AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims

1. (Currently Amended) A method of treating or preventing demyelination in a subject, comprising the step of administering to a subject in need of such treatment an effective amount of at least one sterol absorption inhibitor or a pharmaceutically acceptable salt or solvate thereof, wherein the at least one sterol absorption inhibitor is selected from the group consisting of sterol absorption inhibitors represented by the following Formulae:

$$Ar^{1}-X_{m}-(C)_{q}-Y_{n}-(C)_{r}-Z_{p}$$

$$Ar^{3}$$

$$R^{1}$$

$$R^{3}$$

$$Ar^{2}$$

$$Ar^{2}$$

$$Ar^{2}$$

$$Ar^{2}$$

$$Ar^{2}$$

$$Ar^{2}$$

$$Ar^{2}$$

or a pharmaceutically acceptable salt thereof or a solvate thereof, wherein:

Ar and Ar are independently selected from the group consisting of aryl and R substituted aryl;

Ar³ is aryl or R⁵-substituted aryl:

X, Y and Z are independently selected from the group consisting of -CH₂-, -CH(lower alkyl)- and -C(dilower alkyl)-;

R and R² are independently selected from the group consisting of -OR⁶, -O(CO)R⁶, -O(CO)OR⁹ and -O(CO)NR⁶R⁷;

R¹ and R³ are independently selected from the group consisting of hydrogen, lower alkyl and aryl;

q is 0 or 1;

r is 0 or 1;

m, n and p are independently selected from 0, 1, 2, 3 or 4; provided that at least one of q and r is 1, and the sum of m, n, p, q and r is 1, 2, 3, 4, 5 or 6; and provided that when p is 0 and r is 1, the sum of m, q and n is 1, 2, 3, 4 or 5;

 R^4 is 1-5 substituents independently selected from the group consisting of lower alkyl, $-OR^6$, $-O(CO)R^6$, $-O(CO)OR^9$, $-O(CH_2)_{1-5}OR^6$, $-O(CO)NR^6R^7$, $-NR^6(CO)R^7$, $-NR^6(CO)R^7$, $-NR^6(CO)R^9$, $-NR^6(CO)NR^7R^8$, $-NR^6SO_2R^9$, $-COOR^6$, $-CONR^6R^7$, $-COR^6$, $-SO_2NR^6R^7$, $S(O)_{0-2}R^9$, $-O(CH_2)_{1-10}$ - $-COOR^6$, $-O(CH_2)_{1-10}CONR^6R^7$, $-(lower alkylene)COOR^6$, $-CH=CH-COOR^6$, $-CF_3$, -CN, $-NO_2$ and halogen;

 R^{5} is 1-5 substituents independently selected from the group consisting of $-OR^{6}$, $-O(CO)R^{6}$, $-O(CO)OR^{9}$, $-O(CH_{2})_{1-5}OR^{6}$, $-O(CO)NR^{6}R^{7}$, $-NR^{6}R^{7}$, $-NR^{6}(CO)R^{7}$, $-NR^{6}(CO)OR^{9}$, $-NR^{6}(CO)NR^{7}R^{8}$, $-NR^{6}SO_{2}R^{9}$, $-COOR^{6}$, $-CONR^{6}R^{7}$, $-COR^{6}$, $-SO_{2}NR^{6}R^{7}$, $S(O)_{0-2}R^{9}$, $-O(CH_{2})_{1-10}$ - $-COOR^{6}$, $-O(CH_{2})_{1-10}CONR^{6}R^{7}$, $-(Iower alkylene)COOR^{6}$ and $-CH=CH-COOR^{6}$;

 R^6 , R^7 and R^8 are independently selected from the group consisting of hydrogen, lower alkyl, aryl and aryl-substituted lower alkyl; and

R⁹ is lower alkyl, aryl or aryl-substituted lower alkyl;

(b) Formula (III):

$$Ar^{1}-A-Y = \begin{pmatrix} R^{1} \\ C-Z_{p} \\ R^{2} \end{pmatrix} Ar^{3}$$

$$Ar^{2}$$

(III)

or a pharmaceutically acceptable salt thereof or a solvate thereof, wherein, in Formula (III) above:

Ar¹-is-R³-substituted aryl;

Ar is R substituted aryl;

Ar is R substituted aryl;

Y and Z are independently selected from the group consisting of CH₂,
-CH(lower alkyl) and C(dilower alkyl);

A is selected from O, S, S(O) or S(O)₂;

 R^{4} is selected from the group consisting of $-OR^{6}$, $-O(CO)R^{6}$, $-O(CO)OR^{9}$ and $-O(CO)NR^{6}R^{7}$; R^{2} is selected from the group consisting of hydrogen, lower alkyl and aryl; or R^{4} and R^{2} together are -O;

q is 1, 2 or 3;

p is 0, 1, 2, 3 or 4;

 R^{5} is 1–3 substituents independently selected from the group consisting of $-OR^{6}$, $-O(CO)R^{6}$, $-O(CO)OR^{9}$, $-O(CH_{2})_{1-5}OR^{9}$, $-O(CO)NR^{6}R^{7}$, $-NR^{6}R^{7}$, $-NR^{6}(CO)R^{7}$; $-NR^{6}(CO)OR^{9}$, $-NR^{6}(CO)NR^{7}R^{8}$, $-NR^{6}SO_{2}$ lower alkyl, $-NR^{6}SO_{2}$ aryl, $-CONR^{6}R^{7}$, $-COR^{6}$, $-SO_{2}NR^{6}R^{7}$, $-SO_{2}OR^{6}R^{7}$, $-SO_{2}OR^{6}R^{7$

R³ and R⁴ are independently 1-3 substituents independently selected from the group consisting of R⁵, hydrogen, p-lower alkyl, aryl, NO₂, CF₃ and p-halogeno;

