LUMA

1.4.0-alpha

Generated by Doxygen 1.8.11

Contents

1	Mair	n Page			1
2	Hier	archical	Index		3
	2.1	Class I	Hierarchy		3
3	Clas	s Index			5
	3.1	Class I	_ist		5
4	File	Index			7
	4.1	File Lis	st		7
5	Clas	s Docu	mentation		9
	5.1	BFLBo	dy Class F	Reference	9
		5.1.1	Detailed	Description	10
		5.1.2	Construc	tor & Destructor Documentation	10
			5.1.2.1	BFLBody(void)	10
			5.1.2.2	\sim BFLBody(void)	10
			5.1.2.3	BFLBody(PCpts *_PCpts, GridObj *g_hierarchy, size_t id)	10
		5.1.3	Member	Function Documentation	10
			5.1.3.1	computeQ(int i, int j, int k, GridObj *g)	10
			5.1.3.2	computeQ(int i, int j, GridObj *g)	11
		5.1.4	Friends A	and Related Function Documentation	11
			5.1.4.1	GridObj	11
		5.1.5	Member	Data Documentation	11
			E 1 E 1		4.4

iv CONTENTS

5.2	5.2 BFLMarker Class Reference					
	5.2.1	Detailed	Description	12		
	5.2.2	Construc	ctor & Destructor Documentation	12		
		5.2.2.1	BFLMarker(void)	12		
		5.2.2.2	~BFLMarker(void)	12		
		5.2.2.3	BFLMarker(double x, double y, double z)	12		
	5.2.3	Friends A	And Related Function Documentation	12		
		5.2.3.1	BFLBody	13		
5.3	Body<	MarkerTy	/pe > Class Template Reference	13		
	5.3.1	Detailed	Description	14		
	5.3.2	Construc	ctor & Destructor Documentation	14		
		5.3.2.1	Body(void)	14		
		5.3.2.2	\sim Body(void)	14		
		5.3.2.3	Body(GridObj *g, size_t id)	14		
	5.3.3	Member	Function Documentation	14		
		5.3.3.1	addMarker(double x, double y, double z)	14		
		5.3.3.2	getMarkerData(double x, double y, double z)	15		
		5.3.3.3	isInVoxel(double x, double y, double z, int curr_mark)	15		
		5.3.3.4	isVoxelMarkerVoxel(double x, double y, double z)	15		
		5.3.3.5	markerAdder(double x, double y, double z, int &curr_mark, std::vector< int > &counter)	16		
	5.3.4	Member	Data Documentation	16		
		5.3.4.1	_Owner	16		
		5.3.4.2	closed_surface	16		
		5.3.4.3	id	16		
		5.3.4.4	markers	16		
		5.3.4.5	spacing	16		
5.4	МріМа	nager::buf	ffer_struct Struct Reference	17		
	5.4.1	Detailed	Description	17		
	5.4.2	Member	Data Documentation	17		
		5.4.2.1	level	17		

CONTENTS

		5.4.2.2	region	17
		5.4.2.3	size	17
5.5	GridOb	oj Class Re	eference	17
	5.5.1	Detailed	Description	20
	5.5.2	Construc	tor & Destructor Documentation	20
		5.5.2.1	GridObj()	20
		5.5.2.2	GridObj(int level)	20
		5.5.2.3	GridObj(int RegionNumber, GridObj &pGrid)	20
		5.5.2.4	GridObj(int level, std::vector< int > local_size, std::vector< std::vector< double > > GlobalLimsPos)	20
		5.5.2.5	\sim GridObj()	21
	5.5.3	Member	Function Documentation	21
		5.5.3.1	bc_applyBfl(int i, int j, int k)	21
		5.5.3.2	bc_applyBounceBack(int label, int i, int j, int k)	21
		5.5.3.3	bc_applyExtrapolation(int label, int i, int j, int k)	21
		5.5.3.4	bc_applyNrbc(int i, int j, int k)	22
		5.5.3.5	bc_applyRegularised(int label, int i, int j, int k)	22
		5.5.3.6	bc_applySpecReflect(int label, int i, int j, int k)	22
		5.5.3.7	io_fgaout()	23
		5.5.3.8	io_hdf5(double tval)	23
		5.5.3.9	io_lite(double tval, std::string Tag)	23
		5.5.3.10	io_probeOutput()	23
		5.5.3.11	io_restart(elOFlag IO_flag)	23
		5.5.3.12	io_textout(std::string output_tag)	24
		5.5.3.13	LBM_addSubGrid(int RegionNumber)	24
		5.5.3.14	LBM_init_getInletProfile()	24
		5.5.3.15	LBM_initBoundLab()	24
		5.5.3.16	LBM_initGrid()	24
		5.5.3.17	LBM_initGrid(std::vector< int > local_size, std::vector< std::vector< double > > GlobalLimsPos)	24
		5.5.3.18	LBM_initRefinedLab(GridObj &pGrid)	25

vi

	5.5.3.19	LBM_initRho()	25
	5.5.3.20	LBM_initSolidLab()	25
	5.5.3.21	LBM_initSubGrid(GridObj &pGrid)	25
	5.5.3.22	LBM_initVelocity()	25
	5.5.3.23	$LBM_kbcCollide(int \ i, \ int \ j, \ int \ k, \ IVector < double > \&f_new) \ \ . \ \ . \ \ . \ \ . \ \ . \ \ .$	25
	5.5.3.24	LBM_macro(int i, int j, int k)	26
	5.5.3.25	LBM_multi_opt(int subcycle=0)	26
	5.5.3.26	LBM_resetForces()	26
5.5.4	Friends A	And Related Function Documentation	26
	5.5.4.1	GridUtils	26
	5.5.4.2	MpiManager	26
	5.5.4.3	ObjectManager	26
5.5.5	Member	Data Documentation	27
	5.5.5.1	dh	27
	5.5.5.2	$dt \ldots \ldots \ldots \ldots \ldots \ldots$	27
	5.5.5.3	K_lim	27
	5.5.5.4	LatTyp	27
	5.5.5.5	level	27
	5.5.5.6	M_lim	27
	5.5.5.7	N_lim	27
	5.5.5.8	nu	27
	5.5.5.9	omega	27
	5.5.5.10	region_number	27
	5.5.5.11	$t \ldots \ldots \ldots \ldots \ldots$	28
	5.5.5.12	timeav_mpi_overhead	28
	5.5.5.13	timeav_timestep	28
	5.5.5.14	XOrigin	28
	5.5.5.15	XPos	28
	5.5.5.16	YOrigin	28
	5.5.5.17	YPos	28

CONTENTS vii

		5.5.5.18	ZOrigin	28
		5.5.5.19	ZPos	28
5.6	GridUr	nits Class F	Reference	29
	5.6.1	Detailed	Description	29
	5.6.2	Construc	etor & Destructor Documentation	29
		5.6.2.1	GridUnits()	29
		5.6.2.2	~GridUnits()	29
	5.6.3	Member	Function Documentation	29
		5.6.3.1	m2cm(const T meters)	29
		5.6.3.2	ulat2uphys(T ulat, GridObj *currentGrid)	29
5.7	GridUt	ils Class R	Reference	30
	5.7.1	Detailed	Description	32
	5.7.2	Member	Function Documentation	32
		5.7.2.1	$add(std::vector < double > a,std::vector < double > b)\;.\;\ldots\;\ldots\;\ldots\;\ldots\;\ldots$	32
		5.7.2.2	createOutputDirectory(std::string path_str)	32
		5.7.2.3	$crossprod(std::vector < double > vec1, std::vector < double > vec2) \ . \ . \ . \ . \ .$	33
		5.7.2.4	dotprod(std::vector< double > vec1, std::vector< double > vec2)	33
		5.7.2.5	downToLimit(NumType x, NumType limit)	33
		5.7.2.6	factorial(NumType n)	34
		5.7.2.7	getCoarseIndices(int fine_i, int x_start, int fine_j, int y_start, int fine_k, int z_start)	34
		5.7.2.8	$\label{eq:getEnclosingVoxel} \begin{split} & \text{getEnclosingVoxel(double } x, \text{ double } y, \text{ double } z, \text{ const GridObj } *g, \text{ std::vector} < \\ & \text{int} > * \text{ijk}) \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	34
		5.7.2.9	$getEnclosingVoxel(double\ x,\ const\ GridObj\ *g,\ eCartesianDirection\ dir,\ int\ *ijk)\ \ .$	35
		5.7.2.10	getFineIndices(int coarse_i, int x_start, int coarse_j, int y_start, int coarse_k, int z_start)	35
		5.7.2.11	getGrid(GridObj *&Grids, int level, int region, GridObj *&ptr)	36
		5.7.2.12	getMpiDirection(int offset_vector[])	36
		5.7.2.13	getOpposite(int direction)	36
		5.7.2.14	intersectsRefinedRegion(const GridObj &pGrid, int RegNum)	36
		5.7.2.15	isOffGrid(int i, int j, int k, const GridObj ∗g)	37
		5.7.2.16	isOnRecvLayer(double pos_x, double pos_y, double pos_z)	37

viii CONTENTS

		5.7.2.17	isOnRecvLayer(double site_position, eCartMinMax edge)	3/
		5.7.2.18	isOnSenderLayer(double pos_x, double pos_y, double pos_z)	38
		5.7.2.19	isOnSenderLayer(double site_position, eCartMinMax edge)	38
		5.7.2.20	$is On This Rank (double \ x, \ double \ y, \ double \ z, \ eLocation On Rank \ loc=eNone, \ const \\ Grid Obj *grid = nullptr, \ std::vector < int > *pos = nullptr) \ $	39
		5.7.2.21	isOnThisRank(double xyz, eCartesianDirection dir, eLocationOnRank loc=eNone, const GridObj *grid=nullptr, int *pos=nullptr)	39
		5.7.2.22	isOnTransitionLayer(double pos_x, double pos_y, double pos_z, const GridObj *grid)	39
		5.7.2.23	isOnTransitionLayer(double position, eCartMinMax edge, const GridObj *grid) .	40
		5.7.2.24	isOverlapPeriodic(int i, int j, int k, const GridObj &pGrid)	40
		5.7.2.25	linspace(double min, double max, int n)	41
		5.7.2.26	$\label{eq:matrix_multiply} \begin{array}{lllll} \text{matrix_multiply(const std::vector} < \text{ std::vector} < \text{ double } >> &A, \text{ const std} \hookleftarrow \\ \text{::vector} < \text{ double } > &x) & \dots & $	41
		5.7.2.27	onespace(int min, int max)	41
		5.7.2.28	stridedCopy(NumType *dest, NumType *src, size_t block, size_t offset, size_ t stride, size_t count, size_t buf_offset=0)	42
		5.7.2.29	$subtract(std::vector < double > a, std::vector < double > b) \\ \ \ldots \\ \ \ldots \\ \ \ldots$	42
		5.7.2.30	upToZero(NumType x)	42
		5.7.2.31	vecmultiply(double scalar, std::vector< double > vec)	42
		5.7.2.32	vecnorm(double vec[L_DIMS])	43
		5.7.2.33	vecnorm(double val1, double val2)	43
		5.7.2.34	vecnorm(double val1, double val2, double val3)	43
		5.7.2.35	vecnorm(std::vector< double > vec)	44
		5.7.2.36	vecnorm(NumType a1, NumType a2, NumType a3)	44
		5.7.2.37	vecnorm(NumType a1, NumType a2)	44
	5.7.3	Member	Data Documentation	45
		5.7.3.1	dir_reflect	45
		5.7.3.2	logfile	45
		5.7.3.3	path_str	45
5.8	IBBody	Class Re	ference	45
	5.8.1	Detailed	Description	47
	5.8.2	Construc	tor & Destructor Documentation	47

CONTENTS

		5.8.2.1	IBBody(void)	47
		5.8.2.2	\sim IBBody(void)	47
		5.8.2.3	IBBody(GridObj *g, size_t id)	47
	5.8.3	Member	Function Documentation	47
		5.8.3.1	addMarker(double x, double y, double z, bool flex_rigid)	47
		5.8.3.2	makeBody(double radius, std::vector< double > centre, bool flex_rigid, bool moving, int group)	48
		5.8.3.3	$\label{lem:makebody} $$ makeBody(std::vector < double > width_length_depth, std::vector < double > angles, std::vector < double > centre, bool flex_rigid, bool deform, int group)$	48
		5.8.3.4	$\label{lem:makebody} $$ makeBody(int numbermarkers, std::vector < double > start_point, double fil_ \leftarrow length, std::vector < double > angles, std::vector < int > BCs, bool flex_rigid, bool deform, int group)$	48
		5.8.3.5	makeBody(std::vector< double > width_length, double angle, std::vector< double > centre, bool flex_rigid, bool deform, int group, bool plate)	48
		5.8.3.6	makeBody(PCpts *_PCpts)	49
		5.8.3.7	markerAdder(double x, double y, double z, int &curr_mark, std::vector< int > &counter, bool flex_rigid)	49
	5.8.4	Friends A	And Related Function Documentation	49
		5.8.4.1	ObjectManager	49
	5.8.5	Member	Data Documentation	49
		5.8.5.1	BCs	49
		5.8.5.2	deformable	50
		5.8.5.3	delta_rho	50
		5.8.5.4	flex_rigid	50
		5.8.5.5	flexural_rigidity	50
		5.8.5.6	groupID	50
		5.8.5.7	tension	50
5.9	IBMark	ker Class F	Reference	50
	5.9.1	Detailed	Description	51
	5.9.2	Construc	ctor & Destructor Documentation	51
		5.9.2.1	IBMarker(void)	51
		5.9.2.2	~IBMarker(void)	52
		5.9.2.3	IBMarker(double xPos, double yPos, double zPos, bool flex_rigid=false)	52

CONTENTS

	5.9.3	Friends A	and Related Function Documentation	52
		5.9.3.1	IBBody	52
		5.9.3.2	ObjectManager	52
	5.9.4	Member	Data Documentation	52
		5.9.4.1	deltaval	52
		5.9.4.2	desired_vel	52
		5.9.4.3	dilation	52
		5.9.4.4	epsilon	52
		5.9.4.5	flex_rigid	52
		5.9.4.6	fluid_vel	53
		5.9.4.7	force_xyz	53
		5.9.4.8	local_area	53
		5.9.4.9	position_old	53
5.10	IVector-	< GenTyp	> Class Template Reference	53
	5.10.1	Detailed	Description	54
	5.10.2	Construc	tor & Destructor Documentation	54
		5.10.2.1	IVector()	54
		5.10.2.2	~IVector()	54
		5.10.2.3	IVector(size_t size, GenTyp val)	54
	5.10.3	Member	Function Documentation	54
		5.10.3.1	operator()(size_t i, size_t j, size_t k, size_t v, size_t j_max, size_t k_max, size_t v_max)	54
		5.10.3.2	operator()(size_t i, size_t j, size_t k, size_t j_max, size_t k_max)	55
		5.10.3.3	operator()(size_t i, size_t j, size_t j_max)	55
5.11	MpiMar	nager::laye	er_edges Struct Reference	55
	5.11.1	Detailed	Description	56
	5.11.2	Member	Data Documentation	56
		5.11.2.1	x	56
		5.11.2.2	Y	56
		5.11.2.3	z	56
5.12	Marker	Class Ref	erence	56

CONTENTS xi

	5.12.1	Detailed Description	57
	5.12.2	Constructor & Destructor Documentation	57
		5.12.2.1 Marker(void)	57
		5.12.2.2 ~Marker(void)	57
		5.12.2.3 Marker(double x, double y, double z)	57
	5.12.3	Member Data Documentation	58
		5.12.3.1 position	58
		5.12.3.2 supp_i	58
		5.12.3.3 supp_j	58
		5.12.3.4 supp_k	58
		5.12.3.5 support_rank	58
5.13	Marker	Data Class Reference	58
	5.13.1	Detailed Description	59
	5.13.2	Constructor & Destructor Documentation	59
		5.13.2.1 MarkerData(int i, int j, int k, double x, double y, double z, int ID)	59
		5.13.2.2 MarkerData(void)	59
		5.13.2.3 ~MarkerData(void)	59
	5.13.3	Member Data Documentation	60
		5.13.3.1 i	60
		5.13.3.2 ID	60
		5.13.3.3 j	60
		5.13.3.4 k	60
		5.13.3.5 x	60
		5.13.3.6 y	60
		5.13.3.7 z	60
5.14	MpiMai	nager Class Reference	60
	5.14.1	Detailed Description	63
	5.14.2	Member Function Documentation	63
		5.14.2.1 destroyInstance()	63
		5.14.2.2 getInstance()	63

xii CONTENTS

	5.14.2.3	mpi_buffer_pack(int dir, GridObj *g)	63
	5.14.2.4	mpi_buffer_size()	63
	5.14.2.5	mpi_buffer_size_recv(GridObj *&g)	63
	5.14.2.6	mpi_buffer_size_send(GridObj *&g)	64
	5.14.2.7	mpi_buffer_unpack(int dir, GridObj *g)	64
	5.14.2.8	mpi_buildCommunicators()	64
	5.14.2.9	mpi_communicate(int level, int regnum)	64
	5.14.2.10	mpi_getOpposite(int direction)	65
	5.14.2.11	mpi_gridbuild()	65
	5.14.2.12	mpi_init()	65
	5.14.2.13	mpi_updateLoadInfo()	65
	5.14.2.14	mpi_writeout_buf(std::string filename, int dir)	65
5.14.3	Member [Data Documentation	65
	5.14.3.1	buffer_recv_info	65
	5.14.3.2	buffer_send_info	66
	5.14.3.3	dimensions	66
	5.14.3.4	f_buffer_recv	66
	5.14.3.5	f_buffer_send	66
	5.14.3.6	global_edges	66
	5.14.3.7	global_size	66
	5.14.3.8	Grids	66
	5.14.3.9	local_size	66
	5.14.3.10	logout	66
	5.14.3.11	my_rank	67
	5.14.3.12	neighbour_coords	67
	5.14.3.13	neighbour_rank	67
	5.14.3.14	neighbour_vectors	67
	5.14.3.15	num_ranks	67
	5.14.3.16	p_data	67
	5.14.3.17	rank_coords	67

CONTENTS xiii

5.14.3.18 rank_core_edge	67
5.14.3.19 recv_layer_pos	68
5.14.3.20 recv_stat	68
5.14.3.21 send_requests	68
5.14.3.22 send_stat	68
5.14.3.23 sender_layer_pos	68
5.14.3.24 subGrid_comm	68
5.14.3.25 subgrid_tlayer_key	68
5.14.3.26 world_comm	68
5.15 ObjectManager Class Reference	69
5.15.1 Detailed Description	70
5.15.2 Member Function Documentation	70
5.15.2.1 bfl_buildBody(int body_type)	70
5.15.2.2 bfl_buildBody(PCpts *_PCpts)	71
5.15.2.3 computeLiftDrag(int i, int j, int k, GridObj *g)	71
5.15.2.4 destroyInstance()	71
5.15.2.5 getInstance()	71
5.15.2.6 getInstance(GridObj *g)	71
5.15.2.7 ibm_apply()	72
5.15.2.8 ibm_banbks(double **a, long n, int m1, int m2, double **al, unsigned long indx[], double b[])	72
5.15.2.9 ibm_bandec(double **a, long n, int m1, int m2, double **al, unsigned long indx[], double *d)	72
5.15.2.10 ibm_bicgstab(std::vector< std::vector< double > > &Amatrix, std::vector< double > &bVector, std::vector< double > ε, double tolerance, int maxiterations)	73
5.15.2.11 ibm_buildBody(int body_type)	73
5.15.2.12 ibm_buildBody(PCpts *_PCpts, GridObj *owner)	73
5.15.2.13 ibm_computeForce(int ib)	73
5.15.2.14 ibm_deltaKernel(double rad, double dilation)	74
5.15.2.15 ibm_findEpsilon(int ib)	74
5.15.2.16 ibm_findSupport(int ib, int m)	74
5.15.2.17 ibm_initialise()	74

xiv CONTENTS

7
7
7
7
7
70
70
70
70
70
7
7
7
7
7
78
78
78
78
78
78
78
79
79
79
79
80
80
80
80
80
80
80
80
80
80

CONTENTS xv

6	File	Docume	entation		81
	6.1	BFLBo	dy.cpp File	Reference	81
	6.2	BFLBo	dy.h File R	deference	81
	6.3	BFLMa	arker.cpp F	ïle Reference	81
	6.4	BFLMa	arker.h File	Reference	82
	6.5	Body.h	File Refer	ence	82
	6.6	definition	ons.h File	Reference	82
		6.6.1	Macro De	efinition Documentation	87
			6.6.1.1	L_BFL_LENGTH	87
			6.6.1.2	L_BFL_ON_GRID_LEV	87
			6.6.1.3	L_BFL_ON_GRID_REG	87
			6.6.1.4	L_BFL_REF_LENGTH	87
			6.6.1.5	L_BFL_SCALE_DIRECTION	87
			6.6.1.6	L_BLOCK_MAX_X	87
			6.6.1.7	L_BLOCK_MAX_Y	87
			6.6.1.8	L_BLOCK_MAX_Z	87
			6.6.1.9	L_BLOCK_MIN_X	87
			6.6.1.10	L_BLOCK_MIN_Y	87
			6.6.1.11	L_BLOCK_MIN_Z	88
			6.6.1.12	L_BLOCK_ON_GRID_LEV	88
			6.6.1.13	L_BLOCK_ON_GRID_REG	88
			6.6.1.14	L_BUILD_FOR_MPI	88
			6.6.1.15	L_BX	88
			6.6.1.16	L_BY	88
			6.6.1.17	L_BZ	88
			6.6.1.18	L_CENTRE_BFL_Z	88
			6.6.1.19	L_CENTRE_IBB_Z	88
			6.6.1.20	L_CENTRE_OBJECT_Z	88
			6.6.1.21	L_CSMAG	89
			6.6.1.22	L_DIMS	89

xvi CONTENTS

6.6.1.23	L_FILAMENT_END_BC	89
6.6.1.24	L_FILAMENT_START_BC	89
6.6.1.25	L_GRAVITY_DIRECTION	89
6.6.1.26	L_GRAVITY_FORCE	89
6.6.1.27	L_GRAVITY_ON	89
6.6.1.28	L_HDF5_OUTPUT	89
6.6.1.29	L_HDF_DEBUG	89
6.6.1.30	L_IB_ON_LEV	89
6.6.1.31	L_IB_ON_REG	89
6.6.1.32	L_IBB_ANGLE_HORZ	90
6.6.1.33	L_IBB_ANGLE_VERT	90
6.6.1.34	L_IBB_D	90
6.6.1.35	L_IBB_DELTA_RHO	90
6.6.1.36	L_IBB_EI	90
6.6.1.37	L_IBB_FILAMENT_LENGTH	90
6.6.1.38	L_IBB_FILAMENT_START_X	90
6.6.1.39	L_IBB_FILAMENT_START_Y	90
6.6.1.40	L_IBB_FILAMENT_START_Z	90
6.6.1.41	L_IBB_FLEXIBLE	90
6.6.1.42	L_IBB_FROM_FILE	91
6.6.1.43	L_IBB_L	91
6.6.1.44	L_IBB_LENGTH	91
6.6.1.45	L_IBB_MOVABLE	91
6.6.1.46	L_IBB_ON_GRID_LEV	91
6.6.1.47	L_IBB_ON_GRID_REG	91
6.6.1.48	L_IBB_R	91
6.6.1.49	L_IBB_REF_LENGTH	91
6.6.1.50	L_IBB_SCALE_DIRECTION	91
6.6.1.51	L_IBB_W	91
6.6.1.52	L_IBB_X	92

