Maths DM_2

Hugo Salou MP2I - Décembre 2021

Table des matières

Ι	Des exemples	1
	I.A	1
	I.B	2
	I.C	2
II		3
III	Un ordre sur \Re	3
	III.A " " " est une relation d'ordre	3
	III.B " — est un ordre total	3
	III.C	4
IV	Propriété de la borne supérieure	4
	IV.Ā	4
	IV.B	5
V	Injection de \mathbb{Q} dans \Re	5
	V.A I injective	5
	V.B I croissante	5
VI	Somme de deux coupures	5
	VI.A	5
	VI.B	6
	VI.C	7
	VI.D	7
	VI.E	7
VII		7
	VII.A	7
		٠ 2

I Des exemples

I.A

$$\begin{array}{ll} - & \mathbb{Q}_*^- \neq \varnothing \\ - & \mathbb{Q}^+ \neq \varnothing \end{array}$$

- $--\mathbb{Q}_*^-\cap\mathbb{Q}^+=\varnothing$
- $\mathbb{Q}_*^- \cup \mathbb{Q}^+ = \mathbb{Q}$
- $\forall x \in \mathbb{Q}_*^-, \forall y \in \mathbb{Q}^+, x < y \text{ car } \forall x \in \mathbb{Q}_*^-, x < 0 \text{ et } \forall y \in \mathbb{Q}^+, y \geqslant 0$
- \mathbb{Q}_*^- est majorée par 0 et c'est le plus petit majorant. Or, $0 \not\in \mathbb{Q}_*^-$. Donc \mathbb{Q}_*^- n'a pas de plus grand élément.

Donc $(\mathbb{Q}_*^-, \mathbb{Q}^+)$ est une coupure de \mathbb{Q}

I.B

Soient $q \in \mathbb{Q}$, $L_q = \{x \in \mathbb{Q} \mid x < q\}$ et $R_q = \{x \in \mathbb{Q} \mid x \geqslant q\}$. On pose $I(q) = (L_q, R_q)$

- $-q-1 \in L_q \text{ donc } L_q \neq \emptyset \text{ et } q \in R_q \text{ donc } R_q \neq \emptyset$

- Soit $(x, y) \in L_q \times R_q$. Alors, $y \ge q > x$. Donc y > x.
- L_q est majorée par q et c'est le plus petit majorant. Or, $q \notin L_q$ donc L_q n'a pas de plus grand élément.

Donc (L_q, R_q) est une coupure de \mathbb{Q}

I.C

Soient $L = \{x \in \mathbb{Q} \mid x \le 0 \text{ ou } x^2 < 2\} \text{ et } R = \{x \in \mathbb{Q}^+ \mid x^2 \ge 2\}.$

- $-0 \in L \text{ donc } L \neq \emptyset$
- $-2 \in \mathbb{Q}^+, 2^2 = 4 \geqslant 2 \text{ donc } 2 \in R \text{ donc } R \neq \emptyset$ $R = \{ x \in \mathbb{Q} \mid x^2 \geqslant 2 \text{ et } x \geqslant 0 \}$ Soit $x \in \mathbb{Q}$.

Cas 1 $x \leq 0$ et $x^2 < 2$. Donc, $x \in L$.

Comme $x \leq 0$, $x \notin R$. Donc $x \in L \cup R$ mais $x \notin L \cap R$.

Cas 2 x > 0 et $x^2 < 2$. Donc, $x \in L$. Comme $x^2 < 2$, $x \notin R$. Donc $x \in L \cup R$ mais $x \notin L \cap R$.

Cas 3 $x \le 0$ et $x^2 \ge 2$. Donc, $x \in L$.

Comme $x \leq 0$, $x \notin R$ Donc $x \in L \cup R$ mais $x \notin L \cap R$. Cas 4 x > 0 et $x^2 \ge 2$. Donc, $x \in R$.

Comme $x \geqslant 0$ et $x^2 \geqslant 2$, $x \notin L$. Donc $x \in L \cup R$ mais $x \notin L \cap R$.

