

(11)Publication number:

2002-298963

(43)Date of publication of application: 11.10.2002

(51)Int.CI.

H01R 13/03 C22C 9/06 C25D 5/50 C25D 7/00

(21)Application number: 2001-101197

(71)Applicant: KOBE STEEL LTD

(22)Date of filing:

30.03.2001

(72)Inventor: NISHIMURA MASAYASU

OGUCHI RYOICHI

(54) Sn PLATED COPPER ALLOY MATERIAL FOR FITTING CONNECTION TERMINAL AND FITTING CONNECTION TERMINAL

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a fitting connection terminal with a low insertion force adapted for multi-pole connection and capable of maintaining reliability (low contact resistance) of an electric connection. SOLUTION: The Sn plated copper alloy material is a copper alloy containing 0.3%-15% by mass of Ni as a base material and has a Sn plated layer by reflow or molten Sn plating on the surface thereof. The Sn plating layer comprises a Sn layer having a thickness of 0.5 µm or less and a Cu-Sn alloy layer of a columnar crystal having and an average cross section diameter of 0.05-1.0 µm and an average aspect ratio of 1 or more from a front surface side. The Sn plating layer (Sn layer and Cu-Sn alloy layer) is 0.2-2.0 µm thick.

LEGAL STATUS

[Date of request for examination]

01.04.2004

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-298963 (P2002-298963A)

(43)公開日 平成14年10月11日(2002.10.11)

(51) Int.Cl. ⁷		識別記号	FΙ		テーマコード(参考)
H01R	13/03	i	H01R	13/03	D 4K024
C 2 2 C	9/06		C 2 2 C	9/06	
C 2 5 D	5/50		C 2 5 D	5/50	
	7/00			7/00	Н

審査請求 未請求 請求項の数6 OL (全 6 頁)

株式会社神戸製鋼所 兵庫県神戸市中央区脇浜町二丁目10番26号 (72)発明者 西村 昌泰 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 (72)発明者 尾口 良一 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 (74)代理人 100100974 弁理士 香本 薫	(21)出願番号	特顧2001-101197(P2001-101197)	(71)出顧人	000001199
(72)発明者 西村 昌泰 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 (72)発明者 尾口 良一 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 (74)代理人 100100974				株式会社神戸製鋼所
山口県下関市長府港町14番1号 株式会社神戸製鋼所長府製造所内 (72)発明者 尾口 良一山口県下関市長府港町14番1号 株式会社神戸製鋼所長府製造所内 (74)代理人 100100974	(22)出願日	平成13年3月30日(2001.3.30)		兵庫県神戸市中央区脇浜町二丁目10番26号
神戸製鋼所長府製造所内 (72)発明者 尾口 良一 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 (74)代理人 100100974			(72)発明者	西村 昌泰
(72)発明者 尾口 良一 山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 (74)代理人 100100974				山口県下興市長府港町14番1号 株式会社
山口県下関市長府港町14番1号 株式会社 神戸製鋼所長府製造所内 (74)代理人 100100974				神戸製鋼所長府製造所内
神戸製鋼所長府製造所内 (74)代理人 100100974			(72)発明者	尾口 良一
(74)代理人 100100974				山口県下関市長府港町14番1号 株式会社
				神戸製鋼所長府製造所內
弁理士 香本 薫			(74)代理人	100100974
				弁理士 香本 薫

最終頁に続く

(54) 【発明の名称】 嵌合型接続端子用Snめっき銅合金材料及び嵌合型接続端子

(57)【要約】

【課題】 低挿入力で多極化に適し、かつ電気的接続の 信頼性(低い接触抵抗値)が維持できる嵌合型接続端子 を得る。

【解決手段】 Niを0.3%~15質量%含有する銅合金を母材とし、その表面にリフロー又は溶融SnめっきによるSnめっき層を有し、該Snめっき層が表層側から厚さ0.5 μ m以下のSn層と、平均断面径0.05~1.0 μ m、平均縦横比1以上の柱状結晶のCu-Sn合金層からなり、該Snめっき層(Sn層とCu-Sn合金層)の厚さが0.2~2.0 μ mであるSnめっき銅合金材料。

