Machine Learning

Notes taken by Runqiu Ye Carnegie Mellon University Spring 2025 Contents Machine Learning

Contents

1	Probability and Statistical Inference	3
	1.1 Probability	3
	1.2 Statistical Inference	4
2	Supervised Learning	5
	2.1 Logistic Regression	ŀ

1 Probability and Statistical Inference

1.1 Probability

Definition (Types of convergence). Let $\{X_n\}_{n=1}^{\infty}$ be a sequence of random variables and X be another random variable. Let F_n be the CDF of X_n for each $n \in \mathbb{N}$ and F be the CDF of X.

1. X_n converges to X in probability and write $X_n \xrightarrow{P} X$ if for arbitrary $\varepsilon > 0$,

$$\mathbb{P}\left[|X_n - X| > \varepsilon\right] \to 0$$

as $n \to \infty$.

2. X_n converges to X in distribution and write $X_n \rightsquigarrow X$ if

$$\lim_{n \to \infty} F_n(t) = F(t)$$

for all t where F is continuous.

3. X_n converges to X in L^p if

$$\mathbb{E}\left[|X_n - X|^p\right] \to 0$$

as $n \to \infty$. In particular, say X_n converges to X in quadratic mean and write $X_n \xrightarrow{\operatorname{qm}} X$ if X_n converges to X in L^2 .

4. X_n converges to X almost surely and write $X_n \xrightarrow{\text{as}} X$ if

$$\mathbb{P}\left[\lim_{n\to\infty} X_n = X\right] = 1.$$

Theorem. The following implication holds:

- 1. If X_n converges to X almost surely, then X_n converges to X in probability.
- 2. If X_n converges to X in L^p , then X_n converges to X in probability.

Proof. 1. If X_n converges to X almost surely, the set of points $O = \{\omega : \lim_{n \to \infty} X_n(\omega) \neq X(\omega)\}$ has measure zero. Now fix $\varepsilon > 0$ and consider the sequence of sets

$$A_n = \bigcup_{m=n}^{\infty} \{|X_m - X| > \varepsilon\}.$$

Note that $A_n \supset A_{n+1}$ for each $n \in \mathbb{N}$ and let $A_\infty = \bigcap_{n=1}^\infty A_n$. Now show $\mathbb{P}[A_\infty] = 0$. If $\omega \notin O$, then $\lim_{n\to\infty} X_n(\omega) = X(\omega)$ and thus $|X_n(\omega) - X(\omega)| < \varepsilon$ for some $n \in \mathbb{N}$. Therefore, $\omega \notin A_\infty$. It follows that $A_\infty \subset O$ and $\mathbb{P}[A_\infty] = 0$.

By monotone continuity, we have $\lim_{n\to\infty} \mathbb{P}[A_n] = \mathbb{P}[A_\infty]$. It follows that

$$\mathbb{P}\left[|X_n - X| > \varepsilon\right] \le \mathbb{P}\left[A_n\right] \to 0$$

as $n \to \infty$. This completes the proof.

2. From Chebyshev's inequality, we have

$$\mathbb{P}[|X - X_n| > \varepsilon] \le \frac{1}{\varepsilon^p} \mathbb{E}[|X - X_n|^p].$$

The claim follows directly.

Theorem (Central Limit Theorem). Let X_1, \ldots, X_n be i.i.d. with mean μ and variance σ^2 . Let $S_n = \frac{1}{n} \sum_{i=1}^n X_i$. Then

$$Z_n = \frac{S_n - \mu}{\sqrt{\operatorname{Var} S_n}} = \frac{\sqrt{n} (S_n - \mu)}{\sigma} \leadsto Z,$$

where $Z \sim N(0, 1)$. In other words,

$$\lim_{n \to \infty} \mathbb{P}[Z_n < z] = \Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx.$$

Also write $Z_n \approx N(0,1)$.

1.2 Statistical Inference

Definition. Let X_1, \ldots, X_n be n i.i.d. data points from some distribution F. A point estimator $\widehat{\theta}_n$ of a parameter θ is some function of X_1, \ldots, X_n :

$$\widehat{\theta}_n = g(X_1, \dots, X_n).$$

The bias of an estimator is defined as

$$\operatorname{bias}(\widehat{\theta}_n) = \mathbb{E}_{\theta}[\widehat{\theta}_n] - \theta.$$

The mean squared error is defined as

$$MSE = \mathbb{E}_{\theta}(\widehat{\theta}_n - \theta)^2.$$

Definition. A point estimator $\widehat{\theta}_n$ of a parameter θ is *consistent* if $\widehat{\theta}_n \stackrel{P}{\longrightarrow} \theta$.

Theorem. The MSE can be written as

$$MSE = bias^{2}(\widehat{\theta}_{n}) - Var_{\theta}(\widehat{\theta}_{n}).$$

Definition. A $1-\alpha$ interval for a parameter θ is an interval $C_n=(a,b)$ where $a=a(X_1,\ldots,X_n)$ and $b=b(X_1,\ldots,X_n)$ are functions of data such that

$$\mathbb{P}_{\theta}[\theta \in C_n] \ge 1 - \alpha \text{ for all } \theta \in \Theta.$$

In other word, (a, b) traps θ with probability $1 - \alpha$.

Warning! In the above definition, C_n is random and θ is fixed.

2 Supervised Learning

2.1 Logistic Regression

Logistic regression is used for classfication problems. Logistic regression takes in input feature $x \in \mathbb{R}^n$, and output a prediction $y \in \{0, 1\}$. The hypotheses function $h_{\theta}(x)$ is chosen as

$$h_{\theta}(x) = \sigma(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}},$$

where

$$g(z) = \frac{1}{1 + e^{-z}}$$

is the sigmoid function.

Figure 1: A plot of the sigmoid function $\sigma(z)$.

A plot of the sigmoid function is shown in Figure 1. The range of the sigmoid function is bounded in [0,1]. In particular, $\sigma(z) \to 1$ when $z \to \infty$ and $\sigma(z) \to 0$ as $z \to -\infty$. A useful property about the sigmoid function is its derivative. It is easy to verify that

$$\sigma'(z) = \frac{e^{-z}}{(1 + e^{-z})^2} = \sigma(z)(1 - \sigma(z)).$$

To fit the parameter θ to dataset, assume that

$$p(y = 1 \mid x; \theta) = h_{\theta}(x),$$

 $p(y = 0 \mid x; \theta) = 1 - h_{\theta}(x).$

Note that

$$p(y \mid x; \theta) = h_{\theta}(x)^{y} (1 - h_{\theta}(x))^{1-y}.$$

Assuming n independent training examples, the likelihood function

$$L(\theta) = \prod_{i=1}^{n} p(y^{(i)} \mid x^{(i)}; \theta)$$
$$= \prod_{i=1}^{n} h_{\theta}(x^{(i)})^{y^{(i)}} (1 - h_{\theta}(x^{(i)}))^{1 - y^{(i)}}.$$

It is easier to maximize the log-likelihood:

$$\ell(\theta) = \sum_{i=1}^{n} y^{(i)} h_{\theta}(x^{(i)}) + (1 - y^{(i)})(1 - h_{\theta}(x^{(i)})).$$

This is called the logisitic loss or the binary cross-entropy.