Neural Machine Translation by Jointly Learning to Align and Translate

Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio (ICLR 2015)

단국대학교 모바일시스템공학과 양윤성

Contents

- 1. Introduction
- 2. The Model
- 3. Experiments
- 4. Conclusion

1-(1). Review Seq2Seq

Seq2Seq Model

- Encoder-decoder structure of multi-layer LSTM
- Using context vector of fixed length

1-(1). Review Seq2Seq

RNN Encoder

- Map the input sentence $x = (x_1, ..., x_{Tx})$ into a fixed-length context vector c
- Function f() and q() are non-linear function (ex. LSTM)

$$h_t = f\left(x_t, h_{t-1}\right)$$

$$c = q\left(\{h_1, \cdots, h_{T_x}\}\right)$$

1-(1). Review Seq2Seq

RNN Decoder

- Predict the output sentence $y = (y_1, ..., y_{Ty})$ by maximizing the probability
- St is the hidden state of the RNN

$$p(\mathbf{y}) = \prod_{t=1}^{T} p(y_t \mid \{y_1, \dots, y_{t-1}\}, c)$$

$$p(y_t \mid \{y_1, \dots, y_{t-1}\}, c) = g(y_{t-1}, s_t, c)$$

1-(2). Limit of Seq2Seq

Bottleneck Problem?

- Encoder compresses any sentence to fixed size
- Long input sequence →
 High probability of information loss
- Significant impact on the performance of encoder-decoder model

1-(2). Limit of Seq2Seq

Problems mentioned in the paper

- Less performance even with LSTM
- An awkward later translation
- Combining and utilizing all hidden states!
 - Searching set of positions in source sentence where the most relevant information is concentrated
 - Learning model to align and translate jointly

Contents

- 1. Introduction
- 2. The Model
- 3. Experiments
- 4. Conclusion

2-(1). Embedding

- Vectorize the meaning of a word (Input of encoder & decoder)
- Limit of One Hot Encoding
 - 1 is only one, so many 0 → Inefficient & waste of memory
 - Unable to express similarities or characteristics

Word	Index	One-Hot Vector
I	0	[1, 0, 0, 0,, 0]
You	1	[0, 1, 0, 0,, 0]
We	3	[0, 0, 1, 0,, 0]
World	502	[0, 0, …, 1, …, 0]

2-(1). Embedding

Word2Vec

Ex) "hello my friend"

• Window size = 1

Word	Neighbor	
hello	my	
my	hello	
my	friend	
friend	my	

• Window size = 2

Word	Neighbor	
hello	my	
hello	friend	
my	hello	
my	friend	
friend	my	
friend	hello	

CBOW: Predict center word from context words

Skip-Gram: Predict context words from center word

- 1. Convert context words to one-hot vectors(1*V)
- 2. Multiply W(V*M) → Each embedding vector(1*M)
 - V: The number of words, M: Embedded dimensions
 - W initially contains random values

DKU C&I LAB

- 3. Calculate avg. of vectors
- → Projection(hidden) layer(1*M)

- 4. Calculate \hat{y} and compare y (center word's one-hot vector)
- 5. Calculate difference between two vectors

(Use cross-entropy as loss function)

$$egin{aligned} Q(X=c_1) = 0.2 & P(X=c_1) = 0 \ Q(X=c_2) = 0.7 & P(X=c_2) = 1 \ Q(X=c_3) = 0.1 & P(X=c_3) = 0 \end{aligned}$$

$$H(P,Q) = -\sum_{i} P(x) \log_{i} Q(x)$$

= $-(0 \cdot \log_{i} 0.2 + 1 \cdot \log_{i} 0.7 + 0 \cdot \log_{i} 0.1)$
= $-\log_{i} 0.7 \approx 0.357$

6. Using backpropagation to learn the weight matrix

- Use argmin function to select less difference
- Update all embedded vectors
- Θ : Set of all weights

$$\hat{ heta} = rg\min_{ heta} cost(\hat{y}, y)$$

2-(3). Whole Process

DKU C&I LAB

2-(4). BiRNN Encoder

Bidirectional RNN

• Forward RNN: Reads input sequence from beginning to end

$$(\overrightarrow{h}_1,\cdots,\overrightarrow{h}_{T_x})$$

Backward RNN: Reads input sequence from end to beginning

$$(\overleftarrow{h}_1,\cdots,\overleftarrow{h}_{T_x})$$

2-(4). BiRNN Encoder

- ullet Annotation (h_j): New hidden state of each word (w_j)
 - Something representation
 - Contain the summaries of both the preceding words and the following words

$$h_j = \left[\overrightarrow{h}_j^\top; \overleftarrow{h}_j^\top\right]^\top$$

2-(5). Compute Alignment

- ullet Hidden state in decoder (s_i): Information in time i
- Energy (e_{ij}) : Calculate s_{i-1} and h_j to use alignment model

$$e_{ij} = a(s_{i-1}, h_j)$$

Alignment model

$$e_{ij} = v_a^{\top} \tanh \left(W_a s_{i-1} + U_a h_j \right)$$

• V_a , W_a , U_a : Parameter matrix used to incorporate encoder/decoder's hidden state into the weights

2-(5). Compute Alignment

- Weight (α_{ij}): Probability that target word y_i is aligned to source word x_j
 - Function exp : $\exp(x) = e^x$
 - Normalize to softmax layer → Final probability

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$$

2-(6). Make Context Vector

- ullet Weighted Sum (c_i)
 - Sum (j-th weight * j-th annotation) of j = 1 to j = T_x
 - Final result → i-th context vector

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j$$

2-(7). Decoder

Operate i-th context vector, pre word, and pre hidden state into LSTM

$$s_i = f(s_{i-1}, y_{i-1}, c_i)$$

Predict the final word through dense layer and softmax layer

DKU C&I LAB

Contents

- 1. Introduction
- 2. The Model
- 3. Experiments
- 4. Conclusion

3-(1). Settings

- WMT'14 English-French parallel corpus dataset
- RNN Encoder-Decoder model (RNNencdec-30, RNNencdec-50)
- RNN Search model (RNNsearch-30, RNNsearch-50)
- RNNsearch-50*: Trained much longer
- Moses : Best open source SMT → for comparison
- Using BLEU score

DKU C&I LAB

3-(2). Result - BLEU score

Model	All	No UNK°
RNNencdec-30	13.93	24.19
RNNsearch-30	21.50	31.44
RNNencdec-50	17.82	26.71
RNNsearch-50	26.75	34.16
RNNsearch-50*	28.45	36.15
Moses	33.30	35.63

No UNK : Disallowed the models to generate unknown(UNK) token

UNK token: Using UNK token instead of words it doesn't know

High quality than Moses when No UNK

3-(2). Result - BLEU score

- Before model: Reduced performance in changing to fixed length vector
- After model : Performance doesn't decrease even with longer sentences

3-(3). Result - Alignment

3-(3). Result - Alignment

- X-axis : Input sequence (English)
- Y-axis : Output sequence (French)
- Grayscale Annotation (0 : Black, 1 : White)
- The larger annotation value → The more relevant it is
- An accurate prediction even if the word order is opposite

DKU C&LLAB

Contents

- 1. Introduction
- 2. The Model
- 3. Experiments
- 4. Conclusion

4. Conclusion

- Out of vector of fixed length → Explore annotation for each word generation
- Focus only on information relevant to the generation of the next target word
 - More accurate translation results
- Achieve performance comparable to the existing phrase-based SMT
- Finding better handle unknown or rare words is required

DKU C&I LAB 30

Thank You!

Neural Machine Translation by Jointly Learning to Align and Translate