

Nuestro Semestre 2016-1

			4.070040			
		A\$T0212			CO √	三 三
Sunday 6 Mar 2016 7	Monday	Tuesday 8	Wednesday 9	Thursday 10	Friday	Saturday 12
Semana 1					C1 ✓	
¹³ Semana 2 ¹⁴	TL1	¹⁵ TM1	16	17	¹⁸ C2 ✓	← Control 1
Semana 3	TL2	TM2	23	24	[№] Feriado	Reparto Tarea :
Semana 4	TL3	TM3	30	31	¹ ^{Apr} C3 ✓	2
Semana 5	TL4	TM4	6	7	° C4 ✓	1
Semana 6	TL5	¹² TM5	13	14	15 C5 ✓	← Control 2
Semana 7	TL6	TM6	20	21	C6√-SIX1	← Reparto T2
Semana 8	TL7	← Entrega	T1	28	C7 √ – S M 2	
Semana 9	TL8	[*] TM8		5	C8 √ – S M 3	
Semana 10	TL9 En	trega T2→	ll Rep	parto T3 →	³ C9 – SM4	← Control 3
Semana 11	TL10	TM10	18	19	C10	
Semana 12	TL1: En	trega T3→	25	26	C11	28
Semana 13	TL12	TM12	1 Jun	2	Feriado	4
Semana 14	TL13	TM13	8	9	¹⁰ C12	11
Semana 15	TL14	¹⁴ TM14	15	16	¹⁷ C13	18
utorías día lunes Iódulo 4:		20	Tutorías día Módulo 6:	martes	1 Jul	≥ ← Examen
icolás Castro			Francisco Ar	os	Notas	OF Calendar by www.pdfcalendar.com

Preguntas guía para "Introducción al análisis de datos"

- ¿Qué es un histograma? ¿Cómo se construye? ¿Cómo puede caracterizarse?
- ¿Qué es una FDP?
- 3) ¿Cuál es la relación entre la FDP de una cierta variable y el histograma de valores que medimos para esta misma variable?
- Dado un conjunto de medidas (datos) de valores directamente comparables entre sí, defina el valor medio, la mediana, la moda, y la dispersión.
- 5) ¿En qué clase de experimentos la dispersión de una variable observada proporciona una medida de la incerteza en la medición?
- 6) ¿Cuál es la diferencia entre una incerteza en la precisión y una en la exactitud?
- 7) Si queremos conocer una variable t, que no podemos medir, pero que se relaciona con otras variables x, y, z, que sí podemos medir directamente, por la ecuación

$$t = f(x, y, z)$$

- a. Dadas K medidas de x, N medidas de y, y M medidas de z, explique cómo haría para calcular \bar{t} y σ_t .
- b. Puede imaginar una estrategia diferente para calcular \bar{t} y σ_t para el caso de disponer de N medidas de x,y,z? (i.e. la misma cantidad de medidas en cada variable)

Clase previa (Clase 7):

REPASO

1. Repaso de temas críticos de la clase previa

- 1. Correlación.
- 2. Incerteza de parámetros en la correlación lineal.
- 3. Corrección de error sistemático. Extrapolación.
- 2. Significación de diferencia en media y varianza
- 3. Coeficiente de correlación.

Esta clase (Clase 8):

- 1. Repaso de temas críticos de la clase previa
 - 1. Correlación.
 - 2. Incerteza de parámetros en la correlación lineal.
 - 3. Corrección de error sistemático. Extrapolación.
- 2. Coeficiente de correlación.
- 3. Significación de diferencia en media y varianza

Comparación de dos distribucione REPASO observadas

$$\chi^2 = \sum_{j=1}^{M} \frac{\left(n_{1,j} - n_{2,j}\right)^2}{n_{1,j} + n_{2,j}}$$
, donde M es el número de bins.

La FDP de este χ^2 es la misma que mostré antes. ¿Qué es ν ahora? Si los datos son recogidos de forma tal que la suma de n_1 es necesariamente igual a la de n_2 tendremos que el número de grados de libertad es $\nu=M-1$ (el caso usual). Si este requerimiento no existe, entonces $\nu=M$.

Ejemplo: Un observador de aves que desea comparar dos años de observaciones, tomando un bin por cada especie.

- 1: Base de datos es los 1000 primeros pájaros que observa cada año ($\nu=M-1$)
- 2: Base de datos es todos los pájaros que vio en un número de días al azar, siendo el número de días el mismo en los dos años ($\nu = M$).

