209309086_V V Prasanth G

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from sklearn import tree
from sklearn.tree import plot_tree

Data Cleaning

data= pd.read csv("water potability.csv")

data.head(5)

Sulfate	Chloramines	Solids	Hardness	ph
			\	Conductivity
368.516441	7.300212	20791.318981	204.890455	0 NaN
				564.308654
NaN	6.635246	18630.057858	129.422921	1 3.716080
				592.885359
NaN	9.275884	19909.541732	224.236259	2 8.099124
				418.606213
356.886136	8.059332	22018.417441	214.373394	3 8.316766
				363.266516
310.135738	6.546600	17978.986339	181.101509	4 9.092223
				398.410813

	Organic_carbon	Trihalomethanes	Turbidity	Potability
0	10.379783	86.990970	2.963135	0
1	15.180013	56.329076	4.500656	0
2	16.868637	66.420093	3.055934	0
3	18.436524	100.341674	4.628771	0
4	11.558279	31.997993	4.075075	0

data.shape

(3276, 10)

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3276 entries, 0 to 3275
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	ph	2785 non-null	float64
1	Hardness	3276 non-null	float64
2	Solids	3276 non-null	float64
3	Chloramines	3276 non-null	float64

4	Sulfate	2495	non-null	float64
5	Conductivity		non-null	float64
6	Organic_carbon		non-null	float64
7	Trihalomethanes	3114	non-null	float64
8	Turbidity	3276	non-null	float64
9	Potability	3276	non-null	int64
dtvp	es: float64(9), i	nt64(2	1)	

dtypes: float64(9), int64(1) memory usage: 256.1 KB

data.isnull().sum()

ph	491
Hardness	0
Solids	0
Chloramines	0
Sulfate	781
Conductivity	0
Organic_carbon	0
Trihalomethanes	162
Turbidity	0
Potability	0
dtype: int64	

data.describe()

ph	Hardness	Solids	Chloramines	
Sulfate \				
count 2785.000000	3276.000000	3276.000000	3276.000000	
2495.000000				
mean 7.080795	196.369496	22014.092526	7.122277	
333.775777				
std 1.594320	32.879761	8768.570828	1.583085	
41.416840				
min 0.000000	47.432000	320.942611	0.352000	
129.000000				
25% 6.093092	176.850538	15666.690297	6.127421	
307.699498				
50% 7.036752	196.967627	20927.833607	7.130299	
333.073546				
75% 8.062066	216.667456	27332.762127	8.114887	
359.950170				
max 14.000000	323.124000	61227.196008	13.127000	
481.030642				

C	Conductivity	Organic_carbon	Trihalomethanes	Turbidity
Potabili	.ty	_		-
count	3276.000000	3276.000000	3114.000000	3276.000000
3276.000	000			
mean	426.205111	14.284970	66.396293	3.966786
0.390110)			
std	80.824064	3.308162	16.175008	0.780382

```
0.487849
         181.483754
                            2.200000
                                              0.738000
                                                            1.450000
min
0.000000
25%
         365.734414
                           12.065801
                                             55.844536
                                                           3.439711
0.000000
50%
         421.884968
                           14.218338
                                             66.622485
                                                           3.955028
0.000000
         481.792304
                           16.557652
                                             77.337473
                                                           4.500320
75%
1.000000
                           28.300000
                                            124.000000
                                                           6.739000
         753.342620
max
1.000000
data.fillna(data.mean(),inplace=True)
data.isnull().sum()
ph
                    0
Hardness
                    0
Solids
                    0
Chloramines
                    0
Sulfate
                    0
Conductivity
                    0
Organic carbon
                    0
Trihalomethanes
                    0
Turbidity
                    0
Potability
                    0
dtype: int64
data.Potability.value_counts()
0
     1998
1
     1278
Name: Potability, dtype: int64
sns.heatmap(data.corr(),annot=True)
fig=plt.gcf()
fig.set_size_inches(8,6)
plt.show()
```


data.hist(figsize=(14,13))
plt.show()

Partioning

```
X = data.drop('Potability',axis=1)
```

Y= data['Potability']

from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size=
0.3, random_state=0)

Y_train.value_counts()

0 1388 1 905

Name: Potability, dtype: int64

Y_test.value_counts()

0 610 1 373

Name: Potability, dtype: int64

```
from sklearn.preprocessing import StandardScaler
sc X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_{\text{test}} = sc_{\overline{X}}.transform(X \text{ test})
Decision Tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy score, confusion matrix
dt=DecisionTreeClassifier()
dt.fit(X_train,Y_train)
DecisionTreeClassifier()
pred dt=dt.predict(X test)
accuracy_dt=accuracy_score(pred_dt,Y_test,)
print(accuracy dt*100)
56.96846388606307
cm1=confusion matrix(pred dt,Y test)
sns.heatmap(cm1/np.sum(cm1), annot = True, fmt= '0.2%', cmap =
'Reds')
plt.show()
                                                       - 0.40
                                                      - 0.35
             40.59%
                                   21.57%
  0
                                                      - 0.30
                                                      - 0.25
             21.46%
                                   16.38%
                                                      -0.20
                0
                                      1
plt.figure(figsize = (20,20))
```

tree.plot tree(dt,filled = True)

plt.show()

