Project Development Phase – Sprint 2

Date	18 November 2022		
Team ID	PNT2022TMID48013		
Project Name	A new hint to transportation – Analysis of		
	the		
	NYC bike share system.		
Maximum Marks	20 Marks		

Feature Engineering:

calculating Age from birth year

from datetime import datetime, date age=2018-df['birth_year']
df['Age']=age
df.head()

calculating age group from age

```
max_limit = df['Age'].max()
max_limit
bins = [0,20,40,60,max_limit]
agegroup = pd.cut(df['Age'], bins=bins).value_counts()
Agegroup
```

```
[→ (20.0, 40.0] 161563
(40.0, 60.0] 148805
(60.0, 119.0] 27014
(0.0, 20.0] 0
Name: Age, dtype: int64
```

Calculating hour:

peak_hour['Start Date'] = pd.to_datetime(df['starttime'])
peak_hour['Stop Date'] = pd.to_datetime(df['stoptime'])
peak_hour['year'] = peak_hour["Start Date"].dt.year
peak_hour["Hour"] = peak_hour["Start Date"].dt.hour

	Start Date	Stop Date	year	Hour	bikeid	1.
0	2013-06-01 00:00:01	2013-06-01 00:11:36	2013	0	19678	
1	2013-06-01 00:00:08	2013-06-01 00:11:41	2013	0	16649	
3	2013-06-01 00:01:04	2013-06-01 00:03:07	2013	0	16352	
4	2013-06-01 00:01:22	2013-06-01 00:26:43	2013	0	15567	
6	2013-06-01 00:02:33	2013-06-01 00:36:50	2013	0	15693	
577687	2013-06-30 23:58:09	2013-07-01 00:05:25	2013	23	19454	
577689	2013-06-30 23:57:52	2013-07-01 00:00:57	2013	23	16746	
577690	2013-06-30 23:58:39	2013-07-01 00:08:34	2013	23	19290	
577698	2013-06-30 23:59:27	2013-07-01 00:14:52	2013	23	15250	
577700	2013-06-30 23:59:33	2013-07-01 00:02:14	2013	23	18910	
337382 rd	ws × 5 columns					

Visualization of the dataset in COGNOS Platform:

Finding the number of trips per each bike:

Finding the percentage of customers and subscribers:

Bike Usage - Bike Id Vs Trip Duration:

Age Group Differentiation by Bike Id:

Validation:

 $if(age \le 20) then$

('<20')

else if(age>=21 and age<=30) then

('21-30')

else if(age>=31 and age<=40) then

('31-40')

else if(age>=41 and age<=55)then

('41-55')

else('>55')

bikeid and Age_Group		4
Age_Group	bikeid	
21-30		5,721
31-40		5,749
41=55		5,741
<20		1,525
>55		5,781
Summary		5,794
•		,

Finding the top 10 start stations with customer age group:

start station name