(1) Veröffentlichungsnummer:

O 093 855

1

EUROPÄISCHE PATENTANMELDUNG

Anmeldenummer: 83102408.8

Anmeldetag: 11.03.83

(5) Int. Cl.³: **C 08 F 20/18,** C 08 F 20/30, C 08 L 27/06

Priorität: 06.05.82 DE 3216988

Anmelder: CHEMISCHE WERKE HÜLS AG, - RSP Patente / PB 15 - Postfach 13 20, D-4370 Mari 1 (DE)

Veröffentlichungstag der Anmeldung: 16.11.83
 Patentblatt 83/46

Benannte Vertragsstaaten: BE DE FR GB IT NL SE

 Erfinder: Stützel, Bernhard, Dr., Stargarder Strasse 32, D-4370 Marl (DE)

Polymere Phenylalkyl-acrylsäureester, deren Herstellung und deren Verwendung.

Beansprucht werden polymere Phenylalkyl-acrylsaursester der Formel

> -(CH₂-CH)_x-0 = C-O-R-, in der

R einen geradkettigen oder verzweigten Alkylenrest mit 3 bis 4 Kohlenstoffatomen bedeutet, der gegebenenfalls durch ein Ethersauerstoffatom unterbrochen sein kann, und deren Verwendung als schlagzäh machende Komponente in hochtransparenten schlagzähen Formmassen auf der Basis von Polyvinylchlorid.

Polymere Phenylalkyl-acrylsäureester; deren Herstellung und deren Verwendung

Polymere Phenylalkyl-acrylsäureester mit langer aliphatischer Kette im Alkoholteil sind bereits bekannt (US-PS 3 751 449). Es handelt sich dabei beispielsweise um Polymere des 5-Phenyl-n-pentyl-acrylats oder Polymere des 6-Phenyl-n-hexyl-acrylats bzw. um Polymere von höheren Homologen dieser Monomeren. Diese Polymeren finden ihre Verwendung als druckempfindliche Klebstoffe (vgl. US-PS 3 751 449, Spalte 1, Zeilen 14 bis 39).

Bislang nicht beschrieben und somit neu sind Polymere von Phenyl-10 alkyl-acrylsäureestern der Formel

R einen geradkettigen oder verzweigten Alkylenrest mit 3 bis 4 Kohlenstoffatomen bedeutet, der gegebenenfalls durch ein Ethersauerstoffatom unterbrochen ist, wobei der geradkettige Anteil wenigstens 3 Kohlenstoffatome enthält, und x für eine Zahl von 20 bis 5 · 10 5 steht. Vorzugsweise steht x für eine Zahl von 50 bis 50 000.

Bei diesen neuen polymeren Verbindungen handelt es sich beispielsweise um:

Poly-3-Phenyl-n-propyl-acrylat:

20

25

10

30

$$\leftarrow CH_2 - CH \xrightarrow{\times} CH_2 - CH_2$$

Poly-(3-Phenyl-1-methyl)-propyl-acrylat:

$$\leftarrow CH_2 - CH \rightarrow_{\overline{x}}$$

$$O = C - O - CH - CH_2 - CH_2 - CH_2$$

$$CH_3$$

Poly-(3-Phenyl-2-methyl)-propyl-acrylat:

Poly-(3-Phenyl-3-methyl)-propyl-acrylat:

Poly-Phenylethyl-oxethyl-acrylat:

25
$$-\leftarrow CH_2 - CH \xrightarrow{x} CH_2 - CH_2 -$$

Herstellbar sind die erfindungsgemäßen Polymeren durch übliche Polymerisation in Masse, in Lösung, in Emulsion oder in Suspension in der Weise, wie dies z. B. in der Monographie Monomeric Acrylic Esters von Riddle, Reinhold Publishing Corp. (1954) auf den Seiten 37 bis 56 oder auch in der Monographie Acrylic Resins von Horn, Reinhold Publishing Corp. (1960), Seiten 26 bis 29, beschrie-

ben ist. Die Molekulargewichte lassen sich hierbei in bekannter Weise durch Variation von Polymerisationstemperatur, Initiatorkonzentration und Reglerzusätze verändern. Das zahlenmittlere Molekulargewicht bewegt sich von $5 \cdot 10^3$ bis $5 \cdot 10^5$ und das gewichtsmittlere Molekulargewicht von 10^4 bis $5 \cdot 10^8$, vorzugsweise von $5 \cdot 10^4$ bis $5 \cdot 10^7$.

Zu polymerisierende Monomere sind phenylsubstituierte Acrylsäureester der Formel

10

25

30

$$CH_2 = CH$$
 $O = C - O - R -$, in der

R einen geradkettigen oder verzweigten Alkylenrest mit 3 bis 4 Kohlenstoffatomen bedeutet, der gegebenenfalls durch eine Ethersauerstoffbrücke unterbrochen ist, wobei der geradkettige Anteil wenigstens 3 Kohlenstoffatome enthält.

Bei diesen Verbindungen handelt es sich beispielsweise um folgende Individuen:

3-Phenyl-n-propyl-acrylat:

$$CH_2 = CH$$

 $O = C - O - CH_2 - CH_2 - CH_2 - C$

4-Phenyl-n-butyl-acrylat:

$$CH_2 = CH$$
 $O = C - O - CH_2 - CH_2 - CH_2 - CH_2 - CH_2$

(3-Phenyl-1-methyl)-propyl-acrylat:

$$CH_2 = CH$$
 $O = C - O - CH - CH_2 - CH_2 - CH_3$

5 (3-Phenyl-2-methyl)-propyl-acrylat:

$$CH_2 = CH$$
 CH_3
 $O = C - O - CH_2 - CH - CH_2 -$

10 (3-Phenyl-3-methyl)-propyl-acrylat:

$$CH_{2} = CH$$

$$O = C - O - CH_{2} - CH_{2} - CH - CH_{3}$$

15

2-Phenylethyl-oxyethyl-acrylat:

$$CH_2 = CH$$
 $O = C - O - CH_2 - CH_2 - O - CH_2 - CH_2 - CH_2$

20

Benzyl-oxyisopropyl-acrylat:

$$CH_2 = CH$$
 $O = C - O - CH_2 - CH - O - CH_2 - CH_3$

25

 ${\it 3-Phenylpropyl-oxymethyl-acrylat:}\\$

$$CH_2 = CH$$
 $O = C - O - CH_2 - O - CH_2 - CH_2 - CH_2 - C$

Benzyl-oxypropyl-acrylat:

15

$$CH_2 = CH$$
 $O = C - O - CH_2 - CH_2 - CH_2 - O - CH_2 - \bigcirc$

Herstellbar sind die Acrylsäureester unter anderem durch direkte Veresterung der einschlägigen Alkohole mit Acrylsäure.

