# Evolution et équilibre chimique

Agrégation

# Hypothèses sur le système chimique

- Equilibre thermodynamique
- Système fermé siège d'une réaction chimique
- Transformations isothermes et isobares. (P=Pext et T=Text)
- Pas de travail autres que celui des forces de pression

## Précipitation de l'iodure de plomb Pbl<sub>2</sub>

$$Pb^{2+}_{(aq)} + 2I^{-}_{(aq)} = PbI_{2}(s)$$

Quotient de réaction :  $Q_r = \frac{1}{[Pb^{2+}].[I^-]^2}$ 

Constante d'équilibre K°=
$$\frac{1}{[Pb^{2+}]_{\acute{e}q}\cdot[I^{-}]_{\acute{e}q}^{2}}=\frac{1}{K_S}$$

#### Evolution dans le sens de la formation du précipité :

$$Q_r = \frac{1}{[Pb^{2+}].[I^-]^2} < K^\circ = \frac{1}{K_S}$$
, soit  $[Pb^{2+}].[I^-]^2 > Ks$ 

#### <u>Premier grain de Pbl<sub>2</sub>:</u>

$$\mathbf{Ks} = \frac{c_0 \cdot V_0}{V_0 + V_{aj}} \cdot \left(\frac{c_1 \cdot V_{aj}}{V_0 + V_{aj}}\right)^2 = \frac{c_0 \cdot V_0}{(V_0 + V_{aj})^3} \cdot C_1^2 \cdot V_{aj}^2$$



### Evolution de la conductivité de la solution

$$Pb^{2+}_{(aq)} + 2I^{-}_{(aq)} = PbI_{2}(s)$$

#### **Conductivité molaire ionique à 25°C:**

| lon                                                 | lt . | Pb <sup>2+</sup> | K <sup>+</sup> | NO <sub>3</sub> - |
|-----------------------------------------------------|------|------------------|----------------|-------------------|
| $\lambda_0$ (mS.m <sup>2</sup> .mol <sup>-1</sup> ) | 7,68 | 14,2             | 7,35           | 7,14              |

| Concentration                      | Pb <sup>2+</sup> (aq) | 21- <sub>(aq)</sub> = | PbI2 <sub>(s)</sub> | [ 2NO <sub>3 (aq)</sub> - | + 2K <sup>+</sup> (aq)] | Conductivité de la<br>solution |
|------------------------------------|-----------------------|-----------------------|---------------------|---------------------------|-------------------------|--------------------------------|
| Initialement                       | $C_0$                 | 0                     | 0                   | $C_0$                     | 0                       |                                |
| Avant apparition du précipité      | (dillution)           |                       | 0                   | (dillution)               | 1                       |                                |
| Après<br>formation du<br>précipité |                       |                       | 1                   | (dillution)               | 1                       |                                |

MESTRE Eloïse

# Influence de la température sur la solubilité de l'iodure de plomb

$$\mathbf{PbI}_{2(\mathbf{s})} = \mathbf{Pb}^2 + (\mathbf{aq}) + 2\mathbf{I}^{-}(\mathbf{aq})$$

$$Ks=[Pb^{2+}].[I^{-}]^{2}$$
 et  $[Pb^{2+}]=s$  et  $[I^{-}]=2s$ 

| lon                                                 | lt.  | Pb <sup>2+</sup> |
|-----------------------------------------------------|------|------------------|
| $\lambda_0$ (mS.m <sup>2</sup> .mol <sup>-1</sup> ) | 7,68 | 14,2             |



magnétique

#### La loi de Kohlrausch donne:

$$\sigma = [2 * \lambda^{\circ}_{Pb^{2+}}.s + \lambda^{\circ}_{I^{-}}.(2s)] = 2s[\lambda^{\circ}_{Pb^{2+}} + \lambda^{\circ}_{I^{-}}]$$

$$Ks = s*(2s)^2 = 4s^3 = \frac{1}{2} \left( \frac{\sigma}{[\lambda^{\circ}_{Ph}^2 + + \lambda^{\circ}_{I}]} \right)^3$$

### Variation avec la pression

$$2 \text{ NO}_2(g) = \text{N}_2\text{O}_4(g)$$



$$Q_{r}^{eq} = \left(\frac{x_{N204}P^{\circ 2}}{x_{N02}^{2}P_{tot}^{2}}\right)_{eq} = K^{\circ}(T)$$

MESTRE Eloïse

# Merci