

Holtek - RAM Data Memory

- The **Data Memory is a volatile area** of **8-bit wide RAM internal memory** and is the location where temporary information is stored. The overall Data Memory is subdivided into several banks.
- Divided into two sections, the first of these is an area of RAM, known as the Special Function Data Memory.
- ⇒Here are located registers which are necessary for correct operation of the device.
- ⇒ Many of these registers can be read from and written to directly under program control, however, some remain protected from user manipulation.

• The **second** area of Data Memory is known as the General Purpose Data Memory, which is reserved for general purpose use.

Bank 0, 1, 2

Bank 0, 2 | Bank 1

Bank 0, 2 | Bank 1

Bank 0, 2 | Bank 1

⇒All locations within this area are read and write accessible under program control.

Device	Capacity	Banks
HT66F20	64×8	0: 60H~7FH 1: 60H~7FH
HT66F30	96×8	0: 60H~7FH 1: 60H~7FH 2: 60H~7FH
HT66F40	192×8	0: 80H~FFH 1: 80H~BFH
HT66F50	384×8	0: 80H~FFH 1: 80H~FFH 2: 80H~FFH
HT66F60	576×8	0: 80H~ 1: 80H~FFH 2: 80H~FFH 3: 80H~FFH 4: 80H~BFH

	Bank 0, 1, 2		Bank 0, 1, 2		Bank 0, 2 Bank 1		Bank 0, 2 Bank 1
00H	IAR0	20H	PC	40H	Unused EEC	60H	Unused
01H	MP0	21H	PCC	41H	EEA	61H	Unused
02H	IAR1	22H	PDPU	42H	EED	62H	Unused
03H	MP1	23H	PD	43H	TMPC0	63H	Unused
04H	BP	24H	PDC	44H	TMPC1	64H	Unused
05H	ACC	25H	PEPU	45H	PRM0	65H	Unused
06H	PCL	26H	PE	46H	PRM1	66H	Unused
07H	TBLP	27H	PEC	47H	PRM2	67H	Unused
08H	TBLH	28H	PFPU	48H	TM1C0	68H	Unused
09H	TBHP	29H	PF	49H	TM1C1	69H	Unused
0AH	STATUS	2AH	PFC	4AH	TM1C2	6AH	Unused
0BH	SMOD	2BH	Unused	4BH	TM1DL	6BH	Unused
0CH	LVDC	2CH	Unused	4CH	TM1DH	6CH	Unused
0DH	INTEG	2DH	Unused	4DH	TM1AL	6DH	Unused
0EH	WDTC	2EH	ADRL	4EH	TM1AH	6EH	Unused
0FH	TBC	2FH	ADRH	4FH	TM1BL	6FH	Unused
10H	INTC0	30H	ADCR0	50H	TM1BH	70H	Unused
11H	INTC1	31H	ADCR1	51H	TM2C0	71H	Unused
12H	INTC2	32H	ACERL	52H	TM2C1	72H	Unused
13H	Unused	33H	Unused	53H	TM2DL	73H	Unused
14H	MFI0	34H	CP0C	54H	TM2DH	74H	Unused
15H	MFI1	35H	CP1C	55H	TM2AL	75H	Unused
16H	MFI2	36H	SIMC0	56H	TM2AH	76H	Unused
17H	MFI3	37H	SIMC1	57H	TM2RP	77H	Unused
18H	PAWU	38H	SIMD	58H	TM3C0	78H	Unused
19H	PAPU	39H	SIMA/SIMC2	59H	TM3C1	79H	Unused
1AH	PA	3AH	TM0C0	5AH	TM3DL	7AH	Unused
1BH	PAC	3BH	TM0C1	5BH	TM3DH	7BH	Unused
1CH	PBPU	3CH	TM0DL	5CH	TM3AL	7CH	Unused
1DH	PB	3DH	TM0DH	5DH	TM3AH	7DH	Unused
1EH	PBC	3EH	TM0AL	5EH	SCOMC	7EH	Unused
1FH	PCPU	3FH	TM0AH	5FH	Unused	7FH	Unused

