RA	Nome	Assinatura

Observações: (a) Resolva as questões nas folhas de papel almaço e copie o resultado, quando possível, no espaço apropriado. (b) A avaliação é sem consulta a qualquer material didático. (c) O tempo de duração da prova é de 100 minutos. O oferecimento de um possível tempo adicional é prerrogativa do professor. (d) Todas as folhas de almaço deverão ser identificadas com RA e nome. (e) O processo de solução de todas as questões deverá constar no almaço, caso contrário as questões serão anuladas.

1^{<u>a</u>} **Questão:** Considere o sistema de controle apresentado na Figura 1 com V(s) = W(s) = 0. Determine o erro de regime, se existir, para as seguintes configurações:

(a.	F(s)	(3) = 1.	C(s)	=-s, I	P(s) =	: 10/(s(s +	5)).	R(s) = 1	$/s^2$
١	(a)) 1 (3	$\gamma - 1$	$\mathcal{O}(3)$	15, 1	(o) –	- 10/($_{\scriptscriptstyle (}$ $_{\scriptscriptstyle (}$ $_{\scriptscriptstyle (}$ $_{\scriptscriptstyle (}$ $_{\scriptscriptstyle (}$	0))	IU(S)	<i>)</i> — 1	10

(b)	F(z) =	= 2,	C(z)	=	0.5,	P(z)	=	1/((z +	-0.5)(z	-0.1))	R(z)	=
	z/(z -	1)										

1	
2	
3	
4	
5	
6	

2ª Ouestão	Soin	_	gigtoma	linoar

$$\dot{x} = \begin{bmatrix} 1 & -3 \\ 2 & 2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u, \quad y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$

Se possível, projete um controlador por realimentação de estados que produza erro em regime nulo para entrada degrau e atenda os seguintes índices de desempenho: Máxima sobre-elevação: 10%, tempo de acomodação $t_s=2s$. Caso seja necessário implementar controle integral, o pólo adicional deve ser alocado em $(s+10\tau)$ sendo τ a constante de tempo dos pólos dominantes obtidos a partir dos índices de desempenho.

 $3^{\underline{a}}$ Questão: Considere o sistema linear

$$\dot{x} = \begin{bmatrix} 2 & 1 & 3 \\ 0 & 0 & 4 \\ -2 & -1 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} u$$

e o ganho de realimentação de estados $u = \begin{bmatrix} k & 1 & 3 \end{bmatrix} x$. Determine os valores de k tais que o sistema em malha fechada seja assintoticamente estável.

Figura 1: Sistema um-grau-de-liberdade.

4º Questão: Considere o sistema de controle apresentado na Figura 1 com realimentação unitária (F=1, w=v=0) e

$$C = C(s) = \frac{s+1}{s+2}$$

- (a) Determine C(z) usando o método de Tustin com T=2.
- (b) Determine C(z) usando o projeto via emulação com T=2.
- (c) Considerando $P = P(z) = (z + 0.5)/((z + 0.25)^2(z 1))$ e que o sistema em malha fechada é estável e usando C(z) determinado por Tustin, determine o erro em regime (usando o mesmo T) para entrada rampa, isto é, $R(z) = Tz/(z 1)^2$.

 $\mathbf{5}^{\underline{a}}$ Questão: Um motor síncrono ligado a um barramento infinito pode ser descrito pela equação

$$\ddot{y} + \alpha \dot{y} + \sqrt{2} \mathrm{sen}(y) = u$$

sendo y o ângulo elétrico do motor e u a potência mecânica no eixo. Para o modelo não-linear na forma de variáveis de estado, com $x_1 = y$, $x_2 = \dot{y}$, determine

- (a) O ponto de equilíbrio para $0 \le y \le \pi/2$ e u = 1.
- (b) O modelo linearizado $\dot{x} = Ax + Bu$, y = Cx no ponto de equilíbrio.
- (c) Para quais valores de α o sistema é controlável, observável e assintoticamente estável.

6º Questão: Seja o sistema de controle digital mostrado na Figura 2 com P(s) = 10/(s+1). Determine P(z) e encontre a faixa de T > 0 tal que o sistema em malha fechada seja estável.

Figura 2: Sistema de controle digital.

Formulário

ullet A tabela abaixo resume os valores dos erros de regime (para uma configuração em realimentação unitária) e das constantes de posição, velocidade e aceleração para as entradas degrau, rampa e parábola em função do tipo N do sistema.

