Notes on MAT137 Video Playlist 3

Tianyu Du

Thursday $15^{\rm th}$ February, 2018

•		c		
1	n	t	n	

Created: September, 2017
Last modified: Thursday 15th February, 2018
Revision: 13:45 Thursday 15th February, 2018

This work is licensed under a Creative Com $mons \ \ ``Attribution-NonCommercial-Share Alike \ 3.0$ Unported" license.

Contents

1	Vide	Video Playlist 1	
2	Vide	eo Playlist 2	3
3	Vide	eo Playlist 3	3
	3.1	Define Derivate As Slope	3
	3.2	Calculate $f'(x)$ by definition	4
	3.3	Rate of Change	4
	3.4	The Product Rule (Formal Version)	4
	3.5	$Differentiable \implies Continuous \dots \dots \dots \dots$	4
	3.6	Proof of product rule for derivative	5
	3.7	Partial proof of differentiation rule	5
	3.8	Higher Order Derivatives: Notations	6
	3.9	Continuous But Not differentiable	6
	3.10	Chain Rule	7
		Derivatives of Trig Functions	7
	3.12	Implicit Differentiation	8
		Derivative of Exponential Functions	9
		Properties of logarithms	9
		The derivatives of logarithm functions	10
		Derivative of other exponentials	10
		The power rule, complete proof	11
		Logarithmic Differentiation	11
		$\stackrel{\smile}{\circ}$	

Notes by T.Du CONTENTS

4	Vid	eo Playlist 4	11
	4.1	Functions	11
	4.2	Inverse Functions	12
	4.3	Surjective Functions	12
	4.4	Injective function	13
	4.5	Some theorems	13
	4.6	ArcSin	14
	4.7	Derivative of ArcSin	14
	4.8	Other inverse trig functions	15
		$4.8.1 y = Cos(x) \dots \dots \dots \dots$	15
		$4.8.2 y = Tan(x) \dots \dots \dots \dots$	15
5	Vid	eo Playlist 5	15
J	5.1	Usage of MVT	15
	$5.1 \\ 5.2$	Local Extreme Theorem	16
	5.2	Find Extremum	18
	5.4	Rolle's Theorem	18
	$\frac{5.4}{5.5}$		18
		Application of Rolle's Theorem	
	5.6	(Lagrange)Mean Value Theorem	19
	5.7	Proof. of MVT	20
	5.8	Zero-derivative implies constant	20
	5.9	Monotonicity of functions	20
6	Vid	eo Playlist 6	21
7	\mathbf{Vid}	eo Playlist 7	21
	7.1	Integral	21
	7.2	Sigma Notation	21
	7.3	Supremum and Infimum	21
	7.4	Supremum and Infimum of a function	22
	7.5	Definition of Integral (i)	22
	7.6	Definition of Integral (ii): Properties of $U_P(f)$ and $L_P(f)$	23
	7.7	Definition of Integral (iii): Upper Integral and Lower Integral	23
	7.8	An example of integrable function	24
	7.9	An example of non-integrable function	24
	7.10	Integrals as limits	24
	7.11	Riemann Sums	24
		Riemann Sums	$\begin{array}{c} 24 \\ 25 \end{array}$
8	7.12	Properties of the integral	25
8	7.12 Vid	Properties of the integral	25 26
8	7.12 Vid 8.1	Properties of the integral	25 26 26
8	7.12 Vid 8.1 8.2	Properties of the integral	25 26 26 26
8	7.12 Vid 6 8.1 8.2 8.3	Properties of the integral	25 26 26 26 26
8	7.12 Vid 8.1 8.2	Properties of the integral	25 26 26 26

Notes by T.Du CONTENTS

	8.7	Summary: Definite and indefinite integrals, notation, definitions	
		and theorems	
		8.7.1 Definite Integral	
		8.7.2 Indefinite Integral	_
		8.7.3 Function Defined by an Integral 2	9
9	Vid	eo Playlist 9	9
	9.1	Integration By Substitution: derivation of the formula 2	9
	9.2	Example 2	9
	9.3	Example 3	9
	9.4	Example 4	9
	9.5	Integration by parts	9
	9.6	Examples	0
	9.7	Integration of products of trigonometric functions	0
10	Vid	eo Playlist 10 3	1
11	Vid	eo Playlist 11 3	1
		What Is a Sequence	_
	11.1	11.1.1 Conventions	
		11.1.2 Describe sequences	
	11.2	The Limit of a Sequence	
		Properties of Limits of Sequences	
		11.3.1 Sequence from a function	
		11.3.2 Composite of sequence and function	
	11.4	Monotonic and Bounded Sequences	
		11.4.1 Monotonic Sequences	3
		11.4.2 Bounded Sequences	3
	11.5	Proof: Every convergent sequence is bounded	4
	11.6	The monotone convergence theorem of sequences	4
	11.7	the Big theorem of sequences	5
12	Vid	eo Playlist 12 3	5
		Improper Integral	
		12.1.1 Improper integral "type 1" (Unbounded domain) 3	5
	12.2	The most important family if the improper integrals	6

- 1 Video Playlist 1
- 2 Video Playlist 2
- 3 Video Playlist 3

3.1 Define Derivate As Slope

Definition Let $a \in \mathbb{R}$, and f(x) is defined on $(a - \delta, a + \delta)$, then the **derivative** of f(x) at a is,

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Definition If function is **differentiable** at point x = a, if and only if, there exists,

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Interpretation f'(a) is the slope of tangent line a x = a.

3.2 Calculate f'(x) by definition

Example $f(x) = 4x - x^2$, find f'(1):

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{4(h+1) - (h+1)^2 - 3}{h}$$
$$= \lim_{h \to 0} \frac{4h + 4 - 3 - h^2 - 2h - 1}{h} = \lim_{h \to 0} \frac{-h^2 + 2h}{h}$$
$$= \lim_{h \to 0} -h + 2 = 2$$

3.3 Rate of Change

Definition Define derivative as rate of change. Let x = f(t), then f'(x) can be represented as,

$$\lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = f'(t) = \frac{dx}{dt}$$

3.4 The Product Rule (Formal Version)

Let $a \in \mathbb{R}$, f and g are functions defined at $(a - \delta, a + \delta)$, let h(x) = f(x)g(x). Then, if f(x), g(x) are differentiable at a, we have,

$$h'(a) = f'(a)q(a) + f(a)q'(a)$$

3.5 Differentiable \implies Continuous

Recall f(x) is differentiable at a:

$$\exists \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \tag{1}$$

Recall f(x) is **continuous** at a:

$$\lim_{x \to a} f(x) = f(a) \tag{2}$$

Proof.

