Coursework Project I

Konstantinos Drakopoulos

January 5, 2016

Question 1

Investigate the stability and accuracy of the four schemes in terms of the Courant-Friedrichs-Lewy (CFL) numbers $\lambda = c \frac{dt}{dx}$ and $\mu = \nu \frac{dt}{dx^2}$. In particular use numerical experimentation and/or von Neumann stability analysis to determine stability boundaries.

Listing 1: Code used to find the maximum time step and the resulting CFL parameters

```
flg = 1;
dt = 2e-3;
step = 1e-3;
counter = 1;
while flg
    dt = dt + step;
    flg = wave(dt);
    if ~flg && counter <= 4
        dt = dt - step;
        step = step/(10*counter);
        flg = 1;
        counter = counter + 1;
    end
end</pre>
```

Table 1: CFL coefficients for a stable boundary

	Convection λ	Diffusion μ	dt
Euler - Central Diff 2	2.7530e - 03	4.0000e - 06	2.0161e - 05
Euler - Central Diff 4	2.7310e - 03	4.0000e - 06	2.0002e - 05
RK2 - Central Diff 2	6.010206e - 01		
RK2 - Central Diff 4			ı

Question 2

Use the exact solution as an initial condition for your simulations and compare the numerical results against the exact ones at a later time. Consider whether the integral 'constants' $A = \int_{-\infty}^{\infty} f dx$ and

 $E=\int_{-\infty}^{\infty} rac{1}{2} f^2 dx$ are conserved (or not) as appropriate.

Question 3

Investigate the solutions when the viscosity is very small (in effect, zero) so that we reduce to the onedimensional wave equation. Look the amplitude (growth/decay, stability) and dispersion (phase speed of wave components. One way to retain stability is to add an optimal small amount of artificial viscosity (e.g. the Lax-Wendroff method, Euler+CDiff2, using $\nu = 0.5c^2dt$).

Question 4

Investigate the solutions when convection is negligible (c = 0). Look at the accuracy and stability limit in terms of $\mu = \nu \frac{dt}{dx^2}$ for the different schemes.

Question 5

Finally, discuss your results in terms of which schemes are best suited to be used for simulations of turbulent flows.