Mastering Blockchain

Inner workings of blockchain, from cryptography and decentralized identities, to DeFi, NFTs and Web3

Imran Bashir

<packt>

Mastering Blockchain

Fourth Edition

Inner workings of blockchain, from cryptography and decentralized identities, to DeFi, NFTs and Web3

Imran Bashir

Mastering Blockchain

Fourth Edition

Copyright © 2023 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Senior Publishing Product Manager: Devika Battike Acquisition Editor – Peer Reviews: Gaurav Gavas

Project Editor: Meenakshi Vijay

Content Development Editor: Rebecca Robinson

Copy Editor: Safis Editing

Technical Editor: Karan Sonawane

Proofreader: Safis Editing **Indexer:** Manju Arasan

Presentation Designer: Rajesh Shirsath

Developer Relations Marketing Executive: Vidhi Vashisth

First published: March 2017 Second edition: March 2018 Third edition: August 2020 Fourth edition: March 2023

Production reference: 2040723

Published by Packt Publishing Ltd. Livery Place 35 Livery Street Birmingham B3 2PB, UK.

ISBN: 978-1-80324-106-7

www.packt.com

Disclaimer: The information and viewpoints expressed in this book are those of the author and not necessarily those of any of the author's employers or their affiliates.

This book is dedicated with immeasurable love and gratitude to my beloved father. The most affectionate, selfless, and hardworking man, who sacrificed everything for me.

Don't worry, my son! Adversities come and go.

—Scientist Bashir Ahmed Khan

Contributors

About the author

Imran Bashir has an MSc in Information Security from Royal Holloway, University of London. He has a background in software development, solution architecture, infrastructure management, information security, and IT service management. His current focus is on the latest technologies, such as blockchain and quantum computing. He is a member of the Institute of Electrical and Electronics Engineers (IEEE). He has worked in various senior technology roles for different organizations around the world.

I would like to thank Edward Doxey for his dedication and Packt for their support and guidance throughout this project. I also want to thank John Cornyn, who read the previous edition of this book and suggested some corrections, as well as the reviewers of this edition.

I want to thank my wife and children for their support while I was writing, especially during the time I was supposed to spend with them.

Finally, I want to thank my father, who has always been there for me and always will be. And my mother, whose encouragement makes difficult obstacles easy to surmount for me. My parents' prayers and unconditional love for me have enabled me to achieve anything I desire.

Disclaimer: The information and viewpoints expressed in this book are those of the author and not necessarily those of any of the author's employers or their affiliates.

About the reviewers

Brian Wu is a senior blockchain architect and consultant. Brian has over 20 years of hands-on experience across various technologies, including blockchain, big data, cloud, AI, systems, and infrastructure. He has worked on more than 50 projects in his career.

He has written nine books, published by O'Reilly, Packt, and Apress, on popular fields within the blockchain domain, including Learn Ethereum, First Edition; Learn Ethereum, Second Edition; Blockchain for Teens; Hands-On Smart Contract Development with Hyperledger Fabric V2; Hyperledger Cookbook; Blockchain Quick Start Guide; Security Tokens and Stablecoins Quick Start Guide; Blockchain By Example; and Seven NoSQL Databases in a Week.

Shailesh B. Nair is a computer engineer and has worked in software development for the last 21 years. He has been involved in blockchain development for about 8 years using different blockchain frameworks, like Ethereum (L1, L2, L3), Substrate, Polkadot, Solana, Cosmos (IBC), CasperLabs, Tezos, etc using various programming languages like C++, Rust, Golang, Ocaml, and Haskell.

He has worked with many different crypto startups since 2014 and as a blockchain consultant, he has worked with Mina Protocol, FTX, and others.

I would like to thank my friends who have worked with me on projects related to blockchain.

Join us on Discord!

