

## **Cost and Revenue Curves**

Unit 4

Lecture Hours 6

## **Contents**

- Cost function. Various concepts of costs: opportunity cost, explicit and implicit costs, accounting and economic costs.
- Short run costs: Behavior of short run total costs, Behavior of average and marginal cost curves, Relation between AC and MC, TVC and MC, AC and AFC and AVC.
- Long run costs, Meaning, Derivation of U-shaped and L-shaped LAC with reasons.
- Revenue: Revenue under perfect competition, Revenue under imperfect competition, Relationship of Revenues (TR, AR and MR) with price elasticity of demand.

## **Cost and Cost Function**

#### Cost:

\* Cost is defined as the amount that is incurred by any firm while production of goods and services.

#### • Cost Function:

- \* Cost function expresses a relation between cost and output.
- \* C = f (Q, T, P) where Q is quantity of output, T is the technology and P is the price of factor input (labour and capital).

# **Various Concept of Costs**

#### • Actual Cost:

- \* Actual expenses of hiring land, labor, capital and management.
- \* Recorded in books of account.

### Opportunity Cost:

- \* The opportunity cost of a particular alternative is the payment related to the best of the alternatives that are not chosen.
- \* It is the value of the next best alternative that is forgone when another alternative is chosen.
- \* Always present when a choice is made.

# **Opportunity Cost**



# **Explicit and Implicit Costs**

#### • Explicit Cost:

- \* Actual expenses of hiring land, labor, capital and management.
- \* Recorded in books of account.
- \* Monetary payments made and involve cash transactions. Eg: Land, Labour, Capital.

#### • Implicit Cost:

- \* The value of inputs owned and used by the firm
- \* They are the opportunity costs of using the resources that it already owns to make the firm's product rather than selling those resources to outsiders for cash.
- \* Use of time, capital, opportunity missed.

## **Accounting and Economic Costs**

#### Accounting Cost:

- \* Costs that would appear on accounting statements of a firm under government auditing regulations and standards.
- \* They are explicit cost incurred in the past.
- \* Includes amount spent on labour, materials, administration, depreciation, etc.

#### • Economic Cost:

- \* Wider concept. Cost to a firm of utilizing economic resources in production.
- \* Includes explicit and implicit costs (like opportunity costs).

## **Short Run Costs**

#### Short Run Cost:

- \* Includes day-to-day production decisions faced by most firms as they combine labour and other variable inputs with a factory, production facility, for fixed capital.
  - TC = f (Q, T,  $P_f$ ,  $\check{K}$ )
  - TC Total cost
  - Q Output, T Technology, P<sub>f</sub> Price of Factors, K- Fixed Factors.
- Technology here is related to the efficiency of entrepreneur, physical quantity of inputs while organizing production activity.

## **Short Run Total Costs**

#### I. Total Fixed Cost (TFC):

- \* Total amount of price or money paid to the fixed factors in the production process in a period of time is known as total fixed cost (TFC).
- \* This cost remains constant whatever be the level of production.
- \* Example: rent of buildings, cost of leased capital equipment, cost of full time contracted salaried staff, interest rate on loans, depreciation of fixed capital, property taxes, insurance payments, etc.
- \* Must be paid even when output is zero.

## **Short Run Total Costs**

#### **II.** Total Variable Cost (TVC):

- \* Total amount of price or money that varies with the amount of factors involved in production process in a period of time is known as total variable cost (TVC).
- \* This cost varies with the level of production.
- \* Example: wages of part time workers, expenses on electricity, fuel, raw materials, etc.
- \* TVC = f(Q)
- \* Must be paid even when output is zero. Inverted S shape.

#### **III.** Total Short Run Costs:

- \* Sum of fixed and variable cost at each output level. Inverted S shape.
- \* TC = TFC + TVC

## **Short Run Average Fixed and Variable Costs**

#### I. Average Fixed Cost (AFC):

- \* Total fixed cost divided by total produced quantity.
- \* Also called per unit cost of fixed factor. When output increases, it falls continuously at diminishing rate.
- \*  $AFC = TFC \div Q$
- \* Must be paid even when output is zero.

#### **II.** Average Variable Costs (AVC):

- \* Total variable cost divided by the total produced quantity.
- \* Also called per unit cost of variable factor.
- \* When, TVC increases at decreasing rate, the AVC decreases and vice versa.
- $AVC = TVC \div Q$

## **Short Run Average Costs**

## **III.** Average Cost (AC):

- \* The outcome of total cost divided by total produced quantity is average cost.
- \* In short run, AC = AFC + AVC. i.e.

$$AC = \frac{TC}{Q}$$

$$= \frac{[TFC + TVC]}{Q}$$

$$= \frac{TFC}{Q} + \frac{TVC}{Q} = AFC + AVC$$

# **Short Run Marginal Costs (SMC)**

### Marginal Cost (MC):

- \* Additional increase in the total cost while producing additional quantity of output.
- \* In short run, marginal cost is the ratio of change in the total variable cost with change in output. i.e.

