

IP2368 register description document

Version/revision history

Version	date	modify the content	Drafter/reviser
V1.00	2021-10-25	First edition released	IT360
V1.60	2022-05-16	Modify layout and description	IT360
V1.61	2022-07-13	Increase VSYS power output	IT360
		High 8 bits of register	

1Typical Application Notes

1.1 I2CConnection method

IP2368Can be used as a slave device, MCU accessible I2C interface to read or set IP2368 voltage, current, power and other information, IP2368

I2CThe connection method is as follows:

1.2 I2CPrecautions

- IP2368ofI2CDevice address: written as0xEA, read as0xEB. If you need to set it to another address, you can customize it;
- IP2368ofI2CThe communication voltage is3.3V,likeMCUThat's right5Vvoltage, you need to add a level conversion chip, go to3.3V;
- IP2368INTApplication instructions:IP2368Detected while sleepingINTIf it is high, it will wake up. After waking up,IP2368Take the initiative to pull upINT,100ms after,MCUCan be carried outI2CCommunication, reading and writing registers;IP2368Before entering sleep mode, it will switch to input high impedance.
 DetectionINTstatus, if it is high, it is consideredMCUnot allowedIP2368Enter sleep, if it is low, thenIP2368Enter dormant;MCUAfter detectingINTAfter being low,16msTo stop access withinIC;
- = IP2368ofI2Chighest support250kCommunication frequency, taking into account clock deviation, is recommendedMCUofI2CFor communication clock100k-200k;
- If you want to modifyIP2368The value of a certain register needs to be read out first, and then the value that needs to be modified isBitproceed with

 After the OR operation, the calculated value is written into the register. Other unopened registers cannot be modified at will. register default value

 The value read shall prevail. DifferentICThe default value may be different;
- IP2368 I2CCommunication is real-time data. After receiving the request, it needs to interrupt for data preparation. The preparation time is long, soMCU existI2CWhen communicating, you need to determine whether you have received it after sending the address.ACKand increase50usDelay (referenceI2CApplication examples); Suggestions sheet Bytes read,100kofI2CCommunication frequency, increasing between each byte1msdelay;
- existI2CRead the end of the data. After reading the last byte, you must giveNACKsignal, otherwiseIP2368I think it's still going on Continue to read data, the next clock will continue to output the next data, resulting in failure to receiveSTOPSignal, last read error;

- ReservedThe registers cannot be arbitrarily written with data, and the original values cannot be changed, otherwise unpredictable results will occur. to the register

 The operation must be carried out according to read-modify-write, only modify the requiredbit, other unused ones cannot be modifiedbitvalue;
- This document is only forIP2368_I2C_COUT/IP2368_I2C_NACTmodel, other models are invalid;

1.3 I2CApplication examples

existIP2368INTpin remains high100msafter,MCUcan proceedI2CFor communication, you can initialize the register first (need to modify the special Modify the register only when using special functions. If you do not need to modify it, you do not need to write the register); then readIP2368Internal information (power, charge and discharge status status, button status); finally perform operations with special needs (such as special indicator lights, charge and discharge management, fast charge request management);MCUdetected INTAfter being low,16msAccess needs to be stopped withinI2C.

For example:

Past0x05register write data0x5A

picture1 I2C Write 0x05

picture2 I2C Read 0x05

Actual from0x31Register read back data

picture3 I2C Read 0x31

2Register list:

2.1Read/write operation register

SYS_CTL0(chargeenable register)

