Representação Numérica e Aritmética de Máquina

Felipe Augusto Lima Reis felipe.reis@ifmg.edu.br

Sumário

- Sistemas de Numeração
- Mudança de Base
- Notações numéricas
- Representação Numérica
- Erros

•000000

Prof. Felipe Reis Matemática Computacional 05/2021 3 / 47

0000000

- No dia a dia utilizamos o sistema decimal de numeração;
- Esse sistema é posicional, assim a posição do dígito indica a potência de 10 deste [Justo et al., 2020]
 - Ex.: o número 732, pode ser reescrito como

$$732 = (7 \times 10^{2}) + (3 \times 10^{1}) + (2 \times 10^{0})$$
$$= 700 + 30 + 2$$
$$= 732$$

0000000

• Consideremos o número 57 em decimal:

$$57 = (5 \times 10^1) + (7 \times 10^0)$$

- Utilizando o mesmo sistema podemos representar valores como potência de qualquer número (base = 2, 3, 4, ..., n);
- Na base binária, esse mesmo número é definido como 111001

$$111001 = (1 \times 2^{5}) + (1 \times 2^{4}) + (1 \times 2^{3}) + (0 \times 2^{2}) + (0 \times 2^{1}) + (1 \times 2^{0})$$

$$= 32 + 16 + 8 + 0 + 0 + 1$$

$$= 48 + 9$$

$$= 57$$

Prof. Felipe Reis Matemática Computacional 05/2021 5 / 47

0000000

• Número 57 (decimal) em binário (111001)

$$111001 = (1 \times 2^{5}) + (1 \times 2^{4}) + (1 \times 2^{3}) + (0 \times 2^{2}) + (0 \times 2^{1}) + (1 \times 2^{0})$$

$$= 32 + 16 + 8 + 0 + 0 + 1$$

$$= 57$$

• Representação unicamente em base binária

$$111001 = (1 \times 2^{5}) + (1 \times 2^{4}) + (1 \times 2^{3}) + (0 \times 2^{2}) + (0 \times 2^{1}) + (1 \times 2^{0})$$

$$= 100000 + 010000 + 001000 + 000000 + 000000 + 0000001$$

$$= 111001$$

Prof. Felipe Reis

0000000

- Nas bases octal e hexadecimal, comumente utilizadas em computação, temos o mesmo princípio...
- ullet 57 (decimal) = 71 (octal) = 39 (hexadecimal)

$$71 = (7 \times 8^{1}) + (1 \times 8^{0})$$
$$= 56 + 1$$

$$39 = (3 \times 16^{1}) + (9 \times 16^{0})$$
$$= 48 + 9$$

Prof. Felipe Reis

Sistemas de Numeração

0000000

- Consideremos β a base de um sistema de numeração, onde $\beta > 1$:
- Um dado número $x \in \mathbb{R}$, na base β pode ser representado por:

$$x = (a_m a_{(m-1)} a_{(m-2)} ... a_2 a_1 a_0 , d_1 d_2 ... d_n)_{\beta}$$

• Em sua forma polinomial, o número pode ser representado por:

$$x = a_n \beta^m + a_{n-1} \beta^{m-1} + ... + a_1 \beta^1 + a_0 \beta^0$$
, $d_1 \beta^{-1} + d_2 \beta^{-2} + ... + d_n \beta^{-n}$

Prof. Felipe Reis

000000

- De acordo com a base, são possíveis os seguintes algarismos:
 - Decimal: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
 - Binário: {0, 1}
 - Octal: {0, 1, 2, 3, 4, 5, 6, 7}
 - Hexadecimal: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}
- De forma geral, uma base β permite os seguintes algarismos:

$$\{0,...,\beta-1\}$$

• Para bases $\beta \geq 10$ utilizam-se letras para representação dos algarismos subsequentes.

