Examenul de bacalaureat național 2016 Proba E. c)

Matematică *M_şt-nat*

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 8

Filiera teoretică, profilul real, specializarea științe ale naturii

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$z^2 = (1-i)^2 = 1 - 2i + i^2 =$	2p
	=1-2i-1=-2i	3 p
2.	f(0) = 2016	2p
	$(g \circ f)(0) = g(f(0)) = g(2016) = 0$	3 p
3.	$x^2 - 3x = x - 4 \Leftrightarrow x^2 - 4x + 4 = 0$	3 p
	x=2	2p
4.	Multimea M are 100 de elemente, deci sunt 100 de cazuri posibile	1p
	În mulțimea M sunt 10 pătrate perfecte, deci sunt 10 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{100} = \frac{10}{100} = \frac{1}{100}$	2
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{10}{100} = \frac{1}{10}$	2p
5.	Panta unei drepte paralele cu dreapta d este egală cu 3	2p
	Ecuația dreptei care trece prin punctul A și este paralelă cu dreapta d este $y = 3x + 1$	3 p
6.	$\mathcal{A}_{\Delta ABC} = \frac{6 \cdot 4 \cdot \sin \frac{\pi}{6}}{2} = \frac{6 \cdot 4 \cdot \frac{1}{2}}{2} =$	
	$4 + 100 = \frac{6}{6} = \frac{0.4 \cdot 5}{2} =$	3 p
	2 2 2	
	= 6	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} -1 & -1 \\ 2 & -2 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} -1 & -1 \\ 2 & -2 \end{vmatrix} =$	2p
	=2-(-2)=4	3 p
b)	$A(1+m)+A(1-m) = \begin{pmatrix} 1+m-1 & -1 \\ 2 & 1+m-2 \end{pmatrix} + \begin{pmatrix} 1-m-1 & -1 \\ 2 & 1-m-2 \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 4 & -2 \end{pmatrix} =$	3p
	$=2\begin{pmatrix} 0 & -1 \\ 2 & -1 \end{pmatrix} = 2A(1)$, pentru orice număr real m	2 p
c)	$\det(A(m)) = \begin{vmatrix} m-1 & -1 \\ 2 & m-2 \end{vmatrix} = m^2 - 3m + 4$	2 p
	Pentru orice număr real m , $m^2 - 3m + 4 \neq 0$, deci matricea $A(m)$ este inversabilă	3 p
2.a)	x * y = -3xy + 9x + 9y - 27 + 3 =	2p
	=-3x(y-3)+9(y-3)+3=-3(x-3)(y-3)+3, pentru orice numere reale x şi y	3 p
b)	(x*y)*z = (-3(x-3)(y-3)+3)*z = 9(x-3)(y-3)(z-3)+3	2p
	x*(y*z) = x*(-3(y-3)(z-3)+3) = 9(x-3)(y-3)(z-3)+3=(x*y)*z, pentru orice numere reale x , y și z , deci legea de compoziție "*" este asociativă	3 p

c)	$(x*x)*x = 9(x-3)^3 + 3$	2p
	$9(x-3)^3 + 3 = 12 \Leftrightarrow (x-3)^3 = 1 \Leftrightarrow x = 4$	3 p

SUBIECTUL al III-lea (30 de puncte)

1.a)	$f'(x) = 3x^2 - \frac{3}{x} =$	3p
	$f'(x) = 3x^{2} - \frac{3}{x} =$ $= \frac{3x^{3} - 3}{x} = \frac{3(x^{3} - 1)}{x}, \ x \in (0, +\infty)$	2p
b)	$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} (x^3 - 3\ln x) = +\infty$	2p
	Dreapta de ecuație $x = 0$ este asimptotă verticală la graficul funcției f	3 p
c)	$f'(x) = 0 \Leftrightarrow x = 1$	1p
	$x \in (0,1] \Rightarrow f'(x) \le 0$, deci f este descrescătoare pe $(0,1]$	1p
	$x \in [1, +\infty) \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[1, +\infty)$	1p
	Cum $f(1) = 1$, obținem $f(x) \ge 1$, pentru orice $x \in (0, +\infty)$	2p
2.a)	$\int_{1}^{2} (x^{2} + 3x + 3) f(x) dx = \int_{1}^{2} (2x + 3) dx = (x^{2} + 3x) \Big _{1}^{2} =$	3р
	=10-4=6	2p
b)	$\mathcal{A} = \int_{0}^{3} f(x) dx = \int_{0}^{3} \frac{2x+3}{x^2+3x+3} dx = \ln(x^2+3x+3) \Big _{0}^{3} =$	3p
	$= \ln 21 - \ln 3 = \ln 7$	2p
c)	$\int_{-1}^{0} f'(x) f(x) dx = \frac{1}{2} f^{2}(x) \Big _{-1}^{0} =$	3р
	$= \frac{1}{2} (f^{2}(0) - f^{2}(-1)) = \frac{1}{2} (1 - 1) = 0$	2p