

曲线的曲率

- 一、弧微分及其计算
- 二、曲率及其计算公式
- 三、曲率圆和曲率半径

电多科技大学数学科学学院

一、弧微分及其计算

曲线弧长的微分称为弧微分.

设曲线 y=f(x)在区间(a,b)内具有连续导数,则称曲线 y=f(x)在区间(a,b)内为光滑曲线.

设函数f(x)在区间(a,b)

内具有连续导数.

基点: $A(x_0, y_0)$,

M(x,y)为任意一点,

规定:(1) x增大的方向规定为曲线的正方向;

(2) s为有向弧段的值. 当 \overrightarrow{AM} 的方向与曲线正向

一致时,s取正号,相反时,s取负号.

1.直角坐标系下的弧 微分

设
$$N(x + \Delta x, y + \Delta y)$$
, 如图,

$$|MN| < \widehat{MN} < |MT| + |NT| \stackrel{\omega}{\to} \Delta x \to 0 \text{ iff},$$

$$|MN| = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{1 + (\frac{\Delta y}{\Delta x})^2} |\Delta x| \rightarrow \sqrt{1 + {y'}^2} |dx|,$$

$$\widehat{MN} = |\Delta s| \rightarrow |ds|, |MT| = \sqrt{(dx)^2 + (dy)^2} = \sqrt{1 + {y'}^2} |dx|,$$

$$|NT| = |\Delta y - dy| \rightarrow 0$$
, it $|ds| = \sqrt{1 + {y'}^2} |dx|$.

$$: s = s(x)$$
为单调增函数,
$$\begin{cases} ds = \sqrt{1 + y'^2} \ dx \end{cases}$$
$$\begin{cases} ds = \sqrt{\left(dx\right)^2 + \left(dy\right)^2} \end{cases}$$

$$ds = \sqrt{\left(dx\right)^2 + \left(dy\right)}$$

2. 曲线 为参数方程式的弧微分

若
$$L$$
:
$$\begin{cases} x = \varphi(t), \\ y = \psi(t), \end{cases}$$
 $t_1 \le t \le t_2,$ 则 $ds = \sqrt{\varphi'^2(t) + \psi'^2(t)} dt$ 或 $ds = \sqrt{x'^2(t) + y'^2(t)} dt$

3.曲线 为极坐标形式: $r = r(\theta)$, $\alpha \leq \theta \leq \beta$.

$$\begin{cases} x = r(\theta)\cos\theta, \\ y = r(\theta)\sin\theta. \end{cases} \Rightarrow ds = \sqrt{r^2(\theta) + r'^2(\theta)} d\theta.$$

二、曲率及其计算公式

1.曲率的定义

曲率是描述曲线局部性质(弯曲程度)的量。

弧段弯曲程度 越大转角越大

转角相同弧段越短弯曲程度越大

设曲线C是光滑的, M_0 是基点.

$$|MM'| = |\Delta s|, M \to M'$$
 切线转角为 $|\Delta \alpha|$.

定义

弧段
$$\widehat{MM}$$
的平均曲率为 $\overline{K} = \left| \frac{\Delta \alpha}{\Delta s} \right|$.

曲线C在点M处的曲率 $K = \lim_{\Delta s \to 0} \frac{\Delta \alpha}{\Delta s}$

在
$$\lim_{\Delta s \to 0} \frac{\Delta \alpha}{\Delta s} = \frac{d\alpha}{ds}$$
 存在的条件下, $K = \left| \frac{d\alpha}{ds} \right|$.

注意: (1) 直线的曲率处处为零;

(2) 圆上各点处的曲率等于半径的倒数, 且半径越小, 曲率越大。

2.曲率的计算公式

设
$$y = f(x)$$
二阶可导, $\because \tan \alpha = y'$,

有
$$\alpha = \arctan y'$$
, $d\alpha = \frac{y''}{1+{y'}^2}dx$,

$$ds = \sqrt{1 + {y'}^2} dx$$
. $\therefore k = \frac{|y''|}{(1 + {y'}^2)^{\frac{3}{2}}}$.

例1 抛物线 $y = ax^2 + bx + c$ 上哪一点的曲率最大?

: 抛物线在顶点处的曲率 最大.

三、曲率圆与曲率半径

定义 设曲线 y = f(x) 在点 M(x,y) 处的曲率为 $k(k \neq 0)$. 在点 M 处的曲线的法线上, 在凸的一侧取一点 D,

使 $|DM| = \frac{1}{k} = \rho$.以 D 为圆心, ρ 为半径作圆(如图),

称此圆为曲线在点M处的曲率圆.

D---曲率中心, $\rho---$ 曲率半径.

注意:

1. 曲线上一点处的曲率半径与曲线在该点处的曲率互为倒数。

$$\mathbb{P} \rho = \frac{1}{k}, k = \frac{1}{\rho}.$$

- 2. 曲线上一点处的曲率半径越大, 曲线在该点处的曲率越小; 曲率半径越小, 曲率越大。
- 3.曲线上一点处的曲率圆弧可近似代替该点附件曲线弧(称为曲线在该点附近的二次近似).