Auxiliar #4 - Ondas ondas ondas

Introducción a la Física Moderna (F1100-5)

Erik Saez A. - Javiera Toro

Departamento de Ingeniería Eléctrica Universidad de Chile

September 2, 2025

Contenidos

- 1 Resumen
- 2 Pregunta 1
- 3 Pregunta 2
- 4 Pregunta 3

Resumen: Oscilador forzado (bloque-resorte)

Cambio de variable y EDO

Para un bloque de masa m colgando de un resorte $(k,\,\ell_0)$ con techo móvil $y_t=A\cos(\Omega t)$, usando

$$z = y - \ell_0 - \frac{mg}{k}$$

se obtiene el oscilador forzado sin amortiguamiento

$$\ddot{z} + \omega^2 z = \omega^2 A \cos(\Omega t), \qquad \omega^2 = \frac{k}{m}.$$

Solución útil

Respuesta estacionaria: amplitud $B=\frac{\omega^2 A}{\omega^2-\Omega^2}$. En resonancia $(\Omega=\omega)$ crece linealmente en el tiempo. La coordenada original: $y(t)=z(t)+\ell_0+\frac{mg}{k}$.

Resumen: Ondas en cuerda y onda estacionaria

Onda viajera y rapidez

Rapidez $c=\sqrt{T/\rho}$, número de onda $k=\omega/c$. Ansatz de superposición:

$$y = A\sin(kx - \omega t) + B\sin(kx + \omega t).$$

Forma de onda estacionaria

Usando identidades trigonométricas:

$$y = (A + B) \sin(kx) \cos(\omega t) + (B - A) \cos(kx) \sin(\omega t).$$

Condiciones de borde usadas hoy

- Extremos fijos: $y(0,t) = y(L,t) = 0 \Rightarrow k = \frac{n\pi}{L}, n = 1,2,...$
- **E**xtremos con aceleración impuesta: $\ddot{y}(0,t) = \ddot{y}(L,t) = a_0 \sin(\Omega t)$.
 - Con la ansatz anterior: $\Omega = \omega$ y $\cos(kL) = 1 \implies kL = 2\pi n$.
 - En régimen forzado puro: $y(x,t) = -\frac{a_0}{\omega^2}\cos(kx)\sin(\omega t)$.
- Velocidad en el punto medio (extremos fijos): $\partial_t y|_{x=L/2} = v_0 \sin(\Omega t)$.
 - Se exige A = B y solo se excitan **modos impares** n = 1, 3, 5, ...
 - $y_n(x,t) = -\frac{v_0}{\Omega}(-1)^{\frac{n-1}{2}}\sin\left(\frac{n\pi}{L}x\right)\cos(\Omega t).$

Cuerda colgante y reflexiones

- Tensión variable: $T(z) = \rho g z \implies c(z) = \sqrt{gz}$ (mayor rapidez hacia arriba).
- El pulso que sube llega primero al techo (extremo fijo) y se **invierte**; el que baja llega al extremo libre y **no** se invierte.
- lacktriangle Se reencuentran por debajo del centro y con signos opuestos \Rightarrow interferencia destructiva.

Cavidad acústica (túnel)

- Modelo *abierto-cerrado* \Rightarrow solo **modos impares**: $f_n = \frac{(2n+1)c}{4L}$.
- lacktriangle Espaciamiento entre resonancias consecutivas: $\Delta f = rac{c}{2L} \ \Rightarrow \ L = rac{c}{2\,\Delta f}.$
- Con $c=335\,\mathrm{m/s}$ y $f=4.5,~6.3\,\mathrm{Hz},~\Delta f=1.8\,\mathrm{Hz} \Rightarrow L\approx 93\,\mathrm{m}.$

Ejercicio 1: Corcho flotante

Enunciado pregunta 1

Corcho cilíndrico de radio R y altura H se deja en una piscina en reposo hasta alcanzar su posición de equilibrio.

- Calcular la posición de equilibrio.
- Si se perturba ligeramente y en t = 0 está en x_0 con velocidad v_0 , hallar x(t).

Datos: gravedad g y fuerza de empuje $F_e = \rho g V$, con ρ densidad del agua y V volumen sumergido.

Ejercicio 2: Masa entre dos resortes

Enunciado pregunta 2

Bloque de masa M entre dos resortes ideales de constantes k y 2k (longitudes naturales nulas), sin fricción, movimiento 1D. Inicialmente en equilibrio con velocidad V hacia la derecha.

- lacktriangle Frecuencia angular ω y amplitud.
- **E**xpresión de x(t).
- Al cortarse el resorte derecho en su máxima elongación, tiempo hasta el choque con la pared izquierda.

Ejercicio 3: Cavidad óptica

Enunciado Pregunta 3

Una cavidad óptica, elemento básico para construir un láser, puede hacerse usando un espejo plano (Espejo 1) y uno esférico cóncavo (Espejo 2), como en la figura.

- **1** Con $s_1 = 5 \,\mathrm{m}$, $s_2 = 20 \,\mathrm{m}$, $R = 10 \,\mathrm{m}$ y altura del peón $h_1 = 5 \,\mathrm{cm}$, determine las imágenes del peón por ambos espejos: si son reales/virtuales, invertidas/derechas y su tamaño.
- Use estas dos imágenes como nuevos objetos para generar dos nuevas imágenes; repita el razonamiento para explicar por qué aparecen infinitas imágenes al enfrentar dos espejos.

