CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

Jinho Kang

Suny Korea, CS Major

Office Hours:
Monday (7pm - 9pm), Tuesday (7pm - 10pm),
Wednesday (7pm - 10pm)

CSE 215 : Undergraduate TA

Gyujeong Park

- SUNY Korea, AMS major
- Office hours:

Monday(12 pm - 1pm, 5pm - 6:30 pm), **Tue**sday(3:30 pm - 5 pm), **Wednesday**(12 pm - 1pm, 3 pm - 5 pm), **Thursday**(3:30 pm - 5 pm)

• Email: gyujeong.park@stonybrook.edu

Previous lecture

- Truth table
- How to use the truth table to determine equivalence

Midterm Exam I (March 10, 2021, 08:30 am - 09:55 am) CSE 215: Foundations of Computer Science

Problem 1. [5 points]

Construct a truth table for the following statement form: $(p \land (q \lor r)) \to (p \land r)$.

Problem 2. [5 points]

Check the logical equivalence of $((p \land q) \to r)$ and $((p \to r) \lor (q \to r))$.

Today's plan

Equivalence laws

Commutative Law

Laws	Formula	Formula
Commutative laws	$p \wedge q \equiv q \wedge p$	$p \lor q \equiv q \lor p$

Give some equivalent statement forms for (p/\q) ∨ (s\/t)

Associative Law

Associative laws

$$(p \land q) \land r \equiv p \land (q \land r)$$

$$(p \land q) \land r \equiv p \land (q \land r) \qquad (p \lor q) \lor r \equiv p \lor (q \lor r)$$

Think about an equivalent forms for (p/\q) ∨ (s\/t)

Distributive Law

Distributive laws
$$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$
 $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

- A bit like a * (b + c) = a * b + a * c
- Think about an equivalent forms for (p/\q) ∨ (s\/t)

Laws with "true" and "false"

Identity laws	$p \wedge \mathbf{t} \equiv p$	$p \lor \mathbf{c} \equiv p$
Negation laws	$p \lor \sim p \equiv \mathbf{t}$	$p \land \sim p \equiv \mathbf{c}$
Uni. bound laws	$p \lor \mathbf{t} \equiv \mathbf{t}$	$p \wedge \mathbf{c} \equiv \mathbf{c}$

Double-negation Law

Double neg. law

$$\sim (\sim p) \equiv p$$

Idempotent Law

Idempotent laws $p \wedge p \equiv p$

$$p \wedge p \equiv p$$

$$p \lor p \equiv p$$

De Morgen Law

De Morgan's laws $\sim (p \land q) \equiv \sim p \lor \sim q$ $\sim (p \lor q) \equiv \sim p \land \sim q$

- p = student A is from Korea
- q = student B is from Korea
- p ∧ q = Both student A and B are from Korea
- \sim (p \land q) = Either A is not from Korea, or B is not from Korea
- p V q = student A or student B is from Korea
- \sim (p \vee q) = ____

Absorption Law

Absorption laws $p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$

Equivalence laws

Laws	Formula	Formula
Commutative laws	$p \wedge q \equiv q \wedge p$	$p \vee q \equiv q \vee p$
Associative laws	$(p \land q) \land r \equiv p \land (q \land r)$	$(p \vee q) \vee r \equiv p \vee (q \vee r)$
Distributive laws	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
Identity laws	$p \wedge \mathbf{t} \equiv p$	$p \lor \mathbf{c} \equiv p$
Negation laws	$p \lor \sim p \equiv \mathbf{t}$	$p \wedge \sim p \equiv \mathbf{c}$
Double neg. law	$\sim (\sim p) \equiv p$	
Idempotent laws	$p \wedge p \equiv p$	$p\vee p\equiv p$
Uni. bound laws	$p \lor \mathbf{t} \equiv \mathbf{t}$	$p \wedge \mathbf{c} \equiv \mathbf{c}$
De Morgan's laws	$\sim (p \land q) \equiv \sim p \lor \sim q$	$\sim (p \lor q) \equiv \sim p \land \sim q$
Absorption laws	$p \vee (p \wedge q) \equiv p$	$p \land (p \lor q) \equiv p$
Negations	$\sim \mathbf{t} \equiv \mathbf{c}$	$\sim \mathbf{c} \equiv \mathbf{t}$

Exercise

Problem 3. [5 points]

Mention whether the following statements are true or false. Reasons are not needed.

- (a) [1 point] $p \lor \sim p \equiv \mathbf{c}$
- (b) [1 point] $p \lor (p \land q) \equiv p \land (p \lor q)$
- (c) [1 point] $\mathbf{c} \equiv p \vee \mathbf{t}$

Ntation: c means contradiction, or False t means True

2021-Final

Cont.

- (c) [1 point] $\mathbf{c} \equiv p \vee \mathbf{t}$
- (d) [1 point] $p \wedge p \equiv p \vee p$
- (e) [1 point] $p \wedge \mathbf{c} \equiv \sim \mathbf{t}$

Exercise

Problem 2. [5 points]

Is conditional operator \rightarrow an associative operator? That is, is $(p \rightarrow q) \rightarrow r$ logically equivalent to $p \rightarrow (q \rightarrow r)$? Prove your answer.

A solution for #2

Problem 2. [5 points]

Is conditional operator \rightarrow an associative operator? That is, is $(p \rightarrow q) \rightarrow r$ logically equivalent to $p \rightarrow (q \rightarrow r)$? Prove your answer.

- $(p->q)->r = (\sim p \lor q)->r = \sim (\sim p \lor q) \lor r = (p \land \sim q) \lor r$
- $p \rightarrow (q \rightarrow r) = p \lor (q \rightarrow r)$
- To show the two differ, consider r=false, ~q=false, p = false
- Alternatively, we could use a truth table