

Oddziaływanie Promieniowania Jonizującego z Materią

Tomasz Szumlak, Agnieszka Obłąkowska-Mucha

WFiIS AGH Kraków

Efekt Czerenkowa

- Oprócz jonizacji naładowane cząstki tracą energię poprzez emisję promieniowania Czerenkowa
- Emisja fotonów w medium charakteryzowanym stałą dielektryczną ϵ , gdzie $Re(\sqrt{\epsilon})=n$ (współczynnik załamania),a $Im(\epsilon)=k$ (parametr absorpcyjny)

Visible photons:

$$E = 1 - 5 \text{ eV}$$
; $\lambda = 300 - 600 \text{ nm}$

$$-\left\langle \frac{dE}{dx}\right\rangle_{C} \propto z^2 \sin^2 \theta_c$$

Promieniowanie jest emitowane tylko wtedy gdy prędkość cząstki jest większa niż $\beta > 1/n$, można pokazać, że:

$$\gamma_{th} \ge \frac{c}{n}$$
 $\beta_{th} \ge \frac{1}{n}$

$$\cos(\theta_C) = \frac{1}{n\beta}$$

dla wody $\theta_{\it C}^{\it max}=11\,mrad$

- strata en. przez emisję PC jest znikoma w porównaniu do jonizacji (<1 %)</p>
- ☐ typowo 1-2 keV 200-1000 fotonów/cm

Efekt Czerenkowa

- ☐ Efekt Czerenkowa pozwala wykryć cząstki relatywistyczne
 - Powszechne zastosowanie w detekcji neutrin
- Detektory Czerenkowa powszechnie stosuje się do identyfikacji naładowanych hadronów **efekt progowy:**

$$mc < (n^2 - 1)^{1/2}p$$

Detektory Czerenkowa

- □ Detektory Czerenkowa używane są do identyfikacji dzięki zależności od pędu (czyli masy).
- \square /Kąt θ_C i liczba fotonów rośną z prędkością β , aż dla $\beta=1$:

$$\cos(\theta_{max}) = \frac{1}{n} i N_{\infty} =$$

Detektory Czerenkowa

■ Progowe detektory Czerenkowa – dyskryminacja pionów i kaonów

Choose n₁, n₂ in such a way that for:

 n_2 : β_{π} , $\beta_{K} > 1/n_2$ and $\beta_{p} < 1/n_2$

 n_1 : $\beta_{\pi} > 1/n_1$ and β_{K} , $\beta_{p} < 1/n_1$

Note:

e always visible in Cherenkov counters

Light in C₁ and C₂

identified pion

Light in C2 and not in C1

identified kaon

Light neither in C₁ and C₂

identified proton

6

Promieniowanie przejścia

- Promieniowanie emitowane, gdy naładowana cząstka przejdzie przez ośrodki o różnych stałych dielektrycznych
- Cząstka naładowana propagując przez materiał wywołuje jego lokalna polaryzację, t.j. zmienia wokół siebie pole elektromagnetyczne. W innym ośrodku polaryzacja taka ma inne własności, stąd jeśli znajdujemy się na granicy ośrodków powstaje nieciągłość pola elektromagnetycznego.
 - Okazuje się, że zniwelowanie tej nieciągłości wymaga emisji fotonu.

$$I \propto z^2 \gamma$$

Efekt promieniowania przejścia może być wykorzystany do odrożnienia od siebie dwoch rodzajow cząstek lekkich – np. e/π , π/K .

Promieniowanie przejścia

- Typical emission angle: $\Theta = 1/\gamma$
- Energy of radiated photons: ~ γ
- Number of radiated photons: αz²
- Effective threshold: $\gamma > 1000$

→ Use stacked assemblies of low Z material with many transitions + a detector with high Z gas

