# MOSFET - Modelagem e Simulação

## **1. Nível 1**

Como no caso do *JFET*, a modelagem em *Nível 1* do *MOSFET* é a mais simples para esse tipo de dispositivo, mas, ao contrário do *JFET*, é mista de elétrica, geométrica e física, embora prioritariamente dê preferência à modelagem elétrica. Embora com pouca precisão, esse modelo conciso é o único apropriado para cálculos manuais.

# 1.1 – Modelagem Estática:

A modelagem estática no *SPICE* permite a simulação e o cálculo do ponto quiescente (.*OP*) e a simulação de varreduras com fontes de tensão e/ou de correntes contínuas (.*DC*). Os parâmetros de modelagem estática em *Nível 1* estão listados na Tabela 1.

| Descrição                          | Parâm.               | SPICE        | Unidade              | Def.     |
|------------------------------------|----------------------|--------------|----------------------|----------|
| Coeficiente de Transcondutância    | $K_P$                | KP           | $A/V^2$              | 20μ      |
| Tensão de Limiar Inicial           | $V_{To}$             | VTO          | V                    | 0        |
| Modulação de Comprim. de Canal     | λ                    | LAMBDA       | 1/V                  | 0        |
| Potencial de Fermi do Substrato    | $2\phi_{Fx}$         | ф            | V                    | 0,6      |
| Sensibilidade de Corpo             | γ                    | GAMMA        | $V^{1/2}$            | -        |
| Densidade de Dopagem do Substrato  | $N_a, N_d$           | <b>NSUB</b>  | cm <sup>-3</sup>     | -        |
| Espessura do Óxido de Porta        | $t_{ox}$             | TOX          | m                    | -        |
| Material do gate                   | $T_{PG}$             | TPG          |                      | +1       |
| Densidade de Estados de Superfície | $N_{SS}$             | NSS          | cm <sup>-2</sup>     | -        |
| Mobilidade de Superfície           | $\mu_o$              | UO           | $cm^2/V.s$           | 600      |
| Resistência de Perdas do Gate      | $r_G$                | RG           | $\Omega$             | 0        |
| Resistência de Perdas do Dreno     | $r_D$                | RD           | $\Omega$             | 0        |
| Resistência de Perdas da Fonte     | $r_S$                | RS           | Ω                    | 0        |
| Resistência de Perdas do Bulk      | $r_B$                | RB           | $\Omega$             | 0        |
| Resistência Dreno/Fonte            | $R_{DS}$             | RDS          | $\Omega$             | $\infty$ |
| Resistência de Folha D/S           | $R_{SH}$             | RSH          | $\Omega$ / $\square$ | 0        |
| Corrente de Saturação das Junções  | $I_S$                | IS           | A                    | 10f      |
| Coeficiente de Emissão das Junções | N                    | N            | -                    | 1        |
| Densidade de Corrente de Saturação | $oldsymbol{J}_S$     | JS           | $A/m^2$              | 0        |
| Densidade de Corrente das Paredes  | $oldsymbol{J}_{SSW}$ | <b>JSSW</b>  | A/m                  | 0        |
| Difusão Lateral em $L$             | $L_D$                | LD           | m                    | 0        |
| Difusão Lateral em W               | $W_D$                | WD           | m                    | 0        |
| Comprimento de Canal <sup>*</sup>  | $\boldsymbol{L}$     | L            | m                    | 100μ     |
| Largura de Canal <sup>*</sup>      | $oldsymbol{W}$       | $\mathbf{W}$ | m                    | $100\mu$ |

Tabela 1 – Parâmetros Estáticos de Modelagem em *Nível 1*.

## 1.1.1 – Equações elétricas, com informações geométricas, para MOSFET canal n:

- Corte: Se  $V_{GS} \leq |V_{Th}| \Longrightarrow I_D = 0$ .

