Package 'metadynminer'

October 13, 2022

Type Package

Title Tools to Read, Analyze and Visualize Metadynamics HILLS Files from 'Plumed'

Version 0.1.7

Date 2022-04-12

Depends R (>= 3.3.0)

LinkingTo Rcpp

Description Metadynamics is a state of the art biomolecular simulation technique.
'Plumed' Tribello, G.A. et al. (2014) <doi:10.1016/j.cpc.2013.09.018> program makes it possible to perform metadynamics using various simulation codes. The results of metadynamics done in 'Plumed' can be analyzed by 'metadynminer'. The package 'metadynminer' reads 1D and 2D metadynamics hills files from 'Plumed' package.
It uses a fast algorithm by Hosek, P. and Spiwok, V. (2016) <doi:10.1016/j.cpc.2015.08.037> to calculate a free energy surface from hills. Minima can be located and plotted on the free energy surface. Transition states can be analyzed by Nudged Elastic Band method by Henkelman, G. and Jonsson, H. (2000) <doi:10.1063/1.1323224>. Free energy surfaces, minima and transition paths can be plotted to produce publication quality

LazyData true

images.

License GPL-3

RoxygenNote 6.1.0

Imports Rcpp

Suggests testthat

URL https://metadynamics.cz/metadynminer/

NeedsCompilation yes

Author Vojtech Spiwok [aut, cre] (https://orcid.org/0000-0001-8108-2033)

Maintainer Vojtech Spiwok <spiwokv@vscht.cz>

Repository CRAN

Date/Publication 2022-04-14 11:02:29 UTC

R topics documented:

3
3
4
4
5
5
6
7
7
8
9
9
0
1
1
2
2
3
3
4
5
5
6
7
7
9
0
1
2
3
4
5
5
6
7
8
8
9
9
0
0
1
1
2
3
3

acealanme 3

	summary.nebpath summary.profiles tail.hillsfile		 	 																		34
Index																						36
aceal	lanme	Hills fi lective		ady	nan	nics	of	Ac	ceA	la	Nn	ıe i	in	w	ate	er :	wii	th	tu	o'	co	l-

Description

Hills from 30 ns metadynamics of AceAlaNme (Amber99SB-ILDN) in water (TIP3P) with Ramachandran dihedrals phi and psi as collective variables.

Usage

acealanme

Format

hillsfile object

Source

http://www.metadynamics.cz/metadynminer/data/HILLS2d

acealanme1d	Hills from 30 ns metadynamics of AceAlaNme in water with one collective variable
aceatamilera	

Description

Hills from 30 ns metadynamics of AceAlaNme (Amber99SB-ILDN) in water (TIP3P) with a Ramachandran dihedral phi as the collective variable.

Usage

acealanme1d

Format

hillsfile object

Source

http://www.metadynamics.cz/metadynminer/data/HILLS1d

4 feprof

emptyhills

Generate empty HILLS from Plumed

Description

'emptyhills' returns a hillsfile object with no hills. User can specify whether some collective variables are periodic.

Usage

```
emptyhills(dim=2, per=c(FALSE, FALSE), pcv1=c(-pi,pi), pcv2=c(-pi,pi))
```

Arguments

dim dimensionality of the output.

per logical vector specifying periodicity of collective variables.

pcv1 periodicity of CV1. pcv2 periodicity of CV2.

Value

hillsfile object.

Examples

```
emptyhills(dim=2)
```

feprof

Calculate free energy profile for minima object (generic function for 'metadynminer' and 'metadynminer3d')

Description

'feprof' calculates free energy profiles for free energy minima. It finds the global minimum at the 'imax' and calculates the evolution of free energies of a local vs. the global free energy minimum. The free energy of the global minimum is constant (zero).

Usage

```
feprof(minims, imax)
```

Arguments

minims minima object.

imax index of a hill from which summation stops (default the rest of hills).

feprof.minima 5

feprof.minima	Calculate free energy profile for minima object
---------------	---

Description

'feprof.minima' calculates free energy profiles for free energy minima. It finds the global minimum at the 'imax' and calculates the evolution of free energies of a local vs. the global free energy minimum. The free energy of the global minimum is constant (zero).

Usage

```
## S3 method for class 'minima'
feprof(minims, imax = NULL)
```

Arguments

minims minima object.

imax index of a hill from which summation stops (default the rest of hills).

Examples

```
tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
prof<-feprof(minima)
prof</pre>
```

fes

Calculate free energy surface by Bias Sum algorithm (generic function for 'metadynminer' and 'metadynminer3d')

Description

'fes' sums up hills using fast Bias Sum algorithm.

Usage

```
fes(hills, imin, imax, xlim, ylim, zlim, npoints)
```

hills	hillsfile object.
imin	index of a hill from which summation starts (default 1).
imax	index of a hill from which summation stops (default the rest of hills).
xlim	numeric vector of length 2, giving the CV1 coordinates range.
ylim	numeric vector of length 2, giving the CV2 coordinates range.
zlim	numeric vector of length 2, giving the CV3 coordinates range.
npoints	resolution of the free energy surface in number of points.

