课程内容

Canvas, D3, threeJs, antV, Echarts

L / A / G / O / U

一旦联网入头战入子一

何为数据可视化

把数据经过一定转换之后变成图形显示的操作

数据类型

- 定量数据
 - 连续性变量
 - 离散变量
- 定性数据
 - 文本描述
 - 有序变量和无序变量

拉勾教育

ᄃ	旺光	न्ज		<u>a</u>	444	-	些	
므.	欺	M	$^{\wedge}$	实	ĽΩ	\sim		

数据	数据类型	说明		
11010、10086 、10000	定量数据/离散数值	取值来自于有限或可数的集合		
篮球、足球、排球	定性数据/无序分类	数据没无序且不同数据无关联		
及格、不及格、良好、优秀	定性数据/有序分类	数据有序且不同数据有比较关系		
100m, 200m, 300m	定量数据/连续性数据	数据可以是实数域的任意值		
拉勾教育	文本数据	任意格式文本、视情况分类		
Jan. 1 1970, 00:00:00 am	日期/时间	特定的日期或时间		

L / A / G / O / U

转换图形

/ **O**

应勾教育

- 互 联 网 人 实 战 大 学 -

L / A / G / O / U

数据转换图形步骤

- 执行映射将数据与不同标度对应
- 选择合适的图形形状将映射体现出来

拉勾教育

一 互 联 网 人 实 战 大 学 一

L / A / G / O / U

```
一互联网人实战大学—
```

```
\bullet \bullet \bullet
    '北京': {
      name: '最低气温',
      data: [1, -20, 2, 5, 13, 8, 0]
      name: '最高气温',
      data: [10, 4, 12, 15, 26, 27, 10]
  },
{
    '上海': {
     name: '最低气温',
      data: [1, -20, 2, 5, 13, 8, 0]
      name: '最高气温',
      data: [10, 4, 12, 15, 26, 27, 10]
     name: '最低气温',
      data: [1, -20, 2, 5, 13, 8, 0]
      name: '最高气温',
      data: [10, 4, 12, 15, 26, 27, 10]
 },
```

G

/ **O**

/ A

拉勾教育

- 互 联 网 人 实 战 大 学 -

L / A / G / O / U

数据可视化

- 数据可视化就是将数据转换为图形展示
- 被展示的数据是分类型的
- 转换图形一般有二个步骤
 - 将数据与不同的标度对应, 做好映射
 - 选择合适的图形来体现我们设计的映射

坐标轴

拉勾教育

-- 互 联 网 人 实 战 大 学 --

L / A / G / O

直角坐标系分为线性和非线性

A B C 15 14 周三 13 3 周二 12 -11 10 9 8 L / A / G / O / **U**

垃勾教育

互联网人实战大学

总结

- 坐标轴是可视化数据的第一步,不同轴向展示数据标度
- 常见坐标轴是直角坐标轴
 - 线性直角坐标轴
 - 非线性直角坐标轴
- 极坐标轴

颜色标度

颜色标度作用

- 数据分组
- 不同颜色对应数据
- 指定数据突出显示

拉勾教育

— 互 联 网 人 实 战 大 学 -

G

/ **O**

拉勾教育

- 互联网人实战大学-

G

/ **O**

/ A

一 互 联 网 人 实 战 大 学

L / A / G / O / U

总结

- 颜色是可视化当中重要的一个数据展示标度
- 颜色可以实现数据分组、展示、突出展示

可视化解决方案

- 互联网人实战大学

Echarts Highcharts AntV **D3** zrender three.js HTML Svg Canvas WebGL 浏览器(chrome) SKia 0penGL

L / A / G / O / U

Skia 是chrome 及安卓底层2D绘图引擎

OpenGL 是2D、3D图形渲染库

canvas绘制直线

canvas高清绘制

canvas绘制坐标系

canvas绘制直方图

canvas绘制圆形

Canvas 绘制文字

碰撞检测

Canvas 动画

_ 互联网人实战大学:

Canvas 绘制关系图

myCharts 工程化置置

myCharts 初始化实现

myCharts 动画函数实现

进度圆环初始化

进度圆环绘制

折现图坐标系绘制

折线图展示数据绘制

折线图数据连线绘制

折线图刻度连线绘制

直方图绘制

Svg 绘制图形

像素图与矢量图

像素图由一个个像素块组成

矢量图由多个数学公式绘制曲线组成

矢量图由多个数学公式绘制曲线组成

D3. js 底层采用 svg 完成图形绘制

D3使用

/ **O**

D3 操作 svg

D3数据绑定

D3的三种选择集

D3 绘制直方图

线性比例尺使用

D3 常见比例尺

比例尺与坐标轴

D3 过渡

L / A / G / O

D3绘制动态直方图

D3 交互

L / A / G / O / U

一 互 联 网 人 实 战 大 学

WebGL 与 ThreeJS

/ A / G / O / U

浏览器端的 3D 呈现技术

将 javascript 与 openGL ES2 结合操作显 卡

ThreeJS 是采用 javascript 编写的类库

场景、相机、渲染、几何体

A / G / O / U

拉勾教育

_ 万联网人实战大学。

L / A / G / O / U

场景就是一个显示呈现的舞台

浏览器端呈现的内容都是相机拍摄

相机

- 正投影相机
 - 远处近处的内容做同等大小呈现处理
- 透视相机
 - 符合心理习惯,近大远小,离视点近则大,远即小,灭点处消失
 - THREE. PerspectiveCamera = fnunction(fov, aspect, near, far) {}

- 互联网人实战大学-

渲染器决定了内容如何呈现至屏幕

ThreeJS 绘制立方体

材质与相机控制

场景添加光源

精灵材质与交互操作

VR 全景几何体实现

全景地标添加

全景看房实现