TP1 Calcul Scientifique

B Deporte

Novembre 2020

Problème posé 1

On considère l'équation de diffusion 1D :

$$\partial_t u(x,t) - \partial_x^2(x,t) + au(x,t) = 0, \quad (x,t) \in]0,1[\times[0,T]]$$
 (1)

avec les conditions aux limites :

$$\partial_x u(x,t) = 0, \quad , x = 0, t \in [0,T]$$
 (2)

$$u(x,t) = 0, \quad x = 1, t \in [0,T]$$
 (3)

$$u(x,0) = \cos(\frac{\pi}{2}x), \ x \in]0,1[,t=0$$
 (4)

2 Solution explicite

Par la méthode de séparation des variables - on pose $u(x,t) = \varphi(x)\psi(t)$ L'équation principale devient : $\varphi(x)\psi'(t) - \varphi''(x)\psi(t) + a\varphi(x)\psi(t) = 0$ Et donc pour $\phi(x)\psi(t) \neq 0$:

$$\frac{\psi'(t)}{\psi(t)} - \frac{\varphi''(x)}{\varphi(x)} + a = 0$$

Les conditions aux limites permettent d'écrire :

$$\varphi'(0) = 0 \tag{5}$$

$$\varphi(1) = 0 \tag{6}$$

$$\varphi(x)\psi(0) = \cos(\frac{\pi}{2}x), \quad x \in]0,1[$$

$$(7)$$

On a donc : $\frac{\psi'(t)}{\psi(t)} = \lambda \in \mathbb{R}$, et $\frac{\varphi''(x)}{\varphi(x)} = \lambda + a$. L'équation en ψ se résoud en $\psi(t) = \psi(0) \exp(\lambda t)$ La solution de $\frac{\varphi''(x)}{\varphi(x)} = \lambda + a$ dépend des racines de l'équation caractéristique $r^2 = \lambda + a.$

1er cas: $\lambda + a > 0$ Alors $\varphi(x) = A \exp(\sqrt{\lambda + a}x) + B \exp(-\sqrt{\lambda + a}x)$, avec $A, B \in \mathbb{R}$.

Les conditions aux limites s'écrivent :

$$\varphi'(0) = A\sqrt{\lambda + a} - B\sqrt{\lambda + a} = 0 \tag{8}$$

$$\varphi(1) = A \exp(\sqrt{\lambda + a}) + B \exp(-\sqrt{\lambda + a}) = 0 \tag{9}$$

D'où : A = B = 0 : pas de solution non nulle.

2e cas: $\lambda + a = 0$ Alors $\varphi''(x) = 0$, donc $\varphi(x) = Ax + B$, et A = B = 0 aussi avec les conditions aux limites. Pas de solution non nulle.

3e cas : $\lambda + a < 0$ Les racines de l'équation caractéristique sont complexes, et : $\varphi(x) = A\cos(\sqrt{-(\lambda + a)}x) + B\sin(-\sqrt{-(\lambda + a)}x)$

Les conditions aux limites donnent : $\varphi'(0) = B = 0$, et $\varphi(1) = A\cos(\sqrt{-(\lambda + a)}) = 0$.

Une solution non nulle $A \neq 0$ implique $\sqrt{-(\lambda + a)} = \frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$ Donc $\varphi(x) = A\cos(\frac{\pi}{2} + k\pi)x$.

La dernière condition aux limites s'écrit alors : $\psi(0)A\cos(\frac{\pi}{2} + k\pi)x = \cos(\frac{\pi}{2}x)$, ce qui donne : $A\psi(0) = 1, k = 0$

Au final, $\varphi(x)\psi(t) = \cos(\frac{\pi}{2}x)\exp(\lambda t)$ avec $-\lambda - a = \frac{\pi^2}{4}$, donc:

$$u(x,t) = \cos(\frac{\pi}{2}x) \cdot \exp(-(a + \frac{\pi^2}{4})t)$$

3 Méthode des différences finies

On considère un maillage uniforme espace-temps de $[0,1] \times [0,T]$, avec $\delta x = 1/J$ et $\delta t = T/N$.

