EE 231A Information Theory Lecture 14 Achievability and Converse for R(D)

- A. Statement of Rate-Distortion Theorem and the Distortion AEP
- B. A Pesky Inequality
- C. Random Coding Proof of Achievability of R(D)
- D. Converse to the Channel Coding Theorem

Part 14 A: Statement of Rate-Distortion Theorem and the Distortion AEP.

Theorem 10.2.1

• The rate distortion function for an i.i.d. source X with distribution p(x) and bounded distortion $d(x,\hat{x})$ is

$$R(D) = \min_{p(\hat{x}|x): \sum_{(x,\hat{x})} p(x)p(\hat{x}|x)d(x,\hat{x}) \le D} I(X;\hat{X}).$$

• This is the minimum achievable rate at distortion D.

What we need to prove for achievability

- Suppose that $(X, \hat{X}) \sim p(x, \hat{x})$ such that E(d) < D and $I(X; \hat{X}) < R$. Then distortion D is achievable at rate R.
- i.e. a sequence of $(2^{nR}, n)$ codes have

$$d(\hat{x}^n, x^n) \to D$$
 as $n \to \infty$.

Things we need for proof

- Distortion AEP
- 2^{-nI} inequality
- Another inequality

Distortion Typical Set

- \mathcal{X} is a discrete alphabet.
- $(x,\hat{x}) \sim p(x,\hat{x})$

$$A_{d,\epsilon}^{(n)} = \left\{ (x^n, \hat{x}^n) : \left| -\frac{1}{n} \log p(x^n) - H(X) \right| < \epsilon$$

$$\left| -\frac{1}{n} \log p(\hat{x}^n) - H(X) \right| < \epsilon$$

$$\left| -\frac{1}{n} \log p(x^n, \hat{x}^n) - H(X, \hat{X}) \right| < \epsilon$$

$$\left| d(x^n, \hat{x}^n) - E[d(X, \hat{X})] \right| < \epsilon$$

• $A_{d,\epsilon}^{(n)} \subset A_{\epsilon}^{(n)}$ where $A_{\epsilon}^{(n)}$ is the jointly typical set.

Distortion AEP

$$P(A_{d,\epsilon}^{(n)}) \rightarrow 1$$

• Weak law of large numbers for $(x_i, \hat{x}_i) \sim \text{i.i.d.} P(x, \hat{x})$.

A 2^{-nI} inequality

• For all $(x_i, \hat{x}_i) \in A_{d,\epsilon}^{(n)}$ $p(\hat{x}^n) \ge p(\hat{x}^n \mid x^n) 2^{-n(I(X;\hat{X}) + 3\epsilon)}$

$$p(\hat{x}^n | x^n) = \frac{p(\hat{x}^n, x^n)}{p(x^n)}$$

$$= p(\hat{x}^n) \frac{p(\hat{x}^n, x^n)}{p(x^n) p(\hat{x}^n)}$$

$$= p(\hat{x}^n) 2^{nS}$$

$$\leq p(\hat{x}^n) 2^{n(I(X; \hat{X}) + 3\epsilon)}$$

$$S = \frac{1}{n} \sum_{i=1}^{n} \log p(x_i, \hat{x}_i) - \log p(x_i) - \log p(\hat{x}_i)$$

$$\leq -H(X, \hat{X}) + \epsilon + H(X) + \epsilon + H(\hat{X}) + \epsilon$$
for $(x_i, \hat{x}_i) \in A_{d, \epsilon}^{(n)}$

$$= I(X; \hat{X}) + 3\epsilon$$

Part 14B: A Pesky Inequality

Things we need for proof

- Distortion AEP
- 2^{-nI} inequality
- Another inequality

A pesky inequality

• For $0 \le x, y \le 1, n > 0$

$$(1-xy)^n \le 1-x+e^{-yn}$$

Takes several steps....

Convexity of $g_y(x)$ $0 \le x, y \le 1, n > 0$

$$g_{y}(x) = (1 - xy)^{n}$$

$$\frac{d}{x}g_{y}(x) = -yn(1-xy)^{n-1}$$

$$\frac{d^{2}}{x^{2}}g_{y}(x) = y^{2}n(n-1)(1-xy)^{n-2}$$

$$\geq 0 \quad \text{for } 0 \leq x, y \leq 1, \quad n > 0$$

Since the second derivative is positive, $g_{\nu}(x)$ is convex.

