LABORATÓRIO VI - PARÂMETROS CC DOS TRANSISTORES FET's

Componentes: Rychardson Ribeiro de Souza e Larissa Kelmer de Menezes Silva

I. INTRODUÇÃO

Nesse sentido, o presente relatório objetiva abordar sobre o conteúdo discutido na disciplina que motiva este projeto, "DCA0213.0 – Eletrônica – Laboratório", sob orientação do professor Dr. Andres Ortiz Salazar. O foco, aqui, é fazer um estudo aplicado funcionamento de transistores JFET's. O método utilizado para tanto será o software de simulação gráfica LTspice, da empresa Analog Devices, que permite a simulação е análise de circuitos analógicos.

ABORDAGEM TEÓRICA

A. Transistor JFET

B.

O transistor de efeito de campo de junção, possui três ou JFET, semicondutores terminais. е controlado por uma tensão de polarização reversa no terminal gate. O transistor JFET é geralmente de dois tipos, pois é usado no canal do tipo n ou do tipo p conforme o funcionamento. O JFET é o principal elemento para a dos amplificadores de construção pequenos sinais por ter característica de alta impedância de entrada, boa resposta em frequência e de simples e comum polarização.

III. EXPERIMENTOS

Nesta prática laboratorial, utilizamos o Software LTSpice para auxiliar nas simulações. Para o primeiro experimento:

- a) Determine I_{DSS} , V_p e resistência de condução r_o visto entre Dreno e Source.
- b) Reproduzir as curvas I_{D} vs V_{GS} e I_{D} vs V_{DS} para diferentes tensões de Gate.

Para o segundo experimento, teremos uma tensão V_{DD} de 18V e um sinal de entrada senoidal Vi de 10mV de pico e frequência de 100Hz a 10kHZ, onde precisamos determinar os resistores R_1 , R_2 , R_G e R_S por meio da análise do circuito e também:

- a) As tensões VGS, VDS e VS são -1.5V, 10V e 3V, respectivamente. Sendo a correntes de R2 igual a 0,1mA.
- b) Projete os capacitores C1, C2 e C3 para trabalhar apropriadamente em pequeno sinal.
- c) Determinem os parâmetros do amplificador em pequeno sinal. (Zin, Zo e Av).

IV. RESULTADOS

Para a parte I:

Figura 1 - Circuito fornecido para elaboração da parte I do experimento

Figura 2 - Circuito montado no LTspice

Pelo datasheet do transistor JFET (2N3819) de canal n, temos os parâmetros I_{dss} = 20 mA, V_p = 15V e R_o = 150 Ω . No simulador, como podemos verificar nas figuras 3 e 4, V_P = 26V e I_{DSS} = 11.3mA

Para o cálculo da resistência de condução será usada a equação
$$R_o = V_{\text{GS}}/I_{\text{D}} \eqno(1)$$

Pelo datasheet, temos que V_{GS} = 7.5V e para encontrarmos o valor de I_{D} , usaremos a equação de Shockley:

$$I_D = I_{DSS} (1 - V_{GS} / V_P)^2$$
 (2)

 $I_D = 11.3 \text{mA} (1 - (-7.5 \text{V}) / 26 \text{V})^2$ $I_D = 5.72 \text{mA}$

Substituindo na equação de R_0 (1), temos que:

 $R_0 = 7.5V / 5.72mA$ $R_0 = 1.31 k\Omega$

Figura 3 - Vd simulado no LTspice

Figura 4 - I_D x V_{GS}

Para a figura 5, utilizou-se uma análise DC na fonte V_2 (V_{DD}), variando de 0 a 25V.

Figura 5 - I_D x V_{DS}

Para a figura 6, utilizou-se uma análise DC na fonte V_2 (V_{DD}), variando de 0 a 25V e também na fonte V1 (V_{GG}), variando de 0 a 3V.

Figura 6 - $I_D x V_{DS} x V_{GS}$

$V_{GG} = V_{GS}$	I _D	V_{DS}
-3	30.6pA	25V
-2.6	220.04uA	24.56V
-2.3	671.96uA	23.66V
-2.0	1.37mA	22.27V
-1.5	3.05mA	18.91V
-1.3	3.9mA	17.21V
-1.1	4.84mA	15.31V
-1.0	5.35mA	14.29V
-0.8	6.45mA	12.11V
-0.6	7.63mA	9.75V
-0.3	9.56mA	5.87V
-0.15	10.6mA	3.8V
0.0	11.28mA	2.44V

Tabela 1 - Variação I_D e V_{DS} para diferentes tensões V_{GG}

Para a parte II do experimento, também iniciou-se pela montagem do

circuito, tendo como os dados fornecidos para as tensões V_{GS} , V_{DS} e V_{S} são -1.5V, 10V e 3V, respectivamente e a corrente de R_2 igual a 0.1mA, assim como a tensão V_{DD} será 18V. Em sala, foi fornecido pelo professor um valor de 10k Ω para R_L .