Un point de la grille est donné par $(x_j,t_n)=(j.\delta x,n.\delta t)$ avec $j\in(0,J)$ et $n\in(0,N)$

On utilise les développements de Taylor à l'ordre 2 et à l'ordre 3 :

$$v(x_{j+1}) = v(x_j) + v'(x_j) \cdot \delta x + \frac{v''(x_j)}{2!} \cdot \delta x^2 + O(\delta x^3)$$
(10)

$$v(x_{j-1}) = v(x_j) - v'(x_j) \cdot \delta x + \frac{v''(x_j)}{2!} \cdot \delta x^2 + O(\delta x^3)$$
(11)

$$v(x_{j+1}) = v(x_j) + v'(x_j) \cdot \delta x + \frac{v''(x_j)}{2!} \cdot \delta x^2 + \frac{v'''(x_{j+1})}{3!} + O(\delta x^4)$$
 (12)

$$v(x_{j-1}) = v(x_j) - v'(x_j) \cdot \delta x + \frac{v''(x_j)}{2!} \cdot \delta x^2 - \frac{v'''(x_{j+1})}{3!} + O(\delta x^4)$$
 (13)

(14)

pour approximer les dérivées première et seconde en espace :

$$\partial_x v(x_j) = \frac{v(x_{j+1}) - v(x_{j-1})}{2\delta x} + O(\delta x^2)$$
(15)

$$\partial_x^2 v(x_j) = \frac{v(x_{j+1}) - 2v(x_j) + v(x_{j-1})}{\delta x^2} + O(\delta x^2)$$
 (16)

On prend par contre l'approximation d'ordre 1 en temps, à savoir :

$$\partial_t v(t_n) = \frac{v(t_{n+1}) - v(t_n)}{\delta t} + O(\delta t)$$

3.1 Discrétisation complète avec θ -schéma

3.1.1 Schéma explicite

On pose $u(x_j, t_n) = u_i^n$.

L'équation (1) donne le schéma explicite (terme courant $j \geq 1$):

$$\frac{u_j^{n+1} - u_j^n}{\delta t} - \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{\delta x^2} + au_j^n = 0 + O(\delta t) + O(\delta x^2)$$

Soit:

$$\frac{1}{\delta t}u_j^{n+1} = \frac{1}{\delta t}u_j^n + \frac{1}{\delta x^2} \left(u_{j+1}^n - 2u_j^n + u_{j-1}^n \right) - au_j^n \tag{17}$$

Pour le terme en j=0, cad x=0, on utilise la condition aux limites (2), qui donne, en introduisant un terme fictif u_{-1}^n :

$$\frac{u_1^n - u_{-1}^n}{2\delta x} = 0$$

 $donc u_1^n = u_{-1}^n$

et donc, pour j = 0, l'équation (17) devient :

$$\frac{1}{\delta t}u_0^{n+1} = \frac{1}{\delta t}u_0^n + \frac{2}{\delta x^2}(u_1^n - u_0^n) - au_0^n$$

La condition aux limites (3) donne $u_I^n = 0$, on va donc poser simplement :

$$U^n = (u_0^n, u_1^n, ..., u_{J-1}^n)^T$$

On a alors:

$$\frac{1}{\delta t}U^{n+1} = \begin{pmatrix} u_0^{n+1} \\ u_1^{n+1} \\ \dots \\ u_{J-1}^{n+1} \end{pmatrix} = \frac{1}{\delta t}U^n - \frac{1}{\delta x^2} \begin{pmatrix} 2 + a\delta x^2 & -2 & \dots \\ -1 & 2 + a\delta x^2 & -1 & \dots \\ \dots & & & & \\ \dots & & -1 & 2 + a\delta x^2 & -1 \end{pmatrix} \begin{pmatrix} u_0^n \\ u_1^n \\ \dots \\ u_{J-1}^n \end{pmatrix}$$
(18)

Soit:

$$\frac{1}{\delta t} \left(U^{n+1} - U^n \right) + AU^n = 0 \tag{19}$$

avec:

$$A = \frac{1}{\delta x^2} \begin{pmatrix} 2 + a\delta x^2 & -2 & \dots \\ -1 & 2 + a\delta x^2 & -1 & \dots \\ \vdots & & & \\ \dots & -1 & 2 + a\delta x^2 & -1 \end{pmatrix}$$
(20)

3.1.2 Schéma implicite et θ schéma

Le schéma implicite se déduit du schéma explicite (19) :

$$\frac{1}{\delta t} \left(U^{n+1} - U^n \right) + A U^{n+1} = 0$$

Et le theta-schéma est combinaison linéaire des deux schémas explicite (x $1-\theta$) et implicite (x θ) :

$$\frac{1}{\delta t} \left(U^{n+1} - U^n \right) + A \left((1 - \theta)U^n + \theta U^{n+1} \right) = 0 \tag{21}$$

pour $0 \le \theta \le 1$