SAPSIKPLQS | APVQNQSSKL | 200 |
| KVYRVDELQK | VNGVWLVKNN  | TLTPTGFDWN | DNGIPASEID | EVDANGNLTA | 250 |
| DQVLQKGGYF | IFNPKTLKTV  | EKPIQGTAGL | TWAKTRFANG | SSVWLRVDNS | 300 |
| OELLYK (   | SEO ID NO:3 | 8)         |            |            | 306 |

FIG. 7b

| MKMNKKVLLT | STMAASLLSV | ASVQAQETDT | TWTARTVSEV | KADLVKQDNK | 50  |
|------------|------------|------------|------------|------------|-----|
| SSYTVKYGDT | LSVISEAMSI | DMNVLAKINN | IADINLIYPE | TTLTVTYDQK | 100 |
| SHTATSMKIE | TPATNAAGQT | TATVDLKTNQ | VSVADQKVSL | NTISEGMTPE | 150 |
| AATTIVSPMK | TYSSAPALKS | KEVLAQEQAV | SQAAANEQVS | TAPVKSITSE | 200 |
| VPAAKEEVKP | TQTSVSQSTT | VSPASVAAET | PAPVAKVAPV | RTVAAPRVAS | 250 |
| VKVVTPKVET | GASPEHVSAP | AVPVTTTSTA | TDSKLQATEV | KSVPVAOKAP | 300 |
|            |            |            | YKEKVASTYG |            | 350 |
| DPGDHGKGLA | VDFIVGKNQA | LGNEVAQYST | QNMAANNISY | VIWOOKFYSN | 400 |
|            | WNAMPDRGGV |            |            | ID NO:39)  | 434 |
|            |            |            | • -        |            | 204 |

FIG. 7c

| MPHLSKEAFK | KQIKNGIIVS | CQALPGEPLY | TESGGVMPLL | ALAAQEAGAV | 50  |
|------------|------------|------------|------------|------------|-----|
| GIRANSVRDI | KEIQEVTNLP | IIGIIKREYP | PQEPFITATM | TEVDQLASLD | 100 |
| IAVIALDCTL | RERHDGLSVA | EFIQKIKGKY | PEQLLMADIS | TFEEGKNAFE | 150 |
|            |            |            |            | EGKIHTPKQA | 200 |
| NEINHIGVAG | IVVGGAITRP | KEIAERFISG | LS (SEQ II | NO:40)     | 232 |

FIG. 7d

MSIKKSVIGF CLGAAALSMF ACVDSSQSVM AAEKDKVEI 39
(SEQ ID NO:41)

FIG. 7e

| ATGAAAATGA | ATAAAAAGGT | ACTATTGACA | TCGACAATGG | CAGCTTCGCT | 50   |
|------------|------------|------------|------------|------------|------|
| ATTATCAGTC | GCAAGTGTTC | AAGCACAAGA | AACAGATACG | ACGTGGACAG | 100  |
| CACGTACTGT | TTCAGAGGTA | AAGGCTGATT | TGGTAAAGCA | AGACAATAAA | 150  |
| TCATCATATA | CTGTGAAATA | TGGTGATACA | CTAAGCGTTA | TTTCAGAAGC | 200  |
| AATGTCAATT | GATATGAATG | TCTTAGCAAA | AATTAATAAC | ATTGCAGATA | 250  |
| TCAATCTTAT | TTATCCTGAG | ACAACACTGA | CAGTAACTTA | CGATCAGAAG | 300  |
| AGTCATACTG | CCACTTCAAT | GAAAATAGAA | ACACCAGCAA | CAAATGCTGC | 350  |
| TGGTCAAACA | ACAGCTACTG | TGGATTTGAA | AACCAATCAA | GTTTCTGTTG | 400  |
| CAGACCAAAA | AGTTTCTCTC | AATACAATTT | CGGAAGGTAT | GACACCAGAA | 450  |
| GCAGCAACAA | CGATTGTTTC | GCCAATGAAG | ACATATTCTT | CTGCGCCAGC | 500  |
| TTTGAAATCA | AAAGAAGTAT | TÁGCACAAGA | GCAAGCTGTT | AGTCAAGCAG | 550  |
| CAGCTAATGA | ACAGGTATCA | ACAGCTCCTG | TGAAGTCGAT | TACTTCAGAA | 600  |
| GTTCCAGCAG | CTAAAGAGGA | AGTTAAACCA | ACTCAGACGT | CAGTCAGTCA | 650  |
| GTCAACAACA | GTATCACCAG | CTTCTGTTGC | CGCTGAAACA | CCAGCTCCAG | 700  |
| TAGCTAAAGT | AGCACCGGTA | AGAACTGTAG | CAGCCCCTAG | AGTGGCAAGT | 750  |
| GTTAAAGTAG | TCACTCCTAA | AGTAGAAACT | GGTGCATCAC | CAGAGCATGT | 800  |
| ATCAGCTCCA | GCAGTTCCTG | TGACTACGAC | TTCAACAGCT | ACAGACAGTA | 850  |
| AGTTACAAGC | GACTGAAGTT | AAGAGCGTTC | CGGTAGCACA | AAAAGCTCCA | 900  |
| ACAGCAACAC | CGGTAGCACA | ACCAGCTTCA | ACAACAAATG | CAGTAGCTGC | 950  |
| ACATCCTGAA | AATGCAGGGC | TCCAACCTCA | TGTTGCAGCT | TATAAAGAAA | 1000 |
| AAGTAGCGTC | AACTTATGGA | GTTAATGAAT | TCAGTACATA | CCGTGCAGGT | 1050 |
| GATCCAGGTG | ATCATGGTAA | AGGTTTAGCA | GTCGACTTTA | TTGTAGGTAA | 1100 |
| AAACCAAGCA | CTTGGTAATG | AAGTTGCACA | GTACTCTACA | CAAAATATGG | 1150 |
| CAGCAAATAA | CATTTCATAT | GTTATCTGGC | AACAAAAGTT | TTACTCAAAT | 1200 |
| ACAAATAGTA | TTTATGGACC | TGCTAATACT | TGGAATGCAA | TGCCAGATCG | 1250 |
| TGGTGGCGTT | ACTGCCAACC | ATTATGACCA | TGTTCACGTA | TCATTTAACA | 1300 |
| AATAA      |            |            |            |            | 1305 |

(SEQ ID NO:42)

FIG. 8

|            | ATACGACGTG |            | ` ACTGTTTCAG | AGGTAAAGGC |      |
|------------|------------|------------|--------------|------------|------|
| TGATTTGGTA | AAGCAAGACA | ATAAATCATC |              |            | 50   |
| ATACACTAAG | CGTTATTTCA |            |              |            | 100  |
| GCAAAAATTA | ATAACATTGC |            |              |            | 150  |
| ACTGACAGTA |            |            |              |            | 200  |
| TAGAAACACC |            |            |              |            | 250  |
| TTGAAAACCA |            |            |              | TACTGTGGAT | 300  |
| AATTTCGGAA |            |            |              | CTCTCAATAC | 350  |
| TGAAGACATA |            |            |              | GTTTCGCCAA | 400  |
| CAAGAGCAAG | CTGTTAGTCA |            |              | AGTATTAGCA | 450  |
| TCCTGTGAAG |            | AGCAGCAGCT | AATGAACAGG   | TATCAACAGC | 500  |
| AACCAACTCA |            | CAGAAGTTCC | AGCAGCTAAA   | GAGGAAGTTA | 550  |
| GTTGCCGCTG | AAACACCAGC | AGTCAGTCAA | CAACAGTATC   | ACCAGCTTCT | 600  |
| TGTAGCAGCC |            | TCCAGTAGCT | AAAGTAGCAC   | CGGTAAGAAC | 650  |
| AAACTGGTGC | CCTAGAGTGG | CAAGTGTTAA | AGTAGTCACT   | CCTAAAGTAG | 700  |
| ACGACTTCAA | ATCACCAGAG | CATGTATCAG | CTCCAGCAGT   | TCCTGTGACT | 750  |
|            |            | CAGTAAGTTA | CAAGCGACTG   | AAGTTAAGAG | 800  |
| CGTTCCGGTA | GCACAAAAAG | CTCCAACAGC | AACACCGGTA   | GCACAACCAG | 850  |
| CTTCAACAAC | AAATGCAGTA | GCTGCACATC | CTGAAAATGC   | AGGGCTCCAA | 900  |
| CCTCATGTTG | CAGCTTATAA | AGAAAAAGTA | GCGTCAACTT   | ATGGAGTTAA | 950  |
| TGAATTCAGT | ACATACCGTG | CAGGTGATCC | AGGTGATCAT   | GGTAAAGGTT | 1000 |
| TAGCAGTCGA | CTTTATTGTA | GGTAAAAACC | AAGCACTTGG   | TAATGAAGTT | 1050 |
| GCACAGTACT | CTACACAAAA | TATGGCAGCA | AATAACATTT   | CATATGTTAT |      |
| CTGGCAACAA | AAGTTTTACT | CAAATACAAA | TAGTATTTAT   | GGACCTGCTA | 1100 |
| ATACTTGGAA | TGCAATGCCA | GATCGTGGTG | GCGTTACTGC   | CAACCATTAT | 1150 |
| GACCATGTTC | ACGTATCATT | TAACAAATAA | (SEQ ID      | NO: 43)    | 1200 |
|            |            |            | (DDG ID      | 140.40)    | 1230 |

## FIG. 9

| QETDTTWTAR | TVSEVKADLV  | KQDNKSSYTV | KYGDTLSVIS | EAMSIDMNVL | 50  |
|------------|-------------|------------|------------|------------|-----|
| AKINNIADIN | LIYPETTLTV  |            |            | AAGQTTATVD | 100 |
| LKTNQVSVAD | QKVSLNTISE  | GMTPEAATTI | VSPMKTYSSA | PALKSKEVLA | 150 |
| QEQAVSQAAA | NEQVSTAPVK  | SITSEVPAAK | EEVKPTQTSV | SQSTTVSPAS | 200 |
| VAAETPAPVA | KVAPVRTVAA  | PRVASVKVVT | PKVETGASPE | HVSAPAVPVT | 250 |
| TTSTATDSKL | QATEVKSVPV  | AQKAPTATPV | AQPASTTNAV | AAHPENAGLO | 300 |
| PHVAAYKEKV | ASTYGVNEFS  | TYRAGDPGDH | GKGLAVDFIV | GKNOALGNEV | 350 |
| AQYSTQNMAA | NNISYVIWQQ  | KFYSNTNSIY | GPANTWNAMP | DRGGVTANHY | 400 |
| DHVHVSFNK  | (SEQ ID NO: |            |            |            | 409 |

FIG. 9a

Fig. 10



1 / 63

#### SEQUENCE LISTING

```
<110> BioChem Vaccins
            RIOUX, Clément
            DENIS, Martin
            BRODEUR, Bernard R.
            HAMEL, Josée
            CHARLEBOIS, Isabelle
            BOYER, Martine
      <120> NOVEL GROUP B STREPTOCOCCUS ANTIGENS
      <130> 12806-9PCT
      <150> 60/075,425
      <151> 1998-02-20
      <160> 44
      <170> FastSEQ for Windows Version 3.0
      <210> 1
      <211> 4514
      <212> DNA
      <213> Streptococcus
      <220>
      <221> CDS
      <222> (3)...(464)
      <221> CDS
      <222> (534)...(887)
      <223>
      <221> CDS
      <222> (1024)...(1767)
      <221> CDS
      <222> (1841)...(4288)
      <221> CDS
      <222> (2735)...(4288)
     <400> 1
ta tot ggc aaa gag cca gct aat cgt ttt agt tgg gct aaa aat aaa
                                                                     47
  Ser Gly Lys Glu Pro Ala Asn Arg Phe Ser Trp Ala Lys Asn Lys
```

10

| tta<br>Leu       | tta<br>Leu         | atc<br>Ile         | aat<br>Asn       | gga<br>Gly<br>20  | ttc<br>Phe       | att<br>Ile         | gca<br>Ala         | act<br>Thr        | cta<br>Leu<br>25 | gca<br>Ala         | g A              | ca<br>la        | act<br>Thr         | atc<br>Ile       | tta<br>Leu<br>30  |                   | it<br>ne          | 95  |
|------------------|--------------------|--------------------|------------------|-------------------|------------------|--------------------|--------------------|-------------------|------------------|--------------------|------------------|-----------------|--------------------|------------------|-------------------|-------------------|-------------------|-----|
| ttt<br>Phe       | gca<br>Ala         | gtt<br>Val         | caa<br>Gln<br>35 | ttc<br>Phe        | ata<br>Ile       | ggt<br>Gly         | ctt<br>Leu         | aaa<br>Lys<br>40  | cca<br>Pro       | gat<br>As <u>ı</u> | t to             | ac<br>yr        | cct<br>Pro         | gga<br>Gly<br>45 | aaa<br>Lys        | ac<br>Th          | nr                | 143 |
| tac<br>.Tyr      | ttt<br>Phe         | att<br>Ile<br>50   | atc<br>Ile       | cta<br>Leu        | ttg<br>Leu       | aca<br>Thr         | gca<br>Ala<br>55   | tgg<br>Trp        | act              | tt:                | g a<br>ı M       | tg<br>let       | gca<br>Ala<br>60   | tta<br>Leu       | gta<br>Val        | a ad              | ct<br>hr          | 191 |
| gct<br>Ala       | tta<br>Leu<br>65   | gtg<br>Val         | gga<br>Gly       | tgg<br>Trp        | gat<br>Asp       | aat<br>Asn<br>70   | agg<br>Arg         | tat<br>Tyr        | ggt              | tc<br>Se           | c t<br>r P       | tc<br>he<br>75  | ttg<br>Leu         | tcg<br>Ser       | tt:<br>Le         | a t<br>ı L        | ta<br>eu          | 239 |
| ata<br>Ile<br>80 | tta<br>Leu         | tta<br>Leu         | ttc<br>Phe       | cag<br>Gln        | ctt<br>Leu<br>85 | ggt<br>Gly         | tca<br>Ser         | agc<br>Ser        | gca              | ع ب                | а а<br>у Т<br>О  | act<br>Thr      | tac<br>Tyr         | cca<br>Pro       | at<br>Il          | ag<br>eG          | aa<br>lu<br>95    | 287 |
| ttg<br>Leu       | agt<br>Ser         | cct<br>Pro         | aag<br>Lys       | ttc<br>Phe<br>100 | Phe              | caa<br>Gln         | aca<br>Thr         | att<br>Ile        | caa<br>Gl:<br>10 | n Pi               | a t              | ttt<br>Phe      | tta<br>Leu         | ccç<br>Pro       | at<br>Me          | -                 | ict<br>Thr        | 335 |
| tac<br>Tyr       | tct<br>Ser         | gtt<br>Val         | tca<br>Ser       | Gly               | tta<br>Leu       | aga<br>Arg         | gag<br>Glu         | acc<br>Thr<br>120 | - 11             | c to<br>e Se       | g t              | ttg<br>Leu      | acg<br>Thr         | gga<br>Gl;<br>12 | y As              | c ç<br>p V        | gtt<br>/al        | 383 |
| aac<br>Asn       | cat<br>His         | caa<br>Glr<br>130  | 1 Trp            | g aga<br>Arg      | atç<br>Met       | cta<br>Lei         | a gta<br>ı Val     | a ato<br>l Ile    | c tt<br>e Ph     | t tt               | a e              | gta<br>Val      | tca<br>Ser<br>140  |                  | g at<br>r Me      | g a               | ata<br>Ile        | 431 |
| ctt<br>Leu       | gct<br>Ala<br>145  | a Le               | t ctt<br>u Lei   | t ati             | tate Ty:         | cgt<br>r Arg       | 3 PA               | a ca<br>s Gl:     | a ga<br>n Gl     | ia g<br>.u A       | at<br>sp         | taa             | taga               | aaag             | tat               | ct                | agtga             | 484 |
| tag              | gact               | aaca               | gta              | tgat              | atg +            | gtat               | gtca               | aa g              | tatt             | tag                | ga               | gga             | agaa               | gat              | atg<br>Met<br>155 | tc<br>Se          | t act<br>r Thr    | 542 |
| tt:<br>Le        | a ac<br>u Th       | a at<br>r Il<br>16 | e Il             | t at<br>e Il      | t gc<br>e Al     | a ac<br>a Th       | a tt<br>r Le<br>16 | a ac<br>u Th      | r A              | ct t<br>la I       | tg               | gaa<br>Gli      | a ca<br>u Hi<br>17 | 5 F1             | t t<br>ne T       | at<br>yr          | att<br>Ile        | 590 |
| at<br>Me         | g ta<br>t Ty<br>17 | r Le               | g ga<br>eu Gl    | ig ac<br>.u Th    | g tt<br>ır Le    | a go<br>u Al<br>18 | a Tr               | ec ca<br>ir Gl    | ig t<br>In S     | ca a<br>er A       | at<br>Asn        | ate<br>Me<br>18 | L 11.              | t gg             | gg a<br>ly L      | ag<br>ys          | att<br>Ile        | 638 |
| tt<br>Ph<br>19   | e Se               | jt at<br>er Me     | ig to<br>et Se   | et aa<br>er Ly    | ia ga<br>/s Gl   | u G                | ig ti<br>lu Le     | ig to<br>eu Se    | ca t<br>er T     | λr 1               | ta<br>Leu<br>200 | . PI            | c gt               | t a              | tt a<br>le I      | ıaa<br>.ys        | ctt<br>Leu<br>205 | 686 |
| t t<br>Pł        | t aa<br>ne Ly      | ag a               | at ca<br>sn G    | ln G              | gt g†<br>ly Va   | ta ta              | ac a<br>yr A       | ac go<br>sn G     | TÀ T             | tg<br>Leu<br>215   | att<br>Ile       | gg<br>Gl        | jc ct              | ta t<br>eu P     | 11- 1             | ctc<br>Leu<br>220 | ctt<br>Leu        | 734 |

. 3/63

|                                   | 225                         | e ser gr                                  | n Asn G                   | In Glu                | Ile Val                       | l Ala Va<br>23              | _                                | 782         |
|-----------------------------------|-----------------------------|-------------------------------------------|---------------------------|-----------------------|-------------------------------|-----------------------------|----------------------------------|-------------|
| atc aat gt<br>Ile Asn Va<br>24    | a ttg ct<br>al Leu Le<br>a0 | a gtt gci<br>u Val Ala                    | t att t<br>a Ile T<br>245 | at ggt<br>yr Gly      | gct tto<br>Ala Lei            | g aca gt<br>1 Thr Va<br>250 | t gat aaa<br>l Asp Lys           | 830         |
| aaa atc tt<br>Lys Ile Le<br>255   | a tta aa<br>u Leu Ly        | a cag ggt<br>s Gln Gl <sub>y</sub><br>260 | CIA P                     | ta cct<br>eu Pro      | ata tta<br>Ile Leu<br>265     | Ala Le                      | t tta aca<br>u Leu Thr           | 878         |
| ttc tta tt<br>Phe Leu Ph<br>270   | t taatac<br>e               | tact tago                                 | egtteg                    | atttaç                | gttga ac                      | ggctttt                     | a                                | 927         |
| gtaatcattt<br>atataactac          | ttttctca<br>gaattcaa        | ata ataca<br>aag agagg                    | ggtag t<br>tgact t        | tgatt                 | atg act                       | gag aac                     | aaatagtata<br>tgg tta<br>Trp Leu | 987<br>1041 |
| cat act aa.<br>His Thr Ly:<br>280 | a gat ggt<br>s Asp Gly      | tca gat<br>Ser Asp<br>285                 | att ta<br>Ile Ty          | t tat<br>r Tyr        | cgt gtc<br>Arg Val<br>290     | gtt ggt<br>Val Gly          | caa ggt<br>Gln Gly               | 1089        |
| caa ccg att<br>Gln Pro Ile<br>295 | - var rne                   | 300                                       | GIY AS                    | n Ser                 | Leu Ser<br>305                | Ser Arg                     | Tyr Phe<br>310                   | 1137        |
| gat aag caa<br>Asp Lys Glr        | 315                         | TYL PHE                                   | Ser Ly                    | 320                   | Tyr Gln                       | Val Ile                     | Val Met<br>325                   | 1185        |
| gat agt aga<br>Asp Ser Arg        | ggg cat<br>Gly His<br>330   | ggc aaa<br>Gly Lys                        | agt cat<br>Ser His        | s Ala I               | aag cta<br>Lys Leu            | aat acc<br>Asn Thr<br>340   | att agt<br>Ile Ser               | 1233        |
| ttc agg caa<br>Phe Arg Gln<br>345 | ata gca<br>Ile Ala          | gtt gac<br>Val Asp                        | tta aaq<br>Leu Lys<br>350 | gat a<br>S Asp I      | lle Leu                       | gtt cat<br>Val His<br>355   | tta gag<br>Leu Glu               | 1281        |
| att gat aaa<br>Ile Asp Lys<br>360 | gtt ata<br>Val Ile          | ttg gta<br>Leu Val<br>365                 | ggc cat<br>Gly His        | agc g<br>Ser A        | gat ggt (<br>Asp Gly )<br>370 | gcc aat<br>Ala Asn          | tta gct<br>Leu Ala               | 1329        |
| tta gtt ttt<br>Leu Val Phe<br>375 | caa acg<br>Gln Thr          | atg ttt<br>Met Phe<br>380                 | cca ggt<br>Pro Gly        | Met V                 | tt aga g<br>al Arg (<br>85    | ggg ctt<br>Gly Leu          | ttg ctt<br>Leu Leu<br>390        | 1377        |
| aat tca ggg<br>Asn Ser Gly        | aac ctg<br>Asn Leu<br>395   | act att  <br>Thr Ile :                    | cat ggt<br>His Gly        | cag c<br>Gln A<br>400 | ga tgg t<br>rg Trp 1          | gg gat<br>Trp Asp           | att ctt<br>Ile Leu<br>405        | 1425        |
| tta gta agg<br>Leu Val Arg        | att gcc<br>Ile Ala<br>410   | tat aaa 1<br>Tyr Lys 1                    | ttc ctt<br>Phe Leu<br>415 | cac to                | at tta <u>c</u><br>yr Leu G   | gg aaa<br>Sly Lys<br>420    | ctc ttt<br>Leu Phe               | 1473        |

| ccg tat<br>Pro Tyr                                                    | atg a<br>Met <i>P</i><br>425               | igg c                                                       | aa a<br>ln L                                         | aa g<br>ys <i>P</i>                                  | Ala (                                  | caa<br>Gln<br>430                                           | gtt<br>Val                                             | att t<br>Ile S                                | cg (<br>Ser )                                 | Leu                                    | atg<br>Met<br>435        | ttg<br>Leu               | gag<br>Glu                                                            | gat<br>Asp                                                                   | 1521                 |
|-----------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------------|--------------------------|--------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------|
| ttg aag<br>Leu Lys<br>440                                             | att a<br>Ile S                             | agt c<br>Ser F                                              | cca g<br>Pro A                                       | la A                                                 | gat<br>Asp :                           | tta<br>Leu                                                  | cag<br>Gln                                             | cat (                                         | /al :                                         | tca<br>Ser<br>450                      | act<br>Thr               | cct<br>Pro               | gta<br>Val                                                            | atg<br>Met                                                                   | 1569                 |
| gtt ttg<br>Val Leu<br>455                                             | gtt g<br>Val (                             | gga a<br>Gly <i>P</i>                                       | Asn I                                                | aag g<br>Lys 1                                       | gac<br>Asp                             | ata<br>Ile                                                  | att<br>Ile                                             | Lys .                                         | tta<br>Leu<br>465                             | aat<br>Asn                             | cat<br>His               | tct<br>Ser               | aag<br>Lys                                                            | aaa<br>Lys<br>470                                                            | 1617                 |
| ctt gct<br>Leu Ala                                                    | tct !<br>Ser '                             | Tyr I                                                       | ttt o<br>Phe I<br>475                                | cca (<br>Pro                                         | agg<br>Arg                             | ggg<br>ggg                                                  | gag<br>Glu                                             | ttt<br>Phe<br>480                             | tat<br>Tyr                                    | tct<br>Ser                             | tta<br>Leu               | gtt<br>Val               | ggc<br>Gly<br>485                                                     | ttt<br>Phe                                                                   | 1665                 |
| ggg cat<br>Gly His                                                    | His                                        | att i<br>Ile :<br>490                                       | att a<br>Ile :                                       | aag<br>Lys                                           | caa<br>Gln                             | gat<br>Asp                                                  | tcc<br>Ser<br>495                                      | cat<br>His                                    | gtt<br>Val                                    | ttt<br>Phe                             | aat<br>Asn               | att<br>Ile<br>500        | att<br>Ile                                                            | gca<br>Ala                                                                   | 1713                 |
| aaa aag<br>Lys Lys                                                    | ttt<br>Phe<br>505                          | atc<br>Ile                                                  | aac<br>Asn                                           | gat<br>Asp                                           | acg<br>Thr                             | ttg<br>Leu<br>510                                           | aaa<br>Lys                                             | gga<br>Gly                                    | gaa<br>Glu                                    | att<br>Ile                             | gtt<br>Val<br>515        | gaa<br>Glu               | aaa<br>Lys                                                            | gct<br>Ala                                                                   | 1761                 |
| aat tga<br>Asn *                                                      | aaaa                                       | gtca                                                        | aa t                                                 | cact                                                 | gact                                   | t c                                                         | tgtga                                                  | attaa                                         | aat                                           | tgta                                   | attt                     | ttt                      | atat                                                                  | ctg                                                                          | 1817                 |
|                                                                       |                                            |                                                             |                                                      |                                                      |                                        |                                                             |                                                        |                                               |                                               |                                        |                          |                          |                                                                       |                                                                              |                      |
| ttttagt                                                               | get t                                      | atta                                                        | ittgt                                                | t ga                                                 | Me                                     | ig a<br>et I<br>20                                          | tt c<br>le H                                           | at tt<br>is Le                                | g aa<br>eu Ly                                 | ys A                                   | ga a<br>rg T<br>25       | ct a<br>hr I             | tt t<br>le S                                                          | ct gtt<br>Ser Val                                                            | 1870                 |
| ttttagt<br>gag caa<br>Glu Glr<br>530                                  | cta                                        | aad                                                         | agt                                                  | att                                                  | Me<br>5:<br>ttt                        | et I<br>20<br>aga                                           | le H                                                   | is Le<br>tta                                  | tct                                           | ys A:<br>5:<br>cca                     | rg T<br>25<br>atg        | nr 1                     | t ctt                                                                 | ttc                                                                          | 1870                 |
| gag caa<br>Glu Glr                                                    | cta<br>Leu                                 | aag<br>Lys                                                  | agt<br>Ser                                           | gtt<br>Val<br>535                                    | ttt<br>Phe                             | et I<br>20<br>999<br>Gly<br>ato                             | le H<br>caa<br>Gln                                     | tta<br>Leu<br>gtc                             | tct<br>Ser<br>540                             | cca<br>Pro                             | atg<br>Met               | aat<br>Asr               | c ctt                                                                 | ttc<br>Phe<br>545<br>a tat                                                   |                      |
| gag caa<br>Glu Glr<br>530                                             | cta<br>Leu<br>atc                          | aag<br>Lys<br>ctt<br>Leu                                    | agt<br>Ser<br>gtg<br>Val<br>550                      | gtt<br>Val<br>535<br>999<br>Gly                      | ttt Phe gtt Val                        | ggg<br>ggg<br>Gly<br>ato<br>Ile                             | caa<br>Gln<br>gct<br>Ala                               | tta<br>Leu<br>gtc<br>Val<br>555               | tct<br>Ser<br>540<br>tta<br>Leu<br>gat<br>Asp | cca<br>Pro<br>ccg<br>Pro               | atg<br>Met<br>aca<br>Thr | aat<br>Asr<br>acc<br>Thr | t ctt<br>t Lev<br>gga<br>r Gly<br>560                                 | ttc<br>Phe<br>545<br>a tat<br>y Tyr                                          | 1918                 |
| gag caa<br>Glu Glr<br>530<br>tta att<br>Leu Ile                       | cta<br>Leu<br>atc<br>Elle<br>tgta<br>e Val | aag<br>Lys<br>ctt<br>Leu<br>ctg<br>Leu<br>565<br>act        | agt<br>Ser<br>gtg<br>Val<br>550<br>aat<br>Asn        | gtt<br>Val<br>535<br>ggg<br>Gly<br>gga<br>Gly        | ttt<br>Phe<br>gtt<br>Val<br>ctt<br>Leu | ggg<br>Gly<br>ato<br>Ile                                    | caa<br>Gln<br>gct<br>Ala<br>cgt<br>Arg<br>570          | tta<br>Leu<br>gtc<br>Val<br>555<br>aca<br>Thr | tct<br>Ser<br>540<br>tta<br>Leu<br>gat<br>Asp | cca<br>Pro<br>ccg<br>Pro               | aca<br>Thr               | aat Asr<br>Asr<br>Thr    | c ctt<br>c ctt<br>c gga<br>r Gl;<br>560<br>a aga<br>s Ar              | ttc<br>Phe<br>545<br>a tat<br>y Tyr<br>O<br>g tat<br>g Tyr                   | 1918<br>1966         |
| gag caa<br>Glu Glr<br>530<br>tta att<br>Leu Ile<br>gac ttt<br>Asp Phe | a cagu Gln 580 t ggc y Gly                 | aag<br>Lys<br>ctt<br>Leu<br>ctg<br>Leu<br>565<br>act<br>Thr | agt<br>Ser<br>gtg<br>Val<br>550<br>aat<br>Asn<br>agt | gtt<br>Val<br>535<br>ggg<br>Gly<br>gga<br>Gly<br>tgg | ttt Phe gtt Val ctt Leu tgt            | ggg<br>Gly<br>atc<br>Ile<br>tta<br>Lev<br>atc<br>589<br>Gl; | caa<br>Gln<br>gct<br>Ala<br>cgt<br>570<br>caace<br>Asr | tta Leu gtc Val 555 aca Thr                   | tct<br>Ser<br>540<br>tta<br>Leu<br>gat<br>Asp | cca<br>Pro<br>ccg<br>Pro<br>aaa<br>Lys | aca Thr ago Ser Asr 590  | aat Asr acc Thi          | t ctt<br>t Lev<br>c gga<br>r Gly<br>560<br>a ag<br>s Ar<br>50<br>u Se | ttc<br>Phe<br>545<br>a tat<br>y Tyr<br>D<br>g tat<br>g Tyr<br>a gga<br>r Gly | 1918<br>1966<br>2014 |

