MATH CAMP ASSIGNMENT 3

LINEAR ALGEBRA

Xiankang Wang

August 21, 2025

1 Q1

Claim. \mathbb{R}^n with componentwise addition

$$x+y=(x_1+y_1,\ldots,x_n+y_n)$$

and scalar multiplication

$$\lambda x = (\lambda x_1, \dots, \lambda x_n),$$

and with zero vector 0 = (0, ..., 0), is a vector space.

Proof. Closure holds because sums and scalar multiples of real numbers are real. Each of the eight axioms follows componentwise from the corresponding axiom in \mathbb{R} : commutativity and associativity of +, existence of 0 and -x, distributivity $\lambda(x+y) = \lambda x + \lambda y$, $(\lambda + \mu)x = \lambda x + \mu x$, associativity $(\lambda \mu)x = \lambda(\mu x)$, and $1 \cdot x = x$. Hence $(\mathbb{R}^n, +, \cdot)$ is a vector space.

2 Q2

Let \mathcal{F} be the set of all real functions on \mathbb{R} . Define

$$(f+g)(x) = f(x) + g(x), \qquad (\lambda f)(x) = \lambda f(x),$$

and $0(x) \equiv 0$. For every $x \in \mathbb{R}$ the vector space axioms hold pointwise because they hold in \mathbb{R} : (f+g) = (g+f), (f+(g+h)) = ((f+g)+h), f+0=f, f+(-f)=0, $(\lambda\mu)f=\lambda(\mu f)$, $1\cdot f=f$, $\lambda(f+g)=\lambda f+\lambda g$, $(\lambda+\mu)f=\lambda f+\mu f$. Therefore $\mathcal F$ is a vector space with zero vector the zero function.

3 Q3

(a)

Statement. If v_1, \ldots, v_m are linearly independent, then $2v_1 - 3v_2, v_2, \ldots, v_m$ are linearly independent.

Proof. Suppose

$$a(2v_1 - 3v_2) + bv_2 + \sum_{i=3}^{m} c_i v_i = 0.$$

Then $(2a)v_1 + (-3a+b)v_2 + \sum_{i=3}^m c_i v_i = 0$. By independence of v_1, \ldots, v_m , we get 2a = 0 (so a = 0), -3a+b=0 (so b=0), and $c_i=0$ for $i \geq 3$. Hence the new list is independent.

(b)

Statement. If v_1, \ldots, v_m and w_1, \ldots, w_m are two linearly independent lists, then $v_1 + w_1, \ldots, v_m + w_m$ are linearly independent.

Verdict. *False.* Counterexample with m = 1 in \mathbb{R} : take $v_1 = 1$, $w_1 = -1$. Both lists are linearly independent, but $v_1 + w_1 = 0$, so the singleton $\{0\}$ is linearly dependent.

4 Q4

Equip \mathbb{R}^n with the Euclidean inner product

$$\langle x,y\rangle = \sum_{i=1}^n x_i y_i.$$

Then (i) symmetry $\langle x,y\rangle = \langle y,x\rangle$ holds, (ii) linearity in the first variable $\langle \alpha x + \beta y,z\rangle = \alpha \langle x,z\rangle + \beta \langle y,z\rangle$ holds by distributivity of real multiplication, and (iii) positive definiteness $\langle x,x\rangle = \sum_{i=1}^n x_i^2 \geq 0$ with equality iff x=0. Hence $(\mathbb{R}^n,\langle\cdot,\cdot\rangle)$ is an inner product space.

5 **Q**5

(**Parallelogram identity**) For any *u*, *v* in an inner product space,

$$||u+v||^2 = \langle u,u\rangle + \langle u,v\rangle + \langle v,u\rangle + \langle v,v\rangle, \qquad ||u-v||^2 = \langle u,u\rangle - \langle u,v\rangle - \langle v,u\rangle + \langle v,v\rangle.$$

Adding gives

$$||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2),$$

which generalizes the Euclidean parallelogram law.

