## **Nonlinear Oscillations**

# Giải hệ phương trình ODE

#### **Nonlinear Oscillations**

## Lý thuyết

Xét bài toán vật lý gắn vật vào lò xo với lực đàn hồi là  $F_k(x)$ . Có thêm trường ngoài tác động lên vật theo phương chuyển động:

$$F_k(x)+F_{ext}(x,t)=mrac{d^2x}{dt^2}.$$

Xét thế năng tới bậc 3 của x, có dáng điệu là:

$$V(x)pproxrac{1}{2}kx^2-rac{1}{3}kax^3,$$

với  $ax \ll 1$  ; 1 < ax < 2 .

Ta tìm được  $F_k(x)$  là:

$$F_k(x) = -
abla V = -kx + kax^2$$

# Thuật toán

Ta đặt:

$$\begin{cases} y_1 &= x(t) \\ y_2 &= \frac{dy_1}{dt} = \frac{dx}{dt} = v \\ y_3 &= \frac{dy_2}{dt} = \frac{d^2x}{dt^2} = \frac{-kx + kax^2}{m} \end{cases}$$
 (1)

với k=2, m=1,  $\omega=\sqrt{rac{k}{m}}$ 

Ta viết lại (1), dưới dạng ma trận trong python:

$$\begin{cases} y_1 = x(t), \\ f_1(t, y_1) = y_2 = \frac{dy_1}{dt} = \frac{dx}{dt} = v(t), \\ f_2(t, y_2) = \frac{df_1}{dt} = y_3 = \frac{dy_2}{dt} = \frac{d^2x}{dt^2} = \frac{-kx + kax^2}{m}. \end{cases}$$
 (2)

với  $f_1, f_2$  là các thành phần ma trận của |f
angle trong python.

$$egin{pmatrix} \dot{x} \ \ddot{x} \end{pmatrix} = egin{pmatrix} f_1(t,x(t)) \ f_2(t,\dot{x}(t)) \end{pmatrix} \xrightarrow{ ext{Runge-Kutta 4}} x,\dot{x}$$

