Stat 315	Name (Print):
Fall 2021	
Practice Exam 2	
11/12/2021	
Time Limit: 50 minutes	Section:

This exam contains 12 pages (including this cover page) and 5 problems.

You may use a two-sided 4"x6" notecard of formulas/notes, etc and a calculator. You may *not* use any other material including the internet, other people, or other reference books. Violators of this provision will receive a zero.

You are required to show your work on each problem on this exam. The following rules apply:

- Show all your work. You may check your answers using calculator functions, but you must show every step of your calculations to receive full credit.
- Organize your work in a reasonably neat and coherent way, in the space provided. Work scattered all over the page without a clear ordering will receive very little credit.

Do not write in the table to the right.

Problem	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
Total:	50	

1. (10 points) It is claimed that 11% of bridges in the United States are structurally deficient. To test this claim, inspections of 200 randomly selected bridges found that 34 were structurally deficient. At $\alpha=0.025$, test the claim that the proportion of bridges that are structurally deficient differs from 0.11. Also, explain which type of error may have been committed.

2. 5 students took two Math exams: one exam before tutoring and one exam after tutoring. It is of interest if tutoring helps the students score higher. Below are the exam scores before and after. Assume the test scores are approximately normally distributed.

	1	2	3	4	5	
After	90	80	95	70	75	
Before	85	80	90	55	50	
d_i						
$d_i - \bar{d}$						
$(d_i - \bar{d})^2$						

- (a) (3 points) Complete the above table
- (b) (1 point) Calculate \bar{d}
- (c) (1 point) Calculate s_d

(d) (5 points) Complete a hypothesis test at $\alpha = 0.05$. Show all six steps.

- 3. Suppose that adult male heights are normally distributed with mean 70 inches and standard deviation 4 inches. A random sample of three male heights is drawn.
 - (a) (3 points) What is the sampling distribution of $\bar{X}_3 = \frac{X_1 + X_2 + X_3}{3}$?

(b) (3 points) Calculate the probability the sample mean is within one inch of the population mean.

(c) (4 points) Suppose instead of using the sample mean of the three men, i.e. $\bar{X}_3 = \frac{X_1 + X_2 + X_3}{3}$, we estimate the population mean by calculating the statistic $\gamma = \frac{X_1}{2} + \frac{X_2}{4} + \frac{X_3}{4}$. Determine if γ is an unbiased estimator for μ and find $SE(\gamma)$.

- 4. Suppose that a sample of six Mathematics majors found they spend on average 10 hours weekly on homework with a sample standard deviation of 4 hours. Also, suppose that a sample of eight Electrical Engineering majors found they spend an average of 8.5 hours on homework weekly with a sample standard deviation of 3.8 hours. Finally, assume that the two populations are approximately normally distributed. Use df = 10 if needed.
 - (a) (8 points) Create a 99% confidence interval for the difference in mean homework time spent between Mathematics and Electrical Engineering majors.

(b) (2 points) What is power and how could it be increased in this example?

5. Jim is analyzing the amount of mercury in three types of fish: bass, rainbow trout, and brown trout. It is of interest to determine if all three types of fish have the same mean mercury content. He collects 8 fish of each type and measures their mercury content (in ppb, parts per billion). Some results are given in the R output below.

Df Sum Sq Mean Sq F value Pr(>F)

fish 2 172 Residuals 21 7396

- (a) (2 points) Calculate MSTR and MSE.
- (b) (4 points) Calculate the relevant test statistic, find the p-value, and plot the distribution for this ANOVA F-test.

(c) (2 points) State the conclusion of your ANOVA F-test in your own words.

(d) (2 points) Suppose we want to compare all pairwise difference in mercury content for the three types of fish. How many pairwise comparisons are there?

t-values for selected UPPER TAIL probabilities are shown in the following table:

	Г					
		90%	95%		99%	← For this CI
df	.10	.05	.025	.01	.005	\leftarrow Upper tail probability
1	2.070	C 214	10.700	21 001	C2 C57	
$\frac{1}{2}$	3.078 1.886	6.314 2.920	12.706 4.303	31.821 6.965	63.657 9.925	
3	1.638	2.353	$\frac{4.303}{3.182}$	4.541	5.841	
4	1.533	2.333 2.132	2.776	3.747	4.604	
4	1.000	2.132	2.110	5.141	4.004	
5	1.476	2.015	2.571	3.365	4.032	
6	1.440	1.943	2.447	3.143	3.707	
7	1.415	1.895	2.365	2.998	3.499	
8	1.397	1.860	2.306	2.896	3.355	
9	1.383	1.833	2.262	2.821	3.250	
10	1.372	1.812	2.228	2.764	3.169	
11	1.363	1.796	2.201	2.718	3.106	
12	1.356	1.782	2.201 2.179	2.681	3.055	
13	1.350	1.771	2.160	2.650	3.012	
14	1.345	1.761	2.145	2.624	2.977	
14	1.545	1.701	2.140	2.024	2.311	
15	1.341	1.753	2.131	2.602	2.947	
16	1.337	1.746	2.120	2.583	2.921	
17	1.333	1.740	2.110	2.567	2.898	
18	1.330	1.734	2.101	2.552	2.878	
19	1.328	1.729	2.093	2.539	2.861	
20	1.325	1.725	2.086	2.528	2.845	
21	1.323	1.721	2.080	2.518	2.831	
22	1.321	1.717	2.074	2.508	2.819	
23	1.319	1.714	2.069	2.500	2.807	
24	1.318	1.711	2.064	2.492	2.797	
25	1 216	1.708	2.060	9.405	2 707	
26 26	1.316			$2.485 \\ 2.479$	$2.787 \\ 2.779$	
20 27	1.315 1.314	1.706 1.703	$2.056 \\ 2.052$		2.779 2.771	
28		1.703 1.701	2.032 2.048	2.473 2.467	$\frac{2.771}{2.763}$	
28 29	1.313 1.311	1.701 1.699	2.048 2.045	$\frac{2.467}{2.462}$	2.765 2.756	
29	1.311	1.099	2.045	2.402	2.750	
30	1.310	1.697	2.042	2.457	2.750	
40	1.303	1.684	2.021	2.423	2.704	
50	1.299	1.676	2.009	2.403	2.678	
60	1.296	1.671	2.000	2.390	2.660	
70	1.294	1.667	1.994	2.381	2.648	
80	1.292	1.664	1.990	2.374	2.639	
90	1.291	1.662	1.987	2.368	2.632	
100	1.290	1.660	1.984	2.364	2.626	
	1.282	1.645	1.960	2.326	2.576	\leftarrow Same as z-values

Standard Normal Distribution

Cumulative probabilities for $\bf NEGATIVE$ z-values are shown in the following table:

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

Standard Normal Distribution

Cumulative probabilities for $\bf POSITIVE$ z-values are shown in the following table:

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

 ${\cal F}\text{-values}$ for selected UPPER TAIL probabilities are shown in the following table:

Denom.	Upper tail					Nu	merato	r df				
df	area	1	2	3	4	5	6	7	8	9	10	1
19	0.10	2.99	2.61	2.40	2.27	2.18	2.11	2.06	2.02	1.98	1.96	1.93
19	0.10	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	$\frac{1.3}{2.3}$
	0.025	5.92	4.51	3.10	3.56	3.33	3.17	3.05	2.46	2.88	2.82	2.7
	0.023	8.18	5.93	5.01	4.50	4.17	3.94	3.77	3.63	3.52	3.43	3.3
	0.01	0.10	0.00	0.01	1.00		0.01	0	0.00	0.02	0.10	
20	0.10	2.97	2.59	2.38	2.25	2.16	2.09	2.04	2.00	1.96	1.94	1.9
	0.05	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.3
	0.025	5.87	4.46	3.86	3.51	3.29	3.13	3.01	2.91	2.84	2.77	2.7
	0.01	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.2
21	0.10	2.96	2.57	2.36	2.23	2.14	2.08	2.02	1.98	1.95	1.92	1.9
	0.05	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.2
	0.025	5.83	4.42	3.82	3.48	3.25	3.09	2.97	2.87	2.80	2.73	2.6
	0.01	8.02	5.78	4.87	4.37	4.04	3.81	3.64	3.51	3.40	3.31	3.2
22	0.10	2.95	2.56	2.35	2.22	2.13	2.06	2.01	1.97	1.93	1.90	1.8
22	0.10	4.30	3.44	3.05	2.82	$\frac{2.15}{2.66}$	2.55	$\frac{2.01}{2.46}$	2.40	2.34	2.30	2.2
	0.025	5.79	4.38	3.78	3.44	3.22	3.05	2.40 2.93	2.40 2.84	2.76	2.70	2.6
	0.023	7.95	5.72	4.82	4.31	3.99	3.76	$\frac{2.55}{3.59}$	3.45	3.35	3.26	3.1
	0.01	1.50	0.12	4.02	1.01	0.00	0.10	0.00	0.40	0.00	0.20	0.1
23	0.10	2.94	2.55	2.34	2.21	2.11	2.05	1.99	1.95	1.92	1.89	1.8
	0.05	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.2
	0.025	5.75	4.35	3.75	3.41	3.18	3.02	2.90	2.81	2.73	2.67	2.6
	0.01	7.88	5.66	4.76	4.26	3.94	3.71	3.54	3.41	3.30	3.21	3.1
24	$\begin{array}{c c} 0.05 & 4.28 \\ 0.025 & 5.75 \\ 0.01 & 7.88 \end{array}$	2.54	2.33	2.19	2.10	2.04	1.98	1.94	1.91	1.88	1.8	
	0.05	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.2
	0.025	5.72	4.32	3.72	3.38	3.15	2.99	2.87	2.78	2.70	2.64	2.5
	0.01	7.82	5.61	4.72	4.22	3.90	3.67	3.50	3.36	3.26	3.17	3.0
25	0.10	2.92	2.53	2.32	2.18	2.09	2.02	1.97	1.93	1.89	1.87	1.8
20	0.10 0.05	4.24	$\frac{2.55}{3.39}$	$\frac{2.32}{2.99}$	2.76	2.60	$\frac{2.02}{2.49}$	2.40	$\frac{1.93}{2.34}$	2.28	2.24	2.2
	0.03	5.69	$\frac{3.39}{4.29}$	3.69	$\frac{2.70}{3.35}$	3.13	$\frac{2.49}{2.97}$	$\frac{2.40}{2.85}$	$\frac{2.34}{2.75}$	$\frac{2.28}{2.68}$	2.24 2.61	2.5
	0.023	7.77	5.57	4.68	4.18	3.15	3.63	3.46	$\frac{2.75}{3.32}$	3.22	3.13	$\frac{2.0}{3.0}$
	0.0-					0.00		0.20	0.0_	0	0.20	
26	0.10	2.91	2.52	2.31	2.17	2.08	2.01	1.96	1.92	1.88	1.86	1.8
	0.05	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.1
	0.025	5.66	4.27	3.67	3.33	3.10	2.94	2.82	2.73	2.65	2.59	2.5
	0.01	7.72	5.53	4.64	4.14	3.82	3.59	3.42	3.29	3.18	3.09	3.0
27	0.10	2.90	2.51	2.30	2.17	2.07	2.00	1.95	1.91	1.87	1.85	1.8
	0.05	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.1
	0.025	5.63	4.24	3.65	3.31	3.08	2.92	2.80	2.71	2.63	2.57	2.5
	0.01	7.68	5.49	4.60	4.11	3.78	3.56	3.39	3.26	3.15	3.06	2.9