6 Q6

(Rule of Sarrus) For

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix},$$

Leibniz's formula with the six permutations of $\{1,2,3\}$ yields

$$\det(A) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{12}a_{21}a_{33} - a_{11}a_{23}a_{32},$$

which is exactly Sarrus' rule (sum of the three "downward" products minus the three "upward" ones). \Box

7 Q7

Let $A = (a_{ij}) \in \mathbb{R}^{m \times n}$. Define

$$T_A: \mathbb{R}^n \to \mathbb{R}^m, \quad T_A(x) = Ax,$$

so that the *i*-th component is $(Ax)_i = \sum_{j=1}^n a_{ij}x_j \in \mathbb{R}$. For each input x the output Ax is uniquely determined, hence T_A is a well-defined function from \mathbb{R}^n to \mathbb{R}^m (indeed a linear map).

8 Q8

Let $L(\mathbb{R}^n, \mathbb{R}^m) = \{T_A : x \mapsto Ax \mid A \in \mathbb{R}^{m \times n}\}$. Define

$$T_A + T_B := T_{A+B}, \qquad \lambda T_A := T_{\lambda A}.$$

Since (A + B)x = Ax + Bx and $(\lambda A)x = \lambda(Ax)$, these coincide with pointwise operations. Vector space axioms reduce to the corresponding matrix axioms. The zero vector is T_0 (the map induced by the zero matrix), because $T_0(x) = 0$ for all x. Therefore $L(\mathbb{R}^n, \mathbb{R}^m)$ is a vector space.

9 Q9

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be $T(x_1, x_2, x_3) = (2x_2, 0, 5x_3)$. With respect to the standard basis,

$$[T] = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{pmatrix}.$$

The characteristic polynomial is $\chi(\lambda) = \det([T] - \lambda I) = \lambda^2(5 - \lambda)$, hence eigenvalues are $\lambda = 0$ (algebraic multiplicity 2) and $\lambda = 5$. Eigenvectors: for $\lambda = 5$, solve ([T] - 5I)x = 0, giving $x_2 = 0$, $x_1 = 0$, x_3 free, so $x_2 = 0$, solve $x_3 = 0$, so $x_2 = 0$, so $x_3 = 0$, so

10 Q10

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be

$$T(x_1,\ldots,x_n)=(x_1,2x_2,\ldots,nx_n).$$

Then [T] = diag(1, 2, ..., n). The eigenvalues are 1, 2, ..., n (all distinct), and the corresponding eigenspaces are $E_i = \text{span}\{e_i\}$ for i = 1, ..., n. Therefore T is diagonalizable by the standard basis.

11 Q11

(**Product of orthogonal matrices**) If $Q_1^{\top}Q_1 = I$ and $Q_2^{\top}Q_2 = I$, then

$$(Q_1Q_2)^{\top}(Q_1Q_2) = Q_2^{\top}Q_1^{\top}Q_1Q_2 = Q_2^{\top}IQ_2 = I,$$

hence Q_1Q_2 is orthogonal. Equivalently, orthogonal matrices satisfy $Q^{-1}=Q^{\top}$ and are closed under multiplication.

12 Q12

Suppose

$$A = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ x & 2 & y \end{pmatrix}$$

is orthogonal. Let the columns of the unscaled matrix be

$$c_1 = \begin{pmatrix} 1 \\ 2 \\ x \end{pmatrix}, \quad c_2 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}, \quad c_3 = \begin{pmatrix} 2 \\ -2 \\ y \end{pmatrix}.$$

Since $A^{\top}A = I$, we have $M^{\top}M = 9I$ for M = 3A, so the columns of M are pairwise orthogonal with squared norms 9. From $\langle c_1, c_2 \rangle = 1 \cdot 2 + 2 \cdot 1 + x \cdot 2 = 4 + 2x = 0$ we get x = -2. From $\langle c_2, c_3 \rangle = 2 \cdot 2 + 1 \cdot (-2) + 2 \cdot y = 2 + 2y = 0$ we get y = -1. Finally $||c_1||^2 = 1 + 4 + (-2)^2 = 9$, $||c_3||^2 = 4 + 4 + (-1)^2 = 9$, and $\langle c_1, c_3 \rangle = 2 - 4 + 2 = 0$, confirming orthogonality. Thus

$$x = -2, \qquad y = -1.$$