1-я неделя. Последовательности

1.2. ПРЕДЕЛ ПОСЛЕДОВАТЕЛЬНОСТИ

1. Найдите число членов последовательности $x_n = \frac{2n-1}{4n+5}$, лежащих вне интервала $\left(\frac{1}{2} - \frac{1}{1000}, \frac{1}{2} + \frac{1}{1000}\right)$.

Ответ: 873

Решение. Найдем наибольшее натуральное n, не попадающее в заданную окрестность точки $\frac{1}{2}$, то есть удовлетворяющие неравенству

$$\left| \frac{2n-1}{4n+5} - \frac{1}{2} \right| \geqslant \frac{1}{1000}.$$

Заметим, что

$$\frac{2n-1}{4n+5} = \frac{1}{2} - \frac{\frac{7}{2}}{4n+5}.$$

Тогда

$$\left| \frac{2n-1}{4n+5} - \frac{1}{2} \right| = \left| -\frac{\frac{7}{2}}{4n+5} \right| = \frac{\frac{7}{2}}{4n+5}.$$

Последнее равенство верно, так как нас интересуют только натуральные n. Подставив получившееся выражение в неравенство, получим $n \leq 873, 5$.

2. Для $\varepsilon = 1$, $\varepsilon = 0,1$ и $\varepsilon = 0,001$ найдите соответствующие номера n, начиная с которых будет выполняться неравенство $\frac{5}{\sqrt{n}} < \varepsilon$.

Omeem: 26 2501 25 000 001

Peшение. Преобразуем неравенство с учетом положительности чисел n и ε :

$$\frac{5}{\sqrt{n}} < \varepsilon \Leftrightarrow \frac{5}{\varepsilon} < \sqrt{n} \Leftrightarrow \frac{25}{\varepsilon^2} < n.$$

Подставляя значения $\varepsilon=1,\, \varepsilon=0,1$ и $\varepsilon=0,001,$ получим $n>25,\, n>2500$ и n>25000000 соответственно. В каждом случае выберем наименьшее натуральное n, удовлетворяющее неравенству.

3. Для каждого данного ε найдите соответствующие номера N, что при всех $n\geqslant N$ верно неравенство $\left|\frac{2n-1}{n+2}-2\right|<\varepsilon$. В ответе приведите числа, разделенные пробелами, $\varepsilon=10^{-1}$, $\varepsilon=10^{-3}$ и $\varepsilon=10^{-6}$.

Omeem: 49 4999 4999 999

Решение. Преобразуем неравенство аналогично тому, как было сделано в первом задании:

$$\left| \frac{2n-1}{n+2} - 2 \right| = \left| 2 - \frac{5}{n+2} \right| = \frac{5}{n+2} < \varepsilon.$$

Подставив заданные значения ε , получим n>48, n>4998 и n>4999998 соответственно. Нам подойдут любые n, удовлетворяющие неравенствам. В ответ выпишем, например, наименьшие значения n.

1.3. АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ С ПРЕДЕЛАМИ

	1. Последовательность x_n имеет предел, а последовательность y_n не имеет предела. От-
	гьте утверждения, которые могут оказаться верными. (Т.е. существуют такие имеющая конный предел последовательность x_n и не имеющая предела последовательность y_n , что)
	Решение. Для утверждений, являющихся верными, приведем примеры, остальные опро-
вергнем доказательством.	
Ш	Последовательность $x_n + y_n$ имеет предел
	Неверно. Предположим, что последовательность $z_n = x_n + y_n$ имеет предел. Тогда $y_n = -x_n$. По свойствам арифметических действий с пределами $\lim (z_n - x_n)$ существует и равен $\lim z_n - \lim x_n$. Это противоречит тому, что последовательность y_n не имеет предела.
✓	Последовательность $x_n + y_n$ не имеет предела Верно. Например, $x_n = 1, y_n = (-1)^n$.
\checkmark	Последовательность $x_n y_n$ имеет предел Верно. Например, $x_n = \frac{1}{n}, y_n = (-1)^n$.
✓	Последовательность $x_n y_n$ не имеет предела Верно. Например, $x_n = \frac{1}{n}, y_n = (-1)^n n$.
	Последовательность y_n/x_n имеет предел Неверно. Предположим, что последовательность $z_n=y_n/x_n$ имеет предел. Тогда $y_n=$
	x_n . По свойствам арифметических действий с пределами $\lim z_n x_n$ существует и равен $\lim z_n x_n$. Это противоречит тому, что последовательность y_n не имеет предела.
	Последовательность y_n/x_n не имеет предела Верно. Например, $x_n = 1, y_n = (-1)^n$.
ока	2. Последовательности x_n и y_n не имеют предела. Отметьте утверждения, которые могут азаться верными. (Т.е. существуют такие не имеющие предела последовательности x_n и
y_n ,	TTO
вер	<i>Решение.</i> Для утверждений, являющихся верными, приведем примеры, остальные опро- огнем доказательством от противного.
V	Последовательность $x_n + y_n$ имеет предел Верно. Например, $x_n = (-1)^n$, $y_n = (-1)^{n+1}$.
V	Последовательность $x_n + y_n$ не имеет предела Верно. Например, $x_n = (-1)^n$, $y_n = (-1)^n$.
/	Последовательность $x_n y_n$ имеет предел Верно. Например, $x_n = (-1)^n$, $y_n = (-1)^n$.
/	Последовательность $x_n y_n$ не имеет предела Верно. Например, $x_n = (-1)^n$, $y_n = 1 + (-1)^n$.
/	Последовательность $x_n - y_n$ имеет предел Верно. Например, $x_n = (-1)^n$, $y_n = (-1)^n$.
/	Последовательность $x_n - y_n$ не имеет предела Верно. Например, $x_n = (-1)^n$, $y_n = (-1)^{n+1}$.
	3. Пусть $\lim_{n\to\infty}x_ny_n=0$. Отметьте утверждения, которые из этого следуют.
ны	<i>Решение.</i> Для утверждений, не являющихся верными, приведем контрпримеры, осталье докажем.
	Хотя бы один из пределов $\lim_{n\to\infty} x_n$ и $\lim_{n\to\infty} y_n$ существует и равен нулю
_	Неверно. Например, $x_n = (1 - (-1)^n) + \frac{1}{n}$, $y_n = (1 + (-1)^n) + \frac{1}{n}$.
	$\lim_{n \to \infty} (x_n - y_n) = 0$
	Hеверно. Например, $x_n = \frac{1}{n^2}$, $y_n = n$.