WO 99/42588

| _                   |               |                   |            | 63         | 0          | u se              | ı Pi              | .e 11      | .e se      | er Va      | ai I.             | le A              | la Le        | eu I.<br>64 |                       |      |
|---------------------|---------------|-------------------|------------|------------|------------|-------------------|-------------------|------------|------------|------------|-------------------|-------------------|--------------|-------------|-----------------------|------|
|                     |               |                   | 64         | 5          |            | u by              | s Ai              | a se<br>65 | r va<br>O  | I As       | зр Ту             | r Ty              | yr Ty<br>65  | r Le<br>55  | g gta<br>u Val        |      |
|                     |               | 66                | 0          |            | 1 110      | c ly              | 66:               | e Pr<br>5  | o va       | 1 11       | e Ty              | r Tr<br>67        | rp Il<br>'0  | e Se        | t ggt<br>r Gly        | 2302 |
|                     | 675           | 5                 |            |            | J Iy.      | 686               | 0                 | y As       | o Me       | t Pr       | o Se<br>68        | r Se<br>5         | r Th         | r Ar        | t ata<br>g Ile        | 2350 |
| 690                 |               | •                 |            |            | 695        | 5                 | - F11e            | : G11      | ıırı       | 70         | 0<br>O CA         | s Al              | a Al         | a Al        | a gca<br>a Ala<br>705 | 2398 |
|                     |               |                   |            | 710        | )          | . пес             | , Mec             | . G13      | 715        | HI:        | s Le              | u Pr              | o Vai        | 1 Ty:       |                       | 2446 |
|                     |               |                   | 725        |            | . Cys      | . 116             | GIY               | 730        | Ala        | ≀ Va.      | L G1              | y Ile             | e Va]<br>735 | l Ser       | ctt<br>Leu            | 2494 |
|                     |               | 740               | 1          | 200        | Cly        | 361               | 745               | GIU        | Leu        | . Val      | . Lei             | 2 Phe<br>750      | Thr          | Gly         |                       | 2542 |
| gct<br>Ala          | 755           |                   | 1          |            |            | 760               | GIU               | 1111       | vaı        | val        | 765               | Trp               | ) Leu        | Leu         | Leu                   | 2590 |
| tat<br>Tyr<br>770   |               |                   |            | -7-        | 775        | 116               | 116               | PIO        | Pne        | 780        | Ala               | Gly               | Ile          | Tyr         | Phe<br>785            | 2638 |
| ttt (               |               |                   | - 1 -      | 790        | Cly        | 261               | GIII              | iie        | 795        | GIn        | Arg               | Tyr               | Glu          | Asn<br>800  | Val                   | 2686 |
| ccg a               | •             |                   | 805        |            | Der        | 1111              | vai               | 810        | GIN        | Thr        | Met               | Val               | Ser<br>815   | His         | Leu                   | 2734 |
| atg o               | egt<br>Arg    | att<br>Ile<br>820 | tta<br>Leu | ggt<br>Gly | gca<br>Ala | ttc<br>Phe        | tta<br>Leu<br>825 | ata<br>Ile | ttt<br>Phe | tca<br>Ser | aca<br>Thr        | gca<br>Ala<br>830 | ttt<br>Phe   | ttt<br>Phe  | gaa<br>Glu            | 2782 |
| aat a<br>Asn I<br>8 | ltt a<br>le 1 | act<br>Thr        | tat<br>Tyr | att<br>Ile |            | tgg<br>Trp<br>840 | ttg<br>Leu        | cag<br>Gln | aag<br>Lys | cta<br>Leu | ggc<br>Gly<br>845 | ttg<br>Leu        | gac<br>Asp   | cca<br>Pro  | tta<br>Leu            | 2830 |

| caa gaa caa<br>Gln Glu Gln<br>850 | atg tta<br>Met Leu             | tgg cag<br>Trp Gln<br>855      | ttt cca<br>Phe Pro           | GIY L                     | ta ttg<br>eu Leu<br>60    | ctg ggg<br>Leu Gly             | gtt tgt<br>Val Cys<br>865      | 2878 |
|-----------------------------------|--------------------------------|--------------------------------|------------------------------|---------------------------|---------------------------|--------------------------------|--------------------------------|------|
| ttt att ctc<br>Phe Ile Leu        | tta gct<br>Leu Ala<br>870      | aga act<br>Arg Thr             | att gat<br>Ile Asp           | caa a<br>Gln L<br>875     | aa gtg<br>ys Val          | aaa aat<br>Lys Asn             | gct ttt<br>Ala Phe<br>880      | 2926 |
| cca att gct<br>Pro Ile Ala        | att atc<br>lle Ile<br>885      | tgg att<br>Trp Ile             | act ttg<br>Thr Leu<br>890    | Thr 1                     | tg ttt<br>Leu Phe         | tat ctt<br>Tyr Leu<br>895      | aat tta<br>Asn Leu             | 2974 |
| ggt cat att<br>Gly His Ile<br>900 | e Ser Trp                      | cga cta<br>Arg Leu             | tct ttc<br>Ser Phe<br>905    | tgg t                     | ttt att<br>Phe Ile        | tta cta<br>Leu Leu<br>910      | ttg tta<br>Leu Leu             | 3022 |
| ggc tta tta<br>Gly Leu Let<br>915 | a gtc att<br>ı Val Ile         | aag cca<br>Lys Pro             | Thr Let                      | tat a                     | aaa aaa<br>Lys Lys<br>925 | caa ttt<br>Gln Phe             | att tat<br>Ile Tyr             | 3070 |
| agc tgg ga<br>Ser Trp Gl<br>930   | a gag cgt<br>u Glu Arg         | att aag<br>3 Ile Lys<br>935    | gat gga<br>Asp Gl            | y lle                     | att atc<br>Ile Ile<br>940 | gtt agt<br>Val Ser             | tta atg<br>Leu Met<br>945      | 3118 |
| gga gtt ct<br>Gly Val Le          | a ttt ta<br>u Phe Ty:<br>95    | r Ile Ala                      | gga ct<br>Gly Le             | a cta<br>u Leu<br>955     | ttc cct<br>Phe Pro        | atc agg                        | gct cat<br>Ala His<br>960      | 3166 |
| att aca gg<br>Ile Thr Gl          | t ggt ag<br>y Gly Se<br>965    | t att gaa<br>r Ile Gli         | a cgc ct<br>1 Arg Le<br>97   | u His                     | tat ato                   | ata gca<br>E Ile Ala<br>975    | 115 0                          | 3214 |
| ccg ata go<br>Pro Ile Al          | a ttg gc<br>la Leu Al          | t acg tt<br>a Thr Le           | g att ct<br>u Ile Le<br>985  | t act<br>au Thr           | ctc gtt<br>Leu Val        | tat tta<br>l Tyr Lei<br>990    | a tgt ttg<br>ı Cys Leu         | 3262 |
| gtt aag a'<br>Val Lys I<br>995    | tt tta ca<br>le Leu Gl         | n Gly Ly                       | a tot to<br>s Ser Cy         | gt cag<br>ys Gln          | att gg<br>Ile Gl          | y ASP Va.                      | g ttc aat<br>l Phe Asn         | 3310 |
| gtg gat c<br>Val Asp A<br>1010    | gt tat aa<br>rg Tyr Ly         | aa aaa ct<br>ys Lys Le<br>1015 | a ctt ca<br>u Leu G          | aa gct<br>ln Ala          | tac gg<br>Tyr Gl<br>1020  | t ggt tc<br>y Gly Se           | t tcg gat<br>r Ser Asp<br>1025 | 3358 |
| agc ggt t<br>Ser Gly I            | eu Ala Pi                      | tt tta aa<br>he Leu As<br>030  | at gat a<br>sn Asp L         | aa agg<br>ys Arg<br>103   | , Leu ly                  | c tgg ta<br>r Trp Ty           | c caa aaa<br>r Gln Lys<br>1040 | 3406 |
| aat gga g<br>Asn Gly (            | gaa gat t<br>Slu Asp C<br>1045 | gc gtt go<br>ys Val A          | la Phe G                     | aa ttt<br>31n Phe<br>.050 | gta at<br>Val Il          | re var An                      | t aat aaa<br>n Asn Lys<br>055  | 3454 |
| Cys Leu                           | att atg g<br>Ile Met G<br>1060 | gg gaa c<br>ly Glu P           | ca gcc g<br>ro Ala C<br>1065 | ggt gat<br>Gly Asp        | t gac ac<br>p Asp Tì      | et tat at<br>hr Tyr II<br>1070 | t cgt gaa<br>le Arg Glu        | 3502 |

| gct att gaa tcg ttt att gat gat gct gat aag cta gac tat gac ctt<br>Ala Ile Glu Ser Phe Ile Asp Asp Ala Asp Lys Leu Asp Tyr Asp Leu<br>1075 1080 1085 | 3550 |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| gtt ttt tac agt att gga cag aag ttg aca cta ctt tta cat gag tat Val Phe Tyr Ser Ile Gly Gln Lys Leu Thr Leu Leu Leu His Glu Tyr 1090 1095 1100 1105  | 3598 |
| ggt ttt gac ttt atg aaa gtt ggt gag gat gct tta gtt aat tta gaa<br>Gly Phe Asp Phe Met Lys Val Gly Glu Asp Ala Leu Val Asn Leu Glu<br>1110 1115 1120 | 3646 |
| acg tit act cit aaa ggg aat aag tac aaa cci tic aga aat gcc cta<br>Thr Phe Thr Leu Lys Gly Asn Lys Tyr Lys Pro Phe Arg Asn Ala Leu<br>1125 1130 1135 | 3694 |
| aat aga gtt gaa aag gat ggt ttc tat ttc gaa gtt gta caa tcg cca<br>Asn Arg Val Glu Lys Asp Gly Phe Tyr Phe Glu Val Val Gln Ser Pro<br>1140 1145 1150 | 3742 |
| cat agt caa gag cta cta aat agt ttg gaa gag att tct aat act tgg<br>His Ser Gln Glu Leu Leu Asn Ser Leu Glu Glu Ile Ser Asn Thr Trp<br>1165           | 3790 |
| tta gaa gga cgt cct gaa aaa ggt ttc tca cta gga tat ttt aat aaa<br>Leu Glu Gly Arg Pro Glu Lys Gly Phe Ser Leu Gly Tyr Phe Asn Lys<br>1170 1185      | 3838 |
| gat tat ttc caa caa gcc cca ata gct ttg gta aaa aat gct gaa cac<br>Asp Tyr Phe Gln Gln Ala Pro Ile Ala Leu Val Lys Asn Ala Glu His<br>1190 1195 1200 | 3886 |
| gaa gtt gtt gct ttt gct aat att atg cca aac tat gaa aag agt att<br>Glu Val Val Ala Phe Ala Asn Ile Met Pro Asn Tyr Glu Lys Ser Ile<br>1205 1210      | 3934 |
| ato tot att gat tta atg ogt cao gat aaa cag aaa att oog aat ggo<br>Ile Ser Ile Asp Leu Met Arg His Asp Lys Gln Lys Ile Pro Asn Gly<br>1220 1225 1230 | 3982 |
| gtt atg gat ttc ctc ttt tta tca tta ttc tct tat ta                                                                                                   | 4030 |
| gga tac cac tat ttt gat ttg ggg atg gca cct tta tca gga gtt ggt<br>Gly Tyr His Tyr Phe Asp Leu Gly Met Ala Pro Leu Ser Gly Val Gly<br>1250 1260 1265 | 4078 |
| 1270 1275 1280                                                                                                                                       | 4126 |
| cat ttc ggt agt cat ttc tac tca ttt aat ggt tta cac aag tat aag His Phe Gly Ser His Phe Tyr Ser Phe Asn Gly Leu His Lys Tyr Lys 1285 1290 1295       | 4174 |

PCT/CA99/00114 WO 99/42588

| aag aag ttt aca cca ttg tgg tcg gaa cgt tat att tct tgt tct cgt<br>Lys Lys Phe Thr Pro Leu Trp Ser Glu Arg Tyr Ile Ser Cys Ser Arg<br>1300 1305 1310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4222                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| tcg tcc tgg tta att tgt gct att tgt gcc cta tta atg gaa gat agt<br>Ser Ser Trp Leu Ile Cys Ala Ile Cys Ala Leu Leu Met Glu Asp Ser<br>1315 1320 1325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4270                         |
| aaa att aag att gtt aaa taagctttat ttggcaatta aaaagagcat<br>Lys Ile Lys Ile Val Lys<br>1330 1335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4318                         |
| gtcatgcgac atgctcttt taaatcattt aataccattg attgcttgaa tctactttat aatatgatgt gctttaaat attgtttagc tactgtagct gctgatttat gctttacagc tacttggtag ttcattctt gcatttcttt ttcagtgata tgaccagcaa gtttattgag agcttttttt acttga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4378<br>4438<br>4498<br>4514 |
| <210> 2<br><211> 154<br><212> PRT<br><213> Streptococcus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| <pre>&lt;400&gt; 2 Ser Gly Lys Glu Pro Ala Asn Arg Phe Ser Trp Ala Lys Asn Lys Leu 15 10 17 18 19 19 19 19 19 19 19 19 19 19 19 19 19</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |
| Leu Ile Asn Gly Phe Ile Ala Thr Leu Ala Ala Thr Ile Leu Phe Phe Leu Ile Asn Gly Phe Ile Ala Thr Leu Ala Ala Thr Ile Leu Phe Phe Phe Leu Ile Asn Gly Phe Ile Ala Thr Leu Ala Ala Thr Ile Leu Phe Phe Phe Phe Ile Asn Gly Phe Ile Ala Thr Leu Ala Ala Thr Ile Leu Phe Phe Phe Ile Asn Gly Phe Il |                              |
| Ala Val Gln Phe Ile Gly Leu Lys Pro Asp Tyr Pro Gly Lys Thr Tyr  45 40 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              |
| 35  Phe Ile Ile Leu Leu Thr Ala Trp Thr Leu Met Ala Leu Val Thr Ala  60  50  50  50  50  50  50  50  50  50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |
| 50 55  Leu Val Gly Trp Asp Asn Arg Tyr Gly Ser Phe Leu Ser Leu Leu Ile  80 70 75 80 65 70 80 70 80 80 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| 65 70  Leu Leu Phe Gln Leu Gly Ser Ser Ala Gly Thr Tyr Pro Ile Glu Leu 95 85 90 Pho Leu Pro Met Thr Tyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              |
| Ser Pro Lys Phe Phe Gln Thr Ile Gln Pro Phe Leu Pro Met Thr Tyr  100  105  100  The Glv Asp Val Asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
| Ser Val Ser Gly Leu Arg Glu Thr Ile Ser Leu Thr Gly Asp Val Asn 125 120 120 120 120 120 120 120 120 120 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |
| His Gln Trp Arg Met Leu Val Ile Phe Leu Val Ser Ser Met Ile Leu  130 135 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                              |
| Ala Leu Ile Tyr Arg Lys Gln Glu Asp<br>145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |
| <210> 3<br><211> 118<br><212> PRT<br><213> Streptococcus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| <pre>&lt;400&gt; 3 Met Ser Thr Leu Thr Ile Ile Ile Ala Thr Leu Thr Ala Leu Glu His 15</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                              |
| 1 5 10 10 10 Phe Tyr Ile Met Tyr Leu Glu Thr Leu Ala Thr Gln Ser Asn Met Thr 20 25 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |

```
Gly Lys Ile Phe Ser Met Ser Lys Glu Glu Leu Ser Tyr Leu Pro Val
   Ile Lys Leu Phe Lys Asn Gln Gly Val Tyr Asn Gly Leu Ile Gly Leu
   Phe Leu Leu Tyr Gly Leu Tyr Ile Ser Gln Asn Gln Glu Ile Val Ala
   Val Phe Leu Ile Asn Val Leu Leu Val Ala Ile Tyr Gly Ala Leu Thr
   Val Asp Lys Lys Ile Leu Leu Lys Gln Gly Gly Leu Pro Ile Leu Ala
                            105
   Leu Leu Thr Phe Leu Phe
          115
        <210> 4
        <211> 247
        <212> PRT
        <213> Streptococcus
        <400> 4
  Met Thr Glu Asn Trp Leu His Thr Lys Asp Gly Ser Asp Ile Tyr Tyr
 Arg Val Val Gly Gln Gly Gln Pro Ile Val Phe Leu His Gly Asn Ser
 Leu Ser Ser Arg Tyr Phe Asp Lys Gln Ile Ala Tyr Phe Ser Lys Tyr
 Tyr Gln Val Ile Val Met Asp Ser Arg Gly His Gly Lys Ser His Ala
 Lys Leu Asn Thr Ile Ser Phe Arg Gln Ile Ala Val Asp Leu Lys Asp
 Ile Leu Val His Leu Glu Ile Asp Lys Val Ile Leu Val Gly His Ser
 Asp Gly Ala Asn Leu Ala Leu Val Phe Gln Thr Met Phe Pro Gly Met
 Val Arg Gly Leu Leu Asn Ser Gly Asn Leu Thr Ile His Gly Gln
 Arg Trp Trp Asp Ile Leu Leu Val Arg Ile Ala Tyr Lys Phe Leu His
Tyr Leu Gly Lys Leu Phe Pro Tyr Met Arg Gln Lys Ala Gln Val Ile
Ser Leu Met Leu Glu Asp Leu Lys Ile Ser Pro Ala Asp Leu Gln His
Val Ser Thr Pro Val Met Val Leu Val Gly Asn Lys Asp Ile Ile Lys
Leu Asn His Ser Lys Lys Leu Ala Ser Tyr Phe Pro Arg Gly Glu Phe
Tyr Ser Leu Val Gly Phe Gly His His Ile Ile Lys Gln Asp Ser His
Val Phe Asn Ile Ile Ala Lys Lys Phe Ile Asn Asp Thr Leu Lys Gly
Glu Ile Val Glu Lys Ala Asn
               245
     <210> 5
     <211> 816
     <212> PRT
     <213> Streptococcus
```

|            | - 4        | 00>       | 5         |          |              |            |           |       |              |      |            |          |         |            |            |                   |
|------------|------------|-----------|-----------|----------|--------------|------------|-----------|-------|--------------|------|------------|----------|---------|------------|------------|-------------------|
| Met        | Ile        | His       | Leu       |          |              |            |           |       |              |      |            |          |         |            |            |                   |
|            |            |           |           |          |              | Met        |           |       | Phe          |      |            |          |         |            |            |                   |
| Val        | Ile        | Ala       | 20<br>Val | Leu      | Pro          | Thr        | Thr       | Gly   | Tyr          | Asp  | Phe        | Va<br>45 | 1 L     | eu A       | sn         | Gly               |
| Leu        | Leu        | 35<br>Arg | Thr       | Asp      | Lys          | Ser        | 40<br>Lys | Arg   | Tyr          | Ile  | Leu<br>60  | Gl       | n T     | hr S       | Ser        | Trp               |
|            |            |           |           |          |              | 55<br>Asn  |           |       |              | Phe  |            |          |         |            |            |                   |
|            |            |           |           |          |              | Phe        |           |       |              |      |            |          |         |            |            |                   |
|            |            |           |           |          |              | Arg        |           |       |              |      |            |          | e S     | er (       |            |                   |
|            |            |           |           |          |              | Ala        |           |       |              |      |            |          |         |            |            |                   |
|            |            |           |           |          |              | Tyr        |           |       |              |      |            |          |         |            |            |                   |
| Lys        | Ala<br>130 | . Ser     | · Val     | . Asp    | TYI          | 135        | 131       | 0     | - Cl         | , ui | 14<br>= Lv | 0<br>s G | 1 v . s | Ser        | His        | Tyr               |
| Tyr<br>145 | Phe        | Pro       | val       | l Ile    | 150          | 135<br>Trp | . 116     | . 56  | -1           | 15   | 5<br>5     | . G      | 112 1   | ıal        | Val        | 160<br>Ser        |
|            |            |           |           |          |              | Ser        |           |       |              |      |            |          |         |            |            |                   |
|            |            |           |           |          |              |            |           |       |              |      |            |          |         |            |            | Tyr               |
|            |            |           | y Il      | e Hi     |              |            |           |       |              |      |            |          |         |            |            | Cys               |
|            |            | у Су      | s Al      |          |              |            | e Va      | l Se  |              |      |            |          |         |            |            | Gly               |
|            |            |           |           |          |              | u Ph       | e Th      |       |              |      |            |          |         |            |            | 240               |
| 22!<br>Ly: | 5<br>s Gl  | u Th      | r Va      | ıl Va    | 23<br>1 Al   | a Tr       | p Le      | u Le  | :u Le        | u Ty | r A        | rg I     | .eu     | Ala        | Ту:<br>25! | Tyr               |
|            |            |           |           |          |              |            |           | e Ty  | r Ph         |      |            |          | lis     |            | Le         | gly .             |
|            |            |           |           |          |              |            |           |       |              |      |            | ys (     | slu     |            |            | l Ser             |
|            |            |           |           |          |              |            |           |       |              |      | et A       | rg :     |         |            |            | y Ala             |
|            |            |           |           |          |              |            |           |       |              |      |            |          |         |            |            | e Met<br>320      |
|            |            |           |           |          |              |            |           |       |              |      |            |          |         |            |            | 320<br>u Trp<br>5 |
| Tr         | rp L       | eu G      | TU P      | 3:<br>3: | 25<br>-      | 1 y 100    | 0         | ) \   | 3            | 30   | he T       | ·le      | Leu     | Lei        | 33<br>1 Al | 5<br>a Arg        |
|            |            |           |           |          |              |            |           |       |              |      |            |          |         |            |            |                   |
|            |            |           |           |          |              |            |           |       |              |      |            |          |         |            |            | e Trp             |
|            |            |           |           |          |              |            |           |       |              |      |            |          |         |            |            | p Arg             |
|            | eu S       | er F      |           |          |              |            |           |       |              |      |            |          |         |            |            | le Lys            |
|            |            |           |           |          | ys I         | ys G       |           |       |              |      |            |          |         |            |            | rg Ile<br>15      |
| L          | ys A       | Asp (     |           | lle :    | 105<br>[le ] | (le V      | al S      | Ser 1 | Leu 1<br>425 | Met  | Gly        | Val      | Leu     | 2 Ph<br>43 | е Т<br>0   | yr Ile            |

### 11/63

```
Ala Gly Leu Leu Phe Pro Ile Arg Ala His Ile Thr Gly Gly Ser Ile
                              440
   Glu Arg Leu His Tyr Ile Ile Ala Trp Glu Pro Ile Ala Leu Ala Thr
  Leu Ile Leu Thr Leu Val Tyr Leu Cys Leu Val Lys Ile Leu Gln Gly
  Lys Ser Cys Gln Ile Gly Asp Val Phe Asn Val Asp Arg Tyr Lys Lys
  Leu Leu Gln Ala Tyr Gly Gly Ser Ser Asp Ser Gly Leu Ala Phe Leu
                                  505
  Asn Asp Lys Arg Leu Tyr Trp Tyr Gln Lys Asn Gly Glu Asp Cys Val
  Ala Phe Gln Phe Val Ile Val Asn Asn Lys Cys Leu Ile Met Gly Glu
  Pro Ala Gly Asp Asp Thr Tyr Ile Arg Glu Ala Ile Glu Ser Phe Ile
 Asp Asp Ala Asp Lys Leu Asp Tyr Asp Leu Val Phe Tyr Ser Ile Gly
 Gln Lys Leu Thr Leu Leu His Glu Tyr Gly Phe Asp Phe Met Lys
 Val Gly Glu Asp Ala Leu Val Asn Leu Glu Thr Phe Thr Leu Lys Gly
                      600
 Asn Lys Tyr Lys Pro Phe Arg Asn Ala Leu Asn Arg Val Glu Lys Asp
                        615
 Gly Phe Tyr Phe Glu Val Val Gln Ser Pro His Ser Gln Glu Leu Leu
 Asn Ser Leu Glu Glu Ile Ser Asn Thr Trp Leu Glu Gly Arg Pro Glu
 Lys Gly Phe Ser Leu Gly Tyr Phe Asn Lys Asp Tyr Phe Gln Gln Ala
 Pro Ile Ala Leu Val Lys Asn Ala Glu His Glu Val Val Ala Phe Ala
                            680
 Asn Ile Met Pro Asn Tyr Glu Lys Ser Ile Ile Ser Ile Asp Leu Met
                        695
Arg His Asp Lys Gln Lys Ile Pro Asn Gly Val Met Asp Phe Leu Phe
Leu Ser Leu Phe Ser Tyr Tyr Gln Glu Lys Gly Tyr His Tyr Phe Asp
Leu Gly Met Ala Pro Leu Ser Gly Val Gly Arg Val Glu Thr Ser Phe
Ala Lys Glu Arg Met Ala Tyr Leu Val Tyr His Phe Gly Ser His Phe
Tyr Ser Phe Asn Gly Leu His Lys Tyr Lys Lys Phe Thr Pro Leu
Trp Ser Glu Arg Tyr Ile Ser Cys Ser Arg Ser Ser Trp Leu Ile Cys
Ala Ile Cys Ala Leu Leu Met Glu Asp Ser Lys Ile Lys Ile Val Lys
                                   810
     <210> 6
     <211> 518
     <212> PRT
```

<213> Streptococcus <400> 6

| Met A       |      |      |      |                  |            |     |          |            |              |      |      |     |     |            |            |      |    |     |
|-------------|------|------|------|------------------|------------|-----|----------|------------|--------------|------|------|-----|-----|------------|------------|------|----|-----|
| l<br>Asn I  |      |      |      |                  |            |     |          |            |              |      |      |     |     |            |            |      |    |     |
| Gln G       |      |      | Met  |                  |            |     |          |            |              |      |      |     |     |            |            |      |    |     |
| Phe I       | le   | Leu  |      |                  |            |     |          |            |              |      |      |     |     |            |            |      |    |     |
| Pro I       | le   |      |      |                  |            |     |          |            |              |      |      |     |     |            |            |      |    |     |
| 65<br>Gly H |      |      |      |                  |            |     |          |            |              |      |      |     |     |            |            |      |    |     |
| Gly L       |      |      |      |                  |            |     |          |            | 1 1 1 5      |      |      |     |     |            |            |      |    |     |
| Ser T       |      |      |      |                  |            |     |          |            |              |      |      |     |     |            |            |      |    |     |
| Gly V       |      |      |      |                  |            |     |          |            |              |      |      |     |     |            |            |      |    |     |
| Ile 7       |      |      |      |                  |            |     |          |            |              |      |      |     |     |            |            |      |    |     |
| 145<br>Pro  |      |      |      |                  |            |     |          |            |              |      |      |     |     |            |            |      |    |     |
| Val :       |      |      |      | ı Glı            | n Gl       |     |          |            |              | Glı  | ı Il |     |     |            |            |      |    |     |
| Val .       |      |      | Ty:  | r Ly             |            |     |          |            |              |      |      |     |     |            |            |      |    |     |
| Ser         |      | Lev  | ı Al |                  |            |     | <u>ا</u> |            |              |      |      | - 4 |     |            |            |      |    |     |
| Asn         | Gly  | glı, |      |                  |            |     |          |            |              |      |      |     |     |            |            |      |    |     |
| 225<br>Cys  |      |      |      |                  |            |     |          |            |              |      |      |     |     |            |            |      |    |     |
|             |      |      | ~ ~  | r Ph             | e I        |     |          |            | <i>/</i> n · | ~    |      |     |     |            |            | -    |    |     |
|             |      |      |      | r Il             |            |     |          |            |              |      |      |     |     |            |            |      |    |     |
|             |      |      |      | ie Me            |            |     |          |            |              |      |      |     |     |            |            |      |    |     |
|             | Ph   | e Th |      | eu Ly            |            |     |          |            |              |      |      |     |     |            |            |      |    |     |
|             |      |      |      | Lu Ly<br>3:      | <b>7</b> F |     |          |            |              |      | 5 U  |     |     |            |            |      | -  |     |
|             |      |      | _    | 3.<br>lu L<br>40 |            |     |          |            | 3.4          | . n  |      |     |     |            |            | _    |    |     |
|             |      |      | ly A | rg P             |            |     |          | 101        | y Ph         | ne S |      |     |     |            | ~          |      |    |     |
|             |      | r P  | he G | ln G             |            |     | 375      |            |              |      |      |     | 201 | ,          |            |      |    |     |
|             | ı Va | al V |      | la P             |            |     |          |            |              |      |      |     |     |            |            |      |    |     |
|             |      |      |      | .sp L            | eu l       | Met |          |            |              |      | ys ( | Gln | Ly. |            |            |      |    |     |
|             |      |      |      | he I             | eu         |     |          |            |              | eu I | he   |     |     |            |            |      |    | Lys |
| Gly         | у Т  |      | is 7 | Syr I            | he         | Asp | Leu      | 1 Gl<br>44 | у М<br>:0    | et A | Ala  | Pro | Le  | u Se<br>44 | er G<br>15 | ly V | al | Gly |

```
Arg Val Glu Thr Ser Phe Ala Lys Glu Arg Met Ala Tyr Leu Val Tyr
   His Phe Gly Ser His Phe Tyr Ser Phe Asn Gly Leu His Lys Tyr Lys
   Lys Lys Phe Thr Pro Leu Trp Ser Glu Arg Tyr Ile Ser Cys Ser Arg
   Ser Ser Trp Leu Ile Cys Ala Ile Cys Ala Leu Leu Met Glu Asp Ser
                                       490
                                   505
  Lys Ile Lys Ile Val Lys
          515
        <210> 7
        <211> 5126
        <212> DNA
        <213> Streptococcus
        <220>
        <221> CDS
        <222> (1)...(687)
        <221> CDS
        <222> (701)...(2557)
        <221> CDS
        <222> (2566)...(3036)
       <221> CDS
       <222> (3106)...(4842)
       <221> CDS
       <222> (4850)...(5125)
       <400> 7
 aat ttt gat atc gaa aca act ttt gag gca atg aaa aag cac gcg
 Asn Phe Asp Ile Glu Thr Thr Phe Glu Ala Met Lys Lys His Ala
                                                                      48
 tca tta ttg gag aaa ata tct gtt gag cgt tct ttt att gaa ttt gat
 Ser Leu Leu Glu Lys Ile Ser Val Glu Arg Ser Phe Ile Glu Phe Asp
                                                                      96
aaa ctt cta tta gca cct tat tgg cgt aaa gga atg ctg gca cta ata
Lys Leu Leu Ala Pro Tyr Trp Arg Lys Gly Met Leu Ala Leu Ile
                                                                     144
gat agt cat gct ttt aat tat cta cca tgc tta aaa aat agg gaa tta
Asp Ser His Ala Phe Asn Tyr Leu Pro Cys Leu Lys Asn Arg Glu Leu
                                                                     192
caa tta agc gcc ttt ttg tcc cag tta gat aaa gat ttt tta ttt gag
Gln Leu Ser Ala Phe Leu Ser Gln Leu Asp Lys Asp Phe Leu Phe Glu
                                                                    240
aca tca gaa caa gct tgg gca tca ctc atc ttg agt atg gaa gtt gaa
Thr Ser Glu Gln Ala Trp Ala Ser Leu Ile Leu Ser Met Glu Val Glu
                                                                    288
```

| cac aca aag act ttt tta aaa aaa tgg aag aca tca act cac ttt caa<br>His Thr Lys Thr Phe Leu Lys Lys Trp Lys Thr Ser Thr His Phe Gln<br>100 105 110     | 336 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| aaa gat gtt gag cat ata gtg gat gtt tat cgt att cgt gaa caa atg<br>Lys Asp Val Glu His Ile Val Asp Val Tyr Arg Ile Arg Glu Gln Met<br>115 120 125     | 384 |
| gga ttg gct aaa gaa cat ctt tat cgt tat gga aaa act ata ata aaa<br>Gly Leu Ala Lys Glu His Leu Tyr Arg Tyr Gly Lys Thr Ile Ile Lys<br>130 135         | 432 |
| caa gcg gaa ggt att cgc aaa gca aga ggc ttg atg gtt gat ttc gaa<br>Gln Ala Glu Gly Ile Arg Lys Ala Arg Gly Leu Met Val Asp Phe Glu<br>145 150 160     | 480 |
| aaa ata gaa caa cta gat agt gag tta gca atc cat gat agg cat gag<br>Lys Ile Glu Gln Leu Asp Ser Glu Leu Ala Ile His Asp Arg His Glu<br>165 170         | 528 |
| ata gtt gtc aat ggt ggc acc tta atc aag aaa tta gga ata aaa cct<br>Ile Val Val Asn Gly Gly Thr Leu Ile Lys Lys Leu Gly Ile Lys Pro<br>180 185         | 576 |
| ggt cca cag atg gga gat att atc tct caa att gaa tta gcc att gtt<br>Gly Pro Gln Met Gly Asp Ile Ile Ser Gln Ile Glu Leu Ala Ile Val<br>195 200 205     | 624 |
| tta gga caa ctg att aat gaa gaa gag gct att tta cat ttt gtt aag<br>Leu Gly Gln Leu Ile Asn Glu Glu Glu Ala Ile Leu His Phe Val Lys<br>210 215 220     | 672 |
| cag tac ttg atg gat tagagaggat tat atg agc gat ttt tta gta gat Gln Tyr Leu Met Asp 230 235                                                            | 721 |
| gga ttg act aag tcg gtt ggt gat aag acg gtc ttt agt aat gtt tca<br>Gly Leu Thr Lys Ser Val Gly Asp Lys Thr Val Phe Ser Asn Val Ser<br>240 245         | 769 |
| ttt atc atc cat agt tta gac cgt att ggg att att ggt gtc aat gga<br>Phe Ile Ile His Ser Leu Asp Arg Ile Gly Ile Ile Gly Val Asn Gly<br>255 260 265     | 817 |
| act gga aag aca aca cta tta gat gtt att tcg ggt gaa tta ggt ttt<br>Thr Gly Lys Thr Thr Leu Leu Asp Val Ile Ser Gly Glu Leu Gly Phe<br>270 275 280     | 865 |
| gat ggt gat cgt tcc cct ttt tca tca gct aat gat tat aag att gct<br>Asp Gly Asp Arg Ser Pro Phe Ser Ser Ala Asn Asp Tyr Lys Ile Ala<br>285 290 295 300 | 913 |
| tat tta aaa caa gaa cca gac ttt gat gat tct cag aca att ttg gac<br>Tyr Leu Lys Gln Glu Pro Asp Phe Asp Asp Ser Gln Thr Ile Leu Asp<br>305 310 315     | 961 |

