线性代数(理科类)期末考试参考答案

2019年01月09日

本次考试中, $M_n(\mathbb{F})$ 为数域 \mathbb{F} 上 n 阶矩阵全体构成的线性空间; \mathbb{F}^n 为数域 \mathbb{F} 上 所有 n 阶列向量构成的线性空间; \mathbb{R} 为实数域, \mathbb{C} 为复数域; A^T 为 A 的转置; trA为 A 的主对角线元素之和; Col(A) 为 A 的列向量生成的子空间; N(A) 为 Ax = 0的解空间; I_n 为 n 阶单位阵.

第一部分: 填空题 (每空 4 分, 共 48 分)

- (1) 设 V_1 是列向量 $(1,0,-1,0)^T$, $(0,1,2,1)^T$ 和 $(2,1,0,1)^T$ 生成的 \mathbb{R}^4 的子空间, V_2 列是向量 $(-1,1,1,1)^T$, $(1,-1,-3,-1)^T$ 和 $(-1,1,-1,1)^T$ 生成的 \mathbb{R}^4 的子 空间,则 $\dim(V_1+V_2)=3$, $\dim(V_1\cap V_2)=1$.
- (2) 设 λ 是一个非零常数,考虑方程组 $\begin{cases} \lambda x_1 + x_2 + x_3 + x_4 = 1 \\ x_1 + \lambda x_2 + x_3 + x_4 = \lambda \\ x_1 + x_2 + \lambda x_3 + x_4 = \lambda^2 \\ x_1 + x_2 + x_3 + \lambda x_4 = \lambda^3 \end{cases}$ 当 $\lambda = 1$,此方程组有无穷解。此时,方程组的通解是
- (3) 设 $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix}$, 则 $M_4(\mathbb{R})$ 的子空间 $T(A) = \{B \in M_4(\mathbb{R}) \mid BA = AB\}$ 的维数是 ______。

 (4) 设 n 阶方阵 $A = \begin{pmatrix} I_r & B \\ 0 & -I_{n-r} \end{pmatrix}$, 则存在 n 阶可逆方阵 $P = \underline{\begin{pmatrix} I_r & -\frac{1}{2}B \\ O & I_{n-r} \end{pmatrix}}$ 和对角阵 $\Lambda = \underline{\begin{pmatrix} I_r & O \\ O & -I_{n-r} \end{pmatrix}}$, 使得 $P^{-1}AP = \Lambda$.
- (5) 定义 $M_2(\mathbb{R})$ 上的线性变换 φ 满足 $\varphi(A) = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} A \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$, 则 $\operatorname{Im}\varphi$ 的维 数是 2, $Ker\varphi$ 的维数是 2
- (6) 给定矩阵 $A \in M_2(\mathbb{R})$ 和 4 个非零向量 $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in \mathbb{R}^2$ 满足这 4 个向量 分别是 $Col(A^T)$, N(A), Col(A), $N(A^T)$ 的基。则这 4 个向量满足的关系是 $\alpha_1^T \alpha_2 = 0$, $\alpha_3^T \alpha_4 = 0$, 可能的 $A = c\alpha_3 \alpha_1^T$, $c \in \mathbb{R}$, $c \neq 0$.
- (7) 设 φ 是 n 维线性空间 V 上幂等变换,即 $\varphi^2 = \varphi$, φ 的秩为 r, 即 dim ${\rm Im} \varphi = r$. 设 $A \in \varphi$ 的一个表示矩阵,则 A 的对角线元素之和为 r .

第二部分: 计算、证明题(共 52 分)

- 1. (12 分) 考虑 $M_3(\mathbb{R})$ 的子空间 $V = \{A \in M_3(\mathbb{R}) \mid A^T = -A\}$, 对 $A, B \in V$, 规定 $(A, B) = \frac{1}{2} \operatorname{tr}(AB^T)$.
 - (a) 证明: (,) 是 V 上内积。
 - (b) 定义线性映射 $\sigma: \mathbb{R}^3 \to V$ 满足 $\sigma\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 & x_1 & x_2 \\ -x_1 & 0 & x_3 \\ -x_2 & -x_3 & 0 \end{pmatrix}$,取 \mathbb{R}^3 上的标准内积。证明 σ 是一个保积同构。并求 V 的一个标准正交甚。

