BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-223590

(43) Date of publication of application: 26.08.1997

(51)Int.CI.

H05B 41/29

(21)Application number: 08-030876

(71)Applicant:

DENSO CORP

(22)Date of filing:

10 02 1006

(72)Inventor:

TOYAMA KOICHI KATO KOICHI

AIDA KENJI

(54) DISCHARGE LAMP LIGHTING DEVICE

(57)Abstract:

PROBLEM TO BE SOLVED: To transfer up to a relatively small electric power control condition at stable time from large electric power control at starting time by an extremely simple means.

SOLUTION: A first lamp voltage detecting circuit 54 outputs a signal (i3) increasing as lamp voltage increases over a high area from a low area of lamp voltage of a discharge lamp 2. A second lamp voltage detecting circuit 56 outputs a signal (i6) which increases as the lamp voltage increases in a low area and maintains a constant value in a high area of the lamp voltage regardless of the lamp voltage. A resistance 145 outputs a signal (i4) according to a lamp electric current. A time constant circuit outputs a signal on which an increasing rate reduces as time passes. An error amplifying circuit 53 controls electric power to be supplied to the discharge lamp on the basis of an added value Vx of the respective signals (i3, i4 and i6) or the like.

LEGAL STATUS

[Date of request for examination]

03.06.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

3379325

13.12.2002

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

全項目

(19)【発行国】日本国特許庁(JP)

(12)【公報種別】公開特許公報(A)

(11) 【公開番号】特開平9-223590

(43)【公開日】平成9年(1997)8月26日

(54)【発明の名称】放電灯点灯装置

(51)【国際特許分類第6版】

H05B 41/29

[FI]

H05B 41/29

C

【審查請求】未請求

【請求項の数】4

【出願形態】OL

【全頁数】9

(21) 【出願番号】特願平8-30876

(22)【出願日】平成8年(1996)2月19日

(71)【出願人】

【識別番号】000004260

【氏名又は名称】株式会社デンソー

【住所又は居所】愛知県刈谷市昭和町1丁目1番地

(72)【発明者】

【氏名】外山 耕一

【住所又は居所】愛知県刈谷市昭和町1丁目1番地 日本電装株式会社内

(72)【発明者】

【氏名】加藤 公一

【住所又は居所】愛知県刈谷市昭和町1丁目1番地 日本電装株式会社内

(72)【発明者】

【氏名】会田 健二

【住所又は居所】愛知県刈谷市昭和町1丁目1番地 日本電装株式会社内 (74)【代理人】

【弁理士】

【氏名又は名称】飯田 堅太郎

(57)【要約】

【課題】 極めて簡単な手段によって、始動時の大きな電力制御から安定時の相対的に小さな電力 制御状態まで移行せしめること。

【解決手段】第1のランプ電圧検出回路54は、放電灯2のランプ電圧の低い領域から高い領域にわたってランプ電圧が増大するにしたがって増大する信号 i_3 を出力する。第2のランプ電圧検出回路56は、ランプ電圧が低い領域においてランプ電圧が増大するにしたがって増大し、ランプ電圧の高い領域においてランプ電圧によらず一定の値を維持する信号 i_6 を出力する。抵抗45は、ランプ電流に応じた信号 i_4 を出力する。時定数回路は、時間が経過するにしたがい増加割合が減少する信号を出力する。誤差増幅回路53は、各信号 i_3 、 i_4 、 i_6 などの加算値 V_X に基づいて、放電灯2に供給すべき電力を制御する。

