

Project: MSS54 Module: EGAS

Page 1 of 5

MSS54 module description EGAS

	Department	Date	name	Filename
Editor EE-221	04.12.2003			3.01

Project: MSS54 Module: EGAS

Page 2 of 5

Table of Contents: 1.	(automatically from chapter headings)		
EGAS		3	
2.1. Setpoint in normal opera	ation	3	
2.2. Setpoint via diagnosis		3	
2.3. Setpoint during adaptati	on in run-on mode		3
2.4. Target value during the	Pre Drive Check	3	,
3. Constants, characteristics and varial	bles	5	
3.1. Constants		5	
3.2. Characteristic curves		5	
3.3 Variables		5	

	Department	Date	name	Filename
Editor EE-221	04.12.2003			3.01

Project: MSS54 Module: EGAS

Page 3 of 5

1. EGAS

The setpoint for the position controller of the EDK is determined in the EGAS module.

2nd TARGET VALUE DETERMINATION

The determination of the target value takes place in the 10ms task. First, in **egas_soll_bestimm()**, it is determined from which size the target value is calculated. Via **egas_soll_status**, it is communicated from which size the target value is to be calculated. In **egas_soll_berech()**, the final calculation of **egas_soll** takes place.

Since the setpoint is updated every 10 ms, but the actual value is recorded with each controller cycle, a sawtooth-shaped curve results, and thus changing gradients of the control deviation. By gradually increasing the setpoint until the next update via **edk_soll_inc**, a more homogeneous curve of the control deviation results (see module description edk).

2.1. SETPOINT IN NORMAL OPERATION

egas_soll_stat = 1 or 2. The bit constant **CFG_M.EGAS** can be used to select whether the setpoint for the position controller is derived from the calculated setpoint torque of the motor or from the driver's request from the PWG.

CFG_M.EGAS = 0 => Setpoint from PWG (egas_soll = md_fw_rel) CFG_M.EGAS = 1 => Setpoint from MM (egas_soll = wdk_soll).

After ignition off and $\mathbf{n} = 0$, the setpoint is taken from the specifications for adaptation of the upper stop.

In order to enable movement of the DK when adaptation is not active and the engine is stopped (B_MS) (e.g. diagnosis), the system then switches to md_fw_rel .

If the condition **B_SKM_EDK_AUS** is fulfilled via the safety concept, a setpoint of 0 is specified.

2.2. SETPOINT VIA DIAGNOSIS

egas_soll_stat = 3. The routine edk_write(Parameter1, Parameter2) can be called via diagnosis (DS2 protocol). If Parameter1 has the value 0, Parameter2 is interpreted as a setpoint in % DK position; if Parameter1 = 1, a duty cycle between 0% and 100% is transferred via Parameter2. The desired value is only set when the engine is stopped (B_MS) and in diagnosis mode (B_DIAG). The background task continuously checks whether these conditions are still met (edk_write_undo) and, if necessary, the control via diagnosis is switched off.

2.3. SETPOINT DURING ADAPTATION IN THE FOLLOW-UP

egas_soll_stat = 4. During the 100% adaptation in the run-on, edk_soll _adapt is taken as the setpoint.

2.4. SETPOINT DURING THE PRE- DRIVE CHECK

 $\textbf{egas_soll_stat} = 5. \ \textbf{During the Pre Drive Check after KL15 on}, \ \textbf{K_PDR_SOLL_EDK} \ \textbf{is taken as the target value}.$

	Department	Date	name	Filename
Editor EE-221	04.12.2003			3.01

Project: MSS54 Module: EGAS

Page 4 of 5

Error! Not a valid link.

	Department	Date	name	Filename
Editor EE-221	1 04.12.200	3		3.01

Project: MSS54 Module: EGAS

Page 5 of 5

3. CONSTANTS, CHARACTERISTIC CURVES AND VARIABLES

3.1. CONSTANTS

K_EGAS_UBMIN threshold for release of 100% adaptation

K_EGAS_WDK_TAU

3.2. CHARACTERISTIC CURVES

KF_EGAS_WDK Implementation rf_soll on wdk

KF_EGAS_WDK_KH Implementation of rf_soll on wdk for cat heating

KF_EGAS_WDK_ENTDROSSELT -

3.3. VARIABLES

egas_soll_status 1: 2: status setpoint specification

 wdk_soll

 3:
 md_fw_rel

 4:
 edk_soll_diag

 5:
 edk_soll_adapt

 6:
 K_PDR_SOLL_EDK

0 (for PDR)

egas_soll setpoint EGAS
egas_ist setpoint EGAS

egas_ipk

Bit 1: Request master to slave, switch off H-bridge

Bit 2: Confirmation slave to master, H-bridge switched off

Bits 3 to 7: free

wdk_soll setpoint specification EGAS

	Department	Date	name	Filename
Editor EE-221	04.12.2003			3.01