| acc gta ctt tct tct gac tta aga gag atg gct tta att aaa gaa tat<br>Thr Val Leu Ser Ser Asp Leu Arg Glu Met Ala Leu Ile Lys Glu Tyr<br>320 325 330     | 1009 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| gaa tta ttg ctt aat cac tac gaa gaa agt aag caa tca cgt cta gag<br>Glu Leu Leu Asn His Tyr Glu Glu Ser Lys Gln Ser Arg Leu Glu<br>335 340 345         | 1057 |
| aaa gta atg gca gaa atg gat tot tta gat got tgg tot att gag ago<br>Lys Val Met Ala Glu Met Asp Ser Leu Asp Ala Trp Ser Ile Glu Ser<br>350 355         | 1105 |
| gaa gtc aaa aca gta tta tcc aaa tta ggt att act gat ttg cag ttg<br>Glu Val Lys Thr Val Leu Ser Lys Leu Gly Ile Thr Asp Leu Gln Leu<br>365 370 375 380 | 1153 |
| tcg gtt ggt gaa tta tca gga gga tta cga aga cgt gtt caa tta gcg<br>Ser Val Gly Glu Leu Ser Gly Gly Leu Arg Arg Arg Val Gln Leu Ala<br>385 390 395     | 1201 |
| caa gta tta tta aat gat gca gat tta ttg ctc tta gac gaa cct act<br>Gln Val Leu Leu Asn Asp Ala Asp Leu Leu Leu Leu Asp Glu Pro Thr<br>400 405 410     | 1249 |
| aac cac tta gat att gac act att gca tgg tta acg aat ttt ttg aaa<br>Asn His Leu Asp Ile Asp Thr Ile Ala Trp Leu Thr Asn Phe Leu Lys<br>420 425         | 1297 |
| aat agt aaa aag aca gtg ctt ttt ata act cat gat cgt tat ttt cta<br>Asn Ser Lys Lys Thr Val Leu Phe Ile Thr His Asp Arg Tyr Phe Leu<br>430 435 440     | 1345 |
| gac aat gtt gca aca cgt att ttt gaa tta gat aag gca cag att aca<br>Asp Asn Val Ala Thr Arg Ile Phe Glu Leu Asp Lys Ala Gln Ile Thr<br>450 455 460     | 1393 |
| gaa tat caa ggc aat tat cag gat tat gtc cga ctt cgt gca gaa caa<br>Glu Tyr Gln Gly Asn Tyr Gln Asp Tyr Val Arg Leu Arg Ala Glu Gln<br>465 470 475     | 1441 |
| 480 485 Lys Lys Gln Leu Tyr Lys                                                                                                                       | 1489 |
| 495 500 S05                                                                                                                                           | 1537 |
| 510 515 SIN ASN Leu Lys Asn Asp Leu His                                                                                                               | 1585 |
| Caa aca agc gat aca agc gat ttg gaa atg aca ttt gaa aca agt cga Gln Thr Ser Asp Thr Ser Asp Leu Glu Met Thr Phe Glu Thr Ser Arg 525 530 535 540       | .633 |

| att ggg aaa aag gtt att aat ttt gaa aat gtc tct ttt tct tac cca<br>Ile Gly Lys Lys Val Ile Asn Phe Glu Asn Val Ser Phe Ser Tyr Pro<br>555         | 1681 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| gat aaa tot ato ttg aaa gao ttt aat ttg tta att caa aat aaa gao<br>Asp Lys Ser Ile Leu Lys Asp Phe Asn Leu Leu Ile Gln Asn Lys Asp<br>560 570     | 1729 |
| cgt att ggc atc gtt gga gat aat ggt gtt gga aag tca acc tta ctt<br>Arg Ile Gly Ile Val Gly Asp Asn Gly Val Gly Lys Ser Thr Leu Leu<br>575 580 585 | 1777 |
| aat tta att gtt caa gat tta cag ccg gat tcg ggt aat gtc tct att Asn Leu Ile Val Gln Asp Leu Gln Pro Asp Ser Gly Asn Val Ser Ile 590 595 600       | 1825 |
| ggt gaa acg ata cgt gta ggt tac ttt tca caa caa ctt cat aat atg<br>Gly Glu Thr Ile Arg Val Gly Tyr Phe Ser Gln Gln Leu His Asn Met<br>605 610 615 | 1873 |
| gat ggc tca aaa cgt gtt att aat tat ttg caa gag gtt gca gat gag<br>Asp Gly Ser Lys Arg Val Ile Asn Tyr Leu Gln Glu Val Ala Asp Glu<br>635         | 1921 |
| gtt aaa act agt gtc ggt aca aca agt gtg aca gaa cta ttg gaa caa<br>Val Lys Thr Ser Val Gly Thr Thr Ser Val Thr Glu Leu Leu Glu Gln<br>640 645     | 1969 |
| ttt ctc ttt cca cgt tcg aca cat gga aca caa att gca aaa tta tca<br>Phe Leu Phe Pro Arg Ser Thr His Gly Thr Gln Ile Ala Lys Leu Ser<br>655 660     | 2017 |
| ggt ggt gag aaa aaa aga ctt tac ctt tta aaa atc ctg att gaa aag<br>Gly Gly Glu Lys Lys Arg Leu Tyr Leu Leu Lys Ile Leu Ile Glu Lys<br>670 680     | 2065 |
| cct aat gtg tta cta ctt gat gag ccg aca aat gac tta gat att gct Pro Asn Val Leu Leu Asp Glu Pro Thr Asn Asp Leu Asp Ile Ala 690 695 700           | 2113 |
| aca tta act gtt ctt gaa aat ttt tta caa ggc ttt ggt ggt cct gtg Thr Leu Thr Val Leu Glu Asn Phe Leu Gln Gly Phe Gly Gly Pro Val 705 710           | 2161 |
| att aca gtt agt cac gat cgt tac ttt tta gat aaa gtg gct aat aaa<br>Ile Thr Val Ser His Asp Arg Tyr Phe Leu Asp Lys Val Ala Asn Lys<br>720 725 730 | 2209 |
| att att gcg ttt gaa gat aac gat atc cgt gaa ttt ttt ggt aat tat<br>Ile Ile Ala Phe Glu Asp Asn Asp Ile Arg Glu Phe Phe Gly Asn Tyr<br>735 740 745 | 2257 |
| act gat tat tta gat gaa aaa gca ttt aat gag caa aat aat gaa gtt<br>Thr Asp Tyr Leu Asp Glu Lys Ala Phe Asn Glu Gln Asn Asn Glu Val<br>750 755     | 2305 |

| atc agt aaa aaa gag agt acc aag aca agt cgt gaa aag caa agt cgt Ile Ser Lys Lys Glu Ser Thr Lys Thr Ser Arg Glu Lys Gln Ser Arg 770 780           | 2353 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| aaa aga atg tct tac ttt gaa aaa caa gaa tgg gcg aca att gaa gac<br>Lys Arg Met Ser Tyr Phe Glu Lys Gln Glu Trp Ala Thr Ile Glu Asp<br>785 790     | 2401 |
| gat att atg ata ttg gaa aat act atc act cgt ata gaa aat gat atg Asp Ile Met Ile Leu Glu Asn Thr Ile Thr Arg Ile Glu Asn Asp Met 800 805           | 2449 |
| caa aca tgt ggt agt gat ttt aca agg tta tct gat tta caa aag gaa<br>Gln Thr Cys Gly Ser Asp Phe Thr Arg Leu Ser Asp Leu Gln Lys Glu<br>815 820 825 | 2497 |
| tta gat gca aaa aat gaa gca ctt cta gaa aag tat gac cgt tat gag<br>Leu Asp Ala Lys Asn Glu Ala Leu Leu Glu Lys Tyr Asp Arg Tyr Glu<br>830 835     | 2545 |
| tac ctt agt gag ttagacac atg att atc cgt ccg att att aaa aat gat Tyr Leu Ser Glu LeuAspThrMet Ile Ile Arg Pro Ile Ile Lys Asn Asp 845 850 855     | 2595 |
| 865 870 875                                                                                                                                       | 2643 |
| 880 885 Reu Asp His Leu 890                                                                                                                       | 2691 |
| 900 905 Phe Phe Val Ile Glu                                                                                                                       | 2739 |
| 915 920 Pro Leu Lys Asn                                                                                                                           | 2787 |
| 930 935 935                                                                                                                                       | 835  |
| aag ggg ctt gct act gat tta gtg aaa atg att gaa gta gaa gct cga 28<br>Lys Gly Leu Ala Thr Asp Leu Val Lys Met Ile Glu Val Glu Ala Arg<br>945 950  | 883  |
| aaa att ggg tat aga caa ctt tat tta gag aca gcc agt act ttg agt 29  Lys Ile Gly Tyr Arg Gln Leu Tyr Leu Glu Thr Ala Ser Thr Leu Ser  960 965 970  | 931  |
| agg gca act gcg gtt tat aag cat atg gga tat tgt gcc tta tcg caa 29 Arg Ala Thr Ala Val Tyr Lys His Met Gly Tyr Cys Ala Leu Ser Gln 980 985        | 79   |

| cca ata gca aat gat caa ggt cat aca gct atg gat att tgg atg atg<br>Pro Ile Ala Asn Asp Gln Gly His Thr Ala Met Asp Ile Trp Met Ile<br>Pro Ile Ala Asn Asp Gln Gly His Thr Ala Met Asp Ile Trp Met Ile           | 3027 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| aaa gat tta taagttgaaa gtggattagt gaacatggat taattatttt<br>Lys Asp Leu                                                                                                                                          | 3076 |
| gagataagag gaaagaaaag gagacatat atg gca tat att tgg tct tat ttg<br>Met Ala Tyr Ile Trp Ser Tyr Leu<br>1010                                                                                                      | 3129 |
| aaa agg tac ccc aat tgg tta tgg ctt gat tta cta gga gct atg ctt<br>Lys Arg Tyr Pro Asn Trp Leu Trp Leu Asp Leu Leu Gly Ala Met Leu<br>1020 1025 1030                                                            | 3177 |
| ttt gtg acg gtt atc cta gga atg ccc aca gcc tta gcg ggt atg att<br>Phe Val Thr Val Ile Leu Gly Met Pro Thr Ala Leu Ala Gly Met Ile<br>1035 1040 1045                                                            | 3225 |
| gat aat ggc gtt aca aaa ggt gat cgg act gga gtt tat ctg tgg acg<br>Asp Asn Gly Val Thr Lys Gly Asp Arg Thr Gly Val Tyr Leu Trp Thr<br>1050 1055                                                                 | 3273 |
| ttc atc atg ttt ata ttt gtt gta cta ggt att att ggg cgt att acg  Phe Ile Met Phe Ile Phe Val Val Leu Gly Ile Ile Gly Arg Ile Thr  1080  1065                                                                    | 3321 |
| atg gct tac gca tct agt cgc tta acg aca aca atg att aga gat atg  atg gct tac gca tct agt cgc tta acg aca aca atg att aga gat atg  Met Ala Tyr Ala Ser Ser Arg Leu Thr Thr Met Ile Arg Asp Met  1095  1090  1095 | 3369 |
| cgt aat gat atg tat gct aag ctt caa gaa tac tcc cat cat gaa tat<br>Arg Asn Asp Met Tyr Ala Lys Leu Gln Glu Tyr Ser His His Glu Tyr<br>1100 1105 1110                                                            | 3417 |
| gaa cag ata ggt gta tct tca cta gtg aca cgt atg aca agc gat act Glu Gln Ile Gly Val Ser Ser Leu Val Thr Arg Met Thr Ser Asp Thr 1115                                                                            | 3465 |
| ttt gtt ttg atg caa ttt gct gaa atg tct tta cgt tta ggc cta gta<br>Phe Val Leu Met Gln Phe Ala Glu Met Ser Leu Arg Leu Gly Leu Val                                                                              | 3513 |
| act cct atg gta atg att ttt agc gtg gtt atg ata cta att acg agt Thr Pro Met Val Met Ile Phe Ser Val Val Met Ile Leu Ile Thr Ser 1145 1150 1155 1160                                                             | 3561 |
| cca tct ttg gct tgg ctt gta gcg gtt gcg atg cct ctt ttg gta gga pro Ser Leu Ala Trp Leu Val Ala Val Ala Met Pro Leu Leu Val Gly 1175                                                                            | 3609 |
| gtc gtt tta tat gta gct ata aaa aca aaa cct tta tct gaa aga caa<br>Val Val Leu Tyr Val Ala Ile Lys Thr Lys Pro Leu Ser Glu Arg Glr<br>1180 1185 1190                                                            | 3657 |

| cag act atg ctt gat aaa atc aat caa tat gtt cgt gaa aat tta aca<br>Gin Thr Met Leu Asp Lys Ile Asn Gln Tyr Val Arg Glu Asn Leu Thr<br>1200 1205      | 3705 |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ggg tta cgc gtt gtt aga gcc ttt gca aga gag aat ttt caa tca caa l210 l215 l220                                                                       | 3753 |
| aaa ttt caa gtc gct aac caa cgt tac aca gat act tca act ggt ctt Lys Phe Gln Val Ala Asn Gln Arg Tyr Thr Asp Thr Ser Thr Gly Leu 1225 1230 1240       | 3801 |
| ttt aaa tta aca ggg cta aca gaa cca ctt ttc gtt caa att att att Phe Lys Leu Thr Gly Leu Thr Glu Pro Leu Phe Val Gln Ile Ile 1245 1250 1255           | 3849 |
| gca atg att gtg gct atc gtt tgg ttt gct ttg gat ccc tta caa aga<br>Ala Met Ile Val Ala Ile Val Trp Phe Ala Leu Asp Pro Leu Gln Arg<br>1260 1265 1270 | 3897 |
| ggt gct att aaa ata ggg gat tta gtt gct ttt atc gaa tat agc ttc<br>Gly Ala Ile Lys Ile Gly Asp Leu Val Ala Phe Ile Glu Tyr Ser Phe<br>1275 1280 1285 | 3945 |
| cat gct ctc ttt tca ttt ttg cta ttt gcc aat ctt ttt act atg tat<br>His Ala Leu Phe Ser Phe Leu Leu Phe Ala Asn Leu Phe Thr Met Tyr<br>1290 1295      | 3993 |
| cct cgt atg gtg gta tca agc cat cgt att aga gag gtg atg gat atg Pro Arg Met Val Val Ser Ser His Arg Ile Arg Glu Val Met Asp Met 1305 1310 1320       | 4041 |
| Pro Ile Ser Ile Asn Pro Asn Ala Glu Gly Val Thr Asp Thr Lys Leu  1325 1330                                                                           | 4089 |
| aaa ggg cat tta gaa ttt gat aat gta aca ttc gct tat cca gga gaa<br>Lys Gly His Leu Glu Phe Asp Asn Val Thr Phe Ala Tyr Pro Gly Glu<br>1340 1345      | 4137 |
| 1360 Lys Pro Gly                                                                                                                                     | 4185 |
| 1370 1375 1380 Lys Ser Ser Leu                                                                                                                       | 4233 |
| 1390 1395 Leu Gly Lys Ile Leu                                                                                                                        | 1281 |
| Gta gat gga gtt gat gta aga gat tat aac ctt aaa tca ctt aan                                                                                          | 329  |

| aag att gga ttt atc ccc caa aaa gct ctt tta ttt aca ggg aca ata 4<br>Lys Ile Gly Phe Ile Pro Gln Lys Ala Leu Leu Phe Thr Gly Thr Ile<br>1420 1425 1430 | 4377         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| gga gag aat tta aaa tat gga aaa gct gat gct act att gat gat ctt<br>Gly Glu Asn Leu Lys Tyr Gly Lys Ala Asp Ala Thr Ile Asp Asp Leu<br>1435 1440 1445   | 4425         |
| aga caa gcg gtt gat att tct caa gct aaa gag ttt att gag agt cac<br>Arg Gln Ala Val Asp Ile Ser Gln Ala Lys Glu Phe Ile Glu Ser His<br>1450 1455 1460   | 4473         |
| caa gaa gcc ttt gaa acg cat tta gct gaa ggt ggg agc aat ctt tct<br>Gln Glu Ala Phe Glu Thr His Leu Ala Glu Gly Gly Ser Asn Leu Ser<br>1480             | 4521         |
| ggg ggt caa aaa caa cgg tta tct att gct agg gct gtt gtt aaa gat<br>Gly Gly Gln Lys Gln Arg Leu Ser Ile Ala Arg Ala Val Val Lys Asp<br>1495             | 4569         |
| cca gat tta tat att ttt gat gat tca ttt tct gct ctc gat tat aag<br>Pro Asp Leu Tyr Ile Phe Asp Asp Ser Phe Ser Ala Leu Asp Tyr Lys<br>1500 1505        | 4617         |
| aca gac gct act tta aga gcg cgt cta aaa gaa gta acc ggt gat tct<br>Thr Asp Ala Thr Leu Arg Ala Arg Leu Lys Glu Val Thr Gly Asp Ser<br>1515 1520 1525   | 4665         |
| aca gtt ttg ata gtt gct caa agg gtg ggt acg att atg gat gct gat Thr Val Leu Ile Val Ala Gln Arg Val Gly Thr Ile Met Asp Ala Asp 1530 1535 1540         | 4713         |
| cag att att gtc ctt gat gaa ggc gaa att gtc ggt cgt ggt acc cac<br>Gln Ile Ile Val Leu Asp Glu Gly Glu Ile Val Gly Arg Gly Thr His                     | 4761         |
| gct caa tta ata gaa aat aat gct att tat cgt gaa atc gct gag tca Ala Gln Leu Ile Glu Asn Asn Ala Ile Tyr Arg Glu Ile Ala Glu Ser 1565 1570 1575         | 4809         |
| caa ctg aag aac caa aac tta tca gaa gga gag tgattgt atg aga aaa<br>Gln Leu Lys Asn Gln Asn Leu Ser Glu Gly Glu Met Arg Lys<br>1580 1585                | 4858         |
| aaa tot git tit tig aga tia tigg tot tac ota act ogo tac aaa got<br>Lys Ser Val Phe Leu Arg Leu Trp Ser Tyr Leu Thr Arg Tyr Lys Ala<br>1595 1600 1605  | 4906         |
| act ctt ttc tta gcg att ttt ttg aaa gtt tta tct agt ttt atg agt Thr Leu Phe Leu Ala Ile Phe Leu Lys Val Leu Ser Ser Phe Met Ser 1610 1615 1620         | 495 <b>4</b> |
| gtt ctg gag cct ttt att tta ggg tta gcg ata aca gag ttg act gct<br>Val Leu Glu Pro Phe Ile Leu Gly Leu Ala Ile Thr Glu Leu Thr Ala<br>1635             | 5002         |

```
aac ctt gtt gat atg gct aag gga gtt tct ggg gca gaa ttg aac gtt
  Asn Leu Val Asp Met Ala Lys Gly Val Ser Gly Ala Glu Leu Asn Val
                                                                     5050
                         1645
  cct tat att gct ggt att ttg att att tat ttt ttc aga ggt gtt ttc
  Pro Tyr Ile Ala Gly Ile Leu Ile Ile Tyr Phe Phe Arg Gly Val Phe
                                                                     5098
                                        1665
  tat gaa tta ggt tot tat ggo toa aat t
  Tyr Glu Leu Gly Ser Tyr Gly Ser Asn
                                                                    5126
        <210> 8
       <211> 229
       <212> PRT
       <213> Streptococcus
       <400> 8
 Asn Phe Asp Ile Glu Thr Thr Phe Glu Ala Met Lys Lys His Ala
 Ser Leu Leu Glu Lys Ile Ser Val Glu Arg Ser Phe Ile Glu Phe Asp
                              10
 Lys Leu Leu Ala Pro Tyr Trp Arg Lys Gly Met Leu Ala Leu Ile
 Asp Ser His Ala Phe Asn Tyr Leu Pro Cys Leu Lys Asn Arg Glu Leu
 Gln Leu Ser Ala Phe Leu Ser Gln Leu Asp Lys Asp Phe Leu Phe Glu
Thr Ser Glu Gln Ala Trp Ala Ser Leu Ile Leu Ser Met Glu Val Glu
His Thr Lys Thr Phe Leu Lys Lys Trp Lys Thr Ser Thr His Phe Gln
Lys Asp Val Glu His Ile Val Asp Val Tyr Arg Ile Arg Glu Gln Met
Gly Leu Ala Lys Glu His Leu Tyr Arg Tyr Gly Lys Thr Ile Ile Lys
Gln Ala Glu Gly Ile Arg Lys Ala Arg Gly Leu Met Val Asp Phe Glu
Lys Ile Glu Gln Leu Asp Ser Glu Leu Ala Ile His Asp Arg His Glu
Ile Val Val Asn Gly Gly Thr Leu Ile Lys Lys Leu Gly Ile Lys Pro
                               185
Gly Pro Gln Met Gly Asp Ile Ile Ser Gln Ile Glu Leu Ala Ile Val
                           200
Leu Gly Gln Leu Ile Asn Glu Glu Glu Ala Ile Leu His Phe Val Lys
Gln Tyr Leu Met Asp
                                           220
225
     <210> 9
     <211> 622
     <212> PRT
     <213> Streptococcus
```

|                               |                       |              |             |            |             |            |                       |            |                     |                         |              |              | _              |
|-------------------------------|-----------------------|--------------|-------------|------------|-------------|------------|-----------------------|------------|---------------------|-------------------------|--------------|--------------|----------------|
| <400<br>Met Ser As            | p Phe                 | Leu          | Val         | Asp        | Gly         | Leu        | Thr<br>10             | Lys        | Ser                 | Val                     | Gly          | Asp<br>15    | Lys            |
| 1<br>Thr Val Ph               | e Ser                 | 5<br>Asn     | Val         | Ser        | Phe         | Ile        | Ile                   | His        | Ser                 | Leu                     | Asp<br>30    | Arg          | Ile            |
| Gly Ile II                    | 20<br>e Gly           | Val          | Asn         | Gly        | Thr         | 25<br>Gly  | Lys                   | Thr        | Thr                 | Leu<br>45               | Leu          | Asp          | Val            |
| 3!<br>Ile Ser G               | ;<br>Ly Glu           | Leu          | Gly         | Phe        | 40<br>Asp   | Gly        | Asp                   | Arg        | Ser                 | Pro                     | Phe          | Ser          | Ser            |
| 50<br>Ala Asn A               | o Tyr                 | · Lys        | Ile         | 55<br>Ala  | Tyr         | Leu        | Lys                   | Gln        | 60<br>Glu           | Pro                     | Asp          | Phe          | Asp<br>80      |
| 65<br>Asp Ser G               | ln Thr                | Ile          | 70<br>Leu   | Asp        | Thr         | Val        | Leu                   | 75<br>Ser  | Ser                 | Asp                     | Leu          | Arg          | Glu            |
| Met Ala L                     | eu Ile                | 85<br>Lys    | Glu         | Tyr        | Glu         | Leu        | 90<br>Leu             | Leu        | Asn                 | His                     | Tyr          | Glu          | Glu            |
| Ser Lys G                     | 100                   | n Arc        | . Leu       | Glu        | Lys         | 105<br>Val | 5<br>L Met            | : Ala      | Glu                 | Met                     | Asp          | Ser          | Leu            |
| Ser Lys C<br>1<br>Asp Ala T   | 15<br>25 Se           | r Tle        | Glu         | . Ser      | 120<br>Glu  | va.        | l Lys                 | s Thr      | . Val               | 125<br>Let              | s<br>1 Ser   | Lys          | Leu            |
| Asp Ala 1<br>130<br>Gly Ile 1 | ייי אר יייי<br>ד'ר פר | ~ T ~ 1      | . Glr       | 135        | i Ser       | · Vai      | 1 Gl                  | y Gli      | 140<br>Let          | )<br>ı Sei              | c Gly        | y Gly        | Leu            |
| Gly Ile 1<br>145<br>Arg Arg A | nr As                 | י בי         | 150         | )<br>1 201 | a Glr       | ı Va       | l Le                  | u Lei      | a Asr               | n Asj                   | o Ala        | a Asp        | 160<br>Leu     |
| Arg Arg i                     | Arg Va                | 1 G1:        | , ње<br>5   | A ALC      | × 201       | n Hi       | 17                    | 0<br>u Asi | o Ile               | e As                    | p Thi        | 179<br>r Ile | Ala            |
| Leu Leu :                     | Leu As<br>18          | p GI         | u Pro       | 5 III.     | - Asi       | 18         | 5 <u>5</u><br>5 x I.V | e Lv       | s Thi               | r Va                    | 19<br>l Le   | 0<br>u Phe   | e Ile          |
| Trp Leu                       | Thr As<br>195         | n Ph         | e Le        | и гу       | 20          | 0          | : 11y                 | ומו.       | a Th                | 20<br>r Ar              | 5<br>a Il    | e Ph         | e Glu          |
| Thr His                       | Asp Aı                | rg Ty        | r Ph        | е Le<br>21 | u As<br>5   | p A:       | GJ                    | בת בו      | 22<br>v As          | 0<br>n Tv               | r Gl         | n As         | p Tyr          |
| 210<br>Leu Asp<br>225         | Lys A                 | la Gl        | in II<br>23 | e Tn<br>0  | r GI        | u 1)       | 71 63                 | 23         | 5<br>5              | ر. د.<br>ا (۵ م         | a Se         | er Le        | 240<br>u His   |
| 225<br>Val Arg                | Leu A                 | rg Al        | la Gl<br>45 | u Gl       | n As        | sp G.      | 1u Ai<br>2!           | rg As      | b wr                | .a A.                   |              | 25           | 5<br>r Gln     |
| Lys Lys                       | Lys G                 | ln Lo        | eu Ty       | r L        | rs G]       | Ln G.<br>2 | lu L<br>65            | eu Al      | la II               | p Me                    | 2°           | 70<br>rg Ph  | e Gln          |
| Pro Gln                       | Ala A                 | rg A         | la Ti       | ar Ly      | /s Gl<br>28 | ln G<br>80 | ln A                  | la Ai      | rg II               | Le A                    | sn A.<br>85  | .g           | an Glu         |
| Asn Leu                       | Lys A                 | sn A         | sp L        | eu H.<br>2 | is G:<br>95 | ln T       | hr S                  | er A       | sp Ti               | nr S                    | er A         | sp ne        | a Glu          |
| 290<br>Met Thr                | Phe C                 | 3lu T        | hr S        | er A<br>10 | rg I        | le G       | ly L                  | ys L<br>3  | ys V<br><b>1</b> 5  | aı I                    | ie A         | P            | 320            |
| 305<br>Asn Val                | Ser !                 | Phe S        | er T        | yr P       | ro A        | .sp I      | Jys S                 | er I<br>30 | le L                | eu L                    | ys A         | sp P         | 35             |
| Leu Leu                       | Ile                   | Gln A        | Asn L       | ys A       | sp A        | rg :       | Ile (<br>345          | Bly I      | le V                | al G                    | lly A        | sp A<br>50   | sn Gly         |
| Val Gly                       | Lys                   | 340<br>Ser : | Thr I       | seu I      | eu A        | sn 1       | Leu :                 | Ile V      | /al G               | ln A                    | Asp I<br>365 | Jeu G        | In Pro         |
| Asp Se                        | 355<br>Gly            | Asn '        | Val S       | Ser :      | le C        | Gly '      | Glu'                  | Thr :      | lle A               | Arg <sup>1</sup><br>380 | Jal (        | Gly T        | yr Phe         |
| 379<br>Ser Gl:                | n Gln                 | Leu          | His A       | Asn I      | Met A       | Asp        | Gly                   | Ser 1      | Lys <i>l</i><br>395 | Arg '                   | Val :        | Ile A        | Asn Tyr<br>400 |
| 385<br>Leu Gl                 | n Glu                 | Val          | Ala         | Asp        | Glu '       | Val        | Lys                   | Thr        | Ser '               | Val                     | Gly '        | Thr :        | Thr Ser        |
| Val Th                        | r Glu                 | Leu<br>420   | 405<br>Leu  | Glu        | Gln         | Phe        | Leu<br>425            | Phe        | Pro                 | Arg                     | Ser          | Thr :        | His Gly        |
|                               |                       | 120          |             |            |             |            |                       |            |                     |                         |              |              |                |

WO 99/42588 PCT/CA99/00114

```
Thr Gln Ile Ala Lys Leu Ser Gly Gly Glu Lys Lys Arg Leu Tyr Leu
  Leu Lys Ile Leu Ile Glu Lys Pro Asn Val Leu Leu Asp Glu Pro
  Thr Asn Asp Leu Asp Ile Ala Thr Leu Thr Val Leu Glu Asn Phe Leu
  Gln Gly Phe Gly Gly Pro Val Ile Thr Val Ser His Asp Arg Tyr Phe
  Leu Asp Lys Val Ala Asn Lys Ile Ile Ala Phe Glu Asp Asn Asp Ile
  Arg Glu Phe Phe Gly Asn Tyr Thr Asp Tyr Leu Asp Glu Lys Ala Phe
                                  505
                              520
  Asn Glu Gln Asn Asn Glu Val Ile Ser Lys Lys Glu Ser Thr Lys Thr
  Ser Arg Glu Lys Gln Ser Arg Lys Arg Met Ser Tyr Phe Glu Lys Gln
  Glu Trp Ala Thr Ile Glu Asp Asp Ile Met Ile Leu Glu Asn Thr Ile
 Thr Arg Ile Glu Asn Asp Met Gln Thr Cys Gly Ser Asp Phe Thr Arg
                                     570
                                 585
 Leu Ser Asp Leu Gln Lys Glu Leu Asp Ala Lys Asn Glu Ala Leu Leu
                            600
 Glu Lys Tyr Asp Arg Tyr Glu Tyr Leu Ser Glu Leu Asp Thr
                      615
       <210> 10
       <211> 157
       <212> PRT
       <213> Streptococcus
      <400> 10
 Met Ile Ile Arg Pro Ile Ile Lys Asn Asp Asp Gln Ala Val Ala Gln
 Leu Ile Arg Gln Ser Leu Arg Ala Tyr Asp Leu Asp Lys Pro Asp Thr
Ala Tyr Ser Asp Pro His Leu Asp His Leu Thr Ser Tyr Tyr Glu Lys
                                25
Ile Glu Lys Ser Gly Phe Phe Val Ile Glu Glu Arg Asp Glu Ile Ile
Gly Cys Gly Gly Phe Gly Pro Leu Lys Asn Leu Ile Ala Glu Met Gln
Lys Val Tyr Ile Ala Glu Arg Phe Arg Gly Lys Gly Leu Ala Thr Asp
Leu Val Lys Met Ile Glu Val Glu Ala Arg Lys Ile Gly Tyr Arg Gln
Leu Tyr Leu Glu Thr Ala Ser Thr Leu Ser Arg Ala Thr Ala Val Tyr
                               105
                        120
Lys His Met Gly Tyr Cys Ala Leu Ser Gln Pro Ile Ala Asn Asp Gln
Gly His Thr Ala Met Asp Ile Trp Met Ile Lys Asp Leu
                   150
     <210> 11
     <211> 579
     <212> PRT
     <213> Streptococcus
```

| <pre>&lt;400&gt; 11 Met Ala Tyr Ile Trp Ser Tyr Leu Lys Arg Tyr Pro Asn Trp Leu Trp</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 25 20 20 Pro Thr Ala Leu Ala Gly Met Ile Asp Asn Gly Val Thr Lys Gly Asp 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Pro Thr Ala Leu Ala Gly Met 11e Asp 135 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 35 Arg Thr Gly Val Tyr Leu Trp Thr Phe Ile Met Phe Ile Phe Val Val 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Leu Gly Ile Ile Gly Arg Ile Thr Met Ala Tyr Ala Ser Ser Arg Leu 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 65 The The Met Ile Arg Asp Met Arg Asp Met Tyr Ala Lys Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 85  Gln Glu Tyr Ser His His Glu Tyr Glu Gln Ile Gly Val Ser Ser Leu  105  110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Gin Giu Tyr Ser his Art 105 100 100 100 100 100 Val Thr Arg Met Thr Ser Asp Thr Phe Val Leu Met Gln Phe Ala Glu 120 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Val Thr Arg Met Thr Ser Asp 111 File Val 25  125  115  120  125  Not Yel Met The Phe Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 115 120 120 Met Val Met Ile Phe Ser Met Ser Leu Arg Leu Gly Leu Val Thr Pro Met Val Met Ile Phe Ser 135 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Val Val Met Ile Leu Ile Thr Ser Pro Ser Leu Ala Trp Leu Val Ala  160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 145  Val Na Met Pro Leu Leu Val Gly Val Val Leu Tyr Val Ala Ile Lys  175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 165  Thr Lys Pro Leu Ser Glu Arg Gln Gln Thr Met Leu Asp Lys Ile Asn  185  185  190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 180  180  185  187  188  Gln Tyr Val Arg Glu Asn Leu Thr Gly Leu Arg Val Val Arg Ala Phe 200  205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Gln Tyr Val Arg Glu Ash Bed 1112 205 205 200 195 200 Ash Bed 1112 200 Ash |
| 195 200  Ala Arg Glu Asn Phe Gln Ser Gln Lys Phe Gln Val Ala Asn Gln Arg  220  210  210  210  210  210  210  21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 210 215 Tyr Thr Asp Thr Ser Thr Gly Leu Phe Lys Leu Thr Gly Leu Thr Glu 235 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 230 225 230 255 Pro Leu Phe Val Gln Ile Ile Ile Ala Met Ile Val Ala Ile Val Trp 250 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| pro Leu Phe var Gin 116 125 250 255 245 245 250 250 Leu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 245  Phe Ala Leu Asp Pro Leu Gln Arg Gly Ala Ile Lys Ile Gly Asp Leu 260  260  260  260  260  260  260  260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Val Ala Phe Ile Glu Tyr Ser Phe His Ala Leu Phe Ser Phe Leu Leu  280 285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Phe Ala Asn Leu Phe Thr Met Tyr Pro Arg Met Val Val Ser Ser His                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 290 295 Arg Ile Arg Glu Val Met Asp Met Pro Ile Ser Ile Asn Pro Asn Ala 315 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Arg Ile Arg Glu Val Acc 210 315 320 305 310 315 Glu Phe Asp Asn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 305 310 310 Glu Gly Val Thr Asp Thr Lys Leu Lys Gly His Leu Glu Phe Asp Asn 335 330 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 325  Val Thr Phe Ala Tyr Pro Gly Glu Thr Glu Ser Pro Val Leu His Asp  345  330  345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 340 The Ser Phe Lys Ala Lys Pro Gly Glu Thr Ile Ala Phe Ile Gly Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 355  Thr Gly Ser Gly Lys Ser Ser Leu Val Asn Leu Ile Pro Arg Phe Tyr  380  380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 370 373 Asp Gly Val Asp Val Arg Asp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Asp Val Thr Leu Gly Lys Ile Leu Val Asp Gly 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 385  Tyr Asn Leu Lys Ser Leu Arg Gln Lys Ile Gly Phe Ile Pro Gln Lys  415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 405  Ala Leu Leu Phe Thr Gly Thr Ile Gly Glu Asn Leu Lys Tyr Gly Lys 430  425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

