PadhAl: Information Theory and Cross Entropy

One Fourth Labs

Sigmoid Neuron and Cross Entropy

How does it all tie up to the Sigmoid Neuron

- 1. Consider the Example:
 - a. A signboard with the text Mumbai
 - b. A random variable X which maps the signboard to: Text, No-Text
 - c. The distributions are as follows

x	y (We don't know initially)	ŷ (Predicted using sigmoid)
Т	1	0.7
NT	0	0.3

- d. Previously, we were using **Squared-error Loss** = $\Sigma_i (y_i \hat{y}_i)^2$
- e. Now, we have a better metric, one that is grounded in probability theory (KL- Divergence)
- f. $KLD(y||\hat{y}) = -\sum y_i \log \hat{y}_i + \sum y_i \log y_i$
- g. We aim to minimize loss by KLD with respect to the parameters w, b
- h. From KLD equation, we can see that y_i doesn't depend on w, b. So therefore, we are really only trying to minimize the first term, i.e. the cross-entropy
- i. So in practice, we can treat the second term as a constant, and the equation would really be $min(-\Sigma_i y_i log \hat{y}_i)$ here $i \in T$, NT
- j. $Cross\ Entropy\ Loss = -1 * log(0.7) 0 * log(0.3)$
- k. The second term cancels out and we are left with -log(0.7) which is the same as $-log\hat{y}$ (for the true case)
- I. It can be called $-log \hat{y}_c$ where c can take the value 0 or 1 which correspond to NT and T