Применение интеграла Римана для вычисления площадей и объемов. Примеры.

Опр (школьное)

Пусть $P \in \mathbb{R}^2$ ("фигрура"), \mathcal{P} - некоторый набор плоских "фигур", $P_i \in \mathcal{P}$ $g: \mathcal{P} \to [0, +\infty)$ - называется площадью, если:

1.
$$\forall P \in \mathcal{P}, S(P) \geqslant 0$$

2.
$$\forall P_1, P_2 \in \mathcal{P} : P_1 \cap P_2 = \emptyset \Rightarrow S(P_1 \cup P_2) = S(P_1) + S(P_2)$$

Опр

 $\tau: \mathbb{R}^2 \to \mathbb{R}^2$, сохраняет расстояние

3.
$$\forall P \in \mathcal{P}$$
 τ -движения $S(\tau(P)) = S(P)$

Площадь криволинейной трапеции.

Опр

Подграфиком $f \in R[a,b]$ называется $P_f := \{(x,y)|a \leqslant x \leqslant b, \ 0 \leqslant y \leqslant f(x)\}$

Возьмём разбиение и верх. и нижн. суммы Дарбу. S - монотонна, т.е.

$$P_1 \subset P_2 \Rightarrow S(P_1) \leqslant S(P_2), \ S_*(\tau) = S(P_*(\tau)), \ S^*(\tau) = S(P^*(\tau))$$

$$P_*(f,\tau) \subset P(f) \subset R^*(f,\tau)$$

$$S(P_*(f,\tau)) = S_*(f,\tau) \to \int_a^b f$$

$$S(P^*(f,\tau)) = S^*(f,\tau) \to \int_a^b f$$

$$S(P_f) := \int_a^b f$$

Пример

Первая четверть эллипса с радиусами (a, b).

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \quad y = b\sqrt{1 - \frac{x^2}{a^2}}, \quad S = \int\limits_0^a b\sqrt{1 - \frac{x^2}{a^2}} dx$$
 - сложно, перейдём в поляры
$$\int x = a \cos t$$

$$\begin{cases} x = a\cos t \\ y = b\sin t \end{cases}$$

$$\int\limits_{0}^{a}f(x)dx=\int\limits_{\frac{\pi}{2}}^{0}b\sin td(a\cos t)=ab\int\limits_{\frac{\pi}{2}}^{0}\sin^{2}tdt=-ab(t-\frac{\sin 2t}{2})|_{\frac{\pi}{2}}^{0}=0-(-\frac{\pi ab}{4})=\frac{\pi ab}{4}$$

Вычисление объемов

y_{TB}

Принцип Кавальери. Если у двух тел одни сечения на одном уровне, то их объемы равны.

$$\sum\limits_{k=0}^{n-1}S(\xi_k)\Delta_k$$
 - сумма Римана $V=\int\limits_a^bS(x)dx$ - измельчаем плоскости

Пример

(на самом деле тела вращения можно считать как $V=\pi\int\limits_a^b f^2(x)dx$)

Путь. Длина пути. Спрямляемый путь. Аддитивность длины пути.

$$\frac{\mathbf{Oпр}}{\gamma: [a,b] \to \mathbb{R}^n, \quad \gamma = \begin{pmatrix} \gamma_1 \\ \gamma_2 \\ \dots \\ \gamma_n \end{pmatrix}, \quad \gamma_k: [a,b] \to \mathbb{R}. \text{ Расстояние считается как}$$

$$d(x,y) = ||x-y||_2 = \sqrt{\sum\limits_{k=1}^n (x_k-y_k)^2}, \ \gamma \text{ - путь, если } \forall i \in \{1,\dots k\} \ \gamma_i \in C[a,b]$$

Опр

Путь называется r-гладким, если $\forall i \in \{1,...k\} \ \gamma_i \in C^r[a,b]$

Опр

Два пути считаются эквивалентными если можно сделать замену переменной. Т.е. пусть $\gamma:[a,b]\to\mathbb{R},\,\widetilde{\gamma}:[\alpha,\beta]\to\mathbb{R}$, тогда: $\gamma \sim \widetilde{\gamma} \Leftrightarrow \exists \varphi : [a,b] \to [\alpha,\beta]$ - строго возрастающая, $\alpha = \varphi(a), \beta = \varphi(b),$ $\nu = \widetilde{\nu} \circ \omega$

