Communication Networks 2

TECHNISCHE UNIVERSITÄT DARMSTADT

Introduction

Prof. Dr.-Ing. **Ralf Steinmetz**KOM - Multimedia Communications Lab

Our real networked World Networking Protocol Map ... (Source www.javvin.com)

Overview

History

- 1 Telegraphy
- 2 Telephony
- 3 Telegraphy vs. Telephony
- 4 Television
- 5 Television vs. Telephony and Telegraphy
- 6 The Internet
 - 6.1 Forefather of the ARPANET (1965)
 - 6.2 The ARPANET (here: ~1967 1972)
 - 6.3 Standardization (1969 onwards)
 - 6.4 Internetworking (~1972 onwards)
- 7 Since 1980

Basics

- 8 Network Structures, Types and Components
- **9 Basic Terminology and Concepts**
 - 9.1 Layered Architecture
 - 9.2 Layer Concept
 - 9.3 Protocol: Communication between same Layers
- 10 Connections and Connectionless Services
- 11 Reference Model for Open Systems Interconnection
 - 11.1 Architecture
 - 11.2 Layers and theirs Functions
 - 11.3 Data Units
- 12 Five Layer Reference, Internet Reference Model and a Comparison
- 13 Example: Layers in Action
- 14 History und Basics Summary

1 Telegraphy

and before

Chappe-Code

e.g. 18th century

1791: Semaphoric Telegraph (Chappe)

Brief History of Electronic Communications

Telegraphy

~1750: first experiments with electrostatic telegraphs

~1804: first experiments with electrochemical telegraphs

Voltaic pile (1800 by Volta) used as power source

~1830: first experiments with electromagnetic telegraphs

• Electromagnet (1825 by Sturgeon) used as basis for receiver

1844: first Morse telegraph line between Washington and Baltimore

- Telegraph network then grew rapidly
 - 1846: 40 miles, 1850: 12000 miles

1866: first operational transatlantic telegraph cable

Connecting North America and Europe

1874: Baudot multiplex system

- Time multiplexing with fixed length code
- to be continued...

Early Experiments

Von Sömmering's electrochemical telegraph

■ Presented 1809

Sender:

 35 switches (a-z,1-9) connected to voltaic pile

Network:

- 35 wires (2000 ft)
- Receiver:
 - 35 electrodes in acid bath

→ Communication network is point to point line

Morse Telegraph

Morse transceiver

- One switch to send long and short impulses at sender
 - dahs and dits or
 - dashes and dots
- Dashes and dots
 - punched into paper strip at receiver
- See beginning of first telegraph 'What hath God wrought' (Num 23,23) sent in 1844 from Washington to Baltimore
- Communication network?

Morse Telegraph

Telegraph Network in United States 1916

- Similarities to today's Internet?
- Signal coding?
- Type of switching?
 - Packet?
 - Message?
 - Circuit?
- Type of service?
 - Connection oriented?
 - Connectionless?
- Repeaters?
- Routers?

Morse Telegraph

Morse Code

- Variable length
- Short code for frequently used letters

Baudot Telegraph

Baudot time multiplex system

- Forefather of teletypewriters (TTYs)
- Baud rate (symbol rate) of transmission named after Baudot
- Challenge:
 - to increase number of telegraph messages
- Solution:
 - time multiplexing
 - To connect multiple telegraphs over same line
- First attempts failed
 - Problems with synchronization of sender and receiver
 - Reason:
 - variable length morse code
- Baudot solved problem
 - Fixed length (5 bit) code
 - Synchronized time multiplexing

Baudot Telegraph

Baudot code

- Fixed length 5 bit code
 - Allows for 2⁵=32 symbols
 - Restricted to five bits due to hardware constraints
 - Workaround by shifting alphabet to represent more characters
- Later standardized by CCITT (ITU-T)
 - International telegraph alphabet 1
 - Forefather of ASCII code

Baud rate vs. bit rate

- Early systems operated at2 Characters per second = 2 Baud
- Corresponds to (assuming Baudot code)
 10 bit per second

