

2020年广州高三一模考试化学科深度点评

新东方广州学校化学教研组

在经历了一个"超长寒假"后,同学们终于回到熟悉的校园,继续投入紧张的高考备考,并马不停蹄地进行了一模,本次考试不仅能够检测大家的"网课成果",还可以通过这次考试够更好的检验自己复习的情况,明确下阶段复习的重点。下面由新东方化学教研组给大家带来化学试题的深度点评。

试题总体情况

本次一模考试化学题型与近年高考题型基本一致,难度中等,涉及到的知识点非常全面、详细,考点细致,突出细节。本次考试题型情况与近年大考题型对比图如下:

考察		年份			
内容		2020 年广州一模	2019 年新课标 I	2018 年新课标 I	2017 年新课标 I
选择题	7	化学与生活	化学与生活	电化学原理	化学与生活
	8	有机物的结构与性质	有机物的结构与性质	化学与生活	实验操作方法判断
	9	实验操作与判断	实验操作与判断	实验操作	有机物的结构与性质
	10	元素周期表周期律	物质结构	物质的量与NA问题	实验操作
	11	电化学原理	水溶液中的离子平衡	有机物的结构与性质	电化学原理
	12	水溶液中的离子平衡	电化学原理	元素周期表周期律	元素周期表周期律
	13	元素化合物与工艺流程	元素周期表周期律	电化学原理	水溶液中的离子平衡
非选择题	26	实验综合	实验综合	实验综合	实验综合
	27	工业流程综合	工业流程综合	工业流程综合	工业流程综合
	28	化学反应原理综合	化学反应原理综合	化学反应原理综合	化学反应原理综合
	35	物质的结构与性质	物质的结构与性质	物质的结构与性质	物质的结构与性质
	36	有机合成与推断综合	有机合成与推断综合	有机合成与推断综合	有机合成与推断综合

试题详细分析

选择题整体难度中等,试题整体呈现的新鲜感很强,基础牢固扎实,平时做题注重思维训练,比较灵活的同学会占有较大优势。第7题化学与生活与古文阅读结合,知识覆盖面很广,有一定难度,也告诫同学们在复习后期一定要注重此类素材的积累。第8题和第9题都属于常规题型,中规中矩。第10题元素周期律的推断可能会卡住部分同学,此处的亮点在于利用已推出的元素化合价可以巧妙地推断未知元素,这点要速速 get 起来。第11题创新电池,以海水电池为背景,涉及到电势的概念,重在考查陌生情景的分析。第12题水溶液选出正确答案不困难,但是其中个别选项的计算难度较大,考试中需要同学们不断提升应考技巧。第13题是常规氧化还原反应与元素化合物的综合,只需认真分析图像信息,难度较小,考查的重点是落在了氧化还原反应和元素化合物的反应,基础知识结合实际情景的应用。

大题的考查基本没有出现"新鲜点",都属于常规形式的考查,注重基础,整体难度不大。第 26 题考查了三氯化六氨合钴的制备与性质,前四问均围绕实验题常规操作,作用进行设问。二轮复习中若已经对实验题专项复习后,这类问题应该形成固定的答题模板,提高做实验题的速度和准确率。第 27 题属于常规金属类处理的工艺流程题,内容落脚在镉元素和陌生氧化还原反应的分析,陌生氧化还原技巧过关则难度不大,同时也考查置换率的计算。第 28 题反应原理综合大题围绕丙烷,丙烯开展。本题的重点依然是图像分析与计算,针对 Kp 的计算是近几年高考的热点,还没有熟练掌握相关计算的同学应该立即解决这个知识盲区。

第 36 题有机综合大题在推断上没有设置太大难度,关键物质的结构均给出,前面几问都属于基础问题,只要能根据题目把结构推出这十分不难拿到手。第六小问同分异构体的书写的难度也比较小,只要确定好酚羟基和酯基,顺着对称性这一问也不难拿下。最后一问是有机大题考查中的拉分点,核心关键是要用好题目中给到的陌生信息,同学们后期在有机的复习时可对合成路线做重点突破。

阶段复习建议

一模至二模前,一般是学校进行二轮复习的时间,是同学们查漏补缺、专项 突破的黄金时机。复习已经过半,同学们存在的共性问题都有哪些?有没有办法可 以解决呢。

存在问题	解决方案		
1、做题时间不够	重视日常限时训练,"7 道选择+1 道综合题",限时		
缺乏思路	20 分钟内,坚持成习惯,习惯成自然。		
2、知识体系存在漏洞,	将化学反应原理及元素化合物知识分散到每天温习,		
基础不扎实	夯实基础,提高"简单题"得分率。		
3、题型漏洞,题目理解	充分研究高考真题,母题分析,对比分析,理清知识		
不清晰,难以下手	与考题直接的联系,总结考点、问法、共性、热点。		

此次一模结束后,同学们可以根据此次考试情况,调整好自己的学习状态,制定接下来的复习计划。复习的过程中重视基础、重视课本,将书本知识吃透,灵活运用,才能切实提高分析能力、运算能力,提高知识迁移、图表分析、信息挖掘的能力,以不变应万变。祝同学们下一阶段复习顺利,2020 高考成功。

はいきを表現

