CODE: 16BS1003 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, October / November-2020

ENGINEERING PHYSICS

(Common to CE, EEE & ME Branches)

Time: 3 Hours Max Marks: 70

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the Question must be answered at one place.

UNIT-I

1.	a)	Define Coherence	2M
	b)	How do you test for flatness of surface using concept of	4M
		interference? Explain with diagram	
	c)	Derive the conditions for interference in plane parallel films	8M
		due to reflected light	
2	`	(\mathbf{OR})	23.4
2.	a)	Define superposition principle	2M
	b)	Newton's rings are observed in the reflected light of	4M
		wavelength 5900 A. The diameter of 10 th dark ring is 0.5 cm.	
		Find the radius of curvature of lens used	
	c)	Derive the conditions for central maxima and minima	8M
		obtained due to Fraunhofer's diffraction through single slit	
		UNIT-II	
		<u> </u>	
3.	a)	Define Population inversion with diagram	2M
	b)	Explain the components involved in formation of Laser	6M
	c)	State any four differences between Spontaneous emission and	6M
		stimulated emission with diagram	
		(\mathbf{OR})	
4.	a)	State the principle of working of optical fiber	2M
	b)	List any four differences between step index and graded index	4M
		optical fibers	
	c)	Derive the expression for numerical aperture and acceptance	8M
	,	angle in optical fiber	

UNIT-III

5.	a)	Define wave particle duality	2M
	b)	Derive the expression for energy and wave function of an	10M
	,	electron in a one dimensional potential box	23.4
	c)	State Heisenberg's uncertainty principle.	2M
		(OR)	
6.	a)	Define wave function	2M
	b)	Explain the physical significance of wave function (any four points)	4M
	c)	State Heisenberg's uncertainty principle. Also, prove that	8M
		protons and exist in nucleus of an atom.	
		<u>UNIT-IV</u>	
7	`		23.4
7.	-	Define magnetic field	2M
	-	Explain the concept of magnetostriction with diagram(s)	4M
	c)	Differentiate between diamagnetic and ferromagnetic	8M
		materials. Also draw the corresponding dipole moment diagrams	
		(OR)	
8.	a)	Define Intensity of magnetization	2M
•		What are ferrites. Give any two applications	4M
	c)	Draw and Explain Hysteresis curve in ferromagnetic	8M
	,	materials	
		<u>UNIT-V</u>	
9.	۵)	Dariya the relation between D. E and D.	4M
9.	a) b)	Derive the relation between D, E and P Explain Electronic polarizability with a diagram and derive	10M
	U)	the expression for electronic polarizability	TOIVI
		(OR)	
10	٥)	` ,	4M
10.		Give any two possible reasons for dielectric breakdown Explain frequency dependence on polarizability with neat	4M 10M
	b)	sketch	10101

CODE: 16BS1004 SET-2

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, October / November-2020 **ENGINEERING CHEMISTRY**

(Common to ECE, CSE & IT Branches)

Time: 3 Hours Max Marks: 70

> Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place.

UNIT-I

1.	a)	Distinguish between thermoplastic and thermosetting plastics.	8M
	b)	Differentiate between addition and condensation polymers	6M
		(OR)	
2.	a)	Discuss about setting and hardening of cement with suitable chemical reactions.	8M
	b)	Explain the wet process of manufacturing Portland cement.	6M
		<u>UNIT-II</u>	
3.	a)	Give a detailed account on treatment of water for domestic purposes.	8M
	b)	What is chlorination? Explain in detail about break point chlorination.	6M
		(OR)	03.5
4.	a)	Describe desalination methods with neat diagrams.	8M
	b)	How do you produce soft water? Explain any one softening method.	6M
		<u>UNIT-III</u>	
5.	a)	Define corrosion. What are the causes and consequences of corrosion?	6M
	b)	Explain various factors influencing rate of corrosion.	8M
		(OR)	
6.	a)	Summarize how proper design of corrosion is used in corrosion control.	8M
	b)	Give a detailed account on (i) waterline corrosion (ii) stress corrosion	6M
		<u>UNIT-IV</u>	
7.	a)	Explain the fractional distillation of refining of petroleum.	8M
. •	b)	What are octane and cetane number? Explain their significance.	6M
	σ,	(OR)	01.1
8.	a)	What is lubrication? Explain thick film and thin film lubrication.	6M
	b)	Define and explain flash and fire points; cloud and pour points.	8M
		<u>UNIT-V</u>	
9.	۵)	What is electrochemical series? Explain its significance.	8M
9.	a)	1 0	6M
	b)	Explain the construction, working and applications of NHE (OR)	OIVI
10.	a)	Discuss in detail about concentrated power plants with neat diagram.	8M
-0.	b)	Describe harnessing of solar energy.	6M
	٥,	1 of 1	01,1

Code: 13BS1004 SET-2 ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, October / November-2020 ENGINEERING PHYSICS (Common to EEE & ECE)

Time: 3 Hours Max Marks: 70

PART-A

ANSWER ALL QUESTIONS

[10 X 1M = 10 M]

- 1. a) What is meant by interference of light.
 - b) What is meant by diffraction of light.
 - c) What is the principle of laser.
 - d) Define numerical aperture of optical fiber.
 - e) What is unit cell.
 - f) Write the condition for Bragg's law.
 - g) Define magnetic flux density.
 - h) What is polarization vector
 - i) Define drift velocity of electrons.
 - j) Write one dimensional time independent Schrodinger's wave equation.