To join the Discord community for this book – where you can share feedback, ask questions to the author, and learn about new releases – follow the QR code below:

https://packt.link/ips2H

Table of Contents

Preface	xxvii
Chapter 1: Blockchain 101	1
The growth of blockchain technology	1
Progress towards maturity • 2	
Rising interest • 3	
Distributed systems	4
CAP theorem • 6	
PACELC theorem • 8	
The history of blockchain	8
Bitcoin • 9	
Electronic cash • 9	
Introducing blockchain	11
Blockchain architecture • 12	
Blockchain by layers • 12	
Blockchain in business • 14	
Generic elements of a blockchain • 14	
Blockchain functionality • 18	
Benefits and features of blockchain • 20	
Limitations of blockchain technology • 21	
Types of blockchain	23
Distributed ledgers • 23	
Shared ledger • 24	
Public blockchains • 24	
Private blockchains • 24	
Semi-private blockchains • 24	
Permissioned ledger • 25	

viii Table of Contents

T. 11 - a alice to a configuration 1.1 - 1 - 1 - 1 - 1 - 2 - 2 - 2 - 2	
Fully private and proprietary blockchains • 25	
Tokenized blockchains • 25	
Tokenless blockchains • 25	
Layer 1 blockchains • 26	
Monolithic and polylithic blockchains • 26	
Layer 2 blockchains • 26	
Sidechains • 26	
Summary	27
Chapter 2: Decentralization	29
Introducing decentralization	29
Methods of decentralization • 33	
Disintermediation • 33	
Contest-driven decentralization • 34	
Quantifying decentralization • 34	
Benefits of decentralization • 36	
Evaluating requirements • 37	
Full-ecosystem decentralization	38
Storage • 38	
Communication • 39	
Computing power • 40	
Decentralization in practice	42
Smart contracts • 42	
Autonomous agents • 42	
Decentralized organizations • 43	
Decentralized autonomous organizations • 43	
Decentralized autonomous corporations • 43	
Decentralized autonomous societies • 44	
Decentralized applications • 44	
Criteria for a DApp • 46	
Operations of a DApp • 46	
Design of a DApp • 46	
Innovative trends	48
Decentralized web • 48	
Web 1 • 49	
Web 2 • 49	
Web 3 • 49	
Summary	49

Table of Contents ix

Chapter 3: Symmetric Cryptography	51
Introducing cryptography	. 52
Services provided by cryptography • 52	
Cryptographic primitives	. 54
Keyless primitives • 55	
Random numbers • 55	
Hash functions • 56	
Symmetric key primitives • 67	
Message authentication codes • 68	
Secret key ciphers • 69	
Advanced Encryption Standard	. 74
Data Encryption Standard • 74	
How AES works • 74	
Encrypting and decrypting using AES • 76	
Summary	. 77
Chapter 4: Asymmetric Cryptography	79
Foundational mathematics	. 79
Asymmetric cryptography	. 80
Public and private keys • 80	
Asymmetric cryptography algorithms • 82	
Integer factorization • 82	
Discrete logarithm • 82	
Elliptic curves • 83	
Integrated encryption scheme • 83	
Introducing RSA	. 83
Encrypting and decrypting with RSA • 85	
Introducing ECC	. 87
Mathematics behind ECC • 87	
Point addition • 88	
Point doubling • 91	
Point multiplication • 92	
The discrete logarithm problem • 93	
Generating keys with ECC • 95	
Digital signatures	. 98
RSA digital signature algorithms • 98	

Table of Contents

Generating RSA digital signatures • 100	
The elliptic curve digital signature algorithm • 100	
Generating ECDSA digital signatures • 102	
Different types of digital signatures • 104	
Blind signatures • 104	
Multisignatures • 105	
Threshold signatures • 106	
Aggregate signatures • 108	
Ring signatures • 108	
Cryptographic constructs and blockchain technology	. 109
Homomorphic encryption • 109	
Secret sharing • 109	
Commitment schemes • 110	
Zero-knowledge proofs • 111	
zk-SNARKs • 113	
zk-STARKs • 115	
Zero-knowledge range proofs • 116	
Encoding schemes • 116	
Base64 • 117	
base58 • 117	
Verifiable random functions • 117	
Summary	. 118
Chapter 5: Consensus Algorithms	119
Introducing consensus	. 119
Fault tolerance • 120	
FLP impossibility • 121	
Analysis and design	. 122
Model • 122	
Processes • 122	
Timing assumptions • 123	
Classification	. 123
Algorithms	. 124
CFT algorithms • 124	
Paxos • 124	
Raft • 127	
BFT algorithms • 129	

