1

Assignment 6

(MA6.102) Probability and Random Processes, Monsoon 2023

Date: 31 October 2023, Due on 6 November 2023 (Monday).

INSTRUCTIONS

- Discussions with other students are not discouraged. However, all write-ups must be done individually with your own solutions.
- Any plagiarism when caught will be heavily penalized.
- Be clear and precise in your writing. Also, clearly state the assumptions made (if any) that are not specified in the question.

Problem 1 (5 Marks). Let X be a continuous random variable with PDF f_X , and Y be a function of X defined as

$$Y \triangleq \begin{cases} X, & \text{if } X \ge 0, \\ X^2, & \text{if } X^2 \le 0. \end{cases}$$

Compute the PDF of Y in terms of f_X .

Problem 2 (5 Marks). Let X and Y be independent random variables that are uniformly distributed on the interval [0,1]. Find the PDF of the random variable Z=XY.

Problem 3. Suppose X and Y are jointly continuous random variables with joint PDF f_{XY} . Let $Z = \min\{X,Y\}$ and $W = \max\{X,Y\}$.

- (a) (5 Marks) Find the joint PDF f_{ZW} in terms of f_{XY} .
- (b) (5 Marks) If X and Y are independent and uniformly distributed on [0,1], compute f_{ZW} .

Problem 4 (5 marks). Two points are chosen randomly and independently from the interval [a, b] according to a uniform distribution. Find the expected distance between the two points.

Problem 5 (5 Marks). Let X and Y be two random variables with the associated MGFs $M_X(s)$ and $M_Y(s)$, respectively. Let Z and W be random variables with the respective MGFs given by

$$M_Z(s) = M_X(s)^5,$$

 $M_W(s) = M_X(s)^2 M_Y(s)^3.$

Find $\mathbb{E}[Z]$, var(Z), $\mathbb{E}[W]$, and var(W) in terms of $\mathbb{E}[X]$, var(X), $\mathbb{E}[Y]$, and var(Y).

Problem 6. (a) (5 Marks) Find the probability that the quadratic polynomial $Ax^2 + Bx + 1$, where the coefficients A and B are determined by drawing independent and identically distributed (i.i.d.) U[0,1] random variables, has at least one real root.

(b) (5 Marks) Find the probability that the quadratic polynomial $ax^2 + bx + c$ has a complex root, where the coefficients a, b, c are determined by drawing i.i.d. U[0, 1] random variables.

Problem 7. (a) (3 Marks) Let a random variable $X \sim N(0,1)$ and $Y = X^2$. Find the pdf of Y.

- (b) (3 Marks) Let X, Y be i.i.d. $\sim U(0,1)$. Find the distribution of T = X + Y.
- (c) (4 Marks) Let X and Y be i.i.d. $\text{Expo}(\lambda)$, and $T = \log \frac{X}{Y}$. Find the CDF and PDF of T.