Continuité-Dérivation

Continuité 1.

I désignera toujours un intervalle de \mathbb{R} .

1.1. Définitions

Continuité en un point : soit $f: I \to \mathbb{R}$ et $a \in I$.

On dit que f est **continue en** a si $\lim_a f = f(a)$. **Exemple :** la fonction f définie par $\begin{cases} f(x) = \frac{|x|}{x} \text{ si } x \neq 0 \\ f(0) = 0 \end{cases}$ n'est pas continue en 0.

Continuité globale : on dit que f est continue sur I lorsqu'elle est continue en tout point de I

On notera $C^0(I,\mathbb{R})$ l'ensemble des fonctions continues sur I à valeurs réelles.

Exemple 1: $\ln \in C^0(]0, +\infty[], \mathbb{R})$: \ln est continue (ou de classe C^0) sur \mathbb{R}_+^* .

Exemple 2: inv: $x \mapsto \frac{1}{x}$ est continue sur \mathbb{R}^* (qui n'est néanmoins pas un intervalle).

Prolongement par continuité : soit f une fonction continue sur $I \setminus \{a\}$, non définie en a.

On suppose que $\lim_a f = \ell$. Alors la fonction \tilde{f} définie sur I par

$$\left\{ \begin{array}{l} \tilde{f}\left(x\right)=f\left(x\right) \text{ si } x\neq a \\ \tilde{f}\left(a\right)=\ell \end{array} \right. \quad \text{est continue sur } I.$$

On dit que f se prolonge par continuité en a, ou que \tilde{f} est le prolongement par continuité de f en a.

Remarque: dans la pratique, on note souvent f plutôt que \tilde{f} .

Exemple 1: $f: x \to \frac{x^2 - 3x + 2}{x^2 - 5x + 6}$ se prolonge par continuité en 2 en posant f(2) =

Exemple 2 : $f: x \to \frac{\sin x}{x}$ se prolonge par continuité en 0 en posant f(0) =

Exemple 3: $f: x \to x \ln x$ se prolonge par continuité en 0 en posant f(0) =

d) Continuité à droite, à gauche : si $\lim_{a+} f = f(a)$, on dit que f est continue à droite en a (idem à gauche).

1

Exemple 1: la fonction partie entière est continue à droite sur \mathbb{R}

Exemple 2: $f(x) = e^{1/x}$ se prolonge par continuité à gauche en 0 en posant f(0)

1.2. Opérations sur les fonctions continues

a) Sommes et produits et quotients :

Si f et g sont continues sur I, alors f + g et fg aussi.

Si de plus g ne s'annule pas sur I, alors $\frac{f}{g}$ est continue sur I

b) Composées:

(i) Si $f:I\to J$ et $g:J\to\mathbb{R}$, la **composée** de g et de f est la fonction $g\circ f:I\to\mathbb{R}$ définie par

$$\forall x \in I, \ g \circ f(x) = g(f(x))$$

Autrement dit on prend l'image de x par f, puis l'image par g de f(x):

$$\begin{array}{cccc}
I & \xrightarrow{f} & J & \xrightarrow{g} & \mathbb{R} \\
x & \longmapsto & f(x) & \longmapsto & g(f(x))
\end{array}$$

(ii) si f est continue sur J, u continue sur I à valeurs dans J, alors $f \circ u$ est continue sur I

Exemple: $x \to \sqrt{1 - e^x}$ est continue sur \mathbb{R}_- .

c) Continuité de la réciproque :

si f continue réalise une bijection de l'intervalle I sur l'intervalle J, alors f^{-1} est continue sur J

d) Utilisation : les fonctions suivantes sont continues sur leurs intervalles de définition :

- Les polynômes, les fonctions rationnelles, la fonction valeur absolue.
- Les fonctions \cos , \sin , \tan , \ln , \exp , $x \mapsto a^x$, \cot , \cot , arcsin, arccos, arctan
- Les fonctions $x \to x^{\alpha} \ (\alpha \in \mathbb{R})$. En particulier $x \to \sqrt{x}$

La plupart du temps, la continuité des fonctions s'étudie en utilisant les opérations sur les fonctions usuelles (ou **théorèmes généraux**) :

2

Exemple 1:
$$f: x \to \frac{\operatorname{th} x \sin\left(e^{x^2}\right)}{e^{2x} + e^x + 1}$$
 est continue sur \mathbb{R}

Exemple 2: soit
$$\begin{cases} f(x) = \frac{e^x - 1}{x} \text{ si } x \neq 0 \\ f(0) = 1 \end{cases}$$
. Alors est continue sur $\mathbb R$:

2. Rappels et compléments sur la dérivation

I désignera un intervalle non réduit à un point.

