Министерство образования Республики Беларусь

Учреждение образования

«Брестский Государственный технический университет»

Кафедра ИИТ

Лабораторная работа №4

По дисциплине «Математические основы интеллектуальных систем»

Тема: «Группы»

Выполнил:

Студент 2 курса

Группы ИИ-21

Литвинюк Т. В.

Проверил:

Козинский А. А.

Цель: научиться основным понятиям комбинаторики.

Ход работы: Вариант 7

Задание 1.

- 1. Представить заданную подстановку произведением независимых циклов. Варианты заданий указаны в таблице 1. Подстановка из 6 элементов задана в таблице 1 второй строкой подстановки. Например: подстановка $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 4 & 2 & 5 & 1 \end{pmatrix}$ записана в таблице как [354261].
- 2. Определить степень заданной подстановки.
- 3. Определить четность подстановки:
- через число транспозиций в разложении подстановки в произведение транспозиций;
- через число инверсий в подстановке.
- 4. Задания реализовать программно.

Задание 2.

Для заданной в таблице 1 группы:

- 1. Построить таблицу Кэли. Определить нейтральный элемент. Для каждого элемента группы указать обратный элемент.
- 2. Определить является ли группа циклической, указать порядок каждого элемента в группе.
- 3. Указать все подгруппы заданной группы и их порядок. Определить порождающие элементы для подгрупп. Для одной из подгрупп построить таблицу Кэли.
- 4. Разложить группу на левые смежные классы по каждой из подгрупп. Построить фактор множества для группы по каждой из подгрупп.
- 5. Построить таблицу Кэли для фактор-группы по одной из подгрупп.

Задание 3.

Задание 1

```
#include <iostream>
#include <fstream>
#include <windows.h>
using namespace std;

int *get_substitution(string path){
   ifstream file(path);
   char numbers[100];
   file >> numbers;

   int *substitution, i = 1, t = 1, n = 0, m = 0;
   char temp[] = "00";
   substitution = new int[6];

while (i < 50){</pre>
```

```
while (numbers[i] != ',' && numbers[i] != ']')
          temp[t--] = numbers[i++];
       substitution[n++] = (temp[0] - 48) * 10 + temp[1] - 48;
       temp[0] = '0';
       t = 1;
       if (numbers[i] == ']')
          break;
   return substitution;
void independentCycles(int *substitution, int *part1, int *part2){
   //независимые циклы
   int flag;
   int p1 = 1, p2 = 1;
   part1[0] = 1;
   while (p1 < 7 && part1[0] != substitution[part1[p1 - 1] - 1]) {</pre>
       part1[p1++] = substitution[part1[p1 - 1] - 1];
   for (int i = 1; i < 7; i++) {
       flag = 0;
       for (int j = 0; j < p1; j++)
          if (part1[j] == i)
              flag = 1;
       if (!flag) {
          part2[0] = i;
          break;
   while (p2 < 7 \&\& part2[0] != substitution[part2[p2 - 1] - 1]) {
      part2[p2++] = substitution[part2[p2 - 1] - 1];
   cout << "(";
   for (int i = 0; i < p1; i++)
      cout << part1[i] << ",";
   cout << "\b) (";
   for (int i = 0; i < p2; i++)
      cout << part2[i] << ",";
   cout << "\b) \n";
}
int numberOfTranspositions(int *substitution){
   //количество перестановок
   int count = 0;
   for (int i = 0; i < 6; i++)
      if (substitution[i] != i + 1)
          count++;
   return count;
int numberOfInversions(int *substitution){
   //количество инверсий
   int inversions = 0;
   for (int i = 0; i < 6; i++)
       for (int j = i + 1; j < 6; j++)
          if (substitution[i] > substitution[j])
              inversions++;
   return inversions;
}
int main(){
setlocale(LC_ALL, "Russian");
   int *a = get_substitution("for_task1.txt");
   int part1[6], part2[6];
   independentCycles(a, part1, part2);
```

```
int transpositions = numberOfTranspositions(a);
  cout << "The substitution is " << (transpositions % 2 == 0 ? "even" : "odd") << " because it
has " << transpositions << " transpositions." << endl;

int inversions = numberOfInversions(a);
  cout << "The substitution is " << (transpositions % 2 == 0 ? "even" : "odd") << " because it
has " << inversions << " inversions." << endl;
}</pre>
```

```
(1,5,4)(2,3,6)
```

The substitution is even because it has 6 transpositions. The substitution is even because it has 10 inversions.

