Université de Rennes 1 Licence de mathématiques Module Anneaux et arithmétique

Feuille de TD n°4

Exercice 4.1

Soit p un nombre premier. Trouver tous les couples d'entiers non nuls (x,y) vérifiant $\frac{1}{x} + \frac{1}{y} = \frac{1}{p}$.

Exercice 4.2

On revient dans cet exercice sur l'exemple introductif du chapitre sur la localisation. Soit $x_0 \in \mathbf{R}$, I un intervalle ouvert de \mathbf{R} contenant x_0 et $\mathcal{C}(I,\mathbf{R})$ l'anneau des fonctions continues sur I à valeurs réelles. Soit

$$\mathcal{I}_{x_0} := \{ f \in \mathcal{C}(I, \mathbf{R}), \quad f(x_0) = 0 \}.$$

- 1. Montrer que \mathcal{I}_{x_0} est un idéal maximal de $\mathcal{C}(I,\mathbf{R})$.
- 2. Soit $S := \mathcal{C}(I, \mathbf{R}) \setminus \mathcal{I}_{x_0}$. Montrer que l'anneau localisé $S^{-1}\mathcal{C}(I, \mathbf{R})$ est isomorphe à l'anneau $\mathcal{C}(x_0, \mathbf{R})$ des germes de fonctions continues en x_0 , et que le morphisme de localisation est $f \mapsto \overline{(I, f)}$.

Indication: montrer qu'on a $\frac{f}{1} = 0$ dans $S^{-1}\mathcal{C}(I, \mathbf{R})$ si et seulement si f est nulle au voisinage de x_0 .

Exercice 4.3

Soit A un anneau et S une partie multiplicative de A.

- 1. On suppose qu'il existe $s \in A$ tel que $S = \{s^n\}_{n \in \mathbb{N}}$. Soit C un anneau et $\psi \colon A \to C$ un morphisme d'anneaux Montrer qu'on a $\psi(S) \subset C^{\times}$ si et seulement si $\psi(s) \in C^{\times}$. Montrer que les A-algèbres $S^{-1}A$ et $A[X]/\langle sX-1\rangle$ sont isomorphes.
- 2. Soit $\iota \colon A \to S^{-1}A$ le morphisme de localisation. Montrer que l'application $\mathfrak{q} \mapsto \iota^{-1}\mathfrak{q}$ est une bijection strictement croissante de l'ensemble des idéaux premiers de $S^{-1}A$ sur l'ensemble des idéaux premiers de A qui ne rencontrent pas S.
- 3. Soit x un élément non nilpotent de A (cf. l'exercice 1.10). Déduire de la question précédente qu'il existe un idéal premier de A qui ne contient pas x (cf. la question 7 de l'exercice précité).
- 4. On suppose que $S = A \setminus \mathfrak{p}$, où \mathfrak{p} est un idéal premier de A. Montrer que $S^{-1}A$ est un anneau local (cf. l'exercice 1.9), d'idéal maximal l'idéal engendré par l'image de \mathfrak{p} dans $S^{-1}A$. Décrire $S^{-1}A$ dans le cas où $A = \mathbf{Z}$, p est un nombre premier et $\mathfrak{p} = p\mathbf{Z}$.

Exercice 4.4

On rappelle que l'anneau total des fractions d'un anneau A est le localisé de A par rapport à l'ensemble des éléments qui ne sont pas des diviseurs de zéros. Quel est l'anneau total des fractions de $\mathbf{Z}/n\mathbf{Z}$ (n entier positif)? de $\mathbf{Z} \times \mathbf{Z}$? de $A \times B$, où A et B sont des anneaux intègres (on attend une réponse en fonction de $\operatorname{Frac}(A)$ et $\operatorname{Frac}(B)$)?

Exercice 4.5

Soit A un anneau intègre et S une partie multiplicative de A ne contenant pas 0_A . Soit $\mathbf K$ un corps contenant A comme sous-anneau. Soit

$$B := \left\{ a \, s^{-1} \right\}_{(a,s) \in A \times S} \subset \mathbf{K}.$$

Montrer que B est un sous-anneau de K contenant A, que $B = S^{-1}A$ et que le morphisme de localisation est le morphisme déduit de l'inclusion de A dans B.

