Total No. of Questions—8]

[Total No. of Printed Pages—4+1

Seat	
No.	0.1

[5152]-548

S.E. (Electrical Engineering) (Second Semester)

EXAMINATION, 2017

NETWORK ANALYSIS

(2015 **PATTERN**)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Answer Q. No. 1 or 2, Q. No. 3 or 4, Q. No. 5 or 6, Q. No. 7 or 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of calculator is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) Reduce the given network figure to a single voltage source and impedance. [6]

(b) In the circuit shown, find current I, using superposition theorem. [7]

- **2.** (a) Explain the following terms in relation with network graphs: [6]
 - (i) Tree
 - (ii) Cut set
 - (iii) Tie set.
 - (b) Use Thevenin's theorem to calculate current through branch
 A-B as shown in figure below. [7]

3. (a) As shown in circuit, switch K is changed from position 1 to position 2 at time t = 0, steady state condition reached before

switching. Find I, di/dt, di^2/dt^2 at $t = 0^+$.

(b) Using Laplace transform find i(t) in the network if initial conditions are zero. [6]

4. (a) A 5 μ F capacitor is initially charged with 500 μ C. At t=0, the switch K is closed. Determine the voltage drop across the resistor at $t<\tau$ and at $t=\infty$. [6]

[5152]-548

[6]

(b) After being on position 1 for long time, the switch is thrown on position 2 at time t=0, find current using Laplace Transform technique, [6]

- 5. (a) Write a short note on location of poles and zeros on s-plane. [6]
 - (b) Find Z parameters for the network shown in figure. [7]

6. (a) Find Transmission parameters for the network shown in figure. [6]

(b) Find the driving point impedance for the network shown in figure. [7]

- 7. (a) Derive the expression for characteristic impedance (Z_0) , attenuation constant (α) and phase constant (β) of prototype constant-K type low pass filter from symmetrical networks. [6]
 - (b) Design a T and π section Constant-K low pass filter having cut-off frequency of 2KHz and design impedance $R_0=600\Omega$. Also find :
 - (i) Its characteristic impedance at 12 KHz and
 - (ii) Attenuation at 4 KHz.

Or

- 8. (a) Explain the following terms in relation with filter: [6]
 - (i) Pass band
 - (ii) Stop band
 - (iii) Cut-off frequency.
 - (b) Design constant K-low pass filter to have a cut-off frequency of 796 Hz when terminated in a 600Ω resistance, in both the T and π configurations.

[5152]-548