Dynamikastochastyczna-Skrypt *Wydanie I*

Jerzy Łuczka, Łukasz Machura

Spis treści

1	Dynamika deterministyczna			
	1.1	Opis i modelowanie zjawisk oraz procesów przy pomocy równań różniczkowych	3	
	1.2	Modelowanie z czasem dyskretnym	8	
	1.3	Istnienie i jednoznaczność rozwiązań	8	
2	Testy		15	
	2.1	Title (Heading 1)	15	

Autorzy Jerzy Łuczka, Łukasz Machura **Wersja** 1.0, 10/2013

Spis treści 1

2 Spis treści

Dynamika deterministyczna

1.1 Opis i modelowanie zjawisk oraz procesów przy pomocy równań różniczkowych

Jednym z podstawowych praw fizyki, jakie poznajemy w szkole średniej jest II zasada dynamiki Newtona. Opisuje ona klasyczne układy mechaniczne. Układy te są idealizacją realnych układów występujących w otaczającym nas świecie. W najprostszej wersji II zasada dynamiki Newtona w odniesieniu do jednej cząstki poruszającej się tylko wzdłuż jednej osi współrzędnych, np. wzdłuż osi OX, może być sformułowana w następującej postaci:

Ruch cząstki jest zdeterminowany przez siły jakie działają na cząstkę

Z punktu widzenia matematycznego, ruch cząstki opisany jest przez równanie Newtona:

$$ma = F (1.1)$$

W równaniu tym występują trzy wielkości:

m to masa cząstki a jest przyśpieszeniem cząstki F jest siłą działającą na czastkę. Ponieważ ruch zachodzi tylko wzdłuż osi OX (tak zakładamy dla prostoty), siła F działa tylko w kierunku OX oraz przyśpieszenie a jest wzdłuż osi OX.

Wiemy z kursu fizyki, że przyśpieszenie cząstki jest pochodną (względem czasu) pierwszego rzędu prędkości v cząstki. Z kolei prędkość cząstki v jest pochodną pierwszego rzędu położenia czastki x.

$$a = \frac{d}{dt}v = \frac{d}{dt}\frac{d}{dt}x = \frac{d^2x}{dt^2}$$
 (1.2)

W ogólnej postaci siła

$$F = F(x, v, t) = F(x, dx/dt, t)$$

$$\tag{1.3}$$

może zależeć od położenia x cząstki, jej prędkości v = dx/dt oraz czasu t.

Jeżeli przyśpieszenie a oraz siłę F w takiej postaci podstawimy do równania Newtona, to jego postać jest następująca:

$$m\frac{d^2x}{dt^2} = F\left(x, \frac{dx}{dt}, t\right) \tag{1.4}$$

W ten sposób otrzymujemy równanie różniczkowe, które opisuje jednowymiarowy ruch cząstki wzdłuż osi OX. Co możemy powiedzieć o tym równaniu:

Jest to równanie różniczkowe drugiego rzędu, ponieważ pojawia się pochodna drugiego rzędu d^2x/dt^2 . Jest to równanie różniczkowe zwyczajne, ponieważ nie występują pochodne cząstkowe a jedynie pochodne ze względu na jedną zmienną - w tym przypadku pochodne względem czasu t. Samo równanie Newtona nie wystarczy, aby opisać ruch cząstki. Musimy zadać warunki początkowe dla tego równania. Ponieważ jest to równanie drugiego rzędu, musimy zadać dwa warunki początkowe: początkowe położenie $x(t_0)=x_0$ oraz początkową prędkość $v(t_0)=v_0$. Warunki początkowe można zadać w dowolnej chwili czasu t_0 , ale zazwyczaj tą chwilą początkową jest umowna chwila $t_0=0$. Równanie (1.4) możemy zatem przedstawić w równoważnej postaci:

$$\frac{dx}{dt} = v \tag{1.5}$$

$$\frac{dv}{dt} = \frac{1}{m}F(x, v, t) \tag{1.6}$$

gdzie wprowadziliśmy nową zmienną v która ma interpretację prędkości cząstki. W ten sposób otrzymaliśmy układ 2 równań różniczkowych pierwszego rzędu. Jak później zobaczymy, taka manipulacja jest użyteczna przy wprowadzeniu pojęcia przestrzeni fazowej dla równań różniczkowych. Jeżeli siła F nie zależy w sposób jawny od czasu, to układ równań

$$\frac{dx}{dt} = v \tag{1.7}$$

$$m\frac{dv}{dt} = F(x, v) \tag{1.8}$$

nazywamy autonomicznym. Innymi słowy, jest to autonomiczny układ 2 równań różniczkowych zwyczajnych 1-rzędu. Mówimy wówczas, że jego przestrzeń fazowa jest 2-wymiarowa.

