thing PAJ

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

(43)Date of publication of application: 15.04.1997

(51)Int.Cl.

H01L 31/04 H01L 21/3065

BEST AVAILABLE COPY

(21)Application number: 08-041617

(71)Applicant: KYOCERA CORP

(22)Date of filing:

28.02.1996

(72)Inventor:

INOMATA YOSUKE

FUKUI KENJI

TAKAYAMA MICHIHIRO SHIRASAWA KATSUHIKO

(30)Priority

Priority number: 07192858

Priority date: 28.07.1995

Priority country: JP

(54) MANUFACTURE OF SOLAR CELL ELEMENT

(57)Abstract:

PROBLEM TO BE SOLVED: To dissolve complicated works of long time in a manufacturing process, and enable uniformly to etch the whole surface of a semiconductor wafer. SOLUTION: In a method of manufacturing a solar cell element, a semiconductor substrate 1 is carried in a dry etching apparatus, a very small uneven part 1b is formed on the front side of the semiconductor substrate, a PN junction part is formed on the front side of the semiconductor substrate, and electrodes 5, 6 are formed on the front side and the back side of the semiconductor substrate. After the semiconductor substrate 1 is carried in the dry etching apparatus, gas for forming a mask and etching gas are simultaneously introduced in the dry etching , apparatus, and the very small uneven part 1b is formed on the semiconductor substrate 1. The shape of the uneven part 1b is effectively optimized by introducing gas for flattening a shape simultaneously or continuously after the very small uneven part

LEGAL STATUS

1b is formed.

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application

abandonment

converted registration]

[Date of final disposal for application]

02.06.1997

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

BEST AVAILABLE COPY

(19)日本回特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-102625

(43) 公開日 平成 9年(1997) 4月15日

技術表示箇所 F 1 庁内整理番号 触別記号 (51) Int.Cl.6 H01L 31/04 А H01L 31/04 F 21/302 21/3065

審査請求 未請求 請求項の数5 OL (全 5 頁)

(21) 出願番号	特顯平8-41617	(71) 出願人	000006633
(22) 出顧日	平成8年(1996)2月28日		京セラ株式会社 京都府京都市山科区東野北井ノ上町5番地 の22
(31) 優先権主張番号 (32) 優先日 (33) 優先権主張国	特願平7-192858 平 7 (1995) 7 月28日 日本 (JP)	(72)発明者	猪股 洋介 滋賀県八日市市蛇溝町長谷野1166番地の6 京セラ株式会社滋賀工場内
	HT (21)	(72) 発明者	福井 健次 滋賀県八日市市蛇溝町長谷野1166番地の6 京セラ株式会社滋賀工場内
		(72) 発明者	高山 道寛 滋賀県八日市市蛇溝町長谷野1166番地の6 京セラ株式会社滋賀工場内 最終頁に続く

(54) 【発明の名称】 太陽電池素子の製造方法

(修正有) (57)【要約】

【課題】 製造工程の煩雑化と長時間化を解消すると共 に、半導体ウェハの全面を均一にエッチングできるよう にする。

【解決手段】 半導体基板1をドライエッチング装置内 に搬入して、この半導体基板の表面側に微小な凹凸部] b を形成した後に、この半導体基板の表面側にPN接合 部を形成して半導体基板の表面側と裏面側に電極5.6 を形成する太陽電池累子の製造方法であって、上記ドラ イエッチング装置内に半導体基板を搬入した後に、この ドライエッチング装置内にマスク形成用ガスとエッチン グガスを同時に導入して上記半導体基板に微小な凹凸部 を形成する。また、それと同時に、あるいはその後に連 続して形状平坦化用ガスを導入することにより、凹凸部 の形状を効率的に最適化する。

2

(2)

10

特開平9-102625

1

【特許請求の範囲】

【請求項1】 半導体基板をドライエッチング装置内に 振入して、この半導体基板の表面側に微小な凹凸部を形 成した後に、この半導体基板の表面側にPN接合部を形 成して半導体基板の表面側と裏面側に電極を形成する太 陽電池累子の製造方法において、前記ドライエッチング 装置内に半導体基板を搬入した後に、このドライエッチ ング装置内にマスク形成用ガスとエッチングガスを同時 に導入して前記半導体基板に前記像小な凹凸部を形成す ることを特徴とする太陽電池業子の製造方法。

【請求項2】 前記マスク形成用ガスがフロロカーボン 系ガスであることを特徴とする請求項]に記載の太陽電 池紫子の製造方法。

【請求項3】 前記エッチングガスが塩緊系ガスである ことを特徴とする請求項1に記載の太陽電池業子の製造

【請求項4】 半導体基板をドライエッチング装置内に 搬入して、との半導体基板の表面側に微小な凹凸部を形 成した後に、この半導体基板の表面側にPN接合部を形 成して半導体基板の表面側と裏面側に電極を形成する太 陽電池素子の製造方法において、前記ドライエッチング 装置内に半導体基板を搬入した後に、このドライエッチ ング装置内にマスク形成用ガスとエッチングガスを導入 して前記半導体基板に前記微小な凹凸部を形成すると同 時もしくは微小な凹凸部を形成した後に形状平坦化用ガ スを導入することを特徴とする太陽電池紫子の製造方 法。

【請求項5】 前記形状平坦化用ガスが六フッ化硫黄ガ スであるととを特徴とする請求項4に記載の太陽電池緊 子の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は太陽電池素子の製造 方法に関し、特に半導体基板の表面側に微小な凹凸部を 有する太陽電池素子の製造方法に関する。

[0002]

【従来の技術】従来から、太陽電池における半導体基板 での光吸収をよくするために、半導体基板の表面に微小 な凹凸を形成することが行われている。この微小な凹凸 部を形成するには、次のように形成される。

【0003】すなわち、まず太陽電池の主要部分を構成 するシリコンなどから成る半導体基板の表面に、ノボラ ック樹脂を主体とするフォトレジスト膜を厚さ 1 μ m程 度に塗布して形成し、次に反応性イオンエッチング装置 の真空櫓内のホルダ上に半導体基板を設置して、この真 空槽内を所定の真空度に維持するとともに、塩累系ガス を導入して髙周波電力を印加することでプラスマを発生 させて前記フォトレジスト膜をドライエッチング法で除 去するとともに、受光面に多数の微小な凹凸部を略一様 に形成したり、半導体基板の表面に原料ガスとしてメター 50 - 導体基板の表面側にPN接合部を形成して半導体基板の

ン(CH.)と水素(H.)を用いてプラズマCVD注 で厚さり、3μmのハイドロカーボン膜を形成し、この 半導体基板を真空槽内のホルダに設置して、真空槽内を 所定の真空度に維持するとともに、塩素系ガスを導入し て高周波電力を印加することでプラズマを発生させて前 記ハイドロカーボン膜を除去すると共に、受光面に多数 の微小な凹凸部を略一様に形成する。

【0004】このように半導体基板の表面にフォトレジ スト膜を塗布してドライエッチング法で除去したり、ハ イドロカーボン膜を形成してプラスマエッチング法で除 去すると、フォトレジスト膜やハイドロカーボン膜は、 エッチング開始後からその表面が凹凸になるようにエッ チングされていき、フォトレジスト膜やハイドロカーボ ン膜が散点状に除去されて半導体基板は部分的に露出 し、露出した部分から半導体基板が順次エッチングされ て半導体基板の表面にも微小な凹凸部が形成される(例 えば特開平5-75152号公報参照)。

[0005]

【発明が解決しようとする課題】ところが、この従来の 太陽電池業子の製造方法では、半導体基板の表面にフォ トレジスト膜やハイドロカーボン膜を形成した後に、塩 素系ガスを導入してレジスト膜やハイドロカーボン膜を エッチングして半導体基板の表面に微小な凹凸部を形成 するととから、フォトレシスト膜やハイドロカーボン膜 を形成する工程とこのフォトレジスト膜やハイドロカー ボン膜を部分的に除去する工程が2工程になり、製造工 程が煩雑になって、製造に長時間を要するという問題が

【0006】また、上記のようなドライエッチング法に 30 よって微小な凹凸部を形成する以外に、テキスチャーエ ッチングやパターニングしたSiN。膜をマスクとし て、NaOHやKOHなどのアルカリ溶液を用いてエッ チングを行うことによって半導体基板の表面部に微小な 凹凸部を形成する方法もあるが、このようなアルカリ溶 液を用いる方法では、半導体基板として多結晶の半導体 基板を用いた場合、面方位によってエッチングされる形 状やエッチング速度が異なり、半導体基板の全面を均一 にはエッチングできず、光吸収を効率的には行うことが できないという問題があった。

【0007】本発明はこのような従来方法の問題点に鑑 みて発明されたものであり、製造工程の煩雑化と長時間 化を解消すると共に、半導体基板の全面を均一にエッチ ングできる太陽電池素子の製造方法を提供することを目 的とする。

[0008]

【課題を解決するための手段】上記目的を造成するため に、請求項1に係る太陽電池素子の製造方法では、半導 体基板をドライエッチング装置内に扱入して、この半導 体基板の表面側に微小な凹凸部を形成した後に、この半

