

Geiger-Mueller Tubes Geiger-Müller-Zählrohre

Radiation Detectors Strahlungsdetektoren

Introduction

Since more than 50 years VacuTec has been developing and manufacturing Geiger-Mueller counter tubes in different versions and in top-standard glass technology. In the high-dose range and for detection of particle and low-energy X-radiation VacuTec can supply newly developed counter tube types with iron-chromium cathodes as miniature and endwindow tubes. With this wide range of products we can offer the right counter tube for a multitude of applications.

Geiger-Mueller Counter Tubes

A Geiger-Mueller counter tube has not undergone significant changes since it was introduced into practise for the first time. A fine wire stretched along the axis of a cylindrical tube and insulated around its exit is the anode. The inside surface of the tube is designed to be the cathode. The glass construction of the tube makes possible additional measurements for low-energy photon radiation. Upon evacuation the tube is filled with a gas mixture consisting of helium, neon or argon, and halogen as quenching gas which will ensure optimum operation. The radiation entering the tube will lead to an ionization of the gases and thus produces a charging pulse.

Typical Applications

The Geiger-Mueller counter tubes manufactured by VacuTec can be used for measuring alpha, beta, gamma and X-radiation. They have been widely introduced in the measurement of radiation levels for radiation protection and environment monitoring applications. In personnel dosimeters the Geiger-Mueller counter tube has become a standard feature. Further applications include non-destructive material testing and contactless level measurement. For usage in the fields of dosimetry and environmental protection the counter tubes are available with energy compensation according to the Air Kerma/ Exposure (type E) or Ambient Dose Equivalent (type A) concepts.

Quality Assurance

The quality of our products is based on careful development and manufacture under supervision of experienced specialists. The Geiger-Mueller tubes go through an uncompromising test procedure which guarantees the specifications and a long life time. VacuTec makes use of a quality assurance system according to DIN EN ISO 9001.

Einführung

VacuTec entwickelt und produziert seit mehr als 50 Jahren die verschiedensten Geiger-Müller-Zählrohre vorwiegend für Quantenstrahlung in spezieller Glastechnologie. Für Anwendungen im Hochdosisbereich und zum Nachweis von Teilchen- und niederenergetischer Röntgenstrahlung stehen neuentwickelte Zählerrohrtypen mit Chrom-Eisen-Katode als Miniatur- und Fensterzählrohre zur Verfügung. VacuTec bietet mit seinem umfangreichen Sortiment das passende Zählrohr für die unterschiedlichsten Anwendungen.

Geiger-Müller-Zählrohre

Der Aufbau eines Geiger-Müller-Zählrohres ist seit seiner Einführung nahezu unverändert. In einem zylindrischen Rohr ist zentrisch ein Anodendraht angeordnet und isoliert nach außen geführt. Die Innenfläche des Rohres wirkt als Katode. Die Ausführung in Glastechnologie ermöglicht zusätzlich Messungen von niederenergetischer Quantenstrahlung. Die nach Evakuierung in das Rohr gefüllte Gasmischung, bestehend aus Helium, Neon oder Argon und einem Halogen als Löschgas, bewirkt eine optimale Arbeitsweise. Die eintretende Strahlung führt zu einer Ionisation der Gase und löst einen Ladungsimpuls aus.

Typische Anwendungen

VacuTec produziert Geiger-Müller-Zählrohre für die Messung von Alpha-, Beta-, Gamma- und Röntgenstrahlung. Sie finden breite Anwendungen bei der Messung des Strahlenpegels zum Strahlenschutz und zur Umweltüberwachung. In Personendosimetern ist das Geiger-Müller-Zählrohr als Detektor zum Standard geworden. Weitere Anwendungen liegen im Bereich der zerstörungsfreien Werkstoffprüfung sowie der berührungslosen Füllstandsmessung. Für Dosimetrie und Umweltmessungen sind die Zählrohre energiekompensiert nach "Luft-Kerma/Exposure" (Typ E) oder nach "Ambient Dose Equivalent" (Typ A) erhältlich.

Qualitätssicherung

Die Qualität unserer Produkte basiert auf einer sorgfältigen Entwicklung und Produktion unter Aufsicht erfahrener Spezialisten. Die Zählrohre durchlaufen kompromisslose Testprozeduren, die die Einhaltung aller technischen Daten und eine lange Lebensdauer gewährleisten. VacuTec verfügt über ein Qualitätsmanagementsystem nach DIN EN ISO 9001.

