Humanoid Robotics WG/RG/CG 3rd Meeting By: Ronaldson Bellande PhD Student Founder/CEO/CTO/COO Bellande Technologies Corporation Inc Founder of Bellande Research Innovation **Organizations**

Meeting Agenda

Introduction Cost-Effectiveness of Humanoid Robotics in Simulation

The Need for Cost-Effective Solutions

Cost Drivers in Robot Development

Simulation as a Cost-Effective Alternative

Eliminating the Need for Physical Prototypes

Minimizing Downtime

Efficient Resource Allocation

Optimizing Resources

Long-Term Cost Savings

Reduced Risk of Damages

Scalability and Flexibility

Enhanced Training and Learning

Collaboration and Knowledge Sharing

The Need for Cost-Effective Solutions

- The growing demand for humanoid robots underscores the necessity for cost-effective development approaches.
- Traditional testing methods, while essential, often pose significant financial and temporal challenges, necessitating a transition to more efficient alternatives.

Cost Drivers in Robot Development

- Material costs and skilled labor requirements represent significant cost drivers in robot development.
- The financial challenges posed by these cost drivers underscore the need for innovative solutions to optimize resource utilization.

Simulation as a Cost-Effective Alternative

- Simulated environments offer a viable costeffective alternative to traditional testing methods, replicating real-world scenarios without the associated expenses.
- By reducing costs across materials, labor, and potential damages, simulation emerges as a pivotal tool in achieving overall costeffectiveness.

Eliminating the Need for Physical Prototypes

- Simulation's capability to facilitate virtual testing of multiple design iterations significantly diminishes reliance on physical prototypes.
- This reduction translates into substantial savings on materials and assembly costs, essential for achieving cost-effectiveness.

Minimizing Downtime

- Unlike traditional testing methods, simulation enables uninterrupted, continuous testing, minimizing downtime and enhancing productivity.
- This enhancement ensures efficient utilization of resources, driving cost-effectiveness in robot development.

Efficient Resource Allocation

- Simulation technology facilitates efficient resource allocation, optimizing both labor and material utilization.
- By redirecting savings on labor and materials to other critical development areas, businesses can foster overall progress.

Optimizing Resources

- Simulation enables engineers to identify and analyze potential failure modes before deploying robots in the real world. Robots to simulated environments allows engineers to anticipate and mitigate risks effectively.
- Facilitates scenario-based testing, enabling engineers to simulate various risk scenarios and assess robot performance under different conditions. Proactive approach to risk mitigation helps ensure the safety and reliability of robotic systems.

Long-Term Cost Savings

- Simulation streamlines resource utilization by eliminating the need for physical prototypes, minimizing waste, and maximizing efficiency.
- This optimization significantly enhances the cost-effectiveness of the development process, ensuring sustainable progress.

Reduced Risk of Damages

- Simulation mitigates the risk of damages to expensive equipment and environments, resulting in fewer costly repairs and replacements.
- Through virtual testing, simulation ensures a safer development environment, reducing the likelihood of damages and associated costs.

Scalability and Flexibility

- The scalability and flexibility of simulation technology empower developers to conduct testing in diverse environments seamlessly.
- This adaptability allows for easy adjustments and modifications without incurring additional costs, facilitating efficient development.

Enhanced Training and Learning

- Simulation provides a secure and controlled environment conducive to training humanoid robots, minimizing the risk of accidents and damages.
- By reducing the likelihood of mishaps during the learning process, simulation fosters safer and more effective training outcomes.

Collaboration and Knowledge Sharing

- Simulation technology serves as a catalyst for collaboration among developers and researchers worldwide, fostering innovation in humanoid robotics.
- This collaborative environment enables the exchange of knowledge and ideas, accelerating progress and propelling the field forward.

Collaboration Opportunities & Next Steps & Networking & Resources

- GitHub Working Group Repository Information: https://github.com/Robotics-Sensors/BR-SRI-Humanoid-Robotics-Working-Group
- GitHub Organization: https://github.com/Robotics-Sensors
- Discord Group: https://discord.gg/uETm8hKN2U
- Google Group: https://groups.google.com/g/humanoid-robotics
- Email Group: <u>humanoid-robotics@googlegroups.com</u>
- Github Profile: https://github.com/RonaldsonBellande