The following Listing of Claims will replace all prior versions, and listings, of claims in the application.

LISTING OF CLAIMS:

1. (Currently Amended) The bag-manufacturing and packaging system comprising:

a vertical bag-manufacturing and packaging machine that is configured to manufacture manufactures a bag by sealing a tubular continuous packaging material filled with items to be packaged, and which cuts and discharges the bag at a predetermined discharge position;

a conveyance unit that <u>is configured to receive</u> receives the bag discharged from the vertical bag-manufacturing and packaging machine and <u>convey</u> eonveys the bag downstream; and

a drop orientation control unit that is disposed between the vertical bag-manufacturing and packaging machine and the conveyance unit and configured to feed feeds the bag discharged from the vertical bag-manufacturing and packaging machine substantially to a predetermined position on the conveyance unit while maintaining the drop orientation of the bag even when the bag is discharged from the vertical bag-manufacturing and packaging machine at a position other than the predetermined discharge position.

2. (Currently Amended) The bag-manufacturing and packaging system of claim 1, wherein

the drop orientation control unit includes a rotor that feeds the bag discharged from the vertical bag-manufacturing and packaging machine <u>substantially</u> to the predetermined position on the conveyance unit.

3. (Currently Amended) The bag-manufacturing and packaging system of claim 2 [[1]], wherein

the drop orientation control unit includes <u>another rotor such that the</u> [[a]] pair of rotors that sandwich the bag discharged from the vertical bag-manufacturing and packaging machine and feed the bag to the predetermined position on the conveyance unit.

10:00

- 4. (Original) The bag-manufacturing and packaging system of claim 3, wherein the pair of rotors have elasticity in a radial direction around their rotational axes.
- 5. (Currently Amended) The bag-manufacturing and packaging system of claim 3 or 4, wherein

an interval between the pair of rotors is adjustable.

6. (Currently Amended) The bag-manufacturing and packaging system of <u>claim</u> any one of claims 3 to 5, wherein

the pair of rotors are independently driven.

7. (Currently Amended) The bag-manufacturing and packaging system of claim any one of claims 3 to 6, further comprising

a rotation control unit that <u>is configured to control</u> controls the rotational <u>speeds</u> speed of the pair of rotors.

8. (Currently Amended) The bag-manufacturing and packaging system of <u>claim</u> any one of claims 3 to 7, wherein

the pair of rotors are disposed such that the rotational axes of the rotors are on a horizontal plane.

9. (Currently Amended) The bag-manufacturing and packaging system of <u>claim</u> any one of claims 3 to 8, wherein

the pair of rotors are disposed such that the rotational axes of the rotors are <u>on a plane</u> that is slanted relative to from a horizontal direction.

10. (Currently Amended) The bag-manufacturing and packaging system of <u>claim</u> any one of claims 3 to 9, wherein

the vertical bag-manufacturing and packaging machine includes a longitudinal sealing mechanism that seals a sheet-like packaging material along a conveyance direction when forming the packaging material into a tubular form, and a transverse sealing mechanism that seals the tubular packaging material in a direction perpendicular to the conveyance direction of the packaging material, and

the pair of rotors are disposed at a position that is directly below the predetermined [[a]] discharge position of the bag in the transverse sealing mechanism and lower by about a conveyance direction length of one bag.

- 11. (Original) The bag-manufacturing and packaging system of claim 10, wherein the transverse sealing mechanism includes a pair of rotary-type sealing jaws.
- 12. (Currently Amended) The bag-manufacturing and packaging system of <u>claim</u> any one of claims 3 to 11, wherein

the conveyance unit is disposed at a position that is directly below the pair of rotors and lower by about a conveyance direction length of one bag.

13. (Currently Amended) The bag-manufacturing and packaging system of <u>claim</u> any one of claims 3 to 12, wherein

the pair of rotors are disposed at an intermediate position between the <u>predetermined</u> discharge position of the bag in the vertical bag-manufacturing and packaging machine and <u>the predetermined position on the conveyance unit at which the bag is dropped</u> a <u>drop point</u> of the bag in the conveyance unit.

