PRZYKŁADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

POZIOM PODSTAWOWY

Czas pracy: 170 minut

Instrukcja dla zdajacego

- 1. Sprawdź, czy arkusz zawiera 11 stron.
- 2. W zadaniach od 1. do 25. są podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest prawdziwa. Wybierz tylko jedna odpowiedź.
- 3. Rozwiązania zadań od 26. do 33. zapisz starannie i czytelnie w wyznaczonych miejscach. Przedstaw swój tok rozumowania prowadzący do ostatecznego wyniku.
- 4. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 5. Nie używaj korektora. Błędne zapisy przekreśl.
- 6. Pamietaj, że zapisy w brudnopisie nie podlegaja ocenie.
- 7. Obok numeru każdego zadania podana jest maksymalna liczba punktów możliwych do uzyskania.
- 8. Możesz korzystać z zestawu wzorów matematycznych, cyrkla i linijki oraz kalkulatora.

Życzymy powodzenia!

Za rozwiązanie wszystkich zadań można otrzymać łącznie **50 punktów**.

JOPERON

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON na wzór arkuszy opublikowanych przez Centralną Komisję Egzaminacyjną

ZADANIA ZAMKNIĘTE

W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi jedną poprawną odpowiedź.

Zadanie 1. (*1 pkt*)

W tabelce wpisano dwie wartości funkcji liniowej f dla dwóch argumentów.

х	0	6
f(x)	-2	1

Funkcja f opisana jest wzorem:

A.
$$f(x) = -2x + 2$$
 B. $f(x) = \frac{1}{2}x - 2$ **C.** $f(x) = x - 2$ **D.** $f(x) = 2x - 1$

B.
$$f(x) = \frac{1}{2}x - 2$$

$$\mathbf{C.} f(x) = x - 2$$

$$\mathbf{D.} f(x) = 2x - 1$$

Zadanie 2. (1 pkt)

Odwrotność liczby będącej rozwiązaniem równania $\frac{x-4}{x+1}$ = 2 jest równa:

B.
$$\frac{1}{6}$$

$$\mathbf{C} \cdot -\frac{1}{6}$$

D.
$$\frac{1}{2}$$

Zadanie 3. (1 pkt)

Liczba $\left(\frac{1}{3}\right)^{-1} \cdot 3^{6} \cdot 27^{\frac{1}{3}}$ jest równa: **B.** $3^{2} \cdot 3^{4}$

$$\mathbf{A} \cdot \left(3^2\right)^4$$

B.
$$3^2 \cdot 3^4$$

$$C.3^4 + 3^4$$

D.
$$3 \cdot 3^{8}$$

Zadanie 4. (*1 pkt*)

Liczba $a = \log_7 49 - 2 \log_2 \sqrt{2}$. Wynika z tego, że:

$$\mathbf{A} \cdot a < 0$$

C.
$$a = 1$$

D.
$$a > 1$$

Zadanie 5. (*1 pkt*)

Trójkąt prostokątny ma boki długości 6,12,6 $\sqrt{3}$ i kąty ostre α , β . Kąt α leży naprzeciw boku długości $6\sqrt{3}$. Zatem:

$$\mathbf{A} \cdot \boldsymbol{\alpha} = \boldsymbol{\beta}$$

B.
$$\alpha = 2\beta$$

$$\mathbf{C.} \ \alpha - \beta = 45^{\circ} \qquad \qquad \mathbf{D.} \ \beta = 2\alpha$$

D.
$$\beta = 20$$

Zadanie 6. (*1 pkt*)

Suma pierwiastków wielomianu $W(x) = 2(x-1)(x^2-9)(x+5)$ jest równa:

$$D. -4$$

Zadanie 7. (*1 pkt*)

Wskaż równanie prostej przechodzącej przez punkt (1, -6) i równoległej do prostej y = -5x + 9.

