PRÁCTICA No. 2 RECTIFICADORES

OBJETIVO:

- Analizar el funcionamiento de los diferentes rectificadores con diodos.
- Analizar el comportamiento de los diferentes rectificadores con filtro de integración.
- Interpretar los valores obtenidos y compararlos con los valores teóricos.

MATERIAL:

- 1 Tablilla de experimentación. (Proto Board)
- 4 Diodos 1N4003
- 1 Transformador de 12 V a 1 A con derivación central
- 1.5 Mts de cable duplex del No. 14
- 1 Clavija
- 1 Cinta de aislar
- 1 Resistencia de 100Ω a 10 W
- 1 Resistencia de 22 Ω a 25 W
- 1 Capacitor electrolítico de 470 µF a 50 V
- 1 Capacitor electrolítico de 2200 µF a 50 V

EQUIPO:

- 1 Multímetro
- 1 Osciloscopio de propósito general
- 2 Puntas BNC-Caimán para osciloscopio.
- 6 Puntas caimán-caimán

DESARROLLO EXPERIMENTAL

> Transformador

Arme el siguiente circuito:

Coloque una resistencia de carga según la tabla y coloque el multímetro en las terminales 1 y 2 del circuito y mida el voltaje en la opción de CA

$R_{\rm L}$	V_{rms}
100 Ω	
22 Ω	

> Rectificador de media onda.

Arme el siguiente circuito:

Coloque una resistencia de carga de $100~\Omega$.

Conectar el multímetro en las terminales 2 y 3 del circuito y mida en la opción CD la corriente (I_0) y el voltaje (V_0) de la señal de salida el circuito rectificador.

$$V_0 =$$
 _____ y calcular $I_0 =$ _____

Posteriormente colocar el canal 1 del osciloscopio en las terminales 1 y 3 y el canal 2 en los puntos 2 y 3.

Dibujar ambos canales.

2

Obtener el voltaje pico del transformador de la señal del canal 1.

mseg/div

$$V_P =$$

Obtener el voltaje pico menos el voltaje del diodo del canal 2.

$$V_P - V_D =$$

> Rectificador de media onda con filtro de integración

Arme el siguiente circuito:

Coloque una resistencia de carga de 100Ω y el capacitor según la tabla.

Conectar el multímetro en las terminales 1 y 2 del circuito y mida en la opción de CD la corriente (I_0) y el voltaje (V_0) del circuito rectificador con filtro.

Capacitor	V_0	I_0	ΔV_0
470 μF			
2200 μF			

Posteriormente colocar el canal 1 del osciloscopio en las terminales 1 y 2 en la opción de AC

Dibujar el canal 1 con capacitor de 470 μF.

____V/div canal 1 mseg/div

Dibujar el canal 1 con capacitor de 2200 μF.

____V/div canal 1 mseg/div

Obtener el voltaje de rizo (ΔV_0) de la señal de salida y anotarlo en la tabla anterior.

> Rectificador de onda completa con dos diodos.

Arme el siguiente circuito:

Coloque una resistencia de carga la resistencia de $100~\Omega$.

Conectar el multímetro en las terminales 2 y 3 del circuito y mida en la opción CD la corriente (I_0) y el voltaje (V_0) de la señal de salida el circuito rectificador.

$$V_0 =$$
 _____ y calcular $I_0 =$ _____

Posteriormente colocar el canal 1 del osciloscopio en las terminales 1 y 3 y el canal 2 en los puntos 2 y 3.

Dibujar ambos canales.

4

____V/div canal 1

____V/div canal 2

____mseg/div

Obtener el voltaje pico del transformador de la señal del canal 1.

$$V_P =$$

Obtener el voltaje pico menos el voltaje del diodo del canal 2.

$$V_P - V_D =$$

> Rectificador de onda completa con dos diodos con filtro de integración

Arme el siguiente circuito:

Coloque una resistencia de carga de 100Ω y el capacitor según la tabla.

Conectar el multímetro en las terminales 1 y 2 del circuito y mida en la opción de CD la corriente (I_0) y el voltaje (V_0) del circuito rectificador con filtro.