R⁶, R⁷ and R⁸ are independently selected from the group consisting of hydrogen, lower alkyl, aryl and aryl substituted lower alkyl; and

R -is lower alkyl, aryl or aryl-substituted lower alkyl;

(c) Formula (IV):

$$Ar^{1}-R^{1}-Q$$

$$0$$

$$Ar^{2}$$

or a pharmaceutically acceptable salt thereof or a solvate thereof, wherein, in Formula (IV) above:

A is selected from the group consisting of R²-substituted heterocycloalkyl, R²-substituted heterocycloalkyl, and R²-substituted benzofused heterocycloalkyl, and R²-substituted benzofused heterocycloalkyl;

Ar is aryl or R substituted aryl;

Ar is aryl or R substituted aryl;

Q is a bond or, with the 3-position ring carbon of the azetidinone, forms the spiro

$$\frac{R^{5} - (R^{6})_{a}}{(R^{7})_{b}} = \frac{R^{5} - (R^{6})_{a}}{R^{5} - (R^{6})_{a}}$$

R⁺ is selected from the group consisting of:

 $------(CH_2)_q$, wherein q is 2–6, provided that when Q forms a spiro ring, q can also be zero or 1;

 $\frac{(CH_2)_e - G - (CH_2)_r}{-S(O)_{0.2} -, e \text{ is } 0.5 \text{ and } r \text{ is } 0.5, \text{ provided that the sum of e and } r \text{ is } 1.6;}$

----(C2-C6-alkenylene); and

form a CH=CH- or a CH=C(C₁-C₆ alkyl)- group;

----R is selected from:

 $R^{6} \text{ and } R^{7} \text{ are independently selected from the group consisting of } \\ -CH_{2} \text{ , } -CH(C_{1} - C_{6} \text{ alkyl}) \text{ , } -C(\text{di }(C_{1} - C_{6}) \text{ alkyl}), -CH=CH-\text{ and } \\ -C(C_{1} - C_{6} \text{ alkyl})=CH-; \text{ or } R^{5} \text{ together with an adjacent } R^{6}, \text{ or } R^{5} \text{ together with an adjacent } R^{7},$

a and b are independently 0, 1, 2 or 3, provided both are not zero; provided that when R^6 is CH=CH-or-C(C_1 - C_6 -alkyl)=CH, a is 1; provided that when R^7 -is K80679.DOC

-CH=CH or $-C(C_1-C_6)$ alkyl)=CH-, b is 1; provided that when a is 2 or 3, the R^6 's can be the same or different; and provided that when b is 2 or 3, the R^7 's can be the same or different; and when Q is a bond, R^4 -also can be selected from:

where M is O, S, S(O) or $S(O)_2$;

X, Y and Z are independently selected from the group consisting of -CH₂-, -CH(C₁-C₆ alkyl) and -C(di-(C₁-C₆) alkyl);

 $R^{\frac{10}{4}} - and \ R^{\frac{12}{4}} - are \ independently \ selected \ from \ the \ group \ consisting \ of \ -OR^{\frac{14}{4}} - O(CO)R^{\frac{16}{4}} - and - O(CO)NR^{\frac{14}{4}}R^{\frac{15}{5}};$

 R^{11} -and R^{13} -are independently selected from the group consisting of hydrogen, (C₁-C₆)alkyl and aryl; or R^{10} -and R^{11} -together are =0, or R^{12} -and R^{13} -together are =0;

d is 1, 2 or 3;

h is 0, 1, 2, 3 or 4;

s is 0 or 1; t is 0 or 1; m, n and p are independently 0-4; provided that at least one of s and t is 1, and the sum of m, n, p, s and t is 1-6; provided that when p is 0 and t is 1, the sum of m, s and n is 1-5; and provided that when p is 0 and s is 1, the sum of m, t and n is 1-5;

v is 0 or 1;

i and k are independently 1-5, provided that the sum of j, k and v is 1-5;

R² is 1-3 substituents on the ring carbon atoms selected from the group consisting of hydrogen, (C₁-C₁₀)alkyl, (C₂-C₁₀)alkenyl, (C₂-C₁₀)alkynyl,

 $(C_3-C_6) eyeloalkyl, (C_3-C_6) eyeloalkenyl, R^{17}-substituted aryl, R^{17}-substituted benzyl, R^{17}-substituted benzyl, R^{17}-substituted benzyloxy, R^{17}-substituted aryloxy, halogeno, NR^{14}R^{15}, RR^{14}R^{15}(C_1-C_6-alkylene), NR^{14}R^{15}(C_1-C_6-alkylene), NR^{14}R^{15}(C_1-C_6$

heterocycloalkyl ring, R^2 is as defined, or is =0 or ; and, where R^2 is a substituent on a substitutable ring nitrogen, it is hydrogen, (C_1-C_6) alkyl, aryl, (C_1-C_6) alkoxy, aryloxy, (C_1-C_6) alkylcarbonyl, arylcarbonyl, hydroxy, $(CH_2)_{1.6}$ CONR ¹⁸ R^{18} ;

wherein J is O, NH, NR 18 or CH₂;

R³-and R⁴-are independently selected from the group consisting of 1-3 substituents independently selected from the group consisting of (C₁-C₆)alkyl,

R is hydrogen, (C₁-C₆)alkyl, aryl (C₁-C₆)alkyl, C(O)R id-or-COOR ;

 R^{9} -and R^{17} -are independently 1–3 groups independently selected from the group consisting of hydrogen, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, -COOH, NO_2 ,

-NR¹⁴R¹⁵, OH and halogeno;

 R^{44} -and R^{45} -are independently selected from the group consisting of hydrogen, (C_4 - C_6)alkyl, aryl and aryl-substituted (C_4 - C_6)alkyl;

R⁴⁶ is (C₁-C₆)alkyl, aryl or R¹⁷-substituted aryl;