CONTENTS xvii

6.6.1.53	L_IBB_Y	92
6.6.1.54	L_IBB_Z	92
6.6.1.55	$L_K \dots \dots$	92
6.6.1.56	L_M	92
6.6.1.57	L_MPI_DIRS	92
6.6.1.58	L_MPI_XCORES	92
6.6.1.59	L_MPI_YCORES	92
6.6.1.60	L_MPI_ZCORES	92
6.6.1.61	$L_N\ldots\ldots\ldots\ldots\ldots$	92
6.6.1.62	L_NO_FLOW	92
6.6.1.63	L_NUM_LEVELS	92
6.6.1.64	L_NUM_MARKERS	93
6.6.1.65	L_NUM_REGIONS	93
6.6.1.66	L_NUM_VELS	93
6.6.1.67	L_OBJECT_LENGTH	93
6.6.1.68	L_OBJECT_ON_GRID_LEV	93
6.6.1.69	L_OBJECT_ON_GRID_REG	93
6.6.1.70	L_OBJECT_REF_LENGTH	93
6.6.1.71	L_OBJECT_SCALE_DIRECTION	93
6.6.1.72	L_OUT_EVERY	93
6.6.1.73	L_OUT_EVERY_FORCES	93
6.6.1.74	L_OUTPUT_PRECISION	94
6.6.1.75	L_PHYSICAL_U	94
6.6.1.76	L_PI	94
6.6.1.77	L_PROBE_OUT_FREQ	94
6.6.1.78	L_RE	94
6.6.1.79	L_RESOLUTION	94
6.6.1.80	L_RESTART_OUT_FREQ	94
6.6.1.81	L_RHOIN	94
6.6.1.82	L_SOLID_BLOCK_ON	94

xviii CONTENTS

	6.6.1.83 L_START_BFL_X	94
	6.6.1.84 L_START_BFL_Y	95
	6.6.1.85 L_START_IBB_X	95
	6.6.1.86 L_START_IBB_Y	95
	6.6.1.87 L_START_OBJECT_X	95
	6.6.1.88 L_START_OBJECT_Y	95
	6.6.1.89 L_TIMESTEPS	95
	6.6.1.90 L_UMAX	95
	6.6.1.91 L_UREF	95
	6.6.1.92 L_UX0	95
	6.6.1.93 L_UY0	95
	6.6.1.94 L_UZ0	96
	6.6.1.95 L_VTK_BODY_WRITE	96
	6.6.1.96 L_WALL_THICKNESS_BACK	96
	6.6.1.97 L_WALL_THICKNESS_BOTTOM	96
	6.6.1.98 L_WALL_THICKNESS_FRONT	96
	6.6.1.99 L_WALL_THICKNESS_TOP	96
	6.6.1.100 L_WALLS_ON	96
	6.6.1.101 LUMA_VERSION	96
6.6.2	2 Variable Documentation	96
	6.6.2.1 cNumProbes	96
	6.6.2.2 cProbeLimsX	96
	6.6.2.3 cProbeLimsY	97
	6.6.2.4 cProbeLimsZ	97
	6.6.2.5 cRefEndX	97
	6.6.2.6 cRefEndY	97
	6.6.2.7 cRefEndZ	97
	6.6.2.8 cRefStartX	97
	6.6.2.9 cRefStartY	97
	6.6.2.10 cRefStartZ	97

CONTENTS xix

6.7	GridOb	j.cpp File R	eference	97
6.8	GridOb	j.h File Refe	erence	97
	6.8.1	Enumeration	on Type Documentation	98
		6.8.1.1	eBCType	98
		6.8.1.2	elOFlag	98
		6.8.1.3	еТуре	98
6.9	GridOb	oj_init_grids.	cpp File Reference	99
6.10	GridOb	j_ops_bour	ndary.cpp File Reference	99
6.11	GridOb	oj_ops_io.cp	p File Reference	99
6.12	GridOb	oj_ops_lbm.o	cpp File Reference	99
6.13	GridOb	oj_ops_lbm_	optimised.cpp File Reference	99
6.14	GridUn	its.h File Re	eference	100
6.15	GridUti	ls.cpp File F	Reference	100
6.16	GridUti	ls.h File Re	ference	100
	6.16.1	Enumeration	on Type Documentation	101
		6.16.1.1	eCartesianDirection	101
		6.16.1.2	eCartMinMax	101
		6.16.1.3	eEdgeMinMax	101
		6.16.1.4	eLocationOnRank	101
		6.16.1.5	eMinMax	102
6.17	hdf5lur	na.h File Re	eference	102
	6.17.1	Macro Def	inition Documentation	103
		6.17.1.1	H5_BUILT_AS_DYNAMIC_LIB	103
		6.17.1.2	HDF5_EXT_SZIP	103
		6.17.1.3	HDF5_EXT_ZLIB	103
	6.17.2	Enumeration	on Type Documentation	103
		6.17.2.1	eHdf5SlabType	103
	6.17.3	Function D	Documentation	103
			hdf5_writeDataSet(hid_t &memspace, hid_t &filespace, hid_t &dataset_id, e ↔ Hdf5SlabType slab_type, int N_lim, int M_lim, int K_lim, GridObj *g, T *data, hid_t hdf_datatype, bool *TL_present, int TL_thickness, MpiManager::phdf5_↔ struct hdf_data)	103

CONTENTS

6.18	IBBody.cpp File Reference	104
6.19	IBBody.h File Reference	104
6.20	IBMarker.cpp File Reference	104
6.21	IBMarker.h File Reference	104
6.22	IVector.h File Reference	104
6.23	main_lbm.cpp File Reference	105
	6.23.1 Function Documentation	105
	6.23.1.1 main(int argc, char *argv[])	105
6.24	Marker.h File Reference	105
6.25	Mpi_buffer_pack.cpp File Reference	105
6.26 I	Mpi_buffer_size_recv.cpp File Reference	106
6.27	Mpi_buffer_size_send.cpp File Reference	106
6.28 I	Mpi_buffer_unpk.cpp File Reference	106
6.29 I	MpiManager.cpp File Reference	106
6.30 I	MpiManager.h File Reference	106
(6.30.1 Macro Definition Documentation	107
	6.30.1.1 range_i_left	107
	6.30.1.2 range_i_right	107
	6.30.1.3 range_j_down	107
	6.30.1.4 range_j_up	107
	6.30.1.5 range_k_back	108
	6.30.1.6 range_k_front	108
6.31	ObjectManager.cpp File Reference	108
6.32	ObjectManager.h File Reference	108
(6.32.1 Enumeration Type Documentation	108
	6.32.1.1 eObjectType	108
6.33	ObjectManager_init_bflbody.cpp File Reference	109
6.34	ObjectManager_init_ibmbody.cpp File Reference	109
6.35	ObjectManager_ops_ibm.cpp File Reference	109
6.36	ObjectManager_ops_ibmflex.cpp File Reference	109

CONTENTS xxi

	6.36.1	Macro De	efinit	tion D)ocun	nenta	ation						 	 	 	 	 109
		6.36.1.1	SW	VAP									 	 	 	 	 109
		6.36.1.2	SW	VAP									 	 	 	 	 110
		6.36.1.3	TIN	NY .									 	 	 	 	 110
6.37	Object	Manager_c	_ops_	_io.cp	p File	e Ref	eren	ce .					 	 	 	 	 110
6.38	PCpts.	h File Refe	eren	ce .									 	 	 	 	 110
6.39	stdafx.	cpp File Re	lefere	ence									 	 	 	 	 110
	6.39.1	Variable I	Doci	umer	ntation	n .							 	 	 	 	 111
		6.39.1.1	С										 	 	 	 	 111
		6.39.1.2	C_(opt .									 	 	 	 	 111
		6.39.1.3	CS										 	 	 	 	 111
		6.39.1.4	w										 	 	 	 	 111
6.40	stdafx.l	n File Refe	eren	ce .									 	 	 	 	 112
	6.40.1	Macro De	efinit	tion E)ocun	nenta	ation						 	 	 	 	 112
		6.40.1.1	DE	PRE	CATI	ED .							 	 	 	 	 112
		6.40.1.2	L_/	DAC	TION	_WR	IITE_	OUT	_FO	RCE	S		 	 	 	 	 112
																	112
		6.40.1.3	L_I	ERR	OR .								 	 	 	 	
		6.40.1.3 6.40.1.4	_	•													113
			_ L_I	IS_N	AN .								 	 	 	 	
		6.40.1.4	L_I	IS_N	AN . FAILE	 ED .							 	 	 	 	 113
	6.40.2	6.40.1.4 6.40.1.5	L_I LU SC	IS_N/ IMA_I	AN . FAILE	ED .							 	 	 	 	 113 113
	6.40.2	6.40.1.4 6.40.1.5 6.40.1.6	L_I LU SC	IS_N IMA_I Q	AN .FAILE	ED .							 	 	 	 	 113 113 113
		6.40.1.4 6.40.1.5 6.40.1.6 Function	L_I LU SC Doo	IS_NA IMA_I Cumer	AN	ED . on string	· · · · · · · · · · · · · · · · · · ·	 g, sto		trean	 	gfile)	 	 	 	 	 113 113 113 113
		6.40.1.4 6.40.1.5 6.40.1.6 Function 6.40.2.1	L_I LU SC Doc Doc	IS_NA IMA_I Cumer corfcn umen	AN FAILE ntation (std::	ED . on . strinç	 g ms	 g, sto	 d::ofs	trean	 	gfile)		 	 		 113 113 113 113
		6.40.1.4 6.40.1.5 6.40.1.6 Function 6.40.2.1 Variable I	L_I LU SC SC errr Docc c	IS_NA IMA_I cumer rorfcn umen	AN	ED n strino	g msę		d::ofs	 trean	 	gfile)			 		 113 113 113 113 113
		6.40.1.4 6.40.1.5 6.40.1.6 Function 6.40.2.1 Variable I	L_I LU SC or Pocc c c c_c	IS_NA IMA_I cumer corfcn umen	FAILE	ED n strin n		g, sto		 trean	 	gfile)					113 113 113 113 113 113
		6.40.1.4 6.40.1.5 6.40.1.6 Function 6.40.2.1 Variable I 6.40.3.1 6.40.3.2 6.40.3.3	L_I LU SC orr Docc c c cs	IS_NA IMA_I Cumer rorfcn umen	AN	ED . nn . string		gg, std	d::ofs		1 *lo	gfile)					113 113 113 113 113 113
		6.40.1.4 6.40.1.5 6.40.1.6 Function 6.40.2.1 Variable I 6.40.3.1 6.40.3.2	L_I LU SC orr Docc c c cs	IS_NA IMA_I Cumer rorfcn umen	AN	ED . nn . string		gg, std	d::ofs		1 *lo	gfile)					113 113 113 113 113 113

115

Index

Chapter 1

Main Page

Lattice Boltzmann @ The University of Manchester
L-U-M-A
Copyright (C) 2015, 2016 E-mail contact: info@luma.manchester.ac.uk

This software is for academic use only and not available for distribution without written consent.

2 Main Page

Chapter 2

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Body< MarkerType >	13
Body < BFLMarker >	13
BFLBody	
Body < IBMarker >	13
IBBody	4
MpiManager::buffer_struct	1
GridObj	1
GridUnits	29
GridUtils	30
MpiManager::layer_edges	5
Marker	50
BFLMarker	1
IBMarker	50
MarkerData	5
MpiManager	6
ObjectManager	6
PCpts	
MpiManager::phdf5_struct	7
vector	
IVector< GenTyp >	5
IVector< double >	5
Vector < eTvpe >	5

4 Hierarchical Index

Chapter 3

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

BFLBody	
BFL body	ç
BFLMarker	
BFL marker	11
Body< MarkerType >	
Generic body class	13
MpiManager::buffer_struct	
Structure storing buffers sizes in each direction for particular grid	17
GridObj	
Grid class	17
GridUnits	
GridUnits	29
GridUtils	
Grid utility class	30
IBBody	
Immersed boundary body	45
IBMarker	
Immersed boundary marker	50
IVector< GenTyp >	
Index-collapsing vector class	53
MpiManager::layer_edges	
Structure containing absolute positions of the edges of halos	55
Marker	
Generic marker class	56
MarkerData	
Container class to hold marker information	58
MpiManager	
MPI Manager class	60
ObjectManager	
Object Manager class	69
PCpts	
Class to hold point cloud data	78
MpiManager::phdf5_struct	
Structure for storing halo information for HDF5	79

6 Class Index

Chapter 4

File Index

4.1 File List

Here is a list of all files with brief descriptions:

BFLBody.cpp	81
BFLBody.h	81
BFLMarker.cpp	81
BFLMarker.h	82
Body.h	82
definitions.h	82
GridObj.cpp	97
GridObj.h	97
GridObj_init_grids.cpp	99
GridObj_ops_boundary.cpp	99
GridObj_ops_io.cpp	99
GridObj_ops_lbm.cpp	99
GridObj_ops_lbm_optimised.cpp	99
GridUnits.h	00
GridUtils.cpp	00
GridUtils.h	ე0
hdf5luma.h	ე2
IBBody.cpp	ე4
IBBody.h	ე4
IBMarker.cpp	ე4
IBMarker.h	ე4
IVector.h	ე4
main_lbm.cpp	05
Marker.h	05
Mpi_buffer_pack.cpp	05
Mpi_buffer_size_recv.cpp	ე6
Mpi_buffer_size_send.cpp	ე6
Mpi_buffer_unpk.cpp	ე6
MpiManager.cpp	ე6
MpiManager.h	ე6
ObjectManager.cpp	ე8
ObjectManager.h	ე8
ObjectManager_init_bflbody.cpp	ე9
ObjectManager_init_ibmbody.cpp	09
ObjectManager one ibm con	no

8 File Index

ObjectManager_ops_ibmflex.cpp	109
ObjectManager_ops_io.cpp	110
PCpts.h	110
stdafx.cpp	110
stdafx.h	112

Chapter 5

Class Documentation

5.1 BFLBody Class Reference

BFL body.

#include <BFLBody.h>

Inheritance diagram for BFLBody:

Public Member Functions

• BFLBody (void)

Default constructor.

∼BFLBody (void)

Default destructor.

• BFLBody (PCpts *_PCpts, GridObj *g_hierarchy, size_t id)

Custom constructor to populate body from array of points.

Protected Member Functions

void computeQ (int i, int j, int k, GridObj *g)

Routine to compute wall distance Q.

void computeQ (int i, int j, GridObj *g)

Routine to compute wall distance Q.

Protected Attributes

std::vector< std::vector< double > > Q

Distance between adjacent lattice site and the surface of the body.

10 Class Documentation

Friends

• class GridObj

5.1.1 Detailed Description

BFL body.

A BFL body is made up of a collection of BFLMarkers.

5.1.2 Constructor & Destructor Documentation

```
5.1.2.1 BFLBody::BFLBody (void)
```

Default constructor.

```
5.1.2.2 BFLBody::∼BFLBody (void )
```

Default destructor.

```
5.1.2.3 BFLBody::BFLBody ( PCpts * _PCpts, GridObj * g_hierarchy, size_t id )
```

Custom constructor to populate body from array of points.

Parameters

_PCpts	pointer to point cloud data
g_hierarchy	pointer to grid hierarchy
id	ID of body in array of bodies.

5.1.3 Member Function Documentation

5.1.3.1 void BFLBody::computeQ(int i, int j, int k, GridObj * g) [protected]

Routine to compute wall distance Q.

Computes Q values in 3D at a given local voxel for each application of the BFL BC. Performs a line-plane intersection algorithm for every possible triangular plane constructed out of the marker in the voxel and its nearest neighbours.

Parameters

i	local i-index of BFL voxel
j	local j-index of BFL voxel
k	local k-index of BFL voxel
g	pointer to owner grid

5.1.3.2 void BFLBody::computeQ(int *i*, int *j*, **GridObj** * *g*) [protected]

Routine to compute wall distance Q.

Computes Q values in 2D at a given local voxel for each application of the BFL BC. Performs a line-line intersection algorithm for each line segment either side of the voxel marker.

Parameters

i	local i-index of BFL voxel
j	local j-index of BFL voxel
g	pointer to owner grid

5.1.4 Friends And Related Function Documentation

5.1.4.1 friend class GridObj [friend]

5.1.5 Member Data Documentation

5.1.5.1 std::vector< **std::vector**< **double**>> **BFLBody::Q** [protected]

Distance between adjacent lattice site and the surface of the body.

There are two stores of values. Store 1 is the distance on one side of the wall and store 2 the distance on the other side. One store is appended to the other in this structure.

The documentation for this class was generated from the following files:

- BFLBody.h
- BFLBody.cpp

5.2 BFLMarker Class Reference

BFL marker.

#include <BFLMarker.h>

Inheritance diagram for BFLMarker:

12 Class Documentation

Public Member Functions

• BFLMarker (void)

Default constructor.

• ∼BFLMarker (void)

Default destructor.

• BFLMarker (double x, double y, double z)

Custom constructor with position.

Friends

• class BFLBody

Additional Inherited Members

5.2.1 Detailed Description

BFL marker.

This class declaration is for a BFL Lagrange point. A collection of these points form BFL body.

5.2.2 Constructor & Destructor Documentation

```
5.2.2.1 BFLMarker::BFLMarker (void)
```

Default constructor.

5.2.2.2 BFLMarker:: \sim BFLMarker (void)

Default destructor.

5.2.2.3 BFLMarker::BFLMarker (double x, double y, double z)

Custom constructor with position.

Parameters

X	x-position of marker
у	y-position of marker
Z	z-position of marker

5.2.3 Friends And Related Function Documentation

5.2.3.1 friend class BFLBody [friend]

The documentation for this class was generated from the following files:

- · BFLMarker.h
- BFLMarker.cpp

5.3 Body < MarkerType > Class Template Reference

Generic body class.

```
#include <Body.h>
```

Public Member Functions

• Body (void)

Default Constructor.

∼Body (void)

Default destructor.

Body (GridObj *g, size_t id)

Custom constructor setting owning grid.

Protected Member Functions

• void addMarker (double x, double y, double z)

Add marker to the body.

• MarkerData * getMarkerData (double x, double y, double z)

Retrieve marker data.

void markerAdder (double x, double y, double z, int &curr_mark, std::vector< int > &counter)

Downsampling marker adding method.

bool isInVoxel (double x, double y, double z, int curr_mark)

Determines whether a point is inside another marker's support voxel.

• bool isVoxelMarkerVoxel (double x, double y, double z)

Determines whether a point is inside an existing marker's support voxel.

Protected Attributes

double spacing

Spacing of the markers in physical units.

std::vector< MarkerType > markers

Array of markers which make up the body.

· bool closed surface

Flag to specify whether or not it is a closed surface (for output)

GridObj * _Owner

Pointer to owning grid.

size_t id

ID of body in array of bodies.

14 Class Documentation

5.3.1 Detailed Description

 ${\it template}{<}{\it typename MarkerType}{>}$ ${\it class Body}{<}{\it MarkerType}{>}$

Generic body class.

Can consist of any type of Marker so templated.

5.3.2 Constructor & Destructor Documentation

```
5.3.2.1 template<typename MarkerType > Body< MarkerType >::Body ( void )
```

Default Constructor.

```
5.3.2.2 template < typename MarkerType > Body < MarkerType >::\simBody (void)
```

Default destructor.

5.3.2.3 template<typename MarkerType > Body< MarkerType >::Body (GridObj * g, size_t id)

Custom constructor setting owning grid.

Parameters

g	pointer to grid which owns this body.
id	indicates position of body in array of bodies.

5.3.3 Member Function Documentation

5.3.3.1 template<typename MarkerType > void Body< MarkerType > ::addMarker (double x, double y, double z) [protected]

Add marker to the body.

Parameters

X	global X-position of marker.
У	global Y-position of marker.
Z	global Z-position of marker.

5.3.3.2 template<typename MarkerType > MarkerData * Body< MarkerType >::getMarkerData (double x, double y, double z) [protected]

Retrieve marker data.

Return marker and voxel/primary support data associated with supplied global position.

Parameters

X	X-position nearest to marker to be retrieved.
У	Y-position nearest to marker to be retrieved.
Z	Z-position nearest to marker to be retrieved.

Returns

MarkerData marker data structure returned. If no marker found, structure is marked as invalid.

5.3.3.3 template<typename MarkerType > bool Body< MarkerType >::isInVoxel (double x, double y, double z, int curr_mark) [protected]

Determines whether a point is inside another marker's support voxel.

Parameters

X	X-position of point.
У	Y-position of point.
Z	Z-position of point.
curr_mark	ID of the marker.

Returns

true of false

5.3.3.4 template<typename MarkerType > bool Body< MarkerType >::isVoxelMarkerVoxel (double x, double y, double z) [protected]

Determines whether a point is inside an existing marker's support voxel.

Parameters

Х	X-position of point.
У	Y-position of point.
Z	Z-position of point.

Returns

true of false

5.3.3.5 template<typename MarkerType > void Body< MarkerType >::markerAdder (double x, double y, double z, int & curr_mark, std::vector< int > & counter) [protected]

Downsampling marker adding method.

This method tries to add a marker to body at the global location given but obeys the rules of a voxel-grid filter to ensure markers are distributed such that their spacing roughly matches the background lattice.

Parameters

X	desired global X-position of new marker.
У	desired globalY-position of new marker.
Z	desired globalZ-position of new marker.
curr_mark	is a reference to the ID of last marker.
counter	is a reference to the total number of markers in the body.

5.3.4 Member Data Documentation

5.3.4.1 template<typename MarkerType> GridObj* Body< MarkerType>::_Owner [protected]

Pointer to owning grid.

5.3.4.2 template<typename MarkerType> bool Body< MarkerType>::closed_surface [protected]

Flag to specify whether or not it is a closed surface (for output)

5.3.4.3 template<typename MarkerType> size_t Body< MarkerType >::id [protected]

ID of body in array of bodies.

5.3.4.4 template<typename MarkerType> std::vector<MarkerType> Body< MarkerType>::markers [protected]

Array of markers which make up the body.

5.3.4.5 template<typename MarkerType> double Body< MarkerType>::spacing [protected]

Spacing of the markers in physical units.

The documentation for this class was generated from the following file:

Body.h

5.4 MpiManager::buffer_struct Struct Reference

Structure storing buffers sizes in each direction for particular grid.

```
#include <MpiManager.h>
```

Public Attributes

• int size [L_MPI_DIRS]

Buffer sizes for each direction.

int level

Grid level.

• int region

Region number.

5.4.1 Detailed Description

Structure storing buffers sizes in each direction for particular grid.

5.4.2 Member Data Documentation

5.4.2.1 int MpiManager::buffer_struct::level

Grid level.

5.4.2.2 int MpiManager::buffer_struct::region

Region number.

5.4.2.3 int MpiManager::buffer_struct::size[L_MPI_DIRS]

Buffer sizes for each direction.

The documentation for this struct was generated from the following file:

• MpiManager.h

5.5 GridObj Class Reference

Grid class.

#include <GridObj.h>

Public Member Functions

• GridObj ()

Default Constructor.

· GridObj (int level)

Serial build constructor for top level grid.

GridObj (int RegionNumber, GridObj &pGrid)

Constructor for a sub-grid.

GridObj (int level, std::vector< int > local_size, std::vector< std::vector< double > > GlobalLimsPos)

MPI constructor for top level grid.

∼GridObj ()

Default Destructor.

void LBM_initVelocity ()

Method to initialise the lattice velocity.

• void LBM_initRho ()

Method to initialise the lattice density.

void LBM_initGrid ()

Wrapper to initialise all L0 lattice quantities.

void LBM_initGrid (std::vector< int > local_size, std::vector< std::vector< double > > GlobalLimsPos)

Method to initialise all L0 lattice quantities.

void LBM_initSubGrid (GridObj &pGrid)

Method to initialise all sub-grid quantities.

• void LBM_initBoundLab ()

Method to initialise wall and object labels on L0.

void LBM_initSolidLab ()

Method to initialise label-based solids.

void LBM initRefinedLab (GridObj &pGrid)

Method to initialise all labels on sub-grids.

void LBM_init_getInletProfile ()

Method to import an input profile from a file.

void LBM kbcCollide (int i, int j, int k, IVector< double > &f new)

KBC collision operator.

• void LBM_macro (int i, int j, int k)

Site-specific macroscopic update.

void LBM resetForces ()

Method to reset body forces.

• void bc_applyBounceBack (int label, int i, int j, int k)

Method to apply half-way bounce-back.

void bc_applySpecReflect (int label, int i, int j, int k)

Method to apply half-way specular reflection.

• void bc_applyRegularised (int label, int i, int j, int k)

Method to apply regularised velocity inlet.

void bc_applyExtrapolation (int label, int i, int j, int k)

Method to apply extrapolation outlet.

void bc applyBfl (int i, int j, int k)

Method to apply BFL bounce-back.

void bc_applyNrbc (int i, int j, int k)

Method to apply NRBC.

void LBM addSubGrid (int RegionNumber)

Wrapper method to add sub-grid to this grid.

void io_textout (std::string output_tag)

Verbose ASCII writer.

void io_fgaout ()

.fga file writer.

void io_restart (elOFlag IO_flag)

Restart file read-writer.

void io_probeOutput ()

Probe writer.

void io_lite (double tval, std::string Tag)

ASCII dump of grid data.

• int io_hdf5 (double tval)

HDF5 writer.

void LBM_multi_opt (int subcycle=0)

Optimised LBM multi-grid kernel.

Public Attributes

std::vector< double > XPos

Vector of global X positions of each site.

std::vector< double > YPos

Vector of global Y positions of each site.

std::vector< double > ZPos

Vector of global Z positions of each site.

IVector< eType > LatTyp

Flattened 3D array of site labels.

· double dh

Physical lattice spacing (same for x, y and z)

· int region number

Region number.

int level

Level in embedded grid hierarchy.

· double dt

Physical time step size.

int t

Number of completed iterations on this level.

• double nu

Kinematic viscosity (in lattice units)

• double omega

Relaxation frequency.

double timeav_mpi_overhead

Time-averaged time of MPI communication.

