Function - Types

1. Identity Functions:

		_		
f	:	R>R,	defined	by:

$$f(x) = x$$
 for each $x \in \mathbb{R}$.

K	
6	0
	T.
5	5
	- 5
-5	- 5

2. Constant Function:

$$f:R-->R$$
, defined as:

$$f: R \rightarrow R$$
, defined as:
 $f(x) = c$, where c is a constant

74	y = f(x)
10	5
5	5
0	5
- 2	5

з. Polynomíal Functions:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

$$n = \text{non-nengative integer}$$

$$f(\tau) = \sqrt{2} \sqrt{2} + 1.2^{2} - 5$$

$$27^{3/2} + 5 \times$$

f(x)/g(x), where f(x) and g(x) --- polynomial functions of x.

$$g(x) \neq 0$$

$$y = \left(\frac{1}{x}\right)$$

$$\chi \in \mathbb{R} - \{0\}$$

5. Modulus Function:

f:R->R, defined as

$$f(x) = |x|, x \in \mathbb{R}$$

$$f(x) = x ; x > = 0$$

$$-x ; x < 0$$

