La imatge digital i les seves propietats

Conceptes bàsics

-Senyal: funció que depèn d'alguna variable amb un significat físic.

Una imatge es pot modelitzar com una funció de 2 o 3 variables (fila, columna i temps)

Els valors de la funció es corresponen amb la lluminositat en els punts de la imatge

Els valors de la funció també poden indicar altres variables físiques (pressió, temperatura, distància a l'observador...)

-La imatge en un sensor o en la retina és 2D

La imatge real és 3D

La imatge intensitat 2D és el resultat de la projecció de l'escena 3D

La projecció implica pèrdua d'informació

Funció imatge

- ע The same image represented as a surface on the right
- ☑ Brightness corresponds to height on the surface

WUPC

Conceptes bàsics

- -La intensitat de la imatge depèn de certs factors com:

 Les propietats reflectives de la superfície

 Les propietats de la font d'il.luminació

 L'orientació de la superfície
- -El rang de valors de la funció està limitat. En imatges monocromes el valor mínim es correspon al negre i el màxim al blanc.
- -Els diferents valors que la funció intensitat pot prendre reben el nom de *nivells de gris*

Digitalització de la imatge

- -<u>Discretització</u>: La funció f(x,y) es mostreja en una matriu de M columnes i N files
- -Quantificació: el rang continu de f(x,y) es divideix en K intervals. A cada interval se li assigna un valor
- -Cada petita mostra de la matriu es correspon a un element de la imatge digital i s'anomenapíxel

Digitalització de la imatge

- -<u>Teorema del mostreig de Shannon</u> l'interval de mostreig ha de ser menor que la meitat de la mida del detall interessant més petit en la imatge
- -L'ull humà no és gaire sensible a la quantificació. 256 nivells de gris és un valor molt habitual de quantificació per a imatges monocromes

Discretització i quantificació

Imatge monocroma

99	71	61	51	49	40	35	53	86	99
93	74	53	56	48	46	48	72	85	102
101	69	57	53	54	52	64	82	88	101
107	82	64	63	59	60	81	90	93	100
114	93	76	69	72	85	94	99	95	99
117	108	94	92	97	101	100	108	105	99
116	114	109	106	105	108	108	102	107	110
115	113	109	114	111	111	113	108	111	115
110	113	111	109	106	108	110	115	120	122
103	107	106	108	109	114	120	124	124	132

Valors dels píxels en la imatge

How many gray levels are required?

Contouring is most visible for a ramp

32 levels
64 levels
128 levels
256 levels

Digital images typically are quantized to 256 gray levels.

Brightness discrimination experiment

Visibility threshold

 $\Delta I/I \approx 1...2\%$

"Weber fraction" "Weber's Law"

Note: I is luminance, measured in cd/m^2

Can you see the circle?

Human brightness perception is uniform in the log(I) domain ("Fechner's Law")

Digitalització de la imatge

- -<u>Teorema del mostreig de Shannon</u> l'interval de mostreig ha de ser menor que la meitat de la mida del detall interessant més petit en la imatge
- -L'ull humà no és gaire sensible a la quantificació. 256 nivells de gris és un valor molt habitual de quantificació per a imatges monocromes
- -Les imatges color es quantifiquen en un vector de 3 característiques. Usualment (r,g,b)

Qualsevol color és una combinació dels tres colors primaris (r,g,b).

Existeixen altres transformacions

Conversió RGB-HSI

$$I = 1/3 (R+G+B)$$

$$S = 1 - \frac{\min(R,G,B)}{I}$$

$$H = \cos^{-1} \left\{ \frac{1/2 [(R-G) + (R-B)]}{\sqrt{(R-G)^2 + (R-B)(G-B)}} \right\} \text{ if } B < G$$

$$H = 360 - \cos^{-1} \left\{ \frac{1/2 [(R-G) + (R-B)]}{\sqrt{(R-G)^2 + (R-B)(G-B)}} \right\} \text{ if } B > G$$

Propietats: distància

La distància entre dos píxels amb coordenades (i,j) i (h,k) es pot definir:

-Distància euclídea:

$$D_E((i,j),(h,k)) = \sqrt{(i-h)^2 - (j-k)^2}$$

-Distància Manhattan:

$$D_4((i,j),(h,k))$$
 $\begin{vmatrix} i & h \end{vmatrix} \begin{vmatrix} j & k \end{vmatrix}$

-Distància taulell d'escacs:

$$D_8((i,j),(h,k))$$
 max $|i \quad h|,|j \quad k|$

Propietats: veïnatge

- -Veïnatge-4: dos píxels són 4-veïns si entre ells hi ha $D_4 = 1$
- -Veïnatge-8: dos píxels són 8-veïns si entre ells hi ha $D_8 = 1$

- -Regió: conjunt de píxels adjacents
- -Vora (border): conjunt de píxels d'una regió que tenen algun veí fora de la regió

Histogrames

- L'histograma d'una imatge h(z), ens dona el nombre d'ocurrències de cada valor z en la imatge

-L'histograma d'una imatge ens dona una informació global, útil per a determinar les condicions d'il.luminació, fer transformacions, i binaritzar la imatge

Percepció visual de la imatge

- La visió humana respon de forma logarítmica a la intensitat
- <u>Contrast</u>: Relació entre la intensitat (mitja) de l'objecte i la del fons.

La percepció humana de la intensitat depèn moltíssim del contrast

El soroll en la imatge

- La degradació en les imatges deguda a errors aleatoris s'anomena soroll
- El soroll pot dependre o no del contingut de la imatge
- El soroll es descriu per les seves característiques probabilístiques
- Una modelització molt usada és considerar el soroll gaussià
- La densitat de probabilitat de la variable aleatòria ve donada per la funció gaussiana:

$$p(x) = \frac{1}{\sqrt{2}} e^{\frac{(x-)^2}{2^2}}$$

El soroll en la imatge

- El soroll pot ser:
 - Additiu: el soroll *v* i la imatge *g* són independents:

$$f(x,y)$$
 $g(x,y)$ $v(x,y)$

-<u>Multiplicatiu</u>: el soroll és funció de la magnitud de la imatge:

$$f(x,y)$$
 $g(x,y)$ $v(x,y)g(x,y)$

- -<u>Impulsional</u>: La imatge es corromp amb píxels d'intensitat molt diferent a la de la imatge
- La **relació senyal/soroll (SNR)** representa una mesura de la qualitat de la imatge