Baudot Telegraph

Baudot time multiplex system

- Multiple senders/receivers connected to distributor
 - Copper segments with rotating brushes
- Distributors
 - at sender and
 - receiver side synchronized
- Serialization of characters typed on Baudot keyboard

Time multiplexing of input from multiple keyboards

Brief History of Electronic Communications

Telephony

- ~1860: first successful electronic sound (nearly voice) transmission
 - Make and break transmitter by Johann Philipp Reis

1876/77: first patents for telephone technology granted in US

- Elisha Gray, Alexander Graham Bell, Thomas Edison
- Different approaches for voice conversion / reproduction

1877: first manually switched phone exchange in US

1892: first automatic telephone exchange patented in US (Strowger)

- Driving factor was competition in undertaker business ...
- Dial pulse sent by telegraph keys
- Stepping switch with two degrees of freedom at phone exchange

To be continued...

First telephones in 1870s sold pairwise

■ With dedicated, direct line

Assuming a full mesh

- Each customer can call any other customer
- \rightarrow Each customer has n-1 phones

$$\frac{n \times (n-1)}{2}$$
 lines required for *n* customers

Scalability?

- O(?) phones required?
- O(?) lines required?

Telephone switches reduced complexity of phone network

- Line from each phone to central switchboard
- Long distance lines between switchboards
- First switches manually operated
- Complexity?
 - O(?) phones required?
 - O(?) lines required?
- Basic principle in use till today

Strowger switches automated phone exchange

- Stepping switch with two degrees of freedom
- Used in former GDR until 1995

3 Telegraphy vs. Telephony

Concepts of early telegraphy and telephony systems still in use today

Telegraph networks

- Message switching
 - Telegram as discrete unit forwarded from sender to receiver via relay stations
 - No dedicated line between Sender S and Receiver R
- Connectionless service
 - Subsequent telegrams from S to R may use different lines
 - E.g. in case of line failures

Telegraphy vs. Telephony

Telephone networks

- Circuit switching
 - Dedicated line between Sender S (caller) and Receiver R (callee)
 - Reserved exclusively for entire call duration
- Connection oriented service
 - Communication always follows same path
 - Three phases: connect (dial), talk (data exchange), disconnect (hang up)
- Concepts still in use in today
 - No dedicated lines but reserved resources
 - E.g., connecting an ISDN call reserves 64kbit/s between caller and callee

Brief History of Electronic Communications

Television

- ~1831 1890: Basics of radio transmission
 - Electromagnetic induction (Faraday)
 - Theory of electromagnetic fields (Maxwell)
 - Wave character of wireless electrical transmissions (Hertz)

1895: Wireless telegraphy demonstrated by Marconi

Long wave transmission, high transmission power >200kW

1926: First demonstration of transmission of moving images (Baird)

- Electromechanical television
- 12.5 frames per second, 30 lines resolution

1928: First (wireless) TV broadcast stations appear

1996: First commercial digital TV station (DirecTV, US)

To be continued...

Schematic representation of mechanical TV

- Strong light beam scans object through rotating disc with holes (Nipkow Disc)
 - Photoelectric cells detect light reflections
- Output of photoelectric cells reproduced at receiver side
 - Light source with varying intensity watched through Nipkow Disc

TV is broadcast medium

- One sender
- Many Receivers
- E.g., coverage of WABC TV station, New York
 - Covers ~9 million households

Terrestrial digital TV broadcast - DVB-T

- Satellite and cable TV will follow
- Closest stations at Feldberg, Frankfurt, Wiesbaden
 - Cover ~2 million households

Sample calculation

- DVB-T data rate is ~4 Mbit/s
- ~2 million households in Rhine/Main area
- → ~8 Tbit/s (Terabit per second) received during primetime
 - Compare: global average Internet traffic was ~46 Tbit/s in 2010
 - (source: Cisco visual networking) index)

5 Television vs. Telephony and Telegraphy

Television developed as broadcast medium

- One sender, many receivers
 - In order of millions for TV stations
- Inherent property of radio transmission

