Stal Mantk Tasarmi

LATCHES & FLIP-FLOPS

- Adısık devrelerin analizi zor oldugundan; bu bölümde çokca kullanılan senkron akdısık devrelerden bahsedilecektir.
 - Senkron ardısık devreler, birlesik lojik devrelerden ve devrenin bir önceki durumunu tutan flip-floplar olusmaktadır.
- Bu bölümde, ardısık devreleri tasarlamanın kolay bir yolu olan sonlu durum makineleri açıklanmaktadır.
- Son olarak, sıralı devrelerin hızını analiz edilecek ve paralellik kavramı hızı arttırmanın bir yolu olarak tartısılacaktır.

LATCHES & FLIP-FLOPS

En temel hafıza birimi iki durumlu çıkısa sahip elemanlardan olusur.

Q degeri, devrenin gelecekteki davranısını açıklamak için geçmis bilgileri içerir

cross-coupled inverter

Baslangıc durumuna ait gecmis bilgi olmadıgında, baslangıc degerleri kestirilemez.

LATCHES & FLIP-FLOPS

Case I: Q=0
12 => TRUE (Q')
11 => FALSE (Q)
DEVRE KARARLIDIR

Case I: Q=1
I2 => FALSE (Q')
I1 => TRUE (Q)
DEVRE KARARLIDIR

Girise sahip degil

Case II: R=0, S=1

$$R=0$$
 $Q=1$

Case III: R=1, S=1

Case IV: R=0, S=0

Case IVb: Q=1

$$Q = 1$$

N₁

N2

Case	S	R	Q	ā
IV	0	0	Q_{pn}	\overline{Q}_{prev}
1	0	1	0	1
Ш	1	0	1	0
III	1	1	0	0

R=1 ve S=1 oldugu durumda devre davranısı kestirilemez

82	Case	S	R	Q	Q	
	IV	0	0	Qpn	\overline{Q}_{pre}	ev
	1	0	1	0	1	W.
	Ш	1	0	1	0	
	III	1	1	0	0	

D Latch

CLK = 1 \Rightarrow Latch is transparent

CLK = 0 \Rightarrow Latch is opaque

CLK	D	D	S	R	Q	ā
0	Х	\overline{X}	0	0	Qpr	ev Qprev
1	0	1	0	1	0	1
1	1	0	1	0	1	0

D Flip-Flop

D tipi flip flop;

Yükselen kenarda D verisini çıkısa (Q) aktarır. Aksi taktirde durumunu korur(hatırlar).

D tipi flip flop;

master-slave flip-flop edge-triggered flip-flop positive edge-triggered flip-flop

Örnek: D Flip-Flop Transistör sayısı

NAND

SR LATCH

D Flip-Flop

D tipi flip flop'taki transistör sayısı kaçtır?

NAND / NOR = 4 transistör

NOT = 2 transistör

AND = NAND + NOT = 6 transistör SR LATCH = 2xNOR = 8 transistör

D LATCH = SR + 2xAND + NOT = 8 + 2x6 + 2 = 22 transistör

D flip-flop = 2xD LATCH + NOT = 2x22 + 2 = 46 transistör

Register / Saklayıcı

Enabled Flip-Flop

Verinin ne zaman kabul edilecegini belirleyen bir EN/ENABLE girisine sahiptir.

EN = TRUE

⇒ enable flip-flop = normal flip-flop

EN = FALSE

eski durum korunur

 \Rightarrow

Resetlenebilir Flip-Flop

 Sistemde ilk calısmaya basladıgında; bütün flip-flop ları O(baslangıc) durumuna getirmek için kullanılır.

