Doble Grado en Ingeniería Informática y Matemáticas

Cálculo I – Evaluación 3

- 1. Sea $f:[a,b] \to \mathbb{R}$ una función estrictamente creciente verificando que $a < f(x) \leqslant b$ para todo $x \in [a,b]$. Definamos $x_1 = a$, y $x_{n+1} = f(x_n)$ para todo $n \in \mathbb{N}$.
 - a) Prueba que $\{x_n\}$ converge a un número $\beta \in]a,b].$
 - b) Sea $C=\{f(x)\colon x\in [a,b],\, x<\beta\}$. Prueba que $\beta=\sup(C)$ y $\beta\leqslant f(\beta)$.
 - c) Si la imagen de f es un intervalo prueba que $\beta = f(\beta)$.
- 2. Sea $\{x_n\}$ la sucesisón definida por

$$x_1 = 2,$$
 $x_{n+1} = \frac{4x_n + a}{x_n + 4}$ $(4 < a < 16)$

- a) Estudia la convergencia de dicha sucesión.
- b) Prueba que $0 < \sqrt{a} x_{n+1} < \frac{1}{3}(\sqrt{a} x_n)$ y deduce que $0 < \sqrt{a} x_{n+1} < \frac{1}{3^n}(\sqrt{a} 2)$.