Econometría I (EC402) Clase #16 - Extensiones del MCRL

Prof. Andrés M. Castaño

Ingeniería Comercial Universidad Católica del Norte Miercoles 10 de octubre de 2013

Regresión a traves del origen

- $\bullet Y_i = \beta_2 X_i + \mu_i.$
- A veces la teoría que sirve de base requiere o exige que el término intersección esté ausente.
- Hipótesis del ingreso permanente de M. Friedman, Teoría del Análisis de Costos, Teoría de Crecimiento de la Oferta Monetaria.
- Cómo se estiman este tipo de modelos sin intercepto? qué problemas presentan?

MCO sin intercepto

MCO sin intercepción:

$$\hat{\beta}_2 = \frac{\sum X_i Y_i}{\sum X_i^2}$$

$$Var(\hat{\beta}_2) = \frac{\sigma^2}{\sum X_i^2}$$

$$\hat{\sigma}^2 = \frac{\sum \hat{\mu}_i^2}{n-1}$$

MCO con intercepto

MCO con intercepto:

$$\hat{\beta}_2 = \frac{\sum x_i y_i}{\sum x_i^2}$$

$$Var(\hat{\beta}_2) = \frac{\sigma^2}{\sum x_i^2}$$

$$\hat{\sigma}^2 = \frac{\sum \hat{\mu}_i^2}{n-2}$$

Diferencias

- En el modelo sin términos de intersección sólo se usan sumas sencillas de cuadrados y productos cruzados, en el con intersección se utilizan sumas ajustadas de la media y productos cruzados.
- Los grados de libertad son diferentes, por qué?
- Bajo el marco tradicional $\sum \hat{\mu}_i$ es siempre cero en el modelo con intersección. Sin intersección no es necesario que lo sea.
- El r^2 siempre positivo antes, ahora podría tomar valores negativos. r^2 puede no ser apropiado en modelos de regresión a través del origen.

Diferencias

• Se puede calcular lo que se conoce como el r^2 simple:

$$r_s^2 = \frac{(\sum X_i Y_i)^2}{\sum X_i^2 Y_i^2}$$

- Se trata de un r cuadrado que no es corregido por la media. No es comparable con el r cuadrado tradicional.
- A menos de que la teoría sea demasiado fuerte, se aconseja seguir apegado al modelo convencional.
- Si comenzamos del modelo tradicional con intercepto y este es no significativo, tendríamos de manera práctica una regresión a través del origen. Si se insiste desde el principio en correrlo sin intercepción se está cometiendo un error de especificación.

Ejemplo

En el ejercicio 5.5 introdujimos la recta característica del análisis de inversión, la cual puede ser escrita como

$$Y_i = \alpha_i + \beta_i X_i + u_i \tag{6.1.10}$$

donde Y = tasa anual de ganancia (%) sobre "Afuture Fund"

X_i = tasa anual de ganancia (%) sobre el portafolio de mercado

β_i = coeficiente de la pendiente, conocida también como el coeficiente **beta** en la teoría del portafolio, y

 α_i = la intersección

Ejemplo

$$\hat{Y}_i = 1.0899 X_i$$
 (0.1916) $r^2 \text{ simple} = 0.7825$
 $t = (5.6884)$
 $\hat{Y}_i = 1.2797 + 1.0691 X_i$
 (7.6886) (0.2383)
 $t = (0.1664)$ (4.4860) $r^2 = 0.7155$

Regresión sobre variables estandarizadas

- Las unidades en que la variable dependiente e independiente se expresa influye sobre la interpretación de los coeficientes de regresión.
- Esto se puede evitar si ambas variables se estandarizan.

$$Y_i^* = \frac{Y_i - \bar{Y}}{S_Y}$$

$$X_i^* = \frac{X_i - \bar{X}}{S_X}$$

• Para una variable estandarizada la media siempre es cero y la varianza es igual a 1.

Regresión sobre variables estandarizadas

 Efectuar la regresión (los coeficientes son conocidos como coeficientes beta):

$$Y_i^* = \beta_1^* + \beta_2^* X_i^* + \mu_i^*$$
$$= \beta_2^* X_i^* + \mu_i^*$$

Nos lleva a una regresión a través del origen. Las interpretaciones serán tomadas como el cambio en Beta desviaciones estándar que provoca un cambio en una desviación estándar de X.

Ventajas del modelo tradicional versus el modelo estandarizado

- En el escenario de regresión múltiple el coeficiente estandarizado es una forma de medir la fuerza relativa de las distintas regresoras.
- Relación entre los coeficientes tradicionales y el coeficiente beta:

$$\hat{\beta}_2^* = \hat{\beta}_2 \frac{S_x}{S_y}$$

Formas funcionales de los modelos de regresión

- Modelo log-log.
- Modelos semilogarítmicos (log-lin; lin-log).
- Modelos recíprocos.
- Modelo logarítmico recíproco.