Senkron resetlenebilir flip-flop: RESET girisi CLK sinyaline baglı Asenkron resetlenebilir flip-flop: RESET girisi CLK sinyallinden bagımsız

Transistor Seviyesinde Latch ve Flip-Flop Tasarımı

D Latch VS D Flip-Flop

D latch

CLK = 1 CLK = O

 \Rightarrow

 \Rightarrow Latch is transparent

D girisini Q çıkısına aktarır

Latch is opaque

Q önceki durumunu korur

D flip flop

Positive Edge Triggering

 \Rightarrow

 \Rightarrow

CLK = O

CLK = 1

Master = transparent, Slave = opaque

D girisini Q çıkısına kopyalar

Master = opaque, Slave = transparent

Q önceki durumunu korur

D Latch VS D Flip-Flop

Senkron Lojik Tasarım - Halka Ösilatorü -

Inverter lerin yayılma gecikmesi 1ns

X=O kabul edilirse; Y=1, Z=O, X=1 (Kabul ile tutarsız olur)

Ons => X yükselir 1ns => Y düser 2ns => Z yükselir, 3ns => X düser 4ns => Y yükselir 5ns => Z düser 6ns => X yükselir

Yukarıdaki desen her 6 ns' de bir tekrar eder. Bu devreye halka osilatörü denir.

Halka osilatörünün süresi = her invertörün yayılma gecikmesi Gecikme = sürücünün üretimi, güç kaynagı voltajı

Halka osilatör periyodunun dogru bir sekilde tahmin edilmesi zordur. Halka osilatörü, sıfır girisli ve periyodik olarak degisen bir çıkıslı sıralı bir devredir.

Senkron Lojik Tasarım - Yarıs Durumu -

$$Q = CLK \cdot D + \overline{CLK} \cdot Q_{prev}$$

Ali az sayıda kapı kullanılarak, daha basarılı bir D Latch tasarladığını idda ediyor.

CLK	D	Q _{prev}	Q
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

CLK = D = 1

=> Q=1 (transparent)

CLK = düser

Q=1(eski degerini hatırlar)

CLK dan CLK' gecis gecikmesinin göreceli olarak daha uzun oldugu varsayılsın

CLK' = yükselir

N1 ve Q; CLK' dan önce düser

Bu durumda;

N2 kesinlikle yükselemeyecektir.

Senkron Ardisik Devreler

- Herbir elemanı saklayıcı veya birlesik devre
- En az bir elemanı saklayıcı
- Bütün saklayıcılar aynı saat sinyalini kullanılır
- Herbir döngüsel yol bir sakalayıcı(döngüyü bekletebilen)
 içerir

Bir girise(D) bir saat sinyaline(CLK), bir çıkısa (Q) ve iki duruma {O, 1} sahip; Bir flip-flop, en basit senkron ardısık devredir.

Mevcut durum S. sonraki durum ise S' ile ifade edilmistir.

Senkron Ardisik Devreler

Asagıdalilerden hagisi senkron ardısık devredir.

Sonlu Durum Makinaları

Istenilen fonksiyonu yerine getiren Senkron Ardısıl devrelerin tasarlanması için sematik bir yol sunar.

Table 3.1 State transition table

Current	$ \begin{array}{ccc} Inputs \\ T_A & T_B \end{array} $		Next State	
State S	T_A	X	<i>S'</i> S1	
S0	0	X	S0	
V00001	1		1900	
S1	X	X	S2	
S2	X	0	S3	
S2	X	1	S2	
S3	X	X	S0	

Table 3.1 State transition table

Current State S	Inputs $T_A T_B$		Next State	
S0	0	X	S1	
S0	1	X	S0	
S1	Х	X	S2	
S2	Х	0	S3	
S2	X	1	S2	
S3	X	X	S0	

Table 3.2 State encoding

Encoding S _{1:0}	
00	
01	
10	
11	

Table 3.3 Output encoding

Output	Encoding $L_{1:0}$		
green	00		
yellow	01		
red	10		

Table 3.1 State transition table

Current State S	T_A	uts T_B	Next State
SO	0	X	S1
S0	1	X	S0
S1	X	X	S2
S2	X	0	S3
S2	X	1	S2
S3	X	X	S0

