6. AUTOMATSKO ZAKLJUČIVANJE

Zaključak (novoizvedeno znanje) zapravo nije ništa drugo nego logička posljedica premisa (postojećeg znanja)

Problem s dokazivanjem semantičke posljedice

Netraktabilnost: moramo provjeriti 2ⁿ interpretacija

Neodlučivost: u predikatnoj logici broj interpretacija je beskonačan, pa nemamo šanse sve ih ispitati || Zapravo, FOL je poluodlučiva (engl. semi-decidable): možemo dokazati valjanost onih formula koje jesu valjane, ali za formule koje nisu valjane ne možemo to uvijek dokazati

Prednosti teorije dokaza naspram dokazivanja logičke posljedice

Učinkovitost: umjesto da iscrpno pretražujemo sve moguće interpretacije, deduktivnu posljedicu možemo brže dokazati (pogotovo ako koristimo pametnu strategiju dokazivanja). Primijetite, međutim, da ne možemo izbjeći neodlučivost FOL-a

Interpretabilnost: možemo objasniti zašto nešto slijedi iz premisa (pozivajući se na pravila zaključivanja) ⇒ dobivamo dokaz

Deduktivna posljedica

Formula G je **dedukcija** ili **deduktivna posljedica**ž formula F_1, F_2, \ldots, F_n akko je G moguće izvesti iz premisa F_1, F_2, \ldots, F_n pravilima zaključivanja.

Pravila zaključivanja

Ispravnost i potpunost pravila

Ispravnost => Pravilo zaključivanja je ispravno ako, primijenjeno na skup premisa, izvodi formulu koja je logička posljedica tih premisa.

ako
$$F_1, \ldots, F_n \vdash_r G$$
 onda $F_1, \ldots, F_n \vDash G$

Potpunost => Skup pravila R je potpun ako i samo ako je njime moguće izvesti sve logičke posljedice

ako
$$F_1, \ldots, F_n \vDash G$$
 onda $F_1, \ldots, F_n \vdash_R G$

Automatsko zaključivanje

Metoda rezolucije

Rezolucijsko pravilo

$$\frac{A \lor F \qquad \neg A \lor G}{F \lor G}$$
 ili $A \lor F, \ \neg A \lor G \ \vdash \ F \lor G$

Klauzula

Rezolucijsko pravilo može se primijeniti samo na disjunkcije

Ako *želimo primjenjivati isključivo rezolucijsko pravilo, premise trebaju biti u obliku disjunkcije. Takav oblik nazivamo **klauzula**.

Literal je atom ili njegova negacija. **Klauzula** je disjunkcija konačnog broja literala G_i : $G_1 \vee G_2 \vee \cdots \vee G_n, \ n \geq 0$

Klauzula koja sadrži samo jedan literal naziva se jedinična klauzula.

Rezolucijsko pravilo nad PL klauzulama

$$\frac{F_1 \vee \cdots \vee F_i \vee \cdots \vee F_n \qquad G_1 \vee \cdots \vee G_j \vee \cdots \vee G_m}{F_1 \vee \cdots \vee F_{i-1} \vee F_{i+1} \vee \cdots \vee F_n \vee G_1 \vee \cdots \vee G_{j-1} \vee G_{j+1} \vee \cdots \vee G_m}$$

gdje su F_i i G_j komplementarni literali (jedan je negacija drugoga).

Premise nazivamo **roditeljske klauzule**, a dedukciju nazivamo **rezolventa**.

Konjunktivna normalna forma

Konjunktivna normalna forma (engl. conjuctive normal form, CNF)

Formula F je u **konjunktivnoj normalnoj formi** akko je F u obliku

$$F_1 \wedge F_2 \wedge \cdots \wedge F_n$$

pri čemu je F_i oblika

$$G_{i1} \vee G_{i2} \vee \cdots \vee G_{im}$$

gdje su G_{ij} literali (atomi ili njihove negacije).

