LCN: Lichen interaction network study

 $MK \ Lau$

Results

```
### REML
### We know from Lamit's dissertation work that lichen communities are
### heritable, largely driven by bark roughness
### Do we find similar patterns?
## Create a list to generate a results table
h2.tab <- matrix("", 10, 4)
colnames(h2.tab) <- c("Response", "H2", "R2", "p-value")</pre>
## Total cover ~ genotype
ptc.reml <- lme4::lmer(I(PC^(1/2)) ~ (1 | geno),
                       data = na.omit(onc.dat), REML = TRUE)
ptc.reml.pval <- RLRsim::exactRLRT(ptc.reml)</pre>
ptc.reml.pval
##
   simulated finite sample distribution of RLRT.
##
##
## (p-value based on 10000 simulated values)
##
## data:
## RLRT = 1.6364, p-value = 0.0854
fligner.test(onc.dat$PC^(1/2), onc.dat$geno)
## Fligner-Killeen test of homogeneity of variances
## data: onc.dat$PC^(1/2) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 13.751, df = 12, p-value =
## 0.3169
shapiro.test(residuals(ptc.reml))
##
## Shapiro-Wilk normality test
## data: residuals(ptc.reml)
## W = 0.93193, p-value = 0.004822
h2.tab[1, "p-value"] <- ptc.reml.pval$"p.value"
h2.tab[1, "H2"] \leftarrow H2(ptc.reml, g = onc.dat$geno)
h2.tab[1, "R2"] <- R2(ptc.reml)
R2(ptc.reml)
## 0.1367954
```

```
h2.tab[1, "Response"] <- "Percent Lichen Cover"
## Species richness ~ genotype
spr.reml \leftarrow lme4::lmer(I(SR^(1/2)) \sim (1 \mid geno),
                        data = na.omit(onc.dat), REML = TRUE)
spr.reml.pval <- RLRsim::exactRLRT(spr.reml)</pre>
spr.reml.pval
##
## simulated finite sample distribution of RLRT.
##
   (p-value based on 10000 simulated values)
##
## data:
## RLRT = 0.080424, p-value = 0.354
shapiro.test(residuals(spr.reml))
##
##
    Shapiro-Wilk normality test
##
## data: residuals(spr.reml)
## W = 0.95213, p-value = 0.03324
fligner.test(onc.dat$SR^(1/2), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
## data: onc.datSR^(1/2) and onc.datgeno
## Fligner-Killeen:med chi-squared = 13.276, df = 12, p-value =
## 0.3493
h2.tab[2, "p-value"] <- spr.reml.pval$"p.value"
h2.tab[2, "H2"] <- H2(spr.reml, g = onc.dat$geno)
h2.tab[2, "R2"] <- R2(spr.reml)
R2(spr.reml)
##
          R<sub>2</sub>c
## 0.02807255
h2.tab[2, "Response"] <- "Lichen Species Richness"
## Bark roughness REML
prb.reml <- lme4::lmer(I(BR^(1/2)) ~ (1 | geno),
                        data = na.omit(onc.dat), REML = TRUE)
prb.reml.pval <- RLRsim::exactRLRT(prb.reml)</pre>
prb.reml.pval
##
   simulated finite sample distribution of RLRT.
##
##
##
    (p-value based on 10000 simulated values)
##
## data:
## RLRT = 9.8245, p-value = 6e-04
```

```
fligner.test(onc.dat$BR^(1/2), onc.dat$geno)
## Fligner-Killeen test of homogeneity of variances
##
## data: onc.dat$BR^(1/2) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 6.1915, df = 12, p-value =
## 0.9061
shapiro.test(residuals(prb.reml))
##
## Shapiro-Wilk normality test
##
## data: residuals(prb.reml)
## W = 0.98395, p-value = 0.6926
h2.tab[3, "p-value"] <- prb.reml.pval$"p.value"
h2.tab[3, "H2"] <- H2(prb.reml, g = onc.dat$geno)
h2.tab[3, "R2"] <- R2(prb.reml)
R2(prb.reml)
## 0.3963714
h2.tab[3, "Response"] <- "Percent Rough Bark"
## pH ~ genotype
ph.reml <- lme4::lmer(I(pH^(1/2)) ~ (1 | geno),
                       data = na.omit(onc.dat), REML = TRUE)
ph.reml.pval <- RLRsim::exactRLRT(ph.reml)</pre>
ph.reml.pval
##
## simulated finite sample distribution of RLRT.
##
## (p-value based on 10000 simulated values)
##
## data:
## RLRT = 0.52364, p-value = 0.2049
fligner.test(log(onc.dat$pH), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
## data: log(onc.dat$pH) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 22.971, df = 12, p-value =
## 0.02797
shapiro.test(residuals(ph.reml))
##
## Shapiro-Wilk normality test
## data: residuals(ph.reml)
## W = 0.76737, p-value = 9.03e-08
```

```
# h2.tab[1, "p-value"] <- ph.reml.pval$"p.value"
# h2.tab[1, "H2"] \leftarrow H2(ph.reml, g = onc.dat$geno)
# h2.tab[1, "R2"] <- R2(ph.reml)
R2(ph.reml)
##
         R2c
## 0.1404423
# h2.tab[1, "Response"] <- "Percent Lichen Cover"
## condensed tannins REML
ct.reml <- lme4::lmer(I(CT^(1/4)) ~ (1 | geno),
                      data = na.omit(onc.dat), REML = TRUE)
ct.reml.pval <- RLRsim::exactRLRT(ct.reml)</pre>
ct.reml.pval
##
## simulated finite sample distribution of RLRT.
##
## (p-value based on 10000 simulated values)
##
## data:
## RLRT = 4.0284, p-value = 0.0186
fligner.test(onc.dat$CT^(1/4), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
## data: onc.dat$CT^(1/4) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 7.8941, df = 12, p-value =
## 0.7933
shapiro.test(residuals(ct.reml))
##
## Shapiro-Wilk normality test
## data: residuals(ct.reml)
## W = 0.75061, p-value = 4.002e-08
## CN ratio REML
cnr.reml <- lme4::lmer(I(CN^(1)) ~ (1 | geno),</pre>
                      data = na.omit(onc.dat), REML = TRUE)
## boundary (singular) fit: see ?isSingular
cnr.reml.pval <- RLRsim::exactRLRT(cnr.reml)</pre>
cnr.reml.pval
##
   simulated finite sample distribution of RLRT.
##
##
## (p-value based on 10000 simulated values)
##
## data:
## RLRT = 5.6843e-14, p-value = 0.4598
```