Table 3.2 State encoding

State	Encoding S _{1:0}
SO	00
S1	01
S2	10
S3	11

Table 3.3 Output encoding

Output	Encoding $L_{1:0}$		
green	00		
yellow	01		
red	10		

Table 3.4 State transition table with binary encodings

Current State		Inp	Inputs		State
S_1	S_0	T_A	T_B	S_1'	S_0'
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

$$S_1' = \overline{S}_1 S_0 + S_1 \overline{S}_0 \overline{T}_B + S_1 \overline{S}_0 T_B$$

$$S_0' = \overline{S}_1 \overline{S}_0 \overline{T}_A + S_1 \overline{S}_0 \overline{T}_B$$

$$S_1' = S_1 \oplus S_0$$

$$S_0' = \overline{S}_1 \overline{S}_0 \overline{T}_A + S_1 \overline{S}_0 \overline{T}_B$$

Table 3.5 Output table

Current State		Outputs			
S_1	S_0	L_{A1}	L_{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Table 3.2 State encoding

State	Encoding S _{1:0}	
S0	00	
S1	01	
S2	10	
S3	11	

Table 3.3 Output encoding

Output	Encoding $L_{1:0}$	
green	00	
yellow	01	
red	10	

$$L_{A1} = S_1$$

$$L_{A1} = S_1$$
$$L_{A0} = \overline{S}_1 S_0$$

$$L_{B1} = \overline{S}_1$$

$$L_{B0} = S_1 S_0$$

Moore FSM

(b)

 $S_1' = S_1 \oplus S_0$

$$S_0' = \overline{S}_1 \overline{S}_0 \overline{T}_A + S_1 \overline{S}_0 \overline{T}_B$$

$$L_{A1} = S_1$$

$$L_{A0} = \overline{S}_1 S_0$$

$$L_{B1} = \overline{S}_1$$

$$L_{B0} = S_1 S_0$$

Figure 3.27 Timing diagram for traffic light controller

Durum Kodlama

ikili durum kodlama: Bir önceki örnekte oldugu gibi her durum ikili kodlama ile kodlanmaktadır. Daha fazla lojik kapı kullanılır.

tek-bit kodlama: Her durumda tek bir bit 1 degerini alan kodlamadır. Üç durum için 001, 010, 100 Daha fazla flip-flop kullanılır.

Figure 3.28 Divide-by-3 counter (a) waveform and (b) state transition diagram

Table 3.6 Divide-by-3 counter state transition table

Current State	Next State	
S0	S1	
S1	S2	
S2	S0	

Table 3.7 Divide-by-3 counter output table

Current State	Output
SO	1
S1	0
S2	0

Table 3.8 One-hot and binary encodings for divide-by-3 counter

	One-Hot Encoding			Binary Encodin	
State	S_2	S_1	S_0	S_1	S_0
S0	0	0	1	0	0
S1	0	1	0	0	1
S2	1	0	0	1	0

Table 3.6 Divide-by-3 counter state transition table

Current State	Next State	
S0	S1	
S1	S2	
S2	SO	

Table 3.7 Divide-by-3 counter output table

Current State	Output
S0	1
S1	0
S2	0

Table 3.9 State transition table with binary encoding

Current State		Next	State
S_1	S_0	S_1'	S_0'
0	0	0	1
0	1	1	0
1	0	0	0

$$S'_{1} = \overline{S}_{1}S_{0}$$

$$S'_{0} = \overline{S}_{1}\overline{S}_{0}$$

$$Y = \overline{S}_{1}\overline{S}_{0}$$

Table 3.6 Divide-by-3 counter state transition table

Current State	Next State	
S0	S1	
S1	S2	
S2	SO	

Table 3.7 Divide-by-3 counter output table

Current State	Output
S0	1
S1	0
S2	0

Table 3.10 State transition table with one-hot encoding

Current State		Next State			
S_2	S_1	S_0	S_2'	S_1'	S_0'
0	0	1	0	1	0
0	1	0	1	0	0
1	0	0	0	0	1

