

수학 계산력 강화

(1)모집단과 표본평균

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

1) 제작연월일 : 2019-02-20

2) 제작자 : 교육지대㈜

3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

01 / 모집단과 표본

- (1) 전수조사 : 조사의 대상이 되는 자료 전체를 조사하는 방법
- @ 우리나라 총인구 조사, 전국에 등록된 자동차 대수 조사, 어느 학급의 수학 성적 등
- (2) 표본조사 : 조사의 대상이 되는 자료의 일부만을 조사하는 방법
- @ 건전지의 평균 수명 조사, 전구의 수명 조사, 과일의 당도 조사 등
- (3) 모집단 : 조사의 대상이 되는 자료 전체의 집합
- (4) 표본 : 조사하기 위하여 뽑은 모집단의 일부분
- (5) 표본의 크기 : 표본에 포함되어 있는 자료의 개수
- (6) 임의추출 : 모집단의 각 원소가 추출될 확률이 같도록 표본을 추출하는 방법
 - ① 복원추출 : 한 번 추출된 자료를 되돌려 놓은 후 다시 추출하는 것
 - ② 비복원추출 : 한 번 추출된 자료를 되돌려 놓지 않고 다시 추출하는 것
- ☑ 다음에서 전수조사의 표본조사 중 어느 것이 적합한지 결정하여 라.
- **1.** 우리나라 인구
- 2. 어느 학급의 국어 성적의 평균
- 타이어의 수명
- 4. 할로겐전구의 평균 수명 시간
- **5.** 스마트폰 사용 시간
- 6. 고등학교 학생들의 키

- **7.** 전국에 등록된 자동차 수
- 8. TV 프로그램 시청률
- 대기 중 미세먼지 농도
- 10. 시간대별 휴대 전화 통화 건수
- 11. 어느 고등학교 각 학습의 기말고사 수학 성적의 평균
- ightharpoonup 1, 2, 3, 4의 숫자가 각각 하나씩 적힌 4개의 공이 들어 있는 상자에서 2개의 공을 다음과 같이 임의추출하는 경우의 수를 구 하여라.
- 12. 한 개씩 복원추출
- 13. 한 개씩 비복원추출
- m Z $1,\ 2,\ 3,\ 4,\ 5,\ 6$ 의 숫자가 하나씩 적힌 6장의 카드가 들어 있는 주머니에 3개의 카드를 다음과 같이 임의추출하는 경우의 수를 구하여라.
- 14. 한 장씩 복원추출
- **15.** 한 장씩 비복원추출

- ☑ 주머니 속에 1, 2, 3의 숫자가 각각 하나씩 적혀 있는 3개의 공이 들어 있다. 이 주머니에서 2개의 공을 다음과 같이 임의추 출하는 경우의 수를 구하여라.
- 16. 한 개씩 복원추출
- 17. 한 개씩 복원추출

02 / 모평균과 표본평균

- (1) 모평균 : 모집단에서 조사하고자 하는 특성을 나타내는 확률변수를 X라 할 때, X의 평균을 모평균이라 하고 기호로 m과 같이 나타낸다.
- (2) 모분산 : 모집단에서 조사하고자 하는 특성을 나타내는 확률변수를 X라 할 때, X의 분산을 모분산이라 하고, 기호로 σ^2 과 같이 나타낸다.
- (3) 모표준편차 : 모집단에서 조사하고자 하는 특성을 나타내는 확률변수를 X라 할 때, X의 표준편차를 모표준편차라 하고, 기호로 σ 와 같이 나타낸다.
- (4) 표본평균 : 모집단에서 임의로 추출한 크기가 n인 표본을 X_1 , X_2 , …, X_n 이라 할 때, 이들의 평균을 표본평균이라 하고 기호로 X와 같이 나타낸다.
- (5) 표본분산 : 모집단에서 임의로 추출한 크기가 n인 표본을 X_1, X_2, \dots, X_n 이라 할 때, 이들의 분산을 표본분산이라 하고 기호로 $V(\overline{X})$ 와 같이 나타낸다.
- (6) 표본표준편차 : 모집단에서 임의로 추출한 크기가 n인 표본을 X_1 , X_2 , …, X_n 이라 할 때, 이들의 표준편차를 표본표준편차라 하고 기호로 $\sigma(\overline{X})$ 와 같이 나타낸다.
- (7) 모평균이 m, 모표준편차가 σ 인 모집단에서 크기가 n인 표본을 임의추출할 때, 표본평균 \overline{X} 에 대하여
 - (1) $E(\overline{X}) = m$
 - $\mathbb{Q} V(\overline{X}) = \frac{\sigma^2}{r}$
- $\Im \sigma(\overline{X}) = \frac{\sigma}{\overline{X}}$ \sqrt{n}
- Arr 정규분포 $N(5, 2^2)$ 을 따르는 모집단에서 크기가 16인 표본을 임의추출할 때, 표본평균 \overline{X} 에 대하여 다음을 구하여라.
- **18.** $E(\overline{X})$

- **19.** $V(\overline{X})$
- **20.** $\sigma(\overline{X})$
- Arr 정규분포 $N(30, 9^2)$ 을 따르는 모집단에서 크기가 9인 표본을 임의추출할 때, 표본평균 \overline{X} 에 대하여 다음을 구하여라.
- **21.** $E(\overline{X})$
- 22. $V(\overline{X})$
- **23.** $\sigma(\overline{X})$
- Arr 정규분포 $N(40, 6^2)$ 을 따르는 모집단에서 크기가 100인 표본 을 임의추출할 때, 표본평균 \overline{X} 에 대하여 다음을 구하여라.
- **24.** $E(\overline{X})$
- 25. $V(\overline{X})$
- **26.** $\sigma(\overline{X})$
- ightharpoonup 정규분포 $N(60,\ 8^2)$ 을 따르는 모집단에서 크기가 16인 표본 을 임의추출할 때, 표본평균 \overline{X} 에 대하여 다음을 구하여라.
- 27. $E(\overline{X})$
- 28. $V(\overline{X})$
- **29.** $\sigma(\overline{X})$