Опр

Кривая - класс эквивалентности путей. Упуть - представитель класса эквивалентности называется "параметризацией"

Пример

$$\gamma_1 : \begin{cases} x = \cos t & 0 \leqslant t \leqslant 2\pi \\ y = \sin t & 0 \leqslant t \leqslant 2\pi \end{cases} \qquad \gamma_2 : \begin{cases} x = \cos t^2 & 0 \leqslant t \leqslant 2\pi \\ y = \sin t^2 & 0 \leqslant t \leqslant 2\pi \end{cases}$$

 $\gamma_1 \sim \gamma_2$, определяют одну и ту же кривую (окружность)

Опр

Кривая называется r-гладкой, если v неё есть r-гладкая параметризация

Опр

 γ - простой путь $\Leftrightarrow \gamma$ - биекция на (a,b), т.е. $\forall t_1,t_2 \in (a,b): \gamma(t_1) \neq \gamma(t_2)$ (без самопересечений).

Если $\gamma(a) = \gamma(b)$, γ - замкнутый путь.

Опр (длины пути)

 $\gamma: [a,b] \to \mathbb{R}^m, \, \tau - [a,b]: a = t_0 < t_1 < \ldots < t_n = b.$ Соединим $[\gamma(t_k), \gamma(t_{k+1})]$ отрезками - получим вписанную ломанную.

Длина
$$k$$
-ого звена: $\sqrt{\sum_{j=0}^m (\gamma_j(t_{k+1}) - \gamma_j(t_k))^2}$

Тогда длина вписанной ломанной:
$$l = \sum_{k=0}^{n-1} \sqrt{\sum_{j=0}^m (\gamma_j(t_{k+1}) - \gamma_j(t_k))^2}$$

Длиной пути назовём $S_{\gamma}:=\sup_{\tau}l_{\tau}$ - всевозможных ломанных

Опр

Путь называется спрямляемым, если $S_{\gamma} < +\infty$

y_{TB}

Аддитивность длины пути. $\gamma:[a,b]\to\mathbb{R},\,c\in(a,b),$ пусть γ_1 - сужение γ на $[a,c],\,\gamma_2$ - сужение γ на [c,b]. Тогда $S_\gamma=S_{\gamma_1}+S_{\gamma_2}$

Док-во

а)
$$S_{\gamma} \geqslant S_{\gamma_1} + S_{\gamma_2}$$
?

Пусть τ_1 - разбиение $[a,c]$, τ_2 - разбиение $[c,b]$, $\tau = \tau_1 + \tau_2$, $l_{\tau_1} + l_{\tau_2} = l_{\tau} \leqslant S_{\gamma}$ (т.к. $S_{\gamma} - \sup$)

Возьмём ѕир по всем разбиениям отрезка $[a,c]$ $\Rightarrow \sup_{\tau_1} (l_{\tau_1} + l_{\tau_2}) = S_{\gamma_1} + l_{\tau_2} \leqslant S_{\gamma}$

Теперь ѕир по всем разбиениям отрезка $[c,b]$ $\Rightarrow \sup_{\tau_1} (S_{\gamma_1} + l_{\tau_2}) = S_{\gamma_1} + S_{\gamma_2} \leqslant S_{\gamma}$

б) $S_{\gamma} \leqslant S_{\gamma_1} + S_{\gamma_2}$?

Пусть τ - разбиение $[a,b]$.

Пусть $\tau^* = \tau \cup \{c\}$. $l_{\tau} \leqslant l_{\tau^*}$, $\tau = \tau_1 \cup \tau_2$, где τ_1 - разбиение $[a,c]$, τ_2 - разбиение $[c,b]$. $l_{\tau} \leqslant l_{\tau^*} = l_{\tau^1} + l_{\tau^2} \leqslant S_{\gamma_1} + S_{\gamma_2}$
Возьмём ѕир по всем разбиениям τ : $\sup_{\tau} (l_{\tau}) = S_{\gamma} \leqslant S_{\gamma_1} + S_{\gamma_2}$

Примеры

Неспрямляемые пути:

1) Кривая Пеано

В пределе $\gamma:[0,1]\to [0,1]^2$ - сюръективное отображение. В итоге получается прямая заполняющая весь квадрат с пересеченями (в смысле дополнение до подкривых пределе пусто)

