

TEST REPORT

Test report no.: 1-7983/14-02-02

Testing laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075 Internet: http://www.cetecom.com ict@cetecom.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Area of Testing:

Radio Communications & EMC (RCE)

Applicant

Oticon A/S

Kongebakken 9

2765 Smørum / DENMARK Phone: +45 39 17 71 00

Contact: Jørgen Peter Hanuscheck

e-mail: <u>inp@oticon.dk</u> Phone: +45 39 13 85 38

Manufacturer

Oticon A/S

Kongebakken 9

2765 Smørum / DENMARK

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 210 Issue 8 Spectrum Management and Telecommunications Radio Standards Specification -

Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment

RSS - Gen Issue 3 Spectrum Management and Telecommunications Radio Standards Specifications -

General Requirements and Information for the Certification of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Hearing aid

Model name: CIC WL Fusion 2

FCC ID: U28FU2CICWL

IC: 1350B-FU2CICWL

Frequency: 3.84 MHz

Technology tested: Magnetic coupling

Antenna: Integrated coil antenna

Power supply: 1.40V DC by zinc – air battery

Temperature range: 0°C to +35°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorised:	Test performed:
p.o.	
Andreas Luckenbill Expert	Tobias Wittenmeier Expert

2014-06-05 Page 1 of 26

Table of contents

1	Table	e of contents	2
2	Gene	ral information	
	2.1	Notes and disclaimer	
	2.2	Application details	3
3	Test	standard/s	3
4	Test	environment	4
5		item	
)			
	5.1	Additional information	4
6	Test	laboratories sub-contracted	4
7	Desc	ription of the test setup	5
	7.1	Radiated measurements	
	7.2	Conducted measurements	
8	Sumi	mary of measurement results	
		•	
9	Addit	tional comments	8
10	N	Neasurement results	9
	10.1	Timing of the transmitter	9
	10.2	Bandwidth of the modulated carrier	10
	10.3	Field strength of the fundamental	
	10.4	Field strength of the harmonics and spurious	
	10.5	Receiver spurious emissions	
	10.6	Conducted limits	22
11	T	est equipment and ancillaries used for tests	23
12	C	Dbservations	24
Anı	nex A	Document history	25
Anı	nex B	Further information	25
Δni	nav C	Accreditation Certificate	26

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order: 2014-05-13
Date of receipt of test item: 2014-05-19
Start of test: 2014-05-20
End of test: 2014-05-21

Person(s) present during the test: -/-

3 Test standard/s

Test standard	Date	Test standard description
47 CFR Part 15	2012-10	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 8	2010-12	Spectrum Management and Telecommunications Radio Standards Specification - Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment
RSS - Gen Issue 3	2010-12	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

2014-06-05 Page 3 of 26

4 Test environment

T_{nom} +22 °C during room temperature tests

Temperature: T_{max} +35 °C during high temperature tests

 T_{min} 0 °C during low temperature tests

Relative humidity content: 55 %

Barometric pressure: not relevant for this kind of testing

 V_{nom} 1.40 V DC by zinc – air battery

Power supply: V_{max} 1.40 V

V_{min} 1.26 V

5 Test item

Kind of test item	:	Hearing aid		
Type identification	:	CIC WL Fusion 2		
		TX units: EUT No. 1: 25654464		
		EUT No. 2: 25656033		
S/N serial number		EUT No. 3: 25656034		
3/N Serial Humber	•	RX units: EUT No. 4: 25655999		
		EUT No. 5: 25656023		
		Photo unit: EUT No. 6: 25656045		
HW hardware status	:	Rev 2		
SW software status	:	Fusion 2 eSW ver.1		
Frequency band [MHz]	:	3.84 MHz		
Type of radio transmission	:	Modulated carrier		
Use of frequency spectrum	:	Modulated Carrier		
Type of modulation	:	A1D		
Number of channels	:	1		
Antenna	:	Integrated coil antenna		
Power supply	:	1.40V DC by zinc – air battery		
Temperature range	:	0°C to +35°C		

5.1 Additional information

Test setup- and EUT-photos are included in test report: 1-7983/14-02-01_AnnexA

1-7983/14-02-01_AnnexB 1-7983/14-02-01_AnnexD

6 Test laboratories sub-contracted

None

2014-06-05 Page 4 of 26

7 Description of the test setup

7.1 Radiated measurements

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analysers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Equipment table:

Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom
Switch-Unit	3488A	HP Meßtechnik	2719A14505	300000368
EMI Test Receiver	ESCI 3	R&S	100083	300003312
Amplifier	JS42-00502650-28-5A	MITEQ	1084532	300003379
Antenna Tower	Model 2175	ETS-LINDGREN	64762	300003745
Positioning Controller	Model 2090	ETS-LINDGREN	64672	300003746
Turntable Interface-Box	Model 105637	ETS-LINDGREN	44583	300003747
TRILOG Broadband Test- Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787
Test Receiver	ESH2	R&S	871921/095	300002505
Loop Antenna 9 KHz - 30 MHz	HFH2-Z2	R&S	872096/61	300001824
EMI Test Receiver 9 kHz - 3 GHz incl. Preselector	ESPI3	R&S	101713	300004059

2014-06-05 Page 5 of 26

7.2 Conducted measurements

Equipment table:

Equipment	Туре	Manufacturer Serial No.		INV. No Cetecom		
DC Power Supply 0 – 32V	1108-32	Heiden	001802	300001383		
Temperature Test Chamber	T-40/50	CTS GmbH	064023	300003540		
Spectrum Analyzer 20 Hz - 30 GHz	FSP30	R&S	100886	300003575		

2014-06-05 Page 6 of 26

8 S	ummary	of	measurement	results
-----	--------	----	-------------	---------

No deviations from the technical specifications were ascertained
There were deviations from the technical specifications ascertained

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 210, Issue 8	Passed	2014-06-05	-/-

Test Specification Clause	Test Case	Temperature Conditions	Power Source Voltages	Pass	Fail	NA	NP	Results
§ 15.35 (c) / RSS-GEN Issue 3 Section 4.5	Timing of the transmitter (Duty cycle correction factor)	Nominal	Nominal					complies
§ 15.223 / RSS-210 Issue 8	Bandwidth of the modulated carrier	Nominal	Nominal					complies
§ 15.223 / RSS-210 Issue 8	Fieldstrength of fundamental	Nominal	Nominal					complies
§ 15.209 (a) / RSS-210 Issue 8	Fieldstrength of harmonics and spurious	Nominal	Nominal	\boxtimes				complies
§ 15.109 / RSS-210 Issue 8	Receiver spurious emissions	Nominal	Nominal	\boxtimes				complies
§ 15.107 / § 15.207	Conducted limits	Nominal	Nominal					-/-

Note: NA = Not Applicable; NP = Not Performed

2014-06-05 Page 7 of 26

9 Additional comments

Reference documents: Oticon Wireless Hearing Aids and Accessories EMC and RF Test Setup, May 2014, JNP, Oticon A/S.

Manufacturer statement:

The RF-carrier frequency in Oticons wireless hearing aids, targeted for 3.84 MHz, is in the current Fusion platform generated by an RC-oscillator in turn feeding an LC-tank circuit in the transceiver. In other words, there is NO stable crystal oscillator and NO closed phase lock loop keeping the oscillator frequency in place. Furthermore, due to tolerances of the self induction of the antenna coil, which is part of the RF-tank circuit, and tolerances of the parallel capacitors, the initial carrier frequency tolerance of the RF-carrier is about plus and minus 2.5%. Finally due to the configuration of the RF-carrier frequency generating parts as described above an uncorrelated temperature drift of about plus and minus 2.5% can be added to the initial tolerance, resulting in an overall frequency accuracy of about plus minus 5.0% worst case!

Note: The EUT with the maximum field strength was used to perform the radiated spurious emissions tests!

Manufacturer declaration:

The provided test sample for radiated measurements had a transmitter duty cycle of 20% for ease of test, while the transmitter duty cycle in normal use is approximately 2.5%.

Special test descriptions: We perform the radiated pre-scans in different spherical positions and

consolidate the results in one result plot. The test procedure includes scans in the theta axes every 120° and in phi axes @ 0° and 90° for both polarizations

vertical & horizontal or magnetic emissions.

Configuration descriptions: None

2014-06-05 Page 8 of 26

10 Measurement results

10.1 Timing of the transmitter

Measurement:

Measurement parameter				
Detector:	-/-			
Sweep time:	-/-			
Resolution bandwidth:	-/-			
Video bandwidth:	-/-			
Span:	-/-			
Trace-Mode:	-/-			

Limits:

FCC	IC				
CFR 47 SUBCLAUSE §15.35(c)	RSS-GEN Issue3 Section 4.5				
·					

Timing of the transmitter

(c) Unless otherwise specified, e.g. Section 15.255(b), when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification.