$ \prod_{n \to \infty} \min\{x_n, y_n\} = 0 $		
Неверно. Например, $x_n = \frac{1}{n}$, $y_n = -2$.		
Верно. Предположим, что $\lim_{n\to\infty}\min\{ x_n , y_n \}\neq 0$. Тогда		
$\exists \varepsilon > 0 : \forall N \ \exists n \geqslant N : \min\{ x_n , y_n \} - 0 > \varepsilon.$		
То есть $\min\{ x_n , y_n \}>\varepsilon$. Отсюда следует, что одновременно $ x_n >\varepsilon$ и $ y_n >\varepsilon$, и, следовательно, $ x_ny_n >\varepsilon^2$, что противоречит тому, что $\lim_{n\to\infty}x_ny_n=0$.		
4. Найдите предел последовательности $x_n = \frac{1 + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \frac{1}{3^n}}{1 + \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n}}.$		
Ombem: 0,75		
Pewehue. Заметим, что числитель и знаменатель дроби являются частичными суммами геометрических прогрессий с единичным первым членом и со знаменателями $1/3$ и $1/2$ соответственно. Воспользуемся известной формулой для вычисления этих сумм:		
$1 - (\frac{1}{3})^n$		
$x_n = \frac{\frac{1 - (\frac{1}{3})^n}{1 - \frac{1}{3}}}{\frac{1 - (\frac{1}{2})^n}{1 - \frac{1}{2}}}.$		
$\frac{x_n - \frac{1}{1 - (\frac{1}{2})^n}}{1 - (\frac{1}{2})^n}.$		
$1-\frac{1}{2}$		
Перейдем к пределу		
$\frac{1-(\frac{1}{3})^n}{1}$		
$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{\frac{1 - \left(\frac{1}{3}\right)}{1 - \frac{1}{3}}}{\frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}}} = \frac{\frac{1}{1 - \frac{1}{3}}}{\frac{1}{1 - \frac{1}{2}}} = \frac{3}{4}.$		
$n \to \infty$ $n \to \infty$ $\frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}}$ $\frac{1}{1 - \frac{1}{2}}$ 4		
$1-rac{7}{2}$		
5. Являются ли приведенные ниже последовательности бесконечно большими или неогра-		
ниченными? Отметьте верные утверждения.		
Решение. Поясним неочевидные пункты.		
✓ Последовательность $x_n = (-1)^n n^2$ неограничена Верно. Четные члены возрастают к $+\infty$, нечетные убывают к $-\infty$. Последовательность		
является неограниченной и бесконечно большой.		
\square Последовательность $x_n = (-1)^n n^2$ бесконечно большая Верно.		
\square Последовательность $x_n = n^{(-1)^n}$ неограничена Четные члены возрастают к $+\infty$, нечетные убывают к нулю. Последовательность явля-		
ется неограниченной, но не бесконечно большой, так как существует подпоследовательность,		
идущая к нулю. $(-1)^n = (-1)^n$		
Последовательность $x_n = n^{(-1)^n}$ бесконечно большая Неверно.		
\square Последовательность $x_n = 2^{\sqrt[3]{n}}$ бесконечно большая Верно.		

 \square Последовательность $x_n=\frac{100n}{n^2+10}$ неограничена Неверно. Предел последовательности равен нулю, значит, она ограничена, и, следовательности

но, не является бесконечно большой.

