

eResearch 2014 Data Mining Workshop

Scientific workflow management with ADAMS

Outline

- Basics
 - Bit different, eh?
 - Features, User interface
- Data Mining
 - Feature generation, evaluation, visualization
 - Generate and use model
- Scripting
 - R, Groovy, Jython

Canvas

Tree

- How it works
 - No explicit connections
 - Actors snap into place in tree
 - Color coded with name (+ annotation)
 - CH standalone (no I/O)
 - F source (only O)
 - 👸 transformer (I/O)
 - sink (only I)
 - Ft control actor (data flow)

- Advantages
 - compact layout
 - scales to 1000s of actors
 - context-aware adding of actors
 - interactive components
 - modular framework (Maven)
 - easy to add acctors: 1 Java class, 1 icon

- Limitations
 - only 1-to-n connections with tree layout
 - only single input/output
- Countermeasures
 - callable actors: n-to-1
 - containers: multiple outputs
 - variables: change options at runtime
 - internal storage: reuse data in multiple locations

Features

Feature	Available			
Machine learning/data mining	WEKA, WEKA webservice, MOA, MEKA, parameter optimization, experiment generation on-the-fly, setup generators, time series			
Data processing	WEKA, R-Project, XML, XSLT, XPath, HTML, JSON			
Streaming	MOA, Twitter (record/replay)			
Spreadsheets	MS Excel (r/w), ODF (r/w), CSV (r/w), Gnumeric (r/w)			
Imaging	ImageJ, JAI, ImageMagick, Gnuplot, OCR (tesseract)			
Graphics output	BMP, JPG, PNG, TIF, PDF			
Visualization	Scatter and line plots, Images, GIS (OpenStreetMap)			
Scripting	Groovy, Jython			
Documentation	DocBook, HTML			
Web	HTTP, FTP, SFTP, SSH, Email, Webservices			
Other	de/-compression (tar, zip, bzip2, gzip, lzma), Java code generation			

- Main interfaces available from WEKA, MOA, MEKA, ImageJ
- Visualization

Preview browser, Time series explorer, Openstreetmap

Tools

Flow editor/runner, Text editor/diff, PDF Viewer, Spreadsheet file viewer

Misc preference and configuration panels

Data Mining

- Lesson: Image processing
 - Caltech 101 dataset
 http://www.vision.caltech.edu/lmage_Datasets/Caltech101/
 - Pictures of objects belonging to 101 categories
 - Examples

Lesson downloads

https://adams.cms.waikato.ac.nz/ernz2014.html

Data Mining (2)

Get a feel for the data

Data Mining (3)

Analyze categories

crayfish: 70

Data Mining (4)

"Fancy" display of categories

- P Fl Flow
 - 📂 SelectDirectory directory: \${HOME}/documents/conferences/eResearchNZ2014/workshop/data/101_0bjectCategories [stops flow if canceled]
 - \$ SetVariable @{dir} [REPLACE]
 - - (fif) NewSpreadSheet name: Category,Count, cols: Category,Count, row type: DENSE, sheet: SpreadSheet
 - SetStorageValue sheet
 - ▼ Iist categories
 - FileSystemSearch DirectorySearch (@{dir} [SORT_BY_NAME])
 - SetVariable @{sub_dir} [REPLACE]
 - ρ (〒) count
 - FileSystemSearch FileSearch (@{sub_dir} [SORT_BY_NAME])
 - (iii) ArrayLength
 - SetVariable @{num} [REPLACE]
 - T-determine category
 - [™] BaseName
 - \$ SetVariable @{category} [REPLACE]
 - P Tr add row
 - StorageValue sheet
 - SpreadSheetInsertRow after: last, insert: '?' [no copy]
 - set category row: last/col: 1, value: @{category}, no copy
 - set count row: last/col: 2, value: @{num}, no copy
 - SetStorageValue sheet
 - display data
 - StorageValue sheet
 - SpreadSheetDisplay X:left, Y:top, W:640, H:480, font: Monospaced-PLAIN-12, decimals: 3, optimal

Data Mining (5)

