Bài tập tự luyện

Bài tập 1. Viết phương trình đường tròn (C), biết:

- a. Đi qua A(3; 4) và các hình chiếu của A lên các trục tọa độ.
- **b.** Có tâm nằm trên đường tròn $(C_1):(x-2)^2+y^2=\frac{4}{5}$ và tiếp xúc với hai đường thẳng $\Delta_1:x-y=0$ và $\Delta_2:x-7y=0$.
- c. Đi qua các điểm H, M, N. Biết A(0;2), B(-2;-2), C(4;-2) và H là chân đường cao kẻ từ B, M, N lần lượt là trung điểm của AB, AC.
- **d.** Tiếp xúc với hai trục tọa độ 0x, 0y đồng thời tiếp xúc ngoài với (C):

$$(x-6)^2 + (y-2)^2 = 4$$
.

Bài tập 2. Viết phương trình đường tròn (C):

- a. Có tâm nằm trên đường thẳng 4x-5y-3=0 và tiếp xúc với các đường thẳng: 2x-3y-10=0, 3x-2y+5=0.
- **b.** Qua điểm A(-1;5) tiếp xúc với các đường thẳng 3x + 4y 35 = 0, 4x + 3y + 14 = 0.
- **c.** Tiếp xúc với các đường thẳng: 3x + 4y 35 = 0, 3x 4y 35 = 0, x 1 = 0.
- **d.** Có tâm M nằm trên d: x-y+3=0, bán kính bằng 2 lần bán kính đường tròn $(C'): x^2+y^2-2x-2y+1=0$ và tiếp xúc ngoài với đường tròn (C').
- e. Tiếp xúc với hai trục tọa độ Ox,Oy đồng thời tiếp xúc ngoài với đường tròn (C'): $(x-6)^2 + (y-2)^2 = 4$

Bài tập 3. Viết phương trình đường tròn (C)

- **a.** Đi qua 3 điểm A, B, M(0;6). Trong đó A, B là giao điểm 2 đường tròn $(C_1): x^2 + y^2 2x 2y 18 = 0$ và $(C_2): (x+1)^2 + (y-2)^2 = 8$.
- $\boldsymbol{b}.$ Đi qua hai điểm $\,A\big(2;1\big),B\big(4;3\big)\,$ và có tâm thuộc đường thẳng $\,\Delta:x-y+5=0$.
- **c.** Đi qua hai điểm A(0;5), B(2;3) và có bán kính $R = \sqrt{10}$.
- **d.** Đi qua hai điểm A(1;0), B(2;0) và tiếp xúc với đường thẳng d:x-y=0.
- e. Đi qua A(-1;1),O và tiếp xúc với $d: x-y+1-\sqrt{2}=0$.

Bài tập 4. Trong mặt phẳng toạ độ đề các vuông góc Oxy,

- a. Cho điểm A(0;2) và đường thẳng d:x-2y+2=0. Tìm trên đường thẳng d hai điểm B,C sao cho tam giác ABC vuông ở B và AB=2BC.
- **b.** Cho đường thẳng d: x-3y-4=0 và đường tròn $(C): x^2+y^2-4y=0$. Tìm M thuộc d và N thuộc (C) sao cho chúng đối xứng qua A(3;1).
- **c.** Cho đường tròn $(C):(x-2)^2+(y-4)^2=\frac{25}{9}$ và đường thẳng d:5x+2y-11=0. Tìm điểm C trên d sao cho tam giác ABC có trọng tâm G nằm trên đường tròn (C) biết A(1;2),B(3;-2).
- **d.** Cho điểm A(-1;14) và đường tròn (C) có tâm I(1;-5) và bán kính R=13. Viết phương trình đường thẳng d đi qua A cắt (C) tại M,N sao cho khoảng cách từ M đến AI bằng một nửa khoảng cách từ N đến AI.
- **e.** Cho tam giác ABC có đường cao AH: $x-3\sqrt{3}=0$, phương trình 2 đường phân giác trong góc B và góc C lần lượt là: $x-\sqrt{3}y=0$ và $x+\sqrt{3}y-6=0$. Viết phương trình các cạnh của tam giác, biết bán kính đường tròn nội tiếp tam giác ABC bằng 3.

Bài tập 5. Trong mặt phẳng toạ độ đề các vuông góc Oxy,

- a. Cho đường tròn (C): $(x-1)^2 + (y-1)^2 = 4$ và đường thẳng Δ : x-3y-6=0. Tìm tọa độ điểm M nằm trên Δ , sao cho từ M vẽ được hai tiếp tuyến MA, MB (A, B là tiếp điểm) thỏa Δ ABM là tam giác vuông.
- **b**. Cho đường thẳng d: x-y+1=0 và đường tròn (C) có phương trình $x^2+y^2+2x-4y=0$. Tìm điểm M thuộc đường thẳng d sao cho từ M kẻ được hai đường thẳng tiếp xúc với đường tròn tại A và B, sao cho $\widehat{AMB}=60^0$.
- c. Cho đường tròn (C): $x^2+y^2=1$. Đường tròn (C') tâm I(2;2) cắt (C) tại hai điểm A, B sao cho $AB=\sqrt{2}$. Viết phương trình đường thẳng AB.
- **d.** Cho hai điểm A(2;1), B(0;5), đường tròn $(x-1)^2 + (y-3)^2 = 5$ và đường thẳng d: x+2y+1=0. Từ điểm M trên d kẻ hai tiếp tuyến ME, MF đến (C) (E,F là hai tiếp điểm). Biết ABEF là một hình thang, tính độ dài đoạn EF.
- e. Cho đường tròn (C): $x^2+y^2-8x-2y=0\,$ và điểm A(9;6). Viết phương trình đường thẳng qua A cắt (C) theo một dây cung có độ dài $4\sqrt{3}$.

Bài tập 6. Trong mặt phẳng với hệ tọa độ Oxy,

- a. Cho đường tròn (C): $(x-1)^2 + (y-1)^2 = 10$. Đường tròn (C') tâm I'(-2;-5) cắt (C) tại hai điểm A,B sao cho $AB = 2\sqrt{5}$. Viết phương trình đường thẳng AB.
- **b.** Cho điểm I(2;4) và hai đường thẳng $d_1:2x-y-2=0$, $d_2:2x+y-2=0$. Viết phương trình đường tròn tâm I cắt d_1 tại hai điểm A,B và cắt d_2 tại hai điểm C,D sao cho $AB+CD=\frac{16\sqrt{5}}{5}$.
- **c.** Cho tam giác ABC cân tại C, đỉnh B(-3;-3), đường tròn nội tiếp tam giác ABC có phương trình: $x^2 + y^2 2x 8 = 0$. Lập phương trình các cạnh của tam giác ABC. Biết rằng đỉnh C có tung độ dương.
- **d.** Cho điểm M(2;1) và hai đường thẳng $d_1:2x-y+7=0$, $d_2:x+y+1=0$. Viết phương trình đường tròn (C) có tâm nằm trên d_1 , đi qua điểm M và cắt d_2 tại hai điểm phân biệt A,B sao cho $AB=6\sqrt{2}$.

Bài tập 7. Trong mặt phẳng với hệ tọa độ Oxy,

- **a.** Cho đường tròn (C): $(x-1)^2 + (y+2)^2 = 9$ và đường thẳng d: 3x-4y+m=0. Tìm m để trên d có duy nhất một điểm P mà từ đó có thể kẻ được hai tiếp tuyến PA, PB tới (C) (A, B là các tiếp điểm) sao cho tam giác PAB đều.
- **b.** Cho tam giác ABC có A(-5;-2), B(-3;-4). Biết diện tích tam giác ABC bằng 8 và bán kính đường tròn ngoại tiếp bằng $2\sqrt{5}$. Tìm tọa độ điểm C có hoành độ dương.
- c. Cho tam giác ABC có đỉnh A nằm trên đường thẳng $\Delta: x+2y+1=0$, đường cao BH có phương trình x+1=0, đường thẳng BC đi qua điểm M(5;1) và tiếp xúc với đường tròn $(C): x^2+y^2=8$. Xác định tọa độ các đỉnh của tam giác ABC biết các đỉnh B, C có tung độ âm và đoạn thẳng $BC=7\sqrt{2}$.
- **d.** Cho đường tròn (C): $x^2 + (y-3)^2 = 4$ và một đường tròn (C') cắt (C) tại hai điểm phân biệt A,B. Giả sử đường thẳng AB có phương trình là x+y-2=0, hãy viết phương trình của đường tròn (C') có bán kính nhỏ nhất.
- **e.** Cho đường tròn: (C): $x^2 + y^2 x 4y 2 = 0$, A(3;-5), B(7;-3). Tìm M thuộc đường tròn (C) sao cho $MA^2 + MB^2$ đạt giá trị nhỏ nhất.

Bài tập 8. Trong mặt phẳng toạ độ đề các vuông góc Oxy

a. Cho $\triangle ABC$ có $M\left(\frac{3}{2};\frac{7}{2}\right)$ và $N\left(\frac{1}{2};\frac{5}{2}\right)$ lần lượt là trung điểm của BC và AC .

Lập phương trình đường tròn ngoại tiếp ΔABC để d: $\begin{cases} x=1 \\ y=2+\frac{4}{3}t \end{cases}$ là đường phân

giác trong của BAC.

b. cho đường tròn (K): $x^2+y^2=4$ và hai điểm A(0;2), B(0;-2). Gọi C,D $(C \neq A,B)$ là hai điểm thuộc (K) và đối xứng với nhau qua trục tung. Biết rằng giao điểm E của hai đường thẳng AC, BD nằm trên đường tròn $(K_1): x^2+y^2+3x-4=0$, hãy tìm tọa độ của E.

c. Cho tam giác ABC vuông tại A. Đỉnh B(1;1), đường thẳng AC có phương trình: 4x+3y-32=0, trên tia BC lấy điểm M sao cho BC.BM=75. Tìm đỉnh C biết bán kính của đường tròn ngoại tiếp tam giác AMC bằng $\frac{5\sqrt{5}}{2}$.

Bài tập 9. Trong mặt phẳng toạ độ đề các vuông góc Oxy,

a. Cho họ đường cong (C_m) : $x^2 + y^2 + 2mx - 2(m-1)y + 1 = 0$. Định m để (C_m) là đường tròn tìm tập hợp tâm các đường tròn khi m thay đổi.

b. Cho đường tròn $(C): (x-1)^2 + (y+2)^2 = 4$. M là điểm di động trên đường thẳng d: x-y+1=0. Chứng minh rằng từ M kẻ được hai tiếp tuyến MT_1 , MT_2 tới (C) (T_1 , T_2 là tiếp điểm) và tìm toạ độ điểm M, biết đường thẳng T_1T_2 đi qua điểm A(1;-1).

c. Viết phương trình đường tròn (C) qua A(1;3) và tâm của đường tròn (C'): $x^2 + y^2 = 1$. Biết (C) cắt (C') tại B,C sao cho diện tích tam giác ABC bằng 2,7.

d. Cho đường thẳng d: 2x + 4y - 15 = 0 và hai đường tròn có phương trình lần lượt là $(C_1): (x-1)^2 + (y-2)^2 = 9$, $(C_2): (x+1)^2 + y^2 = 1$. Tìm M trên (C_1) và N trên (C_2) sao cho MN nhận đường thẳng d là đường trung trực và N có hoành độ âm.

Bài tập 10. Trong mặt phẳng toạ độ đề các vuông góc Oxy,

a. Cho đường tròn (C): $x^2 + y^2 - 4x + 2y - 3 = 0$. Từ điểm A(5;3) kẻ được 2 tiếp tuyến với đường tròn (C). Viết phương trình đường thẳng đi qua 2 tiếp điểm.

b. Cho đường tròn (C): $x^2 + y^2 = 4$ và đường thẳng (d):x + y + 4 = 0. Tìm điểm A thuộc (d) sao cho từ A vẽ được 2 tiếp tuyến tiếp xúc (C) tại M, N thoả mãn diện tích tam giác AMN bằng $3\sqrt{3}$.

- **Bài tập 11.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho ΔABC có A(-1;1), trực tâm H(-31;41) và tâm I(16;-18) đưởng tròn ngoại tiếp ΔABC . Hãy tìm tọa độ các đỉnh B,C.
- **Bài tập 12.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho đường tròn $(C): x^2 + y^2 2x + 4y = 0$ và đường thẳng d: x y = 0. Tìm tọa độ các điểm M trên đường thẳng d, biết từ M kẻ được hai tiếp tuyến MA,MB đến (C) (A,B là các tiếp điểm) và đường thẳng AB tạo với d một góc ϕ với $\cos \phi = \frac{3}{\sqrt{10}}$.
- **Bài tập 13.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho đường tròn (C): $(x-1)^2 + (y+1)^2 = 9$ có tâm I. Viết phương trình đường thẳng Δ đi qua M(-6;3) và cắt đường tròn (C) tại hai điểm phân biệt A, B sao cho tam giác IAB có diện tích bằng $2\sqrt{2}$ và AB > 2.
- **Bài tập 14.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho đường tròn (C): $x^2 + y^2 2x + 4y 4 = 0$ có tâm I và đường thẳng Δ : $\sqrt{2}x + my + 1 \sqrt{2} = 0$. Tìm m để diện tích tam giác IAB là lớn nhất.
- **Bài tập 15.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho đường tròn $(C):(x-1)^2+(y+1)^2=25$ và M(7;3). Viếp phương trình đường thẳng qua M cắt (C) tại A, B sao cho MA = 3MB.

Bài tập 16. Trong mặt phẳng toạ độ đề các vuông góc Oxy,

- a. Cho đường tròn (C) có phương trình: $x^2 + y^2 2x 6y + 6 = 0$ và điểm M(-3;1). Gọi T_1, T_2 là các tiếp điểm của các tiếp tuyến kẻ từ M đến (C). Viết phương trình đường thẳng đi qua T_1, T_2 .
- **b.** Cho đường tròn (C): $x^2 + y^2 4x + 2y 15 = 0$ Gọi I là tâm đường tròn (C). Đường thẳng Δ đi qua M(1;-3) cắt (C) tại hai điểm A và B. Viết phương trình đường thẳng Δ biết tam giác IAB có diện tích bằng 8 và cạnh AB là canh lớn nhất.
- **Bài tập 17.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho tam giác ABC có trực tâm H. Biết đường tròn ngoại tiếp tam giác HBC là $x^2 + y^2 x 5y + 4 = 0$, H thuộc đường thẳng $\Delta: 3x y 4 = 0$, trung điểm ABlà M(2;3). Xác định toạ độ các đình của tam giác.
- Bài tập 18. Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho điểm A(1;0) và các đường tròn (C): x² + y² = 2 và (C'): x² + y² = 5. Tìm tọa độ các điểm B và C lần lượt nằm trên các đường tròn (C) và (C') để tam giác ABC có diện tích lớn nhất.
- **Bài tập 19.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho đường tròn $(C):(x-1)^2+(y-2)^2=25$. Từ E(-6;2) vẽ hai tiếp tuyến EA, EB (A, B là tiếp điểm) đến (C). Viết phương trình đường thẳng AB.
- **Bài tập 20.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho đường tròn $(C):(x-1)^2+y^2=2$ và hai điểm A(1;-1), B(2;2). Tìm tọa điểm M thuộc đường tròn (C) sao cho diện tích tam giác MAB bằng $\frac{1}{2}$.
- **Bài tập 21.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho đường tròn $(C):(x-2)^2+(y-1)^2=10$. Tìm tọa độ các đỉnh của hình vuông MNPQ, biết M trùng với tâm của đường tròn (C), hai đỉnh N, Q thuộc đường tròn (C), đường thẳng PQ đi qua E(-3;6) và $x_O>0$.

