Torelli's Theorem

Remarks on Sections III.12-13 of Milne's Abelian Varieties

University of Freiburg

28th July 2020

 $oldsymbol{\cdot}$ k is an algebraically closed field.

- *k* is an algebraically closed field.
- *C* is a smooth complete curve over *k* of genus $g \ge 2$.

- *k* is an algebraically closed field.
- *C* is a smooth complete curve over *k* of genus $g \ge 2$.
- *J* is its Jacobian, which is an abelian variety representing

$$T \mapsto \{\mathcal{L} \in \text{Pic}(C \times T) \mid \deg(\mathcal{L}_t) = 0 \text{ for all } t \in T\}/\text{Pic}(T).$$

- *k* is an algebraically closed field.
- *C* is a smooth complete curve over *k* of genus $g \ge 2$.
- *J* is its Jacobian, which is an abelian variety representing

$$T \mapsto \{\mathcal{L} \in \text{Pic}(C \times T) \mid \deg(\mathcal{L}_t) = 0 \text{ for all } t \in T\}/\text{Pic}(T).$$

• In particular, we may and will identify $J(k) = Pic^0(C)$.

- *k* is an algebraically closed field.
- *C* is a smooth complete curve over *k* of genus $g \ge 2$.
- *J* is its Jacobian, which is an abelian variety representing

$$T \mapsto \{\mathcal{L} \in \text{Pic}(C \times T) \mid \deg(\mathcal{L}_t) = 0 \text{ for all } t \in T\}/\text{Pic}(T).$$

- In particular, we may and will identify $J(k) = Pic^{0}(C)$.
- Fix $P \in C(k)$ once and for all. Then we get a canonical map

$$f: C \to J, \quad Q \mapsto [Q - P].$$

- k is an algebraically closed field.
- *C* is a smooth complete curve over *k* of genus $g \ge 2$.
- *J* is its Jacobian, which is an abelian variety representing

$$T \mapsto \{\mathcal{L} \in \mathsf{Pic}(C \times T) \mid \mathsf{deg}(\mathcal{L}_t) = 0 \text{ for all } t \in T\}/\mathsf{Pic}(T).$$

- In particular, we may and will identify $J(k) = Pic^0(C)$.
- Fix $P \in C(k)$ once and for all. Then we get a canonical map

$$f: C \to J, \quad Q \mapsto [Q - P].$$

• For all $1 \le r \le g$ we get an induced map

$$f: C^{(r)} \to J, \quad P_1 \cdot \ldots \cdot P_r \mapsto [P_1 + \cdots + P_r - rP]$$

birational onto its image $W^r \subseteq J$, which is a closed subvariety.

Canonical polarization

• For r = g - 1 we get a divisor $\Theta = W^{g-1} \subseteq J$, the image of

$$f: C^{(g-1)} \to J, \quad P_1 \cdot \ldots \cdot P_{g-1} \mapsto [P_1 + \cdots + P_{g-1} - (g-1)P].$$

Canonical polarization

• For r = g - 1 we get a divisor $\Theta = W^{g-1} \subseteq J$, the image of

$$f: C^{(g-1)} \to J, \quad P_1 \cdot \ldots \cdot P_{g-1} \mapsto [P_1 + \cdots + P_{g-1} - (g-1)P].$$

Canonical polarization

• For r = g - 1 we get a divisor $\Theta = W^{g-1} \subseteq J$, the image of

$$f: C^{(g-1)} \to J, \quad P_1 \cdot \ldots \cdot P_{g-1} \mapsto [P_1 + \cdots + P_{g-1} - (g-1)P].$$

• The induced $\lambda \colon J \to J^{\vee}$ is an isomorphism, so Θ gives us a principal polarization of J called the *canonical polarization*.

Statement — Existence

Let C and C' be curves as before and let $\beta : (J, \lambda) \xrightarrow{\sim} (J', \lambda')$ be an isomorphism such that $\lambda' \circ \beta = \beta^{\vee} \circ \lambda$.