Table of Contents xi

Practical Byzantine Fault Tolerance • 129	
Istanbul Byzantine Fault Tolerance • 134	
Tendermint • 137	
Nakamoto consensus • 144	
Variants of PoW • 146	
HotStuff • 151	
Choosing an algorithm	. 155
Finality • 155	
Speed, performance, and scalability • 156	
Summary	. 156
Chapter 6: Bitcoin Architecture	157
Introducing Bitcoin	. 157
Cryptographic keys	. 159
Private keys in Bitcoin • 159	
Public keys in Bitcoin • 160	
Addresses	. 161
Typical Bitcoin addresses • 161	
Advanced Bitcoin addresses • 163	
Transactions	. 163
Coinbase transactions • 164	
The transaction lifecycle • 165	
Transaction validation • 166	
Transaction fees • 166	
The transaction data structure • 167	
Metadata • 169	
Inputs • 169	
Outputs • 170	
Verification • 170	
The Script language • 170	
Opcodes • 171	
Standard transaction scripts • 171	
Contracts • 174	
Transaction bugs • 175	
Blockchain	. 176
Structure • 176	
The genesis block • 178	

xii Table of Contents

Stale and orphan blocks • 179	
Forks • 179	
Properties • 180	
Miners	181
Proof of Work (PoW) • 182	
Mining systems • 184	
CPU • 184	
GPU • 184	
FPGAs • 185	
ASICs • 185	
Mining pools • 186	
Network	
Types of messages • 187	
Client software • 192	
Bloom filters • 192	
Wallets	
Summary	196
Chapter 7: Bitcoin in Practice	197
Bitcoin in the real world	197
Bitcoin payments	198
Innovation in Bitcoin	200
Bitcoin improvement proposals • 201	
Advanced protocols • 202	
Segregated Witness • 202	
Bitcoin Cash • 204	
Bitcoin Unlimited • 205	
Bitcoin Gold • 205	
Taproot • 205	
Extended protocols on top of Bitcoin • 206	
Colored coins • 206	
Counterparty • 207	
Altcoins from Bitcoin • 208	
Bitcoin client installation	200
m (1: , 1, 1, 200	209
Types of clients and tools • 209	209
Setting up a Bitcoin node • 210	209

Table of Contents xiii

Setting up bitcoin.conf • 211	
Starting up a node in the testnet • 211	
Starting up a node in regtest • 212	
Experimenting further with bitcoin-cli	214
Using the Bitcoin command-line tool • 216	
Using the JSON-RPC interface • 217	
Using the HTTP REST interface • 218	
Bitcoin programming	219
Summary	219
Chapter 8: Smart Contracts	221
Introducing smart contracts	. 221
Definitions • 222	
Properties • 222	
Real-world application • 224	
Ricardian contracts	225
Smart contract templates	229
Oracles	231
Software-and network-assisted proofs • 233	
TLSNotary • 233	
TLS-N-based mechanism • 233	
Hardware device-assisted proofs • 234	
Android proof • 234	
Ledger proof • 234	
Trusted hardware-assisted proofs • 235	
Types of blockchain oracles • 236	
Inbound oracles • 236	
Outbound oracles • 238	
Cryptoeconomic oracles • 239	
Blockchain oracle services • 239	
Deploying smart contracts	. 240
The DAO	. 241
Advances in smart contract technology	. 242
Solana Sealevel • 242	
Digital Asset Modeling Language • 243	
Summary	. 245

xiv Table of Contents

Chapter 9: Ethereum Architecture	247
Introducing Ethereum	. 247
Cryptocurrency	
Keys and addresses	. 250
Accounts	. 254
Transactions and messages	. 255
MPTs • 256	
Transaction components • 257	
Recursive Length Prefix • 261	
Gas • 262	
Transaction types • 264	
Simple transactions • 264	
Contract creation transactions • 264	
Message call transactions • 265	
Messages • 265	
Transaction validation and execution • 266	
State and storage in the Ethereum blockchain • 267	
The world state • 268	
The account state • 268	
Transaction receipts • 269	
Ethereum virtual machine	. 270
Execution environment • 273	
The machine state • 273	
Blocks and blockchain	. 274
The genesis block • 276	
Block validation, finalization, and processing • 276	
Block difficulty mechanism • 278	
Nodes and miners	. 279
The consensus mechanism • 279	
Forks in the blockchain • 281	
The Ethereum network	. 281
Main net • 282	
Test nets • 282	
Private nets • 282	
Precompiled smart contracts	. 286
Programming languages • 287	

