Листок 4. Коммуникационная сложность.

В задачах 15-18 C(f) обозначает минимальную глубину коммуникационного протокола, а $C_L(f)$ минимальное число листьев в дереве протокола.

СОМР2 15. Докажите, что $C(f) = O(\log(C_L(f)))$.

COMP2 16. Каждая функция $f: X \times Y \to Z$ задает раскраску элементов матрицы M[X,Y] в цвета из множества Z. Прямоугольником называется множество $X' \times Y'$, где $X' \subseteq X$ и $Y' \subseteq Y$. Прямоугольник называется одноцветным если все элементы M[X',Y'] покрашены в один цвет. Пусть $\chi(f)$ — минимальное число непересекающихся одноцветных прямоугольников, которыми можно покрыть все элементы M.

- (a) Докажите, что $C_L(f) \ge \chi(f)$.
- (б) Докажите, что $\chi(f) \ge rk(M)$, если Z некоторое поле.
- (в) Докажите, что коммуникационная сложность функции GT : $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$, которая равна 1 тогда и только тогда, когда x>y (как натуральные числа в двоичной записи), не менее n

COMP2 17. Пусть у Алисы и Боба есть множества $X, Y \subseteq \{1, \ldots, n\}$. Они хотят посчитать функцию MED(X, Y), которая возвращает медиану мультимножества $X \cup Y$. Докажите, что для этого им достаточно: $O(\log^2(n))$ битов коммуникации.

COMP2 18. Игры Карчмера-Вигдерсона. Дана функция $f: \{0,1\}^n \to \{0,1\}$. Алиса получает $x \in f^{-1}(0)$, а Боб получает $y \in f^{-1}(1)$. Им требуется вычислить какую-нибудь координату i, что $x_i \neq y_i$. Данное отношение мы будем обозначать KW_f .

- (a) Докажите, что $C(KW_f) \leq d(f)$ и $C_L(KW_f) \leq L(f)$, где d(f) минимальная глубина формулы, которая вычисляет f в базисе $\{\land,\lor,\lnot\}$, а L(f) соответственно число листьев.
- (б) Докажите, что $C(\mathrm{KW}_f) \geq d(f)$ и $C_L(\mathrm{KW}_f) \geq L(f)$.

COMP2 19. Будем называть алгоритм $S_{\epsilon,\delta}$ усредняющим булевым сэмплером, если он используя r случайных битов, генерирует q запросов длины n к функции $f:\{0,1\}^n \to \{0,1\}$ и возвращает среднее арифметическое полученных значений так, чтобы результат отличался от \bar{f} больше, чем на ϵ с вероятностью меньше, чем δ .

На основе сэмплера $S_{\epsilon,\delta}$ определим функцию Ext : $\{0,1\}^r \times \{0,1\}^{\log(q)} \to \{0,1\}^n$ так, что $\operatorname{Ext}(x,i)$ равняется i-му запросу сэмплера, если он использует строку x вместо случайных битов.

- (a) Докажите, что Ext является $(r \log(\frac{\epsilon}{\lambda}), 2\epsilon)$ экстрактором.
- (б) Какой получится экстрактор, если воспользоваться сэмплером Рамануджана, у которого r=n и $q=O(\frac{1}{\epsilon^2\delta})$?

COMP2 1. Рассмотрим функцию Maj : $\{0,1\}^n \to \{0,1\}$, которая выдает 1, если не менее половины входных битов равны 1. Докажите, что существует:

(в) монотонная формула полиномиального размера, вычисляющая функцию Maj.

[COMP2 10.] Какие значения может принимать глубина дерева решений (decision tree) для функции $f: \{0,1\}^n \to \{0,1\}$, где все аргументы не являются фиктивными (т.е. для каждого номера i найдется вход x, что $f(x) \neq f(x^i)$).

COMP2 11. Пусть $n = k^2$. Рассмотрим функцию $f : \{0,1\}^n \to \{0,1\}$, заданную следующим образом: вход разделен на блоки по k битов, функция равно 1 тогда и только тогда, когда существует блок в котором два последовательных бита равны единице, а остальные биты равны нулю. Оцените s(f), bs(f), C(f), D(f).

СОМР2 12. Рассмотрим функцию $f = \bigvee_{i=1}^n x_i$. Докажите, что $R(f) = \sum_{i=1}^n x_i$

 $oxed{ extbf{COMP2 14.}}$ Докажите, что если SAT \in $oxed{ extbf{PCP}(o(\log(n)),1)}$, то $oxed{ extbf{P}}=oxed{ extbf{NP}}.$