Chapitre 1 : Ensembles dénombrables, topologie de R, suites numériques

I Ensembles dénombrables

A) Propriétés élémentaires de N, ensembles finis

Voir cours de sup

B) Ensembles dénombrables

Définition:

- Soient *E* et *F* deux ensembles. On dit que *E* et *F* sont équipotents lorsqu'il existe une bijection de *E* dans *F*.
- On dit qu'un ensemble E est dénombrable lorsqu'il est équipotent à N.

Exemples:

- N est dénombrable
- pN où $p \in N^*$, une bijection de N dans pN étant $n \mapsto pn$.
- $\mathbb{N} \times \mathbb{N}$. En effet, l'application $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ est bijective. $(n, p) \mapsto (2p+1)2^n$

Théorème:

Un ensemble I est dénombrable si et seulement si I est la réunion d'une famille croissante de parties finies, non stationnaire.

C'est-à-dire : I est dénombrable \Leftrightarrow Il existe une famille $(J_n)_{n\in\mathbb{N}}$ de parties finies de I telle que :

$$-\forall n \in \mathbb{N}, J_n \subset J_{n+1}$$

$$\operatorname{-} I = \bigcup_{n \in \mathbb{N}} J_n$$

$$-\forall n \in \mathbb{N}, J_n \subset I \text{ et } J_n \neq I$$

Démonstration:

 \Rightarrow :

Comme I est équipotent à \mathbb{N} , on peut supposer que $I = \mathbb{N}$.

Posons $J_n = [0, n]$ pour $n \in \mathbb{N}$.

Alors J_n est fini, $J_n \subset J_{n+1}$, $I = \mathbb{N} = \bigcup_{n \in \mathbb{N}} J_n$ et enfin $(J_n)_{n \in \mathbb{N}}$ n'est pas stationnaire.

 \Leftarrow

Supposons l'existence d'une telle famille $(J_n)_{n\in\mathbb{N}}$, mais strictement croissante.

On note
$$a_n = \operatorname{card}(J_n)$$
 (noté aussi $\#J_n$), $\begin{cases} K_0 = J_0 \\ K_n = J_n \setminus J_{n-1} \end{cases}$ et $b_n = \#K_n = a_n - a_{n-1}$

Ainsi, pour tout $n \in \mathbb{N}$, il existe une bijection $f_n : [1, b_n] \to K_n$

On définit l'application $g: \mathbb{N}^* \to I$ par :

$$g(n) = f_{k+1}(n - a_k)$$
, où, pour $n \in \mathbb{N}$, on a noté $k = \min\{i \in \mathbb{N}, n \le a_{i+1}\}$

(Ainsi, $a_k < n \le a_{k+1}$, donc $n - a_k \le a_{k+1} - a_k = b_{k+1}$ donc g est bien définie)

Alors:

- g est injective :

Soient $n, n' \in \mathbb{N}$, supposons que g(n) = g(n').

Soient k, k' tels que $a_k < n \le a_{k+1}$ et $a_{k'} < n' \le a_{k'+1}$.

Alors
$$g(n) = f_{k+1}(n-a_k) \in K_{k+1}$$
 et $g(n') = f_{k'+1}(n'-a_{k'}) \in K_{k'+1}$

Alors k = k', car sinon, comme les K_n sont disjoints, on aurait $g(n) \neq g(n')$.

Donc
$$f_{k+1}(n-a_k) = g(n) = g(n') = f_{k+1}(n'-a_k)$$

Soit, comme f_{k+1} est injective, n = n'. D'où l'injectivité de g.

- g est surjective :

Soit $x \in I$. Il existe donc $i \in \mathbb{N}$ tel que $x \in J_i$; posons $k = \min\{i \in \mathbb{N}, x \in J_i\}$

Ainsi, $x \notin J_{k-1}$, et donc $x \in J_k \setminus J_{k-1} = K_k$

Il existe donc $j \in [1, b_k]$ tel que $x = f_k(j)$.

Et on a alors $g(a_k + j) = f_k(a_k + j - a_k) = f_k(j) = x$

D'où la surjectivité de g.

Si maintenant la famille $(J_n)_{n\in\mathbb{N}}$ n'est que croissante, on a toujours le résultat en "retirant" les termes en double, ce qui ne mettra en défaut aucune des hypothèses.

Ainsi, par exemple:

- Z est dénombrable
- Q est dénombrable, avec $J_n = \left\{ \frac{p}{q} \in \mathbb{Q}, p \in \mathbb{Z}, q \in \mathbb{N}^*, p \land q = 1, |p| + q \le n + 1 \right\}$
- Toute partie infinie de N est dénombrable.

Théorème:

Soit E un ensemble. Il n'existe aucune surjection de E sur P(E)

Démonstration:

Supposons qu'il existe une telle surjection $f: E \to P(E)$.

Notons $A = \{x \in E, x \notin f(x)\}$. Comme f est surjective, A possède un antécédent a par f.

Si $a \in A$, alors par définition, $a \notin f(A) = A$, ce qui est contradictoire.

Donc $a \notin A$, c'est-à-dire que $a \in f(A)$ soit $a \in A$ ce qui est aussi contradictoire.

Donc f n'est pas surjective.

Corollaire:

N n'est pas équipotent à P(N).

Exemple:

L'ensemble R n'est pas dénombrable (démonstration de Cantor) :

Soit $(u_n)_{n \in \mathbb{N}}$ une suite à valeurs dans [0;1[

Pour $n \in \mathbb{N}$, on notera $(a_n^{(k)})_{k \in \mathbb{N}}$ le développement décimal de u_n , c'est-à-dire l'unique suite à valeurs dans $\left[0;9\right]$ telle que $u_n = \lim_{k \to +\infty} \sum_{i=1}^k \frac{a_n^{(i)}}{10^i}$ et telle que $(a_n^{(k)})_{k \in \mathbb{N}}$ n'est pas stationnaire à 9.

La suite $(u_n)_{n\in\mathbb{N}}$ s'écrit donc, en base 10 :

$$u_0 = 0, a_0^{(1)} a_0^{(2)} \dots$$

$$u_1 = 0, a_1^{(1)} a_1^{(2)} \dots$$

:

$$u_k = 0, a_k^{(1)} a_k^{(2)} ... a_k^{(k+1)} ...$$

Soit
$$(b^{(k)})_{k \in \mathbb{N}}$$
 la suite définie par
$$\begin{cases} b^{(k)} = 0 \text{ si } a_k^{(k+1)} \neq 0 \\ b^{(k)} = 1 \text{ sinon} \end{cases}$$

Alors cette suite n'est pas stationnaire en 9. Donc $(b^{(k)})_{k \in \mathbb{N}}$ est le développement décimal propre de $b = \lim_{k \to +\infty} \sum_{i=1}^k \frac{b^{(i)}}{10^i}$.

Alors $b \notin \{u_k, k \in \mathbb{N}\}$

En effet, supposons que $b = u_k$, où $k \in \mathbb{N}$.

Alors
$$\forall i \in \mathbb{N}^*, b^{(i)} = a_k^{(i)}$$

Donc, en particulier, $b^{(k+1)} = a_k^{(k+1)}$, ce qui est impossible.

Il n'existe donc pas de surjection de $\mathbb N$ dans [0;1[, et encore moins dans $\mathbb R$.

Remarque:

R est donc un ensemble "plus grand" que N.

L'hypothèse du continu affirme qu'il n'existe pas d'ensemble "plus grand" que N et "plus petit" que R. (l'existence ou la non-existence d'un tel ensemble est en effet indécidable sans cet axiome supplémentaire)

II Espaces vectoriels normés

A) Norme, distance associée

On désignera ici par K le corps R ou C.

Définition:

Soit E un \mathbb{K} -ev. On appelle norme sur E toute application $N: E \to \mathbb{R}$ telle que :

- (1) $\forall x \in E, N(x) \ge 0$
- (2) $\forall x \in E, N(x) = 0 \Rightarrow x = 0$
- (3) $\forall \lambda \in \mathbb{K}, \forall x \in E, N(\lambda x) = |\lambda| N(x)$
- (4) $\forall (x, y) \in E^2, N(x+y) \le N(x) + N(y)$

On appelle espace vectoriel normé le couple (E, N).

Exemples:

| est une norme sur R. Mais | peut aussi être vue comme norme sur C.

Propriétés:

• La norme *N* est une application 1-lipschitzienne par rapport à elle-même, c'està-dire :

$$|N(x) - N(y)| \le N(x - y)$$

• La norme N est convexe, c'est-à-dire :

$$\forall t \in [0;1], \forall (x,y) \in E^2, N(tx + (1-t)y) \le tN(x) + (1-t)N(y)$$

Démonstration:

-
$$N(x) = N(y + (x - y)) \le N(y) + N(x - y)$$

Donc
$$N(x) - N(y) \le N(x - y)$$
.

Et, de même, $N(y) - N(x) \le N(y - x) = N(x - y)$.

Donc
$$|N(x)-N(y)| \le N(x-y)$$

$$-N(tx + (1-t)y) \le N(tx) + N((1-t)y)$$

$$\leq tN(x) + (1-t)N(y)$$

Définition:

• On appelle distance associée à N l'application $d: E \times E \to \mathbb{R}$ $(x,y) \mapsto N(x-y)$

Elle vérifie les propriétés, pour tous $x, y, z \in E$:

- (1) $d(x, y) \ge 0$
- (2) $d(x, y) = 0 \Leftrightarrow x = y$
- (3) d(x, y) = d(y, x)
- (4) $d(x,z) \le d(x,y) + d(y,z)$
- On notera dans la suite N(x) = ||x||.