【特許請求の範囲】

【請求項1】少なくとも放電灯のランプ電圧が高い領域においてランプ電圧に応じた信号を出力する第1のランプ電圧検出手段と、放電灯のランプ電圧が低い領域においてランプ電圧に応じた信号を出力する第2のランプ電圧検出手段と、放電灯のランプ電流に応じた信号を出力するランプ電流検出手段と、第1、第2のランプ電圧とランプ電流とに応じた信号の加算値に基づいて、放電灯に供給すべき電力を制御する電力制御手段とを備えることを特徴とする放電灯点灯装置。 【請求項2】請求項1に記載の放電灯点灯装置において、第1のランプ電圧検出手段は、放電灯のランプ電圧の低い領域から高い領域にわたって、ランプ電圧が増大するにしたがって増大する信号を出力し、第2のランプ電圧検出手段は、放電灯のランプ電圧の低い領域においてランプ電圧が増大するにしたがって増大し、ランプ電圧の高い領域においてランプ電圧によらず一定の値を維持する信号を出力することを特徴とする放電灯点灯装置。

【請求項3】請求項1に記載の放電灯点灯装置において、第1のランプ電圧検出手段は、放電灯のランプ電圧の低い領域においてランプ電圧によらず一定の値を維持し、ランプ電圧の高い領域においてランプ電圧が増大するにしたがって増大する信号を出力し、第2のランプ電圧検出手段は、放電灯のランプ電圧の低い領域においてランプ電圧が増大するにしたがって増大し、ランプ電圧の高い領域においてランプ電圧によらず一定の値を維持する信号を出力することを特徴とする放電灯点灯装置。

【請求項4】請求項1~3のいずれかに記載の放電灯点灯装置において、電力制御手段は、第 1、第2のランプ電圧とランプ電流とに応じた信号の加算値と、時間が経過するにしたがい増加割 合が減少する信号との加算値とに基づいて、放電灯に供給すべき電力を制御することを特徴とす る放電灯点灯装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は高圧放電灯を点灯する放電灯点灯装置に関する。 【0002】

【従来の技術】一般的に、メタルハライドランプのような放電灯を安定点灯させるためには、放電灯に印加する電力を一定に制御する必要がある。このような放電灯を自動車用の前照灯に利用する場合には早い光の立ち上がりが要求される。そのため、一般的には、放電灯の電極温度が低い冷間始動の場合には点灯始動直後は大きな電力を印加して速やかに光を立ち上げ、放電灯の電圧が所定の値より大きくなった時点で経過時間と共に印加電力を減らして徐々に安定制御時の電力に近づける制御が必要とされている。

【0003】そこで、安定時の電力制御を精度良く制御しながら始動時はこの電力制御値よりも大きな値で電力制御するために、回路定数を切り替えるようにした装置が特開平6-13193号公報に開示されている。

[0004]

【発明が解決しようとする課題】しかしながら、上記従来の装置によると、制御回路が極めて複雑になってしまうという問題があった。

【0005】本発明は、上記問題点にかんがみ、極めて簡単な手段によって、始動時の大きな電力制御から安定時の相対的に小さな電力制御状態まで移行せしめることができる放電灯点灯装置を提供することを目的とする。

[0006]

【課題を解決するための手段】請求項1に記載の放電灯点灯装置によると、放電灯の点灯始動直後に対応するランプ電圧の低い領域と、放電灯の安定点灯時に対応するランプ電圧の高い領域とで、第1のランプ電圧検出手段が出力する信号と第2のランプ電圧検出手段が出力する信号とランプ電流検出手段が出力する信号との加算値を変化させることができる。一方、放電灯に供給すべき電力は、上記加算値に基づいて制御される。したがって、ランプ電圧、ランプ電流に対する上記各信号の変化特性を適宜設定することにより、ランプ電圧、ランプ電流に対する加算値の変化特性を好ましい変化特性に近似させることができ、好ましい電力制御、すなわち、放電灯の点灯始動直後には大きな電力を印加して速やかに光を立ち上げ、放電灯の電圧が所定の値より大きくなった時点で経過時間と共に印加電力を減らして徐々に安定制御時の電力に近づける電力制御を行わせることが可能となる。

【0007】そして、このような制御は、一般に極めて簡単なアナログ回路又はマイクロコンピュータにより実現可能であり、したがって、極めて簡単な手段により、点灯始動直後から安定点灯時までの間、放電灯にとって好ましい電力制御を行うことができるようになる。

