1 Result for Injective Funtions

Let $f:X\to Y$ be an injective function and $A,B\subset X$. Please show that

$$f(A) \cap f(B) = f(A \cap B).$$

Hint: Split up the equality "=" into the parts " \subset " and " \supset ". One direction is straightforward the other one requires, that fis injective.

Solution:

• $f(A \cap B) \subset f(A) \cap f(B)$: We have

$$f(A \cap B) = f(A \cap B) \cap f(B \cap A) \subset f(A) \cap f(B).$$

 $\begin{array}{l} \bullet \ \underline{f(A) \cap f(B) \subset f(A \cap B):} \\ \overline{\text{Let } y \in f(A) \cap f(B),} \\ \Rightarrow \ \exists \ x_a \in A, x_b \in B: \ f(x_a) = y = f(x_b). \end{array}$

$$\Rightarrow \exists x_a \in A, x_b \in B : f(x_a) = y = f(x_b).$$

Since f is injective, we find $x_a = x_b$

- $\Rightarrow x_a, x_b \in A \cap B$ $\Rightarrow y \in f(A \cap B).$