華東謂三大學

EAST CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY

ST CHIMATE OF SCHERE

# 第七章水蒸气



### 主要内容



- □ 7.1 水的相变及相图
- 口 7.2 水蒸气的定压发生过程
- 口 7.3 水蒸气表和焓-熵图
- 口 7.4 水蒸气的基本热力过程





### 本章要点

□ 基本知识点:水蒸气的产生过程、水蒸气状态参数的确定、水蒸气图表的结构和应用、水蒸气在热力过程中功量和热量的计算。

口本章重点:工业上水蒸气的定压生成过程,学会使用水蒸气热力学性质的图表,并能熟练的运用于各种热力过程的计算(实际气体热力过程计算方法,理想气体状态方程及过程方程式不适用)。



### 7.1 水的相变和相图

#### 口水蒸气的特点

- ✓ 18世纪, 蒸气机的发明, 是唯一工质; 直到内燃机发明, 才有燃气工质;
- ✓ 目前仍是火力发电、核电、供暖、化工的工质;
- ✓ 优点: 便宜,易得,无毒,膨胀性能好,传热性能好
- ✓ 在空气中含量极小,当作理想气体;一般情况下,为实际气体,使用图表(实际气体热力过程)。



### 7.1 水的相变和相图

#### 口水的相变及相图特征

- ✓ 三个单相区(水、冰、蒸气)
- ✓ 三根饱和线(升华、融解和汽化曲线)
- ✓ 一个三相点(611.2Pa, 0.01°C)
- ✓ 一个临界点(22.13MPa, 374.15°C)

- □水相图的特征性
- ✓ 水蒸汽的相图与其他物质相图的区别(冰刀)
- ✓ 水性质的特殊性(水凝固后体积增大,密度减小)





一般物质



# 7.1 水和纯物质的p-T相图

□ 凝固 (Melting),汽化 (Vaporization),升华 (Sublimation)





### 7.1 水的相变和相图

#### □基本概念

✓ **汽化**: 由液态变成气态的物理过程(不涉及化学变化);

蒸发:在液体表面进行的汽化过程,任何温度下均可发生

沸腾:在液体表面及内部进行的强烈汽化过程,达到沸点温度才会发生

✓ 液化(凝结): 汽化的反过程, 凝结速度取决于蒸汽的压力







### 7.1 水的相变和相图

#### ✓ 饱和状态

当汽化速度=液化速度时,系统处于动态平衡,宏观上

气液两相保持一定的相对数量—饱和状态。

饱和状态的温度—<mark>饱和温度</mark>,  $t_s(T_s)$ 

饱和状态的压力—饱和压力, $p_s$ 

加热, 使温度升高如 ť, 保持定值, 系统建立新的动态

平衡。与之对应,p变成 $p_s$ '。



所以 
$$T_s \Leftrightarrow p_s$$
 ——对应,只有一个独立变量,即  $t_s = f(p_s)$ 



### 7.2 水蒸气的定压发生过程





# 7.2 水蒸气的定压发生过程

#### 口 相关名词

**未饱和水**—温度低于所处压力下饱和温度的水:t < t。

**饱和水**—处于饱和状态的水:  $t = t_s$ 

**湿饱和蒸汽(湿蒸汽)** —饱和水和干饱和蒸汽的混合物:  $t = t_s$ 

**干饱和蒸汽** —处于饱和状态的蒸汽:  $t = t_s$ 

过热蒸汽—温度高于饱和温度的蒸汽:  $t > t_s$ ,  $t - t_s = d$  称为过热度。

干度: 湿蒸汽中干饱和蒸汽的质量分数, 用 x 表示

$$x = \frac{m_{\tilde{\Xi}}}{m_{\tilde{\Xi}} + m_{\tilde{\Xi}}} \qquad (湿度 y = 1-x)$$

