Сравнения по модулю

Определение 1 Число a делится на натуральное b с остатком r, если a = bk + r, причем $0 \le r < b$.

Определение 2 Целые числа, разность которых делится на m, называются сравнимыми по модулю m. Запись: $a \equiv b \pmod{m}$.

Свойства сравнений

- $a \equiv b \pmod{m} \Leftrightarrow$ числа a и b дают одинаковые остатки по модулю m.
- $a \equiv b \pmod{m} \Rightarrow ka \equiv kb \pmod{m}$.
- $a \equiv b \pmod{m}$, $c \equiv d \pmod{m} \Rightarrow a \pm c \equiv b \pm d \pmod{m}$.
- $a \equiv b \pmod{m}$, $c \equiv d \pmod{m} \Rightarrow ac \equiv bd \pmod{m}$.
- $a \equiv b \pmod{m} \Rightarrow a^k \equiv b^k \pmod{m}$.
- $\boxed{1}$ Докажите, что число $1000 \cdot 1001 \cdot 1002 \cdot 1003 24$
 - (а) делится на 999;
 - (b) на 1004.
- [2] Известно, что a-2b делится на m и c-3d делится на m. Докажите, что ac-6bd делится на m.

Идея: Давайте посмотрим на остатки $1, a, a^2, a^3, \ldots$ при делении на p. Они в какой-то момент зациклятся (докажите это)

- 3 Найдите остаток от деления:
 - (a) 4^{2020} на 3;
 - (b) 7^{2021} на 8;
 - (c) 13^{555} на 9.
- $\boxed{4}$ Докажите, что $30^{99} + 61^{100}$ делится на 31.
- <u>[5]</u> Решите сравнения
 - (a) $5x \equiv 2 \pmod{3}$;
 - (b) $3x \equiv 2 \pmod{11}$;
 - (c) $6x \equiv 1 \pmod{13}$.
- $\boxed{6}$ Докажите, что число $5^{2021} + 28$ составное.
- $\boxed{7}$ Докажите, что число $9^{2021} + 7^{2020}$ делится на 10.

- 8 Пусть s(x) сумма цифр в десятичной записи числа x. Докажите, что
 - (a) $x \equiv s(x) \pmod{3}$;
 - (b) $x \equiv s(x) \pmod{9}$.
- [9] Какой остаток дает x + y при делении на 17, если
 - (a) $x 16y \equiv 2 \pmod{17}$;
 - (b) $3x \equiv 5 + 14y \pmod{17}$;
 - (c) $-10x \equiv 100 + 27y \pmod{17}$;
 - (d) $28x + 10 \equiv -11y \pmod{17}$;
 - (e) $34x 8 \equiv 14(y + x) \pmod{17}$;
 - (f) $1000x \equiv -1085y 90 \pmod{17}$?
- 10 Найдите наименьшее число, дающее следующие остатки: 1 при делении на 2, 2 при делении на 3, 3 при делении на 4, 4 при делении на 5, 5 при делении на 6.
- 11 Целые числа x,y и z таковы, что (x-y)(y-z)(z-x)=x+y+z. Докажите, что число x+y+z : 27.
- 12 Про натуральные числа a, b, c известно, что $a^2 + b^2 = c^2$. Докажите, что abc делится на 60.
- 13 Докажите, что если 2^k-1 делится на 11, то оно делится и на 31.
- 14 Докажите, что для любого натурального $n, 4^n + 15n 1 : 9$.
- [15] Докажите, что если a,b,c нечётные числа, то хотя бы одно из чисел ab-1,bc-1,ca-1 \vdots 4.
- 16 Докажите, что если при некоторых натуральных числах a и b сумма $a^2 + b^2 \vdots 7$, то она делится и на 49.
- $\boxed{17}$ Найдите остатки от деления числа 2^{2021} на 3,5,7,9,11,13,15,17.