【0008】請求項2に記載の放電灯点灯装置によると、第1のランプ電圧検出手段は、放電灯のランプ電圧の低い領域から高い領域にわたって、ランプ電圧が増大するにしたがって増大する信号を出力し、第2のランプ電圧検出手段は、放電灯のランプ電圧の低い領域においてランプ電圧が増大するにしたがって増大し、ランプ電圧の高い領域においてランプ電圧によらず一定の値を維持する信号を出力する。したがって、各信号の加算値を、ランプ電圧の低い領域から高い領域にわたって徐変させるように設定可能であり、このような加算値の変化特性に基づいて好ましい電力制御を行うことが可能である。

【0009】請求項3に記載の放電灯点灯装置によると、第1のランプ電圧検出手段は、放電灯のランプ電圧の低い領域においてランプ電圧によらず一定の値を維持し、ランプ電圧の高い領域においてランプ電圧が増大するにしたがって増大する信号を出力し、第2のランプ電圧検出手段は、放電灯のランプ電圧の低い領域においてランプ電圧が増大するにしたがって増大し、ランプ電圧の高い領域においてランプ電圧によらず一定の値を維持する信号を出力する。したがって、各信号の加算値を、ランプ電圧の低い領域から高い領域にわたって徐変させるように設定可能であり、このような加算値の変化特性に基づいて好ましい電力制御を行うことが可能である。

【0010】請求項4に記載の放電灯点灯装置によると、電力制御手段は、第1、第2のランプ電圧とランプ電流とに応じた信号の加算値に対し、時間が経過するにしたがい増加割合が減少する信号をさらに加算して得られる加算値に基づいて、放電灯に供給すべき電力を制御する。このため、加算値の変化特性をより好ましい電力制御を行い得る変化特性に近づけることが容易になる。

[0011]

【発明の実施の形態】以下、本発明の一実施例を図面に基づいて説明する。

【OO12】図1は、一実施例に係る放電灯点灯装置のブロック図を示している。

【0013】<u>図1</u>において、1は車載バッテリ、2は車両用前照灯としてのメタルハライドランプなど高圧放電灯、3は点灯スイッチ、4は直流電源回路、5はインバータ回路、6は電流検出手段としての電流検出抵抗、8は始動時に後述するHブリッジ回路を高圧パルスから保護するためのコンデンサを表している。

【0014】[構 成]

(1)直流電源回路直流電源回路4は、車載バッテリ1側に配される1次巻線11aと放電灯2側に配される2つの2次巻線11b, 11cとを有するフライバックトランス11を備える。フライバックトランス11の1次電流は、パワーMOSトランジスタ12により制御される。パワーMOSトランジスタ12のスイッチング動作は、PWM(パルス幅変調)回路13により制御される。PWM回路13は、抵抗14を介して1次電流を検出し、1次電流を電力制御回路15からの指令値に一致させるようパワーMOSトランジスタ12のゲートを制御するものである。電力制御回路15については、後に詳述する。

【0015】フライバックトランス11の一方の2次巻線11bには、2次巻線11bに発生する交流を整流し平滑化してインバータ回路5のHブリッジ回路23に供給する整流用ダイオード16及び平滑用コンデンサ17が接続されている。他方の2次巻線11cには、2次巻線11cに発生する交流を整流し平滑化する整流用ダイオード18及び平滑用コンデンサ19と、コンデンサ19の充電電圧Bが設定電圧以上に上昇したとき放電する放電ギャップ20とからなる始動回路21が接続されている。始動回路21には、放電ギャップ20の放電電流が流れる1次コイル22aと、1次コイル22aに流れる放電電流によって高圧パルスを発生し放電灯2に印加する2次コイル22bとを有する高圧コイル22が接続されている。

