Lecture 6.2 Bayesian Network Fundamentals

Machine Learning Ivan Smetannikov

09.04.2021

Lecture plan

- Semantics and Factorization
- Reasoning Patterns
- Flow of Probabilistic influence

Lecture plan

- Semantics and Factorization
- Reasoning Patterns
- Flow of Probabilistic influence

Uncertainty

- Partial knowledge of state of the world
- Noisy observations
- Phenomena not covered by our model
- Inherent stochasticity

• Grade

- Grade
- Course Difficulty
- Student Intelligence
- Student SAT
- Reference Letter

- Grade
- Course Difficulty
- Student Intelligence
- Student SAT
- Reference Letter

- Grade
- Course Difficulty
- Student Intelligence
- Student SAT
- Reference Letter

CPD= Condition, Probably, Distribution

Chain Rule for Bayesian Networks

P(D,I,G,S,L)=P(D)P(I)P(G|I,D) P(S|I) P(L|G) Distribution defined as a product

Bayesian Network

- A Bayesian network is
 - A direct acyclic graph (DAG) G whose nodes represent the
 - random variables $(X_1,...,X_n)$
 - —For each node X_i a CPD P $(X_i|Par_G(X_i))$

Bayesian Network

- A Bayesian network is
 - A direct acyclic graph (DAG) G whose nodes represent the
 - random variables $(X_1,...,X_n)$
 - —For each nose X_i a CPD $P(X_i|Par_G(X_i))$
- The BN represents a joint distribution via the chain rule for Bayesian networks $P(X_1,...,X_n) = \prod P(X_i|Par_G(X_i))$

BN Is a Legal Distribution: P≥0

- P is a product of CPDs
- CPDs are non-negative

BN Is a Legal Distribution: ∑ P = 1

$$\sum_{\substack{D,I,G,S,L \\ D,I,G,S,L \\ E}} P(D,I,G,S,L) = \sum_{\substack{D,I,G,S,L \\ D,I,G,S,L \\ E}} P(D)P(I)P(G|I,D)P(S|I) \sum_{\substack{Chain rule \\ CL \mid G \\ E}} P(D)P(I)P(G|I,D)P(S|I)$$

$$= \sum_{\substack{D,I,G,S \\ D,I,G,S \\ E}} P(D)P(I)P(G|I,D) \sum_{\substack{C \\ C \mid I \\ E}} P(S|I) = \sum_{\substack{D,I,G \\ E}} P(D)P(I) \sum_{\substack{C \\ G \mid I \\ E}} P(G|I,D)$$

$$= \cdots$$

P Factorizes over G

- Let G be a graph over $X_1,...,X_n$.
- P factorizes over G if

$$P(X_1,...,X_n) = \prod_{i} P(X_i|Par_G(X_i))$$

Lecture plan

- Semantics and Factorization
- Reasoning Patterns
- Flow of Probabilistic influence

The Student Network

Causal Reasoning

Causal Reasoning

X ₁	<i>X</i> ₂	Y	Prob.
0	0	0	0.25
0	1	1	0.25
1	0	1	0.25
1	1	1	0.25

X ₁	<i>X</i> ₂	Y	Prob.
0	0	0	0.25
0	1	1	0.25
1	0	1	0.25
1	1	1	0.25

X ₁	X_2	Y	Prob.	
Ū	U	Ū	0.23	
0	1	1	0.25	0.33
1	0	1	0.25	0.33
1	1	1	0.25	0.33

$$P(X_1 = 1) = \frac{2}{3}$$
 $P(X_2 = 1) = \frac{2}{3}$

Explaining away:

X ₁	X_2	Y	Prob.	
Ū	Ū		0.23	_
Ĵ	<u>.</u>	÷	0.25	0.33
1	0	1	0.25	0.33 0.5
1	1	1	0.25	0.33 0.5

$$P(X_1 = 1) = \frac{2}{3}$$
 $P(X_2 = 1) = \frac{2}{3}$

Condition $X_1 = 1$: $P(X_2 = 1 | X_1 = 1) = 0.5$

 What happens to the posterior probability that the class is hard?

Lecture plan

- Semantics and Factorization
- Reasoning Patterns
- Flow of Probabilistic influence

- $X \rightarrow Y$
- $X \leftarrow Y$

•
$$X \rightarrow Y$$

• $X \leftarrow Y$
• $X \rightarrow W \rightarrow Y$

•
$$X \rightarrow Y$$
• $X \leftarrow Y$
• $X \rightarrow W \rightarrow Y$
• $X \leftarrow W \leftarrow Y$

•
$$X \rightarrow Y$$

• $X \leftarrow Y$
• $X \rightarrow W \rightarrow Y$
• $X \leftarrow W \leftarrow Y$
• $X \leftarrow W \rightarrow Y$
• $X \rightarrow W \leftarrow Y$
• $X \rightarrow W \leftarrow Y$
• $X \rightarrow W \leftarrow Y$

•
$$X \rightarrow Y$$

• $X \leftarrow Y$
• $X \rightarrow W \rightarrow Y$
• $X \leftarrow W \leftarrow Y$
• $X \leftarrow W \rightarrow Y$
• $X \rightarrow W \leftarrow Y$
• $X \rightarrow W \leftarrow Y$
• $X \rightarrow W \leftarrow Y$

Active Trails

A trail $X_1 - \cdots - X_n$ is active if it has no v-structures $X_{i-1} \to X_i \leftarrow X_{i+1}$

- $X \rightarrow Y$
- $X \leftarrow Y$

•
$$X \rightarrow Y$$

• $X \leftarrow Y$
• $X \rightarrow W \rightarrow Y$
• $X \leftarrow W \leftarrow Y$
• $X \leftarrow W \rightarrow Y$
• $X \rightarrow W \leftarrow Y$

S - I - G - D allows influence to flow when:

I observed?

S - I - G - D allows influence to flow when:

- *I* observed?
- I not observed, nothing else?

S-I-G-D allows influence

to flow when:

- *I* observed?
- I not observed, nothing else?
- I not observed
 G is observed?

S - I - G - D allows influence

to flow when:

- I observed?
- *I* not observed, nothing else?
- I not observed *G* is observed?

Active Trails

A trail $X_1 - \cdots - X_k$ is active if given Z if:

- for any v-structure $X_{i-1} \to X_i \leftarrow X_{i+1}$ we have that X_i or one of its descendants $\in Z$
- no other X_i is in Z

not in v-structure