

MONASH ENGINEERING ENG1060

ORDINARY DIFFERENTIAL EQUATIONS

Edited and Presented by Soon Foo Chong (Joseph)

Slides by Tony Vo

Assisted by Tham Lai Kuan & Christopher Ng

HOUSEKEEPING

- Weekly Moodle post
 - Week 10 Moodle announcement
- Lab-related items
 - Lab 7 marks and feedback available on Moodle Grade Book
 - Lab 8 solutions available on Gdrive > Labs
- PASS Sessions
 - 1) Monday (3:30-5:30pm MYT , 6:30-8:30pm AEDT): https://monash.zoom.us/j/89128532133?pwd=VVVOenhDbW5xZ3h6ZFRZR1dieVhldz09
 - 2) Tuesday (12-2pm MYT , 3-6pm AEDT): https://monash.zoom.us/j/85226581851?pwd=d0YxeWVHd0tudnplanFRYWU2ZGJRUT09

HOUSEKEEPING

- Assignment due next Friday (22 Jan 2021, 8pm MYT / 11pm AEDT)
 - Remember that it is an individual assessment
 - Use the support avenue available (e.g. discussion board, etc.)
 - Assignment-marking schedule release next week

	Group 01 (Tuesday 9am MYT / 12 Noon AEDT)				
	Christopher Ng				
Zoom link					
Zoom ID					
Time	Student ID	First Name	Last Name		
	1234567	abc	def		
9.00am -					
9.30am					
9.30am -					
10.00am					
10.00am -					
10.30am					
10.30am -					
11.00am					
11.00am -					
11.00am -					
44 2000					
11.30am - 12.00noon					
.2.000011					

HOUSEKEEPING

- SETU questionnaire is now open for a limited time
 - Please spend 5-10 minutes to complete this during the workshop
 - Always seeking feedback and striving for continuous improvement

IN THIS WORKSHOP

- 1. Understanding methods for solving ordinary differential equations (ODEs)
 - a. Euler's
 - b. Heun's
 - c. Midpoint
- 2. Creating function files for ODE-solving methods
- 3. Solving ODEs
- 4. Using ode45()

RECAP: ODEs

The generic 1st-order ODE is given as

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(t, y)$$

- Starting with initial condition (t_0, y_0)
 - Determine the next point (t_1, y_1) using slope ϕ information

$$y_{i+1} \cong y_i + h\phi$$

- Then use (t_1, y_1) and slope ϕ information to determine (t_2, y_2)
 - Repeat until you get to your desired t value

RECAP: ODE-SOLVING METHODS

$$y_{i+1} \cong y_i + h\phi$$

Method	Evaluate derivative at	Local error	Global error
Euler	Point i	$O(h^2)$	0(h)
	$\phi = \frac{\mathrm{d}y_i}{\mathrm{d}t_i} = f(t_i, y_i)$		
Heun's	Point i and predicted $i+1$ – then averaged	$O(h^3)$	$O(h^2)$
	$\phi = \frac{f(t_i, y_i) + f(t_{i+1}, y_{i+1}^0)}{2}$		
Midpoint	Half way between point i and $i+1$	$O(h^3)$	$O(h^2)$
	$\phi = f(t_{i+1/2}, y_{i+1/2})$		7

RECAP: EULER'S METHOD

$$y_{i+1} \cong y_i + h\phi$$

Steps for Euler's method:

$$y_{i+1} = y_i + hf(t_i, y_i)$$

- 1. Starting condition (i = 0) $y_1 = y_0 + hf(t_0, y_0)$
- 2. Euler's method for i = 1 $y_2 = y_1 + hf(t_1, y_1)$
- 3. Euler's method for i = 2 $y_3 = y_2 + hf(t_2, y_2)$

ACTIVITY: STEEPNESS

EULER.M, STEEPNESS.M

The gradient of a terrain is is described by $\frac{dy}{dx}$, where x is the horizontal distance and y is the vertical distance

Process:

- Understand Euler's method by hand
- 2. Write a function file for Euler's method
- 3. Solve the ordinary differential equation

Activity involves:

- 1. Hand calculations
- 2. Writing a function file

Equations: $\frac{dy}{dx} = x - y^{2}$ y(0) = 2h = 0.5 $y_{i+1} \cong y_{i} + hf(t_{i}, y_{i})$

MATLAB commands:

for i = ...

for i = ...
y = ones(...)
error(...)

f = @(x,y) ...

