

Understanding, Predicting and Preventing bias

(through cognitive and individual differences psychology)

Dr Matthew Welsh

Australian School of Petroleum and Energy Resources

University of Adelaide

Current Role(s)

- Senior Research Fellow
 - Australian School of Petroleum and Energy Resources
 - Industry Decision Making

- Tutor, Lecturer and Course Coordinator
 - ASPER and School of Psychology
 - Decision Making, Individual Differences & Human Factors

My Background

- B.A. (Hons) in Philosophy
- B.Sc. (Hons) in Psychology
- Ph.D. in Psychology
 - Structure and genetic basis of intelligence
- Graduate Certificate in Education (Higher)
- Currently getting my M.Psych. (Organisational & Human Factors)

Research Work pre-ASPER

- Networked Fire Chief
 - Ted Nettelbeck and Vanessa Mills (DST)
 - Communication architectures
 - Naturalistic decision making
- Decision Making
 - Michael Lee and Brandon Pincombe (DST)
 - Modelling decision making
 - Document similarity judgements
 - Optimal stopping rules for searches

Research Work ASPER

- Psychological Aspects of Decision Making
 - Steve Begg and Reidar Bratvold
 - Decision Analytic approach
- Heuristics and Biases
 - Understanding
- Elicitation Methods
 - Preventing
- Individual Differences
 - Predicting

What are Biases?

- Systematic deviations from normative decision making
- Motivational
 - Resulting from deliberate choices
 - Misaligned incentives
- Cognitive
 - Resulting from normal human cognition
 - Cognitive shortcuts and limitations

Cognitive Biases

- Tversky & Kahneman (1974) Heuristics and Biases
 - Named 3 heuristics and accompanying biases
 - since then....

Knowing vs Understanding

- We have named many more biases
 - Described how they affect people (in general)
 - Under what conditions
- Do we understand them?
 - Why do they occur?
 - Can we avoid them?
 - Who is most susceptible?
- If so, we could
 - Select good decision makers
 - Predict biases
 - Avoid them

Individual Differences in Biases

- Seeing is Believing (Welsh & Navarro, 2012)
 - Base Rate Neglect Experiments
 - Tendency for people to ignore base rates when given new information
 - Seeing if people are sensitive to the quality of base rates
 - Gave them base rate of 25%, new data suggesting a 75% rate and varied the reasons to distrust the base rate
 - Concluded they were sensitive to data quality
 - Greater trust in base rate
 - => closer to 'optimal' solution
 - But....

Individual Difference in Base Rate Neglect

- Looking at the data closely people weren't combining the probabilities in expected ways
- Most were changing which number they were relying on or taking a simple average
- Looking at individual results suggested different strategies not captured by a simple definition

Solution Types

- Base Rate Neglect
 - Ignore base rate in favour of new data (choose 75)
- Base Rate Overreliance
 - Ignore new data in favour of base rate (choose 25)
- Mathematical Combination
 - Combine old and new rate average, subtract or multiply (50, 50 or 18.75)
 - WORSE results than just ignoring the new data
- Bayesian Solution
 - Use Bayes Theorem to update probability

Implications

- Follow-up work
 - Mathematically inclined people more likely to combine rates
 - Did not always give better outcomes
- Better strategy => worse outcome
 - Depending on initial problem set-up
- Individual differences predicted what people would do
 - Not always how well they performed
- => Thinking about how to integrate bias and individual difference work

Experimental vs Psychometric Psychology

- Cronbach (1957) noted two disciplines of scientific psychology
- Experimental: experimenter limits external factors by matching groups and manipulating single factors
 - Looking for commonalities in behaviour
- Correlational: researcher examines pre-existing differences on traits and looks for the relationships amongst them
 - Looking for differences in behaviour
- But they don't communicate....

Calls to close the gap...

- McNemar (1964)
- Eysenck (1967)
- Owens (1968)
- Carroll, Glaser & Pellegrino (1978)
- Sternberg (1978)
- Eysenck (1995)
- Kyllonen (1996)
- Caroll (1998)
- Gustaffson (1999)
- Deary (2001)

Previous Individual Differences & Bias work

- Heuristics & Biases approach is cognitive/experimental
 - Looking for what 'people' do
- Not useful for selection of personnel
- Individual differences work has been patchy

Intelligence and Decision Making

- Stanovich & West (1998, 2008)
 - Argue intelligence and 'thinking biases' are largely independent
 - That intelligence tests don't assess 'rationality'
- Frederick (2005)
 - Cognitive Reflection Test
 - A bat and a ball together cost \$1.10...
 - Predicts decision ability better than intelligence
- Measures of intelligence
 - Self-reported SAT and ACT scores
 - Wonderlic Personnel Test

$$X+Y = $1.10$$

 $X-Y = 1.00
 $Y = ?$

Cattell-Horn-Carroll Model of Intelligence

(Missing g-to-broad ability arrows acknowledges that Carroll and Cattell-Horn disagreed on the validity of the general factor)

