Page: 1 of 22

FCC TEST REPORT

FCC ID : WIR-8464208002T Applicant : Ultra-Lit Tree Co.

Address : 1989 Johns Drive, Glenview, IL 60025, US

Equipment Under Test (EUT):

Product Name : Christmas Tree Fire alert system

Model No. : 8464208002

Standards : FCC CFR47 Part 15 Section 15.231:2009

Date of Test : July 27, 2011 ~ July 29, 2011

Date of Issue : August 10, 2011

Test Engineer : Hunk yan

Reviewed By : Philo zhong

Test Result : PASS

Prepared By:

Table zhous

Waltek Services (Shenzhen) Co., Ltd.

1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen 518105, China

Tel:+86-755-27553488 Fax:+86-755-27553868

♦ The sample detailed above has been tested to the requirements of Council Directives ANSI C63.4:2003. The test results have been reviewed against the Directives above and found to meet their essential requirements.

WALTEK SERVICES

2 Test Summary

FCC Part 15 Subpart C Requirements							
Test Items	Test Requirement	Test Method	Result				
Spurious Redicted Emissions	15.205(a)						
Spurious Radiated Emissions	15.209	ANSI C63.4: 2003	PASS				
(30MHz to 5GHz)	15.231(b)						
Conducted Emissions	15 207	ANISL C(2.4.2002	NT/A				
$(150\text{kHz} \sim 30\text{MHz})$	15.207	ANSI C63.4:2003	N/A				
20dB Bandwidth	15.231(c)	ANSI C63.4: 2003	PASS				
Activation time	15.231(a)(2)	ANSI C63.4: 2003	PASS				

3 Contents

		Page
1	1 COVER PAGE	1
2	2 TEST SUMMARY	2
•	4 CONTENTED	2
3	3 CONTENTS	3
4	4 GENERAL INFORMATION	4
	4.1 CLIENT INFORMATION	
	4.2 GENERAL DESCRIPTION OF E.U.T.	
	4.3 DETAILS OF E.U.T.	
	4.4 DESCRIPTION OF SUPPORT UNITS	
	4.5 STANDARDS APPLICABLE FOR TESTING	
	4.7 TEST LOCATION	
5		
6	6 CONDUCTED EMISSIONS	8
7	7 SPURIOUS RADIATED EMISSIONS	9
	7.1 Measurement Uncertainty	9
	7.2 EUT Setup	10
	7.2.2 Spectrum Analyzer Setup	
	7.3 TEST PROCEDURE	
	7.4 SUMMARY OF TEST RESULTS	
0		
8	0 ZUDB BANDWIDIR	14
9	9 ACTIVATION TIME	15
1(10 RF EXPOSURE TEST	17
1.	11 ANGENNIA DECLUDEMENTE	10
1.	11 ANTENNA REQUIREMENT	18
12	12 PHOTOGRAPHS - CONSTRUCTIONAL DETAILS	19
	12.1 EUT – APPEARANCE VIEW1	19
	12.2 EUT – Appearance View2	
	12.3 EUT – OPEN VIEW	
	12.4 PCB – FRONT VIEW	
_	12.3 I CD - DACK VIEW	21
. 1		22

4 General Information

4.1 Client Information

Applicant : Ultra-Lit Tree Co.

Address of Applicant : 1989 Johns Drive, Glenview, IL 60025, US

Manufacturer : DONGGUAN PROTRONIC ELECTRONICS LTD.

Address of Manufacturer : Protronic Industrial Park, Xiangxi Village, Shipai Town, DongGuan,

GuangDong

4.2 General Description of E.U.T.

Product Name : Christmas Tree Fire alert system

Model No. : 8464208002

Operation Frequency : 433.92MHz

4.3 Details of E.U.T.

Technical Data: : DC 3.0V (2*1.5V 'AA' Size Battery)

4.4 Description of Support Units

The EUT has been tested as an independent unit. All the test was performed in the condition of DC 3.0V input.

4.5 Standards Applicable for Testing

The customer requested FCC tests for a Christmas Tree Fire alert system. The standards used were FCC CFR47 Part 15 Section 15.231:2009.

WALTEK SERVICES

4.6 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: IC7760A

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A, Aug.03, 2010.

• FCC – Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, May 26, 2011.

4.7 Test Location

All the tests were performed at:

Waltek Services(Shenzhen) Co., Ltd. at 1/F, Fukangtai Building, West Baima Rd., Songgang Street, Baoan District, Shenzhen, China

WALTEK SERVICES

5 Equipment Used during Test

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
EMC Analyzer	Agilent/ E7405A	MY451149 43	W2008001	9k-26.5GHz	Aug. 2, 2011	Aug. 1, 2012	Wws20 081596	±1dB
Trilog Broadband Antenne	SCHWARZB ECK MESS- ELEKTROM / VULB9163	336	W2008002	30-3000 MHz	Aug. 2, 2011	Aug. 1, 2012	-	±1dB
Broad- band Horn Antenna	SCHWARZB ECK MESS- ELEKTROM / BBHA 9120D(1201)	667	W2008003	1-18GHz	Aug. 2, 2011	Aug. 1, 2012	-	f<10 GHz: ±1dB 10GHz <f< 18 GHz: ±1.5dB</f<
Broadband Preamplifie r	SCHWARZB ECK MESS- ELEKTROM / BBV 9718	9718-148	W2008004	0.5-18GHz	Aug. 2, 2011	Aug. 1, 2012	-	±1.2dB
10m Coaxial Cable with N-male Connectors	SCHWARZB ECK MESS- ELEKTROM / AK 9515 H	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-	-
10m 50 Ohm Coaxial Cable	SCHWARZB ECK MESS- ELEKTROM / AK 9513	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-	-
Positioning Controller	C&C LAB/ CC-C-IF	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-	-
Color Monitor	SUNSPO/ SP-14C	-	-	-	Aug. 2, 2011	Aug. 1, 2012	-	-
Test Receiver	ROHDE&SC HWARZ/ ESPI	101155	W2005001	9k-3GHz	Aug. 2, 2011	Aug. 1, 2012	Wws20 080942	±1dB
EMI Receiver	Beijingkehua n	KH3931	-	9k-1GHz	Aug. 2, 2011	Aug. 1, 2012	-	-
Two-Line V-Network	ROHDE&SC HWARZ/ ENV216	100115	W2005002	50Ω/50μΗ	Aug. 2, 2011	Aug. 1, 2012	Wws20 080941	±10%
Digital Power Analyzer	Em Test AG/Switzerla nd/ DPA 500	V07451 03095	W2008012	Power: 2000VA Vol-range: 0-300V Freq_range : 10-80Hz	Aug. 2, 2011	Aug. 1, 2012	Wwd2 008118 5	Voltage distinguish:0 .025% Power_freq
Power Source	Em Test AG/Switzerla nd/ ACS 500	V07451 03096	W2008013	Vol-range: 0-300V Power_freq : 10-80Hz			3	distinguish:0 .02Hz

WALTEK SERVICES

FCC ID: WIR-8464208002T

Equipment Name	Manufacturer Model	Equipment No	Internal No	Specification	Cal. Date	Due Date	Cert. No	Uncertainty
RF Generator	TESEQ GmbH/ NSG4070	25781	W2008008	Fraq-range: 9K-1GHz RF voltage: -60 dBm- +10dBm	Aug. 2, 2011	Aug. 1, 2012	Wws20 081890	Power_freq distinguish0. 1Hz RFeletricity distinguish 0.1 B
CDN M- Type	TESEQ GmbH/ CDN M016	25112	W2008009	Voltage correct factor 9.5 dB	Aug. 2, 2011	Aug. 1, 2012	Wwc20 082396	150K- 80MHz: ±1dB 80- 230MHz:-2- +3dB
EM-Clamp	TESEQ GmbH/ KEMZ 801	25453	W2008010	Freq_range : 0.15-1000 MHz	Aug. 2, 2011	Aug. 1, 2012	Wwc20 082397	0.3-400 MHz: ±4dB Other freq: ±5dB
Attenuator 6dB	TESEQ GmbH/ ATN6050	25365	-	-	Aug. 2, 2011	Aug. 1, 2012	Wws20 081597	-
All Modules Generator	SCHAFFNE R/6150	34579	W2008006	voltage:200V -4.4KV Pulse current: 100A-2.2KA	Aug. 2, 2011	Aug. 1, 2012	Wwc20 082401	voltage: ±10% Pulse current: ±10%
Capacitive Coupling Clamp	SCHAFFNE R/ CDN 8014	25311	-	-	Aug. 2, 2011	Aug. 1, 2012	Wwc20 082398	-
Signal and Data Line Coupling Network	SCHAFFNE R/CDN 117	25627	W2008011	1.2/50μS	Aug. 2, 2011	Aug. 1, 2012	Wwc20 082399	-
AC Power Supply	TONGYUN/ DTDGC-4	-	-	-	Aug. 2, 2011	Aug. 1, 2012	Wws20 080944	-

