ECE430.217 Data Structures

Stacks

Weiss Book Chapter 3

Byoungyoung Lee

https://compsec.snu.ac.kr

byoungyoung@snu.ac.kr

Outline

This topic discusses the concept of a stack:

- Description of an Abstract Stack
- List applications
- Implementation
- Example applications
 - Parsing: XHTML, C++
 - Function calls
 - Reverse-Polish calculators
 - Robert's Rules
- Standard Template Library

Abstract Stack

An Abstract Stack (Stack ADT) is an abstract data type which emphasizes specific operations:

- Push: Inserted objects are pushed onto the stack
- Top: The top of the stack is the most recently object pushed onto the stack
- Pop: When an object is popped from the stack, the current top is erased

Abstract Stack

Also called a *last-in–first-out* (LIFO) behaviour

There are two exceptions associated with abstract stacks:

It is an undefined operation to call either pop or top on an empty stack

Check more: https://en.wikipedia.org/wiki/Undefined_behavior

Applications

Numerous applications:

- Parsing code:
 - Matching parenthesis
 - XML (e.g., XHTML)
- Tracking function calls
- Dealing with undo/redo operations
- Reverse-Polish calculators

The stack is a very simple data structure

 Given any problem, if it is possible to use a stack, this significantly simplifies the solution

Stack: Implementations

We will look at two implementations of stacks:

- Singly linked lists
- One-ended arrays

Note: The optimal asymptotic run time of any algorithm is

- The run time of the algorithm is independent of the number of objects being stored in the container
- We will always attempt to achieve this lower bound

Implementation: w/ Linked-List

Operations at the front of a singly linked list are all $\Theta(1)$

The desired behavior of an Abstract Stack can be performed by all operations at the front of linked-list

Stack-as-List Class

The stack class using a singly linked list has a single private member variable:

```
template <typename Type>
class Stack {
    private:
        Single_list<Type> list;
    public:
        bool empty() const;
        Type top() const;
        void push( Type const & );
        Type pop();
};
```

Stack-as-List Class

The empty and push functions just call the appropriate functions of the Single_list class

```
template <typename Type>
bool Stack<Type>::empty() const {
    return list.empty();
}

template <typename Type>
void Stack<Type>::push( Type const &obj ) {
    list.push_front( obj );
}
```

Stack-as-List Class

The top and pop functions, however, must check the boundary case:

```
template <typename Type>
Type Stack<Type>::top() const {
    if ( empty() ) {
        throw underflow();
    }
    return list.front();
}
```

```
template <typename Type>
Type Stack<Type>::pop() {
    if ( empty() ) {
        throw underflow();
    }

    return list.pop_front();
}
```

Implementation: w/ Array

For one-ended arrays, all operations at the back are $\Theta(1)$

	Front/ 1^{st}	$Back/n^{th}$	
Find	$\Theta(1)$	$\Theta(1)$	
Insert	$\Theta(n)$	$\Theta(1)$	
Erase	$\mathbf{\Theta}(n)$	$\Theta(1)$	

Stack-as-Array Class

We need to store an array:

```
    In C++, this is done by storing the base address of the array

             template <typename Type>
             class Stack {
                 private:
                     int stack size;
                     int array_capacity;
                     Type *array;
                 public:
                     Stack( int = 10 );
                     ~Stack();
                     bool empty() const;
                     Type top() const;
                     void push( Type const & );
                     Type pop();
             };
```

Empty

The stack is empty if the stack size is zero:

```
template <typename Type>
bool Stack<Type>::empty() const {
    return ( stack_size == 0 );
}
```

Top

If there are n objects in the stack, the last is located at index n-1

```
template <typename Type>
Type Stack<Type>::top() const {
    if ( empty() ) {
        throw underflow();
    }

    return array[stack_size - 1];
}
```

Pop

Removing an object simply involves reducing the size

 By decreasing the size, the previous top of the stack is now at the location stack_size

```
template <typename Type>
Type Stack<Type>::pop() {
    if ( empty() ) {
        throw underflow();
    }

    --stack_size;
    return array[stack_size];
}
```

