Faculdade de Ciências e Tecnologia
Departamento de Matemática e Computação
Bacharelado em Ciência da Computação

Engenharia de Software II

Aula 05

Prof. Dr. Rogério Eduardo Garcia
(rogerio.garcia@unesp.br)

1

01/08/2025 unesp	Cronog	ra	m	a					
		Semana	Aula	Qtd	Mês	Dia	Conteúdo Previsto	Total	
		1	- 1	2	Julho	28	Apresentação da Disc.	4	
			2	2	Julio	31	Revisão	-	
		2	3	2	1	4	Revisão	4	
		_	4	2	-	7	Qualidade de Software	-	
		3	- 5	2	-	- 11	Qualidade de Software	-	
			- 6 7	2	Agosto	14	Qualidade Interna de CF Métricas e Estimativas	16	
		4	8	2	+	21	Arquitetura de Software	-	
			9	2	1	25	Arquitetura de Software	-	
		5	10	2	1	28	Arquitetura de Software	1	
			11	2		1	Exercício		
		6	12	2	1	4	Gerência de Projeto: Planejamento	1	
		_	13	2		8	Gerência de Projeto: Planejamento	1	
		7	14	2	1	11	Projeto	1	
		8	15	2	Setembro	15	Projeto	20	
			16	2]	18	Projeto		
			17	2]	22	Controle		
		9	18	2	1	25	Revisão		
			19	4		29	Prova		
		10	20	2	1	2	Qualidade: Processo	4	
			21	2	1	6	Qualidade: Processo	_	
		11	22	2	_	9	Qualidade: Processo	-	
		_	23	2		13	Projeto - Férias		
		12	24	2	Outubro	16	Projeto - Férias	18	
		-	25 26	2	4	20	Projeto	-	
		13	26	2	+	27	Projeto Projeto	-	
		—	28	2	1	30	Projeto Projeto	- I	
		15	29	2		30	Controle		
			30	2	1	6	Projeto	1	
		16	31	2	1	10	Projeto	1	
			32	2	1	13	RUP	1	
		17	33	2	Novembro	17	RUP	16	
		16	34	2	1	20	Feriado	1	
		16	35	2		24	Controle		
		17	36	2		27	Revisão	1	
		- "	37	4	1	1	Prova (entrega do projeto antes da P2)		
		18	38	2	Dezembro	4	Apresentação do Projeto	12	
			39	2		8	Apresentação do Projeto	J [™]	
		19	40	4		- 11	Exame		

3

Subsistemas de Projeto de Software Gerenciamento de Recursos Humanos Força de Trabalho Disponível Situação do Força de Trabalho Progresso Necessária Produção de Software Tarefas Schedule Completadas Controle Esforço Planejamento Restante

11

Plano de Projeto de Software

I. Introdução

- 1. Escopo e propósito do documento
- 2. Objetivos do Projeto

II. Estimativas de Projeto

- 1. Dados históricos usados nas estimativas
- 2. Técnicas de estimativa
- 3. Estimativas

III. Riscos do Projeto

- 1. Análise dos riscos
- 2. Administração dos riscos

IV. Cronograma

- 1. Divisão do trabalho (work breakdown)
- 2. Rede de tarefas
- 3. Gráfico de Gantt
- 4. Tabela de recursos

V. Recursos do Projeto

- 1. Pessoal
- 2. Hardware e Software
- 3. Recursos especiais

VI. Organização do Pessoal

- 1. Estrutura de Equipe
- 2. Relatórios Administrativos

VII. Mecanismos de Controle

VIII. Apêndices

13

Plano de Projeto de Software

I. Introdução

- 1. Escopo e propósito do documento
- 2. Objetivos do Projeto

II. Estimativas de Projeto

- 1. Dados históricos usados nas estimativas
- 2. Técnicas de estimativa
- 3. Estimativas

III. Riscos do Projeto

- 1. Análise dos riscos
- 2. Administração dos riscos

IV. Cronograma

- 1. Divisão do trabalho (work breakdown)
- 2. Rede de tarefas
- 3. Gráfico de Gantt
- 4. Tabela de recursos

- V. Recursos do Projeto
 - 1. Pessoal
 - 2. Hardware e Software
- 3. Recursos especiais

VI. Organização do Pessoal

- 1. Estrutura de Equipe
- 2. Relatórios Administrativos

VII. Mecanismos de Controle

VIII. Apêndices

14

Ö.