- **Bài tập 22.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho đường thẳng $\Delta: x+y+2=0$ và đường tròn $(C): x^2+y^2-4x-2y=0$. Gọi I là tâm và M thuộc đường thẳng Δ . Qua M kẻ tiếp tuyến MA,MB. Tìm M sao cho diện tích tứ giác MAIB bằng 10.
- **Bài tập 23.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho đường tròn (C): $(x-1)^2 + (y-2)^2 = 25$.
 - a. Viết phương trình tiếp tuyến của (C):
 - * Tại điểm M(4;6)

- * Xuất phát từ điểm N(-6;1)
- **b.** Từ E(-6;3) vẽ hai tiếp tuyến EA,EB (A,B là tiếp điểm) đến (C). Viết phương trình đường thẳng AB.
- **Bài tập 24.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho tam giác ABC có đỉnh A(3;-7), trực tâm là H(3;-1), tâm đường tròn ngoại tiếp là I(-2;0). Xác định toạ độ đỉnh C, biết C có hoành độ dương.
- Bài tập 25. Trong mặt phẳng toạ độ đề các vuông góc Oxy,
 - **a.** Cho hai đường thẳng $d_1: \sqrt{3}x + y = 0$ và $d_2: \sqrt{3}x y = 0$. Gọi (T) là đường tròn tiếp xúc với d_1 tại A, cắt d_2 tại hai điểm B và C sao cho tam giác ABC vuông tại B. Viết phương trình của (T), biết tam giác ABC có diện tích bằng $\frac{\sqrt{3}}{2}$ và điểm A có hoành độ dương.
 - **b.** Cho đường tròn (C): $x^2+y^2-2x+4y=0$ và đường thẳng d: x-y=0. Tìm tọa độ các điểm M trên đường thẳng d, biết từ M kẻ được hai tiếp tuyến MA, MB đến (C) (A, B là các tiếp điểm) và khoảng cách từ điểm N(1;-1) đến AB bằng $\frac{3}{\sqrt{5}}$.
- **Bài tập 26.** Trong mặt phẳng toạ độ đề các vuông góc Oxy, cho cho điểm A(1;4). Tìm hai điểm M,N lần lưọt năm trên hai đường tròn $(C_1):(x-2)^2+(y-5)^2=13$ và $(C_2):(x-1)^2+(y-2)^2=25$ sao cho tam giác MAN vuông cân tại A.

Bài tập 27. Trong mặt phẳng toạ độ đề các vuông góc Oxy,

- a. Cho các đường tròn (C_1) : $(x-1)^2 + y^2 = \frac{1}{2}$ và (C_2) : $(x-2)^2 + (y-2)^2 = 2$. Viết phương trình đường thẳng d tiếp xúc với đường tròn (C_1) và cắt đường tròn (C_2) theo dây cung có độ dài $2\sqrt{2}$.
- **b.** Cho đường tròn (C): $(x-1)^2 + (y+1)^2 = 9$ có tâm I. Viết phương trình đường thẳng Δ đi qua M(-6;3) và cắt đường tròn (C) tại hai điểm phân biệt A,B sao cho tam giác IAB có diện tích bằng $2\sqrt{2}$ và AB > 2.
- c. Cho đường tròn (C): $x^2 + y^2 4x 4y 1 = 0$ à đường thẳng d: y = mx m + 1. Đường thẳng d cắt (C) tại hai điểm A,B. Tiếp tuyến tại A và B cắt nhau tại P. Xác định các giá trị của m biết P thuộc đường thẳng d': x + 3y + 9 = 0.

Bài tập 28. Trong mặt phẳng Oxy, cho đường tròn (C): $(x-1)^2 + (y-2)^2 = 5$.

- **a.** Viết phương trình đường thẳng d đi qua điểm M(3;-1) và cắt đường tròn (C) tại hai điểm $A_{J}B$ sao cho AB=2.
- **b.** Viết phương trình đường thẳng d_1 đi qua N(2;1) sao cho d_1 cắt đường tròn (C) tại hai điểm C,D có độ dài nhỏ nhất.

Bài tập 29. Trong mặt phẳng tọa độ Oxy,

- a. Cho hình vuông ABCD, có cạnh AB đi qua điểm M(-3;-2), và $x_A > 0$. Tìm tọa độ các đỉnh của hình vuông ABCD khi đường tròn $(C):(x-2)^2+(y-3)^2=10$ nội tiếp ABCD.
- **b.** Cho tam giác ABC, có A(2,-2), B(4,0), C(3; $\sqrt{2}-1$) và (C) là đường tròn ngoại tiếp tam giác. Đường thẳng d có phương trình 4x+y-4=0. Tìm trên d điểm M sao cho tiếp tuyến qua M tiếp xúc với (C) tại N thỏa mãn S_{NAB} đạt giá trị lớn nhất?
- c. Cho đường tròn (C): $(x-1)^2 + (y+2)^2 = 1$ và đường thẳng (Δ) : 2x y + 1 = 0. Tìm điểm A thuộc đường thẳng (Δ) sao cho từ A kẻ được các tiếp tuyến

AB, AC (B, Clà các tiếp điểm) đến đường tròn (C) đồng thời diện tích tam giác ABC bằng 2,7.

d. Cho đường tròn (C): $x^2 + y^2 - 2x - 4y - 4 = 0$ có tâm I và điểm M(3;0). Viết phương trình đường thẳng Δ , biết Δ cắt (C) tại hai điểm phân biệt A, B sao cho tứ giác ABIM là hình bình hành.

Bài tập 30. Trong mặt phẳng tọa độ Oxy,

a. Cho đường tròn $(C):(x-4)^2+(y-6)^2=5$. Điểm A(2;5),B(6;5) nằm trên (C). Đinh C của tam giác ABC di động trên đường tròn (C). Tìm tọa độ trực tâm C0 của tam giác ABC biết C1 nằm trên đường thẳng C2.

b. Cho 2 đường tròn (C): $x^2 + y^2 = 9$ và (C'): $x^2 + y^2 - 18x - 6y + 65 = 0$. Từ điểm M thuộc (C') kẻ 2 tiếp tuyến với (C), gọi A,B là các tiếp điểm. Tìm tọa độ điểm M biết AB = 4,8.

c. Cho tam giác đều ABC. Đường tròn (C) nội tiếp tam giác ABC có phương trình là $\left(x-1\right)^2+\left(y-2\right)^2=5$, đường thẳng BC đi qua điểm $M\left(\frac{7}{2};2\right)$. Xác định tọa độ điểm A.

d. Cho 2 đường tròn (C_1) : $x^2 + y^2 = 13$ và (C_2) : $(x-6)^2 + y^2 = 25$. Gọi A là giao điểm của (C_1) và (C_2) với $y_A < 0$. Viết phương trình đường thẳng đi qua A và cắt (C_1) , (C_2) theo 2 dây cung có độ dài bằng nhau.

Bài tập 30. Trong mặt phẳng tọa độ Oxy,

a. Cho đường tròn (C) : $x^2+y^2-2x-2my+m^2-24=0$ có tâm I và đường thẳng Δ : mx+4y=0. Tìm m biết đường thẳng Δ cắt đường tròn (C) tại 2 điểm phân biệt A,B thoả mãn diện tích IAB=12.

b. Cho tam giác ABC có trực tâm H thuộc đường thẳng 3x-y-4=0, biết đường tròn ngoại tiếp tam giác HBC có phương trình : $x^2+y^2-x-5y+4=0$, trung điểm cạnh AB là M(2;3). Tìm tọa độ 3 đỉnh tam giác?.

c. Cho đường tròn (C): $x^2+y^2-2x+4y+2=0$. Gọi (C') là đường tròn có tâm I(5;1) và cắt đường tròn (C) tại 2 điểm M,N sao cho MN = $\sqrt{5}$. Hãy viết phương trình của (C').

d. Cho tam giác ABC có đỉnh A(1;1), trực tâm H(-1;3), tâm đường tròn ngoại tiếp I(3;-3). Xác định tọa độ các đỉnh B, C, biết rằng $x_B < x_C$.

Bài tập 31. Trong mặt phẳng tọa độ Oxy,

- **a.** Cho đường thẳng (d): x-y+1=0 và đường tròn (C): $x^2+y^2-2x+4y-4=0$. Tìm điểm M thuộc đường thẳng (d) sao cho qua M kẻ được các tiếp tuyến MA,MB đến đường tròn với A,B là các tiếp điểm đồng thời khoảng cách từ điểm $N\left(\frac{1}{2};1\right)$ đến đường thẳng đi qua AB là lớn nhất.
- **b.** Cho đường tròn (C): $(x+1)^2 + (y-2)^2 = 16$ và đường thẳng Δ có phương trình 3x + 4y 5 = 0. Viết phương trình đường tròn (C') có bán kính bằng 1 tiếp xúc ngoài với (C) sao cho khoảng cách từ tâm I của nó đến Δ là lớn nhất
- c. Cho tam giác ABC nội tiếp đường tròn $(C):(x-1)^2+(y-1)^2=10$. Điểm M(0;2) là trung điểm cạnh BC và diện tích tam giác ABC bằng 12. Tìm tọa độ các đinh của tam giác ABC.
- **d.** Cho 3 điểm M(2,-1), N(3;2), P(-3;4) và đường tròn (C): $(x-1)^2+(y+2)^2=25$. Gọi (d) qua M cắt (C) tại A,B sao cho S_{IAB} đạt giá trị lớn nhất. Hãy xác định tọa độ $E\in (d)$ sao cho EN^2+EP^2 đạt giá trị nhỏ nhất, với I là tâm đường tròn

Hướng dẫn giải

Bài tập 1.a. Gọi A₁, A₂ lần lượt là hình chiếu của A lên hai trục Ox, Oy

suy ra
$$A_1(3;0)$$
, $A_2(0;4)$

Giả sử
$$(C)$$
: $x^2 + y^2 - 2ax - 2by + c = 0$.

Do A, A₁, A₂
$$\in$$
 (C) nên ta có hệ:
$$\begin{cases} -6a - 8b + c = -25 \\ -6a + c = -9 \\ -8b + c = -16 \end{cases} \Leftrightarrow \begin{cases} a = \frac{3}{2} \\ b = 2 \\ c = 0 \end{cases}$$

Vậy phương trình (C): $x^2 + y^2 - 3x - 4y = 0$.

b. Gọi I(a;b) là tâm của đường tròn (C), vì $I \in (C_1)$ nên: $(a-2)^2 + b^2 = \frac{4}{5}$ (*)

Do (C) tiếp xúc với hai đường thẳng Δ_1, Δ_2 nên d $(I, \Delta_1) = d(I, \Delta_2)$

$$\Leftrightarrow \frac{|a-b|}{\sqrt{2}} = \frac{|a-7b|}{5\sqrt{2}} \Leftrightarrow b = -2a, a = 2b$$

- b = -2a thay vào (*) ta có được: $(a-2)^2 + 4a^2 = \frac{4}{5} \Leftrightarrow 5a^2 4a + \frac{16}{5} = 0$ phương trình này vô nghiệm
- a = 2b thay vào (*) ta có: $(2b-2)^2 + b^2 = \frac{4}{5} \Leftrightarrow b = \frac{4}{5}$, $a = \frac{8}{5}$.

Suy ra $R = d(I, \Delta_1) = \frac{4}{5\sqrt{2}}$. Vậy phương trình $(C): \left(x - \frac{8}{5}\right)^2 + \left(y - \frac{4}{5}\right)^2 = \frac{8}{25}$.

c. Ta có M(-1;0), N(1;-2), $\overrightarrow{AC} = (4;-4)$. Gọi H(x;y), ta có:

$$\begin{cases} \overrightarrow{BH} \perp \overrightarrow{AC} \Leftrightarrow \begin{cases} 4(x+2) - 4(y+2) = 0 \\ 4x + 4(y-2) = 0 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y = 1 \end{cases} \Rightarrow H(1;1)$$

Giả sử phương trình đường tròn: $x^2 + y^2 + ax + by + c = 0$.

Ba điểm M, N, H thuộc đường tròn nên ta có hệ phương trình:

$$\begin{cases} a - c = 1 \\ a - 2b + c = -5 \Leftrightarrow \begin{cases} a = -1 \\ b = 1 \end{cases} \\ c = -2 \end{cases}$$

Phương trình đường tròn: $x^2 + y^2 - x + y - 2 = 0$.

d. Đường tròn (C) có tâm I(6;2), bán kính R=2.

Gọi (C'): $(x-a)^2 + (y-b)^2 = R'^2$ thì (C') có tâm I'(a;b), bán kính R'.

Vì (C') tiếp xúc với Ox, Oy nên suy ra

$$d(I',Ox) = d(I',Oy) \Leftrightarrow |a| = |b| = R' \Leftrightarrow \begin{bmatrix} a = b \\ a = -b \end{bmatrix}$$

Hơn nữa (C') tiếp xúc với Ox, Oy và tiếp xúc ngoài với (C) nên (C') nằm bên phải trục Oy, do đó a > 0.

TH1:
$$a = b = R \Rightarrow (C') : (x - a)^2 + (y - a)^2 = a^2$$

Vì (C') tiếp xúc ngoài với (C) nên: II' = R + R'

$$\Leftrightarrow \sqrt{(a-6)^2 + (a-2)^2} = 2 + a \Leftrightarrow a = 2 \text{ hoặc } a = 18$$

Trường hợp này có 2 đường tròn là:

$$(C_1):(x-2)^2+(y-2)^2=4$$
 và $(C_2):(x-18)^2+(y-18)^2=18^2$.

