Билет 13. Комбинаторное (нумерационное) кодирование. Общие положения

Комбинаторное (нумерационное) кодирование — метод представления данных, при котором каждому объекту или комбинации объектов присваивается уникальный числовой код, основанный на их комбинаторных свойствах (перестановки, сочетания, размещения).

Основные положения

1. **Цель**: Сопоставить каждому объекту уникальный код для однозначного восстановления.

2. Применение:

- Кодирование перестановок (например, в задачах сортировки).
- Кодирование подмножеств (в задачах оптимизации).
- Генерация идентификаторов.

3. Свойства:

- Однозначность: один объект один код.
- Компактность: минимальная длина кода.
- Эффективность: быстрые алгоритмы.

Пример: Кодирование перестановок

Для множества $\{1, 2, 3\}$ возможно 3! = 6 перестановок. Каждой присваивается номер от 0 до 5.

Формула

Для перестановки $\pi = [\pi_1, \pi_2, \dots, \pi_n]$ код C:

$$C = \sum_{i=1}^{n-1} r_i \cdot (n-i)!$$

где r_i — число элементов справа от π_i , которые меньше π_i . Пример: Перестановка [2, 1, 3].

- $\pi_1 = 2$: в [1, 3] 1 элемент меньше 2 ($r_1 = 1$).
- $\pi_2 = 1$: в [3] нет элементов меньше 1 ($r_2 = 0$).
- Код: $C = 1 \cdot 2! + 0 \cdot 1! = 1 \cdot 2 + 0 \cdot 1 = 2$.

Применение

- Сжатие данных.
- Генерация перестановок.
- Хранение комбинаций.

Билет 14. Метод полиадических чисел. Общие положения

Метод полиадических чисел — кодирование комбинаторных объектов с использованием чисел в системе счисления с переменным основанием.

Основные положения

- 1. **Идея**: Код в полиадической системе, где основание зависит от числа выборов.
- 2. Свойства: Однозначность, компактность, реверсивность.
- 3. **Применение**: Кодирование перестановок, сочетаний, хранение данных.

Формула

Для перестановки $\pi = [\pi_1, \pi_2, \dots, \pi_n]$ код:

$$C = \sum_{i=1}^{n} r_i \cdot b_i$$

где r_i — ранг π_i среди оставшихся элементов, $b_i = n-i+1$ (число оставшихся элементов).

Пример: Кодирование перестановки

Перестановка [2, 3, 1] для n=3.

- 1. $\pi_1=2$: В {1, 2, 3} элемент 2 имеет ранг 1 (1 < 2 < 3). Основание $b_1=3$. Остаются {1, 3}.
- 2. $\pi_2=3$: В {1, 3} элемент 3 имеет ранг 1 (1 < 3). Основание $b_2=2$. Остается {1}.
- 3. $\pi_3 = 1$: В {1} ранг 0. Основание $b_3 = 1$.
- 4. Код: $C = 1 \cdot 3 + 1 \cdot 2 + 0 \cdot 1 = 3 + 2 + 0 = 5$.

Применение

- Сжатие данных.
- Генерация комбинаций.
- Кодирование структур.

Билет 15. Архивация данных. Общие понятия, характеристика алгоритмов сжатия и их применимость, допустимость потерь

Архивация данных — процесс уменьшения объема данных для хранения или передачи.

Общие понятия

1. **Цель**: Уменьшение размера, сохранение целостности, упрощение передачи.

2. Типы сжатия:

- Без потерь: полное восстановление (ZIP, FLAC).
- С потерями: частичная потеря (JPEG, MP3).

3. Характеристики:

- Степень сжатия: $\frac{\text{Исходный размер}}{\text{Сжатый размер}}$.
- Скорость сжатия/распаковки.
- Вычислительная сложность.
- Устойчивость к ошибкам.

Допустимость потерь

- **Без потерь**: Текст, программы, базы данных (Хаффман, LZW).
- **С потерями**: Мультимедиа (JPEG, MP3).

Применимость

Пример

Текст "AABBBCCCC" сжимается Хаффманом: С (частый) — короткий код, А (редкий) — длинный.

Алгоритм	Тип	Применение	Пример
Хаффман	Без потерь	Текст, архивы	ZIP, PNG
LZW	Без потерь	Текст, GIF	GIF, TIFF
JPEG	С потерями	Изображения	Фотографии
MP3	С потерями	Аудио	Музыка

Билет 16. Техники сжатия данных. Алгоритмы Шеннона-Фано и Хаффмена

Алгоритмы Шеннона-Фано и Хаффмена — методы сжатия без потерь, использующие префиксные коды.