Métricas

Razões para se medir o software:

Indicar a qualidade do produto

Avaliar a produtividade dos que desenvolvem o produto

Determinar os benefícios derivados de novos métodos e ferramentas de engenharia de software

Formar uma base para as estimativas

Ajudar na justificativa de aquisição de novas ferramentas ou de treinamentos adicionais

Métricas Métricas MÉTRICA ORIENTADA À FUNÇÃO - PF PONTOS POR FUNÇÃO é aplicado seguindo três passos:: 1) Completar a seguinte tabela: fator de ponderação Parâmetro Contagem Simples Médio Complexo nro de entradas Χ do usuário 4 5 7 nro de saídas Χ do usuário 3 nro de consultas 4 6 Χ do usuário nro de arquivos 10 15 Х nro de interfaces externas Contagem-Total

01/09/2025	Métric	cas					
	MÉT	TRICA OR	IENTAD	AÀF	FUNÇÃO	- PF	
	PONTOS POR F	UNÇÃO é a	plicado s	eguino	do <mark>três</mark> pas	sos::	
Prof. Dr. Rogério Eduardo Garcia	1) Completar Parâmetro	Cada entrad que fornece à aplicação e	dados disti é contada	ntos	or de ponde s Médio		(O
rio Eduar	nro de entradas do usuário		Х	3	4	6	
Dr. Rogé	nro de saídas do usuário		Х	4	5	7	
Prof.	nro de consultas do usuário		Х	3	4	6	
	nro de arquivos		Х	7	10	15	
25	nro de interfaces externas Contagem-Total		Х	5	7	10 → [

01/09/2025	MÉTR		NTAD	ΛÀ	FUNÇÃO	DE	
					_		
	PONTOS POR FUN 1) Completar a seg	· _	cado se	eguin	do tres pas	SOS::	
Prof. Dr. Rogério Eduardo Garcia	Parâmetro nro de entrada do usuário	Cada saída que fornece orientada à a contada (relamensagens	informaç aplicação atórios, t	ção o é	r de ponde Médio 4	e <u>ração</u> Complex 6	KO CO
Dr. Rogé	nro de saídas do usuário			4	5	7	
Prof.	nro de consultas do usuário		Х	3	4	6	
	nro de arquivos		Χ	7	10	15	
56	nro de interfaces externas		X	5	7	10	
	Contagem-Total —					<u> </u>	

01/09/2025	Métric	as					
	MÉT	RICA ORIE	NTA	DA À FL	JNÇÃO	- PF	
	PONTOS POR FU	NÇÃO é aplic	cado	seguindo	três pas	ssos::	
ا ا	1) Completar a se	guinte tabela	1:				
Prof. Dr. Rogério Eduardo Garcia				fator	de pond	<u>eração</u>	
rdo (Parâmetro	Contagem		Simples	Médio	Complexo	
Edua	nro de entradas		Χ	3	4	6	
ério	do usuário						
Rog	nro de saídas		X	4	5	7	
.D.	do usuário						
Prof	nro de consulta	Cada arqui	vo		4	6	
	do usuário	(tabela) é c	onta	do 🚄			
	nro de arquivos 🛚	(1110 1111) 1 1			10	15	
	nro de interfaces		X	5	7	10	
28	externas						
	Contagem-Total					—	

01/09/2025	Métricas				
	MÉTRICA ORIENTADA	ÀÀFU	JNÇÃO	- PF	
	PONTOS POR FUNÇÃO é aplicado se	guindo	três pas	sos::	
_	1) Completar a seguinte tabela:				
Prof. Dr. Rogério Eduardo Garcia	Parâmetro todas as interfaces	<u>fator</u> mples	de ponde Médio		
rio Eduar	nro de ent (arquivos de dados)	3	4	6	
. Dr. Rogé	nro de sal do usuário usadas para transmitir informação para outro	4	5	7	
Prof.	nro de consta sistema do usuário	3	4	6	
	nro de arquivos x	7	10	15	
29	nro de interfaces externas x	5	7	10	
	Contagem-Total —			—	

29

01/09/2025	Métric	as					
	MÉT	RICA ORIEI	NTA	DA À FL	JNÇÃO	- PF	
	PONTOS POR FU	NÇÃO é aplic	ado	seguindo	três pas	ssos::	
	1) Completar a se	guinte tabela	:				
Garcia					de pond		
rdo	Parâmetro	Contagem		Simples	Médio	Complexo	
erio Edua	nro de entradas do usuário		X	3	4	6	
Prof. Dr. Rogério Eduardo Garcia	nro de saídas do usuário		Х	4	5	7	
Prof.	nro de consultas do usuário		Х	3	4	6	
	nro de arquivos		Х	7	10	15	
30	nro de interfaces externas		Х	5	7	10	
	Contagem-Total					—	