Since f(x) is differentiable at a $(1) \iff \exists \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ And $\lim_{x \to a} (x - a) = 0$ $\implies \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \lim_{x \to a} x - a = 0$ $\implies \lim_{x \to a} \frac{f(x) - f(a)}{x - a} x - a = 0$ $\implies \lim_{x \to a} f(x) - f(a) = 0$ $\implies \lim_{x \to a} f(x) = f(a)$

3.6 Proof of product rule for derivative.

(fg)' = f'g + fg', see above for a formal definition.

$$h'(a) = \lim_{x \to a} \frac{h(x) - h(a)}{x - a}$$

$$= \lim_{x \to a} \frac{f(x)g(x) - f(a)g(a)}{x - a}$$

$$= \lim_{x \to a} \frac{f(x)g(x) + f(a)g(x) - f(a)g(x) - f(a)g(a)}{x - a}$$

$$= \lim_{x \to a} \frac{g(x)(f(x) - f(a)) + f(a)(g(x) - g(a))}{x - a}$$

$$= \lim_{x \to a} g(x) \frac{f(x) - f(a)}{x - a} + \lim_{x \to a} f(a) \frac{g(x) - g(a)}{x - a}$$

$$= g(a) \lim_{x \to a} \frac{f(x) - f(a)}{x - a} + f(a) \lim_{x \to a} \frac{g(x)g(a)}{x - a}$$

$$= g(a)f'(a) + f(a)g'(a)$$

5

3.7 Partial proof of differentiation rule

WTS
$$\frac{d}{dx}x^c = cx^{c-1}, \forall c \in \mathbb{R}$$

Here we only prove statements is true $\forall c \in \mathbb{Z}^+$

Proof.

Base:
$$\mathbf{c} = \mathbf{1}$$

$$f(x) = x$$

$$f'(x) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

$$= \lim_{x \to a} 1 = 1$$

Induction step

Assume
$$\frac{d}{dx}[x^k] = kx^{k-1}|_{x=a}$$
For $f(x) = x^{k+1}$

$$f'(x) = \frac{d}{dx}[x * x^k]$$

$$= x^k + xkx^{k-1}$$

$$= (k+1)x^k$$

3.8 Higher Order Derivatives: Notations

Original function: f(x)

- Lagrange notation: $f^{(n)}$
- Leibnitz notation: $\frac{d^n f}{dx^n}$

3.9 Continuous But Not differentiable

Definition Function f(x) is **non-differentiable** at a.

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} \ \mathbf{DNE}$$

Example 1 Corner/Kink f(x) = |x| at 0.

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{-}} \frac{|x|}{x} = -1$$

$$\lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} = \lim_{x \to 0^{+}} \frac{|x|}{x} = 1$$

$$\lim_{x \to 0^{-}} \neq \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x} \text{ DNE}$$

Example 2 Vertical Tangent Line $g(x) = x^{\frac{1}{3}}$ at 0,

$$g'(0) = \lim_{x \to 0} \frac{x^{\frac{1}{3}}}{x} = \lim_{x \to 0} \frac{1}{x^{\frac{2}{3}}} = \infty(\mathbf{DNE})$$

Caution Difference between vertical asymptote and vertical tangent line

- Vertical asymptote: $f(a) = \infty$ (f(a) is not defined)
- Vertical tangent line: f(a) is defined, f'(a) is undefined.

3.10 Chain Rule

Derivation

$$(g \circ f)'(a) = \lim_{x \to a} \frac{g(f(x)) - g(f(a))}{x - a}$$
$$= \lim_{x \to a} \frac{g(f(x)) - g(f(a))}{f(x) - f(a)} \frac{f(x) - f(a)}{x - a}$$

Attention: we could only apply the operation above if $f(x) \neq f(a)$ during the process of $x \to a$. This holds for majority of functions we operate in calculus.

$$= \lim_{f(x)\to f(a)} \frac{g(f(x)) - g(f(a))}{x - a} f'(a)$$
$$= g'(f(a)) \cdot f'(a)$$

Formal Theorem of Chain Rule Let $a \in \mathbb{R}$, let f and g be functions. If f is differentiable at a and g is differentiable at f(a), then, $(g \circ f)$ is differentiable at a,

$$(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$$

3.11 Derivatives of Trig Functions

Basic 6 results

- 1. $\frac{d}{dx}sin(x) = cos(x)$
- 2. $\frac{d}{dx}cos(x) = -sin(x)$
- 3. $\frac{d}{dx}tan(x) = sec^2(x)$
- 4. $\frac{d}{dx}cot(x) = -csc^2(x)$
- 5. $\frac{d}{dx}sec(x) = sec(x)tan(x)$
- 6. $\frac{d}{dx}csc(x) = -csc(x)cot(x)$

Proof. Prove (i) and (ii) and use (i), (ii) and quotient rule to derive (iii), (iv), (v) and (vi).

Proof. (i) WTS f(x) = sin(x), then f'(x) = cos(x)

$$f'(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)\cos(h) + \cos(x)\sin(h) - \sin(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x)(\cos(h) - 1) + \cos(x)\sin(x)}{h}$$

$$= \lim_{h \to 0} \cos(x) \frac{\sin(h)}{h}$$

$$= \cos(x)$$

Proof. (ii) WTS f(x) = cos(x), then f'(x) = -sin(x)

$$f'(x) = \lim_{h \to 0} \frac{\cos(x+h) - \cos(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x)\cos(h) - \sin(h)\sin(x) - \cos(x)}{h}$$

$$= \lim_{h \to 0} \frac{(\cos(h) - 1)\cos(x) - \sin(h)\sin(x)}{h}$$

$$= \lim_{h \to 0} -\frac{\sin(h)}{h}\sin(x)$$

$$= -\sin(x)$$

 $\blacksquare \quad (4)$

(3)

Recall Compound angle formula:

1.
$$sin(\alpha + \beta) = sin(\alpha)cos(\beta) + sin(\beta)cos(\alpha)$$

2.
$$sin(\alpha - \beta) = sin(\alpha)cos(\beta) - sin(\beta)cos(\alpha)$$

3.
$$cos(\alpha + \beta) = cos(\alpha)cos(\beta) - sin(\alpha)sin(\beta)$$

4.
$$cos(\alpha - \beta) = cos(\alpha)cos(\beta) + sin(\alpha)sin(\beta)$$

3.12 Implicit Differentiation

Key Use chain rule.

3.13 Derivative of Exponential Functions

Let $f(x) = a^x$ (a > 0), find f'(x), by definition,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{a^{x+h} - a^x}{h}$$
$$= \lim_{h \to 0} \frac{a^x a^h - a^x}{h}$$
$$= \lim_{h \to 0} \frac{(a^n - 1)a^x}{h}$$

By property of limit, h is the only variable, so that a^x is a constant

$$= a^x \lim_{h \to 0} \frac{a^h - 1}{h}$$

(5)

Equivalently, $\frac{d}{dx}a^x = L_a a^x$

Definition e is the only positive number, such that,

$$\lim_{h \to 0} \frac{e^h - 1}{h} = 1$$

So that, $\frac{d}{dx}e^x = e^x$

3.14 Properties of logarithms

Definition Let $a > 0, a \neq 1, x > 0, y \in \mathbb{R}$,

$$\log_a x = y \iff a^y = x$$

Properties

1.
$$\log_a 1 = 0$$

$$2. \log_a a = 1$$

$$3. \log_a x = \frac{\log_b x}{\log ba}$$

$$4. \, \log_a xy = \log_a x + \log_a y$$

$$5. \log_a \frac{x}{y} = \log_a x - \log_a y$$

6.
$$\log_a x^r = r \log_a x$$

Proof. (i) let $a > 0, a \neq 1, let x, y > 0$, WTS $\log_a xy = \log_a x + \log_a y$