Zugrundeliegende Alkohole können z. B. nach folgenden bereits beschriebenen Methoden hergestellt werden:

- Das 3-Phenylpropanol-1 kann aus Styrol durch Anlagerung von 2
 Mol Formaldehyd und anschließender Hydrierung hergestellt werden (Organic Syntheses, Vol. IV, Seiten 786/787 und Seiten 798/799).
- 2. Das 4-Phenylbutanol-1 kann aus ß-Phenethylmagnesiumbromid und Ethylenoxid hergestellt werden (J. Am. Chem. Soc. 46, 242).
- Das 1-Methyl-3-phenyl-propanol-1 kann man aus Methyl-(phenyl-ethyl)-keton durch Reduktion erhalten (Collect. Czech. Chem. Commun. 1976, 41 (8), 2264).
- 4. 3-Phenyl-3-methyl-propanol-1 kann nach vorangegangener Trans25 metallierung durch Umsetzung der a-Natriumverbindung des
 Ethylbenzols mit Ethylenoxid erhalten werden (Japan. Kokai
 73 75 551, 14.01.1972).
 - 5. Das 2-Methyl-3-phenylpropanol-1 kann durch Alanat-Reduktion des Natriumsalzes von Benzylmalonsäurediethylester erhalten werden (Chem. Ber. 1970, 103, 3771).
 - 6. Ethylenglykolmonophenethylether erhält man aus 2-phenylethanol

und Ethylenoxid unter Säurekatalyse (Bull. soc. chem. 8 (1941), 170 - 85).

Bei der Herstellung der Polymerisate in wäßriger Emulsion lassen sich als Emulgatoren die bekannten ionogenen und nichtionogenen Typen einsetzen. Es kommen insbesondere ionogene infrage, z. B. Salze von Carbonsäure, wie Natriumcaprinat, Natriumlaurat, Natriummyristat, Natriumpalmitat. Weiterhin eignen sich Salze primärer und sekundärer Alkylsulfate, z. B. Natriumcaprylsulfat, Natriumlaurylsulfat, Natriummyristylsulfat und Natriumoleylsulfat. Ebenso kommen infrage Sulfate veresterter Polyoxyverbindungen, wie monofettsaurer Glycerinschwefelsäureester, Salze primärer und sekundärer Alkylsulfonate, wie Natriumethylsulfonat, Natriumstearylsulfonat, Natriumoleylsulfonat, n-Alkansulfonate mit statistischer Verteilung der Sulfonsäuregruppe und Kettenlänge C₁₃-C₁₇ usw. Es können auch Alkylarylsulfonate eingesetzt werden, z. B. das Na-Salz der p-n-Dodecylbenzolsulfonsäure.

10

15

25

30

Weiterhin kommen auch Gemische von Emulgatoren in Betracht. Zu den genannten Emulgatoren können auch zusätzlich Hilfsstoffe beigegeben werden, z. B. Alkohole, wie Laurylalkohol, Ester, wie Sorbitmonolaurat und Carbonsäureglykolester.

Die Konzentration der Emulgatoren sollte 0,1 bis 3 Gewichtsprozent, vorzugsweise 0,5 bis 2,0 Gewichtsprozent, bezogen auf Monomere, betragen.

Als Katalysatoren kommen die bei der Emulsionspolymerisation üblicherweise angewandten wasserlöslichen Verbindungen infrage, wie wasserlösliches Persulfat, z. B. Na-, oder K-Persulfat gegebenenfalls kombiniert mit einer reduzierenden Komponente, wie wasserlösliches Bisulfit, Hydrosulfit, Hydrazin, Thiosulfat, Formaldehydsulfoxylate; Wasserstoffperoxid kombiniert mit reduzierenden Komponenten, wie Bisulfit, Hydrazin, Hydroxylamin oder Ascorbinsäure, ferner wasserlösliches Persulfat kombiniert mit Wasserstoffperoxid und einer aktivierenden Komponente, wie Kupfersalze, welche im alkalischen Medium mit Komplexbildnern, wie Pyrophosphaten, einzusetzen sind. Es werden die üblichen Konzentrationen angewendet.

Die Polymerisationstemperatur sollte 5 bis 120 $^{\circ}$ C betragen, vorzugsweise jedoch 40 bis 90 $^{\circ}$ C. Die Polymeren haben in der Regel eine breite Molekulargewichtsverteilung, wie dies anhand der Beispiele später erläutert wird. In den Molekulargewichtsmittelwerten, ermittelt durch Gelpermeationschromatografie (GPC), zeigen sich diese breiten Molekulargewichtsverteilungen, indem zahlenmittlere Molekulargewichte von $5 \cdot 10^3$ bis $5 \cdot 10^4$ und gewichtsmittlere Molekulargewichte von $5 \cdot 10^5$ bis $5 \cdot 10^8$ möglich sind. Als Endgruppen treten in bekannter Weise eingebaute Katalysatorreste auf. Die Polymeren sind ataktisch.

15

20

25

Bei der Lösungspolymerisation können z.B. folgende Lösungsmittel eingesetzt werden: aromatische Kohlenwasserstoffe, wie Toluol, Xylol o. ä., Ether, wie Tetrahydrofuran, Diethylether o. ä.

Als Katalysatoren kommen z. B. infrage: organische Peroxide, wie Benzoylperoxid, Succinylperoxid, Lauroylperoxid o. ä., Percarbonate, wie Isopropylpercarbonat, Cyclohexylpercarbonat; Peroxydicarbonate, wie Dicetylperoxydicarbonat; Azoverbindungen, wie Azodiisobutyronitril etc.

Die Polymerisationstemperatur sollte zwischen 20 und 120 °C liegen.

