## **Topic 4: Linear Classifiers**

| 2.  | Linear Classifier - Basic Idea                                           | 28.            | Sensitivity (Binary)                                                             |
|-----|--------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------|
| 3.  | Linear Classifier - Perceptron                                           | 29.            | Specificity (Binary)                                                             |
| 4.  | Iterations of the perceptron classifier for height-handspan data         |                | Positive Predictive Value (Binary)                                               |
| 5.  | Why does the update rule work?                                           | 31.            | Confusion Matrix                                                                 |
| 6.  | Linear Classifier - Mean-square error minimizer                          | 32.            | Positive Predictive Value                                                        |
| 7.  | Designing a linear classifier = Solving a matrix equation                | 33.            | How good is this classifier?                                                     |
| 8.  | Matrix A bridging 2D and 3D space                                        | 34.            | Tweaking the threshold                                                           |
| 9.  | Inverse image may not exist                                              | 35.            | Tweaking the threshold                                                           |
| 10. | Minimizing the sum-of-squares                                            | 36.            | Receiver Operating Curve (ROC)                                                   |
| 11. | Replacing an insolvable with a solvable                                  | <b>3</b> 7.    | Multiclass Linear Classifier - Recap                                             |
| 12. |                                                                          | 18             | Gep by-Xed: Mear Casi in Design for C classes                                    |
| 13. | <u>Linear Classifiers - Perceptron versus Pseudoinverse</u>              | 39.            | Linear Classifier to answer "How will the machine fail?"                         |
| 14. | <u>Linear Classifiers – Using nonlinear combinations of features</u>     | 40.            | <u>Linear Regression - Mean-square error minimizer, again</u>                    |
| 15. | Linear Classifier - Adding quadratic telepetros · //pow                  | A <sub>1</sub> | Inear classifiers: Moving on to Logistic Regression                              |
| 16. | Linear Classifier - Adding cubic terms 11 LPS .// POW                    | 42.            | connecting the discriminant $xa$ $w$ to the probability $p(1 x)$                 |
| 17. | How to use nonlinear combinations of features                            | 43.            | Understanding the logit of the probability                                       |
| 18. | <u>Linear Classifiers – For multiple classes (Kesler's construction)</u> | 44,            | Classification using ordinary regression versus logistic regressio               |
| 19. | Real world example: Machine Failure ACC WeCh                             | at             | powcoder                                                                         |
| 20. | <u>Training and Testing Subsets</u>                                      | 45.            | 4he Optimization Question                                                        |
| 21. | <u>Training and Testing Subset</u>                                       | 46.            | Contour and gradient plots                                                       |
| 22. | <u>Validation Subset</u>                                                 | 47.            | Steepest gradient ascent                                                         |
| 23. | Linear Classifier to answer "Will the machine fail?"                     | 48.            | Steepest gradient ascent (multiple maxima)                                       |
| 24. | Step-by-step: Linear Classifier Design for 2 classes                     | 49.            | Maximization of the logistic log likelihood by steepest gradient                 |
| 25. | <u>Classifier Performance</u>                                            | <b>50</b>      | Ascent                                                                           |
| 26. | <u>Classifier Performance (Binary)</u>                                   | 50.            | Maximization of the logistic log likelihood by steepest gradient ascent (contd.) |
| 27. | Accuracy (Binary)                                                        | 51.            | Logistic Regression applied to height-handspan data                              |
|     |                                                                          | 52.            | Linear Classifiers in sklearn applied to MNIST data                              |
|     |                                                                          | 53.            | Topic 4 Summary                                                                  |



#### **Linear Classifier - Basic Idea**



Linear Classifier Design Given a training set, find an optimal set of weights.





#### **Linear Classifier - Perceptron**



#### iterations of the perceptron classifier for neight-handspan

data



Topic 4 TOC Press ESC to go to Index

Copyrighted Material 510-673-6113

#### Why does the update rule work?

Assume that the algorithm encounters a sample with class label +1 that is not correctly classified by the current classifier.

