Foglio Esercizi 2 (MDAG 2023)

Esercizi proposti da R. Buzano e M. Radeschi

27 ottobre 2023

Esercizio 1. Sia V lo \mathbb{K} -spazio vettoriale di matrici 3×3 ad entrate nel campo \mathbb{K} , i.e. $V = M(3, \mathbb{K})$. Si provi che l'insieme $W = \{A \in M(3, \mathbb{K}) \mid {}^t A = A\}$ è un sottospazio vettoriale di V.

Esercizio 2. Risolvere i seguenti sistemi di equazioni:

$$\begin{cases} x + 3y + z = 3 \\ 2x + y + z = 4 \\ 4x + 7y + 3z = 9 \end{cases} \qquad \begin{cases} x + 3y + z = 3 \\ 2x + y + z = 4 \\ 4x + 7y + 3z = 10 \end{cases} \qquad \begin{cases} x + 3y + z = 3 \\ 2x + y + z = 4 \\ 4x + 7y + 4z = 9 \end{cases}$$

Esercizio 3. Determinare il rango delle seguenti matrici:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 1 & 1 & 0 & 1 \\ 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Esercizio 4. Verificare se i seguenti insiemi di vettori sono linearmente indipendenti, generatori, o una base:

1.
$$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$, $v_3 = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \in \mathbb{R}^2$.

2.
$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 3 \\ 1 \\ 6 \end{pmatrix} \in \mathbb{R}^3$.

3.
$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 3 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 0 \\ -1 \\ 1 \\ 0 \end{pmatrix}$, $v_3 = \begin{pmatrix} 3 \\ 1 \\ 7 \\ 9 \end{pmatrix} \in \mathbb{R}^4$.

Esercizio 5. Determinare se i vettori

$$f(x) = 2x^3 - x^2 + x - 1$$
, $g(x) = x^2 + x$, $h(x) = x^3 + x - 2$

sono linearmente indipendenti nello spazio vettoriale reale dei polinomi di grado meno o uguale a tre, $\mathbb{R}_3[x]$. L'insieme $\{f, g, h\}$ forma una base di $\mathbb{R}_3[x]$?

Esercizio 6. Trovare una base per lo spazio di matrici $M(2,\mathbb{C})$ visto

- i) come spazio vettoriale sul campo \mathbb{C} ,
- ii) come spazio vettoriale sul campo \mathbb{R} .

Esercizio 7. Data la base di \mathbb{R}^3 :

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$$

Calcolare il vettore delle coordinate di $v = \begin{pmatrix} 0 \\ -2 \\ -1 \end{pmatrix}$ rispetto alla base $\{v_1, v_2, v_3\}$.

Esercizio 8. Determinare, al variare di k, il numero di soluzioni del sistema:

$$\begin{cases} x + 2y + z &= 2\\ x + (k+2)y + (k^2+1)z &= k+2\\ 2x + 4y + (k+2)z &= 5 \end{cases}$$

Esercizio 9. Sia V uno \mathbb{K} -spazio vettoriale di dimensione n e sia $\mathcal{B} = \{v_1, \ldots, v_\ell\}$ un insieme di ℓ vettori in V. Ci sono dati 10 implicazioni, qualche vera, qualche falsa, e qualche assurda nel senso che l'ipotesi non è mai soddisfatta¹. Per ogni affermazione decidere di quale tipo si tratta, motivando la risposta.

- (i) Se $\ell > n$, i vettori v_1, \ldots, v_ℓ sono necessariamente linearmente dipendenti.
- (ii) Se $\ell < n$, i vettori v_1, \ldots, v_ℓ sono necessariamente linearmente indipendenti.
- (iii) Se $\ell > n$, abbiamo necessariamente Span $(v_1, \ldots, v_\ell) = V$.
- (iv) Se $\ell < n$, abbiamo necessariamente Span $(v_1, \ldots, v_\ell) \neq V$.
- (v) Se $\ell > n$, possiamo togliere vettori di \mathcal{B} per ottenere una base di V, cioè un sottoinsieme di \mathcal{B} forma una base di V.
- (vi) Se $\ell < n$, possiamo aggiungere vettori a \mathcal{B} per ottenere una base di V.
- (vii) Se $\ell > n$ e v_1, \ldots, v_ℓ sono linearmente indipendenti, possiamo togliere vettori di \mathcal{B} per ottenere una base di V, cioè un sottoinsieme di \mathcal{B} forma una base di V.
- (viii) Se $\ell < n$ e v_1, \ldots, v_ℓ sono linearmente indipendenti, possiamo aggiungere vettori a \mathcal{B} per ottenere una base di V.
- (ix) Se $\ell > n$ e Span $(v_1, \ldots, v_\ell) = V$, possiamo togliere vettori di \mathcal{B} per ottenere una base di V, cioè un sottoinsieme di \mathcal{B} forma una base di V.
- (x) Se $\ell < n$ e Span $(v_1, \ldots, v_\ell) = V$, possiamo aggiungere vettori a \mathcal{B} per ottenere una base di V.

¹Anche le implicazioni che noi chiamiamo "assurde" sono vere nel senso di logica, ma noi vogliamo fare una differenza in questo esercizio a chiamiamo "vera" solo un'implicazioni per quale l'ipotesi può essere soddisfata.