ENCORE UN PEU D'ANALOGIQUE?

A portée de main :

l'amplificateur opérationnel à transconductance (OTA)

INVERSEUR CMOS: ACCÉLÉRATEUR REDRESSEUR DE TRANSITIONS

DANGERS INTRA-BASCULE D

 $CK^{\uparrow} \Rightarrow CK'^{\downarrow}$

mais pas instantanément

- ⇒ transitoirement, CK=CK'=1!!
- \Rightarrow brève liaison directe de d vers q trop brève pour affecter q

Mais filtrage passe-bas de CK par longs fils de routage résisto-capacitifs \rightarrow CK mou \Rightarrow retard/avance de commutation des MUX \Rightarrow possible liaison plus durable de d vers qSituation inacceptable!

Solution:

- utiliser l'inverseur CMOS comme raidisseur local de fronts lents/mous
- adopter l'organisation ci-contre, qui garantit des fronts raides et proches sur CK' et CK'' (désormais propres à chaque bascule)

→ 24 transistors pour une bascule D fiable

DANGERS INTER-BASCULES D

Si la deuxième bascule reçoit le top d'horloge significativement plus tard que la première, d₁ peut sauter directement en q₂!

Structure isochrone de distribution de l'horloge à bord d'une puce

Il arrive qu'une entrée soit purement asynchrone (voire synchrone avec une autre horloge...)

Comment l'exploiter?

En l'appliquant en entrée d'une – et une seule – bascule D cadencée par CK. La sortie sera une version synchronisée (avec CK), généralement exploitable malgré les aléas d'échantillonnage

ES102 5

Couches logicielles

Architecture

Micro-architecture

Logique/Arithmétique

Circuit logique

Circuit analogique

Dispositif

Physique

LOGIQUE SÉQUENTIELLE ET SYSTÈMES DYNAMIQUES DISCRETS

ES102 / CM6

bis CM5

CIRCUIT SÉQUENTIEL SYNCHRONE

- = ensemble de bascules D 3
- toutes commandées par la même horloge CK
- interconnectées par des blocs combinatoires
- avec des entrées (t.q. x₁) et sorties (t.q. y_{Moore})
- horloge = chef d'orchestre
- toutes les bascules transfèrent simultanément
- temps découpé en une alternance transferts/calculs

- les entrées doivent être des signaux synchrones (sans oublier les délais combinatoires avant bascules D)
- sortie du circuit = probable entrée d'un autre circuit séquentiel cadencé par CK
 - certifiable synchrone si ne dépend combinatoirement que de sorties de bascules D
 - par précaution, on se limitera à de telles sorties, dites de type *Moore*
 - évitant celles dépendant combinatoirement d'une entrée, dites de type *Mealy*

BITS REGROUPÉS EN VECTEURS

- Soit un circuit séquentiel synchrone comportant *n* bascules D
- Les entrées et sorties de ces bascules sont les d_i et q_i , $1 \le i \le n$
- \rightarrow Soit les *vecteurs*/n-uplets $\mathbf{d}=(d_1, d_2, \dots, d_n)$ et $\mathbf{q}=(q_1, q_2, \dots, q_n)$

- q est appelé *l'état* du circuit (système) séquentiel
 - les q_i sont appelés « bits d'état » (même sens que « variables d'état »)
- Entrées et sorties binaires du circuit séquentiel également mises sous forme de vecteurs : x (m-uplet) et y (p-uplet)

f. b. vectorielle : n ou p-uplet de f. b.

bloc

- → Circuit séquentiel décrit par 2 fonctions booléennes vectorielles :
 - la fonction de transition f t. q. d=f(q, x)
 - la fonction de sortie \mathbf{g} t. q. $\mathbf{y}=\mathbf{g}(\mathbf{q})$
 - car Moore
 - y=g(q, x) si Mealy
 - en contexte linéaire
 (cf. AO102),
 f et g seraient
 représentées par
 des matrices n×-

Multi-bit, les fils sont désormais des bus

ES102/CM6

DERNIER REGARD EN TEMPS CONTINU : DÉROULEMENT DE LA PÉRIODE [kT,(k+1)T]

avec top à chaque extrémité

k : indice temporel

Toutes grandeurs vectorielles (pas d'indice pour les composantes ici)

Certains bits de y Aucun bit peuvent changer ne change

Notations pour chronogramme de bus

- ① un petit délai τ_s après le top d'horloge, nouvelle valeur \mathbf{q}_k en sortie des bascules D
- 2 calcul combinatoire de $g(\mathbf{q}_k)$, qui fournit bientôt la sortie \mathbf{y}_k
- ②' parallèlement, l'entrée s'établit, à la valeur \mathbf{x}_k (provenant typiquement de sorties d'autres circuits séquentiels cadencés par CK également, d'où le parallélisme avec ②)
- ③ \mathbf{q}_k et \mathbf{x}_k étant établis, calcul combinatoire de $f(\mathbf{q}_k, \mathbf{x}_k)$, devant fournir \mathbf{d}_k au plus tard à $(k+1)T-\tau_p$ Au prochain top d'horloge, \mathbf{d}_k sera transféré en sortie des bascules D, pour y devenir \mathbf{q}_{k+1}
- ① ...

