DONI FERNANDO, S.SI., M.SI

MATEMATIKA LANJUT 1

PENGENALAN DAN PENDAHULUAN

DONI FERNANDO, S.Si., M.Si

Peneliti dan Dosen

LATAR BELAKANG PENDIDIKAN

- S1 MIPA MATEMATIKA 2005 2009
- S2 STATISTIKA 2009 –2011
- S2 MATEMATIKA TERAPAN 2010 2012

KARIR

- 2012 2015: Dosen Matematika, *Fakultas Ilmu Pendidikan* **Universitas Muhammadiyah Jakarta**
- 2014 2021: Perekayasa (Engineer) PNS, Badan Pengkajian dan Penerapan Teknologi (BPPT) Jakarta
- 2015 sekarang: Dosen Matematika, **Universitas Gunadarma**
- 2021 sekarang: Peneliti (Researcher) PNS, **Badan Riset dan Inovasi Nasional (BRIN) Jakarta**

Kontak: 0812 8830 6269 email: donifernando1788@gmail.com

Bobot Penilaian

Merupakan komponen penilaian selama satu semester perkuliahan dengan mengevaluasi beberapa aspek penting penilaian

Dosen Mata Kuliah (sampai UTS) = 60%

Dosen Koordinator Kampus (dari UTS sampai UAS) = 40

	AWAL – UTS (DOSEN MATA KULIAH)	UTS – UAS (DOSEN KOORDINATOR)
ABSENSI KEHADIRAN (MINIMAL 80%)	13 - 16 kali pertemuan ~ 20%	
KUIS	25% dari nilai kuis	
TUGAS KELOMPOK ATAU TUGAS INDIVIDU	10% dari nilai tugas	
UTS	35% dari nilai UTS	
UAS		
BONUS ATAU KEAKTIFAN PROSES	10% dari proses atau bonus	

Kontrak Kuliah

- Jumlah kehadiran dalam perkuliahan minimal 13 kali kehadiran, dan maksimal 16 kali kehadiran.
- Ketidakhadiran disampaikan paling lambat H-1 sebelum perkuliahan dilaksanakan, untuk alasan-alasan khusus harus melampirkan surat keterangan (surat sakit, atau izin dari kampus).
- Izin hanya disampaikan langsung oleh mahasiswa bersangkutan kepada dosen. Izin melalui teman tidak diperkenankan.
- Remidial atau susulan kuis dan UTS diberikan berdasarkan pertimbangan dan kebijaksanaan dosen mata kuliah dengan mempertimbangkan alasan ketidakhadiran mahasiswa saat pelaksanaan kuis dan UTS.
- Nilai koreksi evaluasi (kuis dan UTS) akan dibagikan segera paling lambat 2 minggu setelah pelaksanaan evaluasi.
- Masa sanggah atas ketidakpuasan nilai kuis dan UTS diberikan selama maksimal 1 minggu sejak nilai dibagikan dengan menunjukkan bukti ketidakpuasan.
- Hal-hal lain mengenai proses perkuliahan akan dibahas lebih lanjut berdasarkan kesepakatan bersama dengan mempertimbangkan kesediaan dosen.

SILABUS MATA KULIAH

Di akses pada laman BAAK. Dengan link: https://rps.gunadarma.ac.id/search-sap Nama Mata Kuliah **MATEMATIKA LANJUT 1** Kode Mata Kuliah **IT-012219**

GARIS BESAR MATERI	MINGGU KE 1 - 3	MINGGU KE 4 - 6	MINGGU 7	KE	MINGGU 8 - 9	KE	MINGGU KE 12 - 14
PENDAHULUAN	 Perkenalan Pendahuluan Turunan Parsial Turunan Parsial Dua Variabel atau Lebih Diferensial Total Turunan Fungsi Implisit Determinan Jacobian 	 Barisan dan Deret Aritmatika Barisan dan Deret Geometri Barisan dan Deret Takhingga Hubungan antara Barisan dan Deret Aritmatika dan geometri Deret Pangkat Fungsi periodik Deret Fourier 					
			• KUIS				
BARISAN DAN DERET							
MINGGU PENILAIAN					 Tugas Kelompok atau Tugas Individu 		
					MINGGU KE 10 - 11 UTS		
ANALISIS VEKTOR			•				Analisis Vektor
							MINGGU KE 15 - 16 UAS

Definition

Fungsi Dua Variabel didefinisikan sebagai sebuah fungsi bernilai real dari dua variabel real, yakni fungsi f yang memadankan setiap pasangan terurut (x, y) pada suatu himpunan D dari bidang dengan bilangan real tunggal f(x, y).

Sebagai ilustrasi, perhatikan Gambar berikut

Example

Berikut diberikan beberapa contoh fungsi dengan dua variabel

$$f(x,y) = x^2 + 3y^2$$

$$g(x,y) = 2x\sqrt{y}$$

- Perhatikan bahwa $f(-1,4) = (-1)^2 + 3(4)^2 = 49$ dan $g(-1,4) = 2(-1)\sqrt{4} = -4$.
- Himpunan D disebut sebagai **Daerah Asal** fungsi, disebut sebagai daerah asal alami (natural domain) jika tidak dinyatakan secara khusus, yaitu himpunan semua titik (x, y) pada suatu bidang dimana fungsi tersebut bermakna dan menghasilkan nilai bilangan real.
- Daerah asal alami fungsi nomor 1 adalah seluruh bidang, sementara daerah asal alami fungsi nomor 2 adalah $\{(x,y): -\infty < x < \infty, y > 0\}.$

◆□▶◆□▶◆■▶◆■▶ ■ り९@

Example

Sketsalah daerah asal alami untuk

$$f(x,y) = \frac{\sqrt{y-x^2}}{x^2 + (y-1)^2}$$

Solution

Daerah asal alami agar fungsi ini bermakna adalah seluruh bidang diluar $\{(x,y): x^2 \leq y\}$ dan titik (0,1). Dalam bentuk sketsa dinyatakan sebagai berikut:

Example

Sketsalah grafik fungsi berikut

$$f(x,y) = \frac{1}{3}\sqrt{36 - 9x^2 - 4y^2}$$

Solution

Misal $z=\frac{1}{3}\sqrt{36-9x^2-4y^2}$ dan perhatikan bahwa $z\geq 0$. Jika kedua ruas dikuadratkan dan disederhanakan, maka diperoleh persamaan elipsoida

$$9x^2 - 4y^2 + 9z^2 = 36$$

Solution

Grafik fungsi ditunjukkan sebagai berikut:

Example

Sketsalah grafik fungsi berikut

$$z = f(x, y) = y^2 - x^2$$

Solution

Sketsa grafik merupakan sebuah paraboloida

• Untuk memudahkan sketsa grafik fungsi z = f(x, y), diberikan bidang mendatar z = c yang memotong permukaan kurva.

 Proyeksi kurva ini pada bidang-xy disebut Kurva Ketinggian sedangkan kumpulan kurva-kurva yang demikian disebut Peta Kontur.

Example

Gambar peta kontur untuk permukaan yang berpadanan dengan dua fungsi berikut

$$z = \frac{1}{3}\sqrt{36 - 9x^2 - 4y^2}$$
 dan $z = y^2 - x^2$.