Let
$$p = \log_a x \iff a^p = x$$

Let $q = \log_a y \iff a^q = y$
We have $a^p a^q = xy$
 $\iff a^{p+q} = xy$
 $\iff \log_a xy = p + q = \log_a x + \log_a y$

3.15 The derivatives of logarithm functions

For $\ln x$ $\frac{d}{dx} \ln x = \frac{1}{x}$

$$e^{\ln x} = x$$

$$\frac{d}{dx}e^{\ln x} = \frac{d}{dx}x$$

$$\frac{d}{d\ln x}e^{\ln x} \cdot \frac{d}{dx}\ln x = 1$$

$$x\frac{d\ln x}{dx} = 1$$

$$\frac{d}{dx}\ln x = \frac{1}{x}$$

3.16 Derivative of other exponentials

WTS $\frac{d}{dx}a^x = \ln a \cdot a^x$,

$$a^{x} = (e^{\ln a})^{x} = e^{x \ln a}$$

$$\frac{d}{dx} a^{x} = \frac{d}{dx} e^{x \ln a}$$

$$= \frac{d}{dx} e^{x \ln a} \cdot \frac{d}{dx} \ln a$$

$$= e^{x \ln a} \ln a$$

$$= \ln a \cdot a^{x}$$

3.17 The power rule, complete proof

WTS $x^c = cx^{c-1}$

$$x^{c} = (e^{\ln x})^{c} = e^{c \ln x}$$
So that
$$\frac{d}{dx}x^{c} = \frac{d}{dx}e^{c \ln x}$$

$$= \frac{de^{c \ln x}}{d \ln xc} \cdot \frac{\ln xc}{d \ln x} \cdot \frac{d \ln x}{dx}$$

$$= e^{c \ln x} \cdot c \cdot \frac{1}{x}$$

$$= c \cdot x^{c} \cdot \frac{1}{x}$$

$$= cx^{c-1}$$

3.18 Logarithmic Differentiation

Example $f(x) = cos(x)^{sin(x)}(\star)$, find f'(x)**Step1.** Take ln on both sides of (\star)

$$\ln f(x) = \ln \cos(x)^{\sin(x)} = \sin(x) \ln \cos(x)$$

Step2. Take derivative.

$$\frac{f'(x)}{f(x)} = \cos(x) \ln \cos(x) - \sin^2(x) \frac{1}{\cos(x)}$$

Step3. Solve for f'(x)

$$f'(x) = \cos(x)^{\sin(x)}(\cos(x)\ln\cos(x) - \sin^2(x)\frac{1}{\cos(x)})$$

4 Video Playlist 4

4.1 Functions

In calculus We assume the domain is the largest subset of \mathbb{R} that makes sense. And assume the codomain is always \mathbb{R} .

Notations

Math	Computer Science
Domain	Domain
Codomain	Range
Range	Image
•	·

4.2 Inverse Functions

Definition Let $f:A\to B$ be a function. Function $f^{-1}:B\to A$ is the **inverse function** is and only if

$$\forall x \in A, \forall y \in B, x = f^{-1}(y) \iff y = f(x)$$

Properties

- $\forall x \in A, f^{-1}(f(x)) = x$
- $\forall y \in B, f(f^{-1}(y)) = y$

Pre-condition Function f has inverse function f^{-1} if and only if f is **injective/one-to-one** function.

4.3 Surjective Functions

Why function don't have an inverse: Part 1.

Definition Function f(x) is **surjective/onto** if codomain(f(x)) = range(f(x)).

Problem If f(x) is not surjective, then some points in codomain has no corresponding point in domain, then f^{-1} is not a function.

Solution Shrink the codomain to range.

Example Let $f(x) = e^x$, $g(x) = \ln x$, then we have,

- $-Domain(f(x)) = \mathbb{R}$
 - $Codomain(f(x)) = \mathbb{R}$
 - $-Range(f(x)) = (0, \infty)$
- $Domaing(x) = (0, \infty)$
 - $Codomaing(x) = \mathbb{R}$
 - $Rangeg(x) = \mathbb{R}$

Definition Definition of inverse in calculus (*simplified*, we don't consider codomain here.)

Let f(x) be a function, and $f^{-1}(x)$ be the **inverse** of it. Then,

- $Domain(f^{-1}(x)) = Range(f(x))$
- $Range(f^{-1}(x)) = Domain(f(x))$

also,

$$\forall x \in Domain(f(x)), \forall y \in Range(f(x)), x = f^{-1}(y) \iff y = f(x)$$

and,

$$\forall x \in Domain(f(x)), f^{-1}(f(x)) = x$$
$$\forall y \in Range(f(x)), f(f^{-1}(y)) = y$$

4.4 Injective function

Definition Let f(x) be a function, with Domain(f(x)) = A, we say f(x) is injective/one-to-one when,

$$\forall x_1, x_2 \in A, x_1 \neq x_2 \implies f(x_1) \neq f(x_2)$$

equivalently (contrapositive)

$$f(x_1) = f(x_2) \implies x_1 = x_2$$

Theorem Function f has an inverse if and only if f is **injective**.

Example $f(x) = x^2$ has no inverse, but we could take it's inverse by shrinking the domain.

- Take domain = $[0, \infty)$, $f^{-1}(x) = \sqrt{x}$
- Take domain = $(-\infty, 0]$, $f^{-1}(x) = -\sqrt{x}$

4.5 Some theorems

Let f(x) be a function with domain I.

Theorem 1 Function f has an inverse function f^{-1} if and only if f is injective.

Theorem 2 For function f, if

- 1. f is **continuous** (This means, f is continuous on its domain.).
- 2. *I* is an **interval**.

then, $f^{-1}(x)$ is continuous.

Theorem 3 If

- 1. f is differentiable.
- 2. $\forall x \in I, f'(x) \neq 0$ (This ensures the inverse function does not have a vertical tangent line, which causes non-differentiability).

then, $f^{-1}(x)$ is differentiable.

Theorem 4 $\forall x \in I \text{ with } y = f(x), \text{ we have }$

$$(f^{-1})'(y) = \frac{1}{f'(x)}$$

Proof.

$$f(f^{-1}(y)) = y$$

$$\frac{d}{dy}f(f^{-1}(y)) = \frac{d}{dy}y$$

$$\frac{d}{dy}f(f^{-1}(y)) = 1$$

$$f'(f^{-1}(y)) \cdot (f^{-1})'(y) = 1$$

$$f'(x) \cdot (f^{-1})'(y) = \frac{1}{f'(x)}$$

4.6 ArcSin

Note ArcSin is **NOT** the inverse of Sin. y = sin(x) has $domain = \mathbb{R}$ and range = [-1, 1], so that, it is **not injective**.