• double timeav timestep

Time-averaged time of a timestep.

• int N_lim

Local size of grid in X-direction.

• int M_lim

Local size of grid in Y-direction.

int K_lim

Local size of grid in Z-direction.

double XOrigin

Position of grid left edge.

• double YOrigin

Position of grid bottom edge.

· double ZOrigin

Position of grid front edge.

Friends

- class MpiManager
- · class ObjectManager
- class GridUtils

5.5.1 Detailed Description

Grid class.

This class represents a grid (lattice) and is capable of owning a nested hierarchy of child grids.

5.5.2 Constructor & Destructor Documentation

5.5.2.1 GridObj::GridObj (void)

Default Constructor.

5.5.2.2 GridObj::GridObj (int level)

Serial build constructor for top level grid.

Coarse limits are set to zero and then L0-specific initialiser called.

Parameters

level	always should be zero as top level grid.
-------	--

5.5.2.3 GridObj::GridObj (int RegionNumber, GridObj & pGrid)

Constructor for a sub-grid.

This is not called directly but by the addSubGrid() method which first performs a check to see if a sub-grid is required.

Parameters

RegionNumber	ID indicating the region of nested refinement to which this sub-grid belongs.
pGrid	pointer to parent grid.

$\textbf{5.5.2.4} \quad \textbf{GridObj::GridObj (int \textit{level}, std::vector< int > \textit{local_size}, std::vector< std::vector< double > > \textit{GlobalLimsPos})}$

MPI constructor for top level grid.

When using MPI, this constructors a local grid which represents an appropriate portion of the top-level grid as dictated by the extent of this rank.

Parameters

level	always should be zero as top level grid.
local_size	vector indicating dimensions of local grid including halo.
GlobalLimsPos	vector indicating the global positions of the edges of this local grid core as held by the MpiManager.

5.5.2.5 GridObj:: \sim GridObj (void)

Default Destructor.

5.5.3 Member Function Documentation

5.5.3.1 void GridObj::bc_applyBfl (int i, int j, int k)

Method to apply BFL bounce-back.

Currently, assumes only 1 BFL body present on the grid.

Parameters

i	current site i-index.
j	current site j-index.
k	current site k-index.

5.5.3.2 void GridObj::bc_applyBounceBack (int label, int i, int j, int k)

Method to apply half-way bounce-back.

Parameters

label	current site label.
i	current site i-index.
j	current site j-index.
k	current site k-index.

5.5.3.3 void GridObj::bc_applyExtrapolation (int *label*, int *i*, int *j*, int *k*)

Method to apply extrapolation outlet.

Can only be applied on right-hand wall.

Parameters

|--|

Parameters

i	current site i-index.
j	current site j-index.
k	current site k-index.

5.5.3.4 void GridObj::bc_applyNrbc (int i, int j, int k)

Method to apply NRBC.

Not implemented in this version.

Parameters

i	current site i-index.
j	current site j-index.
k	current site k-index.

5.5.3.5 void GridObj::bc_applyRegularised (int *label*, int i, int j, int k)

Method to apply regularised velocity inlet.

Can be applied on any wall.

Parameters

label	current site label.
i	current site i-index.
j	current site j-index.
k	current site k-index.

5.5.3.6 void GridObj::bc_applySpecReflect (int label, int i, int j, int k)

Method to apply half-way specular reflection.

Symmetry boundary condition for free-slip walls.

Parameters

label	current site label.
i	current site i-index.
j	current site j-index.
k	current site k-index.

5.5.3.7 void GridObj::io_fgaout ()

.fga file writer.

Writes the components of the macroscopic velocity of the grid at time t and call recursively for any sub-grid. Writes the data of each subgrid in a different .fga file. .fga is the ASCII file format used by Unreal Engine 4 to read the data that populates a VectorField object. It doesn't do anything if the model is not 2D or 3D. Since .fga files can only store 3D data

5.5.3.8 int GridObj::io_hdf5 (double tval)

HDF5 writer.

Useful grid quantities written out as scalar arrays. Creates one *.h5 file per grid and data is grouped into timesteps within each file. Should be used with the merge tool at post-processing to conver to sructured VTK output readable in paraview.

Parameters

<i>tval</i> ti	me value being written out.
----------------	-----------------------------

5.5.3.9 void GridObj::io_lite (double tval, std::string TAG)

ASCII dump of grid data.

Generic ASCII writer for each rank to write out all grid data in rows into a single, unsorted file.

Parameters

tval	time value being written out.
TAG	text identifier for the data.

5.5.3.10 void GridObj::io_probeOutput()

Probe writer.

This routine writes the quantities at the probe locations to a single file.

5.5.3.11 void GridObj::io_restart (eIOFlag IO_flag)

Restart file read-writer.

This routine writes/reads the current rank's data in the custom restart file format. If the file already exists, data is appended. IB body data are also written out but no other body information at present.

Parameters

IO_flag flag to indicate whether a write or read
--

5.5.3.12 void GridObj::io_textout (std::string output_tag)

Verbose ASCII writer.

Writes all the contents of the grid class at time t and call recursively for any sub-grids. Writes to text file "Grids.out" by default.

Parameters

output_tag	text string added to top of output for identification.
------------	--

5.5.3.13 void GridObj::LBM_addSubGrid (int RegionNumber)

Wrapper method to add sub-grid to this grid.

Parameters

RegionNumber	ID indicating the region of nested refinement to which this sub-grid belongs.
--------------	---

5.5.3.14 void GridObj::LBM_init_getInletProfile ()

Method to import an input profile from a file.

Input data may be over- or under-sampled but it must span the physical dimensions of the inlet otherwise the software does not known how to scale the data to fit. Inlet profile is always assumed to be oriented vertically (y-direction).

5.5.3.15 void GridObj::LBM_initBoundLab()

Method to initialise wall and object labels on L0.

The virtual wind tunnel definitions are implemented by this method.

5.5.3.16 void GridObj::LBM_initGrid ()

Wrapper to initialise all L0 lattice quantities.

This method wraps the MPI-specific version. It is called by the serial build and sets the MPI-specific arguments to default values before calling the full initialiser.

5.5.3.17 void GridObj::LBM_initGrid (std::vector< int > local_size, std::vector< std::vector< double >> rank_core_edge)

Method to initialise all L0 lattice quantities.

Parameters

local_size	local grid size on this rank including halo.
rank_core_edge	absolute positions of the rank edges (excludes overlapping halo).

5.5.3.18 void GridObj::LBM_initRefinedLab (GridObj & pGrid)

Method to initialise all labels on sub-grids.

Boundary labels are set by considering parent labels on overlapping sites and then assigning child labels appropriately.

Parameters

pGrid reference to pare

5.5.3.19 void GridObj::LBM_initRho()

Method to initialise the lattice density.

5.5.3.20 void GridObj::LBM_initSolidLab()

Method to initialise label-based solids.

5.5.3.21 void GridObj::LBM_initSubGrid (GridObj & pGrid)

Method to initialise all sub-grid quantities.

Parameters

pand reference to parent grid.		pGrid	reference to parent grid.
--------------------------------	--	-------	---------------------------

5.5.3.22 void GridObj::LBM_initVelocity ()

Method to initialise the lattice velocity.

Unless the L_NO_FLOW macro is defined, the initial velocity everywhere will be set to the values specified in the definitions file.

5.5.3.23 void GridObj::LBM_kbcCollide (int i, int j, int k, IVector< double > & f_new)

KBC collision operator.

Applies KBC collision operator using the KBC-N4 and KBC-D models in 3D and 2D, respectively.

Parameters

i	i-index of lattice site.
j	j-index of lattice site.
k	k-index of lattice site.
f_new	reference to the temporary, post-collision grid.

5.5.3.24 void GridObj::LBM_macro (int i, int j, int k)

Site-specific macroscopic update.

Overload of macroscopic quantity calculation to allow it to be applied to a single site as used by the MPI unpacking routine to update the values for the next collision step. This routine does not update the time-averaged quantities.

Parameters

i	i-index of lattice site.
j	j-index of lattice site.
k	k-index of lattice site.

5.5.3.25 void GridObj::LBM_multi_opt (int subcycle = 0)

Optimised LBM multi-grid kernel.

This kernel compresses the old kernel into a single loop in order to make it more efficient. Capabilities are current limited with this kernel with incompatible options giving unpredictable results. Use with caution.

Parameters

subcycle	sub-cycle to be performed if called from a subgrid.
----------	---

5.5.3.26 void GridObj::LBM_resetForces ()

Method to reset body forces.

Resets both Cartesian and Lattice force vectors to zero.

5.5.4 Friends And Related Function Documentation

5.5.4.1 friend class GridUtils [friend]

5.5.4.2 friend class MpiManager [friend]

5.5.4.3 friend class ObjectManager [friend]

5.5.5	Member Data Documentation		
5.5.5.1	double GridObj::dh		
Physica	al lattice spacing (same for x, y and z)		
5.5.5.2	double GridObj::dt		
Physica	al time step size.		
5.5.5.3	int GridObj::K_lim		
Local s	ize of grid in Z-direction.		
5.5.5.4	IVector <etype> GridObj::LatTyp</etype>		
Flatten	ed 3D array of site labels.		
5.5.5.5	int GridObj::level		
Level ir	n embedded grid hierarchy.		
5.5.5.6	int GridObj::M_lim		
Local s	ize of grid in Y-direction.		
5.5.5.7	int GridObj::N_lim		
Local s	ize of grid in X-direction.		
5.5.5.8	double GridObj::nu		
Kinema	Kinematic viscosity (in lattice units)		
5.5.5.9	double GridObj::omega		
Relaxa	tion frequency.		

Generated by Doxygen

Region number.

5.5.5.10 int GridObj::region_number

5.5.5.11 int GridObj::t

Number of completed iterations on this level.

5.5.5.12 double GridObj::timeav_mpi_overhead

Time-averaged time of MPI communication.

5.5.5.13 double GridObj::timeav_timestep

Time-averaged time of a timestep.

5.5.5.14 double GridObj::XOrigin

Position of grid left edge.

5.5.5.15 std::vector<double> GridObj::XPos

Vector of global X positions of each site.

5.5.5.16 double GridObj::YOrigin

Position of grid bottom edge.

5.5.5.17 std::vector<double> GridObj::YPos

Vector of global Y positions of each site.

5.5.5.18 double GridObj::ZOrigin

Position of grid front edge.

5.5.5.19 std::vector<double> GridObj::ZPos

Vector of global Z positions of each site.

The documentation for this class was generated from the following files:

- GridObj.h
- GridObj.cpp
- GridObj_init_grids.cpp
- GridObj_ops_boundary.cpp
- GridObj_ops_io.cpp
- GridObj_ops_lbm.cpp
- GridObj_ops_lbm_optimised.cpp

5.6 GridUnits Class Reference

GridUnits.

```
#include <GridUnits.h>
```

Public Member Functions

- GridUnits ()
- ∼GridUnits ()

Static Public Member Functions

```
    template < typename T > static T m2cm (const T meters)
        Convert from m to cm.
    template < typename T > static T ulat2uphys (T ulat, GridObj *currentGrid)
        Velocity in lattice units to velocity in physical units.
```

5.6.1 Detailed Description

GridUnits.

This class contains static methods for unit conversion (the only ones implemented are from m to cm and velocity from lattice units to m/s)

5.6.2 Constructor & Destructor Documentation

```
5.6.2.1 GridUnits::GridUnits( ) [inline]
5.6.2.2 GridUnits::~GridUnits( ) [inline]
```

5.6.3 Member Function Documentation

```
5.6.3.1 template<typename T > static T GridUnits::m2cm ( const T meters ) [inline], [static]
```

Convert from m to cm.

```
5.6.3.2 template < typename T > static T GridUnits::ulat2uphys ( T \textit{ulat}, GridObj * \textit{currentGrid} ) [inline], [static]
```

Velocity in lattice units to velocity in physical units.

Converts velocity component from lattice units to m/s. It uses the L_PHYSICAL_U introduced by the user, dh and dt. You can introduce any L_PHYSICAL_U you want, but the reference lenght (usualy the width of the domain) , the Re number and the LBM parameters will remain the same. So you will be implicitly changing the physical viscosity of your fluid when you change L_PHYSICAL_U

Parameters

ulat	Lattice velocity.
currentGrid	Pointer to the current grid.

Returns

physical velocity

The documentation for this class was generated from the following file:

· GridUnits.h

5.7 GridUtils Class Reference

Grid utility class.

#include <GridUtils.h>

Static Public Member Functions

static void createOutputDirectory (std::string path_str)

Create output directory.

static std::vector< int > onespace (int min, int max)

Creates a linearly-spaced vector of integers.

• static std::vector< double > linspace (double min, double max, int n)

Creates a linearly-spaced vector of values.

static double vecnorm (double vec[L_DIMS])

Computes the L2 norm using the vector supplied.

• static double vecnorm (double val1, double val2)

 ${\it Computes the L2 norm using the vector components supplied.}$

• static double vecnorm (double val1, double val2, double val3)

Computes the L2 norm using the vector components supplied.

static double vecnorm (std::vector< double > vec)

Computes the L2 norm using the vector supplied.

static std::vector< int > getFineIndices (int coarse_i, int x_start, int coarse_j, int y_start, int coarse_k, int z_start)

Gets the indices of the fine site given the coarse site.

 $\bullet \ \ static \ std::vector < int > getCoarseIndices \ (int \ fine_i, \ int \ x_start, \ int \ fine_j, \ int \ y_start, \ int \ fine_k, \ int \ z_start) \\$

Gets the indices of the coarse site given the fine site.

- static double dotprod (std::vector< double > vec1, std::vector< double > vec2)

Computes the scalar product of two vectors.

• static std::vector< double > subtract (std::vector< double > a, std::vector< double > b)

Subtracts two vectors.

• static std::vector< double > add (std::vector< double > a, std::vector< double > b)

Adds two vectors.

• static std::vector< double > vecmultiply (double scalar, std::vector< double > vec)

Multiplies a scalar by a vector.

static std::vector< double > crossprod (std::vector< double > vec1, std::vector< double > vec2)
 Computes vector product.

Multiplies matrix A by vector x.

static int getOpposite (int direction)

Gets the opposite lattice direction to the one supplied.

static void getGrid (GridObj *&Grids, int level, int region, GridObj *&ptr)

Get a pointer to a given grid in the hierarchy.

static bool isOverlapPeriodic (int i, int j, int k, const GridObj &pGrid)

Finds out whether halo containing i,j,k links to neighbour rank periodically.

 static bool isOnThisRank (double x, double y, double z, eLocationOnRank loc=eNone, const GridObj *grid=nullptr, std::vector< int > *pos=nullptr)

Finds out whether site with supplied position is on the current rank.

 static bool isOnThisRank (double xyz, eCartesianDirection dir, eLocationOnRank loc=eNone, const GridObj *grid=nullptr, int *pos=nullptr)

Finds out whether the supplied position can be found on the current rank.

static bool intersectsRefinedRegion (const GridObj &pGrid, int RegNum)

Finds out whether all or part of specified refined region intersects with the space occupied by the grid provided.

static bool isOnSenderLayer (double pos_x, double pos_y, double pos_z)

Check whether site is on an inner (sender) halo.

static bool isOnRecvLayer (double pos_x, double pos_y, double pos_z)

Check whether site is on an outer (receiver) halo.

• static bool isOnSenderLayer (double site_position, eCartMinMax edge)

Check whether site is on an inner (sender) halo.

• static bool isOnRecvLayer (double site position, eCartMinMax edge)

Check whether site is on an outer (receiver) halo.

static int getMpiDirection (int offset_vector[])

Get direction in MPI topology from unit vector.

static bool isOffGrid (int i, int j, int k, const GridObj *g)

Tests whether a site is on a given grid.

static void getEnclosingVoxel (double x, double y, double z, const GridObj *g, std::vector< int > *ijk)

Get local voxel indices on grid in which provided position lies.

static void getEnclosingVoxel (double x, const GridObj *g, eCartesianDirection dir, int *ijk)

Get local voxel indices on grid in which provided position lies.

• static bool isOnTransitionLayer (double pos_x, double pos_y, double pos_z, const GridObj *grid)

Check whether site is on a TL.

• static bool isOnTransitionLayer (double position, eCartMinMax edge, const GridObj *grid)

Check whether site is on a specific TL (to upper).

template<typename NumType >

static NumType vecnorm (NumType a1, NumType a2, NumType a3)

Computes the L2-norm.

• template<typename NumType>

static NumType vecnorm (NumType a1, NumType a2)

Computes the L2-norm.

template<typename NumType >

static NumType upToZero (NumType x)

Rounds a negative value up to zero.

• template<typename NumType >

static NumType downToLimit (NumType x, NumType limit)

Rounds a value greater than a limit down to this value.

template<typename NumType >
 static NumType factorial (NumType n)

Computes the factorial of the supplied value.

template<typename NumType >
 static void stridedCopy (NumType *dest, NumType *src, size_t block, size_t offset, size_t stride, size_t count, size_t buf_offset=0)

Performs a strided memcpy.

Static Public Attributes

• static std::ofstream * logfile

Handle to output file.

static std::string path_str

Static string representing output path.

static const int dir_reflect [L_DIMS *2][L_NUM_VELS]

Array with hardcoded direction numbering for specular reflection.

5.7.1 Detailed Description

Grid utility class.

Class provides grid utilities including commonly used logical tests. This is a static class and so there is no need to instantiate it.

5.7.2 Member Function Documentation

```
5.7.2.1 std::vector< double > GridUtils::add ( std::vector< double > a, std::vector< double > b ) [static]
```

Adds two vectors.

Parameters

а	a vector.
b	a second vector.

Returns

vector which is a + b.

5.7.2.2 void GridUtils::createOutputDirectory (std::string *path_str* **)** [static]

Create output directory.

Compatible with both Windows and Linux. Filename and path passed as a single string. Returns nothing at the moment.

Parameters

path str	full path and filename as string.
----------	-----------------------------------

Returns

indicator of status of action.

5.7.2.3 std::vector < double > GridUtils::crossprod (std::vector < double > a, std::vector < double > b) [static]

Computes vector product.

Parameters

а	a vector.
b	a second vector.

Returns

a vector which is the cross product of a and b.

5.7.2.4 double GridUtils::dotprod (std::vector< double > vec1, std::vector< double > vec2) [static]

Computes the scalar product of two vectors.

Parameters

vec1	a vector.
vec2	a second vector.

Returns

the dot product of the two vectors.

5.7.2.5 template < typename NumType > static NumType GridUtils::downToLimit (NumType x, NumType limit) [inline], [static]

Rounds a value greater than a limit down to this value.

If value is less than or equal to the limit, return the value unchanged.

Parameters

Χ	value to be rounded	
limit	value to be rounded down to	

Returns

NumType rounded value

5.7.2.6 template < typename NumType > static NumType GridUtils::factorial (NumType n) [inline], [static]

Computes the factorial of the supplied value.

If n == 0 then returns 1.

Parameters

```
n factorial
```

Returns

NumType n factorial

5.7.2.7 std::vector < int > GridUtils::getCoarseIndices (int fine_i, int x_start, int fine_j, int y_start, int fine_k, int z_start) [static]

Gets the indices of the coarse site given the fine site.

Maps the indices of a fine grid site to a corresponding coarse site on the level above.

Parameters

fine←	local i-index of fine site to be mapped.
_ <i>i</i>	
x_start	local x-index of start of refined region on the grid above.
fine⊷	local j-index of fine site to be mapped.
_j	
y_start	local y-index of start of refined region on the grid above.
fine⊷	local k-index of fine site to be mapped.
_k	
z_start	local z-index of start of refined region on the grid above.

Returns

local indices of the coarse grid site.

5.7.2.8 void GridUtils::getEnclosingVoxel (double x, double y, double z, const GridObj * g, std::vector< int > * ijk) [static]

Get local voxel indices on grid in which provided position lies.

Wrapper for the overload which concentates all check into a vector.

Parameters

X	x-position.
У	y-position.
Z	z-position.
g	lattice on which to look for enclosing voxel.
ijk	pointer to vector where indices are to be placed.

5.7.2.9 void GridUtils::getEnclosingVoxel (double xyz, const GridObj * g, eCartesianDirection dir, int * ijk) [static]

Get local voxel indices on grid in which provided position lies.

Will return the 1D voxel index of the voxel on the lattice provided within which point with position (xyz) lies. This is done by rounding the position to obtain how many voxels in from the grid core edge it is, then accounting for whether the grid starts on another rank, in the halo, or further into the grid by offsetting the original index by this amount. This approach saves expensive seraches of the position vectors on each grid. This method can be used as a position -> voxel converter. The index may be off grid so it is advisable to call isOnThisRank instead.

Parameters

xyz	x, y or z-position.
g	lattice on which to look for enclosing voxel.
dir	1D direction.
ijk	pointer to local index storage location.

5.7.2.10 std::vector < int > GridUtils::getFineIndices (int coarse_i, int x_start, int coarse_j, int y_start, int coarse_k, int z_start) [static]

Gets the indices of the fine site given the coarse site.

Maps the indices of a coarse grid site to a corresponding fine site on the level below.

Parameters

coarse←	local i-index of coarse site to be mapped.
_ <i>i</i>	
x_start	local x-index of start of refined region.
coarse←	local j-index of coarse site to be mapped.
_j	
y_start	local y-index of start of refined region.
coarse←	local k-index of coarse site to be mapped.
_k	
z_start	local z-index of start of refined region.

Returns

local indices of the fine grid site.

5.7.2.11 void GridUtils::getGrid (GridObj *& Grids, int level, int region, GridObj *& ptr) [static]

Get a pointer to a given grid in the hierarchy.

Takes a NULL pointer by reference and updates it when matching grid is found in hierarchy on this rank. If grid not found, pointer is returned without change and stays NULL. Can be used to test for the existence of a grid on a rank by passing in a NULL pointer and checking if a NULL pointer is returned.

Parameters

	Grids	x-position of site.
	level	y-position of site.
	region	z-position of site.
out	ptr	pointer containing address of grid in hierarchy.

5.7.2.12 int GridUtils::getMpiDirection (int offset_vector[]) [static]

Get direction in MPI topology from unit vector.

Parameters

Returns

MPI direction.

5.7.2.13 int GridUtils::getOpposite (int direction) [static]

Gets the opposite lattice direction to the one supplied.

This is model independent as long as the model directions are specified such that the oppoiste direction is either one vector on or one vector back in the listing depending on whether the direction supplied is even or odd.

Parameters

direction	direction to be reversed.

Returns

opposite direction in lattice model.

5.7.2.14 bool GridUtils::intersectsRefinedRegion (const GridObj & pGrid, int RegNum) [static]

Finds out whether all or part of specified refined region intersects with the space occupied by the grid provided.

Prinicipal use is for sub-grid initialisation to determine whether a sub-grid needs adding or not. This decision is made based on whether any part of the grid is covered by the discrete voxels of existing grids on the rank.

Parameters

pGrid	parent grid at appropriate level.
RegNum	region number desired.

Returns

boolean answer.

5.7.2.15 bool GridUtils::isOffGrid (int i, int j, int k, const GridObj * g) [static]

Tests whether a site is on a given grid.

Parameters

i	local i-index.
j	local j-index.
k	local k-index.
g	grid on which to check.

Returns

boolean answer.

5.7.2.16 bool GridUtils::isOnRecvLayer(double pos_x, double pos_y, double pos_z) [static]

Check whether site is on an outer (receiver) halo.

Wrapper which checks every halo region of the rank for intersection with supplied site position.

Parameters

pos⊷	x-position of site.
_X	
pos⊷	y-position of site.
_y	
pos⇔	z-position of site.
Z	

Returns

boolean answer.

5.7.2.17 bool GridUtils::isOnRecvLayer (double *site_position*, eCartMinMax *edge*) [static]

Check whether site is on an outer (receiver) halo.

Wrapper available which checks every halo. This method only checks the halo specified by the Cartesian direction and whether it is the left/bottom/front (minimum) or right/top/back (maximum) edge of the block.

Parameters

site_position	position of site.
edge	combination of cartesian direction and choice of edge.

Returns

boolean answer.

5.7.2.18 bool GridUtils::isOnSenderLayer (double pos_x, double pos_y, double pos_z) [static]

Check whether site is on an inner (sender) halo.

Wrapper which checks every halo region of the rank for intersection with supplied site position.

Parameters

pos⊷	x-position of site.
_X	
pos⊷	y-position of site.
_y	
pos⊷	z-position of site.
_Z	

Returns

boolean answer.

5.7.2.19 bool GridUtils::isOnSenderLayer (double site_position, eCartMinMax edge) [static]

Check whether site is on an inner (sender) halo.

Wrapper available which checks every halo. This method only checks the halo specified by the Cartesian direction and whether it is the left/bottom/front (minimum) or right/top/back (maximum) edge of the block.

