EEM461 Optimizasyon Optimizasyona giriş

Dr. öğr. üyesi İşık İlber Sırmatel

T.C. Trakya Üniversitesi Mühendislik Fakültesi Elektrik - Elektronik Mühendisliği Bölümü Kontrol Anabilim Dalı

Alt Bölüm 1

Temel kavramlar

Optimizasyonun tanımı

kısıtlı seçenekler arasından en iyisini seçmek

Konular:

- Kısım I Modelleme (problemi kurmak)
- ► Kısım II Teori (yöntemlerin analizi)
- ► Kısım III Algoritmalar (problemi çözmek)

Niçin optimizasyon öğrenmeliyiz?

Optimizasyon yöntemleri çeşitli alanlarda çok farklı uygulamalarda kullanılmaktadır:

- ► Mühendislik: Teknik sistemlerin tasarımı, operasyonu, kontrolü
- ► **Bilim**: Kestirme; modellerin ölçülen veriye uydurulması; deney tasarımı
- ► **Ekonomi**: Finans; fiyatlandırma; lojistik, yatırım, üretim gibi etkinliklerde kaynak tahsisi/planlama
- ► Makina öğrenmesi: Model eğitimi
- **▶** ...

Mühendislik/matematik matrisi

hesaplama/ bilgisayar bilimi			uygulamalı matematik dalları					
			doğrusal cebir	olasılık ve istatistik	otomatik kontrol	optimizasyon	çizge kuramı	
		makina						
	ları n)	gıda						
	k dal Iı bilir	bilgisayar						
	ndisli Iama	inşaat						
	mühendislik dalları (uygulamalı bilim)	elektrik - elektronik						
		genetik ve biyo- mühendislik						

Optimizasyon problemi (standart form)

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ & \text{ba\"{gl}} & g(x) \leq 0 \\ & h(x) = 0 \end{array}$$

- $ightharpoonup x \in \mathbb{R}^n$ (optimizasyon değişkenleri vektörü)
- $lackbox{} f:\mathbb{R}^n
 ightarrow\mathbb{R}$ (amaç fonksiyonu)
- $ightharpoonup g: \mathbb{R}^n o \mathbb{R}^m$ (eşitsizlik kısıtları fonksiyonu)
- $ightharpoonup h: \mathbb{R}^n
 ightarrow \mathbb{R}^p$ (eşitlik kısıtları fonksiyonu)

Optimizasyon problemlerinin unsurları

- ▶ Amaç fonksiyonu f(x) optimizasyonun amacını bir niceliği minimize/maksimize etmek olarak ifade eder.
- ▶ Optimizasyon değişkenleri vektörü $x \in \mathbb{R}^n$ optimizasyon ile sayısal değerini bulmak istediğimiz değişkenlerden oluşan vektördür.
- ▶ Olanaklı küme Ω , x vektörünün elemanı olmak üzere kısıtlandığı kümeyi belirtir. Bu küme x'in sağlaması gereken kısıtları belirler ve genellikle $g(x) \leq 0$ (eşitsizlik kısıtları) ve h(x) = 0 (eşitlik kısıtları) ile ifade edilir.

$$\Omega = \{ x \in \mathbb{R}^n \, | \, f(x) \le 0, \, h(x) = 0 \}$$

Örnek

eşitsizlik kısıtlı, bir boyutlu optimizasyon problemi

Örnek

eşitlik ve eşitsizlik kısıtlı, iki boyutlu optimizasyon problemi

Alt Bölüm 2

Önemli problem çeşitleri

Doğrusal program (LP)

(not: program = optimizasyon problemi)

Karesel program (QP)

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & \frac{1}{2} x^T Q x + c^T x \\ & \text{bağlı} & A x \leq b \\ & E x = e \end{array}$$

Dışbükey program (convex program)

$\min_{x \in \mathbb{R}^n}$	f(x)	
bağlı	$x \in \Omega$	

(f dışbükey fonksiyon, Ω dışbükey küme)

Doğrusal-olmayan program (NLP)

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ \text{bağli} & g(x) \leq 0 \\ & h(x) = 0 \end{array}$$

(f, g ve h türevlenebilir)

Karma-tamsayılı program (MIP)

Uygulama örnekleri

Alt Bölüm 3

Üretim planlama (LP)

 $\begin{array}{ll} \text{maksimize} & \text{kazanç} \\ & \text{bağlı} & \text{üretim} \leq \text{hammadde} \\ & \text{sipariş} \leq \text{üretim} \end{array}$

Stigler tayın problemi¹ (LP)

 $egin{array}{ll} {\sf minimize} & {\sf maliyet} \ {\sf malzeme} \ {\sf ba\"{g}li} & {\sf kalori} \leq {\sf malzeme} \ {\sf protein} \leq {\sf malzeme} \ \end{array}$

George J. Stigler (1911-1991)

¹George J Stigler. *Journal of Farm Economics* 27.2 (1945), pp. 303–314.

