

DIFFERENT TYPES OF COMPUTERS

TABLE OF CONTENTS

01	OVE	ERVIEW OF TYPES OF COMPUTERS	3
02	THE	DIFFERENT TYPES OF COMPUTERS	1
02	2.1	SUPERCOMPUTERS	1
02	2.2	MAINFRAME COMPUTERS	7
02	2.3	MINI COMPUTERS	C
02	2.4	SERVER	3
02	2.5	WORKSTATIONS	6
02	2.6	MICRO COMPUTERS	9
03	COI	MPARISON TABLES FOR THE DIFFERENT TYPES OF COMPUTERS	22
04	ANA	ALYSIS	29
05	REF	ERENCES	52

Overview

- A **supercomputer** is a computer that performs at or near the highest operational rate for computers (Lutkevich, n.d.).
- A mainframe is a powerful computer that connects to multiple end clients so that users can access apps concurrently (BasuMallick, 2023).
- A minicomputer is a small general-purpose computer that uses one or more processors to complete work (Beal, 2022).

- A **server** is a computing system that processes client requests made over a network (Kanade, 2023.
- Workstations are high-performance computers designed to handle demanding workflows (Gerencer, 2024).
- A microcomputer refers to a smaller and more affordable computer system (Ferguson & Hebels, 2023).

What is a Supercomputer?

A supercomputer is defined as an extremely powerful computing device that processes data at speeds measured in floating-point operations per second (FLOPS) to perform complex calculations and simulations, usually in the field of research, artificial intelligence, and big data computing (BasuMallick, 2022).

Usage of Supercomputer

Supercomputers are commonly used for making predictions with advanced modeling and simulations. This can be applied to climate research, weather forecasting, genomic sequencing, space exploration, aviation engineering and more (Becher, 2024).

SUPERCOMPUTER

Advantages

- These machines are capable of performing millions of operations per second and are often used in scientific research, engineering, and manufacturing.
- Supercomputers are able to perform these tasks so quickly, they can predict weather patterns, design buildings, and create advanced weapons systems (Basharat, 2022).

Disadvantages

- Supercomputers are not portable
- ExpensiveOccupy a lot of spaceMaintenance
- Heat Release
- Required more Electricity
- Noise
- Basharat, 2022

What is a Mainframe Computer?

A mainframe is defined as a large, powerful computer typically used for complex calculations and data processing tasks. It can connect to multiple end clients simultaneously so that several users can access different applications and processes running on the mainframe (BasuMallick, 2023).

Usage of Mainframe Computer

Mainframe computers are commonly used to process financial transactions, manage digital healthcare records, support government services and monitor supply chain data, among other applications (Becher, 2024).

MAINFRAME COMPUTER

Advantages

- High Computing PowerScalability
- Virtualization System
 Reliability
 Protection

- Flexible-Customization
- Gupta, 2023

Disadvantages

- Installation
- Cost
- Physical SizeMaintenance

- Resource RequirementEnvironmental Restrictions
- Roomi, 2021

What is a Mini Computer?

A minicomputer is a type of computer that possesses most of the features and capabilities of a large computer but is smaller in physical size. Minicomputers are mainly used as small or mid-range servers operating business and scientific applications (Rouse, 2017).

Usage of Mini Computer

Mini computers can be used for a variety of purposes, including as media centers for streaming video and audio content, as gaming devices, for home automation and IoT applications, as servers for small businesses, and as portable workstations for professionals who need to work on the go (Singh, 2022).

MINI COMPUTER

Advantages

- Cost-Effective

- Space-Saving
 Energy Efficient
 Flexibility and Portability
 Adequate for Specific Apps
 User-Friendly
 Network Connectivity

- Singh, 2022

Disadvantages

- Limited Processing Power
 Limited Scalability
 Limited Storage Capacity
 Less Redundancy and Fault Tolerance

- Fewer Expansion Options
 Potential for Overheating
 Reduced Performance in Multi-User Scenarios
- Singh, 2022

What is a Server?

A server is a powerful machine designed to compute, store, and manage data, devices, and systems over a network. This sophisticated computer system provides resources to networking units to render specialized services such as displaying web pages and sending or receiving emails, among others (Kanade, 2023).

Usage of Server

Servers are used to store data, including documents, images, and videos. They provide a centralized location for data storage, making it easy for users to access their data from anywhere. Servers also provide communication services, cloud computing, and virtualization (Mohindroo, 2023).