CHC Broad (Stratum II) Ability Domains

Gf	Fluid reasoning	Gkn	General (domain-specific) knowledge		
Gc	Comprehension-knowledge	Gh	Tactile abilities		
Gsm	Short-term memory	Gk	Kinesthetic abilities		
GV	Visual processing	Go	Olfactory abilities		
Ga	Auditory processing	Gp	Psychomotor abilities		
Gir	Long-term storage and retrieval	Gps	Psychomotor speed		
Gs	Cognitive processing speed		**************************************		
Gt	Decision and reaction speed	(see Table 1 for definitions)			
GIW	Reading and writing				
Ga	Quantitative knowledge				

From McGrew (2009)

Unitary Model

Benefits of using Hierarchical Model

- Clarify relationships by direct measurement of mediating variables
- Broad abilities map onto cognitive processes
 - *Gsm* ≈ short term memory
 - *Glr* ≈ retrieval from long term memory
 - *Gc* ≈ long term memory
- Predictions of which biases will relate to which abilities
- Pattern of correlations can point to biases' modes of action

Example: Overconfidence

- Overconfidence (overprecision)
 - Producing ranges that capture true/future values less often than expected
 - Asked for ranges people are 80% confident in yields ~40% accuracy
- Capen (1976) tested oil industry people's overconfidence
 - Ranges expected to contain 80% of true values captured: 32.9%
- Norwegian oil production data (2018)
 - Ranges expected to contain 80% of true values captured: 45.8%
- Why so little improvement?
 - People resist efforts to reduce their overconfidence
 - Maybe we don't understand WHY they are overconfident

Causes of Overconfidence

- Informativeness
 - Preference for best guesses over ranges
 - A) Mt Everest is between 7 and 8 km high
 - B) Mt Everest is between 5 and 15 km high
 - Prefer A over B even knowing it's wrong
 - Because it is more *informative* of where that person's best guess is.
- Memory effects

Memory and Overconfidence

- Naïve Statistician
 - Overconfidence caused by limited sampling within short term memory
 - .: expect stronger link with Gsm

- Misremembering
 - Memories encoded incorrectly
 - Failure to recall information accurately

Memory, Hindsight Bias and Overconfidence

- Hindsight Bias
 - People update their memories when new information arrives
 - I.e., they "remember" predicting things they didn't predict
 - Increasing their confidence...
 - .: expected stronger link with Gc or Glr

- This is a feature, not a bug
 - Updating your understanding of the world is necessary
 - Keeping old, incorrect expectations is cognitively expensive

Individual Differences in Memory

- Bias research is based in cognitive psychology
 - Concerned with typical or universal behaviours
 - Not differences between people
 - Has used 'blunt' measures of ability
- Do individual differences in memory correlate with overconfidence?
 - Relationships could help isolate the cognitive causes of bias
 - Memory Processes ≈ Broad Cognitive Abilities (CHC Model)

Overconfidence & Intelligence

- N=300
- Broad ability factors derived from sets of cognitive ability tests
 - Gc. Crystallized
 - Glr. Long Term Retrieval
 - Gsm. Short Term Memory

Gc	Glr	Gsm
.23***	.20***	.13*

Conclusion

- Overconfidence is linked to Hindsight Bias
 - Correlation between these is 0.37
 - Both biases predicted by Long Term Memory
 - Gc crystallized intelligence
 - Glr retrieval fluency
- Naïve Statistician model is not supported
 - Gsm Short term memory doesn't have much effect
 - Correlation goes away if fluid ability, Gf, is controlled for
- Incorporating individual differences clarifies underlying structure

Other Biases

	Gf	Gc	Glr	Gq	Gsm			
Illusory Correlations	.47***	.34***	.18**	.39***	.16**			
Sample Size Invariance	.28**	.17**	.10	.28**	.08			
Confirmation Bias	.23**	.17**	.15**	.17**	.13*			
Outcome Bias	01	.14*	03	02	03			
Base Rate Neglect	.23**	.04	.01	.35***	.28**			
Anchoring	.12*	.10	.00	.16**	.09			
Availability (Rare events)	.26***	.37***	.35***	.16**	.03			
* p <.05, ** p <.01, *** p <.001								

Conclusions

- Overly simple models of intelligence can obfuscate relationships
- Different broad abilities predict different biases
- Incorporating individual differences allows us to:
 - More accurately predict susceptibility to particular biases
 - Test alternative hypotheses about causes of bias
 - Gain insight into underlying cognitive processes
 - Gain insight into the taxonomy of biases

What's next?

- Incorporating individual difference with biases
 - Improves our understanding of the nature of bias
 - And our ability to predict performance
- Improving Debiasing and Elicitation
 - Interventions requiring people to override core cognitive processes are unlikely to work
 - As are those targeting the wrong processes (e.g., STM for overconfidence)
 - Interventions that understand and take account of the processes involved should be more effective

CRICOS PROVIDER NUMBER 00123M