A Deep Variational Approach to Clustering Survival Data

Laura Manduchi^{†*}, Ričards Marcinkevičs^{†*} Michela C. Massi, Thomas Weikert, Alexander Sauter, Verena Gotta, Timothy Müller, Flavio Vasella, Marian Neidert, Marc Pfister, Bram Stieltjes, Julia E. Vogt* *Department of Computer Science, ETH Zürich

Gaussian Mixture Model: $\Sigma_1 \mu_1 \Sigma_2 \mu_1$

atent Space

1 Survival Cluster Analysis

Given:

- data $\mathcal{D} = \{x_i, t_i, \delta_i\}_{i=1}^N$
- x_i is a vector of explanatory variables
- t_i is the time to a certain event
- t_i is *censored* ($\delta_i = 0$) when its value is only partially known Goal: discover cluster-specific relationships between explanatory variables x and time-to-event t, that is:
- **1.** discover the unobserved *cluster assignment c*
- **2.** model the *survival distribution*: $S(t|\mathbf{x},c) = P(T > t|\mathbf{x},c)$

Example: patient population consists of three clusters with different disease subtypes. Each group features different associations between the covariates *x* and survival time *t*

Groups *might*, *but* don't need to have disparate survival distributions: cf. groups 1 & 3

At training time:

- age
- treatment A
- treatment B lab results

At test time:

- - **????**
- time-to-event, t

- treatment A treatment B
- lab results

2 Motivation

- Exploratory analysis for survival data
- Discovery of heterogeneity in the relation between x and t
- better understanding of the disease and its progression
- personalised disease management
- Patient stratification by risk

3 Variational Deep Survival Clustering (VaDeSC)

Model Overview:

- VAE with a Gaussian mixture prior
- cluster-specific Weibull survival distributions in the latent space
- maximise the joint likelihood of $\{x_i, t_i\}_{i=1}^N$

Generative process:

1. Cluster assignment sampled from a categorical distribution:

$$c \sim p(c; \boldsymbol{\pi}) = \pi_c.$$

2. Latent embedding sampled from a cluster-specific Gaussian distribution:

$$t \sim p(t|\mathbf{z},c; \{\boldsymbol{\beta}_1,\ldots,\boldsymbol{\beta}_K\},k).$$

Evidence Lower Bound:

The likelihood is intractable! We maximise the evidence lower bound (ELBO):

$$\mathbb{E}_{q(\mathbf{z},c|\mathbf{x},t)}\left[\begin{array}{cc} \log p(\mathbf{x}|\mathbf{z};\,\boldsymbol{\gamma}) + \log p(t|\mathbf{z},c;\,\boldsymbol{\beta},k) \right] + D_{KL}\left(q(\mathbf{z},c|\mathbf{x},t)||p(\mathbf{z},c;\,\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\pi})\right)$$
reconstruction
survival clustering

The variational distribution factorises as follows

$$q(\mathbf{z}, c|\mathbf{x}, t) = q(\mathbf{z}|\mathbf{x})q(c|\mathbf{z}, t)$$

encoder parameterised by an NN soft cluster assignments

4 Experimental Setup

An aggregated computed tomography (CT) dataset from non-small cell lung cancer patients:

- Basel: 392 patients, University Hospital Basel, CH
- Lung1: 422 patients, Maastro clinic, NL
- Lung3: 89 patients, Maastro clinic, NL
- NSCLC Radiogenomics: 211 patients, Stanford University School of Medicine and Palo Alto Veterans Affairs Healthcare System, US

medical. science

5 Results

VaDeSC is competitive at predicting survival times:

Method	CI	RAEnc	RAE_c	CAL
Radiomics + Cox PH	$0.60{\pm}0.02$			
Radiomics + Weibull AFT	$0.60{\pm}0.02$	$0.70 {\pm} 0.02$	0.45 ± 0.03	1.26 ± 0.04
DSM	0.59 ± 0.04	0.72 ± 0.03	$0.34 {\pm} 0.06$	1.24 ± 0.07
VaDeSC (ours)	$0.60{\pm}0.02$	0.71 ± 0.03	0.35 ± 0.05	$1.21 {\pm} 0.05$

VaDeSC discovers subgroups with disparate characteristics:

Variable					
	1	2	3	4	p-val.
T. Vol. , cm ³	43	36	40	63	≤ 5e-2
Age , yrs	62	69	67	70	\leq 1e-3
Female, %	36	19	38	23	\leq 1e-3
Smoker, %	67	94	87	100	0.12
M1, %	20	45	44	45	0.2
≥ T3 , %	10	29	35	31	0.7

Clusters are associated with tumour location:

6 Summary

A deep probabilistic model for clustering survival data:

- novel generative assumptions
- improved clustering and competitive time-to-event prediction
- a holistic representation learning view of survival data

Future work:

- interpretability/explainability
- multimodal survival analysis