Definition ArcSin is the inverse function to the **restriction** of sin to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. So that, Domain(ArcSin) = Range(Sin) = [-1, 1], and, $Range(ArcSin) = Domain(Sin) = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Meaning $ArcSin(\frac{1}{2}) = t$ means:

$$\begin{cases} sin(t) = \frac{1}{2} \\ -\frac{\pi}{2} \le t \le \frac{\pi}{2} \end{cases}$$

Composite

$$\forall x \in [-\frac{\pi}{2}, \frac{\pi}{2}], ArcSin(Sin(x)) = x$$
$$\forall y \in [-1, 1], Sin(ArcSin(y)) = y$$

4.7 Derivative of ArcSin

Result

$$\frac{dArcSin(x)}{dx} = \frac{1}{\sqrt{1-x^2}}$$

Derive.

$$\forall x \in [-1,1]$$

$$Sin(ArcSin(x)) = x$$

$$\frac{d}{dx}Sin(ArcSin(x)) = \frac{d}{dx}x$$

$$Cos(ArcSin(x)) \cdot \frac{d}{dx}ArcSin(x) = 1$$

$$\frac{d}{dx}ArcSin(x) = \frac{1}{Cos(ArcSin(x))}$$

$$Let \ \theta = ArcSin(x)$$

$$Cos^{2}(\theta) = 1 - Sin^{2}(\theta)$$

$$Cos(\theta) = \pm \sqrt{1 - x^{2}}$$

$$Since \ \forall \theta \in [-\frac{\pi}{2}, \frac{\pi}{2}], Sin(\theta) \ge 0$$

$$\implies Cos(\theta) = +\sqrt{1 - x^{2}}$$

$$\implies \frac{d}{dx}ArcSin(x) = \frac{1}{\sqrt{1 - x^{2}}}$$

4.8 Other inverse trig functions

4.8.1 y = Cos(x)

Definition ArcCos is the inverse function to the restriction of Cos(x) to $[0, \pi]$, and,

$$\forall x \in [-1, 1], \forall y \in [0, \pi], x = ArcCos(y) \iff Cos(y) = x$$

Result

$$\frac{d}{dx} ArcCos(x) = -\frac{1}{\sqrt{1-x^2}}$$

4.8.2 y = Tan(x)

Definition ArcTan(x) is the inverse function to the restriction of Tan(x) to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, and,

$$\forall y \in \mathbb{R}, \forall x \in [-\frac{\pi}{2}, \frac{\pi}{2}], x = ArcTan(y) \iff Tan(x) = y$$

5 Video Playlist 5

5.1 Usage of MVT

Theorem Let I be an open interval. Let f be a function defined on I. If $\forall x \in I, f'(x) = 0$ then f is a constant function.

If we want to prove this theorem, we need mean value theorem

5.2 Local Extreme Theorem

Definition Let f be a function with domain I, let $c \in I$.

- f takes **maximum** at c if $\forall x \in I, f(x) \leq f(c)$.
- f takes local maximum at c if $\exists \delta > 0, s.t. |x c| < \delta \implies f(x) \le f(c)$.

Definition Let f be a function with domain I, let $c \in I$.

- f takes **minimum** at c if $\forall x \in I, f(x) \ge f(c)$.
- f takes local minimum at c if $\exists \delta > 0, s.t. |x c| < \delta \implies f(x) \ge f(c)$.

End-point cannot be a local extremum since the definition of local extremum requires a open interval at both left and right sides around point c.

Theorem (Local EVT) Let f be a function with domain I as an interval. Let $c \in I$, then if,

- 1. f(c) is an extremum.
- 2. c is an interior point.

then, f'(c) = 0 or DNE.

Definition Point $c \in I$ for function f is a **critical point** if f'(c) = 0 or it does not exist.

Proof. (Local EVT) Proof is in two parts: (1) f has maximum at c, (2) f has minimum at c.

Part1: f(c) is a maximum

Take left and right side limits

$$Asx \to c^+, x - c > 0$$

$$Asx \to c^-, x - c < 0$$

By definition of $\operatorname{maximum} f(x) - f(c) \leq 0$

Left limit

$$x - c < 0 \land f(x) - f(c) \le 0$$

$$\implies \lim x \to c^{-} \frac{f(x) - f(c)}{x - c} \ge 0$$

Right limit

$$x - c > 0 \land f(x) - f(c) \le 0$$

$$\implies \lim x \to c^+ \frac{f(x) - f(c)}{x - c} \le 0$$

For limit to exist

$$\lim x \to c^{+} \frac{f(x) - f(c)}{x - c} \le 0 \land \lim x \to c^{-} \frac{f(x) - f(c)}{x - c} \ge 0$$

$$\implies \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = 0$$

$$\iff f'(c) = 0$$

Part2: f(c) is a minimum

Take left and right side limits

$$Asx \rightarrow c^+, x-c > 0$$

$$Asx \rightarrow c^-, x - c < 0$$

By definition of $\operatorname{maximum} f(x) - f(c) \ge 0$

Left limit

$$x - c < 0 \land f(x) - f(c) > 0$$

$$\implies \lim x \to c^{-} \frac{f(x) - f(c)}{x - c} \le 0$$

Right limit

$$x - c > 0 \land f(x) - f(c) \ge 0$$

$$\implies \lim x \to c^+ \frac{f(x) - f(c)}{x - c} \ge 0$$

For limit to exist

$$\lim x \to c^{+} \frac{f(x) - f(c)}{x - c} \ge 0 \land \lim x \to c^{-} \frac{f(x) - f(c)}{x - c} \le 0$$

$$\implies \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = 0$$

$$\iff f'(c) = 0$$

5.3 Find Extremum

Example find extremum of function $f(x) = x^3 - 3x^2 - 9x + 3$ for I = [-4, 4] **Steps**

- 1. Ensure existence of extremum. f is polynomial and therefore continuous, and [-4,4] is a compact set. By EVT, extremum exist.
- 2. Find all critical points and end-points.
- 3. Compare values at candidate points.

5.4 Rolle's Theorem

Theorem let a < b, let f be a function defined on a closed interval [a,b] (Compact set). Then, if,

- 1. f(x) is continuous on [a, b].
- 2. (\land) f(x) is differentiable on (a,b).
- 3. (\wedge) f(a) = f(b).

then,

$$\exists c \in (a,b) s.t. f'(c) = 0$$

Proof.

By EVT,
$$f(x)$$
 has extremum in $[a, b]$.

Case1Interior Extremum Point. $(c \in (a, b))$

By Local EVT, $f'(c) = 0 \lor f'(c)DNE$

By (ii) $f'(c) = 0$

Case2End-point Extremum

Since (iii) $f(a) = f(b)$
 $\forall x \in (a, b)$
 $f(x) \leq max(f(a), f(b))$
 $f(x) \geq min(f(a), f(b))$
 $\Rightarrow f(x) \text{ is constant.}$
 $\Rightarrow \forall c \in (a, b), f(c) = 0$

5.5 Application of Rolle's Theorem

Application How many zeros does a function have.

Step 1 Use IVT to prove it has at least n zeros.

Step 2 Use Rolle's theorem to prove it has at most n zeros.

