التعداد

1) مبادئ أساسية حول التعداد

E مجموعة و A و B جزءان من E

• تقاطع A و B هي مجموعة العناصر التي تنتمي إلى A و B في نفس الوقت (أي العناصر المشتركة بينهما) ، و نرمز $A \cap B$: لها ب و لدينا : لكل x من E :

 $x \in A \cap B \iff x \in A \quad x \in B$

 $A \cup B$: اتحاد A و نرمز لها بB العناصر التي تنتمي إلى A أو إلى B و نرمز لها بA $x \in A \cup B \iff x \in A \quad \emptyset \quad x \in B$: E من x د لدينا الكل x

 \overline{A} : و نرمز لها ب التي تنتمي إلى E و لا تنتمي إلى A و نرمز لها ب A $x \in \overline{A} \iff x \notin A$: E من x اكل و لدينا

 $E \subset F$ نقول إن مجموعة E ضمن مجموعة E إذا كان كل عنصر من E هو عنصر من E و نكتب E

تجزئة مجموعة

E مجموعة و A_1 و A_2 و و A_p أجزاء من E

: نقول إن الأجزاء A_1 و A_2 و A_1 تحدد تجزئة (أو تكون تجزيئا) للمجموعة A_1 إذا كان

- الأجزاء A_1 و A_2 و و منفصلة مثنى مثنى \checkmark
 - غير فارغ $(1 \leq i \leq p)$ غير فارغ \checkmark
 - E اتحاد هذه الأجزاء هو المجموعة \checkmark

ملاحظة:

- E نرمز ب $\mathscr{S}(E)$ لمجموعة أجزاء المجموعة \star
 - $A \in \mathcal{S}(E) \Leftrightarrow A \subset E$ *

3) رئيسي مجموعة

لتكن E مجموعة منتهية (أي تحتوي على عدد منته من العناصر) . CardE : نسمي عدد عناصر E رئيسي E و نرمز له ب

ملاحظة

 $card \emptyset = 0$

4) مبدأ الجمع

E لتكن A_p مجموعة منتهية و A_1 و A_2 و A_1 تجزئة ل E لدينا : $CardE = cardA_1 + cardA_2 + \dots + cardA_p$

Eلتكن Eمجموعة و A و B جزءان من

- $card(A \cup B) = card(A) + card(B)$: فإن $A \cap B = \emptyset$ إذا كان
 - في جميع الحالات:

$$card(A \cup B) = card(A) + card(B) - card(A \cap B)$$

$$card(\overline{A}) = card(E) - card(A)$$

ملاحظة:

 $A \neq E$ و $A \neq \emptyset$ و $A \subset E$ و $A \neq C$ و $A \subset E$

5) مبدأ الجداء (المبدأ الأساسى للتعداد)

إذا كانت في وضعية للتعداد مكونة من p مرحلة و كان عدد الاختيارات في كل مرحلة هو n_1 و n_2 و و n_p على التوالي فإن عدد الإمكانيات في هذه الوضعية هو $n_1 \times n_2 \times \dots \times n_p$

ملاحظة

تساعد شجرة الإختيار في بعض الحالات على تنظيم عملية العد و استيعابها

مثال: رمي قطعة نقدية أربع مرات

6) عدد التبديلات

$$0!=1$$
 $1!=1$ $n!=1 imes2 imes....(n-1) imes n$ عدد التبديلات هو العدد ! n المعرف بما يلي :

7) عدد الترتيبات

عدد الترتيبات ل
$$p$$
 عنصر من n هو العدد A_n^p حيث p و هو معرف بما يلي :
$$A_n^p = \frac{n!}{(n-p)!} = (n-p+1) \times \times (n-1) \times n$$

8) عدد التأليفات

$$C_n^p = \frac{n!}{p \times (n-p)!} = \frac{A_n^p}{p!}$$
 عدد التأليفات ل $p = \frac{A_n^p}{p!}$ عدد التأليفات ل $p = \frac{A_n^p}{p!}$

$$C_n^{\ p} = C_{n-1}^{\ p} + C_{n-1}^{\ p-1}$$
 : الينا $1 \le p \le n-1$ يكل $p \in n$ من $p \in n$ لكل

$$C_n^{\ p} = C_n^{n-p}$$
 الدينا $0 \le p \le n$ لدينا $0 \le p$ من $0 \le p$ من الدينا الدينا

حدانية تيوتن

: لدينا
$$n \in \mathbb{N}^*$$
 عدان حقيقيان و $x \in \mathbb{N}^*$ عدان عدان حقيقيان و $x \in \mathbb{N}^*$ عدان حقيقيان و $x \in \mathbb{N}^*$

9) أنواع السحب