```
fligner.test(onc.dat$CN^(1/1), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
##
## data: onc.dat$CN^(1/1) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 8.1116, df = 12, p-value =
## 0.7763
shapiro.test(residuals(cnr.reml))
##
## Shapiro-Wilk normality test
##
## data: residuals(cnr.reml)
## W = 0.92434, p-value = 0.002442
## Bark roughness PCA
###### This is a rough draft of chem data analysis with new pH ######
pca.onc <- princomp(na.omit(onc.dat[, c("pH", "CT", "CN")]))</pre>
cumsum(pca.onc[["sdev"]] / sum(pca.onc[["sdev"]]))
##
      Comp.1
                Comp.2
                           Comp.3
## 0.7652602 0.9986463 1.0000000
tpc.onc <- pca.onc[["scores"]][, 1:2]</pre>
onc.dat.test <- cbind(onc.dat,</pre>
                      tpc.onc[match(rownames(onc.dat), rownames(tpc.onc)), ])
pc1.reml \leftarrow lme4::lmer(I(Comp.1^(1/1)) \sim (1 | geno),
                        data = onc.dat.test, REML = TRUE)
RLRsim::exactRLRT(pc1.reml)
##
##
   simulated finite sample distribution of RLRT.
##
    (p-value based on 10000 simulated values)
##
##
## data:
## RLRT = 0.68862, p-value = 0.1779
pc2.reml <- lme4::lmer(I(Comp.2^(1/1)) ~ (1 | geno),
                        data = onc.dat.test, REML = TRUE)
RLRsim::exactRLRT(pc2.reml)
##
##
    simulated finite sample distribution of RLRT.
##
##
   (p-value based on 10000 simulated values)
##
## data:
## RLRT = 0.22788, p-value = 0.2861
cn.d.onc.test <- distNet(cn.onc[as.character(onc.dat.test[!is.na(onc.dat.test[, "Comp.1"]), "tree.id"])</pre>
adonis2(cn.d.onc.test ~ Comp.1 * Comp.2, data = onc.dat.test)
```

```
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 999
## adonis2(formula = cn.d.onc.test ~ Comp.1 * Comp.2, data = onc.dat.test)
                Df SumOfSqs
                                R2
                                        F Pr(>F)
## Comp.1
                 1
                      26.78 0.01962 1.0763 0.269
## Comp.2
                 1
                    10.07 0.00738 0.4049 0.541
## Comp.1:Comp.2 1
                   108.89 0.07978 4.3767 0.035 *
## Residual
                49 1219.08 0.89322
                52 1364.81 1.00000
## Total
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
mantel(cn.d.onc.test ~ dist(na.omit(onc.dat[, c("pH", "CN", "CT")])))
                               pval2
                                           pval3
      mantelr
                    pval1
                                                  llim.2.5% ulim.97.5%
   0.25347788
## Is species richness correlated with percent cover?
cor.test(onc.dat[, "SR"], onc.dat[, "PC"], data = onc.dat)
##
##
   Pearson's product-moment correlation
##
## data: onc.dat[, "SR"] and onc.dat[, "PC"]
## t = 8.3456, df = 55, p-value = 2.393e-11
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6047186 0.8437321
## sample estimates:
##
        cor
## 0.7475023
## Were these correlated with bark roughness?
ptc.prb.lm \leftarrow lm(I(PC^{(1/2)}) \sim I(BR^{(1/2)}), data = onc.dat)
summary(ptc.prb.lm)
##
## lm(formula = I(PC^(1/2)) \sim I(BR^(1/2)), data = onc.dat)
## Residuals:
      Min
               1Q Median
                               30
                                     Max
## -5.9770 -1.6378 0.6333 1.9603 3.4658
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                4.4142
                          1.0901
                                   4.049 0.000162 ***
## I(BR^(1/2))
                0.4942
                           0.1896
                                   2.607 0.011730 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.485 on 55 degrees of freedom
## Multiple R-squared: 0.11, Adjusted R-squared: 0.09381
```

```
## F-statistic: 6.797 on 1 and 55 DF, p-value: 0.01173
fligner.test(onc.dat$PC, onc.dat$BR)
##
## Fligner-Killeen test of homogeneity of variances
## data: onc.dat$PC and onc.dat$BR
## Fligner-Killeen:med chi-squared = 27.401, df = 24, p-value =
## 0.2861
shapiro.test(residuals(ptc.prb.lm))
##
## Shapiro-Wilk normality test
## data: residuals(ptc.prb.lm)
## W = 0.95045, p-value = 0.02061
spr.prb.lm \leftarrow lm(I(SR^{(1)}) \sim I(BR^{(1/2)}), data = onc.dat)
summary(spr.prb.lm)
##
## Call:
## lm(formula = I(SR^(1)) \sim I(BR^(1/2)), data = onc.dat)
## Residuals:
##
      Min
               10 Median
                               3Q
## -3.0420 -1.3123 -0.1178 1.2308 4.3519
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
              ## (Intercept)
## I(BR^(1/2))
                0.1709
                           0.1392 1.228 0.22456
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.824 on 55 degrees of freedom
## Multiple R-squared: 0.0267, Adjusted R-squared: 0.009003
## F-statistic: 1.509 on 1 and 55 DF, p-value: 0.2246
fligner.test(onc.dat$SR^(1), onc.dat$BR)
##
## Fligner-Killeen test of homogeneity of variances
## data: onc.dat$SR^(1) and onc.dat$BR
## Fligner-Killeen:med chi-squared = 26.046, df = 24, p-value =
## 0.3508
shapiro.test(residuals(spr.prb.lm))
##
## Shapiro-Wilk normality test
## data: residuals(spr.prb.lm)
## W = 0.97168, p-value = 0.2008
```