Statement — Existence

Let *C* and *C'* be curves as before and let β : $(J, \lambda) \xrightarrow{\sim} (J', \lambda')$ be an isomorphism such that $\lambda' \circ \beta = \beta^{\vee} \circ \lambda$.

Then there exists an isomorphism $\alpha: C \xrightarrow{\sim} C'$ such that

$$\begin{array}{ccc} C & \xrightarrow{f} & J \\ \alpha \downarrow & & \downarrow \beta \\ C' & \xrightarrow{f'} & J' \end{array}$$

commutes up to a sign and a translation by some $c \in J'(k)$.

Statement — Uniqueness

A curve C as before is called *hyperelliptic* if there is a (unique) 2 : 1 branched covering $\pi: C \to \mathbb{P}^1$.

Statement — Uniqueness

A curve C as before is called *hyperelliptic* if there is a (unique) 2 : 1 branched covering $\pi: C \to \mathbb{P}^1$. From Hartshorne's exercises:

- A curve of genus 2 is always hyperelliptic.
- There are hyperelliptic curves of any genus $g \ge 2$.
- A plane curve of degree 4 (thus g = 3) is not hyperelliptic.

Statement — Uniqueness

A curve C as before is called *hyperelliptic* if there is a (unique) 2 : 1 branched covering $\pi: C \to \mathbb{P}^1$. From Hartshorne's exercises:

- A curve of genus 2 is always hyperelliptic.
- There are hyperelliptic curves of any genus $g \ge 2$.
- A plane curve of degree 4 (thus g = 3) is not hyperelliptic.

We can now state uniqueness distinguishing two cases:

- If C is not hyperelliptic, then the sign, α and c are uniquely determined by β , P and P'.
- If C is hyperelliptic, then the sign can be chosen arbitrarily, and α and c are uniquely determined by β , P, P' and the chosen sign.

• Suppose α_1, α_2, c_1 and c_2 were such that $f' \circ \alpha_i = \beta \circ f + c_i$.

- Suppose α_1, α_2, c_1 and c_2 were such that $f' \circ \alpha_i = \beta \circ f + c_i$.
- Then $f' \circ (\alpha_1 \alpha_2)$: $C \to J'$ is constant, so $\alpha_1 \alpha_2$ sends every pair of points in C to the same fibre of f': $C' \to J'$.

- Suppose α_1, α_2, c_1 and c_2 were such that $f' \circ \alpha_i = \beta \circ f + c_i$.
- Then $f' \circ (\alpha_1 \alpha_2)$: $C \to J'$ is constant, so $\alpha_1 \alpha_2$ sends every pair of points in C to the same fibre of f': $C' \to J'$.
- Hence $(\alpha_1 \alpha_2)(Q_1) \sim (\alpha_1 \alpha_2)(Q_2)$ and

$$(*) \quad \alpha_1(Q_1) + \alpha_2(Q_2) \sim \alpha_2(Q_1) + \alpha_1(Q_2) \quad (\forall Q_1, Q_2).$$

- Suppose α_1, α_2, c_1 and c_2 were such that $f' \circ \alpha_i = \beta \circ f + c_i$.
- Then $f' \circ (\alpha_1 \alpha_2) \colon C \to J'$ is constant, so $\alpha_1 \alpha_2$ sends every pair of points in C to the same fibre of $f' \colon C' \to J'$.
- Hence $(\alpha_1 \alpha_2)(Q_1) \sim (\alpha_1 \alpha_2)(Q_2)$ and

$$(*) \quad \alpha_1(Q_1) + \alpha_2(Q_2) \sim \alpha_2(Q_1) + \alpha_1(Q_2) \quad (\forall Q_1, Q_2).$$

• Suppose $\alpha_1 \neq \alpha_2$. Then $\exists Q_1 \in C(k)$ s.t. $\alpha_1(Q_1) \neq \alpha_2(Q_1)$. Since α_1 is an isomorphism, there are also plenty $Q_2 \in C(k)$ s.t. $\alpha_1(Q_1) \neq \alpha_1(Q_2)$, hence $\alpha_1(Q_1) \notin \{\alpha_2(Q_1), \alpha_1(Q_2)\}$.