特開平9-102625

•

表面側と裏面側に電極を形成する太陽電池器子の製造方法において、前記ドライエッチング装置内に半導体基板を搬入した後に、このドライエッチング装置内にマスク形成用ガスとエッチングガスを同時に導入して前記半導体基板に前記微小な凹凸部を形成する。

【0009】このように構成すると、半導体基板の表面にフォトレジスト膜やハイドロカーボン膜を形成する工程と、このフォトレジスト膜やハイドロカーボン膜をエッチングして半導体基板の表面に微小な凹凸部を形成する工程が一つの工程になり、製造工程を簡略化して短時 10間で製造できるようになると共に、半導体基板として多結晶基板を用いた場合でも、この半導体基板の全面を均一にエッチングできるようになる。

【0010】また、請求項4に係る太陽電池素子の製造方法では、半導体基板をドライエッチング装置内に搬入して、この半導体基板の表面側に微小な凹凸部を形成した後に、この半導体基板の表面側に電極を形成する太陽電池素子の製造方法において、前記ドライエッチング装置内に半導体基板を搬入した後に、このドライエッチング装置内にマスク形成用ガスとエッチングガスを導入して前記半導体基板に前記微小な凹凸部を形成すると同時もしくは微小な凹凸部を形成した後に形状平坦化用ガスを導入する。

【0011】このように構成すると、半導体基板の表面 に形成される像小な凹凸部の先端部が鋭くなりすぎて次 工程でも破損することが有効に防止できると共に、半導体基板の表面積が増大しすぎて太陽電池の開放電圧 (Voc.) が低下するととを防止できる。

[0012]

【発明の実施の形態】以下、本発明の実施形態を添付図面に基づき詳細に説明する。図】(a)~(h)は請求項1に係る太陽電池素子の製造工程を示す図である。まず、同図(a)に示すように、0.2~1.0mm程度の厚みを有する半導体基板1を用意する。この半導体基板1は、C2法、F2法、EFG法、或いは鋳造法などで形成された単結晶又は多結晶のシリコンをスライスして形成され、例えばボロン(B)等のP型不純物を含有する。

【0013】次に、同図(b)に示すように、半導体基 40 板1の表面側に微小な凹凸部1bを形成する。この微小な凹凸部1bは、半導体基板1の表面にマスクを散点状に形成して例えばプラズマエッチング法、スパッタリング法、或いはイオンビームエッチング法などで形成される。この場合、マスク形成用ガスとしては、三フッ化メタン(CHF、)などのガスを用いることができ、エッチング用ガスとしては塩素(Cl、)などの塩素系ガスを用いることができる。また、酸素(O、)などの調整用ガスを用いてもよい。このようなガスを500mTor以下の圧力に設定したドライエッチング装置内に同 50

時に導入してRFパワー100W~10000W程度を印加する。半導体基板1上に、薄膜形成用ガスでポリマーを形成すると同時に、このポリマーをエッチングガスで部分的にエッチングし、この部分的にエッチングされたポリマーをマスクとして半導体基板1に微小な凹凸部1bができるようにエッチングする。なお、マスク形成用ガスとして三フッ化メタンを用いる場合は、3.0sccm程度の流量とし、エッチングガスとして塩紫系ガスを用いる場合は、18.0sccm程度の流量とし、調整用ガスとして酸素を用いる場合は、2.25sccm程度の流量とする。

【0014】マスク形成用ガス、エッチング用ガス、及び調整用ガスの3種類の全ガス流量は変化してもよいが、流量比は同じであることが望ましい。ガスの全流量とRFパワーが大きくなればなるほど凹凸部1bの形成速度は早くなる。

(0015)次に、同図(c)に示すように、半導体基板1の表面部分にN層1aを設け、PN接合部を形成する。N層1aの深さは2000Å~1μm程度である。
20 CのN層1aはリンを含む気体例えばオキシ塩化リン(POC)。)等を用いることにより形成する。

【0016】次に、同図(d)に示すように、半導体基板1の表面側のN層1aのみを残して他の部分を除去する。すなわち、半導体基板1の表面側のみにエッチングのレジスト膜を塗布し、フッ酸(HF)と硝酸(HNO,)の混合液に浸潤して、表面側以外のN層1aを除去した後にレジスト膜を除去し、半導体基板1を純水で洗浄する。

【0017】次に、同図(e)に示すように、半導体基 30 板1の裏面側の全面にアルミニウムペースト4を塗布し て焼き付けることにより、半導体基板1の裏面側にP・ 領域1cを形成する。

