## 实验三 步进电机原理及应用

### 原理总结

(该实验涉及的基本原理及其在实验中的使用方法)

- 1、本实验采用定时器中断实现,使用定时器时,首先应由外部条件得到要定时的时间长度 t,如本实验中,就是根据要求的速度计算出的每一步之间的间隔。然后选择适当的定时器 工作方式,去计算想要设定的计数器初值 s,使用如下方程。
- (2 定时器最大位数  $-s) \times$  定时周期 =t

定时周期 = 12/CPU 晶振频率

 $(2 定时器最大位数 - s) \times 定时周期 = t$ 

得到的 s 需要分成高 8 位和低 8 位,分别放入计数器 THx 和 TLx 中 (x 为 0 或 1)。如果 s 为负数,说明需要的定时时间太长,即使定时器的最大时间也无法满足要求。这种情况下,需要加入软件循环才能实现。我们可以将需要的定时时间分成 n 份,利用定时器达到 t/n 的时间长度,然后在定时器处理程序中,累计某一变量,如果到达 n,说明总的时间 t 已经达到。

要想使用定时器中断,除了上面的定时器初值设定外,还需要将其他相关的特殊功能寄存器也都设置好。如果使用方式 0 和方式 1,不要忘记在计数结束后重新恢复计数器初值。

2、我们使用的单片机系统的频率是 12M; 步进电机转动一周需要 24 步。 本步进电机实验板,使用 FAN8200 作为驱动芯片。CPU 通过如下 4 个引脚与 FAN8200 相连,即:

| CPU   | FAN8200 |
|-------|---------|
| P1. 1 | CE1     |
| P1. 4 | CE2     |
| P3. 2 | IN1     |
| P1. 0 | IN2     |

3、本实验使用简单的双四拍工作模式即可,这也是 FAN8200 比较方便的工作方式。只要将 CE1 和 CE2 分别置为高,然后 IN1 和 IN2 按照预定的脉冲输出,即 01->11->10->00->01 这个循环构成一个方向旋转的输出脉冲,将此序列翻转,就是相反方向的输出脉冲。

#### 4、数码管显示:

本开发平台有3个数码管,使用串行方式连接在一起,具体电路参见实验原理。要想输出一个字形码,就需要从高位到低位依次向移位寄存器输出8个比特。移位寄存器的数据线和时钟线分别接到单片机的P4.5和P4.4管脚,可以使用MCS-51里面的位操作指令进行输出。连续输出3个字形,24个bit之后,欲显示的字形将稳定地显示在数码管上,程序可以转而执行其他工作。

七段字形的编码方式需要通过实验获得。这些编码作为程序中的常数,使用 DB 命令存放。在程序中,需要将数值转换为相应的字形编码,可以使用 MOVC 指令来完成。

- 5、74HC164 是高速 CMOS 器件。74HC164 是 8 位边沿触发式移位寄存器,串行输入数据,然后并行输出。数据通过两个输入端(A 或 B)之一串行输入;任一输入端可以用作高电平使能端,控制另一输入端的数据输入。两个输入端或者连接在一起,或者把不用的输入端接高电平,一定不要悬空。
- 6、时钟(CLK)每次由低变高时,数据右移一位,输入到 Q0, Q0 是两个数据输入端(A 和 B)的逻辑与,它将上升时钟沿之前保持一个建立时间的长度。
- 7、主复位(CLR)输入端上的一个低电平将使其它所有输入端都无效,同时非同步地清除寄存器,强制所有的输出为低电平。
- 8、采用 3 个 74HC164 级联控制三个数码管的显示,具体实验原理如下图所示。其中使用单片机 P4.5 作为模拟串口数据,使用 P4.4 模拟串口时钟,CLR 端接高电平。使用上一个 74HC164 的 Q7 作为下一个 74HC164 的输入端。

#### 实验涉及到原理图:



### 程序分析

(程序设计的思路、程序代码+注释)

