Próbny Egzamin Maturalny z Matematyki

ZESTAW PRZYGOTOWANY PRZEZ SERWIS

WWW.ZADANIA.INFO

POZIOM PODSTAWOWY

30 MARCA 2019

CZAS PRACY: 170 MINUT

Zadania zamknięte

ZADANIE 1 (1 PKT)

Liczby a i c są dodatnie. Liczba b stanowi 96% liczby 3a+b oraz 120% liczby 4a+c. Wynika stąd, że

A)
$$c = 67, 2a$$

B)
$$c = 80,64a$$

C)
$$c = 56a$$

D)
$$c = 48a$$

Rozwiązanie

Wiemy, że

$$\begin{cases} b = 0.96(3a + b) \\ b = 1.2(4a + c). \end{cases}$$

Z pierwszego równania mamy

$$b = 2,88a + 0,96b$$

 $0,04b = 2,88a \Rightarrow b = 72a$.

Podstawiamy to do drugiego równania

$$72a = 4,8a + 1,2c$$

 $67,2a = 1,2c \Rightarrow c = 56a.$

Odpowiedź: C

ZADANIE 2 (1 PKT)

Wskaż liczbę spełniającą nierówność $\frac{(x-2)(x+3)(2-x)}{(3-2x)(4x+6)} < 0$.

A)
$$-2$$

B)
$$-3$$

D)
$$-1$$

Rozwiązanie

Sposób I

Nierówność możemy zapisać w postaci

$$0 > \frac{(x-2)(x+3)(2-x)}{(3-2x)(4x+6)} = \frac{-(x-2)(x-2)(x+3)}{-2(2x-3)(2x+3)} = \frac{(x-2)^2(x+3)}{2(4x^2-9)}$$

Teraz łatwo sprawdzić, że spełnia ją np. x = -1.

Sposób II

Sprawdzamy, które z podanych liczb spełniają daną nierówności. Gdy to zrobimy, okaże się, że tak jest tylko w przypadku x=1.

$$\frac{(-1)\cdot 4\cdot 3}{5\cdot 2} = \frac{-6}{5} < 0.$$

Odpowiedź: D

ZADANIE 3 (1 PKT)

Dane są liczby
$$a = 4, 5 \cdot 20^{-41}$$
 oraz $b = 7, 5 \cdot 80^{-14}$. Wtedy iloraz $\frac{a}{b}$ jest równy A) $0, 6 \cdot 40^{-27}$ B) $1, 2 \cdot 10^{-27}$ C) $0, 6 \cdot 40^{27}$ D) $0, 3 \cdot 10^{27}$

Rozwiązanie

Liczymy

$$\frac{a}{b} = \frac{4,5 \cdot 20^{-41}}{7,5 \cdot 80^{-14}} = \frac{3 \cdot 1,5 \cdot 2^{-41} \cdot 10^{-41}}{5 \cdot 1,5 \cdot 8^{-14} \cdot 10^{-14}} = \frac{3}{5} \cdot \frac{2^{-41}}{(2^3)^{-14}} \cdot 10^{-41 - (-14)} =$$

$$= 0,6 \cdot \frac{2^{-41}}{2^{-42}} \cdot 10^{-27} = 0,6 \cdot 2 \cdot 10^{-27} = 1,2 \cdot 10^{-27}.$$

Odpowiedź: **B**

ZADANIE 4 (1 PKT)

Dane są liczby
$$a = \log_{\frac{1}{3}} 3$$
, $b = \log_{9} 27$, $c = \log_{3} \frac{1}{9}$. Liczby te spełniają warunek A) $a > b > c$ B) $b > a > c$ C) $c > b > a$ D) $b > c > a$

Rozwiązanie

Zauważmy, że

$$a = \log_{\frac{1}{3}} 3 = \log_{\frac{1}{3}} \left(\frac{1}{3}\right)^{-1} = -1$$

$$b = \log_9 27 = \log_9 3^3 = \log_9 9^{\frac{3}{2}} = \frac{3}{2}$$

$$c = \log_3 \frac{1}{9} = \log_3 9^{-1} = \log_3 3^{-2} = -2.$$

Zatem

$$b > a > c$$
.

Odpowiedź: B

ZADANIE 5 (1 PKT)

Liczba $\sqrt[5]{3\sqrt[4]{3}}$ jest równa

A) $\sqrt[20]{3}$

B) $3\sqrt[9]{3}$

C) $\sqrt[5]{3}$

D) $\sqrt[4]{3}$

Rozwiązanie

Sposób I

Liczymy

$$\sqrt[5]{3\sqrt[4]{3}} = \sqrt[5]{\sqrt[4]{3^4 \cdot 3}} = \sqrt[4]{\sqrt[5]{3^5}} = \sqrt[4]{3}.$$

Sposób II

Liczymy

$$\sqrt[5]{3\sqrt[4]{3}} = \sqrt[5]{3 \cdot 3^{\frac{1}{4}}} = \left(3^{\frac{5}{4}}\right)^{\frac{1}{5}} = 3^{\frac{1}{4}} = \sqrt[4]{3}.$$

