

How Much Do We Really Know About Recommendation Datasets?

Jin Yao CHIN, Yile CHEN, Gao CONG

School of Computer Science and Engineering Nanyang Technological University Singapore

Experimental Issues

- - Missing/incomplete datasets, source code, etc.
- - Weak or poorly tuned baselines
- **▷** Evaluation Metrics ⊗⊗
 - "Sampled metrics", i.e. ranking based on a randomly sampled subset of candidate items
- [1] A Worrying Analysis of Recent Neural Recommendation Approaches, RecSys 2019 (Best Paper)
- [2] On Sampled Metrics for Item Recommendation, KDD 2020 (Best Paper)

- ➢ For other research fields, there are certain "benchmark datasets"
 - E.g., ImageNet, etc. for Computer Vision
 - E.g., Stanford Question Answering Dataset (SQuAD) for Question & Answering
- ▷ As for Recommendation Systems...
 - No benchmark datasets
 - The <u>choice</u> of <u>datasets</u> used for empirical evaluation seems to be a <u>fundamental</u> but <u>often neglected</u> aspect .

"How much do we really know about recommendation datasets?"

- 1. How are different datasets being utilised in recent papers?
 - Are there any patterns?
- 2. What are the similarities as well as differences between various datasets?
 - Can we define them using objective measures?
- 3. <u>If</u> the choice of datasets used could **influence** the **observations** and/or **conclusions obtained**?
 - Empirical study using a variety of item recommendation algorithms

Paper and Dataset Collection

- ▶ Conferences: KDD, SIGIR, TheWebConf, WSDM, and RecSys

~400 full papers

- - 1. Implicit feedback-based top-K recommendation
 - 2. Evaluated using classification and/or ranking metrics
 - 3. Utilizes at least 1 publicly available dataset
- Obtained a total of 48 full papers

Useful property for analyzing usage patterns

"A dataset used in any single one of these papers can be used in every other paper as well."

Dataset Usage Analysis

Frequent Combinations

Same Author

Datasets	Papers .º
Epinions, ML-20M, Netflix, Yelp	[32, 33]
ML-20M, Million Song Dataset, Netflix	[12, 24, 29, 43, 45]
Amazon (Books), Gowalla, Yelp	[15, 52, 53]
Amazon (CDs & Vinyl; Electronics), Gowalla	[35, 47]
Flixster, ML-10M, Netflix	[7, 8]
ML-100K, ML-1M, Netflix	[26, 50]
ML-10M, Netflix, Yelp	[55, 56]
ML-1M, ML-20M, Meetup (NYC)	[49, 51]

- We use the Apriori algorithm to determine the combinations of datasets which have been used together in 2 or more papers
- - Evaluated at the same time in 9 separate papers

"How much do we really know about recommendation datasets?"

- 1. How are different datasets being utilised in recent papers?
 - The choice of datasets is often **determined arbitrarily**
 - Difficult to compare results between different papers
- 2. What are the similarities as well as differences between various datasets?
 - Can we define them using objective measures?
- 3. <u>If</u> the choice of datasets used could **influence** the **observations** and/or **conclusions obtained**?
 - Empirical study using a variety of item recommendation algorithms

Dataset Characteristics

Two different *types* of dataset characteristics [1]

- 1. Structural
- 2. Distributional

Structural Characteristics

$$\triangleright Space_{log} = log_{10} \left(\frac{|U| \times |I|}{1000} \right)$$

$$\triangleright Shape_{log} = log_{10} \left(\frac{|U|}{|I|} \right)$$

$$\triangleright Density_{log} = log_{10} \left(\frac{|K|}{|U| \times |I|} \right) \circ \bigcirc$$

•	U	=	#	of	Users
---	---	---	---	----	-------

•
$$|I| = \# \text{ of Items}$$

•
$$|K| = \#$$
 of Ratings

 $Space_{log}$

 $Shape_{log}$

Distributional Characteristics

$$\triangleright Gini_{user} = 1 - 2\sum_{u=1}^{|U|} \left(\frac{|U|+1-u}{|U|+1}\right) \times \left(\frac{|K_u|}{|K|}\right) \circ OOO$$

- |U|: Number of Users
- |K|: Number of Interactions
- $|K_u|$: Number of Interactions for User u

