# Elliptic Curves

Alec Zabel-Mena

 $\mathrm{June}\ 23,\ 2023$ 

## Contents

| 1 | Algebraic Varieties  | 5 |
|---|----------------------|---|
|   | 1.1 Affine Varieties | F |

4 CONTENTS

## Chapter 1

## Algebraic Varieties

#### 1.1 Affine Varieties

**Definition.** Let k be a perfect field. We define **affine** n-space over k to be the set

$$\mathbb{A}^n(\overline{k}) = \{ P = (x_1, \dots, x_n) : x_i \in \overline{k} \}$$

where  $\overline{k}$  is the algebraic closure of k. We define the set of all k-rational points of  $\mathbb{A}^n$  to be

$$\mathbb{A}^{n}(k) = \{ P = (x_1, \dots, x_n) : x_i \in k \}$$

**Lemma 1.1.1.** Let k be a perfect field, and  $\overline{k}$  its algebraic closure. Then  $\operatorname{Gal}^{\overline{k}}/k$  acts on  $\mathbb{A}^n$  via the action

$$P = (x_1, \dots, x_n) \to \sigma P = (\sigma x_1, \dots, \sigma x_n)$$

Moreover

$$\mathbb{A}^{n}(k) = \{ P \in \mathbb{A}^{n} : \sigma P = P \text{ for all } \sigma \in \operatorname{Gal}^{\overline{k}}/_{k} \}$$

*Proof.* It is not hard to check that the action described above is indeed an action on  $\mathbb{A}^n$ . Moreover, since  $\operatorname{Gal}^{\overline{k}}/_k$  consists of all k-automorphisms (i.e. automorphisms of  $\overline{k}$  that fix k), then for any  $\sigma \in \operatorname{Gal}^{\overline{k}}/_k$ , and  $P \in k$ , we have  $\sigma P = P$ .

**Definition.** Let k be a perfect field, and let  $\mathfrak{a}$  be an ideal of  $\overline{k}[x_1,\ldots,x_n]$ . We define an **affine algebraic set** to be a set

$$V_{\mathfrak{a}} = \{ P \in \mathbb{A}^n(\overline{k}) : f(P) = 0 \text{ for all } f \in \mathfrak{a} \}$$

That is, it is the set of all zeros of all polynomials in  $\mathfrak{a}$ . We define the **ideal** of  $\mathbb{V}_{\mathfrak{a}}$  to be the set

$$I(V_{\mathfrak{a}}) = \{ f \in \overline{k}[x_1, \dots, x_n] : f(P) = 0 \text{ for all } P \in V_{\mathfrak{a}} \}$$

**Lemma 1.1.2.** Let k be a perfect field, and V an affine algebraic set. Then I(V) is an ideal in  $\overline{k}[x_1,\ldots,x_n]$ . Moreover, it is finitely generated.

*Proof.* We have that I(V) forms a subgroup of  $\overline{k}[x_1,\ldots,x_n]$ , indeed, if  $f,g\in I(V)$ , then  $-f\in I(V)$  and  $g\in I(V)$ . Moreover, if  $g\in \overline{k}[x_1,\ldots,x_n]$ , then  $gf\in I(V)$ . Now, since  $\overline{k}$  is a field, it is a PID, and hence Noetherian, so that by Hilbert's theorem (see [1] or [2]),  $\overline{k}[x_1,\ldots,x_n]$  is Noetherian, and so every ideal in  $\overline{k}[x_1,\ldots,x_n]$  must be finitely generated.

**Lemma 1.1.3.** Let V be an algebraic set over a perfect field, and consider the set  $I(V/k) = I(V) \cap \overline{k}[x_1, \dots, x_n]$ . Then I(V/k) is defined over k if, and only if

$$I(V) = I(V/k)\overline{k}[x_1, \dots, x_n]$$

Moreover,  $I(V_k)$  is an ideal of  $\overline{k}[x_1, \ldots, x_n]$ .

Proof. Exercise

Corollary. If V is defined over k such that  $I(V_k) = (f_1, ..., f_m)$ , where  $f_1, ..., f_m \in k$ , then V is the set of all solutions to the polynomial equations

$$f_1(x_1,...,x_n) = \cdots = f_m(x_1,...,x_n) = 0 \text{ for all } x_1,...,x_n \in k$$

**Corollary.** If V is defined over k, then the action of  $\operatorname{Gal}^{\overline{k}}/_k$  on  $\mathbb{A}^n$  induces an action on V, and

$$V = \{ P \in V : \sigma P = P \text{ for all } \sigma \in \operatorname{Gal}^{\overline{k}}/_{k} \}$$