2.1. Définitions

a) <u>Dérivation</u>:

(i) <u>Dérivée en un point</u>: on dit que $f: I \to \mathbb{R}$ est **dérivable en** $a \in I$ lorsque le rapport $\frac{f(x) - f(a)}{x - a}$ admet une limite finie quand x tend vers a: on note alors:

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

(ii) Fonction dérivée : lorsque f est dérivable en tout point de I, on dit que f est **dérivable sur** I, et on note :

$$f': \ I \to \mathbb{R}$$
 appelée fonction dérivée de f sur I $x \mapsto f'(x)$

Exemple: $f: x \mapsto \frac{1}{x}$ est dérivable en tout point $x \neq 0$

Notation: on notera $\mathcal{D}(I)$ l'ensemble des fonctions dérivables sur I (par exemple $\arcsin \in \mathcal{D}(]-1,1[)$).

- b) Lien avec la tangente : on suppose f dérivable en a.
 - $\overline{\text{(i) Si }A\left(a,f\left(a\right)\right) \text{ et }M\left(x,f\left(x\right)\right), \text{ le rapport } \frac{f\left(x\right)-f\left(a\right)}{x-a} \text{ est la pente de la droite } (AM)\,.$

En "passant à la limite", on montre que

$$f'(a)$$
 est la pente de la tangente (T_a) à la courbe C_f au point d'abscisse a .

(ii) Equation de (T_a) : c'est la droite de pente f'(a) passant par A(a, f(a)) et dirigée par $\vec{d}(1, f'(a))$

$$(T_a) \quad y = f(a) + f'(a)(x - a)$$

(iii) Si
$$\lim_{x \to a} \frac{f\left(x\right) - f\left(a\right)}{x - a} = \pm \infty$$
, alors \mathcal{C}_f présente une tangente verticale $A\left(a, f\left(a\right)\right)$.

Exemple: $f: x \mapsto \sqrt[3]{x}$

 $\it Remarque:$ approximation affine. Soit f est dérivable en a

Pour x "au voisinage de a", on a l'approximation $f(x) \simeq f(a) + (x-a) f'(a)$. Mais à quelle précision?

En posant x=a+h, on a donc pour h "petit": $f(a+h) \simeq f(a) + hf'(a)$. La suite nous permettra de "controler" cette approximation.

Par exemple, si $f: x \mapsto \sqrt{x}$, a = 4, $h = 10^{-3}$ quelle approximation de $\sqrt{4,001}$ obtient-on?

c) Dérivées à droite et à gauche : si ces limites existent, on note :

$$f_d'\left(a\right) = \lim_{h \to 0^+} \frac{f\left(a+h\right) - f\left(a\right)}{h} \quad \text{et} \quad f_g'\left(a\right) = \lim_{h \to 0^-} \frac{f\left(a+h\right) - f\left(a\right)}{h}$$

et on dit que f est **dérivable à droite** (resp. **à gauche**) en a. On a alors

$$f$$
 est dérivable en $a \Leftrightarrow f$ est dérivable à gauche et à droite et $f_d'\left(a\right) = f_g'\left(a\right)$

Exemple: $f: x \to \sin |x|$ est dérivable à droite et à gauche en 0

d) Fonctions de classe C^1 :

On dit que
$$f$$
 est de classe C^1 sur I lorsque $\left\{ \begin{array}{l} f \text{ est d\'erivable sur } I \\ f' \text{ est continue sur } I \end{array} \right.$

L'ensemble des fonctions de classe C^{1} sur I se note $C^{1}\left(I,\mathbb{R}\right) .$

Exemple 1: $\ln \in C^1(]0, +\infty[)$.

Exemple 2: $f: x \to \left\{ \begin{array}{l} x^2 \sin\left(\frac{1}{x}\right) \ \text{si } x \neq 0 \\ 0 \ \text{sinon} \end{array} \right.$ est dérivable mais pas $C^1 \ \text{sur } \mathbb{R}.$

2.2. Propriétés des dérivées

a) Continuité : si f est dérivable sur I, alors f est continue sur I

La reciproque est fausse (cf. $f: x \rightarrow |x|$)

b) Linéarité-Produit : soient f et g dérivables sur I. Alors :

(i)
$$\underline{\forall (\lambda, \mu) \in \mathbb{R}^2, \lambda f + \mu g}$$
 est dérivable et $(\lambda f + \mu g)' = \lambda f' + \mu g'$

(ii) \underline{fg} est dérivable et $\boxed{(fg)' = f'g + fg'}$

c) Composée:

(i) Théorème:

Si $f: J \to \mathbb{R}$ est dérivable sur $J, u: I \to J$ est dérivable sur I, alors $f \circ u$ est dérivable sur I et

$$(f \circ u)' = u' \times (f' \circ u)$$

Autrement dit

$$\forall x \in I, \quad \frac{d}{dx} \left(f(u(x)) \right) = u'(x) \times f'(u(x))$$

Remarque: les physiciens écrivent : " $\frac{df}{dx} = \frac{df}{du} \times \frac{du}{dx}$ ".