That is, should have been, but is in fact (for example).

When the weight vector is updated, a new weight vector is computed as . If the algorithm is any good, we naturally expect that this change should favor the correct classification of the same sample. Let us check if this is indeed true by feeding the same sample that almost intelligence to do this we need to examine the dot product and check its sign. Let us do this.

https://powcoder.com

Add WeChat powcoder

#### Linear Classifier - Mean-square error minimizer

Given a training set, find set of weights such that for positive points the value of is forced to 1 for negative points the value of is forced to -1



is solved using the pseudoinverse as

Topic 4 TOC



### Designing a linear classifier = Solving a matrix equation



In order to understand this equation the familiar framework, we define and giving the alternate form





Press ESC to go to Index

#### Matrix A bridging 2D and 3D space

#### **Bookmarks**

- Begin drawing
- Plane curve in space
- Show plane



Note that the matrix defines the plane

Topic 4 TOC

Press ESC to go to Index

#### Inverse image may not exist

#### **Bookmarks**

- 1. Start moving T
- 2. T on plane
- 3. Edge view
- 4. Start moving T
- 5. Perpendicular



Topic 4 TOC

#### Minimizing the sum-of-squares



- 1. Show plane
- 2. Show b
- 3. Show perpendicular
- 4. Show line & dist
- 5. Move point
- 6. Min
- 7. Min



Topic 4 TOC

#### Replacing an insolvable with a solvable



We abandon the goal of solving this equation

Assignment Project Exam Help

https://powcoder.com

wA



In the range space of

OWCWEWill choose to solve this closely related equation

Topic 4 TOC

#### What the pseudoinverse does



#### What is the pseudoinverse of a given matrix?

It is that matrix which maps any given point in the output space to the point in the input space whose image is as close as possible to the given point.





#### **Linear Classifiers - Perceptron versus Pseudoinverse**



Topic 4 TOC

#### **Linear Classifiers - Using nonlinear combinations of features**



#### **Linear Classifier - Adding quadratic terms**





pic 4 C

#### **Linear Classifier - Adding cubic terms**



The 2D samples shown here are not linearly separable. However, nonlinearly transformed versions

The nonlinear transformation used is

See: Linear\_Classifier.cdf. Note: You can alter the training data by dragging the points. You can add Add WeChat powerpoling functions of features by setting the degree.

> Topic 4 TOC

Press ESC to go to Index

#### How to use nonlinear combinations of features

Variables used to build a simple linear classifier

| $x_{\theta}$ | $x_{I}$ | $x_2$ | $x_3$ |
|--------------|---------|-------|-------|
| 1            |         |       |       |
| 1            |         |       |       |
| 1            |         |       |       |
| 1            |         |       |       |
| 1            |         |       |       |

Variables used to build an extended linear classifier with additional terms

upto degree 2 t Project Exam Help

|              | Lir   | near ter | ms |         | (         | Quadrat        |                 |       |      |             |
|--------------|-------|----------|----|---------|-----------|----------------|-----------------|-------|------|-------------|
| $x_{\theta}$ | $x_1$ | $x_2$    | Х3 | $x_1^2$ | $x_1 x_2$ | 1 <sup>2</sup> | - X2 X2         | #2/X2 | ~ ¥2 | coder.com   |
| 1            |       |          |    |         |           | LIL            | rh22            | / /   | U.yv | couci.com   |
| 1            |       |          |    |         |           |                |                 |       | :    |             |
| 1            |       |          |    |         |           |                |                 |       | ;    |             |
| 1            |       |          |    |         |           | <b>A</b>       | $\cap$ $\Theta$ | ₩e    |      | at powcoder |
| 1            |       |          |    |         |           |                |                 | ·     |      | nt poweduct |

Variables used to build an extended linear classifier with additional terms upto degree 3

|                | Lir                   | near ter              | ar terms Quadratic terms |         |                               |             |                               |                               |                             | Cubic terms |             |             |     |             |               |             |             |             |     |
|----------------|-----------------------|-----------------------|--------------------------|---------|-------------------------------|-------------|-------------------------------|-------------------------------|-----------------------------|-------------|-------------|-------------|-----|-------------|---------------|-------------|-------------|-------------|-----|
| x <sub>0</sub> | <i>x</i> <sub>1</sub> | <i>x</i> <sub>2</sub> | <i>x</i> <sub>3</sub>    | $x_1^2$ | x <sub>1</sub> x <sub>2</sub> | $x_{2}^{2}$ | x <sub>1</sub> x <sub>3</sub> | x <sub>2</sub> x <sub>3</sub> | x <sub>3</sub> <sup>2</sup> | $x_I^3$     | $x_1^2 x_2$ | $x_1 x_2^2$ | x23 | $x_1^2 x_3$ | $x_1 x_2 x_3$ | $x_2^2 x_3$ | $x_1 x_3^2$ | $x_2 x_3^2$ | X33 |
| 1              |                       |                       |                          |         |                               |             |                               |                               |                             |             |             |             |     |             |               |             |             |             |     |
| 1              |                       |                       |                          |         |                               |             |                               |                               |                             |             |             |             |     |             |               |             |             |             |     |
| 1              |                       |                       |                          |         |                               |             |                               |                               |                             |             |             |             |     |             |               |             |             |             |     |
| 1              |                       |                       |                          |         |                               |             |                               |                               |                             |             |             |             |     |             |               |             |             |             |     |
| 1              |                       |                       |                          |         |                               |             |                               |                               |                             |             |             |             |     |             |               |             |             |             |     |

Topic 4 TOC

# construction)



#### is again solved using the pseudoinverse as

To classify a given input, form and assign class based on the position of the maximum.

Topic 4

Press ESC to



## Real world example: Machine Failure

| Temperature | x-acc | y-acc | z-acc      | Pressure | Load   |                  | Flow      |     | Ni  | troge | n  | Fre        | quer | ncy | Failure Alert |                    | Dia | Diagnostic Code          |   |  |   |
|-------------|-------|-------|------------|----------|--------|------------------|-----------|-----|-----|-------|----|------------|------|-----|---------------|--------------------|-----|--------------------------|---|--|---|
| 149         | 118   | 136   | 113        | 113      | 105    | -1               | -1        | 1   | -1  | -1    | 1  | -1         | -1   | 1   |               | :                  | 1   | 4                        |   |  |   |
| 171         | 218   | 83    | 265        | 222      | 129    | -1               | 1         | -1  | -1  | 1     | -1 | -1         | 1    | -1  |               | -:                 | -1  |                          | 0 |  |   |
| 295         | 267   | 177   | 160        | 317      | 216    | -1               | 1         | -1  | 1   | -1    | -1 | -1         | 1    | -1  |               |                    | 1   |                          | 2 |  |   |
| 102         | 155   | 147   | 266        | 197      | 119    | -1               | 1         | -1  | -1  | 1     | -1 | 1          | -1   | -1  |               |                    | 1   | SS                       | 3 |  |   |
| 129         | 143   | 169   | 134        | 131      | 101    | -1               | -1        | 1   | -1  | -1    | 1  | -1         | -1   | 1   | >             |                    | 1   | <u>cla</u>               | 4 |  |   |
| 197         | 201   | 257   | 185        | 165      | 218    | -1               | 1         | -1  | 1   | -1    | -1 | -1         | 1    | -1  | binary        | -:                 | 1   | multiclass<br>code       | 0 |  |   |
| 143         | 109   | 185   | 183        | 180      | 101    | -1               | 1         | -1  | -1  | 1     | -1 | 1          | -1   | -1  | bir           |                    | 1   | <u> </u>                 | 3 |  |   |
| 258         | 197   | 262   | 218        | 255      | 253    | -1               | _1        | -1  | 1   | -1    | -1 | -1         | 1    | -1  | g<br>a        | -:                 | 1   | building a<br>diagnostic | 2 |  |   |
| 194         | 151   | 202   | A SS1 Ø    | ıment    | Prope  | C1               | 1         | X-1 | 717 | F     | e  | 17         | -1   | -1  | for building  |                    | 1   | building<br>diagnost     | 5 |  |   |
| 117         | 103   | 133   | 0          | 80       | 88     | -1               | -1        | 1   | -1  | -1    | 1  | $\Gamma_1$ | -1   | 1   | nii n         | predict failure    | 1   | uildiag                  | 4 |  |   |
| 125         | 157   | 192   | 167        | 142      | 109    | -1               | -1        | 1   | -1  | -1    | 1  | -1         | -1   | 1   | r b           |                    | 1   |                          | 4 |  |   |
| 233         | 94    | 259   | 148        | 172      | 288    | , <sub>4</sub> 1 | 1         | -1  | -1  | 1     | -1 | 1          | -1   | -1  | و و           | ਹ<br>ਹ             | 1   | s for<br>ict a           | 5 |  |   |
| 138         | 126   | 155   | 116        | UDS./164 | DOW GI | JŲ               |           | C.  | )H  | -1    | 1  | -1         | -1   | 1   | targets f     | ed :               | 1   | argets fo<br>predict     | 4 |  |   |
| 122         | 99    | 106   | 137        | 178      | 148    | -1               | -1        | 1   | -1  | -1    | 1  | -1         | -1   | 1   | arg           | d 📑                | 1   | targets<br>o pred        | 4 |  |   |
| 238         | 149   | 176   | 269        | 236      | 223    | -1               | 1         | -1  | -1  | 1     | -1 | -1         | 1    | -1  | (1)           | <u>۔</u>           | 1   | ت رہ                     | 0 |  |   |
| 139         | 115   | 108   | <u>A</u> 2 |          | eCh#4  | 11               | <i>C4</i> | X/C | OC  | er    | 1  | -1         | -1   | 1   | these         |                    | 1   | these<br>sifier t        | 4 |  |   |
| 154         | 167   | 189   | 195        | 142      | eChat  | P                | 1         | -1  | -1  | 1     | -1 | 1          | -1   | -1  | e tl          | classiner<br>'   ' | 1   | Use these classifier     | 1 |  |   |
| 209         | 176   | 170   | 253        | 212      | 226    | -1               | 1         | -1  | 1   | -1    | -1 | 1          | -1   | -1  | Use -         | <u>-</u>           | 1   | Us                       | 0 |  |   |
| 191         | 238   | 197   | 256        | 160      | 221    | -1               | 1         | -1  | 1   | -1    | -1 | -1         | 1    | -1  |               | -                  | 1   |                          | 2 |  |   |
| 138         | 165   | 153   | 258        | 195      | 220    | -1               | 1         | -1  | -1  | 1     | -1 | 1          | -1   | -1  |               | :                  | 1   |                          | 3 |  |   |
| 152         | 156   | 164   | 223        | 191      | 241    | -1               | 1         | -1  | -1  | 1     | -1 | 1          | -1   | -1  |               | -1                 |     | -1                       |   |  | 1 |
| 156         | 202   | 146   | 149        | 255      | 138    | -1               | 1         | -1  | -1  | 1     | -1 | 1          | -1   | -1  |               | -1                 |     | 1                        |   |  |   |
| 226         | 215   | 179   | 210        | 218      | 225    | -1               | 1         | -1  | 1   | -1    | -1 | -1         | 1    | -1  |               | -1                 |     | 2                        |   |  |   |
| 233         | 230   | 237   | 236        | 228      | 276    | -1               | 1         | -1  | 1   | -1    | -1 | -1         | 1    | -1  |               | -:                 | 1   |                          |   |  |   |
| 175         | 190   | 179   | 224        | 192      | 195    | -1               | 1         | -1  | 1   | -1    | -1 | -1         | 1    | -1  |               | -:                 | 1   |                          |   |  |   |
| 110         | 168   | 105   | 180        | 134      | 170    | -1               | -1        | 1   | -1  | -1    | 1  | -1         | -1   | 1   |               |                    | 1   |                          | 4 |  |   |
|             |       |       |            |          |        |                  |           |     |     |       |    |            |      |     |               |                    | _   |                          |   |  |   |

Full dataset has 6600 items

Kesler's construction: Nominals to ordinals

OC



#### **Training and Testing Subsets**

```
= Total sample
```

size

= Training set

size

= Testing set size

Question: Given a set of 1000 items, how do I generate a random subset of 750 items?

Assignment Project Exam Help

items?

Answer:

https://powcoder.com

```
Add WeChat powcoder
```

```
permuted_indices=np.random.permutation(1000)
training_indices=permuted_indices[:750]
testing_indices=permuted_indices[750:]
```



#### **Training and Testing Subset**







Answers the question "How good is my classifier?"

Topic 4 TOC

#### **Validation Subset**



Answers the question "How can I optimize my classifier?" Finds use in setting histogram bin widths, for example.

> Topic 4 TOC

#### Linear Classifier to answer "Will the machine fail?"

Given a training set, find set of weights such that for positive points the value of is forced to 1 for negative points the value of is forced to -1



is solved using the pseudoinverse as



#### **Step-by-step: Linear Classifier Design for 2 classes**

#### Classifier Design

- 1. Collect and assemble matrix of feature vectors into matrix. Assemble targets into, a column vector of size containing class-labels -1 or 1. Note: If any of the original features are nominal, they must be converted to the numerical values using Kesler's construction.
- 2. Construct the augmentation Projecte Expressed a column of 1s in front of the matrix. Note that has dimensions.
- 3. Find the linear classificatt preie prome Good bis werse of and has dimensions. The pseudoinverse is standard in linear algebra software. The classifier is a column vector of sizeAdd WeChat powcoder

#### **Classifier Application**

To apply the linear classifier to an input vector, simply compute the augmented feature vector (by appending the element 1.0 in front of the list of the components of ) and classify it by computing.

> Topic 4 TOC

go to Index

#### **Classifier Performance**



Feature Vector  $\mathbf{M}\mathbf{d}\mathbf{d}$   $\mathbf{WeChoutpowsodod}$  Ground Truth  $X_{11}$   $X_{12}$   $X_{13}$   $X_{14}$   $X_{15}$   $X_{16}$   $C_1$   $t_1$   $X_{21}$   $X_{22}$   $X_{23}$   $X_{24}$   $X_{25}$   $X_{26}$   $C_2$   $t_2$   $X_{31}$   $X_{32}$   $X_{33}$   $X_{34}$   $X_{35}$   $X_{36}$   $C_3$   $t_3$   $X_{41}$   $X_{42}$   $X_{43}$   $X_{44}$   $X_{45}$   $X_{46}$   $C_4$   $t_4$   $X_{51}$   $X_{52}$   $X_{53}$   $X_{54}$   $X_{55}$   $X_{56}$   $C_5$   $t_5$   $X_{61}$   $X_{62}$   $X_{63}$   $X_{64}$   $X_{65}$   $X_{66}$   $C_6$   $t_6$   $X_{71}$   $X_{72}$   $X_{73}$   $X_{74}$   $X_{75}$   $X_{76}$   $C_7$   $t_7$ 

Topic 4

#### **Classifier Performance (Binary)**



#### Add WeChat powcoder

Positive

Negative

Ground Truth

| True Positive  | False<br>Negative |
|----------------|-------------------|
| False Positive | True<br>Negative  |

Topic 4 TOC

#### **Accuracy (Binary)**



Accuracy of a classifier: https://powcoder.com

An estimate of the probability of wooder correct classification

$$VCOder + FN + FP + TN$$

Why is this metric not universally satisfactory?

Topic 4
TOC

#### Sensitivity (Binary)



Sensitivity of a classifier:
An estimate of the probability of detecting a patterness positive powcoder given that it is positive.

Build a Disease Detector and take it to Disease City.
What fraction of the inhabitants are declared diseased?

Topic 4 TOC Press ESC to go to Index

Copyrighted Material 510-673-6113

#### **Specificity (Binary)**



Specificity of a classifier:

An estimate of the probability of FP + TNdetecting a patterness Wegaliwepowcoder given that it is negative.

Take the same Disease Detector to Healthy City. What fraction of the inhabitants are declared healthy?

> Topic 4 TOC

#### **Positive Predictive Value (Binary)**



PPV of a classifier; An estimate of the probability  $\frac{1}{\tau}$ FP + TPthat a pattern detected as Chat powcoder positive is in fact positive.

Take the same Disease Detector to Real City. How believable is the device?

> Topic 4 TOC

#### **Confusion Matrix**



Numeric Insight, Inc
Practical and exceptional number crunching and scientific programming

Copyrighted Material 510-673-6113

#### **Positive Predictive Value**



Numeric Insight, Inc
Practical and exceptional number crunching and scientific programming

#### How good is this classifier?



Training Accuracy = 82% Testing Accuracy = 81%

pic 4 DC



#### Tweaking the threshold



The threshold can be tweaked to favor the sensitivity or specificity.

Topic 4
TOC

#### Tweaking the threshold



100% Sensitiv Adjust threshold to Adjust threshold to get
0% Specifit desired sensitivity / desired sensitivity / specificity

SpecifitySensitivity

ress ESC to go to Index



# **Receiver Operating Curve (ROC)**





TOC

go to Index

# **Multiclass Linear Classifier - Recap**



To classify a given input, form and assign class base

Congratulations and thank you for your help in improving this presentation.

CLICK TO DISMISS



# **Step-by-step: Linear Classifier Design for C classes**

### Classifier Design

- 1. Collect and assemble matrix of feature vectors into matrix. Assemble targets into, a matrix of size containing Keslerized class-labels. Note: If any of the original features and/or class labels are nominal, they must be Keslerized as well.
- 2. Construct the augmenter Projecte Example and a column of 1s in front of the matrix. Note that has dimensions.
- 3. Find the linear classificatt preie prome God bis werse of and has dimensions. The pseudoinverse is standard in linear algebra software. The classifier is a Add WeChat powcoder matrix of size

### **Classifier Application**

To apply the linear classifier to an input vector, simply compute the augmented feature vector (by appending the element 1.0 in front of the list of the components of ) and classify as the index of the maximal component of .



# Linear Classifier to answer "How will the machine fail?"

| Binary Classifier | 6-class Classifier |                        |          |                      |                |          |
|-------------------|--------------------|------------------------|----------|----------------------|----------------|----------|
| -0.79875          | 0.46764            | 0.86452                | 0.95398  | -0.19715             | 0.39389        | -0.34451 |
| -0.72152          | 0.64304            | 0.00204                | 0.21375  | -0.18968             | 0.63631        | 0.39103  |
| -0.64092          | -0.01114           | 0.72715                | 0.75406  | 0.20382              | 0.17809        | -0.37686 |
| 0.84074           | 0.06236            | -0.44749               | -0.32788 | -0.86882             | -0.51815       | -0.69778 |
| 0.22689           | -0.5757.7          | -0.93963               | -0.20831 | -0.8682              | -0.08857       | 0.09765  |
| -0.84919          | 0.028812           | inment f               | rojecte  | xameHe               | $1p_{0.63277}$ | -0.87498 |
| -0.63674          | -0.25439           | -0.50861               | -0.05918 | -0.23052             | 0.75178        | -0.88669 |
| -0.88744          | -0.18551           | ttbs5%bo               | webter.  | COm7999              | 0.91929        | 0.09951  |
| 0.27741           | -0.19792           | 0.82271                | 0.78985  | 0.75868              | 0.11323        | -0.24436 |
| 0.24347           | -0.54545           |                        | -0.48256 | 0.39447              | -0.93019       | 0.67873  |
| -0.82087          | 0.68672            | \dd <sub>5</sub> }\\&( | ~uaf4b6% | vcoger <sub>85</sub> | -0.17256       | 0.44519  |
| -0.52954          | -0.8868            | -0.46615               | 0.04039  | 0.606                | 0.14894        | -0.68804 |
| 0.69901           | 0.49147            | 0.80087                | 0.5031   | -0.93141             | 0.89929        | -0.69476 |
| -0.30353          | -0.52576           | 0.1406                 | -0.45299 | -0.24506             | -0.26347       | 0.12544  |
| -0.10195          | 0.31402            | 0.70919                | 0.51812  | 0.35231              | -0.89767       | 0.16193  |
| -0.30998          | -0.01845           | -0.32724               | 0.2938   | 0.06672              | -0.29876       | 0.60873  |

**Numeric Insight, Inc** 



# Linear Regression - Mean-square error minimizer, again

Given a training set consisting of a feature vector matrix and a real valued target vector, find a set of weights such that



is again solved using the pseudoinverse as Example: Estimation of house price using various features

Topic 4 TOC



# Linear classifiers: Moving on to Logistic Regression

General form of a linear classifier Class 1 With math swag 
$$u_0 + w_1 x_1 + w_2 x_2 + \ldots + w_d x_d$$
 Class 2 Class 2 Class 2 Class 2

Linear Classifier Design Given a training set, find an optimal set of weights.



https://powcoder.com

- We would like our classifier to give us class labels and posterior probablities e Chat powcoder
- That seems impossible to arrange because the dot product potentially runs from to, whereas probabilities can only be in the range from 0 to 1
- The dot product is called the linear discriminant

TOC

go to Index

Class 1

# Connecting the discriminant to the probability

**Probability** is only one measure of the chances of an event happening. Instead of measuring the **probability** (the ratio of number of occurrences of an event to the number of trials), you can measure the **odds** (the ratio of number of occurrences of an event to the number of

non- occurrences), or the **logit** (the logarithm of the ratio of number of occurrences of an event to the number of non- occurrences). The advantage of using the logit is that it's range is the same as the range of the linear discriminant.





Topic 4 TOC

# Understanding the logit of the probability



The definition of the logit as gives us a method of converting a value of probability to a logit . As examples, a probability of translates to a logit of . A probability of translates to a logit of .

In the reverse direction, a given value of logit can be converted to probability using the relation . As examples, a logit of translates to a probability of . A

Topic 4 TOC Press ESC to go to Index

oglumetic in sight, inc probability of .

Practical and exceptional number crunching and scientific programming

Copyrighted Material 510-673-6113

#### Classification using ordinary regression versus logistic regression

**Ordinary linear regression:** Try to find a weight vector that makes the linear discriminant evaluate to for positive examples and for negative examples. can be found using the pseudoinverse of the data matrix.

**Logistic regression:** Try to find a weight vector that makes the probability evaluate to for positive examples and for negative examples.

Equivalently, try to find a weight vector that makes the probability evaluate to for positive examples and the probability evaluate to (also) for negative examples.

Taking the target to be for positive examples and for negative examples (Note: this represents a change in convention), we can write the above compactly as: Try to find a weight vector that maximizes the following Assignment Project Exam Help expression

Equivalently, after taking the logarithms try to find a weight vector that maximizes the following expression

This maximization must happen for every part of the training set. So, we can finally write logistic regression as the search for a weight vector that maximizes the following objective function

This is called the logistic log likelihood The which makes the logistic log likelihood maximum cannot be found by analytical methods

go to Index

TOC

www.numericinsiaht.com

#### **The Optimization Question**

A function of two variables and

The highest point on the landscape is shown here



The Optimization Question: How can we find the values of and at the highest point?

Topic 4 TOC

#### **Contour and gradient plots**

A contour plot of the function

A gradient plot of the function



Topic 4 TOC

## **Steepest gradient ascent**





go to Index

Press ESC to

## Steepest gradient ascent (multiple maxima)



Topic 4 TOC

#### Maximization of the logistic log likelihood by steepest gradient ascent

Note that, for a given problem (i.e. are fixed), the logistic log likelihood is a function of the weight vector. Since the weight vector which makes the logistic log likelihood maximum cannot be found by analytical methods, the only recourse is to start with an initial weight vector and do computations to replace it with a weight vector which improves the logistic log likelihood. The final solution is obtained by repeated refinement of the weight vector till the logistic log likelihood cannot be further improved.

Let us assume that the problem is two-dimensional. That is and . Extending this to the -dimensional case is straightforward. The logistic log likelihood, now a function of , and , can be written out as

# Assignment Project Exam Help

The method of steepest gradient ascent (or one of its many accelerated variants) is generally used to find the weight vector that maximizes the logistic log likelihood. This method, based on calculus, calls for starting with initially assigned values of , and and tweaking them by adding , and . The tweaks must, of course, be carefully chosen such that the logistic log likelihood is improved. Calculus tells us that this can be arranged by making sure that the tweaks are analytically placed production of the derivatives and . Fortunately, these derivatives can easily be derived, again thanks to calculus.



#### Maximization of the logistic log likelihood by steepest gradient ascent (contd.)

The derivatives and can be shown to be

The above set of derivatives regarded as a vector is called the gradient of the logistic log likelihood. For a given problem (i.e. are fixed), the gradient vector, denoted by , is also a function of the weight vector . Remember that the tweaks (the set of which can also be regarded as a vector) must be computed as small numbers proportional to the gradient vector.

ASSIGNMENT Project Exam Help gradient vector.

Armed with the above, the method of steepest gradient ascent can be used to iteratively find a new weight vector https://powcoder.com given the old weight vector:

Compute the gradient vector:

Calculate the new weight vector:

(is a small number e.g.)

In we have nat powcoder Note: The logistic log likelihood function



Topic 4 TOC

Press ESC to go to Index

www.numericinsight.com

#### Logistic Regression applied to height-handspan data



opic 4

#### Linear Classifiers in sklearn applied to MNIST data

```
from sklearn import linear model
percept = linear_model.Perceptron()
LR = linear_model.LogisticRegression()
percept.fit(P, T).score(Ptest, Ttest)
0.61325966850828728
  signment Project Exam Help
0.64640883977900554
       ttps://powcoder.com
percept.coef
               WeChat powcoder
percept.intercept
array([-706.])
%timeit -n1 -r1 (percept.fit(X, T).score(Xtest, Ttest))
1 loop, best of 1: 117 ms per loop
%timeit -n1 -r1 (LR.fit(X, T).score(Xtest, Ttest))
1 loop, best of 1: 22.3 s per loop
```

Topic 4 TOC Press ESC to go to Index

www.numericinsight.com

### **Topic 4 Summary**

Here is what you learned in Topic 4

A linear classifier is the linear inequality. Class 1

$$w_0 + w_1 x_1 + w_2 x_2 + \dots + w_d x_d$$
 Class 2

- The weights can be optimized using various criteria
- The simple perceptron attempts to maximize the training accuracy.
- The pseudoin lets Slass Fior Wich Cites the Sun-of-squares error.
- Nonlinear classification can be achieved by extending the feature set using nonlineardd we fratures owcoder
- Multiclass classifiers are built using Kesler's construction
- AUC, the area under the ROC curve measures the intrinsic accuracy of a linear classifier