Video Compression

Chapter 8C

Evolution of Video Mediums

■ Film

 Invented in late 18th century, still widely used today

VHS

□ Released in 1976, rapidly disappearing

Evolution of Video Mediums

DVD

□ Released in 1996, dominant for over a decade

Hard Disk

 Around for many years, only recently widely used for storing video (helped by explosion of Internet)

Video Encoding/Compression

- Need to convert analog video to digital format
- New digital video cameras have on-board hardware to capture directly to digital format
- Once video is in digital format, it makes sense to compress it
- Similar to image compression, we want to store video data as efficiently as possible
- Again, we want to both maximize quality and minimize storage space and processing resources

Definitions

Bitrate

- □ Information stored/transmitted per unit time
- □ Usually measured in Mbps (Megabits per second)
- □ Ranges from > 1 Mbps to < 40 Mbps</p>

Resolution

- □ Number of pixels per frame
- □ Ranges from 160x120 to 1920x1080

FPS (frames per second)

- □ Usually 24, 25, 30, or 60
- Don't need more because of limitations of the human eye

Interlaced scan

Odd and even lines displayed on alternate frames

Progressive scan

□ Display all lines on each frame

Leonardo Chiariglione

- Moving Picture Experts Group
- Established in 1988
- Committee of experts that develops video encoding standards

Evolution of MPEG Video Standards

MPEG-1

- □ Initial audio/video compression standard
- □ Used by VCD's
- MP3 = MPEG-1 audio layer 3
- □ Target of 1.5 Mb/s bitrate at 352x240 resolution

■ MPEG-2

 □ Current de facto standard, widely used in DVD and Digital TV

Evolution of MPEG Video Standards

■ MPEG-3

Originally developed for HDTV, but abandoned when MPEG-2 was determined to be sufficient

■ MPEG-4

□ Includes support for AV "objects", 3D content, low bitrate encoding

What is a Movie?

video track

ps:08 0:00:ps:09 0:00:ps:10 0:00:ps:11 0:00:ps:12 0:00:ps:13 0:00:ps:14 0:00:ps:15 0:00:ps:16 0:00:ps:17 0:0p: timecode

audio track

Encoding & Decoding

Encoder

Decoder

100111010011

MPEG Compression

- Takes advantage of
 - □ Spatial Redundancy
 - □ Temporal Redundancy

Spatial Redundancy

 Take advantage of similarity among most neighboring pixels

Spatial Redundancy Reduction

- RGB to YUV
 - □ Less information required for YUV (humans less sensitive to chrominance)
- Macro Blocks & Blocks
 - ☐ Macro block (16x16) Block 8x8
- Discrete Cosine Transformation (DCT)
 - Based on Fourier analysis where represent signal as sum of sine's and cosine's
 - Concentrates on higher-frequency values
 - □ Represent pixels in blocks with fewer numbers
- Quantization
 - Coefficients are divided by quantization values (given by the JPEG group) and then rounded to the next integer value
- Run-Length Encoding
 - Compress

Spatial Redundancy Reduction

16

Temporal Redundancy

Take advantage of similarity between successive

frames

950 951 952

17

Temporal Activity

Temporal Redundancy Reduction

Picture 1

Picture 2

Engr. Afzal Ahmed

Temporal Redundancy

High Motion

Layers of MPEG1 Video bitstream

23

The Block Layer

- Picture is divided in 8x8 blocks
- The blocks are processed independent from each other
 - DCT
 - Quantization

DCT & Quantization

Sequence-Layer

Group-of-Picture-Layer

Picture-Layer

Slice-Layer

Macro-Layer

Block-Layer

- Matrix of DCT-coefficients
- Coefficients are divided by quantization

values and then rounded to the next

integer value

DCT & Quantization

-415	-29	-62	25	55	-20	-1	3
7	-21	-62	9	11	-7	-6	6
-46	8	77	-25	-30	10	7	-5
-50	13	35	-15	-9	6	0	3
11	-8	-13	-2	-1	1	-4	1
-10	1	3	-3	-1	0	2	-1
-4	-1	2	-1	2	-3	1	-2
-1	-1	-1	-2	-1	-1	0	-1