[20 MINS]

MATLAB commands:

f = 0(x,y) ...

y(0) = 2h = 0.5 $y_{i+1} \cong y_i + hf(t_i, y_i)$

Equations:

The gradient of a terrain is is described by $\frac{dy}{dx}$, where

x is the horizontal distance and y is the vertical distance

- 1. Solve for y(1) by hand
- 2. Write a function with the following header: [t,y] = euler(dydt,tspan,y0,h)

i	x_i y_i		dy_i/dx_i	
0	0	2	-4	
1	0.5	0	0.5	
2	1	0.25	0.9375	

- 3. Use euler() to verify y(1) in step 1
- \checkmark 4. Modify the code so that it can solve for y(1.25) using h=0.5

RECAP: MIDPOINT METHOD

$$y_{i+1} \cong y_i + h\phi$$

Steps for the midpoint method:

$$y_{i+1/2} = y_i + \frac{h}{2}f(t_i, y_i)$$

$$y_{i+1/2} = y_i + \frac{h}{2}f(t_i, y_i)$$
 $y_{i+1} = y_i + hf(t_{i+1/2}, y_{i+1/2})$

1. Starting condition (i = 0)

$$y_{0.5} = y_0 + \frac{h}{2}f(t_0, y_0)$$
$$y_1 = y_0 + hf(t_{0.5}, y_{0.5})$$

2. Euler's method for i = 1

$$y_{1.5} = y_1 + \frac{h}{2}f(t_1, y_1)$$
$$y_2 = y_1 + hf(t_{1.5}, y_{1.5})$$

[15 MINS]

ACTIVITY: OBJECT MIDPOINT.M, OBJECT.M

An accelerating object is heavily resisted by an unknown fluid, which is described by $\frac{dv}{dt}$

Process:

- 1. Understand the midpoint method by hand
- 2. Write the midpoint method function file
- 3. Solve the ordinary differential equation

Activity involves:

- 1. Hand calculations
- 2. Writing a function file

Equations: $\frac{dv}{dt} = t - v$ v(0) = 1 h = 0.5 $y_{i+1/2} = y_i + \frac{h}{2}f(t_i, y_i)$ $y_{i+1} = y_i + hf(t_{i+1/2}, y_{i+1/2})$

MATLAB commands:

error(...)

$$y = ones(...)$$

f = @(x,y) ...

MATLAB commands: $f = Q(x,y) \dots$

 $\frac{dt}{dt} = t - v$ v(0) = 1 h = 0.5

Equations:

4 0 1 6

[15 MINS]

- \checkmark 1. Solve for v(1) by hand
- 2. Write a function with the following header: [t,y] = midpoint(dydt,tspan,y0,h)
- 3. Plot v against t for h = 0.7, 0.5, 0.1 and 0.05?

i	t_i	v_i	$f(t_i, v_i)$	$t_{i+1/2}$	$v_{i+1/2}$	$f(t_{i+1/2}, v_{i+1/2})$
0	0	1	-1	0.25	0.75	-0.5
1	0.5	0.75	-0.25	0.75	0.6875	0.0625
2	1					

<u> </u>					v(0) =
					h=0.
			$y_{i+1/2}$		$\frac{n}{2}f(t_i,y)$
	3	v_{i+1}	$= y_i + I$	$nf(t_{i+1})$	$/2$, $y_{i+1/2}$

RECAP: HEUN'S METHOD

$$y_{i+1} \cong y_i + h\phi$$

Steps for Heun's method:

$$y_{i+1}^0 = y_i + hf(t_i, y_i)$$

$$y_{i+1} = y_i + \frac{h}{2} (f(t_i, y_i) + f(t_{i+1}, y_{i+1}^0))$$

1. Starting condition (i = 0)

$$y_1^0 = y_0 + hf(t_0, y_0)$$

$$y_1 = y_0 + \frac{h}{2}(f(t_0, y_0) + f(t_1, y_1^0))$$

2. Euler's method for i = 1

$$y_2^0 = y_1 + hf(t_1, y_1)$$

$$y_2 = y_1 + \frac{h}{2}(f(t_1, y_1) + f(t_2, y_2^0))$$

ADAPTIVE STEP-SIZE METHODS

- Function gradients can change rapidly
 - For most of the range of t, y changes gradually,
 so a large step size can be used
 - In regions where the solution undergoes an abrupt change, a much smaller step size is required for accuracy
- Adaptive step-size methods dynamically adjust their step size based on an estimate of the local gradient of the solution

