Électromagnétisme

TD 6 Courants électriques

Introduction : Les courants sont créés par des charges en mouvement. Si on considère des porteurs de charges dont la densité volumique est égale à n (m⁻³), se déplaçant avec une vitesse \vec{v} (m s⁻¹) transportant chacun une charge q (C), le courant créé a une densité (charge traversant une surface perpendiculaire au déplacement par unité de temps et de surface) donnée par :

$$\vec{J} = nq\vec{v} \text{ (A m}^{-2}) \tag{1}$$

Des courants dus à plusieurs types de porteurs sont additionnés de façon vectorielle. La densité de courant est un champ vectoriel dont le flux à travers une surface S ouverte donne le courant (charges par seconde) traversant cette surface :

$$I = \frac{\mathrm{d}Q_{\mathrm{surf}}}{\mathrm{d}t} = \int_{S} \mathrm{d}I = \int_{S} \vec{J} \cdot \hat{\boldsymbol{n}} \, \mathrm{d}S \, (A) \tag{2}$$

Un courant positif indique des charges qui traversent la surface dans le sens du vecteur $\hat{\boldsymbol{n}}$ qui définit celle-ci.

La conservation de la charge est exprimée sous la forme de deux équations :

$$\oint_{S} \vec{J} \cdot \hat{n} \, dS = -\frac{dQ_{\text{int}}}{dt} \quad \text{forme intégrale}$$
 (3)

$$\operatorname{div} \vec{J}(\vec{r}) = -\frac{\partial \rho(\vec{r})}{\partial t} \quad \text{forme locale}$$
 (4)

Sous l'influence d'un champ électrique, les électrons libres dans les conducteurs se déplacent avec une vitesse de dérive donnée par :

$$\vec{v}_d = \frac{q_e \tau}{m_e} \vec{E} \tag{5}$$

où τ correspond au temps moyen entre les collisions des électrons libres. Ce mouvement de charges génère une densité de courant :

$$\vec{J} = nq_e \vec{v}_d = \frac{nq_e^2 \tau}{m_e} \vec{E} = nq_e \mu_e \vec{E} = \sigma \vec{E}$$
 (6)

où μ_e est la mobilité des électrons et σ la conductivité du conducteur.

La relation linéaire entre \vec{J} et \vec{E} (loi d'Ohm) se traduit en termes de tension et de courant (forme utilisée en Électronique) :

$$U = \frac{1}{\sigma} \frac{l}{A} I \triangleq RI \tag{7}$$

où l est la longueur, A la section et R la résistance du conducteur.

Notions : densité de courant ; conservation de la charge ; mobilité ; conductivité ; loi d'Ohm.

TD 6 - p.1 www.polytech.unice.fr/~aliferis

6.1 Des semelles en caoutchouc

- a. Calculer *votre* résistance R entre les mains et le sol. La conductivité du corps humain est égale à $0.2\,\mathrm{S\,m^{-1}}$ et celle de la semelle des chaussures $10^{-10}\,\mathrm{S\,m^{-1}}$.
- b. La valeur de R vous paraît-elle faible?
- c. Que se passerait-t-il si vous touchiez la sphère chargée de l'exercice 4.2?

6.2 Ligne téléphonique

Calculer la vitesse de dérive des électrons dans une ligne téléphonique. La tension de 48 V est appliquée entre le combiné et le centre de raccordement, situé à une distance de 1000 m.

Données cuivre : $v_F = 1.6 \times 10^6 \,\mathrm{m\,s^{-1}}, \, n = 8.5 \times 10^{28} \,\mathrm{m^{-3}}, \, \tau = 2.4 \times 10^{-14} \,\mathrm{s}, \, \sigma = 5.9 \times 10^7 \,\mathrm{S\,m^{-1}}.$ Constantes : $q_e = 1.6 \times 10^{-19} \,\mathrm{C}, \, m_e = 9.11 \times 10^{-31} \,\mathrm{kg}$

6.3 Puissance et énergie dans un condensateur

Utiliser l'équation de conservation de la charge (forme intégrale) pour déduire une relation entre le courant I traversant un condensateur de capacitance Q=CV et la différence de potentiel V entre ses bornes.

Calculer la puissance P = VI « consommée » par un condensateur pendant sa phase de charge et intégrer cette puissance pour trouver l'énergie emmagasinée.

6.4 Densité de charges dans un conducteur

Dans un conducteur, l'équation de conservation de la charge (forme locale) associée à la loi de Gauss (forme locale) donne lieu à une équation décrivant la densité volumique de charges, ρ .

- a. Trouver cette équation et la résoudre.
- b. Que représente le terme $t_r = \epsilon_0/\sigma$ qu'on appellera « temps de relaxation »?
- c. Calculer t_r pour le cuivre.

