17

Dual Nature of Matter and Radiation

Name of scientist		Discovery
Jean perin	-	Discovered an electron
Milikan	-	Charge of an electron
J.J.Thomson	-	found the value of $\frac{e}{m}$
Wilhem Rontgen	-	discovered X-rays
Henry Bacquerel and Madam	curie	- Radio activity
Hertz	-	photo electric effect

Methods of Emission of Electron:

- (1) Thermionic Emission: In this method, the current is passed through a filament of metal so that it gets heated sufficiently and electrons get emitted from the metal.
- (2) Field Emission: when a metal is subjected to strong electic field of the order of 10^8 Vm^{-1} , electrons are pulled out of the metal surface.
- (3) Photo electric emission: when an electromagnetic radiation of enough high frequency is incident on a cleaned metallic surface, electrons can be liberated from the metal surface. This phenomenon is known as the photoelectric effect and electrons so emitted are known as photo electrons.

Work function (Threshold energy)

The minimum energy required to get emission of an electron (to eject the free electrons from metallic surface) is defined as work function of that surface of metal (ϕ_0).

$$\phi_0 = h f_0 = \frac{hc}{\lambda_0}$$
 where $f_o =$ threshold frequency, $\lambda_0 =$ threshold wavelength

Work function in electron volt,
$$\phi_0 (eV) = \frac{hc}{e\lambda_o} = \frac{12375}{\lambda_0 (A)}$$

(taking planck's constant, $h = 6.6 \times 10^{-34} \text{ Js}$)

Threshold Frequency (f_0) : The minimum frequency of incindent light for the emission of photo electrons from metallic surface is defined as threshold frequency (f_0) .

for the emission of photo electrons, the frequency of the incident light $f \ge f_0$

Threshold wave length (λ_0)

For the emission of photo electrons from the given metallic surface, the wavelength of incident light should be some maximum or less than that maximum wavelength. This maximum wavelength is called the threshold wavelength (λ_0)

For emission of photo electrons, $\lambda \leq \lambda_0$

(1) Effect of intensity of incident light:

By Increasing the intensity of incident light (keeping frequency constant) the number of photo electrons emitted and hence photoelectric current increases. but the maximum kinetic energy of photo electrons do not change i.e. value of stopping potential remains unchanged.

 \therefore Intensity $I \propto$ no. of incident photons

∞ no. of emitted photo electrons in 1 second

 α photo electric current

$$\alpha \frac{1}{\text{(distance)}^2}$$
 (for a point like source)

(2) Effect of potential:

• when collector C is kept positive with respect to photo sensitive surface S, the emitted photo electrons are attracted to collector C and amount of current passing through the micro ammeter. At certain value of positive potential difference, when all the emitted electrons are collected, increasing the potential difference further has no effect on the current. This current is known as saturation current.

when the C is made negative with respect to S, on increasing this negative potential, the number of photo electrons reaching the collector (value of photo electric current) gradually decreases.

- For some specific negative potential of the collector, even the most energetic electrons are unable to reach collector, then photo electric current becomes zero. This minimum specific negative potential of C with respect to S is known as stopping potential or cut off potential (V_0)
- If the value of stopping potantial is V_0 , then the energy required for electron to cross this potential barrier is, eV_0

If maximum speed of photo electron is v_{max} , then $eV_0 = \frac{1}{2} m v_{max}^2$

(3) Effect of frequency:

If frequency of incident light $(> f_0)$ is increased, the maximum kinetic energy of emitted photo electrons increased. i.e.the value of stopping potential is also increased but photo electric current remains constant.

(4) Effect of photo sensitive surface :

When the photo sensitive surface is changed by keeping frequency and intensity of incident light constant, the graph of stopping, potential $(V_0) \rightarrow$ frequency (f) found to be straight line and pasallel to each other, which intersects the X-axis (frequency axis) and the Y-axis at different points. Which shows that the values of threshold frequencies are different for different metals but slope of the graph $\left(\frac{h}{e}\right)$ is equal for all the metals.

It is clear from the graphs, the value of threshold frequency and work function for metal-2 are more than for metal-1

449 -

• Einstein's equation for photoelectric effect

The maximum kinetic energy of emitted photo electrons,

$$K_{\text{max}} = hf - \phi_0$$

$$\frac{1}{2} m v_{\text{max}}^2 = h f - h f_0 = h (f - f_0)$$

$$\frac{1}{2} \text{ m} v_{\text{max}}^2 = \frac{hc}{\lambda} - \frac{hc}{\lambda_0} = hc \left(\frac{1}{\lambda} - \frac{1}{\lambda_0} \right) \Rightarrow v_{\text{max}} = \sqrt{\frac{2hc}{m} \frac{(\lambda_0 - \lambda)}{\lambda \lambda_0}}$$

This equation is called eEinstein's photo electric equation.

• Relation between stopping potential and frequency:

According to definition of stopping potential,

$$\frac{1}{2} m v_{\text{max}}^2 = e V_0$$

$$\therefore eV_0 = h(f - f_0) = hc\left(\frac{1}{\lambda} - \frac{1}{\lambda_0}\right)$$

$$\therefore V_0 = \frac{hc}{e} \left(\frac{1}{\lambda} - \frac{1}{\lambda_0} \right) = 12375 \left(\frac{1}{\lambda} - \frac{1}{\lambda_0} \right)$$

In the graph of $V_0 \rightarrow f$

$$V_0 = \frac{h}{e} \left(f - f_0 \right) = \frac{hf}{e} - \frac{hf_0}{e}$$

comparing above equation with equation of straight line

y = mx + c, slope is found to be $\frac{h}{e}$ and intercept on X-axis is f_0 and intercept on Y-axis is $\frac{-hf_0}{e}$ is obtained.