- Arr 정규분포 $N(300, 10^2)$ 을 따르는 모집단에서 크기가 25인 표 본을 임의추출할 때, 표본평균 \overline{X} 에 대하여 다음을 구하여라.
- **30.** $E(\overline{X})$
- **31.** $V(\overline{X})$
- 32. $\sigma(\overline{X})$
- ☑ 다음 물음에 답하여라.
- **33.** 모평균이 7이고 모표준편차가 6인 모집단에 대하 여 임의추출한 크기가 36인 표본의 표본평균 \overline{X} 의 평균과 분산을 구하여라.
- **34.** 모평균이 20이고 모표준편차가 8인 모집단에 대하 여 임의추출한 크기가 25인 표본의 표본평균 \overline{X} 의 평균과 표준편차를 구하여라.
- **35.** 모평균이 50이고, 모표준편차가 27인 모집단에서 크기가 9인 표본을 임의추출할 때, 표본평균 \overline{X} 의 평균과 표준편차를 구하여라.
- **36.** 모평균이 30이고 모표준편차가 7인 모집단에서 임의추출한 크기가 49인 표본의 표본평균 \overline{X} 의 평균 과 표준편차를 구하여라.
- **37.** 모평균이 10, 모표준편차가 3인 모집단에서 임의추 출한 크기가 4인 표본의 표본평균 \overline{X} 의 평균과 분산 및 표준편차를 구하여라.
- **38.** 모평균이 40이고 모분산이 4인 모집단에서 임의추 출한 크기가 25인 표본의 표본평균 \overline{X} 의 평균과 분 산 및 표준편차를 구하여라.

- ☑ 다음 물음에 답하여라.
- **39.** 정규분포 $N(15, 8^2)$ 을 따르는 모집단에서 크기가 16인 표본을 임의추출할 때, 표본평균 \overline{X} 의 표준편 차를 구하여라.
- **40.** 정규분포 N(7, 10)을 따르는 모집단에서 임의로 크기가 5인 표본의 평균을 \overline{X} 라 할 때 $E(\overline{X}^2)$ 의 값을 구하여라.
- **41.** 정규분포 N(5, 16)을 따르는 모집단에서 크기가 4인 표본을 임의추출할 때, 표본평균 \overline{X} 에 대하여 $E(\overline{X}^2)$ 을 구하여라.
- **42.** 정규분포 $N(100, 20^2)$ 을 따르는 어떤 모집단에서 크기가 16인 표본을 임의추출한다고 한다. 표본평균 \overline{X} 의 표준편차를 구하여라.
- **43.** 정규분포 $N(50, \sigma^2)$ 을 따르는 모집단에서 크기가 25인 표본을 임의추출할 때 표본평균 X에 대하여 $\sigma(\overline{X}) = 2$ 가 성립한다. 이때, $\sigma(X)$ 의 값을 구하여라.
- **44.** 모표준편차가 16인 어떤 모집단에서 복원추출한 표본의 평균 \overline{X} 의 표준편차가 2라 할 때, 이 표본의 크기 n을 구하여라.
- **45.** 정규분포 N(30, 144)을 따르는 모집단에서 크기 가 n인 표본을 임의추출할 때 표본평균 \overline{X} 에 대하 여 $\sigma(\overline{X}) = 2$ 가 성립한다. 이때, n의 값을 구하여라.
- **46.** 정규분포 N(35, 16)을 따르는 모집단에서 크기가 n인 표본을 임의로 추출하였을 때, 표본평균 \overline{X} 가 정규분포 N(35, 2)를 따른다고 한다. 이 때, 표본의 크기 n의 값을 구하여라.

47. 정규분포 $N(73, 12^2)$ 을 따르는 모집단에서 크기 가 n인 표본을 임의추출 할 때, 표본평균 \overline{X} 는 정규 분포 $N\left(m, \frac{4}{9}\right)$ 를 따른다. 이 때, n-m의 값을 구

03 / 표본평균의 분포

모평균이 m, 모표준편차가 σ 인 모집단에서 임의추출한 크기가 n인 표본의 표본평균 \overline{X} 에 대하여

- (1) 모집단이 정규분포 $\mathrm{N}(m,\;\sigma^2)$ 을 따르면 표본평균 \overline{X} 는 정규분포 $N\left(m, \frac{\sigma^2}{n}\right)$ 을 따른다.
- (2) 모집단이 정규분포를 따르지 않아도 표본의 크기 n이 충분히 크면 표본평균 X는 근사적으로 정규분포 $N\left(m, \frac{\sigma^2}{n}\right)$ 을 따른다.
- ☑ 다음의 참, 거짓을 판정하여라.
- 48. 표본평균 \overline{X} 의 평균은 모평균과 같다.
- 49. 표본의 크기가 커질수록 표본평균의 평균은 작아 진다.
- **50.** 표본평균 \overline{X} 의 분산은 표본의 크기 n에 비례한다.
- 51. 표본의 크기가 커질수록 표본평균의 표준편차는 작아진다.
- **52.** m이고 모표준편차가 σ 인 모집단의 분포가 정규분 포가 아닐 때에도 표본의 크기 n이 충분히 크면 표 본평균은 정규분포 $N\left(m, \frac{\sigma^2}{n}\right)$ 을 따른다.