R is hydrogen or (C₁-C₆)alkyl; and

R¹⁹ is hydrogen, hydroxy or (C₁-C₆)alkoxy;

(d) Formula (V):

$$\begin{array}{c|c}
R \\
Ar^{1} \\
X_{m} \\
R^{1}
\end{array}$$

$$\begin{array}{c}
R \\
Y_{n}
\end{array}$$

$$\begin{array}{c}
Ar^{2} \\
N \\
Ar^{3}
\end{array}$$

$$\begin{array}{c}
(V)
\end{array}$$

or a pharmaceutically acceptable salt thereof or a solvate thereof, wherein, in Formula (V) above:

Ar -is aryl, R -substituted aryl or heteroaryl;

Ar is aryl or R -substituted aryl;

Ar is aryl or R -substituted aryl;

X and Y are independently selected from the group consisting of CH₂-,
-CH(lower alkyl) and C(dilower alkyl):

R is OR⁶, O(CO)R⁶, O(CO)OR⁹ or O(CO)NR⁶R⁷; R¹ is hydrogen, lower alkyl or aryl; or R and R¹ together are =0;

q is 0 or 1;

r is 0, 1 or 2;

m and n are independently 0, 1, 2, 3, 4 or 5; provided that the sum of m, n and q is 1, 2, 3, 4 or 5;

 $R^{4} \text{ is } 1\text{-}5 \text{ substituents independently selected from the group consisting of lower alkyl,} \\ -OR^{6}, -O(CO)R^{6}, -O(CO)OR^{9}, -O(CH_{2})_{1\text{-}5}OR^{6}, -O(CO)NR^{6}R^{7}, \\ -NR^{6}R^{7}, -NR^{6}(CO)R^{7}, -NR^{6}(CO)OR^{9}, -NR^{6}(CO)NR^{7}R^{8}, -NR^{6}SO_{2}R^{9}, -COOR^{6}, \\ -CONR^{6}R^{7}, -COR^{6}, -SO_{2}NR^{6}R^{7}, S(O)_{0\text{-}2}R^{9}, -O(CH_{2})_{1\text{-}10}\text{-}COOR^{6}, \\ -O(CH_{2})_{1\text{-}10}CONR^{6}R^{7}, -(lower alkylene)COOR^{6} \text{ and } -CH\text{-}CH\text{-}COOR^{6}; \\ \end{array}$

 $R^{\frac{5}{3}} = 1-5 \text{ substituents independently selected from the group consisting of } \\ -OR^{\frac{6}{3}}, -O(CO)R^{\frac{6}{3}}, -O(CO)OR^{\frac{9}{3}}, -O(CH_2)_{1-5}OR^{\frac{6}{3}}, -O(CO)NR^{\frac{6}{3}}R^{\frac{7}{3}}, -NR^{\frac{6}{3}}R^{\frac{7}{3}}, -NR^{\frac{6}{3}}(CO)R^{\frac{7}{3}}, \\ -NR^{\frac{6}{3}}(CO)OR^{\frac{9}{3}}, -NR^{\frac{6}{3}}(CO)NR^{\frac{7}{3}}R^{\frac{8}{3}}, -NR^{\frac{6}{3}}SO_2R^{\frac{9}{3}}, -COOR^{\frac{6}{3}}R^{\frac{7}{3}}, -COR^{\frac{6}{3}}R^{\frac{7}{3}}, -COR^{\frac{6}{3}}R^{\frac{7}{3}}, -COR^{\frac{6}{3}}R^{\frac{7}{3}}, -COR^{\frac{6}{3}}R^{\frac{7$

R⁶, R⁷-and R⁸-are independently selected from the group consisting of hydrogen, lower alkyl, aryl and aryl-substituted lower alkyl;

R is lower alkyl, aryl or aryl-substituted lower alkyl; and

 R^{10} -is-1-5 substituents independently selected from the group consisting of lower alkyl, OR^6 , $O(CO)R^6$, $O(CO)OR^9$, $O(CH_2)_{1-5}OR^6$, $O(CO)NR^6R^7$, $O(CO)NR^6R^7$, $O(CO)NR^6R^7$, $O(CO)NR^7$, O(

(e) Formula (VI):

$$R_4$$
 R_1
 R_2
 R_3
 R_{20}
 R_{21}
 R_{21}

or a pharmaceutically acceptable salt thereof or a solvate thereof, wherein:

$$R_{1-is}$$

$$-CH_{-}$$
, $-C(lower alkyl)_{-}$, $-CF_{-}$, $-C(OH)_{-}$, $-C(C_{6}H_{5})_{-}$, $-C(C_{6}H_{4}-R_{15})_{-}$, $-C(C_{6}H_{4}-R_{15})_{-}$, $-C(C_{6}H_{5})_{-}$, $-C(C_{6}H_{5}$

R2 and R3 are independently selected from the group consisting of:

-CH2-, CH(lower alkyl)-, C(di-lower alkyl)-, CH=CH- and C(lower alkyl)=CH; or
R1-together with an adjacent R2, or R1-together with an adjacent R3, form a

-CH=CH- or a -CH=C(lower alkyl)- group;

u and v are independently 0, 1, 2 or 3, provided both are not zero; provided that when R2 is -CH=CH or -C(lower alkyl)=CH , v is 1; provided that when R3 is -CH=CH- or -C(lower alkyl)=CH , u is 1; provided that when v is 2 or 3, the R2's can be the same or different; and provided that when u is 2 or 3, the R3's can be the same or different;

R4 is selected from B (CH₂)_mC(O), wherein m is 0, 1, 2, 3, 4 or 5;

 $B-(CH_2)_q$, wherein q is 0, 1, 2, 3, 4, 5 or 6;