- (1) The work functions for tungsten and sodium are 4.6 eV and 2.3 eV respectively. If threshold wavelength for sodium is 5460 A, the value of threshold wavelength for tungsten is _____.
 - (A) 10682 A
- (B) 2730 Å
- (C) 526 Å
- (D) 5892 A
- (2) The maximum velocity of photo electron emitted from surface of metal is $5 \times 10^6~\text{ms}^{-1}$. If specific charge of an electron is $1.8 \times 10^{11}~\text{Ckg}^{-1}$ then the value of stopping potential is _____. (approximately)
 - (A) 2 V
- (B) 3 V
- (C) 7 V
- (D) 4 V

(3)	If the intensity of radiation incident on a photo cell be increased by four times, then the number of photoelectrons and maximum kinetic energy of photoelectrons emitted become		
	(A) Four times, doubled	(B) Four times, remains unchanged	
	(C) Doubled, remains unchanged	(D) Remains unchanged, Doubled	
(4)	In a photo cell, with exciting wave	ength λ the maximum speed of emitted photoelectron is ν . If	
	the exciting wave length is changed	$o(\frac{3\lambda}{4})$ the maximum speed of emitted photo electron will be	
	(A) greater than $\sqrt{\frac{4}{3}} v$ (B)	$\frac{4}{3}v$ (C) less than $\sqrt{\frac{4}{3}}v$ (D) $\sqrt{\frac{3}{2}}v$	
(5)	for which the stopping potential i	on a surface of metal causes the emission of photoelectrons. 0.5 V. With light of wavelength 0.4 μm falls on the same d to be 1.5 V. then the work function of surface of metal is	
	(A) 1.5 eV (B) 0.75	V (C) 2.5 eV (D) 3 eV	
(6)	When a certain metallic surface is	luminated with light of wavelength λ , the stopping potential	
	is $4V_0$. When the same surface	is illuminated with light of wavelength 2λ , the stopping	
	potential is V_0 . The threshold was	elength for the surface is	
	(A) 6λ (B) 8λ	(C) 3λ (D) $\frac{\lambda}{4}$	
(7)	The frequency of incident light fallipotential will be	g on a photosensitive surface is doubled, the value of stopping	
	(A) Doubled	(B) More than doubled	
	(C) halved	(D) less than doubled.	
(8)	Sodium surface is illuminated by potantial determined. This stopping	ultraviolet and visible radiation successively and stopping potantial is	
	(A) Equal in both cases	(B) More with visible light	
	(C) More with ultraviolet light	(D) Varies randomly	
(9)	Light of two different frequencies	whose photons have energies 1 eV and 5 eV respectively,	
	successively illuminates a metal of	work function 0.5 eV. The ratio of maximum speed of the	
	emitted photo electron will be	•	
	(A) 1:4 (B) 1:1	(C) 1:3 (D) 4:1	
(10)	Light of wavelength λ falls on	metal having work function $\frac{hc}{\lambda_0}$. Where λ_0 is threshold	
	wavelength of surface of	netal. Photo electric effect take place only if	
	(A) $\lambda \ge \lambda_0$ (B) $\lambda \le \lambda_0$	(C) $\lambda = 4\lambda_0$ (D) $\lambda \ge 2\lambda_0$	

				tron is found $2 \times 10^6 \text{ ms}^{-1}$.
			incident on that, the max	ximum speed of the emitted
	photo electron will		(C) 8×10^6	(D) 4 × 10 ⁶
(12)				
(13)				and K_2 , when it is irradiated
	with lights of wavel	ength Λ_1 and Λ_2 respec	tively. The work function	of the metal is
	(A) $\frac{K_2\lambda_2 - K_1\lambda_1}{\lambda_1 - \lambda_2}$	(B) $\frac{K_1 K_2}{\lambda_1 - \lambda_2}$	(C) $\frac{\lambda_1 \lambda_2 \left(K_1 - K_2 \right)}{\lambda_1 - \lambda_2}$	(D) $\frac{\lambda_1 \lambda_2 K_2}{(\lambda_1 - \lambda_2) K_1}$
(14)	The work function i	for a metallic surface is	ϕ_0 . Now this surface is s	successively illuminated with
	the radiations of er	nergy $5\phi_0$ and $10\phi_0$ res	spectively. The ratio of	maximum speed of emitted
	photo electrons will	be		
	(A) 1:3	(B) 1:1	(C) 1:2	(D) 2:3
(15)			_	when the metal surface is
	illuminated with the	radiation of frequency 8	$3 \times 10^{14} H_z$. When the san	ne surface is illuminated with
	radiation of frequence	$ey 12 \times 10^{14} H_z, the max$	kimum kinetic energy of e	mitted photoelectron is found
	to be 2eV. Then the	work function of the m	etallic surface is	
(10)	(A) 3.5 eV	(B) 0.5 eV	(C) 2.5 eV	(D) 3.85 eV
(16)				velength λ is incident on a
	metallic surface having work function ϕ_0 is where $h = \text{planck's constant}$, $c = \text{speed of light in vaccum}$, $m = \text{mass of electron}$.			
		inuss of crownin		
	(A) $\left(\frac{2hc + \lambda\phi_0}{m\lambda}\right)^{\frac{1}{2}}$		(B) $\frac{2\left(hc - \lambda\phi_0\right)}{}$	
	$(m\lambda)$		m	
	(C) $\left[\frac{2\left(hc - \lambda\phi_0\right)}{m\lambda}\right]$		(D) $\left[\frac{2\left(hc - \phi_0\right)}{m}\right]$	$\frac{1}{2}$
(17)	When a metallic sur	face is illuminated with	light of wavelenght λ , the	he stopping potential is $3 V_0$
				stopping potential is V_0 . The
	threhold wavelength			ū
	(A) 4λ	(B) 3λ	(C) 6λ	(D) $\frac{5}{3}\lambda$
		4	52 —	

