Prosimy wypełnić poniższe pola DRUKOWANYMI literami:

Imię i nazwisko		
E-mail		
Nr telefonu Klasa		
Test kwalifikacyjny na Warsztaty Matematyczne 2022		
Klasy trzecie i czwarte		
Test składa się z uporządkowanych w kolejności <u>losowej</u> 30 zestawów po 3 pytania. Na pytania odpowiada się "tak" lub "nie" poprzez wpisanie odpowiednio " T " bądź " N " w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja odpowiedzi "tak" i "nie". W zestawach zaznaczonych gwiazdką (gwiazdka wygląda tak: *) prócz udzielenia odpowiedzi należy je uzasadnić. Test trwa 180 minut.		
Zasady punktacji		
• Za pojedynczą poprawną odpowiedź: 1 punkt.		
• Za pojedynczą niepoprawną odpowiedź: -1 punkt.		
• Za brak odpowiedzi: 0 punktów.		
• Za zadanie zrobione w całości dobrze dodatkowe 2 punkty.		
• Za poprawne uzasadnienie pojedynczej odpowiedzi: 1 punkt.		
\bullet Za niepoprawne uzasadnienie pojedynczej odpowiedzi bądź brak takowego: 0 pkt.		
Powodzenia!		
Uwaga! Przez zbiór liczb naturalnych w zadaniach rozumiemy zbiór liczb całkowitych większych lub równych 0.		
1. Czy istnieje 100 kolejnych liczb naturalnych wśród których:		
Dokładnie 12 jest liczbami Fibbonacciego?		
Dokładnie 7 jest liczbami pierwszymi?		

 $\hfill \square$ Dokładnie 7 jest potęgami dwójki o całkowitym wykładniku?

2*. Wielomian W(x) ma współczynniki rzeczywiste oraz W(8) = 8, W(-4) = -8. Wiadomo, że istnieje wielomian P(x) o współczynnikach rzeczywistych taki, że $W(x) = x \cdot P(x^2)$.

 \square Na pewno W(0) = 0.

 \square Na pewno W(8) + W(-8) = 0.

3*. Niech A = (0,0), B = (1,0), C = (2,0), D = (3,0), E = (0,1). Czy

4. Rozpatrzmy ciąg $a, a+b, a+2b, a+3b, \dots$

 \square Dla $a=720,\,b=7$ są w nim co najmniej 4 liczby pierwsze.

 \square Dla $a=39,\,b=57$ jest w nim liczba pierwsza.

 \square Dla $a=8953,\,b=22$ jest w nim co najmniej 5 liczb pierwszych.

5.	Niech $d(n)$ oznacza sumę wszystkich dodatnich dzielników liczby naturalnej n i $D(n) = d(1) + d(2) + \ldots + d(n)$.
6.	W klasie w matexie są 23 osoby, w tym 2 dziewczyny, 10 uczestników OM i 20 graczy brydża (grupy są niezależne od siebie). Najbardziej prawdopodobne jest, że
	dwójka najlepszych graczy w brydża w klasie jest dziewczynami.
	obie dziewczyny startują w OM i wszyscy uczestnicy OM w tej klasie grają w brydża.
	pewne dwie osoby obchodzą urodziny tego samego dnia (przyjmij że rok ma 365 dni, lata przestępne nie istnieją i każdy dzień w roku ma równe prawdopodobieństwo bycia dniem urodzin).
7*.	Niech $e_1 = 2$ i dla $n > 0$ zachodzi $e_{n+1} = e_1 \cdot \ldots \cdot e_n + 1$.
	\square Ostatnią cyfrą e_{2022} jest 1.
	\Box e_{100} ma więcej niż 2^{100} cyfr.
8.	Wielomian $P(x) = 3x^5 + x^4 + 7x^3 - 2x - 1$ posiada pierwiastek:
	☐ całkowity.
	wymierny.
	rzeczywisty.
9.	Liczba 1000000000601 jest:
	kwadratem liczby całkowitej.
	sześcianem liczby całkowitej.
	☐ liczbą pierwszą.