아래 표준정규분포표를 이용하여 다음 물음에 답하여라.

z	$P(0 \le Z \le z)$
0.5	0.1915
1.0	0.3413
1.5	0.4332
2.0	0.4772
2.5	0.4938
3.0	0.4987

- **53.** 정규분포 N(4, 4)를 따르는 모집단에 대하여 크 기가 4인 표본을 임의추출할 때 표본평균 \overline{X} 가 6이상일 확률을 구하여라.
- **54.** 정규분포 $N(6, 8^2)$ 을 따르는 모집단에서 크기가 4인 표본을 임의추출할 때, 표본평균 \overline{X} 가 10 이상일 확률을 구하여라.
- **55.** 모평균이 10, 모분산이 12인 정규분포를 따르는 모집단에서 임의로 추출한 크기가 3인 표본의 평균 \overline{X} 에 대하여 $P(12 \leq \overline{X} \leq 14)$ 을 구하여라.
- **56.** 정규분포 $N(40, 10^2)$ 을 따르는 모집단에서 크기 가 25인 표본을 임의추출할 때, 표본평균을 \overline{X} 라고 하자. $P(42 \le \overline{X} \le 45)$ 을 구하여라.
- **57.** 정규분포 $N(50, 10^2)$ 을 따르는 모집단에서 크기 가 25인 표본을 임의추출할 때, 표본평균 \overline{X} 가 56이하일 확률을 구하여라.
- **58.** 평균 100, 표준편차 10인 정규분포를 따르는 모 집단에서 크기가 25인 표본을 임의추출할 때, 표본 평균을 \overline{X} 라 하자. 이 때, $P(97 \le \overline{X} \le 104)$ 을 구하 여라.

- 59. 정규분포 N(100, 18²)을 따르는 모집단에서 크기
 가 9인 표본을 임의추출할 때, 표본평균 X 가 82 이
 상 118 이하일 확률을 구하여라.
- **60.** 모평균이 250이고 모표준편차가 40인 정규분포를 따르는 모집단에서 크기가 100인 표본을 임의추출하 였다. 표본평균 X에 대하여 $P(246 \le \overline{X} \le 258)$ 을 구하여라.
- 61. 정규분포 $N(600, 24^2)$ 을 따르는 모집단에서 임의 추출한 크기가 36인 표본의 표본평균을 \overline{X} 라 할 때, $P(\overline{X} \le 592)$ 을 구하여라.
- 62. 정규분포 $N(600, 24^2)$ 을 따르는 모집단에서 임의 추출한 크기가 36인 표본의 표본평균을 \overline{X} 라 할 때, $P(590 \le \overline{X} \le 606)$ 을 구하여라.
- 63. 정규분포 $N(230,\ 30^2)$ 을 따르는 모집단에서 크기 가 100인 표본을 임의추출할 때, 표본평균 \overline{X} 가 221 이하일 확률을 구하여라.
- ☑ 아래 표준정규분포표를 이용하여 다음 물음에 답하여라.

z	$P(0 \le Z \le z)$
0.5	0.1915
1.0	0.3413
1.5	0.4332
2.0	0.4772
2.5	0.4938
3.0	0.4987

64. 어느 식당에서 점심시간에 손님들이 식사하는 시간은 평균 28분, 표준편차 8분인 정규분포를 따른다고 한다. 점심 시간대에 들어온 손님 16명의 평균식사 시간이 30분 이상일 확률을 구하여라.

- **65.** 어느 농장에서 재배하는 감자의 무게는 평균이 $200~{\rm g}$ 이고 표준편차가 $20~{\rm g}$ 인 정규분포를 따른다고한다. 이 감자 중에서 임의추출한 16개의 표본의 표본평균을 $\overline{\rm X}$ 라고 할 때, $P(195 \le \overline{\rm X} \le 210)$ 을 구하여라.
- 66. 농산물시장에서 단감 한 개의 무게는 평균이 25g, 표준편차가 12g인 정규분포를 따른다고 한다. 단감 36개를 임의추출할 때, 단감의 평균 무게가 22g 이 상 30g 이하일 확률을 구하여라.
- 67. 어느 회사에서 생산하는 전구의 수명은 평균 5000 시간, 표준편차가 350시간인 정규분포를 따른다고 한다. 임의로 고른 49개의 전구의 평균 수명이 4900 시간에서 5050시간 사이에 있을 확률을 구하여라.
- 68. 어느 지역의 가구 당 통신비는 평균이 15만 원, 표준편차가 5만 원인 정규분포를 따른다고 한다. 이 지역에서 임의추출한 100가구의 통신비의 평균이 14만 원 이하일 확률을 구하여라.
- **69.** 어느 공장에서 생산되는 제품의 무게는 평균 120g, 표준편차가 10g인 정규분포를 따른다고 한다. 이 공장에서 생산된 제품 중에서 임의추출한 25개의 표본평균을 \overline{X} 라 할 때, 표본평균 \overline{X} 의 값이 122g이 상이 될 확률을 구하여라.
- 70. 어느 회사에서 생산하는 음료수에 함유된 비타민 C 성분의 양을 조사한 결과 평균이 30.5mg, 표준편 차가 4mg이었다. 이 회사에서 생산한 음료수 25병을 임의로 추출하여 비타민 C 성분의 함유량을 조 사하였을 때, 그 평균이 31.7mg 이상일 확률을 구하여라.