Table of Contents xv

Solidity • 287	
Runtime bytecode • 288	
Opcodes • 288	
Wallets and client software	289
Wallets • 289	
Geth • 289	
Light clients • 289	
Supporting protocols	290
Whisper • 290	
Swarm • 290	
Summary	292
Chapter 10: Ethereum in Practice	293
Ethereum payments	294
Innovations in Ethereum	295
Difficulty time bomb • 295	
EIP-1559 • 296	
The merge and upcoming upgrades • 298	
Programming with Geth	298
Installing and configuring the Geth client • 299	
Creating a Geth new account • 299	
Querying the blockchain using Geth • 301	
Geth console • 301	
Geth attach • 301	
Geth JSON RPC API • 302	
Setting up a development environment	304
Connecting to test networks • 305	
Creating a private network • 305	
Starting up the private network • 307	
Experimenting with the Geth JavaScript console • 310	
Mining and sending transactions • 312	
Introducing Remix IDE	
Interacting with the Ethereum Blockchain with MetaMask	321
Installing MetaMask • 321	
Creating and funding an account with MetaMask • 322	
Using MetaMask and Remix IDE to deploy a smart contract • 324	
Adding a custom network to MetaMask and connecting it with Remix IDE • 325	

xvi Table of Contents

Importing accounts into MetaMask using keystore files • 328	
Deploying a contract with MetaMask • 331	
Interacting with a contract through MetaMask using Remix IDE • 336	
Summary	342
Chapter 11: Tools, Languages, and Frameworks for Ethereum Developers	343
Languages	344
The Solidity compiler	344
Installing solc • 344	
Experimenting with solc • 345	
Tools, libraries, and frameworks	347
Node.js • 347	
Ganache • 348	
ganache-cli • 348	
Ganache UI • 349	
Truffle • 351	
Drizzle • 352	
Other tools • 352	
Contract development and deployment	353
Writing smart contracts • 353	
Testing smart contracts • 353	
Deploying smart contracts • 354	
The Solidity language	354
Functions • 355	
Variables • 359	
Local variables • 359	
Global variables • 359	
State variables • 360	
Data types • 361	
Value types • 361	
Reference types • 363	
Control structures • 365	
Events • 366	
Inheritance • 367	
Libraries • 367	
Error handling • 368	
Summary	369

Table of Contents xvii

Chapter 12: Web3 Development Using Ethereum	371
Interacting with contracts using Web3 and Geth	371
Deploying contracts • 372	
Using solc to generate ABI and code • 376	
Querying contracts with Geth • 377	
Interacting with Geth using POST requests • 380	
Interacting with contracts via frontends	381
Installing the web3.js JavaScript library • 382	
Creating a web3 object • 383	
Creating an app.js JavaScript file • 384	
Creating a frontend webpage • 387	
Calling contract functions • 388	
Creating a frontend webpage • 389	
Deploying and interacting with contracts using Truffle	391
Installing and initializing Truffle • 392	
Compiling, testing, and migrating using Truffle • 393	
Interacting with the contract • 398	
Using Truffle to test and deploy smart contracts • 399	
Deployment on decentralized storage using IPFS • 404	
Summary	406
Chapter 13: The Merge and Beyond	407
Introduction	407
Ethereum after The Merge	408
The Beacon Chain • 409	
Beacon nodes • 410	
Consensus client • 411	
Execution client • 411	
Validator client • 411	
Proof-of-stake • 415	
P2P interface (networking) • 421	
The Merge	422
Sharding	432
The future roadmap of Ethereum	440
Summary	441

xviii Table of Contents

Chapter 14: Hyperledger 4	43
Projects under Hyperledger	444
Distributed ledgers • 444	
Fabric • 444	
Sawtooth • 445	
Iroha • 445	
Indy • 446	
Besu • 446	
Libraries • 446	
Aries • 446	
Transact • 447	
Ursa • 447	
AnonCreds • 447	
Tools • 447	
Cello • 448	
Caliper • 448	
Domain-specific • 448	
Grid • 448	
Hyperledger reference architecture	449
Hyperledger design principles • 451	
Hyperledger Fabric	452
Key concepts • 452	
Membership service • 453	
Blockchain services • 454	
Smart contract services • 456	
APIs and CLIs • 456	
Components • 456	
Peers/nodes • 457	
Clients • 457	
Channels • 457	
World state database • 457	
Private data collections • 458	
Transactions • 458	
Membership Service Provider • 458	
Smart contracts • 459	
Crypto service provider • 459	

