硕士研究生课程《智能信息处理》

语义网基础理论

研究生教材

宋炜,张铭.语义网简明教程

高等教育出版社,2004

大连海事大学信息科学技术学院

第1章

语义网导论

万维网

语义网

相关的技术

WWW(World Wide Web, 万维网)

万维网的局限(P2)

缺乏语义 (应用HTML) 网页制作

服务器 HTTP 客户机

网页发布 海量信息 缺乏元数据

网页浏览 (关键词检索) 检索效果差

万维网根本缺陷

信息有格式描述信息无语义描述

不能语义匹配

只能语法匹配

关键字检索

效果差

HTML: 信息的显示格式描述(P5)

```
<html>
  <head>
    <title> 红楼梦 </title>
  </head>
                       标记 元数据
  <body>
    <h1> 书名:《红楼梦》</h1>
    <h2> 作者: 曹雪芹 </h2>
    <h3>描述:中国四大古典名著之一</h3>
  </body>
</html>
```

XML: 信息的语义描述 (P5)

```
< ? XML VERSION="1.0"
        ENCODING="GB2312"
        standalone="no" ? >
```

<! DOCTYPE Book SYSTEM http://db.pku.edu.cn/Book.dtd >

```
<书>
```

```
<标题>《红楼梦》</标题> 元数据<br/><作者> 曹雪芹 </作者> </ri></ri></ri></ri>
```

</书>

(一篇文献) 信息资源 - 描述

(作者/时间/主题) 关键信息点

> 元数据 (metadata)

内容元数据 管理元数据 参考元数据 载体元数据

信息的内容 信息的历史 信息的链接 HTML 信息的外观

元数据的重要作用 (P4)

- ■描述信息资源
- ■增强各种资源之间的可交换性
- ■提供资源的可访问性
- ■沟通不同的数据格式

HTML网页

格式显式。语义隐式

人可理解格式人可理解语义

机器可理解格式 机器不理解语义 | 信息处理自动化×

```
<html>
  <head>
    <title> 红楼梦 </title>
  </head>
  <body>
    <h1> 书名:《红楼梦》</h1>
    <h2> 作者: 曹雪芹 </h2>
    <h3>描述:中国四大古典名著之一</h3>
  </body>
</html>
```


语义网的目标 (P2)

为网上信息提供具有计算机可理解的语义, 满足Agent对异构、分布信息的有效检索和访问, 实现网上信息资源在语义层上的全方位互联, 实现网上信息的更高层、基于知识的智能应用。

语义网设计原则(P10)

- ■所有资源都能用URI来标识
- ■资源与链接可以有类型
- 部分/片断/不完整信息是容许的
- ■信息不必是绝对真的
- ■能支持、反映信息的变化与演化
- ■最小设计原则

第七层 信任

第六层 证明

第五层 逻辑

第四层 本体

第三层 RDF

第二层 XML

第一层 Unicode/URI

信息(可信的) 信息(基于本体的推理结果) 信息(被本体中的关系所联系) 信息(被本体中的概念所标记) 信息(作为属性用于描述资源) 信息(被元数据所标记) 信息(统一字符/统一定位) 信息

超文本标记语言

(HyperText Markup Language, HTML)

- ■当前主导的Web标记语言
- ■用户不能定义自己的标记
- ■缺乏对内容的描述
- ■结构不规范

可扩展的标记语言

(Extensible Markup Language, XML)

- ■信息内容与信息显示分离
- ■信息显示使用CSS或XSL ■
- ■可扩展的,即用户可自定义标记
- 文档结构: 文档头+文档体+文档尾
- ■支持以统一标准定义自描述数据
- ■支持异构数据的交换
- ■支持多源数据的集成
- ■是简单的、开放的

层叠样式单 CSS

(cascading stylesheet)

定义浏览器显示文本的格式

可扩展样式单语言 XSL

(extensible stylesheet language)

实现创建目录、编辑索引等

资源描述框架

(resource description framework, RDF)

原理

资源 ──属性 ──属性值

方式 三元组

{属性,资源,属性值}

图形化

资源 属性 属性值

XML

< rdf: Description about = "资源" > <属性> 属性(</ھ/>

</rdf: Description >

举例: RDF描述资源 http://e.pku.edu.cn/

{ 创建者, [http://e.pku.edu.cn/], "北大网络实验室" }

```
创建者
                                   北大网络实验室
    http://e.pku.edu.cn/
< ? xml version = "1.0"? >
< rdf: RDF xmlns: rdf = "http://www.w3.org/
                          1999/02/22-rdf-syntax-ns#"
           xmlns: s = "http://description.org/schema/">
   < rdf: Description about = "http://e.pku.edu.cn" >
       <s: Creator> 北大网络实验室 </s: Creator>
   </rdf: Description >
</rdf: RDF>
```


本体(Ontology)

本体定义

本体构造准则

本体语言OWL

本体的定义 (Gruber, 1993)

An ontology is an explicit specification of a conceptualization.

本体是概念模型的一种显式规范说明。

本体是共享的概念化的、明确的、形式化的规范说明。

本体的作用(P17)

- ■领域知识显式化、明确化
- ■领域知识与操作性知识分离
- ■领域知识的一致理解

构造本体的准则 (Gruber, 1995)

- 1. 清晰性 (Clarity)
- 2. 完全性 (Completeness)
- 3. 一致性 (Coherence)
- 4. 可扩展性 (Extendibility)
- 5. 最小承诺 (Minimal ontological commitment) 最小编码偏好 (Minimal encoding bias)

本体语言应具有的特点(P18)

- 语法和语义丰富
- 可描述半结构化的知识
- 使用共有的、一致的字典
- 提供一种领域知识

Web Ontology Language

W3C语义网行动计划

RDF核心工作组

RDF标准

万维网本体工作组

OWL标准