- 71. 어느 고등학교 2학년 학생들의 수학성적은 평균이 55점, 표준편차가 7.5점인 정규분포를 따른다고한다. 이 고등학교 2학년 학생 중에서 25명을 임의추출할 때, 수학성적의 평균이 52점 이상 56.5점 이하일 확률을 구하여라.
- **72.** 어느 농장에서 생산되는 사과의 무게는 평균이 300g, 표준편차가 40g인 정규분포를 따른다고 한다. 이 농장에서 생산된 사과 중 임의추출한 100개의 무게의 평균을 \overline{X} 라고 할 때, $P(302 \le \overline{X} \le 306)$ 을 구하여라.
- 73. 어느 고등학교 학생의 하루 수학공부 시간은 평균이 60분, 표준편차가 10분이 정규분포를 따른다. 이학교의 학생 36명을 임의추출하여 조사 할 때, 36명의 공부시간의 총합이 2250분 이하일 확률을 구하여라.
- 74. 어느 도시에서 공용 자전거의 1회 이용 시간은 평균이 60분, 표준편차가 10분인 정규분포를 따른다고 한다. 공용 자전거를 이용한 25회를 임의추출하여 조사할 때, 25회 이용 시간의 총합이 1400분 이상일 확률을 구하여라.
- 75. 어느 지역의 1인 가구의 월 식료품 구입비는 평균이 30만원, 표준편차가 10만원인 정규분포를 따른다고 한다. 이 지역의 1인 가구 중에서 임의추출한 25가구의 월 식료품 구입비의 표본평균이 27만 원이상이고 31만 원 이하일 확률을 구하여라.
- 76. 어느 제철 회사에서 개발한 합금의 장력은 평균이 15kg/cm²이고, 표준편차가 1.2kg/cm²인 정규분포를 따른다고 한다. 이 합금 중에서 임의로 추출한 16개의 합금의 평균 장력이 14.7kg/cm² 이상 15.6kg/cm² 이하일 확률을 구하여라.

77. 어느 세차장에서 자동차 한 대를 세차하는 데 걸리는 시간은 평균 6분, 표준편차가 2분인 정규분포를 따른다고 한다. 이 세차장에서 세차를 한 25대의 자동차를 임의추출하여 조사하였을 때, 이 25대의 총 세차 시간의 합이 2시간 55분 이하일 확률을 구하여라.

정답 및 해설

- 1) 전수조사
- 2) 전수조사
- 3) 표본조사
- 4) 표본조사
- 5) 표본조사
- 6) 표본조사
- 7) 전수조사
- 8) 표본조사
- 9) 표본조사
- 10) 표본조사
- 11) 전수조사
- 12) 16
- ⇨ 4개의 공 중에서 2개의 공을 꺼내는 중복순열의 수와 같으므로 $_4\Pi_2 = 4^2 = 16$
- 13) 12
- ⇨ 4개의 공 중에서 2개의 공을 꺼내는 순열의 수와 같으므로 $_4P_2 = 4 \times 3 = 12$
- 14) 216
- 15) 120
- 16) 9
- ▷ 복원추출하는 방법의 수는 3개의 공에서 2개를 뽑는 중복순열의 수와 같으므로

$$_{3}\Pi_{2}=3^{2}=9$$

- 17) 6
- ⇒ 한 개씩 비복원추출하는 방법의 수는 3개의 공 에서 2개를 뽑는 순열의 수와 같으므로 $_{3}P_{2} = 3 \times 2 = 6$
- 18) 5
- ⇨ 모평균이 5, 모분산이 4, 표본의 크기가 16이므로 $E(\overline{X}) = 5$
- 19) $\frac{1}{4}$
- ⇨ 모평균이 5, 모분산이 4, 표본의 크기가 16이므로 $V(\overline{X}) = \frac{4}{16} = \frac{1}{4}$
- 20) $\frac{1}{2}$

- ⇨ 모평균이 5, 모분산이 4, 표본의 크기가 16이므로 $\sigma(\overline{X}) = \frac{2}{\sqrt{16}} = \frac{1}{2}$
- 21) 30
- \Rightarrow 모평균이 30, 모표준편차가 $\sqrt{81}=9$, 표본의 크기가 9이므로 $E(\overline{X}) = 30$
- 22) 9
- \Rightarrow 모평균이 30, 모표준편차가 $\sqrt{81}=9$, 표본의 크기가 9이므로

$$V(\overline{X}) = \frac{9^2}{9} = 9$$

- 23) 3
- \Rightarrow 모평균이 30, 모표준편차가 $\sqrt{81}=9$, 표본의 크기가 9이므로

$$\sigma(\overline{X}) = \frac{9}{\sqrt{9}} = 3$$

- 24) 40
- $\Rightarrow E(\overline{X}) = 40$
- 25) $\frac{9}{25}$
- $\Rightarrow V(\overline{X}) = \frac{6^2}{100} = \frac{9}{25}$
- $\Rightarrow \sigma(\overline{X}) = \frac{6}{\sqrt{100}} = \frac{3}{5}$
- 27) 60
- ⇨ 모평균이 60, 모표준편차가 8, 표본의 크기가 16이므로

$$E(\overline{X}) = 60$$

- 28) 4
- ⇒ 모평균이 60, 모표준편차가 8, 표본의 크기가 16이므로

$$V(\overline{X}) = \frac{8^2}{16} = 4$$

- 29) 2
- ⇒ 모평균이 60, 모표준편차가 8, 표본의 크기가 16이므로

$$\sigma(\overline{X}) = \frac{8}{\sqrt{16}} = 2$$

- 30) 300
- ⇨ 모평균이 300, 모표준편차가 10, 표본의 크기가 25이므로 $E(\overline{X}) = 300$

- 31) 4
- ⇒ 모평균이 300, 모표준편차가 10, 표본의 크기가 25이므로

$$V(\overline{X}) = \frac{10^2}{25} = 4$$

- 32) 2
- ⇒ 모평균이 300, 모표준편차가 10, 표본의 크기가 25이므로

$$\sigma(\overline{X}) = 2$$

- 33) $E(\overline{X}) = 7$, $V(\overline{X}) = 1$
- ⇒ 모평균이 7, 모분산이 36, 표본의 크기가 36이므로

$$E(\overline{X}) = 7$$
, $V(\overline{X}) = \frac{36}{36} = 1$

- 34) $E(\overline{X}) = 20, \ \sigma(\overline{X}) = \frac{8}{5}$
- $\Rightarrow E(\overline{X}) = 20, \ \sigma(\overline{X}) = \frac{8}{\sqrt{25}} = \frac{8}{5}$
- 35) $E(\overline{X}) = 50$, $\sigma(\overline{X}) = 9$
- ⇒ 모평균이 50, 모표준편차가 27,

$$E\left(\overline{X}\right) = 50$$

$$\sigma\left(\overline{X}\right) = \frac{27}{\sqrt{9}} = 9$$

36) $E(\overline{X}) = 30$, $\sigma(\overline{X}) = 1$

$$\Rightarrow \overline{X} \sim N(30, \frac{7^2}{40})$$
이므로

$$E(\overline{X}) = 30, \ \sigma(\overline{X}) = 1$$

37)
$$E(\overline{X}) = 10$$
, $V(\overline{X}) = \frac{9}{4}$, $\sigma(\overline{X}) = \frac{3}{2}$

