高等数学A(上)

第二章

本章重点

导数 — 描述函数变化快慢 微分 — 描述函数变化程度 微分学 — 基本概念是导数与微分

微分学

基本概念是导数与微分

中值定理

罗尔、拉格朗日、柯西

导 数

描述函数变化快慢

应用一

研究函数性质 及曲线性态

微分

描述函数变化程度

应用二

利用导数解决 实际问题

第二章 目录 CONTENTS

第一节 导数与微分的概念

第二节 导数与微分的运算性质

第三节 隐函数及由参数方程所确定的

函数的导数 相关变化率

第四节 高阶导数

第五节 微分中值定理与泰勒公式

第六节 洛必达法则

第七节 微分中值定理与泰勒公式

第5.1节 微分中值定理

一、罗尔(Rolle)定理

二、拉格朗日(Lagrange)中值定理

三、柯西(Cauchy)中值定理

罗尔定理

如果函数f(x)满足

- (1) 在闭区间[a, b]上连续;
- (2) 在开区间(a,b)内可导;
- (3) f(a) = f(b).

则在开区间(a,b)内至少存在一点 ξ , 使得 $f'(\xi)=0$.

几何解释:

在曲线弧AB上至少有一点C,在该点处的切线是水平的.

f(x) 在 [a,b] 连续, 必有最大值 M 和最小值 m.

- (1) 若 M = m. 则 f(x) = M. $\forall \xi \in (a, b)$, 都有 $f'(\xi) = 0$.
- (2) 若 $M \neq m$. : f(a) = f(b), : 最值不可能同时在端点取得.

设 $M \neq f(a)$,则在 (a,b) 内至少存在一点 ξ 使 $f(\xi) = M$.

罗尔定理的条件是充分的,即条件不全具备,结论也可能成立.

结论成立的 例子

条件不全具备

例1 设实数 a_0 , a_1 , …, a_n 满足等式 $a_0 + \frac{a_1}{2} + \dots + \frac{a_n}{n+1} = 0$. 证明方程 $a_0 + a_1x + \dots + a_nx^n = 0$ 在(0,1)内至少有一个实根.

$$\mathbf{ii} \quad \diamondsuit F'(x) = a_0 + a_1 x + \dots + a_n x^n, \, \text{则可设}$$

$$F(x) = a_0 x + \frac{a_1}{2} x^2 + \dots + \frac{a_n}{n+1} x^{n+1}.$$

: F(x)在 [0, 1]上连续,在 (0, 1)内可导,

$$F(0) = 0$$
, $F(1) = a_0 + \frac{a_1}{2} + \dots + \frac{a_n}{n+1} = 0$.

:: 由罗尔定理, $\exists \xi \in (0,1)$, 使 $F'(\xi) = 0$,

即 $a_0 + a_1 x + \dots + a_n x^n = 0$ 在(0,1)内至少有一个实根 ξ .

二、拉格朗日中值定理

拉格朗日定理

如果函数f(x)满足

- (1) 在闭区间[a, b]上连续;
- (2) 在开区间(a, b)内可导,

则在开区间(a,b)内至少存在一点 ξ ,使得 $f'(\xi) = \frac{f(b) - f(a)}{b - a}$

几何解释:

在曲线弧 AB 上至少有一点 C, 在该点处的切线平行于弦AB.

分析:

逆向思维

欲证 $f'(\xi) = \frac{f(b) - f(a)}{b - a}$

将 ξ 变为x

$$f'(x) = \frac{f(b) - f(a)}{b - a}$$

适当变形

$$\left(f(x) - \frac{f(b) - f(a)}{b - a}x\right)' = 0$$

验证辅助函数满足罗尔定理条件,得出结论.

证 方法1. 设辅助函数

$$\varphi(x) = f(x) - \frac{f(b) - f(a)}{b - a}x.$$

则 $\varphi(x)$ 满足罗尔定理条件,

$$\exists \xi \in (a,b)$$
, 使得 $\varphi'(\xi) = 0$.

即
$$\varphi'(\xi) = f'(\xi) - \frac{f(b) - f(a)}{b - a} = 0.$$

$$\therefore f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$
 证毕

$$\varphi(x)$$

在 $[a,b]$ 上连续,
在 (a,b) 内可导,
 $\varphi(a) = \varphi(b)$
$$bf(a) - af(b)$$

证 方法

方法2. 分析: 条件中与罗尔定理相差 f(a) = f(b).

