Graphics in LATEX 2ε

osurs@bluewin.ch — Urs Oswald — http://www.ursoswald.ch $10{\rm th~March~2003}$

Contents

1	Overview						
	1.1	Progra	mming pictures in I ^A T _E X	1			
	1.2	Import	;	2			
	1.3	Techni	calities	2			
2	The		re Environment of LATEX	3			
	2.1	Basics		3			
		2.1.1	Line segments	3			
		2.1.2	Circles	4			
		2.1.3	Arrows	4			
		2.1.4	The multiput and the linethickness command	5			
		2.1.5	Ovals, thinlines, thicklines	5			
		2.1.6	Text, formulas, colors	6			
		2.1.7	Quadratic Bézier curves	7			
		2.1.8	Marking angles	8			
		2.1.9	Line thickness again: the linethickness command	9			
		2.1.10	Line thickness again: thinlines and thicklines	9			
		2.1.11	Using the qbezier command to draw line segments	10			
		2.1.12		11			
	2.2	Positio	01	12			
		2.2.1	0 1	12			
		2.2.2	v i	13			
	2.3	Applic		15			
		2.3.1	Falling mass	15			
		2.3.2	Simultaneousness	15			
		2.3.3	Moving light clock	15			
		2.3.4		16			
		2.3.5		17			
		2.3.6	0	17			
		2.3.7	Line of simultaneousness	19			
		2.3.8	Isotropic spherical waves	20			
	2.4	Addition		21			
		2.4.1	Catenary	21			
		2.4.2	Forces on the catenary	22			
		2.4.3	Catenaries of constant length	23			
		2.4.4		24			
	2.5	Enhan		26			
		2.5.1		26			
		2.5.2	Line segments and circles in the eepic package	27			

3	The	pspic	ture Environment of the pstricks Package	2 8	
	3.1	Line se	egments and circles	28	
		3.1.1	Regular polygon	28	
		3.1.2	Triangle	29	
		3.1.3	Loops and calculations	29	
		3.1.4	A remark about latex2html	30	
	3.2	More a	applications	30	
		3.2.1	Tribox	30	
		3.2.2	Curved text	30	
		3.2.3	Logo	31	
		3.2.4	Knots	31	
		3.2.5	Family tree	32	
4	Met	aPost		33	
	4.1	Examp	oles	33	
	4.2		ce file	35	
5	App	endix		36	
\mathbf{A}	qbe	zier.jav	ra	36	
В	B bezierellipse.java				
\mathbf{C}	C arc.java				
\mathbf{D}	O Transform.mp				

1 Overview

There are two ways of providing LATEX documents with pictures:

- (1) by directly programming the pictures within LATEX,
- (2) by importing pictures.

We will keep in mind that ultimately, one of the following kinds of documents is to be produced:

• PDF, • PS, • HTML+PNG.

TEX itself comes along with a very powerful picture generator:

• MetaPost.

MetaPost is a variant of Donald Knuth's METAFONT. It produces mps files, which form a subset of the eps files (eps: "encapsulated PostScript"). "Encapsulated" means that these PostScript files have a frame preventing any disturbing interferences on import into PostScript or PDF documents.

Although programming pictures directly in LATEX is severely restricted, and often rather tiresome, there are still reasons for doing so. The documents thus produced are "small" with respect to bytes. There are no additional graphics files to be dragged along. Therefore, Sections 2.3 and 2.4 of this script present some "real life" graphics done within the original picture environment of LATEX.

1.1 Programming pictures in LATEX

The picture environment allows programming pictures directly in LATEX. However, there are rather severe constraints, especially for the mathematician, as the slopes of line segments as well as the radii of circles are restricted to a narrow choice of values. On the other hand, the picture environment brings with it the qbezier ("quadratic Bézier" curves) command. Many frequently used curves can be satisfactorily approximated by quadratic Bézier curves, although this may require some mathematical toil. If a programming language, such as Java, is used to generate qbezier blocks of LATEX input files, the picture environment becomes quite powerful. Of course, the ideal language to produce qbezier blocks is APL. Detailed descriptions of the picture environment are presented, for example, in LAMPERT[6], or KOPKA[7].

The restrictions on line segments and circles can be overcome by the use of packages like epic and eepic (described, for instance, in Goossens, Mittelbach, Samarin[1]), or pstricks (described in detail in Goossens, Rahtz, Mittelbach[2]).

While the former two packages just enhance the picture environment of LATEX, the pstricks package has its own environment for pictures, pspicture. The power of pstricks stems from the fact that this package makes extensive use of PostScript possibilities. Fig. 1 illustrates the possible use of the three packages for producing PDF, PS, and HTML+PNG.

Fig. 1: Producing PDF, PS, and HTML+PNG

Remarks

- In this document, latex2html means version 2002-1 (1.68). Older versions of latex2html may generate gif files instead of png files.
- If a IATEX input file uses the pstricks package, processing with latex2html requires the \psset commands to be written within the pspicture environments. Therefore, the arguments of the \begin{pspicture} command have to refer to the default unit of pstricks, which is 1 cm.

1.2 Import

There are several packages allowing the import of pictures in LATEX. The package most broadly recommended today (2002) is graphicx. The use of other packages is not considered advisable any more, as they have some drawbacks, and are not developed any further.

The graphicx package is loaded with the command

• \usepackage{graphicx}

(which has to be located in the preamble). graphicx is an extension of graphics. Moreover, while graphics sticks to the original TEX conventions concerning arguments, graphicx allows optional arguments according to the more transparent key=value scheme. Pictures can be imported with the command

• \includegraphics[key=value,...,key=value]{beispiel.eps}.

The optional arguments give rise to a rich choice of options with respect, for example, to scaling and rotating. RECKDAHL[9] contains an excellent exposition of the capabilities of graphicx. Using graphicx, one can routinely import pictures according to the following scheme:

Fig. 2: Import of pictures with graphicx

Remarks

- (1) pdflatex: The import of mps files requires the command \DeclareGraphicsRule{*}{mps}{*}{} in the preamble of the IATEX file.
- (2) mps files being special eps files, they can be imported, according to Fig. 2, with the other programs: latex, dvips, latex2html.
- (3) On generation by MetaPost, mps files have names like example.1, example.2, example.3, These names may be used for the import in all described cases.
- (4) In some cases, extensions such as .eps or .png can be omitted. This may be convenient if the same LATEX file is processed to PDF as well as to HTML+PNG. For details, see RECKDAHL[9].

1.3 Technicalities

This document was produced with SuSE Linux, Version 8.0, and the TEX and LATEX versions coming with it.

As for latex2html, the newer version 2002-1 (1.68) is preferrable, as the version included in SuSE 8.0 has some drawbacks. In order to get latex2html, go to www.latex2html.org.

2 The picture Environment of LATEX

2.1 Basics

A picture environment is created with one of the two commands

- \begin{picture}(xdim,ydim)...\end{picture},
- \begin{picture} $(xdim, ydim)(x_0, y_0) \dots \text{ }$ end{picture}.

The numbers xdim, ydim, x_0 , and y_0 refer to \unitlength, which can be reset any time (but not within a picture environment) with a command such as \setlength{\unitlength}{1.2cm}. The default value of \unitlength is 1pt. The first pair, (xdim,ydim), effects the reservation, within the document, of rectangular space for the picture. The optional second pair, (x_0,y_0) , assigns arbitrary coordinates to the bottom left corner of the reserved rectangle. If omitted, the second pair defaults to (0,0), meaning that the coordinates in the drawing commands refer to the bottom left corner of the reserved rectangle.

Most drawing commands have one of the two forms

- \put(*x*,*y*){*object*},
- \multiput(x,y)($\Delta x, \Delta y$){n}{object},

where *object* may be, i.g., \logon or $\circle*{0.25}$. Bézier curves are an exception. They are drawn with commands such as

• \qbezier(1.2, 0.6)(3.1, 1.2)(2.5, 3.4).

2.1.1 Line segments

Fig. 3: Line segments

The \line command has two arguments:

- a direction vector,
- a length.

The components of the direction vector have to be coprime (no common divisor except 1), and they are restricted to the integers

$$-6, -5, \ldots, 5, 6.$$

```
\setlength{\unitlength}{6cm}
\begin{picture}(1, 1)
                                                                                                    \put(0, 0){\langle (1, 0)(1) \rangle}
                                                                                                    \put(0, 0){\langle (1, 1)\{1\}\rangle}
                                                                                                    \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \\ & \end{array} & \end{array} & \\ & \end{array} & \end{array} & \begin{array}{
                                                                                                    \begin{array}{l} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} &
                                                                                                    \begin{array}{l} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \\ \end{array} &
                                                                                                    \poline{0, 0}{\line(1, 6){.16667}}
                                                                                                    \operatorname{put}(0, 0)\{\operatorname{line}(2, 1)\{1\}\}
                                                                                                    \begin{array}{l} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \\ \end{array} &
                                                                                                    \begin{array}{l} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \\ \end{array} &
                                                                                                    \operatorname{put}(0, 0)\{\operatorname{line}(3, 4)\{.75\}\}
                                                                                                    \put(0, 0){\langle (4, 1)\{1\}\rangle}
                                                                                                    \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \\ \end{array} 
                                                                                                    \operatorname{put}(0, 0){\operatorname{line}(5, 2){1}}
                                                                                                    \put(0, 0){\langle (6, 1)\{1\}}\
                                                                                                    \put(0, 0){\langle (6, 5)\{1\}}
\end{picture}
```

Fig. 3 illustrates all 25 possible slope values in the first quadrant. The length is relative to \unitlength. The length argument is the vertical coordinate in the case of a vertical line segment, the horizontal coordinate in all other cases.

Because of the restrictions to direction vectors, drawing line segments usually necessitates an extensive search for suitable points. In many cases, drawing the desired line segments may not be possible without the use of additional packages, such as eepic, or pstricks.

2.1.2 Circles

Fig. 4: Circles

The argument of the \circle command is relative to \unitlength and determines the diameter (not the radius). The original picture environment only admits diameters up to approximately 14 mm, and even below this limit, not all diameters are possible. The \circle* command produces disks (filled circles).

As for drawing larger circles, see Section 2.4.4 about circles and ellipses.

```
\setlength{\unitlength}{1mm}
\begin{picture}(60, 40)
                                                        \put(20, 30){\circle{1}}
                                                    \put(20, 30){\circle{2}}
                                                    \put(20, 30){\circle{4}}}
                                                    \put(20, 30){\circle{8}}
                                                    \put(20, 30){\circle{16}}
                                                        \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array}
                                                        \put(40, 30){\circle{5}}}
                                                        \put(40, 30){\circle{6}}}
                                                        \put(40, 30){\circle{8}}
                                                        \put(40, 30){\circle{9}}
                                                        \begin{array}{l} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \\ \\ \end{array} & \begin{array}{ll} \\ \end{array} & \end{array}
                                                        \put(40, 30){\circle{11}}
                                                        \begin{array}{l} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \\ & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \\
                                                        \put(40, 30){\circle{13}}
                                                        \begin{array}{l} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \\ \\ \end{array} & \begin{array}{ll} \\ \end{array} & \end{array}
                                                        \put(15, 10){\circle*{1}}
                                                        \put(20, 10){\circle*{2}}
                                                        \put(25, 10){\circle*{3}}
                                                        \put(30, 10){\circle*{4}}
                                                        \put(35, 10){\circle*{5}}
    \end{picture}
```

2.1.3 Arrows

Fig. 5: Arrows

```
\setlength{\unitlength}{1mm}
\begin{picture}(60, 40)
\put(30, 20){\vector(1, 0){30}}
\put(30, 20){\vector(4, 1){20}}
\put(30, 20){\vector(3, 1){25}}
\put(30, 20){\vector(2, 1){30}}
\put(30, 20){\vector(1, 2){10}}
\thicklines
\put(30, 20){\vector(-4, 1){30}}
\put(30, 20){\vector(-1, 4){5}}
\thinlines
\put(30, 20){\vector(-1, -1){5}}
\put(30, 20){\vector(-1, -4){5}}
\end{picture}
```

For arrows, the components of the direction vector are even more restricted than for line segments, namely to the integers

$$-4, -3, \ldots, 3, 4.$$

Components also have to be coprime (no common divisor except 1). Notice the effect of the \thicklines command on the two arrows pointing to the upper left.

