ENGINEERING DESIGN ASSIGNMENT END SEM PROJECT

THE SENSORIZED TRIGGER TAP

SUBMITTED BY

NAME	REGNO	SECTION
SUDHARSHINEE A	125013040	M1
SHEERIN IRFAANAA M	125013032	M1
AMARDEEP ARNOLD A	125009018	M1

INTRODUCTION:

An automatic faucet or tap (also hands-free faucet, touchless faucet, electronic faucet, motion-sensing faucet, sensor faucet, or infrared faucet) is a faucet equipped with a proximity sensor and mechanism that opens its valve to allow water to flow in response to the presence of a user's hands in close proximity. In addition it also comes up with a light (LED) attached and thus the water changes with respect to the colour. The faucet closes its valve again after a few seconds or when it no longer detects the presence of a user's hands.

(NORMAL TAP)

OBJECTIVE:

- The main objective of **Sensor** tap water is to wash hands touch free .(Without touching the taps).
- To provide Energy friendly , Fast pipe/tap system .
- To avoid leakage of water.
- To keep water at same temperature.

PROBLEM STATEMENT:

- While washing our hands, Dirty taps need to be touched which is not a good hygiene.
- There is some leakage of water as taps are not properly closed.
- Cap of Pipe need to tightened and cleaned at intervals.

NEED STATEMENT:

- Our hands should be free of Impurities present in the taps.
- Conservation of water.
- Does not require more maintenance.

FUNCTIONS:

- Sensor- it detects the hand movements and automatically open the tap
- Nozzle The water comes out of the pipe through nozzle
- Mount To mount the tap on basin or wall
- Power source- The sensor is connected with a power source to keep it active at all times
- Pipe- Water flows from the tank to nozzle through pipe.
- Infrared Sensor Component Sensor detects the object before the tap and sends a signal to solenoidal valve to start stream of water.
- Power source Part of model likely to be controlled by AA batteries or by mains through 6V transformers .

CONSIDERATIONS:

- Energy Efficient
- Water Conservation
- Good level of Convenience
- Long lasting
- Built in Strong

CUSTOMER REQUIREMENTS:

- It should be Cost effective and affordable
- Should be easily available
- Require Less maintenance
- Should be attractive
- Should be Durable
- Should consume low Power

CONSTRAINS:

- Its Price range should be Minimal
- Should be accessible even if there is a Water cut
- The widget should not have any problems with reflective surface
- Replacable parts should be easily available

KANO MODEL:

THRESHOLD ATTRIBUTES:

- Get fine Flow of water
- Clean and clear water without Impurities

PERFORMANCE ATTRIBUTES:

- Easy switching on of the tap (Al sensor)
- Water filteration is done

EXCITEMENT ATTRIBUTES:

- Energy Efficient
- Comes up with hand dryer
- More durable than hand operated pipes
- LED light is fixed
- Gives a alarm when the tap is on for more than 2 mins

INDIFFERENT ATTRIBUTES:

- Colour
- Shape/Type
- Light

MORPHOLOGICAL CHART:

FEATURES	1	2		3	4
STRUCTURE					-11
SENSOR	INFRARED SENSORS	AUTOMATI	ED ORS		
MOUNT	Bailin m	airted B	0	Wall mo	untad
NozziE	Shower-type	spang	type	sprey type	
pocation of sensor	on the pipe	on the	Dozzle		and mounted
Material	caribon steel	high spe	od steel		

CONCEPTUAL DESIGN – 1 :

CONCEPTUAL DESIGN	-1
feature	idea
structure	1
sensor	1
Mount	1
Nozzle	2
Location of sensor	1
Material	1
,	

CONCEPTUAL DESIGN – 2:

CONCEPTUAL DESIGN - 2 idea Featrore shuctione Sensor Mount 2. Nozzle 2 Location of sensor 3 Material 2

FINAL DESIGN:

FINAL DESIGN

MORPHOLOGICAL CHART OF FINAL DEESIGN:

M	OKHOTOGIICAT	CHART OF FINAL DESIGN
	FEATURES	IDEA ·
	STRUCTURE	
	SENSOR	INFRARED SENSOR
	MOMUNT	BASIN MOUNTED. (1)
	NOZZLE	spring type nozzle
	LOCATION OF SENSOR	ON THE PIPE ITSELF
	MATERIALS	Carlon steel
	overall rationance	

CONCLUSION:
Our final design is a combination of both design 1 and design 2 as it has the features of both. It is a basin mounted one and the sensor is located on the front of the pipe so it is better to detect the hand movements so it automatically allows the water to flow. Moreover these taps allow us to be more hygienic as it prevents touching. It also conserves water and help us to wash our hands with coziness.