ECUACIONES NO LINEALES (Primera parte)

ANÁLISIS NUMÉRICO/MÉTODOS MATEMÁTICOS Y NUMÉRICOS

(75.12/95.04/95.13)

CURSO TARELA

PROBLEMA:

Hallar la raíz de $f(x) = \frac{x^2}{4} - sen(x)$ en un intervalo de partida válido, con un error absoluto de 0,02 por los métodos:

- a. Bisección
- b. Regula Falsi
- c. Punto Fijo

Calcular orden de convergencia para cada uno.

FUNCIÓN:

BISECCIÓN

Pasos a seguir:

- 1. Definir el intervalo $[a_0, b_0]$.
- 2. Calcular $f(a_0)$ y $f(b_0)$, verificando que $f(a_0) * f(b_0) < 0$.
- 3. Calcular $m_1 = \frac{a_0 + b_0}{2}$.
- 4. Calcular $f(m_1)$.
- 5. Si $S[f(m_1)] = S[f(a_0)]$, entonces $a_1 \to m_1$. Caso contrario, $b_1 \to m_1$
- 6. Calcular cota de error absoluto: $\Delta_1 = |m_1 m_0| = \frac{b_0 a_0}{2}$
- 7. Repetir a partir de '2' hasta cumplir que $\Delta_{k+1} < 0.02$

BISECCIÓN

¿Puedo determinar la cantidad de pasos que necesito para hallar la raíz de la función con la tolerancia deseada?

$$\frac{b_0 - a_0}{2^{k+1}} < TOL \qquad \Rightarrow \quad K + 1 > ln\left(\frac{b_0 - a_0}{TOL}\right)$$

$$n = 4$$

BISECCIÓN

k	a _k	b _x	f(a _k)	f(b _k)	$\mathbf{m}_{\mathbf{k+1}}$	f(m _{k+1})	Δ_{k+1}
0	1,50000	2,00000	-0,43499	0,09070	1,75000	-0,21836	0,25000
1	1,75000	2,00000	-0,21836	0,09070	1,87500	-0,07518	0,12500
2	1,87500	2,00000	-0,07518	0,09070	1,93750	0,00496	0,06250
3	1,87500	1,93750	-0,07518	0,00496	1,90625	-0,03581	0,03125
4	1,90625	1,93750	-0,03581	0,00496	1,92188	-0,01560	0,01563

Raíz: $x = 1,92 \pm 0,02$

ORDEN DE CONVERGENCIA:

$$\lim_{k \to \infty} \frac{\varepsilon_{k+1}}{\varepsilon_k^P} = \lambda$$

$$\frac{\Delta_{k+1}}{\Delta_k^{P}} = \lambda = \frac{\Delta_k}{\Delta_{k-1}^{P}}$$

$$\Rightarrow \ln \Delta_{k+1} - P * \ln \Delta_k = \ln \Delta_k - P * \ln \Delta_{k-1}$$

$$P = \frac{\ln\left(\frac{\Delta_{k+1}}{\Delta_{k}}\right)}{\ln\left(\frac{\Delta_{k-1}}{\Delta_{k-1}}\right)} \qquad P = \frac{\ln\left(\frac{0,01563}{0,03125}\right)}{\ln\left(\frac{0,03125}{0,06250}\right)} = 0,99953 \approx 1$$

REGULA FALSI:

Pasos a seguir:

- 1. Definir el intervalo $[a_0, b_0]$.
- 2. Calcular $f(a_0)$ y $f(b_0)$, verificando que $f(a_0) * f(b_0) < 0$.
- 3. Calcular $m_1 = a_0 (b_0 a_0) \frac{f(a_0)}{f(b_0) f(a_0)}$.
- 4. Calcular $f(m_1)$.
- 5. Si $S[f(m_1)] = S[f(a_0)]$, entonces $a_1 \to m_1$. Caso contrario, $b_1 \to m_1$
- 6. Calcular cota del error absoluto: $\Delta_1 = |m_1 m_0|$
- 7. Repetir a partir de '2' hasta cumplir que $\Delta_{k+1} < 0.02$