Table of Contents xix

Applications • 459	
Chaincode implementation • 460	
The application model • 462	
Consensus mechanism • 462	
Transaction lifecycle • 463	
Fabric 2.0	465
New chaincode lifecycle management • 465	
New chaincode application patterns • 466	
Summary	
Chapter 15: Tokenization	469
Tokenization on a blockchain	470
Advantages of tokenization • 470	
Disadvantages of tokenization • 472	
Types of tokens	473
Fungible tokens • 473	
Non-fungible tokens • 473	
Stable tokens • 474	
Security tokens • 475	
Process of tokenization	475
Token offerings	476
Initial coin offerings • 476	
Security token offerings • 477	
Initial exchange offerings • 477	
Equity token offerings • 477	
Decentralized autonomous initial coin offering • 478	
Other token offerings • 478	
Token standards	479
ERC-20 • 479	
ERC-223 • 480	
ERC-777 • 480	
ERC-721 • 480	
ERC-884 • 480	
ERC-1400 • 481	
ERC-1404 • 481	
ERC-1155 • 482	
ERC-4626 • 482	

Table of Contents

Building an ERC-20 token	483
Building the Solidity contract • 483	
Deploying the contract on the Remix JavaScript virtual machine • 488	
Adding tokens in MetaMask • 493	
Emerging concepts	495
Tokenomics/token economics • 495	
Token engineering • 495	
Token taxonomy • 496	
Summary	496
Chapter 16: Enterprise Blockchain	497
Enterprise solutions and blockchain	498
Success factors • 499	
Limiting factors • 500	
Requirements	501
Privacy • 502	
Performance • 502	
Access governance • 503	
Further requirements • 503	
Compliance • 503	
Interoperability • 504	
Integration • 505	
Ease of use • 505	
Monitoring • 505	
Secure off-chain computation • 505	
Better tools • 506	
Enterprise blockchain versus public blockchain	506
Enterprise blockchain architecture	507
Designing enterprise blockchain solutions	509
TOGAF • 510	
Architecture development method (ADM) • 511	
Blockchain in the cloud • 513	
Currently available enterprise blockchains	515
Enterprise blockchain challenges	517
Interoperability • 517	
Lack of standardization • 517	
Compliance • 518	

Table of Contents xxi

Business challenges • 518	
VMware Blockchain	. 518
Components • 519	
Consensus protocol • 519	
Architecture • 520	
VMware Blockchain for Ethereum • 522	
Quorum	. 522
Architecture • 522	
Nodes • 523	
Privacy manager • 524	
Cryptography • 525	
Privacy • 525	
Enclave encryption • 527	
Transaction propagation to transaction managers • 527	
Enclave decryption • 528	
Access control with permissioning • 529	
Performance • 531	
Pluggable consensus • 531	
Setting up a Quorum network with IBFT	. 532
Installing and running Quorum Wizard • 532	
Running a private transaction • 535	
Attaching Geth to nodes • 535	
Viewing the transaction in Cakeshop • 538	
Further investigation with Geth • 539	
Other Quorum projects	. 542
Remix plugin • 542	
Pluggable architecture • 542	
Summary	. 543
Chapter 17: Scalability	545
What is scalability?	. 545
Blockchain trilemma • 546	
Methods for improving scalability • 548	
Layer 0 – multichain solutions • 549	
Polkadot • 549	
Layer 1 – on-chain scaling solutions • 551	
Layer 2 – off-chain solutions • 555	

xxii Table of Contents

Layer 2 • 555	
Rollups • 559	
Data validity • 560	
Data availability • 560	
How rollups work • 561	
Types of rollups • 563	
Optimistic rollups • 563	
ZK-rollups • 564	
Technologies used for building ZK-rollups • 566	
ZK-ZK-rollups • 573	
Optimistic rollups vs ZK-rollups • 573	
Fraud and validity proof-based classification of rollups • 575	
Example • 577	
Layer 3 and beyond • 579	
Summary 5	80
Chapter 18: Blockchain Privacy 58	83
Privacy5	83
Anonymity • 584	
Confidentiality • 584	
Techniques to achieve privacy 5	85
Layer 0 • 586	
Tor • 586	
I2P • 586	
Indistinguishability obfuscation • 586	
Homomorphic encryption • 587	
Secure multiparty computation • 587	
Trusted hardware-assisted confidentiality • 587	
Mixing protocols • 588	
CoinSwap • 589	
TumbleBit • 590	
Dandelion • 590	
Confidential transactions • 592	
MimbleWimble • 592	
Zkledger • 593	
Attribute-based encryption • 593	
Anonymous signatures • 593	