SERVER

Advantages

- Scalability
 High Processing Power
 Reliability
 Better Collaboration

- Cost SavingsSafeguard from cyberattacks
- Kanade, 2023

Disadvantages

- It costs money to purchase the server hardware and software and components to make it work.
- Physical space may also be a constraint to having an on-site server.
- Mesel, 2020

What is a Workstation?

A workstation represents a high-performance computer, specifically designed for handling technical or scientific applications. Unlike regular personal computers, workstations possess superior processing capabilities, making them suitable for tasks that require high computational power (Ballejos, 2024).

Usage of Workstation

Workstations handle large computational tasks that require extra processing power. It has advanced capabilities to run sophisticated software and applications, including graphics, data processing, and imaging (Indeed Editorial Team, 2024).

WORKSTATION

Advantages

- High Performance
 Single User
 Used in the entertainment and media sector

- Reliability
 Large Memory
 Multiple Processors Support
- Rehman, n.d.

Disadvantages

- PortabilityExpensiveHigh Power Usage
- Rehman, n.d.

What is a Micro Computer?

A microcomputer draws its name from the microprocessor, the key component that drives its operations. It is a complete computer on a smaller scale, designed for use by individuals (Ballejos, 2024).

Usage of Micro Computer

Micro computers are used for data and word processing, electronic spreadsheets, professional presentation and graphics programs, communications, and database management systems, along with bookkeeping, inventory management, communication, medical record-keeping, financial transactions, and auditing (Shea, n.d.).

MICRO COMPUTER

Advantages • Affordable

- Energy EfficientPortable
- Increased Productivity
- Aggarwal, 2023

Disadvantages

- No Protection PowerLow Performance
- Low Storage Capacity
- Aggarwal, 2023

TYPES OF COMPUTER	NAME/BRAND	BUILD	CPU	MEMORY	PROCESSING SPEED	CALCULATING POWER	WORKING PRINCIPLE	ENERGY CONSUMPTION	FIELD OF USE
SUPERCOMPUTER	IBM Control Data Corporation (CDC) Thinking Machines Corporation	 Early supercomputers were large room-sized machines Modern supercomputers can range from refrigerator-sized to warehouse-sized installations Some use distributed architectures spanning multiple physical locations 	 Multiple processors - often thousands or even millions of cores Custom-designed chips optimized for performance Vector processing capabilities High clock speeds (often measured in GHz) 	 Billions or trillions of bytes of RAM Large disk storage arrays Use distributed memory architectures 	Current fastest supercomputers exceed 1 exaFLOP (1 billion billion calculations per second) Measured in petaFLOPS (quadrillion calculations per second) for most systems	Used for scientific simulations, weather modeling, cryptography, etc. Capable of solving complex mathematical models and physical simulations	 Multiple processors work together on different parts of a problem simultaneously Data distributed across nodes for parallel computation Use message passing interfaces for inter-node communication 	Can draw hundreds of megawatts or more Require advanced cooling systems (liquid immersion, air conditioning) Generate significant heat that needs to be dissipated	 Weather forecasting and climate modeling Scientific research (physics, chemistry, biology) Engineering simulations Cryptanalysis and cryptography Oil/gas exploration Medical research and drug discovery Nuclear weapons simulation

TYPES OF COMPUTER	NAME/BRAND	BUILD	CPU	MEMORY	PROCESSING SPEED	CALCULATING POWER	WORKING PRINCIPLE	ENERGY CONSUMPTION	FIELD OF USE
MAINFRAME COMPUTER	IBM Control Data Corporation (CDC) Thinking Machines Corporation	 Can range from refrigerator-sized to larger installations Modern mainframes are much smaller than historical "Big Iron" machines Can fit in a 19-inch rack in data centers 	 Two processors: Primary processor and System Assistance Processor (SAP) SAP handles data transfer between processors Each CPU can contain up to 7- 10 specially designed cores for increased throughput Custom- designed chips optimized for performance 	 Extremely high storage capacity Can store vast quantities of data and interpret it according to user specifications Provides accurate findings with zero data inaccuracies 	 Designed for high-volume input and output (I/O) Emphasizes throughput computing Can handle massive databases and files (gigabytes to terabytes in size) 	Can execute up to 1 trillion daily online transactions High processing power for complex calculations and data processing tasks	 Acts as a data warehouse orchestration system Helps enforce authentication and access permissions Allocates processor time and resources efficiently Supports multiple operating systems on a single machine 	High power consumption Requires advanced cooling systems (liquid immersion, air conditioning) Generates significant heat that needs to be dissipated	 Mission-critical applications in large enterprises Bulk data processing for tasks like censuses, industry statistics, ERP, and large transaction processing Financial institutions, government agencies, healthcare providers, insurance companies, utilities, and administrative bodies