Solution

Kurva-kurva ketinggian dari $z=\frac{1}{3}\sqrt{36-9x^2-4y^2}$ berpadanan dengan $z=0;\ 1;\ 1.5;\ 1.75;\ 2$ dan $z=y^2-x^2$ yang berpadanan dengan z=-5;-4;...;3;4 masing-masing diperlihatkan pada gambar berikut

Example

Sketsa peta kontur untuk fungsi

$$z = f(x, y) = xy$$

yang berpadanan dengan nilai z = -4, -1, 0, 1, 4

1.3 Grafik Komputer Kurva Ketinggian

- Gambar-gambar berikut memperlihatkan perpadanan antara permukaan, grafik ketinggian dan peta kontur.
- ullet Perhatikan bahwa kita memutar bidang-xy sehingga sumbu-x menuju ke kanan, agar lebih mudah untuk menghubungkan permukaan dan kurva-kurva ketinggian

1.3 Grafik Komputer Kurva Ketinggian

1.3 Grafik Komputer Kurva Ketinggian

- Beberapa kondisi terkadang ditentukan oleh tiga variabel atau lebih, sehingga menghasilkan suatu fungsi dengan tiga atau lebih variabel.
- Misalnya suhu disuatu ruangan yang dipengaruhi oleh lokasi (x, y, z) sehingga menghasilkan fungsi T(x, y, z)
- Kecepatan fluida yang dipengaruhi oleh lokasi (x, y, z) selain waktu t sehingga menghasilkan fungsi V(x, y, z, t)
- Nilai rata-rata ujian 30 mahasiswa yang dipengaruhi oleh masing-masing nilai mahasiswa $(x_1,x_2,...,x_{30})$ sehingga menghasilkan fungsi $N(x_1,x_2,...,x_{30})$

Example

Carilah daerah asal untuk masing-masing fungsi berikut dan jelaskan permukaan-permukaan ketinggian untuk f.

1)
$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2 - 1}$$

2) $g(w, x, y, z) = \frac{1}{\sqrt{w^2 + x^2 + y^2 + z^2 - 1}}$

Solution

- Untuk menghindari akar bilangan negatif, maka bilangan terurut (x,y,z) harus memenuhi $x^2+y^2+z^2\geq 1$, sehingga daerah asal fungsi f terdiri dari semua titik (z,y,z) yang terletak pada atau diluar lingkaran satuan.
 - Permukaan ketinggian dari fungsi f adalah permukaan di ruang tiga yang memenuhi $f(x,y,z) = \sqrt{x^2 + y^2 + z^2 1} = c$ selama $c \ge 0$. Hubungan ini menuju ke $x^2 + y^2 + z^2 = c + 1$, sebuah bola yang berpusat di titik asal (0,0,0).
- **3** Bilangan terurut (w, x, y, z) harus memenuhi $w^2 + x^2 + y^2 + z^2 > 1$ untuk menghindari akar bilangan negatif dan pembagian oleh 0.

Example

Misalkan $F(x, y, z) = z - x^2 - y^2$. Jelaskan permukaan ketinggian untuk F dan plotlah permukaan ketinggian untuk -1, 0, 1, dan 2.

Solution

Hubungan $F(x, y, z) = z - x^2 - y^2 = c$ menuju ke $z = c + x^2 + y^2$ merupakan sebuah paraboloida yang membuka ke atas dengan puncak di (0, 0, c).

2. Turunan Parsial

2.1 Definisi Turunan Parsial

Definition

Misalkan f fungsi dua variabel x dan y. Jika y dijaga agar tetap konstan, katakanlah $y=y_0$, maka $f(x,y_0)$ adalah fungsi satu variabel x.

Turunannya di $x = x_0$ disebut **Turunan Parsial** f **terhadap** x di (x_0, y_0) dan dinyatakan oleh $f_x(x_0, y_0)$, dengan notasi

$$f_x(x_0, y_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

Dengan cara yang sama, turunan parsial f terhadap y di (x_0, y_0) dinyatakan oleh $f_y(x_0, y_0)$ dengan notasi

$$f_y(x_0, y_0) = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$$

2.1 Definisi Turunan Parsial

Example

Carilah $f_x(1,2)$ dan $f_y(1,2)$ jika $f(x,y) = x^2y + 3y^3$

Solution

Untuk mencari $f_x(x, y)$ kita perlakukan y sebagai konstan dan diturunkan terhadap x,

$$f_{x}(x,y)=2xy+0$$

sehingga diperoleh

$$f_{x}(1,2) = 2(1)(2) = 4$$

Dengan cara yang sama, diperoleh

$$f_y(x,y)=x^2+9y^2$$

sehingga

$$f_{\nu}(1,2) = 1^2 + 9(2)^2 = 37$$

2.1 Definisi Turunan Parsial

Example

Jika
$$z=x^2\sin(xy^2)$$
, carilah $\frac{\partial z}{\partial x}$ dan $\frac{\partial z}{\partial y}$

Solution

$$\frac{\partial z}{\partial x} = x^2 y^2 \cos(xy^2) + 2x \sin(xy^2)$$

$$\frac{\partial z}{\partial y} = x^2 \cos(xy^2).2xy$$

$$= 2x^3 y \cos(xy^2)$$

Secara umum karena turunan parsial suatu fungsi x dan y adalah fungsi lain dari dua variabel yang sama ini, maka turunan tersebut dapat dideferensialkan secara parsial terhadap x dan y, yang menghasilkan empat buah turunan parsial kedua dari fungsi f:

$$f_{xx} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2}$$

$$f_{yy} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial y^2}$$

$$f_{xy} = (f_x)_y = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x}$$

$$f_{yx} = (f_y)_x = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial^2 f}{\partial x \partial y}$$

Example

Carilah keempat turunan parsial kedua dari

$$f(x,y) = xe^y - \sin\frac{x}{y} + x^3y^2$$

Solution

Berdasarkan fungsi yang diberikan, diperoleh masing-masing turunan parsial pertama

$$f_x(x,y) = e^y + 3x^2y^2 - \frac{1}{y}\cos\frac{x}{y}$$

 $f_y(x,y) = xe^y + 2x^3y + \frac{x}{y^2}\cos\frac{x}{y}$

◆ロト ◆問 ト ◆恵 ト ◆恵 ト ・恵 ・ 釣 Q (*)

Solution

Sehingga diperoleh turunan parsial

$$f_{xx}(x,y) = \frac{\partial}{\partial x} \left(e^{y} + 3x^{2}y^{2} - \frac{1}{y}\cos\frac{x}{y} \right) = 6xy^{2} + \frac{1}{y^{2}}\sin\frac{x}{y}$$

$$f_{yy}(x,y) = \frac{\partial}{\partial y} \left(xe^{y} + 2x^{3}y + \frac{x}{y^{2}}\cos\frac{x}{y} \right)$$

$$= xe^{y} + 2x^{3} + \frac{x^{2}}{y^{4}}\sin\frac{x}{y} - \frac{2x}{y^{3}}\cos\frac{x}{y}$$

$$f_{xy}(x,y) = \frac{\partial}{\partial y} \left(e^{y} + 3x^{2}y^{2} - \frac{1}{y}\cos\frac{x}{y} \right)$$

$$= e^{y} + 6x^{2}y - \frac{x}{y^{3}}\sin\frac{x}{y} + \frac{1}{y^{2}}\cos\frac{x}{y}$$

$$f_{yx}(x,y) = \frac{\partial}{\partial x} \left(xe^{y} + 2x^{3}y + \frac{x}{y^{2}}\cos\frac{x}{y} \right) = e^{y} + 6x^{2}y - \frac{x}{y^{3}}\sin\frac{x}{y} + \frac{1}{y^{2}}\cos\frac{x}{y}$$

