ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук Департамент программной инженерии

СОГЛАСОВАНО

УТВЕРЖДАЮ

	Доцент департамента программной инженерии факультета компьютерных наук канд. техн. наук	Академический руководитель образовательной программы «Программная инженерия»
	A. Р. Закиевна2016 г.	В. В. Шилов «» 2016 г.
Подп. и дата	ПРОГРАММА СКЕЛЕ	ТНАЯ АНИМАЦИЯ
Инв. № дубл.	Техническо ЛИСТ УТВЕ	
Взам. инв. №	RU.17701729.50900	00-01 ТЗ 01-1-ЛУ
Подп. и дата		Исполнитель студент группы 151 ПИ/А. М. Абрамов / «» 2016 г.
Инв. № подл		

ПРОГРАММА СКЕЛЕТНАЯ АНИМАЦИЯ

Техническое задание

лист утверждения

RU.17701729.500900 ТЗ 01-1-ЛУ

Листов 16

Подп. и дата	
Инв. Nº дубл.	
Взам. инв. №	
Подп. и дата	
Инв. № подп.	

Содержание

1	вве	дение	2
	1.1	Наименование	2
	1.2	Краткая характеристика	2
	1.3	Документы, на основании которых ведется разработка	2
2	Наз	начение разработки	3
	2.1	Функциональное назначение	3
	2.2	Эскплутационное назначение	3
3	Tex	нические характеристики	4
	3.1	Постановка задачи на разработку программы	4
	3.2	Описание алгоритма и функционирования программы	4
		3.2.1 Изменение местоположения точек в 3-х мерном пространстве	4
		3.2.2 Paбота c OpenGL	4
	3.3	Обоснование выбора алгоритма решения задачи	5
	3.4	Метод органзации входных и выходных данных	5
		3.4.1 Описание метода входных и выходных данных	5
		3.4.2 Обоснование выбора метода организации входных и выходных данных	5
	3.5	Выбор состава технических средств	6
		3.5.1 Состав технических и програмных средств	6
	3.6	Обоснование выбора технических и програмных средств	6
4	Tex	нико-экономические показатели	7
	4.1	Ориентировачная экономическая эффективность и годовая потребность	7
	4.2	Экономические преимущества разработки	7
5	Ист	очники, используемые при разработке	8
	5.1	Список используемой литературы	8
6	При	ложение 1. Терминология	9
	6.1	Терминология	9

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.509000 ТЗ 01-1-ЛУ				
Инв. №подл.	Подп. и дата	Взам. инв. №	Инв. №дубл.	Подп. и дата

1. Введение

1.1. Наименование

Наименование: «Программа скелетная анимация»

1.2. Краткая характеристика

Программа предназначена для быстрого просмотра анимационных файлов созданных в пакетах для 3-х мерного моделирования.

1.3. Документы, на основании которых ведется разработка

Приказ НИУ ВШЭ No 6.18.1-02/1112-19 от 11.12.2015 в соответствии с учебным планом подготовки бакалавров по направлению 09.03.04 «Программная инженерия».

Изм.	Лист	№ докум.	Подп.	Дата
RU 17701729 509000 ТЗ 01-1-ЛУ				
Инв. №подл.	Подп. и дата	Взам. инв. №	Инв. №дубл.	Подп. и дата

2. Назначение разработки

2.1. Функциональное назначение

Функциональным назначением приложения является предоставление пользователю возможности быстро загрузить 3D анимацию из файла, проиграть ее, показывать анимацию учитывая связанные с ней материалы и нормали, просмотреть мешы и кости входящие в состав анимации, перейти к любому моменту времени в анимационном файле.

2.2. Эскплутационное назначение

Программа наглядно демонстрирует содержание файла экпортированного из пакетов для 3-х мерного моделированния. Она может использоваться в процессе отладки приложений использующих анимацию и в работе дизайнера 3D моделей. В силу простоты интерфейса она подходит для использования людям не очень хорошо знакомым с более мощными и трудными в использовании пакетами для 3-х мерного моделирования, которые можно использовать для просмотра содержимого файла анимации.