Définition:

• On appelle boule ouverte de centre $x \in E$ et de rayon $r \ge 0$ (E étant un \mathbb{K} -ev normé –"evn") l'ensemble $B(x,r) = \{x \in E, d(x,y) < r\}$.

On appelle boule fermée de même centre et même rayon l'ensemble $\overline{B}(x,r) = \{x \in E, d(x,y) \le r\}$

On appelle enfin sphère (toujours même centre, même rayon) l'ensemble $S(x,r) = \{x \in E, d(x,y) = r\}$

• Soit A une partie de l'evn E; on dit que A est bornée lorsqu'elle est contenue dans une boule fermée de E.

Ainsi, A est bornée $\Leftrightarrow \exists x \in E, \exists r \in \mathbb{R}_+^*, A \subset \overline{B}(x,r)$

• Soit A une partie de l'evn E. Alors :

A est bornée $\Leftrightarrow \forall x \in E, \exists r \in \mathbb{R}^*_+, A \subset \overline{B}(x,r)$

Démonstration:

 \Leftarrow ... (*E* étant non vide, on a le choix)

 \Rightarrow : Supposons que A est bornée. Soit $x \in E$, $r \in \mathbb{R}_{+}^{*}$ tels que $A \subset \overline{B}(x,r)$.

Soit maintenant $x \in E$. Pour tout $y \in A$, on a:

$$N(y-x) \le r$$

Et
$$N(y-x') \le N(y-x) + N(x-x')$$

Donc
$$N(y-x') \le r + N(x-x')$$
. Ainsi, $A \subset \overline{B}(x,r+N(x-x'))$

Chapitre 1 : Ensembles dénombrables, topologie de R, suites numériques Suites et fonctions

Définition:

On dit qu'une application f d'un ensemble X dans un evn E est bornée lorsque la partie f(X) est une partie bornée de E. C'est-à-dire :

$$f$$
 est bornée $\Leftrightarrow \exists x \in E, \exists r \in \mathbb{R}_+^*, \forall a \in X, d(f(a), x) \le r$

Exemples:

- Soit $E = \mathbb{K}^n$ et N_1 : $\mathbb{K}^n \to \mathbb{R}$. Alors N_1 est une norme sur E. $(x_1, x_2, ... x_n) \mapsto \sum_{i=1}^n |x_i|$
- Soit $E = \mathbb{K}^n$ et N_2 : $\mathbb{K}^n \to \mathbb{R}$. Alors N_2 est une norme sur E. $(x_1, x_2, ... x_n) \mapsto \sqrt{\sum_{i=1}^n x_i^2}$
- Soit $E = \mathbb{K}^n$ et $N_{\infty} : \underbrace{\mathbb{K}^n \to \mathbb{R}}_{(x_1, x_2, \dots, x_n) \mapsto \max_{i \in [1]} |x_i|}$. Alors N_{∞} est une norme sur E.
- Soient a, b avec a < b deux réels, $E = C^0([a,b],\mathbb{R})$. L'application $N_1: E \to \mathbb{R}$ est une norme sur E. $f \mapsto \int_a^b |f(t)| dt$

Démonstration:

- Positivité: $\forall f \in E, \int_a^b |f(t)| dt \ge 0$
- Séparation : soit $f \in E$, supposons que $N_1(f) = 0$

La fonction $x \mapsto |f(x)|$ est positive, continue sur [a,b] et $\int_a^b |f(t)| dt = 0$.

Donc f = 0.

- Soit $\lambda \in \mathbb{R}$, $f \in E$.

Alors
$$N_1(\lambda f) = \int_a^b |\lambda f(t)| dt = \int_a^b |\lambda| |f(t)| dt = |\lambda| N_1(f)$$

- Soit $(f,g) \in E^2$

$$N_1(f+g) = \int_a^b |f(t) + g(t)| dt \le \int_a^b |f(t)| + |g(t)| dt \le N_1(f) + N_1(g)$$

• Dans $E = C([a,b], \mathbb{R})$:

$$N_2: E \to \mathbb{R}$$
 est une norme.
 $f \mapsto \left(\int_a^b |f(t)|^2 dt \right)^{1/2}$

• Toujours dans $E = C([a,b], \mathbb{R}), N_{\infty} : f \mapsto \max_{x \in [a,b]} |f(x)|$

B) Suites dans un espace vectoriel normé

Définition:

Soit E un evn, $u \in E^{\mathbb{N}}$

- On dit que u est bornée lorsque u(N) est bornée.
- On dit que u admet une limite $l \in E$ lorsque :

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n \ge n_0 \Longrightarrow ||u_n - l|| \le \varepsilon$$

Proposition:

Soit E un evn, $u \in E^{\mathbb{N}}$.

- (1) u converge vers $l \in E$ si et seulement si $(\|u_n l\|)_{n \in \mathbb{N}}$ converge vers 0.
- (2) u est bornée si et seulement si $(\|u_n\|)_{n\in\mathbb{N}}$ l'est.
- (3) Si *u* converge, alors *u* est bornée.
- (4) Si *u* admet une limite *l*, alors celle-ci est unique.

Démonstration :

Les trois premiers sont des conséquences de la définition.

Pour le (4) : Soient $l, l' \in E$. Supposons que u converge vers l et l'.

Posons
$$\varepsilon = ||l - l'||$$
.

Alors il existe $n_1 \in \mathbb{N}$ tel que $\forall n \in \mathbb{N}, n \ge n_1 \Rightarrow ||u_n - l|| \le \frac{\varepsilon}{3}$

Et
$$n_2 \in \mathbb{N}$$
 tel que $\forall n \in \mathbb{N}, n \ge n_2 \Rightarrow ||u_n - l'|| \le \frac{\mathcal{E}}{3}$.

Pour $k = \max(n_1, n_2)$, on a:

$$||l-l'|| \le ||l-u_k|| + ||u_k-l'||$$
, c'est-à-dire $\varepsilon \le \frac{\varepsilon}{3} + \frac{\varepsilon}{3}$. Or, $\varepsilon \ge 0$. Donc $\varepsilon = 0$ et $l = l'$.

Théorème:

L'ensemble & des suites convergentes dans E est un sous-espace vectoriel de $E^{\mathbb{N}}$ et l'application $\mathfrak{E} \to E$ est linéaire. $u \mapsto \lim u$

Démonstration:

- Déjà, la suite nulle est bien dans &.
- Soient $u, v \in \mathfrak{G}$, u_{∞}, v_{∞} leurs limites et $\varepsilon > 0$.

Il existe
$$n_0 \in \mathbb{N}$$
 tel que $\forall n \in \mathbb{N}, n \ge n_0 \Rightarrow \begin{cases} \|u_n - u_\infty\| \le \frac{\varepsilon}{2} \\ \|v_n - v_\infty\| \le \frac{\varepsilon}{2} \end{cases}$

Alors, pour $n \ge n_0$, $||(u_n + v_n) - (u_\infty + v_\infty)|| \le ||u_n - u_\infty|| + ||v_n - v_\infty|| \le \varepsilon$.

Donc u + v converge vers $u_{\infty} + v_{\infty}$.

• Soit $(\lambda_n)_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$ convergeant vers λ_{∞} .

Soit $(u_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$ convergeant vers u_{∞} .

Alors $(\lambda_n u_n)_{n \in \mathbb{N}}$ converge vers $\lambda_{\infty} u_{\infty}$.

En effet : soit L un majorant $(|\lambda_n|)_{n\in\mathbb{N}}$.

Soit
$$\varepsilon > 0$$
. Il existe $n_0 \in \mathbb{N}$ tel que $\forall n \in \mathbb{N}, n \ge n_0 \Rightarrow \begin{cases} |\lambda_n - \lambda_\infty| < \varepsilon \\ \|u_n - u_\infty\| < \varepsilon \end{cases}$

Donc, pour $n \ge n_0$:

$$\begin{split} \left\| \lambda_{n} u_{n} - \lambda_{\infty} u_{\infty} \right\| &\leq \left\| \lambda_{n} u_{n} - \lambda_{n} u_{\infty} \right\| + \left\| \lambda_{n} u_{\infty} - \lambda_{\infty} u_{\infty} \right\| \\ &\leq \left| \lambda_{n} \right\| \left\| u_{n} - u_{\infty} \right\| + \left| \lambda_{n} - \lambda_{\infty} \right\| \left\| u_{\infty} \right\| \\ &< L \varepsilon + \varepsilon \left\| u_{\infty} \right\| = (L + \left\| u_{\infty} \right\|) \varepsilon \end{split}$$

D'où le résultat.

Théorème:

Si $(\lambda_n)_{n\in\mathbb{N}}\in\mathbb{K}^\mathbb{N}$ et $(u_n)_{n\in\mathbb{N}}\in E^\mathbb{N}$ sont deux suites dont l'une est bornée et l'autre de limite nulle, $(\lambda_n u_n)_{n\in\mathbb{N}}$ est de limite nulle.

En effet:

Supposons $(\lambda_n)_{n\in\mathbb{N}}$ bornée. Soit $L\in\mathbb{R}_+^*$ tel que $\forall n\in\mathbb{N}, |\lambda_n|\leq L$.