2.1.4 The multiput and the linethickness command

Fig. 6: The multiput and the linethickness command

```
\setlength{\unitlength}{2mm}
\begin{picture}(30, 20)
\linethickness{0.075mm}
\multiput(0, 0)(1, 0){31}{\line(0, 1){20}}
\multiput(0, 0)(0, 1){21}{\line(1, 0){30}}
\linethickness{0.15mm}
\multiput(0, 0)(5, 0){7}{\line(0, 1){20}}
\multiput(0, 0)(0, 5){5}{\line(1, 0){30}}
\linethickness{0.3mm}
\multiput(5, 0)(10, 0){3}{\line(0, 1){20}}
\multiput(0, 5)(0, 10){2}{\line(1, 0){30}}
\end{picture}
```

The \multiput command has 4 arguments: the starting point, the translation vector, the number of objects, and the object to be drawn. The \linethickness{length} command applies to horizontal and vertical line segments, but neither to oblique line segments, nor to circles. It does, however, apply to quadratic Bézier curves!

2.1.5 Ovals, thinlines, thicklines

Fig. 7: Ovals, thinlines, thicklines

```
\setlength{\unitlength}{1cm}
\begin{picture}(6, 4)
  \linethickness{0.075mm}
  \multiput(0, 0)(1, 0){7}{\line(0, 1){4}}
  \multiput(0, 0)(0, 1){5}{\line(1, 0){6}}
  \thicklines
  \put(2, 3){\oval(3, 1.8)}
  \thinlines
  \put(3, 2){\oval(3, 1.8)}
  \thicklines
  \put(2, 1){\oval(3, 1.8)[t1]}
  \put(4, 1){\oval(3, 1.8)[t1]}
  \put(4, 3){\oval(3, 1.8)[r]}
  \put(3, 1.5){\oval(1.8, 0.4)}
  \end{picture}
```

Line thickness can be controlled by two kinds of commands: \linethickness{length} on the one hand, \thinlines and \thicklines on the other. While \linethickness{0.075mm} applies only to horizontal and vertical lines (and quadratic Bézier curves), \thinlines and \thicklines apply to oblique line segments as well as to curves such as circles or ovals.

2.1.6 Text, formulas, colors

Fig. 8: Text, formulas, colors

The color package allows the use of colors inside and outside of picture environments.

Predefined colors of the color package are: black, white, red, green, blue, yellow, cyan, and magenta. As the current example shows, the \definecolor command allows for the definition of arbitrary further colors in terms either of the gray, or the rgb color model. (IMTEX also supports a third color model, cymk).

```
\definecolor{hellgrau}{gray}{.8}
\definecolor{dunkelblau}{rgb}{0, 0, .7}
\definecolor{roetlich}{rgb}{1, .7, .7}
\definecolor{dunkelmagenta}{rgb}{.3, 0, .3}
\setlength{\unitlength}{1cm}
\begin{picture}(6, 8)
 \linethickness{0.075mm}
 \mbox{multiput}(0, 0)(6, 0){2}{\line(0, 1){8}}
  \mathsf{Multiput}(0, 0)(0, 8){2}{\mathsf{line}(1, 0){6}}
 \thicklines
 \color{dunkelmagenta}
  \put(4, 2){\line(-2, 1){2}}
  \put(2, 3){\line(-2, -5){1}}
  \put(.7, .3){$A$}
  \put(4.05, 1.9){$B$}
  \put(1.7, 2.95){$C$}
  \put(3.1, 2.5){$a$}
  \put(1.3, 1.7){$b$}
  \put(2.5, 1.05){$c$}
  \color{dunkelblau}
  \t(0.3, 4) {$F=\sqrt{s(s-a)(s-b)(s-c)}$}
  \polinimes (3.5, 0.4){$\displaystyle}
   s:=\frac{a+b+c}{2}
  \put(0.5, 7.3){The {\textcolor{red}{\texttt{%
                 color}}} package allows the}
  \put(0.5, 6.7) {use of \fcolorbox{dunkelblau}%
                 {roetlich}{colors} \colorbox%
{hellgrau}{inside} and}
 \put(0.5, 6.1){\colorbox{hellgrau}{outside}}
                 of \textcolor{red}{\texttt{%
                 picture}}}
 \put(0.5, 5.6){environments.}
\end{picture}
```

2.1.7 Quadratic Bézier curves

Fig. 9: Quadratic Bézier curves

As Fig. 9 illustrates, splitting up a circle into four quadratic Bézier curves is not satisfactory. For a better solution, see (2) in Section 2.4.4.

Fig. 9 again shows the effect of the \linethickness command on horizontal or vertical lines, and of the \thinlines and \thicklines commands on oblique line segments. It also shows that both kinds of commands affect quadratic Bézier curves, each command overriding all previous ones.

```
\setlength{\unitlength}{1cm}
\begin{picture}(6, 4)
                    \linethickness{0.075mm}
                      \mathcal{1}_{0, 0}(1, 0)_{7}_{\sin(0, 1)_{4}}
                      \mathsf{Multiput}(0, 0)(0, 1){5}{\mathsf{line}(1, 0){6}}
                      \put(1, 3){\circle*{.1}}
                      \put(3, 3.5){\circle*{.1}}
                      \thicklines
                      \begin{array}{l} \text{(.5, .5)} \\ \text{(1, 5)} \end{array}
                      \begin{array}{l} \begin{array}{ll} \begin{array}{ll} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &
                      \qbezier(.5, .5)(1, 3)(3, 3.5)
                      \thinlines
                      \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array}
                      \t(5.5, .5){\circle*{.1}}
                      \put(5, 3){\circle*{.1}}
                      \put(2.5, 2){\line(2, -1){3}}
                      \t(5.5, .5){\t(-1, 5){.5}}
                      \linethickness{1mm}
                      \qbezier(2.5, 2)(5.5, .5)(5, 3)
                      \thinlines
                      \q \quad 
                      \q (2, 3)(2, 3)(2, 2)
                      \qbezier(2, 2)(2, 1)(3, 1)
                      \q \quad 
 \end{picture}
```

Let $P_1 = (x_1, y_1)$, $P_2 = (x_2, y_2)$ denote the end points, and m_1 , m_2 the respective slopes, of a quadratic Bézier curve. The intermediate control point S = (x/y) is then given by the equations

$$\begin{cases} x = \frac{m_2 x_2 - m_1 x_1 - (y_2 - y_1)}{m_2 - m_1}, \\ y = y_i + m_i (x - x_i) \quad (i = 1, 2). \end{cases}$$
 (1)

The Java program qbezier (see appendix for the source file qbezier.java) started with the line

• java qbezier $< x_1 > < y_1 > < m_1 > < x_2 > < y_2 > < m_2 >$

writes a file qbezier.tex which can be pasted into a picture environment, whence it draws the desired curve.

2.1.8 Marking angles

Fig. 10: Marking angles

In the current picture, arcs are approximated by quadratic Bézier curves. In order to get the control points of an arc of radius r marking the angle $\angle P_1P_2P_3$, one has to

- (1) translate and rotate the angle in order to move the vertex to the origin and have the bisector point in the direction of the x axis (transformation T),
- (2) reduce the vectors P_2P_1 and P_2P_3 to length r,
- (3) let the intermediate control point P_2 be equal to $((x_1^2 + y_1^2)/x_1, 0)$, x_1 and y_1 being the coordinates of point P_1 after transformation T and reduction to length r,
- (4) apply the transformation T^{-1} to points P_1 , P_2 , and P_3 .

```
\setlength{\unitlength}{1cm}
\begin{picture}(6, 4)
  \linethickness{0.075mm}
  \mathsf{Multiput}(0, 0)(1, 0){7}{\mathsf{line}(0, 1){4}}
  \mathsf{Multiput}(0, 0)(0, 1){5}{\mathsf{line}(1, 0){6}}
  \thicklines
  \operatorname{put}(0, 0)\{\operatorname{line}(6, 1)\{6\}\}\
  \put(6, 1){\langle (-4, 3), (4) \rangle}
  \put(2, 4){\line(-1, -2){2}}
  % arc
  % P1=(2.0/4.0) P2=(0.0/0.0) P3=(6.0/1.0)
  % r=1.2
  \qbezier(0.5367, 1.0733)(1.0832, 0.8)
           (1.1837, 0.1973)
  % arc
  % P1=(0.0/0.0) P2=(6.0/1.0) P3=(2.0/4.0)
  % r=1.2
  \qbezier(4.8163, 0.8027)(4.7319, 1.3092)
           (5.04, 1.72)
  % arc
  % P1=(6.0/1.0) P2=(2.0/4.0) P3=(0.0/0.0)
  % r=1.2
  \qbezier(2.96, 3.28)(2.3591, 2.4788)
           (1.4633, 2.9267)
  \put(0, 0){\langle (3, 2)(3) \rangle}
  \operatorname{(3, 2)}\left(\frac{3}{1}, -1\right)
  % arc
  % P1=(0.0/0.0) P2=(3.0/2.0) P3=(3.0/0.0)
  % r=0.8
  \qbezier(2.3344, 1.5562)(2.5719, 1.2)
           (3.0, 1.2)
  % arc
  % P1=(3.0/0.0) P2=(3.0/2.0) P3=(6.0/1.0)
  % r=0.8
  \qbezier(3.0, 1.2)(3.5766, 1.2)
           (3.7589, 1.747)
\end{picture}
```

If the Java program arc (see appendix for the source file arc. java) is started with the command line

• java arc $\langle x_1 \rangle \langle y_1 \rangle \langle x_2 \rangle \langle y_2 \rangle \langle x_3 \rangle \langle y_3 \rangle \langle r \rangle$,

it produces a file arc.tex which can be pasted into a picture environment, whence it draws the required arc. As can be seen from the above input file, the obtuse angle is marked in parts: by consequtively marking the angles $\angle(0,0)(3,2)(3,0)$ and $\angle(3,0)(3,2)(6,1)$. The commands are:

- java arc 2 4 0 0 6 1 1.2
- java arc 0 0 6 1 2 4 1.2
- java arc 6 1 2 4 0 0 1.2
- java arc 0 0 3 2 3 0 0.8
- java arc 3 0 3 2 6 1 0.8

2.1.9 Line thickness again: the linethickness command

Fig. 11: Line thickness again: the linethickness command

```
\setlength{\unitlength}{1cm}
\begin{picture}(6, 7.7)
  \mbox{multiput}(0, 0)(6, 0){2}{\line}(0, 1){7.7}
  \mbox{multiput}(0, 0)(0, 7.7){2}{\line(1, 0){6}}
  \linethickness{.075mm}
  \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \\ \end{array} \end{array}
  \put(3, 2){\line(2, 1){2}}
  \t(5.5, 0.5){\t(0, 1){3}}
  \put(1, 1){\circle{1.3}}
  \ensuremath{\mbox{\mbox{qbezier}}(1, 0.1)(4.5, 1)(2, 2.5)}
  \put(4.3, 1.3){\oval(1.6, 1.9)}
  \linethickness{1mm}
  \put(3, 6){\line(2, 1){2}}
  \poline{0, 1}{3}
  \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \end{array} \end{array} \end{array}
  \ensuremath{\mbox{\mbox{qbezier}(1, 4.1)(4.5, 5)(2, 6.5)}}
  \end{picture}
```

As can be seen from this picture, the command \linethickness{length} applies to horizontal and vertical lines as well as to Bézier curves, but not to circles, or oblique line segments. Ovals are a combination of horizontal and vertical lines, and arcs.

