A Book of Abstract Algebra (2nd Edition)

Chapter 33, Problem 5EB	Bookmark	Show all steps: ON
-------------------------	----------	--------------------

Problem

Let G be a group. The symbol $H \subseteq G$ is commonly used as an abbreviation of "H is a *normal* subgroup of G." A *normal series* of G is a finite sequence $H_0, H_1, ..., H_n$ of subgroups of G such that

$$\{e\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_n = G$$

Such a series is called a *solvable series* if each quotient group H_{i+1}/H_i is abelian. G is called a *solvable group* if it has a solvable series.

Verify that $\{ \varepsilon \} \subseteq \{ \varepsilon, \beta, \delta \} \subseteq S_3$ is a solvable series for S_3 . Conclude that S_3 , and all of its subgroups, are solvable.

Step-by-step solution

Here objective is to verify that	
There, objective is to verify that \	$\{ \mathcal{E}_1 \} \subseteq \{ \mathcal{E}_2, \mathcal{E}_3, \mathcal{E}_3 \} \subseteq S_3$ is a solvable series for S_3 .
Comment	
	Step 2 of 4
A group G is solvable, if there exi	ist a finite chain of successive subgroups.
Abelian groups are solvable.	

Alternating group A_3 is the group of even permutations of finite set.

Symmetric group S_3 is the group of all permutations of three elements.

Consider in S_3 , A_3 be the group of even permutations.

Then, $A_3 \subseteq S_3$

Comment

Step 4 of 4

Consider $\{\varepsilon, \beta, \delta\}$ has order three. Then $\{\varepsilon, \beta, \delta\} \subseteq S_3$

We know that,

$$\{\varepsilon\} \subseteq \{\varepsilon, \beta, \delta\}$$

So,

$$\{\varepsilon\} \subseteq \{\varepsilon, \beta, \delta\} \subseteq S_3$$

Is a subnormal sequence with Abelian quotients.

Therefore,

$$\{\varepsilon\}\subseteq\{\varepsilon,\beta,\delta\}\subseteq S_{\scriptscriptstyle 3} \text{is a solvable series for } S_{\scriptscriptstyle 4}.$$

And all of its groups are solvable.

Hence, proved

Comment