1 GP-Marker Usage

1.1 Input and Output file

Input file (discovery.csv and validation.csv): Quantitative glycopeptide values corresponding to all samples that need to be classified. The file format is as follows; the file has the suffix '.csv'.

GP name	Sample (CD_01)	CD_02	CD_03	 TD_01	TD_02	TD_03	
GP1	Quantitative						
GP2							
GP3							
GPn							

PS: 1) GP: Glycopeptide, CD: control data, TD: tumor data

- 2) The number starts from 01, and the single-digit number is also numbered with two digits.
- There are no other redundant column names. Make sure the column names are in a format like
 CD 01.
- 4) Similar samples have the same name in the discovery set and validation set. For example, if they are both control samples, they are all named CD.
- 5) Machine learning classification only supports two-class classification problems for the time being.

1.2 Output file:

- > (T-test).csv: The name of the file is selected by the user and contains the P-value and Fold-change values of the features whose missing value ratio meets the requirements.
- MLDATA.csv: The file contains features that satisfy P-value and Fold-change card values. This file is used for subsequent machine learning.
- randomfeature.csv: This file contains the contribution of each feature to the model establishment.
- all_auc.csv: This file contains the AUC values calculated for all features based on the data.
- predictdata.csv: This file contains the specific prediction results for each sample of the validation set.
- (RandomForestClassifier) model.joblib: The file name is related to the selected machine

learning model and is a model saved by the user for next call.

(RandomForestClassifier)_model_encoder.pkl: The file name is also related to the selected machine learning model and is the correspondence file between the sample name and the learning parameters.

PS: The marked part of the string is a name that changes based on user input, and other file names are fixed names.

2 The process of GP-Marker

The main window of GP-Marker: 1) The blue box area corresponds to the missing value processing and T-test module. 2) The orange box area corresponds to the machine learning model training and prediction module.

2.1 Missing value processing and T-test

If your file format is consistent with our requirements in part one, you can directly follow the steps below

1) Click 'open' in 'File' to bring up the file selection window and select 'discovery.csv'

2) Click 'Save Path' in Part 1 to bring up the path window and enter a save path in csv format.

Show save path here.

PS: Note that subsequent files will be saved in this folder path.

3) Filter missing values in Part 2

Enter the allowed range of missing values and click 'Tolerate_of_NaN' By one class: The proportion of missing values in one category is less than 0.3

By index: The total missing value ratio of a feature is less than 0.3 By multi class: The proportion of missing values in each category is less than 0.3

	/coproteinname	('CD', 'CD_01')	('CD', 'CD_02')	('CD', 'CD_03')	('CD', 'CD_06')	('CD', 'CD_08')	('C
1	YLGNATAIFFL	1067840.281	2841483.977	7058979.109	nan	nan	102
2	LHINHNNLTE	291380.5978	520711.3644	389031.0688	nan	423686.6472	418
3	EEQFNSTFR	423333463.7	439981667.9	307547837.0	278732388.2	172354230.6	144
4	LSLHRPALEDL	3115443.743	4125682.088	7943814.826	2416358.11	2272372.411	nan
5	LGACNDTLQ	nan	158510.2173	nan	nan	148836.5669	145
6	GLTFQQNASS	1404515.118	nan	nan	1891814.447	nan	nan
7	SWPAVGNCSS	591668.9243	1651384.762	564274.3126	3436788.913	1421322.775	124
8	TLNQSSDELQ	18455272.91	30679603.74	16414982.51	6710314.438	17871458.62	260
9	ELHHLQEQNV	3233530.407	1763352.14	2460006.149	2939371.914	2063021.691	252
10	FSLLGHASISC	1792064.961	1688177.163	1658604.077	2969943.195	3718354.495	269
11	SVQEIQATFFY	1666122.767	1076993.383	nan	2639713.555	1638646.209	nan
12	VTQVYAENGT	nan	3514163.77	nan	1663609.885	nan	347
13	ADTHDEILEGL	nan	nan	1719551.844	133098.1598	nan	344
14	AFITNFSMIID	476365.5994	8589977.38	4077463.718	2669112.668	3463798.743	792
15	IPCSQPPQIEH	1149223.572	1350282.952	670494.6345	1228030.808	1185355.529	822
16	AALAAFNAQN	45114516.94	61857607.51	45050309.51	40285692.04	50899851.9	480
17	ADGTVNQIEG	1784386.323	2823047.406	3382682.619	2001238.372	1942273.17	834
	511100070010	244050 0400		700057 0000	********		

The display box displays the data after filtering missing values.