TH2:
$$a = -b = R \Rightarrow (C'):(x-a)^2 + (y+a)^2 = a^2$$

Tương tự như trường hợp 1, ta có : II' = $R + R' \Leftrightarrow a = 6$

Vậy trường hợp này có 1 đường tròn là $\left(C_{3}^{'}\right):\left(x-6\right)^{2}+\left(y-6\right)^{2}=36$.

Tóm lại, có 3 đường tròn thỏa cần tìm là:

$$(x-2)^2 + (y-2)^2 = 4$$
, $(x-18)^2 + (y-18)^2 = 18^2$ và $(x-6)^2 + (y-6)^2 = 36$.

Bài tập 2.a.
$$(x-2)^2 + (y-1)^2 = \frac{81}{13}, (x+8)^2 + (y+7)^2 = \frac{25}{13}$$

b.
$$(x-2)^2 + (y-1)^2 = 25$$
, $\left(x + \frac{202}{49}\right)^2 + \left(y - \frac{349}{49}\right)^2 = \left(\frac{185}{49}\right)^2$

c.
$$\left(x - \frac{35}{3}\right)^2 + \left(y - \frac{40}{3}\right)^2 = \left(\frac{32}{3}\right)^2$$
, $\left(x - 5\right)^2 + y^2 = 16$, $\left(x + 15\right)^2 + y^2 = 256$

d. Đường tròn (C') có tâm I'(1;1), bán kính R'=1.

Gọi I là tâm và R là bán kính của đường tròn (C), ta có R = 2R' = 2 và $I\in d \Rightarrow I\big(a;a+3\big)$

Vi(C) và (C') tiếp xúc ngoài với nhau nên II' = R + R' = 3

$$\Leftrightarrow (a-1)^2 + (a+2)^2 = 9 \Leftrightarrow a^2 + a - 2 = 0 \Leftrightarrow a = 1 \text{ hoặc } a = -2.$$

•
$$a = 1 \Rightarrow I(1;4) \Rightarrow (C): (x-1)^2 + (y-4)^2 = 4$$

$$\bullet \ a = -2 \Rightarrow I \Big(-2; 1 \Big) \Rightarrow \Big(C \Big) \colon \Big(x + 2 \Big)^2 + \Big(y - 1 \Big)^2 = 4 \; .$$

e. Đường tròn (C') có tâm I'(6;2), bán kính R'=2.

Gọi $(C):(x-a)^2+(y-b)^2=R^2$ thì (C) có tâm I(a;b), bán kính R.

Vì (C) tiếp xúc với Ox,Oy nên suy ra $d(I,Ox) = d(I,Oy) \Leftrightarrow |a| = |b| = R' \Leftrightarrow a = -b$ hoặc a = b

Hơn nữa (C) và (C') tiếp xúc ngoài và nằm bên phải trục Oy, do đó a > 0.

TH1:
$$a = b = R \Rightarrow (C) : (x - a)^2 + (y - a)^2 = a^2$$

Vì (C) và (C') tiếp xúc ngoài nên : II' = R + R'
$$\Leftrightarrow \sqrt{(a-6)^2 + (a-2)^2} = 2 + a$$

 $\Leftrightarrow a = 2 \text{ hoặc } a = 18$

Trường hợp này có 2 đường tròn là:

$$(C_1):(x-2)^2+(y-2)^2=4$$
 và $(C_2):(x-18)^2+(y-18)^2=18^2$.

TH2:
$$a = -b = R \Rightarrow (C) : (x - a)^2 + (y + a)^2 = a^2$$

Tương tự như trường họp 1, II' = $R + R' \Leftrightarrow \sqrt{(a-6)^2 + (a+2)^2} = 2 + a$ $\Leftrightarrow a = 6$

Vậy, trường hợp này có 1 đường tròn là $(C_3):(x-6)^2+(y-6)^2=36$.

Tóm lại, có 3 đường tròn thỏa cần tìm là:

$$(x-2)^2 + (y-2)^2 = 4$$
, $(x-18)^2 + (y-18)^2 = 18^2$ và $(x-6)^2 + (y-6)^2 = 36$.

Bài tập 3.a. Tọa độ giao điểm của (C_1) và (C_2) là nghiệm của hệ:

$$\begin{cases} x^2 + y^2 - 2x - 2y - 18 = 0 \\ (x+1)^2 + (y-2)^2 = 8 \end{cases} \Leftrightarrow \begin{cases} x^2 + y^2 - 2x - 2y - 18 = 0 \\ x^2 + y^2 + 2x - 4y - 3 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x^2 + y^2 - 2x - 2y - 18 = 0 \\ 2x + \frac{15}{2} = y \end{cases} \Leftrightarrow \begin{cases} y = 2x + \frac{15}{2} \\ 5x^2 + 24x + \frac{93}{4} = 0 \end{cases} (*)$$

Gọi x_1, x_2 là hai nghiệm của (*), suy ra $A\left(x_1; 2x_1 + \frac{15}{2}\right)$, $B\left(x_2; 2x_2 + \frac{15}{2}\right)$.

Suy ra
$$AB^2 = 5(x_1 - x_2)^2 = 5[(x_1 + x_2)^2 - 4x_1x_2] = \frac{111}{5}$$

Gọi M là trung điểm AB, suy ra
$$\begin{cases} x_{M} = \frac{x_{1} + x_{2}}{2} = -\frac{12}{5} \\ y_{M} = x_{1} + x_{2} + \frac{15}{2} = \frac{27}{10} \end{cases} \Rightarrow M\left(-\frac{12}{5}; \frac{27}{10}\right).$$

Phương trình đường thẳng AB: 4x - 2y + 15 = 0

Phương trình đường trung trực Δ của đoạn AB: x + 2y - 3 = 0.

Gọi I là tâm của đường tròn (C), suy ra $I \in \Delta \Rightarrow I(2a+3;-a)$

Mặt khác:
$$d^2(I,AB) + \frac{AB^2}{4} = IM^2 \Leftrightarrow \frac{(10a+27)^2}{20} + \frac{111}{20} = (2a+3)^2 + (a+6)^2$$

$$\Leftrightarrow$$
 a = 1

Suy ra I(5;-1), bán kính R = IM = $5\sqrt{2}$.

Vậy, phương trình của (C): $(x-5)^2 + (y+1)^2 = 74$.

b. Gọi (C):
$$x^2 + y^2 - 2ax - 2by + c = 0$$

Vì (C) đi qua A,B nên ta có:
$$\begin{cases} -4a - 2b + c = -5 \\ -8a - 6b + c = -25 \end{cases}$$
 (1)

Mặt khác: (C) có tâm I(a;b) thuộc $\Delta: x-y+5=0 \Rightarrow a-b+5=0$ (2)

$$T\grave{v} \text{ (1) } v\grave{a} \text{ (2) } ta c\acute{o} h \hat{e}: \begin{cases} -4a - 2b + c = -5 \\ -8a - 6b + c = -25 \Leftrightarrow \\ a - b + 5 = 0 \end{cases} \begin{cases} a = 0 \\ b = 5 \\ c = 5 \end{cases}$$

Vậy phương trình (C): $x^2 + y^2 - 10y + 5 = 0$.

c. Gọi I(a;b) là tâm của đường tròn (C).

Ta có phương trình $(C):(x-a)^2+(y-b)^2=10$.

Do $A, B \in (C)$ nên ta có hệ

$$\begin{cases} a^2 + b^2 - 10b + 15 = 0 \\ a^2 + b^2 - 4a - 6b + 3 = 0 \end{cases} \Leftrightarrow \begin{cases} a^2 + b^2 - 10b + 15 = 0 \\ 4a - 4b + 12 = 0 \end{cases} \Leftrightarrow \begin{cases} a = -1 \\ b = 2 \\ a = 3 \\ b = 6 \end{cases}$$

Vậy có hai đường tròn thỏa yêu cầu bài toán là:

$$(x+1)^2 + (y-2)^2 = 10$$
 và $(x-3)^2 + (y-6)^2 = 10$.

d. Giả sử đường tròn (C) có phương trình là : $x^2 + y^2 - 2ax - 2by + c = 0$

Do A, B
$$\in$$
 (C) nên ta có:
$$\begin{cases} 1-2a+c=0\\ 4-4a+c=0 \end{cases}$$
.

(C) tiếp xúc với d nên suy ra d(I,(d)) =
$$R \Leftrightarrow \frac{|a-b|}{\sqrt{2}} = \sqrt{a^2 + b^2 - c}$$

$$\Leftrightarrow$$
 $a^2 + b^2 + 2ab - 2c = 0$ (3)

Từ
$$(1),(2),(3)$$
 ta được $a = \frac{3}{2}, b = \frac{1}{2}, c = 2$ hoặc $a = \frac{3}{2}, b = -\frac{7}{2}, c = 2$.

Vậy, có hai đường tròn thỏa yêu cầu bài toán là:

$$x^2 + y^2 - 3x - y + 2 = 0$$
 và $x^2 + y^2 - 3x + 7y + 2 = 0$.

e. Gọi (C): $x^2 + y^2 - 2ax - 2by + c = 0$ là đường tròn cần tìm

$$Vi (C) di qua O, A \Rightarrow \begin{cases} c = 0 \\ a - b = 1 \end{cases} (1)$$

Do (C) tiếp xúc với
$$d: x-y+1-\sqrt{2}=0 \Rightarrow d(I,(d))=R$$

$$\Leftrightarrow \frac{\left|a-b+1-\sqrt{2}\right|}{\sqrt{2}} = \sqrt{a^2+b^2-c} \quad (2)$$

Từ (1) và (2) giải hệ thu được a=0,b=1,c=0 hoặc a=1,b=0,c=0.

Vậy có hai đường tròn thỏa mãn là : $x^2 + y^2 - 2y = 0$ và $x^2 + y^2 - 2x = 0$.

Bài tập 4.a. Ta có $AB \perp d$ nên AB có phương trình : 2x + y - 2 = 0.

Tọa độ điểm B là nghiệm của hệ: $\begin{cases} x-2y+2=0 \\ 2x+y-2=0 \end{cases} \Rightarrow B\left(\frac{2}{5};\frac{6}{5}\right).$

Suy ra
$$AB = \frac{2\sqrt{5}}{5} \Rightarrow BC = \frac{AB}{2} = \frac{\sqrt{5}}{5}$$
.

Phương trình đường tròn tâm B, bán kính BC = $\frac{\sqrt{5}}{5}$ là:

$$\left(x - \frac{2}{5}\right)^2 + \left(y - \frac{6}{5}\right)^2 = \frac{1}{5}.$$

Tọa độ điểm C là nghiệm của hệ: $\begin{cases} x - 2y + 2 = 0 \\ \left(x - \frac{2}{5}\right)^2 + \left(y - \frac{6}{5}\right)^2 = \frac{1}{5} \end{cases} \Leftrightarrow \begin{bmatrix} x = 0, y = 1 \\ x = \frac{4}{5}, y = \frac{7}{5} \end{bmatrix}$

Vậy, B
$$\left(\frac{2}{5};\frac{6}{5}\right)$$
, C $\left(0;1\right)$ hoặc B $\left(\frac{2}{5};\frac{6}{5}\right)$, C $\left(\frac{4}{5};\frac{7}{5}\right)$ thỏa yêu cầu bài toán .

b. Vì $M \in d \Rightarrow M(3m+4;m)$. Do N đối xứng với M qua A nên N(2-3m;2-m)

$$Vi \ N \in \left(C \right) \ n \hat{e} n \ \left(2 - 3m \right)^2 + \left(2 - m \right)^2 - 4 \left(2 - m \right) = 0 \\ \Leftrightarrow 10m^2 - 12m = 0$$

$$\Leftrightarrow$$
 m = 0, m = $\frac{6}{5}$

Vậy có hai cặp điểm thỏa yêu cầu bài toán: M(4;0), N(2;2) và $M(\frac{38}{6}, \frac{6}{6})$ $N(\frac{8}{4}, \frac{4}{6})$

$$M\left(\frac{38}{5};\frac{6}{5}\right), N\left(-\frac{8}{5};\frac{4}{5}\right).$$

c. Ta có: $C \in d$ nên ta có tọa độ $C\left(c; \frac{11-5c}{2}\right)$

Tọa độ trong tâm $G\left(\frac{c+4}{3};\frac{11-5c}{6}\right)$. Do G nằm trên đường tròn (C) nên ta có

phương trình:
$$\frac{(c-2)^2}{9} + \frac{(5c+13)^2}{36} = \frac{25}{9} \Leftrightarrow 29c^2 + 114c + 85 = 0 \Leftrightarrow c = -1, c = -\frac{85}{29}$$

Vậy có hai điểm C thỏa yêu cầu bài toán là: $C_1(-1;8)$, $C_2\left(-\frac{85}{29};\frac{372}{29}\right)$.

d. Cách 1: $P_{A/(C)} = \overrightarrow{AM}.\overrightarrow{AN} = AI^2 - R^2 = 466 > 0$, suy ra A nằm ngoài đường tròn. Hon nữa $P_{A/(C)} = 2AM^2 = 2MN^2 = 466 \Rightarrow MN = \sqrt{233}$.

Bài toán trở thành: "V iết phương trình đường thẳng qua A cắt đường tròn (C) theo dây cung $MN = \sqrt{233}$ ".

Cách 2: Giả sử M(x;y) vì M thuộc đường tròn nên ta có:

$$(x-1)^2 + (y+5)^2 = 169$$

Vì M là trung điểm của AN nên ta có: N(2x+1;2y-14)

Điểm N thuộc đường tròn nên ta có: $(2x)^2 + (2y - 9)^2 = 169$.

Ta có hệ:
$$\begin{cases} (x-1)^2 + (y+5)^2 = 169 \\ (2x)^2 + (2y-9)^2 = 169 \end{cases}$$

e. I $\left(3;\sqrt{3}\right)$ là tọa độ tâm đường tròn nội tiếp tam giác ABC .

Viết phương trình BC đi qua điểm B(b;c) và vuông góc với AH, tọa độ B cần tìm thỏa $B \in d: x - \sqrt{3}y = 0$ và d(I;BC) = r = 3

Bài tập 5.a. Đường tròn (C) có tâm I(1; 1), bán kính R = 2.

Vì Δ ABM vuông và IM là đường phân giác của góc \widehat{AMB} nên \widehat{AMI} = 45^0 Trong tam giác vuông IAM, ta có: IM = $2\sqrt{2}$, suy ra M thuộc đường tròn tâm I bán kính R' = $2\sqrt{2}$.