Detektory promieniowania przejścia

Detektory promieniowania przejścia

Identyfikacja naładowanych cząstek

Elektrony

- Dla **niskich energii** (10-30 MeV) elektrony (i pozytony), podobnie jak ziężkie cząstki naładowane, tracą energię głównie na drodze jonizacji
- W przypadku elektronów mamy do czynienia ze zderzeniem takich samych nierozróżnialnych cząstek i zależność na stratę en. kin jest trochę inna.
- \Box Straty energii dla elektronów słabo zależą od energii: $-\left(\frac{dE}{dx}\right) \sim \ln E$
- Powyżej, tak zwanej, energii krytycznej głównym mechanizmem strat energii jest **promieniowanie hamowania** (bremsstrahlung).
- Jest to proces emisji fotonów przez elektron przyspieszany w polu kulombowskim jądra

$$-\left\langle \frac{dE}{dx} \right\rangle_{Brems} \propto \frac{E}{m^2}$$

- □ Promieniowanie hamowania jest emitowane przez szybkie naładowane cząstki.
- Jego mechanizm fizyczny związany jest z oddziaływaniem z jądrami atomowymi materiału czynnego
- □ Dla cząstek relatywistycznych, strata energii na drodze emisji promieniowania hamowania da się opisać równaniem:

$$\left(-\frac{dE}{dx}\right)_{Brem} \approx 4\alpha N_A \frac{Z^2}{A} z^2 \left(\frac{1}{4\pi\varepsilon_0} \frac{e^2}{\mathbf{m}c^2}\right)^2 \mathbf{E} \cdot \ln\left(\frac{183}{Z^{1/3}}\right)$$

Gdzie: Z, A to liczby atomowa oraz masowa medium; z, m, E to ładunek, masa oraz energia cząstki penetrującej

- ☐ Straty energii na emisję PH, charakteryzują się zupełnie innymi własnościami niż straty jonizacyjne
 - ☐ Liniowa zależność od energii cząstek
 - ☐ Odwrotnie proporcjonalne do kwadratu masy cząstek

p = momentum of the project to the p

Elektrony

- Wzasadzie, elektrony "zawsze są relatywistyczne" i zakładamy, że dominującym sposobem oddziaływania z materią jest dla nich promieniowanie hamowania
- Inne cząstki naładowane również podlegają temu procesowi, ale jest on silnie tłumiony przez masę cząstek $\binom{m_e^2}{m_{\mu^2}}$

$$\left| \frac{dE}{dx} (E_c) \right|_{Brems} = \frac{dE}{dx} (E_c) \Big|_{Ion}$$

 E_c - energia krytyczna

Straty radiacyjne są procesem konkurencyjnym dla jonizacji, energia dla której straty te są identyczne (definiowana zwykle dla elektronów) nazywa się energią krytyczną E_c

https://www.youtube.com/watch?v=5RjBslO0pxg

- ☐ Promieniowanie hamowania ma szczególne znaczenie dla elektronów (b. mała masa)
- A Równanie ze s.3 można uprościć:

$$\left(-\frac{dE}{dx}\right)_{B} \approx 4\alpha N_{A} \frac{Z^{2}}{A} z^{2} r_{e}^{2} \mathbf{E} \cdot \ln\left(\frac{183}{Z^{1/3}}\right)$$

□ Øraz dalej:

$$\left(-\frac{dE}{dx}\right)_{B} = \frac{E}{X_{0}}$$

 X_0 - droga radiacyjna [g/cm²], po przejściu X_0 elektron ma 1/e energii (63%)

- \square Równanie to formalnie definiuje długość radiacyjną X_0
- Całkowanie daje nam atenuację energii naładowanych cząstek na drodze strat radiacyjnych

Bremsstrahlung

$$\left(-\frac{dE}{dx}(E_c) \right)_I = \left(-\frac{dE}{dx}(E_c) \right)_B$$

- Rozkład energii emitowanych fotonów hamowania jest odwrotnie proporcjonalny do ich energii $\propto 1/E_{\gamma}$
- \Box Fotony te są emitowane "do przodu", rozkład kątowy można przybliżyć formułą $heta_{\gamma}pprox m_{e}c^{2}/E$ (kąt zmniejsza się ze wzrostem energii)

