TEOBALDO F. AGUILAR LEQUERICA

Teobaldo Francisco Aguilar Lequerica

¿QUIÉN DISPARÓ EL ARMA?

Residuos de disparos

Intr	oduc	ción	21
		l.	
		BALÍSTICA	
1.	Bre	eve historia de la Balística Forense	23
2.	Pri	ncipios de la balística	27
	a.	Principios de mecánica	27
	b.	Principios de termoquímica	28
	C.	Principios de termodinámica	28
3.	Ва	lística Forense	29
4.	Cla	sificación de la Balística Forense	29
5.	Eta	apas de la Balística Comparativa	32
6.	Mi	croscopio de comparación	32
7.	Ва	lística Reconstructiva	33
8.	Ва	lística Interior	33
	a.	Principio básico	34
	b.	Definición	34
	C.	Mecanismo del disparo	34
	d.	Las fases de la Balística Interna	35

9.	Ejemplos de Balística Interior en armas cortas y largas
	a. Armas cortas
	b. Armas largas
	II.
	ARMAS DE FUEGO: BREVE HISTORIA
1.	Concepto
2.	Evolución histórica de las armas de fuego
3.	Clasificación de armas de fuego
4.	Principales armas de fuego de incidencia criminal
	a. Historia del revólver Samuel Colt (USA)
	b. Historia de la pistola Georg Luger (Alemania)
	c. Componentes comunes en las armas de fuego
	d. Historia del rifle y armas automáticas de John Moses Browning (USA)
	e. Ametralladora John T. Thompson (USA)
5.	Precauciones con las armas de fuego
	III.
	MUNICIÓN Y COMPONENTES
1.	Municiones
2.	Tipos de municiones
3.	Partes de las municiones
4.	Vainas o casquillos
	a. Partes
	b. Presentación de los casquillos
5.	Proyectiles
	a. Partes y material de un proyectil
	b. Relación entre la combustión de la pólvora y el proyectil

6.	Pro	pulsores o deflagrantes	58
	a.		58
	b.	•	59
	C.	Propulsantes de doble base	59
	d.	Estabilizadores 6	61
	e.	Fases de la deflagración	64
7.	Cel		64
	a.	Historia	64
	b.	Componentes químicos y funciones	65
	C.	Función de la mezcla detonante	68
	d.	Partes del cebador o iniciador	68
	e.	Iniciador Berdan 6	69
	f.	Iniciador Boxer	70
	g.	Reacción química de los componentes del iniciador	72
	h.	Relación entre las formulaciones químicas de los cebadores y su relevancia criminalística	73
		IV.	
		ESCENARIO CRIMINAL: MEDIDAS DE SEGURIDAD	
1.	Val	or de una evidencia	77
2.	Pri	ncipio de oportunidad	78
3.	Cor	nsideraciones del instructor en el escenario criminal	79
4.	Inf	ormación previa del instructor	79
5.	Eva	aluación del escenario criminal	80
6.	La	contaminación y el escenario criminal	80
7.	Apl	icación de los principios criminalísticos en la escena del crimen	81
8.	Res	stos de disparos por arma de fuego en el escenario criminal	82
9.	Ins	pección para RD o GSR en vehículos	83
10.	Re	cojo de muestreo en casquillos	85

11.	Seguridad premuestreo en la escena criminal		
12.	Señalización en la escena criminal		
13.	Factores que pueden afectar la eficiencia en una inspección de incidente balístico		
	V.		
	RESTOS DE DISPARO POR ARMA DE FUEGO O RD		
1.	Historia de restos de percusión de un arma de fuego		
2.	Objetivo del estudio de trazas de percusión balística		
3.	Procedencia de los restos de disparos de un arma de fuego		
4.	Consideraciones preliminares sobre percusión balística		
5.	Concepto de restos de disparo (RD)		
6.	Formación de RD		
7.	Restos de disparos y tipo de arma de fuego		
8.	Naturaleza química de los restos de disparos		
9.	Factores incidentes en la retención de partículas		
10.	Factores que influyen en la cantidad de residuos de disparos		
11.	Relación entre la distancia del disparo y la imprimación de partículas		
12.	Zonas específicas de acumulación de trazas de disparos		
	a. Específicamente en las manos		
	b. En otras zonas y objetos		
13.	Distribución de las partículas de acuerdo con el arma de fuego		
14.	Forma de los corpúsculos		
15.	Composición química de los cebadores y cantidad de partículas metálicas		
16.	Tamaño de los corpúsculos		
17.	Composición química de los residuos de disparos		
	a. Trazas orgánicas		
	b. Partículas de origen inorgánico		