Duty cycle of the sample with test mode (EUT No. 3: 25656034): 20.6 %

In normal use the duty cycle is approximately 2.5 % (declared by the manufacturer).

Result: Passed

2014-06-05 Page 9 of 26

10.2 Bandwidth of the modulated carrier

Limits:

FCC	IC				
CFR Part SUBCLAUSE § 15.223	RSS-210 Issue 8				
Bandwidth of the modulated carrier					

Measured with the integrated OBW-function of the spectrum analyser (measurement criteria is the integrated power in %)

Result:

EUT No. 1: 25654464

	Occupied Bandwidth (kHz)			
6 dB (75%)	112.0			
20 dB (99%)	359.0			

EUT No. 2: 25656033

	Occupied Bandwidth (kHz)
6 dB (75%)	101.0
20 dB (99%)	348.0

EUT No. 3: 25656034

	Occupied Bandwidth (kHz)			
6 dB (75%)	100.0			
20 dB (99%)	355.0			

2014-06-05 Page 10 of 26

Plots of the measurements:

EUT No. 1: 25654464

Plot 1: 6dB (75%) - bandwidth

Date: 26.MAY.2014 10:21:03

Plot 2: 20dB (99%) - bandwidth

Date: 26.MAY.2014 10:19:54

2014-06-05 Page 11 of 26

EUT No. 2: 25656033

Plot 1: 6dB (75%) - bandwidth

Date: 26.MAY.2014 10:23:50

Plot 2: 20dB (99%) - bandwidth

Date: 26.MAY.2014 10:24:36

2014-06-05 Page 12 of 26

EUT No. 3: 25656034

Plot 1: 6dB (75%) - bandwidth

Date: 21.MAY.2014 12:00:38

Plot 2: 20dB (99%) - bandwidth

Date: 21.MAY.2014 11:59:53

2014-06-05 Page 13 of 26

10.3 Field strength of the fundamental

Measurement:

Measurement parameter			
Detector: Quasi Peak (CISPR)			
Resolution bandwidth:	10kHz		
Trace-Mode:	Max Hold		

Limits:

FCC		IC		
CFR Part SUBCLAUSE § 15.223		RSS-210 Issue 8		
Fundamental Frequency (MHz)	Field strength ο (μ۷/		Measurement distance (m)	
1.705 – 10.0	[15] [6dB-BW(kH Whichever	z) / F(MHz)	30	

Results:

TEST CC	ONDITIONS	MAXIMUM POWER (dBμV/m)		
Freq	luency	3.84 MHz	3.84 MHz	
EUT No. 1	1: 25654464	at 1 m distance	at 30 m distance	
T _{nom}	V _{nom}	45.4	-14.6	
EUT No. 2	2: 25656033	at 1 m distance	at 30 m distance	
T_{nom}	V _{nom}	46.7	-13.3	
EUT No. 3	3: 25656034	at 1 m distance	at 30 m distance	
T _{nom}	V _{nom}	48.0 -12.0		
Measureme	nt uncertainty	±30	dВ	

Recalculation to a measurement distance of 30m with a correction of 40 dB/decade.

Result: Passed

2014-06-05 Page 14 of 26

Noise floor: 26.5 dBµV/m

*Note:

• Calculation: Measured maximum field strength @ 1 m: 48.0 dBµV/m

Correction factor from 1m to 10m: -40 dB (40 dB / decade)

 $48.0 \text{ dB}\mu\text{V/m}$ @ 1 meter - 40 dB = $8.0 \text{ dB}\mu\text{V/m}$ @ 10 meter

Correction factor from 1m to 30m: -60 dB (40 dB / decade)

 $48.0 \text{ dB}\mu\text{V/m}$ @ 1 meter - 60 dB = -12.0 dB $\mu\text{V/m}$ @ 30 meter

2014-06-05 Page 15 of 26

10.4 Field strength of the harmonics and spurious

Measurement:

Measurement parameter				
Detector: Average / Quasi Peak				
Sweep time:	Auto			
Resolution bandwidth:	3 kHz - 120 kHz			
Video bandwidth:	Comparable to RBW			
Trace-Mode:	Max hold			

Limits:

FCC			IC
SUBCLAUSE § 15.2	SUBCLAUSE § 15.209 (a)		RSS-210 Issue 8
Fi	eld strength of the ha	armonics and sp	urious.
Frequency (MHz)	Field strength (μV/m)		Measurement distance (m)
0.009 – 0.490	2400/F(kHz)		300
0.490 – 1.705	24000/F	(kHz)	30
1.705 – 30	30 (29.5 c	IBμV/m)	30
30 – 88	100 (40 dBμv/m)		3
88 – 216	150 (43.5 dBµV/m)		3
216 – 960	200 (46 d	BμV/m)	3

Result:

	EMISSION LIMITATIONS					
f [MHz]	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	No traceable peaks detected. All detected emissions are below the limit!					

