Computational Geometry

Instructors

Bhargab B. Bhattacharya (BBB)
Partha Bhowmick (PB)
Lecture 07
19 January 2022

Indian Institute of Technology Kharagpur Computer Science and Engineering

Orthogonal Polygonization

All edges are axis-parallel In other words, internal turn angles are either $\sqrt[8]{2}$ or $3\sqrt[8]{2}$

orthogonal polygonization (from unlabelled vertices to polygon)

Applications of Orthogonal Polygonization: Remote Sensing and GIS

Aerial Image

Image to Corner Data

Data Compression

Reconstruction via Orthogonal Polygonization

Aerial Image

Image to Corner Data

Reconstruction via Orthogonal Polygonization

Recap: Triangulation via Ear-Clipping Algorithm

Every polygon has at least two ears! Find an ear, fix a diagonal, chop the ear and iterate

Triangulating a polygon: Improvements

- Simple $O(n^2)$ time algorithm based on Meister's two-ear theorem
- Long-standing open problem: can it be done in O(n) time?
- [Chazelle 1991] proposed an O(n) time algorithm, very intricate and impractical to implement
- A more practical $O(n \log n)$ time algorithm needs two steps:
 - 1. Partition the polygon into *monotone* polygons in $O(n \log n)$ time
 - 2. Triangulate each monotone polygon in O(n) time total time complexity: $O(n \log n)$

Today's agenda

Monotone Curves

- Two monotone chains between two extremal points along l;
- l-coordinates are non-decreasing when you travel along the chains of P in the direction of l
- Equivalently:

A simple polygon P is called monotone with respect to a line l if for every line l perpendicular to l, the intersection of P with l is connected (i.e., l intersects with P exactly at zero or two points)

Courtesy: Carola Wenk

- Two monotone chains
- *l*-coordinates are *non-decreasing* when you travel along the chains of *P* in the direction of *l*

NOT monotone w.r.t any line l

Test Monotonicity

How to test if a polygon is *x*-monotone?

- $\overline{}$ Find leftmost and rightmost vertices O(n) time
- → Splits polygon boundary in upper chain and lower chain
- Walk from left to right along each chain, checking that x-coordinates are non-decreasing O(n) time

P is monotone in direction *l*

How do you test monotonicity of a polygon if no direction is given? Does there exist any direction *w.r.t.* which *P* is monotone?

Preparata and Supowit: O(n)-time algorithm, *Information Processing Letters*, 1981

Partitioning a polygon with *n* vertices into monotone pieces and triangulation

Partitioning:

- (i) Method via trapezoidation
- (ii) Method via "split" and "merge" vertices
- Both require plane-sweep techniques
- Both take $O(n \log n)$ time

Sweep-Line Paradigm (Horizontal Sweep)

- Sort characteristic points of objects by increasing *x*-coordinates;
- Perform plane-sweep along *x*-axis with a vertical line, halting at vertices in order;
- Update sweep-line status (SLS);
- Take appropriate actions depending on applications

Ref: David Mount's Lecture Notes; 4A Textbook

Computational Geometry

Instructors

Bhargab B. Bhattacharya (BBB)
Partha Bhowmick (PB)
Lecture 08 & Lecture 09
21 January 2022

Indian Institute of Technology Kharagpur Computer Science and Engineering

Partitioning a polygon with *n* vertices into monotone pieces

Method via trapezoidation

Partitioning a polygon into y-monotone pieces

Partitioning a polygon into y-monotone pieces

Trapezoidal space partitioning

- Process vertices in sorted order from top-to-bottom;
- Draw horizontal lines through each *reflex* vertex of *P*, and through those *convex* vertices whose both neighbors lie in *opposite* sides of the horizontal; this divides the interior of *P* into trapezoidal "slabs";
- Identify each trapezoid t whose support vertex v is reflex and lies somewhere in the middle of the corresponding horizontal side;
- Join *v* with the other support vertex *k* of the same trapezoid *t*.

