SEQUENCE LISTING

- <110> Genox Research, Inc.
 National Center for Child Health and Development
- <120> Methods for examination for allergic diseases, and drugs for treating allergic diseases

<130> G1-A0212-US

<140>

<141>

<150> JP 2002-188490

<151> 2002-06-27

<160> 18

<170> PatentIn Ver. 2.0

<210> 1

<211> 3794

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (730).. (2607)

<400> 1

ataaatgacg tgccgagaga gcgagcgaac gcgcagccgg gagagcggag tctcctgcct 60

eccgccccc acccctccag etectgetee tectecgete eccatacaca gaegegetea 120

caccegetee etcactegea cacacagaca caagegegea cacaggetee geacacacae 180

000	,000		OB OB V	ogow	Ju Ce	10000		, 500	o uge	2500	0008	50068	9 6	Cago	508808	210
ccgo	agci	tgg	acgc	ccct	cc cg	gggc1	tcact	ttg	gcaad	eget	gac	ggtgo	ccg	gcagi	tggccg	300
tgga	iggt	ggg	aaca	gcgg	eg ge	catco	ctccc	cco	ctggi	tcac	agco	ccaa	gcc	aggad	egeceg	360
cgga	acci	tct	cggc	tgtgo	ct c1	tccca	atgag	g tcg	gggat	tcgc	agca	atcc	ccc	acca	gccgct	420
caco	egect	tcc	gggaį	gccgo	ct gg	ggcti	tgtad	aco	cgcas	gccc	ttc	cggga	aca	gcago	ctgtga	480
ctco	ccc	cca	gtgca	agat1	tt cį	ggga	cagct	cto	ctaga	aaac	tege	ctcta	aaa	gacg	gaaccg	540
ccac	eagca	act	caaa	gccca	ac t	gcgga	aagag	g ggo	cagco	ccgg	caa	gcccį	ggg	ccct	gagcct	600
ggao	ccti	tag	cggtį	gccgs	gg ca	agcad	ctgcc	gg	egeti	tcgc	ctc	gccgį	gac	gtcc	gctcct	660
ccta	icac1	tct	cagco	ctcc	gc tg	ggaga	agaco	cco	cagco	ccca	cca	ttca	gcg	cgcaa	agatac	720
ccto	caga														ca ggt	771
		M	et Pi 1	ro Cy	rs Va	al G	ln Al 5	la G	in Ty	yr Se		ro Se 10	er P	ro Pi	ro Gly	
	-		gcg Ala	-	_											819
_			gac Asp			_	_		_	_			_			867
			aca Thr 50											Phe		915
gag	ggc	tac	tcg	agc	aac	tac	gaa	ctc	aag	cct	tcc	tgc	gtg	tac	caa	963

Glu Gly Tyr Ser Ser Asn Tyr Glu Leu Lys Pro Ser Cys Val Tyr Gln

	65			70			75				
					gag Glu						1011
					cac His				•	•	1059
					cca Pro						1107
					ttc Phe 135						1155
					cag Gln						1203
			Pro		atc Ile		 _	_	_	_	1251
					gtg Val		 _		_		1299
					cat His						1347

ggc ggc cac cac ctc ggc tac gac ccg acg gcc gct gcc gcg ctc agc

Gly Gly His His Leu Gly Tyr Asp Pro Thr Ala Ala Ala Ala Leu Ser

Leu Pro Leu Gly Ala Ala Ala Ala Gly Ser Gln Ala Ala Ala Leu gag agc cac ccg tac ggg ctg ccg ctg gcc aag agg gcg gcc ccg ctg Glu Ser His Pro Tyr Gly Leu Pro Leu Ala Lys Arg Ala Ala Pro Leu gee tte eeg eet ete gge ete aeg eee tee eet aee geg tee age etg Ala Phe Pro Pro Leu Gly Leu Thr Pro Ser Pro Thr Ala Ser Ser Leu ctg ggc gag agt ccc agc ctg ccg tcg ccc agc agg agc tcg tcg Leu Gly Glu Ser Pro Ser Leu Pro Ser Pro Pro Ser Arg Ser Ser Ser tet gge gag gge aeg tgt gee gtg tge ggg gae aae gee gee tge eag Ser Gly Glu Gly Thr Cys Ala Val Cys Gly Asp Asn Ala Ala Cys Gln cac tac ggc gtg cga acc tgc gag ggc tgc aag ggc ttt ttc aag aga His Tyr Gly Val Arg Thr Cys Glu Gly Cys Lys Gly Phe Phe Lys Arg aca gtg cag aaa aat gca aaa tat gtt tgc ctg gca aat aaa aac tgc Thr Val Gln Lys Asn Ala Lys Tyr Val Cys Leu Ala Asn Lys Asn Cys cca gta gac aag aga cgt cga aac cga tgt cag tac tgt cga ttt cag Pro Val Asp Lys Arg Arg Arg Asn Arg Cys Gln Tyr Cys Arg Phe Gln aag tgt ctc agt gtt gga atg gta aaa gaa gtt gtc cgt aca gat agt Lys Cys Leu Ser Val Gly Met Val Lys Glu Val Val Arg Thr Asp Ser

