

Optimização para Ciência de Dados

Relatório Grupo 18

Docente: Ana Catarina Nunes
Anastasia Fynar, Nº123452, CD-PL
André Estêvão, Nº123442, CD-PL
Matilde Costa, Nº110995, CDA2
Patrícia Shulzhyk, Nº123449, CD-PL

GRUPO 18

Anastasia Fynar Nº123452 CD-PL

André Estêvão Nº123442 CD-PL

Matilde Costa Nº110995 CDA2

Patrícia Shulzhyk Nº123449 CD-PL

ÍNDICE

- **01.** INTRODUÇÃO
- 02. PARTE I MODELO
- **03.** PARTE II RESOLUÇÃO DO MODELO
- **04.** PARTE III PLANO DE TRANSPORTE
- **05.** PARTE IV QUESTÕES DA TORRESMAR
- 06. PARTE V ESTUDO ESTUDO DO IMPACTO DO LUCRO POR TONELADA NO

COMPARTIMENTO DA FRENTE

- **07.** PARTE VI PROPOSTA DE ALTERAÇÃO
- **08.** CONCLUSÃO
- **09.** ANEXOS

INTRODUÇÃO

Neste relatório irá ser abordado um caso de otimização de dados relacionado à empresa TorresMar, uma empresa especializada no transporte por via marítima. Esta mesma empresa pretende planear o transporte do pedido de um cliente e pretende obter o maior lucro possível.

O pedido consiste no envio de materiais para os Açores num navio da TorresMar que se encontra dividido em três compartimentos de carga (Frente, Centro e Traseira), estes mesmos com limitações de capacidade e requisitos de segurança a seguir.

Neste relatório, o leitor irá encontrar uma explicação de fácil compreensão de como foi produzido o modelo e a resolução do mesmo no software pretendido (Excel), respondendo a algumas questões que foram pedidas ao longo do trabalho.

PARTE I – MODELO

VARIÁVEIS DE DECISÃO:

 X_{ij} – quantidade, em toneladas, do material (i) a transportar e onde o transportar (j), com:

i = 1 (Material 1), 2 (Material 2), 3 (Material 3), 4 (Material 4)

j = 1 (Frente), 2 (Centro), 3 (Traseira)

MODELO EM PROGRAMAÇÃO LINEAR (PL) - FUNÇÃO OBJETIVO:

Maximizar o lucro:
$$70x_{11} + 75x_{12} + 80x_{13} + 50x_{21} + 60x_{22} + 65x_{23} + 60x_{31} + 65x_{32} + 75x_{33} + 80x_{41} + 75x_{42} + 65x_{43}$$

PARTE I – MODELO

RESTRIÇÕES:

S.A.:
$$x_{11} + x_{21} + x_{31} + x_{41} \le 3000$$
 (peso máximo frente) $x_{12} + x_{22} + x_{32} + x_{42} \le 6000$ (peso centro) $x_{13} + x_{23} + x_{33} + x_{43} \le 4000$ (peso traseira) $x_{11} + x_{12} + x_{13} \le 4800$ (peso x_1) $x_{21} + x_{22} + x_{23} \le 2500$ (peso x_2) $x_{31} + x_{32} + x_{33} \le 1200$ (peso x_3) $x_{41} + x_{42} + x_{43} \le 1700$ (peso x_4) $x_{41} + x_{42} + x_{43} \le 1700$ (peso x_4) $x_{41} + x_{42} + x_{43} \le 1700$ (peso x_4) $x_{42} + x_{43} \le 1700$ (peso x_4) $x_{43} + x_{44} = x_{44} \le x_{44} \le$