Distribution of Interactions over Users

$$\triangleright Gini_{item} = 1 - 2\sum_{i=1}^{|I|} \left(\frac{|I|+1-i}{|I|+1}\right) \times \left(\frac{|K_i|}{|K|}\right) \circ \bigcirc$$

- |I|: Number of Items
- |K|: Number of Interactions
- $|K_i|$: Number of Interactions for Item i

Distribution of Interactions over Items

<u></u>	1	?	1	?
	?	1	?	1

$$Gini_{user} = \mathbf{0}$$

$$Gini_{user} = \mathbf{1}$$

Datasets Used for Analysis & Experiments

- > A total of **51** datasets
 - Excluded datasets which are too small after preprocessing
 - Included some missing Amazon datasets
- > Preprocessing
 - Removed users/items with <5 interactions
 - For datasets with explicit feedback (i.e., ratings), convert all the observed entries into positive interactions
- Some publicly available datasets are in a pre-processed form
 - E.g., MovieLens datasets do not include users with <20 interactions

Similarities and Differences

Dataset Clusters

^{*} Number of clusters chosen based on internal validation measures

Dataset Clusters - Centroids

Cluster 1: Gigantic but sparse

Most number of users/items

Amazon (Books)

Million Song Dataset

Yelp

Cluster	$Space_{log} \circ$	$Shape_{log}$	$Density_{log}$	$Gini_{user}$	$Gini_{item}$
1	7.274(1)	0.497(2)	-3.412(5)	0.477(2)	0.657(2)
2	4.340(4)	-0.134(5)	-2.162 (3)	0.441(3)	0.517(4)
3	5.619(3)	0.272(3)	-3.106(4)	0.337(4)	0.504(5)
4	o 3.167 (5)	0.116(4)	-1.670(1)	0.289(5)	0.557(3)
5	6.307 (2)	0.878 (1)	-2.120 (2)	0.502(1)	0.767(1)

Cluster 4:

Tiny but dense

MovieLens-100K

MovieLens-10M

MovieLens-20M

Cluster 5: |Users| >> |Items|

Highly concentrated

Netflix

Pinterest

"How much do we really know about recommendation datasets?"

- 1. How are different datasets being utilised in recent papers?
 - The choice of datasets is often **determined arbitrarily**
 - Difficult to compare results between different papers
- 2. What are the similarities as well as differences between various datasets?
 - Sparse vs Dense, Ratio of Users to Items, ...
 - Datasets can be distinctively different from one another
- 3. If the choice of datasets used could influence the observations and/or conclusions obtained?
 - Empirical study using a variety of item recommendation algorithms

Experimental Setup

▷ Sampling

- Impractical to evaluate on all 51 datasets
- For each cluster, select the 3 datasets which are closest to the cluster centroid

> Baseline methods

- Neighbourhood-based: UserKNN, ItemKNN
- Graph-based: RP3Beta
- Latent Factor Model: WMF
- Generative Model: Mult-VAE
- ✓ Distinct inductive bias
- ✓ Simple but effective

Evaluation metrics

- Recall @ 10
- nDCG @ 10

Experimental Results (Recall @ 10)

► For datasets with similar characteristics, i.e. within the same cluster, some recommendation algorithm tends to perform significantly better (or worse) than the rest

Experimental Results (Recall @ 10)

- 'Ordering' can change drastically based on dataset cluster
 - Cluster 3: RP3Beta > UserKNN, ItemKNN > WMF > Mult-VAE
 - Cluster 5: UserKNN, WMF, Mult-VAE >> ItemKNN, RP3Beta

"How much do we really know about recommendation datasets?"

- 1. How are different datasets being utilised in recent papers?
 - The choice of datasets is often **determined arbitrarily**
 - Difficult to compare results between different papers
- 2. What are the similarities as well as differences between various datasets?
 - Sparse vs Dense, Ratio of Users to Items, ...
 - Datasets can be distinctively different from one another
- 3. <u>If</u> the choice of datasets used could **influence** the **observations** and/or **conclusions obtained**?
 - Results can vary significantly based on the choice of datasets!
 - Suggestion: Utilising datasets with considerably different characteristics will improve <u>robustness</u> of evaluation procedure

Thanks!

Source Code:

https://github.com/almightyGOSU/TheDatasetsDilemma

Email:

S160005@e.ntu.edu.sg