Pontificia Universidad Católica de Chile Facultad de Matemáticas 1° semestre 2020

Ayudantía 18

04 de Junio MAT1106 - Introducción al Cálculo

1) Calcule $\lim_{n\to\infty} \frac{3^n+2^n}{3^n-2^n}$ (si es que existe).

Demostraci'on. Factorizando por 3^n en el numerador y denominador, se tiene que

$$\frac{3^n + 2^n}{3^n - 2^n} = \frac{1 + \left(\frac{2}{3}\right)^n}{1 - \left(\frac{2}{3}\right)^n}$$

Como $\frac{2}{3} < 1$, $\left(\frac{2}{3}\right)^n \to 0$, por lo que usando álgebra de límites $\frac{3^n+2^n}{3^n-2^n} \to 1$.

- 2) Considere dos sucesiones $x_n \to L_x$, $y_n \to L_y$.
 - a) Pruebe que si $x_n \leq y_n$ para todo n natural, entonces $L_x \leq L_y$.

Demostración. Como $x_n \leq y_n$, entonces $0 \leq y_n - x_n$. Como $y_n - x_n \to L_y - L_x$ por álgebra de límites, usando una propiedad vista en clase tenemos que $0 \leq L_y - L_x$. Esto implica directamente $L_x \leq L_y$, que es lo que queríamos probar.

b) Encuentre un ejemplo donde $x_n < y_n$ para todo n natural y $L_x = L_y$.

Demostración. Consideremos $x_n = 1$, $y_n = 1 + \frac{1}{n}$. Como $\frac{1}{n} > 0$, tenemos que $x_n < y_n$. Como $\frac{1}{n} \to 0$ y $1 \to 1$, tenemos que $L_x = L_y$.

3) Considere $I_n = [a_n, b_n]$, donde a_n es creciente, b_n es decreciente y $a_n \le b_n$ para todo n. Pruebe que la intersección de todos los I_n no es vacía. ¿Qué pasaría si los intervalos fueran abiertos por ambos lados?

Demostración. Como a_n es creciente, b_n es decreciente y $a_n \leq b_n$, tenemos

$$a_1 \le a_n \le b_n \le b_1.$$

Esto implica que a_n , b_n convergen a L_a , L_b respectivamente (por ser monótonas), y además $L_a \leq L_b$.

Mostraremos que L_a es cota superior de a_n . Supongamos que no es el caso. Luego, existe un n_0 tal que $L_a < a_{n_0}$. Como a_n es creciente, para todo $n \ge n_0$, se tiene que $L_a < a_n$. Como $a_n \to L_a$, tomamos $\varepsilon = \frac{a_{n_0} - L_a}{2}$. Luego, existe un n_1 tal que desde n_1 en adelante se cumple

$$|a_n - L_a| < \frac{a_{n_0} - L_a}{2} \Rightarrow a_n - L_a < \frac{a_{n_0} - L_a}{2} \Rightarrow a_n < a_{n_0}$$

para todo $n \geq n_1$. Tomando máx $\{n_0 + 1, n_1\}$ llegamos que a_n no es creciente, $\rightarrow \leftarrow$. Análogamente, L_b es cota inferior de b_n . Esto implica que $a_n \leq L_a \leq L_b \leq b_n$ para todo n, asi que L_a pertenece a la intersección, por lo que es no-vacía.

Si los intervalos fueran abiertos por ambos lados, consideramos $a_n = 1, b_n = 1 + \frac{1}{n}$. Claramente todo $x \le 1$ no está en I_1 . Si x > 1, podemos escribirlo como $1 + \varepsilon$. Por arquimediana, existe un n_0 natural tal que $\frac{1}{n_0} < \varepsilon \Rightarrow 1 + \frac{1}{n_0} < 1 + \varepsilon$, por lo que x no está en I_{n_0} , por lo que no puede estar en la intersección. Por lo tanto, la intersección es vacía en este caso, por lo que no se puede saber que pasa cuando los intervalos son abiertos.

4) Sea x_n una sucesión. Definimos $s_n = \sum_{k=1}^n x_k$. Asuma que s_n converge a L y que x_n es siempre positiva. Definimos

$$r_n = \lim_{m \to \infty} \sum_{k=n+1}^m x_k.$$

a) Encuentre r_n de manera explícita.

Demostración. Notar que

$$r_n = \lim_{m \to \infty} \sum_{k=n+1}^m x_k = \lim_{m \to \infty} \left(\sum_{k=n+1}^m x_k + \sum_{k=1}^n x_k - \sum_{k=1}^n x_k \right)$$
$$= \lim_{m \to \infty} \left(\sum_{k=1}^m x_k - s_n \right)$$

Como $\lim_{m\to\infty}\sum_{k=1}^m x_k=L$ por enunciado y $\lim_{m\to\infty}s_n=s_n$ (ya que es una constante), tenemos que $r_n=L-s_n$.

b) Pruebe que $r_n \to 0$.

Demostración. Sabemos que $r_n = L - s_n$. como $L \to L$ y $s_n \to L$ cuando $n \to \infty$, por álgebra de límites $r_n \to L - L = 0$, que es lo que queríamos probar.