Alors pour $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}$ tel que $\forall n \in \mathbb{N}, n \ge n_0 \Rightarrow ||u_n|| < \frac{\varepsilon}{L}$

Donc $n \ge n_0 \Rightarrow ||\lambda_n u_n|| = |\lambda_n||u_n|| \le \varepsilon$.

Exemples:

• Avec $E = \mathbb{R}^n$, muni de la norme $\| \cdot \|_{\infty}$.

Alors une suite $[(x_1^{(k)}, x_2^{(k)}, ... x_n^{(k)})]_{k \in \mathbb{N}}$ converge vers $(x_1^{\infty}, x_2^{\infty}, ... x_n^{\infty})$ si et seulement si $\forall i \in [1, n], x_i^{(k)} \xrightarrow[k \to +\infty]{} +\infty$.

• Avec $E = C([0;1], \mathbb{R})$ muni de la norme $\| \cdot \|_1$

Soit $f_n: x \mapsto x^n$ pour $n \in \mathbb{N}$.

Montrons que $(f_n)_{n \in \mathbb{N}}$ est de limite nulle dans $(E, \| \cdot \|_1)$.

Pour
$$n \in \mathbb{N}$$
, $||f_n||_1 = \int_0^1 |f_n(x)| dx = \frac{1}{n+1}$.

Donc
$$||f_n||_{1} \xrightarrow[n \to +\infty]{} 0$$
, d'où $f_n \xrightarrow[n \to +\infty]{} 0$

Attention: $(f_n)_{n \in \mathbb{N}}$ ne converge pas ponctuellement vers 0:

$$\begin{cases}
si \ x \neq 1, f_n(x) \xrightarrow[n \to +\infty]{} 0 \\
mais si \ x = 1, f_n(x) \xrightarrow[n \to +\infty]{} 1
\end{cases}$$

La suite $(f_n)_{n\in\mathbb{N}}$ converge t'elle dans $(E, \| \cdot \|_{\infty})$?

On a
$$||f_n||_{\infty} = \max_{x \in [0,1]} |x^n| = 1$$

Donc déjà $(f_n)_{n\in\mathbb{N}}$ ne tend pas vers 0.

Montrons que $(f_n)_{n\in\mathbb{N}}$ n'a pas de limite dans $(E, \| \|_{\infty})$.

Supposons qu'elle en a une, disons $g \in E$.

Alors, pour x < 1, $|f_n(x) - g(x)| \le ||f_n - g||_{\infty} \xrightarrow{n \to +\infty} 0$.

Donc
$$\forall x > 1, g(x) = \lim_{n \to \infty} f_n(x) = 0$$

Et de plus $g(1) = \lim_{n \to \infty} f_n(1) = 1$.

Donc g n'est pas continue en 1 ; il y a donc contradiction.

Donc $(f_n)_{n\in\mathbb{N}}$ ne converge pas dans $(E, \| \|_{\infty})$.

Remarque:

La convergence uniforme (pour $\| \cdot \|_{\infty}$) implique la convergence ponctuelle :

$$\left(\left\| f_n - g \right\|_{\infty} \xrightarrow[n \to +\infty]{} 0 \right) \Rightarrow \left(\forall x \in ..., \left| f_n(x) - g(x) \right| \le \left\| f_n - g \right\|_{\infty} \xrightarrow[n \to +\infty]{} 0 \right)$$

C) Suites extraites, valeurs d'adhérence

Définition:

On dit que $(v_n)_{n\in\mathbb{N}}$ est une suite extraite de $(u_n)_{n\in\mathbb{N}}$ s'il existe une injection croissante $\varphi: \mathbb{N} \to \mathbb{N}$ telle que $\forall n \in \mathbb{N}, v_n = u_{\varphi(n)}$.

Remarque:

Si $(v_n)_{n\in\mathbb{N}}$ est une suite extraite de $(u_n)_{n\in\mathbb{N}}$ avec $v_n=u_{\varphi(n)}$,

Et si $(w_n)_{n\in\mathbb{N}}$ est extraite de $(v_n)_{n\in\mathbb{N}}$ avec $w_n = v_{\psi(n)}$,

Alors $w_n = u_{\varphi \circ \psi(n)}$.

Théorème:

- Toute suite extraite d'une suite bornée est bornée
- Toute suite extraite d'une suite convergente est convergente, et tend vers la même limite.
- Une suite $(u_n)_{n\in\mathbb{N}}$ converge vers $l\in E$ si et seulement si les deux suites extraites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers cette même limite l.

Définition:

On dit que $a \in E$ est une valeur d'adhérence de $u \in E^{\mathbb{N}}$ s'il existe une suite extraite de u de limite a.

Théorème:

Soient $a \in E$, $u \in E^{\mathbb{N}}$. Les propositions suivantes sont équivalentes :

- (1) a est valeur d'adhérence de u.
- (2) $\forall \varepsilon > 0, \forall n \in \mathbb{N}, \exists p \ge n, ||u_p a|| \le \varepsilon$

Démonstration:

(1)
$$\Rightarrow$$
 (2) : Soit $\varphi : \mathbb{N} \to \mathbb{N}$ telle que $a = \lim_{n \to +\infty} u_{\varphi(n)}$

Déjà, pour tout $n \in \mathbb{N}$, $\varphi(n) \ge n$.

Soient alors $\varepsilon > 0$ et $n \in \mathbb{N}$. Il existe alors $n_0 \in \mathbb{N}$ tel que $k \ge n_0 \Rightarrow \|u_{\varphi(k)} - a\| \le \varepsilon$

Posons $p = \max(\varphi(n), \varphi(n_0))$, $m = \max(n, n_0)$ (ainsi, $\varphi(m) = p$)

Alors
$$p \ge \varphi(n) \ge n$$
, et $m \ge n_0$, donc $||u_p - a|| = ||u_{\varphi(m)} - a|| \le \varepsilon$.

- $(2) \Rightarrow (1)$: On construit φ par récurrence:
- On pose $\varphi(0) = 0$
- Soit $n \ge 0$, supposons que $\varphi(n)$ est construit.

On pose
$$\varepsilon = \frac{1}{2^{n+1}}$$
. Il existe donc $p \ge \varphi(n) + 1$ tel que $||u_p - a|| \le \varepsilon$.

On pose alors
$$\varphi(n+1) = \min \{ p \in \mathbb{N}, p \ge \varphi(n) + 1 \text{ et } ||u_p - a|| \le \varepsilon \}$$

L'application ainsi construite est strictement croissante, et, pour $n \ge 1$, $\|u_{\varphi(n)} - a\| \le \frac{1}{2^n}$

Donc *a* est une valeur d'adhérence de *u*.

Théorème:

Une condition nécessaire mais non suffisante pour que $u \in E^{\mathbb{N}}$ soit convergente est qu'elle admette une unique valeur d'adhérence.

La condition n'est pas suffisante. Par exemple : $u_n = \begin{cases} 0 \text{ si } n = 0[2] \\ n \text{ si } n = 1[2] \end{cases}$

III Topologie des espaces vectoriels normés

A) Voisinages

Dans toute la suite, on fixe $(E, \| \|)$ un espace vectoriel normé.

Définition:

Soit $a \in E$, V une partie de E. On dit que V est un voisinage de a lorsqu'il existe une boule ouverte de centre a contenue dans V.

On note alors V(a) l'ensemble des voisinages de a.

Proposition:

Soit $a \in E$.

- (V1) E est un voisinage de a, \emptyset n'en est pas un.
- (V2) Toute intersection finie de voisinages de a est un voisinage de a.
- (V3) Toute partie de *E* contenant un voisinage de *a* est un voisinage de *a*.

Démonstration:

- (V1): Par exemple, $B(a,1) \subset E$
- Si $B(a,r) \subset \emptyset$ pour un certain r > 0, alors en particulier $a \in \emptyset$, ce qui est impossible.
- (V2): Si V_1, V_2 sont deux voisinages de a, il existe $r_1, r_2 \in \mathbb{R}_+^*$ tels que $B(a, r_1) \subset V_1$ et $B(a, r_2) \subset V_2$. Donc $B(a, \min(r_1, r_2)) \subset V_1 \cap V_2$.

On peut ensuite facilement conclure par récurrence.

(V3): Si $V \subset W$ et si $B(a,r) \subset V$, alors $B(a,r) \subset W$

Définition, proposition :

Soit A une partie de E, et $a \in A$. On appelle voisinage de a dans A la trace sur A d'un voisinage de a dans E, c'est-à-dire, pour $V \subset A$:

$$V \in V_A(a) \Leftrightarrow \exists W \in V(a), W \cap A = V$$
 (1)

$$\Leftrightarrow \exists r \in \mathbb{R}_{+}^{*}, B(a,r) \cap A \subset V \ (2)$$

(Où on a noté $V_A(a)$ l'ensemble des voisinages de a dans A)

Démonstration:

(1) \Rightarrow (2) : Soit $V \subset A$. Supposons qu'il existe $W \in V(a)$ tel que $W \cap A = V$

Alors il existe r > 0 tel que $B(a,r) \subset W$. Donc $B(a,r) \cap A \subset W \cap A = V$.

 $(2) \Rightarrow (1)$: Soit $V \subset A$. Supposons qu'il existe $r \in \mathbb{R}_+^*$ tel que $B(a,r) \cap A \subset V$.