Jeżeli cząstka porusza się na płaszczyźnie (X,Y), to równanie Newtona ma postać:

$$m\frac{d^2x}{dt^2} = F\left(x, y, \frac{dx}{dt}, \frac{dy}{dt}, t\right)$$
(1.9)

$$m\frac{d^2y}{dt^2} = G\left(x, y, \frac{dx}{dt}, \frac{dy}{dt}, t\right)$$
(1.10)

gdzie F i G są składowymi siły działającymi na cząstkę w kierunku x oraz y. W ogólnym przypadku siły te zależą od położenia cząstki (x,y), jej składowych prędkości (dx/dt,dy/dt) oraz czasu t.

Jeżeli składowe siły F i G nie zależą w sposób jawny od czasu, to postępując podobnie jak poprzednio otrzymamy układ:

$$\frac{dx}{dt} = v \tag{1.11}$$

$$\frac{dy}{dt} = u \tag{1.12}$$

$$m\frac{dv}{dt} = F(x, y, v, u) \tag{1.13}$$

$$m\frac{du}{dt} = G(x, y, v, u) \tag{1.14}$$

Jest to autonomiczny układ 4 równań różniczkowych zwyczajnych 1-rzędu. Mówimy wówczas, że jego przestrzeń fazowa jest 4-wymiarowa.

Dla cząstki poruszającej się w przestrzeni (X,Y,Z), mamy 3 równania Newtona 2-rzędu. Jeżeli 3 składowe siły nie zależą w sposób jawny od czasu, to postępując podobnie jak poprzednio otrzymamy układ 6 równań różniczkowych 1-rzędu i przestrzeń fazowa jest 6-wymiarowa. W ogólności, dla N cząstek poruszających się w przestrzeni, przestrzeń fazowa ma wymiar 6N. Analiza takich równań przekracza możliwości współczesnej matematyki w tym sensie, że mało wiemy o ogólnych własnościach konkretnych układów, które modelujemy. To powoduje, że musimy stosować numeryczne metody i komputer jest nieodzownym narzędziem analizy.

Powyżej podaliśmy jeden przykład modelowania. Bazuje on na formaliźmie Newtona i równaniach ruchu Newtona, Może być stosowany do opisu dynamiki cząstek klasycznych. Czasami wygodnie jest stosować inny formalizm jak na przykład formalizm Lagrange'a lub formalizm Hamiltona. W wielu przypadkach wszystkie trzy formalizmy są równoważne. Dla tzw. układów z więzami, wygodnie jest stosować formalizm Lagrange'a lub formalizm Hamiltona.

Definiując układ równań różniczkowych jako autonomiczny, zakładaliśmy że siła nie zależy w sposób jawny od czasu. Może wydawać się, że jest to jakieś ograniczenie. Nie jest to prawdą. Układy nieautonomiczne można sprowadzić do układów autonomicznych wprowadzając dodatkową zmienną niezależną, dodatkowe "położenie". Pokażemy to na prostym przykładzie. Rozpatrzmy cząstkę poruszającą się wzdłuż osi X. Na cząstkę działa siła tarcie proporcjonalna do prędkości cząstki, $F=-\gamma v$, działa siła potencjalna F(x)=-V'(x) pochodząca od energii potencjalnej V(x) (nazywanej skrótowo potencjałem). Siła ta jest ujemnym gradientem potencjału (czyli pochodną V'(x)). Dodatkowo na cząstkę działa periodyczna w czasie siła $F(t)=Acos(\omega t)$. Równanie Newtona ma postać

$$m\ddot{x} = -\gamma \dot{x} - V'(x) + A\cos(\omega t) \tag{1.15}$$

gdzie kropki oznaczają pochodne względem czasu, a apostrof oznacza pochodną względem x. I tak

$$\dot{x} = \frac{dx}{dt}, \qquad \ddot{x} = \frac{d^2x}{dt^2}, \qquad V'(x) = \frac{dV(x)}{dx}$$
 (1.16)