□ Последовательность $x_n = \frac{100n}{n^2+10}$ бесконечно большая Неверно.

☑ Последовательность $x_n = n^{(-1)^n n}$ неограничена Верно. Четная подпоследовательность возрастает к $+\infty$, нечетная убывает к нулю. Последовательность является неограниченной, но не бесконечно большой.

□ Последовательность $x_n = n^{(-1)^n n}$ бесконечно большая Неверно.

☑ Последовательность $x_n = \left(\frac{1}{2}\right)^{((-1)^n - 1)n}$ неограничена Верно. Четные члены равны 1/2, нечетные возрастают к ∞ . Последовательность является неограниченной, но не бесконечно большой.

□ Последовательность $x_n = \left(\frac{1}{2}\right)^{((-1)^n - 1)n}$ бесконечно большая Неверно.

6. Найдите предел последовательности $x_n = \frac{n^3}{n^2 + 5} - \frac{2n^2}{2n - 1}$. $Omegin{center} Omegin{center} Omeg$

Решение. Приведем разность к общему знаменателю:

$$x_n = \frac{n^3}{n^2 + 5} - \frac{2n^2}{2n - 1} = -\frac{n^3 + 10n^2}{(n^2 + 5)(2n - 1)} - \frac{1 + \frac{10}{n}}{(1 + \frac{5}{n^2})(2 - \frac{1}{n})} = -\frac{1}{2}.$$

7. Найдите предел последовательности $x_n = \sqrt{n^2 + an + b} - \sqrt{n^2 + cn + d}$. Параметры a, b, c и d положительны.

Omeem: (a-c)/2

Peшение. Избавимся от неопределенности вида $+\infty-\infty$, домножив на сопряженное выражение:

$$x_n = \sqrt{n^2 + an + b} - \sqrt{n^2 + cn + d} =$$

$$= \frac{\left(\sqrt{n^2 + an + b} - \sqrt{n^2 + cn + d}\right)\left(\sqrt{n^2 + an + b} + \sqrt{n^2 + cn + d}\right)}{\sqrt{n^2 + an + b} + \sqrt{n^2 + cn + d}} =$$

$$= \frac{n^2 + an + b - (n^2 + cn + d)}{\sqrt{n^2 + an + b} + \sqrt{n^2 + cn + d}} = \frac{an + b - cn - d}{\sqrt{n^2 + an + b} + \sqrt{n^2 + cn + d}}.$$

Перейдем к пределу

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{an + b - cn - d}{\sqrt{n^2 + an + b} + \sqrt{n^2 + cn + d}} = \lim_{n \to \infty} \frac{a + \frac{b}{n} - c - \frac{d}{n}}{\sqrt{1 + \frac{a}{n} + \frac{b}{n^2}} + \sqrt{1 + \frac{c}{n} + \frac{d}{n^2}}} = \frac{a - c}{2}.$$

1.4. ВЕЩЕСТВЕННЫЕ ЧИСЛА. СУПРЕМУМ И ИНФИМУМ

1. Найдите инфимум и супремум для множества $\left\{ (-1)^n \left(\frac{1}{4} - \frac{2}{n} \right) : n \in \mathbb{N} \right\}$.

Omeem: -0,75 1,75

Решение. Заметим, что при четном n последовательность убывает, при $n\geqslant 4$ неотрицательна и стремится к $\frac{1}{4}$. Значит, ее инфимум равен 0, а супремум $\frac{1}{4}$. При нечетных $n\geqslant 5$ последовательность отрицательна, возрастает и стремится в $-\frac{1}{4}$. Значит, ее инфимум равен $-\frac{1}{4}$, а супремум 0. Наконец, осталось посмотреть на значения при n=1, 2 и 3: это 1,75, -0,75 и 5/12. Откуда и получаем ответ.

2. Найдите инфимум и супремум для множества $\left\{\frac{n}{m+n}\,:\,n,m\in\mathbb{N}\right\}$.

Ответ: 0 1

Peшение.Ясно, что 0 < $\frac{n}{m+n} < 1.$ Поэтому 0 является нижней границей, а 1 — верхней.

С другой стороны никакое число, большее нуля, не может быть нижней границей, поскольку $\frac{1}{1+m}$ при больших m сколь угодно близко приближается к нулю. А никакое число, меньшее единицы, не может быть верхней границей, поскольку $\frac{n}{n+1}$ при больших n сколь угодно близко приближается к единице.

- **3.** Отметьте утверждения, справедливые для любых ограниченных последовательностей x_n и y_n .

Верно. Сумма верхних границ заведомо будет верхней границей суммы.

Неверно, например, $x_n = (-1)^n$, $y_n = (-1)^{n+1}$.

Неверно, например, $x_n = (-1)^n$, $y_n = (-1)^{n+1}$.

