GATE 2022 IN-56

EE23BTECH11201 - Abburi Tanusha*

Question: The circuit shown is driven by a sinusoidal input voltage, $V_{\rm in}$, resulting in the output voltage $V_{\rm out}$. The frequency (in kilohertz) at which the voltage gain is 0 dB is (rounded off to two decimal places). (GATE IN 2022)

1 nF

100k

by:

$$\frac{V_{\text{out}}}{V_{\text{in}}} = -\frac{Z_2}{Z_1} \tag{1}$$

$$\frac{|V_{\text{out}}|}{|V_{\text{out}}|} = \frac{|Z_2|}{|Z_1|}$$
 (2)

$$\frac{1}{Z_2} = \frac{1}{R_2} + j\omega C \tag{3}$$

$$Z_2 = \frac{R_2}{1 + j\omega R_2 C} \tag{4}$$

$$Z_1 = R_1 \tag{5}$$

From Table 0

$$20\log\left(\frac{V_{\text{out}}}{V_{\text{in}}}\right) = 0\tag{6}$$

$$\frac{V_{\text{out}}}{V_{\text{in}}} = 1 \tag{7}$$

$$\sqrt[3]{Vin}$$
 Vout

$$\frac{|V_{\text{out}}|}{|V_{\text{out}}|} = \frac{|R_2|}{|(1 + j\omega R_2 C)R_1|} = 1$$
 (8)

$$\frac{R_2}{R_1} = \sqrt{1 + (R_2 \omega C)^2} \tag{9}$$

$$10 = \sqrt{1 + (10^5 \cdot \omega 10^{-9})^2}$$
 (10)

$$99 = \omega^2 \times 10^{-8} \tag{11}$$

$$\omega = \sqrt{99} \times 10^4 \tag{12}$$

$$2\pi f = 99.49 \times 10^3 \tag{13}$$

$$f = 15.84 \,\text{kHz}$$
 (14)

Parameter	Value	Description
$20 \log \left(\frac{V_{\text{out}}}{V_{\text{in}}} \right)$	0	Voltage gain
Sinusoidal input voltage	$V_{\rm in}$	Input voltage applied to the circuit
Output voltage	$V_{ m out}$	Voltage across the output of the circuit
R.	100 kO	Resistor connected to the inverting input of the OP-AMP

Feedback resistor connected from the output to the inverting input of the OP-AMP Capacitor connected in parallel with R_2

TABLE 0 Parameters

Solution: This circuit is an inverting OP-AMP. The