形式语言与自动机 Formal Languages and Automata Theory

上下文无关语言的性质

计算机科学与技术学院 哈尔滨工业大学 (深圳)

郑宜峰

主要内容

- 上下文无关语言的泵引理及应用
- 上下文无关语言的封闭性
- 上下文无关语言的判定性质
- 乔姆斯基文法体系

主要内容

- 上下文无关语言的泵引理及应用
- 上下文无关语言的封闭性
- 上下文无关语言的判定性质
- 乔姆斯基文法体系

正则语言的泵引理

• 泵引理(pumping lemma): 如果语言L是正则的,那么存在正整数 N, 对 $w \in L$, 只要 $|w| \ge N$, 就可以将w分为三部分w = xyz满足:

- $-y \neq \varepsilon$ (或|y| > 0);
- $-|xy| \leq N$;
- $-\forall k \geq 0, xy^k z \in L;$
 - 中间的串不论循环几次, 所得的串仍属于该正则语言。

正则语言的泵引理

- 泵引理(pumping lemma): 如果语言L是正则的,那么存在正整数 N, 对 $w \in L$, 只要 $|w| \ge N$, 就可以将w分为三部分w = xyz满足:
 - -y ≠ ε ($\mathbf{g}|y| > 0$);
 - $-|xy| \leq N$;
 - $-\forall k \geq 0, xy^k z \in L;$
 - 中间的串不论循环几次, 所得的串仍属于该正则语言。

泵引理可以用来确定特定语言不是正则语言,泵引理成立是正则语言判定的必要条件,但不是充分条件。

上下文无关语言的泵引理

- 定理:如果语言L是CFL,那么存在正整数N,对 $\forall z \in L$,只要 $|z| \geq N$,就可以将z分为五部分z = uvwxy满足:
- (1) $vx \neq \varepsilon$ (或 |vx| > 0);
- $(2) |vwx| \leq N;$
- (3) $\forall i \geq 0, uv^i w x^i y \in L$.

- 设CFG G = (V, T, P, S)为接受 $L \{\epsilon\}$ 的CNF(乔姆斯基范式)文法。
- 乔姆斯基范式文法(回顾):每个不带 ε 的CFL都可以由这样的CFG G 定义,G中每个产生式的形式都为

 $A \rightarrow BC \otimes A \rightarrow a$

这里的A, B和C是变元, a是终结符。

• 首先,在文法G的派生树中,若最长路径为k,则产物w(派生出的句子)的长度最多为 2^{k-1} ,即 $\leq 2^{k-1}$ 。

• 归纳法证明:

- 归纳基础: 当k = 1, 一定是S直接连接一个终结符, 产物长度为1, 所以为 $2^{(1-1)}$
- 假设路径长度为k 1时成立,即|w| ≤ $2^{(k-1-1)} = 2^{(k-2)}$
- 则路径长度为k时,第一步派生一定是调用了 $S \to AB$,然后由 $A \to AB$ 的子树去派生。A, B子树的可能最长路径为k-1,故每个子树的产物长度最多为 2^{k-2} ,合一起为 2^{k-1}

(归纳法已证)在文法 G的派生树中,若最长路径为k,则产物w(派生出的句子)的长度最多为 2^{k-1} ,即 $\leq 2^{k-1}$ 。

- 设G中变元数|V| = m, $N = 2^m$,那么若有 $z \in L(G)$, $|z| \ge N = 2^m$,则z的派生树中最长路径长度至少也是m+1
- 因此,这条路径上节点至少 m + 2 个。
 除了最后一个节点外,其余均为变元,即至少m+1个变元
- 该路径由下至上加 + 1个内节点中, 至少有两个节点标记了相同的变元。

- 如果这两个节点分别是 v_1 和 v_2 ,标记均为A, 设 v_1 比 v_2 更接近树根。
- 设以 v_1 为根的子树为 T_1 。
- 设以 v_2 为根的子树为 T_2 。

- 设 T_1 的产物为 Z_1 , T_2 的产物为W。由于 T_2 是 T_1 的子树,则 T_1 的产物 Z_1 必包含W,不妨记为 Z_1 = vwx,则有 $A \Rightarrow vAx$ 和 $A \Rightarrow W$ 。
- 那么对任意 $i \geq 0$, $A \stackrel{*}{\Rightarrow} v^i w x^i$.
 - 当i = 0时,即 $A \stackrel{*}{\Rightarrow} w$
 - 当 i > 0时,即通过迭代调用 $A \stackrel{*}{\Rightarrow} vAx$,产生 $A \stackrel{*}{\Rightarrow} v^iAx^i$,最后调用 $A \stackrel{*}{\Rightarrow} w$,即得到 $A \stackrel{*}{\Rightarrow} v^iwx^i$

(注:前面假设这两个节点 v_1 和 v_2 的标记均为A)

- 对任意 $i \ge 0$, $A \stackrel{*}{\Rightarrow} v^i w x^i$.
- 设整棵树的产物为Z = uvwxy(即 T_1 产物vwx 的前面部分为u,后面部分为y),则 $S \stackrel{*}{\Rightarrow} uAy \stackrel{*}{\Rightarrow} uv^iwx^iy$ 。(条件3)
- T_1 路径长度不超过m+1, 其产物vwx长度不超过 2^m (即N), 即 $|vwx| \le N$ 。(条件2)
- T_1 派生出 vwx 的第一个产生式必须是 $A \rightarrow BC$ 。 T_2 必定处于 B 的树或 C 的树中,并且 B 和 C 都至 少产生一个终结符,所以 v 和 x 不可能同时为 空,即 $vx \neq \varepsilon$ 。(条件1)

定理:如果语言L是CFL,那么存在正整数N,对 $\forall z \in L$,只要 $|z| \geq N$,就可以将z分为五部分z = uvwxy满足:

- (1) $vx \neq \varepsilon$ (或 |vx| > 0);
- $(2) |vwx| \leq N;$
- $(3) \quad \forall i \geq 0, uv^i w x^i y \in L.$

• 例1:证明 $L = \{0^n 1^n 2^n | n \ge 1\}$ 不是上下文无关语言。

(1) 假设L是CFL,那么存在整数N,对 $\forall z \in L(|z| \geq N)$ 满足 泵引理;

