DS n°9: Fiche de calculs

Durée : 60 minutes, calculatrices et documents interdits

Nom et prénom :		Note:	
-----------------	--	-------	--

Porter directement les réponses sur la feuille, sans justification.

Probabilité

Un joueur lance une infinité de fois une pièce, qui fait pile avec probabilité a. Il marque à chaque fois un point s'il fait pile et deux points s'il fait face. Si $n \in \mathbb{N}$, on note p_n la probabilité qu'il marque n points exactement à un moment du jeu. Déterminer les probabilités suivantes.

$$p_1 = \boxed{ \qquad \qquad (1) \qquad p_2 = \boxed{ }}$$

Une relation de récurrence entre p_{n+1}, p_{n-1} et p_n est

Une expression de p_n en fonction de n et a est

$$p_n = \boxed{ } \tag{4}$$

Soit X une variable aléatoire à valeurs dans $[\![0,n]\!]$ telle qu'il existe $a\in\mathbb{R}$ tel que pour tout $k\in[\![0,n]\!],\, P(X=k)=a\binom{n}{k}.$ Alors :

Matrices et algèbre linéaire

$$\operatorname{rg} \begin{pmatrix} 1 & 1 & m \\ 1 & m & 1 \\ m & 1 & 1 \end{pmatrix} = \tag{8}$$

Soient f_1, f_2, f_3 , définies par $\forall t \in \mathbb{R}$, $f_1(t) = e^{2t}$, $f_2(t) = te^{2t}$ et $f_3(t) = t^2 e^{2t}$. E l'espace vectoriel dont une base est $\mathscr{B} = (f_1, f_2, f_3)$ et l'application linéaire $\varphi : E \to E$ définie par $\varphi(f) = f + f'$.

$$\operatorname{Mat}_{\mathscr{B}}(\varphi) =$$
 (9)

Soit u l'endomorphisme de \mathbb{R}^3 dont la matrice A dans la base canonique $\mathscr{B}=((1,0,0),(0,1,0),(0,0,1)))$

est $A = \begin{pmatrix} 5 & 1 & 2 \\ -1 & 7 & 2 \\ 1 & 1 & 6 \end{pmatrix}$. Soit $\mathscr{B}' = ((1, 1, -1), (1, -1, 1), (1, 1, 1))$ une autre base de \mathbb{R}^3 . Alors, en

notant $P_{\mathscr{B}}^{\widehat{\mathscr{B}}'}$ la matrice de passage de \mathscr{B} à \mathscr{B}' et $P_{\mathscr{B}'}^{\mathscr{B}}$ celle de \mathscr{B}' à \mathscr{B} ,

$$P_{\mathscr{B}}^{\mathscr{B}'} = \boxed{ (10) \quad P_{\mathscr{B}'}^{\mathscr{B}} = \boxed{ (11)} }$$

Donner une relation entre les matrices $A, P_{\mathscr{B}}^{\mathscr{B}'}, P_{\mathscr{B}'}^{\mathscr{B}}$ et $\mathrm{Mat}_{\mathscr{B}'}(u)$

En déduire les coefficients de $\mathrm{Mat}_{\mathscr{B}'}(u)$ puis, pour tout $n \in \mathbb{N}^*$, les coefficients de A^n :

$$\operatorname{Mat}_{\mathscr{B}'}(u) = \boxed{ (13) \quad A^n = }$$

Soit $M=\left(\begin{array}{ccc} 0 & 1 & 2\\ 1 & 2 & 1\\ 2 & 4 & 2 \end{array}\right)$ et f l'endomorphisme de \mathbb{R}^3 canoniquement associé à M.

Donner une base $\mathscr C$ de $\mathbb R^3$ telle que $\mathrm{Mat}_{\mathscr C}(f)=\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 5 \end{array}\right)$.