(19) 日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-194370

(43)公開日 平成9年(1997)7月29日

技術表示箇所					FΙ	整理番号	庁内	識別記号			1) Int.Cl.6
)	ADD		1/375	к з	A 6			ADD	75	31/375	A61K
В	В		1/30	L	A 2 3				0	1/30	A 2 3 L
			1/302						02	1/302	
E	E		9/08	K	A6				2	2/52	
L	L		7/26	4					8	9/08	A 6 1 K
頁) 最終頁に続く	(全 5 頁)	OL	頁の数 2	蘭求項	未請求	審查請求					
		819	000002	議人	(71)			¥8−302601	特	ŧ	1)出願番り
	会社	葉株式:	大正製								
「目24番1号	高田3丁目2	豊島区	東京都				月14日	8年(1996)11	平		2)出顧日
		明	狩野	明者	(72)						
「目24番1号 大正製	高田3丁目2	豊島区	東京都					¥7−2 98185	号 特	張番号	1)優先権3
		会社内	業株式				日	(1995)11月16	本		2)優先日
		始久	大久保	明者	(72)			(JP)	日	E張国	3)優先権主
「目24番1号 大正製	高田3丁目2	豊島区	東京都								
		会社内	薬株式								
		博子	上保	明者	(72)						
「目24番1号 大正製	高田3丁目2	豊島区	東京都								
		会社内	葉株式								
	富造	北川	弁理士	理人	(74)						
最終頁に続く											

(54) 【発明の名称】 内服液剤

(57)【要約】

【目的】 製剤中のビタミンCが経時的に安定なpH2 ~4.5の滋養強壮用内服液剤を提供する。

【構成】 ビタミンC、ステビア抽出物および糖アルコ ールを配合したpH2~4.5の内服液剤または食品飲 料。

10

【特許請求の範囲】

【請求項1】 ビタミンC、ステビア抽出物および糖ア ルコールを配合したpH2~4.5の内服液剤または食 品飲料。

【請求項2】 ビタミンB類、ビタミンC、ステビア抽 出物および糖アルコールを配合したpH2~4.5の内 服液剤または食品飲料。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、ビタミンCを含有する 内服液剤または食品飲料に関する。

[0002]

【従来の技術及び発明が解決しようとする課題】ビタミ ンCはグァバ、イチゴ、レモンのような果実などから摂 取できる。あるいはビタミンCを配合した滋養強壮用内 服液剤や食品飲料などからも摂取できる。滋養強壮用液 剤や食品飲料には通常、アミノ酸やビタミン、無機塩類 などを配合するが、これらは苦味や不快な味を呈するも のが少なくない。このため、滋養強壮用液剤や食品飲料 には、呈味に代表される服用感を好ましいものとするた 20 めに甘味料や香料が常用されている。このため、果実や 滋養強壮用内服液剤、食品飲料には通常果糖や砂糖など の糖類がかなりの量配合されており、これらから充分量 のビタミンCを摂取するためにはかなりの糖類を摂取し てしまう結果、カロリー過剰になり、成人病予防などの 観点から問題があった。

【0003】また、滋養強壮用内服液剤や食品飲料は、 口当りの改善や清涼感を与えるためにpHを2~4.5 程度に設定するのが通常である。ところが、上記条件に おいて滋養強壮用内服液剤や食品飲料にビタミンCを配 合すると、速やかにビタミンCが分解してしまいビタミ ンCとしての生理活性を有しない分解物に変換してしま う。また、滋養強壮用内服液剤や食品飲料にビタミンC とビタミンB類(特にビタミンB1、その塩及びそれら の誘導体)が同時に配合されている場合には、経時的に 独特な不快臭が強くなり、服用感の著しい低下をきたし てしまう。本発明の目的は、これらの問題を解決した滋 養強壮用内服液剤または食品飲料を提供することにあ る。

[0004]

【課題を解決するための手段】本発明者らは鋭意研究し た結果、ビタミンCを配合したpH2~4.5の滋養強 壮用液剤または食品飲料において、甘味料としてステビ ア抽出物および糖アルコールを配合すると、問題を解決 できることを見いだし、本発明を完成した。すなわち、 本発明は、ビタミンC、ステビア抽出物および糖アルコ ールを配合したpH2~4.5の内服液剤または食品飲 料である。

