

Rule By Example: Harnessing Logical Rules for Explainable Hate **Speech Detection**

Christopher Clarke¹, Matthew Hall², Gaurav Mittal², Ye Yu², Sandra Sanjeev², Jason Mars¹, Mei Chen² ¹University of Michigan, Ann Arbor, MI. ²Microsoft, Redmond, WA

Problem Statement

Classic approaches to content moderation typically apply a rule-based heuristic approach to flag content. Recent advances in deep learning have demonstrated the promise of using highly effective deep neural models to overcome these challenges. However, despite the improved performance, these data-driven models lack transparency and explainability, often leading to mistrust from everyday users and a lack of adoption by many platforms. In this paper, we present Rule By Example (RBE): a novel exemplarbased contrastive learning approach for learning from logical rules for the task of textual content moderation. RBE is capable of providing rule-grounded predictions, allowing for more explainable and customizable predictions compared to typical deep learning-based approaches.

Figure 1: Generalization problem of rules. Logical rules, while easy to explain, are inherently fragile to the nuances of natural language.

Figure 2: Neural models while performant lack, transparency, customizability, predictability & explainability.

Methods and Approaches

Algorithm 1 Supervised Dual Encoder Training

Require: Rule Encoder Θ_r Text Encoder Θ_t **Input:** Training Data $X=(x_1,y_1)...(x_n,y_n)$, Ruleset $R=(r_1,e_1),...,(r_n,e_n)$ **Output:** Updated parameters Θ_r , Θ_t 1: Initialize Θ_r and Θ_t 2: while not converged do Get mini-batch X_b for each instance x_i in X_b do Get exemplars $e_i = doRuleset(R, x_i)$ Concatenate exemplars e_i end for Get $\Theta_r(E_b)$ and $\Theta_t(X_b)$ Compute $\mathcal{L} = \frac{1}{2}(Y_b D^2 + (1 - Y_b) max(margin - Y_b) max$ $(D,0)^2$ Update parameters of Θ_r and Θ_t 11: end while

Figure 3: Rule By Example Framework (RBE) is comprised of two neural networks, a rule encoder and a text encoder, which jointly learn rich embedding representations for hateful content and the logical rules that govern them. Through Contrastive learning, RBE utilizes a semantic similarity objective that pairs hateful examples with clusters of rule exemplars that govern it.

Results

Content Moderation Using Rules (Fully Supervised)			
	HateXplain	Jigsaw	CAD
Model	F1	F1	F1
HateXplain Rationale Rules	0.752	-	-
Hate+Abuse Rules	0.719	0.226	0.290
CAD Rules	_	-	0.194
MPNet SeqCLS	0.823	0.581	0.463
BERT SeqCLS	0.824	0.563	0.433
Rule By Example (BERT CAD Rules)	_	-	0.435
Rule By Example (MPNet CAD Rules)	_	-	0.476
Rule By Example (BERT Hate+Abuse Rules)	0.824	0.602	0.445
Rule By Example (MPNet Hate+Abuse Rules)	0.837	0.604	0.476
Rule By Example (BERT HateXplain Rationale)	0.816	-	-
Rule By Example (MPNet HateXplain Rationale)	0.832	-	-

Table 1: Experiment Results in Fully Supervised Setting on hate speech classification datasets.

Acknowledgements

We thank our anonymous reviewers for their feedback and suggestions. This work was conducted by the ROAR (Responsible & Open Al Research) team at Microsoft Cloud & Al.

Rule Grounding

Figure 4: By displaying the rules and exemplars responsible, rule authors and users are better able to understand model predictions and can automatically adjust their ruleset to further improve model performance.

Repo & Dataset

We release with RBE each of our derived rulesets for the HateXplain & Contextual Abuse datasets as well as a small subset of our internal Hate+Abuse list for public use! 📛

