Contents

1	Question 1 1						
	1.1	a		1			
	1.2	b		1			
		1.2.1		1			
		1.2.2		1			
		1.2.3		1			
		1.2.4		1			
		1.2.5		2			
	1.3	с		2			
2	Question 2						
	2.1	a		2			
		2.1.1	Provided Sentences in FOL	2			
		2.1.2	Provided sentences that can be interpreted in terms				
			of PL-FOL	2			
		2.1.3	FOL Sentences instantiated into PL (Carol is the only				
			customer, so she is the only instatiation that matters)	3			
		2.1.4	Example: Carol can collect loyalty points (Sentence				
			1. combined with Sentence 6.)	3			
		2.1.5	Truth table to show a consistent model	3			
1	\mathbf{Q}	uesti	on 1				
1	1 -						
1.1 a.							
	1. $tea(BlackTea) \land (\forall x \ cheese(x) \Rightarrow \neg tea(x))$						
	$2. \ blend(BlackTea, GreenTea)$						
	3. $\forall x, y \ (\neg tea(x) \land tea(y)) \Rightarrow \neg blend(y, x)$						
	4. $\exists x \ tea(x) \land unoxidize(x) \land \neg wilted(x)$						
	5. $\exists x \forall y \ tea(x) \land ((tea(y) \land \neg unoxidize(y)) \Rightarrow blend(x,y))$						
1.	2 h).					
1.2.1 1.							
1.							
	• $tea(BlackTea) \land (cheese(x) \Rightarrow \neg tea(x))$						

• $tea(BlackTea) \land (\neg cheese(x) \lor \neg tea(x))$

1.2.2 2.

• blend(BlackTea, GreenTea)

1.2.3 3.

- $(\neg tea(x) \land tea(y)) \Rightarrow \neg blend(y, x)$
- $\neg(\neg tea(x) \land tea(y)) \lor \neg blend(y, x)$
- $(tea(x) \lor \neg tea(y)) \lor \neg blend(y, x)$
- $tea(x) \lor \neg tea(y) \lor \neg blend(y, x)$

1.2.4 4.

• $tea(T1) \wedge unoxidize(T1) \wedge \neg wilted(T1)$

1.2.5 5.

- $tea(T2) \land ((tea(y) \land \neg unoxidize(y)) \Rightarrow blend(T2, y))$
- $tea(T2) \land (\neg(tea(y) \land \neg unoxidize(y)) \lor blend(T2, y))$
- $tea(T2) \land ((\neg tea(y) \lor unoxidize(y)) \lor blend(T2, y))$
- $tea(T2) \land (\neg tea(y) \lor unoxidize(y) \lor blend(T2, y))$

1.3 c.

2 Question 2

Note that I use PL-FOL to refer to propositionalization.

2.1 a.

2.1.1 Provided Sentences in FOL

- Sentence 1: $\forall x \ o(x) \Rightarrow l(x)$
- Sentence 2: $\forall x \ o(x) \Rightarrow d(x)$
- Sentence 3: $\forall x (o(x) \land i(x)) \Rightarrow s(x)$

- Sentence 3 simplified: $\forall x \ i(x) \Rightarrow s(x)$
- The remaining sentences will take this simplified approach. It is a safe assumption that our model does not have any assignments that would complicate these simplifications.
- From Sentence 5: $\forall x \ o(x) \Rightarrow (g(x) \lor si(x))$
- From Sentence 8: $\forall x (g(x) \land i(x)) \Rightarrow pre(x)$
- From Sentence 8: $\forall x \ si(x) \Rightarrow \neg pre(x)$

2.1.2 Provided sentences that can be interpreted in terms of PL-FOL

- Sentence 4: $\neg s(C)$
- Sentence 6: o(C)
- Sentence 7: $g(C) \land \neg i(C) \land \neg s(C) \land \neg pre(C)$

2.1.3 FOL Sentences instantiated into PL (Carol is the only customer, so she is the only instatiation that matters)

- Sentence 1 PL-FOL: $o(C) \Rightarrow l(C)$
- Sentence 2 PL-FOL: $o(C) \Rightarrow d(C)$
- Sentence 3 PL-FOL: $i(C) \Rightarrow s(C)$
- Sentence 5 PL-FOL: $o(C) \Rightarrow (g(C) \vee si(C))$
- From Sentence 8 PL-FOL: $(g(C) \land i(C)) \Rightarrow pre(C)$
- From Sentence 8 PL-FOL: $si(C) \Rightarrow \neg pre(C)$

2.1.4 Example: Carol can collect loyalty points (Sentence 1. combined with Sentence 6.)

- Sentence 1. is a FOL statement: $\forall x \ o(x) \Rightarrow l(x)$
- Sentence 6. can be interpreted as a PL statement: o(C) (This is true in our truth table for the consistent model.)

- Since Carol is the only object that's a customer in our model, the only instantiation of Sentence 1. that adds value is the following: $o(C) \Rightarrow l(C)$
- Thus, in our model's truth table, l(C) is true.
- This is an example of how we will use the provided sentences to prove that a our model is consistent.
- Note that this example is not critical because there are no other statements that involve l(C) in PL-FOL

2.1.5 Truth table to show a consistent model.

No statement contradicts another statement.

Ref	PL-FOL	T/F
S0	$\neg s(C)$	Τ
S1	o(C)	${ m T}$
S2	$g(C) \land \neg i(C) \land \neg s(C) \land \neg pre(C)$	${ m T}$
S3	$o(C) \Rightarrow l(C)$	${ m T}$
S1 mp S3	l(C)	${ m T}$
S4	$o(C) \Rightarrow d(C)$	${ m T}$
S1 mp S4	$\backslash (d(C))$	${ m T}$
S5	$i(C) \Rightarrow s(C)$	T (S2)
S6	$o(C) \Rightarrow (g(C) \vee si(C))$	T(S2)
S7	$(g(C) \land i(C)) \Rightarrow pre(C)$	T(S2)
S8	$si(C) \Rightarrow \neg pre(C)$	T (S2)