Resmawan (Math UNG)

- Turunan parsial tingkat tiga dan seterusnya dapat didefinisikan dengan cara yang sama dengan notasi yang serupa.
- Jika turunan parsial ketiga dari suatu fungsi $f\left(x,y\right)$ diperoleh dari turunan parsial pertama terhadap x lalu turunan parsial kedua terhadap y,maka notasinya ditunjukkan oleh

$$\frac{\partial}{\partial y} \left[\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \right] = \frac{\partial}{\partial y} \left(\frac{\partial^2 f}{\partial yx} \right) = \frac{\partial^3}{\partial y^2 \partial x} = f_{xyy}$$

Example

Carilah masing-masing f_{xyy} dan f_{xxy} dari fungsi

$$f(x,y) = xe^y - \sin\frac{x}{y} + x^3y^2$$

4 D > 4 A > 4 B > 4 B > B 900

Definition

Misalkan f suatu fungsi tiga variabel x, y, dan z. **Turunan Parsial** f **terhadap** x di (x, y, z) dinyatakan oleh $f_x(x, y, z)$ atau $\partial f(x, y, z) / \partial x$ dan didefinisikan oleh

$$f_x(x, y, z) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y, z) - f(x, y, z)}{\Delta x}$$

- Dengan demikian $f_x(x, y, z)$ dapat diperoleh dengan memperlakukan y dan z sebagai konstanta dan menurunkan f terhadap x.
- Turunan parsial terhadap y dan z dapat dilakukan dengan cara yang sama.
- Selanjutnya turunan parsial seperti f_{xy} dan f_{xyz} yang melibatkan diferensiasi terhadap lebih dari satu variabel disebut **Turunan Parsial Campuran.**

07.4

Example

Hitunglah masing-masing turunan parsial f_x , f_y , dan f_z jika diberikan fungsi

$$f(x, y, z) = xy + 2yz + 3zx$$

Solution

Untuk memperoleh f_x , perlakukan y dan z sebagai konstanta, sehingga

$$f_{x}\left(x,y,z\right) =y+3z$$

Dengan cara yang sama diperoleh

$$f_{y}\left(x,y,z\right) =x+2z$$

dan

$$f_z(x,y,z)=2y+3x$$

Example

Jika diberikan fungsi

$$T(w, x, y, z) = ze^{w^2 + x^2 + y^2}$$

- Hitunglah semua turunan parsial pertama
- Hitung turunan parsial

$$\frac{\partial^2 T}{\partial w \partial x}$$
, $\frac{\partial^2 T}{\partial x \partial w}$, dan $\frac{\partial^2 T}{\partial z^2}$

Solution

Turunan Parsial Pertama

$$T_{w}(w,x,y,z) = \frac{\partial T}{\partial w} = \frac{\partial}{\partial w} \left(z e^{w^{2} + x^{2} + y^{2}} \right) = 2wz e^{w^{2} + x^{2} + y^{2}}$$

$$T_{x}(w,x,y,z) = \frac{\partial T}{\partial x} = \frac{\partial}{\partial x} \left(z e^{w^{2} + x^{2} + y^{2}} \right) = 2xz e^{w^{2} + x^{2} + y^{2}}$$

$$T_{y}(w,x,y,z) = \frac{\partial T}{\partial y} = \frac{\partial}{\partial y} \left(z e^{w^{2} + x^{2} + y^{2}} \right) = 2yz e^{w^{2} + x^{2} + y^{2}}$$

$$T_{z}(w,x,y,z) = \frac{\partial T}{\partial z} = \frac{\partial}{\partial z} \left(z e^{w^{2} + x^{2} + y^{2}} \right) = e^{w^{2} + x^{2} + y^{2}}$$

Solution

2. Turunan Parsial lainnya

$$\frac{\partial^{2} T}{\partial w \partial x} = \frac{\partial}{\partial w} \left(\frac{\partial T}{\partial x} \right)$$

$$= \frac{\partial}{\partial w} \left(2xze^{w^{2} + x^{2} + y^{2}} \right) = 4wxze^{w^{2} + x^{2} + y^{2}}$$

$$\frac{\partial^{2} T}{\partial x \partial w} = \frac{\partial}{\partial x} \left(\frac{\partial T}{\partial w} \right)$$

$$= \frac{\partial}{\partial x} \left(2wze^{w^{2} + x^{2} + y^{2}} \right) = 4wxze^{w^{2} + x^{2} + y^{2}}$$

$$\frac{\partial^{2} T}{\partial z^{2}} = \frac{\partial}{\partial z} \left(\frac{\partial T}{\partial z} \right)$$

$$= \frac{\partial}{\partial z} \left(e^{w^{2} + x^{2} + y^{2}} \right) = 0$$

2.4 Latihan 2.

Problem

Carilah semua turunan parsial pertama dari fungsi berikut:

a.
$$f(x, y) = (4x - y^2)^{3/2}$$

b.
$$f(x, y) = e^x \cos y$$

c.
$$f(x,y) = (3x^2 + y^2)^{-1/2}$$

d.
$$f(u, v) = e^{uv}$$

e.
$$f(s,t) = \ln(s^2 - t^2)$$

f.
$$f(r,\theta) = 3r^2 \cos 2\theta$$

Tunjukkan bahwa

$$\frac{\partial^2 f}{\partial y \, \partial x} = \frac{\partial^2 f}{\partial x \, \partial y}$$

a.
$$f(x,y) = \tan^{-1} xy$$

b.
$$f(x, y) = 3e^{2x} \cos y$$

c.
$$f(x,y) = (x^3 + y^2)^5$$

2.4 Latihan 2.

Problem

- Hitung turunan parsial masing-masing fungsi yang diberikan
 - a. $F_x(-1,4)$ dan $F_y(-1,4)$ dari fungsi $F(x,y) = \ln(x^2 + xy + y^2)$
 - b. $f_x\left(\sqrt{5},-2\right)$ dan $f_y\left(\sqrt{5},-2\right)$ dari fungsi $f\left(x,y\right)=\tan^{-1}\left(y^2/x\right)$
- Berikan definisi dalam bentuk limit untuk turunan parsial berikut
 - a. $f_V(x, y, z)$
 - b. $f_z(x,y,z)$
 - c. $G_x(w, x, y, z)$
 - d. $\partial/\partial z(x, y, z, t)$

• Pada subbab ini ini kita akan memberikan arti pada pernyataan

$$\lim_{(x,y)\to(a,b)}f(x,y)=L$$

- Secara intuisi kalimat ini dapat dimaknai:
 - "Nilai f(x, y) dekat ke L, jika (x, y) dekat ke (a, b)"
- Bagaimana (x, y) dekat ke (a, b) ?

Definition (Definisi Limit Fungsi Dua Variabel)

Dikatakan

$$\lim_{(x,y)\to(a,b)}f(x,y)=L$$

artinya untuk setiap $\epsilon>0$ terdapat $\delta>0$ yang berpadanan sedemikian sehingga,

$$0 < \|(x,y) - (a,b)\| < \delta \Rightarrow |f(x,y) - L| < \epsilon$$

Untuk interpretasi $\|(x,y)-(a,b)\|$, pikirkan (x,y) dan (a,b) sehingga

$$\|(x,y)-(a,b)\|=\sqrt{(x-a)^2+(y-b)^2}$$

dan titik-titik yang memenuhi $0<\|(x,y)-(a,b)\|<\delta$ adalah semua titik-titik dalam lingkaran berjari-jari δ kecuali titik pusat (a,b).