WO 99/42588 PCT/CA99/00114

```
Ala Asp Ala Thr Ile Asp Asp Leu Arg Gln Ala Val Asp Ile Ser Gln
  Ala Lys Glu Phe Ile Glu Ser His Gln Glu Ala Phe Glu Thr His Leu
  Ala Glu Gly Gly Ser Asn Leu Ser Gly Gly Gln Lys Gln Arg Leu Ser
  Ile Ala Arg Ala Val Val Lys Asp Pro Asp Leu Tyr Ile Phe Asp Asp
  Ser Phe Ser Ala Leu Asp Tyr Lys Thr Asp Ala Thr Leu Arg Ala Arg
  Leu Lys Glu Val Thr Gly Asp Ser Thr Val Leu Ile Val Ala Gln Arg
                             520
 Val Gly Thr Ile Met Asp Ala Asp Gln Ile Ile Val Leu Asp Glu Gly
 Glu Ile Val Gly Arg Gly Thr His Ala Gln Leu Ile Glu Asn Asn Ala
 Ile Tyr Arg Glu Ile Ala Glu Ser Gln Leu Lys Asn Gln Asn Leu Ser
                                    570
 Glu Gly Glu
       <210> 12
       <211> 92
       <212> PRT
      <213> Streptococcus
      <400> 12
Met Arg Lys Lys Ser Val Phe Leu Arg Leu Trp Ser Tyr Leu Thr Arg
Tyr Lys Ala Thr Leu Phe Leu Ala Ile Phe Leu Lys Val Leu Ser Ser
Phe Met Ser Val Leu Glu Pro Phe Ile Leu Gly Leu Ala Ile Thr Glu
Leu Thr Ala Asn Leu Val Asp Met Ala Lys Gly Val Ser Gly Ala Glu
Leu Asn Val Pro Tyr Ile Ala Gly Ile Leu Ile Ile Tyr Phe Phe Arg
Gly Val Pne Tyr Glu Leu Gly Ser Tyr Gly Ser Asn
     <210> 13
     <211> 5215
     <212> DNA
     <213> Streptococcus
     <220>
     <221> CDS
     <222> (3)...(122)
     <221> CDS
     <222> (133)...(2511)
    <221> CDS
    <222> (367)...(2511)
    <221> CDS
```

| <222> (2946)(2716)<br><223> of complementary strand                                                                                               |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| <221> CDS<br><222> (3252)(2995)<br><223> of complementary strand                                                                                  |     |
| <221> CDS<br><222> (3676)(3299)<br><223> of complementary strand                                                                                  |     |
| <221> CDS<br><222> (4124)(3837)<br><223> of complementary strand                                                                                  |     |
| <221> CDS<br><222> (5214)(4351)<br><223> of complementary strand                                                                                  |     |
| <pre></pre>                                                                                                                                       | 47  |
| gaa gaa aac ata tgg tta tat cgg ctc agt tgc tgc cat ttt act agc Glu Glu Asn Ile Trp Leu Tyr Arg Leu Ser Cys Cys His Phe Thr Ser 20 25 30          | 95  |
| tac tca tat tgg aag tta cca act tgg taagcatcat atg ggt cta gca  Tyr Ser Tyr Trp Lys Leu Pro Thr Trp  Met Gly Leu Ala  35                          | 144 |
| aca aag gac aat cag att gcc tat att gat gac agc aaa ggt aag gca<br>Thr Lys Asp Asn Gln Ile Ala Tyr Ile Asp Asp Ser Lys Gly Lys Ala<br>45 50 55 60 | 192 |
| aaa gcc cct aaa aca aac aaa acg atg gat caa atc agt gct gaa gaa<br>Lys Ala Pro Lys Thr Asn Lys Thr Met Asp Gln Ile Ser Ala Glu Glu<br>65          | 240 |
| ggc atc tct gct gaa cag atc gta gtc aaa att act gac caa ggc tat<br>Gly Ile Ser Ala Glu Gln Ile Val Val Lys Ile Thr Asp Gln Gly Tyr<br>80 85       | 288 |
| gtg acc tca cac ggt gac cat tat cat ttt tac aat ggg aaa gtt cct<br>Val Thr Ser His Gly Asp His Tyr His Phe Tyr Asn Gly Lys Val Pro<br>95 100 105  | 336 |
| tat gat gcg att att agt gaa gag ttg ttg atg acg gat cct aat tac<br>Tyr Asp Ala Ile Ile Ser Glu Glu Leu Leu Met Thr Asp Pro Asn Tyr<br>110 115     | 384 |
| cgt ttt aaa caa tca gac gtt atc aat gaa atc tta gac ggt tac gtt<br>Arg Phe Lys Gln Ser Asp Val Ile Asn Glu Ile Leu Asp Gly Tyr Val<br>125 130 135 | 432 |

| att aaa gtc aat ggc aac tat tat gtt tac ctc aag cca ggt agt aag<br>Ile Lys Val Asn Gly Asn Tyr Tyr Val Tyr Leu Lys Pro Gly Ser Lys<br>145 150 155 | 480           |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| cgc aaa aac att cga acc aaa caa caa att gct gag caa gta gcc aaa<br>Arg Lys Asn Ile Arg Thr Lys Gln Gln Ile Ala Glu Gln Val Ala Lys<br>160 165 170 | 528           |
| gga act aaa gaa gct aaa gaa ada ggt tta gct caa gtg gcc cat ctc<br>Gly Thr Lys Glu Ala Lys Glu Lys Gly Leu Ala Gln Val Ala His Leu<br>175 180 185 | 576           |
| agt aaa gaa gat gcg gca gtc aat gaa gca aaa aga caa gga cgc<br>Ser Lys Glu Glu Val Ala Ala Val Asn Glu Ala Lys Arg Gln Gly Arg<br>190 195 200     | 624           |
| tat act aca gac gat ggc tat att ttt agt ccg aca gat atc att gat Tyr Thr Thr Asp Asp Gly Tyr Ile Phe Ser Pro Thr Asp Ile Ile Asp 210 215 220       | 672           |
| gat tta gga gat gct tat tta gta cct cat ggt aat cac tat cat tat Asp Leu Gly Asp Ala Tyr Leu Val Pro His Gly Asn His Tyr His Tyr 225 230 235       | 720           |
| att cct aaa aag gat ttg tct cca agt gag cta gct gct gca caa gcc<br>Ile Pro Lys Lys Asp Leu Ser Pro Ser Glu Leu Ala Ala Ala Gln Ala<br>240 245 250 | 768           |
| tac tgg agt caa aaa caa ggt cga ggt gct aga ccg tct gat tac cgc<br>Tyr Trp Ser Gln Lys Gln Gly Arg Gly Ala Arg Pro Ser Asp Tyr Arg<br>255 260 265 | 816           |
| ccg aca cca gcc cca ggt cgt agg aaa gcc cca att cct gat gtg acg Pro Thr Pro Ala Pro Gly Arg Arg Lys Ala Pro Ile Pro Asp Val Thr 275 280           | 864           |
| cct aac cct gga caa ggt cat cag cca gat aac ggt ggc tat cat cca<br>Pro Asn Pro Gly Gln Gly His Gln Pro Asp Asn Gly Gly Tyr His Pro<br>295 300     | 912           |
| gcg cct cct agg cca aat gat gcg tca caa aac aaa cac caa aga gat Ala Pro Pro Arg Pro Asn Asp Ala Ser Gln Asn Lys His Gln Arg Asp 305 310 315       | 960           |
| gag tit aaa gga aaa acc tit aag gaa cit tia gat caa ata a                                                                                         | 1008          |
| ctt gat ttg aaa tac cgt cat gtg gaa gaa gat ggg ttg att bat                                                                                       | L0 <b>5</b> 6 |
| Pro Thr Classes and the age to the ggg tat gtg gtg are                                                                                            | 104           |

| gga gat cat tat cat att atc cca aga agt cag tta tca cct ctt gaa<br>Gly Asp His Tyr His Ile Ile Pro Arg Ser Gln Leu Ser Pro Leu Glu<br>365 370 375 380 | 1152   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| atg gaa tta gca gat cga tac tta gct ggc caa act gag gac aat gac<br>Met Glu Leu Ala Asp Arg Tyr Leu Ala Gly Gln Thr Glu Asp Asn Asp<br>385 390 395     | 1200   |
| tca ggt tca gag cac tca aaa cca tca gat aaa gaa gtg aca cat acc<br>Ser Gly Ser Glu His Ser Lys Pro Ser Asp Lys Glu Val Thr His Thr<br>400 405 410     | 1248   |
| ttt ctt ggt cat cgc atc aaa gct tac gga aaa ggc tta gat ggt aaa<br>Phe Leu Gly His Arg Ile Lys Ala Tyr Gly Lys Gly Leu Asp Gly Lys<br>415 420 425     | 1296   |
| cca tat gat acg agt gat gct tat gtt ttt agt aaa gaa tcc att cat<br>Pro Tyr Asp Thr Ser Asp Ala Tyr Val Phe Ser Lys Glu Ser Ile His<br>430 435         | 1344   |
| tca gtg gat aaa tca gga gtt aca gct aaa cac gga gat cat ttc cac<br>Ser Val Asp Lys Ser Gly Val Thr Ala Lys His Gly Asp His Phe His<br>445 450 450     | 1392   |
| tat ata gga ttt gga gaa ctt gaa caa tat gag ttg gat gag gtc gct<br>Tyr Ile Gly Phe Gly Glu Leu Glu Gln Tyr Glu Leu Asp Glu Val Ala<br>465 470         | 1440   |
| aac tgg gtg aaa gca aaa ggt caa gct gat gag ctt gct gct gt ttg<br>Asn Trp Val Lys Ala Lys Gly Gln Ala Asp Glu Leu Ala Ala Leu<br>480 485              | 1488   |
| gat cag gaa caa ggc aaa gaa aaa cca ctc ttt gac act aaa aaa gtg<br>Asp Gln Glu Gln Gly Lys Glu Lys Pro Leu Phe Asp Thr Lys Lys Val<br>495 500         | 1536   |
| agt cgc aaa gta aca aaa gat ggt aaa gtg ggc tat atg atg cca aaa<br>Ser Arg Lys Val Thr Lys Asp Gly Lys Val Gly Tyr Met Met Pro Lys<br>510 515         | 1584   |
| gat ggt aag gac tat ttc tat gct cgt gat caa ctt gat ttg act cag<br>Asp Gly Lys Asp Tyr Phe Tyr Ala Arg Asp Gln Leu Asp Leu Thr Gln<br>525 530 540     | 1632   |
| att gcc ttt gcc gaa caa gaa cta atg ctt aaa gat aag aag cat tac<br>Ile Ala Phe Ala Glu Gln Glu Leu Met Leu Lys Asp Lys Lys His Tyr<br>545 550 555     | 1680   |
| cgt tat gac att gtt gac aca ggt att gag cca cga ctt gct gta gat<br>Arg Tyr Asp Ile Val Asp Thr Gly Ile Glu Pro Arg Leu Ala Val Asp<br>560 565         | 1728   |
| gtg toa agt ctg ccg atg cat gct ggt aat gct act tac gat act ggs<br>Val Ser Ser Leu Pro Met His Ala Gly Asn Ala Thr Tyr Asp Thr Gly<br>575 580 585     | a 1776 |

| agt tcg ttt gtt atc cca cat att gat cat atc cat gtc gtt ccg tat Ser Ser Phe Val Ile Pro His Ile Asp His Ile His Val Val Pro Tyr 590 595 600         | 1824 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------|
| tca tgg ttg acg cgc gat cag att gca aca gtc aag tat gtg atg caa Ser Trp Leu Thr Arg Asp Gln Ile Ala Thr Val Lys Tyr Val Met Gln 610 615 620         | 1872 |
| cac ccc gaa gtt cgt ccg gat gta tgg tct aag cca ggg cat gaa gag<br>His Pro Glu Val Arg Pro Asp Val Trp Ser Lys Pro Gly His Glu Glu<br>625 630 635   | 1920 |
| tca ggt tcg gtc att cca aat gtt acg cct ctt gat aaa cgt gct ggt<br>Ser Gly Ser Val Ile Pro Asn Val Thr Pro Leu Asp Lys Arg Ala Gly<br>640 645 650   | 1968 |
| atg cca aac tgg caa att atc cat tct gct gaa gaa gtt caa aaa gcc<br>Met Pro Asn Trp Gln Ile Ile His Ser Ala Glu Glu Val Gln Lys Ala<br>655 660 665   | 2016 |
| Cta gca gaa ggt cgt ttt gca aca cca gac ggc tat att ttc gat cca<br>Leu Ala Glu Gly Arg Phe Ala Thr Pro Asp Gly Tyr Ile Phe Asp Pro<br>670 675 680   | 2064 |
| cga gat gtt ttg gcc aaa gaa act ttt gta tgg aaa gat ggc tcc ttt<br>Arg Asp Val Leu Ala Lys Glu Thr Phe Val Trp Lys Asp Gly Ser Phe<br>695 700       | 2112 |
| agc atc cca aga gca gat ggc agt tca ttg aga acc att aat aaa tct Ser Ile Pro Arg Ala Asp Gly Ser Ser Leu Arg Thr Ile Asn Lys Ser 710 715             | 2160 |
| gat cta tcc caa gct gag tgg caa caa gct caa gag tta ttg gca aag<br>Asp Leu Ser Gln Ala Glu Trp Gln Gln Ala Gln Glu Leu Leu Ala Lys<br>720 725       | 2208 |
| aaa aat act ggt gat gct act gat acg gat aaa ccc aaa gaa aag caa<br>Lys Asn Thr Gly Asp Ala Thr Asp Thr Asp Lys Pro Lys Glu Lys Gln<br>735 740 745   | 2256 |
| 750 755 760                                                                                                                                         | 2304 |
| 765 770 775 The Tie Asp Ser Leu Pro Asp Tyr Gly                                                                                                     | 2352 |
| Cta gat aga gca acc cta gaa gat cat atc aat caa tta gca caa aaa 2<br>Leu Asp Arg Ala Thr Leu Glu Asp His Ile Asn Gln Leu Ala Gln Lys<br>785 790 795 | 2400 |
| gct aat atc gat cct aag tat ctc att ttc caa cca gaa ggt gta aa                                                                                      | 448  |

```
ttt tat aat aaa aat ggt gaa ttg gta act tat gat atc aag aca ctt
                                                                  2496
Phe Tyr Asn Lys Asn Gly Glu Leu Val Thr Tyr Asp Ile Lys Thr Leu
        815
caa caa ata aac cct taaccaaaag aagatctcat tgttaaagca ctgctttgtc
                                                                  2551
Gln Gln Ile Asn Pro
    830
aaagcaagtt acggtgattt tgaagtcatt ctatgtaacg agtagtgata aaagttggat
                                                                  2611
aatagcggtt ttcttttgca aagaaatggt atccatgtta gaatagtaaa aaaagaggag
                                                                  2671
gattettgga etaatgteaa ataagtagae agaaaactgt gttattttattgegt
taaaataatt ttcttctttc tgattagggg ttagtcctag attagccgta tgtgggttgt
aattgttata aaaattetea atgtatteaa ageagtetaa ttgaacetgt ttgatatttt
gataatgttt teggttgatt tgtctatgct ttaaatactt gaaaaatgct tcagttacgg
cattatcata aggatatcca ggattagaaa aagaatgcat gatattggca ctgcacccta
atagtgagac gcaagaaaaa cacttttaggcaatcagtt ttctgtactg tacaggcgac
                                                                   3025
3085
atattigtta tactatcttt gttgtatttt ctcctattat ggaaataaaa ggtttcagtc 3145
tttaggacgg tgtgaaacca ttcaatacag gcattatctg caggtgttcc ttttcgagac
attgagcgga taatgtettt tteegtgcaa geetggtagt aageeataga agtatacaet 3265
gageettggt cactgtgtaa gattgeteet ttatttaggeaatt ttaactgatt
 aagggtgtct agtacaaaat ccgtgtcctg acaatctgag atagtgtaag ctataatttc 3379
 toggttatag agattcataa ttgatgagag atacaattta cagttaccga aatataggta 3439
 ggtaatatet gttacgaget ttteettagg ettateggea tggaaateee gaeteaattt 3499
 attatctgtt aaataataag ctttacccaa attgggaact ttcttggtac gtgtccgaca 3559
 aagccagcca ttatttttca tgatacgata gactttcttt gtattaacag tcaatccgtg 3619
 gatttttttg agcaatcgtg taatggtacg atagccataa ataaagtgat tctccataca 3679
 gagetgttca attaattcaa taaggtcate tttttttgcg gettetcata eteetttttc 3739
 caacggtaat aggtcgaccg cttgacctta aaacagtcta gaatgaaaac tatcgggtag 3799
 ttgtttttat agtcttccac aagcttgata agacttactttatcgatt tccttatcaa
 gcctcgatac ttttttaaga ggtcaacctg taattgtaat tgttccactt cagacagatg 3917
 ttccaagcct ttaccgtagg tatattgctt gccaacacct tgatgaaaac gataaagctc
 ctcgttttcg taccatttca tccaagtata gatttgacta ttatttttga tgcctaaagt
 ctccataata actctgttag acttgcctgc tttcttcata tcgatgcaag ccagcttagt
                                                                   4097
 ttcccatgaa tatgctttt taaccataat aaaacattcc tgtttctagt ttactaaatt 4157
 tcaacaggag tgttttctt ttgtctcatt ttagggattc agtgcctatt gttgtcatca 4217
 attatttttc taaattcccc ggacttaaat tgtgaccctt ggtcggaatg aaagagaagt 4277
 gttccttcaa tctttcttt attaagtgaa aaggcaacac ttttctgtac aacatttata 4337
  aagtgttttt ctaggcaattaatc ttttagtcat tggtgtttgg tagttgagac
  taccatgaat geggtggtaa ttecaccaat gaacatagte tttagtetta agagetagtt 4451
  cttccagcaa ttgaaaggtt tcttgataaa caaattcaat tttgaaagca cgatacgtac 4511
  tttcagctac ggcattgtca taaggataac cagcctgact aagcgaacgt gtgattccaa 4571
  aggettecaa tattteatea attaactgat tateaaacte tetgeeacga tetgaatgga 4631
  acatettgae tttggtcagg gegtaaggga tgetttgtat ggettgetta acgagttcag 4691
  cggtcttgtg ccaaccaaga gacaggccga tgatttcacg gttgtatagg tcaatgatga 4751
  cggtcttgtg ccaaccaaga gacaggccga tgactatagg gacataggt taagtcagtg actaaggctt 4811 ggcaaacata agcccaacga ttgcctacac gacataggt taagtcagtg actaaggc 4871
  gragtggtet trettgetta aartgeetgt craagtggtt gggaataggg getteattet
  tgcctctaga atgtggtttg aaggtggctt tctgataaac agaaaccaaa ttgagtcgct 4931
  tcataatgcg tcgaatccga cgacgtgaaa gtgtgatacc ttcgttattc aagcatattt 4991
  tgatttttct ggatccgtat ctagactcgc tatcgagaaa aattctttta atagtttctt 5051
  caaactccgt ttcagatact gactccacgg cttgatagta ataacttgag tgtggcatat 5111
  tragcageg acacatettt gaaatgetgt atttateett attagcagtg attattteec 5171
   tttttgtgcc ataatcaccg ctgcttgctt taggatatct aatt
         <210> 14
         <211> 40
         <212> PRT
```

```
<213> Streptococcus
```

<400> 14 Phe Gly Ser Ala Leu Ser Thr Val Glu Val Lys Glu Ile Ile Ser Glu 10 Glu Asn Ile Trp Leu Tyr Arg Leu Ser Cys Cys His Phe Thr Ser Tyr Ser Tyr Trp Lys Leu Pro Thr Trp 35 <210> 15 <211> 793 <212> PRT <213> Streptococcus <400> 15

Met Gly Leu Ala Thr Lys Asp Asn Gln Ile Ala Tyr Ile Asp Asp Ser Lys Gly Lys Ala Lys Ala Pro Lys Thr Asn Lys Thr Met Asp Gln Ile Ser Ala Glu Glu Gly Ile Ser Ala Glu Gln Ile Val Val Lys Ile Thr Asp Gln Gly Tyr Val Thr Ser His Gly Asp His Tyr His Phe Tyr Asn Gly Lys Val Pro Tyr Asp Ala Ile Ile Ser Glu Glu Leu Leu Met Thr Asp Pro Asn Tyr Arg Phe Lys Gln Ser Asp Val Ile Asn Glu Ile Leu Asp Gly Tyr Val Ile Lys Val Asn Gly Asn Tyr Tyr Val Tyr Leu Lys 105 Pro Gly Ser Lys Arg Lys Asn Ile Arg Thr Lys Gln Gln Ile Ala Glu Gln Val Ala Lys Gly Thr Lys Glu Ala Lys Glu Lys Gly Leu Ala Gln Val Ala His Leu Ser Lys Glu Glu Val Ala Ala Val Asn Glu Ala Lys Arg Gln Gly Arg Tyr Thr Thr Asp Asp Gly Tyr Ile Phe Ser Pro Thr Asp Ile Ile Asp Asp Leu Gly Asp Ala Tyr Leu Val Pro His Gly Asn His Tyr His Tyr Ile Pro Lys Lys Asp Leu Ser Pro Ser Glu Leu Ala 185 Ala Ala Gln Ala Tyr Trp Ser Gln Lys Gln Gly Arg Gly Ala Arg Pro Ser Asp Tyr Arg Pro Thr Pro Ala Pro Gly Arg Arg Lys Ala Pro Ile Pro Asp Val Thr Pro Asn Pro Gly Gln Gly His Gln Pro Asp Asn Gly Gly Tyr His Pro Ala Pro Pro Arg Pro Asn Asp Ala Ser Gln Asn Lys 250 His Gln Arg Asp Glu Phe Lys Gly Lys Thr Phe Lys Glu Leu Leu Asp 265 Gln Leu His Arg Leu Asp Leu Lys Tyr Arg His Val Glu Glu Asp Gly Leu Ile Phe Glu Pro Thr Gln Val Ile Lys Ser Asn Ala Phe Gly Tyr 315

| Val V        |      |     |            |                 |       |     |       |            |          |     |            |      |    |       |     |     |   |                   |
|--------------|------|-----|------------|-----------------|-------|-----|-------|------------|----------|-----|------------|------|----|-------|-----|-----|---|-------------------|
| Ser P        |      |     |            | Met             |       |     |       |            |          |     |            |      |    |       |     |     |   |                   |
| Glu A        |      |     | Asp        |                 |       |     |       |            |          |     |            |      |    |       |     |     |   |                   |
| Val T        | hr   | His |            |                 |       |     | ly I  | His        |          |     |            |      |    |       |     |     |   |                   |
| Leu A        | sp   |     |            |                 |       | r A | sp '  |            |          |     |            |      |    |       |     |     |   |                   |
| 385<br>Glu S |      |     |            |                 | Va    | l A |       |            |          |     |            |      |    |       |     |     |   |                   |
| Asp H        |      |     | 420        | Ту              | - Il  |     |       |            | 42       | 5   |            |      |    |       |     |     |   |                   |
| Asp C        |      | 455 | Ala        | Ası             |       |     |       | 440        |          |     |            |      |    | 7     | 7.7 |     |   |                   |
| Ala A        |      | Ala |            |                 |       | - 1 |       |            |          |     |            |      | 40 | U     |     |     |   |                   |
| Thr 1        | Lys  |     |            |                 |       |     |       |            |          |     |            |      |    |       |     |     |   |                   |
| 465<br>Met 1 |      |     |            | 40              |       |     |       |            |          |     | 470        |      |    |       |     |     |   |                   |
| Asp          |      |     |            | _               |       |     |       |            | <b>—</b> | 15  |            |      |    |       |     |     |   |                   |
| Lys          |      |     |            |                 |       |     |       |            |          |     |            |      |    |       |     |     |   |                   |
| Leu          |      |     |            |                 |       |     | 535   |            |          |     |            |      | J- |       |     |     |   |                   |
| Tyr<br>545   |      |     |            |                 |       |     |       |            |          |     |            |      |    |       |     |     |   |                   |
| Val          |      |     |            | /               |       |     |       |            |          |     | 1 L        | ,    |    |       |     |     | - |                   |
| Tyr          |      |     |            | . ^             |       |     |       |            | _        | ж 5 |            |      |    |       |     |     | - |                   |
| Gly          |      |     | -          |                 |       |     |       | - 60       | n        |     |            |      |    |       | 002 |     |   |                   |
|              |      |     |            | Ly M            |       |     |       |            |          |     |            |      |    |       |     |     |   |                   |
|              |      |     |            | la L            |       |     |       |            |          |     |            |      |    |       |     |     |   |                   |
| Ile          |      |     |            | ro A<br>6       |       |     |       |            |          |     |            |      |    |       |     |     |   |                   |
|              |      |     |            | 6<br>he S<br>60 |       |     |       |            |          |     |            |      |    |       |     |     |   |                   |
|              |      |     |            | er A            |       |     |       | <b>←</b> } | ∢()      |     |            |      |    |       | 00. | _   |   |                   |
|              |      | _   |            | ys I            |       |     | ~ ~ ~ | _          |          |     |            |      |    |       |     |     |   |                   |
|              | _    |     |            |                 |       | 710 |       |            |          |     |            | ,    | エン |       |     |     |   | Ser<br>720<br>Leu |
|              |      |     |            |                 | , , , |     |       |            |          |     | - 1        | 5 () |    |       |     |     |   |                   |
|              |      |     |            | 2 4 A           |       |     |       |            |          | 14  | ~          |      |    |       |     |     |   | Gln               |
| Le           | u A. |     | ln 1<br>55 | , sv            | Ala   | Asn | ıIl   | le A<br>7  | sp<br>60 | rr  | о <u>н</u> | ys 1 | λŢ | اتاند | 76  | 55. | ` | <br>Pro           |

```
Glu Gly Val Gln Phe Tyr Asn Lys Asn Gly Glu Leu Val Thr Tyr Asp
   Ile Lys Thr Leu Gln Gln Ile Asn Pro
   785
                   790
        <210> 16
        <211> 715
        <212> PRT
        <213> Streptococcus
        <400> 16
  Met Thr Asp Pro Asn Tyr Arg Phe Lys Gln Ser Asp Val Ile Asn Glu
  Ile Leu Asp Gly Tyr Val Ile Lys Val Asn Gly Asn Tyr Tyr Val Tyr
  Leu Lys Pro Gly Ser Lys Arg Lys Asn Ile Arg Thr Lys Gln Gln Ile
                                  25
  Ala Glu Gln Val Ala Lys Gly Thr Lys Glu Ala Lys Glu Lys Gly Leu
 Ala Gln Val Ala His Leu Ser Lys Glu Glu Val Ala Ala Val Asn Glu
 Ala Lys Arg Gln Gly Arg Tyr Thr Thr Asp Asp Gly Tyr Ile Phe Ser
 Pro Thr Asp Ile Ile Asp Asp Leu Gly Asp Ala Tyr Leu Val Pro His
                                 105
 Gly Asn His Tyr His Tyr Ile Pro Lys Lys Asp Leu Ser Pro Ser Glu
 Leu Ala Ala Gln Ala Tyr Trp Ser Gln Lys Gln Gly Arg Gly Ala
 Arg Pro Ser Asp Tyr Arg Pro Thr Pro Ala Pro Gly Arg Arg Lys Ala
 Pro Ile Pro Asp Val Thr Pro Asn Pro Gly Gln Gly His Gln Pro Asp
 Asn Gly Gly Tyr His Pro Ala Pro Pro Arg Pro Asn Asp Ala Ser Gln
                                     170
                                185
 Asn Lys His Gln Arg Asp Glu Phe Lys Gly Lys Thr Phe Lys Glu Leu
                            200
 Leu Asp Gln Leu His Arg Leu Asp Leu Lys Tyr Arg His Val Glu Glu
Asp Gly Leu Ile Phe Glu Pro Thr Gln Val Ile Lys Ser Asn Ala Phe
Gly Tyr Val Val Pro His Gly Asp His Tyr His Ile Ile Pro Arg Ser
Gln Leu Ser Pro Leu Glu Met Glu Leu Ala Asp Arg Tyr Leu Ala Gly
Gln Thr Glu Asp Asn Asp Ser Gly Ser Glu His Ser Lys Pro Ser Asp
Lys Glu Val Thr His Thr Phe Leu Gly His Arg Ile Lys Ala Tyr Gly
Lys Gly Leu Asp Gly Lys Pro Tyr Asp Thr Ser Asp Ala Tyr Val Phe
Ser Lys Glu Ser Ile His Ser Val Asp Lys Ser Gly Val Thr Ala Lys
                                  330
His Gly Asp His Phe His Tyr Ile Gly Phe Gly Glu Leu Glu Gln Tyr
                               345
```

```
Glu Leu Asp Glu Val Ala Asn Trp Val Lys Ala Lys Gly Gln Ala Asp
                         360
Glu Leu Ala Ala Ala Leu Asp Gln Glu Gln Gly Lys Glu Lys Pro Leu
                     375
Phe Asp Thr Lys Lys Val Ser Arg Lys Val Thr Lys Asp Gly Lys Val
                                    395
                 390
Gly Tyr Met Met Pro Lys Asp Gly Lys Asp Tyr Phe Tyr Ala Arg Asp
                                410
                                                  415
Gln Leu Asp Leu Thr Gln Ile Ala Phe Ala Glu Gln Glu Leu Met Leu
                             425
Lys Asp Lys Lys His Tyr Arg Tyr Asp Ile Val Asp Thr Gly Ile Glu
                         440
                                           445
Pro Arg Leu Ala Val Asp Val Ser Ser Leu Pro Met His Ala Gly Asn
                                        460
                     455
Ala Thr Tyr Asp Thr Gly Ser Ser Phe Val Ile Pro His Ile Asp His
                                    475
                  470
Ile His Val Val Pro Tyr Ser Trp Leu Thr Arg Asp Gln Ile Ala Thr
                                 490
              485
Val Lys Tvr Val Met Gln His Pro Glu Val Arg Pro Asp Val Trp Ser
                            505
          500
Lys Pro Gly His Glu Glu Ser Gly Ser Val Ile Pro Asn Val Thr Pro
                         520
    515
Leu Asp Lys Arg Ala Gly Met Pro Asn Trp Gln Ile Ile His Ser Ala
           535
Glu Glu Val Gln Lys Ala Leu Ala Glu Gly Arg Phe Ala Thr Pro Asp
        550 555 560
Gly Tyr Ile Phe Asp Pro Arg Asp Val Leu Ala Lys Glu Thr Phe Val
                    570
             565
Trp Lys Asp Gly Ser Phe Ser Ile Pro Arg Ala Asp Gly Ser Ser Leu
     580 585
Arg Thr Ile Asn Lys Ser Asp Leu Ser Gln Ala Glu Trp Gln Gln Ala
 595 600
Gln Glu Leu Leu Ala Lys Lys Asn Thr Gly Asp Ala Thr Asp Thr Asp
                      615
                                        620
Lys Pro Lys Glu Lys Gln Gln Ala Asp Lys Ser Asn Glu Asn Gln Gln
                                     635
Pro Ser Glu Ala Ser Lys Glu Glu Lys Glu Ser Asp Asp Phe Ile Asp
                                 650
               645
Ser Leu Pro Asp Tyr Gly Leu Asp Arg Ala Thr Leu Glu Asp His Ile
                             665
Asn Gln Leu Ala Gln Lys Ala Asn Ile Asp Pro Lys Tyr Leu Ile Phe
                         680
Gln Pro Glu Gly Val Gln Phe Tyr Asn Lys Asn Gly Glu Leu Val Thr
                     695
Tyr Asp Ile Lys Thr Leu Gln Gln Ile Asn Pro
                  710
      <210> 17
      <211> 77
      <212> PRT
      <213> Streptococcus
     <400> 17
Met His Ser Phe Ser Asn Pro Gly Tyr Pro Tyr Asp Asn Ala Val Thr
```

