

Machine Intelligence 1

4.1 Reinforcement Learning – Evaluation

Prof. Dr. Klaus Obermayer

Fachgebiet Neuronale Informationsverarbeitung (NI)

WS 2017/2018

Reinforcement learning

4.1.1 Conditioning

Classical conditioning

- Ivan Pavlov (1849–1936)
- V: conditioned stimulus (neutral)
- **⊗**: unconditioned stimulus (rewarding)
- experience reinforces involuntary response
- animal learns to *expect* reward

Operant conditioning

- B.F. Skinner (1904–1990)
- animal acts voluntarily
- actions are rewarded or punished
- experience reinforces voluntary behavior
- animal learns how to achieve reward

Food dispenser

grid

Future rewards

- not all decisions are immediately rewarded
 - \blacksquare decision in **state** x_1 is crucial, but not rewarded
- some decisions require foresight
 - lacksquare future reward of decision in x_1 depends on decisions in x_2 and x_3
- animal must delay the reinforcement of behavior

(see Dayan and Niv, 2008; Dayan, 2008)

4.1.2 Markov Decision Processes

A Markov decision process (MDP) consist of

- \blacksquare a set of **states** $\underline{\mathbf{x}} \in \mathcal{X}$,
 - e.g. $\mathcal{X} := \{\underline{\mathbf{x}}_1, \dots, \underline{\mathbf{x}}_S\} \subset \{0,1\}^S$ with 1-out-of-S encoding

A Markov decision process (MDP) consist of

- \blacksquare a set of **states** $\underline{\mathbf{x}} \in \mathcal{X}$,
 - e.g. $\mathcal{X} := \{\underline{\mathbf{x}}_1, \dots, \underline{\mathbf{x}}_S\} \subset \{0,1\}^S$ with 1-out-of-S encoding
- lacksquare a set of **actions** $\underline{\mathbf{a}} \in \mathcal{A}$,
 - e.g. $\mathcal{A} := \{\underline{\mathbf{a}}_1, \dots, \underline{\mathbf{a}}_A\} \subset \{0,1\}^A$ with 1-out-of-A encoding

A Markov decision process (MDP) consist of

- lacksquare a set of **states** $\underline{\mathbf{x}} \in \mathcal{X}$,
 - e.g. $\mathcal{X} := \{\underline{\mathbf{x}}_1, \dots, \underline{\mathbf{x}}_S\} \subset \{0, 1\}^S$ with 1-out-of-S encoding
- lacksquare a set of **actions** $\underline{\mathbf{a}} \in \mathcal{A}$,
 - e.g. $\mathcal{A} := \{\underline{\mathbf{a}}_1, \dots, \underline{\mathbf{a}}_A\} \subset \{0, 1\}^A$ with 1-out-of-A encoding

$$\{0,1\}^A \begin{bmatrix} \mathbf{a_1} & \mathbf{x_2} & \mathbf{a_2} & \mathbf{x} \\ \mathbf{a_1} & \mathbf{x_1} & \mathbf{a_2} \\ P(\mathbf{x_2} \mid \mathbf{x_1}, \mathbf{a_1}) = 1 \end{bmatrix} P(\mathbf{x_3} \mid \mathbf{x_1}, \mathbf{a_2}) = 1$$

- \blacksquare a transition model $P(\underline{\mathbf{x}}_i | \underline{\mathbf{x}}_i, \underline{\mathbf{a}}_k)$
 - lacksquare probability to end up in $\underline{\mathbf{x}}_i$ after choosing $\underline{\mathbf{a}}_k$ in $\underline{\mathbf{x}}_i$
 - stationary distribution (Markov property)

A Markov decision process (MDP) consist of

- lacksquare a set of **states** $\underline{\mathbf{x}} \in \mathcal{X}$,
 - e.g. $\mathcal{X} := \{\underline{\mathbf{x}}_1, \dots, \underline{\mathbf{x}}_S\} \subset \{0, 1\}^S$ with 1-out-of-S encoding
 - $r(\mathbf{x}_2, \mathbf{a}_2) = 0 \qquad r(\mathbf{x}_2, \mathbf{a}_2) = 0$

 $\mathbf{a_1} x_1 \mathbf{a_2}$

- a set of actions $\underline{\mathbf{a}} \in \mathcal{A}$, $r(\mathbf{x}_2, \overline{\mathbf{a}_1}) = 3$ e.g. $\mathcal{A} := \{\underline{\mathbf{a}}_1, \dots, \underline{\mathbf{a}}_A\} \subset \{0, 1\}^A$
 - with 1-out-of-A encoding
- \blacksquare a transition model $P(\underline{\mathbf{x}}_i | \underline{\mathbf{x}}_i, \underline{\mathbf{a}}_k)$
 - lacksquare probability to end up in $\underline{\mathbf{x}}_i$ after choosing $\underline{\mathbf{a}}_k$ in $\underline{\mathbf{x}}_i$
 - stationary distribution (Markov property)
- \blacksquare a bounded reward function $r(\underline{\mathbf{x}}_i, \underline{\mathbf{a}}_k)$
 - \blacksquare denotes the *immediate reward* for choosing $\underline{\mathbf{a}}_k$ in $\underline{\mathbf{x}}_i$
 - extension with randomized rewards possible

Policy

lacksquare the probability that the agent chooses $old{a}_k$ in $old{x}_i$

■ the goal of RL is to find the "optimal policy" π^*

Example: mountain car

- a car in a valley between mountains
 - \blacksquare \mathcal{X} : position and velocity (discretized)
- agent drives the car
 - \mathcal{A} : forward, backward, nothing (i.e., accelerate the car by +a, -a and 0)
- dynamics are given by physics
 - transition model P simulated
 - gravitation but no friction
- goal: reach right hilltop
 - \blacksquare reward r=0, except r=1 at goal

 \blacksquare policy π must first pick up speed

Markov chains

\blacksquare a **Markov chain** of length p

is a sequence of states and actions

$$\{\underline{\mathbf{x}}^{(t)},\underline{\mathbf{a}}^{(t)}\}_{t=0}^{p}\quad \subset\quad \mathcal{X}\times\mathcal{A}$$

 \blacksquare actions $\underline{\mathbf{a}}^{(t)}$ are drawn from policy:

$$\underline{\mathbf{a}}^{(t)} \quad \sim \quad \pi(\cdot \,|\, \underline{\mathbf{x}}^{(t)})$$

successive states $\underline{\mathbf{x}}^{(t+1)}$ are drawn from transition model:

$$\underline{\mathbf{x}}^{(t+1)} \sim P(\cdot | \underline{\mathbf{x}}^{(t)}, \underline{\mathbf{a}}^{(t)})$$

■ given a MDP, a Markov chain depends on initial $\underline{\mathbf{x}}^{(0)}$ and policy π

Markov chain distribution

- Markov chains are sets of random variables
 - lacktriangle depend on initial state $\underline{\mathbf{x}}^{(0)}$ and policy π
- joint distribution of states in a Markov chain factorizes

$$P(\underline{\mathbf{x}}^{(0)}, \dots, \underline{\mathbf{x}}^{(p)}) = P(\underline{\mathbf{x}}^{(0)}) \prod_{t=0}^{p-1} \sum_{k=1}^{A} \pi(\underline{\mathbf{a}}_k | \underline{\mathbf{x}}^{(t)}) P(\underline{\mathbf{x}}^{(t+1)} | \underline{\mathbf{x}}^{(t)}, \underline{\mathbf{a}}_k)$$