Generate features/training data

- የ 📵 Flow
 - CA CallableActors
 - progress X:left, Y:top, W:640, H:480, short title, font: Monospaced-PLAIN-12
 - 🗁 SelectDirectory directory: \${H0ME}/documents/conferences/eResearchNZ2014/workshop/data/101_0bjectCategories-2classes [stops flow if canceled]
 - SetVariable @{dir} [REPLACE]
 - T-create output filename
 - AppendName train.arff
 - SetVariable @{outfile} [REPLACE]
 - Tilist categories
 - FileSystemSearch DirectorySearch (@{dir} [SORT_BY_NAME])
 - \$v SetVariable @{sub_dir} [REPLACE]
 - T-determine category
 - BaseName
 - SetVariable @{category} [REPLACE]
 - (S) CallableSink progress
 - Tr traverse images
 - FileSystemSearch FileSearch (@{sub_dir} [SORT_BY_NAME])
 - M JAIReader
 - MIF JAIFlattener Histogram
 - (F) WekaFilter Add -T STR -N category -C last
 - WekaSetInstanceValue last -> @{category}
 - (iv) WekalnstanceDumper ARFF: @{outfile}

Instance Explorer: raw data view

Testclassifiersetups

 Fl Flow CA CallableActors 9 (Sq) train So Variable @{dataset} FR WekaFileReader automatic (DATASET) WekaFilter StringToNominal -R last ใช้รั่ WekaClassSelector last, name: .∗ (*) WekaClassifierSetup @{classifier} Fill HistoryDisplay X:left, Y:top, W:900, H:480, font: Monospaced-PLAIN-12, # tokens: 1, entry name var: classifier \$v SetVariable @{setups} = \${TMP}/classifier_setups.txt Start Select dataset
 select dataset SelectFile directory: \${CWD} [stops flow if canceled] SetVariable @{dataset} [REPLACE] \$ Variable @{setups} 9 (T) generate J48 👸 WekaClassifierGenerator J48/2 parameters AnyToCommandline DumpFile @{setups} (append) generate RandomForest 🎇 WekaClassifierGenerator RandomForest/1 parameter PB Convert AnyToCommandline DumpFile @{setups} (append) Tr) test setups \$ Variable @{setups} T TextFileReader LineArrayTextReader (I)-ArrayProcess Class: weka.classifiers.Classifier WekaClassifierRanker 3 best, 2 folds, training data: train, threads: #cores [k ArrayToSequence PB Convert AnyToCommandline SetVariable @{classifier} [REPLACE] Tr evaluate (S) CallableSource train

WekaCrossValidationEvaluator WekaClassifierSetup, folds: 10, seed: 1, parallel/threads: #cores

(S) CallableSink HistoryDisplay

 Evaluate classifiers P Ft Flow CA CallableActors Fill HistoryDisplay X:left, Y:top, W:800, H:480, font: Monospaced-PLAIN-12, # tokens: 1, entry name var: name SequencePlotter X:right, Y:bottom, W:800, H:350 WekaClassifierSetup RandomForest -I 110 -K 0 -S 1 -num-slots... B WekaThresholdCurve X:right, Y:top, W:740, H:480, provider: WekaThresholdCurve (X:left, Y:top, W:640, H:480, class label: first, x-axis: False Positive Rate, y-axis: True Po 9 -C-generate output parallel, threads: #cores S WekaEvaluationSummary CS CallableSink HistoryDisplay 9 -[Sq]-roc CS CallableSink WekaThresholdCurve P - Sq)-roc plot CV-ContainerValuePicker Evaluation [outputs switched] RB Convert WekaEvaluationToThresholdCurve AB Convert-1 WekalnstancesToSpreadSheet 🕪 SpreadSheetPlotGenerator generator: XYPlotGenerator (x: False Positive Rate, y cols: True Positive Rate, prefix cols: -none-, separator: , meta-data: -none-PO PlotContainerUpdater PLOT NAME (f) StringReplace replace '.*' with '@{name}' CS CallableSink SequencePlotter X: False Positive Rate (Num) Y: True Positive Rate (Num) Colour: Threshold (Num) ▼ Select Instance SelectFile directory: \${CWD} [stops flow if canceled] Clear (DATASET) Plot: ThresholdCurve (F) WekaFilter StringToNominal -R last ให้ใ WekaClassSelector last. name: .* SetVariable @{name} = full [REPLACE] (iii) WekaCrossValidationEvaluator WekaClassifierSetup, folds: 10, seed: 1, CS CallableSink generate output P (T)-per-fold SetVariable @{fold} = 0[REPLACE]

