Themen: χ^2 -basierte Zusammenhangsmaße, PRE-Maß Lambda

Prof. Dr. Elmar Schlüter

Justus-Liebig-Universität Giessen

Fachbereich Sozial- und Kulturwissenschaften
Institut für Soziologie

Wintersemester 2018/19

Übersicht

Kurze Rückschau & Wiederholung
 χ²

□ Kontingenzkoeffizient C
 φ (Phi)
 Cramér's V

Kovarianz & Korrelation

Kurze Rückschau & Wiederholung

Berechnung von Zusammenhängen für nominale Daten

- Zusammenhänge bei nominalen Daten
- Ausprägungen treten häufiger bzw. seltener gemeinsam auf als bei zufälliger
 Verteilung zu erwarten wäre

Ausgangsbeispiel:

	Erhebungsgebiet		
Partei	West	Ost	Gesamt
PDS	4	116	120
Nicht-PDS	1572	606	2178
Gesamt	1576	722	2298

Randsummen & Gesamtsumme

Berechnung von Zusammenhängen für nominale Daten

- Deutlich unterschiedliche Wahlpräferenzen für Ost- & Westdeutsche
 - → Es besteht ein Zusammenhang

Chi-Quadrat

	Erhebungs		
Partei	West	Ost	Gesamt
PDS	4	116	120
Nicht-PDS	1572	606	2178
Gesamt	1576	722	2298

	Erhebungsge		
Partei	West	Ost	Gesamt
PDS	82.3	37.7	120
Nicht-PDS	1493.7	684.3	2178
Gesamt	1576	722	2298

$$\chi^2 = \frac{(4-82.3)^2}{82.3} \dots + \frac{(606-684.3)^2}{684.3}$$
$$= 250.16$$

Chi-Quadrat

- Maßzahl um Aussage über den Zusammenhang zwischen zwei Merkmalen zu treffen
- Quadrierte Residuen aller Zellen werden aufsummiert und an den erwarteten Häufigkeiten relativiert
- Kann Werte von 0 bis +∞ annehmen
- 0 = kein Zusammenhang
- Aber: Abhängig von der Fallzahl (mehr dazu bei der nächsten Sitzung)

 χ^2 -basierte Zusammenhangsmaße ϕ (Phi) - Kontingenzkoeffizient C - Cramér's V

- Problem#1:
 χ² ist abhängig von den absoluten Häufigkeiten in den Zellen
- \succ z.B. Verdopplung der Häufigkeiten = Verdopplung χ^2
- > Prozentuale Verteilung ändert sich jedoch nicht
- > Alternative: Normierung des χ^2 -Wertes

Chi-Quadrat

	Erhebungs		
Partei	West	Ost	Gesamt
PDS	4	116	120
Nicht-PDS	1572	606	2178
Gesamt	1576	722	2298

	Erhebungsge		
Partei	West	Ost	Gesamt
PDS	82.3	37.7	120
Nicht-PDS	1493.7	684.3	2178
Gesamt	1576	722	2298

$$\chi^2 = \frac{(4-82.3)^2}{82.3} \dots + \frac{(606-684.3)^2}{684.3}$$
$$= 250.16$$

- □ Für 2×2-Kreuztabellen: φ (Phi)
- \triangleright Ziel ist Relativierung des χ^2 -Wertes für die Anzahl der Beobachtungen
- Formal

$$\phi = \sqrt{\frac{\chi^2}{n}}$$

- Beispiel:

$$\phi = \sqrt{\frac{250.2}{2298}} = 0.33$$

- Problem#2:
 χ² ist abhängig von der Kategorienanzahl pro Tabelle
- Kontingenzkoeffizient C
- Formal:

$$C = \sqrt{\frac{\chi^2}{\chi^2 + n}}$$

Variiert zwischen 0 (min.) und C_{max}

$$C_{\text{max}} = \sqrt{\frac{R - 1}{R}}$$

Kontingenzkoeffizient C

$$C_{\text{max}} = \sqrt{\frac{R-1}{R}} \qquad \text{mit R = min (I, m)}$$

- R = Minimum der Zeilen- bzw. Spaltenzahl
- Beispiele (R):

$$2 \times 2$$
: R = 2

$$3 \times 4$$
: R = 3

$$4 \times 3$$
: R = 3

$$C = \sqrt{\frac{\chi^2}{\chi^2 + n}} = \sqrt{\frac{250,2}{250,2 + 2298}} = 0,31$$

 Problem#3:
 Kontingenzkoeffizienten aus Tabellen unterschiedlicher Größe sind schwierig zu vergleichen

