1 Introduction

The following is a collection of synonyms for various operations in the computer algebra systems Axiom, Derive, GAP, Gmp, DoCon, Macsyma, Magnus, Maxima, Maple, Mathematica, MuPAD, Octave, Pari, Reduce, Scilab, Sumit and Yacas. This collection does not attempt to be comprehensive, but hopefully it will be useful in giving an indication of how to translate between the syntaxes used by the different systems in many common situations. Note that a blank entry means either (a) that there may be an exact translation of a particular operation for the indicated system, but we don't know what it is or (b) there is no exact translation but it may still be possible to work around this lack with a related functionality.

While commercial systems are not provided on this CD the intent of the Rosetta effort is to make it possible for experienced Computer Algebra users to experiment with other systems. Thus the commands for commercial systems are included to allow users of those systems to translate.

Some of these systems are special purpose and do not support a lot of the functionality of the more general purpose systems. Where they do support an interpreter the commands are provided.

Originally written by Michael Wester. Modified for Rosetta by Timothy Daly, Alexander Hulpke (GAP).

2 System availability

System	License	Status (May 2002)	Web Location
Axiom	BSD	available	http://www.aldor.org
Axiom	open source	pending	http://home.earthlink.net/jgg964/axiom.html
Derive	commercial	available	http://www.mathware.com
DoCon	open source	available	http://www.haskell.org/docon
GAP	GPL	Rosetta	http://www.gap-system.org/ gap
Gmp	GPL	Rosetta	http://www.swox.com/gmp
Macsyma	commercial	dead	unavailable
Magnus	GPL	Rosetta	http://sourceforge.net/projects/magnus
Maxima	GPL	Rosetta	http://www.ma.utexas.edu/maxima.html
Maple	commercial	available	http://www.maplesoft.com
Mathematica	commercial	available	http://www.wolfram.com
MuPAD	commercial	available	http://www.mupad.de
Octave	GPL	Rosetta	http://www.octave.org
Pari	GPL	Rosetta	http://www.parigp-home.de
Reduce	commercial	available	http://www.zib.de/Symbolik/reduce
Scilab	Scilab	available	http://www-rocq.inria.fr/scilab
Sumit		available	http://www-sop.inria.fr/cafe/soft-f.html
Yacas	GPL	available	http://yacas.sourceforge.net

System	Type	Interpreted or Compiled
Axiom	General Purpose	both
Derive	General Purpose	
DoCon	General Purpose	Interpreted in Haskell
GAP	Group Theory	
Gmp	arb. prec. arithmetic	
Macsyma	General Purpose	
Magnus	Infinite Group Theory	
Maxima	General Purpose	
Maple	General Purpose	
Mathematica	General Purpose	
MuPAD	General Purpose	
Octave	Numerical Computing	
Pari	Number Theory	
Reduce	General Purpose	
Scilab	General Purpose	
Sumit	Functional Equations	
Yacas	General Purpose	

3 Programming and Miscellaneous

	Unix/Microsoft user initialization file				
Axiom	~/axiom.input				
GAP	~/.gaprc	GAP.RC			
Gmp					
DoCon					
Derive		derive.ini			
Macsyma	~/macsyma-init.macsyma	mac-init.mac			
Magnus					
Maxima	~/macsyma-init.macsyma	mac-init.mac			
Maple	~/.mapleinit	maplev5.ini			
Mathematica	~/init.m	init.m			
MuPAD	~/.mupadinit	\mupad\bin\userinit.mu			
Octave					
Pari					
Reduce	~/.reducerc	reduce.rc			
Scilab					
Sumit					
Yacas					

	Describe keyword	Find keywords containing pattern
Axiom)what operations pattern
Derive		
DoCon		
GAP	?keyword	??keyword
Gmp		
Macsyma	describe("keyword")\$	<pre>apropos("pattern");</pre>
Magnus		
Maxima	describe("keyword")\$	<pre>apropos("pattern");</pre>
Maple	?keyword	?pattern ¹
Mathematica	?keyword	?*pattern*
MuPAD	?keyword	?*pattern*
Octave	help -i keyword	
Pari		
Reduce		
Scilab		
Sumit		
Yacas		

			Prev.	Case	Variables
	Comment	Line continuation	expr.	sensitive	assumed
Axiom	comment	input _ <cr>input</cr>	%	Yes	real
Derive	"comment"	input ~ <cr>input</cr>		No	real
DoCon					
GAP	# comment	input\ <cr>input</cr>	last	Yes	no assumption
Gmp					
Macsyma	/* comment */	<pre>input<cr>input;</cr></pre>	%	No	real
Magnus		_			
Maxima	/* comment */	<pre>input<cr>input;</cr></pre>	%	No	real
Maple	# comment	<pre>input<cr>input;</cr></pre>	%	Yes	complex
Mathematica	(* comment *)	input <cr>input</cr>	%	Yes	complex
MuPAD	# comment #	<pre>input<cr>input;</cr></pre>	%	Yes	complex
Octave	##			Yes	
Pari					
Reduce	% comment	<pre>input<cr>input;</cr></pre>	ws	No	complex
Scilab					-
Sumit					
Yacas					
	ı				

 $^{^1\}mathrm{Only}$ if the pattern is not a keyword and then the matches are simplistic.

	Load a f	ile	Time a command	Quit
Axiom)read "	file")quiet)set messages time on)quit
Derive	[Transf	er Load Derive	e]	[Quit]
DoCon				
GAP	Read("f	ile");	<pre>time; (also see Runtime();)</pre>	quit;
Gmp				
Macsyma	load("f	ile")\$	showtime: all\$	quit();
Magnus				
Maxima	load("f	ile")\$	showtime: all\$	quit();
Maple	read("f	ile"):	<pre>readlib(showtime): on;</pre>	quit
Mathematica	0<< fil	е	Timing[command]	Quit[]
MuPAD	read("f	ile"):	<pre>time(command);</pre>	quit
Octave	load fi	le	<pre>tic(); cmd ; toc()</pre>	quit or exit
Pari				
Reduce	in "fil	e"\$	on time;	quit;
Scilab				quit
Sumit				
Yacas				
	•			
	Display	Suppress		
	output	output	Substitution: $f(x,y) \to f(z,w)$ subst(f(x, y), [x = z, y = w	
Axiom	input	input;	subst(f(x, y), [x = z, y = w])	7])
Derive	input	var:= input	[Manage Substitute]	
DoCon				
GAP	<pre>input;</pre>	<pre>input;;</pre>	$ exttt{Value(f,[x,y],[z,w]);}^2$	
Gmp				
Macsyma	input;	input\$	subst([x = z, y = w], f(x, y))	7));
Magnus				
Maxima	input;	input\$	subst([x = z, y = w], f(x, y))	7));
Maple	input;	<pre>input:</pre>	$subs({x = z, y = w}, f(x, y)$);
Mathematica	input	<pre>input;</pre>	$f[x, y] /. \{x \rightarrow z, y \rightarrow w\}$	
MuPAD	input;	<pre>input:</pre>	subs(f(x, y), [x = z, y = w]);
Octave	input	<pre>input;</pre>		
Pari				
Reduce	input;	input\$	$sub({x = z, y = w}, f(x, y))$;
Scilab				
Sumit				
Yacas				

	Set	List	Matrix	
Axiom	set [1, 2	[1, 2]	matrix(@[[1,	2],[3, 4]])
Derive	{1, 2}	[1, 2]	@[[1,2], [3,4	
DoCon		•		
GAP	Set([1,2]) [1, 2]	0[[1,2], [3,4	.11 ³
Gmp		, , , ,	, , , , , , , , , , , , , , , , , , , ,	
Macsyma	[1, 2]	[1, 2]	matrix([1, 2]	, [3, 4])
Magnus				
Maxima	[1, 2]	[1, 2]	matrix([1, 2]	, [3, 4])
Maple	{1, 2}	[1, 2]	matrix(0[[1,	
Mathematica	$\{1, 2\}$	$\{1, 2\}$	$\{\{1, 2\}, \{3, \}\}$	
MuPAD	$\{1, 2\}$	[1, 2]		export(linalg):
.viu. / lb	(-, -)	[1, 2]	-	ressionField(normal)):
			matrix(@[[1,	
Octave			madiix(@[[i,	2], [3, 4]]/
Pari Pari				
	(4 0)	(4 0)		(2.4))
Reduce	{1, 2}	{1, 2}	mat((1, 2), (3, 4))
Scilab		list(1,2)	A=[1,2;3,4]	
Sumit				
Yacas				
	Equation	List element	Matrix element	Length of a list
Axiom	x = 0	1 . 2	m(2, 3)	#1
Derive	x = 0	1 SUB 2	m SUB 2 SUB 3	DIMENSION(1)
DoCon	A O	I DOD Z	m 505 2 505 0	DITIENDION (I)
GAP	x=0	1[2]	m[2][3]	Length(1)
Gmp	X-0	1[2]	m[2][3]	rengch(1)
Macsyma	x = 0	1[2]	[0 0]	1 (1)
•	x - 0	1[2]	m[2, 3]	length(1)
Magnus Maxima	x = 0	1[2]	m[2, 3]	length(1)
Maple	x = 0	1[2]	m[2, 3]	nops(1)
•				-
Mathematica	x == 0	10[[2]]	m@[[2, 3]]	Length[1]
MuPAD	x = 0	1[2]	m[2, 3]	nops(1)
Octave				
Pari				- 45.
Reduce	x = 0	part(1, 2)	m(2, 3)	length(1)
Scilab		1(2)		
Sumit				
Yacas				