Figura 7 - Circuito fornecido para elaboração da parte II do experimento

Figura 8 - Circuito montado no LTspice

Para projetar o valor dos resistores, primeiramente acharemos o valor para V_G percorrendo a malha de saída, pela fórmula

$$V_G - V_{GS} - V_S = 0$$
 (3)
 $V_G - (-1.5) - 3.0 = 0$
 $V_G = 1.5V$

Desta forma, poderemos achar o valor de R_2 utilizando $R_2 = V_G / I_{R2}$ (4)

$$R_2 = 1.5V / 0.1mA = 15k\Omega$$

Com isso, poderemos usar a fórmula por divisor de tensão, que será: $V_G = R_2 V_{DD} / (R_1 + R_2)$ (5) e assim achar o valor para R_1

$$\begin{split} &V_G = R_2 V_{DD} / (R_1 + R_2) \\ &1.5 V = (15 k\Omega) (18 V) / (R_1 + 15 k\Omega) \\ &R_1 = \left[(15 k\Omega) (18 V) / (1.5 V) \right] - 15 k\Omega = \\ &165 k\Omega \end{split}$$

Para encontrarmos o R_D (R_3) e R_S (R_4), primeiro iremos usar a equação de Shockley (2).

Olhando os valores no datasheet para para I_{DSS} , V_{GS} e V_P , e substituindo em (2):

$$I_D = 10mA [1 - (-1.5mA) / (-3V)]^2 = 2.5mA$$

Já temos a corrente I_D , agora precisamos encontrar o valor para a tensão V_D , pela equação

$$V_D - V_{DS} - V_S = 0$$
 (6)

Como V_{DS} e V_S já são dados fornecidos na questão, basta substituirmos em (6):

$$V_D - (10V) - (3V) = 0$$

 $V_D = 13V$

Como já possuímos os valores de V_{DD} , I_D e V_D , é possível acharmos o valor para a resistência R_D (R_3), com a seguinte relação:

$$V_{DD} - I_{D}R_{D} - V_{D} = 0$$
 (7)
 $18V - (2.5mA)R_{D} - 13V = 0$
 $R_{D} = (-5V) / (-2.5mA) = 2k\Omega$

Para encontrar o valor de R_S (R_4), usaremos:

$$R_S = V_S / I_D$$
 (8)
 $R_S = 3V / 2.5 \text{mA} = 1.2 \text{k}\Omega$

Em posse dos valores de todos os resistores, podemos projetar os valores para os capacitores C_1 , C_2 e C_3 . Inicialmente, devemos achar os valores de impedância de cada capacitor.

Impedância para C₁:

$$C_1 = R_1 // R_2 = 165k\Omega // 15k\Omega$$
 (9)
 $C_1 = (165k\Omega)(15k\Omega) / (165k\Omega + 15k\Omega)$
 $C_1 = 13.75k\Omega$

Impedância para C₂:

$$C_2 = R_L + R_D = 10k\Omega + 2k\Omega$$

$$C_2 = 12k\Omega$$
(10)

Impedância para C₃:

$$C_3 = 1.2k\Omega$$

Com as impedâncias calculadas, será possível achar os valores para C1, C2 e C3, como seus valores serão projetados a fim de trabalhar em pequeno sinal, usaremos a menor frequência do intervalo fornecido no experimento, f = 100Hz, em seguida usaremos as fórmulas:

 C_1 ≥ [10 / (2 π f)(13.75kΩ)] = 1.1574 uF = 1.16uF

 C_2 ≥ [10 / (2 π f)(12kΩ)] = 1.3262 uF = 1.33 uF

 C_3 ≥ [10 / (2 π f)(1.2kΩ)] = 13.2629 uF = 13.26 uF

Adequando para os valores comerciais, iremos utilizar os valores C_1 = 2.2uF, C_2 = 2.2uF e C_3 = 15uF

Após esses cálculos, nosso circuito ficará da seguinte forma:

Figura 9 - Circuito com valores projetados para a parte II do experimento

Por último, precisamos definir os parâmetros pedidos do amplificador em

pequeno sinal (Z_{in} , Z_{o} e A_{v}), para isso, utilizaremos as seguintes fórmulas:

$$Z_{i} = R_{1} // R_{2}$$
 (11)
 $Z_{i} = (165k\Omega)(15k\Omega) / (165k\Omega + 15k\Omega)$
 $Z_{i} = 13.75k\Omega$

$$Z_{o} = R_{D} // R_{L}$$
 (12)
 $Z_{o} = 2k // 10k = 1.67k\Omega$

$$g_m = (2I_{DSS} / |V_P|)(1-V_{GS}/V_P)$$
 (13)
 $g_m = [2(10mA) / |-3V|]*[1-(-1.5mA)/(-3V)]$
 $g_m = [(20mA)/3V]*(1-0.5) = 3.33 mS$

$$A_V = -g_m (R_D // R_L) = -3.33 (2k // 10k)$$

 $A_V = -5.55$

V. COMENTÁRIOS E CONCLUSÕES

Durante as simulações, utilizando os valores encontrados, ilustrados na figura 9, a fim de se comparar os resultados teóricos obtidos e os resultados simulados, constatou-se que os valores eram próximos, o que é esperado, já que as mínimas diferenças se dão em questões de arredondamentos. Com a confecção deste relatório, constatou-se a utilidade dos transistores JFET's no controle da corrente entre dreno e fonte através da aplicação de uma tensão no Gate, já que a corrente está diretamente relacionada com a tensão.

REFERÊNCIAS

[1] BOYLESTAD, Roberto. Dispositivos eletronicos e teroria de circuitos ^ . PHB, Rio de Janeiro, 1999
[2] 2N3819Datasheet - NXP
Semiconductors. Disponível em alldatasheet.com/datasheet-pdf/pdf/15075
/PHILIPS/2N3819.html