2.1.10 Line thickness again: thinlines and thicklines

Fig. 12: Line thickness again: thinlines and thicklines

```
\setlength{\unitlength}{1cm}
\begin{picture}(6, 7.7)
                         \mbox{multiput}(0, 0)(6, 0){2}{\line}(0, 1){7.7}
                         \mbox{multiput}(0, 0)(0, 7.7){2}{\line(1, 0){6}}
                         \thinlines
                           \begin{array}{l} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \\
                           \poline{2, 1}{2}
                           \poline{0, 1}{3}
                           \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \end{array} \end{array}
                           \ensuremath{\mbox{qbezier}(1, 0.1)(4.5, 1)(2, 2.5)}
                           \put(4.3, 1.3){\oval(1.6, 1.9)}
                           \thicklines
                           \put(3, 6){\line(2, 1){2}}
                           \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \end{array} \end{array} \end{array}
                           \ensuremath{\mbox{\mbox{qbezier}(1, 4.1)(4.5, 5)(2, 6.5)}}
                           \end{picture}
```

As the comparison of the lower half of the picture with the upper half shows, the \thinlines and the \thicklines commands apply to all line segments and curves, but the effect cannot said to be very striking.

2.1.11 Using the qbezier command to draw line segments

Fig. 13: Using the qbezier command to draw line segments

```
\newcommand{\strecke}[2]{\qbezier(#1)(#1)(#2)}
\setlength{\unitlength}{3cm}
\begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \\ \end{array} \end{array} 
  \linethickness{.075mm}
  \mbox{multiput}(-1,-1)(2,0){2}{\line}(0,1){2}}
  \mbox{\mbox{$\mbox{multiput}(-1,-1)(0,2){2}}}\
  \linethickness{.3mm}
  \strecke{-0.8,-0.8}{0.8,-0.8}
  \strecke{0.8,-0.8}{-0.7,0.8}
  \strecke{-0.7,0.8}{-0.8,-0.8}
  \linethickness{.075mm}
  strecke{0.8,-0.8}{-0.7,0.8}
  \strecke{-0.7,0.8}{-0.8,-0.8}
  strecke{0.8,-0.8}{-0.5,0.8}
  \strecke{-0.5,0.8}{-0.8,-0.8}
  \strecke{0.8,-0.8}{-0.3,0.8}
  \t = (-0.3, 0.8) \{-0.8, -0.8\}
  strecke{0.8,-0.8}{-0.1,0.8}
  \strecke{-0.1,0.8}{-0.8,-0.8}
  \strecke{0.8,-0.8}{0.1,0.8}
  \strecke{0.1,0.8}{-0.8,-0.8}
  strecke{0.8,-0.8}{0.3,0.8}
  strecke{0.3,0.8}{-0.8,-0.8}
  \t 0.8,-0.8
  strecke{0.5,0.8}{-0.8,-0.8}
  strecke{0.8,-0.8}{0.7,0.8}
  \strecke{0.7,0.8}{-0.8,-0.8}
  strecke{0.8,-0.8}{0.9,0.8}
  \strecke{0.9,0.8}{-0.8,-0.8}
\end{picture}
```

For example, the command $\strecke{(0.8,-0.8)}{(0.3,0.8)}$ invokes the LaTeX 2ε command

• \quad \qua

which cannot be replaced by a LaTeX 2ε \lime command as the direction vector (-5, 16) would not be accepted.

By this "abuse" of the \quad \quad \quad \quad \text{thickness} \quad \text{thickness} \quad \text{thickness} \quad \text{command applies to the \quad \quad \quad \quad \text{thickness} \quad \text{command, line segments of arbitrary slope and thickness can be drawn. What else would you want?

2.1.12 Multiple use of predefined partial pictures

Fig. 14: Multiple use of predefined partial pictures

```
\setlength{\unitlength}{.5mm}
\begin{picture}(120, 168)
\newsavebox{\foldera}%
                                       declaration
\savebox{\foldera}(40, 32)[1]{% definition
  \mbox{multiput}(0, 0)(0, 28){2}{\line(1, 0){40}}
  \mbox{multiput}(0, 0)(40, 0){2}{\line(0, 1){28}}
  \put(1, 28){\oval(2, 2)[t1]}
  \operatorname{(1, 29)}\left(1, 0, 5\right)
  \put(9, 29){\oval(6, 6)[t1]}
  \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \\ \end{array} \end{array}
  \put(17, 29){\oval(6, 6)[tr]}
  \put(20, 29){\line(1, 0){19}}
  \put(39, 28){\oval(2, 2)[tr]}
\newsavebox{\folderb}%
                                       declaration
\savebox{\folderb}(40, 32)[1]{%
                                      definition
  \put(0, 14){\line(1, 0){8}}
  \put(8, 0){\usebox{\foldera}}
}
\mathsf{Multiput}(0, 0)(120, 0){2}{\mathsf{line}(0, 1){168}}
\mathsf{Multiput}(0, 0)(0, 168){2}{\mathsf{line}(1, 0){120}}
\put(34, 26){\langle (0, 1)\{102\}\rangle}
\t(14, 128){\usebox{\foldera}}
\mbox{multiput(34, 86)(0, -37){3}{\left\langle x\right\rangle }}
\end{picture}
```

A partial picture can be declared and defined by the commands

- \newsavebox{name} (declaration)
- \savebox{name}(size)[position]{content} (definition)

and then be arbitrarily often used by the command

• \usebox{name} .

The name argument refers to a LATEX storage bin and therefore is of a command nature (which accounts for the backlashes in the current example). size is a numeric pair referring to the current value of \unitlength.

An object defined with the \savebox command (such as \foldera in the current example) can be used in the definition of another such element (\folderb).

The \oval command was applied because the connecting segments are two short to be drawn with the line command.

2.2 Positioning picture environments

2.2.1 Correcting positions


```
\setlength{\unitlength}{1cm}
\begin{picture}(6, 4)
 \linethickness{0.075mm}
 \mbox{multiput}(0, 0)(1, 0){7}{\line}(0, 1){4}}
 \mbox{multiput}(0, 0)(0, 1){5}{\line(1, 0){6}}
 \color{red}
 \put(0, 0){\circle{.25}}
 \linethickness{0.2mm}
 \mathcal{O}(0, 0)(6, 0){2}{\langle 0, 1){4}}
 \mbox{multiput}(0, 0)(0, 4){2}{\line(1, 0){6}}
 \color{black}
 \put(.5, .5){\line(5, 2){5}}
 \poline{-4, 1}{4}
 \linethickness{.5mm}
 \qbezier(.5, .5)(5.5, 2.5)(1.5, 3.5)
\end{picture}
```

Fig. 15 again demonstrates that the \linethickness command also applies to quadratic Bézier curves (while it does neither apply to a \circle nor to the arcs of an \oval).

We now change \begin{picture}(6, 4) to

• \begin{picture}(6, 4)(-0.5, -1.25),

thus assigning the coordinates (-0.5, -1.25) to the bottom left corner of the rectangle reserved by $\begin{picture}(6, 4) (drawn in red color).$ Such a reassignment may be very convenient if you do not want to change all the coordinates of a picture which is not optimally located at the outset.

\setlength{\unitlength}{1cm}


```
\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c}
                          \linethickness{0.075mm}
                          \mbox{multiput}(0, 0)(1, 0){7}{\line}(0, 1){4}}
                          \mbox{multiput}(0, 0)(0, 1){5}{\line(1, 0){6}}
                            \color{red}
                            \t(-0.5, -1.25){\text{circle}*{.15}}
                            \mbox{multiput}(-0.5, -1.25)(6, 0){2}
                                                         {\line(0, 1){4}}
                            \mbox{multiput}(-0.5, -1.25)(0, 4){2}
                                                       {\line(1, 0){6}}
                            \color{black}
                            \linethickness{0.2mm}
                          \mbox{multiput}(0, 0)(6, 0){2}{\line}(0, 1){4}}
                          \mbox{multiput}(0, 0)(0, 4){2}{\line(1, 0){6}}
                          \operatorname{put}(.5, .5){\operatorname{line}(5, 2){5}}
                          \poline(-4, 1){4}
                          \linethickness{.5mm}
                          \ensuremath{\mbox{\mbox{qbezier}(.5, .5)(5.5, 2.5)(1.5, 3.5)}}
  \end{picture}
```

2.2.2 Side by side: text and picture

The strip between the horizontal lines:

Ein Behälter, mit Wasser teilweise gefüllt, gleitet reibungsfrei auf einer schiefen Ebene (siehe Zeichnung rechts). Die Wasseroberfläche sei stationär (keine Wellen); wie sieht die Wasseroberfläche aus? Äquivalenzprinzip. Sorgfältige Argumentation! Diskutiere die Kräfte

- (1) parallel zur schiefen Ebene,
- (2) normal zur schiefen Ebene.

is produced by the LATEX source:

```
\begin{minipage}{7cm}
Ein Beh\"alter, mit Wasser teilweise gef\"ullt, gleitet reibungsfrei
auf einer schiefen Ebene (siehe Zeichnung rechts). Die Wasseroberfl\"ache
sei sta\-tio\-n\"ar (keine Wellen); wie sieht die Wasseroberf1\"ache aus?
\"Aquivalenzprinzip. Sorgf\"altige Argumentation! Diskutiere die Kr\"afte
\begin{enumerate}
\item parallel zur schiefen Ebene,
\item normal zur schiefen Ebene.
\end{enumerate}
\end{minipage} \hfill \begin{minipage}{7cm}
\setlength{\unitlength}{1mm}
  \begin{picture}(70,45)
    \t(0,0){\line(1,0){70}}
    \put(0,0){\line(0,1){35}}
    \put(70,0){\line(-2,1){70}}
    \linethickness{.75mm}
    \mbox{multiput}(10,30)(.1,.05){8}{\line(1,2){8}}
    \mbox{multiput}(30,20)(.1,.05){8}{\line}(1,2){8}
    \mathsf{Multiput}(10,30)(.05,.1){6}{\mathsf{line}(2,-1){20}}
    \mathsf{Multiput}(40,25)(.05,.1)\{6\}\{\mathsf{vector}(2,-1)\{15\}\}
    \put(10,12){Schiefe Ebene}
    \put(10,7){fest im Labor}
  \end{picture}
\end{minipage}
```

The picture illustrates, by the way, how oblique line segments can be drawn with arbitrary thickness by the use of the \multiput command.

Using a minipage for the left half allows an enumerate environment which would not be possible in a parbox.

A change of the argument of \begin{picture} has the effect of moving the picture up and down with respect to the leftside text. If we change to

• \begin{picture}(70, 30),

the effect is again shown in the strip between the horizontal lines:

Ein Behälter, mit Wasser teilweise gefüllt, gleitet reibungsfrei auf einer schiefen Ebene (siehe Zeichnung rechts). Die Wasseroberfläche sei stationär (keine Wellen); wie sieht die Wasseroberfläche aus? Äquivalenzprinzip. Sorgfältige Argumentation! Diskutiere die Kräfte

- (1) parallel zur schiefen Ebene,
- (2) normal zur schiefen Ebene.