	Prepend/append an eleme	ent to a list	Append two lists
Axiom	cons(e, 1)	concat(1, e)	append(11, 12)
Derive	APPEND([e], 1)	APPEND(1, [e])	APPEND(11, 12)
DoCon			
GAP	Concatenation([e],1)	Add(1,e)	Append(11, 12)
Gmp			
Macsyma	cons(e, 1)	endcons(e, 1)	append(11, 12)
Magnus			
Maxima	cons(e, 1)	endcons(e, 1)	append(11, 12)
Maple	[e, op(1)]	[op(l), e]	[op(11), op(12)]
Mathematica	Prepend[1, e]	Append[1, e]	Join[11, 12]
MuPAD	[e, op(1)]	append(1, e)	11 . 12
Octave	-		
Pari			
Reduce	e . 1	append(1, e)	append(11, 12)
Scilab			
Sumit			
Yacas			
1 4 6 4 5	l		
	Matrix column dimension		to a column vector
Axiom	ncols(m)	transpose(matr	rix([1]))
Derive	DIMENSION(m SUB 1)	[1]`	
DoCon			
GAP	Length(mat[1])	objects are ident	tical
Gmp			
Macsyma	$\mathtt{mat}_{-}\mathtt{ncols}(\mathtt{m})$	transpose(matr	rix(1))
Magnus			
Maxima	mat_ncols(m)	transpose(matr	rix(1))
Maple	linalg[coldim](m)	linalg[transpo	ose](matrix([1]))
Mathematica	Dimensions[m]@[[2]]	Transpose $[\{1\}]$	
MuPAD	linalg::ncols(m)	transpose(matr	rix([1])) ⁴
Octave		•	
Pari			
Reduce	load_package(linalg)\$	matrix v(lengt	ch(1), 1)\$
	column_dim(m)	for i:=1:lengt	
		_	part(1, i)
Scilab		. (= , = / •	1
Sumit			
Yacas			
	I		

⁴See the definition of matrix above.

	Conve	rt a colun	nn vect	or int	o a list	;	
Axiom	[v(i,	1) for	i in 1	nr	ows(v)]	
Derive	v` SU	v` SUB 1					
DoCon							
GAP	object	s are iden	tical				
Gmp							
Macsyma	part(transpos	e(v),	1)			
Magnus							
Maxima	part(transpos	e(v),	1)			
Maple	op(co	nvert(li	nalg[t	ransp	ose](v), lis	tlist))
Mathematica	Flatt	en[v]					
MuPAD	[op(v)]					
Octave							
Pari							
Reduce	load_	package(linalg)\$			
		:=1:row_			lect(v	(i, 1))	
Scilab							
Sumit							
Yacas							
	ı						
	True	False	And	Or	Not	Equal	Not equal
Axiom	true	false	and	or	not	=	~=
Derive	TRUE	FALSE	AND	OR	NOT	=	/=
DoCon		_					
GAP	true	${ t false}^5$	and	or	not	=	<>
Gmp							
Macsyma	true	false	and	or	not	=	#
Magnus							
Maxima	true	false	and	or	not	=	#
Maple	true	false	and	or	not	=	<>
Mathematica	True	False	&&	11	!	==	! =
MuPAD	true	false	and	or	not	=	<>
Octave							
Pari							
Reduce	t	nil	and	or	not	=	neq
Scilab	%t	%f					
Sumit							
Yacas							

	If+then+else statements	S	trings (concatenated)	
Axiom	if _ then _ else if _ then _ el	se _ c	oncat(["x", "y"])	
Derive	IF(_, _, IF(_, _, _))		xy"	
DoCon				
GAP	if _ then _ elif _ then _ else	_fi C	oncatenation("x","y")	
Gmp				
Macsyma	if _ then _ else if _ then _ el	se _ c	oncat("x", "y")	
Magnus			•	
Maxima	if _ then _ else if _ then _ el	se _ c	oncat("x", "y")	
Maple	if _ then _ elif _ then _ else		x". "y"	
Mathematica	If[_, _, If[_, _, _]]		x" <> "y"	
MuPAD	if _ then _ elif _ then _ else		x" . "y"	
	end_if		3	
Octave				
Pari				
Reduce	if _ then _ else if _ then _ el	se _ "	xy" or $mkid(x, y)$	
Scilab				
Sumit				
Yacas				
Į.				
	Simple loop and Block	Genera	ate the list $[1, 2, \ldots, n]$	
Axiom	Simple loop and Block for i in 1n repeat (x; y)		te the list $[1, 2, \ldots, n]$ for i in 1n	
Axiom Derive		[f(i)		
	for i in 1n repeat (x; y)	[f(i)	for i in 1n]	
Derive	for i in 1n repeat (x; y)	[f(i) VECTOR	for i in 1n]	
Derive DoCon	<pre>for i in 1n repeat (x; y) VECTOR([x, y], i, 1, n)</pre>	[f(i) VECTOR	for i in 1n] R(f(i), i, 1, n)	
Derive DoCon GAP Gmp Macsyma	<pre>for i in 1n repeat (x; y) VECTOR([x, y], i, 1, n)</pre>	[f(i) VECTOF	for i in 1n] R(f(i), i, 1, n)	
Derive DoCon GAP Gmp	<pre>for i in 1n repeat (x; y) VECTOR([x, y], i, 1, n) for i in [1n] do _ od;</pre>	[f(i) VECTOF	for i in 1n] R(f(i), i, 1, n) or [1,2n]	
Derive DoCon GAP Gmp Macsyma	<pre>for i in 1n repeat (x; y) VECTOR([x, y], i, 1, n) for i in [1n] do _ od;</pre>	[f(i) VECTOR [1n] makeli	for i in 1n] R(f(i), i, 1, n) or [1,2n]	
Derive DoCon GAP Gmp Macsyma Magnus	<pre>for i in 1n repeat (x; y) VECTOR([x, y], i, 1, n) for i in [1n] do _ od; for i:1 thru n do (x, y);</pre>	[f(i) VECTOR [1n] makeli	for i in 1n] R(f(i), i, 1, n) or [1,2n] Ast(f(i), i, 1, n);	
Derive DoCon GAP Gmp Macsyma Magnus Maxima	<pre>for i in 1n repeat (x; y) VECTOR([x, y], i, 1, n) for i in [1n] do _ od; for i:1 thru n do (x, y); for i:1 thru n do (x, y);</pre>	[f(i) VECTOR [1n] makeli makeli [f(i)	for i in 1n] R(f(i), i, 1, n) or [1,2n] Lst(f(i), i, 1, n); Lst(f(i), i, 1, n);	
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple	<pre>for i in 1n repeat (x; y) VECTOR([x, y], i, 1, n) for i in [1n] do _ od; for i:1 thru n do (x, y); for i:1 thru n do (x, y); for i from 1 to n do x; y od;</pre>	[f(i) VECTOR [1n] makeli [f(i) Table	for i in 1n] R(f(i), i, 1, n) or [1,2n] Rst(f(i), i, 1, n); Rst(f(i), i, 1, n); Rst(f(i), i, 1, n);	
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica	<pre>for i in 1n repeat (x; y) VECTOR([x, y], i, 1, n) for i in [1n] do _ od; for i:1 thru n do (x, y); for i:1 thru n do (x, y); for i from 1 to n do x; y od; Do[x; y, {i, 1, n}]</pre>	[f(i) VECTOR [1n] makeli [f(i) Table	for i in 1n] R(f(i), i, 1, n) or [1,2n] Ast(f(i), i, 1, n); Ast(f(i), i, 1, n); [st(f(i), i, 1, n); [f[i], {i, 1, n}]	
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica	<pre>for i in 1n repeat (x; y) VECTOR([x, y], i, 1, n) for i in [1n] do _ od; for i:1 thru n do (x, y); for i:1 thru n do (x, y); for i from 1 to n do x; y od; Do[x; y, {i, 1, n}] for i from 1 to n do x; y</pre>	[f(i) VECTOR [1n] makeli [f(i) Table	for i in 1n] R(f(i), i, 1, n) or [1,2n] Ast(f(i), i, 1, n); Ast(f(i), i, 1, n); [st(f(i), i, 1, n); [f[i], {i, 1, n}]	
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD	<pre>for i in 1n repeat (x; y) VECTOR([x, y], i, 1, n) for i in [1n] do _ od; for i:1 thru n do (x, y); for i:1 thru n do (x, y); for i from 1 to n do x; y od; Do[x; y, {i, 1, n}] for i from 1 to n do x; y</pre>	[f(i) VECTOR [1n] makeli [f(i) Table	for i in 1n] R(f(i), i, 1, n) or [1,2n] Ast(f(i), i, 1, n); Ast(f(i), i, 1, n); [st(f(i), i, 1, n); [f[i], {i, 1, n}]	
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave	<pre>for i in 1n repeat (x; y) VECTOR([x, y], i, 1, n) for i in [1n] do _ od; for i:1 thru n do (x, y); for i:1 thru n do (x, y); for i from 1 to n do x; y od; Do[x; y, {i, 1, n}] for i from 1 to n do x; y</pre>	[f(i) VECTOR [1n] makeli makeli [f(i) Table [f(i)	for i in 1n] R(f(i), i, 1, n) or [1,2n] Ast(f(i), i, 1, n); Ast(f(i), i, 1, n); [st(f(i), i, 1, n); [f[i], {i, 1, n}]	
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari	<pre>for i in 1n repeat (x; y) VECTOR([x, y], i, 1, n) for i in [1n] do _ od; for i:1 thru n do (x, y); for i:1 thru n do (x, y); for i from 1 to n do x; y od; Do[x; y, {i, 1, n}] for i from 1 to n do x; y end_for;</pre>	[f(i) VECTOR [1n] makeli makeli [f(i) Table [f(i)	for i in 1n] R(f(i), i, 1, n) or [1,2n] Ast(f(i), i, 1, n); Ast(f(i), i, 1, n); [st(f(i), i, 1, n); st = 1n]; [f[i], {i, 1, n}] \$ i = 1n];	
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari Reduce	<pre>for i in 1n repeat (x; y) VECTOR([x, y], i, 1, n) for i in [1n] do _ od; for i:1 thru n do (x, y); for i:1 thru n do (x, y); for i from 1 to n do x; y od; Do[x; y, {i, 1, n}] for i from 1 to n do x; y end_for;</pre>	[f(i) VECTOR [1n] makeli makeli [f(i) Table [f(i)	for i in 1n] R(f(i), i, 1, n) or [1,2n] Ast(f(i), i, 1, n); Ast(f(i), i, 1, n); [st(f(i), i, 1, n); st = 1n]; [f[i], {i, 1, n}] \$ i = 1n];	