NKNU_EE_MMSOC_RLWang

Holtek - Indirect Addressing

- ☐ Indirect Addressing Registers IARO, IAR1
- The Indirect Addressing Registers, IARO and IAR1, although having their locations in normal RAM register space, do not actually physically exist as normal registers.
- The method of indirect addressing for RAM data manipulation uses these Indirect Addressing Registers and Memory Pointers, in contrast to direct memory addressing, where the actual memory address is specified.
- Actions on the IARO and IAR1 registers will result in no actual read or write operation to these registers but rather to the memory location specified by their corresponding Memory Pointers, MPO or MP1.
- Acting as a pair, <u>IARO and MPO can together access data from Bank O</u> while the <u>IAR1 and MP1 register pair</u> can access data from any bank.
- As the Indirect Addressing Registers are not physically implemented, reading the Indirect Addressing Registers indirectly will return a result of "00H" and writing to the registers indirectly will result in no operation.
- ☐ Memory Pointers MP0, MP1
- Two Memory Pointers, known as MP0 and MP1 are provided.
- These Memory Pointers are physically implemented in the Data Memory and can be manipulated in the same way as normal registers providing a convenient way with which to address and track data.
- When any operation to the relevant Indirect Addressing Registers (IAR0 or IAR1) is carried out, the actual address that the microcontroller is directed to, is the address specified by the related Memory Pointer.
- ⇒ MPO, together with Indirect Addressing Register, IARO, are used to access data from Bank O.
- ⇒MP1 and IAR1 are used to access data from all banks according to BP register.
- Direct Addressing can only be used with Bank 0, all other Banks must be addressed indirectly using MP1 and IAR1.
- □ Note that for the HT66F20 and HT66F30 devices, bit 7 of the Memory Pointers is not required to address the full memory space. When bit 7 of the Memory Pointers for HT66F20 and HT66F30 devices is read, a value of "1" will be returned. The following example shows how to clear a section of four Data Memory locations already defined as locations addres1 to addres4.

Holtek - EEPROM Data Memory

Device	Capacity	Address
HT66F20	32×8	00H~1FH
HT66F30	64×8	00H~3FH
HT66F40	128×8	00H~7FH
HT66F50/HT66F60	256×8	00H~FFH

- ☐ The EEPROM Data Memory capacity varies from 32x8 to 256x8 bits, according to the device selected.
- Read and Write operations to the EEPROM are carried out in single byte operations using an address and data register in Bank 0 and a single control register in Bank 1.
- ☐ Three registers control the overall operation of the internal EEPROM Data Memory.
 - •These are the address register, EEA, the data register, EED and a single control register, EEC.
- As both the **EEA and EED registers** are located in **Bank 0**, they can be **directly accessed** in the same way as any other Special Function Register.
- ☐ The **EEC register** however, being located in Bank1, **cannot be directly addressed** and **can only be read** from or written to indirectly using the MP1 Memory Pointer and Indirect Addressing Register, IAR1.
- •Because the **EEC** control register is located at address 40H in Bank 1, the MP1 Memory Pointer must first be set to the value 40H and the Bank Pointer register, BP, set to the value, 01H, before any operations on the EEC register are executed.

