JEE Mains PCM Formula Book Advanced Formulas

Compiled for JEE Preparation

Important Constants and Values

Fundamental Constants

Constant	Symbol	Value
Speed of light	С	$3 \times 10^8 \mathrm{m/s}$
Gravitational constant	G	$6.674 \times 10^{-11} \text{ N m}^2/\text{kg}$
Planck's constant	h	$6.626 \times 10^{-34} \mathrm{J s}$
Boltzmann constant	k_B	$1.381 \times 10^{-23} \text{J/K}$
Avogadro's number	$N_{\scriptscriptstyle A}$	$6.022 \times 10^{23} \text{ mol}$
Electronic charge	e	$1.602 \times 10^{-19} \mathrm{C}$
Permittivity of free space	$\epsilon_{\scriptscriptstyle 0}$	$8.854 \times 10^{-12} \text{ C} \square^2/\text{N m}$
Permeability of free space	μ_0	$4\pi\times10^{-7}~\mathrm{T~m/A}$
Gas constant	R	8.314 J/mol·K
Faraday constant	F	96485 C/mol

Advanced Physics Formulas

Mechanics - Advanced

Variable Mass System: $F = m \frac{dv}{dt} + v_{rel} \frac{dm}{dt}$

Definition: Rocket equation accounting for changing mass.

Elastic Collision in 2D:

$$v_{1f} = \frac{m_1 - m_2}{m_1 + m_2} v_{1i} + \frac{2 m_2}{m_1 + m_2} v_{2i} \cos \phi$$

$$v_{2f} = \frac{2 m_1}{m_1 + m_2} v_{1i} \cos \phi + \frac{m_2 - m_1}{m_1 + m_2} v_{2i}$$

Definition: Velocities after oblique elastic collision.

Moment of Inertia (Advanced):

Thin rod about end:
$$I = \frac{1}{3} M L^2$$

Solid sphere:
$$I = \frac{2}{5}MR^2$$

Hollow sphere:
$$I = \frac{2}{3}MR^2$$

Circular disc:
$$I = \frac{1}{2} M R^2$$

Definition: Common moments of inertia for standard shapes.

Radius of Gyration: $I = M k^2$

Definition: Distance where entire mass can be concentrated for same moment of inertia.

Elastic Potential Energy: $U = \frac{1}{2} k x^2$

Definition: Energy stor<u>ed in d</u>eformed elastic material.

Critical Velocity: $v_c = \sqrt{\frac{2GM}{R}}$

Definition: Minimum velocity for circular orbit.

Time Period of Satellite: $T = 2\pi \sqrt{\frac{r^3}{GM}}$

Definition: Kepler's third law for artificial satellites.

Electrodynamics - Advanced

Capacitors with Dielectric: $C = \kappa C_0$

Definition: Capacitance increases by dielectric constant κ .

Energy Density in Electric Field: $u_E = \frac{1}{2} \epsilon_0 E^2$

Definition: Energy per unit volume in electric field.

Energy Density in Magnetic Field: $u_B = \frac{1}{2\mu_0}B^2$

Definition: Energy per unit volume in magnetic field.

Self-Inductance: $L = \frac{\mu_0 N^2 A}{l}$

 $\boldsymbol{Definition:}$ For solenoid of length l, area A, and N turns.

Growth of Current in LR Circuit: $I = I_0 (1 - e^{-t/\tau})$

Definition: Exponential growth with time constant $\tau = L/R$.

Decay of Current in LR Circuit: $I = I_0 e^{-t/\tau}$ **Definition:** Exponential decay in LR circuit. **Charging of Capacitor:** $q = Q \left(1 - e^{-t/RC}\right)$

Definition: Exponential charging in RC circuit.

Discharging of Capacitor: $q = Qe^{-t/RC}$

Definition: Exponential discharging in RC circuit.

Optics - Advanced

Lens Maker's Formula: $\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$

Definition: Relates focal length to radii of curvature and refractive index.

Newton's Formula: $f^2 = x_1 x_2$

Definition: Product of object and image distances from focal points equals f^2 .

Resolving Power of Telescope: $R = \frac{D}{1.22 \, \lambda}$

Definition: Ability to distinguish close objects.

Resolving Power of Microscope: $R = \frac{2 \mu \sin \theta}{\lambda}$

Definition: Depends on wavelength and numerical aperture.

Brewster's Angle: $tan i_p = \mu$

Definition: Angle for complete polarization of reflected light.

Modern Physics - Advanced

Compton Effect: $\Delta \lambda = \frac{h}{m_0 c} (1 - \cos \theta)$

Definition: Wavelength shift in photon-electron scattering.

