东南大学 2005-2006 学年第二学期《高等数学(上)》 期中考试试卷

课程名称	高等数学 A、I	3期中 考试:	学期 05-0)6-2 得分	
适用专业	工科类	考试形式	闭卷	考试时间长度	120 分钟
一. 填空题(本	题共 5 小题,每	 身小题 4 分,满分	20 分)	_	
1. $\lim_{x\to\infty} x \sin\frac{2}{x^2}$	x + 1	;			
2. 当 x → 0 时,	$\alpha(x) = \sqrt{1 + x a}$	$\frac{1}{\arcsin x} - \sqrt{\cos x}$	$= \beta(x) = kx$	² 是等价无穷小,则	IJ k =;
3. 设 $y = (1 + \sin x)$	$[\mathbf{n} x]^x$, $[\mathbb{M} dy]_{x}$, =	_;		
4. 函数 $f(x) =$	$xe^x 在 x = 1$ 处存	带有Peano 余项的	二阶Taylor	公式为	;
5. 已知函数 <i>f</i> ($x) = \begin{cases} 2ae^{x} + \sin x \\ 2b(x-1)^{\frac{1}{2}} \end{cases}$	$ \begin{array}{ll} x, & x < \\ + 9 \arctan x, x \ge \end{array} $	⁰ 可导,则 0	a =, b =	0
二.单项选择题	(本题共4小題	顶,每小题4分,	满分 16 分)		
6. 设函数 $f(x)$	$=\frac{1}{1-e^{\frac{x-1}{x}}}, \boxed{\mathbb{N}}$		(D.]]
(A) $x = 0, x =$	1 都是 f(x) 的	第一类间断点			
(B) $x = 0, x =$	1 都是 f(x) 的	第二类间断点			
(C) x = 0 是 f	f(x) 的第一类间]断点, x = 1 是 f	(x) 的第二的	烂间断点	
(D) x = 0 是 j	f(x) 的第二类间]断点, x = 1 是 f	(x) 的第一	烂间断点	
7. 设函数 y = y	y(x) 由参数方程	$\begin{cases} x = t^2 + 2t \\ y = \ln(1+t) \end{cases}$	定,则曲线 <i>y</i>	$y = y(x) \stackrel{\cdot}{\text{d}} x = 3 \stackrel{\cdot}{\text{d}}$	止的切线与 x
轴交点的横坐标	是			[]	
(A) $\frac{1}{8} \ln 2 + 3$	(B) $-\frac{1}{8}$ 1	n 2 + 3 (C)	-8 ln 2 + 3	(D) 8 ln 2 +	- 3
8. 以下四个命	题中,正确的是	<u>!</u> []			
(A) 若f'(x) 石	生(0,1) 内连续,	则 f(x) 在(0,1)	内有界		
(B) 若 f(x) 在	E(0,1) 内连续,	则 f(x) 在(0,1);	内有界		

- (C) 若 f'(x) 在(0,1) 内有界,则 f(x) 在(0,1) 内有界
- (D) 若 f(x) 在(0,1) 内有界,则 f'(x) 在(0,1) 内有界
- 9. 当 a 取下列哪个数值时,函数 $f(x) = 2x^3 9x^2 + 12x a$ 恰有两个不同的零点[
- (A) 2
- (B) 4
- (C) 6
- (D) 8
- 三. 计算题(本题共5小题,每小题7分,满分35分)
- 10. $\lim_{x\to 0} \left(\frac{1+x}{1-e^{-x}} \frac{1}{x} \right)$
- 11. $\lim_{x \to +\infty} \left[\ln \left(1 + 2^{-x} \right) \ln \left(1 + \frac{3}{x} \right) \right]$

- 12. $\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+\sqrt{2}} + \cdots + \frac{1}{n+\sqrt{n}} \right)$ 13. $\mathbb{X} f(x) = \frac{1}{x(1-2x)}, \mathbb{X} f^{(n)}(x)$
- 14. 设函数 y = y(x) 由方程 $\sin(x^2 + y^2) + e^x xy^2 = 0$ 所确定,求 $\frac{dy}{dx}$ 。
- 四. (本题共4道题,满分29分)
- **15. (本题满分 6 分)**如果以每秒 50 cm³ 的匀速给一个气球充气,假设气球内气压保持常值, 且形状始终为球形,问当气球的半径为 5 cm 时,半径增加的速率是多少?

16. (本题满分 7 分) 证明不等式: $e^{x} \ge 1 + xe^{\frac{x-1}{2}}$ $(x \ge 0)$

$$e^{x} \ge 1 + xe^{\frac{x-1}{2}} \quad (x \ge 0)$$

17. (本题满分 8 分) 在抛物线 $y = \frac{1}{4}x^2 上求一点 P\left(a, \frac{1}{4}a^2\right)$, (a > 0), 使弦 PQ 的长度

最短,并求最短长度,其中Q 是过点P 的法线与抛物线的另一个交点。

18. (本题满分 8 分) 设函数 f(x) 在闭区间[a,b]上连续,在开区间(a,b)内可导,且 f(a) = b, f(b) = a, 证明:

- (1) 至少存在一点 $c \in (a,b)$, 使得f(c) = c;
- (2) 至少存在互异的两点 $\xi, \eta \in (a,b)$, 使得

$$f'(\xi) \cdot f'(\eta) = 1$$

05-06-2 高等数学(A,B)期中试卷参考答案

一. 填空题(本题共5小题,每小题4分,满分20分)

