Problem

A 2cnf-formula is an AND of clauses, where each clause is an OR of at most two literals. Let

Let $2SAT = \{\langle \phi \rangle | \phi \text{ is a satisfiable 2cnf-formula} \}$. Show that $2SAT \in P$.

Step-by-step solution

Step 1 of 5

Class – P: Pis a class of Languages that are decidable in polynomial time on a deterministic single – tape Turing – machine.

The Language is $2 \, \mathrm{SAT} = \left\{ \left< \phi \right> | \, \phi \, \, \mathrm{is} \, \, \mathrm{a} \, \, \mathrm{satisfiable} \, \, 2 \, \mathrm{CNF} \, \, \mathrm{formula} \right\}$

A cnf - formula is said to be 2 cnf if all the clauses have two literals.

Now we have to prove that $2SAT \in P$.

- Let $\phi_{be the} 2 cnf$ -formula one variables $x_1, x_2, ..., x_n$
- Let us construct the graph G for the give ϕ as follows :
- ightarrow The variables and their negations in ϕ are taken as vertices of graph G. That is, $V = \{x_1, ..., x_n\} \cup \{\overline{x}_1, ..., \overline{x}_n\}$
- \rightarrow For every clause of the form $A \vee B$ in ϕ , add a directed edge from \overline{A} to B and one from \overline{B} to A in graph G.
- So by the construction of the graph, it is follows that, if there is an edge from A to B then there is an edge from \overline{B} to \overline{A} .
- Now let us suppose that there is a directed path from $x_i to x_i$ and from $x_i to x_i$.
- The existence of a directed path from $x_i to x_i$ is equivalent to saying that $x_i \Rightarrow x_i$ and the existence of a directed path from $x_i to x_i$ is equivalent to saying that $x_i \Rightarrow x_i$. Together, they implying that $x_i \Rightarrow x_i$, which is false.
- ullet So if this condition occurs then the formula ${}^{\phi}$ has an un-satisfiable clause embedded in it.
- Conversely we will show that, if there is no such pair of paths (one form $x_i to \overline{x_i}$ and another from $x_i to \overline{x_i}$) then a satisfying assignment can be found for ϕ , by the following algorithm.

Comment

Step 2 of 5

Step – 1 For each variable x_i , check if there is a path from $x_i to x_i$. If there is such a path, assign $x_i = false$. For all variables V such that there is a path from $x_i to x$, assign $x_i = false$. For all variables V such that there is a path from $x_i to x$, assign $x_i to x$.

Comment

Step 3 of 5

Step – 2 for each variable x_i , check if there is a path from x_i to x_i . If there is such a path, assign $x_i = true$. For all literal v such that there: a path form x_i to v, assign v to true and v to false.

Comment

Comment			
	:	Step 5 of 5	
So this algorith	never assigns both true and false values to the sar	ne variable.	
The entire algo	hm will be executed in polynomial time.		
· Therefore 2 SA	is in P.		