ctg aaa ggg agg agg ggt cgt ctg cct tcc aaa cca aag agc cca tta Leu Lys Gly Arg Arg Gly Arg Leu Pro Ser Lys Pro Lys Ser Pro Leu caa cag gaa cct tct cag ccc tct cca cct tct cct cca atc tgc atg Gln Glu Pro Ser Gln Pro Ser Pro Pro Pro Ile Cys Met atg aat gcc ctt gtc cga gct tta aca gac tca aca ccc aga gat ctt Met-Asn Ala Leu Val Arg Ala Leu Thr Asp Ser Thr Pro Arg Asp Leu gat tat tcc aga tac tgt ccc act gac cag gct gct gca ggc aca gat Asp Tyr Ser Arg Tyr Cys Pro Thr Asp Gln Ala Ala Gly Thr Asp gct gag cat gtg caa caa ttc tac aac ctc ctg aca gcc tcc att gat Ala Glu His Val Gln Gln Phe Tyr Asn Leu Leu Thr Ala Ser Ile Asp gta tcc aga agc tgg gca gaa aag att ccg gga ttt act gat ctc ccc Val Ser Arg Ser Trp Ala Glu Lys Ile Pro Gly Phe Thr Asp Leu Pro aaa gaa gat cag aca tta ctt att gaa tca gcc ttt ttg gag ctg ttt Lys Glu Asp Gln Thr Leu Leu Ile Glu Ser Ala Phe Leu Glu Leu Phe gtc ctc aga ctt tcc atc agg tca aac act gct gaa gat aag ttt gtg Val Leu Arg Leu Ser Ile Arg Ser Asn Thr Ala Glu Asp Lys Phe Val ttc tgc aat gga ctt gtc ctg cat cga ctt cag tgc ctt cgt gga ttt Phe Cys Asn Gly Leu Val Leu His Arg Leu Gln Cys Leu Arg Gly Phe

495	500	505	510
		gac ttt tcc tta aat Asp Phe Ser Leu Asn 520	_
		gcc tgc ctg tca gca Ala Cys Leu Ser Ala 535	
		gaa cca aag aga gtc Glu Pro Lys Arg Val 555	
		aaa gac cac cag agt Lys Asp His Gln Ser 570	•
		gtc ctg ggt gcc ctg Val Leu Gly Ala Leu 585	-
		cag cgc atc ttc tac Gln Arg Ile Phe Tyr 600	-
		atc att gac aag ctc Ile Ile Asp Lys Leu 615	
acc cta cct ttc Thr Leu Pro Phe 625	taatcaggag cagt	ggagca gtgagctgcc tcc	tctccta 2647

 ${\tt gcacctgctt} \ {\tt gctacgcagc} \ {\tt aaagggatag} \ {\tt gtttggaaac} \ {\tt ctatcatttc} \ {\tt ctgtccttcc} \ 2707$