I2Caddress0XEARegister address =0x00

Bit(s)	Name	Description	R/W	RESET
7	En_LOADOTP	Wake up after power on and reset register value enable	R/W	1
		0:Do not reset register values		
		1:Reset register value		
		ShouldbitIt is not recommended to change it to0, if it needs to be modified, the software needs to reset		
		the register default value regularly, such asVINOk VBUOkAfter the signal is triggered		
6	En_RESETMCU	MCUReset register	R/W	0
		Write1: Reset the register to the default value. After reset, thebitautomatically restore		
	to0			
5	En_INT_low	When there is something unusualINTpull down2MS,hintMCUAn abnormality	R/W	0
		occurs 1:Enable		
		0:disable		
4	En_Vbus_SinkDPd	Cmouth inputDM DPFast charging	R/W	1
	M	enabled 1:Enable		
		0:disable		
3	En_Vbus_SinkPd	Cmouth inputPdFast charging enabled	R/W	1
		1:Enable		
		0:disable		
2	En_Vbus_SinkSCP	Cmouth inputSCPFast charging enabled	R/W	1
		1:Enable		
		0:disable		
1	En_Vbus_Sinkctrl	CmouthMOSInput enable	R/W	1
		1:Enable,OpenCmouthMOS 0:		
		disable,closureCmouthMOS		
0	En_Charger	ChargerCharging enabled (cannot be charged after turned off)	R/W	1
		1:Enable		
		0:disable		

SYS_CTL1(Series cell number setting, battery type, current setting mode)

Bit(s)	Name	Description	R/W	RESET
7:4	Reserved			
3	En_BATmode_set	Set the battery type enable (the battery type is determined by the register	R/W	0
		0x01[2]) 1:Enable, allows setting the battery type 0:disable, does not allow		
		setting the battery type		

IP2368Register documentation

2	Set_BATmode	Battery type setting 0: Lithium iron phosphate battery, single cell trickle constant current voltage2.5V , full voltage3.6Vabout 1: Ordinary lithium battery, single cell trickle constant current voltage3.0V, full voltage4.2Vabout	R/W	1
1	En_Isetmode_set	Select current setting mode enable 1:Enable, allows selection of current setting mode 0:disable, does not allow selection of current setting mode	R/W	0
0	Set_Isetmode	Select current setting mode (current and power register0x03 [6:0]) 0:Iset What is set is the battery terminal current 1:IsetThe input power is set	R/W	1

SYS_CTL2(Vsetfull voltage setting)

I2Caddress0XEA Register address =0x02

Bit(s)	Name	Description	R/W	RESET
7	En_Vset_set	Set full voltage enable	R/W	0
		1:Enable, allowing setting of full voltage 0:disable,		
		it is not allowed to set the full voltage		
6:0	Vset	full voltage setting		00 1010
		When in lithium iron phosphate battery mode (0x01[2]=0), a single battery is		
		fully chargedVset=N*10+3500mV(Highest3.7V)		
		In ordinary lithium battery mode (0x01[2]=1), a single battery is fully		
		charged Vset=N*10+4000mV(Highest4.4V)		

SYS_CTL3(IsetCharging power or current setting)

Bit(s)	Name	Description	R/W	RESET
7	En_Iset_set	Set charging power or current enable	R/W	0
		1:Enable, allows setting the charging power or current 0:disable,		
		does not allow setting the charging power or current		
6:0	Iset	Battery terminal current or power setting	R/W	0111100
		When set to battery terminal current (0x01[0]=0), battery terminal		
		current Iset=N*100mA(maximum5A)		
		When set to charging input power mode (0x01[0]=1), the set charging power		
		Pmax=N*1W(The maximum charge is100W)		

SYS_CTL4(battery capacity setting)

I2Caddress0XEA Register address =0x04

Bit(s)	Name	Description	R/W	RESET
7	En_FCAP_set	Set battery capacity function enable	R/W	0
		1:Enable, allows setting the battery capacity 0:disable,		
		does not allow setting the battery capacity		
6:0	Fcap	battery capacityFCAP= N*200mAh	R/W	0101000

SYS_CTL6(Current battery level)

I2Caddress0XEA Register address =0x06

Bit(s)	Name	Description	R/W	RESET
7:0	Cap_Now	Current battery level (readable and writable)	R/W	Х
		Cap_Now=N		

SYS_CTL7(Trickle charge current, threshold and charge timeout settings)

