Technological Institute of the Philippines	Quezon City - Computer Engineering
Course Code:	CPE 019
Code Title:	Emerging Technologies in CpE 2
2nd Semester	AY 2023-2024
Prelim Examination	
Name	Catorce, Mayah Mae A.
	Naga, Jamal
Section	CPE32S3
Date Performed:	March 1, 2024
Date Submitted:	March 6, 2024
Instructor:	Engr. Roman Richard

Choose any dataset applicable for classification and/or prediction analysis problems.

Show the application of the following algorithms:

- ** Linear Regression:**
- Singular LR
- Multiple LR
- Polynomial LR

Logistic Regression

Decision Tree

Random Forest

Provide Evaluation reports for all models

NOTE: Submit the github link that contains all files (pdf report, dataset and python notebooks).

```
# Import libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
```

compFrame = pd.read_csv("/content/Advertising.csv")

Display the information about the DataFrame
compFrame.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	TV	200 non-null	float64
1	radio	200 non-null	float64
2	newspaper	200 non-null	float64
3	sales	200 non-null	float64

dtypes: float64(4)
memory usage: 6.4 KB

Display first 5 rows
compFrame.head()

	TV	radio	newspaper	sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9

Display the summary statistics of the DataFrame
compFrame.describe()

	TV	radio	newspaper	sales
count	200.000000	200.000000	200.000000	200.000000
mean	147.042500	23.264000	30.554000	14.022500
std	85.854236	14.846809	21.778621	5.217457
min	0.700000	0.000000	0.300000	1.600000
25%	74.375000	9.975000	12.750000	10.375000
50%	149.750000	22.900000	25.750000	12.900000
75%	218.825000	36.525000	45.100000	17.400000
max	296.400000	49.600000	114.000000	27.000000

Create a heatmap of the correlation matrix
sns.heatmap(compFrame.corr(),cmap='YlGnBu',annot=True)
plt.show()

Calculate the correlation coefficients between the 'sales' column and all other columns ir compFrame.corr()['sales']

TV	0.782224
radio	0.576223
newspaper	0.228299

sales 1.000000

Name: sales, dtype: float64

1. Singular Linear Regression

Predicting sales revenue based on advertising spending through TV.

```
# Select independent and dependent variable
X = compFrame[['TV']]
y = compFrame['sales']
# Split the data into Train and Test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .2, random_state = 0)
# Fitting Singular Linear Regression to the Training set
model = LinearRegression()
model.fit(X_train, y_train)
# Get the coefficient value
print("Coefficients: ", model.coef_)
# Predicting the Test set results
y_pred = model.predict(X_test)
# Get the Mean Squared Error result
mse=mean_squared_error(y_test, y_pred)
# Get the R2 Score
r2 = r2_score(y_test, y_pred)
# Creating a DataFrame
new_data = pd.DataFrame({'TV': [500]})
# Making prediction using the trained model
predicted sales = model.predict(new data)
print("Predicted sales revenue when advertising spend on TV is 500:", predicted sales[0])
print('Mean Squared Error: ', mse) # If the result is small values the model is better
print('R-squared: ', r2) # If the result is closer to 1 the model is better
plt.scatter(X_test,y_test, color = 'b')
plt.plot(X test,y pred, color = 'r')
plt.title('sales vs TV')
plt.xlabel('TV')
plt.ylabel('sales')
plt.grid(True)
```

Coefficients: [0.04600779]

Predicted sales revenue when advertising spend on TV is 500: 30.296388575067947

Mean Squared Error: 10.18618193453022

R-squared: 0.6763151577939721

Model Evaluation

- Having a coefficients of 0.046 we can say that for every additional spent on TV advertising, we expect sales revenue to increase by about 0.046.
- Having a mean squared error of 10.18 where it indicates that, on average, the squared difference between the actual and predicted sales revenue values is about 10.186. But it says that if the value is closer to 1 it indicates better model performance.
- Having a r squared of 0.67 where model explains that approximately 67% of the variation in sales revenue based on TV spending alone.
- Based of the result we can conclude that there is a positive relationship between TV spending and sales revenue.

2. Multiple Linear Regression

Predicting sales revenue based on advertising spending through media such as TV, radio, and newspaper.

