

A Textbook of

Engineering Physics

For the students of B.E., B.Tech., B.Arch

Dr. D. Thirupathi Naidu, M.Sc., Ph.D.

Professor in Physics
Gayatri Institute of Engineering & Technology,
Jangareddygudem - 534447,
W.G., Andhra Pradesh.

M. Veeranjaneyulu, M.Sc., M.Phil., B.Ed.

Department of Physics
Sir. C.R. Reddy College of Engineering,
ELURU-534007.

V.G.S. BOOK LINKS

5-6-59/3, Second Floor, Tammina Krishna Street, Behind Sairam Theatre, Vijayawada - 520 009. Ph : 2510202, 2512222, Fax : 0866-2515555.

B.O.: # 3-1-399, Nimboliadda, Kachiguda, Hyderabad-500 027. Ph: 040-24650717. email: vgspublishers.hyd@gmail.com

A TEXTBOOK OF

ENGINEERING PHYSICS

Fourth Revised Edition: Sep 2016

Copyrights reserved by publishers

•

Copies can be had from:

V.G.S. BOOK LINKS

5-6-59/3, Second Floor, Tammina Krishna Street,

Behind Sairam Theatre,

VIJAYAWADA - 520 009.

Ph: 0866 - 2510202, 2512222.

Fax: 0866 - 2515555.

email: vgsbooklinks@gmail.com

B.O: V.G.S. BOOK LINKS

3-1-399, Nimboliadda,

Kachiguda, Hyderabad-500027.

email: vgspublishers.hyd@gmail.com

Ph. 040-24650717

&

SHREE RAJESWARI BOOK STALL

15-1-66, Siddiamber Bazaar,

HYDERABAD - 500 012.

Ph: 24742570, 24731972.

Fax: 040 - 24607764

This book or parts thereof shall not be reproduced in any form without permission of the Authors and the Publishers.

We have taken many efforts to present this book without errors. But, some errors might have crept in. We don't take any legal responsibility for such errors and omissions. If you bring them to our notice, we will correct them in our next edition.

All disputes are subject to AMALAPURAM Jurisdiction only.

Dedicated to our Beloved Parents

Preface

Physics is one of the most important subject to all engineering students, where all most all the important elements of subject are covered. This book is written in accordance with the syllabus of various universities and autonomous engineering colleges as well and is useful for first year B.E/B.Tech/B.Arch students. This book has been written in very simple and lucid way. Every effort has been made to make the treatments simple and comprehensive, so that even an average student also is able to follow independently. The difficult topics are explained with the help of clear diagrams. A number of problems are solved at the end of each chapter. The answers for unsolved problems are also noted. A number of objective questions with answers are also given at the end of each chapter. It is earnestly hoped that the book will be useful for all branches of first year engineering students and teachers as well.

This book has eighteen chapters. All topics are discussed completely and comprehensively. Each chapter begins with an introduction, which reviews all the fundamentals. The physical facts suggested by the mathematical expressions are clearly explained.

The first three chapters deals with the fundamentals of physical optics. In the first chapter the interference phenomena, interferometers and related contents are discussed. The second chapter deals with the diffraction phenomena and its applications. The polarization phenomena and its fundamentals, polarimeters are presented in chapter-3. Chapter-4 is the Lasers refer the basic principles and types of lasers. The detailed discussion of optical fibres and their classification are given in chapter-5. The sixth and seventh chapters are related to crystallography. The crystal structures and various types of lattices are analyzed in chapter-6. The crystal planes, miller indices and x-ray diffraction techniques are included in chapter-7. The basic concepts of quantum mechanics and the related contents are discussed in chapters 8 to 10. The chapter-8 deals with the de-Broglie's ideas on matter waves and fundamentals of quantum mechanics. In chapter-9 the general properties, classical and quantum free electron theories of metals are discussed. The Kronig-Penny model and formation of energy bands are presented in chapter-10. The fundamentals of magnetism and properties of magnetic materials are discussed in chapter-11. Chapter-12 refers to the basic principles of dielectric materials, polarization mechanisms, ferroelectricity and piezoelectricity. The fundamental laws of electromagnetism and Maxwell's equations are presented in the electromagnetic fields, chapter-13. The phenomenon of superconductivity, properties of super conductors and related theories are included in chapter-14. The detailed discussion of semiconductors, concentration of charge carriers of various semiconductors, light emitting diodes, photoconductors and solar cells are given in chapter-15. The understanding of sound absorption, reverberation time and its effect on building are discussed in the acoustics, chapter-16. An elaborative coverage of basic principles of ultrasonic waves and nondestructive testing using ultrasonics is made in Chapter-17. The properties, preparation and applications of nanomaterials are presented, in chapter-18.

The authors will appreciate any suggestions from teachers and students for the improvement of the book.

