

Digital Studio Cable Guide

We are in the midst of a digital revolution. Radio and television broadcasters are going digital. Digital formats have worked their way into recording studios, video post-production, film production and many associated applications, and the reason is clear — digital provides superior audio and video performance.

Binary coding is a vast simplification of complex audio and video signals. But because the signal is binary, receiving equipment can decipher the bit stream, ignore any noise and correct for any attenuation. Audio and Video signals are so sophisticated and complex however reducing them to binary code requires much higher frequencies than if they were left in analog sine waves. Digital A/V cables need to handle ever-higher digital frequencies. Also because this is A/V, it must be processed in real-time, in sequence, and live. We only give alphanumeric "data" the luxury of re-transmits, processing delay, and blank screen tolerance. A/V signals must remain on-air, without any pause to "compile." These are the challenges broadcast quality A/V cables have to meet.

Digital is very stable, which reduces equipment adjustments significantly. Copies or reproductions retain the quality of the original. Signal

degradation is virtually eliminated, and noise immunity is greatly improved. Whether it's a radio, TV or post-production application, all of these advantages result in improved picture and sound quality as well as interactivity, high-speed data and Internet access, pay-per-view services, simultaneous data/Internet access and personalized electronic news.

Although digital promises to revolutionize the A/V industry as we know it, it also poses a challenge when it comes to designing, choosing, and installing a new system. It has been estimated that there may be as many as 18 different DTV formats to choose from, with new ones being proposed all the time, all of which vary in the level of compression and transmission frequency. Various options also face the radio industry.

With all of these equipment options available, it becomes very important in the design phase to determine the correct cable to connect each of these pieces of equipment. The wrong choice in cable can be as costly as the wrong choice in equipment.

This Digital Studio Cable Guide will help you understand the important aspects of digital cables and the correct part numbers to use for a given format.

Digital Audio

The specification for digital audio was developed jointly by the Audio Engineering Society and European Broadcast Union (AES/EBU). The two key electrical parameters in this specification that pertain to cable are the data rate, which depends on the sampling rate (see table below) and impedance of 110 ohms ±20% for twisted pair constructions and 75 ohms for coax designs.

Sampling Rate	Bandwidth
32.0 kHz	4.096 MHz
38.0 kHz	4.864 MHz
44.1 kHz	5.645 MHz
48.0 kHz	6.144 MHz
88.2 kHz	11.289 MHz
96.0 kHz	12.228 MHz
192.0 kHz	24.576 MHz

Twisted Pair Parameters

The AES/EBU specification, with its broad impedance tolerance, allows for cables with impedances from 88 ohms to 132 ohms to be used, with 110 ohms being ideal. The twisted pair should be shielded, and in the case of multi-pair, each pair individually shielded. Foil shielding is recommended for permanent installs, and foil plus braid for flexed applications. One pair is capable of carrying two channels of digital audio.

The cables are terminated with either XLR connectors or are punched down or soldered in patch panels. Most digital audio cables utilize foam polyethylene to minimize the cable's size. Standard foam polyethylenes are susceptible to crushing which can change impedance. Belden cables utilize a special foam high-density polyethylene that provides exceptional crush resistance when compared to standard foam insulations.

The advent of digital microphones requires AES/EBU cable designs with added flexibility, such as Belden 1800F, a 110 ohm design featuring our ultraflexible "French Braid" construction.

Although AES/EBU specifications require shielding on each channel of data, data-grade UTP "Category 5" can easily meet the common mode balance requirements (-30 dB) without being shielded.

Can analog cables be used for digital?
Yes, but only for distances of roughly 50 ft. or so. The actual length is determined by the error correction and jitter tolerance of the receiving device. The impedance of most analog cables ranges from 40 ohms

to 70 ohms. This large mismatch from the nominal 110 ohms results in signal reflection and jitter causing bit errors at the receiver. Also, the high capacitance of analog cables greatly increases the rise time of the digital square wave.

Can digital cables (paired) be used for analog? Absolutely! The capacitance of digital cables is extremely low, making them a superior analog cable.

Digital Audio Over Coax

The transmission of digital audio over 75 ohm coax requires the use of baluns unless the device contains unbalanced coax AES inputs or outputs or the audio signal is embedded on a digital video signal. The baluns convert the unbalanced coax signal to a 110 ohm balanced transmission.

Much greater transmission distances are obtainable over coax as compared to twisted pair. The same coax used for digital video is ideal for digital audio. The coax used should have a pure copper center conductor (no copper covered steel or aluminum) and have good braid coverage (90% or more). Using one coax for both audio and video gives the added advantage of using one type of strip and crimp tool and one type of connector.

Embedding the audio is popular in TV applications. Embedded signals are often used in "pass through" installations such as cable head-ends. However, if audio manipulation is desired such as spot insertion or replacement, then audio must be "de-embedded" or de-multiplexed from the video stream. This is a complex and expensive procedure. For maximum versatility, separate audio and video runs are suggested.

Digital and HD Radio

When radio broadcast converts to digital — the cable selection will be equally critical and arguably more so. The basic specification parameters for digital audio cable are entirely different than for analog audio. The key attribute for the cable is no longer lower capacitance as in analog audio. The Digital Audio signal is impedance specific and it is the impedance of the cable that is now critical. Fortunately, by nature of their design, Digital Audio cables have built-in low capacitance which makes them excellent analog cables. (The converse is not true: almost no excellent (or even good) analog audio cables are suitable for digital, because they were not designed with digital audio's impedance in mind.) The point: whether you're converting to

Where AES/EBU format is used, 110 ohm shielded balanced line cables are the standard. IP technology may be employed to integrate station data networking resources and requirements with programming and advertising content. Where IP technology is deployed, high quality UTP (Category 5e, Category 6 UTP, or MediaTwist?) can be used. Television stations may choose to use AES3 format, employ baluns, and multiplex digital audio over 75 ohm coax infrastructure. Where the environment may be electrically noisy, the shielded AES/EBU cables, or AES 3, and coax will be preferred.

Radio Broadcasts will benefit tremendously from Digital Conversion and will be driven by the benefits it offers — even without government mandate: AM clarity equal to current FM; FM clarity rivaling current CD's; new embedded text offering news, weather, traffic, and financial market information, interactivity, customization, and audio-on-demand. Digital Conversion in radio broadcasting may happen quickly because of low entry barriers: A low cost to convert, it's use of the existing spectrum, and the preservation of existing analog service permitting consumers to upgrade on their own timetable. However this revolution unfolds, and however your station deploys: Belden has the cable for AES/EBU, IP or AES 3 digital and HD Radio upgrades.

Digital Video (SDI)

The Society of Motion Picture and Television Engineers (SMPTE) has developed two different standards for serial digital transmissions (SDI). A third format that transmits at 540 Mb/s is under development. There is also a European standards body known as ITU (formerly CCIR) that developed the specifications for Europe known as PAL Each of these specifications differs in frequency and transmission technology, i.e., composite or component.

> SMPTE 259M — Covers digital video transmissions of composite NTSC 143 Mb/s (Level A) and PAL 177 Mb/s (Level B). It also covers 525/625 component transmissions of 270 Mb/s (Level C) and 360 Mb/s (Level D).

- SMPTE 292M Covers the newest format for HDTV transmissions at 1.458 Gb/s.
- SMPTE 344M Covers component widescreen transmissions of 540 Mb/s.
- ITU-R BT.601 International standard covers component PAL transmissions of 177 Mb/s.

Coax Parameters

All of the above standards were designed to work with standard analog video coax cables. It is true, analog coax cables of precision grade will work okay at the higher digital frequencies. However, newer coax constructions that have been designed specifically for digital transmissions offer performance advantages over the old analog designs. These new constructions employ several design parameters to provide the precision electrical characteristics required for high frequency transmissions over longer distances.

Center Conductor — The center conductors are solid bare copper. Solid conductors provide better impedance stability and return loss (RL). RL expresses the amount of signal lost due to the signal reflecting back to the source. This reduces the signal reaching the receiver, thus increasing attenuation and decreasing effective transmission distance.

Digital transmissions contain low frequency elements that travel down the center of the conductor and high frequency elements that travel on the outside of the conductor due to skin effect. For these reasons, uncoated pure copper conductors are used for optimum performance.

> Dielectric — The dielectric material (insulation) consists of solid or foam high-density polyethylene. The special formulation Belden uses is more crush-resistant than standard foam polyethylenes and is less prone to conductor migration. Both crushing and conductor migration can cause a change in the cables impedance which, in turn, will cause an increase in RL. While the nominal velocity of propagation of a solid dielectric is 66%, gas injection technology provides extremely consistent foaming and high velocities of propagation (82 to 84%). The velocity is kept

very constant to minimize timing problems. Foam dielectrics reduce the size of the coax compared to older solid dielectric designs.