6 fes.hillsfile

Value

fes object.

fes.hillsfile

Calculate free energy surface by Bias Sum algorithm

Description

'fes.hillsfile' sums up hills using fast Bias Sum algorithm.

Usage

```
## $3 method for class 'hillsfile'
fes(hills, imin = 1, imax = NULL, xlim = NULL,
   ylim = NULL, zlim = NULL, npoints = 256)
```

Arguments

hills	hillsfile object.
imin	index of a hill from which summation starts (default 1).
imax	index of a hill from which summation stops (default the rest of hills).
xlim	numeric vector of length 2, giving the CV1 coordinates range.
ylim	numeric vector of length 2, giving the CV2 coordinates range.
zlim	numeric vector of length 2, giving the CV3 coordinates range.
npoints	resolution of the free energy surface in number of points.

Value

fes object.

```
tfes<-fes(acealanme, imax=5000)
```

fes2 7

fes2	Calculate free energy surface by conventional algorithm (generic
	function for 'metadynminer' and 'metadynminer3d')

Description

'fes2' sums up hills using slow conventional algorithm. It can be used as a reference or when hill widths are variable.

Usage

```
fes2(hills, imin, imax, xlim, ylim, zlim, npoints)
```

Arguments

hills	hillsfile object.
imin	index of a hill from which summation starts (default 1).
imax	index of a hill from which summation stops (default the rest of hills).
xlim	numeric vector of length 2, giving the CV1 coordinates range.
ylim	numeric vector of length 2, giving the CV2 coordinates range.
zlim	numeric vector of length 2, giving the CV3 coordinates range.
npoints	resolution of the free energy surface in number of points.

Value

fes object.

fes2.hillsfile Calculate free energy surface by conventional algorithm	fes2.hillsfile	Calculate free energy surface by conventional algorithm
--	----------------	---

Description

'fes2.hillsfile' sums up hills using slow conventional algorithm. It can be used as a reference or when hill widths are variable.

Usage

```
## S3 method for class 'hillsfile'
fes2(hills, imin = 1, imax = NULL, xlim = NULL,
   ylim = NULL, zlim = NULL, npoints = 256)
```

8 fes2d21d

Arguments

hills	hillsfile object.
imin	index of a hill from which summation starts (default 1).
imax	index of a hill from which summation stops (default the rest of hills).
xlim	numeric vector of length 2, giving the CV1 coordinates range.
ylim	numeric vector of length 2, giving the CV2 coordinates range.
zlim	numeric vector of length 2, giving the CV3 coordinates range.
npoints	resolution of the free energy surface in number of points.

Value

fes object.

Examples

```
tfes<-fes2(acealanme, imax=1000)
```

fes2d21d

Calculate 1D free energy surface from hillsfile object

Description

'fes2d21d' calculates 2D free energy surface, converts free energies to probabilities ($\exp(-F/kT)$), sums them up along one collective variable and converts back to free energy ($-kT \log(P)$).

Usage

```
fes2d21d(hills, remdim = 2, temp = 300, eunit = "kJ/mol", imin = 1,
  imax = NULL, xlim = NULL, ylim = NULL, npoints = 256)
```

hills	hillsfile object.
remdim	dimension to be removed (1 for CV1, 2 for CV2, default 2).
temp	temperature in Kelvins (default 300).
eunit	energy units (kJ/mol or kcal/mol, kJ/mol is default).
imin	index of a hill from which summation starts (default 1).
imax	index of a hill from which summation stops (default the rest of hills).
xlim	numeric vector of length 2, giving the CV1 coordinates range.
ylim	numeric vector of length 2, giving the CV2 coordinates range.
npoints	resolution of the free energy surface in number of points.

fesminima 9

Value

fes object.

Examples

```
tfes<-fes2d21d(acealanme, remdim=2, imax=5000)
```

fesminima

Find free energy minima in the fes object (generic function for 'meta-dynminer' and 'metadynminer3d')

Description

'fesminima' finds free energy minima on 1D or 2D free energy surface. The surface is divided by a 1D or 2D grid and minima are found for each bin. Next the program determines whether the minimum of a bin is a local minimum of the whole free energy surface. Free energy minima are labeled constitutively by capital letters.

Usage

```
fesminima(inputfes, nbins)
```

Arguments

inputfes fes object.

nbins number of bins for each CV (default 8).

Value

minima object.

fesminima.fes

Find free energy minima in the fes object

Description

'fesminima.fes' finds free energy minima on 1D or 2D free energy surface. The surface is divided by a 1D or 2D grid and minima are found for each bin. Next the program determines whether the minimum of a bin is a local minimum of the whole free energy surface. Free energy minima are labeled constitutively by capital letters.

Usage

```
## S3 method for class 'fes'
fesminima(inputfes, nbins = 8)
```

10 fespoint

Arguments

inputfes fes object.

nbins number of bins for each CV (default 8).

Value

minima object.

