

# Business Analytics 2 – Lecture 7: Modelling Risk Preferences

- EUT: Certainty equivalent, risk premium, convex and concave utility functions
- First-degree Stochastic dominance and its connection to EUT
- Second-degree Stochastic dominance and its connection to EUT
- Properties of FSD and SSD
- Risk-measures: VaR and CVaR and their connection to stochastic dominance

### What are risk preferences?

- Risk: Possibility of loss (or some other less preferred outcome)
  - Risk is characterized both by the probability and magnitude of loss
- Risk preferences
  - "How does the riskiness of a decision alternative affect its desirability?"
  - Exact definition depends on which model is used
    - Only the concept of risk-neutrality is general
    - Risk-neutral = Optimize only expected (monetary) value, riskiness is not a factor
- Learning outcomes:
  - Ability to use EUT, stochastic dominance and risk measures to compare decision alternatives
  - Understand the relationship between these different models



# **Assumptions for this lecture**

- Definition of risk preferences requires that outcomes *T* are quantitative and preferences among them are monotonic
  - E.g. Profits, costs, lives saved, etc.
  - Monotonic: either more preferred to less, or less preferred to more
- In this lecture we assume the set of outcomes is such that more is preferred to less
  - $-u \in U^0$ , where  $U^0$  is the set of all strictly increasing functions on T





# **Certainty Equivalent in EUT**

■ **Definition:** Certainty Equivalent CE[X] of a random variable X is an outcome in T such that

$$u(CE[X]) = E[u(X)]$$

- Alternative definition:  $CE[X] = u^{-1}(E[u(X)])$
- DM is indifferent between alternative X and the certain outcome CE[X]
  - Note u(CE[X])=E[u(CE[X])] since CE[X] is an outcome, not a random variable
- CE[X] depends on both the DM's preferences (u) and the uncertainty in the decision alternative (distribution of X)
  - E.g. "My CE for roulette is different from your CE for roulette"
  - E.g. "My CE for roulette is different from my CE for one-armed bandit"



### **EUT Certainty Equivalent - Example**

- Consider a decision alternative X with  $f_X(3)=.5$  and  $f_X(5)=.5$  (and thus E[X]=4) and three DMs with the below utility functions
- Compute each DM's certainty equivalent for *X*



■ The shape of the utility functions seems to determine if CE[X] is above, below, or equal to E[X]. Is this a general result?



### **Convex and Concave functions**

■ **Definition.** u is concave if for any  $t_1$ ,  $t_2$ :

$$\lambda u(t_1) + (1 - \lambda)u(t_2) \le u(\lambda t_1 + (1 - \lambda)t_2) \,\forall \lambda \in [0, 1]$$

- I.e.  $u''(t) \le 0 \ \forall t \in T$  if second derivative exists
- **Definition.** u is convex if for any  $t_1$ ,  $t_2$ :

$$\lambda u(t_2) + (1 - \lambda)u(t_1) \ge u(\lambda t_1 + (1 - \lambda)t_2) \ \forall \lambda \in [0, 1]$$

- I.e.  $u''(t) \ge 0 \ \forall t \in T$  if second derivative exists
- Question: Which of these functions are concave, which are convex?





# Jensen's inequality

- Jensen has shown: For any random variable *X*, if function *u* is
  - I. convex, then  $E[u(X)] \ge u$  (E[X])
  - II. concave, then  $E[u(X)] \le u(E[X])$
- How to use these inequalities?
  - Map both sides of the inequalities through  $u^{-1}(.)$ 
    - Allowed since u is monotonic (we assume more is preferred to less) and thus  $u^{-1}$  is also monotonic

$$\begin{array}{ll} u \text{ concave} & u \text{ convex} \\ \Rightarrow E[u(X)] \leq u(E[X]) & \Rightarrow E[u(X)] \geq u(E[X]) \\ \Leftrightarrow u^{-1}(E[u(X)]) \leq u^{-1}\big(u(E[X])\big) & \Leftrightarrow u^{-1}(E[u(X)]) \geq u^{-1}\big(u(E[X])\big) \\ \Leftrightarrow CE[X] \leq E[X] & \Leftrightarrow CE[X] \geq E[X] \end{array}$$



### **Risk-attitudes in EUT**

- I. u is linear iff CE[X]=E[X] for all X
- II. u is concave iff  $CE[X] \le E[X]$  for all X
- *III.* u is convex iff  $CE[X] \ge E[X]$  for all X



- A DM with a linear utility function is called risk-neutral
  - She is indifferent between the uncertain outcome *X* and a certain outcome equal to E[X]
- A DM with a concave (not linear) utility function is called <u>risk-averse</u>
  - She takes a certain outcome smaller than E[X] rather than the uncertain outcome X
- A DM with a convex (not linear) utility function is called risk-seeking
  - She requires a certain outcome greater than E[X] not to choose the uncertain outcome X





