

深圳市展恒电子有限公司

Broadic Electronics Co., Ltd

HD588E

High Speed, Fail-Safe RS-485 Transceiver with ±16KV ESD Protection

Broadic 2015.08.18

产品概述

HD588E 是 3.3V/5V、半双工、 $\pm 16kV$ ESD 保护的 RS-485/RS-422 收发器电路,电路内部包含一路驱动器和一路接收器。

HD588E 具有增强摆率限制,有助于降低输出 EMI 以及不匹配的终端连接引起的反射,实现 1Mbps 的无误码数据传输。

芯片接收器输入阻抗为 1/8 单位负载,允许多达 256 个收发器挂接在总线上,实现半双工通信。所有驱动器输出提供 $\pm 16kV$ 人体模式 ESD 保护,采用 8 脚 SO 封装,工作于-40 \mathbb{C} 至 ± 125 \mathbb{C} 温度范围。

产品特性

- 3.3V/5V 电源电压
- 实现 1Mbps 的高速无误码数据传输
- 通信端口提供±16kV 人体模式 ESD 保护
- Fail-safe 功能
- 具有 1/8 单位负载,多达 256 个收 发器可挂接在同一总线上
- 采用 8 脚 SO 封装

典型应用

- 隔离型 RS-485 接口
- 电表
- 工业控制
- 工业电机驱动
- 自动 HVAC 系统

极限参数

(所有电压参考点为地)

供电电压······ +6V
DE, RE, DI
A, B8V to +13V
8管脚SO (-5.9mW/° C+70° 以上)····· 471mW
工作温度范围·····-40°C to +125°C
结温·····+150° ℃
存储温度范围·····65°C to +150°C
焊锡温度 (10秒)++300° C

引脚逻辑图及描述

HD588E Rev1.0

直流特性

(VCC = +5V ±5%, 环境温度为 +25 ℃.)

$(VCC = +5V \pm 5\%,$		夏 万 +25 ℃.)					
参数	符号	条件		最小	典型	最大	单位
驱动器							
差分驱动输出(无负载)	VoD1	图 1			5		伏
差分驱动输出	VOD2	图 1, R=50 Ω (RS-422)		2			伏
左刀驱奶棚山	VOD2	图 1, R=27 Ω (RS-	485)	1.5			1/\
差分输出幅值变化(注1)	$\Delta^{ m V}_{ m OD}$	图 1,R =50 Ω orR=	=27Ω			0.2	伏
驱动器输出共模电平	VOC	图 1, R=50 Ω orR=	27 Ω			3	伏
驱动器输出共模电平变化	ΔVOC	图 1, R=50 Ω orR=	27Ω			0.2	伏
输入高电平	VIH1	DE, DI, \overline{RE}		2. 0			伏
输入低电平	VIL1	DE, DI, \overline{RE}				0.8	伏
输入迟滞	VHYS	DE, DI, \overline{RE}			100		毫伏
输入电流	I _{IN1}	DE, DI, <i>RE</i> (注 2)				±2	微安
t∧) ⊥ >> (₁ L p)	Trave	DE = GND,	VIN=12V			125	Alta A
输入电流(A 与 B)	IIN4	VCC=GNDor5.25V	VIN=-7V	-75			微安
		-7V≤V _{OUT} ≤V	CC	-250			毫安
驱动器输出短路电流	IOD1	OV≤V _{OUT} ≤12	.V			250	毫安
		0V≤V _{OUT} ≤V _O	CC	±25			毫安
接收器							l
接收器差分输入阈值电压	VTH	-7V≪V _{CM} ≪+12	2V	-200		-50	毫伏
接收器差分输入阈值电压 迟滞	ΔVTH				60		毫伏
接收器输出高电平	VOH	IO=-4mA, VID=	1V	Vcc-1.5			伏
接收器输出低电平	VOL	IO=4mA, VID=-	1V			0.4	伏