- Donc, $L \cap R = \emptyset$ et $L \cup R = \mathbb{Q}$
- Soient $x \in L$ et $y \in R$.

Si $x \leq 0$, alors $x \leq 0 \leq y$. Donc $x \leq y$.

Si x > 0, alors $x^2 < 2 \le y^2$. Donc $x \le y$.

Donc, $x \leq y$.

On pose l'ensemble $A = \{x^2 \mid x \in L \text{ et } x > 0\} = \{x^2 \mid x^2 < 2 \text{ avec } x \in \mathbb{Q}\}.$ $A \neq \emptyset$ car $1 \in A$. Cet ensemble A est majorée par 2 et c'est le plus petit majorant. Donc, l'ensemble A n'a pas de plus grand élément. Donc, L n'a pas de plus grand élément.

Donc, (L,R) est bien une coupure de \mathbb{Q}

\mathbf{II}

Soient (L,R) une coupure de \mathbb{Q} , $x \in L$ et $y \in \mathbb{Q}$. On suppose $y \leqslant x$.

Comme $L \cup R = \mathbb{Q}$ et $L \cap R = \emptyset$, $y \in L$ ou (exclusif) $y \in R$.

Montrons que $y \notin R$.

On suppose $y \in R$, alors $\forall u \in L, u \leq y$. Notamment, pour u = x, on a $x \leq y$. Si $x \neq y$, on a une contradiction.

Si x = y, on a $y \in L$ et $y \in R$, donc $L \cap R \neq \emptyset$: une contradiction.

Donc $y \in L$

Un ordre sur \Re TTT

On a $(L_1, R_1) \leq (L_2, R_2) \iff L_1 \subset L_2$.

III.A "≺" est une relation d'ordre

Réflectivité Soit (L,R) une coupure de \mathbb{Q} . Montrons $(L,R) \prec (L,R)$.

$$(L,R) \preceq (L,R) \iff L \subset L$$

Ce qui est toujours vrai. Donc \leq est reflective.

Antisymétrie Soient $C_1 = (L_1, R_1)$ et $C_2 = (L_2, R_2)$ deux coupures de \mathbb{Q} . On suppose $C_1 \leq C_2$ et $C_2 \leq C_1$. Montrons $C_1 = C_2$, i.e. $L_1 = L_2$ et $R_1 = R_2.$

 $-C_1 \leq C_2 \text{ donc } L_1 \subset L_2$ $-C_2 \leq C_1 \text{ donc } L_2 \subset L_1$

On a donc $L_1 = L_2$.

Comme $L_1 \cup R_1 = \mathbb{Q}$ et $L_1 \cap R_1 = \emptyset$, on a $R_1 = \mathbb{Q} \setminus L_1$. De même, $R_2 = \mathbb{Q} \setminus L_2$. Donc, $R_1 = \mathbb{Q} \setminus L_1 = \mathbb{Q} \setminus L_2 = R_2$.

Donc,
$$\begin{cases} R_1 = R_2 \\ L_1 = L_2 \end{cases}$$
. Donc, $C_1 = C_2$.

Transitivité Soient $C_1 = (L_1, R_1), C_2 = (L_2, R_2), \text{ et } C_3 = (L_3, R_3), \text{ trois}$ coupures de Q. On suppose

$$\begin{cases} C_1 \preceq C_2 \\ C_2 \preceq C_3 \end{cases} \iff L_1 \subset L_2 \subset L_3$$

. On en déduit que $L_1 \subset L_3$. Donc, $C_1 \leq C_3$

Donc, \leq est une relation d'ordre.

III.B "≺" est un ordre total

Soient $C_1 = (L_1, R_1)$ et $C_2 = (L_2, R_2)$ deux coupures de \mathbb{Q} . C_1 et C_2 sont comparables avec \leq si et seulement si L_1 et L_2 sont comparables avec \subset . Comme deux ensembles sont toujours comparables avec \subset , deux coupures de $\mathbb Q$ sont toujours comparables avec \leq .