4□ > 4□ > 4 = > 4 = > = 90

Perhatikan Gambar berikut

Beberapa poin yang perlu diperhatikan dari definisi limit fungsi dua variabel:

- Jalur pendekatan ke (a, b) tidak penting, artinya bahwa jika jalur pendekatan yang berlainan menuju nilai-nilai L yang berlainan, maka limit tidak ada.
- ② Perilaku f(x,y) di (a,b) tidak penting, bahkan fungsi f(x,y) bahkan tidak harus terdefinisikan di (a,b), sebagai akibat dari pembatasan $0 < \|(x,y) (a,b)\|$.
- **3** Definisi diekspresikan sedemikian sehingga dapat diperluas ke fungsi tiga variabel atau lebih, dengan mengganti (x, y) dan (a, b) dengan (x, y, z) dan (a, b, c).

Perhatikan bahwa, **polinomial** dengan variabel x dan y dapat dinyatakan

$$f(x, y, z) = \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x^{i} y^{i}$$

dan **fungsi rasional** dalam variabel x dan y dinyatakan dengan

$$f(x,y) = \frac{p(x,y)}{q(x,y)}$$

p dan q polinomial dalam x dan y, dengan asumsi $q \neq 0$.

Theorem

1 Jika f(x, y) adalah polinomial, maka

$$\lim_{(x,y)\to(a,b)} f(x,y) = (a,b)$$

2 Jika

$$f(x,y) = \frac{p(x,y)}{q(x,y)}$$

dengan p dan q polinomial, maka

$$\lim_{(x,y)\to(a,b)} f(x,y) = \frac{p(a,b)}{q(a,b)}; \ q(a,b) \neq 0$$

Theorem

3. Lebih lanjut, jika

$$\lim_{(x,y)\rightarrow(a,b)}p\left(x,y\right)=L\neq0\,\,dan\lim_{(x,y)\rightarrow(a,b)}q\left(x,y\right)=0$$

maka nilai

$$\lim_{(x,y)\to(a,b)}\frac{p(x,y)}{q(x,y)}$$

tidak ada.

Example

Hitung limit-limit berikut jika ada

1)
$$\lim_{(x,y)\to(1,2)} (x^2y+3y)$$
 2) $\lim_{(x,y)\to(0,0)} \frac{x^2+y^2+1}{x^2-y^2}$

Solution

Menurut Teorema

$$\lim_{(x,y)\to(1,2)} (x^2y + 3y) = 1^2.2 + 3.2 = 8$$

② Fungsi kedua adalah fungsi rasional, sehingga tidak mempunyai limit karena nilai limit penyebut sama dengan nol

4 D > 4 D > 4 B > 4 B > 3 P 9 Q 0

Example

Perlihatkan bahwa fungsi

$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

tidak mempunyai limit di titik asal (perhatikan Gambar)

27 Agustus 2018

Solution

Fungsi f didefinisikan diseluruh bidang xy kecuali titik asal (0,0). Disemua titik pada sumbu-x selain titik asal, nilai f adalah

$$f(x,0) = \frac{x^2 - 0}{x^2 + 0} = 1$$

sehingga limit fungsi f untuk (x, y) dekat ke (0, 0) disepanjang sumbu-x:

$$\lim_{(x,0)\to(0,0)} f(x,0) = \lim_{(x,0)\to(0,0)} \frac{x^2 - 0}{x^2 + 0} = 1$$

Dengan cara yang sama, limit fungsi f untuk (x, y) dekat ke (0, 0) disepanjang sumbu-y:

$$\lim_{(0,y)\to(0,0)} f(0,y) = \lim_{(0,y)\to(0,0)} \frac{0-y^2}{0+y^2} = -1$$

Resmawan (Math UNG)

Examples

Carilah nilai limit yang ditunjukkan atau nyatakan bahwa limit tidak ada

(1)
$$\lim_{(x,y)\to(-1,2)} \frac{xy-y^3}{(x+y+1)^2}$$

(2)
$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{x^4-y^4}$$

(3)
$$\lim_{(x,y)\to(0,0)} \frac{\tan(x^2+y^2)}{x^2+y^2}$$

Solution

(1)
$$\lim_{(x,y)\to(-1,2)} \frac{xy-y^3}{(x+y+1)^2} = \frac{(-1)(2)-2^3}{(-1+2+1)^2} = -\frac{5}{2}$$
(2)
$$\lim_{(x,y)\to(0,0)} \frac{x^2+y^2}{x^4-y^4} = Tidak \ terdefinisi \ karena \ fungsi$$

$$= tidak \ terdefinisi \ disepanjang$$

$$= garis \ y = x$$
(3)
$$\lim_{(x,y)\to(0,0)} \frac{\tan(x^2+y^2)}{x^2+y^2} = \lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} \cdot \frac{1}{\cos(x^2+y^2)}$$

4 D > 4 P > 4 B > 4 B > B = 900

= (1)(1)

- Dalam kasus tertentu, limit fungsi dua variabel khususnya di titik asal dapat dianalisis dengan lebih mudah dengan mengubah fungsi ke koordinat polar.
- Dalam hal ini, poin penting yang perlu diingat bahwa

$$(x,y)
ightarrow (0,0)$$
 jika dan hanya jika $r = \sqrt{x^2 + y^2}
ightarrow 0$

• Dengan ekspresi ini, limit fungsi dua variabel diekspresikan sebagai limit satu variabel *r* saja.

Example

Hitunglah limit fungsi berikut, jika ada

(1)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{3x^2+3y^2}$$
 (2)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$$

Ingat aturan L'Hopital:

Jika

$$\lim_{x\to c}f\left(x\right)=\lim_{x\to c}g\left(x\right)=0 \text{ atau } \pm\infty \text{ dan } \lim_{x\to c}\frac{f'\left(x\right)}{g'\left(x\right)} \text{ ada,}$$

Maka

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

Solution

 Dengan mengubah ke koordinat polar dan menggunakan aturan L'Hopital, diperoleh

$$\lim_{(x,y)\to(0,0)} \frac{\sin\left(x^2+y^2\right)}{3x^2+3y^2} = \lim_{r\to 0} \frac{\sin r^2}{3r^2} = \frac{1}{3} \lim_{r\to 0} \frac{2r\cos r^2}{2r} = \frac{1}{3}$$

Perubahan ke koordinat polar memberikan

$$\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2}=\lim_{r\to 0}\frac{r\cos\theta\ r\sin\theta}{r^2}=\lim_{r\to 0}\cos\theta\ \sin\theta$$

karena limit tergantung dari θ , maka lintasan-lintasan garis lurus ke titik asal akan menuju ke limit yang berlainan. Artinya limit tidak ada untuk fungsi ini.

