Implementing the Decison-tree classiffier over the Amazon-fine food reviews dataset

```
In [2]: #Importing all the relevant libraries
        %matplotlib inline
        import sqlite3
        import pandas as pd
        import numpy as np
        import nltk
        import string
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.feature_extraction.text import TfidfTransformer
        from sklearn.feature_extraction.text import TfidfVectorizer
        import itertools
        from sklearn.feature_extraction.text import CountVectorizer
        from sklearn.metrics import confusion_matrix
        from sklearn.metrics import precision_score
        from sklearn.metrics import recall_score
        from sklearn.metrics import f1_score
        from prettytable import PrettyTable
        from sklearn.cross_validation import train_test_split
        from sklearn.metrics import accuracy score
        from sklearn.cross_validation import cross_val_score
        from collections import Counter
        from sklearn import cross_validation
        from sklearn.model_selection import train_test_split
        import warnings
        warnings.filterwarnings(action='ignore')
        from sklearn.grid_search import GridSearchCV
        from sklearn.tree import DecisionTreeClassifier
        from sklearn import tree
        from sklearn import metrics
        from sklearn.model_selection import RandomizedSearchCV
        from imblearn.over_sampling import SMOTE
```

Connecting to the pre-processed SQLite Table.

```
In [4]: #Connecting to the SQL table
    con = sqlite3.connect('final.sqlite')

#Reading data from the database

Data = pd.read_sql_query("""
    SELECT *
    FROM Reviews """,con)
    Data.shape

# Drop index column
Data.drop(columns=['index'],inplace=True)
```

Processing the data for the further use.

```
In [5]: #SETTING THE TIME COLUMN TO STANDARD DATE-TIME

Data["Time"]=pd.to_datetime(Data.Time)
Data.head(5)
```

71	+	 •
w	uu	

1970-01-01 00:00:00.959990400

451903 B00004CXX9 A2DEE7F9XKP3ZR

Out[5]:	ld	ProductId	Userld	l ProfileName H	elpfulnessNumerat	or HelpfulnessDenon	ninator Score	
	0 150524	0006641040	ACITT7DI6IDDL	shari zychinski		0	0 positive	1970- 00:00:00.9393
	1 150506	0006641040	A2IW4PEEKO2R0U	Tracy		1	1 positive	1970 00:00:01.1947
	2 150507	0006641040	A1S4A3IQ2MU7V4	sally sue "sally sue"		1	1 positive	1970 00:00:01.1914
	3 150508	0006641040	AZGXZ2UUK6X	Catherine Hallberg " (Kate)"		1	1 positive	1970- 00:00:01.0760
	4 150509	0006641040	A3CMRKGE0P909G	i Teresa		3	4 positive	1970 00:00:01.0183
	4							•
In [6]:			n as index of th <mark>e</mark> ",inplace= True)					
	#Sampling	the above	data					
		ampled_data	ample(n=150000,r .sort_index()	replace='False	')			
Out[6]:		Time	ld ProductId	Userlo	l ProfileName Ho	elpfulnessNumerator	HelpfulnessDend	ominator Sco
	19 00:00:00.93	970-01-01 39340800 ¹⁵⁰	0524 0006641040	ACITT7DI6IDDL	shari zychinski	0		0 posit
	19 00:00:00.94	970-01-01 150 10809600	0501 0006641040	AJ46FKXOVC7NF	Nicholas A Mesiano	2		2 posit
	19 00:00:00.94	970-01-01 374 3 74	1422 B00004Cl84	A1048CYU0OV4O8	B Judy L. Eans	2		2 posit
	19 00:00:00.9	9 70-01-01 51 523200	4450 B00004Cl84	ACJR7EQF9S6FF	Jeremy Robertson	2		3 posit

0

jerome

1 posit

```
In [7]: polarity=Sorted["Score"]
    sns.countplot(x="Score",data=Sorted,palette="hls")
    plt.show()
    plt.savefig("count_plot")
```


<Figure size 432x288 with 0 Axes>

Splitting the data into 80:20 partitions sets

```
In [8]: def data_split(x,y):
    #Splitting the model into 70:30 split of Training and Cross_validate split
    X_1, X_test, y_1, y_test = train_test_split(x, y, test_size=0.3,shuffle=False,random_state=None)

# split the train data set into cross validation train and cross validation test
    X_tr, X_cv, y_tr, y_cv = train_test_split(X_1, y_1, test_size=0.3,shuffle=False,random_state=None)
    return X_tr,y_tr,X_cv,y_cv,X_test,y_test
```

