## 2022 年全国中学生数学奥林匹克竞赛(预赛) 暨2022年全国高中数学联合竞赛 加试(A卷)参考答案

## 2022-10

一. (本题满分 40 分) 如图, 在凸四边形 ABCD 中,  $\angle ABC = \angle ADC = 90^\circ$ , 对角线 BD 上一点 P 满足  $\angle APB = 2\angle CPD$ , 线段 AP 上两点 X,Y 满足  $\angle AXB = 2\angle ADB$ ,  $\angle AYD = 2\angle ABD$ . 证明: BD = 2XY.



证明: 注意  $\angle ABC = \angle ADC = 90^{\circ}$ , 取 AC 的中点 O, 则 O 为凸四边形 ABCD 的外心. 显然 P, B 在 AC 的 同侧, 否则  $\angle APB \leq \angle CPD < 2\angle CPD$ , 不合题意. 根据条件,可知

$$\angle AXB = 2\angle ADB = \angle AOB$$
,  $\angle AYD = 2\angle ABD = \angle AOD$ ,

分别得到 A, O, X, B 四点共圆, A, Y, O, D 四点共圆.

因此  $\angle OXA = \angle OBA = \angle CAB = \angle CDB$ ,  $\angle OYP$ ,  $\angle ODA = \angle CAD = \angle CBD$ , 所以  $\triangle OXY \sim \triangle CDB$ . 设  $OM \perp AP$  于点 M,  $CK \perp AP$  于点 K,  $CL \perp BD$  于点 L.

由 O 为 AC 的中点, 得 CK = 2OM.

由于  $\angle KPL = \angle APB = 2\angle CPD$ , 即有 PC 平分  $\angle KPL$ , 故 CK = CL.

考虑到 OM, CL 是相似三角形  $\triangle OXY$ ,  $\triangle CDB$  的对应边 XY, DB 上的高, 从而

$$\frac{XY}{BD} = \frac{OM}{CL} = \frac{OM}{CK} = \frac{1}{2},$$

即有 BD = 2XY.

二. (本题满分 40 分) 设整数 n (n > 1) 恰有 k 个互不相同的素因子, 记 n 的所有正约数之和为  $\sigma(n)$ . 证明:  $\sigma(n) \mid (2n-k)!$ .

我们证明对于  $i = 1, 2, \dots, k$ , 有

$$2n - k \ge km_i. \tag{1}$$

事实上, 对于  $i = 1, 2, \dots, k$ ,

$$\begin{split} m_i &= p_i^{\alpha_i} \left( 1 + \frac{1}{p_i} + \dots + \frac{1}{p_i^{\alpha_i}} \right) \leq p_i^{\alpha_i} \left( 1 + \frac{1}{2} + \dots + \frac{1}{2^{\alpha_i}} \right) \\ &= p_i^{\alpha_i} \left( 2 - \frac{1}{2^{\alpha_i}} \right) \leq 2p_i^{\alpha_i} - 1. \end{split}$$

所以,

$$m_i + 1 \le 2p_i^{\alpha_i} = \frac{2n}{\prod\limits_{j=1}^k p_j^{\alpha_j}} \le \frac{2n}{2^{k-1}} \le \frac{2n}{k},$$

最后一步是因为  $2^{k-1} \ge 1 + \binom{k-1}{1} = k$ ,  $(k \ge 2)$  以及  $2^0 \ge 1$ . 故 (1) 成立.

由 (1), 对于每个  $i=1,2,\cdots,k$ , 在  $1,2,\cdots,2n-k$  中至少有 k 个  $m_i$  的倍数. 从而  $1,2,\cdots,2n-k$  中可找到两两不同的正整数  $t_1,t_2,\cdots,t_k$ , 它们分别是  $m_1,m_2,\cdots,m_k$  的倍数. 因此  $\sigma(n)=\prod_{i=1}^k m_i$  整除 (2n-k)!.

**证法2.** 设  $n = \prod_{i=1}^{k} p_i^{\alpha_i}$  为 n 的标准分解.

令  $S_j = \sum_{i=1}^{j} m_i$ ,  $(j = 1, 2, \dots, k)$ ,  $S_0 = 0$ . 我们证明以下两个结论:

- (1)  $\sigma(n) \mid S_k!;$
- $(2) S_k < 2n k.$

结论 (1) 的证明: 对于  $i=1,2,\cdots,k$ , 连续  $m_i$  个整数  $S_{i-1}+1,\,S_{i-1}+2,\,\cdots,\,S_i$  中必存在  $m_i$  的倍数, 故  $(S_{i-1}+1)(S_{i-1}+2)\cdots S_i\in\mathbb{Z}$ .