弦AB方程为

$$y = f(a) + \frac{f(b) - f(a)}{b - a}(x - a).$$

曲线 f(x) 减去弦 AB,

所得曲线a,b两端点的函数值相等.

作辅助函数
$$F(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)],$$

则F(x)满足罗尔定理的条件,

$$\therefore$$
 在 (a,b) 内至少存在一点 ξ ,使得 $F'(\xi) = 0$.即 $f'(\xi) = \frac{f(b) - f(a)}{b - a}$. 证毕

拉格朗日中值公式的有限增量形式: (2)

$$f(x_0 + \Delta x) - f(x_0) = f'(x_0 + \theta \Delta x) \cdot \Delta x \quad (0 < \theta < 1).$$
或
$$\Delta y = f'(x_0 + \theta \Delta x) \cdot \Delta x \quad (0 < \theta < 1).$$

拉格朗日中值公式精确地表达了函数在一个区间上的 (3)增量与函数在这区间内某处的导数之间的关系.

思考 与微分近似公式的区别?

推论 如果函数 f(x) 在区间 I 上连续,I 内可导且导数恒为零,那么 f(x) 在区间 I 上是一个常数.

证 在I上任取两点 x_1, x_2 ($x_1 < x_2$),在[x_1, x_2]上用拉格朗日中值公式,得

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) = 0 \ (x_1 < \xi < x_2)$$

$$f(x_2) = f(x_1)$$

由 x_1, x_2 的任意性知, f(x)在 I 上为常数.

例2 证明 $\arcsin x + \arccos x = \frac{\pi}{2} \ (-1 \le x \le 1).$

证 $\partial f(x) = \arcsin x + \arccos x$, $x \in [-1,1]$

$$f'(x) = \frac{1}{\sqrt{1 - x^2}} + (-\frac{1}{\sqrt{1 - x^2}}) = 0.$$

$$\therefore f(x) \equiv C, \quad x \in [-1,1]. \quad \nabla \because f(0) = \frac{\pi}{2}, \text{ 即 } C = \frac{\pi}{2}.$$

$$\Rightarrow \arcsin x + \arccos x = \frac{\pi}{2}.$$

经验: 欲证 $x \in I$ 时 $f(x) = C_0$, 只需证在I上 $f'(x) \equiv 0$, 且 ∃ $x_0 \in I$,使 $f(x_0) = C_0$.

$$\exists i i i :$$ arctan $x + \operatorname{arccot} x = \frac{\pi}{2}, \ x \in (-\infty, +\infty).$

例3 证明当x > 0时, $\frac{x}{1+x} < \ln(1+x) < x$.

证 设 $f(x) = \ln(1+x)$, 则 f(x) 在 [0,x] 上满足拉格朗日中值定理的条件,

: 由
$$f(x) - f(0) = f'(\xi)(x - 0)$$
, $(0 < \xi < x)$ 得

$$\ln(1+x) - \ln(1+0) = \frac{1}{1+\xi} (x-0), \, \text{Im} \ln(1+x) = \frac{x}{1+\xi}.$$

$$\nabla : 0 < \xi < x \longrightarrow 1 < 1 + \xi < 1 + x \longrightarrow \frac{1}{1+x} < \frac{1}{1+\xi} < 1,$$

∴
$$\frac{x}{1+x} < \frac{x}{1+\xi} < x$$
, $\mathbb{P} \frac{x}{1+x} < \ln(1+x) < x$.

三、柯西中值定理

柯西中值定理

如果函数f(x)及F(x)满足

- (1) 在闭区间[a, b]上连续;
- (2) 在开区间(a,b)内可导;
- (3) 在开区间(a,b)内 $F'(x) \neq 0$,

则在开区间
$$(a,b)$$
内至少存在一点 ξ ,使得 $\frac{f(b)-f(a)}{F(b)-F(a)} = \frac{f'(\xi)}{F'(\xi)}$

几何解释:

$$C(F(\xi), f(\xi))$$

在曲线弧AB上至少有一点C,在该点处的切线平行于弦AB.