#### **Risk Premium in EUT**

- **Definition.** Risk premium for r.v. X is RP[X]=E[X]-CE[X]
  - RP[X] depends on both the DM's preferences (u) and the uncertainty in the decision alternative (X)
  - RP[X] is the premium the DM requires on the expected value to change certain outcome CE[X] to uncertain outcome X
  - I. u is linear iff RP[X] = 0 for all X
  - II. u is concave iff  $RP[X] \ge 0$  for all X
  - III. u is convex iff  $RP[X] \le 0$  for all X





# **Computing CE and RP**

- 1. Compute E[u(X)]
- 2. Solve  $u^{-1}()$
- 3. Compute  $CE[X]=u^{-1}(E[u(X)])$
- 4. Compute RP[X] = E[X] CE[X]
- Step 1: see EUT slides
- Steps 2-3: alternatively, you can solve CE[X] numerically from the equation u(CE[X])=E[u(X)]
  - Trial and error
  - Excel Solver

- Example: Jane's  $u(t) = t^2$  and investment's profits  $Y \sim \text{UNI}(3,5)$
- 1.  $E[u(Y)] = \int_3^5 f_Y(t) u(t) dt = 16.33$
- 2.  $v = u(t) = t^2 \Leftrightarrow t = u^{-1}(v) = \sqrt{v}$
- 3.  $CE[Y] = u^{-1}(16.3) = \sqrt{16.3} = 4.04$
- 4. RP[Y] = 4 4.04 = -0.04

# **Computing CE and RP**

Question: Jane's utility function for profits is  $u(t) = 1 - e^{-0.5t}$ . Her expected utility for an investment with profits following distribution UNI(3,5) (in M£) is 0.86. What is Jane's certainty equivalent for this investment?

What is the risk premium?



#### **Stochastic Dominance - Motivation**

• Question: Would you choose *X* or *Y*?





# First-degree Stochastic Dominance

- **Definition:** X dominates Y in sense of First-degree Stochastic Dominance if  $F_X(t) \leq F_Y(t)$  for all  $t \in T$ 
  - Denoted X FSD Y
- Is there a connection to EUT?
- **Result:** *X* FSD *Y*, if and only if  $E[u(X)] \ge E[u(Y)]$  for all  $u \in U^0$ 
  - *U*<sup>o</sup> is the set of all strictly increasing functions
  - If an alternative is strictly dominated in sense of FSD, then any DM who prefers more to less would not choose it.





# **FSD: Mining Example**

- Mining firm has an opportunity to bid on two separate parcels of land
- Decision on
  - How much to bid?
  - Bid alone or with a partner?
  - How to develop the site if the bid were successful?
- Overall commitment some \$500 million
- Large decision tree model built to obtain CDFs of different strategies (decision alternatives)





# **FSD: Mining Example (Cont'd)**

- Assume the company prefers a larger NPV to a smaller one.
- Which strategies would you recommend?





### **Second-degree Stochastic Dominance**

- What if we also knew that the DM was risk averse or risk neutral?
- Result:

$$E[u(X)] \ge E[u(Y)] \forall u \in U^{ccv} \Leftrightarrow \int_{-\infty}^{z} [F_X(t) - F_Y(t)] dt \le 0 \ \forall z \in T,$$

where  $U^{ccv} = \{u \in U^0 | u \text{ is concave}\}$ , i.e., the set of increasing concave utility functions

- This result motivates naming the above integral:
- **Definition:** *X* dominates *Y* in sense of Second-degree Stochastic Dominance if

$$\int_{-\infty}^{z} [F_X(t) - F_Y(t)] dt \le 0 \ \forall z \in T$$

- Denoted X SSD Y



# **SSD: Graphical Interpretation**

$$\int_{-\infty}^{\infty} \left[ F_X(t) - F_Y(t) \right] dt \le 0 \ \forall z \in T$$

- The integral calculates the area between the horizontal axis and  $F_X(t) F_Y(t)$  up to point z
- If it is negative for all z then *X* SSD *Y*
- This Example:
  - X SSD Y because area A is bigger than area B, and A is left of B







z



$$\int_{-\infty}^{z} \left[F_X(t) - F_Y(t)\right] dt = \int_{-\infty}^{z} F_X(t) \, dt - \int_{-\infty}^{z} F_Y(t) \, dt$$

# **SSD: Mining Example Revisited**

- Assume the mining company is either riskaverse or risk neutral.
- Which strategies would you recommend?





### **Properties of FSD and SSD**

 $U^{ccv} = \{u \in U^0 | u \text{ is concave}\}$ 

- Both FSD and SSD are transitive:
  - If X FSD Y and Y FSD Z, then X FSD Z
    - Why? Take any t. Then  $F_X(t) \le F_Y(t) \le F_Z(t)$ .
  - If X SSD Y and Y SSD Z, then X SSD Z
    - Why? Take any  $u \in U^{ccv}$ . Then  $E[u(X)] E[u(Z)] \ge E[u(Y)] E[u(Z)] \ge 0$
- FSD implies SSD:
  - If *X* FSD *Y*, then *X* SSD *Y* 
    - Why? Take any  $u \in U^{ccv}$ . Then  $u \in U^0$  and since X FSD Y, we have  $E[u(X)] \ge E[u(Y)]$ .