$$S'_2 = S_1$$

$$S'_1 = S_0$$

$$S'_0 = S_2$$

$$Y = S_0$$

$$S_1' = \overline{S}_1 S_0$$

$$S_0' = \overline{S}_1 \overline{S}_0$$

$$Y = \overline{S}_1 \overline{S}_0$$

$$S'_2 = S_1$$

$$S'_1 = S_0$$

$$S'_0 = S_2$$

$$Y = S_0$$

Moore and Mealy Makineleri

- Ali, FSM mantigi ile hareket eden robot bir salyangoz tasarladı.
- Salyangoz, 1 ve O dizisini iceren bir kagıt boyunca sagdan sola dogru ilerlemektedir.
- Salyangoz her saat dögüsünde bir bit geçmektedir.
- Gectigi son iki bir O1 olursa salyangoz gülümsemektedir.
- Salyangozun ne zaman gülümseyecegini hesaplayan FSM yi gelistiriniz.
- A girisi, salyangoz anteninin altındaki bittir.
- Salyangoz gülümsediginde, Y çıkısı TRUE olur.
- Moore ve Mealy durum makinesi tasarımlarını karsılastırın.
- Alyssa'nın salyangozu 0100110111 dizisi boyunca gezinirken girisi, durumları ve çıktıyı gösteren her makine için bir zamanlama diyagramı çizin.

Moore and Mealy Makineleri

Moore Makinesi

Mealy Makinesi

A/Y
A: Gecisi tetikleyen girisler
Y: Gecise karsılık gelen cıkıs

Moore Makinesi

Table 3.11 Moore state transition table

Current State S	Input A	Next State S'
S0	0	S1
S0	1	S0
S1	0	S1
S1	1	S2
S2	0	S1
S2	1	S0

Table 3.12 Moore output table

Current State	Output Y
S0	0
S1	0
S2	1

Moore Makinesi

ikilik durum kodlama: SO=00, S1=01, S2=10

 Table 3.13
 Moore state transition table with state

 encodings

Curren S_1	It State S_0	Input A	Next S'_1	State S'_0
0	0	0	0	1
U	U	U	U	1
0	0	1	0	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0

Table 3.14 Moore output table with state encodings

Curren	Current State		
S_1	S_0	Y	
0	0	0	
0	1	0	
1	0	1	

$$S_1' = S_0 A$$

$$S_0' = \overline{A}$$

$$Y = S_1$$

Mealy Makinesi

ikilik durum kodlama:

SO=0, S1=1

Table 3.15 Mealy state transition and output table

Current State S	Input A	Next State S'	Output Y
S0	0	S1	0
S0	1	S0	0
S1	0	S1	0
S1	1	S0	1

Table 3.16 Mealy state transition and output table with state encodings

Current State S_0	Input A	Next State S_0'	Output Y
0	0	1	0
0	1	0	0
1	0	1	0
1	1	0	1

$$S_0' = \overline{A}$$

$$Y = S_0 A$$

Moore and Mealy Makineleri

Moore and Mealy Makineleri

- Gecit Töreni Durum Makinası:
- Bravadı Bulvarında, futbol takımı ve bando takımı gecene kadar ısıgın yesilde kalması gerekmektedir.
- Dolayısıyla Kontrolör iki giris daha alır: P ve R
- Gecit törenini baslatan döngü: P
- Gecit töreninisonlandıran döngü: R
- Geçit töreni modundayken, LB yesil olana kadar normal sıralamasını takip eder ve geçit modu sona erene kadar LB yesil durumduna kalır.

M: Gecit Töreni Modu

- Ali eve geldi, ancak kapıdaki tus takımı kilidi yenilendigi icin eski kodu artık çalısmıyor.
- Ancak tus takımını yenileyen ustalar kapının üstünde yandaki devre seması bırakmıslardır.
- Ali, devrenin sonlu bir durum makinesi olabilecegini düsünüyor ve iceri girmek için durum geçis diyagramını çıkarmaya karar veriyor.