Bit(s)	Name	Description	R/W	RESET
7:4	ikk	Trickle charge current setting (maximum trickle charge current400ma)	R/W	0100
		Itk=N*50mA		
3:2	wxya	Single cell trickle constant current charging voltage threshold	R/W	10
		When set to lithium iron phosphate mode (0x01[2]=0)		
		00:2.3V		
		01:2.4V		
		10:2.5V		
		11:2.6V		
		When set to normal lithium battery mode (0x01[2]=1)		
		00:2.8V		
		01:2.9V		
		10:3.0V		
		11:3.1V		
1:0	Charge_OT	Charging timeout setting	R/W	10
		00:disable, no charging timeout function 01:		
		24 hours		
		10:36h		
		11:48h		

SYS_CTL8(Stop charging and recharging threshold settings)

I2Caddress0XEA Register address =0x08

Bit(s)	Name	Description	R/W	RESET
7:4	Istop	Stop charging charging current setting	R/W	0010
		Istop=N*50mA		
3:2	wxya	recharge threshold	R/W	10
		00: No recharging function after full charge		
		01:Vtrgt- N*0.05 10:Vtrgt-		
		N*0.1 11:VTRGT- N*0.2 V		
		ткстFull charge		
		voltage NNumber of		
		battery cells in series		
1:0	Reserved			

SYS_CTL9(standby enable and low battery voltage settings)

I2Caddress0XEA Register address =0x09

Bit(s)	Name	Description	R/W	RESET
7	En_Standby	Standby enable	R/W	1
		1:Enable		
		0: Disabled		
6	En_BATlow_Set	Battery low voltage setting enable (battery voltage setting register0x0A) 0:	R/W	0
		disable		
		1:Enable		
5	En_BAT_Low	Turn off battery low power shutdown function	R/W	0
		0:disable		
		1:Enable		
4:0	Reserved			

SYS_CTL10(Battery low voltage setting)

12Cdddi C330ALA Register dddi e33 -0A0A				
Bit(s)	Name	Description	R/W	RESET
7:5	Set_BATlow	Battery low voltage setting	R/W	010
		000:lithium battery2.80V*N/Lithium iron battery2.3V*N 001:		
		lithium battery2.90V*N/Lithium iron battery2.4V*N 010:		
		lithium battery3.00V*N/Lithium iron battery2.5V*N 011:		
		lithium battery3.10V*N/Lithium iron battery2.6V*N 100:		
		lithium battery3.20V*N/Lithium iron battery2.7V*NN:		
		Number of battery cells in series		
4:0	Reserved			·

SYS_CTL11(Output enable register)

I2Caddress0XEA Register address =0x0B

Bit(s)	Name	Description	R/W	RESET
7	En_Dc-Dc_Output	Discharge output enable (cannot output after shutdown)	R/W	1
		1:Enable		
		0: Disabled		
6	En_Vbus_Src_DP	Cport outputDP/DMFast charging	R/W	1
	dM	enabled 1:Enable		
		0:disable		
5	En_Vbus_SrcPd	Cport outputPdFast charging enabled	R/W	1
		1:Enable		
		0:disable		
4	En_Vbus_SrcSCP	Cport outputSCPFast charging enabled	R/W	1
		1:Enable		
		0:disable		
3:0	Reserved			

SYS_CTL12(Output maximum power selection register)

I2Caddress0XEA Register address =0x0C

Bit(s)	Name	Description	R/W	RESET
7:5	Vbus_Src_Power	Vbus1Output power selection:	R/W	101
		000:20W		
		001:25W		
		010:30W		
		011:45W		
		100:60W		
		101:100W		
4:0	Reserved			

¹⁰⁰WNeed to addMarkIdentify the circuit.

