Siddharth Mishra-Sharma (MIT/IAIFI) | IAIFI Summer School

Continuous-time normalizing flows

Parameterize the transformation by a neural ODE

instantaneous change	e-ot-variable formula
$\frac{\mathrm{d}\log p(x(t))}{\mathrm{d}t} =$	$-\operatorname{Tr}\left(\frac{\mathrm{d}f}{\mathrm{d}x(t)}\right)$

ODE with reversible dynamics

DDE with reversible dynamics
$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x(t))$$

Cons 😂

- Need for efficient trace calculation

- Solving an ODE and backpropping through the solution can
 - make for cumbersome training

Pro 🔽 Unrestricted form of transformation f(x)!

Continuous-time normalizing flows

Parameterize the transformation by a neural ODE

ODE with reversible dynamics

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x(t))$$

Instantaneous change-of-variable formula

$$\frac{\mathrm{d} \log p(x(t))}{\mathrm{d}t} = -\operatorname{Tr}\left(\frac{\mathrm{d}f}{\mathrm{d}x(t)}\right)$$

Unrestricted form of transformation f(x)!

Cons 😂

- Need for efficient trace calculation
- Solving an ODE and backpropping through the solution can make for cumbersome training

Simulation-based inference (SBI)