4) Impute missing values in Part 3

Normalize:

Use the median value of the first sample as the standard to normalize other sample data.

Imputation:

- 1 Fill missing values with 0 (take supplementing 0 as an example)
- 2 Missing values are randomly filled according to the left-skewed kurtosis normal distribution.
- 3 Fill missing values with mean

	/coProteinName	('CD', 'CD_01')	('CD', 'CD_02')	('CD', 'CD_03')	('CD', 'CD_06')	('CD', 'CD_08')	('C
1	YLGNATAIFFL	20.026264445	21.438213149	22.751028120	0.0	0.0	23.2
2	LHINHNNLTE	18.152545290	18.990124367	18.569525850	0.0	18.692638136	18.6
3	EEQFNSTFR	28.657219294	28.712868173	28.196235588	28.054305409	27.360801470	27.
4	LSLHRPALEDL	21.571006235	21.976201225	22.921400562	21.204402850	21.115767861	0.0
5	LGACNDTLQ	0.0	17.274216311	0.0	0.0	17.183369492	17.
6	GLTFQQNASS	20.421640722	0.0	0.0	20.851339162	0.0	0.0
7	SWPAVGNCSS	19.174430598	20.655244867	19.106037149	21.712629813	20.438802789	20.2
8	TLNQSSDELQ	24.137529736	24.870776513	23.968509876	22.677948940	24.091154052	24.6
9	ELHHLQEQNV	21.624678746	20.749889177	21.230230491	21.487076481	20.976327559	21.2
10	FSLLGHASISC	20.773191504	20.687034882	20.661538113	21.502003906	21.826232887	21.5
11	SVQEIQATFFY	20.668063277	20.038577955	0.0	21.331949955	20.644072973	0.0
12	VTQVYAENGT	0.0	21.744749995	0.0	20.665885731	0.0	21.7
13	ADTHDEILEGL	0.0	0.0	20.713601182	17.022131099	0.0	21.7
14	AFITNFSMIID	18.861709707	23.034222901	21.959240608	21.347928774	21.723923676	22.9
15	IPCSQPPQIEH	20.132228059	20.364830325	19.354866261	20.227915323	20.176888407	19.6
16	AALAAFNAQN	25.427088402	25.882447699	25.425033682	25.263764203	25.601158122	25.
17	ADGTVNQIEG	20.766996564	21.428821924	21.689736391	20.932461589	20.889314691	19.6
				** ******			

The display box is updated to the data after supplementing 0.

5) Take the T-test in Part 4

6) Generate machine learning read files in Part 5

This operation will generate a second file MLDATA.csv

If your file format is inconsistent with the first part, automatic classification cannot be completed. Here are two classification methods:

'class by index': Your column name includes the characters used for classification, then fill in the two types of characteristic characters in the small window on the right.

'class by select':

After selecting the file, the column names will be displayed in 'CSV columns'
Then you can choose the column names for classification. This window supports up to four categories, and name the categories respectively, and then click 'Merge Target Columns'
And complete the filtering of missing values in this window

2.2 Machine learning model training and Prediction

1) Machine learning file preparation in Part 1

Click 'Choose File' and select MLDATA.csv and 'verification set file: 'validation.csv', respectively.

2)Data preprocessing in Part 2

3) Machine learning model training in Part 3

'Select Model': Choose machine learning model
1 log_model
2 random_model
3 tree_model
4 svc_model
5 nb_model
6 kn_model

'Select Corss': Select the corresponding model for cross-validation.