The example proves that the space allocated to the picture is given by the (70, 30) argument, not by the real extension. If we change to

• \begin{picture}(70, 60),

the picture is placed as if it had a size of (70, 60):

Ein Behälter, mit Wasser teilweise gefüllt, gleitet reibungsfrei auf einer schiefen Ebene (siehe Zeichnung rechts). Die Wasseroberfläche sei stationär (keine Wellen); wie sieht die Wasseroberfläche aus? Äquivalenzprinzip. Sorgfältige Argumentation! Diskutiere die Kräfte

- (1) parallel zur schiefen Ebene,
- (2) normal zur schiefen Ebene.

The two minipages are centered vertically.

2.3 Applications

In this section, some "real life" examples of illustrations drawn in a picture environment are shown.

2.3.1 Falling mass

Fig. 17: Falling mass

2.3.2 Simultaneousness

Fig. 18: Simultaneousness

2.3.3 Moving light clock

Fig. 19: Moving light clock

```
\setlength{\unitlength}{1mm}
\begin{picture}(96,38)
       \put(92,11){$x_L$}
       \ \t(6,10) {\t(6,10) {\t
       \put(26,5){\makebox(0,0){$v\cdot\Delta t_L$}}
       \mathsf{Multiput}(1,12)(0,20){2}{\mathsf{line}(1,0){10}}
       \mbox{multiput}(1,12)(10,0){2}{\line}(0,1){20}}
       \mathsf{Multiput}(41,12)(0,20){2}{\mathsf{line}(1,0){10}}
       \mathsf{Multiput}(41,12)(10,0){2}{\mathsf{line}(0,1){20}}
       \mbox{multiput}(6,12)(40,0){2}{\circle*{2}}
       \t(46,32){\circle*{2}}
       \t(46,12)\{\t(0,1)\{20\}\}\
       \put(6,12){\vector(2,1){39}}
       \t(18,25) {\c\cdot\Delta\ t_L$}
       \put(46,32){\vector(2,-1){39}}
       \operatorname{(46,22)}\left(\operatorname{(2,-1)}\left\{8\right\}\right)
       \t(54.5,16){h=c\cdot\Delta\tau$}
\end{picture}
```

2.3.4 Rotation of axes

Fig. 20: Rotation of axes

```
\setlength{\unitlength}{1mm}
\begin{picture}(93,46)
  \put(0,14){\vector(1,0){60}}
  \put(61,13){$x$}
  \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \end{array} \end{array}
  \put(19,43){$y$}
  \put(52,35){$P$}
  \mathsf{Multiput}(20,34)(4,0){8}{\mathsf{line}(1,0){2}}
  \put(14.5,33.5){$y_P$}
  \mathsf{Multiput}(50,14)(0,4){5}{\mathsf{line}(0,1){2}}
  \put(48,11){$x_P$}
  \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \\ \end{array} \end{array}
  \put(59,26.5){$x'$}
  \mathsf{Multiput}(50,34)(1.9,-5.7){2}
    {\line(1,-3)\{1.2\}}
  \t(52,22) {x_P'$}
  \mathsf{Multiput}(50,34)(-5.8,-1.933)\{6\}
    {\line(-3,-1){3.6}}
  \put(12,21){$y_P'$}
  \put(22,8){\vector(-1,3){10.5}}
  \put(10,41){$y'$}
\end{picture}
```

2.3.5 Rapidity in the Special Theory of Relativity

Fig. 21: Rapidity in the Special Theory of Relativity

Rapidity
$$\chi := \tanh^{-1} \frac{v}{c}$$
.

```
\setlength{\unitlength}{1cm}
\begin{picture}(6,4)(-2.5,-1.5)
\put(-2.5,0){\vector(1,0){5}}
\put(2.7,-0.1){$\chi$}
\put(0,-1.5){\vector(0,1){3}}
\multiput(-2.5,1)(0.4,0){13}
{\line(1,0){0.2}}
\multiput(-2.5,-1)(0.4,0){13}
{\line(1,0){0.2}}
\put(0.2,1.4)
{$\beta=v/c=\tanh\chi$}
\qbezier(0,0)(0.8853,0.8853)(2,0.9640)
\qbezier(0,0)(-0.8853,-0.8853)(-2,-0.9640)
\put(-2.5,-1.5){\circle*{0.2}}
\end{picture}
```

The intermediary control points of the two Bézier curves were calculated with formulas (1) in the section about quadratic Bézier curves. The positive branch is determined by $P_1 = (0, 0)$, $m_1 = 1$ and $P_2 = (2, \tanh 2)$, $m_2 = 1/\cosh^2 2$.

This example points out the usefullness of the second argument of the $\texttt{begin{picture}}$ command. The picture itself is defined in mathematically convenient coordinates, and the lower left corner is assigned the mathematical coordinates (-2.5, -1.5) (black disk). If the second argument were omitted, it would default to (0, 0); as a consequence, the origin of the graph would move to the center of the black disk.

2.3.6 Clocks in gravitational field

Fig. 22: Clocks in gravitational field

```
\setlength{\unitlength}{1mm}
\begin{picture}(120,100)(-8,0)
     \put(35,5){\vector(1,0){50}}
     \t(88,5) {\makebox(0,0){$h$}}
     \polinity (70,2) {\mathbf box (0,0) {\hat b_B$}}
     \mathsf{Multiput}(40,5)(30,0)\{2\}\{\mathsf{line}(0,1)\{90\}\}
     \mbox{\mbox{\mbox{$1$}}} \mbox{\mbox{\mbox{\mbox{$1$}}}} \mbox{\mbox{\mbox{\mbox{$1$}}}} \mbox{\mbox{\mbox{\mbox{$1$}}}} \mbox{\mbox{\mbox{\mbox{$1$}}}} \mbox{\mbox{\mbo
     \mbox{multiput}(40,35)(6,0){5}{\line(1,0){3}}
     \mbox{multiput}(40,65)(6,0){5}{\line(1,0){3}}
     \mbox{multiput}(40,5)(0,30){3}{\circle*{2}}
     \mbox{multiput}(70,35)(0,15){3}{\circle*{2}}
     \mathsf{Multiput}(40,35)(0,30)\{2\}{\mathsf{line}(1,-1)\{30\}}
     \mbox{multiput}(39.75,15)(.25,0){3}{\line}(0,1){10}}
     \mathsf{Multiput}(39,15)(0,10){2}{\mathsf{line}(1,0){2}}
     \mbox{multiput}(69.75,55)(.25,0){3}{\line(0,1){10}}
     \mathsf{Multiput}(69.75,40)(.25,0){3}{\mathsf{line}(0,1){5}}
     \mathsf{Multiput}(69,35)(0,5){7}{\mathsf{line}(1,0){2}}
     \polinity (97,60) {\mathbf makebox(0,0)} 
          \left(-4mm\right)_{0mm}_{0mm}\right. \left(-4mm\right)_{0mm}
          \Delta\tau = 2T_{Cs}\mbox{(lokale Uhr)}
     \put(98,50){\mbox(0,0){$\left\mbox(0,0){\mbox(0,0){\mbox(0,0)}}}
     \put(96,42.5){\makebox(0,0){$\left\}\rule[-1.5mm]{0mm}{3mm}\right.
          \label{lem:leftarrow} $$ \prod_{Cs}\mathbb{C}^{Cs}\mathbb{U}^{s}$
     \t(25,20){\makebox(0,0){\hdots}} = T_{Cs}\right
          \left( -4mm \right) {8mm} \right) %
     \put(38,8){\makebox(0,0){1}}
     \t(17,35)\ \makebox(0,0){ \emph{Start der 1. Uhr} \ \rightarrow$ 2$A$}}
     \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \end{array} \end{array} \end{array} 
                                       {\emph{Explosion der 1. Uhr} $\rightarrow$ 3$A$}}
     \polinimes (93,35) {\makebox(0,0)}
                                       { 2$B \leftarrow$ \emph{Start der 2. Uhr}}}
     \t(74,68) {\mathbf{0,0} {\$3B\$}}
\end{picture}
```

2.3.7 Line of simultaneousness

Fig. 23: Line of simultaneousness

```
\setlength{\unitlength}{1mm}
\begin{picture}(120,68)
  \begin{array}{ll} \begin{array}{ll} & (0,28) \\ & (1,0) \\ & \end{array} \end{array}
  \t(53,7){\vector(0,1){61}} \t(46,66){\ct_A$}
  \put(2,27){\line(3,1){110}}
  \multiput(53,28)(-12,12){2}{\circle*{2}}
  \put(77,52){\circle*{2}}
  \put(53,28){\vector(-1,1){11}} \put(53,28){\vector(1,1){23}}
  \put(54,23){$E_1$} \put(35,41){$E_2$} \put(71,53){$E_3$}
  \put(28,2){$B'$}
                    \mbox{multiput}(30,7)(2,6){9}{\line}(1,3){1.5}}
  \put(51,2){$A$}
  \t(60,2) \B'' \multiput(62,7)(2,6){9}{\line(1,3){1.5}}
  \put(83,54){\line(1,-1){5}}
  \put(89,48){Gerade der} \put(89,44){Gleichzeitigkeit}
  \t(15,54){\t(15,54)}
  \begin{array}{l} \begin{array}{l} \begin{array}{l} 10,52 \\ \end{array} \end{array}
 % arc P1 = (54.0/31.0) P2 = (53.0/28.0) P3 = (53.0/29.0) r = 25.0
 \qbezier(60.9057, 51.7171)(57.0569, 53.0)(53.0, 53.0)
 % arc P1 = (54.0/31.0) P2 = (53.0/28.0) P3 = (53.0/29.0) r = 26.0
 \qbezier(61.2219, 52.6658)(57.2192, 54.0)(53.0, 54.0)
 % arc P1 = (6.0/28.0) P2 = (5.0/28.0) P3 = (8.0/29.0) r = 20.0
 \qbezier(25.0, 28.0)(25.0, 31.2456)(23.9737, 34.3246)
 % arc P1 = (6.0/28.0) P2 = (5.0/28.0) P3 = (8.0/29.0) r = 21.0
  \qbezier(26.0, 28.0)(26.0, 31.4078)(24.9223, 34.6408)
  \put(29.000,32.408){\makebox(0,0){$\alpha'$}}
\end{picture}
```

The inserts in the input file drawing the angle markings are produced, according to Section 2.1.8, with the Java program arc (see appendix for the source file arc.java).

2.3.8 Isotropic spherical waves

Fig. 24: Isotropic spherical waves

```
\setlength{\unitlength}{1mm}
\begin{picture}(50,55)
% Ellipse: u = 25.0 v = 30.0
             a = 20.0 b = 20.0 phi = 0.0 Grad
\qbezier(45.0, 30.0)(45.0, 38.2843)
  (39.1421, 44.1421)
\qbezier(39.1421, 44.1421)(33.2843, 50.0)
  (25.0, 50.0)
\qbezier(25.0, 50.0)(16.7157, 50.0)
  (10.8579, 44.1421)
\qbezier(10.8579, 44.1421)(5.0, 38.2843)
  (5.0, 30.0)
\qbezier(5.0, 30.0)(5.0, 21.7157)
  (10.8579, 15.8579)
\qbezier(10.8579, 15.8579)(16.7157, 10.0)
  (25.0, 10.0)
\qbezier(25.0, 10.0)(33.2843, 10.0)
  (39.1421, 15.8579)
\qbezier(39.1421, 15.8579)(45.0, 21.7157)
  (45.0, 30.0)
  \mbox{multiput}(5,30)(20,0){3}{\circle*{2}}
  \mbox{\mbox{\mbox{$10$}}} (0,40){2}{\circle*{2}}
  \put(32,30){\circle*{2}}
  \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \end{array} \end{array}
  \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \\ \end{array} \end{array} \end{array} 
  \put(25,45){\vector(0,1){10}}
  \put(1,25){$D$} \put(23,25){$A$}
  \put(30,25){$B$} \put(46,25){$C$}
\end{picture}
```

The circle is patched together from 8 quadratic Bézier curves, each covering a 45^0 angle. The **\qbezier** lines can be generated with the command

• java bezierellipse 25 30 20 20.