Donc, (\mathbb{Q}, \preceq) est totalement ordonné.

III.C

On a $I(0) = (L_0, R_0)$ avec $L_0 = \{x \in \mathbb{Q} \mid x < 0\}$ et $R_0 = \{x \in \mathbb{Q} \mid x \ge 0\}$. On remarque $L_0 = \mathbb{Q}_*^-$ et $R_0 = \mathbb{Q}^+$. On a $\Re ac(2) = (L, R)$ avec $L = \{x \in \mathbb{Q} \mid x \le 0 \text{ ou } x^2 < 2\}$ et $R = \{x \in \mathbb{Q}^+ \mid x^2 \ge 2\}$.

$$I(0) \leq \Re ac(2) \iff \mathbb{Q}_*^- \subset L$$

Or,

$$L = \underbrace{\{x \in \mathbb{Q} \mid x < 0\}}_{\mathbb{Q}_{+}^{-}} \cup \{x \in \mathbb{Q} \mid x \leqslant 0 \text{ ou } x^{2} < 2\}$$

Donc, $\mathbb{Q}_*^- \subset L$. Donc $I(0) \preceq \mathscr{R}ac(2)$

IV Propriété de la borne supérieure

IV.A

- $\forall (L, R) \in A, (L \neq \emptyset \text{ et } R \neq \emptyset); A \neq \emptyset \text{ Donc}, \mathcal{L} \neq \emptyset$
- On pose $n \in \mathbb{Q}$ tel que $\forall (L,R) \in A, \forall x \in L, n > x$. Ce nombre existe car tous les éléments de R associées à L seront toujours plus grand que n'importe quel élément de L. Donc, $\forall (L,R) \in A, n \notin L$, donc $\forall (L,R) \in A, n \in R$. Donc, $n \in \mathcal{R}$, donc $\mathcal{R} \neq \emptyset$ car $\mathcal{R} = \bigcap_{(L,R)\in A} R$ (cf raisonnement après).

$$\begin{array}{ll} -- & \mathscr{L} \cap (\mathbb{Q} \setminus \mathscr{L}) = \varnothing \\ -- & \mathscr{L} \cup (\mathbb{Q} \setminus \mathscr{L}) = \mathbb{Q} \end{array}$$

_

$$\begin{split} \mathscr{R} &= \mathbb{Q} \setminus \mathscr{L} \\ \mathscr{R} &= \mathbb{Q} \setminus \bigcup_{(L,R) \in A} L \\ \mathscr{R} &= \bigcap_{(L,R) \in A} \mathbb{Q} \setminus L \\ \mathscr{R} &= \bigcap_{(L,R) \in A} R \end{split}$$

Or,

$$\forall (L, R) \in A, \forall (x, y) \in L \times R, x \leq y$$

Donc,

$$\forall y \in \mathcal{R}, \forall (L, R) \in A, \forall x \in L, x \leqslant y$$

Donc,

$$\forall y \in \mathcal{R}, \forall x \in \mathcal{L}, x \leqslant y$$

— Comme pour tout $(L,R) \in A, L$ n'a pas de plus grand élément, $\mathscr L$ n'en a pas non plus.

Donc, $(\mathcal{L},\mathcal{R})$ est une coupure de $\mathbb Q$

IV.B

Montrons que $(\mathcal{L}, \mathcal{R})$ est majorant de A puis que c'est le plus petit.

$$\begin{split} \forall (L,R) \in A, (L,R) \preceq (\mathscr{L},\mathscr{R}) &\iff \forall (L,R) \in A, L \subset \mathscr{L} \\ &\iff \forall (L,R) \in A, L \subset \bigcup_{(L',R') \in A} L' \\ &\iff \forall (L,R) \in A, (L,R) \in A \end{split}$$

Donc, $(\mathcal{L}, \mathcal{R})$ majorant de A.

Montrons que $(\mathcal{L}, \mathcal{R})$ est le plus petit majorant de A.