Parameters

site_position	position of site.
edge	combination of cartesian direction and choice of edge.

Returns

boolean answer.

5.7.2.20 bool GridUtils::isOnThisRank (double x, double y, double z, eLocationOnRank loc = eNone, const GridObj * grid = nullptr, std::vector< int > * pos = nullptr) [static]

Finds out whether site with supplied position is on the current rank.

Will return true if the site is in the halo as well (send or recv). Location information provided to indicate where point is. Returns eNone enumeration if not request or if query is false. If a grid is supplied, will only return true if site is on the grid supplied. If you want to exclude the sites that belong to the halo you can call isOnRecvLayer() or isOnSenderLayer() on the same site.

Parameters

	X	x-position of site.
	У	y-position of site.
	Z	z-position of site.
out	pos	pointer to the start of a vector in which local indices are returned.
	grid	grid being queried.
out	loc	description of the location of the point.

Returns

boolean answer.

5.7.2.21 bool GridUtils::isOnThisRank (double xyz, eCartesianDirection dir, eLocationOnRank loc = eNone, const GridObj * grid = nullptr, int * pos = nullptr) [static]

Finds out whether the supplied position can be found on the current rank.

Direction-specific version of the overload.

Parameters

	xyz	position (x, y or z)
	dir	cartesian direction of interest (x, y or z).
out	loc	description of the location of the point.
	grid	grid being queried.
out	pos	the local index of the found site.

Returns

boolean answer.

5.7.2.22 bool GridUtils::isOnTransitionLayer (double pos_x , double pos_y , double pos_z , const GridObj * grid) [static]

Check whether site is on a TL.

Wrapper which checks every possible TL location on the grid supplied.

Parameters

pos⊷	x-position of site.
_X	
pos⇔	y-position of site.
_y	
pos⊷	z-position of site.
_Z	
grid	given grid on which to check.

Returns

boolean answer.

5.7.2.23 bool GridUtils::isOnTransitionLayer (double position, eCartMinMax edge, const GridObj * grid) [static]

Check whether site is on a specific TL (to upper).

Wrapper available which checks every TL. This method only checks the TL specified by the Cartesian direction and whether it is the left/bottom/front (minimum) or right/top/back (maximum) edge of the supplied grid.

Parameters

position	position of point.
edge	combination of cartesian direction and choice of edge.
grid	given grid on which to check.

Returns

boolean answer.

5.7.2.24 bool GridUtils::isOverlapPeriodic (int *i*, int *j*, int *k*, const GridObj & *g*) [static]

Finds out whether halo containing i,j,k links to neighbour rank periodically.

Checks the receiver layer containing local site i,j,k and determines from the MPI topology information whether this layer couples to an adjacent or periodic neighbour rank. I.e. if the neighbour is physically next to the rank or whether it is actaully at the other side of the domain.

Parameters

i	local i-index of recv layer site being queried.
j	local j-index of recv layer site being queried.
k	local k-index of recv layer site being queried.
g	grid on which point being queried resides.

Returns

boolean answer.

5.7.2.25 std::vector< double > GridUtils::linspace (double min, double max, int n) [static]

Creates a linearly-spaced vector of values.

Parameters

min	starting value of output vector.
max	ending point of output vector.
n	number of values in output vector.

Returns

a vector with n uniformly spaced values between min and max.

```
5.7.2.26 std::vector< double > GridUtils::matrix_multiply ( const std::vector< std::vector< double > & A, const std::vector< double > & x) [static]
```

Multiplies matrix A by vector x.

Parameters

Α	a matrix represented as a vector or vectors.
X	a vector.

Returns

a vector which is A * x.

```
5.7.2.27 std::vector < int > GridUtils::onespace(int min, int max) [static]
```

Creates a linearly-spaced vector of integers.

Parameters

min	starting value of output vector.
max	ending point of output vector.

Returns

a vector with uniformly spaced integer values between min and max.

5.7.2.28 template<typename NumType > static void GridUtils::stridedCopy (NumType * dest, NumType * src, size_t block, size_t offset, size_t stride, size_t count, size_t buf_offset = 0) [inline], [static]

Performs a strided memcpy.

Memcpy() is designed to copy blocks of contiguous memory. Strided copy copies a pattern of contiguous blocks.

Parameters

dest	pointer to start of destination memory.
src	pointer to start of source memory.
block	size of contiguous block.
offset	offset from the start of the soruce array.
stride	number of elements between start of first block and start of second.
count	number of blocks in pattern
buf_offset	offset from start of destination buffer to start writing. Default is zero if not supplied.

5.7.2.29 std:vector < double > GridUtils::subtract (<math>std:vector < double > a, std:vector < double > b) [static]

Subtracts two vectors.

Parameters

а	a vector.
b	a second vector.

Returns

a vector which is a - b.

 $\textbf{5.7.2.30 template} < \textbf{typename NumType} > \textbf{static NumType GridUtils::upToZero (NumType \textit{x})} \quad \texttt{[inline], [static]}$

Rounds a negative value up to zero.

If value is positive, return the value unchanged.

Parameters

x value to be rounded

Returns

NumType rounded value

5.7.2.31 std::vector < double > GridUtils::vecmultiply (double scalar, std::vector < double > vec) [static]

Multiplies a scalar by a vector.

Parameters

scalar	a scalar double.
vec	a vector double.

Returns

a vector which is a scalar multiplied by a vector.

5.7.2.32 double GridUtils::vecnorm (double vec[L_DIMS]) [static]

Computes the L2 norm using the vector supplied.

Parameters

vec	old-style C array representing a vector with the same number of number of components as the problem
	dimension.

Returns

the L2 norm.

5.7.2.33 double GridUtils::vecnorm (double val1, double val2) [static]

Computes the L2 norm using the vector components supplied.

Parameters

val1	first vector component.
val2	second vector component.

Returns

the L2 norm.

5.7.2.34 double GridUtils::vecnorm (double val1, double val2, double val3) [static]

Computes the L2 norm using the vector components supplied.

Parameters

val1	first vector component.
val2	second vector component.
val3	third vector component.

Returns

the L2 norm.

5.7.2.35 double GridUtils::vecnorm (std::vector< double > vec) [static]

Computes the L2 norm using the vector supplied.

Parameters

```
vec C++ std::vector.
```

Returns

the L2 norm.

5.7.2.36 template<typename NumType > static NumType GridUtils::vecnorm (NumType a1, NumType a2, NumType a3) [inline], [static]

Computes the L2-norm.

Parameters

a1	first component of the vector
a2	second component of the vector
аЗ	third component of the vector

Returns

NumType scalar quantity

5.7.2.37 template<typename NumType > static NumType GridUtils::vecnorm (NumType a1, NumType a2) [inline], [static]

Computes the L2-norm.

Parameters

Ī	a1	first component of the vector
	a2	second component of the vector

Returns

NumType scalar quantity

5.7.3 Member Data Documentation

```
5.7.3.1 const int GridUtils::dir_reflect [static]
```

Initial value:

Array with hardcoded direction numbering for specular reflection.

```
5.7.3.2 std::ofstream * GridUtils::logfile [static]
```

Handle to output file.

```
5.7.3.3 std::string GridUtils::path_str [static]
```

Static string representing output path.

The documentation for this class was generated from the following files:

- · GridUtils.h
- GridObj.cpp
- · GridUtils.cpp
- main_lbm.cpp

5.8 IBBody Class Reference

Immersed boundary body.

```
#include <IBBody.h>
```

Inheritance diagram for IBBody:

Public Member Functions

• IBBody (void)

Constructor which sets group ID to zero by default.

• ∼IBBody (void)

Default destructor.

IBBody (GridObj *g, size_t id)

Constructor which assigns the owner grid.

void addMarker (double x, double y, double z, bool flex_rigid)

Method to add an IB marker to the body.

virtual void markerAdder (double x, double y, double z, int &curr_mark, std::vector< int > &counter, bool flex_rigid)

Downsampling marker adding method (overload)

void makeBody (double radius, std::vector< double > centre, bool flex_rigid, bool moving, int group)

Method to seed markers for a sphere / circle.

void makeBody (std::vector< double > width_length_depth, std::vector< double > angles, std::vector< double > centre, bool flex_rigid, bool deform, int group)

Method to seed markers for a cuboid / rectangle.

• void makeBody (int numbermarkers, std::vector< double > start_point, double fil_length, std::vector< double > angles, std::vector< int > BCs, bool flex_rigid, bool deform, int group)

Method to seed markers for a flexible filament.

• double makeBody (std::vector< double > width_length, double angle, std::vector< double > centre, bool flex_rigid, bool deform, int group, bool plate)

Method to seed markers for a 3D plate inclined from the XZ plane.

void makeBody (PCpts * PCpts)

Method to build a body from a point cloud.

Protected Attributes

· bool flex rigid

Flag to indicate flexibility: false == rigid body; true == flexible filament.

· bool deformable

Flag to indicate deformable body: false == rigid; true == deformable.

int groupID

ID of IBbody group - position updates can be driven from a flexible body in a group.

· double delta_rho

Difference in density between fluid and solid in lattice units.

· double flexural_rigidity

Young's modulus E * Second moment of area I.

• std::vector< double > tension

Tension between the current marker and its neighbour.

std::vector< int > BCs

BCs type flags (flexible bodies)

Friends

class ObjectManager

Additional Inherited Members

5.8.1 Detailed Description

Immersed boundary body.

5.8.2 Constructor & Destructor Documentation

5.8.2.1 IBBody::IBBody (void)

Constructor which sets group ID to zero by default.

5.8.2.2 IBBody:: \sim IBBody (void)

Default destructor.

5.8.2.3 IBBody::IBBody (GridObj * g, size_t id)

Constructor which assigns the owner grid.

Also sets the group ID to zero.

Parameters

g	pointer to owner grid
id	ID of body in array of bodies.

5.8.3 Member Function Documentation

5.8.3.1 void IBBody::addMarker (double x, double y, double z, bool flex_rigid)

Method to add an IB marker to the body.

Adds marker at the given position with the given moving/non-moving flag.

Parameters

X	global x-position of marker.
У	global y-position of marker.
Z	global z-position of marker.
flex_rigid	flag to indicate whether marker is movable or not.

5.8.3.2 void IBBody::makeBody (double radius, std::vector < double > centre, bool flex_rigid, bool deform, int group)

Method to seed markers for a sphere / circle.

Parameters

radius	radius of circle/sphere.
centre	position vector of circle/sphere centre.
flex_rigid	flag to indicate whether body is flexible and requires a structural calculation.
deform	flag to indicate whether body is movable and requires relocation each time step.
group	ID indicating which group the body is part of for collective operations.

5.8.3.3 void IBBody::makeBody (std::vector< double > width_length_depth, std::vector< double > angles, std::vector< double > centre, bool flex_rigid, bool deform, int group)

Method to seed markers for a cuboid / rectangle.

Parameters

width_length_depth	principal dimensions of cuboid / rectangle.
angles	principal orientation of cuboid / rectangle w.r.t. domain axes.
centre	position vector of cuboid / rectangle centre.
flex_rigid	flag to indicate whether body is flexible and requires a structural calculation.
deform	flag to indicate whether body is movable and requires relocation each time step.
group	ID indicating which group the body is part of for collective operations.

5.8.3.4 void IBBody::makeBody (int nummarkers, std::vector< double > start_point, double fil_length, std::vector< double > angles, std::vector< int > BCs, bool flex_rigid, bool deform, int group)

Method to seed markers for a flexible filament.

Parameters

nummarkers	number of markers to use for filament.
start_point	3D position vector of the start of the filament.
fil_length	length of filament in physical units.
angles	two angles representing filament inclination w.r.t. domain axes (horizontal plane and vertical plane).
BCs	vector containing start and end boundary condition types (see class definition for valid values).
flex_rigid	flag to indicate whether body is flexible and requires a structural calculation.
deform	flag to indicate whether body is movable and requires relocation each time step.
group	ID indicating which group the body is part of for collective operations.

5.8.3.5 double IBBody::makeBody (std::vector< double > width_length, double angle, std::vector< double > centre, bool flex_rigid, bool deform, int group, bool plate)

Method to seed markers for a 3D plate inclined from the XZ plane.

Parameters

width_length	2D vector of principal dimensions of thin plate.
angle inclination angle from horizontal.	
centre	position vector of the plate centre.
flex_rigid	flag to indicate whether body is flexible and requires a structural calculation.
deform	flag to indicate whether body is movable and requires relocation each time step.
group	ID indicating which group the body is part of for collective operations.
plate	arbitrary argument to allow overload otherwise would have the same signature as a filament builder.

5.8.3.6 void IBBody::makeBody (PCpts * _PCpts)

Method to build a body from a point cloud.

Flexibility and deformable properties taken from definitions.

Parameters

_PCpts	pointer to pointer cloud data.
--------	--------------------------------

5.8.3.7 void IBBody::markerAdder (double x, double y, double z, int & curr_mark, std::vector < int > & counter, bool flex_rigid) [virtual]

Downsampling marker adding method (overload)

This method is an overload of the method in the parent class. This version takes the flexible/rigid flag and passes it to the overloaded addMarker() method.

Parameters

X	desired global X-position of new marker.
У	desired globalY-position of new marker.
Z	desired globalZ-position of new marker.
curr_mark	is a reference to the ID of last marker.
counter	is a reference to the total number of markers in the body.
flex_rigid	indicates whether markers added should form part of flexible or rigid body.

5.8.4 Friends And Related Function Documentation

5.8.4.1 friend class ObjectManager [friend]

5.8.5 Member Data Documentation

5.8.5.1 std::vector<**int**> **IBBody::BCs** [protected]

BCs type flags (flexible bodies)

```
5.8.5.2 bool IBBody::deformable [protected]
```

Flag to indicate deformable body: false == rigid; true == deformable.

```
5.8.5.3 double IBBody::delta_rho [protected]
```

Difference in density between fluid and solid in lattice units.

```
5.8.5.4 bool IBBody::flex_rigid [protected]
```

Flag to indicate flexibility: false == rigid body; true == flexible filament.

```
5.8.5.5 double IBBody::flexural_rigidity [protected]
```

Young's modulus E * Second moment of area I.

```
5.8.5.6 int IBBody::groupID [protected]
```

ID of IBbody group – position updates can be driven from a flexible body in a group.

```
5.8.5.7 std::vector<double> IBBody::tension [protected]
```

Tension between the current marker and its neighbour.

The documentation for this class was generated from the following files:

- IBBody.h
- IBBody.cpp

5.9 IBMarker Class Reference

Immersed boundary marker.

```
#include <IBMarker.h>
```

Inheritance diagram for IBMarker:

Public Member Functions

IBMarker (void)

Default constructor.

∼IBMarker (void)

Default destructor.

IBMarker (double xPos, double yPos, double zPos, bool flex_rigid=false)

Custom constructor with position.

Protected Attributes

• std::vector< double > fluid vel

Fluid velocity interpolated from lattice nodes.

std::vector< double > desired_vel

Desired velocity at marker.

std::vector< double > force_xyz

Restorative force vector on marker.

std::vector< double > position old

Vector containing the physical coordinates (x,y,z) of the marker at t-1. Used for moving bodies.

std::vector< double > deltaval

Value of delta function for a given support node.

· bool flex_rigid

Indication as to whether marker is part of a moving or flexible body: false == rigid/fixed; true == flexible/moving.

double epsilon

Scaling parameter.

· double local_area

Area associated with support node in lattice units (same for all points if from same grid and regularly spaced like LBM)

· double dilation

Dilation parameter in lattice units (same in all directions for uniform Eulerian grid)

Friends

- · class ObjectManager
- class IBBody

Additional Inherited Members

5.9.1 Detailed Description

Immersed boundary marker.

This class declaration is for an immersed boundary Lagrange point. A collection of these points form an immersed boundary body.

5.9.2 Constructor & Destructor Documentation

5.9.2.1 IBMarker::IBMarker(void) [inline]

Default constructor.

5.9.2.2 IBMarker::~**IBMarker(void)** [inline]

Default destructor.

5.9.2.3 IBMarker::IBMarker (double xPos, double yPos, double zPos, bool flex_rigid = false)

Custom constructor with position.

Parameters

xPos	x-position of marker.
yPos	y-position of marker.
zPos	z-position of marker.
flex_rigid	flag to indicate whether marker is movable or not.

5.9.3 Friends And Related Function Documentation

5.9.3.1 friend class IBBody [friend]

5.9.3.2 friend class ObjectManager [friend]

5.9.4 Member Data Documentation

5.9.4.1 std::vector<**double**> **IBMarker::deltaval** [protected]

Value of delta function for a given support node.

5.9.4.2 std::vector<double> IBMarker::desired_vel [protected]

Desired velocity at marker.

5.9.4.3 double IBMarker::dilation [protected]

Dilation parameter in lattice units (same in all directions for uniform Eulerian grid)

5.9.4.4 double IBMarker::epsilon [protected]

Scaling parameter.

5.9.4.5 bool IBMarker::flex_rigid [protected]

Indication as to whether marker is part of a moving or flexible body: false == rigid/fixed; true == flexible/moving.

5.9.4.6 std::vector<double> IBMarker::fluid_vel [protected]

Fluid velocity interpolated from lattice nodes.

5.9.4.7 std::vector<**double**> **IBMarker::force_xyz** [protected]

Restorative force vector on marker.

5.9.4.8 double IBMarker::local_area [protected]

Area associated with support node in lattice units (same for all points if from same grid and regularly spaced like LBM)

5.9.4.9 std::vector<**double**> **IBMarker::position_old** [protected]

Vector containing the physical coordinates (x,y,z) of the marker at t-1. Used for moving bodies.

The documentation for this class was generated from the following files:

- · IBMarker.h
- IBMarker.cpp

5.10 IVector < GenTyp > Class Template Reference

Index-collapsing vector class.

#include <IVector.h>

Inheritance diagram for IVector< GenTyp >:

Public Member Functions

• IVector ()

Default constructor.

∼IVector ()

Default destructor.

• IVector (size_t size, GenTyp val)

Custom constructor taking type and value.

- GenTyp & operator() (size_t i, size_t j, size_t k, size_t v, size_t j_max, size_t k_max, size_t v_max)
 4D array index flatten.
- GenTyp & operator() (size_t i, size_t j, size_t k, size_t j_max, size_t k_max)

3D array index flatten.

GenTyp & operator() (size_t i, size_t j, size_t j_max)

2D array index flatten.

5.10.1 Detailed Description

template<typename GenTyp> class IVector< GenTyp>

Index-collapsing vector class.

This class has all the behaviour of std::vector but has a overriden operator() to allow automatic flattening of indices before returning a reference of value at indexed location. Needs to be able to accept different datatypes so templated.

5.10.2 Constructor & Destructor Documentation

```
5.10.2.1 template<typename GenTyp> IVector< GenTyp>::IVector( ) [inline]
```

Default constructor.

```
5.10.2.2 template<typename GenTyp> IVector< GenTyp>::~IVector( ) [inline]
```

Default destructor.

```
5.10.2.3 template<typename GenTyp> IVector< GenTyp>::IVector ( size_t size, GenTyp val ) [inline]
```

Custom constructor taking type and value.

Parameters

size	the desired size of vector
val	the value to fill the new vector with

5.10.3 Member Function Documentation

```
5.10.3.1 template<typename GenTyp> GenTyp& IVector< GenTyp>::operator() ( size_t i, size_t j, size_t k, size_t v, size_t j_max, size_t k_max, size_t v_max ) [inline]
```

4D array index flatten.

Override of parentheses to auto-flatten indices to a single index.

Parameters

i	the i index
j	the j index
k	the k index
V	the index in the fourth dimension
j_max	the number of j elements
k_max	the number of k elements
v_max	the number of elements in the fourth dimension

Returns

GenTyp& a reference to the value at this position in the vector

```
5.10.3.2 template<typename GenTyp> GenTyp& IVector< GenTyp>::operator() ( size_t i, size_t j, size_t k, size_t j_max, size_t k_max ) [inline]
```

3D array index flatten.

Override of parentheses to auto-flatten indices to a single index.

Parameters

i	the i index
j	the j index
k	the k index
j_max	the number of j elements
k_max	the number of k elements

Returns

GenTyp& a reference to the value at this position in the vector

```
5.10.3.3 template<typename GenTyp> GenTyp& IVector< GenTyp>::operator() ( size_t i, size_t j, size_t j_max ) [inline]
```

2D array index flatten.

Parameters

i	the i index
j	the j index
j_max	the number of j elements

Returns

GenTyp& a reference to the value at this position in the vector

The documentation for this class was generated from the following file:

• IVector.h

5.11 MpiManager::layer_edges Struct Reference

Structure containing absolute positions of the edges of halos.

#include <MpiManager.h>

Public Attributes

• double X [4]

X limits.

• double Y [4]

Y limits.

• double **Z** [4]

Z limits.

5.11.1 Detailed Description

Structure containing absolute positions of the edges of halos.

Sender (inner) and receiver (outer) parts of halo are located using the convention [left_min left_max right_min right_max] for X and similar for Y and Z. Access using the enumerator eEdgeMinMax.

5.11.2 Member Data Documentation

5.11.2.1 double MpiManager::layer_edges::X[4]

X limits.

5.11.2.2 double MpiManager::layer_edges::Y[4]

Y limits.

5.11.2.3 double MpiManager::layer_edges::Z[4]

Z limits.

The documentation for this struct was generated from the following file:

• MpiManager.h

5.12 Marker Class Reference

Generic marker class.

#include <Marker.h>

Inheritance diagram for Marker:

Public Member Functions

• Marker (void)

Default constructor.

∼Marker (void)

Default destructor.

• Marker (double x, double y, double z)

Custom constructor which locates marker.

Public Attributes

• std::vector < double > position

Position vector of marker location in physical units.

std::vector< int > supp_i

X-indices of lattice sites in support of this marker.

std::vector< int > supp_j

Y-indices of lattice sites in support of this marker.

• std::vector< int > supp_k

Z-indices of lattice sites in support of this marker.

std::vector< int > support_rank

Array of indices indicating on which rank the given support point resides.

5.12.1 Detailed Description

Generic marker class.

5.12.2 Constructor & Destructor Documentation

```
5.12.2.1 Marker::Marker(void) [inline]
```

Default constructor.

```
5.12.2.2 Marker::\simMarker( void ) [inline]
```

Default destructor.

5.12.2.3 Marker::Marker (double x, double y, double z) [inline]

Custom constructor which locates marker.

Parameters

X	X-position of marker in physical units
У	Y-position of marker in physical units
Z	Z-position of marker in physical units

5.12.3 Member Data Documentation

5.12.3.1 std::vector<double> Marker::position

Position vector of marker location in physical units.

5.12.3.2 std::vector<int> Marker::supp_i

X-indices of lattice sites in support of this marker.

5.12.3.3 std::vector<int> Marker::supp_j

Y-indices of lattice sites in support of this marker.

5.12.3.4 std::vector<int> Marker::supp_k

Z-indices of lattice sites in support of this marker.

5.12.3.5 std::vector<int> Marker::support_rank

Array of indices indicating on which rank the given support point resides.

The documentation for this class was generated from the following file:

· Marker.h

5.13 MarkerData Class Reference

Container class to hold marker information.

```
#include <Body.h>
```

Public Member Functions

MarkerData (int i, int j, int k, double x, double y, double z, int ID)

Constructor.

• MarkerData (void)

Default Constructor.

∼MarkerData (void)

Default destructor.

Public Attributes

• int i

i-index of primary support site

int j

j-index of primary support site

• int k

k-index of primary support site

int ID

Marker ID (position in array of markers)

double x

x-position of marker

• double y

y-position of marker

double z

z-position of marker

5.13.1 Detailed Description

Container class to hold marker information.

5.13.2 Constructor & Destructor Documentation

5.13.2.1 MarkerData::MarkerData (int i, int j, int k, double x, double y, double z, int ID) [inline]

Constructor.

Parameters

i	i-index of primary support site
j	j-index of primary support site
k	k-index of primary support site
Х	x-position of marker
У	y-position of marker
Z	z-position of marker
ID	marker number in a given body

5.13.2.2 MarkerData::MarkerData (void) [inline]

Default Constructor.

Initialise with invalid marker indicator which is to set the x position to NaN.

5.13.2.3 MarkerData:: \sim MarkerData (void) [inline]

Default destructor.

5.13.3 Member Data Documentation 5.13.3.1 int MarkerData::i i-index of primary support site 5.13.3.2 int MarkerData::ID Marker ID (position in array of markers) 5.13.3.3 int MarkerData::j j-index of primary support site 5.13.3.4 int MarkerData::k k-index of primary support site 5.13.3.5 double MarkerData::x x-position of marker 5.13.3.6 double MarkerData::y y-position of marker 5.13.3.7 double MarkerData::z z-position of marker The documentation for this class was generated from the following file: · Body.h

5.14 MpiManager Class Reference

MPI Manager class.