Dr. D. Thirupathi Naidu M. Veeranjaneyulu

Contents

	PTER - RFERE		1.1 - 1.58
	KLEKE	NCE	1.1 - 1.30
1.1	Introdu	action	1.3
1.2	Superp	position Principle	1.4
1.3	Interfe	rence	1.7
1.4	Types	of Interference	1.7
1.5	Cohere	ence	1.8
1.6	Young	s Double Slit Experiment	1.9
	1.6.1	Explanation	1.9
	1.6.2	Theory of interference fringes	1.10
1.7	Interfe	rence in Thin Films by Reflection	1.12
	1.7.1	Interference in plane parallel films due to the reflected light	1.12
	1.7.2	Interference by a film with two non-parallel reflecting surfaces	
		(or) interference in wedge shaped film	1.15
	1.7.3.	Colours of thin films	1.17
1.8	Newto	n's Rings	1.18
	1.8.1	Experimental arrangement	1.18
	1.8.2	Theory (Newton's rings by reflected light)	1.19
	1.8.3	Determination of wavelength (λ) of given source of light	1.21
	1.8.4	Determination of refractive index of a liquid	1.21
1.9	Newto	n's rings in white light	1.22
1.10	Interfe	rometers	1.22
	1.10.1	Michelson interferometer	1.22
	1.10.2	Types of fringes	1.24
	1.10.3	Fringes in white light	1.26
	1.10.4	Visibility of fringes	1.26
	1.10.5	Applications of michelson interferometer	1.26
1.11	Multipl	e Beam Interferometry	1.27
	1.11.1	Fabry-Perot interferometer	1.29

	4 44 0	A 11 11 15 15 15 15 15 15 15 15 15 15 15	4.04
		Applications of Fabry-Perot interferometer	1.31
		The Lummer-Gehrcke Interferometer (or) Lummer-Gehrcke plate	
1.12		ations of Interference	1.34
•		Problems	1.34
•	•	ive Questions	1.47
•		v Questions	1.53
•	Exerci	se Problems	1.56
	PTER -		
DIFFR	RACTIO	DN	2.1 - 2.54
2.1	Introdu	oction	2.3
2.2	Phenoi	menon of Diffraction	2.4
2.3	Fresne	l and Fraunhofer Diffraction	2.4
	2.3.1	Differences between fresnel and fraunhofer diffraction	2.6
2.4	Differe	nces Between Interference and Diffraction	2.6
2.5	Fraunh	nofer Diffraction at a Single Slit	2.7
2.6	Fraunh	nofer Diffraction Due to Double Slit	2.11
2.7	Fraunh	nofer Diffraction at a Circular Aperture	2.14
2.8	Diffract	tion Grating	2.17
	2.8.1	Fraunhofer Diffraction due to N Slits (Plane Diffraction Grating)	2.18
	2.8.2	Grating equation	2.22
	2.8.3	Grating spectrum	2.23
	2.8.4	Possible orders with a grating	2.24
	2.8.5	Determination of wavelength of light	2.25
	2.8.6	Dispersive power of grating	2.25
2.9	Resolv	ing Power	2.26
	2.9.1	Rayleigh's criterion of resolution	2.26
	2.9.2	Resolving power of grating	2.27
	2.9.3	Resolving Power of a telescope	2.29
	2.9.4	Resolving power of a microscope	2.31
2.10	Applic	ations of diffraction	2.34

•	Solved Problems	2.34
•	Objective Questions	2.44
•	Review Questions	2.50
•	Exercise Problems	2.52
СНА	APTER - 3	
POL	ARIZATION	3.1 - 3.38
3.1	Introduction	3.3
3.2	Polarization	3.4
	3.2.1 Types of polarized light and their representation	3.5
	3.2.2 Plane of vibration and plane of polarization	3.6
3.3	Polarization by Reflection (Brewster's Law)	3.7
3.4	Malus Law	3.8
3.5	Polarization by Double Refraction	3.9
	3.5.1 Properties of ordinary rays and extraordinary rays	3.10
	3.5.2 Optic axis and principle section	3.10
3.6	Polarization by Selective Absorption (Dichroism)	3.11
	3.6.1 Polaroid	3.11
3.7	Polarization by Scattering	3.12
3.8	Nicol Prism	3.12
3.9	Quarter Wave Plate and Half Wave Plates	3.14
3.10	Optical Activity	3.15
3.11	Specific Rotation	3.16
3.12	Polarimeter	3.17
	3.12.1 Laurent's half-shade polarimeter	3.17
	3.12.2 Bi-quartz polarimeter	3.19
3.13	Applications of Polarized Light	3.21
•	Solved Problems	3.22
•	Objective Questions	3.30
•	Review Questions	3.35
•	Exercise Problems	3.37

_ASE	RS		4.1 - 4.32
4.1	Introdu	uction	4.3
4.2	Chara	cteristics of Lasers	4.4
4.3	Basic	Principles of Lasers	4.5
	4.3.1	Absorption	4.5
	4.3.2	Spontaneous emission of radiation	4.5
	4.3.3	Stimulated emission of radiation	4.6
	4.3.4	Differences between spontaneous emission of radiation are emission of radiation	nd stimulated 4.7
	4.3.5	Principle of lasing action	4.8
	4.3.6	Population inversion	4.9
	4.3.7	Pumping	4.10
	4.3.8	Life time	4.11
	4.3.9	Metastable state	4.11
	4.3.10	Pumping schemes	4.11
4.4	Einste	in's Coefficients (or) Einstein's Theory of Lasers	4.13
4.5	Comp	onents of Laser System	4.15
4.6	Types	of Lasers	4.16
	4.6.1	Ruby laser	4.16
	4.6.2	He-Ne laser	4.18
	4.6.3	Semiconductor laser	4.20
	4.6.4	Differences between homojunction and heterojunction sem	iconductor 4.22
4.7	Applic	lasers eations of Lasers	4.22
•		d Problems	4.24
•	Object	tive Questions	4.27
•	Revie	w Questions	4.31
•	Exerci	ise Problems	4.32

	PTER - 5 R OPTICS	5.1 - 5.30
5.1	Introduction	5.3
5.2	Advantages of Optical Fibers	5.4
5.3	Principle of an Optical Fiber (Total Internal Reflection)	5.4
5.4	Structure of an Optical Fiber	5.5
5.5	Acceptance Angle and Acceptance Cone	5.6
5.6	Numerical Aperture (NA)	5.8
5.7	Normalized Frequency Parameter (V) of an Optical Fiber	5.8
5.8	Types of Optical Fibers	5.9
	5.8.1 Step Index Optical Fiber	5.9
	5.8.2 Graded Index Optical Fiber	5.10
	5.8.3 Differences between Step Index and Graded Index Optical Fibers	5.12
5.9	Attenuation in Optical Fibers (or) Losses in Optical Fibers	5.12
5.10	Applications of Optical Fibers	5.16
5.11	Optical Fiber Communication System	5.17
	5.11.1 Advantages of Optical Fiber Communication System	5.19
	5.11.2 Disadvantages of Optical Fiber Communication System	5.20
•	Solved Problems	5.20
•	Objective Questions	5.27
•	Review Questions	5.31
•	Exercise Problems	5.32
СНА	PTER - 6	
CRYS	STAL STRUCTURE	6.1 - 6.28
6.1	Introduction	6.3
6.2	Crystalline Solids	6.4
6.3	Amorphous Solids	6.4
6.4	Space Lattice (or) Crystal Lattice	6.5
6.5	Basis and the Crystal Structure	6.6

6.6 Unit Cell 6.7 Lattice Parameters 6.8 Bravais Lattice 6.8.1 Bravais lattices in two dimension 6.8.2 Crystal systems and bravais lattices in three dimension 6.9 Properties of Unit Cell 6.10 Packing Fraction of Cubic Crystal 6.10.1 Packing fraction of simple cubic crystal (SC) 6.10.2 Packing fraction of body centered cubic crystal (BCC) 6.10.3 Packing fraction of face centered cubic crystal (FCC) • Solved Problems • Objective Questions • Review Questions • Exercise Problems CHAPTER - 7 CRYSTAL PLANES AND X-RAY DIFFRACTION TECHNIQUE 7.1 Directions in Crystals 7.2 Planes in Crystals 7.3 Miller Indices 7.3.1 Procedure for Finding Miller Indices 7.3.2 Important Features of Miller Indices 7.4 Various Planes of Crystals 7.5 Separation Between Successive [h k I] Planes 7.6 Diffraction of X-ray by Crystal Planes 7.7.1 Bragg's Law	6.7
6.8 Bravais Lattice 6.8.1 Bravais lattices in two dimension 6.8.2 Crystal systems and bravais lattices in three dimension 6.9 Properties of Unit Cell 6.10 Packing Fraction of Cubic Crystal 6.10.1 Packing fraction of simple cubic crystal (SC) 6.10.2 Packing fraction of body centered cubic crystal (BCC) 6.10.3 Packing fraction of face centered cubic crystal (FCC) • Solved Problems • Objective Questions • Review Questions • Exercise Problems CHAPTER - 7 CRYSTAL PLANES AND X-RAY DIFFRACTION TECHNIQUE 7.1 Directions in Crystals 7.2 Planes in Crystals 7.3 Miller Indices 7.3.1 Procedure for Finding Miller Indices 7.3.2 Important Features of Miller Indices 7.4 Various Planes of Crystals 7.5 Separation Between Successive [h k I] Planes 7.6 Diffraction of X-ray by Crystal Planes	6.7
6.8.1 Bravais lattices in two dimension 6.8.2 Crystal systems and bravais lattices in three dimension 6.9 Properties of Unit Cell 6.10 Packing Fraction of Cubic Crystal 6.10.1 Packing fraction of simple cubic crystal (SC) 6.10.2 Packing fraction of body centered cubic crystal (BCC) 6.10.3 Packing fraction of face centered cubic crystal (FCC) • Solved Problems • Objective Questions • Review Questions • Exercise Problems CHAPTER - 7 CRYSTAL PLANES AND X-RAY DIFFRACTION TECHNIQUE 7.1 Directions in Crystals 7.2 Planes in Crystals 7.3 Miller Indices 7.3.1 Procedure for Finding Miller Indices 7.3.2 Important Features of Miller Indices 7.4 Various Planes of Crystals 7.5 Separation Between Successive [h k I] Planes 7.6 Diffraction of X-ray by Crystal Planes	ers 6.8
6.8.2 Crystal systems and bravais lattices in three dimension 6.9 Properties of Unit Cell 6.10 Packing Fraction of Cubic Crystal 6.10.1 Packing fraction of simple cubic crystal (SC) 6.10.2 Packing fraction of body centered cubic crystal (BCC) 6.10.3 Packing fraction of face centered cubic crystal (FCC) • Solved Problems • Objective Questions • Review Questions • Exercise Problems CHAPTER - 7 CRYSTAL PLANES AND X-RAY DIFFRACTION TECHNIQUE 7.1 Directions in Crystals 7.2 Planes in Crystals 7.3 Miller Indices 7.3.1 Procedure for Finding Miller Indices 7.3.2 Important Features of Miller Indices 7.4 Various Planes of Crystals 7.5 Separation Between Successive [h k I] Planes 7.6 Diffraction of X-ray by Crystal Planes	6.8
 6.9 Properties of Unit Cell 6.10 Packing Fraction of Cubic Crystal 6.10.1 Packing fraction of simple cubic crystal (SC) 6.10.2 Packing fraction of body centered cubic crystal (BCC) 6.10.3 Packing fraction of face centered cubic crystal (FCC) Solved Problems Objective Questions Review Questions Exercise Problems CHAPTER - 7 CRYSTAL PLANES AND X-RAY DIFFRACTION TECHNIQUE 7.1 Directions in Crystals 7.2 Planes in Crystals 7.3 Miller Indices 7.3.1 Procedure for Finding Miller Indices 7.3.2 Important Features of Miller Indices 7.4 Various Planes of Crystals 7.5 Separation Between Successive [h k I] Planes 7.6 Diffraction of X-ray by Crystal Planes	attices in two dimension 6.8
6.10 Packing Fraction of Cubic Crystal 6.10.1 Packing fraction of simple cubic crystal (SC) 6.10.2 Packing fraction of body centered cubic crystal (BCC) 6.10.3 Packing fraction of face centered cubic crystal (FCC) • Solved Problems • Objective Questions • Review Questions • Exercise Problems CHAPTER - 7 CRYSTAL PLANES AND X-RAY DIFFRACTION TECHNIQUE 7.1 Directions in Crystals 7.2 Planes in Crystals 7.3 Miller Indices 7.3.1 Procedure for Finding Miller Indices 7.3.2 Important Features of Miller Indices 7.4 Various Planes of Crystals 7.5 Separation Between Successive [h k I] Planes 7.6 Diffraction of X-ray by Crystal Planes	ystems and bravais lattices in three dimension 6.10
6.10.1 Packing fraction of simple cubic crystal (SC) 6.10.2 Packing fraction of body centered cubic crystal (BCC) 6.10.3 Packing fraction of face centered cubic crystal (FCC) • Solved Problems • Objective Questions • Review Questions • Exercise Problems CHAPTER - 7 CRYSTAL PLANES AND X-RAY DIFFRACTION TECHNIQUE 7.1 Directions in Crystals 7.2 Planes in Crystals 7.3 Miller Indices 7.3.1 Procedure for Finding Miller Indices 7.3.2 Important Features of Miller Indices 7.4 Various Planes of Crystals 7.5 Separation Between Successive [h k I] Planes 7.6 Diffraction of X-ray by Crystal Planes	t Cell 6.13
6.10.2 Packing fraction of body centered cubic crystal (BCC) 6.10.3 Packing fraction of face centered cubic crystal (FCC) Solved Problems Objective Questions Review Questions Exercise Problems CHAPTER - 7 CRYSTAL PLANES AND X-RAY DIFFRACTION TECHNIQUE 7.1 Directions in Crystals 7.2 Planes in Crystals 7.3 Miller Indices 7.3.1 Procedure for Finding Miller Indices 7.3.2 Important Features of Miller Indices 7.4 Various Planes of Crystals 7.5 Separation Between Successive [h k I] Planes 7.6 Diffraction of X-ray by Crystal Planes	of Cubic Crystal 6.15
 6.10.3 Packing fraction of face centered cubic crystal (FCC) Solved Problems Objective Questions Review Questions Exercise Problems CHAPTER - 7 CRYSTAL PLANES AND X-RAY DIFFRACTION TECHNIQUE 7.1 Directions in Crystals 7.2 Planes in Crystals 7.3 Miller Indices 7.3.1 Procedure for Finding Miller Indices 7.3.2 Important Features of Miller Indices 7.4 Various Planes of Crystals 7.5 Separation Between Successive [h k I] Planes 7.6 Diffraction of X-ray by Crystal Planes	raction of simple cubic crystal (SC) 6.15
 Solved Problems Objective Questions Review Questions Exercise Problems CHAPTER - 7 CRYSTAL PLANES AND X-RAY DIFFRACTION TECHNIQUE 7.1 Directions in Crystals 7.2 Planes in Crystals 7.3 Miller Indices 7.3.1 Procedure for Finding Miller Indices 7.3.2 Important Features of Miller Indices 7.4 Various Planes of Crystals 7.5 Separation Between Successive [h k I] Planes 7.6 Diffraction of X-ray by Crystal Planes	raction of body centered cubic crystal (BCC) 6.16
 Objective Questions Review Questions Exercise Problems CHAPTER - 7 CRYSTAL PLANES AND X-RAY DIFFRACTION TECHNIQUE 7.1 Directions in Crystals 7.2 Planes in Crystals 7.3 Miller Indices 7.3.1 Procedure for Finding Miller Indices 7.3.2 Important Features of Miller Indices 7.4 Various Planes of Crystals 7.5 Separation Between Successive [h k I] Planes 7.6 Diffraction of X-ray by Crystal Planes	raction of face centered cubic crystal (FCC) 6.18
 Review Questions Exercise Problems CHAPTER - 7 CRYSTAL PLANES AND X-RAY DIFFRACTION TECHNIQUE 7.1 Directions in Crystals 7.2 Planes in Crystals 7.3 Miller Indices 7.3.1 Procedure for Finding Miller Indices 7.3.2 Important Features of Miller Indices 7.4 Various Planes of Crystals 7.5 Separation Between Successive [h k I] Planes 7.6 Diffraction of X-ray by Crystal Planes	6.19
 Exercise Problems CHAPTER - 7 CRYSTAL PLANES AND X-RAY DIFFRACTION TECHNIQUE 7.1 Directions in Crystals 7.2 Planes in Crystals 7.3 Miller Indices 7.3.1 Procedure for Finding Miller Indices 7.3.2 Important Features of Miller Indices 7.4 Various Planes of Crystals 7.5 Separation Between Successive [h k I] Planes 7.6 Diffraction of X-ray by Crystal Planes 	ons 6.23
CHAPTER - 7 CRYSTAL PLANES AND X-RAY DIFFRACTION TECHNIQUE 7.1 Directions in Crystals 7.2 Planes in Crystals 7.3 Miller Indices 7.3.1 Procedure for Finding Miller Indices 7.3.2 Important Features of Miller Indices 7.4 Various Planes of Crystals 7.5 Separation Between Successive [h k I] Planes 7.6 Diffraction of X-ray by Crystal Planes	s 6.26
7.1 Directions in Crystals 7.2 Planes in Crystals 7.3 Miller Indices 7.3.1 Procedure for Finding Miller Indices 7.3.2 Important Features of Miller Indices 7.4 Various Planes of Crystals 7.5 Separation Between Successive [h k I] Planes 7.6 Diffraction of X-ray by Crystal Planes	ns 6.28
 7.1 Directions in Crystals 7.2 Planes in Crystals 7.3 Miller Indices 7.3.1 Procedure for Finding Miller Indices 7.3.2 Important Features of Miller Indices 7.4 Various Planes of Crystals 7.5 Separation Between Successive [h k I] Planes 7.6 Diffraction of X-ray by Crystal Planes 	
 7.2 Planes in Crystals 7.3 Miller Indices 7.3.1 Procedure for Finding Miller Indices 7.3.2 Important Features of Miller Indices 7.4 Various Planes of Crystals 7.5 Separation Between Successive [h k I] Planes 7.6 Diffraction of X-ray by Crystal Planes 	ND X-RAY DIFFRACTION TECHNIQUES 7.1 - 7.26
 7.3 Miller Indices 7.3.1 Procedure for Finding Miller Indices 7.3.2 Important Features of Miller Indices 7.4 Various Planes of Crystals 7.5 Separation Between Successive [h k I] Planes 7.6 Diffraction of X-ray by Crystal Planes 	stals 7.3
 7.3.1 Procedure for Finding Miller Indices 7.3.2 Important Features of Miller Indices 7.4 Various Planes of Crystals 7.5 Separation Between Successive [h k I] Planes 7.6 Diffraction of X-ray by Crystal Planes 	7.4
 7.3.2 Important Features of Miller Indices 7.4 Various Planes of Crystals 7.5 Separation Between Successive [h k I] Planes 7.6 Diffraction of X-ray by Crystal Planes 	7.4
 7.4 Various Planes of Crystals 7.5 Separation Between Successive [h k I] Planes 7.6 Diffraction of X-ray by Crystal Planes 	e for Finding Miller Indices 7.4
7.5 Separation Between Successive [h k I] Planes7.6 Diffraction of X-ray by Crystal Planes	t Features of Miller Indices 7.5
7.6 Diffraction of X-ray by Crystal Planes	f Crystals 7.6
	een Successive [h k l] Planes 7.7
7.7.1 Bragg's Law	ay by Crystal Planes 7.8
7.7 2.099 0 20	.aw 7.8
7.7.2 Bragg's X-ray spectrometer	7.9 ray spectrometer
7.7.3 Laue Method	hod 7.11
7.7.4 Powder Method	Method 7.12
7.7.4 I Owder Metriod	7.14
Solved Problems	ons 7.21

•	Review Questions	7.24
•	Exercise Problems	7.26
CHA	PTER - 8	
QUA	NTUM MECHANICS	8.1 - 8.30
8.1	Introduction	8.3
8.2	Wave and Particle	8.4
8.3	de-Broglie Hypothesis of Matter Waves	8.4
8.4	Properties of Matter Waves	8.6
8.5	Heisenberg's Uncertainty Principle	8.7
8.6	Schrodinger's Wave Equations	8.8
	8.6.1 Time independent Schrodinger's wave equation	8.8
	8.6.2 Time dependent Schrodinger's wave equation	8.10
8.7	Physical Significance of the Wave Function	8.11
8.8	Particle in one Dimensional Potential Box	8.13
•	Solved Problems	8.16
•	Objective Questions	8.24
•	Review Questions	8.29
•	Exercise Problems	8.30
CHA	PTER - 9	
FREE	ELECTRON THEORY	9.1 - 9.36
9.1	Introduction	9.3
9.2	Classical Free Electron Theory of Metals	9.4
9.3	Mean Free Path, Mean Collision Time, Drift Velocity and Relaxation Tim	e 9.5
	9.3.1 Mean free path (λ)	9.5
	9.3.2 Mean collision time (τ)	9.5
	9.3.3 Drift velocity (v_d)	9.6
	9.3.4 Relaxation time (τ_r)	9.6
9.4	Expression for Electrical Conductivity Based on Classical Free Electron	Theory 9.7
9.5	Expression for Thermal Conductivity Based on Classical Free Electron T	heory 9.8

9.6	Weidemann-Franz Ratio for Metal	9.10
9.7	Success of Classical Free Electron Theory	9.11
9.8	Drawbacks of Classical Free Electron Theory	9.11
9.9	Quantum Free Electron Theory (Sommerfeld Model)	9.13
	9.9.1 Success of quantum free electron theory	9.13
	9.9.2 Drawbacks of quantum free electron theory	9.14
9.10	Fermi Surface	9.15
9.11	Fermi Level and Fermi Energy	9.16
9.12	Fermi-Dirac Distribution	9.17
9.13	Density of States	9.18
9.14	Expression for Current Density and Electrical Conductivity Based on	
	Quantum Free Electron Theory	9.20
9.15	Electrical Resistance	9.22
9.16	Different Scattering Mechanisms-Electrical Resistance	9.23
•	Solved Problems	9.24
•	Objective Questions	9.29
•	Review Questions	9.35
•	Exercise Problems	9.36
СНА	PTER - 10	
BANI	D THEORY OF SOLIDS	10.1 - 10.22
10.1	Introduction	10.3
10.2	Bloch Theorem	10.4
10.3	Kronig-Penney Model	10.5
10.4	Origin of Energy Band Formation in Solids	10.10
10.5	Distinction between Conductors, Semiconductors and Insulators	10.11
10.6	Concept of Effective Mass of an Electron	10.12
10.7	Concept of a Hole	10.15
•	Solved Problems	10.16
•	Objective Questions	10.17
•	Review Questions	10.22

СНА	PTER - 11	
MAG	11.1 - 11.32	
11.1	Introduction	11.3
11.2	Basic Definitions	11.4
11.3	Origin of Magnetic Moment	11.7
11.4	Classification of Magnetic Materials	11.9
	11.4.1 Diamagnetism	11.9
	11.4.2 Paramagnetism	11.10
	11.4.3 Ferromagnetism	11.12
	11.4.4 Antiferromagnetism	11.13
	11.4.5 Ferrimagnetism	11.14
11.5	Domain Theory of Ferromagnetism	11.15
11.6	Weiss Field Theory of Ferromagnetism	11.17
11.7	Hysteresis Loop	11.18
11.8	Soft and Hard Magnetic Materials	11.19
•	Solved Problems	11.21
•	Objective Questions	11.25
•	Review Questions	11.30
•	Exercise Problems	11.32
СНА	PTER - 12	
DIEL	ECTRIC PROPERTIES	12.1 - 12.44
12.1	Introduction	12.3
12.2	Polar and Non-polar Dielectrics	12.3
12.3	Basic Definitions	12.4
12.4	Types of Polarization	12.8
	12.4.1 Electronic polarization	12.8
	12.4.2 Ionic polarization	12.11
	12.4.3 Orientational or dipolar polarization	12.12
	12.4.4 Space charge polarization	12.16