Równanie to możemy przedstawić w postaci układu 3 równań różniczkowych:

$$\dot{x} = v \tag{1.17}$$

$$m\dot{v} = -\gamma v - V'(x) + A\cos(z) \tag{1.18}$$

$$\dot{z} = \omega \tag{1.19}$$

Równoważność pokazujemy w następujący sposób:

w równaniu (1.18) należy zastąpić v z równania (1.17) wyrażeniem $v=\dot{x}$ pamiętając jednocześnie że $\dot{v}=\ddot{x}$ równanie (1.19) można scałkować i otrzymamy $z=\omega t$; wstawiamy to wyrażenie do równania (1.18). W ten sposób otrzymujemy znowu równanie (1.15). Tak więc jedno równanie różniczkowe nieutonomiczne 2-rzędu jest równoważne układowi 3 równań różniczkowych 1-rzędu. Odpowiadająca temu układowi przestrzeń fazowa jest 3-wymiarowa. Z przykładu tego płynie ważna wskazówka, jak otrzymywać autonomiczny układ równań różniczkowych 1-rzędu. Liczba tych równań definiuje przestrzeń fazową układu. Wymiar tej przestrzeni jest jedną z najważniejszych charakterystyk. Proszę to zapamiętać!

Fizyka stosuje też aparat równań różniczkowych cząstkowych. Studenci kierunku fizyka i pokrewnych kierunków znają przykłady takich równań. Równanie Schrodingera, równanie falowe, równanie dyfuzji, równania Maxwela to są równania różniczkowe cząstkowe. Ich analiza jest znacznie trudniejsza. Istnieją specjalne i specyficzne metody matematyczne pozwalające otrzymać informację o własnościach układów opisywanych takimi równaniami.

W wielu dziedzinach nauki (chemia, biologia, socjologia, nauki ekonomiczne) stosuje się fenomenologiczny sposób modelowania. Aby uzmysłowić, jak go stosować podamy jeden przykład.

1.1.1 Modelowanie procesu wzrostu

Procesy wzrostu pojawiają się na wielu obszarach. Nie trzeba być bystrym obserwatorem, aby zauważyć co wokół nas może wzrastać. My rozważamy jedną z możliwych klas procesów wzrosu: wzrost populacji zajęcy czy bakterii, wzrost depozytów pieniężnych na lokatach bankowych, wzrost stężenia substancji w reakcjach chemicznych czy wzrost liczby komórek nowotworowych. Często procesom wzrostu towarzyszą procesy malenia (zaniku, śmierci, ...). My je będziemy pomijać. Rozpatrzmy konkretny przykład: wzrost pieniędzy na lokacie bankowej. Załóżmy, żę w chwili czasu t jest na lokacie x(t) (np. złotych polskich). Pytamy, ile pieniędzy przyrośnie po pewnym czasie h, czyli ile pieniędzy będzie w chwili t+h. Zaczynamy modelować ten proces. Oznaczmy, że w chwili t+h jest x(t+h) pieniędzy. Na tę kwotę składają się pieniądze x(t) oraz przyrost δ z odsetek, czyli

$$x(t+h) = x(t) + \delta \tag{1.20}$$

Przyrost δ 'zaleyod : math : 'x(t), od wielkości oprocentowania k oraz od tego jak długo (h) trzymamy pieniądze na lokacie, czyli

$$\delta \propto x(t), \qquad \delta \propto k, \qquad \delta \propto h$$
 (1.21)

Możemy to skomasować pisząc:

$$\delta = kx(t)h\tag{1.22}$$

Dlatego też

$$x(t+h) = x(t) + kx(t)h \tag{1.23}$$

Relacje te możemy przepisać w postaci

$$\frac{x(t+h) - x(t)}{h} = kx(t) \tag{1.24}$$

W granicy małych przyrostów czasu $h \to 0$, lewa strona jest definicją pochodnej

$$\frac{dx(t)}{dt} = kx(t), \qquad x(0) = x_0 \tag{1.25}$$

gdzie x_0 jest wartością początkową naszej lokaty. W ten oto sposób otrzymaliśmy równanie opisujące dynamikę wzrostu pieniędzy na naszej lokacie bankowej. Jest to równanie różniczkowe zwyczajne, 1-go rzędu, autonomiczne. Jego przestrzeń fazowa jest 1-wymiarowa.

