Spatial regression using the spmoran package: Boston housing price data examples

Daisuke Murakami

2020/01/10

Contents

1	Inti	roduction	2
2	Gau 2.1	Basic models 2.1.1 Eigenvector spatial filtering (ESF) 2.1.2 Random effects ESF (RE-ESF) Extended models 2.2.1 Models with non-spatially varying coefficients (coefficients varying wrt covariate value) 2.2.2 Models with spatially varying coefficients 2.2.3 Models with spatially and non-spatially varying coefficients 2.2.4 Models with group effects 2.2.4.1 Outline 2.2.4.2 Multilevel model 2.2.4.3 Small area estimation 2.2.4.4 Longitudinal/panel data analysis	2 2 2 3 3 5 5 8 111 177 178 199 233
	2.3	Spatial prediction	27
3 4	3.1 3.2 3.3	Basic models	30 30 34 39 40
5	Low 5.1 5.2	v rank spatial econometric models Spatial weight matrix and their eigenvectors Models 5.2.1 Low rank spatial lag model 5.2.2 Low rank spatial error model	45 45 45 45 47
6	Tip 6.1 6.2 6.3	Eigen-decomposition	48 48 48 49
7	Def	laman as	F 1

1 Introduction

This package provides functions for estimating Gaussian and non-Gaussian spatial regression models and extensions, including spatially and non-spatially varying coefficient models, models with group effects, spatial unconditional quantile regression models, and low rank spatial econometric models. All these models are estimated computationally efficiently.

An approximate Gaussian process (GP or kriging model), which is interpretable in terms of the Moran coefficient (MC), is used for modeling the spatial process. The approximate GP is defined by a linear combination of the Moran eigenvectors (MEs) corresponding to positive eigenvalue, which are known to explain positive spatial dependence. The resulting spatial process describes positively dependent map patterns (i.e., MC > 0), which are dominant in regional science (Griffith, 2003). Below, the spmoran package is used to analyze the Boston housing dataset.

The sample codes used below are available from https://github.com/dmuraka/spmoran.

library(spmoran)

2 Gaussian spatial additive mixed models

2.1 Basic models

This section considers the following model:

$$y_i = \sum_{k=1}^{K} x_{i,k} \beta_k + f_{MC}(s_i) + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2),$$

which decomposes the explained variable y_i observed at the i-th sample site into trend $\sum_{k=1}^{K} x_{i,k} \beta_{i,k}$, spatial process $f_{MC}(s_i)$ depending on location s_i , and noise ϵ_i . The spatial process is required to eliminate residual spatial dependence and estimate/infer regression coefficients β_k appropriately. ESF and RE-ESF define $f_{MC}(s_i)$ using the MC-based spatial process to efficiently eliminate residual spatial dependence. These processes are defined by the weighted sum of the Moran eigenvectors (MEs), which are spatial basis functions (distinct map pattern variables; see Griffith, 2003).

2.1.1 Eigenvector spatial filtering (ESF)

ESF specifies $f_{MC}(s_i)$ using an MC-based deterministic spatial process (see Griffith, 2003). Below is a code estimating the linear ESF model. In the code, the meigen function extracts the MEs, and the esf function estimates the model.

```
##
  ----Coefficients-----
##
##
                  Estimate
                                  SF.
                                        t value
                                                    p_value
## (Intercept) 11.34040959 3.91692274 2.8952344 3.968277e-03
## CRIM
               -0.20942091 0.03048530 -6.8695702 2.089395e-11
## ZN
                0.02322000 0.01384823 1.6767492 9.426799e-02
               -0.15063613 0.06823776 -2.2075188 2.776856e-02
## INDUS
## CHAS
                0.15172838 0.93842988 0.1616832 8.716260e-01
## NOX
              -38.02167637 4.79403898 -7.9310320 1.651338e-14
## R.M
                6.33316024 0.36887955 17.1686403 1.842211e-51
## AGE
               -0.07820247 0.01564970 -4.9970593 8.274067e-07
##
  ----Spatial effects (residuals)-----
##
##
                       Estimate
## SE
                       6.8540461
## Moran.I/max(Moran.I) 0.6701035
##
  ----Error statistics-----
##
                   stat
## resid SE
               4.476459
## adjR2
               0.762328
           -1453.376154
## logLik
## AIC
            2996.752308
## BIC
            3186.946458
```

While the meigen function is slow for large samples, it can be substituted with the meigen_f function performing a fast eigen-approximation. Here is a fast ESF code for large samples:

```
meig_f<- meigen_f(coords)
res <- esf(y=y, x=x, meig=meig_f,vif=10, fn="all")</pre>
```

2.1.2 Random effects ESF (RE-ESF)

RE-ESF specifies $f_{MC}(s_i)$ using an MC-based spatial random process, again to eliminate residual spatial dependence (see Murakami and Griffith, 2015). Here is a sample example:

```
\leftarrow resf(y = y, x = x, meig = meig)
res
## Call:
## resf(y = y, x = x, meig = meig)
##
  ----Coefficients-----
##
##
                                  SE
                  Estimate
                                        t_value
                                                     p_value
## (Intercept)
                6.63220350 3.94484193 1.6812343 9.340107e-02
## CRIM
               -0.19815203 0.03126666 -6.3374866 5.608678e-10
## ZN
                0.01453736 0.01591772 0.9132814 3.615764e-01
## INDUS
               -0.15560251 0.06842940 -2.2739131 2.343446e-02
## CHAS
                0.51046251 0.92329946 0.5528678 5.806245e-01
## NOX
              -31.26690020 5.02069123 -6.2276087 1.075126e-09
## RM
                6.33993146 0.36671337 17.2885202 0.000000e+00
## AGE
               -0.06351412 0.01526957 -4.1595218 3.810682e-05
## ----Variance parameter-----
##
```

```
## Spatial effects (residuals):
##
                        (Intercept)
## random SE
                          6.7424433
## Moran.I/max(Moran.I)
                          0.6648678
##
## ----Error statistics-----
##
                        stat
## resid_SE
                   4.3515211
## adjR2(cond)
                  0.7735912
            -1540.3812428
## rlogLik
## AIC
                3102.7624855
## BIC
                3149.2543889
##
## Note: The AIC and BIC values are based on the restricted likelihood.
##
         Use method ="ml" for comparison of models with different fixed effects (x)
The residual spatial process f_{MC}(s_i) is plotted as follows:
```

Spatially.depepdent.component

plot_s(res)

For large data, the meigen_f function is available again:

```
meig_f<- meigen_f(coords)
res <- resf(y = y, x = x, meig = meig_f)</pre>
```

The meigen_f function is available for all the regression models explained below.

2.2 Extended models

2.2.1 Models with non-spatially varying coefficients (coefficients varying wrt covariate value)

Influence from covariates can vary depending on covariate value. For example, distance to railway station might have a strong impact on housing price if the distance is small, while it might be weak if the distance is large. To capture such an effect, the resf function estimates coefficients varying with respect to covariate value. I call such coefficients non-spatially varying coefficients (NVCs). If nvc=TRUE, the resf function estimates the following model considering NSVs and residual spatial dependence:

$$y_i = \sum_{k=1}^{K} x_{i,k} \beta_{i,k} + f_{MC}(s_i) + \epsilon_i, \quad \beta_{i,k} = b_k + f(x_{i,k}), \quad \epsilon_i \sim N(0, \sigma^2),$$

where $f(x_{i,k})$ is a smooth function of $x_{i,k}$ capturing the non-spatial influence. Here is a code estimating a spatial NVC model (with selection of constant or NVC):

```
\leftarrow resf(y = y, x = x, meig = meig, nvc=TRUE)
res
## Call:
## resf(y = y, x = x, nvc = TRUE, meig = meig)
##
   ----Non-spatially varying coefficients on x (summary) ----
##
##
   Coefficients:
##
      Intercept
                           CRIM
                                               ZN
                                                                 INDUS
##
            :25.41
                     Min.
                             :-0.1822
                                         Min.
                                                 :0.02042
                                                            Min.
                                                                    :-0.2119
    1st Qu.:25.41
                     1st Qu.:-0.1822
                                         1st Qu.:0.02042
                                                            1st Qu.:-0.2119
##
    Median :25.41
                     Median :-0.1822
                                         Median :0.02042
                                                            Median :-0.2119
##
    Mean
            :25.41
                             :-0.1822
                                         Mean
                                                 :0.02042
                                                            Mean
                                                                    :-0.2119
                     Mean
    3rd Qu.:25.41
                     3rd Qu.:-0.1822
                                         3rd Qu.:0.02042
                                                            3rd Qu.:-0.2119
            :25.41
                             :-0.1822
                                                 :0.02042
                                                                    :-0.2119
##
    Max.
                     Max.
                                         Max.
                                                            Max.
         CHAS
                           NOX
                                              RM
                                                                  AGE
##
##
            :1.375
                             :-0.463
                                               :-0.78043
                                                                    :-0.06742
    Min.
                     Min.
                                        Min.
                                                            Min.
                     1st Qu.: 6.083
                                        1st Qu.:-0.40834
                                                            1st Qu.:-0.06742
##
    1st Qu.:1.375
                     Median : 7.792
                                        Median :-0.16098
##
    Median :1.375
                                                            Median : -0.06742
##
    Mean
            :1.375
                     Mean
                             : 7.074
                                        Mean
                                               : 0.03975
                                                            Mean
                                                                    :-0.06742
                                                            3rd Qu.:-0.06742
##
    3rd Qu.:1.375
                     3rd Qu.: 8.654
                                        3rd Qu.: 0.19417
##
    Max.
            :1.375
                     Max.
                             :11.517
                                        Max.
                                               : 2.49406
                                                            Max.
                                                                    :-0.06742
##
## Statistical significance:
##
                             Intercept CRIM
                                              ZN INDUS CHAS NOX
                                     0
                                           0
                                             506
                                                      0
                                                           0
                                                             506 472
                                                                        0
## Not significant
## Significant (10% level)
                                     0
                                           0
                                               0
                                                      0
                                                         506
                                                               0
                                                                    7
                                                                        0
## Significant (5% level)
                                     0
                                           0
                                               0
                                                      0
                                                           0
                                                               0
                                                                   10
                                                                        0
   Significant (1% level)
                                   506
                                        506
                                               0
                                                    506
                                                                   17 506
##
##
   ----Variance parameter--
##
## Spatial effects (residuals):
##
                          (Intercept)
## random SE
                            3.6981527
## Moran.I/max(Moran.I)
                            0.4490228
## Non-spatial effects (coefficients on x):
```

```
##
             CRIM ZN INDUS CHAS
                                      NOX
## random_SE
                  0
                          0
                               0 1.850518 0.2459548
##
##
  ----Error statistics----
##
                         stat
## resid_SE
                   3.7949128
## adjR2(cond)
                   0.8271073
## rlogLik
               -1478.6128728
## AIC
                2983.2257457
## BIC
                3038.1707224
##
## Note: The AIC and BIC values are based on the restricted likelihood.
         Use method ="ml" for comparison of models with different fixed effects (x)
```

By default, this function selects constant or NVC through BIC minimization. "Non-spatially varying coefficients" in the "Variance parameter" section summarizes the estimated standard errors of the NVCs. Based on the result, coefficients on {NOX, RM} are NVCs, and coefficients on the others are constants. The NVC on RM, which is the 6-th covariate, is plotted as below. The solid line in the panel denotes the estimated NVC, and the gray area denotes the 95% confidence interval. This plot shows that RM is positively statistically significant only if RM is large.

plot_n(res,6)

The NVC can also be spatially plotted as below:

plot_s(res,6)

RM

On the other hand, the residual spatial process $f_{MC}(s_i)$ is plotted as

plot_s(res)

Spatially.depepdent.component

Sometimes, the user may wish to assume NVCs only on the first three covariates and constant coefficients on the others. The following code estimates such a model:

```
res <- resf(y = y, x = x, meig = meig, nvc=TRUE, nvc_sel=1:3)
```

2.2.2 Models with spatially varying coefficients

This package implements an ME-based spatially varying coefficient (M-SVC) model (Murakami et al., 2017), which is formulated as

$$y_i = \sum_{k=1}^K x_{i,k} \beta_{i,k} + f_{MC}(s_i) + \epsilon_i, \quad \beta_{i,k} = b_k + f_{MC,k}(s_i), \quad \epsilon_i \sim N(0, \sigma^2),$$

This model defines the k-th coefficient at site i by $\beta_{i,k}$ = [constant mean b_k] + [spatially varying component $f_{MC,k}(s_i)$]. Geographically weighted regression (GWR) is known as another SVC estimation approach. Major advantages of the M-SVC modeling approach over GWR are as follows:

- The M-SVC model estimates the spatial scale (or MC value) of each SVC, while the classical GWR assumes a common scale across SVCs.
- The M-SVC model can assume SVCs on some covariates and constant coefficients on the others. This is achieved by simply assuming $\beta_{i,k} = b_k$
- This model is faster and available for very large samples. In addition, the model is free from memory limitations if the besf vc function is used (see Section 4).
- Model selection (i.e., constant coefficient or SVC) is implemented without losing its computational efficiency.

