1 Module 20: Ensemble Systems

Contents

1	Module 20: Ensemble Systems
	1.1 Aggregating predictors
	1.2 Bootstrapping & Bagging
	1.3 Random Forests
	1.4 Boosting
	• Bagging: Random trees
	• Boosting: AdaBoost, Gradient-boosted trees
	Individual models must be independent for the ensemble system to work.
	Variance ensemble $= \frac{\text{Variance}[\text{ individual }]}{N}$

1.1 Aggregating predictors

Metamodel = ensemble system

 \rightarrow assign weights $\alpha_1,...$, α_m to models and fit their influences on final decision.

N

We find that using the same model in many different variations performs better than multiple different types of classifiers.

- Aggregation for classification
 - Hard voting: Majority vote
 - Soft voting: average the predicted class distributions and choose maximum
- "" for regression
 - Simple average

Boosting: predictors are trained sequentially

1.2 Bootstrapping & Bagging

High variance \rightarrow too myopically focused on training data.

Bootstrapping (decorrelating models' data) Assume that training data samples from a population \rightarrow sample with replacement (a sampled data point isn't removed from the dataset).

indices = np.random.choice(range(ntrain), ntrain)
X_bs = X_train[ind,:]
y_bs = y_train[ind,:]

$$\lim_{N \to \infty} \left(1 - \left(1 - \frac{1}{N} \right)^N \right) = 1 - \frac{1}{e} \cong 0.632$$

We can expect in the lim of \ll training data, we expect for each sample set to be 63% new data and 37% repeated data.

Bagging: "boostrap aggregation" Performed by our choice of aggregation technique.

```
y_ensemble = scipy.stats.mode(y_pred).mode[0]
```

Out-of-bag evaluation: withhold a subset of data per trained ensemble classifier, which is used as the testing set.


```
model = BaggingClassifier()
    DecisionTreeClassifier(),
    n_estimators = 500, # number of models in ensemble
    oob_score = True # Out of bag score
)
model.fit(X,y)
model.oob_score_
```

1.3 Random Forests

Ordinarily, DTrees choose to split on features that produce the greatest change in entropy. We can simply require that the $\mathtt{max_features} > 1$ such that we search along otherwise neglected branches. \rightarrow increase diversity of ensemble

from sklearn.ensemble import RandomForestClassifier

1.4 Boosting

Reduces bias of a set of weak learners (without increasing variance as much) \rightarrow Combine a large number of weak models in a clever way to create a strong model.

Typically employ very shallow (one-node) decision trees (decision stumps) i.e. cut the dataset with a single slice.

Adaboost algorithm

- Initialize, s=0
 - for all samples i = 1, ..., N and stumps s: $w_s^i = \frac{1}{N}$
 - == the effort a stump should put into correctly classifying i
 - to begin with, all points are weighted equally
- Loop as log derived:
 - Create a stump to correctly classify samples for at least half of the total weight $S_s \cdot \text{fit}(x_1y_1, W_S)$; if <0.5, just flip the inequality
 - misclassification score $\epsilon_S = \sum_{\text{misclassified}} W_S^i < 0.5$ as the system is at least better than random chance
 - influence coefficient $\alpha_S = \frac{1}{2} \log \frac{1 \epsilon_S}{\epsilon_S}$ use misclassification score to determine influence of particular stump on the ensemble
- Allow influence coefficient to update weights

$$- \ w_{S+1}^i = \left\{ \begin{array}{ll} w_S^i e^{\alpha_S} & i \text{ was misclassified} \\ w_S^i e^{-\alpha_S} & \text{otherwise} \end{array} \right\}$$


```
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
model = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1))
model.fit(X,y)
```

Algorithm is based on **gradient boosting**. Boosting algorithms are not easily overfitted.

GRADIENT BOOSTING

Gradient Boosting Trees Use trees for base model BUT: use squared loss as loss fcn.

- H = 0
- Loop as log

$$- r_i = y_i - H(X_i)$$

- $-h = \text{Shallow regression tree (depth} \approx 4) \text{ trained on } r \rightarrow h(x_i) \approx r(x_i)$
- $-H \leftarrow H + \alpha h$
- H = 0
 - $r_i = y_i H(x_i)$ h = Shallow regression tree trained on r $H \leftarrow H + \alpha h$

from sklearn.ensemble import GradientBoostingRegressor GradientBoostingRegressor(n_estimators = 1000, max_depth = 1)