4 D > 4 D > 4 D > 4 D > 9

Examples

Carilah nilai limit yang ditunjukkan dengan koordinat polar

(1)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$$

(2)
$$\lim_{(x,y)\to(0,0)} \frac{x^{7/3}}{x^2+y^2}$$

(3)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^4}$$

Solution

(1)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2 + y^2}} = \lim_{r\to 0} \frac{r\cos\theta.r\sin\theta}{r}$$

$$= \lim_{r\to 0} r\cos\theta.\sin\theta = 0$$
(2)
$$\lim_{(x,y)\to(0,0)} \frac{x^{7/3}}{x^2 + y^2} = \lim_{r\to 0} \frac{(r\cos\theta)^{7/3}}{r^2}$$

$$= \lim_{r\to 0} \frac{r^{7/3}(\cos\theta)^{7/3}}{r^2}$$

$$= \lim_{r\to 0} r^{1/3}(\cos\theta)^{7/3}$$

(3)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^4}$$

Solution

$$(3) \lim_{(x,y)\to(0,0)} \frac{x^2 y^2}{x^2 + y^4} = \lim_{r \to 0} \frac{r^4 \cos^2 \theta \sin^2 \theta}{r^2 \cos^2 \theta + r^4 \sin^4 \theta}$$
$$= \lim_{r \to 0} \frac{r^2 \cos^2 \theta \sin^2 \theta}{\cos^2 \theta + r^2 \sin^4 \theta}$$
$$= \lim_{r \to 0} r^2 \left(\frac{\cos^2 \theta \sin^2 \theta}{\cos^2 \theta + r^2 \sin^4 \theta} \right)$$

Perhatikan bahwa:

- Jika $\cos \theta = 0$, maka f(x, y) = 0
- Jika $\cos \theta \neq 0$, limit f(x, y) konvergen ke 0 saat $r \rightarrow 0$
- Dengan demikian

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$

3.3 Kontinuitas pada Suatu Titik

Definition (Kontinuitas pada Satu Titik)

Suatu fungsi f(x, y) dikatakan kontinu di titik (a, b) jika memenuhi syarat

- 1 f mempunyai nilai di (a, b)
- f mempunyai limit di (a, b)
- Nilai f di (a, b) sama dengan nilai limitnya

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b)$$

3.3 Kontinuitas pada Suatu Titik

Theorem (Komposisi Fungsi)

Jika sebuah fungsi dua variabel g kontinu di (a, b) dan sebuah fungsi satu variabel f kontinu di (a, b), maka fungsi komposisi $f \circ g$ yang didefinisikan oleh $(f \circ g)(x, y) = f(g(x, y))$ kontinu di (a, b).

Example

Jelaskan titik-titik (x, y) dimana pada titik-titik tersebut, fungsi berikut adalah kontinu

(1)
$$H(x,y) = \frac{2x+3y}{y-4x^2}$$

(2) $F(x,y) = \cos(x^3-4xy+y^2)$

(2)
$$F(x,y) = \cos(x^3 - 4xy + y^2)$$

3.3 Kontinuitas pada Suatu Titik

Solution

- H(x,y) adalah fungsi rasional, sehingga kontinu di setiap titik tempat, kecuali titik yang menyebatkan penyebut 0. Penyebut $y-4x^2$ sama dengan 0 di sepanjang parabola $y=4x^2$. Dengan demikian, H(x,y) kontinu untuk semua (x,y) kecuali untuk titik-titik di sepanjang parabola $y=4x^2$.
- ② Fungsi $g(x,y) = x^3 4xy + y^2$ kontinu untuk semua (x,y) karena merupakan fungsi polinomial. Fungsi $f(t) = \cos t$ juga kontinu disetiap bilangan t karena merupakan fungsi trigonometri. Dengan demikian, fungsi F(x,y) kontinu untuk semua (x,y)

3.4 Latihan 3

Problem

1. Carilah limit yang ditunjukka atau nyatakan bahwa limit tidak ada:

a.
$$\lim_{(x,y)\to(-2,1)} (xy^3 - xy + 3y^2)$$

b.
$$\lim_{(x,y)\to(1,2)} \frac{x^3 - 3x^2y + 3xy^2 - y^3}{y - 2x^2}$$

c.
$$\lim_{(x,y)\to(0,0)} \frac{xy + \cos x}{xy - \cos x}$$

d.
$$\lim_{(x,y)\to(0,0)} \frac{x^4 - y^4}{x^2 - y^2}$$

e.
$$\lim_{(x,y)\to(0,0)} xy \frac{x^2-y^2}{x^2+y^2}$$

4 11 2 4 12 2 4 12 2 2 9 9 9

3.4 Latihan 3

Problem

2. Perlihatkan bahwa

$$\lim_{(x,y)\to(0,0)} \frac{xy+y^3}{x^2+y^2}$$

tidak ada

3. Uraikan himpunan terbesar S yang memenuhi untuk mengatakan bahwa f kontinu

a.
$$f(x,y) = \frac{x^2 + 3xy + y^2}{y - x^2}$$

b. $f(x,y) = \ln(1 + x^2 + y^2)$
c. $f(x,y) = \frac{1}{\sqrt{1 + x + y}}$

3.4 Latihan 3

Problem

4. Misalkan

$$f(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2}$$

Jika $(x,y) \neq (0,0)$ dan f(0,0) = 0, perlihatkan bahwa $f_{xy}(0,0) \neq f_{yx}(0,0)$ dengan melengkapi langkah-langkah berikut:

- a. perlihatkan bahwa $f_X\left(0,y\right)=\lim_{h\to 0}\left(\frac{f(0+h,y)-f(0,y)}{h}\right)=-y$, untuk semua y.
- b. perlihatkan bahwa $f_y(x,0) = x$, untuk semua x.
- c. perlihatkan bahwa $f_{y_X}\left(0,0
 ight)=\lim_{h o 0}\left(rac{f_y(0+h,0)-f_y(0,0)}{h}
 ight)=1.$
- d. perlihatkan bahwa $f_{xy}(0,0) = -1$.

4. Turunan Fungsi Dua Peubah (Keterdiferensialan)

4.1 Pendahuluan

Pada subbab ini kita ingin memeriksa apakah suatu fungsi dua peubah mempunyai turunan di titik tertentu dan menentukan turunannya

4.1 Pendahuluan

Turuna Parsial Saja Tidak Cukup

Kita sudah mendefinisikan turunan parsial dari suatu fungsi dua peubah; tapi eksistensi turunan parsial di suatu titik tidak memberi kita informasi tentang nilai fungsi di sekitar titik tersebut.

4.2 Turunan Fungsi Satu Peubah

Turunan dari fungsi satu peubah y = f(x) di x = c didefinisikan sebagai

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

Sayangnya bentuk ini tidak dapat diperumum ke fungsi dua peubah

$$f'\left(\overline{c}\right) = \lim_{\overline{h} \to \overline{0}} \frac{f\left(\overline{c} + \overline{h}\right) - f\left(\overline{c}\right)}{\overline{h}}$$

karena pembagian dengan vektor tidak terdefinisi

4.2 Turunan Fungsi Satu Peubah

Jika y = f(x) mempunyai turunan di x = c yaitu

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = m$$

maka f linear secara lokal di $x \approx c$, yaitu

$$f(c+h) = f(c) + hm + h\epsilon(h)$$

dengan

$$\lim_{h\to 0} \epsilon(h) = \lim_{h\to 0} \left[\frac{f(c+h) - f(c)}{h} - m \right] = 0$$

- 4 ロ > 4 個 > 4 差 > 4 差 > 差 釣 Q ()

Fungsi dua peubah f dikatakan mempunyai turunan di $\mathbf{p}=(a,b)$ jika dan hanya jika f **linear secara lokal** di sekitar \mathbf{p} , yaitu

$$f\left(\overline{p}+\overline{h}\right)=f\left(\overline{p}\right)+\left(f_{x}\left(\overline{p}\right),f_{y}\left(\overline{p}\right)\right)\bullet\overline{h}+\overline{\varepsilon}\left(\overline{h}\right)\overline{\bullet h}$$

dengan

$$\overline{\epsilon}\left(\overline{h}\right)=\left(\epsilon_{1}\left(\overline{h}\right),\epsilon_{2}\left(\overline{h}\right)\right)$$
, $\overline{h}=\left(h_{1},h_{2}\right)$

dan

$$\lim_{\overline{h}\to\overline{0}} \overline{\epsilon} \left(\overline{h} \right) = \left(\lim_{\overline{h}\to\overline{0}} \overline{\epsilon}_1 \left(\overline{h} \right), \lim_{\overline{h}\to\overline{0}} \overline{\epsilon}_2 \left(\overline{h} \right) \right) = (0,0)$$

Vektor

$$\nabla f\left(\overline{p}\right):=\left(f_{x}\left(\overline{p}\right),f_{y}\left(\overline{p}\right)\right)$$

disebut turunan atau gradien f di p.

