Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs)

Introducción

Motivación

¿Es posible hacer que las redes neuronales sean capaces ver?

- Localidad
- 2 Invarianza al movimiento
- 3 Composición jerárquica

- 1 Localidad: Fijarse en zonas concretas. Elementos cercanos están relacionados.
- 2 Invarianza al movimiento
- 3 Composición jerárquica

- 1 Localidad: Fijarse en zonas concretas. Elementos cercanos están relacionados.
- 2 Invarianza al movimiento: Misma salida si la posición del objeto de entrada cambia.
- 3 Composición jerárquica

- 1 Localidad: Fijarse en zonas concretas. Elementos cercanos están relacionados.
- 2 Invarianza al movimiento: Misma salida si la posición del objeto de entrada cambia.
- 3 Composición jerárquica: Detectar patrones que definen un objeto.

Introducción: Historia

¿Cómo funciona nuestra visión?

En 1981, David Hubel y Torsten Wiesel reciben el Nobel de medicina por sus contribuciones en el campo de la neurociencia y su investigación sobre el procesamiento visual en el cerebro.

Tema 4: Arquitecturas y aplicaciones de las redes neuronales profundas

Introducción: Historia

Neocognitron

En 1980, Fukushima propone una forma de implementar el modelo jerárquico del sistema nervioso visual de Hubel y Wiesel utilizando redes neuronales.

- Creado a partir de convoluciones.
- Capaz de detectar composiciones jerárquicas.
- Algoritmo de entrenamiento ineficiente

Introducción: Historia

Convolutional networks

En 1990, LeCun entrena una red convolucional utilizando backpropagation. Aboga por el aprendizaje de características end-to-end en la clasificación de imágenes.

Convolutional Neural Networks (CNNs)

Convoluciones

Codificación de imágenes

Las imágenes son matrices de **pixels**. Cada uno posee un valor entre [0,255] que representan la intensidad.

- Si la imagen es en escala de grises, solo tendremos una matriz.
- Si es en color, tendremos tres matrices, una por cada canal (Rojo, Verde y Azul).

Procesamiento dentro de una red

No pueden ser tratados como vectores "no estructurados" normales, han de ser invariantes al movimiento.

Además, los modelos resultantes tendrían un tamaño enorme:

• Una pequeña imagen en escala de grises de 100×100 generaría un vector de 10000.

Procesamiento dentro de una red

No pueden ser tratados como vectores "no estructurados" normales, han de ser invariantes al movimiento.

Además, los modelos resultantes tendrían un tamaño enorme:

ullet Una pequeña imagen en escala de grises de 100 imes 100 generaría un vector de 10000.

Definición

Operación matemática capaz de extraer características o patrones de unos datos de entrada, típicamente imágenes o señales.

Compuesta por:

- Datos de entrada x.
- Uno o varios kernels o filtros u.
- Salida o.

Si nuestros datos de entrada son de una dimensión (una señal, por ejemplo), tendremos que aplicar la **convolución 1D**.

Tendremos por tanto:

- Vector 1D de entrada $\mathbf{x} \in \mathbb{R}^W$
- Vector 1D kernel $\mathbf{u} \in \mathbb{R}^w$
- Vector 1D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1}$

La operación de convolución se define como:

$$(\mathbf{x} \circledast \mathbf{u})[i] = \sum_{m=0}^{w-1} x_{m+i} \cdot u_m$$

Si nuestros datos de entrada son de una dimensión (una señal, por ejemplo), tendremos que aplicar la **convolución 1D**.

Tendremos por tanto:

- Vector 1D de entrada $\mathbf{x} \in \mathbb{R}^W$
- Vector 1D kernel $\mathbf{u} \in \mathbb{R}^w$
- Vector 1D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1}$

La operación de convolución se define como:

$$(\mathbf{x} \circledast \mathbf{u})[i] = \sum_{m=0}^{w-1} x_{m+i} \cdot u_m$$

Si nuestros datos de entrada son de una dimensión (una señal, por ejemplo), tendremos que aplicar la **convolución 1D**.

Tendremos por tanto:

- Vector 1D de entrada $\mathbf{x} \in \mathbb{R}^W$
- Vector 1D kernel $\mathbf{u} \in \mathbb{R}^w$
- Vector 1D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1}$

La operación de convolución se define como:

$$(\mathbf{x} \circledast \mathbf{u})[i] = \sum_{m=0}^{w-1} x_{m+i} \cdot u_m$$

Si nuestros datos de entrada son de una dimensión (una señal, por ejemplo), tendremos que aplicar la **convolución 1D**.