	Complex loop iterating on a list	
Axiom	for x in [2, 3, 5] while x**2 < 10 repeat outp	ut(x)
Derive		
DoCon		
GAP	for x in $[2, 3, 5]$ do while $x^2<10$ do $Print(x)$;od;od;
Gmp		
Macsyma	for x in [2, 3, 5] while $x^2 < 10$ do print(x)\$	
Magnus		
Maxima	for x in [2, 3, 5] while $x^2 < 10$ do print(x)\$	
Maple	for x in [2, 3, 5] while $x^2 < 10$ do print(x)	od:
Mathematica	For[1 = {2, 3, 5}, 1 != {} && 1@[[1]]^2 < 10, 1 = Rest[1], Print[1@[[1]]]]	
MuPAD	for x in [2, 3, 5] do if x^2 < 10 then print(x) end for:) end_if
Octave	end_for.	
Pari		
Reduce	for each x in $\{2, 3, 5\}$ do if $x^2 < 10$ then wr	ite(v)\$
Scilab	101 Cdcli x III (2, 0, 0) do II x 2 \ 10 clicii wi	100 (X) ψ
Sumit		
Yacas		
racas		
	Assignment Function definition	Clear vars and funs
Axiom	y := f(x) $f(x, y) == x*y$)clear properties y f
Derive	_	
Derive DoCon	y:= f(x) $f(x, y) == x*yy:= f(x)$ $f(x, y):= x*y$	<pre>)clear properties y f y:= f:=</pre>
Derive DoCon GAP	y := f(x) $f(x, y) == x*y$)clear properties y f
Derive DoCon GAP Gmp	<pre>y:= f(x) f(x, y) == x*y y:= f(x) f(x, y):= x*y y:= f(x); f:=function(x, y) return x*y; end;</pre>	<pre>)clear properties y f y:= f:= There are no symbolic variables</pre>
Derive DoCon GAP	y:= f(x) $f(x, y) == x*yy:= f(x)$ $f(x, y):= x*y$	<pre>)clear properties y f y:= f:= There are no symbolic variables remvalue(y)\$</pre>
Derive DoCon GAP Gmp Macsyma	<pre>y:= f(x) f(x, y) == x*y y:= f(x) f(x, y):= x*y y:= f(x); f:=function(x, y) return x*y; end;</pre>	<pre>)clear properties y f y:= f:= There are no symbolic variables</pre>
Derive DoCon GAP Gmp Macsyma Magnus	<pre>y:= f(x) f(x, y) == x*y y:= f(x) f(x, y):= x*y y:= f(x); f:=function(x, y) return x*y; end; y: f(x); f(x, y):= x*y;</pre>	<pre>)clear properties y f y:= f:= There are no symbolic variables remvalue(y)\$ remfunction(f)\$</pre>
Derive DoCon GAP Gmp Macsyma	<pre>y:= f(x) f(x, y) == x*y y:= f(x) f(x, y):= x*y y:= f(x); f:=function(x, y) return x*y; end;</pre>	<pre>)clear properties y f y:= f:= There are no symbolic variables remvalue(y)\$ remfunction(f)\$ remvalue(y)\$</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima	<pre>y:= f(x) f(x, y) == x*y y:= f(x) f(x, y):= x*y y:= f(x); f:=function(x, y) return x*y; end; y: f(x); f(x, y):= x*y; y: f(x); f(x, y):= x*y;</pre>	<pre>)clear properties y f y:= f:= There are no symbolic variables remvalue(y)\$ remfunction(f)\$ remvalue(y)\$ remfunction(f)\$</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple	<pre>y:= f(x) f(x, y) == x*y y:= f(x) f(x, y):= x*y y:= f(x); f:=function(x, y) return x*y; end; y: f(x); f(x, y):= x*y; y: f(x); f(x, y):= x*y; y:= f(x); f:= proc(x, y) x*y end;</pre>	<pre>)clear properties y f y:= f:= There are no symbolic variables remvalue(y)\$ remfunction(f)\$ remvalue(y)\$ remfunction(f)\$ y:= 'y': f:= 'f':</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica	<pre>y:= f(x) f(x, y) == x*y y:= f(x) f(x, y):= x*y y:= f(x); f:=function(x, y) return x*y; end; y: f(x); f(x, y):= x*y; y: f(x); f(x, y):= x*y; y:= f(x); f:= proc(x, y) x*y end; y = f[x] f[x, y]:= x*y</pre>	<pre>)clear properties y f y:= f:= There are no symbolic variables remvalue(y)\$ remfunction(f)\$ remfunction(f)\$ y:= 'y': f:= 'f': Clear[y, f]</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple	<pre>y:= f(x) f(x, y) == x*y y:= f(x) f(x, y):= x*y y:= f(x); f:=function(x, y) return x*y; end; y: f(x); f(x, y):= x*y; y: f(x); f(x, y):= x*y; y:= f(x); f:= proc(x, y) x*y end; y = f[x] f[x, y]:= x*y y:= f(x); f:= proc(x, y)</pre>	<pre>)clear properties y f y:= f:= There are no symbolic variables remvalue(y)\$ remfunction(f)\$ remvalue(y)\$ remfunction(f)\$ y:= 'y': f:= 'f':</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD	<pre>y:= f(x) f(x, y) == x*y y:= f(x) f(x, y):= x*y y:= f(x); f:=function(x, y) return x*y; end; y: f(x); f(x, y):= x*y; y: f(x); f(x, y):= x*y; y:= f(x); f:= proc(x, y) x*y end; y = f[x] f[x, y]:= x*y</pre>	<pre>)clear properties y f y:= f:= There are no symbolic variables remvalue(y)\$ remfunction(f)\$ remfunction(f)\$ y:= 'y': f:= 'f': Clear[y, f]</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave	<pre>y:= f(x) f(x, y) == x*y y:= f(x) f(x, y):= x*y y:= f(x); f:=function(x, y) return x*y; end; y: f(x); f(x, y):= x*y; y: f(x); f(x, y):= x*y; y:= f(x); f:= proc(x, y) x*y end; y = f[x] f[x, y]:= x*y y:= f(x); f:= proc(x, y)</pre>	<pre>)clear properties y f y:= f:= There are no symbolic variables remvalue(y)\$ remfunction(f)\$ remfunction(f)\$ y:= 'y': f:= 'f': Clear[y, f]</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari	<pre>y:= f(x) f(x, y) == x*y y:= f(x) f(x, y):= x*y y:= f(x); f:=function(x, y) return x*y; end; y: f(x); f(x, y):= x*y; y: f(x); f(x, y):= x*y; y:= f(x); f:= proc(x, y) x*y end; y = f[x] f[x, y]:= x*y y:= f(x); f:= proc(x, y)</pre>	<pre>)clear properties y f y:= f:= There are no symbolic variables remvalue(y)\$ remfunction(f)\$ remfunction(f)\$ y:= 'y': f:= 'f': Clear[y, f] y:= NIL: f:= NIL:</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari Reduce	<pre>y:= f(x) f(x, y) == x*y y:= f(x) f(x, y):= x*y y:= f(x); f:=function(x, y) return x*y; end; y: f(x); f(x, y):= x*y; y: f(x); f(x, y):= x*y; y:= f(x); f:= proc(x, y) x*y end; y = f[x] f[x, y]:= x*y y:= f(x); f:= proc(x, y)</pre>	<pre>)clear properties y f y:= f:= There are no symbolic variables remvalue(y)\$ remfunction(f)\$ remfunction(f)\$ y:= 'y': f:= 'f': Clear[y, f]</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari Reduce Scilab	<pre>y:= f(x) f(x, y) == x*y y:= f(x) f(x, y):= x*y y:= f(x); f:=function(x, y) return x*y; end; y: f(x); f(x, y):= x*y; y: f(x); f(x, y):= x*y; y:= f(x); f:= proc(x, y) x*y end; y = f[x] f[x, y]:= x*y y:= f(x); f:= proc(x, y)</pre>	<pre>)clear properties y f y:= f:= There are no symbolic variables remvalue(y)\$ remfunction(f)\$ remfunction(f)\$ y:= 'y': f:= 'f': Clear[y, f] y:= NIL: f:= NIL:</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari Reduce	<pre>y:= f(x) f(x, y) == x*y y:= f(x) f(x, y):= x*y y:= f(x); f:=function(x, y) return x*y; end; y: f(x); f(x, y):= x*y; y: f(x); f(x, y):= x*y; y:= f(x); f:= proc(x, y) x*y end; y = f[x] f[x, y]:= x*y y:= f(x); f:= proc(x, y)</pre>	<pre>)clear properties y f y:= f:= There are no symbolic variables remvalue(y)\$ remfunction(f)\$ remfunction(f)\$ y:= 'y': f:= 'f': Clear[y, f] y:= NIL: f:= NIL:</pre>

```
Axiom
             f(x) == (local n; n := 2; n*x)
Derive
DoCon
GAP
             f:=function(x) local n; n:=2;return n*x; end;
Gmp
             f(x) := block([n], n: 2, n*x);
Macsyma
Magnus
Maxima
             f(x) := block([n], n: 2, n*x);
Maple
             f := proc(x) local n; n := 2; n*x end;
Mathematica
             f[x_{-}] := Module[\{n\}, n = 2; n*x]
MuPAD
             f:= proc(x) local n; begin n:= 2; n*x end_proc;
Octave
Pari
Reduce
             procedure f(x); begin scalar n; n:= 2; return(n*x) end;
Scilab
Sumit
Yacas
             Return unevaluated symbol
                                         Define a function from an expression
Axiom
                                         function(e, f, x, y)
             e := x*y;
                                         f(x, y) :== e
Derive
             e:= x*y
DoCon
GAP
             No unevaluated symbols<sup>6</sup>
Gmp
Macsyma
             e: x*y$
                                         define(f(x, y), e);
Magnus
Maxima
                                         define(f(x, y), e);
Maple
                                         f:= unapply(e, x, y);
             e := x*y:
                        'e';
Mathematica
                        HoldForm[e]
                                         f[x_{-}, y_{-}] = e
             e = x*v;
MuPAD
             e := x*y:
                        hold(e);
                                         f:= hold(func)(e, x, y);
Octave
Pari
Reduce
                                         for all x, y let f(x, y) := e;
             e := x*y$
Scilab
Sumit
Yacas
```