- Bu bir Moore makinesidir çünkü çıktı yalnızca durum bitlerine baglidir.
- Girisler: AO. A1
- Cikis: Unlock

$$S_1' = S_0 \overline{A_1} A_0$$

$$S_1' = S_0 \overline{A_1} A_0$$

$$S_0' = \overline{S_1} \, \overline{S_0} A_1 A_0$$

$$Unlock = S_1$$

$$S'_{1} = S_{0}\overline{A_{1}}A_{0}$$

$$S'_{0} = \overline{S_{1}}\overline{S_{0}}A_{1}A_{0}$$

$$Unlock = S_{1}$$

Table 3.17 Next state table derived from circuit in Figure 3.35

Curre	nt State	Input		Next	State
S_1	S_0	A_1	A_0	S_1'	S_0'
0	0	0	0	0	0
0	0	0	1	0	0
0	0	1	0	0	0
0	0	1	1	0	1
0	1	0	0	0	0
0	1	0	1	1	0
0	1	1	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	0	1	0	0
1	0	1	0	0	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	0	1	1	0
1	1	1	0	0	0
1	1	1	1	0	0

Table 3.18 Output table derived from circuit in Figure 3.35

Curren	it State	Output
S_1	S_0	Unlock
0	0	0
0	1	0
1	0	1
1	1	1

$$S_1' = S_0 \overline{A_1} A_0$$

$$S'_{1} = S_{0}\overline{A_{1}}A_{0}$$

$$S'_{0} = \overline{S_{1}}\overline{S_{0}}A_{1}A_{0}$$

$$Unlock = S_{1}$$

$$Unlock = S_1$$

Table 3.19 Reduced next state table

Curren	it State	In	out	Next	Next State	
S_1	S_0	A_1	A_0	S_1'	S_0'	
0	0	0	0	0	0	
0	0	0	1	0	0	
0	0	1	0	0	0	
0	0	1	1	0	1	
0	1	0	0	0	0	
0	1	0	1	1	0	
0	1	1	0	0	0	
0	1	1	1	0	0	
1	0	X	X	0	0	

Table 3.18 Output table derived from circuit in Figure 3.35

Currer	it State	Output
S_1	S_0	Unlock
0	0	0
0	1	0
1	0	1
1	1	1

$$S_1' = S_0 \overline{A_1} A_0$$

$$S_0' = \overline{S_1} \, \overline{S_0} A_1 A_0$$

 $Unlock = S_1$

Current State S	Input A	Next State S'
SO	0	S0
S0	1	S0
S0	2	S0
S0	3	S1
S1	0	S0
S1	1	S2
S1	2	S0
S1	3	S0
S2	X	SO

Table 3.22 Symbolic output table

Current State S	Output <i>Unlock</i>
S0	0
S1	0
S2	1

$$S'_{1} = S_{0}\overline{A_{1}}A_{0}$$

$$S'_{0} = \overline{S_{1}}\overline{S_{0}}A_{1}A_{0}$$

$$Unlock = S_{1}$$

Table 3.21 Symbolic next state table

Current State S	Input A	Next State S'
S0	0	S0
S0	1	S0
S0	2	S0
S0	3	S1
S1	0	SO
S1	1	S2
S1	2	S0
S1	3	S0
S2	X	SO

Table 3.22 Symbolic output table

Current State S	Output <i>Unlock</i>
SO	0
S1	0
S2	1

FSM Özeti

Sonlu durum makinaları, davranısı verilmis ardısıl devrelerin tasarımı icin güclü bir yöntemdir.

Bir FSM tasarlamak için asagıdaki adımlar izlenmelidir:

- Devre giris ve çıkıslarını tanımlayın.
- Bir durum geçis diyagramı çizin.
- Moore makinesi için:
 - o Bir durum geçis tablosu yazın.
 - o Bir çıktı tablosu yazın.
- Mealy makinesi için:
 - O Durum geçis ve çıktı tablosu beraber yazın.
- Kodlamayı secin-Kodlama tasarlanan donanımı etkiler-
- Sonraki durum ve çıkıs lojigi için boolean denklemlerini yazın
- Devre semasını çizin.

3.5 Ardısık Mantık Zamanlaması

D örneklenmesi

3.5 Ardısık Mantık Zamanlaması

D örneklenmesi

3.5 Ardisik Mantik Zamanlamasi

D örneklenmesi

Dinamik Disiplin;

D sinyali saat sinyalin çıkma/inme islemi bittikten sonra kararlı bir hal aldılgında kullanılabilir.

t dogal sayı ve n tam sayılı olmak kosulu ile;

t. saat sinyali sonunda A[t] yazmak yerine

n.saat sinyali sonunda A[n] yazılabilir.

3.5 Ardısık Mantık Zamanlaması

D örneklenmesi

Dinamik Disiplin

Cıkıs: t_{ccq} (clock-q contamination delay) gecikmesinden sonra, degismeye baslamalı t_{pcq} (clock-q propagation delay) içinde son degerine ulasmalıdır.

Giris: yükselen kenarından önce kurulum süresi (t_{setup}) yükselen kenarından sonra tutma süresi(t_{hold}) toplamında sabit kalmalıdır.

Dinamik disiplin, bir senkron ardısık devrenin girislerinin açıklık süresince (aperture time = t_{setup} + t_{hold}) kararlı olmasını garanti eder.

Sistem Zamanlaması

Kurulum Süresi Kısıtlaması

Tc ≥ tpcq +tpd +tsetup

Ticari tasarımlarda,

• saat periyodu : clock

yayılma gecikmesi : tpcq

kurulum süresi : tsetup

üretici tarafından belirlenir.

Tasarımcının birlesik mantık yayılma gecikmesini kontrol edebilir.

tpd ≥ Tc- (tpcq +tsetup)

Dinamik Disiplin (Hatırlatma)

Cıkıs: t_{ccq} (clock-q contamination delay): Çıktı saat yükseldikten, tccq sonra degismeye baslayabilir (En hızlı gecikme)
t_{pcq} (clock-q propagation delay): saatten tpcq sonra nihai degere oturması gerekir.
(En yavas gecikme)

Giris: yükselen kenarından önce kurulum süresi (t_{setup}) yükselen kenarından sonra tutma süresi(t_{hold}) toplamında sabit kalmalıdır.

Dinamik disiplin, bir senkron ardısık devrenin girislerinin açıklık süresince (aperture time = t_{setup} + t_{hold}) kararlı olmasını garanti eder.

Hepsi Bir Arada

Flip Flop:

t_{ccq}-clock-to-Q kirlenme (contamination)- gecikmesi: 30ps

t_{pcq} -clock-to-Q yayılım(propagation)- gecikmesi: 80ps

t_{setup}: Kurulum süresi: 50ps t_{hold}: Bekleme süresi: 60ps

Lojik kapı:

t_{pd} :yayılım gecikmesi, 40ps

t_{cd}:kirleme gecikmesi: 25ps

Maksimum clock frekansı?

Bekleme süresi ihlali?

Hepsi Bir Arada

Zaman analizi:

$$T_c \ge t_{pcq} + 3 t_{pd} + t_{setup} = 80 + 3 \times 40 + 50 = 250 \text{ps}$$

The maximum clock frequency is $f_c = 1/T_c = 4$ GHz.

SABIT TUTMA SÜRESI IHLALLERI

SABIT TUTMA SÜRESI IHLALLERI

Saat Çarpıklıgı*

3.5.4 Meta kararlilk

CLK

Meta kararlılık Durumu

Es Zamanlama

Paralelik

Paralellik

Figure 3.57 Spatial and temporal parallelism in the cookie kitchen

Paralellik

Paralelik

SOFULAT