When the point like sousce is kept 1m away from a photocell, photo electric current 16 mA is

The threshold frequency for a metallic surface is f_0 . When radiation of frequency $2f_0$ is

(C) 4 mA

(D) 16 mA

obtained. When the same surface is kept 4m away, the photo electric current will be......

(B) 2 mA

(11)

(12)

(A) 1 mA

(18)		aluminium surface is 4.2 otential will be zero	2 eV. The wavelength of	fincident light for which
	$h = 6.6 \times 10^{-34} \text{ Js},$	$c = 3 \times 10^8 \text{ ms}^{-1}$		
	(A) 2694 Å	(B) 2946 A	(C) 1854 Å	(D) 4268 Å
(19)	The value of threshold	d frequency for a certa	in metal is 3.3×10^{14} Hz	z. If light of frequency
	$8.2 \times 10^{14} \text{ Hz}$ is inciden	nt on this surface, the val	ue of stopping potential i	s
	$h = 6.63 \times 10^{-34} \text{ Js}, e$	$= 1.6 \times 10^{-19} \text{ C}.$		
	(A) 2.03 V	(B) 3.68 V	(C) 1.74 V	(D) 4.06 V
(20)		ent light on a metallic so hoto electrons will become	urface is made three time	es, the maximum kinetic
	(A) three times		(B) less than three time	nes
	(C) 1/3 times the earlie	er value	(D) more than three ti	mes
(21)	When the light of free	quency $5 \times 10^{14} \text{ Hz}$ is i	incident on a metallic s	urface having threshold
				When the frequency of of photoelectrics current
	(A) 0.9 mA	(B) 5.4 mA	(C) 3.6 mA	(D) zero
(22)	The difference between	the maximum kinetic e	nergies of photoelectrons	s emitted from a metallic
	surface by light of wave	elength 2000 $\overset{\circ}{A}$ and 500	0 A will be $h = 6.6 \times 10$	$^{-34}$ Js
	(A) 3.71 eV	(B) 5.94 eV	(C) 7.42 eV	(D) 2.97 eV
(23)	A light with frequenc	y 6×10^{14} Hz is incide	ent on a metal surface	whose work function is
	1.59 eV .The maximum	kinetic energy of photoe	electrons emitted will be .	
	$\left(h = 6.63 \times 10^{-34} \text{ Js}\right)$			
	(A) 0.49 eV	(B) 0.90 eV	(C) 1.26 eV	(D) 1.08 eV
(24)	The maximum wavele	ngth of radiation that c	an produce photoelectric	e effect in certain metal
	having work function 3	3.2 eV will be ($h = 0$	$5.625 \times 10^{-34} \text{ Js})$	
	(A) 1988 A	(B) 2466 Å	(C) 2953 Å	(D) 3881 A
(25)	potential equal to 1 V for	or that surface, the wave		ave the value of stopping at will be in the region of
	$(h = 6.6 \times 10^{-34})$			
	(A) X-ray region	(B) infrared region	(C) ultraviolet region	(D) visible region
(26)		_	_	quals to the energy of a
	photons of γ . radiations	s of wavelength 2.5×10^{-13}		
	(A) 2×10^6	(B) 4×10^6	(C) 8×10^6	(D) 0.5×10^6

Ans.: 1 (B), 2 (C), 3 (B), 4 (A), 5 (A), 6 (C), 7 (B), 8 (C), 9 (C), 10 (B), 11 (A), 12 (D), 13 (A), 14 (D), 15 (C), 16 (C), 17 (A), 18 (B), 19 (A), 20 (D), 21 (D), 22 (A), 23 (B), 24 (D), 25 (D), 26 (A)

• Particle like nature of light (photon nature)

Photon is bundles or packet (quanta) of discrete energy. The energy of the smallest packet is equal to hf.

Properties of photon:

- (1) The speed of photon in vaccum is same as speed of light $(3 \times 10^8 \text{ ms}^{-1})$.
- (2) Energy of a photon of frequency f is, $E = hf = \frac{hc}{\lambda}$

where c = velocity of light in vaccum, plank's constant, $h = 6.6 \times 10^{-34} \text{ Js}$, $\lambda = \text{wavelength of light}$.

E (in eV) =
$$\frac{hc}{e\lambda} = \frac{12375}{\lambda \begin{pmatrix} a \\ A \end{pmatrix}} \approx \frac{12400}{\lambda \begin{pmatrix} a \\ A \end{pmatrix}}$$
 (taking $h = 6.625 \times 10^{-34} \text{ Js}$)

The energy of photon is not continuous but discrete like *hf 2hf*,... which shows the quantization of energy.