#include <MpiManager.h>

Classes

struct buffer_struct

Structure storing buffers sizes in each direction for particular grid.

· struct layer_edges

Structure containing absolute positions of the edges of halos.

struct phdf5_struct

Structure for storing halo information for HDF5.

Public Member Functions

void mpi_init ()

Initialisation routine.

• void mpi gridbuild ()

Domain decomposition.

• int mpi_buildCommunicators ()

Define writable sub-grid communicators.

void mpi_updateLoadInfo ()

Update the load balancing information stored in the MpiManager.

void mpi_buffer_pack (int dir, GridObj *g)

Method to pack the communication buffer.

void mpi_buffer_unpack (int dir, GridObj *g)

Method to unpack the communication buffer.

• void mpi_buffer_size ()

Pre-calcualtion of the buffer sizes.

void mpi_buffer_size_send (GridObj *&g)

Method to pre-compute the size of the sender layer buffer.

void mpi_buffer_size_recv (GridObj *&g)

Method to pre-compute the size of the receiver layer buffer.

void mpi_writeout_buf (std::string filename, int dir)

Buffer ASCII writer.

• void mpi_communicate (int level, int regnum)

Communication routine.

• int mpi_getOpposite (int direction)

Helper method to find opposite direction in MPI topology.

Static Public Member Functions

static MpiManager * getInstance ()

Instance creator.

• static void destroyInstance ()

Instance destroyer.

Public Attributes

MPI_Comm world_comm

Global MPI communicator.

• int dimensions [L_DIMS]

Size of MPI Cartesian topology.

int neighbour_rank [L_MPI_DIRS]

Neighbour rank number for each direction in Cartesian topology.

int neighbour_coords [L_DIMS][L_MPI_DIRS]

Coordinates in MPI topology of neighbour ranks.

MPI_Comm subGrid_comm [L_NUM_LEVELS *L_NUM_REGIONS]

Communicators for sub-grid / region combinations.

std::vector< phdf5_struct > p_data

Vector of structures containing halo descriptors for block writing (HDF5)

int my_rank

Rank number.

· int num_ranks

Total number of ranks in MPI Cartesian topology.

int rank_coords [L_DIMS]

Coordinates in MPI Cartesian topology.

int global_size [3][L_NUM_LEVELS *L_NUM_REGIONS+1]

Overall size of each grid (excluding halo of course).

double global_edges [6][L_NUM_LEVELS *L_NUM_REGIONS+1]

Absolute position of grid edges (excluding halo of course).

bool subgrid_tlayer_key [6][L_NUM_LEVELS *L_NUM_REGIONS]

Boolean flag array to indicate the presence of a TL on sub-grid edges.

std::vector< int > local_size

Dimensions of coarse lattice represented on this rank (includes halo).

std::vector< std::vector< double > > rank_core_edge

Absolute positions of edges of the core region represented on this rank.

· layer_edges sender_layer_pos

Structure containing sender layer edge positions.

• layer_edges recv_layer_pos

Structure containing receiver layer edge positions.

GridObj * Grids

Pointer to grid hierarchy.

• std::vector< std::vector< double >> f_buffer_send

Array of resizeable outgoing buffers used for data transfer.

• std::vector< std::vector< double >> f_buffer_recv

Array of resizeable incoming buffers used for data transfer.

• MPI_Status recv_stat

Status structure for Receive return information.

MPI_Request send_requests [L_MPI_DIRS]

Array of request structures for handles to posted ISends.

• MPI_Status send_stat [L_MPI_DIRS]

Array of statuses for each Isend.

• std::vector< buffer struct > buffer send info

Vectors of buffer_info structures holding sender layer size info.

std::vector< buffer_struct > buffer_recv_info

Vectors of buffer info structures holding receiver layer size info.

• std::ofstream * logout

Logfile handle.

Static Public Attributes

static const int neighbour_vectors [3][26]
 Cartesian unit vectors pointing to each neighbour in Cartesian topology.

5.14.1 Detailed Description

MPI Manager class.

Class to manage all MPI apsects of the code.

5.14.2 Member Function Documentation

```
5.14.2.1 void MpiManager::destroyInstance() [static]
```

Instance destroyer.

```
5.14.2.2 MpiManager * MpiManager::getInstance( ) [static]
```

Instance creator.

```
5.14.2.3 void MpiManager::mpi_buffer_pack ( int dir, GridObj * g )
```

Method to pack the communication buffer.

Communication buffer is packed with distribution values from the supplied grid. Amount of information is dictated by the direction of the communication being prepared.

Parameters

dir	communication direction.
g	grid doing the communication.

5.14.2.4 void MpiManager::mpi_buffer_size ()

Pre-calcualtion of the buffer sizes.

Wrapper method for computing the buffer sizes for every grid on the rank, both sender and receiver. Must be called post-initialisation.

```
5.14.2.5 void MpiManager::mpi_buffer_size_recv ( GridObj *& g )
```

Method to pre-compute the size of the receiver layer buffer.

A halo consists of a receiver (outer) and sender (inner) layer. This method computes the size of the receiver layers in each communication direction (MPI directions).

Parameters

g grid being inspected	J.
------------------------	----

5.14.2.6 void MpiManager::mpi_buffer_size_send (GridObj *& g)

Method to pre-compute the size of the sender layer buffer.

A halo consists of a receiver (outer) and sender (inner) layer. This method computes the size of the sender layers in each communication direction (MPI directions).

Parameters

5.14.2.7 void MpiManager::mpi_buffer_unpack (int dir, GridObj * g)

Method to unpack the communication buffer.

Communication buffer is unpacked onto the supplied grid. Amount and region of unpacking is dictated by the direction of the communication taking place.

Parameters

dir	communication direction.
g	grid doing the communication.

5.14.2.8 int MpiManager::mpi_buildCommunicators ()

Define writable sub-grid communicators.

When using HDF5 in parallel, collective IO operations require all processes to write a non-zero amount of data to the same file. This method examines availability of sub-grid and writable data on the grid (if found) and ensures it is added to a new communicator. Must be called AFTER the grids and buffers have been initialised.

5.14.2.9 void MpiManager::mpi_communicate (int lev, int reg)

Communication routine.

This method implements the communication between grids of the same level and region across MPI processes. Each call effects communication in all valid directions for the grid of the supplied level and region.

Parameters

lev	level of grid to communicate.
reg	region number of grid to communicate.

5.14.2.10 int MpiManager::mpi_getOpposite (int direction)

Helper method to find opposite direction in MPI topology.

The MPI directional vectors do not necessarily correspond to the lattice model direction. The MPI directional vectors are defined separately and hence there is a separate opposite finding method.

Parameters

direction the outgoing direction whose opposite you wish to find.

5.14.2.11 void MpiManager::mpi_gridbuild ()

Domain decomposition.

Method to decompose the domain and identify local grid sizes. Parameters defined here are used in GridObj construction.

5.14.2.12 void MpiManager::mpi_init ()

Initialisation routine.

Method is responsible for initialising the MPI topolgy and associated data. Must be called immediately after MPI_ init(). For serial vuilds this gets called simply to intialise the MPIM with a basic set of grid information used by other methods.

5.14.2.13 void MpiManager::mpi_updateLoadInfo()

Update the load balancing information stored in the MpiManager.

This method is executed by all processes. Counts the ACTIVE cells on the current rank and pushes the information to the master (rank 0) which writes this information to an output file if required. Must be called after the grids have been built or will return zero.

5.14.2.14 void MpiManager::mpi_writeout_buf (std::string filename, int dir)

Buffer ASCII writer.

When verbose MPI logging is turned on this method will write out the communication buffer to an ASCII file.

5.14.3 Member Data Documentation

5.14.3.1 std::vector
buffer_struct> MpiManager::buffer_recv_info

Vectors of buffer_info structures holding receiver layer size info.

5.14.3.2 std::vector
buffer_struct> MpiManager::buffer_send_info

Vectors of buffer_info structures holding sender layer size info.

5.14.3.3 int MpiManager::dimensions[L DIMS]

Size of MPI Cartesian topology.

5.14.3.4 std::vector < std::vector < double > > MpiManager::f_buffer_recv

Array of resizeable incoming buffers used for data transfer.

5.14.3.5 std::vector < std::vector < double > > MpiManager::f_buffer_send

Array of resizeable outgoing buffers used for data transfer.

5.14.3.6 double MpiManager::global_edges[6][L_NUM_LEVELS *L_NUM_REGIONS+1]

Absolute position of grid edges (excluding halo of course).

Since L0 can only be region = 0 this array should be accessed as [level + region_number * L_NUM_LEVELS] in a loop where level cannot be 0. To retrieve L0 info, simply access [0]. The first index should be accessed using the enumerator eCartesianMinMax.

5.14.3.7 int MpiManager::global_size[3][L_NUM_LEVELS *L_NUM_REGIONS+1]

Overall size of each grid (excluding halo of course).

Since L0 can only be region = 0 this array should be accessed as [level + region_number * L_NUM_LEVELS] in a loop where level cannot be 0. To retrieve L0 info, simply access [0].

5.14.3.8 GridObj* MpiManager::Grids

Pointer to grid hierarchy.

5.14.3.9 std::vector<int> MpiManager::local_size

Dimensions of coarse lattice represented on this rank (includes halo).

5.14.3.10 std::ofstream* MpiManager::logout

Logfile handle.

5.14.3.11 int MpiManager::my_rank

Rank number.

5.14.3.12 int MpiManager::neighbour_coords[L_DIMS][L_MPI_DIRS]

Coordinates in MPI topology of neighbour ranks.

5.14.3.13 int MpiManager::neighbour_rank[L_MPI_DIRS]

Neighbour rank number for each direction in Cartesian topology.

5.14.3.14 const int MpiManager::neighbour_vectors [static]

Initial value:

Cartesian unit vectors pointing to each neighbour in Cartesian topology.

Define 3D such that first 8 mimic the 2D ones. Opposites are simply the next or previous column in the array. MSVC 2013 does not support initialiser lists tagged onto the constructor although it is valid C++ so I have had to make it static even though it goes against the idea of the singleton design.

5.14.3.15 int MpiManager::num_ranks

Total number of ranks in MPI Cartesian topology.

5.14.3.16 std::vector<phdf5_struct> MpiManager::p_data

Vector of structures containing halo descriptors for block writing (HDF5)

5.14.3.17 int MpiManager::rank_coords[L_DIMS]

Coordinates in MPI Cartesian topology.

 $5.14.3.18 \quad std:: vector < std:: vector < double > > MpiManager:: rank_core_edge$

Absolute positions of edges of the core region represented on this rank.

Excludes outer overlapping layer (recv layer). Rows are x,y,z start and end pairs and columns are rank number. Access the rows using the eCartMinMax enumeration.

5.14.3.19 layer_edges MpiManager::recv_layer_pos

Structure containing receiver layer edge positions.

5.14.3.20 MPI_Status MpiManager::recv_stat

Status structure for Receive return information.

5.14.3.21 MPI_Request MpiManager::send_requests[L MPI DIRS]

Array of request structures for handles to posted ISends.

5.14.3.22 MPI_Status MpiManager::send_stat[L_MPI_DIRS]

Array of statuses for each Isend.

5.14.3.23 layer_edges MpiManager::sender_layer_pos

Structure containing sender layer edge positions.

5.14.3.24 MPI_Comm MpiManager::subGrid_comm[L NUM LEVELS *L NUM REGIONS]

Communicators for sub-grid / region combinations.

5.14.3.25 bool MpiManager::subgrid_tlayer_key[6][L NUM LEVELS *L NUM REGIONS]

Boolean flag array to indicate the presence of a TL on sub-grid edges.

It is not a given that a sub-grid has a TL on every edge of the grid. Specifically if we have a sub-grid which is perodic (or in future, which merges with another sub-grid?). The HDF5 writer needs to know whether to exclude sites to account for TL or not so we store information here from the sub-grid initialisation. The first index should be accessed using the enumerator eCartesianMinMax. If no sub-grids present then adopts a default 6x1 size.

5.14.3.26 MPI_Comm MpiManager::world_comm

Global MPI communicator.

The documentation for this class was generated from the following files:

- · MpiManager.h
- · Mpi_buffer_pack.cpp
- Mpi_buffer_size_recv.cpp
- Mpi_buffer_size_send.cpp
- Mpi_buffer_unpk.cpp
- MpiManager.cpp

5.15 ObjectManager Class Reference

```
Object Manager class.
```

```
#include <ObjectManager.h>
```

Public Member Functions

• void ibm apply ()

Perform IBM procedure.

void ibm_buildBody (int body_type)

Builds a prefab immersed boundary body.

void ibm_buildBody (PCpts *_PCpts, GridObj *owner)

Wrapper for building a body from a point cloud.

void ibm_initialise ()

Initialise the array of iBodies.

• double ibm_deltaKernel (double rad, double dilation)

Method to evaluate delta kernel at supplied location.

void ibm_interpol (int ib)

Interpolate velocity field onto markers.

void ibm spread (int ib)

Spread restorative force back onto marker support.

void ibm_findSupport (int ib, int m)

Finds support points for iBody.

void ibm_initialiseSupport (int ib, int m, int s, double estimated_position[])

Initialise data associated with support points found.

• void ibm_computeForce (int ib)

Compute restorative force at each marker in a body.

double ibm_findEpsilon (int ib)

Compute epsilon for a given iBody.

void ibm_moveBodies ()

Moves iBodies after applying IBM.

double ibm_bicgstab (std::vector< std::vector< double > &bVector, std
 ::vector< double > &epsilon, double tolerance, int maxiterations)

Biconjugate gradient method.

void ibm_jacowire (int ib)

Structural calculation of flexible cilia.

void ibm_positionUpdate (int ib)

Update the position of a deformable iBody.

void ibm positionUpdateGroup (int group)

Update the position of a group of deformable iBodies.

• void ibm_banbks (double **a, long n, int m1, int m2, double **al, unsigned long indx[], double b[])

Solution of a banded diagonal linear system.

void ibm bandec (double **a, long n, int m1, int m2, double **al, unsigned long indx[], double *d)

LU decomposition of band diagonal matrix.

void bfl_buildBody (int body_type)

Prefab body building routine.

void bfl buildBody (PCpts * PCpts)

Wrapper for building BFL body from point cloud.

void computeLiftDrag (int i, int j, int k, GridObj *g)

Compute forces on a rigid object.

• void io_vtkIBBWriter (double tval)

Write IB body data to VTK file.

• void io_writeBodyPosition (int timestep)

Write out position of immersed boundary bodies.

void io_writeLiftDrag (int timestep)

Write out forces on the markers of immersed boundary bodies.

void io_restart (elOFlag IO_flag, int level)

Read/write IB body information to restart file.

void io_readInCloud (PCpts *_PCpts, eObjectType objtype)

Read in point cloud data.

• void io_writeForceOnObject (double tval)

Write out the forces on a solid object.

Static Public Member Functions

static ObjectManager * getInstance ()

Get instance method.

• static void destroyInstance ()

Destroy instance method.

static ObjectManager * getInstance (GridObj *g)

Overloaded get instance passing in pointer to grid hierarchy.

Friends

· class GridObj

5.15.1 Detailed Description

Object Manager class.

Class to manage all objects in the domain from creation through manipulation to destruction.

5.15.2 Member Function Documentation

5.15.2.1 void ObjectManager::bfl_buildBody (int body_type)

Prefab body building routine.

Not implemented in this version.

Parameters

body_type | type of prefab body to be built.

5.15.2.2 void ObjectManager::bfl_buildBody (PCpts * _PCpts)

Wrapper for building BFL body from point cloud.

Parameters

_PCpts	pointer to point cloud data.
--------	------------------------------

5.15.2.3 void ObjectManager::computeLiftDrag (int i, int j, int k, GridObj*g)

Compute forces on a rigid object.

Uses momentum exchange to compute forces on rigid bodies. Currently working with bounce-back objects only. There is no bounding box so if we have walls in the domain they will be counted as well. Also only possible to differentiate between bodies. Lumps all bodies together identify which body this site relates to so we can differentiate.

Parameters

i	local i-index of solid site.	
j	local j-index of solid site.	
k	k local k-index of solid site.	
g	pointer to grid on which object resides.	

5.15.2.4 void ObjectManager::destroyInstance() [static]

Destroy instance method.

Instance destuctor.

5.15.2.5 ObjectManager * **ObjectManager**::getInstance() [static]

Get instance method.

Instance creator.

5.15.2.6 ObjectManager * **ObjectManager**::getInstance (**GridObj** * g) [static]

Overloaded get instance passing in pointer to grid hierarchy.

Instance creator with grid hierarchy assignment.

Parameters

g pointer to grid hierarchy.

5.15.2.7 void ObjectManager::ibm_apply()

Perform IBM procedure.

5.15.2.8 void ObjectManager::ibm_banbks (double ** a, long n, int m1, int m2, double ** al, unsigned long indx[], double b[])

Solution of a banded diagonal linear system.

Given the arrays A, AL, and INDX as returned from ibm_bandec(), and given a right-hand side vector B[1..n], solves the band diagonal linear equations AX = B. The solution vector X overwrites B. The other input arrays are not modified, and can be left in place for successive calls with different right-hand sides. (C) Copr. 1986-92 Numerical Recipes Software ?421.1-9.

Parameters

а	array of subdiagonal and superdiagonals rows	
n	size of the square matrix A	
m1	number of subdiagonal rows	
m2	number of superdiagonal rows	
al	lower triangular matrix	
indx	row permutation vector	
b	right hand side vector	

5.15.2.9 void ObjectManager::ibm_bandec (double ** a, long n, int m1, int m2, double ** al, unsigned long indx[], double * d)

LU decomposition of band diagonal matrix.

Given an n by n band diagonal matrix A with m1 subdiagonal rows and m2 superdiagonal rows, compactly stored in the array A[1..n][1..m1+m2+1], this routine constructs an LU decomposition of a rowwise permutation of A. The upper triangular matrix replaces A, while the lower triangular matrix is returned in AL[1..n][1..m1]. INDX[1..n] is an output vector which records the row permutation effected by the partial pivoting; D is output as +/-1 depending on whether the number of row interchanges was even or odd, respectively. This routine is used in combination with ibm_banbks() to solve band-diagonal sets of equations. Once the matrix A has been decomposed, any number of right-hand sides can be solved in turn by repeated calls to ibm_banbks(). (C) Copr. 1986-92 Numerical Recipes Software ?421.1-9.

Parameters

а	array of subdiagonal and superdiagonals rows	
n	size of the square matrix A	
m1	number of subdiagonal rows	
m2	number of superdiagonal rows	
al	lower triangular matrix	
indx	row permutation vector	
d	odd or even number of row interchages	

5.15.2.10 double ObjectManager::ibm_bicgstab (std::vector< std::vector< double >> & Amatrix, std::vector< double > & bVector, std::vector< double > & epsilon, double tolerance, int maxiterations)

Biconjugate gradient method.

Biconjugate gradient stabilised method of solving a linear system Ax = b. Solution is performed iteratively.

Parameters

Amatrix	the A matrix in the linear system.
bVector	the b vector in the linear system.
epsilon	epsilon paramters for each marker.
tolerance	tolerance of solution.
maxiterations	maximum number of iterations.

Returns

the minimum residual achieved by the solver.

5.15.2.11 void ObjectManager::ibm_buildBody (int body_type)

Builds a prefab immersed boundary body.

Parameters

body_type	type of body to be built.
-----------	---------------------------

5.15.2.12 void ObjectManager::ibm_buildBody (PCpts * _PCpts, GridObj * owner)

Wrapper for building a body from a point cloud.

Parameters

_PCpts	pointer to point cloud data.
owner	pointer to the grid on which the body is to be placed.

5.15.2.13 void ObjectManager::ibm_computeForce (int ib)

Compute restorative force at each marker in a body.

Parameters

ib	iBody being operated on.
----	--------------------------

5.15.2.14 double ObjectManager::ibm_deltaKernel (double radius, double dilation)

Method to evaluate delta kernel at supplied location.

Radius and dilation must be in the same units.

Parameters

radius	location at which kernel should be evaluated.
dilation	width of kernel function.

Returns

value of kernel function.

5.15.2.15 double ObjectManager::ibm_findEpsilon (int ib)

Compute epsilon for a given iBody.

Parameters

ib	iBody being operated on.
----	--------------------------

5.15.2.16 void ObjectManager::ibm_findSupport (int ib, int m)

Finds support points for iBody.

Support for given marker in given body is sought on the owning grid.

Parameters

ib	body under consideration.
m	marker whose support is to be found.

5.15.2.17 void ObjectManager::ibm_initialise ()

Initialise the array of iBodies.

Computes support and epsilon values.

5.15.2.18 void ObjectManager::ibm_initialiseSupport (int ib, int m, int s, double estimated_position[])

Initialise data associated with support points found.

Finds and stores the delta values of the support points.

Parameters

ib	iBody being operated on.
m	marker of interest.
s	support point of interest.
estimate_position	vector containing the estimated position of the support point.

5.15.2.19 void ObjectManager::ibm_interpol (int ib)

Interpolate velocity field onto markers.

Parameters

ib iBody being ope	erated on.
----------------------	------------

5.15.2.20 void ObjectManager::ibm_jacowire (int ib)

Structural calculation of flexible cilia.

Models the structural behaviour of a thin wire using Euler-Bernoulli beam elements. Only implemented for one simply supported end and one free end at present.

Parameters

ib index of body to which calculation is to be applied.

5.15.2.21 void ObjectManager::ibm_moveBodies ()

Moves iBodies after applying IBM.

Wrapper for relocating markers of an iBody be calling appropriate positional update routine.

5.15.2.22 void ObjectManager::ibm_positionUpdate (int ib)

Update the position of a deformable iBody.

Wrapper for applying external forcing or structural calculations to iBodies marked as deformable. Updates support on completion.

Parameters

ib index of body to which calculation is to be applied.

5.15.2.23 void ObjectManager::ibm_positionUpdateGroup (int group)

Update the position of a group of deformable iBodies.

Updates the position of a group of non-flexible moving (deformable) bodies by using the first flexible body in the group as the driver. Must be called after all previous positional update routines have been called.

Parameters

group	group ID to be updated.
-------	-------------------------

5.15.2.24 void ObjectManager::ibm_spread (int ib)

Spread restorative force back onto marker support.

Parameters

ib iBody being operated	on.
-------------------------	-----

5.15.2.25 void ObjectManager::io_readInCloud (PCpts * _PCpts, eObjectType objtype)

Read in point cloud data.

Input data must be in tab separated, 3-column format in the input directory.

Parameters

_PCpts	pointer to empty point cloud data container.
objtype	type of object to be read in.

5.15.2.26 void ObjectManager::io_restart (eIOFlag IO_flag, int level)

Read/write IB body information to restart file.

Parameters

IO_flag	flag indicating write (true) or read (false).
level	level of the grid begin written/read

5.15.2.27 void ObjectManager::io_vtklBBWriter (_double tval_)

Write IB body data to VTK file.

Currently can only write out un-closed bodies like filaments.

Parameters

tval	time value at which the write out is being performed.
------	---

5.15.2.28 void ObjectManager::io_writeBodyPosition (int timestep)

Write out position of immersed boundary bodies.

Parameters

	timestep	timestep at which the write out is being performed.
--	----------	---

5.15.2.29 void ObjectManager::io_writeForceOnObject (double tval)

Write out the forces on a solid object.

Writes out the forces on solid objects in the domain computed using momentum exchange. Each rank writes its own file. Output is a CSV file.

Parameters

tval	time value at which write out is taking place.
------	--

5.15.2.30 void ObjectManager::io_writeLiftDrag (int timestep)

Write out forces on the markers of immersed boundary bodies.

Parameters

	timestep	timestep at which the write out is being performed.
--	----------	---

5.15.3 Friends And Related Function Documentation

5.15.3.1 friend class GridObj [friend]

The documentation for this class was generated from the following files:

- ObjectManager.h
- ObjectManager.cpp
- ObjectManager_init_bflbody.cpp
- ObjectManager_init_ibmbody.cpp
- ObjectManager_ops_ibm.cpp
- ObjectManager_ops_ibmflex.cpp
- ObjectManager_ops_io.cpp

5.16 PCpts Class Reference

Class to hold point cloud data.

```
#include <PCpts.h>
```

Public Member Functions

• PCpts (void)

Default constructor.

• ∼PCpts (void)

Default destructor.

Public Attributes

```
    std::vector< double > x
```

Vector of X positions.

• std::vector < double > y

Vector of Y positions.

std::vector< double > z

Vector of Z positions.

5.16.1 Detailed Description

Class to hold point cloud data.

A container class for hold the X, Y and Z positions of points in a point cloud.

5.16.2 Constructor & Destructor Documentation

```
5.16.2.1 PCpts::PCpts(void) [inline]
```

Default constructor.

```
5.16.2.2 PCpts::~PCpts(void) [inline]
```

Default destructor.