ORG 0000H LJMP START

ORG 000BH ;T0 中断服务程序

LJMP T0\_INT

;PUSH DPL

#### START: P4 EQU 0C0H ;P4 地址 P4SW EQU 0BBH ;P4 方式控制字地址 ;MOV P4,#0FFH CLK EQU P4.4 P4.5 DATEQU MOV P4SW,#30H SWH1 EQU P3.6;S1 SWH2 EQU P3.7;S2 IN1 EQU P3.2 IN2 EQU P1.0 CE1 EQU P1.3 CE2 EQU P1.4 ;MOV SP,#60H MOV DPTR,#TABLE MOV R0,#0 MOV R1,#0 R2,#0 MOV MOV R3,#50 MOV R5,#1 R6,#1;从 11 开始 MOV CE1;双四拍工作模式,只要将 CE1 和 CE2 分别置为高 SETB SETB CE2 EA ;EA 是整个 CPU 的中断允许标志。当 EA=1 时, CPU 可以响应中断; **SETB** SETB ET0 ;ET1 和 ET0 是 T1 和 T0 的中断允许位 MOV TMOD,#01H;T0 计数器,方式1 MOV TL0,#3EH MOV TH0,#5DH;计数初值 **SETB** TR0;运行控制位 TR0 和 TR1 分别控制两个定时器是否允许计数 LL1:LJMP LL1 ;.....中断服务程序...... T0 INT: PUSH ACC ;PUSH PSW

```
CLRTR0
  MOV
       TL0,#3EH
  MOV TH0,#5DH;计数初值
  SETB TR0
  DJNZ R3,IEND
  JNB SWH1,V1;为 0 跳转(SWH1 按下)
        R3,#5;慢速
  MOV
  JMP V2
V1: MOV R3,#1;快速
V2: LCALL DISPLAY;显示步数
  LCALL STEP;电机转动
IEND:
  ;POP
      DPH
  ;POP
      DLH
  ;POP
        PSW
  POP ACC
  RETI
DISPLAY:
  MOV A,R0
  MOVC A,@A+DPTR
  LCALL SENDNUM
  MOV A,R1
  MOVC A,@A+DPTR
  LCALL SENDNUM
  MOV A,R2
  MOVC A,@A+DPTR
  LCALL SENDNUM
  RET
;.....按位送数......
SENDNUM:
  MOV R4,#8
SE1:CLRCLK
```

;PUSH DPH

```
R4,SE1
   DJNZ
   RET
STEP:
   JB SWH2,SHUN;按下,跳转,顺时针
R5,#1,N1;R5 不为 1 转移(R5==0)
   CJNE
         R6,#1,N3;R6 不为 1 转移(R6==0)
   CJNE
   CLRIN1;(R5==1,R6==1)
         IN2;送 01
   SETB
   MOV
         R5,#0
   MOV
         R6,#1
   LJMP
         ST0
         R6,#1,N2;R6 不为 1 转移(R6==0)
N1: CJNE
   CLRIN1;(R5==0,R6==1)
   CLRIN2;送 00
   MOV
         R5,#0
   MOV
         R6,#0
   LJMP
         ST0
N2: SETB
         IN1;(R5==0,R6==0)
   CLRIN2;送 10
   MOV
         R5,#1
   MOV
         R6,#0
   LJMP
         ST0
N3: SETB IN1;(R5==1,R6==0)
   SETB IN2;送 11
   MOV
         R5,#1
   MOV
         R6,#1
         ST0
   LJMP
;......顺时针......
SHUN:
   CJNE
         R5,#1,SH1;R5 不为 1 转移(R5==0)
```

RLCA MOV

SETB

DAT,C

CLK

```
SETB
         IN1;(R5==1,R6==1)
   CLRIN2;送 10
   MOV
         R5,#1
   MOV
          R6,#0
   LJMP
         ST0
SH1: CJNE R6,#1,SH2;R6 不为 1 转移(R6==0)
   SETB
         IN1;(R5==0,R6==1)
   SETB
         IN2;送 11
   MOV
         R5,#1
   MOV
          R6,#1
   LJMP ST0
SH2:
      CLRIN1;(R5==0,R6==0)
   SETB
         IN2;送 01
   MOV
         R5,#0
   MOV R6,#1
   LJMP
          ST0
SH3: CLRIN1;(R5==1,R6==0)
   CLRIN2;送 00
   MOV
          R5,#0
   MOV
          R6,#0
   LJMP
          ST0
;......增加步数.......
ST0:INC R0
   CJNE
         R0,#10,ST1
   MOV
          R0,#0
   INC R1
ST1:CJNE
         R1,#10,ST2
   MOV
         R1,#0
   INC R2
         R2,#10,ST3
ST2:CJNE
   MOV
         R2,#0
ST3:RET
;......段码表......
TABLE:
```