(3) Linear momentum of photon of frequency f is

$$P = m \times c = \frac{E}{c^2} \times c = \frac{E}{c} = \frac{hf}{c} = \frac{h}{\lambda}$$

(4) Rest mass (m₀) of photon is zero, but effective mass,

$$m = \frac{E}{c^2} = \frac{hf}{c^2} = \frac{h}{c\lambda}$$

This mass is also known as kinetic mass of photon.

mass of particle moving with velocity v is, $m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$, where $m_0 = \text{rest mass}$

but speed of photon in vaccum v = speed of light c

$$\therefore m_0 = m \left(\sqrt{1 - \frac{v^2}{c^2}} \right) = 0$$

- (5) Photon is electrically neutral.
- (6) Photons are not effected by electric and magnetic field.
- (7) Like a real particle, photon interacts with other particles obeying the law of conservation of energy and momentum..

Number of emitted photons:

The number of photons emitted per second from a source of monochromatic radiation of wavelength λ and power P is given as,

$$n = \frac{P}{E} = \frac{P}{hf} = \frac{P\lambda}{hc}$$
; where E = energy of each photon.

Intensity of lght (I):

Energy crossing per unit area normally per second is called intensity (I) of incident light

$$\therefore I = \frac{E}{At} = \frac{P}{A} \ (\because \frac{E}{t} = P = power)$$

At a distance 'r' from a point source of power P, intensity is given by

$$I = \frac{P}{A} = \frac{P}{4\pi r^2} \Rightarrow I \propto \frac{1}{r^2}$$

For a linear source, $I = \frac{P}{2\pi rl} \implies I \propto \frac{1}{r}$

where l = length of a cylinder at a distance r from the source.

- If the efficiency of an electric bulb of 2 W is 20 %, what is number of photons emitted by it in (27)one second? the wavelength of light emitted by it is 400 nm. ($h = 6.6 \times 10^{-34} \text{ Js}$)
 - (A) 3.46×10^{16}
- (B) 4.67×10^{17} (C) 2.52×10^{17} (D) 8.08×10^{17}
- The monochromatic light of wavelength of 660 nm is produced from He-Ne LASER. Hence, (28)output power of 6 mW is obtained. If this light is incident on the target, what will be the number of photons incident per second $(h = 6.6 \times 10^{-34} \text{ Js})$
 - (A) 4×10^{16}

- (B) 2×10^{16} (C) 3×10^{16} (D) 5.5×10^{16}
- A source S_1 is produsing 10^{14} photons per second of wavelength 3000 $\overset{\circ}{A}$. Another source S_2 is (29)producing 1.04×10^{14} photons per second of wavelength 3120 Å. Then the ratio of powers of sources S_1 and S_2 respectively is
 - (A) 1:1
- (B) 1:1.02 (C) 1.04:1
- (D) 1:2
- 12×10^{12} photons are incident on a surface in 10 s. This photons correspond to a wavelength (30)12A. If the surface area of the given surface is 0.02 m². Find the intensity of incident radiations. Velocity of light, $c = 8 \times 10^8 \text{ ms}^{-1}$, $h = 6.6 \times 10^{-34} \text{ Js}$
 - (A) $2.19 \times 10^{-3} \text{ Wm}^{-2}$ (B) $3.48 \times 10^{-3} \text{ Wm}^{-2}$ (C) $9.9 \times 10^{-3} \text{ Wm}^{-2}$ (D) $6.62 \times 10^{-2} \text{ Wm}^{-2}$

(31) Monochromatic light of wavelength $6000 \, \text{A}$ is incident normally on a surface of area $2 \, \text{cm}^2$. If the intensity of light is $200 \, \text{mWm}^{-2}$, find the number of photons being incident on this surface in one second

$$h = 6.6 \times 10^{-34} \text{ Js}, \ c = 3 \times 10^8 \text{ ms}^{-1}$$

- (A) 1.21×10^{14}
- (B) 3.88×10^{13}
- (C) 6.16×10^{14}
- (D) 4.54×10^{13}

Ans.: 27 (D), 28 (B), 29 (A), 30 (C), 31 (A)

Matter Wave (Wave like nature of particle)

According to de-Broglie a moving material particle some times acts as a wave and some times as a particle.

The wave associated with moving particle is called matter wave or de-Broglie wave and it propagates in the form of wave packets with group velocity.

(1) de-Broglie wave length:

According to de Broglie theory, the wavelength of de-Broglie wave is given by,

$$\lambda = \frac{h}{p} = \frac{h}{mv} = \frac{h}{\sqrt{2mE}} \Rightarrow \lambda \propto \frac{1}{P} \propto \frac{1}{v} \propto \frac{1}{\sqrt{E}}$$

where h = planck's constant,

m = mass of the particle, v = speed of the particle, E = kinetic energy of particle.

(2) de-Broglie wavelength associated with the charged particle:

The kinetic energy of a charged particle accelerated through a potential difference of V

volt,
$$E = \frac{1}{2} mv^2 = qV$$
.

