VGG 논문 리뷰

< Very Deep Convolutional Networks For Large-Scale Image Recognition >

1. 개요

VGG 는 ImageNet Challenge 2014 에서 Top-5 테스트 정확도를 92.7%까지 끌어 올렸다. 우승작인 GoogleNet 과 0.1%의 근소한 차이로 2 위에 입상했다. 하지만 GoogleNet 보다 굉장히 단순한 구조를 가지고 있었고 이것은 신경망의 깊이가 정확도에 영향을 준다는 것을 잘 보여주었다.

2. 구조

VGG 모델은 신경망의 깊이가 딥러닝 정확도에 영향을 주는 지를 확인하기 위해서 11 - layer 부터 19 - layer 까지 총 5 개의 모델을 준비했다. 여기서 다룰 모델을 VGG - 16 으로 16 개의 layer 를 가진 모델이다.

		ConvNet C	onfiguration		
A	A-LRN	В	C	D	Е
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i	nput (224×2	24 RGB imag	e)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
			pool		
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
	50		pool	,	
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
	XX	max	pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		<u> </u>
		6.780	4096		
		0.7	4096		
			1000		
		soft-	-max		

간략한 표현을 위해 Activation function 을 생략함

1) Input

위의 표를 보면 알 수 있겠지만 입력 이미지의 크기는 224 x 224x 3 으로 고정이다.

2) Convolutional layer (conv layer)

Conv3 - 64 가 의미하는 것은 3x3 의 kernel size 를 사용했고 64 개의 filter 를 가졌다는 의미이다. 여기서 3x3 의 작은 kernel size 를 사용한 이유는 3x3 이 상하좌우, 중앙을 표현할 수 있는 가장 작은 단위이기 때문이다.

첫번째 conv layer 의 Filter 개수는 64 개이고 Filter 의 개수가 512 에 도달할 때 까지 MaxPooling layer 이후에 2 배씩 계속 증가시켜준다.

Padding 을 적용하여 image size 을 유지한다.

- Kernel size = 3×3
- Stride = 1
- Padding = same
- Activation Function = ReLu

3) MaxPooling2D

conv layer 이후 Maxpooling 을 이용하여 출력의 크기를 절반으로 줄여준다.

이렇게 해주는 이유는 Feature map 에 있는 작고 사소한 특징이 출력에 큰 영향을 미치지 못하도록 하기 위함이다.

- Window size = 2 x 2
- Stride = 2

4) Fully Connected(FC) layer

1000 개의 클래스를 분류하기 위해 3 번째 FC layer 에는 1000 개의 channel 을 가진다. 출력이 각 클래스에 속할 확률이어야 하므로 soft-max function 을 이용한다.

- First Two layers = 4096 channels each
- Third layers = 1000 channels
- Last layer = soft-max function

3. 7 x 7 conv layer 대신에 3 x 3 conv layer 를 이용한 이유

Layer (type)	Out put	Shape	Param #
conv2d_2 (Conv2D)	(None,	224, 224, 64)	1792
conv2d_3 (Conv2D)	(None,	224, 224, 64)	36928
max_pooling2d_1 (MaxPooling2	(None,	112, 112, 64)	0
conv2d_4 (Conv2D)	(None,	112, 112, 128)	73856
conv2d_5 (Conv2D)	(None,	112, 112, 128)	147584
max_pooling2d_2 (MaxPooling2	(None,	56, 56, 128)	0
conv2d_6 (Conv2D)	(None,	56, 56, 256)	295168
conv2d_7 (Conv2D)	(None,	56, 56, 256)	590080
conv2d_8 (Conv2D)	(None,	56, 56, 256)	590080
max_pooling2d_3 (MaxPooling2	(None,	28, 28, 256)	0
conv2d_9 (Conv2D)	(None,	28, 28, 512)	1180160
conv2d_10 (Conv2D)	(None,	28, 28, 512)	2359808
conv2d_11 (Conv2D)	(None,	28, 28, 512)	2359808
max_pooling2d_4 (MaxPooling2	(None,	14, 14, 512)	0
conv2d_12 (Conv2D)	(None,	14, 14, 512)	2359808
conv2d_13 (Conv2D)	(None,	14, 14, 512)	2359808
conv2d_14 (Conv2D)	(None,	14, 14, 512)	2359808
max_pooling2d_5 (MaxPooling2	(None,	7, 7, 512)	0
Total params: 14,714,688 Trainable params: 14,714,688 Non-trainable params: O			

