Langages, Compilation, Automates. Partie 2: minimisation, AFI et déterminisation

Florian Bridoux

Polytech Nice Sophia

2022-2023

Table des matières

Minimisation d'AFD

2 Automates finis indéterministes (AFI)

3 Déterminisation d'AFI

Table des matières

Minimisation d'AFD

2 Automates finis indéterministes (AFI)

3 Déterminisation d'AFI

Exemple d'AFD non minimisé:

Exemple d'AFD non minimisé:

On remarque que q_3 et q_4 sont des états acceptant, que $\delta(q_3,a)=\delta(q_4,a)$ et que $\delta(q_3,b)=\delta(q_4,b)$.

Exemple d'AFD non minimisé:

On remarque que q_3 et q_4 sont des états acceptant, que $\delta(q_3,a)=\delta(q_4,a)$ et que $\delta(q_3,b)=\delta(q_4,b)$.

Les deux états sont donc équivalents et on peut donc les fusionner.

Les états q_0,q_1,q_2 sont non acceptant et $\delta(q_0,b)=\delta(q_1,b)=\delta(q_2,b)$. En revanche, $\delta(q_0,a)\neq\delta(q_1,a)\neq\delta(q_2,a)$.

Les états q_0,q_1,q_2 sont non acceptant et $\delta(q_0,b)=\delta(q_1,b)=\delta(q_2,b)$. En revanche, $\delta(q_0,a)\neq\delta(q_1,a)\neq\delta(q_2,a)$. Mais comme $\delta(q_0,a),\delta(q_1,a),\delta(q_2,a)\in\{q_0,q_1,q_2\}$, les 3 états sont équivalents et on peut donc les fusionner.

Cette AFD a deux états: un acceptant et l'autre non acceptant. Il est donc minimum.

Idée: on va partitionner les états en ensemble d'états qui doivent être fusionnés.

Étape préliminaire: On complète l'automate.

Première étapes: on partitionne en deux groupe: les acceptant et les non acceptant.

On voit $\{q_0, q_1, q_2, q_3\}$ et $\{q_8\}$ ne peuvent pas être fusionnés. Même chose pour $\{q_4, q_5\}$ et $\{q_6, q_7\}$.

On voit $\{q_0, q_1\}$ et $\{q_2, q_3\}$ ne peuvent pas être fusionnés.

On voit q_0 et q_1 ne peuvent pas être fusionnés.

Pas de contradiction: on peut fusionner tous les états qui sont dans un même ensemble.

On obtient l'AFD complet ci-dessus.

Si on le souhaite on peut alors retirer l'état poubelle.

Théorème

Le résultat de l'algorithme de minimisation sur un AFD A est le plus petit AFD C tel que L(C) = L(A) (le plus petit étant unique à un renommage des états près).

Traduction: l'algorithme de minimisation nous donne le résultat optimal (qui est unique).

Corollaire

Soit deux AFD A et B avec L(A) = L(B). L'algorithme de minimisation va donner le même AFD C comme résultat pour A et pour B (à un renommage des états près).

Cet algorithme nous donne donc un moyen de vérifier si deux AFD reconnaissent le même langage.

Table des matières

Minimisation d'AFD

2 Automates finis indéterministes (AFI)

Oéterminisation d'AFI

Definition (Automate fini indéterministe (AFI))

Un automate fini indéterministe (AFI) est un quintuplet $(\Sigma, Q, \delta, Q_0, F)$ où:

- \bullet Σ est un alphabet,
- Q est un ensemble fini d'états,
- δ est une fonction $Q \times \Sigma \to P(Q)$ (où P(Q) est l'ensemble des sous-ensembles de Q),
- $Q_0 \subseteq Q$ est l'ensemble des états initiaux,
- $F \subseteq Q$ est l'ensemble des états d'acceptation.

Similairement à un AFD, un AFI A est une machine qui calcule si un mot w appartient au langage L(A) défini par cet automate. La différence est que certaines transitions sont non déterministes: on peut se retrouver dans différents états en ayant lu un même mot.

- Premier choix: dans quel état initial $q_0 \in Q_0$ commencer?
- À chaque lettre ℓ lu (dans un état q_i): vers quel état $q_j \in \delta(q_i, \ell)$ transitionner?
- Si une série de choix permet de finir dans un état acceptant alors $w \in L(A)$, sinon $w \notin L(A)$.

Exécution de la machine sur le mot ababa:

La machine peut finir dans l'état acceptant q_4 donc $ababa \in L(A)$.

Table des matières

Minimisation d'AFD

2 Automates finis indéterministes (AFI)

3 Déterminisation d'AFI

Théorème

Les AFI reconnaissent exactement la même famille de langages que les AFD (les langages rationnels).

On le prouve en donnant un algorithme pour transformer un AFI A en AFD B (avec plus d'états) tel que L(A) = L(B).

Nous allons déterminiser cette AFI:

Idée de l'algorithme de déterminisation:

- Chaque état de l'AFD va représenter un sous ensemble d'états de l'AFI
- Après avoir lu un mot w: l'AFI peut se trouver dans l'état q_i \Leftrightarrow l'AFD se trouve dans un état Q_i tel que $q_i \in Q_i$.
- En particulier, l'état initial de l'AFD est l'ensemble des états initiaux de l'AFL
- Et un état Q_i de l'AFD est acceptant ssi $\exists q_i \in Q_i$ tel que q_i est acceptant. ◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ● 9 Q ○ 23/27

Théorème

Soit A un AFI à |Q| états, alors on peut construire B un AFD à au plus ? états tel que L(A) = L(B).

Théorème

Soit A un AFI à |Q| états, alors on peut construire B un AFD à au plus $2^{|Q|}$ états tel que L(A) = L(B).

Conclusion: On peut toujours déterminiser un AFI, mais le nombre d'états peut augmenter exponentiellement...

Exercice

Déterminiser l'AFI ci-dessus.

Exercice

Minimiser l'AFD obtenu.