Function definition with a local variable

⁶Variables can be assigned to generators of a suitable free object, for example x:=X(Rationals,"x"); or f:=FreeGroup(2);x:=f.1;.

	Fun. of an indefini	te number of args	Apply "+" to sum a list
Axiom			reduce(+, [1, 2])
Derive	LST 1:= 1		
DoCon			
GAP	lst:=function(ar	rgs) _ end;	Sum([1,2])
Gmp			
Macsyma	lst([1]):= 1;		apply("+", [1, 2])
Magnus	,		
Maxima	lst([1]):= 1;		apply("+", [1, 2])
Maple	· ·	gs[1nargs]] end;	convert([1, 2], `+`)
Mathematica	lst[l]:= {1}	, , , , , ,	Apply[Plus, $\{1, 2\}$]
MuPAD	lst:= proc(1) be	egin [args()]	_plus(op([1, 2]))
	end_proc;	0 - 0	1 1 1 1 2 7 2 7
Octave			
Pari			
Reduce			$xapply(+, {1, 2})^6$
Scilab			
Sumit			
Yacas			
	Apply a fun. to a		
	list of its args	Map an anonymous	
Axiom	reduce(f, 1)	map(x +-> x + y,	[1, 2])
Derive		x := [1, 2]	
		VECTOR(x SUB i +	y, i, 1, DIMENSION(x))
DoCon			
GAP	List(1,f)	List([1,2],x->x+y))
Gmp			
Macsyma	apply(f, 1)	<pre>map(lambda([x], x</pre>	+ y), [1, 2])
Magnus			
Maxima	apply(f, 1)	<pre>map(lambda([x], x</pre>	+ y), [1, 2])
Maple	f(op(1))	$map(x \rightarrow x + y, [$	1, 2])
Mathematica	Apply[f, 1]	$Map[# + y &, {1, 2}]$	
MuPAD	f(op(1))	map([1, 2], func(
Octave	-	-	•
Pari			
Reduce	$xapply(f, 1)^6$	for each x in $\{1,$	2} collect x + y
Scilab		()	•
Sumit			
Yacas			
	l		

⁶procedure xapply(f, lst); lisp(f . cdr(lst))\$

```
Pattern matching: f(3y) + f(zy) \rightarrow 3f(y) + f(zy)
Axiom
              f:= operator('f);
              ( rule f((n \mid integer?(n)) * x) == n*f(x) )(__
                  f(3*y) + f(z*y)
Derive
DoCon
GAP
Gmp
Macsyma
              matchdeclare(n, integerp, x, true)$
              defrule(fnx, f(n*x), n*f(x))$
              apply1(f(3*y) + f(z*y), fnx);
Magnus
Maxima
              matchdeclare(n, integerp, x, true)$
              defrule(fnx, f(n*x), n*f(x))$
              apply1(f(3*y) + f(z*y), fnx);
Maple
              map(proc(q) local m;
                    if match(q = f(n*y), y, 'm') and
                        type(rhs(op(m)), integer) then
                      subs(m, n * f(y)) else q fi
                  end,
                  f(3*y) + f(z*y));
Mathematica
              f[3*y] + f[z*y] /. f[n_Integer * x_] -> n*f[x]
MuPAD
              d:= domain("match"):
                                      d::FREEVARIABLE:= TRUE:
             n:= new(d, "n", func(testtype(m, DOM_INT), m)):
              x := new(d, "x", TRUE):
             map(f(3*y) + f(z*y),
                  proc(q) local m; begin m:= match(q, f(n*x));
                    if m = FAIL then q
                    else subs(hold("n" * f("x")), m) end_if
                  end_proc);
Octave
Pari
Reduce
              operator f;
              f(3*y) + f(z*y)
                  where \{f(\tilde{n} * \tilde{x}) \Rightarrow n*f(x) \text{ when } fixp(n)\};
Scilab
Sumit
Yacas
```

	Define a new infix	c operator and then	use it
Axiom			
Derive			
DoCon			
GAP	One can overload	existing infix opera	ators for ones own purposes
Gmp			
Macsyma	infix("~")\$ '	'~"(x, y):= sqrt($(x^2 + y^2)$ \$ 3 ~ 4;
Magnus			
Maxima	infix("~")\$ '	'~"(x, y):= sqrt((x^2 + y^2)\$ 3 ~ 4;
Maple	`&~`:= (x, y) -	-> sqrt(x^2 + y^2	2): 3 &~ 4;
Mathematica	$x_{-} \setminus [Tilde] y_{-}$:	= Sqrt[x^2 + y^2]]; 3 \[Tilde] 4
MuPAD	tilde:= proc(x,	, y) begin sqrt(x	x^2 + y^2) end_proc:
	3 ˜ 4;		-
Octave			
Pari			
Reduce	infix \$ prod	cedure (x, y); s	$sqrt(x^2 + y^2)$ \$ 3 4;
Scilab	_		
Sumit			
Yacas			
	I		
	Main expression		
	operator	1 st operand	List of expression operands
Axiom ⁷		kernels(e) . 1	kernels(e)
Derive			${\it various}^8$
DoCon			
GAP	There are no form	nal unevaluated exp	pressions
Gmp			
Macsyma	part(e, 0)	part(e, 1)	args(e)
Magnus	_	-	5
Maxima	part(e, 0)	part(e, 1)	args(e)
Maple	op(0, e)	op(1, e)	[op(e)]
Mathematica	Head[e]	e@[[1]]	ReplacePart[e, List, 0]
MuPAD	op(e, 0)	op(e, 1)	[op(e)]
Octave	• •	•	•
Pari			
Reduce	part(e, 0)	part(e, 1)	for i:=1:arglength(e)
		1 ., .	collect part(e, i)
Scilab			1
Sumit			
Yacas			
	I .		

The following commands work only on expressions that consist of a single level (e.g., x + y + z but not a/b + c/d).

