15.9

Integrais Triplas em Coordenadas Esféricas

Outro sistema de coordenadas tridimensionais útil é o *sistema de coordenadas esféricas*. Ele simplifica o cálculo de integrais triplas em regiões limitadas por esferas ou cones.

Coordenadas Esféricas

As **coordenadas esféricas** (ρ, θ, ϕ) de um ponto P no espaço são mostradas na Figura 1, onde $\rho = |OP|$ é a distância da origem a P, θ é o mesmo ângulo que nas coordenadas cilíndricas e ϕ é o ângulo entre o eixo z positivo e o segmento de reta OP. Observe que

$$\rho \geqslant 0$$
 $0 \leqslant \phi \leqslant \pi$

O sistema de coordenadas esféricas é especialmente útil em problemas nos quais exista simetria em torno de um ponto e a origem esteja colocada neste ponto. Por exemplo, a esfera com centro na origem e raio c tem a equação simples $\rho=c$ (veja a Figura 2) – essa é a razão do nome "coordenadas esféricas". O gráfico da equação $\theta=c$ é um semiplano vertical (veja a Figura 3) e a equação $\phi=c$ representa um semicone com o eixo c como seu eixo (veja a Figura 4).

FIGURA 1
As coordenadas esféricas de um ponto

FIGURA 2 $\rho = c$, uma esfera

FIGURA 3 $\theta = c$, um semiplano

FIGURA 4 $\phi = c$, um cone

A relação entre coordenadas esféricas e retangulares pode ser vista na Figura 5. Dos triângulos OPQ e OPP', temos

$$z = \rho \cos \phi$$
 $r = \rho \sin \phi$

Mas $x = r \cos \theta$ e $y = r \sin \theta$, de modo que para converter de coordenadas esféricas para retangulares, usamos as equações

1
$$x = \rho \operatorname{sen} \phi \cos \theta$$
 $y = \rho \operatorname{sen} \phi \operatorname{sen} \theta$ $z = \rho \cos \phi$

Além disso, a fórmula da distância mostra que

$$\rho^2 = x^2 + y^2 + z^2$$

Usamos essa equação para converter de coordenadas retangulares para coordenadas esféricas.

EXEMPLO 1 O ponto $(2, \pi/4, \pi/3)$ é dado em coordenadas esféricas. Marque o ponto e encontre suas coordenadas retangulares.

SOLUÇÃO Marcamos o ponto na Figura 6. Das Equações 1, temos

$$x = \rho \operatorname{sen} \phi \cos \theta = 2 \operatorname{sen} \frac{\pi}{3} \cos \frac{\pi}{4} = 2\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{2}}\right) = \sqrt{\frac{3}{2}}$$

FIGURA 5

FIGURA 6

$$y = \rho \operatorname{sen} \phi \operatorname{sen} \theta = 2 \operatorname{sen} \frac{\pi}{3} \operatorname{sen} \frac{\pi}{4} = 2\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{2}}\right) = \sqrt{\frac{3}{2}}$$
$$z = \rho \cos \phi = 2 \cos \frac{\pi}{3} = 2\left(\frac{1}{2}\right) = 1$$

Logo, o ponto $(2, \pi/4, \pi/3)$ é $(\sqrt{3/2}, \sqrt{3/2}, 1)$ em coordenadas retangulares.

EXEMPLO 2 O ponto $(0, 2\sqrt{3}, -2)$ está dado em coordenadas retangulares. Encontre coordenadas esféricas para este ponto.

SOLUÇÃO Da Equação 2, temos

$$\rho = \sqrt{x^2 + y^2 + z^2} = \sqrt{0 + 12 + 4} = 4$$

e, assim, as Equações 1 fornecem

$$\cos \phi = \frac{z}{\rho} = \frac{-2}{4} = -\frac{1}{2}$$
 $\phi = \frac{2\pi}{3}$

$$\cos \theta = \frac{x}{\rho \sin \phi} = 0 \qquad \theta = \frac{\pi}{2}$$

(Observe que $\theta \neq 3\pi/2$ porque $y = 2\sqrt{3} > 0$.) Portanto, as coordenadas esféricas do ponto dado são $(4, \pi/2, 2\pi/3)$.

ATENÇÃO Não existe uma convenção universal na notação de coordenadas esféricas. A maioria dos livros de física troca os significados de $\theta \in \phi$ e usa r no lugar de ρ .

