

Nanoelectronics Research Laboratory

Exploring synapse pruning for energy-efficiency in Neural Networks (NN)

Aayush Ankit, Chankyu Lee, Priyadarshini Panda ECE, Purdue University

Motivation

- General purpose computing systems involve frequent and high b andwidth data transfers between memory and the computation c ore.
- Typical data flow: DRAM SRAM Computation Core.
- **DRAM fetches extremely energy hungry**. Hence need efficient ways to store data in the memory.
- Pruning exposes the sparsity in the NN thereby, providing ave nues for data compression.
- Data Compression can be significant driven (low overhead) for e xample – Frequent Pattern/Value compression, other encoding s chemes etc.

What is pruning a network?

Our Implementation

Our Implementation (Continued)

Experimental Methodology

➤ The "nn.Prune" functionality was implemented using masks to modify the "forward" and "backward" function in Torch.

> Simulation benchmarks :-

Dataset	Neural Network (NN) structure
MNIST	28x28 - 6c5 - 16c5 - 120 - 84 - 10
MNIST	28x28 - 6c3 - 16c3 - 36c4 - 240-120 - 84 - 10
CIFAR-10	3x32x32 - 6c5 - 16c5 - 120 - 84 - 10
CIFAR-10	3x32x32 - 6c3 - 16c3 - 36c4 - 240-120 - 84 - 10

Result #1. Benefits from Pruning

Inferences:-

- Pruning can potentially le ad to memory savings fro m 38% to 79% (61% on a verage) across all the be nchmarks.
- Lesser the accuracy req uirement, more is the sc ope of pruning.
- More number of layers (r edundancy), more is the scope of pruning.

Result #2. Training Effort

Pruning the neural network demands more training effort(time) to reach isoaccuracy.

Result #3. Synapse distribution across layers after training

Key points:-

- This is one of the possible distributions which leads to our result and may not be the golden result.
- We do not infer the signific ance of one layer w.r.t. other layers in the NN fro m this graph as that requir es further rigorous simulati ons.

Conclusions

 Pruning is a simple yet powerful technique to realize application aware flexible NN architectures (connectivity).

 Pruning and Training complement each other to obtain a optimally trained neural network.

Amount of parameter reduction is a strong function of network structure, accuracy and training effort.

Future work

 Develop efficient pruning control techniques based on the trainin g dynamics.

Analyze pruning on bigger networks.

Questions?