Telephony (and telegraphy) developed as unicast medium

- One sender, one receiver
- Inherent property of circuit switched network

6 The Internet

Brief History of Electronic Communications

The Internet

1961: Packet switching theory described by Kleinrock at MIT

Shows performance of packet switching (compared to circuit switching)

1962: "Galactic Network" idea presented by Licklider at MIT

Vision of possibilities achieved by globally interconnected computers

1965: First computer network by Roberts and Marill

Two computers at MIT and UCLA connected by dial-up telephone line

1967: ARPANET concept published by Roberts

1969: First IMP (Interface Message Processor) installed at UCLA by BBN

- First host connected to ARPANET
- Three more followed at Stanford, UC Santa Barbara, University of Utah
- Research on network itself as well as on network applications

1969: Request for Comments (RFC) established by Crocker at UCLA

First RFC describes IMP architecture

Brief History of Electronic Communications

The Internet (cont'd)

1970-1972: First communication protocol implemented in ARPANET

- Network Control Protocol (NCP) for host-to-host communication
- Basis for application development

1971: 23 hosts connected

1972: First application presented – electronic mail by Tomlinson

1972: Open architecture internetworking idea presented by Kahn at DARPA

Motivation: Connecting different networks

1973: Initial TCP/IP idea presented by Cerf and Kahn at Stanford and BBN

ARPANET's NCP does not meet internetworking requirements

1983: Cutover from NCP to TCP/IP in ARPANET

6.1 Forefather of the ARPANET (1965)

First wide-area network built by Marill and Roberts in 1965

- 'Toward a Cooperative Network of Time-shard Computers'
 - American Federation of Information Processing Systems conference 1966
- Connecting a TX-2 at MIT to a PDP-1 at Santa Monica
 - TX-2 built at MIT, spin-off: Digital Equipment Corporation (DEC)
 - PDP-1 built by DEC
- Connection via telephone line at 1200 bits per second

Motivation: connecting heterogeneous systems

- Early software highly specialized for machine it ran on
 - Software written in assembler code
 - Platform independent languages yet to come
- Using software written for machine A on machine B required high effort
 - Porting code or rewriting from scratch equally complex tasks

Forefather of the ARPANET

Elementary approach

- In general: connect remote computer instead of local terminal
 - Remote computer looks like local terminal for local computer
 - No changes to hardware or operating system required
- User program handles all networking tasks
 - Communication with user and remote computer

Remember: we are in the age of mainframe computers

6.2 The ARPANET (here: ~1967 - 1972)

Concept proposed by Roberts

- Based on preceding experiment on connecting computers in 1965
- Funded by Advanced Research Projects Agency (ARPA)
 - US military research agency (now DARPA Defense Advanced …)
 - Why? Because Roberts moved from MIT to ARPA.

Goals

- Load sharing
 - Send program and data for processing to remote machine
 - Required identical computers at that time
- Message service
- Data sharing
 - Send program for processing to remote data
- Program sharing
 - Send data for processing to remote program
- Remote service
 - Send query to remote program and data
 - Harness specialized hardware and software

Had been tried before

Extended goals of ARPANET for heterogeneous environments

The ARPANET

Core component: network connections

- 50 kbit/s full-duplex leased telephone lines (AT&T)
- Min. two paths between any two IMPs

Topology as planned in 1970

6.3 Standardization (1969 onwards)

Problem: developing communication protocols requires consensus

- Different locations, institutions, manufacturers, operators ... involved
 - → Standards required
- But:
 - scientific publication process too slow
 - industrial standardization process too slow and to expensive
- Remember: ARPANET was research project with restricted funding

Solution: request for comments (RFCs)

- At first: memos, minutes of meetings
 - Circulated by mail
 - (standard old fashioned, not electronic)
- Later: published electronically
 - FTP, HTTP

request for comments (RFCs)