```
## COM ~ genotype + Bark roughness + PTC + SPR
set.seed(2)
rcom.ng.perm <- vegan::adonis2(onc.com.rel^(1/1) ~ BR + PC + SR,</pre>
                              data = onc.dat, perm = 10000, mrank = TRUE)
set.seed(2)
rcom.perm <- vegan::adonis2(onc.com.rel^(1/1) ~ geno + BR + PC + SR,
                            data = onc.dat, perm = 10000, mrank = TRUE)
com.ng.perm <- vegan::adonis2(onc.com^(1/1) ~ BR + PC + SR,</pre>
                              data = onc.dat, perm = 10000, mrank = TRUE)
set.seed(2)
com.perm <- vegan::adonis2(onc.com^(1/1) ~ geno + BR + PC + SR,
                           data = onc.dat, perm = 10000, mrank = TRUE)
rcom.ng.perm
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 10000
## vegan::adonis2(formula = onc.com.rel^(1/1) ~ BR + PC + SR, data = onc.dat, permutations = 10000, mra
           Df SumOfSqs
                            R2
                                     F
                                           Pr(>F)
## BR
            1
                0.4398 0.03889 3.7408 0.008799 **
## PC
                3.8618 0.34151 32.8482 9.999e-05 ***
                0.7754 0.06857 6.5958 9.999e-05 ***
## SR.
            1
## Residual 53 6.2309 0.55102
           56 11.3079 1.00000
## Total
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
rcom.perm
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 10000
## vegan::adonis2(formula = onc.com.rel^(1/1) ~ geno + BR + PC + SR, data = onc.dat, permutations = 100
##
           Df SumOfSqs
                            R2
                                     F
                                           Pr(>F)
           12 2.7463 0.24287 1.8221 0.0031997 **
## geno
            1
                0.1248 0.01104 0.9938 0.3900610
## BR
## PC
               2.6711 0.23622 21.2661 9.999e-05 ***
            1
            1 0.6159 0.05447 4.9036 0.0009999 ***
## SR
## Residual 41 5.1498 0.45541
         56 11.3079 1.00000
## Total
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
h2.tab[4, "p-value"] <- unlist(rcom.perm)["Pr(>F)1"]
h2.tab[4, "H2"] \leftarrow H2(rcom.perm, g = onc.dat$geno)
h2.tab[4, "R2"] <- R2(rcom.perm)
h2.tab[4, "Response"] <- "Lichen Community Composition"
## Is network similarity correlated with community composition?
ecodist::mantel(cn.d.onc ~ vegdist(onc.com.rel), mrank = TRUE)
```

```
pval3 llim.2.5% ulim.97.5%
##
     mantelr
                  pval1
                             pval2
## 0.09198784 0.07200000 0.92900000 0.12000000 0.05120132 0.13656424
spr.d <- dist(onc.dat$SR)</pre>
ptc.d <- dist(onc.dat$PC)</pre>
prb.d <- dist(onc.dat$BR)</pre>
### rough -> cover -> rich -> net
ecodist::mantel(cn.d.onc ~ vegdist(onc.com.rel) + spr.d + ptc.d + prb.d, mrank = TRUE)
##
                             pval2
                                        pval3 llim.2.5% ulim.97.5%
     mantelr
                  pval1
## 0.06853395 0.15400000 0.84700000 0.31300000 0.02256902 0.13046001
## Partial Mantels using RFLP distance
ecodist::mantel(cn.mu.d.onc ~ rflp.d)
##
      mantelr
                    pval1
                                pval2
                                           pval3
                                                   llim.2.5% ulim.97.5%
ecodist::mantel(onc.com.mu.d ~ rflp.d)
                                        pval3 llim.2.5% ulim.97.5%
     mantelr
                  pval1
                             pval2
   0.1179051
              0.2830000 0.7180000 0.4830000 -0.2789494 0.2435282
ecodist::mantel(cn.mu.d.onc ~ onc.com.mu.d)
##
      mantelr
                    pval1
                                pval2
                                           pval3
                                                   llim.2.5% ulim.97.5%
## 0.29000439 0.08800000 0.91300000 0.08800000 -0.02360565 0.42465976
## Was lichen network similarity determined by genotype?
set.seed(1234)
cn.perm <- vegan::adonis2(cn.d.onc.na ~ geno +</pre>
                           BR + pH + CN + CT +
                           PC + SR + SE,
                         by = "term",
                         data = na.omit(onc.dat),
                         permutations = 10000, mrank = FALSE)
cn.perm.ng <- vegan::adonis2(cn.d.onc ~ BR + PC + SR,</pre>
              data = onc.dat, permutations = 10000, mrank = TRUE)
cn.perm.ng
## Permutation test for adonis under reduced model
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 10000
## vegan::adonis2(formula = cn.d.onc ~ BR + PC + SR, data = onc.dat, permutations = 10000, mrank = TRUE
##
           Df SumOfSqs
                            R2
                                         Pr(>F)
## BR
            1
                 61.42 0.03968 4.1680
                                         0.04020 *
## PC
            1
                 49.47 0.03197 3.3573
                                         0.06839 .
## SR
            1
                655.76 0.42373 44.5034 9.999e-05 ***
## Residual 53 780.96 0.50462
## Total
           56 1547.61 1.00000
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
cn.perm
```