• 例1:证明 $L = \{0^n 1^n 2^n | n \ge 1\}$ 不是上下文无关语言。

- (1) 假设L是CFL,那么存在整数N,对 $\forall z \in L(|z| \ge N)$ 满足 泵引理:
- (2)从L中取 $z = 0^N 1^N 2^N$,则显然 $z \in L$ 且 $|z| = 3N \ge N$;

- 例1:证明 $L = \{0^n 1^n 2^n | n \ge 1\}$ 不是上下文无关语言。
- (1) 假设L是CFL,那么存在整数N,对 $\forall z \in L(|z| \ge N)$ 满足 泵引理;
- (2)从L中取 $z = 0^N 1^N 2^N$,则显然 $z \in L$ 且 $|z| = 3N \ge N$;
- (3) 由泵引理, z可被分为z = uvwxy, 且有 $|vwx| \le N$ 和 $vx \ne \varepsilon$;

• 例1:证明 $L = \{0^n 1^n 2^n | n \ge 1\}$ 不是上下文无关语言。

- (1) 假设L是CFL,那么存在整数N,对 $\forall z \in L(|z| \ge N)$ 满足 泵引理:
- (2)从L中取 $z = 0^N 1^N 2^N$,则显然 $z \in L$ 且 $|z| = 3N \ge N$;
- (3) 由泵引理, z可被分为z = uvwxy, 且有 $|vwx| \le N$ 和 $vx \ne \varepsilon$;
- (4) 那么vx可能:
- i. 只包含0或1或2, 那么 $uwy \notin L$; (uwy即删掉部分0, 或部分1, 或部分2, 那么都不会在语言中)
- ii. 只包含0和1,或只包含1和2,那么也有 $uwy \notin L$; (uwy即 删掉部分0和部分1,或部分1和部分2,那么都不会在语言中)

• 例1:证明 $L = \{0^n 1^n 2^n | n \ge 1\}$ 不是上下文无关语言。

- (1) 假设L是CFL,那么存在整数N,对 $\forall z \in L(|z| \ge N)$ 满足 泵引理:
- (2)从L中取 $z = 0^N 1^N 2^N$,则显然 $z \in L$ 且 $|z| = 3N \ge N$;
- (3) 由泵引理, z可被分为z = uvwxy, 且有 $|vwx| \le N$ 和 $vx \ne \varepsilon$;
- (4) 那么vx可能:
- i. 只包含0或1或2, 那么 $uwy \notin L$; (uwy即删掉部分0, 或部分1, 或部分2, 那么都不会在语言中)
- ii. 只包含0和1,或只包含1和2,那么也有 $uwy \notin L$; (uwy即 删掉部分0和部分1,或部分1和部分2,那么都不会在语言中)
- (5) 与泵引理 $uwy = uv^0wx^0y \in L$ 矛盾,假设不成立;
- (6) L不是上下文无关的。

• **例2**:证明 $L = \{ww | w \in \{0,1\}^*\}$ 不是上下文无关语言。

- (1) 假设L是CFL,那么存在整数N,对 $\forall z \in L(|z| \ge N)$ 满足泵引理;
- (2) 取 $z = 0^N 1^N 0^N 1^N$,则显然 $z \in L\mathbf{L}|z| = 4N \ge N$;

• **例2**:证明 $L = \{ww | w \in \{0,1\}^*\}$ 不是上下文无关语言。

- (1) 假设L是CFL,那么存在整数N,对 $\forall z \in L(|z| \ge N)$ 满足泵引理;
- (2) 取 $z = 0^N 1^N 0^N 1^N$,则显然 $z \in L\mathbf{L}|z| = 4N \ge N$;
- (3) 由泵引理, z可分为z = uvwxy,且有 $|vwx| \le N$ 和 $vx \ne \varepsilon$

• **例2**:证明 $L = \{ww | w \in \{0,1\}^*\}$ 不是上下文无关语言。

- (1) 假设L是CFL,那么存在整数N,对 $\forall z \in L(|z| \ge N)$ 满足泵引理;
- (2) 取 $z = 0^N 1^N 0^N 1^N$,则显然 $z \in L\mathbf{L}|z| = 4N \ge N$;
- (3) 由泵引理, z可分为z = uvwxy,且有 $|vwx| \le N$ 和 $vx \ne \varepsilon$
- (4) 那么vx可能:
- i. 只包含0, 或1; ii. 包含部分0和部分1;
- iii. 包含部分1和部分0;

对该三种情况, uv^0wx^0y 显然都不属于L; 所以假设不成立, L不是CFL。

- 例3:证明 $L = \{a^n | n \}$ 素数}不是上下文无关语言。
- (1) 假设L是CFL,那么存在整数N,对 $\forall z \in L(|z| \geq N)$ 满足 泵引理; (2) 取 $z = a^p(p$ 为不小于N的素数)则显然 $z \in L$ 且 $|z| = p \geq N$;
- (3) 由泵引理, z可分为z = uvwxy,且有 $|vwx| \le N \, \text{An} \, vx \ne \varepsilon$ 。

- 例3:证明 $L = \{a^n | n \}$ 素数}不是上下文无关语言。
- (1) 假设L是CFL,那么存在整数N,对 $\forall z \in L(|z| \ge N)$ 满足 泵引理; (2) 取 $z = a^p(p$ 为不小于N的素数) 则显然 $z \in L$ 且 $|z| = p \ge N$;
- (3) 由泵引理, z可分为z = uvwxy,且有 $|vwx| \le N \, \text{Ar} vx \ne \varepsilon$ 。
- (4) 考虑 $|uv^0wx^0y| = |uwy| = m$,即当循环次数i = 0时,除了v和x之外的串的长度为 $m(0 \le m \le p 1)$ 。
- 则对于任意循环次数i > 0, 有 $\left| uv^i w x^i y \right| = m + i(p m)$

- **例3**:证明 $L = \{a^n | n \}$ 素数} 不是上下文无关语言。
- (1) 假设L是CFL,那么存在整数N,对 $\forall z \in L(|z| \geq N)$ 满足 泵引理; (2) 取 $z = a^p(p$ 为不小于N的素数) 则显然 $z \in L$ 且 $|z| = p \geq N$;
- (3) 由泵引理, z可分为z = uvwxy,且有 $|vwx| \le N \, \text{Ar} vx \ne \varepsilon$ 。
- (4) 考虑 $|uv^0wx^0y| = |uwy| = m$,即当循环次数i = 0时,除了v和x之外的串的长度为 $m(0 \le m \le p 1)$ 。

则对于任意循环次数i > 0, 有 $\left| uv^i w x^i y \right| = m + i(p - m)$

取i = p + 1, 则泵出的串长度为m + (p + 1)(p - m).

