Department of Computer Science and Engineering Mid Semester Examination

Course No.: CS 207 Course Name: Discrete Structures

Date: 18/09/2023 Time: 13-30 to 15-30 Marks: 30

Q1 Let n, k be positive integers. Prove that the set of numbers $\{1, 2, 3, ..., n\}$ can be partitioned into k parts with equal sums if and only if $n \ge 2k - 1$ and n(n + 1) is divisible by 2k. Hint: Form pairs of numbers with equal sums and use strong induction. (6)

Q2 Let n > 1 be a positive integer with the prime factorization $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$, where $p_1 < p_2 < \dots < p_k$ are distinct prime numbers and $e_i > 0$ for $1 \le i \le k$. Let $Z_n^* = \{i | 1 \le i \le n \text{ and } gcd(i,n) = 1\}$ be the set of numbers between 1 to n that are relatively prime to n. Let $\phi(n) = |Z_n^*|$ be the Euler function. Let l(n) denote the largest positive integer l such that Z_n^* contains l consecutive integers and let f(n) be the number of elements $a \in Z_n^*$ such that $\{a, a+1, a+2, \dots, a+l(n)-1\} \subseteq Z_n^*$.

(a) Prove that for all positive integers m, n > 1 such that gcd(m, n) = d,

$$\phi(m)\phi(n)d = \phi(mn)\phi(d).$$

(4)

- (b) Write down an expression for l(n) in terms of the prime factorization of n and prove your answer. (2)
- (c) Find the value of f(4725) and explain how you got it. Note that $4725 = 3^3 \times 5^2 \times 7$. If this answer is incorrect, no marks will be given for the (d) part, so take care. (4)
- (d) Find an expression for f(n) in terms of the prime factorization of n and prove your answer. Hint: Use the Chinese Remainder Theorem. (6)
- Q3 Let N denote the set of natural numbers.
- (a) Give an explicit bijection f from $2^N \times 2^N$ to 2^N . In other words, for every pair of subsets $P, Q \subseteq N$, define a subset $f(P, Q) \subseteq N$, such that the function f is a bijection. (3)
- (b) Do the same for the sets $(2^N)^N$ and 2^N . The set $(2^N)^N$ is the set of all functions from N to 2^N , that is, all possible infinite sequences A_0, A_1, \ldots where each $A_i \subseteq N$. (5)