Numeryczne wartości energii krytycznej można wyznaczyć używając formuły BB oraz na straty hamowania, dla elektronów dostaniemy:

$$E_c = \frac{610}{Z + 1.24} \ [MeV]$$

$$\left(\frac{dE}{dx}\right)_{P} \cdot X_{0} \approx E_{c}$$

Bremsstrahlung

- ☐ Energie krytyczne (oraz długości radiacyjne!) skalują się tak jak kwadraty mas cząstek naładowanych, które podlegają hamowaniu
- Znając wartości energii krytycznej dla elektronów możemy wyznaczyć ją dla mionów (na przykład):

$$E_c^{\mu} \approx E_c^e \cdot \left(\frac{m_{\mu}}{m_e}\right)^2 = 890 \; GeV$$

/					
Material	Z	A	$X_0 [\mathrm{g/cm^2}]$	X_0 [cm]	$E_{\rm c}[{ m MeV}]$
Hydrogen	1	1.01	61.3	731 000	350
Helium	2	4.00	94	530000	250
Lithium	3	6.94	83	156	180
Carbon	6	12.01	43	18.8	90
Nitrogen	7	14.01	38	30500	85
Oxygen	8	16.00	34	24000	75
Aluminium	13	26.98	24	8.9	40
Silicon	14	28.09	22	9.4	39
Iron	26	55.85	13.9	1.76	20.7

- □ W przeciwieństwie do "łagodnych" strat jonizacyjnych straty energii na drodze promieniowania hamowania, produkcji par oraz reakcji foto-jądrowych charakteryzują się b. dużymi przekazami energii
 - Duże fluktuacje statystyczne
 - ☐ Trudno zdefiniować średnią stratę całkowitą
- □ ∕Stratę całkowitą zapisujemy jako:

$$\left(-\frac{dE}{dx}\right)_{tot} = \left(-\frac{dE}{dx}\right)_{ion} + \left(-\frac{dE}{dx}\right)_{brem} + \left(-\frac{dE}{dx}\right)_{pair} + \left(-\frac{dE}{dx}\right)_{photo}$$

$$\left(-\frac{dE}{dx}\right)_{tot} = \left(-\frac{dE}{dx}\right)_{ion} + b(Z, A, E) \cdot E$$

■ Współczynniki b, znaleźć można w literaturze

Fotony

- ☐ Fizyka oddziaływania fotonów z materią różni dość zasadniczo od zjawisk związanych z jonizacją
- Detekcja fotonów (neutralne!) opiera się o wykorzystanie procesów, w których produkowane są cząstki wtórne posiadające ładunek (czyli, "the bottom line is" jonizacja!)
- W każdym akcie oddziaływania foton albo "ulega zniszczeniu" (efekt fotoelektryczny, dysocjacja) albo przekazuje znaczą część swojej energii początkowej (rozproszenie Compton'a)

 μ - liniowy współczynnik atenuacji (pr-two, że foton będzie zabsorbowany lub rozproszony

ATTENUATION

Object

Photon Energy

- Każde oddziaływanie fotonów jest dla nich katastrofalne (znikają).
- \square Ale zarówno X jak i γ są znacznie bardziej penetrujące niż naładowane cząstki.
- □ Brak możliwości wyznaczenia zasięgu, zamiast tego wprowadzamy pojęcie atenuacji (głębokość optyczna) wiązki fotonów:

 $\frac{I}{I_0} = e^{-\mu x}$

gdzie: μ - masowy współczynnik atenuacji (MWA), czyli współczynnik liniowy podzielony przez gęstość: $\mu \to \frac{\mu}{\sigma} \left[\frac{cm^2}{\sigma} \right]$

$$\frac{\mu}{\rho} = \frac{N_A}{A} \sum_{i} \sigma_i = \frac{N_A}{A} \left(\sigma_{ph} + Z \sigma_{comp} + \sigma_{pair} \right)$$

Fotony

- ☐ Trzy główne sposoby oddziaływania silna zależność od energii
 - □ Efekt fotoelektryczny dla fotonów o energiach
 ~ keV (maksymalna energia wiązań elektronów w atomach)
 - \square Rozproszenie Compton'a (kwazi-stacjonarny elektron) $\sim MeV$
 - Dysocjacja do pary elektron-pozyton (kreacja par) dominuje dla fotonów o energiach > 10 MeV
 - Uwaga dysocjacja fotonu może zajść jedynie w polu elektrostatycznym jądra atomowego – zasady zachowania, energia odrzutu
- Oddziaływanie elektronów i fotonów (o dużych energiach) jest opisane przez tzw. **długość radiacyjną** X_0 ($\sim cm$)