2)
$$y = \begin{cases} x \cos \frac{\pi}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Докажем, что прямая не является спямляемой. Пусть $\tau:0<\frac{1}{N}<\frac{1}{N-1}<...<1,\ t_N=\frac{1}{N},$ тогда

$$y(t_k) = \frac{1}{k}\cos\pi k = \frac{1}{k}(-\pi)^k$$

Длина *k*-ого звена:

$$\frac{1}{k} - \left(-\frac{1}{k+1}\right) \geqslant \frac{2}{k} \Rightarrow l_{\tau} \geqslant \sum_{k=1}^{N} \frac{1}{k} \Rightarrow \sup l_{\tau} = +\infty$$

3 Кривая. Длина кривой.

Опр. см. в билете 32

Теорема (о длинах эквивалентных путей)

Пусть
$$\gamma_1:[a_1,b_1]\to\mathbb{R}^m,\,\gamma_2:[a_2,b_2]\to\mathbb{R}^m.$$
 Если $\gamma_1\sim\gamma_2\Rightarrow S_{\gamma_1}=S_{\gamma_2}$

Док-во

 $\gamma_1 \sim \gamma_2 \Rightarrow \exists \varphi: [a_1,b_1] \rightarrow [a_2,b_2]$ - строго возрастающая, $\gamma_1(t) = \gamma_2(\varphi(t))$, $\varphi(\tau_1) = \tau_2$ - разбиение $[a_2,b_2]$,

$$l_{\tau_1} = \sum_{k=0}^{n-1} \sqrt{\sum_{j=0}^{m} (\gamma_1(t_{k+1}) - \gamma_1(t_k))^2} = l_{\tau_2} \leqslant S_{\tau_2}$$

Перейдём к sup по всем au_1 : $\sup_{ au_1}(l_{ au_1})=S_{ au_1}\leqslant S_{ au_2}$

Аналогично получим неравенство $S_{\tau_2} \leqslant S_{\tau_1}$

Замечание

Корректность определения (с классами эквивалентности) длины пути следует из доказанной выше теоремы

4 Теорема о вычислении длины гладкого пути.

Теорема

$$\overline{\gamma:[a,b]} o \mathbb{R}^m$$
 - C^1 -гладкая кривая, тогда γ - спрямляется, $S_\gamma=\int\limits_a^b|\gamma'|$

Док-во

1) у - спрямляемая? $\gamma_j \in C^1[a,b] \ \forall j \in \{1,2,...,m\} \ \Rightarrow (\text{ф-ия достигает min и max на } [a,b] \ по т.Вейерштрасса)$

$$m_j \leqslant \gamma_j \leqslant M_j, \ M := \sqrt{\sum_{j=1}^m M_j}, \ m := \sqrt{\sum_{j=1}^m m_j}, \ \gamma' = \begin{pmatrix} \gamma_1' \\ \gamma_2' \\ \dots \\ \gamma_n' \end{pmatrix}$$

$$orall$$
 au -разбиения $[a,b]: l_{\tau} = \sum\limits_{k=0}^{n-1} \sqrt{\sum\limits_{j=0}^{m} (\gamma_1(t_{k+1}) - \gamma_1(t_k))^2} =$ (по т. Лагранжа $\forall k=0,1,...n-1$ $\exists \xi_k \in [t_k,t_{k+1}]: \gamma_j(t_{k+1}) - \gamma_j(t_k) = \gamma_j'(\xi_k) \Delta_{t_k}$) $= \sum\limits_{k=0}^{n-1} \sqrt{\sum\limits_{j=0}^{m} (\gamma_j'(\xi_k))^2 \Delta_{t_k}^2} = \sum\limits_{k=0}^{n-1} \sqrt{\sum\limits_{j=0}^{m} (\gamma_j'(\xi_k))^2 \Delta_{t_k}} \Rightarrow m \sum\limits_{k=0}^{n-1} \Delta_{t_k} \leqslant l_{\tau} \leqslant \leqslant$