Jadi f mempunyai turunan di **p** jika dan hanya jika

$$f\left(\overline{p} + \overline{h}\right) = f\left(\overline{p}\right) + \nabla f\left(\overline{p}\right) \bullet \overline{h} + \overline{\varepsilon}\left(\overline{h}\right) \overline{\bullet h}$$

dengan

$$\lim_{\overline{h}\to\overline{0}}\overline{\epsilon}\left(\overline{h}\right)=\overline{0}$$

Beberapa catatan:

Jika turunan fungsi satu peubah merupakan bilangan f'(p), maka turunan fungsi dua peubah merupakan vektor

$$\nabla f\left(\overline{p}\right):=\left(f_{X}\left(\overline{p}\right),f_{y}\left(\overline{p}\right)\right)$$

Hasil kali

$$\nabla f(\overline{p}) \bullet \overline{h} \operatorname{dan} \overline{\epsilon}(\overline{h}) \overline{\bullet h}$$

merupakan hasilkali titik.

Definisi turunan fungsi tiga (atau lebih) peubah dapat dirumuskan secara serupa.

Example

Turunan dari fungsi $f(x, y) = x^2 + y^2$ di (1, 2) adalah

$$\nabla f(1,2) = (2x,2y)|_{(1,2)}$$

= (2,4)

Perhatikan bahwa untuk $(h, k) \approx (0, 0)$, fungsi f linear secara lokal:

$$f(1+h,2+h) = (1+h)^{2} + (2+h)^{2}$$

$$= 1+2h+h^{2}+4+4h+h^{2}$$

$$= 5+(2,4) \bullet (h,k) + (h,k) \bullet (h,k)$$

Disini

$$\overline{\epsilon}(h,k)=(h,k)\to(0,0)$$

4 D > 4 A > 4 B > 4 B > 9 9 9

Theorem

Jika f mempunyai turunan parsial f_x dan f_y yang kontinu pada suatu cakram yang memuat (a, b), maka f mempunyai turunan di (a, b).

Example

 $f(x,y) = x^2 + y^2$ mempunyai turunan parsial $f_x = 2x$ dan $f_y = 2y$ yang kontinu pada **R**, sehingga f mempunyai turunan di setiap titik.

4.3 Turunan Fungsi Dua Peubah

Examples

Perlihatkan bahwa $f(x,y)=xe^y+x^2y$ dapat diturunkan dimana-mana. Hitung gradiennya lalu carilah persamaan bidang singgung di (2,0)

Solution

Perhatikan bahwa

$$\frac{\partial f}{\partial x} = e^y + 2xy; \quad \frac{\partial f}{\partial y} = xe^y + x^2$$

Kedua fungsi ini kontinu dimana-mana sehingga dapat diturunkan dimana-mana.

Gradien garis adalah

$$\nabla f(x,y) = (e^y + 2xy)\mathbf{i} + (xe^y + x^2)\mathbf{j} = \langle e^y + 2xy, xe^y + x^2 \rangle$$

$$\nabla f(2,0) = \mathbf{i} + 6\mathbf{j} = \langle 1, 6 \rangle$$

4.3 Turunan Fungsi Dua Peubah

Solution

Adapun persamaan bidang singgungnya antara lain:

$$z = f(2,0) + \nabla f(2,0) \cdot \langle x - 2, y \rangle$$

$$= 2 + \langle 1, 6 \rangle \cdot \langle x - 2, y \rangle$$

$$= 2 + x - 2 + 6y$$

$$= x + 6y$$

4.3 Turunan Fungsi Dua Peubah

Examples

carilah $\nabla f(1,2,0)$ jika $f(x,y,z) = x \sin z + x^2 y$

Solution

Perhatikan bahwa turunan-turunan parsial

$$\frac{\partial f}{\partial x} = \sin z + 2xy; \quad \frac{\partial f}{\partial y} = x^2; \quad \frac{\partial f}{\partial z} = x \cos x$$

masing-masing bernilai 4, 1 dan 1 pada titik (1, 2, 0) sehingga

$$\nabla f(1,2,0) = 4\mathbf{i} + \mathbf{j} + \mathbf{k}$$

Operator del ∇ memenuhi sifat-sifat:

$$\nabla [f(\overline{p}) + g(\overline{p})] = \nabla f(\overline{p}) + \nabla g(\overline{p})$$

$$\nabla [\alpha f(\overline{p})] = \alpha \nabla f(\overline{p})$$

$$\nabla [f(\overline{p}) g(\overline{p})] = f(\overline{p}) \nabla g(\overline{p}) + \nabla f(\overline{p}) g(\overline{p})$$

Theorem

Jika f mempunyai turunan di **p**, maka f kontinu di **p**

Kontraposisi dari teorema ini berbunyi:

jika f tidak kontinu di \mathbf{p} , maka f tidak mempunyai turunan di \mathbf{p} .

Examples

Selidiki apakah fungsi di bawah ini mempunyai turunan di titik (0,0):

1
$$f(x,y) = \frac{xy}{x^2+y^2}$$
, $f(0,0) = 0$

2
$$f(x,y) = \sqrt{x^2 + y^2}$$

Examples

Buktikan bahwa

$$\nabla\left(\frac{f}{g}\right) = \frac{g\nabla f - f\nabla g}{g^2}$$

Solution

Proof:

Diketahui

$$\nabla \left(\frac{f}{g} \right) = \left(\frac{\partial}{\partial x} \left(\frac{f}{g} \right), \frac{\partial}{\partial y} \left(\frac{f}{g} \right) \right);$$

$$\frac{\partial}{\partial x} \left(\frac{f}{g} \right) = \frac{f_x g - f g_x}{g^2} \quad dan \quad \frac{\partial}{\partial y} \left(\frac{f}{g} \right) = \frac{f_y g - f g_y}{g^2}$$

Sehingga

$$\nabla \left(\frac{f}{g} \right) = \left(\frac{f_{x}g - fg_{x}}{g^{2}}, \frac{f_{y}g - fg_{y}}{g^{2}} \right)$$
$$= \left(\frac{g\nabla f - f\nabla g}{g^{2}} \right)$$

Perhatikan bahwa turunan parsial fungsi dua variabel $f_{x}(x,y)$ dan $f_{v}(x,y)$ mengukur laju perubahan dan kemiringan garis singgung pada arah-arah yang sejajar sumbu x dan sumbu y.

Sasaran kita selanjutnya adalah mempelajari laju perubahan f pada sembarang arah, yang mengarahkan kita pada konsep **Turunan** Berarah, yang kemudian dihubungkan dengan gradien.