Markowitz portföy problemi² (QCQP)

maksimize kazanç

bağlı risk \leq risk limiti

Harry Markowitz (1927-2023)

²Harry Markowitz. *The Journal of Finance* 7.1 (1952), pp. 77–91.

Optimal güç akışı (QP)

minimize üretim	maliyet
bağlı	$\ddot{u}retim = talep$
	$iletim \leq limitler$

Birim taahhüt problemi (MIQP)

 $\begin{array}{ll} \underset{\text{operasyon}}{\text{minimize}} & \text{maliyet} \\ & \text{bağlı} & \text{operasyon süresince:} \\ & \text{operasyon} \leq \text{güç limitleri} \\ & \text{talep} \leq \text{operasyon} \end{array}$

Devre tasarımı (GP)

 $\begin{array}{ll} \mbox{minimize} & \mbox{zaman gecikmesi} \\ & \mbox{bağlı} & \mbox{elemanlar} \leq \mbox{güç limiti} \\ & \mbox{elemanlar} \leq \mbox{alan limiti} \end{array}$

Lojistik planlama (LP)

 $\begin{array}{ll} \underset{\text{nakliye}}{\text{minimize}} & \text{maliyet} \\ & \text{bağlı} & \text{nakliye} \leq \text{üretim kapasitesi} \\ & \text{talep} \leq \text{nakliye} \end{array}$

Otonom sürüş (QP, NLP)

Roket indirme (SOCP)


```
minimize
           yakıt tüketimi
  girişler
          seyir süresince:
    bağlı
              yörünge ↔ roket dinamiği
              girişler < giriş limitleri
              yörünge ∈ güvenli zarf
           son konum = hedef
```

Sera iklim kontrolü (QP, NLP)

minimize maliyet bağlı operasyon süresince: yörünge \leftrightarrow sera dinamiği girişler \leq giriş limitleri yörünge \in iklim limitleri

Kimyasal proses kontrol (NLP)

maksimize girişler	kazanç
bağlı	operasyon süresince:
	yörünge \leftrightarrow proses dinamiği
	girişler \leq giriş limitleri

Genetik devre tasarımı (MIDO)

 $\begin{array}{ll} \underset{\text{elemanlar}}{\text{minimize}} & \|\text{istenen yanıt} - \text{y\"{o}r\"{u}nge}\|^2 \\ & \text{ba\"{g}lı} & \text{yanıt s\"{u}resince:} \\ & \text{y\"{o}r\"{u}nge} \leftrightarrow \text{protein seviyesi dinami\"{g}i} \\ & \text{elemanlar} \leq \text{transkripsiyon limitleri} \end{array}$

Alt Bölüm 4

Optimizasyon yöntemlerinin sınıflandırılması

Optimizasyon prosedürü

Optimizasyon problemi çeşitleri

Kaynak: https://neos-guide.org/guide/types/

Optimizasyon algoritması çeşitleri

kesin (exact) algoritmalar (sınırlı sürede çözümü bulma garantisi vardır)

- ► birinci-derece yöntemler
 - gradyan iniş
 - momentum
- ► ikinci-derece yöntemler
 - Newton yöntemi
 - yarı-Newton yöntemleri
- ► kısıtlı optimizasyon
 - aktif küme yöntemi
 - ardışık karesel optimizasyon
 - iç nokta yöntemleri

▶ ...

buluşsal (heuristic) algoritmalar

(sınırlı sürede çözümü bulma garantisi yoktur)

- ► tabu arama
- ► genetik algoritmalar
- ▶ benzetilmiş tavlama
- parçacık sürü optimizasyonu
- ▶ ...