Here is a sample code estimating an SVC model without coefficient type selection. In the code, x specifies covariates assuming SVCs, while xconst specifies covariates assuming constant coefficients. If $x_s = FALSE$, the types of coefficients on x are fixed.

```
<- boston.c[, "CMEDV"]</pre>
у
        <- boston.c[,c("CRIM", "AGE")]</pre>
xconst <- boston.c[,c("ZN","DIS","RAD","NOX", "TAX","RM", "PTRATIO", "B")]</pre>
       <- boston.c[,c("LON","LAT")]</pre>
coords
          <- meigen(coords=coords)
meig
        <- resf_vc(y=y,x=x,xconst=xconst,meig=meig, x_sel = FALSE )</pre>
## [1] "-----" Iteration 1 -----"
## [1] "1/3"
## [1] "2/3"
## [1] "3/3"
## [1] "BIC: 3120.605"
## [1] "-----" Iteration 2 -----"
## [1] "1/3"
## [1] "2/3"
## [1] "3/3"
## [1] "BIC: 3114.252"
## [1] "-----" Iteration 3 -----"
## [1] "1/3"
## [1] "2/3"
## [1] "3/3"
## [1] "BIC: 3114.139"
## [1] "-----"
## [1] "1/3"
## [1] "2/3"
## [1] "3/3"
## [1] "BIC: 3114.138"
res
## Call:
```

resf_vc(y = y, x = x, xconst = xconst, x_sel = FALSE, meig = meig)

```
##
## ----Spatially varying coefficients on x (summary)----
##
## Coefficient estimates:
                                         AGE
##
    (Intercept)
                       CRIM
                 Min. :-3.29294
                                   Min.
## Min. :12.03
                                           :-0.14986
  1st Qu.:13.99 1st Qu.:-0.19941
                                    1st Qu.:-0.08377
## Median :15.06 Median : 0.04993
                                    Median :-0.06780
## Mean :15.70 Mean : 0.05902 Mean
                                          :-0.06582
## 3rd Qu.:17.31
                  3rd Qu.: 0.36587
                                    3rd Qu.:-0.04710
## Max.
          :20.46 Max. : 1.83866
                                    Max.
                                           : 0.04298
##
## Statistical significance:
                         Intercept CRIM AGE
##
## Not significant
                                0 416 147
## Significant (10% level)
                                0
                                    27 40
## Significant (5% level)
                                    17 99
                               190
## Significant (1% level)
                               316
                                    46 220
##
## ----Constant coefficients on xconst-----
##
             Estimate
                               SE
                                  t_value
                                                p_value
## ZN
           0.03202068 0.013219003 2.422322 1.582817e-02
           -1.47514930 0.334360238 -4.411856 1.292875e-05
## DIS
           0.36064288 0.090818317 3.971037 8.368693e-05
## RAD
## NOX
          -36.21088316 5.134427150 -7.052565 6.925571e-12
## TAX
           -0.01242296 0.003502523 -3.546862 4.320840e-04
            6.49212566 0.326197980 19.902409 0.000000e+00
## R.M
## PTRATIO -0.52573980 0.151594626 -3.468064 5.762765e-04
           0.02091202 0.003094117 6.758638 4.477529e-11
## B
##
## ----Variance parameters-----
##
## Spatial effects (coefficients on x):
                                                   AGE
##
                      (Intercept)
                                       CRIM
## random SE
                        3.9039832 1.59443322 0.05746111
## Moran.I/max(Moran.I)
                        0.6627375 0.04502003 0.06267778
## ----Error statistics-----
##
                      stat
## resid_SE
                 3.6706778
## adjR2(cond)
                 0.8375658
## rlogLik
             -1501.0302460
## AIC
               3038.0604921
## BIC
              3114.1381521
##
## Note: The AIC and BIC values are based on the restricted likelihood.
        Use method ="ml" for comparison of models with different fixed effects (x and xconst)
Estimated SVCs can be plotted as
plot_s(res,0) # Spatially varying intercept
```

Spatially.dependent.intercept

plot_s(res,1) # 1st SVC

CRIM

plot_s(res,2) # 2nd SVC

AGE

On the other hand, by default, the resf_vc function selects constant or SVCs through a BIC minimization (i.e., x_sel=TRUE by default). Here is a code:

```
res <- resf_vc(y=y,x=x,xconst=xconst,meig=meig )</pre>
```

2.2.3 Models with spatially and non-spatially varying coefficients

The spatially and non-spatially varying coefficient (SNVC) model is defined as

$$y_i = \sum_{k=1}^{K} x_{i,k} \beta_{i,k} + f_{MC}(s_i) + \epsilon_i, \quad \beta_{i,k} = b_k + f_{MC,k}(s_i) + f(x_{i,k}), \quad \epsilon_i \sim N(0, \sigma^2),$$

This model defines the k-th coefficient as $\beta_{i,k}$ = [constant mean b_k] + [spatially varying component $f_{MC,k}(s_i)$] + [non-spatially varying component $f(x_{i,k})$]. Murakami and Griffith (2020) showed that, unlike SVC models that tend to be unstable owing to spurious correlation among SVCs (see Wheeler and Tiefelsdorf, 2005), this SNVC model is stable and quite robust against spurious correlations. Therefore, I recommend using the SNVC model, even if the purpose of the analysis is estimating SVCs.

An SNVC model is estimated by specifying x_nvc = TRUE in the resf_vc function as follows:

```
res <- resf_vc(y=y,x=x,xconst=xconst,meig=meig, x_nvc =TRUE)
```

This model assumes SNVC on x and constant coefficients on xconst. By default, the coefficient type (SNVC, SVC, NVC, or constant) on x is selected.

It is also possible to assume SNVCs on x and NVCs on xcnost by specifying xconst_nvc = TRUE as follows:

```
res <- resf_vc(y=y,x=x,xconst=xconst,meig=meig, x_nvc =TRUE, xconst_nvc=TRUE)
## [1] "----- Iteration 1 -----"</pre>
```

- ## [1] "1/13"
- ## [1] "2/13"
- ## [1] "3/13"

```
## [1] "4/13"
## [1] "5/13"
## [1] "7/13"
## [1] "8/13"
## [1] "9/13"
## [1] "10/13"
## [1] "11/13"
## [1] "12/13"
## [1] "13/13"
## [1] "BIC: 3023.362"
## [1] "-----"
## [1] "1/13"
## [1] "2/13"
## [1] "3/13"
## [1] "4/13"
## [1] "5/13"
## [1] "7/13"
## [1] "8/13"
## [1] "9/13"
## [1] "10/13"
## [1] "11/13"
## [1] "12/13"
## [1] "13/13"
## [1] "BIC: 3013.007"
## [1] "----" Iteration 3 -----"
## [1] "1/13"
## [1] "2/13"
## [1] "3/13"
## [1] "4/13"
## [1] "5/13"
## [1] "7/13"
## [1] "8/13"
## [1] "9/13"
## [1] "10/13"
## [1] "11/13"
## [1] "12/13"
## [1] "13/13"
## [1] "BIC: 3012.859"
## [1] "----" Iteration 4 ----"
## [1] "1/13"
## [1] "2/13"
## [1] "3/13"
## [1] "4/13"
## [1] "5/13"
## [1] "7/13"
## [1] "8/13"
## [1] "9/13"
## [1] "10/13"
## [1] "11/13"
## [1] "12/13"
## [1] "13/13"
## [1] "BIC: 3012.857"
## [1] "----" Iteration 5 ----"
## [1] "1/13"
```

```
## [1] "2/13"
## [1] "3/13"
## [1] "4/13"
## [1] "5/13"
## [1] "7/13"
## [1] "8/13"
## [1] "9/13"
## [1] "10/13"
## [1] "11/13"
## [1] "12/13"
## [1] "13/13"
## [1] "BIC: 3012.857"
## Call:
## resf_vc(y = y, x = x, xconst = xconst, x_nvc = TRUE, xconst_nvc = TRUE,
       meig = meig)
##
## ----Spatially and non-spatially varying coefficients on x (summary)----
##
## Coefficient estimates:
##
     (Intercept)
                         CRIM
                                          AGE
## Min.
           :34.97
                   Min.
                           :-2.1712
                                     Min.
                                             :-0.07496
## 1st Qu.:40.94
                                     1st Qu.:-0.07496
                   1st Qu.:-0.6141
## Median :42.28
                   Median :-0.4156
                                     Median :-0.07496
                                            :-0.07496
## Mean
          :42.43
                   Mean
                         :-0.4288
                                     Mean
## 3rd Qu.:43.77
                   3rd Qu.:-0.2156
                                     3rd Qu.:-0.07496
## Max.
         :49.94
                   Max. : 0.5235
                                     Max.
                                            :-0.07496
## Statistical significance:
                           Intercept CRIM AGE
## Not significant
                                  0 394
## Significant (10% level)
                                      15
                                  0
## Significant (5% level)
                                  0
                                      29
                                           0
## Significant ( 1% level)
                                506
                                      68 506
##
## ----Non-spatially varying coefficients on xconst (summary)----
##
## Coefficient estimates:
##
          ZN
                           DIS
                                            RAD
                                                             NOX
## Min.
           :0.02511
                            :-1.107
                                              :0.6289
                                                               :-23.31
                     Min.
                                      Min.
                                                       Min.
  1st Qu.:0.02511
                     1st Qu.:-1.107
                                      1st Qu.:0.6289
                                                        1st Qu.:-19.39
## Median :0.02511
                     Median :-1.107
                                      Median :0.6289
                                                       Median :-18.49
   Mean
          :0.02511
                     Mean
                           :-1.107
                                      Mean
                                             :0.6289
                                                        Mean
                                                             :-18.56
##
   3rd Qu.:0.02511
                     3rd Qu.:-1.107
                                       3rd Qu.:0.6289
                                                        3rd Qu.:-17.58
##
  Max.
          :0.02511
                     Max.
                           :-1.107
                                       Max.
                                              :0.6289
                                                        Max.
                                                               :-14.48
##
        TAX
                            RM
                                          PTRATIO
                                                               В
          :-0.01512
                              :0.6017
                                              :-0.6371
                                                                 :0.01371
## Min.
                      Min.
                                       Min.
                                                         Min.
                                                         1st Qu.:0.01371
##
   1st Qu.:-0.01512
                     1st Qu.:0.8399
                                       1st Qu.:-0.6371
## Median :-0.01512 Median :1.0419
                                       Median :-0.6371
                                                         Median :0.01371
         :-0.01512
                                             :-0.6371
## Mean
                     Mean
                              :1.2079
                                       Mean
                                                         Mean
                                                                 :0.01371
## 3rd Qu.:-0.01512
                      3rd Qu.:1.3036
                                       3rd Qu.:-0.6371
                                                          3rd Qu.:0.01371
## Max. :-0.01512 Max. :3.2998
                                       Max. :-0.6371
                                                         Max. :0.01371
##
```

```
## Statistical significance:
##
                           ZN DIS RAD NOX TAX RM PTRATIO
## Not significant
                           0
                              0
                                   0 185
## Significant (10% level) 506
                                   0 217
                                                          0
                                           0 27
                                                       0
                               0
## Significant (5% level)
                           0
                               0
                                   0 40
                                           0
                                              23
                                                       0
                                                          0
## Significant (1% level)
                           0 506 506 64 506
                                                     506 506
## ----Variance parameters-----
##
## Spatial effects (coefficients on x):
                       (Intercept)
                                       CRIM AGE
                         4.0667763 1.0007384
## random SE
## Moran.I/max(Moran.I)
                        0.3274953 0.0743859 NA
##
## Non-spatial effects (coefficients on x):
##
                  CRIM AGE
## random_SE 0.03405477
##
## Non-spatial effects (coefficients on xconst):
            ZN DIS RAD NOX TAX
                                         RM PTRATIO B
## random_SE 0 0 0 1.496402 0 0.200113
## ----Error statistics-----
##
                       stat
## resid_SE
                  3.1945901
## adjR2(cond)
                  0.8767156
              -1447.2763228
## rlogLik
               2932.5526456
## AIC
## BIC
               3012.8568423
##
## Note: The AIC and BIC values are based on the restricted likelihood.
        Use method ="ml" for comparison of models with different fixed effects (x and xconst)
By default, the coefficient type (SNVC, SVC, NVC, or constant) on x and those (NVC or const) on xconst
are selected. The estimated SNVCs are plotted as follows:
```