IN-BUILT MATLAB ODE SOLVERS

- MATLAB provides several built-in functions for adaptive methods
 - Most common are ode23, ode45, ode113 (there are others)
- ode45() simultaneously uses 4th and 5th-order Runge-Kutta methods
 - Algorithm developed by Dormand and Prince (1980)
 - Use ode45 first if the characteristics of the system are not well known

ODE45

[T, Y] = ode45(odefun, tspan, Y0)

odefun	A function handle that evaluates the RHS of the differential equation
tspan	A vector specifying the interval in ascending order $[t_0 \ t_f]$ – displays solution at the adaptive independent values $[t_0 \ t_1 \ t_2 \ \ t_f]$ – displays solution at specified independent values
Y0	Initial condition
T	Column vector of the independent variable
Y	Solution array. Each row in Y corresponds to the solution at a time returned in the corresponding row of T

[20 MINS] **ACTIVITY: OBJECT II**

HEUN.M. OBJECT2.M

An accelerating object heavily resisted by an unknown fluid is described by $\frac{dv}{dt}$

Process:

- Understand the Heun's method by hand
- Write the Heun's function file
- Solve the ordinary differential equation

Activity involves:

- Writing a function file
- Using ode45()

Equations: $\frac{\mathrm{d}v}{\mathrm{d}t}=t-v^2$ v(5) = 1h = 0.5 $y_{i+1}^{0} = y_i + hf(t_i, y_i)$ $y_{i+1} = y_i + \frac{h}{2} (f(t_i, y_i) + f(t_{i+1}, y_{i+1}^{0}))$

> MATLAB commands: for i = ...error(...)

> > y = ones(...) $f = \omega(x) ...$ [t, y] = ode45(...)

HEUN.M, OBJECT2.M

- Write a function with the following header: [t,y] = heun(dydt,tspan,y0,h)
- 2. Plot y for x = 5 to 10 using
 - a. Euler's, Heun's and midpoint methods
- ✓ b. ode45

	Equations.
	dv_{-1}
	$\frac{\overline{\mathrm{d}t}}{\mathrm{d}t} = t - v^{-}$
	v(5)=1
	h=0.5
	$y_{i+1}^0 = y_i + hf(t_i, y_i)$
$y_{i+1} = y_i + \frac{h}{2} ($	$f(t_i, y_i) + f(t_{i+1}, y_{i+1}^0)$

MATLAB commands: f = @(x,y) ...[t, y] = ode45(...)

Equations:

i	t_i	v_i	$\mathrm{d}v_i/\mathrm{d}t_i$	t_{i+1}	v_{i+1}^0	$\left \mathrm{d}v_{i+1}^0/\mathrm{d}t_{i+1}\right $
0	5	1	4	5.5	3	-3.5
1	5.5	1.125	4.2344	6	3.2422	-4.5118
2	6	1.0556				

NOT-EXAMINABLE: 4th-ORDER RUNGE-KUTTA

The 4th-order Runge-Kutta method uses a weighted average of four slopes.

$$y_{i+1} = y_i + \frac{k_1}{6} + \frac{k_2}{3} + \frac{k_3}{3} + \frac{k_4}{6} + O(h^5)$$

$$\bullet \quad k_1 = hf(x_i, y_i)$$

•
$$k_2 = hf\left(x_i + \frac{h}{2}, y_i + \frac{k_1}{2}\right)$$

•
$$k_3 = hf\left(x_i + \frac{h}{2}, y_i + \frac{k_2}{2}\right)$$

$$\bullet \quad k_4 = hf(x_i + h, y_i + k_3)$$

IN THIS WORKSHOP

- 1. Understanding methods for solving ordinary differential equations (ODEs)
 - a. Euler's
 - b. Heun's
 - c. Midpoint
- 2. Creating function files for ODE-solving methods
- 3. Solving ODEs
- 4. Using ode45()

PART B: NUMERICAL METHODS

- 7. Roots and optimisation
- 8. Curve fitting
- 9. Numerical integration
- 10. Ordinary differential equations
- 11. Linear systems
- 12. Exam information

You can now complete lab 10!