Alors, si on pose $W = B(a,r) \cup V$, on aura:

$$W \cap A = (B(a,r) \cup V) \cap A = \underbrace{(B(a,r) \cap A)}_{\subseteq V} \cup \underbrace{V \cap A}_{=V} = V$$

D'où l'équivalence.

Chapitre 1 : Ensembles dénombrables, topologie de R, suites numériques Suites et fonctions

B) Ouverts et fermés

Définition:

On appelle ouvert de E toute partie O de E qui est voisinage de chacun de ses points.

On note O(E) l'ensemble des ouverts de E.

Si
$$O \subset E$$
, $O \in O(E) \Leftrightarrow \forall x \in O, \exists r > 0, B(x,r) \subset O$

Proposition:

L'ensemble des ouverts de *E* vérifie les propriétés suivantes :

- (O1) E est un ouvert, \emptyset est un ouvert.
- (O2) Toute intersection finie d'ouverts est un ouvert
- (O3) Toute réunion d'ouverts est un ouvert.

Démonstration:

(O2) : Montrons le pour deux ouverts Ω_1, Ω_2

Si $\Omega_1 \cap \Omega_2$ est vide, alors $\Omega_1 \cap \Omega_2$ est ouvert. Sinon:

Soit $x \in \Omega_1 \cap \Omega_2$. Montrons que $\Omega_1 \cap \Omega_2 \in V(x)$

Comme Ω_1 est ouvert, c'est un voisinage de x. De même, Ω_2 est un voisinage de x. Donc $\Omega_1 \cap \Omega_2$ est un voisinage de x.

(O3) Soit $(\Omega_i)_{i \in I}$ une famille d'ouverts.

Notons $\Omega = \bigcup_{i \in I} \Omega_i$.

Pour $x \in \Omega$, il existe $i_0 \in I$ tel que $x \in \Omega_{i_0}$.

Alors $\Omega_{i_0} \subset \Omega$, et Ω_{i_0} est un voisinage de x, donc Ω en est aussi un.

Théorème:

Toute boule ouverte est ouverte.

Démonstration:

Soient $x \in E$, r > 0. Montrons que B(x,r) est ouverte.

Soit $y \in B(x,r)$. On pose r' = ||x - y||.

Alors $B(y, r-r') \subset B(x, r)$. En effet :

Soit $z \in B(y, r-r')$. Alors $||z-x|| \le ||z-y|| + ||y-x|| < r-r' + r' = r$, donc $z \in B(x, r)$, d'où l'inclusion. Donc B(x, r) est un voisinage de y, et donc de tous ses points.

Définition:

On appelle fermé de E tout complémentaire d'un ouvert de E. On note F(E) l'ensemble des fermés de E.

Proposition:

L'ensemble des fermés de *E* vérifie les propriétés :

- (F1) E et \varnothing sont fermés.
- (F2) Toute réunion finie de fermés est fermée
- (F3) Toue intersection de fermés est fermée.

Démonstration : il suffit de passer au complémentaire.

Théorème:

Toute boule fermée est un fermé.

Soit $x \in E$, r > 0. On va montrer que $C_E \overline{B}(x, r)$ est ouvert.

Soit
$$y \in C_E \overline{B}(x,r)$$
.

On pose
$$r' = ||y - x|| > r$$

Montrons qu'alors $B(y, r-r') \subset C_{\scriptscriptstyle F} \overline{B}(x,r)$

Soit $z \in B(y, r-r')$. Alors $d(z, x) + d(z, y) \ge d(x, y)$

Donc
$$d(z, x) \ge d(x, y) - d(z, y) > r' - (r' - r) = r$$

Corollaire:

Toute sphère est fermée.

En effet, $S(x,r) = \overline{B}(x,r) \cap C_E(B(x,r))$, et est donc une intersection de fermés.

Définition (topologie induite sur une partie de E)

Soit A une partie de E, X une partie de A.

- On dit que X est un ouvert de A lorsque X est voisinage dans A de chacun de ses points. On note alors O(A) l'ensemble des ouverts de A.
- On dit que X est un fermé de A si son complémentaire dans A est un ouvert. On note alors F(A) l'ensemble des fermés de A.

Théorème:

Soit A une partie de E. Les ouverts de A sont les traces sur A des ouverts de E, c'est-à-dire, pour $X \subset A$:

$$X \in O(A) \Leftrightarrow \exists O \in O(E), X = O \cap A$$

Démonstration:

 \Leftarrow : Soit $O \in O(E)$, supposons que $X = O \cap A$.

Soit $x \in X$. Montrons que $X \in V_A(x)$.

Comme $x \in O$, $O \in V(x)$. Donc $O \cap A \in V_A(x)$.

 \Rightarrow : Soit $X \in O(A)$. Alors, pour tout $x \in X$, on a $X \in V_A(x)$, donc il existe $r_x > 0$ tel que $B(x,r_x) \cap A \subset X$.

Posons alors $O = \bigcup_{x \in X} B(x, r_x)$. C'est une réunion d'ouverts, donc un ouvert.

Par ailleurs,
$$O \cap A = \left(\bigcup_{x \in X} B(x, r_x)\right) \cap A = \bigcup_{x \in X} \left(B(x, r_x) \cap A\right) \subset X$$
.

Pour $x \in X$, $x \in B(x, r_x) \subset O$. De plus, $x \in A$ (car $X \subset A$). Donc $X \subset O \cap A$. Donc $X = O \cap A$.

Conséquence:

Soit A une partie de E. Les fermés de A sont les traces sur A des fermés de E.

Démonstration:

Si
$$X \subset E$$
, alors $(C_E X) \cap A = C_A(X \cap A)$

C) Adhérence, intérieur, frontière

Définition:

Soit X une partie de E, et $x \in E$.

• Le point x est dit adhérent à X si tout voisinage de x coupe X.

On appelle adhérence de X l'ensemble des point adhérents à X, qu'on note \overline{X} . Ainsi :

$$x \in \overline{X} \iff \forall V \in V(x), V \cap X \neq \emptyset$$

$$\iff \forall r > 0, B(x, r) \cap X \neq \emptyset$$

- On dit que le point x est intérieur à X si X est voisinage de x. On appelle intérieur de X1'ensemble des points intérieurs à X, qu'on note \mathring{X} .
- On note frontière de *X* l'ensemble $\overline{X} \setminus \mathring{X} = \partial X$.

Théorème:

- (1) $C_E(\overline{X}) = C_E(X), C_E(X) = \overline{C_E(X)}$
- (2) L'adhérence de *X* est le plus petit fermé contenant *X*.
- (3) L'intérieur de *X* est le plus grand ouvert contenu dans *X*.
- (4) La frontière de *X* est un fermé.
- (5) X est ouvert $\Leftrightarrow X = \overset{\circ}{X}$; X est fermé $\Leftrightarrow X = \overline{X}$.

Démonstration:

 $(1) \subset : Soit \ x \in C_E(\overline{X}).$

Il existe alors $V \in V(x)$ tel que $V \cap X = \emptyset$

Alors $V \subset C_E(X)$. Donc $C_E(X) \in V(x)$, c'est-à-dire $x \in C_E(X)$.

⊃ : on fait la même chose dans l'autre sens.

La deuxième égalité découle de la première :

On a
$$C_E(\overline{C_E(X)}) = C_E(C_E(X))$$
 (égalité précédente avec $C_E(X)$),

C'est-à-dire $C_E(\overline{C_E(X)}) = \mathring{X}$, donc $\overline{C_E(X)} = C_E(\mathring{X})$ (passage au complémentaire)

(2) : Montrons que \overline{X} est un fermé, que $X\subset \overline{X}$, et que, pour F fermé de E, $X\subset F\Rightarrow \overline{X}\subset F$.

Posons $A = \bigcap_{\substack{F \text{ fermé} \\ F = Y}} F$. Alors A est fermé (car intersection de fermés), et contient X.

Montrons que $A = \overline{X}$.

Soit $x \in \overline{X}$. Montrons que pour F fermé contenant X, $x \in F$.

Supposons qu'au contraire $x \notin F$; Alors $C_E F$ (qui est un ouvert et contient x) est un voisinage de x ne rencontrant pas X (puisqu'il ne rencontre déjà pas F), ce qui est impossible. Donc $x \in F$. D'où déjà l'inclusion $\overline{X} \subset A$, car A est fermé et contient X.

Soit $x \in A$. Supposons que $x \notin \overline{X}$. Alors il existe un voisinage de x ne rencontrant pas X, c'est-à-dire qu'il existe r > 0 tel que $B(x,r) \cap X = \emptyset$. Alors $F = C_E B(x,r)$ est un fermé, et il contient X. Donc $A \subset F$, et donc $x \notin A$, ce qui est contradictoire puisqu'on a pris x dans A. Donc $x \in \overline{X}$. D'où l'autre inclusion, et l'égalité.

D'où le résultat.

(3) : Il suffit de passer au complémentaire :

Pour tout A ouvert inclus dans X, on a :

$$A \subset X$$
. Donc $C_E(X) \subset C_E(A)$. Donc $\overline{C_E(X)} \subset C_E(A)$ car $C_E(A)$ est fermé.

C'est-à-dire d'après les formules précédentes $C_E(X) \subset C_E(A)$, donc $A \subset X$.