【0016】(2)インバータ回路インバータ回路5は、Hブリッジ回路23を構成する4つのパワーMO Sトランジスタ23a、23b、23c、23dとブリッジ駆動回路24とからなる。ブリッジ駆動回路24は、パワーMOSトランジスタ23cと23dのペアとを交互にオン、オフするものである。

【0017】(3)電力制御回路電力制御回路15は、車両用前照灯として始動時に瞬時に所定の明るさを得るために安定時の電力よりも大きな電力を印加して放電灯の電極温度を速やかに上昇させると共に、この大きな印加電力を時間経過と共に漸減し安定時の電力に収束させると共に、安定時には平滑用コンデンサ17の端子電圧すなわち放電灯2のランプ電圧VLと電流検出抵抗6を介して検出されるランプ電流ILとに基づいてランプ電力を演算してこのランプ電力に基づく指令値をPWM回路13に出力するものである。

【0018】電力制御回路15の回路図を図2および図3R>3に示す。

【0019】<u>図2</u>および<u>図3</u>において、15a、15bは点灯スイッチ3を介して車載バッテリ1に接続される電源入力端子、15cはコンデンサ17に接続されるランプ電圧検出端子、15dは電流検出抵抗6に接続されるランプ電流検出端子、15eはPWM回路13に接続される電力制御出力信号端子を表している。

【0020】(i) 定電圧回路定電圧回路51は、トランジスタ111と定電圧ダイオード121と抵抗135により構成されている。

【0021】定電圧回路51は、車載バッテリ1の電圧を所定電圧 $V_{
m C}$ 例えば5Vに定電圧化する。

【0022】(ii)電源電圧依存回路電源電圧依存回路52は、演算増幅回路素子101とトランジスタ1 12とダイオード122と抵抗134、136、137、139とにより構成されている。

【0023】電源電圧依存回路52は、車載バッテリ1の電圧 V_B を抵抗134と抵抗136とで分割した電圧 V_0 が所定値よりも低下すると、この低下量に応じた電流 i_0 が抵抗137とダイオード122とを介して流れ、この電流値 i_0 に応じた電流 i_1 を抵抗139を介してトランジスタ112のコレクタ端子より電流加算点Xに流入させ、誤差増幅回路53、 V_0 PWM回路13等を介してランプ電流 V_0 Lを減少させ、減光させる動作を行う。

【0024】(iii) 誤差増幅回路誤差増幅回路53は、演算増幅回路素子102とダイオード123とコンデンサ131と抵抗138、140、142とにより構成されている。

【0025】誤差増幅回路53は、定電圧 V_C を抵抗140と抵抗142とで分割した基準電圧 V_1 例えば2Vと、電流加算点Xの電位 V_X とを比較し、誤差増幅することにより、例えば、電流加算点Xの電位 V_X が基準電圧 V_1 よりも大きい場合にはダイオード123を介した出力端子15eの電位 V_E を下げてPWM回路13のデューティー比を小さくして出力電力を下げ、電流加算点Xの電位 V_X を常に基準電位 V_1 に保つように動作する。

【0026】(iv)第1のランプ電圧検出回路第1のランプ電圧検出回路54は、演算増幅回路素子103とトランジスタ113とダイオード125、126、127と抵抗143、148、149、150、151とにより構成されている。

【0027】第1のランプ電圧検出回路54は、ランプ電圧VL に応じた電流 i_2 を抵抗148とダイオード125と抵抗149と抵抗150とを介して流し、この電流 i_2 による演算増幅回路素子103の非反転入力端子の電位 V_2 に応じて、電流 i_3 を抵抗143とトランジスタ113とを介して電流加算点Xに流入させ、ランプ電流iL を制御するように動作する。

【0028】すなわち、第1のランプ電圧検出回路54は、ランプ電圧VL が安定点灯時の定格電圧例えば85Vよりも負側に小さな値となっているとき、換言すると、ランプ電圧VL が低い領域では、ダイオード127およびダイオード126をいずれもオフ状態に維持し、演算増幅回路素子103の非反転入力端子の電位V2をランプ電圧VL に比例した値に保ち、ランプ電圧VL に比例した電流i3を電流加算点Xに流入させるよう構成されている。