DB 0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H,80H,90H

R6,#1,SH3;R6 不为 1 转移(R6==0)

CJNE

# 问题分析

(实验过程中遇到的问题及解决方法)

1、开始时程序无法正常运行

解决办法:发现 P4口没有正常定义为接口。加上对 P4SW 接口的正确定义。

### 实验四 LED 点阵显示屏

### 原理总结

(该实验涉及的基本原理及其在实验中的使用方法)

- 1、高亮度 LED 发光管构成点阵,通过编程控制可以显示中英文字符、图形及视频动态图形。所显示字符的点阵数据可以自行编写(即直接点阵画图),也可从标准字库(如 ASC16、HZ16)中提取。后者需要正确掌握字库的编码方法和字符定位的计算。
- 2、实验用的 LED 点阵显示屏为 16\*16 点阵。行和列分别使用两个移位寄存器作为输出。 当移位寄存器输出的第 i 行为 0,第 j 列为 1 时点亮点(i,j)。

为了能够显示出一个点阵字型,需要进行循环扫描,也就是每一次只点亮一行,然后在列上输出该列对应的 16 个点阵值。

输出一行后暂停一段时间,输出下一行。为了达到较好的显示效果,整屏总的扫描时间不高于 40ms。上述过程中行列可以互换。

- 3、实验中使用的移位寄存器是 74HC595, 它是一个同时具有串行移位和输出锁存驱动功能 的器件。74HC595 是具有 8 位移位寄存器和一个存储器,三态输出功能。 移位寄存器和存储器是分别的时钟。
- 4、数据在 SRCK (移位寄存器时钟输入)的上升沿输入到移位寄存器中,在 RCK (存储器时钟输入)的上升沿输入到存储寄存器中去。

移位寄存器有一个串行移位输入(行 Dx (P00)、列 Dy(P03)),和一个串行输出 (QH),和一个异步的低电平复位,存储寄存器有一个并行 8 位的,具备三态的总线输出,当使能 (P02 和 P07 为低电平)时,存储寄存器的数据输出到总线。

5、在控制 74HC595 时,首先将数据放到串行输入的 SI 端,然后在串行时钟 SRCK 上产生一个脉冲,即可输出一个 bit,重复以上步骤 16 次,输出所有列值。

然后给存储器时钟 RCK 一个脉冲,将串行数据锁存起来。将使能端 输出低电平,驱动到 LED 点阵上。

行的输出每次只移位一次,并重新锁存即可。

#### 本实验涉及到的电路原理图:



## 程序分析

(程序设计的思路、程序代码+注释)

ORG 000H

LJMP START

ORG 0040H

#### START:

DX EQU P0.0;行数据口 DY EQU P0.3;列数据口

CLKYWX EQU P0.1;行移位寄存器时钟 CLKYWY EQU P0.5;列移位寄存器时钟

CLKCCX EQU P0.2;行存储器时钟 CLKCCY EQU P0.6;列存储器时钟

OUTX EQU P0.7 ;行输出使能 OUTY EQU P0.4 ;列输出使能

•

SM: ;无限循环

MOV R0,#0 MOV R1,#1

| MOV R4, #1 ;table 高 8 位指针                                                                                                                |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| MOV R5, #0 ;table 低 8 位指针                                                                                                                |  |  |  |  |  |
| ;逐行扫描                                                                                                                                    |  |  |  |  |  |
| MOV R3,#16 ;扫描 16 次<br>SM16: SETB OUTX ;行输出使能置高电平<br>SETB OUTY ;列输出使能置高电平                                                                |  |  |  |  |  |
| ;送行扫描码                                                                                                                                   |  |  |  |  |  |
| CLR CLKCCX ;列存储器时钟置低电平                                                                                                                   |  |  |  |  |  |
| MOV DPTR,#TABLE1                                                                                                                         |  |  |  |  |  |
| MOV A,R0 MOV C A,@A+DPTR MOV R6,#8 YW1: CLR CLKYWX RLC A MOV DX,C SETB CLKYWX;将高 8 位列选码按位送入到移位寄存器中 DJNZ R6,YW1  MOV A,R1 MOV C A,@A+DPTR |  |  |  |  |  |
| MOV R6,#8<br>YW0: CLR CLKYWX                                                                                                             |  |  |  |  |  |
| RLC A MOV DX,C SETB CLKYWX ;将低 8 位列选码按位送入到移位寄存器中 DJNZ R6,YW0                                                                             |  |  |  |  |  |
| SETB CLKCCX ;将移位寄存器中的数据送到存储器中                                                                                                            |  |  |  |  |  |
| CLR OUTX ;将行输出使能置低电平                                                                                                                     |  |  |  |  |  |
| ;送列扫描码                                                                                                                                   |  |  |  |  |  |
| CLR CLKCCY ;列存储器时钟置低电平                                                                                                                   |  |  |  |  |  |

