Основные элементы схем алгоритмов

Оформление размеров, функциональное назначение компонентов, правила выполнения схем алгоритмов описаны в ГОСТ 19.003-80, ГОСТ 19.002-80, ГОСТ 19.701-90.

Размеры блоков на примере вычислительного блока.

Размер a должен выбираться из уяда 10, 15, 20 мм. Допускается увеличивать зыления a на число, кратное 5. Размер b полагачо равным 2a. Размеры остальных блоков подблечнося таким же образом. Исключение составляет блок «начало-конец», его

размер a вдвое меньше значений a остальных блоков.

Основные компоненты схем, примендемые при описании алгоритма программы представлены в таблице 1.

В блоках схемы недог устимы записи операторов языка программирования. Математичес, ие выражения необходимо вставлять с помощью формул.

Таблица 1 - Основные ко и оненты схем алгоритмов

Блок	Название	Функциональное назначение
	Начало – конец	Начало, конец, прерывание процесса обработки данных или выполнения программы.
	Ввод-вывод	Преобразование данных в форму, пригодную для обработки (ввод) или отображения результатов обработки (вывод).

Блок	Название	Функциональное назначение
		Выполнение операций или
	Процесс	группы операций, в результате
		которых изменяется значение,
		форма представлиния или
		расположение дагныл.
		Связь между элем чтом схемы и
	Комментарий	пояснением. Голи какая-либо
		запись не ломещается внутри
		блока, то используется блок
		ком. чен гария.
	Решение	Рыбор направления выполнения
		эл оритма или программы в
		зависимости от некоторых
		переменных условий.
		Выполнение операций,
		меняющих команды или группу
		команд, изменяющих
	X	программу Блок используется
	Модификация	для обозначения цикла-
		счетчика. Внутри блока
		указывается начальное значение
		счетчика, условие продолжения
~\bar{\bar{\bar{\bar{\bar{\bar{\bar{		цикла, изменение счетчика.
		Указание связи между
	Соединитель	прерванными линиями потока,
		связывающими символами.
		Блок используется для
		соединения линий между

Блок	Название	Функциональное назначение
		элементами блок-схемы в случае разрыва. Внутри блока указывается метка (натуральное
		число) перехода.
	Предопределенный процесс	Использование ранеє созданных и отдельно описанных алгоритмов илл программ. Блок
		используется для обращения к другой программе.

Для обозначения некоторых базовых структур программных алгоритмов используются следующие наборы блоков

Базовая структура следовани.

Последовательный переход стодного процесса к другому (рисунок 1).

Рисунок 1 - Схема базовой структуры следование

Переход к выполнению оператора, если условие истинно (рисунок 2).

Рисунок 2 - Схема базовой структуры неполного условного оператора

Базовая структура полный условны голсратор

Переход к выполнению оператор. 1, если условие истинно, и к оператору 2, если условие ложно (руслуч к 3).

Рис нок 3 - Схема базовой структуры полного условного оператора

Базовая структура оператор множественного выбора

В зависимости от того, какое из значений «метка 1», «метка 2», ..., «метка n» принимает селектор, выполняется блок операторов, расположенный на ветке с соответствующей меткой («оператор 1» - при соответствии

селектора значению «метка 1», «оператор 2» - при соответствии селектора значению «метка 2» и т.д.). Если ни одна из меток не соответствует текущему значению селектора, выполняется «оператор». Схема базовой структуры оператора множественного выбора представлена на рисунке 4.

Рисунок 4 - Схема базовой структуры оператора множественного выбора

Базовая структу, а дикл с предусловием

Пока условие до тинно выполняется тело цикла (рисунок 5).

Рисунок 5 - Схема базовой структуры цикла с предусловием

Базовая структура цикл с постуси гием

Выполнение тела цикла повтс эяє гся до тех пор, пока условие не станет ложным (рисунок 6).

Рисунок 6 - Схема базовой структуры цикла с постусловием

Базовая структура цикл со счетчиком

Пока условие изменения счетчика истинно, выполняется тело цикла (рисунок 7).

Рисунок 7 - Схема базовой структуры цикла со счетчиком

Базовая структура соединения полокся

Если схема не помещается на одь у сграницу, необходимо разбить ее на две части. В том месте, где разуы ается линия потока, ставится блок "соединитель" с меткой в виде натурального числа внутри. На новой странице разорванная линия потока дслжда начинаться с соединительного блока, с таким же значением метки (удрунок 8).

Рисунок 8 – Алгоритм решения зада чи 3 лабораторной работы 2