Table of Contents xxiii

Zether • 594	
Privacy using Layer 2 protocols • 594	
Privacy managers • 594	
Privacy using zero-knowledge • 594	
Cryptographic Commitments • 595	
Zero-knowledge proofs • 597	
Building ZK-SNARKs • 601	
Example • 610	
Summary	616
Chapter 19: Blockchain Security	619
Security	619
Blockchain layers and attacks	621
Hardware layer • 622	
Network layer • 623	
Blockchain layer • 624	
Attacks on transactions • 624	
Transaction replay attacks • 625	
Attacks on consensus protocols • 626	
Double-spending • 627	
Selfish mining • 627	
Forking and chain reorganization • 627	
Blockchain application layer • 628	
Smart contract vulnerabilities • 628	
DeFi attacks • 631	
Interface layer • 631	
Oracle attacks/oracle manipulation attacks • 632	
Attacks on wallets • 632	
Attacks on layer 2 blockchains	634
Cryptography layer • 635	
Attacking public key cryptography • 635	
Attacking hash functions • 636	
Key management-related vulnerabilities and attacks • 636	
ZKP-related attacks • 637	
Security analysis tools and mechanism	638
Formal verification • 639	
Formal verification of smart contracts • 640	

xxiv Table of Contents

Model checking • 641	
Smart contract security • 644	
Oyente • 645	
Solgraph • 646	
Threat modeling	646
Regulation and compliance	649
Summary	649
Chapter 20: Decentralized Identity	651
Identity	651
Digital identity	652
Centralized identity model • 652	
Federated identity model • 653	
Decentralized identity model • 657	
Self-sovereign identity • 658	
Components of SSI • 659	
Identity in Ethereum	672
Identity in the world of Web3, DeFi, and Metaverse	672
SSI-specific blockchain projects	675
Hyperledger Indy, Aries, Ursa, and AnonCreds • 675	
Other projects • 676	
Some other initiatives • 676	
Challenges	676
Summary	677
Chapter 21: Decentralized Finance	679
Introduction	679
Financial markets	681
Trading • 681	
Exchanges • 682	
Orders and order properties • 682	
Order management and routing systems • 683	
Components of a trade • 683	
Trade lifecycle • 684	
Applications of blockchain in finance	685
Insurance • 685	
Post-trade settlement • 685	

Table of Contents xxv

Financial crime prevention • 686	
Payments • 688	
Decentralized finance	690
Properties of DeFi • 691	
DeFi layers • 692	
DeFi primitives • 693	
DeFi services • 694	
Asset tokenization • 694	
Decentralized exchanges • 695	
Flash loans • 701	
Derivatives • 702	
Money streaming • 703	
Yield farming • 703	
Insurance • 704	
Decentralized lending – lending and borrowing • 704	
Benefits of DeFi • 707	
Uniswap • 708	
Swap the token • 708	
Uniswap liquidity pool • 710	
Summary	714
Chapter 22: Blockchain Applications and What's Next	715
Use cases	715
IoT • 716	
IoT architecture	716
The physical object layer • 718	
The device layer • 718	
The network layer • 718	
The management layer • 718	
The application layer • 718	
Benefits of IoT and blockchain convergence • 719	
Implementing blockchain-based IoT in practice	722
Setting up Raspberry Pi • 723	
Setting up the first node • 725	
Setting up the Raspberry Pi node • 726	
Installing Node.js • 727	
Building the electronic circuit • 728	

Table of Contents

Index	747
Summary	745
Some challenges	
Some emerging trends	741
Blockchain and AI	740
Media	739
Health	738
Citizen identification • 737	
Elections • 737	
Border control • 735	
Government	735
Developing and running a Solidity contract • 729	