Изм.	Лист	№ докум.	Подп.	Дата
RU 17701729.509000 ТЗ 01-1-ЛУ				
Инв. №подл.	Подп. и дата	Взам. инв. №	Инв. №дубл.	Подп. и дата

3. Технические характеристики

3.1. Постановка задачи на разработку программы

Разработанный програмный продукт обязан:

- 1. Выполнять загрузку данных из специально отформатированного файла коллада (collada или .dae).
- 2. Проигрывать записанную в данном файле анимацию.
- 3. Предоставлять пользователю озможность перейти к любому моменту времени в анимации.
- 4. Отрисовывать кости модели.
- 5. Иметь возможность вкл./выкл. учититывание нормалей и материалов во время отрисовки.
- 6. Поддерживать два вида камер в OpenGL, первый вид это камера движение которой сковано орбитой вокруг модели и другой тип это камера двигающаяся совершенно свободно.

3.2. Описание алгоритма и функционирования программы

3.2.1. Изменение местоположения точек в 3-х мерном пространстве

Алгоритм скелетной анимации основан на налиичии следующей информации:

- 1. Простого меша, который называется скелетом.
- 2. Позиции этого меша в определенные моменты времени.
- 3. Комплексного меша модели.
- 4. Связь каждой вершиной модели с «костью» из скелета.

Для реализации алгоритма был написан класс применяющий к костям скелета деформацию соответствующую заданному моменту во времени. Деформация - это матрица переводящая старую пару координат, которые определяют кость, в новую пару. Однако она нам не известна. Так как позиции костей в скелете известны нам только в ключевые моменты времени, необходимо использовать алгоритмы интерполяции для нахождения матрицы деформации для данного кадра.

```
| print "hello world from ApplyArmature.cs"
```

Каждая матрица деформации находиться относительно матризу деформации кости-родителя. Далее матрица деформации должна быть переведена из системы координат кости-родителя в систему координат меша скелета. Это позволяет применять их на вершинах в произвольном порядке, что необходимо для увеличения производительности. Ниже приведен код переводящий деформации кости в глобальные координаты:

```
print "hello world from ApplyArmature.cs"
```

Каждый кадр необходимо для каждой вершине комплексного меша находить кости, которые имеют право на нее воздействовать и применять к вершине такую же деформацию, что была пременена и к костям. Ниже преведен код занимающийся поиском костей влияющих на вершину и применяющий к ней матрицу деформации каждой кости в зависимости от веса кости:

```
print "hello world from Entity.cs"
```

3.2.2. Работа с OpenGL

Графический драйвер поддерживающий OpenGL, использует архитектуру наподобие клиент-сервер. Данные о вершинах, материалах и нормалях необходимо загружать в буферы памяти расположенные на видеокарте. Ниже приведен код для загрузки этих данных:

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.509000 ТЗ 01-1-ЛУ				
Инв. №подл.	Подп. и дата	Взам. инв. №	Инв. №дубл.	Подп. и дата

I print "hello world from DrawMesh.cs"

Для создания эффекта движения нобходимо менять каждый кадр менять содержимое буферов расположыенных на графической карте. А именно необходимо менять координаты вершин и направления нормалей к каждой вершине (для корректного отображения света/тени). Для этого необходимо послать запрос к драйверу OpenGL и получить указатель на память с загруженнуми данными. Так как эта память не принадлежит GCCollector, (объекту .Net Framework отвечающему за контроллируемую память) то все манипуляции с ней должны производиться в блоке «unsafe». Далее приведен код модифицирущий данные в буфере для следующего кадра.

print "hello world from DrawMesh.cs and Entity.cs"

3.3. Обоснование выбора алгоритма решения задачи

Выбор алгоритма скелетной анимации продиктован постановкой задачи, а именно пунктом о загрузке данных из специально отформатированного файла коллада (collada или .dae).

Перевод матриц деформации из системы координат кости-родителя в систему координат меша скелета позволяет применять их на вершинах в произвольном порядке, что необходимо для увеличения производительности.

Данные о вершинах, материалах и нормалях необходимо загружать в буферы памяти расположенные на видеокарте для того что бы обеспечить приложению скорость не менее чем в 20 кадров в секунду для моделей остоящих более чем из 1,300,000 треугольников.

Модифицировать буфер памяти необходимо после каждого кадра, в OpenGL существует специальный тип буферов для таких случаев создаваемый с помощю флага STREAM_WRTIE. Далее для удобства и скорости создается словарь сопоставляющий индексу вершины, влияющие на нее кости и их камуллятивную матрицу деформации, это позволяет сэкономить на поиске подходящей кости в скелете.