Examples

```
tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
minima</pre>
```

fespoint

 $Calculate\ free\ energy\ at\ given\ point\ in\ the\ CV\ space\ (generic\ function$

for 'metadynminer' and 'metadynminer3d')

Description

'fespoint' calculates free energy at given point in the CV space 'coord'. Hills are summed from 'imin' to 'imax'. Printed output can be suppressed by setting 'verb' to TRUE.

Usage

```
fespoint(hills, coord, imin, imax, verb)
```

Arguments

coord coordinates of the point in the CV space.

imin index of a hill from which calculation of difference starts (default 1).

imax index of a hill from which summation stops (default the rest of hills).

verb if TRUE, the output is verbose (default TRUE).

fespoint.hillsfile 11

fespoint.hillsfile

Calculate free energy at given point in the CV space

Description

'fespoint.hillsfile' calculates free energy at given point in the CV space 'coord'. Hills are summed from 'imin' to 'imax'. Printed output can be suppressed by setting 'verb' to TRUE.

Usage

```
## S3 method for class 'hillsfile'
fespoint(hills, coord = NULL, imin = 1,
   imax = NULL, verb = T)
```

Arguments

hills hillsfile object.

coord coordinates of the point in the CV space.

imin index of a hill from which calculation of difference starts (default 1).

imax index of a hill from which summation stops (default the rest of hills).

verb if TRUE, the output is verbose (default TRUE).

Examples

```
fespoint(acealanme, c(0,0), imax=5000)
```

head.hillsfile

Print first n lines of hillsfile

Description

'head.hillsfile' prints first n lines of a hillsfile object.

Usage

```
## S3 method for class 'hillsfile'
head(x, n = 10, ...)
```

Arguments

x hillsfile object.

n number of lines (default 10).

... further arguments passed to or from other methods.

Examples

head(acealanme)

12 lines.hillsfile

lines.fes

Plots 1D free energy surface object as lines

Description

'lines.fes' plots 1D free energy surface as lines.

Usage

```
## S3 method for class 'fes'
lines(x, lwd = 1, col = "black", ...)
```

Arguments

fes object. Χ

lwd line width for drawing symbols see 'par'.

color code or name, see 'par'. col

further arguments passed to or from other methods.

Examples

```
tfes<-fes(acealanme1d, imax=5000)
plot(tfes)
lines(tfes, lwd=4)
```

lines.hillsfile

Plot lines for hillsfile object

Description

'lines.hillsfile' plots lines for hillsfile object. For a hillsfile with one collective variable it plots its evolution. For a hillsfile with two collective variables it plots CV1 vs. CV2.

Usage

```
## S3 method for class 'hillsfile'
lines(x, ignoretime = FALSE, lwd = 1,
  col = "black", ...)
```

Arguments

X	hillsfile object.
ignoretime	time in the first column of the HILLS file will be ignored.
lwd	line width for drawing symbols see 'par'.

col color code or name, see 'par'.

hillsfile object.

further arguments passed to or from other methods.

lines.nebpath 13

Examples

```
plot(acealanme)
lines(acealanme, col="red")
```

lines.nebpath

Plot lines for Nudged Elastic Band

Description

'lines.nebpath' plots lines for free energy profile calculated by Nudged Elastic Band.

Usage

```
## S3 method for class 'nebpath'
lines(x, col = "red", lwd = 1, ...)
```

Arguments

```
x nebpath object.
col color code or name, see 'par'.
lwd line width for drawing symbols see 'par'.
further arguments passed to or from other methods.
```

Examples

```
tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
nebAD<-neb(minima, min1="A", min2="D", nsteps=20)
plot(nebAD)
lines(nebAD, lwd=4)</pre>
```

linesonfes

Plot lines for Nudged Elastic Band projected onto free energy surface

Description

'linesonfes' plots lines for free energy profile calculated by Nudged Elastic Band projected onto free energy surface.

Usage

```
linesonfes(x, col = "red", lwd = 1)
```

14 max.fes

Arguments

x nebpath object.

col color code or name, see 'par'.

line width for drawing symbols see 'par'.

Examples

```
tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
nebAD<-neb(minima, min1="A", min2="D", nsteps=20)
plot(minima)
linesonfes(nebAD)</pre>
```

max.fes

Calculate maximum of free energy surface

Description

'max.fes' calculates maximum of free energy in a fes object.

Usage

```
## S3 method for class 'fes'
max(inputfes, na.rm = NULL, ...)
```

Arguments

inputfes fes object.

na.rm a logical indicating whether missing values should be removed.

... further arguments passed to or from other methods.

```
tfes<-fes(acealanme, imax=5000)
max(tfes)</pre>
```

min.fes 15

	٠		_		
m	1	n	f	e	S

Calculate minimum of free energy surface

Description

'min.fes' calculates minimum of free energy in a fes object.

Usage

```
## S3 method for class 'fes'
min(inputfes, na.rm = NULL, ...)
```

Arguments

```
inputfes fes object.
```

na.rm a logical indicating whether missing values should be removed.

... further arguments passed to or from other methods.