Preparing the data for further use

```
In [9]: X=Sorted
Y=polarity

X_tr,y_tr,X_cv,y_cv,X_test,y_test=data_split(X,Y)

print("The shape of x_train is:",X_tr.shape)
print("the shape of y_train is:",y_tr.shape)
print("the shape of x_test is:",X_test.shape)
print("the shape of y_test is:",y_test.shape)
The shape of x_train is: (73500, 10)
the shape of y_train is: (73500,)
the shape of x_test is: (45000,)

the shape of y_test is: (45000,)
```

Utility functions for training & testing the data

```
In [21]: def train(X_tr, y_tr,X_cv,y_cv):
             clf = DecisionTreeClassifier(random_state=0, max_depth=None, class_weight="balanced")
             Model = clf.fit(X_tr, y_tr)
             print("\nThe model score on train set is= ", Model.score(X_tr,y_tr))
             Y_pred=Model.predict(X_cv)
             accuracy = accuracy_score(y_cv, Y_pred, normalize=True) * float(100)
             print('\nThe accuracy of Decision tree over cross_val set is = %d%% ' % ( accuracy))
             return Y_pred,accuracy
         def tuned_test(X_tr, y_tr,X_test,y_test,d):
             Best_clf= DecisionTreeClassifier(random_state=0, max_depth=d, class_weight="balanced")
             Best_Model = Best_clf.fit(X_tr, y_tr)
             print("\nThe model score on train set is= ", Best_Model.score(X_tr,y_tr))
             Y_pred=Best_Model.predict(X_test)
             best_accuracy = accuracy_score(y_test, Y_pred, normalize=True) * float(100)
             print('\nThe accuracy of Decision tree over test set is = %d%% ' % ( best_accuracy))
             return Y_pred,best_accuracy
         def cv_results(X_cv, y_cv):
             cv_erro_array1 = []
             depth = [x for x in range(2, 10)]
             for d in depth:
                 print("---
               ....")
                 print("for depth =", d)
                 Clf = DecisionTreeClassifier(random_state=0,max_depth=(d),class_weight="balanced")
                 Scores = cross_val_score(Clf, X_cv, y_cv, cv=10,scoring='accuracy',n_jobs=-1)
                 cv_erro_array1.append(Scores.mean())
                 mse=[1- x for x in cv_erro_array1]
                 # determining best alpha
                 #Best_alpha = alpha[mse.index(min(mse))]
                 print("\nthe misclassification error for each depth value is : ", np.round(mse,3))
                 #print("\nthe 10-fold CV_accuracy for each alpha is :",Scores)
             #plt.subplot(1,2,1)
             fig, ax = plt.subplots()
             ax.plot(depth, mse, c='g')
             for i, txt in enumerate(np.round(mse,3)):
                 ax.annotate((depth[i],str(txt)), (depth[i],mse[i]))
             plt.grid()
             plt.title("Cross Validation Error for each depth value")
             plt.xlabel("Depth d's")
             plt.ylabel("Error measure")
             plt.show()
             Best_depth = np.round(depth[mse.index(min(mse))])
             print('\nThe optimal number of depth value is %d.' % Best_depth)
```

