\succ Calculation of R_0 :

Exact Equivalent

• Q_1 and Q_3 diode-connected \Rightarrow r_{E1} and r_{E3}

> Simplification:

■ Bases of Q_1 - Q_2 and Q_3 - Q_4 can be approximated to be at ac ground (a first-order estimate)

Equivalent after First-Order Simplification

■ ⇒
$$v_2 = 0$$
 ⇒ $g_{m2}v_2 = 0$
⇒ Leads to the *simplified equivalent* (looks familiar?)

By inspection:

$$R_0 \approx r_{o4}(1 + g_{m4}r_{\pi 4})$$

$$\approx \beta_4 r_{04}$$
(assuming $r_{o2} >> r_{\pi 4}$)

• Actual analysis gives:

$$R_0 = \beta_4 r_{04}/2$$
 (*large error*!)

Simplified Equivalent

• NMOS Cascode:

- > All Ms perfectly matched
- > All bodies connected to ground
 - M₁-M₂ does not have body effect, but M₃-M₄ does!
 - Makes hand analysis quite tedious
 - \Rightarrow Neglect body effect
- \triangleright All Ms operate with same V_{GS}
- ightharpoonup Define $\Delta V = V_{GS} V_{TN} = V_{GT}$
 - $\Delta V = Gate Overdrive$

> The reference current:

$$I_{REF} = \frac{V_{DD} - 2V_{GS}}{R} = \frac{k_{N}}{2}V_{GT}^{2} \quad (neglecting \ \lambda)$$

$$\gt V_{GS}$$
 and I_{REF} can be found $\Rightarrow I_0 = I_{REF}$

$$V_{G1} = V_{G2} = V_{GS} = V_{TN} + \Delta V$$

$$V_{G3} = V_{G4} = 2V_{GS} = 2(V_{TN} + \Delta V)$$

$$\triangleright V_{S4} = V_{D2} = V_{TN} + \Delta V$$

$$\Rightarrow$$
 $V_{GS2} = V_{DS2}$

$$\Rightarrow M_2$$
 can never enter linear region

$$\Rightarrow V_{0,min} = V_{DS2} + V_{DS4} = V_{TN} + 2\Delta V$$