从而 
$$\prod_{i=1}^k \frac{(S_{i-1}+1)(S_{i-1}+2)\cdots S_i}{m_i} \in \mathbb{Z}$$
,这等价于  $\sigma(n)\mid S_k!$ .

结论 (2) 的证明: 对  $i = 1, 2, \dots, k$ , 有

$$m_{i} = p_{i}^{\alpha_{i}} \left( 1 + \frac{1}{p_{i}} + \dots + \frac{1}{p_{i}^{\alpha_{i}}} \right) \leq p_{i}^{\alpha_{i}} \left( 1 + \frac{1}{2} + \dots + \frac{1}{2^{\alpha_{i}}} \right)$$
$$= p_{i}^{\alpha_{i}} \left( 2 - \frac{1}{2^{\alpha_{i}}} \right) \leq 2p_{i}^{\alpha_{i}} - 1. \tag{2}$$

记  $\lambda_i = p_i^{\alpha_i}$ ,  $(i=1,2,\cdots,k)$ , 则  $\lambda_i \geq 2$ . 反复使用 "若  $a,b \geq 2$ , 则  $ab \geq a+b$ ", 可得

$$n = \prod_{i=1}^{k} \lambda_i \ge \sum_{i=1}^{k} \lambda_i,$$

结合 (2) 得

$$S_k = \sum_{i=1}^k m_i \le \sum_{i=1}^k (2\lambda_i - 1) = 2\sum_{i=1}^k \lambda_i - k \le 2n - k.$$

由结论 (1), (2), 原题得证.

三. (本题满分 50 分) 设  $a_1, a_2, \cdots, a_{100}$  是非负整数, 同时满足以下条件:

- (1) 存在正整数  $k \ge 100$ , 使得  $a_1 \le a_2 \le \cdots \le a_k$ , 而当 i > k 时,  $a_i = 0$ ;
- (2)  $a_1 + a_2 + \dots + a_{100} = 100;$
- $(3) a_1 + 2a_2 + \dots + 100a_{100=2022}.$

求  $a_1 + 2^2 a_2 + \cdots + 100^2 a_{100}$  的最小可能值.

**解法1.** 当  $a_1=a_2=\cdots=a_{18}=0,\ a_{19}=19,\ a_{20}=40,\ a_{21}=41,\ a_{22}=a_{23}=\cdots=a_{100}=0,\ k=21$ 时,符合题设三个条件,此时

$$\sum_{i=1}^{100} i^2 a_i = 19^2 + 20^2 \times 40 + 21^2 \times 41 = 40940.$$

下面证明这是最小可能值.

先证  $k \ge 21$ , 否则, 若  $k \le 20$ , 则  $\sum_{i=1}^{100} ia_i = \sum_{i=1}^{k} ia_i \le \sum_{i=1}^{k} 20a_i \le 2000$ , 这与 条件 (3) 矛盾.

根据条件 (2), (3), 有

$$\sum_{i=1}^{100} i^2 a_i = \sum_{i=1}^{100} (i-20)^2 a_i + 40 \sum_{i=1}^{100} i a_i - 400 \sum_{i=1}^{100} a_i = \sum_{i=1}^{100} (i-20)^2 a_i + 40880.$$

当  $a_{20} \leq 40$  时,

$$\sum_{i=1}^{100} (i-20)^2 a_i = \sum_{\substack{i=1\\i\neq 20}}^{100} (i-20)^2 a_i \ge \sum_{\substack{i=1\\i\neq 20}}^{100} a_i = 100 - a_{20} \ge 60.$$

故

$$\sum_{i=1}^{100} i^2 a_i \ge 40940.$$

当  $a_{20} \ge 41$  时,由  $k \ge 21$  及条件 (1) 可知  $a_{21} \ge 41$ ,故

$$\sum_{i=1}^{100} i^2 a_i = \sum_{i=1}^{100} (i-19)(i-20)a_i + 39 \sum_{i=1}^{100} ia_i - 380 \sum_{i=1}^{100} a_i$$
$$= \sum_{i=1}^{100} (i-19)(i-20)a_i + 40858$$
$$\ge (21-19)(21-20)a_{21} + 40858 \ge 40940.$$

综上, 所求最小值为 40940.