Result: Passed

2014-06-05 Page 16 of 26

Plots of the measurements: EUT No. 3: 25656034 TX MODE

Plot 1: 9 kHz - 30 MHz; magnetic

2014-06-05 Page 17 of 26

Plot 2: 30 MHz – 1000 MHz, vertical & horizontal polarization, TX MODE

Final result:

illai lesuit.									
Frequency	QuasiP	Limit	Margin	Meas.	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	eak	(dBµV/	(dB)	Time	(kHz)	(cm)		(deg)	(dB)
	(dBµV/	m)		(ms)					
	m)								
35.845050	10.08	30.00	19.92	1000.0	120.000	170.0	٧	94.0	13.1
251.217750	9.32	36.00	26.68	1000.0	120.000	101.0	٧	178.0	13.3
471.404850	14.60	36.00	21.40	1000.0	120.000	170.0	٧	-2.0	18.1
735.179700	20.45	36.00	15.55	1000.0	120.000	98.0	Н	88.0	23.3
772.008300	20.71	36.00	15.29	1000.0	120.000	106.0	Н	190.0	23.7
876.966450	22.11	36.00	13.89	1000.0	120.000	156.0	V	273.0	24.9
	35.845050 251.217750 471.404850 735.179700 772.008300	Frequency (MHz) QuasiP eak (dBμV/m) 35.845050 10.08 251.217750 9.32 471.404850 14.60 735.179700 20.45 772.008300 20.71	Frequency (MHz) eak (dBμV/ m) 35.845050 10.08 30.00 251.217750 9.32 36.00 471.404850 14.60 36.00 735.179700 20.45 36.00 772.008300 20.71 36.00	Frequency (MHz) QuasiP eak (dBμV/m) Limit (dBμV/m) Margin (dB) 35.845050 10.08 30.00 19.92 251.217750 9.32 36.00 26.68 471.404850 14.60 36.00 21.40 735.179700 20.45 36.00 15.55 772.008300 20.71 36.00 15.29	Frequency (MHz) QuasiP eak (dBμV/m) Limit (dBμV/m) Margin (dB) Time (ms) 35.845050 10.08 30.00 19.92 1000.0 251.217750 9.32 36.00 26.68 1000.0 471.404850 14.60 36.00 21.40 1000.0 735.179700 20.45 36.00 15.55 1000.0 772.008300 20.71 36.00 15.29 1000.0	Frequency (MHz) QuasiP eak (dBμV/m) Limit (dBμV/m) Margin (dB) Meas. Time (ms) Bandwidth (kHz) 35.845050 10.08 30.00 19.92 1000.0 120.000 251.217750 9.32 36.00 26.68 1000.0 120.000 471.404850 14.60 36.00 21.40 1000.0 120.000 735.179700 20.45 36.00 15.55 1000.0 120.000 772.008300 20.71 36.00 15.29 1000.0 120.000	Frequency (MHz) QuasiP eak (dBμV/m) Limit (dBμV/m) Margin (dB) Meas. Time (ms) Bandwidth (kHz) Height (cm) 35.845050 10.08 30.00 19.92 1000.0 120.000 170.0 251.217750 9.32 36.00 26.68 1000.0 120.000 101.0 471.404850 14.60 36.00 21.40 1000.0 120.000 170.0 735.179700 20.45 36.00 15.55 1000.0 120.000 98.0 772.008300 20.71 36.00 15.29 1000.0 120.000 106.0	Frequency (MHz) QuasiP eak (dBμV/m) Limit (dBμV/m) Margin (dB) Meas. Time (ms) Bandwidth (kHz) Height (cm) Pol (cm) 35.845050 10.08 30.00 19.92 1000.0 120.000 170.0 V 251.217750 9.32 36.00 26.68 1000.0 120.000 101.0 V 471.404850 14.60 36.00 21.40 1000.0 120.000 170.0 V 735.179700 20.45 36.00 15.55 1000.0 120.000 98.0 H 772.008300 20.71 36.00 15.29 1000.0 120.000 106.0 H	Frequency (MHz) QuasiP eak (dBμV/m) Limit (dBμV/m) Margin (dB) Meas. Time (ms) Bandwidth (kHz) Height (cm) Pol (deg) 35.845050 10.08 30.00 19.92 1000.0 120.000 170.0 V 94.0 251.217750 9.32 36.00 26.68 1000.0 120.000 101.0 V 178.0 471.404850 14.60 36.00 21.40 1000.0 120.000 170.0 V -2.0 735.179700 20.45 36.00 15.55 1000.0 120.000 98.0 H 88.0 772.008300 20.71 36.00 15.29 1000.0 120.000 106.0 H 190.0

