Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Przeszukiwanie i Optymalizacja

Dokumentacja wstępna zadania nr 5

Tymon Kobylecki, Mateusz Palczuk

Spis treści

1.	Opis	proble	emu i sposób rozwiązania								•					2
	1.1.	Opis p	roblemu													2
	1.2.	Sposób	rozwiązania													2
		1.2.1.	Reprezentacja													2
		1.2.2.	Rozwiązanie problemu													2
2.	Plan	owane	eksperymenty numeryczne	9												3
3.	Wyb	ór tecl	nnologii													4

1. Opis problemu i sposób rozwiązania

1.1. Opis problemu

W każdej komórce planszy prostokątnej o rozmiarze $4\times n$ wpisano liczbę całkowitą z_{ij} . Masz do dyspozycji m kart, które musisz rozmieścić na planszy. Poprawny rozkład kart zakłada, że żadna para kart nie może zajmować komórek sąsiadujących w pionie lub poziomie.

Twoim zadaniem jest znalezienie takiego rozkładu kart na planszy, aby suma liczb zapisanych w komórkach planszy była jak największa. Nie musisz wykorzystywać wszystkich kart.

1.2. Sposób rozwiązania

1.2.1. Reprezentacja

Wektor binarny o długości $4 \cdot n$, którego każdy element reprezentuje, czy dana komórka jest przykryta (wartość 1) kartą, czy też nie (wartość 0).

1.2.2. Rozwiązanie problemu

Planowane jest użycie algorytmu ewolucyjnego w różnych konfiguracjach. Funkcja celu będzie sumą wszystkich liczb znajdujących się w komórkach przykrytych kartą. W sytuacji kiedy dany układ kart na planszy jest nieprawidłowy (dwie karty znajdują się w sąsiednich komórkach w pionie lub w poziomie) funkcja będzie przybierać wartość $-\infty$, czyli mniejszą niż jakąkolwiek osiągalną na pojedynczy dozwolony układ. Zadaniem algorytmu będzie maksymalizacja tej funkcji.

2. Planowane eksperymenty numeryczne

Eksperymenty polegały będą na zmianach parametrów algorytmu. Przewidywane są też zmiany konfiguracji, tj. zmiany takich aspektów jak wybrana metoda selekcji, krzyżowania czy mutacji.

3. Wybór technologii

Projekt realizowany będzie w całości w języku Python. Planowane jest użycie bibliotek do liczb losowych random oraz do matematyki numpy. Do wizualizacji wyników wykresy zostaną zrealizowane przy pomocy biblioteki matplotlib.