Université Gaston Berger de Saint-Louis U.F.R S.A.T

L2 MA- L2 Mass Analyse 3¹ Fiche 1

NORMES-DISTANCES

Exercice 1 Dans \mathbb{R}^n , on définit N_1, N_2, N_3 par : $\forall x = (x_1, \dots, x_n)$

$$N_1(x) = \sup\{|x_i|, i = 1, \dots, n\} \; \; ; \; N_2(x) = \sum_{i=1}^n |x_i| \; \; ; \; N_3(x) = [\sum_{i=1}^n x_i^2]^{\frac{1}{2}}$$

- 1. Montrer que N_1 , N_2 , N_3 sont trois normes sur \mathbb{R}^n .
- 2. Montrez que ces trois normes sont équivalentes sur \mathbb{R}^n .
- 3. Dans \mathbb{R}^2 représenté par le plan, dessiner la boule de centre O et de rayon 1 pour chacune de ces normes.

Exercice 2 SoitE un espace vectoriel reel.

- a) Si N est une norme sur E, montrer que l'application $d: E \times E \to \mathbb{R}^+$ est $(x,y) \mapsto N(x-y)$ une distance (distance associée à la norme N). Montrer que d vérifie :
 - (1) $\forall x, y, z \in E$, d(x+z, y+z) = d(x, y)
 - (2) $\forall \lambda \in \mathbb{R}, \forall x, y \in E, d(\lambda x, \lambda y) = |\lambda| d(x, y)$.
- b) Inversement, soit d une distance sur E vérifiant (1) et (2).

Montrer que l'application : $N: \begin{array}{ccc} E & \to & \mathbb{R}^+ \\ x & \mapsto & d(x,0) \end{array}$ est une norme sur E.

Exercice 3 Les applications suivantes, de $\mathbb{R} \times \mathbb{R}$ dans \mathbb{R}^+ , sont-elles des distances sur \mathbb{R} ?

$$\begin{array}{l} d_1(x,y) = (x-y)^2 \\ d_2(x,y) = \frac{|x-y|}{1+|x-y|} \\ d_3(x,y) = \sqrt{|x-y|} \\ d_4(x,y) = |x^3-y^3| \end{array}$$

$$d_4(x,y) = |x^3 - y^3|$$

$$d_5(x,y) = |x - 2y|$$

OUVERST-FERMES-INTERIEUR-ADHERENCE

Exercice 4 Dans \mathbb{R} , on pose : d(x,y) = 0 si x = y, d(x,y) = |x| + |y| si $x \neq y$.

- 1. Montrer que d est une distance.
- 2. Déterminer
 - a) la boule ouverte de centre 1 et de rayon 1:B(1,1),
 - b) l'adhérence de cette boule,
 - c) la boule fermée $B_f(1,1)$,
 - d) la boule fermée $B_f(1,3)$

Exercice 5 Rappeler la définition de l'adhérence \overline{A} d'une partie A de \mathbb{R}^p .

- 1) Démontrer que si A et B sont deux parties de \mathbb{R}^p , alors $\overline{A \cap B}$ est contenu dans $\bar{A} \cap \bar{B}$. A-t-on l'égalité?
- 2) Si p=1 et d(x,y)=|x-y| pour tout $x\in\mathbb{R}$ et tout $y\in\mathbb{R}$, déterminer l'adhérence de la partie :

$$A = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\}$$
 de \mathbb{R} .

Exercice 6 A et B sont deux parties non vides de \mathbb{R} . Est-il vrai que

- 1) $A \ ouvert \Rightarrow A + B \ ouvert$?
- 2) $A fermé \Rightarrow A + B fermé ? (métrique usuelle de \mathbb{R})$

Exercice 7 1) Montrer que pour toute partie A d'un espace métrique (E,d), on a : $\overline{A}^c = \overset{\circ}{A}^c$ et $\overset{\circ}{(A)}^c = \overline{A^c}$

$$\overline{A}^c = \overset{\circ}{A}^c \text{ et } (\overset{\circ}{A})^c = \overline{A}^c$$

2) Dans R muni de sa métrique naturelle, déterminer :

$$\overline{\mathbb{Q}}$$
; $\mathring{\mathbb{Q}}$

- 3) A et B étant deux parties de l'espace métrique (E, d), montrer que :
- a) $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$
- b) $(\widehat{A \cap B}) = \mathring{A} \cap \mathring{B}$
- c) $\overrightarrow{A \cup B} = \overrightarrow{A} \cup \overrightarrow{B}$
- d) $(\widehat{A \cup B}) \supset \mathring{A} \cup \mathring{B}$

Les inclusions a) et d) peuvent-elles être strictes?

Exercice 8 1) A étant une partie fermée d'un espace métrique, montrer que : $(\stackrel{\circ}{A}) = \stackrel{\circ}{A}$.

- 2)A étant une partie ouverte d'un espace métrique, montrer que
- 3) démontrer que pour toute partie X de E, la frontière de X est donnée par :

$$Fr(X) = \overline{X} - X^{\circ}.$$

Exercice 9 Soit $(E, \|\cdot\|)$ un espace vectoriel normé de dimension finie. Soit A une partie non vide E et $x \in E$. On appelle distance de x à A, le nombre réel positif noté $\delta(x,A)$ et défini comme suit :

$$\delta(x, A) = \inf_{y \in A} ||x - y||.$$

Montrer que:

1. Si $x \in A$, alors $\delta(x, A) = 0$.

2. $\delta(x, A) = 0$ si et seulement si $x \in \bar{A}$.

Définition On appelle diamétre de A, le nombre réel positif noté par $\phi(A)$ et défini par :

$$\phi(A) = \sup_{(x,y) \in A \times A} ||x - y||.$$

3. Montrer que si $A \subset B$, alors $\phi(A) \leq \phi(B)$.

4. Montrer que A est borné si et seulement si $\phi(A) < +\infty$ 5. Montrer que $\phi(A) = \phi(\bar{A})$.

Exercice 10 Soit (X, d) un espace métrique.

1. Donner la définition d'une partie ouverte de X.

2. Montrer que pour tout $x \in X$ et r > 0, B(x, r) est un ouvert de X.

3. Pour $(x,y) \in \mathbb{R}^2$ on pose $||(x,y)|| = \max(|x+y|,|x-2y|)$. Montrer qu'il s'agit d'une norme sur \mathbb{R}^2 .

4. Soient $||.||_1$ et $||.||_2$ deux normes sur \mathbb{R}^n et notons respectivement par B_1 et B_2 les boules unités associées.

Montrer que $B_1 \subseteq B_2 \Longleftrightarrow \forall x \in \mathbb{R}^n, ||x||_2 \le ||x||_1.$