Push

Pushing an object onto the stack can only be performed if the array is not full

```
template <typename Type>
void Stack<Type>::push( Type const &obj ) {
    if ( stack_size == array_capacity ) {
        throw overflow(); // Best solution?????
    }
    array[stack_size] = obj;
    ++stack_size;
}
```

Exceptions

The case where the array is full is not defined in the Abstract Stack

If the array is full, we have five options:

- Increase the size of the array
- Throw an exception
- Ignore the element being pushed
- Replace the current top of the stack
- Put the pushing process to "sleep" until something else removes the top of the stack

Array Capacity

If dynamic memory is available, you can increase the array capacity

If we increase the array capacity, the question is:

– How much?

- 1) By a constant? array_capacity += c;

- 2) By a multiple? array_capacity *= c;

Array Capacity Enlargement and Run times

push is usually $\Theta(1)$

If we push onto a full stack, this requires to copy n items and the run time is $\Theta(n)$

Array Capacity Enlargement and Run times

To state the average run time, we will introduce the concept of amortized time:

- If n operations requires $\Theta(f(n))$ in total, we will say that an individual operation has an amortized run time of $\Theta(f(n)/n)$
- Therefore, if inserting *n* objects requires:
 - $\Theta(n^2)$ items to be copied, the amortized time is $\Theta(n)$
 - $\Theta(n)$ items to be copied, the amortized time is $\Theta(1)$
- Q. Then what would be the amortized runtime of pushing n objects:
 - 1) when the array capacity is increased by 1?
 - 2) when the array capacity is doubled?

Array Capacity: Increase by 1

Let us consider the case of increasing the capacity by 1 each time the array is full

 With each insertion when the array is full, this requires all entries to be copied

Array Capacity: Increase by 1

Suppose we insert *n* objects

- The pushing of the k^{th} object on the stack requires k-1 copies
- The total number of copies is:

$$\sum_{k=1}^{n} (k-1) = \left(\sum_{k=1}^{n} k\right) - n = \frac{n(n+1)}{2} - n = \frac{n(n-1)}{2} = \Theta(n^{2})$$

Therefore, the amortized number of copies is given by

$$\Theta\left(\frac{n^2}{n}\right) = \Theta(n)$$

- Therefore each push would run in $\Theta(n)$ time
- The wasted space, however is $\Theta(0)$

Array Capacity: Doubling

Suppose we double the number of entries each time the array is full

Now the number of copies appears to be significantly fewer

Array Capacity: Doubling

Suppose we double the array size each time it is full:

- This is difficult to solve for an arbitrary n so instead, we will restrict the number of objects we are inserting to $n = 2^h$ objects
- We will then assume that the behavior for intermediate values of n will be similar

Array Capacity: Doubling

Suppose we double the array size each time it is full:

- Inserting $n = 2^h$ objects would require

1, 2, 4, 8, ...,
$$2^{h-1}$$

copies, for once we add the last object, the array will be full

– The total number of copies is therefore:

$$\sum_{k=0}^{h-1} 2^k = 2^{(h-1)+1} - 1 = 2^h - 1 = n - 1 = \Theta(n)$$

 Therefore the amortized number of copies per insertion is Θ(1)

Application: Parsing

Most parsing uses stacks

Examples includes:

- Matching tags in XHTML
- In C++, matching
 - parentheses (...)
 - brackets, and [...]
 - braces { ... }

XHTML is made of nested

```
opening tags, e.g., <some_identifier>, and
```

Nesting: any closing tag must match the most <u>recent</u> opening tag

Strategy for parsing XHTML:

- read though the XHTML linearly
- place the opening tags in a stack
- when a closing tag is encountered, check that it matches what is on top of the stack

```
<html>
<head><title>Hello</title></head>
<body>This appears in the
<i>browser</i></body>
</html>
```

<html></html>		
	I	1

```
<html>
<head><title>Hello</title></head>
<body>This appears in the
<i>browser</i></body>
</html>
```

<html></html>	<head></head>		
---------------	---------------	--	--

```
<html>
<head><title>Hello</title></head>
<body>This appears in the
<i>browser</i></body>
</html>
```

