Avance 2:

Ingeniería de Características (Modelos Base)

Presentado por Equipo 15:

Jose Fabricio Barahona Amaya

Andrés Eduardo Figueroa García

Isaac Francisco Viramontes Castillo

Profesor Titular: Dr. Luis Eduardo Falcón Morales

Proyecto Integrador | Fecha: 12/05/2024

Índice

	Índice	. 2
C	Optimización de Portafolio de Inversión	. 3
	Antecedentes	. 3
	Entendimiento del Negocio	. 3
	Formulación del Problema	. 3
	Contexto	. 4
	Objetivos	. 5
	General	. 5
	Específicos	. 6
	Preguntas de Negocio	. 6
	Involucrados	. 6
	Obtención de los Datos	. 6
	Noticias	. 6
	Bing News API	. 6
	Google News Web Scrapping	10
	Entendimiento de los Datos	13
	Descripción de los datos	13
	Identificación de variables	17
	Análisis exploratorio de datos	18
	Valores Faltantes:	18
	Estadísticas resumidas del Conjunto de Datos	18
	Valores Atípicos	19
	Otras observaciones con respecto al análisis de datos	22
	Registro de noticias	24
	Anexos	37
	Github – Equipo 15	37
	Script Python	37
	CSV Generado	37
	Bibliografía	38

Optimización de Portafolio de Inversión

Este proyecto pretende implementar una alternativa por medio del uso de los sistemas apoyados por la inteligencia artificial, para asistir en la toma de decisiones financieras orientadas a valorar acciones empresas, su utilidad y practicidad para áreas financieras y personas particulares que compran y venden acciones en mercados de valores para obtener beneficios sobre sus inversiones.

Antecedentes

- Empresa: TeamUp Costa Rica, está en búsqueda de implementar productos innovadores basados en inteligencia artificial, están interesados en poner el mercado los servicios de asesoría en inversiones financieras con instrumentos disponibles dentro y fuera del país en donde opera. Debido a que este proyecto no utiliza datos privados de la compañía, no se requerirá algún tipo de acuerdo de confidencialidad. La empresa se define como una empresa consultora con una red de profesionales con experiencia, conocimientos y la mejor actitud de servicio en servicios de asesoría estratégica, definición de propuestas ganadoras (concursos), arquitectura empresarial, asesoría en procesos de innovación y transformación digital.
- Sector Industrial al que Pertenece: Información en Medios Masivos Edición de periódicos, revistas, libros, directorios, software y otros materiales
- Lugar de Aplicación: Belén, Heredia, Costa Rica.

Entendimiento del Negocio

Formulación del Problema

El problema está en implementar una solución por medio de la cual se pueda conformar un portafolio de inversión óptimo, el cual en la medida de lo posible pueda predecir comportamientos que se pueden acercar a la realidad en los mercados de capitales y dar soluciones en tiempos útiles emulando el comportamiento de un experto financiero y con la capacidad procesar la información histórica, proveniente de datos estructurados (precios de mercados) y no estructurados (noticias). El modelo te inteligencia artificial se implementará de forma en la que se pueda formular un portafolio en base a la asistencia del computador, en donde se pueda recomendar a los inversionistas un portafolio que les permita obtener mejores beneficios al menor riesgo. También es se contextualizará la investigación a la utilidad en la práctica para inversionistas de Latinoamérica, una región en la que varios países carecen de mercados de capitales locales y opciones de inversión rentables.

Contexto

Los mercados de capitales son una opción de financiamiento para las empresas que desean financiarse vendiendo parte del capital de la empresa por medio de un instrumento llamado acción o por medio de la emisión de deuda. Por otro lado, el comprador o inversionista se vuelve parcialmente propietario de una parte de la compañía en vez de volverse un acreedor y representa una oportunidad de inversión como alternativa al mercado de dinero en el cual suele invertir en bonos que para el emisor son deuda. (Vázquez, 2012, pp. 55-79)

Para que una empresa pueda acceder a vender acciones o emitir deuda en un mercado organizado, esta debe cumplir con una serie de normas y certificaciones que el mercado exige con el fin de trasladar confiabilidad y atracción por para los inversionistas. Las empresas salen al mercado fijando un precio para cada acción el cual ha sido fijado mediante una serie de estudios y métodos de valuación que no siempre pueden ser el precio justo, en algunos casos el precio de la acción luego de la oferta pública inicial aumenta o disminuye drásticamente.

Cuando una corporación emite acciones o deuda por primera vez o agrega acciones al mercado (emite un nuevo paquete de acciones), estas se negocian en el mercado primario y son negociados al precio fijo que el emisor estimó "el más justo". Una vez colocadas todas las acciones emitidas en el mercado los propietarios de las acciones pueden revenderlas, lo que se lleva a cabo en un mercado secundario.

Los precios de las acciones en mercados secundarios ya no son fijados en base a estudios de valoración si no que son establecidos mediante la oferta y la demanda de la misma, así como la decisión de la empresa de emitir o retirar acciones del mercado mediante la compra de acciones a los accionistas. Hay empresas que son oportunistas y hacen un seguimiento cercano del precio de mercado de sus acciones para emitir nuevas acciones y captar los recursos directamente y quitar esa cuota en parte el mercado secundario. Estas decisiones pueden saturar el mercado y hacer que las acciones bajen de precio.

El método de valoración en mercados secundarios por tanto en las bolsas de valores más importantes del planeta está dado por la negociación entre el que vende y el que compra, o también llamado método de subasta de doble punta. Este método de valuación de acciones es el implementado en las bolsas de valores más grandes del mundo incluyendo la bolsa NYSE (New York Stock Exchange) en la cual cotizan la mayoría de las empresas en Estados Unidos de América.

El riesgo juega un papel importante en el mercado de acciones ya que los dividendos de las acciones van acordes del éxito o el fracaso de la empresa. Por tanto, existe el peligro de perder en su totalidad una inversión realizada con alto riesgo, la cual pudo haber sido atractiva ya que a mayor riesgo mayor ganancias.

Un portafolio financiero es entonces la colección de activos con las cuales cuenta una persona o empresa de los cuales obtiene una utilidad financiera que podría provenir de varias fuentes: intereses en el caso de bonos, depósitos en mercados de dinero, dividendos pagados por acciones en mercados de capitales, la venta de acciones o transacciones en mercados de derivados.

