FEME - Finite Element Method Environment

Generated by Doxygen 1.8.13

Thu Dec 19 2019 11:36:49

Contents

1	Clas	Class Index		
	1.1	Class L	ist	1
2	Clas	ss Documentation		
	2.1	FEM CI	ass Reference	2
	2.2	GaussL	egendrePoints Class Reference	3
		2.2.1	Constructor & Destructor Documentation	3
		2.2.2	Member Data Documentation	4
	2.3	GetMes	h Class Reference	4
		2.3.1	Constructor & Destructor Documentation	5
		2.3.2	Member Data Documentation	5
	2.4	Materia	constants Class Reference	6
	2.5	Matrix<	T > Class Template Reference	6
		2.5.1	Detailed Description	7
		2.5.2	Constructor & Destructor Documentation	8
		2.5.3	Member Function Documentation	8
	2.6	Messages Class Reference		
		2.6.1	Member Function Documentation	10
	2.7	NodalS	hapeFunctions Class Reference	11
		2.7.1	Member Function Documentation	11
		2.7.2	Member Data Documentation	12
	2.8	Perform	anceTestes Class Reference	12
lan al	la			40
Ind	iex			13
1	Cla	ss Inde	ex	
1.1	Cla	ass List		
Here are the classes, structs, unions and interfaces with brief descriptions:				
	FEM			2

GaussLegendrePoints	3
GetMesh	4
Material_constants	6
Matrix < T >	6
Messages	10
NodalShapeFunctions	11
PerformanceTestes	12

2 Class Documentation

2.1 FEM Class Reference

Collaboration diagram for FEM:

Public Member Functions

• void run ()

Runs the Finite Element Method.

Public Attributes

· string mesh_path

Specify the .msh file path.

• string mesh_file_name

Specify the .msh file name.

vector< int > setup_phys_region_ID

Specify physical regions ID.

vector< double > setup_phys_region_perm_rel

Specify physical regions material property.

- vector< double > setup_phys_region_excitation
 Specify physical regions excitations.
- vector< int > setup_phys_BC_ID

Specify the physical boundary conditions ID.

vector< double > setup_phys_BC_val

Specify the boundary condition values for each ID.

• Matrix< double > solution

Acess the solution.

The documentation for this class was generated from the following files:

- include/FEM.h
- · src/FEM.cpp

2.2 GaussLegendrePoints Class Reference

Collaboration diagram for GaussLegendrePoints:

Public Member Functions

• GaussLegendrePoints (int ElemType)

Public Attributes

- Matrix< double > pointsCoordinates
- Matrix< double > weights

2.2.1 Constructor & Destructor Documentation

2.2.1.1 GaussLegendrePoints()

Calculates the Gauss points

Parameters

2.2.2 Member Data Documentation

2.2.2.1 pointsCoordinates

Matrix<double> GaussLegendrePoints::pointsCoordinates

Local coordinates

Returns

Matrix < double > (n,3) [u1 v1 p1, u2 v2 p2, un vn pn]

2.2.2.2 weights

Matrix<double> GaussLegendrePoints::weights

Weight for each point

Returns

Matrix<double>(1,n) [W1 w2 ... Wn]

The documentation for this class was generated from the following files:

- · include/ShapeFunctions.h
- src/ShapeFunctions.cpp

2.3 GetMesh Class Reference

Collaboration diagram for GetMesh:

Public Member Functions

GetMesh (string filePath)

Public Attributes

Matrix < double > nodesCoordinates

Access the nodes coordinates.

Matrix < int > elemTypes

Access the element types.

• Matrix< int > physicalTags

Access the physical ID tags.

Matrix < int > elementaryTags

Access the elementary tags.

· int numElemments

Total number of elements.

int numNodes

Access the number of nodes.

• int numElements1D

Access the number of 1D elements.

· int numElements2D

Access the number of 2D elements.