Spatially varying intercept

plot_s(res,0)

Spatially.dependent.intercept

CRIM

NVCs on x const is plotted by specifying xtype="xconst" in the plot_n function, as below. The solid line denotes the estimated NVC, and the gray area denotes the 95% confidence interval:

plot_n(res,4,xtype="xconst")#NVC on xconst[,4]

plot_n(res,6,xtype="xconst")#NVC on xconst[,6]

These NVCs can also be plotted spatially as follows:

plot_s(res,4,xtype="xconst")#Spatial plot of NVC on xconst[,4]

2.2.4 Models with group effects

2.2.4.1 Outline Two group effects are available in this package:

1. Spatially dependent group effects. Spatial dependence among groups is modeled instead of modeling spatial dependence among individuals.

2. Spatially independent group effects assuming independence across groups (usual group effects)

They are estimated in the resf and resf_vc functions. When considering both these effects, the resf function estimates the following model (if no NVC is assumed):

$$y_i = \sum_{k=1}^{K} x_{i,k} \beta_k + f_{MC}(g_{I(0)}) + \sum_{k=1}^{H} \gamma(g_{I(k)}) + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2),$$

where $g_{I(0)}, g_{I(1)}, \ldots, g_{I(H)}$ represent group variables. $f_{MC}(g_{I(0)})$ denotes spatially dependent group effects, while $\gamma(g_{I(h)})$ denotes spatially independent group effects for the h-th group variable. On the other hand, the resf vc function can estimate the following model considering these two effects (again, no NVC is assumed):

$$y_i = \sum_{k=1}^{K} x_{i,k} \beta_{i,k} + f_{MC}(g_{I(0)}) + \sum_{h=1}^{H} \gamma(g_{I(h)}) + \epsilon_i, \quad \beta_{i,k} = b_k + f_{MC,k}(g_{i(0)}), \quad \epsilon_i \sim N(0, \sigma^2),$$

Below, multilevel modeling, small area estimation, and panel data analysis are demonstrated.

2.2.4.2 Multilevel model Data often have a multilevel structure. For example, the school achievement of individual students changes depending on the class and school. A condominium unit price depends, not only on unit attributes, but also on building attributes. Multilevel modeling is required to explicitly consider the multilevel structure behind data and perform spatial regressions.

This section demonstrates the modeling considering the two group effects using the resf function. The data used are the Boston housing datasets that consist of 506 samples in 92 towns, which are regarded as groups. To model spatially dependent group effects, Moran eigenvectors are defined by groups. This is done by specifying s_id in the meigen function using a group variable, which is the town name (TOWNNO), in this case, as follows:

```
xgroup<- boston.c[,"TOWNNO"]
coords<- boston.c[,c("LON","LAT")]
meig_g<- meigen(coords=coords, s_id=xgroup)</pre>
```

When additionally estimating spatially independent group effects, the user needs to specify xgroup in the resf function by one or more group variables, as follows:

```
x <- boston.c[,c("CRIM","ZN","INDUS", "CHAS", "NOX","RM", "AGE")]
res <- resf(y = y, x = x, meig = meig_g, xgroup = xgroup)
res</pre>
```

```
## resf(y = y, x = x, xgroup = xgroup, meig = meig_g)
##
##
  ----Coefficients-----
##
                                  SE
                                                    p_value
                  Estimate
                                       t_value
              -0.81545943 3.23135854 -0.2523581 8.008871e-01
## (Intercept)
## CRIM
               -0.04596392 0.02505503 -1.8345188 6.728064e-02
                0.03285021 0.02313784 1.4197611 1.564153e-01
## INDUS
                0.03549188 0.11980486 0.2962474 7.671869e-01
               -0.62561231 0.72381491 -0.8643264 3.878995e-01
## NOX
              -26.38632673 3.88238119 -6.7964286 3.668488e-11
## RM
                6.30273567 0.29409796 21.4307357 0.000000e+00
               -0.06730232 0.01048068 -6.4215611 3.637544e-10
## AGE
##
  ----Variance parameter-----
## Spatial effects (residuals):
```

```
##
                        (Intercept)
                          5.074794
## random SE
## Moran.I/max(Moran.I)
                          0.812936
##
##
  Group effects:
##
            xgroup
## ramdom SE 4.4404
##
## ----Error statistics-----
##
                        stat
## resid_SE
                   3.2429178
  adjR2(cond)
                   0.8740022
## rlogLik
               -1465.8457138
## AIC
                2955.6914276
## BIC
                3006.4098677
##
## Note: The AIC and BIC values are based on the restricted likelihood.
         Use method ="ml" for comparison of models with different fixed effects (x)
```

The estimated independent group effects are extracted as

```
res$b_g[[1]][1:5,] # Estimates in the first 5 groups
```

```
## Estimate SE t_value

## xgroup_0 2.165726 2.061093 1.0507657

## xgroup_1 3.747633 1.783543 2.1012294

## xgroup_2 6.544205 1.659184 3.9442318

## xgroup_3 2.431558 1.431325 1.6988163

## xgroup_4 1.036033 1.181672 0.8767521
```

2.2.4.3 Small area estimation Small area estimation (SAE; Ghosh and Rao, 1994) is a statistical technique estimating parameters for small areas such as districts and municipality. SAE is useful for obtaining reliable small area statistics from noisy data. The resf and resf_vc functions are available for SEA (see as explained in Murakami 2020 for further detail).

The Boston housing datasets consist of 506 samples in 92 towns. This section estimates the standard housing price in the I-th towns by assuming the following model:

$$y_I = \hat{y}_I + \epsilon_I, \quad \epsilon_I \sim N(0, \frac{\sigma^2}{N_I})$$

where $\hat{y}_I = \sum_{i=1}^{N_I} \frac{\hat{y}_i}{N_I}$. This model decomposes the observed mean house price y_I in the I-th town into the standard price \hat{y}_I and noise ϵ_I , which reduces as the number of samples in the I-th town increases. The standard price is defined by an aggregate of the predictors \hat{y}_i by individuals.

The above equation suggests that, if \hat{y}_i is predicted using the resf or resf_vc function and aggregated into the towns, we can estimate the standard house price. Here is a sample code for the individual level prediction:

```
r_res <-resf(y=y, x=x, meig=meig_g, xgroup=xgroup)
pred <-predict0(r_res, x0=x, meig0=meig_g, xgroup0=xgroup)
pred$pred[1:5,]</pre>
```

```
## pred xb sf_residual xgroup

## 1 23.70932 22.71407 -1.170482 2.165726

## 2 24.57615 22.21874 -1.390220 3.747633

## 3 30.58942 28.23201 -1.390220 3.747633

## 4 33.24998 28.19959 -1.493814 6.544205
```

```
## 5 33.62206 28.57167 -1.493814 6.544205
```

As shown above, the predicto function returns predicted values (pred), predicted trends (xb), predicted residual spatial components (sf_residuals), and predicted group effects (xgroup). Then, these individual-level variables are aggregated into towns. Here is a code:

```
adat <- aggregate(data.frame(y, pred$pred),by=list(xgroup),mean)
adat[1:5,]</pre>
```

```
##
     Group.1
                          pred
                                     xb sf_residual
                                                       xgroup
                    У
## 1
           0 24.00000 23.70932 22.71407
                                          -1.170482 2.165726
## 2
           1 28.15000 27.58279 25.22537
                                          -1.390220 3.747633
## 3
           2 32.76667 31.89132 26.84093
                                          -1.493814 6.544205
## 4
           3 19.42857 19.36679 18.51187
                                          -1.576641 2.431558
## 5
           4 16.71364 16.72781 17.10793
                                          -1.416151 1.036033
```

The outputs are the predicted standard price (pred), trend (xb), spatially dependent group effects (sf_residual), and spatially independent group effects (xgroup) by town.

To map the result, spatial polygons for the towns are loaded and combined with our estimates:

```
require(rgdal)
require(rgeos)
require(dplyr)
            <- readOGR(system.file("shapes/boston_tracts.shp",package="spData")[1])</pre>
boston.tr
## OGR data source with driver: ESRI Shapefile
## Source: "/Library/Frameworks/R.framework/Versions/4.0/Resources/library/spData/shapes/boston_tracts.
## with 506 features
## It has 36 fields
            <- st_as_sf(boston.tr)
h1
b1_dissolve <- b1 %>% group_by(TOWNNO) %>% summarize() #dissolve
boston.tr2 <- as_Spatial(b1_dissolve)</pre>
boston.tr2@data$id<- 1:(dim(boston.tr2)[1])
b2 dat
            <- boston.tr2@data</pre>
            <- merge(b2_dat, adat,by.x="TOWNNO",by.y="Group.1",all.x=TRUE)</pre>
b2 dat2
```

Here are the maps of our estimates. "y" denotes the observed mean prices, and "pred" denotes our predicted standard price. While they are similar, there are some differences in towns with high housing prices.

```
boston.tr2@data<- b2_dat2[order(b2_dat2$id),]
spplot(boston.tr2,c("y","pred"), lwd=0.3)</pre>
```


Here are the elements of the predicted values. The maps below show that each element explains different things to each other:

spplot(boston.tr2,c("xgroup","sf_residual"), lwd=0.3)