 $^{^6}$ TERMS, FACTORS, NUMERATOR, LHS, etc.

```
Print text and results
             output(concat(["sin(", string(0), ") = ",
Axiom
               string(sin(0))]));
             "\sin(0)" = \sin(0)
Derive
DoCon
GAP
             Print("There is no sin, but factors(10)= ",Factors(10), "\n")
Gmp
             print("sin(", 0, ") =", sin(0))$
Macsyma
Magnus
Maxima
             print("sin(", 0, ") =", sin(0))$
Maple
             printf("sin(%a) = %a n", 0, sin(0)):
             Print[StringForm["sin(``) = ``", 0, Sin[0]]];
Mathematica
MuPAD
             print(Unquoted, "sin(".0.")" = sin(0)):
Octave
Pari
Reduce
             write("sin(", 0, ") = ", sin(0))$
Scilab
Sumit
Yacas
             Generate FORTRAN
                                                  Generate T_EX/IAT_EX
Axiom
             outputAsFortran(e)
                                                  outputAsTex(e)
Derive
             [Transfer Save Fortran]
DoCon
GAP
                                                  Print(LaTeX(e));
Gmp
Macsyma
             fortran(e)$ or gentran(eval(e))$
                                                  tex(e);
Magnus
Maxima
             fortran(e)$ or gentran(eval(e))$
                                                  tex(e);
Maple
             fortran([e]);
                                                  latex(e);
Mathematica
             FortranForm[e]
                                                  TexForm[e]
MuPAD
             generate::fortran(e);
                                                  generate::TeX(e);
Octave
Pari
Reduce
                             off fort; or
                                                  load_package(tri)$
             on fort;
                        e;
             load_package(gentran)$ gentran e;
                                                  on TeX; e; off TeX;
Scilab
Sumit
Yacas
```

	Import two space separated columns of integers from file
Axiom	
Derive	[Transfer Load daTa] (from file.dat)
DoCon	
GAP	
Gmp	
Macsyma	<pre>xy: read_num_data_to_matrix("file", nrows, 2)\$</pre>
Magnus	
Maxima	<pre>xy: read_num_data_to_matrix("file", nrows, 2)\$</pre>
Maple	<pre>xy:= readdata("file", integer, 2):</pre>
Mathematica	<pre>xy = ReadList["file", Number, RecordLists -> True]</pre>
MuPAD	
Octave	
Pari	
Reduce	
Scilab	
Sumit	
Yacas	

```
Export two space separated columns of integers to file<sup>7</sup>
             )set output algebra "file"
Axiom
                                            (creates file.spout)
             for i in 1..n repeat output( _
               concat([string(xy(i, 1)), " ", string(xy(i, 2))]) )
             )set output algebra console
Derive
             xy [Transfer Print Expressions File] (creates file.prt)
DoCon
             PrintTo("file");for i in [1..n] do
GAP
               AppendTo("file",xy[i][1]," ",xy[i][2],"\n");od;
Gmp
Macsyma
             writefile("file")$
                                   for i:1 thru n do
               print(xy[i, 1], xy[i, 2])$
                                              closefile()$
Magnus
Maxima
             writefile("file")$
                                 for i:1 thru n do
               print(xy[i, 1], xy[i, 2])$
                                              closefile()$
Maple
             writedata("file", xy);
Mathematica
             outfile = OpenWrite["file"];
             Do[WriteString[outfile,
               xy@[[i, 1]], " ", xy@[[i, 2]], "\n"], {i, 1, n}]
             Close[outfile];
MuPAD
             fprint(Unquoted, Text, "file",
               ("\n", xy[i, 1], xy[i, 2]) $ i = 1..n):
Octave
Pari
Reduce
             out "file";
                            for i:=1:n do
               write(xy(i, 1), " ", xy(i, 2));
                                                   shut "file";
Scilab
Sumit
Sumit
Yacas
```

4 Mathematics and Graphics

Since GAP aims at discrete mathematics, it does not provide much of the calculus functionality listed in the following section.

⁷Some editing of file will be necessary for all systems but Maple and Mathematica.

	e	π	i	$+\infty$	$\sqrt{2}$	$2^{1/3}$
Axiom	%e	%pi	%i	%plusInfinity	sqrt(2)	2**(1/3)
Derive	#e	рi	#i	inf	SQRT(2)	2^(1/3)
DoCon						
GAP			E(4)	infinity	$ER(2)^{8}$	
Gmp						
Macsyma	%e	%pi	%i	inf	sqrt(2)	2^(1/3)
Magnus						
Maxima	%e	%pi	%i	inf	sqrt(2)	2^(1/3)
Maple	exp(1)	Ρi	I	infinity	sqrt(2)	2^(1/3)
Mathematica	E	Pi	I	Infinity	Sqrt[2]	2^(1/3)
MuPAD	E	ΡI	I	infinity	sqrt(2)	2^(1/3)
Octave						
Pari						
Reduce	е	рi	i	infinity	sqrt(2)	2^(1/3)
Scilab						
Sumit						
Yacas						
	Euler's o	constar	nt Nat	tural log A	rctangent	n!
Axiom	Euler's o	constar			arctangent tan(x)	n! factorial(n)
Axiom Derive			log	g(x) a		
	Euler's c		log	g(x) a	tan(x)	factorial(n)
Derive			log LOG	(x) a	tan(x)	factorial(n)
Derive DoCon			log LOG	g(x) a	tan(x)	factorial(n) n!
Derive DoCon GAP			log LOG Log	(x) a (x) A (Int(x,base)	tan(x)	factorial(n) n!
Derive DoCon GAP Gmp	euler_g		log LOG Log	(x) a (x) A (Int(x,base)	tan(x) TAN(x)	factorial(n) n! Factorial(n)
Derive DoCon GAP Gmp Macsyma	euler_g		log LOG Log	g(x) a $g(x)$ A $g(x)$ $g(x)$ a $g(x)$ a	tan(x) TAN(x)	factorial(n) n! Factorial(n)
Derive DoCon GAP Gmp Macsyma Magnus	euler_g		log LOG Log log	f(x) a $f(x)$ A $f(x)$ A $f(x)$ $f(x)$ a $f(x)$ a $f(x)$ a	tan(x) TAN(x) tan(x)	<pre>factorial(n) n! Factorial(n) n!</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima	euler_g %gamma %gamma	amma	log Log log log	f(x) a $f(x)$ a	tan(x) TAN(x) tan(x) tan(x)	factorial(n) n! Factorial(n) n!
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple	euler_g %gamma %gamma gamma	amma	log Log log log	(x) a (Int(x,base) (x) a	tan(x) TAN(x) tan(x) tan(x) rctan(x)	factorial(n) n! Factorial(n) n! n!
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica	euler_g %gamma %gamma gamma EulerGa	amma	log LOG Log log log Log	(x) a (Int(x,base) (x) a	tan(x) TAN(x) tan(x) tan(x) rctan(x) rcTan[x]	factorial(n) n! Factorial(n) n! n! n!
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD	euler_g %gamma %gamma gamma EulerGa	amma	log LOG Log log log Log	(x) a (Int(x,base) (x) a	tan(x) TAN(x) tan(x) tan(x) rctan(x) rcTan[x]	factorial(n) n! Factorial(n) n! n! n!
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari Reduce	euler_g %gamma %gamma gamma EulerGa	amma mma	log Log log log log Log	(x) a (x) A (Int(x,base) (x) a	tan(x) TAN(x) tan(x) tan(x) rctan(x) rcTan[x]	factorial(n) n! Factorial(n) n! n! n!
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari Reduce Scilab	euler_g %gamma %gamma gamma EulerGa EULER	amma mma	log Log log log log Log	(x) a (x) A (Int(x,base) (x) a	tan(x) tan(x) tan(x) tan(x) rctan(x) rcTan[x] tan(x)	<pre>factorial(n) n! Factorial(n) n! n! n! n! n! n!</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari Reduce Scilab Sumit	euler_g %gamma %gamma gamma EulerGa EULER	amma mma	log Log log log log Log	(x) a (x) A (Int(x,base) (x) a	tan(x) tan(x) tan(x) tan(x) rctan(x) rcTan[x] tan(x)	<pre>factorial(n) n! Factorial(n) n! n! n! n! n! n!</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari Reduce Scilab	euler_g %gamma %gamma gamma EulerGa EULER	amma mma	log Log log log log Log	(x) a (x) A (Int(x,base) (x) a	tan(x) tan(x) tan(x) tan(x) rctan(x) rcTan[x] tan(x)	<pre>factorial(n) n! Factorial(n) n! n! n! n! n! n!</pre>

 $^{^8\}mathsf{ER}$ represents special cyclotomic numbers and is not a root function.

