MTH 101-Calculus

Spring-2021

Assignment 1: Real Numbers, Sequences

- 1. Find the supremum of the set $\{\frac{m}{|m|+n}: n \in \mathbb{N}, m \in \mathbb{Z}\}.$
- 2. (a) Show that the sequences (sin(n)) and (cos(n)) are divergent.
 - (b) Show that the sequence defined by $a_n = 2\cos(n) \sin(n)$ has a convergent subsequence.
- 3. Let $y \in (1, \infty)$ and $x \in (0, 1)$. Evaluate $\lim_{n \to \infty} (2n)^y x^n$.
- 4. Prove or disprove that any Cauchy sequence $(x_n)_{n\in\mathbb{N}}\subset\mathbb{Q}$ has a limit in \mathbb{Q} .
- 5. Let E be the set of all $x \in [0,1]$ whose decimal expansion contains only the digits 4 and 7. Is E dense in [0,1]?
- 6. Do the following sequences satisfy the Cauchy criterion?
 - (a) $x_1 = \frac{1}{2}$ and $x_{n+1} = \frac{1}{7}(x_n^3 + 2)$ for $n \in \mathbb{N}$.
 - (b) $x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ for $n \in \mathbb{N}$.
- 7. If $x_1 = \sqrt{2}$ and $x_{n+1} = \sqrt{2 + \sqrt{x_n}}$, n = 1, 2, 3, ... Prove that $\{x_n\}$ converges, and that $x_n < 2$ for n = 1, 2, 3, ...
- *8. Let α be an irrational number. Show that the set $S = \{m + n\alpha : m, n \in \mathbb{Z}\}$ is dense in \mathbb{R} .