Exemple: pour $(a,b) \in \mathbb{R}^2$, et f dérivable sur \mathbb{R} , on a pour tout réel x

$$\frac{d}{dx}\left[f(ax+b)\right] = af'(ax+b)$$

En particulier

$$\boxed{\frac{d}{dx}\left[f(-x)\right] = -f'(-x)}$$

- (ii) Cas particuliers:
 - Si u est dérivable sur I et strictement positive sur I, alors

Pour tout
$$\alpha \in \mathbb{C}^*$$
, $(u^{\alpha})' = \alpha u' u^{\alpha - 1}$

Par exemple

$$\boxed{ \left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}} } \quad \text{et} \quad \left[\left(\frac{1}{u^{\alpha}}\right)' = -\frac{u'}{u^{\alpha+1}} \right]$$

4

PCSI Continuité, dérivation

- Si u est dérivable et non nulle sur I alors

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$
 et $\left[\left(\ln|u|\right)' = \frac{u'}{u}\right]$

Pour tout u dérivable sur I, on a

$$\boxed{(e^u)' = u'e^u} \quad \text{et} \quad \left| (\arctan u)' = \frac{u'}{1 + u^2} \right|$$

- Si u est dérivable sur I à valeurs dans]-1,1[, alors

$$\left(\arcsin u\right)' = \frac{u'}{\sqrt{1 - u^2}}$$

d) Dérivée d'une réciproque :

Soit f une bijection dérivable de I sur J (intervalles). On suppose que $\underline{f'}$ ne s'annule pas sur I Alors f^{-1} est dérivable sur J et $\forall x \in J, \quad \left(f^{-1}\right)'(x) = \frac{1}{f'(f^{-1}(x))}$

On a ainsi la formule (pour f' ne s'annulant pas sur I):

$$(f^{-1})' = \frac{1}{f' \circ f^{-1}}$$

Exemple : calculer la dérivée de ln connaissant celle de exp, de $x \to \sqrt[3]{x}$ connaissant celle du cube *Remarque :* on retrouve ce résultat en dérivant l'égalité $\forall x \in J, \ f\left(f^{-1}\left(x\right)\right) = x$.

2.3. Résultats fondamentaux (provisoirement admis) :

Soit I un **intervalle**, f une fonction continue sur I, dérivable sur $\stackrel{\circ}{I}$ (intervalle ouvert de mêmes bornes que I)

a)
$$f$$
 est constante sur $I \Leftrightarrow \forall x \in \overset{\circ}{I}, \ f'(x) = 0$

Attention : ce théorème est faux si I n'est pas un intervalle :

Par exemple la fonction partie entière sur $\mathbb{R} \setminus \mathbb{Z}$ et $x \to \arctan x + \arctan \frac{1}{x} \operatorname{sur} \mathbb{R}^*$

b)
$$f$$
 est croissante sur $I \Leftrightarrow \forall x \in \mathring{I}, \ f'(x) \geqslant 0$ (même chose pour f décroissante)

Exemple: $f: x \to \sqrt{x}$ est croissante sur $[0, +\infty[$ car sa dérivée est positive sur $]0, +\infty[$.

Attention: même avertissement qu'au a) si I n'est pas un intervalle (cf. $f: x \mapsto \frac{1}{x}$)

c) SI
$$\forall x \in \overset{\circ}{I}, \ f'(x) > 0$$
, ALORS f est strictement croissante sur I

Remarque 1: la réciproque est fausse : cf. $f: x \to x^3$

Remarque 2: f' peut s'annuler aux bornes de I sans que le théorème soit en défaut (cf. $\cos \sup [0, \pi]$)

Généralisation : si f' > 0 sauf en un nombre fini de points de I, alors f est strictement croissante sur I.

3. Dérivées d'ordre supérieur

3.1. Définitions

Soit f une fonction définie sur un intervalle I

a) <u>Dérivées n-ièmes</u>: si ces fonctions existent, on note : f'' = (f')', f''' = (f'')', $f^{(4)} = (f''')'$...

