```
In [6]:
         # Import our dependencies
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import StandardScaler,OneHotEncoder, MinMaxScaler
         import pandas as pd
         import tensorflow as tf
         import numpy as np
         # Import our input dataset
         df = pd.read_csv('../pitcher_salaries_cleaned.csv')
         df.head()
                                                                                              D - 44 - ---
```

Out[6]:

•		Year	Full Name	Age	Salary	ERA	Hits	Earned Runs	Strike Outs	Home Runs	Wins	Losses	Outs Pitched	Faced by Pitcher	Games Finished	Weight	ı
	0	1990	AbbottJim	23	185000	4.51	246	106	105	16	10	14	635	925	0	200	
	1	1990	AbbottPaul	23	100000	5.97	37	23	25	0	0	5	104	162	0	185	
	2	1990	AldredScott	22	100000	3.77	13	6	7	0	1	2	43	63	0	195	
	3	1990	AndersonAllan	26	300000	4.53	214	95	82	20	7	18	566	797	0	178	
	4	1990	AppierKevin	23	100000	2.76	179	57	127	13	12	8	557	784	1	180	
	4																•

Create Salary Brackets

```
In [10]:
          # Look at distribution of salaries (suppressing scientific notation)
          df['Salary'].describe().apply(lambda x: format(x, 'f'))
```

```
Out[10]: count
                      4937.000000
         mean
                   3011304.443387
                   4265619.190449
         std
         min
                    100000.000000
                    327000.000000
         25%
         50%
                    980000.000000
         75%
                   4000000.000000
                  33000000.000000
         max
         Name: Salary, dtype: object
```

```
In [24]:
          # create salary brackets and labels
          bins = [0, 499999, 4999999, 9999999, 34999999]
          labels = ['low', 'mid', 'high', 'top']
```

```
In [32]:
          # apply salary brackets
          df['Salary Bin'] = pd.cut(df['Salary'], bins=bins, labels=labels)
```

Out[32]:

	Year	Full Name	Age	Salary	ERA	Hits	Earned Runs	Strike Outs	Home Runs	Wins	Losses	Outs Pitched	Faced by Pitcher	Games Finished
0	1990	AbbottJim	23	185000	4.51	246	106	105	16	10	14	635	925	0
1	1990	AbbottPaul	23	100000	5.97	37	23	25	0	0	5	104	162	0
2	1990	AldredScott	22	100000	3.77	13	6	7	0	1	2	43	63	0
3	1990	AndersonAllan	26	300000	4.53	214	95	82	20	7	18	566	797	0
4	1990	AppierKevin	23	100000	2.76	179	57	127	13	12	8	557	784	1

