Virtual Quantum Error Detection

Joshua Yellowley, Marco Ser Trevor Flanigan, Andrea Shao

Introduction

- Quantum Error Detection (QED) is used to enhance computation accuracy of logical qubits through ancilla qubits
- QED requires expensive single-shot measurements (syndrome measurements)
- Symmetry Expansion (SE) is a new error mitigation strategy that allows the calculation of the expval() of an observable in a noiseless state
- D Virtual Quantum Error Detection expands SE

Stabilizer Groups (S)

- A Stabilizer groups are used to protect our circuit from noise
- S is generated by Generator sets (G), which are comprised of Pauli-Words

IIIZZZZ IZZIIZZ ZIZIZIZ IIIXXXX

Pauli-Words

Example: S is similar to a "power set" of G

Generator Set (G)	Stabilizer Group (S)
$G_1 = I_0 \otimes Z_1 \otimes Z_2$ $G_2 = Z_0 \otimes Z_1 \otimes I_2$	$S_1 = I$ $S_2 = G_1$ $S_3 = G_2$ $S_4 = G_1 \otimes G_2$

Logical Codespace of a Stabilizer Group

$$\mathcal{C} = \{ |\psi\rangle | \forall S_i \in \mathcal{S}, S_i |\psi\rangle = |\psi\rangle \}.$$

Syndrome Measurement

Detect physical errors by measuring generators G_i

FIG. 1. Quantum circuit for quantum error detection (QED).

Symmetry Expansion

• Expectation value of an observable O for a noiseless state ρ_{id} from a noisy state ρ

States Pure State
$$\rho$$
 Mixed state ρ Mixed state ρ Pure States ρ Mixed State ρ Mixed S

Virtual Quantum Error Detection (VQED)

- Symmetry expansion can only be used right before measurement
- VQED allows us to calculate error-mitigated expectation values during circuit execution
- P = Projector to code space, ε = Noise, U = Logical Unitary Gate

	Pure state	Pure state $ ho$	Mixed state $ ho$
States	14>	9=14x41	5= 5 pi 4 X4 /
Ops.	\psi \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	$ ho_{ m det}'$	p'=UpUt
$ ho_{ m det} = rac{1}{{ m tr}[ho_{ m det}']},$			

Implementation of VQED Circuit

FIG. 2. Quantum circuit for virtual quantum error detection

The VQED Algorithm:

- 1. Choose area of interest. (# gates = L)
- 2. Randomly choose L pairs of stabilizers.
- 3. Run the circuit
- 4. Let a = expval($X_1 \otimes ... \otimes X_L$), b = expval(0) * a
- 5. After N iterations return avg(b) / avg(a)

Pros of VQED

- No Syndrome Measurements
- Less qubit use
- Modular
- Higher fidelity

Cons of VQED

- Only outputs expectation values
- Slower large expval calculations

Questions

Numerical Simulation

