

Г. В. Бельский

Проектирование и конструирование электромеханических объектов систем автономных сервисных роботов

Методические указания к практическим занятиям

СПбГЭТУ «ЛЭТИ», 2020 г.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №4 ВЕКТОРНОЕ УПРАВЛЕНИЕ СИНХРОННЫМ ДВИГАТЕЛЕМ

Общая информация: главной особенностью работы синхронного двигателя (СД) является одинаковая частота вращения магнитного поля и частота вращения ротора, с учетом количества пар полюсов. Это позволяет очень точно управлять скоростью вращения, но в то же время возможно ситуация выхода из синхронизма, при которой если скорость вращения ротора оказывается заметно отличной от частоты напряжения в обмотках, например под действием механической нагрузки, двигатель останавливается. Отсюда возникает проблема пуска СД, так как начальная скорость равна нулю. Несмотря на то, что в реальных системах возможна реализация асинхронного пуска за счет медленного увеличения частоты вращения электромагнитного поля, при моделировании высока вероятность, что такой подход не сработает из-за упрощений математического описания.

В настоящее время самым распространенным способом управления синхронными машинами является векторное управление. Идея такого управления заключается в формировании такого электромагнитного потока, чтобы максимизировать эффективность силы Ампера. Для этого необходимо знать положение ротора в каждый момент времени. Для упрощения математических моделей двигатель принято рассматривать не в естественных координатах (АВС для трехфазных машин, оси направлены согласно фазам двигателя), а в dq-координатах. Токи и напряжения можно однозначно преобразовать из одной системы координат в другую с помощью преобразования Парка. Оси в dq системе вращаются вместе с двигателем и соответствуют направлениям электромагнитного потока и момента. При синтезе системы управления делают раздельные регуляторы для контуров потока и момента, причем заданием на контур потока является ноль. Таким образом идея векторного управления заключается в прямом управлении моментом, что позволяет как управлять двигателем с хорошей динамикой, так и запустить его без дополнительных мероприятий, таких как предварительный разгон другой электрической машиной.

Синтез системы векторного управления является достаточно сложной задачей, поэтому целесообразно использовать готовые решения. В Matlab Simulink для управления СД с постоянными магнитами можно воспользоваться функцией PMSM Field-Oriented Control. Для корректной работы системы управления в соответствующих полях необходимо задать параметры двигателя. Во вкладке General (рисунок 1) определяются мощность двигателя, максимально допустимый

крутящий момент, число пар полюсов. Так же необходимо указать напряжение питания и пороговое напряжение срабатывания транзисторов в схеме инвертора.

Рисунок 1 – основные настройки векторного управления

Мощность обычно должна соответствовать номинальной мощности двигателя, а крутящий момент можно существенно превышать, вплоть до двухкратных значений относительно номинала. Номинальная мощность связана с номинальной скоростью и номинальным моментом соотношением $P = \omega * M$, скорость задается в радианах в секунду. В остальных вкладках задаются коэффициенты регуляторов и другие параметры двигателя. Параметры двигателя должны соответствовать заданным в модели электрической машины (рисунок 2).

Рисунок 2 – окно задания параметров двигателя.

В данной работе рассматривается модель двигателя с постоянными магнитами с параметрами заданными в dq координатах. Так как предполагается, что двигатель симметричный и исправный, проекции индуктивностей на оси dq совпадают.

Параметры регуляторов необходимо определить эмпирически и оценить их влияние на переходную характеристику скорости.

Задание: Собрать модель системы управления синхронным двигателем постоянного тока с использованием векторного управления. Оценить влияние изменения коэффициентов регуляторов на динамику системы.

Варианты:

Вариант	1	2	3	4	5	6	7	8	9	10
Скорость, об/мин	3000	1500	3000	3000	3000	4000	1100	6000	4500	9000
Мощность, Вт	630	7600	50	750	690	26	13823	110	432	40
Напряжение, В	340	560	48	320	48	24	325	560	325	12
Число пар по- люсов	5	5	2	3	4	4	3	3	4	4
Потокосцеп- ление, Вб	0.06861	0.16514	0.02417	014112	0.01557	0.00526	0.7797	0.0715	0.0813	0.0011
Индуктив- ность статора, Гн	0.00855	0.00145	0.0015	0.0059	0.00043	0.00105	0.0097	0.027	0.0085	0.0001
Сопротивле- ние статора, Ом	1.46	0.065	2.45	2.3	0.055	0.75	0.32	49.75	8	0.3
Момент инер- ции, кг*м^2	7.6*10 ⁻⁵	0.00821	0.000003	0.00014	0.00014	2.401*10-6	0.045	6*10-6	1.84*10 ⁻⁵	1.2*10 ⁻⁷