En el segundo caso puede comparar los totales. Ese es el grado de libertad adicional.

Comparación de dos distribuciones observadas: Significación de la diferencia de promedios ¿REPASO?

G12345678-E-M-AC-peso.dat; $N_{\tau}=190$; $Bin=3.5 \ k_{\parallel}G12345678-E-M-DC-peso.dat$; $N_{\tau}=141$; $Bin=3.5 \ kg$ 25 $\mu = 73.3$ $\mu = 74.4$ 20 mediana= 72.4 mediana= 73. 20 moda= 72.05 moda= 73.75 casos Numero de casos $\sigma = 11.47$ 15 $\sigma = 10.67$ 15 $\sigma_{\mu} = 0.83$ de $\sigma_{\mu} = 0.9$ Numero 10 5 60 80 100 60 80 100 120 Peso [kg] Peso [kg]

Comparación de dos distribuciones observadas: Significación de la diferencia de promedios

Dados:

REPASO

$$\bar{x}_1 = \frac{1}{N_1} \sum_{i=1}^{N_1} x_{1,i}$$

$$\sigma_1 = \frac{1}{N_1 - 1} \sum_{i=1}^{N_1} x_{1,i}$$

$$\bar{x}_2 = \frac{1}{N_2} \sum_{i=1}^{N_2} x_{2,i}$$

$$\bar{x}_1 = \frac{1}{N_1} \sum_{i=1}^{N_1} x_{1,i} \quad \sigma_1 = \frac{1}{N_1 - 1} \sum_{i=1}^{N_1} x_{1,i} \quad \bar{x}_2 = \frac{1}{N_2} \sum_{i=1}^{N_2} x_{2,i} \quad \sigma_2 = \frac{1}{N_2 - 1} \sum_{i=1}^{N_2} x_{2,i}$$

Tendremos el error del promedio:

¡Permite la estrategia de aumentar la muestra!

$$\sigma_{\bar{\chi}_1} = \frac{\sigma_1}{\sqrt{N_1}}$$

(Se obtienen de aplicar propagación de errores a las definiciones de \bar{x}_1 y \bar{x}_2 .)

$$\sigma_{\bar{\chi}_2} = \frac{\sigma_2}{\sqrt{N_2}}$$

Con estos elementos podemos construir el estimador t, con $\nu = N_1 + N_2 - 2$ grados de libertad:

$$t = \frac{\bar{x}_1 - \bar{x}_2}{S_D} \quad \text{donder}$$

$$S_D = \sqrt{\frac{\sum_{N_1} (x_{1,i} - \bar{x}_1)^2 + \sum_{N_2} (x_{2,i} - \bar{x}_2)^2}{N_1 + N_2 - 2}} \left(\frac{1}{N_1} + \frac{1}{N_2}\right)$$

 S_D es el error estándar de la diferencia de promedios. t tiene FDP tipo t-Student.

Distribución t de Student

La FDP de t, A(t|v), denota la probabilidad de que t sea, por azar, menor que el valor medido si los promedios \bar{x}_1 y \bar{x}_2 son realmente iguales. Un valor grande (por ejemplo 0.99) indica una alta chance de medir un valor menor que el observado si $\bar{x}_1 = \bar{x}_2$. Esto es una indicación de que los promedios muy probablemente no sean los mismos. El valor complementario 1 - A(t|v) es la probabilidad de medir un valor tan grande como t si $\bar{x}_1 = \bar{x}_2$ (0.01 en el caso previo).

$$A(t|\nu) = \int_{-t}^{t} \frac{1}{\nu^{\frac{1}{2}}B(\frac{1}{2}, \frac{\nu}{2})} \left(1 + \frac{x^{2}}{\nu}\right)^{-\frac{\nu+1}{2}} dx = \int_{-t}^{t} P(x)dx = 1 - I_{\frac{\nu}{\nu+t^{2}}}\left(\frac{\nu}{2}, \frac{1}{2}\right)$$

Donde B(a,b) es la función Beta, e $I_{\chi}(a,b)$ es la función Beta incompleta (en este caso para para $x=\frac{\nu}{\nu+t^2}$, $a=\nu/2$ y b=1/2).

Hay calculadores on-line para estas funciones, por ejemplo para 1 - A(t|v): http://onlinestatbook.com/2/calculators/t_dist.html

Distribución t de Student

$$A(t|\nu) = \frac{1}{\nu^{\frac{1}{2}}B(\frac{1}{2}, \frac{\nu}{2})} \int_{-t}^{t} \left(1 + \frac{x^{2}}{\nu}\right)^{-\frac{\nu+1}{2}} dx$$

La FDP t de Student es en realidad una FDP cumulativa (la integral entre –t y t). Lo que estaba graficado en la lámina previa era el integrando.