- Cramér's V
- Formal: Cramér's V = $\sqrt{\frac{\chi^2}{\chi^2_{\text{max}}}} = \sqrt{\frac{\chi^2}{n \cdot (R-1)}}$
- $\sim \chi^2$ -Wert wird durch maximal erreichbaren χ^2 -Wert dividiert
- Für Mehrfeldertabellen: $\chi^2_{max} = n \; (R-1)$ R = minimale Spalten- bzw. Zeilenanzahl
 - Für unser Beispiel: $\sqrt{\frac{\chi^2}{\chi^2_{\text{max}}}} = \sqrt{\frac{250,2}{2298\cdot(2-1)}} = 0,33$

PRE-Maß λ (Lambda)

- Ausgangspunkt: "Wie gut können die Werte einer abhängigen Variablen durch die Werte einer unabhängigen Variablen vorhergesagt werden?" für nominale Daten
- Schritt 1: Prognose des Wertes der abhängigen Variablen ohne Kenntnis der unabhängigen Variablen Modus als bestmögliche Vorhersage
- Schritt 2: Prognose des Wertes der abhängigen Variablen mit Kenntnis der unabhängigen Variablen
- Schritt 3: Ermittlung des PRE-Maßes (inwieweit wurde die Vorhersage durch Einbezug der unabhängigen Variable verbessert?)

Formal:
$$\lambda = \frac{(\text{Fehler}_1 - \text{Fehler}_2)}{\text{Fehler}_1}$$

	Kanzlerpräferenz		
Wahlabsicht	Merkel	Steinmeier	Gesamt
CDU/CSU	335	15	350
SPD	25	320	345
Andere	84	102	186
Gesamt	444	437	881

- Modus Wahlabsicht: CDU/CSU
- Also: Ohne Kenntnis der Kanzlerpräferenz ist die bestmögliche Vorhersage der Wahlabsicht CDU/CSU

	Kanzlerpräferenz		
Wahlabsicht	Merkel	Steinmeier	Gesamt
CDU/CSU	335	15	350
SPD	25	320	345
Andere	84	102	186
Gesamt	444	437	881

- Modus Wahlabsicht: CDU/CSU
- Also: Ohne Kenntnis der Kanzlerpräferenz ist die bestmögliche Vorhersage der Wahlabsicht CDU/CSU
- Vorhersagefehler 1: 345+186 = 531

	Kanzlerpräferenz		
Wahlabsicht	Merkel	Steinmeier	Gesamt
CDU/CSU	335	15	350
SPD	25	320	345
Andere	84	102	186
Gesamt	444	437	881

- Bei Kenntnis der Kanzlerpräferenz:
- CDU/CSU für Merkel-Anhänger
- \rightarrow Vorhersagefehler: 25+84=109

	Kanzlerpräferenz		
Wahlabsicht	Merkel	Steinmeier	Gesamt
CDU/CSU	335	15	350
SPD	25	320	345
Andere	84	102	186
Gesamt	444	437	881

- Bei Kenntnis der Kanzlerpräferenz:
- > SPD für Steinmeier-Anhänger
- \triangleright Vorhersagefehler: 15+102=117
- \triangleright Zusammen: 109 + 117 = 226 Vorhersagefehler 2

Beispiel (nach Gehring/Weins 2009, S. 154):

	Kanzlerpräferenz		
Wahlabsicht	Merkel	Steinmeier	Gesamt
CDU/CSU	335	15	350
SPD	25	320	345
Andere	84	102	186
Gesamt	444	437	881

Formal:
$$\lambda = \frac{\text{(Fehler}_1 - \text{Fehler}_2)}{\text{Fehler}_1} = \frac{(531 - 226)}{531} = 0.57$$

 Die Kenntnis der Kanzlerpräferenz verringert die Fehler bei der Prognose der Wahlabsicht um 57%

□ Mini-Übung: Bitte berechnen sie Lambda!

Frisur	Geschlecht		
	Frau Mann		Gesamt
Lang	60	30	90
Kurz	40	70	110
Gesamt	100	100	200

Unabhängige Variable:

Formal:

Bestmögliche Vorhersage ohne UV:

1. Vorhersagefehler:

2. Vorhersagefehler:

Lambda: = 22%

□ Mini-Übung: Bitte berechnen sie Lambda!

	Geschlecht		
Frisur	Frau	Mann	Gesamt
Lang	60	30	90
Kurz	40	70	110
Gesamt	100	100	200

Unabhängige Variable: Geschlecht

Formal: (Fehler 1 - Fehler 2)/Fehler 1

Bestmögliche Vorhersage ohne UV: 110

1. Vorhersagefehler: 90

2. Vorhersagefehler: 70

Lambda: (90 - 70)/90 = 20/90 = 0.22 = 22%

Chi-Quadrat