- **Tríodo**: Se  $V_{GS} > |V_{Th}|$  e  $V_{DS} \le V_{GS} - V_{Th} \Longrightarrow$ 

$$I_{Di} = \frac{W_{ef}}{L_{ef}} \times \frac{K_P}{2} \times \left[2(V_{GSi} - V_{Th}) - V_{DSi}\right] \times V_{DSi} \times (1 + \lambda V_{DSi})$$

- **Pêntodo**: Se  $V_{GS} > |V_{Th}|$  e  $V_{DS} \ge V_{GS} - V_{Th} \Longrightarrow$ 

$$I_{Di} = \frac{W_{ef}}{L_{ef}} \times \frac{K_P}{2} \times (V_{GSi} - V_{Th})^2 \times (1 + \lambda V_{DSi})$$

Onde:

$$W_{ef} = W - 2W_D$$
 e  $L_{ef} = L - 2L_D$ 

$$I_{BS} = I_{SS} \left( e^{\frac{V_{BSi}}{NV_t}} - 1 \right)$$
 e  $I_{BD} = I_{SS} \left( e^{\frac{V_{BDi}}{NV_t}} - 1 \right)$ 

$$I_{SS} = A_S \times J_S + P_S \times J_{SSW}$$
;  $I_{DS} = A_D \times J_S + P_D \times J_{SSW}$ 

ou

$$I_{SS} = I_{DS} = I_S$$
 se  $A_S = A_D = 0$  ou se  $J_S = 0$ 

Onde  $A_S$  e  $A_D$  são, respectivamente, as áreas das junções da fonte e do dreno e  $P_S$  e  $P_D$ , os seus perímetros. As correntes finais dos terminais externos do MOSFET valem:

$$I_D = I_{Di} - I_{BD}$$
 ;  $I_S = -I_{Di} - I_{BS}$  ;  $I_B = I_{BS} + I_{BD}$  e  $I_G = 0$ 

As tensões  $V_{GSi}$ ,  $V_{DSi}$ ,  $V_{BSi}$  e  $V_{BDi}$  são tensões entre os terminais internos do MOSFET.

## 1.1.2 – Equações físicas para MOSFET canal n:

Se os parâmetros  $K_P$ ,  $V_{To}$  e  $\lambda$  forem fornecidos pelo usuário, eles são <u>usados</u> <u>prioritariamente</u> pelo *SPICE*. Caso contrário, eles são calculados pelo simulador, se os parâmetros  $t_{ox}$ ,  $N_{SUB}$ ,  $T_{PG}$ ,  $N_{SS}$  e  $\mu_o$  forem fornecidos, ou são usados à revelia (*default*) se não forem fornecidos. O simulador não calcula o valor de  $\lambda$ , por isso ele deve ser fornecido ou usado à revelia ( $\lambda = 0$ ), se não for fornecido. Os cálculos executados são:

$$K_P = \mu_o C_{ox}$$
 e  $V_{To} = V_{FB} + \gamma \sqrt{\emptyset} + \emptyset$ 

Onde:

$$V_{FB} = \emptyset_{ms} - \frac{Q_{ss}}{c_{ox}}$$
;  $C_{ox} = \frac{\varepsilon_{ox}}{t_{ox}}$ ;  $\emptyset = 2\emptyset_F = 2V_t ln\left(\frac{N_{sub}}{n_i}\right)$ ;  $\gamma = \frac{\sqrt{2q\varepsilon_{si}N_{SUB}}}{c_{ox}}$ 

e

$$\phi_{ms} = -0.61(1 - |T_{PG}|) - 0.5575T_{PG} - \frac{\phi}{2}$$

Se a fonte do MOSFET não estiver ligada ao substrato ( $V_{SB} \neq 0$ ), então a nova tensão de limiar passa a valer:

$$V_{Th} = V_{To} + \gamma \left[ \sqrt{(\emptyset - V_{BSi})} - \sqrt{\emptyset} \right]$$



Figura 1 - Modelo Completo do MOSFET.

A tensão de banda plana ( $V_{FB}$ ) é a tensão que, quando aplicada entre o *gate* e o substrato do *MOSFET*, equilibra eletricamente o dispositivo, isto é, anula os efeitos de influência do metal de porta, das cargas parasitas armazenadas no óxido e da implantação iônica de canal sobre o substrato. Em outras palavras, a tensão de banda plana anula qualquer efeito de acumulação, de inversão ou de depleção de cargas no substrato. Essa tensão, no simulador, é composta por dois termos: o da influência do metal ( $\phi_{ms}$ ) e das cargas parasitas ( $Q_{SSef} + Q_{(III)}$ ) sobre o substrato.