6 Conducted Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.107

Test Method: ANSI C63.4:2003

Test Result: N/A

Remark: Because the power of the EUT is supported by 2*1.5V 'AA' Size Battery, this test

is not applicable.

WALTEK SERVICES

7 Spurious Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & Section 15.231

Test Method: ANSI C63.4:2003

Test Result: PASS

Frequency Range: 30MHz to 5GHz

Measurement Distance: 3m Class: Class B

Limit: 40.0 dBµV/m between 30MHz & 88MHz

 $43.5~dB\mu V/m$ between 88MHz & 216MHz $46.0~dB\mu V/m$ between 216MHz & 960MHz

54.0 dBµV/m above 960MHz

Above limits are for Quasi-Peak if maximised

peak within 6dB of limit

74.0 dBuV/m for peak above 1GHz 54.0 dBuV/m for AVG above 1GHz

The tighter limit applies at the band edges.

Detector: Peak for pre-scan (120kHz resolution bandwidth)

EUT Operation:

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH

Atmospheric Pressure: 1012 mbar

EUT Operation:

The EUT was tested in continuously transmit mode.

7.1 Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in the field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at Waltek EMC Lab is ±5.03dB.

WALTEK SERVICES

7.2 EUT Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.4:2003.

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 MHz to 1 GHz Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission from 1 GHz to 5 GHz Emissions.

WALTEK SERVICES

7.2.2 Spectrum Analyzer Setup

According to FCC Part15 Rules, the system was tested 30 to 5000MHz.

Below 1GHz

Start Frequency	.30 MHz
Stop Frequency	.1000MHz
Sweep Speed	.Auto
IF Bandwidth	.120 KHz
Video Bandwidth	.100KHz
Quasi-Peak Adapter Bandwidth	.120 KHz
Quasi-Peak Adapter Mode	.Normal
Resolution Bandwidth	.100KHz

Above 1GHz

Start Frequency	1000MHz
Stop Frequency	5000MHz
Sweep Speed	Auto
IF Bandwidth	120 KHz
Video Bandwidth	100KHz
Quasi-Peak Adapter Bandwidth	120 KHz
Quasi-Peak Adapter Mode	Normal
Resolution Bandwidth	1MHz

7.3 Test Procedure

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X(normal uses) axis positioning. And all the modes was tested in the report. Only the worst case is shown in the report.

WALTEK SERVICES

7.4 Summary of Test Results

According to the data in this section, the EUT complied with the FCC Part15 C standards.

Test Data:

Frequency (MHz)	Detector	Ant. Pol	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Turntable Angle (°)
433.92	peak	V	97.25	100.83	-3.58	1.1	170
867.84	peak	V	74.26	80.83	-6.57	1.5	220
1301.76	peak	V	68.59	80.83	-12.24	1.0	160
1735.68	peak	V	75.18	80.83	-5.65	1.0	300
2603.52	peak	V	72.61	80.83	-8.22	1.3	310
3037.44	peak	V	62.25	80.83	-18.58	2.0	120
4339.20	peak	V	64.19	80.83	-16.64	1.8	90
433.92	peak	Н	88.74	100.83	-12.09	2.2	20
867.84	peak	Н	67.42	80.83	-13.41	1.9	130
1301.76	peak	Н	58.84	80.83	-21.99	2.0	160
1735.68	peak	Н	68.16	80.83	-12.67	1.6	60
2603.52	peak	Н	64.33	80.83	-16.50	1.8	80
3037.44	peak	Н	56.29	80.83	-24.54	2.1	150
4339.20	peak	Н	58.74	80.83	-22.09	1.4	160
433.92	AVG	V	42.24	80.83	-38.59	1.1	170
867.84	AVG	V	19.25	60.83	-41.58	1.5	220
1301.76	AVG	V	13.58	60.83	-47.25	1.0	160
1735.68	AVG	V	20.17	60.83	-40.66	1.0	300
2603.52	AVG	V	17.6	60.83	-43.23	1.3	310
3037.44	AVG	V	7.24	60.83	-53.59	2.0	120
4339.20	AVG	V	9.18	60.83	-51.65	1.8	90
433.92	AVG	Н	33.73	80.83	-47.10	2.2	20
867.84	AVG	Н	12.41	60.83	-48.42	1.9	130
1301.76	AVG	Н	3.83	60.83	-57.00	2.0	160
1735.68	AVG	Н	13.15	60.83	-47.68	1.6	60
2603.52	AVG	Н	9.32	60.83	-51.51	1.8	80
3037.44	AVG	Н	1.28	60.83	-59.55	2.1	150
4339.20	AVG	Н	3.73	60.83	-57.10	1.4	160

WALTEK SERVICES

7.5 Photograph-Radiation Emission Test Setup

Below 1GHz

Above 1GHz

WALTEK SERVICES

8 20 dB Bandwidth

Test Requirement: FCC Part 15.231

Test Method: Based on ANSI C63.4:2003

Limit: The bandwidth of the emission shall be no wider than 0.25%

of the center frequency at the points 20 dB down from the modulated carrier. The bandwidth of the emission shall be no

wider than 1.085 MHz

Test Status: Normal working mode.

Test Procedure:

1. The EUT was placed on a turntable which is 0.8m above ground plane

2. Set EUT as normal operation mode

3. Set SPA center frequency = fundamental frequency, RBW, VBW = 100kHz, Span = 1MHz.

Test Result:

The 20 dB bandwidth of the EUT is 266.00kHz. Comply with the requirements of FCC Part 15.231.

Test result plot as follows:

WALTEK SERVICES

9 Activation time

Test Requirement: FCC Part 15.231

Test Mothed: Based on ANSI C63.4:2003

Limit: A transmitter activated automatically shall cease transmission

within 5 seconds after activation.

Test Status: Normal working mode.

Test Procedure:

1. The EUT was placed on a turntable which is 0.8m above ground plane

2. Set EUT as normal operation mode

3. Set SPA center frequency = fundamental frequency, RBW = 100kHz, VBW = 300kHz, Span

= 0 Hz, Adjacent sweep time.

Test Result:

The activation time of the EUT is 50.4ms, comply with the requirements of FCC CFR47 Part 15 Section 15.231.

Test result plot as follows:

WALTEK SERVICES

10 RF Exposure Test

Test Requirement: FCC CFR47 Part 2 Section 2.1091

Test Method: Based on FCC CFR47 Part 1 Section 1.1307 EUT Operation: The EUT work in test mode(Tx) and test it

Requiments:

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

WALTEK SERVICES

Page: 18 of 22

Ultra-Lit Tree Co. FCC ID: WIR-8464208002T

MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

 $\mathbf{E} = \text{Electric field (V/m)}$

 $\mathbf{P} = \text{Peak RF output power (W)}$

G = EUT Antenna numeric gain (numeric)

 $\mathbf{d} =$ Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (dBi)	Antenna Gain (numeric)	Peak Output Power (dBm)		Power Density (S) (mW/cm2)	Limit of Power Density (S) (mW/cm2)	Test Result
0	1	-9.54	0.11	0.00002	0.28928	Complies

11 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The EUT has a permanently attached antenna, it is full fill with the requirement.

WALTEK SERVICES

12 Photographs - Constructional Details

12.1 EUT – Appearance View1

12.2 EUT – Appearance View2

WALTEK SERVICES

12.3 EUT – Open View

12.4 PCB – Front View

12.5 PCB – Back View

13 FCC Label

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:(1)this device may not cause harmful interference,and (2) this device must accept any interference received, including interference that may cause undesired operation. The Label must not be a stick-on paper. The Label on these products must be permanently affixed to the product and readily visible at the time of purchase and must last the expected lifetime of the equipment not be readily detachable.

