Labelfix

Presented by Gentry Atkinson

Source:

- "Identifying Mislabeled Instances in Classification Datasets"
- NM Müller, K Markert
- Cognitive Security Technologies Fraunhofer AISEC Garching, Germany
- IEEE International Joint Conference on Neural Networks
- Code available at: github.com/mueller91/

Summary:

- The performance of any classier can be greatly improved by removing mislabeled instances from the data set.
- An estimated 5% of data in real-world data sets is mislabeled.
- One method of identifying mislabeled data would be to classify all points with an appropriate classifier, sort every point by how close the predicted label is to the true label, and remove the most "bad" instances.
- A user could input an appropriate percentage of the points to remove.

Notation:

- D is some data set composed of X vector and Y vector.
- X vector is all data point
- Y vector is all labels expressed as one-hot vectors
- g a classifying model
- $\langle y_n, \bar{y}_n \rangle$ the cosine distance between label y and the label predicted by g
- α the percentage of X to mark as mislabeled
- I_n the subset of X identified as mislabeled

Preprocessing:

- User calls preprocess_x_y_and_shuffle python function. Function takes a data set and a label set. No other parameters are needed.
- System automatically identifies data type as numerical, image, or language.
- Numerical data is normalized.
- Image data is standardized (set mean to 0 and divide by std deviation)
- NL is mapped to a 300-d embedding and summed.

Classification:

- User calls check_dataset on the preprocessed x and y. Hyper-parameters are optional.
- g is chosen based on the on the data type identified by pre-processing:
 - Numerical and textual data is classified using a dense NN.
 - o Image data is classified using a CNN with 48 2x2 kernels.
- \bar{y}_n is generated for every y_n by classifying x_n

Sorting:

- $\langle y_n, \bar{y}_n \rangle$ is calculated as the inner product of the real label and predicted label.
 - \circ Represents the probability that x_n is assigned the label y_n
 - \circ arcos($y_n \text{ dot } \bar{y}_n / (|y_n| * | \bar{y}_n|))$
- I_{α} is generated such that:
 - \circ $\Sigma_{Iq} \langle y_n, \bar{y}_n \rangle$ is minimized
 - \circ $|I_{\alpha}| = \alpha N$ where N is |X|

Experimental Method:

- 29 data sets where chosen
 - o 22 real world
 - 7 synthetic produced by sklearn
- Researchers altered labels for μ =3% of the set, and trained labelfix to detect altered labels.
- Precision = $|I_a \cap I| / |I_a| = TP / TP + FP$
- Recall = $|I_a \cap I| / |I| = TP / TP + FN$

TABLE II OVERVIEW OF THE DATASETS .

Dataset	Size	Type	Classes 2	
adult	(32561, 14)	numerical		
breast_cancer	(569, 30)	numerical	2	
cifar10	(50000, 32, 32, 3)	image	10	
cifar100	(50000, 32, 32, 3)	image	100	
cifar100, at random	(50000, 32, 32, 3)	image	100	
cifar100, subset aqua	(2500, 32, 32, 3)	image	5	
cifar100, subset flowers	(2500, 32, 32, 3)	image	5	
cifar100, subset household	(2500, 32, 32, 3)	image	5	
credit card default	(30000, 23)	numerical	2	
digits	(1797, 64)	numerical	10	
fashion-mnist	(60000, 28, 28, 3)	image	10	
forest covertype (10%)	(58101, 54)	numerical	7	
imdb	(25000, 100)	textual	2	
iris	(150, 4)	numerical	3	
mnist	(60000, 28, 28, 3)	image	10	
pulsar_stars	(17898, 8)	numerical	2	
s loan-digital-sky-survey	(10000, 17)	numerical	3	
sms spam	(5572, 300)	textual	2	
svhn	(73257, 32, 32, 3)	image	10	
synthetic 1	(10000, 9)	numerical	3	
synthetic 2	(10000, 9)	numerical	5	
synthetic 3	(10000, 45)	numerical	7	
synthetic 4	(10000, 45)	numerical	15	
synthetic 5	(10000, 85)	numerical	15	
synthetic 5	(10000, 85)	numerical	7	
synthetic blobs	(4000, 12)	numerical	12	
twenty newsgroup	(18846, 300)	textual	20	
twitter airline	(14640, 300)	textual	3	
wine	(178, 13)	numerical	3	

All data sets.

