Sorting

Insertion sort

Design approach: incremental

Sorts in place: Yes

- Best case: $\Theta(n)$

- Worst case: $\Theta(n^2)$

Bubble Sort

Design approach: incremental

Sorts in place: Yes

- Running time: $\Theta(n^2)$

Sorting

Selection sort

Design approach: incremental

Sorts in place: Yes

- Running time: $\Theta(n^2)$

Merge Sort

Design approach: divide and conquer

Sorts in place: No

– Running time: Let's see!!

Divide-and-Conquer

- Divide the problem into a number of sub-problems
 - Similar sub-problems of smaller size
- Conquer the sub-problems
 - Solve the sub-problems <u>recursively</u>
 - Sub-problem size small enough ⇒ solve the problems in straightforward manner
- Combine the solutions of the sub-problems
 - Obtain the solution for the original problem

Merge Sort Approach

To sort an array A[p . . r]:

Divide

 Divide the n-element sequence to be sorted into two subsequences of n/2 elements each

Conquer

- Sort the subsequences recursively using merge sort
- When the size of the sequences is 1 there is nothing more to do

Combine

Merge the two sorted subsequences

Merge Sort

Alg.: MERGE-SORT(A, p, r)

if p < r

then $q \leftarrow \lfloor (p + r)/2 \rfloor$

MERGE-SORT(A, p, q)

MERGE-SORT(A, q + 1, r)

MERGE(A, p, q, r)

Check for base case

Divide

- Conquer
- Conquer
- Combine

Initial call: MERGE-SORT(A, 1, n)

Example – n Power of 2

Example – n Power of 2

Conquer and Merge

Example – n Not a Power of 2

Example – n Not a Power of 2

Merging

- Input: Array A and indices p, q, r such that
 p ≤ q < r
 - Subarrays A[p..q] and A[q+1..r] are sorted
- Output: One single sorted subarray A[p . . r]

Merging

Idea for merging:

- Two piles of sorted cards
 - Choose the smaller of the two top cards
 - Remove it and place it in the output pile
- Repeat the process until one pile is empty
- Take the remaining input pile and place it face-down onto the output pile

Example: MERGE(A, 9, 12, 16)

Example: MERGE(A, 9, 12, 16)

Example (cont.)

Example (cont.)

Example (cont.)

Done!

Merge - Pseudocode

Alg.: MERGE(A, p, q, r)

- 1. Compute n₁ and n₂
- 2. Copy the first n_1 elements into n_1 n_2 $L[1...n_1 + 1]$ and the next n_2 elements into $R[1...n_2 + 1]$
- 3. $L[n_1 + 1] \leftarrow \infty$; $R[n_2 + 1] \leftarrow \infty$
- 4. $i \leftarrow 1$; $j \leftarrow 1$
- 5. **for** k ← p **to** r
- 6. **do if** L[i] \leq R[j]
- 7. **then** $A[k] \leftarrow L[i]$
- 8. i ←i + 1
- 9. **else** A[k] ← R[j]

 ∞

00

5

3

q + 1

R

2

Running Time of Merge (assume last **for** loop)

Initialization (copying into temporary arrays):

- Adding the elements to the final array:
 - n iterations, each taking constant time $\Rightarrow \Theta(n)$
- Total time for Merge:

Analyzing Divide-and Conquer Algorithms

- The recurrence is based on the three steps of the paradigm:
 - T(n) running time on a problem of size n
 - Divide the problem into a subproblems, each of size
 n/b: takes D(n)
 - Conquer (solve) the subproblems aT(n/b)
 - Combine the solutions C(n)

$$\Theta(1) \qquad \text{if } n \le c$$

$$T(n) = \begin{cases} aT(n/b) + D(n) + C(n) & \text{otherwise} \end{cases}$$

MERGE-SORT Running Time

Divide:

– compute q as the average of p and r: $D(n) = \Theta(1)$

Conquer:

recursively solve 2 subproblems, each of size n/2
 ⇒ 2T (n/2)

Combine:

- MERGE on an n-element subarray takes $\Theta(n)$ time ⇒ $C(n) = \Theta(n)$

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \\ 2T(n/2) + \Theta(n) & \text{if } n > 1 \end{cases}$$

Solve the Recurrence

$$T(n) = \begin{cases} c & \text{if } n = 1 \\ 2T(n/2) + cn & \text{if } n > 1 \end{cases}$$

Use Master's Theorem:

Compare n with f(n) = cn

Case 2: $T(n) = \Theta(n \lg n)$

Merge Sort - Discussion

Running time insensitive of the input

- Advantages:
 - Guaranteed to run in $\Theta(nlgn)$
- Disadvantage
 - Requires extra space ≈N

Sorting Challenge 1

Problem: Sort a file of huge records with tiny keys Example application: Reorganize your MP-3 files

Which method to use?

