ЛАБОРАТОРНАЯ РАБОТА №26 (3+3+4 БАЛЛОВ)

ГРАФЫ

Вариант	Задача 1	Задача 2	Задача 3
1	Graf1	Graf4	Graf8
2	Graf2	Graf5	Graf9
3	Graf1	Graf6	Graf10
4	Graf2	Graf7	Graf8
5	Graf1	Graf4	Graf9
6	Graf2	Graf5	Graf10
7	Graf1	Graf6	Graf8
8	Graf2	Graf7	Graf9
9	Graf1	Graf4	Graf10
10	Graf2	Graf5	Graf8
11	Graf1	Graf6	Graf9
12	Graf2	Graf7	Graf10
13	Graf1	Graf4	Graf8
14	Graf2	Graf5	Graf9
15	Graf1	Graf6	Graf10

GRAF

Graf1. Дано описание неориентированного графа в текстовом файле с именем *FileName*. в виде матрицы смежности. Первая строка файла содержит количество вершин графа (n), а следующие п строк содержат матрицу смежности (m), m[i][j]=0, если ребра между вершинами і и ј не существует. Определить степень для каждой вершины графа. Вывести степени вершин, перечисляя их в порядке возрастания номеров вершин. Если в графе имеются петли, то каждая петля в степени вершины учитывается дважды.

Graf2. Дано описание неориентированного графа в текстовом файле с именем *FileName1*. в виде матрицы смежности. Первая строка файла содержит количество вершин графа (n), а следующие n строк содержат матрицу смежности (a), a[i][j]=0, если ребра между вершинами i и j не существует. Построить матрицу инцидентности данного графа и вывести ее в файл с именем FileName2. Для справки: матрица инцидентности (b) имеет размер n x m, m - число ребер графа, b[i][j]=1, если ребро j инцидентно вершине i, в противном случае b[i][j]=0. Нумерацию ребер осуществлять в следующем порядке: сначала ребра, инцидентные вершине номер 1, потом ребра инцидентные вершине номер 2 и т.д. до вершины номер n. Ребра, инцидентные вершине с номером i перечислять в порядке возрастания номера второй вершины, инцидентной данному ребру. При выводе в первой строке указать размер матрицы инцидентности: числа n и m, а в следующих n строках разместить матрицу инцидентности.

Graf3. Дано описание ориентированного графа в текстовом файле с именем *FileName*. в виде матрицы смежности. Первая строка файла содержит количество вершин графа (n), а следующие п строк содержат матрицу смежности (m), m[i][j]=0, если дуги из вершины і в вершину ј не существует, иначе m[i][j] хранит вес соответствующей дуги. Выполнить топологическую сортировку графа. В качестве результата вывести номера вершин графа, полученные в результате сортировки. Если на очередном шаге сортировки имелось несколько равноправных вершин перечислять их в порядке убывания номеров вершин. Если топологическую сортировку выполнить невозможно, то вывести "No solution". Сортировку выполнять используя обход в глубину

Graf4. Дано описание ориентированного графа в текстовом файле с именем *FileName*. в виде матрицы смежности. Первая строка файла содержит количество вершин графа (n), а следующие n строк содержат матрицу смежности (m), m[i][j]=0, если дуги из вершины i в вершину j не существует, иначе m[i][j] хранит вес соответствующей дуги. Выполнить поиск в ширину от вершины с номером k. В результате вывести номера вершин графа, достижимые для данной вершины, в порядке их обхода при поиске в ширину. Если на очередном шаге сортировки имелось несколько равноправных вершин, перечислять их в порядке возрастания номеров вершин.

Graf5. Юный путешественник решил изучить схему авиационного сообщения Схема авиационного сообщения задана в текстовом файле с именем *FileName*. в виде матрицы смежности. Первая строка файла содержит количество городов (n) n<=25, связанных авиационным сообщением, а следующие п строк хранят матрицу (m), m[i][j]=0, если не имеется возможности перелета из города і в город j, иначе m[i][j]=1. Определить номера городов, в которые из города К можно долететь менее чем с L пересадками. Перечислите номера таких городов в порядке возрастания. Нумерация городов начинается с 1. Если таких городов нет, выведите число (-1).

