

Introduction

Linked List is a linear data structure and it is very common data structure which is collection of nodes which is divided in two parts. Data part and link to the next node.

Declaration of a node :

```
Struct node{
int data;
struct node * next;
};
```

Diagram

Algorithm for SLL

- 1. Insert a node at first
 - 1. Create a new node

Temp=malloc (sizeof (struct node))

2. Insert data

Temp->data=value

3. Adjust the pointer

Temp->next=NULL

Start=temp

Insert a node at last

1.Traverse a SLL upto the NULL

Temp->next!=NULL

SLL will be traversed by statement temp=temp->next

2. Create a new node

q=malloc (sizeof (struct node))

3. Insert data

q->data=value

4. Adjust the pointer

Temp->next=q

q->next=NULL

Insert at specific position

1. Traverse a SLL upto the specific position

SLL will be traversed by statement temp=temp->next

2. Create a new node

r=malloc (sizeof (struct node))

3. Insert data

r->data=value

4. Adjust the pointer

r->next=Temp->next

temp->next=q

Doubly Linked List

DLL is a linear data structure which is collection of nodes which is divided in three parts. Data part and link to the next node and link to previous node.

Declaration of a node:

```
Struct dnode{
struct node * prev;
int data;
struct node * next;
};
```

Diagram

Algorithm for DLL

- 1. Insert a node at first
- 1. Create a new node

Temp=malloc (sizeof (struct node))

2. Insert data

Temp->data=value

3. Adjust the pointer

Temp->next=start

Temp->prev=NULL

Start->prev=temp

Start=temp

Insert a node at last

1.Traverse a DLL upto the NULL

Temp->next!=NULL

SLL will be traversed by statement temp=temp->next

2. Create a new node

q=malloc (sizeof (struct node))

3. Insert data

r->data=value

4. Adjust the pointer

Temp->next=q

q->prev=temp

q->next=NULL

Insert at specific position

1. Traverse a DLL upto the specific position

DLL will be traversed by statement temp=temp->next

2. Create a new node

r=malloc (sizeof (struct node))

3. Insert data

r->data=value

4. Adjust the pointer

r->prev=temp

r->next=Temp->next

r->next->prev=r

temp->next=r