Pretvorba formule u CNF

- (1) Uklanjanje ekvivalencije: $F \leftrightarrow G \equiv (\neg F \lor G) \land (\neg G \lor F)$
- (2) Uklanjanje implikacije: $F \to G \equiv \neg F \lor G$
- (4) Primjena distributivnosti: $F \vee (G \wedge H) \equiv (F \vee G) \wedge (F \vee H)$

Svaki se korak ponavlja sve dok je primjenjiv.

U svim koracima, kad god je to moguće, primijenjuje se ekvivalencija za involuciju $\neg \neg F \equiv F$.

Klauzalni oblik => skup skupova literala

Rezolucija

Budući da vrijedi

$$F \mid = F \vee G$$

a da rezolucijskim pravilom ne možemo deduktivno izvesti

$$F \mid -F \vee G$$
,

zaključujemo da rezolucijskim pravilom ne možemo dokazati sve logičke posljedice, pa zaključujemo da **rezolucijsko pravilo nije potpuno.**

Izravna rezolucija vs. rezolucija opovrgavanjem

Izravna rezolucija je nepotpuna, međutim rezolucija opovrgavanjem je potpuna

Rezolucija opovrgavanjem

Umjesto da dokazujemo $F_1, \ldots, F_n \mid$ - G, nastojimo dokazati da je $F_1 \wedge \cdots \wedge F_n \wedge \neg G$ proturječna formula

NIL označava praznu klauzulu čija je semantička vrijednost ⊥

$$\frac{A \qquad \neg A}{\text{NIL}}$$

Dokazano je da, uvijek kada je skup klauzula proturječan, rezolucijom možemo izvesti klauzulu NIL

- => uvijek možemo dokazati nekonzistentnost skupa klauzula
- => možemo dokazati svaku logičku posljedicu

Znači da je <u>rezolucija opovrgavanjem</u> **potpuna**, zato što njome možemo dokazati bilo koju logičku posljedicu.

Rezolucija opovrgavanjem je ispravna i potpuna!

Faktorizacija

Faktorizacija je primjena ekvivalencije G ∨ G ≡ G kojom se višekratno pojavljivanje istog literala zamjenuje jednim literalom

Kako bismo zadržali potpunost, treba primjenjivati faktorizaciju kad god je to moguće

Algoritam rezolucije opovrgavanjem (za propozicijsku logiku)

```
function plResolution(F,G)

clauses \leftarrow cnfConvert(F \land \neg G)

new \leftarrow \emptyset

loop do

for each (c_1, c_2) in selectClauses(clauses) do

resolvents \leftarrow plResolve(c_1, c_2)

if NIL ∈ resolvents then return true

new \leftarrow new \cup resolvents

if new \subseteq clauses then return false

clauses \leftarrow clauses \cup new
```

Broj mogućih različitih klauzula je **konačan** (ako se provodi **faktorizacija**), pa algoritam sigurno završava u **konačnom broju** koraka

Rezolucijske strategije

Strategija pojednostavljenja - strategija brisanja

Uklanjanje redundantnih klauzula => klauzula koja je pokrivena drugom klauzulom može se obrisati prema ekvivalenciji apsorpcije: F ∧ (F ∨ G) ≡ F

Uklanjanje nevažnih klauzula => klauzula koja je valjana (tautologija) je nevažna

klauzula je valjana akko sadrži komplementaran par literala \mathbf{F}_i i $\mathbf{\bar{F}}_i$

Upravljačke rezolucijske strategije

Strategija zasićenja po razinama

Rezolvente izvodimo razinu po razinu (kao kod pretraživanja u *širinu): razrješavamo sve moguće parove klauzula na prvoj razini (početni skup klauzula), zatim na drugoj razini, itd.

Ovo je potpuna strategija, ali je vrlo neučinkovita (problem kombinatorne eksplozije)

Strategija skupa potpore, SoS

Temelji se na pretpostavci da je **skup ulaznih premisa** *konzistentan*

Skup potpore (SoS): klauzule dobivene negacijom cilja i sve novo izvedene klauzule

Barem jedna roditeljska klauzula uvijek dolazi iz SoS-a