【特許請求の範囲】

【請求項1】 Niを0.3%~15%(質量%、以下 同じ) 含有する銅合金を母材とし、その表面にリフロー 又は溶融SnめっきによるSnめっき層を有し、該Sn めっき層が表層側から厚さ0.5μm以下のSn層と、 平均断面径0.05~1.0μm、平均縦横比1以上の 柱状結晶のCu-Sn合金層からなり、該Snめっき層 (Sn層とCu-Sn合金層) の厚さが0. 2~2. 0 μmであることを特徴とする嵌合型接続端子用Snめっ き銅合金材料。

【請求項2】 Snめっき層表面のSn酸化物層の厚さ が1~30nmであることを特徴とする請求項1に記載 された嵌合型接続端子用Snめっき銅合金材料。

【請求項3】 Snめっき層中のC含有量が0.01~ 1%であることを特徴とする請求項1又は2に記載され た嵌合型接続端子用Snめっき銅合金材料。

【請求項4】 動摩擦係数が0.15~0.45である ことを特徴とする請求項1~3のいずれかに記載された 嵌合型接続端子用Snめっき銅合金材料。

【請求項5】 表層のヌーブ硬度がHk(0.245 N) = 100~300であることを特徴とする請求項1 ~4のいずれかに記載された嵌合型接続端子用Snめっ き銅合金材料。

【請求項6】 オス端子とメス端子からなる嵌合型接続 端子であり、オス端子又はメス端子の少なくともいずれ か一方が請求項1~5に記載された5nめっき銅合金材 料からなるととを特徴とする嵌合型接続端子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、嵌合型接続端子用 30 Snめっき銅合金材料に関し、特にオス、メス端子の嵌 合時の挿入力が低く、端子が多数集合してなる多極コネ クタに適する嵌合型接続端子用Snめっき銅合金材料に 関するものである。

[0002]

【従来の技術】自動車等の電線の接続には、銅合金に表 面処理を施した端子が使用されている。一つ一つの端子 は、オス端子とメス端子の組み合わせの嵌合端子からな っている。これらが複数個集合したコネクターを多極端 うなコネクタの極数、すなわち、一つのコネクタの中の 端子の数は増加している。端子数が増加すると挿入力 (嵌合力)が大きくなり、実装に道具が必要になった り、人が挿入する場合でも大きな力を必要とするように なり、その組み立て作業の効率を低下させる原因にな る。このため、極数が増加しても、挿入力が従来よりも 大きくならないように、低挿入力(低嵌合力)の端子が 要求されている。これらの要求に対し、従来のSnめっ き端子ではその挿入力が大きく、作業性を低下させずに 多極コネクタを製造することが困難であった。

【0003】端子の挿入力を低減するには、接圧力を低 くすることが考えられるが、この場合、接点における電 気的接続の信頼性を考慮すると、SnめっきではなくA uめっきなどの信頼性は高いが高価な表面処理が必要と なる。また、Snめっき端子は、めっきを薄くすること により挿入力が低下するが、薄すぎるとSnめっき層に ピンホールが生成するため、Cuの酸化物が生成して端 子の接触抵抗値が増大する恐れがある。このため、現実 にはめっき厚さを薄くし、かつ信頼性を維持することは 10 大変困難である。さらに、接点に潤滑油を塗布して挿入 力を低下することも可能であるが、その工程の分だけコ ストアップとなる。また、電気的な特性に影響を与えな い接点油が必要である。

[0004]

【発明が解決しようとする課題】本発明は、上記の問題 点に鑑みてなされたもので、低挿入力で多極化に適し、 かつ端子の信頼性を損なうことのない嵌合型接続端子を 得ることを目的とする。

[0005]

20

【課題を解決するための手段】本発明に係る嵌合型接続 端子用Snめっき銅合金材料は、Snめっき層自体の構 造を特定することにより、上記目的を達成するもので、 Niを0. 3%~15%含有する銅合金を母材とし、そ の表面にリフロー又は溶融SnめっきによるSnめっき 層を有し、該Snめっき層が表層側から厚さ0.5μm 以下のSn層と、平均断面径0.05~1.0μm、平 均縦横比1以上の柱状結晶のCu-Sn合金層からな り、該Snめっき層(Sn層とCu-Sn合金層)の厚 さが0.2~2.0µmであることを特徴とする。