Permutation test for adonis under reduced model

```
## Terms added sequentially (first to last)
## Permutation: free
## Number of permutations: 10000
## vegan::adonis2(formula = cn.d.onc.na ~ geno + BR + pH + CN + CT + PC + SR + SE, data = na.omit(onc.d
           Df SumOfSqs
                           R2 F
                                         Pr(>F)
           12 367.65 0.26937 2.3065 0.02860 *
## geno
                23.63 0.01732 1.7792 0.18828
## BR
            1
## pH
            1
                 8.96 0.00656 0.6745
                                        0.41866
                 37.70 0.02762 2.8379 0.08849
## CN
           1
## CT
           1
                76.22 0.05585 5.7383 0.03310 *
                28.50 0.02088 2.1458 0.14349
## PC
           1
## SR
            1 332.23 0.24342 25.0117 9.999e-05 ***
           1 51.59 0.03780 3.8843 0.04470 *
## SE
## Residual 33 438.33 0.32117
         52 1364.81 1.00000
## Total
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
h2.tab[5, "p-value"] <- as.matrix(cn.perm)[1, "Pr(>F)"]
h2.tab[5, "H2"] <- H2(cn.perm, g = onc.dat[, "geno"], perm =10000)
h2.tab[5, "R2"] <- R2(cn.perm)
h2.tab[5, "Response"] <- "Lichen Network"
                                       # db rda for network similarity
dbr.cn.geno <- vegan::dbrda(cn.d.onc ~ geno, data = onc.dat, distance = "bray")
anova(dbr.cn.geno, permutations = 5000)
## Permutation test for dbrda under reduced model
## Permutation: free
## Number of permutations: 5000
##
## Model: vegan::dbrda(formula = cn.d.onc ~ geno, data = onc.dat, distance = "bray")
                          F Pr(>F)
           Df Variance
## Model
           12
                 8.045 1.5057 0.146
## Residual 44
                19.591
H2(dbr.cn.geno)
## [1] 0.2911089
## What aspects of networks explained the similiarity?
## L = number of edges, LD = link density, C = connectivity,
## dcen = degree centrality
link.reml <- lme4::lmer(I(log(L + 0.00000001)) ~ (1 | geno),
                         data = onc.dat, REML = TRUE)
link.reml.pval <- RLRsim::exactRLRT(link.reml, nsim = 50000)</pre>
link.reml.pval
##
## simulated finite sample distribution of RLRT.
##
## (p-value based on 50000 simulated values)
##
## data:
## RLRT = 2.0484, p-value = 0.06674
```

```
fligner.test(log(onc.dat$L + 0.0000001), onc.dat$geno)
## Fligner-Killeen test of homogeneity of variances
## data: log(onc.dat$L + 1e-07) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 11.991, df = 12, p-value =
## 0.4464
shapiro.test(residuals(link.reml))
## Shapiro-Wilk normality test
##
## data: residuals(link.reml)
## W = 0.83643, p-value = 2.036e-06
h2.tab[6, "p-value"] <- link.reml.pval$"p.value"
h2.tab[6, "H2"] <- H2(link.reml, g = onc.dat$geno)
h2.tab[6, "R2"] <- R2(link.reml)
R2(link.reml)
##
         R<sub>2</sub>c
## 0.1701568
h2.tab[6, "Response"] <- "Number of Network Links"
                                         # network centrality
cen.reml <- lme4::lmer(I(Cen^(1/2)) ~ (1 | geno),</pre>
                       data = onc.dat, REML = TRUE)
cen.reml.pval <- RLRsim::exactRLRT(cen.reml, nsim = 50000)</pre>
cen.reml.pval
##
## simulated finite sample distribution of RLRT.
## (p-value based on 50000 simulated values)
## data:
## RLRT = 2.7801, p-value = 0.03958
fligner.test(onc.dat$L^(1/1), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
## data: onc.dat$L^(1/1) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 14.241, df = 12, p-value =
## 0.2856
shapiro.test(residuals(cen.reml))
##
## Shapiro-Wilk normality test
##
## data: residuals(cen.reml)
## W = 0.90072, p-value = 0.0002041
```

```
h2.tab[7, "p-value"] <- cen.reml.pval$"p.value"
h2.tab[7, "H2"] \leftarrow H2(cen.reml, g = onc.dat$geno)
h2.tab[7, "R2"] <- R2(cen.reml)
R2(cen.reml)
         R<sub>2</sub>c
## 0.2016649
h2.tab[7, "Response"] <- "Network Centrality"
                                         # network modularity
mod.reml <- lme4::lmer(I(onc.ns[, "mod.lik"]^(1/4)) ~ (1 | geno),
                        data = onc.dat, REML = TRUE)
mod.reml.pval <- RLRsim::exactRLRT(mod.reml)</pre>
mod.reml.pval
##
## simulated finite sample distribution of RLRT.
##
## (p-value based on 10000 simulated values)
##
## data:
## RLRT = 0.23363, p-value = 0.267
fligner.test(onc.ns[, "mod.lik"]^(1/4), onc.dat$geno)
##
## Fligner-Killeen test of homogeneity of variances
## data: onc.ns[, "mod.lik"]^(1/4) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 13.439, df = 12, p-value =
## 0.3379
shapiro.test(residuals(mod.reml))
##
##
  Shapiro-Wilk normality test
## data: residuals(mod.reml)
## W = 0.54001, p-value = 4.252e-12
h2.tab[8, "p-value"] <- mod.reml.pval$"p.value"
h2.tab[8, "H2"] <- H2(mod.reml, g = onc.dat$geno)
h2.tab[8, "R2"] <- R2(mod.reml)
h2.tab[8, "Response"] <- "Network Modularity"
## Added diversity and evenness
## Species diversity ~ genotype
spd.reml <- lme4::lmer(I(SD^(1/2)) ~ (1 | geno),</pre>
                       data = na.omit(onc.dat), REML = TRUE)
spd.reml.pval <- RLRsim::exactRLRT(spd.reml)</pre>
spd.reml.pval
##
##
    simulated finite sample distribution of RLRT.
##
```

```
(p-value based on 10000 simulated values)
##
## data:
## RLRT = 0.078644, p-value = 0.3532
shapiro.test(residuals(spd.reml))
##
##
   Shapiro-Wilk normality test
##
## data: residuals(spd.reml)
## W = 0.89237, p-value = 0.0001793
fligner.test(onc.dat$SD^(1/2), onc.dat$geno)
##
  Fligner-Killeen test of homogeneity of variances
##
## data: onc.dat$SD^(1/2) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 17.299, df = 12, p-value =
## 0.1387
h2.tab[9, "p-value"] <- spd.reml.pval$"p.value"
h2.tab[9, "H2"] <- H2(spd.reml, g = onc.dat$geno)