- Número de scripts de cenário
 - script de cenário é análogo a um caso de uso
- Número de classes-chave
 - classes-chave são os "componentes altamente independentes"
- Número de classes de apoio.
 - Classes de apoio são necessárias para implementar o sistema, mas não estão imediatamente relacionadas ao domínio do problema.
- Número médio de classes de apoio para cada classechave.
- Número de subsistemas.
 - Um subsistema é uma agregação de classes que apoia uma função que é visível para o usuário final de um sistema

34

Métricas Orientadas a Casos de unesp Uso

- Como os casos de uso podem ser criados em níveis muito diferentes de abstração, não há um "tamanho" padrão para um caso de uso.
- Sem uma "medida" padronizada do que é um caso de uso, sua aplicação como medida de normalização (por exemplo, esforço gasto por cada caso de uso) é suspeita.
- Sugere-se o uso de métricas Orientadas a Objetos
 - Neste caso, os casos de uso são usados para apoiar a decomposição

35

Métricas WebApp

- Número de páginas Web estáticas
- Número de páginas Web dinâmicas
- Número de links internos
- Número de objetos dados persistentes
- Número de interfaces de sistemas externos
- Número de objetos de conteúdo estático
- Número de objetos de conteúdo dinâmico
- Número de funções executáveis

36

MÉTRICAS DE QUALIDADE

integridade - capacidade que um software tem de suportar ataques (acidentais ou intencionais) à sua integridade

Integridade = (1 - ameaça x (1 - segurança))

ameaça - probabilidade de que um ataque de um tipo específico ocorrerá dentro de determinado tempo

segurança - probabilidade de que o ataque de um tipo específico será repelido

MÉTRICAS DE QUALIDADE

 usabilidade - tenta quantificar a característica de user friendliness do software

Pode ser medida através de 4 características:

- 1. habilidade física/intelectual para se aprender o sistema
- 2. tempo exigido para se tornar moderamente eficiente no uso
- 3. aumento de produtividade por alguém que seja moderadamente eficiente
- 4. avaliação subjetiva (questionário)

41

Métricas de Qualidade

- Eficiência na remoção de defeitos
 - Vantagens tanto para o projeto quanto para o processo é a eficiência na remoção de defeitos (DRE, defect removal efficiency).

$$DRE = \frac{E}{E + D}$$

- onde E é o número de erros encontrados antes que o software seja fornecido ao usuário final e D é o número de defeitos depois que o software é entregue

42

Métricas de Qualidade

- Eficiência na remoção de defeitos
 - DRE também pode ser usada no projeto para avaliar a habilidade de uma equipe para encontrar erros antes que eles passem para a próxima atividade metodológica ou para a próxima tarefa de engenharia de software

$$DRE_i = \frac{E_i}{E_i + E_{i+1}}$$

 onde E_i é o número de erros encontrados durante a tarefa de engenharia de software i, e E_{i+1} é o número de erros encontrados durante a tarefa de seguinte (i+1), ligados a erros da fase anterior não descobertos na ação de engenharia de software i

43

Métricas, para concluir...

BASELINE - DADOS HISTÓRICOS

- Atributos dos Dados Históricos:
 - Ajudam a reduzir o risco das estimativas
 - Devem ser precisos ou próximos de um valor real
 - Coletados do maior número de projetos possível
 - As medidas devem ser interpretadas da mesma maneira durante todo o projeto
 - As aplicações devem ser similares às do trabalho que se quer estudar
 - Existe um modelo de planilha para coleta e cálculo de dados históricos do

45

Estimativas

- Constitui um mapa para a bem-sucedida engenharia de software
- Exige:
 - experiência
 - acesso a boas informações históricas
 - coragem para se comprometer com medidas quantitativas quando só existirem dados qualitativos

46

49

- Não é uma ciência exata
- As Estimativas são afetadas por muitas variáveis:
 - humanas
 - técnicas
 - ambientais
 - políticas

___ 51

51

- As opções para se ter Estimativas com graus aceitáveis de Risco:
 - retardar as estimativas do projeto
 - usar técnicas de decomposição (dividir o problema complexo em pequenos problemas)
 - desenvolver um modelo empírico
 - adquirir ferramentas de estimativas

52

4) Determinar o valor estimado LOC ou PF ESTIMADO

LOC ESTIMADO

função6

função7

unesp	LOC por PF				
инсор і					
			LOC por Ponto	de Função	
	Linguagem de Programação	Média	Mediana	Baixa	Alta
	Ada	154	_	104	205
	ASP	56	50	32	106
	Assembler	337	315	91	694
	С	148	107	22	704
	C++	59	53	20	178
	C#	58	59	51	704
	COBOL	80	78	8	400
	ColdFusion	68	56	52	105
	DBase IV	52	-	-	-
	Easytrieve+	33	34	25	41
	Focus	43	42	32	56
	FORTRAN	90	118	35	×
	FoxPro	32	35	25	35
	HTML	43	42	35	53
	Informix	42	31	24	57
	JZEE	57	50	50	67
	Java	55	53	9	214
	JavaScript	54	55	45	63