B (CH₂)_e-Z (CH₂)_r, wherein Z is -O-, -C(O)-, phenylene, -N(R₈)- or -S(O)₀₋₂-, e is 0, 1, 2, 3, 4 or 5 and r is 0, 1, 2, 3, 4 or 5, provided that the sum of e and r is 0, 1, 2, 3, 4, 5 or 6; B (C₂-C₆-alkenylene):

B-(C4-C6-alkadienylene);

B (CH₂)_t-Z (C₂-C₆-alkenylene), wherein Z is as defined above, and wherein t is 0, 1, 2 or 3, provided that the sum of t and the number of carbon atoms in the alkenylene chain is 2, 3, 4, 5 or 6;

B (CH₂)_f V (CH₂)_g, wherein V is C₃-C₆-cycloalkylene, f is 1, 2, 3, 4 or 5 and g is 0, 1, 2, 3, 4 or 5, provided that the sum of f and g is 1, 2, 3, 4, 5 or 6; B (CH₂)_t V (C₂-C₆-alkenylene) or

B (C₂-C₆ alkenylene) V (CH₂)_t, wherein V and t are as defined above, provided that the sum of t and the number of carbon atoms in the alkenylene chain is 2, 3, 4, 5 or 6;

B (CH₂)_a-Z (CH₂)_b-V (CH₂)_d, wherein Z and V are as defined above and a, b and d are independently 0, 1, 2, 3, 4, 5 or 6, provided that the sum of a, b and d is 0, 1, 2, 3, 4, 5 or 6; or T (CH₂)_s, wherein T is cycloalkyl of 3–6 carbon atoms and s is 0, 1, 2, 3, 4, 5 or 6; or

R₁-and R₄-together form the group B-CH=C-;

B is selected from indanyl, indenyl, naphthyl, tetrahydronaphthyl, heteroaryl or W-substituted heteroaryl, wherein heteroaryl is selected from the group consisting of pyrrolyl, pyridinyl, pyrimidinyl, pyrazinyl, triazinyl, imidazolyl, thiazolyl, pyrazolyl, thienyl, oxazolyl and furanyl, and for nitrogen-containing heteroaryls, the N-oxides thereof, or

W is 1 to 3 substituents independently selected from the group consisting of lower alkyl, hydroxy lower alkyl, lower alkoxy, alkoxyalkyl, alkoxyalkoxy, alkoxyarbonylalkoxy, (lower alkoxyimino) lower alkyl, lower alkanedioyl, lower alkyl lower alkanedioyl, allyloxy, -CF3, OCF3, benzyl, R7-benzyl, benzyloxy,

R7-benzyloxy, phenoxy, R7-phenoxy, dioxolanyl, NO2, N(R8)(R9), N(R8)(R9)-lower alkylene, N(R8)(R9)-lower alkylenyloxy, OH, halogeno, CN, N3, NHC(O)OR10, NHC(O)R10, R11O2SNH, (R11O2S)2N, S(O)2NH2, S(O)0-2R8, tert-butyldimethyl-silyloxymethyl, C(O)R12, COOR19, CON(R8)(R9), CH=CHC(O)R12, lower alkylenyloxy), N(R8)(R9)C(O)(lower alkylenyloxy) and

and the substituents on the substituted heteroaryl ring nitrogen atoms, when present, are selected from the group consisting of lower alkyl, lower alkoxy, -C(O)OR₁₀, -C(O)R₁₀, OH, N(R₈)(R₉)-lower alkylene ,N(R₈)(R₉)-lower alkylenyloxy , -S(O)₂NH₂ and 2 (trimethylsilyl) ethoxymethyl;

R7 is 1-3 groups independently selected from the group consisting of lower alkyl, lower alkoxy, COOH, NO2, N(R8)(R9), OH, and halogeno;

Rs and Ro are independently selected from H or lower alkyl;
R10 is selected from lower alkyl, phenyl, R7-phenyl, benzyl or R7-benzyl;
R11 is selected from OH, lower alkyl, phenyl, benzyl, R7-phenyl or R7-benzyl;
R12 is selected from H, OH, alkoxy, phenoxy, benzyloxy;

R₁₃ is selected from O , CH₂ , NH , N(lower alkyl) or NC(O)R₁₉;

R₁₅, R₁₆ and R₁₇ are independently selected from the group consisting of H and the groups defined for W; or R₁₅ is hydrogen and R₁₆ and R₁₇, together with adjacent carbon atoms to which they are attached, form a dioxolanyl ring;

R₁₉ is H, lower alkyl, phenyl or phenyl lower alkyl; and

R20 and R21 are independently selected from the group consisting of phenyl, W-substituted phenyl, naphthyl, W-substituted naphthyl, indanyl, indenyl, tetrahydronaphthyl, benzodioxolyl, heteroaryl, W-substituted heteroaryl, benzofused heteroaryl, W-substituted benzofused heteroaryl and cyclopropyl, wherein heteroaryl is as defined above;

(f) Formula (VIIA) or (VIIB):

(VIIA)

 \mathbf{or}

(VIIB)

or a pharmaceutically acceptable salt or solvate thereof, wherein:

A is CH=CH,
$$-C=C-$$
 or $(CH_2)_p$ —wherein p is 0, 1 or 2;

B-is

$$R_1$$
 R_2
 R_3

B' is

D is -(CH₂)_mC(O) - or -(CH₂)_q - wherein m is 1, 2, 3 or 4 and q is 2, 3 or 4;

E is C₁₀ to C₂₀ alkyl or C(O) (C₉ to C₁₉) alkyl, wherein the alkyl is straight or branched, saturated or containing one or more double bonds;

R is hydrogen, C₁-C₁₅ alkyl, straight or branched, saturated or containing one or more double bonds, or B (CH₂)_r, wherein r is 0, 1, 2, or 3;