Odpowiedź: **D**

ZADANIE 6 (1 PKT)

Wyrażenie |-1-|x|| dla x < 0 jest równe

 \overrightarrow{A} x-1

B) x + 1

C) -x - 1

D) -x + 1

Rozwiązanie

Sposób I

Zauważmy, że 1 + |x| > 0 oraz |x| = -x. Stąd

$$|-1-|x|| = |-(1+|x|)| = 1+|x| = 1-x.$$

Sposób II

Jeżeli x < 0 to |x| = -x, czyli

$$|-1-|x|| = |-1+x|.$$

Ponadto, jeżeli x < 0 to -1 + x < 0, czyli

$$|-1+x| = -(-1+x) = 1-x.$$

Odpowiedź: D

ZADANIE 7 (1 PKT)

Równanie $\frac{x^2-3x}{x^2+3x}=0$

- A) ma trzy rozwiązania: x = -3, x = 0, x = 3
- B) ma jedno rozwiązanie: x = 3
- C) ma dwa rozwiązania: x = -3, x = 3
- D) ma dwa rozwiązania: x = 0, x = 3

ROZWIĄZANIE

Zauważmy, że

$$x^2 - 3x = x(x - 3),$$

$$x^2 + 3x = x(x+3)$$

więc licznik zeruje się dla x=0 i x=3, ale pierwsza z tych liczb zeruje też mianownik. Zatem jedynym rozwiązaniem równania jest x=3.

Odpowiedź: **B**

ZADANIE 8 (1 PKT)

Na rysunku jest przedstawiona graficzna ilustracja układu trzech równań stopnia pierwszego z dwiema niewiadomymi x i y.

Wskaż ten ukł

A)
$$\begin{cases} y = -2x + 8 \\ y = -\frac{3}{2}x + \frac{13}{2} \\ y = 3x + 2 \end{cases}$$
 B)
$$\begin{cases} y = 2x + 5 \\ y = -\frac{2}{3}x - \frac{17}{3} \\ y = -2x - 11 \end{cases}$$
 C)
$$\begin{cases} y = x - 1 \\ y = -\frac{1}{2}x - \frac{1}{2} \\ y = -3x - 5 \end{cases}$$
 D)
$$\begin{cases} y = 3x + 7 \\ y = -\frac{2}{3}x - 4 \\ y = \frac{2}{3}x - 2 \end{cases}$$

B)
$$\begin{cases} y = 2x + 5 \\ y = -\frac{2}{3}x - \frac{17}{3} \\ y = -2x - 11 \end{cases}$$

C)
$$\begin{cases} y = x - 1 \\ y = -\frac{1}{2}x - \frac{1}{2} \\ y = -3x - 5 \end{cases}$$

D)
$$\begin{cases} y = 3x + 7 \\ y = -\frac{2}{3}x - 4 \\ y = \frac{2}{3}x - 2 \end{cases}$$

ROZWIAZANIE

Na rysunku przedstawione są dwie funkcje liniowe malejące, które przecinają oś y poniżej osi x, oraz funkcja rosnąca, która przecina oś y powyżej osi x. Takie warunki spełniają tylko równania układu

$$\begin{cases} y = 2x + 5 \\ y = -\frac{2}{3}x - \frac{17}{3} \\ y = -2x - 11 \end{cases}$$

Odpowiedź: B

ZADANIE 9 (1 PKT)

Liczba $\frac{16}{\left(4-3\sqrt{2}\right)^4}$ jest równa A) $(4-3\sqrt{2})^4$ B) $(4+3\sqrt{2})^4$ C) $-(4+3\sqrt{2})^4$ D) $\frac{(4-3\sqrt{2})^4}{256}$

A)
$$(4-3\sqrt{2})^4$$

B)
$$(4+3\sqrt{2})^4$$

C)
$$-(4+3\sqrt{2})^4$$

D)
$$\frac{(4-3\sqrt{2})^4}{256}$$

ROZWIAZANIE

Usuńmy najpierw niewymierność z mianownika – w tym celu mnożymy licznik i mianownik przez $(4 + 3\sqrt{2})^4$.

$$\frac{16}{(4-3\sqrt{2})^4} = \frac{16(4+3\sqrt{2})^4}{(4-3\sqrt{2})^4(4+3\sqrt{2})^4} = \frac{16(4+3\sqrt{2})^4}{\left((4-3\sqrt{2})(4+3\sqrt{2})\right)^4} =$$
$$= \frac{16(4+3\sqrt{2})^4}{(16-18)^4} = \frac{16(4+3\sqrt{2})^4}{16} = (4+3\sqrt{2})^4.$$

Odpowiedź: **B**

ZADANIE 10 (1 PKT)

Funkcja f jest określona wzorem $f(x) = -3(x-2)^{-2}(x+1)^3$ dla każdej liczby rzeczywistej $x \neq 2$. Wartość funkcji f dla argumentu -2 jest równa

A)
$$-\frac{16}{3}$$

B)
$$-\frac{3}{16}$$

C)
$$\frac{16}{3}$$

D)
$$\frac{3}{16}$$

Rozwiązanie

Zauważmy najpierw, że

$$f(x) = -3(x-2)^{-2}(x+1)^3 = \frac{-3(x+1)^3}{(x-2)^2}.$$

Zatem

$$f(-2) = \frac{-3 \cdot (-1)}{16} = \frac{3}{16}.$$

Odpowiedź: **D**

ZADANIE 11 (1 PKT)

Punkt $(\sqrt{3},1)$ należy do wykresu funkcji $y=2\sqrt{3}x+b$. Wtedy współczynnik b jest równy

A) 7

B)
$$3\sqrt{3}$$

C)
$$-5$$

D)
$$-\sqrt{3}$$

ROZWIĄZANIE

Podstawiamy współrzędne danego punktu do wzoru funkcji

$$1 = 2\sqrt{3} \cdot \sqrt{3} + b = 6 + b \quad \Rightarrow \quad b = -5.$$

Odpowiedź: C

ZADANIE 12 (1 PKT)

Ciąg (a_n) określony jest wzorem $a_n = n(n^2 - (n-1)(n+1))$, gdzie $n \ge 1$. Suma piętnastu początkowych wyrazów tego ciągu jest równa

A) 240

B) 105

C) 120

D) 136

ROZWIAZANIE

Zauważmy najpierw, że

$$a_n = n(n^2 - (n-1)(n+1)) = n(n^2 - (n^2 - 1)) = n \cdot 1 = n.$$

Jest to więc ciąg arytmetyczny o różnicy r=1 i pierwszym wyrazie $a_1=1$. Stąd

$$S_{15} = \frac{2a_1 + 14r}{2} \cdot 15 = \frac{2+14}{2} \cdot 15 = 8 \cdot 15 = 120.$$

Odpowiedź: **C**

ZADANIE 13 (1 PKT)

Wykres funkcji $f(x) = x^2 + x + 1$ przesunięto o 2 jednostki w prawo i 1 jednostkę w górę. W wyniku tej operacji otrzymano wykres funkcji

A)
$$y = x^2 + 3x + 4$$

B)
$$y = x^2 - 3x + 2$$

D) $y = x^2 + 3x + 2$

A)
$$y = x^2 + 3x + 4$$

C) $y = x^2 - 3x + 4$

D)
$$y = x^2 + 3x + 2$$

ROZWIĄZANIE

Po przesunięciu danego wykresu o 2 jednostki w prawo otrzymamy wykres

$$y = f(x-2) = (x-2)^2 + (x-2) + 1 = x^2 - 4x + 4 + x - 2 + 1 = x^2 - 3x + 3.$$

Jeżeli teraz ten wykres przesuniemy o 1 jednostkę w górę, to otrzymamy wykres

$$y = f(x-2) + 1 = x^2 - 3x + 3 + 1 = x^2 - 3x + 4.$$

Dla ciekawskich obrazek.

Odpowiedź: **C**

ZADANIE 14 (1 PKT)

Wszystkie wyrazy ciągu geometrycznego (a_n) określonego dla $n \ge 1$ są dodatnie i $2a_5 = 3a_6$. Stąd wynika, że iloraz q tego ciągu jest równy

A)
$$q = \frac{2}{3}$$

B)
$$q = \frac{3}{2}$$

C)
$$q = 6$$

D)
$$q = 5$$

Rozwiązanie

Ze wzoru $a_n = a_1 q^{n-1}$ na n-ty wyraz ciągu geometrycznego mamy

$$2a_5 = 3a_6$$

$$2a_1q^4 = 3a_1q^5 /: 3a_1q^4$$

$$\frac{2}{3} = q.$$

Odpowiedź: A

ZADANIE 15 (1 PKT)

Dany jest trójkąt o bokach długości $\frac{\sqrt{3}}{3}$, $\frac{2}{3}$, $\frac{2\sqrt{3}}{3}$. Trójkątem podobnym do tego trójkąta jest trójkat, którego boki mają długości

A)
$$\sqrt{3}$$
, 3, $2\sqrt{3}$

B) 1,
$$2\sqrt{3}$$
, 2

C)
$$\frac{\sqrt{2}}{3}$$
, $\frac{2}{3}$, $\frac{2\sqrt{2}}{3}$ D) $\frac{1}{2}$, $\frac{1}{\sqrt{3}}$, 1