Example

$$g(x) = x^6 + x^2 + x - 2$$

IVT Applied

$$g(-2) = 64$$
$$g(0) = -2$$
$$g(1) = 1$$

So that, g(x) has at least 2 zeros.

Rolle's theorem applied Assume $f(x_1) = f(x_2) = 0$, by Rolle's theorem, there must exits a $a \in (x_1, x_2)$ such that f'(a) = 0

Conclusion 1 Between any two zeros of f there must be at least one zero of f'.

Conclusion 2 \sharp of zeros of $f' \ge \sharp$ of zeros of f - 1 Conclusion 2' \sharp of zeros of $f \le \sharp$ of zeros of f' + 1

$$g'(x) = 6x^5 + 2x + 1$$

 $g''(x) = 30x^4 + 2$
 $g''(x)$ has no zeros

5.6 (Lagrange)Mean Value Theorem

Theorem Let a < b, let f be a function defined on [a, b], if,

- 1. f is continuous on [a, b].
- 2. f is differentiable on (a, b).

then,

$$\exists c \in (a,b) s.t. f'(c) = \frac{f(b) - f(a)}{b - a}$$

5.7 Proof. of MVT

Let
$$m = \frac{f(b) - f(a)}{b - a}$$

Let $g(x) = f(x) - f(a) - m(x - a)$
Satisfies $g(a) = f(a) - f(a) - m(a - a) = 0$
 $\land g(b) = f(b) - f(a) - m(b - a) = 0$
By Rolle's Theorem
$$g(a) = g(b) = 0$$

$$\exists c \in (a, b) s.t. g'(c) = 0$$

$$\implies \frac{d}{x} [f(x) - f(a) - m(x - a)] = 0$$

$$\implies f'(c) = \frac{f(b) - f(a)}{b - a}$$

5.8 Zero-derivative implies constant

Theorem Let a < b. Let f be a function defined on [a, b], then,

 $\forall x \in (a,b), f'(x) = 0 \land f \text{ is continuous on } [a,b] \implies f \text{ is constant on } [a,b].$ **proof.**

Let
$$x_1, x_2 \in [a, b] \land x_1 < x_2$$

By MVT, $\exists c \in (x_1, x_2), s.t.$

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$$\therefore f'(c) = 0$$

$$\therefore f(x_1) = f(x_2)$$

5.9 Monotonicity of functions

Definition Let f be a function defined on an interval I.

• f is increasing on I when

$$\forall x_1, x_2 \in I, x_1 < x_2 \implies f(x_1) < f(x_2)$$

• f is non-decreasing on I when

$$\forall x_1, x_2 \in I, x_1 < x_2 \implies f(x_1) \le f(x_2)$$

Theorem Let a < b. Let f be a function defined on (a, b). Then,

$$\forall x \in (a, b), f'(x) > 0 \implies f \text{ is increasing on (a,b)}$$

Theorem Let a < b. Let f be a function defined on [a, b]. Then,

 $\forall x \in (a,b), f'(x) > 0 \land f$ is continuous on $[a,b] \implies f$ is increasing on [a,b]

Short summary On an open interval

- $f' = 0 \implies f \text{ constant.}$
- $f' > 0 \implies f$ increasing.
- $f' < 0 \implies f$ decreasing.

6 Video Playlist 6

Note This chapter focus on *optimization applications*, and there's no video for this topic.

7 Video Playlist 7

7.1 Integral

Integral Let a < b, let f be a <u>positive</u> function, then *integral of f from a to b* is denoted as:

$$\int_{a}^{b} f(x) \ dx$$

this is represented as the area of region under function f from x = a to x = b.

7.2 Sigma Notation

Sigma Notation The sigma notation, with **index** i, could be represented in the following form:

$$\sum_{i=1}^{N} a_i = a_1 + a_2 + \dots + a_N$$

7.3 Supremum and Infimum

Definitions Let $A \subseteq \mathbb{R}$, let $a \in \mathbb{R}$:

- Upper bound: a is a <u>upper bound</u> of A means $\forall x \in A, x \leq a$.
- Least upper bound(l.u.b) / Supremum: a is the <u>least upper bound</u> or <u>supremum(sup)</u> of A iff a is an upper bound of A and $\forall b \in \{\text{upper bound of A}\}, a \leq b$.

- Maximum: if supremum of $A \in A$, it's maximum of A.
- **Bounded above**: A is <u>bounded above</u> if A has (at least) one upper bound.

Definitions (counter-part) Let $A \subseteq \mathbb{R}$, let $a \in \mathbb{R}$:

- Lower bound: a is a lower bound of A means $\forall x \in A, x \geq a$.
- Greatest lower bound(g.l.b) / Infimum: a is the greatest lower bound (g.l.b) or $\underline{\text{infimum(inf)}}$ of A iff a is a lower bound of A and $\forall b \in \{\text{Lower bound of A}\}, \ a \geq b$.
- Minimum: if infimum of $A \in A$, it's the minimum of A.
- Bounded below: A is bounded below if A has (at least) one lower bound.

Theorem: The l.u.b. principle Let $A \subseteq \mathbb{R}$, if A is <u>bounded above</u> and $A \neq \emptyset$, then, A has a least upper bound(supremum).

Theorem: The g.l.b principle Let $A \subseteq \mathbb{R}$, if A is <u>bounded below</u> and $A \neq \emptyset$, then, A has a greatest lower bound(infimum).

7.4 Supremum and Infimum of a function

Definition Supremum of a function f on a domain I is defined as:

$$\sup_{x \in I} f(x) = \sup \{ f(x) \mid x \in I \}$$

Theorem Let f be a function defined on domain $I \neq \emptyset$, if f is bounded above, then $\exists \sup_{x \in I} f(x)$. Similarly, if f is bounded below, then $\exists \inf_{x \in I} f(x)$.

Theorem(EVT) Let a < b, let f defined on [a, b], if f is <u>continuous</u> on [a, b], then f has a maximum and a minimum on [a, b].

7.5 Definition of Integral (i)

Definition A partition of the interval [a, b] is a finite set P, s.t. $\{a, b\} \subseteq P$.

Notation $P = \{x_0, x_1, \dots x_N\}$ on [a, b]. Implicitly, x_i are <u>ordered</u>, such that, $a = x_0 < x_1 < \dots < x_N = b$.

Let f be bounded on [a, b], let $P = \{x_0, x_1, \dots, x_N\}$, let $m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$, and $M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$, and $\Delta x_i = x_i - x_{i-1}$.

Definition P-Lower sum of f is defined as:

$$L_P(f) = \sum_{i=1}^{N} (m_i \Delta x_i)$$

Definition P-Upper sum of f is defined as:

$$U_P(f) = \sum_{i=1}^{N} (M_i \Delta x_i)$$

Property For all partition P on interval [a, b], the lower sum and upper sum satisfy the following inequality,

$$L_P(f) \le \int_a^b f(x) \ dx \le U_P(f)$$

7.6 Definition of Integral (ii): Properties of $U_P(f)$ and $L_P(f)$

Let f be a <u>bounded</u> function on [a,b], let P and Q be partitions of [a,b], the lower sums and upper sums have the following properties.