	12.4.5 Total polarization	12.16
12.5	Internal Field (or) Local Field in Solids	12.16
12.6	Clausius-Mosotti Equation	12.19
12.7	Dielectrics in Alternating Fields	12.21
	12.7.1 Dielectric loss	12.21
	12.7.2 Frequency dependence of polarizability	12.22
12.8	Dielectric Breakdown and Strength	12.23
	12.9.1 Dielectric breakdown	12.23
	12.9.2 Dielectric strength	12.25
12.9	Ferroelectricity	12.25
12.10	Piezoelectricity	12.27
12.11	Application of Dielectric Materials	12.28
•	Solved Problems	12.29
	Objective Questions	12.37
•		
•	Review Questions	12.43
•	Review Questions	
· CHA	Review Questions Exercise Problems	12.44
· CHA	Review Questions Exercise Problems PTER - 13	12.44 13.1 - 13.28
CHA ELEC	Review Questions Exercise Problems PTER - 13 CTROMAGNETIC FIELDS	12.44 13.1 - 13.28 13.3
CHA ELE(Review Questions Exercise Problems PTER - 13 CTROMAGNETIC FIELDS Introduction	12.44 13.1 - 13.28 13.3 13.4
CHA ELE(Review Questions Exercise Problems PTER - 13 CTROMAGNETIC FIELDS Introduction Del Operator (∇)	12.44 13.1 - 13.28 13.3 13.4 13.4
CHA ELE(Review Questions Exercise Problems PTER - 13 CTROMAGNETIC FIELDS Introduction Del Operator (∇) 13.2.1 Gradient	12.44 13.1 - 13.28 13.3 13.4 13.4 13.5
CHA ELE(Review Questions Exercise Problems PTER - 13 CTROMAGNETIC FIELDS Introduction Del Operator (∇) 13.2.1 Gradient 13.2.2 Divergence	13.1 - 13.28 13.3 13.4 13.4 13.5 13.5
CHA ELE(13.1 13.2	Review Questions Exercise Problems PTER - 13 CTROMAGNETIC FIELDS Introduction Del Operator (∇) 13.2.1 Gradient 13.2.2 Divergence 13.2.3 Curl	13.1 - 13.28 13.3 13.4 13.4 13.5 13.5
CHA ELE(13.1 13.2	Review Questions Exercise Problems PTER - 13 CTROMAGNETIC FIELDS Introduction Del Operator (∇) 13.2.1 Gradient 13.2.2 Divergence 13.2.3 Curl Line, Surface and Volume Integrals	12.43 12.44 13.1 - 13.28 13.3 13.4 13.5 13.5 13.6 13.8
CHA ELEC 13.1 13.2	Review Questions Exercise Problems PTER - 13 CTROMAGNETIC FIELDS Introduction Del Operator (∇) 13.2.1 Gradient 13.2.2 Divergence 13.2.3 Curl Line, Surface and Volume Integrals Gauss Theorem	13.1 - 13.28 13.3 13.4 13.4 13.5 13.5 13.6 13.8
13.1 13.2 13.3 13.4 13.5	Review Questions Exercise Problems PTER - 13 CTROMAGNETIC FIELDS Introduction Del Operator (\nabla) 13.2.1 Gradient 13.2.2 Divergence 13.2.3 Curl Line, Surface and Volume Integrals Gauss Theorem Stoke's Theorem	13.1 - 13.28 13.3 13.4 13.5 13.5 13.6 13.8 13.8
13.1 13.2 13.3 13.4 13.5	Review Questions Exercise Problems IPTER - 13 CTROMAGNETIC FIELDS Introduction Del Operator (\nabla) 13.2.1 Gradient 13.2.2 Divergence 13.2.3 Curl Line, Surface and Volume Integrals Gauss Theorem Stoke's Theorem Fundamental Laws of Electromagnetism	13.1 - 13.28 13.3 13.4 13.4 13.5 13.5 13.6 13.8

	13.6.4 Ampere's law	13.12
13.7	Equation of Continuity	13.13
13.8	Modified form of Ampere's law	13.14
13.9	Displacement Current	13.15
13.10	Maxwell's Electromagnetic Equations	13.16
13.11	Propagation of Electromagnetic Waves in Dielectric Medium	13.17
13.12	Propagation of Electromagnetic Waves in Conducting Medium	13.19
13.13	Poynting Theorem and Poynting Vector	13.22
•	Objective Questions	13.23
•	Review Questions	13.27
СНА	PTER - 14	
SUP	ERCONDUCTIVITY	14.1 - 14.34
14.1	Introduction	14.3
14.2	General Properties of Superconductors	14.5
14.3	Critical Magnetic Field (or) Effect of Magnetic Field	14.6
14.4	Critical Current (or) Effect of Current	14.6
14.5	Meissner Effect	14.7
14.6	Type-I and Type-II Superconductors	14.8
14.7	Isotope Effect	14.9
14.8	Thermal Properties of Superconductors	14.10
	14.8.1 Entropy	14.10
	14.8.2 Thermal conductivity	14.10
	14.8.3 Specific heat	14.11
14.9	Energy Gap of Superconductor	14.11
14.10	London's Equations	14.12
	14.10.1 London penetration depth (χ)	14.14
14.11	BCS Theory	14.15
14.12	Flux Quantization	14.17
14.13	Josephson Effect	14.18
14.14	Superconducting Quantum Interference Devices (SQUIDs)	14.21

