Математический анализ

Алла Владимировавна Устюжанова

5 сентября 2019 г.

Лекция 1

1 Глава 1. Введение. Параграф 1: Множества операции над множествами

Кванторы:

 \forall \exists

Множество – это совокупность каких-либо предметов(элементов).

$$A \quad Bx \in A \quad x \notin B \quad A \in B$$

Операции:

1. $A \cup B$ – те множество каждый элемент которого принадлежит хотябы одному из множеств A или B

$$A \cup B = \{x : x \in Aor \quad x \in B\}$$

2. $A \cap B$ – это множество каждый элемент которого принадлежит одновременне и A и B

$$A\cap B=\{x:x\in A and\quad x\in B\}$$

3. AB - (Разность)

$$A \setminus B = \{x : x \in Abutx \not\in B\}$$

4. CA \bar{A} – (Дополнение)

$$CA = \bar{A} - S \setminus A$$

Виды множеств: $N \subset Z \subset Q \subset R \subset C$

1.1 Абсолютная величина

$$|x| = \{x \mid x \ge 0 \text{ or } -x \mid x \le 0\}$$

Свойства:

1. Неравенство треугольника

$$|x+y| = |x| + |y|$$

Док-во: пусть
$$x+y \ge 0 \Rightarrow |x+y| = x+y = |x|+|y|$$

Док-во: пусть $x+y < 0 \Rightarrow |x+y| = x+(-y) \le |x|+|y|$

2.
$$|x-y|=|x|-|y|$$
 если $|x|>|y|$ 3. $|xyz|=|x||y||z|$ 4. $\left|\frac{x}{y}\right|=\frac{|x|}{|y|}$ sgn x = $\{1\quad x>0\quad 0\quad x=0\}$

Бином Ньютона:

$$(a+b)^n = a^n + C_n^1 a^{n-1} b + \dots + b^n$$

$$C_n^k = \frac{n!}{(n-k)!k!}$$

$$n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$$

$$0! = 1$$

Треугольник Паскаля:

1.1.1Упражнения

1.
$$A = \{1, 2, 3\}$$
 $B = \{2, 3, 4, 5\}$ $A \cup B$?

2.
$$A = \{x \in N : 2 < x < 4\}$$
 $B = \{x \in N : 2 < x < 4\}$ $C = \{x \in N : 2 < x < 4\}$

$$2 < x < 4\} \quad B \cup C?, A \cap B \cap C, A \cup B \cup C \quad ?$$

3.
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$
?

4.
$$(A \setminus B) \cap C = (A \cap C) \setminus (B \cap C)$$

5.
$$(1-x)^{\circ} = ?$$

5.
$$(1-x)^5 = ?$$

6. $(\frac{2}{x} + 3\sqrt{x})^4$

2 Глава 2. Предел и непрерывность.

Курс: Мат анализ (фтф:ИВТ)

код слово: предел

2.1 Параграф 1. Предел псоледовательности

Предел — пусть каждому натуральному числу N по некоторому закону поставленно в соответствие действительное число x_n тогда говорят что определена числовая последовательность $\{x\} = \{x_1, x_2,, x_n, ...\}$ Число а называется пределом последовательности $\{x_n\}$ если для всякого действительного числа $\epsilon > 0$ найдется зависящее от ϵ число такое что выполняется неравенство $|x_n - a| < \epsilon$ для всех натуральных чисел $n > n_0$.

Обозначение:

$$\lim_{n\to 0} x_n = a \quad (x_n \to a \quad n \to \inf)$$

$$\lim_{n \to 0} x_n = a \Leftrightarrow \forall \epsilon > 0 \quad \exists n_0 = n_0(\epsilon) : \forall n > n_0 \quad |x_n - a| < \epsilon$$

Пример:
$$\lim_{n\to 0}\frac{1}{n}=0$$
 $\left|\frac{1}{n}\right|<\epsilon$ $\frac{1}{n}<\epsilon$ $n>\frac{1}{\epsilon}$ $n_0=\left[\frac{1}{\epsilon}\right]+1$ $\forall \epsilon>0$ чтд.

Произвольный интервал AB содержащий точку C называется окресностью это точки

$$\cup (C)$$

Эпсилон окресность:

$$\cup(\epsilon)$$
 $\cup_{\epsilon}(\epsilon) = \cup_{\epsilon}(\epsilon) \setminus c$

Число(точка) а является пределом последовательности x_n если для любого эпсилон больше нуля найдется число n_0 такое что все точки x_n с индексами $n > n_0$ попадут в ϵ окресность точки а. Вне любой окресности точки а имеется конечная или пустое множество точек x_n .

Литература

Кудрявцев А.Д Курс математического анализа Фихтенгольц Г.М Основы математического анализа Демидович Б.П Сборник задач и упражнений по математическому анализу