ABSTRACTION EN TEMPS DISCRET

- Abandon de la vision continue
- q, x et y désormais considérées comme de simples suites (temporelles) de vecteurs binaires
 - avec $\forall k \in \mathbb{Z}$, $\mathbf{q}_{k+1} = f(\mathbf{q}_k, \mathbf{x}_k)$ et $\mathbf{y}_k = g(\mathbf{q}_k)$
 - q : sorte de suite récurrente

suite/séquence d'entrées
$$\mathbf{x}_{k-1}$$
 \mathbf{x}_{k} \mathbf{x}_{k+1} \mathbf{f} suite/séquence d'états \mathbf{q}_{k-1} \mathbf{q}_{k} \mathbf{q}_{k} \mathbf{q}_{k+1} \mathbf{f} \mathbf{q}_{k+1} \mathbf{f} suite/séquence de sorties \mathbf{y}_{k-1} \mathbf{y}_{k} \mathbf{y}_{k} \mathbf{y}_{k+1}

 \Leftrightarrow *n* bascules D

en parallèle

• Relation de cause à effet entre séquences x et y = comportement du circuit

résurgence du continu

SYSTÈME DYNAMIQUE DISCRET $\rightarrow q^+$

- suite (\mathbf{q}_k) = fonction \mathbf{q} de N vers \mathbb{B}^n : $(\forall k \in N) \mathbf{q}(k) = \mathbf{q}_k$
- Soit \mathbf{q}^+ la suite « successeur de \mathbf{q} » : $(\forall k \in \mathbb{N}) \mathbf{q}^+(k) = \mathbf{q}_{k+1}$
- Or, $(\forall k \in \mathbb{N})$ $\mathbf{q}_{k+1} = f(\mathbf{q}_k, \mathbf{x}_k)$ et $\mathbf{y}_k = f(\mathbf{q}_k)$
- D'où $\mathbf{q}^+ = f(\mathbf{q}, \mathbf{x})$ et $\mathbf{y} = g(\mathbf{q})$ loi d'évolution loi de sortie (ou de transition)
 - équations sur des suites temporelles
 - représentation d'état d'un système
 - interprétable à l'instant (au pas) courant :
 q⁺ est le prochain état, successeur de q sous l'entrée x,
 - présent en entrée de bascule(s) lorsque la période courante est assez avancée...

alias *l'état futur* de q

mais objectifs (et notations) différents de ceux de l'Automatique

Rôle analogue à celui de

 $\dot{q} = f(q, x)$ et y = g(q)

pour modéliser un système

dynamique continu en temps

et en valeur des variables

configurations

• X, Q et Y ensembles des valeurs possibles de \mathbf{x} , \mathbf{q} et \mathbf{y}

- a priori, $X=\mathbb{B}^m$, $Q=\mathbb{B}^n$ et $Y=\mathbb{B}^p$

- mais, souvent, ∃ états ou sorties sans objet

→ on restreint Q et Y à leurs seuls éléments utiles

• Ignorant leur réalité numérique, on se permet aussi de désigner les états ($\in Q$) par des symboles :

• fonction de transition $f: Q \times X \to Q$

• fonction de sortie $g: Q \to Y$

nombre de

en sortie:

possibles

configurations

mais seulement

- Le quintuplet (Q, X, f, Y, g) constitue un modèle mathématique comportemental, appelé automate, du circuit séquentiel synchrone
 - en anglais : Finite State Machine (machine à nombre fini d'états) \rightarrow FSM
 - utile aussi en informatique théorique, mais en plus spécifique (notion d'état initial/final)

DIAGRAMME D'ÉTAT

Représentation graphique de f et g

 $f: Q \times X \rightarrow Q$ est représentable par un graphe orienté à nœuds et arêtes valués

- nœud \leftrightarrow élément de Q = état (symbolique) placé dans un cercle

- arête orientée \leftrightarrow sous-ensemble de X arc, flèche, en fait son indicatrice $1_{\{...\}}$ transition = condition sur les signaux d'entrées,

sous laquelle l'arc est emprunté

(au top d'horloge)

Un arc non valué représente une transition inconditionnelle (toujours vraie)

 $g: Q \to Y \text{ (Moore)}$

chaque état E (encerclé) est présenté avec sa configuration en sortie g(E)

sous-ensemble plutôt qu'élément, car plusieurs éléments de $X = \{ \text{ config. en entrée } \}$ peuvent faire transiter entre 2 états donnés

