# STA 303/1002-Methods of Data Analysis II Sections L0101& L0201, Winter 2018

#### **Shivon Sue-Chee**



March 27, 2018

#### Linear Mixed Models

- ► Learning Objectives
  - Define fixed and random effects
  - Write out the models used and the assumptions for inference
  - Develop a statistical toolbox for analyzing linear mixed models
  - ▶ Interpret the respective R outputs
- ► Reference: SJS, Chapter 10

## Example I: Orthodontics Growth Data

- Study conducted at Department of Orthodontics from North Carolina Dental School
- ► Followed growth of 27 children (16 males, 11 females)
- ▶ Measured at ages 8, 10, 12 and 14
- Response: Distance (in mm) from the centre of the pituitary to the pterygomaxillary fissure
- ► Interest: Model distances in terms of age and sex
- What are the fixed effects?
- ▶ What are the random effects?

## Example I: Orthodontics Growth Data

```
Grouped Data: distance ~ age | Subject
 distance age Subject Sex
     26.0 8
                M01 Male
1
     25.0 10 MO1 Male
    29.0 12 MO1 Male
    31.0 14 MO1 Male
     21.5 8 MO2 Male
5
     22.5 10
                MO2 Male
Grouped Data: distance ~ age | Subject
  distance age Subject
                       Sex
     21.0
           8 F01 Female
65
66
     20.0 10 F01 Female
     21.5 12 F01 Female
67
68 23.0 14 F01 Female
69 21.0 8 F02 Female
70
     21.5 10 F02 Female
```

## Example I: Mixed Model

$$\begin{aligned} Distance_{ijk} &= \beta_0 \\ &+ \beta_1 \mathbf{I}_{[sex=male],j} \\ &+ \beta_2 \mathbf{I}_{[age=10],k} + \beta_3 \mathbf{I}_{[age=12],k} + \beta_4 \mathbf{I}_{[age=14],k} \\ &+ \beta_5 \mathbf{I}_{[sex=male],j} * \mathbf{I}_{[age=10],k} \\ &+ \beta_6 \mathbf{I}_{[sex=male],j} * \mathbf{I}_{[age=12],k} \\ &+ \beta_7 \mathbf{I}_{[sex=male],j} * \mathbf{I}_{[age=14],k} \\ &+ u_{ij} \\ &+ \epsilon_{ijk} \end{aligned}$$

#### where

- Distance<sub>ijk</sub>: distance at time k on subject i in treatment j
- $\triangleright$   $u_{ij}$ : random effect due to subject i of sex j
- $ightharpoonup \epsilon_{ijk}$ : random error

## Example II: Carbohydrates in Diabetes

- ▶ Diet study on n=71 persons with Type 2 diabetes
- ► Each person was assigned to 1 of 3 treatment (diet) groups:
  - I) HG: high GI (glycemic index)
  - II) LG: low GI
  - III) HM: high in monosaturated fats
- ► Traced for 6 months: measurements taken at 0, 3 and 6 months

## Example II: Data

► The first 10 observations:

|     |    |      |      | <b>-</b> |      |
|-----|----|------|------|----------|------|
| Obs | id | diet | hdl1 | hdl2     | hdl3 |
| _1  | 1  | LG   | 0.97 | 1.14     | 1.45 |
| 2   | 3  | HG   | 0.85 | 0.85     | 0.84 |
| 3   | 5  | HM   | 1.11 | 1.36     | 1.25 |
| 4   | 6  | HM   | 0.95 | 0.99     | 0.96 |
| 5   | 8  | LG   | 0.78 | 0.80     | 0.72 |
| 6   | 9  | HG   | 0.71 | 0.76     | 0.78 |
| 7   | 10 | LG   | 0.58 | 0.69     | 0.72 |
| 8   | 11 | HM   | 1.24 | 1.24     | 1.31 |
| 9   | 12 | HM   | 0.93 | 1.18     | 0.98 |
| 10  | 13 | HG   | 1.65 | 1.23     | 1.24 |

- ▶ Variables of interest: ID#, Diet, Time
- ▶ Outcome of interest: HDL- level of "good" cholesterol
- ► Aim: Is there a diet\* time interaction? Do differences among diets change over time?

## Example II: Mixed Model

$$Y_{ijk} = \beta_0$$

$$+ \beta_1 \mathbf{I}_{[diet=HG],j} + \beta_2 \mathbf{I}_{[diet=HM],j}$$

$$+ \beta_3 \mathbf{I}_{[time=1],k} + \beta_4 \mathbf{I}_{[time=2],k}$$

$$+ \beta_6 \mathbf{I}_{[diet=HG],j} * \mathbf{I}_{[time=1],k} + \beta_7 \mathbf{I}_{[diet=HG],j} * \mathbf{I}_{[time=2],k}$$

$$+ \beta_8 \mathbf{I}_{[diet=HM],j} * \mathbf{I}_{[time=1],k} + \beta_9 \mathbf{I}_{[diet=HM],j} * \mathbf{I}_{[time=2],k}$$

$$+ u_{ij}$$

$$+ \epsilon_{ijk}$$

- $ightharpoonup Y_{ijk}$ : response at time k on subject i in treatment j
- $\triangleright$   $u_{ij}$ : random effect due to subject i under diet j
- $ightharpoonup \epsilon_{ijk}$ : random error

## Variance-Covariance Structure

#### Assume:

Subjects are independent and

- within  $u_{ij}$  are i.i.d.  $N(0, \sigma_{ii}^2)$ 
  - $ightharpoonup \epsilon_{ijk}$  are i.i.d.  $N(0, \sigma_e^2)$
  - $ightharpoonup u_{ij}$  and  $\epsilon_{ijk}$  are independent

