1

Assignment 16

Neha Rani EE20MTECH14014

Download the latex-tikz codes from

https://github.com/neharani289/MatrixTheory/Assignment16

1 **Problem**

(hoffman/page226/9):

Give an example of two 4×4 nilpotent matrices which have the same minimal polynomial (they necessarily have the same characteristic polynomial) but which are not similar.

2 **Definitions**

Characteristic Polynomial	For an $n \times n$ matrix \mathbf{A} , characteristic polynomial is defined by, $p(x) = x\mathbf{I} - \mathbf{A} $
Minimal Polynomial	Minimal polynomial $m(x)$ is the smallest factor of characteristic polynomial $p(x)$ such that, $m(\mathbf{A}) = 0$
Cayley-Hamilton Theorem	If $p(x)$ is the characteristic polynomial of an $n \times n$ matrix A , then, $p(\mathbf{A}) = 0$

TABLE 1: Definitions

3 Solution

Given	Let A and B be two nilpotent matrix.
	$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $\mathbf{B} = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$
	$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
Characteristic polynomial	For Matrix A ; $p_A(x) = x\mathbf{I} - \mathbf{A} $
	$p_A(x) = \begin{vmatrix} x & -1 & 0 & 0 \\ 0 & x & 0 & 0 \\ 0 & 0 & x & -1 \\ 0 & 0 & 0 & x \end{vmatrix} = x^4$
	For Matrix B ; $p_B(x) = x\mathbf{I} - \mathbf{B} $
	$p_B(x) = \begin{vmatrix} x & 0 & 0 & 0 \\ 0 & x & 0 & 0 \\ 0 & 0 & x & -1 \\ 0 & 0 & 0 & x \end{vmatrix} = x^4$
	Therefore, Characteristics polynomial are same for both matrix A and B .
Minimal Polynomial	For Matrix A ;
	$p_A(x) = x^4$
	Let, minimal polynomial of A is $m_A(x)$
	$m_A(x)$ always divide $p_A(x)$
	$m_A(x) = \{x, x^2, x^3, x^4\}$
	Minimal polynomial always annihilates its matrix.

$$m_A(A) = \mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \neq \mathbf{0}$$

$$m_A(\mathbf{A}) = \mathbf{A}^2 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \mathbf{0}$$

$$\implies m_A(x) = x^2$$

 $\implies x^2$ is a minimal polynomial of Matrix **A**

For Matrix B;

$$\implies m_B(x) = x^2$$

 $\implies x^2$ is a minimal polynomial of Matrix **B**

Therefore, minimial polynomial for both Matrix A and B are same.

Checking whether Matrix A

and B are same.

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

rank of matrix = no of linearly independent row or column vectors in the matrix

 $rank(\mathbf{A}) = 2$

$$rank(\mathbf{B}) = 1$$

	$\implies rank(\mathbf{A}) \neq rank(\mathbf{B})$ Therefore, Matrix \mathbf{A} and \mathbf{B} are not same.
Conclusion	 Characteristics polynomial for both Matrix A and B are same. Minimal polynomial for both matrix are same i.e m_A (x) = m_B (x) = x². Matrix A and B are not same .

TABLE 2: Solution Summary