Individual_work.R

ASUS

2024-01-25

```
setwd("C:/Users/ASUS/Desktop/2nd-trimester/R")
std data=read.csv("13-Influence of AI TOOLS on Student's Learning Process.csv", header=T)
#Dropping unwanted columns and cleaning the dataset
drop=c("Timestamp","Username","Any.Comments..Review")
std_data= std_data[,!(names(std_data) %in% drop)]
#change column_names
colnames(std_data)=c("ar","g","e","freq","access","sat_per","impt","recall","mot_ler","sat_info","sat",
str(std_data)
## 'data.frame':
                  158 obs. of 22 variables:
   $ ar : chr "18-24" "18-24" "18-24" "18-24" ...
                   "Male" "Male" "Male" ...
             : chr
## $ g
            : chr "Postgraduate" "Postgraduate" "Postgraduate" "Undergraduate" ...
## $ e
## $ freq : chr "Strongly agree" "Agree" "Strongly agree" "Agree" ...
## $ access : chr "Strongly agree" "Agree" "Strongly agree" "Agree" ...
                   "Strongly agree" "Agree" "Strongly agree" "Strongly agree" ...
## $ sat_per : chr
## $ impt : chr "Strongly Agree" "Agree" "Agree" "Neutral" ...
## $ recall : chr "Strongly Agree" "Agree" "Agree" "Agree" ...
## $ mot_ler : chr "Strongly Agree" "Agree" "Neutral" "Neutral" ...
## $ sat_info: chr "Strongly Agree" "Agree" "Disagree" "Agree" ...
## $ sat : chr "Strongly Agree" "Agree" "Strongly Agree" "Agree" ...
                   "Strongly Agree" "Agree" "Strongly Agree" "Agree" ...
## $ anx : chr
## $ prcy : chr
                    "Neutral" "Agree" "Disagree" "Disagree" ...
## $ saw
                    "Agree" "Agree" "Neutral" "Agree" ...
            : chr
                   "Neutral" "Agree" "Agree" "Neutral" ...
## $ p_att : chr
## $ flex : chr
                   "Disagree" "Agree" "Disagree" "Agree" ...
## $ under
                   "Agree" "Agree" "Strongly Disagree" "Agree" ...
             : chr
## $ i_feed : chr
                   "Strongly Agree" "Agree" "Disagree" "Agree" ...
                   "Strongly Agree" "Agree" "Strongly Agree" "Agree" ...
## $ m_obj : chr
                    "Strongly Agree" "Agree" "Strongly Agree" "Agree" ...
## $ p_alter : chr
                    "Strongly Agree" "Agree" "Disagree" "Agree" ...
## $ add s : chr
## $ l_exp : chr "Strongly Agree" "Agree" "Agree" "Agree" ...
summary(std_data)
##
        ar
                          g
                                                             freq
## Length:158
                    Length: 158
                                       Length: 158
                                                         Length: 158
## Class :character Class :character
                                       Class :character
                                                         Class : character
## Mode :character Mode :character Mode :character
                                                         Mode :character
      access
                     sat_per
                                           impt
                                                          recall
                    Length: 158
## Length:158
                                       Length: 158
                                                         Length: 158
```

```
Class : character
                      Class :character
                                          Class : character
                                                             Class : character
##
   Mode :character Mode :character
                                          Mode : character
                                                             Mode :character
##
     mot ler
                        sat info
                                              sat
                                                                 anx
                                                             Length: 158
## Length:158
                      Length: 158
                                          Length:158
##
  Class : character
                     Class :character
                                          Class :character
                                                             Class : character
                                                             Mode :character
##
  Mode :character Mode :character
                                          Mode :character
                                                                 flex
##
       prcy
                           saw
                                             p_att
                                                             Length: 158
## Length:158
                       Length: 158
                                          Length:158
##
   Class : character
                       Class : character
                                          Class : character
                                                             Class : character
##
  Mode :character
                                                             Mode :character
                      Mode :character
                                          Mode :character
##
      under
                          i feed
                                             m_{obj}
                                                               p_alter
## Length:158
                      Length: 158
                                          Length:158
                                                             Length: 158
                      Class : character
## Class :character
                                          Class :character
                                                             Class : character
## Mode :character
                      Mode :character
                                          Mode :character
                                                             Mode :character
##
      add_s
                          1_exp
## Length:158
                       Length: 158
## Class :character
                       Class : character
## Mode :character
                       Mode :character
ar=factor(std_data$ar)
g=factor(std_data$g)
e=factor(std_data$e)
\#Graph-1
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
std_data$prcy <- factor(std_data$prcy, ordered = TRUE,</pre>
                       levels = c("Strongly Disagree", "Disagree", "Neutral", "Agree", "Strongly Agree
ggplot(std_data, aes(x = prcy, fill = prcy)) +
  geom_bar(position = "stack") +
  facet_wrap(~ e, scales = "free_x") +
  labs(title = "Histogram of No Privacy Concerns by Education Level",
      x = "Privacy Concerns",
      y = "Frequency") +
  theme_minimal()
```

Histogram of No Privacy Concerns by Education Level


```
#UNDERSTANDING THE GRAPH - 2
#Most users who use Ai Tools Frequently are overall satisfied with the services provided
#Anyhow very few who use the AI tools are not satisfied

#Graph-3

$td_data*impt <- factor(std_data*impt, ordered = TRUE, levels =c("Strongly Agree", "Agree", "Neutral",

$td_data*m_obj <- factor(std_data*m_obj, ordered = TRUE, levels = c("Strongly Agree", "Agree", "Neutral

ggplot(std_data, aes(x = impt, y = m_obj, color = impt)) +

geom_jitter(position = position_jitter(width = 0.2, height = 0.2), size = 1) +

labs(title = "Jitter Dot Plot of Impact on Learning vs Meets Objectives",

x = "Impact on Learning",
y = "Meets Objectives",
color = "Impact on Learning") +

theme_minimal()</pre>
```

Jitter Dot Plot of Impact on Learning vs Meets Objectives

Comparison of Gender and Impact on Learning

Impact on Learning

NULL

- ## Groups with fewer than two data points have been dropped.
- ## Groups with fewer than two data points have been dropped.
- ## Groups with fewer than two data points have been dropped.


```
#UNDERSTANDING THE GRAPH - 5
#Teenagers(Under-18) and above-24 aged people who use AI tools gets their responses which meets the obj
#For the people who are aged between 18-24 AI have met most of the objectives but still few people are
#converting the columns into relevant datatype
std_data$g<-factor(std_data$g)</pre>
std_data$ar<-factor(std_data$ar)</pre>
std_data$e<-factor(std_data$e)</pre>
library(dplyr)
map_scale_values <- function(value) {</pre>
  case when(
    as.character(value) %in% c("Strongly Agree", "Strongly agree") ~ 5,
    as.character(value) %in% c("Agree") ~ 4,
    as.character(value) %in% c("Neutral", "Netural") ~ 3,
    as.character(value) %in% c("Disagree") ~ 2,
    as.character(value) %in% c("Strongly Disagree") ~ 1,
    TRUE ~ NA_real_ # for any other cases
  )
convert_columns=c("freq","access","sat_per","impt","recall","mot_ler","sat_info","sat","anx","prcy","sa
# Apply the mapping function to specified columns
```

```
std_data <- std_data %>%
  mutate_at(vars(convert_columns), ~map_scale_values(.))
## Warning: Using an external vector in selections was deprecated in tidyselect 1.1.0.
## i Please use `all_of()` or `any_of()` instead.
##
     # Was:
##
     data %>% select(convert_columns)
##
##
     # Now:
     data %>% select(all_of(convert_columns))
##
##
## See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
std_data
##
              ar
                       g
                                      e freq access sat_per impt recall mot_ler
## 1
           18-24
                   Male
                          Postgraduate
                                            5
                                                   5
                                                            5
                                                                  5
                                                                          5
                                                                                  5
## 2
                                                   4
                                                                          4
                                                                                  4
           18 - 24
                   Male
                          Postgraduate
                                            4
                                                            4
                                                                  4
                                                                                  3
## 3
           18-24
                   Male
                          Postgraduate
                                            5
                                                   5
                                                            5
                                                                  4
                                                                          4
## 4
           18-24
                                            4
                                                   4
                                                            5
                                                                  3
                                                                          4
                                                                                  3
                   Male Undergraduate
## 5
           18-24
                   Male Undergraduate
                                            5
                                                   5
                                                            4
                                                                  4
                                                                          4
                                                                                  4
                                                                         3
                                                                                  4
## 6
           18 - 24
                   Male Undergraduate
                                            4
                                                   4
                                                            4
                                                                  4
## 7
           18-24
                   Male Postgraduate
                                            3
                                                   3
                                                            3
                                                                  3
                                                                          3
                                                                                  3
                                                                         3
                                                                                  2
## 8
           18-24 Female Postgraduate
                                            4
                                                   4
                                                            4
                                                                  3
## 9
           18-24 Female Undergraduate
                                            5
                                                   5
                                                            5
                                                                  5
                                                                         5
                                                                                  5
## 10
       Under 18
                   Male Undergraduate
                                            5
                                                   5
                                                            5
                                                                  5
                                                                         5
                                                                                  4
                                            4
                                                   5
                                                                          3
                                                                                  4
## 11
           18-24
                   Male Undergraduate
                                                            5
                                                                  4
           18-24
                   Male Undergraduate
                                            5
                                                            4
                                                                          3
## 13
           18-24
                                            5
                                                   5
                                                                         3
                                                                                  3
                   Male Postgraduate
                                                            1
           18-24
                   Male Undergraduate
                                            3
                                                   5
                                                            5
                                                                  4
                                                                          3
                                                                                  4
## 14
                                            5
                                                                                  5
## 15
           18-24
                   Male Undergraduate
                                                   5
                                                            5
                                                                  5
                                                                          4
           18-24
                                            5
                                                            2
                                                                          5
                                                                                  5
## 16
                   Male Undergraduate
                                                                                  4
## 17
       Above 24
                   Male
                          Postgraduate
                                            4
                                                   4
                                                            5
                                                                  4
                                                                          4
## 18
           18-24 Female Undergraduate
                                            5
                                                   5
                                                            5
                                                                  4
                                                                          4
                                                                                  4
## 19
                                                   5
                                                                                  5
                                            5
                                                            5
                                                                         5
           18-24 Female Postgraduate
## 20
           18 - 24
                   Male Undergraduate
                                            1
                                                   3
                                                            1
                                                                  1
                                                                         1
                                                                                  1
                                            4
                                                   4
                                                            3
                                                                         4
                                                                                  4
## 21
       Above 24 Female Postgraduate
                                                                  4
                                                   4
                                                                          3
                                                                                  4
## 22
           18-24 Female Undergraduate
                                            4
                                                            3
                                                                  4
                                                                                  5
## 23
           18-24 Female Undergraduate
                                            5
                                                   5
                                                            5
                                                                  5
                                                                         5
## 24
           18-24 Female Undergraduate
                                            2
                                                   3
                                                            3
                                                                  2
                                                                         2
                                                                                  2
                                                                  3
                                                                          3
                                                                                  3
## 25
           18 - 24
                   Male Data science
                                            5
                                                   4
                                                            4
## 26
           18-24
                                            4
                                                   4
                                                            4
                                                                  3
                                                                          3
                                                                                  2
                   Male Postgraduate
## 27
           18-24
                   Male Undergraduate
                                                            4
                                                                         4
                                                                                  4
                                                                         3
                                                                                  4
## 28
           18-24
                   Male Postgraduate
                                            4
                                                   3
                                                            4
## 29
           18-24
                   Male Undergraduate
                                            4
                                                   3
                                                            3
                                                                  4
                                                                         4
                                                                                  3
                                            4
                                                   5
                                                            5
                                                                         5
                                                                                  4
## 30
          18-24
                   Male Undergraduate
                                                                  5
                                                                                  5
## 31
          18-24
                   Male Undergraduate
                                            5
                                                            5
                                                                  5
                                                                         5
                                                                                  5
## 32
           18-24 Female Undergraduate
                                            5
                                                   4
                                                            4
                                                                  5
                                                                         4
## 33
           18-24
                                            3
                                                   3
                                                            3
                                                                  3
                                                                          3
                                                                                  3
                   Male
                                  B.Com
## 34
           18-24
                   Male Undergraduate
                                            5
                                                   5
                                                            3
                                                                  4
                                                                          4
                                                                                  3
                                                   5
## 35
           18-24 Female Undergraduate
                                            4
```

##	36	18-24	Male	Undergraduate	4	4	4	4	4	3
##	37	18-24	Male	Undergraduate	4	4	4	4	4	4
##	38	18-24	Female	Postgraduate	4	5	4	5	4	3
##	39	18-24	Male	Undergraduate	4	4	3	4	4	4
##	40	18-24	Female	Undergraduate	4	3	4	3	3	2
##	41	18-24	Male	Postgraduate	4	3	3	4	3	3
##	42	Under 18	Male	Postgraduate	5	3	4	5	2	4
##	43	18-24	${\tt Female}$	Postgraduate	2	2	2	3	3	3
##	44	18-24	Male	Undergraduate	4	4	4	5	4	5
##	45	Above 24	Male	Postgraduate	3	5	5	5	4	4
##	46	18-24	Female	Postgraduate	4	4	4	5	5	5
##	47	18-24	Female	Undergraduate	4	3	3	4	5	4
##	48	18-24	Female	Postgraduate	3	3	4	5	4	4
##	49	Above 24	Female	Undergraduate	4	4	4	4	3	4
##	50	18-24	Female	Postgraduate	4	4	4	4	3	4
##	51	18-24	Female	Undergraduate	5	5	5	5	5	5
##	52	18-24	Female	Undergraduate	4	5	4	4	3	3
##	53	Under 18	Male	PU	4	5	4	3	4	5
##	54	Above 24	Female	Undergraduate	4	4	3	4	3	3
##	55			Undergraduate	3	4	4	4	4	4
##	56	Above 24	Male	Graduate	3	4	4	4	5	3
##	57	18-24	Female	Undergraduate	3	4	4	4	4	4
##	58	18-24		Undergraduate	4	4	3	3	2	3
##	59	Above 24		Ph.D	3	4	2	4	3	2
##	60	Above 24	Male	Animations	4	4	4	4	5	3
##	61	18-24	Male	Undergraduate	5	4	4	4	5	4
##	62	Above 24		Postgraduate	3	4	4	4	3	3
##	63			Undergraduate	5	5	5	4	5	5
##	64	18-24		Undergraduate	5	5	4	4	4	4
##	65			Undergraduate	4	3	5	2	3	1
##	66	18-24	Male	Postgraduate	1	2	2	5	5	5
##	67		Female	Postgraduate	5	4	3	5	4	5
##	68	18-24	Male	Postgraduate	4	4	4	4	4	4
##	69	Above 24	Male	Postgraduate	2	4	4	5	5	5
	70			Undergraduate	4	3	4	4	3	4
##	71	18-24	Male	Postgraduate	5	4	3	5	4	3
##		Above 24		BBM	4	3	4	4	5	4
##	73			Undergraduate	5	4	5	4	5	3
	74		Female	Postgraduate	4	4	4	4	4	4
	75	18-24		Undergraduate	4	4	1	4	3	2
	76			Undergraduate	4	4	4	4	4	4
	77	18-24		Undergraduate	5	5	5	5	5	5
	78	18-24		Undergraduate	4	4	3	5	4	3
	79	18-24		Undergraduate	5	4	3	5	4	5
	80	18-24		Undergraduate	4	3	3	4	4	4
##	81			_	3	4	3	3	3	3
				Undergraduate	5 5	5	5	5	5	
	82	18-24		Undergraduate	5 5	5 5	5 5	5 4	3	5 3
	83	Under 18	Male	PU				4 5	3 5	
##	84	18-24		Undergraduate	4	5	4			5
	85 ee	18-24	Male	Postgraduate	5	5	3	4	5	3
##	86		Female	Postgraduate	2	4	3	4	3	4
##	87			Undergraduate	5	4	4	4	5	4
##	88		Female	Postgraduate	4	5	4	4	4	4
##	89	18-24	Female	Postgraduate	5	5	4	5	3	4

							_	_	_	_
##		18-24	Female	Undergraduate	4	4	2	3	4	4
##	91	Above 24	Male	Postgraduate	5	5	5	4	4	5
##	92	Above 24	Male	Postgraduate	4	4	4	5	5	4
##	93	Above 24	Female	Undergraduate	3	5	4	4	2	3
##	94	18-24	Female	Undergraduate	4	4	4	5	3	4
##	95	18-24	Male	Postgraduate	4	4	4	4	4	4
##	96	18-24		Undergraduate	1	5	5	3	3	3
##	97	18-24	Male	•	4	3	5	4	3	4
				Postgraduate				2	3	
##	98	18-24	Male	Postgraduate	5	4	3			4
	99		Female	Postgraduate	4	5	4	5	4	5
	100	18-24	Male	Postgraduate	4	4	4	4	4	4
##	101	18-24	Male	Postgraduate	5	4	3	4	3	3
##	102	18-24	Male	Postgraduate	5	4	3	3	2	1
##	103	18-24	Male	Postgraduate	4	5	4	3	4	3
##	104	18-24	Male	Postgraduate	2	1	3	2	1	3
##	105	18-24	Female	Postgraduate	4	3	5	4	3	2
##	106	18-24	Male	Undergraduate	1	4	4	5	4	3
	107			Undergraduate	1	3	1	3	1	2
		Above 24	Male	Working	4	5	4	5	4	4
##		Under 18		HighSchool	5	5	3	4	4	4
	110			Undergraduate	3	3	3	3	3	2
				_						
		Above 24	Male	Postgraduate	2	4	3	4	3	4
	112		Female	HighSchool	5	5	3	4	4	4
	113			Undergraduate	4	5	5	5	4	5
##	114	18-24	Female	Undergraduate	3	3	3	4	3	4
##	115	18-24	Male	Postgraduate	5	4	4	4	3	3
##	116	18-24	${\tt Female}$	Undergraduate	5	5	4	4	3	3
##	117	18-24	${\tt Female}$	Postgraduate	5	5	4	5	5	3
##	118	18-24	Male	Undergraduate	4	4	4	4	2	3
##	119	18-24		Undergraduate	5	5	5	5	5	5
##	120	18-24		Undergraduate	4	4	3	4	4	5
	121	18-24		Undergraduate	5	5	5	5	5	5
	122	18-24	Male	-	5	5	4	4	5	4
	123	18-24	Male	Postgraduate	5	5	5	5	5	5
				Postgraduate						
	124	18-24		Undergraduate	5	5	5	5	5	5
	125			Undergraduate	4	4	4	4	4	4
	126		Female	Postgraduate	4	4	4	4	4	4
##	127	18-24	Female	Undergraduate	4	4	4	3	3	4
##	128	18-24	Male	Postgraduate	4	4	4	4	4	4
##	129	18-24	${\tt Female}$	Undergraduate	4	4	4	4	4	3
##	130	18-24	${\tt Female}$	Undergraduate	3	3	3	3	3	3
##	131	18-24	Male	Undergraduate	5	4	3	1	2	3
##	132	18-24	Female	Undergraduate	4	5	4	4	4	3
##	133			Undergraduate	2	2	2	2	2	2
##	134	18-24	Male	Postgraduate	5	5	5	5	5	5
##	135	18-24		Undergraduate	5	5	4	3	4	5
##	136	18-24		Undergraduate	4	4	4	4	4	4
##	137	18-24		_	4	4	4	4	4	4
			Male	Postgraduate						
##	138			Undergraduate	5	5	3	5	3	5
##		Above 24	Male	Postgraduate	5	4	5	4	4	4
##		Above 24		Undergraduate	1	1	1	1	1	1
##	141	18-24	Male	Postgraduate	4	4	3	3	4	4
##		Above 24	Male	Postgraduate	4	5	4	5	4	5
##	143	18-24	Male	Postgraduate	3	3	3	3	4	2

##	144	18-24	Femal	e	Postg	radıı	ate	4	4	4	4	4	3	
	145	18-24			Post			4	3	4	3	4	3	
##	146	18-24						4	4	4	4	4	3	
##	147	18-24	Mal		Postg			5	4	4	4	3	3	
##	148	18-24						4	4	2	4	3	4	
##	149	18-24	Mal	.е	Postg	•		5	4	5	4	5	4	
##	150	18-24	Mal	.e	Postg	•		4	5	4	4	5	4	
##	151	18-24	Mal	.e	Postg			4	4	4	3	2	2	
##	152	18-24	Femal	.е	Postgraduate			4	4	4	3	3	2	
##	153	18-24	Femal	.e	Postg	radu	ate	3	3	3	4	3	3	
##	154	18-24	Mal	.e	Postg	radu	ate	3	4	3	2	2	2	
##	155	18-24	Mal	.e	Postg	radu	ate	5	5	2	4	1	5	
##	156	18-24	Mal	.е	Postg	gradu	ate	4	5	4	4	2	3	
##	157	18-24	Mal	.e	Postg	gradu	ate	4	5	5	3	3	4	
##	158	18-24			Jnderg			5	5	5	5	3	3	
##		$\mathtt{sat_info}$								i_feed	${\tt m_obj}$	_	add_s	l_exp
##		5	5	5	3	4	3	2	4	5	5	5	5	5
##		4	4	4	4	4	4	4	4	4	4	4	4	4
##		2	5	5	2	3	4	2	1	2	5	5	2	4
##		4	4	4	2	4	3	4	4	4	4	4	4	4
##		5	5	5	5	4	3	2	4	3	4	5	4	3
##		4	4	4	5	5	3	4	4	3	4	4	3	4
##		3	3	5	3	1	3	3	3	3	3	3	4	3
##		3	3	4	3	2	3	1	2	2	4	3	2	3
##		5 4	5 5	5 4	5 5	5 4	5	5 4	5	5	5 5	5 4	5 3	5 5
## ##	11	4	5 4	4	5 4	4	4 4	3	4	5 4	4	4	3	5 4
	12	4	4	4	3	3	5	3	4	4	4	4	4	4
	13	4	4	4	4	3	4	2	1	3	5	3	4	3
	14	3	4	4	2	3	4	4	4	4	5	5	5	4
	15	5	5	5	1	4	4	3	4	4	5	5	5	5
##	16	4	4	4	4	4	4	4	4	4	4	4	4	4
##	17	4	4	5	4	4	4	4	4	4	5	5	5	4
##	18	4	3	4	3	3	4	4	4	4	4	4	4	4
##	19	4	3	3	3	3	4	3	3	3	3	3	3	3
##	20	1	1	1	1	1	1	1	1	1	1	1	1	1
##	21	4	4	4	4	4	4	4	4	4	4	4	4	4
##	22	3	3	4	3	4	4	4	4	4	4	4	4	4
##	23	5	5	5	5	5	5	5	5	5	5	5	5	5
##	24	5	2	2	2	2	3	4	2	2	4	2	4	3
##	25	2	2	3	1	2	3	4	2	1	5	4	5	4
##	26	2	4	2	2	2	2	2	2	2	4	4	2	5
##	27	4	5	5	4	5	4	4	5	4	5	4	4	4
##	28	3	4	4	2	2	3	2	3	4	4	4	5	4
##		4	4	4	3	3	3	4	4	4	4	4	4	4
##		4	5	5	2	5	5	4	5	5	3	5	5	4
##	31	5	4	3	3	5	4	4	5	4	3	4	5	5
##	32	5	4	4	4	5	4	4	4	5	4	5	5	4
##	33	3	3	3	3	3	3	3	3	3	3	3	3	3
##	34	4	3	3	4	5	5	4	4	3	4	4	4	4
	35	4	4	4	4	4	4	4	4	4	4	4	4	4
##		4	5	3	4	4	4	3	4	4	4	5	4	4
##		4	4	4	4	4	4	4	4	4	4	4	4	4
##	3 8	2	4	2	2	3	4	2	4	2	4	4	4	4

##	39	3	3	3	3	3	3	3	3	3	3	3	3	3
##	40	3	4	3	2	2	3	2	4	3	4	4	4	4
	41	5	5	4	4	3	5	4	4	5	4	5		4
##	42	5	3	4	3	2	5	3	4	3	3	4		3
##	43	3	4	2	2	4	3	3	4	3	4	3	4	4
##	44	4	4	4	3	4	4	3	4	4	4	4	3	4
	45	4	4	4	3	3	4	4	4	4	4	4		4
					4									
	46	4	4	4		4	4	4	4	4	3	3		4
##	47	4	4	3	4	4	4	5	5	5	4	4	5	4
##	48	5	4	3	4	4	5	4	5	4	4	3	5	4
##	49	4	4	3	4	4	4	4	4	4	4	4	3	4
##	50	4	4	4	4	4	4	3	4	4	4	4	4	4
##	51	5	5	5	5	5	5	5	5	5	5	5	5	5
##	52	3	2	3	4	3	4	4	3	4	3	4		4
##	53	5	4	5	4	4	5	5	5	4	5	4	5	5
##	54	4	3	4	1	4	4	4	4	4	4	4	3	4
##	55	3	4	3	3	3	4	3	4	4	3	4	4	4
##	56	2	2	2	1	1	2	3	3	3	4	4		3
##	57	3	3	3	3	3	4	4	4	4	4	4		4
##	58	3	3	3	1	1	3	3	3	4	4	3		3
##	59	5	3	3	4	3	4	4	5	5	3	4	4	3
##	60	4	4	4	5	5	5	5	4	5	4	4	4	4
##	61	5	4	3	4	4	5	4	4	5	4	4	4	4
##	62	4	3	3	3	4	4	4	3	4	4	4		4
##	63	5	5	4	5	4		5				5		
							5		5	5	5		5	5
	64	4	5	5	4	3	3	2	5	5	5	4		5
##	65	3	3	4	2	2	4	1	4	3	4	4	3	5
##	66	4	5	5	4	5	5	4	5	4	5	5	4	4
##	67	4	4	5	5	4	4	5	1	4	1	3	5	4
##		4	4	3	3	3	3	3	4	4	4	4		4
##		4	5		3	3	2			4	4	4		
				4				4	5					4
##		4	4	3	3	3	3	3	4	3	4	3		3
##	71	5	4	3	4	5	4	3	5	3	5	4	3	4
##	72	4	3	5	4	4	5	4	4	5	5	5	4	4
##	73	3	3	4	4	4	4	3	4	5	5	4	5	4
	74	3	4	4	3	4	4	3	5	4	4	4		4
		4	4	3	3	4	3	4	3	4	3	4		4
##														
	76	4	4	4	4	4	4	4	4	4	4	4		4
##	77	5	5	5	5	5	5	5	5	5	5	5	5	5
##	78	2	4	3	5	4	4	5	4	4	4	4	5	3
##	79	3	4	4	3	4	5	4	4	4	4	4	5	4
##		4	4	4	4	4	4	4	4	4	4	4		4
##		4	3	3	3	3	3	3	3	3	3	3		3
##		5	5	5	3	4	5	3	5	5	5	5		5
##	83	3	4	5	4	5	4	3	3	4	5	5	5	5
##	84	4	4	5	4	4	5	3	4	2	3	4	4	4
##		3	4	5	5	4	3	3	4	3	5	5		3
##		4	4	3	4	4	4	4	4	4	4	3		4
##		5	5	4	5	4	4	4	4	5	4	5		4
##		4	4	5	5	5	5	5	5	5	4	4		4
##	89	2	4	3	4	3	3	3	4	5	4	4	5	4
##	90	3	4	4	3	2	4	1	2	3	3	3	3	3
##		5	4	4	5	4	5	4	5	5	5	5		4
##		5	4	5	5	4	4	4	5	5	4	5		4
##	J Z	J	+	J	J	4	4	4	J	J	-1	J	J	-

##	93	3	4	2	4	2	4	4	5	4	4	5	5 4	
##		5	5	3	1	5	5	5	5	5	5	5	5 5	
##	95	4	4	4	4	4	4	4	4	4	4	4	4 4	
##	96	3	3	3	3	2	2	2	2	2	3	3	4 3	
##	97	4	3	5	3	5	3	4	5	4	4	4	4 5	
##	98	5	4	3	3	4	5	4	3	4	5	4	3 4	
##	99	3	5	4	4	4	4	5	5	4	5	5	4 4	
	100	4	4	4	4	4	4	4	4	4	4	4	4 4	
##	101	2	4	4	4	4	4	4	4	4	5	4	4 4	
##	102	5	1	3	4	2	5	3	2	2	4	3	3 1	
##	103	4	4	4	3	3	4	3	3	4	4	4	4 4	
##	104	2	1	1	1	2	3	2	2	1	1	2	1 2	
##	105	4	3	3	1	2	2	1	2	1	4	4	4 4	
##	106	3	4	5	5	3	4	4	4	3	4	5	3 4	
##	107	4	2	1	1	1	3	4	4	2	3	3	2 2	
##	108	4	4	3	2	4	3	4	4	4	4	4	3 4	
##	109	4	3	3	3	3	4	3	4	4	4	4	3 4	
##	110	4	4	4	3	4	4	3	3	3	4	3	4 4	
##	111	5	4	3	2	4	4	4	5	5	4	4	3 4	
##	112	3	5	4	2	3	4	4	5	3	5	5	4 4	
##	113	5	5	5	2	4	2	2	4	4	4	5	5 5	
##	114	3	3	4	3	3	4	3	3	3	3	4	4 4	
##	115	4	4	3	2	4	3	3	3	3	5	4	4 3	
##	116	3	3	3	3	2	3	2	2	3	4	4	3 3	
##	117	5	4	5	3	5	5	5	5	4	5	4	5 4	
##	118	3	5	5	3	3	5	4	4	5	4	4	3 4	
##	119	5	5	5	5	5	5	5	5	5	5	5	5 5	
	120	5	4	2	1	4	4	4	5	5	4	4	4 5	
	121	5	5	5	5	5	5	5	5	5	5	5	5 5	
	122	3	4	4	4	4	3	3	3	3	4	4	4 5	
	123	5	5	5	5	5	5	5	5	5	5	5	5 5	
	124	5	5	5	5	5	5	5	5	5	5	5	5 5	
	125	4	4	4	4	4	4	4	4	4	4	4	4 4	
	126	2	3	3	2	4	3	3	4	3	4	4	3 3	
	127	3	4	4	3	3	4	3	4	3	4	3	3 3	
	128	4	4	4	5	5	4	4	4	5	4	4	4 4	
	129	3	4	4	4	4	4	4	4	4	4	4	4 4	
	130	3	3	3	3	3	3	3	3	3	3	3	3 3	
	131 132	3 4	4 5	2	5 3	1 3	2	2	5 4	4	2 5	3 4	4 1 4 4	
	133	2	2	2	2	2	2	2	2	2	2	2	4 4 2 2	
	134	5	5	5	5	4	4	4	4	5	5	5	5 5	
	135	4	4	5	5	5	5	3	3	4	5	5	5 5	
	136	4	4	4	4	4	4	4	4	4	4	4	4 4	
	137	4	4	4	4	4	4	4	4	4	4	4	4 4	
	138	2	3	5	3	1	4	3	3	1	3	4	4 3	
	139	4	4	4	4	4	4	4	5	5	5	5	4 4	
	140	1	1	1	1	1	1	1	1	1	1	1	1 1	
	141	3	5	4	3	4	4	4	4	4	5	4	5 4	
	142	5	5	5	5	5	5	5	5	5	4	4	4 4	
	143	4	2	5	4	5	5	4	5	5	5	4	5 5	
	144	2	4	4	4	4	4	3	3	4	4	4	4 4	
	145	4	3	4	4	3	3	4	3	4	4	3	4 3	
	146	4	3	3	4	4	3	3	3	3	3	3	3 3	

```
## 147
               4
                   4
                       3
                             4
                                 4
                                                           3
                                                                                       5
## 148
               5
                   3
                       4
                                 3
                                       4
                                             3
                                                   4
                                                           4
                                                                 4
                                                                          4
                                                                                4
                                                                                       3
                             1
## 149
               5
                   4
                       5
                             4
                                 5
                                       4
                                             5
                                                   4
                                                           5
                                                                 4
                                                                          5
                                                                                4
                                                                                       5
               5
                   5
                       4
                                 4
                                       4
                                             5
                                                   4
                                                                 5
                                                                          4
                                                                                5
                                                                                       4
## 150
                             5
                                                           5
                       3
## 151
               3
                   3
                             3
                                 3
                                       3
                                             4
                                                   3
                                                           3
                                                                 3
                                                                          4
                                                                                4
                                                                                       4
## 152
               2
                   3
                       3
                             2
                                 4
                                       3
                                             2
                                                   3
                                                           4
                                                                 4
                                                                          3
                                                                                2
                                                                                       4
## 153
               3
                   3
                       4
                                 4
                                       4
                                                   3
                                                           3
                                                                 3
                                                                          4
                                                                                4
                             3
                                 2
                                                                                2
               2
                   2
                       4
                             2
                                       2
                                             2
                                                   2
                                                           2
                                                                 2
                                                                          2
                                                                                       2
## 154
## 155
               2
                   1
                       4
                             1
                                 1
                                       1
                                            1
                                                   4
                                                           4
                                                                 2
                                                                          4
                                                                                3
## 156
               2
                   3
                       2
                                 4
                                       5
                                             3
                                                   5
                                                           3
                                                                 4
                                                                          4
                                                                                5
                                                                                       3
                             4
## 157
               3
                   4
                       5
                             5
                                       5
                                             3
                                                   5
                                                           5
                                                                 5
                                                                          5
                                                                                5
                                                                                       5
                       5
                                                                 5
                                                                                5
                                                                                       5
## 158
                   5
                                                   5
                                                           5
section_2_columns=c("freq", "sat", "sat_per")
section_3_columns=c("impt", "recall", "mot_ler")
section_4_columns=c("sat", "anx", "prcy", "saw", "p_att", "flex")
section_5_columns=c("under", "i_feed", "m_obj", "p_alter", "add_s", "l_exp")
# Summative score calculation
std_data$section_2_score <- rowSums(select(std_data,section_2_columns), na.rm = TRUE)
## Warning: Using an external vector in selections was deprecated in tidyselect 1.1.0.
## i Please use `all_of()` or `any_of()` instead.
##
##
     data %>% select(section_2_columns)
##
     # Now:
##
     data %>% select(all_of(section_2_columns))
##
##
## See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
std_data$section_3_score <- rowSums(select(std_data,section_3_columns), na.rm = TRUE)
## Warning: Using an external vector in selections was deprecated in tidyselect 1.1.0.
## i Please use `all_of()` or `any_of()` instead.
##
##
     data %>% select(section_3_columns)
##
##
     # Now:
##
     data %>% select(all_of(section_3_columns))
## See <a href="https://tidyselect.r-lib.org/reference/faq-external-vector.html">https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
std_data$section_4_score <- rowSums(select(std_data,section_4_columns), na.rm = TRUE)