VI. TOMA DE MUESTRAS

1.	Activación o percusión de un arma de fuego	123
2.	Sentido de escapes y partículas en armas	123
3.	Idealización de la toma de muestras	125
4.	Zonas de impregnación de residuos de disparos	126
5.	Factores que influyen en el resultado instrumental de restos de disparos	128
6.	Procedimientos de tomas de muestras	130
7.	Limitaciones en la captación de restos de disparos balísticos	133
8.	Optimización de solvente para la toma de muestra de restos orgánicos	133
9.	Medio líquido para toma de muestras por absorción atómica	133
10.	Toma de muestras para determinación por absorción atómica	134
11.	Absorción atómica AA o SEM (microscopía electrónica de barrido)	134
12.	Toma de muestras para la lectura en microscopía electrónica o SEM	135
	a. Kits	135
	b. Componentes de cada kit	136
13.	Zonas de las manos que deben de muestrearse	136
14.	Medidas de seguridad previas al muestreo	138
	a. Con respecto al conducido	138
	b. Con relación al técnico o químico	138
15.	Recojo de muestras de la ropa, vehículos y otros objetos	139
16.	Toma de muestras de ropa	139
17.	El muestreo de los vehículos	144
18.	Toma de muestras para restos de munición SINTOX	145
19.	Toma de muestras en moco nasal	145
20.	Expansión de los restos balísticos y zonas críticas de impregnación	146
	Caso 1: Pistola 9 mm	146
	Caso 2: Pistola 9 mm	147

	Ca	so 3: Pistola	147
	Ca	so 4: Pistola	148
	Cas	so 5: Revólver Calibre 22	148
	Ca	so 6: Revólver 38 cañón largo	149
	Ca	so 7: Pistola	149
	Ca	so 8: Revólver	150
	Ca	so 9: Revólver	150
	Ca	so 10: Pistola ametralladora	151
	Ca	so 11: Escopeta	151
	Ca	so 12: Pistola con silenciador	152
		VII.	
		EXÁMENES COLORIMÉTRICOS PARA DETECTAR RESTOS ORGÁNICOS E INORGÁNICOS	
1.	Me	todologías químicas para la determinación de RD	153
2.	Téc	nicas de investigación de RD de acuerdo con su naturaleza química	154
3.	Val	or pericial de cada técnica o marcha química	154
4.	Exá	ámenes de orientación	154
5.	Ма	rchas de probabilidad o presuntiva-colorimétricos	155
6.	Pri	ncipales exámenes de naturaleza colorimétrica	155
	a.	Restos de pólvora negra (azufrados)	155
	b.	Dermal nitrat test o parafina (nitratos)	156
	c.	Reacción o reactivo de Peter Gries (Von Illoswa nitritos)	160
	d.	Ensayo de Maloney (nitratos en manos)	161
	e.	Reacción al ácido cromotrópico (reactivo para nitratos)	162
	f.	Reacción Fenildimetilpirazolona (nitratos)	162
	g.	Ensayo de Tewari- a la Antazolina, (13) - Nitritos- Nitratos	162
	h.	Ensayo de Islovai Islova (nitritos en armas de fuego)	163
	i.	Marcha o de Harrison Gilroy (plomo y bario)	164

	j.	Deducción de la distancia	165
	k.	Examen mejorado del rodizonato de sodio (plomo, bario y antimonio)	166
	l.	Test de Walker y Harrison (nitratos en prendas de vestir)	167
	m.	Reacción del ácido rubiánico- COBRE (pistola examen colorimétrico para determinar cobre)	169
	n.	Reacción de Gautelli (Nitritos en sangre)	169
	0.	Técnica de detección de trazas de metales	170
	p.	Reactivo de campo Blue View (nitratos)	172
		VIII.	
		COMPROBACIÓN DE RESTOS DE DISPARO POR ESPECTROFOTOMETRÍA DE ABSORCIÓN ATÓMICA, EFICIENCIA Y OBSOLECENCIA	
1.	Gei	neralidades	173
2.	Esp	pectros atómicos. Nociones de absorción y emisión	175
3.	His	toria	175
4.	Pri	ncipio de espectrofotometría de absorción atómica	176
5.	Esp	pectrofotometría de absorción atómica con llama y sin llama	177
	a.	Con llama	177
	b.	Sin llama (Horno de grafito)	178
	C.	Espectroscopia de emisión óptica por plasma acoplado inductivamente (ICP-OES)	178
	d.	Plasma acoplado inductivamente a espectrometría de masas (ICP-MS)	179
	e.	Comparación entre los sistemas de absorción atómica con llama o FAAS y sin llama o GFAAS	180
6.	Otr	as opciones espectroscópicas	181
	a.	Selección del disolvente	183
7.	Tor	na de muestras	185
	a.	Solicitud de toma de muestras	185