Examples

```
tfes<-fes(acealanme, imax=5000)
min(tfes)</pre>
```

neb

Find transition path on free energy surface by Nudged Elastic Band method

Description

'neb' finds a transition path on free energy surface for a given pair of minima. For a 1D surface it simply takes the free energy profile between the two minima. For 2D surface it calculates the transition path by Nudged Elastic

Usage

```
neb(minims = minims, min1 = "A", min2 = "B", nbins = 20,
   nsteps = 100, step = 1, k = 0.2)
```

minims	minima object.
min1	starting minimum identifier (can be letter or index, default "A").
min2	final minimum identifier (can be letter or index, default "B").
nbins	number of bins along Nudged Elastic Band (default 20).
nsteps	number of Nudged Elastic Band iterations (default 100).
step	Nudged Elastic Band iteration step (default 1).
k	Nudged Elastic Band toughness (default 0.2).

oneminimum oneminimum

Value

NEB path

Examples

```
tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
nebAD<-neb(minima, min1="A", min2="D", nsteps=20)
nebAD</pre>
```

oneminimum

Creates one ad hoc free energy minimum for a fes object (generic function for 'metadynminer' and 'metadynminer3d')

Description

'oneminimum' creates an ad hoc free energy minimum on free energy surface. This can be used to calculate free energy surface evolution at arbitrary point of free energy surface.

Usage

```
oneminimum(inputfes, cv1, cv2, cv3)
```

Arguments

inputfes	fes object.
cv1	the value of collective variable 1
cv2	the value of collective variable 2
cv3	the value of collective variable 3

Value

minima object.

oneminimum.fes 17

oneminimum.fes

Creates one ad hoc free energy minimum for a fes object

Description

'oneminimum.fes' creates an ad hoc free energy minimum on free energy surface. This can be used to calculate free energy surface evolution at arbitrary point of free energy surface.

Usage

```
## S3 method for class 'fes'
oneminimum(inputfes, cv1, cv2, cv3)
```

Arguments

inputtes	fes object.
cv1	the value of collective variable 1.
cv2	the value of collective variable 2.
cv3	the value of collective variable 3.

Value

minima object.

Examples

```
tfes<-fes(acealanme1d)
minima<-fesminima(tfes)
minima<-minima+oneminimum(tfes, cv1=0, cv2=0)
minima</pre>
```

plot.fes

Plot free energy surface object

Description

'plot.fes' plots free energy surface. For a fes with one collective variable it plots a 1D profile. For a fes with two collective variables it plots 2D free energy surface using image, contours or combination of both (default).

plot.fes

Usage

```
## S3 method for class 'fes'
plot(x, plottype = "both", colscale = F, xlim = NULL,
    ylim = NULL, zlim = NULL, main = NULL, sub = NULL, xlab = NULL,
    ylab = NULL, nlevels = 10, levels = NULL,
    col = rainbow(135)[100:1], labels = NULL, labcex = 0.6,
    drawlabels = TRUE, colscalelab = "free energy",
    method = "flattest", contcol = par("fg"), lty = par("lty"),
    lwd = 1, asp = NULL, axes = T, ...)
```

x	fes object.
plottype	specifies whether 2D free energy surface will be plotted as image, contours or both (default "both").
colscale	specifies whether color scale will be plotted (default False).
xlim	numeric vector of length 2, giving the x coordinates range.
ylim	numeric vector of length 2, giving the y coordinates range.
zlim	numeric vector of length 2, giving the z coordinates range.
main	an overall title for the plot: see 'title'.
sub	a sub title for the plot: see 'title'.
xlab	a title for the x axis: see 'title'.
ylab	a title for the y axis: see 'title'.
nlevels	number of contour levels desired if 'levels' is not supplied.
levels	numeric vector of levels at which to draw contour lines.
col	color of the free energy surface. For 1D surface it is the color of the line. For 2D it is a list of colors such as that generated by 'rainbow', 'heat.colors', 'topo.colors', 'terrain.colors' or similar functions (default=rainbow(135)[100:1]).
labels	a vector giving the labels for the contour lines. If 'NULL' then the levels are used as labels, otherwise this is coerced by 'as.character'.
labcex	'cex' for contour labeling. This is an absolute size, not a multiple of 'par("cex")'.
drawlabels	logical. Contours are labeled if 'TRUE'.
colscalelab	color scale label (default "free energy").
method	character string specifying where the labels will be located. Possible values are "simple", "edge" and "flattest" (the default). See the 'Details' section.
contcol	contour color.
lty	line type for the lines drawn.
lwd	contour line width.
asp	the y/x aspect ratio, see 'plot.window'.
axes	a logical value indicating whether both axes should be drawn on the plot.
	further arguments passed to or from other methods.

plot.hillsfile 19

Examples

```
tfes2d<-fes(acealanme, imax=5000)
plot(tfes2d)
tfes1d<-fes(acealanme1d)
plot(tfes1d)</pre>
```

plot.hillsfile

Plot hillsfile object

Description

'plot.hillsfile' plots hillsfile object. For a hillsfile with one collective variable it plots its evolution. For a hillsfile with two collective variables it plots CV1 vs. CV2.

