Recherche Opérationnelle 1A Théorie des graphes Arbres + arbre couvrant de coût minimum

Zoltán Szigeti

Ensimag, G-SCOP

Énoncé

Donner tous les arbres à 3, 4, 5 sommets.

Solution

- (a) Il existe exactement 1 arbre non-isomorphe à 3 sommets.
- (b) Il existe exactement 2 arbres non-isomorphes à 4 sommets.
- (c) Il existe exactement 3 arbres non-isomorphes à 5 sommets.

Énoncé

Si G est un arbre ayant au moins deux sommets, alors G admet au moins deux sommets de degré un.

- lacktriangle Soit P une plus longue chaîne élémentaire de G.
- 2 Les deux extrémités de P sont distinctes car G est connexe et $n \ge 2$.
- Chacun d'eux est de degré 1 dans G, sinon, d'après l'Exo 2.6(a), il aurait au moins deux voisins dans P et appartiendrait donc à un cycle, ce qui contredirait le fait que G est un arbre.

Énoncé

Quel est le nombre m d'arêtes d'une forêt F ayant n sommets et k composantes connexes $F_1, ..., F_k$?

- **1** Soient $n_i = |V(F_i)|, m_i = |E(F_i)| \ i = 1, ..., k$.
- ② Chaque F_i est un arbre, donc par l'Exo 3.3, $m_i = n_i 1$,

Énoncé

Est-il vrai qu'un graphe ayant n sommets et $m \ge n$ arêtes admet un cycle?

- Sinon G est une forêt.
- ② Soit $k \ge 1$ le nombre de composantes connexes de G.
- 3 D'après l'hypothèse et l'Exo 3.4, on a $n \le m = n k < n$, une contradiction.

Énoncé

Si un graphe G a $n \ge 5$ sommets alors G ou \overline{G} admet un cycle.

- **①** Supposons que G et \overline{G} ne contiennent pas de cycle.
- ② Par l'Exo 1.1(c) et l'Exo 3.4, $\frac{n(n-1)}{2} = |E(K_n)| = |E(G)| + |E(\overline{G})| \le 2(n-1).$
- 3 c'est-à-dire $n \le 4$, ce qui contredit notre hypothèse sur n.

Énoncé

Tout graphe connexe G à $n \ge 2$ sommets admet un sommet v tel que G - v soit connexe.

- **1** G est connexe, donc, par l'Exo 3.8, G contient un arbre couvrant F.
- 2 Par Lemme 2, F a un sommet v de degré 1 et F v est un arbre.
- **3** Or F v est un graphe partiel de G v et donc, par l'Exo 3.8, G v est connexe.

Énoncé

- Soient G(F) un arbre, $e = uv \in E(G) \setminus F$ et f une arête de la (u, v)-chaîne P dans G(F).
- Alors le graphe partiel G(F + e f) est un arbre.

- C = P + uv est un cycle dans G(F + e).
- 2 Par Lemme 1, G(F') est connexe où F' = F + e f.
- 3 Par l'Exo 3.8, G(F') contient un arbre couvrant G(F''). Puisque $n-1=|F|=|F'|\geq |F''|\geq n-1$, on a F'=F''.
- **9** Par conséquent, G(F') est un arbre.

Énoncé: l'algorithme de Kruskal

On suppose que le graphe G = (V, E) est connexe.

- Soit $\{e_1,e_2,...,e_m\}$ l'ordre de E tel que $c(e_1) \leq c(e_2) \leq ... \leq c(e_m)$.
- Au début soit $H_0 = (V, F_0)$ où $F_0 = \emptyset$.
- Pour $1 \le i \le m$ soit $H_i = (V, F_i)$ où $F_i = F_{i-1} + e_i$ si $H_{i-1} + e_i$ est une forêt, et $F_i = F_{i-1}$ sinon.
- (b) Exécuter l'algorithme de Kruskal sur le graphe suivant:

Énoncé: l'algorithme de Prim

On suppose que le graphe G = (V, E) est connexe.

- Au début soit $H_0 := (V_0, F_0)$ où $V_0 := r \in V$ et $F_0 := \emptyset$.
- Si $V_i \neq V(G)$ alors soit $uv \in \delta_G(V_i)$ tel que $u \in V_i$ de coût minimum et soit $V_{i+1} := V_i + v$ et $F_{i+1} := F_i + uv$.
- (b) Exécuter l'algorithme de Prim sur le graphe suivant:

