Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра систем управления и информатики

Отчет по лабораторной работе №1
«ПОСТРОЕНИЕ МАТЕМАТИЧЕСКОЙ МОДЕЛИ ДВИГАТЕЛЯ NXT»
по дисциплине «Введение в специальность»

Выполнили: студенты гр. Р31**

Иванов И. И. Петров П. П. Сидоров С. С.

Преподаватель: Капитонов А. А.,

ассистент каф. СУиИ

Санкт-Петербург 2016

1 Цель работы

Экспериментально проверить справедливость функций, описывающих работу ненагруженного двигателя постоянного тока, определить значение параметра T_m последнего и, пользуясь результатами проделанных вычислений, проанализировать характер зависимостей $T_m(voltage)$ и $\omega_{nls}(voltage)$.

2 Материалы работы

2.1 Результаты необходимых расчетов и построений

Результаты аппроксимации экспериментальных данных соответствующей функцией от времени в виде значений величин T_m и ω_{nls} сведены в таблицу 1. В четвертом ее столбце указаны результаты расчета величины M_{st} по значениям величин T_m и ω_{nls} из двух предшествующих столбцов.

Таблица 1. Результаты расчетов величин T_m , ω_{nls} и M_{st} .

Voltage, %	$\omega_{nls},~{ m pag/c}$	T_m , c	$M_{st}, \mathbf{H} \cdot \mathbf{M}$
100	16.423	0.091	0.415
80	13.197	0.087	0.349
:	:	:	:
-100	-16.370	0.079	0.476

Рис. 1. Графики зависимости угла поворота ротора от времени при voltage = 100.

Рис. 2. Графики зависимости угла поворота ротора от времени при voltage=80.

Здесь, подразумевается, находятся еще 7 необходимых графиков.

Рис. 10. Графики зависимости угла поворота ротора от времени при voltage = -100.

Рис. 11. График зависимости $\omega_{nls}(voltage)$.

Рис. 12. График зависимости $T_m(voltage)$.

2.2 Схема моделирования

Рис. 13. Схема моделирования процесса разгона ненагруженного двигателя постоянного тока.

2.3 Код основной расчетной программы

```
results=read("C:\for_scilab\my100.txt",-1,2);
qlines=size(results,1);
angle=results(:,1)
angle=angle*%pi/180
time=results(:,2)/1000
plot2d(time, angle, 2)
...
```

2.4 Код программы для NXT

```
#define PERCENTS 60
#define MOTOR_PORT OUT_B

task main(){
    byte handle;
    int str_size;
    ...
    OnFwd(MOTOR_PORT, PERCENTS);
    first_time = CurrentTick();
    ...
    CloseFile(handle);
}
```

3 Выводы

В результате проделанной работы было ...

В данном разделе требуется своими словами

- указать на то, что в работе было сделано все, что предписывалось выполнить заданием;
- лаконично описать полученные результаты: результаты проверок, расчетов $u \ m.\partial. u$ прокомментировать ux;

• упомянуть о чем-либо ином, относящемся к работе, если это, на ваш взгляд, необходимо.

К примеру в выводе отчета по первой работе логично отметить следующее:

- насколько кривые разгона двигателя (построенная по экспериментальным данным, построенная в соответствии с теоретически выведенным выражением и построенная по числовым значениям, полученным в результате моделирования соответствующей схемы в Xcos) совпадают друг с другом;
- описать характер получившихся графиков для зависимостей $T_m(voltage)$ и $\omega_{nls}(voltage)$ и прокомментировать такой их вид.