Bei der Massepolymerisation können z. B. folgende Katalysatoren angewendet werden: organische Peroxide, wie Benzoylperoxid, Succinylperoxid, Lauroylperoxid; Percarbonate, wie Isopropylpercarbonat, Cyclohexylpercarbonat; Peroxydicarbonate, wie Dicetyl-

peroxydicarbonat; Azoverbindungen, wie Azodiisobutyronitril etc.

Die Polymerisationstemperatur sollte 20 bis 180 °C betragen.

In der Suspensionspolymerisation können als Suspensionsstabilisatoren eingesetzt werden: handelsübliche Hydroxypropylcellulosen, Hydroxyethylcellulosen, teilverseifte Polyvinylacetate, Polyvinylpyrrolidon, Methylcellulosen, Gelatine oder Mischungen dieser Stabilisatoren.

10

15

20

25

Als Katalysatoren kommen z. B. infrage: organische Peroxide, wie Benzoylperoxid, Succinylperoxid, Lauroylperoxid; Percarbonate, wie Isopropylpercarbonat, Cyclohexylpercarbonat; Peroxydicarbonate, wie Dicetylperoxydicarbonat; Azoverbindungen, wie Azodiisobutyronitril etc.

Die Polymerisationstemperatur sollte 20 bis 120 °C betragen.

Es ist auch möglich, die Polymerisationen der Phenylalkyl-acrylsäureester in Gegenwart vernetzend wirkender Verbindungen durchzuführen. Ebenso besteht die Möglichkeit, die Polymerisate der phenylsubstituierten Acrylsäureester mit vernetzend wirkenden Verbindungen umzusetzen. Als vernetzend wirkende Verbindungen kommen infrage: Divinylbenzol, Divinylester von zwei- und dreibasischen Säuren, wie Divinyladipat, Diallylester von mehrfunktionellen Säuren (Diallylphthalate), Divinylether von mehrwertigen Alkoholen (Divinylether von Ethylenglykol), di- und tri-Methacrylate und -acrylate mehrwertiger Alkohole. Besonders geeignet sind die handelsüblichen Vertreter der letztgenannten Gruppe, da sie sich Acrylsäureestern gut mischpolymerisieren lassen und dem fertigen Gemisch eine bessere thermische Stabilität verleihen. Beispielsweise seien erwähnt: Ethylenglykoldimethacrylat, Propylenglykoldimethacrylat, 1,3-Butylenglykoldimethacrylat, 1,4 Butylenglykoldimethacrylat sowie die entsprechenden Diacrylate.

Die Vernetzungsreaktion kann in üblicher Weise bei Temperaturen von 20 bis 180 °C mit Mengen von 0,1 bis 5 Gewichtsprozent an Vernetzer, bezogen auf Polymerisat, durchgeführt werden.

Die so erhaltenen Polymerisate lassen sich als schlagfest machende Komponente in Mengen von 1 bis 30, vorzugsweise von 3 bis 15, Gewichtsprozent dem an sich starren Polyvinylchlorid zusetzen und ergeben in völlig überraschender Weise Formmassen mit besonders hoher Schlagzähigkeit und Transparenz.

10

15

20

25

30

5

Es waren zwar bereits transparente schlagzähe Polyvinylchlorid-Formmassen bekannt, deren modifizierende Komponente auch einen Acrylatanteil besitzt, jedoch handelt es sich dabei durchweg um vergleichsweise kompliziert aufgebaute Mischungen von Mischpolymeren und Pfropfpolymeren, wie dies beispielsweise in der DE-PS 26 21 522 und in der DE-AS 20 13 020 der Fall ist. Es war daher nicht zu erwarten, daß der Zusatz eines einzigen Homopolymeren zu Polyvinylchlorid hochschlagfeste hochtransparente Formmassen ergeben würde, deren Schlagfestigkeit und Transparenz sogar diejenige von so kompliziert aufgebauten Formmassen, wie sie gemäß DE-AS 20 13 020 herstellbar sind, noch übertrifft (vgl. Tabelle 1).

Als Polyvinylchlorid kann jedes beliebig hergestellte Polyvinylchlorid eingesetzt werden, wie es beispielsweise herstellbar ist gemäß der Monographie Kainer, Polyvinylchlorid und Vinylchlorid-Mischpolymerisate, Springer-Verlag, (1965) Berlin/Heidelberg/New York, Seiten 1 bis 59.

Das Einbringen der erfindungsgemäßen Polymerisate in das Polyvinylchlorid kann durch alle bekannten Verfahren des Modifizierens durchgeführt werden, z.B. durch Pfropfpolymerisation von Vinylchlorid auf das erfindungsgemäße Polymere oder durch beliebige Arten des Mischens von Polyvinylchlorid mit dem erfindungsgemä-

ßen Polyacrylat, z. B. durch Mischen im festen Zustand auf einem Walzenmischer, einem Baubury-Mischer, einem Plastographen, einem Compoundier-Extruder oder dergleichen. Das Polyvinylchlorid und das erfindungsgemäße Polyacrylat können auch in Latexform miteinander vermischt und anschließend in üblicher Weise getrocknet werden, z. B. durch Sprühtrocknung.

Die Erfindung wird durch die folgenden Beispiele erläutert.

10 A) Herstellung des phenylsubstituierten Acrylsäureesters

Beispiel 1

In einem 4 1-Dreihalskolben mit Rührer, Rückflußkühler, Wasserauskreiser, Tropftrichter und Heizeinrichtung werden vorgelegt:

- Teile (2 150 g) 3-Phenylpropanol-1
- 10 Teile (500 g) Toluol
- 0,4 Teile (20 g) Toluolsulfonsäure
- 20 0,02 Teile (1 g) Hydrochinon Im Tropftrichter befinden sich 17,3 Teile (865 g) Acrylsäure.

Aus dem Tropftrichter werden unter Rührung 0,5 Teile (25 g) Acrylsäure in das vorgelegte Reaktionsgemisch gegeben und der Kolbeninhalt auf 150 bis 170 °C aufgeheizt. Wenn sich am Wasserabscheider das erste Wasser absetzt, wird die restliche Acrylsäure innerhalb von ca. 3 Stunden zugetropft und portionsweise das jeweils ausgeschiedene Wasser abgezogen, bis mindestens 95 % der theoretisch zu erwartenden Wassermenge erreicht sind.