【0029】また、第1のランプ電圧検出回路54は、ランプ電圧VL が85Vよりも負側に大きな値となっているとき、換言すると、ランプ電圧VL が高い領域では、抵抗149と抵抗150との接続点の電位V3 の低下によりダイオード127をオンさせ、ダイオード127と抵抗151とを介して該接続点に電流を流入させることにより、演算増幅回路素子103の非反転入力端子の電位V2 を、上述したランプ電圧VL が低い領域での電位V2 のランプ電圧VL に対する変化量よりも小さな変化量で変化させ、ランプ電圧VL に対する電流i3 の変化量を小さくして電流加算点Xに流入させるよう構成されている。

【0030】さらに、第1のランプ電圧検出回路54は、ランプ電圧VL がさらに一層大きな値になった場合にダイオード126をオンさせることにより、演算増幅回路素子103の非反転入力端子の電位 V2 がランプ電圧VL によって負電圧にバイアスされることがないよう、電位V2 を一定の正電圧に保つよう構成されている。

【0031】従って、第1のランプ電圧検出回路54は、図5に示すように変化する電流i3を電流加算点Xに流入させる特性を有している。

【0032】このような特性を第1のランプ電圧検出回路54にもたせた理由を図7に基づいて述べ

る

【0033】まず、図7(A1)に示すように電流i3をランプ電圧VLに対し直線的に変化させるようにすると、図7(A2)に示すようにランプ電圧VLに対し定格電圧85Vで最大値となる放物曲線のランプ電力PLを得ることができる。このようなランプ電力PLの特性は、図2に示す第1のランプ電圧検出回路54においてダイオード127と抵抗151とダイオード126とを削除し、演算増幅回路素子103の非反転入力端子側が抵抗148とダイオード125と抵抗149と抵抗150とによって構成される回路によって実現することができる。

【0034】しかし、このようなランプ電カPL の特性では、定格電圧85Vを中心とした所定の範囲例えば85V±17Vの範囲で、安定点灯時の定格電力例えば35Wとほぼ等しい電力を得ることができず、定格電力35Wよりも小さな電力しか得ることができなくなる。

【0036】しかし、このようなランプ電力PL の特性では、定格電圧85V以下のランプ電圧VL に対しては安定点灯時の定格電力35Wを得ることができず、定格電力35Wよりも小さな電力しか得ることができない。

【0038】以上述べたように、第1のランプ電圧検出回路54を<u>図2</u>に示すような構成とすることにより、定格電圧85V±17Vの範囲内のランプ電圧VL に対して定格電力35Wとほぼ等しい値のランプ電力PL を得ることが可能になる。

【0039】(v) ランプ電流制限回路ランプ電流制限回路55は、演算増幅回路素子104とダイオード124とコンデンサ132と抵抗144、146、147とにより構成されている。

【0040】ランプ電流制限回路55は、定電圧 V_C を抵抗146と抵抗147とで分割した基準電位 V_4 と、ランプ電流検出端子15dより抵抗144を介した電位 V_5 とを比較し、前述の誤差増幅回路53の誤差増幅回路素子102の動作と同様にランプ電流iLが所定値以上流れた場合に、ダイオード124を介した出力端子15eの電位 V_e を下げてPWM回路13のデューティー比を小さくして出力電力を下げ、ランプ電流ILを制限するように動作する。

【0041】(vi)抵抗抵抗141は、安定時のランプ電力を所定値に調整するための調整抵抗である。【0042】他の抵抗145は、ランプ電流検出端子15dに接続されたランプ電流検出抵抗であり、ランプ電流検出端子15dの電位 $V_{\rm d}$ に応じて電流 $I_{\rm d}$ が流れ、電流加算点Xの電位 $V_{\rm d}$ を上昇、下降させる。

