کارگاه یادگیری عمیق با پایتون: تشخیص اشیا

- □ دستهبندی و مکانیابی.
 - 🗖 یک شی در تصویر
 - □ شناسایی نقاط عطف
- □ تشخیص وضعیت قرارگیری
 - □ تشخیص اشیا.
 - 🗖 چند شی در تصویر
 - 🗖 پنجره لغزان
- □ شبکههای کاملا کانولوشنی
 - □ الگوريتم YOLO

تشخیص اشیا: اجرای نمایشی

□ دستهبندی تصویر و شناسایی اشیا.

دستەبندى تصوير

دستهبندی و مکانیابی

شناسایی اشیا

- 🗖 یک شی در هر تصویر
- □ تخمین مختصات جعبه محاطی
- □ ارزیابی از طریق نسبت اشتراک به اجتماع (IoU)

مکانیابی به عنوان رگرسیون

دستهبندی و مکانیابی

تابع هزینه: مجموع مربعات خطا

$$\begin{bmatrix} 1 \\ b_x \\ b_y \\ b_h \\ b_w \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$L(\hat{y}, y) = \begin{cases} \sum_{i=1}^{f} (\hat{y}_i - y_i)^2, & y_1 = 1\\ (\hat{y}_1 - y_1)^2, & y_1 = 0 \end{cases}$$

تشخيص نقاط عطف: تشخيص احساسات

Zhanpeng Zhang, et. al. Facial Landmark Detection by Deep Multi-task Learning, ECCV, 2014

تشخيص نقاط عطف: تشخيص وضعيت

Xianjie Chen and Alan Yuille, Articulated Pose Estimation by a Graphical Model with Image Dependent Pairwise, NIPS, 2014.

ايجاد مجموعه آموزشي

آموزش شبكه كانولوشني

شناسایی اشیا با پنجره لغزان

شناسایی اشیا با پنجره لغزان

شناسایی اشیا با پنجره لغزان

هزينه محاسباتي بسيار بالا!

پنجره لغزان: کاهش هزینههای مماسباتی

شناسایی اشیا با پنجره لغزان

□ تبدیل لایههای کاملا متصل به لایههای کانولوشنی.

□ تبدیل لایههای کاملا متصل به لایههای کانولوشنی.

انجام محاسبات مربوط به پنجره لغزان به صورت موازی و همزمان!

امتمال وجور اشیا رر هر یک از پنجرهها

اشتراک بر روی اجتماع

□ معیاری به منظور محاسبه میزان همپوشانی دو جعبه محاطی.

$$IoU = \frac{|B_1 \cap B_2|}{|B_1 \cup B_2|} \ge 0.5$$

سركوب غير بيشينه: الگوريتي

 $v = \begin{bmatrix} b_c \\ b_{\chi} \\ b_{y} \end{bmatrix}$

□ مرحله اول: حذف تمام پیشبینیها با احتمال کمتر از ۱۶⊳

- □ مرحله دوم: تا زمانی که پیشبینی (جعبه محاطی) پردازش نشدهای وجود دارد:
 - □ یک جعبه با بیشترین احتمال را انتخاب و آن را به عنوان خروجی در نظر بگیر.
 - □ تمامی جعبههایی را که همپوشانی زیادی با جعبه انتخاب شده دارند، حذف کن.

IoU >= 0.5

ههپوشانی اشیا و جعبههای لنگر

$$y = \begin{bmatrix} y_{a1} \\ y_{a2} \end{bmatrix}$$
 به ازای هر فانه

معبههای لنگر

- □ انتخاب جعبههای لنگر
- □ طراحی جعبههای لنگر به صورت دستی
- □ استفاده از الگوریتم خوشهبندی [۵ خوشه]

$$D(B_1, B_2) = 1 - IoU(B_1, B_2)$$

معيار فاصله

الگوریتی YOLO

□ ایجاد مجموعه آموزشی.

□ دستهها.

۱ - رهگذر

۲ - خودرو

۳ – موتورسیکلت

🗖 خروجي.

0,0

19 × 19 × & × A

الگوریتی YOLO: پیشبینی

الگوریتی YOLO: سرکوب غیر بیشینه

- □ پیشبینیهایی را که احتمال کمی دارند، حذف کن.
- Car 0.9

 Car 0.65

- □ برای هر دسته [رهگذر، خودرو، موتورسیکلت]:
 - تا زمانی که پیشبینی دیگری وجود دارد:
 - پیشبینی با بیشترین احتمال را انتخاب کن.
 - این پیشبینی را به عنوان خروجی در نظر بگیر.
- تمام پیشبینیهایی را که همپوشانی بالایی با پیشبینی انتخاب شده دارند، حذف کن.