TYPES OF COMPUTER	NAME/BRAND	BUILD	CPU	MEMORY	PROCESSING SPEED	CALCULATING POWER	WORKING PRINCIPLE	ENERGY CONSUMPTION	FIELD OF USE
MINI COMPUTER	 Digital Equipment Corporation (DEC) PDP-8 Data General Nova Honeywell 316 	 Smaller than mainframes, typically taking up one or a few 19-inch rack cabinets Much smaller than historical "Big Iron" machines Could fit in a standard chassis and use common devices 	 Initially 12-bit and 18-bit systems, later moving to 16-bit and then 32-bit architectures Customdesigned chips optimized for performance 	Typically had thousands of words of memory Used core memory technology initially, later moving to semiconductor memory Typically had thousands of words of memory Example 1. The semiconductor memory Typically had thousands of words of words of memory Typically had thousands of words of words of memory Typically had thousands of words of words of memory	Designed for control, instrumentation, human interaction, and communication switching Less powerful than mainframes or supercomputers but more capable than personal computers	Capable of running programs in higher-level languages like Fortran or BASIC Could handle scientific and engineering computations, business transactions, file handling, and database management	 Used parallel processing techniques Emphasized throughput computing rather than raw processing power Supported multiuser, multitasking operating systems (e.g., VMS, Unix) 	Generally lower power consumption compared to mainframes Required less cooling due to smaller size	 Scientific research Engineering computations Business transaction processing File handling Database management Process control systems Manufacturin g process control Telephone switching systems Laboratory equipment control Computeraided design (CAD) industry

TYPES OF COMPUTER	NAME/BRAND	BUILD	CPU	MEMORY	PROCESSING SPEED	CALCULATING POWER	WORKING PRINCIPLE	ENERGY CONSUMPTION	FIELD OF USE
SERVER	IBM Power Systems Dell PowerEdge HP ProLiant	 Can range from small appliances to large rackmounted systems Network appliances are often smaller than common desktop computers Modern servers can be blade servers or traditional rackmounted designs 	 High-performance processors optimized for server workloads Multi-core processing is common (often 8+ cores per socket) Custom-designed chips for improved reliability and efficiency 	Large amounts of RAM (often 64GB or more) Fast memory speeds to handle high throughout	Designed for high-throughput computing rather than raw processing power Emphasizes reliability and consistency over peak performance	Measured in transactions per second or requests per second Can handle millions of concurrent connections	 Acts as a central resource provider for clients on the network Manages requests from clients and delivers requested data or services Often runs specialized server operating systems 	Can vary widely depending on size and workload More efficient than desktop computers due to specialized hardware design	 Web hosting and content delivery Email services File storage and management Database management Application hosting Cloud computing infrastructure Enterprise resource planning (ERP) systems Network management and monitoring

TYPES OF COMPUTER	NAME/BRAND	BUILD	CPU	MEMORY	PROCESSING SPEED	CALCULATING POWER	WORKING PRINCIPLE	ENERGY CONSUMPTION	FIELD OF USE
WORKSTATIONS	 Sun Microsystems Silicon Graphics Apollo Computer 	 Desktop form factor, often larger than typical personal computers Can range from compact towers to full-size desktop cases May include specialized cooling systems for high-performance components 	 Historically used custom-designed chips Currently use high-performance versions of mainstream Multi-core processing is common Clock speeds can reach 4+GHz 	Large amounts of RAM (often 64GB or more) Fast memory speeds to handle high-performance workloads	 Designed for high-performance computing tasks Emphasizes raw processing power and specialized capabilities Can handle complex tasks like 3D rendering, video editing, and scientific simulations 	 Measured in FLOPS Can range from tens of thousands to millions of FLOPS 	 Optimized for single-user operation with high-performance capabilities Often run specialized operating systems or enterprise versions of mainstream OSes Feature advanced graphics capabilities for visualization and manipulation of complex data 	 Higher energy consumption compared to average desktop computers May require more powerful cooling systems due to high-performance components 	 Computer-aided design (CAD) Scientific simulations and research Video editing and post-production 3D modeling and animation Medical imaging and diagnostics Engineering and architectural visualization Software development and testing Financial modeling and analysis

