STAT5010 Advanced Statistical Inference

Fall 2023

Lecture 9: Least Favorable Distribution and Asymptotic Optimality

Lecturer: Tony Sit Scribe: Ji Qi, Zewu Zheng

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

9.1 P-value

Suppose we want to test $H_0: \theta \leq 0$ vs. $H_1: \theta > 0$ at level $0 < \alpha < 1$. Here $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\theta, 1)$. The UMP test is

$$\phi_{\alpha} = \begin{cases} 1 & \sum X_i > Z_{1-\alpha} \sqrt{n} \\ 0 & otherwise \end{cases}$$

Let $S_{\alpha} = \{X : \sum_{i=1}^{n} X_i > Z_{1-\alpha} \sqrt{n}\}$ be the secretion region. If $\alpha_1 < \alpha_2$, then $S_{\alpha_1} \subseteq S_{\alpha_2}$.

Suppose we want to test H_0 vs H_1 at level α . Let ϕ_{α} test at level α . Assume that the rejection regions an nested, i.e. $\alpha_1 < \alpha_2 \Rightarrow S_{\alpha_1} \subseteq S_{\alpha_2}$ where $S_{\alpha} = \{x : \phi_{\alpha}(x) = 1\}$.

Definition 9.1 $\hat{p}(x) = \inf \{ u : x \in S_u \}.$

Intuitively, given the p-value, you can construct a level α -test by rejecting H_0 if $\hat{p}(x) < \alpha$ and accepting H_0 if $\hat{p}(x) > \alpha$, e.g.

$$S_{\alpha} = \left\{ X_i \sum X_i > Z_{1-\alpha} \sqrt{n} \right\}$$
$$= \left\{ X_i 1 - \Phi\left(\frac{\sum X_i}{\sqrt{n}}\right) < \alpha \right\}$$
$$\Rightarrow \hat{p}(x) = 1 - \Phi\left(\frac{\sum X_i}{\sqrt{h}}\right)$$

under $H_0: g = 0, \hat{p}(x) \sim U(0, 1)$

$$P(\hat{p}(x) \le u) = u$$

Lemma 9.2 Suppose $X \sim P_{\theta}$ for some $\theta \in \Theta$. We want to test $H_0 : \theta \in \Theta_0$ vs $H_1 : \theta \in \Theta_1$ at level α . Let $\{\phi_{\alpha}\}_{\alpha \in (0,1)}$ be a collection of nested level α tests. Then

- (i) $P_{\theta}(\hat{p}(x) \leq u) \leq u = P(u(0,1) \leq u), \forall u \in (0,1), \theta \in \Theta_0$
- (ii) If $\exists g_0 \in \Theta_0$, such that $P_{\theta_0}(X \in S_\alpha) = \alpha$ for $\forall \alpha$, then $P_{\Theta_0}(\hat{p}(x) \leq u) = u$.

Definition 9.3 (Confidence interval) Let $X \sim P_{\theta}$ for some $\theta \in \Theta$. For every $X \in X$, Let S(X) be a subset of Θ . We say the collection of sets $\{S(X), X \in \mathcal{X}\}$ is an $(1 - \alpha)$ confidence region if $P_{\theta}(\theta \in S(x)) \geq 1 - \alpha, \forall \theta \in \Theta$.

9.2Asymptotic Optimality

Let $\{X_1, \dots, X_n\}$ be i.i.d. from $\{P_{\theta}, 0 \in \Theta\}$ with pdf w.r.t. some σ -finite measure. Suppose we want to estimate $g(\theta)$, and a candidate estimator is $\delta_n(x_1,\ldots,x_n)$.

Definition 9.4 We say $\delta_n(x)$ is consistent for $g(\theta)$, if $\delta_n(x) \stackrel{p}{\to} g(\theta)$, $\forall \theta \in \theta$, i.e. $\forall \theta \in \Theta, \forall \varepsilon > 0$, we have $P_{\theta}(|\delta_n(X) - g(\theta)| > \epsilon) \to 0$.