Mặt khác $M ∈ \Delta$ nên M là giao điểm

của Δ và (I,R'). Suy ra tọa độ của M là nghiệm của hệ:

$$\begin{cases} x - 3y - 6 = 0 \\ (x - 1)^2 + (y - 1)^2 = 8 \end{cases} \Leftrightarrow \begin{cases} x = 3y + 6 \\ (3y + 5)^2 + (y - 1)^2 = 8 \end{cases}$$
$$\Leftrightarrow \begin{cases} x = 3y + 6 \\ 5y^2 + 14y + 9 = 0 \end{cases} \Leftrightarrow \begin{cases} y = -1, x = 3 \\ y = -\frac{9}{5}, x = \frac{3}{5} \end{cases}$$

Vậy, có hai điểm $M_1(3;-1), M_2(\frac{3}{5};-\frac{9}{5})$ thỏa yêu cầu bài toán.

b. Đường tròn có tâm I(-1;2) và bán kính: $R = \sqrt{5}$.

Tam giác AMB là tam giác đều và MI là phân giác góc \widehat{AMB} nên $\widehat{IMA} = 30^{\circ}$

Do đó: MI =
$$\frac{IA}{\sin 30^0} = 2\sqrt{5} \Rightarrow IM^2 = 20$$

Do $M \in d$ nên suy ra $M(x_0; x_0 + 1)$

Khi đó ta có:
$$MI^2 = (x_0 + 1)^2 + (x_0 - 1)^2 = 20 \Leftrightarrow x_0^2 = 9 \Leftrightarrow x_0 = 3, x_0 = -3$$

Vậy có 2 điểm M thỏa mãn điều kiện bài toán: M(3;4), M(-3;-2)

- c. Ta có $OA^2 + OB^2 = AB^2 = 2 \Rightarrow \Delta OAB$ vuông tại 0. Mặt khác 0I là đường trung trực của đoạn thẳng AB nên A,B thuộc các trục toạ độ. Vậy:
- A(1;0), B(0;1), phương trình đường thẳng AB: x+y-1=0
- A(-1;0), B(0;-1), phương trình đường thẳng AB: x+y+1=0.
- e. Tọa độ tâm đường tròn là I(4;1);
bán kính $R=\sqrt{17}$

Gọi Δ là đường thẳng qua A và cắt đường tròn tại M,N phương trình của Δ có dạng là: y = k(x-9)+6.

Gọi H là trung điểm MN ,ta có: IH =
$$\sqrt{R^2 - \left(\frac{MN}{2}\right)^2} = \sqrt{17 - 12} = \sqrt{5} = d(I; \Delta)$$

$$\Leftrightarrow \frac{\left|4k-1-9k+6\right|}{\sqrt{k^2+1}} = \sqrt{5} \Leftrightarrow \begin{bmatrix} k=2 \Rightarrow y=2x-12 \\ k=-\frac{1}{2} \Rightarrow y=-\frac{1}{2}x+\frac{21}{2} \end{bmatrix}$$

Bài tập 6. a. Đường tròn (C) có tâm I(1;1), bán kính $R = \sqrt{10}$. Độ dài $II' = 3\sqrt{5}$

Gọi H là giao điểm của II' và AB, suy ra H là trung điểm AB nên $AH = \sqrt{5}$.

Do II' \perp AB nên ta có: IH = $\sqrt{IA^2 - AH^2} = \sqrt{5}$

$$\Rightarrow I'H = 2\sqrt{5} \Rightarrow \overrightarrow{IH} = \frac{1}{3}\overrightarrow{II'}$$

$$\overrightarrow{IH} = (x_H - 1; y_H - 1), \overrightarrow{II'} = (-3; -6)$$

$$\text{Ta c\'o: } \begin{cases} x_H - 1 = -1 \\ y_H - 1 = -2 \end{cases} \Leftrightarrow \begin{cases} x_H = 0 \\ y_H = -1 \end{cases}$$

$$\Rightarrow$$
 H(0;-1). Vì AB đi qua H và

nhận
$$\overrightarrow{n} = -\frac{1}{3}\overrightarrow{II'} = (1;2)$$
 làm VTPT

Phương trình AB là: x + 2y + 2 = 0.

TH 2: H không nằm trong đoạn II', suy ra I'H = $4\sqrt{5} \Rightarrow \overrightarrow{IH} = \frac{1}{4}\overrightarrow{II'}$

$$\text{Hay } \begin{cases} x_{\text{H}} - 1 = -\frac{3}{4} \\ y_{\text{H}} - 1 = -\frac{3}{2} \end{cases} \Leftrightarrow \begin{cases} x_{\text{H}} = \frac{1}{4} \\ y_{\text{H}} = -\frac{1}{2} \end{cases} \Rightarrow H\left(\frac{1}{4}; -\frac{1}{2}\right).$$

Phương trình $AB: x + 2y + \frac{3}{4} = 0$.

b. Gọi R là bán kính đường tròn cần tìm và F,G lần lượt là hình chiếu vuông góc của I trên d₁ và d₂. Dễ thấy IF = $\frac{2\sqrt{5}}{5}$, IG = $\frac{6\sqrt{5}}{5}$.

Lại có: FB =
$$\sqrt{R^2 - IF^2} = \sqrt{R^2 - \frac{4}{5}}$$
, GD = $\sqrt{R^2 - IG^2} = \sqrt{R^2 - \frac{36}{5}}$

Theo bài toán:
$$AB + CD = \frac{16\sqrt{5}}{5} \Leftrightarrow 2(FB + GD) = \frac{16\sqrt{5}}{5} \Rightarrow R$$

d. Kẻ IH
$$\perp$$
 AB \Rightarrow AH = $3\sqrt{2}$. I \in d₁ nên I(x;7 + 2x)

Lại có: R = IM = IA và tam giác IAH vuông tại H nên có: $IM^2 = IH^2 + AH^2$

Trong đó IH =
$$d(I;d_1) = \frac{|8+3x|}{\sqrt{2}}$$

Bài tập 7. a. Đường tròn (C) có tâm và bán kính lần lượt là: I(1;-2); R=3.

Do tam giác PAB đều nên $\widehat{API} = 30^0 \Rightarrow IP = 2IA = 2R = 6$. Suy ra P thuộc vào đường tròn (C') có tâm I và bán kính R' = 6.

Mà $P \in d$ nên P chính là giao điểm của đường thẳng d và đường tròn (C')

Suy ra trên d có duy nhất điểm P thỏa mãm yêu cầu bài toàn khi và chỉ khi đường thẳng d tiếp xúc với đường tròn (C') tại P, hay là

$$d(I,d) = 6 \iff m = 19, m = -41.$$

b. Ta có phương trình AB: x + y + 7 = 0

Gọi M là trung điểm AB, tọa độ M $\left(-4;-3\right)$. Phương trình đường trung trực AB là: x-y+1=0 .

Gọi C(c;d) và c>0 là tọa độ cần tìm.

Theo bài toán, ta có: $AB.d(C;AB) = 16 \Leftrightarrow |c+d+7| = 8 (1)$

Gọi I là tâm đường tròn ngoại tiếp, suy ra: I(x;x+1) và $IA = R = 2\sqrt{5}$ $\Leftrightarrow x^2 + 8x + 7 = 0 \Leftrightarrow x = -7$ hoặc x = -1

TH1:
$$x = -7 \Rightarrow I(-7; -6)$$
.

Phương trình đường tròn (C) ngoại tiếp $\triangle ABC: (x+7)^2 + (y+6)^2 = 20$

 $C \in (C)$ nên có : $(c+7)^2 + (d+6)^2 = 20$, trường hợp này không thỏa vì c > 0

TH2:
$$x = -1 \Rightarrow I(-1;0)$$
.

Phương trình đường tròn (C) ngoại tiếp $\triangle ABC$: $(x+1)^2 + y^2 = 20$

$$C \in (C)$$
 nên có : $(c+7)^2 + d^2 = 20$ (2)

Tọa độ điểm C là nghiệm của hệ phương trình (1) và (2)

$$\begin{cases} \left| c+d+7 \right| = 8 \\ \left(c+7 \right)^2 + d^2 = 20 \end{cases} \Leftrightarrow \begin{cases} c+d=1 \ \lor \ c+d=-15 \\ \left(c+7 \right)^2 + d^2 = 20 \end{cases} \Leftrightarrow \begin{cases} c=3 \\ d=-2 \end{cases}$$

Vậy, tọa độ C cần tìm là C(3;-2).

c. Gọi điểm $B(-1;y_0)$, từ đó viết được phương trình đường thẳng BC là: $(y_0-1)(x-5)+6(y-1)=0$

BC tiếp xúc với (C)
$$\Leftrightarrow$$
 d(I;BC) = R \Leftrightarrow $\frac{\left|-5(y_0-1)-6\right|}{\sqrt{(y_0-1)^2+36}} = 2\sqrt{2}$

$$\Leftrightarrow$$
 $17y_0^2 + 26y_0 - 295 = 0$, kết hợp BC = $7\sqrt{2}$, ta tìm được $y_0 = -5$

Vậy, B
$$(-1;-5) \Rightarrow C(-8;-12)$$
, A $(23;-12)$

d. Đường tròn (C') cắt (C) tại hai điểm phân biệt A,B nên AB là 1 dây cung của đường tròn (C'), khi đó đường kính nhỏ nhất của đường tròn (C') chính là AB.

e. (C) có tâm
$$I\left(\frac{1}{2};2\right)$$
. Hon nữa: $MA^2 + MB^2 = \frac{AB^2}{2} + 2MN^2$

 $MA^2 + MB^2$ nhỏ nhất khi MN nhỏ nhất, điều này xảy ra khi M là giao điểm của đường thẳng IN và $(C) \Rightarrow M(2;0)$.

Bài tập 8. Gọi N' là điểm đối xứng của N qua phân giác trong góc A \Rightarrow N' $\left(\frac{3}{2};\frac{5}{2}\right)$

Phương trình AB đi qua N' nhận vecto chỉ phương MN có phương trình:

$$x-y+1=0 \ . \ \ \text{Tọa} \ \ \text{độ} \ \ A \ \ \text{thỏa} \ \ \text{hệ} \ \begin{cases} x=1 \\ y=2+\frac{4}{3}t \\ x-y+1=0 \end{cases} \Rightarrow A\Big(1;2\Big) \ . \ \ \text{Từ dây, tìm được}$$

B(3;4),C(0;3). Đường tròn:
$$\left(x-\frac{3}{2}\right)^2 + \left(y-\frac{7}{2}\right)^2 = \frac{5}{2}$$

b. Vì C,D thuộc đường tròn (K) mà lại đối xứng với nhau qua trục tung nên tọa độ 2 điểm có dạng là: C(a;b), D(-a;b) $(a,b \ne 0)$ Ta có: $a^2 + b^2 = 4$ (1).

Phương trình đường thẳng: AC:(b-2)x-a(y-2)=0,

BD:
$$(b+2)x+a(y+2)=0$$

Tọa độ điểm E là nghiệm của hệ:
$$\begin{cases} (b-2)x - a(y-2) = 0 \\ (b+2)x + a(y+2) = 0 \end{cases} \Leftrightarrow \begin{cases} x = -\frac{2a}{b} \\ y = \frac{4}{b} \end{cases}$$

Vì
$$E \in (K_1)$$
 nên có: $4\left(\frac{a}{b}\right)^2 + \frac{16}{b^2} - 6\left(\frac{a}{b}\right) - 4 = 0 \iff 4a^2 - 4b^2 - 6ab + 16 = 0$ (2)

Từ (1) và (2) suy ra
$$8a^2 - 6ab = 0 \Leftrightarrow 4a = 3b$$

c. Cách 1: Toạ độ đỉnh A (5;4). Gọi E là giao điểm của đường tròn ngoại tiếp của tam giác AMC với BA thì ta có $\overrightarrow{BA}.\overrightarrow{BE} = \overrightarrow{BM}.\overrightarrow{BC} = 75$ (vì M nằm trên tia BC),

tìm được toạ độ của E là E(13; 10). Tam giác AEC vuông tại A nên C là giao của đường tròn tâm E, bán kính $r = 5\sqrt{5}$ với đường thẳng AC. Toạ độ của C là nghiệm của hệ: $\begin{cases} 4x + 3y - 32 = 0 \\ \left(x - 13\right)^2 + \left(y - 10\right)^2 = \left(5\sqrt{5}\right)^2 \implies C\left(8;0\right) \text{ hoặc } C\left(2;8\right). \end{cases}$

Cách 2: Gọi I là tâm đường tròn ngoại tiếp tam giác AMC.

Vì B nằm ngoài đường tròn (I) nên ta có: BM.BC = BM.BC (1)

Ta có:
$$P_{(B/(I))} = \overrightarrow{BM}.\overrightarrow{BC} = BI^2 - R^2 \text{ với } R = \frac{5\sqrt{2}}{2}$$
 (2)

Từ (1) và (2) suy ra
$$BI^2 - R^2 = 75 \Leftrightarrow BI^2 = \frac{425}{4}$$

Phương trình AB: 3x - 4y + 1 = 0 và tìm được A(5;4)

Gọi
$$I(x;y)$$
 ta có:
$$\begin{cases} AI^2 = \frac{125}{4} \\ BI^2 = \frac{425}{4} \end{cases} \Rightarrow \begin{bmatrix} I\left(\frac{13}{2};2\right) \\ I\left(\frac{7}{2};6\right) \end{cases}$$

Phương trình đường trung trực IN của AC \Rightarrow AC \cap IN = N \Rightarrow C(8;0) hoặc C(2;8)

Cách 3: Từ M dựng MK \perp BC, (K \in AB)

Gọi I là trung điểm KC ⇒ I là tâm đường tròn ngoại tiếp tam giác AMC (Do tứ giác AKCM nội tiếp)

Ta có ΔABC đồng dạng ΔMBK nên : $\frac{AB}{MR} = \frac{BC}{BK} \Leftrightarrow AB.BK = MB.BC = 75$

Phương trình đường thẳng AB qua điểm B(1;1) và có VTPT (3;-4): 3x - 4y + 1 = 0.

Vì A là giao điểm của AB và AC nên $A(5;4) \Rightarrow AB = 5 \Rightarrow BK = 15 \Rightarrow AK = 10$ \Rightarrow AC = $\sqrt{4R^2 - AK^2} = 5$

Gọi
$$C\left(t; \frac{32-4t}{3}\right) \in AC$$
 và $AC = 5 \Leftrightarrow \left(t-5\right)^2 + \left(\frac{20-4t}{3}\right)^2 = 25 \Leftrightarrow t=2 \text{ hoặc } t=8$
Vây $C(8:0)$ hoặc $C(2:8)$

Vậy, C(8;0) hoặc C(2;8)

Bài tập 9. a. $x^2 + y^2 + 2mx - 2(m-1)y + 1 = 0$ có a = -m, b = m-1, c = 1

Để để $\left(C_{m}\right)$ là đường tròn thì $a^{2}+b^{2}-c=m^{2}+\left(m-1\right)^{2}-1>0$

 $\Leftrightarrow 2m^2 - 2m > 0 \Leftrightarrow m < 0 \text{ hoặc } m > 1.$

Tâm
$$I: \begin{cases} x = -m \\ y = m - 1 \end{cases} \Rightarrow x + y + 1 = 0$$
. Điều kiện: $\begin{bmatrix} m < 0 \\ m > 1 \end{cases} \Rightarrow \begin{bmatrix} x > 0 \\ x < -1 \end{bmatrix}$

Vậy, tập hợp tâm I là đường thẳng x+y+1=0 với $\begin{bmatrix} x>0\\x<-1 \end{bmatrix}$

b. Đường tròn (C) có tâm I(1;-2) bán kính r=2

M nằm trên d nên M(m; m + 1) \Rightarrow IM = $\sqrt{(m-1)^2 + (m+3)^2} = \sqrt{2(m+1)^2 + 8}$

Vì IM > 2 nên M nằm ngoài (C), do đó qua M kẻ được 2 tiếp tuyến tới (C).