	Legendre polynomial	Chebyshev poly. of the 1 st kind
Axiom	legendreP(n, x)	chebyshevT(n, x)
Derive	LEGENDRE_P(n, x)	$CHEBYCHEV_T(n, x)$
DoCon		
GAP		
Gmp		
Macsyma	legendre_p(n, x)	chebyshev_t(n, x)
Magnus		
Maxima	legendre_p(n, x)	chebyshev_t(n, x)
Maple	orthopoly[P](n, x)	orthopoly[T](n, x)
Mathematica	LegendreP[n, x]	<pre>ChebyshevT[n, x]</pre>
MuPAD	orthpoly::legendre(n, x)	orthpoly::chebyshev1(n, x)
Octave		
Pari		
Reduce	LegendreP(n, x)	<pre>ChebyshevT(n, x)</pre>
Scilab		
Sumit		
Yacas		
	'	
	Fibonacci number	Elliptic integral of the 1 st kind
Axiom	fibonacci(n)	
Derive		Elliptic integral of the 1 st kind ELLIPTIC_E(phi, k^2)
Derive DoCon	fibonacci(n) FIBONACCI(n)	
Derive DoCon GAP	fibonacci(n)	
Derive DoCon GAP Gmp	fibonacci(n) FIBONACCI(n)	
Derive DoCon GAP Gmp Macsyma	fibonacci(n) FIBONACCI(n)	
Derive DoCon GAP Gmp Macsyma Magnus	fibonacci(n) FIBONACCI(n) Fibonacci(n) fib(n)	ELLIPTIC_E(phi, k^2) elliptic_e(phi, k^2)
Derive DoCon GAP Gmp Macsyma Magnus Maxima	fibonacci(n) FIBONACCI(n) Fibonacci(n) fib(n) fib(n)	<pre>ELLIPTIC_E(phi, k^2) elliptic_e(phi, k^2) elliptic_e(phi, k^2)</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple	<pre>fibonacci(n) FIBONACCI(n) Fibonacci(n) fib(n) fib(n) combinat[fibonacci](n)</pre>	<pre>ELLIPTIC_E(phi, k^2) elliptic_e(phi, k^2) elliptic_e(phi, k^2) EllipticE(sin(phi), k)</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica	fibonacci(n) FIBONACCI(n) Fibonacci(n) fib(n) fib(n)	<pre>ELLIPTIC_E(phi, k^2) elliptic_e(phi, k^2) elliptic_e(phi, k^2)</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD	<pre>fibonacci(n) FIBONACCI(n) Fibonacci(n) fib(n) fib(n) combinat[fibonacci](n)</pre>	<pre>ELLIPTIC_E(phi, k^2) elliptic_e(phi, k^2) elliptic_e(phi, k^2) EllipticE(sin(phi), k)</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave	<pre>fibonacci(n) FIBONACCI(n) Fibonacci(n) fib(n) fib(n) combinat[fibonacci](n) Fibonacci[n]</pre>	<pre>ELLIPTIC_E(phi, k^2) elliptic_e(phi, k^2) elliptic_e(phi, k^2) EllipticE(sin(phi), k)</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD	<pre>fibonacci(n) FIBONACCI(n) Fibonacci(n) fib(n) fib(n) combinat[fibonacci](n) Fibonacci[n]</pre>	<pre>ELLIPTIC_E(phi, k^2) elliptic_e(phi, k^2) elliptic_e(phi, k^2) EllipticE(sin(phi), k)</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave	<pre>fibonacci(n) FIBONACCI(n) Fibonacci(n) fib(n) fib(n) combinat[fibonacci](n) Fibonacci[n]</pre>	<pre>ELLIPTIC_E(phi, k^2) elliptic_e(phi, k^2) elliptic_e(phi, k^2) EllipticE(sin(phi), k)</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari	<pre>fibonacci(n) FIBONACCI(n) Fibonacci(n) fib(n) fib(n) combinat[fibonacci](n) Fibonacci[n]</pre>	<pre>elliptic_e(phi, k^2) elliptic_e(phi, k^2) elliptic_e(phi, k^2) EllipticE(sin(phi), k) EllipticE[phi, k^2]</pre>
Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari Reduce	<pre>fibonacci(n) FIBONACCI(n) Fibonacci(n) fib(n) fib(n) combinat[fibonacci](n) Fibonacci[n]</pre>	<pre>elliptic_e(phi, k^2) elliptic_e(phi, k^2) elliptic_e(phi, k^2) EllipticE(sin(phi), k) EllipticE[phi, k^2]</pre>

	$\Gamma(x)$	$\psi(x)$	Cosine	integral	Ве	essel fun. (1 st)
Axiom	Gamma(x)	psi(x)	real(E	i(%i*x))	be	sselJ(n, x)
Derive	GAMMA(x)	PSI(x)	CI(x)		BE	$SSEL_J(n, x)$
DoCon						
GAP						
Gmp						
Macsyma	gamma(x)	psi[0](x)	cosin	t(x)	be	$ssel_{j}[n](x)$
Magnus						
Maxima	gamma(x)	psi[0](x)	\cos in	t(x)		$ssel_{-j}[n](x)$
Maple	GAMMA(x)	Psi(x)	Ci(x)			sselJ(n, x)
Mathematica	Gamma[x]	PolyGamma[x]	CosInt	egral[x]		sselJ[n, x]
MuPAD	gamma(x)	psi(x)			be	sselJ(n, x)
Octave						
Pari						
Reduce	Gamma(x)	Psi(x)	Ci(x)		Ве	sselJ(n, x)
Scilab						
Sumit						
Yacas						
	Hypergeon	netric fun. $_2F_1(a,$	b: c: x)	Dirac del	ta	Unit step fun.
Axiom	, F 8	2-1(**)	-, -,,			
Derive	GAUSS(a,	b, c, x)				STEP(x)
DoCon		, , ,				
GAP						
Gmp						
Macsyma	hgfred([a	, b], [c], x)		delta(x))	$unit_step(x)$
Magnus						-
Maxima	hgfred([a	, b], [c], x)		delta(x))	$unit_step(x)$
Maple	hypergeom	([a, b], [c],	x)	Dirac(x))	Heaviside(x)
Mathematica		etricPFQ[{a,b}		@<< Cal	culu	s`DiracDelta`
MuPAD				dirac(x))	heaviside(x)
Octave						
Pari						
Reduce	hypergeom	etric($\{a, b\}$,	{c}, x)			
Scilab						
Sumit						
Yacas						

	Define $ x $ via a piecewise funct	ion	
Axiom			
Derive	a(x) := -x*CHI(-inf, x, 0)	+ x*CHI(0, x, inf)	
DoCon			
GAP			
Gmp			
Macsyma	$a(x) := -x*unit_step(-x) +$	x*unit_step(x)\$	
Magnus			
Maxima	$a(x) := -x*unit_step(-x) +$		
Maple	a:= x -> piecewise(x < 0, -x, x):		
Mathematica	<pre>@<< Calculus`DiracDelta`</pre>		
	$a[x_{-}] := -x*UnitStep[-x] + x$	x*UnitStep[x]	
MuPAD	a:= proc(x) begin -x*heavi	side(-x) + x*heaviside(x)	
	end_proc:		
Octave			
Pari			
Reduce			
Scilab			
Sumit			
Yacas			
	A	D +1++:	
Δ	Assume x is real	Remove that assumption	
Axiom			
Derive	x :epsilon Real	x:=	
DoCon GAP			
Gmp Macsyma	<pre>declare(x, real)\$</pre>	remove(x, real)\$	
Magnus	declare(x, real)\$	remove(x, rear)\$	
Maxima	<pre>declare(x, real)\$</pre>	remove(x, real)\$	
Maple	assume(x, real);	x:= 'x':	
Mathematica	x/: Im[x] = 0;	Clear[x]	
MuPAD	assume(x, Type::RealNum):	unassume(x, Type::RealNum):	
Octave	assume(x, TypekeaINum).	unassume(x, Typenealnum).	
Pari			
Reduce			
Scilab			
Sumit			
Yacas			
racas			

Axiom Derive DoCon GAP Gmp Macsyma Magnus Maxima Maple Mathematica MuPAD Octave Pari Reduce Scilab Sumit Yacas x :epsilon (0, 1] x:= x := x :epsilon (0, 1] x := x := x :epsilon (0, 1] x := x := x := forget(x > 0, x <= 1)\$ forget(x > 0, x <= 1)\$ forget(x > 0, x <= 1)\$ x := 'x': additionally(x <= 1); Assumptions -> 0 < x <= 18 assume(x > 0): assume(x <= 1): unassume(x): Basic simplification of an expression e
DoCon GAP Gmp Macsyma assume($x > 0$, $x <= 1$)\$ forget($x > 0$, $x <= 1$)\$ forget($x > 0$, $x <= 1$)\$ Magnus Maxima assume($x > 0$, $x <= 1$)\$ forget($x > 0$, $x <= 1$)\$ Maple assume($x > 0$); $x := 'x'$: additionally($x <= 1$); Mathematica MuPAD Assumptions $-> 0 < x <= 1$ 8 assume($x > 0$): assume($x > 0$): assume($x > 0$): unassume($x > 0$): Unassume($x > 0$): assume($x > 0$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
Magnus Maxima assume($x > 0$, $x <= 1$)\$ forget($x > 0$, $x <= 1$)\$ Maple assume($x > 0$); additionally($x <= 1$); Mathematica MuPAD Octave Pari Reduce Scilab Sumit Yacas
$\begin{array}{llllllllllllllllllllllllllllllllllll$
Maple assume(x > 0); additionally(x <= 1); Mathematica MuPAD Octave Pari Reduce Scilab Sumit Yacas x:= 'x': additionally(x <= 1): unassume(x): x:= 'x': unassume(x):
<pre>additionally(x <= 1); Mathematica MuPAD Octave Pari Reduce Scilab Sumit Yacas</pre> <pre>additionally(x <= 1); Assumptions -> 0 < x <= 1⁸ assume(x > 0): assume(x <= 1): unassume(x):</pre>
Mathematica MuPAD Octave Pari Reduce Scilab Sumit Yacas
MuPAD Octave Pari Reduce Scilab Sumit Yacas
Octave Pari Reduce Scilab Sumit Yacas
Pari Reduce Scilab Sumit Yacas
Reduce Scilab Sumit Yacas
Scilab Sumit Yacas
Sumit Yacas
Yacas
Basic simplification of an expression e
Basic simplification of an expression e
Axiom simplify(e) or normalize(e) or complexNormalize(e) Derive e
DoCon
GAP e
Gmp
Macsyma ratsimp(e) or radcan(e) Magnus
Maxima ratsimp(e) or radcan(e)
Maple simplify(e)
Mathematica Simplify[e] or FullSimplify[e]
MuPAD simplify(e) or normal(e)
Octave Simplify(e) 07 Hormat(e)
Pari
Reduce e
Scilab
Sumit
Yacas
i acas

 $^{^8\}mathrm{This}$ is an option for Integrate.