Mudança de Base

- Ex. 1: Conversão do número 732₁₀ para a base binária
 - Montar a tabela abaixo;
 - Encontrar o primeiro valor maior que o valor a ser convertido;
 - 3 Colocar o valor zero na coluna correspondente a esse valor e nas colunas com valores superiores;

2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
1024	512	256	128	64	32	16	8	4	2	1

Prof. Felipe Reis

- Ex. 1: Conversão do número 732₁₀ para a base binária
 - Montar a tabela abaixo;
 - Encontrar o primeiro valor maior que o valor a ser convertido;
 - 3 Colocar o valor zero na coluna correspondente a esse valor e nas colunas com valores superiores;

2 ¹⁰	2 ⁹	2 ⁸	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
1024	512	256	128	64	32	16	8	4	2	1

0

- Ex. 1: Conversão do número 732₁₀ para a base binária
 - Adicionar o valor 1 na coluna seguinte;
 - **5** Efetuar a subtração do número a ser convertido pela coluna atual $(732_{10} 512_{10} = 220_{10}; 220_{10} 128_{10} = 92_{10}, ...);$
 - **1** Voltar ao item 2 e repetir até que a conversão do número.

2 ¹⁰	2 ⁹	28	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2^3	2 ²	2^1	2 ⁰
1024	512	256	128	64	32	16	8	4	2	1
0	1	Λ	1	1	n	1	1	1	n	Π

- Ex. 1: Conversão do número 732₁₀ para a base binária
 - Adicionar o valor 1 na coluna seguinte;
 - **5** Efetuar a subtração do número a ser convertido pela coluna atual $(732_{10}-512_{10}=220_{10};\ 220_{10}-128_{10}=92_{10},\ ...);$
 - **1** Voltar ao item 2 e repetir até que a conversão do número.

2 ¹⁰	2 ⁹	28	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2^3	2^2	2^1	2 ⁰
1024	512	256	128	64	32	16	8	4	2	1
0	1	Λ	1	1	n	1	1	1	n	Π

- Ex. 1: Conversão do número 732₁₀ para a base binária
 - Adicionar o valor 1 na coluna seguinte;
 - 6 Efetuar a subtração do número a ser convertido pela coluna atual $(732_{10} - 512_{10} = 220_{10}; 220_{10} - 128_{10} = 92_{10}, ...);$
 - 6 Voltar ao item 2 e repetir até que a conversão do número.

2 ¹⁰	2 ⁹	28	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2^3	2^2	2^1	2 ⁰
1024	512	256	128	64	32	16	8	4	2	1
0	1	0	1	1	n	1	1	1	n	n

- Ex. 1: Conversão do número 732₁₀ para a base binária
 - Adicionar o valor 1 na coluna seguinte;
 - **5** Efetuar a subtração do número a ser convertido pela coluna atual $(732_{10} 512_{10} = 220_{10}; 220_{10} 128_{10} = 92_{10}, ...);$
 - **6** Voltar ao item 2 e repetir até que a conversão do número.

2 ¹⁰	2 ⁹	28	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2^3	2^2	2^1	2 ⁰
1024	512	256	128	64	32	16	8	4	2	1
0	1	n	1	1	Λ	1	1	1	n	n

Prof. Felipe Reis

- Ex. 1: Conversão do número 732₁₀ para a base binária
 - Adicionar o valor 1 na coluna seguinte;
 - **5** Efetuar a subtração do número a ser convertido pela coluna atual $(732_{10} 512_{10} = 220_{10}; 220_{10} 128_{10} = 92_{10}, ...);$
 - **1** Voltar ao item 2 e repetir até que a conversão do número.

2 ¹⁰	2 ⁹	28	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
1024	512	256	128	64	32	16	8	4	2	1
0	1	0	1	1	0	1	1	1	n	Π

Prof. Felipe Reis

- Ex. 1: Conversão do número 732₁₀ para a base binária
 - Adicionar o valor 1 na coluna seguinte;
 - **5** Efetuar a subtração do número a ser convertido pela coluna atual $(732_{10} 512_{10} = 220_{10}; 220_{10} 128_{10} = 92_{10}, ...);$
 - **1** Voltar ao item 2 e repetir até que a conversão do número.

