22 秋- 概率论期末 (回忆版)

何家兴 hejiaxing202411@163.com

December 7, 2024

Exercise 1.

设随机变量 ξ 有概率密度

$$p(x) = \begin{cases} x, & 0 < x \le 1 \\ 2 - x, & 1 < x \le 2 \\ 0, & \sharp \dot{\Xi} \end{cases}$$

- 1. 求 ξ 的分布函数
- 2. 求 $\mathbb{P}(0.2 < \xi < 1.2)$

Exercise 2.

设随机变量 (X,Y) 有联合分布密度

$$p(x,y) = 3x, \ 0 < x < y < 1$$

求 X 和 Y 的相关系数

Exercise 3.

设 r > 0, ξ , ξ_n , η 是概率空间 $(\Omega, \mathcal{F}, \mathbb{P})$ 上的随机变量,

- 1. 若 $\xi_n \xrightarrow{L^r} \xi$, 证明 $\xi_n \xrightarrow{\mathbb{P}} \xi$
- 2. 若 $\xi_n \stackrel{\mathbb{P}}{\to} \xi$,且有 $\mathbb{E}(|\eta|^r) < \infty$, $|\xi_n| \leq |\eta|$,证明 $\xi_n \stackrel{L^r}{\longrightarrow} \xi$

Exercise 4.

n 个人参加聚会,会前帽子混放在一起,会后没人随机取走一顶帽子, ξ_n 表示戴会自己原来帽子的人数,证明

$$\frac{\xi_n - \mathbb{E}(\xi_n)}{n} \xrightarrow{\mathbb{P}} 0$$

Exercise 5.

设一列随机变量 X_1, X_2, \cdots ,相互独立

- 1. 设 X_j 有特征函数 $f_j(t)$, $S_n = \sum_{i=1}^n X_i$, $S_n \xrightarrow{w} S$, 证明 S 的特征函数是 $\prod_{j=1}^\infty f_j(t)$
- 2. 若 X_j 服从参数为 1/2 的伯努利分布,求 $X = \sum_{j=1}^{\infty} \frac{2X_j}{3^j}$ 的特征函数