30

Zur Aufarbeitung wird das erkaltete Produkt mit NaHCO₃-Lösung und Wasser gewaschen, die wäßrige Phase im Scheidetrichter abgetrennt und die organische Phase destilliert. Nach Abdestillation von

Toluol bei ca. 100 mbar werden Acrylsäureester und Alkohol über eine Kolonne getrennt.

Siedepunkt des 3-Phenylpropanol-1:

109 °C/6 mbar

5 Siedepunkt des 3-Phenylpropanol-1-Acrylsäureesters: 120 °C/6 mbar

Beispiel 2

In der unter Beispiel 1 beschriebenen Weise werden vorgelegt:

10

- 47 Teile (2 350 g) 4-Phenylbutanol-1
- Teile (500 g) Toluol
- 0,4 Teile (20 g) Toluolsulfonsäure
- 0,02 Teile (1 g) Hydrochinon
- 15 Im Tropftrichter befinden sich 17,3 Teile (865 g) Acrylsäure.

Reaktionsführung und Aufarbeitung geschehen in der unter Beispiel 1 beschriebenen Weise.

20 Siedepunkt des 4-Phenylbutanol-1: 116 °C/6 mbar Siedepunkt des 4-Phenylbutanol-1-Acrylsäureesters: 126 °C/6 mbar

Beispiel 3

- In der unter Beispiel 1 beschriebenen Weise werden vorgelegt:
 - 47 Teile (2 350 g) 3-Phenyl-3-methyl-propanol-1
 - 10 Teile (500 g) Toluol
 - 0,4 Teile (20 g) Toluolsulfonsäure
- 30 0,02 Teile (1 g) Hydrochinon

Im Tropftrichter befinden sich 17,3 Teile (865 g) Acrylsäure.

Reaktionsführung und Aufarbeitung geschehen in der unter Beispiel 1 beschriebenen Weise.

Siedepunkt des 3-Phenyl-3-methyl-propanol-1: 114 °C/6 mbar Siedepunkt des 3-Phenyl-3-methyl-propanol-1-Acrylsäureesters: 123 °C/6 mbar

Beispiel 4

- 10 In der unter Beispiel 1 beschriebenen Weise werden vorgelegt:
 - 47 Teile (2 350 g) 3-Phenyl-2-methyl-propanol-1
 - 10 Teile (500 g) Toluol
 - 0,4 Teile (20 g) Toluolsulfonsäure
- 15 0,02 Teile (1 g) Hydrochinon
 Im Tropftrichter befinden sich 17,3 Teile (865 g) Acrylsäure.

Reaktionsführung und Aufarbeitung geschehen in der unter Beispiel 1 beschriebenen Weise.

Siedepunkt des 3-Phenyl-2-methyl-propanols:

114 °C/6 mbar

 ${\bf Siedepunkt\ des\ 3-Phenyl-2-methyl-propanol-acryls\"{a}ureesters:}$

123 °C/6 mbar

25 Beispiel 5

20

In der unter Beispiel 1 beschriebenen Weise werden vorgelegt:

- 47 Teile (2 350 g) 3-Phenyl-1-methyl-propanol-1
- 30 10 Teile (500 g) Toluol
 - 0,4 Teile (20 g) Toluolsulfonsäure
 - 0,02 Teile (1 g) Hydrochinon

Im Tropftrichter befinden sich 17,3 Teile (865 g) Acrylsäure.

Reaktionsführung und Aufarbeitung geschehen in der unter Beispiel 1 beschriebenen Weise

Siedepunkt des 3-Phenyl-1-methyl-propanol-1:

114 °C/6 mbar

Siedepunkt des 3-Phenyl-1-methyl-propanol-1-acrylsäureesters:

123 °C/6 mbar

Beispiel 6

10 In der unter Beispiel 1 beschriebenen Weise werden vorgelegt:

- Teile (2 500 g) Ethylenglykolmonophenethylether
- 10 Teile (500 g) Toluol
- 0,4 Teile (20 g) Toluolsulfonsäure
- 15 0,02 Teile (1 g) Hydrochinon

Im Tropftrichter befinden sich 17,3 Teile (865 g) Acrylsäure.

Reaktionsführung und Aufarbeitung geschehen in der unter Beispiel 1 beschriebenen Weise.

20

Siedepunkt des Ethylenglykolmonophenethylethers: 122 °C/6 mbar Siedepunkt des Ethylenglykolmonophenethylether-acrylsäureesters: 132 °C/6 mbar

25 B) Herstellung des Poly-Acrylsäureesters

Beispiel 7

In einem 2 1-Stahlautoklaven mit Rührer, Temperierung sowie üblichen Einrichtungen zum Evakuieren, Begasen mit N₂, Einfüllen und
Zudosieren von Reaktanten (Hersteller z. B. Fa. SFS/Buechi, Uster,
Schweiz) werden vorgelegt:

20 Teile (250 g) 3-Phenylpropanol-1-acrylsäureester

76 Teile (950 g) VE-Wasser

0,24 Teile (3 g) Na-Laurat

In die Vorlage der Dosiereinrichtung werden gegeben:

.0,012 Teile (0,15 g) Ammoniumperoxodisulfat

- 4 Teile (50 g) VE-Wasser
- Nach Entgasen und Spülen mit N₂ wird der Reaktorinhalt unter 2 bar N₂-Überdruck auf 80 °C aufgeheizt. Während des Aufheizens werden 5 ml der Ammoniumperoxodisulfat-Lösung zugegeben, der Rest wird gleichmäßig im Verlauf von 120 Minuten zudosiert und die Reaktionstemperatur auf 80 °C gehalten. Nach weiteren 30 Minuten ist die Reaktion beendet. Man läßt abkühlen und erhält einen weißen stabilen Polyacrylat-Latex.