h2.tab[9, "R2"] <- R2(spd.reml)
R2(spd.reml)
## 0.02907546
h2.tab[9, "Response"] <- "Lichen Species Diversity"
## Species diversity ~ genotype
spe.reml <- lme4::lmer(I(SE^(1/4)) ~ (1 | geno),</pre>
                       data = na.omit(onc.dat), REML = TRUE)
spe.reml.pval <- RLRsim::exactRLRT(spe.reml)</pre>
spe.reml.pval
##
##
   simulated finite sample distribution of RLRT.
##
##
   (p-value based on 10000 simulated values)
##
## data:
## RLRT = 0.35064, p-value = 0.2461
shapiro.test(residuals(spe.reml))
##
   Shapiro-Wilk normality test
##
## data: residuals(spe.reml)
## W = 0.67851, p-value = 1.705e-09
fligner.test(onc.dat$SD^(1/2), onc.dat$geno)
##
  Fligner-Killeen test of homogeneity of variances
```

```
##
## data: onc.dat$SD^(1/2) and onc.dat$geno
## Fligner-Killeen:med chi-squared = 17.299, df = 12, p-value =
## 0.1387
h2.tab[10, "p-value"] <- spe.reml.pval$"p.value"
h2.tab[10, "H2"] <- H2(spe.reml, g = onc.dat$geno)
h2.tab[10, "R2"] <- R2(spe.reml)
R2(spe.reml)
##
         R2c
## 0.05732341
h2.tab[10, "Response"] <- "Lichen Species Evenness"
                                        # network stats in relation to other variables
L.aov \leftarrow aov(I(log(L + 0.000001)) \sim BR + PC + SR, data = onc.dat)
summary(L.aov)
              Df Sum Sq Mean Sq F value
                                           Pr(>F)
## BR
               1 102.3
                           102.3
                                   2.776
                                           0.1016
## PC
                1 239.6
                           239.6
                                 6.504
                                           0.0137 *
## SR
                1 957.0
                           957.0 25.980 4.71e-06 ***
              53 1952.2
                            36.8
## Residuals
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
shapiro.test(residuals(L.aov))
## Shapiro-Wilk normality test
## data: residuals(L.aov)
## W = 0.9629, p-value = 0.07794
cen.aov <- aov(I(Cen^(1/2)) \sim BR + PC + SR, data = onc.dat)
summary(cen.aov)
##
              Df Sum Sq Mean Sq F value
                                           Pr(>F)
## BR
               1
                    3.77
                            3.77
                                   2.174
                                            0.146
## PC
                                  3.724
                    6.46
                            6.46
                                            0.059 .
                1
               1 56.48
                           56.48 32.552 5.31e-07 ***
## SR
              53 91.95
## Residuals
                           1.73
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
shapiro.test(residuals(cen.aov))
##
  Shapiro-Wilk normality test
##
## data: residuals(cen.aov)
## W = 0.97222, p-value = 0.2126
mod.aov \leftarrow aov(I(onc.ns[, "mod.lik"]^(1/4)) \sim BR + PC + SR, data = onc.dat)
summary(mod.aov)
##
               Df Sum Sq Mean Sq F value
                                           Pr(>F)
```

```
## BR
                1 0.0442 0.0442
                                  0.787
                                             0.379
## PC
                1 0.0879 0.0879
                                  1.564
                                             0.217
               1 1.3799 1.3799 24.558 7.76e-06 ***
## SR
## Residuals 53 2.9781 0.0562
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
shapiro.test(residuals((mod.aov)))
##
##
   Shapiro-Wilk normality test
##
## data: residuals((mod.aov))
## W = 0.9201, p-value = 0.001078
cor.test(onc.ns[, "L"], onc.ns[, "Cen"])
##
  Pearson's product-moment correlation
##
## data: onc.ns[, "L"] and onc.ns[, "Cen"]
## t = 13.37, df = 55, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.7950728 0.9244074
## sample estimates:
         cor
## 0.8744752
                                         # are these metrics correlated with network similarity
L.d <- dist(onc.dat$L)
cen.d <- dist(onc.dat$Cen)
mod.d <- dist(cn.mod.onc)</pre>
cn.L.cen.perm <- adonis2(cn.d.onc ~ L + Cen, data = onc.dat, mrank = TRUE)</pre>
## So, are there patterns in the centrality of individual lichen species?
sppcen.test <- apply(cen.spp[, apply(cen.spp, 2, sum) >= 2], 2, function(x)
   lme4::lmer(I(x^{(1/2)}) \sim (1 \mid geno), data = na.omit(onc.dat), REML = TRUE))
## boundary (singular) fit: see ?isSingular
sppcen.pval <- lapply(sppcen.test, RLRsim::exactRLRT)</pre>
sppcen.tab <- do.call(rbind, lapply(sppcen.pval, function(x)</pre>
    c(x[["statistic"]], x[["p.value"]])))
sppcen.h2 <- round(unlist(lapply(sppcen.test, H2)), 3)</pre>
sppcen.h2
                        Ch
                  Ls
                              Χm
                                     Pm
## 0.000 0.076 0.000 0.152 0.190 0.000 0.000
## Mean centrality of species
sort(apply(cen.spp, 2, mean), decreasing = TRUE)
##
           Cs
                      Ch
                                 Ls
                                             Rs
                                                        Χg
                                                                   Pm
```

```
## 0.73023360 0.51060368 0.41242791 0.19765745 0.15651469 0.08511420
##
           Χm
                     Pıı
## 0.06858041 0.02264151 0.00000000
summary(aov(value ~ X2, data = melt(cen.spp)))
                Df Sum Sq Mean Sq F value Pr(>F)
## X2
                 8 27.04
                           3.380
                                   8.086 3e-10 ***
               468 195.63
## Residuals
                           0.418
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
TukeyHSD(aov(value ~ X2, data = melt(cen.spp)))