TypeC_CTL8(TYPE-Cmode control register)

Bit(s)	Name	Description	R/W	RESET
7:6	Vbus_Mode_Set	VbusCCMode selection	R/W	0
		00:UFP		
		01:DFP		
		11:DRP		
5:0	Reserved			

${\bf TypeC_CTL9} (output {\bf Pdocurrent\ setting\ register})$

Bit(s)	Name	Description	R/W	RESET
7	En_5VPdo_3A/2.4A	5VPdoCurrent setting	R/W	1
		1:3A		
		0:2.4A		
6	En_Pps2Pdo_Iset	Pps2 PdoCurrent setting enable	R/W	0
		1:Enable		
		0:disable		
		* After enabling, the output power and overcurrent are set byPdoThe current is based on the setting, and the		
		overcurrent is based on the settingPdocurrent1.1times		
5	En_Pps1Pdo_Iset	Pps1 PdoCurrent setting enable	R/W	0
		1:Enable		
		0:disable		
		* After enabling, the output power and overcurrent are set byPdoThe current is based on the setting, and the		
		overcurrent is based on the settingPdocurrent1.1times		
4	En_20VPdo_Iset	20VPdoCurrent setting enable	R/W	0
		1:Enable		
		0:disable		
		* After enabling, the output power and overcurrent are set byPdoThe current is based on the setting, and the		
		overcurrent is based on the settingPdocurrent1.1times		
3	En_15VPdo_Iset	15VPdoCurrent setting enable	R/W	0
		1:Enable		
		0:disable		
		* After enabling, the output power and overcurrent are set byPdoThe current is based on the setting, and the		
		overcurrent is based on the settingPdocurrent1.1times		
2	En_12VPdo_Iset	12VPdoCurrent setting enable	R/W	0
		1:Enable		
		0:disable		
		* After enabling, the output power and overcurrent are set byPdoThe current is based on the setting, and the		
		overcurrent is based on the settingPdocurrent1.1times		
1	En_9VPdo_Iset	9VPdoCurrent setting enable	R/W	0
		1:Enable		
		0:disable		
		* After enabling, the output power and overcurrent are set byPdoThe current is based on the setting, and the		
		overcurrent is based on the settingPdocurrent1.1times		
0	En_5VPdo_Iset	5VPdoCurrent setting enable	R/W	0
		1:Enable		
		0:disable		

TypeC_CTL10(5VPdocurrent setting register)

I2Caddress0XEA Register address =0x24

Bit(s)	Name	Description	R/W	RESET
7:0	5VPdo_Iset	5VPdoCurrent setting	R/W	0x96
		5VPdo=20mA*N (default3A,Max=3A)		

TypeC_CTL11(9VPdocurrent setting register)

I2Caddress0XEA Register address =0x25

Bit(s)	Name	Description	R/W	RESET
7:0	9VPdo_Iset	9VPdoCurrent setting	R/W	0x96
		9VPdo=20mA*N (default3A,Max=3A)		

TypeC_CTL12(12VPdocurrent setting register)

I2Caddress0XEA Register address =0x26

Bit(s)	Name	Description	R/W	RESET
7:0	12VPdo_Iset	12VPdoCurrent setting	R/W	0x96
		12VPdo=20mA*N(default3A,Max=3A)		

TypeC_CTL13(15VPdocurrent setting register)

I2Caddress0XEA Register address =0x27

Bit(s)	Name	Description	R/W	RESET
7:0	15VPdo_Iset	15VPdoCurrent setting	R/W	0x96
		15VPdo=20mA*N(default3A,Max=3A)		

TypeC_CTL14(20VPdocurrent setting register)

Tedada obboner negista ada obbones					
Bit(s)	Name	Description	R/W	RESET	
7:0	20VPdo_Iset	20VPdoCurrent setting	R/W	0xFA	
		20VPdo=20mA*N(default5A, need to identify			
		emark,Max=5A)not recognizedmarkfor3A			

TypeC_CTL23(Pps1 Pdocurrent setting register)

I2Caddress0XEA Register address =0x29

Bit(s)	Name	Description	R/W	RESET
7:0	Pps1Pdo_Iset	Pps1 PdoCurrent setting	R/W	0x3C
		Pps1 Pdo=50mA*N (default5A, need to identify		
		emark,Max=5A)not recognizedmarkfor3A		

