

Introduction to Machine Learning

Acting under uncertainty: Bayesian decision theory

Nils M. Kriege WS 2023

Data Mining and Machine Learning Faculty of Computer Science University of Vienna

Credit: Slides based on the IML Lectures by Sebastian Tschiatschek and Andreas Krause

Acting under uncertainty

- So far, have seen how we can interpret supervised learning as fitting probabilistic models of the data
- Next, we will see how we can use the estimated models to make decisions

Acting under uncertainty

- Suppose we have estimated a logistic regression model (say, for spam filtering), and obtain $P(Y = \text{spam}|\mathbf{x})$
- Further suppose we have three actions:
 Spam, NotSpam and AskUser
- Which action should we pick?

	COST	
Action	Spam	Not spam
Spam	0	10
NotSpam	1	0
AskUser	0.5	0.5

Expected cost							
Action	p = 0.2	p = 0.8					
Spam							
NotSpam							
AskUser							

Acting under uncertainty

- Suppose we have estimated a logistic regression model (say, for spam filtering), and obtain $P(Y = \text{spam}|\mathbf{x})$
- Further suppose we have three actions:
 Spam, NotSpam and AskUser
- Which action should we pick?

Cost				Expected cost			
	Action	Spam	Not spam	Action	p = 0.2		
	Spam	0	10	Spam	8.0		
	${\tt NotSpam}$	1	0	NotSpam	0.2		
	AskUser	0.5	0.5	AskUser	0.5		

p = 0.82.0
0.8
0.5

Bayesian decision theory

- Given
 - Conditional distribution over labels $P(y|\mathbf{x})$
 - Set of actions A
 - Cost function $C \colon \mathcal{Y} \times \mathcal{A} \to \mathbb{R}$
- Bayesian Decision Theory recommends to pick the action that minimizes the expected cost:

$$a^* = \operatorname*{argmin}_{a \in \mathcal{A}} \mathbb{E}_y[C(y, a) \mid \mathbf{x}]$$

Bayesian decision theory

- Given
 - Conditional distribution over labels $P(y|\mathbf{x})$
 - Set of actions A
 - Cost function $C: \mathcal{Y} \times \mathcal{A} \to \mathbb{R}$
- Bayesian Decision Theory recommends to pick the action that minimizes the expected cost:

$$a^* = \operatorname*{argmin}_{a \in \mathcal{A}} \mathbb{E}_y[C(y, a) \mid \mathbf{x}]$$

- If we had access to the true distribution $P(Y|\mathbf{x})$ this decision implements the Bayesian optimal decision
- In practice, can only estimate it, e.g., (logistic) regression

Recall: Logistic regression

- Learning:
 - Find optimal weights by minimizing logistic loss + regularizer:

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i=1}^{n} \log \left(1 + \exp(-y_i \mathbf{w}^T \mathbf{x}_i) \right) + \lambda \|\mathbf{w}\|_2^2$$
$$= \underset{\mathbf{w}}{\operatorname{argmax}} P(\mathbf{w}|\mathbf{x}_1, \dots, \mathbf{x}_n, y_1, \dots, y_n)$$

- · Classification:
 - · Use conditional distribution:

$$P(y|\mathbf{x}, \hat{\mathbf{w}}) = \frac{1}{1 + \exp(-y\hat{\mathbf{w}}^T\mathbf{x})}$$

• E.g., predict more likely class label

$$\underset{y}{\operatorname{argmax}} P(y|\mathbf{x}, \hat{\mathbf{w}}) = \operatorname{sign}(\hat{\mathbf{w}}^{\mathsf{T}}\mathbf{x})$$

Optimal decisions for logistic regression

- Est. cond. dist: $\hat{P}(Y \mid \mathbf{x}) = Ber(y; \sigma(\hat{\mathbf{w}}^T \mathbf{x}))$
- Action set: $A = \{+1, -1\}$

• Cost function:
$$C(y, a) = [y \neq a] = \begin{cases} 1 & \text{if } a \neq y, \\ 0 & \text{otherwise} \end{cases}$$