(see blackboard)

4.1.3 Policy Evaluation

Value function

- lacksquare a **value function** measures the quality of a policy π in state $\underline{\mathbf{x}}^{(0)}$
 - $V^{\pi}(\underline{\mathbf{x}}^{(0)})$ is the *expected*

reward

$$V^{\pi}(\underline{\mathbf{x}}^{(0)}) = \mathbb{E}\left[\qquad r(\underline{\mathbf{x}}^{(0)},\underline{\mathbf{a}}^{(0)}) \,\middle| \quad \underline{\mathbf{a}}^{(0)} \sim \pi(\cdot\,|\,\underline{\mathbf{x}}^{(0)}) \quad \right]$$

Value function

- lacksquare a **value function** measures the quality of a policy π in state $\mathbf{x}^{(0)}$
 - $\mathbf{v}^{\pi}(\mathbf{x}^{(0)})$ is the expected sum of future rewards

$$V^{\pi}(\underline{\mathbf{x}}^{(0)}) = \mathbb{E}\left[\sum_{t=0}^{H} r(\underline{\mathbf{x}}^{(t)}, \underline{\mathbf{a}}^{(t)}) \middle| \frac{\underline{\mathbf{a}}^{(t)} \sim \pi(\cdot | \underline{\mathbf{x}}^{(t)})}{\underline{\mathbf{x}}^{(t+1)} \sim P(\cdot | \underline{\mathbf{x}}^{(t)}, \underline{\mathbf{a}}^{(t)})}\right]$$

- average over Markov chain
- \blacksquare each sample starts at $\mathbf{x}^{(0)}$ and draws sequentially from the transition model P and the policy π

Value function

- lacksquare a value function measures the quality of a policy π in state $\underline{\mathbf{x}}^{(0)}$
 - $lackbox{ }V^{\pi}(\underline{\mathbf{x}}^{(0)})$ is the expected infinite sum of discounted future rewards

$$V^{\pi}(\underline{\mathbf{x}}^{(0)}) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \, r(\underline{\mathbf{x}}^{(t)}, \underline{\mathbf{a}}^{(t)}) \, \middle| \, \frac{\underline{\mathbf{a}}^{(t)} \sim \pi(\cdot \, | \underline{\mathbf{x}}^{(t)})}{\underline{\mathbf{x}}^{(t+1)} \sim P(\cdot \, | \underline{\mathbf{x}}^{(t)}, \underline{\mathbf{a}}^{(t)})} \right], \quad \gamma \in [0, 1) \, .$$

- average over Markov chain
- each sample starts at $\underline{\mathbf{x}}^{(0)}$ and draws sequentially from the transition model P and the policy π
- discount factor γ : preference for short- vs. long-term goals

Monte Carlo (MC) estimation of the value function

- finite approximation of infinite Markov chains
 - \blacksquare rewards weighted by $\gamma^H < \epsilon$ are neglected

 - lacksquare n must be sufficiently large

- lacktriangle requires simulator to draw n chains from the same initial state $\underline{\mathbf{x}}^{(0)}$
- every state must be evaluated often ~ not sample efficient

The Bellman equation (1)

$$\begin{split} V^{\pi}(\underline{\mathbf{x}}_i) &= & \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \, r(\underline{\mathbf{x}}^{(t)},\underline{\mathbf{a}}^{(t)}) \, \middle| \, \frac{\underline{\mathbf{x}}^{(0)} := \underline{\mathbf{x}}_i}{\underline{\mathbf{a}}^{(t)} \sim \pi(\cdot | \underline{\mathbf{x}}^{(t)})} \right] \\ &= & \mathbb{E}\left[r(\underline{\mathbf{x}}_i,\underline{\mathbf{a}}^{(0)}) \, \middle| \, \underline{\mathbf{a}}^{(0)} \sim \pi(\cdot | \underline{\mathbf{x}}_i) \right] \\ &+ & \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^t \, r(\underline{\mathbf{x}}^{(t)},\underline{\mathbf{a}}^{(t)}) \, \middle| \, \frac{\underline{\mathbf{x}}^{(0)} := \underline{\mathbf{x}}_i}{\underline{\mathbf{a}}^{(t)} \sim \pi(\cdot | \underline{\mathbf{x}}^{(t)})} \right] \\ &= & \mathbb{E}\left[r(\underline{\mathbf{x}}_i,\underline{\mathbf{a}}^{(0)}) \, \middle| \, \underline{\mathbf{a}}^{(0)} \sim \pi(\cdot | \underline{\mathbf{x}}_i) \right] + \gamma \, \mathbb{E}\left[V^{\pi}(\underline{\mathbf{x}}^{(1)}) \, \middle| \, \frac{\underline{\mathbf{a}}^{(0)} \sim \pi(\cdot | \underline{\mathbf{x}}_i)}{\underline{\mathbf{x}}^{(1)} \sim P(\cdot | \underline{\mathbf{x}}_i,\underline{\mathbf{a}}^{(0)})} \right] \\ &= & \sum_{k=1}^{A} \pi(\underline{\mathbf{a}}_k \, | \, \underline{\mathbf{x}}_i) \left(r(\underline{\mathbf{x}}_i,\underline{\mathbf{a}}_k) + \gamma \sum_{j=1}^{S} P(\underline{\mathbf{x}}_j \, | \, \underline{\mathbf{x}}_i,\underline{\mathbf{a}}_k) \, V^{\pi}(\underline{\mathbf{x}}_j) \right) \end{split}$$

Richard E. Bellman (1920 - 1984)

 $\underline{\mathbf{x}}_i \in \{0,1\}^S$: 1-out-of-S coded state i

The Bellman equation (2)

$$\begin{split} V^{\pi}(\underline{\mathbf{x}}_i) &= \sum_{k=1}^{A} \pi(\underline{\mathbf{a}}_k \,|\, \underline{\mathbf{x}}_i) \Big(r(\underline{\mathbf{x}}_i, \underline{\mathbf{a}}_k) + \gamma \sum_{j=1}^{S} P(\underline{\mathbf{x}}_j \,|\, \underline{\mathbf{x}}_i, \underline{\mathbf{a}}_k) \, V^{\pi}(\underline{\mathbf{x}}_j) \Big) \\ &= \underbrace{\sum_{k=1}^{A} \pi(\underline{\mathbf{a}}_k \,|\, \underline{\mathbf{x}}_i) r(\underline{\mathbf{x}}_i, \underline{\mathbf{a}}_k)}_{\text{"controlled" reward function } r_i^{\pi} + \gamma \sum_{j=1}^{S} \underbrace{\sum_{k=1}^{A} \pi(\underline{\mathbf{a}}_k \,|\, \underline{\mathbf{x}}_i) P(\underline{\mathbf{x}}_j \,|\, \underline{\mathbf{x}}_i, \underline{\mathbf{a}}_k)}_{\text{"controlled" transition model } P_{ij}^{\pi} \end{split}$$

$$\begin{array}{rcl} \underline{\mathbf{v}}^{\pi} & = & \underline{\mathbf{r}}^{\pi} + \gamma \underline{\mathbf{P}}^{\pi} \underline{\mathbf{v}}^{\pi} \,, & \text{with} \\ & = : & \hat{B}^{\pi} [\underline{\mathbf{v}}^{\pi}] \end{array} \qquad \begin{array}{rcl} & r_{i}^{\pi} := & \sum\limits_{k=1}^{A} \pi(\underline{\mathbf{a}}_{k} \mid \underline{\mathbf{x}}_{i}) \, r(\underline{\mathbf{x}}_{i}, \underline{\mathbf{a}}_{k}) \\ & P_{ij}^{\pi} := & \sum\limits_{k=1}^{A} \pi(\underline{\mathbf{a}}_{k} \mid \underline{\mathbf{x}}_{i}) \, P(\underline{\mathbf{x}}_{j} \mid \underline{\mathbf{x}}_{i}, \underline{\mathbf{a}}_{k}) \\ & & \text{"controlled" models } \underline{\mathbf{r}}^{\pi} \in \mathbb{R}^{S} \text{ and } \underline{\mathbf{P}}^{\pi} \in \mathbb{R}^{S \times S} \end{array}$$