Preface

The goal of this book is to teach the theory and practice of distributed ledger technology to anyone interested in learning this fascinating new subject. Anyone can benefit from this book, whether a seasoned technologist, student, business executive, or enthusiast. To this end, I aim to provide a comprehensive and in-depth reference of distributed ledger technology that serves the expert and is also accessible to beginners. I primarily focus on describing the core characteristics of blockchain so that readers can build a strong foundation on which to build further knowledge and expertise. The main topics include core blockchain principles, cryptography, consensus algorithms, distributed systems theory, and smart contracts. In addition, practical topics such as programming smart contracts in solidity, building blockchain networks, using blockchain development frameworks such as Truffle, and writing decentralized applications and descriptions constitute a significant part of this book. Moreover, many types of blockchains, related use cases, and cross-industry applications of blockchain technology are discussed in detail.

This book is a unique blend of theoretical principles and hands-on application. Readers will not only be able to understand the technical underpinnings of this technology, but they will also be able to write code for smart contracts and build blockchain networks. Practitioners can use this book as a reference, and it can also serve as a textbook for students wishing to learn this technology. Indeed, some institutions have adopted previous editions of this book as a primary textbook for their courses on blockchain technology.

This book has six new chapters on the latest topics in blockchain, including scalability, security, privacy, the Ethereum Merge, decentralized identity, and decentralized finance.

I hope that this work will serve well technologists, teachers, students, scientists, developers, business executives, and anyone who wants to learn this fascinating technology for many years to come.

Who this book is for

This book is for anyone who wants to understand blockchain technology in depth. It can also be used as a reference resource by developers who are developing applications for blockchain. It can also be used as a textbook for courses related to blockchain technology and cryptocurrencies, as well as being a learning resource for various examinations and certifications related to cryptocurrency and blockchain technology.

xxviii Preface

What this book covers

Chapter 1, Blockchain 101, introduces the basic concepts of distributed computing, which blockchain technology is based on. It also covers the history, definitions, features, types, and benefits of blockchains, along with various consensus mechanisms that are at the core of blockchain technology.

Chapter 2, Decentralization, covers the concept of decentralization and its relationship with blockchain technology. Various methods and platforms that can be used to decentralize a process or a system will also be introduced.

Chapter 3, Symmetric Cryptography, introduces the theoretical foundations of symmetric cryptography, which is necessary to understand how various security services such as confidentiality and integrity are provided.

Chapter 4, Asymmetric Cryptography, introduces concepts such as public and private keys, digital signatures, and hash functions with practical examples.

Chapter 5, Consensus Algorithms, covers the fundamentals of consensus algorithms and describes the design and inner workings of several consensus algorithms. It covers both traditional consensus protocols and blockchain consensus protocols.

Chapter 6, Bitcoin Architecture, covers Bitcoin, the first and largest blockchain. It introduces technical concepts related to Bitcoin cryptocurrency in detail.

Chapter 7, Bitcoin in Practice, covers the Bitcoin network, relevant protocols, and various Bitcoin wallets. Moreover, advanced protocols, Bitcoin trading, and payments are also introduced. Moreover, various Bitcoin clients and programming APIs that can be used to build Bitcoin applications are covered.

Chapter 8, Smart Contracts, provides an in-depth discussion on smart contracts. Topics such as the history, the definition of smart contracts, Ricardian contracts, Oracles, and the theoretical aspects of smart contracts are presented in this chapter.

Chapter 9, Ethereum Architecture, introduces the design and architecture of the Ethereum blockchain in detail. It covers various technical concepts related to the Ethereum blockchain and explains the underlying principles, features, and components of this platform in depth. Other topics covered are related to the Ethereum Virtual Machine, mining, and supporting protocols for Ethereum.

Chapter 10, Ethereum in Practice, covers the topics related to setting up private networks for Ethereum smart contract development and programming.

Chapter 11, Tools, Languages, and Frameworks for Ethereum Developers, provides a detailed practical introduction to the Solidity programming language and different relevant tools and frameworks that are used for Ethereum development.

Chapter 12, Web3 Development Using Ethereum, covers the development of decentralized applications and smart contracts using the Ethereum blockchain. A detailed introduction to the Web3 API is provided along with multiple practical examples and a final project.

Chapter 13, The Merge and Beyond, introduces the latest development in Ethereum, such as the Beacon Chain, sharding, and future upgrades.