- > Shield Precision analog cables utilize double braid shields which are effective but not optimum for digital's high frequencies. Braid shields are ideal for frequencies under 10 MHz while foil shields work best above that frequency. Since digital transmissions contain both low and high frequencies, foil-braid designs are used.
- > Testing Lastly, to ensure that the cables are electrically sound, every reel must be 100% sweep tested for RL to at least the third harmonic of the fundamental frequency and exhibit no less than SMPTE's minimum suggested level of 15 dB. For HD cables at an uncompressed data rate of 1.485 Gb/s, this gives a bandwidth of 750 MHz and a third harmonic frequency of 2.25 GHz (3 x 750). Belden sweep tests all of its HD cables to 3 GHz, with guaranteed minimum RL steps of 23 dB to 850 MHz and 21 dB from 851 MHz to 3 GHz. More technical information on RL and other cable parameters can be found on Belden's Web site at www.belden.com.

Installable Performance®

When looking at guaranteed performance on a cable's data sheet, one naturally expects that the cable will deliver that same performance after it has been installed. This assumption doesn't always hold true, however, because the installation itself can dramatically alter the cable performance.

Typically, when cables are installed they are pulled and yanked on, bent around corners, stepped on, and may kink when coming off the reel. All of these factors can change the physical properties of the cable, which in turn may degrade the cable's electrical performance.

To help ensure that the cable's electrical performance is not compromised through improper installation techniques, three key cable attributes must be held to a high level: conductor adhesion, crush resistance and Return Loss.

Conductor Adhesion

Conductor adhesion is most important to connectorization and connector reliability. Improper levels of conductor adhesion can make the connectorization process harder and can cause connector failures both during and after installation. If adhesion levels are too low, the conductor can

move within the dielectric and actually migrate and appear to grow or lengthen in the cable. A cable with low conductor adhesion may appear to be fine prior to installation. However, the rigors of installation can break the conductor adhesion due to all of the pulling and bending that occurs. Once the bond between the conductor and insulation is broken, the conductor migration can, in some cases, result in the center pin of the BNC connector being pushed out of the casing. To prevent this from occurring, Belden uses a skin/foam insulation process that ensures a high degree of conductor adhesion. In addition, all Belden cables are tested for conductor adhesion to further ensure performance.

Crush Resistance

BRILLIANCE

As stated earlier, most of the cables used for SDI are foam dielectrics. Foam dielectrics are, by nature, softer than their solid counter parts. If the cable is improperly handled or installed, the dielectric can be crushed and deformed thereby changing the impedance and causing RL. The special proprietary formulation Belden uses is more crushresistant than standard foam polyethylene making it far less prone to deformation.

Return Loss Headroom

In order to ensure the SMPTE minimum level of 15 dB RL is met, the cables used must be several dB better to ensure the minimum level is met after the rigors of installation. Other components in the transmission chain can also degrade RL such as a bad termination or improper patch bay connections. Belden's guaranteed minimum level of 21 dB RL gives the user 6 dB of RL headroom to account for such potential inconsistencies.

Careful attention to all of the above attributes ensures that the cable the customer receives from Belden will meet performance specifications after installation. After all, that is what Installable Performance is all about.

Can analog coax cables be used for digital? Yes, only if it is of precision video grade. Standard video cables may have stranded center conductors or copper covered steel. They also may not have adequate shielding as mentioned above. Standard video cables are usually not tested for RL. Beware of plain old coax!

Con digital coax cables be used for analog? Yes, but only if your plant has cable equalization (EQ) designed to work within the loss characteristics of the particular coax. If the transmission distance is short, equalization may not be

a problem. Many equipment manufacturers are now making equalization cards designed specifically for the new digital cables when running analog.

Can I mix foam and solid polyethylene designs together in the same run?

If you run analog in short un-equalized runs, you can mix cables together. However, you will have two connectors, with different dimensions, two different stripping tools, and two different crimping tools. For longer EQ'd runs you will need two different EQ cards as well. Belden suggests you standardize on one cable for as long as you can. Foam core cables have a delay of 1.24 ns/ft compared to 1.54 ns/ft. for solid polyethylene. The loss characteristics of the cables will also be different. Both parameters must be taken into consideration if mixing cable types. As a rule of thumb, it's best to stay with one design throughout.

Video Connectors

Most connectors used for analog video are 50 ohm BNCs. In analog video, where the quarter wavelength of the signal is approximately 60 feet, the impedance mismatch of a 1/2 inch BNC connector, or even a dozen in a row, is minimal. However, the quarter wavelength of a digital signal can be as short as three inches at HD frequencies. While one or two 50 ohm connectors would probably not have an effect, a dozen of them (6 inches) is significant and will result in a RL problem. Most video signals go through many connectors in a typical studio. For this reason, it is recommended to use not only 75 ohm connectors, but also connectors demonstrated to maintain their impedance up to at least the third harmonic (2.25 GHz).

Cable Installation

Care must be taken when installing digital, and especially high definition, coax. Improper handling, cable pulling and installation techniques can deform the cables which can in turn cause a RL problem. The following practices should be utilized when installing any digital cable.

Installation Basics

- > Do not step on the cables.
- Do not lay equipment on the cables.
- > Do not kink the cables.
- Cable pulls should be done in a slow steady fashion — no jerking. Do not exceed the cables maximum pulling tension (call the manufacturer for this information).

- Do not exceed the minimum bend radius of the cable: 10 times the diameter of the cable.
- Do not cinch cable ties too tightly. If you cannot move any cable inside a tied bundle, the cable tie is too tight.
- Do not put cable ties or J hooks at identical distances apart. This can lead to deformation at a given wavelength, which can cause RL. Place cable ties at random distances.
- > Cables should be supported by cable trays, J-hooks, etc. to take the gravitational forces off of the cable. Cable sag should be less than 8 inches.
- > Conduit runs in excess of 90' and/or with more than two 90° equivalent turns should include a pull box. Each 90° turn is equivalent to the friction of a 30' straight conduit run.
- If cable is pulled into conduit, an anti-friction lubricant should be used that is compatible with the cable jacketing material.
- > Maintain the original physical shape of the cable.

Testing Digital Video

Currently there are no standards to test digital video or HDTV. However, Belden suggests measuring and documenting the RL on every link to ensure that the SMPTE minimum suggested level of 15 dB is met. RL is the measurement of reflected signal caused by impedance discontinuities in the channel. These discontinuities are caused by connectors, cable, transition devices, patch panels and improper cable installation or handling. Any reflected energy reduces the power of the transmitted signal. Measuring RL will give a good expectation of just how well each link will do with SDI or HD video.

Digital Camera Cables

In 1998 the Society of Motion Picture and Television Engineers (SMPTE) developed the industry standard SMPTE 311 for High-Definition Television Camera cables to assure clear, reliable transmission of audio, video and camera control cables.

Belden's new composite cable incorporates two tight-buffer, single-mode 10µm optical fibers for video, four 20 AWG or two 16 AWG conductors (depending on the design) are used for power and two 24 AWG conductors for control and sound. The fibers, color-coded blue and yellow, permit long-haul transmission of critical audio and video signals with extraordinary reliability and clarity. The new standard

provides a cable smaller in diameter and lighter in weight than traditional camera cables resulting in easier handling during installation or in field applications.

Belden's SMPTE 311 cables are 7804R and 7804C. 7804R is made with tight buffer fiber designs and (4) 20 AWG auxiliary (power) conductors per traditional design parameters. 7804C has been designed with breakout fibers to enhance ruggedness and with (2) 16 AWG auxiliary (power) conductors to simplify termination and reduce installation time. In addition, a central stainless steel strength member is used for additional durability during installation. The overall jacket is black Belflex* providing exceptional flexibility.

The Future

Unshielded Twisted Pairs (UTP)

The digitization of audio and video signals has given rise to a convergence with data wiring technology, which utilizes unshielded twisted pairs.

It is a misconception to equate digital A/V signals to digital data signals though, simply because "they are both digital." Ethernet is digital coding of very discreet alphanumeric data: 26 letters and 10 numbers. And Ethernet protocols allow for the use of packets which may be scrambled, transmitted, certain packets re-transmitted, unscrambled and recompiled before the information is presented. All that processing and reprocessing introduces delay which we tolerate for this mcdia. A/V signals are comprised of millions of colors, hues and tones, with different volumes, inflections, tempo and motion. And we require its playback to occur live and in real time. Just as a picture is worth a thousand words and can be taken in the blink of an eye — A/V signals are much more than "data" — even when they are digital.

While almost any UTP cable can handle low-bandwidth or low data-rate applications (such as a telephone), few cables can handle signals like 270 Mb/s digital video for appreciable distances. Like coax, it's a question of what bandwidth (frequency) or data rate and how far. Distance is the key.

The consistency of a UTP cable determines the transmission distance. Physical characteristics of concentricity, conductor-to-conductor and pair-to-pair spacing relationships, and how well they are maintained along the length of the cable determine how far a signal at a given frequency can be carried without

excessive attenuation. The quality of the cable determines the quality of the signal at a distance.

NanoSkew®

NanoSkew (7987R) is a 4-pair, 100 ohm 24 AWG UTP cable with no EIA/TIA data category rating. It is designed for the lowest possible skew delay difference between pairs, which is the critical factor for component video applications. NanoSkew is designed specifically for video, and is *strictly* for video applications. It should not be used where Ethernet data will be transmitted. Sec Belden new product bulletin *NP212* for complete details about NanoSkew Cables.

