Bioassay screen of Arjen

Lissy Denkers

2022 - 01 - 25

Data import

Background information

This is the data of the whitefly development bioassay performed by Arjen van Doorn. Only MM and LA1840 will be used.

The raw data

genotype	replicate	stage	number
MM	3	fourth_instar	8
MM	4	$fourth_instar$	11
MM	5	$fourth_instar$	4
MM	6	$fourth_instar$	4
LA1840	1	$fourth_instar$	3
LA1840	2	$fourth_instar$	2
LA1840	3	$fourth_instar$	0
LA1840	5	$fourth_instar$	2
MM	3	egg	23
MM	4	egg	24

plots

I'm doubting whether I should use the absolute or relative number of 4th instars for the plot, so I will try both.

plot with absolute numbers

plot with relative 4th instar numbers

combined

It might be best to use both for the most complete view of the phnotype.

genotype | MM | LA1840

statistics

Are the number of 4th instars lower than the number of eggs for MM and LA1840?

```
## # A tibble: 2 x 11
     genotype .y.
                      group1 group2
                                                       n2 statistic
                                                                         df
                                                n1
                                                                                p p.adj
## * <fct>
               <chr>
                      <chr>>
                              <chr>>
                                              <int>
                                                               <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 MM
                                                  4
                                                        4
                                                                2.10
                                                                          3 0.126 0.126
               number egg
                              fourth_instar
                                                                7.00
                                                                          3 0.006 0.006
## 2 LA1840
               number egg
                              fourth_instar
                                                        4
## # ... with 1 more variable: p.adj.signif <chr>
```

For MM not. On LA1840, there were significantly less 4th instars than eggs.

Are the number off eggs and 4th instars the same on MM and LA1840?

```
## # A tibble: 2 x 11
                  group1 group2
     stage .y.
                                    n1
                                          n2 statistic
                                                           df
                                                                   p p.adj p.adj.signif
## * <chr> <chr> <chr>
                                                        <dbl> <dbl> <dbl> <chr>
                         <chr>
                                 <int>
                                       <int>
                                                  <dbl>
## 1 egg
           numb~ MM
                         LA1840
                                     4
                                           4
                                                  -1.37
                                                            3 0.263 0.263 ns
## 2 four~ numb~ MM
                         LA1840
                                     4
                                           4
                                                   3.40
                                                            3 0.043 0.043 *
```

The number of eggs are equal on MM and LA1840. The 4th instars are less on LA1840.

What does this look like? note: for 'stage'on the x-axis: 1 is eggs and 4 is 4th instars

genotype \longrightarrow MM \longrightarrow LA1840 60 $y = 35 - 7.1 \times R^2 = 0.44$ $y = 61 - 15 \times R^2 = 0.88$ 40 20 20

ż

stage

Comparing the regression of the nymph development on the two genotypes:

3

First fit a model with interaction an interaction term for genotype:

stage

```
##
## Call:
## lm(formula = number ~ stage + genotype + stage:genotype, data = mod)
##
## Residuals:
##
      Min
              1Q Median
                            3Q
                                  Max
   -18.00 -4.25 -0.75
                          2.00
                                27.00
##
##
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                          35.083
                                      8.151
                                              4.304 0.00102 **
## stage
                          -7.083
                                      2.796
                                            -2.534
                                                     0.02624 *
## genotypeLA1840
                          26.000
                                     11.527
                                              2.256
                                                     0.04356 *
                          -7.750
                                      3.954
                                            -1.960
                                                     0.07361 .
## stage:genotypeLA1840
                   0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Signif. codes:
## Residual standard error: 11.86 on 12 degrees of freedom
## Multiple R-squared: 0.7491, Adjusted R-squared: 0.6863
## F-statistic: 11.94 on 3 and 12 DF, p-value: 0.0006488
```

Now a model without the genotype effect

##

```
## Call:
## lm(formula = number ~ stage, data = mod)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -27.125 -3.406 -1.688
                             4.500
                                    21.875
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
                             6.368
## (Intercept)
                48.083
                                     7.551 2.67e-06 ***
## stage
                -10.958
                             2.184 -5.017 0.000188 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 13.11 on 14 degrees of freedom
## Multiple R-squared: 0.6426, Adjusted R-squared: 0.6171
## F-statistic: 25.17 on 1 and 14 DF, p-value: 0.0001884
comparing the performance
model1:
## # A tibble: 1 x 5
     adj.r.squared sigma
                           AIC
                                 BIC p.value
##
            <dbl> <dbl> <dbl> <dbl> <
                                        <dbl>
## 1
            0.686 11.9 130. 134. 0.000649
model2:
## # A tibble: 1 x 5
                                 BIC p.value
     adj.r.squared sigma
                           AIC
##
             <dbl> <dbl> <dbl> <dbl>
## 1
             0.617 13.1 132. 134. 0.000188
```

The first model (with genotype interaction) has a better fit.

The nymph survival during the development from egg to 4th instar is higher on MM than on LA1840.