2014-06-05 Page 18 of 26

10.5 Receiver spurious emissions

Measurement:

Measurement parameter				
Detector:	Average / Quasi Peak			
Sweep time:	Auto			
Resolution bandwidth:	3 kHz - 120 kHz			
Video bandwidth:	Comparable to RBW			
Trace-Mode:	Max hold			

Limits:

FCC		IC					
SUBCLAUSE § 15	.109		RSS-210 Issue 8				
Fiel	Field strength of the harmonics and spurious.						
Frequency (MHz)	Field strength (µV/m)		Measurement distance (m)				
0.009 - 0.490	2400/F(kHz)		300				
0.490 – 1.705	24000/F(kHz)		30				
1.705 – 30	30 (29.5 c	lΒμV/m)	30				
30 – 88	100 (40 dBμv/m)		3				
88 – 216	150 (43.5 dBµV/m)		3				
216 – 960	200 (46 dBµV/m)		3				

Result:

	EMISSION LIMITATIONS						
f [MHz]	Detector Limit max. allowed [dBμV/m] Amplitude of emission [dBμV/m]			Results			
	No traceable peaks detected. All detected emissions are below the limit!						

Result: Passed

2014-06-05 Page 19 of 26

Plots of the measurements: EUT No. 4: 25655999, RX MODE

Plot 1: 9 kHz - 30 MHz; magnetic

2014-06-05 Page 20 of 26

Plot 2: 30 MHz – 1000 MHz, vertical & horizontal polarization, RX MODE

Final result:

mai result.									
Frequency (MHz)	QuasiP eak (dBµV/ m)	Limit (dBµV/ m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
41.987550	10.26	30.00	19.74	1000.0	120.000	200.0	Н	2.0	13.4
52.286550	10.02	30.00	19.98	1000.0	120.000	329.0	٧	281.0	13.1
387.152700	13.02	36.00	22.98	1000.0	120.000	103.0	٧	242.0	16.7
602.238750	17.87	36.00	18.13	1000.0	120.000	173.0	Н	75.0	20.8
733.575150	20.34	36.00	15.66	1000.0	120.000	149.0	Н	176.0	23.3
955.735650	22.38	36.00	13.62	1000.0	120.000	238.0	٧	131.0	25.4

2014-06-05 Page 21 of 26

10.6 Conducted limits

Not applicable!

The EUT is battery powered only!

No possibility to connect to the mains power supply!

2014-06-05 Page 22 of 26

11 Test equipment and ancillaries used for tests

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, rf-generating and signalling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Spectrum Analyzer 9kHz to 30GHz - 140+30dBm	FSP30	R&S	100886	300003575	k	22.08.2012	22.08.2014
2	45	Switch-Unit	3488A	HP Meßtechnik	2719A14505	300000368	g		
3	n. a.	software	SPS_PHE 1.4f	Spitzberger & Spieß	B5981; 5D1081;B597 9	300000210	ne		
4	n. a.	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	27.01.2014	27.01.2015
5	n. a.	Amplifier	JS42- 00502650- 28-5A	MITEQ	1084532	300003379	ev		
6	n. a.	Antenna Tower	Model 2175	ETS- LINDGREN	64762	300003745	izw		
7	n. a.	Positioning Controller	Model 2090	ETS- LINDGREN	64672	300003746	izw		
8	n. a.	Turntable Interface-Box	Model 105637	ETS- LINDGREN	44583	300003747	izw		
9	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbe ck	295	300003787	k	22.04.2014	22.04.2016
10	n. a.	Spectrum- Analyzer	FSU26	R&S	200809	300003874	k	22.01.2014	22.01.2015
11	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev		
12	90	Active Loop Antenna 10 kHz to 30 MHz	6502	Kontron Psychotech	8905-2342	300000256	k	13.06.2013	13.06.2015
13	n. a.	Amplifier	js42- 00502650- 28-5a	Parzich GMBH	928979	300003143	ne		
14	n. a.	Band Reject filter	WRCG185 5/1910- 1835/1925- 40/8SS	Wainwright	7	300003350	ev		
15	n. a.	Band Reject filter	WRCG240 0/2483- 2375/2505- 50/10SS	Wainwright	11	300003351	ev		
16	n. a.	Highpass Filter	WHKX7.0/1 8G-8SS	Wainwright	18	300003789	ne		
17	n. a.	MXE EMI Receiver 20 Hz bis 26,5 GHz	N9038A	Agilent Technologi es	MY51210197	300004405	k	13.03.2014	13.03.2015
18	n. a.	4U RF Switch Platform	L4491A	Agilent Technologi es	MY50000037	300004509	ne		