Utility function for plotting the confusion matrix.

```
In [11]: from sklearn.metrics import confusion_matrix
         def Confusion_metric(y_test,y_pred,acc):
             print(metrics.confusion_matrix(y_test,y_pred))
             confusion=metrics.confusion_matrix(y_test,y_pred)
             plt.figure(figsize=(9,9))
             sns.heatmap(confusion, annot=True, fmt=".3f", linewidths=.5, square = True, cmap = 'Blues_r');
             plt.ylabel('Predicted label');
             plt.xlabel('Actual label');
             all_sample_title = 'Accuracy Score: {0}'.format( acc)
             plt.title(all_sample_title, size = 15);
             plt.show()
         #Storing the values of the confusion matrix
             TN=confusion[0,0]
             FP=confusion[0,1]
             FN=confusion[1,0]
             TP=confusion[1,1]
         # use float to perform true division, not integer division
             Class_acc=((TP + TN) / float(TP + TN + FP + FN))*100
         #Code for classification error
              classification_error = ((FP + FN) / float(TP + TN + FP + FN))*100
         #Code for finding the TPR, FPR, TNR, FNR
             TPR = (TP / float(FN + TP))*100
             FNR = (FN / float(FN + TP))*100
             TNR=(TN / float(TN + FP))*100
             FPR=(FP / float(TN + FP))*100
         #Code for finding the Precision, Recall & F1_score
             precision = (TP/float(TP+FP))*100
             recall= (TP / float(FN + TP))*100
             F1_s= ((float(precision*recall))float(precision+recall))*2)
             print()
             ptable=PrettyTable()
             ptable.title="The performance metrics of the above model are as follows: "
             ptable.field_names=["Metrics","Scores"]
             ptable.add_row(["Classification_accuracy",Class_acc])
             ptable.add_row(["Classification_error",classification_error])
             ptable.add_row(["True positive",TP])
             ptable.add_row(["False positive",FP])
             ptable.add_row(["True negative",TN])
             ptable.add_row(["False negative",FN])
             ptable.add_row(["True positive rate",TPR])
             ptable.add_row(["False negative rate",FNR])
             ptable.add_row(["True negative rate",TNR])
             ptable.add_row(["False positive rate",FPR])
             ptable.add row(["Precision value",precision])
             ptable.add_row(["Recall value", recall])
             ptable.add_row(["f1_score value",F1_s])
             print(ptable)
In [51]: def conclusion table():
             print()
             ptable=PrettyTable()
             ptable.title="The comparisons of all the vectorizers are as follows: "
             ptable.field_names=["Vectorizer","Algorithm","Scores","Status"]
             ptable.add_row(["Bag-Of-Words","Decision-Tree-Classiffier",accuracy,"Overfitt"])
             ptable.add_row(["Tf-IDF","Decision-Tree-Classiffier",accur ,"Overfitt"])
             ptable.add_row(["Average-word2vec","Decision-Tree-Classiffier",accura ,"Overfitt"])
             ptable.add_row(["TF-IDF-Weighted-word2vec","Decision-Tree-Classiffier",tfaccura ,"Overfitt"])
             print(ptable)
```

```
In [12]: #Function for vectorizing the train data
         from sklearn.preprocessing import StandardScaler
         scaler=StandardScaler(with_mean=False)
         def vec_train(vect,X_tr):
             import warnings
             warnings.filterwarnings("ignore")
             count_vect = vect #in scikit-learn
             BOW = count_vect.fit_transform(X_tr.values)
         #Standardizing the vectorized data
             standardized_data = scaler.fit_transform(BOW)
             standardized_data.shape
             return count_vect,standardized_data
         #Function for vectorizing the CV data
         def vec_cv(count,X_cv):
             cv=count.transform(X_cv.values)
             cv.get_shape()
             std_cv=scaler.transform(cv)
             std_cv.shape
             return std_cv
         #Function for vectorizing the test data
         def vec_test(count, X_test):
             test=count.transform(X_test.values)
             test.get_shape()
             std_data=scaler.transform(test)
             std_data.shape
             return std_data
         #Funtion for printing the total number of top features
         def top_tfidf_feats(name,row, features, top_n=25):
             ''' Get top n tfidf values in row and return them with their corresponding feature names.'''
             topn_ids = np.argsort(row)[::-1][:top_n]
             top_feats = [(features[i], row[i]) for i in topn_ids]
             df = pd.DataFrame(top_feats)
             df.columns = ['feature', name]
             return df
         #Function for displaying top frequent 50 tokens distributions
         from yellowbrick.text import FreqDistVisualizer
         from sklearn.feature_extraction.text import CountVectorizer
         def display_token(Vect,data):
             vectorizer = Vect
             docs = vectorizer.fit_transform(data)
             features = vectorizer.get_feature_names()
             visualizer = FreqDistVisualizer(features=features)
             visualizer.fit(docs)
             visualizer.poof()
```

Implementing the Bag-of words vectorizer

```
In [13]: #Initializing the count vectorizer
         Count_vect=CountVectorizer()
         #vectorizing the X_train set
         count,x_tr=vec_train(Count_vect,X_tr["CleanedText"])
         print("The shape of the X_train is: ",x_tr.shape)
         #Vectgorizing the X_crossvalidation set
         x_cv=vec_cv(count,X_cv["CleanedText"])
         print("The shape of the X_cv is: ",x_cv.shape)
         #Vectorizing the X_test set
         x_test=vec_test(count,X_test["CleanedText"])
         print("The shape of the X_test is: ",x_test.shape)
         #Printing the total length of the features
         print("\nTop 25 feaures acording to the Bow score are as follows")
         features = Count_vect.get_feature_names()
         len(features)
         top_Bow = top_tfidf_feats("bow",x_tr[1,:].toarray()[0],features,25)
         top_Bow
         The shape of the X_train is: (73500, 29756)
         The shape of the X_cv is: (31500, 29756)
         The shape of the X_test is: (45000, 29756)
```

