Тупики в группе целых чисел

Анна Бобрикова, Таисия Липатова

Май 2024

Сириус, IV Майская проектная смена по математике и теоретической информатие

Содержание

Введение

Тупики для двух порождающих

Тупики для трех порождающих $\mbox{Образующие вида } pq,qr,pr$ $\mbox{Общий вид}$

Введение

Граф Кэли

Рис. 1: Граф Кэли для образующих 3, 5

Определения

Графом Кэли группы G по системе образующих S является граф, вершинами которого являются элементы группы, и элемент g соединён ребром в точности с теми элементами, которые получаются домножением g на элемент из S.

Формулировка проблемы

Определения

 $\ell(g)$ — длина кратчайшего слова, соответствующего элементу g.

Геодезическое слово — кратчайшее слово, соответствующее элементу.

Слово $w- \mathit{тупик}$, если w геодезическое слово и его нельзя продолжить на одну букву до другого геодезического слова.

Элемент g — $\mathit{тупик}$, если для любой буквы s выполняется $\ell(g \circ [s]) \leq l(g)$.

3

Формулировка проблемы

Определения

 $\ell(g)$ — длина кратчайшего слова, соответствующего элементу g.

Геодезическое слово — кратчайшее слово, соответствующее элементу.

Слово $w-\mathit{тупик}$, если w геодезическое слово и его нельзя продолжить на одну букву до другого геодезического слова.

Элемент g — $\mathit{тупик}$, если для любой буквы s выполняется $\ell(g \circ [s]) \leq l(g)$.

Вопрос

Как выглядт тупики в группе $\mathbb{Z}\cong\langle S
angle$, где |S|>1.

Тупики для двух

порождающих

Известные результаты

Связь с числами Фробениуса

Тупики в $\mathbb Z$ для двух порождающих = максимальные числа Фробениуса

Эта теорема доказана в работе [Sun07].

Рис. 2: Числа Фробениуса для образующих 3, 5

Геометрия $\mathbb{Z} = \langle S \rangle$

${\sf P}$ исовани ${\sf e} \; {\mathbb Z}$ на ${\mathbb Z}^{|S|}$

$$f: \mathbb{Z}^n \longrightarrow \mathbb{Z} = \langle \{x_1, x_2, ..., x_n\} \rangle$$
$$f(a_1, a_2, ..., a_n) = \sum_{k=1}^n a_k x_k$$

Геометрия $\mathbb{Z} = \langle S \rangle$

Рисование \mathbb{Z} на $\mathbb{Z}^{|S|}$

$$f:\mathbb{Z}^n\longrightarrow\mathbb{Z}=\langle\{x_1,x_2,...,x_n\}
angle$$
 $f(a_1,a_2,...,a_n)=\sum_{k=1}^n a_kx_k$ $f^{-1}\left(\mathsf{ТУПИКИ}
ight)=???$

Геометрия $\mathbb{Z} = \langle S \rangle$

$|\mathsf{P}$ исование \mathbb{Z} на $\mathbb{Z}^{|S|}$

$$f:\mathbb{Z}^n\longrightarrow\mathbb{Z}=\langle\{x_1,x_2,...,x_n\}
angle$$
 $f(a_1,a_2,...,a_n)=\sum_{k=1}^na_kx_k$ $f^{-1}\left(\mathsf{ТУПИКИ}
ight)=???$ $f(???)=\mathsf{ТУПИКИ}$

Геометрическое представление

Теорема

Тупики — это точки, которые лежат на диагонали внутри какого-то прямоугольника.

Рис. 3: Тупики для порождающих 5,7

Тупики для трех

порождающих

Образующие вида pq, qr, pr

p,q,r - нечетные попарно взаимно простые числа.

Теорема

Тупики — это значения функции в точках, которые лежат на диагонали внутри какого-то параллелепипеда, образованного тремя соседними нулями.

Рис. 4: Тупики для порождающих $11 \cdot 13, 9 \cdot 13, 9 \cdot 11$

Тупики для трех произвольных образующих

Тупик может быть равноудален от двух, трех и даже четрырех ближайших нулей так.

Рис. 5: Тупики для порождающих $13 \cdot 5 \cdot 7, 11 \cdot 7 \cdot 3, 17 \cdot 5 \cdot 3$

Ссылки

Список литературы

[Sun07] Zoran Sunic. *Frobenius Problem and dead ends in integers.* 2007.

arXiv: math/0612271 [math.NT].

Спасибо за внимание!