#### Universität Potsdam

Institut für Informatik Lehrstuhl Maschinelles Lernen



# **Linear Classification Models**

Paul Prasse, Niels Landwehr, Tobias Scheffer

#### **Overview**

- Linear classification models
- Empirical risk minimization
  - Gradient descent method
  - Inexact line search
  - Stochastic gradient descent methods
- Loss functions and regularizers for classification
- Special cases
  - Perceptron
  - Support vector machines
- Multi-class classification

#### Classification

- Input: an instance  $x \in X$ 
  - ◆ E.g., X can be a vector space over attributes
  - The Instance is then an assignment of attributes.

• 
$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$$
 is a feature vector

- Output: Class  $y \in Y$ ; where Y is a finite set.
  - The class is also referred to as the target attribute
  - y is also referred to as the (class) label

$$x \rightarrow classifier \rightarrow y$$

# **Classification: Example**

- Input: Instance  $x \in X$ 
  - X: the set of all possible combinations of regiment of medication



Medication combination



• Output:  $y \in Y = \{\text{toxic, ok}\} \bigcirc / \bigcirc$ 



### **Linear Classification Models**

Hyperplane given by normal vector & displacement:

$$H_{\mathbf{\theta}} = \{ \mathbf{x} | f_{\mathbf{\theta}} (\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{\theta} + \theta_0 = 0 \}$$

- Example:  $X = \mathbb{R}^2$
- Decision function:

$$f_{\boldsymbol{\theta}}(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \mathbf{\theta} + \theta_0$$

■ Binary classifier,  $y \in \{+1, -1\}$ :

$$y_{\theta}(\mathbf{x}) = \operatorname{sign}\left(f_{\theta}(\mathbf{x})\right)$$



### **Linear Classification Models**

Hyperplane given by normal vector & displacement:

$$H_{\boldsymbol{\theta}} = \{ \mathbf{x} | f_{\boldsymbol{\theta}} (\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \boldsymbol{\theta} + \theta_0 = 0 \}$$

- Example:  $X = \mathbb{R}^2$
- Decision function:

$$f_{\mathbf{\theta}}(\mathbf{x}) = \mathbf{x}^{\mathrm{T}} \begin{pmatrix} 1 \\ 3 \end{pmatrix} - 20$$

Example points:



$$f_{\theta} \begin{pmatrix} 10 \\ 2 \end{pmatrix} = (10 \quad 2) \begin{pmatrix} 1 \\ 3 \end{pmatrix} - 20 = -4 < 0$$
 $f_{\theta} \begin{pmatrix} 2 \\ 10 \end{pmatrix} = (2 \quad 10) \begin{pmatrix} 1 \\ 3 \end{pmatrix} - 20 = 12 > 0$ 

#### **Linear Classification Model**

- Offset can "disappear" into parameter vector.
- Example
  - Before:  $f_{\theta}(\mathbf{x}) = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} 1 \\ 3 \end{pmatrix} 20$

• After: 
$$f_{\theta}(\mathbf{x}) = \begin{pmatrix} 1 \\ x_1 \\ x_2 \end{pmatrix}^{\mathrm{T}} \begin{pmatrix} -20 \\ 1 \\ 3 \end{pmatrix}$$

- New constant attribute  $x_0 = 1$  added to all instances
- Offset  $\theta_0$  integrated into  $\theta$ .

# **Learning Linear Classifiers**

Input to the Learner: Training data  $T_n$ .

$$\mathbf{X} = \begin{pmatrix} x_{11} & \cdots & x_{1m} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nm} \end{pmatrix}$$
 Linear classifier:

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Training Data:

$$T_n = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)\}$$

Output: a Model



$$y_{\mathbf{\theta}}(\mathbf{x}) = \begin{cases} \mathbf{\Theta} & \text{if } \mathbf{x}^{\mathrm{T}} \mathbf{\theta} \ge 0 \\ & \text{otherwise} \end{cases}$$

Linear classifier with parameter vector  $\boldsymbol{\theta}$ .

#### **Overview**

- Linear classification models
- Empirical risk minimization
  - Gradient descent method
  - Inexact line search
  - Stochastic gradient descent methods
- Loss functions and regularizers for classification
- Special cases
  - Perceptron
  - Support vector machines
- Multi-class classification

Solve

$$\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{i=1}^{n} \ell(f_{\boldsymbol{\theta}}(\mathbf{x}_i), y_i) + \lambda \Omega(\boldsymbol{\theta})$$

- Loss function  $\ell(f_{\theta}(\mathbf{x}_i), y_i)$ : cost of the model's output  $f_{\theta}(\mathbf{x})$  when the true value is y.
  - The empirical risk is  $\widehat{R}_n(\mathbf{\theta}) = \sum_{i=1}^n \ell(f_{\mathbf{\theta}}(\mathbf{x}_i), y_i)$
  - Empirical estimate of risk  $R(\theta) = \int \ell(f_{\theta}(\mathbf{x}), y) dP_{\mathbf{x}, y}$
- Regularizer  $\Omega(\theta)$  & trade-off parameter  $\lambda \geq 0$ :
  - Background information about preferred solutions
  - Provides numerical stability (Tikhonov-Regularizer)
  - allows for tighter error bounds (PAC-Theory)

Solve

$$\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{i=1}^{n} \ell(f_{\boldsymbol{\theta}}(\mathbf{x}_i), y_i) + \lambda \Omega(\boldsymbol{\theta})$$

Linear model:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{i=1}^{n} \ell(\mathbf{x}_{i}^{\mathrm{T}}\boldsymbol{\theta}, y_{i}) + \lambda \Omega(\boldsymbol{\theta})$$

Linear model: solve

$$\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{i=1}^{n} \ell(\mathbf{x}^{\mathrm{T}}\boldsymbol{\theta}, y_i) + \lambda \Omega(\boldsymbol{\theta})$$

- How to find solution:
  - Classification: No analytic solution but numeric solutions (gradient descent, cutting plane, interior point method)
  - Regression: analytic solution.

Linear classification model: minimize

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \ell(\mathbf{x}^{\mathrm{T}}\boldsymbol{\theta}, y_i) + \lambda \Omega(\boldsymbol{\theta})$$

- Gradient:
  - Vector of the derivatives with respect to each individual parameter
  - Direction of the steepest increase of the function  $L(\theta)$ .

$$abla L(\mathbf{\theta}) = egin{pmatrix} rac{\partial L(\mathbf{\theta})}{\partial heta_1} \ dots \ rac{\partial L(\mathbf{\theta})}{\partial heta_m} \end{pmatrix}$$

Linear classification model: minimize

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \ell(\mathbf{x}^{\mathrm{T}}\boldsymbol{\theta}, y_i) + \lambda \Omega(\boldsymbol{\theta})$$

Gradient descent method:

```
RegERM(Data: (\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n))

Set \mathbf{\theta}^0 = \mathbf{0} and t = 0

DO

Compute gradient \nabla L(\mathbf{\theta}^t)

Compute step size \alpha^t

Set \mathbf{\theta}^{t+1} = \mathbf{\theta}^t - \alpha^t \nabla L(\mathbf{\theta}^t)

Set t = t+1

WHILE \|\mathbf{\theta}^t - \mathbf{\theta}^{t+1}\| > \varepsilon

RETURN \mathbf{\theta}^t
```



