

Centro Federal de Educação Tecnológica de Minas Gerais

Departamento de Computação Curso de Graduação em Engenharia da Computação Laboratório de Arquitetura e Organização de Computadores II Profa. Poliana Aparecida Corrêa de Oliveira (poliana@cefetmg.br)

> **Prática II – Valor: 30 Pontos** Data de Entrega: 22/09/2023

Objetivo: Esta prática tem a finalidade de exercitar os conceitos relacionados à implementação de um processador multiciclo.

- Leiam as páginas 1, 2, 3, 4 e 5 do arquivo "Prática 2 Instruções da Parte A (inglês)".
- 2- Leiam as páginas 1, 2 e 3 do arquivo "Prática 2 Instruções da Parte B (inglês)".
- 1) Cada dupla deve implementar o processador multiciclo descrito nos arquivos indicados acima. Isso significa que a versão inicial do processador deve executar as seguintes instruções: MV, MVI, ADD, SUB, LD, ST e MVNZ, a partir da leitura de instruções armazenadas na memória principal e seguindo o esquemático mostrado na Figura 7. Siga as orientações descritas nos arquivos e acrescente no relatório todas as decisões de projeto necessárias para o funcionamento do processador na versão completa (item 2).
- 2) Além das instruções indicadas no item 1, o processador na versão completa deve suportar também as seguintes operações:

Operações	Função Realizada
or Rx,Ry	$Rx \leftarrow [Rx] \text{ II } [Ry]$
slt Rx,Ry	If (Rx < Ry) [Rx] = 1
-	else[Rx] = 0
sll Rx,Ry	$Rx = [Rx] \ll [Ry]$
srl Rx,Ry	Rx = [Rx] >> [Ry]

- 3) Use os códigos de testes a seguir para validar o funcionamento do seu processador multiciclo.
- Inicialize todos os registradores com valor "0" (zero)
- Inicialize a memória principal na posição 3 com o valor 4 (MEM[3] = 4)

	Instrução	R0	R1	R2	R3
•	MVI R0, #2	2	0	0	0
•	MVI R1, #3	2	3	0	0
•	ADD R1, R0	2	5	0	0
•	MVI R2, #6	2	5	6	0
•	SUB R2, R1	2	5	1	0
•	MV R3, R2	2	5	1	1
•	OR R0, R3	3	5	1	1
•	SLL RO, R3	6	5	1	1
•	SRL RO, R3	3	5	1	1
•	SLT RO, R1	1	5	1	1
•	SLT RO, R3	0	5	1	1
•	MVI R3, #3	0	5	1	3
•	ADD RO, R3	3	5	1	3
•	LD R2, R3	3	5	4	3
•	ADD R2, R3	3	5	7	3
	ST R2, R0	3	5	7	3
•	LD R0, R0	7	5	7	3
•	SUB RO, R3	4	5	7	3
•	MVI R0, #0	0	5	7	3
•	ADD RO, RO	0	5	7	3
•	MVNZ RO, R2	0	5	7	3
•	SUB R3, R0	0	5	7	3
•	MVNZ R2, R3	0	3	7	3
•	ADD R2, R3	0	6	7	3

LOOP:

Instrução	
MVI R2, #1	
MVI R4, #10	
MV R5,R7	
SUB R4, R2	
MVNZ R7,R5	

Submissão

Crie um pacote contendo o *workspace* do projeto juntamente TODOS os arquivos de código-fonte e o relatório do projeto. Cada dupla deverá submeter um pacote no Moodle. O nome do arquivo deve ser: *pratica2 nomealuno1 nomealuno2.zip*

O relatório deverá incluir os seguintes componentes:

- 1. O **projeto** do seu sistema incluindo todas as **decisões** tomadas para implementação e **detalhes** necessários para criação dos módulos necessários para o funcionamento da versão completa do processador multiciclo.
- 2. As imagens de formas de onda com uma explicação que demonstre o correto funcionamento de TODAS as instruções. É importante que seja mostrado <u>todos os estágios</u> do caminho de dados. Não é obrigatório simular todo o código de testes, apenas uma instrução de cada tipo é suficiente.

Apresentação em sala

A dupla deverá apresentar o funcionamento na placa FPGA DE-2 Altera de **TODAS** as instruções, para as sequências de código testes, mostrando no display de 7 segmentos o resultado das instruções e outras informações que julgarem necessárias para o entendimento do funcionamento do processador e memória (endereços, dados dos registradores etc.)

Avaliação

- Qualidade, clareza e organização do código-fonte (20% 6 pontos)
- Simulações com explicações no relatório (35% 10,5 pontos)
- Apresentação na placa (35% 10,5 pontos)
- Relatório (10% 3 pontos): Qualidade do texto, organização e descrição do projeto