	b. Medidas básicas de seguridad	185
	c. Del funcionario que realiza la toma de muestras	186
	d. Acto de toma de muestras	186
8.	Ventajas de la aplicación de absorción atómica con horno de grafito en la investigación de RD	188
9.	Ventajas de la aplicación de absorción atómica con plasma inducido en la investigación de RD	189
10.	Limitaciones de la técnica de absorción atómica	190
11.	Corolario de la aplicación de la técnica de absorción atómica en la determinación de RDAF	191
	IX.	
	APLICACIÓN INSTRUMENTAL DE MICROSCOPÍA ELECTRÓNICA DE BARRIDO Y DISPERSIÓN DE RAYOS X EN LA DETERMINACIÓN DE RESTOS DE DISPAROS	1
1.	Evolución del microscopio electrónico de barrido o SEM	193
2.	Breve cronología de la microscopía electrónica y los restos de disparos	194
3.	Posibilidades de la aplicación del SEM en los restos de percusión	195
4.	Microscopía Electrónica de Barrido con energía dispersiva X-Ray (SEM-EDX)	196
5.	Documentación requerida	198
6.	Parámetros a ser comprobados	198
7.	Recojo de muestras	198
8.	Recubrimiento de la muestra	200
9.	Calibración del equipo	200
10.	Preparación previa a la muestra en laboratorio	202
11.	Fases del proceso de un examen integrado de recojo de muestras	202
	a. Solicitud de toma de muestras	202
	b. Medidas básicas seguridad (similar al de absorción atómica)	203
	c. Del funcionario que realiza la toma de muestras	204

	d. Acto de toma de muestras	204
12.	Documentación instrumental	206
13.	Validez y sustento de un dictamen pericial por SEM_EDX	207
	V	
	X.	
	NUEVAS TÉCNICAS INSTRUMENTALES PARA DETERMINAR TRAZAS DE PERCUSIÓN BALÍSTICA	
1.	Espectrometría de masas con esponja táctil para el análisis rápido de residuos orgánicos de disparos de mano humana y varias superficies, utilizando sistemas de espectrometría de masas	209
2.	Técnica para determinar restos orgánicos por espectrometría de masas y cromatografía de gases	210
3.	Espectroscopía Raman: identificación de municiones por medio del análisis orgánico de residuos del proyectil	211
4.	Ablación de láser Inducido. Plasma y espectrometría de masa o la IPC-MSI: identificación personal basada en la visualización de residuos metálicos y huellas dactilares	211
5.	Fluorescencia de Rayos X o XRF	212
6.	Espectrometría de movilidad de iones o IMS, diferenciación de los tiradores de los no tiradores que utilizan IMS, OGSR, redes neuronales y ratios de probabilidad	213
7.	Espectrometría de movilidad diferencial o DMS	213
8.	Voltámetro de extracción anódica o ASV- Detección electroquímica de residuos de bala para análisis forense: una revisión	214
9.	Voltametría, microscopía electrónica de barrido y espectroscopía de rayos X de dispersión de energía: identificación ortogonal de residuos de disparo	214
10.	Sensor de dedo forense de estado sólido para muestreo integrado de residuos de disparos y explosivos	215
11.	Cromatografía líquida de alto rendimiento (HPLC) ultra (LC) y espectrometría de masa (MS)	216
12.	Volamperometría de redisolución abrasivo o (ASV)	216

XI.

TIEMPO DE PERMANENCIA DE LOS RESIDUOS DE PERCUSIÓN DE ARMA DE FUEGO

1.	Persistencia de los GSR	219
2.	Transferencia directa	220
3.	Transferencia indirecta	220
4.	Limitaciones de tiempo con relación al muestreo	223
5.	Persistencia de los compuestos orgánicos	224
	XII.	
	ESTIMACIÓN DE LA DISTANCIA DE RESTOS DE DISPAROS	
1.	Nociones	231
2.	Relación entre energía y una lesión por arma de fuego	232
3.	Lesiones por arma de fuego	233
4.	Comprobación de la distancia de un disparo	234
5.	Productos expulsados por la boca cañón	236
6.	Componentes de los residuos balísticos de avanzada	237
7.	Tipos de disparos	238
8.	La distancia de disparo	240
9.	Características de disparo a corta distancia	240
10.	Distancia de disparos en las prendas de vestir	242
11.	Investigación de nitritos en prendas - Gries modificado	243
	XIII.	
	INTERPRETACIÓN DE RESULTADOS FALSOS POSITIVOS Y FALSOS NEGATIVOS	
1.	Consideraciones generales	245
2.	Justificación de las partículas de restos de disparos	247
3.	Confusión en interpretación de las partículas	247