注意到 $m + (p+1)(p-m) = m + p^2 - pm + p - m$

$$= p^2 - pm + p$$

$$= p(p - m + 1)$$

- 例3:证明 $L = \{a^n | n \}$ 素数}不是上下文无关语言。
- (1) 假设L是CFL,那么存在整数N,对 $\forall z \in L(|z| \ge N)$ 满足 泵引理; (2) 取 $z = a^p(p$ 为不小于N的素数) 则显然 $z \in L$ 且 $|z| = p \ge N$;
- (3) 由泵引理, z可分为z = uvwxy,且有 $|vwx| \le N \, \text{Ar} vx \ne \varepsilon$ 。
- (4) 考虑 $|uv^0wx^0y| = |uwy| = m$,即当循环次数i = 0时,除了v和x之外的串的长度为 $m(0 \le m \le p 1)$ 。

则对于任意循环次数i > 0, 有 $\left| uv^i w x^i y \right| = m + i(p - m)$

取i = p + 1, 则泵出的串长度为m + (p + 1)(p - m).

注意到 $m + (p+1)(p-m) = m + p^2 - pm + p - m$

 $= p^2 - pm + p$

= p(p - m + 1)

显然该长度不是素数,那么 $uv^{p+1}wx^{p+1}y$ 也就不属于L。 所以假设不成立, L不是CFL。

主要内容

- 上下文无关语言的泵引理
- 上下文无关语言的封闭性
 - 代换的封闭性
 - 并/连接/闭包/同态/逆同态/反转的封闭性
 - 交和补运算不封闭
- 上下文无关语言的判定性质
- 乔姆斯基文法体系

• 定义:两个字母表 Σ 到 Γ 的函数 $s:\Sigma\to 2^{\Gamma^*}$ 称为代换。 Σ 中的一个字符 a在s的作用下为 Γ 上的一个语言 L_a , 即

$$s(a) = L_a$$

• 扩展s的定义到字符串,

$$s(\varepsilon) = \varepsilon$$
$$s(xa) = s(x)s(a)$$

• 再扩展S到语言,对 $\forall L \subset \Sigma^*$,

$$s(L) = \bigcup_{x \in L} s(x)$$

- 例:对字母表 $\Sigma = \{0,1\}$,有代换 $s(0) = \{a^n b^n | n \ge 1\}$, $s(1) = \{aa, bb\}$,则
- (1) 对于符号串w = 01, s(w) 为两个语言s(0) 和s(1) 的连接,s(w)含有所有形式为 a^nb^naa 和 a^nb^{n+2} 的串。
- (2) 设 $L = L(\mathbf{0}^*)$, 则 $s(L) = (s(0))^*$, 其包含所有形式为 $a^{n_1}b^{n_1}a^{n_2}b^{n_2} \dots a^{n_k}b^{n_k}$, 这里 $k \geq 0$, n_1 , n_2 , …, n_k 为任意的非负整数序列。比如像 ε , aabbaaabbb, abaabbabab这些符号串。

- 定理:如果有 Σ 上的CFL L和代换s, 且每个 $a \in \Sigma$ 的s(a)都是CFL, 那么s(L)也是CFL。
- 证明: 构造方法:

设CFL L 的文法 G = (V, T, P, S), 每个S(a) 的文法 $G_a = (V_a, T_a, P_a, S_a)$, 那么S(L)的文法可以构造为 G' = (V', T', P', S):

$$(1) V' = V \cup (\bigcup_{a \in T} V_a)$$

$$(2) T' = \bigcup_{a \in T} T_a$$

P'包括(i)每个 P_a 中的产生式; (ii) P的产生式, 但是要替换产生式中的每个终结符a为文法 G_a 的开始符号 S_a 。

• **例**: 设 $L = \{w \in \{a,b\}^* | w 有相等个数的 a 和 b\}$, **代换** $s(a) = L_a = \{0^n 1^n | n \ge 1\}$ $s(b) = L_b = \{ww^R | w \in (\mathbf{0} + \mathbf{1})^*\}$

求S(L)的文法。

解: 设计L的文法为: $S \rightarrow aSbS|bSaS|\varepsilon$

 L_a 的文法为: $S_a \rightarrow 0S_a 1 | 01$

 L_b 的文法为: $S_b \rightarrow 0S_b0|1S_b1|\varepsilon$

那么, s(L)的文法为:

 $S \to S_a S S_b S |S_b S S_a S| \varepsilon$ $S_a \to 0 S_a 1 |01$ $S_b \to 0 S_b 0 |1 S_b 1| \varepsilon$

P'包括(i)每个 P_a 中的产生式; (ii) P的产生式, 但是要替换产生式中的**每个终结符**a为文法 G_a 的开始符号 S_a 。

• 证明(充分性 $s(L) \subseteq L(G')$):

对 $\forall w \in s(L)$, 那么一定存在某个 $x = a_1 a_2 \cdots a_n \in L$ 使

$$w \in s(x) = s(a_1)s(a_2) \cdot \cdot \cdot s(a_n)$$

那么w 可以分为 $w = w_1 w_2 \cdots w_n$, 且 $w_i \in s(a_i)$, 则有

$$S_{a_i} \overset{*}{\underset{G_{a_i}}{\Longrightarrow}} w_i$$
 P' 包括 P 的产生式,但是要

由于 $x \in L$, 有 $S \underset{G}{\Rightarrow} x = a_1 a_2 \cdots a_n$, 所以 a为文法 G_a 的开始符号 S_a 。

$$S \stackrel{*}{\Longrightarrow} S_{a_1} S_{a_2} \cdots S_{a_n}$$

因为 $S_{a_i} \stackrel{*}{\underset{G_{a_i}}{\Longrightarrow}} w_i$, $S \stackrel{*}{\underset{G'}{\Longrightarrow}} S_{a_1} S_{a_2} \cdots S_{a_n} \stackrel{*}{\underset{G'}{\Longrightarrow}} w_1 w_2 \cdots w_n$