TypeC_CTL24(Pps2 Pdocurrent setting register)

I2Caddress0XEA Register address =0x2A

Bit(s)	Name	Description	R/W	RESET
7:0	Pps2Pdo_Iset	Pps2 PdoCurrent setting	R/W	0x3C
		Pps2 Pdo=50mA*N (default5A, need to identify		
		emark,Max=5A)not recognizedmarkfor3A		

TypeC_CTL17(outputPdosetting register)

Bit(s)	Name	Description	R/W	RESET
7	Reserved		R/W	R
6	En_Src_Pps2Pdo	Pps2 PdoEnable	R/W	1
		1:Enable		
		0:disable		
		*disableno afterPps2 Pdo		
5	En_Src_Pps1Pdo	Pps1 PdoEnable	R/W	1
		1:Enable		
		0:disable		
		*disableno afterPps1 Pdo		
4	En_Src_20VPdo	20VPdoEnable	R/W	1 1
		1:Enable		
		0:disable		
		*disableno after20V PD		
3	En_Src_15VPdo	15VPdoEnable	R/W	1
		1:Enable		
		0:disable		
		*disableno after15V Pdo		
2	En_Src_12VPdo	12VPdoEnable	R/W	1
		1:Enable		
		0:disable		
		*disableno after12V Pdo		
1	En_Src_9VPdo	9VPdoEnable	R/W	1
		1:Enable		
		0:disable		

IP2368Register documentation

		*disableno after9V		
0	Reserved		R/W	R

2.2read-only status indication register

SOC_CAP_DATA(Cell power data register)

I2Caddress0XEARegister address =0X30

Bit(s)	Name	Description	R/W
7:0	Soc_Cap	Cell percentage power data (%)	R
		Soc_Cap=N	

STATE_CTL0(Charge status control register)

I2Caddress0XEARegister address =0X31

Bit(s)	Name	Description	R/W
7:6	Reserved		R
5	CHG_En	Charging flag	R
		1:charging(vOEven in charging state) 0: Non-	
		charging state	
4	CHG_End	full status flag	R
		1: Charging is fully charged	
		0: Charging is not fully charged	
3	Output_En	Discharge status flag	
		1: Discharge state and the output port is open, without any abnormality	R
		0: The discharge status output is not turned on or there is a discharge abnormality.	
2:0	Chg_state	Chg_state	R
		000: Standby	
		001: Trickle	
		010: Constant current charging	
		011: Constant voltage charging	
		100: Waiting for charging (including charging not turned on, etc.)	
		101: full status	
		110: Charging timeout	

STATE_CTL1(Charge status control register)

Bit(s)	Name	Description	R/W
7:6	Chg_State	Chg_state	R
		00:5Vinput charging	
		01: High voltage input fast charging	
5:0	Reserved		R

STATE_CTL2(enterPdstatus control register)

I2Caddress0XEARegister address =0X33

Bit(s)	Name	Description	R/W
7	Vbus_Ok	Vbus_Ok	R
		1:VbusThere is electricity	
		0:Vbusno power	
6	Vbus_Ov	Vbus_Ov	R
		1:VbusInput overvoltage	
		0:VbusThere is no overvoltage on the input	
5:3	Reserved		
2:0	Chg_Vbus	Charging voltage	R
		111:20VCharge	
		110:15VCharge	
		101:12VCharge	
		100:9VCharge	
		011:7VCharge	
		010:5VCharge	

TypeC_STATE(System status indication register)

Bit(s)	Name	Description	R/W
7	Sink_Ok	TypeC SinkInput connection flag	R
		1:efficient	
		0:invalid	
6	Src_Ok	TypeC SrcOutput connection flag	R
		1:efficient	
		0:invalid	
5	Src_Pd_Ok	Src_Pd_OkOutput connection flag	R
		1:efficient	
		0:invalid	
4	Sink_Pd_Ok	Sink_Pd_OkInput connection flag	R
		1:efficient	
		0:invalid	
3	Vbus_Sink_Qc_Ok	Enter the fast charging valid flag bitQcQandPP5Not counting fast chargingOk	R
		1:efficient	
		0:invalid	
2	Vbus_Src_Qc_Ok	Output fast charge valid flag bitQcQandPP5Not counting fast chargingOk 1	R
		:efficient	
		0:invalid	
1:0	Reserved		