Exercice 4.6

Soit A un anneau et S une partie multiplicative de A. Soit $\varphi \colon A \to S^{-1}A$ le morphisme de localisation. Soit

$$\mathcal{I}_S = \{ a \in A, \quad \exists s \in S, \quad sa = 0 \}.$$

- 1. Montrer que \mathcal{I}_S est un idéal de A
- 2. Montrer qu'on a $Ker(\varphi) = \mathcal{I}_S$.
- 3. En déduire les propriétés suivantes :
 - (a) si A est intègre et S ne contient pas 0_A , le morphisme de localisation est injectif;
 - (b) $S^{-1}A$ est l'anneau nul si et seulement si S contient 0_A .
- 4. On suppose de cette question que $A = B \times C$, où B et C sont des anneaux. Soit T une partie multiplicative de C contenant 0 (par exemple $T = \{1,0\}$). Montrer que $S := B^{\times} \times T$ est une partie multiplicative de $B \times C$, que $\mathcal{I}_S = \{0\} \times C$ et que le morphisme de localisation est le morphisme de projection $B \times C \to B$.

Exercice 4.7

- 1. Montrer que la caractéristique d'un anneau intègre est soit nulle, soit un nombre premier
- 2. Soit p un nombre premier et A un anneau de caractéristique p. Montrer que $x \mapsto x^p$ est un morphisme d'anneaux. On l'appelle le morphisme de Frobenius de A. Vérifier que ce morphisme est injectif si A est intègre.
- 3. Soit \mathbf{K} un corps. On dit que \mathbf{K} est parfait s'il est de caractéristique 0 ou s'il est de caractéristique non nulle et le morphisme de Frobenius de \mathbf{K} est bijectif. Montrer qu'un corps fini est un corps parfait.
- 4. Soit **K** un corps parfait et $P \in \mathbf{K}[X]$. Montrer que P est sans facteur multiple si et seulement si $\operatorname{pgcd}(P, P') = 1$.
- 5. Soit **K** un corps et n un entier strictement positif. On note $\mathbf{K}[X^n]$ l'image dans $\mathbf{K}[X]$ de l'unique morphisme de **K**-algèbres $\mathbf{K}[X] \to \mathbf{K}[X]$ qui envoie X sur X^n . Montrer qu'un élement de $\mathbf{K}[X]$ est dans $\mathbf{K}[X^n]$ si et seulement si ses coefficients d'indice non multiple de n sont tous nuls. Montrer que les \mathbf{K} -algèbres $\mathbf{K}[X^n]$ et $\mathbf{K}[X]$ sont isomorphes.
- 6. Soit **K** un corps fini de caractéristique p et $\mathbf{L} := \mathbf{K}(T)$ le corps des fractions rationnelles en une indéterminée à coefficients dans \mathbf{K} .
 - (a) Montrer que T n'est pas dans l'image du morphisme de Frobenius de \mathbf{L} .
 - (b) Soit $\mathbf{M} = \mathbf{K}(U)$ le corps des fractions rationnels en une indéterminée U à coefficients dans \mathbf{K} . Montrer qu'il existe un unique morphisme de \mathbf{L} dans \mathbf{M} qui envoie T sur U^p . On identifie désormais \mathbf{L} à un sous-corps de \mathbf{M} . Montrer que $U \notin \mathbf{L}$.

- (c) On considère le polynôme $P:=X^p-T\in\mathbf{L}[X]$. Soit $Q\in\mathbf{L}[X]$ un diviseur non constant de P. Montrer qu'il existe $1\leqslant r\leqslant p$ tel que $Q=(X-U)^r$. En déduire que r=p et que P est irréductible.
- (d) Le polynôme P a-t-il des facteurs multiples? Que vaut $\operatorname{pgcd}(P,P')$?