High dimensional probability

04/13/2022

Covariance estimation of sub-Gaussian distributions

 $Bowen\ Zhou$

 $bowen_zz@sjtu.edu.cn$

1 Non-asymptotic results of sample covariance mareices

Suppose we observe n i.i.d. p-dimensional observations $\mathbf{X}_1, \dots, \mathbf{X}_n$ distributed according to a sub-Gaussian distribution, with mean zero and covariance matrix Σ . To estimate Σ we can use the sample covariance matrix:

$$\widehat{\mathbf{\Sigma}} = \frac{1}{n} \sum_{k=1}^{n} \mathbf{X}_k \mathbf{X}_k^T.$$

Now we study the tail probability properties of this covariance estimation. The key point is the $\varepsilon - net$ argument.

Let $\mathcal{N}_{\varepsilon}$ is a ε -net of S^{p-1} with $|\mathcal{N}_{\varepsilon}| = \mathcal{N}(S^{p-1}, \varepsilon)$. We know that

$$|\mathcal{N}_{\varepsilon}| \le \left(1 + \frac{2}{\varepsilon}\right)^p$$
.

Now we deal with the operator norm of $\widehat{\Sigma} - \Sigma$:

$$\begin{split} \mathbb{P}\Big\{ \Big\| \widehat{\mathbf{\Sigma}} - \mathbf{\Sigma} \Big\| &\geq t \Big\} = \mathbb{P}\Big\{ \sup_{x \in \mathcal{S}^{p-1}} \Big| x^T \Big(\widehat{\mathbf{\Sigma}} - \mathbf{\Sigma} \Big) x \Big| \geq t \Big\} \\ &\leq \frac{1}{1 - 2\varepsilon} \mathbb{P}\Big\{ \sup_{x \in \mathcal{N}_{\varepsilon}} \Big| x^T \Big(\widehat{\mathbf{\Sigma}} - \mathbf{\Sigma} \Big) x \Big| \geq t \Big\} \\ &\leq \frac{1}{1 - 2\varepsilon} \sum_{x \in \mathcal{N}_{\varepsilon}} \mathbb{P}\Big\{ \Big| x^T \Big(\widehat{\mathbf{\Sigma}} - \mathbf{\Sigma} \Big) x \Big| \geq t \Big\}, \end{split}$$

then

$$x^T \Big(\widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma} \Big) x = \frac{1}{n} \sum_{k=1}^n x^T \big(\mathbf{X}_k \mathbf{X}_k^T - \boldsymbol{\Sigma} \big) x = \frac{1}{n} \sum_{k=1}^n \big(x^T \mathbf{X}_k \mathbf{X}_k^T x - x^T \boldsymbol{\Sigma} x \big),$$

 $x^T \mathbf{X}_k$ is sub-Gaussian due to \mathbf{X}_k is sub-Gaussian, so $\{(x^T \mathbf{X}_k \mathbf{X}_k^T x - x^T \Sigma x), 1 \leq k \leq n\}$ are i.i.d. sub-exponential mean-zero random variables, so we can use Bernstein's inequality:

Lemma 1 (Bernstein's inequality). Let X_1, \dots, X_N be independent mean-zero sub-exponential random variables, and let $\mathbf{a} = (a_1, \dots, a_N) \in \mathbb{R}^N$. Then, for every $t \geq 0$, we have

$$\mathbb{P}\bigg\{ \left| \sum_{i=1}^N a_i X_i \right| \geq t \bigg\} \leq 2 \exp \bigg(-c \min \bigg(\frac{t^2}{K^2 \|a\|_2^2}, \ \frac{t}{K \|a\|_\infty} \bigg) \bigg)$$

where $K = \max_i ||X_i||_{\Psi_1}$.