A.
$$y = \frac{1}{5}x - 6\frac{1}{5}$$

B.
$$y = -5x + 1$$

B.
$$y = -5x + 1$$
 C. $y = -5x - 1$

D.
$$y = -\frac{1}{5}x - 5\frac{4}{5}$$

Zadanie 8. (*1 pkt*)

W trójkąt równoboczny wpisano okrąg o równaniu $(x-1)^2 + (y+8)^2 = 9$. Wysokość tego trójkąta jest równa:

Zadanie 9. (1 pkt)

W grupie 100 osób 40 włada językiem angielskim, 50 – językiem niemieckim, 26 – językiem francuskim, 6 – angielskim i niemieckim, 9 – angielskim i francuskim, 5 – niemieckim i francuskim. Ile osób włada wszystkimi trzema wymienionymi językami?

A. 4

B.16

C. 6

D. 20

Zadanie 10. (1 pkt)

W kapeluszu są tylko króliki białe i szare. Królików szarych jest dwa razy więcej niż białych. Prawdopodobieństwo wyciągnięcia z kapelusza królika białego jest równe $\frac{2}{6}$. Zatem prawdopodobieństwo wyciągnięcia z kapelusza królika szarego jest równe:

A. $\frac{1}{2}$

B. $\frac{1}{6}$

 $C.\frac{4}{12}$

D. $\frac{2}{3}$

Zadanie 11. (1 pkt)

Trójkąt prostokątny równoramienny obrócono dookoła jednej z przyprostokątnych. Objętość tak otrzymanej bryły jest równa 72π . Średnica podstawy bryły ma długość:

A. 6

B. $2\sqrt[3]{9}$

C.12

D. $4\sqrt[3]{9}$

Zadanie 12. (1 pkt)

Na półce można ustawić n słoików z dżemem na 24 sposoby. Zatem:

A. n = 6

B. n = 4

 $C_{\bullet} n = 12$

D. n = 24

Zadanie 13. (1 pkt)

Emilia kupiła pół kilograma cukierków czekoladowych po 20 zł za kilogram, ćwierć kilograma cukierków miętowych po 12 zł za kilogram i kilogram cukierków kawowych po 15 zł za kilogram. Średnia wartość 1 kg cukierków, które kupiła Emilia, była równa:

A. 16 zł

B. ok. 15,70 zł

C. ok. 9,30 zł

D. 15 zł

Zadanie 14. (1 pkt)

Mediana kolejnych pięciu liczb naturalnych jest równa 7. Najmniejsza z tych liczb to:

A. 5

B. 9

C.8

D. 11

Zadanie 15. (*1 pkt*)

Ciąg arytmetyczny (a_n) określony jest wzorem $a_n = 4n + 4$. Zatem suma $a_3 + a_1$ jest równa:

 $\mathbf{A} \cdot a_{8}$

 $\mathbf{B}.a_6$

 $\mathbf{C}.a_{\scriptscriptstyle A}$

 \mathbf{D} , a

Zadanie 16. (1 pkt)

Trójkąt prostokątny równoramienny EWA, w którym przeciwprostokątna jest równa $3\sqrt{2}$, jest podobny do trójkąta MUR w skali 1 : 2. Obwód trójkąta MUR jest równy:

A. $6(2+\sqrt{2})$

B. $216\sqrt{2}$

C. $\frac{6+3\sqrt{2}}{2}$

D. $18\sqrt{2}$

Zadanie 17. (1 pkt)

Liczba 10²⁰¹⁰ + 2 jest podzielna przez:

A.10

B. 5

C. 6

D. 4

Zadanie 18. (1 *pkt*)

Przekatna graniastosłupa prawidłowego czworokatnego jest dwa razy dłuższa od wysokości tego graniastosłupa. Z tego wynika, że miara kata, jaki tworzy ta przekatna z podstawa, jest równa:

A.30°

C. 60°

Zadanie 19. (1 pkt)

W ciągu geometrycznym rosnącym (a_n) wyraz a_n jest równy 4, a wyraz a_n jest równy 32. Wskaż wzór na n-ty wyraz ciągu.