Remark: If $X_1 \dots X_n \overset{\text{iid}}{\sim} F$: (i)Assume $E_F|X| < \infty$, then $\frac{1}{n} \sum x_i \overset{p}{\rightarrow} E_F(X)$ (WLLN). (ii) Assume $E_F X^2 < \infty$, then $W_n = \frac{\sum X_i - nE_p(X)}{\sqrt{n \operatorname{var}_p(X)}} \overset{d}{\rightarrow} \mathcal{N}(0,1)$ (CLT),

$$\Leftrightarrow \lim_{n \to \infty} P(W_n \le t) = \Phi(t), \quad \forall t \in R$$

(Example) $X_1 \dots X_n \overset{\text{iid}}{\sim} \text{Bernoulli } (\theta), \text{ if } \theta \in Q; X_1 \dots X_n \overset{\text{iid}}{\sim} \text{Bernoulli } (1-\theta). \text{ if } \theta \notin Q; \text{ then there is no}$ consistent estimator of $X_1 \dots X_n$.

Definition 9.5 Let $L(\theta|x) = \prod_{i=1}^{n} p_{\theta}(x_i)$ be the likelihood function. If there exists a unique θ_n which is the global maximizer of $\theta \to L(\theta/x)$ (or $\theta \to l(\theta \mid x) = \log L(\theta \mid x)$). Define $\hat{\theta}_n$ as the MLE of θ .

(Example) $X_1 \dots X_n \stackrel{\text{iid}}{\sim} \text{Bernoulli } (\theta). \log(\theta|x) = \sum_{i=1}^n x_i (\log \theta) + (n - \sum_{i=1}^n x_i) \log(1 - \theta),$ $\Rightarrow \hat{\theta}_n = \arg\max_{\theta} \ln(\theta \mid x) = \frac{\sum_{i=1}^n x_i}{n} = \sum_{i=1}^n x_i / n.$

(i) $\bar{X}_n \xrightarrow{p} \theta$, $\forall \theta \in (0, 1)$, (consistency)

(ii) $\sqrt{n} (\overline{x_n} - \theta) \xrightarrow{d} N \left(0, \frac{1}{\theta(1-\theta)}\right)$, (CLT).

Theorem 9.6 Suppose $X_1 ... X_n \stackrel{iid}{\sim} P_{\theta}$ for some $\theta \in \Theta$ with pdf $P_{\theta}(\cdot)$ Assume A0: $P_{\theta_1} \neq P_{\theta_2}$. where $\theta_1 \neq \theta_2$ [identifiability]; A1: $\{P_{\theta}(\cdot), \theta \in \Theta\}$ has common support. Then we have: $P_{\theta_0}(\log(\hat{\theta}n \mid x) > \log(\theta \mid x)) \to 1 \text{ as } n \to \infty, \quad \forall \theta \neq \theta_0.$

Proof: Let $T_n = \frac{1}{n} \sum_{i=1}^n \log \frac{p_{\theta}(x_i)}{p_{\theta}(x_i)}$, then $T_n \stackrel{\mathcal{P}}{\to} E_{\theta_0} \log \frac{p_{\theta}(x_1)}{p_{\theta_0}(x_2)}$. Now $E_{\theta} \log \frac{P_{\theta}(X_1)}{P_{\theta_0}(X_1)} = \int \log \frac{p_{\theta}(x)}{p_{\theta}(x)} p_{\theta}(x) d\mu(x) = \int \log \frac{p_{\theta}(x_1)}{p_{\theta}(x_1)} d\mu(x) d\mu(x)$ $-D(\theta_0||\theta) < 0 \text{ for } \theta \neq \theta_0. \text{ Hence, } P_{\theta_0}(T_n \neq 0) \to 1, \text{ but } T_n < 0 \Leftrightarrow \frac{1}{n} \sum_{i=1}^n \log \frac{P_{\theta}(X_i)}{P_{\theta}(X_i)} < 0 \Leftrightarrow \log \prod_{i=1}^n P_{\theta}(X_i) < 0$ $\log \prod_{i=1}^{n} P_{\theta_0}(X_i) \Leftrightarrow \ell_n(\theta|x) < \ell_n(\theta|x).$