##
     Tukey multiple comparisons of means
##
      95% family-wise confidence level
##
## Fit: aov(formula = value ~ X2, data = melt(cen.spp))
##
## $X2
##
                diff
                            lwr
                                         upr
                                                 p adj
## Cs-Ch 0.21962992 -0.1717750 0.611034785 0.7158140
## Ls-Ch -0.09817577 -0.4895806 0.293229097 0.9973174
## Pa-Ch -0.51060368 -0.9020086 -0.119198814 0.0018322
## Pm-Ch -0.42548948 -0.8168944 -0.034084614 0.0215980
## Pu-Ch -0.48796217 -0.8793670 -0.096557305 0.0037079
## Rs-Ch -0.31294623 -0.7043511 0.078458638 0.2386358
## Xg-Ch -0.35408900 -0.7454939 0.037315874 0.1124897
## Xm-Ch -0.44202327 -0.8334281 -0.050618401 0.0139219
## Ls-Cs -0.31780569 -0.7092106 0.073599181 0.2201386
## Pa-Cs -0.73023360 -1.1216385 -0.338828730 0.0000004
## Pm-Cs -0.64511940 -1.0365243 -0.253714530 0.0000145
## Pu-Cs -0.70759209 -1.0989970 -0.316187221 0.0000011
## Rs-Cs -0.53257615 -0.9239810 -0.141171278 0.0008956
## Xg-Cs -0.57371891 -0.9651238 -0.182314042 0.0002163
## Xm-Cs -0.66165319 -1.0530581 -0.270248317 0.0000075
## Pa-Ls -0.41242791 -0.8038328 -0.021023042 0.0301134
## Pm-Ls -0.32731371 -0.7187186 0.064091158 0.1867880
## Pu-Ls -0.38978640 -0.7811913 0.001618467 0.0519144
## Rs-Ls -0.21477046 -0.6061753
                                0.176634410 0.7402505
## Xg-Ls -0.25591322 -0.6473181 0.135491646 0.5178196
## Xm-Ls -0.34384750 -0.7352524
                                0.047557371 0.1376135
## Pm-Pa 0.08511420 -0.3062907
                                0.476519070 0.9990336
## Pu-Pa 0.02264151 -0.3687634 0.414046379 1.0000000
## Rs-Pa 0.19765745 -0.1937474 0.589062322 0.8187315
## Xg-Pa 0.15651469 -0.2348902 0.547919558 0.9456749
## Xm-Pa 0.06858041 -0.3228245
                               0.459985283 0.9998045
## Pu-Pm -0.06247269 -0.4538776 0.328932178 0.9999034
## Rs-Pm 0.11254325 -0.2788616 0.503948121 0.9931235
## Xg-Pm 0.07140049 -0.3200044 0.462805357 0.9997355
## Xm-Pm -0.01653379 -0.4079387
                                0.374871082 1.0000000
## Rs-Pu 0.17501594 -0.2163889
                                0.566420812 0.9000620
## Xg-Pu 0.13387318 -0.2575317
                                0.525278048 0.9786988
## Xm-Pu 0.04593890 -0.3454660 0.437343773 0.9999909
## Xg-Rs -0.04114276 -0.4325476 0.350262105 0.9999962
```

```
## Xm-Rs -0.12907704 -0.5204819 0.262327830 0.9830852
## Xm-Xg -0.08793428 -0.4793391 0.303470594 0.9987764
apply(cen.spp, 2, sd) / sqrt(nrow(cen.spp))
                      Cs
                                  Ls
                                             Ch
                                                        Χm
                                                                    Pm
## 0.05925513 0.14349031 0.13434259 0.12920446 0.04002923 0.04918653
           Pa
                      Pu
## 0.00000000 0.02264151 0.08722534
## Lichen size distribution
## X. gallericulata thalli are about 0.22 +/- 0.003 cm<sup>2</sup> on average
## with an average median size of 0.12 +/- 0.001 \text{ cm}^2
## and, size does not vary significantly with genotype.
xgs.reml <- lme4::lmer(I(mean.thallus) ~ (1 | geno),</pre>
                       data = xgs.data[xgs.data$geno %in%
                                        names(which(table(xgs.data$geno) > 2)), ],
                       REML = TRUE)
xgs.median.reml <- lme4::lmer(median.thallus ~ (1 | geno),
                       data = xgs.data[xgs.data$geno %in%
                                        names(which(table(xgs.data$geno) > 2)), ],
                       REML = TRUE)
RLRsim::exactRLRT(xgs.reml)
##
##
   simulated finite sample distribution of RLRT.
##
    (p-value based on 10000 simulated values)
##
##
## data:
## RLRT = 2.4792, p-value = 0.0473
RLRsim::exactRLRT(xgs.median.reml)
##
    simulated finite sample distribution of RLRT.
##
##
    (p-value based on 10000 simulated values)
##
##
## data:
## RLRT = 0.092023, p-value = 0.3389
fligner.test(xgs.data$mean.thallus, xgs.data$geno)
##
   Fligner-Killeen test of homogeneity of variances
##
## data: xgs.data$mean.thallus and xgs.data$geno
## Fligner-Killeen:med chi-squared = 13.244, df = 17, p-value =
fligner.test(xgs.data$median.thallus, xgs.data$geno)
## Fligner-Killeen test of homogeneity of variances
## data: xgs.data$median.thallus and xgs.data$geno
## Fligner-Killeen:med chi-squared = 19.374, df = 17, p-value =
```

```
## 0.3075
mean(xgs.data$mean.thallus)
## [1] 0.1808442
sd(xgs.data$mean.thallus) / (length(xgs.data$mean.thallus) - 1)
## [1] 0.001845945
mean(xgs.data$median.thallus)
## [1] 0.1170852
sd(xgs.data$median.thallus) / (length(xgs.data$median.thallus) - 1)
## [1] 0.001223999
                                          # ONC and Wild Stand (Uintah)
all.dat <- rbind(wild.dat[, c("BR", "PC", "SR", "L", "Cen")],
                 onc.dat[, c("BR", "PC", "SR", "L", "Cen")])
                                          # Network distances
cn.all <- cn.wild
for (i in 1:length(cn.wild)){
    cn.all[[i]] <- cn.wild[[i]][match(rownames(cn.onc[[1]]), rownames(cn.wild[[i]])),</pre>
                                 match(colnames(cn.onc[[1]]), colnames(cn.wild[[i]]))]
}
cn.all <- append(cn.all, cn.onc)</pre>
cn.d.all <- distNet(cn.all, method = "bc")</pre>
cn.nms.geno <- c(rep("wild", length(cn.wild)), onc.geno)</pre>
if (!exists("cn.nms.all")){
    set.seed(12345)
    cn.nms.all <- nmds.min(nmds(cn.d.all, 2, 2))</pre>
    vec.all <- envfit(cn.nms.all, all.dat)</pre>
                                          # jitter identical points
    cn.nms.all[cn.nms.geno == "H10", ] <- cn.nms.all[cn.nms.geno == "H10", ] - 0.2
}
```

