**☆☆☆ Exercice 1 17

Au début de l'année 2021, une colonie d'oiseaux comptait 40 individus. L'observation conduit à modéliser l'évolution de la population par la suite (u_n) définie pour tout entier naturel n par :

$$\begin{cases} u_0 = 40 \\ u_{n+1} = 0,008u_n(200 - u_n) \end{cases}$$

où u_n désigne le nombre d'individus au début de l'année (2021 + n).

- 1. Donner une estimation, selon ce modèle, du nombre d'oiseaux dans la colonie au début de l'année 2022.
- **2.** On considère la fonction f définie sur l'intervalle [0; 100] par f(x) = 0.008x(200 x).
 - **a.** Résoudre dans l'intervalle [0; 100] l'équation f(x) = x.
 - **b.** Vérifier que la fonction f est croissante sur l'intervalle [0; 100] et dresser son tableau de variations.
 - **c.** En remarquant que, pour tout entier naturel n, $u_{n+1} = f(u_n)$ démontrer par récurrence que, pour tout entier naturel n:

$$0 \le u_n \le u_{n+1} \le 100.$$

- **d.** En déduire que la suite (u_n) est convergente.
- **e.** Déterminer la limite ℓ de la suite (u_n) . Interpréter le résultat dans le contexte de l'exercice.
- 3. On considère le programme suivant écrit en langage Python :

```
def seuil(p):
n=0
u = 40
while u < p:
n =n+1
u = 0.008*u*(200-u)
return(n+2021)
```

L'exécution de seuil(100) ne renvoie aucune valeur. Expliquer pourquoi.

★★★★☆ Exercice 2 /6

Partie A

On considère la fonction f définie et dérivable sur l'intervalle $[0; +\infty[$ par $f(x) = xe^{-x}$.

- 1. **a.** Rappeler le résultat de la limite $\lim_{x \to +\infty} \frac{e^x}{x}$.
 - **b.** Démontrer que la droite d'équation y = 0 est asymptote à la courbe représentative de la fonction f.
- **2.** Calculer la dérivée f' de la fonction f sur $[0; +\infty[$ et en déduire le tableau de variations de f sur $[0; +\infty[$.

On donne ci-dessous la courbe \mathscr{C}_f représentative de la fonction f dans un repère du plan. La droite (Δ) d'équation y=x a aussi été tracée.

Partie B

Soit la suite (u_n) définie par $u_0 = 1$ et, pour tout entier naturel n, $u_{n+1} = f(u_n)$.

- 1. Placer sur le graphique donné ci-dessous, en utilisant la courbe \mathscr{C}_f et la droite (Δ), les points A_0 , A_1 et A_2 d'ordonnées nulles et d'abscisses respectives u_0 , u_1 et u_2 . Laisser les tracés explicatifs apparents.
- **2. a.** Démontrer par récurrence que pour tout entier naturel $n, u_n > 0$.
 - **b.** Dans cette question toute trace de recherche même incomplète sera prise en considération dans l'évaluation.

La suite (u_n) est-elle convergente? Si oui, quelle est sa limite?

★★★☆ Exercice 3 /5

Calculer, si elles existent, les limites suivantes :

$$1. \lim_{\substack{x \to 4 \\ x < 4}} \frac{e^x}{4 - x}$$

$$2. \lim_{x \to +\infty} e^{-x^3}$$

3.
$$\lim_{x \to -\infty} e^x \sin(2022x)$$

4.
$$\lim_{x \to +\infty} e^x + 2\cos(x)$$

5.
$$\lim_{x\to 1} \frac{xy-x-y+1}{x-1}$$
 où y est un réel quelconque.

★☆☆☆ Exercice 4

Calculer les fonctions dérivées des fonctions suivantes :

1.
$$f_1(x) = e^{-\sqrt{x}} \operatorname{sur} I =]0; +\infty[.$$

2.
$$f_2(x) = \sqrt{4e^x + 12} \text{ sur } I = \mathbb{R}.$$

3.
$$f_3(x) = (e^{-x+9} - x^2)^{30} \text{ sur } I = \mathbb{R}.$$

14/11/2022 **3**