- A. merge sort, guaranteed to run in time ~NIgN
- B. selection sort
- C. bubble sort
- D. a custom algorithm for huge records/tiny keys
- E. insertion sort

Sorting Files with Huge Records and Small Keys

- Insertion sort or bubble sort?
 - NO, too many exchanges
- Selection sort?
 - YES, it takes linear time for exchanges
- Merge sort or custom method?
 - Probably not: selection sort simpler, does less swaps

Sorting Challenge 2

Problem: Sort a huge randomly-ordered file of small records

Application: Process transaction record for a phone company

Which sorting method to use?

- A. Bubble sort
- B. Selection sort
- C. Mergesort guaranteed to run in time ~NIgN
- D. Insertion sort

Sorting Huge, Randomly - Ordered Files

- Selection sort?
 - NO, always takes quadratic time
- Bubble sort?
 - NO, quadratic time for randomly-ordered keys
- Insertion sort?
 - NO, quadratic time for randomly-ordered keys
- Mergesort?
 - YES, it is designed for this problem

Sorting Challenge 3

Problem: sort a file that is already almost in order

Applications:

- Re-sort a huge database after a few changes
- Doublecheck that someone else sorted a file

Which sorting method to use?

- A. Mergesort, guaranteed to run in time ~NIgN
- B. Selection sort
- C. Bubble sort
- D. A custom algorithm for almost in-order files
- E. Insertion sort

Sorting Files That are Almost in Order

- Selection sort?
 - NO, always takes quadratic time
- Bubble sort?
 - NO, bad for some definitions of "almost in order"
 - Ex: BCDEFGHIJKLMNOPQRSTUVWXYZA
- Insertion sort?
 - YES, takes linear time for most definitions of "almost in order"
- Mergesort or custom method?
 - Probably not: insertion sort simpler and faster

Quicksort

Sort an array A[p...r]

Divide

- Partition the array A into 2 subarrays A[p..q] and A[q+1..r], such that each element of A[p..q] is smaller than or equal to each element in A[q+1..r]
- Need to find index q to partition the array

Quicksort

Conquer

Recursively sort A[p..q] and A[q+1..r] using Quicksort

Combine

- Trivial: the arrays are sorted in place
- No additional work is required to combine them
- The entire array is now sorted

QUICKSORT

```
Initially: p=1, r=n
Alg.: QUICKSORT(A, p, r)
  if p < r
    then q \leftarrow PARTITION(A, p, r)
             QUICKSORT (A, p, q)
             QUICKSORT (A, q+1, r)
   Recurrence:
                                   (f(n) \text{ depends on PARTITION()})
    T(n) = T(q) + T(n - q) + f(n)
```

Partitioning the Array

- Choosing PARTITION()
 - There are different ways to do this
 - Each has its own advantages/disadvantages
- Hoare partition (see prob. 7-1, page 159)
 - Select a pivot element x around which to partition
 - Grows two regions

$$A[p...i] \leq \mathbf{x}$$

$$\mathbf{x} \leq A[j...r]$$

Example

Example

Partitioning the Array

Alg. PARTITION (A, p, r)

- 1. $x \leftarrow A[p]$
- 2. $i \leftarrow p 1$
- 3. $j \leftarrow r + 1$
- 4. while TRUE
- 5. do repeat $j \leftarrow j 1$
- 6. $until A[j] \le x$
- 7. **do repeat** $i \leftarrow i + 1$
- 8. $until A[i] \ge x$
- 9. **if** i < j
- 10. **then** exchange $A[i] \leftrightarrow A[j]$
- 11. else return j

Each element is visited once!