∴ Hence de-Broglie wavelength,
$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE}} = \frac{h}{\sqrt{2mqV}}$$

$$\lambda_{\text{electron}} = \frac{12.27}{\sqrt{V}} \stackrel{\circ}{A}, \ \lambda_{\text{proton}} = \frac{0.286}{\sqrt{V}} \stackrel{\circ}{A}$$

$$\lambda_{\text{Deutron}} = \frac{0.202}{\sqrt{V}} \stackrel{\circ}{A}, \ \lambda_{\infty-\text{Particle}} = \frac{0.101}{\sqrt{V}} \stackrel{\circ}{A}$$

(3) de-Broglie wavelength associated with uncharged (netural) particle :

$$\lambda_{\text{neutron}} = \frac{0.286 \times 10^{-10}}{\sqrt{\text{E (in eV)}}} \text{ m} = \frac{0.286}{\sqrt{\text{E (in eV)}}} \text{ Å}$$

Energy of thermal neutron at ordinary temperature

$$E = \frac{3}{2} kT \Rightarrow \lambda \frac{h}{\sqrt{2mE}} = \frac{h}{\sqrt{(2m)(\frac{3}{2} kT)}} = \frac{h}{\sqrt{3mkT}}$$

where T = Absolute temperature, $k = \text{Boltzmann's constant} = 1.38 \times 10^{-23} \text{ JK}^{-1}$

$$\therefore \lambda_{\text{thermal neutron}} = \frac{6.62 \times 10^{-34}}{\sqrt{3 \times 1.67 \times 10^{-27} \times 1.38 \times 10^{23} \text{ T}}} = \frac{25.17}{\sqrt{T}} \text{ Å}$$

(4) Ratio of wavelength of photon and electron:

The wavelength of a photon of energy E is given by,, $\lambda_P = \frac{hc}{F} \left(\because E = \frac{hc}{\lambda} \right)$

While the wavelength of an electron of kinetic energy K is given by,

$$\lambda_e = \frac{h}{\sqrt{2m\mathrm{K}}}$$

$$\therefore \frac{\lambda_p}{\lambda} = \frac{c}{E} \sqrt{2mK} = \sqrt{\frac{2mc^2K}{E^2}}$$

- The de-Broglie wavelength of a neutron at 627° C is λ . What will be its wavelength at 127° C (32)
 - (A) $\frac{2}{3}\lambda$
- (B) 2λ
- (C) $\frac{3}{2}\lambda$
- (D) $\frac{\lambda}{2}$
- (33)If the kinetic energy of a free electron is made thrice, its de-Broglie wavelength will become......
 - (A) $\frac{1}{\sqrt{3}}$ times (B) $\sqrt{3}$ times (C) 3 times
- (D) $\frac{1}{3}$ times
- The de-Broglie wavelength of a neutron having energy 8 eV is $(h = 6.6 \times 10^{-34} \text{ Js})$, mass (34)of neutron = 1.7×10^{-27} kg
 - (A) 1×10^{-11} m
- (B) $1.8 \times 10^{-11} \text{ m}$ (C) $2.2 \times 10^{-11} \text{ m}$
- (D) 0.6×10^{-11} m
- (35)A proton and a deutron have equal energies. The ratio of their de-Broglie wavelengths is
 - (A) 2:1
- (B) 1:2
- (C) $\sqrt{2}:1$
- (D) $1:\sqrt{2}$
- (36)A proton and an α – particle are accelerated through same potential difference of 200 V. If de-Broglie wavelength associated with proton is 5200 A°, then the de-Broglie wavelength associated with α - particle is
 - (A) $\frac{1300}{\sqrt{2}} \mathring{A}$
- (B) $1300\sqrt{2} \text{ Å}$ (C) 2600 Å
- (D) $2600\sqrt{2} \text{ Å}$
- (37)The linear momentum of an electron intially at rest, accelerated through a potential difference of 25 V is
 - (A) $5.4 \times 10^{-24} \text{ kgms}^{-1}$

(B) $2.7 \times 10^{-24} \text{ kgms}^{-1}$

(C) $1.2 \times 10^{-24} \text{ kgms}^{-1}$

- (D) $3.2 \times 10^{-24} \text{ kgms}^{-1}$
- If the kinetic energy of the particle is increased by 16 times, then the value of de Broglie (38)wavelength of particle is
 - (A) decreased by 75 %

(B) increased by 75 %

(C) decreased by 67 %

(D) increased by 67 %

(39)	C	ength of a proton accelerance of proton $= 1.6 \times 10^{-1}$		all difference of 450 V is $6 \times 10^{-27} \text{kg}$
	(A) 0.14×10^{-11} m	(B) $0.2 \times 10^{-11} \text{ m}$	(C) $0.26 \times 10^{-11} \text{ m}$	(D) $0.09 \times 10^{-11} \text{ m}$
(40)		The ratio of kinetic ener		10 ⁸ ms ⁻¹ is equal to the energy of the photon is
	(A) $\frac{7}{8}$	(B) $\frac{5}{8}$	(C) $\frac{3}{8}$	(D) $\frac{1}{8}$
(41)	The kinetic energy of a wavelength is	electron and proton is ec	qual. Then the relation b	between their de-Broglie
	(A) $\lambda_p > \lambda_e$	(B) $\lambda_p < \lambda_e$	(C) $\lambda_p = 2\lambda_e$	(D) $\lambda_p = \lambda_e$
(42)	An electron and a prote electron is	on have the same de-Bro	oglie wavelength. Then	the kinetic energy of the
	(A) greater than the kin(C) equal to kinetic en	netic energy of proton ergy of proton	(B) less than the kinet(D) zero	ic energy of proton.
(43)	A body of mass 0.5 kg the body is	is moving with a veloci	ity of 1000 ms^{-1} . The d	le-Broglie wavelength of
	(A) $3.32 \times 10^{-27} \text{ Å}$	(B) $1.32 \times 10^{-26} \text{ Å}$	(C) $1.6 \times 10^{-27} \text{ Å}$	(D) $0.132 \times 10^{-26} \text{ Å}$
(44)	A particle of mass 1 μ	g has the same de-Bro	oglie wavelength as an	electron moving with a
	velocity of $2 \times 10^6 \text{ ms}^-$	1. The velocity of the par	ticle is	
	(A) $1.82 \times 10^{-15} \text{ ms}^{-1}$	(B) $3.6 \times 10^{-16} \text{ ms}^{-1}$	(C) $3.6 \times 10^{-21} \text{ ms}^{-1}$	(D) $9 \times 10^{-2} \text{ ms}^{-1}$
(45)	The velocity of an elect	tron having a wavelength	n of 10 $\overset{\circ}{\mathbf{A}}$ is	
	(A) $7.25 \times 10^6 \text{ ms}^{-1}$	(B) $7.25 \times 10^5 \text{ ms}^{-1}$	(C) $5.25 \times 10^6 \text{ ms}^{-1}$	(D) $4.25 \times 10^5 \text{ ms}^{-1}$
(46)	• •			respectively. Now both ratio of their de-Broglie
	(A) 2:3	(B) 3:2	(C) $1:\sqrt{6}$	(D) 1:1
(47)		-	-	is accelerated through a ated through a potential
	(A) 1	(B) 8	(C) 2	(D) $\frac{1}{8}$