#### **Risk-measures**

- Risk measure is a function that maps each decision alternative (random variable) to a single number describing its risk
  - A non-EUT based approach for modelling risk
  - Needs to be used together with EMV to produce decision recommendations:
    - **Risk constraint**: Among alternatives whose risk is below some predetermined threshold, selected the one with maximum EMV
    - **Risk minimization**: Among alternatives whose EMV is above some predetermined threshold, select the one with the minimum risk
    - **Efficient frontier**: Identify decision alternatives that are efficient, i.e. no other alternative provides a greater EMV with smaller risk
- Example: Variance  $Var[X] = E[(X E[X])^2]$ 
  - The higher the variance, the higher the risk
  - Punishes for the possibility of positive surprise (i.e., outcomes better than E[X])
    - Not a good measure for risk without additional distribution assumptions



# Risk measures: Value-at-Risk (VaR)

- Value-At-Risk:  $VaR_{\alpha}[X]$ 
  - $VaR_{\alpha}[X]$  describes an outcome such that probability of an equal or worse outcome is  $\alpha$ :

$$\int_{-\infty}^{VaR_{\alpha}[X]} f_X(t)dt = F_X(VaR_{\alpha}[X]) = \alpha$$

- Higher VaR means smaller risk
  - Warning! When applied to loss distribution higher VaR means higher risk
- Common values for  $\alpha$  are 1%, 5% and 10%
- Actually a family of risk measures:
  - E.g.  $VaR_{10\%}[.]$  and  $VaR_{5\%}[.]$  are different measures
- Problem: The length of the tail is not taken into account







# Mining Example Revisited



- Strategy 1
- ▲ Strategy 25





ISM-E1004 Business Analytics 2

# Risk measures: Conditional Value-at-Risk (CVaR)

- Conditional Value-At-Risk:  $CVaR_{\alpha}[X]$ 
  - Describes the expected outcome when the outcome is equal to or worse than  $VaR_{\alpha}[X]$ :

$$CVaR_{\alpha}[X] = E[X|X \le VaR_{\alpha}[X]]$$

- Higher CVaR means smaller risk
   Note: For losses higher CVaR, higher risk
- Computation of  $E[X|X \le VaR_{\alpha}[X]]$  for discrete and continuous r.v. X:

$$E[X|X \le VaR_{\alpha}[X]] = \sum_{t \le VaR_{\alpha}[X]} t \frac{f_X(t)}{\alpha} \qquad E[X|X \le VaR_{\alpha}[X]] = \int_{-\infty}^{VaR_{\alpha}[X]} t \frac{f_X(t)}{\alpha} dt$$

- Note:  $\alpha = P(X \le VaR_{\alpha}[X])$ 



# Risk measures: Computation of VaR and CVaR

- If the inverse CDF of X is well defined, VaR can be obtained from  $VaR_{\alpha}[X] = F_X^{-1}(\alpha)$ 
  - For instance, the inverse of the CDF of a normal distribution is given by the Excel function norm.inv
- With discrete random variables, VaR and CVaR are not always well defined for small values of  $\alpha$

-10

0.06

10

0.5

1

0.02

20

0.4

- Example:
  - $VaR_{10\%}[X]=1$

t

 $f_x(t)$ 

• But what is  $VaR_{5\%}[X]$  or  $CVaR_{5\%}[X]$ ?



-5

0.02

### Risk Measures: Var and CVaR with Monte Carlo



#### Risk Measures: Var and CVaR with Monte Carlo

#### VaR and CVaR in profit simulation (Lecture 3)

```
In [16]: # GENERATE THE SIMULATED DATA
N <- 100000
c1 <- sample(c(43,44,44,45,45,45,45,46,46,47),N,replace=T)
c2 <- runif(N,80,100)
D <- rnorm(N, mean=15000, sd=4500)

profit <- (249-c1-c2)*D-10^6
profit <- profit/1000 # express profit in T€

# DETERMINE VaR 10%
VaR10 <- quantile(profit, .1)[[1]]
Note! 1000
samples is
# DETERMINE CVAR 10%</pre>
```

CVaR10 <- mean(profit[profit<=VaR10]) # conditional mean

Note! 1000 samples is not a lot since only 1/10 is used to estimate 10% VaR and CVaR



# **Linking Risk Measures to EUT**

- No direct link, but via stochastic dominance:
- **Result:** *X* FSD *Y* if and only if  $VaR_{\alpha}[X] \ge VaR_{\alpha}[Y] \ \forall \alpha \in [0,1]$ 
  - The dominating alternative is less risky no matter which  $VaR_{\alpha}$  measure is used
- **Result:** X SSD Y if and only if  $CVaR_{\alpha}[X] \ge CVaR_{\alpha}[Y] \ \forall \alpha \in [0,1]$ 
  - The dominating alternative is less risky no matter which  $CVaR_{\alpha}$  measure is used





### **Challenges with Risk Measures**

- Which measure to use?
- Which  $\alpha$  to use in VaR and CVaR?
- How to combine EMV and Risk measure values into overall performance measure for each alternative?
- If answers to these questions are given from the outside, then use of risk measures can be easy, beneficial or even mandatory
  - Outside = Industry standard, regulation, legislation, etc.