Ensuite, $\overset{\circ}{X}$ est ouvert, puisque $C_E(\overset{\circ}{X}) = \overline{C_E(X)}$ est fermé.

(4) On a en effet $\partial X = \overline{X} \cap C_E(X) = \overline{X} \cap \overline{C_E(X)}$, intersection de fermés.

Le (5) découle aisément de (2) et (3).

Propriétés :

(1)
$$\overline{\overline{A}} = \overline{A}$$
, $A = A$

(2)
$$A \subset B \Rightarrow \begin{cases} \overline{A} \subset \overline{B} \\ \stackrel{\circ}{A} \subset B \end{cases}$$

(3)
$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$
 $\overrightarrow{A \cap B} = \overrightarrow{A} \cap \overrightarrow{B}$

$$(4) \ \overline{A \cap B} \subset \overline{A} \cap \overline{B} \qquad \stackrel{\circ}{A \cup B} \supset \stackrel{\circ}{A} \cup \stackrel{\circ}{B}$$

Démonstration:

(1) \overline{A} est fermé, donc $\overline{\overline{A}} = \overline{A}$

(2) Si $A \subset B$, alors $A \subset \overline{B}$. Or, \overline{A} est le plus petit fermé contenant A, donc $\overline{A} \subset \overline{B}$ puisque \overline{B} est fermé.

 $(3) \subset :$

 $A \subset \overline{A} \cup \overline{B}$, et $B \subset \overline{A} \cup \overline{B}$.

Donc $A \cup B \subset \overline{A} \cup \overline{B}$. Comme $\overline{A} \cup \overline{B}$ est fermé, $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$.

 \supset :

 $A \subset A \cup B$. Donc $\overline{A} \subset \overline{A \cup B}$.

De même, $\overline{B} \subset \overline{A \cup B}$.

Donc $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$.

D'où l'égalité, l'autre égalité s'obtenant par passage au complémentaire en utilisant les égalités du théorème précédent :

$$C_E(\overline{C_E(A) \cup C_E(B)}) = \overbrace{C_E(C_E(A) \cup C_E(B))}^{\circ} = \overbrace{A \cap B}^{\circ}$$

Et
$$C_E(\overline{C_E(A)} \cup \overline{C_E(B)}) = C_E(\overline{C_E(A)}) \cap C_E(\overline{C_E(B)}) = \overset{\circ}{A} \cap \overset{\circ}{B}$$

(4) On a $A \cap B \subset A$.

Donc $\overline{A \cap B} \subset \overline{A}$.

De même, $\overline{A \cap B} \subset \overline{B}$.

Donc $\overline{A \cap B} \subset \overline{A} \cap \overline{B}$

Pour l'autre : il suffit encore de passer au complémentaire.

Remarque:

En général, on n'a pas $\overline{A} \cap \overline{B} \subset \overline{A \cap B}$

Par exemple :

Avec $E = \mathbb{R}$, $A = \{0\}$ et B = [0,1]

On a $\overline{A} \cap \overline{B} = \{0\}$, mais $\overline{A \cap B} = \emptyset$.

Théorème : Caractérisation séquentielle de l'adhérence :

Soient $X \subset E$ et $x \in E$

Alors $x \in \overline{X}$ si et seulement si existe $(x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}}$ qui converge vers x.

Démonstration :

• Soit $(x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}}$ qui converge vers x.

Alors pour r > 0, il existe $n_0 \in \mathbb{N}$ tel que $n \ge n_0 \Rightarrow ||x_n - x|| < r$.

Donc $x_{n_0} \in X \cap B(x,r)$, donc $X \cap B(x,r) \neq \emptyset$.

Donc x est adhérent à \overline{X} .

• Soit $x \in \overline{X}$. Pour tout $n \in \mathbb{N}$, $B(x, \frac{1}{2^n}) \neq \emptyset$.

Soit donc x_n un point de cet ensemble.

La suite $(x_n)_{n\in\mathbb{N}}$ vérifie $||x_n-x||<\frac{1}{2^n}$ pour tout $n\in\mathbb{N}$.

Donc $(x_n)_{n\in\mathbb{N}} \to x$.

Définition:

Soient $X \subset E$, $X \in E$.

On appelle distance de x à X le réel $d(x, X) = \inf\{d(x, y), y \in X\}$.

Théorème:

Pour $x \in E$, $X \subset E$, x est adhérent à X si et seulement si d(x, X) = 0.

Démonstration :

$$d(x, X) = 0 \Leftrightarrow \forall r > 0, \exists y \in X, d(x, y) < r$$
$$\Leftrightarrow \forall r > 0, B(x, r) \cap X = \emptyset$$

Remarque:

On a bien sûr les définitions naturelles d'adhérence, intérieur, frontière relativement à une partie.

Si $A \subset E, X \subset A$, alors $\overline{X}^A = \overline{X} \cap A$, mais $\mathring{X}^A \neq \mathring{X} \cap A$

Exemples:

- Si $X = \{a\}$, alors $\overline{X} = \{a\}$ et $X = \emptyset$ (si dim $E \neq 0$)
- Pour $x \in E$ et r > 0, on a:

$$\overline{B(x,r)} = \overline{B}(x,r), (\overline{B}(x,r))^{\circ} = B(x,r), \partial(B(x,r)) = S(x,r)$$

• Soit $X = \{u_n, n \in \mathbb{N}\}$ où $(u_n)_{n \in \mathbb{N}}$ est convergente.

Alors $\overline{X} = X \cup \{\lim u\}$.

Démonstration :

Soient $x \in E$, r > 0.

- Montrons que $\overline{B(x,r)} = \overline{B}(x,r)$:

Déjà, $\overline{B(x,r)} \subset \overline{B}(x,r)$, puisque $\overline{B}(x,r)$ est fermé et contient B(x,r).

Soit maintenant $y \in \overline{B}(x,r)$.

Pour $n \in \mathbb{N}$, on pose $y_n = x + (1 - \frac{1}{2^n})(y - x)$. Alors $||y_n - x|| = (1 - \frac{1}{2^n}) ||y - x|| < r$.

Donc $\forall n \in \mathbb{N}, y_n \in B(x,r)$, et de plus $||y - y_n|| = \frac{1}{2^n} ||y - x|| \xrightarrow[n \to +\infty]{} 0$.

Donc $(y_n)_{n\in\mathbb{N}} \to y$. Donc $y \in \overline{B(x,r)}$.

- Montrons que $(\overline{B}(x,r))^{\circ} = B(x,r)$:

Déjà, on a $B(x,r) \subset (\overline{B}(x,r))^{\circ}$ puisque B(x,r) est ouvert et est inclus dans $\overline{B}(x,r)$ On va montrer que si $\overline{B}(x,r)$ est un voisinage de $y \in E$, alors ||y-x|| < r.

Si $E = \{0\}$, le résultat est évident. Sinon, soit $y \neq x$ un point intérieur à $\overline{B}(x,r)$. Il existe alors r' > 0 tel que $B(y,r') \subset \overline{B}(x,r)$.

En particulier,
$$z = y + \frac{r'}{2||y - x||}(y - x) \in B(y, r')$$

Alors
$$||z - x|| = \left| \left(1 + \frac{r'}{2||y - x||} \right) (y - x) \right| = \left| 1 + \frac{r'}{2||y - x||} \right| ||y - x|| = ||y - x|| + \frac{r'}{2}$$

Or,
$$||z-x|| \le r$$
.

Donc
$$||y-x|| + \frac{r'}{2} \le r$$
, soit $||y-x|| < r$

- Montrons que $\overline{X} = X \cup \{\lim u\}$

Disons que $(u_n)_{n\in\mathbb{N}}$ converge vers l. Alors déjà $l\in\overline{X}$ car il existe une suite (u!!) à valeurs dans X qui converge vers l. Donc déjà $X\cup\{\lim u\}\subset\overline{X}$.

Soit maintenant $y \notin X \cup \{l\}$, notons r = ||y - l||.

Il existe déjà $n_0 \in \mathbb{N}$ tel que $n \ge n_0 \Rightarrow ||u_n - l|| < \frac{r}{2}$.

Donc pour tout $n \ge n_0$, $||u_n - y|| \ge ||y - l|| - ||u_n - l|| \ge \frac{r}{2}$.

Soit maintenant $r' = \min_{n < n_0} ||y - u_n||$.

Alors r' > 0 et r > 0.

De plus, $d(y, X) = \inf_{n \in \mathbb{N}} ||y - u_n|| \ge \min(\frac{r}{2}, r') > 0$

Donc $y \notin \overline{X}$, d'où $\overline{X} = X \cup \{l\}$.

Proposition:

Soit $(u_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$. On note VA(u) l'ensemble de ses valeurs d'adhérence.

Alors
$$VA(u) = \bigcap_{p \in \mathbb{N}} \overline{\{u_n, n \ge p\}}$$
.

Démonstration :

Soit
$$\alpha \in \bigcap_{p \in \mathbb{N}} \overline{\{u_n, n \ge p\}}$$
.

Soient $\varepsilon > 0$, $N \in \mathbb{N}$. Comme $\alpha \in \overline{\{u_n, n \ge N\}}$, on a $B(\alpha, \varepsilon) \cap \{u_n, n \ge N\} \neq \emptyset$

Il existe donc $\exists p \ge N$ tel que $u_p \in B(\alpha, \varepsilon)$, soit $||u_p - \alpha|| < \varepsilon$.