- 1. (Always) $L_P(f) \leq U_P(f)$.
- 2. If $P \subseteq Q$ (Q is a finer partition), then $L_P(f) \leq L_Q(f) \wedge U_P(f) \geq U_Q(f)$.
- 3. (Always) $L_P(f) \leq U_Q(f)$

Proof

Let
$$R = P \cup Q$$
,
so that, $P \subseteq R \land Q \subseteq R$. (R is finer than both P and Q)
 $L_P(f) \le L_R(f) \le U_R(f) \le U_Q(f)$
 $\Longrightarrow L_P(f) \le U_Q(f)$

7.7 Definition of Integral (iii): Upper Integral and Lower Integral

Definition Let f be a <u>bounded</u> function on [a, b], then, <u>lower integral of f from a to b is defined as,</u>

$$\underline{I_a^b(f)} = \sup\{\text{lower sums of } f\}$$

and the upper integral of f from a to b is defined as,

$$\overline{I_a^b(f)} = \inf\{\text{upper sums of } f\}$$

Then if $\underline{I_a^b(f)} < \overline{I_a^b(f)}$, then f is **non-integrable** on [a,b].

7.8 An example of integrable function

$$f(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x \neq 0 \end{cases} \quad \text{on } [-1, 1]$$

7.9 An example of non-integrable function

$$g(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases} \text{ on } [-1, 1]$$

7.10 Integrals as limits

Definition Let $P = \{x_0, x_1, \dots, x_N\}$ be a partition of [a, b], the **norm** of P is defined as:

$$||P|| = \max\{\Delta x_1, \Delta x_2, \dots, \Delta x_N\}$$

Theorem - Lower Integrals For lower integrals, we have,

$$\underline{I_a^b(f)} = \lim_{\|P\| \to 0} L_P(f) = \sup\{\text{lower sums of } f\}$$

alternatively, using $\delta - \epsilon$ expression,

$$\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } \forall P \text{ over } [a, b], ||P|| < \delta \implies |L_P(f) - \underline{I_a^b(f)}| < \epsilon$$

theorem - Upper Integrals For upper integrals, we have,

$$\overline{I_a^b(f)} = \lim_{\|P\| \to 0} U_P(f)$$

7.11 Riemann Sums

Definition Fix a partition P on [a, b], $m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$, $M_i = \sup_{x \in [x_{i-1}, x_i]} f(x)$, pick $x_i^{\star} \in [x_{i-1}, x_i]$, so that,

$$m_{i} \leq f(x_{i}^{\star}) \leq M_{i}$$

$$\implies m_{i} \Delta x_{i} \leq f(x_{i}^{\star}) \Delta x_{i} \leq M_{i} \Delta x_{i}$$

$$\implies L_{P}(f) = \sum_{i=1}^{N} (m_{i} \Delta x_{i}) \leq \sum_{i=1}^{N} (f(x_{i}^{\star}) * \Delta x_{i}) \leq \sum_{i=1}^{N} (M_{i} \Delta x_{i}) = U_{P}(f)$$

where the term $\sum_{i=1}^{N} (f(x_i^{\star}) \Delta x_i)$ is called a **Riemann sum**.

Definition Let f be a <u>bounded</u> function on [a, b], let $P = \{x_0, x_1, \ldots, x_N\}$ be a partition on [a, b], for each i, pick **any** point $x_i^* \in [x_{i-1}, x_i]$. then,

$$S_P^{\star}(f) = \sum_{i=1}^{N} (f(x_i^{\star}) * \Delta x_i)$$

is a Riemann sum for f and P. (There are infinitely many Riemann sum).

In general, we have,

$$L_P(f) \le S_P^{\star}(f) \le U_P(f)$$

and also,

$$\lim_{\|P\| \to 0} L_P(f) = \underline{I_a^b(f)}$$

$$\lim_{\|P\| \to 0} U_P(f) = \overline{I_a^b(f)}$$

and if f is **integrable**, then

$$\lim_{\|P\| \to 0} L_P(f) = \lim_{\|P\| \to 0} U_P(f) = \int_a^b f(x) \ dx$$

By Squeeze Theorem,

$$\lim_{\|P\|\to 0} S_P^{\star}(f) = \int_a^b f(x) \ dx$$

7.12 Properties of the integral

Property 1

$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

Property 2

$$\int_{a}^{b} [cf(x)] dx = c \int_{a}^{b} f(x) dx$$

Property 3 If f is bounded on [a, c], and f is integrable on [a, b] and integrable on [b, c], then,

$$\int_a^c f(x) \ dx = \int_a^b f(x) \ dx + \int_b^c f(x) \ dx$$

Property 4: Backward Integrals

$$\int_{b}^{a} f(x) \ dx = -\int_{a}^{b} f(x) \ dx$$

Negative function f Integral for negative function is the negative area.

$$\int_{a}^{b} f(x) \ dx$$

8 Video Playlist 8

8.1 Anti-dervatives

Notations

- Definite integral $\int_a^b f(x) dx$
- Indefinite integral $\int f(x) dx$

Definition Let f be a function defined on an interval, an **anti-dervative** of f is any function F that

$$F' = f$$

Note As a consequence of MVT, if two functions have same dervative on an interval, then they <u>differ by a constant</u>.

8.2 Functions Defined as Integrals

Consider integrable function f, define function F as the definite integral from a, a fixed point in domain of f, to another point x in domain of f, that's,

$$F(x) = \int_{a}^{x} f(t) dt$$

Methodology Let I be an interval, let $a \in I$ and let f be a function integrable on I, then for each $x \in I$, compute $F(x) = \int_a^x f(t) \ dt$ as a <u>number</u>.

8.3 The Fundamental Theorem of Calculus: Part 1

This provides connections between definite integrals and anti-dervatives

Theorem: FTC(part 1)

- Let I be an interval,
- Let $a \in I$,
- Let f be a function on I.

Define F(x) as

$$F(x) = \int_{a}^{x} f(t) dt$$

If f is continuous, then F is differentiable and F' = f, that's,

$$F'(x) = f(x) \quad \forall x \in I$$

8.4 A Proof of Part 1 of the FTC

Proof.

$$\operatorname{Let}(\operatorname{fix}) \ x \in I$$

$$\operatorname{WTS.} \ F'(x) = f(x)$$

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h}$$

$$= \lim_{h \to 0} [\frac{1}{h} (F(x+h) - F(x))]$$

$$= \lim_{h \to 0} [\frac{1}{h} (\int_{a}^{x+h} f(t) \ dt - \int_{a}^{x} f(t) \ dt)]$$

$$= \lim_{h \to 0} [\frac{1}{h} \int_{x}^{x+h} f(t) \ dt]$$

Consider h > 0 (for negative h, the proof would be similar)

Let
$$M_h = \sup_{[x,x+h]} (f)$$

Let $m_h = \inf_{[x,x+h]} (f)$

Then we have, by definition of infimum and supremum,

$$m_h \le \frac{1}{h} \int_x^{x+h} f(t) dt \le M_h$$

Since f is continuous on [x, x + h], by EVT, it has maximum and minimum on this interval.

