CSC373 Worksheet 6 Solution

August 12, 2020

1. Notes:

• Linear Programming

- Is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements are represented by linear relationships. [1]
- Is named to make it sound cool for government funding
 - * Like dynamic programming
- Applications
 - * Microeconomics (maximize profits, minimize costs)
 - * Company management

• Standard Form

- Is a form of linear programming
- Are about maximizing, not minimizing ^[2]
- All have a positivity constraint for each variable [2]
- All other constraints are all of the form "linear combination of variables \leq constant". [2]

• Converting Linear Programming to Standard Form

- 1) The objective function might be a minimization rather than a maximization
 - Negate coefficients of the objective function

- 2) There might be variables without nonnegativity constraints
 - Replace each non-nonnegative variable x_i with x_i' and x_i''
 - Modify linear program

- 3) There might be **equality constraints**, which have an equal sign rather than a less-than-or-equal-to sign
 - Replace equality constraint $f(x_1, x_2, ..., x_n) = b$ with $f(x_1, x_2, ..., x_n) \le b$ and $f(x_1, x_2, ..., x_n) \ge b$

4) There might be **inequality constraints**, but instead of having a less-than-or-equal-to-sign

Example:

$\underline{\textbf{References:}}$

- 1) Wikipedia, Linear Programming, link
- $2)\,$ Instituto de Mathematicas, Standard form for Linear Programs, link