Provide fast and open access to

RFC Index

- Num Information
- 0001 Host Software S. Crocker [April 1969] (TXT = 21088) (Status: UNKNOWN) (Stream: Legacy)
- 0002 Host software B. Duvall [April 1969] (TXT = 17145) (Status: UNKNOWN) (Stream: Legacy)
- <u>0003</u> Documentation conventions S.D. Crocker [April 1969] (TXT = 2323) (Obsoleted-By <u>RFC0010</u>) (Status: UNKNOWN) (Stream: Legacy)
- <u>0004</u> Network timetable E.B. Shapiro [March 1969] (TXT = 5933) (Status: UNKNOWN) (Stream: Legacy)
- <u>0005</u> Decode Encode Language (DEL) J. Rulifson [June 1969] (TXT = 26408) (Status: UNKNOWN) (Stream: Legacy)
- 0006 Conversation with Bob Kahn S.D. Crocker [April 1969] (TXT = 1568) (Status: UNKNOWN) (Stream: Legacy)
- 0007 Host-IMP interface G. Deloche [May 1969] (TXT = 13408) (Status: UNKNOWN) (Stream: Legacy)
- <u>0008</u> ARPA Network Functional Specifications G. Deloche [May 1969] (PDF = 750612) (Status: UNKNOWN) (Stream: Legacy)
- 0009 Host Software G. Deloche [May 1969] (PDF = 722638) (Status: UNKNOWN) (Stream: Legacy)
- <u>0010</u> Documentation conventions S.D. Crocker [July 1969] (TXT = 3348) (Obsoletes <u>RFC0003</u>) (Obsoleted-By <u>RFC0016</u>) (Updated-By <u>RFC0024</u>, <u>RFC0027</u>, <u>RFC0030</u>) (Status: UNKNOWN) (Stream: Legacy)
- <u>0011</u> Implementation of the Host Host Software Procedures in GORDO G. Deloche [August 1969]
 (TXT = 46971, PDF = 2186431) (Obsoleted-By <u>RFC0033</u>) (Status: UNKNOWN) (Stream: Legacy)
- <u>0012</u> IMP-Host interface flow diagrams M. Wingfield [August 1969] (TXT = 177, PS = 1489750, PDF = 1163721) (Status: UNKNOWN) (Stream: Legacy)
- <u>0013</u> Zero Text Length EOF Message V. Cerf [August 1969] (TXT = 1070) (Status: UNKNOWN) (Stream: Legacy)

Internet standardization

http://www.rfc-editor.org/rfc-index.html

Standardization

Who is behind RFCs?

- Started in 1969 by ARPANET working group (WG)
- International Internet growth demanded for more coordination
 - International Cooperation Board (ICB)
 - Internet Research Group (IRG)
 - Internet Configuration Board (ICB)
- Continuing growth demanded for restructuring organizational institutions
 - Task forces (TFs) founded for particular technology areas
 - Routers, protocols, ...
 - Internet Architecture Board (IAB) coordinates task forces

Standardization

Who is behind RFCs?

- Strong activities in practical/engineering aspects
 - Internet Engineering Task Force (IETF) became major player
 - Other task forces combined into Internet Research Task Force (IRTF)
- Commercialization of the Internet led to shifted interests
 - Internet Society (ISOC) coordinates business and research efforts

Development of Word Wide Web (WWW / W3)

- World Wide Web Consortium (W3C) founded
 - Responsible for protocols and standards of the web

6.4 Internetworking (~1972 onwards)

Besides ARPANET many other networks appeared in/after 1970s

- E.g. NSFNET by US National Science Foundation
 - Advanced research and education networking
- E.g. JANET by UK government
 - Research and education network
- E.g. German DATEX-P by Deutsche Bundespost
 - Commercial packet switched service

Internetworking concepts proposed by Kahn in 1973

- Goal: to connect different networks
- Ground rules valid until today
 - No internal changes required to connect a network to the Internet
 - Best effort communication
 - Stateless gateways/routers used for connection of networks
 - No global control
 - Also:
 - dealing with packet loss, pipelining, fragmentation, global addressing, flow control, ...

