02/24/2016

Regression

aka fitting curves to data

- Classification: given sample x, predict class (often binary).
- Regression given sample, x, predict a numerical value.
 - Choose form of regression function h(x; p) with parameters p.
 - * like predictor function in classification.
 - Choose a cost function (objective function) to optimize.
 - * Usually based on a loss function; e.g. risk function = expected loss.
- Some regression functions:
 - 1. Linear: $h(x; w, \alpha) = w^T x + \alpha$.
 - 2. Polynomial.
 - 3. Logistic: $h(x; w, \alpha) = s(w^T x + \alpha)$. Recall: logistic function $s(\gamma) = \frac{1}{1 + e^{-\gamma}}$
- Some loss functions: let z be prediction h(x); y be true value.
 - A. $L(z,y) = (z-y)^2$ squared error.
 - B. L(z, y) = |z y| absolute error.
 - C. L(z,y) = -yln(z) (1-y)ln(1-z) logistic loss.
- Some cost functions to minimize:
 - a. $J(h) = \frac{1}{n} sum_{i=1}^n L(h(X_i), y_i)$ mean loss.
 - b. $J(h) = \max_{i=1}^{n} L(h(X_i, y_i))$ maximum loss.
 - c. $J(h) = \sum \omega_i L(h(X_i, y_i))$ weighted sum.
 - d. $J(h) = \frac{1}{n} \sum L(h(X_i, y_i)) + \lambda |w|^2 \underline{\ell_2}$ penalized/regularized.
 - e. $J(h) = \frac{1}{n} \sum L(h(X_i, y_i)) + \lambda |w| \ell_1$ penalized/regularized.
- Some combinations:

Name	Regression	Loss	Cost	Algorithm
Least-squares linear regression	1	A	a	quadratic, minimize w/calculus
Weighted least-squares linear	1	A	c	quadratic, minimize w/calculus
Ridge regression	1	A	d	quadratic, minimize w/calculus
Lasso	1	A	d	minimize w/gradient descent
Logistic regression	3	С	a	minimize w/gradient descent
Least absolute deviations	1	В	a	minimize w/linear program
Chebyshev criterion	1	В	b	minimize w/linear program

1

Least-Squares Linear Regression

- 1 + A + a.
 - Optimization problem:

Find w, α that minimizes $\sum_{i=1}^{n} (x_i \cdot w + \alpha - y_i)^2$

• Convention:

-X is $n \times d$ design matrix of samples.

-y is d-vector of dependent scalars.

$$-X = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1d} \\ x_{21} & x_{22} & \dots & \\ \vdots & \vdots & \dots & \\ x_{n1} & x_{n2} & \dots & x_{nd} \end{bmatrix}$$

- Usually n > d.

– Sample row vector is X_i^T .

- Column vector is X_{*j} .

$$-y = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}$$

- Recall fictitious dimension trick: replace $x \cdot w + \alpha$ with,

$$\begin{bmatrix} x_1 \ x_2 \ \dots \ x_d \ 1 \end{bmatrix} \cdot \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_d \\ \alpha \end{bmatrix}$$

Now X is an nx(d+1) matrix; w is a (d+1)-vector.

• Rewritten optimization problem:

Find w that minimizes
$$|Xw - y|^2$$

• Optimize by calculus, minimize residual sum of squares:

$$RSS(w) = w^T X^T X w - 2 y^T X w + y^T y = 0$$

$$\implies X^T X w = X^T y \Leftarrow \text{The normal equations}$$

2

 $\bullet\,$ If X^TX is singular, problem is under-constrained.

• We use a linear solver to find $w = (X^T X)^{-1} X^T y$.

• $X^+ = (X^T X)^{-1} X^T$ is the pseudoinverse of X and is a (d+1) xn matrix.

- Observe: $X^{+}X = (X^{T}X)^{-1}X^{T}X = I \Leftarrow (d+1)x(d+1).$
- Observe: the predicted values of y are $\hat{y} = h(x;) \Rightarrow = Xw = XX^+y = Hy$.
- where $H = XX^+$ is the <u>hat matrix</u> because it puts the hat on y.
- Interpretation as a projection:
 - $-\hat{y} = Xw \in \mathbb{R}^n$ is a linear combination of columns of X.
 - For fixed X, varying w, Xw is a subspace of \mathbb{R}^n spanned by columns.

- Minimizing $|\hat{y} y|$ find point \hat{y} nearest y on subspace \Rightarrow project y onto subspace.
- Error is smallest when line is perpendicular to subspace: $X^{T}(Xw y) = 0 \Rightarrow$ the normal equations!
- Hat matrix H (also called projection matrix) does the projecting.
- Advantages:
 - Easy to compute; just solve a linear system.
 - Unique, stable solution.
- Disadvantages:
 - Very sensitive to outliers, because error is squared!
 - Fails if X^TX is singular.

Logistic Regression

(David Cox, 1953) 3 + C + a

- Fits "probabilities" in range (0, 1).
- Usually used for classification. The input y_i 's can be probabilities, but in most applications they are all 0 or 1.
- QDA, LDA: generative models.
- Logistic regression: discriminative model.
- Optimization problem:

Find w, α that minimizes $J = \sum_{i=1}^{n} (y_i \ln s(X_i \cdot w + \alpha) + (1 - y_i) \ln(1 - s(X_i \cdot w + \alpha)))$

• $-J(w, \alpha)$ is convex. Solve by gradient ascent.

$$s'(\gamma) = \frac{d}{d\gamma} \frac{1}{1 + e^{-\gamma}} = \frac{e^{-\gamma}}{(1 + e^{-\gamma})^2}$$
$$= s(\gamma)(1 - s(\gamma))$$

• Let $s_i = s(X_i \cdot w + \alpha)$,

$$\nabla_w J = \sum \left(\frac{y_i}{s_i} \nabla s_i - \frac{1 - y_i}{1 - s_i} \nabla s_i \right)$$

$$= \sum \left(\frac{y_i}{s_i} - \frac{1 - y_i}{1 - s_i} \right) s_i (1 - s_i) X_i$$

$$= \sum (y_i - s_i) X_i$$

- Gradient ascent rule: $w \leftarrow w + \epsilon \sum_{i=1}^{n} (y_i s(X_i \cdot w + \alpha))X_i$
- Stochastic gradient ascent: $w \leftarrow w + \epsilon (y_i s(X_i \cdot w + \alpha))X_i$ works best if we shuffle samples in random order; process one by one.
- \bullet For very large n, sometimes converges before we visit all samples!
- Starting from $w = 0, \alpha = 0$ works well in practice.