Model: "sequential_4"

Model: "sequential_5"

Layer (type)	Out put	Shape	Param #
conv2d_20 (Conv2D)	(None,	224, 224, 64)	1792
conv2d_21 (Conv2D)	(None,	224, 224, 64)	36928
max_pooling2d_9 (MaxPooling2	(None,	112, 112, 64)	0
conv2d_22 (Conv2D)	(None,	112, 112, 128)	73856
conv2d_23 (Conv2D)	(None,	112, 112, 128)	147584
max_pooling2d_10 (MaxPooling	(None,	56, 56, 128)	0
conv2d_24 (Conv2D)	(None,	56, 56, 256)	1605888
max_pooling2d_11 (MaxPooling	(None,	28, 28, 256)	0
conv2d_25 (Conv2D)	(None,	28, 28, 512)	6423040
max_pooling2d_12 (MaxPooling	(None,	14, 14, 512)	0
conv2d_26 (Conv2D)	(None,	14, 14, 512)	12845568
max_pooling2d_13 (MaxPooling	(None,	7, 7, 512)	0
Total params: 21,134,656			

lotal params: 21,134,656 Trainable params: 21,134,656 Non-trainable params: 0

< Single 7 x 7 conv layer >

- < Three 3 x 3 conv layer >
- 1) 위 표처럼 3 개의 3 x 3 conv layer 를 사용하면 7 x 7 conv layer 1 개를 사용했을 때보다 파라미터의 개수가 줄어 드는 것을 볼 수 있다. 파라미터 개수의 감소는 연산량 감소로 이어지므로 훈련 속도에 영향을 준다.
- 2) Single 7 x 7 conv layer 를 사용했을 때의 feature map 과 3 개의 3 x 3 conv layer 를 사용했을 때의 feature map 의 크기가 동일하다. 예를 들어 10 x 10 image 가 있다고 가정한다면 7 x 7 filter size(=receptive field)를 적용하면 4 x 4 가 출력으로 나온다. 3 x 3 filter size 를 3 번 적용하면 8x8 -> 6x6 -> 4x4 로 7 x 7 filter size 와 동일하다.
- 3) 3 번의 activation function 을 사용하므로 1 번 사용하는 것보다 비선형성이 높아지고 이것은 특징을 잘 식별할 수 있게한다.

4. 훈련

- Optimizing the multinomial logistic regression
- Mini-batch gradient descent
- Momentum (0.9)
- L2 norm
- Dropout (0.5)
- Learning rate (0.01

Learning rate 의 경우 validation accuracy 의 증가가 멈출 때까지 10 배씩 계속 감소시킨다.

- 1) 훈련 전 이미지를 S 의 크기로 rescale 한 후 224x224 크리고 잘라낸다. 여기서 S 는 하나의 고정된 값(Single scale)일 수도 있고 범위를 가진 값(Multi scale)일 수도 있다.
- 2) 입력 이미지를 잘라서 데이터 개수를 늘리므로 이것은 Data Augmentation 으로 볼 수 있다.
- 3) 먼저 층이 얕은 모델 A 를 적당히 훈련시킨 후 처음 4 개의 conv layer 와 마지막 3 개의 FC layer 를 다음에 학습할 네트워크의 초기값으로 활용했다. 모델 A 를 훈련 시킬 때 랜덤 초기화를 진행했는데 weight 는 평균 0, 분산은 0.01, 편향은 0 으로 초기화시켰다.

5. 테스트

테스트 전 테스트 이미지를 Q 의 크기로 rescale 한다 S 와 의미는 같지만 Q 는 테스트에서만 사용하고 S 는 훈련에서만 사용한다.

Table 3: ConvNet performance at a single test scale.