Poniżej pokazujemy rozwiązania tego równania dla 3 różnych wartości k.

```
var('N1,N2,N3')
T = srange(0,3,0.01)
## rozwiązania dla różnych wartości k=0, 0.1, 0.2
sol=desolve_odeint( vector([0, 0.1*N2, 0.2*N3]), [5,5,5],T,[N1,N2,N3])
## wykresy rozwiązań dla różnych wartości k=-1, 0, 0.5
line(zip(T,sol[:,0]), figsize=(5, 3), legend_label="k=0") +\
line(zip(T,sol[:,1]), color='red', legend_label="k=0.1")+\
line(zip(T,sol[:,2]), color='green', legend_label="k=0.2")
```

Inne procesy wzrostu także można modelować tym równaniem. Równanie to jest też punktem wyjściowym do modyfikacji, uogólnień, rozszerzeń, itp. Proste rozszerzenie polega na uzależnieniu współczynnika tempa wzrostu k od dodatkowych czynników. Na przykład przy modelowaniu wzrostu populacji zajęcy, możemy uzależnić tempo wzrostu k od liczby zajęcy w populacji: duża ilość zajęcy powoduje dużą konsumpcję pożywienia, a to z kolei skutkuje zmaleniem ilości pożywienia i utrudnieniami w zdobywaniu pożywienia. W efekcie zmniejsza się tempo wzrostu k. Innymi słowy, k powinno być malejącą funkcją x(t) liczebników w populacji. Istnieje nieskończenie wiele takich funkcji. Na przykład

$$k \to k(x) = \exp(-bx), \qquad b > 0 \tag{1.26}$$

jest malejącą funkcją x. Teraz równanie różniczkowe ma postać

$$\frac{dx}{dt} = xe^{-bx}, \quad x = x(t), \quad x(0) = x_0$$
 (1.27)

Jakie są skutki takiej zmiany? Pokazujemy to na poniższym rysunku. Zauważamy, że tempo wzrostu populacji zmniejsza się w porównaniu z poprzednim przypadkiem.

Model można rozszerzyć uwzględniając procesy śmierci: te naturalne i te wskutek istnienia drapieżników, które zjadają osobników populacji. Prosty model ofiara-drapieżca jest 2-wymiarowy: opisuje zmiany w populacji ofiar i zmiany w populacji drapieżników. Jest to autonomiczny układ 2 równań różniczkowych zwyczajnych.

```
\label{eq:continuous} \begin{array}{lll} \text{var}('\text{x},\text{y},\text{z}') \\ \text{U} &= \text{srange}(0,300,0.01) \\ \text{sol=desolve\_odeint}( \text{vector}([\text{x*exp}(-0.1*\text{x}), \text{y*exp}(-0.2*\text{y}), \text{z*exp}(-0.3*\text{z})]), [5,5,5], \text{U}, \\ \text{\#\# pokazujemy rozwiązania dla różnych wartości k=-1, 0, 0.5} \\ \text{line}(\text{zip}(\text{U},\text{sol}[:,0]), \text{figsize=}(5, 3), \text{legend\_label="k=0")+} \\ \text{line}(\text{zip}(\text{U},\text{sol}[:,1]), \text{color='red', legend\_label="k=0.1")+} \\ \text{line}(\text{zip}(\text{U},\text{sol}[:,2]), \text{color='green', legend\_label="k=0.2"}) \end{array}
```

1.2 Modelowanie z czasem dyskretnym

Powyżej otrzymaliśmy takie oto wyrażenie na przyrost:

$$x(t+h) = x(t) + khx(t)$$

$$(1.28)$$

Jeżeli zmiany następowałyby nie w sposób ciągły lecz dyskretny (np. co 1 dzien, co jedną godzinę) wówczas krok czasowy h jest dyskretny. Można wprowadzić oznaczenia

$$x_n = x(t), x_{n+1} = x(t+h)$$
 (1.29)

i wówczas równanie dla przyrostu ma postać

$$x_{n+1} = x_n + \alpha x_n, \qquad \alpha = kh \tag{1.30}$$

W ten sposób otrzymujemy równanie z czasem dyskretnym. Ogólna postać tego typu równania to

$$x_{n+1} = f(x_n) (1.31)$$

które mówi nam, jaką wartość przyjmuje dana wielkość w następnym kroku n+1 jeżeli znana jest wartość tej wielkości w kroku n. Równanie to nazywa się też równaniem rekurencyjnym. W zależności od postaci funkcji f(x) otrzymujemy różne modele dynamiki układów.