Diese Polyacrylate haben eine sehr breite Molekulargewichtsverteilung. Zur eingehenden Charakterisierung dieser Verteilung wird die Gelpermeationschromatographie (GPC) herangezogen, wozu jeweils eine Lösung des Polymeren in Tetrahydrofuran diente. Auf diese Weise können die Molekulargewichtsverteilung und die in der Polymercharakterisierung üblichen Molekulargewichtsmittelwerte - das Zahlenmittel $M_n = \sum niMi/\sum ni$ und das Gewichtsmittel $M_w = \sum niMi/\sum ni$ ziiMi - angegeben werden:

$$M_n = 8.1 \cdot 10^3$$
 $M_w = 13.4 \cdot 10^7$

Die Molekulargewichtsverteilungskurve ist in Figur 1 wiedergegeben.

Beispiel 7 a

20

25

In der in Beispiel 7 verwendeten Apparatur wird in der dort beschrie-

benen Weise auch in Gegenwart von vernetzend wirkenden Substanzen polymerisiert. Hierzu werden vorgelegt:

20 Teile (250 g) 3-Phenylpropanol-1-acrylsäureester

5 76 Teile (950 g) VE-Wasser

0,2 Teile (2,5 g) Diallylphthalat

0,24 Teile (3,0 g) Na-Laurat

In die Vorlage der Dosiereinrichtung werden gegeben:

10

0,012 Teile (0,15 g) Ammoniumperoxodisulfat

4 Teile (50 g) VE-Wasser

Man erhält einen weißen stabilen Polyacrylat-Latex. Die Molekulargewichtscharakterisierung durch GPC (vgl. Anmerkung bei Beispiel 7)
ergibt

$$M_n = 2.4 \cdot 10^4$$
 $M_w = 21 \cdot 10^7$

20 Die Molekulargewichtsverteilung ist in Figur 2 wiedergegeben.

Beispiele 8 bis 12

In der in Beispiel 7 verwendeten Apparatur werden in der dort beschriebenen Weise die nach den Beispielen 2 bis 6 hergestellten
Acrylsäureester polymerisiert. Hierzu verwendet man jeweils:

20 Teile (250 g) phenylsubstituierte Acrylsäureester

76 Teile (950 g) VE-Wasser

30 0,24 Teile (3 g) Na-Laurat

In die Vorlage der Dosiereinrichtung werden gegeben:

0,012 Teile (0,15 g) Ammoniumperoxodisulfat
4 Teile (50 g) VE-Wasser

Man erhält jeweils einen weißen, stabilen Polyacrylat-Latex.

5

Die Molekulargewichtscharakterisierung durch GPC (vgl. Anmerkung bei Beispiel 7) ergibt

bei Beispiel 8 $M_n = 9, 3 \cdot 10^3$, $M_w = 14, 4 \cdot 10^7$ Molekulargewichtsverteilungskurve siehe Figur 3;

bei Beispiel 9 $M_n = 8, 5 \cdot 10^3$, $M_w = 13, 5 \cdot 10^7$ Molekulargewichtsverteilungskurve siehe Figur 4;

bei Beispiel 10 $M_n = 8, 4 \cdot 10^3$, $M_w = 12, 3 \cdot 10^7$ Molekulargewichtsverteilungskurve siehe Figur 5;

> bei Beispiel 11 $M_n = 8.2 \cdot 10^3$, $M_w = 11.5 \cdot 10^7$ Molekulargewichtsverteilungskurve siehe Figur 6;

20

bei Beispiel 12 $M_n = 7.6 \cdot 10^3$, $M_W 12.1 \cdot 10^7$ Molekulargewichtsverteilungskurve siehe Figur 7.

Beispiele 8 a bis 12 a

25

Die in den Beispielen 8 bis 12 beschriebenen Polymerisationen der nach Beispiel 2 bis 6 hergestellten Acrylsäureester werden auch in Gegenwart von vernetzend wirkenden Substanzen durchgeführt. Hierzu verwendet man jeweils:

30

20 Teile (250 g) phenylsubstituierte Acrylsäureester

76 Teile (950 g) VE-Wasser

0,2 Teile (2,5 g) Diallylphthalat 0,24 Teile (3,0 g) Na-Laurat

In die Vorlage der Dosiereinrichtung werden gegeben:

5

0,012 Teile (0,15 g) Ammoniumperoxodisulfat

4 Teile (50 g) VE-Wasser

Man erhält jeweils einen weißen, stabilen Polyacrylat-Latex.

10

Die Molekulargewichtscharakterisierung durch GPC (vgl. Anmerkung bei Beispiel 7) ergibt

bei Beispiel 8 a $M_n = 3,14 \cdot 10^4$, $M_w = 33,8 \cdot 10^7$ Molekulargewichtsverteilungskurve siehe Figur 8;

bei Beispiel 9 a $M_n = 2,45 \cdot 10^4$, $M_w = 21,1 \cdot 10^7$ Molekulargewichtsverteilungskurve siehe Figur 9;

bei Beispiel 10 a $M_n = 3,05 \cdot 10^4$, $M_w = 33,2 \cdot 10^7$ Molekulargewichtsverteilungskurve siehe Figur 10;

bei Beispiel 11 a $M_n = 2.8 \cdot 10^4$, $M_w = 26.3 \cdot 10^7$ Molekulargewichtsverteilungskurve siehe Figur 11;

25

bei Beispiel 12 a $M_n = 2.3 \cdot 10^4$, $M_w = 20.3 \cdot 10^7$ Molekulargewichtsverteilungskurve siehe Figur 12.

Beispiele 13 bis 18

30

Mittels der in Beispiel 7 beschriebenen Apparatur können auch Copolymere der phenylsubstituierten Acrylsäureester mit Alkylacrylaten hergestellt werden. Hierzu werden z. B. eingesetzt:

- 18 Teile (225 g) phenylsubstituierte Acrylsäureester, hergestellt nach den Beispielen 1 bis 6
- 2 Teile (50 g) Butylacrylat
- 76 Teile (950 g) VE-Wasser
- 5 0,24 Teile (3 g) Na-Laurat

In die Vorlage der Dosiereinrichtung werden gegeben:

0,012 Teile (0,15 g) Ammoniumperoxodisulfat

10 4 Teile (50 g) VE-Wasser

25

Man erhält jeweils einen weißen, stabilen Polyacrylat-Latex.

