EXAMEN, ALGEBRĂ I, 3 FEBRUARIE 2021

Puteti folosi, fară demonstrație (dar enunțat!), orice rezultat din curs sau seminar. Timp de lucru 2 ore. 1 punct se acordă din oficiu. Succes!

Exercitiul 1: (a) Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 - 4x + 3$. Aratați că f nu este surjectiva si calculați $f^{-1}((1,3))$ si f((1,3)), unde (1,3) este intervalul deschis din \mathbb{R} . (1 punct)

(b) Pe mulţimea \mathbb{R} definim relaţia: $x \approx y \Leftrightarrow x^2 + 4y = y^2 + 4x$. Arataţi ca: \approx este o relaţie de echivalenţa pe \mathbb{R} , calculaţi clasele de echivalenţa, arataţi ca $\mathbb{R}/\approx \cong [-1, +\infty)$ si indicaţi doua sisteme de reprezentanţi ai relaţiei \approx . (1,5 puncte)

Exercitiul 2: Fie permutarea

$$\sigma = \left(\begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 3 & 4 & 5 & 2 & 7 & 9 & 1 & 10 & 11 & 12 & 6 & 13 & 8 \end{smallmatrix} \right) \in S_{13}$$

- (a) Descompuneți permutarea σ în produs de cicli disjunți, în produs de transpoziții și determinați signatura permutării σ . (1 punct)
- (b) Determinați ordinul permutării σ si calculați σ^{28} . (1 punct)
- (c) Găsiți soluțiile ecuației $x^2 = \sigma$ în grupul S_{13} . (0,5 puncte)

Exercitiul 3: Fie $G = \mathbb{Z}_2 \times \mathbb{Z}_4$ produsul direct al grupurilor ciclice $(\mathbb{Z}_2, +)$ si $(\mathbb{Z}_4, +)$.

- (a) Calculați ordinele elementelor grupului G. (0,5 puncte)
- (b) Arătați că grupul G nu este izomorf cu grupul (\mathbb{Z}_8 , +) si nici cu produsul direct de grupuri $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$. (1 punct)
- (c) Fie $H = \{(\hat{0}, \bar{0}), (\hat{0}, \bar{2})\}$. Arătați că H este subgrup normal in G si exista un izomorfism de grupuri $G/H \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. (1 punct)

Exercitiul 4: Fie R multimea tuturor matricilor de forma

$$R:=\{\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a,b,c \in \mathbb{C}\}$$

- (a) Aratați că R este un subinel in inelul matricilor $M_2(\mathbb{C})$ si calculați elementele nilpotente si elementele idempotente din inelul R. (1 punct)
- (b) Arataţi că $I := \{ \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} \mid x \in \mathbb{C} \}$ este un ideal bilateral in R si exista un izomorfism de inele $R/I \cong \mathbb{C} \times \mathbb{C}$. (1 punct)
- (c) Descrieți grupul elementelor inversabile din inelul R. (0,5 puncte)