Internetworking

ARPANET's NCP does not meet internetworking requirements

- TCP/IP presented by Cerf and Kahn at Stanford and BBN in 1974
- Concept of byte streams
- Flow control by sliding window with cumulative acknowledgements
- First only TCP (nearly as we know it today) implemented
- Research on packet voice demanded for more simple protocol → UDP
- Other applications:
 - File and disk sharing, mobile agents
- Not foreseen:
 - proliferation of LANs and PCs
 - Considered were national level networks
 - 32 bit IP addresses with 8 bit network address, 24 bit host address

TCP/IP evolved to deployment version until 1981

- IPv4 as used today
 - Details see forthcoming lectures
- ARPANET switched to TCP/IP in 1983

Brief History of Electronic Communications

The Internet (cont'd)

- 1982: smtp e-mail protocol defined
- 1983: DNS defined for name-to-IP-address translation
- 1985: ftp protocol defined
- 1988: TCP congestion control
- early 1990's: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
 - 1994: Mosaic, later Netscape
 - late 1990's: commercialization of the Web
- late 1990's 2000's:
 - more killer apps: instant messaging, P2P file sharing
 - network security to forefront
 - est. 50 million host, 100 million+ users
 - backbone links running at Gbps
- **2010**:
 - ~750 million hosts
 - voice, video over IP
 - P2P applications: BitTorrent (file sharing) Skype (VoIP), PPLive (video)
 - more applications: YouTube, gaming, Twitter
 - wireless, mobility

7 Since 1980

Mobile telephony and

SMS

Web
Peer-to-Peer

and

- Web services
- ..
- Twitter
- Online social networks
- **-** . .

Part I → Part II

Part I – History

Part II - Basics

- Network Structures
- Architecture
- Layers
- Protocol
- Service
- Connection, connection oriented, connectionless
- Terminology

8 Network Structures, Types and Components

Network Components

Data transfer from end system to end system

- END-SYSTEM (ES) also known as Data Terminal Equipment (DTE)
 - e.g. terminal, computer, telephone
 - and Data Circuit terminating Equipment (DCE) and Data transfer equipment
 - e.g: modem, multiplexer, repeater
- INTERMEDIATE SYSTEM (IS) also called Data Switching Exchange (DSE)
 - e.g. router

Network Structures

Point-to-point channels

- net = multitude of cable and radio connections often also called a network
- whereby a cable always connects two nodes
- more prevalent in wide area domains (e. g. telephone)

Topologies:

Network Structures

Broadcasting channels

- systems share one communication channel
- one sends, all others listen

Used for

- wide area: radio, TV, computer communication
- local area: local networks

Topologies:

Network Types

Distance between Processors	CPUs jointly located on/in	Example	
<= 0,1 m	Boards	usually tightly coupled multi- processor system	
1 m	Systems	e.g. body area network e.g. sensor area network e.g. storage area network	
10 m	Rooms		
100 m	Buildings	LAN	
1 km	Campuses		
10 km	Cities	MAN	
100 km	Countries (national)		
1.000 km	Continents (intern.)	WAN	
>= 10.000 km	Planets		

- Local Area Network (LAN) e.g. IEEE 802.3 = Ethernet, IEEE 802.11
- Metropolitan Area Network (MAN):
 - (being replaced by LAN + WAN) e.g. FDDI
- Wide Area Network (WAN): example SDH, ATM, all optical networks
- Inter-Planetary Internet: http://www.ipnsig.org/

Network Types: Mobile Communication

Expansion

with the areas: LAN, MAN and WAN

Examples for "Wireless"

■ GSM, UMTS, Ite ...

wireless telephony: DECT, ...

■ LANs: Bluetooth, WiFi, ...

wireless communication mobile communication

		Wired or Radio Connection		
		Wired	Wireless	
Connection to network either static or dynamic (at different locations)	Mobile	mobile IP e.g. laptop in the hotel	mobile telephony e.g. laptop in the car PDA at customer's site	
	Fixed	POTS Existing LANs e.g. workstation in the office	wireless LAN cordless telephone e.g. wireless "last mile"	

9 Basic Terminology and Concepts

Problem: engineering communication means

- multitude of partially very complex tasks
- interaction of differing systems and components

Simplification:

- to introduce abstraction levels of varying functionalities
- general module, preferable: layer, level

Example (here using ISO-OSI reference model, later 5 layers

biologists with translator and e.g. secured encrypted FAX-office

9.1 Layered Architecture

Layer content ("service")

may be exchanged at any layer independently

Use protocol

to ensure peer entities interoperate correctly

Tradeoff:

 overhead (SW/msg) vs. exchangeability, clarity, simplicity

Note:

 open question remains: what is going to happen? ("presentation syntax")

Layered Architecture

How would you describe the airline system?