**解法2.** 对于满足题目条件的非负整数  $a_1, a_2, \dots, a_{100}$ , 对应地取 100 个正整数  $x_1, x_2, \dots, x_{100} \in \{1, 2, \dots, 100\}$ , 其中恰有  $a_1$  个 1,  $a_2$  个 2, …,  $a_{100}$  个 100, (条件 (2) 保证恰好是 100 个数). 条件 (1), (3) 分别转化为以下条件 (A), (B):

(A) 存在正整数  $k \le 100, x_1, x_2, \cdots, x_{100}$  中不含大于 k 的数,且 1 的个数,2 的个数,  $\cdots, k$  的个数依次 (非严格地) 递增;

(B) 
$$\sum_{j=1}^{100} x_j = \sum_{i=1}^{100} ia_i = 2022 =: 100\mu, \quad \text{即 } x_1, x_2, \cdots, x_{100} \text{ 的平均值为 } \mu = 20.22.$$

注意到  $\sum_{i=1}^{100} i^2 a_i = \sum_{j=1}^{100} x_j^2$ , 故题目转化为: 100 个数  $x_1, x_2, \cdots, x_{100} \in \{1, 2, \cdots, 100\}$  满足条件 (A) 和 (B), 求

$$\sum_{j=1}^{100} x_j^2$$
 的最小值.

当 
$$x_1, x_2, \dots, x_{100}$$
 取 19 个 19, 40 个 20, 41 个 21 时,  $\sum_{j=1}^{100} x_j^2 = 40940$ .

下面证明  $\sum_{j=1}^{100} x_j^2$  的值至少为 40940.

由于

$$\sum_{j=1}^{100} x_j^2 = \sum_{j=1}^{100} (x_j - \mu)^2 - 100\mu^2 + 2\mu \sum_{j=1}^{100} x_j = 100\mu^2 + \sum_{j=1}^{100} (x_j - \mu)^2,$$

故转化为考虑  $\sum_{j=1}^{100} (x_j - \mu)^2$  的最小值.

由  $\mu=20.\overset{\circ}{.}22$  知, 存在  $x_j\geq 21$ , 也存在  $x_j\leq 20$ , 设  $x_1,x_2,\cdots,x_{100}$  中有 a 个  $x_j\geq 21$ , b 个  $x_j=20$  及 c 个  $x_j\leq 19$ . 由条件 (A) 可知  $a\geq b$ .

我们放宽条件 (A'):  $a \ge b$ . 在条件 (A'), (B) 下, 证明最小值仍是在 19 个 19, 40 个 20, 41 个 21 时取到.

由于满足 (A'), (B) 的 $x_1, x_2, \dots, x_{100}$  的取法只有有限种, 选取平方和最小的一组  $x_1, x_2, \dots, x_{100}$ . 若  $c \ge 19$ , 注意到 a + b + c = 100 及  $a \ge b$ , 有

$$\sum_{j=1}^{100} (x_j - \mu)^2 \ge 0.78^2 a + 0.22^2 b + 1.22^2 c$$

$$\ge 0.78^2 \cdot \left[ \frac{100 - c}{2} \right] + 0.22^2 \cdot \left[ \frac{100 - c}{2} \right] + 1.22^2 c$$

$$\ge 0.78^2 \times 41 + 0.22^2 \times 40 + 1.22^2 \times 19$$

$$= 55.16.$$

所以

$$\sum_{j=1}^{100} x_j^2 \ge 100\mu^2 + 55.16 = 40940.$$

若  $c \le 18$ , 则  $a + b \ge 82$ .

此时有 c > 0, 因为若 c = 0, 则  $x_i$  的平均值不小于 20.5, 与条件 (B) 不符.

亦有 b>0. 否则, 假如 b=0, 则由  $a\geq 82$  及 c>0 知, 可取一个  $x_i<20$  和一个  $x_j>20$ , 替换为  $x_i+1$  和  $x_j-1$ , 平均值不变, 但  $(x_i+1)^2+(x_j-1)^2< x_i^2+x_j^2$ , 平方和变小, a 至多减少 1, b 至多增加 2, 条件 (A'), (B) 仍满足, 与  $x_1,x_2,\cdots,x_{100}$  使得平方和最小矛盾.

又假如存在一个  $x_i \le 18$ , 则由 b > 0 知, 可取一个  $x_j = 20$ , 将  $x_i, x_j$  替换为  $x_i + 1$  和  $x_j - 1$ , 类似可知平均值不变, 平方和减小, 且 b 减少 1, 条件 (A'), (B) 仍满足, 与  $x_1, x_2, \cdots, x_{100}$  使得平方和最小矛盾.

所以  $c \uparrow x_i \leq 19$  都等于 19. 但此时

$$\sum_{j=1}^{100} (x_j - \mu) \ge 0.78a - 0.22b - 1.22c$$

$$\ge 0.78 \cdot \left[ \frac{100 - c}{2} \right] - 0.22 \cdot \left[ \frac{100 - c}{2} \right] - 1.22c$$

$$\ge 0.78 \times 41 - 0.22 \times 41 - 1.22 \times 18 > 0,$$

与条件 (B) 矛盾.