A.
$$a_n = 2^{n-1}$$

B. $a_n = \frac{1}{2} \cdot 2^n$ **C.** $a_n = 2^{n-2}$

D. $a_{n} = 2^{n}$

Zadanie 20. (*1 pkt*)

Wyrażenie $\frac{x}{x-5} - \frac{x}{x-4} - \frac{5}{(x-4)(x-5)}$ można zapisać w postaci: **A.** $\frac{1}{x-4}$ **B.** x-4 **C.** $-\frac{5}{(x-4)(x-5)}$ **D.** $\frac{-9x-5}{(x-4)(x-5)}$

A.
$$\frac{1}{x-4}$$

Zadanie 21. (*1 pkt*)

Kąt α jest kątem ostrym i $\sin \alpha \cos \alpha = \frac{3}{5}$. Wówczas wyrażenie $(\sin \alpha + \cos \alpha)^2$ jest równe:

A.
$$\frac{8}{5}$$

B. $\frac{11}{5}$

 $C.\frac{6}{5}$

D.1

Zadanie 22. (1 pkt)

Wykres funkcji kwadratowej f ma dwa punkty wspólne z osią OX. Wskaż wzór tej funkcji.

A.
$$f(x) = (x-3)^2 + 2$$

B. $f(x) = (x+3)^2 + 2$ **C.** $f(x) = -(x-3)^2 + 2$ **D.** $f(x) = -(x-3)^2 - 2$

Zadanie 23. (1 pkt)

Liczbę naturalną a najpierw zwiększono o 40%, a następnie zmniejszono o 20%. W wyniku tych operacji liczbe a:

A. zmniejszono o 12% B. zwiększono o 12% C. zwiększono o 20% D. zmniejszono o 30%

Zadanie 24. (*1 pkt*)

Kąt wpisany w okrąg o promieniu 10 ma miarę 18°. Długość łuku, na którym oparty jest ten kąt, jest równa:

Α. π

 $\mathbf{B}.10\pi$

 $\mathbf{C}.2\pi$

 $\mathbf{D}.5\pi$

Zadanie 25. (1 pkt)

Liczby pierwsze należące jednocześnie do zbioru rozwiązań nierówności |x-1| < 6 i do zbioru rozwiązań nierówności |x+1| > 2 to:

A.1, 2, 3, 5

B. 3, 4, 5

C.3,5

D. 2, 3, 5

ZADANIA OTWARTE

Rozwiązania zadań o numerach od 26. do 33. należy zapisać w wyznaczonych miejscach pod treścią zadania.

Zadanie 26. (2 *pkt*)

Rozwiąż równanie $x^3 + 4x = 8 + 2x^2$.

Zadanie 27. (2 *pkt*)

Oblicz największą wartość funkcji f określonej wzorem $f(x) = -x^2 + 2x + 6$ w przedziale $\langle -1, 2 \rangle$.

Zadanie 28. (2 *pkt*)

Bok rombu ma długość 6, a sinus kąta ostrego tego rombu jest równy $\frac{1}{3}$. Oblicz pole rombu.

Zadanie 29. (2 pkt)

Adam ma 1000 płyt CD z muzyką poważną. Codziennie słucha jednej płyty i odstawia ją na miejsce. Płyty wybiera w sposób losowy. Oblicz prawdopodobieństwo, że w ciągu pięciu kolejnych dni będzie słuchał codziennie tej samej płyty.

Zadanie 30. (2 pkt) Oblicz odległość od początku układu współrzędnych środka odcinka AB, gdzie A=(-2,4), B=(6,-6).

Zadanie 31. (*4 pkt*) Rozwiąż równanie $2 \cdot 2^{3} \cdot 2^{5} \cdot ... \cdot 2^{2n-1} = 16^{36}$, gdy $n \in N$.

Zadanie 32. (5 *pkt*)

Koparka, pogłębiając rów melioracyjny, usypała kopiec w kształcie stożka. Tworząca tego stożka jest nachylona do płaszczyzny podstawy pod kątem, którego tangens jest równy 1,5. Przyjmując $\pi \approx 3$, obliczono, że obwód podstawy kopca jest równy około 12 m. Oblicz, ile kursów będzie musiała wykonać ciężarówka, aby wywieźć wykopany piasek, jeżeli jednorazowo może zabrać 2 m³ piasku. Przyjmij również, że $\pi \approx 3$.

Zadanie 33. (6 pkt)
W czasie wycieczki rowerowej uczniowie mieli do przebycia trasę długości 84 km. Podzielili tę trasę na odcinki równej długości i codziennie przejeżdżali wyznaczony odcinek. Gdyby na przebycie całej trasy zużyli o dwa dni więcej, to mogliby dziennie przebywać o 7 km mniej. Ile kilometrów przebywali uczniowie dziennie?

