图像配准作业

一. 手动标点(7个点)

再转为灰度图像后,用cpselect函数进入操作页面,调整比例 尽量准确选择七个点建立一个匹配,保存控制点匹配

>> cpselect(unre, base);

变量已在基础工作区中创建。

二. 输出两幅图中对应点的坐标:

>> movingPoints		>> fixedPoints	
movingPoints =		fixedPoints =	
1.0e+03 *		1.0e+03 *	
1. 0451 0. 6354	1. 0630 1. 4054	1. 2895 0. 9715	1. 4835 1. 9035
1. 2890	1. 2569	1. 5655	1. 6035
2. 1310	0. 7974	2. 2555	0.9575
0.8367	1.8744	1. 2955	2. 3135
0.8806	0. 2776	0. 9221	0.7616
2. 1864	0. 4437	2. 2235	0. 5855

三. 计算转换矩阵

```
tform=cp2tform(movingPoints, fixedPoints, 'nonreflective
similarity');
structure=imfinfo('Image A.jpg');
output=imtransform(input, tform, 'Xdata', [1
structure.Width], 'Ydata', [1 structure.Height]);
```

利用 cp2tform 选定配准方法,有很多种变换方法,此题用了 其中一个,确定了变换参数

再用 imtransform 函数使得到的 tform 结构对齐原 input 图片,最后输出配准的图片

四. 输出转换之后的图像:

figure, imshow(base);
figure, imshow(output);

图 2 为 base 图,即参考的主图像,图 1 则为经过变换后配准图像,黑色部分为待配准图像缺失的部位

五. 代码示例:

```
basel=imread('Image A.jpg');
input1=imread('Image B.jpg');
base= rgb2gray(base1);
input=rgb2gray(input1);
cpselect(input,base);
tform=cp2tform(movingPoints,fixedPoints,'nonreflective similarity');
structure=imfinfo('Image A.jpg');
output=imtransform(input,tform,'Xdata',[1structure.Width],'Ydata',[1structure.Height]);
figure,imshow(base);
```

六. 心得体会:

本次实验看似复杂,其实关键部分 matlab 已经有现成的函数正确调用即可,要耐心动手操作的是进行点匹配的地方,更细致的话,仔细对比可能还是有误差,需要细调控制点,需要最核心的就是用 cpt2form 根据匹配的坐标确定变换的矩阵系数形成tform 结构,最后用 imtransform 函数将 input 变换为output 即最后配准图像,总之这次实验是对理论知识的充分应用,更加熟练掌握了图像处理和 matlab 的运用。