Donc α est une valeur d'adhérence de u.

Soit maintenant α une valeur d'adhérence de u.

Alors $\forall n \in \mathbb{N}, \forall \varepsilon > 0, B(\alpha, \varepsilon) \cap \{u_n, n \ge N\} \neq \emptyset$,

c'est-à-dire
$$\forall n \in \mathbb{N}, \alpha \in \overline{\{u_n, n \ge N\}}$$
, soit $\alpha \in \bigcap_{n \in \mathbb{N}} \overline{\{u_n, n \ge p\}}$

D'où l'autre inclusion et l'égalité.

D) Parties denses

Définition:

On dit que $X \subset E$ est dense dans E lorsque $\overline{X} = E$.

Si A est une partie de E, on dit qu'une partie X de A est dense dans A si $A \subset \overline{X}$.

Exemple:

Soit X une partie dénombrable d'un \mathbb{R} -ev E non nul.

Alors $C_E X$ est dense dans E.

En effet:

Soient $x \in E$ et r > 0. Montrons déjà que B(x,r) n'est pas dénombrable.

Comme *E* est non nul, $E \setminus \{x\}$ ne l'est pas. On peut donc prendre $y \in E \setminus \{x\}$.

Soit
$$f: [0;1[\to B(x,r)]$$
. On a, pour $t \in [0;1[, ||f(t)-x|| = ||t| \frac{r}{||y||}y|| = t.r < r$. De plus, f

est injective, et [0;1] n'est pas dénombrable.

Donc B(x,r) n'est pas dénombrable (ni fini)

Ainsi, $B(x,r) \subset X$. Donc $B(x,r) \cap C_E X \neq \emptyset$

Donc $x \in \overline{C_E X}$.

Exemples:

 $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R} .

 $\mathbb{C} \setminus \{x \in \mathbb{C}, \exists Q \in \mathbb{Q}[X], Q(x) = 0\}$. Un complexe qui est racine d'un polynôme à coefficients rationnels est dit algébrique.

Théorème:

Soient $A \subset E$ et $X \subset A$.

Une condition nécessaire et suffisante pour que X soit dense dans A est que tout ouvert non vide de A rencontre X.

Démonstration:

Condition nécessaire :

Supposons que *X* est dense dans *A*.

Soit Ω un ouvert non vide de A, et $x \in \Omega$.

Il existe alors r > 0 tel que $B(x,r) \cap A \subset \Omega$.

Comme X est dense dans A, on a $X \cap B(x,r) \neq \emptyset$

Or, $X \cap B(x,r) = X \cap (B(x,r) \cap A) \subset X \cap \Omega$

Donc $X \cap \Omega \neq \emptyset$.

Condition suffisante:

Supposons que $\forall \Omega \in O(A) \setminus \{\emptyset\}, X \cap \Omega \neq \emptyset$.

Soient alors $X \in A$ et r > 0. B(x,r) est un ouvert non vide, donc rencontre X.

Donc $x \in \overline{X}$. Donc $A \subset \overline{X}$.

IV Propriétés de la borne supérieure et topologie de R.

Rappel:

Toute partie X non vide et majorée de $\mathbb R$ admet un plus petit majorant, appelé sa borne supérieure et noté sup X .

Toute partie X non vide et minorée de $\mathbb R$ admet un plus grand majorant, appelé sa borne inférieure et noté inf X.

Chapitre 1 : Ensembles dénombrables, topologie de R, suites numériques Suites et fonctions

Caractérisation:

Soit $X \subset \mathbb{R}$ non vide et $a \in \mathbb{R}$. Alors :

$$a = \sup X \iff \begin{cases} \forall x \in X, x \le a \\ \forall \varepsilon > 0,]a - \varepsilon, a] \cap X \neq \emptyset \end{cases}$$

$$a = \inf X \iff \begin{cases} \forall x \in X, x \le a \\ \forall x \in X, x \ge a \end{cases}$$

$$\forall \varepsilon > 0, [a, a + \varepsilon] \cap X \neq \emptyset$$

A) Théorème de Bolzano-Weierstrass

- Si u est une suite réelle croissante et majorée, alors u converge vers $\sup_{n \in \mathbb{N}} u_n$.
- Si u est une suite réelle décroissante et minorée, alors u converge vers $\inf_{n \in \mathbb{N}} u_n$.
- Si u et v sont deux suites adjacentes (u décroissante, v croissante et $u v \ge 0$ de limite nulle), alors u et v convergent vers la même limite.

Théorème des segments emboîtés :

Si $(K_n)_{n\in\mathbb{N}}$ est une suite de segment de \mathbb{R} , décroissante au sens de l'inclusion, alors $\bigcap_{n\in\mathbb{N}}K_n$ est un segment non vide.

Si de plus la longueur de K_n tend vers 0, alors $\bigcap_{n \in \mathbb{N}} K_n$ est un singleton.

Démonstration:

Posons, pour $n \in \mathbb{N}$, $K_n = [a_n, b_n]$.

Alors $(a_n)_{n\in\mathbb{N}}$ est croissante et majorée, $(b_n)_{n\in\mathbb{N}}$ est décroissante et minorée.

Soit $a = \lim a_n$, $b = \lim b_n$.

Alors
$$x \in \bigcap_{n \in \mathbb{N}} K_n \iff \forall n \in \mathbb{N}, \begin{cases} x \ge a_n \\ x \le b_n \end{cases} \iff \begin{cases} x \ge \sup a_n \\ x \le \inf b_n \end{cases} \iff a \le x \le b.$$

Théorème de Bolzano-Weierstrass:

Toute suite réelle bornée admet au moins une valeur d'adhérence.

Démonstration:

Soit $(u_n)_{n\in\mathbb{N}}$ une suit bornée, a et b des réels tels que $\forall n\in\mathbb{N}, a\leq u_n\leq b$.

On construit une suite K_n de segments de sorte que, pour tout $n \in \mathbb{N}$, $A_n = \{ p \in \mathbb{N}, u_p \in K_n \}$ soit infini :

- On pose $K_0 = [a,b]$. Alors $A_0 = \mathbb{N}$, infini.
- Si on a construit K_n de sorte que A_n soit infini, disons $K_n = [a_n, b_n]$:

On pose
$$J_n = [a_n, \frac{a_n + b_n}{2}], \ J'_n = [\frac{a_n + b_n}{2}, b_n]$$

et $B_n = \{ p \in \mathbb{N}, u_p \in J_n \}, \ B'_n = \{ p \in \mathbb{N}, u_p \in J'_n \}.$

Alors $K_n = J_n \cup J'_n$ et $A_n = B_n \cup B'_n$.

Comme A_n est infini, l'un au moins entre B_n et B'_n l'est.

Si B_n est infini, on pose $K_{n+1} = J_n$ et $A_{n+1} = B_n$, sinon on pose $K_{n+1} = J'_n$ et $A_{n+1} = B'_n$. Donc par construction A_{n+1} est infini.

On vérifie immédiatement par récurrence que $\forall n \in \mathbb{N}, l(K_n) = \frac{b-a}{2^n}$.

Par ailleurs, $(K_n)_{n\in\mathbb{N}}$ est une suite de segments emboîtés de \mathbb{R} dont la longueur tend vers 0. Soit alors l l'unique élément de $\bigcap_{n \in \mathbb{N}} K_n$.

Montrons que l est valeur d'adhérence de u.

Soit $\varepsilon > 0$. Il existe alors $n \in \mathbb{N}$ tel que $\frac{b-a}{2^n} < \varepsilon$.

Alors $K_n \subset B(l, \varepsilon)$.

De plus, A_n est infini.

Donc $\forall p \in \mathbb{N}, \exists q \ge p, q \in A_n$

C'est-à-dire $\forall p \in \mathbb{N}, \exists q \ge p, ||u_p - l|| < \varepsilon$.

Corollaire:

Si X est une partie fermée bornée de \mathbb{R} , alors toute suite de X admet au moins une valeur d'adhérence dans X. On dit dans ce cas que X est une partie compacte de \mathbb{R} .

Démonstration

Soit $(u_n)_{n\in\mathbb{N}}\in X^{\mathbb{N}}$. $(u_n)_{n\in\mathbb{N}}$ est bornée, donc admet une valeur d'adhérence l, qui est nécessairement dans $\overline{X}=X$.

Corollaire 2:

Toute suite complexe bornée admet au moins une valeur d'adhérence.

B) Suites de Cauchy

Définition:

Soit E un evn, et $u \in E^{\mathbb{N}}$. On dit que u est de Cauchy lorsque :

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall (n, p) \in \mathbb{N}^2, (p \ge n_0 \text{ et } q \ge n_0 \Rightarrow ||u_p - u_q|| < \varepsilon)$$

Ou encore: $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \ge n_0, \forall p \in \mathbb{N}, ||u_{n+p} - u_n|| < \varepsilon$

Proposition:

Toute suite convergente de *E* est de Cauchy.

Démonstration:

Soit $(u_n)_{n\in\mathbb{N}}\in E^{\mathbb{N}}$ convergeant vers $l\in E$.

Soit $\varepsilon > 0$. Alors il existe $n_0 \in \mathbb{N}$ tel que $\forall n \ge n_0, ||u_n - l|| \le \frac{\varepsilon}{2}$.