Die Molekulargewichtscharakterisierung durch GPC (vgl. Anmerkung 15 bei Beispiel 7) ergibt

bei Beispiel 13 $M_n = 9,6 \cdot 10^3$, $M_w = 14,8 \cdot 10^7$ Molekulargewichtsverteilungkurve siehe Figur 13;

bei Beispiel 14 $M_n = 8, 2 \cdot 10^3$, $M_w = 13, 3 \cdot 10^7$ Molekulargewichtsverteilungskurve siehe Figur 14;

> bei Beispiel 15 $M_n = 7.9 \cdot 10^3$, $M_w = 12.6 \cdot 10^7$ Molekulargewichtsverteilungskurve siehe Figur 15;

> bei Beispiel 16 $M_n = 7.4 \cdot 10^3$, $M_w 11.3 \cdot 10^7$ Molekulargewichtsverteilungskurve siehe Figur 16;

bei Beispiel 17 $M_n = 8.9 \cdot 10^3$, $M_w = 15.1 \cdot 10^7$ Molekulargewichtsverteilungskurve siehe Figur 17;

bei Beispiel 18 $M_n = 8.0 \cdot 10^3$, $M_w = 13.6 \cdot 10^7$ Molekulargewichtsverteilungskurve siehe Figur 18.

Beispiele 13 a bis 18 a

Die in den Beispielen 13 bis 18 beschriebenen Polymerisationen werden auch in Gegenwart von vernetzend wirkenden Substanzen durchgeführt. Hierzu werden z. B. eingesetzt:

- 18 Teile (225 g) phenylsubstituierte Acrylsäureester, hergestellt nach den Beispielen 1 bis 6
- 2 Teile (50 g) Butylacrylat
- 10 76 Teile (950 g) VE-Wasser
 - 0,2 Teile (2,5 g) Diallylphthalat
 - 0,24 Teile (3,0 g) Na-Laurat

In die Vorlage der Dosiereinrichtung werden gegeben:

5

- 0,012 Teile (0,15 g) Ammoniumperoxodisulfat
- 4 Teile (50 g) VE-Wasser

Man erhält jeweils einen weißen, stabilen Polyacrylat-Latex.

20

25

Die Molekulargewichtscharakterisierung durch GPC (vgl. Anmerkung bei Beispiel 7) ergibt

bei Beispiel 13 a $M_n = 3, 1 \cdot 10^4$, $M_w = 29, 7 \cdot 10^7$ Molekulargewichtsverteilungskurve siehe Figur 19;

bei Beispiel 14 a $M_n = 2.6 \cdot 10^4$, $M_w = 25.6 \cdot 10^7$ Molekulargewichtsverteilungskurve siehe Figur 20;

bei Beispiel 15 a $M_n = 2,96 \cdot 10^4$, $M_w = 24,9 \cdot 10^7$ Molekulargewichtsverteilungskurve siehe Figur 21; bei Beispiel 16 a $M_n = 2,76 \cdot 10^4$, $M_w = 30,8 \cdot 10^7$ Molekulargewichtsverteilungskurve siehe Figur 22;

bei Beispiel 17 a $M_n = 2, 1 \cdot 10^4$, $M_w = 29, 4 \cdot 10^7$ Molekulargewichtsverteilungskurve siehe Figur 23;

bei Beispiel 18 a $M_n = 2.8 \cdot 10^4$, $M_w = 30.1 \cdot 10^7$ Molekulargewichtsverteilungskurve siehe Figur 24.

- 10 C) Herstellung der Mischung aus Polyvinylchlorid und Polyacrylsäureester
 - a) Pfropfpolymerisation von Vinylchlorid mit Polyacrylsäureester
- 15 Beispiele 19 bis 32

In einem 21-Stahlautoklaven der unter B) beschriebenen Bauart werden vorgelegt:

20 50 Teile (200 g) Polyacrylat-Latex, hergestellt nach den Beispielen 7, 7a, 8, 8a, 12, 12a, 13, 13a, 14,
14a, 15, 15a, 18, 18a (dies entspricht jeweils
40 g festem Polymeren und 160 g Wasser)

160 Teile (640 g) VE-Wasser

0,03 Teile (0,12 g) Sorbitmonolaurat

0,08 Teile (0,32 g) Lauroylperoxid

0,06 Teile (0,24 g) Dicetylperoxydicarbonat

Nachdem das vorgelegte Gemisch entgast und mit Stickstoff gespült 30 ist, werden unter Rühren bei 200 bis 300 U/m

90 Teile (360 g) Vinylchlorid

in den Autoklaven eingedrückt und anschließend die Rührdrehzahl auf 350 U/m erhöht. Dann werden

0,4 Teile (1,6 g) Hydroxyethylcellulose gelöst in 50 Teile (200 g) VE-Wasser

zugegeben und 2 bar N2-Druck aufgegeben.

Der Reaktorinhalt wird auf 60 °C aufgeheizt und bei dieser Temperatur 10 bis zum Druckabfall um 3 bar innerhalb von ca. 6 Stunden auspolymerisiert.

Nach Erkalten, Rest-VC-Entgasung, Abfiltrieren, Waschen und Trocknen erhält man ein rieselfähiges Pulver, dessen mittlerer Korndurchmesser bei 100 bis 150 µm liegt.

Ermittelte Werte für Schlagzähigkeit und Transparenz sind Tabelle 1 zu entnehmen.

b) Mischen von Polyacrylsäureester (PA) und Masse-Polyvinylchlorid (M-PVC)

Beispiele 33 bis 46

15

- 25 100 Teile M-PVC (hergestellt z. B. nach DE-OS 15 20 595) werden im Labormischer mit
 - 55 Teile Poylacrylat-Latex mit 20 Gewichtsprozent Polymeranteil (hergestellt nach den Beispielen 7, 7a, 8, 8a, 12, 12a, 13, 13a, 14, 14a, 15, 15a, 18, 18a)
- 30 vermischt und bei 50 °C 12 Stunden im Vakuum getrocknet.

Man erhält ein nicht mehr rieselfähiges, z. B. auf der Walze verarbeitbares Pulver. Ermittelte Werte für Schlagzähigkeit und Transparenz sind Tabelle 1 zu entnehmen.

c) Mischen von Polyacrylsäureester (PA) und Suspensions-Polyvinylchlorid (S-PVC)

Beispiele 47 bis 60

100 Teile S-PVC (hergestellt z. B. nach DE-OS 15 95 431) werden im Labormischer mit

55 Teile PA-Latex (hergestellt nach den Beispielen 7, 7a, 8, 8a, 12, 12a, 13, 13a, 14, 14a, 15, 15a, 18, 18a) vermischt und bei 50 °C im Vakuum getrocknet.

