Preference Trees over Combinatorial Domains

Xudong Liu

Ph.D. Candidate
Department of Computer Science
College of Engineering
University of Kentucky
Lexington, KY, USA

Preferences Are Ubiquitous

Figure: Preferences of different forms

Describing Preferences

Figure: How to express it?

- On scale of 0 to 99, how will I rate these two cars?
 - I give Car1 44 points and Car2 78 points; thus, I prefer Car2 to Car1.
- Which one to me is better than the other?
 - I prefer Car1 to Car2. (Strict preference)
 - I like Car1 and Car2 equally. (Indifference/Equivalence)
 - I cannot decide. (Incomparability)

Describing Preferences

Figure: How to express it?

- On scale of 0 to 99, how will I rate these two cars? (Quantitative)
 - I give Car1 44 points and Car2 78 points; thus, I prefer Car2 to Car1.
- Which one to me is better than the other? (Qualitative)
 - I prefer Car1 to Car2. (Strict preference)
 - I like Car1 and Car2 equally. (Indifference/Equivalence)
 - I don't know. (Incomparability)

Binary Relations

Let O be a set of elements. A binary relation \leq over O is a collection of ordered pairs of elements in O; that is,

$$\preceq \subseteq O \times O$$
.

Properties of binary relations:

- **1** Reflexivity: $\forall o \in O$, $o \leq o$.
- **2** Irreflexivity: $\forall o \in O$, $o \not \leq o$.
- **3** Totality: $\forall o_1, o_2, o_1 \leq o_2$ or $o_2 \leq o_1$.
- Transitivity: $\forall o_1, o_2, o_3$, if $o_1 \leq o_2$ and $o_2 \leq o_3$, then $o_1 \leq o_3$.
- **5** Symmetricity: $\forall o_1, o_2$, if $o_1 \leq o_2$, then $o_2 \leq o_1$.
- **6** Antisymmetricity: $\forall o_1, o_2$, if $o_1 \leq o_2$ and $o_2 \leq o_1$, then $o_1 = o_2$.

Xudong Liu Preferences SC, CCEC, UNF, 1/6

5 / 52

Binary Relations

 \leq is a partial preorder if it is reflexive and transitive, a total preorder if it is a partial preorder and total, a partial order if it is a partial preorder and antisymmetric, and a total order if it is a partial order and total.

(a) partial (pre)order

(b) total (pre)order

 Xudong Liu
 Preferences
 SC, CCEC, UNF, 1/6
 6 / 52

Binary Relations

 \leq is a partial preorder if it is reflexive and transitive, a total preorder if it is a partial preorder and total, a partial order if it is a partial preorder and antisymmetric, and a total order if it is a partial order and total.

(a) partial preorder

(b) total preorder

Xudong Liu Preferences SC, CCEC, UNF, 1/6 7 / 52

Binary Relations

Let \leq be a preference relation that is a partial preorder over O. We say that o_2 is weakly preferred to o_1 if $o_1 \leq o_2$, that o_2 is strictly preferred (\prec) to o_1 if $o_1 \leq o_2$ and $o_2 \not \leq o_1$, that o_1 is indifferent (\approx) from o_2 if $o_1 \leq o_2$ and $o_2 \leq o_1$, and that o_1 is incomparable (\sim) with o_2 if $o_1 \not \leq o_2$ and $o_2 \not \leq o_1$.

(a) partial preorder

 $o_1 \leq o_5$,

 $o_4 \prec o_2$,

 $o_4 \approx o_8$,

 $o_6 \sim o_7$.

(b) preferences

Xudong Liu Preferences SC, CCEC, UNF, 1/6 8 / 52

Binary Relations

Let \leq be a preference relation that is a partial preorder over O. We say that o_2 is weakly preferred to o_1 if $o_1 \leq o_2$, that o_2 is strictly preferred (\prec) to o_1 if $o_1 \leq o_2$ and $o_2 \not \leq o_1$, that o_1 is indifferent (\approx) from o_2 if $o_1 \leq o_2$ and $o_2 \leq o_1$, and that o_1 is incomparable (\sim) with o_2 if $o_1 \not \leq o_2$ and $o_2 \not \leq o_1$.