SUPPLEMENTARY SLIDES

RECAP: EULER'S METHOD

Steps for Euler's method:

$$y_{i+1} \cong y_i + hf(t_i, y_i)$$

- 1. Starting condition (i = 0) $y_1 \cong y_0 + hf(t_0, y_0)$
- 2. Euler's method for i = 1 $y_2 \cong y_1 + hf(t_1, y_1)$
- 3. Euler's method for i = 2 $y_3 \cong y_2 + hf(t_2, y_2)$

RECAP: ERROR IN EULER'S METHOD

Local truncation error:

$$y_{i+1} \cong y_i + hf(t_i, y_i)$$

- Arises from the application of Euler's method over a single step
- A consequence of the method only being approximate
- The error in a single step of Euler's method given by

$$\varepsilon_{\text{loc}} \cong \frac{h^2}{2} \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} \bigg|_{t=t_i}$$

- Error decreases quadratically
 - Smaller step size = smaller error
 - E.g. ½ step size = ¼ error

RECAP: ERROR IN EULER'S METHOD

- Propagated truncation error:
 - Accumulation of local truncation errors from the previous steps
- Global truncation error
 - Arises from an accumulation of local errors
 PLUS propagation of error in the solution from previous steps

Errors: $\varepsilon_{loc} \sim O(h^2)$ and $\varepsilon_{global} \sim O(h)$

$$y_{i+1} \cong y_i + hf(t_i, y_i)$$

RECAP: HEUN'S METHOD

- Heun's method averages
 - The slope at the beginning of the step and
 - The slope at the end of the step
- Predictor step: y_{i+1}^0
 - Estimated using Euler's method

$$y_{i+1}^0 = y_i + hf(t_i, y_i)$$

Averages slopes at t_i and t_{i+1}

$$\frac{f(t_i, y_i) + f(t_{i+1}, y_{i+1}^0)}{2}$$

$$y_{i+1} \cong y_i + h\phi$$

RECAP: HEUN'S METHOD

- Corrector step: y_{i+1}
 - Uses the averaged slope at t_i and t_{i+1}

$$y_{i+1} = y_i + \frac{h}{2} (f(t_i, y_i) + f(t_{i+1}, y_{i+1}^0))$$

That is, the slope is given by

$$\phi = \frac{h}{2} \left(\frac{dy_i}{dt_i} + \frac{dy_{i+1}^0}{dt_{i+1}} \right) = \frac{f(t_i, y_i) + f(t_{i+1}, y_{i+1}^0)}{2}$$

• Errors: $\varepsilon_{\text{loc}} \sim O(h^3)$ and $\varepsilon_{\text{global}} \sim O(h^2)$

$$y_{i+1} \cong y_i + h\phi$$

RECAP: MIDPOINT METHOD

• Midpoint method uses the slope at the midpoint

$$y_{i+1} \cong y_i + h\phi$$

- Predictor step: $y_{i+1/2}$
 - Estimated using Euler's method with half step size

$$y_{i+1/2} = y_i + \frac{h}{2}f(t_i, y_i)$$

Slope at midpoint is given by

$$f(t_{i+1/2}, y_{i+1/2})$$

RECAP: MIDPOINT METHOD

- Corrector step: y_{i+1}
 - Uses the slope at $t_{i+1/2}$ for the full step h

$$y_{i+1} = y_i + hf(t_{i+1/2}, y_{i+1/2})$$

Slope is given by

$$\phi = \frac{\mathrm{d}y_{i+1/2}}{\mathrm{d}t_{i+1/2}} = f(t_{i+1/2}, y_{i+1/2})$$

• Errors: $\varepsilon_{\text{loc}} \sim O(h^3)$ and $\varepsilon_{\text{global}} \sim O(h^2)$

$$y_{i+1} \cong y_i + h\phi$$

