

KUBIG 2023-1

겨울방학 자연어처리(NLP) 분반

WEEK 1

CONTENTS

Part 1 스터디OT

- 스터디 안내
- 사용 교재, 주차 별 커리큘럼
- 과제 진행 방식

1 스터디 OT

예시) 6주차 전반부 | 제성 - Attention, Transformer 복습 발표 중반부 | BERT / BART 진도 후반부 | BERT / BART 관련 예습 코드 리뷰

예습 과제 코드 공유, 피드백 - - -

복습 과제 발표

30분

강의식 스터디

1시간 15분

예습 과제 코드리뷰

15분

매주 한 명씩 돌아가면서 지난주 공부 내용 복습

Ex) 교재 내용 요약, 관련 강의 내용 요약,

관련 논문 소개, 코드 구현 발표

1 스터디 OT

스터디 교재

밑바닥부터 시작하는 딥러닝 2

┃ 딥러닝을 이용한 자연어 처리 입문

Stanford CS224N

고려대학교 DSBA 연구실

<u>1</u> 스터디 OT

커리큘럼

주차	복습과제	진도	예습과제			
1주차 1/12		스터디 OT 딥러닝 복습				
2주차 1/19	- 지난 주차시에 배운 내용 관련해서 교재 내용 or 논문 or 강의 자료	텍스트 전처리 언어 모델	- 다음 주차시에 배울 내용과 관련해			
3주차 1/26	자유롭게 복습 정리	워드 임베딩 : Word2Vec GloVe ELMo	서 실습 코드 제공 - 그대로 클론 코딩 해봐도 좋고 실습			
4주차 2/2	- 2~3회 정도 추가 코딩 구현 과제 나 † 갈 예정 (선택)	순환 신경망 : RNN LSTM	파일에 주어진 데이터 이외에의 데 이터를 갖고와 다양한 시도를 해봐			
5주차 2/9	- 수업 시작 전 복습 과제 발표 (1~2명)	Attention Transformer	도 좋습니다 - <mark>마감기한 : 수요일 오후 6시까지</mark>			
6주차 2/16	- 마감기한 : 세션 시작 전까지	BERT BART				
7주차 2/23		GPT				
쿠빅 콘테스트 3/2						

Part 2 찬해지길바라

2 친해지길바라!

자기소개

김태영 엄기영

김희준 이영노

민윤기 임청수

박민규 최규빈

박종혁 하예은

반민정 홍여빈

기본 인적사항 이름 / 학과 / 나이 / 사는 곳 쿠빅 기수

NLP에 분반에 들어오게 된 계기 (관련 프로젝트 경험 / 관심 있는 분야 ···) + NLP 이해도 (상-중-하) 취미 (유튜브 / 산책 / 되도록 겹치지 않고 다양하게 이야기해주세요 ⓒ)

가보자고

0,0

! 오늘의 TMI!

Part 3 1주차강의

· 딥러닝 복습

0 딥러닝 개요

머신러닝

Example: Housing Price Prediction

House (X_n) size |age | # room | location | Price (Y_n)

0 딥러닝 개요

Data

Algorithms

Computation

Perceptron

- Outputs: Y

- Weights: $W = [W_1 W_2 W_3 ... W_n]$

- Bias: W_0 (b)

			ι, 🕇
	OR		
$I_{1}=$	l ₂	out	(4.0)
0	0	0	(1, 0) (1, 1)
0	1	1	
1	0	1	
1	1	1	
			(0, 0) (0, 1)

			ч Т	•		
	XOR		\cup			
I,	l ₂	out	(1.0)		(1, 1)	
0	0	0	(1, 0)) 	·-··	
0	1	1		` ``		
1	0	1	1	∖		
1	1	0		/.		
			(0, 0)	\rightarrow	(0, 1)	

⇒ Perceptro	n layer	하나만으로는	는 복	잡한	문제를
해결할 수	없다				

Mutli-Layer Perceptron

https://paperswithcode.com/methods/category/activation-functions

Activation Functions

Sigmoid

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0,x)$

$$x$$
 $x \ge 0$ $\alpha(e^x - 1)$ $x < 0$

"Non-linearity"

Neural Network ~ Fully Connected Networks ~ Multi-Layer Perceptron ~ Feed Forward Network

Parameter Update

$$\operatorname{argmin}_{W} L(w) = \operatorname{loss}(f_{W}(X_{n}), y_{n})$$

$$w_j \leftarrow w_j - \alpha \frac{\partial}{\partial w_j} L(W)$$

△매우 복잡한 행렬 계산 포함 △ Loss 값 업데이트 시 재계산량 매우많음

Backpropagation

$$f(x, y, z) = (x + y)z$$

e.g.,
 $x = -2, y = 5, z = -4$
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Backpropagation (Try it!)