Пусть $\gamma^{(k)}$ - сужение γ на $[t_k,t_{k+1}]$. Для него выполняется пункт (1): *переобозначим γ' как $\overset{\bullet}{\gamma}$ из-за сложности обозначений*

$$m_j^{(k)} = \min_{t \in [t_k, t_{k+1}]} | \stackrel{\bullet}{\gamma_j}(t) |, \ M_j^{(k)} = \max_{t \in [t_k, t_{k+1}]} | \stackrel{\bullet}{\gamma_j}(t) |$$

$$m^{(k)} = \sqrt{\sum_{j=1}^m (m_j^{(k)})^2}, \ M^{(k)} = \sqrt{\sum_{j=1}^m (M_j^{(k)})^2}$$

$$m^{(k)} \Delta t_k \leqslant S_{\gamma^{(k)}} \leqslant M^{(k)} \Delta t_k \Rightarrow \sum_{k=1}^{n-1} \leqslant S_{\gamma} \leqslant \sum_{k=1}^{n-1} M^{(k)} \Delta t_k$$

$$m_j^{(k)} \leqslant | \stackrel{\bullet}{\gamma_j}^{(k)}(t) \leqslant M_j^{(k)} | \ t_k \leqslant t \leqslant t_{k+1}, \ \forall j=1,...,m$$
 Суммируем, возводим в квадрат, иззвлекаем корень:

$$m^{(k)}\leqslant |\stackrel{\bullet}{\gamma}^{(k)}(t)|\leqslant M^{(k)}|\ t_k\leqslant t\leqslant t_{k+1}$$
 Проинтегрируем по
$$\int\limits_{t_k}^{t_{k+1}}dt:\ m^{(k)}\Delta t_k\leqslant \int\limits_{t_k}^{t_{k+1}}|\stackrel{\bullet}{\gamma}^{(k)}(t)|dt\leqslant M^{(k)}\Delta t_k$$

$$\Rightarrow \sum_{k=1}^{n-1} \leqslant \int_{t_k}^{t_{k+1}} | \stackrel{\bullet}{\mathbf{Y}}^{(k)}(t)| dt \leqslant \sum_{k=1}^{n-1} M^{(k)} \Delta t_k, \text{ оценим } \sum_{k=1}^{n-1} (M^{(k)} - m^{(k)} \Delta t_k) :$$

$$M^{(k)} - m^{(k)} = \frac{(M^{(k)})^2 - (m^{(k)})^2}{M^{(k)} + m^{(k)}} = \sum_{j=1}^{m} (M_j^{(k)} - m_j^{(k)}) \frac{M_j^{(k)} + m_j^{(k)}}{M^{(k)} + m^{(k)}} \leqslant \sum_{j=1}^{m} (M_j^{(k)} - m_j^{(k)})$$

$$\gamma_j \in C^1[a, b] \Rightarrow \gamma_j' \in C[a, b] \Rightarrow \mathbf{p}/\mathbf{H} \Leftrightarrow \forall \mathcal{E} > 0 \; \exists \delta_j > 0 :$$

$$\lambda(\tau) < \delta_j \Rightarrow 0 \leqslant M_j^{(k)} - m_j^{(k)} \leqslant \frac{\mathcal{E}}{m(b-a)} \underset{1 \leqslant j \leqslant m}{\overset{n}{\Longrightarrow}} 0 \leqslant M^{(k)} - m^{(k)} \leqslant \frac{\mathcal{E}}{b-a}$$

$$\Rightarrow \sum_{l=0}^{n-1} (M^{(k)-m^{(k)}} \Delta t_k < \frac{\mathcal{E}}{b-a} \sum_{l=0}^{n-1} \Delta t_k = \mathcal{E} \Rightarrow S_{\gamma} = \int_{-1}^{b} | \stackrel{\bullet}{\mathbf{Y}} |$$

5 Функциональные последовательности и ряды. Поточечная и равномерная сходимость. Примеры.