2 ¹⁰	2 ⁹	28	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
1024	512	256	128	64	32	16	8	4	2	1
n	1	n	1	1	n	1	1	1	n	Π

Prof. Felipe Reis

- Ex. 1: Conversão do número 732₁₀ para a base binária
 - Adicionar o valor 1 na coluna seguinte;
 - **5** Efetuar a subtração do número a ser convertido pela coluna atual $(732_{10} 512_{10} = 220_{10}; 220_{10} 128_{10} = 92_{10}, ...);$
 - **1** Voltar ao item 2 e repetir até que a conversão do número.

2 ¹⁰	2 ⁹	28	27	2 ⁶	2 ⁵	2 ⁴	2^3	2 ²	2^1	2 ⁰
1024	512	256	128	64	32	16	8	4	2	1
0	1	0	1	1	0	1	1	1	n	n

- Ex. 1: Conversão do número 732₁₀ para a base binária
 - Adicionar o valor 1 na coluna seguinte;
 - **5** Efetuar a subtração do número a ser convertido pela coluna atual $(732_{10} 512_{10} = 220_{10}; 220_{10} 128_{10} = 92_{10}, ...);$
 - **1** Voltar ao item 2 e repetir até que a conversão do número.

2 ¹⁰	2 ⁹	28	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	20
1024	512	256	128	64	32	16	8	4	2	1
0	1	n	1	1	n	1	1	1	Π	n

- Ex. 1: Conversão do número 732₁₀ para a base binária
 - Adicionar o valor 1 na coluna seguinte;
 - 6 Efetuar a subtração do número a ser convertido pela coluna atual $(732_{10} - 512_{10} = 220_{10}; 220_{10} - 128_{10} = 92_{10}, ...);$
 - 6 Voltar ao item 2 e repetir até que a conversão do número.

	2 ¹⁰	2 ⁹	28	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	20
-	1024	512	256	128	64	32	16	8	4	2	1
•	0	1	0	1	1	0	1	1	1	Ω	0

- Ex. 1: Conversão do número 732₁₀ para a base binária
 - Adicionar o valor 1 na coluna seguinte;
 - 6 Efetuar a subtração do número a ser convertido pela coluna atual $(732_{10} - 512_{10} = 220_{10}; 220_{10} - 128_{10} = 92_{10}, ...);$
 - 6 Voltar ao item 2 e repetir até que a conversão do número.

2 ¹⁰	2 ⁹	28	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	20
1024	512	256	128	64	32	16	8	4	2	1
0	1	0	1	1	0	1	1	1	0	0

- Ex. 1: Conversão do número 732₁₀ para a base binária
 - Adicionar o valor 1 na coluna seguinte;
 - 6 Efetuar a subtração do número a ser convertido pela coluna atual $(732_{10} - 512_{10} = 220_{10}; 220_{10} - 128_{10} = 92_{10}, ...);$
 - 6 Voltar ao item 2 e repetir até que a conversão do número.

2 ¹⁰	2 ⁹	28	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2^1	20
1024	512	256	128	64	32	16	8	4	2	1
0	1	0	1	1	0	1	1	1	0	0

- Ex. 2: Conversão do número $(57,75)_{10}$ para a base binária
 - Executar o algoritmo anterior separadamente para as partes decimais e fracionárias:

2 ⁶	2 ⁵	2 ⁴	2 ³	22	2^1	2 ⁰	,	2^{-1}	2^{-2}	2^{-3}
64	32	16	8	4	2	1	,	0.5	0.25	0.125
0	1	1	1	0	0	1		1	1	0

Prof. Felipe Reis

- Ex. 2: Conversão do número $(57,75)_{10}$ para a base binária
 - Executar o algoritmo anterior separadamente para as partes decimais e fracionárias:

2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2^1	20	,	2^{-1}	2^{-2}	2^{-3}
64	32	16	8	4	2	1	,	0.5	0.25	0.125
0	1	1	1	0	0	1		1	1	0

- Ex. 2: Conversão do número $(57,75)_{10}$ para a base binária
 - Executar o algoritmo anterior separadamente para as partes decimais e fracionárias:

2 ⁶	2 ⁵	2 ⁴	2 ³	22	2^1	2 ⁰	,	2^{-1}	2^{-2}	2^{-3}
64	32	16	8	4	2	1	,	0.5	0.25	0.125
0	1	1	1	0	0	1		1	1	0

Prof. Felipe Reis

- Ex. 2: Conversão do número $(57,75)_{10}$ para a base binária
 - Executar o algoritmo anterior separadamente para as partes decimais e fracionárias:

2 ⁶	2 ⁵	2 ⁴	2 ³	22	2^1	20	,	2^{-1}	2^{-2}	2^{-3}
64	32	16	8	4	2	1	,	0.5	0.25	0.125
0	1	1	1	0	0	1	,	1	1	0

Prof. Felipe Reis

- Ex. 2: Conversão do número $(57,75)_{10}$ para a base binária
 - Executar o algoritmo anterior separadamente para as partes decimais e fracionárias:

2 ⁶	2 ⁵	24	2 ³	2 ²	2^1	20	,	2^{-1}	2^{-2}	2^{-3}
64	32	16	8	4	2	1	,	0.5	0.25	0.125
0	1	1	1	0	0	1	,	1	1	0

- Ex. 2: Conversão do número $(57,75)_{10}$ para a base binária
 - Executar o algoritmo anterior separadamente para as partes decimais e fracionárias:

2 ⁶	2 ⁵	24	2 ³	22	2^1	20	,	2^{-1}	2^{-2}	2^{-3}
64	32	16	8	4	2	1	,	0.5	0.25	0.125
0	1	1	1	0	0	1	,	1	1	0

- Ex. 2: Conversão do número $(57,75)_{10}$ para a base binária
 - Executar o algoritmo anterior separadamente para as partes decimais e fracionárias:

2 ⁶	2 ⁵	24	2 ³	22	2^1	20	,	2^{-1}	2^{-2}	2^{-3}
64	32	16	8	4	2	1	,	0.5	0.25	0.125
0	1	1	1	0	0	1	,	1	1	0

- Ex. 2: Conversão do número $(57,75)_{10}$ para a base binária
 - Executar o algoritmo anterior separadamente para as partes decimais e fracionárias:

2 ⁶	2 ⁵	2 ⁴	2 ³	22	2^1	20	,	2^{-1}	2^{-2}	2^{-3}
64	32	16	8	4	2	1	,	0.5	0.25	0.125
0	1	1	1	0	0	1	,	1	1	0

- Ex. 2: Conversão do número $(57,75)_{10}$ para a base binária
 - Executar o algoritmo anterior separadamente para as partes decimais e fracionárias:

2 ⁶	2 ⁵	24	2 ³	22	2^1	2 ⁰	,	2^{-1}	2^{-2}	2^{-3}
64	32	16	8	4	2	1	,	0.5	0.25	0.125
0	1	1	1	0	0	1	,	1	1	0

- Ex. 2: Conversão do número $(57,75)_{10}$ para a base binária
 - Executar o algoritmo anterior separadamente para as partes decimais e fracionárias:

2 ⁶	2 ⁵	24	2 ³	22	2^1	2 ⁰	,	2^{-1}	2^{-2}	2^{-3}
64	32	16	8	4	2	1	,	0.5	0.25	0.125
0	1	1	1	0	0	1	,	1	1	0

- Ex. 2: Conversão do número $(57,75)_{10}$ para a base binária
 - Executar o algoritmo anterior separadamente para as partes decimais e fracionárias:

2 ⁶	2 ⁵	24	2 ³	2 ²	2^1	2 ⁰	,	2^{-1}	2^{-2}	2^{-3}
64	32	16	8	4	2	1	,	0.5	0.25	0.125
0	1	1	1	0	0	1	,	1	1	0

Mudança de Base - Problemas

 Ex. 3: Comparação da conversão dos números (57,75)₁₀ e (57,76)₁₀ para a base binária

$$57,75 = 111001,11$$

 $57,76 = 111001,110000101$

• Observe que o número $(57,76)_{10}$ precisa ser arredondado para ser representado em binário

$$57,76 = (57), (0,5 + 0,25 + 0,0078125 + 0,001953125)$$

 $57,76 \neq 57,759765625$

Prof. Felipe Reis Matemática Computacional 05/2021 14/47

• Ex. 3: Comparação da conversão dos números $(57,75)_{10}$ e $(57,76)_{10}$ para a base binária

$$57,75 = 111001,11$$

 $57,76 = 111001,110000101$

 Observe que o número (57,76)₁₀ precisa ser arredondado para ser representado em binário

$$57, 76 = (57), (0, 5 + 0, 25 + 0, 0078125 + 0, 001953125)$$

 $57, 76 \neq 57, 759765625$

Prof. Felipe Reis

- Computadores são dispositivos discretos, com limitação de tamanho de palavras (bits);
- Alguns números decimais não tem representação finita em base binária;
 - Esses números estão sujeitos a limitação da arquitetura dos computadores (bits disponíveis para armazenamento);
 - Alguns números, então, são armazenados de forma aproximada;
 - A aproximação pode causar erros inaceitáveis, quando diversas operações são executadas em sequência.

0000000

Prof. Felipe Reis Matemática Computacional 05/2021 16/47

- Um número x na base β é representado
 - No sistema posicional:

$$x = (a_m a_{(m-1)}...a_1 a_0, a_{(-1)} a_{(-2)} a_{(-3)}...)_{\beta}$$

• Em sua forma polinomial:

$$x = a_n \beta^m + a_{n-1} \beta^{m-1} + ... + a_1 \beta^1 + a_0 \beta^0 , \ a_1 \beta^{-1} + a_2 \beta^{-1} + ... + a_n \beta^{-n}$$

Prof. Felipe Reis

- ullet Um número x na base β é representado
 - Em notação científica:

$$x=\pm (M)_{\beta}\times \beta^{E}$$

onde $(M)_{\beta}=\left(a_{m}a_{(m-1)}...a_{1}a_{0}\;,\;a_{(-1)}a_{(-2)}a_{(-3)}...\right)_{\beta}$ é chamado de <u>mantissa</u> e $E\in\mathbb{Z}^{1}$ é chamado de **expoente** de x.

Em notação (científica) normalizada:

$$x = (-1)^s \times (M)_{\beta} \times \beta^E$$

onde $(M)_{\beta}=\left(a_0\;,\;a_{(-1)}a_{(-2)}a_{(-3)}...\right)_{\beta}$, com $a_0\neq 0$, s=0 para positivo e s=1 para negativo.

Prof. Felipe Reis Matemática Computacional

 $^{^1}$ Na literatura é comumente utilizado o símbolo \underline{e} para representação do expoente

19 / 47

0000000

Representação Numérica

Representação Inteira

- Um número inteiro é armazenado como uma sequência de dígitos binários de tamanho fixo, denominado registro [Justo et al., 2020].
 - Representação sem bit de sinal

a_{n-1}	a_{n-2}	 a_1	a 0

- Representação com um bit de sinal
 - O bit mais significativo (à esquerda) representa o sinal: por convenção, O significa positivo e 1 significa negativo.