Usage

```
## S3 method for class 'hillsfile'
plot(x, ignoretime = FALSE, xlab = NULL,
   ylab = NULL, xlim = NULL, ylim = NULL, main = NULL, sub = NULL,
   pch = 1, col = "black", bg = "red", cex = 1, asp = NULL,
   lwd = 1, axes = TRUE, ...)
```

Arguments

x	hillsfile object.
ignoretime	time in the first column of the HILLS file will be ignored.
xlab	a title for the x axis: see 'title'.
ylab	a title for the y axis: see 'title'.
xlim	numeric vector of length 2, giving the x coordinates range.
ylim	numeric vector of length 2, giving the y coordinates range.
main	an overall title for the plot: see 'title'.
sub	a sub title for the plot: see 'title'.
pch	plotting 'character', i.e., symbol to use. See 'points'.
col	color code or name, see 'par'.
bg	background (fill) color for the open plot symbols given by 'pch = 21:25'.
cex	character (or symbol) expansion: a numerical vector. This works as a multiple of 'par("cex")'.
asp	the y/x aspect ratio, see 'plot.window'.
lwd	line width for drawing symbols see 'par'.
axes	a logical value indicating whether both axes should be drawn on the plot.
	further arguments passed to or from other methods.

```
plot(acealanme)
```

20 plot.minima

plot.minima	Plot minima object	

Description

'plot.minima' plots free energy surface with minima. The free energy surface is plotted the same way as by plot.fes with additional minima labels.

Usage

```
## S3 method for class 'minima'
plot(x, plottype = "both", xlim = NULL, ylim = NULL,
  zlim = NULL, colscale = F, colscalelab = "free energy",
  main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
  nlevels = 10, levels = NULL, col = rainbow(135)[100:1],
  labels = NULL, labcex = 0.6, drawlabels = TRUE,
  method = "flattest", textcol = "black", pch = 1, bg = "red",
  cex = 1, contcol = par("fg"), lty = par("lty"), lwd = par("lwd"),
  asp = NULL, axes = TRUE, ...)
```

x	minima object.
plottype	specifies whether 2D free energy surface will be plotted as image, contours or both (default "both").
xlim	numeric vector of length 2, giving the x coordinates range.
ylim	numeric vector of length 2, giving the y coordinates range.
zlim	numeric vector of length 2, giving the z coordinates range.
colscale	specifies whether color scale will be plotted (default False).
colscalelab	color scale label (default "free energy").
main	an overall title for the plot: see 'title'.
sub	a sub title for the plot: see 'title'.
xlab	a title for the x axis: see 'title'.
ylab	a title for the y axis: see 'title'.
nlevels	number of contour levels desired if 'levels' is not supplied.
levels	numeric vector of levels at which to draw contour lines.
col	color of the free energy surface. For 1D surface it is the color of the line. For 2D it is a list of colors such as that generated by 'rainbow', 'heat.colors', 'topo.colors', 'terrain.colors' or similar functions (default=rainbow(135)[100:1]).
labels	a vector giving the labels for the contour lines. If 'NULL' then the levels are used as labels, otherwise this is coerced by 'as.character'.
labcex	'cex' for contour labeling. This is an absolute size, not a multiple of 'par("cex")'.

plot.nebpath 21

drawlabels	logical. Contours are labeled if 'TRUE'.
method	character string specifying where the labels will be located. Possible values are '"simple"', '"edge"' and '"flattest"' (the default). See the 'Details' section.
textcol	color of minima labels.
pch	plotting 'character', i.e., symbol to use. See 'points'
bg	background (fill) color for the open plot symbols given by 'pch = 21:25'.
cex	character (or symbol) expansion: a numerical vector. This works as a multiple of 'par("cex")'.
contcol	contour color.
lty	line type for the lines drawn.
lwd	contour line width.
asp	the y/x aspect ratio, see 'plot.window'.
axes	a logical value indicating whether both axes should be drawn on the plot.
	further arguments passed to or from other methods.

Examples

```
tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
plot(minima)</pre>
```

_	
plot.	nebpath

Plot Nudged Elastic Band

Description

'plot.nebpath' plots free energy profile calculated by Nudged Elastic Band.

Usage

```
## S3 method for class 'nebpath'
plot(x, xlim = NULL, ylim = NULL, main = NULL,
   sub = NULL, xlab = "bin", ylab = "free energy", col = "red",
   lwd = 1, asp = NULL, cex = 1, axes = T, ...)
```

X	nebpath object.
xlim	numeric vector of length 2, giving the x coordinates range.
ylim	numeric vector of length 2, giving the y coordinates range.
main	an overall title for the plot: see 'title'.
sub	a sub title for the plot: see 'title'.
xlab	a title for the x axis: see 'title'.

22 plot.profiles

ylab	a title for the y axis: see 'title'.
col	color code or name, see 'par'.
lwd	line width for drawing symbols see 'par'.
asp	the y/x aspect ratio, see 'plot.window'.
cex	text expansion.
axes	a logical value indicating whether both axes should be drawn on the plot.
	further arguments passed to or from other methods.

Examples

```
tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
nebAD<-neb(minima, min1="A", min2="D", nsteps=20)
plot(nebAD)</pre>
```

plot.profiles

Plot free energy profile

Description

'plot.profiles' plots evolution of free energy differences between minima. They are colored by rainbow colors from the global one (blue) to the highest (red).