2014-06-05 Page 23 of 26

Agenda: Kind of Calibration

calibration / calibrated ΕK limited calibration not required (k, ev, izw, zw not required) cyclical maintenance (external cyclical maintenance) ne ZW periodic self verification ev izw internal cyclical maintenance blocked for accredited testing Ve long-term stability recognized g vlkl! Attention: extended calibration interval *) next calibration ordered / currently in progress NK! Attention: not calibrated

12 Observations

No observations exceeding those reported with the single test cases have been made.

2014-06-05 Page 24 of 26

Annex A Document history

Version	Applied changes	Date of release	
	Initial release	2014-06-05	

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number
SW - Software

2014-06-05 Page 25 of 26

Annex C **Accreditation Certificate**

Front side of certificate

Back side of certificate

(DAkkS

Deutsche Akkreditierungsstelle GmbH

Belliehene gemäß § 8 Absatz 1 AkkStelleG i.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommon von EA, ILAC und IAF zur gegenseitigen Anerkennung

Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium

Untertürkheimer Straße 6-10, 66117 Saarbrücken

die Kampetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen:

Drahtgebundene Kommunikation einschließlich xDSL VoIP und DECT

VoIP und DECT
Akustik
Funk einschließlich WLAN
Short Range Devices (SRD)
RFID
Wilmax und Richtfunk
Mobilfunk (OSM / DCS, Over the Air (OTA) Performance)
Elektromagnetische Verträglichkeit (EMV) einschließlich Automotive

Elektromagnetische Verträglichkeit (EMV) Produktsicherheit SAR und Hearing Aid Compatibility (HAC) Umweltsimulation

Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheld vom 07.03.2014 mit der Akkreditierungsurummen D-RI-12076-01 und ist giltig 17.01.2018. Sie besteht aus diesem Dockblatt, der Rückseite des Deckblatts und der falgenden Anlage mit Insgesamt 77 Seiten.

Registrierungsnummer der Urkunde: D-PL-12076-01-00

Frankfurt am f/ain, 07.03.2014

Deutsche Akkreditierungsstelle GmbH

Standort Frankfurt am Main

Die auszugsweise Veröffentlichung der Aktreditierungsurlaunde bezarf der vorherigen schriftlichen Zuszimmung der Deutsche Aktreditierungsstelle GnBH (DAMS). Ausgenommen davon ist die sepan Weiterverbreitung des Deckliattes durch die umseinig genennte Konformitällsbewartungsstelle in unweit deterter Form.

Es darf nicht der Anschein erweckt werden, dass sich die Akkreditierung auch auf Bereiche erstreed, die über den durch die DAkkS bestätigten Akkreditierungsbereich hinausgehen.

Die Akkredieierung erfolgte gemößt den Gesetren über Abberdieierung erfolgte gemößt den Gesetren über Abberdieierung erfolgt (Abstelleci) vom 31. Juli 2003 (868). 15. 2003 beseit der Veronterung (55) Nr. 705/2003 des Grupplichen Prüheners (15) 2009 (15) 20

Der aktue in Stund der Wilglindschaft kann folgenden Webselten ertnommen werden: Fa. www.naropisch accord tällon.org IIAC www.lincurg IAR www.lincurg

Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

http://www.cetecom.com/eu/de/cetecom-group/europa/deutschland-saarbruecken/akkreditierungen.html

2014-06-05 Page 26 of 26