#Relationship between Features and Response
sns.pairplot(compFrame, x_vars=['TV','radio','newspaper'], y_vars='sales', height=7, aspect=


```
# Select independent and dependent variable
X = compFrame[['TV', 'radio', 'newspaper']]
y = compFrame['sales']
# Split the data into Train and Test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
# Fitting Singular Linear Regression to the Train set
model = LinearRegression()
model.fit(X_train, y_train)
# Get the coefficient value
print('Coefficient : ', model.coef_)
# Predicting the Train set results
y_pred_train = model.predict(X_train)
# Get the R2 Score
r2 = r2_score(y_train, y_pred_train)
print('R2_Score: ', r2)
# Predicting the Test set results
y_pred_test = model.predict(X_test)
# # Get the Mean Squared Error result
mse = mean_squared_error(y_test,y_pred_test)
print('MSE Score: ', mse)
# Creating a DataFrame
new_data = pd.DataFrame({'TV': [50], 'radio': [30], 'newspaper': [20]})
# Making prediction using the trained model
predicted sales = model.predict(new data)
print("Predicted sales revenue when advertising spend on TV is 50, radio is 30, and newspape
# Predicted vs. Actual plot
plt.figure(figsize=(8, 6))
plt.scatter(y_test, y_pred, color='blue')
plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], linestyle='--', color='
plt.title('Predicted vs. Actual Plot')
plt.xlabel('Actual Values')
plt.ylabel('Predicted Values')
plt.show()
```

Coefficient : [0.04458402 0.19649703 -0.00278146]

R2_Score: 0.9067114990146383 MSE Score: 4.402118291449685

Predicted sales revenue when advertising spend on TV is 50, radio is 30, and newspaper i


```
# Residual plot
plt.figure(figsize=(8, 6))
plt.scatter(y_pred, y_pred - y_test, color='blue')
plt.axhline(y=0, linestyle='--', color='r')
plt.title('Residual Plot')
plt.xlabel('Predicted Values')
plt.ylabel('Residuals')
plt.show()
```


Model Evaluation

- Having a coefficient values of [0.04458402 0.19649703 -0.00278146], in the first and second variable it has positive relationship since it has positive coefficient, while in the third variable it has negative relationship since the ouput is negative coefficient.
- Having a r squared of 0.90 that is approximately 90% of the variability in the dependent variable is explained by the independent variables included in the model.
- Having a mean squared error of 4.40 we can that the Multiple Linear Regression model we can say that it is better than the linear regression model since it give a lower values that is more closer to 1.
- We conclude, based on the provided coefficients, R-squared score, and MSE score, Multiple
 Linear Regression model appears to perform well.

3. Polynomial Regression

Predicting sales revenue based on advertising spending through TV using polynomial regression.

```
# Select independent and dependent variable
X = compFrame[['TV']]
y = compFrame['sales']
# Split the data into train and test
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# Apply PolynomialFeatures before scaling
poly = PolynomialFeatures(degree=2)
X_poly_train = poly.fit_transform(X_train)
X_poly_test = poly.transform(X_test)
scaler = StandardScaler()
X_train_scaler = scaler.fit_transform(X_poly_train)
X_test_scaler = scaler.transform(X_poly_test)
# Train Singular Linear Regression model
model = LinearRegression()
model.fit(X_train, y_train)
y_pred_simple = model.predict(X_test)
# Calculate MSE and R2 score for Singular Linear Regression
mse_simple = mean_squared_error(y_test, y_pred_simple)
r2_simple = r2_score(y_test, y_pred_simple)
# Train Polynomial Linear Regression model
poly_model = LinearRegression()
poly model.fit(X train scaler, y train)
y_pred = poly_model.predict(X_test_scaler)
# Calculate MSE and R2 score for Polynomial Regression
mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
# Compare MSE and R2 score between PLR model and Simple Linear Regression model
print("Mean Squared Error for SLR:", mse_simple)
print("R2 Score for SLR:", r2_simple)
print("Mean Squared Error for PLR:", mse)
print("R2 Score for PLR:", r2)
# Get the coefficient value
print("Coefficients: ", poly_model.coef_)
# Get the intercept value
print('Intercept: ', poly_model.intercept_)
# Creating a DataFrame with a single data point for R&D Spend
new data = pd.DataFrame({'TV': [50]})
# Making prediction using the trained model
predicted_sales = model.predict(new_data)
```

