Lecture -16 Last week:

$$q[n] \stackrel{2}{\longleftrightarrow} X(2)$$

- Various examples
- * Region of convergence (ROC)
- * Z-plane: poles d zeros
- * Rational form: $\chi(z) = \frac{N(z)}{D(z)}$, pole-zero plot in Z-plane
- * Finite duration x(n): Roc entire z-plane except possibly o and/or ...
- & Infinite duration x(n):

2ml right - Sided

x(n) two-sided

Todays Class:

$$E_{X}$$
. $\chi(n) = 2^n \cos(n) u E_n$, find $\chi(z) d ROG$.

$$\pi[n] = \frac{2^n}{2} (e^{jn} + e^{-jn}) u[n]$$

=
$$\frac{1}{2} \left[(2e^{j})^n + (2e^{j})^n \right] u[n]$$

$$2[n] = \frac{1}{2} (2e^{j})^{n} u(n) + \frac{1}{2} (2e^{j})^{n} u(n)$$

$$x(z) = \frac{1}{2} \frac{z}{z - 2e^{i}} + \frac{1}{2} \frac{z}{z - 2e^{i}}$$

$$x(z) = \frac{1}{2} \frac{z}{z - 2e^{i}} + \frac{1}{2} \frac{z}{z - 2e^{i}}$$

$$x(z) = \frac{1}{2} \frac{z}{z - 2e^{i}} + \frac{1}{2} \frac{z}{z - 2e^{i}}$$

$$X(2) = \frac{1}{2} \times \frac{2z^2 - 12(e^{j} + e^{j})}{(2 - 2e^{j})(2 - 2e^{-j})}$$
 $\chi = \frac{1}{2} \times \frac{2z^2 - 12(e^{j} + e^{-j})}{(2 - 2e^{-j})}$

$$x(z) = \frac{z(z-2\cos(1))}{(z-2e^{i})(z-2e^{j})} \lambda xoc: |z| > 2.$$

Note poles d zeros at infinity X(2) = N(2) let plq be order of N(2) d D(2)0 (2) If p=q, we have p zeros a q poles If p > a, we say (p-q) poles at ∞ If P<q, we say (q-P) zeros at 00