Tendremos por tanto:

- Vector 1D de entrada $\mathbf{x} \in \mathbb{R}^W$
- Vector 1D kernel $\mathbf{u} \in \mathbb{R}^w$
- Vector 1D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1}$

La operación de convolución se define como:

$$(\mathbf{x} \circledast \mathbf{u})[i] = \sum_{m=0}^{w-1} x_{m+i} \cdot u_m$$

Si nuestros datos de entrada son de una dimensión (una señal, por ejemplo), tendremos que aplicar la **convolución 1D**.

Tendremos por tanto:

- Vector 1D de entrada $\mathbf{x} \in \mathbb{R}^W$
- Vector 1D kernel $\mathbf{u} \in \mathbb{R}^w$
- Vector 1D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1}$

La operación de convolución se define como:

$$(\mathbf{x} \circledast \mathbf{u})[i] = \sum_{m=0}^{w-1} x_{m+i} \cdot u_m$$

Si nuestros datos de entrada son de una dimensión (una señal, por ejemplo), tendremos que aplicar la **convolución 1D**.

Tendremos por tanto:

- Vector 1D de entrada $\mathbf{x} \in \mathbb{R}^W$
- Vector 1D kernel $\mathbf{u} \in \mathbb{R}^w$
- Vector 1D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1}$

La operación de convolución se define como:

$$(\mathbf{x} \circledast \mathbf{u})[i] = \sum_{m=0}^{w-1} x_{m+i} \cdot u_m$$

Si nuestros datos de entrada son de una dimensión (una señal, por ejemplo), tendremos que aplicar la **convolución 1D**.

Tendremos por tanto:

- Vector 1D de entrada $\mathbf{x} \in \mathbb{R}^W$
- Vector 1D kernel $\mathbf{u} \in \mathbb{R}^w$
- Vector 1D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1}$

La operación de convolución se define como:

$$(\mathbf{x} \circledast \mathbf{u})[i] = \sum_{m=0}^{w-1} x_{m+i} \cdot u_m$$

Las convoluciones pueden aplicar diferentes kernels o filtros.

Por ejemplo, en una señal eléctrica, podemos aplicar un filtro para buscar incrementos de voltaje (en 1 unidad):

$$(0,0,0,0,1,2,3,3) \circledast (-1,1) = (0,0,0,1,1,1,0)$$

Las dimensiones de la entrada definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, necesitamos convoluciones 2D.

Tendremos por tanto:

- Matriz 2D de entrada $\mathbf{x} \in \mathbb{R}^{W \times H}$
- Matriz 2D kernel $\mathbf{u} \in \mathbb{R}^{w \times h}$
- Matriz 2D de salida $\mathbf{o} \in \mathbb{R}^{W-w+1} \times {}^{H-h+1}$

La operación de convolución en 2D sería:

$$\mathbf{o}_{j,i} = (\mathbf{x} \circledast \mathbf{u})[j,i] = \sum_{n=0}^{h-1} \sum_{m=0}^{w-1} \mathbf{x}_{n+j,m+i} \cdot \mathbf{u}_{n,m}$$

Las dimensiones de la entrada definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, necesitamos convoluciones 2D.

 $\mathbf{x} \circledast \mathbf{u} = \mathbf{o}$

Las dimensiones de la entrada definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, necesitamos convoluciones 2D.

 $\mathbf{x} \circledast \mathbf{u} = \mathbf{o}$

Las dimensiones de la entrada definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, necesitamos convoluciones 2D.

 $\mathbf{x} \circledast \mathbf{u} = \mathbf{o}$

Las dimensiones de la entrada definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, necesitamos convoluciones 2D.

 $\mathbf{x} \circledast \mathbf{u} = \mathbf{o}$

Las dimensiones de la entrada definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, necesitamos convoluciones 2D.

Gráficamente:

 $\mathbf{x} \circledast \mathbf{u} = \mathbf{o}$

Las dimensiones de la entrada definen el tipo de convolución

Cuando trabajamos con imágenes en escala de grises o cualquier matriz, necesitamos convoluciones 2D.

Referencias

1 Lecture 5: Convolutional networks