38)
$$E(\overline{X}) = 40$$
, $V(\overline{X}) = \frac{4}{25}$, $\sigma(\overline{X}) = \frac{2}{5}$

- \Rightarrow 모집단이 정규분포 $N(15, 8^2)$ 을 따르므로 모집단의 평균은 15, 표준편차는 8이고, 표본의 크기가 16이므로

$$\sigma\left(\overline{X}\right) = \frac{8}{\sqrt{16}} = 2$$

- 40) 51
- \Rightarrow 모집단이 정규분포 N(7, 10)이고 표본의 크기가 5이므로 표본평균을 X라 하면 \overline{X} 는 정규분포 $N\left(7, \frac{10}{5}\right)$, 즉, $N\left(7, (\sqrt{2})^2\right)$ 을 따른다. 따라서 $E(\overline{X}) = 7$, $V(\overline{X}) = 2$ 이므로 $V(\overline{X}) = E(\overline{X}^2) - \{E(\overline{X})\}^2$

$$E(\overline{X}^2) = V(\overline{X}) + \{E(\overline{X})\}^2 = 2 + 7^2 = 51$$

- 41) 29
- ⇨ 모평균이 5, 모분산이 16, 표본의 크기가 4이므로

$$E(\overline{X}) = 5$$
, $V(\overline{X}) = \frac{16}{4} = 4$

$$V(\overline{X}) = E(\overline{X}^2) - \{E(\overline{X})\}^2$$
이므로

$$E(\overline{X}^2) = V(\overline{X}) + \{E(\overline{X})\}^2 = 4 + 5^2 = 29$$

- 42) 5
- \Rightarrow 모집단이 $N(100,20^2)$ 을 따르고 표본의 크기가 16이므로 표본평균을 \overline{X} 라 하면 \overline{X} 는 정규분포

$$N\left(100, \frac{20^2}{16}\right)$$
, 즉, $N(100, 5^2)$ 을 따른다.

$$\therefore \sigma(\overline{X}) = 5$$

43) 10

$$\Rightarrow \sigma(\overline{X}) = \frac{\sigma}{\sqrt{25}} = \frac{\sigma}{5} = 20$$

$$\sigma = \sigma(X) = 10$$

- 44) 64
- \Rightarrow 표본의 크기를 n이라 하면 모표준편차가 16인 모집단에서 복원추출한 표본의 평균 X의 표준편차가

$$\frac{16}{\sqrt{n}} = 2, \quad \sqrt{n} = 8$$

- n = 64
- 45) 36
- $\Rightarrow \sigma^2 = 144$ 이므로 $\sigma = 12$ 이고,

$$\sigma(\overline{X}) = \frac{12}{\sqrt{n}} = 2$$
이므로 $\sqrt{n} = 6$

- $\therefore n = 36$
- 46) 8
- \Rightarrow 모집단이 $N(35,4^2)$ 을 따르고 표본의 크기가 n이므로 표본평균을 \overline{X} 라 하면

$$\overline{X}$$
는 정규분포 $N\left(35, \frac{4^2}{n}\right)$ 을 따른다.

따라서 이 정규분포는 N(35,2)와 같으므로

$$\frac{4^2}{n} = 2$$

- $\therefore n = 8$
- 47) 251
- \Rightarrow 모집단이 정규분포 $N(73, 12^2)$ 을 따를 때, \overline{X} 는 정규분포 $N\left(73, \frac{12^2}{n}\right)$ 을 따른다.

따라서
$$m=73$$
, $\frac{12^2}{n}=\frac{4}{9}$ 에서 $n=324$ 이므로

- n m = 251
- 48) 참

- 49) 거짓
- □ 표본의 크기에 관계없이 표본평균의 평균은 항상 같다.
- 50) 거짓
- 51) 참
- $ightharpoonup \overline{\mathrm{X}}$ 는 정규분포 $\mathrm{N}\Big(m,\; \frac{\sigma^2}{n}\Big)$ 을 따르므로 표본의 크기 n이 커지면 $\overline{\mathrm{X}}$ 의 표준편차는 작아진다.
- 52) 참
- 53) 0.0228
- 다 표본평균 \overline{X} 는 정규분포 $N\left(4, \frac{4}{4}\right) = N(4, 1^2)$ 을 따르므로

$$P(\overline{X} \ge 6) = P\left(Z \ge \frac{6-4}{1}\right)$$

$$= P(Z \ge 2)$$

$$= 0.5 - P(0 \le Z \le 2)$$

$$= 0.5 - 0.4772 = 0.0228$$

- 54) 0.1587
- ightharpoonup 모집단이 정규분포 $N(6,8^2)$ 을 따르고 표본의 크기가 4이므로 표본평균 \overline{X} 는 정규분포 $N\!\!\left(6,rac{8^2}{4}
 ight)$. 즉 $N(6,4^2)$ 을 따른다.