 $\underline{\mathbf{x}}_i \in \{0,1\}^S$: 1-out-of-S coded state i, $\underline{\mathbf{v}}^\pi \in \mathbb{R}^S$: vector containing all values V^π

4.1.4 Model-based Approaches

The analytic solution of the Bellman equation

Bellman operator \hat{B}^{π} for discrete state values

$$\hat{B}^{\pi}[\underline{\tilde{\mathbf{v}}}] = \underline{\mathbf{r}}^{\pi} + \gamma \underline{\mathbf{P}}^{\pi}\underline{\tilde{\mathbf{v}}},$$

$$\forall \underline{\tilde{\mathbf{v}}} \in \mathbb{R}^S$$

- Bellman operator \hat{B}^{π} of policy π uses "controlled" models
 - lacksquare of the reward function $\underline{\mathbf{r}}^\pi \in \mathbb{R}^S$
 - \blacksquare and transition model $\mathbf{P}^{\pi} \in \mathbb{R}^{S \times S}$
- $m{\mathbb{P}}$ has an analytic solution of the value function $\mathbf{v}^\pi \in \mathbb{R}^S$

$$\underline{\mathbf{v}}^{\pi} = \underline{\mathbf{r}}^{\pi} + \gamma \underline{\mathbf{P}}^{\pi} \underline{\mathbf{v}}^{\pi} \quad \rightsquigarrow \quad (\underline{\mathbf{I}} - \gamma \underline{\mathbf{P}}^{\pi}) \underline{\mathbf{v}}^{\pi} = \underline{\mathbf{r}}^{\pi} \quad \rightsquigarrow \quad \underline{\mathbf{v}}^{\pi} = (\underline{\mathbf{I}} - \gamma \underline{\mathbf{P}}^{\pi})^{-1} \underline{\mathbf{r}}^{\pi}$$

- \blacksquare matrix $(\underline{\mathbf{I}} \gamma \underline{\mathbf{P}}^{\pi}) \in \mathbb{R}^{S \times S}$ is always invertible
 - $|\lambda_k| \le 1$ for all eigenvalues λ_k of transition matrix \mathbf{P}^{π}
 - lacksquare discount factor $\gamma < 1$

(see e.g. Bertsekas, 2007, for details)

Model-based value iteration

lacktriangle the value function $\underline{\mathbf{v}}^\pi$ is the **fixed-point** of the Bellman operator \hat{B}^π

$$\underline{\mathbf{v}}^{\pi} = \hat{B}^{\pi}[\underline{\mathbf{v}}^{\pi}] = \underline{\mathbf{r}}^{\pi} + \gamma \underline{\mathbf{P}}^{\pi}\underline{\mathbf{v}}^{\pi}$$

■ value iteration: repeated application of the Bellman operator

$$\underline{\tilde{\mathbf{v}}}^{\pi(t+1)} = \underline{\mathbf{r}}^{\pi} + \gamma \underline{\mathbf{P}}^{\pi} \underline{\tilde{\mathbf{v}}}^{\pi(t)}$$

 \blacksquare is value iteration convergent, i.e. $\lim_{t\to\infty} \underline{\tilde{\mathbf{v}}}^{\pi(t)} = \underline{\mathbf{v}}^{\pi}$?

Convergence of value iteration

Contraction mapping (in supremum norm)

A function $\hat{B}: \mathbb{R}^S \to \mathbb{R}^S$ is called a *contraction mapping* with Lipschitz constant $\lambda < 1$ if $\max_j |(\hat{B}[\underline{\tilde{\mathbf{v}}}] - \hat{B}[\underline{\tilde{\mathbf{w}}}])_j| \leq \lambda \max_j |\tilde{v}_j - \tilde{w}_j|, \forall \underline{\tilde{\mathbf{v}}}, \underline{\tilde{\mathbf{w}}} \in \mathbb{R}^S$.

lacksquare application to the Bellman operator $\hat{B}^{\pi}[\underline{ ilde{\mathbf{v}}}] = \underline{\mathbf{r}}^{\pi} + \gamma \underline{\mathbf{P}}^{\pi} \underline{ ilde{\mathbf{v}}}$

$$\max_{j} \left| \hat{B}^{\pi} [\underline{\tilde{\mathbf{v}}}]_{j} - \hat{B}^{\pi} [\underline{\tilde{\mathbf{w}}}]_{j} \right| = \max_{j} \left| r_{j}^{\pi} + \gamma (\underline{\mathbf{P}}^{\pi} \underline{\tilde{\mathbf{v}}})_{j} - r_{j}^{\pi} - \gamma (\underline{\mathbf{P}}^{\pi} \underline{\tilde{\mathbf{w}}})_{j} \right|$$

$$\leq \max_{j} \gamma \left(\underline{\mathbf{P}}^{\pi} |\underline{\tilde{\mathbf{v}}} - \underline{\tilde{\mathbf{w}}}| \right)_{j} \leq \gamma \max_{j} |\tilde{v}_{j} - \tilde{w}_{j}|$$

(i)
$$\left|\sum_{i=1}^{S} P_{ji}^{\pi} x_{i}\right| \leq \sum_{i=1}^{S} P_{ji}^{\pi} \left|x_{i}\right|, \quad \forall \underline{\mathbf{x}} \in \mathbb{R}^{S}$$
 (Jensen's inequality)

(ii)
$$\sum_{i=1}^{S} P_{ji}^{\pi} |x_i| \le \sum_{i=1}^{S} P_{ji}^{\pi} \max_{1 \le k \le S} |x_k| = \max_{1 \le k \le S} |x_k|$$
 $\left(\sum_{i=1}^{S} P_{ji}^{\pi} = 1\right)$

Convergence of value iteration

Contraction mapping (in supremum norm)

A function $\hat{B}: \mathbb{R}^S \to \mathbb{R}^S$ is called a *contraction mapping* with Lipschitz constant $\lambda < 1$ if $\max_j |(\hat{B}[\underline{\tilde{\mathbf{v}}}] - \hat{B}[\underline{\tilde{\mathbf{w}}}])_j| \leq \lambda \max_j |\tilde{v}_j - \tilde{w}_j|, \forall \underline{\tilde{\mathbf{v}}}, \underline{\tilde{\mathbf{w}}} \in \mathbb{R}^S$.

