General Security Concepts

Compare and contrast various types of security controls.

Categories of Security Controls

Technical Controls

■ These involve hardware or software mechanisms designed to protect systems and data (e.g., Firewalls, IDS, encryption protocols).

Managerial Controls

■ Policies and procedures established by an organization's management to guide security efforts (e.g., Risk assessments, security planning, resource allocation).

Operational Controls

■ Day-to-day procedures and practices that ensure security policies are effectively implemented (e.g., User training programs, incident response protocols, regular data backups).

Physical Controls

 Measures taken to protect the physical infrastructure and assets of an organization (e.g., Security guards, surveillance cameras, access control systems).

Types of Security Controls

Preventive Controls

■ Aim to stop security incidents before they occur (e.g., Access control mechanisms, security policies, antivirus software).

Deterrent Controls

Designed to discourage potential attackers from initiating harmful actions (e.g., Warning signs, visible security cameras, legal disclaimers).

Detective Controls

■ Intended to identify and alert about security incidents as they happen or after they have occurred (e.g., Log monitoring, IDS, security audits).

Corrective Controls

■ Focus on restoring systems and data after a security breach or incident (e.g., Data restoration from backups, system patches, incident response procedures).

Compensating Controls

■ Alternative measures implemented when primary controls are not feasible or fail to provide sufficient protection (e.g., Increased monitoring when segregation of duty isn't possible, additional authentication methods).

Directive Controls

■ Establish expected behaviors and actions through policies or guidelines (e.g., Acceptable use policies, security awareness training, standard operating procedures).

Summarize fundamental security concepts.

Confidentiality, Integrity, and Availability (CIA)

Confidentiality

■ Ensures that sensitive information is accessible only to authorized individuals, preventing unauthorized disclosure.

Integrity

■ Maintains the accuracy and completeness of data, ensuring it remains unaltered during storage and transmission.

Availability

 Guarantees that information and resources are accessible to authorized users when needed.

Non-Repudiation

 Prevents individuals from denying their actions, ensuring accountability. This is often achieved through digital signatures and audit logs.

Authentication, Authorization, and Accountability (AAA)

- Authentication
 - Verifies the identity of users or systems before granting access.
- Authorization
 - Determines the permissions and resources an authenticated user or system can access.
- Accounting
 - Tracks user activities to maintain record for auditing and compliance purposes.

Gap Analysis

 A process that identifies discrepancies between current security measures and desired security standards, helping organizations address vulnerabilities.

Zero Trust

 A security model that operates on the principle of not trusting any entity by default, whether inside or outside the network.

Control Plane

- Adaptative Identity
 - Dynamically adjusts access controls based on user behavior and context.
- Threat Scope Reduction
 - Minimizes potential attack surfaces by limiting access privileges.
- Policy-Driven Access Control
 - Enforces access decisions based on predefined security policies.
- **■** Policy Administrator
 - Manages and implements security policies across the network.
- Policy Engine
 - Evaluates access requests against policies to make authorization decisions.

Data Plane

- Implicit Trust Zones
 - Segments of the network where trust is established based on strict verification.
- Subject/System
 - Entities (users or devices) requesting access to resources.
- Policy Enforcement Point
 - The component that enforces access decisions made by the policy engine.

Physical Security

- Measures designed to protect physical assets and facilities
- Bollards
 - Physical barriers preventing vehicle intrusion.

Access Control Vestibule

A secured entryway that verifies identity before granting access.

Fencing

Perimeter barriers to deter unauthorized entry.

Video Surveillance

Monitoring systems to detect and record activities.

Security Guards

Personnel responsible for monitoring and responding to security incidents.

Access Badges

Identification cards granting entry to authorized areas.

Lighting

■ Illumination to deter unauthorized access or environmental changes, such as infrared, pressure, microwave, and ultrasonic sensors.

Deception and Disruption Technology

o Techniques used to mislead attackers and detect unauthorized activities.

Honeypot

■ A decoy system designed to attract attackers and study their methods.

Honeynet

■ A network of honeypots simulating a real network environment.

Honeyfile

Decoy files containing fictitious data to detect unauthorized access.

Honeytoken

Decoy data embedded within legitimate data to track unauthorized use.

Explain the importance of change management processes and the impact to security.

Business Processes Impacting Security Operations

Approval Process

■ Before implementing any change, it's essential to have a formal approval process. This ensures that all modifications are reviewed for potential security implications and align with organizational policies.

Ownership

Clearly defining who is responsible for each change ensures accountability and proper oversight throughout the change lifecycle.

Stakeholders

Identifying and involving all relevant stakeholders ensures that diverse perspectives are considered, and potential security concerns are addressed.

Impact Analysis

■ Evaluating the potential effects of a proposed change on the organization's operations, security posture, and existing systems helps identify any risks or issues that need to be addressed.

Test Results

Conducting thorough testing before full-scale implementations ensures that the change functions as intended without introducing new vulnerabilities.