所以 $w \in L(G')$, 即 $s(L) \subseteq L(G')$ 。

P'包括每个 P_a 中的产生式

替换产生式中的每个终结符

$$T' = \bigcup_{a \in T} T_a$$

- 证明(必要性L(G') ⊆ s(L)):
- 因为G'的终结符仅能由每个 S_a 派生,因此对 $\forall w \in L(G')$ 有 $S \underset{G'}{\overset{*}{\Rightarrow}} \alpha = S_{a_1} S_{a_2} \cdots S_{a_n} \underset{G'}{\overset{*}{\Rightarrow}} w$

因为G'中的每个 S_a 在G中是终结符a,所以有

$$S \underset{G}{\stackrel{*}{\Rightarrow}} a_1 a_2 \cdots a_n = x \in L$$

又因为 $\alpha = S_{a_1} \cdots S_{a_n} \stackrel{*}{\underset{G'}{\Rightarrow}} w = w_1 \cdots w_n$,所以 $S_{a_i} \stackrel{*}{\underset{G'}{\Rightarrow}} w_i$,即 $w_i \in s(a_i)$,那么 $w = w_1 w_2 \cdots w_n \in s(a_1) s(a_2) \cdots s(a_n) = s(a_1 a_2 \cdots a_n) = s(x) \subseteq s(L)$

所以 $w \in s(L)$, 即 $L(G') \subseteq s(L)$,又由前 $s(L) \subseteq L(G')$,因此L(G') = s(L)。

P'包括(i)每个 P_a 中的产生式; (ii) P的产生式, 但是要替换产生式中的**每个终结符**a为文法 G_a 的开始符号 S_a 。

- 定理:上下文无关语言在并,连接,闭包,正闭包,同态下封闭。
- 证明1:设 $\Sigma = \{1, 2\}, L_1, L_2$ 是任意CFL。定义代换

$$s(1) = L_1, s(2) = L_2$$

语言{1,2}, {12}, {1}*和{1}+显然都是CFL,那么

- (1) 由 $s(\{1,2\}) = s(1) \cup s(2) = L_1 \cup L_2$, 所以并运算封闭;
- (2) 由 $s(\{12\}) = s(12) = s(\varepsilon)s(1)s(2) = L_1L_2$, 所以连接运算封闭:

• (3) 闭包运算封闭,因为

$$s(\{1\}^*) = s(\{\varepsilon, 1, 11, \dots\})$$

$$= s(\varepsilon) \cup s(1) \cup s(11) \cup \dots$$

$$= \{\varepsilon\} \cup s(1) \cup s(1)s(1) \cup \dots$$

$$= \{\varepsilon\} \cup L_1 \cup L_1L_1 \cup \dots$$

$$= L_1^*$$

• (4)正闭包运算封闭的证明类似。

• (5) 若h是 Σ 上的同态,L是 Σ 上的CFL,对 $\forall a \in \Sigma$ 令代换 $s(a) = \{h(a)\}$,则

$$h(L) = \{h(w)|w \in L\} = \bigcup_{w \in L} \{h(w)\} = \bigcup_{w \in L} s(w) = s(L)$$

所以同态运算封闭。

定义:若 Σ 和 Γ 是两个字母表,同态定义为函数 $h: \Sigma \to \Gamma^*$ (即将 Σ 上的一个符号映射为 Γ 上的符号串)

• (5) 若h是 Σ 上的同态,L是 Σ 上的CFL,对 $\forall a \in \Sigma$ 令代换 $s(a) = \{h(a)\}$,则

$$h(L) = \{h(w)|w \in L\} = \bigcup_{w \in L} \{h(w)\} = \bigcup_{w \in L} s(w) = s(L)$$

所以同态运算封闭。

对于某个 $w \in L$,令 $w = w_1 w_2 \cdots w_n (w_i \in \Sigma)$,则有 $s(w) = s(w_1 w_2 \cdots w_n)$ 。由代换性质,有: $s(w) = s(w_1) s(w_2) \cdots s(w_n) \\ = \{h(w_1)\}\{h(w_2)\} \cdots \{h(w_n)\} \\ = \{h(w_1)h(w_2) \cdots h(w_n)\} \\ = \{h(w)\}$

定义:若 Σ 和 Γ 是两个字母表,同态定义为函数 $h: \Sigma \to \Gamma^*$ (即将 Σ 上的一个符号映射为 Γ 上的符号串)

• 证明2(用文法证明): 并/连接/闭包的封闭性。设 $CFL\ L_1$, L_2 的文法分别为

$$G_1 = (V_1, T_1, P_1, S_1), G_2 = (V_2, T_2, P_2, S_2)$$

那么,分别构造

(1) $L_1 \cup L_2$ 的文法为

$$G_{union} = (V_1 \cup V_2 \cup \{S\}, T_1 \cup T_2, P_1 \cup P_2 \cup \{S \to S_1 | S_2\}, S)$$

(2) L_1L_2 的文法为

$$G_{concat} = (V_1 \cup V_2 \cup \{S\}, T_1 \cup T_2, P_1 \cup P_2 \cup \{S \rightarrow S_1 S_2\}, S)$$

(3) L_1 *的文法为

$$G_{closure} = (V_1 \cup \{S\}, T_1, P_1 \cup \{S \rightarrow S_1 S | \varepsilon\}, S)$$

CFL对反转封闭

- · 定理:如果L是CFL,那么LR也是CFL。
- 证明: 设L的文法G = (V, T, P, S), 构造文法 $G' = (V, T, \{A \rightarrow \alpha^R | A \rightarrow \alpha \in P \}, S)$

则 $L(G') = L^R$ 。

例: 对于一个有产生式 $S \rightarrow 0S1|10$ 的文法G, 反转语言的文法的产生式为 $S \rightarrow 1S0|10$

CFL对反转封闭

- · 定理:如果L是CFL,那么LR也是CFL。
- 证明: 设L的文法G = (V, T, P, S), 构造文法 $G' = (V, T, \{A \rightarrow \alpha^R | A \rightarrow \alpha \in P \}, S)$

则 $L(G') = L^R$ 。

用归纳法证明由此形式构造的文法G',其对应的语言是 L^R 。具体需要证明的是对于任意的变元 $A \in V$, $u \in (V \cup \Sigma)^*$,如果 $A \stackrel{*}{\Rightarrow}_G u$ 需要n步派生的话,那么当且仅当 $A \stackrel{*}{\Rightarrow}_G, u^R$ 需要n步派生。