PARTE I – MODELO

$$x_{11} + x_{21} + x_{31} + x_{41} \ge 0,9(x_{13} + x_{23} + x_{33} + x_{43})$$

 $x_{11} + x_{21} + x_{31} + x_{41} \le 0,9(x_{13} + x_{23} + x_{33} + x_{43})$

o peso no compartimento da frente não poderá diferir mais de 10% do peso no compartimento da traseira

$$\begin{array}{c} x_{12} + x_{22} + x_{32} + x_{42} \geq 0, 4(x_{11} + x_{21} + x_{31} + x_{41} + x_{12} + x_{22} + x_{32} + x_{42} + x_{13} + x_{23} + x_{33} + x_{43}) \\ x_{12} + x_{22} + x_{32} + x_{42} \leq 0, 6(x_{11} + x_{21} + x_{31} + x_{41} + x_{12} + x_{22} + x_{32} + x_{42} + x_{13} + x_{23} + x_{33} + x_{43}) \\ \hline \\ & \\ & \\ & \\ & \\ \end{array}$$

O compartimento do centro terá de conter entre 40% e 60% do peso total transportado

 $X_{ii} \ge 0$, i = 1,2,3,4; j = 1,2,3 (Garantir valores inteiros, maiores que zero)

PARTE II – RESOLUÇÃO DO MODELO

Para a resolução do modelo, utilizámos o software do Excel Solver de modo a encontrar a melhor alocação dos materiais e o máximo de lucro.

No Solver, foram criados relatórios de reposta e de sensibilidade que fornecem informações necessárias às análises feitas no seguimento deste documento.

A inserção do modelo no Excel encontra-se nos anexos, na figura 1.

PARTE III – PLANO DE TRANSPORTE

	Materiais				
Transporte	x1	x2	x3	x4	
frente	C	1046	i C	1531,6	
centro	3136	1454	ļ C	58,4	
traseira	1664	1 0	1200	0	
Max (lucro):	70	50	60	80	724768
Coeficientes	75	60	65	75	
	80	65	75	65	

Figura 3 - Plano óptimo e lucro total.

PARTE III – PLANO DE TRANSPORTE

Figura 4 – Distribuição de Materiais por Compartimento.

Figura 5 - Peso e Volume por Compartimento.

PARTE IV – QUESTÕES DA TorresMar

A. Caso o cliente tome uma decisão de última hora e pretenda transportar até 1250 toneladas do Material 3, o que acontecerá ao lucro total? A TorresMar deverá aceitar a alteração?

O valor inicial máximo é 1200 toneladas do material 3, ao alterarmos para 1250, aumentamos 50 toneladas, por isso o aumento no lucro será de 50 * 13,63 (preço de sombra), fazendo com que o lucro total seja de 724768 + 50 * 13,63 = 725449,5

B. Caso o lucro do Material 2 transportado no compartimento da frente passe a ser de 55 euros por tonelada, o plano ótimo irá manter-se?

Não, o plano ótimo não se manterá caso o lucro do Material 2 transportado no compartimento da frente aumente para 55 euros por tonelada. Alterando os coeficientes da função objetivo, a nova solução ótima é maior, pois transportar mais Material 2 na frente torna-se mais lucrativo. O lucro aumenta para 729998.

PARTE IV – QUESTÕES DA TorresMar

C. Para este plano de transporte, de qual dos materiais a TorresMar preferiria transportar uma quantidade maior e porquê?

A TorresMar vai preferir transportar quantidades maiores do Material 1 pois este tem maior lucro, assim a TorresMar ao priorizar o transporte de X1, o seu lucro vai ser maximizado.

PARTE V – ESTUDO DO IMPACTO DO LUCRO POR TONELADA NO COMPARTIMENTO DA FENTE

	Variação				
Max (lucro):	55	50	60	80	652768
Coeficientes	60	60	65	75	
	65	65	75	65	
Max (lucro):	60	50	60	80	676768
Coeficientes	65	60	65	75	
	70	65	75	65	
Max (lucro):	65	50	60	80	700768
Coeficientes	70	60	65	75	
	75	65	75	65	
Max (lucro):	75	50	60	80	748768
Coeficientes	80	60	65	75	
	85	65	75	65	
Max (lucro):	80	50	60	80	772768
Coeficientes	85	60	65	75	
	90	65	75	65	
Max (lucro):	85	50	60	80	796768
Coeficientes	90	60	65	75	
	95	65	75	65	

Figura 8 - Variação de Lucro.

A variação de + ou - 5 euros no lucro do compartimento da frente, causa um aumento/diminuição de 24000 por tonelada.