Plus généralement on définit par récurrence la dérivée d'ordre de n de f sur I par

$$\boxed{f^{(0)} = f} \quad \text{et} \quad \forall n \in \mathbb{N}, \\ \boxed{f^{(n+1)} = \left(f^{(n)}\right)'}$$

Notations: $f^{(n)}$ se note aussi $D^n f$ ou $\frac{d^n f(x)}{dx^n}$

On notera $\mathcal{D}^{n}\left(I\right)$ l'ensemble des fonctions n fois dérivables sur I.

b) Fonctions de classe C^n : soit $n \in \mathbb{N}^*$.

On dit que f est de classe \mathcal{C}^n sur I lorsque $\left\{ \begin{array}{c} f \text{ est } n \text{ fois d\'erivable sur } I \\ f^{(n)} \text{ est continue sur } I \end{array} \right.$

On note $\mathcal{C}^n\left(I,\mathbb{R}\right)$ l'ensemble des fonctions de classe \mathcal{C}^n sur I

Remarque: soit f dérivable sur I: alors $f \in \mathcal{C}^{n}\left(I\right) \Longleftrightarrow f' \in \mathcal{C}^{n-1}\left(I\right)$

Exemple: on pose $\begin{cases} f(x) = x^2 \text{ si } x \geqslant 0 \\ f(x) = -x^2 \text{ si } x < 0 \end{cases} \text{ alors } f \text{ est de classe } \mathcal{C}^1 \text{ sur } \mathbb{R}, \text{ mais pas } \mathcal{C}^2.$

c) Fonction indéfiniment dérivables : lorsque $f^{(n)}$ existe pour tout entier n, on dit que f est de classe \mathcal{C}^{∞} .

On note $\mathcal{C}^{\infty}(I,\mathbb{R})$ l'ensemble des fonctions indéfiniment dérivables sur I

On a

$$\boxed{\mathcal{C}^{\infty}\left(I\right)\subset\ldots\subset\mathcal{C}^{2}\left(I\right)\subset\mathcal{C}^{1}\left(I\right)\subset\mathcal{C}^{0}\left(I\right)}$$

Exemples: $\exp \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$, $\ln \in \mathcal{C}^{\infty}([0, +\infty[, \mathbb{R}), \forall n \in \mathbb{N}, x \mapsto x^n \text{ est de classe } \mathcal{C}^{\infty} \text{ sur } \mathbb{R}$

3.2. Propriétés

a) Linéarité:

Si
$$(f,g) \in \mathcal{C}^n\left(I\right)^2$$
 et $(\lambda,\mu) \in \mathbb{R}^2$, alors $\lambda f + \mu g \in \mathcal{C}^n\left(I\right)$, et
$$(\lambda f + \mu g)^{(n)} = \lambda f^{(n)} + \mu g^{(n)}$$

en particulier toute combinaison linéaire de fonctions de classe C^∞ sur I est C^∞ sur I

b) Produit : formule de Leibniz :

Si
$$(f,g) \in \mathcal{C}^n\left(I\right)^2$$
, alors $fg \in \mathcal{C}^n\left(I\right)$ et
$$(fg)^{(n)} = \sum_{k=0}^n \binom{n}{k} f^{(k)} g^{(n-k)}$$

En particulier le produit de deux fonctions de classe C^{∞} sur I est C^{∞} sur I.

Exemple: soit $f: x \mapsto x^2 e^x$: calculer $f^{(n)}$ pour $n \in \mathbb{N}$.

PCSI Continuité, dérivation

c) Composée:

Si
$$f \in \mathcal{C}^n(J,\mathbb{R})$$
 et $u \in \mathcal{C}^n(I,J)$, alors $f \circ u$ est de classe \mathcal{C}^n sur I

En particulier la composée de deux fonctions de classe C^{∞} est C^{∞} .

d) Réciproque:

Si
$$f \in \mathcal{C}^{n}\left(I,J\right)$$
 est bijective **et si** f' **ne s'annule pas sur** I , alors $f^{-1} \in \mathcal{C}^{n}\left(J,I\right)$

En particulier, la réciproque d'une bijection \mathcal{C}^∞ de I sur J dont la dérivée ne s'annule pas est \mathcal{C}^∞ sur J

- e) Fonctions usuelles: les fonctions suivantes sont de classe \mathcal{C}^{∞} sur leur ensemble de définition :
 - Les polynômes et les fractions rationnelles, les fonctions puissance $(x \mapsto x^{\lambda} \text{ sur }]0, +\infty[)$
 - \exp , \ln , \sin , \cos , \tan , \cot , \sinh , \sinh , \cot les exponentielles et logarithmes de base a.
 - arcsin et arccos sur]-1,1[