R₁, R₂, R₃, R₁, R₂, and R₃-are independently selected from the group consisting of hydrogen, lower alkyl, lower alkoxy, carboxy, NO₂, NH₂, OH, halogeno, lower alkylamino, dilower alkylamino, NHC(O)OR₅, R₆O₂SNH and S(O)₂NH₂;

R4-is

$$(OR_5)_n$$

wherein n is 0, 1, 2 or 3;

R5 is lower alkyl; and

R₆ is OH, lower alkyl, phenyl, benzyl or substituted phenyl wherein the substituents are 1-3 groups independently selected from the group consisting of lower alkyl, lower alkoxy, earboxy, NO₂, NH₂, OH, halogeno, lower alkylamino and dilower alkylamino;

(g) Formula (VIII):

$$Ar^{1}-R^{1}-Q$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

(VIII)

or a pharmaceutically acceptable salt thereof or a solvate thereof, wherein, in Formula (VIII) above,

- R^{26} is H or OG^{1} ;

——— G and G¹ are independently selected from the group consisting of

and
$$R^{4a}O$$
 CH_2R^b ; $R^{4a}O$ CH_2R^b ; $R^{4}O$ CH_2R^a

OH, G is not H;

 $R, R^a \text{ and } R^b \text{ are independently selected from the group consisting of H, OH,} \\ \text{halogeno, NH2, azido, } (C_1\text{-}C_6)\text{alkoxy}(C_1\text{-}C_6)\text{-alkoxy or W-}R^{30}; \\ \text{W is independently selected from the group consisting of NH-C(O) , O-C(O) , N(R^{31}) , NH-C(O)-N(R^{31}) - \text{and O-C(S)-N(R^{31})}; \\ \text{R}^2 \text{ and } R^6 \text{ are independently selected from the group consisting of H,} \\ \text{(C_1-C_6)alkyl, aryl and aryl(C_1-C_6)alkyl;} \\$

R³, R⁴, R⁵, R⁷, R^{3a} and R^{4a} are independently selected from the group consisting of H, (C₁-C₆)alkyl, aryl(C₁-C₆)alkyl, -C(O)(C₁-C₆)alkyl and

-C(O)aryl;

R³⁰ is selected from the group consisting of R³² substituted T,

R³² substituted T (C₁-C₆)alkyl, R³² substituted (C₂-C₄)alkenyl,

 R^{32} -substituted-(C1-C6)alkyl, R^{32} -substituted-(C3-C7)cycloalkyl and

 R^{32} -substituted (C3-C7)cycloalkyl(C1-C6)alkyl;

R³¹ is selected from the group consisting of H and (C₁-C₄)alkyl;

T is selected from the group consisting of phenyl, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, iosthiazolyl, benzothiazolyl, thiadiazolyl, pyrazolyl, imidazolyl and pyridyl;

R³² is independently selected from 1-3 substituents independently selected from the group consisting of halogeno, (C1-C4)alkyl, OH, phenoxy,

-CF3, -NO2, (C1-C4)alkoxy, methylenedioxy, oxo, (C1-C4)alkylsulfanyl,

(C1-C4)alkylsulfinyl, (C1-C4)alkylsulfonyl, N(CH3)2, C(O) NH(C1-C4)alkyl,

-C(O)-N((C1-C4)alkyl)2, -C(O)-(C1-C4)alkyl, -C(O)-(C1-C4)alkoxy and

pyrrolidinylcarbonyl; or R³² is a covalent bond and R³¹, the nitrogen to which it is attached and R³² form a pyrrolidinyl, piperidinyl, N-methyl-piperazinyl, indolinyl or morpholinyl group, or a (C₁-C₄)alkoxycarbonyl-substituted pyrrolidinyl, piperidinyl, N-methylpiperazinyl, indolinyl or morpholinyl group;

Ar¹ is arvl or R¹⁰ substituted arvl:

Ar² is aryl or R¹¹ substituted aryl;

Q is a bond or, with the 3-position ring carbon of the azetidinone,

$$\begin{array}{c|c}
 & R^{12} - (R^{13})_a \\
\hline
\text{forms the spiro group} & (R^{14})_b - & ; \text{ and}
\end{array}$$

R¹ is selected from the group consisting of

(CH₂)_q, wherein q is 2-6, provided that when Q forms a spiro ring, q can also be zero or 1;

 $(CH_2)_e$ E $(CH_2)_r$, wherein E is O, C(O), phenylene, NR^{22} or $-S(O)_{O-2}$, e is 0-5 and r is 0-5, provided that the sum of e and r is 1-6;

————(C2-C6)alkenylene; and

————(CH2)f V (CH2)g, wherein V is C3-C6-cycloalkylene, f is 1-5 and g is 0-5, provided that the sum of f and g is 1-6;

 $\frac{12}{1}$

 $m R^{13}$ and $\rm R^{14}$ are independently selected from the group consisting of -CH2 , -CH(C1-C6-alkyl) , -C(di (C1-C6) alkyl), -CH=CH-and

-C(C₁-C₆-alkyl)=CH-; or R¹² together with an adjacent R¹³, or R¹² together with an adjacent R¹⁴, form a -CH-CH or a -CH-C(C₁-C₆-alkyl) group;

a and b are independently 0, 1, 2 or 3, provided both are not zero;

provided that when R¹³ is -CH-CH- or -C(C₁-C₆ alkyl)-CH-, a is 1;

provided that when R^{14} is CH=CH or C(C1-C6-alkyl)=CH , b is 1; K80679.DOC

provided that when a is 2 or 3, the R¹³'s can be the same or different; and provided that when b is 2 or 3, the R¹⁴'s can be the same or different; and when Q is a bond, R¹ also can be:

M is O, S, S(O) or $S(O)_2$;

X, Y and Z are independently selected from the group consisting of CH₂-, -CH(C₁-C₆)alkyl-and-C(di-(C₁-C₆)alkyl);

R¹⁰ and R¹¹ are independently selected from the group consisting of 1-3 substituents independently selected from the group consisting of