Układ 2 równań z czasem dyskretnym ma postać

$$x_{n+1} = f(x_n, y_n) (1.32)$$

$$y_{n+1} = q(x_n, y_n) (1.33)$$

Analiza jakościowa takiego układu jest bardzo trudna. Czasami nieumiejętne stosowanie numerycznej analizy może skutkować tym, że umkną nam istotne cechy takiego układu, zwłaszcza gdy w układzie występują dodatkowo parametry których zmiana może powodować coś, co nazywa się bifurkacjami. Ale o tym w dalszej części książki.

1.3 Istnienie i jednoznaczność rozwiązań

Do opisu realnych zjawisk przy pomocy równań różniczkowych zwyczajnych z warunkami początkowymi zadanymi w chwili czasu t=0, potrzebne nam są rozwiązania dla czasów t>0 (ewolucja czasowa). Można też rozpatrywać przypadek t<0 ale to zaliczyłbym do ćwiczeń matematycznych. Ważnym zagadnieniem jest istnienie rozwiązań równań różniczkowych. Możemy zapytać, czy zawsze rozwiązania równań różniczkowych istnieją i jeżeli istnieją, to czy to są jedyne rozwiązania z warunkiem początkowym. Oczywiście dla różnych warunków początkowych układ może różnie ewoluować, ale gdy startuje zawsze z tego samego stanu (warunku) początkowego to czy ewolucja jest taka sama? Na tym polega problem jednoznaczności rozwiązań. Jeżeli dla danego warunku początkowego istnieją np. 3 rozwiązania, to jak ewoluuje układ: istnieją 3 możliwości i którą możliwość wybiera układ? Gdyby tak

było dla realnych układów to nie moglibyśmy przewidywać ewolucji układu, nie moglibyśmy sterować układami, brak byłoby determinizmu. W rozwoju nauk ścisłych to właśnie determinizm stał się kołem napędowym rozwoju cywilzacyjnego ludzkości. To determinizm pozwala budować urządzenia, które działają tak jak my sobie tego życzymy: telewizor odbiera wybrany przeze mnie program, używam telefonu do komunikacji z moją rodziną, wystrzelona rakieta ma taką trajektorię jaką zaplanowałem, itd. Zbadamy 3 przykłady, które przybliżą nam powyższą problematykę. Źródło tych przykładów jest w książce: J. Hale, H. Kocak, "Dynamics and Bifurcations". Ksiązka jest znakomita.

1.3.1 Przykład 1

Równanie

$$\frac{dx}{dt} = -2x, \qquad x(0) = x_0 \tag{1.34}$$

jest równaniem różniczkowym liniowym. Jest to jedno z najprostszych równań różniczkowych. Można łatwo sprawdzić, że funkcja

$$x(t) = x_0 e^{-2t} (1.35)$$

jest rozwiązaniem i spełnia warunek początkowy $x(0)=x_0$. Funkcja ta jest dobrze określona dla wszystkich skończonych wartości czasu $t\in (-\infty,\infty)$. Nie ma tu większych ograniczeń. Jest to jedyne rozwiązanie. Poniższy rysunek daje wyobrażenie o rozwiązaniach x(t) dla 3 różnych warunków początkowych. Przy okazji zauważmy, że wszystkie trzy rozwiązania dążą do tego samego stanu x=0 dla długich czasów $t\to\infty$.

```
\label{eq:continuous} $$ var('t') $$ g(t,a) = a*exp(-2*t) $$ p1 = plot(g(t,a=1), (t,0,2), legend_label=r"$x(0)=1$", color='blue') $$ p2 = plot(g(t,a=0), (t,0,2), legend_label=r"$x(0)=0$", color='red') $$ p3 = plot(g(t,a=-1), (t,0,2), legend_label=r"$x(0)=-1$", color='green') $$ show(p1+p2+p3, figsize=[6,3], axes_labels=[r'$t$',r'$x(t)$'], axes=False, frame=True) $$
```

