AUA CS108, Statistics, Fall 2020 Lecture 24

Michael Poghosyan

21 Oct 2020

Contents

► Limit Theorems

Sometimes we are required to calculate limits of the form:

$$\lim_{n\to+\infty}\frac{g(X_1)+g(X_2)+\ldots+g(X_n)}{n}$$

in the Probability or a.s. sense, for some nice function g.

Sometimes we are required to calculate limits of the form:

$$\lim_{n\to+\infty}\frac{g(X_1)+g(X_2)+...+g(X_n)}{n}$$

in the *Probability* or *a.s.* sense, for some nice function g.Clearly, under the condition that $\mathbb{E}(g(X_1))$ and $Var(g(X_1))$ are finite, or $\mathbb{E}(|g(X_1)|) < +\infty$, we will have

$$\frac{g(X_1)+g(X_2)+...+g(X_n)}{n}\stackrel{\mathbb{P},a.s.}{\longrightarrow} \mathbb{E}(g(X_1)), \qquad n\to +\infty.$$

Sometimes we are required to calculate limits of the form:

$$\lim_{n\to+\infty}\frac{g(X_1)+g(X_2)+...+g(X_n)}{n}$$

in the *Probability* or *a.s.* sense, for some nice function g.Clearly, under the condition that $\mathbb{E}(g(X_1))$ and $Var(g(X_1))$ are finite, or $\mathbb{E}(|g(X_1)|) < +\infty$, we will have

$$\frac{g(X_1)+g(X_2)+...+g(X_n)}{n} \overset{\mathbb{P},a.s.}{\longrightarrow} \mathbb{E}(g(X_1)), \qquad n \to +\infty.$$

Say, for example,

$$\underbrace{X_1^2 + X_2^2 + ... + X_n^2}_{n} \stackrel{\mathbb{P},a.s.}{\longrightarrow}$$

Sometimes we are required to calculate limits of the form:

$$\lim_{n\to+\infty}\frac{g(X_1)+g(X_2)+...+g(X_n)}{n}$$

in the *Probability* or *a.s.* sense, for some nice function g.Clearly, under the condition that $\mathbb{E}(g(X_1))$ and $Var(g(X_1))$ are finite, or $\mathbb{E}(|g(X_1)|) < +\infty$, we will have

$$\frac{g(X_1)+g(X_2)+...+g(X_n)}{n} \overset{\mathbb{P},a.s.}{\longrightarrow} \mathbb{E}(g(X_1)), \qquad n \to +\infty.$$

Say, for example,

$$\frac{X_1^2 + X_2^2 + \dots + X_n^2}{n} \xrightarrow{\mathbb{P}, a.s.} \mathbb{E}(X_1^2), \qquad n \to +\infty.$$

The LLN says that the values of \overline{X}_n are concentrated around $\mathbb{E}(X_1)$.

The LLN says that the values of \overline{X}_n are concentrated around $\mathbb{E}(X_1)$. But it is not giving us an idea about how the values are distributed around that mean value.

The LLN says that the values of \overline{X}_n are concentrated around $\mathbb{E}(X_1)$. But it is not giving us an idea about how the values are distributed around that mean value. CLT helps us in this regard.

The LLN says that the values of \overline{X}_n are concentrated around $\mathbb{E}(X_1)$. But it is not giving us an idea about how the values are distributed around that mean value. CLT helps us in this regard.

To give the general idea of the CLT, let us use the following transform: for a r.v. X, let us denote

$$Z = Standardize(X) = \frac{X - \mathbb{E}(X)}{\sqrt{Var(X)}} = \frac{X - \mathbb{E}(X)}{SD(X)},$$

the Standardization (normalization, scaling) of X.

The LLN says that the values of \overline{X}_n are concentrated around $\mathbb{E}(X_1)$. But it is not giving us an idea about how the values are distributed around that mean value. CLT helps us in this regard.

To give the general idea of the CLT, let us use the following transform: for a r.v. X, let us denote

$$Z = Standardize(X) = \frac{X - \mathbb{E}(X)}{\sqrt{Var(X)}} = \frac{X - \mathbb{E}(X)}{SD(X)},$$

the Standardization (normalization, scaling) of X. Clearly,

$$\mathbb{E}(Z) = 0$$
 and $Var(Z) = 1$.

The basic idea of the CLT is the following: if we have a sequence of IID r.v. X_n , and we consider their sum S_n or their average \overline{X}_n , then

$$Standardize(S_n) \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$$

and

Standardize(
$$\overline{X}_n$$
) $\stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$.

The basic idea of the CLT is the following: if we have a sequence of IID r.v. X_n , and we consider their sum S_n or their average \overline{X}_n , then

$$Standardize(S_n) \xrightarrow{D} \mathcal{N}(0,1)$$

and

Standardize(
$$\overline{X}_n$$
) $\stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$.

Btw, trivially,

$$Standardize(\overline{X}_n) = Standardize(S_n),$$

and these two versions of CLT are the same.

The basic idea of the CLT is the following: if we have a sequence of IID r.v. X_n , and we consider their sum S_n or their average \overline{X}_n , then

$$Standardize(S_n) \xrightarrow{D} \mathcal{N}(0,1)$$

and

Standardize(
$$\overline{X}_n$$
) $\stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$.

Btw, trivially,

$$Standardize(\overline{X}_n) = Standardize(S_n),$$

and these two versions of CLT are the same.

So for large n, the Distribution of the $Standardize(S_n)$ or $Standardize(\overline{X}_n)$ is approximately Standard Normal.

The basic idea of the CLT is the following: if we have a sequence of IID r.v. X_n , and we consider their sum S_n or their average \overline{X}_n , then

$$Standardize(S_n) \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$$

and

$$Standardize(\overline{X}_n) \stackrel{D}{\longrightarrow} \mathcal{N}(0,1).$$

Btw, trivially,

$$Standardize(\overline{X}_n) = Standardize(S_n),$$

and these two versions of CLT are the same.

So for large n, the Distribution of the $Standardize(S_n)$ or $Standardize(\overline{X}_n)$ is approximately Standard Normal. And this independent of the initial Distribution of X_k !

The basic idea of the CLT is the following: if we have a sequence of IID r.v. X_n , and we consider their sum S_n or their average \overline{X}_n , then

$$Standardize(S_n) \stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$$

and

Standardize(
$$\overline{X}_n$$
) $\stackrel{D}{\longrightarrow} \mathcal{N}(0,1)$.

Btw, trivially,

$$Standardize(\overline{X}_n) = Standardize(S_n),$$

and these two versions of CLT are the same.

So for large n, the Distribution of the $Standardize(S_n)$ or $Standardize(\overline{X}_n)$ is approximately Standard Normal. And this independent of the initial Distribution of X_k !

Easy and beautiful, isn't it?

Assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$.

Assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$.

We consider sums

$$S_n = X_1 + X_2 + ... + X_n.$$

Assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$.

We consider sums

$$S_n = X_1 + X_2 + ... + X_n.$$

We Standardize S_n :

$$Standardize(S_n) =$$

Assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$.

We consider sums

$$S_n = X_1 + X_2 + ... + X_n.$$

We Standardize S_n :

$$Standardize(S_n) = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{Var(S_n)}}.$$

Assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$.

We consider sums

$$S_n = X_1 + X_2 + ... + X_n$$
.

We Standardize S_n :

$$Standardize(S_n) = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{Var(S_n)}}.$$

Now we use

$$\mathbb{E}(S_n) =$$

Assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$.

We consider sums

$$S_n = X_1 + X_2 + ... + X_n.$$

We Standardize S_n :

$$Standardize(S_n) = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{Var(S_n)}}.$$

Now we use

$$\mathbb{E}(S_n) = n \cdot \mu, \qquad Var(S_n) =$$

Assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$.

We consider sums

$$S_n = X_1 + X_2 + ... + X_n$$
.

We Standardize S_n :

$$Standardize(S_n) = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{Var(S_n)}}.$$

Now we use

$$\mathbb{E}(S_n) = n \cdot \mu, \quad Var(S_n) = n \cdot \sigma^2.$$

Assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$.

We consider sums

$$S_n = X_1 + X_2 + ... + X_n$$
.

We Standardize S_n :

$$Standardize(S_n) = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{Var(S_n)}}.$$

Now we use

$$\mathbb{E}(S_n) = n \cdot \mu, \quad Var(S_n) = n \cdot \sigma^2.$$

Then,

$$Standardize(S_n) = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{Var(S_n)}} = \frac{S_n - n \cdot \mu}{\sqrt{n} \cdot \sigma}.$$

Assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$.

We consider sums

$$S_n = X_1 + X_2 + ... + X_n$$
.

We Standardize S_n :

$$Standardize(S_n) = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{Var(S_n)}}.$$

Now we use

$$\mathbb{E}(S_n) = n \cdot \mu, \quad Var(S_n) = n \cdot \sigma^2.$$

Then,

Standardize
$$(S_n) = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{Var(S_n)}} = \frac{S_n - n \cdot \mu}{\sqrt{n} \cdot \sigma}.$$

The CLT states:

$$\frac{S_n - n \cdot \mu}{\sqrt{n} \cdot \sigma} \xrightarrow{D} \mathcal{N}(0, 1).$$

Again, assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$.