See the appendix for the source file bezierellipse.java.

2.4 Additional examples of quadratic Bézier curves

2.4.1 Catenary

Fig. 25: Catenary

In Fig. 25, each symmetric half of the catenary $y = \cosh x - 1$ is approximated by a quadratic Bézier curve.

The right half of the curve ends in the point (2, 2.7622), the slope there having the value m=3.6269. Using equation (1) in the section about quadratic Bézier curves, we can calculate the intermediate control points. They turn out to be (1.2384, 0) and (-1.2384, 0). The red crosses indicate points of the real catenary. The error is barely noticeable, being less than one percent.

```
\setlength{\unitlength}{1.3cm}
\begin{array}{ll} \text{put}(2.45, -.05) & \\ \end{array}
             \put(0, 0){\vector(0, 1){3.2}}
              \begin{array}{l} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \\ \\ \end{array} & \begin{array}{ll} \\ \end{array} & \end{array}
             % qbezier P1=(0.0/0.0) m1=0.0
                                                                                     P2=(2.0/2.7622) m2=3.6269
             \qbezier(0.0, 0.0)(1.2384, 0.0)(2.0, 2.7622)
             % qbezier P1=(0.0/0.0) m1=0.0
                                                                                     P2=(-2.0/2.7622) m2=-3.6269
             \qbezier(0.0, 0.0)(-1.2384, 0.0)(-2.0, 2.7622)
              \linethickness{.075mm}
              \mathcal{L}_{0}(0, 1) = \mathcal{L}_{0}(0, 1) 
              \mathcal{L}_{0}(0, 1)_{4}{\dim(1, 0)_{4}}
              \color{red}
             \linethickness{.2mm}
              \put(-.5, -.07237){\line(0, 1){.4}}
                                                                                              .54308){\line(1, 0){.4}}
              \put(.8,
              \put(1,
                                                                                    .34308){\line(0, 1){.4}}
              \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \end{array} & .54308 \end{array} \end{array} \end{array} \end{array} \end{array} 
                                                                                              .34308){\line(0, 1){.4}}
              \put(-1,
              \begin{array}{ll} \begin{array}{ll} (1.3, & 1.35241) {\line(1, 0) {.4}} \end{array} \end{array}
              \end{picture}
```

Using the Java program qbezier (see appendix for the source file qbezier.java), we can generate the qbezier command lines of the input file with the command

- java qbezier 0 0 0 2 2.7622 3.6269,
- java qbezier 0 0 0 -2 2.7622 -3.6269

and insert them into the LATEX file.

Fig. 26: Forces on the catenary

As the picture originally was too close to the caption, "Fig. 26: Forces on the catenary", it was pushed up somewhat by the optional argument (0, -0.1) of the picture environment.

```
\setlength{\unitlength}{3cm}
\begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \\ \end{array} \end{array}
                          \put(1.85, -0.03){$x$}
                          \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \end{array} \end{array} \end{array} 
                          \begin{array}{c} \text{(0.07, 2.70)} & \\ \end{array}
                          \thicklines
                            \qbezier(0.399, 0.467)(0.797, 0.998)
                                                                                                                                             (1.118, 1.962)
                          \thinlines
                            \mathsf{Multiput}(0.399, 0)(0, 0.1){3}
                                                                                                                                                           {\line(0,1)\{0.05\}}
                          \mathsf{Multiput}(1.118, 0)(0, 0.1)\{20\}
                                                                                                                                                           {\line(0,1)\{0.05\}}
                          \begin{array}{ll} \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ \end{array} \\ & \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ \end{array} \\ \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ \end{array} \\ \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ \end{array} \\ \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ \end{array} \\ \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ \end{array} \\ \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ \end{array} \\ \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ \end{array} \\ \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ \end{array} \\ \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ \end{array} \\ \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ \end{array} \\ \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ \end{array} \\ \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ \end{array} \\ \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ \end{array} \\ \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ \end{array} \\ \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ \end{array} \\ \begin{array}{ll} & -0.08 \\ & \begin{array}{ll} & -0.08 \\ & \end{array} \\ \begin{array}{ll} & -0.08 \\ & 
                            \mathsf{Multiput}(0.399, 0.467)(0, -0.267)\{2\}
                                                                                                                                                           {\line(-1, 0){0.2}}
                            \mathsf{Multiput}(0.399, 0.467)(-0.2, 0){2}
                                                                                                                                                           {\line(0, -1)\{0.267\}}
                            \begin{array}{l} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \begin{array}{ll} \end{array} & \end{array} & \end{array} & \\ & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \\ & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{ll} \\ & \end{array} & \end{array} & \begin{array}{l
                            \mathsf{Multiput}(1.118, 1.962)(0, 0.6){2}
                                                                                                                                                           {\line(1,0)\{0.2\}}
                            \multiput(1.118, 1.962)(0.2, 0){2}
                                                                                                                                                           {\line(0,1)\{0.6\}}
                            \begin{array}{ll} \begin{array}{ll} & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 
                            \begin{array}{ll} \begin{array}{ll} & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 1.962 \\ & 
                            \begin{array}{ll} \begin{array}{ll} & 1.87 \\ & \\ \end{array} \end{array}
                            \put(1.02, 2.22){\makebox(0,0){$V_2$}}
                          \begin{array}{ll} \begin{array}{ll} & (0.797, 1.195) \\ & \end{array} \end{array}
                          \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} 1.195 \end{array} \end{array} \end{array} \end{array} 
                            \put(0.83,1.0){$G$}
  \end{picture}
```


Fig. 27: Catenaries of constant length

From the equation

$$\frac{y}{a} = \cosh\frac{x}{a} - 1$$

of the catenary, it is seen that all catenaries can be obtained by scaling the curve $y = \cosh x - 1$ with factor a. A catenary of length L having its vertex in the origin and ending in the point (u, v) satisfies (see www.vsmp.ch, Bulletin nr. 87) the equations

$$\begin{cases} v = \sqrt{L^2 + a^2} - a, \\ u = \frac{L^2 - v^2}{2v} \ln \frac{L + v}{L - v}, \\ m = \sinh \frac{u}{a}. \end{cases}$$

From these equations, for L = 1 we get:

a	u	v	m
0.1	0.2998	0.9050	10
0.2	0.4625	0.8198	5
0.3	0.5757	0.7440	3.3333
0.4	0.6589	0.6770	2.5
0.5	0.7218	0.6180	2
0.6	0.7703	0.5662	1.6667
0.7	0.8081	0.5207	1.4286
0.8	0.8381	0.4806	1.25
0.9	0.8620	0.4454	1.1111
1	0.8814	0.4142	1
1.1	0.8972	0.3866	0.9091
1.2	0.9102	0.3620	0.8333

```
\setlength{\unitlength}{5cm}
\begin{picture}(1.2, 1.3)
         \begin{array}{c} \begin{array}{c} (1.17, -.015) \\ \end{array}
        \t(0, 0) {\t(0, 1) {1.15}}
         \begin{array}{l} \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \\ \end{array} & \begin{array}{ll} \\ \end{array} &
        % qbezier P1=(0.0/0.0) m1=0.0
                                                       P2=(0.2998/0.905) m2=10.0
         \qbezier(0.0,0.0)(0.2093,0.0)(0.2998,0.905)
        % qbezier P1=(0.0/0.0) m1=0.0
                                                       P2=(0.4625/0.8198) m2=5.0
         \qbezier(0.0,0.0)(0.2985,0.0)(0.4625,0.8198)
        % qbezier P1=(0.0/0.0) m1=0.0
                                                       P2=(0.5757/0.744) m2=3.3333
         \qbezier(0.0,0.0)(0.3525,0.0)(0.5757,0.744)
        % qbezier P1=(0.0/0.0) m1=0.0
                                                       P2=(0.6589/0.677) m2=2.5
         \qbezier(0.0,0.0)(0.3881,0.0)(0.6589,0.677)
        % qbezier P1=(0.0/0.0) m1=0.0
                                                       P2=(0.7218/0.618) m2=2.0
         \qbezier(0.0,0.0)(0.4128,0.0)(0.7218,0.618)
        % qbezier P1=(0.0/0.0) m1=0.0
                                                       P2=(0.7703/0.5662) m2=1.6667
        \qbezier(0.0,0.0)(0.4306,0.0)(0.7703,0.5662)
        % qbezier P1=(0.0/0.0) m1=0.0
                                                       P2=(0.8081/0.5207) m2=1.4286
         \qbezier(0.0,0.0)(0.4436,0.0)(0.8081,0.5207)
        % qbezier P1=(0.0/0.0) m1=0.0
                                                       P2=(0.8381/0.4806) m2=1.25
         \qbezier(0.0,0.0)(0.4536,0.0)(0.8381,0.4806)
        % qbezier P1=(0.0/0.0) m1=0.0
                                                       P2=(0.862/0.4454) m2=1.1111
         \qbezier(0.0,0.0)(0.4611,0.0)(0.862,0.4454)
        % qbezier P1=(0.0/0.0) m1=0.0
                                                       P2=(0.8814/0.4142) m2=1.0
         \qbezier(0.0,0.0)(0.4672,0.0)(0.8814,0.4142)
        % gbezier P1=(0.0/0.0) m1=0.0
                                                       P2=(0.8972/0.3866) m2=0.9091
        \qbezier(0.0,0.0)(0.4719,0.0)(0.8972,0.3866)
        % qbezier P1=(0.0/0.0) m1=0.0
                                                       P2=(0.9102/0.362) m2=0.8333
        \qbezier(0.0,0.0)(0.4758,0.0)(0.9102,0.362)
         \put(0.5757, 0.744){\circle*{.015}}
        \put(0.6,
                                                                      0.74){$(u,v)$}
        \put(0.5,
                                                                      0.05){$L$}
        \put(0.18,
                                                                          0.45){$L$}
        \poline{0, 1}{.04}
         \begin{array}{l} \text{(1, .06)} \\ \text{(makebox(0, 0)} \\ \end{array} \end{array}
         \put(.03, .98){$L$}
\end{picture}
```

Using equation (1) in the section about quadratic Bézier curves, we can calculate the intermediate control points. Or we can, by using the Java program qbezier described there (see appendix for the

2.4.4 Circles and ellipses

Fig. 28: Circles and ellipses

The circle (a = b = 1.9) was built from 8 arcs, each of 45 degrees, and each approximated by a quadratic Bézier curve. Circles and ellipses can then be obtained by rotating, scaling and translating.