Application of Convexity

$$(1-xy)^n = g_y(x)$$

$$= g_y((1-x)\times 0 + x\times 1)$$

$$\leq (1-x)g_y(0) + xg_y(1) \qquad \text{Lies below the chord...}$$

$$= (1-x)1 + x(1-y)^n$$

$$(1-xy)^n \leq (1-x)1 + x(1-y)^n$$

Finally, the object of our argument

$$(1-xy)^n \le (1-x)1+x(1-y)^n$$
 $(e^{-y})^n \ge (1-y)^n$

$$(1-xy)^n \le (1-x)1 + x(1-y)^n$$

$$= (1-x) + x(1-y)^n$$

$$\le (1-x) + xe^{-yn}$$

$$\le (1-x) + e^{-yn}$$

$$\left| (1 - xy)^n \le 1 - x + e^{-yn} \right|$$

Part 14C: Random Coding Proof of Achievability of R(D)

Proof of achievability

• Let $X_1, X_2, ..., X_n \sim \text{i.i.d. } p(x)$ and $d(x, \hat{x})$ is a bounded distortion. For any D, and any rate R > R(D), there is a sequence of $(2^{nR}, n)$ codes such that

$$E(d) \rightarrow D$$
 as $n \rightarrow \infty$

Random Coding

• Generate 2^{nR} reproduction sequences \hat{X}_i^n , $i=1,...,2^{nR}$ by drawing each $\hat{X}_i^n(k)$, k=1,...,n, $i=1,...,2^{nR}$ i.i.d. $\sim p(\hat{x})$

Typical-Set *Encoder*

- For each X^n , select i such that $(X^n, \hat{X}^n(i)) \in A_{d,\epsilon}^{(n)}$ if possible.
- If two are found, choose the least i.
- If none are found, send i = 1.

Probability that this happens is P_e

Reproduction Sequence

• Reproduction sequence is $\hat{X}^n(i)$

Computation of Distortion

• Compute E[d] over the random selection of X^n and of our code.

$$E[d] \le P_e d_{\text{max}} + (1 - P_e)(D + \epsilon)$$

$$\left| d(x^n, \hat{x}^n) - E[d(X, \hat{X})] \right| < \epsilon$$

- So we need to compute P_e .

Probability of a "match"

• Fix x^n and select a single \hat{x}^n randomly by choosing n values i.i.d.~ $p(\hat{x})$. Indicator Function

$$\Pr\{(x^{n}, \hat{x}^{n}) \notin A_{d,\epsilon}^{(n)}\} = 1 - \sum_{\hat{x}^{n}} p(\hat{x}^{n}) \mathbb{I}\left((x^{n}, \hat{x}^{n}) \in A_{d,\epsilon}^{(n)}\right)$$

• Since we choose 2^{nR} independent codewords, our randomly selected code will fail for a fixed x^n only if we fail in all 2^{nR} attempts, i.e. with probability

$$\left[1 - \sum_{\hat{x}^n} p(\hat{x}^n) \mathbf{I}\left((x^n, \hat{x}^n) \in A_{d, \epsilon}^{(n)}\right)\right]^{2^{nn}}$$

Application of 2^{-nI} inequality

$$(x_i, \hat{x}_i) \in A_{d,\epsilon}^{(n)}$$
$$p(\hat{x}^n) \ge p(\hat{x}^n \mid x^n) 2^{-n(I(X; \hat{X}) + 3\epsilon)}$$

 $(1-xy)^n \le 1-x+e^{-yn}$

$$P_{e} = \sum_{x^{n}} p(x^{n}) \left[1 - \sum_{\hat{x}^{n}} p(\hat{x}^{n}) \mathbf{I} \left((x^{n}, \hat{x}^{n}) \in A_{d, \epsilon}^{(n)} \right) \right]^{2^{nR}}$$

$$\leq \sum_{x^{n}} p(x^{n}) \left[1 - \sum_{\hat{x}^{n}} p(\hat{x}^{n} \mid x^{n}) 2^{-n(I(X; \hat{X}) + 3\epsilon)} \mathbf{I} \left((x^{n}, \hat{x}^{n}) \in A_{d, \epsilon}^{(n)} \right) \right]^{2^{nR}}$$