3.4. Метод органзации входных и выходных данных

3.4.1.Описание метода входных и выходных данных

Входными данными является файл в формате коллада, в котором в обязательном порядке должны присутствовать следующие элементы:

- 1. Один меш с соответствующим ему тегом <Name=«Mesh»>
- 2. Один трэк анимации.
- 3. Один скелет связанный с мешем, и с соответствующим ему тегом <Name=«Armature»>

Выходными данными является отображение анимации на экране.

3.4.2. Обоснование выбора метода организации входных и выходных данных

Если не выполненны условия на наличие меша, трэка анимации и связанного с мешем скелета то у программы не хватит информации для воспроизведения анимации. Наименования объектов, экспортируемых из 3-х мерного пакета для моделлирования, необходимы для того чтобы различать меш и скелет для меша, так как при экспорте они получают одинаковую структуру внутри файла.

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.509000 ТЗ 01-1-ЛУ				
Инв. №подл.	Подп. и дата	Взам. инв. №	Инв. №дубл.	Подп. и дата

3.5. Выбор состава технических средств

3.5.1. Состав технических и програмных средств

Для возможности запустить приложение необходимо учесть следующие системные требования:

- 1. Компьютер, оснащенный:
 - (а) Обязательно 64-разрядный (х64) процессор с тактовой частотой 1 гигагерц (ГГц) или выше;
 - (b) 512 мегабайт (ГБ) оперативной памяти (ОЗУ);
 - (с) 2 ГБ (для 64-разрядной системы) пространства на жестком диске;
 - (d) графическое устройство OpenGL с драйвером версии 3.1 или выше.
- 2. Монитор
- 3. Видеокарта
- 4. Мышь
- 5. Клавиатура

Также необходимо учесть следующие програмные требования:

- 1. Поддержка OpenGL версии не менее 3.1
- 2. 64-битная операционная система Windows 7.
- 3. .NET Framework версии не ниже 4.5.1
- 4. Библиотека Assimp версии не ниже 3.1
- 5. Библиотека OpenTK версии не ниже 1.1.4

3.6. Обоснование выбора технических и програмных средств

Программа была протестирована и отлажена на версии OS Windows 7 с использованием .Net Framework 4.5.1, OpenTK версии 1.1.4 и Assimp версии 3.1.

Качество и корректность работы программы при других версиях не проверялось.

Программа использует буферы графической памяти типа STREAM_WRITE и функции glMapData и glSubBufferData которые в OpenGL официально поддерживаются лишь с версии 3.1

64-х разрядный компьютер необходим для того чтобы упростит логику взаимодействия в блоках кода unsafe с внешней паматью выделяемой графическим драйвером.

Технические требования к памяти и периферии не превышают технических требований к операционной системе Windows 7 с установленным на ней .Net Framework 4.5.1

Изм.	Лист	№ докум.	Подп.	Дата
RU 17701729 509000 ТЗ 01-1-ЛУ				
Инв. №подл.	Подп. и дата	Взам. инв. №	Инв. №дубл.	Подп. и дата

4. Технико-экономические показатели

4.1. Ориентировачная экономическая эффективность и годовая потребность

В силу простоты интерфейса она подходит для использования людям не очень хорошо знакомым с более мощными и трудными в использовании пакетами для 3-х мерного моделирования, которые можно использовать для просмотра содержимого файла анимации. Предполагается, что программа будет использоваться пользователем несколько раз в неделю, на протяжении коротких периодов времени, т. е. количество сеансов на одном рабочем месте в год составит примерно 48 сеансов. Она может использоваться в процессе отладки приложений использующих анимацию и в работе дизайнера 3D моделей.

4.2. Экономические преимущества разработки

Экономические преимущества разработки в сравнении с лучшими отечественными и зарубежными аналогами рассчитаны на январь 2016 года. Существующими аналогами данного приложения являются пакеты для 3-х мерного моделлирования и анимации. В силу того что данное приложение распростроняется бесплатно, единственным экономически выгодным аналогом к нему будет программа Blender. Однако Blender гораздо более сложен в использовании и потребляет намного больше системных ресурсов (жесткой памяти, ОЗУ, времени процессора).

