Homework for Chapter 10

蒋翌坤 20307100013

10.8

(a)

Model fit is $\hat{\mu}_{ab} = \frac{n_{ab} + n_{ba}}{2}$, and standard residual is $r_{ab} = \frac{n_{ab} - n_{ba}}{\sqrt{n_{ab} + n_{ba}}}$. The symmetry model fit is shown in the following table. (·) represents fitted value for symmetry model, [·] represents standard residuals.

	Second Purchase						
First Purchase	High Point	Taster's Choice	Sanka	Nescafe	Brim		
High Point	93	17	44	7	10		
	(93)	(13)	(30.5)	(6.5)	(10)		
	[0.00]	[1.57]	[3.46]	[0.28]	[0.00]		
Taster's Choice	9	46	11	0	9		
	(13)	(46)	(11)	(2)	(6.5)		
	[-1.57]	[0.00]	[0.00]	[-2.00]	[1.39]		
Sanka	17	11	155	9	12		
	(30.5)	(11)	(155)	(9)	(12)		
	[-3.46]	[0.00]	[0.00]	[0.00]	[0.00]		
Nescafe	6	4	9	15	2		
	(6.5)	(2)	(9)	(15)	(2)		
	[-0.28]	[2.00]	[0.00]	[0.00]	[0.00]		
Brim	10	4	12	2	27		
	(10)	(6.5)	(12)	(2)	(27)		
	[0.00]	[-1.39]	[0.00]	[0.00]	[0.00]		

 $X^2 = \sum r_{ab}^2 = 22.47$ with df = 10, p-value is 0.01, so the model fits badly because there are large residuals.

- (b) Using software, $G^2 = 12.58$ with df = 4, p-value is 0.01, so the model fits badly.
- (c) Using software, $G^2 = 13.8$ with df = 11, p-value is 0.25, so the model fits well.

10.16

Using software, we have

Parameter	df	Estimate	Standard Error	Wald Chi-Square	Pr > ChiSq
Intercept	0	0.0000	0.0000		
Biometrika	1	0.2690	0.0501	28.84	<.0001
Commun. Stat.	1	3.2180	0.0794	1642.25	<.0001
JASA	1	0.7485	0.0516	210.60	<.0001
JRSS-B	0	0.0000	0.0000		

 $G^2 = 8.59$ with df = 9, p-value is 0.48, so the model fits well.

From the fitted value, we have $JRSS-B \gtrsim Biometrika \gtrsim JASA \gtrsim Commun.$ Stat.

The probability that Commun. Stat. article cites JRSS-B article is $\frac{e^{3.218}}{1+e^{3.218}}=0.96$

10.38

Marginal homogeneity means
$$\pi_{a+} = P(Y_1 = u_a) = P(Y_2 = u_a) = \pi_{+a}$$
 for $a = 1, ..., I$.
$$\mathbb{E}(\bar{Y}_1) = \mathbb{E}(\sum_a u_a p_{a+}) = \sum_a u_a \pi_{a+}, \ \mathbb{E}(\bar{Y}_2) = \mathbb{E}(\sum_a u_a p_{+a}) = \sum_a u_a \pi_{+a}$$
 So,
$$\mathbb{E}(\bar{Y}_1) = \mathbb{E}(\bar{Y}_2)$$

$$\operatorname{Var}(\bar{Y}_1 - \bar{Y}_2) = \operatorname{Var}(\sum_a \sum_b (u_a - u_b) p_{ab})$$

$$= \sum_a \sum_b (u_a - u_b)^2 \operatorname{Var}(p_{ab}) + \sum_{(a,b) \neq (c,d)} (u_a - u_b)(u_c - u_d) \operatorname{Cov}(p_{ab}, p_{cd})$$

$$= \frac{1}{n} \sum_a \sum_b (u_a - u_b)^2 \pi_{ab} (1 - \pi_{ab}) - \frac{1}{n} \sum_{(a,b) \neq (c,d)} (u_a - u_b)(u_c - u_d) \pi_{ab} \pi_{cd}$$

$$= \frac{1}{n} \Big[\sum_a \sum_b (u_a - u_b)^2 \pi_{ab} - (\sum_a \sum_b (u_a - u_b) \pi_{ab})^2 \Big]$$

Substitute π_{ab} , π_{a+} , π_{+a} with p_{ab} , p_{a+} , p_{+a} , we have the estimates for $Var(\bar{Y}_1 - \bar{Y}_2)$.

 $= \frac{1}{n} \left[\sum_{a} \sum_{b} (u_a - u_b)^2 \pi_{ab} - (\sum_{a} u_a \pi_{a+} - \sum_{b} u_a \pi_{+a})^2 \right]$

A test of marginal homogeneity can be constructed by using $z = \frac{\bar{Y}_1 - \bar{Y}_2}{\sqrt{\text{Var}(\bar{Y}_1 - \bar{Y}_2)}} \xrightarrow{d} N(0, 1)$