10*.	Równanie $x^2+11y^2=kz^2$ ma nieskończenie wiele rozwiązań w liczbach całkowitych dla:
11.	Dany jest sześciokąt wypukły $ABCDEF$, w którym $\angle EFA = \angle FAB = \angle ABC = \angle BCD = 120^\circ$ i $\angle CFE = \angle FCD$.
	\square $ABCDEF$ jest foremny. \square $AF = BC$. \square Na $ABCF$ można opisać okrąg.
12.	Martyna i Oliwia grają w grę. Ruch polega na zamianie liczby całkowitej n na dowolną liczbę całkowitą z przedziału $[\frac{n}{4},\frac{n}{2}]$. Przegrywa ta, która nie może wykonać ruchu. Martyna zaczyna.
	$\hfill \square$ Dla $n=100$ Martyna ma strategię wygrywającą.
	Wśród liczb [1,1000] jest dokładnie 620 dających strategię wygrywającą dla Martyny.
	Dla $n = 10^6$ Martyna nie ma strategii wygrywającej.
13.	Mamy dany trójkąt równoboczny ABC o polu 7. Punkty M i N leżą odpowiednio na bokach AB i AC , że $AN=BM$. Punkt O jest przecięciem BN i CM , a pole BOC jest równe 2.
	\square Kąt BOC jest równy 120°.
	Stosunek $\frac{MB}{AB}$ może być równy $\frac{1}{3}$.
	\square Kąt AOB jest równy 150° .

14.	Rozważmy ciąg rekurencyjny o wzorze $a_{n+3}=a_{n+2}\cdot a_{n+1}+a_n$ oraz $a_1=a_2=a_3=1.$
	\square Istnieje taki indeks m , że $a_m = 1000$.
	☐ Istnieje nieskończenie wiele liczb w tym ciągu podzielnych przez 3.
	$\hfill\Box$ Dla każdej liczby całkowitej n istnieje w tym ciągu liczba będąca wielokrotnością $n.$
15*.	Mamy stosy kamieni. Dwóch graczy na przemian zabiera dowolną liczbę kamieni z najliczniejszego stosu. Wygrywa ten gracz, po którego ruchu stół zostanie pusty. Czy w podanych układach stosów gracz pierwszy może zawsze wygrać, niezależnie od ruchów przeciwnika?
	\square 7, 7, 3, 2, 2, 1
	\Box 6, 6, 6, 6, 6
	3, 3, 3, 2, 2, 2, 1, 1, 1
16.	Dane są trzy okręgi o środkach O_1,O_2,O_3 i promieniach odpowiednio 3, 4 i 21, takie że każde dwa z nich są zewnętrznie styczne. W trójkąt $O_1O_2O_3$ wpisano okrag ω o środku O .
	\square Promień ω wynosi 3.
	\square Długość odcinka OO_2 jest mniejsza niż $\frac{9}{2}.$
	\square Pole trójkąta $O_1O_2O_3$ jest większe od 81.
17.	Pokolorujmy wszystkie liczby całkowite dodatnie na 2 kolory. Czy:
	zawsze istnieje jednokolorowy niestały ciąg arytmetyczny długości 3?
	istnieje takie kolorowanie, że suma dwóch dowolnych różnych jednokolorowych liczb nie jest potęgą dwójki?
	Zawsze istnieja takie parami różne jednokolorowe liczby x, y, z że $x + y = z$?

18.	Dany jest turniej - każdy zawodnik rozgrywa dokładnie jeden mecz z każdym innym i nie ma remisów. Cyklem k -elementowym nazwiemy taki ciąg parami różnych zawodników, że pierwszy wygrywa z drugim, drugi z trzecim itd., aż na końcu k -ty wygrywa z pierwszym. Zawsze prawdą jest, że:
	$\hfill \Box$ jeśli każdy zawodnik zwyciężył z k innymi to istnieje cykl co najmniej $(k+2)$ elementowy.
	jeśli każdy zawodnik z kimś wygrał i nikt nie wygrał z każdym to zawsze istnieje cykl.
	\Box jeśli w turnieju złożonym z $n\geqslant 3$ zawodników istnieje cykl $n\text{-elementowy}$ to istnieje także 3-elementowy.
19.	Które z następujących zdań są równoważne zdaniu: "Jeżeli p jest prawdziwe, wtedy q jest fałszywe"?
	\square Jeżeli q jest fałszywe, to p jest prawdziwe.
	\square Jeżeli q jest prawdziwe, to p jest fałszywe.
	$\hfill \square$ Albo oba p i q są fałszywe, albo dokładnie jedno z nich jest fałszywe.
20.	Konstruujemy ciąg a_n , w którym $0 \le a_1, a_2 < 5$ oraz dla $n \ge 1$ $a_{n+2} = a_{n+1} \cdot a_n$ (mod 10). Czy w takim ciągu może wystąpić cyfra:
	☐ 5? ☐ 7? ☐ 9?
21.	Zdefiniujmy ciąg cyfr w taki sposób, że na n -tym miejscu ciągu znajduje się pierwsza cyfra rozwinięcia dziesiętnego liczby 2^n . Czyli początek ciągu to $1, 2, 4, 8, 1, 3, 6, \ldots$ Ciąg ten składa się z 9 różnych cyfr. Będziemy rozważać częstotliwość występowania każdej z nich (czyli stosunek wystąpień danej cyfry do określonego miejsca w ciągu do łącznej liczby cyfr do tego miejsca)
	Dla dostatecznie długiego ciągu wszystkie cyfry będą występować równie często.
	Cyfra 2 będzie występować częściej niż cyfra 3.
	Cyfra 1 będzie występować ponad dwukrotnie częściej niż cyfra 9.
22.	Czy liczba, której przedstawienie w systemie binarnym to 1011000011 jest:
	podzielna przez 3?
	dzielnikiem 10110000111 (system binarny)?
	w systemie czwórkowym postaci 23003?