【0005】本発明において、ビタミンCとは、L-ア スコルビン酸、その塩、そのエステル及びその誘導体を 50 【0010】

指し、具体的にはアスコルビン酸ナトリウム、アスコル ビン酸カリウム、アスコルビン酸モノステアレート、ア スコルビン酸モノパルミテート、アスコルビン酸モノオ レエートなどを挙げることができる。ビタミンCの配合 量は0.01~10重量%、好ましくは0.5~6重量 %である。

2

【0006】また、ステビア抽出物としては公知の各種 ステビア抽出物を使用できるが、具体的にはリバウデオ サイドA. リバウデオサイドB. リバウデオサイドC. リバウデオサイドD、リバウデオサイドE、ステビオサ イド、ダルコサイドA、ダルコサイドB、ステビオール などであり、これらは2種以上を混合して用いることも できる。これらの中ではリバウデオサイドAまたはステ ビオサイドが最も好ましい。ステビア抽出物の配合量 は、0.005~0.1重量%である。製剤中にビタミ ンB1のような不快な風味を呈する成分を配合する場合 には、その苦味の程度に応じて、苦味成分1.0重量% に対して2.0~12.5重量%ずつ増量することがで きる。

【0007】さらに、糖アルコールとしてはマルチトー ル、ソルビトール、キシリトール、エリスリトールなど を挙げることができ、これらの1種または2種以上を配 合することができる。中でも好ましい糖アルコールはマ ルチトールまたはエリスリトールである。糖アルコール の配合量は、ステビア抽出物との配合比により決まり、 ステビア抽出物の甘味度を1としたときに0. $1\sim10$ の甘味度になる量を配合する。

【0008】本発明においては、前記必須成分にビタミ ンB類(特に不快な風味の強いビタミンB1、その塩お よびそれらの誘導体)を配合した場合でも内服液剤また は食品飲料の風味が良好であることが特徴である。ビタ ミンB類とは、ビタミンB1、ビタミンB2、ビタミンB 6、ビタミンB12、それらの塩、それらのエステル及び それらの誘導体 (例えば、ビスイブチアミン、ジセチア ミン、フルスルチアミン、ベンフォチアミンなど)を指 す。

【0009】本発明の内服液剤または食品飲料には、上 記成分の他、通常内服液剤または食品飲料に用いる成 分、例えば他の各種ビタミン (例えばビタミンA、ビタ 40 ミンD、ビタミンE、ビタミンPおよびそれらの塩、エ

ステル、誘導体)、アミノ酸(例えばタウリン、L-ア スパラギン酸、L-アルギニン、トリプトファン、リジ ン)、生薬(例えばムイラプアマ、ニンジン、ジオ ウ)、カフェイン、ローヤルゼリー、多価アルコール (例えばプロピレングリコール)、有機酸(例えばクエ ン酸、乳酸、コハク酸、リンゴ酸)、pH調整剤(例え ばクエン酸ナトリウム)、カフェイン、香料、保存剤な どを本発明の効果を損なわない範囲で配合することがで きる.

```
4
```

```
3
【実施例】以下、実施例、比較例および試験例を挙げて
                                * 実施例 1
本発明をさらに詳細に説明する。
              (成分)
                                           (配合量)
           ビタミンB1 硝酸塩
                                            5 m g
           アスコルビン酸
                                         500mg
           マルチトール
                                      15000mg
           ビタミンBe
                                            5 m g
           イノシトール
                                          50mg
           タウリン
                                        2000mg
           無水カフェイン
                                          50mg
           クエン酸
                                         700mg
           クエン酸ナトリウム
                                          商量
           安息香酸ナトリウム
                                          70mg
           ステビア抽出物
                                          15mg
           香料
                                          微量
           精製水で100mlにする(pH=3.5)
上記各成分を混合溶解することにより、内服液剤を得
                                 ※【0011】実施例2
た。
              (成分)
                                         (配合量)
           ビタミンBI硝酸塩
                                            5 m g
           アスコルビン酸
                                         500mg
           エリスリトール
                                        8000 g
           ビタミンBe
                                           5 mg
           イノシトール
                                          50mg
           タウリン
                                        2000mg
           無水カフェイン
                                          50 \, \mathrm{mg}
           クエン酸
                                         700mg
           クエン酸ナトリウム
                                          適量
           安息香酸ナトリウム
                                          69mg
           ステビア抽出物
                                          25mg
           香料
                                          微量
           精製水で100m1にする(pH=3.5)
上記各成分を混合溶解することにより、内服液剤を得
                                 ★【0012】実施例3
た。
              (成分)
                                         (配合量)
           ビタミンB2
                                            5 mg
           ビタミンB1 硝酸塩
                                            2 \, \text{mg}
           アスコルビン酸
                                        1000mg
           ソルビトール
                                        2000mg
           マルチトール
                                        9000mg
           ビタミンBe
                                            5 \, \mathrm{mg}
           ニコチン酸アミド
                                          20 \, \text{mg}
           タウリン
                                        1000mg
           クエン酸
                                         300mg
           リンゴ酸
                                         100mg
           クエン酸ナトリウム
                                          適量
           安息香酸ナトリウム
                                          70 \,\mathrm{mg}
           ステビア抽出物
                                          25mg
           香料
                                          微量
```