$$\begin{split} &\text{MC} = \frac{\Delta TVC}{\Delta Q} \\ &\text{Also}, \text{MC}_n = TC_n - TC_{n-1} \\ &= [\text{TFC} + \text{TVC}_n] - [\text{TFC} + \text{TVC}_{n-1}] \\ &= \text{TFC} + \text{TVC}_n - \text{TFC} - \text{TVC}_{n-1} \\ &= \text{TVC}_n - \text{TVC}_{n-1} \end{split}$$

| Output | TFC | AFC | TVC | AVC | AC | MC                   |
|--------|-----|-----|-----|-----|----|----------------------|
| 0      | 200 | -   | 0   |     |    |                      |
| 1      | 200 |     | 20  |     |    |                      |
| 2      | 200 |     | 36  |     |    |                      |
| 3      | 200 |     | 48  |     |    |                      |
| 4      | 200 |     | 64  |     |    |                      |
| 5      | 200 |     | 100 |     |    |                      |
| 6      | 200 |     | 160 |     |    |                      |
| 7      | 200 |     | 248 |     |    |                      |
| 8      | 200 |     | 360 |     |    |                      |
| 9      | 200 |     | 520 |     |    |                      |
|        |     |     |     |     |    | @ Dahul Dhugal Charm |

## **Behaviour of Short Run Costs**

- Behavior of short run Total Costs
  - Page 199, S shaped Question.
  - Relationship between TP and TC
- Behavior of Average and Marginal cost curves:
  - Refer Page 201 and 202.
- Relation between AC and MC
  - Page no. 205.
- Relation between AC and AFC and AVC.
  - Page 207.
- Relation between TVC and MC
  - Page 208

## **Long Run Costs and Cost Curves**

#### Long Run Cost:

- \* It can be defined as the cost incurred while production of goods and services in the long run.
- \* In the long run all costs are considered variable costs.

### Long Run Average Cost (LAC):

- \* The per unit cost of factors of production in the long run.
- \* Total long run cost divided by total quantity produced.
- \* Derived by joining all points of short run average cost curves then the firm can shift from one plant to the another.

## **Long Run Costs Derivation**



©Rahul Bhusal Sharma

# **Long Run Costs Derivation**



# L Shaped Scale Curve



# **Revenue: Meaning and Types**

#### • Revenue:

- \* Sales receipts that a firm receives after selling the output at a given price.
- \* In the long run all costs are considered variable costs.

#### Types/Concepts:

- \* Total Revenue (TR):
  - Total sales receipts that a firm receives from the sale of its products,
  - $TR = P \times Q$

## **Revenue: Meaning and Types**

- Types or Concepts of Revenue:
  - \* Average Revenue (AR):
    - Revenue received per unit of output. It is per unit price.
    - $AR = TR \div Q = (P \times Q) \div Q = P$
  - \* Marginal Revenue (MR):
    - The rate of change in revenue due to the change in output.
    - The addition made to total revenue by selling one more unit of output.
    - $MR = \Delta TR \div \Delta Q$  or,  $MR = TR_{n-1}$

# **Revenue Under Perfect Competition**

- Perfect competition is a market structure where there are large number of buyers and sellers of homogeneous product.
- Price determined by interaction of buyers and sellers.
  - Firm is a price taker.
- Everyone has perfect knowledge about market.
- Perfect price elasticity of demand as MR never changes.

# **Revenue Under Perfect Competition**

| Output | Price | TR  | AR | MR |
|--------|-------|-----|----|----|
| 1      | 40    | 40  | 40 | 40 |
| 2      | 40    | 80  | 40 | 40 |
| 3      | 40    | 120 | 40 | 40 |
| 4      | 40    | 160 | 40 | 40 |



# Revenue Under Imperfect Competition a. Monopoly

- Monopoly is a market structure where there is a single seller and there is no close substitutes.
- Price determined by demand of the product.
  - Inverse relation between demand and price.
  - Firm is a price maker.
- Due to inverse relation between price and output, the total revenue increases at a diminishing rate.
- Both AR and MR fall continuously
  - Decreasing rate of MR is greater than AR.

# Revenue Under Imperfect Competition b. Monopolistic Competition

- Monopolistic competition is a market structure where there is firms produce differentiated products with close substitutes.
- Price determined by demand of the product.
  - Inverse relation between demand and price.
  - Firm is a price maker due to differentiated product.
  - Enjoy monopoly power.
- Property of MR, AR and TR is same as in monopoly.

# **Revenue Under Imperfect Competition**

| Output | Price | TR | AR | MR |
|--------|-------|----|----|----|
| 1      | 16    | 16 | 16 | -  |
| 2      | 14    | 28 | 14 | 12 |
| 3      | 12    | 36 | 12 | 8  |
| 4      | 10    | 40 | 10 | 4  |



# Relation between AR and MR and Price Elasticity of Demand 'e'

We know that Total Revenue (TR)

Where P is Price per unit or Average Revenue (AR)

and Qis Quantity of output

Now,

$$TR = ARxQ$$

Also, MR = 
$$\frac{dTR}{dQ} = \frac{dPQ}{dQ}$$

or, MR=P+Q
$$\frac{dP}{dQ}$$

or, MR=P[1+
$$\frac{Q}{P}\frac{dP}{DQ}$$
].....eqn(i)

Weknow,

Price Elasticity (e) = 
$$-\frac{dQ}{dP} \cdot \frac{P}{Q}$$

or, 
$$\frac{1}{e} = -\frac{1}{\frac{dQ}{dP} \cdot \frac{P}{Q}}$$

or, 
$$-\frac{1}{e} = \frac{Q}{P} \frac{dP}{DQ}$$

So, from equation (i), We have

$$MR = P\left(1 + \frac{Q}{P} \frac{dP}{DQ}\right)$$

or, MR=P
$$(1+(-\frac{1}{e}))$$

or, MR=AR
$$(1-\frac{1}{e})$$