ttaagaggaa aagcagctcc tgtagaaagc aaagactttc ttttttttct ggctcttttc 2767 cttacaacct aaagccagaa aacttgcaga gtattgtgtt ggggttgtgt tttatattta 2827 ggcattgggg gatggggtgg gagggggtta tagttcatga gggttttcta agaaattgct 2887 aacaaagcac ttttggacaa tgctatccca gcaggaaaaa aaaggataat ataactgttt 2947 taaaactett tetggggaat eeaattatag ttgetttgta tttaaaaaca agaacageea 3007 agggttgttc gccagggtag gatgtgtctt aaagattggt cccttgaaaa tatgcttcct 3067 gtatcaaagg tacgtatgtg gtgcaaacaa ggcagaaact teettttaat tteettette 3127 ctttatttta acaaatggtg aaagatggag gattacctac aaatcagaca tggcaaaaca 3187 ataatggctg tttgcttcca taaacaagtg caatttttta aagtgctgtc ttactaagtc 3247 ttgtttatta actctccttt attctatatg gaaataaaaa ggaggcagtc atgttagcaa 3307 atgacacgtt aatateccta gcagaggctg tgttcacctt ccctgtcgat cccttctgag 3367 gtatggccca tccaagactt ttaggccatt cttgatggaa ccagatccct gccctgactg 3427 tecagetate etgaaagtgg ateagattat aaactggatt acatgtaact gttttggttg 3487 tgttctatca accccaccag agttccctaa acttgcttca gttatagtaa ctgactggta 3547 tattcattca gaagcgccat aagtcagttg agtatttgat ccctagataa gaacatgcaa 3607 atcagcagga actggtcata cagggtaagc accagggaca ataaggattt ttatagatat 3667 aatttaattt ttgttattgg ttaaggagac aattttggag agcaagcaaa tctttttaaa 3727 aaatagtatg aatgtgaata ctagaaaaga tttaaaaaaat agtatgagtg tgagtactag 3787 gaaggat 3794

<210> 2

<211> 626

<212> PRT

<213> Homo sapiens

<400> 2

Met Pro Cys Val Gln Ala Gln Tyr Ser Pro Ser Pro Pro Gly Ser Ser

1 5 10 15

Tyr Ala Ala Gln Thr Tyr Ser Ser Glu Tyr Thr Thr Glu Ile Met Asn 20 25 30

Pro Asp Tyr Thr Lys Leu Thr Met Asp Leu Gly Ser Thr Glu Ile Thr 35 40 45

Ala Thr Ala Thr Thr Ser Leu Pro Ser Ile Ser Thr Phe Val Glu Gly 50 55 60

Tyr Ser Ser Asn Tyr Glu Leu Lys Pro Ser Cys Val Tyr Gln Met Gln 65 70 75 80

Arg Pro Leu Ile Lys Val Glu Glu Gly Arg Ala Pro Ser Tyr His His
85 90 95

Gln Gln Pro Ser Ile Pro Pro Ala Ser Ser Pro Glu Asp Glu Val Leu 115 120 125

Pro Ser Thr Ser Met Tyr Phe Lys Gln Ser Pro Pro Ser Thr Pro Thr 130 135 140

Thr 145	Pro	Ala	Phe	Pro	Pro 150	Gln	Ala	Gly	Ala	Leu 155	Trp	Asp	Glu	Ala	Leu 160
Pro	Ser	Ala	Pro	Gly 165	Cys	Ile	Ala	Pro	Gly 170	Pro	Leu	Leu	Asp	Pro 175	Pro
Met	Lys	Ala	Val 180	Pro	Thr	Val	Ala	Gly 185	Ala	Arg	Phe	Pro	Leu 190	Phe	His
Phe	Lys	Pro 195	Ser	Pro	Pro	His	Pro 200	Pro	Ala	Pro	Ser	Pro 205	Ala	Gly	Gly
His	His 210	Leu	Gly	Tyr	Asp	Pro 215	Thr	Ala	Ala	Ala	Ala 220		Ser	Leu	Pro
Leu 225	Gly	Ala	Ala	Ala	Ala 230	Ala	Gly	Ser	Gln	Ala 235	Ala	Ala	Leu	Glu	Ser 240
His	Pro	Tyr	Gly	Leu 245	Pro	Leu	Ala	Lys	Arg 250	Ala	Ala	Pro	Leu	Ala 255	Phe
Pro	Pro	Leu	Gly 260	Leu	Thr	Pro	Ser	Pro 265	Thr	Ala	Ser	Ser	Leu 270	Leu	Gly
Glu	Ser	Pro 275	Ser	Leu	Pro	Ser	Pro 280	Pro	Ser	Arg	Ser	Ser 285	Ser	Ser	Gly
Glu	Gly 290	Thr	Cys	Ala	Val	Cys 295	Gly	Asp	Asn	Ala	Ala 300	Cys	Gln	His	Tyr
Gly 305	Val	Arg	Thr	Cys	Glu 310	Gly	Cys	Lys	Gly	Phe 315	Phe	Lys	Arg	Thr	Val 320
Gln	Lys	Asn	Ala	Lys	Tyr	Val	Cys	Leu	Ala	Asn	Lys	Asn	Cys	Pro	Val

Asp	Lys	Arg	Arg	Arg	Asn	Arg	Cys	Gln	Tyr	Cys	Arg	Phe	Gln	Lys	Cys
			340					345					350		