Application of the other inequality

$$P_{e} \leq \sum_{x^{n}} p(x^{n}) \left[1 - 2^{-n(I(X;\hat{X}) + 3\epsilon)} \sum_{\hat{x}^{n}} p(\hat{x}^{n} \mid x^{n}) I((x^{n}, \hat{x}^{n}) \in A_{d,\epsilon}^{(n)}) \right]_{n}^{2^{nR}}$$

$$\leq \sum_{x^{n}} p(x^{n}) \left[1 - \sum_{\hat{x}^{n}} p(\hat{x}^{n} \mid x^{n}) \mathbf{I} \left((x^{n}, \hat{x}^{n}) \in A_{d, \epsilon}^{(n)} \right) + e^{-2^{-n(l+3\epsilon)} 2^{nR}} \right]$$

$$\leq \sum_{x^{n}} p(x^{n}) - \sum_{x^{n}} p(x^{n}) \sum_{\hat{x}^{n}} p(\hat{x}^{n} \mid x^{n}) \mathbf{I}((x^{n}, \hat{x}^{n}) \in A_{d, \epsilon}^{(n)}) + \sum_{x^{n}} p(x^{n}) e^{-2^{-n(l+3\epsilon)} 2^{nR}}$$

$$=1-\sum_{x^n}\sum_{\hat{x}^n}p(\hat{x}^n,x^n)\mathbb{I}\Big((x^n,\hat{x}^n)\in A_{d,\epsilon}^{(n)}\Big)+e^{-2^{n(R-I(X;\hat{X})-3\epsilon)}}$$

Probability of error converges to zero. Distortion converges to \mathcal{D} .

$$P_{e} \leq 1 - \sum_{x^{n}} \sum_{\hat{x}^{n}} p(\hat{x}^{n}, x^{n}) \mathbf{I} \left((x^{n}, \hat{x}^{n}) \in A_{d, \epsilon}^{(n)} \right) + \underbrace{e^{-2^{n(R-I(X; \hat{X}) - 3\epsilon)}}}_{\rightarrow 0 \text{ as } n \rightarrow \infty}$$

$$\rightarrow 0 \text{ as } n \rightarrow \infty$$

$$E[d] \le P_e d_{\text{max}} + (1 - P_e)(D + \epsilon)$$

$$\longrightarrow D$$

Part 14D: Converse to the Rate-Distortion Theorem

Converse to rate-distortion theorem

• For any source X drawn i.i.d. $\sim p(x)$ with bounded additive distortion $d(x,\hat{x})$ and any $(2^{nR}, n)$ lossy compression code, if distortion is $\leq D$, then the rate satisfies $R \geq R(D)$.

This will take several slides to prove...

Assume a lossy compression scheme with good distortion.

• Consider a $(2^{nR}, n)$ lossy compression with encoder f_n , decoder g_n that achieves $E(d) \le D$.

$$\hat{x}^n = g_n \Big(f_n(x^n) \Big)$$

A series of bounds on nR

$$nR \ge H(\hat{X}^n) \qquad \text{equality if codewords are equally likely}$$

$$\ge H(\hat{X}^n) - H(\hat{X}^n \mid X^n) \qquad \text{equality if } \hat{X}^n \text{ is a}$$

$$= I(\hat{X}^n; X^n) \qquad \text{deterministic function of } X^n$$

$$= H(X^n) - H(X^n \mid \hat{X}^n)$$

$$= \sum_{i=1}^n H(X_i) - H(X^n \mid \hat{X}^n)$$

$$= \sum_{i=1}^n H(X_i) - \sum_{i=1}^n H(X_i \mid \hat{X}^n, X_{i-1}, ..., X_1)$$

Continuing the bounds on nR

$$nR \ge \sum_{i=1}^{n} H(X_i) - \sum_{i=1}^{n} H(X_i | \hat{X}^n, X_{i-1}, ..., X_1)$$

$$\ge \sum_{i=1}^{n} H(X_i) - \sum_{i=1}^{n} H(X_i | \hat{X}_i) \qquad \text{equality if only } \hat{X}_i \text{ is useful for reconstructing } X_i$$

$$= \sum_{i=1}^{n} I(X_i; \hat{X}_i)$$

$$\ge \sum_{i=1}^{n} R(Ed(X_i, \hat{X}_i)) \qquad \text{equality if } R(D) \text{ achieved}$$

$$= n \sum_{i=1}^{n} \frac{1}{n} R(Ed(X_i, \hat{X}_i))$$

Concluding the bounds on nR

$$nR \ge n \sum_{i=1}^{n} \frac{1}{n} R\left(Ed(X_i, \hat{X}_i)\right)$$

$$\ge nR\left(\frac{1}{n} \sum_{i=1}^{n} Ed(X_i, \hat{X}_i)\right) \qquad \text{by convexity of } R\left(D\right)$$
equality if $Ed(X_i, \hat{X}_i)$
is same for all i

$$\ge nR\left(Ed(X^n, \hat{X}^n)\right)$$

$$\ge nR\left(D\right) \qquad \text{since } E(d) \le D \text{ and } R(D)$$
decreases monotonically

Thus R > R(D) as required.