【0006】本発明におけるSnめっき層の模式図を図 1 (a) に示す。図1 (a) において、1は銅合金母 材、2はCu-Sn合金層(多数の柱状結晶3からな る)、4は5n層であり、柱状結晶3の間には合金化し ていないSnが残留している。図2は、表面のSn酸化 物層、Sn層及び結晶間の残留Snを化学的に溶解した 後、柱状結晶からなるCu-Sn合金層を表面からSE M観察して得た顕微鏡写真である。本発明において平均 縦横比とは、図1(b)に示すように、柱状結晶の縦方 向(延びた方向)の長さの平均値をaとし、横方向(延 子という。近年、自動車の電装化が進むなかで、このよ 40 びた方向に垂直な方向)の最大幅の平均値(=平均断面 径)をbとしたとき、その比a/bを意味する。なお、 本発明において、平均縦横比が1以上のものを柱状結 晶、1未満のものを粒状結晶という。

[0007]

【発明の実施の形態】従来広く用いられているSnめっ き端子は、通常、銅合金からなるめっき基材にCu下地 めっきを行い、次いでSnめっきを行っているが、本発 明のSnめっき銅合金材料は、Niを0.3%以上15 %以下含有する銅合金母材に、Cu下地めっきを省略し 50 て直接Snめっきを行い、次いでリフロー処理を施すこ

(2)

とで得ることができる。リフロー処理により、銅合金母 材上に硬い柱状結晶のCu-Sn合金層が形成される。 このCu-Sn合金結晶はCu-Sn金属間化合物であ り、通常Cu。Sn。あるいはCu、Sn等からなる。 Cuの一部が15%以下のNiにより置換されていても

【0008】本発明では、Snめっき層(Sn層とCu -Sn合金層) の厚さが0.2~2.0 µmの範囲内 で、平均断面径が0.05~1.0μm、その平均縦横 比が1以上の柱状結晶となるようにリフロー処理条件を 制御し、同時に表層に厚さ0.5 μm以下のSn層が残 留するように制御する。表層のSn層の厚さはゼロでも よい。Cu-Sn合金の柱状結晶は図1にみられるよう に表層に向け種々の方向に延び、延びた方向からみたと きの形状は略円形又は略楕円状である。Cu-Sn合金 の柱状結晶の平均断面径及び平均縦横比を上記の範囲に 制御することで、当該結晶同士の間に合金化していない Snが適度に残留する。この残留Snにより、接触抵 抗、耐食性等の電気的信頼性が保たれる。しかし平均断 面径が1.0μmを超える場合や平均縦横比が1未満の 20 粒状結晶のとき、隣接する結晶同士が成長、接合してそ の間の残留Snが減少又は失われ、電気的信頼性が低下 する。一方、平均断面径が0.05μm未満のとき、結 晶の形態は柱状であっても径が小さすぎるため、嵌合型 接続端子のオス舌片とメス舌片を嵌合する際、Cu-S n合金層が変形して摩擦係数の低減効果が小さくなる。 【0009】また、Sn層の厚さが0.5 mm以上と厚 い場合も、軟らかいSn層が変形して摩擦係数が大きく なる。Snめっき層(Sn層とCu-Sn合金層)の厚 さを $0.2\sim2.0\mu m$ とするのは、 $Chが0.2\mu m$ に満たないと耐食性、接触抵抗等が劣化し、2μmを超 えると、Cu-Sn合金の柱状結晶及びSn層を上記の 通り制御しても、摩擦係数の低減効果がないためであ る。

【0010】銅合金母材中に含まれるNiはCu-Sn 合金結晶の柱状化に寄与する。Niの含有量が0.3% 未満であるとその作用が弱く、後述する条件でリフロー 処理をしても、Cu-Sn合金結晶は平均断面径が1. 0μmを超え又は平均縦横比が1未満となって粒状化す る。また、Niの含有量が15%を超えるとCu-Sn 合金結晶の平均断面径が小さくなりすぎ、摩擦係数の低 減に寄与しなくなる。なお、母材中のNiは固溶状態で あるほど、その効果が大きくなる。

【0011】ところで、特開平11-140569号公 報には、銅又は銅合金の表面にSnめっきを施し、次い でリフロー処理を行うことにより、粒状区画(それぞれ がCu-Sn結晶である) に区切られたCu-Sn拡散 合金層を形成することが記載されている。下地めっき無 しの場合、粒状区画の平均粒径は0.1~5μmとされ