PART-B

Answer one question from each unit

[5 X 12M = 60M]

UNIT-I

- 2. a) Discuss the theory of Newton's rings with relevant diagrams 8M by reflected light and obtain the expressions for the diameters of bright and dark rings.
 - b) In Newton's rings experiment, the diameter of the 5th ring is 0.30 cm and diameter of the 15th ring is 0.62cm. Find the 4M diameter of the 25th ring.

(OR)

- 3. a) Obtain the conditions for principle maxima and minima in Fraunhofer diffraction of light due to a single slit.
 - b) Mention any four differences between Fresnel and Fraunhofer diffraction of light.

	C	ODE: 13BS1004 SET-2	2
		<u>UNIT-II</u>	
4.	a)	Derive the relation between the probabilities of spontaneous	8M
		emission and stimulated emission in terms of Einstein	
		coefficients.	
	b)	Explain the basic components in laser system.	4M
		(OR)	
5.	a)	Derive the expressions for numerical aperture and the	6M
		fractional change in refractive index of optical fiber.	
	b)	Explain advantages of Fiber optic communication system.	6M
		<u>UNIT-III</u>	
6.	a)	Explain Structure and packing factor of Face centered cubic	8M
		crystal	
	b)	Define the following. i) Lattice parameters ii) Coordination	4M
		number iii) Primitive cell and iv) Non primitive cell.	
_		(\mathbf{OR})	03.5
7.	a)	Derive an expression for inter planar separation between	8M
		successive (h k l) parallel planes for cubic crystal system.	
	b)	State and explain Bragg's law for X-ray diffraction.	4M
		<u>UNIT-IV</u>	
8.	a)	Explain the Domain theory of ferromagnetism.	8M
	b)	Define the following. i) Magnetic flux density ii) Magnetic	4M
		field iii) Intensity of magnetization and iv) Relative	
		permeability.	
0	`	(OR)	03.4
9.	a)	What is orientation polarization and derive the expression for	8M
	1 \	its polarizability.	43.4
	b)	Derive relation between electric susceptibility and dielectric	4M
		constant.	
10	`	<u>UNIT-V</u>	01/4
10.	a)	•	8M
	1- \	based on classical free electron theory.	43.4
	b)		4M
11	۵)	(OR)	ONI
11.	a)		8M
		electron confined to move in a one -dimensional potential	
	L)	box. Coloulete the de Proglie wavelength of an electron which	/ N /
	U)	Calculate the de Broglie wavelength of an electron which	41 VI
		has been accelerated from rest on application of potential of	
		400 volts.	

Code: 13BS1005 SET-I

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, October / November-2020 ENGINEERING CHEMISTRY (Common to CE, ME, CSE & IT)

Time: 3 Hours Max Marks: 70

PART-A

ANSWER ALL QUESTIONS

 $[1 \times 10 = 10 \text{ M}]$

- 1. a) List out the constituents on Portland cement.
 - b) Define functionality.
 - c) Define PPM.
 - d) What is disinfectioning of water?
 - e) Name any four factors that influence rate of corrosion.
 - f) What is Galvanic series?
 - g) Define flash and fire point of lubricants.
 - h) Give the catalyst used in Bergius process.
 - i) Write any two principles of green chemistry
 - j) Outline any two applications of silver nanoparticles

PART-B

Answer one question from each unit

[5x12=60M]

UNIT-I

- 2. a Distinguish between thermosetting and thermoplastic plastics. 6 M
 - b Discuss in detail about compression and injection moulding 6 M of plastics

(OR)

- 3. a Describe the manufacturing of Portland cement with a neat 8M sketch.
 - b With suitable chemical reactions explain hardening of cement 4M

UNIT-II

- 4. a Explain the determination of total hardness of water by EDTA method 6M
 - b Explain the units of hardness of water. 6M

(OR)

5.	a	Briefly explain the methods of treatment of water for	8M
٠.		domestic purposes.	0112
	b	Calculate the permanent hardness from the following data.	4M
		Calcium bicarbonate= 10.0ppm; calcium sulphate = 13.6	
		ppm; magnesium chloride= 9.5 ppm; magnesium bicarbonate	
		= 12.0ppm.	
		<u>UNIT-III</u>	
6.	a	With appropriate chemical reactions explain the mechanism	8M
	L	of electrochemical chemical corrosion.	4 N /
	b	How nature of metal oxide layer influences rate of corrosion. (OR)	4M
7.	a	Discuss in detail about sacrificial anodic protection with a	6M
		neat sketch.	
	b	Explain how proper design of machine influences rate of corrosion.	6M
		<u>UNIT-IV</u>	
8.	a	Discuss the following knocking, anti-knocking, cetane	8M
		number and octane number	
	b	With a neat diagram explain fractional distillation of crude oil (OR)	4M
9.	a	Discuss the mechanism of thick film and thin film lubrication	6M
	b	Describe in detail about any three properties of lubricants.	6M
		<u>UNIT-V</u>	
10	. a	Write the engineering applications of green chemistry	4M
	b	Discuss in detail about solar power plant and its working	8M
		(OR)	
11	. a	Discuss the engineering and biomedical applications of nanomaterials	6M
	b		6M