 $(C_1-C_6)alkyl, OR^{19}, O(CO)R^{19}, O(CO)OR^{21}, O(CH_2)_{1-5}OR^{19},$

 $-O(CO)NR^{19}R^{20}$, $NR^{19}R^{20}$, $NR^{19}(CO)R^{20}$, $NR^{19}(CO)OR^{21}$,

 $-NR^{19}(CO)NR^{20}R^{25}$, $NR^{19}SO_2R^{21}$, $COOR^{19}$, $CONR^{19}R^{20}$, COR^{19} ,

 $-SO_2NR^{19}R^{20}$, $S(O)_{0-2}R^{21}$, $O(CH_2)_{1-10}$ - $COOR^{19}$, $O(CH_2)_{1-10}CONR^{19}R^{20}$, $(C_1-C_1)_{1-10}$

C6-alkylene)-COOR¹⁹, CH=CH-COOR¹⁹, CF3, CN, NO2 and halogen;

R¹⁵ and R¹⁷ are independently selected from the group consisting of OR¹⁹, O(CO)R¹⁹, O(CO)OR²¹ and O(CO)NR¹⁹R²⁰;

R¹⁶ and R¹⁸ are independently selected from the group consisting of H,

(C₁-C₆)alkyl and aryl; or R¹⁵ and R¹⁶ together are =0, or R¹⁷ and R¹⁸ together are =0;

d is 1, 2 or 3;

h is 0, 1, 2, 3 or 4;

s is 0 or 1; t is 0 or 1; m, n and p are independently 0-4;

provided that at least one of s and t is 1, and the sum of m, n, p, s and t is 1-6;

provided that when p is 0 and t is 1, the sum of m, s and n is 1-5; and provided that when p is 0 and s is 1, the sum of m, t and n is 1-5;

v is 0 or 1;

i and k are independently 1-5, provided that the sum of j, k and v is 1-5;

$$R_{j}^{15}$$
 $-X_{j}^{-1}(C)_{v}^{-1}-Y_{k}^{-1}S(O)_{0-2}$

and when Q is a bond and R¹ is , Ar¹ can also be pyridyl, isoxazolyl, furanyl, pyrrolyl, thienyl, imidazolyl, pyrazolyl, thiazolyl, pyrazinyl, pyrimidinyl or pyridazinyl;

R¹⁹-and R²⁰-are independently selected from the group consisting of H, (C₁-C₆)alkyl, aryl and aryl-substituted (C₁-C₆)alkyl;

R²¹ is (C₁-C₆)alkyl, aryl or R²⁴-substituted aryl;

R²³ and R²⁴ are independently 1-3 groups independently selected from the group consisting of H, (C₁-C₆)alkyl, (C₁-C₆)alkoxy, COOH, NO₂,

-NR¹⁹R²⁰, OH and halogeno; and

(h) Formula (IX):

$$Ar^1$$
 C Q R^{26} R^{26} R^{8} Q Ar^2 (IX)

or a pharmaceutically acceptable salt or solvate thereof, wherein in Formula (IX):

R¹ is selected from the group consisting of H, G, G¹, G², SO₃H and PO₃H;

G is selected from the group consisting of: H,

$$\begin{bmatrix} R^{5}O & OR^{4} & R^{5}O & OR^{4} & OR^{7} &$$

wherein R, R^a and R^b are each independently selected from the group consisting of H, OH, halo, NH₂, azido, (C₁-C₆)alkoxy(C₁-C₆)alkoxy or W-R³⁰;

W is independently selected from the group consisting of $\frac{-\text{NH-C(O)}}{-\text{NH-C(O)}} \frac{-\text{O-C(O)}}{-\text{O-C(S)}} \frac{-\text{N(R}^{31})}{-\text{O-C(S)}} \frac{-\text{N(R}^{31})}{-\text{N(R}^{31})} \frac{-\text{NH-C(O)}}{-\text{N(R}^{31})} \frac{-\text{NH-C(O)}}{-\text{N(R}^{31})} \frac{-\text{NH-C(O)}}{-\text{N(R}^{31})} \frac{-\text{NH-C(O)}}{-\text{N(R}^{31})} \frac{-\text{NH-C(O)}}{-\text{N(R}^{31})} \frac{-\text{NH-C(O)}}{-\text{N(R}^{31})} \frac{-\text{NH-C(O)}}{-\text{N(R}^{31})} \frac{-\text{NH-C(O)}}{-\text{N(R}^{31})} \frac{-\text{NH-C(O)}}{-\text{N(R}^{31})} \frac{-\text{NH-C(O)}}{-\text{N(O)}} \frac{-\text{N(R}^{31})}{-\text{N(O)}} \frac{-\text{N(R}^{31})}{-\text{N(O)}} \frac{-\text{N(R}^{31})}{-\text{N(O)}} \frac{-\text{N(O)}}{-\text{N(O)}} \frac{-\text{N(O)}}{-\text{N(O)}}$

R² and R⁶ are each independently selected from the group consisting of H, (C₁-C₆)alkyl, acetyl, aryl and aryl(C₁-C₆)alkyl;

R³, R⁴, R⁵, R⁷, R^{3a} and R^{4a} are each independently selected from the group consisting of H, (C₁-C₆)alkyl, acetyl, aryl(C₁-C₆)alkyl, -C(O)(C₁-C₆)alkyl and -C(O)aryl;

R³⁰-is independently selected from the group consisting of R³²-substituted T, R³²-substituted T (C₁-C₆)alkyl, R³²-substituted (C₂-C₄)alkenyl, R³²-substituted (C₃-C₇)eyeloalkyl and R³²-substituted (C₃-C₇)eyeloalkyl(C₁-C₆)alkyl; K80679.DOC

R³¹ is independently selected from the group consisting of H and (C₁-C₄)alkyl;