## Warning: Using an external vector in selections was deprecated in tidyselect 1.1.0.
## i Please use `all_of()` or `any_of()` instead.
##
##
     data %>% select(section_4_columns)
##
##
     # Now:
```

```
data %>% select(all_of(section_4_columns))
##
## See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
std_data$section_5_score <- rowSums(select(std_data,section_5_columns), na.rm = TRUE)
## Warning: Using an external vector in selections was deprecated in tidyselect 1.1.0.
## i Please use `all_of()` or `any_of()` instead.
##
     # Was:
##
     data %>% select(section_5_columns)
##
##
     # Now:
##
     data %>% select(all_of(section_5_columns))
##
## See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
# Display the updated data frame with the summative score
head(std_data)
                             e freq access sat_per impt recall mot_ler sat_info sat
              g
## 1 18-24 Male Postgraduate
                                  5
                                         5
                                                 5
                                                       5
                                                              5
                                                                      5
                                         4
                                                  4
                                                       4
                                                                      4
                                                                                    4
## 2 18-24 Male Postgraduate
                                                                                4
## 3 18-24 Male Postgraduate
                                  5
                                         5
                                                  5
                                                                      3
                                                                                2
                                                                                   5
                                                                                   4
## 4 18-24 Male Undergraduate
                                  4
                                         4
                                                  5
                                                       3
                                                              4
                                                                       3
                                                                                4
                                  5
                                         5
                                                  4
                                                       4
                                                                       4
                                                                                5
                                                                                   5
## 5 18-24 Male Undergraduate
                                                              4
                                                  4
                                                                       4
## 6 18-24 Male Undergraduate
                                  4
                                         4
                                                       4
                                                              3
                                                                                4
##
     anx prcy saw p_att flex under i_feed m_obj p_alter add_s l_exp
## 1
       5
            3
                      3
                            2
                                  4
                                         5
                                                        5
                                                                    5
                                               5
## 2
       4
            4
                      4
                                  4
                                         4
                                                4
                                                        4
                                                              4
                                                                    4
                4
                            4
## 3
       5
                3
                            2
                                         2
                                                        5
                                                              2
## 4
       4
            2
                      3
                                         4
                                                4
                                                        4
                4
                            4
                                  4
## 5
       5
            5
                      3
                            2
                                  4
                                         3
                                                4
                                                        5
## 6
            5
                       3
                                  4
                                         3
                                                4
       4
                5
                            4
     section_2_score section_3_score section_4_score section_5_score
## 1
                  15
                                   15
                                                    22
## 2
                  12
                                   12
                                                    24
                                                                    24
## 3
                  15
                                   11
                                                    21
                                                                    19
## 4
                  13
                                   10
                                                    21
                                                                    24
## 5
                                                    24
                                                                    23
                  14
                                   12
## 6
                  12
                                   11
                                                    25
                                                                    22
#1.One Sample T-Test
df=data.frame(std_data)
prcymean=mean(std data$prcy)
# Null Hypothesis (HO):
# The mean of the variable 'prcy' in section-4 is equal to the hypothesized population mean.
# Mathematically: ?_prcy = 3.386076 (where ? represents the population mean)
# Alternative Hypothesis (Ha or H1):
# The mean of the variable 'prcy' in section-4 is not equal to the hypothesized population mean.
```

```
# Mathematically: ?_prcy ??? 3.386076 (where ? represents the population mean)
t.test(std_data$prcy, mu = prcymean)
##
##
  One Sample t-test
##
## data: std_data$prcy
## t = 0, df = 157, p-value = 1
## alternative hypothesis: true mean is not equal to 3.386076
## 95 percent confidence interval:
## 3.201145 3.571007
## sample estimates:
## mean of x
## 3.386076
# The p-value of 1 is greater than any common significance level (e.g., 0.05), indicating that there is
# there is no statistically significant difference between the mean of 'prcy' in the dataset and the hy
#2. Two sample T-test
# Null Hypothesis (H0):
  There is no significant difference in the mean satisfaction scores (sat_per) between undergraduate
\# Mathematically: ?(undergrad) = ?(postgrad) (where ?? represents the population mean).
# Alternative Hypothesis (Ha or H1):
   There is a significant difference in the mean satisfaction scores (sat_per) between undergraduate a
# Mathematically: ?(undergrad)????(postgrad) (where ?? represents the population mean).
mean(df$e=="Undergraduate")
## [1] 0.4936709
mean(df$e=="Postgraduate")
## [1] 0.4367089
undergrad_data <- std_data$sat_per[std_data$e == "Undergraduate"]
postgrad_data <- std_data$sat_per[std_data$e == "Postgraduate"]</pre>
t_test_result <- t.test(undergrad_data, postgrad_data)</pre>
print(t_test_result)
##
##
   Welch Two Sample t-test
## data: undergrad_data and postgrad_data
## t = 0.14766, df = 144.28, p-value = 0.8828
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.2899636 0.3367864
## sample estimates:
## mean of x mean of y
## 3.820513 3.797101
# The p-value of 0.8828 is greater than common significance levels (e.g., 0.05), indicating that there
```

```
#3. Performing one-way ANOVA
# Null Hypothesis (HO):
   There is no significant difference in the mean satisfaction scores (sat_per) among different educat
# Mathematically: ?1=?2=...=?k (where ?? represents the population mean for each education level, and k
# Alternative Hypothesis (Ha or H1):
    There is a significant difference in the mean satisfaction scores (sat_per) among at least two educ
# Mathematically: At least one ?i is different (where ii represents each education level).
anova_result <- aov(sat_per ~ e, data = std_data)</pre>
print(anova_result)
## Call:
##
     aov(formula = sat_per ~ e, data = std_data)
##
## Terms:
##
                           e Residuals
## Sum of Squares
                     6.37239 137.14660
## Deg. of Freedom
                          10
## Residual standard error: 0.9659038
## Estimated effects may be unbalanced
#The p-value associated with the F-statistic from the ANOVA test is not provided in the output.
#Without the exact p-value, it's not possible to determine the statistical significance of the ANOVA te
#4. Two-way ANOVA test
mod <- aov(section_4_score ~ e * g,</pre>
           data = std_data)
plot(mod, which = 2)
## Warning: not plotting observations with leverage one:
```