Верно. Если $\sup\{y_n\}=c$, то

$$\sup\{x_n - y_n\} \geqslant \sup\{x_n - c\} = \sup\{x_n\} - c = \sup\{x_n\} - \sup\{y_n\}$$

Неверно, например, $x_n = y_n = (-1)^n$.

Верно. Если $\inf\{y_n\}=c$, то

$$\sup\{x_n + y_n\} \geqslant \sup\{x_n + c\} = \sup\{x_n\} + c = \sup\{x_n\} + \inf\{y_n\}$$

Верно. Сдвиг последовательности сдвигает на то же число и все верхние границы.

- **4.** Последовательности $\{x_n\}$ и $\{y_n\}$ удовлетворяют условиям: $x_1=a>0, y_1=b>0,$ $x_{n+1}=\frac{1}{2}(x_n+y_n)$ и $y_{n+1}=\sqrt{x_ny_n}$ при всех натуральных n.

Докажите, что последовательности $\{x_n\}$ и $\{y_n\}$ монотонны.

Выведите отсюда, что они имеют предел и $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n$ (их общий предел называется арифметико-геометрическим средним чисел a и b).

Решение. По неравенству между средним арифметическим и средним геометрическим для двух чисел

$$y_{n+1} = \sqrt{x_n y_n} \leqslant \frac{x_n + y_n}{2} = x_{n+1},$$

поэтому, начиная с n=2 имеем $y_n \leqslant x_n$. Следовательно,

$$x_{n+1} = \frac{x_n + y_n}{2} \leqslant \frac{x_n + x_n}{2} = x_n$$

И

$$y_{n+1} = \sqrt{x_n y_n} \geqslant \sqrt{y_n \cdot y_n} = y_n.$$

Таким образом, последовательности монотонны при $n \geqslant 2$. Кроме того

$$y_2 \leqslant y_3 \leqslant \ldots \leqslant y_{n-1} \leqslant y_n \leqslant x_n \leqslant x_{n-1} \leqslant x_3 \leqslant x_2$$

поэтому монотонно возрастающая последовательность y_n ограничена сверху числом x_2 , а монотонно убывающая последовательность x_n ограничена снизу числом y_2 . Следовательно, они имеют пределы. Обозначим их через x_* и y_* и перейдем к пределу в равенстве $x_{n+1} = \frac{1}{2}(x_n + y_n)$. В результате получим, что $x_* = \frac{1}{2}(x_* + y_*)$, откуда и следует, что $x_* = y_*$.

1.5. Определение числа e

1. Пусть a>1. Докажите, что $\lim_{n\to\infty} \sqrt[n]{a}=1$. Для этого рассмотрите последовательность $x_n=\sqrt[n]{a}-1$ и с помощью неравенства Бернулли и теоремы о двух милиционерах докажите, что x_n стремится к нулю. Выведите отсюда, что $\lim_{n\to\infty} \sqrt[n]{a}=1$ при любом a>0.

 $Pewenue. \ 3$ аметим, что $a = (1 + x_n)^n \geqslant 1 + nx_n. \$ Следовательно,

$$0 < x_n \leqslant \frac{a-1}{n}.$$

Поскольку $\frac{a-1}{n}$ стремится к нулю, x_n также стремится к нулю. Но тогда

$$\lim_{n \to \infty} \sqrt[n]{a} = \lim_{n \to \infty} (1 + x_n) = 1 + \lim_{n \to \infty} x_n = 1.$$

2. Найдите предел последовательностей $a_n = \left(1 + \frac{1}{n}\right)^{2n}, b_n = \left(1 + \frac{1}{2n}\right)^n$ и $c_n = \left(1 - \frac{1}{n}\right)^n$.

Omsem: $e^2 \approx 7,389, \sqrt{e} \approx 1,649, 1/e \approx 0,368$

Peшeнue. Рассмотрим a_n :

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{2n} = \left(\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \right)^2 = e^2.$$

Рассмотрим b_n :

$$\lim_{n \to \infty} \left(1 + \frac{1}{2n}\right)^n = \lim_{n \to \infty} \left(\left(1 + \frac{1}{2n}\right)^{2n}\right)^{\frac{1}{2}} = \lim_{m \to \infty} \left(\left(1 + \frac{1}{m}\right)^m\right)^{\frac{1}{2}} = e^{\frac{1}{2}}.$$

Рассмотрим c_n :

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = \lim_{n \to \infty} \left(\frac{n-1}{n} \right)^n = \lim_{n \to \infty} \left(\frac{n}{n-1} \right)^{-n} = \lim_{n \to \infty} \left(1 + \frac{1}{n-1} \right)^{-n} = \lim_{n \to \infty} \left(\left(1 + \frac{1}{n-1} \right)^{n-1} \right)^{-1} \left(1 + \frac{1}{n-1} \right)^{-1} = \lim_{n \to \infty} \left(\left(1 + \frac{1}{m} \right)^m \right)^{-1} \lim_{n \to \infty} \left(1 + \frac{1}{n-1} \right)^{-1} = e^{-1}.$$

3. Найдите предел последовательности $x_n = \left(1 + \frac{3}{n}\right)^{n/2}$.