Ticketing, baggage, gates, pilots, routing, ...

Describe by actions:

- Buy ticket
- Check in with baggage
- Go to gate for boarding
- Plane takes off
- Plane is routed to destination
- Plane lands
- Arrive at gate
- Claim bags
- (Complain to airline)

Ticket (buy)	Ticket		
Baggage (check)	Baggage		
Gate (board)	Gate		
Takeoff	Landing		
Routing	Routing		
Routing			

Layered Architecture

Ticket purcha	se	Ticket (complain)	Ticketing
Baggage chec	ck	Baggage claim	Baggage
Gate (board)		Gate (get off)	Boarding
Takeoff		Landing	TO/Landing
Routing	Routing	Routing	Routing

Layers provide services by:

- Performing actions on its own layer
- Using services from a layer directly below
- Realizing a distributed abstract machine

Is above a good example? No!

good layered architectures are great art & science!

9.2 Layer Concept

(only in communication?) layers exist in various areas

■ e. g.

compression: MPEG

CD technology

Example: CD Digital Audio

Layers in General

N-Layer

abstraction level with defined tasks

N-Entity

- active elements within a layer
- process or intelligent I/O module
- peer entities: corresponding entities on different systems

N-Service Access Point, N-SAP

service identification

N-Protocol:

a multiple of rules for transferring data between N-entities

9.3 Protocol: Communication between same Layers

Definition of protocol:

- A protocol defines
 - the format and
 - the order of messages
- exchanged between two or more communicating entities,
- as well as the actions taken on transmission and/or reception of a message or other event

Protocol

- rules for syntax (format) and semantics (contents)
 - of the data transfer (frames, packet, message) occurring
 - between the respective, active peer entities
- analogy: programming, protocol corresponds to
 - realization of the data type (procedures, etc.)
 - the "interior" of the object

Service: Communication between adjacent Layers

Service

- multiple of primitives/operations/functions
 - which one layer offers to the upper next layer
- characterized by the "interface"
- does not reveal anything about the implementation
- analogy: programming, service corresponds to
 - abstract data type
 - object

10 Connections and Connectionless Services

Fundamental distinction between connection-oriented and connectionless

Rough analogies:

Connection-oriented ≈ telephone service Connectionless ≈ postal service

...how many calls can she handle?

...what kind of guarantee do you get?

Connections: Connection Oriented Service

Connection oriented:

- 3 phases:
 - to connect (also called handshake)
 - to transfer data
 - to disconnect

Note: "Connection-oriented" does not imply any additional properties of the connection

- No reliability, flow control, or congestion control is required
- TCP (Internet's connection-oriented protocol) implements them

BUT: "Connections" are nothing but a distributed "state", held at both end points

- this is the basis for almost all additional properties
- ... and for overhead (IP golden role: *no* state in routers)

Connectionless Service

Connectionless networks have no connection establishment phase

- transfer of isolated unit data
- Go straight to data transfer phase
- Also, no connection teardown phase

No need to maintain connection state

Communication partner might not be ready for receiving

Connectionless networks do not implement:

- Reliability, flow control, congestion control
- Applies also to UDP (Internet's connectionless protocol)

So, Which Is Better?

