8. 利用泰勒公式求极限:

(1)
$$\lim_{x\to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4}$$
.
(2) $\lim_{x\to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4}$.
(3) $\lim_{x\to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4}$.
(4) $\lim_{x\to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4}$.
(5) $\lim_{x\to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4}$.
(6) $\lim_{x\to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4}$.
(7) $\lim_{x\to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4}$.
(8) $\lim_{x\to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4}$.
(9) $\lim_{x\to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^4}$.

(2)
$$\lim_{x \to \infty} (x - x^2 \ln(1 + \frac{1}{x})).$$

$$\lim_{x \to \infty} (x - x^2 \ln(1 + \frac{1}{x})).$$

$$\lim_{x \to \infty} (x - x^2 \ln(1 + \frac{1}{x})) = \lim_{x \to \infty} (x - x^2 \ln(1 + \frac{1}{x})) = \lim_{x \to \infty} (x - x^2 \ln(1 + \frac{1}{x})) = \frac{1}{x}$$

9. 求函数 $f(x) = \sqrt{x}$ 按(x-4)的幂展开的带有拉格朗日余项的3阶泰勒

10. 证明: (1) $\ln \frac{1+x}{1-x} = 2(x + \frac{x^3}{3} + \frac{x^5}{5}) + \circ(x^6), (x \to 0).$ (1) $\ln (1+x) = x - \frac{x^3}{2} + \frac{x^3}{3} - \frac{x}{4} + \frac{x^5}{5} - \frac{x^4}{5} + o(x^6).$ 1. lin(1+x) = In(1+x) - m(1-x) = 2(x+ x3+ x5)+0(x6) (x > 0)

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}), (x \to 0).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}), (x \to 0).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}), (x \to 0).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}), (x \to 0).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}), (x \to 0).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}), (x \to 0).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{1}{12}x^{2} + o(x^{2}).$$

$$(2) \frac{x}{e^{x}-1} = 1 - \frac{1}{2}x + \frac{$$

x-(ex-1) (1- =x+ 7, x2)
(ex-1) x2 $= h \frac{x - (e^{x} +)(e^{-x} + h + x^{2})}{x^{3}}$

= kyo 0 k3) = 0 8x3 (X = 1- 1X+ 7, X2+(1X') 教多论学 11. 设f(x) 在点x = 0 的某个邻域内二阶可导,且 $\lim_{x \to 0} \frac{\sin x + x f(x)}{x^3} = 1$,试 求 f(0),f'(0) 及f''(0) 的值.

解:根据专家家林公礼.

$$\begin{array}{lll}
\text{Sris} x = x - \frac{x^{3}}{3!} + o(x^{3}). \\
\text{x } f(x) = f(0) + x f(0) + \frac{2f'(0)}{2!} x^{2} + \frac{3f''(0)}{3!} x^{3} + o(x^{3}) \\
\text{Im} & \text{Sris} x + x \neq (x) \\
\text{x } = \frac{10}{x^{3}} + x \neq (x) \\
\text{x } = \frac{10}{x^{3}} + x \neq (x) + x$$

12. 判定函数 $y = \sqrt{2}x + \sin x + \cos x$ 的单调性.

13. 确定下列函数的单调区间:

13. THE 195 EN X 13 - 182 (1)
$$y = \frac{10}{4x^3 - 9x^2 + 6x}$$
. By $x \neq 0$.

$$y' = \frac{-(0(1)x^2 - 18x + 6)}{(4x^3 - 9x^2 + 6x)^2}$$
. By $20 \cdot \text{Ep}$ $12x^2 - 18x + 6 \times 0$.

海科等. ×1: 1、 ×>====

× (-10,0) (0,1) 3 (10)	-	1	1-11-5	1 (3,1)	1	(1, too)
7' - 7	X (-00)	0) (0	12) 3	1	0	-
	y' \	-	- 10	1		1

以在(-∞,0),(0)之).(1+∞)上阜阳基液 在(之,1)上阜阳基坡。 第4章. 微分中值定理与导数的应用 ■ 班级 里 33 和 2 学号 1016 2 100 330 姓名 3天 元 月 行

(2)
$$y = \frac{1}{x} \ln^2 x$$
. $2 \times 10^{-1} \times 10^{-1}$
 $y' = -\frac{1}{x^2} \ln^2 x + \frac{1}{x^2} 2 \ln x \cdot \frac{1}{x} = -\frac{1}{x^2} \ln^2 x + \frac{1}{x^2} 2 \ln x$
 $= \frac{1}{x^2} (2 \ln x - \ln^2 x)$

在(6700)军阀逐渐减

14. 设
$$a > e$$
, 求证 $a \ln(a + x) < (a + x) \ln a$, $(x > 0)$.