Ответ: $e^{3/2} \approx 4,482$

Решение.

$$\lim_{n \to \infty} \left(1 + \frac{3}{n} \right)^{n/2} = \lim_{n \to \infty} \left(\left(1 + \frac{1}{\frac{n}{3}} \right)^{\frac{n}{3}} \right)^{3/2} = \lim_{m \to \infty} \left(\left(1 + \frac{1}{m} \right)^m \right)^{3/2} = e^{3/2}.$$

1.6. ТЕОРЕМА БОЛЬЦАНО-ВЕЙЕРШТРАССА

1. Последовательность $\{x_n\}$ определяется рекуррентным соотношением $x_{n+2}=\frac{x_n+x_{n+1}}{2}$ при $n\geqslant 1$ и начальными условиями $x_1=a$ и $x_2=b$. Найдите $\lim_{n\to\infty}x_n$.

Omeem: (a + 2b)/3

Первое решение. Несложно заметить, что все члены последовательности x_n устроены так: это сумма чисел a и b с некоторыми неотрицательными коэффициентами, причем сумма коэффициентов равна единице. Это верно для первых двух членов последовательности и сохраняется при переходе от x_n и x_{n+1} к x_{n+2} . Таким образом, достаточно проследить за коэффициентом при a. Выпишем несколько первых членов последовательности:

$$a, b, \frac{a+b}{2}, \frac{a+3b}{4}, \frac{3a+5b}{8}, \frac{5a+11b}{16}, \frac{11a+21b}{32}, \frac{21a+43b}{64}, \frac{43a+85b}{128}, \dots$$

Отсюда можно заметить, что коэффициент при a примерно равен 1/3, а точнее он равен $\frac{2^n-(-1)^n}{3\cdot 2^n}$. Проверим это по индукции. База n=0 и n=1 очевидна. Установим переход от n и n+1 к n+2. Следующий коэффициент при a получается как полусумма двух предыдущих, поэтому для x_{n+2} он равен

$$\frac{1}{2} \left(\frac{2^n - (-1)^n}{3 \cdot 2^n} + \frac{2^{n+1} - (-1)^{n+1}}{3 \cdot 2^{n+1}} \right) = \frac{2 \cdot (2^n - (-1)^n) + (2^{n+1} - (-1)^{n+1})}{3 \cdot 2^{n+2}} = \frac{2^{n+2} - (-1)^{n+2}}{3 \cdot 2^{n+2}}.$$

Предел же этих коэффициентов найти совсем легко:

$$\frac{2^n - (-1)^n}{3 \cdot 2^n} = \frac{1}{3} + \frac{(-1)^n}{3 \cdot 2^n} \to \frac{1}{3}.$$

 $Bторое\ peшение.$ Будем решать задачу геометрически. Нарисуем отрезок [a,b] и будем последовательно ставить на нем точки x_n . Каждая следующая точка должна быть расположена посредине между двух предыдущих.

$$x_0 \stackrel{\vdash}{=} a$$
 $x_2 \stackrel{+}{x_4} \stackrel{+}{x_6} \stackrel{+}{x_5} \stackrel{+}{x_3} \qquad x_1 \stackrel{\vdash}{=} b$

Таким образом, на каждом шаге мы то прибавляем, то вычитаем половину длины отрезка между соседними точками. А эта длина равна $\frac{b-a}{2^n}$. В итоге получаем формулу

$$x_n = a + \frac{b-a}{1} - \frac{b-a}{2} + \frac{b-a}{2^2} - \frac{b-a}{2^3} + \dots + (-1)^{n-1} \cdot \frac{b-a}{2^{n-1}} =$$

$$= a + (b-a) \left(1 - \frac{1}{2} + \frac{1}{2^2} - \frac{1}{2^3} + \dots + \frac{(-1)^{n-1}}{2^{n-1}} \right).$$

Но это геометрическая прогрессия с основанияем $-\frac{1}{2}$, поэтому

$$x_n = a + (b - a) \frac{1 - \left(-\frac{1}{2}\right)^n}{1 + \frac{1}{2}},$$

что стремится к $a + (b-a)\frac{1}{1+1/2} = a + \frac{2}{3}(b-a) = \frac{a+2b}{3}$.

2. Пределы всевозможных сходящихся подпоследовательностей данной последовательности называются ее предельными точками. Найдите предельные точки последовательности $x_n = (-1)^n \frac{n-1}{n+1} + \sin^2 \frac{3\pi n}{4}$. Ответ приведите в виде разделенных пробелами десятичных дробей (округленных до первых трех знаков после запятой).