📆 WekaCrossValidationSplit folds: 10, seed: 1, relation: @

SetVariable-1 @{name} = fold-@{fold} [REPLACE, expand]

Sund IncVariable @{fold}, INTEGER, inc: 1

(S) CallableSink generate output

Data Mining (8)

Build and use model

```
P Ft Flow
      SetVariable @{model} = ${TMP}/101.model
      Start
     Tr determine # of classes
          ($1) Variable @{model}
          ทีร์ WekaModelReader
          CV-ContainerValuePicker Header [outputs switched]

พื่อ WekaInstancesInfo NUM_CLASS_LABELS

             $ SetVariable @{num labels} [REPLACE]
         WekalnstancesInfo CLASS_LABELS
          SequenceToArray Length: @{num_labels}, Class: -from 1st element-
          [DS] StringJoin glue: ,
          ($v) SetVariable @{labels} [REPLACE]
   • (F) make predictions
          SelectFile directory: ${CWD} [stops flow if canceled]
          M JAIReader
         MF JAIFlattener Histogram
      P-UpdateProperties props: filter.nominalLabels, vars: labels
             WekaFilter Add -T NOM -N category -L Faces, airplane...
         📆 WekaClassSelector last, name: .*
          ("-") WekaClassifying @{model}
          CV-ContainerValuePicker Classification label [outputs switched]
          Display X:left, Y:top, W:640, H:480, font: Monospaced-PLAIN-12
```

→ Flow.	make predictions.Display	-	+	×
<u>F</u> ile <u>E</u> dit	<u>V</u> iew			
airplanes				
airplanes				
airplanes airplanes				
airplanes				

Scripting

- Lesson: Scripting with R, Groovy, Jython
 - Near Infrared (NIR) data in proprietary Bruker SPC format
 - hyperSpec R package reads certain SPC files http://cran.r-project.org/web/packages/hyperSpec/
 - Install R packages
 - > install.packages("Rserve")
 - > install.packages("hyperSpec")
 - Configure Jython \$HOME/.jython
 python.security.respectJavaAccessibility=false

Scripting (2)

Use rkward to inspect data

Scripting (3)

Search

Flow.Branch.SpreadSheetDisplay

Connect to R via Rserve and run script to

extract double matrix

Use Groovy to compute 1st derivative

Use Groovy to compute 1st derivative

Scripting (5)

Use Jython to computer 1st derivative

```
P Ft Flow
        Rserve host: localhost, port: 6311
        SelectFile directory: ${CWD}
        SetVariable @{file} [REPLACE]
         [#] RTransformer script: library(hyperSpec)\nspc = hyperSpec::rea..., return: DoubleMatrix
         Jython ${H0ME}/documents/conferences/eResearchNZ2014/work
                                                                     spc2spreadsheet.py + (~/do...2014/workshop/flows) - GVIM3
         [6ry] Groow ${HOME}/documents/conferences/eResearchNZ2014/worl
                                                              File Edit Tools Syntax Buffers Window Programming Spell Help
        AB Convert DoubleMatrixToSpreadSheet
        [A'B] Convert-1 SpreadSheetAddRowID (, start: 1)
        [A'B] Convert-2 TransposeSpreadSheet
                                                                  def doExecute(self):
      - - Branch parallel, threads: #cores
                                                                       @return: None if everything is fine, otherwise error message
                                                                       inp = self.m InputToken.getPayload()
                                                                       rows = []
                                                                       for n in xrange(len(inp)):
                                                                           rowin = inp[n]
                                                                           rowout = zeros(len(rowin) - 1, java.lang.Double)
                                                                            for i in xrange(len(rowin) - 1):
                                                                                rowout[i] = rowin[i+1] - rowin[i]
                                                                            rows.append(rowout)
                                                                       matrix = array(rows, Class.forName('[Ljava.lang.Double;'))
                                                                       self.m OutputToken = Token(matrix)
                                                                       return None
30/06/2014
                                                                                                                        61.1
```

Discussion

Questions?