Usage

```
## S3 method for class 'profiles'
plot(x, which = NULL, ignoretime = FALSE,
    xlim = NULL, ylim = NULL, main = NULL, sub = NULL, xlab = NULL,
    ylab = NULL, col = NULL, asp = NULL, lwd = 1, axes = T, ...)
```

X	profiles object.
which	vector of indexes of profiles to be plotted (default all).
ignoretime	time in the first column of the HILLS file will be ignored.
xlim	numeric vector of length 2, giving the x coordinates range.
ylim	numeric vector of length 2, giving the y coordinates range.
main	an overall title for the plot: see 'title'.
sub	a sub title for the plot: see 'title'.
xlab	a title for the x axis: see 'title'.
ylab	a title for the y axis: see 'title'.
col	color code or name, see 'par'.
asp	the y/x aspect ratio, see 'plot.window'.
lwd	line width.
axes	a logical value indicating whether both axes should be drawn on the plot.
	further arguments passed to or from other methods.

plotheights 23

Examples

```
tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
prof<-feprof(minima)
plot(prof)</pre>
```

plotheights	Plot evolution of heights of hills (generic function for 'metadynminer' and 'metadynminer3d')

Description

'plotheights' plots evolution of heights of hills. In well tempered metadynamics hill heights decrees with flooding of the free energy surface. Evolution of heights may be useful to evaluate convergence of the simulation.

Usage

```
plotheights(hills, ignoretime, xlab, ylab, xlim, ylim, main, sub, col, asp,
  lwd, axes)
```

hills	hillsfile object.
ignoretime	time in the first column of the HILLS file will be ignored.
xlab	a title for the x axis: see 'title'.
ylab	a title for the y axis: see 'title'.
xlim	numeric vector of length 2, giving the x coordinates range.
ylim	numeric vector of length 2, giving the y coordinates range.
main	an overall title for the plot: see 'title'.
sub	a sub title for the plot: see 'title'.
col	color code or name, see 'par'.
asp	the y/x aspect ratio, see 'plot.window'.
lwd	line width for drawing symbols see 'par'.
axes	a logical value indicating whether both axes should be drawn on the plot.

24 plotheights.hillsfile

plotheights.hillsfile Plot evolution of heights of hills in hillsfile object

Description

'plotheights.hillsfile' plots evolution of heights of hills. In well tempered metadynamics hill heights decrees with flooding of the free energy surface. Evolution of heights may be useful to evaluate convergence of the simulation.

Usage

```
## S3 method for class 'hillsfile'
plotheights(hills, ignoretime = FALSE, xlab = NULL,
   ylab = NULL, xlim = NULL, ylim = NULL, main = NULL, sub = NULL,
   col = "black", asp = NULL, lwd = 1, axes = TRUE)
```

Arguments

hills	hillsfile object.
ignoretime	time in the first column of the HILLS file will be ignored.
xlab	a title for the x axis: see 'title'.
ylab	a title for the y axis: see 'title'.
xlim	numeric vector of length 2, giving the x coordinates range.
ylim	numeric vector of length 2, giving the y coordinates range.
main	an overall title for the plot: see 'title'.
sub	a sub title for the plot: see 'title'.
col	color code or name, see 'par'.
asp	the y/x aspect ratio, see 'plot.window'.
lwd	line width for drawing symbols see 'par'.
axes	a logical value indicating whether both axes should be drawn on the plot.

```
plotheights(acealanme)
```

points.fes 25

Plots 1D free energy surface object as points

Description

'points.fes' plots 1D free energy surface as points.

Usage

```
## S3 method for class 'fes'
points(x, pch = 1, col = "black", bg = "red",
    cex = 1, lwd = 1, ...)
```

Arguments

X	fes object.
pch	plotting 'character', i.e., symbol to use. See 'points'
col	color code or name, see 'par'.
bg	background (fill) color for the open plot symbols given by 'pch = 21:25'.
cex	character (or symbol) expansion: a numerical vector. This works as a multiple of 'par("cex")'.
lwd	line width for drawing symbols see 'par'.
	further arguments passed to or from other methods.

Examples

```
tfes<-fes(acealanme1d, imax=5000)
plot(tfes)
points(tfes)</pre>
```

points.hillsfile

Plot points for hillsfile object

Description

'points.hillsfile' plots points for hillsfile object. For a hillsfile with one collective variable it plots its evolution. For a hillsfile with two collective variables it plots CV1 vs. CV2.

Usage

```
## S3 method for class 'hillsfile'
points(x, ignoretime = FALSE, pch = 1,
   col = "black", bg = "red", cex = 1, lwd = 1, ...)
```

26 points.nebpath

Arguments

X	hillsfile object.
ignoretime	time in the first column of the HILLS file will be ignored.
pch	plotting 'character', i.e., symbol to use. See 'points'.
col	color code or name, see 'par'.
bg	background (fill) color for the open plot symbols given by 'pch = 21:25'.
cex	character (or symbol) expansion: a numerical vector. This works as a multiple of 'par("cex")'.
lwd	line width for drawing symbols see 'par'.
	further arguments passed to or from other methods.