 ${\cal F}\text{-values}$ for selected UPPER TAIL probabilities are shown in the following table:

	**					2.7		16				
D	Upper tail					Nu	merato	r df				
Denom. df	area	1	2	3	4	5	6	7	8	9	10	11
	area	1		3	4	- 3	U	- 1		9	10	11
28	0.10	2.89	2.50	2.29	2.16	2.06	2.00	1.94	1.90	1.87	1.84	1.81
	0.05	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.15
	0.025	5.61	4.22	3.63	3.29	3.06	2.90	2.78	2.69	2.61	2.55	2.49
	0.01	7.64	5.45	4.57	4.07	3.75	3.53	3.36	3.23	3.12	3.03	2.96
29	0.10	2.89	2.50	2.28	2.15	2.06	1.99	1.93	1.89	1.86	1.83	1.80
	0.05	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.14
	0.025	5.59	4.20	3.61	3.27	3.04	2.88	2.76	2.67	2.59	2.53	2.48
	0.01	7.60	5.42	4.54	4.04	3.73	3.50	3.33	3.20	3.09	3.00	2.93
30	0.10	2.88	2.49	2.28	2.14	2.05	1.98	1.93	1.88	1.85	1.82	1.79
	0.05	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.13
	0.025	5.57	4.18	3.59	3.25	3.03	2.87	2.75	2.65	2.57	2.51	2.46
	0.01	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98	2.91
40	0.10	2.84	2.44	2.23	2.09	2.00	1.93	1.87	1.83	1.79	1.76	1.74
	0.05	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.04
	0.025	5.42	4.05	3.46	3.13	2.90	2.74	2.62	2.53	2.45	2.39	2.33
	0.01	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80	2.73
60	0.10	2.79	2.39	2.18	2.04	1.95	1.87	1.82	1.77	1.74	1.71	1.68
	0.05	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.95
	0.025	5.29	3.93	3.34	3.01	2.79	2.63	2.51	2.41	2.33	2.27	2.22
	0.01	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63	2.56
100	0.10	2.76	2.36	2.14	2.00	1.91	1.83	1.78	1.73	1.69	1.66	1.64
	0.05	3.94	3.09	2.70	2.46	2.31	2.19	2.10	2.03	1.97	1.93	1.89
	0.025	5.18	3.83	3.25	2.92	2.70	2.54	2.42	2.32	2.24	2.18	2.12
	0.01	6.90	4.82	3.98	3.51	3.21	2.99	2.82	2.69	2.59	2.50	2.43
1000	0.10	2.71	2.31	2.09	1.95	1.85	1.78	1.72	1.68	1.64	1.61	1.58
	0.05	3.85	3.00	2.61	2.38	2.22	2.11	2.02	1.95	1.89	1.84	1.80
	0.025	5.04	3.70	3.13	2.80	2.58	2.42	2.30	2.20	2.13	2.06	2.01
	0.01	6.66	4.63	3.80	3.34	3.04	2.82	2.66	2.53	2.43	2.34	2.27