Chapter 2

Algorithm

- Steps taken when solving a problem using a computer:
 - Problem definition and specification
 - Design a solution
 - Testing and documentation
 - Evaluation of the solution
- These steps could overlap
- Not all problems could be solved using a computer. Some difficult problems we could build a simple model and then test it and build on this model more and more sophisticated models.
- Design a solution id finding a suitable algorithm.

Algorithm:

Precise method used by the computer to solve a problem. The algorithm is composed of a finite set of steps each of which require one or more operations.

Characteristics of Algorithm

- 1. Definite → clear
- 2. Effective: It can be solved by the person using a pencil and paper within a limit time.

When studying Algorithm, we study:

- 1. How to design Algorithm
- 2. How to analysis Algorithm
- 3. Prove of correctness.
- 4. How to express Algorithm
- 5. Test and documentation

Writing structure programs:

- 1. Local and global variables are defined
- 2. Should specify input, output variables for function and procedure.
- 3. Should use indentation
- 4. Should be divided into well-defined procedures
- 5. Flow should be forward. Unless it is necessary to do otherwise or looping.
- 6. Documentation should be clear.

Min-Max application

Divide and conquer

```
Min-Max ( lower , upper ,minD, maxD)

If ( lower == upper )

If ( maxD < A[ Upper ] )

maxD = A[ upper ];

end if

if ( mind > A [ upper ] )

mind = A[ upper ];

end if

else

mid = ( lower + upper ) /2;

Min-Max ( lower, mid, minD, maxD);

Min-Max ( mid+1, upper, minD, maxD);

end if

end.
```

$$T(n) = \begin{cases} d & n = 1 \\ 2 T(n/2) + c & n > 1 \end{cases}$$

$$T(n) = 2 T(n/2) + c$$

$$T(n/2) = T(n/4) + c$$

$$T(n) = 2 [T(n/4) + c] + c$$

$$T(n) = 2^2 T(n/2^2) + 2c + c$$

$$T(n/4) = 2 T(n/8) + c$$

$$T(n) = 2^2 [2 T(n/8) + c) + 2c + c$$

$$T(n) = 2^3 T(n/2^3) + 2^2c + 2c + c$$

. . .

$$T(n) = 2^{k} T(n/2^{k}) + 2^{k-1} c + 2^{k-2} c + ... + c$$
$$= 2^{k} T(n/2^{k}) + c (2^{k-1} + 2^{k-2} + ... + 1)$$

$$(x^{i-1} + x^{i-2} + x^{i-3} + ... + 1)$$
 * $(x-1)/(x-1)$
 $(x^{i} + x^{i-1} + x^{i-2} + + x - x^{i-1} - x^{i-2} - - x - 1) / (x - 1)$
 $(x^{i} - 1) / (x - 1)$

$$T(n) = 2^k T(n/2^k) + c (2^k -1) / (2 - 1)$$

Let
$$2^k = n$$

$$T(n) = n T(1) + c (n-1)$$

$$T(n) = dn + cn - c$$

$$T(n) = O(n)$$

Dynamic Programming

Combines solutions to subproblems to obtain a final solution.

Approach taken:

- 1. Characterize the structure of optimal solution.
- 2. Recursively define the value of the optimal solution
- 3. Compute the value in the above fashion
- 4. Find the optimal solution

Multiplication of chain matrices

```
\begin{aligned} & \text{Multiply (A, B)} \\ & \text{if (columns(A) } \neq \text{rows(B))} \\ & \text{error;} \\ & \text{else} \\ & \text{for (i = 1; i <= rows(A); i++)} \\ & \text{for (j = 1; j <= columns(B); j++)} \\ & \text{c [i, j] = 0;} \\ & \text{for (k = 1; k <= columns(A); k++)} \\ & \text{c [i, j] = c [i, j] + A [i, k] * B [k, j]} \\ & \text{end for} \\ & \text{end for} \\ & \text{end for} \\ & \text{end if} \end{aligned}
```

Find the optimal order (least cost = least number of multiplication) to multiply these n matrices.

Cost
$$(A \times B) = p \times q \times r$$

Example:

$$A = 10 \times 100$$

$$B = 100 \times 5$$

$$C = 5 \times 50$$

A * B * C

- A*(B*C) =
 Cost (B*C) = 100*5*50 = 25000
 Cost (A*[BC]) = 10*100*50 = 50000
 Total cost = 25000 + 50000 = 75000
- (A*B)*C =
 Cost (A*B) = 10*100*5 = 5000
 Cost ([AB]*C) = 10*5*50 = 2500
 Total cost = 2500 + 5000 = 7500

($A_1 * A_2 * A_3 * ... * A_k$) ($A_{k+1} * A_{k+2} * ... * A_n$)

- Multiply A₁ * A₂ * A₃ * ... * A_k
- Multiply A_{k+1} * A_{k+2} * ... * A_n

Each solved optimally

What is k?