Preface xxix

Chapter 14, *Hyperledger*, presents a discussion about the Hyperledger project from the Linux Foundation, which includes different blockchain projects introduced by its members.

Chapter 15, Tokenization, introduces the topic of tokenization, stable coins, and other relevant ideas such as initial coin offerings and token development standards.

Chapter 16, Enterprise Blockchain, covers the use and application of blockchain technology in enterprise settings and covers DLT platforms such as Quorum.

Chapter 17, Scalability, is dedicated to a discussion of one of the challenges, that is, scalablity, faced by blockchain technology and how to address it. We focus on layer 2 solutions to address this problem, however, other solutions are also discussed.

Chapter 18, Blockchain Privacy, introduces the problem of lack of privacy in blockchains and explains various techniques to address this limitation. We cover solutions to achieve confidentiality and anonymity in blockchains using techniques such as ZK-SNARKs, mixers, and various other methods.

Chapter 19, Blockchain Security, introduces the various security challenges in blockchains and how to solve them. These include smart contract security, formal verification, security concerns, and best practices at each layer of the blockchain system.

Chapter 20, Decentralized Identity, covers one of the hottest topics in the blockchain world. Decentralized identity is a cornerstone of the Web3 ecosytem. In this chapter, we explore the methods, techniques, and ecosystems that underpin the Web3 and decentralized identity landscape.

Chapter 21, Decentralized Finance, covers the use and application of decentralized finance, its various aspects, the use cases of blockchain in finance, and different DeFi protocols.

Chapter 22, Blockchain Applications and What's Next, provides a practical and detailed introduction to the applications of blockchain technology in fields other than cryptocurrency, including the Internet of Things, government, media, and finance. It is aimed at providing information about the current landscape, projects, and research efforts related to blockchain technology.

Chapter 23, Alternative Blockchains, introduces alternative blockchain solutions and platforms as bonus content that is available online. It covers technical details and features of alternative blockchains and relevant platforms. This is a online chapter and you can read about it at the following link: https://packt.link/OceZK.

To get the most out of this book

In order to get the most out of this book, some familiarity with computer science and basic knowledge of a programming language is desirable.

Download the example code files

The code bundle for the book is hosted on GitHub at https://github.com/PacktPublishing/Mastering-Blockchain-Fourth-Edition.

We also have other code bundles from our rich catalog of books and videos available at https://github.com/PacktPublishing/.

xxx Preface

Check them out!

Download the color images

We provide a PDF file that has color images of the screenshots/diagrams used in this book. You can download it here: https://packt.link/5y4vk.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: "Tapscript also enables easier future soft fork upgrades by using the new OP_SUCCESS opcode."

A block of code is set as follows:

```
function ()
{
    throw;
}
```

Any command-line input or output is written as follows:

```
"Please send 0.00033324 BTC to address 1JzouJCVmMQBmTcd8K4Y5BP36gEFNn1ZJ3".
```

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance, words in menus or dialog boxes appear in the text like this. For example: "ACCOUNTS & KEYS provides options to configure balance and the number of accounts to generate."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book's title in the subject of your message. If you have questions about any aspect of this book, please email us at questions@packtpub.com.

Preface xxxi

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you have found a mistake in this book, we would be grateful if you reported this to us. Please visit http://www.packtpub.com/submit-errata, click **Submit Errata**, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would be grateful if you would provide us with the location address or website name. Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, please visit http://authors.packtpub.com.

Share Your Thoughts

Once you've read *Mastering Blockchain - Fourth Edition*, we'd love to hear your thoughts! Please click here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we're delivering excellent quality content.

Download a free PDF copy of this book

Thanks for purchasing this book!

Do you like to read on the go but are unable to carry your print books everywhere? Is your eBook purchase not compatible with the device of your choice?

Don't worry, now with every Packt book you get a DRM-free PDF version of that book at no cost.

Read anywhere, any place, on any device. Search, copy, and paste code from your favorite technical books directly into your application.

The perks don't stop there, you can get exclusive access to discounts, newsletters, and great free content in your inbox daily

Follow these simple steps to get the benefits:

1. Scan the QR code or visit the link below

https://packt.link/free-ebook/9781803241067

- 2. Submit your proof of purchase
- 3. That's it! We'll send your free PDF and other benefits to your email directly