4.	¿Qué actitud deberá tomar el experto en Química Balística al acceder a los resultados?			
5.	Resultados falso positivo			
6.	Falso negativo			
	a.	Razones probables de falso-negativo		
	b.	Otros factores que influyen en resultado falso-negativo		
	C.	Con relación al arma de fuego		
	d.	Mecanismo de un probable resultado falso-negativo		
	e.	Falso positivo o falso negativo		
	f.	Aparición de cebadores sin contenido de plomo, antimonio y bario (Pb, Sb y Ba), respectivamente		
7.	Situ	uación extrema contradictoria		
8.	Aud	litoría		
9.	Lat	oratorios forenses acreditados		
10.	Pos	sibilidades de optimizar los resultados en un futuro inmediato		
		XIV.		
		INFORME TÉCNICO Y EFICIENCIA APLICACIÓN DE LOS PRINCIPIOS DE LA CRIMINALÍSTICA		
1.	Fas	es del informe		
2.	Res	sultados		
3.	Info	orme técnico		
4.	Eli	nforme también puede considerar una o más advertencias		
5.	Cor	ntenido del informe o dictamen		
6.	¿Qı	ué actitud se debe tomar ante un resultado positivo?		
7.	For	ma como se expresan los resultados/conclusiones		
8.	Val	idez de los niveles detectados		
9.	Étic	ca y obligaciones profesionales		
10.	Prá	cticas que se deben evitar		
11.	Sop	porte científico de la autoría de disparo por arma de fuego		

12.		oría de un disparo por arma de fuego
13.		tores balísticos a tomarse en cuenta en la determinación de auto- de disparo
		XV.
		TIEMPO DE DISPARO DE UN ARMA DE FUEGO
1.	Evo	lución de la estimación del tiempo desde la descarga
2.	Los	enfoques basados en la inspección visual
3.	Los	métodos cromatográficos
4.		cedimientos químicos instrumentales para determinar el tiempo disparo
	a.	Cambio de nitritos y nitratos
	b.	Identificación de cationes ferrosos y férricos
	c.	Determinación espectrofotométrica de tiempo de descarga
	d.	$\label{thm:control} \mbox{Tiempo transcurrido desde la descarga de proyectiles de escopeta}$
5.	Inte	rpretación de los resultados analíticos
		XVI.
		GLOSARIO
Glos	ario	
		XVII.
		INTERROGANTES SOBRE RESTOS DE DISPAROS
Inter	roga	ntes sobre restos de disparos
		XVIII.
		BIBLIOGRAFÍA
a.	Text	tos
b.	Jour	nal y revistas

a presente obra tiene como objetivo que las autoridades policiales, judiciales, Ministerio Público, abogados, entre otros se formen una idea de la importancia de efectuar una toma de muestras oportuna tanto en manos como en prendas de vestir, calcular la distancia del disparo y tener una idea de la antigüedad de una descarga balística. Asimismo, invita al lector a tomar conciencia sobre el factor contaminación relacionado con el manipuleo del sospechoso y/o testigo por personal policial, además del tiempo transcurrido entre el disparo y la toma de muestra. A lo largo del tiempo, se ha caído en un error medular de creer que porque a una persona se le hallan trazas de plomo, antimonio y bario significa que disparó el arma sospechosa, o no considerar el tiempo que transcurre a la hora de tomar la muestra, este último es inconsistente, por lo que el dictamen puede ser anulado por autoridades, con criterios forenses si pasan cuatro horas de la toma de muestra.

El libro incluye los aspectos relacionados con los llamados falsos positivo y falsos negativos, donde se exponen casuísticas para ambas situaciones. También, se ha considerado la importancia en las determinaciones de residuos orgánicos procedentes de la pólvora. Finalmente, la preponderancia de la microscopía electrónica de barrido con detector de rayos X sobre otros procedimientos instrumentales es analizada con prolijidad y, por ende, la obsolencia de la técina y mal llamada prueba de absorción atómica se ha detallado con amplitud.