TEC Em *Module 15.9* você pode investigar famílias de superfícies em coordenadas cilíndricas e esféricas.

Cálculo de Integrais Triplas com Coordenadas Esféricas

Neste sistema de coordenadas, o correspondente à caixa retangular é uma cunha esférica

$$E = \{ (\rho, \theta, \phi) \mid a \le \rho \le b, \ \alpha \le \theta \le \beta, \ c \le \phi \le d \}$$

onde $a \ge 0$, $\beta - \alpha \le 2\pi$ e $d - c \le \pi$. Apesar de termos definido as integrais triplas dividindo sólidos em pequenas caixas, podemos mostrar que, dividindo o sólido em pequenas cunhas esféricas, obtemos sempre o mesmo resultado. Assim, dividiremos E em pequenas cunhas esféricas E_{ijk} por meio de esferas igualmente espaçadas $\rho = \rho_i$, semiplanos $\theta = \theta_j$ e semicones $\phi = \phi_k$. A Figura 7 mostra que E_{ijk} é aproximadamente uma caixa retangular com dimensões $\Delta \rho$, $\rho_i \Delta \phi$ (arco de circunferência de raio ρ_i , e ângulo $\Delta \phi$) e ρ_i sen $\phi_k \Delta \theta$ (arco de circunferência de raio ρ_i sen ϕ_k , e ângulo $\Delta \theta$). Logo, uma aproximação do volume de E_{ijk} é dada por

$$\Delta V_{iik} \approx (\Delta \rho)(\rho_i \Delta \phi)(\rho_i \operatorname{sen} \phi_k \Delta \theta) = \rho_i^2 \operatorname{sen} \phi_k \Delta \rho \Delta \theta \Delta \phi$$

De fato, pode ser mostrado, com a ajuda do Teorema do Valor Médio (Exercício 47), que o valor exato do volume de E_{ijk} é dado por

$$\Delta V_{ijk} = \tilde{\rho}_{i}^{2} \operatorname{sen} \tilde{\phi}_{k} \Delta \rho \Delta \theta \Delta \phi$$

onde $(\tilde{\rho}_i, \tilde{\theta}_j, \tilde{\phi}_k)$ é algum ponto em E_{ijk} . Sejam $(x_{ijk}^*, y_{ijk}^*, z_{ijk}^*)$ as coordenadas retangulares desse ponto. Então

$$\iiint_{E} f(x, y, z) dV = \lim_{l, m, n \to \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(x_{ijk}^{*}, y_{ijk}^{*}, z_{ijk}^{*}) \Delta V_{ijk}$$

$$= \lim_{l, m, n \to \infty} \sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f(\tilde{\rho}_{i} \operatorname{sen} \tilde{\phi}_{k} \operatorname{cos} \tilde{\theta}_{j}, \tilde{\rho}_{i} \operatorname{sen} \tilde{\phi}_{k} \operatorname{sen} \tilde{\theta}_{j}, \tilde{\rho}_{i} \operatorname{cos} \tilde{\phi}_{k}) \tilde{\rho}_{i}^{2} \operatorname{sen} \tilde{\phi}_{k} \Delta \rho \Delta \theta \Delta \phi$$

Mas essa é uma soma de Riemann para a função

$$F(\rho, \theta, \phi) = f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^2 \sin \phi$$

FIGURA 7

Consequentemente, chegamos à seguinte fórmula para a integração tripla em coordenadas esféricas.

$$\iiint_E f(x, y, z) \, dV$$

$$= \int_{c}^{d} \int_{a}^{\beta} \int_{a}^{b} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi d\rho d\theta d\phi$$

onde E é uma cunha esférica dada por

$$E = \{ (\rho, \theta, \phi) \mid a \le \rho \le b, \ \alpha \le \theta \le \beta, \ c \le \phi \le d \}$$

A Fórmula 3 nos diz que, para converter uma integral tripla de coordenadas retangulares para coordenadas esféricas, escrevemos

$$x = \rho \operatorname{sen} \phi \cos \theta$$
 $y = \rho \operatorname{sen} \phi \operatorname{sen} \theta$ $z = \rho \cos \phi$

utilizando os limites de integração apropriados e substituindo dV por ρ^2 sen $\phi \ d\rho \ d\theta \ d\phi$. Isso é ilustrado na Figura 8.