Gọi J là trung điểm IM nên tọa độ điểm $J\!\left(\frac{m+1}{2};\frac{m-1}{2}\right)$. Đường tròn $\left(T\right)$ đường

kính IM có tâm J bán kính $r_1 = \frac{IM}{2}$ có phương trình $\left(T\right)$ là:

$$\left(x - \frac{m+1}{2}\right)^2 + \left(y - \frac{m-1}{2}\right)^2 = \frac{2\left(m+1\right)^2 + 8}{4}$$

Từ M kẻ được 2 tiếp tuyến MT_1, MT_2 đến (C), nên T_1, T_2 là hai giao điểm của (C) và (T).

 $\text{Tọa độ } T_1\text{, } T_2 \text{ thỏa mãn hệ: } \begin{cases} \left(x-1\right)^2 + \left(y+2\right)^2 = 4 \\ \left(x-\frac{m+1}{2}\right)^2 + \left(y-\frac{m-1}{2}\right)^2 = \frac{2\left(m+1\right)^2 + 8}{4} \end{cases}$

$$\Rightarrow$$
 $(T_1 T_2): (m-1)x+(m+3)y+m+3=0$

$$\text{Vì } A \in \left(T_1 \ T_2\right) \text{ nên có: } m-1-m-3+m+3=0 \Leftrightarrow m=1 \Rightarrow M\left(1;2\right)$$

c. Gọi
$$I(a;b)$$
 là tọa độ tâm của (C) có bán kính $R = \sqrt{\left(a-1\right)^2 + \left(b-3\right)^2}$

(C) cắt (C') tại B,C nên có hệ:
$$\begin{cases} x^2 + y^2 = 1 \\ (x - a)^2 + (y - b)^2 = (a - 1)^2 + (b - 3)^2 \end{cases}$$

$$\Rightarrow ax + by - a - 3b + \frac{9}{2} = 0 \text{ (BC)} \Rightarrow d(A; BC) = \frac{9}{2\sqrt{a^2 + b^2}}$$

Hơn nữa, BC =
$$\frac{2S_{ABC}}{d(A;BC)} = \frac{6}{5}OI$$

Gọi H là giao điểm của OI và BC \Rightarrow BH = $\frac{BC}{2} = \frac{3}{5}$ OI

Hơn nữa: $IB = IO \Rightarrow S_{BOI} = \frac{1}{2}IK.OB \Rightarrow IK = \frac{3}{5}OI^2$ với K là trung điểm OB

Xét ΔIKO vuông tại K ta có : $KI^2 + OK^2 = OI^2 \Rightarrow OI^2 = \frac{5}{2}$ hoặc $OI^2 = \frac{5}{18}$

Nếu
$$OI^2 = \frac{5}{2} \Rightarrow AI^2 = \frac{5}{2}$$
, ta có hệ:
$$\begin{cases} a^2 + b^2 = \frac{25}{4} \\ (a-1)^2 + (b-3)^2 = \frac{25}{4} \end{cases}$$

d. Nếu ta gọi M(a;b) và N(c;d) thì ta có bốn ẩn số cần phải tìm ra .

 $\left(d\right) \text{ là đường trung trực } MN \text{ } \text{nên có } \begin{cases} \overrightarrow{MN}.\overrightarrow{n_d} = 0 \\ I \in \left(d\right) \end{cases} \text{, trong đó } I \text{ là trung điểm } MN \text{ .}$

Hơn nữa $M(a;b) \in (C_1)$ và $N(c;d) \in (C_2)$

Ta có hệ:
$$\begin{cases} \left(a-1\right)^2 + \left(b-2\right)^2 = 9 \\ \left(c+1\right)^2 + d^2 = 1 \\ 2\left(a-c\right) + 4\left(b-d\right) = 0 \\ a+c+2\left(b+d\right) - 15 = 0 \end{cases} \Leftrightarrow \begin{cases} \left(a-1\right)^2 + \left(b-2\right)^2 = 9 \\ \left(c+1\right)^2 + d^2 = 1 \\ a = \frac{15}{2} - 2d \\ c = \frac{15}{2} - 2b \end{cases}$$

Bài tập 10. a. Đường tròn (C) có tâm I(2;-1) và bán kính $R=2\sqrt{2}$. Gọi T_1,T_2 là 2 tiếp điểm mà tiếp tuyến qua A kẻ đến (C).

Nhận xét: hai tiếp điểm T_1, T_2 cùng nhìn đoạn IA dưới 1 góc vuông, nên T_1 , T_2 thuộc đường tròn đường kính IA . Vậy, đường tròn (C) và đường tròn đường kính IA có 2 điểm chung T_1, T_2 . Gọi (C') là đường tròn đường kính IA .

$$\begin{split} \mathbf{M}\big(x;y\big) &\in \big(\mathbf{C}^{\prime}\big) \Leftrightarrow \overrightarrow{\mathrm{IM}} \perp \overrightarrow{\mathrm{AM}} \Leftrightarrow \overrightarrow{\mathrm{IM}}.\overrightarrow{\mathrm{AM}} = 0 \quad (1) \\ \overrightarrow{\mathrm{IM}} &= \big(x-2 \ ; \ y+1\big), \quad \overrightarrow{\mathrm{AM}} = \big(x-5 \ ; \ y-3\big) \\ (1) &\Leftrightarrow \big(x-2\big)\big(x-5\big) + \big(y+1\big)\big(y+3\big) = 0 \Leftrightarrow x^2 + y^2 - 7x - 2y + 7 = 0 \\ T_1, \quad T_2 \quad \text{thỏa hệ} \quad \begin{cases} x^2 + y^2 - 4x + 2y - 3 = 0 \\ x^2 + y^2 - 7x - 2y + 7 = 0 \end{cases} \Rightarrow 3x + 4y - 10 = 0 \\ V_1^2, \quad T_1^2, \quad 3x + 4y - 10 = 0. \end{split}$$

$$\mathbf{b}. \text{ Diểm } \mathbf{A} \in \mathbf{d} \Rightarrow \mathbf{A}\big(\mathbf{a}; -4 - \mathbf{a}\big). \text{ Dặt } \widehat{\mathbf{MAN}} = 2\alpha, \quad \mathbf{OA} = \mathbf{x} > 0 \\ \mathbf{b}. \text{ Diểm } \mathbf{A} \in \mathbf{d} \Rightarrow \mathbf{A}\big(\mathbf{a}; -4 - \mathbf{a}\big). \text{ Dặt } \widehat{\mathbf{MAN}} = 2\alpha, \quad \mathbf{OA} = \mathbf{x} > 0 \\ \mathbf{Ta} \text{ có: } \sin\alpha = \frac{\mathbf{OM}}{\mathbf{OA}} = \frac{2}{\mathbf{OA}}, \quad \cos\alpha = \frac{\mathbf{AM}}{\mathbf{OA}} \Rightarrow \sin2\alpha = \frac{4\sqrt{x^2 - 4}}{x^2} \\ \mathbf{S}_{AMN} = \frac{1}{2}\Big(x^2 - 4\Big)\frac{4\sqrt{x^2 - 4}}{x^2}. \quad \mathbf{Với } \mathbf{S}_{AMN} = 3\sqrt{3} \quad \Leftrightarrow 4\Big(x^2 - 4\Big)^3 = 27x^4 \\ \Leftrightarrow x^2 = 16 \Rightarrow x = 4 \\ \mathbf{Với } \mathbf{OA} = 4 \Leftrightarrow \mathbf{a}^2 + \big(4 + \mathbf{a}\big)^2 = 4 \quad \Leftrightarrow \mathbf{a} = -4 \text{ hoặc } \mathbf{a} = 0 \\ \mathbf{Vậy}, \text{ tọa độ điểm } \mathbf{A} \text{ cần tìm } \mathbf{A}\big(-4;0\big) \text{ hoặc } \mathbf{A}\big(0; -4\big) \end{split}$$

Bài tập 11. Gọi A' là điểm đối xứng của A qua tâm $I \Rightarrow A'(33;-37)$

Ta thấy, BHCA' là hình bình hành nên HA' cắt BC tại trung điểm M của BC, khi đó (BC): 3x-4y+5=0

Phương trình đường tròn ngoại tiếp tam giác ABC:

$$(x-16)^2 + (y+18)^2 = 650$$

Tọa độ B,C là nghiệm hệ phương trình: $\begin{cases} 3x - 4y + 5 = 0 \\ \left(x - 16\right)^2 + \left(y + 18\right)^2 = 650 \end{cases}$

Vậy, B(-3;-1), C(5;5) hoặc ngược lại là tọa độ cần tìm.

Bài tập 12. Đường tròn (C) có tâm I(1;-2), bán kính $R = \sqrt{5}$.

Gọi M(m;m) và $T(x_0;y_0)$ là tiếp điểm vẽ từ M đến (C).

$$\text{Khi đ\'o, ta c\'o} \begin{cases} \overrightarrow{\text{IT.MT}} = 0 \\ T \in \left(C\right) \end{cases} \Leftrightarrow \begin{cases} \left(x_0 - 1\right)\left(x_0 - m\right) + \left(y_0 + 2\right)\left(y_0 - m\right) = 0 \\ x_0^2 + y_0^2 - 2x_0 + 4y_0 = 0 \end{cases}$$

 \Leftrightarrow m = 0, m = -1

$$\Leftrightarrow \begin{cases} x_0^2 + y_0^2 - (m+1)x_0 - (m-2)y_0 - m = 0 \\ x_0^2 + y_0^2 - 2x_0 + 4y_0 = 0 \end{cases} \Rightarrow (m-1)x_0 + (m+2)y_0 + m = 0.$$

Suy ra phương trình AB:(m-1)x+(m+2)y+m=0.

Mặt khác AB tạo với d một góc φ với $\cos \varphi = \frac{3}{\sqrt{10}}$ nên ta có:

$$\frac{\left|m-1-m-2\right|}{\sqrt{2}\sqrt{\left(m-1\right)^2+\left(m+2\right)^2}} = \frac{3}{\sqrt{10}} \Leftrightarrow \sqrt{5} = \sqrt{2m^2+2m+5} \Leftrightarrow m^2+m=0$$

Thử lại ta thấy cả hai trường họp này ta đều IM = R hay $M \in (C)$.

Vậy, không có điểm M thỏa yêu cầu bài toán.

Bài tập 13. Đường tròn (C) có tâm I(1;-1), bán kính R=3.

Gọi H là trung điểm của AB

Suy ra IH
$$\perp$$
 AB \Rightarrow S _{Δ AIB} = $\frac{1}{2}$ HI.AB = $2\sqrt{2}$
 \Rightarrow AB = $\frac{4\sqrt{2}}{HI}$. Hon nữa: AH² + HI² = IA²
 $\Rightarrow \frac{AB^2}{4}$ + HI² = 9 $\Leftrightarrow \frac{8}{HI^2}$ + HI² = 9

$$\Leftrightarrow HI^4 - 9HI^2 + 8 = 0 \Leftrightarrow \begin{bmatrix} HI = 1 \Rightarrow AB = 4\sqrt{2} \\ HI = 2\sqrt{2} \Rightarrow AB = 2 \end{bmatrix}$$

Vì Δ đi qua M nên phương trình Δ có dạng: ax + by + 6a - 3b = 0

$$HI = 1 \Rightarrow d(I, \Delta) = 1 \Leftrightarrow \frac{|7a - 4b|}{\sqrt{a^2 + b^2}} = 1 \Leftrightarrow 15b^2 - 56ab + 48a^2 = 0 \Leftrightarrow b = \frac{4}{3}a, b = \frac{12}{5}a$$

Vậy $\Delta: 3x + 4y + 6 = 0$ hoặc $\Delta: 5x + 12y - 6 = 0$ là đường thẳng cần tìm.

Bài tập 14.

$$S_{IAB} = \frac{1}{2}IA.IB.\sin\widehat{AIB} = \frac{9}{2}\sin\widehat{AIB} \le \frac{9}{2}$$

Suy ra $\max S_{IAB} = \frac{9}{2}$ khi và chỉ khi

$$\sin \widehat{AIB} = 1 \iff \widehat{AIB} = 90^{\circ}$$
.

Gọi H là hình chiếu của I lên Δ khi đó

$$\widehat{AIH} = 45^{\circ} \Rightarrow IH = IA.\cos 45^{\circ} = \frac{3}{\sqrt{2}}$$

Ta có d(I;
$$\Delta$$
) = IH $\Leftrightarrow \frac{|1-2m|}{\sqrt{2+m^2}} = \frac{3}{\sqrt{2}} \Leftrightarrow m^2 + 8m + 16 = 0 \Leftrightarrow m = -4$

Vậy, với m = -4 thỏa mãn yêu cầu bài toán.

Bài tập 15. Dễ thấy M nằm ngoài đường tròn, gọi h là khoảng cách từ I đến đường thẳng cần tìm

$$Ta \text{ c\'o: } \begin{cases} h^2 + MB^2 = R^2 = 25 \\ h^2 + 4MB^2 = IM^2 = 52 \end{cases} \Rightarrow h = 4 \text{ } M \in d \Rightarrow d : a(x-7) + b(y-3) = 0$$

Vì I cách d một khoảng bằng h nên $\frac{\left|-6a-4b\right|}{\sqrt{a^2+b^2}}=4 \Leftrightarrow a=0$ hoặc $a=-\frac{12}{5}b$

Suy ra y = 3 hoặc 12x - 5y - 69 = 0.