D)
$$\frac{1}{2}$$
, $\frac{1}{\sqrt{3}}$, 1

ROZWIĄZANIE

Stosunki odpowiednich boków w trójkątach podobnych są równe. Zauważmy teraz, że

$$\frac{\sqrt{3}}{3} : \frac{2}{3} : \frac{2\sqrt{3}}{3} = \sqrt{3} : 2 : 2\sqrt{3} = 1 : \frac{2}{\sqrt{3}} : 2$$

$$\sqrt{3} : 3 : 2\sqrt{3} = 1 : \frac{3}{\sqrt{3}} : 2$$

$$1 : 2\sqrt{3} : 2$$

$$\frac{\sqrt{2}}{3} : \frac{2}{3} : \frac{2\sqrt{2}}{3} = \sqrt{2} : 2 : 2\sqrt{2} = 1 : \frac{2}{\sqrt{2}} : 2$$

$$\frac{1}{2} : \frac{1}{\sqrt{3}} : 1 = 1 : \frac{2}{\sqrt{3}} : 2.$$

Dany trójkąt jest więc podobny do trójkąta o bokach $\frac{1}{2}$, $\frac{1}{\sqrt{3}}$, 1.

Odpowiedź: D

ZADANIE 16 (1 PKT)

Pole koła przedstawionego na rysunku jest równe

- A) $6\sqrt{2}\pi$
- B) 36π
- C) 18π
- D) $12\sqrt{2}\pi$

Rozwiązanie

Przypomnijmy, że kąt środkowy oparty na tym samym łuku co kąt wpisany jest dwa razy większy.

Zatem

$$\angle AOB = 2\angle ACB = 90^{\circ}.$$

To oznacza, że trójkąt równoramienny AOB jest połówką kwadratu i

$$r\sqrt{2} = 6$$
 \Rightarrow $r = \frac{6}{\sqrt{2}} = 3\sqrt{2}$.

Pole koła jest więc równe

$$\pi r^2 = \pi \cdot (3\sqrt{2})^2 = 18\pi.$$

Odpowiedź: C

ZADANIE 17 (1 PKT)

Liczba | $tg 52^{\circ} - 2 \cos 50^{\circ}$ | \cdot | $2 \cos 50^{\circ} + tg 52^{\circ}$ | jest równa A) $4 \cos^2 50^{\circ} - tg^2 52^{\circ}$ B) $tg^2 52^{\circ} + 4 \cos^2 50^{\circ}$ C) $tg^2 52^{\circ} - 4 \cos^2 50^{\circ}$ D) $-4 \cos^2 50^{\circ} - tg^2 52^{\circ}$

A)
$$4\cos^2 50^\circ - tg^2 52^\circ$$

B)
$$tg^2 52^\circ + 4 \cos^2 50^\circ$$

D)
$$-4\cos^2 50^\circ - tg^2 52^\circ$$

ROZWIAZANIE

Sposób I

Zauważmy najpierw, że

$$\begin{split} |\lg 52^{\circ} - 2\cos 50^{\circ}| \cdot |2\cos 50^{\circ} + \lg 52^{\circ}| &= |(\lg 52^{\circ} - 2\cos 50^{\circ})(\lg 52^{\circ} + 2\cos 50^{\circ})| = \\ &= \left| \lg^{2} 52^{\circ} - 4\cos^{2} 50^{\circ} \right|. \end{split}$$

Teraz sprawdzamy w tablicach, że

$$tg 52^{\circ} \approx 1,28 \quad \Rightarrow \quad tg^2 52^{\circ} \approx 1,6384$$

 $\cos 50^{\circ} \approx 0,643 \quad \Rightarrow \quad 4 \cdot \cos^2 50^{\circ} \approx 1,654.$

Zatem

$$\left| tg^2 52^\circ - 4\cos^2 50^\circ \right| = 4\cos^2 50^\circ - tg^2 52^\circ.$$

Sposób II

Sprawdzamy w tablicach, że

$$tg 52^{\circ} \approx 1,280$$

 $\cos 50^{\circ} \approx 0,643 \quad \Rightarrow \quad 2 \cdot \cos 50^{\circ} \approx 1,286.$

W takim razie

$$| tg 52^{\circ} - 2\cos 50^{\circ} | \cdot | 2\cos 50^{\circ} + tg 52^{\circ} | = (2\cos 50^{\circ} - tg 52^{\circ}) \cdot (2\cos 50^{\circ} + tg 52^{\circ}) =$$

$$= 4\cos^{2} 50^{\circ} - tg^{2} 52^{\circ}.$$

Odpowiedź: A

ZADANIE 18 (1 PKT)

Różnica miar dwóch kątów rozwartych trapezu jest równa 68°. Dodatnia różnica miar kątów ostrych tego trapezu jest więc równa

A) 112°

B) 136°

C) 68°

D) 34°

ROZWIĄZANIE

Szkicujemy trapez

Wiemy, że $\beta - \alpha = 68^{\circ}$. Zatem

$$\angle D - \angle C = (180^{\circ} - \alpha) - (180^{\circ} - \beta) = \beta - \alpha = 68^{\circ}.$$

Odpowiedź: **C**

ZADANIE 19 (1 PKT)

Prosta ax + y + 1 = 0 jest równoległa do prostej x + ay + 1 = 0. Wtedy

A)
$$a = 0$$

B)
$$a = -2$$

C)
$$a = 2$$

D)
$$a^2 = 1$$

ROZWIĄZANIE

Proste są równoległe jeżeli mają równe współczynniki kierunkowe. Widać, że dla a=0 tak nie jest, więc załóżmy, że $a \neq 0$.

