Chain Matrix Multiplication

Version of October 26, 2016

Outline

Outline

- Review of matrix multiplication.
- The chain matrix multiplication problem.
- A dynamic programming algorithm for chain matrix multiplication.

Review of Matrix Multiplication

Matrix: An $n \times m$ matrix A = [a[i,j]] is a two-dimensional array

$$A = \begin{bmatrix} a[1,1] & a[1,2] & \cdots & a[1,m-1] & a[1,m] \\ a[2,1] & a[2,2] & \cdots & a[2,m-1] & a[2,m] \\ \vdots & \vdots & & \vdots & & \vdots \\ a[n,1] & a[n,2] & \cdots & a[n,m-1] & a[n,m] \end{bmatrix},$$

which has *n* rows and *m* columns.

Example

A 4×5 matrix:

Review of Matrix Multiplication

The product C = AB of a $p \times q$ matrix A and a $q \times r$ matrix B is a $p \times r$ matrix C given by

$$c[i,j] = \sum_{k=1}^{q} a[i,k]b[k,j], \quad \text{for } 1 \leq i \leq p \text{ and } 1 \leq j \leq r$$

Complexity of Matrix multiplication: Note that C has pr entries and each entry takes $\Theta(q)$ time to compute so the total procedure takes $\Theta(pqr)$ time.

Example

$$A = \begin{bmatrix} 1 & 8 & 9 \\ 7 & 6 & -1 \\ 5 & 5 & 6 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 8 \\ 7 & 6 \\ 5 & 5 \end{bmatrix}, \qquad C = AB = \begin{bmatrix} 102 & 101 \\ 44 & 87 \\ 70 & 100 \end{bmatrix}.$$

Remarks on Matrix Multiplication

• Matrix multiplication is associative, e.g.,

$$A_1A_2A_3 = (A_1A_2)A_3 = A_1(A_2A_3),$$

so parenthesization does not change result.

Matrix multiplication is NOT commutative, e.g.,

$$A_1A_2 \neq A_2A_1$$

Matrix Multiplication of ABC

- Given $p \times q$ matrix A, $q \times r$ matrix B and $r \times s$ matrix C, ABC can be computed in two ways: (AB)C and A(BC)
- The number of multiplications needed are:

$$mult[(AB)C] = pqr + prs,$$

 $mult[A(BC)] = qrs + pqs.$

Example

For
$$p = 5$$
, $q = 4$, $r = 6$ and $s = 2$,
$$mult[(AB)C] = 180,$$

$$mult[A(BC)] = 88.$$

A big difference!

Implication: Multiplication "sequence" (parenthesization) is important!!

Outline

- Review of matrix multiplication.
- The chain matrix multiplication problem.
- A dynamic programming algorithm for chain matrix multiplication.

The Chain Matrix Multiplication Problem

Definition (Chain matrix multiplication problem)

Given dimensions p_0, p_1, \ldots, p_n , corresponding to matrix sequence A_1, A_2, \ldots, A_n in which A_i has dimension $p_{i-1} \times p_i$, determine the "multiplication sequence" that minimizes the number of scalar multiplications in computing $A_1A_2 \cdots A_n$.

• i.e.,, determine how to parenthesize the multiplications.

Example

$$A_1A_2A_3A_4 = (A_1A_2)(A_3A_4) = A_1(A_2(A_3A_4)) = A_1((A_2A_3)A_4)$$
$$= ((A_1A_2)A_3)(A_4) = (A_1(A_2A_3))(A_4)$$

Exhaustive search: $\Omega(4^n/n^{3/2})$.

Question

Is there a better approach?

Outline

- Review of matrix multiplication.
- The chain matrix multiplication problem.
- A dynamic programming algorithm.

Developing a Dynamic Programming Algorithm

Step 1: Define Space of Subproblems

- Original Problem:
 - Determine minimal cost multiplication sequence for $A_{1..n}$.
- Subproblems: For every pair $1 \le i \le j \le n$: Determine minimal cost multiplication sequence for $A_{i-j} = A_i A_{i+1} \cdots A_i$.
 - Note that $A_{i...i}$ is a $p_{i-1} \times p_i$ matrix.
- There are $\binom{n}{2} = \Theta(n^2)$ such subproblems. (Why?)
- How can we solve larger problems using subproblem solutions?

Relationships among subproblems

At the last step of *any* optimal multiplication sequence (for a subbroblem), there is some k such that the two matrices $A_{i...k}$ and $A_{k+1...j}$ are multipled together. That is,

$$A_{i..j} = (A_i \cdots A_k) (A_{k+1} \cdots A_j) = A_{i..k} A_{k+1..j}.$$

Question

How do we decide where to split the chain (what is k)?

ANS: Can be any k. Need to check all possible values.

Question

How do we parenthesize the two subchains $A_{i...k}$ and $A_{k+1...i}$?

ANS: $A_{i...k}$ and $A_{k+1...j}$ must be computed optimally, so we can apply the same procedure *recursively*.

Optimal Structure Property

If the "optimal" solution of $A_{i..j}$ involves splitting into $A_{i..k}$ and $A_{k+1..j}$ at the final step, then parenthesization of $A_{i..k}$ and $A_{k+1..j}$ in the optimal solution must also be optimal

- If parenthesization of $A_{i...k}$ was not optimal, it could be replaced by a cheaper parenthesization, yielding a cheaper final solution, constradicting optimality
- Similarly, if parenthesization of $A_{k+1..j}$ was not optimal, it could be replaced by a cheaper parenthesization, again yielding contradiction of cheaper final solution.

Relationships among subproblems

Step 2: Constructing optimal solutions from optimal subproblem solution

• For $1 \le i \le j \le n$, let m[i,j] denote the minimum number of multiplications needed to compute $A_{i..j}$. This optimum cost must satisify the following recursive definition.

$$m[i,j] = \begin{cases} 0 & i = j, \\ \min_{i \le k < j} (m[i,k] + m[k+1,j] + p_{i-1}p_kp_j) & i < j \end{cases}$$

$$A_{i..j} = A_{i..k}A_{k+1..j}$$

Proof of Recurrence

Proof.

If j = i, then m[i, j] = 0 because, no mutiplications are required.

If i < j, note that, for every k, calculating $A_{i..k}$ and $A_{k+1..j}$ optimally and then finishing by multiplying $A_{i..k}A_{k+1..j}$ to get $A_{i..j}$ uses $(m[i,k]+m[k+1,j]+p_{i-1}p_kp_j)$ multiplications.

The optimal way of calculating $A_{i..j}$ uses no more than the worst of these j-i ways so

$$m[i,j] \le \min_{i \le k < j} (m[i,k] + m[k+1,j] + p_{i-1}p_kp_j).$$

$$A_{i..j} = A_{i..k} A_{k+1..j}$$

Proof of Recurrence (II)

Proof.

For the other direction, note that an optimal sequence of multiplications for $A_{i..j}$ is equivalent to splitting $A_{i..j} = A_{i..k}A_{k+1..j}$ for some k, where the sequences of multiplications to calculate $A_{i..k}$ and $A_{k+1..j}$ are also optimal. Hence, for that special k,

$$m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j.$$

Combining with the previous page, we have just proven

$$m[i,j] = \begin{cases} 0 & i = j, \\ \min_{i \le k < j} (m[i,k] + m[k+1,j] + p_{i-1}p_kp_j) & i < j. \end{cases}$$

Developing a Dynamic Programming Algorithm

Step 3: Bottom-up computation of
$$m[i,j]$$
.

Recurrence:

m[1, n]

$$m[i,j] = \min_{i \le k \le i} (m[i,k] + m[k+1,j] + p_{i-1}p_kp_j)$$

Fill in the m[i,j] table in an order, such that when it is time to calculate m[i,j], the values of m[i,k] and m[k+1,j] for all k are already available.

An easy way to ensure this is to compute them in increasing order of the size (j - i) of the matrix-chain $A_{i...j}$:

```
m[1,2], m[2,3], m[3,4], \ldots, m[n-3,n-2], m[n-2,n-1], m[n-1,n]

m[1,3], m[2,4], m[3,5], \ldots, m[n-3,n-1], m[n-2,n]

m[1,4], m[2,5], m[3,6], \ldots, m[n-3,n]

\ldots

m[1,n-1], m[2,n]
```

Example for the Bottom-Up Computation

Example

A chain of four matrices A_1 , A_2 , A_3 and A_4 , with $p_0 = 5$, $p_1 = 4$, $p_2 = 6$, $p_3 = 2$ and $p_4 = 7$. Find m[1, 4].

S0: Initialization

Step 1: Computing m[1,2] By definition

$$m[1,2] = \min_{1 \le k < 2} (m[1,k] + m[k+1,2] + p_0 p_k p_2)$$

= $m[1,1] + m[2,2] + p_0 p_1 p_2 = 120$.

Step 2: Computing m[2,3] By definition

$$m[2,3] = \min_{2 \le k < 3} (m[2,k] + pm[k+1,3] + p_1p_kp_3)$$

= $m[2,2] + m[3,3] + p_1p_2p_3 = 48.$

Step 3: Computing m[3, 4] By definition

$$m[3,4] = \min_{3 \le k < 4} (m[3,k] + m[k+1,4] + p_2 p_k p_4)$$

= $m[3,3] + m[4,4] + p_2 p_3 p_4 = 84.$

Step 4: Computing m[1,3] By definition

$$m[1,3] = \min_{1 \le k < 3} (m[1,k] + m[k+1,3] + p_0 p_k p_3)$$

$$= \min \left\{ \begin{array}{c} m[1,1] + m[2,3] + p_0 p_1 p_3 \\ m[1,2] + m[3,3] + p_0 p_2 p_3 \end{array} \right\}$$

$$= 88.$$

$$\frac{4}{1} \quad m[i,j]$$

$$\frac{3}{88} \quad \frac{2}{1} \quad m[i,j]$$

$$\frac{3}{1} \quad \frac{3}{120} \quad 48 \quad 84 \quad 4$$

$$\frac{1}{10} \quad \frac{3}{120} \quad$$

Step 5: Computing m[2, 4] By definition

mition
$$m[2,4] = \min_{2 \le k < 4} (m[2,k] + m[k+1,4] + p_1 p_k p_4)$$

$$= \min \left\{ \begin{array}{l} m[2,2] + m[3,4] + p_1 p_2 p_4 \\ m[2,3] + m[4,4] + p_1 p_3 p_4 \end{array} \right\}$$

$$= 104.$$

$$j = 104$$

Step 6: Computing m[1, 4] By definition

nition
$$m[1,4] = \min_{1 \le k < 4} (m[1,k] + m[k+1,4] + p_0 p_k p_4)$$

$$= \min \left\{ \begin{array}{l} m[1,1] + m[2,4] + p_0 p_1 p_4 \\ m[1,2] + m[3,4] + p_0 p_2 p_4 \\ m[1,3] + m[4,4] + p_0 p_3 p_4 \end{array} \right\}$$

$$= 158.$$

$$j = 158.$$

Constructing a Solution

- m[i, j] only keeps costs but not actual multiplication sequence.
- To solve problem, need to reconstruct multiplication sequence that yields m[1, n].
- Solution: similar to previous DP algorithm(s) keep an auxillary array s[*,*].
- s[i,j] = k where k is the index that achieves minimum in

$$m[i,j] = \min_{i \le k \le j} (m[i,k] + m[k+1,j] + p_{i-1}p_kp_j).$$

Developing a Dynamic Programming Algorithm

Step 4: Constructing optimal solution

Idea: Maintain an array s[1..n, 1..n], where s[i,j] denotes k for the optimal splitting in computing $A_{i..j} = A_{i..k}A_{k+1..j}$.

Question

How to Recover the Multiplication Sequence using s[i,j]?

```
\begin{array}{lll} s[1,n] & (A_1 \cdots A_{s[1,n]}) \left(A_{s[1,n]+1} \cdots A_n\right) \\ s[1,s[1,n]] & (A_1 \cdots A_{s[1,s[1,n]]}) \left(A_{s[1,s[1,n]]+1} \cdots A_{s[1,n]}\right) \\ s[s[1,n]+1,n] & (A_{s[1,n]+1} \cdots A_{s[s[1,n]+1,n]}) \left(A_{s[s[1,n]+1,n]+1} \cdots A_n\right) \\ \vdots & \vdots & \end{array}
```

Apply recursively until multiplication sequence is completely determined.

Step 4...

Example (Finding the Multiplication Sequence)

Consider n = 6. Assume array s[1..6, 1..6] has been properly constructed. The multiplication sequence is recovered as follows.

$$s[1, 6] = 3$$
 $(A_1A_2A_3)(A_4A_5A_6)$
 $s[1, 3] = 1$ $(A_1(A_2A_3))$
 $s[4, 6] = 5$ $((A_4A_5)A_6)$

Hence the final multiplication sequence is

$$(A_1(A_2A_3))((A_4A_5)A_6).$$

The Dynamic Programming Algorithm

Matrix-Chain(p, n): // I is length of sub-chain

```
for i = 1 to n do m[i, i] = 0;
for l=2 to n do
    for i = 1 to n - l + 1 do
        i = i + l - 1;
        m[i,j] = \infty;
        for k = i to i - 1 do
            q = m[i, k] + m[k + 1, j] + p[i - 1] * p[k] * p[j];
            if q < m[i, j] then
            m[i,j]=q;
              s[i,j]=k;
        end
    end
end
return m and s; (Optimum in m[1, n])
```

Complexity: The loops are nested three levels deep. Each loop index takes on $\leq n$ values. Hence the time complexity is $O(n^3)$. Space complexity is $\Theta(n^2)$.