5.16.3 Member Data Documentation

5.16.3.1 std::vector < double > PCpts::x

Vector of X positions.

5.16.3.2 std::vector<double> PCpts::y

Vector of Y positions.

5.16.3.3 std::vector<double> PCpts::z

Vector of Z positions.

The documentation for this class was generated from the following file:

• PCpts.h

5.17 MpiManager::phdf5_struct Struct Reference

Structure for storing halo information for HDF5.

```
#include <MpiManager.h>
```

Public Attributes

• int i_start

Starting i-index for writable region.

• int i_end

Ending i-index for writable region.

• int j_start

Starting j-index for writable region.

int j_end

Ending j-index for writable region.

int k_start

Starting k-index for writable region.

• int k_end

Ending k-index for writable region.

int level

Grid level to which these data correspond.

· int region

Region number to which these data correspond.

• unsigned int writable_data_count = 0

Writable data count.

5.17.1 Detailed Description

Structure for storing halo information for HDF5.

Structure also stores the amount of writable data on the grid.

5.17.2 Member Data Documentation 5.17.2.1 int MpiManager::phdf5_struct::i_end Ending i-index for writable region. 5.17.2.2 int MpiManager::phdf5_struct::i_start Starting i-index for writable region. 5.17.2.3 int MpiManager::phdf5_struct::j_end Ending j-index for writable region. 5.17.2.4 int MpiManager::phdf5_struct::j_start Starting j-index for writable region. 5.17.2.5 int MpiManager::phdf5_struct::k_end Ending k-index for writable region. 5.17.2.6 int MpiManager::phdf5_struct::k_start Starting k-index for writable region. 5.17.2.7 int MpiManager::phdf5_struct::level Grid level to which these data correspond. 5.17.2.8 int MpiManager::phdf5_struct::region Region number to which these data correspond. 5.17.2.9 unsigned int MpiManager::phdf5_struct::writable_data_count = 0 Writable data count. The documentation for this struct was generated from the following file:

· MpiManager.h

Generated by Doxygen

Chapter 6

File Documentation

6.1 BFLBody.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/BFLBody.h"
#include "../inc/MpiManager.h"
#include "../inc/PCpts.h"
#include "../inc/GridObj.h"
#include "../inc/GridUtils.h"
```

6.2 BFLBody.h File Reference

```
#include "stdafx.h"
#include "Body.h"
#include "BFLMarker.h"
```

Classes

```
• class BFLBody

BFL body.
```

6.3 BFLMarker.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/BFLMarker.h"
#include "../inc/GridUtils.h"
```

82 File Documentation

6.4 BFLMarker.h File Reference

```
#include "stdafx.h"
#include "Marker.h"
```

Classes

class BFLMarker
 BFL marker.

6.5 Body.h File Reference

```
#include "stdafx.h"
#include "GridUtils.h"
```

Classes

· class MarkerData

Container class to hold marker information.

class Body < MarkerType >
 Generic body class.

6.6 definitions.h File Reference

```
#include <time.h>
#include <iostream>
#include <fstream>
#include <vector>
#include <iomanip>
#include <math.h>
#include <string>
#include <mpi.h>
```

Macros

```
    #define LUMA_VERSION "1.4.0-alpha"
    LUMA version.
```

• #define L_HDF_DEBUG

Write some HDF5 debugging information.

#define L_PI 3.14159265358979323846

PI definition.

• #define L_BUILD_FOR_MPI

Enable MPI features in build.

```
    #define L_OUT_EVERY 100

     How many timesteps before whole grid output.
• #define L_OUT_EVERY_FORCES 1
     Specific output frequency of body forces.
• #define L_OUTPUT_PRECISION 5
     Precision of output (for text writers)
• #define L_HDF5_OUTPUT
     HDF5 dump on output.

    #define L_PROBE_OUT_FREQ 250

     Write out frequency of probe output.
• #define L GRAVITY ON

    #define L_GRAVITY_FORCE 0.0001

     Expression for the gravity force.
• #define L_GRAVITY_DIRECTION eXDirection
     Gravity direction (specify using enumeration)
• #define L_NO_FLOW
     Initialise the domain with no flow.
• #define L RESTART OUT FREQ 5000
     Frequency of write out of restart file.
• #define L_CSMAG 0.07

    #define L_TIMESTEPS 10

     Number of time steps to run simulation for.

    #define L MPI XCORES 2

     Number of MPI ranks to divide domain into in X direction.
• #define L_MPI_YCORES 2
• #define L_MPI_ZCORES 2
• #define L DIMS 3
     Number of dimensions to the problem.

    #define L_RESOLUTION 20

     Number of lattice sites per unit length.
• #define L BX 2.0
     End of domain-x.

    #define L_BY 1.0

     End of domain-y.
• #define L BZ 1.0
     End of domain-z.
• #define L_PHYSICAL_U 0.2
     Reference velocity of the real fluid to model [m/s].
• #define L UREF 0.04
     Reference velocity for scaling.
• #define L UMAX L UREF*1.5
     Max velocity of inlet profile.
• #define L_UX0 0.04
     Initial/inlet x-velocity.
• #define L UY0 0.0
     Initial/inlet y-velocity.

    #define L UZ0 0.0

     Initial/inlet z-velocity.

    #define L RHOIN 1

     Initial density.
```

#define L_RE 150

84 File Documentation

Desired Reynolds number. #define L_IB_ON_LEV 0 Grid level for immersed boundary object (0 if no refined regions, -1 if no IBM) • #define L IB ON REG 0 Grid region for immersed boundary object (0 if no refined regions, -1 if no IBM) #define L VTK BODY WRITE Write out the bodies to a VTK file. #define L IBB FROM FILE Build immersed bodies from a point cloud file. #define L_IBB_ON_GRID_LEV L_IB_ON_LEV Provide grid level on which object should be added. • #define L_IBB_ON_GRID_REG L_IB_ON_REG Provide grid region on which object should be added. • #define L_START_IBB_X 0.4 Start X of object bounding box. • #define L START IBB Y 0.35 Start Y of object bounding box. • #define L CENTRE IBB Z 0.5 Centre of object bounding box in Z direction. #define L IBB LENGTH 0.2 The object input is scaled based on this dimension. #define L_IBB_SCALE_DIRECTION eXDirection Scale in this direction (specify as enumeration) #define L_IBB_REF_LENGTH 0.2 Reference length to be used in the definition of Reynolds number. • #define L NUM MARKERS 31 Number of Lagrange points to use when building a prefab body (approximately) #define L IBB MOVABLE false Default deformable property of body to be built (whether it moves or not) • #define L IBB FLEXIBLE false Whether a structural calculation needs to be performed on the body. #define L IBB X 0.2 X Position of body centre. #define L_IBB_Y 0.2 Y Position of body centre. • #define L_IBB_Z 0.0 Z Position of body centre. • #define L_IBB_W 0.5 Width (x) of IB body. • #define L IBB L 0.5 Length (y) of IB body. • #define L IBB D 0.5 Depth (z) of IB body. • #define L IBB R 0.05 Radius of IB body. #define L_IBB_FILAMENT_LENGTH 0.5 Length of filament. #define L_IBB_FILAMENT_START_X 0.2 Start X position of the filament. • #define L_IBB_FILAMENT_START_Y 0.5

Start Y position of the filament.

```
    #define L_IBB_FILAMENT_START_Z 0.5

     Start Z position of the filament.
• #define L IBB ANGLE VERT 90
     Inclination of filament in XY plane.
• #define L_IBB_ANGLE_HORZ 0
     Inclination of filament in XZ plane.
• #define L FILAMENT START BC 2
     Type of boundary condition at filament start: 0 == free; 1 = simply supported; 2 == clamped.
• #define L FILAMENT END BC 0
     Type of boundary condition at filament end: 0 == free; 1 = simply supported; 2 == clamped.
• #define L IBB DELTA RHO 1.0
     Difference in density (lattice units) between solid and fluid.

    #define L_IBB_EI 2.0

     Flexural rigidity (lattice units) of filament.

    #define L WALLS ON

      Turn on no-slip walls (default is top, bottom, front, back unless L_WALLS_ON_2D is used)

    #define L_WALL_THICKNESS_BOTTOM (L_BX/L_N)

     Thickness of wall.

    #define L_WALL_THICKNESS_TOP (L_BX/L_N)

     Thickness of top wall.

    #define L_WALL_THICKNESS_FRONT (L_BX/L_N)

     Thickness of front (3D) wall.

    #define L WALL THICKNESS BACK (L BX/L N)

     Thickness of back (3D) wall.
• #define L_SOLID_BLOCK_ON
     Add solid block to the domain.

    #define L BLOCK ON GRID LEV 2

     Provide grid level on which block should be added.
• #define L_BLOCK_ON_GRID_REG 0
     Provide grid region on which block should be added.
• #define L BLOCK MIN X 0.9
     Start of object/wall in x-direction.
• #define L_BLOCK_MAX_X 1.1
     End of object/wall in x-direction.
• #define L BLOCK MIN Y 0.4
     Start of object/wall in y-direction.

    #define L BLOCK MAX Y 0.6

     End of object/wall in y-direction.

    #define L_BLOCK_MIN_Z 0.3

     Start of object/wall in z-direction.
• #define L BLOCK MAX Z 0.7
     End of object/wall in z-direction.

    #define L_OBJECT_ON_GRID_LEV 2

     Provide grid level on which object should be added.
• #define L OBJECT ON GRID REG 0
     Provide grid region on which object should be added.

    #define L_START_OBJECT_X 0.7

     Start of object bounding box in X direction.

    #define L START OBJECT Y 0.4

     Start of object bounding box in Y direction.
• #define L_CENTRE_OBJECT_Z 0.5
```

86 File Documentation

Centre of object bounding box in Z direction.

#define L_OBJECT_LENGTH 0.2

The object input is scaled based on this dimension.

• #define L OBJECT SCALE DIRECTION eXDirection

Scale in this direction (specify as enumeration)

#define L OBJECT REF LENGTH 0.2

Reference length to be used in the definition of Reynolds number.

• #define L BFL ON GRID LEV 2

Provide grid level on which BFL body should be added.

#define L_BFL_ON_GRID_REG 0

Provide grid region on which BFL body should be added.

• #define L START BFL X 0.9

Start of object bounding box in X direction.

• #define L_START_BFL_Y 0.4

Start of object bounding box in Y direction.

• #define L CENTRE BFL Z 0.5

Centre of object bounding box in Z direction.

#define L_BFL_LENGTH 0.2

The BFL object input is scaled based on this dimension.

#define L BFL SCALE DIRECTION eXDirection

Scale in this direction (specify as enumeration)

• #define L_BFL_REF_LENGTH 0.2

Reference length to be used in the definition of Reynolds number.

#define L_NUM_LEVELS 2

Levels of refinement (0 = coarse grid only)

• #define L NUM REGIONS 1

Number of refined regions (can be arbitrary if L_NUM_LEVELS = 0)

- #define L N (L BX * L RESOLUTION)
- #define L_M (L_BY * L_RESOLUTION)
- #define L K (L BZ * L RESOLUTION)
- #define L_NUM_VELS 19

Number of lattice velocities.

#define L_MPI_DIRS 26

Number of MPI directions.

Variables

• static const int cNumProbes [3] = {3, 3, 3}

Number of probes in each direction (x, y, z)

static const double cProbeLimsX [2] = {0.1, 0.2}

Limits of X plane for array of probes.

• static const double cProbeLimsY [2] = {0.1, 0.2}

Limits of Y plane for array of probes.

• static const double cProbeLimsZ [2] = {0.1, 0.2}

Limits of Z plane for array of probes.

- static double cRefStartX [L_NUM_LEVELS][L_NUM_REGIONS] = { { 0.5 }, { 0.6 } }
- static double cRefEndX [L_NUM_LEVELS][L_NUM_REGIONS] = { { 1.5 }, { 1.4 } }
- static double cRefStartY [L NUM LEVELS][L NUM REGIONS] = { { 0.2 }, { 0.3 } }
- static double cRefEndY [L_NUM_LEVELS][L_NUM_REGIONS] = { { 0.8 }, { 0.7 } }
- static double cRefStartZ [L_NUM_LEVELS][L_NUM_REGIONS] = { { 0.1 }, { 0.25 } }
- static double cRefEndZ [L_NUM_LEVELS][L_NUM_REGIONS] = { { 0.9 }, { 0.75 } }

6.6.1 Macro Definition Documentation

6.6.1.1 #define L_BFL_LENGTH 0.2

The BFL object input is scaled based on this dimension.

6.6.1.2 #define L_BFL_ON_GRID_LEV 2

Provide grid level on which BFL body should be added.

6.6.1.3 #define L_BFL_ON_GRID_REG 0

Provide grid region on which BFL body should be added.

6.6.1.4 #define L_BFL_REF_LENGTH 0.2

Reference length to be used in the definition of Reynolds number.

6.6.1.5 #define L_BFL_SCALE_DIRECTION eXDirection

Scale in this direction (specify as enumeration)

6.6.1.6 #define L_BLOCK_MAX_X 1.1

End of object/wall in x-direction.

6.6.1.7 #define L_BLOCK_MAX_Y 0.6

End of object/wall in y-direction.

6.6.1.8 #define L BLOCK MAX Z 0.7

End of object/wall in z-direction.

6.6.1.9 #define L_BLOCK_MIN_X 0.9

Start of object/wall in x-direction.

6.6.1.10 #define L_BLOCK_MIN_Y 0.4

Start of object/wall in y-direction.

6.6.1.11 #define L_BLOCK_MIN_Z 0.3 Start of object/wall in z-direction. 6.6.1.12 #define L_BLOCK_ON_GRID_LEV 2 Provide grid level on which block should be added. 6.6.1.13 #define L_BLOCK_ON_GRID_REG 0 Provide grid region on which block should be added. 6.6.1.14 #define L_BUILD_FOR_MPI Enable MPI features in build. 6.6.1.15 #define L_BX 2.0 End of domain-x. 6.6.1.16 #define L_BY 1.0 End of domain-y. 6.6.1.17 #define L_BZ 1.0 End of domain-z. 6.6.1.18 #define L_CENTRE_BFL_Z 0.5 Centre of object bounding box in Z direction. 6.6.1.19 #define L_CENTRE_IBB_Z 0.5 Centre of object bounding box in Z direction.

6.6.1.20 #define L_CENTRE_OBJECT_Z 0.5

Centre of object bounding box in Z direction.

```
6.6.1.21 #define L_CSMAG 0.07
6.6.1.22 #define L_DIMS 3
Number of dimensions to the problem.
6.6.1.23 #define L_FILAMENT_END_BC 0
Type of boundary condition at filament end: 0 == free; 1 = simply supported; 2 == clamped.
6.6.1.24 #define L_FILAMENT_START_BC 2
Type of boundary condition at filament start: 0 == free; 1 = simply supported; 2 == clamped.
6.6.1.25 #define L_GRAVITY_DIRECTION eXDirection
Gravity direction (specify using enumeration)
6.6.1.26 #define L_GRAVITY_FORCE 0.0001
Expression for the gravity force.
6.6.1.27 #define L_GRAVITY_ON
Turn on gravity force
6.6.1.28 #define L_HDF5_OUTPUT
HDF5 dump on output.
6.6.1.29 #define L_HDF_DEBUG
Write some HDF5 debugging information.
6.6.1.30 #define L_IB_ON_LEV 0
Grid level for immersed boundary object (0 if no refined regions, -1 if no IBM)
6.6.1.31 #define L_IB_ON_REG 0
```

Generated by Doxygen

Grid region for immersed boundary object (0 if no refined regions, -1 if no IBM)

6.6.1.32 #define L_IBB_ANGLE_HORZ 0 Inclination of filament in XZ plane. 6.6.1.33 #define L_IBB_ANGLE_VERT 90 Inclination of filament in XY plane. 6.6.1.34 #define L_IBB_D 0.5 Depth (z) of IB body. 6.6.1.35 #define L_IBB_DELTA_RHO 1.0 Difference in density (lattice units) between solid and fluid. 6.6.1.36 #define L_IBB_EI 2.0 Flexural rigidity (lattice units) of filament. 6.6.1.37 #define L_IBB_FILAMENT_LENGTH 0.5 Length of filament. 6.6.1.38 #define L_IBB_FILAMENT_START_X 0.2 Start X position of the filament. 6.6.1.39 #define L_IBB_FILAMENT_START_Y 0.5 Start Y position of the filament. 6.6.1.40 #define L_IBB_FILAMENT_START_Z 0.5 Start Z position of the filament.

6.6.1.41 #define L_IBB_FLEXIBLE false

Whether a structural calculation needs to be performed on the body.

6.6.1.42 #define L_IBB_FROM_FILE

Build immersed bodies from a point cloud file.

6.6.1.43 #define L_IBB_L 0.5

Length (y) of IB body.

6.6.1.44 #define L_IBB_LENGTH 0.2

The object input is scaled based on this dimension.

6.6.1.45 #define L_IBB_MOVABLE false

Default deformable property of body to be built (whether it moves or not)

6.6.1.46 #define L_IBB_ON_GRID_LEV L_IB_ON_LEV

Provide grid level on which object should be added.

6.6.1.47 #define L_IBB_ON_GRID_REG L_IB_ON_REG

Provide grid region on which object should be added.

6.6.1.48 #define L_IBB_R 0.05

Radius of IB body.

6.6.1.49 #define L_IBB_REF_LENGTH 0.2

Reference length to be used in the definition of Reynolds number.

 $6.6.1.50 \quad \hbox{\#define L_IBB_SCALE_DIRECTION eXDirection}$

Scale in this direction (specify as enumeration)

6.6.1.51 #define L_IBB_W 0.5

Width (x) of IB body.

```
6.6.1.52 #define L_IBB_X 0.2
```

X Position of body centre.

```
6.6.1.53 #define L_IBB_Y 0.2
```

Y Position of body centre.

```
6.6.1.54 #define L_IBB_Z 0.0
```

Z Position of body centre.

```
6.6.1.55 #define L_K (L_BZ * L_RESOLUTION)
```

6.6.1.56 #define L_M (L_BY * L_RESOLUTION)

6.6.1.57 #define L_MPI_DIRS 26

Number of MPI directions.

6.6.1.58 #define L_MPI_XCORES 2

Number of MPI ranks to divide domain into in X direction.

6.6.1.59 #define L_MPI_YCORES 2

Number of MPI ranks to divide domain into in Y direction

6.6.1.60 #define L_MPI_ZCORES 2

Number of MPI ranks to divide domain into in Z direction. Set to 1 if doing a 2D problem when using custom MPI sizes

6.6.1.61 #define L_N (L_BX * L_RESOLUTION)

6.6.1.62 #define L_NO_FLOW

Initialise the domain with no flow.

6.6.1.63 #define L_NUM_LEVELS 2

Levels of refinement (0 = coarse grid only)

6.6.1.64 #define L_NUM_MARKERS 31

Number of Lagrange points to use when building a prefab body (approximately)

6.6.1.65 #define L_NUM_REGIONS 1

Number of refined regions (can be arbitrary if L_NUM_LEVELS = 0)

6.6.1.66 #define L_NUM_VELS 19

Number of lattice velocities.

6.6.1.67 #define L_OBJECT_LENGTH 0.2

The object input is scaled based on this dimension.

6.6.1.68 #define L_OBJECT_ON_GRID_LEV 2

Provide grid level on which object should be added.

6.6.1.69 #define L_OBJECT_ON_GRID_REG 0

Provide grid region on which object should be added.

6.6.1.70 #define L_OBJECT_REF_LENGTH 0.2

Reference length to be used in the definition of Reynolds number.

6.6.1.71 #define L_OBJECT_SCALE_DIRECTION eXDirection

Scale in this direction (specify as enumeration)

6.6.1.72 #define L_OUT_EVERY 100

How many timesteps before whole grid output.

6.6.1.73 #define L_OUT_EVERY_FORCES 1

Specific output frequency of body forces.

6.6.1.74 #define L_OUTPUT_PRECISION 5 Precision of output (for text writers) 6.6.1.75 #define L_PHYSICAL_U 0.2 Reference velocity of the real fluid to model [m/s]. 6.6.1.76 #define L_PI 3.14159265358979323846 PI definition. 6.6.1.77 #define L_PROBE_OUT_FREQ 250 Write out frequency of probe output. 6.6.1.78 #define L_RE 150 Desired Reynolds number. 6.6.1.79 #define L_RESOLUTION 20 Number of lattice sites per unit length. 6.6.1.80 #define L_RESTART_OUT_FREQ 5000 Frequency of write out of restart file. 6.6.1.81 #define L_RHOIN 1 Initial density. 6.6.1.82 #define L_SOLID_BLOCK_ON Add solid block to the domain. 6.6.1.83 #define L_START_BFL_X 0.9

Start of object bounding box in X direction.

6.6.1.84 #define L_START_BFL_Y 0.4

Start of object bounding box in Y direction.

6.6.1.85 #define L_START_IBB_X 0.4

Start X of object bounding box.

6.6.1.86 #define L_START_IBB_Y 0.35

Start Y of object bounding box.

6.6.1.87 #define L_START_OBJECT_X 0.7

Start of object bounding box in X direction.

6.6.1.88 #define L_START_OBJECT_Y 0.4

Start of object bounding box in Y direction.

6.6.1.89 #define L_TIMESTEPS 10

Number of time steps to run simulation for.

6.6.1.90 #define L_UMAX L_UREF*1.5

Max velocity of inlet profile.

6.6.1.91 #define L_UREF 0.04

Reference velocity for scaling.

6.6.1.92 #define L_UX0 0.04

Initial/inlet x-velocity.

6.6.1.93 #define L_UY0 0.0

Initial/inlet y-velocity.

```
6.6.1.94 #define L_UZ0 0.0
Initial/inlet z-velocity.
6.6.1.95 #define L_VTK_BODY_WRITE
Write out the bodies to a VTK file.
6.6.1.96 #define L_WALL_THICKNESS_BACK (L_BX/L_N)
Thickness of back (3D) wall.
6.6.1.97 #define L_WALL_THICKNESS_BOTTOM (L_BX/L_N)
Thickness of wall.
6.6.1.98 #define L_WALL_THICKNESS_FRONT (L_BX/L_N)
Thickness of front (3D) wall.
6.6.1.99 #define L_WALL_THICKNESS_TOP (L_BX/L_N)
Thickness of top wall.
6.6.1.100 #define L_WALLS_ON
Turn on no-slip walls (default is top, bottom, front, back unless L_WALLS_ON_2D is used)
6.6.1.101 #define LUMA_VERSION "1.4.0-alpha"
LUMA version.
6.6.2 Variable Documentation
6.6.2.1 const int cNumProbes[3] = {3, 3, 3} [static]
Number of probes in each direction (x, y, z)
6.6.2.2 const double cProbeLimsX[2] = {0.1, 0.2} [static]
```

Limits of X plane for array of probes.

```
6.6.2.3 const double cProbeLimsY[2] = {0.1, 0.2} [static]

Limits of Y plane for array of probes.

6.6.2.4 const double cProbeLimsZ[2] = {0.1, 0.2} [static]

Limits of Z plane for array of probes.

6.6.2.5 double cRefEndX[L_NUM_LEVELS][L_NUM_REGIONS] = {{1.5}, {1.4}} [static]

6.6.2.6 double cRefEndY[L_NUM_LEVELS][L_NUM_REGIONS] = {{0.8}, {0.7}} [static]

6.6.2.7 double cRefEndZ[L_NUM_LEVELS][L_NUM_REGIONS] = {{0.9}, {0.75}} [static]

6.6.2.8 double cRefStartX[L_NUM_LEVELS][L_NUM_REGIONS] = {{0.5}, {0.6}} [static]

6.6.2.9 double cRefStartY[L_NUM_LEVELS][L_NUM_REGIONS] = {{0.5}, {0.6}} [static]
```

6.6.2.10 double cRefStartZ[L_NUM_LEVELS][L_NUM_REGIONS] = {{0.1}, {0.25}} [static]

6.7 GridObj.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/GridObj.h"
#include "../inc/MpiManager.h"
#include "../inc/GridUtils.h"
```

6.8 GridObj.h File Reference

```
#include "stdafx.h"
#include "IVector.h"
```

Classes

class GridObj

Grid class.

Enumerations

```
enum eType {
      eSolid, eFluid, eRefined, eTransitionToCoarser,
      eTransitionToFiner, eBFL, eSymmetry, eInlet,
      eOutlet, eRefinedSolid, eRefinedSymmetry, eRefinedInlet }
         Lattice typing labels.
    • enum eBCType {
      eBCAII, eBCSolidSymmetry, eBCInlet, eBCOutlet,
      eBCInletOutlet, eBCBFL }
         Flag for indicating which BCs to apply.
    enum elOFlag { eWrite, eRead }
         Flag for indicating write or read action for IO methods.
6.8.1 Enumeration Type Documentation
6.8.1.1 enum eBCType
Flag for indicating which BCs to apply.
Enumerator
     eBCAII Apply all BCs.
     eBCSolidSymmetry Apply just solid and symmetry BCs.
     eBCInlet Apply just inlet BCs.
     eBCOutlet Apply just outlet BCs.
     eBCInletOutlet Apply inlet and outlet BCs.
     eBCBFL Apply just BFL BCs.
6.8.1.2 enum eIOFlag
Flag for indicating write or read action for IO methods.
Enumerator
     eWrite Write to file.
     eRead Read from file.
6.8.1.3 enum eType
Lattice typing labels.
Enumerator
     eSolid Rigid, solid site.
     eFluid Fluid site.
     eRefined Fluid site which is represented on a finer grid.
     eTransitionToCoarser Fluid site coupled to a coarser grid.
     eTransitionToFiner Fluid site coupled to a finer grid.
     eBFL Site containing a BFL marker.
     eSymmetry Symmetry boundary.
     elnlet Inlet boundary.
     eOutlet Outlet boundary.
     eRefinedSolid Rigid, solid site represented on a finer grid.
     eRefinedSymmetry Symmtery boundary represented on a finer grid.
     eRefinedInlet Inlet site represented on a finer grid.
```

6.9 GridObj_init_grids.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/GridObj.h"
#include "../inc/MpiManager.h"
#include "../inc/GridUtils.h"
```

6.10 GridObj_ops_boundary.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/GridObj.h"
#include "../inc/BFLBody.h"
#include "../inc/ObjectManager.h"
#include "../inc/GridUtils.h"
```

6.11 GridObj_ops_io.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/GridObj.h"
#include "../inc/MpiManager.h"
#include "../inc/ObjectManager.h"
#include "../inc/GridUtils.h"
#include "../inc/hdf5luma.h"
#include "../inc/GridUnits.h"
```

6.12 GridObj_ops_lbm.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/GridObj.h"
#include "../inc/IVector.h"
#include "../inc/ObjectManager.h"
#include "../inc/MpiManager.h"
#include "../inc/GridUtils.h"
```

6.13 GridObj_ops_lbm_optimised.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/GridObj.h"
#include "../inc/ObjectManager.h"
#include "../inc/MpiManager.h"
#include "../inc/GridUtils.h"
```

6.14 GridUnits.h File Reference

```
#include "../inc/GridObj.h"
```

Classes

• class GridUnits GridUnits.