るが、同公報の模式図に示された通り、各粒状区画は相 互に接合し、かつ実施例の縦横比は全て1未満である。 同公報によれば、このCu-Sn拡散合金層は通常より 高い温度でリフロー処理を行うことで製造され、実施例 では処理温度700~900℃、処理時間5~8sec とされている。

【0012】また、特開2000-212720には、 銅又は銅合金の表面にSnめっきを施し、好ましくはリ フロー処理を行い、続いて酸素濃度を制御した雰囲気下 で拡散熱処理を行うことにより、最表面に厚さが10~ 1000nmの酸化皮膜層とその内側に厚さ0.1~1 OμmのCu-Snを主体とする金属間化合物層を形成 させることが記載されている。Cu-Sn合金層の平均 断面径等については記載がないが、実施例のように拡散 熱処理を250℃で2時間行った場合、リフロー処理の 条件又はその有無に関わらず、各結晶は横方向にも成長 し相互に接合して平均結晶粒径が1µmを越え又は縦横 比が1未満の粒状となり、前記特開平11-14056 9号公報と同様の粒状形態となっているはずである。

【0013】一方、本発明のように、平均断面径0.0 5~1.0μm、縦横比1以上の柱状結晶を得るために 望ましいリフロー処理条件は、例えば処理温度300~ 450℃、処理時間10~20secである。高温、長 時間になるほどCu-Sn合金結晶は成長し、かつ結晶 同士の接合も起こり得るため粒状となりやすく、かつ結 晶間のSnも消滅しやすい。また、低温短時間に過ぎる と平均断面径が小さくなる。なお、このCu-Sn合金 層は溶融めっきにても得ることができる。

【0014】そのほか、Snめっき層表面には通常、S n酸化物層であるSnOあるいはSnO2層等が形成さ れるが、その厚さが30nm以上となると接触抵抗が劣 化させる。また、通常の使用環境中では l n m未満に保 持することは困難である。従って、酸化物層の厚さは1 ~30nmとする。なお、前記Sn層とは、Sn酸化物 層とCu-Sn合金層の間に存在する金属Snから形成 される層である。また、Snめっき層中のC量は1%以 上含有すると接触抵抗が劣化し、0.01%未満である とSnめっき層の硬度が低下し、摩擦係数の低減効果が 損なわれる。従って、Snめっき層中のC重は0.01 ~1%が望ましい。

[0015]

【実施例】(実施例1)表1に示す①~⑦の組成を有す る0.25mm t の銅合金板を通常の脱脂、酸洗処理し た後、その表面に硫酸浴を用いて電気Snめっきを施 し、めっき後リフロー加熱処理(400℃×15se c)を施した。Snめっき中のC含有量は全て0.1% である。このSnめっき層について、めっき厚さ(Sn 層+Cu-Sn合金層)、Sn層厚さ、Cu-Sn合金 結晶の形状 (断面径、縦横比)、酸化膜厚、動摩擦係 ている。との平均粒径自体は本発明のものと一部重複す 50 数、ヌープ硬度、めっき層表面粗さ、接触抵抗を下記の

要領で測定した。その結果を表1に示す。なお、表1 中、母材のNi固溶量は、全Ni量からNi-Si、N i - P等の析出物中のNi量を差し引いたものである。 【0016】Snめっき層厚さ;蛍光X線膜厚測定によ り測定した。

Sn層厚さ;ミクロトームにより板材断面を切断し、S EMによりその切断面のSnめっき層部分を任意に5箇 所選定し、各箇所について幅10μπに渡って観察し、 Snめっき層表面とCu-Sn合金層の間に存在するS をSn層厚さとした。

Cu-Sn合金結晶の形状;ミクロトームにより板材断 面を切断した後にアルゴンエッチング処理を施し、SE M観察することにより、めっき層部分を幅10μmに渡 って観察し、その範囲内に存在する合金結晶について、 それぞれの長さ及び断面径を測定し、その平均値を求め た。このとき、それぞれの合金結晶の断面径は、各合金 結晶が延びている方向に対して垂直方向の幅の最大値と した。これらより求めた合金結晶の断面径の平均を平均 断面径とし、長さの平均と平均断面径の比(平均長さ/ 20 平均断面径)を平均縦横比とした。

