Санкт-Петербургский государственный университет

Математическое обеспечение и адмиистрирование информационных систем

Гусев Егор Игоревич Вычислительный практикум Отчет по заданию №12

Преподователь: Т.О. Евдокимова

Содержание

1.	Ссылка на код	3
2.	Постановка задачи	3
3.	Теория	3
4.	Численный эксперимент	3
	4.1. Описание	3
	4.2. Результаты	4

1. Ссылка на код

Код доступен по ссылке на github.

2. Постановка задачи

- 1. Реализовать метод k- средних для кластеризации точек на плоскости.
- 2. Показать, что результат зависит от выбора изначальных центров и от способа определения расстояния между точками.

3. Теория

Метод заключается в выборе начальных центров кластеров и последующем итерационном распределении точек по кластерам и переопределении координат центров. На каждой итерации:

• Определяем кластер, к которому относится точка

$$l_j = \operatorname*{argmin}_{i=1,\dots,k} \rho(x_j, c_i),$$

где l_j — метка кластера, c_i — центр кластера, $\rho(x_j,c_i)$ — функция расстояния. В наших тестах будем использовать две функции расстояния: евклидово расстояние и расстояние городских кварталов.

• Пересчитываем координаты нового центра каждого из кластеров, используя среднее арифметическое.

Это происходит до тех пор, пока результаты на двух идущих подряд итерациях не окажутся одинаковыми.

4. Численный эксперимент

4.1 Описание

• Определим параметры k-means следующим образом: k=5, N=200, координатная область $[0,100] \times [0,100].$

- Выберем 2 способа определения расстояния между точками: Евклидова и Манхэттенская нормы.
- Выберем 2 способа задания начальных координат центров: случайный в пределах области и в точках (0,0),(100,0),(100,100), (50,0), (100,100).
- Реализуем 4 различных варианта функции k-средних.

4.2 Результаты

На рисунках видно, что на данной выборке точек более существенные различия заметны между реализациями с разными метриками расстояний между точками на плоскости. Выбор же начальных координат не так сильно повлиял на распределение кластеров в данном случае. Следовательно, результат работы метода k-средних зависит и от начальных параметров, и от способа определения расстояния.

На рисунках жёлтым, синим и зелёным цветами обозначены разные кластеры, а красным – центры кластеров на последней итерации.

Рис. 1: Результат кластеризации $N{=}200$ равномерно распределенных точек на $k{=}5$ групп