Omeem: -0,512

Peшение. Разделим натуральные числа по остатку от деления на 4. Случай $n=4k, k\in\mathbb{N}.$

$$x_{4k} = (-1)^{4k} \frac{4k-1}{4k+1} + \sin^2 \frac{3\pi 4k}{4} = \frac{4k-1}{4k+1} + \sin^2 3\pi \longrightarrow 1 + 0 = 1.$$

Случай $n=4k+1, k \in \mathbb{N}$.

$$x_{4k+1} = (-1)^{4k+1} \frac{4k}{4k+2} + \sin^2 \frac{3\pi(4k+1)}{4} = -\frac{4k}{4k+2} + \sin^2 \left(3\pi + \frac{3\pi}{4}\right) \longrightarrow -1 + \frac{1}{2} = -\frac{1}{2}.$$

Случай $n=4k+2, k\in\mathbb{N}.$

$$x_{4k+2} = (-1)^{4k+2} \frac{4k+1}{4k+3} + \sin^2 \frac{3\pi(4k+2)}{4} = \frac{4k}{4k+2} + \sin^2(3\pi + \frac{\pi}{2}) \longrightarrow 1 + 1 = 2.$$

Случай $n=4k+3, k \in \mathbb{N}$.

$$x_{4k+3} = (-1)^{4k+3} \frac{4k+2}{4k+4} + \sin^2 \frac{3\pi(4k+3)}{4} = -\frac{4k+2}{4k+4} + \sin^2 \left(3\pi + \frac{9\pi}{4}\right) \longrightarrow -1 + \frac{1}{2} = -\frac{1}{2}.$$

Сходимость рядов

1. Найдите частичную сумму ряда $\sum_{k=1}^{\infty} (\sqrt{k+2} - 2\sqrt{k+1} + \sqrt{k})$. В ответе должна быть формула для S_n .

Omeem: $1 - \sqrt{2} - \sqrt{n+1} + \sqrt{n+2}$.

Решение. Разобъем сумму на две и перенумеруем одну из получившихся

$$S_{n} = \sum_{k=1}^{n} (\sqrt{k+2} - 2\sqrt{k+1} + \sqrt{k}) = \sum_{k=1}^{n} (\sqrt{k+2} - \sqrt{k+1} - (\sqrt{k+1} - \sqrt{k})) =$$

$$= \sum_{k=1}^{n} (\sqrt{k+2} - \sqrt{k+1}) - \sum_{k=1}^{n} (\sqrt{k+1} - \sqrt{k}) =$$

$$= \sum_{k=1}^{n} (\sqrt{k+2} - \sqrt{k+1}) - \sum_{k=0}^{n-1} (\sqrt{k+2} - \sqrt{k+1}) =$$

$$= \sum_{k=1}^{n-1} (\sqrt{k+2} - \sqrt{k+1}) + \sqrt{n+2} - \sqrt{n+1} - \sum_{k=1}^{n-1} (\sqrt{k+2} - \sqrt{k+1}) - \sqrt{2} + 1 =$$

$$= 1 - \sqrt{2} - \sqrt{n+1} + \sqrt{n+2}.$$

2. Отметьте ряды, которые расходятся, поскольку для них не выполнено необходимое условие сходимости ряда.

Решение.

$$\sqrt{1} - \sqrt{2} + \sqrt{3} - \sqrt{4} + \dots + (-1)^{n-1} \sqrt{n} + \dots$$

 $\kappa + \infty$).

Расходится, так как $\lim_{n\to\infty} \frac{2n-1}{2n+1} = 1$.

$$\sqrt{2 \over 3} + \sqrt{\frac{3}{5}} + \sqrt{\frac{4}{7}} + \ldots + \sqrt{\frac{n+1}{2n+1}} + \ldots$$

Расходится, так как $\lim_{n\to\infty} \sqrt{\frac{n+1}{2n+1}} = \sqrt{\frac{1}{2}}$.

Необходимое условие сходимости выполнено $\lim_{n\to\infty}\frac{1}{\sqrt{2n}}=0.$

Необходимое условие сходимости выполнено $\lim_{n\to\infty}\frac{3n}{2^n}=0.$

Расходится, так как $\lim_{n\to\infty} \left(\frac{n}{n+1}\right)^n = \frac{1}{e}$.

3. Найдите частичную сумму ряда $1 + 2x + 3x^2 + 4x^3 + 5x^4 + \dots + nx^{n-1} + \dots$ при $x \neq 1$. А чему равна сумма ряда, если |x| < 1? В ответе приведите формулу для S_n .

Omsem:
$$(1-x^n)(1-x)^{-2} - nx^n(1-x)^{-1}$$
.