【0017】酸化膜厚さ; ESCAによる深さ分析結果 より算出した。

Snめっき層中のC量; Snめっき板材を酸素気流中に*

*て1250℃程度で燃焼し、排出されるCO及びCO2 ガスを検出する燃焼赤外線吸収法にて測定した。動摩擦 係数; Snめっき材を半径(内径)1.5mmで張り出 し加工したメス側舌片と、オス側舌片のSnめっき板材 を接触させ、オス側舌片を水平に引っ張るようにして、 オートグラフにて測定した。この際、接圧力はメス側舌 片を取り付けた軸にかけた荷重(N=2.94N)であ り、潤滑材は一切使用せず、オス側舌片を引っ張る速度 は80m/minとした。摩擦係数値(μ)は次式のよ n層厚さの最小値を測定した。前記5箇所の値の平均値 10 うに、ロードセルによって測定した水平方向にかかる力 (F)を荷重(N)で割ったものである。

 $\mu = F / N$

【0018】 ヌープ硬度; JISZ2251 (微小硬さ 試験方法) に従って測定した。

表面粗さ;接触式表面粗さ計を用い、JISB0600 1 に基づいて求めた。

接触抵抗:めっき作製直後(AS)及び160℃×120 時間の加熱処理後に測定を行い、4端子法により、解放 電圧20mV、電流10mAで金プローブ(1.0mm φ)を用いて測定した。測定荷重は2.94N(無摺動 状態) である。

[0019]

【表1】

		Sn層+ Cu-Sn合 金層厚さ	という という という という という という という という という という	Cu-Sa 層の 合品の 新年	Cu-Su合 金層結晶 の形状及 び雑/横 の比	酸化膜厚	動煙	H k (25g	母材の Ni固溶 量	Snめっ き層表 面粗さ	接續	处抵抗 (無 b2.94N) mΩ
	組成	金属学で	(ル回	面径 の比			数	勤摩 H k 擦係 (25g 数 f)	massx)	朗相さ (Ra: μm)	AS	160℃× 120hr後
比較例	OCu-0. 1Fe-0. 03P -1. 5Zn	0.5	0	0. 7	粒状 (確/模 =0.7)	10	0. 30	130	0	0. 04	15	200
79	②Cu-0. 2Ni-0. 03P -1. 5Zn	1. 0	0. 6	2. 0	粒状 (=0. 2)	10	0. 5	90	0. 1	0. 03	ı	70
	③Cu-0. 5Ni-0. 01P -0. 5Zn	1. 0	0. 3	0. 2	柱状 (=3.5)	10	0. 4	130	0. 5	0. 04	1	60
実施	©Cu-1. 8Ni-0. 4Si -1. 1Zn -0. 1Sn -0. 01Mg	1. 0	0. 1	0. 4	柱状 (=2.3)	10	0. 35	160	0. 2	0. 05	2	50
例	(5)Cu−3. 2Ni−0. 7Si −0. 3Zn	1. 0	0	0.3	柱状 (=3, 3)	10	0.3	170	0. 3	0. 05	2	50
	©Cu−9. 2Ni −2. 3Sn	1. 0	0	0. 1	柱状 (=10.0)	10	0. 3	180	9. 2	0. 05	2	50
比較	ФСи−20Ni−0. 1Fe −0. 03Мn	1. 0	0. 7	0. 03	柱状 (=10.0)	10	0. 5	100	20	0. 03	1	50

【0020】表1に示すように、30~60では、Ni含有 量が0.3~15%の範囲内において、Cu-Sn合金 層の結晶の形状が、平均断面径が0.05~1μm、縦 横比が1.0以下の範囲内に入る柱状であり、かつSn 層厚さが 0.5μm以下で、動摩擦係数が小さい。ま た、Sn層厚さが0~0.3 μmと薄いが、合金層の形 状が上記の柱状であるため、接触抵抗はSn層が厚い

②、のと同等である。 一方、Ni含有量が0.3%未 50 【0021】(実施例2)表1の④の組成を有する0.