A influência do metal é definida pelo parâmetros  $T_{PG}$ , que define o material do *gate*. Se o metal do *gate* for alumínio, então  $T_{PG} = 0$ . Se o *gate* for de poli-silício degenerado com dopagem oposta ao do substrato ( $\mathbf{n}^+$ , para substrato p) então  $T_{PG} = +1$ . Se o *gate* for de poli-silício degenerado com dopagem equivalente ao do substrato ( $\mathbf{p}^+$ , para substrato p) então  $T_{PG} = -1$ .

As cargas parasitas são calculadas pelo simulador através do termo  $qN_{SS}$ , onde q é a carga do elétron e  $N_{SS}$  é o parâmetro de densidade de estados de superfície, que engloba as cargas parasitas armazenadas no óxido ( $Q_{ssef}$ ) e as cargas de implantação iônica do substrato ( $Q_{(III)}$ ). Então no cálculo de  $V_{FB}$ ,  $Q_{SS} = qN_{SS}$ .

A Figura l mostra o modelo completo do MOSFET usado para estipular as grandezas usadas na modelagem do dispositivo. Em cálculos manuais, para componentes prontos, o modelo puramente elétrico é usado. Nesse caso, as resistências de perdas internas  $(r_D, r_G, r_S, r_B \in R_{SH})$  são anuladas, fazendo com que os potenciais internos igualem-se aos externos. Os parâmetros de geometria também podem ser eliminados, fazendo-se:



Figura 2 – Modelo de Pequenos Sinais do MOSFET, com  $V_{SB} = 0$ .

$$\beta_n = \frac{W_{eff}}{L_{eff}} \mu_n C_{ox}$$
 e  $\beta_p = \frac{W_{eff}}{L_{eff}} \mu_p C_{ox}$  [A/V<sup>2</sup>]

Assim, para cálculos manuais com componentes prontos, pode-se usar:

$$I_D = IFTE(V_{DS} \ge V_{Dsat}, I_{Dp}, I_{Dt})$$

Onde:

$$I_{Dt} = \frac{1}{2} \times \beta \times [2(V_{GS} - V_{To}) - V_{DS}] \times V_{DS} \times (1 + \lambda V_{DS})$$

$$I_{Dp} = \frac{1}{2} \times \beta \times (V_{GS} - V_{To})^2 \times (1 + \lambda V_{DS})$$

$$V_{Dsat} = V_{GS} - V_{To}$$

# 1.2- Modelagem Dinâmica:

A modelagem dinâmica no *SPICE* permite a simulação e o cálculo de grandezas senoidais de pequenos sinais em função da frequência (AC) e a simulação de transientes de grandes sinais (TRAN) em função do tempo. Os parâmetros de modelagem dinâmica em *Nível 1* estão listados na Tabela 2. As três principais capacitâncias que fazem parte do dispositivo, como mostra a Figura 2, são:  $C_{GD}$ ,  $C_{GS}$  e  $C_{BD}$ . O cálculo de todos esses valores, porém e infelizmente, só podem ser feitos com o conhecimento de parâmetros físicos ou de processo, o que se torna inviável para componentes prontos. Nesse caso deve-se recorrer à folha de dados do componente para a obtenção dessas capacitâncias. Em *Nível 1* essas grandezas são calculadas da seguinte maneira:

$$C_{GS} = C_{gs} + C_{gs(OV)}$$
;  $C_{GD} = C_{gd} + C_{gd(OV)}$  e  $C_{GB} = C_{gb} + C_{gb(OV)}$ 