(Practice) 1-Layer Neural Net with MSE Regression Loss

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_D \end{bmatrix}, \mathbf{W} = \begin{bmatrix} \mathbf{w}_1^T \\ \mathbf{w}_2^T \\ \vdots \\ \mathbf{w}_M^T \end{bmatrix} = \begin{bmatrix} w_{11} & w_{12} & \cdots & w_{1D} \\ w_{21} & w_{22} & \cdots & w_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ w_{M1} & w_{M2} & \cdots & w_{MD} \end{bmatrix}, \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_M \end{bmatrix}, \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_M \end{bmatrix}$$

- Linear projection: z = Wx + b
- Activation function:

$$p = g(z) = \frac{1}{1 + \exp(-z)}$$

• Loss function: $L = \|\mathbf{y} - \mathbf{p}\|^2$

$$\frac{\partial L}{\partial \mathbf{p}} = \frac{\partial L}{\partial \mathbf{z}} = \frac{\partial L}{\partial \mathbf{z}}$$

$$\frac{\partial L}{\partial W} =$$

$$\frac{\partial L}{\partial \mathbf{b}} =$$

Activation Function

△Gradient Vanishing

- -> saturated nerouns kill the gradients
- △Non zero centered
- -> always all positive or all negative
- △ exponential -> expensive computation

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

$$x$$
 $x \ge 0$ $\alpha(e^x - 1)$ $x < 0$

2 Training Strategy

Batch Normalization

▷ Mini-batch ~ 계산 효율성

Omyo_blog

1Epoch | 1 번의 학습

Batch_size = 100

1Epoch = 10(iteration) x 100(batch_size) 따라서, 총 10번의 기계학습이 실행되었으며, Iteration 기준 100번의 기계학습이 실행되었다.

https://m.blog.naver.com/cdi098/222048256037

- ⇒ easier to train
- ⇒ improves gradient flow
- ⇒ higher learning rate, faster convergence

하나의 배치 내의 평균값과 분산값을 활용하여 정규화 진행

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\};$

Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i)$$
 // scale and shift

*감마와 베타는 추가적인 학습을 통해 얻는 스케일 파라미터

2 Training Strategy

Learning Rate

Linear : $a_+ = a(1 - t/T)$

Inverse Sqrt : $a_+ = a/\sqrt{t}$

큰 값에서 점차 줄여나가며 찾기

Hyperparameter Optimization

- Single validation rather than multiple folds
- Random search > grid search
- Search on log-scale for learning rate and regularization strength

Optimization

- SGD + Momentum
- Nesterov Momentum
- AdaGrad
- RMSProp
- Adam
- BFGS

Test Error Improvment

- 1) Early Stopping : 과적합이 발생하기 전, 즉 validation set의 accuracy가 감소하기 직전에 학 습 멈춤
- 2) Model Ensemble
- 3) Regularization
 - Dropout : 무작위로 뉴런을 0으로 설정(prob = 0.5)
 - DropConnect : 무작위로 weight를 제거
 - Fractional Pooling (max pooling ..)
 - Cutout, MixUp : test시에는 온전한 이미지 활용

2 Training Strategy

Transfer Learning

+ 내가 원하는 데이터 =>

Pre-train

Fine-tuning

형태소 분석 문법 음성학 형태론

문장 유사도 분류 감정 분석 질의응답 자연어 추론

자연어 처리 Natural Language Processing

질문은 언제나 늘 환영입니다! 같이 공유하고 고민해봐요 :)

이런저런 아이디어가 떠오르면 맘먹고 도전해보세요!

내가 공부한 건 꼭 기록해보기!

복습과제

O pytorch tutorial 4가지 task https://pytorch.org/tutorials/beginner/deep learning 60min blitz.html

○ <밑바닥부터 시작하는 딥러닝2> Ch1. 신경망 복습 – 따라 구현 해보기 (선택)

다음주 진도

○ <딥러닝을 이용한 자연어처리 입문> Ch2. 텍스트 전처리 Ch3. 언어 모델

○ <밑바닥부터 시작하는 딥러닝2> Ch3. word2vec

예습과제

○ IMDB 영화 리뷰 감정 분석

수고하셨습니다!

Contact

15기 김제성

☑ <u>rlawptjd1409@korea.ac.kr</u>
② 010-2609-5046