Man erhält ein nicht mehr rieselfähiges, z. B. auf der Walze verarbeitbares Pulver.

Ermittelte Werte für Schlagzähigkeit und Transparenz sind Tabelle 1 zu entnehmen.

20

5

10

d) Mischen von PA und Emulsions-Polyvinylchlorid (E-PVC)

Beispiele 61 bis 65

- 25 100 Teile (5 000 g) E-PVC-Latex mit 45 % PVC (Herstellung z. B. nach DE-OS 25 31 780) und
 - 22,5 Teile (1 125 g) PA-Latex (mit 20 Gewichtsprozent Polymeranteil, Herstellung nach den Beispielen 7a, 8a, 12a, 13a, 14a)
- werden zusammen in einer Nubilosa-Laborsprühtrocknungsanlage sprühgetrocknet. Man erhält ein begrenzt rieselfähiges Pulver.

Ermittelte Werte für Schlagzähigkeit und Transparenz sind Tabelle 1 zu entnehmen.

e) Heißmischen von Polymerisaten der erfindungsgemäßen phenylsubstituierten Acrylsäureester mit PVC

Beispiele 66 bis 70

Zunächst werden die Polyacrylat-Latices, hergestellt nach den Beispielen 7a, 8a, 12a, 13a, 14a, so aufgearbeitet, daß das reine Polymerisat vorliegt. Hierzu werden jeweils von o. a. 250 g Polyacrylat-Latex unter Rühren mit 100 g Methanol und 100 g 5 %iger wäßriger Na-Formiat-Lösung versetzt. Das so ausgefällte Polyacrylat wird auf einer Fritte abfiltriert, mit Methanol und VE-Wasser gewaschen und bei 40 °C 24 Stunden im Vakuum getrocknet. 10 Teile (40 g) von derart erhaltenem Polymerisat werden jeweils mit 90 Teilen (360 g) M-PVC (hergestellt z. B. nach DE-OS 15 95 431) unter Verwendung der für alle Verarbeitungen, später beschriebenen Verarbeitungsund Stabilisierungshilfsmittel auf der Walze bei 185 °C 5 bis 15 Minuten vermischt. Man erhält ein Walzfell, das in üblicher Weise weiter zu Preßplatten verarbeitet wird.

Ermittelte Werte für Schlagzähigkeit und Transparenz sind Tabelle 1 zu entnehmen.

Tabelle 1

	(X)	(Y)	(Z)
	Modifiziertes Polyvi-	Transmission, Schicht-	Kerbschlagzähig-
5	nylchlorid	dicke 2 mm, Wellen-	keit in kJ/m ² , 4
		länge 600 nm	mm-Presplatten
			nach DIN 53 453
	Masse-Polyvinylchlo-	81	2
	rid nach DE-OS	• ,	
10	15 20 595 (Standard-		
	probe)		
. 4	DE-AS 20 13 020	57	22
	Erfindungsgemäß		
	Beispiel 19	87	38
15	Beispiel 20	88	43
	Beispiel 21	84	39
	Beispiel 22	86	45
	Beispiel 23	80	39
	Beispiel 24	80	40
20	Beispiel 25	85	41
•	Beispiel 26	85	46
	Beispiel 27	84	39
	Beispiel 28	84	43
•	Beispiel 29	82	22
2 5	Beispiel 30	82	23
	Beispiel 31	81	44
	Beispiel 32	82	44
	Beispiel 33	85	33
•	Beispiel 34	85	40
30	Beispiel 35	82	34
	Beispiel 36	84	42
	Beispiel 37	79	. 36
	Beispiel 38	78	40

Tabelle 1 -Fortsetzung

		<u> </u>	
· .	(X)	(Y)	(Z)···
	Beispiel 39	82	40
5	Beispiel 40	82	40
	Beispiel 41 '	82	37
	Beispiel 42	81	41
	Beispiel 43	78	21
	Beispiel 44	79	20
10	Beispiel 45	81	41
	Beispiel 46	79	43
	Beispiel 47	84	36
	Beispiel 48	84	36
	Beispiel 49	81	40
15	Beispiel 50	80	41
	Beispiel 51	77	36
	Beispiel 52	78	37
	Beispiel 53	81	42
	Beispiel 54	80	44
20	Beispiel 55	79	40
	Beispiel 56	80	41
•	Beispiel 57	76	22
. •	Beispiel 58	. 78	21
•	Beispiel 59	77	42
2 5	Beispiel 60	78	42
	Beispiel 61	80	38
	Beispiel 62	80	35
·	Beispiel 63	79	36
	Beispiel 64	78	33
3 0 ·	Beispiel 65	77	40
	Beispiel 66	80	35
	Beispiel 67	81	34

Tabelle 1 - Fortsetzung

(X)	(Y)	(Z)
Beispiel 68	78	37
Beispiel 69	79	40
Beispiel 70	7,8	39

Für die Ausprüfungen wurde folgende Konfektionierungs-Rezeptur angewendet:

1	•
1	U

	Polyvinylchlorid	100	Gewichtsteile
:	(bzw. modifiziertes	••	
•	Polyvinylchlorid)		•
	Ba-Cd-Stabilisator	2,5	Gewichtsteile
15	Polyethylen-Gleitmittel	0,15	Gewichtsteile
۶.	Polymethylmethacrylat-	1,2	Gewichtsteile
	Verarbeitungshilfsmittel		
	Flüssiger partieller Fett-	0,4	Gewichtsteile
	säureester des Glycerins		
20	Festes neutrales Glycerin-	0,4	Gewichtsteile
•	Esterwachs	•	•

Zur Herstellung der Prüfkörper wurden zunächst Walzfelle bei 185

^oC Walzentemperatur und 5 Minuten Walzdauer hergestellt. Nach

Verpressen zu 2 bzw. 4 mm dicken Platten wurden die in Tabelle 1

angegebenen Transmissions- bzw. Kerbschlagzähigkeitsmessungen

vorgenommen.