TABLE III PRECISION AND RECALL VALUES FOR ARTIFICIALLY ADDED 3% noise, averaged over five runs .

Dataset	Runtime	α-precision			55, 64, 5500	α-recall	
		$\alpha = 0.01$	$\alpha = 0.02$	$\alpha = 0.03$	$\alpha = 0.01$	$\alpha = 0.02$	$\alpha = 0.03$
adult	2.1 min	0.80	0.63	0.51	0.27	0.42	0.51
breast_cancer	34.0 sec	0.76	0.80	0.74	0.22	0.52	0.74
cifarl 0	9.47 min	0.98	0.88	0.72	0.33	0.59	0.72
cifarl 00	13.07 min	0.94	0.82	0.67	0.31	0.54	0.67
cifarl 00, at random	11.48 min	0.43	0.35	0.31	0.14	0.23	0.31
cifarl 00, subset aqua	20.2 sec	0.61	0.38	0.32	0.20	0.25	0.32
cifarl 00, subset flowers	32.8 sec	0.63	0.43	0.34	0.21	0.29	0.34
cifarl 00, subset household	48.6 sec	0.62	0.46	0.37	0.21	0.30	0.37
credit card default	1.9 min	0.18	0.17	0.18	0.06	0.12	0.18
digits	51.8 sec	0.98	0.95	0.86	0.31	0.63	0.86
fashion-mnist	10.71 min	0.99	0.98	0.90	0.33	0.66	0.90
forest covertype (10%)	4.6 min	1.00	0.95	0.74	0.33	0.63	0.74
imdb	3.71 min	0.70	0.61	0.51	0.23	0.41	0.51
iris	26.9 sec	1.00	0.53	0.55	0.25	0.40	0.55
mnist	3.74 min	1.00	1.00	0.97	0.33	0.67	0.97
pulsar_stars	51.8 sec	0.91	0.86	0.78	0.30	0.57	0.78
sloan-digital-sky-survey	1.5 min	0.80	0.71	0.63	0.27	0.47	0.63
sms spam	1.44 min	0.85	0.86	0.79	0.28	0.57	0.79
svhn	13.6 min	0.92	0.90	0.83	0.31	0.60	0.83
synthetic 1	2.05 min	1.00	0.98	0.89	0.33	0.66	0.89
synthetic 2	2.74 min	1.00	0.99	0.89	0.33	0.66	0.89
synthetic 3	3.79 min	1.00	0.99	0.91	0.33	0.66	0.91
synthetic 4	4.9 min	0.98	0.90	0.74	0.33	0.60	0.74
synthetic 5	3.53 min	0.95	0.84	0.70	0.32	0.56	0.70
synthetic 6	3.58 min	1.00	0.98	0.86	0.33	0.65	0.86
synthetic blobs	37.8 sec	1.00	1.00	0.98	0.33	0.67	0.98
twenty newsgroup	3.2 min	0.79	0.73	0.63	0.26	0.49	0.63
twitter airline	2.39 min	0.66	0.52	0.43	0.22	0.34	0.43
wine	28.1 sec	1.00	1.00	0.88	0.20	0.60	0.88
Averages	3	0.84	0.77	0.68	0.27	0.51	0.68

Conclusions:

- Paper claims best overall precision=0.84 when α =0.01 and μ =0.03.
- When $\mu=\alpha=0.03$, total overall precision falls to 0.68 with recall of 0.68
- Intent is to mark suspicious instances for review.
- System was able to detect some **actual** mislabeled data in real world sets:

Fig. 2. Mislabeled instances in the Fashion-MNIST training set.

Proposed future work:

- Expand preprocessor and g to accommodate time series and bio-signal data.
 Preprocessor could be same as numerical if features are extracted traditionally. g could include a 1d-CNN.
- g could be expanded to be an ensemble method. 3 (or whatever number) of models could classify an instance. I_a would be generated using:

$$\bigcirc \qquad \langle y_{n}, \bar{y}_{n} \rangle = \langle y_{n}, \bar{y}_{n1} \rangle + \langle y_{n}, \bar{y}_{n2} \rangle \langle y_{n}, \bar{y}_{n3} \rangle$$