Este gráfico muestra A(t|v) como área blanca bajo la línea azul, y 1-A(t|v) como área azul en los extremos derecho e izquierdo de la distribución. Por simetría, debemos considerar ambas colas (ya que el orden en que hacemos la resta en la definición de t es arbitrario. La función 1-A(t|v) incorpora las dos colas naturalmente.

Interpretación del t de Student

t distribution with df = 8

A(t|v): Probabilidad de que t sea así de pequeño por azar, cuando los promedios de las dos distribuciones comparadas son realmente iguales.

En este ejemplo: A(1.96|8) = 0.9143

1 - A(t|v): Probabilidad de que t sea así de grande por azar, cuando los promedios de las dos distribuciones comparadas son realmente iguales.

En el ejemplo: 1 - A(1.96|8) = 0.0857

One-tailed test

Shaded area: 0.0857

Partamos con un recordatorio de las ecuaciones de ajuste lineal de cuadrados mínimos: $y_i = ax_i + b$

$$\sum_{i=1}^{N} \frac{y_i}{\sigma_i^2} = b \sum_{i=1}^{N} \frac{1}{\sigma_i^2} + a \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2}$$

$$\sum_{i=1}^{N} \frac{x_i y_i}{\sigma_i^2} = b \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} + a \sum_{i=1}^{N} \frac{x_i^2}{\sigma_i^2}$$

$$\chi^{2} = \sum_{i=1}^{N} \left(\frac{y_{i} - (ax_{i} + b)}{\sigma_{i}} \right)^{2}$$

$$\Delta = \sum_{i=1}^{N} \frac{1}{\sigma_{i}^{2}} \sum_{i=1}^{N} \frac{x_{i}^{2}}{\sigma_{i}^{2}} - \left(\sum_{i=1}^{N} \frac{x_{i}}{\sigma_{i}^{2}} \right)^{2}$$

$$a = \frac{1}{\Delta} \left(\sum_{i=1}^{N} \frac{1}{\sigma_i^2} \sum_{i=1}^{N} \frac{x_i y_i}{\sigma_i^2} - \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} \sum_{i=1}^{N} \frac{y_i}{\sigma_i^2} \right)$$

$$b = \frac{1}{\Delta} \left(\sum_{i=1}^{N} \frac{x_i^2}{\sigma_i^2} \sum_{i=1}^{N} \frac{y_i}{\sigma_i^2} - \sum_{i=1}^{N} \frac{x_i}{\sigma_i^2} \sum_{i=1}^{N} \frac{x_i y_i}{\sigma_i^2} \right)$$

Simplifiquemos para un caso sin σ (es idéntico a imaginar $\sigma=1$)

Coeficiente de correlación (caso sin REPASO

¿Tiene sentido la correlación $y_i = ax_i + b$? Prestemos atención a la pendiente.

$$a = \frac{1}{\Delta} \left(N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i \right) = \frac{\Delta_S}{\Delta} \qquad \Delta = N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i \right)^2$$

$$x_i = a' y_i + b' \qquad a' = \frac{\Delta_S}{\Delta'} \qquad \Delta' = N \sum_{i=1}^{N} y_i^2 - \left(\sum_{i=1}^{N} y_i \right)^2$$

Si hay una correlación real entre x e y deberá existir una relación entre a, a', b y b'.

$$x_i = \frac{1}{a}y_i - \frac{b}{a} \Rightarrow a' = \frac{1}{a}; b' = -\frac{b}{a} \Rightarrow aa' = 1$$
 $aa' = 1$

Definimos $r = \sqrt{aa'}$ cantidad llamada "coeficiente de correlación lineal", que nos da una medida experimental del grado de correlación lineal, con valor entre 0 y ± 1 .

$$r = \frac{N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i}{\sqrt{N \sum_{i=1}^{N} x_i^2 - (\sum_{i=1}^{N} x_i)^2} \sqrt{N \sum_{i=1}^{N} y_i^2 - (\sum_{i=1}^{N} y_i)^2}}$$

(Raimundo, antes de que tomáramos la raiz cuadrada, el numerador era un cuadrado)

¿Correlaciones casuales?

¿Correlaciones casuales?

Fin de ppt de Clase 9