 $Z=rac{\overline{X}-6}{4}$ 으로 놓으면 Z는 표준정규분포 N(0,1)을 따르므로 구하는 확률은

$$P(\overline{X} \ge 10) = P\left(Z \ge \frac{10 - 6}{4}\right) = P(Z \ge 1)$$
$$= P(Z \ge 0) - P(0 \le Z \le 1)$$
$$= 0.5 - 0.3413 = 0.1587$$

- 55) 0.1359
- \Rightarrow 모집단이 정규분포 $N(10, \sqrt{12}^2)$ 이고 표본의 크기가 3이므로 표본평균을 \overline{X} 라 하면 \overline{X} 는 정규분포 $Nigg(10, \frac{\sqrt{12}^2}{3}igg)$, 즉, $N(10, 2^2)$ 을

따른다. 이때, $Z=rac{\overline{X}-10}{2}$ 로 놓으면

Z는 표준정규분포 N(0, 1)을 따르므로

$$\begin{split} P \Big(12 \le \overline{X} \le 14 \Big) &= P \bigg(\frac{12 - 10}{2} \le Z \le \frac{14 - 10}{2} \bigg) \\ &= P (1 \le Z \le 2) \\ &= P \big(0 \le Z \le 2 \big) - P \big(0 \le Z \le 1 \big) \\ &= 0.4772 - 0.3413 = 0.1359 \end{split}$$

- 56) 0.1525
- $ightharpoonup N(40,\ 10^2)$ 을 따르는 모집단에서 크기가 25인 표본을 임의추출했을 때. 분산이 표본의 크기만큼 나눠지므로 표본평균은 정규분포 $N(40,\ 2^2)$ 을

- 따른다.
- $\therefore P(42 \le \overline{X} \le 45) = P(1 \le Z \le 2.5)$ = 0.4938 0.3413 = 0.1525
- 57) 0.9987
- \Rightarrow 표본평균 \overline{X} 는 정규분포 $N\left(50,\ \frac{10^2}{25}\right)=N(50,\ 2^2)$ 을 따르므로

$$P(\overline{X} \le 56) = P(Z \le \frac{56-50}{2})$$

= $P(Z \le 3)$
= $0.5 + P(0 \le Z \le 3)$
= 0.9987

- 58) 0.9104
- \Rightarrow 모집단이 $N(100,10^2)$ 을 따르고 표본의 크기가 25이므로 표본평균을 \overline{X} 라 하면 \overline{X} 는 정규분포 $N\left(100,\,\frac{10^2}{25}\right)$, 즉, $N(100,\,2^2)$ 을 따른다.

이때,
$$Z=\frac{\overline{X}-100}{2}$$
로 놓으면

Z는 표준정규분포 N(0, 1)을 따르므로

$$P(97 \le \overline{X} \le 104) = P\left(\frac{97 - 100}{2} \le Z \le \frac{104 - 100}{2}\right)$$

$$= P(-1.5 \le Z \le 2)$$

$$= P(0 \le Z \le 1.5) + P(0 \le Z \le 2)$$

$$= 0.4332 + 0.4772 = 0.9104$$

- 59) 0.9974
- \Rightarrow 표본평균 \overline{X} 는 정규분포

 $=2\times0.4987=0.9974$

$$N\left(100, \frac{18^2}{9}\right) = N(100, 6^2)$$
을 따르므로

$$\begin{split} P\left(82 \leq \overline{X} \leq 118\right) &= P\bigg(\frac{82 - 100}{6} \leq Z \leq \frac{118 - 100}{6}\bigg) \\ &= P\left(-3 \leq Z \leq 3\right) \\ &= 2P\left(0 \leq Z \leq 3\right) \end{split}$$

- 60) 0.8185
- \Rightarrow 모집단이 정규분포 $N(250,\ 40^2)$ 을 따르고 표본의 크기가 100이므로 표본평균을 \overline{X} 라 하면 \overline{X} 는 정규분포 $N\Big(250,\ \frac{40^2}{100}\Big)$, 즉, $N(250,\ 4^2)$ 을 \overline{X}

따른다. 이때,
$$Z=\frac{\overline{X}-250}{4}$$
로 놓으면

Z는 표준정규분포 N(0, 1)을 따른다.

$$\begin{split} P\big(246 \le \overline{X} \le 258\big) &= P\bigg(\frac{246 - 250}{4} \le Z \le \frac{258 - 250}{4}\bigg) \\ &= P(-1 \le Z \le 2) = P(-1 \le Z \le 0) + P(0 \le Z \le 2) \\ &= 0.3413 + 0.4772 = 0.8185 \end{split}$$

- 61) 0.0228
- ightharpoonup
 ig

X는 정규분포 N(600, 4²)을 따른다.

따라서
$$Z = \frac{\overline{X} - 600}{4}$$
으로 놓으면

Z는 표준정규분포 N(0, 1)을 따른다.

$$P(\overline{X} \le 592) = P\left(Z \le \frac{592 - 600}{4}\right)$$

$$= P(Z \le -2)$$

$$= P(Z \ge 2)$$

$$= 0.5 - P(0 \le Z \le 2)$$

$$= 0.5 - 0.4772$$

$$= 0.0228$$

62) 0.927

$$\Rightarrow$$
 E(\overline{X}) = 600, $V(\overline{X}) = \frac{24^2}{36} = 16$ 이므로

 \overline{X} 는 정규분포 $N(600, 4^2)$ 을 따른다.

따라서
$$Z = \frac{\overline{X} - 600}{4}$$
으로 놓으면

Z는 표준정규분포 N(0, 1)을 따른다.

$$P(590 \le \overline{X} \le 606) = P\left(\frac{590 - 600}{4} \le Z \le \frac{606 - 600}{4}\right)$$

$$= P(-2.5 \le Z \le 1.5)$$

$$= P(-2.5 \le Z \le 0) + P(0 \le Z \le 1.5)$$

$$= P(0 \le Z \le 2.5) + P(0 \le Z \le 1.5)$$

$$= 0.4938 + 0.4332$$

$$= 0.927$$

63) 0.0013

다 표본평균
$$\overline{X}$$
는 정규분포 $N\left(230, \frac{30^2}{100}\right) = N(230, 3^2)$ 을 따르므로 $P(\overline{X} \le 221) = P\left(Z \le \frac{221 - 230}{3}\right)$ $= P(Z \le -3)$ $= 0.5 - P(0 \le Z \le 3) = 0.0013$

64) 0.1587

 \Rightarrow 모집단이 정규분포 $N(28, 8^2)$ 을 따르고 표본의 크기가 16이므로 표본평균을 X라 하면 \overline{X} 는 정규분포 $N\left(28, \frac{8^2}{16}\right)$, 즉, $N\left(28, 2^2\right)$ 을 따른다.

