UMBCS622

Pushdown Automata (PDAs)

Monday, October 4, 2021

Announcements

- No class next Monday 10/11
- HW4 released
 - Due Sun 10/18 11:59pm EST
 - Note: this is a 2 week assignment!

Last Time:

Regular Languages	Context-Free Languages (CFLs)
Regular Expression	Context-Free Grammar (CFG)
A Reg expr <u>describes</u> a Regular lang	A CFG <u>describes</u> a CFL

Today:

Regular Languages	Context-Free Languages (CFLs)
Regular Expression	Context-Free Grammar (CFG)
A Reg expr <u>describes</u> a Regular lang	A CFG <u>describes</u> a CFL
	TODAY:
Finite automaton (FSM)	Push-down automaton (PDA)
An FSM <u>recognizes</u> a Regular lang	A PDA <u>recognizes</u> a CFL

Today:

Regular Languages	Context-Free Languages (CFLs)
Regular Expression	Context-Free Grammar (CFG)
A Reg expr <u>describes</u> a Regular lang	A CFG <u>describes</u> a CFL
	TODAY:
Finite automaton (FSM)	Push-down automaton (PDA)
An FSM <u>recognizes</u> a Regular lang	A PDA <u>recognizes</u> a CFL
DIFFERENCE:	DIFFERENCE:
A Regular lang is <u>defined</u> with a FSM	A CFL is <u>defined</u> with a CFG
<i>Must prove</i> : Reg expr ⇔ Reg lang	Must prove: PDA ⇔ CFL

Pushdown Automata (PDA)

• PDA = NFA + a stack

What is a Stack?

- Access to top element only
- 2 Operations: push, pop

Pushdown Automata (PDA)

- PDA = NFA + a stack
 - Infinite memory
 - Can only read/write top location
 - Push/pop

$\{0^n 1^n | n \ge 0\}$

An Example PDA

(\$ = special symbol, indicating empty stack) Read Push Pop input read 0, no pop, push 0 0, $\varepsilon \rightarrow$ 0 (and repeat) arepsilon , arepsilon o \$ q_2 when machine starts: read 1, pop 0, no push - don't read input, 1,0 $\rightarrow \varepsilon$ (and repeat) - don't pop anything, - push empty stack symbol 1,0ightarrow arepsilon q_3 arepsilon,\$
ightarrow arepsilonaccept only when stack is empty

Formal Definition of PDA

A pushdown automaton is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

- **1.** Q is the set of states,
- 2. Σ is the input alphabet,
- 3. Γ is the stack alphabet,

Stack alphabet can have special stack symbols, e.g., \$

- 4. $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function, 5. $q_0 \in \mathbb{Q}$ Input Popart state, and Push
- **6.** $F \subseteq Q$ is the set of accept states.

Non-deterministic: produces a set of (STATE, STACK CHAR) pairs

$$Q = \{q_1, q_2, q_3, q_4\},\$$

PDA Formal (b) efinition Example

$$F = \{q_1, q_4\},\$$

A pushdown automaton is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

- **1.** Q is the set of states,
- Input
- **2.** Σ is the input alphabet, Push
 - 3. Γ is the stack alphabet,
 - **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
 - **5.** $q_0 \in Q$ is the start state, and
 - **6.** $F \subseteq Q$ is the set of accept states.

$$Q = \{q_1, q_2, q_3, q_4\},$$

 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

$$Q = \{q_1, q_2, q_3, q_4\},$$

 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

$$Q = \{q_1, q_2, q_3, q_4\},$$

 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

$$Q = \{q_1, q_2, q_3, q_4\},$$

 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

$$Q = \{q_1, q_2, q_3, q_4\},$$

 $\Sigma = \{0,1\},$
 $\Gamma = \{0,\$\},$
 $F = \{q_1, q_4\},$ and

Multi-Symbol Stack Pushes

Note the reverse order of pushes

PDA Configurations (IDs)

 When "running" an input string on a PDA, a configuration (or ID) is a snapshot of some point in the computation

```
• A configuration (or ID) (q, w, \gamma) has three components q = the current state w = the remaining input string \gamma = the stack contents
```

"Running" an Input String on a PDA

$$P = (Q, \Sigma, \Gamma, \delta, q_0, F)$$

Single-step

Extended

Base Case

$$I \stackrel{*}{\vdash} I$$
 for any ID I

Recursive Case

$$I \stackrel{*}{\vdash} J$$
 if there exists some ID K such that $I \vdash K$ and $K \stackrel{*}{\vdash} J$

A configuration (q, w, γ) has three components q = the current state w = the remaining input string γ = the stack contents

Language of a PDA

$$P = (Q, \Sigma, \Gamma, \delta, q_0, F)$$

$$L(P) = \{ w \mid (q_0, w, \varepsilon) \vdash^* (q, \varepsilon, \alpha) \} \text{ where } q \in F$$

If $(q_1,x,\alpha) \vdash^* (q_n,y,\beta)$ Assume is true then $(q_1,x\boldsymbol{w},\alpha\boldsymbol{\gamma}) \vdash^* (q_n,y\boldsymbol{w},\beta\boldsymbol{\gamma})$ Must prove

A PDA Theorem

Proof: (by induction on the number of steps in the sequence)

Adding to <u>end of input</u> or <u>bottom of stack</u> doesn't affect the computation