分析:

逆向思维

欲证
$$\frac{f(b) - f(a)}{F(b) - F(a)} = \frac{f'(\xi)}{F'(\xi)}$$

$$\xi \qquad \frac{f(b) - f(a)}{F(b) - F(a)} = \frac{f'(x)}{F'(x)}$$

$$f'(x) - \frac{f(b) - f(a)}{F(b) - F(a)}F'(x) = 0$$

$$\left(f(x) - \frac{f(b) - f(a)}{F(b) - F(a)}F(x)\right)' = 0$$
 构造辅助函数

适当变形 构造辅助函数

设为辅助函数

验证辅助函数满足罗尔定理条件,得出结论.

$$\varphi(x) = f(x) - \frac{f(b) - f(a)}{F(b) - F(a)}F(x).$$

则 $\varphi(x)$ 满足罗尔定理条件,

$$\therefore \exists \xi \in (a,b), 使得 \varphi'(\xi) = 0.$$

即
$$\varphi'(\xi) = f'(\xi) - \frac{f(b) - f(a)}{F(b) - F(a)}F'(\xi) = 0.$$

$$\varphi(x)$$

在[a,b]上连续,

在(a,b)内可导,

$$\varphi(a) = \varphi(b)$$

$$\frac{F(b)f(a) - F(a)f(b)}{F(b) - F(a)}$$

思考: 柯西定理的下述证法对吗?

$$f(b) - f(a) = f'(\xi)(b - a), \ \xi \in (a, b)$$

$$F(b) - F(a) = F'(\xi)(b - a), \ \xi \in (a, b)$$

:: 上面两式相比即得结论.

答案 错! 两个 ξ 不一定相同

柯西定理的几何意义:

弦的斜率
$$\frac{f(b) - f(a)}{F(b) - F(a)} = \frac{f'(\xi)}{F'(\xi)}$$
 切线斜率
$$\begin{cases} x = F(t) \\ y = f(t) \end{cases} \longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{f'(t)}{F'(t)}$$

在曲线弧AB上至少有一点C, 在该点处的切线平行于弦AB. 例4 设函数f(x)在[0,1]上连续,在(0,1)内可导,证明:至少存在一点 $\xi \in (0,1)$,使 $f'(\xi) = 2\xi[f(1) - f(0)]$.

证 分析: 结论可变形为

$$\left. \frac{f(1) - f(0)}{1 - 0} = \frac{f'(\xi)}{2\xi} = \frac{f'(x)}{(x^2)'} \right|_{x = \xi}.$$

设 $g(x) = x^2$, 则 f(x), g(x) 在[0,1]上满足柯西中值定理的条件,

: 在(0,1)内至少存在一点 ξ ,有

$$\frac{f(1)-f(0)}{1-0} = \frac{f'(\xi)}{2\xi}, \quad \text{If } f'(\xi) = 2\xi[f(1)-f(0)].$$

第5.2节 泰勒公式

一、泰勒公式的建立

二、几个初等函数的麦克劳林公式

三、泰勒公式的应用

一、泰勒公式的建立

1. 问题的提出

x 的一次多项式

在微分应用中已知近似公式: $f(x) \approx f(x_0) + f'(x_0)(x - x_0)$ 特点: $\begin{cases} p_1(x_0) = f(x_0) \\ p'_1(x_0) = f'(x_0) \end{cases}$ $p_1(x)$

不足: 精度不高,误差不能估计.

问题: (1)寻找函数p(x), 使得 $f(x) \approx p(x)$.

(2)误差R(x) = f(x) - p(x)可估计.

2.p(x) 的确定

设函数f(x)在 x_0 处具有n阶导数, p(x)为如下多项式函数: $p_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n$ 误差 $R(x) = f(x) - p_n(x)$.

子 近似程度越来越好

- 1. 若在 x_0 点相交 $p_n(x_0) = f(x_0)$
- 2.若有相同的切线 $p'_n(x_0) = f'(x_0)$
- 3.若弯曲方向相同 $p_n''(x_0) = f''(x_0)$