 2016													
2016				•••									
	WorleyVance	29	2600000	3.53	84	34	56	11	2	2	260	365	13
2016	WrightMike	26	510500	5.79	81	48	50	12	3	4	224	328	5
2016	WrightSteven	32	514500	3.33	138	58	127	12	13	6	470	656	0
2016	YoungChris	37	4250000	6.19	104	61	94	28	3	9	266	406	7
2016	ZimmermannJordan	30	18000000	4.87	118	57	66	14	9	7	316	450	1
ows ×	20 columns												
	2016 2016 2016 2016	2016 WrightMike 2016 WrightSteven 2016 YoungChris	2016 WrightMike 26 2016 WrightSteven 32 2016 YoungChris 37 2016 ZimmermannJordan 30	2016 WrightMike 26 510500 2016 WrightSteven 32 514500 2016 YoungChris 37 4250000 2016 ZimmermannJordan 30 18000000	2016 WrightMike 26 510500 5.79 2016 WrightSteven 32 514500 3.33 2016 YoungChris 37 4250000 6.19 2016 ZimmermannJordan 30 18000000 4.87	2016 WrightMike 26 510500 5.79 81 2016 WrightSteven 32 514500 3.33 138 2016 YoungChris 37 4250000 6.19 104 2016 ZimmermannJordan 30 18000000 4.87 118	2016 WrightMike 26 510500 5.79 81 48 2016 WrightSteven 32 514500 3.33 138 58 2016 YoungChris 37 4250000 6.19 104 61 2016 ZimmermannJordan 30 18000000 4.87 118 57	2016 WrightMike 26 510500 5.79 81 48 50 2016 WrightSteven 32 514500 3.33 138 58 127 2016 YoungChris 37 4250000 6.19 104 61 94 2016 ZimmermannJordan 30 18000000 4.87 118 57 66	2016 WrightMike 26 510500 5.79 81 48 50 12 2016 WrightSteven 32 514500 3.33 138 58 127 12 2016 YoungChris 37 4250000 6.19 104 61 94 28 2016 ZimmermannJordan 30 18000000 4.87 118 57 66 14	2016 WrightMike 26 510500 5.79 81 48 50 12 3 2016 WrightSteven 32 514500 3.33 138 58 127 12 13 2016 YoungChris 37 4250000 6.19 104 61 94 28 3 2016 ZimmermannJordan 30 18000000 4.87 118 57 66 14 9	2016 WrightMike 26 510500 5.79 81 48 50 12 3 4 2016 WrightSteven 32 514500 3.33 138 58 127 12 13 6 2016 YoungChris 37 4250000 6.19 104 61 94 28 3 9 2016 ZimmermannJordan 30 18000000 4.87 118 57 66 14 9 7	2016 WrightMike 26 510500 5.79 81 48 50 12 3 4 224 2016 WrightSteven 32 514500 3.33 138 58 127 12 13 6 470 2016 YoungChris 37 4250000 6.19 104 61 94 28 3 9 266 2016 ZimmermannJordan 30 18000000 4.87 118 57 66 14 9 7 316	2016 WrightMike 26 510500 5.79 81 48 50 12 3 4 224 328 2016 WrightSteven 32 514500 3.33 138 58 127 12 13 6 470 656 2016 YoungChris 37 4250000 6.19 104 61 94 28 3 9 266 406 2016 ZimmermannJordan 30 18000000 4.87 118 57 66 14 9 7 316 450

Encode Salary Bins column

```
In [39]:
# encode object features
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
encoded_df = df.copy()
df['Salary Bin'] = le.fit_transform(df['Salary Bin'])

df.head()
```

Out[39]:

:		ERA	Hits	Earned Runs	Strike Outs	Home Runs	Wins	Losses	Outs Pitched	Batters Faced by Pitcher	Games Finished	Weight	Height	Games Started	Salary Bin
	0	4.51	246	106	105	16	10	14	635	925	0	200	75	33	1
	1	5.97	37	23	25	0	0	5	104	162	0	185	75	7	1
	2	3.77	13	6	7	0	1	2	43	63	0	195	76	3	1
	3	4.53	214	95	82	20	7	18	566	797	0	178	71	31	1
	4	2.76	179	57	127	13	12	8	557	784	1	180	74	24	1

```
In [33]: # drop unnecessary columns
df= df.drop(["Full Name","Team","League","Age","Year","Salary"],1)
df.head()
```

C:\Users\alyss\anaconda3\envs\mlenv\lib\site-packages\ipykernel_launcher.py:1: FutureWarning: In a future
version of pandas all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only
"""Entry point for launching an IPython kernel.

Out[33]:

•		ERA	Hits	Earned Runs	Strike Outs	Home Runs	Wins	Losses	Outs Pitched	Batters Faced by Pitcher	Games Finished	Weight	Height	Games Started	Salary Bin	
	0	4.51	246	106	105	16	10	14	635	925	0	200	75	33	low	
	1	5.97	37	23	25	0	0	5	104	162	0	185	75	7	low	
	2	3.77	13	6	7	0	1	2	43	63	0	195	76	3	low	
	3	4.53	214	95	82	20	7	18	566	797	0	178	71	31	low	
	4	2.76	179	57	127	13	12	8	557	784	1	180	74	24	low	

Split into features and target

- y variable: Our target variable, Salary
- X variable: Our features; just drop Salary and Full Name

```
In [40]:
# Split our preprocessed data into our features and target arrays
y = df["Salary Bin"].values
X = df.drop(["Salary Bin"],1).values

# Split the preprocessed data into a training and testing dataset
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=1)
```

C:\Users\alyss\anaconda3\envs\mlenv\lib\site-packages\ipykernel_launcher.py:3: FutureWarning: In a future version of pandas all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only This is separate from the ipykernel package so we can avoid doing imports until

