Real Variables: Problem Set X

Youngduck Choi

Courant Institute of Mathematical Sciences New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set X of Real Variables 2015 at NYU.

1 Solutions

Question 1. Royden 13-41.

41. Let X be the linear space of all polynomials defined on **R**. For $p \in X$, define ||p|| to be the sum of the absolute values of the coefficients of p. Show that this is a norm on X. For each n, define $\psi_n: X \to \mathbf{R}$ by $\psi_n(p) = p^{(n)}(0)$. Use the properties of the sequence $\{\psi_n\}$ in $\mathcal{L}(X, \mathbf{R})$ to show that X is not a Banach space.

Solution. We first show that $\| \| : X \to \mathbb{R}$ given is a norm on X. First of all, let p=0. Then, $\|p\|=0$. Now, let $p=\sum_{i=0}^n b_i x^i$, and assume that $\|p\|=0$. It follows that $\sum_{i=0}^n |b_i|=0$. As $|b_i|\geq 0$ for all i, we have that $b_i=0$ for all i. Hence, p=0. For proving the triangle inequality, let $p_1=\sum_{i=0}^{n_1} b_i x^i$ and $p_2=\sum_{i=0}^{n_2} c_i x^i$. Without the loss of generality, we assume that $n_1\geq n_2$, and define $n=n_1$, $p_1=\sum_{i=0}^n b_i x^i$ and $p_2=\sum_{i=0}^n c_i x^i$, with $c_i=0$ for $i>n_2$. By the triangle inequality of reals, it follows that

$$||p_1 + p_2|| = ||\sum_{i=0}^{n} (b_i + a_i)x^i||$$

$$= \sum_{i=0}^{n} |b_i + a_i|$$

$$\leq \sum_{i=0}^{n} |b_i| + |a_i|$$

$$= \sum_{i=0}^{n} |b_i| + \sum_{i=0}^{n} |c_i| = ||p_1|| + ||p_2||.$$

Now, let $p = \sum_{i=0}^{n} b_i x^i$, and $\alpha \in \mathbb{R}$. It follows that

$$\|\alpha p\| = \|\alpha \sum_{i=0}^{n} b_i x^i\|$$

$$= \|\sum_{i=0}^{n} \alpha b_i x^i\|$$

$$= \sum_{i=0}^{n} |\alpha b_i|$$

$$= |\alpha| \sum_{i=0}^{n} |b_i| = |\alpha| \|p\|.$$

Hence, we have shown that $\| \|$ given is a norm.

Now, we first show that each operator ψ_n is bounded, thus continuous. Observe that we can represent an arbitrary polynomial p uniquely as , for some $k, p = \sum_{i=0}^{\infty} c_i x^i$, where $c_i = 0$ for $i \geq k$. Fix ψ_n . Observe that for any p, we have $|c_n| \leq \|p\|$. It follows that

$$|\psi_n(p)| = |n! \cdot c_n|$$

$$= |n!||c_n|$$

$$\leq |n!||p||$$

Hence, ψ_n is bounded, thus continuous for any n. Note that by taking $p=x^n$, we obtain $n! \leq M$ for any bound M for ψ_n . Hence, it follows that $\|\psi_n\|=n!$. Again, for any polynomial p, observe that $\psi_n(p)=0$ for n>k, where k denotes the degree of the polynomial p. Consequently, we have

$$\lim_{n \to \infty} \psi_n(p) = 0,$$

for any p. Therefore, if X is Banach, the conditions of the Banach-Saks-Steinhaus theorem is satisfied. However, as $\|\psi_n\|=n!$, $\{\psi_n\}$ cannot be uniformly bounded. This is a contradiction. X is not Banach.

Question 2. Royden 14-18.

18. Let X be a normed linear space, ψ belong to X^* , and $\{\psi_n\}$ be in X^* . Show that if $\{\psi_n\}$ converges weak-* to ψ , then

 $\|\psi\| \leq \limsup \|\psi_n\|.$

Solution. As $\{\psi_n\}$ is weak-* convergent to ψ , we have

$$\psi_n(x) \rightarrow \psi(x),$$

for all $x \in X$. Let $x \in X$. As $|\cdot|$ is continuous on \mathbb{R} , it follows that

$$\lim_{n \to \infty} |\psi_n(x)| = |\psi(x)|.$$

As $|\psi_n(x)| \le ||\psi_n|| \cdot ||x||$,

$$\begin{split} |\psi(x)| &= & \lim_{n \to \infty} |\psi_n(x)| \\ &= & \limsup_{n \to \infty} |\psi_n(x)| \\ &\leq & \limsup_{n \to \infty} ||\psi_n|| \cdot ||x|| \\ &= & ||x|| \limsup_{n \to \infty} ||\psi_n||. \end{split}$$

Since $x \in X$ was arbitrary, it follows that

$$||\psi|| \leq \limsup_{n \to \infty} ||\psi_n||,$$

as desired.

Question 3. Royden 14-23.

23. Let Y be a linear subspace of a normed linear space X and z be a vector in X. Show that

$$\operatorname{dist}(z, Y) = \sup \left\{ \psi(z) \mid \|\psi\| = 1, \psi = 0 \text{ on } Y \right\}.$$

Solution. I believe there is an error in this problem.

Question 4. Royden 15-12.

- 12. If Y is a linear subspace of a Banach space X, we define the annihilator Y^{\perp} to be the subspace of X^* consisting of those $\psi \in X^*$ for which $\psi = 0$ on Y. If Y is a subspace of X^* , we define Y^0 to be the subspace of vectors in X for which $\psi(x) = 0$ for all $\psi \in Y$.
 - (i) Show that Y^{\perp} is a closed linear subspace of X^* .
 - (ii) Show that $(Y^{\perp})^0 = \overline{Y}$.

Solution. (i) For $x \in X$, let Y_x^{\perp} be defined by

$$Y_x^{\perp} = \{ \psi \in X^* \mid \psi(x) = 0 \}.$$

As $\psi \in X^*$, ψ is continuous, hence Y_x^\perp is closed. Observe that

$$Y^{\perp} = \bigcap_{x \in Y} Y_x^{\perp}.$$

Each Y_x^{\perp} is closed, since a limit function of continuous functions with respect to the operator norm, will preserve the property that 0 will be achieved at x. Since an arbitrary intersection of closed sets is closed, we have that Y^{\perp} is closed linear subspace of X^* .

(ii) First, we show that $(Y^{\perp})^0$ is closed. Observe that

$$(Y^{\perp})^0 = \bigcap_{\psi \in Y^{\perp}} \{x \in X \mid \psi(x) = 0\}$$

= $\bigcap_{\psi \in Y^{\perp}} \psi^{-1}(0).$

As $\psi^{-1}(0)$ is a pre-image of a single point, which is closed in a metric space, of a continuous function, and intersection of closed sets is closed, we have that $(Y^\perp)^0$ is closed. By definition of Y^\perp , it follows that $Y\subseteq (Y^\perp)^0$, and as $(Y^\perp)^0$ is closed, we obtain $\overline{Y}\subseteq (Y^\perp)^0$. Now, we show that $(Y^\perp)^0\subseteq \overline{Y}$ holds. It suffices to show that $X\setminus \overline{Y}\subseteq X\setminus (Y^\perp)^0$ holds. Let $x\in X\setminus \overline{Y}$. Then, we know that there exists $\psi\in X^*$ such that $\psi(x)\neq 0$ and $\ker(\psi)$ contains Y. Hence, $x\notin (Y^\perp)^0$. Therefore, we have shown that $Y=(Y^\perp)^0$ as desired.