14. (Currently Amended) The bag-manufacturing and packaging system of <u>claim</u> any one of claims 3 to 13, wherein

the conveyance unit comprises a belt conveyor that is pivotable <u>around a conveyance</u> direction using one end of the belt conveyor in the conveyance direction as the pivot center.

15. (Currently Amended) The bag-manufacturing and packaging system of <u>claim</u> any one of claims 3 to 14, further comprising

a rotor interval adjustment unit that is configured to adjust adjusts the interval between the pair of rotors, and

an interval control unit that controls is configured to control the adjustment of the interval between the pair of rotors by the rotor interval adjustment unit.

16. (Currently Amended) The bag-manufacturing and packaging system of claim 15, wherein

the interval control unit <u>configured to control</u> controls the rotor interval adjustment unit in accordance with the size of the bag to be manufactured in the vertical bag-manufacturing and packaging machine.

17. (Currently Amended) The bag-manufacturing and packaging system of <u>claim</u> any one of claims 3 to 16, further comprising

a positioning member that <u>supports</u> determines the relative position of the pair of rotors so as to allow the pair of rotors to adjust their positions with respect to the vertical bagmanufacturing and packaging machine.

18. (Currently Amended) The bag-manufacturing and packaging system of <u>claim</u> any one of claims 2 to 17, wherein

the surface of the rotor has is formed by an elastic member on its surface.

19. (Currently Amended) The bag-manufacturing and packaging system of <u>claim</u> any one of claims 2 to 18, wherein

the rotor rotates at the same speed as a drop speed at which of the bag is discharged from the vertical bag-manufacturing and packaging machine or at a faster speed than the drop speed.

20. (Currently Amended) The bag-manufacturing and packaging system of <u>claim</u> any one of claims 2 to 19, further comprising

a cantilever support mechanism that cantilever-supports the rotor.

21. (Currently Amended) The bag-manufacturing and packaging system of <u>claim</u> any one of claims 2 to 20, further comprising

a pullout mechanism that <u>slidably supports</u> pulls out the rotor <u>so as to allow the rotor</u> to be pulled from between the vertical bag-manufacturing and packaging machine and the conveyance unit.

22. (Currently Amended) The bag-manufacturing and packaging system of <u>claim</u> any one of claims 2 to 21, wherein

side portions of the rotor in the rotational axis direction of the rotor are is formed by a harder material whose side portions in the rotational axis direction of the rotor are harder than material with which the center portion of the rotor is formed.

23. (Currently Amended) The bag-manufacturing and packaging system of <u>claim</u> any one of claims 2 to 22, wherein

the surface of the rotor is covered by a brush that radially spreads around the rotational axis of the rotor, and

bristles of the brush are longer at both side portions in the rotational axis direction of the rotor than those at the center portion.

24. (Currently Amended) The bag-manufacturing and packaging system of <u>claim</u> any one of claims 2 to 23, wherein

the rotor includes a cooling mechanism <u>configured to cool</u> for cooling a seal portion of the bag discharged from the vertical bag-manufacturing and packaging machine.

25. (Currently Amended) The bag-manufacturing and packaging system of claim 2 [[1]], wherein

the conveyance unit has a fixed chute, and

the drop orientation control unit is configured to sandwich the bag discharged from the vertical bag-manufacturing and packaging machine between the rotor and a conveyance surface of the fixed chute includes a rotor and the conveyance unit, which includes a fixed chute including a conveyance surface disposed at a position facing the rotor.

26. (Currently Amended) The bag-manufacturing and packaging system of claim 2 [[1]], wherein

the conveyance unit has a belt conveyor, and

the drop orientation control unit is configured to sandwich the bag between the rotor and a conveyance surface of the includes a rotor and the conveyance unit, which includes a belt conveyor including a conveyance surface disposed at a position facing the rotor.

27. (Original) The bag-manufacturing and packaging system of claim 1, wherein the drop orientation control unit includes a multiple serial rotor including plural rotors.