| Descrição                       | Parâm.       | SPICE | Unidade | Def. |
|---------------------------------|--------------|-------|---------|------|
| Capacitância da Junção BD       | $C_{jo(BD)}$ | CBD   | F       | 0    |
| Capacitância da Junção BS       | $C_{io(BS)}$ | CBS   | F       | 0    |
| Potencial Interno das Junções   | $V_{j}$      | PB    | V       | 0,8  |
| Coeficiente de Gradualidade     | $m_i$        | MJ    | -       | 0,5  |
| Capacitância de Superposição GD | $C_{gd(OV)}$ | CGDO  | F/m     | 0    |
| Capacitância de Superposição GS | $C_{gs(OV)}$ | CGSO  | F/m     | 0    |
| Capacitância de Superposição GB | $C_{gb(OV)}$ | CGBO  | F/m     | 0    |
| Tempo de Trânsito do Substrato  | τ            | TT    | S       | 0    |

Tabela 2 - Parâmetros Dinâmicos de Modelagem em Nível 1.

### 1.2.1- Região de corte:

Para 
$$V_{GS} \le V_{FB}$$
 e  $V_{DS} \ge 0 \Longrightarrow C_{gs} = 0$ ;  $C_{gd} = 0$  e  $C_{gb} = W_{ef}L_{ef}C_{ox}$ 

Para 
$$V_{FB} \le V_{GS} \le V_{Th}$$
 e  $V_{DS} \ge 0 \Longrightarrow C_{gs} = 0$ ;  $C_{gd} = 0$  e  $C_{gb} \le W_{ef} L_{ef} C_{ox}$ 

## 1.2.2 - Região ativa:

- Região tríodo:

$$C_{gb} = 0$$
 ;  $C_{gs} = \frac{2}{3} W_{ef} L_{ef} C_{ox} \frac{1+2x}{(1+x)^2}$  e  $C_{gd} = \frac{2}{3} W_{ef} L_{ef} C_{ox} \frac{(x+2)x}{(1+x)^2}$ 

Onde:

$$x = 1 - \frac{V_{DS}}{V_{Dsat}}$$

- Região pêntodo:

$$C_{gb} = 0$$
 ;  $C_{gs} = \frac{2}{3} W_{ef} L_{ef} C_{ox}$  e  $C_{gd} = 0$ 

- Capacitâncias de superposição:

$$C_{as(OV)} = C_{GSO}W_{ef}$$
;  $C_{ad(OV)} = C_{GDO}W_{ef}$ ;  $C_{ab(OV)} = C_{GBO}L_{ef}$ 

A Figura 3 ilustra as variações das capacitâncias em função de  $V_{DS}$  para a região ativa. As capacitâncias  $C_{bd}$  e  $C_{bs}$  são as capacitâncias das junções BD e BS. Elas são calculadas da mesma maneira que se faz para diodos de junção pn, usando-se os parâmetros  $C_{jo(BD)}$ ,  $C_{jo(BS)}$ ,  $V_j$ ,  $m_j$  e  $\tau$ . Aqui essas capacitâncias foram consideradas desprezíveis.

# 1.3- Modelagem Térmica:

Os parâmetros principais que possuem dependência térmica são:



Figura 3 – Variação de  $C_{gs}$  e de  $C_{gd}$  em Função de  $V_{DS}$  em um MOSFET Polarizado na Região Ativa.

$$\begin{split} \phi_t &= \phi \frac{T}{300.15} - 3V_t ln \left(\frac{T}{300,15}\right) - \frac{T}{300,15} E_G + E_{Gt} \\ E_{Gt} &= 1,16 - \frac{0,000702T^2}{T+1108} \quad \text{e} \quad E_G = 1,11 \, eV \\ K_{Pt} &= K_P \left(\frac{T}{300,15}\right)^{-\frac{3}{2}} \\ \mu_{ot} &= \mu_o \left(\frac{T}{300,15}\right)^{-\frac{3}{2}} \\ I_{St} &= I_S \times e^{\frac{T}{300,15}E_G - E_{Gt}}{V_t} \\ J_{St} &= J_S \times e^{\frac{T}{300,15}E_G - E_{Gt}}{V_t} \\ \end{split}$$