Backout Plan

■ Establishing a contingency plan allows the organization to revert to a previous state if the change leads to unforeseen issues, minimizing potential security risks.

Maintenance Window

■ Scheduling changes during designated maintenance periods reduces the impact on operations and allows for focused attention on the implementation.

Standard Operating Procedure (SOP)

Developing and following SOPs ensures consistency in how changes are implemented and reduces the likelihood of security oversights.

Technical Implications

Allow Lists/Deny Lists

Updating these lists ensures that only authorized entities have access, maintaining system security.

Restricted Access

■ Defining and enforcing restricted activities prevents unauthorized actions that could compromise security.

o Downtime

Planning for and managing system downtime during changes ensures that security monitoring and controls remain effective.

Service/Application Restart

■ Properly managing restarts ensures that security configurations are correctly applied and that systems return to a secure state.

Legacy Applications

Assessing the impact of changes on older applications is crucial, as they may have inherent vulnerabilities or compatibility issues.

Dependencies

■ Understanding and managing dependencies between systems ensures that changes do not inadvertently compromise security elsewhere in the environment.

Documentation

Updating Diagrams

 Maintaining current system diagrams aids in understanding the environment and identifying potential security impacts of changes

Updating Policies/Procedures

■ Reflecting changes in organizational policies and procedures ensures that security practices remain aligned with the current operational environment.

Explain the importance of using appropriate cryptographic solutions.

Public Key Infrastructure (PKI)

Public Key and Private Key

■ PKI utilizes asymmetric encryption, involving a pair of keys (a public key for encryption and a private key for decryption). This mechanism ensures that only the intended recipient can access the encrypted information.

Key Escrow

■ This involves storing a copy of encryption keys with a trusted third party, allowing data recovery in case of key loss, while maintaining security protocols.

Encryption Levels

Full-Disk Encryption (FDE)

Encrypts all data on a disk, protecting information at rest.

Partition and Volume Encryption

■ Targets specific sections of a storage device, offering flexibility in securing sensitive data.

• File and Database Encryption

Encrypts individual files or entire databases, ensuring data remains protected during storage and access.

Record Encryption

■ Encryptions specific records within a database, providing granular security control.

Transport/Communication Encryption

Asymmetric Encryption

■ Uses a pair of keys (public and private) for secure data transmission, commonly employed in SSL/TLS protocols.

Symmetric Encryption

Utilizes a single key for both encryption and decryption, suitable for encrypting large data volumes due to its efficiency.

Key Exchange

■ The process of securely exchanging encryption keys between parties, essential for establishing secure communications.

Algorithms and Key Length

■ The choice of encryption algorithms and key lengths directly impacts security strength; longer keys generally offer enhanced security.

Cryptographic Tools

Trusted Platform Module (TPM)

■ A hardware-based security module that stores cryptographic keys securely, enhancing platform integrity.

Hardware Security Module (HSM)

■ A dedicated hardware device designed to manage and safeguard digital keys, ensuring high levels of data protection.

Key Management System

■ A framework for managing cryptographic keys, including their generation, distribution, storage, and destruction, ensuring keys are handled securely throughout their lifecycle.

Secure Enclave

■ An isolated hardware-based environment that securely processes sensitive data and operations, protecting them from unauthorized access.

Obfuscation Techniques

Steganography

Conceals information within other non-secret data, adding an additional layer of security.

Tokenization

■ Replaces sensitive data with non-sensitive equivalents (tokens), reducing the risk of data exposure.

Data Masking

Alters data to conceal sensitive information, allowing the use of realistic data sets in non-secure environments.

Additional Cryptographic Concepts

Hashing

Transforms data into a fixed-size hash value, ensuring data integrity by detecting alterations.

Salting

Adds random data to inputs before hashing, protecting against precomputed attacks like rainbow tables.

Digital Signatures

■ Provide authentication and non-repudiation by verifying the sender's identity and ensuring message integrity.

Key Stretching

■ Enhances weak keys by processing them through algorithms to increase their complexity, making them more resistant to attacks.

o Blockchain and Open Public Ledger

 Utilize cryptographic techniques to create secure, decentralize records of transactions, ensuring transparency and immutability.

• Certificates and Trust Management

Certificates Authorities (CAs)

■ Trusted entities that issue digital certificates, validating the identity of entities and enabling secure communications.

Certificate Revocation Lists (CRLs) and Online Certificate Status Protocol (OCSP)

■ Mechanisms to check the validity of certificates and ensure they have not been revoked.

Self-Signed and Third-Party Certificates

■ Self-signed certificates are issued by the entity itself, while third-party certificates are issued by trusted CAs, providing varying levels of trust.

Root of Trust

■ A trusted component that serves as the foundation for establishing trust in a cryptographic system.

Certificate Signing Request (CSR) Generation

■ The process of creating a request for a digital certificate, containing the entity's public key and identity information.

Wildcard Certificates

Certificates multiple subdomains under a single domain, simplifying certificate management.