Brilliance VideoTwist®

Brilliance VideoTwist cables are Category 5e and Category 6 cables incorporating low-skew characteristics for video performance. Ethernet cables not designed with video in mind do not pay as close attention to minimizing skew and to delivering consistent skew performance. The insulated conductors of each pair are bonded together so they maintain their spacing and orientation throughout the run, around bends, and enduring the rigors of installation. This gives them the consistent physical characteristics so important for stable impedance. Their blend of Video performance (low skew between pairs) and Data rating make Brilliance VideoTwist the ideal choice for shared sheath applications, for video over IP, for KVM applications, and where one cable is preferred for both data circuits and for video circuits. Belden bulletin NP212 gives the full details of Brilliance VideoTwist

Fiber Optic Cables

At some point, either in bandwidth or distance, copper cables may not be able to perform the task at hand. In these cases, fiber optic cables are an option. Fiber comes as either single-mode or multimode core constructions. Multimode has a 50 micron or 62.5 micron fiber core. 62.5 micron fiber has a modal bandwidth of 160 MHz at 850 nm and 500 MHz at 1300 nm. Single-mode has an 8.3 micron core with a theoretical exit bandwidth into the gigahertz, essentially unlimited. Technologies are now extending even these bandwidths. Multimode and single-mode connectors are easy to install and can be field installed in minutes. Belden offers a comprehensive line of fiber optic cables.

AES/EBU Digital Audio Cable

Single- and Double-Pair Cables

Shorting Fold

◆500 ft. and 1000 ft. put-ups available in Black only.

Description	Part	UL NEC/ C(UL) CEC Type	No.	Color Code	Stan Leng		Stan Unit V	dard Veight	Nom	DCR	Nominal OD	Nom.	Nom.	Na	m. Ca	pacitar	nce
Description	No.	Type	Pairs	Code	Ft.	m	Lbs.	kg	Cond.	Shield	Nominal 00 Inch mm	(12)	of Prop.	pF/ Ft.	pF/ m	pF/ Ft.	pF/ m

26 AWG Stranded (7x34) .018" Tinned Copper • Twisted Pair • Beldfoil® Shield • 26 AWG Stranded TC Drain Wire

Datalene® Insulation • Chrome or Violet PVC Jacket 2-Conductor Digital Video Time Code Cable 80°C 1000 304.8 11.0 5.0 37.3Ω/M' 23.1Ω/M' NEC: CMR 9180 .144 3.66 110 76% 13 43 26 Black. White 122.3Ω/km 75.8Ω/km CEC For cross-connect use with 7891A (et al.) Digital Audio Snake Cables, see page 7. CMG FT4 75

24 AWG Stranded (7x32) Tinned Copper • Twisted Pairs • Overall 100% Beldfoil Shield • 24 AWG Drain Wire

Datalene Insulation • Slate Gray or Violet PVC Jacket 500 • 152.4 12.0 5.5 23.7Ω/M' 18.9Ω/M' U-1000 U-304 8 18.0 8.2 77.7Ω/km 62.0Ω/km 1000 304.8 18.0 8.2 5000 • 1524 0 88.8 40.4 60°C NEC: 1800B .177 4.57 110 76% 13 43 26 85 Black. CMG CEC: Red For cross-connect use with 1803F (et al.) Digital Audio Snake Cables, see page 7. CMG FT4 For Plenum version of 1800B, see 1801B. *500 ft. put-up available in Gray only. 5000 ft. put-up available in Vrolet only. The jacket and shield are bonded so both can be removed with automatic stripping equipment.

Datalene Insulation	• Mat	te PVC	Jack	ket (Re	d, Yellow, Gree	n. Blu	ie. Gr	ay or Blac	()					To be		10.0	
Digital Mic Cable High-Flex 60°C	1800F	NEC: CL2R	1	Black, Red	500 * 152.4 U-1000 U-304.8 1000 * 304.8	100000000000000000000000000000000000000		23.7Ω/M′ 77.7Ω/km	5.0Ω/ M .′ 16 4Ω/km	.211	5.36	110	76%	13	43	26	85
French Braid																	

24 AWG Stranded (7x32) Tinned Copper • Twisted Pairs • Overall 100% Beldfoil Shield • 24 AWG Drain Wire

Plenum • Foam FEP	Teflo	n Insu	lation	• Nat	ural W	/hite o	r Via	let i	lamarre	st Jack	et							
75°C, Non-conduit	1801B	NEC: CMP	1	Black, Red	500† U-1000†				23.7Ω/M' 77.7Ω/km	18.9Ω/M′ 62.0Ω/km	165	4.19	110	78%	13	43	26	85
		CEC: CMP FT6			1000†	304.8	14.0	6.4										

Datalene Ins	ulation	 Viol 	et PVC	Jack	et in	Zip-Co	rd Cor	ıstru	ction										
60°C	气气	1802B	NEC: CMG CEC: CMG FT4	2	Black, Red	500 U-1000 1000	152.4 U-304.8 304.8	36.0	16.4	23.7Ω/M′ 77.7Ω/km	18.9Ω/M′ 62.0Ω/km	×	4 57 x 9 14	110	76%	13	43	26	85

The jacket and shield are bonded so both can be removed with automatic stripping equipment

22 AWG Stranded (7x30) Tinned Copper • Twisted Pair with Fillers • Overall 100% Beldfoil Shield + 90% TC Braid Shield • 24 AWG Drain Wire

Datalene Insulati	OIL - DISCK III	L. H. H. L.	Hildrich		J.L.C.K.C							-		_			
High-Flex	1696A	1	Blue,	250	76.2	8.0	3.6	14.8Ω/M'	4.6Ω/M*	.234	5.94	110	76%	13	43	26	85
60°C			White	500	152.4	16.0	7.3	48.5Ω/km	$15.2\Omega/km$								
- 10-	_0			U-1000	U-304.8	32.0	145										
100				1000	304.8	32.0	14.5										
	3																
1 200																	
Z-Fold																	

BC = Bare Copper • DCR = DC Resistance • HC = High-conductivity • TC = Tinned Copper

*Capacitance between conductors. **Capacitance between one conductor and other conductors connected to shield.
Spools and/or UnReel cartons are one piece, but length may vary ±10% for spools and ±5% for UnReel from length shown.

AES/EBU Digital Audio Cable

Multi-Pair Snake Cables Individually Shielded and Jacketed Pairs

Individually Shielded and Jacketed Pairs NEC: CMG (CEC: CMG FT4)

Product Description

26 AWG or 24 AWG stranded tinned copper conductor. Datalene® insulation. Pairs individually shielded with bonded Beldfoil® and have numbered and color-coded PVC jackets (see Chart 7 in Technical Information Section for colors). Pair jackets and shields are bonded so both strip simultaneously with automatic stripping equipment. Overall Beldfoil shield plus overall Purple PVC jacket and nylon rip cord.

Datalene insulation features include low dielectric constant and a dissipation factor for high-speed, low-distortion data handling. Physical properties include good crush resistance and light weight.

Color Code: Black, Red.

Specifications

Nominal OD — Conductor	
26 AWG	.019" (.48mm)
24 AWG	.024" (.60mm)
Nominal OD — Insulation	
26 AWG	.054" (1.37mm)
24 AWG	.070" (1.78mm)
Inner Pair Jacket OD	
26 AWG	.136" (3.45mm)
24 AWG	.167" (4.24mm)
Approvals	NEC: CMG (CEC: CMG FT4)
Nominal DCR (26 AWG)	
Conductor	$37.3\Omega/M'$ (122.3 Ω/km)
Shield	23.1Ω/M' (75.8Ω/km)
Nominal DCR (24 AWG)	
Conductor	23.7Ω/M' (77.7Ω/km)
Shield	$18.9\Omega/M'$ (62.0 Ω/km)
Nominal Impedance	110Ω ±10Ω
Nominal Velocity of Propagation	76%
Nominal Capacitance	
Between Conductors	13 pF/Ft. (43 pF/m)
Between Conductor/Shield*	26 pF/Ft. (85 pF/m)
DCR = DC Resistance	

^{*}Capacitance between one conductor and other conductors connected to shield For AV cable assemblies, visit the Belden Web site for a list of Belden Certified Assemblers

Part No.	10000		dard gths		dard Veight	Nominal 00		
No.	Pairs	Ft.	m	Lbs.	kg	Inch	mm	

Individuali	y Shielded	& Jacketed
-------------	------------	------------

ac 4	Wo	7 0 4	- NEC 1	NIO OF	o outoi	-	SETTING.	
-				CMG (CE				
7891A	(HEW)	2	500	152.4	28.0	12.7	.343	8.7
			1000	304.8	56.0	25.5		
7890A	пеш	4	100	30.5	8.2	3.7	.399	10.13
			250	76.2	18.0	8.2		
			500	152.4	31.0	14.1		
			1000	304.8	61.0	27.7		
7880A	MEM	8	250	76.2	29.8	13.5	.541	13.74
			500	152.4	57.0	25.9		
			1000	304.8	141.0	64.1		
Fits D-S	ub conn	ectors.						
7892A	new	12	500	152.4	85.0	38.6	.679	17.25
			1000	304.8	174.0	79.1		
7893A	CEED	16	500	152.4	109.5	49.8	.770	19.56
			1000	304.8	240.0	109.1		
24 A	WG (7x32)	• Flexi	ble • NE	C: CMG	(CEC: C	CMG FT	(4)
1803F		4	250	76.2	30.0	13.6	.488	12.40
			500	152.4	57.5	26.1		
			1000	304.8	107.0	48.6		
1805F		8	250	76.2	52.3	23.8	.661	16.79
			500	152.4	103.5	47.0		
			1000	304.8	205.0	93.2		
1806F		12	250	76.2	78.8	35.8	.829	21.06
			500	152.4	156.0	70.9		
			1000	304.8	322.0	146.4		
1850F	CIEID	16	250	76.2	99.5	45.2	.944	23.98
			500	152.4	209.5	95.2		
			1000	304.8	410.0	186.4		
1852F	CED	24	250	76.2	156.0	70.9	1.205	30.61
			500	152.4	322.0	146.4	00	53.0
			1000	304.8	646.0	293.6		
1854F	CED	32	250	76.2	224.0	101.8	1,346	34.19
. 5041	-	JL	500	152.4	434.0	197.3	1.0-10	04.10