Running time: $\Theta(n)$ n = r - p + 1

Recurrence

```
Initially: p=1, r=n
Alg.: QUICKSORT(A, p, r)
  if p < r
    then q \leftarrow PARTITION(A, p, r)
             QUICKSORT (A, p, q)
             QUICKSORT (A, q+1, r)
   Recurrence:
```

T(n) = T(q) + T(n - q) + n

Worst Case Partitioning

- Worst-case partitioning
 - One region has one element and the other has n 1 elements
 - Maximally unbalanced
- Recurrence: q=1

$$T(n) = T(1) + T(n - 1) + n,$$

$$T(1) = \Theta(1)$$

$$T(n) = T(n - 1) + n$$

$$= n + \left(\sum_{k=1}^{n} k\right) - 1 = \Theta(n) + \Theta(n^2) = \Theta(n^2)$$

$$= \Theta(n^2)$$

n

Best Case Partitioning

- Best-case partitioning
 - Partitioning produces two regions of size n/2
- Recurrence: q=n/2

$$T(n) = 2T(n/2) + \Theta(n)$$

 $T(n) = \Theta(nlgn)$ (Master theorem)

Case Between Worst and Best

9-to-1 proportional split

$$Q(n) = Q(9n/10) + Q(n/10) + n$$

- Using the recursion tree:

longest path:
$$Q(n) \le n \sum_{i=0}^{\log_{10/9} n} 1 = n(\log_{10/9} n + 1) = c_2 n \lg n$$
 $\Theta(n \lg n)$

shortest path:
$$Q(n) \ge n \sum_{i=0}^{\log_{10} n} 1 = n \log_{10} n = c_1 n lgn$$

Thus,
$$Q(n) = \Theta(nlgn)$$

How does partition affect performance?

- Any splitting of constant proportionality yields $\Theta(nlgn)$ time !!!
- Consider the (1: n-1) splitting:

ratio=
$$1/(n-1)$$
 not a constant !!!

- Consider the (n/2 : n/2) splitting:

ratio=
$$(n/2)/(n/2) = 1$$
 it is a constant !!

- Consider the (9n/10 : n/10) splitting:

ratio=
$$(9n/10)/(n/10) = 9$$
 it is a constant !!

How does partition affect performance?

```
- Any ((a-1)n/a : n/a) splitting:

ratio=((a-1)n/a)/(n/a) = a-1 it is a constant !!
```


Performance of Quicksort

Average case

- All permutations of the input numbers are equally likely
- On a random input array, we will have a mix of well balanced and unbalanced splits
- Good and bad splits are randomly distributed across throughout the tree

Alternate of a good and a bad split

Nearly well balanced split

 Running time of Quicksort when levels alternate between good and bad splits is O(nlgn)

Master Method

 Many divide-and-conquer recurrence equations have the form:

$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Master Method (Simplified)

Let T(n) be a monotonically increasing function that satisfies

$$T(n) = \begin{cases} d & \text{if } n \text{ is at most some constant} \\ aT\left(\frac{n}{b}\right) + f(n) & \text{otherwise} \end{cases}$$

$$\text{Where } f(n) \text{ is } \Theta(n^c)$$

$$\text{If } \log_b a < c & \text{then } T(n) \in \Theta(n^c)$$

$$\text{If } \log_b a = c & \text{then } T(n) \in \Theta(n^c \log n)$$

$$\text{If } \log_b a > c & \text{then } T(n) \in \Theta(n^{\log_b a})$$

<u> Master Method, Example 2</u>

• The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

• :
$$T(n) = \begin{cases} d & \text{if } n \text{ is at most some constant} \\ aT\left(\frac{n}{b}\right) + f(n) & \text{otherwise} \end{cases}$$

Where f(n) is $\Theta(n^c)$

If
$$\log_b a < c$$
 then $T(n) \in \Theta(n^c)$
If $\log_b a = c$ then $T(n) \in \Theta(n^c \log n)$
If $\log_b a > c$ then $T(n) \in \Theta(n^{\log_b a})$

Example:

$$T(n) = 2T(n/2) + n \log n$$

Solution: $log_n a=1$, so case 2 says T(n) is $O(n log^2 n)$.

• The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

The Master Theorem:

$$T(n) = \begin{cases} d & \text{if } n \text{ is at most some constant} \\ aT\left(\frac{n}{b}\right) + f(n) & \text{otherwise} \end{cases}$$

Where f(n) is $\Theta(n^c)$

If
$$\log_b a < c$$
 then $T(n) \in \Theta(n^c)$

If
$$\log_b a = c$$
 then $T(n) \in \Theta(n^c \log n)$

If
$$\log_b a > c$$
 then $T(n) \in \Theta(n^{\log_b a})$

Example

$$T(n) = T(n/3) + n \log n$$

Solution: $\log_{h} a = 0$, so case 3 says T(n) is O(n log n).