10

WO 99/42588 PCT/CA99/00114

35 / 63

```
Glu Ala Phe Phe Lys Tyr Leu Lys His Arg Gln Ile Asn Arg Lys His
             20
                                 25
 Tyr Gln Asn Ile Lys Gln Val Gln Leu Asp Cys Phe Glu Tyr Ile Glu
                             40
 Asn Phe Tyr Asn Asn Tyr Asn Pro His Thr Ala Asn Leu Gly Leu Thr
                        55
 Pro Asn Gln Lys Glu Glu Asn Tyr Phe Asn Ala Ile Lys
      <210> 18
       <211> 86
       <212> PRT
       <213> Streptococcus
       <400> 18
Met Ala Tyr Tyr Gln Ala Cys Thr Glu Lys Asp Ile Ile Arg Ser Met
                                     10
Ser Arg Lys Gly Thr Pro Ala Asp Asn Ala Cys Ile Glu Trp Phe His
Thr Val Leu Lys Thr Glu Thr Phe Tyr Phe His Asn Arg Arg Lys Tyr
                            40
Asn Lys Asp Ser Ile Thr Asn Ile Val Lys Asn Tyr Ile Thr Phe Tyr
                                            60
Asn Glu Thr Arg Ile Gln Gln Arg Leu Asn Asp Gln Ser Pro Val Gln
Tyr Arg Lys Leu Ile Ala
      <210> 19
      <211> 126
      <212> PRT
      <213> Streptococcus
      <400> 19
Met Glu Asn His Phe Ile Tyr Gly Tyr Arg Thr Ile Thr Arg Leu Leu
                                   10
Lys Lys Ile His Gly Leu Thr Val Asn Thr Lys Lys Val Tyr Arg Ile
Met Lys Asn Asn Gly Trp Leu Cys Arg Thr Arg Thr Lys Lys Val Pro
Asn Leu Gly Lys Ala Tyr Tyr Leu Thr Asp Asn Lys Leu Ser Arg Asp
                       55
Phe His Ala Asp Lys Pro Lys Glu Lys Leu Val Thr Asp Ile Thr Tyr
                                       75
Leu Tyr Phe Gly Asn Cys Lys Leu Tyr Leu Ser Ser Ile Met Asn Leu
                                   90
Tyr Asn Arg Glu Ile Ile Ala Tyr Thr Ile Ser Asp Cys Gln Asp Thr
                             105
Asp Phe Val Leu Asp Thr Leu Asn Gln Leu Lys Leu Pro Lys
     <210> 20
     <211> 96
```

BNSDOCID: <WO\_\_\_9942588A2\_1\_>

<212> PRT

<213> Streptococcus

<400> 20 Met Val Lys Lys Ala Tyr Ser Trp Glu Thr Lys Leu Ala Cys Ile Asp Met Lys Lys Ala Gly Lys Ser Asn Arg Val Ile Met Glu Thr Leu Gly 25 Ile Lys Asn Asn Ser Gln Ile Tyr Thr Trp Met Lys Trp Tyr Glu Asn 40 Glu Glu Leu Tyr Arg Phe His Gln Gly Val Gly Lys Gln Tyr Thr Tyr 60 55 Gly Lys Gly Leu Glu His Leu Ser Glu Val Glu Gln Leu Gln Leu Gln 75 Val Asp Leu Leu Lys Lys Tyr Arg Gly Leu Ile Arg Lys Ser Ile Lys <210> 21 <211> 288 <212> PRT <213> streptococus <400> 21 Ile Arg Tyr Pro Lys Ala Ser Ser Gly Asp Tyr Gly Thr Lys Arg Glu 10 Ile Ile Thr Ala Asn Lys Asp Lys Tyr Ser Ile Ser Lys Met Cys Arg 25 Trp Leu Asn Met Pro His Ser Ser Tyr Tyr Tyr Gln Ala Val Glu Ser 40

Val Ser Glu Thr Glu Phe Glu Glu Thr Ile Lys Arg Ile Phe Leu Asp 60 Ser Glu Ser Arg Tyr Gly Ser Arg Lys Ile Lys Ile Cys Leu Asn Asn 75 70 Glu Gly Ile Thr Leu Ser Arg Arg Ile Arg Arg Ile Met Lys Arg 90 85 Leu Asn Leu Val Ser Val Tyr Gln Lys Ala Thr Phe Lys Pro His Ser 105 Arg Gly Lys Asn Glu Ala Pro Ile Pro Asn His Leu Asp Arg Gln Phe 120 115 Lys Gln Glu Arg Pro Leu Gln Ala Leu Val Thr Asp Leu Thr Tyr Val 135 Arg Val Gly Asn Arg Trp Ala Tyr Val Cys Leu Ile Ile Asp Leu Tyr 155 150 Asn Arg Glu Ile Ile Gly Leu Ser Leu Gly Trp His Lys Thr Ala Glu 170 165 Leu Val Lys Gln Ala Ile Gln Ser Ile Pro Tyr Ala Leu Thr Lys Val 190 185 180 Lys Met Phe His Ser Asp Arg Gly Lys Glu Phe Asp Asn Gln Leu Ile 200 Asp Glu Ile Leu Glu Ala Phe Gly Ile Thr Arg Ser Leu Ser Gln Ala 220 215 Gly Tyr Pro Tyr Asp Asn Ala Val Ala Glu Ser Thr Tyr Arg Ala Phe 235 230 Lys Ile Glu Phe Val Tyr Gln Glu Thr Phe Gln Leu Leu Glu Glu Leu 250 245

Ala Leu Lys Thr Lys Asp Tyr Val His Trp Trp Asn Tyr His Arg Ile

265 His Gly Ser Leu Asn Tyr Gln Thr Pro Met Thr Lys Arg Leu Ile Ala 280

260

|                                              |                   | <211<br><212        | > 22<br>> 50<br>> DN<br>> st | 58<br>A             | 0000             | cus               |                  |                   |                  |                  |                   |                  |                   |                    |                  |     |
|----------------------------------------------|-------------------|---------------------|------------------------------|---------------------|------------------|-------------------|------------------|-------------------|------------------|------------------|-------------------|------------------|-------------------|--------------------|------------------|-----|
|                                              |                   |                     | > CD                         |                     | (663             | )                 |                  |                   |                  |                  |                   |                  |                   |                    |                  |     |
|                                              |                   |                     | > CD<br>> (7                 |                     | (1               | 344)              |                  |                   |                  |                  |                   |                  |                   |                    |                  |     |
| <221> CDS<br><222> (1362)(1739)<br><221> CDS |                   |                     |                              |                     |                  |                   |                  |                   |                  |                  |                   |                  |                   |                    |                  |     |
| <221> CDS<br><222> (2266)(5058)              |                   |                     |                              |                     |                  |                   |                  |                   |                  |                  |                   |                  |                   |                    |                  |     |
| aat<br>Asr<br>1                              | tto               | 400:<br>Jaaa<br>Lys | a gca                        | a gaa<br>a Glu<br>5 | a tta<br>ı Lei   | a tct<br>1 Ser    | gta<br>Val       | a gaa<br>l Glu    | gat<br>Asp       | GIU              | g caa<br>1 Glr    | tat<br>Tyi       | aca<br>Thr        | a gca<br>Ala<br>15 | aca<br>Thr       | 48  |
| gtt<br>Val                                   | tat<br>Tyr        | ggt<br>Gly          | aaa<br>Lys<br>20             |                     | gct<br>Ala       | cat<br>His        | ggt<br>Gly       | tca<br>Ser<br>25  | Inr              | cca<br>Pro       | . caa<br>Gln      | gaa<br>Glu       | ggt<br>Gly<br>30  | Val                | aat<br>Asn       | 96  |
| ggg<br>Gly                                   | gcg<br>Ala        | act<br>Thr<br>35    | - 2 -                        | tta<br>Leu          | gct<br>Ala       | ctt<br>Leu        | tat<br>Tyr<br>40 | cta<br>Leu        | agt<br>Ser       | caa<br>Gln       | ttt<br>Phe        | gat<br>Asp<br>45 | Phe               | gaa<br>Glu         | ggt<br>Gly       | 144 |
| cct<br>Pro                                   | gct<br>Ala<br>50  | cgt<br>Arg          | gct<br>Ala                   | ttc<br>Phe          | tta<br>Leu       | gat<br>Asp<br>55  | gtt<br>Val       | aca<br>Thr        | gcc<br>Ala       | aac<br>Asn       | att<br>Ile<br>60  | att<br>Ile       | cac<br>His        | gaa<br>Glu         | gac<br>Asp       | 192 |
| ttc<br>Phe<br>65                             | tca<br>Ser        | ggt<br>Gly          | gaa<br>Glu                   | aaa<br>Lys          | ctt<br>Leu<br>70 | gga<br>Gly        | gta<br>Val       | gct<br>Ala        | tat<br>Tyr       | gaa<br>Glu<br>75 | gat<br>Asp        | gac<br>Asp       | tgt<br>Cys        | atg<br>Met         | gga<br>Gly<br>80 | 240 |
| cca<br>Pro                                   | ttg<br>Leu        | agc<br>Ser          | atg<br>Met                   | aat<br>Asn<br>85    | gca<br>Ala       | ggt<br>Gly        | gtc<br>Val       | ttc<br>Phe        | cag<br>Gln<br>90 | ttt<br>Phe       | gat<br>Asp        | gaa<br>Glu       | act<br>Thr        | aat<br>Asn<br>95   | gat<br>Asp       | 288 |
| gat<br>Asp                                   | aat<br>Asn        | act<br>Thr          | atc<br>Ile<br>100            | gct<br>Ala          | ctt<br>Leu       | aat<br>Asn        | ttc<br>Phe       | cgt<br>Arg<br>105 | tac<br>Tyr       | cca<br>Pro       | caa<br>Gln        | gly<br>ggg       | aca<br>Thr<br>110 | gat<br>Asp         | gct<br>Ala       | 336 |
| -                                            |                   | 115                 |                              |                     | 2,3              | Deu               | 120              | Lys               | Leu              | Asn              | GIA               | Val<br>125       | gaa<br>Glu        | Lys                | Val              | 384 |
| act<br>Thr                                   | ctt<br>Leu<br>130 | tct<br>Ser          | gac<br>Asp                   | cat<br>His          | gaa<br>Glu       | cac<br>His<br>135 | aca<br>Thr       | cca<br>Pro        | cac<br>His       | tat<br>Tyr       | gta<br>Val<br>140 | cct<br>Pro       | atg<br>Met        | gac<br>Asp         | gat<br>Asp       | 432 |

| gaa tta<br>Glu Leu<br>145 | gta :<br>Val :        | tca<br>Ser            | Thr I                 | ta c<br>Leu L<br>150  | ta g<br>eu A      | ict i             | gtc<br>Val        | tat<br>Tyr         | gaa<br>Glu<br>155  | aag<br>Lys         | ca:<br>Gl:         | a ac<br>n Th      | et (              | ggt<br>Gly        | ctt<br>Leu<br>160 |               | 480        |
|---------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------------|-------------------|-------------------|-------------------|-------------------|---------------|------------|
| aaa gga<br>Lys Gly        | cat<br>His            | gaa<br>Glu            | cag 9<br>Gln 1<br>165 | gtt a<br>Val I        | itt g             | ggt<br>Gly        | ggt<br>Gly        | ggg<br>Gly<br>170  | aca<br>Thr         | ttt<br>Phe         | gg<br>Gl           | t co              | - 5               | tta<br>Leu<br>175 | ctt<br>Leu        |               | 528        |
| gaa cgg<br>Glu Arg        | ggt<br>Gly            | gtt<br>Val<br>180     | gca<br>Ala            | tac g<br>Tyr (        | ggt g<br>Bly i    | gcc<br>Ala        | atg<br>Met<br>185 | ttc<br>Phe         | cca                | gga                | a ga<br>Y As       | P -               | aa<br>lu<br>90    | aac<br>Asn        | act<br>Thr        |               | 576        |
| atg cat<br>Met His        | caa<br>Gln<br>195     | gct<br>Ala            | aat<br>Asn            | gag 1<br>Glu 1        | ryr               | atg<br>Met<br>200 | cct<br>Pro        | tta<br>Leu         | gaa<br>Glu         | aa<br>1 Asi        | t at<br>n Il<br>20 |                   | tc<br>he          | cgt<br>Arg        | tcg<br>Ser        |               | 624        |
| gct gct<br>Ala Ala<br>210 | Ile                   | tac<br>Tyr            | gca<br>Ala            | Glu.                  | gct<br>Ala<br>215 | atc<br>Ile        | tat<br>Tyr        | gaa<br>Glu         | tta<br>Lei         | a at<br>1 Il<br>22 | ر بد               | aa t<br>⁄s        | aaa               | ata               | atc               |               | 673        |
| cttaaac<br>cttttca        | taa a                 | atat<br>ggtt          | gtgat<br>agatt        | c aa<br>t gg          | tgat<br>agac      | aaaq<br>ttt       | atu               | act                | . ua               |                    | u G                |                   |                   |                   | ttgc<br>att       |               | 733<br>786 |
| aaa gca<br>Lys Ala<br>230 | a ata<br>a Ile        | aaa<br>Lys            | agt<br>Ser            | gat<br>Asp<br>235     | tca<br>Ser        | cag<br>Gln        | aat<br>Asn        | caa<br>Gli         | a aa<br>n As<br>24 | 11 T.              | it a               | ca g<br>hr (      | gaa<br>Glu        | aat               | ggt<br>Gly<br>245 |               | 834        |
| att gat<br>Ile Asi        | t cct<br>p Pro        | ttg<br>Lev            | ttt<br>Phe<br>250     | gct<br>Ala            | gct<br>Ala        | cct               | aaa<br>Lys        | aca<br>Th:<br>25   | LAI                | t ag<br>.a Ai      | gg a<br>rg I       | tc a              | aat<br>Asn        | att<br>Ile<br>260 | -                 | ī.<br>1       | 882        |
| ggc ca<br>Gly Gl          | a gca<br>n Ala        | a cct<br>a Pro<br>265 | o Gly                 | tta<br>Leu            | aaa<br>Lys        | act<br>Thr        | caa<br>Glr<br>270 | 1 61               | a go<br>u Al       | a a                | ga c<br>rg L       | ic u              | tat<br>Tyr<br>275 | :                 | g aa<br>p Ly      | a<br>s        | 930        |
| gat aa<br>Asp Ly          | a tct<br>rs Se:<br>28 | r Gl                  | a gat<br>y Asp        | cgt<br>Arg            | cta<br>Leu        | cg<br>Arg<br>28   | g Gli             | g tg<br>n Tr       | g ct               | t g<br>eu G        | TÀ                 | gtt<br>/al<br>290 | gat<br>Asp        | ga<br>Gl          | a ga<br>u Gl      | g<br>u        | 978        |
| aca tt<br>Thr Ph          | ne Ty                 | c ca<br>r Hi          | t tct<br>s Sei        | gga<br>Gly            | aaa<br>Lys        | : Ph              | t gc<br>e Al      | t gt<br>a Va       | t t                | eu F               | ro I               | tta<br>Leu        | gat<br>Asp        | t tt<br>p Ph      | t ta<br>e Ty      | r             | 1026       |
| tac co<br>Tyr Pr<br>310   | ca gg<br>ro Gl        | c aa<br>y Ly          | a gg<br>s Gl          | a aaa<br>y Lys<br>315 | s Sei             | a gg<br>c Gl      | a ga<br>y As      | t tt<br>p Le       | eu P               | cc c<br>ro E<br>20 | ect<br>Pro         | aga<br>Arg        | aa.<br>Ly         | a gg<br>s Gl      |                   | t<br>ne<br>25 | 1074       |
| gcg g<br>Ala G            | ag aa<br>lu Ly        | a to<br>/s Tr         | gg ca<br>rp Hi<br>33  | s Pro                 | cti<br>Lei        | t at<br>u Il      | t tt<br>e Le      | eu L               | aa g<br>ys G<br>35 | jaa a<br>Slu I     | atg<br>Met         | cct<br>Pro        | aa<br>As          |                   | al G              | aa<br>ln      | 1122       |
| ttg a<br>Leu T            | cc tt<br>hr Le        | eu Le                 | ia gt<br>eu Va<br>45  | t gg<br>.l Gl:        | t ca<br>y Gl      | g ta<br>n Ty      | r A.              | ct c<br>la G<br>50 | ag a<br>ln I       | aaa<br>Lys         | tat<br>Tyr         | tat<br>Tyr        | ct<br>Le<br>35    | u Ç               | ga a<br>ly S      | gc<br>er      | 1170       |

|                                                         | 3 6                        | at aaa<br>is Lys<br>50    |                      |                         |              | 365        | IIII        | va.                  | г гу.             | s Ala                                | a Ty:                            | r Ly<br>0                        | s As                           | p Tyr                        | 1218                                                 |
|---------------------------------------------------------|----------------------------|---------------------------|----------------------|-------------------------|--------------|------------|-------------|----------------------|-------------------|--------------------------------------|----------------------------------|----------------------------------|--------------------------------|------------------------------|------------------------------------------------------|
| 3                                                       | 375                        | at tat<br>sp Tyr          |                      | 3                       | 80           |            | nış         | Pro                  | se:               | 385                                  | o Arg                            | g Ası                            | n Gli                          | l lle                        | 1266                                                 |
| tgg c<br>Trp L<br>390                                   | ta aa<br>.eu Ly            | g aag<br>s Lys            | aat<br>Asn           | cca t<br>Pro I<br>395   | gg t<br>rp F | tt<br>he   | gaa<br>Glu  | aaa<br>Lys           | gat<br>Asp<br>400 | Leu                                  | ato<br>Ile                       | gtt<br>Val                       | gat<br>L Asp                   | tta<br>Leu<br>405            | 1314                                                 |
|                                                         |                            | a gta<br>e Val            | 410                  |                         | 10 11        | eu         | ьys         | 415                  |                   |                                      |                                  |                                  | M                              | et                           | 1364                                                 |
| aga g<br>Arg A                                          | -                          | 420                       |                      |                         |              | yr .       | 425         | ser                  | Tyr               | Asp                                  | Cys                              | Gln<br>430                       | Thr                            | Ala                          | 1412                                                 |
| ttt ga<br>Phe Gl                                        | 435                        | 5                         |                      |                         | 4            | 10         | TIIT        | GIY                  | Glu               | Phe                                  | Ile<br>445                       | Thr                              | Thr                            | Glu                          | 1460                                                 |
| cat tt<br>His Ph<br>45                                  | 50                         |                           |                      | 45                      | 5            | / L ]      | . 111       | GIY                  | GIN               | Asp<br>460                           | Asp                              | Val                              | Pro                            | Asp                          | 1508                                                 |
| tat ag<br>Tyr Se<br>465                                 |                            | •                         | 4                    | 70                      | 5 11         | . С Р      | ъÞ          | lyr                  | ьец<br>475        | Asn                                  | Gln                              | Lys                              | Tyr                            | Gly<br>480                   | 1556                                                 |
| aat cg<br>Asn Ar                                        |                            | 4                         | 185                  | -,                      | C G1         | uı         | 16 (        | 490                  | Tyr               | Phe                                  | Lys                              | Asp                              | Arg<br>495                     | Glu                          | 1604                                                 |
| tca ga<br>Ser Asj                                       | _                          | 500                       | <b>-</b>             | ,                       | т шу         | 5 A        | 05          | Jys (                | Jlu               | Phe .                                | qzA                              | Leu<br>510                       | Lys                            | Leu                          | 1652                                                 |
| ttg tca<br>Leu Sei                                      | 515                        |                           |                      | 01                      | 520          | 0          | Y I         | sp.                  | ryr .             | Leu (                                | Gln (<br>525                     | Glu                              | Glu Z                          | Ala                          | 1700                                                 |
| ctg aaa<br>Leu Lys<br>530                               |                            | cca a<br>Pro T            | ca aa<br>hr Ly       | ag gga<br>/s Gly<br>535 | ATC          | tt<br>a Ph | t a<br>ne S | gc a<br>Ser A        | arg 1             | tta d<br>Leu I                       | ctt (<br>Leu                     | taat                             | cgtat                          | g                            | 1749                                                 |
| gaatttg aagttaa ataaaga gggaatg tactcta caaggtc taaaaaa | itgt t<br>gaaa a<br>itag g | atcta<br>acttta<br>ctctga | aggg<br>atcg<br>acgg | gttag                   | cttt         | t g        | aac         | taaa<br>tact<br>attt | ta o              | gca <i>a</i><br>caaa<br>acag<br>ttat | ittga<br>itcco<br>icttg<br>igaat | aa go<br>et tt<br>gg tt<br>et te | egcat<br>atct<br>gtaa<br>gatag | tttc<br>atat<br>acaa<br>actt | 1809<br>1869<br>1929<br>1989<br>2049<br>2109<br>2169 |

| atttcaaaaa aataa<br>tttattggta acaa       | agaaa tcattt<br>tcatt aaaaaa          | actt gttgo<br>ggag aatga        | at atg aaa                        | gcgtaaa ttgttatg.<br>aga aaa gac tta<br>Arg Lys Asp Leu<br>545 | 2229<br>2283        |
|-------------------------------------------|---------------------------------------|---------------------------------|-----------------------------------|----------------------------------------------------------------|---------------------|
| ttt ggt gat aaa<br>Phe Gly Asp Lys<br>550 | caa act caa<br>Gln Thr Gln            | tac acg at<br>Tyr Thr Il<br>555 | tt aga aag<br>le Arg Lys          | tta agt gtt gga<br>Leu Ser Val Gly<br>560                      | 2331                |
| gta gct tca gtt<br>Val Ala Ser Val<br>565 | aca aca ggg<br>Thr Thr Gly<br>570     | gta tgt at<br>Val Cys II        | tt ttt ctt<br>le Phe Leu<br>575   | cat agt cca cag<br>His Ser Pro Gln                             | 2379                |
| gta ttt gct gaa<br>Val Phe Ala Glu<br>580 | gaa gta agt<br>Glu Val Ser<br>585     | gtt tct co<br>Val Ser P         | ct gca act<br>ro Ala Thr<br>590   | aca gcg att gca<br>Thr Ala Ile Ala<br>595                      | •                   |
| gag tcg aat att<br>Glu Ser Asn Ile        | aat cag gtt<br>Asn Gln Val<br>600     | Asp Asn G                       | aa caa tct<br>ln Gln Ser<br>05    | act aat tta aas<br>Thr Asn Leu Lys<br>610                      | 2475                |
| gat gac ata aac<br>Asp Asp Ile Asi<br>619 | Ser Asn Ser                           | gag acg g<br>Glu Thr V<br>620   | gtt gtg aca<br>Val Val Thr        | e ccc tca gat atg<br>r Pro Ser Asp Med<br>625                  | 2523                |
| ccg gat acc aag<br>Pro Asp Thr Ly:<br>630 | g caa tta gta<br>s Gln Leu Val        | tca gat g<br>Ser Asp G<br>635   | gaa act gac<br>Glu Thr Asp        | e act caa aag gg<br>o Thr Gln Lys Gl<br>640                    | a 2571<br>Y         |
| gtg aca gag cc<br>Val Thr Glu Pr<br>645   | g gat aag gcg<br>o Asp Lys Ala<br>650 | Thr Ser I                       | ctg ctt gaa<br>Leu Leu Gli<br>659 | a gaa aat aaa gg<br>u Glu Asn Lys Gl<br>5                      | t 2619<br>Y         |
| cct gtt tca ga<br>Pro Val Ser As<br>660   | t aaa aat acc<br>p Lys Asn Thi<br>665 | tta gat t<br>Leu Asp l          | tta aaa gta<br>Leu Lys Va<br>670  | a gca cca tct ac<br>l Ala Pro Ser Th<br>67                     | .±                  |
| ttg caa aat ac<br>Leu Gln Asn Th          | t ccc gac aaa<br>r Pro Asp Ly:<br>680 | Thr Ser                         | caa gct at<br>Gln Ala Il<br>685   | a ggt gct cca ag<br>e Gly Ala Pro Se<br>690                    | gc 2715<br>er       |
| cct acc ttg as<br>Pro Thr Leu Ly<br>69    | s Val Ala As                          | caa gct<br>n Gln Ala<br>700     | cca cgg at<br>Pro Arg Il          | t gaa aat ggt ta<br>e Glu Asn Gly Ty<br>705                    | ac 2763<br>/r       |
| ttt agg cta ca<br>Phe Arg Leu H.<br>710   | it ctt aaa ga<br>.s Leu Lys Gl        | a ttg cct<br>u Leu Pro<br>715   | caa ggt ca<br>Gln Gly Hi          | at cct gta gaa ag<br>is Pro Val Glu S<br>720                   | gc 2811<br>er       |
| act gga ctt t<br>Thr Gly Leu T<br>725     | gg ata tgg gg<br>rp Ile Trp Gl<br>73  | y Asp Val                       | Asp Gin Pi                        | eg tet agt aat t<br>ro Ser Ser Asn T<br>35                     | gg 2859<br>rp       |
| cca aat ggt g<br>Pro Asn Gly A<br>740     | ct atc cct at<br>la Ile Pro Me<br>745 | g act gat<br>t Thr Asp          | gct aag aa<br>Ala Lys Ly<br>750   | aa gat gat tac g<br>ys Asp Asp Tyr G<br>7                      | gt 2907<br>ly<br>55 |

WO 99/42588

|                       | •                  |                   |                   | 76                | 50                | . Б. Д.             | -u 5e              | :1 6.             | 1u L<br>7          | ys (<br>65     | GIn                | Ar                | g r <sup>y</sup>   | /s G              | ln 1               | 11e        |                  | 2955 |
|-----------------------|--------------------|-------------------|-------------------|-------------------|-------------------|---------------------|--------------------|-------------------|--------------------|----------------|--------------------|-------------------|--------------------|-------------------|--------------------|------------|------------------|------|
|                       |                    |                   | 77                | 5                 | 2                 |                     | u Gi               | · 78              | 11 A               | sn 1           | Jeu                | Sei               | c Gl               | y As<br>78        | 5p H<br>35         | lis        |                  | 3003 |
|                       |                    | 790               | D                 |                   | <i>J</i>          | 0 01                | g at<br>u Me<br>79 | 5<br>5            | 11 6.              | ın v           | /al                | Trp               | 80<br>80           | e As              | p G                | lu         | Lys              | 3051 |
| tac<br>Tyr            | ggt<br>Gly<br>805  | ata<br>Ile        | a cat             | t ac              | t ta<br>r Ty      | t ca<br>r Gl:<br>81 | a cc<br>n Pro      | c ct<br>o Le      | c aa<br>u Ly       | aa g<br>/s G   | ıυ                 | 999<br>Gly<br>815 | Ту                 | t gt<br>r Va      | с с<br>1 А:        | gt<br>rg   | att<br>Ile       | 3099 |
| aac<br>Asn<br>820     | -                  |                   |                   |                   | 82                | 5                   | . ASI              | ı ıy:             | r As               | н q:<br>8      | 1s<br>30           | Leu               | Se                 | r Al              | a Ti               | -p         | Leu<br>835       | 3147 |
| ttt<br>Phe            | aaa<br>Lys         | gat<br>Asp        | gtt<br>Val        | 90a<br>Ala<br>840 |                   | c ccy<br>Xaa        | / tca<br>a Ser     | a aca             | a ac<br>r Th<br>84 | r 1            | gg<br>rp           | cca<br>Pro        | gat<br>Asp         | gg<br>Gl          | t ag<br>y Se<br>85 | er         | aat<br>Asn       | 3195 |
| ttt<br>Phe            | gtg<br>Val         | aat<br>Asn        | caa<br>Gln<br>855 | gga<br>Gly        | cta<br>Lei        | tat<br>Tyr          | gga<br>Gly         | agg<br>Arg<br>860 | Ty                 | t ai<br>r Ii   | tt q<br>le A       | gat<br>Asp        | gt <i>a</i><br>Val | tca<br>Sea        | Le                 | a<br>u     | aaa<br>Lys       | 3243 |
| act a                 | aac<br>Asn         | gcc<br>Ala<br>870 | aaa<br>Lys        | gag<br>Glu        | att               | ggt<br>Gly          | ttt<br>Phe<br>875  | cta<br>Leu        | ate<br>Ile         | c tt<br>e Le   | a g<br>eu <i>P</i> | gat<br>Asp        | gaa<br>Glu<br>880  | agt<br>Ser        | aa<br>Ly           | g<br>s     | aca<br>Thr       | 3291 |
| gga g<br>Gly A        | gat<br>Asp<br>385  | gca<br>Ala        | gtg<br>Val        | aaa<br>Lys        | gtt<br>Val        | caa<br>Gln<br>890   | ccc<br>Pro         | aac<br>Asn        | gad<br>Asp         | ta<br>Ty       | rv                 | gtt<br>Zal<br>195 | ttt<br>Phe         | aga<br>Arg        | ga<br>As           | t t<br>p I | ta<br>Leu        | 3339 |
| gct a<br>Ala A<br>900 | ac (               | cat<br>His        | aac<br>Asn        | caa<br>Gln        | att<br>Ile<br>905 | ttt<br>Phe          | gta<br>Val         | aaa<br>Lys        | gat<br>Asp         | aa<br>Ly<br>91 | s A                | at<br>.sp         | cca<br>Pro         | aag<br>Lys        | gt!<br>Val         | 1 7        | at<br>Yr<br>915  | 3387 |
| aat a<br>Asn A        | at d               | Pro               | tat<br>Tyr        | tac<br>Tyr<br>920 | att<br>Ile        | gat<br>Asp          | caa<br>Gln         | gtg<br>Val        | cag<br>Gln<br>925  | re.            | a a<br>u L         | ag y              | gat<br>Asp         | gcc<br>Ala        | caa<br>Glr<br>930  | ı G        | aa<br>In         | 3435 |
| att g<br>Ile A        | at t<br>sp I       |                   | aca<br>Thr<br>935 | agt<br>Ser        | att<br>Ile        | caa<br>Gln          | gca<br>Ala         | agt<br>Ser<br>940 | ttt<br>Phe         | aca<br>Th:     | a ao               | ct o              | cta<br>Leu         | gat<br>Asp<br>945 | gly<br>ggg         | , A        | ta<br>al         | 3483 |
| gat a<br>Asp L        | aa a<br>ys T<br>9  | hr<br>50          | gaa<br>Glu        | att<br>Ile        | tta<br>Leu        | aaa<br>Lys          | gaa<br>Glu<br>955  | ttg<br>Leu        | aaa<br>Lys         | gtg<br>Va]     | g ac               | nr A              | gat<br>Asp<br>960  | aaa<br>Lys        | aat<br>Asn         | c<br>G     | a <b>a</b><br>ln | 3531 |
| aat go<br>Asn Al      | ct a<br>la I<br>65 | ta (              | caa<br>Gln        | att<br>Ile        | tct<br>Ser        | gat<br>Asp<br>970   | atc<br>Ile         | act<br>Thr        | ctc<br>Leu         | gat<br>Asp     | ac<br>Th           | ır s              | igt<br>Ser         | aaa<br>Lys        | tct<br>Ser         | C:         | t <b>t</b><br>eu | 3579 |