$$\exists c_h \in [x, x+h] \text{ s.t. } M_h = f(c_h)$$

$$\exists d_h \in [x, x+h] \text{ s.t. } m_h = f(d_h)$$

$$\because \lim_{h \to 0} c_h = x \land \lim_{h \to 0} d_h = x$$

$$\therefore \lim_{h \to 0} M_h = \lim_{h \to 0, c_h \to x} f(c_h) = f(x) \text{ (since } f \text{ is continuous.)}$$
Similarly,
$$\lim_{h \to 0} m_h = \lim_{h \to 0, d_h \to x} f(d_h) = f(x)$$
By Squeeze Theorem,
$$\lim_{h \to 0} \left[\frac{1}{h} \int_x^{x+h} f(t) dt\right] = f(x)$$

$$\therefore F'(x) = f(x) \ \forall x \in I$$

8.5 The Fundamental Theorem of Calculus: Part 2

This provides a quick way to compute definite integrals.

Theorem: FTC(part 2)

- Let $a < b \in \mathbb{R}$,
- let f be continuous on [a, b],

then,

$$\int_{a}^{b} f(x) \ dx = G(b) - G(a)$$

where G is any anti-dervative of f.

Notation

$$G(b) - G(a) = G(x)|_{x=a}^{x=b} = G(x)|_a^b$$

8.6 A Proof of Part 2 of the FTC

Proof.

We know that, from the first part of FTC, G' = f,

WTS.
$$\int_{a}^{b} f(x) = G(b) - G(a)$$
Define $F(x) = \int_{a}^{x} f(t) dt$
WTS. $F(b) = G(b) - G(a)$
Since f is continuous, $F' = f$
By the consequence of MVT,
$$F' = G' \implies \exists C \in \mathbb{R} s.t. F - G = C \forall x \in [a, b]$$
at $x = a, F(a) = 0 \implies C = -G(a)$

$$\implies \forall x \in [a, b] F(x) = G(x) - G(a)$$
at $x = b, F(b) = G(b) - G(a)$

- 8.7 Summary: Definite and indefinite integrals, notation, definitions and theorems.
- 8.7.1 Definite Integral.

$$\int_{a}^{b} f(x) \ dx$$

Theorem (Formal definite) if $\overline{I_a^b}(f) = \underline{I_a^b}(f)$ then $\int_a^b f(x) \ dx = \overline{I_a^b}(f) = \underline{I_a^b}(f)$.

Theorem (FTC: part 2) Choose <u>one</u> anti-dervative G(x) of f(x), then compute the definite integral as $\int_a^b f(x) dx = G(b) - G(a)$.

8.7.2 Indefinite Integral

$$\int f(x) dx$$
 A collection of functions.

Find indefinite integral Find G(x) as <u>one</u> anti-dervative, by the consequence of MVT, then the indefinite integral of f could be constructed as,

$$F(x) = \{G(x) + C \mid C \in \mathbb{R}\}\$$

8.7.3 Function Defined by an Integral.

$$F(x) = \int_{a}^{x} f(t) dt$$
 This is one function with fixed value of a.

Theorem (FTC: part 1) if f is continuous, then F'(x) = f(x)

9 Video Playlist 9

9.1 Integration By Substitution: derivation of the formula

Backwards usage of chain rule.

If $\int f(x) dx = F(x)$ is the anti-derivative of f(x), then

$$F(g(x)) = \int f(g(x))g'(x) \ dx = F(g(x))$$

- 9.2 Example 2
- 9.3 Example 3
- 9.4 Example 4

Theorem Let a < b, let f be a continuous function, let g be a function with continuous derivative in [a, b], assume the range of g on [a, b] is contained in the domain of f. Then,

$$\int_{a}^{b} f(g(x))g'(x) \ dx = \int_{g(a)}^{g(b)} f(u) \ du$$

9.5 Integration by parts

Backwards product rule

Let f and g be two differentiable function, by product rule of differentiation, we have,

$$f'(x)g(x) + f(x)g'(x) = \frac{d}{dx}f(x)g(x)$$

$$\implies \int f'(x)g(x) + f(x)g'(x) dx = f(x)g(x) + C$$

$$\implies \int f'(x)g(x) dx + \int f(x)g'(x) dx = f(x) + g(x) + C$$

$$\implies \int f'(x)g(x) dx = f(x) + g(x) - \int f(x)g'(x) dx$$

The integral constant is implicitly contained in the integral term.

9.6 Examples

Example 1

$$\int x^2 e^2 \ dx$$

Example 2

$$\int e^2 \sin x \ dx$$

Use integration by parts twice.

Example 3

$$\int \arctan x \ dx$$

Consider the form $1 \times f(x)$ as partition method.

9.7 Integration of products of trigonometric functions

Types

$$\int \sin^n x \, \cos^m x \, dx$$
$$\int \sec^n x \, \tan^m x \, dx$$

Keys

$$sin^{2}(x) + cos^{2}(x) = 1$$
$$sec^{2}(x) = 1 + tan^{2}(x)$$

 ${\bf Summary} \,\, {\bf I} \quad {\bf Consider} \,\, {\rm the} \,\, {\rm integral} \,\, {\rm in} \,\, {\rm the} \,\, {\rm following} \,\, {\rm form}$

$$\int \sin^n x \, \cos^m x \, \, dx$$

- If **m** is odd then try u = sin(x), then du = cos(x)dx
- If **n** is odd then try u = cos(x), then du = -sin(x)dx

10 Video Playlist 10

Note This chapter focus on *volumes*, and there's no video for this topic.

11 Video Playlist 11

11.1 What Is a Sequence

Definition A sequence is a function with domain \mathbb{N} .

11.1.1 Conventions

Functions function with domain <u>interval</u>.

- \bullet x as variable.
- f(x) as value at x.

Sequence function with domain \mathbb{N} .

- \bullet n as variable.
- a_n as value at n.

A sequence is not a set.

11.1.2 Describe sequences

Equation $a_n = \frac{2^n n!}{n+1}$

First few values $\{1, 2, 4, 8, 16, ...\}$

Words $p_n = \text{n-th prime.}$

Recurrence relation e.g. Fibonacci Sequence.

$${F_n}_{n=0}^{\infty} : F_0 = F_1 = 1, \ F_n = F_{n-1} + F_{n-2} \ \forall n \ge 2$$

A general definition A sequence is a function with domain $\{n \in \mathbb{Z} \mid n \geq n_0\}$ for some fixed $n_0 \in \mathbb{Z}$.

11.2 The Limit of a Sequence

Example

$$\left\{\frac{n}{n+1}\right\}_{n=0}^{\infty} \quad \lim_{n \to \infty} \frac{n}{n+1} = 1$$

Definition(Limit) We say that the sequence $\{a_n\}_{n=0}^{\infty}$ converges to the number $L \in \mathbb{R}$ when

$$\forall \epsilon > 0, \ \exists n_0 \in \mathbb{N} s.t. \ \forall n \in \mathbb{N}, \ n \ge n_0 \implies |L - a_n| < \epsilon$$

denoted as

$$\lim_{n \to \infty} a_n = L \text{ or } a_n \to L$$

Tail: all terms of the sequence after the first few terms. Every interval centred at L contains a tail of the sequence.