¹7880A is designed to fit in 25-pin D-sub connectors used in digital console board equipment

AES/EBU Digital Audio Cable

Plenum-Rated, Multi-Pair Snake Cables Individually Shielded Pairs

Individually Shielded Pairs

NEC: CMP (CEC: CMP FT6)

Product Description

24 AWG stranded (7x32) tinned copper conductor. Foam FEP insulation. Twisted pairs individually shielded with 100% Beldfoil. Overall Gray fluorocopolymer jacket (except 82729 which has Natural Flamarrest^e jacket). 24 AWG stranded tinned copper

Color Code: See Chart 5 (in Technical Information Section)

Specifications

Nominal OD — Conductor	.024" (.60mm)
Nominal OD — Insulation	.062" (1.57mm)
Approvals NEC CEC	CMP CMP FT6
UL Ratings	Non-conduit Plenum
Voltage Rating	300V RMS
Nominal DC Resistance Conductor Shield	23.7Ω/M′ (77.7Ω/km) 18.9Ω/M′ (62.0Ω/km)
Nominal Impedance	100Ω
Nominal Velocity of Propagation	76%
Nominal Capacitance Between Conductors Between Conductor/Shield*	13.5 pF/Ft. (44 pF/m)

Between Conductor/Shield* 22.5 pF/F
*Capacitance between one conductor and other conductors connected to shield

Part	No.		idard igths	Stan Unit V		Nominal OD		
No.	Pairs	FL.	m	Lhs.	kg	Inch	mm	

Plenum Individually Shielded NEC: CMP (CEC: CMP FT6)

24 AWG	Tal	A COLUMN	2 200		STATE OF	NO PUR	W. T.
82729	2	U-1000 1000	U-304.8 304.8	27.0 28.0	12.3 12.7	.255	6.48
89729	2	500 1000	152.4 304.8	18.5 31.0	8.4 14.1	.261	6.63
89730	3	500 1000	152.4 304.8	23.0 40.0	10.5 18.2	.278	7.06
89728	4	500 1000	152.4 304.8	26.5 50.0	12.0 22.7	.307	7.80
89705	5	500 1000	152.4 304.8	30.5 62.0	13.9 28.2	.327	8.31
89731	6	500 1000	152.4 304.8	35.0 71.0	15.9 32.3	.361	9.17
89757	7	500 1000	152.4 304.8	39.5 80.0	18.0 36.4	.361	9.17
89732	9	1000	304.8	106.0	48.2	.433	11.00
89734	12	500 1000	152.4 304.8	71.0 140.0	32.3 63.6	.498	12.65
89758	18	500 1000	152.4 304.8	100.5 204.0	45.7 92.7	.616	15.65

Spools are one piece, but length may vary ±10% from length shown.

Digital Audio Attenuation

21	ИHZ	41	ИНZ	5	VIHZ	6 (ИHZ	12	MHz	25	MHz
d8/100 Ft.	dB/100m	dB/100 Ft.	dB/100m	d8/100 Ft.	dB/100m	dB/100 Ft.	dB/100m	dB/100 Ft	dB/100m	dB/100 Ft.	dB/100m
1.67	5.48	2.11	6.92	2.30	7.55	2.46	8.07	3.16	10.37	4.22	13.85
1.28	4.20	2.17	7.12	2.62	8.60	3.01	9.88	4.72	15.49	7.17	23.52
1.30	4.27	1.56	5.12	1.70	5.58	1.81	5.94	2.28	7.48	3.08	10.10
.93	3.05	1.15	3.77	1.20	3.94	1.30	4.27	1.60	5.25	1.97	6.46
1.34	4.40	1.67	5.48	1.74	5.71	1.99	6.53	2.77	9.09	3.83	12.57
.57	1.86	.82	2.70	.92	3.02	1.00	3.29	1.30	4.27	1.80	5.91
.41	1.35	.58	1.89	.63	2.07	69	2.25	90	2.95	1.30	4.27
.34	1.11	.53	1.74	60	1.97	67	2.20	98	3.22	1.44	4.72
_16	.52	.48	1.57	.54	1,77	.59	1.93	.80	2.62	1.00	3.28
	d8/100 FL 1.67 1.28 1.30 93 1.34 57 .41	1.67 5.48 1.28 4.20 1.30 4.27 .93 3.05 1.34 4.40 .57 1.86 .41 1.35 .34 1.11	d8/100 Ft. d8/100 mt. d8/100 mt. 1.67 5.48 2.11 1.28 4.20 2.17 1.30 4.27 1.56 .93 3.05 1.15 1.34 4.40 1.67 57 1.86 82 .41 1.35 .58 .34 1.11 .53	d8/100 Ft. d8/100 m d8/100 Ft. d8/100 m 1.67 5.48 2.11 6.92 1.28 4.20 2.17 7.12 1.30 4.27 1.56 5.12 .93 3.05 1.15 3.77 1.34 4.40 1.67 5.48 57 1.86 .82 2.70 .41 1.35 .58 1.89 .34 1.11 .53 1.74	d8/100 ft. d8/100 mt d8/100 ft. d8/100 mt d8/100 ft. 1.67 5.48 2.11 6.92 2.30 1.28 4.20 2.17 7.12 2.62 1.30 4.27 1.56 5.12 1.70 .93 3.05 1.15 3.77 1.20 1.34 4.40 1.67 5.48 1.74 57 1.86 82 2.70 .92 41 1.35 5.58 1.89 63 .34 1.11 .53 1.74 60	d8/100 Ft. d8/100 m d8/100 Ft. d8/100 m d8/100 m	d8/100 Ft. d8/100 mt. d8/100 pt. d8/100	d8/100 Ft. d8/100 mt <	88/100 Ft. d8/100 mt. d8/100	88/100 Ft. d8/100 mt. d8/100	88/100 Ft. dB/100 m dB/100 m

Maximum Recommended Transmission Distance at Digital Audio Data Rates (AES3-2003)*

	CANADA MARKANIA (2 1	1Hz	4.1	AHz	51	MHZ	6	MHz	12	MHz	25	MHz
1	Part Number	Ft.	m	Ħ	m	FL.	m	Ft.	m	FI.	×m ·	Ft.	(11
9180, 7	7880A Series	1198	365	948	289	870	265	813	248	633	193	474	144
1800F		1563	476	922	281	763	233	664	203	424	129	279	85
18008,	1801B, 1802B, 1803F Series	1538	469	1282	391	1176	359	1105	337	877	267	649	198
1696A		2151	655	1739	530	1667	508	1538	469	1250	381	1015	309
179DT	(AES3) [↑]	1493	455	1198	365	1149	350	1005	306	722	220	522	159
	(AES-3id)††	597	182	479	146	460	140	402	123	289	88	209	64
1855A	(AES3)†*	3521	1073	2427	740	2174	663	1992	607	1538	469	-1111	339
	(AES-3id)††	1408	429	970	295	869	265	796	242	615	188	444	135
1505A	(AES3)†◆	4866	1483	3478	1060	3175	968	2911	887	2222	677	1538	469
	(AES-3id)††	1946	593	1391	424	1270	387	1164	355	888	270	615	188
1505F	(AES3)1*	5882	1793	3774	1150	3333	1016	2985	910	2041	622	1389	423
	(AES-3id)††	2353	717	1509	460	1333	406	1194	364	816	249	556	169
1694A	(AES3)†*	5882	1793	4184	1275	3704	1129	3407	1039	2500	762	2000	610
	(AES-3id)††	2353	717	1673	510	1482	452	1363	416	1000	305	800	244

on distances are unhevative but an contingent upon system component quarity of incurrently averaged visities as successful production of the second productin of the second production of the second production of the second

DigiTruck™ Miniature Coax for Broadcast Production Trucks and Sub-Miniature RG-59/U Type

Description	Part	UL NEC/ C(UL) CEC		Lengths	Stan Unit V	Veight	Conductor (stranding)	Non Care	inal OD	Shielding Materials	Nomir	nal OD	Nam.	Nam.	Non Capac	tinal Itance	A	Nomina Itenuati	an
Description	No.	Туре	FI.	m	Lbs.	kg	Diameter Nom. DCR	Inch	mm	Nom, DCR	Inch	mm	lmp. (121)	at Prop.	pF/Ft.	pF/m	MHz	dB/ 100 Ft	d8/ 100m