S	a_{n-1}	a_{n-2}	 a_1	a 0

Complemento de 2

Sistemas de Numeração

• Um número inteiro pode ser armazenado com o bit mais significativo representando o coeficiente de -2^{n-1} [Justo et al., 2020].

$$a_{n-1} \times (-2^{n-1})$$
 a_{m-2} ... a_1 a_0

- Todo número iniciado em 1 representa um número negativo
- Ex. 1: Número (01000011)₂

$$-0(2^7) + (1000011)_2 = 2^6 + 2^1 + 2^0 = 67$$

• Ex. 2: Número (10111101)₂

$$-1(2^7) + (0111101)_2 = -2^7 + 2^5 + 2^4 + 2^3 + 2^2 + 2^0 = -67$$

Complemento de 2

Sistemas de Numeração

Vantagens:

- As operações aritméticas de soma, substração e multiplicação, usando esse protocolo, são idênticas às operações com números sem bit de sinal;
- Casos de *overflow* são facilmente descartados:
- Facilidade na implementação de sistemas, especialmente para números de alta precisão.

Sistema de Ponto Fixo

• No sistema de ponto fixo, as partes inteira e fracionária são representadas com uma quantidade fixa de dígitos.

- O sistema de ponto flutuante não possui quantidade fixa de dígitos para as partes inteira e fracionária do número
 - Possuem notação (científica) normalizada: a mantissa (ou significando) é um valor entre 0 e 1;

• É dividido em 3 partes: sinal, mantissa e expoente

$$x = (-1)^s \times (M) \times \beta^E$$

Mantissa:

$$M = (d_1d_2d_3...d_t) \quad \text{ ou } \quad M = \left[\frac{d_1}{\beta} + \frac{d_2}{\beta^2} + \frac{d_3}{\beta^3} + ... + \frac{d_t}{\beta^t}\right]$$

- d_i : i-ésimo dígito da mantissa, onde $0 \le d_i \le (\beta 1)$;
- t: número de dígitos (depende do tamanho da palavra);
- E: expoente inteiro

Sistemas de Numeração

• Sistema de ponto flutuante também pode ser definido como:

$$F(\beta, |M|, |E|, BIAS)$$
 ou $F(\beta, |M|, E_{MIN}, E_{MAX})$

- β : base;
- M: mantissa (ou significando);
- E: expoente inteiro;
- BIAS: valor de deslocamento do expoente (dependente da precisão).
- E_{MIN} : menor expoente;
- E_{MAX} : maior inteiro;

Sistemas de Numeração

O número normal pode ser representado por

$$x = (-1)^s \times M \times 2^{c-BIAS}$$

• M: mantissa, definida por

$$M = (1 . m_1 m_2 ... m_N)_2$$

• c: característica, definida por

$$c = (c_n c_{n-1} ... c_1 c_0)^2 = c_n 2^n + c_{n-1} 2^{n-1} + ... + c_1 2^1 + c_0 2^0$$

- N: corresponde ao número de dígitos disponíveis da mantissa;
- n: corresponde ao número de dígitos disponíveis do expoente.

Sistemas de Numeração

- O número de dígitos N, da mantissa, e n, do expoente, devem ser obtidos na tabela, de acordo com a precisão desejada;
- O valor de BIAS também deve ser recuperado da tabela.

Tipo	Sinal	Exponente	Mantissa	Total bits	Expoente bias	Bits precisão
Half	1	5	10	16	15	11
Single	1	8	23	32	127	24
Double	1	11	52	64	1023	53
x86 ext. precision	1	15	64	80	16383	64
Quad	1	15	112	128	16383	113

Fonte: [Wikipedia contributors, 2020]

Fonte: [Wikipedia contributors, 2020]

• Expoente (8 bits):

$$2^{6} + 2^{5} + 2^{4} + 2^{3} + 2^{2}$$
$$64 + 32 + 16 + 8 + 4 = 124$$

Mantissa (23 bits):

$$1 + 2^{-2}$$
$$1 + 0.25 = 1.25$$

Prof. Felipe Reis

Sistemas de Numeração

Fonte: [Wikipedia contributors, 2020]

$$x = (-1)^{s} \times M \times 2^{c-BIAS}$$

$$x = (-1)^{0} \times 1.25 \times 2^{124-127}$$

$$x = 1 \times 1.25 \times 2^{-3}$$

$$x = 1.25 \times 0.125$$

$$x = 0.15625$$

Prof. Felipe Reis

Casos Especiais

• Expoentes reservados são usados para casos especiais:

- c = [X|00000000|XX...] é usado para representar o zero, se m = 0, e números subnormais, se $m \neq 0$;
 - Números subnormais (ou denormais) são aqueles que possuem zero na mantissa, não podendo ser representados por expoentes;
- c = [X|11111111|XX...] é usado para representar o infinito, se m = 0, e NaN, se $m \neq 0$.

- Um número subnormal deve utilizar E_{MIN} , que varia de acordo com a precisão desejada;
 - Para 16 bits, $E_{MIN} = -14$
 - Para 32 bits, $E_{MIN} = -126$
 - Para 64 bits, $E_{MIN} = -1023$
- Nesses casos, a mantissa é definida por

$$M = (0 . m_1 m_2 ... m_N)_2$$

- Padrão estabelecido em 1985 para definição da representação de números em ponto flutuante;
- Criado devido a variedade de implementações, o que dificultava a confiabilidade e portabilidade.

Propriedade	Prec. Simples	Prec. Dupla	Prec. Estendida
Comprimento	32	64	80
Mantissa (bits)	23	52	64
Expoente (bits)	8	11	15
Base	Binária	Binária	Binária
Dígitos Decimais	7	16	19
Maior Expoente	+127	+1023	+16383
Menor Expoente	-126	-1022	-16382
Maior Número	$pprox 3.40 imes 10^{+38}$	$\approx 1.80 \times 10^{+308}$	$\approx 1.19 \times 10^{+4932}$
Menor Número	$\approx 1.18 \times 10^{-38}$	$\approx 2.23 \times 10^{-308}$	$pprox 3.36 imes 10^{-4932}$
С	float	double	long double
Pascal	real, single	double	extended

Fonte: [da Silva, 2020]

- A precisão p de uma máquina é o número de dígitos significativos usado para representar um número [Justo et al., 2020];
- Devido a arredondamentos, dois números extremamente pequenos podem ser tratados como iguais;
- ullet O número épsilon, ϵ , é o menor número $\epsilon >$ 0, em que

$$(1+\epsilon) \neq 1$$

 A multiplicação por épsilon evita que operações em sequência sejam zeradas.

- Cálculos podem resultar em condições no qual o resultado é muito grande ou muito pequeno para ser representado pelo computador
 - Underflow: número muito pequeno, próximo a zero;
 - Overflow: número muito grande, resultando em infinito;
- Essa situação pode ocasionar erros, principalmente quando há uma sequência de operações.

Erros

0000000

Matemática Computacional Prof. Felipe Reis 05/2021 36 / 47

- Em aproximações numéricas, as fontes mais comuns de erros são:
 - Modelagem incorreta;
 - Incerteza de dados;
 - Erros de arredondamento;
 - Erros de truncamento:
- As medidas de erros mais comuns são:
 - Erro relativo;
 - Erro absoluto:

- O modelo adotado não reflete o fenômeno com perfeição;
- Simplificações necessárias à confecção do modelo causam exclusão de informações preciosas, transformando o modelo em uma versão aproximada;

- Incerteza de dados está relacionado a erros causados devido aos dados de entrada;
 - Em modelagem de problemas físicos, a imprecisão é inerente aos equipamentos de medição;
 - A acurácia de um instrumento é sempre finita, por mais preciso que esse seja;
 - Não é possível evitar que erros de medição ocorram;

Erros de Arredondamento

- Erros relacionados com as limitações existentes na forma de representar números em máquina;
 - Depende da precisão: simples, dupla, estendida, etc.;