print("predict sales revenue when advertising spend on TV is 50:", predicted_sales[0]) # Plotting the Polynomial Curve plt.figure(figsize=(8, 6)) plt.scatter(X_test, y_test, color='b', label='Actual Data') plt.scatter(X_test, y_pred, color='g', label='Predicted Data') x values = np.linspace(min(X_test.values), max(X_test.values), 100).reshape(-1, 1) x_poly_values = poly.transform(x_values) x_poly_values_scaled = scaler.transform(x_poly_values) y_poly_pred = poly_model.predict(x_poly_values_scaled) plt.plot(x_values, y_poly_pred, color='r', label='Polynomial Curve') plt.title('Polynomial Regression') plt.xlabel('TV') plt.ylabel('sales') plt.legend() plt.grid(True) plt.show()

Mean Squared Error for SLR: 10.18618193453022

R2 Score for SLR: 0.6763151577939721

Mean Squared Error for PLR: 10.685507926293392

R2 Score for PLR: 0.660448147378093

Coefficients: [0. 6.14894143 -2.32734841]

Intercept: 14.217500000000005

predict sales revenue when advertising spend on TV is 50: 9.592883253710221

Model Evaluation

As seen in the plotted graph we can say that Polynomial curve overlaid on the acutal and
predicted data points, it shows that PLR model capture the underlying trend in the data
reasonably well. In the graph PLR model can capture nonlinear relationships between the TV
as an independent variable and sales as depedent variable. Also, it suggest that in capturing
complex relationship between TV and sales PLR model is more suitable.

Logistic, Decision Tree, and Random Forest Regressions

The first 28 cells are dedicated for data understanding, cleaning, and splitting.

```
#Step 1: Importing the libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from pandas.plotting import scatter_matrix
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy score
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.metrics import classification_report
import warnings
warnings.filterwarnings('ignore')
#Step 2: Load the Dataset
diaFrame = pd.read_csv('/content/diabetes.csv')
#Step 3: Understanding the Variables
#3.1.1 - Head of the Dataset
diaFrame.head(5)
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFu
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	
◀							•

diaFrame.tail(5)

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigree
763	10	101	76	48	180	32.9	
764	2	122	70	27	0	36.8	
765	5	121	72	23	112	26.2	
766	1	126	60	0	0	30.1	
767	1	93	70	31	0	30.4	
4							•

diaFrame.sample(5)

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigree
310	6	80	66	30	0	26.2	
231	6	134	80	37	370	46.2	
520	2	68	70	32	66	25.0	
228	4	197	70	39	744	36.7	
238	9	164	84	21	0	30.8	
4							>

#3.1.2 - Shape of the Dataset
diaFrame.shape

(768, 9)

#3.1.3 - Type of the Dataset diaFrame.dtypes

Pregnancies	int64
Glucose	int64
BloodPressure	int64
SkinThickness	int64
Insulin	int64
BMI	float64
DiabetesPedigreeFunction	float64
Age	int64
Outcome	int64
dtype: object	

#3.1.4 - Info of the Dataset diaFrame.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
```

Column Non-Null Count Dtype

0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64
d+\/n	ac. float(4/2) int(4/7)		

dtypes: float64(2), int64(7) memory usage: 54.1 KB

#3.1.5 - Summary of the Dataset
diaFrame.describe()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	Dia
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	>

By outputting the summary of the dataset, we can notice that the minimum values of the features for Pregnancy up to BMI has 0 values.

We can observe that there were no changes on the shape of the dataset, this only meaens that there were no duplicates on the dataset.

```
#3.2.2 - Check the NULL Values
diaFrame.isnull().sum()
```

Pregnancies 0 Glucose 0 BloodPressure 0 SkinThickness 0 Insulin 0 BMI 0 DiabetesPedigreeFunction 0 Age 0 Outcome dtype: int64