【0043】(vii) 第2のランプ電圧検出回路およびクランプ回路第2のランプ電圧検出回路56は、演算増幅回路素子105とトランジスタ114とダイオード128と抵抗152、153、154、155、156とから構成されている。

【0044】第2のランプ電圧検出回路56は、ランプ電圧VL に応じた電流 $_{5}$ を抵抗154と抵抗155と抵抗156とを介して流し、この電流 $_{5}$ による演算増幅回路素子105の非反転入力端子の電位 V_{6} に応じて、電流 $_{6}$ を抵抗152とトランジスタ114とを介して電流加算点Xに流入させ、ランプ電流にを制御するように動作する。

【0045】すなわち、第2のランプ電圧検出回路56は、ランプ電圧VL が定格電圧85Vよりも小さな所定値V20よりも負側に小さな値となっているとき、換言すると、ランプ電圧VL が低い領域では、ダイオード128をオフ状態に維持し、演算増幅回路素子105の非反転入力端子の電位V6をランプ電圧VL に比例した値に保ち、ランプ電圧VL に比例した電流i6を電流加算点Xに流入させるよう構成されている。

【0046】また、第2のランプ電圧検出回路56は、ランプ電圧VL が所定値V₂₀以上かつ定格電圧85V以下の値となっているとき、換言すると、ランプ電圧VL が高い領域では、抵抗155と抵抗156との接続点の電位V₇の低下によりダイオード128をオンさせ、ダイオード128と抵抗153とを介して該接続点に電流を流入させることにより、演算増幅回路素子105の非反転入力端子の電位V₆を、上述したランプ電圧VL が低い領域での電位V₆のランプ電圧VL に対する変化量よりも小さな変化量で変化させ、ランプ電圧VL に対する電流i₆の変化量を小さくして電流加算点Xに流入させるよう構成されている。

【0047】一方、クランプ回路57は、演算増幅回路素子106とダイオード129と抵抗158、159と により構成されている。

【0048】クランプ回路57は、冷間始動直後のようにランプ電圧VL が低い領域においては、第2のランプ電圧検出回路56の抵抗154と抵抗155、156とを介して流れる電流 $_5$ は小さく、抵抗154と抵抗155との接続点の電位 V_6 は高く、この電位 V_6 が演算増幅回路素子106の出力電圧よりも高く、ダイオード129がオフ状態にあるため動作しない。そして、クランプ回路57は、ランプ電圧VL が大きくなって抵抗158と抵抗159とにより分割された基準電位 V_8 に対して電位 V_6 が低下しようとした場合に、ダイオード129を介して電流を抵抗155に流し込んで抵抗154に流れる電流 $_5$ を所定値に制限するように動作する。すなわち、クランプ回路57は、抵抗152とトランジスタ114とを介して電流加算点Xに流れ込む電流 $_6$ を所定値に制限するよう動作する。ここで放電灯が安定状態で点灯しているときのランプ電圧VL においては、この流入電流 $_6$ は一定値になるように定数選定されている。

【0049】従って、第2のランプ電圧検出回路56は、<u>図6</u>に示すように変化する電流i₆を電流加算点Xに流入させる特性を有している。

【0050】(viii)時定数回路およびランプ電圧範囲検出回路時定数回路58は、演算増幅回路素子107とトランジスタ115とダイオード130とコンデンサ133と抵抗157、160、161、162とにより構成されている。

【0051】一方、ランプ電圧範囲検出回路59は、比較回路素子108、109とトランジスタ116と抵抗163、164、165、166、167、168とから構成されている。