Note that the resf_vc function is also available for SVC model-based SAE. Here is a sample code:

```
rv_res <- resf_vc(y=y, x=x, meig=meig_g, xgroup=xgroup, x_sel=FALSE)</pre>
```

```
## [1] "-----"
## [1] "1/9"
## [1] "2/9"
## [1] "3/9"
## [1] "4/9"
## [1] "5/9"
## [1] "6/9"
## [1] "7/9"
## [1] "8/9"
## [1] "9/9"
## [1] "BIC: 3074.297"
## [1] "-----"
## [1] "1/9"
## [1] "2/9"
## [1] "3/9"
## [1] "4/9"
## [1] "5/9"
## [1] "6/9"
## [1] "7/9"
## [1] "8/9"
## [1] "9/9"
## [1] "BIC: 3040.896"
## [1] "-----" Iteration 3 -----"
## [1] "1/9"
## [1] "2/9"
## [1] "3/9"
## [1] "4/9"
## [1] "5/9"
## [1] "6/9"
```

```
## [1] "7/9"
## [1] "8/9"
  [1] "9/9"
## [1] "BIC: 3039.588"
## [1]
       "----" Iteration 4 ----"
## [1] "1/9"
## [1] "2/9"
## [1] "3/9"
## [1] "4/9"
## [1] "5/9"
## [1] "6/9"
## [1] "7/9"
## [1] "8/9"
## [1] "9/9"
## [1] "BIC: 3039.572"
## [1] "-----" Iteration 5 -----"
## [1] "1/9"
## [1] "2/9"
## [1] "3/9"
## [1] "4/9"
## [1] "5/9"
## [1] "6/9"
## [1] "7/9"
## [1] "8/9"
## [1] "9/9"
## [1] "BIC: 3039.572"
pred_vc <- predict0_vc(rv_res, x0=x, meig0=meig_g, xgroup0=xgroup)</pre>
adat_vc <- aggregate(data.frame(y, pred_vc$pred), by=list(xgroup), mean)</pre>
adat_vc[1:5,]
##
     Group.1
                                      xb sf_residual
                    У
                          pred
                                                       xgroup
## 1
           0 24.00000 23.67839 23.12533
                                           -1.125536 1.678592
## 2
           1 28.15000 27.81181 27.44629
                                           -1.966846 2.332368
## 3
           2 32.76667 32.28629 31.09675
                                          -2.552106 3.741645
## 4
           3 19.42857 19.25653 18.45742
                                           -2.506070 3.305184
## 5
           4 16.71364 16.68358 15.40519
                                           -1.025996 2.304387
```

2.2.4.4 Longitudinal/panel data analysis The resf and resf_vc functions are also available for longitudinal or panel data analysis with/without S(N)VC (see Yu et al., 2020). Although this section takes resf as an example, resf_vc function-based panel analysis is implemented in the same way.

To illustrate this, we use a panel data of 48 US states from 1970 to 1986, which is published in the plm package (Croissant and Millo, 2008). Because our approach uses spatial coordinates by default, we added center spatial coordinates (px and py) to the panel data. Here is the code:

```
require(plm)
require(spData)

data(Produc, package = "plm")
data(us_states)
us_states2 <- data.frame(us_states$GEOID,us_states$NAME,st_coordinates(st_centroid(us_states)))
names(us_states2)[3:4]<- c("px","py")
us_states3 <- us_states2[order(us_states2[,1]),][-8,]
us_states3$state<- unique(Produc[,1])</pre>
```

```
<- na.omit(merge(Produc,us_states3[,c(3:5)],by="state",all.x=TRUE,sort=FALSE))</pre>
pdat0
pdat
            <- pdat0[order(pdat0$state,pdat0$year),]</pre>
pdat[1:5,]
##
       state year region
                                         hwy
                                               water
                                                         util
                               pcap
                                                                     рс
                                                                          gsp
                                                                                  emp
## 1 ALABAMA 1970
                        6 15032.67 7325.80 1655.68 6051.20 35793.80 28418 1010.5
```

```
## 2 ALABAMA 1971
                       6 15501.94 7525.94 1721.02 6254.98 37299.91 29375 1021.9
                       6 15972.41 7765.42 1764.75 6442.23 38670.30 31303 1072.3
## 3 ALABAMA 1972
## 4 ALABAMA 1973
                       6 16406.26 7907.66 1742.41 6756.19 40084.01 33430 1135.5
                       6 16762.67 8025.52 1734.85 7002.29 42057.31 33749 1169.8
## 5 ALABAMA 1974
##
     unemp
                  рх
## 1
       4.7 -86.82645 32.7926
## 2
       5.2 -86.82645 32.7926
## 3
       4.7 -86.82645 32.7926
## 4
       3.9 -86.82645 32.7926
## 5
       5.5 -86.82645 32.7926
```

Here are the first five rows of the data:

```
pdat[1:5,]
```

```
##
       state year region
                             pcap
                                      hwy
                                             water
                                                      util
## 1 ALABAMA 1970
                       6 15032.67 7325.80 1655.68 6051.20 35793.80 28418 1010.5
## 2 ALABAMA 1971
                       6 15501.94 7525.94 1721.02 6254.98 37299.91 29375 1021.9
## 3 ALABAMA 1972
                       6 15972.41 7765.42 1764.75 6442.23 38670.30 31303 1072.3
## 4 ALABAMA 1973
                       6 16406.26 7907.66 1742.41 6756.19 40084.01 33430 1135.5
## 5 ALABAMA 1974
                       6 16762.67 8025.52 1734.85 7002.29 42057.31 33749 1169.8
##
     unemp
                  рх
## 1
       4.7 -86.82645 32.7926
## 2
       5.2 -86.82645 32.7926
## 3
       4.7 -86.82645 32.7926
## 4
       3.9 -86.82645 32.7926
## 5
       5.5 -86.82645 32.7926
```

Following a vignette of the plm package, this section uses logged gross state product as explained variables (y) and logged public capital stock (log_pcap), logged private capital stock (log_pc), logged labor input measured by the employment in non-agricultural payrolls (log_emp), and unemployment rate (unemp) as covariables.

Because spatial coordinates are defined by states, Moran eigenvectors must be extracted by state by specifying s_id in the meigen function, as follows:

```
coords<- pdat[,c("px", "py")]
s_id <- pdat$state
meig_p<- meigen(coords,s_id=s_id)# Moran eigenvectors by states</pre>
```

Currently, the following spatial panel models are available: pooling model (no group effects); individual random effects model (state-level group effects); time random effects model (year-level group effects); and two-way random effects model (state and year-level group effects). All these models consider residual spatial dependence. Here are the codes implementing these models:

```
pmod0 <- resf(y=y,x=x,meig=meig_p) # pooling model</pre>
```

```
xgroup<- pdat[,c("state")]</pre>
pmod1 <- resf(y=y,x=x,meig=meig_p,xgroup=xgroup)# individual model</pre>
xgroup<- pdat[,c("year")]</pre>
pmod2 <- resf(y=y,x=x,meig=meig_p,xgroup=xgroup)# time model</pre>
xgroup<- pdat[,c("state","year")]</pre>
pmod3 <- resf(y=y,x=x,meig=meig_p,xgroup=xgroup)# two-way model</pre>
Among these models, the two-way model indicates the smallest BIC. The output is summarized as
pmod3
## Call:
## resf(y = y, x = x, xgroup = xgroup, meig = meig_p)
## ----Coefficients-----
##
                  Estimate
                                    SE t_value
                                                       p_value
## (Intercept) 2.266458952 0.157678635 14.3739128 0.0000000000
## log_pcap 0.007185026 0.023530593 0.3053483 0.7601856016
              0.292350481 0.022207172 13.1646874 0.0000000000
## log_pc
              0.732900408 0.024808722 29.5420464 0.0000000000
## log_emp
## unemp
             -0.004356469 0.001066686 -4.0841178 0.0000490012
##
## ----Variance parameter-----
##
## Spatial effects (residuals):
##
                       (Intercept)
## random_SE
                        0.1555241
## Moran.I/max(Moran.I) 0.3344001
## Group effects:
                 state
                             year
## ramdom_SE 0.09492895 0.02433059
##
## ----Error statistics----
##
                       stat
## resid SE 3.381428e-02
## adjR2(cond) 9.988953e-01
## rlogLik
              1.408381e+03
## AIC
              -2.796762e+03
## BIC
              -2.749718e+03
##
## Note: The AIC and BIC values are based on the restricted likelihood.
        Use method ="ml" for comparison of models with different fixed effects (x)
The estimated group effects are displayed as follows:
s_g <- pmod3 b_g[[1]]
s_g[1:5,] # State-level group effects
                      Estimate
                                       SE t_value
## state_ALABAMA -0.07165160 0.01390024 -5.154702
```

-0.04404058 0.01667988 -2.640342

state_ARKANSAS -0.07256766 0.01471017 -4.933162 ## state_CALIFORNIA 0.24012817 0.01967478 12.204875

state_ARIZONA

```
## state_COLORADO
                     -0.11492607 0.01232067 -9.327905
t_g <- pmod3$b_g[[2]]
t_g[1:5,] # Year-level group effects
##
                  Estimate
                                     SE
                                           t_value
## year_1970 -0.006016459 0.01109130 -0.5424484
## year_1971  0.002901673  0.01056932  0.2745372
## year_1972  0.013281801  0.01041698  1.2750149
## year_1973  0.021949386  0.01028021  2.1351098
## year 1974 -0.009852614 0.00967949 -1.0178857
For validation, the same panel model (but without spatial dependence) is estimated using the plm function:
       <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
pm0
               data = pdat, effect="twoways",model="random")
pm0
##
## Model Formula: log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp
##
## Coefficients:
  (Intercept)
                  log(pcap)
                                 log(pc)
                                             log(emp)
                                                              unemp
     2.3634993
                  0.0178529
                               0.2655895
                                            0.7448989
                                                        -0.0045755
s_g_plm<- ranef(pm0,"individual")</pre>
t_g_plm<- ranef(pm0,"time")</pre>
The coefficient estimates are similar. The plots below compare estimated group effects. Estimated state-level
effects have differences because our models consider residual spatial dependence, while plm does not (by
default). Time effects are quite similar.
plot(s_g_plm,s_g[,1],xlab="plm",ylab="resf")
abline(0,1,col="red")
                                       0
      o.
     0.1
                                                  0
```

```
-0.2 -0.1 0.0 0.1 0.2 0.3 plm
```

```
plot(t_g_plm,t_g[,1],xlab="plm",ylab="resf")
abline(0,1,col="red")
```


2.3 Spatial prediction

This package provides functions for ESF/RE-ESF-based spatial interpolation minimizing the expected prediction error (just like kriging). RE-ESF approximates a Gaussian process or the kriging model, which has actively been used for spatial prediction, and ESF is a special case (Murakami and Griffith, 2015). Because ESF and RE-ESF perform approximations, their spatial predictions might be less accurate relative to kriging. Instead, they are faster and available for very large samples.

The predict0 function is used for prediction based on the resf or besf function, while the predict0_vc function is used for resf vc or besf vc function (see Section 4 for besf and besf vc functions).

In this tutorial, the Lucas housing price data with sample size being 25,357 is used. In the prediction, "price" is used as the explained variable, and "age," "rooms," "beds," and "year" are used as covariates.

```
require(spData)
data(house)
dat <- data.frame(coordinates(house), house@data[,c("price","age","rooms","beds","syear")])</pre>
```

A total of 20,000 randomly selected samples are used for model estimation, and the other 5,357 samples are used for accuracy evaluation. The code below creates the data for observation sites (coords, y, x) and for unobserved sites (coords0, y0, x0):

The prediction is done in two steps: (1) evaluation of Moran eigenvectors at prediction sites using the meigen0 function; (2) prediction using the predict0 function. Below is a sample code based on the rest function:

```
start.time1<-proc.time()##### just for CP time evaluation
meig <- meigen_f(coords)
meig0 <- meigen0( meig=meig, coords0=coords0 )</pre>
```

```
mod <- resf( y = y, x = x, meig = meig )
pred0 <- predict0( mod = mod, x0 = x0, meig0=meig0 )
end.time1<- proc.time()##### just for CP time evaluation</pre>
```

Note that the first and last lines are just for computing time evaluation. NVCs are considered if adding NVC=TRUE in the rest function. The meigen_f function is used for fast computation.

