

Kernel size, stride, dilation all work as you would expect

How many parameters?

• If there are C_i input channels and kernel size K x K

$$\boldsymbol{\omega} \in \mathbb{R}^{C_i \times K \times K}$$

• If there are C_i input channels and C_o output channels

$$\boldsymbol{\omega} \in \mathbb{R}^{C_i \times C_o \times K \times K}$$

Convolution #2

- 2D Convolution
- Downsampling and upsampling, 1x1 convolution
- Image classification
- Object detection
- Semantic segmentation
- Residual networks
- U-Nets and hourglass networks

Downsampling

Sample every other position (equivalent to stride two)

Downsampling

Sample every other position (equivalent to stride two)

Wight 2x2 Storide = 2

Size Max pooling

(partial invariance to translation)

7.5 2.70 21

Downsampling

Sample every other position (equivalent to stride two)

Max pooling (partial invariance to translation)

Mean pooling

Upsampling

Duplicate

Upsampling

Duplicate

Max-upsampling

Max-unpools

Upsampling

Duplicate

Max-upsampling

Bilinear interpolation

In-Network upsampling: "Max Unpooling" **Max Pooling** Max Unpooling Remember which element was max! Use positions from peoling layer 0 0 2 3 2. 0 0 0 6 5 3 5 4 0 0 0 0 2 8 Rest of the network 3 0 0 4 3 8 Output: 4 x 4 Input: 4 x 4 Output: 2 x 2 servatic segmentation Corresponding pairs of downsampling and upsampling layers c lass"

Transposed convolutions

Kernel size 3, Stride 2 convolution

Transposed convolutions

Kernel size 3, Stride 2 convolution

Transposed convolution

Learnable Upsampling: 1D Example

Output contains copies of the filter weighted by the input, summing at where at overlaps in the output

Semantic Segmentation Idea: Fully Convolutional

Downsampling: Pooling, strided convolution

Input: 3 x H x W Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

High-res: D₁ x H/2 x W/2 **Upsampling**:

Unpooling or strided transposed convolution

Predictions: H x W

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

D₁ x H/2 x W/2

1x1 convolution

- Mixes channels
- Can change number of channels
- Equivalent to running same fully connected network at each position

Convolution #2

- 2D Convolution
- Downsampling and upsampling, 1x1 convolution
- Image classification
- Object detection
- Semantic segmentation
- Residual networks
- U-Nets and hourglass networks

ImageNet database

- 224 x 224 images
- 1,281,167 training images, 50,000 validation images, and 100,000 test images
- 1000 classes

AlexNet (2012)

Almost all the 60 million parameters parameters are in fully connected layers

Data augmentation

• Data augmentation a factor of 2048 using (i) spatial transformations and (ii) modifications of the input intensities.

Dropout

Dropout was applied in the fully connected layers

Details

- At test time average results from five different cropped and mirrored versions of the image
- SGD with a momentum coefficient of 0.9 and batch size of 128.
- L2 (weight decay) regularizer used.
- This system achieved a 16.4% top-5 error rate and a 38.1% top-1 error rate.

Details

- 19 hidden layers
- 144 million parameters
- 6.8% top-5 error rate, 23.7% top-1 error rate

ImageNet History

Convolution #2

- 2D Convolution
- Downsampling and upsampling, 1x1 convolution
- Image classification
- Object detection
- Semantic segmentation
- Residual networks
- U-Nets and hourglass networks