Cómo medir elasticidad: Modelo log-log

• Modelo de regresión exponencial:

$$Y_i = \beta_1 X_i^{\beta_2} e^{\mu_i}$$
$$lnY_i = \alpha + \beta_2 lnX_i + \mu_i$$

- Esta ecuación se podría estimar igual por mínimos cuadrados ordinarios, Porqué?
- Bajos este marco el coeficiente β_2 mide la elasticidad de Y con respecto a X (esto es, el cambio porcentual en Y ante un cambio pequeño cambio porcentual en X.
- Características especiales: 1. El coeficiente de elasticidad entre Y y X permanece constante (modelo de elasticidad constante), 2. $\hat{\beta}_1$ es un estimador sesgado $\hat{\beta}_1 = antilog(\hat{\alpha})$. En términos prácticos muchas veces no es necesario preocuparse por obtener este estimador insesgado.

Ejemplo: elasticidad gasto en bienes durables respecto al gasto en consumo personal

In GASBD_t =
$$-9.6971 + 1.9056$$
 In GCPERT,
ee = (0.4341) (0.0514)
 $t = (-22.3370)^*$ $(37.0962)^*$ $r^2 = 0.9849$

Cómo medir tasas de crecimiento: Modelo log-lin

 A veces el interés es encontrar la tasa de crecimiento de ciertas variables económicas (población, oferta monetaria, empleo, productividad)

$$\bullet \ lnY_t = \beta_1 + \beta_2 t + \mu_t$$

- β_2 representa un cambio relativo en Y dado un cambio absoluto en el valor del regresor (t en este caso)
- Si se multiplica el cambio relativo en Y por 100, nos da el cambio porcentual (tasa de crecimiento) en Y ocasionado por un cambio absoluto en X $(100*\beta_2)$
- Modelo de crecimiento vs modelo de tendencia lineal

Ejemplo: tasa de crecimiento del gasto en servicios

UN EJEMPLO ILUSTRATIVO: LA TASA DE CRECIMIENTO DEL GASTO EN SERVICIOS

Para ilustrar el modelo de crecimiento (6.6.6), considere los datos sobre el gasto en servicios proporcionados en la tabla 6.3. Los resultados de la regresión son los siguientes:

$$\ln \text{GES}_t = 7.7890 + 0.00743t$$

 $ee = (0.0023) (0.00017)$ (6.6.8)
 $t = (3.387.619)^* (44.2826)^* r^2 = 0.9894$

Nota: GES significa gasto en servicios y el asterisco (*) denota que el valor p es extremadamente pequeño.

La interpretación de la ec. (6.6.8) es que durante un periodo de un trimestre (del primero al tercero de 1993), el gasto en servicios se incrementó a una tasa (trimestral) de 0.743%. Aproximadamente esto es igual a un crecimiento anual de 2.97%. Puesto que 7.7890 = log de GES al comienzo del periodo de análisis, si se toma su antilogaritmo se tiene 2.41390 (billones de dólares), como el valor inicial de GES (es decir. el valor al

final del último trimestre de 1992). La recta de regresión obtenida mediante la ec. (6.6.8) se ilustra en la figura 6.4.

FIGURA 6.4

Modelo lin-log

 A veces estamos interesados en saber el cambio absoluto en Y dado un cambio relativo en X (cambio porcentual).

$$\bullet Y_i = \beta_1 + \beta_2 ln X_i + \mu_i$$

•
$$\beta_2 = \frac{cambioabsolutoenY}{CambiorelativoenX}$$

• Para una buena interpretación, el valor del coeficiente de pendiente se debe dividir por 100.

Ejemplo: Gasto vs gasto en alimentos

UN EJEMPLO ILUSTRATIVO

Como ejemplo del modelo lin-log, revísese el ejemplo sobre gasto alimenticio en India, ejemplo 3.2. Ahí se ajustó un modelo lineal en las variables, como una primera aproximación. Pero si se grafican los datos, se obtiene la gráfica de la figura 6.5. Tal y como esta figura sugiere, el gasto alimenticio se incrementa en forma más lenta, conforme el gasto total aumenta, lo cual quizá proporcione sustento a la ley de Engels. Los resultados de ajustar el modelo lin-log a los datos son los siguientes:

GASAL_i = -1 283.912 + 257.2700 ln GASTOT;

$$t = (-4.3848)^*$$
 (5.6625)* $r^2 = 0.3769$ (6.6.14)

Modelos recíprocos

•
$$Y_i = \beta_1 + \beta_2 \frac{1}{X_i} + \mu_i$$

• A medida que X aumenta indefinidamente, el término $\beta_2 \frac{1}{X_i}$ se acerca a cero, y Y se aproxima al valor límite o asintótico β_1 .

Comportamiento del modelo reciproco

Ejemplo: Mortalidad infantil vs PIB per capita

FIGURA 6.7 Relación entre la mortalidad infantil y el PIB per cápita, en 66 países.

