Universidad del Valle de Guatemala

Departamento de Matemática Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

MM2033 - Teoría de Conjuntos - Catedrático: Nancy Zurita 25 de septiembre de 2021

HT 7

1. Sección

Instrucciones: Resuelva los siguientes problemas:

Problema 1.1. Sea $A = \mathbb{Z}$, si se define una relación \approx sobre A tal que: $x \approx y$ si $x-y \in \mathbb{Z}$. Determine si la relación \approx es: reflexiva, simétrica, transitiva, antisimétrica, de orden parcial y/o de equivalencia. Si la relación es de equivalencia construya el conjunto cociente.

Demostración. content...

Problema 1.2. Dado X un conjunto no vacío, muestre que existe una única relación de equivalencia R sobre X, tal que el conjunto cociente es un conjunto unitario.

Demostración. content...

Problema 1.3. Demuestre que si R y S son relaciones de equivalencia la intersección entre ellas también es relación de equivalencia. ¿Es la unión relación de equivalencia?

Demostración. content...

Problema 1.4. Sea $f: X \to Y$ una función sobreyectiva, con X un conjunto no vacío. Defina la relación $E = \{(a,b) \mid f(a) = f(b)\}$

1. Muestre que E es una relación de equivalencia.

Demostración. content...

2. Demuestre que los conjuntos Y y E/X son equipotentes (i.e. existe una función biyectiva entre Y y E/X).

2. Sección

Instrucciones: Resuelva los siguientes ejercicios del libro de Pinter:

2.1. Capítulo 3

2.1.1. Ejercicios 3.2

Problema 2.1. (Problema 2) Let G be a relation in A; prove each of the following:

1. G is irreflexive if and only if $G \cap I = \emptyset$.

Demostración. Sea

 (\Longrightarrow) Supóngase G no es reflexiva, $\forall x \in A \ni (x,x) \notin G$. Sea

$$(x,y) \in G \cap I \implies (x,y) \in G \land \underbrace{(x,y)}_{x=y} \in I$$

$$\implies \underbrace{(x,x) \in G}_{(\to \leftarrow)} \land (x,x) \in I$$

$$\therefore \forall (x,y) \notin G \cap I \implies G \cap I = \varnothing.$$

(\iff) Supóngase $G \cap I = \emptyset$. Sea $(x,y) \in G$, pero como $G \cap I = \emptyset \implies I \not\subseteq G \implies \forall x \in A \ni (x,x) \not\in G \implies G$ no es reflexiva.

$$G \cap I = \emptyset$$
.

2. G is asymmetric if and only if $G \cap G^{-1} = \emptyset$.

Demostración. Sea

 (\Longrightarrow) Supóngase G es asimétrica, tal que

$$(x,y) \in G \cap G^{-1} \implies \underbrace{(x,y) \in G}_{\substack{\text{definición} \\ \text{asimetría}}} \land (x,y) \in G^{-1}$$
$$\implies (y,x) \not\in G \land (y,x) \in G(\rightarrow \leftarrow)$$

$$\therefore (x,y) \not\in G \cap G^{-1} \therefore G \cap G^{-1} = \varnothing.$$

(\iff) Supóngase $G \cap G^{-1} = \emptyset$, tal que

$$(x,y) \in G \land (y,x) \in G \implies (x,y) \in G \land (x,y) \in G^{-1}$$

 $\implies (x,y) \in G \cap G^{-1} = \varnothing$
 $\implies (y,x) \notin G.$

 $\therefore G$ es asimétrica.

$$G \cap G^{-1} = \emptyset$$
.

3. G is intransitive if and only if $(G \circ G) \cap G = \emptyset$.

Demostración. Sea

 (\Longrightarrow) Sea G intransitiva, tal que

$$(x,y) \in (G \circ G) \cap G \implies (x,y) \in (G \circ G) \land (x,y) \in G$$

$$\implies \underbrace{[\exists z \ni (x,z) \in G \land (z,y) \in G]}_{\text{definición intransitiva}} \land (x,y) \in G$$

$$\implies (x,y) \not\in G \land (x,y) \in G(\rightarrow \leftarrow)$$

$$\therefore (x,y) \not\in (G \circ G) \cap G \implies (G \circ G) \cap G = \varnothing.$$

 (\longleftarrow) Sea $(G \circ G) \cap G = \emptyset$ tal que,

$$(x,y) \in G \land (x,y) \in G \implies [\exists z \ni (x,z) \in G \land (z,y) \in G] \land (x,y) \in G$$
$$\implies (x,y) \in (G \circ G) \land (x,y) \in G$$
$$\implies (x,y) \in (G \circ G) \cap G = \varnothing$$
$$\implies (x,y) \notin G$$

 $\therefore G$ es intransitiva.

$$\therefore (G \circ G) \cap G = \varnothing.$$

Problema 2.2. (Problema 3) Show that if is an equivalence relation in A, then $G \circ G = G$.