Tables

Response	H2	R2	p-value
Percent Rough Bark	0.39637	0.39637	6e-04
Network Centrality	0.20166	0.20166	0.03958
Number of Network Links	0.17016	0.17016	0.06674
Lichen Community Composition	0.16093	0.24287	0.0032
Percent Lichen Cover	0.1368	0.1368	0.0854
Lichen Network	0.06385	0.26937	0.0286
Lichen Species Evenness	0.05732	0.05732	0.2461
Network Modularity	0.05731	0.05731	0.267
Lichen Species Diversity	0.02908	0.02908	0.3532
Lichen Species Richness	0.02807	0.02807	0.354

Table 1: Genotypic effects of cottonwood trees on the associated lichen community.

% latex table generated in R 3.6.1 by xtable 1.8-4 package % Wed Oct 9 16:53:22 2019

	Df	SumOfSqs	R2	F	Pr(>F)
BR	1	0.44	0.04	3.74	0.0088
PC	1	3.86	0.34	32.85	0.0001
SR	1	0.78	0.07	6.60	0.0001
Residual	53	6.23	0.55		
Total	56	11.31	1.00		

Table 2: PerMANOVA Pseudo-F Table showing the predictors of community similarity.

	Df	SumOfSqs	R2	F	Pr(>F)
geno	12	2.75	0.24	1.82	0.0032
BR	1	0.12	0.01	0.99	0.3901
PC	1	2.67	0.24	21.27	0.0001
SR	1	0.62	0.05	4.90	0.0010
Residual	41	5.15	0.46		
Total	56	11.31	1.00		

Table 3: PerMANOVA Pseudo-F Table showing the predictors of community similarity.

% latex table generated in R 3.6.1 by x table 1.8-4 package % Wed Oct 9 16:53:22 2019

	Df	SumOfSqs	R2	F	Pr(>F)
BR	1	61.42	0.04	4.17	0.0402
PC	1	49.47	0.03	3.36	0.0684
SR	1	655.76	0.42	44.50	0.0001
Residual	53	780.96	0.50		
Total	56	1547.61	1.00		

Table 4: PerMANOVA Pseudo-F Table showing the predictors of network similarity.

Df	SumOfSqs	R2	\mathbf{F}	Pr(>F)
12	367.65	0.27	2.31	0.0286
1	23.63	0.02	1.78	0.1883
1	8.96	0.01	0.67	0.4187
1	37.70	0.03	2.84	0.0885
1	76.22	0.06	5.74	0.0331
1	28.50	0.02	2.15	0.1435
1	332.23	0.24	25.01	0.0001
1	51.59	0.04	3.88	0.0447
33	438.33	0.32		
52	1364.81	1.00		
	12 1 1 1 1 1 1 1 33	12 367.65 1 23.63 1 8.96 1 37.70 1 76.22 1 28.50 1 332.23 1 51.59 33 438.33	12 367.65 0.27 1 23.63 0.02 1 8.96 0.01 1 37.70 0.03 1 76.22 0.06 1 28.50 0.02 1 332.23 0.24 1 51.59 0.04 33 438.33 0.32	12 367.65 0.27 2.31 1 23.63 0.02 1.78 1 8.96 0.01 0.67 1 37.70 0.03 2.84 1 76.22 0.06 5.74 1 28.50 0.02 2.15 1 332.23 0.24 25.01 1 51.59 0.04 3.88 33 438.33 0.32

Table 5: PerMANOVA Pseudo-F Table showing the predictors of network similarity.

% latex table generated in R 3.6.1 by xtable 1.8-4 package % Wed Oct 9 16:53:22 2019

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
BR	1	102.25	102.25	2.78	0.1016
PC	1	239.57	239.57	6.50	0.0137
SR	1	956.96	956.96	25.98	0.0000
Residuals	53	1952.23	36.83		

Table 6: ANOVA F Table showing the predictors of the number of network links.