Build and Instantiate StandardScaler object, then standardize numerical features

```
In [41]: # Create a StandardScaler instance
scaler = StandardScaler()

# Fit the StandardScaler
X_scaler = scaler.fit(X_train)

# Scale the data
X_train_scaled = X_scaler.transform(X_train)
X_test_scaled = X_scaler.transform(X_test)
```

Build Neural Net Framework

```
In [42]:
          # Define the model - deep neural net
          number input features = len(X train[0])
          hidden nodes layer1 = 50
          hidden nodes layer2 = 40
          hidden nodes layer3 = 30
          nn = tf.keras.models.Sequential()
          # First hidden Layer
          nn.add(
              tf.keras.layers.Dense(units=hidden_nodes_layer1, input_dim=number_input_features, activation="tanh")
          # Second hidden Layer
          nn.add(tf.keras.layers.Dense(units=hidden_nodes_layer2, activation="relu"))
          nn.add(tf.keras.layers.Dense(units=hidden nodes layer3, activation="relu"))
          # Output Layer
          nn.add(tf.keras.layers.Dense(units=1, activation="sigmoid"))
          # Check the structure of the model
          nn.summary()
```

Model: "sequential_1"

Layer (type) Output Shape Param #

```
dense_4 (Dense)
                       (None, 50)
                                           700
dense 5 (Dense)
                       (None, 40)
                                           2040
dense_6 (Dense)
                       (None, 30)
                                           1230
dense 7 (Dense)
                       (None, 1)
                                           31
______
Total params: 4.001
Trainable params: 4,001
Non-trainable params: 0
```

Compile the Model

```
# Compile the model
nn.compile(loss="CategoricalCrossentropy", optimizer="adam", metrics=["accuracy"])
```