- <u>Base Case</u> (0 steps): If $(q_1, x, \alpha) \vdash^* (q_1, x, \alpha)$ then $(q_1, xw, \alpha\gamma) \vdash^* (q_1, xw, \alpha\gamma)$
 - TRUE, from definition of \vdash^* : $I \vdash^* I$ for any ID I
- Inductive Case

Need to prove:

IH says: if this is true ... How do we know these steps are true?

$$\begin{array}{c|c} & \text{If } (q_1,x,\alpha) \overset{\checkmark}{\vdash^*} (\boldsymbol{q_{n-1}},\boldsymbol{x'},\boldsymbol{\alpha'}) & \vdash (q_n,y,\beta) & \leftarrow & \text{From the assumption!} \\ & \text{Then } (q_1,x\boldsymbol{w},\alpha\boldsymbol{\gamma}) \overset{\ast}{\vdash^*} (\boldsymbol{q_{n-1}},\boldsymbol{x'w},\boldsymbol{\alpha'\gamma}) & \vdash (q_n,y\boldsymbol{w},\beta\boldsymbol{\gamma}) & \leftarrow & \text{Left to prove} \\ \end{array}$$

... then this is true

These steps must use the same δ transition, why?

Same state, input char, and stack top!

CFL ⇔ **PDA**

Pushdown Automata (PDA)

- PDA = NFA + a stack
 - Infinite memory
 - Can only read/write top location
 - Push/pop

Input

Pop

Push

- Want to prove: PDA ⇔ CFG
- Then, to prove that a language is context-free, we can either:
 - Create a CFG, or
 - Create a PDA

A lang is a CFL iff some PDA recognizes it

- ⇒ If a language is a CFL, then a PDA recognizes it
 - (Easier)
 - We know: A CFL has a CFG describing it (definition of CFL)
 - To prove forward dir: Convert CFG→PDA
- ← If a PDA recognizes a language, then it's a CFL

CFG→PDA

- Construct a PDA from CFG such that:
 - PDA accepts input string only if the CFG can generate that string
- Intuitively, PDA will <u>nondeterministically</u> try all rules

CFG→**PDA**

- Construct a PDA from CFG such that:
 - PDA accepts input string only if the CFG can generate that string

• Intuitively, PDA will <u>nondeterministically</u> try all rules

Example **CFG→PDA**

Example CFG>PDA

Example **CFG→PDA**

Example CFG>PDA

Example Derivation using CFG:

 $S \Rightarrow \mathbf{a} T \mathbf{b}$ (using rule $S \rightarrow \mathbf{a} T \mathbf{b}$)

Example CFG>PDA

Example Derivation using CFG: $S \Rightarrow \mathbf{a}T\mathbf{b}$ (using rule $S \rightarrow \mathbf{a}T\mathbf{b}$) $\Rightarrow \mathbf{a}T\mathbf{a}\mathbf{b}$ (using rule $T \rightarrow T\mathbf{a}$) $\Rightarrow \mathbf{a}\mathbf{a}\mathbf{b}$ (using rule $T \rightarrow \varepsilon$)

Example **CFG→PDA**

Example **CFG→PDA**

 $q_{
m accept}$

Example Derivation using CFG:

b

 q_{loop}

 $q_{\rm loop}$

 $q_{\rm accept}$

b\$

 $S \Rightarrow \mathbf{a} T \mathbf{b}$ (using rule $S \rightarrow \mathbf{a} T \mathbf{b}$)

A lang is a CFL iff some PDA recognizes it

- $\boxed{\hspace{0.1cm}}$ \Rightarrow If a language is a CFL, then a PDA recognizes it
 - Convert CFG→PDA

- ← If a PDA recognizes a language, then it's a CFL
 - (Harder)
 - Need to: Convert PDA→CFG

PDA→CFG: Prelims

Before converting PDA to CFG, modify it so:

- 1. It has a single accept state, q_{accept} .
- 2. It empties its stack before accepting.
- **3.** Each transition either pushes a symbol onto the stack (a *push* move) or pops one off the stack (a *pop* move), but it does not do both at the same time.

Important:

This doesn't change the language recognized by the PDA (confirm this to yourselves)

$PDA P \rightarrow CFG G$: Variables

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

- Want: if P goes from state p to q reading input x, then some A_{pq} generates x
- So: For every pair of states p, q in P, add variable A_{pq} to G
- Then: connect the variables together by,
 - Add rules: $A_{pq} \rightarrow A_{pr}A_{rq}$, for each state r
 - These rules allow grammar to simulate every possible transition
 - (We haven't added input read/generated terminals yet)
- To add terminals: pair up stack pushes and pops (essence of a CFL)*8

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow aA_{rs}b$ in G

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow aA_{rs}b$ in G

PDA P -> CFG G: Generating Strings

$$P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\})$$
 variables of G are $\{A_{pq} | p, q \in Q\}$

• The key: pair up stack pushes and pops (essence of a CFL)

if $\delta(p, a, \varepsilon)$ contains (r, u) and $\delta(s, b, u)$ contains (q, ε) ,

put the rule $A_{pq} \rightarrow a A_{rs} b$ in G

A language is a CFL \Leftrightarrow A PDA recognizes it

- $| \longrightarrow |$ If a language is a CFL, then a PDA recognizes it
 - Convert CFG→PDA

- ✓

 ✓ If a PDA recognizes a language, then it's a CFL
 - Convert PDA→CFG

Check-in Quiz 10/4

On Gradescope