Alors, pour tout $(p,q) \in \mathbb{N}^2$ tels que $p \ge n_0$ et $q \ge n_0$, on a :

$$\left\|u_{p}-u_{q}\right\| \leq \left\|u_{p}-l\right\| + \left\|u_{p}-l\right\| \leq \varepsilon$$

Proposition:

Toute suite de Cauchy dans E est bornée.

Démonstration:

Posons $\varepsilon = 1$. Il existe alors $n_0 \in \mathbb{N}^*$ tel que $q \ge n_0$, $p \ge n_0 \Rightarrow ||u_p - u_q|| \le \varepsilon$

Donc, pour $p \ge n_0$, $||u_p - u_{n_0}|| \le \varepsilon$, soit $||u_p|| \le \varepsilon + ||u_{n_0}||$.

Posons
$$M = \max(\|u_{n_0}\| + 1, \max_{n < n_0} \|u_n\|).$$

Ainsi, par construction, $\forall n \in \mathbb{N}, ||u_n|| \leq M$.

Théorème (Critère de Cauchy):

Toute suite *complexe* est convergente si, et seulement si, elle est de Cauchy.

Démonstration :

Un premier sens a déjà été montré.

Pour l'autre : soit *u* une suite complexe de Cauchy.

Alors u est bornée, donc admet une valeur d'adhérence l.

Montrons que $u \rightarrow l$.

Soit $\varepsilon > 0$. Il existe alors $n_0 \in \mathbb{N}$ tel que $p \ge n_0, q \ge n_0 \Rightarrow ||u_p - u_q|| \le \frac{\varepsilon}{2}$.

Par ailleurs, il existe $p \ge n_0$ tel que $||u_p - l|| \le \frac{\varepsilon}{2}$.

Ainsi, pour $q \ge n_0$, $||u_q - l|| \le ||u_p - u_q|| + ||u_p - l|| \le \varepsilon$.

C) Parties denses de \mathbb{R} .

Proposition:

Soit X une partie de \mathbb{R} .

On a l'équivalence :

X est dense dans $\mathbb{R} \iff X$ coupe tout *intervalle* ouvert non vide de \mathbb{R} .

Démonstration:

⇒ : c'est un cas particulier d'un théorème précédent, étant donné qu'un intervalle ouvert est aussi une partie ouverte.

 \Leftarrow : Supposons que X coupe tout intervalle ouvert non vide de \mathbb{R} . Alors X coupe toute boule ouverte de \mathbb{R} . Donc $\forall x \in \mathbb{R}, x \in \overline{X}$. Donc X est dense dans \mathbb{R} .

Proposition:

Soit G un sous-groupe non vide de $(\mathbb{R},+)$, non nul.

Alors une, et une seule, de ces propriétés est vérifiée :

(1) G est dense dans \mathbb{R} .

(2) Il existe a > 0 tel que $G = a\mathbb{Z}$.

Démonstration:

Posons $a = \inf G^+$ (où $G^+ = G \cap \mathbb{R}^*_{\perp}$)

 1^{er} cas : a > 0.

Montrons déjà que $a \in G^+$:

Supposons que $a \notin G^+$.

Alors $[a,2a] \cap G^+ \neq \emptyset$ puisque $a = \inf G^+$.

Soit alors $x \in [a,2a] \cap G^+$.

Alors $x \neq a$. Soit alors $y \in [a, x] \cap G^+$ (qui est non vide puisque $a = \inf G^+$)

Ainsi, x-y>0 et x-y< a car $x, y \in [a,2a]$.

Enfin, $x - y \in G$ car G est un groupe et $x, y \in G$.

Donc $x - y \in G^+$ et x - y < a, ce qui est impossible car $a = \inf G^+$.

Donc $a \in G^+$.

Montrons qu'alors $G = a\mathbb{Z}$. Soit $x \in G$, et posons $p = \left[\frac{x}{a}\right]$.

Alors $p \le \frac{x}{a} < p+1$, donc $pa \le x < pa+a$.

Soit $0 \le x - pa < a$, donc $x - pa \in G$

Donc x - pa = 0. Donc $x \in a\mathbb{Z}$.

Réciproquement, on a bien $a\mathbb{Z} \subset G$ puisque G contient a et est un groupe.

 $2^{\text{ème}} \text{ cas}$: a = 0.

Montrons qu'alors G rencontre tout intervalle ouvert.

Soient x, y deux réels avec x < y.

Montrons que $G \cap [x, y] \neq \emptyset$.

Déjà, $G^+ \cap]0, y-x[\neq \emptyset \text{ car } 0 = \inf G^+, y-x>0 \text{ et } 0 \notin G^+.$

Soit alors $b \in G^+ \cap]0, y-x[$.

Alors $\left| \frac{x}{b}, \frac{y}{b} \right|$ est un intervalle ouvert, de longueur $\frac{y-x}{b} > 1$, donc contient un entier $p \in \mathbb{Z}$.

Donc $pb \in G \cap]x, y[$ (car $b \in G^+$ et G est un groupe donc $pb \in G$, et de plus par construction $pb \in [x, y[$ donc pb est dans l'intersection)

Donc G est dense dans \mathbb{R} .

Conséquence :

Q est dense dans R.

Soient a et b deux réels avec b non nul. Alors $H = a\mathbb{Z} + b\mathbb{Z}$ est dense dans \mathbb{R} si et seulement si $\frac{a}{b} \notin \mathbb{Q}$. En effet :

Supposons que $H = c\mathbb{Z}$ où $c \in \mathbb{R}^*$ (ainsi, H n'est pas dense dans \mathbb{R})

Comme $a, b \in H$, il existe $(p,q) \in \mathbb{Z}^2$ tel que a = pc et b = qc.

Comme $b \neq 0$, on a $q \neq 0$, et $\frac{a}{b} = \frac{p}{q} \in \mathbb{Q}$.

- Supposons maintenant que $\frac{a}{b} \in \mathbb{Q}$

Soit alors $x \in H$. Il existe $(n, m) \in \mathbb{Z}^2$ tels que x = na + mb.

Soit $(p,q) \in \mathbb{Z}^2$ tel que $\frac{a}{b} = \frac{p}{q}$. Ainsi, $x = b(n\frac{a}{b} + m) = b(n\frac{p}{q} + m) = \frac{b}{q}(np + mq)$

Donc $x \in \frac{b}{q} \mathbb{Z}$.

Donc $H \subset \frac{b}{q} \mathbb{Z}$. Donc H n'est pas dense dans \mathbb{R} .

D'où l'équivalence.

V Limites et continuité

Soient E, F des evn.

A) Limite d'une fonction en un point

Soit A une partie de E, $f: A \to E$, a un point adhérent à A et b un point de F.

Définition:

On dit que la fonction f admet le point b pour limite au point a lorsque, pour tout voisinage V de b dans F, il existe un voisinage W de a dans E tel que $W \cap A \subset f^{-1}(V)$

Ou encore lorsque :
$$\forall \varepsilon > 0, \exists r > 0, \forall x \in A, ||x - a|| \le r \Rightarrow ||f(x) - b|| \le \varepsilon$$

Ou:
$$\forall \varepsilon > 0, \exists r > 0, \overline{B}(a,r) \cap A \subset f^{-1}(\overline{B}(b,\varepsilon))$$

Si $a \in A$, on dit alors que f est continue en a.

Théorème (caractérisation séquentielle des limites):

La fonction f admet b pour limite en a si et seulement si l'image par f de toute suite de limite a est une suite de limite b.

Démonstration:

- Supposons que $f \to b$. Soit $u \in A^{\mathbb{N}}$, supposons que $u \to a$.

Soit $\varepsilon > 0$. Il existe alors r > 0 tel que $\forall x \in A, ||x - a|| \le r \Rightarrow ||f(x) - b|| \le \varepsilon$.

Il existe aussi $n_0 \in \mathbb{N}$ tel que $\forall n \in \mathbb{N}, n \ge n_0 \Rightarrow ||u_n - a|| \le r$.

Donc, si
$$n \ge n_0$$
, $||u_n - a|| \le r$, d'où $||f(u_n) - a|| \le \varepsilon$.

Donc
$$f(u_n) \xrightarrow[n \to +\infty]{} b$$

- Dans l'autre sens : montrons la contraposée.

Supposons que $non(f \rightarrow b)$.

Il existe alors $\varepsilon > 0$ tel que $\forall r > 0, \exists x \in A, ||x - a|| \le r \text{ et } ||f(x) - b|| > \varepsilon$.

Posons alors, pour $n \in \mathbb{N}$, $x_n \in A$ tel que $||x_n - a|| < \frac{1}{2^n}$ et $||f(x_n) - a|| > \varepsilon$.

Alors
$$x_n \xrightarrow[n \to +\infty]{} a$$
 et $non(f(x_n) \xrightarrow[n \to +\infty]{} b)$.

Conséquences:

La limite de *f* en *a*, si elle existe, est unique.

Les théorèmes opératoires classiques sont vérifiés.

B) Relation de comparaison, développements limités

- Dans le cadre réel : voir cour de sup
- Dans le cadre général : plus tard.

C) Applications continues

Soit A une partie de E, et $f: A \rightarrow E$ une application.

Définition:

On dit que f est continue si f est continue en tout point de A.

Théorème:

Si X est une partie dense de A et si f est continue, alors $f_{/X} = 0 \Rightarrow f = 0$.