Pierwsza prosta y = -ax - 1 ma współczynnik kierunkowy -a, a równanie drugiej możemy zapisać w postaci

$$ay = -x - 1$$
 /: a

$$y = -\frac{1}{a}x - \frac{1}{a}.$$

Zatem równość współczynników kierunkowych daje równanie

$$-a = -\frac{1}{a}$$
$$a^2 = 1.$$

$$a^2 = 1$$
.

Odpowiedź: D

ZADANIE 20 (1 PKT)

Dany jest walec, w którym promień podstawy, wysokość i średnica podstawy są kolejnymi wyrazami ciągu geometrycznego. Pole powierzchni całkowitej tego walca jest równe $\frac{8\pi}{\sqrt{2}-1}$. Wynika stąd, że promień podstawy tego walca jest równy

A) 9

Rozwiązanie

Szkicujemy walec

Z podanych informacji wiemy, że liczby

są kolejnymi wyrazami ciągu geometrycznego więc

$$h = \sqrt{r \cdot 2r} = r\sqrt{2}.$$

Z podanego pola powierzchni całkowitej obliczamy promień podstawy

$$\frac{8\pi}{\sqrt{2}-1} = 2\pi r^2 + 2\pi r \cdot h = 2\pi r^2 + 2\sqrt{2}\pi r^2 = 2\pi r^2(1+\sqrt{2}) \quad / \cdot \frac{1}{2\pi(1+\sqrt{2})}$$
$$r^2 = \frac{4}{(\sqrt{2}-1)(\sqrt{2}+1)} = \frac{4}{2-1} = 4.$$

Zatem r = 2.

Odpowiedź: **D**

ZADANIE 21 (1 PKT)

Punkt A=(-3,4) jest końcem odcinka AB, a punkt M=(-5,5) jest takim punktem tego odcinka, że |AM|:|MB|=1:4. Długość odcinka AB jest równa

A) $4\sqrt{5}$

B) $\sqrt{5}$

C) $5\sqrt{5}$

D) $3\sqrt{5}$

ROZWIAZANIE

Szkicujemy odcinek *AB*.

Jeżeli punkt M dzieli odcinek AB w stosunku 1:4, to

$$AM = \frac{1}{5}AB,$$

czyli

$$AB = 5AM = 5\sqrt{(-5 - (-3))^2 + (5 - 4)^2} = 5\sqrt{4 + 1} = 5\sqrt{5}.$$

Odpowiedź: C

ZADANIE 22 (1 PKT)

Przekątna prostokątna ma długość 6, a długość jego krótszego boku jest równa $2\sqrt{3}$. Kąt rozwarty α między przekątnymi tego prostokąta spełnia warunek

A) $\alpha \in (70^{\circ}, 80^{\circ})$

B) $\alpha \in (120^{\circ}, 140^{\circ})$

C) $\alpha \in (100^{\circ}, 120^{\circ})$

D) $\alpha \in (90^{\circ}, 100^{\circ})$

ROZWIAZANIE

Zaczynamy od rysunku

Jeżeli oznaczymy przez β połowę kąta ostrego między przekątnymi prostokąta, to z trójkąta ABC mamy

$$\sin \beta = \frac{BC}{AC} = \frac{\sqrt{3}}{3} \approx 0.58.$$

Odczytujemy teraz z tablic, że $\beta\approx35^\circ$. Zatem $2\beta\approx70^\circ$ i kąt rozwarty między przekątnymi prostokąta spełnia

$$\alpha = 180^{\circ} - 2\beta \approx 180^{\circ} - 70^{\circ} \approx 110^{\circ}.$$

Odpowiedź: C

ZADANIE 23 (1 PKT)

Wysokość graniastosłupa prawidłowego trójkątnego jest równa połowie długości jego krawędzi podstawy. Graniastosłup przecięto płaszczyzną przechodzącą przez krawędź podstawy i jeden wierzchołek drugiej podstawy (patrz rysunek).

Płaszczyzna przekroju tworzy z podstawą graniastosłupa kąt α o mierze A) 30° B) 45° C) 60° D) 75°

ROZWIĄZANIE

Oznaczmy wysokość graniastosłupa przez H, a wysokość trójkąta w podstawie przez h.

Z założenia bok trójkąta w podstawie graniastosłupa ma długość a=2H, więc

$$AE = h = \frac{a\sqrt{3}}{2} = \frac{2H \cdot \sqrt{3}}{2} = H\sqrt{3}.$$

Stad

$$\operatorname{tg} \alpha = \frac{AD}{AE} = \frac{H}{h} = \frac{H}{H\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}.$$

To oznacza, że $\alpha = 30^{\circ}$.

