Gap-filling strategy for net ecosystem exchange of carbon dioxide at agro-ecosystems in Korea

Peng Zhao

Department of Micrometeorology

Bayreuth Center of Ecology and Environmental Research, BayCEER,

University of Bayreuth, Germany

This study was carried out as part of the International Research Training Group TERRECO (GRK 1565/1) funded by the Deutsche Forschungsgemeinschaft (DFG) at the University of Bayreuth, Germany and the Korean Research Foundation (KRF) at Kangwon National University, Chuncheon, S. Korea.

Challenges

Patchy farmlands

Monsoon

80

100 50 Precipitation(mm), bar

Fast-growing

Gaps in data-set

Data acquisition after overall quality control (Foken et al., 2004) and outlier check

Gap-filling methods

- Mean Diurnal Variation
- Look-Up Table
- Non-linear regression
- Other methods, e.g. artificial neural networks

Aubinet et al. 2000 # Falge et al., 2001 # Moffat et al. 2007

Driving factors of NEE

Gap-filling strategy for CO₂ flux

	Nighttime	Daytime
Ecosystem respiration (R _{eco})	Measured with gaps	gaps
Net ecosystem exchange (NEE)	NEE = R _{eco}	Measured with gaps
Gross primary production (GPP)	0	GPP = NEE - R _{eco}

Lloyd and Taylor, 1994

 $R_{eco} = R_{ref} e^{E_0 \left(\frac{1}{T_{ref} - T_0} - \frac{1}{T_{-T_0}}\right)}$ T_{ref}: reference temperature, 10 °C R_{ref}: R_{eco} at T_{ref} E₀: temperature sensitivity T: air temperature T₀: constant value, -46.02 °C $R_{ref} = R_{ref} = R_$

Michaelis and Menten, 1913 # Falge et al., 2001

$$NEE = \frac{\alpha R_g \beta}{\alpha R_g + \beta} + R_{eco}$$

$$NEE = GPP + R_{eco}$$

$$R_g: \text{ global radiation } \alpha: \text{ initial slope } \beta: \text{ saturated NEE}$$

Temperature dependency

Temperature dependency

Temperature classification

potato field

Taylor (2001)

Distance to observation point (o):

root mean square error.

Temperature classification

Temporal classification

Temporal classification

Temporal classification

Data classification

Other classification?

Data classification

LAI factor

$$GPP = \frac{\alpha R_g \beta}{\alpha R_g + \beta}$$

$$\frac{GPP}{LAI} = \frac{\frac{\alpha}{LAI} R_g \frac{\beta}{LAI}}{\frac{\alpha}{LAI} R_g + \frac{\beta}{LAI}}$$

$$GPP' = GPP/LAI$$

$$\alpha' = \alpha/LAI$$

$$\beta' = \beta/LAI$$

$$GPP' = \frac{\alpha' R_g \beta'}{\alpha' R_g + \beta'}$$

LAI factor + temperature class.

LAI factor + temperature class.

LAI factor VS temporal class.

$$GPP' = \frac{\alpha' R_g \beta'}{\alpha' R_g + \beta'}$$

$$\alpha' = \alpha / LAI$$

$$\beta' = \beta / LAI$$

Errors

Fig. 5. Retrieved LAI for two potato fields (P2 and P3) with different calendar. Phenological observations are indicated on top. P2 has a longer cycle than P3: emergence is earlier and harvest is later than for P2. E stands for Emergence, VD for Vegetation Development, F for Flowering, PG for Potato Growing, R for Ripening an H for Harvest.

VPD factor

$$GPP = \frac{\alpha R_g \beta}{\alpha R_g + \beta}$$

$$\beta^* = \begin{cases} \beta_0^* e^{-k(\text{VPD} - \text{VPD}_0)}, \text{VPD} > \text{VPD}_0\\ \beta_0^*, \text{VPD} \le \text{VPD}_0 \end{cases}$$

 $VPD_0 = 10 hPa$

Körner, 1995 # Lasslop et al., 2010

VPD factor

Conclusion

- 4-day and 8-day classification is sufficient for daytime NEE gap-filling for the potato and rice fields, respectively.
- As the seasonal response plays a more important role than temperature response, temperature classification for NEE gap-filling could be ignored for both the potato and rice fields if temporal classification is applied.
- The approach of Introducing a LAI factor can be used for filling large gaps of NEE.
- VPD response is an unimportant factor for both the rice field and the potato field except the early growing stage of potato.