 $\ \ \, \bar{B}^{\pi}$ is a contraction mapping with Lipschitz constant $0<\gamma<1$

$$\underline{\tilde{\mathbf{v}}}^{\pi(t+1)} = \hat{B}^{\pi}[\underline{\tilde{\mathbf{v}}}^{\pi(t)}] = \underline{\mathbf{r}}^{\pi} + \gamma \underline{\mathbf{P}}^{\pi}\underline{\tilde{\mathbf{v}}}^{\pi(t)} \quad \text{(value iteration)}$$

- \Rightarrow value iteration converges in the limit $t \to \infty$ to unique fixed-point $\underline{\mathbf{v}}^\pi$
 - lacksquare number of iterations until convergence $\sim -\frac{1}{\log(\gamma)}$
 - lacksquare analytic solution is faster for large γ

4.1.5 Model-free Approaches: Online Value Estimation

Inductive value estimation

- agent must learn through interaction with the environment
 - "controlled" models \mathbf{r}^{π} and \mathbf{P}^{π} are not available

$$V^{\pi}(\underline{\mathbf{x}}_i) \quad = \quad \sum_{k=1}^{A} \pi(\underline{\mathbf{a}}_k \,|\, \underline{\mathbf{x}}_i) \Big(r(\underline{\mathbf{x}}_i, \underline{\mathbf{a}}_k) + \gamma \sum_{j=1}^{S} P(\underline{\mathbf{x}}_j \,|\, \underline{\mathbf{x}}_i, \underline{\mathbf{a}}_k) \, V^{\pi}(\underline{\mathbf{x}}_j) \Big)$$

- estimate value function inductively from one long Markov chain
 - \blacksquare actions are drawn according to the policy $\underline{\mathbf{a}}^{(t)} \sim \pi(\cdot | \underline{\mathbf{x}}^{(t)})$
 - which lead to transitions $\mathbf{x}^{(t+1)} \sim P(\cdot|\mathbf{x}^{(t)}, \mathbf{a}^{(t)})$
 - \blacksquare and yield rewards $r_t := r(\mathbf{x}^{(t)}, \mathbf{a}^{(t)})$

Temporal difference (TD) learning

lacktriangle online estimation named after the difference in values (TD-error ΔV_t)

$$\begin{split} \tilde{V}_{t+1}^{\pi}(\underline{\mathbf{x}}^{(t)}) & = & \tilde{V}_{t}^{\pi}(\underline{\mathbf{x}}^{(t)}) \ + \ \eta\Big(\underbrace{r_{t} + \gamma \tilde{V}_{t}^{\pi}(\underline{\mathbf{x}}^{(t+1)}) - \tilde{V}_{t}^{\pi}(\underline{\mathbf{x}}^{(t)})}_{\text{TD-error } \Delta V_{t}} \Big) \end{split}$$

- TD learning performs value iteration *on average*
 - for the average over all Markov chains that pass $\underline{\mathbf{x}}_i$ at time t holds:

$$\underbrace{\mathbb{E}\big[\tilde{V}_{t+1}^{\pi}(\underline{\mathbf{x}}^{(t)})\big]}_{\tilde{v}_{i}^{\pi(t+1)}} = (1-\eta)\underbrace{\mathbb{E}\big[\tilde{V}_{t}^{\pi}(\underline{\mathbf{x}}^{(t)})\big]}_{\tilde{v}_{i}^{\pi(t)}} + \eta\Big(\underbrace{\mathbb{E}[r_{t}] + \gamma\mathbb{E}\big[\tilde{V}_{t}^{\pi}(\underline{\mathbf{x}}^{(t+1)})\big]}_{(\underline{\mathbf{r}}^{\pi} + \gamma\underline{\mathbf{P}}^{\pi}\underline{\tilde{\mathbf{v}}}^{\pi(t)})_{i}}\Big)$$

- **a** asynchronous online estimate of $\hat{B}^{\pi}[\tilde{\mathbf{v}}^{\pi(t)}] = \underline{\mathbf{r}}^{\pi} + \gamma \underline{\mathbf{P}}^{\pi} \tilde{\mathbf{v}}^{\pi(t)}$
 - asynchronous update of one state at a time
 - lacksquare estimates Bellman operator \hat{B}^{π} by online average
 - model knowledge not required!

(see Sutton and Barto, 1998)

Convergence of TD learning

- **example:** Markov chain running back and forth on 10 states
 - two randomly initialized value functions (red/blue)
 - deterministic transitions with stochastic policy
 - \blacksquare rightmost state is rewarded, $\gamma=0.95,~\eta=0.5$
- TD learning contracts different initial values, but does not converge

Requirements for contraction

- TD learning contracts
 - for an infinite Markov chain,
 - which visits all states infinitely often
- no transient transitions allowed
 - transitions must be reversible
 - "you cannot learn from death"

positive recurrence: a non-zero probability to return in finite time

Ergodic Markov chains

Ergodicity

A Markov chain is **ergodic** if it is **positively recurrent** (non-zero probability to leave any state and eventually return to it) and **aperiodic** (returns to the same state can occur at irregular times).

- **steady state distribution** $P_{ss}(\underline{\mathbf{x}}) > 0$ exists and visits all states $\underline{\mathbf{x}}$
- ⇒ TD learning contracts for *ergodic* Markov chains
- ⇒ but no convergence (contraction to neighborhood of true value)

Influence of learning rate η

$$\tilde{V}_{t+1}^{\pi}(\underline{\mathbf{x}}^{(t)}) = \tilde{V}_{t}^{\pi}(\underline{\mathbf{x}}^{(t)}) + \eta \Delta V_{t}
\Delta V_{t} = r_{t} + \gamma \tilde{V}_{t}^{\pi}(\underline{\mathbf{x}}^{(t+1)}) - \tilde{V}_{t}^{\pi}(\underline{\mathbf{x}}^{(t)})$$

- \blacksquare stochastic transitions/policy/rewards \sim \tilde{V}_t^π usually does not converge
- TD learning lets0 \tilde{V}_t^π fluctuate around the true value function V^π
- \blacksquare influence of the learning rate η
 - \blacksquare large η : fast learning, large variance
 - lacksquare small η : slow learning, small variance
 - decaying η_t are not practical as ΔV_t are (initially) not stationary

- 10 states Markov chain
- regular movement back and forth
- $_{\rm I\!\!I\!\!I}$ rightmost state rewarded, $\gamma=0.95$

4.1.6 Model-free Approaches: Eligibility Traces & $TD(\lambda)$

Value propagation in TD learning

$$\tilde{V}_{t+1}^{\pi}(\underline{\mathbf{x}}^{(t)}) = \tilde{V}_{t}^{\pi}(\underline{\mathbf{x}}^{(t)}) + \eta \Delta V_{t}$$

$$\Delta V_{t} = r_{t} + \gamma \tilde{V}_{t}^{\pi}(\underline{\mathbf{x}}^{(t+1)}) - \tilde{V}_{t}^{\pi}(\underline{\mathbf{x}}^{(t)}) \stackrel{\text{ge}}{=} \underline{\hspace{1cm}}$$