所以当且仅当  $x_1, x_2, \dots, x_{100}$  取 19 个 19, 40 个 20, 41 个 21 时,  $\sum_{i=1}^{100} (x_i - \mu)^2$  取得最小值, 相应地,

$$\sum_{i=1}^{100} i^2 a_i = \sum_{i=1}^{100} x_j^2$$
取到最小值 40940.

**四.** (本题满分 50 分) 求具有下述性质的最小正整数 t: 将  $100 \times 100$  的方格纸的每个小方格染为某一种颜色,若每一种颜色的小方格数目均不超过 104,则存在一个  $1 \times t$  或  $t \times 1$  的矩形,其中 t 个小方格含有至少三种不同颜色.

## 解: $t_{\min} = 12$ .

将方格纸划分为 100 个  $10 \times 10$  的正方形,每个正方形中 100 个小方格染同一种颜色,不同的正方形染不同的颜色,这样的染色方法满足题目条件,且易知任意  $1 \times 11$  或  $11 \times 1$  的矩形中至多含有两种颜色的小方格. 因此  $t \ge 12$ .

下面证明 t=12 为最小值, 需要以下引理.

引理:将 $1 \times 100$ 的方格表X的每个小方格染成某种颜色,如果以下两个条件之一成立,则存在一个 $1 \times 12$ 的矩形, 其中含有至少三种颜色.

- X 中至少有 11 中颜色; (1)
- X 中恰好有 10 中颜色, 且每种颜色恰染了 10 个小方格. (2)

引理的证明: 用反证法, 假设结论不成立.

取每种颜色的小方格最右边的那个, 从左往右位于第  $x_1 < x_2 < \cdots < x_k$  格, 分别染  $c_1, c_2, \cdots, c_k$  色, 则对于  $2 \le i < k$ , 有  $x_i - x_{i-1} \ge 11$ . 这是因为若  $x_i - x_{i-1} \le 10$ , 则在第  $x_{i-1}$  格至第  $x_i + 1$  格 (不超过 12 格) 中至少 含有三种不同颜色 (第  $x_{i-1}$  格为  $c_{i-1}$  色, 第  $x_i$  格为  $c_i$  色, 第  $x_{i+1}$  格一定不同于  $c_{i-1}$ ,  $c_i$  色), 与假设不符.

若条件 (1) 成立, 则  $k \ge 11$ , 于是  $x_{10} \ge x_1 + 9 \times 11 \ge 100$ ,  $x_{11} > 100$ , 矛盾. 因此在条件 (1) 下结论成立. 若条件 (2) 成立, 考虑第  $x_1 + 1$  格至第  $x_1 + 11$  格, 因每种颜色的方格至多 10 个, 故这 11 个方格至少含有 两种颜色, 且均不同于  $c_1$  色, 则从第  $x_1$  至  $x_1+11$  格中至少含有三种颜色, 与条件 (2) 不符. 因此在条件 (2) 下 结论也成立.

引理得证.

回到原问题, 设  $c_1, c_2, \cdots, c_k$  为出现的所有颜色.

对于  $1 \le i \le k$ , 记  $s_i$  为含有  $c_i$  色的小方格的个数,  $u_i$  为含有  $c_i$  色小方格的行数,  $v_i$  为含有  $c_i$  色小方格的 列数. 由条件知  $s_i \leq 104$ . 又显然  $u_i v_i \geq s_i$ , 等号成立当且仅当有  $c_i$  色小方格的行与列交叉位置上都是  $c_i$  色小

下面证明:  $u_i + v_i \geq \frac{s_i}{5}$ , 等号成立当且仅当  $u_i = v_i = 10$ ,  $s_i = 100$ .

若  $u_i + v_i \ge 21$ , 则由  $s_i \le 104$  知  $u_i + v_i > \frac{s_i}{5}$ ; 若  $u_i + v_i \le 20$ , 则

$$u_i + v_i \ge \frac{(u_i + v_i)^2}{20} \ge \frac{u_i v_i}{5} \ge \frac{s_i}{5}$$

等号成立当且仅当  $u_i = v_i = 10, s_i = 100.$ 

于是 
$$\sum_{i=1}^{k} (u_i + v_i) \ge \sum_{i=1}^{k} \frac{s_i}{5} = 2000.$$

若  $\sum_{i=1}^{n} (u_i + v_i) > 2000$ , 由抽屉原理知, 存在一行或一列至少含有 11 种颜色的小方格.

若  $\sum (u_i + v_i) = 2000$ , 则由等号成立的条件,可知每种颜色恰染 100 格, 且是 10 行与 10 列交叉位置,因此

每一行每一列中恰有 10 种颜色的方格, 每种颜色的方格恰有 10 个.

由引理可知, 这两种情况都导致存在 1×12 或 12×1 的矩形含有至少三种颜色的小方格, 综上所述, 所求最小的 t 为 12.