PROJECT DEVELOPMENT PHASE SPRINT 4

TEAM ID	PNT2022TMID08449
DDO IECT NAME	IOT BASED SMART CROP PROTECTION SYSTEM FOR
PROJECT NAME	AGRICULTURE
DATE	13 NOVEMBER 2022

STEP 1: First open python code and run code, this capture the image in video and identify which animal or object are captured.

STEP 2: It shows the detected animal or object name which is represented by square with the name of the animal or object.

PYTHON CODE:

import cv2

import numpy as np

```
net=cv2.dnn.readNet('yolov3.weights','yolov3.cfg')
classes=[]
with open('coco.names','r') as f:
  classes=f.read().splitlines()
# img=cv2.imread('elephant.jpg')
cap=cv2.VideoCapture('video.mp4')
# cap=cv2.VideoCapture('person.jpg')
# cap=cv2.VideoCapture(0)
while True:
  _,img=cap.read()
  height, width, _=img.shape
blob=cv2.dnn.blobFromImage(img,1/255,(416,416),(0,0,0),swapRB=True,crop
=False) #(img,reduction the pixels size,size of the image,rgb colour)
  net.setInput(blob)
  output\_layers\_names = net.getUnconnectedOutLayersNames()
  layeroutput=net.forward(output_layers_names)
  boxes=[]
  confidences=[]
  class_ids=[]
  for output in layeroutput:
    for detection in output:
       scores=detection[5:]
       class_id=np.argmax(scores)
       confidence=scores[class_id]
```

```
if confidence > 0.5:
       center_x=int(detection[0]*width)
       center_y =int(detection[1]*height)
       w=int(detection[2]*width)
       h=int(detection[3]*height)
       x=int(center_x - w/2)
       y=int(center_y - h/2)
       boxes.append([x,y,w,h])
       confidences.append((float(confidence)))
       class_ids.append(class_id)
indexes=cv2.dnn.NMSBoxes(boxes,confidences,0.5,0.4)
font=cv2.FONT_HERSHEY_COMPLEX
colors=np.random.uniform(0,255,size=(len(boxes),3))
for i in indexes.flatten():
  x,y,w,h=boxes[i]
  label=str(classes[class_ids[i]])
  confidence=str(round(confidences[i],2))
  color=colors[i]
  cv2.rectangle(img,(x,y),(x+w,y+h),color,2)
  cv2.putText(img,label + " "+confidence,(x,y+20),font,2,(255,255,0),2)
```

```
cv2.imshow('Target Image',img)

key=cv2.waitKey(1)

if key ==ord('q'):
    break

cap.release()
# cv2.waitKey(0)

cv2.destroyAllWindows()
```