[14. 设 $a > e$, 求证 $a \ln(a + x) < (a + x) \ln a$, $(x > 0)$.

[15. $a + (a + x) < a + x$) $a + (a + x) = a$.

[16. $a + (a + x) < a + x$] $a + (a + x) = a$.

ナ'(t) = 1-ht 全ナ'(t)=0. 個新 tze.

15. 设b > a > 0, 求证 $\ln \frac{b}{a} > \frac{2(b-a)}{b+a}$.

$$f(x) = \frac{1}{x} - \frac{2(x+1)-2x+1}{(x+1)^2} = \frac{1}{x} - \frac{3}{(x+1)^2}$$

多×>1日ナ、ナベ1>0、大×1年間連増 Ø ナル1乗>ナリンの

$$\frac{1}{h} = \frac{b}{a} > \frac{2(b-a)}{b+q}.$$

16. 证明当 x > 1 时, $0 < \ln x + \frac{4}{x+1} - 2 < \frac{1}{12}(x-1)^3$. 解(全for)= MX+ x+1-2 ナベンニュー (X+1)+ 全大(X+1)+ 全大(X+1)+ 全大(X+1)+ 多×>1は、ナベット多大子の、 「MA(1, t∞)上車洞道帽、ナベンナい)=0.いロマ(n×+式)-2. /= g(x) = mx+ x+1-2- 12(x-1)3. 神子、 $y = \frac{(x-1)^3}{x+3}$ $y = \frac{(x+3)^{\frac{1}{3}}(x+3)^{\frac{1}{3}} + (x-1)^{\frac{1}{3}}}{(x+3)^{\frac{1}{3}}}$ $(x+3)^{\frac{1}{3}}$ $(x+3)^{\frac{1}{3}}$ 小主 y的极大值为 与 ym 极小值为 o 18. 求 $f(x) = \ln x + \frac{1}{x} 在 x > 0$ 上的最小值 海乳十少儿之一一次含十少20. 麻猪、

i、ton阿最小值为于U)=1.

19. 求
$$f(x) = x^2 \sqrt{b^2 - x^2} (0 \le x \le b)$$
 的最大、最小值.

X	(0, 13 6)	6/36	W36, b)
+ (x)	+	d	-
tix)	27	极人	N

20. 求下列曲线的拐点及上凸和下凸区间:

静: $y' = 4x^3(12hx-7) + \chi^4 \frac{12}{\chi} = 4\chi^3(12lmx-4)$. $y''' = 12\chi^2(12hx-7) + 4\chi^3 \cdot \frac{12}{\chi} = 144\chi^2 lmx$. $\xi y'' = 20$. 神神神、 $\chi = 12$

x 1	(0,1)	1	(1, too)
711	_	0	+
7	1 ~		下凸

上四四月间为(1,7).下四区间为[1,100]

海年、定义成X>D. ソ'=4X-文 Y"=4+文· Q. Y"可含大于O. C、 Y是下门的四线,且 Y不存在特点。

21. 证明: 当 $0 < x < \pi$ 时, 有 $\sin \frac{x}{2} > \frac{x}{2}$.

种文·全型的·sin文-文 ナツーション・ラーラーナリャン=マsin デリを小子の、アリナの見一下上四函数。 inf(x) > min{f(0) f(2)} > 0. 22. 证明 $x \ln x + y \ln y > (x + y) \ln(\frac{x+y}{2}), \quad (x > 0, y > 0, x \neq y).$

福: / t(x)=xhx. $f'(x) = x \frac{1}{x} + hx = hx + 1$ ナ"以)= イ い当 メンのゆす ナ"以大多大子の. 八九x)是一个下凸函数 $\frac{1}{x} \times \frac{hx + yhx}{x} > \frac{h(x+y)}{x} \left(\frac{x+y}{y}\right)$ By x mx + y my > (x+y) m(x+y)

第4章. 微分中值定理与导数的应用 ■ 班级 13312 学号 10162 0033 0姓名 2天花 145

23. 描绘函数 $y = (x+6)e^{\frac{1}{2}}$ 的图形. 定义成、尺、 为条件以对称性 $p = (x+6)e^{\frac{1}{2}}$ 个 $p = (x+6)e^{\frac{1}{2}}$ 的图形. $p = (x+6)e^{\frac{1}{2}}$ 的图形.

