La Normalizzazione delle Relazioni

Francesco Gobbi

I.I.S.S. Galileo Galilei, Ostiglia

9 gennaio 2025

La normalizzazione delle relazioni

Definizione: La normalizzazione delle relazioni è un processo fondamentale nella progettazione di basi di dati, che mira a:

- Ridurre la ridondanza dei dati.
- Evitare le anomalie durante le operazioni di trattamento dei dati (inserimento, aggiornamento, cancellazione).
- Garantire una struttura logica ottimale per le tabelle.

Problemi senza normalizzazione:

- Duplicazione inutile dei dati (ridondanza).
- Aumento dello spazio utilizzato su disco.
- Anomalie nelle operazioni sui dati (esempio: aggiornamenti incoerenti).

Esempio di anomalia senza normalizzazione

Scenario: Tabella OrdiniNonNormalizzata

<u>IDOrdine</u>	Cliente	Prodotto	Indirizzo
1	Mario Rossi	Laptop	Via Roma, 10
2	Mario Rossi	Smartphone	Via Roma, 10
3	Anna Bianchi	Tablet	Via Milano, 20

Tabella: Tabella con dati non normalizzati

Problemi:

- L'indirizzo di Mario Rossi viene ripetuto inutilmente.
- Aggiornare l'indirizzo per Mario Rossi richiede modifiche multiple.
- Possibilità di inconsistenze se non tutte le righe vengono aggiornate correttamente.

Come funziona la normalizzazione

La normalizzazione delle relazioni si basa su tre forme principali:

- Prima Forma Normale (1NF): Tutti gli attributi contengono valori atomici e non ci sono gruppi ripetuti.
- Seconda Forma Normale (2NF): Tutti gli attributi non chiave dipendono dall'intera chiave primaria (eliminazione di dipendenze parziali).
- ► Terza Forma Normale (3NF): Eliminazione delle dipendenze transitive tra gli attributi non chiave.

Benefici:

- Riduzione della ridondanza.
- Maggiore coerenza dei dati.
- Più facile gestione delle operazioni di aggiornamento e cancellazione.

Algoritmo di scomposizione dettagliato - Parte 1

Dipendenza funzionale:

- ▶ Una dipendenza funzionale $X \rightarrow Y$ significa che il valore di X determina univocamente il valore di Y.
- ► Esempio: Nella relazione Studenti(IDStudente, Nome, Corso), IDStudente → Nome implica che ogni IDStudente identifica univocamente un Nome.

Algoritmo - Prima parte:

- Identificare tutte le dipendenze funzionali e le chiavi candidate in T.
- 2. Selezionare una dipendenza funzionale $X \to Y$ che viola le regole di normalizzazione.

Nota: Questo passaggio permette di individuare gli attributi che causano ridondanza o anomalie nei dati.

Algoritmo di scomposizione dettagliato - Parte 2

Algoritmo - Seconda parte:

- 3. Creare una nuova relazione con gli attributi $X \cup Y$.
- 4. Rimuovere Y dalla relazione originale mantenendo X come chiave primaria.
- 5. Ripetere il processo finché non ci sono più dipendenze funzionali che violano le regole.

Risultato: Ogni relazione sarà conforme alle forme normali richieste, garantendo una struttura logica ottimale e priva di ridondanza.

Esercizio 1

Scenario: Tabella non normalizzata DipendentiNonNormalizzata

<u>ID</u>	Nome	Progetto	Dipartimento
1	Laura Bianchi	Progetto Alpha	Informatica
2	Marco Rossi	Progetto Beta	Fisica
3	Laura Bianchi	Progetto Gamma	Informatica

Domande:

- Identificare i problemi di ridondanza.
- Dividere la tabella in più relazioni normalizzate.

Soluzione Esercizio 1

Passaggi per la normalizzazione:

- Creazione delle seguenti tabelle:
 - ▶ Dipendenti(<u>ID</u>, Nome)
 - Progetti(IDProgetto, NomeProgetto, IDDipartimento)
 - Dipartimenti(IDDipartimento, NomeDipartimento)

Esercizio 2

Scenario: La tabella seguente rappresenta dati non normalizzati su studenti e corsi.

IDStudente	Nome	Corso	Docente
1	Maria Verdi	Matematica	Prof. Bianchi
2	Luca Neri	Fisica	Prof. Rossi
3	Maria Verdi	Fisica	Prof. Rossi

Richiesta: Dividere la tabella in più relazioni normalizzate rispettando la 3NF.

Soluzione Esercizio 2

Passaggi per la normalizzazione:

- Creazione delle seguenti tabelle:
 - Studenti(<u>IDStudente</u>, Nome)
 - Corsi(<u>IDCorso</u>, NomeCorso, <u>IDDocente</u>)
 - Docenti(<u>IDDocente</u>, NomeDocente)

Vantaggi della normalizzazione

- Riduzione dello spazio utilizzato grazie all'eliminazione della ridondanza.
- Maggiore coerenza e integrità dei dati.
- Operazioni di aggiornamento, cancellazione e inserimento più semplici e affidabili.
- Maggiore flessibilità nella gestione dei dati.