Peшение. Будем много раз использовать формулу для суммы геометрической прогрессии из k членов с единичным первым членом и знаменателем x:

$$1 + x + x^{2} + x^{3} + x^{4} + \dots + x^{k-1} = \frac{1 - x^{k}}{1 - x}.$$

Пусть $S_n = 1 + 2x + 3x^2 + 4x^3 + 5x^4 + \dots + nx^{n-1}$. Тогда

$$S_{n} = (1 + x + x^{2} + \dots + x_{n-1}) + (x + x^{2} + \dots + x_{n-1}) + (x^{2} + x^{3} + \dots + x_{n-1}) + \dots + x^{n-1} =$$

$$= (1 + x + x^{2} + \dots + x_{n-1}) + x(1 + x + x^{2} + \dots + x_{n-2}) + x^{2}(1 + x + \dots + x_{n-3}) + \dots + x^{n-1} =$$

$$= \frac{1 - x^{n}}{1 - x} + x \cdot \frac{1 - x^{n-1}}{1 - x} + x^{2} \cdot \frac{1 - x^{n-2}}{1 - x} + \dots + x^{n-1} \cdot \frac{1 - x}{1 - x} =$$

$$= \frac{1}{1 - x} (1 + x + x^{2} + \dots + x^{n-1} - nx^{n}) = \frac{1}{1 - x} \left(\frac{1 - x^{n}}{1 - x} - nx^{n} \right) = \frac{1 - x^{n}}{(1 - x)^{2}} - \frac{nx^{n}}{1 - x}.$$

При |x| < 1 ряд сходится к $(1-x)^{-2}$.

1.7. Признаки сходимости рядов

1. С помощью признака сравнения установите сходимость (расходимость) рядов. Отметьте сходящиеся ряды.

Решение.

Сходится, так как $\frac{\sin^2 n}{n(n+1)} < \frac{1}{n^2}$.

Сходится, так как $\frac{\arctan n}{n^2+1} < \frac{\pi/2}{n^2}$.

Расходится, так как $\frac{1}{1000n+1} > \frac{1}{1001n}$, а ряд $\sum_{n=1}^{\infty} \frac{1}{1001n} = \frac{1}{1001} \sum_{n=1}^{\infty} \frac{1}{n}$ расходится.

Расходится, так как $\frac{n}{n^2+4}>\frac{1}{n+5}$, а ряд $\sum_{n=1}^{\infty}\frac{1}{n+5}$ расходится (гармонический ряд с точностью до пяти первых слагаемых).

Сходится, так как $\frac{3+(-1)^n}{2^n} < \frac{4}{2^n}$.

Сходится, так как $\frac{2n+1}{n(n+1)^2} < \frac{3}{n^2}$.

2. а) С помощью признака Даламбера или Коши установите сходимость (расходимость) ряда $\sum_{n=1}^{\infty} \frac{n!(5n-1)!}{((3n+1)!)^2}$. В ответе укажите получившийся предел в виде десятичной дроби (с точностью до трех знаков после запятой) и через пробел слово сходится или расходится.

Ответ: $5^5/3^6 \approx 4,286$ расходится

Решение. Рассмотрим отношение

$$\frac{a_{n+1}}{a_n} = \frac{\frac{(n+1)!(5n+4)!}{((3n+4)!)^2}}{\frac{n!(5n-1)!}{((3n+1)!)^2}} = \frac{(n+1)(5n+4)(5n+3)(5n+2)(5n+1)5n}{(3n+4)^2(3n+3)^2(3n+2)} \longrightarrow \frac{5^5}{3^6} \approx 4,286.$$

По признаку Даламбера ряд расходится.

б) С помощью признака Даламбера или Коши установите сходимость (расходимость) ряда $\sum_{n=1}^{\infty} \frac{(3n)!(4n+1)!}{(2n)!(5n-1)!}.$ В ответе укажите получившийся предел в виде десятичной дроби (с точностью до трех знаков после запятой) и через пробел слово "сходится"или "расходится" (без кавычек).

 $Omeem: \frac{3^3 \cdot 4^4}{2^2 \cdot 5^5} \approx 0,552$ сходится

Решение. Рассмотрим отношение

$$\frac{a_{n+1}}{a_n} = \frac{\frac{(3n+3)!(4n+5)!}{(2n+2)!(5n+4)!}}{\frac{(3n)!(4n+1)!}{(2n)!(5n-1)!}} = \frac{(3n+1)(3n+2)(3n+3)(4n+2)(4n+3)(4n+4)(4n+5)}{(2n+1)(2n+2)5n(5n+1)(5n+2)(5n+3)(5n+4)} \longrightarrow \frac{3^3 \cdot 4^4}{2^2 \cdot 5^5} \approx 0,552.$$

По признаку Даламбера ряд сходится.

3. С помощью признака Даламбера или Коши установите сходимость (расходимость) ряда $\sum_{n=1}^{\infty} \left(\frac{n-1}{2n+1}\right)^n$. В ответе укажите получившийся предел в виде десятичной дроби (с точноn=1 (210 + 17) стью до трех знаков после запятой) и через пробел слово "сходится"или "расходится"(без кавычек).

Omeem: 0,5 сходится

Решение. Рассмотрим предел

$$\lim_{n \to \infty} \sqrt[n]{\left(\frac{n-1}{2n+1}\right)^n} = \lim_{n \to \infty} \frac{n-1}{2n+1} = \frac{1}{2}.$$

По признаку Коши ряд сходится.