REGULA FALSI:

k	a_k	b_x	f(a _k)	f(b _k)	$\mathbf{m}_{\mathbf{k+1}}$	f(m _{k+1})	Δ_{k+1}
0	1,500000	2,000000	-0,434995	0,090703	1,913731	-0,026180	-
1	1,913731	2,000000	-0,026180	0,090703	1,933054	-0,000924	0,019323
2	1,933054	2,000000	-0,000924	0,090703	1,933730	-0,000032	0,000675
3	1,933730	2,000000	-0,000032	0,090703	1,933753	-0,000001	0,000023

Raíz:

$$x = 1,93 \pm 0,02$$

ORDEN DE CONVERGENCIA:

$$\lim_{k \to \infty} \frac{\varepsilon_{k+1}}{\varepsilon_k^P} = \lambda$$

$$\frac{\Delta_{k+1}}{\Delta_k^{P}} = \lambda = \frac{\Delta_k}{\Delta_{k-1}^{P}}$$

$$\Rightarrow \ln \Delta_{k+1} - P * \ln \Delta_k = \ln \Delta_k - P * \ln \Delta_{k-1}$$

$$P = \frac{\ln\left(\frac{\Delta_{k+1}}{\Delta_k}\right)}{\ln\left(\frac{\Delta_{k-1}}{\Delta_{k-1}}\right)} \qquad P = \frac{\ln\left(\frac{0,000023}{0,000675}\right)}{\ln\left(\frac{0,000675}{0,019323}\right)} = 1,0074 \dots \approx 1$$

PUNTO FIJO:

Pasos a seguir:

- 1. Definir el intervalo [a, b].
- 2. Definir g tal que si f(c) = 0, entonces g(c) = c
- 3. Probar que se cumplen las condiciones de existencia y de unicidad del punto fijo.
- 4. Elegir un valor semilla x_0 e Iterar: $x_1 = g(x_0)$
- 5. Calcular $\Delta_1 = |x_1 x_0|$
- 6. Repetir a partir de '4' hasta cumplir que $\Delta_{k+1} < 0.02$

PUNTO FIJO:

Necesitaríamos probar que la función g(x) = x - f(x) cumple con las condiciones de existencia y unicidad del punto fijo en el intervalo.

Existencia: $g \in C[a,b] \ y \ g(x) \in [a,b] \ \forall x \in [a,b]$.

Unicidad: $\exists g'(x) \text{ en } [a,b] \text{ y } \exists 0 < k < 1$ tq $|g'(x)| \le k < 1 \forall x \in [a,b].$

Cumple condición de existencia. Cumple condición de unicidad.

PUNTO FIJO:

$$g(x) = x - \left(\frac{x^2}{4} - sen(x)\right)$$

$$\downarrow$$

$$x_{k+1} = x_k - \left(\frac{x_k^2}{4} - sen(x_k)\right)$$

k	$\mathbf{x}_{\mathbf{k}}$	$\mathbf{x_{k+1}}$	Δ_{k+1}
0	1,600000	1,959574	0,359574
1	1,959574	1,924965	0,034609
2	1,924965	1,936528	0,011563

Raíz:

$$x = 1,94 \pm 0,02$$

$$P = \frac{\ln\left(\frac{0,011563}{0,034609}\right)}{\ln\left(\frac{0,034609}{0,359574}\right)} = 0,46 \dots \approx ???$$

ORDEN DE CONVERGENCIA:

Hago más iteraciones...

k	$\mathbf{x_k}$	X _{k+1}	Δ_{k+1}	Р
0	1,600000	1,959574	0,359574	-
1	1,959574	1,924965	0,034609	-
2	1,924965	1,936528	0,011563	0,468343
3	1,936528	1,932855	0,003672	1,046216
4	1,932855	1,934042	0,001187	0,984588
5	1,934042	1,933661	0,000382	1,004897
6	1,933661	1,933784	0,000123	0,998417
7	1,933784	1,933744	0,000040	1,000509
8	1,933744	1,933757	0,000013	0,999836