Álgebra I Práctica 6 - Números Complejos

1. Para los siguientes $z \in \mathbb{C}$, hallar $\operatorname{Re}(z)$, $\operatorname{Im}(z)$, |z|, $\operatorname{Re}(z^{-1})$, $\operatorname{Im}(z^{-1})$, $\operatorname{Re}(-i \cdot z)$ e $\operatorname{Im}(i \cdot z)$.

i)
$$z = (2+i)(1+3i)$$

iv)
$$z = i^{17} + \frac{1}{2}i(1-i)^3$$

$$\begin{array}{ll} \text{i)} & z=(2+i)(1+3\,i) \\ \text{ii)} & z=5\,i(1+i)^4 \\ \text{iii)} & z=(\sqrt{2}+\sqrt{3}\,i)^2(\overline{1-3\,i}) \end{array} \qquad \text{iv)} & z=i^{17}+\frac{1}{2}\,i(1-i)^3 \\ \text{v)} & z=\left(-\frac{1}{2}+\frac{\sqrt{3}}{2}\,i\right)^{-1} \\ \text{vi)} & z=\overline{1-3\,i}^{-1} \end{array}$$

ii)
$$z = 5i(1+i)^4$$

iii)
$$z = (\sqrt{2} + \sqrt{3}i)^2 (\overline{1 - 3i})^2$$

v)
$$z = \left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)^{1}$$

vii)
$$z = \overline{1 - 3i}^{-1}$$

2. Dados z = 1 + 3i y w = 4 + 2i, representar en el plano complejo los siguientes números:

$$\mathbf{v}) - \mathbf{z}$$

ix)
$$\overline{z}$$

xiii)
$$|2z|$$

ii)
$$w$$

x)
$$\overline{3z+2w}$$

$$xiv) |z+w|$$

iii)
$$z+w$$

vii)
$$\frac{1}{2}w$$

xi)
$$\overline{iz}$$

$$xv) |z-w|$$

iv)
$$z - w$$

xvi)
$$|\overline{w-z}|$$

3. Graficar en el plano complejo los siguientes conjuntos:

i)
$$\{z \in \mathbb{C} / 3 \operatorname{Re}(z) - 1 = 2 \operatorname{Im}(z) \}$$

iii)
$$\{z \in \mathbb{C} / 2 \le |z - 1 + i| \le 3\}$$

ii)
$$\{z \in \mathbb{C} / -1 \le \operatorname{Re}(z) \le 1 \text{ y } |z| \le 2\}$$
 iv) $\{z \in \mathbb{C} / |z-2| = |z-1-i|\}$

iv)
$$\{z \in \mathbb{C} / |z-2| = |z-1-i| \}$$

4. Hallar todos los $z \in \mathbb{C}$ que satisfacen:

i)
$$z \neq 0$$
 y $z = \overline{z}^{-1}$

i)
$$z \neq 0$$
 y $z = \overline{z}^{-1}$ iii) $z \neq 0$ y $z + z^{-1} \in \mathbb{R}$ v) $|z - \overline{z}| = \operatorname{Re}(z)$ ii) $\operatorname{Re}(z^2) = 0$ iv) $|z|^2 = (z + \overline{z}) \cdot \operatorname{Im}(z)$ vi) $i(z^2 + 4) = z \cdot \operatorname{Im}(z)$

$$|z - \overline{z}| = \text{Re}(z)$$

ii)
$$Re(z^2) = 0$$

iv)
$$|z|^2 = (z + \overline{z}) \cdot \operatorname{Im}(z)$$

vi)
$$i(z^2 + 4) = z \cdot \text{Im}(z)$$

5. Calcular las raíces cuadradas de los siguientes números complejos z:

i)
$$z = -36$$

ii)
$$z = i$$

iii)
$$z = -3 - 4i$$

iv)
$$z = -15 + 8i$$

6. Hallar todos los $z \in \mathbb{C}$ que satisfacen:

i)
$$z \neq 0$$
 v $z - 1 = z^{-1}$

ii)
$$z^2 + (1+2i)z + 2i = 0$$

7. Calcular los módulos y los argumentos de los siguientes números complejos:

i)
$$3 + \sqrt{3}i$$

iii)
$$(-1-i)^{-1}$$

v)
$$(-1+\sqrt{3}i)^{-5}$$

ii)
$$(2+2i)(\sqrt{3}-i)$$
 iv) $(-1+\sqrt{3}i)^5$

iv)
$$(-1 + \sqrt{3}i)^{\frac{1}{2}}$$

vi)
$$\frac{1+\sqrt{3}i}{1-i}$$

8. Graficar en el plano complejo los siguientes conjuntos:

i)
$$\{z \in \mathbb{C} - \{0\} / |z| \ge 2 \text{ y } \frac{\pi}{4} \le \arg(z) \le \frac{2\pi}{3} \}$$

ii)
$$\{z \in \mathbb{C} - \{0\} / \arg(-iz) > \frac{\pi}{4} \}$$

iii)
$$\{z \in \mathbb{C} - \{0\} / |z| < 3 \text{ y } \arg(z^4) \le \pi\}$$

- i) Determinar la forma binomial de $\left(\frac{1+\sqrt{3}i}{1-i}\right)^{17}$.
 - ii) Determinar la forma binomial de $(-1+\sqrt{3}i)^n$ para cada $n\in\mathbb{N}$.
 - iii) Hallar todos los $n \in \mathbb{N}$ tales que $(\sqrt{3} i)^n = 2^{n-1}(-1 + \sqrt{3}i)$.
- 10. Hallar en cada caso las raíces n-avas de $z \in \mathbb{C}$:

i)
$$z = 8, n = 6$$

iv)
$$z = 2i(\sqrt{2} - \sqrt{6}i)^{-1}, n = 11$$

ii)
$$z = -4, n = 3$$

v)
$$z = (2 - 2i)^{12}$$
, $n = 6$

iii)
$$z = -1 + i$$
, $n = 7$

vi)
$$z = 1, n = 8$$

11. Hallar todos los $z \in \mathbb{C}$ que satisfacen:

i)
$$z^4 = i \overline{z}^3$$

iii)
$$z^8 = \overline{z}^8$$

v)
$$(z+1)^4 = (z+i)^2$$

ii)
$$z^6 = (2-2i)^{10}$$

iv)
$$z^{12} + z^6 + 1 = 0$$

i)
$$z^4=i\,\overline{z}^3$$
 iii) $z^8=\overline{z}^8$ v) $(z+1)^4=(z+i)^2$ ii) $z^6=(2-2i)^{10}$ iv) $z^{12}+z^6+1=0$ vi) $(z^2+9)^4=((1+i)(z-3i))^4$

- i) Calcular $1 + w^2 + w^{-2} + w^4 + w^{-4}$ para cada $w \in G_{10}$. **12**.
 - ii) Calcular $w + \overline{w} + (w + w^2)^2 w^{38}(1 w^2)$ para cada $w \in G_7$.
 - iii) Calcular $w^{73} + \overline{w} \cdot w^9 + 8$ para cada $w \in G_3$.
 - iv) Calcular $w^{14} + w^{-8} + \overline{w}^4 + \overline{w}^{-3}$ para cada $w \in G_5$.
- 13. Probar que $\prod_{w \in G_n} w = (-1)^{n-1}, \, \forall \, n \in \mathbb{N}.$
- 14. Determinar las raíces n-ésimas primitivas de la unidad para n = 2, 3, 4, 5, 6 y 12.
- 15. Sea $w \in \mathbb{C}$ una raíz quinceava primitiva de la unidad. Hallar todos los $n \in \mathbb{N}$ tales que:

i)
$$\sum_{i=0}^{n-1} w^{5i} = 0$$

ii)
$$\sum_{i=2}^{n-1} w^{3i} = 0$$

- 16. Sea $w \in \mathbb{C}$ una raíz k-ésima primitiva de la unidad. Hallar $\sum_{i=0}^{k-1} w^{in}$ en función de $n \in \mathbb{N}$.
- 17. Dado un número primo p, probar que:
 - i) La suma de las raíces p-ésimas primitivas de la unidad es -1.
 - ii) La suma de las raíces p^2 -ésimas primitivas de la unidad es 0.
 - iii) Si q es un número primo distinto de p, entonces la suma de las raíces pq-ésimas primitivas de la unidad es 1.
- 18. ¿Cuánto da la suma de las raíces n-ésimas primitivas de la unidad si n es un producto de primos distintos?
- 19. Sea $m \in \mathbb{Z}$ un entero par y $w \in \mathbb{C}$ una raíz 2m-ésima primitiva de la unidad. Probar que $(w-1)^m$ es imaginario puro.

- **20**. Sea $w \in \mathbb{C}$ una raíz 23-ésima primitiva de la unidad. Hallar la parte real de $\sum_{k=1}^{11} w^{k^2}$.
- **21**. Probar que si $w \in G_7$ entonces $Re((w^{31} + 1)(w^{18} 1)) = 0$.
- **22**. Sea $w \in \mathbb{C}$ una raíz cúbica primitiva de la unidad y sea $(z_n)_{n \in \mathbb{N}}$ la sucesión de números complejos definida por

$$z_1 = 1 + w$$
 y $z_{n+1} = \overline{1 + z_n^2}, \ \forall n \in \mathbb{N}.$

Probar que z_n es una raíz sexta primitiva de la unidad para todo $n \in \mathbb{N}$.

- 23. Probar que $w \in \mathbb{C}$ es una raíz n-ésima primitiva de la unidad si y solo si \overline{w} lo es.
- **24**. Sea $w \in \mathbb{C}$ una raíz novena primitiva de la unidad. Hallar todos los $n \in \mathbb{N}$ tales que $w^{5n} = w^3$.
- **25**. Sea $w \in \mathbb{C}$ una raíz 35-ésima primitiva de la unidad. Hallar todos los $n \in \mathbb{Z}$ tales que:

$$\begin{cases} w^{15n} = w^5 \\ w^{14n} = w^{21} \end{cases}$$

26. Sea G_{20} el conjunto de raíces 20-ésimas de la unidad y G_4 el conjunto de raíces cuartas de la unidad. Sea \sim la relación en G_{20} definida por

$$a \sim b \iff a = wb \text{ para algún } w \in G_4,$$

o sea dos elementos están relacionados si uno es un múltiplo del otro por una raíz cuarta de la unidad.

- i) Probar que \sim es una relación de equivalencia.
- ii) ¿Cuántas clases de equivalencia hay en total?
- 27. Probar que no es posible hallar tres puntos del plano con coordenadas enteras que sean los vértices de un triángulo equilátero.