接收器输出高阻态漏电流	Iozr	0. 4V≪V ₀ ≪2			±1	微安		
接收器输入阻抗	RIN	-7V≪V _{CM} ≪+	12V	96			千欧 姆	
接收器输出短路电流	IOSR	0V≪VR0≪V	CC	±7		±95	毫安	
供电电流								
#A → /II → → VF	Taa	No load,	DE=VCC		450	600	AluL A	
静态供电电流	ICC	$\overline{RE} = DI = GND$ orVcc	DE=GND		450	600	微安	
关断电流	ISHDN	$DE = GND, \overline{RE} = Vcc$			1.8	10	微安	
静态保护特性							•	
		接触放电模型				±12		
		IEC 61000-4	1-2			12		
 静电保护(A管脚,B管脚)		人体模型				±16	千伏	
即电体扩(A官网,D官网)		IEC 60749-	26			⊥10	17/	
		快速瞬变脉冲群				+4		
		IEC61000-4	-4			7.4		
		人体模型(HBM)JEI	DEC JS-001			±4		
静电保护(其他管脚)		充电器件模型((CDM)			±1.5	千伏	
11 七 小) (六 1 巴 百 1 种)		JESD22-C10)1			±1.0	IV	
		机器模型(MM)JES	SD22-A115			± 0.4		

注 1: ΔVOD 和 ΔVOC是当DI改变时 VOD 和VOC的各自变化量。

注 2: 所有流入器件的电流为正,流出器件的电流为负;如无特殊说明,所有电压以地为 参考点。

(VCC = +3.3V ±5%, 环境温度为 +25 ℃.)

参数	符号	条件	最小	典型	最大	单位	
驱动器							
差分驱动输出(无负载)	V _{OD1}	图 1		3. 3		伏	
差分驱动输出	VoD2	图 1, R=50 Ω (RS-422)	1.8			伏	
左分驱列制币	VOD2	图 1, R=27 Ω (RS-485)	1.2			1/	
差分输出幅值变化(注1)	$\Delta V_{ ext{OD}}$	图 1, R =50 Ω orR=27 Ω			0.2	伏	
驱动器输出共模电平	VOC	图 1, R=50 Ω orR=27 Ω			2	伏	
驱动器输出共模电平变化	ΔVOC	图 1, R=50 Ω orR=27 Ω			0.2	伏	

HD588E Rev1.0

www.broadicsemi.cn

			tii ±10				
输入高电平	V _{IH1}	DE, DI, \overline{R}	Ē	2. 0			伏
输入低电平	VIL1	DE, DI, \overline{R}	\overline{E}			0.8	伏
输入迟滞	VHYS	DE, DI, \overline{RE}			100		毫伏
输入电流	IIN1	DE, DI, $\overline{\textit{RE}}$ (§	主 2)			±2	微安
输入电流(A 与 B)	IIN4	DE = GND, VCC=GNDor5.25V	V _{IN} =7V V _{IN} =-7V	-75		70	微安
		-7V≤V _{OUT} ≤	VCC	-250			毫安
驱动器输出短路电流	IOD1	0V≪V _{OUT} ≪	3V			250	毫安
		0V≪V _{OUT} ≪V	CC	±25			毫安
接收器							
接收器差分输入阈值电压	V _{TH}	-7V≤V _{CM} ≤+	7V	-200		-50	毫伏
接收器差分输入阈值电压迟滞	ΔVTH				60		毫伏
接收器输出高电平	VOH	IO=-4mA, VID	=1V	Vcc-1.5			伏
接收器输出低电平	VOL	IO=4mA, VID=	-1V			0.4	伏
接收器输出高阻态漏电流	IOZR	0.4V≤V0≤2.	4V			±1	微安
接收器输入阻抗	RIN	-7V≤VCM≤+	7V	96			千欧 姆
接收器输出短路电流	IOSR	0V≤V _{RO} ≤V _{CC}		±7		±95	毫安
供电电流							•
基大	Icc	No load,	DE=VCC		370	600	他小子
静态供电电流	ICC	$\overline{RE} = DI = GND$ orVcc	DE=GND		370	600	微安
关断电流	ISHDN	$DE = GND, \overline{RE} = Vcc$			1.8	10	微安

注 1: ΔVOD 和 ΔVOC是当DI改变时 VOD 和VOC的各自变化量。

注 2: 所有流入器件的电流为正,流出器件的电流为负;如无特殊说明,所有电压以地为 参考点。

开关特性

(VCC = 3.3/5V ±5%, 环境温度为 +25 ℃.)