# 1.4- Parâmetros Incrementais de Pequenos Sinais:

Tal qual foi visto para BJT e para o JFET, o MOSFET usa, em análises .AC, um modelo linearizado de pequenos sinais apresentado na Figura 2. Em baixas frequências o circuito resume-se, apenas, a uma fonte de corrente  $g_m v_{GS}$  com a respectiva resistência interna  $r_{ds}$ . Esses parâmetros, chamados  $\pi$ -incrementais, valem:

#### 1.4.1 - Transcondutância:

1.4.1.a – Para a região de saturação ou pêntodo  $(V_{DS_o} \ge V_{Dsat})$ :

$$g_{mp} = \beta \times (V_{GS} - V_{To}) \times (1 + \lambda \times V_{DS}) = \frac{2I_D}{V_{CS} - V_{To}} \quad [A/V]$$

1.4.1.b – Para a região linear ou tríodo  $(V_{DS_Q} \le V_{Dsat})$ :

$$g_{mt} = \beta \times V_{DS} \times (1 + \lambda \times V_{DS})$$
 [A/V]

1.4.1.c – Para qualquer região:

$$g_m = IFTE(V_{DS} \ge V_{Dsat}, g_{mn}, g_{mt})$$

A transcondutância define o poder de variação da corrente de dreno do *MOSFET* em função da variação da tensão entre a porta e a fonte do dispositivo e vale  $g_m = \partial I_D / \partial V_{GS}$ , com  $V_{DS}$  constante.

#### 1.4.2 - Resistência Incremental de Entrada:

Como a porta é um circuito aberto em baixas frequências, a resistência incremental de entrada do MOSFET, dada por  $r_{GS} = \partial V_{GS} / \partial I_G$ , com  $V_{DS}$  constante, é, teoricamente, infinita. Então:  $r_{GS} = \infty$ .

#### 1.4.3 - Resistência Incremental de Saída:

A resistência incremental de saída ou resistência incremental de dreno, dada por  $r_{ds} = \partial V_{DS} / \partial I_D$ , com  $V_{GS}$  constante, representa a resistência interna da fonte de corrente de saída do dispositivo. Vale, portanto:

1.4.3.a - Para a região de saturação ou pêntodo  $(V_{DS_Q} \ge V_{Dsat})$ :

$$r_{dsp} = IFTE(\lambda \neq 0, \frac{1 + \lambda \times V_{DS}}{\lambda \times I_D}, \infty)$$
 [\Omega]

1.4.3.b - Para a região linear ou tríodo  $(V_{DS_o} \le V_{Dsat})$ :

$$r_{dst} = \frac{1}{\beta[(1 + 2\lambda V_{DS})(V_{GS} - V_{TO}) - V_{DS}(1 + 1.5\lambda V_{DS})]} \quad [\Omega]$$



Figura 4 – a.) Resistência de Folha. b.) Estrutura de Corte e de Planta do MOSFET canal n.

1.4.3.c - Para qualquer região:

$$r_{ds} = IFTE(V_{DS} \ge V_{Dsat}, r_{dsp}, r_{dst})$$

## 1.5- Simulação:

Os MOSFET's são explicitados nas netlists do simulador da seguinte forma:

Onde:

 $\mathbf{M_x}$  é a designação dada para *MOSFET* e x é o número da ordem de colocação do componente no esquemático, automaticamente estipulado pelo simulador.

 $N\acute{o}_n^\circ$  estipula o numero do nó de dreno, de *gate*, de fonte e de substrato, respectivamente, no esquemático.

**Nome** é um nome aleatório dado ao componente como, por exemplo, *MYMOS*, *MOSTEC*, *NMOS*, etc..

L e W são, respectivamente, o comprimento e a largura metalúrgicos do canal, medidos em *m*. Esses valores se sobrepõem prioritariamente aos valores fornecidos na descrição do modelo ( *.model* ).

 $\mathbf{AD}$  e  $\mathbf{AS}$  são, respectivamente, as áreas das junções de dreno e fonte, medidos em  $m^2$ .

**PD** e **PS** são, respectivamente, os perímetros das junções de dreno e de fonte, medidos em m.

**NR**\_ são multiplicadores adimensionais, em números de quadrados, da resistência de folha (RSH) de dreno, de fonte, de gate e de substrato. Esses parâmetros servem para calcular as resistências parasitas  $r_S$ ,  $r_D$ ,  $r_G$  e  $r_S$ , se elas não forem fornecidas pelo usuário. Assim:  $r_D = NRD * RSH$ , etc..