Type Typ	Sensitivity Empfindlichkeit				Dose-rate-range Dosisleistungs-	Counting rate [¹³⁷ Cs] at 1 µGy/h	Deadtime Totzeit	Background shielded	Plateau Plateau	
	band/ Bereich α β γ		max. lenght/ Länge (mm)	bereich (μSv/h / μGy/h) ²⁾	Zählrate [¹³⁷ Cs] bei 1 µGy/h (counts/s / Impulse/s)	(μs)	Nulleffekt geschirmt ³⁾ (counts/min / Impulse/min)	Range Bereich (V)	Slope Steigung (%/100 V)	
70 003 70 003 A/E ¹⁾		•	•	43 45	1 10 ⁵	2.2 2.6	≤ 120	≤ 20 ≤ 8	400 600	8
70 013 70 013 A/E ¹⁾			•	170 167	0.3 10 ⁴	10 7.5	≤ 100	≤ 60	400 600	10
70 015 70 015 A/E ¹⁾		•	•	35 35	10 ² 10 ⁷	0.04 0.04	≤ 13	≤ 1	500 600	30
70 016 70 016 A/E ¹⁾		•	•	37 35	10 4 x 10 ⁶	0.16 0.16	≤ 15	≤ 2	500 650	15
70 017 70 017 A/E ¹⁾		•	•	57 59	2 3 x 10 ⁵	0.73 0.72	≤ 25	≤ 5	400 550	10
70 018 70 018 A/E ¹⁾			•	43 55	10 ² 2 x 10 ⁷	0.02 0.02	≤ 20	≤ 2	520 620	30
70 019 70 019 A/E ¹⁾		•	•	49 51	1 5 x 10⁴	2.1 1.7	≤ 60	≤ 7	400 600	4
70 030 70 030 A/E ¹⁾			•	45 45	1 10 ⁵	2.5 1.5	≤ 65	≤ 20 ≤ 8	400 600	8
70 031 70 031 A/E ¹⁾			•	300 300	0.2 3 x 10 ³	16 18	≤ 150	≤ 120 ≤ 100	400 600	10
70 035		•	•	109	0.3 3 x 10 ⁴	5.5	≤ 100	≤ 50	400 550	8
End- window End- fenster	Energy range Energiebereich				Window Fenster		Deadtime Totzeit	Background shielded	Plateau Plateau	
	α	β	γ	Ø	Thickness	Material		Nulleffekt	Range	Slope
	(MeV)	(keV)	(keV)	(mm)	Dicke (mg/cm²)	Material	(µs)	geschirmt ³⁾ (counts/min/ Impulse/min)	Bereich (V)	Steigung (%/100 V)
70 071	3.5	50	3	18	1.5 2	Mica	≤ 120	5	420 650	5
70 072	3.5	50	3	13	1.5 2	Mica	≤ 90	7	400 600	4
70 074	3.5	50	3	36	1.5 2	Mica	≤ 120	24	420 650	3
70 075	3.5	50	3	45	1.5 2	Mica	≤ 30	24	850 1050	10

¹⁾ with compensation filter/mit Energiekompensation: A = Ambient Dose Equivalent H*(10), E = Air Kerma/Exposure

²⁾ A in μ Sv/h, E in μ Gy/h; for the uncompensated types the range is given in dose rate unit at 662 keV (137Cs)

³⁾ shielded with/gemessen hinter 5 cm Pb + 0.2 cm Al $\,$

Cross Reference List Austauschliste

VacuTec	Centronic	Philips Amperex	LND	Mullard	TGM Detectors
70 003	ZP 1200	18503	7121	MX 146	
70 003 E	ZP 1201		71210		
70 003 A	ZP 1202				
70 013	ZP 1210	18520	78016	MX 120	
70 013 E					
70 013 A					
70 015	ZP 1300	18529	716	MX 163	N115-1/C1300
70 015 E	ZP 1301		7165		N115-1S1/C1301
70 015 A	ZP 1304				
70 016	ZP 1310	18509	714	MX 151	N116-1/C1310
70 016 E	ZP 1313		7149		
70 016 A	ZP 1314				
70 017	ZP 1320	18550	713	MX 164	N117-1/C1320
70 017 E	ZP 1321		71322		N117-1S/C1321
70 017 A	ZP 1324		7139		
70 019	ZP 1200	18503	7121	MX 146	
70 019 E	ZP 1201		71210		
70 019 A	ZP 1202				
70 031	ZP 1220	18545	78017	MX 145	
70 031 E	ZP 1221		7807		
70 031 A	ZP 1221/02				
70 071			7241		
70 072	ZP 1400	18504	7124	MX 147	
70 074	ZP 1430	18526	72314	MX 169	
70 075	ZP 1460	18546	7312	MX 167	

Measuring Range Messbereichsübersicht

Туре										
Тур										
70 003										
70 013										
70 015										
70 016										
70 017										
70 018										
70 019										
70 030										
70 031										
70 035										
Dose rate Dosisleistung (μGy/h)	10	0 ⁻¹	10°	10 ¹	10²	10³	10 ⁴	10 ⁵	10 ⁶	10 ⁷

Geiger-Mueller Counter Probe 70 090

Measurement of dose rates in the range 0.1 µSv/h ... 10 Sv/h

The Geiger-Mueller probes are fully enclosed in a robust and waterproof aluminium housing. Different counter tube combinations can be selected for optimum adjustment to the measuring problem. The digital interface RS-232 or RS-485¹⁾ makes it possible to communicate directly with a PC or build up a network with addressed probes.

Geiger-Müller-Zählrohrsonden 70 090

Messung der Ortsdosisleistung im Bereich 0,1 μ Sv/h ... 10 Sv/h

Die Geiger-Müller-Zählrohrsonden sind komplett in einem robusten und wasserdichten Aluminiumgehäuse untergebracht. Durch Wahl der Zählrohrkombinationen wird die Sonde an die jeweilige Messaufgabe optimal angepasst. Die digitalen Schnittstellen RS-232 oder RS-485¹⁾ ermöglichen die direkte Kommunikation mit einem PC bzw. den Aufbau von Netzwerken mit adressierbaren Einzelsonden.

¹⁾ neu EIA-232 oder EIA-485

For detailed technical information please request our documents. On request we develop counter tubes to customer specifications. Für weiterführende Informationen zu diesen Produkten fordern Sie bitte unsere Unterlagen an. Die Entwicklung kundenspezifischer Zählrohre und Sonden übernehmen wir auf Anfrage gern.

701/01

¹⁾ new EIA-232 or EIA-485