使未饱和液达饱和状态的途径: (t,p)  $\begin{cases} t < t_s(p) - \text{保持}p \text{不变}, t \uparrow \\ p > p_s(t) - \text{保持}t \text{不变}, p \downarrow \end{cases}$ 

$$t < t_s(p)$$
-保持 $p$ 个变, $t$ 个 $p > p_s(t)$ -保持 $t$ 不变, $p$ 



# p-v / T-s图上的水蒸气定压加热过程



一点 临界点

 $P_{\rm c}$  = 22.129 MPa  $T_{\rm c} = 647.30 \ {\rm K}$  $v_c = 0.00326 \text{ m}^3/\text{kg}$ 

饱和气线

液 汽液共存 三区 汽

饱和水 五态

湿蒸汽

饱和蒸汽 过热蒸汽



# 水和水蒸气状态参数及其图表

- □ 状态公理:简单可压缩系统,两个独立变量
- □ 未饱和水及过热蒸汽,一般已知*p和T*即可饱和水和饱和蒸汽,只需确定*p或T*湿蒸汽,*p和T*不独立,汽液两相,如何确定?
- 口 1875年,吉布斯提出了吉布斯相律 (Gibbs Phase Rule)
- 口 无化学反应时,热力系独立参数的个数  $\gamma = K f + 2$  K 是组元数 (对于纯水,K = 1), f 是相数
- 口 单相:  $f = 1 \rightarrow \gamma = 2 \rightarrow 2$ 个独立参数, p和T

两相:  $f = 2 \rightarrow \gamma = 1 \rightarrow 1$ 个独立参数, p或T



# 水和水蒸气状态参数确定的原则

- □ 未饱和水/过热蒸汽:确定任意两个独立参数,如p和T
- □ 饱和水/饱和蒸汽: 确定p或T
- □ 湿蒸汽: 除p或T外, 还需其它与两相比例有关的参数
- 口 饱和水: x=0

饱和蒸汽: x=1

湿蒸汽: 0 < x < 1

在未饱和水和过热蒸汽区域, x没有明确的物理意义



#### 口水蒸气状态参数

在工程计算中,水和水蒸气的状态参数可查表或图(p, v, T, h和s),任何图表都有基准点。

- ✓ 基准点的规定
- 水的三相点即为基准点(热力学能和熵为零)。
- ✓ 水蒸气定压发生过程说明

$$Q = \Delta U + W = \Delta U + \int p dV$$

$$= \Delta U + p\Delta V = \Delta U + \Delta(pV) = \Delta H$$



- (1)预热段-液体热q<sub>l</sub>
- (2)汽化段-气化潜热r(压力变化,气化潜热是否变化?)
- (3)过热蒸汽段-过热热量



口 理想气体 h = f(T)

口实际气体汽化时,T=T。不变,但h增加;

h'' - h' = r 汽化潜热



- 口水蒸气表
- ✓ 饱和水和饱和蒸汽表(按照饱和温和和饱和压力列表)
- ✓ 未饱和水与过热蒸汽表

缺陷:离散的数值,需要根据相邻同相状态点的参数值做线性内插计算。



# 饱和水与饱和水蒸气表

#### (按温度排列)

| 温度       | 饱和压力                                      | 比容           |                          | 焓           |              | <i>=</i> (1, )±±±± | 熵            |              |
|----------|-------------------------------------------|--------------|--------------------------|-------------|--------------|--------------------|--------------|--------------|
|          |                                           | 饱和水          | 饱和蒸气                     | 饱和水         | 饱和蒸气         | 气化潜热               | 饱和水          | 饱和蒸气         |
| T<br>(℃) | $\begin{array}{c} p_a \\ P_a \end{array}$ | v'<br>M³/Kg  | v"<br>M <sup>3</sup> /Kg | h'<br>KJ/Kg | h''<br>KJ/Kg | r<br>KJ/Kg         | s' KJ/(Kg•K) | s' KJ/(Kg•K) |
| 0        | 0.0006 108                                | 0.001 000 2  | 206.321                  | -0.04       | 2 501.0      | 2 501.0            | -0.000 2     | 9.156 5      |
| 0.01     | 0.0006 112                                | 0.001 000 22 | 206.175                  | 0.000 614   | 2 501.0      | 2 501.0            | 0.000 0      | 9.156 2      |
| 1        | 0.0006 566                                | 0.001 000 1  | 192.611                  | 4.17        | 2 502.8      | 2 498.6            | 0.015 2      | 9.129 8      |
| 2        | 0.0007 054                                | 0.001 000 1  | 179.935                  | 8.39        | 2 504.7      | 2 496.3            | 0.030 6      | 9.103 5      |
| 4        | 0.0008 129                                | 0.001 000 0  | 157.267                  | 16.80       | 2 508.3      | 2 491.5            | 0.061 1      | 9.051 4      |
| 6        | 0.0009 346                                | 0.001 000 0  | 137.768                  | 25.21       | 2 512.0      | 2 486.8            | 0.091 3      | 9.000 3      |