Ta có điều kiện đầu cho  $x,\dot{x}$  là 1,0

#### Source code

```
import numpy as np
from numpy import typing as npt, pi, sqrt, sin
import matplotlib.pyplot as plt
import csv

alphax = 0.01
k = 2
m = 0.5
omega0 = sqrt(k / m)
b = 0.5 * m * omega0

def FArr(t: npt.NDArray, initInput: npt.NDArray) -> npt.NDArray:
    x, velocity = initInput

F = np.zeros(2)
F[0] = velocity
F[1] = -(k * x - k * x * alphax) / m
```

```
return F
def FArrExt(t: npt.NDArray, initInput: npt.NDArray) -> npt.NDArray:
    x, velocity = initInput
    F = np.zeros(2)
    F_Ext = 15 * sin(omega0 * t)
    F[0] = velocity
    F[1] = -(k * x - k * x * alphax) / m + F_Ext
    return F
def FArrVis(t: npt.NDArray, initInput: npt.NDArray) -> npt.NDArray:
    x, velocity = initInput
    F = np.zeros(2)
    F_Viscous = -b * velocity
    F[0] = velocity
    F[1] = -(k * x) / m + F_{Viscous}
    return F
def FArrExtVis(t: npt.NDArray, initInput: npt.NDArray) -> npt.NDArray:
    x, velocity = initInput
    F = np.zeros(2)
    F_Ext = 15 * sin(omega0 * t)
    F_Viscous = -b * velocity
    F[0] = velocity
    F[1] = -(k * x) / m + F_Ext + F_Viscous
    return F
def rk4(fArr: npt.NDArray, tn: npt.NDArray, yn: npt.NDArray, h: float) -> npt.NDArray:
    k1 = fArr(tn, yn)
    k2 = fArr(tn + 0.5 * h, yn + 0.5 * h * k1)
    k3 = fArr(tn + 0.5 * h, yn + 0.5 * h * k2)
    k4 = fArr(tn + h, yn + h * k3)
    return yn + h / 6 * (k1 + 2 * k2 + 2 * k3 + k4)
def savelog(file: str, N: int, solution: npt.NDArray):
    with open(file, "w", newline="") as writefile:
        header = ["n", "x", "velocity"]
        writer = csv.DictWriter(writefile, fieldnames=header)
        writer.writeheader()
        for i in range(N):
            writer.writerow({"n": i, "x": solution[i][0], "velocity": solution[i][1]})
def plot(
    file: str,
    t: npt.NDArray,
    solutionWOExtField: npt.NDArray,
    solutionWExtField: npt.NDArray,
    solutionWVis: npt.NDArray,
    solutionWExtFieldVis: npt.NDArray,
):
    x = {"xWOExtField": [], "xWExtField": [], "xWVis": [], "xWExtFieldVis": []}
    velocity = {"vWOExtField": [], "vWExtField": [], "vWVis": [], "vWExtFieldVis": []}
    for n in range(len(t)):
        x["xW0ExtField"].append(solutionW0ExtField[n][0])
        velocity["vWOExtField"].append(solutionWOExtField[n][1])
        x["xWExtField"].append(solutionWExtField[n][0])
        velocity["vWExtField"].append(solutionWExtField[n][1])
```

```
x["xWVis"].append(solutionWVis[n][0])
        velocity["vWVis"].append(solutionWVis[n][1])
        x["xWExtFieldVis"].append(solutionWExtFieldVis[n][0])
        velocity["vWExtFieldVis"].append(solutionWExtFieldVis[n][1])
    fig, ax = plt.subplots(2, 2, figsize=(15, 7))
    ax[0][0].plot(t, x["xWOExtField"])
    ax[0][0].plot(t, velocity["vWOExtField"])
    ax[0][0].legend([r"$x$", r"v(m/s)"], fontsize=15)
    ax[0][0].set_title(r"Khi chưa có trường ngoài", loc="center")
    ax[0][1].plot(t, x["xWExtField"])
    ax[0][1].plot(t, velocity["vWExtField"])
    ax[0][1].legend([r"$x$", r"v(m/s)"], fontsize=15)
    ax[0][1].set_title(r"Khi có trường ngoài", loc="center")
    ax[1][0].plot(t, x["xWVis"])
    ax[1][0].plot(t, velocity["vWVis"])
    ax[1][0].legend([r"$x$", r"v(m/s)"], fontsize=15)
    ax[1][0].set_title(r"Khi có lực ma sát và $\alpha = 0$", loc="center")
    ax[1][1].plot(t, x["xWExtFieldVis"])
    ax[1][1].plot(t, velocity["vWExtFieldVis"])
    ax[1][1].legend([r"$x$", r"v(m/s)"], fontsize=15)
    ax[1][1].set_title(r"Khi có trường ngoài và lực ma sát", loc="center")
    plt.savefig(file)
    plt.show()
def solve(F: npt.NDArray, N: int, t0: float, t1: float, h: float, solver: npt.NDArray) -> npt.NDArray:
    initInput = np.zeros(2)
    initInput[0] = 5 # Điều kiện đầu cho tại x = 1 so với vị trí cân bằng là x = 0
    initInput[1] = 0 # Điều kiện đầu cho vật tại x = 1 là lúc thả tay ra thì v = 0
    t = np.linspace(t0, t1, N)
    solution = []
    for i in range(N):
        initInput = solver(F, t[i], initInput, h)
        solution.append(initInput)
    return t, solution
def main():
    N = 1000
   t0, t1 = 0, 50
    h = (t1 - t0) / N
    fileWrite = "nonlinearOSC.txt"
    filePlot = "nonlinearOSC.pdf"
    t, solutionWOExtField = solve(FArr, N, t0, t1, h, rk4)
    t, solutionWExtField = solve(FArrExt, N, t0, t1, h, rk4)
    t, solutionWVis = solve(FArrVis, N, t0, t1, h, rk4)
    t, solutionWExtFieldVis = solve(FArrExtVis, N, t0, t1, h, rk4)
    plot(filePlot, t, solutionWOExtField, solutionWExtField, solutionWVis, solutionWExtFieldVis)
    savelog(fileWrite, N, solutionWOExtField)
if __name__ == "__main__":
    main()
```



Khi  $b=2m\omega_0$  và các thông số trên giữ nguyên.





Có thể thấy hình vẽ trên có "dáng điệu" hợp lý ứng với mỗi b khác nhau. Khi có trường ngoài thì vận tốc biến đổi theo trường ngoài và tiếp tục tăng. Còn khi có lực ma sát, và xét trường hợp đơn giản nhất  $\alpha=0$ , thì ta có thể thấy dao động bị tắt dần.