Odpowiedź: A

ZADANIE 24 (1 PKT)

W zestawie $\underbrace{1,1,1,\ldots,1}_{m \text{ liczb}},\underbrace{3,3,3,\ldots,3}_{m \text{ liczb}}$ jest $2m \text{ liczb } (m \geqslant 1)$, w tym m liczb 1 i m liczb 3. Od-

chylenie standardowe tego zestawu liczb jest równe

A) 1

B) 2

C) $\frac{1}{\sqrt{2}}$

D) $\sqrt{2}$

Rozwiązanie

Liczymy średnią

$$s = \frac{1 \cdot m + 3 \cdot m}{2m} = \frac{4m}{2m} = 2.$$

Liczymy wariancję

$$\sigma^2 = \frac{m \cdot (1-2)^2 + m \cdot (3-2)^2}{2m} = \frac{2m}{2m} = 1.$$

Liczymy odchylenie standardowe

$$\sigma = \sqrt{\sigma^2} = 1.$$

Odpowiedź: A

ZADANIE 25 (1 PKT)

W pudełku znajdują się dwie kule: czarna i biała. Czterokrotnie losujemy ze zwracaniem jedną kulę z tego pudełka. Prawdopodobieństwo zdarzenia polegającego na tym, że dokładnie dwa razy w czterech losowaniach wyciągniemy kulę koloru czarnego, jest równe

A) $\frac{1}{16}$

B) $\frac{3}{8}$

C) $\frac{1}{4}$

D) $\frac{3}{4}$

ROZWIAZANIE

Z każdym razem wyciągamy jedną z dwóch kul, więc jest

$$2 \cdot 2 \cdot 2 \cdot 2 = 16$$

zdarzeń elementarnych. Zdarzeń sprzyjających jest 6:

$$(b,b,c,c),(b,c,b,c),(b,c,c,b),(c,b,b,c),(c,b,c,b),(c,c,b,b).$$

Prawdopodobieństwo jest więc równe

$$\frac{6}{16} = \frac{3}{8}$$
.

Odpowiedź: **B**

Zadania otwarte

ZADANIE 26 (2 PKT)

Rozwiąż nierówność $361x^2 + 798x + 441 > 0$.

Rozwiązanie

Liczymy

$$361x^{2} + 798x + 441 > 0$$

$$\Delta = 798^{2} - 4 \cdot 361 \cdot 441 = 636804 - 636804 = 0$$

$$x_{1,2} = \frac{-b}{2a} = \frac{-798}{2 \cdot 361} = -\frac{6 \cdot 19 \cdot 7}{2 \cdot 19 \cdot 19} = -\frac{21}{19}.$$

Wykresem lewej strony nierówności jest parabola ramionach skierowanych w górę, więc rozwiązaniem nierówności będzie suma przedziałów

$$\left(-\infty,-\frac{21}{19}\right)\cup\left(-\frac{21}{19},+\infty\right).$$

Na koniec obrazek.

Odpowiedź:
$$\left(-\infty, -\frac{21}{19}\right) \cup \left(-\frac{21}{19}, +\infty\right)$$

ZADANIE 27 (2 PKT)

Rozwiąż równanie $((x+2)^3 + 216) ((x^2 - x)^5 - 32) = 0.$

ROZWIĄZANIE

Wyrażenie w pierwszym nawiasie zeruje się gdy

$$(x+2)^3 = -216 = -6^3$$

 $x+2=-6 \iff x=-8.$

Wyrażenie w drugim nawiasie zeruje się gdy

$$(x^{2} - x)^{5} = 32 = 2^{5}$$

 $x^{2} - x = 2$
 $x^{2} - x - 2 = 0$
 $\Delta = 1 + 8 = 9$
 $x = \frac{1 - 3}{2} = -1$ lub $x = \frac{1 + 3}{2} = 2$.

Odpowiedź: $x \in \{-8, -1, 2\}$

ZADANIE 28 (2 PKT)

Wykaż, ze dla dowolnych liczb rzeczywistych x,y prawdziwa jest nierówność $\frac{x^2+y^4}{2} \geqslant x+y^2-1$.

Rozwiązanie

Sposób I

Przekształcamy daną nierówność w sposób równoważny,

$$\frac{x^2 + y^4}{2} \ge x + y^2 - 1 \quad / \cdot 2$$

$$x^2 + y^4 \ge 2x + 2y^2 - 2$$

$$(x^2 - 2x + 1) + (y^4 - 2y^2 + 1) \ge 0$$

$$(x - 1)^2 + (y^2 - 1)^2 \ge 0.$$

Oczywiście nierówność ta jest spełniona, a przekształcaliśmy ją w sposób równoważny, więc wyjściowa nierówność też musiała być spełniona.