Top 25 feaures acording to the Bow score are as follows

Out[13]:

	feature	bow
0	televis	67.784587
1	preschool	52.183137
2	song	45.833249
3	thirti	35.308593
4	teach	34.166100
5	seri	32.651272
6	student	20.112397
7	book	18.799685
8	sister	11.680474
9	school	11.466476
10	child	11.147448
11	air	10.443262
12	show	9.254517
13	tradit	8.764491
14	children	8.457772
15	along	8.337187
16	later	8.281381
17	rememb	7.625671
18	ago	6.107664
19	turn	6.015751
20	live	5.432616
21	see	4.070845
22	someth	3.805621
23	whole	3.477331
24	bought	3.311197

Displaying the top frequency distribution of the top 50 tokens

```
In [13]: display_token(Count_vect,X_tr["CleanedText"])
```


Training the Decision tree classifier model over the cross-validation set using default values

The model score on train set is= 1.0

The accuracy of Decision tree over cross_val set is = 81% Wall time: 35.1 s

Confusion matrix of the model is as follows

In [46]: Confusion_metric(y_cv,pred,acc)

[[2956 2507] [3269 22768]]

The performance metrics of the above model are as follows:		
Metrics	Scores	
Classification_accuracy	81.66349206349206	
Classification_error	18.336507936507935	
True positive	22768	
False positive	2507	
True negative	2956	
False negative	3269	
True positive rate	87.44479010638706	
False negative rate	12.555209893612934	
True negative rate	54.10946366465312	
False positive rate	45.89053633534688	
Precision value	90.08110781404551	
Recall value	87.44479010638706	
f1_score value	88.74337386966012	

- The train accuracy of the above model is 81.422% but is quite misleading which can be observed by analyzing the performance metrics of the confusion matrix.
- The False positive rate and the false negative rate is quite high which is not good for an classification model.
- The True negative rate is quite low which is very bad as the negative reviews are not properly classified and the model is facing a bias problem which can be improved after tuning the hyperparameters.

Tuning the hyperparameters by performing 10k-fold Cross validation technique

```
In [16]: cv_results(x_tr,y_tr)
         for depth = 2
         the misclassification error for each depth value is : [0.544]
         for depth = 3
         the misclassification error for each depth value is : [0.544 0.426]
         for depth = 4
         the misclassification error for each depth value is : [0.544 0.426 0.399]
         for depth = 5
         the misclassification error for each depth value is : [0.544 0.426 0.399 0.4 ]
         for depth = 6
         the misclassification error for each depth value is : [0.544 0.426 0.399 0.4 0.346]
         for depth = 7
         the misclassification error for each depth value is : [0.544 0.426 0.399 0.4 0.346 0.317]
         for depth = 8
         the misclassification error for each depth value is : [0.544 0.426 0.399 0.4 0.346 0.317 0.28 ]
         for depth = 9
         the misclassification error for each depth value is : [0.544 0.426 0.399 0.4 0.346 0.317 0.28 0.27
```


The optimal number of depth value is 9.

Testing the model with the optimal depth value over the Test set

In [47]: y_pred,accuracy=tuned_test(x_tr,y_tr,x_test,y_test,d=9)

The model score on train set is= 0.7459319727891156

The accuracy of Decision tree over test set is = 73%

Confusion matrix of the above model is as follows

In [48]: Confusion_metric(y_test,y_pred,accuracy)

[[5794 2149] [9813 27244]]

The performance metrics of the above model are as follows:		
Metrics	Scores	
Classification_accuracy	73.417777777779	
Classification_error	26.5822222222224	
True positive	27244	
False positive	2149	
True negative	5794	
False negative	9813	
True positive rate	73.51917316566372	
False negative rate	26.48082683433629	
True negative rate	72.94473120987033	
False positive rate	27.055268790129674	
Precision value	92.68873541319361	
Recall value	73.51917316566372	
f1_score value	81.99849510910461	

- The test accuracy with optimal depth is 73.41% which is quite low for a classification model.
- This drop in accuracy is due to increase in the false negative rates which is hampering the model's performance.
- But still the model is good and stable because of high True positive and negative rates as compared to the default model.
- The precision and the recall values are good but the recall value is very low which is quite alarming.
- Since descion trees tends to overfitt as the depth increases so this might be reason for low accuracy.