		,	, , , , , , , , , , , , , , , , , , , ,						
TYPES OF COMPUTER	NAME/BRAND	BUILD	CPU	MEMORY	PROCESSING SPEED	CALCULATING POWER	WORKING PRINCIPLE	ENERGY CONSUMPTION	FIELD OF USE
MICRO COMPUTER	Altair 8800 Apple II IBM PC	 Designed to fit on or under a desk Much smaller than mainframes or minicomputers Can range from compact towers to all-in-one designs 	Uses a single integrated microprocessor chip Early models often had limited capabilities (e.g., Intel 8080, Zilog Z80) Modern CPUs are highperformance versions of mainstream processors	 Typically starts with 256KB RAM Current models offer gigabytes of RAM Often include various storage options (hard drives, SSDs, optical drives) 	 Varies widely depending on model and age Early models were quite slow compared to modern standards Modern microcomputers (laptops, desktops) offer high processing speeds 	 Measured in FLOPS or MIPS units Varies greatly depending on model and age Modern models can handle complex tasks efficiently 	 Optimized for single-user operation Runs operating systems designed for personal use (e.g., Windows, macOS) Emphasizes ease of use and versatility over raw processing power 	Generally lower than servers or workstations Can vary significantly depending on model and usage	 Home computing and personal productivity Gaming General-purpose office work Education Hobbyist projects Basic scientific calculations and simulations

MEMORY CAPACITY

• Thousands of words of memory;

transitioned to semiconductor

memory.

TYPES OF COMPUTER

MINI COMPUTER

PROCESSING SPEED

• Moderate processing speed, suitable

for control, instrumentation, and

communication tasks.

POWER CONSUMPTION

• Lower than mainframes; less cooling

needed.

USAGE

• Used as media centers, gaming

devices, servers for small

businesses, and portable

				workstations.
MICRO COMPUTER	Varies widely; modern models offer high speeds, while earlier ones were slower.	Starts with 256KB RAM; modern models provide gigabytes of RAM and advanced storage options.	Generally low but varies by model and usage.	 Ideal for data processing, graphics, communication, financial tasks, and everyday personal and professional use.
WORKSTATION	High-performance computing for tasks like 3D rendering, video editing, and scientific simulations.	 Large memory (64GB+); optimized for demanding tasks. 	High energy consumption; requires powerful cooling.	 Used for sophisticated software and advanced applications in design, graphics, and research.
SERVER	High-throughput computing with a focus on reliability and consistency rather than raw speed.	Large RAM capacity (64GB+); high- speed memory.	Varies by size and workload; efficient hardware design.	 Centralized data storage, communication services, cloud computing, and virtualization for organizations.

AN ANALYSIS TO INFORMATION SYSTEMS

Computers come in all shapes and sizes, and each type is built for a specific purpose. Supercomputers, for example, are the giants of the computing world. They're fast and powerful, designed to handle complex tasks like weather forecasting, simulations, and scientific research. It's impressive how they can process trillions of calculations per second, but they're not practical for everyday use. They consume a ton of energy and are expensive to maintain, so they're mainly found in research labs or government projects.

Mainframe computers are also powerful but in a different way. They're more about handling tons of data and running multiple tasks at once. They're like the reliable workhorses of big organizations, managing things like banking systems and airline reservations. They might not be as fast as supercomputers, but they're great for stability and processing large-scale transactions. Mainframes are huge and expensive, though, so they're not something an average person would ever need.

AN ANALYSIS TO INFORMATION SYSTEMS (cont'd)

Mini computers, on the other hand, are a bit smaller and more affordable. They were once popular for medium-sized businesses but have kind of faded out with modern advancements. Still, they're useful for specific roles, like controlling equipment or as servers in smaller setups. They're not as powerful as mainframes, but they get the job done for tasks that don't need massive computing power.

Servers are crucial in today's digital world. They might not look exciting, but they're the backbone of the internet and many organizations. Servers store and manage data, handle requests, and make sure websites, apps, and databases run smoothly. They're reliable, efficient, and designed to work 24/7. While they're not built for personal use, their role in keeping everything connected is huge.