이 때, $Z=\frac{X-28}{2}$ 로 놓으면 Z는 표준정규분포

N(0, 1)을 따른다

$$P(30 \le \overline{X}) = P\left(\frac{30 - 28}{2} \le Z\right)$$

$$= P(1 \le Z) = 0.5 - P(0 \le Z \le 1)$$

$$= 0.5 - 0.3413 = 0.1587$$

65) 0.8185

⇒ 감자의 무게 X가 정규분포 N(200, 20²)을 따르므로 \overline{X} 는 정규분포 $N\Big(200, \frac{20^2}{16}\Big) = N(200, 5^2)$ 을 따른다.

$$\begin{aligned} \therefore & \ P(195 \leq \overline{X} \leq 210) \\ & = P\bigg(\frac{195 - 200}{5} \leq Z \leq \frac{210 - 200}{5}\bigg) \\ & = P(-1 \leq Z \leq 2) \\ & = P(0 \leq Z \leq 1) + P(0 \leq Z \leq 2) \\ & = 0.3413 + 0.4772 = 0.8185 \end{aligned}$$

66) 0.9270

⇒ 임의로 단감 36개를 택하여 측정한 단감들의 무게의 평균을 확률변수 X라 하면 X는 정규분포 $N\left(25, \left(\frac{12}{\sqrt{36}}\right)^2\right)$, 즉 $N(25, 2^2)$ 을 따른다.

$$P(22 \le \overline{X} \le 30) = P\left(\frac{22 - 25}{2} \le Z \le \frac{30 - 25}{2}\right)$$

$$= P(-1.5 \le Z \le 2.5)$$

$$= P(0 \le Z \le 1.5) + P(0 \le Z \le 2.5)$$

$$= 0.4332 + 0.4938 = 0.927$$

67) 0.8185

□ 임의로 뽑은 49개의 전구의 평균 수명을 X라고 하면

$$E(\overline{X})=5000$$
, $\sigma(\overline{X})=\frac{\sigma}{\sqrt{n}}=\frac{350}{\sqrt{49}}=50$ 이므로

 \overline{X} 는 정규분포 $N(5000, 50^2)$ 을 따른다. 따라서 구하는 확률은

$$P(4900 \le \overline{X} \le 5050) = P\left(\frac{4900 - 5000}{50} \le Z \le \frac{5050 - 5000}{50}\right)$$
$$= P(-2 \le Z \le 1) = P(-2 \le Z \le 0) + P(0 \le Z \le 1)$$
$$= 0.4772 + 0.3413 = 0.8185$$

68) 0.0228

 \Rightarrow 가구당 통신비를 확률변수 X라 하면 X는 근사적으로 정규분포 $N(15,5^2)$ 을 따르므로 표본의 크기가 100인 표본평균을 \overline{X} 라 하면 \overline{X} 는 정규분포 $N\left(15, \frac{5^2}{100}\right)$, 즉, $N\left(15, \left(\frac{1}{2}\right)^2\right)$ 을

따른다. 이때,
$$Z=\frac{\overline{X}-15}{\frac{1}{2}}$$
로 놓으면

Z는 표준정규분포 N(0, 1)을 따르므로

$$P(\overline{X} \le 14) = P\left(Z \le \frac{14-15}{\frac{1}{2}}\right)$$

$$= P(Z \le -2)$$

$$= 0.5 - P(0 \le Z \le 2)$$

$$= 0.5 - 0.4772 = 0.0228$$

69) 0.1587

 \Rightarrow 모집단이 정규분포 $N(120, 10^2)$ 이고, 표본의 크기가 25이므로 표본평균을 \overline{X} 라 하면

$$\overline{X}$$
는 정규분포 $Nigg(120,\ \frac{10^2}{25}igg)$, 즉, $Nig(120,\ 2^2ig)$ 을 따른다. 이 때, $Z=\frac{\overline{X}-120}{2}$ 로 놓으면 Z 는 표준정규분포 $Nig(0,\ 1ig)$ 을 따르므로, $Pig(122 \le \overline{X}ig) = Pigg(\frac{122-120}{2} \le Zigg)$ $= P(1 \le Z\!) = 0.5 - P(0 \le Z \le 1)$ $= 0.5 - 0.3413 = 0.1587$

70) 0.0668

ightharpoonup 모집단이 정규분포 $N(30.5,\ 4^2)$ 을 따르고 표본의 크기가 25이므로 표본평균을 \overline{X} 라 하면 \overline{X} 는 정규분포 $N\Big(30.5,\ \frac{4^2}{25}\Big)$,

즉,
$$N\bigg(30.5,\, \left(\frac{4}{5}\right)^2\bigg)$$
을 따른다. 이 때, $Z=\frac{\overline{X}-30.5}{\frac{4}{5}}$ 로

놓으면 Z는 표준정규분포 N(0, 1)을 따른다.

$$\begin{split} P(\overline{X} \ge 31.7) &= P\bigg(Z \ge \frac{31.7 - 30.5}{\frac{4}{5}}\bigg) \\ &= P(Z \ge 1.5) = 0.5 - P(0 \le Z \le 1.5) \\ &= 0.5 - 0.4332 = 0.0668 \end{split}$$