Harry M. Markowitz planteó su teoría del portafolio, en la que, mediante datos históricos, aplicación de covarianzas estadísticas, evaluación de expectativas (ya que el precio de una acción va según lo que esta retornará en el futuro) y valoración del riesgo, optimiza un portafolio de inversión maximizando las ganancias y diversificando el riesgo.

La teoría del portafolio de Markowitz es utilizada por los inversionistas para ayudar a la toma de decisiones de inversión. Sin embargo, el saber las tendencias de los precios de las acciones, sería para los inversionistas una información valiosa para sus finanzas, ya que podrían tomar decisiones adecuadas en el momento indicado. El resultado de la aplicación de la teoría de Markowitz es determinístico ya que se basa en datos históricos y aplicación de estadística.

Los seres humanos generalmente toman decisiones no determinísticas y sorprendentes. Por ejemplo, un ser humano es capaz de identificar a una identidad de otro ser humano con solo mirar a los ojos, ver algún rasgo físico, un patrón de caminado, escuchar una voz o inclusive con solo ver una sombra. Esto es algo que definitivamente le da una ventaja grandísima al ser humano por sobre los sistemas computacionales y modelo matemático alguno. Las decisiones de compra de acciones en algunos casos se vuelven subjetivas.

En los últimos años las ciencias de la computación han sido responsables de representar comportamientos sociales complejos mediante simulaciones y aplicaciones que implementan inteligencia artificial. Los mercados financieros están en la mira de los científicos ya que representan un comportamiento fundamental en el sistema capitalista.

Objetivos

General

 Analizar la importancia y utilidad de invertir en mercados de capitales y la introducción de modelos de inteligencia artificial en la asistencia para la inversión en mercados financieros con el fin que los inversionistas puedan tomar decisiones oportunas y efectivas por medio de la elaboración un portafolio de inversión exitoso donde se maximizan las ganancias y se diversifica el riesgo y su aplicación en economías que carecen de mercados capitales como es caso de la economía hondureña.

Específicos

- Implementar un modelo para configurar un portafolio de inversión apoyado en teoría de portafolio elaborada por Harry M. Markowitz y evaluar su desempeño y utilización.
- Comparar los diferentes modelos de diseño de portafolio.
- Implementar ejecuciones prácticas asistidas por inteligencia artificial en un escenario al alcance.
- Evaluar los resultados de la implementación experimental asistida por computadora de los diferentes modelos.

Preguntas de Negocio

- ¿Qué tan confiables son los resultados de las simulaciones y aplicación de inteligencia artificial a los mercados bursátiles y como se comprueba su efectividad?
- ¿Cómo puede asistir la minería de texto o procesamiento de lenguaje natural en el comportamiento de los mercados financieros y en la toma de decisiones de inversión?

Involucrados

TeamUp:

• Luis Carlos Rivas García - Gerente General

Claustro de profesores:

Dr. Luis Eduardo Falcón – Profesor Titular

Ejecutores:

• Equipo 15 de Proyecto Integrador

Obtención de los Datos

Noticias

Bing News API

Para la obtención de noticias en un primer momento se quiso hacer uso de un API dentro de Azure para Bing News. De esta prueba se obtuvieron datos preliminares para la entrega pasada. Sin embargo, los créditos de Azure consumidos fueron más de los esperados, por lo que se decidió cambiar de estrategia para la obtención de noticias. De las pruebas anteriores se comparte el siguiente código:

import requests
import json

```
import time
import pandas as pd
import yfinance as yf
from datetime import date, timedelta
from google.colab import userdata
df SP500 = pd.read csv('S&P500 List.csv')
SP500_symbol = df_SP500['Symbol'].to_list()
SP500 name = df_SP500['Security'].to_list()
daily_register_news = {
     'Symbol': [],
    'Name': [],
    'Source_1': [],
    'Name_1': [],
    'Description_1': [],
    'Source_2': [],
    'Name_2': [],
    'Description_2': [],
    'Source_3': [],
    'Name_3': [],
    'Description_3': [],
'Status_News': []
subscription_key = userdata.get('api_key')
search_url = userdata.get('endpoint') + "/v7.0/search"
headers = {"Ocp-Apim-Subscription-Key" : subscription key}
for i in range(len(SP500_symbol)):
  rankingResponse = {}
  time.sleep(0.02)
  stock = SP500_symbol[i]
  name = SP500 name[i]
  daily_register_news['Symbol'].append(stock)
  daily_register_news['Name'].append(name)
  # print(name)
  if i % 50 == 0:
    print(f"{int(i/5)}%")
  query = f'{name}'
  params = {
    'q': query,
    'count':10,
    'offset': 0,
'mkt': 'en-US',
    "responseFilter": "News",
    "sortBy": "Relevance "
  response = requests.get(search_url, headers=headers, params=params)
  results = response.json()
    rankingResponse = results['rankingResponse']
    # print(f"query: {query}; rankingResponse: {rankingResponse}")
```

```
except:
  rankingResponse = {}
if rankingResponse == {}:
  query = f'{stock}'
  params = {
    'q': query,
    'count':10,
    'offset': 0,
    'mkt': 'en-US',
'freshness': 'Month',
"responseFilter": "News",
    "sortBy": "Relevance "
  response = requests.get(search_url, headers=headers, params=params)
  results = response.json()
  try:
    rankingResponse = results['rankingResponse']
    # print(f"query: {query}; rankingResponse: {rankingResponse}")
  except:
    rankingResponse = {}
if rankingResponse == {}:
  query = f'{name} {stock}'
  params = {
    'q': query,
    'count':10,
    'offset': 0,
    'freshness': 'Month',
    "responseFilter": "News",
    "sortBy": "Relevance "
  response = requests.get(search url, headers=headers, params=params)
  results = response.json()
    rankingResponse = results['rankingResponse']
    # print(f"query: {query}; rankingResponse: {rankingResponse}")
  except:
    rankingResponse = {}
if rankingResponse == {}:
 query = f'{stock} {name}'
params = {
    'q': query,
    'offset': 0,
    'freshness': 'Month',
    "responseFilter": "News",
  response = requests.get(search_url, headers=headers, params=params)
  results = response.json()
  try:
    rankingResponse = results['rankingResponse']
```

```
# print(f"query: {query}; rankingResponse: {rankingResponse}")
 except:
    rankingResponse = {}
if rankingResponse == {}:
 query = f'NASDAQ {name}'
 params = {
    'q': query,
    'count':10,
    'offset': 0,
 response = requests.get(search_url, headers=headers, params=params)
 results = response.json()
    rankingResponse = results['rankingResponse']
    # print(f"query: {query}; rankingResponse: {rankingResponse}")
 except:
    rankingResponse = {}
if rankingResponse == {}:
 query = f'stocks {name}'
 params = {
    'q': query,
    'count':10,
    'offset': 0,
    "responseFilter": "News",
    "sortBy": "Relevance "
 response = requests.get(search_url, headers=headers, params=params)
 results = response.json()
  try:
    rankingResponse = results['rankingResponse']
    # print(f"query: {query}; rankingResponse: {rankingResponse}")
  except:
    rankingResponse = {}
if rankingResponse == {}:
 query = f'news {name}
 params = {
    'q': query,
    'count':10,
    'offset': 0,
    # "responseFilter": "News",
    "sortBy": "Relevance "
 response = requests.get(search_url, headers=headers, params=params)
  results = response.json()
 try:
```

```
rankingResponse = results['rankingResponse']
      # print(f"query: {query}; rankingResponse: {rankingResponse}")
    except:
      rankingResponse = {}
  if rankingResponse == {}:
    for j in range(0, 3):
     daily_register_news[f'Source_{j+1}'].append(' ')
     daily_register_news[f'Name_{j+1}'].append(' ')
     daily_register_news[f'Description_{j+1}'].append(' ')
   daily_register_news['Status_News'].append('NOK')
   print(f"{name}: {results}")
  else:
    for j in range(0, 3):
       top = results['news']['value'][j]
daily_register_news[f'Description_{j+1}'].append(top['description'])
     except:
       daily_register_news[f'Source_{j+1}'].append(' ')
daily_register_news[f'Name_{j+1}'].append(' ')
       daily_register_news[f'Description_{j+1}'].append(' ')
   daily_register_news['Status_News'].append('OK')
df_news = pd.DataFrame(daily_register_news)
df_news.to_csv('Register_240426.csv', index=False)
```