#### (按压力排列)

| 压力                    | 饱和温      | 比容          |             | 焓           |             | 》与11xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx | 熵            |              |
|-----------------------|----------|-------------|-------------|-------------|-------------|-----------------------------------------|--------------|--------------|
|                       | 度        | 饱和水         | 饱和蒸气        | 饱和水         | 饱和蒸气        | 汽化潜热                                    | 饱和水          | 饱和蒸气         |
| p <sub>a</sub><br>MPa | t<br>(℃) | v'<br>m³/Kg | v"<br>m³/Kg | h'<br>KJ/Kg | h"<br>KJ/Kg | r<br>KJ/Kg                              | s' KJ/(Kg•K) | s' KJ/(Kg•K) |
| 0.0010                | 6.982    | 0.001 000 1 | 129.208     | 29.33       | 2 513.8     | 2 484.5                                 | 0.106 0      | 8.975 6      |
| 0.0020                | 17.511   | 0.001 001 2 | 67.006      | 73.45       | 2 533.2     | 2 459.8                                 | 0.260 6      | 8.723 6      |
| 0.0030                | 24.098   | 0.001 002 7 | 45.668      | 101.00      | 2 545.2     | 2 444.2                                 | 0.354 3      | 8.577 6      |
| 0.0040                | 28.981   | 0.001 004 0 | 34.803      | 121.41      | 2 554.1     | 2 432.7                                 | 0.422 4      | 8.474 7      |
| 0.0050                | 32.90    | 0.001 005 2 | 28.196      | 137.77      | 2 561.2     | 2 423.4                                 | 0.476 2      | 8.395 2      |
| 0.0060                | 36.18    | 0.001 006 4 | 23.742      | 151.50      | 2 567.1     | 2 415.6                                 | 0.520 9      | 8.330 5      |



# 未饱和水与过热蒸汽表

| p       |            | 0.001MP         | <sup>o</sup> a    | $0.005MPa$ $(t_s = 32.879^{\circ}C)$ |            |                   |  |
|---------|------------|-----------------|-------------------|--------------------------------------|------------|-------------------|--|
|         |            | $(t_s = 6.949)$ | °C)               |                                      |            |                   |  |
|         | ν'         | h'              | s*                | ν'                                   | h'         | s.                |  |
|         | 0.001001   | 29.21           | 0.1056            | 0.0010053                            | 137.72     | 0.4761            |  |
|         | m³/kg      | kJ/kg           | $kJ/(kg \cdot K)$ | m³/kg                                | kJ/kg      | kJ /(kg · K)      |  |
|         | ν"         | h"              | <i>s</i> ,        | ν"                                   | h"         | s'                |  |
|         | 0.001001   | 29.21           | 0.1056            | 28.191                               | 2560.6     | 8.3930            |  |
|         | m³/kg      | kJ/kg           | $kJ/(kg \cdot K)$ | m³/kg                                | kJ/kg      | kJ /(kg · K)      |  |
| t<br>°C | v<br>m³/kg | h<br>kJ/kg      | s<br>kJ /(kg · K) | v<br>m³/kg                           | h<br>kJ/kg | s<br>kJ /(kg - K) |  |
| 0       | 0.001002   | -0.05           | -0.0002           | 0.0010002                            | -0.05      | -0.0002           |  |
| 10      | 130.598    | 2519.0          | 8.9938            | 0.0010003                            | 42.01      | 0.1510            |  |
| 20      | 135.226    | 2537.7          | 9.0588            | 0.0010018                            | 83.87      | 0.2963            |  |
| 40      | 144.475    | 2575.2          | 9.1823            | 28.854                               | 2574.0     | 8.43466           |  |
| 60      | 153.717    | 2612.7          | 9.2984            | 30.712                               | 2611.8     | 8.5537            |  |
| 80      | 162.956    | 2650.3          | 9.4080            | 32.566                               | 2649.7     | 8.6639            |  |