T is independently selected from the group consisting of phenyl, furyl, thienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, benzothiazolyl, thiadiazolyl, pyrazolyl, imidazolyl and pyridyl;

R³² is independently selected from 1-3 substituents which are each independently selected from the group consisting of H, halo, (C1-C4)alkyl, OH, phenoxy, -CF3, -NO2, (C1-C4)alkoxy, methylenedioxy, oxo, (C1-C4)alkylsulfanyl, (C1-C4)alkylsulfinyl, (C1-C4)a C4)alkylsulfonyl, N(CH3)2, C(O) NH(C1-C4)alkyl, C(O) N((C1-C4)alkyl)2, C(O) (C1-C4)alkyl, C(O)-(C1-C4)alkoxy and pyrrolidinylearbonyl; or R³² is a covalent bond and R³¹, the nitrogen to which it is attached and R³² form a pyrrolidinyl, piperidinyl, N methylpiperazinyl, indolinyl or morpholinyl group, or a (C1-C4)alkoxycarbonyl substituted pyrrolidinyl, piperidinyl, N-methylpiperazinyl, indolinyl or morpholinyl group;

G¹ is represented by the structure:

wherein R³³ is independently selected from the group consisting of unsubstituted alkyl, R³⁴substituted alkyl, (R35)(R36)alkyl,

R³⁴ is one to three substituents, each R³⁴ being independently selected from the group consisting of HOOC, HO, HS, (CH₃)S, H₂N, (NH₂)(NH)C(NH), (NH₂)C(O) and HOOCCH(NH₃⁺)CH₂SS-;

R³⁵-is independently selected from the group consisting of H and NH₂-;

R³⁶-is independently selected from the group consisting of H, unsubstituted alkyl, R³⁴-substituted alkyl, unsubstituted cycloalkyl and R³⁴-substituted cycloalkyl;

G² is represented by the structure:

wherein R³⁷ and R³⁸ are each independently selected from the group consisting of (C₁-C₆)alkyl and aryl;

R²⁶ is one to five substituents, each R²⁶ being independently selected from the group consisting of:

- a) H;
- b) OH;
- e) ——OCH3;
- d) fluorine;
- e) chlorine;
- f) O-G;
- g) O-G¹;
- i) SO₃H; and
- i) PO₃H;

provided that when R¹ is H, R²⁶ is not H, OH, OCH₃ or O-G;

Ar¹-is aryl, R¹⁰-substituted aryl, heteroaryl or R¹⁰-substituted heteroaryl;

Ar² is aryl, R¹¹-substituted aryl, heteroaryl or R¹¹-substituted heteroaryl;

L is selected from the group consisting of: K80679.DOC

a) a covalent bond;

b) $(CH_2)_q$, wherein q is 1-6;

-c) -(CH₂)_e-E-(CH₂)_r-, wherein E is O , C(O) , phenylene, NR²²- or -S(O)_{0.2}-, e is 0-5 and r is 0-5, provided that the sum of e and r is 1-6;

-d) (C_2-C_6) alkenylene-;

e) (CH₂)_f V (CH₂)_g, wherein V is C₃-C₆eyeloalkylene, f is 1-5 and g is 0-5, provided that the sum of f and g is 1-6; and

wherein M is O, S, S(O) or S(O)2;

X, Y and Z are each independently selected from the group consisting of —CH₂, -CH(C₁-C₆)alkyl- and -C(di-(C₁-C₆)alkyl);

R⁸ is selected from the group consisting of H and alkyl;

 $R^{10} \text{ and } R^{11} \text{ are each independently selected from the group consisting of } 1\text{-}3$ substituents which are each independently selected from the group consisting of (C1-C6)alkyl, $-OR^{19}$, $-O(CO)R^{19}$, $-O(CO)OR^{21}$, $-O(CH_2)_{1-5}OR^{19}$, $-O(CO)NR^{19}R^{20}$, $-O(CO)NR^{19}R^{20}$, $-O(CO)R^{20}$, $-O(CO)OR^{21}$, $-O(CO)OR^{21}$, $-O(CO)OR^{20}$, -O(

 R^{15} -and R^{17} -are each independently selected from the group consisting of K80679.DOC

$$-OR^{19}$$
, $-OC(O)R^{19}$, $-OC(O)OR^{21}$, $-OC(O)NR^{19}R^{20}$;

R¹⁶ and R¹⁸ are each independently selected from the group consisting of H, (C₁-C₆)alkyl and aryl;

or R¹⁵ and R¹⁶ together are =0, or R¹⁷ and R¹⁸ together are =0;

- d is 1, 2 or 3;

h is 0, 1, 2, 3 or 4;

s is 0 or 1;

<u>t is 0 or 1;</u>

m, n and p are each independently selected from 0-4;

provided that at least one of s and t is 1, and the sum of m, n, p, s and t is 1-6; provided that when p is 0 and t is 1, the sum of m, n and p is 1-5; and provided that when p is 0 and s is 1, the sum of m, t and n is 1-5;

---v is 0 or 1;

j and k are each independently 1-5, provided that the sum of j, k and v is 1-5;

Q is a bond, (CH2)q, wherein q is 1-6, or, with the 3-position ring carbon of the azetidinone, forms the spiro group

—— wherein R¹² is

R¹³ and R¹⁴ are each independently selected from the group consisting of

-CH₂-, CH(C₁-C₆-alkyl)-, C(di-(C₁-C₆) alkyl), CH=CH- and C(C₁-C₆-alkyl)=CH; or R¹²-together with an adjacent R¹³, or R¹²-together with an adjacent R¹⁴, form a -CH=CH- or a -CH=C(C₁-C₆-alkyl)-group;

a and b are each independently 0, 1, 2 or 3, provided both are not zero; provided that when R¹³ is CH=CH-or-C(C₁-C₆ alkyl)=CH, a is 1; provided that when R¹⁴ is CH=CH-or-C(C₁-C₆ alkyl)=CH, b is 1; provided that when a is 2 or 3, the R¹³'s can be the same or different; and provided that when b is 2 or 3, the R¹⁴'s can be the same or different;

and when O is a bond and L is

then Ar¹ can also be pyridyl, isoxazolyl, furanyl, pyrrolyl, thienyl, imidazolyl, pyrazolyl, thiazolyl, pyrazinyl, pyrimidinyl or pyridazinyl;