6.15 GridUtils.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/GridUtils.h"
#include "../inc/MpiManager.h"
#include "../inc/GridObj.h"
```

6.16 GridUtils.h File Reference

```
#include "stdafx.h"
#include "GridObj.h"
```

Classes

class GridUtils
 Grid utility class.

Enumerations

enum eLocationOnRank { eNone, eCore, eHalo }

Enumeration indicating the location of a site when queried using isOnThisRank()

• enum eCartesianDirection { eXDirection, eYDirection, eZDirection }

Enumeration for directional options.

• enum eMinMax { eMinimum, eMaximum }

Enumeration for minimum and maximum.

```
    enum eCartMinMax {
        eXMin, eXMax, eYMin, eYMax,
        eZMin, eZMax }
```

Enumeration for the combination of eCartesianDirection and eMinMax as these are often used together to index arrays.

• enum eEdgeMinMax { eLeftMin, eLeftMax, eRightMin, eRightMax }

Enumeration for the combination of Left and Right min and max edges.

6.16.1 Enumeration Type Documentation

6.16.1.1 enum eCartesianDirection

Enumeration for directional options.

Enumerator

```
eXDirection X-direction.eYDirection Y-direction.eZDirection Z-direction.
```

6.16.1.2 enum eCartMinMax

Enumeration for the combination of eCartesianDirection and eMinMax as these are often used together to index arrays.

Enumerator

eXMin

eXMax

eYMin

eYMax

eZMin

eZMax

6.16.1.3 enum eEdgeMinMax

Enumeration for the combination of Left and Right min and max edges.

Enumerator

eLeftMin

eLeftMax

eRightMin

eRightMax

6.16.1.4 enum eLocationOnRank

Enumeration indicating the location of a site when queried using isOnThisRank()

Enumerator

eNone No information provided (default).

eCore Site on core (including send layer).

eHalo Site in halo (recv layer).

6.16.1.5 enum eMinMax

Enumeration for minimum and maximum.

Some utility methods need to know whether they should be looking at or for a maximum or minimum edge of a grid so we use this enumeration to specify.

Enumerator

```
eMinimum Minimum.eMaximum Maximum.
```

6.17 hdf5luma.h File Reference

```
#include "stdafx.h"
#include "hdf5.h"
#include "MpiManager.h"
```

Macros

- #define H5 BUILT AS DYNAMIC LIB
- #define HDF5_EXT_ZLIB
- #define HDF5_EXT_SZIP

Enumerations

enum eHdf5SlabType {
 eScalar, eVector, eProductVector, ePosX,
 ePosY, ePosZ }

Defines the type of storage arrangement of the variable in memory.

Functions

template<typename T >
 void hdf5_writeDataSet (hid_t &memspace, hid_t &filespace, hid_t &dataset_id, eHdf5SlabType slab_type, int N_lim, int M_lim, int K_lim, GridObj *g, T *data, hid_t hdf_datatype, bool *TL_present, int TL_thickness, MpiManager::phdf5_struct hdf_data)

Helper method to write out using HDF5.

6.17.1 Macro Definition Documentation

6.17.1.1 #define H5_BUILT_AS_DYNAMIC_LIB

6.17.1.2 #define HDF5_EXT_SZIP

6.17.1.3 #define HDF5_EXT_ZLIB

6.17.2 Enumeration Type Documentation

6.17.2.1 enum eHdf5SlabType

Defines the type of storage arrangement of the variable in memory.

The write wrapper can then extract the data from memeory and write it to an HDF5 file using a particular hyperslab selection.

Enumerator

```
eScalar 2/3D data – One variable per grid site
eVector 2/3D data – L_DIMS variables per grid site
eProductVector 1D data – 3*L_DIMS-3 variables per grid site
ePosX 1D data – Single L_dim vector per dimension
ePosY 1D data – Single L_dim vector per dimension
ePosZ 1D data – Single L_dim vector per dimension
```

6.17.3 Function Documentation

6.17.3.1 template<typename T > void hdf5_writeDataSet (hid_t & memspace, hid_t & filespace, hid_t & dataset_id, eHdf5SlabType slab_type, int N_lim, int M_lim, int K_lim, GridObj * g, T * data, hid_t hdf_datatype, bool * TL_present, int TL_thickness, MpiManager::phdf5_struct hdf_data)

Helper method to write out using HDF5.

Automatically selects the correct slab arrangement and buffers the data accordingly before writing to structured file.

Parameters

memspace	memory dataspace id.
filespace	file dataspace id.
dataset_id	dataset id.
slab_type	slab type enum.
N_lim	number of X-direction sites on the local grid.
M_lim	number of Y-direction sites on the local grid.
K_lim	number of Z-direction sites on the local grid.
g	pointer to grid which we are writing out.
data	pointer to the start of the array to be written.
hdf_datatype	HDF5 datatype being written.
TL_present	pointer to array of flags indicating whether a lower TL is present on this grid in given direction
	so offset in file can be computed.
Generated by Doxyge TL_thickness	the thickness of the TL on this grid level in local lattice units.
hdf_data	the data structure containing information about local halos.

6.18 IBBody.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/IBBody.h"
#include "../inc/IBMarker.h"
#include "../inc/PCpts.h"
#include "../inc/GridUtils.h"
#include "../inc/ObjectManager.h"
```

6.19 IBBody.h File Reference

```
#include "stdafx.h"
#include "Body.h"
```

Classes

· class IBBody

Immersed boundary body.

6.20 IBMarker.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/IBMarker.h"
#include "../inc/GridUtils.h"
```

6.21 IBMarker.h File Reference

```
#include "stdafx.h"
#include "Marker.h"
```

Classes

class IBMarker

Immersed boundary marker.

6.22 IVector.h File Reference

```
#include "stdafx.h"
```

Classes

class IVector < GenTyp >
 Index-collapsing vector class.

6.23 main_lbm.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/GridObj.h"
#include "../inc/MpiManager.h"
#include "../inc/ObjectManager.h"
#include "../inc/GridUtils.h"
#include "../inc/PCpts.h"
```

Functions

int main (int argc, char *argv[])
 Entry point for the application.

6.23.1 Function Documentation

```
6.23.1.1 int main ( int argc, char * argv[] )
```

Entry point for the application.

6.24 Marker.h File Reference

```
#include "stdafx.h"
```

Classes

· class Marker

Generic marker class.

6.25 Mpi_buffer_pack.cpp File Reference

```
#include "../inc/stdafx.h"
#include <mpi.h>
#include "../inc/MpiManager.h"
#include "../inc/GridObj.h"
#include "../inc/GridUtils.h"
```

6.26 Mpi_buffer_size_recv.cpp File Reference

```
#include "../inc/stdafx.h"
#include <mpi.h>
#include "../inc/MpiManager.h"
#include "../inc/GridObj.h"
#include "../inc/GridUtils.h"
```

6.27 Mpi_buffer_size_send.cpp File Reference

```
#include "../inc/stdafx.h"
#include <mpi.h>
#include "../inc/MpiManager.h"
#include "../inc/GridObj.h"
#include "../inc/GridUtils.h"
```

6.28 Mpi_buffer_unpk.cpp File Reference

```
#include "../inc/stdafx.h"
#include <mpi.h>
#include "../inc/MpiManager.h"
#include "../inc/GridObj.h"
#include "../inc/GridUtils.h"
```

6.29 MpiManager.cpp File Reference

```
#include "../inc/stdafx.h"
#include <mpi.h>
#include "../inc/MpiManager.h"
#include "../inc/GridObj.h"
#include "../inc/GridUtils.h"
```

6.30 MpiManager.h File Reference

```
#include "stdafx.h"
```

Classes

· class MpiManager

MPI Manager class.

struct MpiManager::phdf5_struct

Structure for storing halo information for HDF5.

• struct MpiManager::layer_edges

Structure containing absolute positions of the edges of halos.

struct MpiManager::buffer_struct

Structure storing buffers sizes in each direction for particular grid.

Macros

- #define range_i_left i = 0; i < GridUtils::downToLimit((int)pow(2, g->level + 1), N_lim); i++ For loop definition for left halo.
- #define range_j_down j = 0; j < $GridUtils::downToLimit((int)pow(2, g->level + 1), M_lim); j++ For loop definition for bottom halo.$
- #define range_k_front k = 0; k < GridUtils::downToLimit((int)pow(2, g->level + 1), K_lim); k++
 For loop definition for front halo.
- #define range_i_right i = GridUtils::upToZero(N_lim (int)pow(2, g->level + 1)); i < N_lim; i++
 For loop definition for right halo.
- #define range_j_up j = GridUtils::upToZero(M_lim (int)pow(2, g->level + 1)); j < M_lim; j++
 For loop definition for top halo.
- #define range_k_back k = GridUtils::upToZero(K_lim (int)pow(2, g->level + 1)); k < K_lim; k++
 For loop definition for back halo.

6.30.1 Macro Definition Documentation

6.30.1.1 #define range_i_left i = 0; i < GridUtils::downToLimit((int)pow(2, g->level + 1), N_lim); i++

For loop definition for left halo.

6.30.1.2 #define range_i_right i = $GridUtils::upToZero(N_lim - (int)pow(2, g->level + 1)); i < N_lim; i++$

For loop definition for right halo.

6.30.1.3 #define range_j_down j = 0; j < GridUtils::downToLimit((int)pow(2, g->level + 1), M_lim); j++

For loop definition for bottom halo.

 $6.30.1.4 \quad \text{\#define range_j_up j = GridUtils::upToZero(M_lim - (int)pow(2, g->level + 1)); j < M_lim; j++ (int)pow(2, g->level + 1); j < M_lim; j++ (int)$

For loop definition for top halo.

```
6.30.1.5 #define range_k_back k = GridUtils::upToZero(K_lim - (int)pow(2, g->level + 1)); k < K_lim; k++
```

For loop definition for back halo.

```
6.30.1.6 #define range_k_front k = 0; k < GridUtils::downToLimit((int)pow(2, g->level + 1), K_lim); k++
```

For loop definition for front halo.

6.31 ObjectManager.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/ObjectManager.h"
#include "../inc/GridObj.h"
#include "../inc/GridUtils.h"
```

6.32 ObjectManager.h File Reference

```
#include "stdafx.h"
#include "IVector.h"
#include "IBMarker.h"
#include "IBBody.h"
#include "BFLBody.h"
```

Classes

class ObjectManager
 Object Manager class.

Enumerations

enum eObjectType { eBBBCloud, eBFLCloud, eIBBCloud }
 Specifies the type of body being processed.

6.32.1 Enumeration Type Documentation

6.32.1.1 enum eObjectType

Specifies the type of body being processed.

Enumerator

```
eBBBCloud Bounce-back body.eBFLCloud BFL body.elBBCloud Immersed boundary body.
```

6.33 ObjectManager_init_bflbody.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/ObjectManager.h"
```

6.34 ObjectManager_init_ibmbody.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/ObjectManager.h"
```

6.35 ObjectManager_ops_ibm.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/GridObj.h"
#include "../inc/ObjectManager.h"
#include "../inc/MpiManager.h"
#include "../inc/GridUtils.h"
```

6.36 ObjectManager_ops_ibmflex.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/GridObj.h"
#include "../inc/ObjectManager.h"
#include "../inc/MpiManager.h"
```

Macros

```
    #define SWAP(a, b) {dum=(a);(a)=(b);(b)=dum;}
    Pointer swap definition.
```

#define TINY 1.0e-20

Definition of small number (could use numerics since this is C++ but nevermind)

#define SWAP(a, b) {dum=(a);(a)=(b);(b)=dum;}

Pointer swap definition.

6.36.1 Macro Definition Documentation

```
6.36.1.1 #define SWAP( a, b) {dum=(a);(a)=(b);(b)=dum;}
```

Pointer swap definition.

```
6.36.1.2 #define SWAP( a, b) {dum=(a);(a)=(b);(b)=dum;}
```

Pointer swap definition.

```
6.36.1.3 #define TINY 1.0e-20
```

Definition of small number (could use numerics since this is C++ but nevermind)

6.37 ObjectManager_ops_io.cpp File Reference

```
#include "../inc/stdafx.h"
#include "../inc/ObjectManager.h"
#include "../inc/GridUtils.h"
#include "../inc/PCpts.h"
#include "../inc/GridObj.h"
#include "../inc/MpiManager.h"
```

6.38 PCpts.h File Reference

```
#include "stdafx.h"
```

Classes

• class PCpts

Class to hold point cloud data.

6.39 stdafx.cpp File Reference

```
#include "../inc/stdafx.h"
```

Variables

```
    const int c [3][L_NUM_VELS]
```

Lattice velocities.

• const int c_opt [L_NUM_VELS][3]

Lattice velocities optimised arrangement.

const double w [L_NUM_VELS]

Quadrature weights.

• const double cs = 1.0 / sqrt(3.0)

Lattice sound speed.

6.39.1 Variable Documentation

```
6.39.1.1 const int c[3][L_NUM_VELS]
```

Initial value:

Lattice velocities.

```
6.39.1.2 const int c_opt[L_NUM_VELS][3]
```

Initial value:

Lattice velocities optimised arrangement.

```
6.39.1.3 const double cs = 1.0 / sqrt(3.0)
```

Lattice sound speed.

6.39.1.4 const double w[L_NUM_VELS]

Initial value:

```
= {1.0/18.0, 1.0/18.0, 1.0/18.0, 1.0/18.0, 1.0/18.0, 1.0/18.0, 1.0/18.0, 1.0/18.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0/36.0, 1.0
```

Quadrature weights.

6.40 stdafx.h File Reference

```
#include <algorithm>
#include <cmath>
#include <vector>
#include <iostream>
#include <fstream>
#include <sstream>
#include <numeric>
#include <assert.h>
#include <stdlib.h>
#include <cstring>
#include <stdio.h>
#include "definitions.h"
```

Macros

- #define DEPRECATED
- #define L_IS_NAN std::isnan

Not a Number declaration (Unix)

- #define SQ(x) ((x) * (x))
- #define L_DACTION_WRITE_OUT_FORCES
- #define LUMA FAILED 12345

Error definition.

• #define L ERROR errorfcn

Functions

void errorfcn (std::string msg, std::ofstream *logfile)
 Fatal Error function.

Variables