The values are all 0, which means there is no NULL value in the dataset.

```
diaFrame.columns
             Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
                               'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
                            dtype='object')
#Check the number of Zero values in the dataset
print('No. of zero values in Glucose ', diaFrame[diaFrame['Glucose']==0].shape[0])
print('No. of zero values in BloodPressure ', diaFrame[diaFrame['BloodPressure']==0].shape[@
print('No. of zero values in Insulin ', diaFrame[diaFrame['Insulin']==0].shape[0])
print('No. of zero values in SkinThickness ', diaFrame[diaFrame['SkinThickness']==0].shape[@grades.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.org.com.or
print('No. of zero values in BMI ', diaFrame[diaFrame['BMI']==0].shape[0])
            No. of zero values in Glucose 5
            No. of zero values in BloodPressure 35
            No. of zero values in Insulin 374
            No. of zero values in SkinThickness 227
            No. of zero values in BMI 11
#Replace number of zero values with mean of that columns
diaFrame['Glucose']=diaFrame['Glucose'].replace(0,diaFrame['Glucose'].mean())
diaFrame['BloodPressure']=diaFrame['BloodPressure'].replace(0,diaFrame['BloodPressure'].mear
diaFrame['SkinThickness']=diaFrame['SkinThickness'].replace(0,diaFrame['SkinThickness'].mear
diaFrame['Insulin']=diaFrame['Insulin'].replace(0,diaFrame['Insulin'].mean())
diaFrame['BMI']=diaFrame['BMI'].replace(0,diaFrame['BMI'].mean())
diaFrame.describe()
```

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	Dia
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	121.681605	72.254807	26.606479	118.660163	32.450805	
std	3.369578	30.436016	12.115932	9.631241	93.080358	6.875374	
min	0.000000	44.000000	24.000000	7.000000	14.000000	18.200000	
25%	1.000000	99.750000	64.000000	20.536458	79.799479	27.500000	
50%	3.000000	117.000000	72.000000	23.000000	79.799479	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	>

#create pie chart
sns.countplot(x='Outcome',data=diaFrame)
N,P = diaFrame['Outcome'].value_counts()
print("Negative (0) = ", N)
print("Positive (1) = ", P)

Negative (0) = 500Positive (1) = 268

We can imply from this countplot generated from outcome that there is a greater population who doesn't have diabetes (0 value on outcome) than diabetes positive persons (1 value on outcome).

```
#4.2 Histograms
diaFrame.hist(bins=10, figsize=(10,10))
plt.show()
```


In the histplot, we can visualize the skewness of the data in the dataset features. We can also observe the normal distribustion figure with the BMI,Glucose, and BloodPressure.

#4.3 Scatter Plot Matrix
scatter_matrix(diaFrame, figsize = (20,20));


```
sns.pairplot(data = diaFrame, hue = 'Outcome')
plt.show()
```



```
#4.5 Analyzing relationship between variables
corrD= diaFrame.corr()
top_corr_features = corrD.index
plt.figure(figsize = (10,10))
```

h = sns.heatmap(diaFrame[top_corr_features].corr(), annot=True, cmap=sns.color_palette("rock

In understanding the correlation analysis, we will be evaluating the correlation of the coefficients which will tell you how much one variable changes when the other one does. With the correlation output of the heatmap, we can see that there's a high correlation between 'Outcome' and the features 'Pregnancies', 'Glucose', 'BMI', and 'Age'. Therefore, we can use these features for prediction.

```
# Step 5: Splitting the dataframe to X & y
selected_feature = 'Outcome'
y = diaFrame[selected_feature]
X = diaFrame.drop(selected_feature, axis=1)
```

This codes removed the 'Outcome' Feature from the columns because we will be using the 'Outcome' as our independent variable and our remaining features as the dependent variable.

X.head()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigree
0	6	148.0	72.0	35.000000	79.799479	33.6	
1	1	85.0	66.0	29.000000	79.799479	26.6	
2	8	183.0	64.0	20.536458	79.799479	23.3	
3	1	89.0	66.0	23.000000	94.000000	28.1	
4	0	137.0	40.0	35.000000	168.000000	43.1	
4							•

y.head()

Name: Outcome, dtype: int64

Above, we just checked if the columns were successfully separated.

```
#Step 6: Apply Feature Scaling
#Applied Standard Scaler
scaler = StandardScaler()
scaler.fit(X)
SSX = scaler.transform(X)

#Step 7: Train Test Split
X_train, X_test, y_train, y_test = train_test_split(SSX, y, test_size = 0.3, random_state =
```

In the code above, we have splitted the train and test variables. Where we have divided the data into 70% for training and 30% for testing.

In the code above, we can see that the value of the train data is 537 while the test data is 231. That is the 70/30 ratio of the data.

Step 8: Building the Classification Algorithms

4. Logistic Regression