Алгоритмы. Домашнее задание №10

Горбунов Егор Алексеевич

27 ноября 2015 г.

Задача №1 (Второе минимальное остовное дерево)

Задача: по данному графу G (с заданной весовой функцией ω на рёбрах) и минимальному остовному дереву T_1 найти второе минимальное остовное дерево T_2 за $\mathcal{O}(V^2+E)$

Решение:

Лемма 1. Возьмём любое $e \in E(G) - E(T_1)$. Тогда в графе $H = T_1 \cup e$ есть единственный простой цикл C содержащий e, причём вес ребра e больше или равен веса любого другого ребра из цикла C.

Доказательство: Ясно, что т.к. T_1 — дерево на n = |V(G)| вершинах, то от добавления ребра e, T_1 перестанет быть деревом, т.е. в полученном графе H будет единственный цикл C, содержащих ребро e. Пускай теперь в C есть ребро e', вес которого больше веса e. Тогда, т.к. цикл C — единственный в H, то удалив ребро e' мы получим некоторое остовное дерево T' вес которого будет таковым: $\omega(T') = \omega(T_1) + \omega(e) - \omega(e') < \omega(T_1)$, но это значит, что T_1 — не минимальное остовное дерево. Противоречие и лемма доказана.

$Утверждение 1. T_1$ отличается от T_2 лишь одним ребром.

Действительно. Пускай T_1 отличается от T_2 в $k \geq 2$ рёбрах. Заметим вот что: добавим рёбра из $T_2 - T_1$ к T_1 и получим граф H с k циклами, которые можно убрать, удалив их графа H рёбра из $T_1 - T_2$ (это верно т.к. T_2 — дерево). Т.е. в каждом из этих k циклов C_i графа H есть ребро x_i из $T_2 - T_1$ и ребро y_i из $T_1 - T_2$. Для первых k-1 цикла C_i удалим из H Ребро x_i и лишь для k-го цикла C_k удалим из H y_k . Таким образом мы получим некоторое остовное дерево T', т.к. все k циклов были разорваны. По Лемме 1 для всех C_i $\omega(x_i) \geq \omega(y_i)$, а значит, т.к. $x_i \in T_2$, то вес полученного T' уж точно не больше веса T_2 , но T' отличается от T_1 лишь одним

ребром! Если $\omega(T') = \omega(T_2)$, то мы нашли второй остов, который отличается от T_1 одним ребром, т.к. T_2 — второй остов, а если $\omega(T') < \omega(T_2)$, то мы пришли к противоречию и значит, опять же, что второй минимальный остов отличается от T_1 лишь одним ребром.

Утверждение 2. $\underline{\omega(T_2)} = \underline{\omega(T_1)} + \min_{e \in E(G)}(\underline{\omega(e)} - m[e_u, e_v])$, где $e = (e_u, e_v)$, а $m[e_u, e_v]$ — это максимальный вес ребра на пути из e_u в e_v в минимальном остове T_1 .

Действительно. По утверждению 1 мы знаем, что T_2 отличен от T_1 лишь одним ребром. Пусть это ребро $e=(e_v,e_u)$. Добавив его в T_1 мы получаем граф H с циклом, из которого нужно удалить некоторое ребро $e'\in E(T_1)$, чтобы получить T_2 . Ясно, что ребро e' лежит на пути из e_v в e_u дерева T_1 . Ясно, что $\omega(T_2)=\omega(T_1)+(\omega(e)-\omega(e'))$. Причём $\omega(T_2)$ минимальное такое, что $\omega(T_2)\geq \omega(T_1)$. Но это значит, что формулу для веса T_2 можно переписать так:

$$\omega(T_2) = \omega(T_1) + min_{e,e'}(\omega(e) - \omega(e'))$$

Но ребро e' лежит в T_1 на пути от e_v к e_u и нам, очевидно, т.к. перед $\omega(e')$ выше стоит знак минуса, хотелось бы максимизировать это значение, т.е. формулу можно переписать так:

$$\omega(T_2) = \omega(T_1) + min_e(\omega(e) - m[e_v, e_u])$$

Это мы и хотели доказать!

Алгоритм. Теперь можно приступать к алгоритму. Нам дан граф G и минимальное остовное дерево T_1 . В силу утверждения 2 стало ясно, что для того, чтобы получить T_2 нам нужно в множестве E(G) найти такое ребро e=(u,v), что число $\omega(e)-m[e_v,e_u]$ минимально. Нужная асимптотика — $\mathcal{O}(V^2+E)$, т.е. два вложенных цикла по рёбрам нам не позволительны, а значит нужно как-то предподсчитать $m[e_v,e_u]$ для всех пар вершин из V(G). Но это уже очевидная задача: найдём все m[v,u] для закреплённого v: устроим поиск в глубину из v в T_1 . Тогда, если мы посчитали m[v,u], то легко можно посчитать $m[v,e_u]=max(\omega(u,e_u),m[v,u])$, где e_u — ребёнок e_u в дереве обхода в глубину графа e_u . Для каждой закреплённой корневой вершины это будет работать за e_u 0 (e_u 1) на посчитали e_u 2. Вот и всё. Таким образом мы за e_u 3 посчитали e_u 4 для всех e_u 6. А теперь легко за e_u 6 найдём такое ребро e_u 6 что e_u 6 на e_u 7 минимально. Итого мы получили корректный алгоритм со временем работы e_u 6 на e_u 7 минимально. Итого мы получили корректный алгоритм со временем работы e_u 6 на e_u 7 на e_u 8 на e_u 9 на e