

Texas Clean Energy Project

Coal Gasification with 90% Carbon Capture & Sequestration

NEPA Public Scoping Meeting
June 17, 2010

Odessa College, Odessa, Texas

Snapshot of TCEP

- 400 MWe gross IGCC project with 90% carbon capture
- Siemens: 2 gasifiers & 1 high-H₂ CT + 1 ST in combined cycle

Snapshot of TCEP

- Located at FutureGen "finalist" site directly atop Permian Basin; nearby opportunities for CO₂ enhanced oil recovery (EOR)
- Pre-FEED design engineering, optimization, and cost refinement for past 3 years (Summit, Siemens)
- Commercial components proven; "integration" of "IGCC" with carbon capture and storage (CCS) is new -- a reference plant
- Siemens to warrant long-term performance & availability
- 90% carbon capture rate yields ≈ 2.9M tons of CO₂/year

- Founded by Donald Paul Hodel & Earl Gjelde
- Summit's traditional business = develop plants for others

- Principal business lines currently:
 - Wind power projects (including White Creek & its financial model)
 - Solar power (our utility-scale PV solar JV w/ REC: NorthLight)
 - Natural gas-fired power plants, principally Siemens CCCTs
 - Gasification with carbon capture (TCEP, others)
- These projects are clean, low- or no-carbon, & aid security

Why Texas?

- Environmental groups sought IGCC alternative to conventional coalfired power plants in Texas & asked Summit to take a look
- Texas has excellent market for captured CO₂
- Project would not depend on (1) climate legislation, or (2) new long
 CO2 pipeline
- Suitable sites can also be found for "stacked storage" of CO₂
- Ex-FutureGen site has prior review & local support
- Midland-Odessa officials sought private-sector replacement project for FutureGen

Project Site

Located 15 miles west of Odessa, 0.5 miles north of I-20, at FM 1601, which borders the property

- 600 acres, flat land, stable geology
- Electricity transmission in vicinity of project is adequate
- Multiple water supply alternatives
 - zero liquid discharge
 - reduced water consumption: dry and wet cooling
- Natural gas: 2 nearby mainlines; 1 onsite small line
- CO2 pipelines & EOR infrastructure exist nearby
- Railroad bordering site

Design Basis

- "Polygen" IGCC design for multiple products:
 Electricity, CO₂, urea (fertilizer), sulfuric acid
- Powder River Basin (Cordero-Rojo) low-sulfur coal
- Natural gas for startup, backup & during maintenance
- Base load operation; includes some turn-down capability
- Warranted high availability of power block & gasifiers

Low Air Emissions

 NOx, SOx & PM far below lowest-yet limits permitted in Texas for fossil fuel power plants

Sulfur removal is 99% despite using low sulfur coal

Mercury removal greater than 95%

- CO2 capture rate of 90%
 - CO_2 emissions rate (lbs per MWhr) only 20 to 30% of a natural gas combined-cycle power plant

SO₂, NOx, PM10 Emissions

Sources of Emissions with Start-up Dates

CO₂ Emissions

CO2 (lb/MW)

Sources of Emissions with Start-up Dates

Power Plant Emission Summary - Per MW Comparison

	1979 Martin Lake (2565 MW)	2010 - 2014 Oak Grove (1720 MW)	WITHDRWN Morgan Creek (858 MW)	2014 Tenaska Trailblazer (765 MW)	2014 TCEP (400 MW)
SO2 (lb/MW)	11.97	2.01	1.01	0.65	0.14
NOx (lb/MW)	4.49	0.84	0.50	0.55	0.13
PM10 (lb/MW)	1.00	0.42	0.40	0.35	0.22
Hg (lb/MW)	0.000214	0.000096	0.000021	0.000019	0.000007

CO2 (Ib/MW)	2,203	2,203	2,129	319	228
-------------	-------	-------	-------	-----	-----

^{1.} Permit limits for CO2 emissions are not required in the permitting process at this time.

^{2.} Tenaska CO2 emissions are scaled from Morgan Creek and assume 85% capture.

^{3.} Martin Lake CO2 emissions are scaled from Oak Grove.

CO₂ Management

- Blue Source will manage most CO₂ matters
 - Sale of CO2 for EOR, arranging pipeline transport, and certification of verifiable emissions reduction (VER) credits
- TX Bureau of Econ Geology will approve the MVA
 - New state law contains comprehensive requirements
 - Texas has the most progressive clean coal policies in U.S.;
 could be model for the nation
- Carbon Management Advisory Board will be created
 - CCS scientists, policy-makers, environmentalists
 - To advise re: capture, sequestration, MVA, policy, etc.

- CO₂/EOR has long, safe, reliable, high-volume history
 - Especially in Permian Basin, this is <u>not</u> an experiment
- CO₂/EOR with MVA can be highly reliable form of CCS
 - CO₂ can remain sequestered for more than 1,000 yrs (the TX std)
- CO₂ isn't the only EOR technique (oil <u>will</u> be extracted) but it <u>is</u> the only EOR technique to sequester carbon
- CO₂/EOR is a bridge to other CCS in two key respects:
 - Same infrastructure can be used for "stacked storage," cutting cost
 - Revenue helps make carbon capture projects like TCEP possible (without capture proven at scale, no large-scale CCS can occur)

Contact information

- Laura Miller:
 - <u>lmiller@summitpower.com</u>
 - **(214) 763-0600**
- See also:
 - www.summitpower.com
 - www.texascleanenergyproject.com