Examples

```
plot(acealanme)
points(acealanme, col="red")
```

points.nebpath

Plot points for Nudged Elastic Band

Description

'points.nebpath' plots points for free energy profile calculated by Nudged Elastic Band.

Usage

```
## S3 method for class 'nebpath'
points(x, pch = NULL, cex = 1, bg = NULL,
   col = "red", lwd = 1, ...)
```

X	nebpath object.
pch	plotting 'character', i.e., symbol to use. See 'points'.
cex	character (or symbol) expansion: a numerical vector. This works as a multiple of 'par("cex")'.
bg	background (fill) color for the open plot symbols given by 'pch = 21:25'.
col	color code or name, see 'par'.
lwd	line width for drawing symbols see 'par'.
	further arguments passed to or from other methods.

pointsonfes 27

Examples

```
tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
nebAD<-neb(minima, min1="A", min2="D", nsteps=20)
plot(nebAD)
points(nebAD)</pre>
```

pointsonfes

Plot points for Nudged Elastic Band projected onto free energy surface

Description

'pointsonfes' plots points for free energy profile calculated by Nudged Elastic Band projected onto free energy surface.

Usage

```
pointsonfes(x, pch = NULL, cex = 1, bg = NULL, col = "red",
  lwd = 1)
```

Arguments

x	nebpath object.
pch	plotting 'character', i.e., symbol to use. See 'points'.
cex	character (or symbol) expansion: a numerical vector. This works as a multiple of 'par("cex")'.
bg	background (fill) color for the open plot symbols given by 'pch = 21:25'.
col	color code or name, see 'par'.
lwd	line width for drawing symbols see 'par'.

```
tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
nebAD<-neb(minima, min1="A", min2="D", nsteps=20)
plot(minima)
pointsonfes(nebAD)</pre>
```

28 print.hillsfile

print.fes

Print dimensionality, minimum and maximum of free energy surface

Description

'print.fes' prints dimensionality, minimum and maximum of free energy in a fes object

Usage

```
## S3 method for class 'fes'
print(x, ...)
```

Arguments

x fes object

... further arguments passed to or from other methods.

Examples

```
tfes<-fes(acealanme, imax=5000)
tfes</pre>
```

print.hillsfile

Print hillsfile

Description

'print.hillsfile' prints dimensionality and size of a hillsfile object.

Usage

```
## S3 method for class 'hillsfile'
print(x, ...)
```

Arguments

x hillsfile object.

... further arguments passed to or from other methods.

Examples

acealanme

print.minima 29

print.minima

Print minima object

Description

'print.minima' prints free energy minima (identifier, values of bins and collective variables and free energy).

Usage

```
## S3 method for class 'minima'
print(x, ...)
```

Arguments

x minima object.

... further arguments passed to or from other methods.

Examples

```
tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
minima</pre>
```

print.nebpath

Print Nudged Elastic Band minima

Description

'print.nebpath' prints the list minima for Nudged Elastic Band

Usage

```
## S3 method for class 'nebpath' print(x, ...)
```

Arguments

x nebpath object

... further arguments passed to or from other methods.

```
tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
nebAD<-neb(minima, min1="A", min2="D", nsteps=20)
nebAD</pre>
```

30 prob

print.profiles

Print profiles object

Description

'print.profiles' prints free energy profile.

Usage

```
## S3 method for class 'profiles' print(x, ...)
```

Arguments

x minima object.

further arguments passed to or from other methods.

Examples

```
tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
prof<-feprof(minima)
prof</pre>
```

prob

Calculate probability of free energy surface

Description

'prob' calculates probability from free energy in a fes object.

Usage

```
prob(inputfes, temp = 300, eunit = "kJ/mol")
```

Arguments

inputfes fes object.

temp temperature in Kelvins.

eunit energy units (kJ/mol or kcal/mol, kJ/mol is default).

```
tfes<-fes(acealanme, imax=5000)
print(prob(tfes))</pre>
```

read.hills 31

read.hills	Read HILLS from Plumed
------------	------------------------

Description

'read.hills' reads a HILLS file generated by Plumed and returns a hillsfile object. User can specify whether some collective variables are periodic.

Usage

```
read.hills(file = "HILLS", per = c(FALSE, FALSE), pcv1 = c(-pi, pi),
  pcv2 = c(-pi, pi), ignoretime = FALSE)
```

Arguments

file HILLS file from Plumed.

per logical vector specifying periodicity of collective variables.

pcv1 periodicity of CV1. pcv2 periodicity of CV2.

ignoretime time in the first column of the HILLS file will be ignored.

Value

hillsfile object.

Examples

read.plumed

Read 1D or 2D free energy surface from PLUMED sum_hills

Description

'read.plumed' reads 1D or 2D free energy surface from PLUMED sum_hills. The grid in the (2D) inputfile must contain the same number of points for CV1 and CV2. It does not use the header of the file. Instead, user must specify the dimensionality (1 or 2). Periodicity must be specified as well.