Google News Web Scrapping

Haciendo uso de Google News se puede hacer búsqueda de las noticias, incluso filtrando por el periodo de tiempo en que se desea hacer la búsqueda. Esto se hace con el siguiente query.

```
Q = StockName after:YYYY-MM-DD before:YYYY-MM-DD
```

Esto da como resultado algo similar a lo mostrado en la siguiente imagen:

Fig.1: Resultados Google News.

Como se puede observar, el filtro de la búsqueda se aplica de manera correcta, además de poder encontrar varios resultados pertinentes y estos se organizan por relevancia de manera automática.

Otra cuestión importante es que para poder hacer la búsqueda de las noticias en Google News no se podía hacer uso de un HTTP request de tipo GET con la librería estándar de Python, por lo que se recurrió a Selenium con Chrome Driver.

El registro se hace de manera similar a como se hizo el de las APIs, con el cambio que en esta ocasión se tiene que buscar la información de las noticias de manera manual. El código se incluye acontinuacón.

```
from selenium import webdriver
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.common.by import By
from bs4 import BeautifulSoup
from newspaper import Article
import datetime
import datetime
import pandas as pd
import time
options = webdriver.ChromeOptions()
options.add_argument('--headless')
options.add_argument('--incognito')
options.add_argument('--ignore-certificate-errors')
options.add_argument('user-agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/122.0.0.0 Safari/537.36')
chrome_driver_path = r"C:\Users\aefig\Downloads\chromedriver-
win64\chromedriver.exe"
driver = webdriver.Chrome(service=Service(chrome driver path), options = options)
```

```
df_SP500 = pd.read_csv('S&P500_List.csv', encoding='utf8')
SP500_symbol = df_SP500['Symbol'].to_list()
SP500_name = df_SP500['Security'].to_list()
daily_register_news_clean = {
     'Symbol': [],
     'Name': [],
     'Source_1': [],
     'Name_1': [],
    'Text_1': [],
     'Source_2': [],
    'Name_2': [],
'Text_2': [],
'Source_3': [],
     'Name_3': [],
     'Text_3': [],
     'Source_4': [],
     'Name_4': [],
     'Text_4': [],
    'Source_5': [],
'Name_5': [],
     'Text_5': [],
date = datetime.date.fromisoformat('2021-01-05')
while date < datetime.date.fromisoformat('2021-01-16'):</pre>
    i date = str(date)
    e_date = str(date + datetime.timedelta(days=1))
    print(i_date)
    daily_register_news = daily_register_news_clean
    for i in range(len(SP500_symbol)):
         if i % 50 == 0:
              print(f"{int(i/5)}%")
         stock = SP500 symbol[i]
         name = SP500 name[i]
         daily register news['Symbol'].append(stock)
         daily_register_news['Name'].append(name)
         url = "https://news.google.com/search?q=" + name + "%20after%3A" + i_date
+ "%20before%3A" + e_date + "&hl=en-US&gl=US&ceid=US%3Aen"
         # time.sleep(0.01)
         driver.get(url)
         soup = BeautifulSoup(driver.page_source, 'html.parser')
         allData = soup.find all("article",{"class":"IFHyqb DeXSAc"})
         for j in range(5):
              try:
                  data = allData[j]
                  source = data.find('a').get('href')
                  source = f"https://news.google.com{source[1:]}"
name = data.find('a', {'class':'JtKRv'}).text
name = name.replace(",", "")
```

```
daily_register_news[f'Source_{j+1}'].append(source)
                daily_register_news[f'Name_{j+1}'].append(name)
                article = Article(source)
                    article.download()
                    article.parse()
                    text = article.text
                    text = text.replace(",", "")
                    daily_register_news[f'Text_{j+1}'].append(text)
                except Exception as error:
                    text = F"ERROR: {error}"
                    daily_register_news[f'Text_{j+1}'].append(text)
                daily_register_news[f'Source_{j+1}'].append('')
                daily_register_news[f'Name_{j+1}'].append('')
                daily_register_news[f'Text_{j+1}'].append('')
    file = fr"C:\Users\aefig\OneDrive\Escritorio\Tec\07_6to
Trimestre\02_ProyectoIntegrador\NewsRegister\{i_date}.csv"
    df news = pd.DataFrame(daily register news)
    df_news.to_csv(file, index=False)
    date += datetime.timedelta(days=1)
driver.close()
```

Se puede observar que se trata de un código mucho más resumido, ya que Google News considera varias cosas en la búsqueda que Bing News con el API lo hacía de manera distinta.

Además, gracias a la opción de establecer un rango temporal, nos permite poder acceder a noticias más viejas que lo que se podía esperar de Bing News, igualando así la granularidad de lo que se tendrá con los valores de las acciones.