Train the model

Epoch 23/200

```
In [48]:
  # Train the model
  fit_model = nn.fit(X_train,y_train,epochs=200)
  Epoch 1/200
  Epoch 2/200
  Epoch 3/200
  Epoch 4/200
  Epoch 5/200
  Epoch 6/200
  Epoch 7/200
  116/116 [============== ] - 0s 661us/step - loss: 0.0000e+00 - accuracy: 0.3787
  Epoch 8/200
  Epoch 9/200
  116/116 [=================== ] - 0s 626us/step - loss: 0.0000e+00 - accuracy: 0.3787
  Epoch 10/200
  Epoch 11/200
  Epoch 12/200
  Epoch 13/200
  Epoch 14/200
  Epoch 15/200
  Epoch 16/200
  Epoch 17/200
  Epoch 18/200
  Epoch 19/200
  Epoch 20/200
  Epoch 21/200
  Epoch 22/200
```

```
Epoch 24/200
116/116 [============ ] - 0s 635us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 25/200
Epoch 26/200
116/116 [============ ] - 0s 687us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 27/200
Epoch 28/200
116/116 [============ ] - 0s 635us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 29/200
Epoch 30/200
Epoch 31/200
116/116 [============== ] - 0s 678us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 32/200
Epoch 33/200
Epoch 34/200
Epoch 35/200
116/116 [============== ] - 0s 626us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 36/200
116/116 [============ ] - 0s 635us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 37/200
Epoch 38/200
116/116 [============== ] - 0s 635us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 39/200
Epoch 40/200
Epoch 41/200
Epoch 42/200
Epoch 43/200
Epoch 44/200
Epoch 45/200
116/116 [============= - 0s 643us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 46/200
Epoch 47/200
116/116 [=================== ] - 0s 635us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 48/200
Epoch 49/200
Epoch 50/200
116/116 [============== ] - 0s 626us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 51/200
Fnoch 52/200
Epoch 53/200
Epoch 54/200
116/116 [============== ] - 0s 626us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 55/200
Epoch 56/200
Epoch 57/200
116/116 [============ ] - 0s 652us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 58/200
Epoch 59/200
116/116 [============== ] - 0s 635us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 60/200
Epoch 61/200
```

```
Epoch 62/200
116/116 [============ ] - 0s 635us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 63/200
Fnoch 64/200
116/116 [============ ] - 0s 635us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 65/200
Epoch 66/200
116/116 [============ ] - 0s 635us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 67/200
Epoch 68/200
Epoch 69/200
116/116 [============== ] - 0s 626us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 70/200
Epoch 71/200
Epoch 72/200
Epoch 73/200
Epoch 74/200
116/116 [============= - 0s 661us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 75/200
Epoch 76/200
116/116 [============== ] - 0s 626us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 77/200
Epoch 78/200
Epoch 79/200
Epoch 80/200
116/116 [============== ] - 0s 635us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 81/200
Epoch 82/200
Epoch 83/200
116/116 [============= - 0s 661us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 84/200
Epoch 85/200
116/116 [=================== ] - 0s 652us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 86/200
Epoch 87/200
Epoch 88/200
116/116 [============== ] - 0s 635us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 89/200
Fnoch 90/200
Epoch 91/200
Epoch 92/200
116/116 [============== ] - 0s 635us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 93/200
Epoch 94/200
Epoch 95/200
116/116 [============= - 0s 643us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 96/200
Epoch 97/200
116/116 [============= ] - 0s 687us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 98/200
Epoch 99/200
```

```
Epoch 100/200
116/116 [============ ] - 0s 652us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 101/200
Epoch 102/200
116/116 [============= - 0s 643us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 103/200
Epoch 104/200
116/116 [============ ] - 0s 626us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 105/200
Epoch 106/200
Epoch 107/200
116/116 [============== ] - 0s 635us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 108/200
Epoch 109/200
Epoch 110/200
Epoch 111/200
116/116 [============== ] - 0s 635us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 112/200
116/116 [============ ] - 0s 626us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 113/200
Epoch 114/200
Epoch 115/200
Epoch 116/200
Epoch 117/200
Epoch 118/200
116/116 [============== ] - 0s 626us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 119/200
Epoch 120/200
Epoch 121/200
116/116 [============= - 0s 652us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 122/200
Epoch 123/200
116/116 [=================== ] - 0s 661us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 124/200
Epoch 125/200
Epoch 126/200
116/116 [============== ] - 0s 626us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 127/200
Fnoch 128/200
116/116 [============== ] - 0s 619us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 129/200
Epoch 130/200
Epoch 131/200
Epoch 132/200
Epoch 133/200
116/116 [============ ] - 0s 635us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 134/200
Epoch 135/200
116/116 [============== ] - 0s 635us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 136/200
Epoch 137/200
```

```
Epoch 138/200
116/116 [============= - 0s 643us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 139/200
Epoch 140/200
116/116 [============ ] - 0s 635us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 141/200
Epoch 142/200
116/116 [============= - 0s 643us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 143/200
Epoch 144/200
Epoch 145/200
Epoch 146/200
Epoch 147/200
Epoch 148/200
Epoch 149/200
116/116 [============== ] - 0s 635us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 150/200
116/116 [============= - 0s 661us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 151/200
Epoch 152/200
116/116 [============== ] - 0s 687us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 153/200
Epoch 154/200
116/116 [============= ] - 0s 661us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 155/200
Epoch 156/200
116/116 [============== ] - 0s 635us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 157/200
Epoch 158/200
Epoch 159/200
116/116 [============ ] - 0s 670us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 160/200
Epoch 161/200
116/116 [=================== ] - 0s 661us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 162/200
Epoch 163/200
Epoch 164/200
116/116 [============== ] - 0s 678us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 165/200
Fnoch 166/200
Epoch 167/200
Epoch 168/200
116/116 [============== ] - 0s 652us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 169/200
Epoch 170/200
Epoch 171/200
116/116 [============= - 0s 861us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 172/200
Epoch 173/200
116/116 [============== ] - 0s 652us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 174/200
Epoch 175/200
```

```
Fnoch 176/200
Epoch 177/200
Epoch 178/200
116/116 [============= - 0s 644us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 179/200
Epoch 180/200
Epoch 181/200
Epoch 182/200
Fnoch 183/200
Epoch 184/200
Epoch 185/200
Epoch 186/200
Epoch 187/200
116/116 [============== ] - 0s 687us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 188/200
116/116 [============ ] - 0s 643us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 189/200
Epoch 190/200
116/116 [============== ] - 0s 652us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 191/200
Epoch 192/200
116/116 [============= ] - 0s 644us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 193/200
Epoch 194/200
116/116 [============== ] - 0s 774us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 195/200
Epoch 196/200
Epoch 197/200
Epoch 198/200
Epoch 199/200
116/116 [============ ] - 0s 670us/step - loss: 0.0000e+00 - accuracy: 0.3787
Epoch 200/200
```