The outputs shown below include predicted values (pred), predicted trend (xb), and predicted residual spatial component (sf_residuals).

```
pred0$pred[1:5,]
```

```
## 4 11.26823 10.77544 0.4927898

## 5 11.89102 11.33839 0.5526369

## 6 11.52725 11.03301 0.4942443

## 13 12.28207 11.70984 0.5722306

## 24 11.71981 11.22721 0.4926028

pred <- pred0$pred[,1]
```

On the other hand, here is a code for a spatial prediction based on an S(N)VC model:

```
start.time2<-proc.time() ###### just for CP time evaluation
meig <- meigen_f(coords)
meig0 <- meigen0( meig=meig, coords0=coords0 )
mod2 <- resf_vc( y = y, x = x, meig = meig )</pre>
```

```
## [1] "----" Iteration 1 ----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 13521.406"
## [1] "----" Iteration 2 ----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 13130.608"
## [1] "----" Iteration 3 ----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 13126.759"
## [1] "-----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 13126.645"
```

```
## [1] "-----" Iteration 5 -----"
## [1] "1/5"
## [1] "2/5"
  [1] "3/5"
##
##
  [1] "4/5"
## [1] "5/5"
## [1] "BIC: 13126.643"
## [1]
       "----" Iteration 6 -----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
  [1] "4/5"
  [1] "5/5"
##
## [1] "BIC: 13126.643"
         <- predict0_vc( mod = mod2, x0 = x0, meig0=meig0 )</pre>
end.time2<- proc.time()##### just for CP time evaluation
NVCs are considered by adding NVC=TRUE in the resf_vc function. Here are the output variables:
pred02$pred[1:5,]
##
                     xb sf_residual
          pred
     11.39284 11.22956
## 4
                           0.1632782
      11.89070 11.74495
                           0.1457541
                          0.1730038
## 6 11.48418 11.31117
## 13 12.31150 12.15499
                           0.1565022
```

The root mean squared prediction error (RMSPE) and the computational time of the spatial regression model (resf) are as follows:

0.1969049

24 11.66577 11.46887

<- pred02\$pred[,1]</pre>

pred2

```
sqrt(sum((pred-y0)^2)/length(y0)) #rmse

## [1] 0.3543658

(end.time1 - start.time1)[3] #computational time (second)

## elapsed
## 8.482

while those of the SVC model (resf_vc) are as follows:
sqrt(sum((pred2-y0)^2)/length(y0)) #rmse

## [1] 0.3345041
(end.time2 - start.time2)[3] #computational time (second)

## elapsed
## 97.197
```

The results suggest that both models are available for large samples. It is also demonstrated that while the spatial regression model is faster than the SVC model, the SVC model is slightly more accurate. The actual values (y0) and predicted values (pred/pred2) are compared below:

```
par(mfrow=c(1,2))
plot(y0,pred);abline(0,1,col="red")
```


3 Compositionally-warped additive mixed models (CAMM) for non-Gaussian data

3.1 Basic models

Although the previous section applies Gaussian linear models, y does not necessarily follow a Gaussian distribution. For non-Gaussian continuous data, Murakami et al. (2021) proposed the compositionally warped additive mixed model (CAMM) including the following spatial regression model as a special case:

$$\phi_{\theta}(y_i) = \sum_{k=1}^{K} x_{i,k} \beta_k + f_{MC}(s_i) + \epsilon_i, \quad \epsilon_i \sim N(0, \sigma^2),$$

 $\phi_{\theta}(y_i)$ is defined by concatenating D transformation functions as follows:

$$\phi_{\theta}(y_i) = \phi_{\theta_D}(\dots(\phi_{\theta_2}(\phi_{\theta_1}(y_i))\dots),$$

where $\theta \in \{\theta_1, \dots, \theta_D\}$. The d-th transformation function is defined as

$$\phi_{\theta_d}(y_i) = \theta_{d,1} + \theta_{d,2} \sinh\{\theta_{d,3} \operatorname{arcsinh}(y) + \theta_{d,4}\}\$$

 $\theta_d \in \{\theta_{d,1}, \theta_{d,2}, \theta_{d,3}, \theta_{d,4}\}$ are parameters. Based on Rois and Tober (2019), the transformation $\phi_{\theta}(y_i)$, which they called the SAL transformation, approximates a wide variety of non-Gaussian continuous distributions without explicitly assuming data distribution. Therefore, this approach is available for a wide range of non-Gaussian continuous data (See Figure 1). Figure 2 illustrates the transformation function $\phi_{\theta}(y_i)$ implemented in this package. Below, we explain the transformations (A) and (B).

The transformation approach is readily estimated by specifying the number of transformations $tr_num (=D)$. For example, the model with one SAL transformation is estimated as follows:

```
y <- boston.c[, "CMEDV"]
x <- boston.c[,c("CRIM", "AGE")]
```


Figure 1: Test resuts of the transfromation approach of Rois and Tober (2019). Left three panels represent histograms of the simulated data generated from beta distribution, skew t distribution, and Gaussian mixtures respectively. The right nine panels show the histograms after the transformation. D is the number of transformations. This figure confirms that this approach accurately transformes a wide variety of non-Gaussian distributions to Gaussian distributions

Figure 2: Transformation functions assumed in this package. (A) is the default function while (B) is recommended for non-negative v.

```
xconst <- boston.c[,c("ZN","DIS","RAD","NOX", "TAX","RM", "PTRATIO", "B")]</pre>
       <- boston.c[,c("LON","LAT")]</pre>
coords
         <- meigen(coords=coords)
res_c1 <- resf(y = y, x = x, meig = meig, tr_num=1)</pre>
res_c1
## Call:
## resf(y = y, x = x, meig = meig, tr_num = 1)
##
  ----Coefficients-----
##
                                   SE
                 Estimate
                                      {	t t\_value}
                                                     p_value
## (Intercept) 0.80897890 0.124073447 6.520161 1.859539e-10
              -0.03065298 0.003712140 -8.257494 1.554312e-15
## CRIM
## AGE
              -0.01018177 0.001773668 -5.740514 1.720394e-08
##
## ----Variance parameter-----
##
## Spatial effects (residuals):
##
                       (Intercept)
## random_SE
                         0.6752488
## Moran.I/max(Moran.I)
                         0.4492342
##
## ----Error statistics-----
##
                       stat
## resid_SE
                  0.5218113
## adjR2(cond)
                  0.7238702
## rlogLik
              -1561.5463361
```

```
## AIC 3141.0926721
## BIC 3179.1315022
##
## Note: The AIC and BIC values are based on the restricted likelihood.
## Use method ="ml" for comparison of models with different fixed effects (x)
```

If tr_num is specified, the explained variables are standardized to mean zero and variance one. The transformed y is returned as

```
res_c1$tr_y[1:10]
```

```
## [1] 0.4822911 0.1810262 1.2410173 1.1801325 1.3058208 0.9052097
## [7] 0.3520385 0.2489815 -0.6474152 -0.2300006
```

Because of the standardization, the regression coefficients have different scales from the no transformation models with tr_num = 0 (note: the coefficient values are comparable if y is standardized a priori). Still, the AIC and BIC values, which are defined for y before the transformation, are comparable irrespective of with or without transformations.

The number of transformations can be optimized by minimizing the BIC value. For instance, the model with tr_num = 1 is better than the model with tr_num = 5, which is estimated below, because of the smaller BIC value:

```
res_c5 <- resf(y = y, x = x, meig = meig, tr_num=5)</pre>
```

While the regression coefficients quantify the impact on the transformed y, the marginal effects $\partial y_i/\partial x_{i,k}$, which quantify the influence of x on y before the transformation can be evaluated using the coef_marginal function.

```
coef_marginal(res_c1)
```

```
## Call:
## coef marginal(mod = res c1)
##
## ----Marginal effects from x (dx_i/dy_i) (summary)------
   (Intercept)
                        CRIM
##
                                           AGE
                           :-1.0920
##
   Mode:logical
                   Min.
                                      Min.
                                             :-0.36271
   NA's:506
                   1st Qu.:-0.3005
                                      1st Qu.:-0.09982
##
##
                   Median :-0.2146
                                      Median :-0.07128
                           :-0.3136
                                             :-0.10417
##
                   Mean
                                      Mean
##
                   3rd Qu.:-0.1715
                                      3rd Qu.:-0.05696
##
                   Max.
                           :-0.1459
                                      Max.
                                             :-0.04846
##
    Note: Medians are recommended summary statistics
```

The medians might especially be useful as summary statistics.

For non-negative variables, a Box-Cox transformation can be introduced as the first transformation ϕ_{θ_1} by specifying tr_nonneg = TRUE. For example, a model with a Box-Cox transformation and one SAL transformation is implemented as follows:

```
## (Intercept) 0.83846115 0.127225089 6.590376 1.208931e-10
               -0.02908981 0.003818076 -7.618972 1.481038e-13
  CR.TM
               -0.01069406 0.001818698 -5.880065 7.913461e-09
## AGE
##
##
   ----Variance parameter-----
##
## Spatial effects (residuals):
##
                        (Intercept)
## random SE
                          0.6810151
## Moran.I/max(Moran.I)
                          0.4432883
##
   ----Error statistics----
##
                        stat
                   0.5372400
## resid_SE
## adjR2(cond)
                   0.7072998
## rlogLik
               -1561.1862921
## AIC
                3140.3725842
## BIC
                3178.4114142
##
## Note: The AIC and BIC values are based on the restricted likelihood.
##
         Use method ="ml" for comparison of models with different fixed effects (x)
```

The estimated parameter for the Box-Cox transfromation is dispalyed as

```
res_c1b$tr_bpar
```

```
## Estimates
## Lambda (Box-Cox) 1.78342
## Constant added on y (nonzero if y has zero) 0.00000
```

where "Lambda (Box-Cox)" is the lambda parameter for the transformation. lambda = 0 means log-transformation while lambda = 1 means no transformation. Because the Box-Cox transformation is available only for positive values, another parameter c (>0) is estimated during the REML (or ML) and the transformation is employed to y + c, which is always positive. "Constant added on y (nonzero if y has zero)" is the c parameter that has zero value when y does not have zero values like our case.

Based on the BIC value, the model with the Box-Cox and single SAL transformation (res_c1b) has the highest accuracy. If tr_nonneg = TRUE and y has zero values, a small value is added on y to make the Box-Cox transformation feasible. The small value is estimated during the estimation procedure. See Murakami et al. (2021) for further detail.

3.2 Extended models

The resf_vc function, which was used for Gaussian regression modeling, is also available for compositionally warped additive mixed modeling (CAMM). As explained above, CAMM models a wide variety of non-Gaussian continuous data without explicit assumption on data distribution. When modeling SNVCs, the CAMM is defined as follows:

$$\phi_{\theta}(y_i) = \sum_{k=1}^{K} x_{i,k} \beta_{i,k} + f_{MC}(s_i) + \epsilon_i, \quad \beta_{i,k} = b_k + f_{MC,k}(s_i) + f(x_{i,k}), \quad \epsilon_i \sim N(0, \sigma^2),$$

where $\phi_{\theta}(y_i) = \phi_{\theta_D}(\dots(\phi_{\theta_2}(\phi_{\theta_1}(y_i))\dots))$ concatenates D transformation functions as illustrated in Figure 2.

