MATH 305:201, 2020W T2

Homework set 3 — due Feb 05

Problem 1. Let $\Omega \subset \mathbb{C}$ be a domain and $f: \Omega \to \mathbb{C}$ be holomorphic in Ω . Denote f = u + iv and identify (u, v) with the real vector field $\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} u(x, y) \\ v(x, y) \end{pmatrix}$.

(i) Recall that the derivative of a vector field is given by the matrix $\begin{pmatrix} \partial_x u & \partial_y u \\ \partial_x v & \partial_y v \end{pmatrix}$. Prove that

$$\det\begin{pmatrix} \partial_x u(x,y) & \partial_y u(x,y) \\ \partial_x v(x,y) & \partial_y v(x,y) \end{pmatrix} = \left| f'(z) \right|^2, \quad \text{for all } z = x + \mathrm{i} y \in \Omega.$$

- (ii) Check the validity of (i) in the case of the function $f(z) = e^{2z}$.
- (iii) Prove that the gradients of u and v are everywhere orthogonal.
- (iv) Check the validity of (iii) in the case of the function $f(z) = z^2$.

Problem 2. (i) Let $\Omega = \mathbb{C}$, and let u(x,y) = 2x(1-y) + 1; Find a function v(x,y) such that f = u + iv is holomorphic in Ω , and express f in terms of z

(ii) Show that there is no entire function f = u + iv with $v(x, y) = 3x^3y - 2x^2 + 5xy^2 - 1$.

Problem 3. Find all solutions of the following equations:

- (i) $\sinh(2z) = i$
- (ii) $2\cos(z) = i\sin(z)$
- (iii) $(z i)^4 = (z + i)^4$

Problem 4. (i) Show that $Re(\sin(z)) = \sin(Re(z)) \cosh(Im(z))$

(ii) Show that $|\cos(z)|$ tends to $+\infty$ as $|z|\to +\infty$ along a straight line through 0 with non-zero slope. Hint: Write $z=r\mathrm{e}^{\mathrm{i}\theta}$ with $\theta\neq n\pi$ fixed and let $r\to\infty$

Problem 5. (i) Compute Log(-1-i)

- (ii) Compute $Log(2e^{3\pi i})$
- (iii) Compute $Log((-1-i\sqrt{3})^2)$ and compare it with $2Log(-1-i\sqrt{3})$
- (iv) Find a $z \in \mathbb{C}$ such that $\text{Log}(1/z) \neq -\text{Log}(z)$