Partitioned into five y-monotone pieces

Implementation: Plane-Sweep Technique

- Sort the vertices from top-to-bottom
 (Assume for simplicity, all *y*-coordinates are distinct)
- Sweep a horizontal line downward starting from the top-most vertex; stop at discrete points, i.e. at vertices
- Two key ingredients of any sweep algorithm:
 - (i) Maintain "Sweep Line Status" (SLS): a "combinatorial description" of the "slice" seen by the sweeping line
 - Often stored in a balanced binary tree
 - (ii) Event Queue: Actions to be taken, sometimes prioritized, using appropriate data structures

Example: Partitioning a polygon into *y*-monotone pieces via trapezoid processing

J. O'Rourke: *Computational Geometry in C,* Cambridge Univ. Press, 1998

Actions Needed

Delete *c* from the list, insert *d* in place of *c*:

..., a, c, b... ..., a, d, b,

• Delete *c*, *d* from the list ..., *a*, *c*, *d*, *b*... ..., *a*, *b*,

- Insert *c*, *d* in appropriate positions of the list
- ..., a, b... ..., a, c, d, b,

We do O(1) updates to the SLS since the SLS is stored in a ba

Processing: SLS keeps track of edge-lists in an height-balanced binary tree

 $(e_{19}, e_{18}, e_{17}, e_6, e_8, e_{10})$.

Insertion, deletion of edges, and identifying left and right walls of a trapezoid can be accomplished in $O(\log n)$ time, per vertex

Complexity of monotone partitioning

- Sorting of *y*-coordinates of *n* vertices: $O(n \log n)$
- Horizontal sweep-line stops at *n* points
- At each vertex, update and trapezoid formation: $O(\log n)$ using AVL-tree of O(n)-size edge lists
- Finding support vertices of each trapezoid: O(1)
- Total number of trapezoids: O(n)
- Total partitioning cost into monotone pieces:
 O(n log n)

Monotone Partitioning via "Spilt and Merge" Vertices

top-vertex (start-vertex)

A y-monotone polygon has a top vertex, a bottom vertex, and two y-monotone chains between top and bottom as its boundary

Any simple polygon with one top vertex and one bottom vertex is *y*-monotone

top vertex v_t : a strictly convex vertex such that both its two neighbors lie below the horizontal line through v_t bottom (end)-vertex

bottom vertex v_h : a strictly convex vertex such that

both its two neighbors lie above the horizontal line through v_b

Vertex classification in a polygon w.r.t. y-axis

P is devoid of any merge or split vertices;

P has only one start- and one end-vertex

*P is y-*monotone

□ Proof: Since there are only start/end/regular vertices, the polygon must consist of two y-monotone chains.

Sweep ideas

Find diagonals from each merge vertex down, and from each split vertex up

A simple polygon with no split or merge vertices can have at most one start and one stop vertex, so it is y-monotone

Sweep ideas

Handling "split" is fine as its possible matching vertices are already explored by the sweep-line. How about "merge"?

Management of "merge" needs a reverse sweep at the end

Handling Split Vertices

Lowest vertex above the sweep-line touching v_i and lying between e_i and e_k

Insert diagonal between v_i and $helper(e_i)$

Sweep-line touches split-vertex v_i

Otherwise, connect v_i with the upper end-point of e_i to create a diagonal

split vertex: reflex, both neighbors

Handling Merge Vertices

How do you identify v_m ?

Otherwise, connect v_i with the lower end-point of e_i to create a diagonal

when the sweep line

reaches v_m

Status of sweep

The status is the set of edges intersecting the sweep line that have the polygon to their right, sorted from left to right, and each with their *helper*: the last vertex passed in that component

Helpers of edges

The helper for an edge e that has the polygon right of it, and a position of the sweep line, is the lowest vertex v above the sweep line such that the horizontal line segment connecting e and v is inside the polygon

Status structure, event list

The status structure stores all edges that have the polygon to the right, with their helper, sorted from left to right in the leaves of a balanced binary search tree ${\cal T}$

The events happen only at the vertices: sort them by y-coordinate and put them in a list (or array, or tree)

Main algorithm

- ullet Sort all vertices by y-coordinate and put them in a list. Initialize an empty status structure T
- while the event list is not empty
 do remove the first event and handle it

