Clocks, order of events

Source:

- IB Distributed System
- y2014p5q7

Clock	Physical	Logical
measure	seconds	events with causality
example	analogue/mechanic digital: Quartz (drift) Atomic, GPS	Lamport Vector

Physical Clock

Time-of-day and Monotonic

Physical Clock	Real Time	Monotonic
since	a fixed date time	arbitrary point (start-up)
correction	$slew \implies step$	always slew forward
behaviour	human readable; compare ts among nodes if sync	measure elapsed time on a single node
usage	certificate time	measure intervals / timeouts

Synchronization

The time of a clock in a machine p is $C_p(t)$, frequency/rate of a clock is $C_p^\prime(t)$

• perfect clock $\Leftrightarrow C_p(t) = t$

Clock skew / offset

- the difference between the time on two clocks
- ullet skew $\Delta_s = C_a(t) C_b(t)$ (ms)
- ullet measure: RTT δ , Cristian's Algorithm wiki
 - o assumption:
 - symmetric latency
 - not consider the derivative of the clock (i.e. drift) or higher derivatives
- correction
 - \circ as Δ_s increases, $slew \implies step \implies panic$

Clock drift

- the difference of clock rate of oscillations / ticks
- drift $\Delta_d=C_a'(t)-C_b'(t)=\Delta_s(t_1)-\Delta_s(t_2)$ (ms/day, parts per million) affected by temperature, etc.
- measure: Cristian's Algorithm twice
 - o assumption
 - symmetric latency
 - not considering the second or higher derivatives of the clock

NTP / PTP (Stratum 0-2)

- Less accurate synchronization
 - Time source (higher stratum)
 - Assumption of Cristian's Algorithm

Logical Clock

- ullet causal / happen-before dependency $e_1
 ightarrow e_2$
 - \circ e_1 and e_2 occurred at the same node, different by execution time
 - $\circ \ e_1$ is sending message to e_2
 - \circ transitivity, $\exists e_3.(e_1 \rightarrow e_3) \land (e_3 \rightarrow e_2) \implies e_1 \rightarrow e_2.$
 - o (strict) partial order, asymmetric, undefined when race condition has occurred $e_1 \| e_2$
- logical clock timestamp is consistency with causal dependency
 - But lamport may not get causal dependency of events back from logical timestamps.

$$e_1
ightarrow e_2 \implies T(e_1) < T(e_2)$$

	Lamport	Vector
format	$(N(e),L(e)) \ (i,Seq)$	$\langle N_1,,N_n angle \ V(e)=\langle t_1,,t_n angle$
order	$total \prec$	partial<
timestamp	scalar	vector
	\Longrightarrow	\iff
initial	(i,0)	$\langle 0,,0,,0 angle$
event occur	(i,t) o (i,t+1)	$T_V[i] := T_V[i] + 1$

 $receive(t'/T',m) \quad t := max(t,t') + 1 \quad egin{aligned} T_V := max_j(T_V,T') \ T_V[i] := T_V[i] + 1 \end{aligned}$