CFL对反转封闭

- · 定理:如果L是CFL, 那么LR也是CFL。
- 证明:设L的文法G = (V, T, P, S), 构造文法 $G' = (V, T, \{A \rightarrow \alpha^R | A \rightarrow \alpha \in P\}, S)$

则 $L(G') = L^R$ 。

归纳基础: n = 0时,若 $A \xrightarrow{0}_{G} u$,则有 $u = u^{R} = A$,因此 $A \xrightarrow{0}_{G}, u^{R}$ 。反之亦成立; 归纳假设: 对于任意的n > 0, $A \in V, u \in (V \cup \Sigma)^{*}$, $A \xrightarrow{n-1}_{G} u$ 当且仅当 $A \xrightarrow{n-1}_{G'} u^{R}$ 。 派生步数为n步时,即若 $A \xrightarrow{n}_{G} u$,则有变元 $C \in V$ 和 $x, y, z \in (V \cup \Sigma)^{*}$,使得u = xyz, $A \xrightarrow{n-1}_{G} xCz$, $C \Rightarrow_{G} y$ 。由归纳假设,有 $A \xrightarrow{n-1}_{G'} z^{R}Cx^{R}$,由G'的构造,有 $C \Rightarrow_{G'} y^{R}$,因此推出 $A \xrightarrow{n}_{G'} z^{R}y^{R}x^{R} = (xyz)^{R} = u^{R}$ 。相似的,由 $A \xrightarrow{n}_{G'} u^{R}$ 能推出 $A \xrightarrow{n}_{G'} u$ 。

因此, $A \stackrel{*}{\Rightarrow}_G u$ 需要n步派生的话,那么当且仅当 $A \stackrel{*}{\Rightarrow}_{G}, u^R$ 需要n步派生。

CFL对逆同态封闭

- 定理:如果L是字母表 Δ 上的CFL,h是字母表 Σ 到 Δ *的同态,那么 $h^{-1}(L)$ 也是CFL。
- 证明:基本思路:设PDA $P = (Q, \Delta, \Gamma, \delta, q_0, Z_0, F)$, L(P) = L。构造 $L(P') = h^{-1}(L)$ 的PDA。在P'的状态中,使用缓冲(Buffer),暂存字符 $a \in \Sigma$ 的同态串h(a)。

- P'的输入带上要消耗一个符号a时, 先生成符号串h(a),放入buffer中 (buffer相当于P的输入带),然后 调用P的状态转移函数去消耗h(a)。
- 当消耗完P'的输入带上的符号串w的时候,P是消耗h(w)。如果h(w)能被P接受,则说明w能被P'接受,即 $h^{-1}(w)$ 能被P'接受。

CFL对逆同态封闭

• 证明: 设PDA $P = (Q, \Delta, \Gamma, \delta, q_0, Z_0, F)$, L(P) = L。构造 $L(P') = h^{-1}(L)$ 的 PDA P': $P' = (Q', \Sigma, \Gamma, \delta', [q_0, \varepsilon], Z_0, F \times \{\varepsilon\})$

(1) Q'中的状态为[$q \in Q, x$]。x为Σ中某个终结符a的h(a)的后缀,用于表示P'缓冲中还未被消耗的串。初始时,buffer上没有字符,是 ε 。因此初始状态是[q_0, ε]

(2) δ'的定义如下: ,

即对P'输入带上的任意字符a, 把h(a) 装载到buffer中,该buffer即P输入带上待消耗的符号串。

• $\delta'([q, \varepsilon], a, X) = \{([q, h(a)], X)\}, \forall \forall q \in Q, \forall a \in \Sigma, \forall X \in \Gamma.$

即*P*'模拟*P*处理存在缓冲区中的符号串,在这个过程中,*P*'的输入带上不消耗新的符号。

CFL对逆同态封闭

• 证明: 设PDA $P = (Q, \Delta, \Gamma, \delta, q_0, Z_0, F)$, L(P) = L.

构造 $L(P') = h^{-1}(L)$ 的PDA P':

$$P' = (Q', \Sigma, \Gamma, \delta', [q_0, \varepsilon], Z_0, F \times \{\varepsilon\})$$

(3)终态定义为 $[q \in F, \varepsilon]$,即q为P的终态,缓冲中已无待消耗的符号,即为空串 ε

P'和P之间的关系可以这样表示:

 $(q_0, h(w), Z_0) \vdash_P^* (p, \varepsilon, \gamma)$ 当且仅当 $([q_0, \varepsilon], w, Z_0) \vdash_P^* ([p, \varepsilon], \varepsilon, \gamma)$

CFL 对交/补运算不封闭

- · CFL在交运算下不封闭
- 例如, 语言

$$L_1 = \{0^n 1^n 2^i \mid n \ge 1, i \ge 1\}$$

 $L_2 = \{0^i 1^n 2^n \mid n \ge 1, i \ge 1\}$

都是CFL,而

$$L_1 \cap L_2 = \{0^n 1^n 2^n | n \ge 1\}$$

不是CFL。

· CFL在补运算下不封闭

因为
$$L_1 \cap L_2 = \overline{L_1 \cup L_2}$$

如果补运算封闭,则由该关系式得出交运算封闭(因为CFL在并运算下也封闭),但是交运算是不封闭的。因此补运算补封闭。

CFL和正则语言

• 定理: 若L是CFL且R是正则语言,则 $L \cap R$ 是CFL。

CFL和正则语言

- 设DFA $D = (Q_1, \Sigma, \delta_1, q_1, F_1)$ 且L(D) = R
- 设PDA $P = (Q_2, \Sigma, \Gamma, \delta_2, q_2, Z_0, F_2)$ 且L(P) = L
- $L \cap R$ 表示同时被D和P接受的语言,即从D的开始状态经过字符串w到终止状态 F_1 ,且从P的开始状态经过字符串w到终止状态 F_2 。

CFL和正则语言

- 设DFA $D = (Q_1, \Sigma, \delta_1, q_1, F_1)$ 且L(D) = R
- 设PDA $P = (Q_2, \Sigma, \Gamma, \delta_2, q_2, Z_0, F_2)$ 且L(P) = L
- $L \cap R$ 的PDA P'可以构造如下:

构造PDA $P' = (Q_1 \times Q_2, \Sigma, \Gamma, \delta, [q_1, q_2], Z_0, F_1 \times F_2)$