'Select Cross': Select the corresponding model to perform grid search to optimize parameters.

 $\hbox{`Feature Score': Give the contribution of each feature (nb_model and kn_model do not have this feature)}\\$

After using 'Feature Score' function, file 'randomfeature.csv' will be generated.

'Model Test': Provides multiple methods to measure the effectiveness of machine learning models.

If you just want to train the model according to simple parameters, just use 'Select Model' and 'Feature

Score' functions.

After completing model training, information such as accuracy will be displayed here.

4) Validation set predictions in Part 4

Then click Predict_data' to generate the prediction result file: predictdata.csv

Running to this step completes the training of a simple machine learning model.

In many cases, not performing feature screening will result in hundreds of features being used for model training, while disease marker screening often only focuses on a few more obvious features, so the software also provides a series of feature screening methods.

2.3 Feature filtering operation

1) Optimize features in batches based on the sum of contributions (In Part 5 of section 2.2)

Enter the sum of retained contributions
Click 'Feature Select'
Automatically filter these features in the '(TD_CD).csv'
file and overwrite the file
PS: The sum of feature contributions is 1.0

2) Autonomous selection of feature training models (Click 'Feature Choose' in Part 2 of section

2.2)

To select the file here, you need to select the 'randomfeature.csv' file.

Select the features of interest in the upper box and click to confirm

Overwrite 'MLDATA.csv' file

2.4 Other function of GP-Marker

1) Related model performance curves

Provides drawing model curves:

'roc line': draw ROC curve

'learning_curve': draw learning curve

2) Save Model

Save Model

Load Model

save model button load model button

Files ending in '.joblib' are model files.

Files ending in '.pkl' are prediction mode files.

This model can then be used directly to call.

3) Draw the ROC curve of a single glycopeptide

Click the 'roc line by data'
New window will be opened

Load File: MLDATA.csv

Select one or more glycopeptides of interest in the upper box, and then click 'roc_line' to draw the curve.

You can also click 'all_auc', an AUC value file corresponding to each feature will be generated.

PS: all_auc.csv

4) Display site glycoform distribution function

Click the 'site_draw'
New window will be opened

Load File: discovery.csv

The canvas on the right shows the drawn distribution map

Provides methods for filtering missing values

Provides T-test card P-value and Fold-Change methods

Two comparison charts are provided: bar chart and heat map

5) Auxiliary format handling

GP-Marker can directly count the quantitative result file output by Glyco-Decipher as discovery.csv.

Click the 'File Preparation'
New window will be opened

'Select Filepath': Select the quantitative results folder of Glyco-Decipher.

Ily_OE480_2022GCHC_CD01_GlycoPeptideQuantificationArea.txt

'Data Preparation': Automatically count all files ending with 'Area' And generate csv file format files recognized by the software

PS: Before using this function, enter the number of the underscore partition in the sample name in the 'Number' box. For example, enter 4 for the above file. If you do not enter a number, the file name will be used as the column name of this sample.

'Save Path': Select save path

'Save File': output discovery.csv at the intact glycopeptide level

'For Glycans Discovery': output discovery.csv at the glycans level

'For Protein Discovery': output discovery.csv at the protein level

'For Site Discovery': output discovery.csv at the site level

'For Site Special Glycans Discovery': output discovery.csv at the site special glycans level

PS: Before counting data at other levels, you need to count the statistics of complete glycopeptide data. If you have the discovery.csv at the intact glycopeptide level, you can use the 'Choose File' button to import the file and then choose the different levels of splitting methods above.

6) Draw PCA

Click the 'PCA plt'
Draw PCA

Before drawing PCA, you need to complete the screening of missing values and card P-value values.

7) Plot multi-level distributions

This function can be used after importing discovery.csv

8) Screen the best combination of features

Choose 'auto ml'
Open a new window.

'Select Filepath': MLDATA.csv
'Number': Select the number of combined features
'Auto Select': Iterate over all possible combinations to train the random forest model and output the accuracy result file.