

Grundlagen der Elektrotechnik II

Wechselstromwiderstände und Brückenschaltungen

Studien- und Versuchsaufgaben

Autor: Richard Grünert 16.5.2019

1 Vorbereitungsaufgaben

$$\underline{I} = \frac{\underline{U}}{\underline{Z}}, \quad \underline{U} = \hat{U} \cdot e^{j(\omega t + \phi_u)}$$

$$\underline{Z} = R + j\omega L + \frac{1}{j\omega C}$$

$$\underline{I} = \frac{\hat{U} \cdot e^{j(\omega t + \phi_u)}}{R + j(\omega L - \frac{1}{\omega C})}$$

Betrag:

$$|\underline{I}| = \hat{I} = \frac{\hat{U}}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}}$$

Phase:

$$\phi_i = \phi_u - \arctan\left(\frac{\omega L - \frac{1}{\omega C}}{R}\right)$$

Gesamt:

$$i(t) = \frac{\hat{U}}{\sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2}} \cdot \cos\left(\omega t + \phi_u - \arctan\left(\frac{\omega L - \frac{1}{\omega C}}{R}\right)\right)$$

$$\begin{array}{c|c}
R_{sL} & L & i_{\text{eff}} \\
\hline
U_{R_{\text{eff}}} & U_{L_{\text{eff}}}
\end{array}$$

$$I = 1.5 \text{ mA}, R_{sL} = 200\Omega, L = 60 \text{ mH}$$

$$\underline{U}_{\rm ges} = \underline{I} \cdot (R_{sL} + j\omega L)$$

$$\hat{U}_{\rm ges} = \hat{I} \cdot \sqrt{R_{sL}^2 + \omega^2 L^2}$$

$$\hat{U}_{\rm ges} = I_{\rm eff} \cdot \sqrt{R_{sL}^2 + \omega^2 L^2} = 1.5 \text{mA} \cdot \sqrt{(200\Omega)^2 + 4\pi^2 f^2 \cdot (60 \text{mH})^2}$$

$$U_{R_{\text{eff}}} = I_{\text{eff}} \cdot R = 1.5 \text{mA} \cdot 200\Omega = 0.3 \text{ V}$$

$$U_{L_{\textrm{eff}}} = I_{\textrm{eff}} \cdot \omega L = 1.5 \textrm{mA} \cdot 2 \pi f \cdot 60 \textrm{mH}$$

$$I=1.5~{\rm mA},~R=200\Omega,~C_1=0.5~{\rm \mu F},~C_2=1~{\rm \mu F}$$

$$\begin{split} \underline{U}_{\rm ges} &= \underline{I} \cdot (R - j \frac{1}{\omega C}) \\ \hat{U}_{\rm ges} &= \hat{I} \cdot \sqrt{R^2 + \frac{1}{\omega^2 C^2}} \\ \hat{U}_{\rm ges}_{\rm eff} &= I_{\rm eff} \cdot \sqrt{R^2 + \frac{1}{\omega^2 C^2}} = 1.5 \mathrm{mA} \cdot \sqrt{(200\Omega)^2 + \frac{1}{4\pi^2 f^2 C^2}} \end{split}$$

$$U_{R_{\text{eff}}} = I_{\text{eff}} \cdot R = 1.5 \text{mA} \cdot 200\Omega = 0.3 \text{ V}$$

$$\begin{split} U_{C_{\text{eff}}} &= I_{\text{eff}} \cdot \frac{1}{\omega C} \\ U_{C_{\text{eff}_1}} &= I_{\text{eff}} \cdot \frac{1}{\omega C_1} = 1.5 \text{mA} \cdot \frac{1}{2\pi f \cdot 0.5 \mu \text{F}} \\ U_{C_{\text{eff}_2}} &= I_{\text{eff}} \cdot \frac{1}{\omega C_2} = 1.5 \text{mA} \cdot \frac{1}{2\pi f \cdot 1 \mu \text{F}} \end{split}$$

1.5

a) Spule

Der Winkel δ , den die Impedanz \underline{Z} mit der imaginären Achse bildet, wird Verlustwinkel genannt. Der Verlustfaktor d ergibt sich dann aus:

$$d = \tan \delta = \frac{R_{sL}}{L_s}$$

Die Güte Q ist definiert als der Kehrwert des Verlustfaktors, also:

$$Q_{Ls} = \frac{1}{d} = \frac{\omega L_s}{R_{sL}}$$

Zeigerbild der Admittanz einer verlustbehafteten Induktivität / Spule im Parallelmodell

Analog ist der Verlustwinkel δ der Winkel der Admittanz mit der imaginären Achse:

$$d = \tan \delta = \frac{\frac{1}{R_{pL}}}{\left| -\frac{1}{\omega L_p} \right|} = \frac{\omega L_p}{R_{pL}}$$

Demnach ist auch die Güte der Kehrwert des Verlustfaktors:

$$Q_{Lp} = \frac{1}{d} = \frac{R_{pL}}{\omega L_p}$$

Für die gleich Frequenz gilt damit:

$$Q_{L_s} = Q_{L_p} = Q_L$$

b) Kondensator

2 Versuchsaufgaben