Linear classification model: minimize

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \ell(\mathbf{x}^{\mathrm{T}}\boldsymbol{\theta}, y_i) + \lambda \Omega(\boldsymbol{\theta})$$

Gradient descent method:

```
RegERM(Data: (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n))

Set \mathbf{\theta}^0 = \mathbf{0} and t = 0

DO

Compute gradient \nabla L(\mathbf{\theta}^t)

Compute step size \alpha^t

Set \mathbf{\theta}^{t+1} = \mathbf{\theta}^t - \alpha^t \nabla L(\mathbf{\theta}^t)

Set t = t+1

WHILE \|\mathbf{\theta}^t - \mathbf{\theta}^{t+1}\| > \varepsilon

RETURN \mathbf{\theta}^t
```



Linear classification model: minimize

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \ell(\mathbf{x}^{\mathrm{T}}\boldsymbol{\theta}, y_i) + \lambda \Omega(\boldsymbol{\theta})$$

Gradient descent method:

```
RegERM(Data: (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n))
Set \mathbf{\theta}^0 = \mathbf{0} and t = 0
DO

Compute gradient \nabla L(\mathbf{\theta}^t)
Compute step size \alpha^t
Set \mathbf{\theta}^{t+1} = \mathbf{\theta}^t - \alpha^t \nabla L(\mathbf{\theta}^t)
Set t = t+1
WHILE \|\mathbf{\theta}^t - \mathbf{\theta}^{t+1}\| > \varepsilon
RETURN \mathbf{\theta}^t
```

- The step size  $\alpha^t$  can be determined through
  - Line search
  - Barzilai-Borwein method
  - ...

#### **ERM: Gradient Method with Line Search**

Determine step size through line search:

```
RegERM-LineSearch (Data: (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n))
Set \mathbf{\theta}^0 = \mathbf{0} and t = 0

DO

Compute gradient \nabla L(\mathbf{\theta}^t)

Choose step size \alpha^t:
\alpha^t = \operatorname*{argmin}_{\alpha>0} L(\mathbf{\theta}^t - \alpha \nabla L(\mathbf{\theta}^t))
Set \mathbf{\theta}^{t+1} = \mathbf{\theta}^t - \alpha^t \nabla L(\mathbf{\theta}^t)
Set t = t+1

WHILE \|\mathbf{\theta}^t - \mathbf{\theta}^{t+1}\| > \varepsilon

RETURN \mathbf{\theta}^t
```

- In practice it is often too expensive to compute the optimal step size.
  - Necessary Criterion:  $L(\theta^t \alpha \nabla L(\theta^t)) < L(\theta^t)$ .

#### **ERM: Gradient with Inexact Line Search**

Determine step size through inexact line search:

```
RegERM-LineSearch (Data: (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n))
Set \mathbf{\theta}^0 = \mathbf{0} and t = 0

DO

Compute gradient \nabla L(\mathbf{\theta}^t)

Set \alpha^t = 1

WHILE L(\mathbf{\theta}^t - \alpha^t \nabla L(\mathbf{\theta}^t)) \ge L(\mathbf{\theta}^t)

Set \alpha^t = \alpha^t/2

Set \mathbf{\theta}^{t+1} = \mathbf{\theta}^t - \alpha^t \nabla L(\mathbf{\theta}^t)

Set t = t + 1

WHILE \|\mathbf{\theta}^t - \mathbf{\theta}^{t+1}\| > \varepsilon

RETURN \mathbf{\theta}^t
```

- Properties of the gradient descent method:
  - Optimization criterion improved with every step.
  - Converges to the global minimum of the optimization criterion when this criterion is convex.
- The sum of convex functions is convex.
- Therefore, optimization criterion is convex if
  - Loss function is convex and
  - Regularizer is convex





not convex

#### **ERM: Stochastic Gradient Method**

- Idea: Determine the gradient for a random subset of the samples (e.g., a single instance).
- Less computation per optimization step, but only approximate descent direction.
- Optimization criterion with regularizer in sum:

$$L(\mathbf{\theta}) = \sum_{i=1}^{n} \left[ \ell(f_{\mathbf{\theta}}(\mathbf{x}_i), y_i) + \frac{\lambda}{n} \Omega(\mathbf{\theta}) \right]$$

Stochastic gradient for a single instance:

$$\nabla_{\mathbf{x}_i} L(\mathbf{\theta}) = \frac{\partial}{\partial \mathbf{\theta}} \ell(f_{\mathbf{\theta}}(\mathbf{x}_i), y_i) + \frac{\lambda}{n} \frac{\partial}{\partial \mathbf{\theta}} \Omega(\mathbf{\theta})$$

#### **ERM: Stochastic Gradient Method**

Approximate gradient using single examples.

```
RegERM-Stoch (Data: (\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n))

Set \mathbf{\theta}^0 = \mathbf{0} and t = 0

DO

Shuffle data randomly

FOR i = 1, ..., n

Compute subset gradient \nabla_{\mathbf{x}_i} L(\mathbf{\theta}^t)

Compute step size \alpha^t

Set \mathbf{\theta}^{t+1} = \mathbf{\theta}^t - \alpha^t \nabla_{\mathbf{x}_i} L(\mathbf{\theta}^t)

Set t = t + 1

END

WHILE \|\mathbf{\theta}^t - \mathbf{\theta}^{t+1}\| > \varepsilon

RETURN \mathbf{\theta}^t
```

### **ERM: Stochastic Gradient Method**

- In every step only one summand of the optimization criterion is improved.
- The total optimization criterion can be worsened by these individual steps.
- Converges to the optimum if the step sizes satisfy:

$$\sum_{t=1}^{\infty} \alpha^t = \infty$$
 and  $\sum_{t=1}^{\infty} (\alpha^t)^2 < \infty$ 

(Robbins & Monro, 1951)



- Stochastic Gradient slows down when training data does not fit into main memory.
- Examples then have to be paged into and out of memory.
- For even larger training samples, data may not fit onto local persistent memory, have to be moved over the network during iterations.
- Remedy: distribute data over multiple nodes, perform computation in parallel on these nodes.

 Resulting parameters: average of parameters found by parallel stochastic gradient on data subsets.



- Resulting parameters: average of parameters found by parallel stochastic gradient on data subsets.
- Averaging the local parameter vectors is an approximation: typically not as good as sequantial stochastic gradient descent would on all be.
- Caveat: for non-convex problems, local parameters can be different local minima; averaging different local minima can be bad.