【0052】ランプ電圧範囲検出回路59は、ランプ電圧検出端子15cに接続された抵抗167と抵抗168とで分割した電圧 V_9 を検出してこの電圧 V_9 と基準電圧 V_{11} とを比較回路素子109で比較することにより、ランプ電圧VLが放電灯2の放電開始前の開放電圧 V_{OCV} よりも十分に低いことを検出すると共に、放電灯2の放電開始後、ランプ電圧VLが基準電圧 V_{10} に対応する所定値 V_{108} よりも負側に大きくなったことを比較回路素子108で検出し、ランプ電圧VLがこの両方の条件を満足する範囲に到達することによりトランジスタ116とトランジスタ115とがONし、抵抗160を介してコンデンサ133の充電を開始させる。これにより、抵抗160とコンデンサ133との接続点の電位 V_{12} は指数関数的に上昇し、電圧フォロワ回路を構成する演算増幅回路素子107の出力に同じ電圧が発生し、初めは電流加算点Xより抵抗157を介して電流 i_7 を流し出すが、コンデンサ133の充電電圧 V_{12} が上昇するに伴って抵抗157を介して電流加算点Xに向けて電流 i_7 を流し込むことになる。

【0053】[動作]次に全体の動作について、図4に示す動作波形図とあわせて説明する。

【0054】まず図4において、時点t₀で点灯スイッチ3をONすることによりPWM回路13が動作を開始すると、コンデンサ17には開放電圧Vocvが充電される。ここでランプ電圧VLを図示のように負の電圧を印加しているのは、放電灯2に封入されたNaが外部に漏出(ナトリウム損失)するのを防止するためである。

【0055】続いて、時点t₁で高圧コイル22で高圧パルスが発生し放電灯2に印加され放電が開始されると、ランプ電圧VL は急激に低下する。ここで、比較回路素子108が検出するランプ電圧VL をV₁₀₈ とし、比較回路素子109が検出するランプ電圧VL をV₁₀₉ とすると、放電開始直後はランプ電圧VL がV₁₀₈ 以下であるので比較回路素子108の出力は低レベルとなりトランジスタ116はオフしたままである。したがって、コンデンサ133の充電は行われないためコンデンサ133の電位

V12は低く演算増幅回路素子107の出力電位は低レベルであるため、電流加算点Xより抵抗15 7を介して演算増幅回路素子107に向かって電流を流し込んでいる。また前述のごとく放電開始 直後のランプ電圧VL は小さいため第2のランプ電圧検出回路56の電位V₆ は大きく、抵抗152 とトランジスタ114とを介して電流加算点Xに流れ込む電流i₆ も小さい。したがって電流加算点X に流れ込む電流が小さくかつ電流加算点Xより流出する電流が多いわけであるから、誤差増幅回 路53がバランスを取る条件としては、ランプ電流IL が大きくてランプ電流検出端子15dの電位V_d を上昇させて電流加算点Xより抵抗145を通してランプ電流検出端子15dに流れる電流i4を減ら すと共に、ランプ電流検出端子15dの電位V_dをさらに上げて逆にランプ電流検出端子15dより 抵抗145を介して電流加算点Xに電流を流し込むことが条件となり、この結果、大きなランプ電流I L が流れ、約70Wの大きな出力電力PL が得られることになる。ここで、この大きなランプ電力PL の印加によりランプ電圧VL が徐々に増加するが、このランプ電圧VL の増加にともなって第2の ランプ電圧検出回路56の抵抗152とトランジスタ114とを介して電流加算点Xに流れる電流i₆ が 増加するとともに、抵抗153とダイオード128とにより上述したような非線形補正がなされている ため、ランプ電圧VL が上昇してもほぼ同一の大きな電力PL を維持できる。ここで、時点t, より時 点t2 に至る間でランプ電圧VL が特に小さくなる領域があり、約70Wに定電力制御をするとラン プ電流IL が制限値を越えてしまうためランプ電流制限回路55が動作し、図4に示すランプ電流IL を所定値に制限するように動作させる。