25, 33, 56, 59, 60, 72, 108


```
summary(mod)
                Df Sum Sq Mean Sq F value Pr(>F)
## e
                10
                   270.9
                            27.09
                                    1.254 0.262
                            51.96
## g
                     52.0
                                    2.406 0.123
                     10.9
                            10.85
                                    0.502 0.480
## e:g
                 1
## Residuals
               145 3131.2
                            21.59
#The p-value for 'e' is 0.262, which is greater than the significance level of 0.05. Therefore, we fail
#The p-value for 'g' is 0.123, which is greater than 0.05. We fail to reject the null hypothesis, indic
#The p-value for the interaction term 'e:g' is 0.480, which is greater than 0.05. We fail to reject the
#Based on the analysis, there is no significant evidence to suggest that education level, gender, or th
#5. Corelation plot
library("corrplot")
## corrplot 0.92 loaded
d = subset(std_data, select = -c(ar,e,g) )
M=cor(d)
```

corrplot(M,method="circle")


```
#The above corelation plot displays the connection between each column in the dataset.
#There seems to be no negative co-relations in the dataset.
#There is very weak co-relation between many columns in the dataset.
#Each Section summative score seems to have normal positive corelation with each other column
# One-Sample T-Test
t_test_result <- t.test(std_data$sat_per, mu = 4)</pre>
print(t_test_result)
##
##
   One Sample t-test
## data: std_data$sat_per
## t = -2.6627, df = 157, p-value = 0.00856
## alternative hypothesis: true mean is not equal to 4
## 95 percent confidence interval:
## 3.647229 3.947708
## sample estimates:
## mean of x
## 3.797468
# Two-Sample T-Test
undergrad_data <- std_data$sat_per[std_data$e == "Undergraduate"]</pre>
postgrad_data <- std_data$sat_per[std_data$e == "Postgraduate"]</pre>
t_test_result <- t.test(undergrad_data, postgrad_data)</pre>
print(t_test_result)
```

```
##
## Welch Two Sample t-test
## data: undergrad_data and postgrad_data
## t = 0.14766, df = 144.28, p-value = 0.8828
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.2899636 0.3367864
## sample estimates:
## mean of x mean of y
## 3.820513 3.797101
# One-Way ANOVA
anova_result <- aov(sat_per ~ ar, data = std_data)</pre>
# Print summary to get the p-value
summary(anova_result)
               Df Sum Sq Mean Sq F value Pr(>F)
                2 0.84 0.4186 0.455 0.635
## ar
## Residuals
             155 142.68 0.9205
```