Proof. (a) 按照定义逐条验证即可。

(b) 按书上定理 9.4.1(或者直接验证双射),只需验证 σ 保持内积就行了。对于任意两个 \mathbb{R}^3 中的向量 $x=\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}$ 和 $y=\begin{pmatrix}y_1\\y_2\\y_3\end{pmatrix}$,有

$$(x,y) = x_1y_1 + x_2y_2 + x_3y_3$$

另一方面有

$$(\sigma(x), \sigma(y)) = \frac{1}{2} \operatorname{tr} \begin{pmatrix} 0 & x_1 & x_2 \\ -x_1 & 0 & x_3 \\ -x_2 & -x_3 & 0 \end{pmatrix} \begin{pmatrix} 0 & -y_1 & -y_2 \\ y_1 & 0 & -y_3 \\ y_2 & y_3 & 0 \end{pmatrix} = x_1 y_1 + x_2 y_2 + x_3 y_3$$

所以保持内积。所以 σ 把 \mathbb{R}^3 中的标准正交基映为 V 中的标准正交基,例如 $\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$ 。 \square

2. (12 分) 设 $A = \begin{pmatrix} a & 1 & 1 & -1 \\ 1 & a & -1 & 1 \\ 1 & -1 & a & 1 \\ -1 & 1 & 1 & a \end{pmatrix}$, 且 A 有一个单特征值 -3 (即 -3 是 A

的代数重数为 1 的特征值)。求正交阵 P 和对角阵 D,使得 $P^{T}AP = D$.

Proof. 计算特征多项式:

$$|\lambda I_4 - A| = \begin{vmatrix} \lambda - a & -1 & -1 & 1\\ -1 & \lambda - a & 1 & -1\\ -1 & 1 & \lambda - a & -1\\ 1 & -1 & -1 & \lambda - a \end{vmatrix} = (\lambda - a - 1)^3 (\lambda - a + 3)$$

由于-3 的代数重数为 1, 所以 a-3=-3, 计算得 a=0。则特征值分别为 $\lambda_1=1$ (三重) 和 $\lambda_2=-3$ (一重)。计算属于 λ_2 的特征向量是 $\begin{pmatrix} 1\\-1\\-1 \end{pmatrix}$, 属于

$$\lambda_1 \text{ 的特征向量是} \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\-1\\2\\0 \end{pmatrix}, \begin{pmatrix} 1\\-1\\-1\\-1 \end{pmatrix} \text{。 因此可以令}$$

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{12}}\\ -\frac{1}{2} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{12}}\\ -\frac{1}{2} & 0 & \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{12}}\\ \frac{1}{2} & 0 & 0 & -\frac{3}{\sqrt{67}} \end{pmatrix}, D = \begin{pmatrix} -3 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

3. (10 分) 定义 $M_n(\mathbb{C})$ 上的线性变换 σ 如下:

$$\sigma \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n-1} & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n-1} & a_{2n} \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn-1} & a_{nn} \end{bmatrix} = \begin{bmatrix} a_{12} & a_{13} & \cdots & a_{1n} & a_{11} \\ a_{22} & a_{23} & \cdots & a_{2n} & a_{21} \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n2} & a_{n3} & \cdots & a_{nn} & a_{n1} \end{bmatrix},$$

- (a) 求 σ 的特征多项式。
- (b) 证明 σ 可对角化, 即 σ 在 $M_n(\mathbb{C})$ 的某组基下的表示矩阵为对角阵。

Proof. (a) σ 在基 $E_{11}, E_{12}, \dots, E_{1n}, E_{21}, E_{22}, \dots, E_{2n}, \dots, E_{n1}, E_{n2}, \dots, E_{nn}$ 下的表示矩阵是一个分块对角矩阵

$$\begin{pmatrix} A_1 & & & \\ & A_2 & & \\ & & \ddots & \\ & & & A_n \end{pmatrix}$$

每个分块都是

$$A_i = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

所以特征多项式为 $(\lambda^n - 1)^n$ 。

(b) 由于这个矩阵是酉矩阵,即特殊的复正规阵,所以一定可以对角化。(或者每个分块的特征多项式没有重根,因此可以对角化,所以合起来也可以对角化。)

4. (8 分) 设 σ 为欧式空间 V 的一个线性变换。若任取 V 中的两个非零向量 α, β , 总有 $\sigma(\alpha)$ 和 $\sigma(\beta)$ 为非零向量,且 α 与 β 的夹角等于 $\sigma\alpha$ 与 $\sigma\beta$ 的夹角,即

$$\frac{(\sigma(\alpha),\sigma(\beta))}{||\sigma(\alpha)||\ ||\sigma(\beta)||} = \frac{(\alpha,\beta)}{||\alpha||\ ||\beta||}$$

则称 σ 为保角变换. 证明: σ 为保角变换当且仅当 σ 为一个非零的实数与一个正交变换的乘积.

