22. Heildi vigursviðs yfir flöt

Stærðfræðigreining IIB, STÆ205G

18. mars 2015

Sigurður Örn Stefánsson, sigurdur@hi.is Verkfræði- og náttúruvísindasvið Háskóli Íslands

Einingarþvervigrasvið

Skilgreining 22.1

Látum $\mathcal S$ vera flöt í $\mathbb R^3$. Einingarþvervigur $\mathbf n$ á flötinn $\mathcal S$ í punktinum P er einingarvigur hornréttur á snertiplan við flötinn í punktinum P. Einingarþvervigrasvið á $\mathcal S$ er samfellt vigursvið $\mathbf N$ sem er skilgreint í öllum punktum $\mathcal S$ þannig að fyrir $(x,y,z)\in \mathcal S$ er vigurinn $\mathbf n(x,y,z)$ einingarvigur sem er hornréttur á snertiplan við flötinn í punktinum (x,y,z).

Áttanlegir fletir

Skilgreining 22.2

Flöturinn $\mathcal S$ er sagður *áttanlegur* ef til er einingarþvervigrasvið $\mathbf N$ á $\mathcal S$.

Áttun á áttanlegum fleti felst í því að velja annað af tveimur mögulegum einingaþvervigrasviðum.

Möbiusarborði er ekki áttanlegur.

Umræða 22.3

Ef áttanlegur flötur $\mathcal S$ hefur jaðar þá skilgreinir áttunin stefnu á jaðri $\mathcal S$. Venjan er að velja stefnu jaðarsins þannig að þegar gengið er eftir honum sé einingarþvervigrasviðið á vinstri hönd (hægri handar regla).

Ef tveir áttanlegir fletir hafa jaðar má splæsa þeim saman í áttanlegan flöt með því að líma þá saman á (hluta af) jöðrunum og gæta þess að jaðrarnir hafi andstæða stefnu á samskeytunum.

Setning 22.4

Gerum ráð fyrir að \mathcal{S} sé áttanlegur flötur og $\mathbf{r}:D\subseteq\mathbb{R}^2\to\mathbb{R}^3$ sé regluleg stikun á \mathcal{S} (það er, $\frac{\partial \mathbf{r}}{\partial u}$ og $\frac{\partial \mathbf{r}}{\partial v}$ eru samfelld föll af u og v og vigrarnir $\frac{\partial \mathbf{r}}{\partial u}$ og $\frac{\partial \mathbf{r}}{\partial v}$ eru línulega óháðir). Þá er

$$\mathsf{N} = \frac{\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}}{\left|\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right|}$$

einingarþvervigrasvið á \mathcal{S} .

Heildi vigursviðs yfir flöt - Flæði

Skilgreining og ritháttur 22.5

Látum \mathcal{S} vera áttanlegan flöt stikaðan af reglulegum stikaferli $\mathbf{r}:D\subseteq\mathbb{R}^2\to\mathbb{R}^3$ með samfelldar hlutafleiður. Látum \mathbf{N} tákna einingarþvervigrasviðið sem gefið er í 22.4. Heildi vigursviðs \mathbf{F} yfir flötinn \mathcal{S} er skilgreint sem

$$\iint_{\mathcal{S}} \mathbf{F} \cdot \mathbf{N} \, dS = \iint_{D} \mathbf{F}(\mathbf{r}(u, v)) \cdot \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right) du \, dv.$$

Slík heildi eru oft nefnd flæði vigursviðsins \mathbf{F} gegnum flötinn \mathcal{S} .

Ritum dS = N dS. Pá er

$$\iint_{\mathcal{S}} \mathbf{F} \cdot \mathbf{N} \, dS = \iint_{\mathcal{S}} \mathbf{F} \cdot \, d\mathbf{S}.$$

Samantekt 22.6

1. Ef $\mathbf{r}:D\subseteq\mathbb{R}^2\to\mathbb{R}^3$ er stikun á \mathcal{S} þá er

$$d\mathbf{S} = \pm \left(\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}\right) du \, dv.$$

2. Ef S er graf z = f(x, y) þá er

$$d\mathbf{S} = \pm \left(-\frac{\partial f}{\partial x}, -\frac{\partial f}{\partial y}, 1\right) dx dy.$$

3. Gerum ráð fyrir að flöturinn \mathcal{S} í \mathbb{R}^3 hafi þann eiginleika að ofanvarp hans á xy-planið sé eintækt eða með öðrum orðum hægt er að lýsa fletinum sem grafi z=f(x,y). Ef fletinum \mathcal{S} er lýst sem hæðarfleti G(x,y,z)=C þá er

$$dS = \pm \frac{\nabla G(x, y, z)}{|\nabla G(x, y, z)|} dS = \pm \frac{\nabla G(x, y, z)}{G_3(x, y, z)} dx dy.$$

. Val á áttun felst í því að velja + eða - í formúlunum hér að ofan.

Túlkun 22.7

Hugsum okkur að vigursviðið $\mathbf F$ lýsi streymi vökva. Hugsum svo flötinn $\mathcal S$ sem himnu sem vökvinn getur streymt í gegnum. Áttun á $\mathcal S$ gefur okkur leið til að tala um hliðar flatarins og að vökvinn streymi í gegnum flötinn frá einni hlið til annarrar. Streymi vökvans gegnum flötinn (rúmmál per tímaeiningu) er gefið með heildinu $\iint_{\mathcal S} \mathbf F \cdot \mathbf N \, dS$ þar sem streymi í stefnu $\mathbf N$ reiknast jákvætt.