Optimality part $m[I, j] = least possible cost achievable for multiplying <math>A_{i}^* A_{i+1}^* \dots A_{j}^*$

Idea is

If
$$(i = j)$$
 $\rightarrow m[1, j] = 0$

If $(i < j)$ $\rightarrow m[i, j] = \min_{i \le k \le j} \{ m[i, k] + m[k+1, j] + p_{i-1} * p_k * p_j \}$

If $(i > j)$ $\rightarrow x$

$$(\ A_{i}\ *\ \underbrace{A_{i+1}\ *\ A_{i+2}\ *}_{p_{i-1}\ X\ p_{k}}\ \dots\ *\ A_{k})\ (\ A_{k+1}\ *\ A_{k+2}\ *}_{p_{k}\ X\ p_{j}}\ \dots\ *\ A_{j})$$

A * B * C * D * E * F

A = 4x2	B = 2x3	C = 3x1	D = 1x2	$F = 2x^2$	F = 2x3
\neg \neg \neg \land	D - 213	$O = O \wedge I$		L - L L	1 - 213

	Α	В	С	D	E	F
			В	D	D	D
Α	0	24	14	22	26	36
				D	D	D
В		0	6	10	14	22
					D	D
С			0	6	10	19
						F
D				0	4	10
E					0	12
F						0

[A(BC)][(DE)F]

Idea:

•
$$A * (B * C) = 8 + 6 = 14$$

Algorithm:

A_{4x2}		B_{2x3}		C _{3x1}		D_{1x2}		E_{2x2}	F_{2x3}
r =	4	2	3	1	2	2	3		

Example: Longest Common Subsequence Problem (LCS)

Given a string $x = \langle x_1, x_2, ..., x_n \rangle$

$$z = < z_1, z_2, \dots z_n >$$

z is a subsequence of **x** if

there is a strictly increasing sequence of k indices $< i_1, i_2, ..., i_n >$

$$1 \le i_1 < i_2 < \dots < i_k \dots \le n$$
 such that

$$Z = \langle x_{i1}, x_{i2}, ..., x_{ik} \rangle$$

Example:

Is **z** a subsequence of **x**?

Yes 5 indices are < 1, 4, 7, 8, 11 >

Given two string x and y, the longest common subsequence of x and y a longest string z such that z is a subsequence of x and a subsequence of y.

Example:

Given two sequences

$$x = \langle A B C \rangle$$

$$y = \langle B A C \rangle$$

$$z_1 = < A C >$$

$$z_2 = < B C >$$

idea:

let c [i, j] = length of longest common subsequence of x_i and y_i

$$c[i, 0] = 0$$

$$c[0,j] = 0$$

$$c[i, j] = ?$$

$$x = < x_1, \ x_2, \ \dots, \ x_i > \\ \hspace{2cm} , \ y = < y_1, \ y_2, \ \dots, \ y_j >$$

$$c [i, j] = \begin{cases} 0 & \text{if } (i = 0) \text{ OR } (j = 0) \\ c [i-1, j-1] + 1 & \text{if } x_i = y_j \\ max (c[i-1, j], c[i, j-1]) & \text{if } x_i \neq y_j \end{cases}$$

$$x = \langle A B C A D C \rangle$$

 $y = \langle M K B L A D \rangle$

if
$$x_i = y_j$$

$$i = 4, \quad j = 5$$

$$cost [3][4] = 1$$

$$cost [4][5] = cost[3][4] + 1 = 2$$

if
$$x_i \neq y_j$$

$$i = 5, j = 5$$
 $cost [5][5] =$
 $max (cost [4][5], cost[5][4])$
 $= max(2, 1) = 2$

Cost[4][5] = 2

Cost [5][4] = 1


```
Algorithm:

m = length (x);

n = length (y);
```

```
n = length(y);
for (i = 1; i \le m; i++)
     c[i][0] = 0;
for (j = 1; j \le n; j++)
     c[0][j] = 0;
for (i = 1; i \le m; i++)
     for (j = 1; j \le n; j++)
           if (x[i] == y[j])
                 c[i][j] = c[i-1][j-1]+1;
                 b[i][j]= '\\'\'
           else
                 if (x[i][j-1] > y[i-1][j])
                       c[i][j] = c[i][j-1];
                       b[i][j] = '←_';
                 else
                       c[i][j] = c[i-1][j];
                       end if
           end if
      end for
end for
```

```
print_LCS (b, x, i, j)
      if ((i == 0) \text{ or } (j == 0))
             return
      else
             if ( b[ i ][ j ] = '\( \)' \)
                    System.out.println(x[i]);
                    print_LCS ( b, x, i-1, j-1 );
             else
                    if ( b[ I ][ j ] = ' 1 ')
                           print_LCS ( b, x, i-1, j );
                    else
                           print_LCS ( b, x, i, j-1 );
                    end if
             end if
       end if
end.
```