Sebagai penunjang, penting bagi kita mengetahui cara penulisan vektor. Misalkan $\mathbf{p} = (x, y)$, kemudian misalkan i dan j adalah vektor-vektor satuan pada arah-arah x dan y positif.

Maka dua turunan parsial dari **p** dapat ditulis

$$f_x(\mathbf{p}) = \lim_{h \to 0} \frac{f(\mathbf{p} + h\mathbf{i}) - f(\mathbf{p})}{h}$$

 $f_y(\mathbf{p}) = \lim_{h \to 0} \frac{f(\mathbf{p} + h\mathbf{j}) - f(\mathbf{p})}{h}$

Yang kita lakukan selanjutnya hanya perlu mengganti ${\bf i}$ dan ${\bf j}$ dengan suatu vektor sebarang ${\bf u}$.

Definition

Untuk tiap vektor satuan **u**, **Turunan Berarah** f di **p** pada arah **u** didefinisikan

$$D_{\mathbf{u}}f(\mathbf{p}) = \lim_{h \to 0} \frac{f(\mathbf{p} + h\mathbf{u}) - f(\mathbf{p})}{h}$$

dengan catatan limitnya ada.

Theorem

Misalkan f terdiferensialkan di p, maka f mempunyai turunan berarah di p dalam arah vektor satuan $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$ dan

$$D_{\mathbf{u}}f(\mathbf{p}) = \mathbf{u} \cdot \nabla f(\mathbf{p})$$

yaitu

$$D_{\mathbf{u}}f(x,y) = u_1 f_{x}(x,y) + u_2 f_{y}(x,y)$$

Example

- **①** Tentukan vektor berarah f di (2, -1) pada arah vektor $\mathbf{a} = 4\mathbf{i} + 3\mathbf{j}$ jika $f(x, y) = 4x^2 xy + 3y^2$
- ② Tentukan vektor berarah dari $f(x,y) = ye^{2x}$ di titik (0,2) pada arah vektor $\mathbf{u} = \langle 1,2 \rangle$

Solution

Diketahui p = (2, -1) dan $u = \langle 4, 3 \rangle$.

Akan ditentukan

$$D_{\mathbf{u}}f\left(p\right) = \frac{\mathbf{u}}{\|\mathbf{u}\|} \cdot \nabla f\left(\mathbf{p}\right)$$

Dari fungsi f diperoleh

$$\nabla f = \langle f_x, f_y \rangle
= \langle 8x - y, 6y - x \rangle
\nabla f (2, -1) = \langle 16 + 1, -6 - 2 \rangle
= \langle 17, -8 \rangle$$

Solution

Dengan demikian, diperoleh vektor berarah

$$D_{\mathbf{u}}f(2,-1) = \frac{\langle 4,3 \rangle}{\sqrt{25}} \cdot \langle 17,-8 \rangle$$

$$= \frac{1}{5} \langle 4,3 \rangle \cdot \langle 17,-8 \rangle$$

$$= \frac{1}{5} (4 \cdot 17 + 3 \cdot -8)$$

$$= \frac{44}{5}$$

Solution

2. Diketahui p = (0, 2) dan $u = \langle 1, 2 \rangle$.

Akan ditentukan

$$D_{\mathbf{u}}f\left(\boldsymbol{p}\right) = \frac{\mathbf{u}}{\|\mathbf{u}\|} \cdot \nabla f\left(\mathbf{p}\right)$$

Dari fungsi f diperoleh

$$\nabla f = \langle f_x, f_y \rangle
= \langle 2ye^{2x}, e^{2x} \rangle
\nabla f(0,2) = \langle 2 \cdot 2e^0, e^0 \rangle
= \langle 4, 1 \rangle$$

Solution

2. Dengan demikian, diperoleh vektor berarah

$$D_{\mathbf{u}}f(2,-1) = \frac{\langle 1,2 \rangle}{\sqrt{5}} \cdot \langle 4,1 \rangle$$

$$= \frac{1}{\sqrt{5}} (1 \cdot 4 + 2 \cdot 1)$$

$$= \frac{6}{\sqrt{5}}$$

$$= \frac{6}{\sqrt{5}}$$

5.2 Laju Perubahan Maksimum

Theorem

Suatu fungsi bertambah paling cepat di \mathbf{p} pada arah gradien, dengan laju $\|\nabla f(\mathbf{p})\|$, dan berkurang paling cepat ke arah berlawanan, dengan laju $-\|\nabla f(\mathbf{p})\|$.

Example

Andaikan seekor semut berada pada paraboloida hiperbolik $z = y^2 - x^2$ di titik (1,1,0), pada arah mana ia harusnya bergerak untuk panjatan yang paling curam? Berapa kemiringan pada saat ia memulai?

5.2 Laju Perubahan Maksimum

Solution

Misalkan
$$f(x,y) = y^2 - x^2$$
, maka
$$\nabla f(x,y) = \langle f_x, f_y \rangle \\
= \langle -2x, 2y \rangle \\
\nabla f(1,1) = \langle -2, 2 \rangle$$

Dengan demikian, semut harus bergerak dari (1, 1, 0) ke arah vektor $-2\mathbf{i} + 2\mathbf{j}$, dengan kemiringan sebesar

$$\|-2\mathbf{i} + 2\mathbf{j}\| = \sqrt{(-2)^2 + 2^2}$$

= $\sqrt{8}$
= $2\sqrt{2}$

4 D > 4 D > 4 E > 4 E > E = 990

6. Aturan Rantai

Theorem

Misalkan x = x(t) dan y = y(t) terturunkan di t dan misalkan z = f(x, y) terturunkan di (x(t), y(t)), maka z = f(x(t), y(t)) dapat diturunkan di t dan

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

 $\frac{dz}{dt} = \frac{\partial z}{\partial x} \frac{dx}{dt} + \frac{\partial z}{\partial y} \frac{dy}{dt}$

- 4日 > 4回 > 4 直 > 4 直 > - 1 直 - り9(0

Example

Andaikan $z = x^3y$ dengan x = 2t dan $y = t^2$, hitunglah dz/dt.

Solution

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$

$$= (3x^2y)(2) + (x^3)(2t)$$

$$= 6x^2y + 2x^3t$$

$$= 6(2t)^2(t^2) + 2(2t)^3(t)$$

$$= 24t^4 + 16t^4$$

$$= 40t^4$$

Aturan rantai untuk kasus 3 variabel

Example

Andaikan $w = x^2y + y + xz$ dengan $x = \cos \theta$, $y = \sin \theta$ dan $z = \theta^2$, carilah $dw/d\theta$ dan hitung nilainya di $\theta = \pi/3$.