Using this lemma, we have

$$\mathbb{P}\Big\{ \Big| x^T \Big(\widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}\Big) x \Big| \geq t \Big\} \leq 2 \exp \bigg(-c \min \bigg(\frac{t^2}{K^2}, \ \frac{t}{K} \bigg) n \bigg),$$

where $K = \max_k \|x^T \mathbf{X}_k \mathbf{X}_k^T x - x^T \Sigma x\|_{\Psi_1} \le C \max_k \|\mathbf{X}_k\|_{\Psi_2}^2 \le C \|\Sigma\|$. Substituting it into the beginning, and let $\varepsilon = 1/4$, we have

$$\mathbb{P}\Big\{ \Big\| \widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma} \Big\| \ge t \Big\} \le 2 \exp\left(-c \min\left(\frac{t^2}{\|\boldsymbol{\Sigma}\|^2}, \ \frac{t}{\|\boldsymbol{\Sigma}\|} \right) n + p \log 9 \right), \tag{1.1}$$

let $t = ||\Sigma|| \max(\delta, \delta^2)$, then

$$\mathbb{P}\Big\{ \Big\| \widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma} \Big\| \ge \|\boldsymbol{\Sigma}\| \max(\delta, \delta^2) \Big\} \le 2 \exp \left(-cn\delta^2 + p \log 9 \right),$$

To counteract p and n in the exponential term, let $\delta = \tilde{C}\sqrt{p/n} + u\sqrt{p/n}$ and chose a large constant \tilde{C} we have

$$\mathbb{P}\Big\{ \Big\| \widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma} \Big\| \ge \|\boldsymbol{\Sigma}\| \max(\delta, \delta^2) \Big\} \le 2 \exp(-pu^2),$$

for all u > 0.

Remark. Suppose p < n, and recall the inequality (1.1), let $t = \tilde{C} \|\Sigma\| (\sqrt{p/n} + u)$, and choose a large enough constant \tilde{C} , we have

$$\mathbb{P}\left\{\left\|\widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma}\right\| \ge \tilde{C}\|\boldsymbol{\Sigma}\|\left(\sqrt{\frac{p}{n}} + u\right)\right\} \le 2\exp\left(-c\min\left(u^2, u\right)n\right),$$

for all $u \geq 0$. From this we can see that

$$\|\widehat{\Sigma} - \Sigma\| = O_p\left(\sqrt{\frac{p}{n}}\right).$$

Remark. If we consider another norm of matrix: the max norm, i.e. $||A||_{\max} = \max_{ij} |A_{ij}|$, then what is the convergence order of covariance estimation? In fact,

$$||A||_{\max} = \max_{x,y \in \{e_k\}_{k=1}^n} |x^T A y|,$$

there are p^2 possible choice of (x,y) so with similar analysis of $\varepsilon - net$ argument, we have

$$\mathbb{P}\Big\{ \Big\| \widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma} \Big\|_{\max} \geq t \Big\} \leq 2 \exp \bigg(-c \min \bigg(\frac{t^2}{\|\boldsymbol{\Sigma}\|^2}, \ \frac{t}{\|\boldsymbol{\Sigma}\|} \bigg) n + 2 \log p \bigg),$$

then by similar discussion, for all $u \geq 0$,

$$\mathbb{P}\Big\{ \Big\| \widehat{\boldsymbol{\Sigma}} - \boldsymbol{\Sigma} \Big\|_{\max} \ge \|\boldsymbol{\Sigma}\| \max(\delta, \delta^2) \Big\} \le 2 \exp \left(-u^2 \log p \right),$$

where $\delta = \tilde{C}\sqrt{\log p/n} + u\sqrt{\log p/n}$, and hence if $\log p < n$, then

$$\|\widehat{\Sigma} - \Sigma\|_{\max} = O_p\left(\sqrt{\frac{\log p}{n}}\right).$$

2 Sparse estimation in high dimension

In high dimension case, covariance matrices always have some additional structure. For example, some sparse structure may be a usual assumption.

Suppose the covariance matrix Σ is known to be sparse, but the positions of non-zero entries are no longer known.