**M** é um multiplicador adimensional de paralelismo que coloca m MOSFET's iguais em paralelo. As grandezas multiplicadas por esse multiplicador são:  $W_{ef}$ ,  $C_{BD}$ ,  $C_{BS}$ ,  $C_{GD(OV)}$ ,  $C_{GS(OV)}$ ,  $C_{GB(OV)}$ ,  $I_{BD}$  e  $I_{BS}$ . As grandezas  $r_D$ ,  $r_S$ ,  $r_G$  e  $r_B$  são divididas por m. Se não for fornecido, então m = 1.

Os parâmetros colocados entre [...] são optativos.

A Figura 4a ilustra o conceito de resistência de folha e a Figura 4b estipula os valores das dimensões usadas nos cálculos de AD, AS, PD e PS, que valem:

$$A_D = A_S = (L_1 + L_2 + L_3 + L_D)W + 2x_j(L_1 + L_2 + L_3 + L_D + W)$$

$$P_D = P_S = 2(L_1 + L_2 + L_3 + L_D + W)$$

Exemplo:

# M10 5 7 0 0 MYFET L=6μ W=12μ AD=172.8p AS=172.8p PD=44μ PS=44μ NRD=10 NRS=20 NRG=5

O transistor do exemplo é o décimo MOSFET do circuito, com o dreno ligado ao nó 5, com o gate ligado ao nó 7 e com a fonte e o substrato ligados ao nó de terra. Possui um canal com largura metalúrgica de  $12\mu m$ , comprimento metalúrgico de  $6\mu m$  e se chama MYFET. As áreas de dreno e de fonte valem  $172,8~pm^2$  e os perímetros de dreno e de fonte valem  $44\mu m$ . Se a resistência de folha das difusões de dreno e de fonte forem  $R_{SH} = 15~\Omega/\Box$ , então  $r_S = 300~\Omega$ ,  $r_D = 150~\Omega$  e se a resistência de folha do poli-Si  $n^+$  for  $R_{SH} = 10~\Omega/\Box$ , então  $r_G = 50\Omega$ .

## 1.6- Exercício:

Um *MOSFET* canal **n** foi construído com os seguintes parâmetros físicos/geométricos:  $W = 12 \ \mu m$ ,  $L = 6 \ \mu m$ ,  $t_{ox} = 15 \ nm$ ;  $N_{SUB} = 6 \times 10^{16} \ cm^{-3}$ ;  $Q_{SSef} = 10 \ nC/cm^2$  e  $Q_{(I/I)} = 150,90 \ nC/cm^2$  de boro. O *gate* foi construído com poli-silício **n**<sup>+</sup>. Considerar  $\mu_o = 670 \ cm^2/V.s$  e  $\lambda = L_D = W_D = 0$ . Calcular os parâmetros  $K_P$  e  $V_{To}$  @ 27 °C. Polarizar o *MOSFET* com  $V_{DS} = V_{GS} = 5 \ V$  e calcular  $I_D$ . Comparar o resultado com a simulação feita no *SPICE*. No *LTSpice*, usar:  $\varepsilon_{ox} = 3,4531x10^{-13} \ F/cm$ ,  $\varepsilon_S = 1,05433x10^{-12} \ F/cm$ ,  $q = 1,60114x10^{-19} \ C$  e  $n_i = 1,45x10^{10} \ cm^{-3}$ . Resp.: TPG = +1,  $N_{SS} = -1,005x10^{12} \ cm^{-2}$ ;  $V_{To} = 1,0844V$ ;  $K_P = 154,24\mu A/V^2$ ;  $I_D = 2,3648 \ mA$  (p/  $V_{DS} = V_{GS} = 5V$ );  $C_{ox} = 230,2nF/cm^2$ ;  $C_{ox} = 0,16575 \ pF$ ;  $C_{gs} = 0,1105pF$  e  $C_{gd} = 0$ .