- TD learning propagates values one step into the past
 - many steps to convergence
- deterministic example:
 - 10 states, 1 action
 - only forward transitions
 - reward in last state
 - $\gamma = 0.9; \ \eta = 1 \text{ or } \eta = 0.5$
- value propagation requires
 - \blacksquare exactly 10 rounds ($\eta = 1$)
 - \blacksquare roughly 26 rounds ($\eta = 0.5$)

n-step temporal difference learning

accumulation of observed rewards

$$R_t^{(1)} = r_t + \gamma \tilde{V}_t^{\pi}(\underline{\mathbf{x}}^{(t+1)})$$

$$R_t^{(2)} = r_t + \gamma r_{t+1} + \gamma^2 \tilde{V}_t^{\pi}(\underline{\mathbf{x}}^{(t+2)})$$

$$\vdots$$

$$R_t^{(n)} = \sum_{\tau=0}^{n-1} \gamma^{\tau} r_{t+\tau} + \gamma^n \tilde{V}_t^{\pi}(\underline{\mathbf{x}}^{(t+n)})$$

online estimation similar to TD learning

on a 19-state chain, rewarded at one end

(Sutton and Barto, 1998)

$$\tilde{V}_t^{\pi}(\underline{\mathbf{x}}^{(t)}) \leftarrow \tilde{V}_t^{\pi}(\underline{\mathbf{x}}^{(t)}) + \eta \Big(R_t^{(n)} - \tilde{V}_t^{\pi}(\underline{\mathbf{x}}^{(t)}) \Big)$$

Discounted average

$$\tilde{V}_{t+1}^{\pi}(\underline{\mathbf{x}}^{(t)}) \quad \leftarrow \quad \tilde{V}_{t}^{\pi}(\underline{\mathbf{x}}^{(t)}) \ + \ \eta \Big(R_{t}^{(n)} - \tilde{V}_{t}^{\pi}(\underline{\mathbf{x}}^{(t)}) \Big)$$

- \blacksquare there is an optimal combination of η and n, however,
 - \blacksquare agent must memorize the last n steps
 - lacktriangle values are updated with a delay of n steps
- lacksquare trick: consider a discounted average of $R_t^{(n)}$

$$R_t^{\lambda} = (1 - \lambda) \sum_{k=0}^{\infty} \lambda^k R_t^{(k+1)}$$

Forward view

$$\tilde{V}_{t+1}^{F}(\underline{\mathbf{x}}^{(t)}) = \tilde{V}_{t}^{F}(\underline{\mathbf{x}}^{(t)}) + \eta \Big(R_{t}^{\lambda} - \tilde{V}_{t}^{F}(\underline{\mathbf{x}}^{(t)}) \Big)$$

$$R_{t}^{\lambda} = (1 - \lambda) \sum_{k=0}^{\infty} \lambda^{k} R_{t}^{(k+1)}$$

Eligibility traces & TD(λ)

lacktriangle the **eligibility trace** $\mathbf{e}^{(t)} \in \mathbb{R}^S$ stores traces of past visits of state \mathbf{x}_i

$$e_i^{(t)} = \sum_{k=0}^t (\gamma \lambda)^{t-k} \, \delta_{ik} \,, \qquad \delta_{ik} = \underline{\mathbf{x}}_i^{\top} \underline{\mathbf{x}}^{(k)} \qquad \forall \underline{\mathbf{x}}_i \in \mathcal{X} \,,$$

■ The **TD(** λ **) method**:

The TD(
$$\lambda$$
) method:
$$\tilde{V}_{t+1}^{\pi}(\underline{\mathbf{x}}_i) = \tilde{V}_t^{\pi}(\underline{\mathbf{x}}_i) + \eta \, e_i^{(t)} \left(\overbrace{r_t + \gamma \tilde{V}_t^{\pi}(\underline{\mathbf{x}}^{(t+1)}) - \tilde{V}_t^{\pi}(\underline{\mathbf{x}}^{(t)})} \right)$$

$$\mathbf{e}^{(t+1)} = \gamma \, \lambda \, \mathbf{e}^{(t)} + \mathbf{x}^{(t+1)}$$

■ TD(0): TD learning as defined before

> RMS averaged over 100 random-walks on a 19-state chain, rewarded at one end (Sutton and Barto, 1998)

Backward view

$$\tilde{V}_{(t+1)}^{B}(\underline{\mathbf{x}}_{i}) = \tilde{V}_{(t)}^{B}(\underline{\mathbf{x}}_{i}) + \eta e_{i}^{(t)} \Delta V_{t}, \quad \Delta V_{t} = (r_{t} + \gamma \tilde{V}_{t}^{B}(\underline{\mathbf{x}}^{(t+1)}) - \tilde{V}_{t}^{B}(\underline{\mathbf{x}}^{(t)}))$$

$$\underline{\mathbf{e}}^{(t+1)} = \gamma \lambda \underline{\mathbf{e}}^{(t)} + \underline{\mathbf{x}}^{(t+1)}$$

■ Both the forward and the backward view updates are equivalent

derivation here

Value propagation in $TD(\lambda)$

- deterministic example:
 - 10 states, 1 action
 - only forward transitions
 - reward in last state
- value propagation finishes
 - \blacksquare after 1 round with $\lambda = 1$
 - after 4 rounds with $\lambda = 0.9$
 - after 7 rounds with $\lambda = 0.5$
 - **after 10 rounds with** $\lambda = 0$

4.1.7 Model-free approaches: Batch Value Estimation

Reminder: the Bellman equation

Richard E. Bellman (1920–1984)

$$V^{\pi}(\underline{\mathbf{x}}_i) \quad = \underbrace{\sum_{k=1}^{A} \pi(\underline{\mathbf{a}}_k \, | \, \underline{\mathbf{x}}_i) r(\underline{\mathbf{x}}_i, \underline{\mathbf{a}}_k)}_{\text{"controlled" reward function } r_i^{\pi}} + \gamma \sum_{j=1}^{S} \underbrace{\sum_{k=1}^{A} \pi(\underline{\mathbf{a}}_k \, | \, \underline{\mathbf{x}}_i) P(\underline{\mathbf{x}}_j \, | \, \underline{\mathbf{x}}_i, \underline{\mathbf{a}}_k)}_{\text{"controlled" transition model } P_{ij}^{\pi}} V^{\pi}(\underline{\mathbf{x}}_j)$$

$$\underline{\mathbf{v}}^{\pi} = \hat{B}^{\pi}[\underline{\mathbf{v}}^{\pi}] = \underline{\mathbf{r}}^{\pi} + \gamma \underline{\mathbf{P}}^{\pi}\underline{\mathbf{v}}^{\pi}$$

 $\underline{\mathbf{x}}_i \in \{0,1\}^S \colon \text{1-out-of-}S \text{ coded state } i$, $\underline{\mathbf{r}}^\pi \in \mathbb{R}^S$ "controlled" reward function ,

 $\underline{\mathbf{v}}^{\pi} \in \mathbb{R}^{S}$: vector containing all values V^{π} $\mathbf{P}^{\pi} \in \mathbb{R}^{S \times S}$ "controlled" transition model

Batch approximation of the Bellman operator (1)

■ approximate $\tilde{V}_{t+1}^{\pi} \approx \hat{B}^{\pi}[\tilde{V}_{t}^{\pi}]$ using samples from an ergodic Markov chain $\{\underline{\mathbf{x}}^{(t)},\underline{\mathbf{a}}^{(t)}\}_{t=0}^{p}$, executing policy π

$$\hat{B}^{\pi}[\tilde{V}^{\pi}_{t}](\underline{\mathbf{x}}_{i}) = \sum_{k=1}^{A} \pi(\underline{\mathbf{a}}_{k} \mid \underline{\mathbf{x}}_{i}) \Big(r(\underline{\mathbf{x}}_{i}, \underline{\mathbf{a}}_{k}) + \gamma \sum_{j=1}^{S} P(\underline{\mathbf{x}}_{j} \mid \underline{\mathbf{x}}_{i}, \underline{\mathbf{a}}_{k}) \, \tilde{V}^{\pi}_{t}(\underline{\mathbf{x}}_{j}) \Big)$$

approximate by averaging over $\{\underline{\mathbf{x}}^{(t)},\underline{\mathbf{a}}^{(t)}\,|\,\underline{\mathbf{x}}^{(t)}\!=\!\underline{\mathbf{x}}_i,\underline{\underline{\mathbf{a}}^{(t)}}\!\sim\!\pi\}$