Entendimiento de los Datos

Descripción de los datos

En el proyecto se incluirán los datos de alrededor de 500 activos que forman parte del índice S&P500, estos símbolos están descritos en la siguiente publicación de internet: https://en.wikipedia.org/wiki/List_of_S%26P_500_companies

Utilizando el API de Yahoo! Finance se obtendrán los precios diarios correspondientes a las 500 empresas que forman parte del índice.

```
!pip install yfinance
import yfinance as yf
import pandas as pd
from datetime import datetime, timedelta
```

```
def get snp500 symbols():
table=pd.read html('https://en.wikipedia.org/wiki/List of S%26P 500 com
    df = table[0]
    symbols = df['Symbol'].tolist()
    return symbols
def download stock prices (symbols, start date, end date):
    data = {}
    for symbol in symbols:
            stock = yf.download(symbol, start=start date, end=end date)
            if not stock.empty:
                data[symbol] = stock['Close']
        except Exception as e:
           print(f"Error downloading data for {symbol}: {e}")
    return data
    start date = end date - timedelta(days=3*365)
    symbols = get snp500 symbols()
    stock data = download stock prices(symbols, start date, end date)
    for symbol, data in stock data.items():
        data.to_csv(f"{symbol}_prices.csv")
```

El siguiente gráfico describe los retornos diarios de todos los símbolos.

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

snp500_index = pd.concat(stock_data.values(), axis=1,
keys=stock_data.keys()).mean(axis=1)

daily_returns = snp500_index.pct_change()
```

```
cumulative returns = (1 + daily returns).cumprod()
plt.figure(figsize=(10, 6))
cumulative returns.plot()
plt.title('Retorno Acumulado del Indice S&P500 ')
plt.xlabel('Fecha')
plt.ylabel('Retorno Acumulado')
plt.grid(True)
plt.show()
total return = cumulative returns[-1] - 1
total trading days = len(snp500 index)
annualized return = ((1 + total return) ** (252 / total trading days))
volatility = np.std(daily returns)
annual volatility = volatility * np.sqrt(252)
risk free rate = 0.02
daily rf rate = (1 + risk free rate) ** (1/252) - 1
sharpe ratio = (np.mean(daily returns) - daily rf rate) /
annual volatility
plt.figure(figsize=(10, 6))
daily returns.plot(kind='hist', bins=50, alpha=0.6)
plt.title('Histograma de Retorno Diario del Indice S&P500 ')
plt.xlabel('Retorno Diario')
plt.ylabel('Fecuancia')
plt.grid(True)
plt.show()
print(f"Retorno Anualizado: {annualized return:.4f}")
print(f"Volatilidad Anualizada: {annual volatility:.4f}")
print(f"Sharpe Ratio: {sharpe ratio:.4f}")
```


Fig.2: Histograma de los retornos diarios.

Fig.3: Histórico de retorno de inversión.

El retorno en los últimos tres años de las 500 empresas fue del aproximadamente un 6.8%, con una volatilidad o riesgo anualizado de un 17.5%. El modelo propuesto debe superar este retorno sin aumentar el riesgo del índice.

Identificación de variables

Se pretende tener información diaria (de lunes a viernes) para cada una de las acciones información del valor de la acción a la apertura de la bolsa, el valor más alto, el valor más bajo y el valor al cierre, así como noticias relacionadas con la acción en el último día en caso de existir.

De manera general las columnas que se van a incluir de manera diaria para cada acción incluyen:

- Symbol: Abreviatura con la que se presenta en la bolsa la empresa.
- Name: Nombre comercial con el que se conoce a la empresa.
- Open: Valor a la apertura.
- High: Valor más alto del día.
- Low: Valor más bajo del día.
- Close: Valor al cierre.
- Status_Stock: Estado de actualización de valores en base de datos en el día.
- Source_1,2,3: Fuente de la noticia.
- Name_1,2,3: Título de la noticia
- Description_1,2,3: Descripción de la noticia.
- Status News: Estado de actualización de noticias en base de datos en el día.
- Retorno diario compuesto: se define como el cambio de precio diario de una acción.
- Riesgo: es la volatilidad de una acción se calcula por medio de la desviación estándar asociados a los retornos diarios.
- Sharpe Ratio: Retorno / Riesgo

Para el registro diario se trabajó en un script de Python en el cual se obtiene de manera independiente un Data Frame de las acciones y otro de las noticias. Posteriormente se realiza una unión de ambas estructuras y se guarda en un CSV para así poder formar el histórico de las acciones a través del tiempo.

En el alcance actual se trabaja para nutrir la base de datos con noticias previas. De lo contrario, se estaría trabajando con un mes de información y se dejaría el script de Python para la actualización diaria de noticas y acciones como legado para nutrir cada vez con más información para el entrenamiento del modelo.

d A	В	C D E F	G	H I J K L M N O P	Q
Symbol	Name	Open High Low Close	Status_Stock	Source_1 Name_1 Description_1 Source_2 Name_2 Description_2 Source_3 Name_3 Description_3 St	tatus_News
MMM	3M	91.589996 92 90.65 91.410003	OK	YAHOO!Fil Here's How Weakness in th adexchang MMM Is Ba The democratic Zacks.com 3M (MMM). In the latest tra-	OK
AOS	A. O. Smith	83.9 83.910003 80.639999 82.819999	OK	YAHOO!Fi Decoding A.O. Smith Cor Zacks.com A.O. Smith A.O. Smith Cor Zacks.com Why A.O. S For new and old	OK
ABT	Abbott	106.65000 107.45999 106.13999 106.86000	OK	Newsweel Greg Abbo The Houston Cl USA Today Marla Adar Marla Adams, t The Cincin Reds, Andr Left-hander Ab	OK
ABBV	AbbVie	167.66000 169.28999 165.57000 167.28999	OK	Reuters Drugmake AbbVie raised i Bloomberg AbbVie Lift AbbVie Inc. lift The Motley Better Divic Founded in 199	OK
ACN	Accenture	309.19000 310.24 305.35000 309	OK	YAHOO!Fii Sharehold: If we want to fir YAHOO!Fii Meet the & We develop ove Business L TCS, Infosy Earnings seaso	OK
ADBE	Adobe Inc.	468.41000 474.5 465.77999 473.44000	OK	Business Ir New Buy R Wells Fargo an: Reuters Adobe to b Adobe said on 1 Fox Busine Adobe rele Adobe's new Ac	OK
AMD	Advanced Micro Devices	149.14999 155.13999 146.75 153.75999	OK	The Motley 3 Reasons Advanced Micr Seeking Alı Advanced Advanced Micr The Motley Is Advance C hipmaker Adv	OK
AES	AES Corporation	17.180000 17.360000 17.049999 17.13	OK	Seeking Al _I The AES Cc Learn about AE WTTV AES custor Indianapolis Mc WXIN-TV Ir Whistleblo A whistleblowe	OK
AFL	Aflac	84.089996 84.339996 83.220001 83.73	OK	Forbes President (How a Little Let Seeking Alj Aflac Incor Aflac recently r CSR Wire Aflac U.S. I Imagine being a	OK
Α	Agilent Technologies	137.05999 137.21000 134.11999 136.36999	OK	Benzinga.c Here's Hov Agilent Technol YAHOO! Fil Declining & Agilent Technol USA Today S&P 500 (S The S&P 500 or	OK
APD	Air Products and Chemicals	234.47999 235.97999 233.47000 235.08000	OK	YAHOO!N: Armed sus The Austin Polic WSB Atlan Man shot is Around 11:10 p WSB-TV Suspects â Atlanta Police a	OK
ABNB	Airbnb	161.50999 163.72999 159.5 163.00999	OK	Gizmodo 9 Disturbin Airbnb announc Business Ir See Inside The 56-year-old The Motley I Want to B Airbnb rentals of	OK
AKAM	Akamai	101.62000 102.16000 100.29000 101.79000	OK	techzine Noname Sc Noname Secur Zacks.com Akamai (Al Akamai Technic Business Ir RBC Capita RBC Capital an	OK
ALB	Albemarle Corporation	113.52999 115.52999 111.05000 114.98000	OK	Barron's EV Woes C When the EV b: Mena FN Multi-Billio Melco Progress Seeking Al ₁ My Optimis Weak lithium p	OK
ARE	Alexandria Real Estate Equities	117.45999 118.23999 115.48999 117.30000	OK	Seeking Alı Alexandria Alexandria Rea Seeking Alı Alexandria Alexandria Rea YAHOO!Fi Alexandria Alexandria Rea	OK
ALGN	Align Technology	325 327.49 297.27999 310.5	OK	YAHOO!Fii Align Techi Align Technoloj YAHOO!Fii Align Techi Q1 2024 Earnin Reuters Align Tech Align Technoloj	OK
ALLE	Allegion	126.54000 127.76999 123.16000 124.87000	OK	Yahoo Fina Allegion pli Last week saw YAHOO! Fii Allegion (A Q1 revenues de Zacks.com What's in ti Allegion plc ALI	OK
LNT	Alliant Energy	50.26 50.529998 49.700000 50.229999	OK	The Gazett Google dat As Google cons WKOW More than Over three hun Madison.c Sheriff: Ex; Law enforceme	OK
ALL	Allstate	172.30000 173.08000 171.28999 172.33999	OK	YAHOO!Fii Allstate say Amid the ongoi Artemis Allstate to US insurer Allst Chicago Tr Logistics C Post-pandemic	OK
GOOGL	Alphabet Inc.Å (Class A)	151.33000 156.49000 150.86999 156	OK	The Street. Analysts ur JPMorgan's Doi Inc With 1 Sen On Thursday, G Forbes Google Intr Google launche	OK
GOOG	Alphabet Inc.Å (Class C)	153.36000 158.27999 152.76800 157.94999	OK	TheStreet. Analysts ur JPMorgan's Doi Forbes Google Intr Google launche	OK
MO	Altria	43.25 43.650001 42.76 43.540000	OK	The Sun Mo Salahâ MO Salahâ€"s YAHOO!N MO House The Missouri H USA Today Edge rush The Miami Dolp	OK
AMZN	Amazon	169.67999 173.91999 166.32000 173.66999	OK	The Street, Jeff Bezos Bezos has neve NBC News Missing Ut; A cat named G; Forbes Amazon Pr The best new sl	OK
AMCR	Amcor	9.0200004 9.1000003 8.9300003 8.9499998	OK	YAHOO!Fii Amcor unv The stock bottle Broadway. The Fox Cit The Fox Cities F Nasdag Will Declin The estimate his	OK

Fig.4: Información diaria para el análisis de las acciones del S&P500.

Análisis exploratorio de datos

Valores Faltantes:

1. Algunos nombres o símbolos de acciones tenían valores faltantes debido a que el API reconoce otro tipo de caracteres. El incidente fue identificado y corregido.