4. Отметьте ряды, к которым применим признак Лейбница.

Решение. Все варианты являются знакочередующимися рядами. Выясним, у каких есть монотонное убывание слагаемых по модулю.

$$\square$$
 1 - $\frac{1}{3}$ + $\frac{1}{5}$ - $\frac{1}{7}$ + $\frac{1}{9}$ - $\frac{1}{11}$ + \cdots + $\frac{1}{4k-3}$ - $\frac{1}{4k-1}$ + \cdots Признак применим, так как $\frac{1}{4k-3}$ < $\frac{1}{4k-1}$ при всех k .

 $\frac{1}{\sqrt{k}+1}$. Так как $\frac{1}{\sqrt{k-1}+1}<\frac{1}{\sqrt{k}-1}$, то монотонного убывания нет.

$$\Box \ \frac{1}{3} - \frac{1}{2\sqrt{2}} + \frac{\sqrt{3}}{5} - \frac{\sqrt{2}}{3\sqrt{2}} + \frac{\sqrt{5}}{7} - \frac{\sqrt{3}}{4\sqrt{2}} + \dots + \frac{\sqrt{2k-1}}{2k+1} - \frac{\sqrt{k}}{\sqrt{2}(k+1)} + \dots$$

Признак неприменим. Рассмотрим тройку последовательных слагаемых: $\frac{\sqrt{2k-1}}{2k+1}$, $\frac{\sqrt{k}}{\sqrt{2(k+1)}}$ $\frac{\sqrt{2k+1}}{2k+3}$, $\frac{\sqrt{k+1}}{\sqrt{2}(k+2)}$. Заметим, что при всех k>2 выполнено $\frac{\sqrt{2k-1}}{2k+1}>\frac{\sqrt{k}}{\sqrt{2}(k+1)}$, то есть монотонного убывания нет.

5. Отметьте сходящиеся ряды

Сходится по признаку Лейбница. Последовательность $1/\sqrt[3]{n}$ монотонно стремится к нулю.

Сходится по признаку Лейбница. Последовательность $\frac{\sqrt{n}}{n+2}$ монотонно стремится к нулю. Стремление к нулю очевидно, монотонность нуждается в проверке:

$$\frac{\sqrt{n}}{n+2} \geqslant \frac{\sqrt{n+1}}{n+3} \quad \Leftrightarrow \quad \frac{n}{(n+2)^2} \geqslant \frac{n+1}{(n+3)^2} \quad \Leftrightarrow \quad \frac{n}{(n+2)^2} \Rightarrow \frac{n+1}{(n+3)^2} \quad \Leftrightarrow \quad n^3 + 6n^2 + 9n = n(n+3)^2 \geqslant (n+1)(n+2)^2 = n^3 + 5n^2 + 8n + 4,$$

что верно при $n \geqslant 2$.

$$\square \sum_{n=1}^{\infty} \frac{(-1)^n n}{3n+5}$$

Расходится. Не выполнено необходимое условие сходимости ряда, поскольку $\lim_{n\to\infty} \frac{n}{3n+5} = \frac{1}{3} \neq 0$.

Сходится по признаку Лейбница. Последовательность $\frac{2n+1}{n(n+1)}$ монотонно стремится к нулю. Стремление к нулю очевидно, монотонность нуждается в проверке:

$$\frac{2n+1}{n(n+1)} \geqslant \frac{2n+3}{(n+1)(n+2)} \Leftrightarrow \frac{2n+1}{n} \geqslant \frac{2n+3}{n+1} \Leftrightarrow 2n^2 + 3n + 1 = (n+1)(2n+1) \geqslant (2n+3)n = 2n^2 + 3n.$$

$$\square \sum_{n=1}^{\infty} \frac{(-1)^n (n-1)}{n+2}$$

Расходится. Не выполнено необходимое условие сходимости ряда, поскольку $\lim_{n\to\infty} \frac{n-1}{n+2} = 1 \neq 0$.

6. Докажите, что если сходится ряд $\sum_{n=1}^{\infty} a_n^2$, то сходится и ряд $\sum_{n=1}^{\infty} \frac{a_n}{n}$.

Peшение. Докажем, что ряд $\sum_{n=1}^{\infty} \frac{a_n}{n}$ абсолютно сходится. По неравенству между средним арифметическим и средним геометрическим для двух чисел имеем

$$\left| \frac{a_n}{n} \right| \leqslant \frac{1}{2} \left(a_n^2 + \frac{1}{n^2} \right).$$

Поэтому по признаку сравнения достаточно доказать, что ряд $\sum_{n=1}^{\infty} \left(a_n^2 + \frac{1}{n^2}\right)$ сходится. Но он есть сумма ряда $\sum_{n=1}^{\infty} a_n^2$, сходящегося по условию и ряда $\sum_{n=1}^{\infty} \frac{1}{n^2}$, про который мы также знаем, что он сходится.