Overhead of handshake in connection-oriented

- Can be significant in short communications
- Insignificant in long communications

What happens when network is congested:

Connection-oriented: Busy, no connection

Connectionless: Can communicate, but may be stalled

Possible to build connection-oriented service on top of a connectionless service

Pro Connection-oriented: Better service (at cost of state)

Pro Connectionless: Stateless → Scalable

Applications for both types of networks

11 Reference Model for Open Systems Interconnection

ISO OSI (Open Systems Interconnection) Reference Model

- model for layered communication systems
- defines fundamental concepts and terminology
- defines 7 layers and their functionalities

7	Application Layer		
6	Presentation Layer		
5	Session Layer		
4	Transport Layer		
3	Network Layer		
2	Data Link Layer		
1	Physical Layer		

11.1 Architecture

Actual data flow between two systems:

OSI Architecture

Real data flow with intermediate systems:

11.2 Layers and theirs Functions

Layer	Function			
1 Physical	Signal representation of bits: sending bit 1 is also received as bit 1 (and not as bit 0): mechanics: connector type, cable/medium, electronics: voltage, bit length, procedural: unidirectional or simultaneously bidirectional initiating and terminating connections Protocol example: RS232-C = ITU-T V.24; other: ITU-T X.21			
2 Data Link	Reliable data transfer between adjacent stations with frames introducing data frames and acknowledgement frames error recognition and correction within the frame: manipulation, loss, duplication Residual & "severe" errors deferred to higher layers fast sender, slow receiver: flow control distribution network requires access control: Medium Access Control (MAC)			

Layer	Function
2 Data Link	Layer 2 may already include some flow control Goal: protect slow receiver Flow control can be sophisticated (sliding window protocol), For example, avoid slow stop-and-go for satellite connections Broadcast networks (LAN) often with two sublayers Logical Link Control (LLC) Medium Access Control (MAC)
	Logical Link Control (LLC) Medium Access Control (MAC) fair / ordered access to single medium (CSMA/CD, tokens,)

Layer	Function			
	connection (as relationship between entities)			
	end system to end system			
	(subnets) with packets			
	■ routing, i. e. among others			
	fixed, defined during connect, dynamic			
	congestion control (too many packets on one path)			
	quality of service dependent			
	Node B Node C			
	Node B			
3				
Network	Node A			
	End-to-End			
	= End-to-End			
	varying subnets, Internetworking,			
	■ i. e. among others			
	addressing, packet size			
	comment: at broadcast networks:			
	routing often simplified or non-existent,			
	i. e. this layer does often not exist here			
	example: IP (connectionless), X.25 (connection-oriented)			

Layer	Function
4 Transport	Connection (as relationship between entities) From source (application/process) to destination (application/process)

Layer	Function
5 Session	 support a "session" over a longer period synchronization (during interrupted connection) token management (coordinate the simultaneous processing of different applications)
6 Presentation	data presentation independent from the end system negotiating the data structure, conversion into a global data structure examples: data types: date, integer, currency, ASCII, Unicode,
7 Application	 application related services examples: electronic mail, directory service file transfer, WWW, P2P,

Comment:

- layer does not necessarily correspond to the process of the implemented unit
 - otherwise loss of efficiency

OSI 7-Layer Architecture Summary

- 7. Application Layer A: cooperating entities
- 6. Presentation Layer P: exchange of data (semantics!)
- 5. Session Layer S: structured dialogue
- 4. Transport Layer T: end2end msg. stream betw. individual processes
- 3. Network Layer N: packet stream between end systems
- 2. Data Link Layer D: error-recovering frame stream, adjacent sys.
 - LAN comprises
 - L.2b: Logical Link Control
 - L.2a: Media Access Control
- 1. Physical Layer PH: unsecure bitstream between adjacent systems

Note:

- Many service functions carried out in several layers / services
 - i.e. Overhead, even reversal in part due to net homogeneity

11.3 Data Units

Application level "messages" are processed as data units.