要求
$$p_n^{(k)}(x_0) = f^{(k)}(x_0)$$
 $k = 0,1,2,\dots,n$. 则

$$p(x_0) = f(x_0) \qquad \longrightarrow \quad a_0 = f(x_0)$$

$$p'_n(x_0) = f'(x_0)$$
 \longrightarrow $1 \cdot a_1 = f'(x_0)$

$$p_n''(x_0) = f''(x_0)$$
 \longrightarrow $2! \cdot a_2 = f''(x_0)$

$$p_n'''(x_0) = f'''(x_0)$$
 \longrightarrow $3! \cdot a_3 = f'''(x_0)$

$$p_n^{(n)}(x_0) = f^{(n)}(x_0) \longrightarrow n! a_n = f^{(n)}(x_0)$$

$$p_n^{(n)}(x_0) = f^{(n)}(x_0) \longrightarrow n! \, a_n = f^{(n)}(x_0)$$

$$a_k = \frac{1}{k!} f^{(k)}(x_0)$$

$$(k = 0,1,2,\cdots,n)$$

$$\therefore p_n(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

3. 泰勒中值定理

泰勒中值定理1

如果函数f(x)在 x_0 处具有n阶导数,则存在 x_0 的

一个邻域,对于该邻域内的任一x,有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + o((x - x_0)^n).$$

其中 $R_n(x) = o((x - x_0)^n)$ 称为佩亚诺(Peano)余项.

① 式称为函数f(x)在 x_0 处的带有佩亚诺余项的n阶泰勒公式.

(或按 $(x-x_0)$ 的幂展开)

证 令 $R_n(x) = f(x) - p_n(x)$ (称为余项),则有

$$R_n(x_0) = R'_n(x_0) = \dots = R_n^{(n)}(x_0) = 0$$
 使用洛必达法则

$$\lim_{x \to x_0} \frac{R_n(x)}{(x - x_0)^n} = \lim_{x \to x_0} \frac{R'_n(x)}{n(x - x_0)^{n-1}} = \lim_{x \to x_0} \frac{R''_n(x)}{n(n-1)(x - x_0)^{n-2}}$$

$$= \dots = \lim_{x \to x_0} \frac{R_n^{(n-1)}(x)}{n! (x - x_0)} = \frac{1}{n!} \lim_{x \to x_0} \frac{R_n^{(n-1)}(x) - R_n^{(n-1)}(x_0)}{x - x_0}$$

$$= \frac{1}{n!} R_n^{(n)}(x_0) = 0.$$

即
$$R_n(x) = o((x - x_0)^n)$$
 $(x \to x_0)$. 证毕

泰勒中值定理2 如果函数f(x)在 x_0 的某个邻域 $U(x_0)$ 内处具有 (n+1)阶

导数,则对任 $-x \in U(x_0)$,有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

+
$$\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$$
, $(\xi \pm x_0 = x \ge 1)$

其中
$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$
称为拉格朗日(Lagrange)余项.

② 式称为函数f(x)在 x_0 处的带有拉格朗日余项的n阶泰勒公式.

(或按
$$(x-x_0)$$
的幂展开)

 \mathbf{r} 令 $R_n(x) = f(x) - p_n(x)$ (称为余项),则有

$$R_n(x_0) = R'_n(x_0) = \dots = R_n^{(n)}(x_0) = 0$$
 使用柯西准则

$$\frac{R_n(x)}{(x-x_0)^{n+1}} = \frac{R_n(x) - R_n(x_0)}{(x-x_0)^{n+1}} = \frac{R'_n(\xi_1)}{(n+1)(\xi_1 - x_0)^n} (\xi_1 \pm x_0 + x_0)$$

$$= \frac{R'_n(\xi_1) - R'_n(x_0)}{(n+1)(\xi_1 - x_0)^n - 0} = \frac{R''_n(\xi_2)}{(n+1)n(\xi_2 - x_0)^{n-1}} (\xi_2 \pm x_0 + \xi_1 + i)$$

= ...

$$=\frac{R_n^{(n)}(\xi_n)-R_n^{(n)}(x_0)}{(n+1)\cdots 2(\xi_n-x_0)-0}=\frac{R_n^{(n+1)}(\xi)}{(n+1)!}(\xi \pm x_0 \pm x \ge 0)$$

即
$$\frac{R_n(x)}{(x-x_0)^{n+1}} = \frac{R_n^{(n+1)}(\xi)}{(n+1)!} (\xi 在 x_0 与 x 之间)$$

$$\Rightarrow p_n^{(n+1)}(x) = 0, \Rightarrow R_n^{(n+1)}(x) = f^{(n+1)}(x)$$

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1} (\xi 在 x_0 与 x 之间)$$
 证毕

特别地, 对固定的n, 当 $x \in U(x_0)$ 时, $|f^{(n+1)}(x)| \leq M$, 则有估计式

$$|R_n(x)| \le \frac{M}{(n+1)!} |x - x_0|^{n+1}$$

(1)
$$p_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

称为函数f(x)在 x_0 处(或按($x-x_0$)的幂展开)的n次泰勒多项式.