Thus, the building block of all the circles and ellipses is the quadratic Bézier curve determined by the control points

$$\begin{cases}
P_1 &= (1/0), \\
P_2 &= (1/\sqrt{2} - 1), \\
P_3 &= \left(\frac{1}{2}\sqrt{2} / \frac{1}{2}\sqrt{2}\right) :
\end{cases} (2)$$

Fig. 29: 45 degrees arc

```
\setlength{\unitlength}{1cm}
\begin{picture}(6, 4)
 \linethickness{0.075mm}
 \mbox{multiput}(0, 0)(1, 0){7}{\line}(0, 1){4}}
  \mathsf{Multiput}(0, 0)(0, 1){5}{\mathsf{line}(1, 0){6}}
 % Ellipse: u=3.0 v=2.0 a=1.9 b=1.9
              phi=0.0 Grad
  \qbezier(4.9,2.0)(4.9,2.787)(4.3435,3.3435)
  \qbezier(4.3435, 3.3435)(3.787, 3.9)(3.0, 3.9)
  \qbezier(3.0,3.9)(2.213,3.9)(1.6565,3.3435)
  \qbezier(1.6565,3.3435)(1.1,2.787)(1.1,2.0)
  \qbezier(1.1,2.0)(1.1,1.213)(1.6565,0.6565)
  \qbezier(1.6565,0.6565)(2.213,0.1)(3.0,0.1)
  \qbezier(3.0,0.1)(3.787,0.1)(4.3435,0.6565)
  \qbezier(4.3435,0.6565)(4.9,1.213)(4.9,2.0)
 \% Ellipse: u=3.0 v=2.0 a=2.8 b=0.9
 %
              phi=0.0 Grad
  \qbezier(5.8,2.0)(5.8,2.3728)(4.9799,2.6364)
  \qbezier(4.9799,2.6364)(4.1598,2.9)(3.0,2.9)
  \qbezier(3.0,2.9)(1.8402,2.9)(1.0201,2.6364)
  \qbezier(1.0201,2.6364)(0.2,2.3728)(0.2,2.0)
  \qbezier(0.2,2.0)(0.2,1.6272)(1.0201,1.3636)
  \qbezier(1.0201,1.3636)(1.8402,1.1)(3.0,1.1)
  \qbezier(3.0,1.1)(4.1598,1.1)(4.9799,1.3636)
  \qbezier(4.9799,1.3636)(5.8,1.6272)(5.8,2.0)
 \thicklines
 % Ellipse: u=3.0 v=2.0 a=0.9 b=1.7
              phi=30.0 Grad
  \qbezier(3.7794,2.45)(3.4273,3.0598)
          (2.9501, 3.3592)
  \qbezier(2.9501,3.3592)(2.4728,3.6586)
          (2.15, 3.4722)
  \qbezier(2.15,3.4722)(1.8272,3.2858)
          (1.8478, 2.7228)
  \qbezier(1.8478,2.7228)(1.8685,2.1598)
          (2.2206, 1.55)
  \qbezier(2.2206,1.55)(2.5727,0.9402)
          (3.0499, 0.6408)
  \qbezier(3.0499,0.6408)(3.5272,0.3414)
          (3.85, 0.5278)
  \qbezier(3.85,0.5278)(4.1728,0.7142)
          (4.1522, 1.2772)
  \qbezier(4.1522,1.2772)(4.1315,1.8402)
          (3.7794, 2.45)
  \end{picture}
```

The quadratic Bézier curve with control points (2) is given by the equation

$$\mathbf{r}(t) = (1-t)^2 \binom{1}{0} + 2(1-t)t \binom{1}{\sqrt{2}-1} + t^2 \binom{\frac{1}{2}\sqrt{2}}{\frac{1}{2}\sqrt{2}}.$$

From this, we get:

$$||\mathbf{r}(t)||^2 = 1 + (10 - 7\sqrt{2})(1 - t)^2 t^2,$$
 (3)

$$\left\| \mathbf{r} \left(\frac{1}{2} \right) \right\|^2 = \frac{1}{4} \sqrt{26 - 7\sqrt{2}} \approx 1.003135.$$

The error amounts to approximately 0.3 percent. From (3), we further conclude that $||\mathbf{r}(t)|| > 1$ for 0 < t < 1. Letting $t = s + \frac{1}{2}$, we can see the symmetry with respect to $t = \frac{1}{2}$:

$$||\mathbf{r}(s)||^2 = 1 + (10 - 7\sqrt{2}) \left(s^2 - \frac{1}{4}\right)^2 \qquad \left(-\frac{1}{2} \le s \le \frac{1}{2}\right).$$

The Java program bezierellipse (see appendix for the source file bezierellipse.java) generates a file, ellipse.tex, which can be pasted into a picture environment. Running the program with

• java bezierellipse $\langle u \rangle \langle v \rangle \langle a \rangle \langle b \rangle \langle phi \rangle$

produces a file representing the ellipse with center (u/v) and radii a und b, and rotated by $\langle phi \rangle$ degrees. Thus, the $\langle phi \rangle$ degrees in the present example can be produced by invoking

- java bezierellipse 3 2 1.9 1.9 0
- java bezierellipse 3 2 2.8 0.9 0
- java bezierellipse 3 2 0.9 1.7 30

2.5 Enhancing the picture environment with packages epic und eepic

The packages epic and eepic enhance the picture environment. They are extensively described in Goossens, Mittelbach, Samarin[1].

2.5.1 Two applications of epic: matrixput and putfile

The two following examples require the command \usepackage{epic} in the preamble of the LATEX file.

The $\mbox{\mbox{\it matrixput command}}$

The \matrixput command is the natural generalization of the \multiput command to two dimensions.

The \putfile command

Fig. 31

```
\setlength{\unitlength}{1mm}
\begin{picture}(62, 40)
\newsavebox{\punkt}
\savebox{\punkt}(0, 0)[1]{%
\put(0, 0){\circle*{1}}
\put(0, 0){\circle{2}}
\multiput(-3, 0)(4, 0){2}{\line(1, 0){2}}
\multiput(0, -3)(0, 4){2}{\line(0, 1){2}}
}
\multiput(0, 0)(62, 0){2}{\line(0, 1){40}}
\multiput(0, 0)(0, 40){2}{\line(1, 0){62}}
\putfile{data/datafile1}{\circle{2}}
\putfile{data/datafile2}{\usebox{\punkt}}
\end{picture}
```

The slash in the command \putfile{data/datafile1} may have to be replaced by the backslash on a Windows system. The two files datafile1 and datafile2 contain one coordinate pair on each line:

2.5.2 Line segments and circles in the eepic package

Fig. 32: Line segments and circles in the eepic package

This example requires the command \usepackage{eepic} in the preamble of the LATEX file.

With the use of the eepic package, line segments of any slope (defined by two integers), and circles of any radius can be drawn within the picture environment.

Remark. pdflatex cannot deal directly with commands of the eepic package. The picture was generated with the commands

latex | dvips | ps2pdf

and subsequently converted into a png picture. This was then imported with the includegraphics command.

```
\setlength{\unitlength}{1mm}
\begin{picture}(60, 44)
 \mbox{multiput}(0, 0)(60, 0){2}{\line}(0, 1){44}}
 \mathsf{Multiput}(0, 0)(0, 44){2}{\mathsf{line}(1, 0){60}}
 % requires eepic
 \put(30, 22){\circle{40}}
 \put(30, 22){\circle{36}}
 \put(30, 22){\circle{8}}
 \put(30, 22){\circle{4}}}
 % direction vectors must consist of
 % integers
 \put(30, 22){\line(30, 0){30}}
 \poline{30, 22}{\line(30, 1){30}}
 \put(30, 22){\line(30, 2){30}}
 \put(30, 22){\line(30, 20){30}}
 \poline{30, 22}{\line(30, 21){30}}
 \poline{30, 22}{\line(30, 22){30}}
 \% direction vectors must consist of
 % integers
 \poline{30, 22}{\line(-30, -0){30}}
 \t(30, 22){\langle -30, -1 \rangle}
 \poline{(30, 22){\langle line(-30, -2){(30)}}}
 \put(30, 22){\line(-30, -20){30}}
 \poline{30, 22}{\line(-30, -21){30}}
 \poline{30, 22}{\line(-30, -22){30}}
\end{picture}
```

3 The pspicture Environment of the pstricks Package

Unlike epic and eepic, the pstricks package brings with it its own environment, pspicture, with drawing commands different from those of the picture environment. A detailed description can be found in GOOSSENS, RAHTZ, MITTELBACH[2].

Remark. pdflatex cannot deal directly with commands of the pstricks package. The pictures in Section 3 were generated with the commands

and subsequently converted into png pictures. These were then imported with the \includegraphics command.

3.1 Line segments and circles

3.1.1 Regular polygon

Fig. 33: Regular polygon

This example illustrates how line segments of arbitrary slopes can be drawn within the pspicture environment. The command $\protect\operatorname{pspicture} 3 \protect\operatorname{cm} 3 \protect\operatorname{cm} 1 \protect\operatorname{pspicture} 3 \protect\operatorname{cm} 1 \protect\operatorname{pspicture} 3 \protect\operatorname{p$

```
\psset{linewidth=1pt}
```

for the periphery, and by

\psset{linewidth=.1pt}

for the diagonals.

```
\psset{unit=3cm}
\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array}
  \psset{linewidth=1pt}
  \psline(2.0000,1.0000)(1.9325,1.3612)
  \psline(1.9325,1.3612)(1.7390,1.6737)
  \psline(1.7390,1.6737)(1.4457,1.8952)
  \psline(1.4457,1.8952)(1.0923,1.9957)
  \psline(1.0923,1.9957)(0.7263,1.9618)
  \psline(0.7263,1.9618)(0.3974,1.7980)
  \psline(0.3974,1.7980)(0.1498,1.5264)
  \psline(0.1498,1.5264)(0.0170,1.1837)
  \psline(0.0170,1.1837)(0.0170,0.8163)
  \psline(0.0170,0.8163)(0.1498,0.4736)
  \psline(0.1498,0.4736)(0.3974,0.2020)
  \psline(0.3974,0.2020)(0.7263,0.0382)
  \psline(0.7263,0.0382)(1.0923,0.0043)
  \psline(1.0923,0.0043)(1.4457,0.1048)
  \psline(1.4457,0.1048)(1.7390,0.3263)
  \psline(1.7390,0.3263)(1.9325,0.6388)
  \psline(1.9325,0.6388)(2.0000,1.0000)
  \psset{linewidth=.1pt}
  \psline(2.0000,1.0000)(1, 1)
  \psline(1.9325,1.3612)(1, 1)
  \propty
  \psline(1.4457,1.8952)(1, 1)
  \psline(1.0923,1.9957)(1, 1)
  \propty
  \poline(0.3974, 1.7980)(1, 1)
  \psline(0.1498,1.5264)(1, 1)
  \psline(0.0170,1.1837)(1, 1)
  \psline(0.0170,0.8163)(1, 1)
  \poline(0.1498, 0.4736)(1, 1)
  \protect{psline}(0.3974, 0.2020)(1, 1)
  \propty (0.7263, 0.0382)(1, 1)
  \propty
  \psline(1.4457,0.1048)(1, 1)
  \psline(1.7390,0.3263)(1, 1)
  \psline(1.9325,0.6388)(1, 1)
\end{pspicture}
```

The points P_i (i = 0, ..., 16) are determined by

$$\begin{cases} x_i = 1 + \cos\left(i \cdot \frac{2\pi}{17}\right), \\ x_i = 1 + \sin\left(i \cdot \frac{2\pi}{17}\right). \end{cases}$$

3.1.2 Triangle

Fig. 34: Triangle

```
\psset{unit=.45pt}
\begin{pspicture}*(420, 420)
 \psset{linewidth=.4pt}
 % Frame
 \pspolygon(0, 0)(420, 0)(420, 420)(0, 420)
 % Umkreis und Inkreis
 \pscircle(206, 222){166.18}
 \pscircle(250, 197){75.42}
 % Ankreise
 \pscircle[linestyle=dashed](476, 135){157.68}
 \pscircle[linestyle=dashed](-32, -22){266.53}
 \pscircle[linestyle=dashed](132, 579){315.92}
 % triangle
 \psset{linewidth=1pt}
 \pspolygon(43, 253)(361, 283)(287, 77)
 % nine-points circle (Feuerbach)
 \pscircle[linestyle=dotted](242, 195){83.09}
\end{pspicture}
```

This example illustrates that pstricks allows the drawing of circles with arbitrary radii. The * after $\{pspicture\}$ causes the picture to be clipped to the frame determined by (420, 420). The upper left corner not being mentioned, it defaults to (0,0).

