CSE 6331 HOMEWORK 1

BRENDAN WHITAKER

1. Order the given functions by asymptotic dominance. That is, produce an order $f_1(n), f_2(n), ...$ such that $f_i(n) = O(f_{i+1}(n))$.

$$1/n^{2}, 2^{23}, \log_{2}\log_{2}(n^{5} + n^{2}), 27\log_{7}(n) + \sqrt{\log_{2}(n)}, (\log_{2}n)^{3},$$

$$3n^{2.1} + 19n^{1.5} + \sqrt{n}, 5^{\log_{2}n} + \sqrt{n}, 4^{\sqrt{n}}, n!n^{2}, n^{2n}, 2^{2^{n}}.$$
(1)

$$c, b, f, h, i, g, j, d, a, e, k \tag{2}$$

2. Let f(n) be a function defined for \mathbb{N} . Prove or disprove: If $f(n) \in \Theta(n^2)$, then f(n) is asymptotically, monotonically non-decreasing, i.e. $f(n) \leq f(n+1)$ for all sufficiently large n.

It is false, we can construct a piecewise function by for odd n taking $f(n) = n^2$ and taking f(n) = f(n-1) for even n. Multiplying this by scalars gives us upper and lower bounds for n^2 . We need to use induction to be rigorous.

Consider the function $f: \mathbb{N} \to \mathbb{N}$ given by:

$$f(n) = \begin{cases} n^2 & n \text{ is odd,} \\ f(n-1) - 1 & n \text{ is even.} \end{cases}$$

Note that this function is not asymptotically monotonically non-decreasing since for each odd integer n, f(n+1) = f(n) - 1 < f(n). We prove that $f \in \Theta(n^2)$. Define $g(n) = n^2$.

We first prove that $f(n) \in O(n^2)$. Note that $\frac{1}{2}f(4) = 4$, and g(4) = 16. Define $h(n) = \frac{1}{2}f(n)$. We claim that h(n) < g(n), $\forall n \ge 4$. We prove this by induction. We have already checked our base case and verified that h(4) < g(4). We fix $n \in \mathbb{N}$, and define our induction hypothesis as h(n) < g(n). We wish to show that h(n+1) < g(n+1).

Case 1: n is odd. Observe:

$$h(n+1) = \frac{1}{2}f(n+1) = \frac{1}{2}(f(n)-1) = \frac{1}{2}f(n) - \frac{1}{2} = h(n) - \frac{1}{2}$$

$$< g(n) - \frac{1}{2} < g(n+1).$$
(3)

In the above expression, the first equality comes from the definition of h, the second comes from the definition of f and the fact that n is odd, and the third comes from the definition of h again. The inequality on the second line comes from the induction hypothesis, and since $g(n) = n^2$ is an increasing function for positive n, we have the final inequality and our desired result for the first case.

Case 2: n is even. Observe:

$$h(n+1) = \frac{1}{2}f(n+1) = \frac{1}{2}(n+1)^2 = \frac{1}{2}g(n+1) < g(n+1).$$
(4)

In the above expression, the first equality comes from the definition of h, the second comes from the definition of f and the fact that n is even, and thus n+1 is odd. The third equality comes from the definition of g and the last is because g is positive for $n \ge 4$.

Hence we have the desired inequality for all $n \ge 4$, and the induction is complete. So we know $f(n) < 2n^2 \ \forall n \ge 4$, hence $f(n) \in O(n^2)$.

Now we will show $f(n) \in \Omega(n^2)$. So we choose $c = \frac{1}{2}$, and we will show that $f(n) \ge \frac{1}{2}n^2$ for all sufficiently large n. Note that f(5) = 25. Define $g'(n) = \frac{1}{2}n^2$. Note that g'(5) = 25/2 < 25 = f(5),

 $Date \colon \mathrm{SP18}.$

so f(5) > g'(5). We prove by induction that $f(n) > g'(n) \ \forall n \ge 5$. We already finished our base case, so we fix n, and assume for our induction hypothesis that f(n) > g'(n). We show f(n+1) > g'(n+1).

Case 1: n is odd. Observe:

$$f(n+1) = f(n) - 1 = n^2 - 1 = (n+1)(n-1) > (n+1)(n+1) > \frac{1}{2}(n+1)^2 = g'(n+1).$$

Case 2: n is even. Observe:

$$f(n+1) = (n+1)^2 < \frac{1}{2}(n+1)^2 = g'(n+1).$$

So in both cases our inductive step holds, so we have proven that $f(n) > \frac{1}{2}n^2$, $\forall n \geq 5$. So $f(n) \in Omega(n^2)$, hence we know $f(n) \in \Theta(n^2)$. But since f is not asymptotically monotonically non-decreasing, we have found a valid counterexample.

3. Let f(n) be defined on \mathbb{N} . Prove or disprove the following statement: if $f(n) \in O(g(n))$, then $2^{f(n)} \in O(2^{g(n)})$.

Let f(n) = 2n, and let g(n) = n. Then $f(n) \in O(g(n))$, since $f(n) = 2n \le 3g(n) = 3n \ \forall n$. But note that $2^{2n} \notin O(2^n)$, since $2^{2n} = (2^n)^2 = 4^n$, and we know $4^n \notin O(2^n)$, since 2 < 4.

4. Find how many dollar signs the given procedure will print.

Note that the inner while loop executes $\log_2(l)$ times where $2^l = n$. So we have that the inner while loop takes $\log\log(n)$ time. The outer for loop executes $\log_2(n)$ times. Hence our running time is given by:

$$T(n) = \Theta(\log(n)\log(\log(n))).$$