% latex table generated in R 3.6.1 by xtable 1.8-4 package % Wed Oct 9 16:53:22 2019

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
BR	1	3.77	3.77	2.17	0.1463
PC	1	6.46	6.46	3.72	0.0590
SR	1	56.48	56.48	32.55	0.0000
Residuals	53	91.95	1.73		

Table 7: ANOVA F Table showing the predictors of network centralization.

-	Df	SumOfSqs	R2	F	Pr(>F)
L	1	1330.80	0.86	734.67	0.0010
Cen	1	118.99	0.08	65.69	0.0010
Residual	54	97.82	0.06		
Total	56	1547.61	1.00		

Table 8: PerMANOVA Pseudo-F Table showing the predictors of network similarity.

Plots

Figure: Genotype barplots Community composition NMDS with vectors

Figure: Lichen networks

```
par(mfrow = c(2, 2), mar = c(0, 0.1, 1.0, 0.1))
set.seed(123)
net.col <- sign(meanNet(cn.mu.onc))</pre>
net.col[net.col == -1] <- 2
net.col[net.col == 1] <- 1</pre>
net.elwd <- (abs(meanNet(cn.mu.onc)) * 10)^2</pre>
coord <- gplot(abs(meanNet(cn.mu.onc)), gmode = "digraph",</pre>
      displaylabels = TRUE,
      edge.lwd = net.elwd,
      edge.col = net.col,
      vertex.col = "black",
      vertex.cex = 0.5,
      arrowhead.cex = 0.5,
      label.cex = 1,
      main = "All Genotypes")
cn.mu.plot <- cn.mu.onc[names(cn.mu.onc) %in%</pre>
```

```
c("996", "WC5", "1008")]
cn.mu.plot <- cn.mu.plot[</pre>
  order(unlist(lapply(cn.mu.plot,
                       function(x) sum(abs(sign(x)))))]
for (i in 1:length(cn.mu.plot)){
        net.col <- sign(cn.mu.plot[[i]])</pre>
        net.col[net.col == -1] \leftarrow 2
        net.col[net.col == 1] <- 1</pre>
        net.elwd <- (abs(cn.mu.plot[[i]]) * 10)^2</pre>
        set.seed(123)
        gplot(abs(cn.mu.plot[[i]]), gmode = "digraph",
               displaylabels = TRUE,
               coord = coord,
               edge.lwd = net.elwd,
               edge.col = net.col,
               vertex.col = "black",
               vertex.cex = 0.5,
               arrowhead.cex = 0.5,
               label.cex = 1,
               main = names(cn.mu.plot)[i])
}
```


Figure: Genotype network similarity by genotype

Figure: A) Lichen networks

Figure: (A) Linkage and centrality by genotype and (B) Total cover and species richness predict L and Cen

Supplementary Figure: Lichen size distribution

```
plot(density(xgs.data$median.thallus),
    xlab = "Median Lichen Thallus Area (cm^2)",
    main = "")
abline(v = median(xgs.data$median.thallus, na.rm = TRUE), lty = 2)
```


Median Lichen Thallus Area (cm^2)

Figure 2

ch.plot(nms.onc, onc.geno)


```
Х2
##
                 Х1
## 10
        -0.091479884 -0.104244255
## 1005 -0.124540472 0.074171596
## 1007 0.175012652 -0.154102531
## 1008 0.061349598 0.060637950
## 1012 -0.056201035 0.097682862
## 1017 -0.040197275 0.050863036
## 1023 0.053916695 0.005735269
## 11
        -0.032978298 -0.028980365
## 996
        0.076271011 -0.099167595
## 999
        0.105185439 -0.062733516
```

```
## H10 -0.011830997 0.122603983
## T6
          0.002941633 0.064173827
        -0.128224482 0.016507373
## WC5
## plot(cv.onc, col = "qrey30")
## legend("topleft", legend = "A")
g.order <- tapply(ns.onc[, "C"], onc.geno, mean)</pre>
g.order <- names(g.order)[order(g.order, decreasing = TRUE)]</pre>
onc.g <- factor(onc.geno, levels = g.order)</pre>
plot(ns.onc[, "C"] ~ onc.g, xlab = "Tree Genotype", ylab = "Lichen Network Connectance (C)")
Lichen Network Connectance (C)
      0.15
                                   0
       0.10
                                                          0
       0.05
       0.00
                                 1008
                                            1012
                                                        996
                                                                   1007
                                                                                999
                 11
                       10
                                            Tree Genotype
```

Which wild uintah trees are similar to garden trees?

Send results to manuscript

```
manuscript.dir <- "../../lcn manuscript"</pre>
### Send tables and figures to manuscript directory
if (exists("manuscript.dir")){
    tabs.figs <- dir(manuscript.dir)</pre>
    tab.fig.update <- dir("../results/lcn_notebook_files/figure-latex/",</pre>
                           full.names = TRUE)[
                               dir("../results/lcn_notebook_files/figure-latex/") %in% tabs.figs]
    tab.fig.update <- c(tab.fig.update,</pre>
                         dir("../docs", full.names = TRUE)[dir("../docs") %in% tabs.figs])
    sapply(tab.fig.update, file.copy, to = manuscript.dir, overwrite = TRUE)
                                          # supplementary figures
    si.dir <- paste0(manuscript.dir, "/supplement")</pre>
    si <- dir(si.dir)</pre>
    si.update <- dir("../results/lcn_notebook_files/figure-latex/",</pre>
                      full.names = TRUE)[
                          dir("../results/lcn_notebook_files/figure-latex/") %in% si]
    si.update <- c(si.update, dir("../docs", full.names = TRUE)[dir("../docs") %in% si])
    sapply(si.update, file.copy, to = si.dir,
           overwrite = TRUE)
```

Loading and pre-processing data

named list()

```
## This is a place-holder for the echoing the data loading code.
```