AN ANALYSIS TO INFORMATION SYSTEMS (cont'd)

Workstations are like the overachievers among personal computers. They're meant for high-performance tasks like 3D modeling, video editing, and scientific simulations. more powerful than regular They're microcomputers but not as massive as servers or mainframes. Workstations are perfect for professionals who need that extra boost in performance, but they're also more expensive and consume more energy.

Microcomputers are the most common type of computer, and they're what most people use daily. These include desktops, laptops, and even tablets. They're not as powerful as workstations or servers, but they're versatile and user-friendly. Whether it's for work, gaming, or browsing the internet, microcomputers strike a balance between performance and affordability.

REFERENCES

Lutkevich, B. (n.d.). supercomputer

https://www.techtarget.com/whatis/definition/supercomputer

BasuMallick, C. (2023). What Is a Mainframe? Features, Importance, and Examples

https://www.spiceworks.com/tech/tech-101/articles/what-is-mainframe/

Beal, V. (2022). Minicomputer

https://www.webopedia.com/definitions/minicomputer/

Kanade, V. (2023). What Is a Server? Definition, Types, and Features

https://www.spiceworks.com/tech/tech-general/articles/what-is-a-server/

Gerencer, T. (2024). Workstation vs Desktop: Key Differences for Your Business

https://www.hp.com/us-en/shop/tech-takes/workstation-vs-desktop-business

Ferguson, S., & Hebels, R. (2003). Computer systems and technology. In Elsevier eBooks (pp. 167–196). https://doi.org/10.1016/b978-1-876938-60-4.50012-4

BasuMallick, C. (2022). What is a Supercomputer? Features, Importance, and Examples

https://www.spiceworks.com/tech/tech-101/articles/what-is-supercomputer/

REFERENCES (cont'd)

Rouse, M. (2017). Minicomputer

https://www.techopedia.com/definition/4615/minicomputer

Ballejos, L. (2024). What Is a Workstation?

https://www.ninjaone.com/it-hub/endpoint-management/what-is-a-workstation/

Ballejos, L. (2024). What is a Microcomputer?

https://www.ninjaone.com/it-hub/endpoint-management/what-is-a-microcomputer/

Becher, B (2024). What Is a Supercomputer and How Does It Work?

https://builtin.com/hardware/supercomputers#:~:text=Supercomputers%20are%20commonly%20used%20for,exploration%2C%20a viation%20engineering%20and%20more.

Basharat, S. (2022). Supercomputers-Features, Advantages and Disadvantages of supercomputer

https://eduinput.com/what-are-supercomputers/

Becher, B. (2024). What Is a Mainframe?

https://builtin.com/articles/mainframe

REFERENCES (cont'd)

Gupta, P. (2023). Types of Mainframe Computers

https://www.educba.com/types-of-mainframe-computers/

Roomi, M. (2021). 6 Advantages and Disadvantages of Mainframe Computer | Drawbacks & Benefits of Mainframe Computer

https://www.hitechwhizz.com/2021/02/6-advantages-and-disadvantages-drawbacks-benefits-of-mainframe-computer.html

Singh, V. (2022). Example of Mini Computer and Its Advantages

https://www.shiksha.com/online-courses/articles/example-of-mini-computer/#:~:text=Mini%20computers%20are%20generally%20more,handle%20very%20large%2Dscale%20computations.

Mohindroo, S. K. (2023). A Guide to Servers: Their Usage, History, and Evolution

https://www.linkedin.com/pulse/guide-servers-usage-history-evolution-sanjay-k-mohindroo-

Mesel, Z. (2020). Do I Need a Server? Pros and Cons of Dedicated & Cloud Servers

https://wooden-spoon.com/do-i-need-a-server/#:~:text=Physical%20space%20may%20also%20be,least%20a%20locked%20server%20rack.

Indeed Editorial Team (2024). What Is a Workstation? (Plus Jobs Requiring the Use of One)

https://ca.indeed.com/career-advice/finding-a-job/what-is-a-workstation

REFERENCES (cont'd)

Rehman, J. (n.d.). Advantages and disadvantages of workstation

https://www.itrelease.com/2020/10/advantages-and-disadvantages-of-workstation/

Shea, S. (n.d.). What is a microcomputer?

https://www.techtarget.com/iotagenda/definition/microcomputer

Aggarwal, C. (2023). What is Microcomputer?

https://www.shiksha.com/online-courses/articles/understanding-microcomputer/