MOS_STATE(enterMOSstatus indication register)

I2Caddress0XEARegister address =0X35

Bit(s)	Name	Description	R/W	
7	Reserved		R	
6	Vbus_Mos_State	Vbusmouth inputMOSstate	R	
		0:Disabled		
		1: On state		
5:0	Reserved		R	

STATE_CTL3(System overcurrent indication register)

I2Caddress0XEARegister address =0X38

Bit(s)	Name	Description	R/W
7:6	Reserved		R
5	Vsys_Oc	VsysOutput overcurrent flag bit, needs to be written1clear0 1:VsysThe output has a trigger overcurrent signal 0:VsysThe output does not trigger an over-current signal. When the first short-circuit signal is detected, write first1clear0, and then read again, if600msIf the overcurrent signal is detected twice or more continuously within a period, the overcurrent signal is considered valid.	R
4	Vsys_Scdt	VsysOutput short circuit flag, need to write1clear0 1:VsysThe output has a trigger short circuit signal 0:VsysThe output does not trigger a short-circuit signal. When the first short-circuit signal is detected, write first1clear0, and then read again, if600msIf the short-circuit signal is detected twice or more continuously within a period, the short-circuit signal is considered valid.	R
3:0	Reserved		R

BATVADC_DAT0(VBATvoltage register)

I2Caddress0XEARegister address =0X50

Bit(s)	Name	Description	R/W
7:0	BATVADC[7:0]	BATVADCdata low8bit	R
		VBATPINvoltage	

BATVADC_DAT1(VBATvoltage register)

I2Caddress0XEARegister address =0X51

V1.61

Bit(s)		Name	Description	R/W
	0:	BATVADC[15:8]	BATVADChigh data8bit	R

	VBATPINvoltage	
	VBAT=BATVADC (mV)	

VsysVADC_DAT0(Vsysvoltage register)

I2Caddress0XEARegister address =0X52

Bit(s)	Name	Description	R/W
7:0	VsysVADC[7:0]	VsysVoltage data of low8bit	R
		VsysPINvoltage	

VsysVADC_DAT1(Vsysvoltage register)

sendI2Caddress0XEARegister address =0X53

Bit(s)	Bit(s) Name Description		R/W
7:0	VsysVADC[15:8]	VsysHigh voltage data8bit	R
		VsysPINvoltage	
		Vsys= VsysVADC (mV)	

IVbus_Sink_IADC_DAT0(input current register)

I2Caddress0XEARegister address =0X54

Bit(s)	Name	Description	R/W
7:0	IVbus ADC[7:0]	The charging input current data is low8bit	R
		Vbusinput current	

IVbus_Sink_IADC_DAT1(input current register)

 $send I2 Caddress 0 XEAR egister\ address\ = 0 X55$

Bit(s)	Bit(s) Name Description		R/W
7:0	IVbusADC[15:8]	The charging input current data is high8bit	R
		Vbusinput current	
		Iin=IVbusADC(mA)	

When charging, the current is stored in 0X54 and 0x55 middle. 0x31 register bit 5It is the charging flag.