其中 δ 为:

 $\delta([p,q],a,Z) = \{([p,s],\beta)|(s,\beta) \in \delta_2(q,a,Z)\}$, 若 $a = \varepsilon$ 。

封闭性的应用

· 例:证明语言L不是CFL。

$$L = \{ w \in \{a, b, c\}^* | n_a(w) = n_b(w) = n_c(w) \}$$

其中 $n_a(w)$ 表示w中a的个数。

- 证明:
- (1)因为 $a^*b^*c^*$ 是正则语言,
- (2) 而 $L \cap a^*b^*c^* = \{a^nb^nc^n | n \ge 0\}$ 不是CFL。
- (3)由CFL与正则语言的交还是CFL,所以L不可能是CFL。

主要内容

- 上下文无关语言的泵引理
- 上下文无关语言的封闭性
- 上下文无关语言的判定性质
- 乔姆斯基文法体系

可判定的CFL问题

- 1. 空性:只需判断文法的开始符号S是否为非产生的。
- 回顾非产生符号定义:
- 对于CFG G = (V, T, P, S), 符号 $X \in (V \cup T)$, 如果 $\alpha X \beta \stackrel{\hat{}}{\Rightarrow} w$ ($w \in T^*$), 称X是产生的(generating)。
- 计算"产生的"符号集
 - 每个T中的符号都是产生的
 - -A → α ∈ P 且 α 中符号都是产生的,则A是产生的

可判定的CFL问题

• 2. 有穷性和无穷性:

- 用不带无用符号和 ε -产生式的 CNF范式文法的产生式画有向图;
- 变元为顶点, 若有 A → BC, 则 A 到 B 和 C 各画一条有向边;
- -检查图中是否有循环。
- 当且仅当图中没有循环时,L是有穷的;否则,L是无穷的。

可判定的CFL问题

- · 3. 成员性:利用CNF范式,有CYK算法检查串w是否属于L。
- · CYK算法的基本思想由J. Cocke, D. Younger, T. Kasami三个人独立发现

CYK算法

- 对于CNF G = (V, T, P, S), CYK算法可以检查 $w = a_1 a_2 \dots a_n$ 是否属于 L(G)?
- 令 $X_{ij} = \{A \in V | A \stackrel{*}{\Rightarrow} a_i \dots a_j\}$, 即 X_{ij} 为能派生出 $a_i \dots a_j$ 的变元的集合。 计算出每个变元 X_{ij} 。
- 判断S是否在 X_{1n} 中。如果在的话,则说明由S可以派生出 $w = a_1 a_2 \dots a_n$,即w属于 $\mathbf{L}(G)$ 。

CYK算法

- 构造三角形状的表格:每一行元素是变元 X_{ij} ,对应于某种长度的子串。
 - -最下面的一行对应于长度为1的子串
 - 由下往上的第二行对应于长度为2的子串
 - -- ...
 - -最上面的一行对应于长度为n的子串(即w本身)

· 三角形表格示例(假设w的长度为5):

<i>X</i> _{1,5}				X_{ij}
<i>X</i> _{1,4}	X _{2,5}			即之
<i>X</i> _{1,3}	X _{2,4}	X _{3,5}		,
$X_{1,2}$	<i>X</i> _{2,3}	X _{3,4}	$X_{4,5}$	
$X_{1,1}$	$X_{2,2}$	$X_{3,3}$	$X_{4,4}$	$X_{5,5}$
a_1	a_2	a_3	a_4	a_5

 $X_{ij} = \{A \in V | A \stackrel{*}{\Rightarrow} a_i \dots a_j \},$ 即 X_{ij} 为能派生出 $a_i \dots a_j$ 的变元的集合。

CYK算法

• 计算表格中的每一行的变元:

- -基础: $X_{ii} = \{A | A \rightarrow a_i \in P\}$
- 其他: $X_{ij} = \{A | i \le k < j, BC \in X_{ik}X_{k+1,j}, A \to BC\}$
 - 比如,对于 X_{12} , $1 \le k < 2$,因此 k只能取1,则考虑 $X_{11}X_{2,2}$,找出能产生 $X_{11}X_{2,2}$ 中变元串的变元
 - 对于 X_{13} , $1 \le k < 3$,因此k可以取1,2,则需要考虑 $X_{11}X_{2,3}$ 和 $X_{12}X_{3,3}$,取 $X_{11}X_{2,3}$ 和 $X_{12}X_{3,3}$ 的并集 $(X_{11}X_{2,3})$ U $(X_{12}X_{3,3})$ 。找出能产生该集合中变元串的变元

CYK算法

• 例:对于如下的CNF文法,判断w = baaba是否在该文法表示的语言中?

$$S \to AB|BC$$

$$A \to BA|a$$

$$B \to CC|b$$

$$C \to AB|a$$

言中?

基础:
$$X_{ii} = \{A | A \rightarrow a_i \in P\}$$

其他: $X_{ij} = \{A | i \leq k < j, BC \in X_{ik}X_{k+1,j}, A \rightarrow BC\}$

X _{1,5}		$j, BC \in X_{ik}X_{k+1,j}, A \to BC\}$		
<i>X</i> _{1,4}	$X_{2,5}$			
$X_{1,3}$	$X_{2,4}$	$X_{3,5}$		
<i>X</i> _{1,2}	$X_{2,3}$	$X_{3,4}$	$X_{4,5}$	
<i>X</i> _{1,1}	$X_{2,2}$	X _{3,3}	$X_{4,4}$	$X_{5,5}$
b	а	а	b	а

$$X_{1,1} = \{B\}, X_{2,2} = \{A, C\}, X_{3,3} = \{A, C\},$$

 $X_{4,4} = \{B\}, X_{5,5} = \{B\}$

$$S \to AB|BC$$

$$A \to BA|a$$

$$B \to CC|b$$

$$C \to AB|a$$

言中?