71) 0.8185

학 임의로 25명을 택한 학생들의 수학 성적의 평균을 확률변수 \overline{X} 라 하면 \overline{X} 는 정규분포 $N \Big(55, \Big(\frac{7.5}{\sqrt{25}} \Big)^2 \Big),$ 즉 $N \Big(55, 1.5^2 \Big)$ 을 따른다. 따라서 구하는 확률은 $P \Big(52 \le \overline{X} \le 56.5 \Big) = P \Big(\frac{52 - 55}{1.5} \le Z \le \frac{56.5 - 55}{1.5} \Big)$ $= P \Big(-2 \le Z \le 1 \Big)$ $= P \Big(0 \le Z \le 2 \Big) + P \Big(0 \le Z \le 1 \Big)$ = 0.4772 + 0.3413 = 0.8185

72) 0.2417

당 모집단이 정규분포 $N(300,40^2)$ 을 따르고 표본의 크기가 100이므로 표본평균 \overline{X} 는 정규분포 $N(300,\frac{40^2}{100})$, 즉 $N(300,4^2)$ 을 따른다. $Z = \frac{\overline{X} - 300}{4}$ 으로 놓으면 $Z = \frac{\overline{X} - 300}{4}$ 으로 놓으면 $Z = \frac{\overline{X} - 300}{4}$ 으로 놓으면 $Z = \frac{\overline{X} - 300}{4}$ $= P(302 \le \overline{X} \le 306) = P\left(\frac{302 - 300}{4} \le Z \le \frac{306 - 300}{4}\right)$ $= P(0.5 \le Z \le 1.5)$ $= P(0 \le Z \le 1.5) - P(0 \le Z \le 0.5)$ = 0.4332 - 0.1915 = 0.2417

73) 0.9332

 \Rightarrow 하루의 수학공부 시간을 확률변수 X라고 하면 X는 정규분포 $N(60,10^2)$ 을 따른다.

따라서 36명의 공부 시간의 평균 \overline{X} 는 정규분포 $N\!\!\left(60,\frac{10^2}{36}\right)$ 즉, $N\!\!\left(60,\left(\frac{5}{3}\right)^2\right)$ 을 따른다.

$$\therefore P(36\overline{X} \le 2250) = P(\overline{X} \le 62.5) = P\left(Z \le \frac{62.5 - 60}{\frac{5}{3}}\right)$$
$$= P(Z \le 1.5) = 0.5 + P(0 \le Z \le 1.5)$$

74) 0.9772

= 0.5 + 0.4332 = 0.9332

다 모집단이 정규분포 $N(60, 10^2)$ 을 따르고 표본의 크기가 25이므로 표본평균을 \overline{X} 라 하면 \overline{X} 는 정규분포 $N\Big(60, \frac{10^2}{25}\Big)$, 즉, $N(60, 2^2)$ 을 따른다. 이 때, $Z = \frac{\overline{X} - 60}{2}$ 로 놓으면 Z는 표준정규분포 N(0, 1)을 따른다. 따라서

$$P(25\overline{X} \ge 1400) = P(\overline{X} \ge 56) = P\left(Z \ge \frac{56 - 60}{2}\right)$$
$$= P(Z \ge -2) = 0.5 + P(0 \le Z \le 2)$$
$$= 0.5 + 0.4772 = 0.9772$$

75) 0.6247

 \Rightarrow 모집단이 $N(30,10^2)$ 을 따르고 표본의 크기가 25 이므로 표본평균을 \overline{X} 라 하면 \overline{X} 는 정규분포 $N\Big(30,\ \frac{10^2}{25}\Big)$, 즉, $N(30,\ 2^2)$ 을 따른다.

이때,
$$Z=\frac{\overline{X}-30}{2}$$
로 놓으면

Z는 표준정규분포 N(0, 1)을 따르므로

$$\begin{split} P(\,27 \le \overline{X} \le 31\,) &= P\bigg(\frac{27 - 30}{2} \, \le \, Z \le \frac{31 - 30}{2}\,\bigg) \\ &= P(-1.5 \, \le \, Z \le 0.5\,) \\ &= P(0 \, \le \, Z \le 1.5\,) + P(0 \, \le \, Z \le 0.5\,) \\ &= 0.4332 + 0.1915 = 0.6247 \end{split}$$

76) 0.8185

다 임의로 추출한 16개의 합금의 평균 장력을 \overline{X} 라고하면 $E(\overline{X})=15$, $\sigma(\overline{X})=\frac{\sigma}{\sqrt{n}}=\frac{1.2}{\sqrt{16}}=0.3$ 이므로 \overline{X} 는 정규분포 $N(15,0.3^2)$ 을 따른다.

이 때,
$$Z = \frac{\overline{X} - 15}{0.3}$$
으로 놓으면

Z는 표준정규분포 N(0, 1)을 따른다. 따라서 구하는 확률은

마디지 구하는 목표는
$$P(14.7 \le \overline{X} \le 15.6) = P\left(\frac{14.7 - 15}{0.3} \le Z \le \frac{15.6 - 15}{0.3}\right)$$

$$= P(-1 \le Z \le 2)$$

$$= P(-1 \le Z \le 0) + P(0 \le Z \le 2)$$

$$= 0.3413 + 0.4772 = 0.8185$$

77) 0.9938

 \Rightarrow 표본의 크기가 25일 때 표본평균 \overline{X} 의 평균과

$$E(\overline{X})=E(X)=6$$
, $V(\overline{X})=\frac{4}{25}=\left(\frac{2}{5}\right)^2$ 이므로

표본평균
$$\overline{X}$$
는 정규분포 $N\!\!\left(6,\left(\frac{2}{5}\right)^{\!2}\right)$ 을 따른다.

그런데 한 대의 자동차를 세차하는 시간의 평균이

$$175 \div 25 = 7$$
분 이하일 때, $Z = \frac{\overline{X} - 6}{\frac{2}{5}}$ 으로 표준화하면

$$P(\overline{X} \le 7) = P\left(Z \le \frac{7-6}{\frac{2}{5}}\right) = P(Z \le 2.5)$$
이다.

따라서 $0.5 + P(0 \le Z \le 2.5) = 0.5 + 0.4938 = 0.9938$ 이다.