- Leu Ser Val Gly Met Val Lys Glu Val Val Arg Thr Asp Ser Leu Lys 355 360 365
- Gly Arg Arg Gly Arg Leu Pro Ser Lys Pro Lys Ser Pro Leu Gln Gln 370 375 380
- Glu Pro Ser Gln Pro Ser Pro Pro Ser Pro Pro Ile Cys Met Met Asn 385 390 395 400
- Ala Leu Val Arg Ala Leu Thr Asp Ser Thr Pro Arg Asp Leu Asp Tyr
 405 410 415
- Ser Arg Tyr Cys Pro Thr Asp Gln Ala Ala Ala Gly Thr Asp Ala Glu
 420 425 430
- His Val Gln Gln Phe Tyr Asn Leu Leu Thr Ala Ser Ile Asp Val Ser 435 440 445
- Arg Ser Trp Ala Glu Lys Ile Pro Gly Phe Thr Asp Leu Pro Lys Glu 450 455 460
- Asp Gln Thr Leu Leu Ile Glu Ser Ala Phe Leu Glu Leu Phe Val Leu 465 470 475 480
- Arg Leu Ser Ile Arg Ser Asn Thr Ala Glu Asp Lys Phe Val Phe Cys 485 490 495
- Asn Gly Leu Val Leu His Arg Leu Gln Cys Leu Arg Gly Phe Gly Glu 500 505 510
- Trp Leu Asp Ser Ile Lys Asp Phe Ser Leu Asn Leu Gln Ser Leu Asn 515 520 525

Leu Asp Ile Gln Ala Leu Ala Cys Leu Ser Ala Leu Ser Met Ile Thr 530 535 540

Glu Arg His Gly Leu Lys Glu Pro Lys Arg Val Glu Glu Leu Cys Asn 545 550 555 560

Lys Ile Thr Ser Ser Leu Lys Asp His Gln Ser Lys Gly Gln Ala Leu 565 570 575

Glu Pro Thr Glu Ser Lys Val Leu Gly Ala Leu Val Glu Leu Arg Lys 580 585 590

Ile Cys Thr Leu Gly Leu Gln Arg Ile Phe Tyr Leu Lys Leu Glu Asp
595 600 605

Leu Val Ser Pro Pro Ser Ile Ile Asp Lys Leu Phe Leu Asp Thr Leu 610 615 620

Pro Phe

625

<210> 3

<211> 17

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Artificially Synthesized Primer Sequence

<400> 3

gttttttttt ttttta

<211>	
<212>	
<213>	Artificial Sequence
<220>	
<223>	Description of Artificial Sequence: Artificially
	Synthesized Primer Sequence
<400>	4
gtttt	ttttt ttttttc 17
<210>	6
<211>	
<211>	
	Artificial Sequence
\2107	Artificial Sequence
<220>	
<223>	Description of Artificial Sequence: Artificially
	Synthesized Primer Sequence
<400>	5
gtttt	ttttt ttttttg 17
<210>	6
<211>	10
<212>	DNA
<213>	Artificial Sequence
<220>	
	Description of Artificial Sequence: Artificially
	Synthesized Primer Sequence
<400>	6

cattctcagg

<210>	7	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Artificially	
	Synthesized Primer Sequence	
<400>	7	
	gtct agaactgcac ag	22
igocii	gict agaacigcae ag	22
<210>	8	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
	Description of Artificial Sequence: Artificially	
	Synthesized Primer Sequence	
<400>	0	
	gttg gaccaagcag c	21
aagugu	gitg gaccaagcag c	4 1
<210>	9	
<211>	26	
<212>	DNA	
<213>	Artificial Sequence	
<220>	·	
<223>	Description of Artificial Sequence: Artificially	
	Synthesized Probe Sequence	

<400> 9	
aagtcagtgc agagcctgga tgagga	26
<210> 10	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Artificially —	
Synthesized Primer Sequence	
<400> 10	
teacceacae tgtgcccate tacga	25
<210> 11	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
(0.00)	
<220>	
<223> Description of Artificial Sequence: Artificially	
Synthesized Primer Sequence	
Z400\ 11	
<400> 11	0.5
cageggaacc geteattgec aatgg	25
<210> 12	
<210 / 12	
<211> 26 <212> DNA	
<213> Artificial Sequence	

```
<220>
<223> Description of Artificial Sequence: Artificially
      Synthesized Probe Sequence
<220>
<221> misc_binding
⟨222⟩ (1)
<223> Label FAM
<220>
<221> misc_binding
<222> (7)
<223> Label TAMRA
<400> 12
atgccctccc ccatgccatc ctgcgt
                                                                    26
<210> 13
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Artificially
      Synthesized Primer Sequence
<400> 13
gttccaggca ataacatcat acc
                                                                    23
<210> 14
<211> 23
<212> DNA
<213> Artificial Sequence
```