満のO、OではCu-Sn合金層の結晶の形状が粒状と なり、Sn層厚さが 0μ mのOは接触抵抗値が大きく、 Sn層厚さが0.5μmより厚い2の摩擦係数は0.5 と大きくなる。また、Ni含有量が15%以上のOで は、Cu-Sn合金層の形状が柱状であるが、平均断面 径が0.05 μ m以下と小さいため、めっき層の変形抵 抗が大きく摩擦係数が0.5と大きくなる。

特開2002-298963

8

25mmtの銅合金材料について、その表面に硫酸浴を用いて電気Snめっきを施し、めっき後リフロー加熱処理(400℃×15sec)を施した。その際、めっき時間、リフロー処理の雰囲気及びめっきの光沢材の量を加減して、めっき厚、酸化膜厚及びC含有量を変化させ*

* た。このSnめっき層について、実施例1と同じ測定を 行った。その結果を表2に示す。

[0022]

【表2】

母材: Cu-1. 8Ni-0. 4Si-1. 1Zn-0. 1Sn-0. 01Mg (0. 25t、Hv=200)

供試材		Sn圏+ Cu-Sn合 金層厚さ	別である。	Cu-Sn 合金層 結晶の 平均断	Cu-Su合 金層結晶 の形状を横 の比	酸化	C含有	動摩係数	H k (25g	母材の Ni固裕 量 (massx)	Snめっ き層表 面粗さ (Ra: μロ)	接触抵抗 (無 控動2.94N) mQ	
		(μm))年C (μm)	面径(μπ)	of t	(nm)	mass%)	要你	S C			AS	160℃× 120hr後
実	Θ	0. 5	0	0. 5	柱状(縦/ 横=1.0)	5	0. 1	0. 22	190	0. 2	0. 07	5	80
施	2	1. 0	0. 1	0.4	柱状 (=2.3)	10	0. 1	0. 35	160	0. 2	0. 05	2	50
6 71	3	1. 8	0. 3	0.4	柱状 (=3.8)	20	0.1	0. 40	170	0. 2	0. 03	1	40
	4	0.1	0	1. 0	粒状 (=0. 1)	5	0.1	0. 45	200	0. 2	0. 12	10	200
比	6	2.3	0. 7	0.4	柱状 (=4.0)	25	0. 1	0. 55	120	0. 2	0. 03	1	80
較	6	1. 0	0. 1	0.4	柱状 (=2.3)	50	0. 1	0. 30	180	0. 2	0. 04	30	300
例	Ø	1. 0	0. 1	0.4	柱状 (=2.3)	10	0.003	0. 50	140	0. 2	0. 05	2	50
	(8)	1. 0	0. 1	0.4	(共3)	10	1. 5	0. 35	200	0. 2	0. 15	20	200

【0023】表2に示すように、①~③ではSnめっき層の厚さが種々変化しているが、Cu-Sn合金層の結晶の形状が、平均断面径が0.05~1μm、アスペクト比が1.0以下の範囲内に入る柱状であり、かつSn層厚さが0.5μm以下で、動摩擦係数が小さい。一方、④はSnめっき層の厚さが0.2μm未満であるた 30め、加熱処理後の接触抵抗は200mΩと高く、⑤はSnめっき層の厚さが2μmを超えるため、動摩擦係数が0.55と高い。また、⑥は酸化膜厚さが30nmを超え、AS及び加熱処理後の接触抵抗がそれぞれ30、300mΩと高い。さらに、⑦はC含有量が0.01%以下であるため摩擦係数が0.50と高く、⑤はC含有量が1%以上であるためAS及び耐熱処理後の接触抵抗がそれぞれ20、200mΩと高い。

[0024]

【発明の効果】本発明によれば、従来よりも摩擦係数が低く、かつ電気的信頼性の優れるSnめっき銅合金材料を得ることができる。そのため、本めっき材を用いることにより、接点の信頼性を落とすことなしに、低挿入力の嵌合端子を製造することが可能となる。

0 【図面の簡単な説明】

【図1】 Snめっき層の構造を模式的に示す断面図である。

【図2】 Cu-Sn合金の結晶形状を示す顕微鏡組織写真である。

【符号の説明】

- 1 銅合金母材
- 2 Cu-Sn合金層
- 3 Sn層
- 4 Sn

[図1]

【図2】

(b)

フロントページの続き

Fターム(参考) 4K024 AA07 AA21 AB02 AB19 BA09 BB10 DB02 GA16