Bragg's Law: $2 d \sin \theta = n \lambda$

 $\textbf{Definition:} \ Condit\underline{\underline{t}} ion \ for \ constructive \ interference \ in \ crystal \ diffraction.$

Moseley's Law: $\sqrt{v} = a(Z - b)$

Definition: Relationship between X-ray frequency and atomic number.

Radioactive Decay Law: $N = N_0 e^{-\lambda t}$

Definition: Exponential decay of radioactive substances.

Half-life: $T_{1/2} = \frac{\ln 2}{\lambda}$

Definition: Time for half the atoms to decay.

Mean life: $\tau = \frac{1}{\lambda}$

Definition: Average lifetime of radioactive atoms.

Thermodynamics - Advanced

Work Done in Various Processes:

Isothermal:
$$W = n R T \ln \frac{V_f}{V_i}$$

Adiabatic:
$$W = \frac{P_i V_i - P_f V_f}{v - 1}$$

Isobaric:
$$W = P(V_f - V_i)$$

Isochoric:
$$W = 0$$

Definition: Work calculations for different thermodynamic processes.

Efficiency of Heat Engine:
$$\eta = 1 - \frac{T_2}{T_1}$$

Definition: Carnot efficiency for ideal heat engine.

Coefficient of Performance:
$$COP = \frac{Q_2}{W}$$

Definition: For refrigerator, ratio of heat extracted to work done.

Advanced Mathematics Formulas

Calculus - Advanced

Leibnitz Rule:
$$\frac{d^n}{dx^n}(u\,v) = \sum_{r=0}^n \binom{n}{r} u^{n-r} v^r$$

Definition: nth derivative of product of two functions.

Rolle's Theorem: If f(a) = f(b) and continuous, then f'(c) = 0 for some $c \in (a,b)$

Definition: Special case of Mean Value Theorem.

Lagrange's Mean Value Theorem:
$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Definition: There exists c where instantaneous rate equals average rate.

Cauchy's Mean Value Theorem:
$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Definition: Generalized mean value theorem.

Integration by Parts: $\int u \, dv = uv - \int v \, du$ **Definition:** For product of functions.

Reduction Formulas:

$$\int \sin^{n} x \, dx = -\frac{1}{n} \sin^{n-1} x \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, dx$$
$$\int \cos^{n} x \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int \cos^{n-2} x \, dx$$

Definition: Recursive formulas for trigonometric integrals.

Coordinate Geometry - Advanced

Equation of Chord: $T = S_1$

Definition: Chord of contact from external point.

Director Circle: $x^2 + y^2 = a^2 + b^2$ (for ellipse)

Definition: Locus of points from which perpendicular tangents can be drawn.

Parametric Coordinates:

Circle: $x = a \cos \theta$, $y = a \sin \theta$ Ellipse: $x = a \cos \theta$, $y = b \sin \theta$ Hyperbola: $x = a \sec \theta$, $y = b \tan \theta$

Definition: Parametric representations of conic sections.

Polar Coordinates: $x=r\cos\theta$, $y=r\sin\theta$ **Definition:** Alternative coordinate system.

Vector Algebra - Advanced

Scalar Triple Product: $[\vec{a} \vec{b} \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c})$

Definition: Volume of parallelepiped formed by vectors. **Vector Triple Product:** $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$

Definition: Expansion formula for vector triple product.

Equation of Plane:

Vector: $\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}$ Cartesian: ax + by + cz = dIntercept: $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$

Definition: Different forms of plane equation in 3D.

Probability - Advanced

Binomial Distribution: $P(X=r) = \binom{n}{r} p^r (1-p)^{n-r}$

Definition: Probability of r successes in n independent trials.

Mean and Variance:

Mean: $\mu = n p$ Variance: $\sigma^2 = n p (1 - p)$

Definition: For binomial distribution.

Bayes' Theorem: $P(A \lor B) = \frac{P(B \lor A)P(A)}{P(B)}$

 $\textbf{Definition:} \ Conditional \ probability \ relationship.$

Advanced Chemistry Formulas

Physical Chemistry - Advanced

Arrhenius Equation: $k = Ae^{-E_a/RT}$

Definition: Temperature dependence of reaction rate constant.

Integrated Rate Laws:

Zero order: $[A]=[A]_0 - kt$ First order: $\ln[A]=\ln[A]_0 - kt$ Second order: $\frac{1}{[A]} = \frac{1}{[A]_0} + kt$

Definition: Concentration-time relationships for different orders.