- Suppose α_1, α_2, c_1 and c_2 were such that $f' \circ \alpha_i = \beta \circ f + c_i$.
- Then $f' \circ (\alpha_1 \alpha_2) \colon C \to J'$ is constant, so $\alpha_1 \alpha_2$ sends every pair of points in C to the same fibre of $f' \colon C' \to J'$.
- Hence $(\alpha_1 \alpha_2)(Q_1) \sim (\alpha_1 \alpha_2)(Q_2)$ and

$$(*) \quad \alpha_1(Q_1) + \alpha_2(Q_2) \sim \alpha_2(Q_1) + \alpha_1(Q_2) \quad (\forall Q_1, Q_2).$$

- Suppose $\alpha_1 \neq \alpha_2$. Then $\exists Q_1 \in C(k)$ s.t. $\alpha_1(Q_1) \neq \alpha_2(Q_1)$. Since α_1 is an isomorphism, there are also plenty $Q_2 \in C(k)$ s.t. $\alpha_1(Q_1) \neq \alpha_1(Q_2)$, hence $\alpha_1(Q_1) \notin \{\alpha_2(Q_1), \alpha_1(Q_2)\}$.
- So the degree 2 linear system given by (*) contains at least two divisors, which implies that it is of dimension at least 1.

- Suppose α_1, α_2, c_1 and c_2 were such that $f' \circ \alpha_i = \beta \circ f + c_i$.
- Then $f' \circ (\alpha_1 \alpha_2)$: $C \to J'$ is constant, so $\alpha_1 \alpha_2$ sends every pair of points in C to the same fibre of f': $C' \to J'$.
- Hence $(\alpha_1 \alpha_2)(Q_1) \sim (\alpha_1 \alpha_2)(Q_2)$ and

$$(*) \quad \alpha_1(Q_1) + \alpha_2(Q_2) \sim \alpha_2(Q_1) + \alpha_1(Q_2) \quad (\forall Q_1, Q_2).$$

- Suppose $\alpha_1 \neq \alpha_2$. Then $\exists Q_1 \in C(k)$ s.t. $\alpha_1(Q_1) \neq \alpha_2(Q_1)$. Since α_1 is an isomorphism, there are also plenty $Q_2 \in C(k)$ s.t. $\alpha_1(Q_1) \neq \alpha_1(Q_2)$, hence $\alpha_1(Q_1) \notin \{\alpha_2(Q_1), \alpha_1(Q_2)\}$.
- So the degree 2 linear system given by (*) contains at least two divisors, which implies that it is of dimension at least 1.
- Varying Q_1 we obtain more such linear systems, and curves of general type can have at most one such linear system.

- Suppose α_1, α_2, c_1 and c_2 were such that $f' \circ \alpha_i = \beta \circ f + c_i$.
- Then $f' \circ (\alpha_1 \alpha_2) \colon C \to J'$ is constant, so $\alpha_1 \alpha_2$ sends every pair of points in C to the same fibre of $f' \colon C' \to J'$.
- Hence $(\alpha_1 \alpha_2)(Q_1) \sim (\alpha_1 \alpha_2)(Q_2)$ and

$$(*) \quad \alpha_1(Q_1) + \alpha_2(Q_2) \sim \alpha_2(Q_1) + \alpha_1(Q_2) \quad (\forall Q_1, Q_2).$$

- Suppose $\alpha_1 \neq \alpha_2$. Then $\exists Q_1 \in C(k)$ s.t. $\alpha_1(Q_1) \neq \alpha_2(Q_1)$. Since α_1 is an isomorphism, there are also plenty $Q_2 \in C(k)$ s.t. $\alpha_1(Q_1) \neq \alpha_1(Q_2)$, hence $\alpha_1(Q_1) \notin \{\alpha_2(Q_1), \alpha_1(Q_2)\}$.
- So the degree 2 linear system given by (*) contains at least two divisors, which implies that it is of dimension at least 1.
- Varying Q_1 we obtain more such linear systems, and curves of general type can have at most one such linear system.
- This contradiction shows that $\alpha_1 = \alpha_2$, thus $c_1 = c_2$.