In the picture, a triangle is drawn with the inscribed and the circumscribed circle (solid), the three adjacent circles (dashed), and the nine point (Feuerbach) circle (dotted).

3.1.3 Loops and calculations

Fig. 35: Loops and calculations

```
\newcounter{i} \setcounter{i}{1}
\newcounter{j} \setcounter{j}{0}
\newcounter{r} \setcounter{r}{0}
\usepackage{pstricks}
\usepackage{ifthen}
\usepackage{calc}
\psset{unit=.66mm}
\begin{document}
\begin{pspicture}*(100, 100)
  \pspolygon(0, 0)(100, 0)(100, 100)(0, 100)
  \psset{linewidth=.1pt}
  \whiledo{\value{i}<25}{\%}
    \setcounter{j}{\value{i}*4}
    \setcounter{r}{\value{i}*3}
    \pscircle(\value{j},\value{j}){\value{r}}}
    \stepcounter{i}
\end{pspicture}
\end{document}
```

As this example shows, with the calc and the ifthen packages, LATEX assumes the capability of running through loops, taking decisions, and doing calculations. The * after {pspicture} causes the picture to be clipped to the frame determined by (100, 100). The upper left corner not being mentioned, it defaults to (0,0).

3.1.4 A remark about latex2html

Unlike the latex command, the latex2html command expects all \psset commands to be placed within the pspicture environment. Otherwise, \psset is considered unknown. Thus the arguments of the \begin{pspicture} command always have to be given in the default unit, which is 1 cm.

3.2 More applications

The following examples are taken from GOOSSENS, RAHTZ, MITTELBACH[2], with slight variations. They are intended to give some hints as to the versatility of the pstricks package, and the related packages,

While the latex2html command is capable of processing pstricks commands, it cannot process pstcol, pst-grad, pst-text, pst-node, or pst-tree commands. Thus, we get the following overview:

	latex	latex2html	pdflatex
epic	+	+	+
eepic	+	+	-
pstricks	+	+	-
pstcol,	+	-	_

3.2.1 Tribox

Fig. 36: Tribox

3.2.2 Curved text

And the late of th

Fig. 37: Curved text

\usepackage{pstricks, pstcol, pst-text}

\begin{pspicture}(-4, -3.2)(3, 0.2)
\psset{linecolor=white} % hidden
\pstextpath
\{\pscurve(-4, -2)(-2, 0)(0, -3)(2, -1)%}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5, -3) \}
\((3, -2)(5

Fig. 38: Logo

\usepackage{pstricks, pstcol, pst-text, pst-grad} \definecolor{pink}{rgb}{1, .75, .8} \begin{document} \begin{pspicture}(-3, -2.2)(3, 2.2) \psset{linestyle=none} \newcommand{\curly}[1]{{\fontfamily{pzc}% $\int fontsize{17}{17}\to fontsize{17}{17}$ \pstextpath[c]{\psarcn(0, 0){2}{180}{0}} {\curly{The Unseen University}} \pstextpath[c]{\psarc(0, 0){2}{180}{0}} {\curly{Ankh-Morpork,Discworld}} \pscircle[fillstyle=gradient, gradangle=45, gradbegin=pink, gradend=yellow](0, 0){1.7} \rput[B](0, 0){{\Large\itshape\bfseries Rincewind, Arch Chancellor \end{pspicture} \end{document}

3.2.4 Knots

Fig. 39: Knots

3.2.5 Family tree

Fig. 40: Family tree

```
\usepackage{pstricks, pstcol, pst-node, pst-tree}
\renewcommand\psedge{\nccurve}
\newcommand{\Female}[2][]{{\psset{linecolor=lightgray}\TR[#1]{\emph{#2}}}}
\label{linecolor=black} $$\operatorname{\mathbb{Z}[]_{{\psset{linecolor=black}\TR[\#1]_{\#2}}}$$
\psset{nodesep=2pt, angleA=90, angleB=-90}
\begin{document}
  \pstree[treemode=U]{\Female{{\bfseries Matilde}}}{{%
    \pstree{\Male{Sebastian}}{%
      \pstree{\Male[name=P]{Philip}}{\Male{Frederick}\Female{Ethel}}
      \pstree{\Female[name=W]{Mary}}{\Male{Lionel}\Female{Agnes}}}
    \pstree{\Female{Leonor}}{%
      \pstree{\Male[name=R]{Ra\'ul}}{\Male{Joaquim}\Female{J\'ulia}}
      \pstree{\Female[name=A]{Am\'elia}}{\Male{\'Alvaro}\Female{Augusta}}}}
    \psset{doubleline=true, linestyle=dotted}
    \cline{P}{W}\nbput{1940}
    \nellet R \A \n \put \{1954\}
\end{document}
```

4 MetaPost

MetaPost is a twin of Donald Knuth's METAFONT, which was written for the purpose of generating new fonts. MetaPost was derived from METAFONT by John D. Hobby, who writes about it:

MetaPost is a programming language much like Knuth's METAFONT except that it outputs PostScript programs instead bitmaps. Borrowed from METAFONT are the basic tools for creating and manipulating pictures. These include numbers, coordinate pairs, cubic splines, affine transformations, text strings, and boolean quantities. Additional features integrating text and graphics and accessing special features of PostScript such as clipping, shading, and dashed lines. Another feature borrowed from METAFONT is the ability to solve linear equations that are given implicitly, thus allowing many programs to be written in a largely declarative style. By building complex operations from simpler ones, MetaPost achieves both power and flexibility.

MetaPost is particularly well-suited to generating Fig.s for technical documents where some aspects of a picture may be controlled by mathematical or geometrical constraints that are best expressed symbolically. In other words, MetaPost is not meant to take the place of a freehand drawing tool or even an interactive graphics editor.

A good way to start working with MetaPost is by using Hobby[3], whereas the complete background can be found in Knuth[5]. Hoenig[4] and Goossens, Rahtz, Mittelbach[2] also contain many valuable examples.

An online *tutorial* is found under http://www.ursoswald.ch.

4.1 Examples

The following examples are meant to suggest the versatility of MetaPost.

Fig. 41: Sphere

Fig. 42: Regular polygons

Fig. 43: Fourier series

Fig. 44: Organization

Fig. 45: Spiral

4.2 A source file

The file Transform.mp (see appendix) can give a taste of MetaPost programming. It generates the two pictures of Fig. 42. The section between beginfig(1) and the subsequent endfig; defines the left picture, and the section between beginfig(2) and the second endfig; defines the picture on the right. On the command

• mpost Transform

(or mpost Transform.mp), MetaPost generates two files, Transform.1 and Transform.2, which can be imported in a LATEX document with the commands

- \includegraphics{Transform.1},
- \includegraphics{Transform.2}.

The LATEX file can be processed by both latex and latex2html. If it is to be processed by pdflatex, the line

• \DeclareGraphicsRule{*}{mps}{*}{}

must be entered in the preamble.

Remark. On certain systems, mp is to be used instead of mpost.

5 Appendix

A qbezier.java

```
import java.io.*;
class qbezier {
  static void main(String[] args) {
    if(args.length != 6) {
     System.out.println("Gebrauch: java qbezier x1 y1 m1 x2 y2 m2");
   }
   File outfile = new File("qbezier.tex");
   try {
      double x1 = Double.parseDouble(args[0]);
     double y1 = Double.parseDouble(args[1]);
     double m1 = Double.parseDouble(args[2]);
      double x2 = Double.parseDouble(args[3]);
      double y2 = Double.parseDouble(args[4]);
      double m2 = Double.parseDouble(args[5]);
      if(m1 == m2) {
        System.out.println("Keine Auswertung mglich:");
       System.out.println("m1 und m2 mssen verschieden sein");
       return;
     }
     String outstring = "% qbezier P1=("+x1+"/"+y1+") m1="+m1+" P2=("+x2+"/"+y2+") m2="+m2;
      outstring += "\n\\qbezier";
      double x = (m2*x2-m1*x1+y1-y2) / (m2-m1);
      double u = y1+m1*(x-x1);
      double v = y2+m2*(x-x2);
      double y = 0.5*(u+v);
      outstring += "(" + runde(x1) + ", " + runde(y1) + ")";
      outstring += "(" + runde(x) + ", " + runde(y) + ")";
      outstring += "(" + runde(x2) + ", " + runde(y2) + ")";
     FileWriter out = new FileWriter(outfile.getPath(), false);
      out.write(outstring);
      out.close();
    catch(NumberFormatException e) {
      System.out.println("Eingabe nicht korrekt");
      System.out.println("Korrekte Eingabe: x1 y1 m1 x2 y2 m2");
    catch(IOException e) {
   }
  static String runde(double t) {
   String s = "";
   int T = (int)(Math.round(10000 * t));
   double d = T/10000.0;
   s = String.valueOf(d);
    return s;
}
```

B bezierellipse.java

```
import java.io.*;
class bezierellipse {
  /*
   * 16.11.2002 Urs Oswald osurs@bluewin.ch
  * erzeugt Datei "ellipse.tex"
  * ueberschreibt allanfalls vorhandene Datei dieses Namens
  * Ellipse wird aus 8 quadratischen Bezierkurven zusammengesetzt
  * Gebrauch: java bezierellipse [u [v [a [b [phi]]]]]
  */
  static double[] uvabp = new double[5];
 static double[] xx = new double[16];
static double[] yy = new double[16];
  static double sc45 = .5f * Math.sqrt(2);
                                                   // Einheitskreis
  static{
                                                  // u = 0
   uvabp[0] = 0.0;
                                                   //v = 0
   uvabp[1] = 0.0;
                                                   // a = 1
   uvabp[2] = 1.0;
   uvabp[3] = 1.0;
                                                   // b = 1
   uvabp[4] = 0.0;
                                                  // phi = 0
  static void main(String[] args) {
    /*
     * args[0], args[1]: Mittelpunkt (u, v)
     * args[2], args[3]: Halbachsen a, b
                          Rotationswinkel phi in Grad
     * args[4]:
     */
    double[] xy;
   for(int i=0;i<5;i++)
                                                   // Aufgrund des Arguments aendern:
                                                   // Mittelpunkt (u,v)
      if(args.length > i)
uvabp[i] = Double.parseDouble(args[i]); // Halbachsen a, b und Rotation p
   String str = "% Ellipse:";
    str += " u = " + uvabp[0];
   str += " v = " + uvabp[1];
   str += " a = " + uvabp[2];
   str += " b = " + uvabp[3];
   str += " phi = " + uvabp[4] + " Grad";
   uvabp[4] = Math.PI*uvabp[4]/180;
                                                  // Rotationswinkel in Radian
   xx[0] = 1; yy[0] = 0;
                                                  // P0
   xx[1] = 1; yy[1] = Math.sqrt(2) - 1;
                                                  // P1
   for(int i=1;i<8;i++) {
                                                  // Berechnung der Punkte P2,...,P15
      double phi = i * Math.PI / 4;
                                                  // des Einheitskreises
      xy = rotate(xx[0], yy[0], phi);
      xx[2*i] = xy[0]; yy[2*i] = xy[1];
      xy = rotate(xx[1], yy[1], phi);
      xx[2*i+1] = xy[0]; yy[2*i+1] = xy[1];
   }
   for(int i=0;i<16;i++) {
                                                   // Streckung, Rotation, Verschiebung
      xx[i] = xx[i] * uvabp[2];
                                                  // x-Streckung
      yy[i] = yy[i] * uvabp[3];
                                                  // y-Streckung
```

```
xy = rotate(xx[i], yy[i], uvabp[4]);
                                           // Rotation
      xx[i] = xy[0] + uvabp[0];
                                                // Translation (u, 0)
                                                // Translation (0, v)
      yy[i] = xy[1] + uvabp[1];
    for(int i=0;i<15;i+=2)
      str+="\n\\qbezier"
       +punkt(i)+punkt(i+1)+punkt((i+2)%16);
                                                // Anfuegen der 8 Zeilen
     File outfile = new File("ellipse.tex");
      try {
outfile.createNewFile();
                                         // in "ellipse.tex" schreiben
FileWriter out =
  new FileWriter(outfile.getPath(), false);
out.write(str);
out.close();
      }
      catch(IOException e) {
      }
  }
  static double[] rotate(double x, double y, double phi) {
     * phi im Bogenmass
    */
    double[] xy = new double[2];
    xy[0] = x * Math.cos(phi) - y * Math.sin(phi);
    xy[1] = x * Math.sin(phi) + y * Math.cos(phi);
    return xy;
  static String runde(double t) {
    String s = "";
    int T = (int)(Math.round(10000 * t));
    double d = T/10000.0;
    s = String.valueOf(d);
    return s;
  static String punkt(int i) {
    String s;
    s="(" + runde(xx[i]) + ", " + runde(yy[i]) + ")";
    return s;
 }
}
```