		QSM SLOC/FP Data							
	P	Language	Avg	Median	Low	High			
		ABAP (SAP) *	28	18	16	60			
	W DE	ASP*	51	54	15	69			
	unesp PF	Assembler *	119	98	25	320			
	-	Brio +	14	14	13	16			
		C *	97	99	39	333			
		C++ +	50	53	25	80			
	versus	C# *	54	59	29	70			
	v Ci 3u3	COBOL*	61	55	23	297			
		Cognos Impromptu Scripts +	47	42	30	100			
	LOC	Cross System Products (CSP) +	20	18	10	38			
	LUC	Cool:Gen/IEF *	32	24	10	82			
		Datastage	71	65	31	157			
		Excel *	209	191	131	315			
		Focus *	43	45	45	45			
		FoxPro	36	35	34	38			
		HTML *	34	40	14	48			
		J2EE *	46	49	15	67			
		Java *	53	53	14	134			
		JavaScript *	47	53	31 25	63			
		JCL *	62	48	////	221			
		LINC II	29	30	22	38 40			
		Lotus Notes *	23	21	19	107			
		Natural *	40 57	34	34	53			
		.NET *	37	40	53 17	60			
)		Oracle * PACBASE *	35	32	22	60			
		Peri *	24	15	15	60			
		PL/I*	64	80	16	80			
		PL/SQL *	37	35	13	60			
		Powerbuilder *	26	28	7	40			
		REXX *	77	80	50	80			
		Sabretalk *	70	66	45	109			
		SAS *	38	37	22	55			
		Siebel *	59	60	51	60			
		SLOGAN +	75	75	74	75			
		SQL *	21	21	13	37			
		VB.NET *	52	60	26	60			
		Visual Basic *	42	44	20	60			
5		v.qsm.com/resources/fu							

Estimativas: Modelos Empíricos

Modelo Estático de Variável Simples

RECURSO = C₁ X (característica estimada) C₂

ESFORÇO E = 5.2 x KLOC 0.91 (pessoas-mês)

DURAÇÃO DO PROJETO D = 4.1 x KLOC 0.36 (meses)

TAMANHO DA EQUIPE S = 0.54 x E 0.06 (pessoas)

LINHAS DE DOCUMENTAÇÃO DOC = 49 x KLOC 1.01

Modelo de Walston e Felix - constantes derivadas de 60 projetos

ver outros modelos no livro!!! Por exemplo, no modelo de Boehm

E = 3.2 x KLOC 1.05

COCOMO

• Modelo 1: Modelo COCOMO Básico

(Boehm)

modelo estático de variável simples

- esforço de desenvolvimento calculado em função do tamanho do software (LOC)
- Modelo 2: Modelo COCOMO Intermediário
 - esforço de desenvolvimento calculado em função do tamanho do software (LOC) e de um conjunto de "direcionadores de custo"
- Modelo 3: Modelo COCOMO Avançado
 - mesmas características do modelo intermediário
 - avaliação do impacto dos "direcionadores de custo" em cada passo do processo de construção

L 67

COCOMO

São definidos para 3 classes de projetos:

- Orgânico
 - projetos pequenos
 - equipes pequenas e com baixa experiência
 - requisitos não muito rígidos
- Semi-Separado
 - projetos com tamanho e complexidade médios
 - equipes com experiências variadas
 - requisitos rígidos e não rígidos
- Embutido
 - restrições rígidas de hardware, software e operacionais

68

Com Casos de Uso

- Cohn (Coh05) aponta que o cálculo de pontos de caso de uso deve levar em consideração as seguintes características:
 - O número e a complexidade dos casos de uso no sistema.
 - O número e a complexidade dos atores no sistema.
 - Vários requisitos não funcionais (como portabilidade, desempenho, facilidade de manutenção) que não são redigidos como casos de uso.
 - O ambiente no qual o projeto vai ser desenvolvido (por exemplo, a linguagem de programação, a motivação da equipe de software).

23

73

Quanto às Métricas:

- Sem medir, não há maneira de determinar se existe melhoria
- A medição resulta em mudança cultural
- Ao criar uma baseline (banco de dados contendo medições do processo e do produto), engenheiros e gerentes podem ter uma melhor visão do processo e do produto

Quanto às Estimativas:

- Não constituem uma ciência exata; sempre existem Riscos
- Para diminuir os Riscos, devem ser baseadas em Dados Históricos, que são construídos ao longo do tempo através da utilização de Métricas
- Estimativas mais precisas devem fazer uso de várias técnicas

4

