Ankara Üniversitesi Bilgisayar Mühendisliği Bölümü COM4513 Special Topics I Arasınavı

Süre: 120dk.

Notlar: 1. Cevaplarınızı verilen boşluklara yazın.

2. Sorular yalnızca derste anlatılan yöntemlerle cevaplanacaktır.

SORULAR

- 1. (50 puan) Expert sistemlerle ilgili olarak
- **a.** (10 puan) Kullanılan çıkarım mekanizmaları göz önüne alındığında *Forward-chaining* ve *backward-chaining* arasındaki farkları belirterek ikisi için de avantaj ve dezavantajlarını listeleyin.
- **b.** (10 puan) Aşağıdaki *knowledge base* ve başlangıç durumundaki *database'e* göre Z'nin çıkarımını *backward-chaining* kullanarak ve bütün *subgoal*leri de belirterek gösterin.

Knowledge Base	Database	
F & B -> Z	ABCE	
C & D -> F		
A -> D		

b. (15 points) Briefly explain the three methods used for conflict resolution.

No.	Conflict Resolution Method	
1		
2		
3		

- **c. (5 points)** What is the purpose of using metarules in expert systems?
- **d. (10 puan)** Aşağıdaki kural için mantıksal ifadeyi yazın ve <u>kuralın certainty factor (cf) değerini</u> verilen evidence'lar için aşağıda belirtilen certainty factor'leri kullanarak hesaplayın.

Bugün hava kuru ve sıcaklık ılıksa veya bugün hava kuruysa ve sıcaklık ılıksa ve hava kapalıysa yarın hava yağışlı olacaktır. (cf=0.4)

Hava kuru (E₁, cf:0.3), Sıcaklık ılık (E₂, cf: 0.2), Hava kapalı (E₃, cf: 0.1) , Hava yağışlı (H)

2. (10 puan) Bir hastanın X hastalığını taşıması durumunda uygulanan bir medikal testin pozitif sonuç üretme olasılığı
%90'dır. Nüfusun %1'inin bu hastalığı taşıdığı ve test sonuçlarının yanlışlıkla pozitif sonuç üretme olasılığı %5 olduğu
bilinmektedir. Test sonucunun pozitif çıkma durumunda hastanın X hastası olma olasılığını Bayesian inference yöntemi
kullanarak hesaplayınız.

4. (10 puan) Verilen olasılık tablosuna göre

Olasılık	Hipotez		
	i=1	i=2	i=3
p(H _i)	0.40	0.35	0.25
p(E₁ H _i)	0.3	8.0	0.5
p(E ₂ H _i)	0.9	0.0	0.7
p(E ₃ H _i)	0.6	0.7	0.9

a. (5 puan) E3 kanıtı verildiğinde hipotezlerin sonsal olasılığını (posterior probability) hesaplayınız.

b. (5 puan) E1 ve E3 kanıtları verildiğinde hipotezlerin sonsal olasılığını (posterior probability) hesaplayınız.

5. (20 puan) Duvar gibi çeşitli engellerden kaçmak için köşelerinde sol, orta ve sağ (L, M ve R) olmak üzere 3 adet uzaklık algılayıcısı bulunan bir robotun belirli bir anda konumu şekildeki gibi verilmiştir:

Uzaklık algılayıcısından gelen değerler aşağıdaki giriş üyelik fonksiyonunu kullanılarak bulanıklaştırılıyor:

Sonrasında ise kural veritabanına göre dönme miktarının belirlenmesi için aşağıdaki çıkış üyelik fonksiyonu kullanılıyor:

Kural veritabanında ise aşağıdaki kuralların bulunduğu varsayılmaktadır.

IF L Çok yakın AND M Çok yakın THEN dönme sağa doğru ve Çok.
IF L Yakın AND M Çok Yakın THEN dönme sağa doğru ve Orta.

Algılayıcılardan gelen değerlerin L=45cm ve M=20cm olduğu durum için dönme miktarını *Mamdani* çıkarım yöntemi ve *clipping* kullanarak hesaplayın (aralık değeri 10⁰ alınabilir).

6. (10 puan) Bulanık mantık tabanlı geliştirilen bir sistemi iyileştirmek için kullanılacak tuning aşamalarını açıklayarak yazın.