Hochschule Emden/Leer Fachbereich Technik Abteilung Elektrotechnik und Informatik

SS 2020

Schriftliche Prüfung im Fach:	Digitale Signalverarbeitung (Bachelor)
Prüfer:	Prof. DrIng. Johann-Markus Batke
Tag der schriftlichen Prüfung:	8.7.2020

Studierende	r:		
	Name, Vorname		MatrNr.
NI a.t.a.		Finalaht samanan	
	Datum, Unterschrift Prüfer	_	n. Unterschrift Studierender

Allgemeine Hinweise

Bearbeitungszeit 90 Minuten **Anzahl der Aufgaben** 6

• Formelsammlung der Klausur (Abschnitt "Hilfen")

- Eigene Formelsammlung (handgeschrieben, 2 Seiten DIN A4). Die Formelsammlung ist mit abzugeben.
- HS-Taschenrechner

Gesamtpunktzahl 100

- Beschriften Sie bitte alle Lösungsblätter mit Namen und Matrikelnummer und nummerieren Sie sie fortlaufend.
- Alle Blätter bitte nur einseitig beschreiben.
- Geben Sie bei Rechenaufgaben die Zwischenschritte an, so dass der Lösungsweg erkennbar ist
- Antworten sind, soweit möglich, zu begründen.
- Die Klausur ist mit ca. 50 % der Gesamtpunktzahl bestanden.

Aufgabe 1: Elementare Signale (28 Punkte)

Abbildung 1: Abtastfolgen

- (a) Formulieren Sie für die dargestellten Graphen der Funktionen $x_1[n] \dots x_4[n]$ einen Ausdruck mithilfe von Elementarfunktionen wie $\delta[n]$, $\sigma[n]$, $\cos[n]$, $\sin[n]$.
- **(b)** Skizzieren Sie die Folge $cos(0, 33333\pi n)$ im Wertebereich n = -5...10.
- (c) Skizieren Sie im Wertebereich $n = -5 \dots 5$ die Funktionen
 - $x_5[n] = 5\sigma[n+1] + 5$
 - $x_6[n] = 1 + \sigma[5(n+1)]$

Aufgabe 2: Digitalisierung (10 Punkte)

Teilaufgabe 2.1: Kontinuierliches Signal

Zeichnen Sie ein kontinuierliches sinusförmiges Signal mit Frequenz $f_0=1$ kHz, Nullphase $\varphi=0$ und Scheitelwert $\hat{u}=1$ V. Stellen Sie zwei Zyklen dar.

Teilaufgabe 2.2: Abtastung

Das kontinierliche Signal der vorangegangenen Aufgabe soll nun abgetastet werden. Wählen Sie f_s so, dass das Signal mit 5 Werten pro Zyklus abgetastet wird und kennzeichnen Sie die Abtastwerte in der gemachten Skizze. Wie groß ist f_s ?

Teilaufgabe 2.3: Abtasttheorem

Wird das Abtasttheorem mit der gewählten Abtastrate erfüllt?

Name: Matrikelnummer: Matrikelnummer:

Aufgabe 3: Spektrum Ton (16 Punkte)

Gegeben sei folgendes reellwertiges Spektrum X[k]:

- (a) Geben Sie die Ordnung N der DFT an!
- (b) Bestimmen Sie den Gleichanteil!
- (c) Bestimmen Sie die Grundfrequenz f_0 der Schwingung, wenn die Abtastrate $f_s = 8000 \, \text{Abtastwerte/s ist!}$
- (d) Geben Sie die Zeitfunktion x[n] an und skizieren Sie den Funktionsgraphen! Hinweis: der Gleichanteil im Zeitbereich ist X[0]/N.

Aufgabe 4: Faltung und Lineare Zeitinvariante Systeme (20 Punkte)

- (a) Wie groß ist die Länge des Faltungsproduktes zweier Folgen mit den Längen $L_1 = 21$ bzw. $L_2 = 41$?
- **(b)** Gegeben sind die beiden Signale $x_1[n] = \{1, 3, -2, -1\}$ als Eingangssignal eines Systems und $x_2[n] = \{1, 2, 3\}$ als Systemfunktion. Berechnen Sie den Systemausgang über die die Faltung $x_1[n] \star x_2[n]$!
- (c) Formulieren Sie die Faltung aus b) als Matrixoperation.
- (d) Das gleiche System soll nach Einspeisung des Signals x_1 gleich erneut mit x_1 angeregt werden, es entsteht also die Folge 1, 3, -2, -1, 1, 3, -2, -1. Da es sich um ein Lineares Zeitinvariantes System handelt, können die einzelnen Systemantworten überlagern werden. Geben Sie das Gesamtergebnis des Systemausgangs an.

Aufgabe 5: Diskrete Systeme (10 Punkte)

Abbildung 2: Beispielstruktur eines diskreten Systems.

- (a) Geben Sie einen Ausdruck für y[n] in Abbildung 2 an.
- (b) Stellen Sie die Differenzengleichung auf entsprechend der Form

$$\sum_{k=0}^{N} c_k y[n-k] = \sum_{m=0}^{M} b_m x[n-m].$$
 (1)

Name: Matrikelnummer: Matrikelnummer

Aufgabe 6: Dual-Tone-Multi-Frequency-Standard (16 Punkte)

Gegeben sei das dargestellte Spektrogramm einer *reellwertigen* Zweitonfolge nach dem DTMF-Standard. Die Tasten werden den Tönen gemäß Tabelle zugeordnet, die Tonfolge wurde ohne Pausen zwischen den Tönen erzeugt. Der Standard legt ferner fest, dass die Abtastrate 8 kHz beträgt und ein Wählton mindestens 40 ms dauert.

	1209 Hz	1336 Hz	1477 Hz	1633 Hz
697 Hz	1	2	3	Α
770 Hz	4	5	6	В
852 Hz	7	8	9	С
941 Hz	*	0	#	D

- (a) Erläutern Sie mithilfe des Spektrogramms:
 - 1. Wieviele Frequenzstützstellen sind dargestellt?
 - 2. Wurden überlappende Blöcke aus dem Zeitsignal gebildet? Woran kann man das ablesen?
 - 3. Welche Ordnung hat die verwendete DFT (Begründung)?
 - 4. Wieviele Abtastschritte wurden zur Berechnung der Darstellung verwendet?
 - 5. Wieviele Abtastwerte dauert ein Wählton gemäß Standard mindestens an?
- (b) Reicht die Frequenzauflösung aus, um Wähltöne zuverlässig zu unterscheiden?
- (c) Welche Zahlenfolge (Telefonnummer) ist dargestellt?
- **(d)** Die Blöcke wurden mit einem Rechteckfenster gebildet. Beschreiben Sie, wie sich das Spektrogramm bei Verwendung eines Hamming-Fensters ändert.