Опр

$$f_n: E \to \mathbb{R} \quad E \subset \mathbb{R}$$

Говорят, что функ. последовательность сходится поточечно к $f: E \to \mathbb{R}$, если:

$$\forall x \in E \quad \forall \mathcal{E} > 0 \quad \exists N_{(x,\mathcal{E})}: \quad \forall n > N \quad |f_n(x) - f(x)| < \mathcal{E}$$

Опр

Говорят, что функ. послед. сходится к f равномерно на E

$$f_n \underset{E}{\Longrightarrow} f$$

$$\text{Если } \sup_{x \in E} |f_n(x) - f(x)| \underset{n \to \infty}{\to} 0$$

$$\Leftrightarrow \forall \mathcal{E} > 0 \quad \exists N_{(\mathcal{E})} \quad \forall n > N \quad \sup_{x \in E} |f_n(x) - f(x)| < \mathcal{E}$$

$$\Leftrightarrow \forall \mathcal{E} > 0 \quad \exists N_{(\mathcal{E})} \quad \forall n > N \quad \forall x \in E \quad |f_n(x) - f(x)| < \mathcal{E}$$

Примеры

1.
$$f_n(x) = \frac{\sin^2(e^x) - \arctan(n^2\sqrt{x})}{\sqrt{n}} \qquad x \in [0; +\infty)$$

$$0 \leqslant \sup_{[0, +\infty)} |f_n(x)| \leqslant \frac{10}{\sqrt{n}} \to 0$$

$$\Rightarrow f_n \underset{[0, +\infty)}{\Rightarrow} 0$$

$$2. \ f_n(x)=x^n-x^{2n} \ x\in [0,1]$$
 $f_n(x)\underset{n\to\infty}{ o} 0 \ \forall x\in [0,1]$ - поточечно. Равномерно ли?
$$f_n'(x)=nx^{n-1}-2nx^{2n-1}=x^{n-1}(n-2nx^n)$$
 $x_n=\frac{1}{\sqrt[n]{2}}$ - крит. точка

$$f_n(x_n)=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$$
 $\Rightarrow \sup_{x\in[0,1]}|f_n(x)|=\frac{1}{4}$ \Rightarrow равномерной сх-ти нет

Горбик убегает

Замечание

Из равномерной сх-ти \Rightarrow поточечная

6 Критерий Коши для равномерной сходимости функциональной последовательности.

Теорема (Критерий Коши для равномерной сходимости функ. послед.)

$$f_n \underset{E}{\Longrightarrow} f \Leftrightarrow \forall \mathcal{E} > 0 \quad \exists N_{\mathcal{E}} : \forall m, n > N_{\mathcal{E}} \qquad \sup_{x \in E} |f_n(x) - f_m(x)| < \mathcal{E}$$

Док-во

$$(\Rightarrow): \qquad f_n \rightrightarrows f \Leftrightarrow \sup |f_n(x) - f(x)| \to 0$$

$$\Rightarrow \forall \mathcal{E} > 0 \quad \exists N_{\mathcal{E}} > 0: \quad \forall m, n > N_{\mathcal{E}}:$$

$$\sup |f_n - f_m| \leqslant \sup (|f_n - f| + |f - f_m|) < \frac{\mathcal{E}}{2} + \frac{\mathcal{E}}{2} = \mathcal{E}$$

$$(\Leftarrow): \qquad \forall x \in E \quad \forall \mathcal{E} > 0 \quad \exists N_{\mathcal{E}}: \forall m, n > N_{\mathcal{E}} \quad |f_n(x) - f_m(x)| < \mathcal{E}$$

$$\text{T.e. } \{f_n(x)\} - \text{cx. B cebe} \ \Leftrightarrow \{f_n(x)\} \text{ имеет конеч. предел}$$

$$f(x) = \lim_{n \to \infty} f_n(x), \text{ T.o. } f_n(x) \to f(x) \quad \forall x \in E$$

$$\text{(T.e. f - поточеч. предел послед.)}$$

$$\forall \mathcal{E} > 0 \quad \exists N_{\mathcal{E}}: \forall m, n > N_{\mathcal{E}} \quad \forall x \in E$$

$$f_m(x) - \mathcal{E} < f_n(x) < f_m(x) + \mathcal{E} \underset{n \to \infty}{\to} f_m(x) - \mathcal{E} \leqslant f(x) \leqslant f_m(x) + \mathcal{E}$$

$$\Rightarrow |f_m(x) - f(x)| \leqslant \mathcal{E} < 2\mathcal{E}$$

$$\Rightarrow \sup |f_m(x) - f(x)| < \mathcal{E}$$

7 Сохранение непрерывности при равномерном предельном переходе. Теорема Дини (б/д). Теорема о предельном переходе под знаком интеграла.

