Processus de Poisson et méthodes actuarielles (2010-2011) M1 MMD-MA

Examen du lundi 30 mai 2011.

Exercice 1. (9,5 pts.). Dans le modèle de Cramér-Lundberg, on suppose que les coûts des sinistres X_i , $i \ge 1$ sont des variables aléatoires de densité :

$$f(x) = \frac{1}{2}e^{-x} + e^{-2x}, \quad x > 0$$

et que l'intensité du processus de Poisson décrivant l'évolution du nombre de sinistres est égale à 1. On note c le coefficient de prime instantanée et u le capital initial de l'assureur.

- 1. Rappeler la définition mathématique de la probabilité de ruine, qu'on notera $\psi(u)$.
- 2. Calculer $\mathbb{E}[X_1]$.
- 3. Donner une condition nécessaire et suffisante sur c pour que la condition de profit net soit réalisée. Que vaut la probabilité de ruine lorsque c = 0.5?

 On suppose dans la suite que c = 2.
- 4. Montrer que le coefficient d'ajustement R existe et est solution d'une équation du second degré. En déduire sa valeur.
- 5. En déduire un majorant décroissant exponentiellement vite de la probabilité de ruine $\psi(u)$, u > 0.
- 6. La fonction $u \in \mathbb{R}_+^* \mapsto e^{Ru} \psi(u)$ est solution d'une équation de renouvellement de la forme

$$e^{Ru}\psi(u) = g(u) + \int_0^u e^{R(u-y)}\psi(u-y)h(y)dy.$$

Donner g et h explicitement.

7. En déduire un équivalent de $\psi(u)$ quand $u \to +\infty$ (pour alléger les notations, vous pourrez exprimer le résultat avec la notation R pour le coefficient d'ajustement, plutôt que de le remplacer par sa valeur). Plusieurs approches sont possibles pour répondre à cette question, vous pouvez utiliser celle de votre choix.

Exercice 2. (3,5 pts).

- 1. Rappeler les deux définitions vues en cours d'un processus de Poisson de paramètre $\lambda > 0$.
- 2. On note $0 < T_1 < T_2 < T_3 < \dots$ les temps de saut d'un tel processus. Montrer que T_1/T_2 suit une loi uniforme sur (0,1).

Exercice 3. (7 pts). On considère un processus de renouvellement, dont la loi des temps d'interarrivées τ_i , $i \ge 1$ est la loi de Pareto définie par

$$\mathbb{P}(\tau_1 > x) = \frac{1}{(1+x)^{\alpha}}, \quad x \ge 0,$$

avec $\alpha > 0$. Pour $i \ge 1$, on pose $T_i = \sum_{k=1}^i \tau_k$ et pour $t \ge 0$, on pose

$$N(t) = \sum_{i \ge 1} \mathbf{1}_{\{T_i \le t\}}.$$

On note m la fonction de renouvellement associée. Enfin on pose pour tout temps $t \geq 0$,

$$F(t) = T_{N(t)+1} - t$$

le temps écoulé entre le temps t et le N(t)+1-ème temps de renouvellement. On rappelle le résultat suivant vu en cours : pour tout $x\geq 0$, la fonction $t\mapsto \mathbb{P}(F(t)>x)$ vérifie l'équation de renouvellement

$$\mathbb{P}(F(t) > x) = \mathbb{P}(\tau_1 > t + x) + \int_0^t \mathbb{P}(F(t - u) > x) d\mathbb{P}_{\tau_1}(u), \quad t \ge 0.$$
 (1)

1. Soit X une variable aléatoire positive quelconque. Montrer que $\forall r > 0$,

$$\int_0^\infty rx^{r-1}\mathbb{P}(X>x)\mathrm{d}x = \mathbb{E}[X^r].$$

- 2. Utiliser l'équation (??) et un théorème du cours dont vous rappellerez précisément les hypothèses pour établir une relation entre $\mathbb{P}(F(t) > x)$ et la mesure de renouvellement dm.
- 3. Utiliser la relation précédente pour montrer que

$$\mathbb{E}[F(t)^2] = \int_0^t \left(\int_0^\infty \frac{2x}{(1+t-u+x)^\alpha} dx \right) dm(u).$$

4. En déduire que pour $\alpha > 3$,

$$\mathbb{E}[F(t)^2] \underset{t \to \infty}{\longrightarrow} 2 \int_0^\infty x (1+x)^{1-\alpha} \mathrm{d}x.$$

Calculer cette intégrale limite.