(48)	The frequency of a photon is $1.5 \times 10^{14} \text{Hz}$. Its momentum will be kgms ⁻¹
	Plank's constant $h = 6.6 10^{-34}$ J _S , velocity of light $c = 3 \times 10^8$ ms ⁻¹ .
	(A) $3.3 \times 10^{-28} \text{ kgms}^{-1}$ (B) $3.3 \times 10^{-34} \text{ kgms}^{-1}$ (C) $3.3 \times 10^{-30} \text{ kgms}^{-1}$ (D) $6.6 \times 10^{-28} \text{ kgms}^{-1}$
(49)	An electron of mass m when accelerated through a potential difference of V volt has de-Broglie wavelength λ . The de-Broglie wavelength associated with a proton of mass M accelerated through the potential difference of 4 V will be
	(A) $\frac{\lambda}{2}\sqrt{\frac{M}{m}}$ (B) $\frac{\lambda}{2}\sqrt{\frac{m}{M}}$ (C) $\lambda\sqrt{\frac{m}{2M}}$ (D) $\frac{\lambda}{4}\sqrt{\frac{m}{M}}$
(50)	A photon of wavelength 1.4 Å collides with an electron. After the collision the wavelength of
	proton becomes $2.0\mathrm{A}$. Then the energy of scattered electron will be (take $h=6.63\times10^{-34}~\mathrm{Js}$)
	(A) $4.6 \times 10^{-15} \text{ J}$ (B) $4.6 \times 10^{-16} \text{ J}$ (C) $3.2 \times 10^{-16} \text{ J}$ (D) $2.3 \times 10^{-16} \text{ J}$
(51)	To reduce de-Broglie wavelength of an electron from 3×10^{-10} m to 1×10^{-10} m, its energy should be
	(A) increased to 9 times (B) increased to 3 times
	(C) decreased to third part (D) decreased to nineth part
(52)	The rest mass of an electron is m_0 . It is moving with the velocity of 0.6 c, its mass m will be where $c = \text{velocity of light in vaccum}$.
	(A) m_0 (B) $\frac{5m_0}{4}$ (C) $\frac{4m_0}{5}$ (D) $\frac{m_0}{6}$
(53)	The potential diference through which an electron should be accelerated so its wavelength will
	become 0.5 Å
	(A) 466 V (B) 747.0 V (C) 941.0 V (D) 602.0 V
(54)	The chargless particle neutron has mass of 1.67×10^{-27} kg and its kinetic energy is 0.04 eV,
	then calculate de-Broglie wavelength of neutron. $h = 6.62 \times 10^{-34} \text{ Js}$
	(A) 1.80 Å (B) 1.43 Å (C) 2.86 Å (D) 3.2 Å
(55)	De Broglie wavelength associated with an electron moving with the velocity of $10^5 \ ms^{-1}$ is
	$h = 6.6 \times 10^{-34} \text{ Js}$, mass of electron m = $9 \times 10^{-31} \text{ kg}$
	(A) 73.33 Å (B) 7.33 Å (C) 46.2 Å (D) 146.66 Å
Ans.	: 32 (C), 33 (A), 34 (A), 35 (C), 36 (B), 37 (B), 38 (C), 39 (A), 40 (C), 41 (B), 42 (A), 43 (B), 44 (A), 45 (B), 46 (D), 47 (D), 48 (A), 49 (B), 50 (B), 51 (A), 52 (B), 53 (D), 54 (B), 55 (A)

Davission and Germer Experiment:

This experiment proves the wave like nature of an electron.

In this experiment using Bragg's law, from the formula $2d \sin \theta = n\lambda$, the wavelength

found to be 1.67 $\overset{\circ}{A}$. which is near to the de Broglie wavelength of electron ($\lambda = 1.65 \overset{\circ}{A}$). Which shows wave like nature of electron.