```
symbols = df['Symbol'].str.replace('.', '-').values.tolist()
```

 Por la naturaleza del mercado, no todas las empresas tienen asociadas noticias, por lo tanto no se podría hacer un análisis de sentimiento para todo el mercado

Estadísticas resumidas del Conjunto de Datos

- 1. Retorno diario de inversión de cada portafolio y del mercado
- 2. Riesgo o desviación estándar
- 3. Rendimientos diarios promedio
- 4. Riesgo diario promedio
- 5. Covarianza, varianza y desviación estándar
- 6. Razón de rendimiento sobre riesgo

```
def calculate_portfolio_return(self):
    self.portfolio_return = np.dot(self.avg_returns.mean(),
self.weights)
    #print("return")
    print(self.portfolio_return)
    #print(" end return")
    return self.portfolio_return

def calculate_sharpe_ratio(self):
    avg_returns = self.portfolio_return
    std_dev = self.calculate_risk_ratio()
```

Valores Atípicos

Los valores atípicos en los precios son parte de la naturaleza del negocio, se estudiaron por medio de comparar el comportamiento de empresas altamente volátiles con otros grupos, inclusive ya se hicieron algunos intentos de apoyar la toma de decisiones por medio de Inteligencia artificial implementando el algoritmo de k medias para encontrar 10 acciones que generen un mejor retorno con un menor riesgo.

A continuación, se incluyen los resultados:

Los marcados con la X son candidatos a ser estudiados como los activos más óptimos, dado que han generado mayor rentabilidad con riesgo bajo.

Fig.5: Gráfico de la volatilidad vs el retorno promedio.