23.	Jeżeli funkcja $f: \mathbb{R} \to \mathbb{R}$, spełnia dla każdej liczby rzeczywistej $f(x) = f(f(x)) + x$, to:
	\Box f jest różnowartościowa
	\Box istnieje $x > 0$, taki że $f(f(x)) = x$
24.	Ciąg Fibonacciego to taki ciąg, że $F_0 = 0$, $F_1 = 1$ oraz $F_{n+2} = F_{n+1} + F_n$ dla n całkowitych nieujemnych. Niech $f(n)$ będzie najmniejszą taką liczbę naturalną, że n dzieli $F_{f(n)}$ oraz $F_{f(n)+1} - 1$, lub równe 0 jeśli nie ma takiej liczby. Wówczas:
	$\hfill \square$ istnieje nieskończenie wiele takich $n,$ że $f(n)=0$
25*.	Jaś napotkał tablicę z liczbami naturalnymi od 1 do 20 i postanowił zagrać w grę. W każdym ruchu ściera dwie liczby z tablicy i rysuje trójkąt prostokątny o przyprostokątnych tych długości, po czym dopisuje do liczb na tablicy długość wysokości opuszczonej na przeciwprostokątną. Które z tych nierówności może spełniać otrzymana na końcu liczba?
26.	Na tablicy napisanych jest 97 liczb postaci $\frac{49}{k}$ dla $1 \le k \le 97$. W każdym ruchu pewne dwie liczby a i b zosają zmazane i zastąpione przez liczbę $2ab-a-b+1$. Jaka liczba może pozostać na tablicy po 96 krokach?
	$\frac{1}{2}$
	\square 2

27.	Pod domem Ani zatrzymują się autobusy linii 1 i 2, pierwszy kursuje co 10 minut zaczynając od 10:05 i jeździ do sklepu z rogalikami o nadzieniu truskawkowym, a drugi co 20 minut od 12:00 i jeździ do sklepu z rogalikami o nadzieniu śliwkowym. Ania codziennie wychodzi na przystanek o losowej porze między 15:00 i 16:00, a następnie wsiada w pierwszy autobus który przyjedzie. Jakie jest prawdopodobieństwo, że Ania będzie czekała nie dłużej niż 5 minut oraz pojedzie do sklepu z rogalikami o nadzieniu truskawkowym?
	$ \begin{array}{ccc} & \frac{1}{4} \\ & \frac{1}{2} \\ & \frac{3}{4} \end{array} $
28.	O jaki kąt zgodnie ze wskazówkami zegara nalezy obrócić parabolę o równaniu $y=x^2$, żeby miała miejsce zerowe dla $x=2\sqrt{3}$.
	☐ 60° ☐ 45° ☐ 30°
29.	Ile liczb całkowitych z przedziału $[1,2022]$ można przedstawić jako różnicę kwadratów dwóch liczb całkowitych.
	 □ więcej niż 1011 □ więcej niż 1516 □ więcej niż 2000
30*.	Liczba $\sqrt{13 + 2\sqrt{12}} - \sqrt{3(7 + \sqrt{48})}$ jest:
	□ ujemna. □ całkowita. □ niewymierna.