AA 2022-2023 - Fisica - CdL Ingegneria e Scienze Informatiche Luigi Guiducci - Esercitazioni

Cinematica unidimensionale

- [1] Sia $x(t) = 3t^3 5t^2 + 2$ la legge oraria del moto di un punto materiale. Di che tipo di moto si tratta?
- [2] Un uomo si trova a 6.0 m di altezza e tiene in mano un sasso, sopra la testa, a 2.0 m dai piedi. All'istante t_0 il sasso e' lasciato libero di cadere. A livello del suolo è presente una piscina di profondità p; una volta entrato in acqua, il moto del sasso continua con velocità costante. Il sasso tocca il fondo della piscina dopo un tempo $t_p t_0 = 1.45$ s. Si chiede di:
 - a) discutere i grafici orari (qualitativi) di accelerazione, velocità e spostamento
 - b) calcolare *p*
 - c) calcolare il modulo della velocità media del sasso tra $t=t_0$ e $t=t_p$

[a) discussione a lezione; b) $p \simeq 2.2 \text{ m}$; c) $\overline{v} = 7.0 \text{ m/s}$]

[3] Un automobile A viaggia alla velocità di $v_0^A = 60$ km/h. Una seconda automobile B sopraggiunge alla velocità di $v_0^B = 150$ km/h ed inizia a frenare con decelerazione costante a = -8.5 m/s² quando si trova ad una distanza d dalla automobile A. Calcolare la minima distanza d tale da evitare l'urto tra le due automobili.

[d > 36.8 m]

- [4] Un punto materiale A viene lasciato libero di cadere da un'altezza $h_A=45\,$ m. Nel medesimo istante, a un altro punto materiale B che si trova sulla verticale e inizialmente a un'altezza $h_B=21\,$ m viene impressa una velocità v_0 verso l'alto. Calcolare:
- a) dopo quanto tempo dal rilascio simultaneo i due corpi A e B si urtano (calcolarlo in funzione di v_0)
 - b) qual è il valore minimo v_0^* di v_0 affinché l'urto avvenga in volo
 - c) quanto vale la velocità relativa di urto;
 - d) quanto deve valere v_0 affinché A e B si urtino a quota 40 m.

[a) discussione a lezione; b) $v_0^* = 7.9 \text{ m/s}$; c) v_0 ; d) $v_0 = 24 \text{ m/s}$]

[5] Si determini la profondità h di un pozzo con i seguenti dati: si lancia un sasso al suo interno, e si sente il suono dell'urto sul fondo dopo un tempo $\tau = 2$ s. Si consideri $v_s = 340$ m/s la velocità del suono. Che errore si commetterebbe trascurando l'effetto della velocità finita del suono?

[$h \simeq 18.5$ m; un errore del 6%]