Теорема (о равномерном пределе непр. функции)

$$f_n$$
 - непр в т. $x_0 \in E, \qquad f_n \underset{E}{\Longrightarrow} f$

Тогда f - непр. в т. x_0

Док-во

$$orall \mathcal{E}>0 \quad ($$
зафиксир.), т.к. $f_n \rightrightarrows f$, то:
$$\exists N_{\mathcal{E}}: \forall n>N_{\mathcal{E}} \quad ($$
зафикс $n^*>N_{\mathcal{E}}) \quad \sup_E |f_n-f|<\frac{\mathcal{E}}{3} \quad (*)$ В частности, для $n^*>N_{\mathcal{E}} \quad \sup_E |f_n-f|<\frac{\mathcal{E}}{3}$
$$f_{n^*} \text{ - Heпр. В т. } x_0: \quad \exists \delta>0 \quad \forall t\in E: \quad |t-x_0|<\delta \quad |f_{n^*}(t)-f_{n^*}(x_0)|<\frac{\mathcal{E}}{3}$$
 Тогда $\forall x\in E: \quad |x-x_0|<\delta$
$$|f(x)-f(x_0)| \overset{\triangle}{\leqslant} |f(x)-f_{n^*}(x)|+|f_{n^*}(x)-f_{n^*}(x_0)|+|f_{n^*}(x_0)-f(x_0)|<\mathcal{E}$$

Следствие

Если
$$f_n \in C(E), \quad f_n \underset{E}{\Longrightarrow} f$$
, то $f \in C(E)$

Теорема (Дини)

$$f_n\in C[a,b]$$
 $f_n(x) o f(x)$ (поточ. на $[a,b]$) Причем $\forall x\in [a,b]$ $f_n(x)\searrow$ (по n) $(f_n\searrow f)$, т.е $f_{n+1}(x)\leqslant f_n(x)$ Если $f\in C[a,b]$, то $f_n\overset{}{\underset{[a,b]}{\longrightarrow}}f$

Док-во (не нужно доказывать)

Т.к.
$$f_n \searrow f$$
, то $\forall x \in [a,b]$ $\forall \mathcal{E} > 0$ $\exists N_{\mathcal{E},x} : \forall n > N_{\mathcal{E},x}$ $0 \leqslant f_n(x) - f(x) < \mathcal{E}$
$$n_x \text{ - зафикс. } (n_x > N_{\mathcal{E},x})$$

$$f_{n_x} - f \text{ - непр. на } [a,b] \text{ и в т. x}$$

$$\Rightarrow \exists U_x\text{-окр.: } \forall t \in U_x \quad 0 \leqslant f_{n_x}(t) - f(t) < \mathcal{E} \quad (*)$$

и по т. о стабилизации знака в каждой х выбираем окр. такую что:

$$[a,b] \subset \bigcap_{x \in [a,b]} U_x \Rightarrow \exists \{x_j\}_{j=1}^N : [a,b] \subset \bigcap_{j=1}^N U_{x_j}$$

(компакт, значит можем выделить конечное подпокрытие)

$$n_{\mathcal{E}} := \max_{1 \leqslant j \leqslant N} (n_{x_j})$$
 - номера f_n для $\forall x_j$ такие что (*):

$$\forall \xi \in [a, b] \quad \exists j = 1...N : \xi \in U_{x_j} \Rightarrow \forall n > n_{\mathcal{E}} > n_{x_j}$$
$$0 \leqslant f_n(\xi) - f(\xi) < \mathcal{E}$$

Теорема (о предельном переходе под знаком интеграла)

$$f_n \in R[a,b]$$
 $f_n \underset{[a,b]}{\Longrightarrow} f \in R[a,b]$

Тогда
$$\int_a^b f_n \underset{n \to \infty}{\to} \int_a^b f$$

Док-во

$$\left| \int_{a}^{b} f_{n} - \int_{a}^{b} f \right| \leqslant \int_{a}^{b} \left| f_{n} - f \right| < \sup_{[a,b]} \left| f_{n} - f \right| \cdot (b-a) \to 0$$

 y_{TB}

Функ. ряд сход равномерно \Leftrightarrow посл-ть частичных сумм сход равномерно

Следствие (1)

$$f_n \in C[a,b] \quad \sum_{n=1}^N f_n
ightrightarrows f,$$
 тогда:

1)
$$f(x) = \sum_{n=1}^{\infty} f_n \in C[a, b]$$

$$2) \quad \int \sum_{n=1}^{\infty} f_n = \sum_{n=1}^{\infty} \int f_n$$

Следствие (2)

Если
$$f_n(x) \geqslant 0 \quad \forall x \in [a, b] \qquad f_n \in C[a, b]$$

$$\sum_{n=1}^{\infty} f_n = f \in C[a, b]$$

То $\sum f_n$ - сход. равномерно на [a,b]

8 Дифференцируемость и равномерная сходимость.