#### **Overview**

- Linear classification models
- Empirical risk minimization
  - Gradient descent method
  - Inexact line search
  - ◆ Stochastic gradient descent methods
- Loss functions and regularizers for classification
- Special cases
  - Perceptron
  - Support vector machines
- Multi-class classification

Zero-one loss:

$$\ell_{0/1}(f_{\theta}(\mathbf{x}_i), y_i) = \begin{cases} 1 & -y_i f_{\theta}(\mathbf{x}_i) \neq y_i \\ 1 & -y_i f_{\theta}(\mathbf{x}_i) > 0 \\ 0 & -y_i f_{\theta}(\mathbf{x}_i) \leq 0 \end{cases}$$

$$\operatorname{sign}(f_{\theta}(\mathbf{x}_i)) = y_i$$



Zero-one loss:

$$\ell_{0/1}(f_{\boldsymbol{\theta}}(\mathbf{x}_i), y_i) = \begin{cases} 1 & -y_i f_{\boldsymbol{\theta}}(\mathbf{x}_i) \neq y_i \\ 0 & -y_i f_{\boldsymbol{\theta}}(\mathbf{x}_i) \leq 0 \end{cases}$$

$$\operatorname{sign}(f_{\boldsymbol{\theta}}(\mathbf{x}_i)) \neq y_i$$

$$0 & \operatorname{sign}(f_{\boldsymbol{\theta}}(\mathbf{x}_i)) \leq 0$$

$$\operatorname{sign}(f_{\boldsymbol{\theta}}(\mathbf{x}_i)) = y_i$$

Zero-one loss is not convex ⇒ difficult to minimize!



Zero-one loss:

$$\ell_{0/1}(f_{\boldsymbol{\theta}}(\mathbf{x}_i), y_i) = \begin{cases} 1 & -y_i f_{\boldsymbol{\theta}}(\mathbf{x}_i) \neq y_i \\ 0 & -y_i f_{\boldsymbol{\theta}}(\mathbf{x}_i) \leq 0 \end{cases}$$

$$\operatorname{sign}(f_{\boldsymbol{\theta}}(\mathbf{x}_i)) = y_i$$

Logistic loss:

$$\ell_{log}(f_{\theta}(\mathbf{x}_i), y_i) = \log(1 + e^{-y_i f_{\theta}(\mathbf{x}_i)})$$



Zero-one loss:

$$\ell_{0/1}(f_{\boldsymbol{\theta}}(\mathbf{x}_i), y_i) = \begin{cases} 1 & -y_i f_{\boldsymbol{\theta}}(\mathbf{x}_i) \neq y_i \\ 1 & -y_i f_{\boldsymbol{\theta}}(\mathbf{x}_i) > 0 \\ 0 & -y_i f_{\boldsymbol{\theta}}(\mathbf{x}_i) \leq 0 \end{cases}$$

$$\operatorname{sign}(f_{\boldsymbol{\theta}}(\mathbf{x}_i)) = y_i$$



$$\ell_{log}(f_{\theta}(\mathbf{x}_i), y_i) = \log(1 + e^{-y_i f_{\theta}(\mathbf{x}_i)})$$



Perceptron loss:

$$\ell_p(f_{\theta}(\mathbf{x}_i), y_i) = \begin{cases} -y_i f_{\theta}(\mathbf{x}_i) & -y_i f_{\theta}(\mathbf{x}_i) > 0 \\ 0 & -y_i f_{\theta}(\mathbf{x}_i) \le 0 \end{cases} = \max(0, -y_i f_{\theta}(\mathbf{x}_i))$$

Zero-one loss:

Lero-one loss: 
$$\sup_{\text{sign}(f_{\theta}(\mathbf{x}_i)) \neq y_i} \ell_{0/1}(f_{\theta}(\mathbf{x}_i), y_i) = \begin{cases} 1 & -y_i f_{\theta}(\mathbf{x}_i) \neq 0 \\ 0 & -y_i f_{\theta}(\mathbf{x}_i) \leq 0 \end{cases}$$

$$\sup_{\text{sign}(f_{\theta}(\mathbf{x}_i)) = y_i} \ell_{0/1}(f_{\theta}(\mathbf{x}_i)) = y_i$$



$$\ell_{log}(f_{\theta}(\mathbf{x}_i), y_i) = \log(1 + e^{-y_i f_{\theta}(\mathbf{x}_i)})$$



Perceptron loss:

$$\ell_p(f_{\theta}(\mathbf{x}_i), y_i) = \begin{cases} -y_i f_{\theta}(\mathbf{x}_i) & -y_i f_{\theta}(\mathbf{x}_i) > 0 \\ 0 & -y_i f_{\theta}(\mathbf{x}_i) \le 0 \end{cases} = \max(0, -y_i f_{\theta}(\mathbf{x}_i))$$

Hinge loss:

$$\ell_h(f_{\theta}(\mathbf{x}_i), y_i) = \begin{cases} 1 - y_i f_{\theta}(\mathbf{x}_i) & 1 - y_i f_{\theta}(\mathbf{x}_i) > 0 \\ 0 & 1 - y_i f_{\theta}(\mathbf{x}_i) \le 0 \end{cases} = \max(0.1 - y_i f_{\theta}(\mathbf{x}_i))$$

### **ERM: Regularizers for Classification**

- Idea: use as few attributes as possible:
  - $\Omega_0(\mathbf{\theta}) \propto \|\mathbf{\theta}\|_0 = \text{ number of } j \text{ with } \theta_j \neq 0$

 $\Omega_0$  is not convex  $\Rightarrow$  difficult to minimize!

Manhattan norm (encourages scarcity):

$$\Omega_1(\mathbf{\theta}) \propto \|\mathbf{\theta}\|_1 = \sum_{j=1}^m |\theta_j|$$

- Squared Euclidean norm (encourages small weights):
  - $\Omega_2(\boldsymbol{\theta}) \propto \|\boldsymbol{\theta}\|_2^2 = \sum_{j=1}^m \theta_j^2$

#### **Overview**

- Linear classification models
- Empirical risk minimization
  - Gradient descent method
  - Inexact line search
  - ◆ Stochastic gradient descent methods
- Loss functions and regularizers for classification
- Special cases
  - Perceptron
  - Support vector machines
- Multi-class classification

### **ERM:** Perceptron

Loss function:

$$\ell_{p}(f_{\theta}(\mathbf{x}_{i}), y_{i})$$

$$= \begin{cases} -y_{i}f_{\theta}(\mathbf{x}_{i}) & -y_{i}f_{\theta}(\mathbf{x}_{i}) > 0 \\ 0 & -y_{i}f_{\theta}(\mathbf{x}_{i}) \leq 0 \end{cases}$$

$$= \max(0, -y_{i}f_{\theta}(\mathbf{x}_{i}))$$



- No regularizer
- Classes  $y \in \{-1, +1\}$
- Stochastic gradient method:



Rosenblatt, 1960

### **ERM:** Perceptron

Loss function:

$$\ell_{p}(f_{\theta}(\mathbf{x}_{i}), y_{i})$$

$$= \begin{cases} -y_{i}f_{\theta}(\mathbf{x}_{i}) & -y_{i}f_{\theta}(\mathbf{x}_{i}) > 0 \\ 0 & -y_{i}f_{\theta}(\mathbf{x}_{i}) \leq 0 \end{cases}$$

$$= \max(0, -y_{i}f_{\theta}(\mathbf{x}_{i}))$$



- No regularizer
- Classes  $y \in \{-1, +1\}$
- Stochastic gradient method:



Rosenblatt, 1960

#### **ERM:** Perceptron

Loss function:

$$\ell_p(f_{\theta}(\mathbf{x}_i), y_i)$$

$$= \begin{cases} -y_i f_{\theta}(\mathbf{x}_i) & -y_i f_{\theta}(\mathbf{x}_i) > 0 \\ 0 & -y_i f_{\theta}(\mathbf{x}_i) \le 0 \end{cases}$$

$$= \max(0, -y_i f_{\theta}(\mathbf{x}_i))$$



- No regularizer
- Classes  $y \in \{-1, +1\}$
- Stochastic gradient method:



Rosenblatt, 1960

## **ERM: Perceptron Algorithm**

```
Perceptron (Instances \{(\mathbf{x}_i,y_i)\})
   Set \mathbf{\theta}=\mathbf{0}

DO

FOR i=1,...,n

IF y_if_{\mathbf{\theta}}(\mathbf{x}_i) \leq 0

THEN \mathbf{\theta}=\mathbf{\theta}+y_i\mathbf{x}_i

END

WHILE \mathbf{\theta} changes

RETURN \mathbf{\theta}
```



- Stochastic gradient method with  $\varepsilon = 0$  and step size  $\alpha^t = 1$ 
  - Terminates, although  $\sum_{t=1}^{\infty} (\alpha^t)^2 = \infty$  when data is linearly separable.



Rosenblatt, 1960

THEN  $y_i f_{\boldsymbol{\theta}}(\mathbf{x}_i) \leq 0$   $\boldsymbol{\theta} = \boldsymbol{\theta} + y_i \mathbf{x}_i$ 



THEN  $y_i f_{\boldsymbol{\theta}}(\mathbf{x}_i) \leq 0$   $\theta = \boldsymbol{\theta} + y_i \mathbf{x}_i$ 



IF  $y_i f_{\boldsymbol{\theta}}(\mathbf{x}_i) \leq 0$ THEN  $\boldsymbol{\theta} = \boldsymbol{\theta} + y_i \mathbf{x}_i$ 

|   |      | <b>y</b>          |                   |                   |       | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |            | ••••                                |       |    |
|---|------|-------------------|-------------------|-------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|-------------------------------------|-------|----|
| C | onst | ant               | 1_                |                   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | $\theta_3$ | =b (0                               | Offse | t) |
|   | i    | $\mathbf{x}_{i1}$ | $\mathbf{x}_{i2}$ | $\mathbf{x}_{i0}$ | $y_i$ | hinspace 	hin | $\theta_2$ | $\theta_0$ | $f_{\mathbf{\theta}}(\mathbf{x}_i)$ |       |    |
|   | 1    | 0                 | 0                 | 1                 | -     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0          | 0          | 0                                   |       |    |
|   | 2    | 0                 | 1                 | 1                 | +     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0          | -1         |                                     |       |    |
|   | 3    | 1                 | 0                 | 1                 | +     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |            |                                     |       |    |
|   | 1    | 0                 | 0                 | 1                 | -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |            |                                     |       |    |
|   | 2    | 0                 | 1                 | 1                 | +     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |            |                                     |       |    |
|   | 3    | 1                 | 0                 | 1                 | +     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |            |                                     |       |    |
|   | 1    | 0                 | 0                 | 1                 | -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |            |                                     |       |    |
|   | 2    | 0                 | 1                 | 1                 | +     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |            |                                     |       |    |
|   | 3    | 1                 | 0                 | 1                 | +     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |            |                                     |       |    |
|   | 1    | 0                 | 0                 | 1                 | -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |            |                                     |       |    |
|   | 2    | 0                 | 1                 | 1                 | +     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |            |                                     |       |    |
|   | 3    | 1                 | 0                 | 1                 | +     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |            |                                     |       |    |
|   | 1    | 0                 | 0                 | 1                 | -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |            |                                     |       |    |
|   |      |                   |                   |                   |       | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |            |                                     |       |    |



THEN  $y_i f_{\boldsymbol{\theta}}(\mathbf{x}_i) \leq 0$  $\boldsymbol{\theta} = \boldsymbol{\theta} + y_i \mathbf{x}_i$ 



#### Perceptron-Algorithm: Example



+



IF  $y_i f_{\boldsymbol{\theta}}(\mathbf{x}_i) \leq 0$ THEN  $\boldsymbol{\theta} = \boldsymbol{\theta} + y_i \mathbf{x}_i$ 

## Perceptron-Algorithm: Example

$$\theta_3 = b$$
 (Offset)

|   |                   | $\overline{}$     |                   |       |           |            | -          |                                     |
|---|-------------------|-------------------|-------------------|-------|-----------|------------|------------|-------------------------------------|
| i | $\mathbf{x}_{i1}$ | $\mathbf{x}_{i2}$ | $\mathbf{x}_{i0}$ | $y_i$ | $	heta_1$ | $\theta_2$ | $\theta_0$ | $f_{\mathbf{\theta}}(\mathbf{x}_i)$ |
| 1 | 0                 | 0                 | 1                 | -     | 0         | 0          | 0          | 0                                   |
| 2 | 0                 | 1                 | 1                 | +     | 0         | 0          | -1         | -1                                  |
| 3 | 1                 | 0                 | 1                 | +     | 0         | 1          | 0          | 0                                   |
| 1 | 0                 | 0                 | 1                 | -     | 1         | 1          | 1          | 1                                   |
| 2 | 0                 | 1                 | 1                 | +     | 1         | 1          | 0          |                                     |
| 3 | 1                 | 0                 | 1                 | +     |           |            |            |                                     |
| 1 | 0                 | 0                 | 1                 | -     |           |            |            |                                     |
| 2 | 0                 | 1                 | 1                 | +     |           |            |            |                                     |
| 3 | 1                 | 0                 | 1                 | +     |           |            |            |                                     |
| 1 | 0                 | 0                 | 1                 | -     |           |            |            |                                     |
| 2 | 0                 | 1                 | 1                 | +     |           |            |            |                                     |
| 3 | 1                 | 0                 | 1                 | +     |           |            |            |                                     |
| 1 | 0                 | 0                 | 1                 | -     |           |            |            |                                     |
| 2 | 0                 | 1                 | 1                 | +     |           |            |            |                                     |



IF  $y_i f_{\boldsymbol{\theta}}(\mathbf{x}_i) \leq 0$ THEN  $\boldsymbol{\theta} = \boldsymbol{\theta} + y_i \mathbf{x}_i$ 