28.5 AWG Solid .012" Bare Copper • Duobond Foil (100%)+ 95% Tinned Copper Braid Shield

Gas-injec	ted Fo	am HDP	E Insu	lation •	PVC	Ja	cket (Red	, Gree	n, Bl	ue, White,	Yellow	Brown	, Ora	inge,	Gray	Violet,	Black		THE REAL PROPERTY.
DigiTruck SDI/HDTV Digital Video 75°C	179DT	NEC: CM	500 1000	152.4 304.8	4.2 8.0	1 9 3.6	28.5 AWG (solid) .012" BC 108Ω/M' 350Ω/km	.056	1.42	Duobond Foil (100%) + 95% TC Braid 8.9Ω/M′ 29.2Ω/km		.254 Sweep t	75 ested	77% 5 MH:	17.4 z to 3 G	57.4 Hz.	2250	10.50 12.20 15.10 17.50 17.80 20.70 25.40 31.50	3.87 5.05 7.38 18.57 24.64 34.45 40.03 49.54 57.41 58.40 67.91 83.33 103.35 120.41

25 AWG Stranded (19x37) .021" Bare Copper • Duofoil® + 95% Tinned Copper Braid Shield

Gas-injec				Marie Control		-	THE RESERVE AND ADDRESS OF THE PARTY NAMED IN	The same of the sa	No. of Concession, Name of Street, or other Designation, Name of Street, Name	STATE OF STREET	450	0.04	7.5	0.000	40.5				
SDI/HDTV	1865A	NEC:	1000	304.8	16.0	73	25 AWG	.094	2.39	Duofoil	.150	3.81	75	82%	16.5	54.1	1	.5	1.5
Digital Video		CMR					(19x37)			+ 95%							3.6	1.0	3.1
75°C		CEC:					.021"			TC Braid							10	1.6	5.2
		CMG FT4					BC			6.0Ω/M'							71.5	3.7	12.1
	1						27 4Ω/M			19 8Ω/km							135	5.0	16.4
- V.	7-						89.9Ω/km			13 012/KIII							270	7.1	23.3
							99.914KIII										360	8.2	26.9
											100%	Sweep	tested	5 MHz	to 3 GH	lz.	540	101	33.1
													The Control of the Control		72	100	720	11.8	38.7
																	750	12.0	39.4
																	1000	13.9	45.6
																	1500	17.0	55.8
																	2250	20 8	68 2
																	2230	200	00 2

23 AWG Solid .023" Bare Copper • Duofoil + 95% Tinned Copper Braid Shield

Gas-inject	ted Fo	am HDP	E Insul	ation •	PVC	Jack	cet (Availa	ible In	10 co	lors)*								
SDI/HDTV Digital Video 75°C	1855A	NECCOMR CMR CEC: CMG FT4	500 * 1000 U-1000 *	152.4 304.8 U-304.8	9.0 18.0 18.0	4.1 8.2 8.2	23 AWG (solid) 023" BC 20.1Ω/M' 65 9Ω/km	.102	2.59	Duofoil + 95% TC Braid 4.1Ω/M' 13.5Ω/km	See 7	4.03 available 7787A ti 6 Sweep	rough	7792A.		1 3.6 10 71.5 135 270 360 540 720 750 1000 1500	.4 8 1.2 3.1 3.8 5.4 6.2 7.7 9.5 9.6 10.5	1.3 2.6 3.9 10.2 12.5 17.7 20.3 25.3 31.2 31.5 34.5
^500 ft. put-up av- *U-1000 ft. put-up																2250 3000	16.0 18.5	52.5 60.7

BC = Bare Copper • DCR = DC Resistance • HDPE = Foam High-density Polyethylene • TC = Tinned Copper

For Connector Cross Reference, visit www.belden.com or call Custamer Service 1-800-BELDEN-1 For AAV cable assemblies, visit the Belden Web site for a list of Belden Certified Assemblers. "Available in Brown, Red, Orange, Yellow, Green, Blue, Violet, Gray, White or Black

RG-59/U Type

	Part	UL NEC/		d Lengths		dard Veight	Conductor (stranding)		ninal e OD	Shielding	Nomir	al 00	Nom.	Nam. Vel.		ninal itance		Nomina Itenuati	
Description	No.	C(UL) CEC Type	Ft.	m	Lbs	kg	Diameter Nom. DCR	Inch	mm	Materials Nom. DCR	Inch	mm.	lmp. (Ω)	at Prop.	μF/Ft.	pF/m	MHz	dB/ 100 Ft	d8/ 100n
23 AWG 5	Solid .02	2" Bare C	opper •	Duofoil®	+ 959	% Tin	ned Coppe	r Brai	d Shie	eld									
Polyethy	lene In	sulation	• Blac	k Poly	ethyl	ene	Jacket				Fig. 13		n.		77		44		
80°C	9209		U-500 U-1000	U-152.4 U-304.8	15.0 29.0	6.8	23 AWG (solid) .022" BC 20.4Ω/M' 66.9Ω/km	.146	3.71	Duofoil + 95% TC Braid 4.5Ω/M′ 14.8Ω/km	100%	5.59 Sweep	75 tested	66% 5 MHz	21.0 to 850	68.9 MHz.	1 3.6 10.0 71.5 135 270 360 540 720 750 1000	.4 .5 1.2 2.9 4.0 5.6 6.6 8.3 9.7 9.9	1.2 1.8 3.8 9.5 13.0 18.4 21.5 27.2 31.7 32.5 38.0
20 AWG	Solid .03	2″ Bare C	opper •	Duofoil	+ 95%	Tinn	ed Copper	Braid	l Shiel	d									
Gas-inje	cted Fo	am HDI	E Insi	ulation	. PV	C Ja	cket (Ava	ailable	in 10	colors)*									
SDI/HDTV Digital Video 75°C	1505A	NEC: CMR CEC: CMG FT4	500 * 1000 * 5000 *	152.4 304.8 1524.0	17.5 36.0 165.4	8.0 16.4 75.2	20 AWG (solid) .032" BC 10.0Ω/M' 32.8Ω/km	.145	3.68	Duofoil + 95% TC Braid 3.8Ω/M' 12.5Ω/km	see 1	506A.	e in bun	83% of 1505 odled ve 7798A	37.	53.5	1 3.6 10 71.5 135 270 360 540 720	.3 .6 .9 2.1 2.7 3.8 4.4 5.5 6.4	1.0 2.0 3.0 6.9 12.5 14.4 18.0 21.0

22 AWG Stranded (7x29) .031" Bare Compacted Copper* • Double Tinned Copper Braid Shield

*500 ft. put-up available in Black, Red or Blue only.

•1000 ft. and 5000 ft. put-ups available in all ten colors. Black, Brown, Red, Orange, Yellow, Green, Blue, Violet, Gray or White.

Gas-injed	ted Fo	am HDI	PE Insu	lation	PVC	Jac	ket (Matte	e Blac	k, Rec	, Green, Bl	ue, Ye	llow, V	/hite o	or Viole	t)			100	44
High-Flex SDI/HDTV Video Patch 75°C	1505F	NEC: CM CEC: CM	1000	304.8	44.0	20.0	22 AWG (7x29) .031″ BCC 12.2Ω/M′ 40.0Ω/km	.145	3.68	TC Double Braid 95% Shield Coverage 2.4Ω/M' 7.8Ω/km	.242	6.15	75 tested	80%	17.0 to 3 GH	55.7	1 3.6 10 71.5 135 270 360 540 720 750 1000 1500 2250 3000	.2 .5 .9 2.5 3.5 5.1 6.0 7.4 8.7 8.9 10.5 13.3 16.9 20.3	1.6 2.9 8.2 11.5 16.7 19.7 24.3 28.5 29.2 34.4 43.6 66.6

100% Sweep tested. 5 MHz to 3 GHz.

20 AWG Solid .032" Bare Copper • Duofoil + 95% Tinned Copper Braid Shield

		Name and Address of the Owner, where	ACCRECATE NAME OF THE OWNER, O	THE RESERVED	ROOF FRANCES	-	icket (Av	-	-							-			
SDI/HDTV	1506A	NEC:	500 t*	152.4	16.5	7.5	20 AWG	.133	3.38	Duofoil	.199	5.05	75	84%	16.1	52.8	1	.3	1.0
Digital Video		CMP	1000 f	304.8	33.0	15.0	(solid)			+ 95%							36	.6	2.0
75°C		CEC:					.032"			TC Braid							10	1.1	3.4
		CMP FT6					BC			3.8Ω/M′							71.5	2.3	7.4
= Comment		OWN 110					10.0Ω/M′			12.5Ω/km							135	3.2	105
- 0000 To 44	(-									12.322/KIII							270	4.6	14.9
_	V						$32.8\Omega/km$										360	5.3	17.2
											100%	Sweep	tested	5 MHz	to 3 GH	12	540	6.4	21.0
																	720	7.3	23.9
																	750	7.5	24.6
																	1000	9.4	30.8
Suitable for Outdo	or and Dire	ct Burial annies	ations														1500	128	42.0
500 ft. put-up av																	2250	17.5	57.4
1000 ft. put-up a				Red Orani	e Yello	M Green	Slue Violet G	ray or N	latural								3000	21.9	71.8

BC = Bare Copper • BCC = Bare Compacted Copper • DCR = DC Resistance • HDPE = High-density Polyethylene • TC = Tinned Copper

For Connector Cross Reference, visit www.belden.com or call Customer Service 1-800-BELDEN-1. For A/V cable assemblies, visit the Belden Web site for a list of Belden Certified Asssemblers.