Bài tập 16. a. Đường tròn (C) có tâm I(1;3) và bán kính R = 2. Do

 $IM=2\sqrt{5}>R \text{ nên điểm }M\text{ ở ngoài đường tròn (C). Gọi }T\big(x_0;y_0\big)\text{ là tiếp điểm của tiếp tuyến kẻ từ }M\,.$

Ta có:
$$\begin{cases} T \in (C) \\ MT \perp IT \end{cases} \Leftrightarrow \begin{cases} T \in (C) \\ \overrightarrow{MT.IT} = 0 \end{cases} \text{ trong d\'o: } \begin{cases} \overrightarrow{MT} = (x_0 + 3; y_0 - 1) \\ \overrightarrow{IT} = (x_0 - 1; y_0 - 3) \end{cases}$$

Do đó:
$$\begin{cases} x_0^2 + y_0^2 - 2x_0 - 6x_0 + 6 = 0\\ (x_0 + 3)(x_0 - 1) + (y_0 - 1)(y_0 - 3) = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x_0^2 + y_0^2 - 2x_0 - 6x_0 + 6 = 0 \\ x_0^2 + y_0^2 + 2x_0 - 4y_0 = 0 \end{cases} \Leftrightarrow 2x_0 + y_0 - 3 = 0 \quad (*)$$

Tọa độ các tiếp điểm T_1, T_2 thỏa mãn đẳng thức (*).

Vậy, phương trình đường thẳng đi qua T_1 , T_2 là: 2x + y - 3 = 0.

b. Đường tròn (C) có tâm I(2;-1), bán kính $R=2\sqrt{5}$. Gọi H là trung điểm

AB. Đặt
$$AH = x (0 < x < 2\sqrt{5})$$
.

Khi đó ta có $\frac{1}{2}$ IH.AB = $8 \Leftrightarrow x\sqrt{20-x^2} = 8 \Leftrightarrow x = 4$ hoặc x = 2 (không thỏa

AB < IA). Suy ra $AH = 4 \Rightarrow IH = 2$.

Phương trình đường thẳng qua $M: a(x-1)+b(y+3)=0(a^2+b^2>0)$

Ta có d(I, AB) = IH =
$$2 \Leftrightarrow \frac{|a+2b|}{\sqrt{a^2+b^2}} = 2 \Leftrightarrow a(3a-4b) = 0$$
.

Vậy có hai đường thẳng Δ thỏa mãn là y+3=0 và 4x+3y+5=0.

Bài tập 17. Tâm $I\left(\frac{1}{2};\frac{5}{2}\right)$ của đường tròn và H(2;2) là giao điểm của Δ và đường

tròn HBC. Gọi N(a;b) là trung điểm của BC $\overrightarrow{HA} = 2\overrightarrow{IN} \Rightarrow A(2a+1;2b-3)$ $\Rightarrow B(3-2a;9-2b)$.

Vì
$$B \in (HBC)$$
 nên $(3-2a)^2 + (9-2b)^2 - (3-2a) - 5(9-2b) + 4 = 0$

$$\Leftrightarrow 2a^2 + 2b^2 - 5a - 13b + 23 = 0$$
 (1).

Ta có c $\overrightarrow{BN} = (3a - 3; 3b - 9)$ và $BN \perp AH$ nên $\overrightarrow{BN}.\overrightarrow{AH} = 0$.

$$(2a-1)(3a-3)+(2b-5)(3b-9)=0 \Leftrightarrow 2a^2+2b^2-3a-11b+16=0$$
 (2)

$$T\grave{u} \ \left(1\right) v\grave{a} \ \left(2\right) giải \ ra \ được \ b=3 \Rightarrow a=\frac{1}{2} \ hoặc \ b=\frac{5}{2} \Rightarrow a=1 \, .$$

Với
$$b = 3 \Rightarrow B(2;3) \equiv M$$
 (loại). Với $b = \frac{5}{2} \Rightarrow B(1;4), A(3;2), C(1;1)$

Bài tập 18. Giả sử \triangle ABC có diện tích lớn nhất. Khi đó \bigcirc CO \bot AB, BO \bot AC (Vì nếu

không, chẳng hạn CO không vuông góc với AB thì tồn tại điểm C' thuộc đường tròn (C') sao cho C'O \perp AB và d(C';AB) > d(C;AB) \Rightarrow S $_{C'AB}$ > S $_{CAB}$)

Suy ra ΔABC có diện tích lớn nhất thì O là trực tâm của tam giác do đó $BC \perp OA \Rightarrow x_B = x_C$.

Ta có
$$\overrightarrow{AB}(x_B - 1; y_B)$$
, $\overrightarrow{OC}(x_B; y_C)$, $\overrightarrow{OB}(x_B; y_B)$, $\overrightarrow{AC}(x_B - 1; y_C)$

$$CO \perp AB \Rightarrow x_B (x_B - 1) + y_B y_C = 0 (1)$$

Lại có
$$B \in (C)$$
, $C \in (C')$ suy ra $x_B^2 + y_B^2 = 2$ (2) và $x_C^2 + y_B^2 = 2$ (3)

Từ (1), (2) và (3) suy ra
$$x_B = -1$$
, $x_B = \frac{5 - \sqrt{5}}{2}$ (loại)

Ta có
$$S = \frac{1}{2} |x_A - x_B| |y_C - y_B| \Rightarrow S^2 = \frac{1}{4} (1 - x_B)^2 (7 - 2x_B)$$

Nếu $x_B = -1 \Rightarrow S = 3, x_B = \frac{5 - \sqrt{5}}{2} \Rightarrow S < 3$ nên S lớn nhất khi và chỉ khi $x_B = x_C = -1$ khi đó ta có ta xác định được B(-1;1), C(-1;-2) hoặc B(-1;-1), C(-1;2) là điểm cần tìm.

Bài tập 19. Gọi A(a;b). Ta có:

$$\begin{cases} A \in (C) \\ \overrightarrow{IA}.\overrightarrow{NA} = 0 \end{cases} \Leftrightarrow \begin{cases} (a-1)^2 + (b-2)^2 = 25 \\ (a-1)(a+6) + (b-2)(b-1) = 0 \end{cases} \Leftrightarrow \begin{cases} a^2 + b^2 - 2a - 4b - 20 = 0 \\ a^2 + b^2 + 5a - 3b - 4 = 0 \end{cases}$$

 \Rightarrow 7a + b + 16 = 0

Từ đó ta suy ra được $A \in \Delta: 7x + y + 16 = 0$.

Tương tự ta cũng có được $B \in \Delta \Rightarrow AB = \Delta \Rightarrow AB : 7x + y + 16 = 0$.

Bài tập 20. Ta có
$$AB = \sqrt{10}$$
 và $S_{\Delta MAB} = \frac{1}{2} d(M, AB) . AB = \frac{1}{2} \Rightarrow d(M, AB) = \frac{1}{\sqrt{10}}$

Lại có $\overrightarrow{AB} = (1,3)$ nên $\overrightarrow{n} = (3,-1)$ là VTPT của đường thẳng AB

Suy ra phương trình AB: 3(x-1)-(y+1)=0 hay 3x-y-4=0.

Gọi
$$M(a; b) \in (C) \Rightarrow (a-1)^2 + b^2 = 2$$

Khi đó d
$$(M, AB) = \frac{1}{\sqrt{10}} \Leftrightarrow \frac{\left|3a - b - 4\right|}{\sqrt{10}} = \frac{1}{\sqrt{10}} \Leftrightarrow \left|3a - b - 4\right| = 1$$

Ta có hệ phương trình: $\begin{cases} \left(a-1\right)^2+b^2=2 \\ \left|3a-b-4\right|=1 \end{cases} \Leftrightarrow \begin{cases} \left(a-1\right)^2+b^2=2 \\ 3a-b-4=1 \end{cases} \text{ hoặc}$

$$\begin{cases} (a-1)^2 + b^2 = 2 \\ 3a - b - 4 = -1 \end{cases} \Leftrightarrow \begin{cases} (a-1)^2 + b^2 = 2 \\ b = 3a - 5 \end{cases} \text{ hoặc } \begin{cases} (a-1)^2 + b^2 = 2 \\ b = 3a - 3 \end{cases}$$

$$\Leftrightarrow \begin{cases} (a-1)^2 + (3a-5)^2 = 2 \\ b = 3a-5 \end{cases} \text{ hoặc } \begin{cases} (a-1)^2 + (3a-3)^2 = 2 \\ b = 3a-3 \end{cases}$$

$$\Leftrightarrow \begin{cases} 5a^2 - 16a + 12 = 0 \\ b = 3a - 5 \end{cases} \text{ hoặc } \begin{cases} 5a^2 - 10a + 4 = 0 \\ b = 3a - 3 \end{cases} \Leftrightarrow \begin{cases} a = \frac{12}{5}, a = \frac{4}{5} \\ b = 3a - 5 \end{cases}$$

hoặc $\begin{cases} a = \frac{5 \pm \sqrt{5}}{5} \\ b = 3a - 3 \end{cases}$. Vậy có bốn điểm thỏa điều kiện bài toán là:

$$M_1\left(\frac{12}{5};\frac{11}{5}\right)$$
, $M_2\left(\frac{4}{5};-\frac{13}{5}\right)$, $M_3\left(\frac{5-\sqrt{5}}{5};\frac{-3\sqrt{5}}{5}\right)$ và $M_4\left(\frac{5+\sqrt{5}}{5};\frac{3\sqrt{5}}{5}\right)$.

Bài tập 21. Ta có M(2;1) và EQ là tiếp tuyến của (C).

Phương trình EQ có dạng: a(x+3)+b(y-6)=0 $E \bullet -$

Vì d(M,EQ) = $\sqrt{10}$ nên có:

$$\frac{|5a - 5b|}{\sqrt{a^2 + b^2}} = \sqrt{10} \Leftrightarrow (5a - 5b)^2 = 10(a^2 + b^2)$$

- b = 3a, ta có phương trình EQ: x + 3y - 15 = 0. Khi đó tọa độ Q là nghiệm

của hệ:
$$\begin{cases} \left(x-2\right)^2 + \left(y-1\right)^2 = 10 \\ 3x + y + 3 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 3 \\ y = 4 \end{cases} \Rightarrow Q(3;4).$$

Ta có
$$P(15-3x;x)$$
 và $QP = MQ \Rightarrow (12-3x)^2 + (4-x)^2 = 10 \Leftrightarrow x = 3, x = 5$

- x = 3, ta có P(6; 3), suy ra tâm của hình vuông I(4; 2) nên N(5; 0)
- x = 5, ta có P(0;5), suy ra tâm của hình vuông I(1;3) nên N((-1;2)).
 Vậy có hai bộ điểm thỏa yêu cầu bài toán:
 M(-1;2),N(5;0),P(6;3),Q(3;4) và M(2;1),N(-1;2),P(0;5),Q(3;4).

Bài tập 22. Đường tròn (C) có tâm I(2;1), bán kính $R = \sqrt{5} \Rightarrow AI = \sqrt{5}$.

$$S_{\Delta MAI} = \frac{1}{2}S_{AIBM} = 5 \Rightarrow \frac{1}{2}MA.IA = 5$$

$$\Rightarrow$$
 MA = $2\sqrt{5}$. Suy ra IM² = IA² + AM² = 25.

Mà $M \in \Delta$ nên M(m;-m-2),

suy ra
$$IM^2 = 25 \Leftrightarrow (m-2)^2 + (m+3)^2 = 25$$

 $\Leftrightarrow m^2+m-6=0 \Leftrightarrow m=-3, m=2 \ .$

Vậy M(2;-4) và M(-3;1) là hai điểm cần tìm.

M

Bài tập 23. Đường tròn (C) có tâm I(1;2), bán kính R=5

a. * Tiếp tuyến đi qua M và vuông góc với IM nên nhận $\overrightarrow{IM} = (3;4)$ làm vecto pháp tuyến, phương trình tiếp tuyến là: $3(x-4)+4(y-6)=0 \Leftrightarrow 3x+4y-36=0$.

* Gọi Δ là tiếp tuyến cần tìm.

Do Δ đi qua N nên phương trình có dạng

$$\Delta$$
: $a(x+6)+b(y-1)=0 \Leftrightarrow ax+by+6a-b=0$, $a^2+b^2\neq 0$ (*)

Ta có:
$$d(I, \Delta) = R \Leftrightarrow \frac{|7a + b|}{\sqrt{a^2 + b^2}} = 5 \Leftrightarrow |7a + b| = 5\sqrt{a^2 + b^2}$$

$$\Leftrightarrow (7a + b)^2 = 25(a^2 + b^2) \Leftrightarrow 24a^2 + 14ab - 24b^2 = 0$$

$$\Leftrightarrow 24\left(\frac{a}{b}\right)^2 + 12\frac{a}{b} - 24 = 0 \Leftrightarrow a = \frac{3}{4}b \text{ hoặc } a = -\frac{4}{3}b$$

- $a = \frac{3}{4}b$ thay vào (*) ta được: $\frac{3}{4}bx + by + \frac{7}{2}b = 0 \Leftrightarrow 3x + 4y + 14 = 0$.
- $a = -\frac{4}{3}b$ thay vào (*) ta được: $-\frac{4}{3}bx + by 9b = 0 \Leftrightarrow 4x 3y + 27 = 0$.

Vậy, có hai tiếp tuyến thỏa yêu cầu bài toán là: 3x + 4y + 14 = 0 và 4x - 3y + 27 = 0.

b. Gọi A(a;b). Ta có:
$$\begin{cases} A \in (C) \\ \overrightarrow{IA}.\overrightarrow{NA} = 0 \end{cases} \Leftrightarrow \begin{cases} (a-1)^2 + (b-2)^2 = 25 \\ (a-1)(a+6) + (b-2)(b-3) = 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} a^2 + b^2 - 2a - 4b - 20 = 0 \\ a^2 + b^2 + 5a - 5b = 0 \end{cases} \Rightarrow 7a - b + 20 = 0$$

Từ đó ta suy ra được $A \in \Delta : 7x - y + 20 = 0$.

Tương tự ta cũng có được $B \in \Delta \Rightarrow AB \equiv \Delta \Rightarrow AB: 7x - y + 20 = 0$.

Bài tập 24. Cách 1: Gọi M(x;y) là trung điểm của BC , D là điểm đối xứng với A qua O .

Ta có $BH\|CD,CH\|BD$ nên tứ giác BDCH là hình bình hành nên M là trung điểm HD

Từ đó suy ra,
$$\overrightarrow{AH} = 2\overrightarrow{MI} \Rightarrow \begin{cases} 0 = 2(-2 - x) \\ 6 = 2(-y) \end{cases} \Leftrightarrow \begin{cases} x = -2 \\ y = -3 \end{cases} \Rightarrow M(-2; -3)$$

Nên đường thẳng BC qua M có $\overrightarrow{AH} = (0;6)$ là vtpt có phương trình là : y + 3 = 0.

Gọi
$$C(a;-3)$$
, do $IA = IC$
 $\Leftrightarrow 5^2 + (-7)^2 = (a+2)^2 + (-3)^2$
 $\Leftrightarrow a^2 + 4a - 61 = 0 \Leftrightarrow a = -2 \pm \sqrt{65}$
 $\Rightarrow C(-2 + \sqrt{65}; -3)$

Cách 2. Đường tròn ngoại tiếp tam giác ABC

có phương trình :
$$(x+2)^2 + y^2 = 74$$
.