Heisenberg's Uncertainty principle:

According to Heisenberg's uncertainty principle, If the uncertainty in the x- coordinate of the position is Δx and uncertainty in the x- coordinate of its momentum is Δp , then

$$\Delta x \, \Delta p \ge \frac{h}{2\pi}$$
 (in one dimension)

$$\therefore \Delta x \ \Delta p \ge \hbar \ \text{ where } \ \frac{h}{2\pi} = \hbar$$

Now, If
$$\Delta x \to 0$$
, then $\Delta p \to \infty$

and
$$\Delta p \to 0$$
 then, $\Delta x \to \infty$

Similarly, the uncertainty in the measurements of Energy and time for a particle using above principle,

$$\Delta E \cdot \Delta t \geq \hbar$$

If the radius of the nucleus is r then uncertainty in the position of proton inside the nucleus is $\Delta x = 2r = d$

Hence the uncertainty in momentum of proton is.

$$\Delta p = \frac{\hbar}{\Delta x} = \frac{\hbar}{d} = \frac{\hbar}{2r} = \frac{h}{4\pi r}$$

For a particle if the uncertainties in the measurement of angular momentum and angular displacement are ΔL and $\Delta \theta$ respectively.then from Heisenberg's uncertainty principle,

$$\Delta L \cdot \Delta \theta \geq \hbar$$

- The correctness of velocity of an electron moving with velocity 50 ms⁻¹ is 0.005 % The (56)accuracy with which its position can be measured will be
 - (A) 46×10^{-3} m
- (B) $46 \times 10^{-4} \text{ m}$
- (C) 46×10^{-5} m
- (D) 46×10^{-6} m
- (57)A proton and electron are lying in a box having unpenitrable walls, the uncertainty in their momenta will be

 - (A) For proton is more, as compared to electron (B) For electron is more, as compared to the proton
 - (C) same for both the particles
- (D) directly proportional to their masses

(58)	The maximum unco	ertainty in the position of	proton is 6×10^{-8} m, the	n the minimum uncertainty
	in its velocity will l	be $(h = 6.625 \times 10^{-34})$	J_S , mass of proton = 1.6	$67 \times 10^{-27} \text{ kg}$
	(A) $1 mms^{-1}$	(B) 1 ms^{-1}	(C) 1cms^{-1}	(D) 100 ms ⁻¹
(59)	If the uncertainty i	n the position of an elect	tron is 10^{-10} m, then the	value of uncertainly in its
	momentum (in kg m	s ⁻¹) will be		
	(A) 1.054×10^{-24}	(B) 1.112×10^{-24}	(C) 1.054×10^{-22}	(D) 1.112×10^{-22}
Ans.	: 56 (A), 57 (C),	58 (B), 59 (A)		
Asser	tion - Reason type	Question:		
Instru	action: Read assert	ion and reason carefully	y, select proper option 1	from given below.
	(a) Both assertion a	and reason are true and reason	ason explains the assertion	n.
	(b) Both assertion a	and reason are true but rea	son does not explain the	assertion.
	(c) Assertion is true	but reason is false.		
	(d) Assertion is fals	e and reason is true.		
(60)	Assertion : The wo	ork function of a metal is	2 eV. To have photo en	nission from the surface of
	the met	tal, the maximum wavelen	gth of incident photon is	6200 A°.
	Reason: Work fun	ection, $\Phi = \frac{hc}{\lambda_{\text{max}}}$		
	(A) a	(B) b	(C) c	(D) d
(61)	sensitiv	* *	uency of incident light is	ency is incident on a photo halved and the intensity is
	Reason: Photo ele	ctric current is directly pro	oportional to the intensity	of incident light.
	(A) a	(B) b	(C) c	(D) d
(62)		is nearly heavier by 184 a potential difference of		n. A proton is accelerated becomes 1 keV
	Reason: Kinetic e	nergy gained = (charge)	× (potential difference)	
	(A) a	(B) b	(C) c	(D) d
(63)		netic energy of photoeles on the frequency of the		e photo sensitive surface
	Reason: Kinetic e	nergy of emitted photoele	ctrons changes with the c	hange in the frequency of
	incident	light.		
	(A) a	(B) b	(C) c	(D) d
		46	1	