Démonstration:

Supposons que $f_{/X} = 0$. Soit $a \in A$.

Comme $A \subset \overline{X}$, il existe $(x_n)_{n \in \mathbb{N}} \in X^{\mathbb{N}}$ tel que $x_n \xrightarrow[n \to +\infty]{} a$.

Donc
$$f(x_n) \xrightarrow[n \to +\infty]{} f(a)$$
. Or, $\forall n \in \mathbb{N}, f(x_n) = 0$. Donc $f(a) = 0$.

Conséquence:

Plus généralement, si f et g sont deux fonctions continues qui coïncident sur une partie dense de A, alors elles sont égales.

Théorème:

Les propositions suivantes sont équivalentes :

- (1) f est continue sur A.
- (2) L'image réciproque par f de tout ouvert de F est un ouvert de A.
- (3) L'image réciproque par f de tout fermé de F est un fermé de A.

Démonstration:

 $(1) \Rightarrow (2)$:

Soit f continue sur A.

Soit Ω un ouvert de F, et soit $a \in f^{-1}(\Omega)$. On note b = f(a).

Comme f est continue en a, il existe un voisinage W de a tel que $W \cap A \subset f^{-1}(\Omega)$.

Or,
$$W \cap A \in V_A(a)$$
. Donc $f^{-1}(\Omega) \in V_A(a)$.

Comme c'est valable pour tout a, $f^{-1}(\Omega)$ est un ouvert de A.

$$(2) \Rightarrow (1)$$
:

Soit $a \in A$, posons b = f(a).

Pour tout $\varepsilon > 0$ est un ouvert de F.

Donc $f^{-1}(B(b,\varepsilon))$ est un ouvert de A contenant a.

Il existe donc r > 0 tel que $B(a,r) \cap A \subset f^{-1}(B(b,\varepsilon))$

C'est-à-dire
$$\forall x \in A, ||x-a|| < r \Rightarrow ||f(x)-b|| < \varepsilon$$
.

Enfin:

$$(2) \Leftrightarrow \forall \Omega \in O(F), f^{-1}(\Omega) \in O(A)$$

$$\Leftrightarrow \forall X \in F(F), f^{-1}(C_F(X)) \in O(A)$$

$$\Leftrightarrow \forall X \in F(F), C_A(f^{-1}(X)) \in O(A)$$

$$\Leftrightarrow \forall X \in F(F), f^{-1}(X) \in F(A)$$

$$\Leftrightarrow \forall X \in F(F), f^{-1}(X) \in F(A)$$

$$\Leftrightarrow$$
 (3)

Théorème:

Si $f:A\to F$ est continue, alors son graphe G_f est un fermé de $A\times F$.

Note: On se donne sur $E \times F$ la norme $\|(x, y)\|_{E \times F} = \sup(\|x\|_E, \|y\|_F)$.

Démonstration:

Soit $\varphi: A \times F \to F$. Montrons que φ est continue.

Soient $(x_0, y_0) \in A \times F$ et $\varepsilon > 0$.

Il existe alors r > 0 tel que $\forall x \in A, ||x - x_0|| < r \Rightarrow ||f(x) - f(x_0)|| \le \frac{\varepsilon}{2}$

Donc $\forall (x, y) \in A \times F$,

$$\|(x,y) - (x_0, y_0)\| \le \min(r, \frac{\varepsilon}{2}) \Rightarrow \|(y - f(x)) - (y_0 - f(x_0))\| \le \|y - y_0\| + \|f(x) - f(x_0)\|$$

$$\le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \le \varepsilon$$

Donc φ est continue.

Or, $G_F = \{(x, y), y = f(x)\} = \varphi^{-1}(\{0\})$. Donc G_F est fermé, puisque c'est l'image réciproque d'un fermé par une application continue.

Définition:

Soient A et B deux parties de E, et $f: A \to B$ une application. On dit que f est un homéomorphisme lorsque f est continue, bijective et lorsque f^{-1} est continue.

Remarque:

L'homéomorphisme f échange les ouverts (resp. les fermés) de A et B.

D) Théorème du point fixe

Soit A une partie de E, et $f: A \to E$ telle que $f(A) \subset A$, et soit $a \in A$.

Alors il existe une unique suite
$$(u_n)_{n\in\mathbb{N}}$$
 telle que :
$$\begin{cases} u_0 = a \\ \forall n \in \mathbb{N}, u_{n+1} = f(u_n) \end{cases}$$

Proposition:

Avec les notations précédentes, si $(u_n)_{n\in\mathbb{N}}$ converge dans A, alors sa limite est un point fixe de f.

Démonstration :

Si
$$u_n \xrightarrow[n \to +\infty]{} l$$
 où $l \in A$, alors par continuité $f(u_n) \xrightarrow[n \to +\infty]{} f(l)$, c'est-à-dire $u_{n+1} \xrightarrow[n \to +\infty]{} f(l)$, donc $l = f(l)$.

Dans la suite du chapitre, on supposera que $E = \mathbb{R}$ ou \mathbb{C} .

Théorème:

Si $f: A \to E$ vérifie les conditions :

- (1) $f(A) \subset A$ fermée
- (2) f est contractante $(\exists k \in]0; 1[, \forall (x, y) \in A^2, |f(x) f(y)| \le k|x y|)$

(C'est-à-dire que f est k-lipschitzienne pour un k < 1)

Alors f possède un unique point fixe dans A.

De plus, tout suite $(u_n)_{n\in\mathbb{N}}$ de A telle que $u_{n+1}=f(u_n)$ converge vers ce point fixe.

Démonstration:

• Soit $(u_n)_{n \in \mathbb{N}}$ une suite de points de A telle que $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.

Alors pour tout
$$n \in \mathbb{N}$$
, $|u_{n+2} - u_{n+1}| = |f(u_{n+1}) - f(u_n)| \le k|u_{n+1} - u_n|$

D'où, par récurrence, $|u_{n+1} - u_n| \le k^n |u_1 - u_0|$.

Ainsi, u est de Cauchy. En effet :

Soit $n_0 \in \mathbb{N}$.

Alors, pour $n \ge n_0$ et $p \in \mathbb{N}$:

$$\left|u_{n+p} - u_n\right| \le \sum_{k=n}^{n+p-1} \left|u_{k+1} - u_k\right| \le \sum_{k=n}^{n+p-1} k^i \left|u_1 - u_0\right| \le \left|u_1 - u_0\right| \frac{k^n - k^{n+p}}{1 - k} \le \frac{\left|u_1 - u_0\right|}{1 - k} k^{n_0}$$

Ainsi, si on fixe $\varepsilon > 0$, on peut choisir n_0 tel que $\frac{|u_1 - u_0|}{1 - k} k^{n_0} \le \varepsilon$

Et on a alors, pour $n \ge n_0$ et $p \in \mathbb{N}$, $\left| u_{n+p} - u_n \right| \le \varepsilon$

Donc $(u_n)_{n \in \mathbb{N}}$ converge dans $E (= \mathbb{R} \text{ ou } \mathbb{C})$

Comme la partie A est fermée, sa limite est dans A, qui est alors un point fixe de f. D'où l'existence du point fixe.

• Soient a et b deux points de A fixes par f.

Alors
$$|a-b| = |f(a)-f(b)| \le k|a-b|$$
.

Donc $(1-k)|a-b| \le 0$, et comme $|a-b| \ge 0$ et k < 1, on a |a-b| = 0.

D'où l'unicité.

• Vitesse de la convergence :

On montre par récurrence que si $(u_n)_{n\in\mathbb{N}}$ vérifie $\forall n\in\mathbb{N}, u_{n+1}=f(u_n)$, alors, pour tout $n\in\mathbb{N}$, $|u_n-a|\leq k^n|u_0-a|$.

E) Etude générale des suites récurrentes

Soit I un intervalle de $\mathbb{R},\ f:I\to\mathbb{R}$, et $(u_n)_{n\in\mathbb{N}}$ définie par $\begin{cases} u_0 \\ \forall n\in\mathbb{N}, u_{n+1}=f(u_n) \end{cases}$.

- Vérifier que $(u_n)_{n \in \mathbb{N}}$ est définie :
- Si I est stable par f
- Sinon, tout dépend de u_0 ; on peut cherche des sous—intervalles stables par f.
- Rechercher les points fixes de f.

On suppose f dérivable au point fixe a:

- Si |f'(a)| < 1, on a un point fixe attractif.

Si 1 > k > |f'(a)|, il existe $V \in V_A(a)$ tel que $\forall x \in V, |f(x) - a| \le k|x - a|$

- Si |f'(a)| > 1, on a un point fixe répulsif. $u \to a \Leftrightarrow u$ est stationnaire en a.
- Le cas |f'(a)| = 1 est un cas litigieux.
- Etudier la monotonie de *f* :
- Si f croît, la suite $(u_n)_{n\in\mathbb{N}}$ est monotone.
- Si f décroît, les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont monotones de sens contraire.
- Etudier le signe de $\varphi(x) = x f(x)$.
- Si $\varphi \le 0$, $(u_n)_{n \in \mathbb{N}}$ croît.
- Si $\varphi \ge 0$, $(u_n)_{n \in \mathbb{N}}$ décroît.
- Chercher une majoration ou une minoration de $(u_n)_{n \in \mathbb{N}}$.