Math 308 Assignment 7 Exercises 3.9

Nakul Joshi

February 12, 2014

4

The null hypothesis is that the difference in proportions is zero. However, performing the permutation test gave a p-value of 0.002, allowing us to reject the null at 1% confidence. Thus, the difference in proportions is statistically significant.

8

The p-value is 1, which does not let us reject the null hypothesis that the presence of competition has no value on the height change of the seedlings.

11

Null Hypothesis Voting preference is independent of age.

Alternative hypothesis Voting preference pends on age.

Age	Response		
	For	Against	All
18-29	172	52	224
30 - 49	313	103	416
50 +	258	119	377
All	743	274	1017

Table 1: Observed values

Multiplying column marginal fractions by row marginal totals, we can get the expected values:

Λ ma	Response		
Age	For	Against	
18-29	164	60	
30 - 49	304	112	
50+	275	102	

Table 2: Expected values

Then, we calculate the χ^2 test statitic: $c = \sum_{i,j}^{\text{all cells}} \frac{\left(\text{observed}_{i,j} - \text{expected}_{i,j}\right)^2}{\text{expected}_{i,j}} = 6.33$

Under the null, C follows a χ^2 distribution with $(3-1)\times(2-1)=2$ degrees of freedom; i.e. $C\sim\chi^2_2$. So, the *p*-value is $P(C > c) = \int_c^\infty \frac{e^{-t/2}}{2} dt \approx 0.042$. Thus, we can reject the null at 5% significance, but

not at 1% significance.

- 13
- 17
- 19
- 22
- 25
- **29**