Proof. 充分性:直接验证即可。

证明必要性。取 V 的一组标准正交基 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 。则 $\sigma(\varepsilon_1), \sigma(\varepsilon_2), \dots, \sigma(\varepsilon_n)$ 仍然互相正交。只需证明 $||\sigma(\varepsilon_i)|| = ||\sigma(\varepsilon_j)||$ 。注意到 $(\varepsilon_i + \varepsilon_j, \varepsilon_i - \varepsilon_j) = 0$,所 以 $(\sigma(\varepsilon_i) + \sigma(\varepsilon_j), \sigma(\varepsilon_i) - \sigma(\varepsilon_j)) = 0$ 。因此得证。

5. (10 分) 设 $A, B, C \in M_n(\mathbb{C})$, 满足 C = AB - BA, AC = CA 且 BC = CB.

- (a) 证明 C 是幂零阵,即存在正整数 m 使得 C^m 为零矩阵。
- (b) 证明 A, B 和 C 可同时相似于上三角矩阵,即存在可逆阵 P, $P^{-1}AP$, $P^{-1}BP$ 和 $P^{-1}CP$ 均是上三角阵。
- (c) 如果去掉 BC = CB 这个条件, (a) 和 (b) 中结论还正确吗? 为什么?

Proof. (a) 由于 C 可上三角化,所以要证明其是幂零阵,当且仅当证明它的特征值都是零。下面这两种方法都可以使用:

法一:

$$C^{s} = C^{s-1}(AB - BA) = AC^{s-1}B - C^{s-1}BA$$

所以 $trC^s = 0$ 。

设 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是 C 的所有特征值,则

$$\lambda_1^s + \lambda_2^s + \dots + \lambda_n^s = 0$$

对于任意正整数 s 都成立。

我们用归纳法证明一个更一般的结论: 假设 k_1, \dots, k_s 是正整数,若 $k_1\lambda_1^s + k_2\lambda_2^s + \dots + k_s\lambda_n^s = 0$ 对任意的 $s \ge 1$ 都成立,则 $\lambda_1 = \dots = \lambda_n = 0$ 。 n = 1 时成立,假设 n - 1 时成立,现在证明 n 时也成立。若 $\lambda_1 = \lambda_2$,则有 $(k_1 + k_2)\lambda_2^s + \dots + k_s\lambda_n^s = 0$ 对任意的 $s \ge 1$ 都成立,则由归纳假设, $\lambda_2 = \dots = \lambda_n = 0$,所以 $\lambda_1 = \lambda_2$ 也是零。所以我们可以假设 $\lambda_1, \lambda_2, \dots, \lambda_n$ 互不相等。考虑矩阵

$$A = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ \vdots & \vdots & & \vdots \\ \lambda_1^{n-1} & \lambda_2^{n-1} & \cdots & \lambda_n^{n-1} \end{pmatrix}$$

则 Ax = 0 有解 $x = (k_1\lambda_1, k_2\lambda_2, \dots, k_n\lambda_n)^T$,而有范德蒙行列式的性质,我们知道方程组只有零解,所以 $\lambda_1 = \dots = \lambda_n = 0$ 。

法二:设 λ 是 C 的一个特征值,设 V_{λ} 是 C 的属于特征值 λ 的特征向量。由于 AC = CA, BC = CB,则 V_{λ} 是 A 和 B 的不变子空间。在这个 A,B 和 C 的公共不变子空间上,有

$$0 = \operatorname{tr} C = \lambda \operatorname{dim} V_{\lambda}$$

所以 $\lambda = 0$ as required.

(b) 设 $W = \{x \in \mathbb{C}^n \mid Cx = 0\}$ 。由于 C 和 A, B 都可交换,所以 $W \not\in A$ 和 B 的不变子空间。对于任意 $\beta \in W$,

$$(AB - BA)\beta = 0$$

所以在 W 中存在 A 和 B 的公共特征向量 α 。则 α 成为 A,B,C 的公共特征向量。将 α 扩充为一组基,则 A,B,C 的表示矩阵分别变为

$$\begin{pmatrix} \lambda_1 & * \\ 0 & A_1 \end{pmatrix}, \begin{pmatrix} \eta_1 & * \\ 0 & B_1 \end{pmatrix}, \begin{pmatrix} 0 & * \\ 0 & C_1 \end{pmatrix}$$

计算表明, A_1, B_1, C_1 满足 $A_1C_1 = C_1A_1$, $B_1C_1 = C_1B_1$ 和 $C_1 = A_1B_1 - B_1A_1$ 。 由归纳法,本题得证。

(c) 去掉条件 BC = CB 后, (a) 仍成立。这是因为 (a) 的证明中的法一没有使用这个条件。

去掉条件 BC = CB 后, (b) 不再成立。可取如下反例

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \ C = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$