

UNIVERSIDAD FIDÉLITAS SEDE HEREDIA

CONTROL AUTOMÁTICO

LUIS DIEGO MORA BARBOZA

TAREA # 6

CORRECCIÓN DEL ERROR EN SISTEMAS RETROALIMENTADOS

II CAITRMESRE, 2018

¿Cómo hacer para el sistema dé 0?

$$G(s) = \frac{1}{(s+2)(s+3)} \rightarrow \text{Tipo } 0$$

Tipo de sistema	Entrada escalón r(t) = 1	Entrada rampa r(t) = t	Entrada aceleración $r(t) = \frac{1}{2}t^2$
0	$\frac{1}{1+k}$	8	∞
1	0	$\frac{1}{k}$	∞
2	0	0	$\frac{1}{k}$

$$k_p = \lim_{s \to 0} \frac{1}{(s+2)(s+3)}$$

$$k_p = \lim_{S \to 0} \frac{1}{(0+2)(0+3)}$$

$$k_p = \lim_{s \to 0} \frac{1}{(2)(3)}$$

$$k_p = \frac{1}{6}$$

$$e_{ss} = \frac{1}{1 + \frac{1}{6}}$$

$$e_{ss} = \frac{6}{7}$$

Al aplicar $\frac{1}{s}$

$$G'(s) = \frac{1}{s(s+2)(s+3)} \rightarrow Tipo 1$$

Verificación en MatLab

G =

Continuous-time transfer function.

step(G)

P=tf([1],[1 0])

P =

1

-

S

Continuous-time transfer function.

feedback(G,P)

ans =

Continuous-time transfer function.

S=feedback(G,P)

S =

Continuous-time transfer function.

step(S)