```
    const int c [3][L_NUM_VELS]
```

Lattice velocities.

• const int c_opt [L_NUM_VELS][3]

Lattice velocities optimised arrangement.

const double w [L_NUM_VELS]

Quadrature weights.

· const double cs

Lattice sound speed.

6.40.1 Macro Definition Documentation

6.40.1.1 #define DEPRECATED

6.40.1.2 #define L_DACTION_WRITE_OUT_FORCES

6.40.1.3 #define L ERROR errorfcn

Error function shorthand

6.40 stdafx.h File Reference 113

6.40.1.4 #define L_IS_NAN std::isnan

Not a Number declaration (Unix)

6.40.1.5 #define LUMA_FAILED 12345

Error definition.

6.40.1.6 #define SQ(x) ((x) * (x))

6.40.2 Function Documentation

6.40.2.1 void errorfcn (std::string msg, std::ofstream * logfile) [inline]

Fatal Error function.

Writes error to the user and further information to the supplied logfile. Inlined since this header is included everywhere.

Parameters

msg	string to be printed to the log file.
logfile	pointer to the logfile where the message is to be written.

6.40.3 Variable Documentation

6.40.3.1 const int c[3][L_NUM_VELS]

Lattice velocities.

6.40.3.2 const int c_opt[L_NUM_VELS][3]

Lattice velocities optimised arrangement.

6.40.3.3 const double cs

Lattice sound speed.

6.40.3.4 const double w[L_NUM_VELS]

Quadrature weights.

Index

_Owner	bc_applyBounceBack
Body, 16	GridObj, 21
\sim BFLBody	bc_applyExtrapolation
BFLBody, 10	GridObj, 21
\sim BFLMarker	bc_applyNrbc
BFLMarker, 12	GridObj, 22
\sim Body	bc_applyRegularised
Body, 14	GridObj, 22
\sim GridObj	bc_applySpecReflect
GridObj, 21	GridObj, 22
\sim GridUnits	bfl_buildBody
GridUnits, 29	ObjectManager, 70
\sim IBBody	Body
IBBody, 47	_Owner, 16
\sim IBMarker	\sim Body, 14
IBMarker, 51	addMarker, 14
\sim IVector	Body, 14
IVector, 54	closed_surface, 16
\sim Marker	getMarkerData, 14
Marker, 57	id, 16
\sim MarkerData	isInVoxel, 15
MarkerData, 59	isVoxelMarkerVoxel, 15
\sim PCpts	markerAdder, 15
PCpts, 78	markers, 16
·	spacing, 16
add	Body < MarkerType >, 13
GridUtils, 32	Body.h, 82
addMarker	buffer_recv_info
Body, 14	MpiManager, 65
IBBody, 47	buffer_send_info
	MpiManager, 65
BCs	
IBBody, 49	С
BFLBody, 9	stdafx.cpp, 111
\sim BFLBody, 10	stdafx.h, 113
BFLBody, 10	c_opt
BFLMarker, 12	stdafx.cpp, 111
computeQ, 10, 11	stdafx.h, 113
GridObj, 11	cNumProbes
Q, 11	definitions.h, 96
BFLBody.cpp, 81	cProbeLimsX
BFLBody.h, 81	definitions.h, 96
BFLMarker, 11	cProbeLimsY
\sim BFLMarker, 12	definitions.h, 96
BFLBody, 12	cProbeLimsZ
BFLMarker, 12	definitions.h, 97
BFLMarker.cpp, 81	cRefEndX
BFLMarker.h, 82	definitions.h, 97
bc_applyBfl	cRefEndY
GridObj, 21	definitions.h, 97

cRefEndZ	L_GRAVITY_DIRECTION, 89
definitions.h, 97	L_GRAVITY_FORCE, 89
cRefStartX	L_GRAVITY_ON, 89
definitions.h, 97	L_HDF5_OUTPUT, 89
cRefStartY	L_HDF_DEBUG, 89
definitions.h, 97	L_IB_ON_LEV, 89
cRefStartZ	L_IB_ON_REG, 89
definitions.h, 97	L IBB ANGLE HORZ, 89
closed surface	L IBB ANGLE VERT, 90
Body, 16	L IBB DELTA RHO, 90
computeLiftDrag	L IBB EI, 90
ObjectManager, 71	L IBB FILAMENT LENGTH, 90
computeQ	L IBB FILAMENT START X, 90
BFLBody, 10, 11	L IBB FILAMENT START Y, 90
createOutputDirectory	L IBB FILAMENT START Z, 90
GridUtils, 32	L IBB FLEXIBLE, 90
crossprod	L_IBB_FROM_FILE, 90
GridUtils, 33	
CS	L_IBB_LENGTH, 91
stdafx.cpp, 111	L_IBB_MOVABLE, 91
stdafx.h, 113	L_IBB_ON_GRID_LEV, 91
Studix.ii, 113	L_IBB_ON_GRID_REG, 91
DEPRECATED	L_IBB_REF_LENGTH, 91
stdafx.h, 112	L_IBB_SCALE_DIRECTION, 91
definitions.h, 82	L_IBB_D, 90
cNumProbes, 96	L_IBB_L, 91
cProbeLimsX, 96	L_IBB_R, 91
cProbeLimsY, 96	L_IBB_W, 91
cProbeLimsZ, 97	L_IBB_X, 91
cRefEndX, 97	L_IBB_Y, 92
	L IBB Z, 92
cRefEndY, 97	L MPI DIRS, 92
cRefEndZ, 97	L MPI XCORES, 92
cRefStartX, 97	L MPI YCORES, 92
cRefStartY, 97	L MPI ZCORES, 92
cRefStartZ, 97	L NO FLOW, 92
L_BFL_LENGTH, 87	L NUM LEVELS, 92
L_BFL_ON_GRID_LEV, 87	L_NUM_MARKERS, 92
L_BFL_ON_GRID_REG, 87	L_NUM_REGIONS, 93
L_BFL_REF_LENGTH, 87	
L_BFL_SCALE_DIRECTION, 87	L_NUM_VELS, 93
L_BLOCK_MAX_X, 87	L_OBJECT_LENGTH, 93
L_BLOCK_MAX_Y, 87	L_OBJECT_ON_GRID_LEV, 93
L_BLOCK_MAX_Z, 87	L_OBJECT_ON_GRID_REG, 93
L_BLOCK_MIN_X, 87	L_OBJECT_REF_LENGTH, 93
L_BLOCK_MIN_Y, 87	L_OBJECT_SCALE_DIRECTION, 93
L_BLOCK_MIN_Z, 87	L_OUT_EVERY_FORCES, 93
L_BLOCK_ON_GRID_LEV, 88	L_OUT_EVERY, 93
L_BLOCK_ON_GRID_REG, 88	L_OUTPUT_PRECISION, 93
L_BUILD_FOR_MPI, 88	L_PHYSICAL_U, 94
L_BX, 88	L_PROBE_OUT_FREQ, 94
L_BY, 88	L_PI, 94
L BZ, 88	L_RESOLUTION, 94
L CENTRE BFL Z, 88	L_RESTART_OUT_FREQ, 94
L_CENTRE_IBB_Z, 88	L_RHOIN, 94
L_CENTRE_OBJECT_Z, 88	L RE, 94
L CSMAG, 88	L SOLID BLOCK ON, 94
L DIMS, 89	L_START_BFL_X, 94
L FILAMENT END BC, 89	L START BFL Y, 94
L_FILAMENT_START_BC, 89	L START IBB X, 95
15 111 _ 5 7 111 _ 5 0, 00	

L_START_IBB_Y, 95	еВСТуре
L_START_OBJECT_X, 95	GridObj.h, 98
L_START_OBJECT_Y, 95	eBFLCloud
L TIMESTEPS, 95	ObjectManager.h, 108
L UMAX, 95	eBFL
L UREF, 95	GridObj.h, 98
L UX0, 95	eCartMinMax
L UY0, 95	
L_UZ0, 95	GridUtils.h, 101
	eCartesianDirection
L_VTK_BODY_WRITE, 96	GridUtils.h, 101
L_WALL_THICKNESS_BACK, 96	eCore
L_WALL_THICKNESS_BOTTOM, 96	GridUtils.h, 101
L_WALL_THICKNESS_FRONT, 96	eEdgeMinMax
L_WALL_THICKNESS_TOP, 96	GridUtils.h, 101
L_WALLS_ON, 96	eFluid
L_K, 92	GridObj.h, 98
L_M, 92	eHalo
L_N, 92	GridUtils.h, 101
LUMA_VERSION, 96	eHdf5SlabType
deformable	hdf5luma.h, 103
IBBody, 49	eIBBCloud
delta_rho	ObjectManager.h, 108
IBBody, 50	elOFlag
deltaval	GridObj.h, 98
IBMarker, 52	elnlet
desired_vel	GridObj.h, 98
IBMarker, 52	•
destroyInstance	eLeftMax
MpiManager, 63	GridUtils.h, 101
ObjectManager, 71	eLeftMin
dh	GridUtils.h, 101
GridObj, 27	eLocationOnRank
dilation	GridUtils.h, 101
IBMarker, 52	eMaximum
dimensions	GridUtils.h, 102
MpiManager, 66	eMinMax
	GridUtils.h, 101
dir_reflect	eMinimum
GridUtils, 45	GridUtils.h, 102
dotprod	eNone
GridUtils, 33	GridUtils.h, 101
downToLimit	eObjectType
GridUtils, 33	ObjectManager.h, 108
dt	eOutlet
GridObj, 27	GridObj.h, 98
PPPO!	ePosX
eBBBCloud	
ObjectManager.h, 108	hdf5luma.h, 103
eBCAII	ePosY
GridObj.h, 98	hdf5luma.h, 103
eBCBFL	ePosZ
GridObj.h, 98	hdf5luma.h, 103
eBCInlet	eProductVector
GridObj.h, 98	hdf5luma.h, 103
eBCInletOutlet	eRead
GridObj.h, 98	GridObj.h, 98
eBCOutlet	eRefined
GridObj.h, 98	GridObj.h, 98
eBCSolidSymmetry	eRefinedInlet
GridObj.h, 98	GridObj.h, 98
• •	· - , · ,

eRefinedSolid	IBMarker, 52
GridObj.h, 98	force_xyz
eRefinedSymmetry	IBMarker, 53
GridObj.h, 98	
eRightMax	getCoarseIndices
GridUtils.h, 101	GridUtils, 34
eRightMin	getEnclosingVoxel
GridUtils.h, 101	GridUtils, 34, 35
eScalar	getFineIndices
hdf5luma.h, 103	GridUtils, 35
eSolid	getGrid
	GridUtils, 35
GridObj.h, 98	getInstance
eSymmetry	MpiManager, 63
GridObj.h, 98	ObjectManager, 71
eTransitionToCoarser	
GridObj.h, 98	getMarkerData
eTransitionToFiner	Body, 14
GridObj.h, 98	getMpiDirection
еТуре	GridUtils, 36
GridObj.h, 98	getOpposite
eVector	GridUtils, 36
hdf5luma.h, 103	global_edges
eWrite	MpiManager, 66
GridObj.h, 98	global_size
eXDirection	MpiManager, 66
GridUtils.h, 101	GridObj, 17
eXMax	∼GridObj, 21
	BFLBody, 11
GridUtils.h, 101	bc_applyBfl, 21
eXMin	bc_applyBounceBack, 21
GridUtils.h, 101	
eYDirection	bc_applyExtrapolation, 21
GridUtils.h, 101	bc_applyNrbc, 22
eYMax	bc_applyRegularised, 22
GridUtils.h, 101	bc_applySpecReflect, 22
eYMin	dh, 27
GridUtils.h, 101	dt, 27
eZDirection	GridObj, 20
GridUtils.h, 101	GridUtils, 26
eZMax	io_fgaout, <mark>22</mark>
GridUtils.h, 101	io_hdf5, 23
eZMin	io_lite, 23
GridUtils.h, 101	io_probeOutput, 23
epsilon	io restart, 23
IBMarker, 52	io textout, 24
errorfon	K_lim, 27
stdafx.h, 113	LBM_addSubGrid, 24
Studix.ii, 113	LBM_init_getInletProfile, 24
f buffer recv	LBM initBoundLab, 24
MpiManager, 66	LBM initGrid, 24
f_buffer_send	LBM initRefinedLab, 25
	LBM initRho, 25
MpiManager, 66	-
factorial	LBM_initSolidLab, 25
GridUtils, 34	LBM_initSubGrid, 25
flex_rigid	LBM_initVelocity, 25
IBBody, 50	LBM_kbcCollide, 25
IBMarker, 52	LBM_macro, 26
flexural_rigidity	LBM_multi_opt, 26
IBBody, 50	LBM_resetForces, 26
fluid_vel	LatTyp, 27

level, 27	dotprod, 33
M_lim, 27	downToLimit, 33
MpiManager, 26	factorial, 34
N_lim, 27	getCoarseIndices, 34
nu, 27	getEnclosingVoxel, 34, 35
ObjectManager, 26, 77	getFineIndices, 35
omega, 27	getGrid, 35
region_number, 27	getMpiDirection, 36
t, 27	getOpposite, 36
timeav_mpi_overhead, 28	GridObj, 26
timeav_timestep, 28	intersectsRefinedRegion, 36
XOrigin, 28	isOffGrid, 37
XPos, 28	isOnRecvLayer, 37
YOrigin, 28	isOnSenderLayer, 38 isOnThisRank, 38, 39
YPos, 28	isOnTransitionLayer, 39, 40
ZOrigin, 28	isOverlapPeriodic, 40
ZPos, 28	linspace, 41
GridObj.cpp, 97	logfile, 45
GridObj.h, 97	matrix_multiply, 41
eBCAII, 98	onespace, 41
eBCBFL, 98	path_str, 45
eBCInlet, 98 eBCInletOutlet, 98	stridedCopy, 41
eBCOutlet, 98	subtract, 42
eBCSolidSymmetry, 98	upToZero, 42
eBCType, 98	vecmultiply, 42
eBFL, 98	vecnorm, 43, 44
eFluid, 98	GridUtils.cpp, 100
elOFlag, 98	GridUtils.h, 100
elnlet, 98	eCartMinMax, 101
eOutlet, 98	eCartesianDirection, 101
eRead, 98	eCore, 101
eRefined, 98	eEdgeMinMax, 101
eRefinedInlet, 98	eHalo, 101
eRefinedSolid, 98	eLeftMax, 101
eRefinedSymmetry, 98	eLeftMin, 101
eSolid, 98	eLocationOnRank, 101
eSymmetry, 98	eMaximum, 102
eTransitionToCoarser, 98	eMinMax, 101
eTransitionToFiner, 98	eMinimum, 102
eType, 98	eNone, 101
eWrite, 98	eRightMax, 101 eRightMin, 101
GridObj_init_grids.cpp, 99	eXDirection, 101
GridObj_ops_boundary.cpp, 99	eXMax, 101
GridObj_ops_io.cpp, 99	eXMin, 101
GridObj_ops_lbm.cpp, 99	eYDirection, 101
GridObj_ops_lbm_optimised.cpp, 99	eYMax, 101
GridUnits, 29	eYMin, 101
\sim GridUnits, 29	eZDirection, 101
GridUnits, 29	eZMax, 101
m2cm, 29	eZMin, 101
ulat2uphys, 29	Grids
GridUnits.h, 100	MpiManager, 66
GridUtils, 30	groupID
add, 32	IBBody, 50
createOutputDirectory, 32	HE DIN T AC DISCUSS OF
crossprod, 33	H5_BUILT_AS_DYNAMIC_LIB
dir_reflect, 45	hdf5luma.h, 103

HDF5_EXT_SZIP	\sim IVector, 54
hdf5luma.h, 103	IVector, 54
HDF5_EXT_ZLIB	operator(), 54, 55
hdf5luma.h, 103	IVector < GenTyp >, 53
hdf5 writeDataSet	IVector.h, 104
 hdf5luma.h, 103	ibm_apply
hdf5luma.h, 102	ObjectManager, 71
eHdf5SlabType, 103	ibm_banbks
ePosX, 103	ObjectManager, 72
ePosY, 103	
ePosZ, 103	ibm_bandec
eProductVector, 103	ObjectManager, 72
	ibm_bicgstab
eScalar, 103	ObjectManager, 72
eVector, 103	ibm_buildBody
H5_BUILT_AS_DYNAMIC_LIB, 103	ObjectManager, 73
HDF5_EXT_SZIP, 103	ibm_computeForce
HDF5_EXT_ZLIB, 103	ObjectManager, 73
hdf5_writeDataSet, 103	ibm_deltaKernel
:	ObjectManager, 73
MadagData 00	ibm_findEpsilon
MarkerData, 60	ObjectManager, 74
i_end	ibm_findSupport
MpiManager::phdf5_struct, 80	ObjectManager, 74
i_start	ibm initialise
MpiManager::phdf5_struct, 80	ObjectManager, 74
IBBody, 45	ibm_initialiseSupport
\sim IBBody, 47	
addMarker, 47	ObjectManager, 74
BCs, 49	ibm_interpol
deformable, 49	ObjectManager, 75
delta_rho, 50	ibm_jacowire
flex_rigid, 50	ObjectManager, 75
flexural_rigidity, 50	ibm_moveBodies
groupID, 50	ObjectManager, 75
IBBody, 47	ibm_positionUpdate
IBMarker, 52	ObjectManager, 75
makeBody, 47–49	ibm_positionUpdateGroup
markerAdder, 49	ObjectManager, 75
ObjectManager, 49	ibm spread
tension, 50	ObjectManager, 76
	ID
IBBody.cpp, 104	MarkerData, 60
IBBody.h, 104	id
IBMarker, 50	Body, 16
~IBMarker, 51	•
deltaval, 52	intersectsRefinedRegion
desired_vel, 52	GridUtils, 36
dilation, 52	io_fgaout
epsilon, 52	GridObj, 22
flex_rigid, 52	io_hdf5
fluid_vel, 52	GridObj, 23
force_xyz, 53	io_lite
IBBody, 52	GridObj, 23
IBMarker, 51, 52	io_probeOutput
local_area, 53	GridObj, 23
ObjectManager, 52	io_readInCloud
position_old, 53	ObjectManager, 76
IBMarker.cpp, 104	io restart
IBMarker.h, 104	GridObj, 23
IVector	ObjectManager, 76
1 400101	Objectiviariager, 70

io_textout	L_BLOCK_MIN_X
GridObj, 24	definitions.h, 87
io_vtkIBBWriter	L_BLOCK_MIN_Y
ObjectManager, 76	definitions.h, 87
io_writeBodyPosition	L_BLOCK_MIN_Z
ObjectManager, 77	definitions.h, 87
io_writeForceOnObject	L_BLOCK_ON_GRID_LEV
ObjectManager, 77	definitions.h, 88
io_writeLiftDrag	L_BLOCK_ON_GRID_REG
ObjectManager, 77	definitions.h, 88
isInVoxel	L_BUILD_FOR_MPI
Body, 15	definitions.h, 88
isOffGrid	L BX
GridUtils, 37	definitions.h, 88
isOnRecvLayer	L BY
GridUtils, 37	definitions.h, 88
isOnSenderLayer	L BZ
GridUtils, 38	definitions.h, 88
isOnThisRank	L CENTRE BFL Z
GridUtils, 38, 39	definitions.h, 88
isOnTransitionLayer	L CENTRE IBB Z
GridUtils, 39, 40	definitions.h, 88
isOverlapPeriodic	
GridUtils, 40	L_CENTRE_OBJECT_Z
isVoxelMarkerVoxel	definitions.h, 88
Body, 15	L_CSMAG
Body, 13	definitions.h, 88
j	L_DACTION_WRITE_OUT_FORCES
MarkerData, 60	stdafx.h, 112
j_end	L_DIMS
MpiManager::phdf5_struct, 80	definitions.h, 89
j_start	L_ERROR
MpiManager::phdf5_struct, 80	stdafx.h, 112
ivipliviariagerpridi5_struct, 80	L_FILAMENT_END_BC
k	definitions.h, 89
MarkerData, 60	L_FILAMENT_START_BC
k end	definitions.h, 89
MpiManager::phdf5 struct, 80	L_GRAVITY_DIRECTION
K lim	definitions.h, 89
GridObj, 27	L GRAVITY FORCE
-	definitions.h, 89
k_start	L GRAVITY ON
MpiManager::phdf5_struct, 80	definitions.h, 89
L BFL LENGTH	L HDF5 OUTPUT
definitions.h, 87	definitions.h, 89
L BFL ON GRID LEV	L HDF DEBUG
definitions.h, 87	definitions.h, 89
L BFL ON GRID REG	L IB ON LEV
	definitions.h, 89
definitions.h, 87	L_IB_ON_REG
L_BFL_REF_LENGTH	
definitions.h, 87	definitions.h, 89
L_BFL_SCALE_DIRECTION	L_IBB_ANGLE_HORZ
definitions.h, 87	definitions.h, 89
L_BLOCK_MAX_X	L_IBB_ANGLE_VERT
definitions.h, 87	definitions.h, 90
L_BLOCK_MAX_Y	L_IBB_DELTA_RHO
definitions.h, 87	definitions.h, 90
L_BLOCK_MAX_Z	L_IBB_EI
definitions.h, 87	definitions.h, 90

L_IBB_FILAMENT_LENGTH	L_OBJECT_LENGTH
definitions.h, 90	definitions.h, 93
L_IBB_FILAMENT_START_X	L_OBJECT_ON_GRID_LEV
definitions.h, 90 L_IBB_FILAMENT_START_Y	definitions.h, 93 L OBJECT ON GRID REG
definitions.h, 90	definitions.h, 93
L_IBB_FILAMENT_START_Z	L_OBJECT_REF_LENGTH
definitions.h, 90	definitions.h, 93
L_IBB_FLEXIBLE	L OBJECT SCALE DIRECTION
definitions.h, 90	definitions.h, 93
L_IBB_FROM_FILE	L_OUT_EVERY_FORCES
definitions.h, 90	definitions.h, 93
L_IBB_LENGTH	L_OUT_EVERY
definitions.h, 91	definitions.h, 93
L_IBB_MOVABLE	L_OUTPUT_PRECISION
definitions.h, 91	definitions.h, 93
L_IBB_ON_GRID_LEV	L_PHYSICAL_U
definitions.h, 91	definitions.h, 94
L_IBB_ON_GRID_REG	L_PROBE_OUT_FREQ
definitions.h, 91	definitions.h, 94
L_IBB_REF_LENGTH	L_PI
definitions.h, 91 L IBB SCALE DIRECTION	definitions.h, 94
definitions.h, 91	L_RESOLUTION definitions.h, 94
L IBB D	L_RESTART_OUT_FREQ
definitions.h, 90	definitions.h, 94
L IBB L	L RHOIN
definitions.h, 91	definitions.h, 94
L_IBB_R	L RE
definitions.h, 91	definitions.h, 94
L_IBB_W	L_SOLID_BLOCK_ON
definitions.h, 91	definitions.h, 94
L_IBB_X	L_START_BFL_X
definitions.h, 91	definitions.h, 94
L_IBB_Y	L_START_BFL_Y
definitions.h, 92	definitions.h, 94
L_IBB_Z	L_START_IBB_X
definitions.h, 92	definitions.h, 95
L_IS_NAN	L_START_IBB_Y
stdafx.h, 112 L MPI DIRS	definitions.h, 95 L START OBJECT X
definitions.h, 92	definitions.h, 95
L MPI XCORES	L_START_OBJECT_Y
definitions.h, 92	definitions.h, 95
L MPI YCORES	L TIMESTEPS
definitions.h, 92	definitions.h, 95
L MPI ZCORES	L UMAX
definitions.h, 92	definitions.h, 95
L_NO_FLOW	L_UREF
definitions.h, 92	definitions.h, 95
L_NUM_LEVELS	L_UX0
definitions.h, 92	definitions.h, 95
L_NUM_MARKERS	L_UY0
definitions.h, 92	definitions.h, 95
L_NUM_REGIONS	L_UZ0
definitions.h, 93	definitions.h, 95
L_NUM_VELS	L_VTK_BODY_WRITE
definitions.h, 93	definitions.h, 96

L_WALL_THICKNESS_BACK	logfile
definitions.h, 96	GridUtils, 45
L_WALL_THICKNESS_BOTTOM	logout
definitions.h, 96	MpiManager, 66
L_WALL_THICKNESS_FRONT	
definitions.h, 96	m2cm
L_WALL_THICKNESS_TOP	GridUnits, 29
definitions.h, 96	M_lim
L_WALLS_ON	GridObj, <mark>27</mark>
definitions.h, 96	main
L K	main_lbm.cpp, 105
definitions.h, 92	main_lbm.cpp, 105
L M	main, 105
definitions.h, 92	makeBody
L N	IBBody, 47-49
definitions.h, 92	Marker, 56
	\sim Marker, 57
LBM_addSubGrid	Marker, 57
GridObj, 24	position, 58
LBM_init_getInletProfile	supp_i, 58
GridObj, 24	supp j, 58
LBM_initBoundLab	supp k, 58
GridObj, 24	support_rank, 58
LBM_initGrid	Marker.h, 105
GridObj, 24	markerAdder
LBM_initRefinedLab	Body, 15
GridObj, 25	IBBody, 49
LBM_initRho	MarkerData, 58
GridObj, 25	~MarkerData, 59
LBM_initSolidLab	
GridObj, 25	i, 60
LBM_initSubGrid	ID, 60
 GridObj, 25	j, 60
LBM initVelocity	k, 60
GridObj, 25	MarkerData, 59
LBM_kbcCollide	x, 60
GridObj, 25	y, 60
LBM_macro	z, 60
GridObj, 26	markers
LBM_multi_opt	Body, 16
GridObj, 26	matrix_multiply
	GridUtils, 41
LBM_resetForces	mpi_buffer_pack
GridObj, 26	MpiManager, 63
LUMA_FAILED	Mpi_buffer_pack.cpp, 105
stdafx.h, 113	mpi_buffer_size
LUMA_VERSION	MpiManager, 63
definitions.h, 96	mpi_buffer_size_recv
LatTyp	MpiManager, 63
GridObj, 27	Mpi_buffer_size_recv.cpp, 106
level	mpi_buffer_size_send
GridObj, 27	MpiManager, 64
MpiManager::buffer_struct, 17	Mpi_buffer_size_send.cpp, 106
MpiManager::phdf5_struct, 80	mpi_buffer_unpack
linspace	MpiManager, 64
GridUtils, 41	Mpi_buffer_unpk.cpp, 106
local_area	mpi_buildCommunicators
IBMarker, 53	MpiManager, 64
local_size	mpi_communicate
	MpiManager, 64
	, ,

mpi_getOpposite	range_k_back, 107
MpiManager, 65	range_k_front, 108
mpi_gridbuild	MpiManager::buffer_struct, 17
MpiManager, 65	level, 17
mpi_init	region, 17
MpiManager, 65	size, 17
mpi_updateLoadInfo	MpiManager::layer_edges, 55
MpiManager, 65	X, 56
mpi_writeout_buf	Y, 56
MpiManager, 65	Z, 56
MpiManager, 60	MpiManager::phdf5_struct, 79
buffer_recv_info, 65	i_end, 80
buffer_send_info, 65	i_start, 80
destroyInstance, 63	j_end, 80
dimensions, 66	j_start, 80
f_buffer_recv, 66	k_end, 80
f_buffer_send, 66	k_start, 80
getInstance, 63	level, 80
global_edges, 66	region, 80
global_size, 66	writable data count, 80
GridObj, 26	my_rank
Grids, 66	MpiManager, 66
local_size, 66	1 3 7
	N_lim
logout, 66	GridObj, 27
mpi_buffer_pack, 63	neighbour_coords
mpi_buffer_size, 63	MpiManager, 67
mpi_buffer_size_recv, 63	neighbour_rank
mpi_buffer_size_send, 64	MpiManager, 67
mpi_buffer_unpack, 64	neighbour_vectors
mpi_buildCommunicators, 64	MpiManager, 67
mpi_communicate, 64	nu
mpi_getOpposite, 65	GridObj, 27
mpi_gridbuild, 65	num ranks
mpi_init, 65	_ MpiManager, 67
mpi_updateLoadInfo, 65	p
mpi_writeout_buf, 65	ObjectManager, 69
my_rank, 66	bfl_buildBody, 70
neighbour_coords, 67	computeLiftDrag, 71
neighbour_rank, 67	destroyInstance, 71
neighbour_vectors, 67	getInstance, 71
num_ranks, 67	GridObj, 26, 77
p_data, 67	IBBody, 49
rank_coords, 67	IBMarker, 52
rank_core_edge, 67	ibm_apply, 71
recv_layer_pos, 67	ibm_banbks, 72
recv_stat, 68	ibm bandec, 72
send_requests, 68	ibm_bicgstab, 72
send_stat, 68	ibm_buildBody, 73
sender_layer_pos, 68	ibm_computeForce, 73
subGrid_comm, 68	ibm deltaKernel, 73
subgrid_tlayer_key, 68	ibm_findEpsilon, 74
world_comm, 68	ibm_findSupport, 74
MpiManager.cpp, 106	ibm_initialise, 74
MpiManager.h, 106	ibm_initialiseSupport, 74
range_i_left, 107	ibm_interpol, 75
range_i_right, 107	ibm_jacowire, 75
range j_down, 107	ibm moveBodies, 75
range_j_up, 107	ibm_positionUpdate, 75
.ago_1_ap, .o.	iopooliionopaato, 70

ibm_positionUpdateGroup, 75	rank_coords
ibm spread, 76	MpiManager, 67
io_readInCloud, 76	rank_core_edge
io_restart, 76	MpiManager, 67
io_vtkIBBWriter, 76	recv_layer_pos
io_writeBodyPosition, 77	MpiManager, 67
io_writeForceOnObject, 77	recv_stat
io_writeLiftDrag, 77	MpiManager, 68
	•
ObjectManager.cpp, 108	region
ObjectManager.h, 108	MpiManager::buffer_struct, 17
eBBBCloud, 108	MpiManager::phdf5_struct, 80
eBFLCloud, 108	region_number
elBBCloud, 108	GridObj, 27
eObjectType, 108	0.44.5
ObjectManager_init_bflbody.cpp, 109	SWAP
ObjectManager_init_ibmbody.cpp, 109	ObjectManager_ops_ibmflex.cpp, 109
ObjectManager_ops_ibm.cpp, 109	send_requests
ObjectManager_ops_ibmflex.cpp, 109	MpiManager, 68
SWAP, 109	send_stat
TINY, 110	MpiManager, 68
ObjectManager_ops_io.cpp, 110	sender_layer_pos
	MpiManager, 68
omega	size
GridObj, 27	MpiManager::buffer_struct, 17
onespace	spacing
GridUtils, 41	Body, 16
operator()	SQ
IVector, 54, 55	
	stdafx.h, 113
p_data	stdafx.cpp, 110
MpiManager, 67	c, 111
PCpts, 78	c_opt, 111
\sim PCpts, 78	cs, 111
PCpts, 78	w, 111
x, 78	stdafx.h, 112
y, 78	c, 113
z, 79	c_opt, 113
PCpts.h, 110	cs, 113
	DEPRECATED, 112
path_str	errorfcn, 113
GridUtils, 45	L DACTION WRITE OUT FORCES, 112
position	L_ERROR, 112
Marker, 58	
position_old	L_IS_NAN, 112
IBMarker, 53	LUMA_FAILED, 113
	SQ, 113
Q	w, 113
BFLBody, 11	stridedCopy
	GridUtils, 41
range_i_left	subGrid_comm
MpiManager.h, 107	MpiManager, 68
range_i_right	subgrid_tlayer_key
MpiManager.h, 107	MpiManager, 68
range j_down	subtract
MpiManager.h, 107	GridUtils, 42
range j up	supp_i
MpiManager.h, 107	Marker, 58
range_k_back	
MpiManager.h, 107	supp_j Marker, 58
•	
range_k_front	supp_k
MpiManager.h, 108	Marker, 58

```
support_rank
    Marker, 58
    GridObj, 27
TINY
    ObjectManager_ops_ibmflex.cpp, 110
tension
    IBBody, 50
timeav_mpi_overhead
    GridObj, 28
timeav timestep
    GridObj, 28
ulat2uphys
    GridUnits, 29
upToZero
    GridUtils, 42
vecmultiply
    GridUtils, 42
vecnorm
    GridUtils, 43, 44
w
    stdafx.cpp, 111
    stdafx.h, 113
world comm
    MpiManager, 68
writable_data_count
    MpiManager::phdf5_struct, 80
Χ
    MpiManager::layer_edges, 56
Χ
    MarkerData, 60
     PCpts, 78
XOrigin
    GridObj, 28
XPos
    GridObj, 28
Υ
    MpiManager::layer_edges, 56
у
    MarkerData, 60
    PCpts, 78
YOrigin
    GridObj, 28
YPos
    GridObj, 28
Ζ
    MpiManager::layer_edges, 56
Z
    MarkerData, 60
    PCpts, 79
ZOrigin
    GridObj, 28
ZPos
    GridObj, 28
```