离散数值,线性内插;可 多次线性内插;未饱和水 和饱和水可线性内插,饱 和干蒸汽和过热蒸汽可线 性内插;

未饱和水焓值可近似等于饱和水焓值(相同温度下);

#### 口 压力为P的湿蒸汽

$$v_{x} = xv'' + (1-x)v' = v' + x(v'' - v')$$
 $v_{x} \approx xv''$  (当p不太大, x不太小时)
 $h_{x} = xh'' + (1-x)h' = h' + x(h'' - h') = h' + xr$ 

$$s_{x} = xs'' + (1-x)s' = s' + x(s'' - s') = s' + x\frac{r}{T_{s}}$$
 $u_{x} = h_{x} - pv_{x}$ 

$$y = x \cdot y'' + (1 - x) \cdot y' \implies x = \frac{y - y'}{y'' - y'}$$



### 查表法举例

- 口 查表时先要确定在五态中的哪一态
- □ 已知 p = 1 MPa, 试确定 t = 100 °C 或 200 °C 时各处于哪个状态, 各自的h是多少?
- □ 已知 t = 250 °C, 5 kg 蒸汽占有0.2 m³ 容积, 试问蒸汽所处状态, 以及对应的h?
- □ 已知 t = 85 °C, p = 0.015 MPa, 试确定状态和h?
- 口 有没有500℃的水? 有没有-3℃的水蒸气?

没有;有

#### 例7.1 试确定以下三种情况下是什么样的蒸汽?

- (1) P=0.8MPa,  $v=0.22m^3/kg$
- (2) P=0.6MPa, t=190°C
- $(3)P=1MPa, t=179.88 \, ^{\circ}C$

例7.2 在容积为85L的容器中,盛有0.1kg的水及0.7kg的干饱和蒸汽,求容器中的压力。

$$v_x = xv'' + (1-x)v' = v' + x(v''-v')$$
  
 $v_y \approx xv''$  (当p不太大, x不太小时)

- 例7.3 (1)150°C的液态水放在密闭容器内,试问其压力范围?
  - (2)刚性容器中湿蒸汽加热时,干度增大还是减小?

(1) P≥0.47597MPa (饱和水也是液态)





# 如何在图上表示功和热?

- 口 插值法在实际使用时过于麻烦
- □ p-v图 (面积代表功)、T-s图 (面积代表热) → 仍需计算
- 口 能否用线段表示热和功?
- 口 锅炉、冷凝器:等压过程

$$q = \Delta h + w_t = \Delta h$$

口 汽轮机、给水泵:等熵过程

$$w_t = -\Delta h$$
,  $\Delta s = 0$ 

□ 焓熵图 (附图1)

**Enthalpy-Entropy / Mollier Diagram** 





### 焓熵图的画法

- □ 零点: h = 0, s = 0 (三相点)
- 口 饱和汽线(上界线)、饱和液线(下界线)
- 口 C点为分界点,不在极值点上
- □ 等压线群:  $\delta q = T ds = dh \rightarrow \left(\frac{\partial h}{\partial s}\right)_p = T > 0$