Теорема (диф-сть и равном. сх-ть)

$$f_n \in C^1[a,b]$$
 $f'_n \underset{[a,b]}{
ightharpoonup} g$
и $\exists c \in [a,b]: \quad \{f_n(c)\}_{n=1}^\infty$ - cx

Тогла:

1.
$$f_n \rightrightarrows f$$
 на $[a,b]$

2.
$$f \in C^1[a,b]$$
 и $f' = g$

Док-во

$$\sup_{x \in [a,b]} |f_n(x) - f(x)| = \sup |f_n(x) - f_n(c)| + f_n(c) - f(c)| + f(c) - f(x)| \le$$

$$\le \sup \left| \int_c^x f_n' - \int_c^x g + f_n(c) - f(c) \right| \le \sup \left| \int_c^x (f_n' - g) \right| + |f_n(c) - f(c)| \quad (*)$$

$$f_n' \rightrightarrows g \Rightarrow \left| \int_c^x (f_n' - g) \right| \le \sup |f_n' - g| (x - c)$$

$$\to 0$$

1. Покажем, что $f_n \rightrightarrows f$

$$\forall \mathcal{E} > 0 \quad \exists N : \forall n > N \quad \left| \int_{c}^{x} (f'_{n} - g) \right| < \mathcal{E}$$

$$\exists N_2 : \forall n > N_2 \quad |f_n(c) - f(c)| < \mathcal{E} \Rightarrow (*) < 2\mathcal{E} \Rightarrow f_n \rightrightarrows f$$

2.
$$f_n(x) - f_n(c) = \int_c^x f'_n \underset{n \to \infty}{\to} \int_c^x g \stackrel{1}{\underset{(*)}{=}} f(x) - f(c) \stackrel{1}{\Longrightarrow} f(c) = \lim_{n \to \infty} f_n(c)$$

(по т. о предельном переходе под знаком интеграла)

$$\stackrel{(*)}{\Rightarrow} f(x) = \int_c^x g + f(c) \Rightarrow f'(x) = g$$
 т.о $f_n(x) \to f(x)$ поточ. на $[a,b]$

$$f'(x) = g(x)$$
 непр. (равн. предел непр ф.)
$$\Rightarrow f \in C^1[a,b]$$

Пример

$$f_n(x) = \frac{1}{n} \arctan(x^n)$$

$$\sup_{\mathbb{R}} |f_n(x)| \leqslant \frac{\pi}{2n} \to 0 \quad \text{ r.e. } f_n \underset{\mathbb{R}}{\Longrightarrow} 0 = f$$

$$f'_n(1) = \frac{1}{n} \cdot \frac{1}{1 + x^{2n}} \cdot n \cdot x^{n-1} \Big|_1 = \frac{1}{2}$$

$$\text{Ho } (\lim_{n \to \infty} f_n)'_{x=1} = 0 \neq \lim_{n \to \infty} f'_n(1)$$

9 Признак Вейерштрасса равномерной сходимости функциональных рядов.

Теорема (признак Вейерштрасса равн сх-ти)

$$f_n:E o\mathbb{R}$$
 $orall n:E \to \mathbb{R}$ $orall n: |f_n(x)|\leqslant M_n \quad orall x\in E$ $\sum_{n=1}^\infty M_n<\infty$ (сход. мажоранта)

Тогда ряд $\sum_{n=1}^{\infty} f_n(x)$ сх. равномерно и абсолютно на E

Док-во

$$\sum_{n=1}^{\infty} M_n < \infty \Rightarrow \forall \mathcal{E} > 0 \quad \exists N : \forall m, n > N \Leftrightarrow \sum M_k < \infty$$
 Тогда $|S_n - S_{m-1}| = \left|\sum_{k=m}^n f_k(x)\right| \leqslant \sum_{k=m}^n |f_k(x)| \leqslant \left|\sum_{k=m}^n M_k\right| < \mathcal{E}$ Т.е. $|S_n - S_{m-1}| < \mathcal{E}$, т.е. вып. кр. Коши для $S_n(x) = \sum_{k=1}^n f_k(x)$ част. суммы сх равн. \Rightarrow функ. ряд сх. равн.