The CAMM with SNVCs is estimated by specifying the number of transformations $tr_num (=D)$. For example, the model with one SAL transformation is estimated as follows:

```
res_c1 <- resf_vc( y=y,x=x,xconst=xconst,meig=meig, x_nvc=TRUE, tr_num=1)
## [1] "----" Iteration 1 -----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 2908.683"
## [1] "----" Iteration 2 ----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 2907.435"
## [1] "----" Iteration 3 ----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 2907.433"
## [1] "----" Iteration 4 ----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 2907.433"
res_c1
## Call:
## resf_vc(y = y, x = x, xconst = xconst, x_nvc = TRUE, meig = meig,
##
      tr_num = 1
##
## ----Spatially and non-spatially varying coefficients on x (summary)----
## Coefficient estimates:
                             CRIM
                                                 AGE
##
   (Intercept)
## Min. :-0.0006279 Min. :-0.2633293 Min. :-0.018085
## 1st Qu.:-0.0006279 1st Qu.:-0.0601699 1st Qu.:-0.010344
## Median :-0.0006279 Median :-0.0314600 Median :-0.007331
## Mean :-0.0006279 Mean :-0.0334682 Mean :-0.007189
## 3rd Qu.:-0.0006279 3rd Qu.:-0.0004735 3rd Qu.:-0.003945
## Max. :-0.0006279 Max. : 0.0984538 Max. : 0.004902
## Statistical significance:
##
                          Intercept CRIM AGE
                               506 413 122
## Not significant
## Significant (10% level) 0
## Significant (1% level) 0
## Significant (1% level)
                                     13 22
                                0 21 53
                                0 59 309
```

```
----Constant coefficients on xconst-----
##
              Estimate
                                 SE
                                      t value
                                                  p_value
## ZN
           0.002131141 0.0011581112
                                    1.840187 6.642196e-02
##
  DIS
          -0.125853881 0.0235736802 -5.338746 1.510766e-07
           0.052505481 0.0085076651 6.171550 1.550439e-09
## RAD
## NOX
          -3.068957591 0.4535176701 -6.767008 4.263945e-11
## TAX
          -0.001673300 0.0003116946 -5.368398 1.295405e-07
## RM
           0.492531195 0.0294958844 16.698302 0.000000e+00
  PTRATIO -0.055585085 0.0134669668 -4.127513 4.396602e-05
           0.002461353 0.0002838022 8.672773 0.000000e+00
##
##
  ----Variance parameters-----
##
## Spatial effects (coefficients on x):
##
                        (Intercept)
                                          CRIM
                                                      AGE
  random_SE
                       4.027931e-06 0.12655766 0.00685466
##
  Moran.I/max(Moran.I) 4.999344e-01 0.05050829 0.28484937
##
## Non-spatial effects (coefficients on x):
##
                   CRIM AGE
## random SE 0.003847197
##
##
  ----Error statistics-----
##
                       stat
## resid_SE
                  0.3292694
## adjR2(cond)
                  0.888881
## rlogLik
              -1385.2247972
## AIC
               2814.4495943
## BIC
               2907.4334010
##
## Note: The AIC and BIC values are based on the restricted likelihood.
        Use method ="ml" for comparison of models with different fixed effects (x and xconst)
```

##

As is the case in the resf_function, the explained variables are standardized to mean zero and variance one. Because of the standardization, the estimated coefficients have different scales from the no transformation models with tr_num = 0. Still, the AIC and BIC values are comparable irrespective of with or without transformation. The number of transformation (tr_num) can be optimized by minimizing the BIC value as illustrated in the previous section.

For non-negative y, a Box-Cox transformation can be introduced as the first transformation ϕ_{θ_1} by specifying tr_nonneg = TRUE (see Figure 2 (B)). For example, a model with a Box-Cox transformation and one SAL transformation is implemented as follows:

```
res_c1b <- resf_vc(y=y,x=x,xconst=xconst,meig=meig, x_nvc=TRUE, tr_num=1, tr_nonneg=TRUE)

## [1] "----- Iteration 1 -----"

## [1] "2/5"

## [1] "3/5"

## [1] "4/5"

## [1] "5/5"

## [1] "BIC: 2905.576"

## [1] "---- Iteration 2 -----"

## [1] "1/5"

## [1] "2/5"
```

```
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 2904.38"
## [1] "----" Iteration 3 ----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 2901.644"
## [1] "-----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 2901.641"
## [1] "----" Iteration 5 ----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 2901.641"
## [1] "-----" Iteration 6 -----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 2901.641"
res_c1b
## Call:
## resf_vc(y = y, x = x, xconst = xconst, x_nvc = TRUE, meig = meig,
##
      tr_num = 1, tr_nonneg = TRUE)
##
## ----Spatially and non-spatially varying coefficients on x (summary)----
## Coefficient estimates:
##
   (Intercept)
                          CRIM
                                              AGE
                    Min. :-0.2742262
## Min. :-0.02247
                                        Min. :-0.018916
## 1st Qu.:-0.02247
                    1st Qu.:-0.0599819
                                        1st Qu.:-0.010590
## Median :-0.02247
                     Median :-0.0322698
                                        Median :-0.007598
## Mean :-0.02247
                     Mean :-0.0329547
                                        Mean :-0.007425
## 3rd Qu.:-0.02247
                      3rd Qu.: 0.0004868
                                         3rd Qu.:-0.004352
## Max. :-0.02247 Max.
                            : 0.1072723
                                         Max. : 0.005453
## Statistical significance:
                         Intercept CRIM AGE
                               506 410 117
## Not significant
## Significant (10% level)
                               0
                                     19
                                         24
                                     18 52
## Significant (5% level)
                               0
```

```
## Significant (1% level)
                                     59 313
##
##
  ----Constant coefficients on xconst-----
##
                                SE
              Estimate
                                     t_value
                                                 p_value
## ZN
           0.002027189 0.0011644956 1.740830 8.242154e-02
## DIS
          -0.131273177 0.0237815167 -5.519967 5.842444e-08
## RAD
           0.052234302 0.0085594228 6.102550 2.314237e-09
## NOX
          -3.124666387 0.4565361590 -6.844291 2.628964e-11
## TAX
          -0.001635804 0.0003135690 -5.216727 2.825564e-07
           0.507013270 0.0296304870 17.111203 0.000000e+00
## PTRATIO -0.056302657 0.0135698124 -4.149111 4.017032e-05
           0.002452444 0.0002849715 8.605926 0.000000e+00
## B
##
##
  ----Variance parameters-----
##
## Spatial effects (coefficients on x):
##
                       (Intercept)
                                        CRIM
                                                    AGE
## random SE
                      7.675951e-06 0.12909777 0.00702793
## Moran.I/max(Moran.I) 5.448140e-01 0.05167624 0.27379960
## Non-spatial effects (coefficients on x):
##
                   CRIM AGE
## random_SE 0.003807952
##
## ----Error statistics-----
##
                      stat
## resid_SE
                  0.3303195
## adjR2(cond)
                  0.8881782
## rlogLik
              -1382.3284169
## AIC
               2808.6568338
## BIC
               2901.6406406
##
## Note: The AIC and BIC values are based on the restricted likelihood.
        Use method ="ml" for comparison of models with different fixed effects (x and xconst)
```

The estimated parameter for the Box-Cox transfromation is dispalyed as

```
res_c1b$tr_bpar
```

```
## Estimates
## Lambda (Box-Cox) 1.691544
## Constant added on y (nonzero if y has zero) 0.000000
```

where "Lambda (Box-Cox)" and "Constant added on y (nonzero if y has zero)" are as explained in the previous section.

The models are estimated while varying $tr_num \in \{0,1,2,3,4,5\}$ and $tr_nonneg \in \{TRUE,FALSE\}$, the BIC takes the minimim value when $tr_num = 1$ and $tr_nonneg = TRUE$. In other words, the model with the Box-Cox and single SAL transformation (res_c1b) has the highest accuracy.

The marginal effects $\partial y_i/\partial x_{i,k}$ quantifying the influence of x and xconst on y before the transformation can be evaluated using the coef_marginal_vc function as follows:

```
coef_marginal_vc(res_c1)

## Call:
## coef_marginal_vc(mod = res_c1)
```

```
##
##
   ----Marginal effects from x (dx_i/dy_i) (summary)----
##
    (Intercept)
                          CRIM
##
    Mode:logical
                    Min.
                            :-3.019846
                                          Min.
                                                  :-0.28655
##
    NA's:506
                    1st Qu.:-0.485275
                                          1st Qu.:-0.07745
                    Median : -0.236015
                                          Median : -0.05772
##
##
                    Mean
                            :-0.296976
                                          Mean
                                                  :-0.05758
##
                    3rd Qu.:-0.006119
                                          3rd Qu.:-0.03649
##
                    Max.
                            : 1.285607
                                          Max.
                                                  : 0.14566
##
##
     --Marginal effects from xconst (dx_i/dy_i)(summary)----
##
          ZN
                             DIS
                                                RAD
                                                                   NOX
            :0.01173
                                                                     :-91.19
##
                               :-3.7395
                                                   :0.2891
    Min.
                       Min.
                                           Min.
                                                             Min.
                       1st Qu.:-1.1514
                                           1st Qu.:0.3090
                                                             1st Qu.:-28.08
##
    1st Qu.:0.01254
##
    Median :0.01480
                       Median :-0.8742
                                           Median :0.3647
                                                             Median :-21.32
            :0.02026
                               :-1.1965
                                                   :0.4992
                                                                     :-29.18
##
    Mean
                       Mean
                                           Mean
                                                             Mean
                                           3rd Qu.:0.4804
                                                             3rd Qu.:-18.06
##
    3rd Qu.:0.01950
                       3rd Qu.:-0.7408
            :0.06332
                               :-0.6929
                                                                     :-16.90
##
    Max.
                                           Max.
                                                   :1.5601
                                                             Max.
##
         TAX
                                RM
                                               PTRATIO
                                                                      В
##
    Min.
            :-0.049719
                          Min.
                                 : 2.712
                                            Min.
                                                    :-1.6516
                                                               Min.
                                                                       :0.01355
##
    1st Qu.:-0.015308
                          1st Qu.: 2.899
                                            1st Qu.:-0.5085
                                                                1st Qu.:0.01449
    Median :-0.011624
                                            Median :-0.3861
                                                                Median :0.01710
##
                          Median : 3.421
            :-0.015908
                                 : 4.683
                                                    :-0.5285
                                                                       :0.02340
##
    Mean
                          Mean
                                            Mean
                                                                Mean
##
    3rd Qu.:-0.009849
                          3rd Qu.: 4.506
                                            3rd Qu.:-0.3272
                                                                3rd Qu.:0.02252
##
    Max.
            :-0.009213
                          Max.
                                 :14.635
                                            Max.
                                                    :-0.3060
                                                                Max.
                                                                       :0.07313
##
##
    Note: Medians are recommended summary statistics
```

3.3 How to use

For most continuous data, it is reasonable to implement CAMM following the way explained above. Exceptionally, if continuous data have many zero values, it might be reasonable to assign greater weights on larger observations by specifying weight in the resf and resf_vc functions. Here is a sample code of a weighted CAMM:

```
res_w1 <- resf(y = y, x = x, meig = meig, tr_num=1, tr_nonneg=TRUE, weight = y + 0.5)
```

The weights must be positive. If the weight variables, which is y in this example, have zeros a small constant can be added as illustrated above.

For count data, they can be transformed to continuous data e.g. by dividing area or population a priori. Alternatively, CAMM can be specified to estimate a quasi-Poisson model with unknown link function. Based on Chan and Vasconcelos (2011), $N(log(y+c), (y+c)^{-1})$ approximates an over-dispersed Poisson distribution where c is a positive constant. Given that, the following code estimates a quasi-Poisson spatial regression model with log link function:

```
res_w2 <- resf(y = log(y), x = x, meig = meig, weight = y)
```

while the following code estimates a quasi-Piosson model with unknown link function:

```
res_w3 <- resf(y = y, x = x, meig = meig, tr_num=1, tr_nonneg=TRUE, weight = y)</pre>
```

The link function is estimated from data using the Box-Cox and SAL transformations.

Spatially filtered unconditional quantile regression

While the usual (conditional) quantile regression (CQR) estimates the influence of x_k on the τ -th conditional quantile of y, $q_{\tau}(y|x_k)$, the unconditional quantile regression estimates the influence of x_k on the "unconditional" quantile of y, $q_{\tau}(y)$ (Firpo et al., 2009).

Suppose that y and x_k represent land price and accessibility, respectively. UQR estimates the influence of accessibility on land price by quantile; it is interpretable and useful for hedonic land price analysis, for example. By contrast, this interpretation does not hold for CQR because it estimates the influence of accessibility on conditional land prices (land price conditional on explanatory variables). Higher conditional land price does not mean higher land price; rather, it means overprice relative to the price expected by the explanatory variables. Therefore, CQR has difficulty in its interpretation, in some cases, including hedonic land price modeling.

The spatial filter UQR (SF-UQR) model (Murakami and Seya, 2019), which is implemented in this package, is formulated as

$$q_{\tau}(y_i) = \sum_{k=1}^{K} x_{i,k} \beta_{k,\tau} + f_{MC,\tau}(s_i) + \epsilon_{i,\tau}, \quad \epsilon_{i,\tau} \sim N(0, \sigma_{\tau}^2),$$

This model is a UQR considering spatial dependence.

The resf_qr function implements this model. Below is a sample code. If boot=TRUE in resf_qr, a semiparametric bootstrapping is performed to estimate the standard errors of the regression coefficients. By default, this function estimates models at 0.1, 0.2,..., 0.9 quantiles.

```
<- boston.c[, "CMEDV" ]</pre>
У
        <- boston.c[,c("CRIM","ZN","INDUS", "CHAS", "NOX","RM", "AGE")]</pre>
Х
coords<- boston.c[,c("LON","LAT")]</pre>
        <- meigen(coords=coords)
      <- resf_qr(y=y,x=x,meig=meig, boot=TRUE)
res
## [1] "----- Complete: tau=0.1 -----"
## [1] "----- Complete: tau=0.2 -----"
  [1] "----- Complete: tau=0.3 -----"
  [1] "----- Complete: tau=0.4 -----"
## [1] "----- Complete: tau=0.5 -----"
## [1] "----- Complete: tau=0.6 -----"
## [1] "----- Complete: tau=0.7 -----"
## [1] "----- Complete: tau=0.8 -----"
## [1] "----- Complete: tau=0.9 -----"
Here is a summary of the estimation result:
```

res

```
## Call:
## resf_qr(y = y, x = x, meig = meig, boot = TRUE)
  ----Coefficients-----
                    tau=0.1
                                 tau=0.2
                                                tau=0.3
                                                             tau=0.4
                                                                           tau=0.5
## (Intercept)
                23.86841970
                             29.16185736
                                          26.550125353
                                                         21.16263694
                                                                      17.151053980
## CRIM
                -0.36845124
                             -0.21172051
                                          -0.106949379
                                                         -0.08357496
                                                                      -0.070290258
## ZN
                -0.01169653
                             -0.01627637
                                          -0.009652286
                                                         -0.01947512
                                                                      -0.008198579
## INDUS
                 0.25009373
                              0.03992002
                                          -0.111010420
                                                         -0.01521113
                                                                      -0.096468769
## CHAS
                 0.98647836
                              1.28770409
                                           0.438428954
                                                          0.26777796
                                                                      -0.048278485
## NOX
               -32.89857783 -23.60303480 -15.109338348 -12.70090129 -11.263158727
## RM
                 0.71728433
                              0.49201634
                                            1.169115918
                                                          2.21382993
                                                                       3.004059676
                 0.01977978 - 0.05087471 - 0.082548477 - 0.11192561 - 0.105681036
## AGE
```

```
##
                     tau=0.6
                                  tau=0.7
                                               tau=0.8
                                                            tau=0.9
               13.999671526
                              11.28433168 -23.3939330 -57.24239068
  (Intercept)
                              -0.07823561
  CRIM
                -0.064412593
                                            -0.1876252
                                                        -0.18934294
  ZN
                 0.007962903
                               0.01009742
                                             0.1635369
                                                         0.03890142
##
##
  INDUS
                -0.167039581
                              -0.30344029
                                            -0.9074079
                                                        -0.49797629
  CHAS
                -1.665298913
                              -1.51518801
                                            -3.8773852
                                                        -0.04635798
## NOX
               -11.405913169 -20.36309658 -39.1980207 -41.26421537
## RM
                 3.730680883
                               5.25253569
                                            13.7698457
                                                        19.62200618
## AGE
                -0.092068861
                              -0.07567382
                                            -0.0587608
                                                        -0.03904752
##
##
      -Spatial effects (residuals)-----
##
                                  tau=0.1
                                            tau=0.2
                                                      tau=0.3
                                                                tau=0.4
## spcomp_SE
                               7.1522586 8.1254770 5.7952363 4.4135132 4.7198329
  spcomp_Moran.I/max(Moran.I) 0.2375865 0.3228553 0.3239407 0.3650454 0.5096847
##
                                  tau=0.6
                                            tau=0.7
                                                       tau=0.8
                                                                  tau=0.9
  spcomp_SE
                               4.8818059 6.3633073 16.9989855 16.3826940
   spcomp_Moran.I/max(Moran.I) 0.5690447 0.6935049
                                                     0.6757823
                                                               0.7203891
   ----Error statistics-----
##
##
                       tau=0.1
                                 tau=0.2 tau=0.3
                                                     tau=0.4
                                                               tau=0.5
                     6.4395412 6.2086846 5.169030 4.7999618 4.5977255 4.8160068
## resid_SE
## quasi_adjR2(cond) 0.6007294 0.6828421 0.666506 0.6183801 0.6229795 0.6121279
                                              tau=0.9
##
                       tau=0.7
                                  tau=0.8
                     5.6288391 12.2961444 18.6716254
## resid SE
## quasi_adjR2(cond) 0.6153019 0.6741455
```

The estimated coefficients can be visualized using the plot_qr function, as below. The numbers 1 to 5 specify which coefficients are plotted (1: intercept). In each panel, solid lines are estimated coefficients, and gray areas are their 95% confidence intervals.

```
plot_qr( res, 1 )
```

(Intercept) -50 -0.25 0.50 0.75

Quantile

plot_qr(res, 2)

plot_qr(res, 3)

plot_qr(res, 4)

plot_qr(res, 5)

Standard errors and the scaled Moran coefficient (Moran.I/max(Moran.I)), which is a measure of spatial scale by quantile, are plotted if par = "s" is added. Here are the plots:

plot_qr(res, par = "s" , 1)

spcomp_SE

plot_qr(res, par = "s" , 2)

spcomp_Moran.I/max(Mor

5 Low rank spatial econometric models

While ESF/RE-ESF and their extensions approximate Gaussian processes, this section explains low rank spatial econometric models approximating spatial econometric models (see Murakami et al., 2018).

5.1 Spatial weight matrix and their eigenvectors

The low rank models use eigenvectors and eigenvalues of a spatial connectivity matrix, which is called a spatial weight matrix or W matrix in spatial econometrics. The weigen function is available for the eigen-decomposition. Here is a code extracting the eigenvectors and eigenvalues from spatial polygons:

```
data( boston )
poly <- readOGR( system.file( "shapes/boston_tracts.shp", package = "spData" )[ 1 ] )

## OGR data source with driver: ESRI Shapefile
## Source: "/Library/Frameworks/R.framework/Versions/4.0/Resources/library/spData/shapes/boston_tracts.
## with 506 features
## It has 36 fields

weig <- weigen( poly )  #### Rook adjacency-based W</pre>
```

By default, the weigen function returns a Rook adjacency-based W matrix. Other than that, knn-based W, Delaunay triangulation-based W, and user-specified W are also available.

5.2 Models

5.2.1 Low rank spatial lag model

The low rank spatial lag model (LSLM) approximates the following model:

$$y_i = \beta_0 + z_i + \epsilon_i \quad \epsilon_i \sim N(0, \sigma^2) z_i = \rho \sum_{i \neq j}^N w_{i,j} z_j + \sum_{k \neq 1}^K x_{i,k} \beta_k + u_i \quad u_i \sim N(0, \tau^2)$$

where z_i is defined by the classical spatial lag model (SLM; see LeSage and Pace, 2009) with parameters ρ and τ^2 . Just like the original SLM, ρ takes a value between 1 and $1/\lambda_N(<0)$. Larger positive ρ means stronger positive dependence. τ^2 represents the variance of the SLM-based spatial process (i.e., z_i), while σ^2 represents the variance of the data noise ϵ_i . Because of the additional noise term, the LSLM estimates are different from the original SLM, in particular if data is noisy.

The LSLM is implemented using the lslm function. Here is a sample code:

```
## [1] "----- Complete:180/200 -----"
## [1] "----- Complete:200/200 -----
```

If boot=TRUE, a nonparametric bootstrapping is performed to estimate the 95% confidence intervals for the τ^2 and ρ parameters and the direct and indirect effects, which quantify spill-over effects. Default is FALSE. Here is the output in which {s_rho, sp_SE} are parameters { ρ , τ^2 }:

res ## Call: ## lslm(y = y, x = x, weig = weig, boot = TRUE)## ## ----Coefficients-----## Estimate SE t_value p_value ## (Intercept) -14.719039676 2.82212543 -5.2155866 2.748705e-07 -0.107615211 0.02851293 -3.7742599 1.809488e-04 ## CRIM 0.002594642 0.01276738 0.2032243 8.390474e-01 ## INDUS -0.098604511 0.06191541 -1.5925681 1.119273e-01 ## CHAS 1.903178819 0.89128954 2.1353093 3.325050e-02 ## NOX -5.101316236 3.84673642 -1.3261414 1.854349e-01 6.922743307 0.33388005 20.7342228 0.000000e+00 ## RM ## AGE -0.040691404 0.01262483 -3.2231248 1.355874e-03 ## ----Spatial effects (lag)------Estimates CI_lower CI_upper ## sp_rho 0.02709059 -0.0146306 0.06430701 ## sp_SE 7.54450065 6.4809318 8.51169605 ## ## ----Effects estimates-----## ## Direct: ## Estimates CI_lower CI_upper p_value ## CRIM -0.107999852 -0.16441926 -0.05561293 0.00 0.002603915 -0.01924372 0.02758364 0.81 -0.20824364 ## INDUS -0.098956945 0.02298966 0.13 ## CHAS 1.909981199 0.15807234 3.62478157 0.03 ## NOX -5.119549463 -11.66897693 2.21719442 0.14 ## RM 6.947486715 6.30060570 7.48111099 0.00 ## AGE -0.040836844 -0.06602344 -0.015997450.00 ## ## Indirect: ## **Estimates** CI_lower CI_upper p_value ## CRIM -2.227815e-03 -0.0061712361 0.0012565506 0.21 5.371341e-05 -0.0005488453 0.0007323576 0.80 ## INDUS -2.041278e-03 -0.0066341510 0.0012106183 0.32 3.939898e-02 -0.0241310716 0.1195924986 ## CHAS 0.24 ## NOX -1.056058e-01 -0.4204080182 0.0844118839 0.33 1.433123e-01 -0.0754791448 0.3284478587 0.21 ## R.M ## AGE -8.423800e-04 -0.0023769406 0.0004806784 0.21 ## ----Error statistics-----## stat ## resid_SE 3.9555161 ## adjR2(cond) 0.8129243

rlogLik

AIC

-1561.3219098

3144.6438195

```
## BIC 3191.1357229
##
## Note: The AIC and BIC values are based on the restricted likelihood.
## Use method ="ml" for comparison of models with different fixed effects (x)
```

5.2.2 Low rank spatial error model

The low rank spatial error model (LSEM) approximates the following model:

$$y_i = \beta_0 + z_i + \epsilon_i \quad \epsilon_i \sim N(0, \sigma^2) z_i = \sum_{k \neq 1}^K x_{i,k} \beta_k + e_i \quad e_i = \lambda \sum_{i \neq j}^N w_{i,j} e_j + u_i \quad u_i \sim N(0, \tau^2)$$

where z_i is defined by the classical spatial error model (SLM) with parameters λ and τ^2 . Just like the original SEM, λ takes a larger positive value in the presence of stronger positive dependence. τ^2 represents the variance of the SEM-based spatial process (i.e., z_i). As with LSLM, the LSEM estimates can be different from the original SEM if data is noisy.

The Isem function estimates LSEM, as follows:

```
data(boston)
      <- lsem( y = y, x = x, weig = weig )
res
## Call:
## lsem(y = y, x = x, weig = weig)
## ----Coefficients-----
                    Estimate
                                     SE
                                            t value
## (Intercept) -15.535928399 2.82054020 -5.5081393 6.082512e-08
## CRIM
                -0.093112127 0.02911351 -3.1982447 1.479351e-03
## ZN
                 0.002300116 0.01292558 0.1779507 8.588411e-01
                -0.063433279 0.06176206 -1.0270591 3.049394e-01
## INDUS
                 1.335521734 0.88216035 1.5139217 1.307414e-01
## CHAS
                -5.717186159 3.86329642 -1.4798725 1.396007e-01
## NOX
## RM
                 7.052094665 0.33425292 21.0980796 0.000000e+00
## AGE
                -0.037131943 0.01253448 -2.9623833 3.212894e-03
   ----Spatial effects (residuals)-----
##
             Estimates
## sp_lambda 0.885701
## sp_SE
              2.926975
##
   ----Error statistics-----
##
                        stat
## resid SE
                   4.0001174
## adjR2(cond)
                   0.8086816
## rlogLik
               -1544.3307054
## AIC
                3110.6614108
## BIC
                3157.1533142
##
  Note: The AIC and BIC values are based on the restricted likelihood.
         Use method ="ml" for comparison of models with different fixed effects (x)
{s_lambda, sp_SE} are parameters \{\lambda, \tau^2\}.
```

6 Tips for modeling large samples

6.1 Eigen-decomposition

The meigen function implements an eigen-decomposition that is slow for large samples. For fast eigen-approximation, the meigen_f function is available. By default, this function approximates 200 eigenvectors; 200 is based on simulation results in Murakami and Griffith (2019a). The computation is further accelerated by reducing the number of eigenvectors. It is achieved by specifying enum by a number smaller than 200. While the meigen function took 243.8 seconds for 5,000 samples, the meigen_f took less than 1 second, as demonstrated below:

```
<- cbind( rnorm( 5000 ), rnorm( 5000 ) )
coords_test
system.time( meig_test200
                              <- meigen_f( coords = coords_test ))[3]
## elapsed
##
     0.315
system.time( meig test100
                              <- meigen f( coords = coords test, enum=100 ))[3]</pre>
## elapsed
##
     0.109
system.time( meig_test50
                              <- meigen_f( coords = coords_test, enum=50 ))[3]</pre>
## elapsed
     0.057
##
On the other hand, the weigen function implements the ARPACK routine for fast eigen-decomposition by
default. The computational times with 5,000 samples and enum = 200 (default), 100, and 50 are as follows:
                              <- weigen( coords test ))[3]
system.time( weig test200
## elapsed
     7.294
system.time( weig test100
                              <- weigen( coords test, enum=100 ))[3]
## elapsed
     2.496
##
system.time( weig_test50
                              <- weigen( coords_test, enum=50 ))[3]
## elapsed
##
     0.858
```

6.2 Parameter estimation

The basic ESF model is estimated computationally efficiently by specifying fn = "all" in the esf function. This setting is acceptable for large samples (Murakami and Griffith, 2019a). The resf and resf_vc functions estimate all the models explained above using a fast estimation algorithm developed in Murakami and Griffith (2019b). They are available for large samples (e.g., 100,000 samples). Although the SF-UQR model requires a bootstrapping to estimate confidential intervals for the coefficients, the computational cost for the iteration does not depend on sample size. Therefore, it is available for large samples too.

6.3 For very large samples (e.g., millions of samples)

A computational limitation is the memory consumption of the meigen and meigen_f functions to store Moran eigenvectors. Because of the limitation, the resf and resf_vc functions are not available for very large samples (e.g., millions of samples). To overcome this limitation, the besf and besf_vc functions perform the same calculation as resf and resf_vc but without saving the eigenvectors in the memory. Besides, for fast computation, these functions perform a parallel model estimation (see Murakami and Griffith, 2019c).

Here is an example implementing a spatial regression model using the besf function and an SVC model using the besf vc function:

```
data(house)
     <- data.frame(coordinates(house),
                  house@data[,c("price", "age", "rooms", "beds", "syear")])
coords<- dat[ ,c("long","lat")]</pre>
       <- log(dat[,"price"])
у
     <- dat[,c("age","rooms","beds","syear")]</pre>
х
       <- besf(y=y, x=x, coords=coords)
res1
res1
## Call:
## besf(y = y, x = x, coords = coords)
##
## ----Coefficients-----
##
                                                       p_value
                  Estimate
                                    SF.
                                          t value
## (Intercept) -59.37567668 2.581150582 -23.003569 4.293192e-117
               -0.74288786 0.013258578 -56.030733 0.000000e+00
                0.10990599 0.002947034 37.293765 2.071132e-304
## rooms
## beds
                0.04868144 0.005001716
                                        9.732947 2.181789e-22
                0.03506390 0.001293217 27.113710 6.786691e-162
## syear
##
##
  ----Variance parameter-----
##
## Spatial effects (residuals):
##
                       (Intercept)
## random SE
                        0.05100897
## Moran.I/max(Moran.I) 0.37662789
## ----Error statistics-----
##
                       stat
## resid SE
                  0.3365628
## adjR2(cond)
                  0.8053570
## rlogLik
              -8908.3460444
## AIC
              17832.6920887
## BIC
              17897.8185696
##
## Note: The AIC and BIC values are based on the restricted likelihood.
        Use method ="ml" for comparison of models with different fixed effects (x)
##
res2
       <- besf_vc(y=y, x=x, coords=coords)
## [1] "----" Iteration 1 -----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
```

```
## [1] "5/5"
## [1] "BIC: 16489.568"
## [1] "----" Iteration 2 ----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 16072.331"
## [1] "----" Iteration 3 ----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 16071.434"
## [1] "----" Iteration 4 ----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 16071.429"
## [1] "----" Iteration 5 ----"
## [1] "1/5"
## [1] "2/5"
## [1] "3/5"
## [1] "4/5"
## [1] "5/5"
## [1] "BIC: 16071.429"
res2
## Call:
## besf_vc(y = y, x = x, coords = coords)
## ----Spatially varying coefficients on x (summary)----
##
## Coefficient estimates:
##
   (Intercept)
                                                          beds
                        age
                                        rooms
## Min. :-60.98 Min. :-3.1941 Min. :0.02172 Min. :0.04803
## 1st Qu.:-60.18 1st Qu.:-1.0115 1st Qu.:0.07952 1st Qu.:0.04803
## Median :-59.99 Median :-0.6916 Median :0.09550 Median :0.04803
## Mean :-60.00 Mean :-0.7361 Mean :0.09838 Mean :0.04803
##
   3rd Qu.:-59.78 3rd Qu.:-0.4152
                                    3rd Qu.:0.11108
                                                     3rd Qu.:0.04803
##
  Max. :-59.26
                   Max. : 1.5767 Max. : 0.27046 Max. : 0.04803
##
       syear
## Min. :0.03543
## 1st Qu.:0.03543
## Median :0.03543
## Mean :0.03543
## 3rd Qu.:0.03543
## Max. :0.03543
##
## Statistical significance:
```

```
##
                          Intercept
                                      age rooms
                                                 beds syear
                                                          0
## Not significant
                                      3742
                                              76
                                                     0
                                   0
## Significant (10% level)
                                       994
                                              99
                                                     0
                                                          0
                                                     0
                                                          0
## Significant (5% level)
                                     1893
                                             469
                                   0
## Significant (1% level)
                               25357 18728 24713 25357 25357
##
  ----Variance parameters-----
##
## Spatial effects (coefficients on x):
##
                        (Intercept)
                                                     rooms beds syear
                        0.04168388 0.07501517 0.005003324
## random_SE
                                                              0
                        0.19249460 0.10259899 0.058128227
                                                            NA
                                                                   NA
## Moran.I/max(Moran.I)
##
  ----Error statistics-----
##
##
                        stat
## resid_SE
                   0.3188346
## adjR2(cond)
                   0.8252946
## rlogLik
               -7974.8697582
## AIC
               15973.7395165
## BIC
               16071.4292377
##
## Note: The AIC and BIC values are based on the restricted likelihood.
         Use method ="ml" for comparison of models with different fixed effects (x and xconst)
##
```

Roughly speaking, these functions are faster than the resf and resf_vc functions if the sample size is more than 100,000.

I have evaluated the computational time for an SVC modeling using the besf_vc function using a Mac Pro (3.5 GHz, 12-Core Intel Xeon E5 processor with 64 GB memory). The besf_vc function took only 8.0 minutes to estimate the 7 SVCs from 1 million samples. I also confirmed that besf_vc took 70.3 minutes to estimate the same model from 10 million samples. besf and besf_vc are suitable for very large data analysis.

7 Reference

- Chan, A. B., and Vasconcelos, N. (2011) Counting people with low-level features and Bayesian regression. IEEE Transactions on Image Processing, 21(4), 2160-2177.
- Croissant, Y., and Millo, G. (2008) Panel data econometrics in R: The plm package. Journal of statistical software, 27(2), 1-43.
- Firpo, S., Fortin, N.M., and Lemieux, T. (2009) Unconditional quantile regressions. Econometrica, 77 (3), 953-973.
- Griffith, D.A. (2003) Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Springer Science & Business Media.
- Ghosh, M., and Rao, J. N.K. (1994) Small area estimation: an appraisal. Statistical science, 9 (1), 55-76.
- LeSage, J.P. and Pace, R.K. (2009) Introduction to Spatial Econometrics. CRC Press.
- Murakami, D. and Griffith, D.A. (2015) Random effects specifications in eigenvector spatial filtering: a simulation study. Journal of Geographical Systems, 17 (4), 311-331.
- Murakami, D. and Griffith, D.A. (2019a) Eigenvector spatial filtering for large data sets: fixed and random effects approaches. Geographical Analysis, 51 (1), 23-49.
- Murakami, D. and Griffith, D.A. (2019b) Spatially varying coefficient modeling for large datasets: Eliminating N from spatial regressions. Spatial Statistics, 30, 39-64.
- Murakami, D. and Griffith, D.A. (2019c) A memory-free spatial additive mixed modeling for big spatial data. Japan Journal of Statistics and Data Science, doi: 10.1007/s42081-019-00063-x.

- Murakami, D., Griffith, D.A. (2020) Balancing spatial and non-spatially variations in varying coefficient modeling: a remedy for spurious correlation. Arxiv, 2005:09981.
- Murakami, D., Kajita, M., Kajita, S., Matsui, T. (2021) Compositionally warped additive modeling for a wide variety of non-Gaussian spatial data. Arxiv.
- Murakami, D. and Seya, H. (2019) Spatially filtered unconditional quantile regression. Environmetrics, 30 (5), e2556.
- Murakami, D., Seya, H., and Griffith, D.A. (2018) Low rank spatial econometric models. Arxiv, 1810.02956.
- Murakami, D., Yoshida, T., Seya, H., Griffith, D.A., and Yamagata, Y. (2017) A Moran coefficient-based mixed effects approach to investigate spatially varying relationships. Spatial Statistics, 19, 68-89.
- Rios, G., Tobar, F. (2019). Compositionally-warped Gaussian processes. Neural Networks, 118, 235-246.
- Wheeler, D., and Tiefelsdorf, M. (2005) Multicollinearity and correlation among local regression coefficients in geographically weighted regression. Journal of Geographical Systems, 7(2), 161-187.
- Yu, D., Murakami, D., Zhang, Y., Wu, X., Li, D., Wang, X., and Li, G. (2020) Investigating high-speed rail construction's support to county level regional development in China: An eigenvector based spatial filtering panel data analysis. Transportation Research Part B: Methodological, 133, 21-37.