两相区: T不变, 斜直线; 单相区: 上翘发散形线

 $\square \left(\frac{\partial h}{\partial s}\right)_{p_c} = T_c > 0$ 





# 焓熵图的画法

□ 定温线:两相区: T和p——对应, T线即p线

气相区: 离饱和态越远, 越接近于理想气体

□ 等容线: 同理想气体一样, v线比 p线陡

口 等干度线: ex = 0 和 ex = 1之间,从C点出发的等分线





# 7.4 水蒸气热力过程

- □ 热力过程: **p s T v**
- 口 任务:初终态参数,过程功与热,p-v/T-s/h-s作图
- 口 注意理想气体过程的区别
- 口 第一定律与第二定律表达式均成立:

$$\delta q = du + \delta w \rightarrow$$
 可逆过程:  $\delta w = pdv$ 

$$\delta q = dh + \delta w_t \rightarrow$$
 可逆过程:  $\delta w_t = -vdp$ 

$$ds_{iso} \geq 0$$
 → 可逆过程:  $\delta q = Tds$ 

口 理想气体特有的性质和表达式不能用(水蒸气的 $c_{p_x}$   $c_y$ 以及 $\hbar$ 和u都不是温度的单值函数):

$$pv=RT$$
,  $c_p-c_v=R$ ,  $c_p/c_v=k$   $\Delta u=c_v\Delta T$ ,  $\Delta h=c_p\Delta T$ ,  $\Delta s=c_pln\left(rac{T_2}{T_1}
ight)-Rln\left(rac{p_2}{p_1}
ight)$ 

#### 口定压过程



$$q = \Delta h = h_2 - h_1$$

$$\Delta u = h_2 - h_1 - p(v_2 - v_1)$$

$$w = q - \Delta u$$

$$w = p(v_2 - v_1)$$

$$w_t = -\int v dp = 0$$



# 水蒸气的定压 (Isobaric) 过程

- 口 锅炉、换热器:  $q = \Delta h$ ,  $w_t = 0$
- □ 锅炉中,水从30°C/4 MPa, 定压加热到450°C
- □ 查表得 4 MPa 对应 t<sub>s</sub> = 250.33 °C → 450 °C 为过热蒸汽
- 口 查表得: h<sub>1</sub> = 129.3 kJ/kg, h<sub>4</sub> = 3330.7 kJ/kg

 $q = h_4 - h_1 = 3201.4 \text{ kJ/kg}$ 



#### 口 定熵过程





$$q = 0$$
  $w_{t} = -\Delta h$   
 $w = -\Delta u$   $\Delta u = h_{2} - h_{1} - (p_{2}v_{2} - p_{1}v_{1})$ 

# 水蒸气的绝热 (Isentropic) 过程

- 口 汽轮机、水泵: q=0,  $w_t=-\Delta h$
- 口 可逆过程:  $1 \rightarrow 2$ ,  $w_t = h_1 h_2$
- 口 不可逆过程:  $1 \rightarrow 2'$ ,  $w_{t'} = h_1 h_{2'}$
- 口 透平内效率:  $\eta_{oi} = \frac{h_1 h_2}{h_1 h_2}$





# 水蒸气的绝热过程举例

口 汽轮机, 
$$p_1 = 4$$
 MPa,  $t_1 = 450$  °C,  $p_2 = 0.005$  MPa,

$$\eta_{oi} = 0.9$$
,  $x: w_t'$ ,  $h_{2'}$ ,  $x_{2'}$ 



$$p_1, t_1 \rightarrow h_1 = 3330.7 \, kJ/kg, s_1 = 6.9379 \, kJ/kg\cdot K$$

$$s_2 = s_1 \rightarrow x_2 = \frac{s_2 - s_2'}{s_2'' - s_2'} = \frac{(6.9379 - 0.4762) \, kJ/kg \cdot K}{(8.3852 - 0.4762) \, kJ/kg \cdot K} = 0.8160$$

$$h_2 = x_2 h_2'' + (1 - x_2) h_2' = 2115.3 \ kJ/kg \cdot K$$

$$\eta_{oi} = \frac{h_1 - h_2'}{h_1 - h_2} = \frac{w_t'}{w_t} \Rightarrow w_t' = (h_1 - h_2) \eta_{oi} = 1093.9 \, kJ/kg \cdot K$$

$$h_{2'} = h_1 - w'_t = 2236.8 \ kJ/kg \cdot K, \ x_{2'} = \frac{h_{2'} - h'_2}{h''_2 - h'_2} = 0.866$$