Bei der Wertung der Transparenz ist zu bedenken, daß Polyvinylchlorid aufgrund seiner Neigung zur Zersetzung beim Verarbeitungsprozeß, verglichen mit anderen Thermoplasten, in besonderer Weise stabilisiert werden muß. Hierdurch wird die Transparenz, verglichen mit anderen Thermoplasten, verschlechtert. Masse-Polyvinylchlorid als reinstes Polyvinylchlorid sollte die bei diesem Thermoplasten größtmögliche Transparenz zeigen. Wenn daher ein schlagfestes, d. h.
modifiziertes Polyvinylchlorid Transparenzen aufweist, die nahe an
die Transparenz des reinen Masse-Polyvinylchlorids heranreichen,
so müßten diese Transparenzen annähernd das auf diesem Gebiete
höchstmögliche darstellen. Zeigt sich aber, wie durch einige unserer
Beispiele belegt wurde, daß das modifizierte Polyvinylchlorid noch
deutlich bessere Transparenzen aufweist als Masse-Polyvinylchlorid,
so handelt es sich um einen echten überraschenden Effekt.

10

15

5

Dabei muß weiterhin in Betracht gezogen werden, daß die Transparenz, auch bei Masse-Polyvinylchlorid, von der jeweiligen Rezeptur, d. h. den (für die Verarbeitung unerläßlichen) Zusätzen an Gleitmittel, Stabilisatoren und dergleichen abhängig ist und nur für absolut gleiche Rezepturen und natürlich gleiche Schichtdicke Vergleiche gezogen werden dürfen.

Des weiteren ist noch auf die besonders hohe Schlagzähigkeit des erfindungsgemäß modifizierten Polyvinylchlorids hinzuweisen.

Patentansprüche:

1. Polymere Phenylalkyl-acrylsäureester der Formel

5
$$\leftarrow CH_2 - CH \xrightarrow{\chi}$$

 $O = C - O - R - \bigcirc$, in der

R einen geradkettigen oder verzweigten Alkylenrest mit 3 bis 4 Kohlenstoffatomen bedeutet, der gegebenenfalls durch ein Ethersauerstoffatom unterbrochen sein kann, wobei der geradkettige Anteil wenigstens 3 Kohlenstoffatome enthält, und x für eine Zahl von 30 bis 200 000 steht.

2. Polymere Phenylalkyl-acrylsäureester der Formel

10

$$\leftarrow CH_2 - CH \xrightarrow{\cdot}_{\overline{x}}$$

$$O = C - O - CH_2 - CH_2 - CH_2 - \bigcirc$$
, in der

x für eine Zahl von 50 bis 5 000 steht.

20

 Verwendung eines polymeren Phenylalkyl-acrylsäureester nach Anspruch 1 oder 2 als schlagzäh machende Komponente in hochtransparenten schlagzähen Formmassen auf der Basis von Polyvinylchlorid.

25

Verwendung nach Anspruch 3,
 dadurch gekennzeichnet,
 daß die schlagzäh machende Komponente in Mengen von 5 bis 30
 Gewichtsprozent, bezogen auf die Mischung aus Polyvinylchlorid
 bzw. Vinylchloridmischpolymerisat und schlagzäh machende Komponente, eingesetzt wird.

 Herstellung der polymeren Phenyl-acrylsäureester nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß phenylsubstituierte Acrylsäureester der Formel

$$CH_2 = CH$$
 $O = C - O - R - \bigcirc$, in der

R einen geradkettigen oder verzweigten Alkylenrest mit 3 bis 4 Kohlenstoffatomen bedeutet, der gegebenenfalls durch eine Ethersauerstoffbrücke unterbrochen ist, wobei der geradkettige Anteil mindestens 3 Kohlenstoffatome enthält, in Emulsion, Suspension, Masse oder Lösung in Gegenwart von Radikalkatalysatoren polymerisierenden Bedingungen unterworfen werden.

15

10

6. Herstellung von polymeren Phenyl-acrylsäureestern nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß phenylsubstituierte Acrylsäureester der Formel

20

25

30

$$CH_2 = CH$$
 $O = C - O - R -$, in der

R einen geradkettigen oder verzweigten Alkylenrest mit 3 bis 4 Kohlenstoffatomen bedeutet, der gegebenenfalls durch eine Ethersauerstoffbrücke unterbrochen ist, wobei der geradkettige Anteil mindestens 3 Kohlenstoffatome enthält, in wäßriger Emulsion in Gegenwart von ionogenen oder nicht-ionogenen Emulgatoren und von wasserlöslichen Katalysatoren bei 5 bis 120 °C polymerisiert werden.

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7

FIG. 9

FIG. 10

FIG. 11

FIG.12

FIG. 13

F1G. 14

FIG.15

FIG.17

FIG. 18

FIG. 19

FIG. 20

FIG. 21

FIG. 22

FIG. 23

FIG. 24

EUROPÄISCHER RECHERCHENBERICH

0023855

EP 83 10 2408

ategorie	Kennzeichnung des Dokumer der maßę	IGE DOKUMENTE Ints mit Angabe, soweit erforderlich, geblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl. 3)
A	GB-A-2 089 523 CORP.)	(HOYA LENS		C 08 F 20/18 C 08 F 20/30 C 08 L 27/06
À	FR-A-1 511 011	(UGINE)		
D,A	US-A-3 751 449 al.)	(R. GOBRAN et		
A	FR-A-2 100 047 CO)	(JAPANESE GEON		
				
		. :		RECHERCHIERTE SACHGEBIETE (Int. Cl. 3)
				C 08 F
De	or vorliegende Recherchenbericht w	urde für alle Patentansprüche erstellt.		
	Rectarchement DEN HAAG	Abschlußdatum der Recherche 23-08-1983	CAUV	VENBERG C.L.M.
X : vc Y : vc	CATEGORIE DER GENANNTEN I on besonderer Bedeutung allein on besonderer Bedeutung in Ve nderen Veröffentlichung derselt achnologischer Hintergrund ichtschriftliche Offenbarung	betrachtet nach	s dem Anmelde	ment, das jedoch erst am oder datum veröffentlicht worden ist angeführtes Dokument in angeführtes Dokument