Задание 2

1)

X mod 11	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	1	3	5	7	9
3	3	6	9	1	4	7	10	2	5	8
4	4	8	1	5	9	2	6	10	3	7
5	5	10	4	9	3	8	2	7	1	6
6	6	1	7	2	8	3	9	4	10	5
7	7	3	10	6	2	9	5	1	8	4
8	8	5	2	10	7	4	1	9	6	3
9	9	7	5	3	1	10	8	6	4	2
10	10	9	8	7	6	5	4	3	2	1

E = 1

2)

Элемент	1	2	3	4	5	6	7	8	9	10
Обратный элемент	1	6	4	3	9	2	8	7	5	10
Порядок	1	10	5	5	5	10	10	10	5	2

Группа является циклической.

X mod 11	1	10
1	1	10
10	10	1

4)

4)			
gH	{1}	{1,2,3,4,5,6,7,8,9,10}	{1,10}
1	{1}	{1,2,3,4,5,6,7,8,9,10}	{1,10}
2	{2}	{2,4,6,8,10,1,3,5,7,9}	{2,9}
3	{3}	{3,6,9,1,4,7,10,2,5,8}	{3,8}
4	{4}	{4,8,1,5,9,2,6,10,3,7}	{4,7}
5	{5}	{5,10,4,9,3,8,2,7,1,6}	{5,6}
6	{6}	{6,1,7,2,8,3,9,4,10,5}	{6,5}
7	{7}	{7,3,10,6,2,9,5,1,8,4}	{7,4}
8	{8}	{8,5,2,10,7,4,1,9,6,3}	{8,3}
9	{9}	{9,7,5,3,1,10,8,6,4,2}	{9,2}
10	{10}	{10,9,8,7,6,5,4,3,2,1}	{10,1}

$$\begin{split} & \overline{S_1 = \{\{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\}, \{7\}, \{8\}, \{9\}\}\}} \\ & S_2 = \{\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}\} \\ & S_3 = \{\{1, 10\}, \{2, 9\}, \{3, 8\}, \{4, 7\}, \{5, 6\}\} \end{split}$$

X mod 11	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10
2	2	4	6	8	10	1	3	5	7	9
3	3	6	9	1	4	7	10	2	5	8
4	4	8	1	5	9	2	6	10	3	7
5	5	10	4	9	3	8	2	7	1	6
6	6	1	7	2	8	3	9	4	10	5
7	7	3	10	6	2	9	5	1	8	4
8	8	5	2	10	7	4	1	9	6	3
9	9	7	5	3	1	10	8	6	4	2
10	10	9	8	7	6	5	4	3	2	1

Задание 3

-
$$G = (A, \oplus_8), A = \{0,1,2,3,4,5.6.7\}$$
; $G' = (B, \otimes_5), B = \{1.2.,3,4\}$

-
$$G = (A, \oplus_4), A = \{0,1,2,3\}; G' = (B, \otimes_{80}), B = \{1,3,9,27\}$$

•	ı	١	

$\bigoplus_{\mathrm{mod}8}$	0	1	2	3	4	5	6	7
0	0	1	2	3	4	5	6	7
1	1	2	3	4	5	6	7	0
2	2	3	4	5	6	7	0	1
3	3	4	5	6	7	0	1	2
4	4	5	6	7	0	1	2	3
5	5	6	7	0	1	2	3	4
6	6	7	0	1	2	3	4	5
7	7	0	1	2	3	4	5	6

$\bigotimes_{\text{mod } 5}$	1	2	3	4
1	1	2	3	4
2	2	4	1	3
3	3	1	4	2
4	4	3	2	1

$$F(2+2)=f(2)*f(2)$$

•

$\bigoplus_{\mathrm{mod}8}$	0	1	2	3
0	0	1	2	3
1	1	2	3	4
2	2	3	4	5
3	3	4	5	6

$\bigotimes_{\mathrm{mod}80}$	1	3	9	27
1	1	3	9	27
3	3	9	27	1
9	9	27	1	3
27	27	1	3	9

Вывод: в ходе лабораторной работы я научился находить кратчайшие пути в графе.