

Emil Björnson

Outline

- Multipath propagation and Rayleigh fading
- Slow fading
 - Outage probability
 - Outage capacity
 - Spatial diversity
- Fast fading
 - Ergodic capacity
 - Channel hardening

Multipath propagation

Non-line-of-sight channel:

Scattering

• Channel with *L* propagation paths:

$$g = \sum_{i=1}^{L} \alpha_i e^{-j2\pi \frac{d_i - d}{\lambda}}$$
 Reference distance Channel attenuation Wavelength

Multipath fading

- Example:

 - $\alpha_i^2 = \frac{1}{L}$ $\theta_i = 2\pi \frac{d_i d}{\lambda} \sim U(0, 2\pi)$
- Channel magnitude:

$$|g| = \left| \sum_{i=1}^{L} \sqrt{\frac{1}{L}} e^{-j\theta_i} \right|$$

Rich scattering: Rayleigh fading

Central limit theorem

Let $X_1, ..., X_L$ be a sequence of L real-valued independent and identically distributed random variables with zero mean and variance σ^2 . As $L \to \infty$,

$$\frac{1}{\sqrt{L\sigma^2}} \sum_{i=1}^{L} X_i$$

converges to a standard Gaussian distribution N(0,1).

- Rich multipath propagation: $X_i = \alpha_i e^{-j\theta_i} = \alpha_i \cos(\theta_i) j \alpha_i \sin(\theta_i)$
 - Very large number paths: Gaussian distribution
 - Channel response: $g \sim CN(0, \beta)$
 - Called Rayleigh fading since $|g| \sim \text{Rayleigh}(\sqrt{\beta/2})$

Rayleigh fading, $|g| \sim \text{Rayleigh}(1/\sqrt{2})$

• Amplitude of channel changes over time

• In this case: $g \sim CN(0,1)$

Rayleigh fading, zooming in on tail

• Risk of very small channel gain

Two issues:

- Variations in channel quality
- Unpredictable

Capacity of fading channel

• AWGN channel with a random channel response g[l]:

$$y[l] = g[l] \cdot x[l] + n[l]$$

- $x[l] \sim CN(0, q)$, energy per sample: q = P/B
- $n[l] \sim CN(0, N_0)$
- Two categories:
 - Slow fading: g[l] takes one realization during communication
 - Fast fading: g[l] takes "all" realizations during communication

Reality might be somewhere in between

Slow fading

Received signal

$$y[l] = g \cdot x[l] + n[l]$$

- Fixed channel g[l] = g for the entire transmission
- Assumption: Receiver knows g, but not the transmitter

• Capacity for a realization
$$g$$
:
$$C_g = \log_2(1 + |g|^2 \text{SNR})$$

Transmitter does not know C_g Cannot encode the data to achieve it!

Opportunistic transmission

• Suppose transmitter encode using the rate *R* bit/symbol

- Two possible events:
 - If $R \le C_q$: Successful transmission
 - If $R > C_a$: Large error probability

System is in outage if $R > C_g$

• Outage probability for rate R $p_{out}(R) = \Pr\{C_g < R\} = \Pr\{\log_2(1 + |g|^2 \text{SNR}) < R\}$

High SNR:

Outage probability with $g \sim CN(0,1)$

• Outage probability for rate *R*:

$$p_{out}(R) = \Pr\{C_g < R\} = 1 - e^{-\frac{2^R - 1}{SNR}} \approx \frac{2^R - 1}{SNR}$$

Outage probability decays with $SNR = q/N_0$ as SNR^{-1}

Outage capacity

- Difference from deterministic AWGN channel
 - Only R = 0 can guarantee zero error probability
 - Capacity is zero
- ϵ -Outage capacity C_{ϵ} :
 - Largest rate *R* such that $p_{out}(R) \le \epsilon$

Interpretation:

With probability $1 - \epsilon$, we can communicate at C_{ϵ} with is zero error probability

Outage capacity with $g \sim CN(0,1)$

$$1 - e^{-\frac{2^R - 1}{\text{SNR}}} \le \epsilon \quad \Longrightarrow$$

$$C_{\epsilon} = \log_2 \left(1 + \text{SNR} \ln \left((1 - \epsilon)^{-1} \right) \right)$$
Difference from AWGN channel

- Low ϵ : Better with AWGN channel
- High ϵ : Better with fading channel

Outage capacity with small outage probability

• Fraction of AWGN capacity: $\frac{\log_2(1 + SNR \ln((1 - \epsilon)^{-1}))}{\log_2(1 + SNR)}$

> Much lower capacity than with AWGN channel

Can we improve the situation?