Алгоритм Шеннона-Фано

- 1. **Идея**: Деление символов на группы с равной суммарной вероятностью.
- 2. Шаги:
 - Таблица частот.
 - Сортировка по убыванию.
 - Деление на группы (суммы частот близки).
 - Присвоение 0 и 1, рекурсия.
- 3. Недостатки: Не всегда оптимален.

Пример: Символы: A (0.4), B (0.3), C (0.2), D (0.1).

- Делим: {A, B} (0.7) \rightarrow 0, {C, D} (0.3) \rightarrow 1.
- Коды: $A \rightarrow 00$, $B \rightarrow 01$, $C \rightarrow 10$, $D \rightarrow 11$.

Алгоритм Хаффмена

- 1. Идея: Бинарное дерево, частые символы ближе к корню.
- 2. Шаги:
 - Таблица частот.
 - Очередь узлов (символ, частота).
 - Объединять узлы с минимальными частотами.
 - Присвоить 0 и 1 по рёбрам.
- 3. Преимущества: Оптимальный код.

Пример: Символы: A (5), B (2), C (1), D (1).

- Объединяем C и D \rightarrow CD (2).
- Объединяем В и CD \rightarrow BCD (4).
- Объединяем A и BCD \to корень (9).
- Коды: $A \rightarrow 0$, $B \rightarrow 10$, $C \rightarrow 110$, $D \rightarrow 111$.

Сравнение

Параметр	Шеннон-Фано	Хаффман
Оптимальность Сложность Применение	Hе всегда $O(n\log n)$ Архиваторы	$egin{aligned} & ext{Всегда} \ & O(n \log n) \ & ext{ZIP, PNG} \end{aligned}$

Билет 17. Техники сжатия данных. Арифметическое кодирование

Арифметическое кодирование — метод сжатия без потерь, кодирующий последовательность в число на [0, 1).

Основные положения

- 1. **Идея**: Символам присваиваются интервалы по вероятностям. Последовательность сужает интервал.
- 2. Преимущества: Высокое сжатие, адаптивность.
- 3. Недостатки: Сложность, точная арифметика.

Алгоритм

- 1. Назначить интервалы в [0, 1) по вероятностям.
- 2. Начать с [0, 1).
- 3. Для каждого символа сузить интервал.
- 4. Выбрать число из итогового интервала.

Пример

Символы: А (0.6, [0, 0.6)), В (0.4, [0.6, 1)). Кодируем "АВ".

- 1. Начало: [0, 1).
- 2. A: [0, 0.6).
- 3. B: $[0.6 \cdot 0.6, 0.6 \cdot 1) = [0.36, 0.6) \cdot 0.5()$.

Применение

- 4. Текст, мультимедиа.
- JPEG2000, архиваторы.

Билет 18. Техники сжатия данных. Преобразование Барроуза-Уилера, метод «скользящего окна»

Преобразование Барроуза-Уилера (BWT)

BWT перестраивает символы для повышения эффективности сжатия.

Алгоритм

- 1. Все циклические сдвиги строки.
- 2. Сортировка сдвигов.
- 3. Последний столбец результат.

Пример: Строка "banana".

- 1. Сдвиги: [banana, anana, nana, ana, na, a].
- 2. Сортировка: [a, ana, anana, banana, na, nana].
- 3. Результат: "annbna".

Метод «скользящего окна» (LZ77)

Ищет повторяющиеся подстроки, заменяя их ссылками.

Алгоритм LZ77

- 1. Окно: буфер поиска + предпросмотра.
- 2. Для каждой позиции:
 - Найти совпадение в буфере поиска.
 - Выдать (смещение, длина, следующий символ).

Пример: Строка "abracadabra", окно поиска = 6.

- "abra": (0, 0, a).
- "cadabra": (7, 4, c).

Применение

- BWT: bzip2.
- LZ77: ZIP, gzip.

Билет 19. Общие сведения об архивации файлов

Архивация файлов — объединение файлов в архив с возможным сжатием.

Основные положения

- 1. Цели: Уменьшение размера, упрощение хранения/передачи, защита.
- 2. Типы:
 - Без сжатия (TAR).
 - С сжатием (ZIP, RAR, 7z).
- 3. Характеристики:
 - Сжатие: Хаффман, LZW, BWT.
 - Скорость: LZ77 (быстро), bzip2 (медленно).
 - Шифрование.

Форматы

- ZIP: DEFLATE (LZ77 + Хаффман).
- RAR: Высокое сжатие.
- 7z: LZMA.

Пример

Файл 1 МБ ightarrow ZIP ightarrow 300 КБ, полное восстановление.

Применение

- Резервные копии.
- Передача данных.
- Сжатие мультимедиа.