C arc.java

```
import java.io.*;
class arc {
  static double[] xx;
  static double[] yy;
  static double r;
  static void main(String[] args) {
     * Urs Oswald osurs@bluewin.ch, 18.11.2002
     * Eingabe: x1 y1 x2 y2 x3 y3 r
     * schreibt arc.tex: LaTeX-Datei fuer Bogen
     * mit Radius r im Winkel P1-P2-P3 (Scheitel: P2)
     * ueberschreibt allfaellig schon vorhandene Datei desselben Namens
     */
    if(args.length < 7) {
      System.out.println("Schreibt arc.tex fr Bogen mit Radius r im Winkel P1-P2-P3");
     System.out.println("Gebrauch: java arc x1 y1 x2 y2 x3 y3 r");
     return;
   }
   String outstring = "";
   double a, rot;
   double[] xy;
   xx = new double[4];
                                                  // P3: mittlerer (Kontroll-)Punkt
   yy = new double[4];
    xx[1] = Double.parseDouble(args[0]);
                                                  // P1 --> 1
   yy[1] = Double.parseDouble(args[1]);
    xx[0] = Double.parseDouble(args[2]);
                                                  // P2 --> 0
   yy[0] = Double.parseDouble(args[3]);
   xx[2] = Double.parseDouble(args[4]);
                                                  // P3 --> 2
   yy[2] = Double.parseDouble(args[5]);
        = Double.parseDouble(args[6]);
                                                  // r
    outstring += "% arc\n";
   outstring += "% P1 = ("+xx[1]+"/"+yy[1]+")";
    outstring += " P2 = ("+xx[0]+"/"+yy[0]+")";
    outstring += " P3 = ("+xx[2]+"/"+yy[2]+")";
    outstring += " r = " + r;
   xx[1] = xx[1] - xx[0]; yy[1] = yy[1] - yy[0]; // Verschiebung des Scheitels
   xx[2] = xx[2] - xx[0]; yy[2] = yy[2] - yy[0]; // in den Ursprung
    a = Math.sqrt(xx[1]*xx[1] + yy[1]*yy[1]);
                                               // Einheitsvektor (xx[1], yy[1])
    xx[1] = xx[1] / a; yy[1] = yy[1] / a;
    a = Math.sqrt(xx[2]*xx[2] + yy[2]*yy[2]);
                                                 // Einheitsvektor (xx[2], yy[2])
   xx[2] = xx[2] / a; yy[2] = yy[2] / a;
   rot = 0.5*(angle(xx[1], yy[1])
                                                  // rot: Neigungswinkel der
               +angle(xx[2], yy[2]));
                                                          Winkelhalbierenden
   xy = rotate(xx[1], yy[1], -rot);
                                                  // Rotation: Ziel ist
    xx[1] = xy[0]; yy[1] = xy[1];
                                                  // Symmetrie zur x-Achse
    xy = rotate(xx[2], yy[2], -rot);
   xx[2] = xy[0]; yy[2] = xy[1];
   xx[3] = 1 / xx[1]; yy[3] = 0;
                                                  // qbezier-Punktfolge: P1 P3 P2
   for(int i=1;i<4;i++) {
      xy = rotate(xx[i], yy[i], rot);
                                                  // Zurueckrotieren
      xx[i] = r * xy[0] + xx[0];
                                                  // Strecken und Zurueckschieben
```

```
yy[i] = r * xy[1] + yy[0];
    outstring += "\n\\qbezier"
      + punkt(1)+punkt(3)+punkt(2);
                                                 // Anfuegen der 3 Punkte
    File outfile = new File("arc.tex");
                                                 // in Datei schreiben
     FileWriter out =
        new FileWriter(outfile.getPath(), false); // ueberschreibt allfaellig schon
                                                  // bestehende Datei "arc.tex"
      out.write(outstring);
      out.close();
    }
    catch(IOException e) {
    }
  }
  static double angle(double x, double y) {
         Resultat: Radian, 0 <= phi < 2PI
    */
    double phi = 0.0;
    double a = Math.sqrt(x*x + y*y);
    x = x/a;
    y = y/a;
    phi = Math.acos(x);
    if(y<0)
     phi = 2*Math.PI-phi;
    return phi;
  static double[] rotate(double x, double y, double phi) {
    /*
     * phi im Bogenmass
    */
    double[] xy = new double[2];
    xy[0] = x * Math.cos(phi) - y * Math.sin(phi);
    xy[1] = x * Math.sin(phi) + y * Math.cos(phi);
    return xy;
  static String runde(double t) {
    String s = "";
    int T = (int)(Math.round(10000 * t));
    double d = T/10000.0;
    s = String.valueOf(d);
   return s;
  static String punkt(int i) {
    String s;
    s="(" + runde(xx[i]) + ", " + runde(yy[i]) + ")";
    return s;
 }
}
```

D Transform.mp

```
\% 25 = 25bp = 25 PostScript points = 30/72 in
u := 25;
wi:=10;
                          % width in units u
he:=8;
                         % height in units u
                         % height
hoehe:=he*u;
breite:=wi*u;
                         % width
R:=3.7;
                        % maximum radius in units u
n := 17;
                         % number of edges
phi:=360/(n*10);
phi:=360/(n*5);
                        % rotation angle
def draw_point(expr P, col) =
  unfill fullcircle scaled 1.5mm shifted P withcolor white;
        fullcircle scaled 1.5mm shifted P withcolor col;
enddef;
transform t, Rot, T;
path q, p[];
pair P[];
Rot:=identity rotated(360/n);
% ---- Calculations in mathematical coordinates --------------------------------
P1=(.85, 0);
P2=(1, 0);
P3=P1 transformed Rot;
p0:=P1{1, 2}..{3, -1}P2--P3;
                                                  % p0: first path element
for i=1 upto n-1:
                                                  % get remaining path elements
  p[i]:=p[i-1] transformed Rot;
                                                  % p[1],..., p[n-1]
endfor
                                                  % by rotating p0
% path (n path elements)
p17:=p0 for i=1 upto n-1: &p[i] endfor ..cycle; % put path elements together
q:=((0, 0)--(1,0)) rotated phi;
P4=p0 intersectionpoint q;
% ----- End of calculations in mathematical coordinates ------------------------
% transform t maps mathematical coordinates on MetaPost coordinates
t:=identity scaled (R*u) shifted .5(breite, hoehe);
              % ================== figure 1 ===============================
beginfig(1)
  draw (0, 0)--(breite, 0)--(breite, hoehe)--(0, hoehe)--cycle;
  T:=identity;
  for i=0 upto 49:
    p98:=p17 transformed T transformed t;
    if i \mod 2 = 0:
      fill p98;
```

```
else:
     unfill p98;
   fi
   draw p98;
   T:=T zscaled P4;
  endfor
endfig;
              % ============= end of figure 1 =======================
              % ================= figure 2 ================================
beginfig(2)
  % Box (in mathematical coordinates)
 path kasten;
  kasten=(.65, -.15)--(1.15, -.15)--(1.15, .5)--(.65, .5)--cycle;
  z98=point 3.5 of kasten transformed t;
  fill kasten transformed t withcolor .9white;
  draw kasten transformed t;
  draw (0, 0)--(breite, 0)--(breite, hoehe)--(0, hoehe)--cycle;
  draw p17 transformed t;
  draw p17 zscaled P4 transformed t withcolor red;
  draw q rotated -phi transformed t;
  draw q transformed t withcolor red;
  pickup pencircle scaled 2;
  draw p0 transformed t;
  label.rt(btex $p_{99}$ etex, point 3 of p17 transformed t);
  pickup pencircle scaled .5;
  draw_point((0,0) transformed t, black);
  label.bot(btex (0,0) etex, (0,0) transformed t);
  draw_point((1,0) transformed t, black);
  label.bot(btex (1,0) etex, (1,0) transformed t);
  draw_point(P4 transformed t, red);
  label.urt(btex $P_4$ etex, P4 transformed t);
  % renew definition of transform t in order ========
  % to draw the enlarged kasten at the left
  t:=identity scaled (2.3R*u) shifted (-.35breite-1.8u, .5hoehe-.4u);
  kasten:=kasten transformed t;
  fill kasten withcolor .9white;
  draw kasten;
  z99=point 1.5 of kasten;
  draw p0
             transformed t;
  draw p1
             transformed t cutafter kasten;
  draw p[n-1] transformed t cutbefore kasten;
  draw p0
             zscaled P4 transformed t withcolor red;
  draw p1
             zscaled P4 transformed t cutafter kasten withcolor red;
```

```
draw p[n-1] zscaled P4 transformed t cutbefore kasten withcolor red;
  draw q rotated -phi transformed t cutbefore kasten;
  draw q transformed t cutbefore kasten withcolor red;
  pickup pencircle scaled 2;
  draw p0 transformed t;
  label.rt(btex $p_{99}$ etex, point 3 of p17 transformed t);
  pickup pencircle scaled .5;
  draw_point((1,0) transformed t, black);
  label.bot(btex (1,0) etex, (1,0) transformed t);
  draw_point(P4 transformed t, red);
  label.urt(btex $P_4$ etex, P4 transformed t);
  pickup pencircle scaled 1;
  drawarrow z98--z99;
  pickup pencircle scaled .5;
  draw_point(z98, black);
              % ============= end of figure 2 =======================
endfig;
end
```

References

- [1] M. Goossens, F. Mittelbach, A. Samarin The LATEX Companion
- [2] M. Goossens, S. Rahtz, F. Mittelbach The LaTeX Graphics Companion
- [3] John D. Hobby, User's Manual, http://cm.bell-labs.com/who/hobby/
- [4] Alan Hoenig, TeX Unbound, OXFORD UNIVERSITY PRESS, 1998, ISBN 0-19-509685-1
- [5] Donald E. Knuth. The METAFONTbook. ADDISON-WESLEY, 1992, ISBN 0-201-13445-4 und ISBN 0-201-13444-6 (soft)
- [6] Leslie Lampert. Lambert Preparation System. ADDISON-WESLEY, 1994 (13th Printing November 2001), ISBN 0201529831
- [7] Helmut Kopka. Later Einführung. ADDISON-WESLEY, 1992, ISBN 3-89319-434-7
- [8] Helmut Kopka. LATEX Erweiterungsmöglichkeiten. ADDISON-WESLEY, 1992, ISBN 3-89319-356-1
- [9] Keith Reckdahl, Using Imported Graphics in LaTeX2e, ftp://ftp.dante.de/tex-archive/info/epslatex.ps, ftp://ftp.dante.de/tex-archive/info/epslatex.pdf