Изм.	Лист	№ докум.	Подп.	Дата
RU 17701729.509000 ТЗ 01-1-ЛУ				
Инв. №подл.	Подп. и дата	Взам. инв. №	Инв. №дубл.	Подп. и дата

5. Источники, используемые при разработке

5.1. Список используемой литературы

- 1. OpenGL Superbible: Comprehensive Tutorial and Reference (7th Edition) Graham Sellers (Author), Richard S Wright Jr. (Author), Nicholas Haemel (Author) ISBN-13: 978-0672337475
- 2. Порев В.Н. Компьютерная графика. СПб.: БХВ-Петербург, 2002. 432 с.: ил.
- 3. ГОСТ 19.201-78 Техническое задание. Требования к содержанию и оформлению // Единая система программной документации. -М.:ИПК Издательство стандартов, 2001.
- 4. ГОСТ 19.101-77 Виды программ и программных документов //Единая система программной документации. -М.: ИПК Издательство стандартов, 2.: 001.
- 5. ГОСТ 19.103-77 Обозначения программ и программных документов. //Единая система программной документации. -М.: ИПК Издательство стандартов, 2001.
- 6. Требования к системе для .NET Framework 4.5. [Электронный ресурс]// URL: https://msdn.microsoft.com/ruru/library/8z6watww(v=vs.110).aspx (Дата обращения: 23.02.2016, режим доступа: свободный).
- 7. Системные требования ОС Windows 7. [Электронный ресурс]// URL: http://windows.microsoft.com/ru-ru/windows7/products/system-requirements (Дата обращения: 20.08.2016, режим доступа: свободный).
- 8. Документация OpenGL 3.3 [Электронный ресурс] // https://www.opengl.org/sdk/docs/man/ (Дата обращения: 21.10.2016, режим доступа: свободный)

Изм.	Лист	№ докум.	Подп.	Дата
RU 17701729 509000 ТЗ 01-1-ЛУ				
Инв. №подл.	Подп. и дата	Взам. инв. №	Инв. №дубл.	Подп. и дата

6. Приложение 1. Терминология

6.1. Терминология

Корневая вершина (англ. root node) Самый верхний узел дерева.

- Полигональная сетка (жарг. меш от англ. polygon mesh) Совокупность вершин, рёбер и граней, которые определяют форму многогранного объекта в трехмерной компьютерной графике и объёмном моделировании. Гранями являются треугольники.
- **Дерево** Связный ациклический граф. Связность означает наличие путей между любой парой вершин, ацикличность отсутствие циклов и то, что между парами вершин имеется только по одному пути.
- Степень вершины Количество инцидентных ей (входящих/исходящих из нее) ребер.
- **Интерполяция**, **интерполирование анимации** Способ нахождения промежуточных значений состояния анимации по имеющемуся дискретному набору известных значений.
- **Z-буферизация** В компьютерной трёхмерной графике способ учёта удалённости элемента изображения. Представляет собой один из вариантов решения «проблемы видимости»
- **Z-конфликт (англ. Z–fighting)** Если два объекта имеют близкую Z-координату, иногда, в зависимости от точки обзора, показывается то один, то другой, то оба полосатым узором.
- **OpenGL (Open Graphics Library)** Спецификация, определяющая независимый от языка программирования платформонезависимый программный интерфейс для написания приложений, использующих двумерную и трёхмерную компьютерную графику. На платформе Windows конкурирует с Direct3D.
- **Рендеринг (англ. rendering «визуализация»)** Термин в компьютерной графике, обозначающий процесс получения изображения по модели с помощью компьютерной программы.
- **Текстура** Растровое изображение, накладываемое на поверхность полигональной модели для придания ей цвета, окраски или иллюзии рельефа. Приблизительно использование текстур можно легко представить как рисунок на поверхности скульптурного изображения.

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.509000 ТЗ 01-1-ЛУ				
Инв. №подл.	Подп. и дата	Взам. инв. №	Инв. №дубл.	Подп. и дата

Лист регистрации изменений

		_	_	_					
Изм.	изменен- ных	заменен- ных	новых	аннули- рованных	Всего листов (страниц) в докум.	№ докум.	Входя- щий № сопрово- дительно- го докум. и дата	Подпись	Дата

Изм.	Лист	№ докум.	Подп.	Дата
RU.17701729.509000 ТЗ 01-1-ЛУ				
Инв. №подл.	Подп. и дата	Взам. инв. №	Инв. №дубл.	Подп. и дата