## Perceptron-Algorithm: Example

$$\theta_3 = b$$
 (Offset)

|   |   | _                 | $\sim$ $	extstyle 	au$ |                   |       |           |           | $\neg$    |                                     |
|---|---|-------------------|------------------------|-------------------|-------|-----------|-----------|-----------|-------------------------------------|
|   | i | $\mathbf{x}_{i1}$ | $\mathbf{x}_{i2}$      | $\mathbf{x}_{i0}$ | $y_i$ | $	heta_1$ | $	heta_2$ | $	heta_0$ | $f_{\mathbf{\theta}}(\mathbf{x}_i)$ |
| • | 1 | 0                 | 0                      | 1                 | -     | 0         | 0         | 0         | 0                                   |
|   | 2 | 0                 | 1                      | 1                 | +     | 0         | 0         | -1        | -1                                  |
|   | 3 | 1                 | 0                      | 1                 | +     | 0         | 1         | 0         | 0                                   |
| • | 1 | 0                 | 0                      | 1                 | -     | 1         | 1         | 1         | 1                                   |
|   | 2 | 0                 | 1                      | 1                 | +     | 1         | 1         | 0         | 1                                   |
|   | 3 | 1                 | 0                      | 1                 | +     | 1         | 1         | 0         |                                     |
|   | 1 | 0                 | 0                      | 1                 | -     |           |           |           |                                     |
|   | 2 | 0                 | 1                      | 1                 | +     |           |           |           |                                     |
|   | 3 | 1                 | 0                      | 1                 | +     |           |           |           |                                     |
| • | 1 | 0                 | 0                      | 1                 | -     |           |           |           |                                     |
|   | 2 | 0                 | 1                      | 1                 | +     |           |           |           |                                     |
|   | 3 | 1                 | 0                      | 1                 | +     |           |           |           |                                     |
| • | 1 | 0                 | 0                      | 1                 | -     |           |           |           |                                     |
|   | 2 | 0                 | 1                      | 1                 | +     |           |           |           |                                     |



THEN  $y_i f_{\boldsymbol{\theta}}(\mathbf{x}_i) \leq 0$   $\theta = \boldsymbol{\theta} + y_i \mathbf{x}_i$ 

## Perceptron-Algorithm: Example

$$\theta_3 = b$$
 (Offset)

|   | . `               | _ \               |                   |       |           |            | <u></u>   |                                     |
|---|-------------------|-------------------|-------------------|-------|-----------|------------|-----------|-------------------------------------|
| i | $\mathbf{x}_{i1}$ | $\mathbf{x}_{i2}$ | $\mathbf{x}_{i0}$ | $y_i$ | $	heta_1$ | $\theta_2$ | $	heta_0$ | $f_{\mathbf{\theta}}(\mathbf{x}_i)$ |
| 1 | 0                 | 0                 | 1                 | -     | 0         | 0          | 0         | 0                                   |
| 2 | 0                 | 1                 | 1                 | +     | 0         | 0          | -1        | -1                                  |
| 3 | 1                 | 0                 | 1                 | +     | 0         | 1          | 0         | 0                                   |
| 1 | 0                 | 0                 | 1                 | -     | 1         | 1          | 1         | 1                                   |
| 2 | 0                 | 1                 | 1                 | +     | 1         | 1          | 0         | 1                                   |
| 3 | 1                 | 0                 | 1                 | +     | 1         | 1          | 0         | 1                                   |
| 1 | 0                 | 0                 | 1                 | -     | 1         | 1          | 0         |                                     |
| 2 | 0                 | 1                 | 1                 | +     |           |            |           |                                     |
| 3 | 1                 | 0                 | 1                 | +     |           |            |           |                                     |
| 1 | 0                 | 0                 | 1                 | -     |           |            |           |                                     |
| 2 | 0                 | 1                 | 1                 | +     |           |            |           |                                     |
| 3 | 1                 | 0                 | 1                 | +     |           |            |           |                                     |
| 1 | 0                 | 0                 | 1                 | -     |           |            |           |                                     |
| 2 | 0                 | 1                 | 1                 | +     |           |            |           |                                     |



 $y_i f_{\mathbf{\theta}}(\mathbf{x}_i) \le 0$ ΙF  $\mathbf{\theta} = \mathbf{\theta} + y_i \mathbf{x}_i$ THEN

| С | onst | ant               | 1 _               |                   |       |            |            | $\theta_3$ | =b                                  |   |
|---|------|-------------------|-------------------|-------------------|-------|------------|------------|------------|-------------------------------------|---|
|   | i    | $\mathbf{x}_{i1}$ | $\mathbf{x}_{i2}$ | $\mathbf{x}_{i0}$ | $y_i$ | $\theta_1$ | $\theta_2$ | $\theta_0$ | $f_{\mathbf{\theta}}(\mathbf{x}_i)$ |   |
|   | 1    | 0                 | 0                 | 1                 | _     | 0          | 0          | 0          | 0                                   |   |
|   | 2    | 0                 | 1                 | 1                 | +     | 0          | 0          | -1         | -1                                  |   |
|   | 3    | 1                 | 0                 | 1                 | +     | 0          | 1          | 0          | 0                                   |   |
|   | 1    | 0                 | 0                 | 1                 | -     | 1          | 1          | 1          | 1                                   |   |
|   | 2    | 0                 | 1                 | 1                 | +     | 1          | 1          | 0          | 1                                   |   |
|   | 3    | 1                 | 0                 | 1                 | +     | 1          | 1          | 0          | 1                                   |   |
|   | 1    | 0                 | 0                 | 1                 | -     | 1          | 1          | 0          | 0                                   |   |
|   | 2    | 0                 | 1                 | 1                 | +     | 1          | 1          | -1         |                                     |   |
| , | 3    | 1                 | 0                 | 1                 | +     |            |            |            |                                     | • |
|   | 1    | 0                 | 0                 | 1                 | -     |            |            |            |                                     |   |
|   | 2    | 0                 | 1                 | 1                 | +     |            |            |            |                                     |   |
|   | 3    | 1                 | 0                 | 1                 | +     |            |            |            |                                     |   |
|   | 1    | 0                 | 0                 | 1                 | -     |            |            |            |                                     |   |
|   | 2.   | 0                 | 1                 | 1                 | +     |            |            |            |                                     |   |

IF  $y_i f_{\boldsymbol{\theta}}(\mathbf{x}_i) \leq 0$ THEN  $\boldsymbol{\theta} = \boldsymbol{\theta} + y_i \mathbf{x}_i$ 

Perceptron-Algorithm: Example

$$\theta_3 = b$$
 (Offset)

|   | _                 | $\overline{}$     |                   |       |           |            |           |                                     |
|---|-------------------|-------------------|-------------------|-------|-----------|------------|-----------|-------------------------------------|
| i | $\mathbf{x}_{i1}$ | $\mathbf{x}_{i2}$ | $\mathbf{x}_{i0}$ | $y_i$ | $	heta_1$ | $\theta_2$ | $	heta_0$ | $f_{\mathbf{\theta}}(\mathbf{x}_i)$ |
| 1 | 0                 | 0                 | 1                 | -     | 0         | 0          | 0         | 0                                   |
| 2 | 0                 | 1                 | 1                 | +     | 0         | 0          | -1        | -1                                  |
| 3 | 1                 | 0                 | 1                 | +     | 0         | 1          | 0         | 0                                   |
| 1 | 0                 | 0                 | 1                 | -     | 1         | 1          | 1         | 1                                   |
| 2 | 0                 | 1                 | 1                 | +     | 1         | 1          | 0         | 1                                   |
| 3 | 1                 | 0                 | 1                 | +     | 1         | 1          | 0         | 1                                   |
| 1 | 0                 | 0                 | 1                 | -     | 1         | 1          | 0         | 0                                   |
| 2 | 0                 | 1                 | 1                 | +     | 1         | 1          | -1        | 0                                   |
| 3 | 1                 | 0                 | 1                 | +     | 1         | 2          | 0         |                                     |
| 1 | 0                 | 0                 | 1                 | -     |           |            |           |                                     |
| 2 | 0                 | 1                 | 1                 | +     |           |            |           |                                     |
| 3 | 1                 | 0                 | 1                 | +     |           |            |           |                                     |
| 1 | 0                 | 0                 | 1                 | -     |           |            |           |                                     |
| 2 | 0                 | 1                 | 1                 | +     |           |            |           |                                     |