 $o_1 \leq o_5$

 $o_4 \prec o_2$

 $o_4 \approx o_8$

(a) total preorder

(b) preferences

Combinatorial Domains

Combinatorial Domains

Let V be a finite set of variables $\{X_1, \ldots, X_p\}$, D a set of finite domains $\{Dom(X_1), \ldots, Dom(X_p)\}$ for each variable X_i . A combinatorial domain CD(V) is a set of outcomes described by combinations of values from $Dom(X_i)$:

$$CD(V) = \prod_{X_i \in V} Dom(X_i).$$

Xudong Liu Preferences SC, CCEC, UNF, 1/6 10 / 52

Combinatorial Domains: Example

Domain of cars over set V of p binary variables:

```
BodyType: {mvan, sedan}.
```

Color: {blue, grey}.

$$CD(V) = \{ \langle \text{sedan, 4, blue, } \ldots \rangle, \langle \text{mvan, 6m, grey, } \ldots \rangle, \ldots \}.$$

$$2^p \text{ outcomes, too many!}$$

Xudong Liu Preferences SC, CCEC, UNF, 1/6 11 / 52

Computational Complexity

- P (NP): decision problems solvable by a deterministic (nondeterministic, resp.) TM in poly time in the size of the input.
 - We typically believe that $P \subset NP$.
- 2 coNP: problems whose complements are in NP.

- SPACE: decision problems solvable by a TM in poly space in the size of the input.
- **o** A decision problem L is C-hard if $L' \leq_p L$ for every L' in class C.
- A decision problem L is C-complete if L is in class C and L is C-hard.

Xudong Liu Preferences SC, CCEC, UNF, 1/6 12 / 52

Computational Complexity

Figure: Computational complexity diagram

Combinatorial Domains: Example

Domain of cars (cf. the Car Evaluation Dataset¹)

- **1 BodyType**: {mvan, sedan, sport, suv}.
- **2** Capacity: {2, 5, 7m}.
- **3 Color**: {black, blue, grey, red, white}.
- LuggageSize: {big, med, small}.
- Make: {bmw, ford, honda, and vw}.
- Price: {low, med, high, vhigh}.
- Safety: {low, med, high}.

14 / 52

https://archive.ics.uci.edu/ml/datasets/Car+Evaluation, slightly adapted in the talk.

Qualitative Preferences

Individual:

<sedan, 4, blue, med, vw, med, med>

Figure: Dominance Testing

Qualitative Preferences

Collective:

Figure: Social Choice and Welfare

Research on Preferences

Q: How do we represent preferences over combinatorial domains?

- Quantitative:
 - Utility/Cost Functions
 - Possibilistic Logic[7]
 - § Fuzzy Preference Relations[15]
 - Penalty Logic[17]
- Qualitative:
 - Preference Trees (e.g., LP-trees[2, 12], CLP-trees[5], PLP-trees[13], P-trees[8, 14])
 - 2 Conditional Preference Networks[3]
 - Answer-Set Optimization Theories[6]
- 4 Hybrid:
 - Preference Forests

Research on Preferences

- Q: How do we learn/predict preferences over combinatorial domains?
 - Recommender Systems[1]:
 - Collaborative
 - 2 Content-based
 - 4 Hybrid
 - Machine Learning:
 - Supervised learning
 - 2 Label ranking
 - Preference Elicitation:
 - Positive learning
 - 2 Human-in-the-loop
 - Preference Learning[9]:
 - Conditional Preference Networks
 - 2 Preference Trees (e.g., LP-trees, CLP-trees, PLP-trees)

Research on Preferences

Q: How do we reason about preferences over combinatorial domains?