Fading multiple antenna channels

Independent fading: Uniform linear array with $\Delta = \lambda/2$

- Independent and identically distributed Rayleigh fading
 - Channel vector: $\mathbf{g} \sim CN(\mathbf{0}, \beta \mathbf{I}_M)$
 - Distribution of $\|g\|^2$: $f_{\|g\|^2}(x) = \frac{x^{M-1}e^{-\frac{x}{\beta}}}{(M-1)!\beta^M} \le \frac{x^{M-1}}{(M-1)!\beta^M}$

High SNR

M receive antennas and i.i.d. Rayleigh fading

Outage probability

Outage probability
$$p_{out}(R) = \Pr\{\log_2(1 + \|\boldsymbol{g}\|^2 \text{SNR}) < R\} = \int_0^{\frac{2^R - 1}{\text{SNR}}} f_{\|\boldsymbol{g}\|^2}(x) \, dx \le \left(\frac{2^R - 1}{\text{SNR}}\right)^M \frac{1}{M!}$$

Spatial diversity gain

 $p_{out}(R)$ proportional to SNR^{-M} *M* is the diversity order

Outage probability with M receive antennas

• Outage probability decays as SNR^{-M}

Makes a huge difference!

Multiple receive antennas gives:

- Beamforming gain
- Diversity gain

Fast fading

Received signal

$$y[l] = g[l] \cdot x[l] + n[l]$$

- Block fading
 - One realization of channel g[l] per l (or a finite-sized block of symbols)
 - New independent realization every time (ergodic process)

Opportunistic transmission

- Suppose transmitter encode using the rate *R* bit/symbol
 - There are L fading realization: g[1], ..., g[L]
- Reliable communication if

$$\sum_{l=1}^{L} \log_2(1 + \text{SNR} |g[l]|^2) > LR$$

Many fading realizations:

Mean value with respect to channel fading

Ergodic capacity

• This is called ergodic capacity:

$$\mathbb{E}\{\log_2(1+|g|^2\text{SNR})\}\$$

- Deterministic: Transmitter knows it even if g is unknown
- There are no outage issues!
- Extension to SIMO case with channel:

$$\mathbb{E}\{\log_2(1+\|\boldsymbol{g}\|^2\text{SNR})\}$$

Comparison with AWGN channel

• AWGN channel: $log_2(1 + SNR)$

• Rayleigh fading, $g \sim CN(0,1)$: $\mathbb{E}\{\log_2(1+|g|^2\text{SNR})\}$

Low SNR: Little difference

High SNR: Ergodic capacity is lower

Jensen's inequality and concave functions

• For any random variable z and concave function $f(\cdot)$, $\mathbb{E}\{f(z)\} \leq f(\mathbb{E}\{z\})$

A function is concave if

- Any line between two points on the curve is below the curve
- Second derivative is negative

Ergodic capacity with SIMO channel

Can be used to prove

$$\log_2\left(1 + \frac{\text{SNR}}{\mathbb{E}\{\|\boldsymbol{g}\|^{-2}\}}\right) \le \mathbb{E}\{\log_2(1 + \|\boldsymbol{g}\|^2 \text{SNR})\} \le \log_2(1 + \mathbb{E}\{\|\boldsymbol{g}\|^2\} \text{SNR})$$

Jensen's inequality with

$$f(z) = -\log_2(1 + 1/z)$$

Jensen's inequality with

$$f(z) = \log_2(1+z)$$

• Rayleigh fading with g having i.i.d. CN(0,1) elements:

$$\log_2(1 + (M - 1)SNR) \le \mathbb{E}\{\log_2(1 + ||g||^2SNR)\} \le \log_2(1 + MSNR)$$

Line-of-sight channel with $||g||^2 = M - 1$

Line-of-sight channel with $\|\boldsymbol{g}\|^2 = M$

Comparison

- Small M
 - Large loss from channel fading
- Larger M
 - Small loss

Channel hardening:

When *M* is large, no penalty from channel fading

Summary

- Slow fading: One realization per transmission
 - Outage probability, outage capacity
 - Reliability → Large performance loss
 - Multiple antennas give more reliability
- Fast fading: Many realizations per transmission
 - Ergodic capacity with averaging over fading
 - No reliability issue, but performance loss
 - Multiple antennas give similar capacity as with non-fading channels

Emil Björnson