2.1 Hard-thresholding estimator

Consider the hard-thresholding estimator:

$$T_{\lambda}(\widehat{\Sigma}) = \left[\widehat{\Sigma}_{ij}\mathbb{I}\left(\widehat{\Sigma}_{ij} \geq \lambda\right)\right].$$

Now we study the performance of this estimator, where the tuning parameter λ is suitably chosen, that is, we will show that

$$||T_{\lambda}(\widehat{\Sigma}) - \Sigma|| = O_p \left(\sqrt{\frac{\log p}{n}}\right).$$

Denote the adjacency matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$ with entries $\mathbf{A}_{jk} = \mathbb{I}[\mathbf{\Sigma}_{jk} \neq 0]$. The following lemma are need to study the concentration inequality based on \mathbf{A} . In fact,

$$||T_{\lambda}(\widehat{\Sigma}) - \Sigma|| = O_p \left(||A|| \sqrt{\frac{\log p}{n}} \right).$$

Lemma 2 (Non-negative matrices and operator norms). Given two p-dimensional symmetric matrices \mathbf{A} and \mathbf{B} , suppose that $0 \leq \mathbf{A}_{jk} \leq \mathbf{B}_{jk}$ for all $j, k = 1, \dots, p$.

- (a) $0 \le \mathbf{A}_{jk}^m \le \mathbf{B}_{jk}^m$ for all $m = 1, 2, \dots, j, k = 1, \dots, p$.
- (b) $||A|| \le ||B||$.
- (c) $||C|| \le |||C|||$ for any symmetric matrix C, where |C| denotes the absolute value function applied elementwise.

Proof of Lemma 2

From section 1, we have, for all u > 0,

 $\mathbb{P}\bigg\{ \Big\| \hat{\pmb{\Sigma}} - \pmb{\Sigma} \Big\|_{\max} \leq C \bigg(\sqrt{\frac{\log p}{n}} + u \bigg) \bigg\} \geq 1 - 2 \exp \big\{ -cn \min(u, u^2) \big\}.$

Let $\lambda = C\left(\sqrt{\frac{\log p}{n}} + u\right)$. If $\left\|\hat{\mathbf{\Sigma}} - \mathbf{\Sigma}\right\|_{\max} \leq \lambda$, we are guaranteed that

$$||T_{\lambda}(\widehat{\Sigma}) - \Sigma|| \le 2||A||\lambda.$$

First, $||T_{\lambda}(\widehat{\Sigma}) - \Sigma|| \le ||T_{\lambda}(\widehat{\Sigma}) - \Sigma|||$, and

$$\left| T_{\lambda}(\widehat{\Sigma}) - \Sigma \right|_{ij} \le \left| T_{\lambda}(\widehat{\Sigma}) - \widehat{\Sigma} \right|_{ij} + \left| \widehat{\Sigma} - \Sigma \right|_{ij} \le 2\lambda A_{ij},$$

so by lemma 2, we have $\|T_{\lambda}(\widehat{\Sigma}) - \Sigma\| \le 2\|A\|\lambda$, and hence for all u > 0,

$$\mathbb{P}\bigg\{\Big\|T_{\lambda}(\widehat{\boldsymbol{\Sigma}}) - \boldsymbol{\Sigma}\Big\| \le C\|A\|\bigg(\sqrt{\frac{\log p}{n}} + u\bigg)\bigg\} \ge 1 - 2\exp\big\{-cn\min(u, u^2)\big\}.$$

If the covariance matrix Σ has at most s non-zero entries per row, then

$$||A|| \le \sqrt{||A||_1 ||A||_{\infty}} \le s,$$

and so

$$||T_{\lambda}(\widehat{\Sigma}) - \Sigma|| = O_p \left(s \sqrt{\frac{\log p}{n}} \right).$$

With similar argument, we can show that

$$\frac{1}{p} \left\| T_{\lambda}(\widehat{\Sigma}) - \Sigma \right\|_F^2 = O_p \left(\frac{\|A\|_F^2}{p} \frac{\log p}{n} \right),$$

and if the covariance matrix Σ has at most s non-zero entries per row, then

$$\frac{1}{p} \left\| T_{\lambda}(\widehat{\Sigma}) - \Sigma \right\|_{F}^{2} = O_{p} \left(\frac{s \log p}{n} \right).$$

• Approximate sparsity: Given a parameter $q \in [0,1]$ and a constant R_q , suppose Σ satisfies:

$$\max_{i} \sum_{j=1}^{p} |\mathbf{\Sigma}_{ij}|^{q} \le R_{q}.$$

We will show that

$$||T_{\lambda}(\widehat{\Sigma}) - \Sigma|| = O_p \left(R_q \left(\frac{\log p}{n} \right)^{(1-q)/2} \right).$$

2.2 Generalized thresholding estimator