R¹⁹-and R²⁰-are each independently selected from the group consisting of H, (C₁-C₆)alkyl, aryl and aryl-substituted (C₁-C₆)alkyl;

R²¹-is (C₁-C₆)alkyl, aryl or R²⁴-substituted aryl;

R²³ and R²⁴ are each independently selected from the group consisting of 1–3 substituents which are each independently selected from the group consisting of H, (C1–C6)alkyl, (C1–C6)alkoxy, COOH, NO₂, NR¹⁹R²⁰, OH and halo; and

R²⁵ is H, OH or (C₁-C₆)alkoxy.

2. (Original) The method according to claim 1, wherein the at least one sterol absorption inhibitor is represented by Formula (I):

$$Ar^{1}-X_{m}-(C)_{q}-Y_{n}-(C)_{r}-Z_{p}$$

$$Ar^{3}$$

$$R^{1}$$

$$R^{3}$$

$$Ar^{2}$$

$$Ar^{2}$$

$$Ar^{2}$$

$$Ar^{2}$$

$$Ar^{2}$$

$$Ar^{2}$$

$$Ar^{2}$$

or a pharmaceutically acceptable salt thereof or a solvate thereof, wherein:

Ar and Ar are independently selected from the group consisting of aryl and R substituted aryl;

Ar³ is aryl or R⁵-substituted aryl;

X, Y and Z are independently selected from the group consisting of -CH2-, -CH(lower alkyl)- and -C(dilower alkyl)-;

R and R^2 are independently selected from the group consisting of $-OR^6$, $-O(CO)R^6$, $-O(CO)OR^9$ and $-O(CO)NR^6R^7$;

R¹ and R³ are independently selected from the group consisting of hydrogen, lower alkyl and aryl;

q is 0 or 1;

r is 0 or 1;

m, n and p are independently selected from 0, 1, 2, 3 or 4; provided that at least one of q and r is 1, and the sum of m, n, p, q and r is 1, 2, 3, 4, 5 or 6; and provided that when p is 0 and r is 1, the sum of m, q and n is 1, 2, 3, 4 or 5;

 R^4 is 1-5 substituents independently selected from the group consisting of lower alkyl, $-OR^6$, $-O(CO)R^6$, $-O(CO)OR^9$, $-O(CH_2)_{1-5}OR^6$, $-O(CO)NR^6R^7$,

-CONR 6 R 7 , -COR 6 , -SO₂NR 6 R 7 , S(O)₀₋₂R 9 , -O(CH₂)₁₋₁₀-COOR 6 , -O(CH₂)₁₋₁₀CONR 6 R 7 , -(lower alkylene)COOR 6 , -CH=CH-COOR 6 , -CF₃, -CN, -NO₂ and halogen;

 R^5 is 1-5 substituents independently selected from the group consisting of $-OR^6$, $-O(CO)R^6$, $-O(CO)OR^9$, $-O(CH_2)_{1-5}OR^6$, $-O(CO)NR^6R^7$, $-NR^6R^7$, $-NR^6(CO)R^7$, $-NR^6(CO)OR^9$, $-NR^6(CO)NR^7R^8$, $-NR^6SO_2R^9$, $-COOR^6$, $-CONR^6R^7$, $-COR^6$, $-SO_2NR^6R^7$, $S(O)_{0-2}R^9$, $-O(CH_2)_{1-10}$ - $-COOR^6$, $-O(CH_2)_{1-10}CONR^6R^7$, $-(lower alkylene)COOR^6$ and $-CH=CH-COOR^6$;

 R^6 , R^7 and R^8 are independently selected from the group consisting of hydrogen, lower alkyl, aryl and aryl-substituted lower alkyl; and

R⁹ is lower alkyl, aryl or aryl-substituted lower alkyl.

- 3-9. (Cancelled).
- 10. (Original) The method according to claim 1, wherein the at least one sterol absorption inhibitor is administered to a subject in an amount ranging from about 0.1 to about 1000 milligrams of sterol absorption inhibitor per day.
- 11. (Original) The method according to claim 1, further comprising the step of administering at least one antidemyelination agent to the subject.
- 12. (Original) The method according to claim 11, wherein the antidemyelination agent is selected from the group consisting of beta interferon, glatinamer acetate and corticosteroids.
- 13. (Original) The method according to claim 1, further comprising the step of administering at least one HMG CoA reductase inhibitor to the subject.
- 14. (Original) The method according to claim 13, wherein the at least one HMG CoA reductase inhibitor is atorvastatin.

 K80679.DOC

- 15. (Original) The method according to claim 13, wherein the at least one HMG CoA reductase inhibitor is simvastatin.
- 16. (Original) The method according to claim 1, wherein the subject has multiple sclerosis.
- 17. (Currently Amended) A method of treating or preventing demyelination in a subject is provided, comprising the step of administering to a subject in need of such treatment an effective amount of at least one sterol absorption inhibitor represented by Formula (II) below:

(II)

or a pharmaceutically acceptable salt or solvate thereof.

- 18. (Currently Amended) A method of treating or preventing multiple sclerosis in a subject, comprising the step of administering to a subject in need of such treatment an effective amount of at least one sterol absorption inhibitor or a pharmaceutically acceptable salt or solvate thereof.
 - 19. (Cancelled).
 - 20. (Cancelled).