<220>

<400> 14

gctacttgtg aaactcccaa atg

23

<210> 15

<211> 2087

<212> DNA

<213> Homo sapiens

<400> 15

ggcaaaaatc tgtactttaa aaagtgccat tggatgattc tttggcacac taaggtttga 60
gaaccatcga tatagtttat aataacaact caattttacc ttgaattttc cagcttttcc 120
tggggttgag aagggatgag caatagagat ataaattttc ctgaaagcaa tcaattcatt 180
taacaaatac ttactgaatg gctgctaggt agtaggcact gttccagggc aatggacacg 240
ttgctgaaca agacaaagcc cttatccaca tgaaccttac atacctgtaa aggagaaaaa 300
gagtaaacaa atatacaatt gcagtgatgt cattggtggg aggagaggaa ttttttgctt 360
tttgcttttt ggagtgggg catagagtta gatcagaaaa gaaaaaattg gggggaaaat 420
atattcattg ccaattttta aaatgtcact ttttaaagtg taagaaccta agaatatgta 480
tacatagttt gacttataca atgatcacat ctaaaatttt tagagctata gttgagaaaa 540
gtaacatttt aaggggagaa aaacgtgtcc ttagcgtagt ctacatattt agccagggct 600
gaaagtgaga tagagtaaat attagattcc actctgctat taaagcctca catcactaat 660

ttttgagggg tggtgttttc catgggtctc acttaatttc cacacaaata tctcatttgg 720 ggcctgggct attgctgaag tctgacttgt atagctgcgt tactgccata tgaaacacac 780 agacccattt tagtttacat aatatccatt gctgttgttt gcagctctag attcccattc 840 taggtgcttt agagaaacct tccttaggca ttggctgtca gtaaatgtaa tactgtgtct 900 ttgactagtg agaaagccag agttctgaca gatcaataac ccctataggg tggaaaaaaa 960 ttagtataaa caggaaaaaa gttcacttaa aaaaatcttt ttgcatttga cctatgttcg 1020 attggcatga tcagtaagca aatatttcta gattttcttt gtcaaacccc aaacctactt 1080 ttccaactct aggaccagta ttcattgggt gaggttttcc taaactggta ggccaggcag 1200 agaaaaaatc taaaacgttt tgttccgttc ctttacatct tatgtccaat agaggagatt 1260 tttcttttcc tccagcattg gatgctgacc ctccagtcac ccccaagtta ctggtggctc 1320 agactgaatt cactttggct ccaaaattct gagacttgga ccaaaaccac tgcaggtgaa 1380 gcccagagga tctggctgga gcctggcagg ctgggccggc tggctttcct tcttgctggg 1440 ctccatcaga gaaaagtaca cacacagggt gggcagggac ttcacttccc tgtgtgcaga 1500 aggcatgaaa tgtgagccca gcaggggcag aagcctgcag aggaccctgg gtgaaagcta 1560 cacactttga tggattctga acaaatattg gaagcagaga gattgttgag ttgtgagcca 1620 tggattcagg ggagtcagtg caggaggtag ctgtcagatc cattctcagg ggaaactatt 1680 cattetttag tettttete teteceacta ttttaaaaca aaataatget gaateagtgt 1740 caagttccag gcaataacat catacctggt gtgatttagc aatatttaga atcatttaat 1800 gcaagagcca gaagtaatct tagggatcag gtagtccact ttattcctgt tccagagact 1860 gaaactgact cagagaggtt aaatgccttg tctagaactg cacagcaagt cagtgcagag 1920 cctggatgag gaccccatga cctgctgctt ggtccaacac actttccttt actcccactc 1980 atttgggagt ttcacaagta gctccctcag cttttgaaag ggaggatctg ccctgaattt 2040 cattctgctc ttggagagcc tgtggaatta ttaaataaat tcataaa 2087

<210> 16

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<400> 16

tgggtgccct ggtagaact

19

<210> 17

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Artificially Synthesized Primer Sequence

<400> 17

gcttcaggta gaagatgcgc	t
-----------------------	---

21

<210> 18

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<400> 18

aggaagatct gcaccctggg cctc