

The DOCTOR Project

DeplOyment and seCurisaTion of new functiOnalities in virtualized networking enviRonnements

François-Xavier Aguessy – Thales

Bertrand Mathieu (Orange), Guillaume Doyen (UTT),

Olivier Bettan (Thales), Edgardo Montes De Oca (Montimage) et Thomas Silverston (LORIA-CNRS)

21/05/2015

Context and Problem

- statement Deploying new network equipment is costly
- Deployment only if secure and manageable
- Cost Reduction, Hardware Mutualisation, Energy Consumption
 - **Network Virtualization**
 - SDN
- New networking architecture & solutions for better data delivery and optimal use of network resources
 - NDN: Named-based routing

Objectives of the project

- Deployment of new network functions and protocols in a virtualized networking environment (NDN Use case)
- Monitoring, managing and securing the virtually deployed networking architectures, using SDN for reconfiguration

Technical Locks

- Co-existence of multiple network protocols in the same virtualized node and migration steps
- Monitoring & Security of the virtualized NDN network: Identify flow, correlate information
- Dependability over an entire managed domain: management & control using SDN
- First testbed deploying NDN for real use: end-users accessing existing popular web sites
- Collection & Analysis of network and user data for evaluation (efficiency, performance, reliability, etc.)

Methodology

- Set up of a real testbed for end-users accessing Internet web sites
- Design and implementation of virtualized NDN network, together with a IP-based one
- Monitoring & Collection of network and usage data
- Analysis of attacks and definition of countermeasures
- Implementation of a management plane (management + security)
- Proof-of-Concept of global solution evaluated in the real testbed.

Project Organization

- Task 1: Architecture of the virtualized node for hosting network functions
- Task 2: Security analysis and monitoring of virtualized network architectures
- Task 3: Global network dependability
- Task 4: Testbed (real end-users, real services) and Demonstrator

Tasks Scheduling

To = 01/12/2014 Today = 21/05/2015

Id	Task/Subtask	$T\theta$	+3	+6	+9	+12	+15	+18	+21	+24	+27	+30	+33
Tθ	Project management												
T0.1	Management												
T0.2	Coordination with ANR and the ongoing projects												
T0.3	Dissemination and Exploitation												
T1	Architecture of the virtualized node for hosting network functions												
T1.1	Network equipment virtualization techniques												
T1.2	Architecture of the virtualized node and identification of components and functions												
T2	Security analysis and monitoring of virtualized network architectures												
T2.1	Security analysis of the virtualized CCN architecture												
T2.2	Monitoring of CCN through virtualized components												
<i>T3</i>	Global network dependability												
T3.1	Remediation solutions against vulnerabilities												
T3.2	Execution and orchestration of Counter-measures												
T4	Testbed and Demonstrator												
T4.1	Testbed setup and data measurement												
T4.2	Validation of monitoring and remediation components												
T4.3	Proof of Concept (Demonstrator)												

First results: Virtualization

- Techniques

 D1.1: Virtualization Techniques: Analysis and Selection
 - Current virtualization techniques and their application to NFV
 - Requirements and Challenges of such architectures for DOCTOR
 - High-level architecture and candidates technologies

The DOCTOR Project

Monitoring architecture

- MMT probes distributed in each virtual machine.
- P2P communication, to share relevant information
- Centralized MMT Operator, for coordination and orchestration

Risk assessment and

- remediation Risk assessment based on attack graphs
- Take into account vulnerabilities specific to NDN and virtualized infrastructures
- Access to network topology and re-configuration of VFN through SDN
- Challenges of the orchestration plane
- New types of remediations, but have to take into account specificities of virtualized infrastructure

Questions

Join us to keep updated http://doctor-project.org/

https://twitter.com/DOCTORprojectFR

https://www.facebook.com/ProjectDoctor

https://www.linkedin.com/groups/DOCTOR -project-8240374