On suppose qu'il existe $(\mathcal{L}', \mathcal{R}') \in \mathfrak{R}$ majorant de A, et que $(\mathcal{L}', \mathcal{R}') \preceq (\mathcal{L}, \mathcal{R})$. Montrons que $(\mathcal{L}', \mathcal{R}') = (\mathcal{L}, \mathcal{R})$, i.e. $\mathcal{L}' = \mathcal{L}$ car $\mathcal{R}' = \mathbb{Q} \setminus \mathcal{L}'$ et $\mathcal{R} = \mathbb{Q} \setminus \mathcal{L}$.

Montrons que $\mathscr{L} \subset \mathscr{L}'$, on sait déjà que $\mathscr{L}' \subset \mathscr{L}$.

Soit $x \in \mathcal{L}$. Donc, $(\mathcal{L}, \mathcal{R})$ est le plus petit majorant de A.

Je n'ai pas fini cette question

V Injection de \mathbb{Q} dans \mathfrak{R}

Soit

$$I: \mathbb{Q} \longrightarrow \mathfrak{R}$$
$$q \longmapsto I(q)$$

Montrons que I est une injective et croissante.

V.A I injective

Soient $(q, p) \in \mathbb{Q}$. On suppose I(p) = I(q). Montrons q = p. $I(p) = I(q) \text{ donc } \begin{cases} \{x \in \mathbb{Q} \mid x < q\} = \{x \in \mathbb{Q} \mid x < p\} \\ \{x \in \mathbb{Q} \mid x \geqslant q\} = \{x \in \mathbb{Q} \mid x \geqslant p\} \end{cases}$ Donc, $\forall x \in \mathbb{Q}$, $\begin{cases} x < q \iff x < p \\ x \geqslant q \iff x \geqslant p \end{cases}$ Donc, p = q. Donc I injective

V.B I croissante

Soient $(p,q) \in \mathbb{Q}$, on suppose $p \leqslant q$. Montrons $I(p) \preceq I(q)$ i.e. $\{x \in \mathbb{Q} \mid x < p\} = P \subset \{x \in \mathbb{Q} \mid x < q\} = Q$. Soient $P = \{x \in \mathbb{Q} \mid x < p\}$, $Q = \{x \in \mathbb{Q} \mid x < q\}$ et $\Delta = \{x \in \mathbb{Q} \mid x \in P\}$ et $x \notin Q$. Montrons donc que $\Delta = \emptyset$. On a $\Delta = \{x \in \mathbb{Q} \mid q \leqslant x < p\}$. Comme $p \leqslant q$, $\nexists x \in \mathbb{Q}$, $q \leqslant x < p$. Donc, $\Delta = \emptyset$.

Donc I croissante

Donc, I est une injection croissante

VI Somme de deux coupures

VI.A

Soient (L_1, R_1) et (L_2, R_2) deux coupures de \mathbb{Q} . Montrons que $(L_1, R_1) + (L_2, R_2)$ est aussi une coupure de \mathbb{Q} .

Soit $(L, R) = (L_1, R_1) + (L_2, R_2)$. Donc, $L = \{x + y \mid x \in L_1, y \in L_2\}$ et $R = \mathbb{Q} \setminus L$.

- Comme $L_1 \neq \emptyset$ et $L_2 \neq \emptyset$, $L \neq \emptyset$
- Soient m_1 un majorant de L_1 , et m_2 un majorant de L_2 . On sait que $m_1 \notin L_1$ et $m_2 \notin L_2$. Donc, $m = m_1 + m_2 \notin L$ Donc, $m \in R$. Donc, $R \neq \emptyset$
- $-L \cap R = L \cap (\mathbb{Q} \setminus L) = \emptyset$
- $L \cup R = L \cup (\mathbb{Q} \setminus L) = \mathbb{Q}$
- L_1 et L_2 n'ont pas de plus grand élément. Donc, L n'en a pas non plus.
- Soient $(x_1, x_2) \in L_1 \times L_2$ et $(y_1, y_2) \in R_1 \times R_2$.

$$\begin{vmatrix} x_1 \leqslant y_1 \\ x_2 \leqslant y_2 \end{vmatrix} \iff x_1 + x_2 \leqslant y_1 + x_2 \leqslant y_1 + y_2$$

Donc, $x_1 + x_2 \leq y_1 + y_2$

Donc, (L, R) est une coupure de \mathbb{Q} .