Capacitor	V_0	I_0	ΔV_0
470 μF			
2200 μF			

Posteriormente colocar el canal 1 del osciloscopio en las terminales 1 y 2 en la opción de AC

Dibujar el canal 1 con capacitor de 470 μF.

____V/div canal 1 mseg/div

Dibujar el canal 1 con capacitor de 2200 μF .

___V/div canal 1 mseg/div

Obtener el voltaje de rizo (ΔV_0) de la señal de salida y anotarlo en la tabla anterior.

> Rectificador de onda completa tipo puente.

Arme el siguiente circuito:

Coloque una resistencia de carga la resistencia de $100~\Omega$.

Conectar el multímetro en las terminales 3 y 4 del circuito y mida en la opción CD la corriente (I_0) y el voltaje (V_0) de la señal de salida el circuito rectificador.

$$V_0 =$$
 _____ y calcular $I_0 =$ _____

Posteriormente colocar el canal 1 del osciloscopio en las terminales 1 y 2 dibuje la señal y desconecte el canal 1 posteriormente conecta el canal 2 en los puntos 3 y 4 y dibuja la señal.

6

____V/div canal 1

____V/div canal 2

___mseg/div

Obtener el voltaje pico del transformador de la señal del canal 1.

$$V_P = \underline{\hspace{1cm}}$$

Obtener el voltaje pico menos el voltaje del diodo del canal 2.

$$V_P - 2V_D = \underline{\hspace{1cm}}$$

> Rectificador de onda completa tipo puente con filtro de integración

Arme el siguiente circuito:

Coloque como una resistencia de carga de $100 \Omega y$ el capacitor según la tabla.

Conectar el multímetro en las terminales 1 y 2 del circuito y mida en la opción de CD la corriente (I_0) y el voltaje (V_0) del circuito rectificador con filtro.

Capacitor	V_0	I_0	ΔV_0
470 μF			
2200 μF			

Posteriormente colocar el canal 1 del osciloscopio en las terminales 1 y 2 en la opción de AC

Dibujar el canal 1 con capacitor de 470 μF.

____V/div canal 1 mseg/div

Dibujar el canal 1 con capacitor de 2200 μF .

____V/div canal 1 ____mseg/div

Obtener el voltaje de rizo (ΔV_0) de la señal de salida y anotarlo en la tabla anterior.

ANÁLISIS TEORICO.

Realizar el análisis teórico de todos los circuitos anteriores.

- Rectificador de media onda.
- Rectificador de media onda con filtro de integración
- > Rectificador de onda completa con dos diodos
- > Rectificador de onda completa con dos diodos con filtro de integración
- > Rectificador de onda completa tipo puente
- > Rectificador de onda completa tipo puente con filtro de integración.

Con sus respectivos cambios de resistencias y capacitores según sea caso.

ANÁLISIS SIMULADO

Realizar el análisis simulado en el Pspice de todos los circuitos anteriores.

- > Rectificador de media onda.
- Rectificador de media onda con filtro de integración
- ➤ Rectificador de onda completa con dos diodos
- > Rectificador de onda completa con dos diodos con filtro de integración
- > Rectificador de onda completa tipo puente
- > Rectificador de onda completa tipo puente con filtro de integración.

Con sus respectivos cambios de resistencias y capacitores.

COMPARACIÓN DE LOS RESULTADOS TEÓRICOS, PRÁCTICOS Y SIMULADOS.

Analizar todos los valores y dar una explicación de las variaciones ó diferencias que existan en los valores obtenidos tanto en lo teórico, simulado y práctico.

CUESTIONARIO

- 1. Menciona la importancia de los rectificadores de voltaje
- 2. Explica la diferencia que existe entre un rectificador de media onda y uno de onda completa
- 3. ¿Cual es la diferencia de un rectificador de onda completa de dos diodos y uno de 4 diodos (tipo puente)?
- 4. ¿Que tipo de voltaje se puede medir con un osciloscopio en un rectificador de voltaje?
- 5. ¿Que tipo de voltaje se puede medir con un multímetro en un rectificador de voltaje en sus dos opciones AC y DC?
- 6. ¿Que es el voltaje de umbral del diodo?

CONCLUSIONES

Dar las conclusiones al realizar los experimentos y el análisis teórico de los circuitos anteriores (conclusiones individuales).