基础: $X_{ii} = \{A | A \rightarrow a_i \in P\}$ 其他: $X_{ij} = \{A | i \leq k < j, BC \in X_{ik}X_{k+1,j}, A \rightarrow BC\}$

$X_{1,5}$		$j,BC \in X_{ik}X_{k+1,j}, A \to BC$			
X _{1,4}	$X_{2,5}$				
<i>X</i> _{1,3}	$X_{2,4}$	$X_{3,5}$			
<i>X</i> _{1,2}	$X_{2,3}$	$X_{3,4}$	$X_{4,5}$		
$X_{1,1}$	$X_{2,2}$	X _{3,3}	$X_{4,4}$	$X_{5,5}$	
b	а	а	b	а	

			$S \rightarrow A$	AB BC
$X_{1,5}$			$A \rightarrow$	BA a
$X_{1,4}$	X _{2,5}		$B \rightarrow$	CC b
	, ,		$C \rightarrow$	AB a
<i>X</i> _{1,3}	$X_{2,4}$	$X_{3,5}$		_
$X_{1,2}$	$X_{2,3}$	$X_{3,4}$	$X_{4,5}$	
<i>{B}</i>	{ <i>A</i> , <i>C</i> }	{ <i>A</i> , <i>C</i> }	<i>{B}</i>	A, C
b	а	а	b	a

$$X_{1,1} = \{B\}, X_{2,2} = \{A, C\}, X_{3,3} = \{A, C\}, X_{4,4} = \{B\}, X_{5,5} = \{B\}$$

言中?

基础: $X_{ii} = \{A | A \rightarrow a_i \in P\}$ 其他: $X_{ij} = \{A | i \leq k < j, BC \in X_{ik}X_{k+1,i}, A \rightarrow BC\}$

X _{1,5}		共配: $X_{ij} - \{A \mid i \leq k \leq j, BC \in X_{ik}X_{k+1,j}, A \rightarrow BC\}$		
<i>X</i> _{1,4}	$X_{2,5}$			
<i>X</i> _{1,3}	$X_{2,4}$	$X_{3,5}$		
<i>X</i> _{1,2}	$X_{2,3}$	$X_{3,4}$	X _{4,5}	
<i>X</i> _{1,1}	$X_{2,2}$	<i>X</i> _{3,3}	$X_{4,4}$	$X_{5,5}$
b	a	а	b	a

			$S \rightarrow L$	AB BC
$X_{1,5}$				BA a
X _{1,4}	$X_{2,5}$			CC b AB a
$X_{1,3}$	$X_{2,4}$	$X_{3,5}$		_
$X_{1,2}$	$X_{2,3}$	$X_{3,4}$	<i>X</i> _{4,5}	
<i>{B}</i>	{ <i>A</i> , <i>C</i> }	<i>{A, C}</i>	<i>{B}</i>	{ <i>A</i> , <i>C</i> }
b	а	а	b	а

 X_{12} ,需要考虑 $X_{11}X_{2,2} = \{B\}\{A,C\} = \{BA,BC\}$ 寻找能产生BA或者BC的产生式,得到 $X_{12} = \{S,A\}$

言中?

基础: $X_{ii} = \{A | A \rightarrow a_i \in P\}$ 其他: $X_{ij} = \{A | i \leq k < j, BC \in X_{ik}X_{k+1,j}, A \rightarrow BC\}$

X _{1,5}	$j,BC \in X_{ik}X_{k+1,j}, A \to BC\}$			
$X_{1,4}$	$X_{2,5}$			
<i>X</i> _{1,3}	$X_{2,4}$	$X_{3,5}$		
$X_{1,2}$	$X_{2,3}$	$X_{3,4}$	X _{4,5}	
$X_{1,1}$	$X_{2,2}$	X _{3,3}	$X_{4,4}$	$X_{5,5}$
b	а	а	b	а

			$S \rightarrow A$	AB BC
$X_{1,5}$				BA a
X _{1,4}	X _{2,5}			CC b AB a
<i>X</i> _{1,3}	$X_{2,4}$	$X_{3,5}$		
{ <i>S</i> , <i>A</i> }	$X_{2,3}$	$X_{3,4}$	$X_{4,5}$	
<i>{B}</i>	{ <i>A</i> , <i>C</i> }	{ <i>A</i> , <i>C</i> }	<i>{B}</i>	A, C
b	а	а	b	a

 X_{12} ,需要考虑 $X_{11}X_{2,2} = \{B\}\{A,C\} = \{BA,BC\}$ 寻找能产生BA或者BC的产生式,得到 $X_{12} = \{S,A\}$

言中?

基础: $X_{ii} = \{A | A \rightarrow a_i \in P\}$ 其他: $X_{ij} = \{A | i \leq k < j, BC \in X_{ik}X_{k+1,i}, A \rightarrow BC\}$

X _{1,5}		$j,BC \in X_{ik}X_{k+1,j}, A \to BC$				
X _{1,4}	$X_{2,5}$					
<i>X</i> _{1,3}	$X_{2,4}$	$X_{3,5}$				
$X_{1,2}$	$X_{2,3}$	$X_{3,4}$	X _{4,5}			
$X_{1,1}$	$X_{2,2}$	$X_{3,3}$	$X_{4,4}$	X _{5,5}		
b	а	а	b	а		

			$S \rightarrow A$	AB BC
$X_{1,5}$				BA a
X _{1,4}	X _{2,5}			CC b $AB a$
$X_{1,3}$	$X_{2,4}$	$X_{3,5}$	O	_
{ <i>S</i> , <i>A</i> }	$X_{2,3}$	$X_{3,4}$	$X_{4,5}$	
<i>{B}</i>	{ <i>A</i> , <i>C</i> }	{ <i>A</i> , <i>C</i> }	<i>{B}</i>	{ <i>A</i> , <i>C</i> }
b	а	а	b	a

 X_{23} ,需要考虑 $X_{22}X_{33} = \{A,C\}\{A,C\} = \{AA,AC,CA,CC\}$ 寻找能产生集合中变元串的产生式,得到 $X_{23} = \{B\}$

言中?

