

UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE DARCY RIBEIRO CENTRO DE CIÊNCIA E TECNOLOGIA – CCT

LABORATÓRIO DE CIÊNCIAS MATEMÁTICAS – LCMAT CIÊNCIA DA COMPUTAÇÃO

PROF^a: SÂNYA CARVALHO DOS SANTOS Data: 25/05/22

Lógica Digital – Lista 06

1. Preencha as tabelas a seguir:

Decimal		Gray		
	Α	В	C	D
0				
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

Decimal	2 entre 5				
	Α	В	С	D	E
0					
1					
2					
3					
4					
5					
6					
7					
8					
9					

Excesso 3			3
Α	В	С	D

Decimal	Johnson				
	Α	В	С	D	Ε
0					
1					
2					
3					
4					
5					
6					
7					
8					
9					

- Elabore um Codificador Decimal/Binário para a partir, de um teclado com chaves numeradas de 0 a 3, fornecer nas saídas o código correspondente. Considere que as entradas das portas em vazio equivalem à aplicação de nível
 1.
- 3. Projete um circuito combinacional para em um conjunto de 4 fios, fornecer nível 0 em apenas um deles por vez (estando os demais em nível 1), conforme seleção binária aplicada às entradas digitais.
- 4. Elabore um decodificador 3 para 8 onde, conforme as combinações entre 3 fios de entrada, 1 entre os 8 fios de saída é ativado (nível 1) .
- 5. O que significa "BCD" no código BCD 8421?
- 6. Converta os seguintes números em BCD 8421 para binário e para decimal:

BCD 8421	Binário	Decimal
0100 0010		
0001 0000		
0011 0100		
1001 1001		
1000 0111		

- 7. Qual o maior número em decimal representável por um número em BCD8421 de 16 bits?
- 8. Converta os seguintes números em código de Johnson para binário e para decimal:

Johnson	Binário	Decimal
00000 11110		
01111 00011		
11000 01111		
00001 10000		
11100 11111		

- 9. Desenvolva um circuito que transforme do código BCD 8421 para o código Johnson.
- 10. Converta os seguintes números em código de Excesso de 3 para binário e para decimal:

Excesso de 3	Binário	Decimal
0111 0101		
0011 0100		
1100 0011		
1011 0100		
1001 0110		

- 11. Projete um decodificador do Código Gray para o Excesso 3. Dê apenas as expressões simplificadas.
- 12. Considerando o disco de Gray abaixo, liste o código de Gray (0 = branco, 1 = preto):

13. Indique qual o próximo número considerando o código de Gray completando a tabela:

Gray	Próximo
0000	
0011	0010
0110	
	0100
1100	
	1110
1010	
1001	1000

- 14. Projete um decodificador para, a partir de um código binário, escrever a sequência de 1 a 5 em um display de 7 segmentos catodo comum.
- 15. Projete um decodificador para, a partir de um código binário, escrever a sequência da seguinte figura em um display de 7 segmentos anodo comum.

CARACTERE		d	P	L	A	4	E	۲
CASO	0	1	2	3	4	5	6	7

- 16. Monte a tabela e simplifique as expressões do decodificador do código Gray para hexadecimal em um display de 7 segmentos anodo comum.
- 17. Mostre como um bloco Somador Completo pode ser utilizado para efetuar a soma de 3 números de 1 bit.
- 18. Esquematize em blocos, um sistema subtrator para 2 números de 4 bits. Para esse sistema faça um estudo e conclua qual o resultado no caso de o minuendo (A₃ A₂ A₁ A₀) ser menor que subtraendo (B₃ B₂ B₁ B₀).
- 19. Elabore um Meio Somador/Meio Subtrator (M=0→ Meio Somador e M=1 → Meio Subtrator).
- 20. Esquematize, em blocos, um sistema Somador/Subtrator completo para 2 números de 4 bits.
- 21. Utilizando blocos de Somadores Completos, elabore um sistema subtrator para 2 números de 2 bits.
- 22. Criar um decodificador, para um display de 7 segmentos, a partir de uma entrada de 2 bits, o display deverá indicar as seguintes letras:

G

0: letra L . 1: letra I.