	Use an unknown	function	Numerically evaluate an expr.
Axiom	f:= operator('	f); f(x)	exp(1) :: Complex Float
Derive	f(x):=		Precision:= Approximate
	f(x)		APPROX(EXP(1))
			Precision:= Exact
DoCon			
GAP			EvalF(123/456)
Gmp			
Macsyma	f(x)		sfloat(exp(1));
Magnus	_ ()		212000 (onp (1)),
Maxima	f(x)		sfloat(exp(1));
Maple	f(x)		evalf(exp(1));
Mathematica	f[x]		N[Exp[1]]
MuPAD	f(x)		float(exp(1));
Octave	1(x)		110dt (Cxp(1)),
Pari			
Reduce	operator f;	f(x)	on rounded; exp(1);
reduce	operator 1,	1(x)	off rounded;
Scilab			oii iounded,
Sumit			
Yacas			
Tacas			
	$n \mod m$	Solve $e \equiv 0$	$\mod m$ for x
Axiom	rem(n, m)	solve(e =	0 :: PrimeField(m), x)
Derive	MOD(n, m)		(e = 0, x, m)
DoCon			
GAP	n mod m	solve using	finite fields
Gmp		G	
Macsyma	mod(n, m)	modulus: m	s solve(e = 0, x)
Magnus			•
Maxima	mod(n, m)	modulus: m	s solve(e = 0, x)
Maple	n mod m	msolve(e =	
Mathematica	Mod[n, m]		== 0, Modulus == m}, x]
MuPAD	n mod m		r(e = 0, [x], IntMod(m)), x)
Octave		\(\frac{1}{4}\)	() () () () () () () () () ()
Pari			
Reduce	on modular;	load packa	ge(modsr)\$ on modular;
	setmod m\$ n	setmod m\$	
Scilab	250m04 my 11	эээшэч шф	, A/
Sumit			
Yacas			
i acas			

```
Put over common denominator
                                           Expand into separate fractions
Axiom
             a/b + c/d
                                           (a*d + b*c)/(b*d) :: _
                                             MPOLY([a], FRAC POLY INT)
Derive
             FACTOR(a/b + c/d, Trivial)
                                           EXPAND((a*d + b*c)/(b*d))
DoCon
GAP
             a/b+c/d
Gmp
Macsyma
             xthru(a/b + c/d)
                                           expand((a*d + b*c)/(b*d))
Magnus
Maxima
             xthru(a/b + c/d)
                                           expand((a*d + b*c)/(b*d))
Maple
             normal(a/b + c/d)
                                           expand((a*d + b*c)/(b*d))
Mathematica
             Together [a/b + c/d]
                                           Apart[(a*d + b*c)/(b*d)]
MuPAD
             normal(a/b + c/d)
                                           expand((a*d + b*c)/(b*d))
Octave
Pari
Reduce
             a/b + c/d
                                           on div; (a*d + b*c)/(b*d)
Scilab
Sumit
Yacas
             Manipulate the root of a polynomial
Axiom
             a := rootOf(x**2 - 2);
Derive
DoCon
GAP
             x:=X(Rationals,"x");
               a:=RootOfDefiningPolynomial(AlgebraicExtension(Rationals,x^2-2)); a^2
Gmp
Macsyma
             algebraic:true$
                               tellrat(a^2 - 2)$
                                                     rat(a^2);
Magnus
Maxima
             algebraic:true$
                               tellrat(a^2 - 2)$
Maple
             a := RootOf(x^2 - 2):
                                     simplify(a^2);
Mathematica
             a = Root[\#^2 - 2 \&, 2]
MuPAD
Octave
Pari
Reduce
             load_package(arnum)$
                                     defpoly(a^2 - 2);
                                                          a^2;
Scilab
Sumit
Yacas
```

	Noncommutative multiplic	ation Solve a pair of equations
Axiom		solve([eqn1, eqn2], [x, y])
Derive	x :epsilon Nonscalar	SOLVE([eqn1, eqn2], [x, y])
	y :epsilon Nonscalar	
	х. у	
DoCon		
GAP	*	
Gmp		- (5 , -3 , 5 , 3)
Macsyma	х. у	solve([eqn1, eqn2], [x, y])
Magnus		
Maxima Maxla	х . у	solve([eqn1, eqn2], [x, y])
Maple Mathematica	x &* y	$solve(\{eqn1, eqn2\}, \{x, y\})$
MuPAD	x ** y	Solve[{eqn1, eqn2}, {x, y}] solve({eqn1, eqn2}, {x, y})
Octave		solve ($\{eqn1, eqn2\}, \{x, y\}$)
Pari		
Reduce	operator x, y;	$solve(\{eqn1, eqn2\}, \{x, y\})$
reduce	noncom x, y;	borve((eqnr, eqnz), (x, y))
	x() * y()	
Scilab	· · · · · · · · · · · · · · · · · ·	
Sumit		
Yacas		
	l	
	Decrease/increase angles in	
Axiom	simplify(normalize(sin	
Derive	Trigonometry:= Expand sin(2*x)	<pre>Trigonometry:= Collect 2*sin(x)*cos(x)</pre>
DoCon	SIR(Z·R)	Z-BIR(A) - COB(A)
GAP		
Gmp		
Macsyma	<pre>trigexpand(sin(2*x))</pre>	<pre>trigreduce(2*sin(x)*cos(x))</pre>
Magnus		
Maxima	trigexpand(sin(2*x))	<pre>trigreduce(2*sin(x)*cos(x))</pre>
Maxima Maple	<pre>trigexpand(sin(2*x)) expand(sin(2*x))</pre>	<pre>trigreduce(2*sin(x)*cos(x)) combine(2*sin(x)*cos(x))</pre>
	<pre>expand(sin(2*x)) TrigExpand[Sin[2*x]]</pre>	<u> </u>
Maple	expand(sin(2*x))	<pre>combine(2*sin(x)*cos(x))</pre>
Maple Mathematica MuPAD Octave	<pre>expand(sin(2*x)) TrigExpand[Sin[2*x]]</pre>	<pre>combine(2*sin(x)*cos(x)) TrigReduce[2*Sin[x]*Cos[x]]</pre>
Maple Mathematica MuPAD Octave Pari	<pre>expand(sin(2*x)) TrigExpand[Sin[2*x]] expand(sin(2*x))</pre>	<pre>combine(2*sin(x)*cos(x)) TrigReduce[2*Sin[x]*Cos[x]]</pre>
Maple Mathematica MuPAD Octave	<pre>expand(sin(2*x)) TrigExpand[Sin[2*x]] expand(sin(2*x)) load_package(assist)\$</pre>	<pre>combine(2*sin(x)*cos(x)) TrigReduce[2*Sin[x]*Cos[x]] combine(2*sin(x)*cos(x), sincos)</pre>
Maple Mathematica MuPAD Octave Pari Reduce	expand(sin(2*x)) TrigExpand[Sin[2*x]] expand(sin(2*x))	<pre>combine(2*sin(x)*cos(x)) TrigReduce[2*Sin[x]*Cos[x]]</pre>
Maple Mathematica MuPAD Octave Pari Reduce Scilab	<pre>expand(sin(2*x)) TrigExpand[Sin[2*x]] expand(sin(2*x)) load_package(assist)\$</pre>	<pre>combine(2*sin(x)*cos(x)) TrigReduce[2*Sin[x]*Cos[x]] combine(2*sin(x)*cos(x), sincos)</pre>
Maple Mathematica MuPAD Octave Pari Reduce	<pre>expand(sin(2*x)) TrigExpand[Sin[2*x]] expand(sin(2*x)) load_package(assist)\$</pre>	<pre>combine(2*sin(x)*cos(x)) TrigReduce[2*Sin[x]*Cos[x]] combine(2*sin(x)*cos(x), sincos)</pre>

```
Gröbner basis
Axiom
             groebner([p1, p2, ...])
Derive
DoCon
GAP
Gmp
             grobner([p1, p2, ...])
Macsyma
Magnus
             grobner([p1, p2, ...])
Maxima
Maple
             Groebner[gbasis]([p1, p2, ...], plex(x1, x2, ...))
Mathematica
             GroebnerBasis[\{p1, p2, \ldots\}, \{x1, x2, \ldots\}]
MuPAD
             groebner::gbasis([p1, p2, ...])
Octave
Pari
Reduce
             load_package(groebner)$
                                         groebner({p1, p2, ...})
Scilab
Sumit
Yacas
             Factorization of e over i = \sqrt{-1}
             factor(e, [rootOf(i**2 + 1)])
Axiom
Derive
             FACTOR(e, Complex)
DoCon
GAP
             Factors(GaussianIntegers,e)
Gmp
             gfactor(e); or factor(e, i^2 + 1);
Macsyma
Magnus
             gfactor(e); or factor(e, i^2 + 1);
Maxima
Maple
             factor(e, I);
Mathematica
             Factor[e, Extension -> I]
MuPAD
             QI:= Dom::AlgebraicExtension(Dom::Rational, i^2 + 1);
             QI::name:= "QI":
                                 Factor(poly(e, QI));
Octave
Pari
Reduce
             on complex, factor;
                                          off complex, factor;
                                     e;
Scilab
Sumit
Yacas
```