FIGURA 8

Elemento de volume em coordenadas esféricas: $dV = \rho^2 \operatorname{sen} \phi \, d\rho \, d\theta \, d\phi$

Essa fórmula pode ser estendida para incluir regiões esféricas mais gerais, como

$$E = \{ (\rho, \theta, \phi) \mid \alpha \leq \theta \leq \beta, \ c \leq \phi \leq d, \ g_1(\theta, \phi) \leq \rho \leq g_2(\theta, \phi) \}$$

Nesse caso, a fórmula é a mesma que 3, exceto que os limites de integração para ρ são $g_1(\theta, \phi)$ e $g_2(\theta, \phi)$.

Em geral, as coordenadas esféricas são utilizadas nas integrais triplas quando superfícies como cones e esferas formam o limite da região de integração.

EXEMPLO 3 Calcule $\iiint_B e^{(x^2+y^2+z^2)^{3/2}} dV$, onde B é a bola unitária:

$$B = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1\}$$

SOLUÇÃO Como o limite de B é uma esfera, utilizaremos coordenadas esféricas:

$$B = \{ (\rho, \theta, \phi) \mid 0 \le \rho \le 1, \ 0 \le \theta \le 2\pi, \ 0 \le \phi \le \pi \}$$

Além disso, as coordenadas esféricas são convenientes, pois

$$x^2 + y^2 + z^2 = \rho^2$$

Portanto, 3 fornece

$$\iiint_{\rho} e^{(x^2+y^2+z^2)^{3/2}} dV = \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{1} e^{(\rho^2)^{3/2}} \rho^2 \operatorname{sen} \phi \ d\rho \ d\theta \ d\phi$$

OBSERVAÇÃO Seria extremamente complicado calcular a integral do Exemplo 3 sem coordenadas esféricas. Com coordenadas retangulares, a integral iterada seria

$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{-\sqrt{1-x^2-y^2}}^{\sqrt{1-x^2-y^2}} e^{(x^2+y^2+z^2)^{3/2}} dz dy dx$$

EXEMPLO 4 Utilize coordenadas esféricas para determinar o volume do sólido que fica acima do cone $z = \sqrt{x^2 + y^2}$ e abaixo da esfera $x^2 + y^2 + z^2 = z$. (Veja a Figura 9.)

FIGURA 9

SOLUÇÃO Observe que a esfera passa pela origem e tem centro em $(0, 0, \frac{1}{2})$. Escrevemos a equação da esfera em coordenadas esféricas como

$$\rho^2 = \rho \cos \phi$$
 ou $\rho = \cos \phi$

A equação do cone pode ser escrita como

$$\rho\cos\phi = \sqrt{\rho^2\sin^2\!\phi\,\cos^2\!\theta + \rho^2\sin^2\!\phi\,\sin^2\!\theta} = \rho\sin\phi$$

Isto resulta em sen $\phi = \cos \phi$, ou $\phi = \pi/4$. Portanto, a descrição do sólido E em coordenadas esféricas é

$$E = \{ (\rho, \theta, \phi) \mid 0 \le \theta \le 2\pi, \ 0 \le \phi \le \pi/4, \ 0 \le \rho \le \cos \phi \}$$

A Figura 11 mostra como E é apagado se integramos primeiro em relação a ρ , depois em relação a ϕ , e então em relação a θ . O volume de E é

$$V(E) = \iiint_{E} dV = \int_{0}^{2\pi} \int_{0}^{\pi/4} \int_{0}^{\cos \phi} \rho^{2} \sin \phi \ d\rho \ d\phi \ d\theta$$
$$= \int_{0}^{2\pi} d\theta \ \int_{0}^{\pi/4} \sin \phi \left[\frac{\rho^{3}}{3} \right]_{\rho=0}^{\rho=\cos \phi} d\phi$$
$$= \frac{2\pi}{3} \int_{0}^{\pi/4} \sin \phi \cos^{3}\phi \ d\phi = \frac{2\pi}{3} \left[-\frac{\cos^{4}\phi}{4} \right]_{0}^{\pi/4} = \frac{\pi}{8}$$

A Figura 10 mostra uma visão (desta vez, utilizando o MAPLE) do sólido do Exemplo 4.

FIGURA 10

TEC *Visual 15.9* mostra uma animação da Figura 11.

 ρ varia de 0 a cos ϕ , enquanto $\phi e \theta$ são constantes.

 ϕ varia de 0 a $\pi/4$, enquanto θ é constante.

