

FDIR

Spacecraft fault protection system

Project 1

Part 1

Euro Team

Alauzet Pierre, Ahvenniemi Mikko, Colin Julien, Starck Benoit

TABLE OF CONTENTS

- 1. Background
- 2. Functionnal requirements
- 3. Non-functionnal requirements
- 4. Use-case model

BACKGROUND

- Fault
 - Detected when monitored values are out-of-tolerance

Functionnal requirements

- Fault protection system (FDIR)
 - Act when the spacecraft is going through an error or a fault
 - FDIR is a layered system. If a lower layer cannot resolve an issue it's forwarded to an upper layer. If the Issue cannot be resolved by the system. It's escalated to manual control.
 - Automatic system
- Spaceship crew and flight control can manually control the system

REQUIREMENTS

Global Requirements :

- Guarantee the completion of any time critical activities of the spaceship
- Keep the control of the spacecraft with safety, observability & commandability

REQUIREMENTS (CONT.)

Fault Recovery :

Analyse & locate the fault

2 solutions

Recover the data by doing a backup

Restart the bugging software

REQUIREMENTS (CONT.)

Safing response in the case of hazardous conditions:

Isolate the problem

Unmanned spacecraft:

Shutdown all noncritical functions Manned spacecraft:

Crew Intervention

NON-FUNCTIONAL REQUIREMENTS

Testability

□ The system and its parts have to be able to be tested through inspections, simulations and analyses before on-board installation

Reliability

The system must be reliable in all operating conditions.
System failure could lead to loss of human life.

Availability

□ The system must not lock or stall when processing data. It must work asynchronously.

NON-FUNCTIONAL REQUIREMENTS

Resilience

□ The system must be able to maintain an acceptable level of service in spite failures in parts of the FDRI system.

Response time

The system must respond in timely manner so that problematic systems can be shut down before any damage is done.

Documentation

Technical and software documentation has to be accurate so that the spacecraft crew and flight control know how to administer the system and perform actions through it.

USE CASE DIAGRAM EXPLANATIONS

Most of the time FDRI works automatically. However, spaceship crew and flight control can manually control the system.

□ These interactions are represented in the following use case diagram.

USE CASE DIAGRAM

Functionnal requirements

USE CASES DESCRIPTIONS

Shutdown one part of the system:

Functionnal requirements

- Context of use: a part of the system is failed, we want to shutdown it
- Actors : Crew / Flight control
- Pre-condition: none
- Post-condition: the part of the system is shutdown
- Guaranty in case of success : any actions could not be done to this part
- Guaranty in case of failure: the system turns on

11 / 21

USE CASES DESCRIPTIONS (CONT.)

Restart one part of the system:

Functionnal requirements

- Context of use: a part of the system is shutdown, we want to restart it
- Actors : Crew / Flight control
- Pre-condition: the part is shutdown
- Post-condition: the part is switched on
- Guaranty in case of success: Any action could be done after reboot
- Guaranty in case of failure: the system is off yet

USE CASES DESCRIPTIONS (CONT.)

- Switch to backup system:
 - Context of use: the current system is corrupted
 - Actors : Crew / Flight control
 - Pre-condition: none
 - Post-condition: the faulty system is switched to a spare system
 - Guaranty in case of success: the system is not corrupted yet
 - Guaranty in case of failure : none

Use-case model

USE CASES DESCRIPTIONS (CONT.)

- Find information about a part of the system:
 - Context of use: the crew wants to know some information about a part of the system
 - Actors : Crew / Flight control
 - Pre-condition: none
 - Post-condition: the crew receives the information
 - Guaranty in case of success: we have the information
 - Guaranty in case of failure: we don't have the information

SEQUENCE DIAGRAM

Functionnal requirements

Fault recovering

SEQUENCE DIAGRAM (CONT.)

Safing response in case of hazardous condition

SEQUENCE DIAGRAM (CONT.)

Critical failure

FDIR

Spacecraft fault protection system

Project 1

Part 1

Euro Team

Alauzet Pierre, Ahvenniemi Mikko, Colin Julien, Starck Benoit

REFERENCES

1. [Eas98] Steve Easterbrook, and et al., "Experiences Using Lightweight Formal Methods for Requirements Modeling," IEEE Transactions on Software Engineering, Vol. 24, No. 1, January 1998.