```
import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler

# Assuming normal_stocks_df contains historical returns for each stock
# Calculate the average return and standard deviation of returns for
each stock
average_returns = normal_stocks_df.mean(axis=0)
volatility = normal_stocks_df.std(axis=0)

# Combine average returns and volatility into one DataFrame
features = pd.concat([average_returns, volatility], axis=1)
features.columns = ['Average Return', 'Volatility']

# Calculate return/risk ratio
features['Return/Risk Ratio'] = features['Average Return'] /
features['Volatility']

# Standardize the data
scaler = StandardScaler()
```

```
scaled features = scaler.fit transform(features)
i=11
j=0
while i>10:
 num clusters = 10+j # You can adjust this parameter
 cluster labels = kmeans.fit predict(scaled features)
# Add cluster labels to the DataFrame
  features['Cluster'] = cluster labels
# Identify the cluster with the highest return/risk ratio
 cluster with highest return risk ratio =
features.groupby('Cluster')['Return/Risk Ratio'].max().idxmax()
# Select the stocks from that cluster
  selected stocks = normal stocks df.columns[features['Cluster'] ==
cluster with highest return risk ratio].tolist()
 i=len(selected stocks)
print("Selected Stocks with Highest Return/Risk Ratio:")
print(selected stocks)
```

```
import matplotlib.pyplot as plt
# Plot the segmentation chart
plt.figure(figsize=(10, 6))
for cluster in range(num clusters):
    cluster data = features[features['Cluster'] == cluster]
    if cluster == cluster_with_highest_return_risk_ratio: # Compare
        plt.scatter(cluster data['Average Return'],
cluster_data['Volatility'], label=f'Best performer {cluster}',
        plt.scatter(cluster data['Average Return'],
cluster data['Volatility'], label=f'Cluster {cluster}', alpha=0.5)
plt.xlabel('Average Return')
plt.ylabel('Volatility')
plt.title('Segmentation of Stocks based on Return and Volatility')
plt.legend()
plt.grid(True)
plt.show()
```

Otras observaciones con respecto al análisis de datos

Los valores atípicos con los que están asociados a las mejores ganancias o peores pérdidas

Fig.6: Gráfico del retorno del portafolio en los últimos 6 meses.

Cada línea representa un portafolio de inversión de 10 activos. La línea verde representa el portafolio con mayor riesgo, y la azul un portafolio sugerido por medio de aprendizaje no supervisado.

La siguiente gráfica es muestra la dispersión de los tres portafolios creados con respecto a cada uno de los activos del mercado.

Fig.7: Obtención de agrupamientos con base en el retorno vs el riesgo.

Es muy interesante que el retorno promedio diario del portafolio por medio de aprendizaje no supervisado ofrece un rendimiento diario alto con una volatilidad que tiende a cero.

Fig. 8: Retorno promedio por los grupo presentado en la gráfica anterior.

Los rendimientos que se presentan en la gráfica anterior son rendimientos anualizados, existe una posibilidad de poder generar un 26% de rendimiento sobre las inversiones.

En las siguiente gráfica se muestran las acciones seleccionadas por medio de analítica descriptiva y aprendizaje no supervisado o segmentación.

Fig.9: Representación de los portafolios en función de las acciones que incluyen.

El best portfolio es básicamente la selección de los activos más rentable durante los últimos tres años.

El more risky es el conjunto de activos con una mayor desviación estándar.

El portafolio seleccionado por medio de aprendizaje no supervisado es el que se realizó por medio de k medias

Registro de noticias

Dentro del registro de noticias se pudo observar que este era acumulativo en lugar de iniciar nuevamente de manera diaria. Eso es algo que se corregirá y trabajará en la semana.

```
[6]: for i in range(1,5):
    file = fr"C:\Users\aefig\OneDrive\Escritorio\Tec\07_6to Trimestre\02_ProyectoIntegrador\NewsRegister\2021-01-0(i).csv"
    df_news = pd.read_csv(file, encoding='utf8')
    shape = df_news.shape
    print(shape)

(503, 17)
    (1006, 17)
    (1509, 17)
    (2012, 17)
```

Fig.10: Análisis del tamaño de los registros de noticias.

Sin embargo, se puede proceder con un análisis de las noticias de esta manera y hacer un análisis exploratorio para análisis de sentimiento.

Ingeniería de Características

Para evaluar el desempeño de los modelos y portafolios de inversión se seleccionaron las características que se muestran a continuación:


```
data['Avg Close Price'].append(avg_close_price)
data['Last Close Price'].append(last_close_price)
data['Weight'].append(weight)
data['Return'].append(pct_changes[symbol])
data['Weighted Return'].append(weighted_return)
```

Se utilizan las variables de retorno promedio diario y volatilidad para determinar los pesos más óptimos para el portafolio de inversión.

```
def efficient_frontier(self, num_portfolios=10000):
    returns_data=self.avg_returns
    returns_mean = returns_data.mean()
    returns_cov = returns_data.cov()

    portfolio_returns = []
    portfolio_risks = []

    for _ in range(num_portfolios):
```

```
weights = np.random.random(len(self.symbols))
weights /= np.sum(weights) # Normalize weights to ensure they sum up to 1

portfolio_return = np.dot(returns_mean, weights)
portfolio_risk = np.sqrt(np.dot(weights.T, np.dot(returns_cov, weights)))

portfolio_returns.append(portfolio_return)
portfolio_risks.append(portfolio_risk)

additional_return = self.calculate_portfolio_return()
additional_risk = self.calculate_risk_ratio()

plt.figure(figsize=(10, 6))
plt.scatter(portfolio_risks, portfolio_returns, alpha=0.3)
plt.scatter(additional_risk, additional_return, color='red', marker='*', label='Additional Point')
plt.title('Efficient Frontier')
plt.xlabel('Risk')
plt.ylabel('Return')
plt.show()
```

Estos son algunos de los resultados

El portafolio marcado con la estrella roja fue el seleccionado para optimizar el riesgo y el beneficio por medio de la maximización de la razón de Sharpe

```
def calculate_portfolio_return(self):
    self.portfolio_return = np.dot(self.avg_returns.mean(), self.weights)
    #print("return")
    #print(self.portfolio_return)
    #print(" end return")
    return self.portfolio_return

def calculate_sharpe_ratio(self):
    avg_returns = self.portfolio_return
    std_dev = self.calculate_risk_ratio()
    portfolio_return = self.calculate_portfolio_return()
    risk_free_rate = 0.02
    sharpe_ratio = (portfolio_return - risk_free_rate) / std_dev.mean()
    return sharpe_ratio

def calculate_risk_ratio(self):
    cov_matrix = self.avg_returns.cov()
```

```
weights = np.array(self.weights)
portfolio_variance = np.dot(weights.T, np.dot(cov_matrix, weights))
portfolio_risk = np.sqrt(portfolio_variance)
return portfolio_risk
```

Para calcular el riesgo del portafolio y en la selección de pesos para el portafolio óptimo se utilizó una matriz de covarianza para calcular el riesgo del portafolio combinado. Los pesos se maximizaron por medio de la utilización de un algoritmo genético.