EEA Name	HT66F60 →HT66F50	HT66F40 →	HT66F30 →	HT66F20 B	it			
Ivaille	7	6	5	4	3	2	1	0
EEA	D7	D6	D5	D4	D3	D2	D1	D0
EED	D7	D6	D5	D4	D3	D2	D1	D0
EEC	_	_	_	_	WREN	WR	RDEN	RD

NKNU_EE_MMSOC_RLWang

NKNU_EE_MMSOC

Holtek - EEPROM Data Memory / EEA, EEC

Ð	$\mathbf{E}\mathbf{A}$	

Bit	7	6	5	4	3	2	1	0
Name	D7	D6	D5	D4	D3	D2	D1	D0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
POR	×	×	×	×	×	×	×	×

Bit 7~0 Data EEPROM address Data EEPROM address

"x" unknown

EEC

Bit	7	6	5	4	3	2	1	0
Name	_	_	_	_	WREN	WR	RDEN	RD
R/W	_	_	_	_	R/W	R/W	R/W	R/W
POR	_	_	_	_	0	0	0	0

Bit 7~4 Unimplemented, read as "0"

Bit 3 WREN: Data EEPROM Write Enable

0: Disable

1: Enable

This is the Data EEPROM Write Enable Bit which must be set high before Data EEPROM write operations are carried out Clearing this bit to zero will inhibit Data EEPROM write operations.

Bit 2 WR: EEPROM Write Control

0: Write cycle has finished 1: Activate a write cycle
This is the Data EEPROM Write Control Bit and when set
high by the application program will activate a write cycle.
This bit will be automatically reset to zero by the hardware
after the write cycle has finished. Setting this bit high will
have no effect if the WREN has not first been set high.

Bit 1 RDEN: Data EEPROM Read Enable

0: Disable

1: Enable

This is the Data EEPROM Read Enable Bit which must be set high before Data EEPROM read operations are carried out.

Clearing this bit to zero will inhibit Data EEPROM read operations.

Bit 0 RD: EEPROM Read Control

0: Read cycle has finished

1: Activate a read cycle

This is the Data EEPROM Read Control Bit and when set high by the application program will activate a read cycle.

This bit will be automatically reset to zero by the hardware after the read cycle has finished.

Setting this bit high will have no effect if the RDEN has not first been set high.

Note: The WREN, WR, RDEN and RD can not be set to "1" at the same time in one instruction.

The WR and RD can not be set to "1" at the same time.

NKNU_EE_MMSOC_RLWang

Holtek – EEPROM Data Memory / Read, Write Procedures

Reading Data from the EEPROM

- 1. To read data from the EEPROM, the read enable bit, RDEN, in the EEC register must first be set high to enable the read function.
- 2. The **EEPROM address** of the data to be read must then be placed in the **EEA** register.
- 3. If the RD bit in the EEC register is now set high, a read cycle will be initiated.
- ☐ Setting the RD bit high will not initiate a read operation if the RDEN bit has not been set.
- 4. When the read cycle terminates, the RD bit will be automatically cleared to zero, after which the data can be read from the EED register.
 - The data will remain in the EED register until another read or write operation is executed.
 - ☐ The application program can poll the RD bit to determine when the data is valid for reading.

Writing Data to the EEPROM

- 1. To write data to the EEPROM, the write enable bit, WREN, in the EEC register must first be set high to enable the write function.
- 2. The **EEPROM address** of the data to be written must then be placed in the **EEA** register and the data placed in the EED register.
- 3. If the Wrbit in the EEC register is now set high, an internal write cycle will then be initiated.
- ☐ Setting the WR bit high will not initiate a write cycle if the WREN bit has not been set.
- 4. When the write cycle terminates, the WR bit will be automatically cleared to zero by the microcontroller, informing the user that the data has been written to the EEPROM.
 - As the **EEPROM** write cycle is controlled using an internal timer whose operation is asynchronous to microcontroller system clock, a certain time will elapse before the data will have been written into the EEPROM.
 - ☐ Detecting when the write cycle has finished can be implemented either by polling the WR bit in the EEC register or by using the EEPROM interrupt.