Sürekli/ayrık optimizasyon

sürekli program

$\overline{\underset{x \in \mathbb{R}^n}{minimize}}$	f(x)
bağlı	$g(x) \le 0$
	h(x) = 0

x reel vektör

ayrık program

x reel, z tamsayılı vektör

Kısıtsız/kısıtlı optimizasyon

kısıtsız program

$$\begin{array}{cc} \underset{x \in \mathbb{R}^n}{\mathsf{minimize}} & f(x) \end{array}$$

kısıtlı program

$$\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ & \text{ba\"{gli}} & g(x) \leq 0 \\ & h(x) = 0 \end{array}$$

Belirsizlik içermeyen/içeren optimizasyon

deterministik (belirsizlik içermeyen) program

$$\begin{array}{ll} \min_{x \in \mathbb{R}^n} & f(x,p) \\ \mathsf{baf{gli}} & x \in \Omega_p, \, p = p_0 \end{array}$$

dayanıklı (robust) program

$$\min_{x \in \mathbb{R}^n} \quad \max_{p \in P} f(x,p)$$
 bağlı $x \in \Omega_p$

stokastik program

Dışbükey/dışbükey-olmayan optimizasyon dışbükey program

$\underset{x \in \mathbb{R}^n}{\mathsf{minimize}}$ f(x) $x \in \Omega$ bağlı

f dışbükey fonksiyon ve Ω dışbükey küme

dışbükey-olmayan program

$$\begin{array}{c|c} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ \text{bağl} & x \in \Omega \\ \end{array}$$

dışbükey olmayan fonks. veya Ω dışbükey olmayan küme

Alt Bölüm 5

Kaynaklar

Optimizasyonla ilgili ders kitapları (1/2)

- Optimization Models and Applications. Laurent El Ghaoui
- ► Convex Optimization. Stephen Boyd, Lieven Vandenberghe (kitabın internet sitesinde ek materyaller bulunabilir)
- Convex Optimization Theory. Dimitri P. Bertsekas (kitabın internet sitesinde ek materyaller ve çözümlü örnekler bulunabilir)
- ► Lecture Notes on Numerical Optimization. Moritz M. Diehl
- Convex Optimization and Euclidean Distance Geometry. Jon Dattorro
- ► *Algorithms for Optimization*. Mykel J. Kochenderfer, Tim A. Wheeler

Optimizasyonla ilgili ders kitapları (2/2)

- Lecture Notes on Optimization. Pravin Varaiya
- Convex Optimization: Algorithms and Complexity. Sébastien Bubeck
- ► Convex Optimization Algorithms. Dimitri P. Bertsekas
- ► Introduction to Nonlinear Optimization. Amir Beck
- Numerical Optimization. Jorge Nocedal, Stephen J. Wright
- Model Building in Mathematical Programming. H. Paul Williams
- ► Optimization in Operations Research. Ronald L. Rardin

Uygulamalı matematikle ilgili ders kitapları

- ► Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares. Stephen Boyd, Lieven Vandenberghe
- ► The Matrix Cookbook. Kaare Brandt Petersen, Michael Syskind Pedersen
- ► *Linear Algebra*. Jim Hefferon
- ► Information Theory, Inference, and Learning Algorithms.

 David J.C. MacKay
- ► Mathematics for Machine Learning. Marc P. Deisenroth, A. Aldo Faisal, Cheng Soon Ong
- ► Algorithms for Decision Making. Mykel J. Kochenderfer, Tim A. Wheeler, Kyle H. Wray

Benzer içerikli dersler

- ► Convex Optimization I&II. Stephen Boyd, Stanford
- ► Introduction to Convex Optimization. Stephen Boyd, Pablo Parrilo, MIT
- Optimization Models in Engineering. Gireeja Ranade, UC Berkeley
- Convex Optimization. Somayeh Sojoudi, Laurent El Ghaoui, UC Berkeley
- ► Introduction to Nonlinear Optimization. Amir Beck, Tel Aviv University
- Numerical Optimization. Moritz Diehl, University of Freiburg
- Convex Analysis and Optimization. Dimitri Bertsekas, MIT
- ► Nonlinear Optimization. Pablo Parrilo, MIT

Programlama araçları

Scilab

Optim. modelleme sistemleri/paketleri

- ▶ açık kaynak (open source)
 - YALMIP (MATLAB®/GNU Octave) (kullanımı kolay, çok sayıda optimizasyon çözücüsünü destekliyor)
 - CVX (MATLAB®) (kullanımı kolay, dışbükey analiz kuralları yaklaşımı)
 - CasADi (MATLAB®/GNU Octave/Python) (sayısal optimal kontrol; algoritmik türev alma özelliği)
 - GEKKO (Python) (karma-tamsayılı/diferansiyel-cebirsel denklemler için optimizasyon; makina ögrenmesi)
 - ...
- ► ticari (*proprietary*)
 - GAMS®
 - AMPL®
 - AIMMS Development®
 - MOSEK®
 - ...