*Proof.* This result follows, in fact, immediately from lemma 1.1.1

**Example 1.1.** (1) Let k be a perfect field and let V the algebraic set in  $\mathbb{A}^2$  given by the equation

$$x^2 - y^2 = 1$$

That is,

$$V = \{ P \in \mathbb{A}^2 : x^2 - y^2 - 1 = 0 \}$$

Suppose that char  $k \neq 2$ . Then V is in 1–1 correspondence onto the set  $\mathbb{A}^2 \setminus \{0\}$  given by the map

$$t \to \left(\frac{t^2+1}{2t}, \frac{t^2-1}{2t}\right)$$

That is, the set of all k-rational points, for char  $k \neq 0$  of the set is given by

$$\left(\frac{t^2+1}{2t}, \frac{t^2-1}{2t}\right)$$

Now take  $k = \mathbb{Q}$ , whose algebraic closure is  $\mathbb{R}$ , then notice that the equation  $x^2 - y^2 = 1$  over  $\mathbb{A}^2 = \mathbb{R}^2$  defines the unit hyperbola. We can derive the formula for the  $\mathbb{Q}$ -rational points on V then by considering the line intersecting the curve  $x^2 - y^2 - 1$  at the points P, (-1,0) and intersection the y-axis at (0,-1) as shown in figure 1.1.



Figure 1.1:

(2) Fermat's Last Theorem, states that the algebraic set  $V: x^n + y^n = 1$  has as  $\mathbb{Q}$ -rational points the set consisting of

$$V(\mathbb{Q}) = \begin{cases} (1,0), (0,1), & \text{if } n \equiv 0 \mod 2\\ (\pm 1,0), (0,\pm 1) & \text{if } n \equiv 1 \mod 2 \end{cases}$$

(3) The algebraic set  $V: y^2 = x^3 + 17$  has many  $\mathbb{Q}$ -rational points, of which are

$$(-2,3) (5234,37866) \left(\frac{137}{64},\frac{2651}{512}\right)$$

**Definition.** We call an affine algebraic set V over a perfect field k an **affine variety** if I(V) is a prime ideal in  $\overline{k}[x_1,\ldots,x_n]$ . We define the **affine coordinate ring** of V to be the factor ring

$$k[V] = {}^{k[x_1, \dots, x_n]} / {}_{I(V/k)}$$

We call the field of fractions of k[V] the **function field** of V over k and denote it k(V). We similarly define  $\overline{k}[V]$  to be

$$\overline{k}[V] = \overline{k}[x_1, \dots, x_n] / I(V/\overline{k})$$

and  $\overline{k}(V)$  to be the field of fractions of  $\overline{k}(V)$ .

**Lemma 1.1.4.** The affine coordinate ring of a affine variety is an integral domain.

*Proof.* Let k be a perfect set, and V an affine variety over k. By definition, we have that I(V) is a prime ideal in  $\overline{k}[x_1,\ldots,x_n]$ ; moreover, since k is a field,  $k[x_1,\ldots,x_n]$  is a commutative ring with identity. This means that k[V] must be an integral domain (see proposition 13; [3]).

**Lemma 1.1.5.** Let k be a perfect field, and V an affine variety over k. Then k[V] and k(V) are subsets of  $\overline{k}[V]$  and  $\overline{k}(V)$  fixed by  $\operatorname{Gal} \overline{k}/k$ .

*Proof.* Excersice (see exercise 1.12; [4]).

**Definition.** Let k be a perfect field. A **transcendental base** of  $\overline{k}_k$  is a maximally algebraically independent subset of  $\overline{k}$  over k. We define the **transcendence degree** of  $\overline{k}_k$  to be the cardinality of any given transcendental base of  $\overline{k}_k$ , and denote it trdim  $k_k$ . We define the dimension on an affine variety over k to be

$$\dim V = \operatorname{trdim}^{\overline{k}(V)}/k$$

**Example 1.2.** dim  $\mathbb{A}^n = n$  since  $\overline{k}(\mathbb{A}^n) = \overline{k}(x_1, \dots, x_n)$ . Now, if  $V \subseteq \mathbb{A}^n$  is a variety given by the polynomial equation

$$f(x_1,\ldots,x_n)=0$$

then dim V = n - 1.

**Definition.** Let V be an affine variety over k such that  $I(V) = (f_1, \ldots, f_m)$  with  $f_1, \ldots, f_m \in \overline{k}[x_1, \ldots, x_n]$ , and let  $P \in V$ . We call V nonsingular (or smooth) at P if the  $m \times n$  matrix

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \end{pmatrix}$$

has rank  $n - \dim V$ . If V is nonsingular at any point, then we call V **nonsingular** (or **smooth**). We call V **singular** if it is not nonsingular.

