Given that

A and B are two Languages.

We have to show that

$$A \leq_T B$$
 and $B \not\leq_T A$.

That means

• A is Turing reducible to B.

But B is not Turing reducible to A.

Let $A = E_{TM}$ (Empty Turing machine)

=
$$\{\langle M \rangle | M \text{ is a TM and L}(M) = \phi \}$$

And $B = A_{TM}$ (Oracle Turing machine)

$$= \{\langle M, w \rangle, \text{ machine } M \text{ accepts } w\}$$

(i) $A \leq_T B$:

To show $A \leq_T B$, we have to show that $E_{TM} \leq_T A_{TM}$.

We know that E_{TM} is decidable relative to A_{TM} .

Since $E_{TM} \leq_T A_{TM}$, then A is decidable relative to B then $A \leq_T B$.

(ii) $B \not\leq_T A$

To shown $B \not\leq_T A$ we have to show that

 $A_{TM} \not\leq_T E_{TM}$.

Let us assume the contradiction $A_{TM} \leq_T E_{TM}$

By mapping reducibility rules for any two languages $x \leq_m y \Leftrightarrow \overline{x} \leq_m \overline{y}$

Language x is mapping reducible to language y, written $x \leq_m y$, if there is a computable function $f: \sum^* \to \sum^*$, where for every w, f called reduction of x to y.

$$w \in x \Leftrightarrow f(w) \in y$$

According to given mapping reducibility we have to derive $A_{TM} \leq_T E_{TM} \Leftrightarrow \overline{A_{TM}} \leq_m \overline{E}_{TM}$

However $\overline{E}_{T\!M}$ is Turing recognizable, but $\overline{A}_{T\!M}$ is not Turing recognizable

According mapping reducibility rules

 $x \leq_m y$ and y is Turing – recognizable then x must be Turing recognizable.

Therefore this gives a contradiction.

Therefore our assumption that $A_{TM} \leq_T E_{TM}$ is wrong.

Hence $A_{TM} \not\leq_T E_{TM}$ i.e., $B \not\leq_T A$.

From (i) and (ii) we have showed that there exist two languages \boldsymbol{A} and \boldsymbol{B} such that

浙ICP备16034203号-2