Implementing the TF-idf Vectorizeration technique

```
In [18]: #Initializing the count vectorizer
         TF_vect=TfidfVectorizer(ngram_range=(1,2))
         #vectorizing the X_train set
         TF_count,X_tra=vec_train(TF_vect,X_tr["CleanedText"])
         print("The shape of the X_train is: ",X_tra.shape)
         #Vectgorizing the X_crossvalidation set
         X_cv=vec_cv(TF_count,X_cv["CleanedText"])
         print("The shape of the X_cv is: ",X_cv.shape)
         #Vectorizing the X_test set
         X_tes=vec_test(TF_count,X_test["CleanedText"])
         print("The shape of the X_test is: ",X_tes.shape)
         #Printing the total length of the features
         print("\nTop 25 feaures acording to the Bow score are as follows")
         Features = TF_vect.get_feature_names()
         len(Features)
         top_tfidf = top_tfidf_feats("tfidf",X_tra[1,:].toarray()[0],Features,25)
         top_tfidf
         The shape of the X_train is: (73500, 875598)
         The shape of the X_cv is: (31500, 875598)
         The shape of the X_test is: (45000, 875598)
```

Top 25 feaures acording to the Bow score are as follows

Out[18]:

	feature	tfidf
0	book children	271.110679
1	day thirti	271.110679
2	song student	271.110679
3	children tradit	271.110679
4	air televis	271.110679
5	student teach	271.110679
6	child sister	271.110679
7	sister later	271.110679
8	thirti someth	271.110679
9	tradit live	271.110679
10	show air	271.110679
11	use seri	271.110679
12	preschool turn	271.110679
13	teach preschool	271.110679
14	whole school	271.110679
15	school purchas	271.110679
16	book song	271.110679
17	seri book	255.991893
18	ago child	224.977363
19	televis year	218.374631
20	turn whole	192.496849
21	later bought	160.642759
22	along book	144.295057
23	see show	126.218655
24	purchas along	111.273414

Displaying the frequency of the top 50 Tf-idf vectorized tokens

Training the above model over the cross-validated data

In [21]: | %%**time**

Pred,Acc=train(X_tra,y_tr,X_cv,y_cv)

The model score on train set is= 1.0

The accuracy of Decision tree over cross_val set is = 82% Wall time: 2min 41s

Confusion matrix of the above model is as follows

In [22]: Confusion_metric(y_cv,Pred,Acc)

The performance metrics of the above model are as follows:		
Metrics	Scores	
Classification_accuracy	82.27619047619048	
Classification_error	17.723809523809525	
True positive	23338	
False positive	2806	
True negative	2579	
False negative	2777	
True positive rate	89.36626459888953	
False negative rate	10.633735401110473	
True negative rate	47.89229340761374	
False positive rate	52.10770659238626	
Precision value	89.2671358629131	
Recall value	89.36626459888953	
f1_score value	89.31667272622896	

- The train accuracy of the above model is 82.276% but is quite misleading which can be observed by analyzing the performance metrics of the confusion matrix.
- The False positive rate and the false negative rate is quite high which is not good for an classification model.
- The True negative rate is quite low which is very bad as the negative reviews are not properly classified and the model is facing a bias problem which can be improved after tuning the hyperparameters.

Tuning the Hyper-parameters by using 10k-fold Cross validation technique

```
for depth = 2
the misclassification error for each depth value is : [0.565]
for depth = 3
the misclassification error for each depth value is : [0.565 0.467]
for depth = 4
the misclassification error for each depth value is : [0.565 0.467 0.428]
for depth = 5
the misclassification error for each depth value is : [0.565 0.467 0.428 0.423]
for depth = 6
the misclassification error for each depth value is : [0.565 0.467 0.428 0.423 0.397]
for depth = 7
the misclassification error for each depth value is : [0.565 0.467 0.428 0.423 0.397 0.349]
for depth = 8
the misclassification error for each depth value is : [0.565 0.467 0.428 0.423 0.397 0.349 0.34 ]
for depth = 9
the misclassification error for each depth value is : [0.565 0.467 0.428 0.423 0.397 0.349 0.34 0.31
5]
```


The optimal number of depth value is 9.