#### 口 定温过程



$$q = T(s_2 - s_1)$$

$$w = q - \Delta u$$

$$W_{t} = q - \Delta h$$

$$\Delta u = h_2 - h_1 - (p_2 v_2 - p_1 v_1)$$

# 水蒸气的定温 (Isothermal) 过程

- 口 实际设备中很少见
- 口 p-v图: 远离饱和线时,接近于理想气体
- 口 可逆过程:  $q = T\Delta s$ ,  $w_t = q \Delta h$
- □ 理想气体: 1 → 2'
- 口 绝热节流: 焓不变, 但温度发生变化 (实际气体)
- 口 干度的测量原理





# 湿蒸汽的干度测量装置

- 口 湿蒸汽的p和T相互依赖,因此无法直接确定干度x
- □ 蒸汽节流法检测原理:

湿蒸汽 > 节流阀降压 > 过热蒸汽 (p2和T2相互独立)

分别测得
$$p_2$$
和 $T_2 \rightarrow h_2 \rightarrow h_1 = h_2 \rightarrow x = \frac{h_1 - h_1'}{h_1'' - h_1'}$ 



#### 口 定容过程



$$w = \int p dv = 0$$

$$q = \Delta u$$

$$\Delta u = h_2 - h_1 - v(p_2 - p_1)$$

$$w_t = -\int_{p_1}^{p_2} v dp = v(p_1 - p_2)$$



# 水蒸气的定容 (Isochoric) 过程

- 口 实际设备中不常见
- $\square \left(\frac{\partial h}{\partial s}\right)_{v} = T + v \left(\frac{\partial p}{\partial s}\right)_{v}$
- 口 比等压线陡







#### 例7.4 试在p-v图和T-s图上表示出下列过程

- (1) 过热蒸汽在定压下冷却到刚开始形成液体;
- (2) x=0.6的湿饱和蒸汽在定容下加热到x=1;
- (3) x=0.5的湿饱和蒸汽在200°C下定温加热到体积增加4.67倍。



**例7.5** 将2kg水盛于容积为 $0.2m^3$ 的抽空了的密闭刚性容器中,然后加热到 $200^{\circ}$ C, 试求容器中(1)压力;(2)焓;(3)蒸汽的质量和体积。

**例7.6** 过热蒸汽在0.6MPa压力下,从200℃定压加热至300℃,试求此过程中热量、功量及热力学能的变化量。



**例7.7** 某锅炉,由锅筒出来的蒸汽,经测定其压力P=0.8MPa,干度x=0.9,进入过热器在定压下加热,温度升高至 $t_2=250$ °C,求每千克蒸汽在过热器中吸收的热量。

**例7.8** 5MPa,  $t_1$ =400°C的蒸汽进入汽轮机绝热膨胀至0.005MPa。设环境温度为20°C, 求(1)若过程可逆,1kg蒸汽所做的膨胀功和技术功技术功各为多少? (2)若汽轮机实际过程做的功为可逆过程的88%,其做功能力损失为多少?



# 第七章 小结 (Summary)

- □ 熟悉p-7相图 (三维图无需记忆)
- □ 熟悉 "1点、2线、3区、5态"
- 口 会查图和表
- □ 熟练掌握基本热力过程在p-v、T-s、h-s图上的表示, 并能计算q、w<sub>t</sub>("蒸汽动力循环"会用到)
- 口 注意与理想气体比较,哪些公式可用、哪些不能用