参数	符号	条件	最小	典型	最大	单位
驱动器输入输出延时	tDPLH	图 3 和 5, RDIFF=54 欧姆,	250	720	1000	纳秒
驱纠备制八制口延时	tDPHL	CL=54pF	250	720	1000	纠化少
驱动器输入输出延时之差	tDSKEW	图 3 和 5, RDIFF=54 欧姆, CL1=CL2=100pF		-3	±100	纳秒
驱动器上升、下降时间	tDR, tDF	图 3 和 5,RDIFF=54 欧姆, CL1=CL2=100pF	400	700	1200	纳秒
最大速率	fmax			1000		kbps
驱动器使能到输出为高电平	tDZH	图 4 和 6, CL=100pF, S2 关断			2500	纳秒
驱动器使能到输出为低电平	tDZL	图 4 和 6, CL=100pF, S1 关断			2500	纳秒
驱动器从输出低到关断时间	tDLZ	图 4 和 6, CL=15pF, S1 关断			500	纳秒
驱动器从输出高到关断时间	tDHZ	图 4 和 6, CL=15pF,S2 关断			500	纳秒
接收器输入输出延时	tRPLH tRPHL	图7和9; VID ≥2.0V; VID上 升下降时间小于15纳秒		125	250	纳秒
tRPLH - tRPHL 接收器 输入输出延时之差	tRSKD	图7和9; VID ≥2.0V; VID上 升下降时间小于15纳秒		10	±50	纳秒
接收器使能到输出低	tRZL	图 2 和 8, CL= 100pF, S1 关断		20	120	纳秒
接收器使能到输出高	tRZH	图 2 和 8, CL=100pF, S2 关断		20	120	纳秒
接收器从输出高到关断	tRZL	图 2 和 8, CL=100pF, S1 关断		20	120	纳秒
接收器从输出低到关断	tRHZ	图 2 和 8, CL=100pF, S2 关断		20	120	纳秒
芯片关断时间	tSHDN	(注 3)	50	200	600	纳秒
从芯片关断到驱动器使能, 到输出为高电平	tDZH(SH DN)	图 4 和 6, CL=15pF, S2 关断			4500	纳秒
从芯片关断到驱动器使能, 到输出为低电平	tDZL (SH DN)	图 4 和 6, CL=15pF, S1 关断			4500	纳秒
从芯片关断到接收器使能, 到输出为高电平	tRZH(SH DN)	图 2 和 8, CL=100pF, S2 关断			3500	纳秒
从芯片关断到接收器使能, 到输出为低电平	tRZL(SH DN)	图 2 和 8, CL=100pF, S1 关断			3500	纳秒

注 3: 当 RE =1, DE=0 时, HD588E 进入关断状态。如果这个状态维持时间小于 50 纳秒,则芯片不会进入关断状态。如果这个状态维持时间超过 600 纳秒,芯片确保进入关断状态。