THEN  $y_i f_{\boldsymbol{\theta}}(\mathbf{x}_i) \leq 0$   $\theta = \boldsymbol{\theta} + y_i \mathbf{x}_i$ 

## Perceptron-Algorithm: Example

$$\theta_3 = b$$
 (Offset)

|   |                   | /                 |                   | 1     | 1          |            | سا        |                                     |
|---|-------------------|-------------------|-------------------|-------|------------|------------|-----------|-------------------------------------|
| i | $\mathbf{x}_{i1}$ | $\mathbf{x}_{i2}$ | $\mathbf{x}_{i0}$ | $y_i$ | $\theta_1$ | $\theta_2$ | $	heta_0$ | $f_{\mathbf{\theta}}(\mathbf{x}_i)$ |
| 1 | 0                 | 0                 | 1                 | -     | 0          | 0          | 0         | 0                                   |
| 2 | 0                 | 1                 | 1                 | +     | 0          | 0          | -1        | -1                                  |
| 3 | 1                 | 0                 | 1                 | +     | 0          | 1          | 0         | 0                                   |
| 1 | 0                 | 0                 | 1                 | -     | 1          | 1          | 1         | 1                                   |
| 2 | 0                 | 1                 | 1                 | +     | 1          | 1          | 0         | 1                                   |
| 3 | 1                 | 0                 | 1                 | +     | 1          | 1          | 0         | 1                                   |
| 1 | 0                 | 0                 | 1                 | -     | 1          | 1          | 0         | 0                                   |
| 2 | 0                 | 1                 | 1                 | +     | 1          | 1          | -1        | 0                                   |
| 3 | 1                 | 0                 | 1                 | +     | 1          | 2          | 0         | 1                                   |
| 1 | 0                 | 0                 | 1                 | -     | 1          | 2          | 0         |                                     |
| 2 | 0                 | 1                 | 1                 | +     |            |            |           |                                     |
| 3 | 1                 | 0                 | 1                 | +     |            |            |           |                                     |
| 1 | 0                 | 0                 | 1                 | -     |            |            |           |                                     |
| 2 | 0                 | 1                 | 1                 | +     |            |            |           |                                     |



IF  $y_i f_{\theta}(\mathbf{x}_i) \leq 0$ THEN  $\mathbf{\theta} = \mathbf{\theta} + y_i \mathbf{x}_i$ 

Perceptron-Algorithm: Example

$$\theta_3 = b$$
 (Offset)

|   |   |                   | _ \               |                   |       |           |            | <u></u>   |                                     |
|---|---|-------------------|-------------------|-------------------|-------|-----------|------------|-----------|-------------------------------------|
|   | i | $\mathbf{x}_{i1}$ | $\mathbf{x}_{i2}$ | $\mathbf{x}_{i0}$ | $y_i$ | $	heta_1$ | $\theta_2$ | $	heta_0$ | $f_{\mathbf{\theta}}(\mathbf{x}_i)$ |
|   | 1 | 0                 | 0                 | 1                 | -     | 0         | 0          | 0         | 0                                   |
|   | 2 | 0                 | 1                 | 1                 | +     | 0         | 0          | -1        | -1                                  |
|   | 3 | 1                 | 0                 | 1                 | +     | 0         | 1          | 0         | 0                                   |
| - | 1 | 0                 | 0                 | 1                 | -     | 1         | 1          | 1         | 1                                   |
|   | 2 | 0                 | 1                 | 1                 | +     | 1         | 1          | 0         | 1                                   |
|   | 3 | 1                 | 0                 | 1                 | +     | 1         | 1          | 0         | 1                                   |
| - | 1 | 0                 | 0                 | 1                 | -     | 1         | 1          | 0         | 0                                   |
|   | 2 | 0                 | 1                 | 1                 | +     | 1         | 1          | -1        | 0                                   |
|   | 3 | 1                 | 0                 | 1                 | +     | 1         | 2          | 0         | 1                                   |
| • | 1 | 0                 | 0                 | 1                 | -     | 1         | 2          | 0         | 0                                   |
|   | 2 | 0                 | 1                 | 1                 | +     | 1         | 2          | -1        |                                     |
|   | 3 | 1                 | 0                 | 1                 | +     |           |            |           |                                     |
|   | 1 | 0                 | 0                 | 1                 | -     |           |            |           |                                     |
|   | 2 | 0                 | 1                 | 1                 | +     |           |            |           |                                     |



IF  $y_i f_{\boldsymbol{\theta}}(\mathbf{x}_i) \leq 0$ THEN  $\boldsymbol{\theta} = \boldsymbol{\theta} + y_i \mathbf{x}_i$ 

## Perceptron-Algorithm: Example

$$\theta_3 = b$$
 (Offset)

|   |   |                   | _ \               |                   |       |           |            |            |                                     |
|---|---|-------------------|-------------------|-------------------|-------|-----------|------------|------------|-------------------------------------|
|   | i | $\mathbf{x}_{i1}$ | $\mathbf{x}_{i2}$ | $\mathbf{x}_{i0}$ | $y_i$ | $	heta_1$ | $\theta_2$ | $\theta_0$ | $f_{\mathbf{\theta}}(\mathbf{x}_i)$ |
| • | 1 | 0                 | 0                 | 1                 | -     | 0         | 0          | 0          | 0                                   |
|   | 2 | 0                 | 1                 | 1                 | +     | 0         | 0          | -1         | -1                                  |
|   | 3 | 1                 | 0                 | 1                 | +     | 0         | 1          | 0          | 0                                   |
|   | 1 | 0                 | 0                 | 1                 | -     | 1         | 1          | 1          | 1                                   |
|   | 2 | 0                 | 1                 | 1                 | +     | 1         | 1          | 0          | 1                                   |
|   | 3 | 1                 | 0                 | 1                 | +     | 1         | 1          | 0          | 1                                   |
| • | 1 | 0                 | 0                 | 1                 | -     | 1         | 1          | 0          | 0                                   |
|   | 2 | 0                 | 1                 | 1                 | +     | 1         | 1          | -1         | 0                                   |
|   | 3 | 1                 | 0                 | 1                 | +     | 1         | 2          | 0          | 1                                   |
|   | 1 | 0                 | 0                 | 1                 | -     | 1         | 2          | 0          | 0                                   |
|   | 2 | 0                 | 1                 | 1                 | +     | 1         | 2          | -1         | 1                                   |
|   | 3 | 1                 | 0                 | 1                 | +     | 1         | 2          | -1         |                                     |
|   | 1 | 0                 | 0                 | 1                 | -     |           |            |            |                                     |
|   | 2 | 0                 | 1                 | 1                 | +     |           |            |            |                                     |