Si se trata de ajustar el modelo recíproco (6.7.1), se obtienen los siguientes resultados:

$$MI_i = 81.79436 + 27 237.17 \left(\frac{1}{PIBPC_i}\right)$$

= (10.8321) (3.759.999) **(6.7.2)**

Andrés M. Castaño

Figura 1: Resultados estimación ecuación de salarios a nivel comunal en chile, modelo normal.

Source	SS	df	MS		Number of obs	330
					F(5, 324)	= 153.02
Model	3651743.77	5 7303	348.754		Prob > F	= 0.0000
Residual	1546443.08	324 4772	.97246		R-squared	= 0.7025
					Adj R-squared	1 = 0.6979
Total	5198186.84	329 15	799.96		Root MSE	= 69.087
sxh	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
esc	105.5124	5.123256	20.59	0.000	95.43334	115.5914
exper	-19.88702	18.01306	-1.10	0.270	-55.32435	15.55031
exper2	.8039632	.341007	2.36	0.019	.1330957	1.474831
populationc	0296257	.0215128	-1.38	0.169	071948	.0126967
tdocc	-8.294676	1.154945	-7.18	0.000	-10.56682	-6.022538
cons	-698.3422	192.0285	-3.64	0.000	-1076.122	-320.562

Figura 2: Resultados estimación ecuación de salarios a nivel comunal en chile, modelo con coeficientes estandarizados.

sxh	Coef.	Std. Err.	t	P> t	Beta	
esc	105.5124	5.123256	20.59	0.000	1.088288	
exper	-19.88702	18.01306	-1.10	0.270	2620462	
exper2	.8039632	.341007	2.36	0.019	.5773316	
populationc	0296257	.0215128	-1.38	0.169	0527535	
tdocc	-8.294676	1.154945	-7.18	0.000	2261092	
_cons	-698.3422	192.0285	-3.64	0.000	-	

Figura 3: Resultados estimación ecuación de salarios a nivel comunal en chile, modelo log-log.

Source	SS	df		MS		Number of obs F(5, 323)		329 155.82
Model	21.487408	5	4.2	974816		Prob > F	_	0.0000
Residual	8.90832332	323	.027	579948		R-squared	=	0.7069
						Adj R-squared	=	0.7024
Total	30.3957313	328	.092	669912		Root MSE	=	.16607
	l							
lsxh	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
lsxh	Coef. 2.462647	.1275		t 19.31	0.000	[95% Conf. 2.211723		.713571
			451				2	
lesc	2.462647	.1275	451 312	19.31	0.000	2.211723	2	.713571
lesc lexper	2.462647 .6490439	.1275	451 312 844	19.31	0.000	2.211723 -1.52154	2 2	.713571
lesc lexper lexper2	2.462647 .6490439 .1950443	.1275 1.103 .6698	451 312 844 441	19.31 0.59 0.29	0.000 0.557 0.771	2.211723 -1.52154 -1.122843	2 2 1	.713571 .819628 .512932

Figura 4: Resultados estimación ecuación de salarios a nivel comunal en chile, modelo log-lin.

Source	SS	df	MS		Number of obs	
Model	22.3168594	5 4.	46337187		Prob > F	= 0.0000
Residual	8.38104873	324 .0	25867434		R-squared	= 0.7270
					Adj R-squared	= 0.7228
Total	30.6979081	329 .0	93306712		Root MSE	= .16083
lsxh	Coef.	Std. Err	t t	P> t	[95% Conf.	Interval]
esc	.2510428	.0119269	21.05	0.000	.2275789	.2745068
exper	.038609	.0419343	0.92	0.358	0438889	.121107
exper2	.0002923	.0007939	0.37	0.713	0012695	.0018541
populationc	0000172	.0000501	-0.34	0.732	0001157	.0000814
Population						
tdocc	0200203	.0026887	-7.45	0.000	0253098	0147307

Figura 5: Resultados estimación ecuación de salarios a nivel comunal en chile, modelo lin-log.

Source	SS	df		MS		Number of obs		329
Model	3266170.85	5	6532	34.169		F(5, 323) Prob > F	=	0.0000
Residual	1889550.17	323	5850	.00053		R-squared	=	0.6335
						Adj R-squared	1 =	0.6278
Total	5155721.02	328	1571	8.6616		Root MSE	=	76.485
axh	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
lesc	935.795	58.74	152	15.93	0.000	820.2307	1	.051.359
lesc lexper	935.795 2.475876	58.74 508.1		15.93 0.00	0.000	820.2307 -997.1969		.051.359
			353				1	
lexper	2.475876	508.1	353 184	0.00	0.996	-997.1969	7	.002.149
lexper lexper2	2.475876 159.5012	508.1 308.5	353 184 346	0.00 0.52	0.996	-997.1969 -447.4581	1 7 -2	002.149