Demostración. Supóngase que tenemos una relación de equivalencia en A (i.e. reflexivo, simétrico y transitivo) tal que,

 (\Longrightarrow) Sea

$$(x,y) \in G \circ G \implies \exists z \ni \underbrace{(x,z) \in G \land (z,y) \in G}_{\text{transitividad}}$$
 $\implies (x,y) \in G$

$$\therefore G \circ G \subseteq G$$
.

 (\longleftarrow) Sea

$$(x,y) \in G \implies \underbrace{(x,x) \in G}_{\substack{\text{definición} \\ \text{reflexividad}}} \land (x,y) \in G$$

$$\implies \exists z = x \ni (x,z) \in G \land (z,y) \in G$$

$$\implies (x,y) \in G \circ G$$

$$\therefore G \subseteq G \circ G.$$

$$G \circ G = G$$
.

Problema 2.3. (Problema 7) Let G and H be relations in A; suppose that G is reflexive and H is reflexive and transitive. Show that $G \subseteq H$ if and only if $G \circ H = H$. (In particular, this holds if G and H are equivalence relations.)

Demostración. Sea G reflexiva y H reflexiva y transitiva.

$$(\Longrightarrow)$$
 Sea $G\subseteq H$, tal que

 (\Longrightarrow) Sea

$$(x,y) \in G \circ H \implies \exists z \ni \underbrace{(x,z) \in G}_{\text{hipótesis}} \land (z,y) \in H$$

$$\implies \exists z \ni \underbrace{(x,z) \in H \land (z,y) \in H}_{\text{transitividad}}$$

$$\implies (x,y) \in H$$

$$: G \circ H \subseteq H.$$

 (\Leftarrow) Sea

$$(x,y) \in H \implies \underbrace{(x,x) \in G}_{\substack{\text{definición} \\ \text{reflexividad}}} \land (x,y) \in H$$

$$\implies \exists z = x \ni (x,z) \in G \land (z,y) \in H$$

$$\implies (x,y) \in G \circ H$$

 $\therefore H \subseteq G \circ H.$

 $G \circ H = H.$

(\iff) Sea $G \circ H = H$, tal que

$$(x,y) \in G \implies (x,y) \in G \land \underbrace{(y,y) \in H}_{\substack{\text{definición} \\ \text{reflexividad}}}$$

$$\implies \exists z = y \ni (x,z) \in G \land (z,y) \in H$$

$$\implies \underbrace{(x,y) \in G \circ H}_{\substack{\text{hipótesis}}}$$

$$\implies (x,y) \in H$$

 $\therefore G \subseteq H$.

2.1.2. Ejercicios 3.3

Problema 2.4. (Problema 10) Suppose $f: A \to B$ is an injective function, and $\{A_i\}_{i \in I}$ is a partition of A. Prove that $\{\bar{f}(A_i)\}_{i \in I}$ is a partition of $\bar{f}(A)$.

Demostración. content...

2.1.3. Ejercicios 3.4

Problema 2.5. (Problema 3) Let $f: A \to B$ be a function and let G be an equivalence relation in B. Prove that $\check{f}(G)$ is an equivalence relation in A.

2.1.4. Ejercicios 3.5

Problema 2.6. (Problema 3) Let $f: A \to B$ be a function and let G be an equivalence relation in B. Prove that $\check{f}(G)$ is an equivalence relation in A.

Demostración. content...

2.2. Capítulo 4

2.2.1. Ejercicios 4.2

Problema 2.7. (Problema 2) Let $f: A \to B$ be an increasing function. If C is a chain of A, prove that $\bar{f}(C)$ is a chain of B.

Demostración. content...

2.2.2. Ejercicios 4.3

Problema 2.8. (Problema 10) Let A and B be partially ordered classes, and let $f: A \to B$ be an isomorphism. Prove each of the following:

1. a is a maximal element of A iff f(a) is a maximal element of B.

Demostración. content...

2. a is the greatest element of A iff f(a) is the greatest element of B.

Demostración. content... ■

3. Suppose $C \subseteq A$; x is an upper bound of C iff f(x) is an upper bound of $\bar{f}(C)$.

Demostración. content...

4. $b = \sup C$ iff $f(b) = \sup \bar{f}(C)$.

Demostración. content... ■

2.2.3. Ejercicios 4.5

Problema 2.9. (Problema 1) Let A be a fully ordered set. Prove that the set of all sections of A (ordered by inclusion) is fully ordered.

Demostración. content...

Problema 2.10. (Problema 9) Let A be a well-ordered class; prove the following:

1. The intersection of any family of sections of A is a section of A.

Demostración. content... ■

2. The union of any family of sections of A is a section of A.

2.2.4. Ejercicios 4.6

Problema 2.11. (Problema 4) Let A and B be well-ordered classes. Prove that if $f: A \to B$ and $g: B \to A$ are isomorphisms, then $g = f^{-1}$.