## Perceptron-Algorithm: Example

$$\theta_3 = b$$
 (Offset)

|   |                   | $\overline{}$     |                   | ı     | 1         |            |           |                                     |
|---|-------------------|-------------------|-------------------|-------|-----------|------------|-----------|-------------------------------------|
| i | $\mathbf{x}_{i1}$ | $\mathbf{x}_{i2}$ | $\mathbf{x}_{i0}$ | $y_i$ | $	heta_1$ | $\theta_2$ | $	heta_0$ | $f_{\mathbf{\theta}}(\mathbf{x}_i)$ |
| 1 | 0                 | 0                 | 1                 | -     | 0         | 0          | 0         | 0                                   |
| 2 | 0                 | 1                 | 1                 | +     | 0         | 0          | -1        | -1                                  |
| 3 | 1                 | 0                 | 1                 | +     | 0         | 1          | 0         | 0                                   |
| 1 | 0                 | 0                 | 1                 | -     | 1         | 1          | 1         | 1                                   |
| 2 | 0                 | 1                 | 1                 | +     | 1         | 1          | 0         | 1                                   |
| 3 | 1                 | 0                 | 1                 | +     | 1         | 1          | 0         | 1                                   |
| 1 | 0                 | 0                 | 1                 | -     | 1         | 1          | 0         | 0                                   |
| 2 | 0                 | 1                 | 1                 | +     | 1         | 1          | -1        | 0                                   |
| 3 | 1                 | 0                 | 1                 | +     | 1         | 2          | 0         | 1                                   |
| 1 | 0                 | 0                 | 1                 | -     | 1         | 2          | 0         | 0                                   |
| 2 | 0                 | 1                 | 1                 | +     | 1         | 2          | -1        | 1                                   |
| 3 | 1                 | 0                 | 1                 | +     | 1         | 2          | -1        | 0                                   |
| 1 | 0                 | 0                 | 1                 | -     | 2         | 2          | 0         |                                     |
| 2 | 0                 | 1                 | 1                 | +     |           |            |           |                                     |



IF  $y_i f_{\boldsymbol{\theta}}(\mathbf{x}_i) \leq 0$ THEN  $\boldsymbol{\theta} = \boldsymbol{\theta} + y_i \mathbf{x}_i$ 

Perceptron-Algorithm: Example

$$\theta_3 = b$$
 (Offset)

|   | _ `               | /                 |                   |       |           |           |           |                                     |   |
|---|-------------------|-------------------|-------------------|-------|-----------|-----------|-----------|-------------------------------------|---|
| i | $\mathbf{x}_{i1}$ | $\mathbf{x}_{i2}$ | $\mathbf{x}_{i0}$ | $y_i$ | $	heta_1$ | $	heta_2$ | $	heta_0$ | $f_{\mathbf{\theta}}(\mathbf{x}_i)$ | Ę |
| 1 | 0                 | 0                 | 1                 | -     | 0         | 0         | 0         | 0                                   | • |
| 2 | 0                 | 1                 | 1                 | +     | 0         | 0         | -1        | -1                                  |   |
| 3 | 1                 | 0                 | 1                 | +     | 0         | 1         | 0         | 0                                   |   |
| 1 | 0                 | 0                 | 1                 | -     | 1         | 1         | 1         | 1                                   |   |
| 2 | 0                 | 1                 | 1                 | +     | 1         | 1         | 0         | 1                                   |   |
| 3 | 1                 | 0                 | 1                 | +     | 1         | 1         | 0         | 1                                   |   |
| 1 | 0                 | 0                 | 1                 | -     | 1         | 1         | 0         | 0                                   |   |
| 2 | 0                 | 1                 | 1                 | +     | 1         | 1         | -1        | 0                                   |   |
| 3 | 1                 | 0                 | 1                 | +     | 1         | 2         | 0         | 1                                   |   |
| 1 | 0                 | 0                 | 1                 | -     | 1         | 2         | 0         | 0                                   |   |
| 2 | 0                 | 1                 | 1                 | +     | 1         | 2         | -1        | 1                                   |   |
| 3 | 1                 | 0                 | 1                 | +     | 1         | 2         | -1        | 0                                   |   |
| 1 | 0                 | 0                 | 1                 | -     | 2         | 2         | 0         | 0                                   |   |
| 2 | 0                 | 1                 | 1                 | +     | 2         | 2         | -1        |                                     |   |



## **ERM:** Perceptron



#### **Perceptron**

- Perceptron algorithm minimizes the sum of the perceptron loss over all samples
- No regularizer
- Update rules realized as stochastic gradient search
- Fixed step size of 1; hence there is no guarantee that it will converge (unless data is separable).
- Perceptron finds (some) separating hyperplane between positive and negative samples
- Perceptron converges if such a hyperplane exists.

#### **Overview**

- Linear classification models
- Empirical risk minimization
  - Gradient descent method
  - Inexact line search
  - ◆ Stochastic gradient descent methods
- Loss functions and regularizers for classification
- Special cases
  - ◆ Perceptron
  - Support vector machines
- Multi-class classification

- Class  $y \in \{-1, +1\}$
- Loss function:

$$\ell_h(f_{\theta}(\mathbf{x}_i), y_i) = \begin{cases} 1 - y_i f_{\theta}(\mathbf{x}_i) & \text{if } 1 - y_i f_{\theta}(\mathbf{x}_i) > 0 \\ 0 & \text{if } 1 - y_i f_{\theta}(\mathbf{x}_i) \le 0 \end{cases}$$
$$= \max(0, 1 - y_i f_{\theta}(\mathbf{x}_i))$$





Loss function is 0, if...

$$\begin{split} &\sum_{i=1}^{n} \max \left(0, 1 - y_{i} f_{\theta}(\mathbf{x}_{i})\right) = 0 \\ &\iff \forall_{i=1}^{n} \colon y_{i} f_{\theta}(\mathbf{x}_{i}) \geq 1 \\ &\iff \forall_{i=1}^{n} \colon y_{i} \mathbf{x}_{i}^{\mathsf{T}} \theta \geq 1 \\ &\iff \forall_{i=1}^{n} \colon y_{i} \mathbf{x}_{i}^{\mathsf{T}} \frac{\theta}{\|\theta\|_{2}} \geq \frac{1}{\|\theta\|_{2}} \end{split}$$
 Hessian normal form: normal vector has length 1 
$$\Leftrightarrow \forall_{i=1}^{n} \colon y_{i} \mathbf{x}_{i}^{\mathsf{T}} \frac{\theta}{\|\theta\|_{2}} \geq \frac{1}{\|\theta\|_{2}}$$
 
$$\Leftrightarrow \forall_{i=1}^{n} \colon proj_{\theta} \mathbf{x}_{i} \begin{cases} \geq \frac{1}{\|\theta\|_{2}} & \text{if } y_{i} = +1 \\ \leq \frac{-1}{\|\theta\|_{2}} & \text{if } y_{i} = -1 \end{cases}$$