14.15	Applications of Superconductivity	14.22
•	Solved Problems	14.23
•	Objective Questions	14.28
•	Review Questions	14.33
•	Exercise Problems	14.34
СНА	PTER - 15	
SEM	IICONDUCTORS	15.1 - 15.48
15.1	Introduction	15.3
15.2	Intrinsic Semiconductors	15.4
15.3	Extrinsic Semiconductors	15.5
	15.3.1 n-type semiconductor	15.5
	15.3.2 p-type semiconductor	15.6
15.4	Carrier Concentration in Intrinsic Semiconductor	15.7
15.5	Equation for Electrical Conductivity of Intrinsic Semiconductor	15.13
15.6	Carrier Concentration in n-type Semiconductor	15.15
15.7	Carrier Concentration in p-type Semiconductors	15.19
15.8	Drift and Diffusion Currents	15.22
	15.8.1 Drift current	15.22
	15.8.2 Diffusion current	15.23
15.9	Einstein's Equation	15.24
15.10	Hall Effect	15.25
15.11	Direct and Indirect Band Gap Semiconductors	15.28
15.12	Light Emitting Diodes (LEDs)	15.29
15.13	Photoconductors	15.31
15.14	Solar Cells	15.32
•	Solved Problems	15.34
•	Objective Questions	15.41
•	Review Questions	15.47
•	Exercise Problems	15.48

СНА	PTER - 16	
ACO	USTICS	16.1 - 16.26
16.1	Introduction	16.3
16.2	Types of Acoustics	16.4
16.3	Sound Absorption	16.4
16.4	Reverberation	16.6
16.5	Reverberation Time	16.6
16.6	Factors Controlling the Reverberation Time	16.7
16.7	Sabine's Formula for Reverberation Time	16.8
16.8	Eyring's Formula	16.13
16.9	Absorption Coefficient and its Measurements	16.14
16.10	Basic Requirements for the Acoustically Good Halls	16.16
16.11	Sound Absorbing Materials	16.17
•	Solved Problems	16.18
•	Objective Questions	16.22
•	Review Questions	16.25
•	Exercise Problems	16.26
СНА	PTER - 17	
ULTF	RASONICS AND NON-DESTRUCTIVE TESTING	17.1 - 17.34
17.1	Introduction	17.3
17.2	Production of Ultrasonic Waves	17.4
	17.2.1 Magnetostriction Method	17.4
	17.2.2 Piezoelectric Method	17.5
17.3	Detection of Ultrasonic Waves	17.8
17.4	Properties of Ultrasonic Waves	17.9
17.5	Principles of Ultrasonic Waves	17.9
17.6	Non-destructive Testing	17.12
17.7	Ultrasonic Testing	17.12
17.8	Ultrasonic Transducers	17.14

17.9	Couplant and Inspection Standards	17.15
17.10	Inspection Methods	17.17
17.11	Inspection Techniques	17.19
	17.11.1 Pulse Echo Testing Technique	17.19
	17.11.2 Through Transmission System	17.20
	17.11.3 Ultrasonic Resonance System	17.21
17.12	Flaw Detector	17.21
17.13	Different Types of Scans in NDT	17.22
17.14	Applications of Ultrasonic Testing	17.25
17.15	Applications of Ultrasonic Waves	17.27
•	Solved Problems	17.28
•	Objective Questions	17.29
•	Review Questions	17.32
•	Exercise Problems	17.33
СНА	PTER - 18	
NAN	OMATERIALS	18.1 - 18.34
18.1	Introduction	18.3
18.2	Nanomaterials	18.4
18.3	Nanotechnology and Nanoscience	18.4
18.4	Properties of Nanomaterials	18.5
	18.4.1 Physical Properties	18.5
	18.4.2 Chemical Properties	18.7
18.5	Preparation of Nanomaterials	18.7
	18.5.1 Gas Condensation Method	18.9
	18.5.2 Chemical Vapour Condensation	18.10
	18.5.3 Wet Chemical Synthesis of Nanomaterials (Sol-gel Method)	18.11
	18.5.4 Electrodeposition	18.12
	18.5.5 Sputtering	18.13
	18.5.6 Liquid Solid Reactions	18.13
18.6	18.5.6 Liquid Solid Reactions Surface Occupancy	18.13 18.13

18.7	Reduction of Dimensionality	18.14
18.8	4D-Force Vector	18.15
18.9	Quantum Wells, Quantum Wires and Quantum Dots	18.16
	18.9.1 Quantum Well	18.16
	18.9.2 Quantum Wires	18.17
	18.9.3 Quantum Dots	18.17
18.10	Density of States and Energy Spectrum	18.18
18.11	Carbon Nanotubes	18.19
	18.11.1 Synthesis of Carbon Nanotubes	18.20
	18.11.2 Applications of Carbon Nanotubes	18.22
18.12	Fullerene	18.23
18.13	Applications of Nanomaterials	18.24
•	Objective Questions	18.26
•	Questions	18.30