- vector< vector< int > > elemNodes2D
- vector< vector< int > > elemNodes1D
- TODO __pad0__: check how to implement the destructor ~GetMesh()

2.3.1 Constructor & Destructor Documentation

2.3.1.1 GetMesh()

Reads the mesh from a .msh file .msh mesh version is 2.x

Parameters

```
filePath | file path (with name) of the .msh file
```

2.3.2 Member Data Documentation

2.3.2.1 elemNodes1D

```
vector<vector<int> > GetMesh::elemNodes1D
```

Nodes of each 2D element It uses vector<vector<int>>> because the number of nodes may vary in meshes with different element types

2.3.2.2 elemNodes2D

```
vector<vector<int> > GetMesh::elemNodes2D
```

Nodes of each 1D element It uses vector<vector<int>> because the number of nodes may vary in meshes with different element types

The documentation for this class was generated from the following files:

- · include/Gmsh_interface.h
- · src/Gmsh_interface.cpp

2.4 Material_constants Class Reference

Public Member Functions

• Material_constants ()

Set vacuum constants.

Public Attributes

• double mu0

Access the vacuum permeability \$\$.

• double eps0

Access the vacuum permitivity \$\$.

The documentation for this class was generated from the following files:

- include/Material_constants.h
- src/Material_constants.cpp

2.5 Matrix < T > Class Template Reference

```
#include <Matrix.h>
```

Collaboration diagram for Matrix< T >:

Public Member Functions

- Matrix ()
- Matrix (int n, int m)
- Matrix (const Matrix &)
- void Alloc (int n, int m)

Allocate a Matrix.

- void SolveLinearSystem (Matrix &lhs, Matrix &rhs)
- Matrix Transpose ()

Transpose the matrix.

Matrix Inverse ()

Inverse a matrix.

- void SetLineValue (int line, T value)
- void SetValue (T)

Set a value to the entire matrix.

• void print_matrix ()

Print the matrix.

· void calcDet ()

Calculates the determinant.

- void writeToFile (string path, string fileName)
- void write2DVectorToFile (vector< vector< int >> twoDArrayData, string path, string fileName)
- Matrix & operator= (Matrix)
- Matrix operator* (const Matrix &)
- Matrix operator+ (const Matrix &)
- Matrix operator* (T const &)

Public Attributes

T ** mat

Access to the array.

• int rows

Access the number of rows.

• int cols

Access the number of cols.

T detVal

Access the determinant.

2.5.1 Detailed Description

template<class T> class Matrix< T>

Provides 2D array object with contiguous memory allocation ...

Parameters

T array type

2.5.2 Constructor & Destructor Documentation

```
2.5.2.1 Matrix() [1/2]

template<class T >
Matrix< T >::Matrix ( )
```

Creates a 2D array with (0,0) rows and columns

```
2.5.2.2 Matrix() [2/2]
```

```
template < class T >
Matrix < T >::Matrix (
          int n,
          int m )
```

Creates a 2D array with (rows,cols) ...

Parameters

n	number of rows
m	number of cols

2.5.3 Member Function Documentation

2.5.3.1 SetLineValue()

Set a value to a entire line of the matrix ...

Parameters

line	line to set
value	value to set the entire line

2.5.3.2 SolveLinearSystem()

```
\label{template} $$ $$ template < class T > $$ void $$ Matrix < T >:: SolveLinearSystem (
```

```
\begin{array}{lll} \text{Matrix} < & \text{T} > & \text{Matrix}, \\ \text{Matrix} < & \text{T} > & \text{rhs} \end{array})
```

Solve a linear system using the Lapack DGESV ...

Parameters

lhs	left hand side
rhd	right hand side

Returns

Return the result in the rhs

2.5.3.3 write2DVectorToFile()

Writes a vector<vector<int>> to a txt file

Parameters

twoDArrayData	data to write
path	directory
fileName	file name

2.5.3.4 writeToFile()

Writes a matrix to a txt file ...

