

Mid Term (Odd) Semester Examination October 2024

Roll no 23 19813

Name of the Course and semester: B.tech (SPL. of AI/ML, 3rd semester) Name of the Paper: Probability and Random Processes

Paper Code: TCS-344

Time: 1.5 hours

Maximum Marks: 50

Note:

- (i) Answer all the questions by choosing any one of the sub-questions.
- (ii) Each question carries 10 marks.
- (iii) Use of a non-scientific calculator is allowed.

Q1.

(10 Marks)

- a. Two unbiased dice are thrown. Find the probability that:
 - (i) Both the dice show the same number,
 - (ii)The first die shows 6,
 - (iii)The total of the numbers on the dice is 8,
 - (iv)The total of the numbers on the dice is greater than 8.

COI

OR

- b. In a certain town there are equal numbers of male and female residents. It is known that 5% of females and 20% of males are unemployed. If any unemployed person is picked up at random, what is the probability that:
 - (i)It is male, and
 - (ii)It is female? Use Baye's theorem

CO₁

(10 Marks)

	a. A rando	om variable	A has the to	nowing prob	ability functi	on:			
- 1	x:	0] 1	2	3	4	5	6	7
	p(x):	0	K	2K	2K	3K	K ²	2K2	7K2+K
	/:\ T							212	/12 /12

OR

(i)Find K,

(ii)Evaluate P(X<6), $P(X\ge6)$ and P(0<X<5)

CO₁

CO₁

b. Write the probability mass function (p.m.f) of Binomial distribution. Ten coins are thrown simultaneously. Find the probability of getting at least 7 heads.

O3. (10 Marks)

OR

A car hire firm has two cars, which it hires out day by day. The number of demands for a car on each day is distributed as a Poisson distribution with a mean 1.5. Calculate the proportion of days on which

(i) Neither car is used

(ii)Some demand is refused.

COL

b. State Central limit theorem. In a communication system each data packet consists of 1000 bits. Due to the noise, each bit may be received in error with a probability 0.1. It is assumed bit errors occur independently. Find the probability that there are more than 120 errors in a certain data packet.

Mid Term (Odd) Semester Examination October 2024

Q4. (10 Marks)

a. The joint probability distribution of two random variables X and Y is given by:

P(X=0, Y=1)=1/3, P(X=1, Y=-1)=1/3 and P(X=1, Y=1)=1/3

Find (i) Marginal distribution of X and Y and

(ii) The conditional probability distribution of X given Y=1.

CO2

OR

b. For the following bivariate probability distribution of X and Y, find:

(i) $P(X \le 1, Y = 2)$,

(ii)P(X≤1)

(iii)P(Y≤3) and

(iv)P(X<3, Y<4)

<u> </u>							
	Y	1	2	3	4	5	6
Χ						7	
0		0	0	1/32	2/32	2/32	3/32
1		1/16	1/16	1/8	1/8	1/8	1/8
2		1/32	1/32	1/64	1/64	0	2/64

CO2

Q5. (10 Marks)

a. Calculate the coefficient of correlation between X and Y from the following data:

OR

X: 65 66 67 67 68 69 70 72

Y: 67 68 65 68 72 72 69 71

CO2

b. The following table shows the number of motor registrations in a certain territory for a term of 5 years and the sale of motor tyres by a firm in that territory for the same period.

Find the regression equation to estimate sale of tyres when registration is 850.

Year	Motor registrations	Number of tyres sold		
1	600	1250		
2	630	1100		
2	720	1300		
4	750	1350		
5	800	1500		

CO₂