Produzione di proteine a partire da geni clonati

Sistemi di espressione

- •Procarioti (E. coli)
- •Eucarioti
 - •Lieviti (S. cerevisiae, P. pastoris)
 - •Cellule di insetto/baculovirus
 - •Cellule di mammifero

Segnali importanti per l'espressione in *E. coli*

Per l'espressione eterologa, bisogna inserire la sequenza codificante sotto controllo di elementi (promotore, Ribosome Binding Site, terminatore) utilizzati da E. Coli. Si utilizzano vettori di espressione pQE50).

Promotori

- •Forti
- •Deboli

- Costitutivi
- •Inducibili

Alcuni promotori comunemente utilizzati nei vettori di espressione

Promotore Lac

Un sistema molto comune utilizza la combinazione dei promotori Lac e T7 con IPTG come induttore

Costrutti per l'espressione di proteine di fusione

Il segmento può essere un gene di E. coli per facilitare l'inizio della traduzione oppure un tag (es <u>6XHIIS</u>, come in pQE50 o la GST (glutatione Stransferasi)) che si utilizzerà per la purificazione della proteina tramite cromatografia di affinità.

Glutatione S-transferasi

glutathione (GSH)

gene level

protein level

Cromatografia di Affinità

6XHis-tag

Espressione di proteine mutate

Problemi generali per quanto riguarda le proteine in E. coli

Per esprimere proteine in E. coli si deve partire da <u>cDNA</u> che rappresenta solo la sequenza codificante (senza introni).

Co-trasformazione con plasmide per codoni rari

Inoltre spesso la proteina espressa <u>non si ripiega</u>
<u>correttamente</u> e si ritrova sotto forma di aggregati
insolubili chiamati corpi di inclusione. Ciò è dovuto
all'incapacità dei procarioti, in alcuni casi, di favorire il
"folding" di proteine di origine eucariota.

Protein refolding

Espressione in organismi eucarioti inferiori

Si utilizzano promotori inducibili di geni eucarioti

Modifiche post-traduzionali (es glicosilazione)

I sistemi di espressione eucarioti permettono di ottenere le modifiche post-traduzionali (es. fosforilazione, glicosilazione ecc.) anche se a volte con risultati leggermente diversi tra i vari organismi

Espressione in cellule animali

Il sistema più comune utilizza cellule di insetto infettate con baculovirus.

Si utilizzano baculovirus modificati con il gene di interesse e si infettano cellule di insetto in coltura che produrranno la proteina di interesse

cellule di insetto infette contenente i granuli poliedrici del virus

Espressione in vivo in animali

Clonazione di un animale

SDS PAGE

Sodium Dodecyl Sulphate PolyAcrilamide Gel Electrophoresis

Elettroforesi su gel di Poliacrilamide

Utilizzato prevalentemente per la separazione di proteine.

I gel sono preparati facendo polimerizzare monomeri di acrilammide in presenza di piccole quantità di N,N' metilenbisacrilammide.

La polimerizzazione inizia con l'aggiunta di ammonio persolfato (APS) e N,N,N',N'-tetrametiletilenediamine (TEMED).

Porosità del PAG

Dipende da:

$$C = b \times 100/(a + b)$$
 [%]

$$T = (a + b)/V \times 100$$
 [%]

a = acrilammide

b = metilenbisacrilammide o BIS

Concentrazioni di acrilammide e intervalli di pesi molecolari

15 %

12.000 - 45.000

10 %

15.000 - 70.000

5 %

25.000 - 200.000

3 %

fino a 1.000.000

Elettroforesi su gel di poliacrilamide

Nativa

•denaturante

Trattamento del campione

SDS

denatura le proteine (stessa forma a "bastoncino") conferisce la stessa densità di carica (negativa)

β-Mercaptoetanolo HS-CH₂CH₂OH

rompe eventuali legami disolfuro

Temperatura (100 °C)

accelera la denaturazione completa

AFTER SDS

SDS-PAGE discontinua

Il gel e' funzionalmente diviso in due parti: stacking gel e running gel.

La disc-elettroforesi si fa usualmente verticale con il catodo in alto, così che le proteine migrano verso l'anodo in basso. Il tampone contenuto nelle due riserve è identico.

Le proteine (in SDS e β -mercaptoetanolo) vengono caricate in un pozzetto. La maggior densità fa sì che non si mescoli con il tampone della corsa. Le proteine vengono quindi concentrate nello stacking gel e separate nel running gel. In genere, nella soluzione di proteine si inserisce un colorante "tracciante" per poter fermare la elettroforesi al massimo della sua risoluzione

Figure 9. Analysis of SDS-PAGE (A) and western blot (B) A: M. Protein marker; 1. Un-induced with IPTG; 2, 3, 4, and 5: induced for by IPTG; B: 1, pGEX5x-1+BL21; 2, pGEX5x-1-xyn8+BL21; 3.