1. 2 2.
$$\frac{3}{4}$$
 3. $-\pi dx$ 4. $e + 2e(x-1) + \frac{3e}{2}(x-1)^2 + o((x-1)^2)$ 5. 1, -1

- 二. 单项选择题(本题共4小题,每小题4分,满分16分)
- 6. C 7. C 8. C 9. B
- 三. 计算题(本题共5小题,每小题7分,满分35分)

10.
$$\lim_{x \to 0} \left(\frac{1+x}{1-e^{-x}} - \frac{1}{x} \right) = \lim_{x \to 0} \frac{x+x^2-1+e^{-x}}{x\left(1-e^{-x}\right)} = \lim_{x \to 0} \frac{x^2+e^{-x}-1+x}{x^2} = 1 + \lim_{x \to 0} \frac{e^{-x}-1+x}{x^2}$$

$$= 1 + \lim_{x \to 0} \frac{\frac{1}{2}x^2 + o(x^2)}{x^2} = \frac{3}{2}$$

11.
$$\lim_{x \to +\infty} \left[\ln\left(1+2^{x}\right) \ln\left(1+\frac{3}{x}\right) \right] = \lim_{x \to +\infty} \left[\left(x \ln 2 + \ln\left(1+2^{-x}\right)\right) \ln\left(1+\frac{3}{x}\right) \right]$$

$$= \lim_{x \to +\infty} \left(x \cdot \frac{3}{x} \cdot \ln 2 + \frac{3}{x \cdot 2^x} \right) = 3 \cdot 1 \text{ n}$$

12.
$$\frac{n}{n+\sqrt{n}} \le \frac{1}{n+1} + \frac{1}{n+\sqrt{2}} + \dots + \frac{1}{n+\sqrt{n}} \le 1$$
 $\lim_{n\to\infty} \frac{n}{n+\sqrt{n}} = 1$

由夹逼定理得
$$\lim_{n\to\infty} \left(\frac{1}{n+1} + \frac{1}{n+\sqrt{2}} + \dots + \frac{1}{n+\sqrt{n}} \right) = 1$$

13.
$$f(x) = \frac{1}{x} + \frac{2}{1-2x}$$
 (2 $\cancel{\pi}$) $f^{(n)}(x) = (-1)^n \frac{n!}{x^{n+1}} + \frac{2^{n+1} \cdot n!}{(1-2x)^{n+1}}$

14.
$$((2x+2yy')\cos(x^2+y^2)+e^x-y^2-2xyy'=0)\frac{dy}{dx}=\frac{2x\cos(x^2+y^2)+e^x-y^2}{2y(x-\cos(x^2+y^2))}$$

四. (本题共4道题,满分29分)

15. (本题满分 6 分)
$$V = \frac{4}{3}\pi r^3$$
, $\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt} = 4\pi^2 \frac{dr}{dt}$ 50 = 100 $\pi \frac{dr}{dt}$, $\frac{dr}{dt} = \frac{1}{2\pi}$

16. (本题满分7分)

说
$$F(x) = e^x - 1 - xe^{\frac{x-1}{2}}$$

$$F'(x) = e^{x} - e^{\frac{x-1}{2}} - \frac{x}{2}e^{\frac{x-1}{2}} = e^{\frac{x-1}{2}}\left(e^{\frac{x+1}{2}} - 1 - \frac{x}{2}\right) = e^{\frac{x-1}{2}}\phi(x)$$
, 其中

$$\phi(x) = e^{\frac{x+1}{2}} - 1 - \frac{x}{2}, \quad \phi(0) = e^{\frac{1}{2}} - 1 > 0, \quad \phi'(x) = \frac{1}{2} \left[e^{\frac{x+1}{2}} - 1 \right] > 0 \ (x \ge 0)$$

所以当 $x \ge 0$ 时, $\phi(x)$ 单增,又因 $\phi(0) > 0$,所以 $\phi(x) \ge 0$,从而 $F'(x) \ge 0$,所以F(x) 单

增,又因F(0) = 0,故当 $x \ge 0$ 时, $F(x) \ge F(0) = 0$,所要证不等式成立。

17. (本题满分8分)

法线方程
$$y = -\frac{a}{2}x + 2 + \frac{a^2}{4}$$
,点 Q 的坐标 $\left[-\frac{8+a^2}{a}, \frac{\left(8+a^2\right)^2}{4a^2}\right]$ (2分)

$$f(a) = d^{2} = \left(\frac{8+a^{2}}{a}+a\right)^{2} + \frac{1}{16}\left(\frac{\left(8+a^{2}\right)^{2}}{a^{2}}-a^{2}\right)^{2} = \frac{4\left(4+a^{2}\right)^{3}}{a^{4}}$$

$$f'(a) = \frac{8(4+a^2)^2(a^2-8)}{a^5} = 0$$
, 得唯一驻点 $a = 2\sqrt{2}$, 当 $0 < a < 2\sqrt{2}$ 时, $f'(a) < 0$,

当 $a > 2\sqrt{2}$ 时,f'(a) > 0 , $a = 2\sqrt{2}$ 是 f(a) 的唯一极小值点,因而

是最小值点。 $P(2\sqrt{2},2)$, $d_{\min}=6\sqrt{3}$

18. (本題满分 8 分) (1) 令 F(x) = f(x) − x

$$F(a) \cdot F(b) = (f(a) - a) \cdot (f(b) - b) = -(b - a)^2 < 0$$
, $F(x) \in C[a, b]$, 所以

$$\exists c \in (a,b), \ni F(c) = 0, \oplus f(c) = c$$