$$f(x) = x^{3} - 6x^{2} + 11x - 6$$

$$f'(x) = 3x^{2} - 12x + 11$$

$$g(x) = x - \frac{f(x)}{f'(x)}$$

$$= x - \frac{x^{3} - 6x^{2} + 11x - 6}{3x^{2} - 12x + 11}$$

$$= \frac{3x^{3} - 12x^{2} + 11x - x^{3} + 6x^{2} - 11x + 6}{3x^{2} - 12x + 11}$$

$$= \frac{2x^{3} - 6x^{2} + 6x^{2} - 11x + 6}{3x^{2} - 12x + 11}$$

$$= \frac{2x^{3} - 6x^{2} + 6x^{2} + 6x^{2} - 11x + 6}{3x^{2} - 12x + 11}$$

$$= \frac{2(x^{3} - 3x^{2} + 3)}{3x^{2} - 12x + 11}$$

32-122+11

(Arus)

$$g'(n) = \frac{f(n)f''(n)}{(f'(n))^2}$$

Now,
$$f''(n) = 6n - 12$$

or, $f''(1) = -6$ [: $n_{*}=1$]

and
$$f(1) = 0$$
 $[n_* = 1]$

Now,
$$\lambda = g'(u_*) = \frac{f(u) f''(u)}{(f'(u))^2}$$

$$= 9'(1) = \frac{0 \times (-6)}{(2)^2}$$

Since,
$$\lambda = 0$$
, the convergence rate for $x_* = 1$ is superlinear

$$f(2) = 0$$

imilarly,
$$f(2) = 0 \quad | So, g'(2) = 0$$
and
$$f(3) = 0 \quad | and g'(3) = 0$$

Hence we can verify that g(n) is superlinear.

0-644,106 We know, $f(u) = 3u^2 - 12u + 11$ 10199101

The twening points are:

3n2-12n+11=0

0.722521

F. E. B. O. + 30 8 3 7

At these points, the iteration methods fails.

 $\frac{2(a)}{\text{Heration formula": }} \frac{f(x_k)}{f'(x_k)}$

 $= u_k - \frac{\cos(2n) - 4n\cos(n) + 2n^2 + 1}{-2 \sin(2n) - 2n(\sin(n) + 1) + 2\cos(n)}$

_			
K	NK	f(ux)	is f(uk) <10-5
0	0.250000	1.0033670	No
1	0.538163	0.205426	No
2	0.644106	0.048380	No
3	0.692695	0.011807	140
4	0.716140	0.502919	No
5,	0.727671	0.000726	No
6	0.733392	0-000 181	NO
7	0.736241	0.000045	No
8.	0.737656	0.000011	No
9	0.738344	0.000003	YES

 $f(u_g) \approx 0.$

2(6)

The new Aitken acceleration formula for iteration point:

Marker (10)	f(nx)	is f(ux)<10-5
0.250000	1.033670	No
0.538163	0.205426	No
0.644106	0.048380	No
0.705701	0.006151	No
0.722521	0.001526	No
0.730835	0.000380	No
3.738961	8.632×10 ⁻⁸	n Yes
	0.250000 0.538163 0.644106 0.705701 0.722521 0.730835	0.250000 1.033670 0.538163 0.205426 0.644106 0.048380 0.705701 0.006151 0.722521 0.001526 0.730835 0.000380

 $f(n_4) \approx 0$