$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

$$T(n) = \begin{cases} d & \text{if } n \text{ is at most some constant} \\ aT\left(\frac{n}{b}\right) + f(n) & \text{otherwise} \end{cases}$$

Where f(n) is $\Theta(n^c)$

$$\begin{array}{ll} \text{If} & \log_b a < c & \text{then} & T(n) \in \Theta(n^c) \\ \\ \text{If} & \log_b a = c & \text{then} & T(n) \in \Theta(n^c \log n) \\ \\ \text{If} & \log_b a > c & \text{then} & T(n) \in \Theta\left(n^{\log_b a}\right) \end{array}$$

Example:

$$T(n) = 8T(n/2) + n^2$$

Solution: $log_n a=3$, so case 1 says T(n) is O(n³).

• The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.
- Example:

$$T(n) = 9T(n/3) + n^3$$

Solution: $\log_b a=2$, so case 3 says T(n) is O(n³).

• The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.
- Example:

$$T(n) = T(n/2) + 1$$
 (binary search)

Solution: $log_b a=0$, so case 2 says T(n) is O(log n).

• The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.
- Example:

$$T(n) = 2T(n/2) + \log n$$
 (heap construction)

Solution: $\log_{b} a = 1$, so case 1 says T(n) is O(n).

Recurrence to Big-9

$$T(n)$$
=\begin{cases} 2 & \text{if } n < 3 & \text{.} \\ 2T\left(\frac{n}{3}\right) + n & \text{otherwise} \end{cases}

- It's still really hard to tell what the Big-Θ is just by looking at it.
- But fancy mathematicians have a formula for us to use!

$$T(n) = \begin{cases} d & \text{if } n \text{ is at most some constant} \\ aT\left(\frac{n}{\iota}\right) + f(n) & \text{otherwise} \end{cases}$$

$$\text{Where } f(n) \text{ is } \Theta(n^c)$$

$$\text{If } \log_b a < \text{ then } T(n) \in \Theta(n^c)$$

$$\text{If } \log_b a = \text{ then } T(n) \in \Theta(n^c \log n)$$

$$\text{If } \log_b a > \text{ then } T(n) \in \Theta(n^{\log_b a})$$

$$a=2 b=3$$
 and $c=1$
 $y = \log_b x$ is equal to $b^y = x$
 $\log_3 2 \cong 0.63$
 $\log_3 2 < 1$
We're in case 1
 $T(n) \in \Theta(n)$

Aside Understanding the Master Theorem

The case
$$a < c$$
 if n is at most some constant $T(n) = \begin{cases} d & \text{if } n \text{ is at most some constant} \\ aT\binom{n}{r} + f(n) & \text{otherwise} \end{cases}$ Recursive case does a lot of non recursive work in comparison to have quickly it divides the input size $a < c$. Most work happens in beginning extack $a < c$ if $a < c$ and $a < c$ if $a < c$

- a measures how many recursive calls are triggered by each method instance
- b measures the rate of change for input
- c measures the dominating term of the non recursive work within the recursive method
- d measures the work done in the base case

 $case_b a < c$

recursive work in comparison to how quickly it divides the input size

- Most work happens in beginning of call stack
- Non recursive work in recursive case dominates growth, n° term
- The

 $caseg_b a = c$

- Recursive case evenly splits work between non recursive work and passing along inputs to subsequent recursive calls
- Work is distributed across call stack
- The

 $case_b a > c$

- Recursive case breaks inputs apart quickly and doesn't do much non recursive work
- Most work happens near bottom of call stack

Merge Sort Recurrence to Big-9

$$T(n) = \begin{cases} 1 & \text{if } n \leq 3\\ 2T\left(\frac{n}{2}\right) + n & \text{otherwise} \end{cases}$$

$$T(n) = \begin{cases} d & \text{if } n \text{ is at most some constant} \\ aT\binom{n}{\iota} + f(n) & \text{otherwise} \end{cases}$$

$$\text{Where } f(n) \text{ is } \Theta(n^c)$$

$$\text{If } \log_b a < \text{ then } T(n) \in \Theta(n^c)$$

$$\text{If } \log_b a = \text{ then } T(n) \in \Theta(n^c \log n)$$

$$\text{If } \log_b a > \text{ then } T(n) \in \Theta(n^{\log_b a})$$

$$a=2$$
 $b=2$ and $c=1$
 $\log_2 2 = 1$
We're in case 2
 $T(n) \in \Theta(n \log n)$