基础: $X_{ii} = \{A | A \rightarrow a_i \in P\}$ 其他: $X_{ij} = \{A | i \leq k < j, BC \in X_{ik}X_{k+1,i}, A \rightarrow BC\}$

X _{1,5}		- 7	$X_{k+1,j}, A \rightarrow$	
X _{1,4}	$X_{2,5}$			
X _{1,3}	$X_{2,4}$	$X_{3,5}$		
$X_{1,2}$	$X_{2,3}$	$X_{3,4}$	$X_{4,5}$	
$X_{1,1}$	$X_{2,2}$	X _{3,3}	$X_{4,4}$	$X_{5,5}$
b	а	а	b	а

			$S \rightarrow L$	AB BC
$X_{1,5}$				BA a
X _{1,4}	$X_{2,5}$			AB a
$X_{1,3}$	$X_{2,4}$	$X_{3,5}$	· ·	_
{ <i>S</i> , <i>A</i> }	{ <i>B</i> }	$X_{3,4}$	<i>X</i> _{4,5}	
<i>{B}</i>	{ <i>A</i> , <i>C</i> }	{ <i>A</i> , <i>C</i> }	<i>{B}</i>	{ <i>A</i> , <i>C</i> }
b	а	a	b	а

 X_{23} ,需要考虑 $X_{22}X_{33} = \{A,C\}\{A,C\} = \{AA,AC,CA,CC\}$ 寻找能产生集合中变元串的产生式,得到 $X_{23} = \{B\}$

言中?

基础: $X_{ii} = \{A | A \rightarrow a_i \in P\}$ 其他: $X_{ij} = \{A | i \leq k < j, BC \in X_{ik}X_{k+1,i}, A \rightarrow BC\}$

X _{1,5}	$j,BC \in X_{ik}X_{k+1,j}, A \to BC$			
X _{1,4}	X _{2,5}			
X _{1,3}	$X_{2,4}$	$X_{3,5}$		
X _{1,2}	$X_{2,3}$	$X_{3,4}$	$X_{4,5}$	
$X_{1,1}$	$X_{2,2}$	X _{3,3}	$X_{4,4}$	$X_{5,5}$
b	а	а	b	а

_			$S \rightarrow A$	AB BC
{ <i>S</i> , <i>A</i> , <i>C</i> }				BA a
Ø	{ <i>S</i> , <i>A</i> , <i>C</i> }		$B \to CC b$ $C \to AB a$	
Ø	{B}	<i>{B}</i>	U	- TIB CC
{S, A}	<i>{B}</i>	<i>{S, C}</i>	{S, A}	
{ <i>B</i> }	{ <i>A</i> , <i>C</i> }	{ <i>A</i> , <i>C</i> }	<i>{B}</i>	{ <i>A</i> , <i>C</i> }
b	а	а	b	a

以此类推,可计算出每个 $X_{i,j}$ 。在计算每个 $X_{i,j}$ 时,如果找不到相应的变元,则为 ϕ 。

言中?

基础: $X_{ii} = \{A | A \rightarrow a_i \in P\}$ 其他: $X_{ij} = \{A | i \leq k < j, BC \in X_{ik}X_{k+1,j}, A \rightarrow BC\}$

<i>X</i> _{1,5}	$j,BC \in X_{ik}X_{k+1,j}, A \to BC\}$			
$X_{1,4}$	$X_{2,5}$			
X _{1,3}	$X_{2,4}$	$X_{3,5}$		
X _{1,2}	X _{2,3}	$X_{3,4}$	$X_{4,5}$	
$X_{1,1}$	$X_{2,2}$	$X_{3,3}$	$X_{4,4}$	$X_{5,5}$
$\overline{}$	\overline{a}	a	h	a

			$S \rightarrow A$	B BC
{ <i>S</i> , <i>A</i> , <i>C</i> }				BA a
Ø	{ <i>S</i> , <i>A</i> , <i>C</i> }			CC b AB a
Ø	<i>{B}</i>	<i>{B}</i>	J	
{S, A}	<i>{B}</i>	<i>{S, C}</i>	{ <i>S</i> , <i>A</i> }	
{B}	<i>{A, C}</i>	{ <i>A</i> , <i>C</i> }	<i>{B}</i>	{ <i>A</i> , <i>C</i> }
$\overline{}$	а	а	\overline{b}	\overline{a}

由表格中结果可见, $X_{1,5} = \{S, A, C\}$,因此 $S \in X_{1,5}$,可以派生出w = baaba。

不可判定的CFL问题

- 判断 CFG G 是否歧义的?
- 判断 CFL 是否固有歧义的?
- · 两个 CFL 的交是否为空?
- 两个 CFL 是否相同?
- · 判断 CFL 的补是否为空? (尽管有算法判断 CFL 是否为空)
- 判断 CFL 是否等于Σ*?

• 如果文法 G = (V, T, P, S), 符号串 $\alpha \in (V \cup T)^*V(V \cup T)^*$, $\beta \in (V \cup T)^*$, 产生式都形如

$$\alpha \to \beta$$
,

即每个产生式的左部 (中至少要有一个变元,那么:

3型文法:

例:

 $S \rightarrow \varepsilon$, $S \rightarrow aT$, $S \rightarrow bT$ $T \rightarrow a$, $T \rightarrow b$, $T \rightarrow aS$, $T \rightarrow bS$ 所表示的语言包含由任意个a,b 组成,且长度为偶数的符号串。

• 如果文法 G = (V, T, P, S), 符号串 $\alpha \in (V \cup T)^*V(V \cup T)^*$, $\beta \in (V \cup T)^*$, 产生式都形如

$$\alpha \to \beta$$
,

即每个产生式的左部 企中至少要有一个变元,那么:

2型文法:

若 $\alpha \in V$, 称G为2型文法或上下文无关文法。

• 如果文法 G = (V, T, P, S), 符号串 $\alpha \in (V \cup T)^*V(V \cup T)^*$, $\beta \in (V \cup T)^*$, 产生式都形如

$$\alpha \to \beta$$
,

即每个产生式的左部 α 中至少要有一个变元,那么:

1型文法:

 $|\alpha| \leq |\beta|$, 称 G 为 1 型 文 法 或 上 下 文 有 关 文 法 。

例:

 $AB \rightarrow CDB$

 $AB \rightarrow CdEB$

ABcd → abCDBcd

 $B \rightarrow b$

• 如果文法 G = (V, T, P, S), 符号串 $\alpha \in (V \cup T)^*V(V \cup T)^*$, $\beta \in (V \cup T)^*$, 产生式都形如

$$\alpha \to \beta$$
,

即每个产生式的左部α中至少要有一个变元, 那么:

0型文法:

没有任何限制的文法(unrestricted grammar)。

- · CFL的泵引理及其应用:证明不是CFL
- · CFL的封闭性
 - 封闭运算: 并、乘、闭包、代换、同态映射、逆同态映射
 - 不封闭运算: 交、补
- · CFL的判定性质
 - 可判定性: 空性, 无穷性, 成员性
 - 不可判定性
- 乔姆斯基文法体系