| tta ata atc aaa ggc gac ttt aat cct aaa caa ggt cat ttc aac ata<br>Leu Ile Ile Lys Gly Asp Phe Asn Pro Lys Gln Gly His Phe Asn Ile<br>980 985 990 995     | 3627 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| tot tat aat ggt aac aat gto atg aca agg caa tot tgg gaa ttt aaa<br>Ser Tyr Asn Gly Asn Asn Val Met Thr Arg Gln Ser Trp Glu Phe Lys<br>1000 1005 1010      | 3675 |
| gac caa ctt tat gct tat agt gga aat tta ggt gca gtt ctc aat caa<br>Asp Gln Leu Tyr Ala Tyr Ser Gly Asn Leu Gly Ala Val Leu Asn Gln<br>1015 1020 1025      | 3723 |
| gat ggt tca aaa gtt gaa gcc agc ctc tgg tca ccg agt gct gat agt<br>Asp Gly Ser Lys Val Glu Ala Ser Leu Trp Ser Pro Ser Ala Asp Ser<br>1030 1035 1040      | 3771 |
| gtc act atg att att tat gac aaa gat aac caa aac agg gtt gta gcg<br>Val Thr Met Ile Ile Tyr Asp Lys Asp Asn Gln Asn Arg Val Val Ala<br>1045 1050 1055      | 3819 |
| act acc ccc ctt gtg aaa aat aat aaa ggt gtt tgg cag acg ata ctt<br>Thr Thr Pro Leu Val Lys Asn Asn Lys Gly Val Trp Gln Thr Ile Leu<br>1060 1065 1070 1075 | 3867 |
| gat act aaa tta ggt att aaa aac tat act ggt tac tat tat ctt tac<br>Asp Thr Lys Leu Gly Ile Lys Asn Tyr Thr Gly Tyr Tyr Tyr Leu Tyr<br>1080 1085 1090      | 3915 |
| gaa ata aaa aga ggt aag gat aag gtt aag att tta gat cct tat gca<br>Glu Ile Lys Arg Gly Lys Asp Lys Val Lys Ile Leu Asp Pro Tyr Ala<br>1095 1100 1105      | 3963 |
| aag toa tta goa gag tgg gat agt aat act gtt aat gat gat att aaa<br>Lys Ser Leu Ala Glu Trp Asp Ser Asn Thr Val Asn Asp Asp Ile Lys<br>1110 1115 1120      | 4011 |
| acg gct aaa gca gct ttt gta aat cca agt caa ctt gga cct caa aat<br>Thr Ala Lys Ala Ala Phe Val Asn Pro Ser Gln Leu Gly Pro Gln Asn<br>1125 1130 1135      | 4059 |
| tta agt ttt gct aaa att gct aat ttt aaa gga aga caa gat gct gtt<br>Leu Ser Phe Ala Lys Ile Ala Asn Phe Lys Gly Arg Gln Asp Ala Val<br>1140 1145 1150 1155 | 4107 |
| ata tac gaa gca cat gta aga gac ttc act tct gat cga tct ttg gat<br>Ile Tyr Glu Ala His Val Arg Asp Phe Thr Ser Asp Arg Ser Leu Asp<br>1160 1165 1170      | 4155 |
| gga aaa tta aaa aat caa ttt ggt acc ttt gca gcc ttt tca gag aaa<br>Gly Lys Leu Lys Asn Gln Phe Gly Thr Phe Ala Ala Phe Ser Glu Lys<br>1175 1180 1185      | 4203 |
| cta gat tat tta cag aaa tta gga gtt aca cac att cag ctt tta ccg<br>Leu Asp Tyr Leu Gln Lys Leu Gly Val Thr His Ile Gln Leu Leu Pro<br>1190 1195 1200      | 4251 |

| gta ttg agt tat ttt tat gtt aat gaa atg gat aag tca cgc tca aca<br>Val Leu Ser Tyr Phe Tyr Val Asn Glu Met Asp Lys Ser Arg Ser Thr<br>1205 1210 1215      | 4299 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| gct tac act tcc tca gac aat aat tac aat tgg ggc tat gac cca cag<br>Ala Tyr Thr Ser Ser Asp Asn Asn Tyr Asn Trp Gly Tyr Asp Pro Gln<br>1220 1225 1230 1235 | 4347 |
| 1240 1245 1250                                                                                                                                            | 4395 |
| 1255 1260 The His Asp Ile His Lys                                                                                                                         | 4443 |
| 1270 1275 1280                                                                                                                                            | 4491 |
| act tat ctc ttt gag gat ata gaa cct aat tat tat cac ttt atg aat 4<br>Thr Tyr Leu Phe Glu Asp Ile Glu Pro Asn Tyr Tyr His Phe Met Asn<br>1285 1290 1295    | 1539 |
| 1300 1305 Phe Gly Gly Arg Leu Gly Thr 1315                                                                                                                | 1587 |
| 1320 1325 Ser Ile Lys Tyr Leu                                                                                                                             | 635  |
| 1335 Phe Arg Phe Asp Met Met Gly Asp                                                                                                                      | 683  |
| 1350 1355 1360                                                                                                                                            | 731  |
| 1365 1370 1375                                                                                                                                            | 779  |
| 1380 1385 Pro Ala Asp Gln Asp Trp Met Lys Ser<br>1390 1395                                                                                                | 327  |
| 1400 1405 1410                                                                                                                                            | 375  |
| tct ggt ttt cca aat gaa ggt act cca gct ttc atc aca ggt ggc cca 49 Ser Gly Phe Pro Asn Glu Gly Thr Pro Ala Phe Ile Thr Gly Gly Pro 1415 1420 1425         | 23   |

```
caa tot tta caa ggt att ttt aaa aat atc aaa gca caa cot ggg aat
                                                                4971
Gln Ser Leu Gln Gly Ile Phe Lys Asn Ile Lys Ala Gln Pro Gly Asn
                           1435
ttt gaa gca gat tcg cca gga gat gtg gtg cag tat att gct gca cat
                                                                  5019
Phe Glu Ala Asp Ser Pro Gly Asp Val Val Gln Tyr Ile Ala Ala His
                       1450
                                                                  5058
gat aac ctt acc ttg cat gat gtg att gca aaa tca att
Asp Asn Leu Thr Leu His Asp Val Ile Ala Lys Ser Ile
                  1465
      <210> 23
      <211> 221
      <212> PRT
      <213> streptococcus
      <400> 23
Asn Leu Lys Ala Glu Leu Ser Val Glu Asp Glu Gln Tyr Thr Ala Thr
                            10
Val Tyr Gly Lys Ser Ala His Gly Ser Thr Pro Gln Glu Gly Val Asn
                                25
Gly Ala Thr Tyr Leu Ala Leu Tyr Leu Ser Gln Phe Asp Phe Glu Gly
                           40
 Pro Ala Arg Ala Phe Leu Asp Val Thr Ala Asn Ile Ile His Glu Asp
                        55
 Phe Ser Gly Glu Lys Leu Gly Val Ala Tyr Glu Asp Asp Cys Met Gly
                    70
 Pro Leu Ser Met Asn Ala Gly Val Phe Gln Phe Asp Glu Thr Asn Asp
                                    90
 Asp Asn Thr Ile Ala Leu Asn Phe Arg Tyr Pro Gln Gly Thr Asp Ala
                                105
 Lys Thr Ile Gln Thr Lys Leu Glu Lys Leu Asn Gly Val Glu Lys Val
                                                125
                            120
 Thr Leu Ser Asp His Glu His Thr Pro His Tyr Val Pro Met Asp Asp
                                            140
                        135
 Glu Leu Val Ser Thr Leu Leu Ala Val Tyr Glu Lys Gln Thr Gly Leu
                                        155
                     150
 Lys Gly His Glu Gln Val Ile Gly Gly Gly Thr Phe Gly Arg Leu Leu
                                                       175
                                    170
                 165
 Glu Arg Gly Val Ala Tyr Gly Ala Met Phe Pro Gly Asp Glu Asn Thr
                                            190
                                185
 Met His Gln Ala Asn Glu Tyr Met Pro Leu Glu Asn Ile Phe Arg Ser
                            200
 Ala Ala Ile Tyr Ala Glu Ala Ile Tyr Glu Leu Ile Lys
                        215
     210
       <210> 24
       <211> 194
       <212> PRT
       <213> streptococcus
```

<400> 24

WO 99/42588 PCT/CA99/00114

45 / 63

Met Thr Asp Leu Glu Lys Ile Ile Lys Ala Ile Lys Ser Asp Ser Gln 10 Asn Gln Asn Tyr Thr Glu Asn Gly Ile Asp Pro Leu Phe Ala Ala Pro Lys Thr Ala Arg Ile Asn Ile Val Gly Gln Ala Pro Gly Leu Lys Thr Gln Glu Ala Arg Leu Tyr Trp Lys Asp Lys Ser Gly Asp Arg Leu Arg 55 Gln Trp Leu Gly Val Asp Glu Glu Thr Phe Tyr His Ser Gly Lys Phe Ala Val Leu Pro Leu Asp Phe Tyr Tyr Pro Gly Lys Gly Lys Ser Gly 85 Asp Leu Pro Pro Arg Lys Gly Phe Ala Glu Lys Trp His Pro Leu Ile 105 Leu Lys Glu Met Pro Asn Val Gln Leu Thr Leu Leu Val Gly Gln Tyr 120 Ala Gln Lys Tyr Tyr Leu Gly Ser Ser Ala His Lys Asn Leu Thr Glu 135 140 Thr Val Lys Ala Tyr Lys Asp Tyr Leu Pro Asp Tyr Leu Pro Leu Val 150 155 His Pro Ser Pro Arg Asn Gln Ile Trp Leu Lys Lys Asn Pro Trp Phe 165 170 Glu Lys Asp Leu Ile Val Asp Leu Gln Lys Ile Val Ala Asp Ile Leu Lys Asp

<210> 25 <211> 126 <212> PRT

<213> streptococcus

<400> 25

 Met
 Arg
 Asp
 Asn
 His
 Leu
 His
 Thr
 Tyr
 Phe
 Ser
 Tyr
 Asp
 Cys
 Gln
 Thr

 Ala
 Phe
 Glu
 Asp
 Tyr
 Ile
 Asn
 Gly
 Phe
 Thr
 Gly
 Glu
 Phe
 Ile
 Thr
 Thr
 Gly
 Glu
 Phe
 Asp
 Asp
 Val
 Pro

 Asp
 Tyr
 Ser
 Ala
 Tyr
 Cys
 Glu
 Tyr
 Tyr
 Leu
 Asp
 Asp
 Tyr
 Phe
 Lys
 Asp
 Arg
 Arg
 Tyr
 Phe
 Lys
 Asp
 Arg
 Arg
 Tyr
 Asp
 Tyr
 Leu
 Lys
 Arg
 Tyr
 Arg
 Tyr
 Leu
 Leu
 Lys
 Arg
 Tyr
 Arg
 Tyr
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 Leu
 L

<210> 26 <211> 931 <212> PRT <213> streptococcus

<400> 26

| Met I      |     |            |             | 5     |             |       |             |            | 10    |       |            |              |           | 7.2      |       |
|------------|-----|------------|-------------|-------|-------------|-------|-------------|------------|-------|-------|------------|--------------|-----------|----------|-------|
| Arg I      |     |            | 2.0         |       |             |       |             | 25         |       |       |            |              | 30        |          |       |
| Phe I      |     | 25         |             |       |             |       | 40          |            |       |       |            | 45           |           |          |       |
| Ala 5      | 50  |            |             |       |             | 55    |             |            |       |       | 60         |              |           |          |       |
| Gln S      | Ser |            |             |       | 70          |       |             |            |       | 75    |            |              |           |          | 80    |
| Val 7      |     |            |             | 85    |             |       |             |            | 90    |       |            |              |           | 75       |       |
| Thr A      |     |            | 100         |       |             |       |             | 105        |       |       |            |              | 110       |          |       |
| Leu        |     | 115        |             |       |             |       | 120         |            |       |       |            | 125          |           |          |       |
| Lys        | 130 |            |             |       |             | 135   |             |            |       |       | 140        |              |           |          |       |
| Ala        | Ile | Gly        | Ala         | Pro   |             | Pro   | Thr         | Leu        | Lys   | Val   | Ala        | Asn          | Gin       | Ala      | 160   |
| 145<br>Arg | ~ 7 | <b>a</b> 1 | N           | ~1··  | 150         | Dhe   | λra         | Len        | Hie   | 155   |            | Glu          | Leu       | Pro      |       |
| Arg        | 116 | GIU        | ASII        | 165   | IĀI         | FIIC  | A. 9        | пси        | 170   |       | -1-        |              |           | 175      |       |
|            |     |            | 180         | Glu   |             |       |             | 185        |       |       |            |              | 190       |          |       |
|            |     | 195        |             | Asn   |             |       | 200         |            |       |       |            | 205          |           |          |       |
| _          | 210 |            |             | Tyr   |             | 215   |             |            |       |       | 220        |              |           |          |       |
| 225        |     |            |             | Ile   | 230         |       |             |            |       | 235   | •          |              |           |          | 240   |
|            |     |            |             | 245   |             |       |             |            | 250   | )     |            |              |           | 255      |       |
|            |     |            | 260         | )     |             |       |             | 265        | ,     |       |            |              | 2/0       | 1        | Lys   |
|            |     | 275        | 5           |       |             |       | 280         | )          |       |       |            | 285          | )         |          | Asp   |
|            | 290 |            |             |       |             | 295   | 5           |            |       |       | 300        | )            |           |          | Thr   |
|            |     | ) Ası      | o Gly       | y Sei | Asr.<br>310 |       | e Val       | L Asr      | 1 GII | 315   | у пет<br>5 | ı ıyı        | . 61)     | ALS      | 320   |
|            | Asp |            |             | 329   | ı Lys       | Thi   |             |            | 330   | s Gli | u Ile      |              |           | 33:      |       |
| Leu        | Asp | Gl         | u Se:<br>34 | r Lys | 5 Thi       | Gly   | y Asp       | Ala<br>345 |       | l Ly  | s Vai      | l Glr        | n Pro     | ASI<br>O | n Asp |
| Tyr        | Val | l Ph<br>35 | e Ar        | g As  | , Le        | Ala د | a Ası<br>36 | n His      | s Ası | n Gl: | n Ile      | e Phe<br>36! | e Vai     | l Lys    | g Asp |
|            | 370 | p Pr       | o Ly        |       |             | 37:   | n Asi       | n Pro      |       |       | 38         | U            |           |          | l Gln |
| Leu        | Lys | -<br>s As  | p Al        | a Gl  | n Gli       | n Il  | e As        | p Le       | u Th  | r Se  | r Il       | e Gl:        | n Al      | a Se     | r Phe |
| 3 8 5      |     |            |             |       | 3.9         | 0     |             |            |       | 39    | 5          |              |           |          | 400   |
|            |     |            |             | 4.0   | 5           |       |             |            | 41    | 0     |            |              |           | 4 1      |       |
|            |     |            | 42          | 0     |             |       |             | 42         | 5     |       |            |              | 43        | U        | r Leu |
| Asp        | Th  | r Se<br>43 |             | 's Se | r Le        | u Le  | u Il<br>44  | e Il<br>O  | e Ly  | s Gl  | y As       | p Ph<br>44   | e As<br>5 | n Pr     | o ràs |

WO 99/42588

|       | 100   |        |                |     |       | 455   | 5   |     |            |            | 160   | 1     |       |            | r Arg        |
|-------|-------|--------|----------------|-----|-------|-------|-----|-----|------------|------------|-------|-------|-------|------------|--------------|
|       |       |        |                |     | 4 / 0 | ,     |     |     |            | 475        | Туг   | Sei   |       |            | n Leu        |
|       |       |        |                | 400 |       |       |     |     | 497        | s Val      | Glu   |       |       | 401        | 480<br>1 Trp |
|       |       |        | 200            |     |       |       |     | 505 | : Ile      | e Ile      |       |       | E 3 6 |            | Asn          |
|       |       | 2 + 2  |                |     |       |       | 520 | )   |            |            |       | E つ E | Asr   | Lys        | Gly          |
|       | 220   |        |                |     |       | 235   |     |     |            |            | E 4 A | Lys   | Asr   |            | Thr          |
| 212   |       |        |                |     | 220   |       |     |     |            | 555        | Lys   | Asp   |       |            | Lys<br>560   |
|       |       |        |                | 202 |       |       |     |     | 570        | Glu        |       |       |       |            | Thr          |
|       |       |        | 200            |     |       |       |     | 585 | Ala        | Ala        |       |       | E 0 0 | Pro        | Ser          |
|       |       | 223    |                |     |       |       | 600 |     |            | Lys        |       | 6 N E | Asn   | Phe        |              |
|       | 010   |        |                |     |       | 0 T 2 |     |     |            | His        | 620   | Arg   |       |            |              |
| 023   |       |        |                |     | 030   |       |     |     |            | Asn<br>635 |       |       |       |            |              |
|       |       |        |                | 043 |       |       |     |     | 650        | Gln        |       |       |       | ~          | Thr          |
|       |       |        | 000            |     |       |       |     | 665 |            | Phe        |       |       | C 7 0 | Glu        |              |
|       |       | 0,5    |                |     |       |       | 680 |     |            | Ser        |       | COL   |       |            |              |
|       | 000   |        |                |     |       | 695   |     |     |            | Leu        | 700   |       |       |            |              |
| , 0 5 |       |        |                |     | / T U |       |     |     |            | Ala<br>715 |       |       |       |            |              |
|       |       |        |                | 123 |       |       |     |     | 730        | Val        |       |       |       |            |              |
|       |       |        | , <del>-</del> |     |       |       |     | 745 |            | Glu        |       |       | 750   |            |              |
|       |       | / 2 2  |                |     |       |       | 760 |     |            | Pro        |       | 765   |       |            |              |
|       | , , , |        |                |     |       | //5   |     |     |            | Ser        | 700   |       |       |            |              |
| , 0 5 |       |        |                |     | 790   |       |     |     |            | Lys<br>795 |       |       |       |            | 000          |
| Phe   |       |        |                | 000 |       |       |     |     | 810        |            |       |       |       | 015        |              |
| Lys   |       |        | 020            |     |       |       |     | 825 |            |            |       |       | 020   |            |              |
| Trp . |       | 000    |                |     |       |       | 840 |     |            |            |       | RAE   |       |            |              |
|       | 000   |        |                |     |       | 855   |     |     |            |            | 860   |       |       |            |              |
| Ile A |       |        |                |     | 8/0   |       |     |     |            | 875        |       |       |       |            | 000          |
| Phe : | 116   | TILE ( | gry (          | 885 | PTO ( | GIN   | ser | Leu | Gln<br>890 | Gly        | Ile   | Phe   | Lys   | Asn<br>895 | Ile          |

| · · · · · · · · · · · · · · · · · · ·                                                                                               |            |
|-------------------------------------------------------------------------------------------------------------------------------------|------------|
| Lys Ala Gln Pro Gly Asn Phe Glu Ala Asp Ser Pro Gly Asp Val Val                                                                     |            |
| Gln Tyr Ile Ala Ala His Asp Asn Leu Thr Leu His Asp Val Ile Ala                                                                     |            |
| 913                                                                                                                                 |            |
| Lys Ser Ile<br>930                                                                                                                  |            |
| <210> 27                                                                                                                            |            |
| <211> 5607                                                                                                                          |            |
| <212> DNA                                                                                                                           |            |
| <213> streptococcus                                                                                                                 |            |
| <220>                                                                                                                               |            |
| <221> CDS<br><222> (2)(301)                                                                                                         |            |
| <2225 (2)(301)                                                                                                                      |            |
| <400> 27                                                                                                                            | 49         |
| a att caa agt ttg aca gaa ggt caa ctt cgt tct gat atc cct gag ttc Ile Gln Ser Leu Thr Glu Gly Gln Leu Arg Ser Asp Ile Pro Glu Phe   |            |
| 1 5 10 15                                                                                                                           |            |
| -                                                                                                                                   | 0.77       |
| egt get ggt gat act gta egt gtt cae get aaa gtt gtt gaa ggt act                                                                     | 97         |
| Arg Ala Gly Asp Thr Val Arg Val His Ala Lys Val Val Glu Gly Thr                                                                     |            |
| 20 25 30                                                                                                                            |            |
| ege gaa egt att eag ate tit gaa ggt gtt gtt ate tea egt aaa ggt                                                                     | 145        |
| Arg Glu Arg Ile Gln Ile Phe Glu Gly Val Val Ile Ser Arg Lys Gly                                                                     |            |
| 35 40 45                                                                                                                            |            |
| and and and att tot got att                                                                                                         | 193        |
| caa gga atc tca gaa atg tac aca gta cgt aaa att tct ggt ggt atc<br>Gln Gly Ile Ser Glu Met Tyr Thr Val Arg Lys Ile Ser Gly Gly Ile  |            |
| Gin Gly He Ser Glu Met Tyr IIII var III y 27                                                                                        |            |
|                                                                                                                                     | 247        |
| ggt gta gag cgt aca ttc cca att cac act cct cgt gtt gat aaa atc                                                                     | 241        |
| Gly Val Glu Arg Thr Phe Pro Ile His Thr Pro Arg Val Asp bys 110                                                                     |            |
| 65 70 /5                                                                                                                            |            |
| gaa gtt gtt cgt tat ggt aaa gta cgt cgt gct aaa ctt tac tac tta                                                                     | 289        |
| Glu Val Val Arg Tyr Gly Lys Val Arg Arg Ala Lys Led Tyr Tyr Ded                                                                     |            |
| 85 90 95                                                                                                                            |            |
| and a second contract of the second contract the                                                                                    | 341        |
| cgc gca ttg caa ggtaaagctg cacgtattaa agaaatccgt cgttaatttt                                                                         |            |
| Arg Ala Leu Gln<br>100                                                                                                              |            |
|                                                                                                                                     | 401        |
| gatgatcaga ttttaaaaat gcttggttgt ttgaggatag taactatgtt ttaaaactgg                                                                   | 461        |
| acaaccaaga cgtaaaaaat ctgcctgtgg gcagtttttt tactaggtcc ccttagttca                                                                   | 521        |
| atggatataa caactccctc ctaaggagta attgctggtt cgattccggc aggggacata ttcattgcat gtaaatagcg gtttagagct attttgcccc aaatttctct gattaagttt | 581        |
| atagttagta tottettatt ottotaatto atotogaa accididaday igatattaa                                                                     | 641        |
| atterests retargaett gagagatgga aattagatag ettgeaaatg tatgeegag                                                                     | 701        |
| nangtacact catacctcac gaccaqttat ttttcggata gttltallga cigcactate                                                                   | 761<br>821 |
| tganagette togaataato totoottiti attititgia aattoatgod adadadadaa                                                                   | 881        |
| tgtatcattg tcaattggta tatttctgat actacttttg ttttttgttg gcaggtatct                                                                   | 941        |
| ttggttgaaa tgataatccc aagttttatt aattgataaa tatttgttag tgtaatcaat atcattaact gttaaaccta aacattcagc gaagcgcatg ccagttttag cgatgaggta | 1001       |
| attattaatt yttaaattta aattattaga gaagagaaa                                                                                          |            |

WO 99/42588

| taacqctqca tagaatt                                                                                                                                                  |                                       |              |                                         |              |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|-----------------------------------------|--------------|------|
| taacgctgca tacgattg                                                                                                                                                 | at gttgtgatt                          | t ttctttaca  | a atttttatc                             | a agcgtaagta | 1061 |
| JJ counguat                                                                                                                                                         | ice ecalectica                        | L DEACGCCC   | t tottttt                               | a            |      |
| 3 3                                                                                                                                                                 | ,alala                                | L CCCTCGTGA  | 2 C2GCC2tGG                             | 2 *20000     |      |
|                                                                                                                                                                     | icy cittactor                         | a Ecttocaca  | t acatttala                             |              |      |
| - J J garacee                                                                                                                                                       | gr gyaaytaat                          | a trocasaot  | a atatatec.                             | ~ +          |      |
| 5 5-5-4-6                                                                                                                                                           | Le claccide                           | a reacarres. | c ccasataca                             |              |      |
| Transfer goldwage                                                                                                                                                   | ac addatation                         | a addetacet  | t                                       |              |      |
| J                                                                                                                                                                   | eg acattttaa                          | 3 FCGCECECE  | +                                       |              |      |
|                                                                                                                                                                     |                                       |              |                                         |              |      |
|                                                                                                                                                                     |                                       |              |                                         |              |      |
| - 55                                                                                                                                                                | ugaagttta                             | 2            | ~ ~~~~~~~                               |              |      |
| J J J JJ                                                                                                                                                            | eg geteatade                          | ,            | - ~~~~~~~~                              |              |      |
|                                                                                                                                                                     | og uguttgagt                          | i actitaacta | ~~++~~~                                 |              |      |
| 5 5                                                                                                                                                                 | ww codaddcta                          | J [[[ACT333: | <del></del>                             |              | 1781 |
|                                                                                                                                                                     |                                       |              |                                         |              |      |
|                                                                                                                                                                     | ge geelalida                          | i uccerator  |                                         |              | 1901 |
| tcaggctatt acaagtgg                                                                                                                                                 | ct caatcotcaa                         | aaaacacatt   | ttanana-                                | ggggtctcgt   | 1961 |
| ctaatggcta aaatcaag                                                                                                                                                 | ga acttogtaga                         | ctctacaate   | ctyayacaaa                              | aaatacaaag   | 2021 |
| atgacaacat ttattaat                                                                                                                                                 | cg tcaacttgg                          | acaacttaa:   | g gracettage                            | ttatcgccgt   | 2081 |
| ttgatgaaca ttctgggg                                                                                                                                                 | at tagttcagt                          | ; attentent  | acaagaaac                               | gattcgttga   | 2141 |
| gctggtgaca gattttac                                                                                                                                                 | a agaaaaratt                          | : cttaatogtc | , cragecarge                            | ttgtacaaaa   | 2201 |
| aaccagaaat ggtgcaca                                                                                                                                                 | ga totcacctat                         | cttaategeg   | aatttacago                              | cacageteat   | 2261 |
| aaccagaaat ggtgcaca                                                                                                                                                 | rt grataaccat                         | totattatac   | gtctgggagc                              | taaagcttat   | 2321 |
| ctcagtgcga ttaaagac                                                                                                                                                 | o algerate                            | colattato    | cttatgagat                              | tagtcacaac   | 2381 |
| aatgaaatcc acttgtta                                                                                                                                                 | st tagactacta                         | aaaaggggct   | agageteaat                              | ccaggagcca   | 2441 |
| tacaacaage togtetga                                                                                                                                                 | c ttatecatet                          | adlatacttc   | : caaagaatac                            | cgttatatca   | 2501 |
| tacaacaago tggtotgad                                                                                                                                                | o ttattcange                          | ceeggattgg   | caaatgtatt                              | gataatgcac   | 2561 |
| caactgaaag tttctttgg                                                                                                                                                | et cataraga                           | ctgagtetta   | ccaccttaag                              | aaatacaact   | 2621 |
| cttatgatga gttggtcaa                                                                                                                                                | c gargraggeac                         | gttatatcga   | attctacaac                              | acacaacgtt   | 2681 |
|                                                                                                                                                                     | ve elaciticit                         | Lagaarrcac   |                                         |              | 2741 |
|                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · · |              | ~~~++~~++~                              |              | 2801 |
| J                                                                                                                                                                   | 'a yaaaacuadc                         | Carraatoo    |                                         |              | 2861 |
| J                                                                                                                                                                   | · · · · · · · · · · · · · · · · · · · | urgagggfff   | ++~++~~+                                |              | 2921 |
|                                                                                                                                                                     | e gulluludad                          | adccarcaaa   | actteatte                               | ~~+ ~~ + +   | 2981 |
|                                                                                                                                                                     | LagadaLadi                            | araraaaaa    | 300tccc                                 |              | 3041 |
|                                                                                                                                                                     | u cuccuccaa                           | aadaacorta   | ataaaaaa                                |              | 3101 |
| 5 5                                                                                                                                                                 | · · · · · · · · · · · · · · · · · · · | LIFCATATAA   | 2000000000                              |              | 3161 |
| J gaacageee                                                                                                                                                         | - LLLUadadla                          | aaaaaattaa   | - tataatata                             |              | 3221 |
|                                                                                                                                                                     | a aagglalula                          | accragrate   | F 20000 2000                            |              | 3281 |
| JJ-J geaucetat                                                                                                                                                      | a yattuataat                          | FFFACFACES   |                                         |              | 3341 |
| J.J                                                                                                                                                                 | - yeadyclaaa                          | LLaggaaaata  | 22Ctt2tata                              | 22244244     | 3401 |
|                                                                                                                                                                     | - Gallattuaa                          | acadecadea   | TOO SECOLO                              |              | 3461 |
| 5                                                                                                                                                                   | a accadadate                          | agrication   | ****                                    | <del>_</del> | 3521 |
| Jees ou ducturate                                                                                                                                                   | a LLaudiadiri                         | rrrations    | ~~~~                                    |              | 3581 |
| Jan | - Licalaalua                          | GEFAFFFGag   |                                         |              | 3641 |
| - January Guguuccu                                                                                                                                                  | v alalalaaan                          | CCCCCCCCC    | ++~~~~                                  | · ·          | 3701 |
|                                                                                                                                                                     | L auttilaaaa                          | acattacttc   | t > < < < < < < < < < < < < < < < < < < |              | 3761 |
| J-JJJ-uacacaca                                                                                                                                                      | L GCGGGGLAAA                          | 2222020200   | ~~+ ~~+ ~~-                             |              | 3821 |
| Jee- goulded                                                                                                                                                        | a ccadadaaa                           | aaaramaaca   | ~++~+~~~~                               |              | 3881 |
|                                                                                                                                                                     | L LULALLCATO                          | FFFAACSSES   | 2502225                                 |              |      |
| J J J J J J J J J J J J J J J J J J J                                                                                                                               | a Hilliaalic                          | TTCAATATCA   | 2++2-2-2-                               |              | 3941 |
| accuaccaa                                                                                                                                                           | - Llaagaalat                          | rdaaaaaata   | 2220200++-                              |              | 4001 |
| gatggatta                                                                                                                                                           | 4 Cadadiloaa                          | adateteass   | ataattaat.                              |              | 4061 |
|                                                                                                                                                                     | i Cidacdaatt                          | Taaaaatott   | atttalate                               | A            | 4121 |
| agaaacce                                                                                                                                                            | L LALLLAULAU                          | ragagraft    | 201111                                  |              | 4181 |
| tatagaagaa aatgataag                                                                                                                                                | a attcaattct                          | tattcatcas   | gaatttaaag                              | aaggaaaaaa   | 4241 |
| actaaaattg ggtgatgaa                                                                                                                                                | a ttgatctros                          | attactacat   | gaattegeta                              | aacaaaacaa   | 4301 |
|                                                                                                                                                                     | Jacoba                                | uccayat      | acyyaaaaaa                              | ycggaaaaat   | 4361 |
|                                                                                                                                                                     |                                       |              |                                         |              |      |

4721

4781

```
aaaaagtcat aaatttaaaa ttataggaat cttttctggt aaaaaacagg aaacatatac 4421
aggattatca totgatttta gogaaaatat ggtttttgta gattattcaa otagocaaga 4481
aatattaaat aaatcagaga ataatagaat tgcaaataaa attttaatgt attctggtag 4541
tttagaatct acagagettg cettaaacaa attgaaagae tttaaaattg ataagtcaaa
gtattctatt aagaaagata ataaagcatt cgaagagtct ttagagtcag tgagtggaat
aaaacatata attaaaataa tgacttattc gattatgtta ggtggaatag ttgttctttc
attaatottg attotatggt taagagaaag aatttatgaa ataggtatat ttttatotat
tggaacaact aagatacaaa ttataaggca atttatattt gagttaatat tcatatcaat 4841
accaagtata atateeteet tatttttagg gaatetaeta ttaaaagtaa ttgtagaagg 4901
atttattaac tcagagaact caatgatttt cggtggaagt ttaataaata aaagcagttt
tatgttaaac ataacaacac ttgcagaaag ttatttaata ttaataagta ttattgtttt 5021
atcagttgta atggcctctt cattaatatt atttaagaaa ccacaagaaa tattatcaaa 5081
aataagttag gagcaaataa tggatatatt agaaataaag aatgtaaatt acagttacgc 5141
aaattctaaa gaaaaagttt tgtcaggagt aaatcaaaaa tttgaacttg gaaagtttta 5201
tgcgatagta gggaagtcag gaacaggaaa atccacactt ctttccttac ttgcaggact 5261
tgataaagtt caaacaggaa aaatcttgtt taagaatgaa gatatagaaa agaaaggata 5321
tagtaatcac agaaaaaata atatatcttt ggtatttcaa aattataatt taatagatta 5381
tttatcgccg attgaaaata ttagactagt aaataaatca gtagatgaga gtatcttgtt 5441 cgaattaggt ttagataaaa aacaaataaa aagaaatgtt atgaaaattat ctggtggtca 5501
gcaacaaagg gtagctattg ctagggcact ggtatcagat gccccaataa tactagctga 5561
tgagcctacc ggtaacctag acagtgttac tgctggagaa ataatt
<210> 28
       <211> 111 .
       <212> PRT
       <213> streptococcus
       <400> 28
 Ile Gln Ser Leu Thr Glu Gly Gln Leu Arg Ser Asp Ile Pro Glu Phe
                                      10
                  5
 Arg Ala Gly Asp Thr Val Arg Val His Ala Lys Val Val Glu Gly Thr
                                  25
             20
 Arg Glu Arg Ile Gln Ile Phe Glu Gly Val Val Ile Ser Arg Lys Gly
                              40
         35
 Gln Gly Ile Ser Glu Met Tyr Thr Val Arg Lys Ile Ser Gly Gly Ile
                          55
 Gly Val Glu Arg Thr Phe Pro Ile His Thr Pro Arg Val Asp Lys Ile
                                           75
                      70
 Glu Val Val Arg Tyr Gly Lys Val Arg Arg Ala Lys Leu Tyr Tyr Leu
                                       90
                  85
  Arg Ala Leu Gln Gly Lys Ala Ala Arg Ile Lys Glu Ile Arg Arg
                                   105
              100
        <210> 29
        <211> 173
        <212> PRT
        <213> streptococcus
        <400> 29
  Met Arg Phe Ala Glu Cys Leu Gly Leu Thr Val Asn Asp Ile Asp Tyr
                                                            15
                                       10
  Thr Asn Lys Tyr Leu Ser Ile Asn Lys Thr Trp Asp Tyr His Phe Asn
                                                        3.0
                                   25
              20
  Gln Arg Tyr Leu Pro Thr Lys Asn Lys Ser Ser Ile Arg Asn Ile Pro
                                                    45
                               40
  Ile Asp Asn Asp Thr Leu Phe Phe Leu His Glu Phe Thr Lys Asn Lys
```