精製水で100mlにする(pH=2.8)

5

上記各成分を混合溶解することにより、内服液剤を得 *【0013】実施例4 た。 *

(A4)	(新人具)
(成分)	(配合量)
ビタミンB2	5 m g
ビタミンB1硝酸塩	2 m g
アスコルビン酸ナトリウム	1500mg
マルチトール	5000mg
タウリン	1000mg
クエン酸	400mg
リンゴ酸	100mg
クエン酸ナトリウム	適量
安息香酸ナトリウム	60mg
ニパブチ	2 m g
ステビア抽出物	15mg
香料	微量

精製水で100mlにする(pH=4.0)

上記各成分を混合溶解することにより、内服液剤を得

※液剤を得た。

た。

【0014】比較例1

【0015】比較例2

実施例1において、マルチトール15000mgのかわりに果糖11gを用いた他は実施例1と同様にして内服液剤を得た。

【0016】比較例3

実施例1において、クエン酸ナトリウムを用いてpHを 3.5から5.3にした他は実施例1と同様にして内服※ 【0017】試験例1[官能試験]

実施例1および実施例2で得られた内服液剤および比較例1および2で得られた内服液剤について、11名のパネルにより、内服液剤としての官能試験を行った。各試料20m1を少量ずつ交互に服用し、服用後(2~3分)の印象を相対的に評価した。官能試験項目として、ビタミンCのイメージ、低カロリー感、飲みやすさについて下記の5段階評価基準(表1)で評価し、平均点を算出した。結果を表2に示す。

6

【0018】 【表1】

評価点	ビタミンCのイメージ	低カロリー感	飲み易さ
1	なし	感じない	飲みづらい
2	弱い	あまり感じない	やや飲みづらい
3	やや朝い	どちらともいえない	どちらともいえない
4	やや強い	感じる	飲みやすい
5	強い	強く感じる	とても飲みやすい

[0019]

★40★【表2】

	ビタミンCのイメージ	低カロリー感	飲み易さ
実施例 1	4. 6	4. 7	4. 8
実施例 2	4. 7	4. 8	4.7
比較例1	2. 6	1. 6	1. 1
比較例 2	2.4	1. 8	1. 0
比較例3	1. 3	4. 5	1. 1

7

【0020】試験例2 [ビタミンCの安定性試験] 実施例1および実施例2で得られた内服液剤および比較例1~3で得られた内服液剤を、65℃に保存してビタミンCの安定性について比較した。ビタミンCの定量は高速液体クロマトグラフ法により行った。結果を表3に示す。

[0021]

【表3】

	1週間	2週間
実施例1	77. 3	60.8
実施例 2	76.9	60.9
比較例 1	58.7	32.1
比較例 2	57.9	35.3

フロントページの続き

(72)発明者 水谷 卓 東京都豊島区高田3丁目24番1号 大正製 薬株式会社内