XI	(-00,-)	-2	(-1,3)	3	(3, t0)
y'	+	0	_	0	+
V	7		D		1.

 $\frac{1}{2}$ $\frac{1$

画图:

竖直渐近线 x=0 斜渐近线为 y=x+7 **24.** 描绘函数 $y = \frac{x^3+4}{x^2}$ 的图形.

每天、い定水成 Xt (-∞,0) 110, t∞)、山流高温性、周期性、

(3) y'=1-8 名動 y'=0. 伸着 X=2. 义"= 24x"4. 义"小星大子。凌函数为下凸函数

(4)直线×20是函数的一条里直渐近线

2、 y的条件渐近级为 Y= X.

0,1	(-00,0)	0	(0,2)	2	(2)t00)
V)	+		-	0	7
711	+	0	4		+
Y.	T-137		下口人		INT.

25. 求星形线 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ 的曲率半径.

$$\begin{array}{lll}
\sqrt{3} &= \alpha^{\frac{2}{3}} - x^{\frac{1}{3}} & y = \left(\alpha^{\frac{2}{3}} - x^{\frac{1}{3}}\right)^{\frac{3}{2}} \\
y' &= \frac{3}{2} \left(\alpha^{\frac{2}{3}} - x^{\frac{1}{3}}\right)^{\frac{1}{2}} \left(-\frac{1}{3}\right) x^{-\frac{1}{3}} &= -x^{\frac{1}{3}} \alpha^{\frac{2}{3}} - x^{\frac{1}{3}}\right)^{\frac{1}{2}} \\
y'' &= \frac{3}{2} \left(\alpha^{\frac{2}{3}} - x^{\frac{1}{3}}\right)^{\frac{1}{2}} \left(-\frac{1}{3}\right) x^{-\frac{1}{3}} &= -x^{\frac{1}{3}} \alpha^{\frac{2}{3}} - x^{\frac{1}{3}}\right)^{\frac{1}{2}} \\
&= \frac{1}{3} x^{-\frac{1}{3}} \left(\alpha^{\frac{1}{3}} - x^{\frac{1}{3}}\right)^{\frac{1}{3}} + \frac{1}{3} x^{-\frac{1}{3}} \left(\alpha^{\frac{1}{3}} - x^{\frac{1}{3}}\right)^{-\frac{1}{2}} \\
&= \frac{3}{3} x^{-\frac{1}{3}} \left(\alpha^{\frac{1}{3}} - x^{\frac{1}{3}}\right)^{\frac{1}{3}} + \frac{3}{3} \left(\alpha^{\frac{1}{3}} - x^{\frac{1}{3}}\right)^{\frac{1}{2}} \\
&= \frac{3}{3} x^{\frac{1}{3}} \left(\alpha^{\frac{1}{3}} - x^{\frac{1}{3}}\right)^{\frac{1}{3}} + x^{\frac{1}{3}} \left(\alpha^{\frac{1}{3}} - x^{\frac{1}{3}}\right)^{\frac{1}{2}} \\
&= \frac{3}{3} x^{\frac{1}{3}} \left(\alpha^{\frac{1}{3}} - x^{\frac{1}{3}}\right)^{\frac{1}{3}} + x^{\frac{1}{3}} \left(\alpha^{\frac{1}{3}} - x^{\frac{1}{3}}\right)^{\frac{1}{2}} \\
&= \frac{3}{3} x^{\frac{1}{3}} \left(\alpha^{\frac{1}{3}} - x^{\frac{1}{3}}\right)^{\frac{1}{2}} + x^{\frac{1}{3}} \left(\alpha^{\frac{1}{3}} - x^{\frac{1}{3}}\right)^{\frac{1}{2}} \\
&= \frac{3}{3} x^{\frac{1}{3}} \left(\alpha^{\frac{1}{3}} - x^{\frac{1}{3}}\right)^{\frac{1}{3}} \\
&= \frac{3}{3} x^{\frac{1}{3}} \left(\alpha^{\frac{1}{3}} - x^{\frac{1}{3}}\right)^{\frac{1}{3}} \\
&= \frac{3}{3} x^{\frac{1}{3}} \left(\alpha^{\frac{1}{3}} -$$