 $1_{\{\chi \in X/A \xrightarrow{\chi} B\}}$

diagramme d'état

g(B)

g(A)2 états, reliés par une transition conditionnelle brique de base d'un

ÉTUDE D'UN EXEMPLE (ANALYSE)

comportement à horizon lointain (global en temps)

diagramme symboliques
d'états comportement immédiat (local en temps)

lois d'évolution f et de sortie g

circuit séquentiel synchrone

la sortie est remise à 0 par r=1, sinon elle oscille entre 0 et 1. états symboliques états numériques (et même binaires) $\forall \chi \in X \dots$ loi loi de transition d'évolution sortie q^+ $q^+ = q'r'$ incondiy = q $(q_{k+1} = q_k' r_k')$ $(y_k = q_k)$ tionnelle → y q sortie entrée état (p=1)(m=1)(n=1)

Comportement (relation entrée-sortie):

COMPORTEMENT À HORIZON LOINTAIN

- Partant d'un état q_j à l'instant j pour le système, quelle sera sa sortie y_k après avoir subi une séquence d'entrées $\xi=(x_j,x_{j+1},\ldots,x_{k-2},x_{k-1})$?
 - \rightarrow une certaine valeur $g^*(q_j, \xi)$ où g^* , dite fonction de sortie généralisée, résulte de compositions multiples de f, puis g

- g* décrit/spécifie le comportement global du système
- en pratique, g* est donc connue avant f et g!
 - mais souvent seulement sur un état naturel q_{nat} du système

typiquement l'état après réinitialisation

SYNTHÈSE DE CIRCUITS SÉQUENTIELS

Spécifications comportementales

Elaborer un diagramme d'état

entrées X - sorties Yétats naturels, t.q. q_{init} spécifications t.q. $g^*(q_{init}, \cdot)$

Mobiliser les états nécessaires au comportement voulu

Trouver Q, f et g répondant aux spécifications

q symbolique

2 Encoder — changement de variables — les états

|Q| désormais connu

Choisir $n \ge \log_2(|Q|)$ et γ injectif : $Q \to \mathbb{B}^n$

 $\hat{\Gamma}$

3 Implanter

→ objet de plusieurs PC

1 ÉLABORER UN DIAGRAMME D'ÉTAT

- Tâche souvent délicate :
 - spécifications initiales souvent en langage naturel
 - souvent incomplètes, et même incohérentes
 - pas de méthodologie systématique
- Propriété fondamentale :
 - pour chaque état et chaque valeur d'entrée(s), un et un seul successeur
 - \Rightarrow les transitions sortant d'un état doivent toujours partitionner X
 - on dira alors que « le D.E. est bien conditionné »

• Représentation :

- sous forme graphique : diagramme d'état
- sous forme de programme :
 - langages de description matérielle (HDL), langages dits synchrones
- souvent hiérarchique/modulaire : interaction entre plusieurs automates

2 ENCODER LES ÉTATS

cardinal de Q

- Choisir $n \ge \log_2(|Q|)$, puis un codage injectif $\gamma : Q \to \mathbb{B}^n$
 - c'est un changement de variable : des états symboliques aux bits qi
 - \rightarrow mobilise *n* bascules D pour porter les *n* variables d'état q_i
- Stratégies d'encodage usuelles :
 - « adjacence » : usuellement avec $n = \lceil \log_2(|Q|) \rceil$
 - codes proches pour états successeurs l'un de l'autre
 - car tend à simplifier la fonction de transition f
 - idéalement : un seul bit de différence
 - exige que les transitions suivent les arêtes du n-cube
 - souvent impossible topologiquement, sauf coup de chance
 - à défaut, on veille à minimiser les différences
 - « one-hot » : n = |Q|
 - pour chaque état, un des q_i vaut 1, les autres 0
 - coûteux en bascules D (une par état), mais logique simplifiée
 - rapide, bien adapté aux FPGA du commerce
 - codage optimal : problème algorithmique (très) difficile

IMPLANTER

- Diagramme d'état (**①**) et encodage γ des états (**②**) déterminent numériquement les fonctions f et g : effets classiques d'un changement de variables
 - $f_{\text{num}} = \gamma \circ f_{\text{symb}} \circ \gamma^{-1}$ & $g_{\text{num}} = g_{\text{symb}} \circ \gamma^{-1}$
 - reste à les implanter sous forme de logique combinatoire en se connectant en entrée et en sortie des bascules D
- Exemple générique avec états, entrées et sorties chacun sur 2 bits :

$$\mathbf{q} = (q_1, q_0) , \mathbf{x} = (x_1, x_0) , \mathbf{y} = (y_1, y_0)$$

état futur : $\mathbf{q}^+ = (q_1^+, q_0^+)$

 \mathbf{I}_{num}

- → fonctions booléennes à exprimer et implanter :

• Logique de transition
$$q_0^+ = f_0(q_1, q_0, x_1, x_0)$$

 $\mathbf{q}^+ = f(\mathbf{q}, \mathbf{x})$ $q_1^+ = f_1(q_1, q_0, x_1, x_0)$

$$\mathbf{y} = g(\mathbf{q})$$

$$\begin{cases} y_1 = g_1(q_1, q_0) \\ y_0 = g_0(q_1, q_0) \end{cases}$$

Avec des entrées sur m bits et des états sur *n* bits, une fonction de transition f s'exprime par nfonctions booléennes de m+n variables...