```
def assign_weights_markowitz(self, population_size=50, num_generations=100):
returns_data=self.avg_returns
num_assets = len(self.symbols)
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
def evaluate(individual):
  portfolio_return = np.dot(returns_data.mean(), individual)
  portfolio risk = np.sqrt(np.dot(individual, np.dot(returns_data.cov(), individual)))
  sharpe_ratio = portfolio_return / portfolio_risk
  return sharpe_ratio,
toolbox = base.Toolbox()
 def mate(ind1, ind2):
  ind1, ind2 = tools.cxBlend(ind1, ind2, alpha=0.5)
  ind1 = creator.Individual([max(0, w) for w in ind1])
  ind2 = creator.Individual([max(0, w) for w in ind2])
  return ind1. ind2
 def mutate(individual):
  individual, = tools.mutGaussian(individual, mu=0, sigma=0.2, indpb=0.2)
  individual = creator.Individual([max(0, w) for w in individual])
  return individual.
 toolbox.register("attr_float", random.random)
 toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr float, n=num_assets)
 toolbox.register("population", tools.initRepeat, list, toolbox.individual)
#toolbox.register("mate", tools.cxBlend, alpha=0.5)
#toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=0.2, indpb=0.2)
toolbox.register("mate", mate)
toolbox.register("mutate", mutate)
toolbox.register("select", tools.selTournament, tournsize=3)
toolbox.register("evaluate", evaluate)
 #def enforce_non_negative(*individuals):
# return [[max(0, w) for w in individual] for individual in individuals]
 #toolbox.decorate("mate", enforce_non_negative)
 #toolbox.decorate("mutate", enforce_non_negative)
```

```
population = toolbox.population(n=population_size)
algorithms.eaSimple(population, toolbox, cxpb=0.5, mutpb=0.2, ngen=num_generations, verbose=False)
best_individual = tools.selBest(population, k=1)[0]
total_weight = sum(best_individual)
self.weights = [round(w / total_weight, 2) for w in best_individual]
```

Para la realización de tareas de segmentación se utilizó el StandardScaler.

```
def Create_Kmeans_Portfolio_Second_Best(market_data):
 data_close=market_data.transpose().dropna().transpose()
 returns = np.log(data_close / data_close.shift(1))
 total returns = returns.sum()
 current_year = pd.Timestamp.now().year
 df_current_year = returns[returns.index.year == current_year]
 normal_stocks = total_returns.index
 normal_stocks_df = returns[normal_stocks]
 average_returns = normal_stocks_df.mean(axis=0)
 volatility = normal_stocks_df.std(axis=0)
# Combine average returns and volatility into one DataFrame
 features = pd.concat([average_returns, volatility], axis=1)
 features.columns = ['Average Return', 'Volatility']
# Calculate return/risk ratio
 features['Return/Risk Ratio'] = features['Average Return'] / features['Volatility']
# Standardize the data
 scaler = StandardScaler()
 scaled_features = scaler.fit_transform(features)
 i=11
 i=0
 while i>10:
# Perform K-means clustering
  num_clusters = 2+j #
  kmeans = KMeans(n_clusters=num_clusters, random_state=42)
  cluster_labels = kmeans.fit_predict(scaled_features)
# Add cluster labels to the DataFrame
  features['Cluster'] = cluster_labels
  #cluster_counts = features['Cluster'].value_counts()
  #small clusters = cluster counts[cluster counts < 10].index
```

```
#features = features[~features['Cluster'].isin(small_clusters)]
# Identify the cluster with the highest return/risk ratio
  #print(features.groupby('Cluster')['Return/Risk Ratio'].max().nlargest(2).index[1])
  cluster_with_highest_return_risk_ratio = features.groupby('Cluster')['Return/Risk Ratio'].max().idxmax()
  selected_max_stocks = normal_stocks_df.columns[features['Cluster'] ==
cluster_with_highest_return_risk_ratio].tolist()
  cluster_with_second_highest_ratio = features.groupby('Cluster')['Return/Risk Ratio'].max().nlargest(2).index[1]
# Select the stocks from that cluster
  selected_stocks = normal_stocks_df.columns[features['Cluster'] == cluster_with_second_highest_ratio].tolist()
# Select the stocks from that cluster
  #i=len(selected_stocks)
  i=len(selected_max_stocks)
  #if i<10:
  # j=j-1
  #else:
  j=j+1
 print("Selected Stocks with Highest Return/Risk Ratio:")
 print (cluster with second highest ratio)
 retVal = Portfolio(market_data[selected_stocks],selected_stocks)
 plt.figure(figsize=(10, 6))
 for cluster in range(num_clusters):
  cluster_data = features[features['Cluster'] == cluster]
  if cluster == cluster_with_second_highest_ratio: # Compare with the index of the series
     plt.scatter(cluster_data['Average Return'], cluster_data['Volatility'], label=f'Second BEST performer {cluster}',
color='red', marker='x')
     plt.scatter(cluster_data['Average Return'], cluster_data['Volatility'], label=f'Cluster {cluster}', alpha=0.5)
 plt.xlabel('Average Return')
 plt.ylabel('Volatility')
 plt.title('Segmentation of Stocks based on Return and Volatility')
 plt.legend()
 plt.grid(True)
 plt.show()
 return retVal
```

Se utilizaron las variables de retorno, riesgo y razón de retorno sobre riesgo para poder generar una segmentación adecuada. Los valores atípicos juegan un papel importante en este caso de uso, dado que por medio de ellos se pueden obtener mayores beneficios, en tal sentido se estudiarán estos fenómenos. Se seleccionarán los dos mejores segmentos, incluido un segmento de valores atípicos

Segmento de valores atípicos

Segmento conservador

Además de los modelos de correlación entre riesgo y beneficio, se estará probando el modelo Prophet para proyección en series de tiempo. Estos son algunos resultados preliminares de la selección de un portafolio de inversión basado en proyecciones de beneficios:

En entregas futuras se estarán generando modelos de portafolio de inversión con los resultados de los análisis de sentimientos, además de generar portafolios con la mezcla de métodos para probar cuales son los más eficiente, emulando la dinámica de algoritmos genéticos.

Análisis de Sentimientos

Por parte de las noticias se pretende hacer análisis de sentimiento con el modelo de HuggingFace distilbert-base-uncased-finetuned-sst-2-english, el cual puede aceptar textos de hasta 512 caracteres. Por tal motivo, se tuvieron que hacer las siguientes transformaciones.