VI.B

Soient $C_1 = (L_1, R_1)$, $C_2 = (L_2, R_2)$ et $C_3 = (L_3, R_3)$ trois coupures de \mathbb{Q} . Montrons que $C_1 + C_2 = C_2 + C_1$ et que $(C_1 + C_2) + C_3 = C_1 + (C_2 + C_3)$.

— Soient $(\mathcal{L}_1, \mathcal{R}_1) = C_1 + C_2$ et $(\mathcal{L}_2, \mathcal{R}_2) = C_2 + C_1$

$$C_1 + C_2 = C_2 + C_1 \iff \begin{cases} \mathcal{L}_1 = \mathcal{L}_2 \\ \mathcal{R}_1 = \mathcal{R}_2 \end{cases}$$

$$\iff \begin{cases} \mathcal{L}_1 = \mathcal{L}_2 \\ \mathbb{Q} \setminus \mathcal{L}_1 = \mathbb{Q} \setminus \mathcal{L}_2 \end{cases}$$

$$\iff \{ x + y \mid x \in L_1, y \in L_2 \} = \{ y + x \mid y \in L_2, x \in L_1 \}$$

Donc, la loi "+" est commutative.

— Soient $(\mathcal{L}_1, \mathcal{R}_1) = C_1 + C_2$, $(\mathcal{L}_2, \mathcal{R}_2) = C_2 + C_3$, $(\mathcal{L}_3, \mathcal{R}_3) = (C_1 + C_2) + C_3$ et $(\mathcal{L}_4, \mathcal{R}_4) = C_1 + (C_2 + C_3)$. On a $\mathcal{L}_1 = \{x + y \mid x \in L_1, y \in L_2\}$ et $\mathcal{L}_2 = \{y + z \mid y \in L_2, z \in L_3\}$. Donc,

$$\mathcal{L}_3 = \{ u + z \mid u \in \mathcal{L}_1, z \in L_3 \}$$

$$= \{ (x+y) + z \mid x \in L_1, y \in L_2, z \in L_3 \}$$

$$= \{ x + y + z \mid x \in L_1, y \in L_2, z \in L_3 \}$$

$$\mathcal{L}_4 = \{ x + v \mid x \in L_1, v \in \mathcal{L}_2 \}$$

$$= \{ x + (y + z) \mid x \in L_1, y \in L_2, z \in L_3 \}$$

$$= \{ x + y + z \mid x \in L_1, y \in L_2, z \in L_3 \}$$

Donc, $(C_1 + C_2) + C_3 = C_1 + (C_2 + C_3)$, la loi "+" est commutative.

VI.C

Soit (L, R) une coupure de \mathbb{Q} . Montrons que (L, R) + I(0) = (L, R). On sait que $L_0 = \{x \in \mathbb{Q} \mid x < 0\} = \mathbb{Q}_*^-$.

$$(L,R)+I(0)=(L',\mathbb{Q}\setminus L')$$
 avec $L'=\{x+y\mid x\in L,y\in\mathbb{Q}_*^-\}$

Montrons que L' = L c'est à dire que $\forall x \in L, \forall y \in \mathbb{Q}_*^-, x + y \in L$. Soient $x \in L$ et $y \in \mathbb{Q}_*^-$.

$$x + y < x \text{ car } y < 0$$

Or, d'après II,

$$\forall x \in L, \forall z \in Q, \text{ si } z \leq x \text{ alors } z \in L$$