Training the Decision tree classiffier model with optimal depth value

The performance metrics of the above model are as follows:		
	Scores	
Classification_accuracy	69.964444444444	
Classification_error	30.035555555554	
True positive	25219	
False positive	1678	
True negative	6265	
False negative	11838	
True positive rate	68.05461856059584	
False negative rate	31.945381439404162	
True negative rate	78.87448067480801	
False positive rate	21.125519325191995	
Precision value	93.76138602818158	
Recall value	68.05461856059584	
f1_score value	78.86605998061107	

- The test accuracy with optimal depth is 68.96% which is quite low for a classification model.
- This drop in accuracy is due to increase in the false negative rates and the False positive rates which is hampering the model's performance.
- But still the model is good and stable because of high True positive and negative rates as compared to the default model.
- The precision and the F1_scores values are good but the recall value is very low which is quite alarming.
- Since descion trees tends to overfitt as the depth increases so this might be reason for low accuracy because here after tuning the depth parameter the optimal value was 9.
- Let's see the performance of the model might increase after changing the vectorizers.

Implementing the Average word2vectorization technique

```
In [25]: #code for finding the average word2vec
         #Utility function for implementing the Average-word2vec-vectorization techniques
         import gensim
         from gensim.models import word2vec
         from gensim.models import KeyedVectors
         def Average_word2Vec (X_tr,X_test):
         # Train our own Word2Vec model using text corpus
             Train_sentence_list=[]
             for sentence in X_tr:
                 Train_sentence_list.append(sentence.split())
             Test_sentence_list=[]
             for sentence in X test:
                 Test_sentence_list.append(sentence.split())
             print("length of train list set is as follows: ",len(Train_sentence_list))
             print("length of test list set is as follows : ",len(Test_sentence_list))
             print("*"*100)
         # Generate model and train our model on train data
             w2v_model=w2v_model_train =gensim.models.Word2Vec(Train_sentence_list,min_count=5,size=50, workers
         =6)
             # List of word in vocabulary
             w2v words = list(w2v model train.wv.vocab)
             print("length of the W2v vocabulary is : ",len(w2v_words))
          #Finding the average word2vec over the train set
             train_list = []
             for sentence in Train_sentence_list:
                 word_2_vec = np.zeros(50)
                 cnt words = 0
                 for word in sentence:
                      if word in w2v_words:
                          vec = w2v_model.wv[word]
                          word_2_vec += vec
                          cnt_words += 1
                 if cnt_words != 0 :
                      word_2_vec /= cnt_words
                 train_list.append(word_2_vec)
          #Finding the average word2vec over the test set
             test_list = []
             for sentence in Test_sentence_list:
                 word_2_{vec} = np.zeros(50)
                 cnt_words = 0
                 for word in sentence:
                      if word in w2v_words:
                         vec = w2v_model.wv[word]
                          word_2_vec += vec
                          cnt_words += 1
                 if cnt_words != 0 :
                      word_2_vec /= cnt_words
                 test_list.append(word_2_vec)
             print("The size of the trained average word2vec is :",len(train_list))
             print("The dimensions of average word2vec is :",len(train_list[0]))
             print()
             print("The size of the test average word2vec is :",len(test_list))
             print("The dimensions of the test average word2vec is :",len(test_list[0]))
             return Train_sentence_list,Test_sentence_list,w2v_model,w2v_words,train_list,test_list
```

Preparing the Average word2vec data for further use

Training the Decision Tree classiffier with default hyperparameters

The model score on train set is= 1.0

The accuracy of Decision tree over cross_val set is = 81% Wall time: 5.1 s

```
In [29]: Confusion_metric(y_test,w2v_pred,w2v_acc)
```

```
[[ 3313 4630]
[ 3746 33311]]
```


The performance metrics of the above model are as follows:		
Metrics	Scores	
Classification_accuracy Classification_error True positive False positive True negative False negative True positive rate False negative rate False positive rate Precision value Recall value	81.3866666666666666666666666666666666666	
	88.83170217872477 	

Observations

- The train accuracy of the above model is 81.36% but is quite misleading which can be observed by analyzing the performance metrics of the confusion matrix.
- The False positive rate and the false negative rate is quite high which is not good for an classification model.
- The True negative rate is quite low which is very bad as the negative reviews are not properly classified and the model is facing a bias problem which can be improved after tuning the hyperparameters.