Batch approximation of the Bellman operator (1)

■ approximate $\tilde{V}_{t+1}^{\pi} \approx \hat{B}^{\pi}[\tilde{V}_{t}^{\pi}]$ using samples from an ergodic Markov chain $\{\underline{\mathbf{x}}^{(t)},\underline{\mathbf{a}}^{(t)}\}_{t=0}^{p}$, executing policy π

$$\hat{B}^{\pi}[\tilde{V}^{\pi}_{t}](\underline{\mathbf{x}}_{i}) = \underbrace{\sum_{k=1}^{A} \pi(\underline{\mathbf{a}}_{k} \, | \, \underline{\mathbf{x}}_{i}) \Big(r(\underline{\mathbf{x}}_{i}, \underline{\mathbf{a}}_{k}) + \gamma \sum_{j=1}^{S} P(\underline{\mathbf{x}}_{j} \, | \, \underline{\mathbf{x}}_{i}, \underline{\mathbf{a}}_{k}) \, \tilde{V}^{\pi}_{t}(\underline{\mathbf{x}}_{j}) \Big)}_{\text{approximate by averaging over } \{\underline{\mathbf{x}}^{(t)}, \underline{\mathbf{a}}^{(t)} \, | \, \underline{\mathbf{x}}^{(t)} \! = \! \underline{\mathbf{x}}_{i}, \underline{\mathbf{a}}^{(t)} \! \sim \! \pi \}}$$

$$\approx \underbrace{\frac{1}{\sum_{\tau=0}^{p-1} \underline{\mathbf{x}}_i^{\top} \underline{\mathbf{x}}^{(\tau)}}}_{\text{normalization}} \sum_{t=0}^{p-1} \underbrace{\underline{\mathbf{x}}_i^{\top} \underline{\mathbf{x}}^{(t)}}_{\text{selection}} \left(r(\underline{\mathbf{x}}^{(t)}, \underline{\mathbf{a}}^{(t)}) + \gamma \tilde{V}_t^{\pi} (\underline{\mathbf{x}}^{(t+1)}) \right)$$

- $\mathbf{x}_i^{\mathsf{T}} \mathbf{x}^{(t)} = 1$ only if $\mathbf{x}_i = \mathbf{x}^{(t)}$
- $\sum_{\tau=0}^{p-1} \underline{\mathbf{x}}_i^{\top} \underline{\mathbf{x}}^{(\tau)}$ counts how often $\underline{\mathbf{x}}_i$ appears in Markov chain

Batch approximation of the Bellman operator (2)

lacksquare approximate $\tilde{V}_{t+1}^{\pi} pprox \hat{B}^{\pi} [\tilde{V}_{t}^{\pi}]$ using samples from an ergodic Markov chain $\{\underline{\mathbf{x}}^{(t)},\underline{\mathbf{a}}^{(t)}\}_{t=0}^{p}$, executing policy π

$$\hat{B}^{\pi}[\tilde{V}^{\pi}](\underline{\mathbf{x}}_{i}) \approx \frac{1}{\sum_{\tau=0}^{p-1} \underline{\mathbf{x}}_{i}^{\top} \underline{\mathbf{x}}^{(\tau)}} \sum_{t=0}^{p-1} \underline{\mathbf{x}}_{i}^{\top} \underline{\mathbf{x}}^{(t)} \Big(r(\underline{\mathbf{x}}^{(t)}, \underline{\mathbf{a}}^{(t)}) + \gamma \tilde{V}^{\pi}(\underline{\mathbf{x}}^{(t+1)}) \Big) \\
= \underline{\mathbf{x}}_{i}^{\top} \Big(\underbrace{\sum_{\tau=0}^{p-1} \underline{\mathbf{x}}_{i}^{\top} \underline{\mathbf{x}}^{(\tau)}}_{C_{ii}} \Big)^{-1} \Big(\underbrace{\sum_{t=0}^{p-1} \underline{\mathbf{x}}^{(t)} r(\underline{\mathbf{x}}^{(t)}, \underline{\mathbf{a}}^{(t)})}_{\underline{\mathbf{b}}} + \gamma \underbrace{\sum_{t=0}^{p-1} \underline{\mathbf{x}}^{(t)} \tilde{V}^{\pi}(\underline{\mathbf{x}}^{(t+1)})}_{\underline{\mathbf{b}}^{\pi} \underline{\mathbf{x}}^{\pi}} \Big)$$

$$\hat{B}^{\pi}[\underline{\tilde{\mathbf{v}}}^{\pi}] \approx \underline{\mathbf{C}}^{-1}(\underline{\mathbf{b}} + \gamma \underline{\mathbf{D}}^{\pi}\underline{\tilde{\mathbf{v}}}^{\pi})$$

$$\underline{\mathbf{C}} = \sum_{t=0}^{p-1} \underline{\mathbf{x}}^{(t)} (\underline{\mathbf{x}}^{(t)})^\top \in \mathbb{R}^{S \times S} \qquad \underline{\underline{\mathbf{D}}}^{\pi} = \sum_{t=0}^{p-1} \underline{\mathbf{x}}^{(t)} (\underline{\mathbf{x}}^{(t+1)})^\top \in \mathbb{R}^{S \times S} \qquad \underline{\mathbf{b}} = \sum_{t=0}^{p-1} \underline{\mathbf{x}}^{(t)} r_{(\underline{\mathbf{x}}^{(t)},\underline{\mathbf{a}}^{(t)})} \in \mathbb{R}^{S}$$
 diagonal normalization matrix matrix of transition counts vector of sum of rewards

Prof. Obermayer (www.ni.tu-berlin.de)

Example batch approximation

the approximated Bellman operator:

$$\hat{B}^{\pi}[\tilde{\mathbf{v}}^{\pi}] \approx \underline{\mathbf{C}}^{-1}(\underline{\mathbf{b}} + \gamma \underline{\mathbf{D}}^{\pi} \tilde{\mathbf{v}}^{\pi})$$

example MDP with 4 states:

- \blacksquare example chain of length p=30
- \blacksquare transition probabilities $\underline{\mathbf{P}}^{\pi} \approx \underline{\mathbf{C}}^{-1}\underline{\mathbf{D}}^{\pi}$
- \blacksquare reward for transitions $\mathbf{r}^{\pi} \approx \mathbf{C}^{-1}\mathbf{b}$

$$\underline{\mathbf{C}} = \begin{bmatrix} 10 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 10 \end{bmatrix}, \qquad \underline{\mathbf{D}}^{\pi} = \begin{bmatrix} 0 & 3 & 7 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 7 \\ 10 & 0 & 0 & 0 \end{bmatrix}, \qquad \underline{\mathbf{b}} = \begin{bmatrix} 1.5 \\ -3 \\ +7 \\ 0 \end{bmatrix}$$

state visit counts

$$\underline{\mathbf{D}}^{\pi} = \begin{bmatrix} 0 & 3 & 7 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 7 \\ 10 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{\underline{b}} = \begin{bmatrix} -3 \\ +7 \\ 0 \end{bmatrix}$$

collected rewards

$$\underline{\mathbf{C}} = \sum_{t=0}^{p-1} \underline{\mathbf{x}}^{(t)} (\underline{\mathbf{x}}^{(t)})^{\top} \in \mathbb{R}^{S \times S} \qquad \underline{\mathbf{D}}^{\pi} = \sum_{t=0}^{p-1} \underline{\mathbf{x}}^{(t)} (\underline{\mathbf{x}}^{(t+1)})^{\top} \in \mathbb{R}^{S \times S} \qquad \underline{\mathbf{b}} = \sum_{t=0}^{p-1} \underline{\mathbf{x}}^{(t)} r_{(\underline{\mathbf{x}}^{(t)},\underline{\mathbf{a}}^{(t)})} \in \mathbb{R}^{S}$$
Prof. Obermayer (www.ni.tu-berlin.de) Machine Intelligence 1 WS 2017/2018 41 / 44

$$\underline{\mathbf{D}}^{\pi}$$
 =

$$\mathbf{D}^{\pi} = \sum_{t=0}^{p-1} \mathbf{x}^{(t)} (\mathbf{x}^{(t+1)})^{\top} \in \mathbb{R}^{S \times T}$$

$$\mathbf{b}$$

$$= \sum_{t=0}^{p-1} \underline{\mathbf{x}}^{(t)} r$$

Solution to the approximated Bellman operator

■ the approximated Bellman operator:

$$\hat{B}^{\pi}[\tilde{\mathbf{v}}^{\pi}] \approx \underline{\mathbf{C}}^{-1}(\underline{\mathbf{b}} + \gamma \underline{\mathbf{D}}^{\pi} \tilde{\mathbf{v}}^{\pi})$$

lacktriangle fixed-point $\underline{\mathbf{v}}^* pprox \hat{B}^\pi[\underline{\mathbf{v}}^*]$ can be computed analytically

$$\underline{\mathbf{v}}^* = \left(\underline{\mathbf{C}} - \gamma \underline{\mathbf{D}}^{\pi}\right)^{-1} \underline{\mathbf{b}}$$

Solution to the approximated Bellman operator

■ the approximated Bellman operator:

$$\hat{B}^{\pi}[\tilde{\mathbf{v}}^{\pi}] \approx \underline{\mathbf{C}}^{-1}(\underline{\mathbf{b}} + \gamma \underline{\mathbf{D}}^{\pi} \tilde{\mathbf{v}}^{\pi})$$

lacktriangle fixed-point $\underline{\mathbf{v}}^* pprox \hat{B}^\pi [\underline{\mathbf{v}}^*]$ can be computed analytically

$$\underline{\mathbf{v}}^* = (\underline{\mathbf{C}} - \gamma \underline{\mathbf{D}}^{\pi})^{-1} \underline{\mathbf{b}} = (\underline{\mathbf{I}} - \gamma \underline{\underline{\mathbf{C}}^{-1}} \underline{\underline{\mathbf{D}}}^{\pi})^{-1} \underline{\underline{\mathbf{C}}^{-1}} \underline{\underline{\mathbf{b}}} = (\underline{\mathbf{I}} - \gamma \underline{\underline{\tilde{\mathbf{P}}}}^{\pi})^{-1} \underline{\tilde{\mathbf{r}}}^{\pi}$$

Solution to the approximated Bellman operator

■ the approximated Bellman operator:

$$\hat{B}^{\pi}[\underline{\tilde{\mathbf{v}}}^{\pi}] \quad \approx \quad \underline{\mathbf{C}}^{-1}(\underline{\mathbf{b}} + \gamma \underline{\mathbf{D}}^{\pi}\underline{\tilde{\mathbf{v}}}^{\pi})$$

lacktriangle fixed-point $\underline{\mathbf{v}}^* pprox \hat{B}^\pi[\underline{\mathbf{v}}^*]$ can be computed analytically

$$\underline{\mathbf{v}}^* = (\underline{\mathbf{C}} - \gamma \underline{\mathbf{D}}^{\pi})^{-1} \underline{\mathbf{b}} = (\underline{\mathbf{I}} - \gamma \underline{\underline{\mathbf{C}}^{-1}} \underline{\mathbf{D}}^{\pi})^{-1} \underline{\underline{\mathbf{C}}^{-1}} \underline{\mathbf{b}} = (\underline{\mathbf{I}} - \gamma \underline{\underline{\mathbf{P}}}^{\pi})^{-1} \underline{\underline{\mathbf{r}}}^{\pi}$$

equivalent to empirically estimated model-based solution

$$\underline{\tilde{\mathbf{P}}}^{\pi} = \underline{\mathbf{C}}^{-1}\underline{\mathbf{D}}^{\pi} = \begin{bmatrix} 0 & .3 & .7 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}, \qquad \underline{\tilde{\mathbf{r}}} = \underline{\mathbf{C}}^{-1}\underline{\mathbf{b}} = \begin{bmatrix} .15 \\ -1 \\ +1 \\ 0 \end{bmatrix}$$

- \blacksquare in the limit convergence to V^π for ergodic Markov chains
 - $lackbox{ ilde{P}}^\pi o \mathbf{P}^\pi$ and $\underline{ ilde{r}}^\pi o \underline{r}^\pi$ if all states are visited infinitely often

Comparison of batch and online value estimation

reward propagation

TD(0): one time step into the past

 $TD(\lambda)$: all λ -discounted steps into the past

batch: fixed-point computation

different convergence behavior

 $\mathsf{TD}(0)$: fluctuates around V^π

 $\mathsf{TD}(\lambda)$: fluctuates around V^π

batch: converges to V^{π}

computational complexities (time and memory)

 $\mathsf{TD}(0)$: $\mathcal{O}(p)$ and $\mathcal{O}(S)$

 $\mathsf{TD}(\lambda)$: $\mathcal{O}(pS)$ and $\mathcal{O}(S)$

batch: $\mathcal{O}(p+S^3)$ and $\mathcal{O}(S^2)$

S: number of states,

p: number of samples

- Markov chain back and forth
- only last state rewarded
- \blacksquare value estimated for $\gamma=0.95$

Neurological relevance of reinforcement learning

dopamine neurons encode TD-errors in many species

(Schultz et al., 1997)

Neurological relevance of reinforcement learning

- dopamine neurons encode TD-errors in many species
- model-based prediction errors were found in human pre-frontal cortex

(Gläscher et al., 2010)

(Schultz et al., 1997)

End of Section 4.1

the following slides contain

OPTIONAL MATERIAL

The many faces of classical conditioning

Contraction properties of TD learning

- **a** asynchronous TD update at time t for all states $\underline{\mathbf{x}}_i$:
 - $$\begin{split} \blacksquare & \text{ let } v_t := \underline{\mathbf{v}}^\top \underline{\mathbf{x}}^{(t)} \text{ and } \mu_{it} = \underline{\mathbf{x}}_i^\top \underline{\mathbf{x}}^{(t)} \\ & \hat{B}_t^\pi [\underline{\mathbf{v}}]_i \ := \ v_i + \eta \underbrace{\mu_{it} \left(r_t + \gamma v_{t+1} v_t \right)}_{\text{TD-error } \Delta v_t \text{ if } \mathbf{x}_i = \mathbf{x}^{(t)} } \end{split}$$
- lacksquare \hat{B}_t^{π} is in general a non-expansion

$$\max_{1 \leq i \leq S} \left| \hat{B}_t^{\pi} [\underline{\mathbf{v}}]_i - \hat{B}_t^{\pi} [\underline{\mathbf{w}}]_i \right| \leq \max_{1 \leq i \leq S} |v_i - w_i|$$