*Compacted conductor combines impedance uniformity of solid conductors and "nick-resistance" of stranded conductor. TSpools are one piece, but length may vary ±10% from length shown.

Double Braided RG-59/U Type

Description	Part	UL NEC/ C(UL) CEC	Standard	Lengths		dard Veight	Conductor (stranding)		tinal OD	Shielding Materials	Namir	al OD	Nom.	Nom- Vel		rinal Hance		Nomina Itenuali	
	No.	Тура	FI.	m	Lbs.	kg	Diameter Nom. DCR	Inch	mm	Nom. DCR	Inch	mm	(Ω)	of Prop.	pF/Ft.	pF/m	MHz	d8/ 100 Ft.	dB 100
O AWG S		-					-		- 11										
Polyethyl	ene In	sulation	• Poly	ethyle	ne J	acke	(Available	e in R	ed, Ye	llow, Greer	i, Ligh	t Blue	, Whit	e, Ora	nge o	r Black	()		
0°C	8281	in White.	500 * 1000	152.4 304.8		16.8 33.6	20 AWG (solid) .031″ BC 9.9ΩΣ/M′ 32 5Ω2/km	.198	5.03	TC Double Braid 98% Shield Coverage 1.1Ω/M' 3.6Ω/km	see 8	8281.		66% of 8281 . 5 MHz		68.9 MHz	1 3.6 10.0 71.5 135 270 360 540 720 750 1000	.3 .5 .8 2.1 3.0 4.3 5.1 6.3 7.4 7.6 9.2	1 2 6 9 14 16 20 24 24 30
Flame-ret	ardan	t Semi-F	oam P	olyeth	ylene	Inst	lation •	PVC	Jack	et (Availal	ale in	10 co	ors)*	AV B					
IL AWM ityle 1354 30V 80°C)	8281B	NEC: CMR CEG: CMG FT4	1000 flow, Green,	304.8	85 0 t. Gray, V		20 AWG (solid) .031″ BC 9.9Ω/M′ 32.5Ω/km	.198	5.03	TC Double Braid 98% Shield Coverage 1.1Ω/M' 3.6Ω/km	For P	8281.		66% of 82811 5 MHz		68.9 MHz.	1 3.6 10.0 71.5 135 270 360 540 720 750 1000	.3 .5 .8 2.1 3.0 4.4 5.1 6.6 7.8 8.0 10.2	1. 2. 6. 9. 14. 16. 21. 25. 26. 33.
2 AWG St	randed	(7x29) .03	31" Bare	e Compa	acted	Сорр	er* • Doub	le Tinr	ned C	opper Braic	d Shie	ld							
Polyethyle	ene In	sulation	- PVC	Jacke	(Mat	te Rec	I, Blue, Gre	en, G	ray or	Black)	1136	E .	100	and the same		ALC:			
ligh-Flex 0°C	8281F		500° 1000	152.4 304.8	32.û 65.0	14.5	22 AWG (7x29) .031" BCC 12.2Ω/M' 40.0Ω/km	.193	4.90	TC Double Braid 98% Shield Coverage 1.7Ω/M' 5.6Ω/km	.305	7.75 Sweep	75 tested.	66% 5 MHz	21.0 to 850	68.9 MHz.	1 3.6 10.0 71.5 135 270 360 540 720 750	3 .5 .9 2.5 3.6 5.1 6.0 7.4 8.7 8.9	1. 2. 8. 11. 16. 19. 24. 28. 29. 34.

20 AWG Solid .031" Bare Copper • 98% Tinned Copper Double Braid Shield

Plenum	ı • FEP li	nsulation	ı • Bla	ck Flu	oroc	opoly	mer Jac	ket											
150°C	88281	NEC: CMP CEC: CMP FT6	500† 1000†	152.4 304.8	46.0 86.0	20.9 39.1	20 AWG (solid) .032″ BC 9.9Ω/M′ 32.5Ω/km	.185	4.70	TC Double Braid 98% Shield Coverage † 1Ω/M' 3.6Ω/km	.271	6 88 6 Sweep	75 tested	71%	19 0 to 216	62.4 MHz	1 3.6 10 0 71.5 135 270 360 540 720 750	2 .5 .8 23 3.3 5.1 6.1 8.0 9.7	.7 1.6 2.6 7.5 10.8 16.7 20.0 26.2 31.8 32.8
Suitable for Or	utdoor and Dire	ct Burial applic	ations														1000	12.3	40.3

BC = Bare Copper • BCC = Bare Compacted Copper • DCR = DC Resistance • HDPE = High-density Polyethylene • TC = Tinned Copper

For Connector Cross Reference, visit www.belden.com or call Customer Service 1-800-BELDEN-1. For A/V cable assemblies, visit the Belden Web site for a list of Belden Certified Asssemblers.

*Compacted conductor combines impedance uniformity of solid conductors and "nick-resistance" of stranded conductor. 1Spools are one piece, but length may vary $\pm 10\%$ from length shown.

Low Loss Serial Digital Coax RG-6/U, RG-7/U and RG-11/U Type

Description	Part No.	UL NEC/ C(UL) CEC Type	Standard FL	m	Lbs.	Veight kg	Conductor (stranding) Diameter Nom. DCR	Nom Care Inch	mm	Shielding Materials Nom. DCR	Inch	mm	Nom. Imp. (Ω)	Nom. Vel. at Prop.		ninal altance pF/m	Att	lominal enuatio d8/ 100 Ft.	
RG-6/U Ty	-	The same of the same of		-	-	-		U.S. C.	-		aid Sh	iela	70.00			-			
Gas-injec SDI/HDTV Digital Video 75°C	1694A	NEC: CMR CEC: CMG FT4	500 ^ 1000 4500	152.4 304.8 1371.6	23.0 45.0 207.0	10.5 20.5 94.3	18 AWG (solid) .040″ BC 6.45½M′ 21.0Ω/km	.180	4.57	Duofoil + 95% TC Braid 2.8Ω/M' 9.2Ω/km	See 7	695A. availabl 710A t	e in bui hrough			53 1 Hz.	1 3.6 10 71.5 135 270 360 540 720 750 1000 1500 2250 3000	.2 .5 .7 1.6 2.1 3.4 4.3 4.9 5.0 5.9 7.3 9.1 10.7	.7 1.6 2.3 5 2 6.9 9 8 11 2 14 1 16.1 16.4 19.4 24.0 29.9 35.1
SDI/HDTV Digital Video 75°C	1695A	NEC: CMP CEC: CMP FT6	500 f* 1000 f	152.4 304.8	22.5 45.0	10.2	18 AWG (solid) .040" BC 6.4Ω/M' 21 0Ω/km	.170	4.32	Duotoil + 95% TC Braid 2.8Ω/M' 9.2Ω/km	.234	5.94 Sweet	75 p tested	82% . 5 MHz	16.2	53.1	1 3.6 10 71.5 135 270 360 540 720 750 1000 1500 2250 3000	.2 .5 .8 1.8 2.4 3 4 0 5.2 6.1 7.3 7.5 9.2 11.6 13.7	.8 1.5 2.5 5.8 7.9 11.2 13.1 17.1 20.0 23.9 24.6 30.2 38.0 44.9
RG-7/U Ty	ne • 10	AWG S	olid 064	4" Bare	Copp	er • D	uofoil + 95	% Tini	ned 0	Copper Brai	id Shi	eld							
Gas-injec SDI/HDTV Digital Video 75°C	7855A	NEC: CMR CEC: CMR FT4	500 T 1000	152.4 304.8	A STATE OF THE PARTY OF THE PAR	14.8	cket (Ava 16 AWG (solid) .064" BC 1.2Ω/M' 3.9Ω/km	-	in 10 5.71	Duofoil + 95% TC Braid 1.7Ω/M' 5 6Ω/km	.320	8.13 Swee	75 p tested	84% 5 MHz	16.1	52.8	1 3.6 10 71.5 135 270 360 540 720 750 1000 1500 2500 3000	.2 4 .6 1.1 1.8 2.5 2.9 3.6 4.2 4.3 5.0 6.1 7.9 8.7	.6 1.2 1.9 3.6 5.8 8.1 9.4 11.7 14.0 16.3 20.0 25.9 28.5
RG-11/U Ty	vpe •	14 AWG	Solid .06	64" Bar	е Сор	per • l	Duofoil + 9	5% Ti	nned	Copper Br	aid Sh	nield							
Gas-injec SDI/HDTV Digital Video 75°C	ted Fo 7731A	NEC: CMR CEC: CMG FT4	500° 1000 4000	152.4 304.8 1219.2	48.0 94.0 467.0	C Ja 21.8 42.8 212.3	cket (Ave 14 AWG (solid) .064" BC 2.5Ω/M' 8 2Ω/km	ailable .280	in 10 7.11	Duofoil + 95% TC Braid 1.5Ω/M' 4.9Ω/km	.405	10 3	75 p tested	85% I. 5 MHz	16.0	52.4 Hz.	1 3.6 10 71.5 135 270 360 540 720 1000 1500 2250 3000	2 3 .5 11 1.5 21 2.5 3.1 3.6 3.7 4.3 5.5 6.9 8.2	.5 1.0 1.5 3.6 4.8 6.9 8.0 10.0 11.7 12.0 14.1 18.0 22.6 26.9
Plenum •	And the second second	The state of the s	fation •	152.4	_	20.5	14 AWG	.274	6.96	Duofoil	.348	8.84	75	83%	16.3	53.5	1	.2	.5
SDI/HDTV Digital Video 150°C *500 ft. put-up ava	7732A	NEC: CMP CEC: CMP FT6	1000 2000 •	152.4 304.8 609.6	45.0 88.0 176.0	40.0	(solid) .064" BC 2.5ς2/M' 8.2Ω/km	.2/4	0.90	+ 95% TC Braid 2.5Ω/M' 8.2Ω/km					16.3		3.6 10 71 5 135 270 360 540 720 750 1000 1500	.2 .3 4 1.2 1.8 2.6 3.1 3.9 4.6 4.7 5.5 6.9	.5 9 1.3 4.1 5.8 8.5 10.2 12.8 15.4 18.0 22.7
*2000 ft. put-up as Suitable for Outdoor	vailable in or and Dire	Natural only.	ations.														2250 3000	9 2 10.2	30.2 33.5