Solution

$$\frac{dw}{d\theta} = \frac{\partial w}{\partial x} \cdot \frac{dx}{d\theta} + \frac{\partial w}{\partial y} \cdot \frac{dy}{d\theta} + \frac{\partial w}{\partial z} \cdot \frac{dz}{d\theta}
= (2xy + z) (-\sin\theta) + (x^2 + 1) (\cos\theta) + (x) (2\theta)
= -(2xy + z) (\sin\theta) + (x^2 + 1) (\cos\theta) + 2x\theta
= -2\cos\theta \sin^2\theta - \theta^2 \sin\theta + \cos^3\theta + \cos\theta + 2\theta \cos\theta$$

nilainya di
$$\theta = \pi/3$$

$$\begin{aligned} \frac{dw}{d\theta} &= 2\cos\theta\sin^2\theta - \theta^2\sin\theta + \cos^3\theta + \cos\theta + 2\theta\cos\theta \\ &= 2\cos\frac{\pi}{3}\sin^2\frac{\pi}{3} - \left(\frac{\pi}{3}\right)^2\sin\frac{\pi}{3} + \cos^3\frac{\pi}{3} + \cos\frac{\pi}{3} + 2\theta\cos\theta \\ &= -\frac{1}{3} - \frac{\sqrt{3}\pi^2}{10} + \frac{\pi}{3} \end{aligned}$$

Resmawan (Math UNG)

6.2 Aturan Rantai Kedua

Theorem

Misalkan x = x(s,t) dan y = y(s,t) mempunyai turunan-turunan parsial pertama di (s,t) dan misalkan z = f(x,y) terturunkan di (x(s,t),y(s,t)), maka z = f(x(s,t),y(s,t)) mempunyai turunan-turunan parsial pertama yang diberikan oleh

$$(1) \quad \frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial s} \qquad (2) \quad \frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial t}$$

Example

Jika $z = 3x^2 - y^2$ dengan x = 2s + 7t dan y = 5st, carilah $\partial z/dt$ dan nyatakan dalam bentuk s dan t.

6.2 Aturan Rantai Kedua

Solution

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial t}$$

$$= (6x)(7) + (-2y)(5s)$$

$$= 42x - 10sy$$

$$= 42(2s + 7t) - 10s(5st)$$

$$= 84s + 294t - 50s^2t$$

Example

Jika $w = x^2 + y^2 + z^2 + xy$ dengan x = st, y = s - t dan z = s + 2t, carilah

$$\frac{\partial w}{\partial t}|_{s=1,t=-1}$$

6.2 Aturan Rantai Kedua

Solution

$$\frac{\partial w}{\partial t} = \frac{\partial w}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial w}{\partial y} \cdot \frac{\partial y}{\partial t} + \frac{\partial w}{\partial z} \cdot \frac{\partial z}{\partial t}
= (2x + y)(s) + (2y + x)(-1) + (2z)(2)
= 2s^{2}t + s(s - t) - 2(s - t) - st + 4(s + 2t)
= 2s^{2}t + s^{2} - st - 2s + 2t - st + 4s + 8t
= (2t + 1)s^{2} - 2st + 2s + 10t
\frac{\partial w}{\partial t}|_{s=1,t=-1} = (2 \cdot -1 + 1)(1)^{2} - 2(1)(-1) + 2(1) + 10(-1)
= -1 + 2 + 2 - 10
= -7$$

Andaikan fungsi F(x, y) = 0 mendefinisikan y secara implisit sebagai fungsi x, misal y = g(x).

Kita akan menemukan beberapa kasus dimana kita kesulitan atau bahkan tidak mungkin menentukan fungsi g.

Dalam kasus ini kita dapat menentukan dy/dx dengan menggunakan metode turunan implisist (subbab 2.7).

Namun pada subbab ini kita akan pelajari metode lain menentukan dy/dx.

Jika fungsi $F\left(x,y\right)=0$ diturunkan menggunakan aturan rantai, maka diperoleh

$$\frac{\partial F}{\partial x} \cdot \frac{dx}{dx} + \frac{\partial F}{\partial y} \cdot \frac{dy}{dx} = 0$$

Dengan demikian, dy/dx dapat diselesaikan menjadi

$$\frac{dy}{dx} = -\frac{\partial F/\partial x}{\partial F/\partial y}$$

Example

Jika $x^3 + x^2y - 10y^4 = 0$ carilah dy/dx dengan menggunakan:

- Aturan Rantai
- 2 Turunan Implisit

Solution

Dengan aturan rantai diperoleh

$$\frac{\partial y}{\partial x} = -\frac{\partial F/\partial x}{\partial F/\partial y}$$
$$= -\frac{3x^2 + 2xy}{x^2 - 40y}$$

Dengan turunan implisit diperoleh

$$3x^{2} + x^{2} \frac{dy}{dx} + 2xy - 40y^{3} \frac{dy}{dx} = 0$$

$$(x^{2} - 40y^{3}) \frac{dy}{dx} = -(3x^{2} + 2xy)$$

$$\frac{dy}{dx} = -\frac{3x^{2} + 2xy}{x^{2} - 40y}$$

Jika z fungsi implisit dari x dan y yang didefinisikan oleh $F\left(x,y,z\right)=0$, maka diferensiasi kedua ruas terhadap x dengan mempertahankan y tetap menghasilkan

$$\frac{\partial F}{\partial x} \cdot \frac{\partial x}{\partial x} + \frac{\partial F}{\partial y} \cdot \frac{\partial y}{\partial x} + \frac{\partial F}{\partial z} \cdot \frac{\partial z}{\partial x} = 0$$

Dengan demikian, $\partial z/\partial x$ dapat diselesaikan dengan memperhatikan bahwa $\frac{\partial y}{\partial x}=0$ menghasilkan rumus (1). Perhitungan serupa dengan mempertahankan x tetap dan menurunkan persamaan terhadap y diperoleh rumus (2)

(1)
$$\frac{\partial z}{\partial x} = -\frac{\partial F/\partial x}{\partial F/\partial z}$$
 (2) $\frac{\partial z}{\partial y} = -\frac{\partial F/\partial y}{\partial F/\partial z}$

Example

Carilah $\partial z/\partial x$ jika $F(x,y,z)=x^3e^{y+z}-y\sin(x-z)=0$ mendefinisikan z secara implisist sebagai fungsi x dan y.

Solution

$$\frac{\partial z}{\partial x} = -\frac{\partial F/\partial x}{\partial F/\partial z}$$
$$= -\frac{3x^2 e^{y+z} - y \cos(x-z)}{x^3 e^{y+z} + y \cos(x-z)}$$

64 Latihan 4

Problem

Carilah dw/dt dengan menggunakan Aturan Rantai, nyatakan hasil akhir dan bentuk variabel t:

a.
$$w = x^2y - y^2x$$
; $x = \cos t$, $y = \sin t$

b.
$$w = \ln\left(\frac{x}{y}\right)$$
; $x = \tan t$, $y = \sec^2 t$

c.
$$w = xy + yz + xz$$
; $x = t^2$, $y = 1 - t^2$, $z = 1 - t$

Carilah \partia w / \partia t dengan menggunakan Aturan Rantai, nyatakan hasil akhir dan bentuk variabel s dan t:

a.
$$w = \ln(x + y) - \ln(x - y)$$
; $x = te^{s}$, $y = e^{st}$

b.
$$w = \sqrt{x^2 + y^2 + z^2}$$
; $x = \cos st$, $y = \sin st$, $z = s^2t$

c.
$$w = e^{xy+z}$$
: $x = s + t$. $y = s - t$. $z = t^2$

64 Latihan 4

Problem

Jika $z = x^2y + z^2$, $x = \rho \cos \theta \sin \phi$, $y = \rho \sin \theta \sin \phi$, dan $z = \rho \cos \phi$, carilah

$$\frac{\partial z}{\partial \theta}|_{\rho=2,\theta=\pi,\phi=\pi/2}$$

- Gunakan aturan rantai fungsi implisit untuk menemukan dy / dx :
 - a. $ye^{-x} + 5x 17 = 0$
 - b. $x^2 \cos y y^2 \sin x = 0$
 - c. $x \sin y + y \cos x = 0$
 - d. Jika $ve^{-x} + z \sin x = 0$. Carilah $\partial x/\partial z$

" Terima Kasih, Semoga Bermanfaat "

