Exercice 8

- 1. Soit un vecteur non nul $\vec{x} \in \operatorname{Ker}(\lambda \operatorname{id} u \circ v)$. Ainsi, $u(v(\vec{x})) = \lambda \vec{x}$. Et, donc $v(u(v(\vec{x}))) = \lambda v(\vec{x})$. On a donc $v(\vec{x}) \in \operatorname{Ker}(\lambda \operatorname{id} v \circ u)$. Or, si $\lambda \neq 0$, on a $v(\vec{x}) \neq \vec{0}$; en effet, si $v(\vec{x}) = \vec{0}$, alors $u \circ v(\vec{x}) = \vec{0} = \lambda \vec{x}$ et donc $\vec{x} = \vec{0}$, ce ne serait donc pas un vecteur propre de $u \circ v$ une contradiction. On en déduit que $v(\vec{x})$ est un vecteur propre de $u \circ v$ associé à la valeur propre λ .
- 2. On pose donc $\lambda=0$, une valeur propre de $u\circ v$. L'endomorphisme $u\circ v$ n'est donc pas injectif, donc bijectif. On sait donc, comme E est de dimension finie, que $\det(u\circ v)=0$. Or $\det(u\circ v)=\det u\times \det v=\det(v\circ u)$. Et donc $\det(v\circ u)=0$, $v\circ u$ n'est donc pas bijectif, donc injectif. Et donc, on a $0\in\operatorname{Sp}(v\circ u)$.
- 3. Soit $P \in \mathbb{R}[X]$, et soit Q une primitive de P.

$$\begin{split} P \in \mathrm{Ker}(u \circ v) &\iff \left(\int_0^X P(t) \; \mathrm{d}t\right)' = 0 \\ &\iff \left(Q(X) - Q(0)\right)' = 0 \\ &\iff Q'(X) = 0 \\ &\iff P(X) = 0 \end{split}$$

On en déduit que $\operatorname{Ker}(u \circ v) = \{0\}$. Également,

$$P \in \operatorname{Ker}(v \circ u) \iff \int_0^X P'(t) \, dt = 0$$

$$\iff P(X) - P(0) = 0$$

$$\iff P(X) = P(0)$$

$$\iff \deg P \leqslant 0$$

$$\iff P \in \mathbb{R}_0[X]$$

On en déduit que $Ker(v \circ u) = \mathbb{R}_0[X]$.