ConvNet config. (Table 1)			top-1 val. error (%)	top-5 val. error (%)
	train(S)	test(Q)		
A	256	256	29.6	10.4
A-LRN	256	256	29.7	10.5
В	256	256	28.7	9.9
	256	256	28.1	9.4
C	384	384	28.1	9.3
	[256;512]	384	27.3	8.8
	256	256	27.0	8.8
D	384	384	26.8	8.7
	[256;512]	384	25.6	8.1
	256	256	27.3	9.0
E	384	384	26.9	8.7
	[256;512]	384	25.5	8.0

< Single Scale Evaluation>

- 1) 3 개의 1x1 conv-layer 가 더 추가됐다는 점을 제외하면 B 와 C 의 구조는 동일한데 C 의 성능이 B 보다 높다. 이것은 비선형성을 추가하는 것이 모델의 정확도를 높이는데 도움을 준다는 것을 의미한다.
- 2) 1x1 conv-layer 대신에 3x3 conv-layer 이 들어있는 D 가 C 보다 성능이 높다. 이것은 kermel size 가 정확도에 영향을 준다는 것을 의미한다.
- 3) Q 가 single scale 임에도 불과하고 S 가 single scale 때 보다 multi scale 일 때 높은 성능을 보여준다.

Table 4: ConvNet performance at multiple test scales.

Tuote ii Convitte perior manee at matelyte test sentest				
ConvNet config. (Table 1)	smallest image side		top-1 val. error (%)	top-5 val. error (%)
	train(S)	test(Q)		
В	256	224,256,288	28.2	9.6
	256	224,256,288	27.7	9.2
C	384	352,384,416	27.8	9.2
	[256; 512]	256,384,512	26.3	8.2
	256	224,256,288	26.6	8.6
D	384	352,384,416	26.5	8.6
	[256; 512]	256,384,512	24.8	7.5
	256	224,256,288	26.9	8.7
E	384	352,384,416	26.7	8.6
	[256; 512]	256,384,512	24.8	7.5

< Multi Scale Evaluation>

- 4) 위 표를 보면 범위를 무작위로 변경하면서 훈련하는 것이(=scale jittering)이 정확도 상승에 도움을 준다는 것을 알 수 있다.
- 5) VGG 모델은 19 layer 에서 정확도가 수렴한다는 것을 알 수 있다.

6. 최종 성능

Method	top-1 val. error (%)	top-5 val. error (%)	top-5 test error (%)
VGG (2 nets, multi-crop & dense eval.)	23.7	6.8	6.8
VGG (1 net, multi-crop & dense eval.)	24.4	7.1	7.0
VGG (ILSVRC submission, 7 nets, dense eval.)	24.7	7.5	7.3
GoogLeNet (Szegedy et al., 2014) (1 net)	-	7.9	
GoogLeNet (Szegedy et al., 2014) (7 nets)	-	6.7	
MSRA (He et al., 2014) (11 nets)	-	-	8.1
MSRA (He et al., 2014) (1 net)	27.9	9.1	9.1
Clarifai (Russakovsky et al., 2014) (multiple nets)	-	-	11.7
Clarifai (Russakovsky et al., 2014) (1 net)	-	-	12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets)	36.0	14.7	14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net)	37.5	16.0	16.1
OverFeat (Sermanet et al., 2014) (7 nets)	34.0	13.2	13.6
OverFeat (Sermanet et al., 2014) (1 net)	35.7	14.2	P <u>P</u>
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets)	38.1	16.4	16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net)	40.7	18.2	N .

모델 D와 E를 앙상블하여 multi-crop & dense evaluation 이라는 메소드를 이용하여 Top-5 에러가 6.8%로 1 위 모델인 GoogleNet 과 0.1%차를 보여주는 것을 알 수 있다.

7. 결론

이 논문을 통해서 층의 깊이와 receptive field (=kernel size)가 정확도에 미치는 영향을 알수 있었다. 층을 쌓을수록 정확도가 올라가는 것을 보아 데이터 셋이 더 큰 경우에는 더 깊은 층을 쌓을 수 있다는 것을 알 수 있다.

논문에서 여러가지 평가방법을 언급하였고 이 평가방법과 앙상블을 사용하여 정확도를 올렸다. 이런 점을 본다면 평가방법이 정확도에 끼치는 영향과 앙상블에 대해서 조금 더 공부할 필요가 있다고 생각한다.

Reference

 Very Deep Convolutional Networks For Large-Scale Image Recognition (Karen Simonyan & Andrew Zisserman , University of Oxford)