IVbus_Src_IADC_DAT0(Output current register)

12 Cadal C330//L			
Bit(s) Name		Description	R/W
7:0	IVbus ADC[7:0]	The discharge output current data is low8bit	R

- 1					1
- 1					1
- 1		l \/huc∩uti	out current		1
- 1		ı vousuut	שנו לעוז כווג		1

IVbus_Src_IADC_DAT1(Output current register)

sendI2Caddress0XEARegister address =0X57

Bit(s)	Name	Description	R/W
7:0	IVbusADC[15:8]	The discharge output current data is high8bit	R
		VbusOutput current	
		Iout=IVbusADC(mA)	

 $When \ discharging, the \ current \ is \ stored \ in 0X56 and 0x57 middle. 0x31 register bit 5It \ is \ the \ discharge \ flag. 0x31 reg$

IBATIADC_DAT0(BATterminal current register)

I2Caddress0XEARegister address =0x6E

Bit(s)	Name	Description	R/W
7:0	IBATIADC[7:0]	Cell terminal currentIBATIADCdata low8bit	R

IBATIADC_DAT1(BATterminal current register)

I2Caddress0XEARegister address =0x6F

Bit(s)	Name	Description	R/W
7:0	IBATIADC[15:8]	Cell terminal currentBATIADChigh data8bit	R
		IBAT= IBATIADC(mA)	

ISYS_IADC_DAT0(IVsysterminal current register)

I2Caddress0XEARegister address =0x70

	Bit(s)	Name	Description	R/W
	7:0	ISYSIADC[7:0]	IVsysterminal currentVsysIADCdata low8bit	R

IVsys_IADC_DAT1(IVsysterminal current register)

12 cdadi cosoviti integrater addi cos				
Bit(s)	Name	Description	R/W	
7:0	IVsysIADC[15:8]	IVsysterminal currentVsysIADChigh data8bit	R	
		IVsys = VsysIADC(mA)		

Vsys_POW_DAT0(Vsysterminal power register)

I2Caddress0XEARegister address =0X74

Bit(s)	Name	Description	R/W
7:0	Vsys_POW_ADC	VsysTerminal powerADCdata low8bit	R
	[7:0]		

Vsys_POW_DAT1(Vsysterminal power register)

I2Caddress0XEARegister address =0X75

Bit(s)	Name	Description	R/W
7:0	Vsys_POW_ADC[1	VsysTerminal powerADCdata in8bit	R
	5:8]		

Vsys_POW_DAT2(Vsysterminal power register)

I2Caddress0XEARegister address =0X76

Bit(s)	Name	Description	R/W
7:0	Vsys_POW_ADC[2	VsysTerminal powerADChigh data8bit	R
	3:16]	Vsys_POW= Vsys_POW_ADC(mW)	

INTC_IADC_DATO(NTCoutput current register)

I2Caddress0XEARegister address =0X77

12 Cadai C55	12-Cudul C350XE/IRCGISter dudi C35 0X77				
Bit(s)	Name	Description	R/W		
7	NTC_IADC_DAT	0:output20uA	R		
		1:output80uA			
6:0	Reserved				

VGPIO0_NTC_DAT0(VGPIO0_NTC_ADCvoltage register)

I2Caddress0XEARegister address =0X78

Bit(s)	Name	Description	R/W
7:0	VGPIO0_DAT0	VGPIO0_ADCdata low8bit	R
	[7:0]		

VGPIO0_NTC_DAT1(VGPIO0_NTC_ADCvoltage register)

I2Caddress0XEARegister address =0X79

V1.61

Bit(s)	Name	Description	R/W

7:0	VGPIO0_DAT1	VGPIO0_ADChigh data8bit	R	
	[15:8]	VGPIO0_DAT= VGPIO0_ADC (mV)(0~3.3V)		

VGPIO1_Iset_DAT0(VGPIO1_Iset_ADCvoltage register)

I2Caddress0XEARegister address =0X7A

Bit(s)	Name	Description	R/W
7:0	VGPIO1_DAT0	VGPIO1_ADCdata low8bit	R
	[7:0]		

VGPIO1_Iset_DAT1(VGPIO1_Iset_ADCvoltage register)

I2Caddress0XEARegister address =0X7B

Bit(s)	Name	Description	R/W
7:0	VGPIO1_DAT1	VGPIO1_ADChigh data8bit	R
	[15:8]	VGPIO1_DAT= VGPIO1_ADC (mV)(0~3.3V)	

