] | A | + I | |

(-(w 0 \ .

3,6

3,1

4.2

4.5

412

due 9/16.

Evaluate e^{-5} using two approaches

$$e^{-x} = 1 - x + \frac{x^2}{2} - \frac{x^3}{3!} + \cdots$$

and

$$e^{-x} = \frac{1}{e^x} = \frac{1}{1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \cdots}$$

and compare with the true value of 6.737947×10^{-3} . Use 20 terms to evaluate each series and compute true and approximate relative errors as terms are added.

term	menre	time heldine enor	approvide selfie and
0	1		0,006739947-1
1	-4	-4-1 = 1,25	0.006131149 - (-4) 594gg
2	8.5	1. 47	-1260
:	ê	Ž	:
20	0,50674554	0,0058	-0.0011

	tem	70145724-	the welfire over	officiale	
_	0	((-147)	
-	(6.16 6 6	0.1666 0883	0.00823794	
				(-23.8)	
	2	0,0540541	0.696	-7.62	
	3	0,0254237	0,53	-2.77	
_	٠,	· (t	i c	,	
	20	0,00693795	6,0000003	-6.0000000	1

100 ly @ 7 of gram ZAtole.

1 The B They Hazmy True Zon They a

The derivative of $f(x) = 1/(1 - 3x^2)$ is given by $(1-3x^2)^2$

Do you expect to have difficulties evaluating this function at_ x = 0.577? Try it using 3-and 4-digit arithmetic with chopping.

152 82 2 M n/2 UE formal cary

4.2 The Maclaurin series expansion for cos x is

$$\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \cdots$$

Starting with the simplest version, $\cos x = 1$, add terms one at a time to estimate $\cos(\pi/3)$. After each new term is added, compute the true and approximate percent relative errors. Use your pocket calculator to determine the true value. Add terms until the <u>absolute value</u> of the approximate error estimate falls below an error criterion conforming to two significant figures.

for conforming to two significant figures. Resolved

for value of
$$Gos(F_8) = \frac{1}{2} + 0.5$$

1.
$$Cox(\sqrt[q]{o_{2}}) = 1 - \frac{(\sqrt[q]{\gamma})^2}{2} + \frac{(\sqrt[q]{\gamma})^4}{4!} - \frac{(\sqrt[q]{\gamma})^4}{6!} = 0.4996949$$

4.5 Use zero- through third-order Taylor series expansions to predict f(3) for

$$f(x) = 25x^3 - 6x^2 + 7x - 88$$

using a base point at x = 1. Compute the true percent relative error ε , for each approximation.

f(5) x f(1) + f'(1) (3-1) = -62 + (15-12+7) 2

4.11 Recall that the velocity of the falling parachutist can be computed by [Eq. (1.10)],

$$v(t) = \frac{gm}{c} \left(1 - e^{-(c/m)t} \right)$$

Use a <u>first-order error</u> analysis to estimate the error of v at t = 6, if

9.81 and m = 50 but $c = 12.5 \pm 1.5$. 1.2 Repeat Prob. 4.11 with g = 9.81, t = 6, $c = 12.5 \pm 1.5$, and

$$m = 50 \pm 2$$
.

$$\Delta V(\hat{c}, \hat{m}) = \begin{vmatrix} \frac{\partial V}{\partial c} \\ \frac{\partial V}{\partial c} \end{vmatrix} + \begin{vmatrix} \frac{\partial V}{\partial m} \\ \frac{\partial W}{\partial m} \end{vmatrix}$$

$$= \left| \frac{\partial^{\infty}}{\partial z^{2}} \left(e^{\frac{z^{2}}{12}} - 1 \right) + \frac{\partial^{2}}{\partial z^{2}} e^{-\frac{z^{2}}{12}} t \right| \Delta \tilde{z}$$

$$+ \left| \frac{\partial}{\partial z^{2}} - e^{-\frac{z^{2}}{12}} t \right| \left(\frac{\partial}{\partial z^{2}} + \frac{\partial^{2}}{\partial z^{2}} \right) \right| \Delta \tilde{z}$$

$$= \left| \frac{9.81 \cdot 50}{(12.5)^2} \left(e^{-\frac{12.5}{50}} - 1 \right) + \frac{981 \cdot 6}{12.5} e^{-\frac{12.5}{50} \cdot 6} \right| \cdot 1.5$$

$$+ \left[\frac{9.81}{12.5} - e^{-\frac{12.5}{3.5}} \left(\frac{9.1}{12.5} + \frac{9.11.6}{50} \right) \right] \cdot 9$$

$$\nabla = \frac{7.0(.50)}{(2.5)} \left(1 - e^{-\frac{16.5}{50}}\right)$$

$$= \frac{36.484 \pm 2906}{(1-6)}$$