 θ varia de 0 a 2π .

FIGURA 11

15.9

Exercícios

1-2 Marque o ponto cujas coordenadas esféricas são dadas. A seguir, encontre as coordenadas retangulares do ponto.

- (a) $(6, \pi/3, \pi/6)$ 1.
- (b) $(3, \pi/2, 3\pi/4)$
- (a) $(2, \pi/2, \pi/2)$
- (b) $(4, -\pi/4, \pi/3)$

3-4 Mude de coordenadas retangulares para esféricas.

- 3. (a) (0, -2, 0)
- (b) $(-1, 1, -\sqrt{2})$
- **4.** (a) $(1, 0, \sqrt{3})$
- (b) $(\sqrt{3}, -1, 2\sqrt{3})$

5-6 Descreva com palavras a superfície cuja equação é dada.

- **5.** $\phi = \pi/3$
- **6.** $\rho = 3$

7-8 Identifique a superfície cuja equação é dada.

- 7. $\rho = \sin \theta \sin \phi$
- **8.** $\rho^2 (\text{sen}^2 \phi \text{ sen}^2 \theta + \cos^2 \phi) = 9$

9-10 Escreva a equação em coordenadas esféricas.

- **9.** (a) $z^2 = x^2 + y^2$
- (b) $x^2 + z^2 = 9$
- **10.** (a) $x^2 2x + y^2 + z^2 = 0$ (b) x + 2y + 3z = 1

11–14 Esboce o sólido descrito pelas desigualdades dadas.

- **11.** $2 \le \rho \le 4$, $0 \le \phi \le \pi/3$, $0 \le \theta \le \pi$
- **12.** $1 \le \rho \le 2$, $0 \le \phi \le \pi/2$, $\pi/2 \le \theta \le 3\pi/2$
- **13.** $\rho \le 1$, $3\pi/4 \le \phi \le \pi$
- **14.** $\rho \le 2$, $\rho \le \operatorname{cossec} \phi$

15. Um sólido está cima do cone $z = \sqrt{x^2 + y^2}$ e abaixo da esfera $x^2 + y^2 + z^2 = z$. Escreva uma descrição do sólido em termos de desigualdades envolvendo coordenadas esféricas.

16. (a) Determine desigualdades que descrevem uma bola oca com diâmetro de 30 cm e espessura de 0,5 cm. Explique como você posicionou o sistema de coordenadas.

(b) Suponha que a bola seja cortada pela metade. Escreva desigualdades que descrevam uma das metades.

17-18 Esboce o sólido cujo volume é dado pela integral e calcule-a.

- 17. $\int_0^{\pi/6} \int_0^{\pi/2} \int_0^3 \rho^2 \sin \phi \ d\rho \ d\theta \ d\phi$
- **18.** $\int_0^{2\pi} \int_{-\sqrt{2}}^{\pi} \int_1^2 \rho^2 \sin \phi \ d\rho \ d\phi \ d\theta$

19–20 Escreva a integral tripla de uma função contínua arbitrária f(x)y, z) em coordenadas cilíndricas ou esféricas sobre o sólido mostrado.

21–34 Utilize coordenadas esféricas.

21. Calcule $\iiint_B (x^2 + y^2 + z^2)^2 dV$, onde B é a bola com centro na origem e raio 5.

22. Calcule $\iiint_H (9 - x^2 - y^2) dV$, onde H é o hemisfério sólido $x^2 + y^2 + z^2 \le 9, z \ge 0.$

23. Calcule $\iiint_E (x^2 + y^2) dV$, onde E está entre as esferas $x^2 + y^2 + z^2 = 4 e x^2 + y^2 + z^2 = 9.$

24. Calcule $\iiint_E y^2 dV$, onde E é o hemisfério sólido $x^2 + y^2 + z^2 \le 9, z \ge 0.$

25. Calcule $\iiint_E xe^{x^2+y^2+z^2} dV$, onde E é a porção da bola unitária $x^2 + y^2 + z^2 \le 1$ que fica no primeiro octante.

26. Calcule $\iiint_E xyz \, dV$, onde E fica entre as esferas $\rho = 2$ e $\rho = 4$ e acima do cone $\phi = \pi/3$.

27. Encontre o volume da parte da bola $\rho \le a$ a que está entre os cones $\phi = \pi/6$ e $\phi = \pi/3$.

28. Encontre a distância média de um ponto em uma bola de raio a a seu centro.