- ☐ Przekroje czynne występujące w zależności opisującej MWA zależą silnie od energii fotonów
 - Uwaga! Nie można zdefiniować dla fotonów "zasięgu" w materiale czynnym
- W zależności od energii możemy wyróżnić trzy zakresy w których dominują inne zjawiska
 - Niskie energie (100 $keV \ge E_{\gamma} \ge E_{jon}$) dominuje efekt fotoelektryczny: $\gamma + atom \rightarrow atom^* + e^-$
 - □ **Energie** $E_{\gamma} \sim 1 \, MeV$, dla których dominuje efekt Compton'a (rozproszenie na quasi-stacjonarnym elektronie atomowym): $\gamma + e^- \rightarrow \gamma + e^-$
 - □ Dla wysokich energii $E_{\gamma} \gg 1 \, MeV$ dominuje produkcja par (dysocjacja fotonu): $\gamma + j. \, at. \rightarrow e^- + e^+ + j. \, at.$

- □ Elektrony atomowe są zdolne do całkowitego pochłonięcia fotonów (swobodne nie **zasady zachowania**!)
- ☐ W procesie musi uczestniczyć **jądro atomowe** z uwagi na to, absorpcja przez elektrony znajdujące się w **powłoce K** jest wyjątkowo duża (~80% całkowitego przekroju czynnego)
- □ Całkowity przekrój czynny (przybliżenie Borna), można zapisać jako:

$$\sigma_{foto}^{K} = \left(\frac{32}{\epsilon^{7}}\right)^{1/2} \alpha^{4} \mathbf{Z}^{5} \sigma_{Th}^{e} \left[\frac{cm^{2}}{atom}\right]$$

gdzie: ϵ – zredukowana energia fotonu: $\epsilon = E_{\gamma}/m_e c^2$, σ_{Th}^e - to elastyczny przekrój czynny na rozpraszanie fotonów na elektronach: $\sigma_{Th}^e = \frac{8}{3}\pi r_e^2$

Mechanizm fizyczny efektu fotoelektrycznego jest pojęciowo prosty i posiada jasną "interpretację klasyczną", jednakże prowadzi on do szeregu ciekawych efektów wtórnych

Efekt fotoelektryczny

- Wzbudzony atom może wyemitować, np. z powłoki K, elektron to "puste" miejsce może zostać zajęte przez elektron z wyżej powłoki czemu towarzyszy emisja fotonów promieniowania charakterystycznego X
- ☐ Energię tego promieniowania daje prawo Moseley'a:

$$E = Ry(Z-1)^2 \left(\frac{1}{n^2} - \frac{1}{m^2}\right) \to E(K_\alpha) = \frac{3}{4}Ry(Z-1)^2$$

- ☐ Procesem konkurencyjnym do emisji promieniowania *X* jest usunięcie kolejnego elektronu tzw. efekt Auger'a
 - ☐ Elektrony Auger'a charakteryzują się dyskretnym widmem
 - ☐ Ich energia nie jest w żaden sposób związana z energią pierwotnych fotonów

Efekt Compton'a

☐ Zakładamy, że energia wiązania elektronu jest pomijalnie mała w porównaniu z energią fotonu

Stosunek energii fotonu rozproszonego do energii początkowej E'_{x} 1

$$\frac{E'_{\gamma}}{E_{\gamma}} = \frac{1}{1 + \epsilon \left(1 - \cos(\theta_{\gamma})\right)}$$

$$\epsilon = \frac{E_{\gamma}}{m_e c^2}$$

□ Przekrój czynny opisujący rozproszenie Comptona może być przybliżony formułą:

$$\sigma_C^e \propto \frac{ln(\epsilon)}{\epsilon}$$

□/Energia odrzutu elektronu:

$$T_e = E_{\gamma} - E'_{\gamma} = E_{\gamma} \frac{\epsilon(1 - \cos \theta)}{1 + \epsilon(1 - \cos \theta)}$$

$$T_{e\; max} = h \nu \frac{2\epsilon}{1+2\epsilon}$$
 dla $\theta = \pi$ $\epsilon = \frac{E_{\gamma}}{m_e c^2}$