WO 99/42588 PCT/CA99/00114

```
55
 Asn Asp Arg Leu Phe Asp Lys Leu Ser Asn Asn Ala Val Asn Lys Thr
 Ile Arg Lys Ile Thr Gly Arg Glu Val Arg Val His Ser Leu Arg His
                 85
                                     90
 Thr Phe Ala Ser Tyr Leu Ile Ser Ile Ser Gln Val Leu Asp His Glu
                                 105
 Asn Leu Asn Ile Thr Leu Glu Val Tyr Ala His Gln Leu Gln Glu Gln
                             120
 Lys Asp Arg Asn Asp Lys Leu Asn Gln Arg Asn Leu Gly Gln Asn Ser
                        135
                                            140
 Ser Lys Pro Leu Phe Thr Cys Asn Glu Tyr Val Pro Cys Arg Asn Arg
          150
 Thr Ser Asn Tyr Ser Leu Gly Gly Ser Cys Tyr Ile His
       <210> 30
       <211> 389
       <212> PRT
       <213> streptococcus
      <400> 30
 Met Lys Ser Ser Asn Glu Ile Glu Lys Ala Leu Tyr Glu Ser Ser Asn
                                   10
 Ser Ser Ile Ser Ile Thr Lys Lys Asp Gly Lys Tyr Phe Asn Ile Asn
Gln Phe Lys Asn Ile Glu Lys Ile Lys Glu Val Glu Glu Lys Ile Phe
Gln Tyr Asp Gly Leu Ala Lys Leu Lys Asp Leu Lys Val Val Ser Gly
                        55
Glu Gln Ser Ile Asn Arg Glu Asp Leu Ser Asp Glu Phe Lys Asn Val
                    70
Val Ser Leu Glu Ala Thr Ser Asn Thr Lys Arg Asn Leu Leu Phe Ser
                85
                                    90
Ser Gly Val Phe Ser Phe Lys Glu Gly Lys Asn Ile Glu Glu Asn Asp
                                105
Lys Asn Ser Ile Leu Val His Glu Glu Phe Ala Lys Gln Asn Lys Leu
        115
                           120
Lys Leu Gly Asp Glu Ile Asp Leu Glu Leu Leu Asp Thr Glu Lys Ser
                        135
Gly Lys Ile Lys Ser His Lys Phe Lys Ile Ile Gly Ile Phe Ser Gly
                    150
                                       155
Lys Lys Gln Glu Thr Tyr Thr Gly Leu Ser Ser Asp Phe Ser Glu Asn
                165
                                   170
Met Val Phe Val Asp Tyr Ser Thr Ser Gln Glu Ile Leu Asn Lys Ser
                                185
Glu Asn Asn Arg Ile Ala Asn Lys Ile Leu Met Tyr Ser Gly Ser Leu
                           200
Glu Ser Thr Glu Leu Ala Leu Asn Lys Leu Lys Asp Phe Lys Ile Asp
                       215
Lys Ser Lys Tyr Ser Ile Lys Lys Asp Asn Lys Ala Phe Glu Glu Ser
                   230
                                       235
Leu Glu Ser Val Ser Gly Ile Lys His Ile Ile Lys Ile Met Thr Tyr
                                   250
Ser Ile Met Leu Gly Gly Ile Val Val Leu Ser Leu Ile Leu Ile Leu
            260
```

WO 99/42588 PCT/CA99/00114

```
Trp Leu Arg Glu Arg Ile Tyr Glu Ile Gly Ile Phe Leu Ser Ile Gly
                            280
       275
Thr Thr Lys Ile Gln Ile Ile Arg Gln Phe Ile Phe Glu Leu Ile Phe
                        295
Ile Ser Ile Pro Ser Ile Ile Ser Ser Leu Phe Leu Gly Asn Leu Leu
                                       315
                   310
Leu Lys Val Ile Val Glu Gly Phe Ile Asn Ser Glu Asn Ser Met Ile
                                    330
               325
Phe Gly Gly Ser Leu Ile Asn Lys Ser Ser Phe Met Leu Asn Ile Thr
                                345
            340
Thr Leu Ala Glu Ser Tyr Leu Ile Leu Ile Ser Ile Ile Val Leu Ser
                            360
Val Val Met Ala Ser Ser Leu Ile Leu Phe Lys Lys Pro Gln Glu Ile
                     375
Leu Ser Lys Ile Ser
      <210> 31
      <211> 169
      <212> PRT
      <213> streptococcus
      <400> 31
Met Asp Ile Leu Glu Ile Lys Asn Val Asn Tyr Ser Tyr Ala Asn Ser
                                    10
Lys Glu Lys Val Leu Ser Gly Val Asn Gln Lys Phe Glu Leu Gly Lys
 Phe Tyr Ala Ile Val Gly Lys Ser Gly Thr Gly Lys Ser Thr Leu Leu
                            40
 Ser Leu Leu Ala Gly Leu Asp Lys Val Gln Thr Gly Lys Ile Leu Phe
                        55
 Lys Asn Glu Asp Ile Glu Lys Lys Gly Tyr Ser Asn His Arg Lys Asn
                     70
 Asn Ile Ser Leu Val Phe Gln Asn Tyr Asn Leu Ile Asp Tyr Leu Ser
                85
 Pro Ile Glu Asn Ile Arg Leu Val Asn Lys Ser Val Asp Glu Ser Ile
            100
                                 105
 Leu Phe Glu Leu Gly Leu Asp Lys Lys Gln Ile Lys Arg Asn Val Met
                             120
        115
 Lys Leu Ser Gly Gly Gln Gln Gln Arg Val Ala Ile Ala Arg Ala Leu
                        135
 Val Ser Asp Ala Pro Ile Ile Leu Ala Asp Glu Pro Thr Gly Asn Leu
                                         155
                    150
 Asp Ser Val Thr Ala Gly Glu Ile Ile
       <210> 32
       <211> 4171
       <212> DNA
       <213> Streptococcus
       <400> 32
 catatgacaa tatttttcaa agtctacatc acttactcgc ctgtcgtgga aaatctggca
                                                                      60
                                                                      120
 atacattaat cgaccaatta gttgctgatg gtttacttca tgcagataat cactaccatt
 ttttcaatgg gaagtctctg gccactttca atactaacca attgattcgc gaagttgtct
                                                                      180
                                                                      240
  atgttgaaat atccttagat actatgtcta gtggtgaaca tgatttagta aaagttaaca
```

WO 99/42588

| ttatcagacc             | Cactaccas   |                                         |                     |                      |                    |      |
|------------------------|-------------|-----------------------------------------|---------------------|----------------------|--------------------|------|
| aaggtatcaa             | taataataa   | calactate                               | c ccacgatga         | t gacagctag          | c ccctatcatc       | 300  |
|                        |             |                                         |                     |                      |                    |      |
|                        |             |                                         |                     |                      |                    |      |
|                        |             |                                         | u aaagettes.        | ~ ~~~~               |                    |      |
|                        |             |                                         |                     |                      |                    |      |
| J J                    | <u> </u>    | accadeddd                               | U AFFACCAAC         | )                    |                    |      |
|                        |             |                                         |                     |                      |                    |      |
|                        |             |                                         |                     |                      |                    |      |
|                        |             |                                         |                     |                      |                    |      |
|                        |             | - uccalcua                              | , <u>daaaroooci</u> | - +                  | ·                  |      |
|                        |             | 9 - L L L L L L L L L L L L L L L L L L | a aarraacar:        | 2 CtCCCCC            |                    |      |
|                        |             | garractar                               | : aagcartoti        | - aaat <i>a</i> aaaa |                    |      |
|                        |             | ucaaccaa                                | . acrodeards        |                      | <b></b>            |      |
|                        |             | 9 Lage Lace                             | : crcarogact        | . コクコペペットト~~         |                    | 1080 |
|                        |             |                                         | TOCCECSSSC          | . ^^+^               |                    | _    |
|                        |             | - cacacacaca                            | i arrogeante        | . ペコヤトペットャー          |                    | 1200 |
|                        |             | - quactattt                             | I UCATTOACAS        |                      | <b></b>            |      |
|                        |             | - uccuaucaa                             | CEEGGGAAGE          |                      |                    | 1260 |
|                        | ,           | LLAUGLUBER                              |                     | · + > + + ~ > +      |                    | 1320 |
|                        |             | aaauaci                                 | - FCAAFGEGEE        |                      | and the same and a | 1380 |
|                        |             |                                         |                     |                      |                    | 1440 |
|                        |             |                                         |                     |                      |                    | 1500 |
|                        |             |                                         |                     |                      |                    | 1560 |
|                        |             |                                         |                     |                      |                    | 1620 |
|                        |             |                                         |                     |                      |                    | 1680 |
|                        |             |                                         |                     |                      |                    | 1740 |
|                        |             |                                         |                     |                      |                    | 1800 |
|                        |             |                                         |                     |                      |                    | 1860 |
|                        |             |                                         |                     |                      |                    | 1920 |
|                        |             |                                         |                     |                      |                    | 1980 |
|                        |             |                                         |                     |                      |                    | 2040 |
|                        |             |                                         |                     |                      |                    | 2100 |
|                        |             |                                         |                     |                      |                    | 2160 |
|                        |             |                                         |                     |                      |                    | 2220 |
|                        |             |                                         |                     |                      |                    | 2280 |
|                        |             |                                         |                     |                      |                    | 2340 |
|                        |             |                                         |                     |                      |                    | 2400 |
|                        |             |                                         |                     |                      |                    | 2460 |
|                        |             |                                         |                     |                      |                    | 2520 |
| ctgcttcttt accactaaq a | gaaatcctt   | cacqttqcta                              | Cattaatoon          | teateatet            | aagaaaatcg         | 2580 |
|                        |             |                                         |                     |                      |                    | 2640 |
|                        |             |                                         |                     |                      |                    | 2700 |
|                        |             |                                         |                     |                      |                    | 2760 |
|                        |             |                                         |                     |                      |                    | 2820 |
|                        |             |                                         |                     |                      |                    | 2880 |
|                        |             |                                         |                     |                      |                    | 2940 |
|                        |             |                                         |                     |                      |                    | 3000 |
| aggatttaac ac          | aaggcgtt 1  | tacageette                              | CtCtacttac          | atttaataag           | cctgtcttag         | 3060 |
|                        |             |                                         |                     |                      |                    | 3120 |
|                        |             |                                         |                     |                      |                    | 3180 |
| ttactgagaa ac          | Ctattagt o  | Jacataaata                              | aggtagaagg          | tcgccatcta           | gctcgtaaat         | 3240 |
| ttactgagaa ac          | ictaattac / | cttttaaaac                              | ayetacccca          | gaactctgca           | aaaaacagt          | 3300 |
|                        |             |                                         |                     |                      |                    | 3360 |
|                        |             |                                         |                     |                      |                    | 3420 |
|                        |             |                                         |                     |                      |                    | 3480 |
|                        |             |                                         |                     |                      |                    | 3540 |
| tcagcatgtt ca          |             | gugalyt                                 | gradiccaaa          | ctaaggtctt :         | accttccaat         | 3600 |

```
tettteataa ataeeettag taaggettgt teagtaatag gateaagtee aacagttgge 3660
tcatctaaga taacaattgg gacatctttt agtaagattc tagccaaagc aattctatgc 3720
ctttcgccac ctgaaaacct aagtccagct tcatcaacca ttgtatagag accatctgat 3780 aaatcagtga ccatctcttt caatccaact cgttcaagaa ctttccatac atcttcttca 3840
ctagcatctt ggtttccaat gcgaatgtta tttagcaggg ttgtattaaa aaggtagggc 3900
gettgttgta teactecaat atagttagaa atgeaateae caactattga aacateagea 3960
cegectaggg taatetteee ttgacttget ttcaagtege caegaagtag actagetaag 4020
gtactcttgc cagaaccact ccgccctaaa atagcaattt tttctccttc tttaatatcc 4080
aaatctaaat gatgcaaaac ccatttetet tgtggettat actggaaact taaattettg 4140
acggaaaaat catatggctt attaggcaat t
      <210> 33
      <211> 649
      <212> PRT
      <213> Streptococus
      <400> 33
Tyr Asp Asn Ile Phe Gln Ser Leu His His Leu Leu Ala Cys Arg Gly
                                     10
Lys Ser Gly Asn Thr Leu Ile Asp Gln Leu Val Ala Asp Gly Leu Leu
                                 25
             20
His Ala Asp Asn His Tyr His Phe Phe Asn Gly Lys Ser Leu Ala Thr
                             40
         35
Phe Asn Thr Asn Gln Leu Ile Arg Glu Val Val Tyr Val Glu Ile Ser
                        55
                                            60
Leu Asp Thr Met Ser Ser Gly Glu His Asp Leu Val Lys Val Asn Ile
                                         75
                    70
 Ile Arg Pro Thr Thr Glu His Thr Ile Pro Thr Met Met Thr Ala Ser
                                     90
                85
 Pro Tyr His Gln Gly Ile Asn Asp Pro Ala Ala Asp Gln Lys Thr Tyr
                                 105
 Gln Met Glu Gly Ala Leu Ala Val Lys Gln Pro Lys His Ile Gln Val
                             120
 Asp Thr Lys Pro Phe Lys Glu Glu Val Lys His Pro Ser Lys Leu Pro
                                              140
                         135
 Ile Ser Pro Ala Thr Glu Ser Phe Thr His Ile Asp Ser Tyr Ser Leu
                                          155
                     150
 Asn Asp Tyr Phe Leu Ser Arg Gly Phe Ala Asn Ile Tyr Val Ser Gly
                                      170
                 165
 Val Gly Thr Ala Gly Ser Thr Gly Phe Met Thr Ser Gly Asp Tyr Gln
                                                      190
                                  185
 Gln Ile Gln Ser Phe Lys Ala Val Ile Asp Trp Leu Asn Gly Lys Val
                              200
 Thr Ala Phe Thr Ser His Lys Arg Asp Lys Gln Val Lys Ala Asp Trp
                                              220
                          215
 Ser Asn Gly Leu Val Ala Thr Thr Gly Lys Ser Tyr Leu Gly Thr Met
                                           235
                      230
 Ser Thr Gly Leu Ala Thr Thr Gly Val Glu Gly Leu Lys Val Ile Ile
                                      250
                  245
 Ala Glu Ala Ala Ile Ser Thr Trp Tyr Asp Tyr Tyr Arg Glu Asn Gly
                                  265
              260
 Leu Val Cys Ser Pro Gly Gly Tyr Pro Gly Glu Asp Leu Asp Val Leu
                              280
         275
  Thr Glu Leu Thr Tyr Ser Arg Asn Leu Leu Ala Gly Asp Tyr Ile Lys
```

295

Asn Asn Asp Cys Tyr Gln Ala Leu Leu Asn Glu Gln Ser Lys Ala Ile

WO 99/42588 PCT/CA99/00114

55 / 63

```
310
                                        315
 Asp Arg Gln Ser Gly Asp Tyr Asn Gln Tyr Trp His Asp Arg Asn Tyr
                325
                                    330
 Leu Thr His Val Asn Asn Val Lys Ser Arg Val Val Tyr Thr His Gly
                                 345
 Leu Gln Asp Trp Asn Val Lys Pro Arg His Val Tyr Lys Val Phe Asn
                            360
 Ala Leu Pro Gln Thr Ile Lys Lys His Leu Phe Leu His Gln Gly Gln
                         375
 His Val Tyr Met His Asn Trp Gln Ser Ile Asp Phe Arg Glu Ser Met
                    390
                                       395
 Asn Ala Leu Leu Ser Gln Glu Leu Leu Gly Ile Asp Asn His Phe Gln
                405
                                    410
 Leu Glu Glu Val Ile Trp Gln Asp Asn Thr Thr Glu Gln Thr Trp Gln
            420
                                425
 Val Leu Asp Ala Phe Gly Gly Asn His Gln Glu Gln Ile Gly Leu Gly
                             440
 Asp Ser Lys Lys Leu Ile Asp Asn His Tyr Asp Lys Glu Ala Phe Asp
                        455
                                            460
Thr Tyr Cys Lys Asp Phe Asn Val Phe Lys Asn Asp Leu Phe Lys Gly
                   470
                                       475
Asn Asn Lys Thr Asn Gln Ile Thr Ile Asn Leu Pro Leu Lys Lys Asn
                485
                                   490
Tyr Leu Leu Asn Gly Gln Cys Lys Leu His Leu Arg Val Lys Thr Ser
                               505
Asp Lys Lys Ala Ile Leu Ser Ala Gln Ile Leu Asp Tyr Gly Pro Lys
        515
                            520
Lys Arg Phe Lys Asp Thr Pro Thr Ile Lys Phe Leu Asn Ser Leu Asp
Asn Gly Lys Asn Phe Ala Arg Glu Ala Leu Arg Glu Leu Pro Phe Thr
                    550
                                       555
Lys Asp His Tyr Arg Val Ile Ser Lys Gly Val Leu Asn Leu Gln Asn
                                    570
Arg Thr Asp Leu Leu Thr Ile Glu Ala Ile Glu Pro Glu Gln Trp Phe
                               585
Asp Ile Glu Phe Ser Leu Gln Pro Ser Ile Tyr Gln Leu Ser Lys Gly
                           600
Asp Asn Leu Arg Ile Ile Leu Tyr Thr Thr Asp Phe Glu His Thr Ile
                       615
                                          620
Arg Asp Asn Ala Ser Tyr Ser Ile Thr Val Asp Leu Ser Gln Ser Tyr
                   630
                                       635
Leu Thr Ile Pro Thr Asn Gln Gly Asn
               645
     <210> 34
      <211> 119
      <212> PRT
      <213> Streptococus
      <400> 34
Met Lys Leu Leu Thr Lys Glu Arg Phe Asp Asp Ser Gln His Phe Trp
Tyr Gln Ile Asn Leu Leu Gln Glu Ser Asn Phe Gly Ala Val Phe Asp
                               25
```

His Asp Asn Lys Asn Ile Pro Gln Val Val Ala Thr Ile Val Asp Asp

56 / 63 Leu Gln Gly Ser Gly Ser Ser Asn His Phe Trp Tyr Phe Gly Asn Thr Thr Asp Thr Ser Ile Leu Met Ile Ala His Leu Asn Arg Lys Phe Tyr 75 70 Ile Gln Val Asn Leu Lys Asp Phe Asp Phe Ala Leu Asn Leu Ile Ala 90 Ile Asn Asn Trp Lys Ser Leu Leu Gln Thr Gln Leu Glu Ala Leu Asn 105 Asp Thr Leu Ala Ile Phe Gln 115 <210> 35 <211> 326 <212> PRT <213> Streptococus <400> 35 Met Ser Ser Tyr Trp Asn Asn Tyr Pro Glu Leu Lys Lys Asn Ile Asp 10 Glu Thr Asn Gln Leu Ile Gln Glu Arg Ile Gln Val Arg Asn Lys Asp 20 Ile Glu Ala Ala Leu Ser Gln Leu Thr Ala Ala Gly Gly Lys Gln Leu 40 35 Arg Pro Ala Phe Phe Tyr Leu Phe Ser Gln Leu Gly Asn Lys Glu Asn 55 Gln Asp Thr Gln Gln Leu Lys Lys Ile Ala Ala Ser Leu Glu Ile Leu 70 His Val Ala Thr Leu Ile His Asp Asp Val Ile Asp Asp Ser Pro Leu 90 85 Arg Arg Gly Asn Met Thr Ile Gln Ser Lys Phe Gly Lys Asp Ile Ala 105 Val Tyr Thr Gly Asp Leu Leu Phe Thr Val Phe Phe Asp Leu Ile Leu 120 Glu Ser Met Thr Asp Thr Pro Phe Met Arg Ile Asn Ala Lys Ser Met 135 Arg Lys Ile Leu Met Gly Glu Leu Asp Gln Met His Leu Arg Tyr Asn 155 150 Gln Gln Gln Gly Ile His His Tyr Leu Arg Ala Ile Ser Gly Lys Thr 170 165

Ala Glu Leu Phe Lys Leu Ala Ser Lys Glu Gly Ala Tyr Phe Gly Gly 185 Ala Glu Lys Glu Val Val Arg Leu Ala Gly His Ile Gly Phe Asn Ile

200

Gly Met Thr Phe Gln Ile Leu Asp Asp Ile Leu Asp Tyr Thr Ala Asp 220 215 Lys Lys Thr Phe Asn Lys Pro Val Leu Glu Asp Leu Thr Gln Gly Val

230 235 Tyr Ser Leu Pro Leu Leu Leu Ala Ile Glu Glu Asn Pro Asp Ile Phe

250 245 Lys Pro Ile Leu Asp Lys Lys Thr Asp Met Ala Thr Glu Asp Met Glu 265

Lys Ile Ala Tyr Leu Val Val Ser His Arg Gly Val Asp Lys Ala Arg 280

His Leu Ala Arg Lys Phe Thr Glu Lys Ala Ile Ser Asp Ile Asn Lys 295 Leu Pro Gln Asn Ser Ala Lys Lys Gln Leu Leu Gln Leu Thr Asn Tyr WO 99/42588 PCT/CA99/00114

57 / 63

```
310
                                         315
                                                             320
 Leu Leu Lys Arg Lys Ile
       <210> 36
       <211> 247
       <212> PRT
       <213> Streptococus
       <400> 36
 Leu Pro Asn Lys Pro Tyr Asp Phe Ser Val Lys Asn Leu Ser Phe Gln
                                     10
 Tyr Lys Pro Gln Glu Lys Trp Val Leu His His Leu Asp Leu Asp Ile
                                 25
 Lys Glu Gly Glu Lys Ile Ala Ile Leu Gly Arg Ser Gly Ser Gly Lys
                             40
 Ser Thr Leu Ala Ser Leu Leu Arg Gly Asp Leu Lys Ala Ser Gln Gly
Lys Ile Thr Leu Gly Gly Ala Asp Val Ser Ile Val Gly Asp Cys Ile
 65
                     70
Ser Asn Tyr Ile Gly Val Ile Gln Gln Ala Pro Tyr Leu Phe Asn Thr
                85
                                    90
Thr Leu Leu Asn Asn Ile Arg Ile Gly Asn Gln Asp Ala Ser Glu Glu
                                105
Asp Val Trp Lys Val Leu Glu Arg Val Gly Leu Lys Glu Met Val Thr
        115
                            120
Asp Leu Ser Asp Gly Leu Tyr Thr Met Val Asp Glu Ala Gly Leu Arg
                        135
Phe Ser Gly Gly Glu Arg His Arg Ile Ala Leu Ala Arg Ile Leu Leu
                    150
                                       155
Lys Asp Val Pro Ile Val Ile Leu Asp Glu Pro Thr Val Gly Leu Asp
                165
                                    170
Pro Ile Thr Glu Gln Ala Leu Leu Arg Val Phe Met Lys Glu Leu Glu
                                185
                                                  190
Gly Lys Thr Leu Val Trp Ile Thr His His Leu Lys Gly Ile Glu His
                            200
                                                205
Ala Asp Arg Ile Leu Phe Ile Glu Asn Gly Gln Leu Glu Leu Glu Gly
Ser Pro Gln Glu Leu Ser Gln Ser Ser Gln Arg Tyr Arg Gln Leu Lys
                    230
                                       235
Ala Ala Asp Asp Gly Asp Leu
                245
      <210> 37
      <211> 3480
      <212> DNA
      <213> Streptococcus
      <400> 37
aattetattt ggaggttttt ettgaataaa tggttagtta aggeaagtte ettagttgtt
ttaggtggta tggttttatc tgcgggttcc cgagttttag cggatactta tgtccgtcca
attgataatg gtagaattac aacaggtttc aatggttatc ctggacattg tggggtggat 180
tatgetgtte egaetggaae gattattagg geagtggeag atggtaetgt gaaatttgea 240
ggagctggag ccaacttttc ttggatgaca gacttagcag gaaattgtgt catgattcaa 300
catgoggatg gaatgoatag tggttacgot catatgtcac gtgtggtggc taggactggg
gaaaaagtca aacaaggaga tatcatcggt tacgtaggag caactggtat ggcgacggga
```

| cotcaccttc | attttgaatt   | tttaccagct   | aaccctaatt   | ttcaaaatgg   | tttccatgga   | 480  |
|------------|--------------|--------------|--------------|--------------|--------------|------|
| cotatoaato | caacgtcact   | aattgctaac   | gttgcgacct   | ttagtggaaa   | aacgcaagca   | 540  |
| tragetreaa | gcattaagcc   | attacaatca   | gctcctgtac   | agaatcaatc   | tagtaaatta   | 600  |
| aaagtgtatC | gagtagatga   | attacaaaag   | gttaatggtg   | tttggttagt   | caaaaataac   | 660  |
| accetaacee | cgactgggtt   | tgattggaac   | gataatggta   | taccagcatc   | agaaattyat   | 720  |
| gaggttgatg | ctaatggtaa   | tttgacagct   | gaccaggttc   | ttcaaaaagg   | Eggttacttt   | 780  |
| arcttraatc | ctaaaactct   | taaqactgta   | gaaaaaccca   | tccaaggaac   | agetggttta   | 840  |
| acttgggcta | agacacgctt   | tgctaatggt   | agttcagttt   | ggcttcgcgt   | tgacaacagt   | 900  |
| caagaactgc | tttacaaata   | qtttgaggta   | ttgattcatt   | gttttaaatg   | acagettege   | 960  |
| tactaactaa | gtacaatttc   | tttaaaccgt   | ctgaaaataa   | ttttatagtc   | Cagtaaagtg   | 1020 |
| tgatattata | gtctcggact   | aataaaaagg   | aaataggaat   | tgaagcaatg   | aaaatgaata   | 1080 |
| aaaaggtact | attgacatcg   | acaatggcag   | cttcgctatt   | atcagtcgca   | agtgttcaag   | 1140 |
| cacaagaaac | agatacgacg   | tqqacagcac   | gtactgtttc   | agaggtaaag   | gergarrigg   | 1200 |
| taaagcaaga | caataaatca   | tcatatactg   | tgaaatatgg   | tgatacacta   | agegilatii   | 1260 |
| cagaagcaat | gtcaattgat   | atgaatgtct   | tagcaaaaat   | taataacatt   | gcagatatea   | 1320 |
| atcttattta | tcctgagaca   | acactgacag   | taacttacga   | tcagaagagt   | Catactgcca   | 1380 |
| cttcaatgaa | aatagaaaca   | ccaqcaacaa   | atgctgctgg   | tcaaacaaca   | getactgtgg   | 1440 |
| atttqaaaac | caatcaaqtt   | tctqttqcag   | accaaaaagt   | tteteteaat   | acaattttgg   | 1500 |
| aaggtatgac | accagaagca   | qcaacaacqa   | ttgtttcgcc   | aatgaagaca   | tattettetg   | 1560 |
| caccaacttt | gaaatcaaaa   | gaagtattag   | cacaagagca   | agctgttagt   | caagcagcag   | 1620 |
| ctaatgaaca | ggtatcaaca   | gctcctgtga   | agtcgattac   | ttcagaagtt   | Coagoagoca   | 1680 |
| aagaggaagt | taaaccaact   | cagacgtcag   | tcagtcagtc   | aacaacagta   | teaccagett   | 1740 |
| ctattaccac | tgaaacacca   | gctccagtag   | ctaaagtagc   | accggtaaga   | actgtagcag   | 1800 |
| cccctagagt | ggcaagtgtt   | aaagtagtca   | ctcctaaagt   | agaaactggt   | geateaceag   | 1860 |
| agcatgtatc | agetecagea   | gttcctgtga   | ctacgacttc   | aacagctaca   | gacagtaagt   | 1920 |
| tacaagcgac | tgaagttaag   | agcgttccgg   | tagcacaaaa   | agctccaaca   | gcaacaccgg   | 1980 |
| tagcacaacc | agcttcaaca   | acaaatgcag   | tagctgcaca   | tcctgaaaat   | geagggetee   | 2040 |
| aacctcatqt | tacaacttat   | aaagaaaaag   | tagcgtcaac   | ttatggagtt   | aatgaattca   | 2100 |
| gracataccg | tacadataat   | ccaggtgatc   | atggtaaagg   | tttagcagtc   | gactitating  | 2160 |
| raggtaaaaa | ccaagcactt   | qqtaatgaag   | ttgcacagta   | ctctacacaa   | aatatggcag   | 2220 |
| caaataacat | ttcatatqtt   | atctggcaac   | aaaagtttta   | ctcaaataca   | aatagtattt   | 2280 |
| atggacctgc | taatacttqq   | aatgcaatgc   | cagatcgtgg   | tggcgttact   | gccaaccatt   | 2340 |
| atraccatot | tcacqtatca   | tttaacaaat   | aatataaaaa   | . aggaagctat | EEggeeteete  | 2400 |
| ttttatatgo | cttgaataga   | ctttcaaggt   | tcttatctaa   | tttttattaa   | attgaggaga   | 2460 |
| ttaadctata | agtetgaaac   | tactttcacg   | ı ttaaccgtga | ctaaatcaaa   | acgilaaaac   | 2520 |
| taaaatotaa | gtctgtaaag   | attattgaaa   | . acgctttaaa | aacagatata   | ataaggtttg   | 2580 |
| tagatatota | a aaattaaaaa | aqataaggaa   | ı gtgagaatat | gecacateta   | agtaaagaag   | 2640 |
| cttttaaaaa | gcaaataaaa   | aatqqcatta   | i ttgtgtcatg | , tcaagctity | CCLGGGGagc   | 2700 |
| ctctttatac | tgaaagtgga   | ggtgttatgo   | ctcttttage   | tttggcagct   | caagaagcag   | 2760 |
| gagggttgg  | tataaqaqcc   | aatagtgtco   | gcgacattaa   | a ggaaattcaa | gaagttatta   | 2820 |
| atttacctat | catcoocatt   | attaaacgtg   | g aatatcctco | c acaagaacca | tttattattg   | 2880 |
| ctacgatgag | agaggtggat   | . caattagcta | a gtttagatat | t tgcagtaata | geettagatt   | 2940 |
| gtagacttag | n agagogtoat | gatggtttga   | a gtgtagctga | a gtttattcaa | aayacaaaay   | 3000 |
| ggaaatatco | tgaacagttg   | ctaatggctg   | g atataagtad | : ttttgaagaa | ggtadaaatg   | 3060 |
| cttttgaag  | - aggagttgat | : tttqtqqqta | a caactctato | tggatacaca   | gattadaged   | 3120 |
| gccaagaag  | a aggaccggat | atagaactco   | : ttaataagc1 | t ttgtcaagco | ggtalagalg   | 3180 |
| tgattgcgg  | a aggtaaaatt | : catactccta | a agcaagcta: | a tgaaattaat | : catataggig | 3240 |
| ttgcaggaa' | t tataattaat | gqtqctatca   | a ctagaccaa: | a agaaatagc  | gagegillea   | 3300 |
| tctcaggac: | t tagttaaaac | tottactca:   | a aaatcaaaa  | t caaaataaaa | a aaggggaata | 3360 |
| attatoagt. | a tcaaaaaaaa | r tataattaa  | t ttttgcctc  | g gagetgeage | attattaaty   | 3420 |
| tttgcttgt  | g tagacagtag | g tcaatctgt  | t atggctgcc  | g agaaggataa | a agtcgaaatt | 3480 |
|            |              |              |              |              |              |      |

