

Dimentionality Reduction

Motivation

I. Data Compression

from 3D to 2D
$$\mathcal{R}^3 \longrightarrow \mathcal{R}^2$$

II. Data Visualization

longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value	ocean_proximity
-122.23	37.88	41	880	129	322	126	8.3252	452600	NEAR BAY
-122.22	37.86	21	7099	1106	2401	1138	8.3014	358500	NEAR BAY
-122.24	37.85	52	1467	190	496	177	7.2574	352100	NEAR BAY
-122.25	37.85	52	1274	235	558	219	5.6431	341300	NEAR BAY
-122.25	37.85	52	1627	280	565	259	3.8462	342200	NEAR BAY
-122.25	37.85	52	919	213	413	193	4.0368	269700	NEAR BAY
-122.25	37.84	52	2535	489	1094	514	3.6591	299200	NEAR BAY
-122.25	37.84	52	3104	687	1157	647	3.12	241400	NEAR BAY
-122.26	37.84	42	2555	665	1206	595	2.0804	226700	NEAR BAY
-122.25	37.84	52	3549	707	1551	714	3.6912	261100	NEAR BAY
-122.26	37.85	52	2202	434	910	402	3.2031	281500	NEAR BAY
-122.26	37.85	52	3503	752	1504	734	3.2705	241800	NEAR BAY
-122.26	37.85	52	2491	474	1098	468	3.075	213500	NEAR BAY
-122.26	37.84	52	696	191	345	174	2.6736	191300	NEAR BAY
-122.26	37.85	52	2643	626	1212	620	1.9167	159200	NEAR BAY
-122.26	37.85	50	1120	283	697	264	2.125	140000	NEAR BAY
-122.27	37.85	52	1966	347	793	331	2.775	152500	NEAR BAY
-122.27	37.85	52	1228	293	648	303	2.1202	155500	NEAR BAY
•	•	•	•	:	•	•	•	:	:
•	•	•	•	•	•	•	•		

••••

••••

• • • •

•••••

••••

Principal Component Analysis problem formulation

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)} \in \mathbb{R}^n$) onto which to project the data so as to minimize the projection error.

In general:

Reduce from n-dimension to k-dimension: Find vectors $u^{(1)}, u^{(2)}, \dots, u^{(k)}$ onto which to project the data, so as to minimize the projection error.

Data preprocessing

Training set: $x^{(1)}, x^{(2)}, \dots, x^{(m)}$

Preprocessing (feature scaling/mean normalization):

 $\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$ Replace each $x_j^{(i)}$ with $x_j - \mu_j$

If different features on different scales (e.g., $x_1 = median$ age of house, x_2 = number of bedrooms), scale features to have comparable range of values.

Why?!

SVD

Linear algebra revisited

Orthogonal matrix

In linear algebra, an orthogonal matrix or real orthogonal matrix is a square matrix with real entries whose columns and rows are orthogonal unit vectors (i.e., orthonormal vectors), i.e.

$$QQ^T = Q^TQ = I$$
$$Q^T = Q^{-1}$$

Diagonal matrix

Is a matrix in which the entries outside the main diagonal are all zero.

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 & 0 & \cdots \\ 0 & \lambda_2 & 0 & \cdots \\ 0 & 0 & \lambda_3 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

SVD

Appling SVD

Gene Expression Matrix

Principal Component Analysis (PCA) algorithm

Reduce data from n-dimensions to k-dimensions Compute "covariance matrix":

$$\Sigma = \frac{1}{m} \sum_{i=1}^n (x^{(i)}) (x^{(i)})^T$$
 Compute "eigenvectors" of matrix Σ :