#### Therefore:

▶ Different subjects,  $i \neq I$ :

$$Cov(Y_{ijk}, Y_{lmn}) = 0$$

n subjects, kobspersubj. Total: nk observations

## Variance-Covariance Structure



- Same subject at the <u>same time</u> (i = l, j = m, k = n):  $Var(Y_{ijk}) = Cov(Y_{ijk}, Y_{lmn}) =$
- Same subject at different time  $(k \neq n)$ :  $Cov(Y_{ijk}, Y_{ijn}) = Cov(u_{ij}, u_{ij}) \longrightarrow Var(u_{ij}).$   $+ Cov(u_{ij}, e_{ijn}) + Cov(e_{ijk}, u_{ij})$   $+ Cov(e_{ijk}, e_{ijn}) \longrightarrow Var(u_{ij}).$   $+ Cov(e_{ijk}, e_{ijn}) \longrightarrow Var(u_{ij}).$

## Compound Symmetry Variance-Covariance Structure

Intraclass Correlation Coefficient:

$$\rho_{IC} = \frac{Cov(Y_{ijk}, Y_{ijn})}{\sqrt{Var(Y_{ijk})Var(Y_{ijn})}} = \frac{\sigma_u^2}{\sigma_u^2 + \sigma_e^2}$$

the correlation is the same for every pair of observations on the same subject

the variance is the same for all observations







## Mixed model for repeated measures data

#### **MIXED** Model:

$$\mathbf{Y} = \underbrace{f(\mathbf{X}, \boldsymbol{\beta})}_{\text{fixed effects}} + \underbrace{u}_{\text{random effects}} + \underbrace{\epsilon}_{\text{random noise}}$$

| Part                     | Properties                                      | Eg.I       | Eg.II    |
|--------------------------|-------------------------------------------------|------------|----------|
| Response, Y              | continuous, $Y \sim Normal$                     | HDL        | Distance |
| Fixed effects, X         | continuous or categorical                       | diet, time | sex, age |
| Random effect, u         | $\mathbf{u} \sim \mathcal{N}(0, \sigma_u^2)$    | subject    | subject  |
| Random error, $\epsilon$ | $\mathbf{e} \sim N(0, \sigma_e^2), \ u \perp e$ |            |          |

 Random effect induces a random intercept (different intercept for different subjects)

## Restricted Maximum Likelihood Estimation

- ► Restricted Maximum Likelihood (or Residual ML): gives unbiased estimators of variance-covariance parameters
- **b** based on the notion of separating the likelihood used for estimating  $\Sigma$  from that used for estimating  $\beta$
- Steps:
  - (1) Estimate variance-covariance parameters using maximum likelihood estimation
  - (2) Use the estimates from (1) and estimate  $\beta$ 's of fixed effects using generalized least squares (GLS) where:
    - ▶ GLS is least squares optimization with adjustment since  $Var(\mathbf{Y}) = V \neq \sigma^2 \mathbf{I}$
    - We get  $\widehat{\beta} = (X^\top V^{-1} X)^{-1} X^\top V^{-1} Y$  and  $Var(\widehat{\beta}) = (X^\top V^{-1} X)^{-1}$
  - (3) Repeat steps (1) and (2) until convergence



## Within-subject Covariance structures

▶ Between-subject: Recall that we assumed that subjects are independent, so between-subject covariance is 0, i.e.,

$$Cov(Y_{ijk}, Y_{lmn}) = 0 \text{ if } i \neq I$$

| • | Within-su | ubject: 3 + 17              |                   |         |         |
|---|-----------|-----------------------------|-------------------|---------|---------|
|   | Туре      | Interpretation              | # cov. parameters | 3       |         |
|   | CS        | -same variances and common  | 2                 |         | Eg, k=4 |
|   |           | covariance —                |                   |         |         |
|   | UN        | -different variances and    | (t*(t+1))/2       | k (k+1) | =4(s)   |
|   |           | difference covariances      |                   | 2       | 2       |
|   | AR(1)     | -same variances, covariance | 2                 |         | = 10    |
|   |           | decrease exponentially with |                   |         | , ,     |
|   |           | distance                    |                   |         |         |

## Within-subject Covariance structures

Compound Symmetry [2]: same variance and common covariances

$$D_{CS} = \begin{bmatrix} \sigma_u^2 + \sigma_\epsilon^2 & \sigma_u^2 & \sigma_u^2 \\ \sigma_u^2 & \sigma_u^2 + \sigma_\epsilon^2 & \sigma_u^2 \\ \sigma_u^2 & \sigma_u^2 & \sigma_u^2 + \sigma_\epsilon^2 \end{bmatrix}$$

▶ Unstructured [t(t+1)/2]: different variances and different covariances

$$D_{UN} = \begin{bmatrix} \sigma_1^2 & \sigma_{12}^2 & \sigma_{13}^2 \\ \sigma_{12}^2 & \sigma_2^2 & \sigma_{23}^2 \\ \sigma_{13}^2 & \sigma_{23}^2 & \sigma_3^2 \end{bmatrix}$$

 Auto-Regressive, lag1 [2]: same variances, covariances decrease exponentially

$$D_{AR(1)} = \sigma^2 \begin{bmatrix} 1 & \rho & \rho^2 \\ \rho & 1 & \rho \\ \rho^2 & \rho & 1 \end{bmatrix}$$

## Comparing models

▶ Using likelihood-based criteria (due to MLE): compare models with same *Y* and *X*'s but different covariance structures

```
    AIC= -2 Res log L + 2(# of covariance parameters)
    BIC= -2 Res log L+(# of covariance parameters)log(n), where n=# of subjects
    G² = -2 Res log(LR)
```

▶ Using  $\underline{t}$  and  $\underline{F}$  tests (due to GLS): check relevance of fixed effects (test  $\beta$ 's)