Van't Hoff Equation: $\frac{d \ln K}{dT} = \frac{\Delta H}{RT^2}$

Definition: Temperature dependence of equilibrium constant.

Gibbs-Helmholtz Equation: $\Delta G = \Delta H - T \Delta S$

Definition: Relationship between free energy, enthalpy and entropy.

Debye-Hückel Limiting Law: $\log y = -A z^2 \sqrt{I}$

Definition: Activity coefficient in electrolyte solutions.

Organic Chemistry - Advanced Reactions

Hofmann Elimination:

Definition: Anti-elimination giving less substituted alkene (Hofmann product).

Saytzeff Rule: More substituted alkene is major product

Definition: In elimination reactions, hydrogen is preferentially removed from carbon with

fewer hydrogens.

Markovnikov's Rule: Hydrogen adds to carbon with more hydrogens

Definition: In addition to unsymmetrical alkenes. **Anti-Markovnikov Addition:** (with peroxide)

Definition: Peroxide effect reverses Markovnikov addition for HBr.

Diels-Alder Reaction:

Definition: [4+2] cycloaddition forming six-membered rings.

Coordination Chemistry - Advanced

Crystal Field Splitting Energy:

Octahedral: $\Delta_o = \frac{5}{3} \Delta_t$

Tetrahedral: $\Delta_t = \frac{4}{9} \Delta_o$

Definition: Energy difference between split d-orbitals.

Spectrochemical Series:

Definition: Ligands arranged by increasing crystal field splitting.

Magnetic Moment: $\mu = \sqrt{n(n+2)}$ BM

Definition: For n unpaired electrons, predicts paramagnetism.

Electrochemistry - Advanced

Kohlrausch's Law: $\Lambda_m^{\infty} = \lambda_{+i^{\infty}+\lambda_{-i}^{\infty}}$

Definition: Limiting molar conductivity equals sum of ionic conductivities.

Debye-Hückel-Onsager Equation: $\Lambda_m = \Lambda_m^{\infty} - A \sqrt{c}$

Definition: Conductivity dependence on concentration for strong electrolytes.

Solid State - Advanced

Bragg's Equation: $n \lambda = 2 d \sin \theta$

Definition: X-ray diffraction by crystals.

Density of Crystal: $\rho = \frac{Z \times M}{N_A \times a^3}$

Definition: For cubic crystal with edge length a.

Atomic Packing Factor:

FCC: 0.74 BCC: 0.68

Simple cubic: 0.52

Definition: Fraction of volume occupied by atoms in unit cell.

Important Shortcuts and Tricks

Physics Shortcuts

Time of Flight (Projectile): $T = \frac{2u\sin\theta}{q}$

Range Maximum: $R_{max} = \frac{u^2}{q}$ at $\theta = 45^{\circ}$

Maximum Height: $H = \frac{u^2 \sin^2 \theta}{2 q}$

Lens Combination: $\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2}$

Power: $P = P_1 + P_2$

Resistors in Series: $R_s = R_1 + R_2 + R_3$

Resistors in Parallel: $\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

Capacitors in Series: $\frac{1}{C_s} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$

Capacitors in Parallel: $C_p = C_1 + C_2 + C_3$

Mathematics Shortcuts

Quadratic Roots: $\alpha + \beta = -\frac{b}{a}$, $\alpha \beta = \frac{c}{a}$

Cubic Roots: $\alpha + \beta + \gamma = -\frac{b}{a}$, $\alpha \beta + \beta \gamma + \gamma \alpha = \frac{c}{a}$

Binomial Expansion: $(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + ...$

For small **x**: $(1+x)^n \approx 1+nx$ Trigonometric Values:

$$\sin 15^{\circ} = \frac{\sqrt{3} - 1}{2\sqrt{2}}, \cos 15^{\circ} = \frac{\sqrt{3} + 1}{2\sqrt{2}}$$

 $\sin 75^{\circ} = \frac{\sqrt{3} + 1}{2\sqrt{2}}, \cos 75^{\circ} = \frac{\sqrt{3} - 1}{2\sqrt{2}}$

Chemistry Shortcuts

Mole Fraction: $x_i = \frac{n_i}{\sum n_i}$

Molality: $m = \frac{\text{moles of solute}}{\text{kg of solvent}}$

pH calculation: $pH = -\log \delta$

For weak acid: $pH = \frac{1}{2}pK_a - \frac{1}{2}\log C$

Henderson-Hasselbalch: $pH = pK_a + \log \frac{A^-}{HA}$

For buffer solutions