- Preference Optimization:
 - Consistency testing
 - Opening Dominance testing
 - Optimality testing
- Preference Aggregation[4]:
 - Social choice and welfare
 - Voting systems
- Preference Misrepresentation[4]:
 - Control
 - Manipulation
 - 8 Bribery

Preference Trees

- Let \mathcal{I} be a set of binary issues. The **combinatorial domain** $CD(\mathcal{I})$ is the set of *outcomes* represented by complete and consistent sets of literals over \mathcal{I} .
- A **P-tree** T over $CD(\mathcal{I})$ is a binary tree whose nodes, other than the leaves, are labeled with propositional formulas over \mathcal{I} .
- Given an outcome $M \in CD(\mathcal{I})$, the **leaf** $I_{\mathcal{T}}(M)$ is the leaf reached by traversing the tree \mathcal{T} according to M. When at a node N labeled with φ , if $M \models \varphi$, we descend to the left child of N; otherwise, to the right.
- For $M, M' \in CD(\mathcal{I})$, we have $M \succ_{\mathcal{T}} M'$ if $I_{\mathcal{T}}(M) \succ_{\mathcal{T}} I_{\mathcal{T}}(M')$, and $M \approx_{\mathcal{T}} M'$ if $I_{\mathcal{T}}(M) = I_{\mathcal{T}}(M')$. Outcome M is **optimal** if there exists no M' such that $M' \succ_{\mathcal{T}} M$.

Xudong Liu Preferences SC, CCEC, UNF, 1/6 20 / 52

Compact Representation of P-trees

A compact P-tree over $CD(\mathcal{I})$ is a tree where

- lacktriangle every node is labeled with a Boolean formula over \mathcal{I} , and
- every non-leaf node t labeled with φ has either two outgoing edges (Figure (a)), or one outgoing edge pointing left (Figure (b)), right (Figure (c)), or straight-down (Figure (d)).

Figure: Compact P-trees

Relative Expressivity of Preference Languages

Xudong Liu Preferences SC, CCEC, UNF, 1/6 22 / 52

Computational Complexity Results

DOMTEST: is it that $o \succeq_T o'$ in P-tree T? OPTTEST: is outcome o optimal w.r.t T?

OPTPROP: is there an optimal outcome o w.r.t T st $o \models \alpha$?

	DomTest	OptTest	ОртРкор
LP-tree	Р	Р	Р
ASO-rule/	Р	coNP-c	$\Delta_2^P(P^{NP})$
Poss-theory	•	COIVI -C	$\Delta_2(r)$
P-tree	Р	coNP-c ²	$\Delta_2^P(P^{NP})$ - \mathbf{c}^3
ASO-theory	Р	coNP-c	$\Sigma_2^P(NP^{NP})$ -c

Figure: Computational complexity results

²The complement problem is reduced from the SAT problem.

³The problem is reduced from the Maximum Satisfying Assignment (MSA) problem.

A *PLP-tree* over $CD(\mathcal{I})$ is a labeled tree, where

- every node t is labeled with a attribute Attr(t) in \mathcal{I} and a conditional preference table CPT(t),
- every non-leaf node t has either one unlabeled outgoing edge or multiple outgoing edges labeled, each labeled by some value in Dom(Attr(t)), and
- every attribute appears at most once on every branch.

Xudong Liu Preferences SC, CCEC, UNF, 1/6 24 / 52

Figure : A UIUP PLP-tree

According to this UIUP PLP-tree, Car1 is preferred to Car2.

Figure: A UICP PLP-tree

According to this UICP PLP-tree, Car2 is preferred to Car1.

Xudong Liu Preferences SC, CCEC, UNF, 1/6 26 / 52

Figure: A CIUP PLP-tree

According to this CICP PLP-tree, Car1 is preferred to Car2.

Xudong Liu Preferences SC, CCEC, UNF, 1/6 27 / 52

Figure: A CICP PLP-tree

According to this CICP PLP-tree, Car1 is preferred to Car2.

Xudong Liu Preferences SC, CCEC, UNF, 1/6 28 / 52

Complexity Results

	UP	CP
UI	Р	Р
CI	NPC ⁴	Р

	UP	CP
UI	NPC	NPC
CI	NPC	NPC

(a) Conslearn

(b) SMALLLEARN

	UP	CP
UI	NPC ⁵	NPC
CI	NPC	NPC

(c) MaxLearn

Figure: Complexity results for passive learning problems

⁴Booth et al., Learning Conditionally Lexicographic Preference Relations, 2010.

⁵Schmitt and Martignon, On the Complexity of Learning Lexicographic Strategies, 2006.