For Connector Cross Reference, visit www.belden.com or call Customer Service 1-800-BELOEN-1.

* Available in Black, Brown, Red, Orange, Yellow, Green, Blue, Violet, Gray or White.

** Available in Black, Brown, Red, Orange, Yellow, Green, Blue, Violet, Gray or Natural.

† Spools are one piece, but length may vary ±10% from length shown.

1 Spools are one piece, but length may vary ±10% from length shown.

Belden Electronics Division Technical Support: 1-800-BELDEN-1 or 1-800-BELDEN-3 • www.belden.com

VideoFLEX® Snake Cable for Precision Analog and Digital

Bundled Miniature and RG-59/U Type

Description	Part	UL NEC/ C(UL) CEC	No.		dard gths		idard Weight	Conductor (stranding)		ninal e OD	Shielding Materials	Nomi	nal OD	Nom.	Nom. Vel	Nominal Capacitan	e ,	Nomina Attenuat	
A CONTRACTOR OF THE PARTY OF TH	Na.		Cond.	Ft.	m	Lhs	kg	Diameter Nom. DCR	Inch	mm	Nom. DCR	Inch	mm	(12)	ol Prop.	pF/Ft. pF/r	n MHz	dB/ 100 Ft.	d8/ 100m
Miniature	• 23	AWG So	lid .02	23" Bare	е Сорре	er • Di	uofoil®	+ 95% Tin	ned C	oppe	Braid (10	0% SI	hield C	Covera	ige)			Manusana	
Solid Cop	per, (Gas-inje	ctec	Foam	HDP	E Ins	ulatio	n • Ove	rall N	latte	Black P	VC J	acke	(Cal	or Co	de: See	chart	below)	
	7787A (TED)	CMR CEC: CMG FT4	3	500 1000	152.4 304.8	47.5 94.0	21.6 42.7	23 AWG (solid) .023" BC 20.1Ω/M' 65.9Ω/km	.102 Coa .159	2.55 x 00: 4.03	Duofoil + 95% TC Braid 4.1Ω/M' 13.5Ω/km	.432	10.97	75	83%	16.5 54	3.6 10 71.5 135 270 360 540	1.2 3.2 3.9 5.5 6.3 7.9	1.3 2.6 3.9 10.5 12.8 18.0 20.7 25.9
	7788A	NEC: CMR CEC: CMG FT4	4	1000	304.8	111.0	50.5	same as above	.102 Coar .159	2.55 × 00. 4.03	same as above	.481	12.22				720 750 1000 1500 2500 3000	9.7 9.8 10.7 13.3 16.3 18.9	31.8 32.2 35.1 43.6 53.5 62.0
	7789A	NEC: CMR CEC: CMG FT4	5	500 1000	152.4 304.8	72.5 141.0	33.0 64.1	same as above	.102 Coax .159	2.55 00: 4.03	same as above	.539	13.69				3000	10.9	62.0
	7790A	NEC: CMR CEC: CMG FT4	6	500 1000	152.4 304.8	88.5 175.0	40.2 79.5	same as above	.102 Coax .159	2.55 00: 4.03	same as above	.597	15.16				V4 17 18		
	7791A	NEC: CMR CEC: CMG FT4	10	500 1000	152.4 304.8	155.5 303.0	70.7 137.7	same as above	.102 Coax .159	2.55 00: 4.03	same as above	.796	20.22		Sweep	tested 5 M	Hz to 3	GHz.	
	7792A	NEC: CMR CEC:	12	500 1000	152.4 304.8		78.0 160.5	same as above	.102 Coax .159	2.55 00: 4.03	same as above	.825	20.96						

RG-59/U Type • 20 AWG Solid .032" Bare Copper • Duofoil + 95% Tinned Copper Braid (100% Shield Coverage)

Gas-inject	ed F	oam HD		nsulat	ion •	Over	all Ma	atte Blac	ck PVC Ja	cket (Co	lor Co	ide: Se	e chi	art below)				
SDI/HDTV Digital Video 75°C (1505A Bundled		NEC: CMR CEC: CMG FT4	3	500 1000	152.4 304.8	94.5 188 0	43.0 85.5	20 AWG (solid) .032" BC 10.0Ω/M' 32 8Ω/km	.145 3.68 Coax 00: .235 5.97	Duofoil + 95% TC Braid 3.8s2/M′ 12 5s2/km	.631	16.03	75	83% 16.3	53.1	1 3.6 10 71.5 135 270 360 540 720	.3 .6 .9 2.1 2.8 3.9 4.5 5.6 6.5	1.0 2.0 3.1 6.9 12.8 14.8 21.3
	7795A	NEC: CMR GEC: CMG FT4	4	500 1000	152.4 304.8	116.5 237.0	53.0 107.7	same as above	.145 3.68 Coax OD: .235 5.97	same as above	.706	17 93				750 1000 1500 2500 3000	6.6 7.8 9.5 11.8 13.7	21.7 25.6 31.2 38.7 44.9
	7796A	NEC: CMR CEC: CMG FT4	5	500 1000	152.4 304.8	150.0 293.0	68.2 133.2	same as above	.145 3.68 Coax OD: .235 5.97	same as above	.790	20.07		Survey backer	4 5 8411			
	7798A	NEC: CMR CEC: CMG FT4	10	500 1000	152.4 304.8	319.5 625.0		same as above	.145 3.68 Coax OD: .235 5.97	same as above	1.166	29.62		Sweep tester	1 2 MH	12 10 3 1	anz.	

BC = Bare Copper • DCR = DC Resistance • HDPE = High-density Polyethylene • TC = Tinned Copper

For Connector Cross Reference, visit www belden.com or call Customer Service 1-800-BELDEN-1. For A/V cable assemblies, visit the Belden Web site for a list of Belden Certified Asssemblers.

Color Code Chart

Cond.	Color	Cond.	Calar	Cond.	Color
1	Red	5	Yellow	9	Violet
2	Green	6	Brown	10	Black
3	Blue	7	Orange	11	Pink
4	White	8	Gray	12	Tan

VideoFLEX® Snake Cable for **Precision Analog and Digital**

RG-6/U Type

Danasistian	Part No.	UL NEC/	No.		ndard ngths		idard Neight	Conductor (stranding)		inal OD	Shielding	Nomi	nat OD	Nom.	Nom. Vel		ninal citance		Nomina ttenuati	
Description	No.	C(UL) CEC Type	af Cond.	Ft.	m	Lbs.	kg	Diameter Nom. DCR	Inch	mm	Materials Nom. DCR	Inch	mm	(23)	of Prop	pF/Ft.	gF/m	MHz	d8/ 100 Ft.	dB/ 100m
RG-6/U Ty	pe • 1	8 AWG	Solid	.040"	Bare Co	pper •	Duof	oit* + 95%	Tinne	d Cop	per Braid	Shield								
Gas-injec	ted F	oam HC	PE	Insula	tion •	Over	all Ma	tte Blac	k PV	C Ja	cket (Co	lor Ca	de Se	e cha	irt be	low)				
SDI/HDTV Digital Video 75°C (1694A Bundled	7710A I) 7711A	NEC: CMR CEC: CMG FT4	4	500 1000 500 1000	152.4 304.8	174.0	59.8 124.1 79.1 154.1	18 AWG (solid) .040" BC 6.4Ω/M' 21.0Ω/km	.180 .257 .180 .257	4.57 6.99 4.57 00: 6.99	Duofoil + 95% TC Braid 2.8Ω/M' 9.2Ω/km	.900	19.56	75	82%	16.2	53.1	1 3.6 10 71.5 135 270 360 540 720 750 1000 1500 2500	.2 .5 .7 1.6 2.1 3.1 3.5 4.4 5.0 5.1 6.0 7.4 9.3	77 1 6 2.3 5.2 6.9 10.2 11.5 14.4 16.7 19.7 24.3 30.5
	7712A	NEC. CMR CEC: CMG FT4	5	500 1000	152.4 304.8	209.5 440.0	95.2 200.0	same as above	.180 Coar 257	4 57 (OD: 6.99	same as above	.942	23.93		Cusara	timte	d E 881	3000	10.9	35 8
	7713A	NEC: CMR CEC:	10	500 1000	152.4 304.8	450.0 878.0	204.5 399.1	same as above	.180 Coap .257	4.57 00: 6.99	same as above	1.386	35.20		oweep	tester	1 5 MH	12 10 3	GHZ.	