Tuning the hyperparameters by using the 10k-fold cross validation technique

```
for depth = 2
the misclassification error for each depth value is : [0.422]
for depth = 3
the misclassification error for each depth value is : [0.422 0.265]
for depth = 4
the misclassification error for each depth value is : [0.422 0.265 0.289]
for depth = 5
the misclassification error for each depth value is : [0.422 0.265 0.289 0.29 ]
for depth = 6
the misclassification error for each depth value is : [0.422 0.265 0.289 0.29 0.269]
for depth = 7
the misclassification error for each depth value is : [0.422 0.265 0.289 0.29 0.269 0.253]
for depth = 8
the misclassification error for each depth value is : [0.422 0.265 0.289 0.29 0.269 0.253 0.243]
for depth = 9
the misclassification error for each depth value is : [0.422 0.265 0.289 0.29 0.269 0.253 0.243 0.23
9]
```


The optimal number of depth value is 9.

Testing the model over the Test set by using the optimal depth value

```
In [31]: y_Predi,accura=tuned_test(trw2v,y_tr,testw2v,y_test,9)
The model score on train set is= 0.801795918367347
```

Confusion matrix of the above model is as follows

The accuracy of Decision tree over test set is = 74%

The performance metrics of the above model are as follows:		
Metrics	Scores	
Classification_accuracy	74.06	
Classification_error	25.94	
True positive	27476	
False positive	2092	
True negative	5851	
False negative	9581	
True positive rate	74.14523571794803	
False negative rate	25.854764282051974	
True negative rate	73.6623442024424	
False positive rate	26.337655797557595	
Precision value	92.92478354978356	
Recall value	74.14523571794803	
f1_score value	82.4795497185741	

- The Test accuracy of the model is 74.06% which is low than default model but it is sensible as the diagonal element values are quite high as compared to other elements.
- The False positive and the negative rates are 25% and 26% which is considerable and the main reason of decreasing the accuracy so here the model is little overfitting.
- The model here is doing quite a good job in classiffying the model properly as compared to the previous vectorizers.
- So by Observing the the confusion matrix and the performance of the above model I can conclude that the model is quite stable and sensible in classifying the reviews properly.
- So let's try the Tf-idf weighted word2vec vectorization technique and hope for the best results.

Implementing the Tf-IDF Weighted word2vec Vectorization technique

```
In [33]: | def Tf_idf_vector( X_tr,train_list,test_list,model,words):
             Tfidf_vector=TfidfVectorizer()
             Tf_train=Tfidf_vector.fit_transform( X_tr)
             dictionary = dict(zip(Tfidf_vector.get_feature_names(), list(Tfidf_vector.idf_)))
             Train_sentence_list=train_list
             Test_sentence_list=test_list
             w2v_words=words
             w2v_model= model
             train_list_vector=[]
             row=0
             for sentence in Train_sentence_list:
                 word_2_vec=np.zeros(50)
                 weight_tfidf_sum=0
                 for word in sentence:
                      if word in w2v_words:
                          vec=w2v_model.wv[word]
                      #tfidf_value=Tf_train[row,Dimension.index(word)]
                         tf_idf = dictionary[word]*sentence.count(word)
                          word_2_vec +=(vec *tf_idf)
                          weight_tfidf_sum +=tf_idf
                 if weight_tfidf_sum !=0:
                      word_2_vec /=weight_tfidf_sum
                 train_list_vector.append(word_2_vec)
                 row +=1
             print(len(train_list_vector))
             print(len(train_list_vector[0]))
         #Code for preapring the test_list_vector
             TEST_LIST_VECTOR=[]
             Row=0
             for sentence in Test sentence list:
                 word_2_vec=np.zeros(50)
                 weight_tf_sum=0
                 for word in sentence:
                      if word in w2v_words:
                          vec=w2v_model.wv[word]
                      #tfidf_value=Tf_test[Row,Dimension.index(word)]
                          tf_idf = dictionary[word]*sentence.count(word)
                          word_2_vec += (vec* tf_idf)
                          weight_tf_sum += tf_idf
                 if weight_tf_sum !=0:
                      word_2_vec /=weight_tf_sum
                 TEST_LIST_VECTOR.append(word_2_vec)
                 row += 1
             print(len(TEST_LIST_VECTOR))
             print(len(TEST_LIST_VECTOR[0]))
             return train_list_vector,TEST_LIST_VECTOR
```