Again, assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$. We consider the Averages

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

Again, assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$. We consider the Averages

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

We Standardize \overline{X}_n :

$$Standardize(\overline{X}_n) =$$

Again, assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$. We consider the Averages

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

We Standardize \overline{X}_n :

$$Standardize(\overline{X}_n) = \frac{X_n - \mathbb{E}(X_n)}{\sqrt{Var(\overline{X}_n)}}.$$

Again, assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$. We consider the Averages

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

We Standardize \overline{X}_n :

$$Standardize(\overline{X}_n) = \frac{X_n - \mathbb{E}(X_n)}{\sqrt{Var(\overline{X}_n)}}.$$

We use

$$\mathbb{E}(\overline{X}_n) =$$

Again, assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$. We consider the Averages

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

We Standardize \overline{X}_n :

$$Standardize(\overline{X}_n) = \frac{X_n - \mathbb{E}(X_n)}{\sqrt{Var(\overline{X}_n)}}.$$

We use

$$\mathbb{E}(\overline{X}_n) = \mu, \quad Var(\overline{X}_n) =$$

Again, assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$. We consider the Averages

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$
.

We Standardize \overline{X}_n :

$$Standardize(\overline{X}_n) = \frac{X_n - \mathbb{E}(X_n)}{\sqrt{Var(\overline{X}_n)}}.$$

We use

$$\mathbb{E}(\overline{X}_n) = \mu, \qquad Var(\overline{X}_n) = \frac{\sigma^2}{n}.$$

Again, assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$. We consider the Averages

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

We Standardize \overline{X}_n :

$$Standardize(\overline{X}_n) = \frac{X_n - \mathbb{E}(X_n)}{\sqrt{Var(\overline{X}_n)}}.$$

We use

$$\mathbb{E}(\overline{X}_n) = \mu, \qquad Var(\overline{X}_n) = \frac{\sigma^2}{n}.$$

Then,

$$Standardize(\overline{X}_n) = \frac{X_n - \mathbb{E}(X_n)}{\sqrt{Var(\overline{X}_n)}} = \frac{X_n - \mu}{\sigma/\sqrt{n}}.$$

Again, assume X_n be a sequence of IID r.v. with finite expectation $\mu = \mathbb{E}(X_i)$ and variance $\sigma^2 = Var(X_i)$. We consider the Averages

$$\overline{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}.$$

We Standardize \overline{X}_n :

$$Standardize(\overline{X}_n) = \frac{X_n - \mathbb{E}(X_n)}{\sqrt{Var(\overline{X}_n)}}.$$

We use

$$\mathbb{E}(\overline{X}_n) = \mu, \qquad Var(\overline{X}_n) = \frac{\sigma^2}{n}.$$

Then,

$$S$$
tandardize $(\overline{X}_n) = rac{\overline{X}_n - \mathbb{E}(\overline{X}_n)}{\sqrt{Var(\overline{X}_n)}} = rac{\overline{X}_n - \mu}{\sigma/\sqrt{n}}.$

The CLT states:

$$\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \xrightarrow{D} \mathcal{N}(0,1).$$

Two forms of CLT

Of course, these two forms of the CLT are the same: we have

$$Standardize(S_n) = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{Var(S_n)}} = \frac{S_n - n \cdot \mu}{\sqrt{n} \cdot \sigma}$$

and

$$Standardize(\overline{X}_n) = \frac{X_n - \mathbb{E}(X_n)}{\sqrt{Var(\overline{X}_n)}} = \frac{X_n - \mu}{\sigma/\sqrt{n}}.$$

Two forms of CLT

Of course, these two forms of the CLT are the same: we have

$$Standardize(S_n) = \frac{S_n - \mathbb{E}(S_n)}{\sqrt{Var(S_n)}} = \frac{S_n - n \cdot \mu}{\sqrt{n} \cdot \sigma}$$

and

$$Standardize(\overline{X}_n) = \frac{X_n - \mathbb{E}(X_n)}{\sqrt{Var(\overline{X}_n)}} = \frac{X_n - \mu}{\sigma/\sqrt{n}}.$$

Now,

$$\frac{S_n - n \cdot \mu}{\sqrt{n} \cdot \sigma} = \frac{n \cdot (\frac{S_n}{n} - \mu)}{\sqrt{n} \cdot \sigma} = \frac{\frac{S_n}{n} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}},$$

so

$$Standardize(S_n) = Standardize(\overline{X}_n).$$

Hence, the above two versions of CLT are the same, just one is in terms of S_n , the other one is in terms of \overline{X}_n .

```
T \/;croll,
n <- 600 # Sample Size
m <- 1000 # no of Samples
rate <- 0.2
x <- rexp(n*m, rate = rate)
theo.mean <- 1/rate #theoretical mean
theo.sd <- 1/rate #theoretical SD
m <- matrix(x, ncol = m); d <- data.frame(m)
avgs <- sapply(d, mean)
a = theo.mean-3*theo.sd/sqrt(n); b = theo.mean+3*theo.sd/sqrt(n)
hist(avgs, freq = F, xlim = c(a, b), ylim=c(0,3))
par(new = T)
t <- seq(a,b, 0.01)
y <- dnorm(t, mean = theo.mean, sd = theo.sd/sqrt(n))
plot(t,y, type = "l", col="red", lwd = 2, xlim = c(a,b), ylim=c(0,3))</pre>
```

Histogram of avgs

CLT, Visually, v2 n <- 600 # Sample Size m <- 1000 # no of Samples rate <- 0.2 x <- rexp(n*m, rate = rate) m <- matrix(x, ncol = m); d <- data.frame(m) avgs <- sapply(d, mean)</pre>

qqnorm(avgs, ylab = "Averages"); qqline(avgs)

In a non-rigorous way, we can write, for large n (here \approx means approximately distributed as):

$$\frac{S_n - n \cdot \mu}{\sqrt{n} \cdot \sigma} \approx \mathcal{N}(0, 1)$$
 and $\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \approx \mathcal{N}(0, 1)$.

In a non-rigorous way, we can write, for large n (here \approx means approximately distributed as):

$$rac{S_n - n \cdot \mu}{\sqrt{n} \cdot \sigma} pprox \mathcal{N}(0,1)$$
 and $rac{\overline{X}_n - \mu}{\sigma/\sqrt{n}} pprox \mathcal{N}(0,1).$

or

$$S_n pprox \mathcal{N}(n\mu, n\sigma^2)$$
 and $\overline{X}_n pprox \mathcal{N}\left(\mu, rac{\sigma^2}{n}
ight)$.

Let us summarize:

Let us summarize:

If X_k -s are independent, have the Mean $\mathbb{E}(X_k) = \mu$ and $Var(X_K) = \sigma^2$, and **are Normally Distributed**, i.e., $X_k \sim \mathcal{N}(\mu, \sigma^2)$, then

Let us summarize:

If X_k -s are independent, have the Mean $\mathbb{E}(X_k) = \mu$ and $Var(X_K) = \sigma^2$, and **are Normally Distributed**, i.e., $X_k \sim \mathcal{N}(\mu, \sigma^2)$, then

$$S_n \sim \mathcal{N}(n\mu, n\sigma^2)$$
 and $\overline{X}_n \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$;

so we know the **exact Distributions** of S_n and \overline{X}_n .

Let us summarize:

If X_k -s are independent, have the Mean $\mathbb{E}(X_k) = \mu$ and $Var(X_K) = \sigma^2$, and are Normally Distributed, i.e., $X_k \sim \mathcal{N}(\mu, \sigma^2)$, then

$$S_n \sim \mathcal{N}(n\mu, n\sigma^2)$$
 and $\overline{X}_n \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$;

so we know the **exact Distributions** of S_n and \overline{X}_n .

If X_k -s are independent, have the Mean $\mathbb{E}(X_k) = \mu$ and $Var(X_K) = \sigma^2$, and from any Distribution (but the same Distribution), then

Let us summarize:

If X_k -s are independent, have the Mean $\mathbb{E}(X_k) = \mu$ and $Var(X_K) = \sigma^2$, and **are Normally Distributed**, i.e., $X_k \sim \mathcal{N}(\mu, \sigma^2)$, then

$$S_n \sim \mathcal{N}(n\mu, n\sigma^2)$$
 and $\overline{X}_n \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$;

so we know the **exact Distributions** of S_n and \overline{X}_n .

If X_k -s are independent, have the Mean $\mathbb{E}(X_k) = \mu$ and $Var(X_K) = \sigma^2$, and from any Distribution (but the same Distribution), then

$$S_n pprox \mathcal{N}(n\mu, n\sigma^2)$$
 and $\overline{X}_n pprox \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$;

and we know the **asymptotic Distributions** (approximate Distributions for large n) of S_n and \overline{X}_n .