1.3.2 Przykład 2

Równanie

$$\frac{dx}{dt} = 3x^2, \qquad x(0) = x_0$$
 (1.36)

jest równaniem różniczkowym nieliniowym. Prawa strona tego równania jest określona dla wszystkich wartości x. Podobnie jak poprzednie równanie, można je rozwiązać metodą separacji zmiennych. Otrzymamy funkcję

$$x(t) = \frac{x_0}{1 - 3x_0 t} \tag{1.37}$$

która jest rozwiązaniem i spełnia warunek początkowy. Funkcja ta nie jest określona dla wszystkich skończonych wartości czasu $t\in(-\infty,\infty)$. Istnieją ograniczenia dla wartości czasu t. Ale jest to jedyne rozwiązanie.

```
\label{eq:control_var} $$ var('t') $$ g = plot(-4.0/(1 + 12*t), (t,0,0.5), detect_poles='show', legend_label=r'$x(0)=-4$', colg $$ += plot(lambda t: 0.0, (t,0,0.5), legend_label=r'$x(0)=0$', color='red') $$ g += plot(1.0/(1-3*t), (t,0,1/3), detect_poles='show', legend_label=r'$x(0)=1$', color='g.show(axes_labels=[r'$t$',r'$x$'], ymin=-4, ymax=8, figsize=[6,3], axes=False, frame=Talse, frame
```

Wszystkie rozwiązania z ujemnym warunkiem początkowym x(0)<0 sa dobrze zdefiniowane dla wszystkich czasów t>0 (krzywa niebieska). Podobnie jest z rozwiązaniem x(t)=0 dla warunku początkowego x(0)=0 (krzywa czerwona). Natomiast rozwiązanie z dodatnim warunkiem początkowym x(0)>0 rozbiega się w skończonym czasie $t<1/3x_0$. Gdyby to równanie miało opisywać ruch cząstki, to oznacza że w skończonym czasie cząstka przebywa nieskończoną odległość. To jest niefizyczne. Równanie to mogłoby opisywać proces wybuchu substancji: x mogłoby być objętością pęczniejącej substancji która wybucha po skończonym czasie.

1.3.3 Przykład 3

Równanie

$$\frac{dx}{dt} = 2\sqrt{x}, \qquad x(0) = x_0 \ge 0$$
 (1.38)

jest równaniem różniczkowym nieliniowym. Prawa strona tego równania jest określona dla nieujemnych wartości $x \geq 0$. Podobnie jak 2 poprzednie równania, można je rozwiązać metodą separacji zmiennych. Otrzymamy rozwiązanie

$$x(t) = (t + \sqrt{x_0})^2 \tag{1.39}$$

Funkcja ta jest określona dla wszystkich wartości czasu t>0. Jest to jedyne rozwiązanie z wyjątkiem jednego warunku początkowego: x(0)=0. Dla tego warunku początkowego istnieje jeszcze jedno rozwiązanie, a mianowicie x(t)=0. Tak więc dla x(0)=0 mamy 2 różne rozwiązania

$$x(t) = t^2, x(t) = 0$$
 (1.40)

Jak przebiega ewolucja, gdy układ startuje ze stanu początkowego x(0)=0? W tym przypadku rozwiązania są niejednoznaczne.

```
var('t') p1=plot(t**2,(t,0,1), legend_label=r"$x(0)=1$", color='blue') p2=plot(0,(t,0,1), legend_label=r"$x(0)=0$", color='red') show(p1+p2, figsize=[6,3], axes=False, frame=True)
```

Co jest takiego charakterystycznego w ostatnim przykładzie, że pojawia się niejednoznaczność rozwiązania równania różniczkowego? Na to pytanie daje odpowiedź twierdzenie o jednoznaczności rozwiązania równania różniczkowego. Potrzebna nam będzie własność funkcji:

Mówimy, że funkcja f(x) spełnia warunek Lipschitza na zbiorze otwartym U jeżeli istnieje taka stała L>0, że

$$|f(x_2) - f(x_1)| \le L|x_2 - x_1| \tag{1.41}$$

dla wszystkich $x_1, x_2 \in U$.

Warunek Lipschitza można zapisać w postaci

$$|f(x+h) - f(x)| \le Lh$$
 lub jako $\frac{f(x+h) - f(x)}{h}| \le L$ (1.42)

Z tego wynika że jeżeli f(x) ma ograniczoną pochodną, to spełnia warunek Lipschitza. Są oczywiście nieróżniczkowalne funkcje, które spełniają warunek Lipschitza.