- Transformadas de Laplace: $\mathcal{L}(\dot{x}) = sX(s) x(0); \ \mathcal{L}(\ddot{x}) = s^2X(s) sx(0) \dot{x}(0); \ \mathcal{L}(u(t)) = 1/s;$ $\mathcal{L}(tu(t)) = 1/s^2; \ \mathcal{L}(t^2u(t)) = 2/s^3; \ \mathcal{L}(\exp(-at)u(t)) = 1/(s+a); \ \mathcal{L}(t\exp(-at)u(t)) = 1/(s+a)^2;$ $\mathcal{L}(\sin(\omega t)u(t)) = \omega/(s^2 + \omega^2); \ \mathcal{L}(\cos(\omega t)u(t)) = s/(s^2 + \omega^2);$
- Transformadas \mathcal{Z} : $\mathcal{Z}(x(k+1)u(k)) = z(\mathcal{Z}(x(k)u(k)) x(0)); \mathcal{Z}(x(k+2)u(k)) = z^2(\mathcal{Z}(x(k)u(k)) x(0) z^{-1}x(1)); \mathcal{Z}(u(k)) = z/(z-1); \mathcal{Z}(ku(k)) = z/(z-1)^2; \mathcal{Z}(k^2u(k)) = z(z+1)/(z-1)^3; \mathcal{Z}(a^ku(k)) = z/(z-a);$
- Discretização:

- Tustin: C(z) = C(s) para s = 2(z-1)/(T(z+1));
- Emulação: pólos e zeros finitos: $z = \exp(sT)$; zeros no infinito: z = -1; ganho: C(z) para z = 1 é igual a C(s) para s = 0.
- Constantes de tempo de sistemas de segunda ordem $G(s) = \omega_n^2/(s^2 + 2\xi\omega_n s + \omega_n^2) \to \tau = 1/(\xi\omega_n)$
- Índices de desempenho: Máxima sobre-elevação $M_p=100\times \exp(-(\xi/\sqrt{1-\xi^2})\pi)$, tempo de acomodação $t_s=4/(\xi\omega_n)$
- Controle Proporcional: Se $y = x_1$, $u = -\bar{K}x + k_1(r x_1)$, $r(t) = r_0u(t)$, Condições de existência: controlabilidade. $x(\infty) = -(A BK)^{-1}Bk_1r_0$
- Controle Integral: $u = -Kx + K_I\zeta$; $r(t) = r_0u(t)$. Condição de existência: controlabilidade e

$$rank\left(\begin{bmatrix}A & B\\ -C & 0\end{bmatrix}\right) = n+1$$

Sistema em malha fechada

$$\begin{bmatrix} \dot{x} \\ \dot{\zeta} \end{bmatrix} = \begin{bmatrix} A - BK & BK_I \\ -C & 0 \end{bmatrix} \begin{bmatrix} x \\ \zeta \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} r, \qquad \begin{bmatrix} x(\infty) \\ u(\infty) \end{bmatrix} = \begin{bmatrix} A & B \\ -C & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ -r_0 \end{bmatrix}, \quad y(\infty) = Cx(\infty)$$

- Amostragem de sistemas contínuos: $P(z) = (1-z^{-1})\mathcal{Z}(\frac{P(s)}{s})$
- Teorema do Valor Final (caso contínuo) $\lim_{t\to\infty} x(t) = \lim_{s\to 0} sX(s)$
- Teorema do Valor Final (caso discreto) $\lim_{k\to\infty} x(k) = \lim_{z\to 1} (1-z^{-1})X(z)$

Gabarito

- 1. (a) Sistema Instável; (b) Estável, Tipo 0, $k_p = 0.27$, $e_d = 0.787$.
- 2. É necessário projeto integral; É controlável; Permite alocação arbitrária; $\xi \approx 0.6$, $\omega_n = 10/3$, pólo adicional s=-5; $p_c(s)=s^3+9s^2+(280/9)s+500/9$; Ganhos: $K=[k_1\quad k_2]=[-200/54\ 848/54]$, $k_I=-100/9$.
- 3. Sistema em malha fechada: $\dot{x}=(A+BK)x,\,K=[k\ 1\ 3].\,\det(sI-A-BK)=s^3-3s^2+(6-2k)s+(12-6k).$ Sempre instável.
- 4. (a)

(a)
$$C(z) = \frac{2z}{(3z+1)}$$
, (b) $C(z) = \frac{0.5(1-e^{-4})(z-e^{-2})}{(1-e^{-2})(z-e^{-4})}$, (c) $e_r = 4.166$

5. Controlável $\forall \alpha$; Observável $\forall \alpha$; Assintoticamente estável para $\alpha > 0$.

P.E:
$$(\pi/4, 0)$$
, $\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & -\alpha \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$, $y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$

6.
$$P(z) = \frac{10(1 - e^{-T})}{(z - e^{-T})}, \quad T(z) = \frac{Y(z)}{R(z)} = \frac{P(z)}{1 + P(z)} = \frac{10(1 - e^{-T})}{z - (11e^{-T} - 10)}$$

Estável se $|11e^{-T} - 10| < 1 \Rightarrow 0 < T < 0.2$