<sup>&</sup>lt;210> 38

<sup>&</sup>lt;211> 306 <212> PRT

<sup>&</sup>lt;213> Streptococcus

59 / 63

```
<400> 38
Asn Ser Ile Trp Arg Phe Phe Leu Asn Lys Trp Leu Val Lys Ala Ser
                                   10
Ser Leu Val Val Leu Gly Gly Met Val Leu Ser Ala Gly Ser Arg Val
                                25
Leu Ala Asp Thr Tyr Val Arg Pro Ile Asp Asn Gly Arg Ile Thr Thr
                           40
Gly Phe Asn Gly Tyr Pro Gly His Cys Gly Val Asp Tyr Ala Val Pro
                                            60
Thr Gly Thr Ile Ile Arg Ala Val Ala Asp Gly Thr Val Lys Phe Ala
                   70
Gly Ala Gly Ala Asn Phe Ser Trp Met Thr Asp Leu Ala Gly Asn Cys
                                    90
Val Met Ile Gln His Ala Asp Gly Met His Ser Gly Tyr Ala His Met
                                105
Ser Arg Val Val Ala Arg Thr Gly Glu Lys Val Lys Gln Gly Asp Ile
                           120
Ile Gly Tyr Val Gly Ala Thr Gly Met Ala Thr Gly Pro His Leu His
                       135
Phe Glu Phe Leu Pro Ala Asn Pro Asn Phe Gln Asn Gly Phe His Gly
                                     155
Arg Ile Asn Pro Thr Ser Leu Ile Ala Asn Val Ala Thr Phe Ser Gly
               165
                                   170
Lys Thr Gln Ala Ser Ala Pro Ser Ile Lys Pro Leu Gln Ser Ala Pro
                               185
Val Gln Asn Gln Ser Ser Lys Leu Lys Val Tyr Arg Val Asp Glu Leu
        195
                           200
Gln Lys Val Asn Gly Val Trp Leu Val Lys Asn Asn Thr Leu Thr Pro
                       215
Thr Gly Phe Asp Trp Asn Asp Asn Gly Ile Pro Ala Ser Glu Ile Asp
                   230
                                        235
Glu Val Asp Ala Asn Gly Asn Leu Thr Ala Asp Gln Val Leu Gln Lys
               245
                                    250
Gly Gly Tyr Phe Ile Phe Asn Pro Lys Thr Leu Lys Thr Val Glu Lys
                               265
Pro Ile Gln Gly Thr Ala Gly Leu Thr Trp Ala Lys Thr Arg Phe Ala
                         280
Asn Gly Ser Ser Val Trp Leu Arg Val Asp Asn Ser Gln Glu Leu Leu
                      295
Tyr Lys
305
     <210> 39
      <211> 434
      <212> PRT
     <213> Streptococcus
     <400> 39
Met Lys Met Asn Lys Lys Val Leu Leu Thr Ser Thr Met Ala Ala Ser
Leu Leu Ser Val Ala Ser Val Gln Ala Gln Glu Thr Asp Thr Thr Trp
                               25
Thr Ala Arg Thr Val Ser Glu Val Lys Ala Asp Leu Val Lys Gln Asp
```

35 40 45 Asn Lys Ser Ser Tyr Thr Val Lys Tyr Gly Asp Thr Leu Ser Val Ile

### 60 / 63

```
. 55
                                         60
Ser Glu Ala Met Ser Ile Asp Met Asn Val Leu Ala Lys Ile Asn Asn
                  70
                                     75
Ile Ala Asp Ile Asn Leu Ile Tyr Pro Glu Thr Thr Leu Thr Val Thr
                                 90
              85
Tyr Asp Gln Lys Ser His Thr Ala Thr Ser Met Lys Ile Glu Thr Pro
                             105
          100
Ala Thr Asn Ala Ala Gly Gln Thr Thr Ala Thr Val Asp Leu Lys Thr
                          120
                                             125
Asn Gln Val Ser Val Ala Asp Gln Lys Val Ser Leu Asn Thr Ile Ser
                      135
                                         140
Glu Gly Met Thr Pro Glu Ala Ala Thr Thr Ile Val Ser Pro Met Lys
                  150
                                     155
Thr Tyr Ser Ser Ala Pro Ala Leu Lys Ser Lys Glu Val Leu Ala Gln
                                 170
              165
Glu Gln Ala Val Ser Gln Ala Ala Ala Asn Glu Gln Val Ser Thr Ala
                              185
           180
Pro Val Lys Ser Ile Thr Ser Glu Val Pro Ala Ala Lys Glu Glu Val
                                  205
                          200
      195
Lys Pro Thr Gln Thr Ser Val Ser Gln Ser Thr Thr Val Ser Pro Ala
                               220
             215
Ser Val Ala Ala Glu Thr Pro Ala Pro Val Ala Lys Val Ala Pro Val
                  230
                                     235
Arg Thr Val Ala Ala Pro Arg Val Ala Ser Val Lys Val Val Thr Pro
              245
                                  250
Lys Val Glu Thr Gly Ala Ser Pro Glu His Val Ser Ala Pro Ala Val
                               265
          260
Pro Val Thr Thr Ser Thr Ala Thr Asp Ser Lys Leu Gln Ala Thr
                                             285
                          280
Glu Val Lys Ser Val Pro Val Ala Gln Lys Ala Pro Thr Ala Thr Pro
                                          300
                       295
Val Ala Gln Pro Ala Ser Thr Thr Asn Ala Val Ala Ala His Pro Glu
                                      315
                   310
Asn Ala Gly Leu Gln Pro His Val Ala Ala Tyr Lys Glu Lys Val Ala
               325
                                  330
Ser Thr Tyr Gly Val Asn Glu Phe Ser Thr Tyr Arg Ala Gly Asp Pro
                              345
Gly Asp His Gly Lys Gly Leu Ala Val Asp Phe Ile Val Gly Lys Asn
                          360
Gln Ala Leu Gly Asn Glu Val Ala Gln Tyr Ser Thr Gln Asn Met Ala
                                          380
                       375
Ala Asn Asn Ile Ser Tyr Val Ile Trp Gln Gln Lys Phe Tyr Ser Asn
                                      395
                   390
Thr Asn Ser Ile Tyr Gly Pro Ala Asn Thr Trp Asn Ala Met Pro Asp
                                  410
               405
Arg Gly Gly Val Thr Ala Asn His Tyr Asp His Val His Val Ser Phe
                        425
Asn Lys
```

<210> 40 <211> 232 <212> PRT <213> Streptococcus

<400> 40

WO 99/42588

61 / 63

```
Met Pro His Leu Ser Lys Glu Ala Phe Lys Lys Gln Ile Lys Asn Gly
 Ile Ile Val Ser Cys Gln Ala Leu Pro Gly Glu Pro Leu Tyr Thr Glu
 Ser Gly Gly Val Met Pro Leu Leu Ala Leu Ala Ala Gln Glu Ala Gly
                             40
 Ala Val Gly Ile Arg Ala Asn Ser Val Arg Asp Ile Lys Glu Ile Gln
                         55
 Glu Val Thr Asn Leu Pro Ile Ile Gly Ile Ile Lys Arg Glu Tyr Pro
 Pro Gln Glu Pro Phe Ile Thr Ala Thr Met Thr Glu Val Asp Gln Leu
                                     90
 Ala Ser Leu Asp Ile Ala Val Ile Ala Leu Asp Cys Thr Leu Arg Glu
             100
                                 105
 Arg His Asp Gly Leu Ser Val Ala Glu Phe Ile Gln Lys Ile Lys Gly
        115
                             120
                                                 125
 Lys Tyr Pro Glu Gln Leu Leu Met Ala Asp Ile Ser Thr Phe Glu Glu
                         135
                                             140
 Gly Lys Asn Ala Phe Glu Ala Gly Val Asp Phe Val Gly Thr Thr Leu
                    150
 Ser Gly Tyr Thr Asp Tyr Xaa Arg Gln Glu Glu Gly Pro Asp Ile Glu
                165
                                     170
Leu Leu Asn Lys Leu Cys Gln Ala Gly Ile Asp Val Ile Ala Glu Gly
                                185
Lys Ile His Thr Pro Lys Gln Ala Asn Glu Ile Asn His Ile Gly Val
                            200
Ala Gly Ile Val Val Gly Gly Ala Ile Thr Arg Pro Lys Glu Ile Ala
                        215
Glu Arg Phe Ile Ser Gly Leu Ser
                     230
      <210> 41
      <211> 39
      <212> PRT
      <213> Streptococcus
      <400> 41
Met Ser Ile Lys Lys Ser Val Ile Gly Phe Cys Leu Gly Ala Ala Ala
                                    10
Leu Ser Met Phe Ala Cys Val Asp Ser Ser Gln Ser Val Met Ala Ala
            20
                                25
Glu Lys Asp Lys Val Glu Ile
        35
      <210> 42
      <211> 1305
      <212> DNA
      <213> Streptococcus
      <400> 42
atgaaaatga ataaaaaggt actattgaca tcgacaatgg cagcttcgct attatcagtc
gcaagtgttc aagcacaaga aacagatacg acgtggacag cacgtactgt ttcagaggta
aaggotgatt tggtaaagca agacaataaa toatcatata otgtgaaata tggtgataca
ctaagcgtta tttcagaagc aatgtcaatt gatatgaatg tcttagcaaa aattaataac
attgcagata tcaatcttat ttatcctgag acaacactga cagtaactta cgatcagaag
agtcatactg ccacttcaat gaaaatagaa acaccagcaa caaatgctgc tggtcaaaca
```

62 / 63

```
acagctactg tggatttgaa aaccaatcaa gtttctgttg cagaccaaaa agtttctctc
aatacaattt cggaaggtat gacaccagaa gcagcaacaa cgattgtttc gccaatgaag
acatattott otgogocago tttgaaatca aaagaagtat tagcacaaga gcaagotgtt
agtcaagcag cagctaatga acaggtatca acagctcctg tgaagtcgat tacttcagaa
                                                                    600
gttccagcag ctaaagagga agttaaacca actcagacgt cagtcagtca gtcaacaaca
                                                                    660
gtatcaccag cttctgttgc cgctgaaaca ccagctccag tagctaaagt agcaccggta
                                                                    720
agaactgtag cagcccctag agtggcaagt gttaaagtag tcactcctaa agtagaaact
ggtgcatcac cagagcatgt atcagctcca gcagttcctg tgactacgac ttcaacagct
acagacagta agttacaagc gactgaagtt aagagcgttc cggtagcaca aaaagctcca
acagcaacac eggtagcaca accagettea acaacaaatg cagtagetge acateetgaa
aatgcagggc tccaacctca tgttgcagct tataaagaaa aagtagcgtc aacttatgga 1020
gttaatgaat tcagtacata ccgtgcaggt gatccaggtg atcatggtaa aggtttagca 1080
gtcgacttta ttgtaggtaa aaaccaagca cttggtaatg aagttgcaca gtactctaca 1140
caaaatatgg cagcaaataa catttcatat gttatctggc aacaaaagtt ttactcaaat 1200
                                                                   1260
acaaatagta tttatggacc tgctaatact tggaatgcaa tgccagatcg tggtggcgtt
                                                                    1305
actgccaacc attatgacca tgttcacgta tcatttaaca aataa
      <210> 43
      <211> 1230
      <212> DNA
      <213> Streptococcus
      <400> 43
caagaaacag atacgacgtg gacagcacgt actgtttcag aggtaaaggc tgatttggta
aagcaagaca ataaatcatc atatactgtg aaatatggtg atacactaag cgttatttca
                                                                     120
gaagcaatgt caattgatat gaatgtctta gcaaaaatta ataacattgc agatatcaat
                                                                     180
cttatttatc ctgagacaac actgacagta acttacgatc agaagagtca tactgccact
                                                                     240
                                                                     300
tcaatgaaaa tagaaacacc agcaacaaat gctgctggtc aaacaacagc tactgtggat
ttgaaaacca atcaagtttc tgttgcagac caaaaagttt ctctcaatac aatttcggaa
                                                                     360
ggtatgacac cagaagcagc aacaacgatt gtttcgccaa tgaagacata ttcttctgcg
                                                                     420
ccagctttga aatcaaaaga agtattagca caagagcaag ctgttagtca agcagcagct
                                                                     480
aatgaacagg tatcaacagc teetgtgaag tegattaett cagaagttee agcagetaaa
                                                                     540
                                                                     600
gaggaagtta aaccaactca gacgtcagtc agtcagtcaa caacagtatc accagcttct
gttgccgctg aaacaccagc tccagtagct aaagtagcac cggtaagaac tgtagcagcc
                                                                     660
cctagagtgg caagtgttaa agtagtcact cctaaagtag aaactggtgc atcaccagag
                                                                     720
                                                                     780
 catgtatcag ctccagcagt tcctgtgact acgacttcaa cagctacaga cagtaagtta
                                                                     840
 caagegactg aagttaagag egtteeggta geacaaaaag etecaacage aacaceggta
 gcacaaccag cttcaacaac aaatgcagta gctgcacatc ctgaaaatgc agggctccaa
                                                                     900
                                                                     960
 cetcatgttg cagettataa agaaaaagta gegtcaaett atggagttaa tgaatteagt
                                                                    1020
 acataccgtg caggtgatcc aggtgatcat ggtaaaggtt tagcagtcga ctttattgta
 ggtaaaaacc aagcacttgg taatgaagtt gcacagtact ctacacaaaa tatggcagca
                                                                    1080
 aataacattt catatgttat ctggcaacaa aagttttact caaatacaaa tagtatttat
                                                                    1140
 ggacctgcta atacttggaa tgcaatgcca gatcgtggtg gcgttactgc caaccattat
                                                                    1200
                                                                    1230
 gaccatgttc acgtatcatt taacaaataa
       <210> 44
       <211> 409
       <212> PRT
       <213> Streptococcus
       <400> 44
 Gln Glu Thr Asp Thr Thr Trp Thr Ala Arg Thr Val Ser Glu Val Lys
                                     10
  1
 Ala Asp Leu Val Lys Gln Asp Asn Lys Ser Ser Tyr Thr Val Lys Tyr
                                 25
             20
 Gly Asp Thr Leu Ser Val Ile Ser Glu Ala Met Ser Ile Asp Met Asn
```

WO 99/42588 PCT/CA99/00114

63 / 63

|            |       | 35   |            |              |            |       | 40                |            |            |            |                |     |       |            |             |
|------------|-------|------|------------|--------------|------------|-------|-------------------|------------|------------|------------|----------------|-----|-------|------------|-------------|
| ٧a         | l Le  | u Al | a Lv       | s Ti         | e λcτ      |       | - <del>-</del> 10 | - 33       |            |            |                | 45  |       |            |             |
|            |       |      |            |              |            |       |                   |            |            |            |                |     |       |            | r Pro       |
|            |       |      |            |              |            |       |                   |            |            |            |                |     |       |            | a Thr       |
| Se:        | r Me  | t Ly | s Il       | e Gli<br>85  | u Thr      | Pro   | Ala               | Th         | Ası        | ı Ala      | a Ala          | Gly | y Gl  | n Th       | 80<br>r Thr |
|            |       |      | l As       | p Lei        |            |       |                   |            |            |            |                |     |       |            | n Lys       |
|            |       |      |            |              |            |       |                   |            |            |            |                |     |       |            | a Thr       |
|            |       |      | -          |              |            |       | 1/1               |            |            |            |                |     | -     |            |             |
|            |       |      |            |              |            | 133   |                   |            |            |            | 7 4 0          | Pro | Ala   |            | ı Lys       |
|            | -     |      |            |              | 100        |       |                   |            |            | 755        | Ser            | Glr |       |            | a Ala       |
| Asr        | ı Glu | Glr  | l Val      | l Ser<br>165 | Thr        | Ala   | Pro               | Val        | Lys        | Ser        | Ile            | Thr | Ser   | Glu        | 160<br>Val  |
| Pro        | Ala   | Ala  | Lys<br>180 | Glu          |            | Val   | Lys               | Pro        | 170<br>Thr | Gln        | Thr            | Ser | · Val | 175<br>Ser | Gln         |
|            |       | Thr  | Val        | ,            |            |       | Ser               | 185<br>Val |            |            |                |     |       |            | Pro         |
|            |       |      |            |              |            |       |                   |            |            |            |                |     |       |            |             |
|            |       |      |            |              |            |       |                   |            |            |            |                |     |       |            | Ala         |
| 225        | val   | Lys  | Val        | Val          | Thr<br>230 | Pro   | Lys               | Val        | Glu        | Thr        | ${\tt Gl}_{Y}$ | Ala | Ser   | Pro        | Glu         |
| His        | Val   | Ser  | Ala        | Pro<br>245   | Ala        | Val   | Pro               | Val        | Thr        | 235<br>Thr | Thr            | Ser | Thr   | Ala        | 240<br>Thr  |
|            |       |      | Leu        | Gln          | Ala        |       |                   |            |            |            |                |     |       |            |             |
|            |       |      |            |              |            |       |                   |            |            |            |                |     |       |            |             |
|            |       |      |            |              | Thr        |       |                   |            |            |            |                |     |       |            |             |
|            |       |      |            |              | Pro        |       |                   |            |            |            |                |     |       |            |             |
|            |       |      |            |              | Val<br>310 |       |                   |            |            |            | Val            |     |       |            |             |
| Thr        | Tyr   | Arg  | Ala        | Gly<br>325   | Asp        | Pro   | Gly               | Asp        | His        | Gly        | Lys            | Gly | Leu   | Ala        | 320<br>Val  |
| Asp        | Phe   | Ile  | Val<br>340 | Gly          | Lys        | Asn   | Gln               | Ala        | 330<br>Leu | Gly        | Asn            | Glu | Val   | 335<br>Ala | Gln         |
|            |       |      |            |              | Met        |       |                   |            |            |            |                |     |       |            |             |
|            |       |      |            |              |            |       | 3011              |            |            |            |                | 2   |       |            |             |
|            |       |      |            |              | Ser        | 2/7   |                   |            |            |            | 200            |     |       |            |             |
| Thr<br>385 | Trp   | Asn  | Ala        | Met          | Pro .      | Asp . | Arg               | Gly        | Gly        | Val        | Thr            | Ala | Asn   | His        | Tyr         |
|            |       |      |            |              | Ser        |       |                   |            |            | 395        |                |     |       |            | 400         |

BNSDOCID: <WO\_\_ 9942588A2 I >

### WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



# INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/31, C07K 14/315, A61K 39/09, C12N 1/21

(11) International Publication Number:

WO 99/42588

**A3** 

(43) International Publication Date:

26 August 1999 (26.08.99)

(21) International Application Number:

PCT/CA99/00114

(22) International Filing Date:

17 February 1999 (17.02.99)

(30) Priority Data:

60/075,425

20 February 1998 (20.02.98)

US

(71) Applicant (for all designated States except US): BIOCHEM VACCINS INC. [CA/CA]; 2323 boulevard du Parc Technologique, Sainte-Foy, Québec G1P 4R8 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BRODEUR, Bernard, R. [CA/CA]; 2401 rue Maritain, Sillery, Québec GIT 1N6 (CA). RIOUX, Clément [CA/CA]; 1012 Jean-Charles Cantin, Ville de Cap Rouge, Québec G1Y 2X1 (CA). BOYER, Martine [CA/CA]; Apt. 204, 25 des Mouettes, Beauport, Québec G1E 7G1 (CA). CHARLEBOIS, Isabelle [CA/CA]; 410 Mirabel, St-Nicolas, Québec G7A 2L5 (CA). HAMEL, Josée [CA/CA]; 2401 rue Maritain, Sillery, Québec G1T 1N6 (CA). MARTIN, Denis [CA/CA]; 4728-G rue Gaboury, St-Augustin-de-Desmaures, Québec G3A 1E9 (CA).

(74) Agents: CÔTE, France et al.; Swabey Ogilvy Renault, Suite 1600, 1981 McGill College Avenue, Montréal, Québec H3A 2Y3 (CA).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(88) Date of publication of the international search report:

23 March 2000 (23.03.00)

(54) Title: GROUP B STREPTOCOCCUS ANTIGENS

### (57) Abstract

Group B streptococcus (GBS) proteins and polynucleotides encoding them are disclosed. Said proteins are antigenic and therefore useful vaccine components for the prophylaxis or therapy of streptococcus infection in animals. Also disclosed are recombinant methods of producing the protein antigens as well as diagnostic assays for detecting streptococcus bacterial infection.

## FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AL | Albania                  | ES | Spain               | LS | Lesotho                  | SI       | Slovenia                |
|----|--------------------------|----|---------------------|----|--------------------------|----------|-------------------------|
| AM | Armenia                  | FI | Finland             | LT | Lithuania                | SK       | Slovakia                |
| ΑT | Austria                  | FR | France              | LU | Luxembourg               | SN       |                         |
| ΑU | Australia                | GA | Gabon               | LV | Latvia                   | SZ       | Senegal                 |
| ΑZ | Azerbaijan               | GB | United Kingdom      | MC | Моласо                   | 3Z<br>TD | Swaziland               |
| BA | Bosnia and Herzegovina   | GE | Georgia             | MD | Republic of Moldova      | TG       | Chad                    |
| BB | Barbados                 | GН | Ghana               | MG | Madagascar               | TJ       | Togo                    |
| BE | Belgium                  | GN | Guinea              | MK | The former Yugoslav      | TM       | Tajikistan              |
| BF | Burkina Faso             | GR | Greece              |    | Republic of Macedonia    | TR       | Turkmenistan            |
| BG | Bulgaria                 | HU | Hungary             | ML | Mali                     | TT       | Turkey                  |
| BJ | Benin                    | IE | Ireland             | MN | Mongolia                 |          | Trinidad and Tobago     |
| BR | Brazil                   | IL | Israel              | MR | Mauritania               | UA       | Ukraine                 |
| BY | Belarus                  | IS | Iceland             | MW | Malawi                   | UG       | Uganda                  |
| CA | Canada                   | IT | Italy               | MX | Mexico                   | US       | United States of Americ |
| CF | Central African Republic | JP | Japan               | NE | Niger                    | UZ       | Uzbekistan              |
| CG | Congo                    | KE | Kenya               | NL | Netherlands              | VN       | Viet Nam                |
| CH | Switzerland              | KG | Kyrgyzstan          | NO | Norway                   | YU       | Yugoslavia              |
| CI | Côte d'Ivoire            | KP | Democratic People's | NZ | New Zealand              | zw       | Zimbabwe                |
| CM | Cameroon                 |    | Republic of Korea   | PL | Poland                   |          |                         |
| CN | China                    | KR | Republic of Korea   | PT |                          |          |                         |
| CU | Cuba                     | KZ | Kazakstan           | RO | Portugal<br>Romania      |          |                         |
| CZ | Czech Republic           | LC | Saint Lucia         | RU |                          |          |                         |
| DE | Germany                  | LI | Liechtenstein       | SD | Russian Federation Sudan |          |                         |
| DK | Denmark                  | LK | Sri Lanka           | SE |                          |          |                         |
| EE | Estonia                  | LR | Liberia             | SG | Sweden                   |          |                         |
|    |                          |    | 2.00.10             | 36 | Singapore                |          |                         |

Interr nal Application No PCT/CA 99/00114

|                |                                                                                                                | PCT/CR 33/                                                                                                                      |                                           |
|----------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| CLASSIFIC      | CATION OF SUBJECT MATTER C12N15/31 C07K14/315 A61K39/0                                                         | 09 C12N1/21                                                                                                                     |                                           |
|                | nternational Patent Classification (IPC) or to both national classifica                                        | ution and IPC                                                                                                                   |                                           |
|                | FARCHED                                                                                                        |                                                                                                                                 |                                           |
| Minimum docu   | mentation searched (classification system followed by classification                                           | on symbols)                                                                                                                     |                                           |
| IPC 6          | C07K C12N A61K                                                                                                 |                                                                                                                                 |                                           |
|                | in searched other than minimum documentation to the extent that s                                              | uch documents are included in the fields sea                                                                                    | rohed                                     |
|                |                                                                                                                |                                                                                                                                 |                                           |
| Electronic dat | a base consulted during the international search (name of data ba                                              | se and, where practical, search terms used)                                                                                     |                                           |
|                |                                                                                                                |                                                                                                                                 |                                           |
| C. DOCUME      | NTS CONSIDERED TO BE RELEVANT                                                                                  |                                                                                                                                 | Relevant to claim No.                     |
| Category *     | Citation of document, with indication, where appropriate, of the re                                            | levant passages                                                                                                                 | Neisvani to ciami to                      |
|                | MICHEL J L ET AL: "Cloned alpha                                                                                | and beta                                                                                                                        | 1-48                                      |
| A              | C-protein antigens of group B St                                                                               | reptococci                                                                                                                      |                                           |
|                | elicit protective immunity"                                                                                    | ·                                                                                                                               |                                           |
|                | INFECTION AND IMMUNITY., vol. 59, no. 6, June 1991 (1991-                                                      | -06), pages                                                                                                                     |                                           |
|                | 2023-2028 XP00210/260                                                                                          |                                                                                                                                 |                                           |
|                | AMERICAN SOCIETY FOR MICROBIOLOG                                                                               | GY.                                                                                                                             |                                           |
|                | WASHINGTON., US<br>ISSN: 0019-9567                                                                             |                                                                                                                                 |                                           |
| į              | the whole document                                                                                             |                                                                                                                                 |                                           |
|                |                                                                                                                | -/                                                                                                                              |                                           |
|                |                                                                                                                | ,                                                                                                                               |                                           |
|                |                                                                                                                |                                                                                                                                 |                                           |
| 1              |                                                                                                                |                                                                                                                                 |                                           |
|                |                                                                                                                |                                                                                                                                 |                                           |
|                |                                                                                                                |                                                                                                                                 |                                           |
|                |                                                                                                                |                                                                                                                                 |                                           |
|                | other documents are listed in the continuation of box C.                                                       | Patent family members are lister                                                                                                | in annex.                                 |
|                |                                                                                                                |                                                                                                                                 | tomational filing date                    |
| 1              | extegories of cited documents :                                                                                | "I later document published after the in<br>or priority date and not in conflict will<br>cited to understand the principle or t |                                           |
| 1 cons         | ment defining the general state of the art which is not<br>sidered to be of particular relevance               | invention                                                                                                                       | claimed invention                         |
| filing         | r document but published on or after the international cate                                                    | cannot be considered novel or cannot involve an inventive step when the                                                         |                                           |
| 1              | nent which may throw doubts on priority claim(s) or<br>this cited to establish the publication date of another | "Y" document of particular relevance; the                                                                                       | claimed invention inventive atep when the |
| l citat        | ment referring to an oral disclosure, use, exhibition or                                                       | document is combined with one or i<br>ments, such combination being obv                                                         | mare other such dood.                     |
| *P* docu       | er means ment published prior to the international filing date but                                             | in the art. *&* document member of the same pate                                                                                |                                           |
| late           | r than the priority date claimed                                                                               | Date of mailing of the international                                                                                            |                                           |
| Date of th     | ne actual completion of the international search                                                               | 24 01 20                                                                                                                        |                                           |
|                | 15 December 1999                                                                                               | 24 01 20                                                                                                                        |                                           |
| Name an        | nd mailing address of the ISA                                                                                  | Authorized officer                                                                                                              |                                           |
|                | European Patent Office, P.B. 5818 Patentiaan 2                                                                 | lejeune P                                                                                                                       |                                           |
| 1              | Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.<br>Fax: (+31-70) 340-3016                                           | Lejeune, R                                                                                                                      |                                           |

Form PCT/ISA/210 (second sheet) (July 1992)

PCT/CA 99/00114

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PCT/CA 99/00114       |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|            | ation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |
| Category ° | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Relevant to claim No. |
|            | LACHENAUER C S ET AL: "Cloning and expression in Escherichia coli of a protective surface protein from type V group B Streptococci" ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY, vol. 418, 9 December 1997 (1997-12-09), pages 615-618, XP002107261 SPRING ST., NY, US ISSN: 0065-2598 the whole document                                                                                                                                                                                                                                                                                                                                                                                                                         | 1-48                  |
| P,X        | DATABASE EMBL [Online] Accession number AF062533, 11 February 1999 (1999-02-11) SPELLERBERG B ET AL: "Streptococcus agalactiae Lmb (lmb) gene, complete cds; and unknown gene." XP002125180 98.9% identity between base 1-2514 of SEQ ID NO 13 and base 988-3501 of AF062533 Translation product (AC: Q9ZHG9) has 98.5% identity in 793 AA overlap with SEQ ID NO 15 and 98.5% identity in 715 AA overlap with SEQ ID 16 & SPELLERBERG B ET AL: "Lmb, a protein with similarities to the LraI adhesin family, mediates attachment of Streptococcus agalactiae to human laminin" INFECTION AND IMMUNITY., vol. 67, no. 2, February 1999 (1999-02), pages 871-878, AMERICAN SOCIETY FOR MICROBIOLOGY. WASHINGTON., US ISSN: 0019-9567 | 1-10, 16-23,26        |
| X          | DATABASE EMBL [Online] Accession Number L23843, 4 January 1994 (1994-01-04) MACRINA F L ET AL: "ISN IS199 from Streptococcus mutans IS3 (Brathal) serotype C) DNA fragment" XP002125181 79.6% identity between base 5212-4314 of SEQ ID NO 13 and base 312-1220 of L23843 Translation has 83.4% identity in 283 AA overlap with SEQ ID NO 21                                                                                                                                                                                                                                                                                                                                                                                        | 1,3-7,10              |

Inter: nat Application No PCT/CA 99/00114

|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PC1/CA 99/00114       |  |  |  |  |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|
| C.(Continua | ation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Relevant to claim No. |  |  |  |  |
| Category °  | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                                                                                                                                                                                                             | Newvant to claim No.  |  |  |  |  |
|             | DATABASE EMBL [Online] Accession Number AF026542, 15 October 1997 (1997-10-15) HYNES W L ET AL: "Streptococcus pyogenes FF22 lantibiotic (scn) gene cluster region containing: scnK, scnR, streptococcin A-FF22 precursor (scnA), scnA1, scnM, scnT, scnF, scnE, scnG genes, complete cds, and tnpA gene, partial cds." XP002125182 88.2% identity between base 2607-2953 of SEQ ID NO 13 and base 10435-10777 of AF026542 Translation product (AC: 031057) has 95.8% identity in 71 AA overlap with SEQ ID NO | 1-10, 16-23,26        |  |  |  |  |
| P,X         | DATABASE GENESEQ [Online] Accession Number V52136, 23 October 1998 (1998-10-23) BARASH S C ET AL: "Streptococcus pneumoniae genome fragment SEQ ID NO:3" XP002125183 68.5% identity between base 2539-3319 of SEQ ID NO 37 and base 18492-19271 of V52136 Translation has 74.5% identity in 231 AA overlap with SEQ ID NO 40 & WO 98 18931 A (DOUGHERTY BRIAN A ;HUMAN GENOME SCIENCES INC (US); ROSEN CRAIG A) 7 May 1998 (1998-05-07)                                                                        | 1,3-7,10              |  |  |  |  |

3

ational application No. PCT/CA 99/00114

| Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)                                                                                                                     |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| (Community of home a sheet)                                                                                                                                                                                                 |   |
| This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:                                                                                    |   |
| Claims Nos.:     because they relate to subject matter not required to be searched by this Authority, namely:                                                                                                               |   |
| Although claims 37-46 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.                                         |   |
| Claims Nos.:  because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: |   |
| Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).                                                                                        |   |
| Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)                                                                                                                             | _ |
|                                                                                                                                                                                                                             | _ |
| This International Searching Authority found multiple inventions in this international application, as follows:                                                                                                             |   |
|                                                                                                                                                                                                                             |   |
| see additional sheet                                                                                                                                                                                                        |   |
| As a result of the prior review under R. 40.2(e) PCT, no additional fees are to be refunded.                                                                                                                                |   |
| 1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.                                                                                 |   |
| 2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.                                                                     |   |
| 3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:                     |   |
| 11-14,16,24,25,27,28,30,31 (completely), 1-10,15,17-23,26,29,32-48 (all partially) i.e. (group of) inventions 1, 3 and 7                                                                                                    |   |
| 4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:         |   |
| Remark on Protest  X The additional search fees were accompanied by the applicant's protest.  No protest accompanied the payment of additional search fees.                                                                 |   |