## **Uppgift 1: T. 970826**

|    | <sup>x</sup> <sub>1</sub> , <sup>x</sup> <sub>2</sub> , <sup>x</sup> <sub>3</sub> , <sup>x</sup> <sub>4</sub> , <sup>x</sup> <sub>5</sub> , <sup>x</sup> <sub>6</sub> |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16 | 010000 √                                                                                                                                                              |
| 32 | 100000 √                                                                                                                                                              |
| 17 | 010001 √                                                                                                                                                              |
| 33 | 100001 √                                                                                                                                                              |
| 36 | 100100 √                                                                                                                                                              |
| 40 | 101000 √                                                                                                                                                              |
| 7  | 000111 √                                                                                                                                                              |
| 35 | 100011 √                                                                                                                                                              |
| 44 | 101100 √                                                                                                                                                              |
| 23 | 010111 √                                                                                                                                                              |
| 39 | 100111 √                                                                                                                                                              |
| 60 | 111100 √                                                                                                                                                              |
| 55 | 110111 √                                                                                                                                                              |
| 62 | 111110 √                                                                                                                                                              |

| 16 | ,17 | 01000- |              | h            |
|----|-----|--------|--------------|--------------|
| 32 | ,33 | 10000- |              | $\mathbf{g}$ |
| 32 | ,36 | 100-00 | $\checkmark$ |              |
| 32 | ,40 | 10-000 | $\sqrt{}$    |              |
| 33 | ,35 | 1000-1 |              | f            |
| 36 | ,44 | 10-100 | $\sqrt{}$    |              |
| 40 | ,44 | 101-00 | $\sqrt{}$    |              |
| 7, | 23  | 0-0111 | √            |              |
| 7, | 39  | -00111 | $\sqrt{}$    |              |
| 35 | ,39 | 100-11 |              | e            |
| 44 | ,60 | 1-1100 |              | d            |
| 23 | ,55 | -10111 | 1            |              |
| 39 | ,55 | 1-0111 | $\checkmark$ |              |
| 60 | ,62 | 1111-0 |              | c            |
|    |     |        |              |              |

Primimplikatorer: 
$$a = \overline{x_3} x_4 x_5 x_6$$
;  $b = x_1 \overline{x_2} \overline{x_5} \overline{x_6}$ ;  $c = x_1 x_2 x_3 x_4 \overline{x_6}$ ;  $d = x_1 x_3 x_4 \overline{x_5} \overline{x_6}$ ;  $e = x_1 \overline{x_2} \overline{x_3} x_5 x_6$ ;  $f = x_1 \overline{x_2} \overline{x_3} \overline{x_4} x_6$ ;  $g = x_1 \overline{x_2} \overline{x_3} \overline{x_4} \overline{x_5}$ ;  $h = \overline{x_1} x_2 \overline{x_3} \overline{x_4} \overline{x_5}$ 

## Primimplikatortabell

|                     | o<br>7 | o<br>16 | o<br>17 | o<br>23 | х<br>32 | √<br>33 | √<br>35 | o<br>36 | x<br>39 | o<br>40 | x<br>44 | o<br>55 | x<br>60 | o<br>62 |
|---------------------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| — о <b>а</b>        | X      |         |         | X       |         |         |         |         | X       |         |         | X       |         |         |
| o <b>b</b>          |        |         |         |         | X       |         |         | X       |         | X       | X       |         |         |         |
| o <b>c</b>          |        |         |         |         |         |         |         |         |         |         |         |         | X       | x       |
| d                   |        |         |         |         |         |         |         |         |         |         | X       |         | X       |         |
| e                   |        |         |         |         |         |         | X       |         | X       |         |         |         |         |         |
| $\sqrt{\mathbf{f}}$ |        |         |         |         |         | X       | X       |         |         |         |         |         |         |         |
| g                   |        |         |         |         | X       | X       |         |         |         |         |         |         |         |         |
| o <b>h</b>          |        | X       | X       |         |         |         |         |         |         |         |         |         |         |         |

Minimal disjunktiv form: F = a + b + c + f + h

## **Uppgift 2: T. 970826**



$$G = x\bar{z} + yw + \bar{x}zw + xy$$

(a) Realisering med med ett minimalt antal transmissionsgrindar kräver minimalt antal literaler i uttrycket. Faktorisera *G*.

1-väg ges av:  $G = x(\bar{z} + y) + w(y + \bar{x}z)$ 

0-väg ges av:  $\overline{G} = (\overline{x} + z\overline{y}) \cdot (\overline{w} + \overline{y}(x + \overline{z}))$ 



G

TG

#### Uppg. 2 forts.

(b) Låt  $O_2$  realisera:  $H = x\bar{z} + yw + \bar{x}zw$ . G erhålls sedan som: G = H + xy.



#### **Uppgift 4: T. 970826**

Ur nätet erhålls:

$$F = x(\bar{y}z + w(y + zu)) \tag{1}$$

<u>Nod *q*:</u>

$$F_q = x(\bar{y}z + w(y+q));$$
  $q = uz;$   $P_q = \frac{dF_q}{dq} = xw\bar{y}(\bar{y}z) = xw\bar{y}\bar{z}$ 

Testfunktionen för q s-a-0 ges av:

$$T_{\bar{q}} = q(x, y, z, w, u) \cdot P_q = uz \cdot xw\bar{y}\bar{z} = 0 ==> q \text{ s-a-0 \"{a}r ej detekterbart.}$$

Testfunktionen för q s-a-1 ges av:

$$T_q = \overline{q(x,y,z,w,u)} \cdot P_q = (\bar{u} + \bar{z}) \cdot xw\bar{y}\bar{z} = xw\bar{y}\bar{z} \Longrightarrow q \text{ s-a-1}$$
 är detekterbart. Testvektorerna ges av  $\langle xyzwu \rangle = \langle 1001 - \rangle$ 

Nod *u*:

Från (1) erhålls 
$$P_u = \frac{dF}{du} = xwz \cdot \bar{y} \cdot \overline{\bar{y}z} = 0 ==> u$$
 s-a-0/1 är ej detekterbara.

Nod z:

(1) kan skrivas 
$$F = zx(\bar{y} + wu) + xyw$$
 varur  $P_z = \frac{dF}{dz} = x(\bar{y} + wu) \cdot (\bar{x} + \bar{y} + \bar{w}) = x\bar{y}$   
Detekterbara fel: Testvektorerna ges av  $\langle xyzwu \rangle = \langle 10\bar{k}-- \rangle$  för  $z$  s-a- $k$  fel.

# <u>Uppgift 3: T. 970826</u>

| В | {E,G};{A,F}      |                       |       |                 |                 |                 |
|---|------------------|-----------------------|-------|-----------------|-----------------|-----------------|
| C | {A,F}            |                       |       |                 |                 |                 |
| D | X                | {B,F};{D,F}           | X     |                 |                 |                 |
| E | $\{AC\},\{B,E\}$ | X                     | {E,F} | X               |                 |                 |
| F | {C,E}            | {E,G};{B,D};<br>{C,G} | X     | {E,G};<br>{C,G} | {A,G};<br>{B,C} |                 |
| G | {E,F}            | X                     |       | X               | {A,G};<br>{B,F} | +C,D),<br>1C,F) |
|   | A                | В                     | С     | D               | E               | F               |



MFM:  $\{A,B,C\}$ ,  $\{A,B,F\}$ ,  $\{A,C,G\}$ ,  $\{B,D,F\}$ ,  $\{C,E,G\}$ ,  $\{E,F\}$ 



| $C_{\mathbf{i}}$ | I(C <sub>i</sub> )   |
|------------------|----------------------|
| {A,B,C}          | {E,G}, {A,F}         |
| $\{A,B,F\}$      | $\{D,B\}, \{C,E,G\}$ |
| {A,C,G}          | $\{E,F\},\{A,F\}$    |
| {B,D,F}          | {E,G},{C,G}          |
| {C,E,G}          | ${A,G},{B,F},{E,F}$  |
| {E,F}            | ${A,G},{B,C}$        |
| {A,G}            | {E,F}                |
| {B,C}            | Ø                    |
| {D}              | Ø                    |

{A,G}, {B,C}, {E,F}, {D} bildar en sluten och täckande uppsättning förenlighetsmängder.

| $1 = \{A,G\}$ | 1 |
|---------------|---|
| $2 = \{B,C\}$ | 2 |
| $3 = \{E,F\}$ | 3 |
| 4 = {D}       | 4 |

|   | Q <sup>+</sup> (u) |           |      |      |  |  |
|---|--------------------|-----------|------|------|--|--|
| Q |                    | $x_1 x_2$ |      |      |  |  |
|   | 00                 | 01        | 11   | 10   |  |  |
| 1 | 1(0)               | 2(-)      | 3(0) | 1(1) |  |  |
| 2 | 3(-)               | 2(1)      | 1(1) | 3(1) |  |  |
| 3 | 1(0)               | 4(0)      | 2(0) | 3(-) |  |  |
| 4 | 3(-)               | 3(0)      | 1(1) | 4(0) |  |  |

#### **Uppgift 5: T. 970826**

| Q | Q <sup>+</sup> | (u)         |
|---|----------------|-------------|
|   | x=0            | <i>x</i> =1 |
| A | B0)            | C(0)        |
| В | D(0)           | E(0)        |
| С | E(0)           | D(0)        |
| D | F(0)           | F(0)        |
| Е | F(0)           | G(0)        |
| F | A(0)           | A(0)        |
| G | A(1)           | A(0)        |

#### Kodad tillståndstabell

| a . a . a . | $q_1^+ q_2^+ q_3^+ (u)$ |             |  |  |
|-------------|-------------------------|-------------|--|--|
| $q_1q_2q_3$ | <i>x</i> =0             | <i>x</i> =1 |  |  |
| 000A        | 001(0)                  | 101(0)      |  |  |
| 010         | (-)                     | (-)         |  |  |
| 110G        | 000(1)                  | 000(0)      |  |  |
| 100F        | 000(0)                  | 000(0)      |  |  |
| 001B        | 011(0)                  | 111(0)      |  |  |
| 011D        | 100(0)                  | 100(0)      |  |  |
| 111E        | 100(0)                  | 110(0)      |  |  |
| 101C        | 111(0)                  | 011(0)      |  |  |

$$D_{1} = q_{1}^{+} = \overline{q_{1}}x + q_{2}q_{3} + q_{1}q_{3}\bar{x}$$

$$D_{2} = q_{2}^{+} = \overline{q_{2}}q_{3} + q_{1}q_{3}x$$

$$D_{3} = q_{3}^{+} = \overline{q_{2}}q_{3} + \overline{q_{1}}\overline{q_{2}}$$

$$u = q_{1}\overline{q_{3}}\bar{x}$$

Denna kodning kräver 7 produkttermer.

### Krav på angränsande tillståndskodord

Högsta prioritet: {D,E}; {F,G};

Medium prioritet: {B,C}; 2 X {D,E}; {F,G}

Lägst prioritet: 0/0: {A,B,C,D,E,F}

 $q_2^+$ 

00

1/0: {A,B,C,D,E,F,G}

Vi kan uppfylla samtliga hög- och mediumprioritetskrav samt en delmängd av lågprioritetskraven. Koden för A är given i spec.

Ex. på kodning visas nedan:

|       |    | $q_2 q_3$ |    |    |  |  |
|-------|----|-----------|----|----|--|--|
|       | 00 | 01        | 11 | 10 |  |  |
| $q_1$ | A  | В         | D  |    |  |  |
| 1     | F  | С         | Е  | G  |  |  |

| Q            | $q_1q_2q_3$ |
|--------------|-------------|
| A            | 000         |
| В            | 0 0 1       |
| C            | 101         |
| D            | 0 1 1       |
| E            | 111         |
| $\mathbf{F}$ | 100         |
| G            | 110         |





01



| u  | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| 00 | 0  | 0  | 0  | 0  |
| 01 |    |    | 0  | 0  |
| 11 | 1  | 0  | 0  | 0  |
| 10 | 0  | 0  | 0  | 0  |

Uppg. 5 forts.



## **Uppgift 6: T. 970826**



Av tillståndsgrafen framgår att man kan välja utsignalen  $Q = q_2$ 

#### Tillståndstabell

| δ(λ) | SR |    |    |    |  |  |
|------|----|----|----|----|--|--|
|      | 00 | 01 | 11 | 10 |  |  |
| 00   | 00 | 00 | 01 | 01 |  |  |
| 01   | 11 | 01 | 01 | 11 |  |  |
| 11   | 11 | 10 | 10 | 11 |  |  |
| 10   | 00 | 00 | 10 | 10 |  |  |
|      |    |    |    |    |  |  |









$$S_2 = q_1$$
'S

|          |   | 00 | 01 | 11 | 10 |
|----------|---|----|----|----|----|
| 0        | 0 | -  | -  | 0  | 0  |
| $q_1q_2$ | 1 | 0  | 0  | 0  | 0  |
| 1        | 1 | 0  | 1  | 1  | 0  |
| 1        | 0 | 1  | 1  |    | ı  |

$$R_2 = q_1 R$$