An EEPROM Interrupt request will take place when the EEPROM Interrupt request flag, DEF, is set, which occurs when an EEPROM Write or Read cycle ends. NKNU_EE_MMSOC_RLWang

NKNU_EE_MMSOC

Holtek – EEPROM Data Memory / Read, Write Procedures


```
unsigned short EEPROM RD(unsigned char ee addr)
                                    //user defined address
            eea=ee addr;
            mp1=0x40;//setup memory pointer MP1, MP1 points to EEC register
            bp=0x01;
                                    //setup Bank Pointer
           // rden=1;
                                    //set RDEN bit, enable read operations
           // rd=1;
                                    //start Read Cycle - set RD bit
           //while( rd)
                                    //check for read cycle end
           _iar1=0x02; //_rden=1; //set RDEN bit, enable read operations
            iar1=0x03; // rd=1;
                                    //start Read Cycle - set RD bit
                                    //while( rd) //check for read cycle end
            while((_iar1&0x01))
             iar1 = 0x00;
                                    //disable EEPROM read/write, i.e. rden=0; wren=0
            bp=0;
           return eed; //return read data
```

void EEPROM WR(unsigned char ee addr, unsigned char ee data)

	EEC											
Bit	7	6	5	4	3	2	1	0				
Name	_	_	_	_	WREN	WR	RDEN	RD				
R/W	_	_	_	_	R/W	R/W	R/W	R/W				
POR	_	_	_	_	0	0	0	0				

```
//user defined address
eea=ee addr;
 eed=ee data;
                        //user defined data
 mp1=0x40;
                        //setup memory pointer MP1, MP1 points to EEC register
 bp=0x01;
                        //setup Bank Pointer
// wren=1;
                        //set WREN bit, enable write operations
// wr=1;
                        //Start Write Cycle - set WR bit
//while(wr)
                        //check for read cycle end
 iar1=0x08;
                        // wren=1;
                                                 //set WREN bit, enable write operations
_iar1=0x0C;
                                                             //Start Write Cycle - set WR bit
                                    // wr=1;
while((_iar1&0x04))
                                    //while( wr)//check for read cycle end
  }
 iar1 = 0x00;
                        //disable EEPROM read/write, i.e. _rden=0; _wren=0
bp=0;
```


Holtek - EEPROM Data Memory / A.C. Characteristics

A.C. Characteristics

Ta=25°C

Complete	Devenueles		Test Conditions	Min.	T		11-24
Symbol	Parameter	V _{DD}	/ _{DD} Conditions		Тур.	Max.	Unit
		5V	Ta=25°C	-10%	32	+10%	kHz
f _{LIRC}	System Clock (LIRC)	2.2V~ 5.5V	To- 10°C~+95°C		32	+60%	kHz
f _{TIMER}	Timer Input Pin Frequency	_	_	_	_	1	f _{SYS}
t _{RES}	External Reset Low Pulse Width	_	_	1	_	_	μS
t _{INT}	Interrupt Pulse Width	_	_	1	_	_	t _{SYS}
t _{LVR}	Low Voltage Width to Reset	_	_	120	240	480	μS
t _{LVD}	Low Voltage Width to Interrupt	_	_	20	45	90	μs
t _{LVDS}	LVDO stable time	_	_	15	_	_	μS
t _{BGS}	VBG Tum on Stable Time	_	_	200	_	_	μS
t _{EERD}	EEPROM Read Time	_	_	_	45	90	μS
t _{EEWR}	EEPROM Write Time	_	_	_	2	4	ms
			f _{SYS} =HXT or LXT	_	1024	_	
t _{sst}	System Start-up Timer Period (Wake-up from HALT)	_	f _{SYS} =ERC or HIRC		15~16	_	t _{sys}
	(Traile up from the Lift)		f _{SYS} =LIRC OSC	_	1~2	_	

Note: $t_{SYS} = 1/f_{SYS}$

NKNU_EE_MMSOC_RLWang

Holtek – RAM Data Memory

- The Data Memory is a volatile area of **8-bit wide RAM internal memory** and is the location where temporary information is stored. The overall Data Memory is subdivided into several banks.
- Divided into two sections, the first of these is an area of RAM, known as the Special Function Data Memory.