Sposób II

Traktujemy nierówność, którą mamy udowodnić

$$x^2 - 2x + (y^4 - 2y^2 + 2) \ge 0$$

jak zwykłą nierówność kwadratową z niewiadomą x i parametrem y. Liczymy Δ -ę.

$$\Delta = 4 - 4(y^4 - 2y^2 + 2) = 4 - 4y^4 + 8y^2 - 8 = -4(y^4 - 2y^2 + 1) = -4(y^2 - 1)^2.$$

Ponieważ Δ jest niedodatnia, powyższa nierówność jest zawsze spełniona (bo parabola będąca wykresem lewej strony nie schodzi poniżej osi Ox).

ZADANIE 29 (2 PKT)

Na bokach AB, BC, CA trójkąta równobocznego ABC wybrano kolejno punkty D, E, F tak, że $DE \perp AB$, $EF \perp BC$ i $FD \perp AC$.

Wykaż, że trójkąt *DEF* jest trójkątem równobocznym o polu trzy razy mniejszym od pola trójkąta *ABC*.

Rozwiązanie

Zauważmy, że każdy z trójkątów ADF, BED i CFE jest trójkątem prostokątnym z kątem 60° , czyli połówką trójkąta równobocznego. Jeżeli więc oznaczymy DB = x, CE = y i AF = z, to AD = 2AF = 2z, BE = 2DB = 2x i CF = 2CE = 2y.

Stad

$$\begin{cases} 2z + x = AB = BC = 2x + y & \Rightarrow 2z = x + y \\ 2x + y = BC = CA = 2y + z & \Rightarrow 2x = y + z. \end{cases}$$

Jeżeli odejmiemy od pierwszego z tych równań drugie, to mamy

$$2z - 2x = x - z \implies 3z = 3x \implies z = x.$$

Stąd y = 2z - x = x i wszystkie trzy trójkąty *ADF*, *BED* i *CFE* są przystające. To oczywiście oznacza, że trójkąt *DEF* jest równoboczny. Musimy jeszcze wyznaczyć skalę podobieństwa k tego trójkąta z trójkątem *ABC*. Zauważmy, że

$$DF = \sqrt{AD^2 - AF^2} = \sqrt{(2x)^2 - x^2} = \sqrt{3x^2} = \sqrt{3}x$$

więc

$$k = \frac{DF}{AB} = \frac{\sqrt{3}x}{3x} = \frac{\sqrt{3}}{3}.$$

Ponieważ pole zmienia się jak kwadrat skali podobieństwa, mamy stąd

$$P_{DEF} = k^2 P_{ABC} = \left(\frac{\sqrt{3}}{3}\right)^2 P_{ABC} = \frac{1}{3} P_{ABC}.$$

ZADANIE 30 (2 PKT)

Udowodnij, że jeżeli liczby b,d,b+d,b-d są różne od zera oraz $\frac{a+c}{b+d}=\frac{a-c}{b-d}$, to $\frac{a}{b}=\frac{c}{d}$.

Rozwiązanie

Przekształcamy daną równość

$$\frac{a+c}{b+d} = \frac{a-c}{b-d}$$

$$(a+c)(b-d) = (a-c)(b+d)$$

$$ab-ad+bc-cd = ab+ad-bc-cd$$

$$2bc = 2ad /: 2bd$$

$$\frac{c}{d} = \frac{a}{b}.$$

ZADANIE 31 (2 PKT)

Dwudziesty wyraz ciągu arytmetycznego (a_n) , określonego dla $n \ge 1$, jest równy 395, a suma jego dwudziestu początkowych wyrazów jest równa 8930. Oblicz pierwszy wyraz tego ciągu.

Rozwiązanie

Korzystamy ze wzoru

$$S_n = \frac{a_1 + a_n}{2} \cdot n$$

na sumę n początkowych wyrazów ciągu arytmetycznego. Dla n=20 mamy

$$\frac{a_1 + a_{20}}{2} \cdot 20 = S_{20}$$

$$\frac{a_1 + 395}{2} \cdot 20 = 8930 /: 10$$

$$a_1 + 395 = 893 \Rightarrow a_1 = 498.$$

Odpowiedź: $a_1 = 498$

ZADANIE 32 (4 PKT)

Trasa rowerowa wokół jeziora ma długość 12 kilometrów. Dwóch rowerzystów wyrusza z tego samego miejsca i okrąża jezioro w tym samym kierunku. Średnia prędkość jednego z nich jest o 4 km/h mniejsza niż prędkość drugiego rowerzysty. Do ponownego spotkania rowerzystów doszło, gdy szybszy z nich wykonał 4 okrążenia jeziora. Jakie były średnie prędkości rowerzystów?

Rozwiązanie

Zauważmy, że czas jaki upływa między kolejnymi spotkaniami rowerzystów to dokładnie czas, w którym szybszy rowerzysta przejedzie o 12 km więcej od wolniejszego. Jeżeli więc oznaczymy przez v prędkość wolniejszego rowerzysty to mamy układ równań

$$\begin{cases} v \cdot t = 36 \\ (v+4) \cdot t = 48. \end{cases}$$

Przekształcamy drugie równanie korzystając z pierwszego.

$$vt + 4t = 48$$
$$36 + 4t = 48$$
$$4t = 12 \implies t = 3.$$

Zatem $v = \frac{36}{3} = 12$ km/h i prędkość drugiego rowerzysty jest równa 16 km/h.