Twierdzenie Picarda Jeżeli funkcja f(x) jest ciągła w U oraz spełnia warunek Lipschtza w U wówczas równanie różniczkowe

$$\frac{dx}{dt} = f(x), \qquad x(0) = x_0 \tag{1.43}$$

ma dokładnie jedno rozwiązanie w U.

Istnieje kilka modyfikacji tego twierdzenia, ale na nasze potrzeby ta najprostsza wersja jest wystarczająca.

Teraz możemy odpowiedzieć, dlaczego w 3 przykładzie rozwiązanie jest niejednoznaczne: funkcja $f(x)=2\sqrt{x}$ nie spełnia warunku Lipschitza ponieważ pochodna

$$\frac{df(x)}{dx} = \frac{1}{\sqrt{x}}\tag{1.44}$$

w punkcie x=0 jest rozbieżna. W punktach x>0 pochodna ma wartość skończoną i jest spełnione twierdzenie Picarda. Dlatego też rozwiązania są jednoznaczne.

1.3.4 Dodatek

Sage z powodzeniem jest w stanie rozwiązywać pewne równania różniczkowe zwyczajne. Zobaczmy jak poradzi sobie z powyższymi przykładami.

Przykład 1

$$\frac{dx}{dt} = -2x, \qquad x(0) = x_0 \tag{1.45}$$

z rozwiązaniem

$$x(t) = x_0 e^{-2t}. (1.46)$$

Na początek zadamy sobie zmienne. Druga linijka mówi o tym, że zmienna x będzie funkcją parametru t (czasu). Zamiast używac nazwy g użyjemy świerzo obliczonego rozwiązania rozw.

Przykład 2

$$\frac{dx}{dt} = 3x^2, \qquad x(0) = x_0$$
 (1.47)

z rozwiązaniem

$$x(t) = \frac{x_0}{1 - 3x_0 t}. ag{1.48}$$

```
var('t x_0 c')
x = function('x', t)
print "Definiujemy równanie różniczkowe"
rrz = diff(x,t) == 3*x^2
rozw2 = desolve(rrz, x)
print "i je rozwiązujemy..."
show(rozw2)
print "krok 1\n obliczamy x(t) z poprzedniego kroku"
rozw2 = solve(rozw2,x)[0].rhs()
show(rozw2)
print "krok 2\n obliczamy x(0)"
buf = rozw2(t=0) == x_0
show(buf)
print "krok 3\n wyznaczamy stałą c"
buf = solve(buf,c)[0].rhs()
print "krok 4\n wstawiamy c do równania"
rozw2 = rozw2.subs(c=buf).full_simplify()
show(rozw2)
print "I na koniec prezentujemy wyniki"
x0 = -4
x0 = 0
w += plot(rozw2(x_0=x0), (t,0,1), legend_label=r'$x(0)=%d$'%x0, color='red')
x0 = 1
w += plot(rozw2(x_0=x0), (t,0,1/3), legend_label=r'$x(0)=%d$'%x0, color='green')
w.show(axes_labels=[r'$t$',r'$x$'], tick_formatter='latex', xmin=0, xmax=0.5, ymin=-4.1,
```

Przykład 2

$$\frac{dx}{dt} = 2\sqrt{x}, \qquad x(0) = x_0 \ge 0 \tag{1.49}$$

z rozwiazaniem

$$x(t) = (t + \sqrt{x_0})^2 \tag{1.50}$$

```
var('t x_0 c')
forget()
assume(x_0>=0)
assume(t+c>0)
print "równanie"
x = function('x', t)
rrz = diff(x,t) == 2*sqrt(x)
```

```
show(rrz)
print "i jego rozwiązanie"
rozw3 = solve(desolve(rrz, x), x)[0]
show(rozw3)
print "stała całkowania"
buf = solve(x_0 == rozw3.rhs()(t=0),c)
show(buf)
print "mamy dwa możliwe rozwiązania, wybieramy to z dodatnim c"
buf = buf[1]
show(buf)
print "i dostajemy ostatecznie"
rozw3 = rozw3.subs(c=buf.rhs())
show(rozw3)
print "I na koniec prezentujemy wyniki"
p1=plot(rozw3.rhs()(x_0=0),(t,0,1), legend_label=r"$x(0)=1$", color='blue')
show(p1, figsize=[6,3], axes=False, frame=True)
```

No tak, ale gdzie jest rozwiązanie x(t)=0? Na chwilę obecną Sage nie rozróżni obu możliwych rozwiązań. Dlatego umiejętność analitycznego rozwiązania takich problemów wciąż jest niezbędna!