Je n'ai pas fini cette question Donc, $(x+y) \in L$

Donc, I(0) est un élément neutre de +

VI.D

Montrons que $\forall C \in \mathfrak{R}, \exists C' \in \mathfrak{R}, C + C' = I(0)$ c'est à dire montrons que $\forall (L,R) \in \mathfrak{R}, \exists (L',R') \in \mathfrak{R}, \{x+y \mid x \in L, y \in L'\} = L_0 = \mathbb{Q}_*^-$. Soit $x \in L$. Trouvons $y \in \mathbb{Q}$ tel que x+y < 0 i.e. x < -y On sait que L a une borne supérieur. On pose $M = \sup(L)$. Donc, x < M donc x - M < 0

VI.E

Soient $q_1, q_2 \in \mathbb{Q}$. On sait que $(L, R) = (L', R') \iff L = L'$. On pose $x \in L_{q_1}$ et $y \in L_{q_2}$. Montrons que $x + y \in L_{q_1 + q_2}$.

$$x + y \in L_{q_1 + q_2} = \{x + y \in \mathbb{Q} \mid x + y < q_1 + q_2\}$$

$$\iff \begin{cases} x + y \in \mathbb{Q} \\ x + y < q_1 + q_2 \end{cases}$$

On a $x \in \mathbb{Q}$ et $y \in \mathbb{Q}$ donc on a bien $x + y \in \mathbb{Q}$.

On sait que $x \in L_{q_1}$ donc $x < q_1$.

On sait que $y \in L_{q_2}$ donc $y < q_2$.

Donc, $x + y < q_1 + q_2$. Donc, $x + y \in L_{q_1 + q_2}$

Donc
$$\forall (q_1, q_2) \in Q^2, I(q_1 + q_2) = I(q_1) + I(q_2)$$

VII

VII.A

On pose C = (L, R) et C' = (L', R') deux coupures positives. On a

$$\begin{cases} I(0) \preceq C \implies Q_*^- \subset L \\ I(0) \preceq C' \implies Q_*^- \subset L' \end{cases}$$

On doit montrer que $\mathbb{Q}_*^- \subset L''$ avec $(L'', \mathbb{Q} \setminus L'') = C \times C'$. Soit $x \in \mathbb{Q}_*^-$, montrons que $x \in L''$. Comme $x \in L''$, on sait que $x \leqslant ab$ avec $a \in L \cap Q^+$ et $b \in L' \cap \mathbb{Q}^+$. Donc, $ab \in \mathbb{Q}^+$. Comme x < 0, x < ab (avec $a \in L \cap Q^+$ et $b \in L' \cap Q^+$) donc $x \in L''$ Donc, le produit de deux coupures positive est aussi positive

VII.B

Soient $(q_1, q_2) \in (\mathbb{Q}^+)^2$. On pose $(L', \mathbb{Q} \setminus L') = I(q_1q_2)$

 $I(q_1) \times I(q_2) = (L, \mathbb{Q} \setminus L)$ avec $L = \{x \in \mathbb{Q} \mid \exists a \in L_{q_1} \cap \mathbb{Q}^+, b \in L_{q_2} \cap \mathbb{Q}^+, x \leqslant ab\}$ On veut montrer que L = L'.

$$L' = \{ x \in \mathbb{Q} \mid x < q_1 q_2 \}$$

— On pose $x \in L'$. On sait que $x < q_1q_2$. Or, $q_1 \in L_{q_1} \cap \mathbb{Q}^+$ et $q_2 \in L_{q_2} \cap \mathbb{Q}^+$. Donc,

$$\exists (a,b) \in L_{q_1}^+ \times L_{q_2}^+, x \leqslant ab$$

- Donc $x \in L$.
- On pose $x \in L$. Montrons que $x \in L'$. On sait qu'il existe $(a,b) \in L_{q_1}^+ \times L_{q_2}^+$ tels que $x \leqslant ab$. On sait que $0 \leqslant a < q_1$ et $0 \leqslant b < q_2$ donc $0 \leqslant ab < q_1q_2$ donc $x < q_1q_2$ donc $x \in L'$

Donc,
$$\forall (q_1, q_2) \in \mathbb{Q}^2, I(q_1 q_2) = I(q_1) \times I(q_2)$$