Sampling People, Records, & Networks

Jim Lepkowski, PhD **Professor & Research Professor Emeritus** Institute for Social Research, University of Michigan Research Professor. Joint Program in Survey Methodology, University of Maryland

Unit 6

- I.Stratified multistage sampling
- 2. Weights for over/under sampling
- 3. Nonresponse & noncoverage weighting
- 4. Variance estimation and software
- 5. Statistical software for sample selection
- 6. Sampling networks: multiplicity weighting

- Unit 1: Sampling as a research tool
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications

Unit 6

- I.Stratified multistage sampling
- 2. Weights for over/under sampling
- 3. Nonresponse & noncoverage weighting
- 4. Variance estimation and software
- 5. Statistical software for sample selection
- 6. Sampling networks: multiplicity weighting

- Unit I: Sampling as a research tool
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
- Unit 5: Simplifying sampling

Unit 6: Some extensions & applications

- 1. Statistical software for sample selection
- 2. Stratified multistage sampling
- 3. Weights for over/under sampling
- 4. Nonresponse & noncoverage weighting
- 5. Sampling networks: multiplicity weighting
- 6. Non-probability sampling

Unit 6

- I. Statistical software for sample selection
- 2. Stratified multistage sampling
- 3. Weights for over/under sampling
- Nonresponse
 & noncoverage
 weighting
- 5. Sampling networks: multiplicity weighting
- 6. Nonprobability sampling

- Unit I: Sampling as a research tool
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications
 - 1. Statistical software for sample selection
 - 2. Stratified multistage sampling
 - 3. Weights for over/under sampling
 - 4. Nonresponse & noncoverage weighting
 - 5. Sampling networks: multiplicity weighting
 - 6. Non-probability sampling

- Weighting framework
- Weighted estimation
- Weighting and oversampling
- Unit 1: Sampling as a research tool
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications
 - 1. Statistical software for sample selection
 - 2. Stratified multistage sampling
 - 3. Weights for over/under sampling
 - 4. Nonresponse & noncoverage weighting
 - 5. Sampling networks: multiplicity weighting
 - Non-probability sampling

- Weighting framework
- Weighted estimation
- Weighting and oversampling

N 2 Frame

6

- Weighting framework
- Weighted estimation
- Weighting and oversampling

- Weighting framework
- Weighted estimation
- Weighting and oversampling

- Weighting framework
- Weighted estimation
- Weighting and oversampling

- Weighting framework
- Weighted estimation
- Weighting and oversampling

- Weighting framework
- Weighted estimation
- Weighting and oversampling

- Weighting framework
- Weighted estimation
- Weighting and oversampling

- Weighting framework
- Weighted estimation
- Weighting and oversampling

• An epsem sampling system...

$$\pi_{i} = \pi = f = n/N$$

- Weighting framework
- Weighted estimation
- Weighting and oversampling

• An epsem sampling system...

$$\pi_{i} = \pi = f = n/N$$

• Then an epsem estimation system ...

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{y_1 + y_2 + \dots + y_n}{1 + 1 + \dots 1}$$

- Weighting framework
- Weighted estimation
- Weighting and oversampling

• An epsem sampling system...

$$\pi_i = \pi = f = n/N$$

• Then an epsem estimation system ...

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i = \frac{y_1 + y_2 + \dots + y_n}{1 + 1 + \dots 1}$$

• For example, from N = 2,000 people, select n = 20 with epsem

$$\pi_i = \frac{20}{2000} = \frac{1}{100}$$
 and $w_i = 100$

- Weighting framework
- Weighted estimation
- Weighting and oversampling

But the mapping may not be equal for every element
a non-epsem design:

$$\pi_i \neq \pi = f = n/N$$

- Weighting framework
- Weighted estimation
- Weighting and oversampling

But the mapping may not be equal for every element
a non-epsem design:

$$\pi_i \neq \pi = f = n/N$$

• A weighted estimator is required ...

$$\overline{y}_{w} = \frac{\sum_{i} w_{i} y_{i}}{\sum_{i} w_{i}} = \frac{w_{1} \cdot y_{1} + w_{2} \cdot y_{2} + \dots + w_{n} \cdot y_{n}}{w_{1} \cdot 1 + w_{2} \cdot 1 + \dots + w_{n} \cdot 1}$$

