

Mobile Robots | Introduction and Lecture Overview Autonomous Mobile Robots

https://edge.edx.org/courses/course-v1:ETHx+AMRx_Internal_FS2017+2017_T1/about

Roland Siegwart, Margarita Chli, Martin Rufli

Autonomous mobile robot | your teachers

Margarita Chli, ETH Zurich

Martin Rufli, IBM Research

Video segments

Marco Hutter, ETH Zurich

Autonomous mobile robot | about the course

https://edge.edx.org/courses/course-v1:ETHx+AMRx_Internal_FS2017+2017_T1/about

- Running as an ETH-internal MOOC (Massive Open Online Course)
 - Over 30 short video lectures that we call "segments".
 - The "segments" are complemented with:
 - short questions for each segment to verify your understanding and progress
 - various exercises (problem sets)
 - videos showing the current state-of-the-art in the field
 - Please register on edge.edx.org and sign up for the lecture AMRx of ETHx
- Textbook
 - "Introduction to Autonomous Mobile Robots"
 Roland Siegwart, Illah Nourbakhsh, Davide Scaramuzza
 The MIT Press

 On sale in LEE J206 for CHF 45
- Other materials
 - http://www.asl.ethz.ch/education/lectures/autonomous_mobile_robots.html

The Lecture

- We expect you to view and study the following elements beforehand:
 - video segment
 - relevant AMR book chapters
 - problem sets and quizzes
- Lecture on Tuesday 10:15 12:00 in NO C 60
 - Organized as flipped classroom we need your active participation!!
 - Video Segments will not be repeated
 - Focus on putting the learnt content into context
 - Questions from students (in forum until Friday before the related lecture)
 - go over difficult problems
 - go a bit more in detail where needed (e.g. proofs of theorems, etc.)
- Exercises on Tuesday 14:15 16:00 in CAB G 11 (around every second week)
 - Special exercises only supported for ETH students

Lecture Program

Week#	Date	Topic	Lecturer
		•	
		Introduction and Motivation	R. Siegwart
2.	28.02.2017	Locomotion Concepts	P. Fankhauser
Ex1	28.02.2017	Introduction to V-Rep simulator	In Kyu Sa, Fabiola Maffra
3.	07.03.2017	Mobile Robots Kinematics	R. Siegwart
		Perception I (to 4.3)	R. Siegwart
Ex2	14.03.2017	Kinematics and Control of a differential drive	A. Vempati, M. Kamel
5.	21.03.2017	Perception II (to 4.4)	M. Chli
		Perception III: Image Saliency (to 4.5)	M. Chli
7.	04.04.2017	Perception IV: Place Recognition & Line Fitting	M. Chli
Ex3	04.04.2017	Line extraction	T. Hinzmann, L. Teixeira
Quiz 1	04.04.2017	Quiz 1	T. Novkovic, A. Millane, T. Schneider
8.	11.04.2017	Localization I (to 5.2)	R. Siegwart
	18.04.2017	Week off - Easter Holiday	
9.	25.04.2017	Localization II	R. Siegwart
Ex4	25.04.2017	Line-based Extended Kalman Filter	T. Hinzmann, L. Teixeira
10.	02.05.2017	SLAM I	M. Chli
11.	09.05.2017	SLAM II	M. Chli
Ex5	10.05.2017	EKF SLAM	T. Schneider, M. Popovic, P. Schmuck
12.	16.05.2017	Planning I (to 6.2)	M. Rufli
13.	23.05.2017	Planning II (to 6.3)	M. Rufli
Ex6	23.05.2017	Dijkstra's algorithm and the dynamic window	M. Pfeiffer, R. Bähnemann
Quiz 2	23.05.2017	Quiz 2	T. Novkovic, A. Millane, T. Schneider
14.	30.05.2017	Summary	R. Siegwart

Exam

- Type
 - Written session examination
- Language of examination
 - English
- Course attendance confirmation required
 - No
- Repetition
 - The performance assessment is only offered in the session after the course unit. Repetition only possible after re-enrolling.
- Mode of examination
 - Multiple Choice and comprehension questions
 - Calculations, similar to exercises, but simpler and solvable without computer
- Written aids
 - 4 A4-pages personal summary

Autonomous mobile robot | the key questions

- The three key questions in Mobile Robotics
 - Where am I?
 - Where am I going ?
 - How do I get there ?
- To answer these questions the robot has to
 - have a model of the environment (given or autonomously built)
 - perceive and analyze the environment
 - find its position/situation within the environment
 - plan and execute the movement

Autonomous mobile robot | the see-think-act cycle

Motion Control | kinematics and motion control

- Wheel types and its constraints
 - Rolling constraint
 - no-sliding constraint (lateral)
- Motion control

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{bmatrix} = f(\dot{\varphi}_1 \cdots \dot{\varphi}_n, \theta, geometry)$$

$$\begin{bmatrix} \dot{\varphi}_1 \\ \vdots \\ \dot{\varphi}_n \end{bmatrix} = f(\dot{x}, \dot{y}, \dot{\theta})$$

Autonomous mobile robot | the see-think-act cycle

Perception | sensing

- Laser scanner
 - time of flight

Camera

Perception | information extraction

Filtering / Edge Detection

- **Keypoint Features**
 - features that are reasonably invariant to rotation, scaling, viewpoint, illumination
 - FAST, SURF, SIFT, BRISK, ...

- Keypoint matching
 - **BRISK** example

Autonomous mobile robot | the see-think-act cycle

Localization | where am |?

- SEE: The robot queries its sensors
 → finds itself next to a pillar
- ACT: Robot moves one meter forward
 - motion estimated by wheel encoders
 - accumulation of uncertainty
- SEE: The robot queries its sensors again → finds itself next to a pillar
- Belief update (information fusion)

Autonomous mobile robot | the see-think-act cycle

Cognition | Where am I going ? How do I get there ?

Cognition | Where am I going ? How do I get there ?

- Global path planning
 - Graph search

- Local path planning
 - Local collision avoidance

Autonomous mobile robot | the see-think-act cycle

Autonomous mobile robot | we invite you to join the course

Autonomous Mobile Robots | Some recent examples

Examples – not part of MOOC Video Segment

Next generation of Robots

mobile, smart, connected, adaptive and closer to humans

Service Robots

Autonomous Mobile Robots Roland Siegwart, Margarita Chli, Martin Rufli

Robotics | challenges and technology drivers

- The challenges
 - Seeing, feeling and understanding the world
 - Dealing with *uncertain* and partially available information
 - Act appropriately onto the environment
- Technology drivers | technology evolutions enable robotics revolutions
 - Laser time-of-flight sensors
 - Cameras and IMUs combined with required calculation power
 - Torque controlled motors, "soft" actuation
 - New materials

Today | 3D laser sensors

- Google Self-Driving Car Project (status summer 2015)
 - > 20 vehicles in use
 - > 2,7 mio km, 1.5 mio km in autonomous mode
 - > 11 accidents
 - No people insured
- Non of them caused by car control algorithm

 Autonomous Mobile Robots

Repeat Phase - May 2013 during a rainy day

White points

Learned map

Coloned points by eleaston.

Current scan

https://www.youtube.com/watch?v=eJCR2TaeSFc

Today | cameras (lane tracking, ...)

https://www.youtube.com/watch?v=JmxDluCllcg

- Lanes
- Street signs
- Other cars

https://www.youtube.com/watch?v=aGW4nRzx8lw

V-Charge | Automonous driving using close-to-market sensors

V-Charge | Autonomous driving using close-to-market sensors

Typical Situation

V-Charge Review 2 | **Driving Demo**

V-Charge | the ultimate vision

Mixed-traffic scenarios

NIFTi – Urban Search and Rescuing

www.nifti.eu/

- Robotic help for Urban Search and Rescue
- UGV and UAV combined for scene exploration
- Yearly evaluation of system by firemen

- Online 3D mapping from laser sensor
- Based on enhanced ICP released open-source
- Topological segmentation for human-robot interaction

Omnicam

Rotating Laser

Vision only UAV navigation

www.sfly.ethz.ch/

- Swarm of small helicopters
 - Vision only navigation (one camera, GPS denied)
 - Fully autonomous with on-board computing
 - Feature based visual SLAM

UAV | collision avoidance and path planning

- Real time 3D mapping (on-board)
- optimal path planning considering localization uncertainties

Flying Robots – fixed wing

Skysailor (2008)

| pioneering continuous flights

3.2 m, 2.3 kg

https://www.youtube.com/watch?v=IU4BoEFOEKI

robust and versatile solar plane

3 m, 3.8 kg

81 hours non-stop in summer 2015

5.64 m, 6.2 kg

https://www.youtube.com/watch?v=8m4 NpTQn0E

Autonomous Mobile Robots

Roland Siegwart, Margarita Chli, Martin Rufli

Efficient Walking and Running what nature evolved (Extreme Jumpy Dog)

http://www.youtube.com/watch?v=Jql6TSyudFE

Efficient Walking and Running | serial elastic actuation

StarlETH | agile, efficiency and robust

- precise torque control during stance
- fast task space position control during swing
- virtual model controller for ground contact
- autonomous gait discovery by stochastic optimization

Autonomous Mobile RobotsRoland Siegwart, Margarita Chli, Martin Rufli

https://www.youtube.com/watch?v=9PprNdIKRaw

Collaborative Visual-Inertial Navigation

in collaboration with

Humanoid Robot: ASIMO

- Honda's ASIMO Advanced Step in Innovative MObility
- Designed to help people in their everyday lives
- One of the most advanced humanoid robots
 - Compact, lightweight
 - Sophisticated walk technology
 - Human-friendly design

Video: Honda 2012

Beyond Mobility | PR2 robot from Willow Garage

Fold towels

Clean-up