图 1 驱动器直流特性测试负载

图 4 驱动器使能/关断 开关特性测试负载

图 2 接收器使能/关断 开关特性测试负载

图 5 驱动器传输延时

图 3 驱动器开关特性测试电路

图 6 驱动器使能/关断时序

图 7 接收器传输延时

图 8 接收器使能/关断时序

图 9 接收器传输延时测试电路

管脚功能描述

管脚	名称	功能
1	RO	接收器输出,接收器使能时,极性判断完成后,若 V(A)-V(B)>-50mV, RO 输出高电平;若
		V(A)-V(B)<-200mV, RO 输出低电平。
2	\overline{RE}	接收器输出使能, \overline{RE} 接低电平时 \overline{RO} 输出有效; \overline{RE} 接高电平时,接收器关断。 \overline{RE} 为
		高电平,DE 为低电平,整个芯片处于关断状态。
3	DE	驱动器输出使能,DE 置为高电平时,驱动器使能,DE 置为低电平时,驱动器关断,驱动
		器输出为高阻态。 \overline{RE} 为高电平, DE 为低电平,整个芯片处于关断状态。
4	DI	驱动器输入,DI 为低电平时强制同相输出为低电平,反相输出为高电平; DI 为高电平时强
		制同相输出为高电平,反相输出为低电平。
5	GND	地
6	A	总线接口,驱动器同相输出端,接收器同相输入端。
7	В	总线接口,驱动器反相输出端,接收器反相输入端。
8	V_{cc}	正电源,采用一只 0.1 µF 电容旁路 V_{CC} 至 GND

真值表

发射								
	输入		输	出				
\overline{RE}	DE	DI	В	A				
X	1	1	0	1				
X	1	0	1	0				
0	0	X	高阻	高阻				
1	0	X	关断					

接收							
	I输入						
\overline{RE}	RE DE A-B						
0	X	\geq -50 mV	1				
0	0 X ≤-200mV						
1	1	X	高阻				
1	0	X	关断				

应用信息

Rt 为特征匹配阻抗,典型值为 120Ω

图 10 HD588E 和 RS-485 典型的半双工工作电路

总线负载 256 个收发器

标准 RS-485 接收器的输入阻抗为 12KΩ (1个单位负载),标准驱动器可最多驱动 32个单位负载。HD588E 具有 1/8 单位负载的输入阻抗 (96KΩ),允许最多 256 个收发器挂接在同一总线上。这些器件可任意组合,或者与其他 RS485 收发器组合使用,只要总负载不超过 32 个单位负载即可挂接在同一总线。

低功耗关断模式

RE为高电平,DE为低电平,芯片进入低功耗关断模式。关断电流典型值为1.8微安。RE和DE可以同时驱动;如果RE为高电平,DE为低电平保持时间小于50纳秒,芯片不会进入关断模式;如果保持时间超过600纳秒,芯片会确保进入关断模式。

低功耗关断模式

HD588E 的限摆率驱动器可以降低 EMI, 并降低由于不恰当的终端匹配电缆所引起 的反射,实现最高 1Mbps 的无误码数据传输。

驱动器输出保护

两种机理实现过大电流和功耗过大保护。一个是过流保护电路,当正常驱动总线时,由于总线异常导致芯片电流过大时,芯片内部的过流保护电路起作用,来保证驱动电流不会超过一定条件下的设定值。另一个是过温保护,当芯片功耗太大,温度上升时,过温保护电路保证芯片不会损坏。如果芯片进入过温保护状态,驱动器输出为高阻态。

典型应用

HD588E 应用于双向数据通信的多点网络。图 10 给出了典型的应用网络。为了降低反射,应当在传输线的两端以其特性阻抗进行终端匹配,主干线以外的分支线路的长

度应尽可能短。

静电保护

HD588E的所有管脚均具有静电泄放保护电路来防止人手触摸或者装配时的 ESD 事件对芯片造成损坏。驱动器的输出和接收器的输入管脚采用增强的 ESD 保护电路,这些管脚可以抵抗±16KV 的人体模式 ESD 冲击而不会损坏。所有 ESD 保护电路在正常工作时均处于关断状态,并不消耗电流。ESD 事件后,HD588E 可以保证正常工作,而不会出现闩锁或损坏情况。

ESD 保护性能测试方法有很多种。驱动器的输出和接收器的输入采用如下 ESD 测试方法来衡量 ESD 性能: 1) ±16KV 人体模型 2) ±12kV IEC61000-4-2 接触放电。

HD588E Rev1.0

产品信息

产品型号	封装类型	管脚数	SPQ	MSL
HD588E	SOP	8	2500	3

封装尺寸