Loss function is 0, if...

$$\sum_{i=1}^{n} \max(0, 1 - y_i f_{\theta}(\mathbf{x}_i)) = 0$$

$$\Leftrightarrow \forall_{i=1}^{n} : y_i f_{\theta}(\mathbf{x}_i) \ge 1$$

$$\Leftrightarrow \forall_{i=1}^{n} : y_i \mathbf{x}_i^{\mathsf{T}} \theta \ge 1$$

$$\Leftrightarrow \forall_{i=1}^{n} : y_i \mathbf{x}_i^{\mathsf{T}} \frac{\theta}{\|\theta\|_2} \ge \frac{1}{\|\theta\|_2}$$

$$\Leftrightarrow \forall_{i=1}^{n} : \mathbf{x}_i^{\mathsf{T}} \frac{\theta}{\|\theta\|_2}$$

$$\begin{cases} \ge \frac{1}{\|\theta\|_2} & \text{if } y_i = +1 \\ \le \frac{-1}{\|\theta\|_2} & \text{if } y_i = -1 \end{cases}$$



point to plane (margin)

Distance of closest

- For loss to be 0, all training samples must
  - lie on the correct side of separating plane,
  - and have a minimal margin (gap) of  $\frac{1}{\|\mathbf{\theta}\|_2}$  to the plane.

- Loss function is 0 if all training samples have a margin of at least <sup>1</sup>/<sub>||θ||2</sub>.
  - Points that lie  $\frac{1}{\|\theta\|_2}$  from the plane are *support vectors*



- Regularizer
  - $\Omega_2(\boldsymbol{\theta}) = \boldsymbol{\theta}^T \boldsymbol{\theta} = \|\boldsymbol{\theta}\|_2^2$ ; is zero only if  $\boldsymbol{\theta} = \boldsymbol{0}$
  - Minimizing  $\Omega_2(\theta) \iff$  maximizing margin  $\frac{1}{\|\theta\|_2}$
- SVM is also referred to as a *large margin classifier* because its optimization criterion is minimized by the plane with the largest margin from any sample.

- If loss function >0, some instances violate margin.
- Loss function as a sum of slack terms

 $\sum_{i=1}^{n} \max(0,1-y_i f_{\theta}(\mathbf{x}_i)) = \sum_{i=1}^{n} \xi_i$   $\xi_i = \max(0,1-y_i f_{\theta}(\mathbf{x}_i))$ 

Slack term or margin violation



 $[\mathbf{x}]_1$ 

Points with non-zero slack are support vectors

- Minimize hinge loss and L2-norm  $\|\mathbf{\theta}\|_2^2 = \mathbf{\theta}^T \mathbf{\theta}$  of the parameter vector.
- Hinge loss is positive for a sample if the sample has a distance (margin) of less than  $\frac{1}{\|\theta\|_2}$  to the separating hyperplane.
- SVM thereby finds the hyperplane with the greatest margin that separates the most possible samples. It trades off between
  - The size of the margin  $\frac{1}{\|\theta\|_2}$
  - And the sum of the slack errors  $\sum_{i=1}^{n} \xi_i$

Linear classification model: minimize

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left[ \max(0, 1 - y_i \mathbf{x}_i^{\mathrm{T}} \boldsymbol{\theta}) + \frac{\lambda}{n} \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta} \right]$$

Gradient:

$$\nabla L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \nabla_{\mathbf{x}_i} L(\boldsymbol{\theta})$$

Stochastic gradient for x<sub>i</sub>:

Linear classification model: minimize

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \left[ \max(0, 1 - y_i \mathbf{x}_i^{\mathrm{T}} \boldsymbol{\theta}) + \frac{\lambda}{n} \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta} \right]$$

Gradient:

$$\nabla L(\boldsymbol{\theta}) = \sum_{i=1}^{n} \nabla_{\mathbf{x}_i} L(\boldsymbol{\theta})$$

• Stochastic gradient for  $x_i$ :

$$\nabla_{\mathbf{x}_{i}} \boldsymbol{L}(\boldsymbol{\theta}) = \begin{cases} \frac{2\lambda}{n} \boldsymbol{\theta} & \text{if } y_{i} \mathbf{x}_{i}^{\mathrm{T}} \boldsymbol{\theta} > 1 \\ \frac{2\lambda}{n} \boldsymbol{\theta} - y_{i} \mathbf{x}_{i} & \text{if } y_{i} \mathbf{x}_{i}^{\mathrm{T}} \boldsymbol{\theta} < 1 \end{cases}$$

- $L(\theta)$  can be minimized using stochastic gradient descent method ("Pegasos")
  - Very fast, often used in practice
- L(θ) can be minimized using gradient descent method ("Primal SVM")

#### **Overview**

- Linear classification models
- Empirical risk minimization
  - Gradient descent method
  - Inexact line search
  - ◆ Stochastic gradient descent methods
- Loss functions and regularizers for classification
- Special cases
  - ◆ Perceptron
  - ◆ Support vector machines
- Multi-class classification

#### **Multi-Class Classification**

 Motivation: we would like to extend classification to problems with more than 2 classes.

$$Y = \{1, ..., k\}$$

- Problem: we cannot separate k classes with a single hyperplane.
- Idea: Each class y has a separate function  $f_{\theta}(\mathbf{x}, y)$  that is used to predict how likely y is given  $\mathbf{x}$ .
  - Each function is modeled as linear.
  - We predict class y with the highest scoring function for x.

#### **Multi-Class Classification**

Decision functions:

$$f_{\mathbf{\theta}}(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\mathrm{T}} \mathbf{\theta}^{\mathbf{y}}$$

Classifier:

$$y_{\mathbf{\theta}}(\mathbf{x}) = \underset{y \in Y}{\operatorname{argmax}} f_{\mathbf{\theta}}(\mathbf{x}, y)$$

Model parameters:

$$\mathbf{\theta} = \begin{pmatrix} \mathbf{\theta}^1 \\ \vdots \\ \mathbf{\theta}^k \end{pmatrix}$$

#### **Multi-Class Classification**

Decision functions:

$$f_{\mathbf{\theta}}(\mathbf{x}, \mathbf{y}) = \mathbf{x}^{\mathrm{T}} \mathbf{\theta}^{\mathbf{y}}$$

Classifier:

$$y_{\mathbf{\theta}}(\mathbf{x}) = \underset{y \in Y}{\operatorname{argmax}} f_{\mathbf{\theta}}(\mathbf{x}, y)$$



#### **Linear Classification Methods**



- Linear hyperplane separates classes.
- Empirical risk minimization
  - Gradient descent method
  - Inexact line search
  - Stochastic gradient descent methods
- Perceptron
  - Stochastic gradient, perceptron loss, no regularizer
- Support vector machines
  - Gradient or stochastic gradient, hinge loss, L2regularizer.
  - Maximizes margin between instances and plane.
- Multi-class classification: multiple planes.