```
file = r"C:\Users\aefig\OneDrive\Escritorio\Tec\07_6to
Trimestre\02_ProyectoIntegrador\NewsRegister\2021\2021-01-01.csv"
df = pd.read_csv(file)

# Chnage NaN for ''
df = df.fillna('')

# Limit
for i in range(1, 6):
    df[f"Text_{i}"] = df[f"Text_{i}"].str[:512]
```

Adicional a esta transformación de los diferentes textos de las noticias, se puede apreciar como se realiza un cambio de valores nulos (NaN) por strings vacíos. De esta manera se todos los elementos de las columnas serían de tipo object (string).

Adicional a esto se realizaron las siguientes funciones con las cuales se podrán aplicar funciones de tipo lambda a los data frames.

Primero se aplica una función que obtiene la cantidad de noticias por cada Symbol.

```
def countNews(row):
    if len(row['Text_5']) > 0:
        return 5
    elif len(row['Text_4']) > 0:
        return 4
    elif len(row['Text_3']) > 0:
        return 3
    elif len(row['Text_2']) > 0:
        return 2
    elif len(row['Text_1']) > 0:
        return 1
    else:
        return 0
```

Adicional a esto se incluye una función para poder hacer el análisis de sentimiento.

```
def sentimentNews(row):
   AddedSentiment = 0
    for i in range (1,6):
        text = row[f'Text {i}']
        name = row[f'Name {i}']
        if len(text) > 0:
            if text[:5] == 'ERROR':
                result = sentiment pipeline(name)[0]
            else:
                result = sentiment pipeline(text)[0]
        else:
            result = {'label': 'NEUTRAL', 'score': 0.0}
        if result['label'] == 'POSITIVE':
            AddedSentiment += result['score']
        elif result['label'] == 'NEGATIVE':
            AddedSentiment -= result['score']
    return AddedSentiment
```

A manera de validación de concepto y pendiente de aplicar el pipeline para todos los archivos CSV, se obtienen los siguientes resultados con el siguiente código.

```
df['TotalNews'] = df.apply(lambda x: countNews(x), axis=1)
df['AddedSentiment'] = df.apply(lambda x: sentimentNews(x), axis=1)

df[['Name_1', 'Name_2', 'Name_3', 'Name_4', 'Name_5', 'TotalNews',
    'AddedSentiment']].head(50)
```

	Name_1	Name_2	Name_3	Name_4	Name_5	TotalNews	AverageSentiment
0	2021 ACS National Award winners—Part III	The Top 100 Dental Products of 2020	10 Best Skins and Wraps for iPhone 12 Pro Max	Nailed It! Corvette Z06 Puts On Weird Widebody	Dutch Ioan US \$3m to struggling Winair	5	0.845974
1						0	0.000000
2	Fire hits house on Abbott Place in Worcester	Joyce Abbott Obituary (1938 - 2020) - Trumbull	Bluff collapse in Torrey Pines causes safety c	Flames Rip Through Multi- Family Home in Worces	'The Song' returns: Batavia native shares the 	5	-4.334731
3						0	0.000000
4						0	0.000000
5	Save Money on Marketing by Learning the Adobe	Adobe Flash reaches end of life with nostalgia	Adobe Flash Player officially discontinued aft	Adobe Flash Player Is Officially Dead	Adobe Flash Player Says Goodbye as the Service	5	-2.864862
6	Ant McPartlin announces engagement to Anne-Mar	The 10 Best Micro:Bit Projects	Justin Bieber Covers All His Tattoos for 'Anyo	Hot Property: Danny Elfman and Bridget Fonda s	How Do You Return Something From Amazon After	5	1.085389
7						0	0.000000
8						0	0.000000
9	Transcriptomic response of Anopheles gambiae s	Plant buffering against the high-light stress				2	-1.955151
10	Career Ladder: Melissa Weller					1	0.998763
11	Direct charter app JetASAP is the 'Airbnb of p	Start your year off right with Mechelle Lewis	Rossville couple's new bluff-view vacation hou	'Pawn Stars' Corey Harrison Accused of Trashin	'Soho Karen' isn't only one in family facing c	5	-0.996694
12						0	0.000000

Conclusiones: Fase de Preparación de Datos

- 1. Se concluyó la configuración para la extracción de datos cualitativos, se identificaron datos faltantes, se completaron y se identificaron datos atípicos.
- 2. Los datos atípicos serán estudiados y evaluados dado que estos pueden resultar en mayores beneficios en la vida real.
- 3. Las métricas clave para la definición de portafolios óptimos están listas para ser colocadas y refinadas dentro de los modelos.
- 4. Se incorporó un modelo en series de tiempo ya que los datos se prestan para ese tipo de aplicación.
- 5. Se estará completando el análisis de sentimientos para poder crear modelos basados en sentimientos provenientes de las noticias asociadas a las empresas que forman parte del S&P 500.

Anexos

Github – Equipo 15

AEFiGa/MNA_ProyectoIntegrador_Equipo15 (github.com)

Script Python

https://drive.google.com/file/d/1lciy8nmrmK336EYHE3BRIUnA-hBcpRhB/view?usp=sharing

CSV Generado

https://drive.google.com/file/d/19QOfnopVT4sy-Du4OwbCllt1TvLQhKHg/view?usp=sharing

Bibliografía

- Baldridge, R. (2023, 26 de junio) Understanding Modern Portfolio Theory. Forbes. https://www.forbes.com/advisor/investing/modern-portfolio-theory/
- Granieri, M. (2023, 13 de septiembre) Text Mining: Qué es, para qué sirve y principales técnicas. OBS Business School. https://www.obsbusiness.school/blog/text-mining-que-es-para-que-sirve-y-principales-tecnicas
- Tretina, K. (2023, 9 de agosto). What is the S&P 500? How does it work? Forbes. https://www.forbes.com/advisor/investing/what-is-sp-500/
- Vázquez, I. (2012). Bolsa de Valores "¿Cómo? ¿Por qué? Y ¿Para qué?". *Tiempo* económico, 7(21), 55-79. https://tiempoeconomico.azc.uam.mx/wpcontent/uploads/2017/07/21te4.pdf
- Wikipedia (2024). *List of S&P 500 companies*. Wikipedia. https://en.wikipedia.org/wiki/List_of_S%26P_500_companies