Assignment 3 (10/2)

Subhadip Chowdhury

Problem 1

Give an $\epsilon - \delta$ proof of the following: $\lim_{x \to 1} \frac{3x+2}{5} = 1$.

Follow this proforma to write the proof: For example, let's show that $\lim_{x\to 0} (2x+1) = 1$. *Proof*: Let us take an arbitrary $\epsilon > 0$. We want to prove that there exists $\delta > 0$ such that

$$0 < |x - 0| < \delta \implies |2x + 1 - 1| < \epsilon$$
.

So, we want to find a δ such that $0 < |x| < \delta$ implies $|2x| < \epsilon$. Clearly it suffices to take $\delta = \frac{\epsilon}{2}$, since that would imply

$$|x| < \frac{\epsilon}{2} \implies |2x| < \epsilon.$$

[Proved]

Couple of notes:

- In these proofs, your main goal is to find a δ that works.
- δ depends on ϵ . But ϵ does not depend on anything. We only know that $\epsilon > 0$.
- We are finding a δ such that the 'implication', i.e. the following claim:

$$0 < |x - c| < \delta \implies |f(x) - l| < \epsilon$$

is true. It is not enough for only one of the above two statements to be true, we need to show that one *implies* the other.

- δ is a function of ϵ , but not necessarily bigger or smaller than ϵ .
- For an ϵ , there might be multiple values of δ which work. For example, in the above proof, if we had chosen $\delta = \epsilon/4$, the proof would still work. We will then write

$$|x| < \frac{\epsilon}{4} \implies |2x| < \epsilon/2 \implies |2x| < \epsilon$$

since $\epsilon > 0$.

Problem 2

Give $\epsilon - \delta$ proofs of the following: 2.2.(49, 53, 58).

Problem 3

Let $\lim_{x\to c} f(x) = L$. Prove that $\lim_{x\to c} |f(x)| = |L|$.

Problem 4

Problems 2.3.(45, 46).

Problem 5 (Extra Credit)

Let $h(x) = \max\{f(x), g(x)\}$. If $\lim_{x \to c} f(x) = L$ and $\lim_{x \to c} g(x) = M$, then find $\lim_{x \to c} h(x)$. You may assume the result of problem 2.3.52.

[HINT: Triangle inequality]

Problem 6

Problems 2.4.(12, 29, 34, 37).

Problem 7

Let

$$f(x) = \frac{x^2 - 4}{x^2 - x - 2}.$$

Find the values of x where f(x) is discontinuous. Justify your answer by evaluating appropriate limits (or showing that the limits do not exist).

Classify each of the discontinuities of f as either a removable or an essential discontinuity. For any removable discontinuities, give a value for the function that would make it continuous at those points.