**Lemma 1.1.6.** Let V be an affine variety over a perfect field k, and I(V) = (f) for some  $f \in \overline{k}[x_1, \ldots, x_n]$ . Then V is singular if, and only if

$$\frac{\partial f}{\partial x_1} = \dots = \frac{\partial f}{\partial x_1} = 0$$

*Proof.* We prove the contrapositve. Since f is given by the polynomial equation  $f(x_1, \ldots, x_n) = 0$ , then dim V = n - 1, so that if V is nonsingular, then the  $1 \times n$  matrix

$$\left(\frac{\partial f}{\partial x_1} \quad \dots \quad \frac{\partial f}{\partial x_n}\right)$$

has rank n - (n - 1) = 1; in which case, we have for for all  $1 \le i \le n$ 

$$\frac{\partial f}{\partial x_i} \neq 0$$

The converse holds by similar reasoning.

**Example 1.3.** Consider the affine varieties

$$V_1: y^2 = x^3 + x$$
 and  $V_2: y^2 = x^3 + x^2$ 

Then a point of  $V_1$ , and  $V_2$ , respectively, is singular if

$$2y = 3x^2 + 1 = 0$$
 and  $2y = 3x^2 + 2x = 0$ 

Then  $V_1$  is nonsingular, where as  $V_2$  is singular at the point P = (0,0). Letting  $k = \mathbb{Q}$ , and graphing the curves  $y^2 - x^3 - x$  and  $y^2 - x^3 - x^2$  in  $\mathbb{R}^2$  in figure 1.2 shows us the singular and nonsingular points



Figure 1.2:

**Lemma 1.1.7.** Let V be an affine variety over a perfect field k, and let  $P \in V$ . Define  $\mathfrak{m}_P$  of  $\overline{k}[V]$  by

$$\mathfrak{m}_P = \{ f \in \overline{k}[x_1, \dots, x_n] : f(P) = 0 \}$$

Then  $\mathfrak{m}_P$  is an idela of  $\overline{k}[x_1,\ldots,x_n]$ , and P is a nonsingular point of V if, and only if

$$\dim_{\overline{k}} \mathfrak{m}_{P/\mathfrak{m}_{P}^{2}} = \dim V$$

where  $\mathfrak{m}_{P/\mathfrak{m}_{P}^{2}}$  is considered as a vector space.

**Example 1.4.** Consider again the varieties of example 1.3. Then  $\mathfrak{m}_P$  is the ideal  $\mathfrak{m}_P = (x, y)$  in  $\overline{k}[x, y]$ , and  $\mathfrak{m}_P^2 = (x^2, xy, y^2)$ . Then we have

$$x = y^2 - x^3 \equiv 0 \mod \mathfrak{m}_P^2$$

so that  $\mathfrak{m}_P/\mathfrak{m}_P^2 = (y)$  in the variety  $V_1$ . On the other hand, there is no nontrivial relation between x and y in  $\mathfrak{m}_P^2$  for  $V_2$ , so that  $\mathfrak{m}_P/\mathfrak{m}_P^2$  must have x and y as generators. Now,  $\dim V_1 = \dim V_2 = 1$ , implying, by lemma 1.1.7 that  $V_1$  is nonsingular and  $V_2$  is singular.

**Definition.** Let V be an affine variety over a perfect field k. We define the **local ring** of V at P, denoted  $\overline{k}[V]_P$  to be the localization of  $\overline{k}[V]$  at  $\mathfrak{m}_P$ . That is

$$\overline{k}[V]_P = \left\{ F \in \overline{k}(V) : f = \frac{f}{g}, f, g \in \overline{k}[x_1, \dots, x_n] \text{ and } g(P) \neq 0 \right\}$$

#### 1.2 Projective Varieties

## Bibliography

- [1] M. Atiyah and I. MacDonald, *Introduction to Commutative Algebra*. Addison-Wesly Series in Mathematics, CRC Press.
- [2] D. Eisenbud, Commutative Algebra: Wit a View Toward Algebraic Geometry. Graduate Texts in Mathematics, Springer Verlag.
- [3] D. Dummit and R. Foote, Abstract algebra. Hoboken, NJ: John Wiley & Sons, Inc, 2004.
- [4] J. Silverman, *The Arithmetic of Elliptic Curves*. Graduate Texts in Mathematics, Springer Verlag.
- [5] I. N. Herstein, Topics in algebra. New York: Wiley, 1975.
- [6] R. Hartshorne, Algebraic Geometry. Graduate Texts in Mathematics, Springer Verlag.