- Weighting framework
- Weighted estimation
- Weighting and oversampling

But the mapping may not be equal for every element
a non-epsem design:

$$\pi_i \neq \pi = f = n/N$$

• A weighted estimator is required ...

$$\overline{y}_{w} = \frac{\sum_{i} w_{i} y_{i}}{\sum_{i} w_{i}} = \frac{w_{1} \cdot y_{1} + w_{2} \cdot y_{2} + \dots + w_{n} \cdot y_{n}}{w_{1} \cdot 1 + w_{2} \cdot 1 + \dots + w_{n} \cdot 1}$$

 The unweighted mean is a special case of the weighted – constant weights cancel

- Weighting framework
- Weighted estimation
- Weighting and oversampling

- The basic approach: weight by $1/\pi_i$
 - Counting a sample person $1/\pi_i$ times

- Weighting framework
- Weighted estimation
- Weighting and oversampling

- The basic approach: weight by $1/\pi_i$
 - Counting a sample person $1/\pi_i$ times
- Consider the following population distribution for 10th grade students in the U.S.

- Weighting framework
- Weighted estimation
- Weighting and oversampling

Group	N	n	Sampling rate	Weight A	Weight B
High Low	800,000 3,200,000	2,400 9,600	1/333.33 1/333.33		1 1
Total	4,000,000	12,000	1/333.33	333.33	1

- Weighting framework
- Weighted estimation
- Weighting and oversampling

- The basic approach: weight by $1/\pi_i$
 - Counting a sample person $1/\pi_i$ times
- Consider the following population distribution for 10th grade students in the U.S.
- Divided into two groups, I0th graders in schools with a high proportion receiving Free or Reduced Price Lunches (High) and those in low proportion schools (Low)

- Weighting framework
- Weighted estimation
- Weighting and oversampling

Group	N	n	Sampling rate	Weight A	Weight B
High Low	800,000 3,200,000	2,400 9,600	1/333.33 1/333.33	333.33 333.33	1 1
Total	4,000,000	12,000	1/333.33	333.33	1

- Weighting framework
- Weighted estimation
- Weighting and oversampling

Group	N	n	Sampling rate	Weight A	Weight B
High	800,000	2,400	1/333.33	333.33	1
Low	3,200,000	9,600	1/333.33	333.33	1
Total	4,000,000	12,000	1/333.33	333.33	1

- Weighting framework
- Weighted estimation
- Weighting and oversampling

Group	N	n	Sampling rate	Weight A	Weight B
High Low	800,000 3,200,000	2,400 9,600	1/333.33 1/333.33	333.33 333.33	1 1
Total	4,000,000	12,000	1/333.33	333.33	1

- Weighting framework
- Weighted estimation
- Weighting and oversampling

• This is an allocation of sample across the strata that is proportionate.

- Weighting framework
- Weighted estimation
- Weighting and oversampling

- This is an allocation of sample across the strata that is proportionate.
- Proportionate allocation has equal probabilities in each group

- Weighting framework
- Weighted estimation
- Weighting and oversampling

- This is an allocation of sample across the strata that is proportionate.
- Proportionate allocation has equal probabilities in each group
- Some investigators might prefer that the distribution in the sample be an equal sample size across the two groups:

- Weighting framework
- Weighted estimation
- Weighting and oversampling

Group	N	n	Sampling rate	Weight A	Weight B
High Low	800,000	6,000	1/133.33	133.33	1
LOW	3,200,000	6,000	1/533.33	533.33	4
Total	4.000,000	12,000	1/333.33	-	

- Weighting framework
- Weighted estimation
- Weighting and oversampling

Group	N	n	Sampling rate	Weight A	Weight B
High Low	800,000	6,000	1/133.33	133.33	1
LOW	3,200,000	6,000	1/533.33	533.33	4
Total	4.000,000	12,000	1/333.33	-	

- Weighting framework
- Weighted estimation
- Weighting and oversampling

- This equal allocation would be used for comparing the two groups
- The proportionate allocation would be used to represent the population