O lucro aumenta/diminui linearmente.

Concluindo, as variações no lucro da frente têm um impacto significativo no lucro total da empresa.

Otimizar a rentabilidade deste compartimento é crucial para maximizar os lucros gerais da empresa.

PARTE VI – PROPOSTA DE ALTERAÇÃO

Y_{ii} = variável binária

Cada material é transportado apenas num único compartimento: $\Sigma_i Y_{ij} = 1$, para cada i

 $X_{ij} \le peso \ máximo \ de \ cada \ material (i) \times Y_{ij}, \ com \ i = 1, ..., 4 \ e \ j = frente, \ centro, \ traseira$

Restrição binária	1	1	1	1	<=	1
, , , , , , , , , , , , , , , , , , , ,	1	1	1		<=	1
	1	1	1	1	<=	1
	1	1	1	1	<=	1
Restrição binária	1			0	<=	0
x1		1		4160	<=	4800
			1	0	<=	0
x2	1			0	<=	0
		1		0	<=	0
			1	2500	<=	2500
x3	1			0	<=	0
		1		0	<=	0
			1	1200	<=	1200
x4	1			1700	<=	1700
		1		0	<=	0
			1	0	<=	0

Figura 9 – Restrições Binárias

PARTE VI – PROPOSTA DE ALTERAÇÃO

O lucro diminui pois apenas transportamos cada material num único compartimento, o que não é rentável.

Figura 10 – Distribuição dos Materiais pelos Compartimentos.

CONCLUSÃO

O presente relatório focou-se em planear o transporte do pedido de um cliente da empresa TorresMar, tendo em conta os três tipos de compartimentos: frente, centro e traseira, e com o intuito de obter o maior lucro possível.

Através do Excel Solver, foi possível identificar a melhor alocação de materiais nos compartimentos do navio, respeitando todas as restrições de capacidade e segurança.

O plano ótimo mostrou uma distribuição eficiente dos materiais, maximizando a capacidade de carga nos compartimentos.

Por fim, através deste trabalho conseguimos desenvolver novas aptidões em relação a modelos em programação linear. Foi conseguido também explorar melhor as funcionalidades do Excel, mais especificamente, do Solver.

ANEXOS

PARTE II – RESOLUÇÃO DO MODELO

Inserção do modelo no Excel

Figura 1 – Modelo em Excel.

ANEXOS

Parâmetros do Solver

Figura 2 – Parâmetros no Excel Solver.

ANEXOS

IV – QUESTÕES DA TorresMar

Questão A

		Final	Sombra	Restrição	Permissível	Permissível
Célula	Nome	Valor	Preço	Lado Direito	Aumentar	Diminuir
\$F\$13	Peso (transporte) LHS	2577,6	0	3000	1E+30	422,4
\$F\$14	LHS	4648,4	0	6000	1E+30	1351,6
\$F\$15	LHS	2864	0	4000	1E+30	1136
\$F\$17	Peso (material) LHS	4800	28,125	4800	93,44	176
\$F\$18	LHS	2500	30	2500	146	275
\$F\$19	LHS	1200	13,64	1200	60,33057851	137,5
\$F\$20	LHS	1590	0	1700	1E+30	110
\$F\$23	Volume LHS	3900	50	3900	175,2	1744,8
\$F\$24	LHS	5200	37,5	5200	220	116,8
\$F\$25	LHS	4000	27,1	4000	220	59,59183673
\$F\$28	Peso (Restrição 1) LHS	2577,6	-20	0	422,4	87,6
\$F\$31	LHS	2577,6	0	0	1E+30	572,8
\$F\$35	Peso (Restrição 2) LHS	4648,4	0	0	612,4	1E+30
\$F\$38	LHS	4648,4	0	0	1E+30	1405,6

Figura 6 – Relatório da sensibilidade da parte II.

Questão B

Max (lucro):	70	55	60	80	729998
Coeficientes	75	60	65	75	
	80	65	75	65	

Figura 7 – Aumento do lucro consoante o aumento de 55</tonelada.