Phương trình
$$AH: x=3$$
, do

$$BC \perp AH \Rightarrow BC : y = -m \ (m \neq -7)$$

Tọa độ B, C là nghiệm của phương trình :
$$(x+2)^2 + m^2 = 74$$

 $\Leftrightarrow x^2 + 4x + m^2 - 70 = 0$ (*)

Vì (*) có hai nghiệm, trong đó có ít nhất một nghiệm dương nên $|\mathbf{m}| < \sqrt{70}$

Khi đó:
$$B\left(-2-\sqrt{74-m^2};-m\right)$$
, $C\left(-2+\sqrt{74-m^2};-m\right)$

Vì
$$BH \perp AC \Rightarrow \overrightarrow{AC}.\overrightarrow{BH} = 0 \Leftrightarrow m^2 + 4m - 21 = 0 \Leftrightarrow m = 3$$

Vậy,
$$C(-2+\sqrt{65};-3)$$
 là tọa độ cần tìm.

Bài tập 25.a. Vì \triangle ABC vuông tại B nên AC là đường kính của (T).

Gọi $\widehat{ASB} = \widehat{(d_1, d_2)} = t$ ta có $\widehat{BAC} = \widehat{ASB} = t$ (góc có cạnh tương ứng vuông góc).

Giả sử bán kính (T) là R ta có :

$$S_{\Delta ABC} = \frac{BC.BA}{2} = \frac{AC\sin t.AC\cos t}{2} = 2R^2 \sin t \cos t.$$

$$\text{Mặt khác } \cos t = \frac{\sqrt{3}.\sqrt{3} + 1.\left(-1\right)}{\sqrt{\left(\sqrt{3}\right)^2 + 1^2}\sqrt{\left(\sqrt{3}\right)^2 + \left(-1\right)^2}} = \frac{1}{2} \Rightarrow t = \frac{\pi}{3} \,.$$

Suy ra
$$S_{\Delta ABC} = R^2 \frac{\sqrt{3}}{2}$$
 từ đó có $R = 1$.

Do $A \in d_1, C \in d_2$ nên $A(a; -a\sqrt{3}), C(c; c\sqrt{3})$ thêm nữa vecto chỉ phương của d_1

là
$$\overrightarrow{u_1} \Big(1; -\sqrt{3}\Big)$$
 có phương vuông góc với \overrightarrow{AC} nên:

$$\overrightarrow{AC}.\overrightarrow{u}_1 = 0 \Leftrightarrow c - a - 3(c + a) = 0 \Leftrightarrow c = -2a$$
.

Mặt khác
$$AC = 2R = 2 \Leftrightarrow \sqrt{(c-a)^2 + \left[\sqrt{3}(c+a)\right]^2} = 2 \Leftrightarrow 2|a|\sqrt{3} = 2 \text{ vì } a > 0 \text{ nên}$$

$$a = \frac{\sqrt{3}}{3}.$$

Tâm đường tròn là trung điểm của AC là:

$$I\left(\frac{a+c}{2}; \frac{\sqrt{3}}{2}(c-a)\right) = \left(-\frac{a}{2}; -\frac{3\sqrt{3}a}{2}\right) = \left(-\frac{\sqrt{3}}{6}; -\frac{3}{2}\right).$$

Vậy, phương trình của (T) là $\left(x + \frac{\sqrt{3}}{6}\right)^2 + \left(y + \frac{3}{2}\right)^2 = 1$.

Cách 2: Ta có d_1 tiếp xúc với (T) có đường kính là AC nên $AC \perp d_1$

Từ giả thiết ta có : $\widehat{AOx} = 60^{\circ}$, $\widehat{BOx} = 120^{\circ}$ $\Rightarrow \widehat{AOB} = 60^{\circ}$, $\widehat{ACB} = 30^{\circ}$

Nên
$$S_{\Delta ABC} = \frac{1}{2}AB.BC = \frac{\sqrt{3}}{2}AB^2 \Rightarrow \frac{\sqrt{3}}{2}AB^2 = \frac{\sqrt{3}}{2} \Rightarrow AB = 1$$

Vì
$$A \in d_2 \Rightarrow A(x; -\sqrt{3}x), x > 0, OA = \frac{2}{\sqrt{3}}.AB = \frac{2}{\sqrt{3}} \Rightarrow A(\frac{1}{\sqrt{3}}; -1)$$

$$OC = 2OA = \frac{4}{\sqrt{3}} \Rightarrow C\left(-\frac{2}{\sqrt{3}}; -2\right).$$

Đường tròn (T) đường kính AC có: I $\left(-\frac{2}{\sqrt{3}}; -\frac{3}{2}\right)$, $R = \frac{AC}{2} = 1$.

Phương trình
$$(T):\left(x+\frac{1}{2\sqrt{3}}\right)^2+\left(y+\frac{3}{2}\right)^2=1$$
.

b. Vì $M \in d \Rightarrow M(m;m)$. Gọi $A(x_0;y_0)$.

$$\text{Khi đ\'o, ta c\'o: } \begin{cases} \overrightarrow{IA}.\overrightarrow{MA} = 0 \\ A \in \left(C\right) \end{cases} \Leftrightarrow \begin{cases} x_0^2 + y_0^2 - \left(m+1\right)x_0 - \left(m-2\right)y_0 - m = 0 \\ x_0^2 + y_0^2 - 2x_0 + 4y_0 = 0 \end{cases}$$

Suy ra
$$(m-1)x_0 + (m+2)y_0 + m = 0$$
.

Do đó, phương trình AB là: (m-1)x+(m+2)y+m=0.

Mặt khác:
$$d(N,AB) = \frac{3}{\sqrt{5}}$$
 hay $\frac{|m-3|}{\sqrt{(m-1)^2 + (m+2)^2}} = \frac{3}{\sqrt{5}}$

Giải phương trình này ta tìm được $m = 0, m = -\frac{58}{13}$.

Ta loại m = 0, vì khi đó $M \in (C)$.

Vậy có một điểm M thỏa yêu cầu bài toán: $M\left(-\frac{58}{13}; -\frac{58}{13}\right)$.

Bài tập 26. Xét phép quay $Q_{(A:+90^0)}: M \to N \text{ và } (C_1) \to (C_1)$

$$\text{M\`a}\ M\in \left(C_{1}\right) \Rightarrow N\in \left(C_{1}^{'}\right) \Rightarrow N\in \left(C_{2}\right)\cap \left(C_{1}^{'}\right).$$

• Với $Q_{(A-90^0)}$, ta có phương trình $(C_1): x^2 + (y-5)^2 = 13$

Tọa độ điểm N là nghiệm của hệ:

$$\begin{cases} x^2 + (y - 5)^2 = 13 \\ (x - 1)^2 + (y - 2)^2 = 25 \end{cases} \Leftrightarrow \begin{cases} x^2 + y^2 - 10y + 12 = 0 \\ x^2 + y^2 - 2x - 4y - 20 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} x^2 + y^2 - 10y + 12 = 0 \\ x = 3y - 16 \end{cases} \Leftrightarrow \begin{cases} 5y^2 - 53y + 134 = 0 \\ x = 3y - 16 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{-1 + 3\sqrt{129}}{10} \\ y = \frac{53 + \sqrt{129}}{10} \end{cases} \text{hoặc} \begin{cases} x = \frac{-1 - 3\sqrt{129}}{10} \\ y = \frac{53 - \sqrt{129}}{10} \end{cases}$$

Trường hợp này có hai bộ điểm

$$M\left(\frac{23+\sqrt{129}}{10};\frac{51-3\sqrt{129}}{10}\right), N\left(\frac{-1+3\sqrt{129}}{10};\frac{53+\sqrt{129}}{10}\right)$$

$$V\grave{a}\ M\left(\frac{23-\sqrt{129}}{10};\frac{51+3\sqrt{129}}{10}\right), N\left(\frac{-1-3\sqrt{129}}{10};\frac{53-\sqrt{129}}{10}\right).$$

• Với $Q_{(A;-90^0)}$, ta có phương trình $(C_1):(x-2)^2+(y-3)^2=13$

Tọa độ điểm N là nghiệm hệ:
$$\begin{cases} \left(x-2\right)^2 + \left(y-3\right)^2 = 13 \\ \left(x-1\right)^2 + \left(y-2\right)^2 = 25 \end{cases} \Leftrightarrow \begin{cases} x=4 \\ y=6 \end{cases} \text{ hoặc } \begin{cases} x=5 \\ y=5 \end{cases}$$

Trường hợp này có hai bộ điểm: M(-1;7), N(4;6) và M(0;8), N(5;5).

Cách 2: Gọi M(a;b) và N(c;d) lần lượt là 2 điểm nằm trên đường tròn (C_1) , (C_2)

$$\begin{cases} M \in (C_1) \\ N \in (C_2) \end{cases} \Rightarrow \begin{cases} (a-2)^2 + (b-5)^2 = 13 \\ (c-1)^2 + (d-2)^2 = 25 \end{cases} (1)$$

Lại có: $\triangle AMB$ vuông cân tại A nên có: $\begin{cases} \overrightarrow{AM}.\overrightarrow{AN} = 0 \\ AM = AN \end{cases} (2)$

Bài tập 27a. (C_1) có tâm $I_1(1;0)$ và bán kính $R_1 = \frac{1}{\sqrt{2}}$

 $\left(\mathrm{C}_{2}\right)$ có tâm $\,\mathrm{I}_{2}\left(2;2\right)\,$ và bán kính $\,\mathrm{R}_{2}=\sqrt{2}$

Giả sử d là đường thẳng cần tìm và d cắt (C_2) tại A,B nên d qua $I_2(2;2)$ và tiếp xúc (C_1) .

d qua $I_2(2;2)$, có vecto pháp tuyến $\vec{n}(a;b) \neq \vec{0}$ có phương trình:

$$a(x-2)+b(y-2)=0$$

d tiếp xúc
$$(C_1)$$
khi $d(I_1;d) = \frac{1}{\sqrt{2}} \Leftrightarrow \frac{|a+2b|}{\sqrt{a^2+b^2}} = \frac{1}{\sqrt{2}} \Leftrightarrow a^2+8ab+7b^2=0$

$$\Leftrightarrow$$
 $(a+b)(a+7b)=0 \Leftrightarrow a=-b$ hoặc $a=-7b$

Với a = -b, suy ra d: x - y = 0

Với a = -7b, suy ra d: 7x - y - 12 = 0

Vậy, có 2 đường thẳng cần tìm: x-y=0, 7x-y-12=0

b. Cách 1: Gọi H là hình chiếu của I trên AB, suy ra Gọi H là trung điểm của AB hay AB = 2AH. Đặt AH = x, (0 < x < 3).

$$S_{\Delta IAB} = \frac{1}{2}IA.AB \Leftrightarrow 2\sqrt{2} = \frac{1}{2}\sqrt{9 - x^2} 2x \Leftrightarrow x^4 - 9x^2 + 8 = 0$$

$$\Leftrightarrow$$
 x = 1 hoặc x = $2\sqrt{2}$

Với $x = 1 \Rightarrow AB = 2$ không thỏa.

Với $x = 2\sqrt{2} \Rightarrow AB = 4\sqrt{2}$ nhận. Suy ra IH = 1

Cách 2: (C) có tâm I(1;-1), bán kính R=3. Đường thẳng Δ đi qua M có dạng: a(x+6)+b(y-3)=0, $a^2+b^2>0$.

Gọi H là hình chiếu của I trên AB thì $IH^2 = IA^2 - \frac{AB^2}{4} = 8 \Rightarrow IH = 2\sqrt{2}$

$$S_{AIB} = \frac{1}{2}IA.IB.sin\widehat{AIB} = \frac{1}{2}R^2.sin\widehat{AIB}, \ sin\widehat{AIB} = \frac{4\sqrt{2}}{9} \Rightarrow cos\frac{\widehat{AIB}}{2} = \frac{1}{3} \ ho \ \ \text{\'ac}$$

$$\cos \frac{\widehat{AIB}}{2} = \frac{2\sqrt{2}}{3}$$
. Dễ thấy, $\cos \frac{\widehat{AIB}}{2} = \frac{IH}{IA}$

Kết hợp giả thuyết suy ra:
$$\cos\frac{\widehat{AIB}}{2} = \frac{1}{3} \Rightarrow d(I;AB) = IA.\cos\frac{\widehat{AIB}}{2} = 1$$
 hay
$$\frac{\left|7a - 4b\right|}{\sqrt{a^2 + b^2}} = 1 \Leftrightarrow 48a^2 - 56ab + 15b^2 = 0 \Leftrightarrow (4a - 3b)(12a - 5b) = 0$$

c. (C) có tâm I(2;2), bán kính R=3

IP qua I(2;2) và vuông góc với d nên có phương trình: x + my - 2m - 2 = 0

ΔΙΒΡ vuông nên có $R^2 = IB^2 = IH.IP = d(I;d).IP$

Bài tập 28. (C) có tâm I(1;2), bán kính $R = \sqrt{5}$

a.
$$d(I;(d)) = \sqrt{R^2 - \left(\frac{AB}{2}\right)^2} = 2 \Rightarrow x - 3 = 0, \ 12x + 5y - 31 = 0$$

b. CD ngắn nhất khi $d(I;(d_1))$ ngắn nhất

Bài tập 29a. Đường tròn (C) có tâm I(2;3), bán kính $R = \sqrt{10}$

Gọi đường thẳng AB đi qua M, có phương trình: a(x+3)+b(y+2)=0, $a^2+b^2>0$. Đường tròn nội tiếp ABCD nên AB tiếp xúc với đường tròn (C)

khi và chỉ khi d(I;AB) = R $\Leftrightarrow \frac{|5a+5b|}{\sqrt{a^2+b^2}} = \sqrt{10}$ $\Leftrightarrow 3a^2+10ab+3b^2=0$

 \Leftrightarrow $(a+3b)(3a+b)=0 \Leftrightarrow a=-3b$ hoặc b=-3a

TH1: a = -3b chọn a = 3, $b = -1 \Rightarrow AB: 3x - y + 7 = 0$, vì $A \in AB$ nên A(a; 7 + 3a) và a > 0

Hơn nữa: $IA = R\sqrt{2} \Leftrightarrow IA^2 = 20 \Leftrightarrow (a-2)^2 + (3a+4)^2 = 20 \Leftrightarrow a=0$ hoặc a=-2 (không thỏa a>0).