 $x = \langle A B C B D A B \rangle$ $y = \langle B D C A B A \rangle$

	0	В	D	С	Α	В	Α
0	0	0	0	0	0	0	0
		†	†	†		←	
Α	0	0	0	0	1	1	1
			←	—	†		←
В	0	1	1	1	1	2	2
		†	Î		←	1	Î
С	0	1	1	2	2	2	2
			1	1	†		←
В	0	1	1	2	2	3	3
		†		†	†	†	1
D	0	1	2	2	2	3	3
		†	†	†		1	
Α	0	1	2	2	3	3	4
			1	†	†		1
В	0	1	2	2	3	4	4

$$z = \langle B C B A \rangle$$

Greedy Strategy

A **greedy algorithm** is any algorithm that follows the problem-solving heuristic of making the locally optimal choice at each stage. In many problems, a greedy strategy does not usually produce an optimal solution, but nonetheless a greedy heuristic may yield locally optimal solutions that approximate a globally optimal solution in a reasonable amount of time.

- Not always optimal solution
- It is a quick solution

Procedure Greedy selective activity

Job	Start	Finish
i	Si	fi
1	1	4
2	3	5
3	0	6
4	5	7
5	3	8
6	5	9
7	6	10
8	8	11
9	8	12
10	2	13
11	11	14

		1			4	4			8			11		
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14

Knapsack Problem

- 0 1 Knapsack: take all of them or nothing
- Fractional knapsack: We can take a part from any item

Example:

3 Items → 50 kg

<u>Item</u>	<u>kg</u>	<u>Price</u>
1	10	60 NIS
2	20	100 NIS
3	30	120 NIS

0 – 1 Knapsack

Weight = item 2 + item 3 = 20 + 30 = 50 kg

Profit = 100 + 120 = 220 NIS

Fractional Knapsack

<u>Item</u>	<u>kg</u>	<u>Price</u>	Price/kg
1	10	60 NIS	6 NIS
2	20	100 NIS	5 NIS
3	30	120 NIS	4 NIS

Weight = item 1 + item 2 + item 3 (10 kg) = 10 + 20 + 20 = 50 kg Profit = 60 + 100 + 80 = 240 NIS

The knapsack problem is a problem in combinatorial optimization: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items.

Weight: $w_1, w_2, ..., w_n$

Profit: p_1, p_2, \dots, p_n

Capacity: M

Find x1, x2, ..., xn

To maximizing $\sum_{i=1}^{n} x_i \cdot p_i$, $\sum_{i=1}^{n} x_i \cdot w_i \le M$

Dynamic Programming Approach

C [i][j] = Optimal rofit using only w_1, w_2, \ldots, w_j and knapsack capacity is i.

=
$$\max \{ c[i][j-1], p_i + c[i-w_i, j-1] \}$$

```
for ( i = 0; i <= m ; i++ )  c[i][1] = p[1] * (i/w[i]);  for ( j = 2; j <= n; j++ )  for (i = 1; i <= m; i++)  if ( i - w[j] >= 0 )  if (c[i][j-1] < p[j] + c[i-w[j], j-1])   c[i][j] = p[j] + c[i-w[j], j-1];  else  c[i][j] = c[i][j-1];  end if end for end for
```

w: 3 4 7 8 9

p: 4 5 10 11 13

m = 17

W	3	4	7	8	9
р	4	5	10	11	13
Item	1	2	3	4	5
0	0	0	0	0	0
1	0	0	0	0	0
2	0	0	0	0	0
3	4	4	4	4	4
4	4	5	5	5	5
5	4	5	5	5	5
6	8	8	8	8	8
7	8	9	10	10	10
8	8	10	10	11	11
9	12	12	12	12	13
10	12	13	14	14	14
11	12	14	15	15	15
12	16	16	16	16	16
13	16	16	18	18	18
14	16	17	19	19	19
15	20	17	20	21	21
16	20	21	22	22	23
17	20	21	23	23	24

Item 5 + Item 4

Weight = 9 + 8 = 17

Profit = 13 + 11 = 24