Laboratorio di Fisica 1 R8: Misura di $|\vec{g}|$ mediante rotolamento puro

Gruppo 17: Bergamaschi Riccardo, Graiani Elia, Moglia Simone 19/03/2024 - 9/04/2024

Sommario

Il gruppo di lavoro ha misurato indirettamente il modulo del campo gravitazionale locale (g) studiando il moto di rotolamento di un corpo rigido.

0 Materiali e strumenti di misura utilizzati

Strumento di misura	Soglia	Portata	Sensibilità
Due fototraguardi con contatore di impulsi	1 μs	99 999 999 µs	1 μs
Metro a nastro	$0.1\mathrm{cm}$	$300.0\mathrm{cm}$	$0.1\mathrm{cm}$
Calibro ventesimale	$0.05\mathrm{mm}$	$150.00\mathrm{mm}$	$0.05\mathrm{mm}$
Bilancia di precisione	$0.01\mathrm{g}$	$4200.00{ m g}$	0.01 g
Cellulare come goniometro	0.1°	45.0°	0.1°

Altro	Descrizione/Note	
Piano inclinato	Costituito da guide che permettono al campione di cadere da un fototraguardo all'altro con un moto di rotolamento puro.	
Campione	Corpo rigido con simmetria assiale, assimilabile a una combinazione di cilindri e tronchi di cono coassiali.	
Brugola e Lucidi	Utili per cambiare, rispettivamente, la distanza tra i fototraguardi e l'angolo di inclinazione delle guide.	

1 Esperienza e procedimento di misura

- 1. Misuriamo la massa del campione con la bilancia di precisione e, con il calibro ventesimale, tutti i diametri e le altezze necessarie al calcolo del suo momento d'inerzia.
- 2. Fissiamo la distanza L tra i due fototraguardi e l'angolo θ di inclinazione delle guide rispetto a un piano normale a \vec{g} . Allora, acceso e impostato adeguatamente il contatore di impulsi, misuriamo 50 volte il tempo di caduta del campione.
- 3. Ripetiamo il punto precedente per svariate combinazioni di L e θ .

Notazione. Fissati L e θ , indicheremo con $(t_{L,\theta})_i$ ogni i-esima misura del tempo di caduta $(i \in [0; 50) \cap \mathbb{N})$, mentre con $\overline{t}_{L,\theta}$ il tempo di caduta medio. Calcoloremo l'errore su $\overline{t}_{L,\theta}$ in questo modo:

$$\delta \left(\overline{t}_{L,\theta} \right) = \sigma_{\overline{t}_{L,\theta}} = \frac{\sigma_{t_{L,\theta}}}{\sqrt{50}}.$$

1.1 Analisi dei dati raccolti e conclusioni

Essendo il momento d'inerzia additivo, abbiamo calcolato $I_{\rm CM}$ sommando i singoli momenti d'inerzia rispetto al comune asse di simmetria dei cilindri e dei tronchi di cono che compongono il campione, dove la massa di ciascuno di essi è stata facilmente calcolata assumendo la densità del campione uniforme. Di seguito riportiamo tali misure:

• Massa totale: $M = (2214.57 \pm 0.01) \text{ g}$

• Volume totale: $V = (2.654 \pm 0.017) \cdot 10^{-4} \text{ m}^3$

• Densità media: $\rho = (8.34 \pm 0.05) \cdot 10^{-3} \text{ kg/m}^3$

#	Forma	h (mm)	$d_{1,2} \; ({\rm mm})$	$I~(\mathrm{mg}\mathrm{m}^2)$
1	Cilindro	30.45 ± 0.05	49.90 ± 0.05	154.6 ± 1.8
2	Tronco di cono	5.95 ± 0.10	$49.90 \pm 0.05 29.40 \pm 0.05$	13.7 ± 0.5
3	Cilindro	9.20 ± 0.10	25.85 ± 0.05	3.36 ± 0.08
4	Cilindro	10.80 ± 0.05	18.65 ± 0.05	1.07 ± 0.02
5	Tronco di cono	4.25 ± 0.05	$34.55 \pm 0.05 49.90 \pm 0.05$	11.8 ± 0.4
6	Cilindro	52.95 ± 0.05	49.90 ± 0.05	269 ± 3
7	Tronco di cono	4.25 ± 0.05	$49.90 \pm 0.05 36.35 \pm 0.05$	12.6 ± 0.4
8	Cilindro	10.80 ± 0.05	18.75 ± 0.05	1.09 ± 0.02
9	Cilindro	9.25 ± 0.10	25.90 ± 0.05	3.41 ± 0.08
10	Tronco di cono	5.95 ± 0.10	$29.10 \pm 0.05 49.90 \pm 0.05$	13.5 ± 0.5
11	Cilindro	30.40 ± 0.05	49.90 ± 0.05	154.4 ± 1.8

Fissato un sistema di riferimento cartesiano ortogonale solidale al piano inclinato, con origine nel punto di partenza del campione, asse x parallelo alle guide e asse y entrante nel piano inclinato, possiamo scrivere la legge del moto del centro di massa e le equazioni cardinali della dinamica del corpo rigido:

$$x(t) = \frac{1}{2}a_{\text{CM}}t^2$$

$$\begin{cases} Mg\sin\theta - F_s = Ma_{\text{CM}}\\ Mg\cos\theta - F_n = 0\\ RMg\sin\theta = \left(I_{\text{CM}} + MR^2\right)\alpha \end{cases}$$

dove R è il raggio di contatto, F_s è la forza di attrito statico tra il campione e le guide, mentre F_n è la reazione vincolare delle guide, normale al piano. Per poter descrivere il moto del campione come di rotolamento puro, dobbiamo assicurarci che $F_s \leq \mu_s F_n$, con μ_s il coefficiente di attrito statico tra il corpo rigido e le guide. Se questa condizione è verificata, possiamo utilizzare la relazione:

$$\alpha = \frac{a_{\rm CM}}{R}$$

Risolvendo il sistema lineare e la disequazione di cui sopra si ottiene:

$$\begin{cases} a_{\rm CM} = \frac{MR^2}{I_{\rm CM} + MR^2} g \sin \theta \\ F_n = Mg \cos \theta \\ F_s = \frac{I}{I + MR^2} Mg \sin \theta \\ 0 \le \alpha \le \arctan \left(\mu_s \left(\frac{MR^2}{I} + 1 \right) \right) \end{cases}$$

Ricordando ora che $L=x(t_{L,\theta})+D+S$, dove D è il diametro più esterno del campione e S è lo spessore del cuscinetto posto contro il secondo fototraguardo, possiamo ricavare:

$$\frac{2L}{\sin\theta} \left(\frac{I_{\rm CM}}{MR^2} + 1 \right)$$

La norma di \vec{g} misurata indirettamente è allora ricavabile da:

$$\frac{2L}{t^2} = \frac{MgR^2\sin(\theta)}{I_{\rm cm} + MR^2}$$

dove l'errore su g segue dalla propagazione degli errori su d_0, \varnothing_s e $\overline{t_s}$ (supponendo gli errori piccoli, casuali e indipendenti).