- Задача 1. (Эта задача является продолжением задачи 2 к семинару 5.)
- 1) Докажите, что если кривая Y степени d на плоскости пересекает некоторую прямую l в d различных точках, и проективные координаты выбраны таким образом, что точка (1:0:0) лежит на l и не совпадает ни с одной из точек пересечения $l \cap Y$, то в уравнении кривой коэффициент при x_0^d ненулевой.
- 2) Пусть однородная форма $G(x_0:x_1:x_2)$ степени d является уравнением кривой Y из предыдущего пункта, а однородная форма $F(x_0:x_1:x_2)$ обращается в ноль на кривой Y. Тогда, согласно утверждению задачи 2 к семинару 5, имеется представление вида F = SG + R, такое что x_0 входит в однородную форму R только в степенях, меньших d. Докажите, что R делится на уравнение прямой l.
- 3) Докажите, что в условиях пункта 1 существует не более чем конечное множество прямых, проходящих через точку (1:0:0) и не пересекающих кривую Y в d различных точках. Выведите из этого, что форма F делится на форму G.
- **Задача 2.** 1) Рассмотрите рациональную параметризацию окружности $C = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ с помощью пучка прямых через точку (-1,0). (Параметром t в полученной параметризации будет угловой коэффициент прямых пучка.)
- 1) Получите из этой параметризации известные формулы для перечисления пифагоровых троек (то есть троек натуральных чисел (a, b, c) таких, что $a^2 + b^2 = c^2$).
- 2) Получите аналогичные формулы для перечисления троек натуральных чисел (a, b, c) длин сторон целочисленных треугольников с углом 60 градусов и найдите первый такой треугольник.
- Задача 3. Пусть C невырожденная коника, и O произвольная точка вне C. Проведем три произвольные прямые l, m, n через точку O, пересекающие конику C в точках X и X_1 , Y и Y_1 , Z и Z_1 соответственно, как показано на рисунке ниже. Тогда по теореме Дезарга точки $S = (YZ) \cap (Y_1Z_1)$, $S' = (XZ) \cap (X_1Z_1)$, $S'' = (XY) \cap (X_1Y_1)$, лежат на одной прямой (оси Дезарга), которую мы обозначим через \mathbf{p}_O . Докажите, что прямая \mathbf{p}_O не зависит от выбора вписанных в конику C перспективных треугольников XYZ и $X_1Y_1Z_1$, для которых она является осью Дезарга. (Например, вместо пары треугольников XYZ и $X_1Y_1Z_1$ можно взять пару треугольников X_1YZ и XY_1Z_1) Она называется полярой точки O относительно коники C.
- **Задача 4.** 1) Докажите, что для любой прямой l через точку O, пересекающей конику C в точках X и X_1 , четверка точек X, X_1, A, O , где $A = \mathbf{p}_O \cap l$, является гармонической.
- 2) Выведите отсюда, что поляра точки O относительно коники C не зависит от выбора прямых l, m, n через точку O, с помощью которых она построена, а зависит лишь от точки O.
- **Задача 5.** 1) В условиях задачи 3 докажите, что поляра \mathbf{p}_O пересекает конику C в двух различных точках A и B. (Пусть для простоты основное поле \mathbf{k} алгебраически замкнуто.)
- 2) Пусть $\mathbb{T}_A C$ и $\mathbb{T}_B C$ касательные к конике C в точках A и B сответственно. Докажите, что O точка пересечения прямых $\mathbb{T}_A C$ и $\mathbb{T}_B C$.
- **Задача 6.** Докажите, что если точка X лежит на поляре \mathbf{p}_Y точки Y относительно коники C, то и, наоборот, точка Y лежит на поляре \mathbf{p}_X точки X относительно C.