<html></html>	<head></head>	<title></th><th></th></tr><tr><td></td><td></td><td></td><td></td></tr></tbody></table></title>
---------------	---------------	---

```
<html>
<head><title>Hello</title></head>
<body>This appears in the
<i>browser</i></body>
</html>
```

<html> <head></head></html>	<title></th><th></th></tr></tbody></table></title>
-----------------------------	--

```
<html>
<head><title>Hello</title></head>
<body>This appears in the
<i>browser</i></body>
</html>
```

```
<html>
<head><title>Hello</title></head>
<body>This appears in the
<i>browser</i></body>
</html>
```

```
<html>
<head><title>Hello</title></head>
<body>This appears in the
<i>browser</i>.</body>
</html>
```

<html></html>	<body></body>	>	
---------------	---------------	---	--

```
<html>
<head><title>Hello</title></head>
<body>This appears in the
<i>browser</i></body>
</html>
```

<html></html>	<body></body>	>	<i>></i>
---------------	---------------	---	-------------

```
<html>
<head><title>Hello</title></head>
<body>This appears in the
<i>browser</i></body>
</html>
```

<html></html>	<body></body>		<i>></i>
---------------	---------------	--	-------------

```
<html>
<head><title>Hello</title></head>
<body>This appears in the
<i>browser</i></body>
</html>
```

<html> <body></body></html>	
-----------------------------	--

```
<html>
<head><title>Hello</title></head>
<body>This appears in the
<i>browser</i></body>
</html>
```

<html></html>	<body></body>		
---------------	---------------	--	--

```
<html>
<head><title>Hello</title></head>
<body>This appears in the
<i>browser</i></body>
</html>
```

We are finished parsing, and the stack is empty

Possible errors:

- a closing tag which does not match the opening tag on top of the stack
- a closing tag when the stack is empty
- the stack is not empty at the end of the document

Function Calls

In the Computer Architecture class, you will see how stacks are implemented in CPUs to facilitate function calling

Function calls are similar to problem solving presented earlier:

- you write a function to solve a problem
- the function may require sub-problems to be solved, hence, it may call another function
- once a function is finished, it returns to the function which called it

Normally, mathematics is written using what we call *in-fix* notation:

$$(3+4) \times 5 - 6$$

The operator is placed between to operands

One weakness: parentheses are required

$$(3+4) \times 5-6 = 29$$

$$3 + 4 \times 5 - 6 = 17$$

$$3+4 \times (5-6) = -1$$

$$(3+4) \times (5-6) = -7$$

In Reverse-Polish Notation, the operations are placed first, followed by the operator:

$$(3+4) \times 5-6$$
 $\rightarrow 3 \ 4 + 5 \times 6 -$

Parsing reads left-to-right and performs any operation on the last two operands:

$$3 \ 4 + 5 \times 6 - 7$$
 $5 \times 6 - 35$
 $6 - 29$

Other examples:

Benefits:

- No ambiguity and no brackets are required
- It is the same process used by a computer to perform computations:
 - operands must be loaded before performing the operation
- Reverse-Polish can be processed using stacks

The easiest way to parse reverse-Polish notation is to use an operand stack:

- operands are processed by pushing them onto the stack
- when processing an operator:
 - · pop the last two items off the operand stack,
 - · perform the operation, and
 - push the result back onto the stack

Evaluate the following reverse-Polish expression using a stack:

$$1\ 2\ 3\ +\ 4\ 5\ 6\ \times\ -\ 7\ \times\ +\ -\ 8\ 9\ \times\ +$$

Push 1 onto the stack

$$1 \ 2 \ 3 + 4 \ 5 \ 6 \times - 7 \times + - 8 \ 9 \times +$$

Push 1 onto the stack

$$1\ 2\ 3\ +\ 4\ 5\ 6\ \times\ -\ 7\ \times\ +\ -\ 8\ 9\ \times\ +$$

Push 3 onto the stack

$$1 \ 2 \ 3 + 4 \ 5 \ 6 \times - 7 \times + - 8 \ 9 \times +$$

Pop 3 and 2 and push 2 + 3 = 5

$$1\ 2\ 3\ +\ 4\ 5\ 6\ \times\ -\ 7\ \times\ +\ -\ 8\ 9\ \times\ +$$

5
1

Push 4 onto the stack

$$1 \ 2 \ 3 + 4 \ 5 \ 6 \times - 7 \times + - 8 \ 9 \times +$$

Push 5 onto the stack

$$1\ 2\ 3\ +\ 4\ 5\ 6\ \times\ -\ 7\ \times\ +\ -\ 8\ 9\ \times\ +$$

Push 6 onto the stack

$$1\ 2\ 3\ +\ 4\ 5\ 6\ \times\ -\ 7\ \times\ +\ -\ 8\ 9\ \times\ +$$

6
5
4
5
1

Pop 6 and 5 and push $5 \times 6 = 30$

$$1\ 2\ 3\ +\ 4\ 5\ 6\ \times \ -\ 7\ \times\ +\ -\ 8\ 9\ \times\ +$$

Pop 30 and 4 and push 4 - 30 = -26

$$1\ 2\ 3\ +\ 4\ 5\ 6\ \times\ -\ 7\ \times\ +\ -\ 8\ 9\ \times\ +$$

Push 7 onto the stack

$$1 \ 2 \ 3 + 4 \ 5 \ 6 \times - 7 \times + - 8 \ 9 \times +$$

Pop 7 and -26 and push $-26 \times 7 = -182$

$$1\ 2\ 3\ +\ 4\ 5\ 6\ \times\ -\ 7\ \times\ +\ -\ 8\ 9\ \times\ +$$

Pop -182 and 5 and push -182 + 5 = -177

$$1\ 2\ 3\ +\ 4\ 5\ 6\ \times\ -\ 7\ \times\ +\ -\ 8\ 9\ \times\ +$$

Pop -177 and 1 and push 1 - (-177) = 178

$$1\ 2\ 3\ +\ 4\ 5\ 6\ \times\ -\ 7\ \times\ +\ -\ 8\ 9\ \times\ +$$

Push 8 onto the stack

$$1 \ 2 \ 3 + 4 \ 5 \ 6 \times - 7 \times + - 8 \ 9 \times +$$

Push 1 onto the stack

$$1 \ 2 \ 3 + 4 \ 5 \ 6 \times - 7 \times + - 8 \ 9 \times +$$

Pop 9 and 8 and push $8 \times 9 = 72$

$$1\ 2\ 3\ +\ 4\ 5\ 6\ \times\ -\ 7\ \times\ +\ -\ 8\ 9\ \times\ +$$

Pop 72 and 178 and push 178 + 72 = 250

$$1\ 2\ 3\ +\ 4\ 5\ 6\ \times\ -\ 7\ \times\ +\ -\ 8\ 9\ \times\ +$$

Thus

$$1\ 2\ 3\ +\ 4\ 5\ 6\ \times\ -\ 7\ \times\ +\ -\ 8\ 9\ \times\ +$$

evaluates to the value on the top: 250

The equivalent in-fix notation is

$$((1-((2+3)+((4-(5\times 6))\times 7)))+(8\times 9))$$

Summary: Stacks

The stack is the simplest of all ADTs

- Understanding how a stack works may be trivial
- May be not that simple to understand its applications and meanings

We looked at:

Parsing, function calls, and reverse Polish

References

Donald E. Knuth, *The Art of Computer Programming, Volume 1: Fundamental Algorithms*, 3rd Ed., Addison Wesley, 1997, §2.2.1, p.238.

Cormen, Leiserson, and Rivest, Introduction to Algorithms, McGraw Hill, 1990, §11.1, p.200.

Weiss, Data Structures and Algorithm Analysis in C++, 3rd Ed., Addison Wesley, §3.6, p.94.

Koffman and Wolfgang, "Objects, Abstraction, Data Strucutes and Design using C++", John Wiley & Sons, Inc., Ch. 5.

Wikipedia, http://en.wikipedia.org/wiki/Stack_(abstract_data_type)