énergia przekazana przez foton:

$$\Delta E = E_{\gamma} - T_{e \, max} = E_{\gamma} \frac{1}{1 + 2\epsilon}$$

 krawędzie na widmie elektronów pochodzą od fotonów rozproszonych wstecz:

fotony mogą nie zostać zaabsorbowane w ośrodku i uniknąć detekcji, a gdy rozproszą się "wstecz" tracą najwięcej energii, którą zyskują elektrony – stąd maksima na widmie energii elektronów

Kreacja par

□ Dysocjacja fotonów jest efektem progowym – energia fotonów musi osiągnąć pewną minimalną wartość:

$$E_{\gamma} \ge 2m_e c^2 + 2\frac{m_e^2}{m_{j.at.}}c^2$$

- W przypadku praktycznych urządzeń do detekcji, zawsze będziemy zakładać, że proces kreacji par odbywa się w polu jądra atomowego oraz, że kreowanymi cząstkami są elektrony
- Dla dużych energii fotonów, przekrój czynny zapiszemy jako:

$$\sigma_p \approx \frac{7}{9} 4\alpha r_e^2 Z^2 ln \frac{183}{Z^{1/3}} = \frac{7}{9} \frac{A}{N_A} \frac{1}{X_0}$$

 \square Rozkład kątowy produkowanych elektronów jest bardzo wąski, charakterystyczny kąt rozwarcia opisujący ten rozkład można przybliżyć jako: $\vartheta \approx m_e c^2/E_\gamma$

$$\frac{I}{I_0} = e^{-\mu x}$$

$$\frac{I}{I_0} = e^{-\mu x} \qquad \qquad \mu = \frac{N_A}{A} \sum_i \sigma_i$$

Oddziaływanie fotonów z materią może być podsumowane poprzez podanie masowych współczynników atenuacji w funkcji energii fotonów

Całkowita absorpcja

Poszczególne "składowe" oddziaływań można również uszeregować w/g względnej istotności w funkcji energii fotonów

$$\frac{\mu}{\rho} = \frac{N_A}{A} \sum_{i} \sigma_i = \frac{N_A}{A} \left(\sigma_{ph} + Z \sigma_{comp} + \sigma_{pair} \right)$$

Oddziaływania elektromagnetyczne

Droga radiacyjna – dwa określenia

Dominujące procesy dla energii > kilku MeV:

Fotony – produkcja par

Absorption coefficient:

$$\mu = n\sigma = \rho \frac{N_A}{A} \cdot \sigma_{\text{pair}} = \frac{7}{9} \frac{\rho}{X_0}$$

 X_0 = radiation length in [g/cm²]

$$X_0 = \frac{A}{4\alpha N_A Z^2 r_e^2 \ln \frac{183}{Z^{1/3}}}$$

$$X_0 \text{ to 7/9 średniej}$$
drogi, na której for

$$-\frac{dE}{dx} = \frac{7E}{9X_0}$$

drogi, na której foton konwertuje na e^+e^-

Elektrony – prom. hamowania

$$\frac{dE}{dx} = 4\alpha N_A \, \frac{Z^2}{A} r_e^2 \cdot E \, \ln \frac{183}{Z^{\frac{1}{3}}} \, = \frac{E}{X_0}$$

$$\rightarrow E = E_0 e^{-x/X_0}$$

 X_0 to średnia droga, na której elektron traci (1-1/e) energii

Kaskada elektromagnetyczna

- 1. Prosty model kaskady elektromagnetycznej:
 - elektron (pozyton) po X_0 emituje foton (bremstrahlung),
 - po kolejnej X₀ emituje następny foton,
 - foton konwertuje na parę e^+e^- (jak ma wystarczającą energię)
 - każda cząstka-córka ma połowę energii rodzica.