KNN

```
from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier(metric='manhattan', n_neighbors=22)
knn.fit(X_train,Y_train)
KNeighborsClassifier(metric='manhattan', n_neighbors=22)
pred_knn=knn.predict(X_test)
accuracy_knn=accuracy_score(pred_knn,Y_test)
print(accuracy_knn*100)
66.32756866734486
cm2=confusion_matrix(pred_knn,Y_test)
sns.heatmap(cm2/np.sum(cm2), annot = True, fmt= '0.2%', cmap = 'Reds')
plt.show()
```



```
Logistic Regression
from sklearn.linear_model import LogisticRegression
lor= LogisticRegression()
lor.fit(X_train,Y_train)
LogisticRegression()
pred_lor = lor.predict(X_test)
accuracy_lor= accuracy_score(pred_lor,Y_test)
print(accuracy_lor*100)
62.25839267548321
cm3 = confusion_matrix(pred_lor,Y_test)
sns.heatmap(cm3/np.sum(cm3), annot = True, fmt= '0.2%', cmap = 'Reds')
plt.show()
```


Random Forest

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report

rf =
RandomForestClassifier(n_estimators=54,criterion='entropy',random_state=0)

rf.fit(X_train,Y_train)
RandomForestClassifier(criterion='entropy', n_estimators=54,
random_state=0)

pred_rf = rf.predict(X_test)
accuracy_rf = accuracy_score(pred_rf,Y_test)
print(accuracy_rf*100)

67.1414038657172

cm4 = confusion_matrix(pred_rf,Y_test)
sns.heatmap(cm4/np.sum(cm4), annot = True, fmt= '0.2%', cmap = 'Reds')
plt.show()
```



```
plt.figure(figsize = (20,20))
tree.plot_tree(rf.estimators_[1],filled = True)
plt.show()
```



```
Naive Bayes
```

```
from sklearn.naive_bayes import GaussianNB

nb = GaussianNB()

nb.fit(X_train,Y_train)

GaussianNB()

pred_nb = nb.predict(X_test)

accuracy_nb = accuracy_score(pred_nb,Y_test)

print(accuracy_nb*100)

61.241098677517805

cm5 = confusion_matrix(pred_nb,Y_test)
sns.heatmap(cm5/np.sum(cm5), annot = True, fmt= '0.2%', cmap =
```

```
'Reds')
plt.show()
```


KMeans

from sklearn.cluster import KMeans

```
n_cluster = range(1,10)
kmeans = [KMeans(n_clusters=i).fit(data) for i in n_cluster]
scores = [kmeans[i].score(data)for i in range(len(kmeans))]
f = plt.figure(1,figsize=(16,6))
plt.plot(scores)
_=plt.xticks(n_cluster)
```



```
km = KMeans(n_clusters=1)
km.fit(X_train,Y_train)
```

KMeans(n_clusters=1)

```
pred_km =km.predict(X_test)
accuracy_km = accuracy_score(pred_km,Y_test)
print(accuracy_km*100)
62.05493387589013
cm6 = confusion_matrix(Y_test,pred_km)
sns.heatmap(cm6/np.sum(cm6), annot = True, fmt= '0.2%', cmap = 'Reds')
plt.show()
```


SVM

```
from sklearn.svm import SVC, LinearSVC
svm = SVC(kernel='rbf', random_state = 42)
svm.fit(X_train, Y_train)
SVC(random_state=42)
pred_svm = svm.predict(X_test)
accuracy_svm = accuracy_score(Y_test,pred_svm)
print(accuracy_svm*100)
68.1586978636826
cm7 = confusion_matrix(Y_test,pred_svm)
sns.heatmap(cm7/np.sum(cm7), annot = True, fmt= '0.2%', cmap = 'Reds')
plt.show()
```


Summary

```
models = pd.DataFrame({
    'Model':['Logistic Regression', 'Decision Tree', 'KMeans', 'KNN',
'Random Forest', 'SVM', 'Naive Bayes'],
    'Accuracy score' :[accuracy lor, accuracy dt, accuracy km,
accuracy_knn, accuracy_rf, accuracy_svm, accuracy_nb]
})
models
sns.barplot(x='Accuracy score', y='Model', data=models)
models.sort_values(by='Accuracy_score', ascending=False)
                 Model Accuracy_score
5
                   SVM
                              0.681587
4
         Random Forest
                              0.671414
3
                   KNN
                              0.663276
0
  Logistic Regression
                              0.622584
2
                KMeans
                              0.620549
6
           Naive Bayes
                              0.612411
1
        Decision Tree
                              0.569685
```