VGPIO2_Vset_DAT0(VGPIO2_Vset_ADCvoltage register)

I2Caddress0XEARegister address =0X7C

Bit(s)	Name	Description	R/W
7:0	VGPIO2_DAT0 [7:0]	VGPIO2_ADCdata low8bit	R

VGPIO2_Vset_DAT1(VGPIO2_Vset_ADCvoltage register)

I2Caddress0XEARegister address =0X7D

Bit(s)	Name	Description	R/W
7:0	VGPIO2_DAT1	VGPIO2_ADChigh data8bit	R
	[15:8]	VGPIO2_DAT= VGPIO2_ADC (mV)(0~3.3V)	

VGPIO3_FCAP_DAT0(VGPIO3_FCAP_ADCvoltage register)

12 00 00 0000	12 Cada, Cobo XII. Wedister, and Cobo O XII.					
Bit(s)	Name	Description	R/W			
7:0	VGPIO3_DAT0	VGPIO3_ADCdata low8bit	R			
	[7:0]					

VGPIO3_FCAP_DAT1(VGPIO3_FCAP_ADCvoltage register)

I2Caddress0XEARegister address =0X7F

Bit(s)	Name	Description	R/W
7:0	V GPIO3_DAT1	VGPIO3_ADChigh data8bit	R
	[15:8]	VGPIO3_DAT= VGPIO3_ADC (mV)(0~3.3V)	

VGPIO4_BATNUM_DAT0(VGPIO4_BATNUM_ADCvoltage register)

I2Caddress0XEARegister address =0X80

Bit(s)	Name	Description	R/W
7:0	VGPIO4_DAT0	VGPIO4_ADCdata low8bit	R
	[7:0]		

VGPIO4_BATNUM_DAT1(VGPIO4_BATNUM_ADCvoltage register)

Bit(s)	Name	Description	R/W
7:0	V GPIO4_DAT1	VGPIO4_ADChigh data8bit	R
	[15:8]	VGPIO3_DAT= VGPIO3_ADC (mV)(0~3.3V)	

Responsibility and Copyright Statement

Vingjixin Technology Co., Ltd. reserves the right to make corrections, modifications, enhancements, improvements or other changes to the products and services provided. Customers are required to

The latest relevant information should be obtained before placing an order and verified to be complete and up-to-date. All product sales are subject to order confirmation

TERMS AND CONDITIONS OF SALE OFFERED.

Yingiixin Technology Co., Ltd. assumes no obligation for application assistance or customer product design. Customers should be responsible for their use of Yingiixin products

and the application are solely responsible. To minimize risks associated with customer products and applications, customers should provide adequate design and operational safety verification.

Customer acknowledges and agrees that, although any application-related information or support may still be provided by Yingjixin, they will be solely responsible for meeting the requirements of all legal, regulatory and safety-related requirements related to its products and the use of Yingjixin products in their applications. Customer represents and agrees that they have All expertise and knowledge required to formulate and implement safety measures to foresee the dangerous consequences of malfunctions, monitor malfunctions and their consequences, and reduce possible

The probability of malfunctions that could cause personal injury and take appropriate remedial measures. Customer will be fully indemnified for any use in such critical applications

Any losses caused to Yingjixin and its agents due to Yingjixin products.

Yingjixin's product manuals or data sheets will only be used if there is no tampering with the content and the relevant authorizations, conditions, restrictions and Reproduction is permitted only if declared. Yingjixin assumes no responsibility or liability for such tampered documents. Copying third party information may may be subject to additional restrictions.

Yingjixin will update the content of this document from time to time. The actual parameters of the product may vary due to different models or other matters. This document

No warranty or authorization is given, express or implied.

When reselling Yingjixin products, if the statement of the product parameters is different or false compared with the parameters indicated by Yingjixin,

You will lose all express or implied authorizations for related Yingjixin products, and this is an unfair and fraudulent business practice. Yingjixin is not responsible for any such

No responsibility or liability is assumed for any misrepresentation.