(2)
$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + R_n(x) \approx p_n(x)$$

- ■佩亚诺余项 $R_n(x) = o((x x_0)^n)$ 不能具体估算出误差的大小.
- ■拉格朗日余项 $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x x_0)^{n+1}$ 给出了误差估计式:
- ■当 $x \in U(x_0)$, $|f^{(n+1)}(x)| \le M$ 时, 有 $|R_n(x)| \le \frac{M}{(n+1)!} |x x_0|^{n+1}$.

例如: 当n = 1 时,

佩亚诺余项的泰勒公式为

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + o(x - x_0)$$
即为微分定义式

拉格朗日余项的泰勒公式为

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(\xi)}{2!}(x - x_0)^2, \xi \pm x_0 = x \ge 0$$

可见
$$\Delta y = f(x) - f(x_0) \approx f'(x_0)(x - x_0) = dy$$

产生的误差为
$$|R_1(x)| = \left| \frac{f''(\xi)}{2!} (x - x_0)^2 \right|$$
, $\xi \, \text{在} x_0 = 5x$ 之间.

(3)当n=0时,拉格朗日余项的泰勒公式变成拉格朗日中值公式

$$f(x) = f(x_0) + f'(\xi)(x - x_0)$$
 ($\xi \pm x_0 = 5x$)

$$(4)$$
若取 $x_0 = 0$, $\xi = \theta x$ $(0 < \theta < 1)$,则得到

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1}$$

$$(0 < \theta < 1)$$

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n)$$

称为麦克劳林(Maclaurin)公式.

二、几个初等函数的麦克劳林公式

例1 求 $f(x) = e^x$ 的 n 阶 麦 克 劳 林 公 式 .

$$f'(x) = f''(x) = \cdots = f^{(n)}(x) = e^x$$

$$f(0) = f'(0) = f''(0) = \dots = f^{(n)}(0) = 1.$$

注意到
$$f^{(n+1)}(\theta x) = e^{\theta x}$$
, 代入公式,得

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \frac{e^{\theta x}}{(n+1)!} x^{n+1}$$
 (0 < \theta < 1).

求 $f(x) = \sin x$ 的n阶麦克劳林公式.

$$f^{(k)}(x) = \sin\left(x + \frac{k\pi}{2}\right), \quad k = 1, 2, 3, \dots$$

$$f^{(k)}(0) = \sin\frac{k\pi}{2} = \begin{cases} 0, & k = 2m, \\ (-1)^{m-1}, & k = 2m - 1, \end{cases} \quad m = 1, 2, 3, \dots$$

$$\therefore \sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^{m-1} \frac{x^{2m-1}}{(2m-1)!} + R_{2m}(x)$$

其中

$$R_{2m}(x) = \frac{\sin[\theta x + (2m+1)\frac{\pi}{2}]}{(2m+1)!} x^{2m+1} = \frac{(-1)^m \cos(\theta x)}{(2m+1)!} x^{2m+1},$$

$$(0 < \theta < 1)$$

求 $f(x) = \cos x$ 的n阶麦克劳林公式.

答案

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^m \frac{x^{2m}}{(2m)!} + (-1)^{m+1} \frac{\cos(\theta x)}{(2m+2)!} x^{2m+2},$$

$$(0 < \theta < 1)$$

例3 求 $f(x) = \ln(1+x)$ 的n阶麦克劳林公式.

$$f^{(k)}(x) = (-1)^{k-1} \frac{(k-1)!}{(1+x)^k}, \quad k = 1,2,3,\dots$$

$$f^{(k)}(0) = (-1)^{k-1}(k-1)!, \quad k = 1,2,3,\dots$$

$$\therefore \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + R_n(x)$$

其中
$$R_n(x) = \frac{(-1)^n}{n+1} \frac{x^{n+1}}{(1+\theta x)^{n+1}}, (0 < \theta < 1)$$

例4 求 $f(x) = (1+x)^{\alpha} (x > -1)$ 的n阶麦克劳林公式.