- Weighting framework
- Weighted estimation
- Weighting and oversampling

- This equal allocation would be used for comparing the two groups
- The proportionate allocation would be used to represent the population
- Consider the consequences of the equal allocation when estimating a mean test score among 10th graders, averaging across samples from the two groups:

- Weighting framework
- Weighted estimation
- Weighting and oversampling

Group	Mean test score	Proportionate allocation		Weights		
		n	Mean test score	A	В	
High	72	2,400	72	333.33	1	
Low	92	9,600	92	333.33	1	
Total	88	12,000	88	333.33	1	

- Weighting framework
- Weighted estimation
- Weighting and oversampling

Group	Mean test score	Proportionate allocation		Weights		
	56016	n	Mean test score	A	В	
High	72	2,400	72	333.33	1	
Low	92	9,600	92	333.33	1	
Total	88	12,000	12,000 88		1	

Sampling People, Records, & Networks

- Weighting framework
- Weighted estimation
- Weighting and oversampling

Group	Mean test score	Dispro- portionate allocation		Weigh	ts	Weighted estimate
		n	Mean test score	A	В	
High	72	6,000	72	133.33	1	(6,000)(1)(72)
Low	92	6,000	92	533.33	4	(6,000)(4)(92)
Total	88	12,000	82	-		88

- Weighting framework
- Weighted estimation
- Weighting and oversampling

Group	Mean test score	Dispro- portionate allocation		Weights		Weighted estimate
		n	Mean test score	A	В	
High	72	6,000	72	133.33	1	(6,000)(1)(72)
Low	92	6,000	92	533.33	4	(6,000)(4)(92)
Total	88	12,000	82			88

- Weighting framework
- Weighted estimation
- Weighting and oversampling

• Weights will restore the population distribution:

$$\overline{y} = \frac{\sum y_i}{n} = \frac{6,000 \times 72 + 6,000 \times 92}{6,000 + 6,000} = 82$$

- Weighting framework
- Weighted estimation
- Weighting and oversampling

• Weights will restore the population distribution:

$$\overline{y} = \frac{\sum y_i}{n} = \frac{6,000 \times 72 + 6,000 \times 92}{6,000 + 6,000} = 82$$

$$y_{w(B)} = \frac{\sum_{W_{i(B)}} y_i}{\sum_{W_{i(B)}} = \frac{6,000 \times 4 \times 92 + 6,000 \times 1 \times 72}{6,000 \times 4 + 6,000 \times 1} = 88$$

- Weighting framework
- Weighted estimation
- Weighting and oversampling

• Weights will restore the population distribution:

$$\overline{y} = \frac{\sum y_i}{n} = \frac{6,000 \times 72 + 6,000 \times 92}{6,000 + 6,000} = 82$$

$$y_{w(B)} = \frac{\sum w_{i(B)} y_i}{\sum w_{i(B)}} = \frac{6,000 \times 4 \times 92 + 6,000 \times 1 \times 72}{6,000 \times 4 + 6,000 \times 1} = 88$$

$$y_{w(A)} = \frac{\sum w_{i(A)} y_i}{\sum w_{i(A)}} = \frac{6,000 \times 533.33 \times 92 + 6,000 \times 133.33 \times 72}{6,000 \times 533.33 + 6,000 \times 133.33} = 88$$

Unit 6

- I. Statistical software for sample selection
- 2. Stratified multistage sampling
- 3. Weights for over/under sampling
- 4. Nonresponse & noncoverage weighting
- 5. Sampling networks: multiplicity weighting
- 6. Nonprobability sampling

- Unit 1: Sampling as a research tool
- Unit 2: Mere randomization
- Unit 3: Saving money
- Unit 4: Being more efficient
- Unit 5: Simplifying sampling
- Unit 6: Some extensions & applications
 - 1. Statistical software for sample selection
 - 2. Stratified multistage sampling
 - 3. Weights for over/under sampling
 - 4. Nonresponse & noncoverage weighting
 - 5. Sampling networks: multiplicity weighting
 - 6. Non-probability sampling