【0018】次に、同図(f)に示すように、半導体基板1の裏面側に塗布したアルミニウムペースト4をエッチング除去した後、半導体基板1の表面側に反射防止膜2を形成する。この反射防止膜2は半導体基板1に入射される光を効率よく吸収するための膜であり、その厚みが500~1000Å、屈折率が1.90~2.30程度になるように形成される。例えばシランとアンモニアとの混合ガスをプラズマ化して折出させた窒化シリコン膜などで形成される。具体的には、プラズマCVD装置内で半導体基板1を150℃~400℃で加熱し、ガス圧を0.2~2.0Torrに維持しながら、高周波電圧を印加する。この反射防止膜2の材料としては窒化シリコン膜の他に、一酸化シリコン(SiO)、二酸化チタン(TiO))などがある。

【0019】次に、同図(g)に示すように、半導体基板1の表面側に形成した反射防止膜2を表面電極5の形状に応じて除去する。すなわち、表面電極5のパターン

5

と逆パターンを形づくるように反射防止膜 2 を除去する。

【0020】次に、同図(h)に示すように、半導体基板1の表面側及び裏面側に表面電極5及び裏面電極6を形成する。表面電極5及び裏面電極6は、Aを粉末を主成分とするペーストを半導体基板1の表面及び裏面に厚膜手法で塗布して加熱焼成することにより形成する。

【0021】この表面電極2及び裏面電極3上には、必 板の表面に微小な凹凸部を形成する工程が一つの工程に要に応じて半田層(不図示)などが形成される。なお、 なり、製造工程を簡略化して短時間で製造できるように なり、製造工程を簡略化して短時間で製造できるように 表面電極5及び裏面電極6は、メッキ法や真空蒸着法を 10 なると共に、半導体ウェハとして多結晶禁板を用いた場 合でも、この半導体基板の全面を均一にエッチングでき

【0022】請求項4に係る太陽電池素子の製造方法も基本的な構成は、上記した請求項1に係る太陽電池素子の製造方法と同一であるが、請求項4に係る太陽電池素子の製造方法では、ドライエッチング装置内に半導体基板1を設置してマスク形成用ガスとエッチングガスでこの半導体基板1の表面に微小な凹凸部を形成すると同時もしくはこの微小な凹凸部を形成した後に形状平坦化用ガスを導入する。この形状平坦化用ガスとしては、例えば六フッ化硫黄(SF。)ガスなどを好適に用いること 20ができるが、半導体基板1をエッチングできるガスであれば六フッ化硫黄ガスに限らない。

【0023】例えば反応性イオンエッチング装置内を50mTorrの真空度に維持すると共に、マスク形成用ガスとして三フッ化メタンガスを12.0sccm、塩器ガスを72.0sccm、酸素ガスを9.0sccm、六フッ化硫黄ガスを65.0sccm流しながら、RFパワー500W程度で20分間エッチングすることにより微小な凹凸部1bを形成する。なお、六フッ化硫黄ガスは、三フッ化メタンガスや塩素ガスと同時に流す 30場合に限らず、後に流してもよい。

[0024]

б

【発明の効果】以上のように、請求項目に係る太陽電池 悪子の製造方法では、ドライエッチング装置内に半導体 基板を振入した後に、このドライエッチング装置内に スク形成用ガスとエッチング用ガスを同時に導入して前 記半導体基板に微小な凹凸部を形成することから、半導体 基板の表面にエッチングのマスクとなる順を形成する 工程と、このマスクとなる膜をエッチングして半導体基板の表面に微小な凹凸部を形成する工程が一つの工程に なり、製造工程を簡略化して短時間で製造できるように なると共に、半導体力ェハとして多結晶基板を用いた場合でも、この半導体基板の全面を均一にエッチングできるようになる。

【0025】また、請求項4に係る太陽電池素子の製造方法では、ドライエッチング装置内に半導体基板を搬入した後に、このドライエッチング装置内にマスク形成用ガスとエッチングガスを導入して半導体基板に微小な凹凸部を形成すると同時もしくは微小な凹凸部を形成した後に形状平坦化用ガスを導入することから、半導体基板の表面に形成される微小な凹凸部の先端部が鋭くなりすぎて次工程でも破損することが有効に防止できると共に、半導体基板の表面積が増大しすぎて太陽電池の開放電圧(V。。)が低下することを防止できる。すなわち、半導体基板が多結晶シリコンであっても面方位に依存せずに凹凸部を均一に形成でき、光吸収が増加して太陽電池の特性が向上する。

【図面の簡単な説明】

【図1】本発明に係る太陽電池素子の製造方法の一実施 例を示す図である。

【符号の説明】

1・・・半導体基板、1b・・・微小な凹凸部、5・・・表面電極、6・・・裏面電極

BEST AVAILABLE COPY

(5)

特開平9-102625

フロントページの続き

(72)発明者 白沢 勝彦

滋賀県八日市市蛇溝町長谷野1166番地の6 京セラ株式会社滋賀工場内