	Real part		Conve	rt a complex expr. to rectangular form
Axiom	real(f(z))		compl	exForm(f(z))
Derive	RE(f(z))		f(z)	
DoCon				
GAP	(f(z)+GaloisCyc	c(f(z),-1))/2		
Gmp				
Macsyma	realpart(f(z))		rectf	orm(f(z))
Magnus				
Maxima	realpart(f(z))		rectf	orm(f(z))
Maple	Re(f(z))			(f(z))
Mathematica	Re[f[z]]		-	exExpand[f[z]]
MuPAD	Re(f(z))		rectf	orm(f(z))
Octave				
Pari				
Reduce	repart(f(z))		repar	t(f(z)) + i*impart(f(z))
Scilab				
Sumit				
Yacas				
	Matrix addition	Matrix multipli	ication	Matrix transpose
Axiom	A + B	A * B		transpose(A)
Derive	A + B	А.В		A`
DoCon				
GAP	A + B	A * B		TransposedMat(A)
Gmp				•
Macsyma	A + B	А . В		transpose(A)
Magnus				-
Maxima	A + B	А . В		transpose(A)
Maple	evalm(A + B)	evalm(A &* B))	<pre>linalg[transpose](A)</pre>
Mathematica	A + B	A . B		Transpose[A]
MuPAD	A + B	A * B		transpose(A)
Octave				
Pari				
Reduce	A + B	A * B		tp(A)
Scilab				
Sumit				
Yacas				

```
Solve the matrix equation Ax = b
Axiom
             solve(A, transpose(b)) . 1 . particular :: Matrix ___
Derive
DoCon
GAP
             SolutionMat(TransposedMat(A),b)
Gmp
             xx: genvector('x, mat_nrows(b))$
Macsyma
             x: part(matlinsolve(A . xx = b, xx), 1, 2)
Magnus
Maxima
             xx: genvector('x, mat_nrows(b))$
             x: part(matlinsolve(A . xx = b, xx), 1, 2)
Maple
             x:= linalg[linsolve](A, b)
Mathematica
             x = LinearSolve[A, b]
MuPAD
Octave
Pari
Reduce
Scilab
Sumit
Yacas
             Sum: \sum_{i=1}^{n} f(i)
                                      Product: \prod_{i=1}^{n} f(i)
             sum(f(i), i = 1..n)
Axiom
                                      product(f(i), i = 1..n)
                                      PRODUCT(f(i), i, 1, n)
Derive
             SUM(f(i), i, 1, n)
DoCon
GAP
             Sum([1..n],f)
                                      Product([1..n],f)
Gmp
Macsyma
             closedform(
                                      closedform(
               sum(f(i), i, 1, n))
                                        product(f(i), i, 1, n))
Magnus
Maxima
             closedform(
                                      closedform(
               sum(f(i), i, 1, n))
                                        product(f(i), i, 1, n))
Maple
             sum(f(i), i = 1..n)
                                      product(f(i), i = 1..n)
Mathematica
             Sum[f[i], {i, 1, n}]
                                      Product[f[i], {i, 1, n}]
MuPAD
             sum(f(i), i = 1..n)
                                      product(f(i), i = 1..n)
Octave
Pari
Reduce
             sum(f(i), i, 1, n)
                                      prod(f(i), i, 1, n)
Scilab
Sumit
Yacas
```

	Limit: $\lim_{x\to 0-} f(x)$	Taylor/Laurent/etc. series
Axiom	limit(f(x), x = 0, "left")	series(f(x), x = 0, 3)
Derive	LIM(f(x), x, 0, -1)	TAYLOR(f(x), x, 0, 3)
DoCon		
GAP		
Gmp		
Macsyma	<pre>limit(f(x), x, 0, minus)</pre>	taylor(f(x), x, 0, 3)
Magnus		
Maxima	<pre>limit(f(x), x, 0, minus)</pre>	taylor(f(x), x, 0, 3)
Maple	limit(f(x), x = 0, left)	series(f(x), x = 0, 4)
Mathematica	Limit[f[x], x->0, Direction	->1] Series[f[x], $\{x, 0, 3\}$]
MuPAD	limit(f(x), x = 0, Left)	series(f(x), x = 0, 4)
Octave		
Pari		
Reduce	limit!-(f(x), x, 0)	taylor(f(x), x, 0, 3)
Scilab		
Sumit		
Yacas		
	Differentiate: $\frac{d^3 f(x,y)}{dx dy^2}$	Integrate: $\int_0^1 f(x) dx$
Axiom	D(f(x, y), [x, y], [1, 2])	integrate(f(x), x = 01)
Derive	DIF(DIF(f(x, y), x), y, 2)	INT(f(x), x, 0, 1)
DoCon		
GAP		
Gmp		
Macsyma	diff(f(x, y), x, 1, y, 2)	integrate(f(x), x, 0, 1)
Magnus		
Maxima	diff(f(x, y), x, 1, y, 2)	integrate(f(x), x, 0, 1)
Maple	diff(f(x, y), x, y\$2)	int(f(x), x = 01)
Mathematica	$D[f[x, y], x, \{y, 2\}]$	Integrate[f[x], $\{x, 0, 1\}$]
MuPAD	diff(f(x, y), x, y\$2)	int(f(x), x = 01)
Octave		
Pari		
Reduce	df(f(x, y), x, y, 2)	int(f(x), x, 0, 1)
Scilab		
Sumit		
Yacas		

	Laplace transform	Inverse Laplace transform		
Axiom Derive DoCon GAP Gmp	laplace(e, t, s) LAPLACE(e, t, s)	inverseLaplace(e, s, t)		
Macsyma Magnus	laplace(e, t, s)	ilt(e, s, t)		
Maxima Maple Mathematica	<pre>laplace(e, t, s) inttrans[laplace](e,t,s) @<< Calculus`LaplaceTran</pre>	<pre>ilt(e, s, t) inttrans[invlaplace](e,s,t) sform`</pre>		
	<pre>LaplaceTransform[e, t, s]</pre>	<pre>InverseLaplaceTransform[e,s,t]</pre>		
MuPAD Octave Pari	<pre>transform::laplace(e,t,s)</pre>	<pre>transform::ilaplace(e, s, t)</pre>		
Reduce	<pre>load_package(laplace)\$ laplace(e, t, s)</pre>	<pre>load_package(defint)\$ invlap(e, t, s)</pre>		
Scilab Sumit Yacas	•	-		
	Solve an ODE (with the initial	condition $y'(0) = 1$		
Axiom	solve(eqn, y, x)			
Derive	APPLY_IC(RHS(ODE(eqn, x, y	, y_)), [x, 0], [y, 1])		
DoCon GAP				
Gmp				
Macsyma	$ode_ibc(ode(eqn, y(x), x),$	x = 0, diff($y(x)$, x) = 1)		
Magnus				
Maxima	$ode_ibc(ode(eqn, y(x), x), x = 0, diff(y(x), x) = 1)$			
Maple	$dsolve(\{eqn, D(y)(0) = 1\}, y(x))$			
Mathematica	$DSolve[\{eqn, y'[0] == 1\}, y[x], x]$			
MuPAD	$solve(ode({eqn, D(y)(0)} =$	1}, y(x)))		
Octave				
Pari				
Reduce Scilab	odesolve(eqn, y(x), x)			
Sumit Yacas				

```
Define the differential operator L = D_x + I and apply it to \sin x
Axiom
             DD : LODO(Expression Integer, e +-> D(e, x)) := D();
             L:=DD+1;
                           L(\sin(x))
Derive
DoCon
GAP
Gmp
             load(opalg)$
                            L: (diffop(x) - 1)$
Macsyma
                                                    L(sin(x));
Magnus
Maxima
             load(opalg)$
                             L: (diffop(x) - 1)$
                                                    L(sin(x));
Maple
                             L:=(D+id):
             id:= x \rightarrow x:
                                             L(sin)(x);
Mathematica
             L = D[\#, x]\& + Identity;
                                         Through[L[Sin[x]]]
MuPAD
             L:=(D+id):
                              L(sin)(x);
Octave
Pari
Reduce
Scilab
Sumit
Yacas
             2D plot of two separate curves overlayed
Axiom
             draw(x, x = 0..1);
                                   draw(acsch(x), x = 0..1);
Derive
             [Plot Overlay]
DoCon
GAP
Gmp
             plot(x, x, 0, 1)$
                                  plot(acsch(x), x, 0, 1)$
Macsyma
Magnus
Maxima
                                plot(acsch(x), x, 0, 1)$
             plot(x, x, 0, 1)$
Maple
             plot({x, arccsch(x)}, x = 0..1):
Mathematica
             Plot[{x, ArcCsch[x]}, {x, 0, 1}];
MuPAD
             plotfunc(x, acsch(x), x = 0..1):
Octave
Pari
Reduce
             load_package(gnuplot) plot(y = x, x = (0 .. 1))$
             plot(y = acsch(x), x = (0 .. 1))$
Scilab
Sumit
Yacas
```

	Simple 3D plotting
Axiom	draw(abs(x*y), x = 01, y = 01);
Derive	[Plot Overlay]
DoCon	
GAP	
Gmp	
Macsyma	plot3d(abs(x*y), x, 0, 1, y, 0, 1)\$
Magnus	
Maxima	plot3d(abs(x*y), x, 0, 1, y, 0, 1)\$
Maple	plot3d(abs($x*y$), $x = 01$, $y = 01$):
Mathematica	Plot3D[Abs[x*y], {x, 0, 1}, {y, 0, 1}];
MuPAD	plotfunc(abs(x*y), x = 01, y = 01):
Octave	
Pari	
Reduce	load_package(gnuplot)\$
	plot(z = abs(x*y), x = (0 1), y = (0 1))\$
Scilab	
Sumit	
Yacas	