Preparing the TF-IDF weighted vectorized data for the further implementations

```
In [35]: Xtrain=X_tr["CleanedText"]
    tfidf_tr,tfidf_test=Tf_idf_vector(Xtrain,tr_list,tes_list,model,words)

73500
50
45000
50
```

Training the Decision tree classiffier model by using the default parameters

Confusion matrix of the above model is as follows

```
In [39]: Confusion_metric(y_test,TF_pred,TF_acc)

[[ 2905 5038]
      [ 4148 32909]]
```


The performance metrics of the above model are as follows:		
Metrics	Scores	
Classification_accuracy	79.5866666666666	
Classification_error	20.41333333333334	
True positive	32909	
False positive	5038	
True negative	2905	
False negative	4148	
True positive rate	88.80643333243383	
False negative rate	11.193566667566182	
True negative rate	36.57308321792774	
False positive rate	63.42691678207226	
Precision value	86.72358816243708	
Recall value	88.80643333243383	
f1_score value	87.75265319182976	

Tuning the hyperaprameters by using 10k-fold Cross-validation technique

In [40]: cv_results(tfidf_tr,y_tr)

```
for depth = 2
the misclassification error for each depth value is : [0.42]
for depth = 3
the misclassification error for each depth value is : [0.42 0.298]
for depth = 4
the misclassification error for each depth value is : [0.42 0.298 0.28 ]
for depth = 5
the misclassification error for each depth value is : [0.42 0.298 0.28 0.289]
for depth = 6
the misclassification error for each depth value is : [0.42 0.298 0.28 0.289 0.294]
for depth = 7
the misclassification error for each depth value is : [0.42 0.298 0.28 0.289 0.294 0.29 ]
for depth = 8
the misclassification error for each depth value is : [0.42 0.298 0.28 0.289 0.294 0.29 0.28 ]
for depth = 9
the misclassification error for each depth value is : [0.42 0.298 0.28 0.289 0.294 0.29 0.28 0.27
3]
```


The optimal number of depth value is 9.

Testing the Decision tree model with optimal hyperparmeters

```
In [41]: tfy_Predi,tfaccura=tuned_test(tfidf_tr,y_tr,tfidf_test,y_test,9)
The model score on train set is= 0.7780136054421769
The accuracy of Decision tree over test set is = 72%
```

Confusion matrix of the model

The performance metrics of the above model are as follows:		
Metrics	Scores	
Classification_accuracy	72.2244444444444	
Classification_error	27.7755555555552	
True positive	26921	
False positive	2363	
True negative	5580	
False negative	10136	
True positive rate	72.64754297433683	
False negative rate	27.352457025663167	
True negative rate	70.25053506231902	
False positive rate	29.749464937680976	
Precision value	91.93074716568775	
Recall value	72.64754297433683	
f1_score value	81.15946398154986	

- The Test accuracy of the model is 72.22% which is low than previous Avg-w2v-model but it is sensible as the diagonal element values are quite high as compared to other elements.
- The False positive and the negative rates are 29% and 27% which is considerable and the main reason of decreasing the accuracy so here the model is little overfitting.
- The model here is doing quite a good job in classiffying the model properly as compared to the previous vectorizers.
- So by Observing the the confusion matrix and the performance of the above model I can conclude that the model is quite stable and sensible in classifying the reviews properly.

Conclusion

In [52]: conclusion_table()

+ The comparisons of all the vectorizers are as follows:			
Vectorizer	Algorithm	Scores	Status
Bag-Of-Words Tf-IDF Average-word2vec TF-IDF-Weighted-word2vec	Decision-Tree-Classiffier Decision-Tree-Classiffier Decision-Tree-Classiffier Decision-Tree-Classiffier	73.4177777777779 69.96444444444444 74.06 72.22444444444444	Overfitt Overfitt Overfitt Overfitt

• From the above comparison table I can conclude that Decision tree Classiffier easily overfitts in text data because of

increased depth value even after tuning the hyperparameters.

- The Average word2vec vectorizer gave the best accuracy as compared to the other vectorizers.
- Decsion tree classiffier is not the goto model if the data is text or a high dimensional data.

In []: