Latent Gaussian Compression

James Zhao, Blaine Arihara, Emily Tang, Terry Weber

Problem Setup

Suppose we have a dataset $D = \{Cat, Dog\}$ with two classes and we want to train a classifier.

- The Problem:
 - \circ Cannot store or transmit full dataset D because of
 - Network bandwidth constraints
 - Space constraints
 - Privacy constraints
- ullet Can we share compressed dataset D' (equivalent to coreset S_k) instead?

Problem Assumptions

Existing Approaches

• Select subset S* and obtain a $\frac{|V|}{|S*|}$ speedup and compression factor

Workflow

Gaussian Mixture Modeling

- Map original data in $\mathbb{R}^n(A,B)$ to simpler latent space $\mathbb{R}^l(A',B')$ where l<< n.
- We can approximate the class distributions using Gaussian Mixture Models (GMMs):
 - \circ Represent each class distribution $C' \in (A', B')$ as linear combinations of k Gaussian distributions:

$$P(z) = \sum_{i=1}^k \pi_i \mathcal{N}(\mu_{k_{C'}}, \Sigma_{k_{C'}}), \quad z \in R^l$$