DC co-efficient

Quantization table

16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92
49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

Sequence-Layer

Group-of-Picture-Layer

Picture-Layer

Slice-Layer

Macro-Layer

Block-Layer

-26 -3 1 -3 -2 -6 2 -4 1 -4 1 1 5 0 2 0 0 -1 2 0 0 0 0 0 1 1 EOB

The Macro Block Layer

Group-of-Picture-Layer

Picture-Layer

Slice-Layer

Macro-Layer

Block-Layer

- / frames are independently encoded
- P frames are based on previous frames
- B frames are based on previous and following frames

The Macro Block Layer

Sequence-Layer

Group-of-Picture-Layer

Picture-Layer

Slice-Layer

Macro-Layer

Block-Layer

Available from earlier frame (X)

Available from later frame (Z

Y

Sequence-Layer Group-of-Picture-Layer Picture-Layer Slice-Layer Macro-Layer Block-Layer

The Macro Block Layer ___,

■ I – Frame, P – Frame or B – Frame?

30

The Macro Block Layer _

Sequence-Layer Group-of-Picture-Layer Picture-Layer Slice-Layer Macro-Layer Block-Layer

- I Frames:
 - Intra coded image
 - Highest amount of data
 - Coding is very similar to a JPEG picture
 - Can be processed independent from other frames

Sequence-Layer Group-of-Picture-Layer Picture-Layer Slice-Layer Macro-Layer Block-Layer

The Macro Block Layer

- P Frames:
 - Predicted image
 - Medium amount of data
 - Difference to some previous frame is stored

The Macro Block Layer ___

Sequence-Layer Group-of-Picture-Layer Picture-Layer Slice-Layer Macro-Layer Block-Layer

- B Frames:
 - Bi-directionally interpolated image
 - Lowest amount of data
 - Most frequent type of frame
 - Depend on the previous or following frames

The Macro Block Layer

Sequence-Layer Group-of-Picture-Layer

Picture-Layer

Slice-Layer

Macro-Layer

Block-Layer

I - Frame

P - Frame

The Macro Block Layer

Sequence-Layer

Group-of-Picture-Layer

Picture-Layer

Slice-Layer

Macro-Layer

Block-Layer

Motion vector

The Slice Layer

Sequence-Layer

Group-of-Picture-Layer

Picture-Layer

Slice-Layer

Macro-Layer

Block-Layer

 Slices are a group of succesive macro-blocks

Slices in an MPEG-1 Picture

The Picture Layer

Sequence-Layer Group-of-Picture-Layer Picture-Layer Slice-Layer Macro-Layer Block-Layer

The Group of Pictures Layer

- Starts with an I-frame
- Ends with frame right before next I-frame

A typical group of pictures in coding order

The Sequence Layer

- Union of GOPs
- Movie width
- Movie height
- Framerate (fps)
- Bit-rate

Sequence-Layer

Group-of-Picture-Layer

Picture-Layer

Slice-Layer

Macro-Layer

Block-Layer

Overview of MPEG-4

- Besides compression, pays great attention to issues about user interactivities
- Object-based coding
- The bit-rate for MPEG-4 video covers a large range between 5 kbps to 10 Mbps.

Overview of MPEG-4

Composition and Manipulation of MPEG-4 Videos.

VOP=Video Object Plane

Comparison between Block-based Coding and Object-based Coding

References

- A Handbook of Image and Video Processing A.Bovik & J.Gibson
- MPEG: A Video Compression Standard for Multimedia Applications Václav Hlaváč CTU Prague
- MPEG Presentation by Sebastian Graf and Thomas Winterscheid
- MPEG Video Coding Li & Drew
- Video Compression MPEG Roger Cheng