 ⇒ Here are located registers which are necessary for correct operation of the device.
- ⇒ Many of these registers can be read from and written to directly under program control, however, some remain protected from user manipulation.
- The **second** area of Data Memory is known as the **General Purpose Data Memory**, which is reserved for general purpose use.

 Bank 0, 1, 2

 Bank 0, 1, 2

 Bank 0, 2 | Bank 1

 Bank 0, 2 | Bank 1

 Bank 0, 2 | Bank 1
- ⇒All locations within this area are read and write accessible under program control.

Device	Capacity	Banks
HT66F20	64×8	0: 60H~7FH 1: 60H~7FH
HT66F30	96×8	0: 60H~7FH 1: 60H~7FH 2: 60H~7FH
HT66F40	192×8	0: 80H~FFH 1: 80H~BFH
HT66F50	384×8	0: 80H~FFH 1: 80H~FFH 2: 80H~FFH
HT66F60	576×8	0: 80H~ 1: 80H~FFH 2: 80H~FFH 3: 80H~FFH 4: 80H~BFH

	Bank 0, 1, 2		Bank 0, 1, 2		Bank 0, 2 Bank	1	Bank 0, 2 Bank 1
00H	IAR0	20H	PC	40H	Unused EE	60H	Unused
01H	MP0	21H	PCC	41H	EEA	61H	Unused
02H	IAR1	22H	PDPU	42H	EED	62H	Unused
03H	MP1	23H	PD	43H	TMPC0	63H	Unused
04H	BP	24H	PDC	44H	TMPC1	64H	Unused
05H	ACC	25H	PEPU	45H	PRM0	65H	Unused
06H	PCL	26H	PE	46H	PRM1	66H	Unused
07H	TBLP	27H	PEC	47H	PRM2	67H	Unused
08H	TBLH	28H	PFPU	48H	TM1C0	68H	Unused
09H	TBHP	29H	PF	49H	TM1C1	69H	Unused
0AH	STATUS	2AH	PFC	4AH	TM1C2	6AH	Unused
0BH	SMOD	2BH	Unused	4BH	TM1DL	6BH	Unused
0CH	LVDC	2CH	Unused	4CH	TM1DH	6CH	Unused
0DH	INTEG	2DH	Unused	4DH	TM1AL	6DH	Unused
0EH	WDTC	2EH	ADRL	4EH	TM1AH	6EH	Unused
0FH	TBC	2FH	ADRH	4FH	TM1BL	6FH	Unused
10H	INTC0	30H	ADCR0	50H	TM1BH	70H	Unused
11H	INTC1	31H	ADCR1	51H	TM2C0	71H	Unused
12H	INTC2	32H	ACERL	52H	TM2C1	72H	Unused
13H	Unused	33H	Unused	53H	TM2DL	73H	Unused
14H	MFI0	34H	CP0C	54H	TM2DH	74H	Unused
15H	MFI1	35H	CP1C	55H	TM2AL	75H	Unused
16H	MFI2	36H	SIMC0	56H	TM2AH	76H	Unused
17H	MFI3	37H	SIMC1	57H	TM2RP	77H	Unused
18H	PAWU	38H	SIMD	58H	TM3C0	78H	Unused
19H	PAPU	39H	SIMA/SIMC2	59H	TM3C1	79H	Unused
1AH	PA	3AH	TM0C0	5AH	TM3DL	7AH	Unused
1BH	PAC	3BH	TM0C1	5BH	TM3DH	7BH	Unused
1CH	PBPU	3CH	TM0DL	5CH	TM3AL	7CH	Unused
1DH	PB	3DH	TM0DH	5DH	TM3AH	7DH	Unused
1EH	PBC	3EH	TM0AL	5EH	SCOMC	7EH	Unused
1FH	PCPU	3FH	TM0AH	5FH	Unused	7FH	Unused

NKNU_EE_MMSOC_RLWang

Holtek – Exercise Lab07 / Password Lock (Flow Chart)