Odpowiedź: 12 km/h i 16 km/h

ZADANIE 33 (4 PKT)

Punkty A=(4,6) i B=(-12,6) są wierzchołkami trójkąta równoramiennego ABC, w którym |AB|=|AC|. Wysokość AD tego trójkąta jest zawarta w prostej o równaniu $y=\frac{1}{2}x+4$. Oblicz współrzędne wierzchołka C tego trójkąta.

ROZWIĄZANIE

Zaczynamy od szkicowego rysunku.

Wysokość AD jest prostopadła do boku BC, więc prosta BC musi mieć równanie postaci y = -2x + b. Współczynnik b wyznaczamy podstawiając współrzędne punktu B.

$$6 = -2 \cdot (-12) + b \implies b = -18.$$

Zatem prosta BC ma równanie y = -2x - 18. Punkt C ma więc współrzędne postaci C = (x, -2x - 18). Pozostało teraz skorzystać z warunku AB = AC.

$$AB^{2} = AC^{2}$$

$$(-12-4)^{2} + (6-6)^{2} = (x-4)^{2} + (-2x-18-6)^{2}$$

$$256 = x^{2} - 8x + 16 + 4x^{2} + 96x + 576$$

$$0 = 5x^{2} + 88x + 336 = 0$$

$$\Delta = 88^{2} - 4 \cdot 5 \cdot 336 = 1024 = 32^{2}$$

$$x = \frac{-88 - 32}{10} = -12 \quad \forall \quad x = \frac{-88 + 32}{10} = -\frac{56}{10} = -\frac{28}{5} = -5\frac{3}{5}.$$

Rozwiązanie x=-12 prowadzi do punktu B, zatem $x=-\frac{28}{5}$

$$y = -2x - 18 = \frac{56}{5} - 18 = -\frac{34}{5}$$

oraz
$$C = \left(-\frac{28}{5}, -\frac{34}{5}\right)$$
.

Odpowiedź:
$$C = \left(-\frac{28}{5}, -\frac{34}{5}\right) = (-5, 6; -6, 8)$$

ZADANIE 34 (5 PKT)

W ostrosłupie prawidłowym trójkątnym *ABCS* cosinus kąta nachylenia krawędzi bocznej do płaszczyzny podstawy jest równy $\frac{2\sqrt{7}}{7}$. Wykaż, że pole powierzchni bocznej tego ostrosłupa stanowi $\frac{2}{3}$ jego pola powierzchni całkowitej.

ROZWIĄZANIE

Oznaczmy przez *a* krawędź podstawy, a przez *h* i *H* odpowiednio długości wysokości ściany bocznej oraz wysokości ostrosłupa.

Ponieważ środek O trójkąta równobocznego ABC dzieli jego wysokość DC w stosunku 2:1, mamy

$$DO = \frac{1}{3} \cdot \frac{a\sqrt{3}}{2} = \frac{a\sqrt{3}}{6}$$
$$OC = 2DO = \frac{a\sqrt{3}}{3}.$$

Z podanego $\cos \alpha$ obliczmy tg α .

$$\sin \alpha = \sqrt{1 - \cos^2 \alpha} = \sqrt{1 - \frac{28}{49}} = \sqrt{\frac{21}{49}} = \frac{\sqrt{21}}{7}$$
$$tg \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{\sqrt{21}}{7}}{\frac{2\sqrt{7}}{7}} = \frac{\sqrt{3}}{2}.$$

Stąd

$$\frac{\sqrt{3}}{2} = \frac{H}{OC}$$
 \Rightarrow $H = \frac{\sqrt{3}}{2} \cdot OC = \frac{\sqrt{3}}{2} \cdot \frac{a\sqrt{3}}{3} = \frac{a}{2}$.

Teraz z trójkąta prostokątnego SDO obliczamy długość h wysokości ściany bocznej.

$$h = SD = \sqrt{SO^2 + DO^2} = \sqrt{\left(\frac{a}{2}\right)^2 + \left(\frac{a\sqrt{3}}{6}\right)^2} =$$
$$= \sqrt{\frac{a^2}{4} + \frac{3a^2}{36}} = \sqrt{\frac{12a^2}{36}} = \sqrt{\frac{3a^2}{9}} = \frac{a\sqrt{3}}{3}.$$

W takim razie

$$P_b = 3 \cdot P_{ABS} = 3 \cdot \frac{1}{2}ah = 3 \cdot \frac{1}{2} \cdot \frac{a^2\sqrt{3}}{3} = \frac{a^2\sqrt{3}}{2} = 2 \cdot \frac{a^2\sqrt{3}}{4} = 2P_p.$$

Stąd

$$\frac{P_b}{P_c} = \frac{P_b}{P_b + P_p} = \frac{2P_p}{2P_p + P_p} = \frac{2}{3}.$$