32 summary.fes

Usage

```
read.plumed(file = "fes.dat", dim = 2, per = c(F, F, F))
```

Arguments

file input file from PLUMED sum_hills.

per logical vector specifying periodicity of collective variables.

dimension (1 or 2, default 2).

Value

fes object.

Examples

```
11<-"-3.142 -124.8 -44.76"

12<-"-3.117 -125.9 -43.05"

13<-"-3.092 -126.9 -41.22"

14<-"-3.068 -127.9 -39.36"

15<-"-3.043 -128.8 -37.45"

fourpoints<-c(11,12,13,14)

tf <- tempfile()

writeLines(fourpoints, tf)

read.plumed(tf, dim=1, per=c(TRUE,TRUE))
```

summary.fes

Print summary of free energy surface

Description

'summary.fes' prints dimensionality, minimum and maximum of free energy in a fes object.

Usage

```
## S3 method for class 'fes'
summary(object, ...)
```

Arguments

object fes object.

further arguments passed to or from other methods.

```
tfes<-fes(acealanme, imax=5000)
summary(tfes)</pre>
```

summary.hillsfile 33

summary.hillsfile

Print summary for hillsfile

Description

'summary.hillsfile' prints dimensionality, size and collective variable ranges of a hillsfile object.

Usage

```
## S3 method for class 'hillsfile'
summary(object, ...)
```

Arguments

hillsfile object. object

further arguments passed to or from other methods.

Examples

```
summary(acealanme)
```

summary.minima

Print minima object summary

Description

'summary.minima' prints summary for free energy minima (identifier, values of bins and collective variables, free energy and equilibrium populations).

Usage

```
## S3 method for class 'minima'
summary(object, temp = 300, eunit = "kJ/mol", ...)
```

Arguments

```
object
                  minima object
temp
                  temperature in Kelvins
                  energy units (kJ/mol or kcal/mol, kJ/mol is default)
eunit
                  further arguments passed to or from other methods.
```

Examples

. . .

```
tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)</pre>
summary(minima)
```

34 summary.profiles

summary.nebpath

Print summary for Nudged Elastic Band

Description

'print.nebpath' prints the list minima for Nudged Elastic Band, activation energies and half lives calculated by Eyring equation (https://doi.org/10.1063/1.1749604).

Usage

```
## S3 method for class 'nebpath'
summary(object, temp = 300, eunit = "kJ/mol", ...)
```

Arguments

object nebpath object.

temp temperature in Kelvins.

eunit energy units (kJ/mol or kcal/mol, kJ/mol is default).
... further arguments passed to or from other methods.

Examples

```
tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
nebAD<-neb(minima, min1="A", min2="D", nsteps=20)
summary(nebAD)</pre>
```

summary.profiles

Print summary for free energy profile

Description

'summary.profiles' prints the list of free energy minima with maximal and minimal free energy differences.

Usage

```
## S3 method for class 'profiles'
summary(object, imind = 1, imaxd = NULL, ...)
```

Arguments

object profiles object.

imind index of a hill from which calculation of difference starts (default 1).

imaxd index of a hill from which calculation of difference stops (default the rest of

hills).

... further arguments passed to or from other methods.

tail.hillsfile 35

Examples

```
tfes<-fes(acealanme, imax=5000)
minima<-fesminima(tfes)
prof<-feprof(minima)
summary(prof)</pre>
```

tail.hillsfile

Print last n lines of hillsfile

Description

'tail.hillsfile' prints last n lines of a hillsfile object.

Usage

```
## S3 method for class 'hillsfile'
tail(x, n = 10, ...)
```

Arguments

```
x hillsfile object.
```

n number of lines (default 10).

... further arguments passed to or from other methods.

```
tail(acealanme)
```

Index

* datasets	plotheights, 23
acealanme, 3	plotheights.hillsfile, 24
acealanme1d, 3	points.fes, 25
	points.hillsfile, 25
acealanme, 3	points.nebpath, 26
acealanme1d, 3	pointsonfes, 27
	print.fes, 28
emptyhills, 4	print.hillsfile, 28
	print.minima, 29
feprof, 4	print.nebpath, 29
feprof.minima, 5	print.profiles, 30
fes, 5	prob, 30
fes.hillsfile,6	,
fes2, 7	read.hills,31
fes2.hillsfile, 7	read.plumed,31
fes2d21d, <u>8</u>	
fesminima, 9	summary.fes, 32
fesminima.fes, 9	summary.hillsfile,33
fespoint, 10	summary.minima, 33
fespoint.hillsfile, 11	summary.nebpath, 34
	summary.profiles, 34
head.hillsfile, 11	
1. 6 10	tail.hillsfile, 35
lines.fes, 12	
lines.hillsfile, 12	
lines.nebpath, 13	
linesonfes, 13	
max.fes, 14	
min.fes, 15	
11111.163, 13	
neb, 15	
oneminimum, 16	
oneminimum.fes, 17	
plot.fes, 17	
plot.hillsfile, 19	
plot.minima, 20	
plot.nebpath, 21	
plot profiles 22	