Oddziaływania hadronów

- □ Naładowane hadrony oddziałują również silnie (jądrowo).
- \square Sa to głównie oddziaływania nieelastyczne, ale σ_{el} i σ_{nel} zależą silnie od energii, a $\sigma_{tot} \approx 100$ mb dla 2 GeV-10 TeV.

$$\sigma_{tot} = \sigma_{el} + \sigma_{inel}$$

 \square Mierzymy średnią długość interakcji λ_I , która charakteryzuje absorpcję hadronu w materii:

$$N = N_0 e^{-x/\lambda_I}$$

- \Box Długość interakcji można wyznaczyć z σ_{inel} : $\lambda_I = rac{A}{N_A
 ho \; \sigma_{inel}}$
- \square Długość kolizji: $\lambda_T = \frac{A}{N_A \rho \ \sigma_{Total}}$
- \square Generalnie λ_I , λ_T są dużo większe od X_0

To nie jest koniec historii.

- Wkład (zależny od energii!) do całkowitej straty energii dadzą nam jeszcze:
 - ☐ Bezpośrednia produkcja par elektron-pozyton
 - ☐ Reakcje foto-nuklearne (foto-jądrowe)
- □ Dla cząstek ciężkich (naładowanych) ten mechanizm może nawet dominować nad promieniowaniem hamowania
 - Polega na produkcji par e-p przez wirtualne fotony w silnym polu elektrycznym jąder atomowych
 - ☐ Wartość straty energii proporcjonalna do energii cząstek penetrujących:

$$\left(-\frac{dE}{dx}\right)_{nair} = b_{pair}(Z, A, E) \cdot E\left[\frac{MeV}{g/cm^2}\right]$$

☐ Np. dla mionów o energii ~100 GeV

$$\left(-\frac{dE}{dx}\right)_{nair} = 3.0 \cdot 10^{-6} \cdot 10^{5} = 0.3 \left[\frac{MeV}{g/cm^{2}}\right]$$

to dopiero początek

- Naładowane cząstki mogą też bezpośrednio oddziaływać nieelastycznie z jądrami atomowymi
 - Stosunek przekrojów czynnych na oddziaływanie z elektronami atomowymi do na oddziaływanie z jądrem atomowym ma się w przybliżeniu tak jak stosunek i przekrojów geometrycznych $\sim 10^4 10^5$)
 - Wartość strat energii można wyrazić jako poniżej:

$$\left(-\frac{dE}{dx}\right)_{photo} = b_{photo}(Z, A, E) \cdot E\left[\frac{MeV}{g/cm^2}\right]$$

☐ Dla mionów o energii ~100 GeV mamy:

$$\left(-\frac{dE}{dx}\right)_{photo} = 0.04 \left[\frac{MeV}{g/cm^2}\right]$$

 Mechanizm ten ma znaczenie wyłącznie dla leptonów naładowanych – dla cząstek hadronowych dominują całkowicie bezpośrednie oddziaływania silne

2	7
J	/

Material	Z	A	$\sigma_{ m total}$ [barn]	$\sigma_{ m inel}$ [barn]	$\lambda_{\mathrm{T}} \cdot \varrho$ [g/cm ²]	$\lambda_{ m I} \cdot ho \ [{ m g/cm^2}]$
Hydrogen	1	1.01	0.0387	0.033	43.3	50.8
Helium	2	4.0	0.133	0.102	49.9	65.1
Beryllium	4	9.01	0.268	0.199	55.8	75.2
Carbon	6	12.01	0.331	0.231	60.2	86.3
Nitrogen	7	14.01	0.379	0.265	61.4	87.8
Oxygen	8	16.0	0.420	0.292	63.2	91.0
Aluminium	13	26.98	0.634	0.421	70.6	106.4
Silicon	14	28.09	0.660	0.440	70.6	106.0
Iron	26	55.85	1.120	0.703	82.8	131.9
Copper	29	63.55	1.232	0.782	85.6	134.9
Tungsten	74	183.85	2.767	1.65	110.3	185
Lead	82	207.19	2.960	1.77	116.2	194
Uranium	92	238.03	3.378	1.98	117.0	199

