

Bitcoin, Blockchain and Cryptoassets Elliptic Curves and ECDSA

Prof. Dr. Fabian Schär University of Basel

Release Ver.: (Local Release)
Version Hash: (None)

Version Date: (None)

License: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Example of an Elliptic Curve

Elliptic curve with a = -2, b = 2

Weierstrass equation:

$$y^2 = x^3 + ax + b$$

Non-singularity condition:

$$4a^3 + 27b^2 \neq 0$$

Addition of Two Points

$$P_1 = (-1.5, \sqrt{1.625})$$

$$P_2 = (0, \sqrt{2})$$

$$P_3 = P_1 + P_2$$

Point Doubling

$$P = (-0.5, \sqrt{2.875})$$

$$P + P = 2P$$

Elliptic Curves over Finite Fields

Bitcoin uses secp256k1: $y^2 = x^3 + 7 \pmod{p}$ over \mathbb{F}_p where $p = 2^{256} - 2^{32} - 2^9 - 2^6 - 2^4 - 1$.

Simplified example: $y^2 = x^3 + 7 \pmod{37}$ in \mathbb{F}_{37} with x = 5

$$y^{2} \pmod{37} \equiv x^{3} + 7 \pmod{37}$$
...

 $5^{3} + 7 \pmod{37} = 132 \pmod{37}$
 $= 21$
...

 $y^{2} \pmod{37} \equiv 21$
 $13^{2} \pmod{37} \equiv 21$
 $24^{2} \pmod{37} \equiv 21$

Modular Multiplicative Inverse

For our computations we often need the so-called modular multiplicative inverse.

Regular division:

$$10/4 = 2.5$$

Multiplicative inverse:

$$4/4 = 4 \cdot 4^{-1} = 1$$

 $10 \cdot 4^{-1} = 2.5$

Modular multiplicative inverse:

$${4 \cdot x} \pmod{3} = 1$$

for $x = 1$
because 4 $\pmod{3} = 1$

ECDSA

Simplified example: Elliptic curve of order N = 39 with subgroups of the order n = 13:

Key Generation

Simplified example: $k_{prv} = 9$ and G = (8,1)

From k_{prv} to K_{pub} using the double and add algorithm:

1. Double: $2 \circ G = 2G$

2. Double: $2 \circ 2G = 4G$

3. Double: $2 \circ 4G = 8G$

4. Add: 8G + G = 9G

 \rightarrow Four steps only! Algorithm runtime: $\mathcal{O}(\log_2 n)$

Elliptic Curve Discrete Logarithm Problem

Example: Signature

Simplified example:

- $y^2 = x^3 + 7$
- G = (8,1)
- $k_{prv} = 9$
- $K_{pub} = (23, 1)$
- t = 4

- 1. Choose random number, e.g. i = 7
- 2. Compute
 - a. $P = i \cdot G = 7G = (18, 20)$
 - b. $r = x_P \pmod{n} = 18 \pmod{13} = 5$

c.
$$s = \{i^{-1}(t + r \cdot k_{prv})\} \pmod{n}$$

= $\{2 \cdot (4 + 5 \cdot 9)\} \pmod{13}$
= 7

- 3. Send
 - a. (r,s) = (5,7)
 - b. t = 4
 - c. $K_{pub} = (23, 1)$

Example: Verification

Simplified example:

$$y^2 = x^3 + 7$$

$$G = (8,1)$$

$$K_{pub} = (23,1)$$

$$t = 4$$

$$(r,s) = (5,7)$$

1. Compute

a.
$$\{u_1 = (s^{-1}t)\} \pmod{n} = 8 \mod 13 = 8$$

b.
$$\{u_2 = (s^{-1}r)\}\ (mod\ n) = 10\ mod\ 13 = 10$$

c.
$$P = u_1 \circ G + u_2 \circ K_{pub}$$

= $8G + 10 \circ (23, 1)$
= $(32, 20) + (8, 36)$
= $(18, 20)$

2. Check authenticity: $x_P \mod n = r$ Here: 18 $(\mod 13) = 5$

- \rightarrow The private key is never revealed.
- ightarrow ightharpoonup Python script to signature and verification examples