(64)	Assertion: On increa constant.	using the frequency of inc	cident light, the nur	mber of emitted photons remains
	Reason: the number of	of emitted photo electron	s does not depend o	n the frequency of incident light,
	but depends	on the intensity.		
	(A) a	(B) b	(C) c	(D) d
(65)	Broglie v	•	with an electron	ime potential difference. The de is more than the de- Broglie
	Reason: The de-Bro	oglie wavelength associa	ted with the charge	ed particle accelerated through a
	potential dif	ference of V volt is give	In by, $\lambda = \frac{h}{\sqrt{2mqV}} \propto$	$\frac{1}{\sqrt{m}}$ (for equal value of qV).
	(A) a	(B) b	(C) c	(D) d
(66)		surface. The kinetic en	-	hotoelectrons is lying between
	Reason : The value o	of work function changed	with the depth fro	m the surface of metal.
	(A) a	(B) b	(C) c	(D) d
(67)	Assertion: The de-B	roglie wavelength associ	ated with molecule	s is inversely proportional to the
	square root of	of the absolute temperatu	ire.	
	Reason: The value of	of v_{rms} for moleaules de	pends on the absolu	ite temperature.
	(A) a	(B) b		(D) d
Ans	: 60 (A), 61 (D), 62	(A), 63 (A), 64 (A),		67 (A)
Comp	rehension Type Ques	stions:		
paragi	raph:			
	The work function of	of ceisium metal is 2.14	eV. When radiati	fon of frequency $6 \times 10^{14} \mathrm{H}_z$ is
		hen photoelectrons are er		2
(68)		ergy of photoelectron		ono wing questions
()				
	(A) $5.58 \times 10^{-20} \text{ J}$	(B) 3.34×10^{-19}		¹⁸ J (D) 3.34×10^{-20} J
(69)	(A) 5.58×10^{-20} J The value of stopping			$^{18} J$ (D) $3.34 \times 10^{-20} J$
(69)				¹⁸ J (D) 3.34×10^{-20} J (D) 0.87 V
(69)(70)	The value of stopping	g potential (B) 0.349 V	(C) $5.58 \times 10^{-}$	
` ,	The value of stopping (A) 0.236 V maximum speed of p	g potential (B) 0.349 V hoto electrons	(C) 5.58×10^{-1} (C) 1.03 V	
` ,	The value of stopping (A) 0.236 V maximum speed of p	g potential (B) 0.349 V hoto electrons (B) $224 \times 10^3 \text{ ms}^{-1}$	(C) 5.58×10^{-1} (C) 1.03 V	(D) 0.87 V
(70)	The value of stopping (A) 0.236 V maximum speed of p (A) $155 \times 10^3 \text{ ms}^{-1}$	g potential (B) 0.349 V hoto electrons (B) $224 \times 10^3 \text{ ms}^{-1}$	(C) 5.58×10^{-1} (C) 1.03 V (C) 3.50×10^{5}	(D) 0.87 V ms^{-1} (D) $276 \times 10^3 \text{ ms}^{-1}$
(70) (71)	The value of stopping (A) 0.236 V maximum speed of p (A) $155 \times 10^3 \text{ ms}^{-1}$ The value of threshol (A) 4647 Å	g potential	(C) 5.58×10^{-1} (C) 1.03 V	(D) 0.87 V
(70)	The value of stopping (A) 0.236 V maximum speed of position (A) $155 \times 10^3 \text{ ms}^{-1}$ The value of threshold (A) 4647 Å The value of threshold (B) 100×10^{-1} m (B) 100×10^{-1	g potential (B) 0.349 V hoto electrons (B) $224 \times 10^3 \text{ ms}^{-1}$ In the distribution of the second	(C) 5.58×10^{-1} (C) 1.03 V (C) 3.50×10^{5}	(D) 0.87 V ms^{-1} (D) $276 \times 10^3 \text{ ms}^{-1}$ (D) 6134 Å

(73) The variation of intensity (I) of incident radiation with photo electric current (i) can be shown by

Ans.: 68 (C), 69 (B), 70 (C), 71 (C), 72 (A), 73 (A)

Graphical questions:

(74) Which of the following graph represents the variation of particle momentum and the associated de-Broglie wavelength

(A)

(B)

(C)

(D)

(75) According to Einstein's photoelectric equation, the graph between the kinetic energy of photoelectrons ejected and the frequency light is

(A)

(B)

(C)

(D)

In the graph shown below, $V_2 > V_1$ then (76)

where $V = potential difference, i \rightarrow photoelectric current$

- $\begin{array}{lll} \text{(A)} & \lambda_1 = \sqrt{\lambda_2} & & \text{(B)} & \lambda_1 < \lambda_2 \\ \\ \text{(C)} & \lambda_1 = \lambda_2 & & \text{(D)} & \lambda_1 > \lambda_2 \end{array}$

- (77)The anode voltage of a photocell is kept fixed. The wavelength of the light falling on the cathode is gradually changed. The plate current (I) of the photocell varies as follows.
 - (A)

(B)

(C)

(D)

Ans.: 74 (D), 75 (D), 76 (D) 77 (A)

Match the columns:

Methods for eomission of electron are shown in column-1 and in column-2 methods to obtain it (78)are shown. Match the columns.

	column-1	column-2	
(a)	Thermionic emission	(p)	By incidenting suitable light
(b)	photo electric emission	(q)	By heating (by passing current through
			filament)
(c)	Field emission	(r)	By colliding accelerated electron beam on the surface of the metal.
(d)	Secondary emission	(s)	By appying strong electric field.

- (A) $a \rightarrow q$ $b \rightarrow p$ $c \rightarrow s$ $d \rightarrow r$

- $b \rightarrow r$ $c \rightarrow q$ $d \rightarrow p$ (D) $a \rightarrow s$

(79) In column-1 physical quantities related to photoelectric effect are shown. Join them with appropriate physical quantitees given in column-2.

column-1		column-2	
(a)	saturation current	(p)	Frequency of incident light
(b)	stopping potential	(q)	work function
(c)	de Broglie wavelength associated	(r)	Area of photo sensitive surface
	with photo electron		
(d)	Force exerted on photo sensitive	(s)	Intensity of incident light
	surface due to incident radiation.		(For constant frequency)

- (A) $a \rightarrow s$ $b \rightarrow p, q$ $c \rightarrow p, q$ $d \rightarrow p, r, s$
- (B) $a \rightarrow r, p \quad b \rightarrow s, r \quad c \rightarrow r \quad d \rightarrow q$
- (C) $a \rightarrow p$ $b \rightarrow r$ $c \rightarrow r, s$ $d \rightarrow s$
- (D) $a \rightarrow s$ $b \rightarrow r$ $c \rightarrow q$ $d \rightarrow p$

Ans.: 78 (A), 79 (A)