Graf6. Юный путешественник решил изучить схему авиационного сообщения Схема авиационного сообщения задана в текстовом файле с именем *FileName*. в виде матрицы смежности. Первая строка файла содержит количество городов (n) n<=25, связанных авиационным сообщением, а следующие п строк хранят матрицу (m), m[i][j]=0, если не имеется возможности перелета из города і в город j, иначе m[i][j]=1. Определить номера городов, в которые из города К можно долететь ровно с L пересадками для самого короткого пути. Перечислите номера таких городов в порядке возрастания. Нумерация городов начинается с 1. Если таких городов нет, выведите число (-1).

Graf7. Две корпорации хотят разделить сферы влияния, выбрав два разных города для размещения своих штаб-квартир так, чтобы все города, в некоторой округе от штаб-квартиры не были доступны для конкурентов. Схема автомобильного сообщения между городами задана в текстовом файле с именем *FileName* в виде матрицы смежности. Первая строка файла содержит количество городов (n, n<=25), связанных дорогами, а следующие п строк хранят матрицу (m), m[i][j]=0, если нет дороги из города і в город j, иначе m[i][j]=1. Даны два города-кандидата с номерами K1 и K2 для этих двух штаб-квартир. Определить есть ли города, в которые можно попасть из обоих штаб-квартир, если двигаться от каждой штаб-квартиры не более чем через L промежуточных городов. Перечислите номера таких городов в порядке возрастания. Нумерация городов начинается с 1. Если таких городов нет, выведите число (-1).

Graf8. Юный путешественник решил изучить схему авиационного сообщения Схема авиационного сообщения задана в текстовом файле с именем *FileName*. в виде матрицы смежности. Первая строка файла содержит количество городов (n) n<=15, связанных авиационным сообщением, а следующие п строк хранят матрицу (m), m[i][j]=0, если не имеется возможности перелета из города і в город j, иначе m[i][j]=1. Определить номера городов, в которые из города К можно долететь не менее чем с L пересадками и более коротких путей к таким городам не существует. Перечислите номера таких городов в порядке возрастания. Нумерация городов начинается с 1. Если таких городов нет, выведите число (-1).

Graf9. Юный путешественник решил изучить схему авиационного сообщения Схема авиационного сообщения задана в текстовом файле с именем *FileName1*. в виде матрицы смежности. Первая строка файла содержит количество городов (n) n<=15, связанных авиационным сообщением, а следующие п строк хранят матрицу (m), m[i][j]=0, если не имеется возможности перелета из города і в город j, иначе m[i][j]=1. Определить сколько есть маршрутов из города K1 в город K2 с L пересадками. В файл с именем FileName2 в первой строке выведите число таких маршрутов, а в следующих строках перечислите все такие маршруты в лексикографическом порядке. Маршрут задается перечислением

номеров городов, нумерация городов идет с 1. Если таких маршрутов нет, выведите число (-1).

Graf10. Юный путешественник решил изучить схему авиационного сообщения Схема авиационного сообщения задана в текстовом файле с именем *FileName1*. в виде матрицы смежности. Первая строка файла содержит количество городов (n) n<=15, связанных авиационным сообщением, а следующие n строк хранят матрицу (m), m[i][j]=0, если не имеется возможности перелета из города i в город j, иначе m[i][j]=1. Определить все маршруты перелета из города K1 в город K2 В файл с именем FileName2 в первой строке выведите число таких маршрутов, а в следующих строках перечислите все такие маршруты в порядке от самых коротких к более длинным, маршруты одинаковой длины перечисляйте в лексикографическом порядке. Маршрут задается перечислением номеров городов, нумерация городов идет с 1. Если таких маршрутов нет, выведите число (-1).