- \blacksquare \hat{B}_t^{π} is sometimes a contraction mapping
 - lacksquare in states $\underline{\mathbf{x}}^{(t)}$ with $|v_t w_t| \geq \max_{i \neq t} |v_i w_i|$

$$|\hat{B}_t^{\pi}[\underline{\mathbf{v}}]_t - \hat{B}_t^{\pi}[\underline{\mathbf{w}}]_t| \leq (1 - \eta(1 - \gamma)) |v_t - w_t|$$

Temporal difference learning with eligibility traces: $TD(\lambda)$

The $\mathsf{TD}(\lambda)$ algorithm

$$\begin{array}{c|cccc} \mathbf{for} \ t \in \{0, \dots, p-1\} \ \mathbf{do} \\ & \Delta v \ \leftarrow & r_t + \gamma \underline{\mathbf{v}}^{\top} \underline{\mathbf{x}}^{(t+1)} - \underline{\mathbf{v}}^{\top} \underline{\mathbf{x}}^{(t)} \\ & \underline{\mathbf{v}} \ \leftarrow & \underline{\mathbf{v}} + \eta \, \Delta v \, \underline{\mathbf{e}} \\ & \underline{\mathbf{e}} \ \leftarrow & \gamma \, \lambda \, \underline{\mathbf{e}} + \underline{\mathbf{x}}^{(t+1)} \end{array}$$

// TD-error Δv at time t // update all visited states // update eligibility trace $\underline{\mathbf{e}}$

end

■ TD(0): TD learning as defined before

RMS averaged over $100\ \text{random-walks}$ on a 19-state chain, rewarded at one end

(Sutton and Barto, 1998)

$\mathsf{TD}(\lambda)$ derivation: the backwards view

- \blacksquare The forward value at time t is called V_t^F , the $\mathsf{TD}(\lambda)$ value V_t^B
- $\hbox{ the TD-error at time t is $\Delta V_t = r_t + \gamma V_t^{F/B}(\underline{\mathbf{x}}^{(t+1)}) V_t^{F/B}(\underline{\mathbf{x}}^{(t)})$ } \\ (F/B \to \hbox{Forward or Backward view, whichever applies})$

$$\begin{split} V_T^B(\underline{\mathbf{x}}_i) &= \sum_{t=0}^{T-1} \eta \ \Delta V_t \ e_i^{(t)} &= \eta \sum_{t=0}^{T-1} \Delta V_t \sum_{k=0}^t (\gamma \lambda)^{t-k} \ \delta_{ik} \\ &= \eta \sum_{k=0}^{T-1} \delta_{ik} \sum_{t=k}^{T-1} (\gamma \lambda)^{t-k} \ \Delta V_t \\ &= \eta \sum_{t=0}^{T-1} \delta_{it} \sum_{k=t}^{T-1} (\gamma \lambda)^{k-t} \ \Delta V_k \end{split}$$

$\mathsf{TD}(\lambda)$ derivation: the forwards view

$$\begin{split} R_t^{\lambda} - V_t^F(\underline{\mathbf{x}}^{(t)}) &= (1-\lambda) \sum_{k=0}^{\infty} \lambda^k R_t^{(k+1)} - V_t^F(\underline{\mathbf{x}}^{(t)}) \\ &= (1-\lambda) \sum_{k=0}^{\infty} \lambda^k \left(\sum_{\tau=0}^k \gamma^\tau r_{t+\tau} + \gamma^{k+1} V_t^F(\underline{\mathbf{x}}^{(t+k+1)}) \right) - V_t^F(\underline{\mathbf{x}}^{(t)}) \\ &= (1-\lambda) \sum_{k=0}^{\infty} \sum_{k=\tau}^{\infty} \lambda^k \gamma^\tau r_{t+\tau} + \gamma (1-\lambda) \sum_{k=0}^{\infty} \lambda^k \gamma^k V_t^F(\underline{\mathbf{x}}^{(t+k+1)}) - V_t^F(\underline{\mathbf{x}}^{(t)}) \\ &= \sum_{\tau=0}^{\infty} \gamma^\tau r_{t+\tau} \lambda^\tau \left[(1-\lambda) \sum_{k=0}^{\infty} \lambda^k \right] + \gamma (1-\lambda) \sum_{k=0}^{\infty} (\gamma \lambda)^k V_t^F(\underline{\mathbf{x}}^{(t+k+1)}) - V_t^F(\underline{\mathbf{x}}^{(t)}) \\ &= \sum_{k=0}^{\infty} (\gamma \lambda)^k \left(r_{t+k} + \gamma V_t^F(\underline{\mathbf{x}}^{(t+k+1)}) - \gamma \lambda V_t^F(\underline{\mathbf{x}}^{(t+k+1)}) \right) - V_t^F(\underline{\mathbf{x}}^{(t)}) \\ &= \sum_{k=0}^{\infty} (\gamma \lambda)^k \left(r_{t+k} + \gamma V_t^F(\underline{\mathbf{x}}^{(t+k+1)}) - V_t^F(\underline{\mathbf{x}}^{(t+k+1)}) \right) \\ &\approx \sum_{k=0}^{\infty} (\gamma \lambda)^k \Delta V_{t+k} \qquad \text{(approximation is good for large } T) \end{split}$$

$\mathsf{TD}(\lambda)$ derivation: both views

■ the $\mathsf{TD}(\lambda)$ value of state $\underline{\mathbf{x}}_i$ at time T is

$$V_T^B(\underline{\mathbf{x}}_i) = \eta \sum_{t=0}^{T-1} \delta_{it} \sum_{k=t}^{T-1} (\gamma \lambda)^{k-t} \Delta V_k$$

 \blacksquare the value of state $\underline{\mathbf{x}}_i$ at time T in the forward view is

$$V_T^F(\underline{\mathbf{x}}_i) = \sum_{t=0}^{T-1} \eta \, \delta_{it} \big(R_t^{\lambda} - V_t^F(\underline{\mathbf{x}}^{(t)}) \big) \quad \approx \quad \eta \sum_{t=0}^{T-1} \delta_{it} \sum_{k=t}^{T-1} (\gamma \lambda)^{k-t} \, \Delta V_k$$

■ in the limit of inifinite training samples the approximation is exact

$$V_{\infty}^{F}(\underline{\mathbf{x}}_{i}) = V_{\infty}^{B}(\underline{\mathbf{x}}_{i})$$

References I

- D. P. Bertsekas. *Dynamic Programming and Optimal Control*, volume 2. Athena Scientific, 3rd edition, 2007.
- Peter Dayan. The role of value systems in decision making. In *Better Than Conscious?*: Decision Making, the Human Mind, and Implications for Institutions. MIT Press, 2008. ISBN 0-262-19580-1.
- Peter Dayan and Yael Niv. Reinforcement learning: The good, the bad and the ugly. *Current Opinion in Neurobiology*, 18:185–196, 2008.
- Jan Gläscher, Nathaniel Daw, Peter Dayan, and John P. O'Doherty. States versus rewards: Dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. *Neuron*, 66:585–595, 2010.
- Wolfram Schultz, Peter Dayan, and P. Read Montague. A Neural Substrate of Prediction and Reward. Science, 275(5306):1593–1599, March 1997. ISSN 1095-9203.
- Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.