【0056】次に、ランプ電圧VL がさらに上昇し時点t₂ でV₁₀₈ を越えると、比較回路素子108の出力が高レベルとなり、比較回路素子109の出力はすでに高レベルであるため、トランジスタ116とトランジスタ115とがオンし、抵抗160を介してコンデンサ133の充電が開始される。これにより、演算増幅回路素子107の出力電位は徐々に上昇し抵抗157を介して電流加算点Xより流出する電流が徐々に減少するため、誤差増幅回路53のバランス条件が変わって出力電力PL は徐々に減少を始める。

【0057】そしてランプ電圧VL がさらに上昇し、時点 t_3 でランプ電圧VL が V_{106} を越えると、第2のランプ電圧回路56の電位 V_6 はクランプ回路57の動作により一定となり、抵抗152とトランジスタ114とを介して電流加算点Xに流れ込む電流 t_6 が一定となる。そして、この間もコンデンサ133の充電電圧 V_{12} は上昇を続けるため、放電灯2への出力電力PL は減少を続ける。

【0058】そしてコンデンサ133の充電が終わると、演算増幅回路素子107より抵抗157を介して電流加算点Xに流れる電流i7 は一定となるため、放電灯2への出力電力PL も一定となり、一連の始動動作が終了し、安定制御状態に入る。

【0059】そして安定状態のランプ電圧VLが何らかの原因で変動した場合は、第1のランプ電圧 検出回路54の出力とランプ電流検出端子15dの出力が電流加算点Xにて加算されているため、 ほぼ一定の出力電力PLに制御される。さらに、この第1のランプ電圧検出回路54には抵抗151 とダイオード127とにより非線形回路が構成してあるため、ランプ電圧VLがかなり変化しても出 力電力PLをほぼ一定に制御することができる。

【0060】以上説明したように、本実施例は、電力制御手段(誤差増幅回路53)により、第1のランプ電圧検出手段(第1のランプ電圧検出回路54)が出力する信号 i_3 と第2のランプ電圧検出手段(第2のランプ電圧検出回路56)が出力する信号 i_6 とランプ電流検出手段(抵抗145)が出力する信号 i_4 と時間が経過するにしたがい増加割合が減少する信号 i_7 との加算値 V_X に基づいて、放電灯2に供給すべき電力PLを制御するようにしており、極めて簡単な回路構成で、好ましい電力制御、すなわち、放電灯2の点灯始動直後には大きな電力PLを印加して速やかに光を立ち上げ、放電灯2の電圧VLが所定の値(V_{108})より大きくなった時点 t_2 で経過時間と共に印加電力PLを減らして徐々に安定制御時の電力35Wに近づける電力制御を行わせることが可能となる。【0061】なお、上記実施例では、第1のランプ電圧検出回路54を、ランプ電圧VLの低い領域においてもランプ電圧VLが増大するにしたがって増大する信号 i_3 を出力するよう構成しているが、クランプ回路などをもうけ、ランプ電圧VLの低い領域においては一定の値に維持される信号 i_3 を出力するように構成しても同様の効果を奏することが可能である。

【0062】また、上記実施例はアナログ回路を用いた例を示したが、マイクロコンピュータを用いて上記と同様な制御を行うようにしてもよいことはいうまでもない。

【図面の簡単な説明】

- 【図1】一実施例による放電灯点灯装置の構成図
- 【図2】図3と一体となって電力制御回路を構成する部分回路図
- 【図3】図2と一体となって電力制御回路を構成する部分回路図
- 【図4】動作波形図
- 【図5】第1のランプ電圧検出回路の特性図
- 【図6】第2のランプ電圧検出回路の特性図
- 【図7】第1のランプ電圧検出回路の特性の説明図
- 【符号の説明】
- 2 放電灯
- 45 抵抗(ランプ電流検出手段)
- 53 誤差增幅回路(電力制御手段)
- 54 第1のランプ電圧検出回路(第1のランプ電圧検出手段)
- 56 第2のランプ電圧検出回路(第2のランプ電圧検出手段)
- 58 時定数回路

【図6】

【図4】