If C, C' and β are defined over F, then α is defined over F as well. In particular, $C \cong C'$ over F.

If C, C' and β are defined over F, then α is defined over F as well. In particular, $C \cong C'$ over F.

Sketch of proof (choose a sign if C hyperelliptic):

(1) α is characterized by: $\exists c \in J(k)$ s.t. $f^{P'} \circ \alpha = \pm \beta \circ f^P + c$.

If C, C' and β are defined over F, then α is defined over F as well. In particular, $C \cong C'$ over F.

Sketch of proof (choose a sign if C hyperelliptic):

- (1) α is characterized by: $\exists c \in J(k)$ s.t. $f^{P'} \circ \alpha = \pm \beta \circ f^P + c$.
- (2) Replacing *P* by *Q* we get $f^Q = f^P + d$, resp. for (-)'. Hence

$$f^{Q'}\circ\alpha=f^{P'}\circ\alpha+d'=\pm\beta\circ f^P+c+d'=\pm\beta\circ f^Q\mp\beta(d)+c+d'.$$

If C, C' and β are defined over F, then α is defined over F as well. In particular, $C \cong C'$ over F.

Sketch of proof (choose a sign if C hyperelliptic):

- (1) α is characterized by: $\exists c \in J(k)$ s.t. $f^{P'} \circ \alpha = \pm \beta \circ f^P + c$.
- (2) Replacing *P* by *Q* we get $f^Q = f^P + d$, resp. for (-)'. Hence

$$f^{Q'}\circ\alpha=f^{P'}\circ\alpha+d'=\pm\beta\circ f^P+c+d'=\pm\beta\circ f^Q\mp\beta(d)+c+d'.$$

(3) Hence α is independent of the chosen k-points P and P'.

If C, C' and β are defined over F, then α is defined over F as well. In particular, $C \cong C'$ over F.

Sketch of proof (choose a sign if C hyperelliptic):

- (1) α is characterized by: $\exists c \in J(k)$ s.t. $f^{P'} \circ \alpha = \pm \beta \circ f^P + c$.
- (2) Replacing *P* by *Q* we get $f^Q = f^P + d$, resp. for (-)'. Hence

$$f^{Q'}\circ\alpha=f^{P'}\circ\alpha+d'=\pm\beta\circ f^P+c+d'=\pm\beta\circ f^Q\mp\beta(d)+c+d'.$$

- (3) Hence α is independent of the chosen k-points P and P'.
- (4) For $\sigma \in \operatorname{Gal}(k/F)$ we have $\sigma f^P = f^{\sigma P}$, resp. for (-)'. Hence

$$f^{\sigma P'}\circ\sigma\alpha=\sigma f^{P'}\circ\sigma\alpha=\pm\sigma\beta\circ\sigma f^P+\sigma c=\pm\beta\circ f^{\sigma P}+\sigma c.$$

Point (3) implies then $\sigma \alpha = \alpha$.

Idea of the existence proof for g = 2

Suppose g = 2 as in the previous picture. If we identify J with J' via β , the fact that β is a polarized isomorphism guarantees the following situation:

Idea of the existence proof for g > 2

If g > 2, the fact that β is a polarized isomorphism guarantees a priori only that Θ' is a translation Θ_a of Θ by some $a \in J(k)$:

Idea of the existence proof for g > 2

If g > 2, the fact that β is a polarized isomorphism guarantees a priori only that Θ' is a translation Θ_a of Θ by some $a \in J(k)$:

Is $V_a^1 = W_b^1$ for some $b \in J(k)$? [Yes! Modulo replacing W^1 by its image under $x \mapsto -x$.]

Thanks for listening!