Sweep-Line Algorithm

- **Events:** Vertices of polygon, sorted in increasing order by *y*-coordinates (no new events will be dynamically added)
- **Sweep-line status:** Balanced *binary search tree* storing the list of edges intersecting sweep line, sorted by *x*-coordinates; Also, helper(*e*) for every edge intersecting the sweep line
- Event processing of vertex *v*:
 - 1. start vertices
 - 2. end vertices
 - 3. regular vertices
 - 4. merge vertices
 - 5. split vertices

Start vertex v:

• Insert the left incident edge in T with v as the helper

Regular vertex v:

- If the polygon is right of the two incident edges, then replace the upper edge by the lower edge in T, and make v the helper
- If the polygon is left of the two incident edges, then find the edge e directly left of v, and replace its helper by v

End vertex v:

 $\begin{tabular}{ll} \bullet & \end{tabular} \begin{tabular}{ll} \bullet & \end{$

Determine for vertex *v* the edge left(*v*) directly left to *v*

helper of e

Merge vertex v:

- ullet Remove the edge clockwise from v from T
- Find the edge e directly left of v, and replace its helper by v

Split vertex v:

- ullet Find the edge e directly left of v, and choose as a diagonal the edge between its helper and v
- ullet Replace the helper of e by v
- Insert the edge counterclockwise from v in T, with v as its helper

Sorting all events by y-coordinate takes $O(n \log n)$ time

Every event takes $O(\log n)$ time, because it only involves querying, inserting and deleting in T

Sweep Line Algorithm

- Insert diagonals for merge vertices with "reverse" sweep
- Each update takes $O(\log n)$ time
- There are *n* events
- \rightarrow Run-time to compute a monotone subdivision is $O(n \log n)$

Algorithm: Monotone Partitioning

A data structure for storing planar maps. Allows insertion of a diagonal in *O*(1)time

Algorithm MAKEMONOTONE(\mathcal{P})

Input. A simple polygon \mathcal{P} stored in a doubly-connected edge list \mathcal{D} . *Output.* A partitioning of \mathcal{P} into monotone subpolygons, stored in \mathcal{D} .

- Construct a priority queue Q on the vertices of P, using their y-coordinates as priority. If two points have the same y-coordinate, the one with smaller x-coordinate has higher priority.
- 2. Initialize an empty binary search tree T.
- 3. **while** Q is not empty
- 4. **do** Remove the vertex v_i with the highest priority from Q.
- Call the appropriate procedure to handle the vertex, depending on its type.
- *Theorem:* A simple polygon with n vertices can be partitioned into y-monotone polygons in $O(n\log n)$ time with an algorithm that uses O(n) storage

Example

Partitioned into six monotone pieces: Can you reduce the number?

- Sort vertices by increasing l-coordinates (merging the upper and lower chains in O(n) time)
- Perform plane-sweep in direction *l*, halting at vertices in order
- Triangulate everything by adding valid diagonals to the left of the sweep line; maintain a stack and use orientation tests

- Store in a **stack** (sweep line status) the vertices that have been encountered but may need more diagonals
- Un-triangulated region has a funnel shape;
 The funnel comprises a line segment (one side) and a reflex chain (interior angles >180°) on the other side, which is pushed into the stack
- **Update:** *Case* 1: new vertex lies on chain opposite of reflex chain; triangulate; pop-off occluded vertices

- **Update,** *Case* 2: new vertex lies on reflex chain
 - Case a: The new vertex lies above line through previous two vertices; triangulate as far as possible (via orientation tests); pop-off occluded vertices

 Case b: The new vertex lies below line through previous two vertices; add to the reflex chain (stack)

The algorithm

- Sort the vertices by a merge of the two chains
- Initialize a stack. Push the first two vertices
- Take the next vertex v, and triangulate as much as possible, top-down, while popping the stack
- \bullet Push v onto the stack

- Distinguish cases in constant time using chain information and orientation tests
- Sweep line hits every vertex once, therefore each vertex is pushed on the stack at most once
- Every vertex can be popped from the stack (in order to add a diagonal) at most once
- \Rightarrow Constant time per vertex
- \Rightarrow O(n) total run-time

Please convince yourself how monotonicity helps!