Erros de Arredondamento

Sistemas de Numeração

• Ex. 1: Consideremos o menor número positivo não zero normal, em uma arquitetura de 16 bits

s	expoente						mantissa								
0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0

$$x = (-1)^{s} \times M \times 2^{c-BIAS}$$

$$x = (-1)^{0} \times (1+0) \times 2^{1-15}$$

$$x = 1 \times (1+0) \times 2^{-14}$$

$$x = 1.0 \times 0.000061035$$

$$x = 0.000061035$$

$$x = 6.1035 \times 10^{-5}$$

x = 6.1035e - 05

- Ex. 2: Consideremos o menor número positivo não zero subnormal, em uma arquitetura de 16 bits
 - Lembrar que o cálculo de números denormais é ligeiramente diferente

s	expoente						mantissa									
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	

$$x=(-1)^s \times M_{SUB} \times 2^{E_{MIN}}$$
 , onde $M_{SUB}=(0.m_1m_2...m_N)_2$
$$x=(-1)^0 \times 2^{-10} \times 2^{1-14}$$

$$x=1 \times (0+2^{-10}) \times 2^{-14}$$

$$x=0.0009765625 \times 0.000061035$$

$$x=0.00000059604645$$

$$x=5.9604645 \times 10^{-8}$$

- Erros de truncamento ocorrem quando há substituição de um conceito matemático formado por uma sequência infinita de passos por um de procedimento finito [Justo et al., 2020];
- Devido à aproximação causada pelo uso de fórmulas;
 - Ex. 1: A definição de integral é dada por um processo de limite de somas. Numericamente, ela é calculada por uma soma finita;
 - Ex. 2: Cálculo de e, usando a aproximação $f(x) = e^x$, pela Série de Taylor

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{n!}$$

• Quanto maior o valor de *n*, menor o erro de truncamento.

Erro Absoluto

Sistemas de Numeração

• O erro absoluto EA_x corresponde ao módulo da diferença entre o valor exato do número x e seu valor aproximado \overline{x} ;

$$EA_x = |x - \overline{x}|$$

- Muitas vezes, o valor exato é desconhecido, existindo somente o valor aproximado.
 - Ex. 1: Consideremos o valor de $\pi \in (3.14, 3.15)$
 - O erro, nesse caso, é dado por $EA_{\pi}=|\pi-\overline{\pi}|<0,01.$

 O erro relativo ER_x corresponde a razão entre o erro absoluto EA_x e o valor aproximado x̄;

$$ER_x = \frac{|x - \overline{x}|}{|x|}$$
 , $x \neq 0$

• Frequentemente o erro relativo (adimensional) é expresso em percentual

$$\textit{ER}_{x} \times 100\%$$

- Ex. 1: Consideremos dois números $\overline{y}=2112.9$ e $\overline{z}=5.3$, com respectivos erros $EA_{v}<0.1$ e $EA_{z}<0.1$
 - A precisão é a mesma, uma vez que o erro absoluto é igual?

$$\textit{ER}_y < \frac{|0.01|}{|2112.9|} pprox 4.7 imes 10^{-5} \quad e \quad \textit{ER}_z < \frac{|0.01|}{|5.3|} pprox 2 imes 10^{-2}$$

• Como $|ER_y| < |ER_z|$, o número y é representado com maior precisão do que z.

Referências I

da Silva, D. M. (2020).

Cálculo Numérico - Slides de Aula.

IFMG - Instituto Federal de Minas Gerais, Campus Formiga.

Justo, D., Sauter, E., Azevedo, F., Guidi, L., and Konzen, P. H. (2020).

Cálculo Numérico, Um Livro Colaborativo - Versão Python,

LIERGS - Universidade Federal do Rio Grande do Sul

https://www.ufrgs.br/reamat/CalculoNumerico/livro-py/livro-py.pdf.

Wikipedia contributors (2020).

Floating-point arithmetic.

[Online]; acessado em 16 de Julho de 2020.