

Organização Arvores Geradoras Mínimas Propriedades de Árvores Geradoras Mínimas Propriedade de Ciclo Propriedade de Partição Algoritmo Prim-Jarník Desempenho e Comparações Outras Árvores Geradoras

Algoritmo Prim-Jarník

- Muito similar ao algoritmo de Dijkstra.
- ◆ Toma um vértice arbitrário s e cresce a MST como uma "nuvem" de vértices, partindo de s.
- Utiliza a propriedade de partição vendo o grafo como particionado em dois conjuntos de vértices, aqueles dentro e fora da MST.
- Em cada passo, adiciona-se à MST:
 - a menor aresta ligando a MST ao seu exterior
 - o vértice u oposto através dela

Algoritmo Prim-Jarník Implementação Eficiente: armazena em cada vértice ν um valor $d(\nu)$ $d(\nu)$ = menor peso de uma aresta conectando ν a um vértice na MST $\begin{array}{c} 2704 \\ 867 \\ 802 \\ 1391 \\ 1391 \\ 1090 \\ 946 \end{array}$ $\begin{array}{c} 1258 \\ 1235 \\ 1235 \\ 1235 \\ 1234 \\ 1234 \\ 1234 \\ 1234 \\ 1341 \\ 1258 \\ 1391 \\ 1090 \\ 1946$

Desempenho e Comparações

- Prim-Jarník é uma pequena modificação de Dijkstra.
 - A análise de complexidade de ambos é praticamente idêntica
 - Pode ser implementado com tempo de execução $O((n + m) \log n)$:
- Esse tempo de pior caso é o mesmo do algoritmo de Kruskal.
- Em termos de fatores constantes (Prim-Jarník vs. Kruskal):
 - ambos os algoritmos são bastante similares, com fatores baixos
 - ambos apresentam desempenho similar na prática
- No entanto, Prim-Jarník apresenta maior simplicidade em EDs:
 - utiliza apenas uma fila de prioridade.

Desempenho e Comparações

- Versão mais simples (Prim):
 - Armazena os vértices v fora da nuvem de convergência em uma lista
 - Faz busca seqüencial na lista para encontrar aquele com menor d(v)
 - $O(n^2 + m)$
 - Implementação em C: ver (Skiena & Revilla, 2003).

Nota:

- Algoritmos Prim-Jarník, Prim e Kruskal são dos poucos algoritmos gulosos que levam a soluções globalmente ótimas:
 - Estratégia de gula conduz a MSTs!

Outras Árvores Geradoras

- Árvores Geradoras de Gargalo Mínimo:
 - Árvore geradora cuja aresta de maior peso é a menor possível.
 - Qualquer MST possui essa propriedade!
- Árvores Geradoras Máximas:
 - Árvore geradora com maior peso total de arestas
 - Corresponde à MST do grafo com pesos com sinais invertidos
 - Dado que os algoritmos para MSTs podem ser aplicados a grafos com pesos negativos, basta aplicá-los ao grafo modificado

Exercícios

1. Existem 8 ilhas em um lago e deseja-se construir sete pontes para conectá-las de forma que cada ilha possa ser alcançada a partir de cada outra. O custo de construir uma ponte é proporcional ao seu comprimento. As distâncias entre os pares de ilhas são dados na seguinte tabela:

	240	210	340	280	200	345	120
	- 10	265	175	215	180	185	155
		203			J		
-	-	1 1	260	115	350	435	195
-		1 -	-	160	330	295	230
-	-	1	-	- 1	360	400	170
- [-	1	- 1	-	-	175	205
-1-1-	1-1	1		7-1-	-1	1	305
1-1	-	1	-	1-1	1 -1	1	-

Mostre como usar Prim-Jarník para responder quais as pontes que minimizam o custo total de construção? Qual é esse custo?

Exercícios

- Desenhe um grafo não-direcionado simples, conexo e ponderado com 8 vértices e 16 arestas. Exercite o algoritmo Prim-Jarník executando-o manualmente a partir de diferentes origens:
 - Apresente cada execução através de duas matrizes, uma com os valores d[k] e outra com os vértices predecessores na MST (p[k]). Nessas matrizes, cada coluna k corresponde a um vértice do grafo e cada linha t corresponde a uma iteração do algoritmo
 - Apresente também a MST resultante de cada execução
- 3. O algoritmo de Prim-Jarník em princípio assume que o grafo é simples, o que implica que não existem arestas paralelas. Como modificar um grafo com arestas paralelas de tal forma que este se torne um grafo simples e uma MST no grafo modificado seja também uma MST no grafo original?
- 4. O que é preciso modificar em Prim-Jarník para que este opere em digrafos? Qual propriedade deve possuir o digrafo para que exista uma MST a partir de um vértice de origem s?

17

Bibliografia

- M. T. Goodrich and R. Tamassia, Data Structures and Algorithms in C++/Java, John Wiley & Sons, 2002/2005.
- N. Ziviani, Projeto de Algoritmos, Thomson, 2a. Edição, 2004.
- T. H. Cormen, C. E. Leiserson, and R. L. Rivest, *Introduction to Algorithms*, MIT Press, 2nd Edition, 2001.
- S. Skiena e M. Revilla, *Programming Challenges: The Programming Contest Training Manual*, Springer-Verlag, 2003.

18