TH2: b = -3a chọn a = 1, $b = -3 \Rightarrow AB: x - 3y - 3 = 0$, vì $A \in AB$ nên A(3 + 3a; a) và a > 0

Hơn nữa: $IA = R\sqrt{2} \Leftrightarrow IA^2 = 20 \Leftrightarrow \left(3a+1\right)^2 + \left(a-3\right)^2 = 20 \Leftrightarrow a=1$ (thỏa) hoặc a=-1 (không thỏa a>0).

Khi đó A(6;1), I là trung điểm của $AC \Rightarrow C(-2;5)$

b. Nhận thấy, $\triangle ABC$ vuông tại C suy ra tâm đường tròn ngoại tiếp $\triangle ABC$ là I(3;-1) bán kính bằng $\frac{1}{2}AB = \frac{1}{2}\sqrt{BC^2 + CA^2} = \sqrt{2}$.

Phương trình đường tròn (C) ngoại tiếp $\triangle ABC : (x-3)^2 + (y+1)^2 = 2$

N là điểm tùy ý trên (C) nên
$$S_{NAB} = \frac{1}{2}NA.NB \le \frac{NA^2 + NB^2}{4} = \frac{AB^2}{4} = 2$$

 S_{NAB} đạt giá trị lớn nhất bằng 2 khi NA=NB. N là giao điểm của đường trung trực đoạn AB với (C), nên tọa độ N thỏa hệ:

$$\begin{cases} \left(x-3\right)^2 + \left(y+1\right)^2 = 2 \Leftrightarrow \begin{cases} x=2 \Rightarrow y=0 \Rightarrow N(2;0) \\ x+y-2=0 \end{cases} \Leftrightarrow \begin{cases} x=4 \Rightarrow y=-2 \Rightarrow N(4;-2) \end{cases}$$

$$M(m; 4-4m)$$
 và $\overrightarrow{NO}.\overrightarrow{NM} = 0$

c. Đường tròn (C) có tâm I(1;-2), bán kính R=1

Ta thấy:
$$\widehat{BIC} + \widehat{BAC} = 180^0 \Rightarrow \sin \widehat{BIC} = \sin \widehat{BAC}$$
 (1)

Hon nữa:
$$S_{ABIC} = S_{ABC} + S_{BIC} \Leftrightarrow IB.AB = \frac{1}{2}IB^2 \sin \widehat{BIC} + \frac{1}{2}AB^2 \sin \widehat{BAC}$$
 (2)

Từ (1) và (2), suy ra:
$$2IB.AB = (IB^2 + AB^2) \sin \widehat{BAC} \Rightarrow \sin \widehat{BAC} = \frac{2IB.AB}{IB^2 + AB^2}$$

Mặt khác:
$$S_{ABC} = \frac{1}{2}IB^2 \sin \widehat{BIC} = \frac{IB.AB^3}{IB^2 + AB^2} = \frac{AB^3}{1 + AB^2} = \frac{27}{10} (3)$$

Từ
$$(3) \Rightarrow AB = 3$$
 hay $IA^2 = AB^2 + IB^2 = 10$ $\Leftrightarrow (a-1)^2 + (2a+3)^2 = 10$ vớt $A(a; 2a+1)$

d. (C) có tâm I(1;2), bán kính R=3

Do ABIM là hình bình hành nên AB \parallel MI \Rightarrow \overrightarrow{MI} = (-2; 2) là vtcp của Δ \Rightarrow Δ : x + y + m = 0

Gọi H là trung điểm AB, ta có HB =
$$\frac{1}{2}$$
AB = $\frac{1}{2}$ MI = $\frac{1}{2}\sqrt{8}$ = $\sqrt{2}$
 \Rightarrow IH = $\sqrt{R^2 - HB^2}$ = $\sqrt{9 - 2}$ = $\sqrt{7}$ \Rightarrow d(I: Δ) = $\sqrt{7}$ \Leftrightarrow m = $-3 \pm \sqrt{14}$

Bài tập 30.a. Giả sử C(c;d) và H(h;h+1), $c \neq \{2;6\}$.

Trong đó:
$$(c-4)^2 + (d-6)^2 = 5$$

$$\overrightarrow{AC} = (c-2;d-5), \overrightarrow{AB} = (4;0), \overrightarrow{BH} = (h-6;h-4), \overrightarrow{CH} = (h-c;h+1-d)$$

H là trực tâm tam giác ABC nên có: $\begin{cases} \overrightarrow{BH}.\overrightarrow{AC} = 0 \\ \overrightarrow{CH}.\overrightarrow{AB} = 0 \end{cases}$

$$\Leftrightarrow \begin{cases} (h-4)^2 + (d-6)^2 = 5 & (1) \\ (h-2)(h-6) + (d-5)(h-4) = 0 & (2) \end{cases}$$

Lấy (1) trừ (2), ta được $(d-5)(d-h-3)=0 \Leftrightarrow d=5$ hoặc d=h+3

Với d=5 thay vào (1) ta được: $h^2-8h+12=0 \Leftrightarrow h=2$ hoặc h=6

Với d = h + 3 thay vào (1) ta được: $2h^2 - 14h + 20 = 0 \Leftrightarrow h = 2$ hoặc h = 5

b. Đường tròn (C) có tâm O(0;0) có bán kính R=3.

Từ
$$AB = 4.8 \Rightarrow OH = 1.8 \text{ và } MO = \frac{OA^2}{OH} = 5$$

Giả sử M có tọa độ M(a;b) ta có: $a^2 + b^2 = 25$ (1)

Hơn nữa $M \in (C')$ nên có: $a^2 + b^2 - 18a - 6b + 65 = 0$ (2)

Giải hệ (1) và (2) ta tìm được: M(5;0), M(4;3)

c. Đường tròn (C) có tâm I(1;2), bán kính $R=\sqrt{5}$. Đường tròn (C) nội tiếp tam giác ABC nên có d(I;BC)=R, đến đây ta tìm được hoặc BC: 2x+4y-15=0 hoặc BC: 2x-4y+1=0.

Gọi J là giao của AI với BC. Để ý rằng \triangle ABC đều nên IJ \perp BC và I là trọng tâm của \triangle ABC nên $\overrightarrow{AI} = 2\overrightarrow{IJ} \Rightarrow \;$ tọa độ A

d. A(2;-3) là giao điểm (C_1) và (C_2) . Phương trình đường thẳng Δ đi qua A có dạng: a(x-2)+b(y+3)=0.

Đường tròn (C_1) có tâm O(0;0), bán kính $R_1 = \sqrt{13}$

Đường tròn (C_2) có tâm I(6;0), bán kính $R_2 = 5$

Theo giả thiết, suy ra: $R_1^2-d^2\left(O,\Delta\right)=R_2^2-d^2\left(I,\Delta\right) \Rightarrow x+3y+7=0$.

Bài tập 30a. Đường tròn (C) có tâm I(1;m) và bán kính R=5

Ta có: $d(I;\Delta) = \frac{5|m|}{m^2 + 16} < 5$ nên Δ cắt đường tròn (C) tại hai điểm phân biệt

A,B. Gọi H là trung điểm AB thì $IH \perp AB$ và $IH = d(I;\Delta)$

$$S_{IAB} = \frac{1}{2}IH.AB = IH.BH = IH\sqrt{R^2 - IH^2}$$

Từ đó ta có phương trình: $\frac{4.25 \left| m \right|}{m^2 + 16} = 12 \Leftrightarrow 3m^2 - 25 \left| m \right| + 48 = 0, \text{ phương trình}$

này có 4 giá trị m thỏa mãn: -3; 3; $-\frac{16}{3}$; $\frac{16}{3}$

b. Trước hết, ta thấy đường thẳng (d) đã cho tiếp xúc với đường tròn (HBC) tại 1 điểm có tọa độ (2;2) nên H(2;2).

Phương trình đường tròn (HBC) viết lại là: $\left(x - \frac{1}{2}\right)^2 + \left(y - \frac{5}{2}\right)^2 = \frac{5}{2}$ và B(a;b)

là điểm thuộc đường tròn (HBC) nên có: $\left(a-\frac{1}{2}\right)^2+\left(b-\frac{5}{2}\right)^2=\frac{5}{2}$ (1)

Gọi N là điểm đối xứng với H qua M thì N(2;4).

Gọi I, J $\left(\frac{1}{2};\frac{5}{2}\right)$ lần lượt là tâm đường tròn ngoại tiếp tam giác ABC, HBC thế

$$th\grave{i} \ \overrightarrow{IJ} = \overrightarrow{NB} \Leftrightarrow \begin{cases} x_J - x_I = x_B - x_N \\ y_J - y_I = y_B - y_N \end{cases} \Rightarrow I\left(\frac{5}{2} - a; \frac{13}{2} - b\right)$$

Vì IM vuông góc với BM nên $\overrightarrow{IM}.\overrightarrow{BM} = 0$

$$\left(a - \frac{1}{2}\right)\left(2 - a\right) + \left(b - \frac{7}{2}\right)\left(3 - b\right) = 0 \Leftrightarrow a^2 + b^2 - \frac{5}{2}a - \frac{13}{2}b + \frac{23}{2} = 0 \quad (2)$$

Tọa độ điểm B là nghiệm của hệ (1) và (2)

$$\begin{cases} \left(a - \frac{1}{2}\right)^2 + \left(b - \frac{5}{2}\right)^2 = \frac{5}{2} \\ a^2 + b^2 - \frac{5}{2}a - \frac{13}{2}b + \frac{23}{2} = 0 \end{cases} \Leftrightarrow \begin{cases} \left(a - \frac{1}{2}\right)^2 + \left(b - \frac{5}{2}\right)^2 = \frac{5}{2} \Leftrightarrow \left\{(a - 1)(a - 2) = 0 \\ a + b = 5 \right\} \end{cases}$$

* $a = 2 \Rightarrow b = 3$ không thỏa vì M = B

*
$$a = 1 \Rightarrow b = 4 \Rightarrow B(1;4)$$
, $A(3;2)$, $C(1;1)$.

c. (C) có tâm J(1;-2) và bán kính $R = \sqrt{3}$

Gọi A là giao điểm của MN và JI thì ta có ngay A là trung điểm của MN , khi đó $AM = AN = \frac{\sqrt{5}}{2}$

ΔJAM vuông tại A nên có:
$$JA^2 = IM^2 - MA^2 = \frac{7}{4} \Rightarrow IA = 5 - \frac{\sqrt{7}}{2}$$

Trong $\triangle IAM$, có: $IM^2 = IA^2 + MA^2$

d. Gọi D đối xứng với A qua I thì D(5;–7) và D nằm trên đường tròn (C) ngoại tiếp tam giác ABC: $(x-3)^2 + (y+3)^2 = 20$.

Gọi J là trung điểm của HD thì J là trung điểm của BC nên BC: x-y-4=0.

Tọa độ hai điểm B, C là nghiệm của hệ phương trình: $\begin{cases} \left(x-3\right)^2 + \left(y+3\right)^2 = 20 \\ x-y-4 = 0 \end{cases}$

Mà $x_B < x_C$ nên hai đỉnh cần tìm là B(-1;-5) và C(5;1).

Bài tập 31.a. Đường tròn có tâm I(1;-2), bán kính R=3.

Vì $M \in (d)$ nên tọa độ M(t;t+1). Để từ M có thẻ kẻ được hai tiếp tuyến đến

$$\left(C\right)\ thi\ IM>R \Leftrightarrow 2t^2+4t+1>0 \ \Leftrightarrow t>\frac{\sqrt{2}-2}{2}\ hoặc\ t<-\frac{\sqrt{2}+2}{2}\ \left(*\right)$$

Phương trình đi qua hai tiếp điểm A,B có dạng:

$$(t-1)(x-1)+(t+3)(y+2)-9=0$$

Ta có:
$$d(N; AB) = \frac{|3t+1|}{2\sqrt{2t^2+4t+10}}$$
.

Xét
$$f(t) = \frac{|3t+1|}{2\sqrt{2t^2+4t+10}}$$
 thỏa điều kiện (*)

Ta có: f'(t) =
$$\frac{|2t+14|}{\sqrt{(2t^2+4t+10)^3}}$$

Với
$$t < -\frac{1}{3}$$
 thì $f'(t) = 0 \Leftrightarrow t = -7$

Lập bảng biến thiên, suy ra $f(t) \le \frac{\sqrt{5}}{2}$ hay $d(N, AB) \le \frac{\sqrt{5}}{2}$

Đẳng thức xảy ra khi t = -7 tức M(-7, -6)

Vậy, M $\left(-7,-6\right)$ là điểm cần tìm. thì giá trị lớn nhất bằng $\frac{\sqrt{5}}{2}$

Khoảng cách của $\, I \,$ tới $\, \Delta \,$ là lớn nhất khi $\, I \,$ là giao điểm của đường thẳng $\, d \,$ đi qua $\, J \,$ và vuông góc với $\, \Delta \,$ với đường tròn $\, (K) \,$.

d có phương trình: 4x - 3y + 10 = 0.

Tọa độ điểm I thỏa mãn hệ:
$$\begin{cases} 4x - 3y + 10 = 0 \\ \left(x + 1\right)^2 + \left(y - 2\right)^2 = 25 \end{cases} \Leftrightarrow \begin{bmatrix} x = 2, y = 6 \\ x = -2, y = -\frac{7}{2} \end{bmatrix}$$

Với
$$I(2;6) \Rightarrow (x-2)^2 + (y-6)^2 = 1$$
, với $I(-2;-\frac{7}{2}) \Rightarrow (x+2)^2 + (y+\frac{7}{2})^2 = 1$

Vậy, khoảng cách từ I tới Δ lớn nhất bằng 5

c. Giả sử : B(x;y) thì do M(0;2) là trung điểm của BC nên C(-x;4-y).

Dễ thấy B,C đều thuộc (C) nên ta có hệ :
$$\begin{cases} \left(x-1\right)^2 + \left(y-1\right)^2 = 10 \\ \left(x+1\right)^2 + \left(y-3\right)^2 = 10 \end{cases}$$
 từ đây tìm

được tọa độ B,C và BC = $4\sqrt{2}$.

Gọi A(a;b), từ giả thiết suy ra |a-b+2|=6, hơn nữa $A(a;b)\in (C)$ từ đây ta tìm được tọa độ điểm A.

d. (C) có tâm I(1;-2), R = 5

Phương trình tổng quát của (d) qua M có dạng: a(x-2)+b(y+1)=0 với $a^2+b^2>0$.

Diện tích
$$S_{IAB} = \frac{1}{2} .AB.d(I;(d))$$
, AB cố định và $d(I;(d)) = \frac{|a+b|}{\sqrt{a^2 + b^2}} \le \sqrt{2}$

Đẳng thức xảy ra khi $a = b = 1 \Rightarrow d: x + y - 1 = 0$, $E \in (d) \Rightarrow E(t; 1 - t)$.