Corollary 9.7 Suppose A0 and A1 hold, it Θ is finite, then the MLE $\hat{\theta}_n$ exists with high probability and $P_{\theta_0}(\theta_n = 0) \to 1, \quad (n \to \infty).$

Suppose A0 and A1 hold. Suppose that $\Theta \subseteq \mathbb{R}$ and θ_0 is an interior point of Θ . If $\theta \mapsto p_0(x)$ is differentiable and the deviates is continuous. there exist a sequence of roots \hat{e}_n of the likelihood equation $\frac{\partial}{\partial \theta} \ln(\theta/x) = 0$. where is consistent for θ_0 .

Let $A_n = \{x : \ln(\theta_0 \mid x) > \max_{j \le k} \ln(\theta_j \mid x)\}$. If $X \in A_n$, then $\hat{\theta_n}(x) = \theta_0$ and $P_{\theta_0}(A_n) \to 1$.

Theorem 9.8 Suppose A0 and A1 hold. Suppose further that A2: $\Theta \subset \mathbb{R}$ and θ_0 is an interior point of Θ . If $\theta \mapsto P_{\theta}()$ is differentiable and the derivative is continuous, then there exists a sequence of roots $\hat{\theta}_n$ of the score function $\ell'_n(\theta)\partial\ell_n(\theta|)/\partial\theta=0$, which is consistent for θ_0 .

Proof: Let $\delta > 0$ be small enough such that $[\theta_0 - \delta, \theta_0 + \delta] \subset \Theta$. It follows that

$$P_{\theta_0}\left(\ell_n(\theta_0\mid) > \ell_n(\theta_0 \pm \delta\mid)\right) \to 1$$

as $n \to \infty$. Now, the function $\theta \mapsto \ell_n(\theta \mid)$ is a continuous function on the compact set $[\theta_0 - \delta, \theta_0 + \delta]$. There exists a global maximiser $\tilde{\theta}_n(\delta)$. But $\tilde{\theta}_n(\delta)$ cannot be $\theta_0 \pm \delta$ as θ_0 is better, which implies that $\ell'_n(\tilde{\theta}_n(\delta)) = 0$.

Let $\hat{\theta}_n(\delta)$ denote the closest root of $\ell'_n(\theta) = 0$ to θ_0 . Fix $\delta > 0$, we need to show that $P_{\theta_0}(|\hat{\theta}_n - \theta_0| < \delta) \to 1$ as $n \to \infty$. Observe that $|\hat{\theta}_n - \theta_0| \le |\tilde{\theta}_n(\delta) - \theta_0|$ as $\hat{\theta}_n$ is the closet root. It follows that

$$P_{\theta_0}(|\hat{\theta}_n - \theta_0| < \delta) \ge P_{\theta_0}(|\tilde{\theta}_n(\delta) - \theta_0| < \delta) \ge P_{\theta_0}(\ell_n(\theta_0) > \ell_n(\theta_0 \pm \delta)) \to 1.$$

It remains to prove that there exists a closest root, i.e. $\exists \hat{\theta}$ such that $f(\hat{\theta}) = 0$, $|\hat{\theta} - \theta_0| = \inf_{\tilde{\theta}: f(\tilde{\theta}) = 0} |\tilde{\theta} - \theta_0|$, assuming that $\{\tilde{\theta}: f(\tilde{\theta}) = 0\}$ is non-empty, and $f(\cdot)$ is a continuous function on \mathbb{R} . To see this, let $\alpha = \inf_{\tilde{\theta}: f(\tilde{\theta}) = 0} |\tilde{\theta} - \theta_0|$. For all $k \geq 1$, there exists $\tilde{\theta}_k$ such that

$$f(\tilde{\theta}_k) = 0 \quad \text{and} \quad |\tilde{\theta}_k - \theta_0| \le \alpha + k^{-1} \le \alpha + 1.$$
 (9.1)

Note also that $\tilde{\theta}_k \in [\theta_0 - \alpha - 1, \theta_0 + \alpha + 1]$. By going to a subsequence, as $k \to \infty$, $\tilde{\theta}_k \to \hat{\theta}$, say. But $|\hat{\theta} - \theta_0| = \alpha$ by taking the limit on (9.1) and the fact that $f(\hat{\theta}) = 0$ since $f(\cdot)$ is continuous.