MOV DPTR,#TABLE

MOV A,R4

MOVC A,@A+DPTR

MOV R6,#8

YW3: CLR CLKYWY

RRC A

MOV DY,C

SETB CLKYWY ;将高 8 位列选码按位送入到移位寄存器中

DJNZ R6,YW3

MOV A,R5

MOVC A,@A+DPTR

MOV R6,#8

YW2: CLR CLKYWY

RRC A

MOV DY,C

SETB CLKYWY ;将低 8 位列选码按位送入到移位寄存器中

DJNZ R6,YW2

SETB CLKCCY ;将移位寄存器中的数据送到存储器中

CLR OUTY ;将列输出使能置低电平

LCALL DELAY1

INC R0

INC R0

INC R1

INC R1

INC R4 ;TABLE 指针 R4, R5 分别加 2

INC R4

INC R5

INC R5

DJNZ R3,SM16 ;进行下一次扫描

LJMP SM ;重新扫描

| ;                                                                        |
|--------------------------------------------------------------------------|
| DELAY1:                                                                  |
| MOV R6,#20                                                               |
| DEL1: MOV R2,#20                                                         |
| DEL2: DJNZ R2,DEL2                                                       |
| DJNZ R6,DEL1                                                             |
| RET                                                                      |
| ;扫描码表                                                                    |
| TABLE:                                                                   |
| 张(0) 莞(1) 佳(2)                                                           |
| DB 40H,00H,47H,C2H,44H,41H,44H,42H,7CH,7CH,01H,00H,01H,00H,FFH,FFH;      |
| DB 01H,02H,05H,84H,09H,60H,11H,10H,61H,08H,01H,04H,01H,02H,00H,00H;"张",0 |
| DB 20H,00H,21H,21H,26H,21H,24H,A2H,F4H,A4H,24H,B8H,34H,A0H,2CH,A0H;      |
| DB 24H,A0H,24H,BEH,F4H,A1H,24H,21H,25H,21H,26H,27H,20H,00H,00H,00H;"莞",1 |
| DB 00H,80H,01H,00H,06H,00H,1FH,FFH,E2H,02H,02H,02H,22H,22H,22H,22H;      |
| DB 22H,22H,FEH,FEH,22H,22H,22H,22H,22H,22H,22H,02H,00H,00                |
| DB 40H,00H,47H,C2H,44H,41H,44H,42H,7CH,7CH,01H,00H,01H,00H,FFH,FFH;      |
| DB 01H,02H,05H,84H,09H,60H,11H,10H,61H,08H,01H,04H,01H,02H,00H,00H;"张",0 |
|                                                                          |
| TABLE1:                                                                  |
| DB 80H,00H                                                               |
| DB 40H,00H                                                               |
| DB 20H,00H                                                               |
| DB 10H,00H                                                               |
| DB 08H,00H                                                               |
| DB 04H,00H                                                               |
| DB 02H,00H<br>DB 01H,00H                                                 |
| υπί,νοπ (π. γ.                       |

DB 00H,80H

DB 00H,40H

DB 00H,20H

DB 00H,10H

DB 00H,08H

DB 00H,04H

DB 00H,02H

DB 00H,01H

**END** 

## 问题分析

(实验过程中遇到的问题及解决方法)

1、在所有的字显示结束后,后面出现一串乱码(一条斜杠或者是)。

调整"在所有字显示完毕后"控制归零的那一条语句,计算显示三个字码需要的正确长度。

2、字码飘过速度太快。

解决方法:调整延时程序。

3、字码显示不清楚

解决办法:修改试验程序使其能清晰显示。