CMG FT4

BC = Bare Copper • DCR = DC Resistance • HDPE = High-density Polyethylene • TC = Tinned Copper

Color Code Chart

Cond.	Color	Cond.	Color	Cond.	Color
1	Red	5	Yellow	9	Violet
2	Green	6	Brown	10	Black
3	Blue	7	Orange		
4	White	8	Gray		

Video Triax Cable

RG-11/U Type

The second second	Part	DULL DEG	State of the later of		with a	a cigin	(stranging)	Guit	and the same of	Billion to select the	A COLUMN TO SERVICE		Imp.	Vel.	The second second	Marchael	-	the Real Property lies, the Person lies,	-
Description	No.	C(UL) CEC Type	Ft.	m	Lbs.	kg	Diameter Nom. DCR	Inch	mm	Materials Nom. DCR	Inch	mm	(Ω)	ot Prop.	pF/Ft.	pF/m	MHz	dB/ 100 Ft.	dB/ 100m
4 AWG Sol	id .06	4" Bare Co	opper •	Two Ba	re Cop	oper B	raids (95%	Shie	ld Co	verage)									
Gas-inject	ed Fo	oam HDF	E Insi	ulation	· Bl	ack F	VC Jack	tet (P	VC In	sulation bet	ween	Braids)						
00°C				304.8 609.6 1219.2	142.0 240.0 574.0		14 AWG (solid) .064" BC 2.5Ω/M' 8.2Ω/km	.285	7.24	(2) BC Braids 95% Coverage Inner $1.6\Omega/\mathrm{M}'$ $5.2\Omega/\mathrm{km}$ Outer $1.4\Omega/\mathrm{M}'$ $4.6\Omega/\mathrm{km}$	100%	12.07 Sweep	75 tested.	84%	16.1 to 3 GF	52.8	1 3.6 10 71.5 135 270 360 540 720 750 1000 1500 2250 3000	.2 3 .4 1.1 1.5 2.3 2.7 3.5 4.2 4.3 5.2 7.1 9.6 12.0	.7 1.0 1.3 3.6 4.9 7 5 8.9 11 5 13 8 14.1 17.1 23.3 31 5 39.4

UL NEC/ Standard Lengths Standard Conductor Nominal Shielding Nominal OD Nom. Nom. Nominal

BC = Bare Copper • DCR = DC Resistance • HDPE = High-density Polyethylene • PE = Polyethylene
For Connector Cross Reference, visit www.belden.com or call Customer Service 1-800-BELDEN-1. For A/V cable assembles, visit the Belden Web site for a list of Belden Certified Assemblers.

Audio and Video Composite Camera Cable

SMPTE 311M HDTV Cables
Single-mode Fiber with Copper Conductors

Description	Part No.	UL NEC/	Standard	l Lengths	Stan Unit V	dard Veight	Conductor (stranding)	Non Core	ninal e OD	Shielding Materials	Nomir	ial OD		l Optical (@1310nm)
резенривн	No.	Туре	Ft.	m	Lbs.	kg	Nom. DCR	Inch	mm	Nom. DCR	Inch	mm	dB/1000 Ft	dB/km

4 Power Conductors • SM Fiber w/ 24 and 20 AWG Stranded (7x32 and 19x32) Tinned Copper • Overall 95% TC Braid Shield

′5°C	7804R	NEC: CMR CEC:	328 500 1000	100.0 152.4 304.8	33.5 50.0 98.0	15.2 22.7 44.5	(2) Fibers: SM/125µ/900µ (core/clad/buffer)	.079	2.00	36 AWG TC Braid 95% Shield	.362	9.20	.14	.45
	<u> </u>	CMG FT4	1640 3280	500.0 1000.0	155.8 321 4	70.8 146.1	(2) Cond.: 24 AWG (7×32) .024" Tinned Copper 23.3Ω/M' 76.4Ω/km	.050	1.27	Coverage 2.9Ω/M′ 9.5Ω/km	condu	m version actor count ble by spec	s/diameters	
							(4) Cond.: 20 AWG (19x32) .037" Tinned Copper 8.8Ω/M' 28.9Ω/km	.063	1.60		avalla	one by spec	ciai order.	

2 Power Conductors • SM Fiber w/ 24 and 16 AWG Stranded (7x32 and 65x34) Tinned Copper • Overall 95% TC Braid Shield

PVC Insula	ation • Blac	k Belfle	x Jacl	cet			THE PERSON NAMED IN			WINE.		تنزيد	AL THE	ATVIT B
75°C	7804C	NEC: CMR CEC: CMG FT4	328 500 1000 1640	100.0 152.4 304.8 500.0	32.0 46.0 87.0 140.0	14.5 20.9 39.5 63.6	(2) Breakout Fibers: SM/125µ/900µ (core/clad/buffer)	.079	2.00	38 AWG TC Braid 95% Shield Coverage	.362	9.20	.14	.45
	Anna Anna Anna Anna Anna Anna Anna Anna		3280	1000.0	288.0	130 9	(2) Cond.: 24 AWG (7x32) .024" Tinned Copper 23.3Ω/M' 76.4Ω/km	050	1.27	2.8Ω/M′ 9.2Ω/km	condi	uctor cou	n and other nts/diameters ecial order.	
							(2) Cond.: 16 AWG (65x34) .059" Tinned Copper 4.3Ω/M' 14.1Ω/km	.093	2.36					

DCR = DC Resistance • SM = Single-mode • TC = Tinned Copper

For Connector Cross Reference, visit www.belden.com or call Customer Service 1-800-BELDEN-1. For A/V cable assemblies, visit the Belden Web site for a list of Belden Certified Assemblers.

Brilliance[®] Precision Digital Video Coaxial Cables 3 GHz Sweep Tested for Return Loss

Maximum Transmission Distance at Serial Digital Data Rates

Data Rate:	143	Mb/s	177	Mb/s	270	Mb/s	360	Mb/s	540	Mb/s	1.5	Gb/s
Spec:	SMPTE	259M	ITU-R I	BT. 601	SMPTI	259M	SMPT	E 259M	SMPT	E 344M	SMPTI	E 292M
Application:	Compos	ite NTSC	Compos	ite PAL	Compon	ent Video	Component	Widescreen	Component	Widescreen	HC	TV
Part No.	Ft.	m	Ft.	m	Ft.	m	Ft.	m	Ft.	m	Fl.	m
179DT	504	154	457	139	384	117	242	74	196	60	110	34
1865A	810	247	760	232	600	183	520	158	420	128	170	52
8279	910	277	810	247	640	195	550	168	440	134	170	52
1855A-7787A	1000	305	910	277	750	229	650	198	530	162	210	64
9209	1030	314	930	283	750	229	650	198	540	165	200	6
9209A	1030	314	930	283	750	229	650	198	540	165	200	6
1505A-7794A	1430	436	1320	402	1110	338	960	293	790	241	300	9
1505F	1200	366	1071	326	857	261	732	223	588	179	225	69
1506A	1360	415	1200	366	940	286	810	247	670	204	270	82
9231	1430	436	1270	387	1000	305	850	259	680	207	260	79
9141	1430	436	1270	387	1000	305	850	259	680	207	260	79
8281	1430	436	1270	387	1000	305	860	262	700	213	260	79
8281B	1430	436	1270	387	1000	305	850	259	680	207	250	76
8281F	1250	381	1100	335	860	262	730	222	590	180	240	73
88281	1300	396	1150	351	910	277	770	235	600	183	200	61
1694A-7710A	1760	536	1620	494	1360	415	1180	360	970	296	370	113
1695A	1670	509	1520	463	1250	381	1080	329	880	268	310	94
7855A	2220	677	2000	610	1670	509	1460	445	1210	369	470	143
7731A	2730	832	2460	750	2000	610	1740	530	1430	436	540	165
7732A	2420	736	2140	652	1690	515	1440	439	1150	351	430	131

The serial digital interconnect standards are designed to operate where the signal loss at 1/2 the clock frequency does not exceed the approximate loss values listed below. The maximum length values shown are based on typical attenuation values for the cables listed and the following criteria:

Maximum length = 30 dB loss at 1/2 the clock frequency: SMPTE 259M, PAL, Widescreen. Maximum length = 20 dB loss at 1/2 the clock frequency: SMPTE 292M.

The bit error rate (BER) can vary dramatically as the calculated distances are approached. BER is dependent on receiver design and the losses of the actual coax used. Distribution and routing equipment manufacturers should be contacted to verify their maximum recommended transmission.

Return Loss Headroom (1694A)

For More Information: www.belden.com

Belden Electronics Division Technical Support 1-800-BELDEN-1 or 1-800-BELDEN-3

@Copyright 2004 Belden Inc.