解

$$f^{(k)}(x) = \alpha(\alpha - 1) \cdots (\alpha - k + 1)(1 + x)^{\alpha - k},$$

$$f^{(k)}(0) = \alpha(\alpha - 1) \cdots (\alpha - k + 1), \quad k = 1, 2, 3, \cdots$$

$$\therefore (1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3 + \dots +$$

$$\frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-n+1)}{n!}x^n+R_n(x),$$

其中
$$R_n(x) = \frac{\alpha(\alpha-1)\cdots(\alpha-n)}{(n+1)!} (1+\theta x)^{\alpha-n-1} x^{n+1}, (0<\theta<1)$$

常用函数的麦克劳林公式(如下仅列出带佩亚诺余项的)

(1)
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n)$$

(2)
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+2})$$

(3)
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n})$$

(4)
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^n \frac{x^{n+1}}{n+1} + o(x^{n+1})$$

$$(5) (1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} x^n + o(x^n)$$

三、泰勒公式和麦克劳林公式的应用举例

1. 利用泰勒公式求极限

例5
$$\lim_{x\to 0} \frac{1+\frac{1}{2}x^2-\sqrt{1+x^2}}{(\cos x-e^{x^2})\sin x^2} \left(\frac{0}{0}\right)$$
用洛必达法则不方便用带佩亚诺余项的泰勒公式

解 原式 =
$$\lim_{x \to 0} \frac{1 + \frac{1}{2}x^2 - [1 + \frac{1}{2!}x^2 - \frac{3}{4!}x^4 + o(x^4)]}{[(1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 + o(x^4)) - (1 + x^2 + \frac{1}{2!}x^4 + o(x^4))]x^2}$$

$$= \lim_{x \to 0} \frac{\frac{3}{4!}x^4 + o(x^4)}{-\frac{3}{2}x^4 - \frac{11}{24}x^6 + x^2 \cdot o(x^4)} = \lim_{x \to 0} \frac{\frac{3}{4!} + \frac{o(x^4)}{x^4}}{-\frac{3}{2} - \frac{11}{24}x^2 + \frac{o(x^4)}{x^2}} = \frac{\frac{3}{4!}}{-\frac{3}{2}} = -\frac{1}{12}$$

2.利用泰勒公式证明不等式

例6 证明
$$\sqrt{1+x} > 1 + \frac{x}{2} - \frac{x^2}{8}$$
 $(x > 0)$.

$$=1+\frac{x}{2}+\frac{1}{2!}\cdot\frac{1}{2}(\frac{1}{2}-1)x^2+\frac{1}{3!}\cdot\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)(1+\theta x)^{-\frac{5}{2}}x^3$$

$$=1+\frac{x}{2}-\frac{x^2}{8}+\frac{1}{16}(1+\theta x)^{-\frac{5}{2}}x^3 \ (0<\theta<1)$$

$$\therefore \sqrt{1+x} > 1 + \frac{x}{2} - \frac{x^2}{8} \quad (x > 0)$$

3. 在近似计算中的应用

$$f(x) \approx f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n$$

误差
$$|R_n(x)| \le \frac{M}{(n+1)!} |x|^{n+1}$$
,

其中M为 $|f^{(n+1)}(x)|$ 在包含0,x的某区间上的上界.

需解问题的类型:

- (1) 已知 x 和误差限, 要求确定项数n;
- (2) 已知项数 n 和 x, 计算近似值并估计误差;
- (3) 已知项数 n 和误差限, 确定公式中 x 的适用范围.

例7 计算无理数e的近似值,使误差不超过10-6.

$$\mathbf{\hat{p}} \qquad : \quad e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \frac{e^{\theta x}}{(n+1)!} x^{n+1} \quad (0 < \theta < 1)$$

$$\therefore e = 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!} + \frac{e^{\theta}}{(n+1)!} \quad (0 < \theta < 1)$$

$$0 < e^{\theta} < e < 3, : |R_n(1)| < \frac{3}{(n+1)!}$$

于是由
$$|R_n(1)| < \frac{3}{(n+1)!} < 10^{-6}$$
,解得 $n \ge 9$.

$$\therefore$$
 e $\approx 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{9!} = 2.718281.$