

APEX DYNAMICS, INC.

性能

減速比"	1)	į	5	7					
齒輪模數		2							
齒輪齒數		33	37	33	37				
額定輸出力矩 T _{2N}	Nm	16	55	13	30				
最大加速力矩 T _{2B}	Nm	24	247.5 195						
急停力矩 T _{2NOT}	Nm	49	95	39	90				
最大驅動力 F _{2T}	N	6913	6172	5447	4863				
空載力矩	Nm	0.7							
背隙 ⁽²⁾	arcmin	≦ 3							
扭轉剛性	Nm/arcmin	22							
額定輸入轉速 n _{1N}	rpm	3,600							
最大輸入轉速 n _{1B}	rpm	6,000							
最大驅動速度	V _{Max} m/s	4.4	3.1	4.9	3.5				
使用壽命(3)	hr		20,	000					
使用溫度	°C	-10° C~ 90° C							
潤滑		合成潤滑油脂							
安裝方向		任意方向							
噪音值 ⁽⁴⁾	dB(A)	≦ 59							
效率 り	%	≧ 97%							
慣量	kg·cm²		4.	52					

訂購代碼

- (1) 減速比 (i = N_{in} / N_{out})
- (2) 背隙是在受力 2% 的額定輸出力矩 T_{2N} 下取得
- (3) 不建議連續運轉應用
- (4) 此數據在無負載狀態,以 3000 轉量測7 比減速機取得
- (5) 馬達連接板詳細規格請見尺寸資料

APEX DYNAMICS, INC.

40763台中市西屯區科園三路10號 Tel:886-4-24650219 | Fax:886-4-24650118 sales@apexdyna.com | http://www.apexdyna.com

APEX-2019-10-L24 Series-1.0TC-TWN

傳動機構尺寸

齒輪

精度等級 DIN4 / 合金鋼 齒厚公差:e24 左旋斜齒 滲碳淬火及齒面研磨

模數	Z ⁽¹⁾	X ⁽²⁾	da ⁽³⁾	d ⁽⁴⁾	dw ⁽⁵⁾	L ⁽⁶⁾	Α
2	33	0.393	75.599	70.028	71.599	220.000	57.799
4	37	0.421	84.200	78.517	80.200	246.667	62.100

(1) 齒數 (2) 齒型修正係數 (3) 齒頂圓直徑 (4) 節圓直徑 (5) 工作節圓直徑 (6) 節圓長度 $L = \pi \times d$

齒條尺寸

精度等級 6 / 碳鋼 齒厚公差:-22~0 um 右旋斜齒

(r	Υ	1	r	Υ	1)

模數	Pt (7)	LI	L2	齒數	В	Н	ho	f	a	_	沉頭 孔數	h	d1	d2	t	a1	11	d3	fp ⁽⁸⁾	Fp ⁽⁹⁾	外觀	訂購代碼
2	6.66668	500	8.5	75	24	24	22	2	62.5	125	4	8	7	11	7	31.7	436.6	5.7	0.008	0.029		0206R050C10
2	6.66668	1,000	8.5	150	24	24	22	2	62.5	125	8	8	7	11	7	31.7	936.6	5.7	0.008	0.034		0206R100C10
2	6.66668	1246.7	8.5	187	24	24	22	2	62.5	125	10	8	7	11	7	31.7	1183.3	5.7	0.008	0.034	(10)	0206R125C10
2	6.66668	1,500	8.5	225	24	24	22	2	62.5	125	12	8	7	П	7	31.7	1436.6	5.7	0.008	0.034	(10)	0206R150C10
2	6.66668	1746.7	8.5	262	24	24	22	2	62.5	125	14	8	7	П	7	31.7	1683.3	5.7	0.009	0.034		0206R175C10
2	6.66668	2000	8.5	300	24	24	22	2	62.5	125	16	8	7	11	7	31.7	1936.6	5.7	0.009	0.038		0206R200C10
2	6.66668	500	8.5	75	24	24	22	2	62.5	125	4	8	7	11	7	31.7	436.6	5.7	0.008	0.029	(11)	026MR050C10
2	6.66668	1000	8.5	150	24	24	22	2	62.5	125	8	8	7	11	7	31.7	936.6	5.7	0.008	0.034	(11)	026MR100C10
2	6.66668	500	8.5	75	24	24	22	2	62.5	125	4	8	7	11	7	31.7	436.6	5.7	0.008	0.029	(12)	026CR050C10
2	6.66668	1000	8.5	150	24	24	22	2	62.5	125	8	8	7	П	7	31.7	936.6	5.7	0.008	0.034	(12)	026CR100C10

- (7) 端面齒距 Pt = 模數 x π / cos(19 $^\circ$ 31'42") (8) fp = 單節距誤差 (9) Fp = 總節距誤差 (10) 齒面高週波硬化研磨,三面研磨
- (11) 齒面高週波硬化研磨,三面銑削 (12) 齒面研磨,三面銑削

齒輪與齒條的齒隙值(13)

模數	齒隙值【mm】
2	最大值 0.082
	最小值 0.038

(13) 於理論中心距下

安裝多隻齒條之最大總節距誤差計算

最大節距誤差 (E) = $[N_R^{(14)} \times F_p] + [N_I^{(15)} \times D_p^{(16)}]$

- (14) 齒條總數量
- (15) 齒條連接數量
- (16) 齒條安裝規總節距誤差,模數 2 為 0.013 mm

範例: 需求長度 6000 mm

方案一: 使用 3 隻 2000 mm 齒條, F_p= 0.038 mm, D_p= 0.013 mm

 $E = [3 \times 0.038] + [2 \times 0.013] = 0.14 \text{ mm} = 140 \mu\text{m}$

方案二:使用6隻1000 mm 齒條, F_p=0.034 mm, D_p=0.013 mm

 $E = [6 \times 0.034] + [5 \times 0.013] = 0.269 \text{ mm} = 269 \text{ }\mu\text{m}$

Selection of the optimum gear box

Recommended (for S5 Cycle Operation)

The general design is given for

$$\frac{J_L}{I^2} \le 4 \times J_m$$

The optimal design is given for

$$\frac{J_L}{I_{:2}} \cong J_m$$

J_L Load Inertia

J_m Motor Inertia

1. ED =
$$\frac{t_d^+ t_c^- + t_d^-}{t_{cycle}}$$
 x 100%, $t_{work}^- = t_d^+ t_c^- + t_d^-$

Index : a. Acceleration, c. Constant,
d. Deceleration, p. Pause (Eq.1)

$$\textbf{2.} \ \textbf{i} \cong \frac{\textbf{n}_{m}}{\textbf{n}_{work}}$$

n_m Output Speed of the Motor

3.
$$T_{2m} = 3\sqrt{\frac{n_{2a} \times t_a \times T_{2a}^3 + n_{2c} \times t_c \times T_{2c}^3 + n_{2d} \times t_d \times T_{2d}}{n_{2a} \times t_d^4 + n_{2c} \times t_c + n_{2d} \times t_d}}$$
(Eq.3)

4.
$$T_{2max} = T_{mB} x i x K_s x \eta$$

where K_s is

K _s	No. of Cycles / hr
1.0	0 ~ 1,000
1.1	1,000 ~ 1,500
1.3	1,500 ~ 2,000
1.6	2.000 ~ 3,000
1.8	3.000 ~ 5,000

 $\rm T_{\rm mB}$ Max. Output Torque of the Motor

$$\eta$$
 Efficency of the Gearbox (Eq.4)

5.
$$n_{2a} = n_{2d} = \frac{1}{2} \times n_{2c}$$

$$n_{2m} = \frac{n_{2a} \times t_a + n_{2c} \times t_c + n_{2d} \times t_d}{t_a^{\dagger} t_c + t_d}$$

$$n_{2N} = \frac{n_{1N}}{i}$$
(Eq.5)

6.
$$F_{2rm} = 3\sqrt{\frac{n_{2a} \times t_a \times F_{2ra}^3 + n_{2c} \times t_c \times F_{2rc}^3 + n_{2d} \times t_d \times F_{2rd}^3}{n_{2a} \times t_d^4 n_{2c} \times t_c + n_{2d} \times t_d}}$$

$$F_{2am} = 3 \sqrt{\frac{n_{2a} \times t_a \times F_{2aa}^3 + n_{2c} \times t_c \times F_{2ac}^3 + n_{2d} \times t_d \times F_{2ad}}{n_{2a} \times t_d^4 n_{2c} \times t_c + n_{2d} \times t_d}}$$

(Eq.6)