Definition A sequence is **convergent** if it has a limit. This sequence is **divergent** if it does not have a limit.

11.3 Properties of Limits of Sequences

Properties from the limit of functions

- Limit laws: Yes
- Squeeze theorem: Yes
- $L'H\hat{o}pital's$ Rule: No

11.3.1 Sequence from a function

Let $c \in \mathbb{Z}$ and function f defined on $[c, \infty)$, and define the seuquce $\{a_n\}_{n=c}^{\infty}$ as

$$a_n = f(n)$$

We have if $\lim_{n\to\infty} f(n) = L$ then $\lim_{n\to\infty} a_n = L$. If $\lim_{n\to\infty} f(n)$ DNE, then $\lim_{n\to\infty} a_n$ may or may not exist.

11.3.2 Composite of sequence and function

Theorem If $a_n \to L$ and f is continuous at L then

$$f(a_n) \to f(L)$$

11.4 Monotonic and Bounded Sequences

11.4.1 Monotonic Sequences

Definition We say $\{a_n\}_{n=0}^{\infty}$ is increasing if

$$\forall n, m \in \mathbb{N}, \ n < m \implies a_n < a_m$$

Also, we say this sequence is **non-decreasing** if the inequality is in the weak form as

$$\forall n, m \in \mathbb{N}, \ n < m \implies a_n \le a_m$$

Definition We say $\{a_n\}_{n=0}^{\infty}$ is decreasing if

$$\forall n, m \in \mathbb{N}, \ n < m \implies a_n > a_m$$

Also, if the inequality is in the weak form as

$$\forall n, m \in \mathbb{N}, \ n < m \implies a_n \ge a_m$$

we say this sequence is non-increasing.

Definition We say a sequence $\{a_n\}_{n=0}^{\infty}$ is **monotonic** is if is has any of the four properties above.

Definition $\{a_n\}_{n=0}^{\infty}$ is eventually decreasing if

$$\exists n_0 \in \mathbb{N}, \ s.t. \forall n \in \mathbb{N}, n > n_0 \implies a_n > a_{n+1}$$

11.4.2 Bounded Sequences

Definition We say a sequence $\{a_n\}_{n=0}^{\infty}$ is bounded below if

$$\exists A \in \mathbb{R} s.t. \forall n \in \mathbb{N}, \ A \leq a_n$$

Similarly, the sequence is bounded above if

$$\exists B \in \mathbb{R}.s.t. \forall n \in \mathbb{N}, \ B \geq a_n$$

Definition We say a sequence is **bounded** if and only if it is <u>both</u> bounded above and below.

Theorem If a sequence is <u>convergent</u> then it is <u>bounded</u>.

Theorem 2A(The monotone convergence theorem for sequence) If a sequence is eventually increasing and bounded above, then it is convergent

Theorem If a sequence is <u>eventually increasing</u> and <u>not bounded above</u> then it <u>divergent to ∞ </u>.

Remark for a sequence:

Sequence
$$\begin{cases} \text{Convergent} \\ \text{Divergent} \end{cases} \begin{cases} \text{to } \infty \\ \text{to } -\infty \\ \text{Oscillating} \end{cases}$$

11.5 Proof: Every convergent sequence is bounded

Theorem Let $\{a_n\}_{n=0}^{\infty}$ be a sequence, if $\{a_n\}_{n=0}^{\infty}$ is <u>convergent</u> then the sequence is <u>bounded</u>. Equivalently,

Proof.

Assume sequence
$$\{a_n\}_{n=0}^{\infty}$$
 is convergent.
Let L be the limit.
By the definition of limit, choose $\epsilon = 10$
So that, $\exists n_0 \in \mathbb{N} s.t. \forall n \in \mathbb{N}, n \geq n_0 \implies L - 10 \leq a_n \leq L + 10$
Take $A = min\{a_0, \dots, a_{n_0-1}, L - 10\}$
Take $B = max\{a_0, \dots, a_{n_0-1}, L + 10\}$
By definition of max and min, let $n \in \mathbb{N}$
case $1n > n_0 \implies A \leq a_n \leq B$
case $2n \geq n_0 \implies L - 10 \leq a_n \leq L + 10$
Since $A \leq L - 10 \land B \geq L + 10$
 $\implies A \leq a_n \leq B \forall n \in \mathbb{N}$
 $\therefore \{a_n\}_{n=0}^{\infty}$ is bounded.

11.6 The monotone convergence theorem of sequences

(General) Theorem If a sequence is (eventually) <u>monotonic</u> and <u>bounded</u> then it is convergent.

(Particular Case) Theorem 1 If a sequence is $\underline{increasing}$ and $\underline{bounded\ above}$ the it's $\underline{convergent}$.

Proof.

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence that's increasing and bounded above.

Consider
$$A = \{a_n \mid n \in \mathbb{N}\} \neq \emptyset$$

By least upper bound principle, there exists a supremum of set A

Take
$$L = \sup\{A\}$$

Let
$$\epsilon > 0$$

By definition of supremum,

$$\exists a_{n0} \in A \ s.t. \ a_{n0} > L - \epsilon$$

Take this value n_0

Since sequence is increasing,

$$\forall n \geq n_0 \ a_n > L - \epsilon$$

Also, by definition of supremum, $a_n \leq L$

$$\implies a_n \le L + \epsilon$$

Therefore, $\forall n \in \mathbb{N}, n \ge n_0 \implies L - \epsilon < a_n < L + \epsilon$

Therefore, $\lim_{n \to \infty} \{a_n\}_{n=0}^{\infty} = L$

Therefore, $\{a_n\}_{n=0}^{\infty}$ is convergent.

11.7 the Big theorem of sequences

Definition (for positive sequences only) Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be positive sequences.

$$a_n \ll b_n \iff \lim_{n \to \infty} \frac{a_n}{b_n} = 0$$

say $\{a_n\}$ is much smaller than $\{b_n\}$.

Theorem for every a > 0 and c > 1

$$\ln n << n^a << c^n << n! << n^n$$

12 Video Playlist 12

12.1 Improper Integral

12.1.1 Improper integral "type 1" (Unbounded domain)

Definition Let $a \in \mathbb{R}$ and f continuous on $[a, \infty]$ the integral of f from a to ∞ , denoted as

$$\int_{a}^{\infty} f(x) \ dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \ dx$$

assuming the limit exists. If the limit exists, the integral is called **convergent**, otherwise, it's called **divergent**.

12.2 The most important family if the improper integrals

Let $p \in \mathbb{R}$ consider

$$\int_{1}^{\infty} \frac{1}{x^{p}} \ dx$$

Summary

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx \text{ is } \begin{cases} \textbf{convergent if } p > 1 \\ \textbf{divergent to } \infty \text{ if } p \leq 1 \end{cases}$$