Following notions for data units have become common:

- packet: "unit of transportation" (may contain fragments)
- datagram: instead of packet if sent individually (connectionless)
- frame: with final envelope, ready to send (next to lowest layer)
- cell: small packet of fixed size

OSI terminology: "message" is a PDU

- PDU: Protocol Data Unit
 - (N)-PDU: semantics understood by peer entities of (N)-service
 - (N)-PDU = (N)-PCI plus (N)-SDU; (N)-SDU = (N+1)-PCI plus (N+1)-SDU
- PCI: Protocol Control Information: only used by peers
- SDU: Service Data Unit = payload optionally carried in PDU for user

OSI Model: Data Units

Header H_n (plus maybe Trailer T_n) in (N)-layer carries (N)-PCI Protocol Control Information PCI: checksums, msg no., ...

Five Layer Reference, Internet Reference Model and a Comparison

OSI (Open Systems Interconnection) Reference Model

7	Application Layer
6	Presentation Layer
5	Session Layer
4	Transport Layer
3	Network Layer
2	Data Link Layer
1	Physical Layer

TCP/IP Reference Model Internet Architecture

- ISO-OSI presentation, session and application layer merged
- ISO-OSI data link layer and physical layer merged to form Network Interface

TCP/IP Reference Model: Internet Architecture

Well-Known Internet Protocols

SMTP	HTTP	FTP	TELNET			NFS	RTP	
ТСР					UDP		SCTP	
IP + ICMP + ARP								
WANS LLC & MAC		MAC	LANs, MANs			IANs		
ATM ,		Phys	rsical Ethernet,		et,			

ARP = Address Resolution Protocol

FTP = File Transfer Protocol

HTTP = Hypertext Transfer Protocol

IP = Internet Protocol

ICMP = Internet Control Message Protocol

LLC = Logical Link Control

MAC = Media Access Control

NFS = Network File System

SMTP = Simple Mail Transfer Protocol

TELNET = Remote Login Protocol

TCP = Transmission Control Protocol

UDP = User Datagram Protocol

SCTP = Stream Control Transmission Protocol

Comparing the Reference Models: 5-Layer Model Used Herein

ISO-OSI: standardized too late

- implementations usually worse than those of Internet protocols
- in general, however, mainly good concepts

TCP/IP (Internet)

- TCP/IP already prevalent, SMTP too, now e. g. WWW
- integrated into UNIX

Considered here:

Layer		Function
5	Application	application related services incl. ISO-OSI L5 and L6 (as far as necessary)
4	Transport	connection end/source (application/process) to end/destination (application/process)
3	Network	connection end-system to end-system
2	Data Link	reliable data transfer between adjacent stations
1	Physical	sending bit 1 is also received as bit 1

13 Example: Layers in Action

What happens in different layers when you use your browser to access a website?

Remember: Internet has only 5 layers

Layers 5, 6, and 7 implemented in a single application layer

In Internet, layers 3 and 4 are somewhat confused

- Transport protocol TCP (or UDP) and network protocol IP
- Sometimes hard to draw a clear line where TCP ends and IP begins
- But: Basic functionality is clearly separated

So, what happens?

Sidenote: 7-layer model has been extended...:-)

- Layer 8: Financial layer
- Layer 9: Political layer

Layers in Action

Actual communication

(N)-protocol

Request goes down on layers at browser

Physical layer handles actual sending of message to next (neighbor) node Network protocol (IP) takes care of routing message to destination

- Possibly several hops from one router to another
- At each router, message goes up to IP-layer for processing

Transport and application layers converse end-to-end

Functionality Recap

Layer 5,6,7

- Create HTTP request
- Invoke layer 4 (= TCP)
- Process reply (= web page)

Layer 4

- Open reliable connection to web server
- Make sure data arrives in the order it was sent
- Do not saturate network
 - Congestion control

Layer 3

- Route message from client to web server
- Message passed from router to router
- Layer 3 provides end-to-end service through hop-by-hop actions

Layer 2

- Put data from layer 3 in frames
- Send frames to immediate neighbor

Layer 1

Actual transmission of a frame as a bitstream

Each layer performs some critical function

Layering not always "clean"

Where congestion control or reliability is handled?

14 History und Basics - Summary

History

Basic terminology and concepts

- Protocol
- Service
- Layer

OSI and Internet layer models

Connection-oriented and connectionless networks

Example of layers in practice

Networking Protocol Map ... (Source www.javvin.com)

