Tema 8. Representación de conocimiento en robótica móvil

Razonamiento y Representación del Conocimiento

Indice

- Introducción
- Sensores en robótica móvil
 - Sensores Internos
 - Sensores de posicionamiento
 - Sensores de rango
 - Sensores de imagen

- Robots móviles autónomos
 - Desplazarse por su entorno
 - Condiciones de seguridad
 - No chocar
 - No caer
 - No provocar daños
 - Requerido: conocer el entorno en el que nos movemos

- Principales tareas en robótica móvil
 - Búsqueda. P. ej: localizar victimas en situaciones de emergencia
 - Construcción automática de mapas
 - Guiado de personas en un entorno
 - Acompañamiento/ayuda a personas que lo necesiten

- Necesidad de conocer el entorno
 - A nivel local:
 - Navegación
 - Evitación de obstáculos
 - A nivel global:
 - Localización
 - Planificación de trayectorias
 - Construcción del mapa

- Información a manejar
 - Recogida por los sensores internos y externos del robot
 - Información geométrica
 - Información visual
 - Otro tipo: mapas de temperatura o multiespectrales

- Los sensores nos dan información del estado y el entorno del robot
- Pueden ser:
 - Internos: nos informan del estado del robot
 - Externos: nos informan de lo que hay alrededor del robot

- Sensores Internos:
 - Odometría: conjunto de sensores que miden internamente el movimiento del robot
 - Encoders para saber cuánto ha girado cada rueda
 - Giróscopos y acelerómetros
 - Problema: son altamente ruidosos

 Sensores internos → posicionadores absolutos

- Sensores de inercia (IMU)
 - Inertial Measurement Unit: dispositivos que miden la inclinación (giroscopio) y aceleración (acelerómetro) en los tres ejes

- Sensores externos
 - Muchos tipos y tecnologías
 - Posicionadores → Nos devuelven la posición del robot
 - Métricos → Nos devuelven la distancia de los objetos que rodean al robot
 - Imagen→ Captan imágenes desde el robot

- Sensores externos → posicionadores
 - Permiten obtener las coordenadas del robot con respecto a un sistema de referencia externo
 - Globales: GPS, Galileo, etc.
 - Locales: Active beacons, etc.
 - No están exentos de error

- Sensores externos → posicionadores globales (GPS)
 - Permite, mediante un receptor, conocer nuestras coordenadas 3D (latitud, longitud y altitud)
 - Conocido el tiempo que tarda en llegar la señal se calcula la distancia al satélite:
 Superficie de una esfera. Uniendo 4 satélites tenemos un único punto (versión simplificada)
 - Precisión del GPS
 - Hace años: error aleatorio introducido. Se desactivó en el 2000
 - Actualmente la precisión está en 2-3 metros
 - Para mejorar la precisión se usa GPS diferencial (DGPS). Se tiene un GPS cercano y fijo en una posición conocida con mucha precisión. Los errores de GPS cercanos están fuertemente correlacionados, esto nos puede servir para corregir el error del GPS móvil
 - No se puede usar en interiores, entre edificios altos o árboles ni bajo el mar

Sensores externos → posicionadores globales (GPS)

- Sensores externos → posicionadores locales
 - Active Beacons
 - Distancia a los P.A. de redes Wi-Fi o redes móviles

- Sensores de Rango
 - Rango: distancia del sensor al objetivo (profundidad)
 - Se suelen utilizar para obtener la distancia a los objetos
 - Se pueden utilizar como complemento de otros métodos: visión
 - Habituales en robótica móvil
 - Infrarrojos (barato, distancias cortas)
 - Sonar (barato, alcance habitual 5-6 metros)
 - Láser (muy caro, mucha resolución. Alcances de varios kilómetros (!))

- Sensores de Rango → Tecnologías
 - Apertura de la señal
 - Tiempo de vuelo (directo)
 - Tiempo de vuelo (indirecto)

Sensores de Rango → Apertura de señal

- Sen. de Rango → Tiempo de vuelo (directo)
 - distancia= velocidad*tiempo / 2
 - Sonido: Velocidad Media=340m/s en el aire

- Sen. de Rango → Tiempo de vuelo (directo)
 - Sonar: SOund NAvigation and Ranging
 - El mismo sensor actúa de emisor y receptor:
 - 1. Emite un tren de ultrasonidos de 50kHz y 15° de amplitud
 - 2. Duración del haz 1ms aprox.
 - 3. Pasa a modo receptor contando el tiempo que transcurre

- Sen. de Rango → Tiempo de vuelo (directo)
 - Problemas con el sonar

- •Ángulo de incidencia
- Amplitud del cono
- Dobles rebotes

- Sen. de Rango → Tiempo de vuelo (indirecto)
 - Luz: Velocidad Media=300.000 Km/s en el aire

- Sen. de Rango → Tiempo de vuelo (indirecto)
 - Sensor laser (Laser Range Finder)

- Sen. de Rango → Tiempo de vuelo (indirecto)
 - Ejemplo: LIDAR 360°

- Sensores de Visión
 - Sistemas CCD o CMOS (y otros)
 - Sistema de pin-hole: se pierde la profundidad
 - Se produce una discretización

- Sensores de Visión
 - Nos proporcionan una imagen digital
 - El objetivo de esta información no es la navegación
 - Están más ligados a tareas de localización, identificación de lugares u objetos e interacción con el entorno

- Sensores de Visión
 - No siempre tendremos imagenes en el espectro visible
 - Pueden ser imágenes de temperatura