Parameters

path	directory
fileName	file name

The documentation for this class was generated from the following files:

- include/Matrix.h
- src/Matrix.cpp

2.6 Messages Class Reference

Public Member Functions

- logMessage (string message)
- void NotImplementedElement (int elemType, string whereHapp)

Public Attributes

• TODO __pad0__: check whether it is necessary ~Messages()

2.6.1 Member Function Documentation

2.6.1.1 logMessage()

Prints a message

Parameters

```
message message to print
```

2.6.1.2 NotImplementedElement()

Print a specific message of non-implemented element

Parameters

elemType	element type
whereHapp	function where it happened

The documentation for this class was generated from the following files:

- · include/Messages.h
- src/Messages.cpp

2.7 NodalShapeFunctions Class Reference

Collaboration diagram for NodalShapeFunctions:

Public Member Functions

- void GetNodalShapeFunctions (int ElemType, double u, double v, double p)
- void GetGradNodalShapeFunction (int ElemType, double u=0, double v=0, double p=0)

Public Attributes

- Matrix< double > shapeFunction
- int ElementType
- Matrix< double > gradShapeFunction

2.7.1 Member Function Documentation

2.7.1.1 GetGradNodalShapeFunction()

Calculates the gadient of nodal shape functions

Parameters

ElemType	element type
u,v,p	local coordinates

Returns

2D Matrix [dN1/du dN2/du ... dNn/du, dN1/dv dN2/dv ... dNn/dv, dN1/dp dN2/dp ... dNn/dp]

2.7.1.2 GetNodalShapeFunctions()

Calculates the nodal shape functions

Parameters

ElemType	element type
u,v,p	local coordinates

Returns

```
2D Matrix [N1 N2...Nn]
```

2.7.2 Member Data Documentation

2.7.2.1 gradShapeFunction

Matrix<double> NodalShapeFunctions::gradShapeFunction

Access the gadient of nodal shape functions values

2.7.2.2 shapeFunction

Matrix<double> NodalShapeFunctions::shapeFunction

Access the nodal shape functions values

The documentation for this class was generated from the following files:

- include/ShapeFunctions.h
- src/ShapeFunctions.cpp

2.8 PerformanceTestes Class Reference

Public Member Functions

- void vector_matrix ()
 - Performance test of allocanting a high number of small vector<double> and Matrix<double>
- void VectorMatrixMult ()

The documentation for this class was generated from the following files:

- · include/PerformanceTestes.h
- src/PerformanceTestes.cpp

Index

elemNodes1D
GetMesh, 5
elemNodes2D
GetMesh, 5
FEM, 2
Causal agandra Painta 2
GaussLegendrePoints, 3
GaussLegendrePoints, 3
pointsCoordinates, 4
weights, 4
GetGradNodalShapeFunction
NodalShapeFunctions, 11
GetMesh, 4
elemNodes1D, 5
elemNodes2D, 5
GetMesh, 5
GetNodalShapeFunctions
NodalShapeFunctions, 12
gradShapeFunction
NodalShapeFunctions, 12
logMessage
Messages, 10
Wessages, 10
Material_constants, 6
Matrix
Matrix, 8
SetLineValue, 8
SolveLinearSystem, 8
write2DVectorToFile, 9
writeToFile, 9
Matrix $<$ T $>$, 6
Messages, 10
logMessage, 10
NotImplementedElement, 10
rtottiipioiniontou_ioinioni, ro
NodalShapeFunctions, 11
GetGradNodalShapeFunction, 11
GetNodalShapeFunctions, 12
gradShapeFunction, 12
shapeFunction, 12
NotImplementedElement
Messages, 10
PerformanceTestes, 12
pointsCoordinates
GaussLegendrePoints, 4
SetLineValue
Matrix, 8
shapeFunction
NodalShapeFunctions, 12
SolveLinearSystem
Matrix, 8
iviality, O
weights

GaussLegendrePoints, 4 write2DVectorToFile Matrix, 9 writeToFile Matrix, 9