Experimental Results on Trees

Figure: Learning curve for UIUP using ASP and greedy heuristic

Xudong Liu Preferences SC, CCEC, UNF, 1/6 30 / 52

Experimental Results on Trees

Figure: Learning curve for all four classes using greedy heuristic

Xudong Liu Preferences SC, CCEC, UNF, 1/6 31 / 52

Preference Forests

- **1** A preference forest F is a collection of PLP-trees $F = \{T_1, \ldots, T_n\}$.
- ② Denote by $N_F(o_1, o_2) = |\{T \in F : o_1 \succ_T o_2\}|$.
- **③** Given a preference forest F, and two outcomes o_1 and o_2 , we say that $o_1 \succ_F^{Maj} o_2$ iff $N_F(o_1, o_2) > N_F(o_2, o_1)$, and that $o_1 \approx_F^{Maj} o_2$ iff $N_F(o_1, o_2) = N_F(o_2, o_1)$.
 - Pro: intuitive, decided in polynomial time.
 - Con: Condorcet paradox.
 - Other aggregating rules: positional scoring rules, Copeland's method, etc.

Xudong Liu Preferences SC, CCEC, UNF, 1/6 32 / 52

Experimental Results on Forests

Figure: Learning UIUP using ASP and greedy heuristic

Xudong Liu Preferences SC, CCEC, UNF, 1/6 33 / 52

Experimental Results on Forests

Figure: Learning all four classes using greedy heuristic

Xudong Liu Preferences SC, CCEC, UNF, 1/6 34 / 52

Lexicographic Preference Trees (LP-Trees)

- **1** An LP tree \mathcal{L} over $\mathcal{I} = \{X_1, \dots, X_p\}$ is a (binary) tree, where
 - ullet each node t in $\mathcal L$ is labeled by an issue from $\mathcal I$ and with *preference information*, and
 - each issue appears exactly once on every path from the root to a leaf.

Xudong Liu Preferences SC, CCEC, UNF, 1/6 35 / 52

Positional Scoring Rules

- k-approval: (1, ..., 1, 0, ..., 0) with k being the number of 1's and m k the number of 0's where $m = 2^p$.
- (k, l)-approval: $(a, \ldots, a, b, \ldots, b, 0 \ldots, 0)$, where a and b are constants (a > b) and the numbers of a's and b's equal to k and l, respectively.
- b-Borda: $(b, b-1, \ldots, 0)$, where if b > m-1, b-Borda is reduced to the regular Borda rule with $(m-1, m-2, \ldots, 1, 0)$.

Xudong Liu Preferences SC, CCEC, UNF, 1/6 36 / 52

The Evaluation and Winner Problems

The Evaluation Problem

Let r be a positional scoring rule with a scoring vector w, \mathcal{C} a class of LP trees. Given a \mathcal{C} -profile P of n LP trees over p issues and a positive integer R, the *evaluation* problem is to decide whether there exists an alternative $o \in \mathcal{X}$ such that $s_w(o, P) \geq R$.

The Winner Problem

Let r be a positional scoring rule with a scoring vector w, \mathcal{C} a class of LP trees. Given a \mathcal{C} -profile P of n LP trees over p issues, the *winner* problem is to compute an alternative $o \in \mathcal{X}$ with the maximum score $s_w(o, P)$.

Xudong Liu Preferences SC, CCEC, UNF, 1/6 37 / 52

Complexity of the Evaluation Problem: k-Approval

	UP	CP
UI	Р	Р
CI	Р	Р

Oi	IVI
CI	NPC

(a)
$$k = 2^{p-1} \pm f(p)$$
, $f(p)$ is a poly

(b)
$$k = 2^{p-c}$$
, $c > 1$ is a const

NPC NPC

UP NDC

Figure : k-Approval

Complexity of the Evaluation Problem: (k, l)-Approval

	UP	CP
UI	Р	Р
CI	Р	Р

	UP	CP
UI	NPC	NPC
CI	NPC	NPC

(a)
$$k = l = 2^{p-1}$$

(b)
$$k = l = 2^{p-c}$$
, $c > 1$ is a const

Figure : (k, I)-Approval ⁶

⁶ Liu and Truszczynski, Aggregating Conditionally Lexicographic Preferences Using Answer Set Programming, ADT, 2013.