Corollary 9.9 If A0-A2 hold, assume further that $\theta \mapsto P_{\theta}()$ is differentiable, and the score function $\ell'_n(\theta) = 0$ has a unique root $\hat{\theta}_n$, then $\hat{\theta}_n \stackrel{P}{\to} \theta_0$ (follows from the previous theorem), and $\hat{\theta}_n$ is the MLE with probability tending to 1.

Proof: It follows from the previous proof that $\hat{\theta}_n$ is a local maximum (with high probability). If $\hat{\theta}_n$ is not the unique global minimiser of $\theta \mapsto \ell_n(\theta)$, then there exists $\tilde{\theta}_n$ such that $\ell_n(\tilde{\theta}_n) \geq \ell_n(\hat{\theta}_n)$, $\tilde{\theta} \neq \hat{\theta}_n$. Then there exists $\check{\theta}$ such that $\ell_n(\check{\theta}) = \ell_n(\hat{\theta})$, $\check{\theta} \neq \hat{\theta}$, as $\theta \mapsto \ell_n(\theta)$ is continuous. It implies that there exists $\epsilon_n \neq \hat{\theta}_n$ such that $\ell_n(\epsilon_n) = 0$ [see Rolle's Theorem], which is a contradiction.

Theorem 9.10 (Slutsky's Theorem) Suppose $X_n \stackrel{d}{\longrightarrow} X$, $A_n \stackrel{p}{\longrightarrow} a$, $B_n \stackrel{p}{\longrightarrow} b$, then $A_n X_n + B_n \stackrel{d}{\longrightarrow} aX + b$

$$0 = \ln'\left(\hat{\theta}_n\right) = \ln'\left(\theta_0\right) + \left(\hat{\theta}_n - \theta_0\right) \ln''_n\left(\theta_0\right) + \frac{1}{2} \left(\hat{\theta}_n - \theta_0\right)^2 \ln'''\left(\xi_n\right)$$

$$\Rightarrow \left(\hat{\theta}_n - \theta_0\right) \left(l''_n\left(\theta_0\right) + \frac{1}{2} \left(\hat{\theta}_n - \theta_0\right) \ln'''\left(\xi_n\right)\right) = -\ln'\left(\theta_0\right)$$

$$\Rightarrow \sqrt{n} \left(\hat{\theta}_n - \theta_0\right) = \frac{-\ln'\left(\theta_0\right) / \sqrt{n}}{-l''_n\left(\theta_0\right) / n - \frac{1}{2} \left(\hat{\theta}_n - \theta_0\right) l'''_n\left(\xi_n\right)\right) / n}$$

It suffices to show $\begin{array}{c} \frac{1}{\sqrt{n}}\ln'\left(\theta_{0}\right) \stackrel{D}{\longrightarrow} N\left(0,I\left(\theta_{0}\right)\right) \\ -\frac{1}{n}l_{n}''\left(\theta_{0}\right) \stackrel{P}{\longrightarrow} I\left(\theta_{0}\right) \\ \text{and } \frac{1}{n}\left(\hat{\theta}_{n}-\theta_{0}\right)\ln\left(\xi_{n}\right) \stackrel{P}{\longrightarrow} 0 \end{array} \right\}, \text{ then } \sqrt{n}(\hat{\theta}_{n}-\theta_{0}) \stackrel{D}{\longrightarrow} \mathcal{N}(0,I^{-1}(\theta_{0}))$