Intensional infect proportion of newborn, finding eigenvalues

May 3, 2018

$$\frac{\mathrm{d}S}{d\tau} = \epsilon(1-p) - \mathcal{R}_0 SI - \epsilon S \tag{1}$$

$$\frac{\mathrm{d}I}{d\tau} = \mathcal{R}_0 SI + \epsilon p - I \tag{2}$$

Here γ is mean infectious period, μ is birth/death rate, p is probability of intensional infection on newborns. $\epsilon = \frac{\mu}{\gamma + \mu}$, \mathcal{R}_0 is the basic reproduction number.

$\mathbf{E}\mathbf{E}$ 1

So to find the E.E. Letting both equal to 0, solve get:

$$I = \frac{\epsilon(\mathcal{R}_0 - 1) + \epsilon\sqrt{(\mathcal{R}_0 - 1)^2 + 4\mathcal{R}_0 p}}{2\mathcal{R}_0}$$

$$S = \frac{1}{\mathcal{R}_0} - \frac{2p}{(\mathcal{R}_0 - 1) + \sqrt{(\mathcal{R}_0 - 1)^2 + 4\mathcal{R}_0 p}}$$
(3)

$$S = \frac{1}{\mathcal{R}_0} - \frac{2p}{(\mathcal{R}_0 - 1) + \sqrt{(\mathcal{R}_0 - 1)^2 + 4\mathcal{R}_0 p}}$$
(4)

$$\mathcal{R}_0 I = \frac{\epsilon (\mathcal{R}_0 - 1) + \epsilon \sqrt{(\mathcal{R}_0 - 1)^2 + 4\mathcal{R}_0 p}}{2} \tag{5}$$

$$\mathcal{R}_{0}I = \frac{\epsilon(\mathcal{R}_{0} - 1) + \epsilon\sqrt{(\mathcal{R}_{0} - 1)^{2} + 4\mathcal{R}_{0}p}}{2}$$

$$\mathcal{R}_{0}S = 1 - \frac{2p\mathcal{R}_{0}}{(\mathcal{R}_{0} - 1) + \sqrt{(\mathcal{R}_{0} - 1)^{2} + 4\mathcal{R}_{0}p}}$$
(5)

Jacobian is the following.

$$\mathcal{J} = \begin{bmatrix} -\mathcal{R}_0 I - \epsilon & -\mathcal{R}_0 S \\ \mathcal{R}_0 I & \mathcal{R}_0 S - 1 \end{bmatrix}$$
 (7)

Now for simplicity, let $(\mathcal{R}_0 - 1) + \sqrt{(\mathcal{R}_0 - 1)^2 + 4\mathcal{R}_0 p} = K$. Notice, K > 0 if $q \neq 0$

So we get:

$$\mathcal{R}_0 I = \frac{\epsilon K}{2} \tag{8}$$

$$\mathcal{R}_0 S = 1 - \frac{2p\mathcal{R}_0}{K} \tag{9}$$

$$\mathcal{J} = \begin{bmatrix} -\frac{\epsilon K}{2} - \epsilon & -1 + \frac{2p\mathcal{R}_0}{K} \\ \frac{\epsilon K}{2} & -\frac{2p\mathcal{R}_0}{K} \end{bmatrix}$$
 (10)

The eigenvalues of this Jacobian is:

$$\lambda = \frac{-(\epsilon K^2 + 2\epsilon K + 4p\mathcal{R}_0) \pm \sqrt{(\epsilon K^2 + 2\epsilon K + 4p\mathcal{R}_0)^2 - 4(2\epsilon K^3 + 8\epsilon Kp\mathcal{R}_0)}}{4K}$$
(11)

Since $\sqrt{(\epsilon K^2 + 2\epsilon K + 4p\mathcal{R}_0)^2 - 4(2\epsilon K^3 + 8\epsilon Kp\mathcal{R}_0)} \le |\epsilon K^2 + 2\epsilon K + 4p\mathcal{R}_0|$, we can conclude that $\text{Re}(\lambda) < 0$ for all $p \ne 0$

We are interested in whether this is a damped oscillation or not, so we look into the discriminant.

1.1 Take p as the variable

The following values are used: $\mu = \frac{1}{50*365}$, $\gamma = \frac{1}{22}$, $\mathcal{R}_0 = 4.5$. Also, $\epsilon = \frac{\mu}{\mu + \gamma} = 0.0012$

I plotted the discriminant with Mathematica, domain of p is [0,1].

Figure 1: Plot discriminant with p to be the variable.

The p-intercept of this graph is p=0.103995. Meaning, with a proportion of 0.103995 or less, there is going to be a damped oscillation.

1.2 Take \mathcal{R}_0 as the variable

.

This time, I take
$$\mu = \frac{1}{80*365}$$
, $\gamma = \frac{1}{22}$, $\epsilon = \frac{\mu}{\mu + \gamma} = 0.000753$.

I made a sequence of plots by taking p = 0.1, 0.2, 0.3...

Figure 2: Plot discriminant with \mathcal{R}_0 to be the variable p=0.1, the \mathcal{R}_0 -intercept is $\mathcal{R}_0=0,5.74966$

Figure 3: Plot discriminant with \mathcal{R}_0 to be the variable.p=0.2, the \mathcal{R}_0 -intercept is $\mathcal{R}_0=0,17.0518$

Figure 4: Plot discriminant with \mathcal{R}_0 to be the variable p=0.3, the \mathcal{R}_0 -intercept is $\mathcal{R}_0=0,37.4537$

For p = 0.4 or higher, the graphs look similar, but with even higher value for the discriminant and larger value for \mathcal{R}_0 -intercept.

2 DFE

Disease free equilibrium is the equilibrium when there is no body infected in the system, which means, ${\cal I}=0$

Thus we have
$$\frac{dI}{d\tau} = \mathcal{R}_0 SI + \epsilon p - I = \epsilon p = 0$$

In our case, there is no DFE. When I=0, we are still intensionally infecting susceptible, therefore, there is no equilibrium in which I=0.