Participatory Simulation

Applications of Agent Based Modeling

- Scientific
 - Answering scientific questions via Simulations
- Engineering
 - Tools for Operational Research and Decision Support
- Pedagogical
 - For educational purposes, to enable people to understand concepts

Participatory Simulation

- Is the creation of Simulation that incorporates inputs from Human agents along with simulated agents
- For instance, you can think of incorporating Participatory simulation in disease model.
 - The Agents (using Human-in-loop) can actively try to avoid catching the disease

Participatory Simulation (Full Autonomy vs Participatory)

- Autonomy
 - Simple behavior Programmed into agents
 - Their state determines (also may be random chance) decision making
 - Except for initialization the experimenter have no control over the agent behavior
- Participatory
 - Human in the loop decision Making
 - In tandem with agent decision making
 - May sometimes even play "full role" of one or a collection of agents

Question to Audience

But, What exactly is 'Participatory Simulation'? your thoughts?

Just another fancy name for games with educational value

Sometimes multiplayer games with educational value

Science vs Learning

- Objective of a regular (full autonomous) agent simulations are to compare hypothesis
 - Advance the state of scientific knowledge in various domains
 - Especially certain investigation which is impractical or difficult to gather observations
- Objective of Participatory Simulation (Games) on the other hand
 - To educate (used in learning sciences)
 - To Inform (example: effects of political policies or land use etc)

Agent Based Modeling (IIITS efforts)

- Case Study of Rainwater
 Harvesting in Indian Villages Kolagani et al 2015
- The proposed model is used to plan new RWH systems in this region and similar regions elsewhere
- They used 'Participatory
 Simulation' to work with farmers
 in the villages surrounding
 Tirupati

History of Participatory simulation

- "The Beer game" James Forester (inventor of systems dynamics) and his group at MIT in 1960s.
- The game highlights the ways in which costly unintended behaviors of a system
- There are recent participatory simulation with interesting results (Resnick & Wilensky, 1993; 1998; Wilensky & Resnick, 1995)
 - People play the role of ants in anthill

What is the (root) beer game?

- Role playing simulation widely used in supply-chain management and systems dynamics classes
- 1956 GE observed huge swings in production levels completely disconnected with consumer demands
- Objective
 - How single parts in System influence each other
 - How individual thinking differs from Network/Collective thinking
 - How current behavior is not necessarily a predictor of future behavior/demand

Beer game for understanding Supply chains

Beer game practice

https://supplychain-academy.net/beer-game/

Bullwhip effect! (aka Forrester effect)

Examples of Bullwhip effect during COVID-19

- Masks
- Sanitizers
- Toilet-papers (in western countries)
- Even Canned Food items

Participatory Simulation - Challenges

- A potential barrier to widespread adoption of networked activities is the difficulties in authoring new PSA.
- Java-based development effort of N-Logo extends the object-based modeling capabilities of StarLogo to create a networked system supporting Participatory Simulation.
- Introducing HubNet! The participatory simulation support in NetLogo

HubNet

- HubNet is new architecture to give students the experience of participating as elements in a simulation of a complex dynamic system.
- HubNet is an open client-server architecture, which enables many users at the "Nodes"
 - to control the behavior of individual objects or agents
 - to view the aggregated results on a central computer known as the "Hub".
- This network of nodes is integrated with a powerful suite of modeling, analysis and display tools.

Let's dive into HubNet examples!

Multi-Level Agent Based Modeling

Abstractions of Modeling

- Micro Individual or Agent level modeling. Also called up Bottom-up modeling as we are trying to understand the dynamics of a complex system, by hypothesizing behavior of individuals/agent
- Macro Global, Aggregate level simulation. Models built based on aggregates and factors influencing the aggregates and changes (Stocks and Flows as in System Dynamics)

Hybrid Modeling

- Sometimes it makes sense to approach a phenomenon by modeling it in multiple levels of abstraction
- This allows for greater control and better explainability
- Introducing ML ABM Multi-level Agent based modeling

Multi-Level Agent Based Modeling

- ML ABM Multi-level Agent based modeling
- Breaking up large, interrelated, complex systems into smaller, manageable models
- Imagine multiple agent based models inform each other
- Very interesting way to simulate macro and micro level modeling
- Example: Imagine that we are modeling a supply chain
 - Each model could represent a city/town or a single factory, while the root model could be the entire supply chain

Example: Simplified Climate Change Model

- Model of energy flow in the earth, particularly heat energy
- You can Control
 - Clouds
 - Amount of sunlight absorbed vs reflected (Albedo)
 - Amount of Carbon dioxide
 - Amount of Clouds
- A simplified model for understanding the effects of greenhouse gases in the atmosphere
- Mostly for educational purposes only!

Example: Predator Prey Model

- The interesting part is the version with Grass regrowth
- In Real world, we know that the climate change affects plants and animals
- There has been evidence that climate change affects how tall plant grows including grass
- Wouldn't it be nice if we can combine both the climate change model with the predator prey model.
 - Yes! the Netlogo extension LevelSpace Allows us to do that

Level Space

- A popular extension to NetLogo library
- LevelSpace is NetLogo's way for supporting ML ABM Multi-level Agent based modeling
- Lets see the example for combining Climate Change and Predator Prey Model and also a few more examples

Level Space examples!

GIS - Geographic Information Systems

- Area of research and framework for handling data associated spatially with the earth's geography.
- GIS enables maps that communicate information
- Perform analysis, share information and solve complex problems
- There are a set of standards followed for GIS

Shape File

- Vector data (Point, Line & Polygons) and Feature Data
- Multiple files that work together (Not a Single file)
- Software like ArcGIS/QGIS
 enables working with shape
 files easy

NetLogo GIS Extension

- Allows you to work with Shape Files and GeoJSON file
- You use union of Shape File envelopes to mix information and can run simulations

NetLogo GIS Extension

• Lets see some examples!