Теорема* (Вейерштрасса о плотности алгебраических многочленов в С[a,b])

Пусть
$$f \in C[a,b]$$
, тогда $\forall \mathcal{E} > 0$ $\exists P(x) : \max_{x \in [a,b]} |f(x) - P_n(x)| < \mathcal{E}$

Лемма*

$$\sum_{k=0}^{n} C_{n}^{k} x^{k} (1-x)^{n-k} = (x+1-x)^{n} = 1^{n} \sum_{k=0}^{n} C_{n}^{k} (\frac{k}{n} - x)^{2} x^{k} (1-x)^{n-k} = \frac{x(1-x)^{n-k}}{n} = \frac{x(1-x)^{n$$

Опр*

$$b_{k,n}(x)=C_n^kx^k(1-x)^{n-k}, \qquad k=0,\dots,n$$
 $B_n(f;x)=B_n(x)=\sum_{k=0}^nf\left(rac{k}{n}
ight)b_{k,n}(x)$ - многочлен Бернштейна $\sup|f(x)-B_n(x)|<\mathcal{E}$

10 Степенной ряд (в $\mathbb C$). Радиус сходимости. Формула Коши-Адамара.

Опр

Будем рассматривать

$$\sum_{k=0}^{\infty} c_k z^k \qquad c_k, z \in \mathbb{C}$$

Опр

$$z=x+iy$$

$$x=\operatorname{Re} z \qquad y=\operatorname{Im} z$$

$$|z|=\sqrt{x^2+y^2}$$

$$x=|z|\cos \varphi \qquad y=|z|\sin \varphi$$

$$|z_1-z_2|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$

$$C_n=a_n+ib_n\quad n\in \mathbb{N}$$

$$\lim_{n\to\infty}c_n=c,\ \text{если}\ \forall \mathcal{E}>0\quad \exists N:\forall n>N\quad |c_n-c|<\mathcal{E}$$

 y_{TB}

$$c_n \underset{n \to \infty}{\to} c \Leftrightarrow a_n \to a \\ b_n \to b \qquad (n \to \infty)$$

$$c_n = a_n + ib_n$$

$$c = a + ib$$

$$a, b \in \mathbb{R}$$

$$a_n, b_n \in \mathbb{R}$$

Док-во

здесь когда-нибудь будет док-во

Лемма

здесь когда-нибудь будет лемма

Замечание

здесь когда-нибудь будет замечание

Док-во

здесь когда-нибудь будет док-во

Следствие

здесь когда-нибудь будет следствие

Опр

Радиусом сх-ти степ. ряда $\sum c_n z^n$ назыв $R \in [0, +\infty]$ такое, что $(z \neq 0)$

$$\forall z : |z| < R$$
 - ряд. cx

$$\forall z : |z| > R$$
 - ряд расх.

$$\dfrac{\Pi$$
римеры $_{\infty}}{1.}\sum_{k=0}^{\infty}k!z^k$ по пр. Даламб расх $\forall z \neq 0$ $R=0$

$$\lim_{k \to +\infty} \frac{\left| (k+1)! z^{k+1} \right|}{|k! z^k|} = \infty, \quad z \neq 0$$

2.
$$\sum_{k=0}^{\infty} \frac{z^k}{k!} - \text{cx. } \forall z \in \mathbb{C}$$

$$3. \sum_{n=1}^{\infty} \frac{z^n}{n}$$

$$z^* = -1$$
 : $\sum \frac{(-1)^n}{n}$ - cx \Rightarrow cx. равн. $\forall |z| \leqslant d < 1$ $z_0 = 1$: $\sum \frac{1}{n}$ - расх $\Rightarrow \forall |z| > 1$

Теорема (ф-ма Коши-Адамара)

$$\sum_{k=0}^{\infty} c_k z^k$$
 R - рад. сх-ти

$$\frac{1}{R} = \overline{\lim}_{k \to \infty} \sqrt[k]{|c_k|}$$

Док-во

^{*}здесь когда-нибудь будет док-во*