Sistemas Inteligentes

Escuela Técnica Superior de Informática Universitat Politècnica de València

Introducción a la estimación del error en Reconocimiento de Formas

Evaluación de un clasificador

¿Cómo utilizo mis muestras etiquetadas para entrenar y evaluar un clasificador?

- Entrenamos un clasificador con $x_1, x_2, x_4, x_5, x_7, x_8$
 - Ejemplo: utilizando el algoritmo Perceptrón obtengo:

Iris Setosa
$$x_1 = (1.4 \ 0.2)^t$$
 $x_2 = (1.3 \ 0.2)^t$ $x_3 = (1.5 \ 0.2)^t$

$$x_2 = (1.3 \ 0.2)^t$$

 $x_3 = (1.5 \ 0.2)^t$

Iris Versicolor
$$\boldsymbol{x}_4 = (4.7 \ 1.4)^t$$
 $\boldsymbol{x}_5 = (4.5 \ 1.5)^t$ $\boldsymbol{x}_6 = (4.9 \ 1.5)^t$

Iris Virgínica
$$x_7 = (6.0 \ 2.5)^t$$
 $x_8 = (5.1 \ 1.9)^t$ $x_9 = (5.9 \ 2.1)^t$

$$\mathbf{w}_1 = (0.8 - 1.8 - 1)^t$$
 $\mathbf{w}_2 = (0.6 - 1.7 - 1)^t$
 $\mathbf{w}_3 = (-2.5 - 1.5 \ 0.6)^t$

- lacktriangle Evaluamos con x_3, x_6, x_9
 - Ejemplo: un clasificador con los pesos del Perceptron

$$c(\mathbf{x}_3) = \operatorname{argmax}(\mathbf{w}_1^t \mathbf{x}_3, \mathbf{w}_2^t \mathbf{x}_3, \mathbf{w}_3^t \mathbf{x}_3) = 1 \rightarrow \operatorname{Acierto}$$
 $c(\mathbf{x}_6) = \operatorname{argmax}(\mathbf{w}_1^t \mathbf{x}_6, \mathbf{w}_2^t \mathbf{x}_6, \mathbf{w}_3^t \mathbf{x}_6) = 3 \rightarrow \operatorname{Error}$
 $c(\mathbf{x}_9) = \operatorname{argmax}(\mathbf{w}_1^t \mathbf{x}_9, \mathbf{w}_2^t \mathbf{x}_9, \mathbf{w}_3^t \mathbf{x}_9) = 3 \rightarrow \operatorname{Acierto}$

SIN-TemaB2T2 Evaluación

Diseño de experimentos

- Necesitamos dedicar muestras a entrenamiento y muestras a evaluación (test)
- *Partición*: Si los conjuntos de entrenamiento y test son disjuntos
 - Inconveniente: las muestras de test no se pueden usar para entrenar

DSIC – UPV Página B2T2.2

SIN-TemaB2T2 Evaluación

Diseño de experimentos

- Necesitamos dedicar muestras a entrenamiento y muestras a evaluación (test)
- *Partición*: Si los conjuntos de entrenamiento y test son disjuntos
 - Inconveniente: las muestras de test no se pueden usar para entrenar
- Resustitución: Uso las mismas muestras para entrenar y para evaluar
 - Inconveniente: es muy optimista

DSIC – UPV Página B2T2.2

SIN-TemaB2T2 Evaluación

Diseño de experimentos

- Necesitamos dedicar muestras a entrenamiento y muestras a evaluación (test)
- *Partición*: Si los conjuntos de entrenamiento y test son disjuntos
 - Inconveniente: las muestras de test no se pueden usar para entrenar
- Resustitución: Uso las mismas muestras para entrenar y para evaluar
 - Inconveniente: es muy optimista
- ¿Cómo aprovechar mejor mis muestras?
- Validación Cruzada en B bloques (B-fold Cross Validation): Se definen B bloques. Iterativamente, un bloque para test y el resto para entrenamiento.
 - Inconvenientes: Reduce el número de datos de entrenamiento (sobre todo cuando B es pequeño) y el coste computacional se incrementa con B.
- **Exclusión individual (Leaving One Out):** Iterativamente, una muestra para test y el resto para entrenamiento. Equivale a Validación Cruzada en N bloques.
 - Inconvenientes: el coste computacional.

Ejemplo: diseño de experimentos

Validación cruzada en 3 bloques:

$B_1 = \{ m{x_1}, m{x_4}, m{x_7} \}$	Test	Entrenamiento
•	B_1	B_{2}, B_{3}
$B_2 = \{ m{x_2}, m{x_5}, m{x_8} \}$	B_2	B_1,B_3
$B_3 = \{x_3, x_6, x_9\}$	B_3	B_1,B_2

3 ejecuciones del algoritmo de entrenamiento y evaluación

Iris Setosa $\boldsymbol{x}_1 = (1.4 \ 0.2)^t$ $\boldsymbol{x}_2 = (1.3 \ 0.2)^t$ $\boldsymbol{x}_3 = (1.5 \ 0.2)^t$

Iris Versicolor

$$\mathbf{x}_4 = (4.7 \ 1.4)^t$$

 $\mathbf{x}_5 = (4.5 \ 1.5)^t$
 $\mathbf{x}_6 = (4.9 \ 1.5)^t$

Iris Virgínica

$$x_7 = (6.0 \ 2.5)^t$$

 $x_8 = (5.1 \ 1.9)^t$
 $x_9 = (5.9 \ 2.1)^t$

■ Exclusión individual (Leaving One Out):

Test	Entrenamiento	
x_1	$x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9$	
$\boldsymbol{x_2}$	$m{x_1}, m{x_3}, m{x_4}, m{x_5}, m{x_6}, m{x_7}, m{x_8}, m{x_9}$	
x_3	$m{x_1}, m{x_2}, m{x_4}, m{x_5}, m{x_6}, m{x_7}, m{x_8}, m{x_9}$	
• • •	• • •	
x_9	$m{x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8}$	

9 ejecuciones del algoritmo de entrenamiento y evaluación

Estimación empírica de la probabilidad de error

La estimación empírica de la probabilidad de error es:

$$\hat{p}_{\mathsf{error}} = rac{N_e}{N}$$

siendo N_e el número de errores al clasificar N muestras.

- ¿Cuál sería la estimación de la *verdadera* probabilidad de error p_{error} ?
- Si N es muy grande, podemos asumir que $\hat{p}_{\mathsf{error}} \sim \mathcal{N}\left(p_{\mathsf{error}}, \ \frac{p_{\mathsf{error}}(1-p_{\mathsf{error}})}{N}\right)$
- Intervalo de confianza al 95%:

$$p(\hat{p}_{\text{error}} - \epsilon \le p_{\text{error}} \le \hat{p}_{\text{error}} + \epsilon) = 0.95; \qquad \epsilon = 1.96 \sqrt{\frac{\hat{p}_{\text{error}}(1 - \hat{p}_{\text{error}})}{N}}$$

■ *Ejemplo:* Tenemos 50 errores en 1000 muestras de test. Con una confianza del 95 % podemos afirmar que p_{error} es:

$$p_{\text{error}} = 0.05 \pm 1.96 \sqrt{\frac{0.05 \cdot 0.95}{1000}} = 0.05 \pm 0.014 \ (5\% \pm 1.4\%)$$

■ *Ejemplo:* Si hay 5 errores en 100 muestras de test p_{error} es:

$$p_{\text{error}} = \cdots = 0.05 \pm 0.043 \ (5\% \pm 4.3\%)$$