Testy

2.1 Title (Heading 1)

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec ac dolor felis, vel semper lacus. Nunc nec tincidunt est. Praesent consectetur, ante vitae commodo imperdiet, magna neque laoreet metus, dignissim eleifend urna enim et quam. *Praesent ac tincidunt erat.* Nunc id enim eget urna sagittis adipiscing quis ut ligula. Aenean feugiat posuere suscipit $\hbar=1$.

```
i\frac{\partial}{\partial t}\psi(x,t) = H(x,t)\psi(x,t)
```

Ut vitae neque eros. Ut sit amet laoreet sapien. Maecenas bibendum, massa porttitor aliquet accumsan, massa neque egestas erat, sed pulvinar diam nulla et elit. Duis a semper dolor. Morbi vel mi ante, nec mollis magna. Nunc lacinia, metus at laoreet rutrum, tellus lorem feugiat eros, eget pharetra purus eros ut odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; **Suspendisse nulla eros, consequat et sodales et, aliquam vel metus.** Aenean sed lorem sapien, vitae malesuada est. Phasellus pulvinar dui eu nulla tincidunt et ultrices elit tincidunt.

2.1.1 Section (Heading 2)

Nunc a nisl arcu, a hendrerit erat. Praesent purus libero, auctor a aliquet nec, vehicula a dui. In eros nunc, elementum eu viverra quis, scelerisque ac purus. Donec dignissim interdum metus eu tristique. Nulla vitae mi risus. Suspendisse eu enim diam. Suspendisse libero eros, convallis at congue sit amet, bibendum et ligula $\sin(x)$.

```
sage: p1 = plot(x^3, x, -5, 5)

sage: p2 = plot(x^2, x, -5, 5)

sage: p1+p2
```


Sub-section (Heading 3)

Aliquam erat volutpat. Vivamus turpis elit, facilisis at elementum sit amet, ultrices ut purus. Proin et orci sem, quis aliquet dui. Quisque in venenatis lorem. Curabitur egestas pellentesque neque. Morbi sagittis pharetra orci sed consectetur. Aliquam eget vulputate neque.

$$e^{-iHt} pprox rac{1 - rac{i\Delta t}{2}H(x,t)}{1 + rac{i\Delta t}{2}H(x,t)}$$

16

Suspendisse libero eros, convallis at congue sit amet, bibendum et ligula.

```
def add(a, b):
    return a + b
...
add(1, 3)
4
show(add(1, 3))

4
(lambda a, b: a + b)(1, 3)
```

2.1.2 Section (Heading 2)

SAGE CELL

- Ut suscipit eros ut est facilisis sodales.
- Morbi vestibulum lectus vitae ante rutrum auctor.
 - tttt
 - eee
- Proin vel ligula et ligula iaculis semper et non nisl.
- 1. Proin vel ligula et ligula iaculis semper et non nisl.
- 2. Ut fringilla congue tortor, vel dictum ante iaculis in.
- 3. Integer auctor lorem convallis turpis luctus vehicula ullamcorper dolor suscipit.

Neque porro quisquam est qui dolorem ipsum quia dolor sit amet, consectetur, adipisci velit...

Uwaga: Ut vitae neque eros. Ut sit amet laoreet sapien. Maecenas bibendum, massa porttitor aliquet accumsan, massa neque egestas erat, sed pulvinar diam nulla et elit. Duis a semper dolor. Morbi vel mi ante, nec mollis magna. Nunc lacinia, metus at laoreet rutrum, tellus lorem feugiat eros, eget pharetra purus eros ut odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; **Suspendisse nulla eros, consequat et sodales et, aliquam vel metus.** Aenean sed lorem sapien, vitae malesuada est. Phasellus pulvinar dui eu nulla tincidunt et ultrices elit tincidunt.

Wskazówka: begin{cases} 2, $x_{1} - x_{2} = 1 x_{1} + x_{2} = 5$ end{cases}