Complexity of the Evaluation Problem: b-Borda

	UP	CP
UI	Р	NPC
CI	NPC	NPC

(a)
$$b = 2^p - 1$$

	UP	CP
UI	NPC	NPC
CI	NPC	NPC

(b)
$$b = 2^{p-c} - 1$$
, $c \ge 1$ is a const

Figure : b-Borda

Modeling the Problems in ASP

Figure: The winner problem

• Solvers: clingo⁷, clingcon⁸

Xudong Liu Preferences SC, CCEC, UNF, 1/6 41 / 52

⁷M. Gebser et al. "Potassco: The Potsdam Answer Set Solving Collection". In: <u>AI Communications</u> (2011).

⁸Max Ostrowski and Torsten Schaub. "ASP modulo CSP: The clingcon system". In: TPLP 12.4-5 (2012), pp. 485-503.

Modeling the Problems in W-MAXSAT

Figure: The winner problem

Solver: toulbar⁹

Xudong Liu Preferences SC, CCEC, UNF, 1/6 42 / 52

⁹M Sanchez et al. "Max-CSP competition 2008: toulbar2 solver description". In: the Third International CSP Solver Competition (2008).

Random LP Profiles

 To experiment with LP profiles, we developed methods to randomly generate encodings of a special type of CI-CP LP tree of size linear in the number of issues

Figure: Random LP tree

Varying p and n: 2^{p-2} -approval

Figure: Solving the winner problem

Varying p and n: $(2^{p-2}, 2^{p-2})$ -approval ¹⁰

Figure: Solving the winner problem

45 / 52

 $^{^{10}}$ scoring vector: $(2,\ldots,2,1,\ldots,1,0,\ldots,0)$ with the numbers of 2's and 1's equal to 2^{p-2}

Varying p and n: Borda

Figure: Solving the winner problem

Personalization in Trip Planning

- Important to incorporate user constraints and preferences into trip planning systems.
- Collaboration with experts (in AI, planning, optimization, multi-agent systems) at PARC.
- Developed a hipergraph-based trip planner that accommodates constraints specified as *linear temporal logic* and preferences expressed as *preferential cost function* to compute optimal routes using A*11.
- Available later for trip planning in the Bay Area, LA, and Denver.

Xudong Liu Preferences SC, CCEC, UNF, 1/6 47 / 52

¹¹Xudong Liu. "On Personalizability and Extensibility of Multi-Modal Trip Planning". In: PARC Symposium. 2015.

Personalization in Trip Planning

- From SJC, to Pier 39, Monday, 9am.
- Constraints: never drive a car, and bike for 1 to 2 hours.
- **③** Preferences: bike = public (0.25) > wait(2) > walk(3), and 30\$/hr.

Preference Learning

Goal: preference predicting and feasibility of various preference models.

- Recommender Systems:
 - Collaborative
 - Content-based
 - Hybrid
- Machine Learning:
 - Supervised learning
 - 2 Label ranking
- Preference Elicitation:
 - Positive learning
 - Human-in-the-loop
- Preference Learning:
 - Conditional Preference Networks
 - 2 Preference Trees (e.g., LP-trees, CLP-trees, PLP-trees)
 - 3 Stochastic Models (e.g., Choquet integral, TOPSIS-like models)

Xudong Liu Preferences SC, CCEC, UNF, 1/6 49 / 52

Preference Reasoning

Goal: personalized optimization and collaborative decision making.

- Preference Optimization:
 - Consistency testing
 - Ominance testing
 - Optimality testing
- Preference Aggregation:
 - Social choice and welfare
 - Voting systems
- Preference Misrepresentation:
 - Control
 - Manipulation
 - Bribery

 Xudong Liu
 Preferences
 SC, CCEC, UNF, 1/6
 50 / 52

Preference Applications

Goal: exploring possibilities of collaboration with experts in other areas.

- Automated Planning and Scheduling:
 - Travel scheduling
 - Manufacturing
 - Traffic control
- Computer Vision and Image Processing:
 - Image retrieval
 - Image and video understanding

Xudong Liu Preferences SC, CCEC, UNF, 1/6 51 / 52

Questions?

Thank you!

Xudong Liu Preferences SC, CCEC, UNF, 1/6 52 / 52