2: letra G. 3: letra A.

O display será de catodo comum.

23. Um display de 7 segmentos é um componente eletrônico que possui 7 lâmpadas f_1, f_2, \ldots, f_7 que acendem para representar os algarismos hexadecimais de 0 até 9 e de A até F. As lâmpadas estão dispostas da seguinte maneira:

Cada algarismo hexadecimal é representado por uma combinação de luzes acesas e apagadas, como pode ser visto abaixo:

Cada algarismo em hexadecimal pode ser representado por um conjunto de 4 dígitos d_3 , d_2 , d_1 , d_0 , da seguinte forma:

algarismo	d_3	d_2	d_1	d_0
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
:			:	
9	1	0	0	1
A	1	0	1	0
В	1	0	1	1
F	1	1	1	1

Projete os 7 circuitos digitais que tenham como entrada um algarismo hexadecimal em sua representação binária $d_3d_2d_1d_0$, e que produzem, cada um, uma saída f_i (onde i = 1 . . . 7), apropriada para um display de 7 segmentos.

- 24. Codifique os decimais a seguir em BCD 8421 (BCD natural), BCD 3 em excesso e Gray de 4 bits.
 - a) 15 c) 2689,15
 - b) 347 d) 3,428
- 25. Decodifique os números BCD 8421 (BCD natural) para decimal
 - a) 00000110 c) 0101011100000010
 - b) 100000010100 d) 1001,00000001
- 26. Sabe-se que o Gray é um tipo de código de distância unitária. Justifique. Descreva uma situação prática em que este código é utilizado. Apresente a justificativa da utilização do código Gray para a situação descrita e mostre um exemplo.

- 27. O ASCII (American Standard Code for Information Interchage) é um código de 7 bits do tipo alfanumérico. Cite dois outros tipos de códigos alfanuméricos. Qual a principal aplicação destes tipos de código? Apresente exemplos para os códigos citados, codificando 3 caracteres à sua escolha.
- 28. Escreva os equivalentes binários dos caracteres ASCII de A até J, adicionando bit de paridade ímpar na posição mais significativa (MSB). Qual é a função do bit de paridade?
- 29. Considerando o contexto de transmissão de dados, explique por que motivo faz-se necessária a existência de métodos de detecção e controle de erros.
- 30. Procure na Internet uma figura da tabela ASCII. A seguir converta para binário as seguintes sequências de caracteres:

a) 42_{ascII}

b) SD_{ascll}

c) NO ascII

- d) Digital ascll
- e) no ascil
- f) Sistemas ascil
- 31. Calcule o bits de paridade par e impar para as seguintes palavras:

Palavra	Paridade P.	Paridade I.
0001110		
0101010		
0111111		
1111111		
0000000		
1010101		
0010010		

- 32. Escreva os equivalentes binários dos caracteres ASCII de 0 até 9, adicionando bit de paridade par na posição menos significativa (LSB).
- 33. Analisando as palavras abaixo e, assumindo que o bit de paridade par encontra-se na posição MSB e ele está correto, informe se houve ou não erro de transmissão:

Palavra	correto
1000000000101010	0011010
010101010101010	
111111111111111	
000000000000000	
0111101111101110	

34. Os dados a seguir correspondem a uma mensagem de texto. Estão expressos em hexa e codificados em ASCII, com bit de paridade par na posição mais significativa. Decodifique a mensagem.

> 48 65 F9 A0 48 65 F9 AC A0 ED F9 A0 ED F9 D2 6F 63 EB AO E1 EE E4 AO 72 6F 6C 6C AO 63 E1 EE AO EE 65 F6 65 72 A0 E4 69 65 2E 2E 2E

35. Decodifique a mensagem binária a seguir, sabendo que está codificada em ASCII e com bit de paridade ímpar na posição menos significativa: