KVADRATNA JEDNAČINA $ax^2 + bx + c = 0$

Jednačina oblika $ax^2 + bx + c = 0$, gde je x – nepoznata. a,b i c realni brojevi, $a \ne 0$, je kvadratna jednačina po x sa koeficijentima a,b i c.

Kvadratna jednačina je **potpuna** ako su koeficijenti $b \neq 0$ i $c \neq 0$. Ako je b = 0 ili c = 0 (ili oba) onda je kvadratna jednačina **nepotpuna**.

Nepotpuna kvadratne jednačine se rešavaju relativno lako.

Nepotpune kvadratne jednačine

$$ax^{2} + bx = 0$$

$$x(ax + b) = 0$$

$$x = 0 \quad \forall \quad ax + b = 0$$

$$x = -\frac{b}{a}$$

$$x = \pm \sqrt{-\frac{c}{a}}$$

$$ax^{2} + c = 0$$

$$ax^{2} = -c$$

$$x = 0$$

$$x = 0$$

Primeri:

$$2x^{2} + 5x = 0 4x^{2} - 9 = 0 5x^{2} = 0$$

$$x(2x+5) = 0 4x^{2} = 9 x^{2} = \frac{0}{5}$$

$$x = 0 2x = -5 x^{2} = \frac{9}{4} x = 0$$

$$x = \pm \frac{3}{2}$$

$$x_{1} = \frac{3}{2}$$

$$x_{2} = -\frac{3}{2}$$

Potpuna kvadratna jednačina:

$$ax^2 + bx + c = 0$$

Kvadratna jednačina ima dva rešenja: označavamo ih sa x_1 i x_2 i tradicionalno se piše

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Ovu formulicu ćemo vrlo često koristiti pa da objasnimo odakle ona.... Prvi način:

Podjimo od kvadratne jednačine:

$$ax^2 + bx + c = 0$$

Kako je $a \neq 0$, celu jednačinu ćemo pomnožiti sa 4a

$$ax^2 + bx + c = 0 \dots /*4a$$

$$4a^2x^2 + 4abx + 4ac = 0$$

Dalje ćemo obema stranama dodati izraz $b^2 - 4ac$

$$ax^2 + bx + c = 0$$
....../*4*a*

$$4a^2x^2 + 4abx + 4ac = 0.... / + (b^2 - 4ac)$$

$$4a^2x^2 + 4abx + 4ac + b^2 - 4ac = b^2 - 4ac$$

$$4a^2x^2 + 4abx + b^2 = b^2 - 4ac$$

Leva strana je sada potpun kvadrat:

$$ax^2 + bx + c = 0$$
....../*4*a*

$$4a^2x^2 + 4abx + 4ac = 0.... / + (b^2 - 4ac)$$

$$4a^2x^2 + 4abx + 4ac + b^2 - 4ac = b^2 - 4ac$$

$$4a^2x^2 + 4abx + b^2 = b^2 - 4ac$$

$$(2ax + b)^2 = b^2 - 4ac \rightarrow \text{Pazite sad jer } \Theta^2 = \bigcirc \rightarrow \Theta = \pm \sqrt{\bigcirc}$$

$$2ax + b = \pm \sqrt{b^2 - 4ac}$$

$$2ax = -b \pm \sqrt{b^2 - 4ac}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Drugi način za dobijanje ove formule je direktna dopuna do punog kvadrata:

$$ax^2 + bx + c = 0$$
....../: a

$$x^2 + \frac{b}{a}x + \frac{c}{a} = 0$$

$$\boxed{x^2 + \frac{b}{a}x + \left(\frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2 + \frac{c}{a} = 0}$$

$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} + \frac{c}{a} \rightarrow \left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2} \rightarrow x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}} \rightarrow x = -\frac{b}{2a} + \frac{\pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Primer 1. Reši jednačine:

a)
$$6x^2 - x - 2 = 0$$

b)
$$x^2 - 2x + 1 = 0$$

$$v) x^2 - 4x + 5 = 0$$

Rešenja:

a)
$$6x^2 - x - 2 = 0$$

$$a$$
 je broj ispred x^2

$$a = 6$$

$$b$$
 je broj ispred x

$$b = -1$$

$$c$$
 je slobodan član, to jest onaj bez x

$$c = -2$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 6 \cdot (-2)}}{2 \cdot 6}$$

$$x_{1,2} = \frac{1 \pm \sqrt{49}}{12} = \frac{1 \pm 7}{12}$$

$$x_1 = \frac{1+7}{12} = \frac{8}{12} = \frac{2}{3}$$

$$x_2 = \frac{1-7}{12} = \frac{-6}{12} = -\frac{1}{2}$$

b)
$$x^2 - 2x + 1 = 0$$

$$a = 1$$
$$b = -2$$

$$c = 1$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot 1 \cdot 1}}{2 \cdot 1}$$

$$x_{1,2} = \frac{2 \pm \sqrt{4 - 4}}{2} = \frac{2 \pm 0}{2}$$

$$x_1 = \frac{2}{2} = 1$$

$$x_2 = \frac{2}{2} = 1$$

$$v) x^2 - 4x + 5 = 0$$

$$a = 1$$

$$b = -4$$

$$c = 5$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-4) \pm \sqrt{16 - 20}}{2 \cdot 1}$$

Dakle:
$$x_1 = 2 + i$$

 $x_2 = 2 - i$

$$x_{1,2} = \frac{4 \pm \sqrt{-4}}{2} = \frac{4 \pm 2i}{2} = \frac{2(2 \pm i)}{2} = 2 \pm i$$
 Pazi jer je: $\sqrt{-4} = \sqrt{4(-1)} = 2i$

Pazi jer je:
$$\sqrt{-4} = \sqrt{4(-1)} = 2i$$

 $\sqrt{-1} = i$

Primer 2. Rešiti jednačinu:

Rešenje:
$$(2x-3)^2 + (x-1)(x+2) = 2-11x$$

 $4x^2 - 12x + 9 + x^2 + 2x - x - 2 - 2 + 11x = 0$
 $5x^2 + 5 = 0 / : 5$
 $x^2 + 1 = 0 \rightarrow \text{Nepotpuna kvadratna jednačina}$
 $x^2 = -1$
 $x = \pm \sqrt{-1}$
 $x_1 = +i$

 $(2x-3)^2 + (x-1)(x+2) = 2-11x$

Primer 3. Rešiti jednačinu:

 $x_2 = -i$

$$\frac{x}{x-2} - \frac{3}{x+2} = \frac{8}{x^2-4} \rightarrow \text{najpre rastavimo na činioce imenilac}$$

$$\frac{x}{x-2} - \frac{3}{x+2} = \frac{8}{(x-2)(x+2)} \rightarrow \text{Množimo sve sa NZS} = (x-2)(x+2) \text{ uz uslov:}$$

$$x(x+2) - 3(x-2) = 8 \qquad x \neq 2$$

$$x^2 + 2x - 3x + 6 - 8 = 0 \qquad x \neq -2$$

$$x^2 - x - 2 = 0 \rightarrow \text{Sad radimo kao kvadratnu jednačinu}$$

$$\frac{a=1}{b=-1} \qquad x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \cdot 1 \cdot (-2)}}{2}$$

$$c = -2 \qquad x_{1,2} = \frac{1 \pm 3}{2}$$

$$x_1 = \frac{1+3}{2} = \frac{4}{2} = 2 \rightarrow \text{PAZI:} \quad \underline{nije \ rešenje} \quad \text{jer je uslov } x \neq 2$$

$$x_2 = \frac{1-3}{2} = \frac{-2}{2} = -1 \rightarrow \text{Dakle } \boxed{x=-1}$$

<u>Primer 4.</u> Grupa dečaka treba da podeli 400 klikera na jednake delove. Pre deobe 4 dečaka se odreknu svog dela, zbog čega je svaki od ostalih dobio po 5 klikera više. Koliko je u toj grupi bilo dečaka?

Rešenje:

Obeležimo sa x-broj dečaka, y- broj klikera po dečaku

Najpre iz teksta zadatka postavimo dve jednačine:

$$x \cdot y = 400$$

 $(x-4) \cdot (y+5) = 400 \rightarrow$ "Sredimo" ovu drugu jednačinu...
 $xy + 5x - 4y - 20 = 400$
 $400 + 5x - 4y - 20 = 400$
 $5x - 4y - 20 = 0 \rightarrow$ Iz prve jednačine izrazimo $y = \frac{400}{x}$
 $5x - 4 \cdot \frac{400}{x} - 20 = 0 / \cdot x$ Uz uslov da je x različito od nule.
 $5x^2 - 1600 - 20x = 0 \rightarrow$ (poredjamo)
 $5x^2 - 20x - 1600 = 0 \rightarrow$ (podelimo sa 5)
 $x^2 - 4x - 320 = 0 \rightarrow$ sad radimo kvadratnu jednačinu
 $a = 1$
 $b = -4$
 $c = -320$ $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \cdot 1 \cdot (-320)}}{2}$
 $x_{1,2} = \frac{4 \pm \sqrt{16 + 1280}}{2} = \frac{4 \pm \sqrt{1296}}{2} = \frac{4 \pm 36}{2}$
 $x_1 = \frac{4 + 36}{2} = 20$
 $x_2 = \frac{4 - 36}{2} = -16 \rightarrow Nemoguće$

Dakle bilo je 20 dečaka u grupi.

Priroda rešenja kvadratne jednačine

Diskriminanta (**D**) kvadratne jednačine $ax^2 + bx + c = 0$ je izraz $b^2 - 4ac$ (ono pod korenom) Dakle: $D = b^2 - 4ac$

Sada formulu za rešavanje možemo zapisati i kao: $x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$

Za kvadratnu jednačinu $ax^2 + bx + c$ sa realnim koeficijentima važi:

- 1) Jednačina ima dva različita realna rešenja ako i samo ako je D>0 $(x_1=x_2 \in R \ x_1 \neq x_2 \ \text{akko} \ D>0)$
- 2) Jednačina ima jedno dvostruko realno rešenje ako i samo ako je D=0 $(x_1=x_2\in R \text{ akko } D=0)$
- 3) Jednačina ima jedan par konjugovano kompleksnih rešenja akko je D < 0 $(x_1 = a + bi, x_2 = a bi$ akko D < 0)

Primer 1. Ispitati prirodu rešenja kvadratnih jednačina u zavisnosti od parametara:

a)
$$x^2 + 3x + m = 0$$

b)
$$(n+3)x^2 - 2(n+1)x + n - 5 = 0$$

a)
$$x^2 + 3x + m = 0$$
 \Rightarrow $a = 1$
 $b = 3$
 $c = m$

$$D = b^2 - 4ac = 3^2 - 4 \cdot 1 \cdot m = 9 - 4m$$

1)
$$D > 0 \implies 9 - 4m > 0$$

 $-4m > -9 \rightarrow \underline{PAZI}$: Okreće se smer nejednakosti
 $m < \frac{-9}{-4}$
 $m < \frac{9}{4}$

2)
$$D = 0 \implies 9 - 4m = 0 \implies m = \frac{9}{4}$$

3)
$$D < 0 \implies 9 - 4m < 0 \implies m > \frac{9}{4}$$

Dakle: - za $m < \frac{9}{4}$ rešenja su realna i različita

- za
$$m = \frac{9}{4}$$
 rešenja su realna i jednaka

- za
$$m > \frac{9}{4}$$
 rešenja su konjugovano-kompleksni brojevi

b)
$$(n+3)x^2 - 2(n+1)x + n - 5 = 0$$

$$a = n + 3$$

$$b = -2(n+1)$$
 \Rightarrow **PAZI:** ovde je odmah $n+3 \neq 0$ da bi jednačina bila kvadratna $c = n-5$

$$D = b^{2} - 4ac = [-2(n+1)]^{2} - 4(n+3)(n-5)$$

$$= 4(n^{2} + 2n + 1) - 4(n^{2} - 5n + 3n - 15)$$

$$= 4n^{2} + 8n + 4 + 2n^{2} + 20n - 12n + 60$$

$$D = 16n + 64$$
1) $D > 0$ $16n + 64 > 0 \Rightarrow 16n > -64 \Rightarrow n > -4$ Za $n > -4$ je $x_{1} \neq x_{2} \in R$

2)
$$D = 0$$
 $16n + 64 = 0 \Rightarrow n = -4$ $x_1 = x_2 \in R$

3) D < 0 $16n + 64 < 0 \Rightarrow n < -4$ x_1 i x_2 su konjugovano-kompleksni brojevi. **Primer 2.** Za koje vrednosti parametra $k \in R$ jednačina $kx^2 + (k+1)x + 2 = 0$ ima dvostruko rešenje?

Rešenje: Ovde nam treba da je D=0 i naravno $a \neq 0$, jer ako je a=0 jednačina nije kvadratna.

$$kx^{2} + (k+1)x + 2 = 0 \implies a = k$$

 $b = k+1 \implies k \neq 0$
 $c = 2$

$$D = b^{2} - 4ac = (k+1)^{2} - 4 \cdot k \cdot 2 = k^{2} + 2k + 1 - 8k = k^{2} - 6k + 1$$
$$D = k^{2} - 6k + 1 = 0$$

Sada rešavamo novu kvadratnu jednačinu "po k"

$$k^{2} - 6k + 1 = 0 \implies a = 1$$

$$b = -6$$

$$c = 1$$

$$k_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-(-6) \pm \sqrt{(-6)^{2} - 4 \cdot 1 \cdot 1}}{2} = \frac{6 \pm \sqrt{32}}{2}$$
Malo sredimo : $\sqrt{32} = \sqrt{16 \cdot 2} = 4\sqrt{2}$

Pa je:

$$k_{1,2} = \frac{6 \pm 4\sqrt{2}}{2} = \frac{2(3 \pm 2\sqrt{2})}{2} = 3 \pm 2\sqrt{2}$$

$$k_1 = 3 + 2\sqrt{2}$$

$$k_2 = 3 - 2\sqrt{2}$$

Ovo su rešenja za koja jednačina (početna) ima dvostruko rešenje

<u>Primer 3.</u> Za koje vrednosti parametra $m \in R$ jednačina $mx^2 - 4x + 1$ ima realna i različita rešenja?

Rešenje: Ovde dakle mora biti D > 0 i naravno $a \ne 0$

$$a = m \Rightarrow m \neq 0$$

$$b = -4 \Rightarrow D = (-4)^2 - 4 \cdot m \cdot 1$$

$$c = 1$$

$$D = 64 - 4m > 0$$

$$16 - 4m > 0$$

$$-4m > -16$$

$$m < 4$$

$$D = 64 - 4m > 0$$
nula ne sme!

Dakle, rešenje je $m \in (-\infty,0) \cup (0,4)$

<u>Primer 4.</u> Za koje vrednosti parametra m jednačina $x^2 - 8x + m$ ima konjugovanokompleksno rešenja?

Rešenje: Mora biti D < 0 i $a \ne 0$

$$a = 1 \neq 0$$

$$b = -8$$

$$c = m$$

$$D = b^{2} - 4ac$$

$$D = (-8)^{2} - 4 \cdot m \cdot 1$$

$$D = 64 - 4m < 0$$

$$-4m < -64$$

$$m > 16 \Rightarrow m \in (16, \infty)$$

<u>Primer 5.</u> Za koje vrednosti parametra $k \in R$ jednačina $kx^2 + 6x + 3 = 0$ nema realna rešenja?

Rešenje: Kad nema realna rešenja, znači da su konjugovano kompleksna, odnosno D < 0 i naravno $a \ne 0$.

$$kx^{2} + 6x + 3 = 0 \implies a = k \implies k \neq 0$$

$$b = 6$$

$$c = 3$$

$$D = b^{2} - 4ac$$

$$D = 6^{2} - 4 \cdot k \cdot 3 = 36 - 12k$$

$$36 - 12k < 0$$

$$-12k < -36$$

$$k > 3 \implies k \in (3, \infty)$$

Primer 6. Za koje vrednosti parametra $m \in R$ jednačina $(2m+1)x^2 - (2m+1)x + 2,5 = 0$ ima realna i različita rešenja?

Rešenje: Ovde je D > 0 i $a \ne 0$

$$a = 2m+1$$

$$b = -(2m+1)$$

$$c = -2,5$$

$$D = b^2 - 4ac$$

$$D = [-(2m+1)]^2 - 4 \cdot [2m+1] \cdot 2,5$$

$$D = (2m+1)^2 - 10(2m+1)$$

$$D = 4m^2 + 4m + 1 - 20m - 10$$

$$D = 4m^2 - 16m - 9 > 0$$

Rešimo najpre $4m^2 - 16m - 9 = 0$

$$a = 4$$

$$b = -16$$

$$m_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$c = -9$$

$$m_{1,2} = \frac{16 \pm \sqrt{256 + 144}}{8} = \frac{16 \pm 20}{8}$$

$$m_1 = \frac{36}{8} = \frac{9}{2}$$

$$m_2 = -\frac{4}{8} = -\frac{1}{2}$$

(Pogledaj kvadratne nejednačine):

$$D > 0 \rightarrow \text{ biramo gde je} + \qquad m \in \left(-\infty, -\frac{1}{2}\right) \cup \left(\frac{9}{2}, \infty\right)$$