Optimal decisions for logistic regression

- Est. cond. dist: $\hat{P}(Y \mid \mathbf{x}) = Ber(y; \sigma(\hat{\mathbf{w}}^T \mathbf{x}))$
- Action set: $A = \{+1, -1\}$
- Cost function: $C(y, a) = [y \neq a] = \begin{cases} 1 & \text{if } a \neq y, \\ 0 & \text{otherwise} \end{cases}$
- Then the action that minimizes the expected cost

$$a^* = \operatorname*{argmin}_{a \in \mathcal{A}} \mathbb{E}_y[C(y, a) \mid \mathbf{x}]$$

is the most likely class

$$a^* = \underset{y}{\operatorname{argmax}} \hat{P}(y \mid \mathbf{x}, \hat{\mathbf{w}}) = \operatorname{sign}(\hat{\mathbf{w}}^T \mathbf{x})$$

Asymmetric costs

- Est. cond. dist: $\hat{P}(Y = y \mid \mathbf{x}) = Ber(y; \sigma(\hat{\mathbf{w}}^T \mathbf{x}))$
- Action set: $A = \{+1, -1\}$
- · Cost function:

$$C(y,a) = egin{cases} c_{\mathsf{FP}} & \mathsf{if}\ y = -1\ \mathsf{and}\ a = +1 \ c_{\mathsf{FN}} & \mathsf{if}\ y = +1\ \mathsf{and}\ a = -1 \ \mathsf{o} & \mathsf{otherwise} \end{cases}$$

Asymmetric costs

- Est. cond. dist: $\hat{P}(Y = y \mid \mathbf{x}) = Ber(y; \sigma(\hat{\mathbf{w}}^T\mathbf{x}))$
- Action set: $A = \{+1, -1\}$
- · Cost function:

$$C(y,a) = egin{cases} c_{\mathsf{FP}} & \mathsf{if}\ y = -1\ \mathsf{and}\ a = +1 \ c_{\mathsf{FN}} & \mathsf{if}\ y = +1\ \mathsf{and}\ a = -1 \ \mathsf{o} & \mathsf{otherwise} \end{cases}$$

Let $p = P(Y = +1|\mathbf{x})$. The expected cost of the actions is:

$$\begin{aligned} C_{+} &= \mathbb{E}_{y}[C(y,+1) \mid \mathbf{x}] = (1-p) \cdot c_{\mathsf{FP}} + p \cdot O = (1-p)c_{\mathsf{FP}} \\ C_{-} &= \mathbb{E}_{y}[C(y,-1) \mid \mathbf{x}] = (1-p) \cdot O + p \cdot c_{\mathsf{FN}} = pc_{\mathsf{FN}} \end{aligned}$$

Take action +1 if
$$C_+ < C_- \Leftrightarrow (1-p)c_{FP} < pc_{FN} \Leftrightarrow p > \frac{c_{FP}}{c_{FP}+c_{FN}}$$

Demo: Asymmetric costs

"Doubtful" logistic regression

- Est. cond. dist: $\hat{P}(Y \mid \mathbf{x}) = Ber(y; \sigma(\hat{\mathbf{w}}^T \mathbf{x}))$
- Action set: $A = \{+1, -1, D\}$, where D represents doubt
- · Cost function:

$$C(y,a) = \begin{cases} [y \neq a] & \text{if } a \in \{+1,-1\} \\ c & \text{if } a = D \end{cases}$$

"Doubtful" logistic regression

- Est. cond. dist: $\hat{P}(Y \mid \mathbf{x}) = Ber(y; \sigma(\hat{\mathbf{w}}^T \mathbf{x}))$
- Action set: $A = \{+1, -1, D\}$, where D represents doubt
- Cost function:

$$C(y,a) = \begin{cases} [y \neq a] & \text{if } a \in \{+1,-1\} \\ c & \text{if } a = D \end{cases}$$

Then the action that minimizes the expected cost

$$a^* = \operatorname*{argmin}_{a \in \mathcal{A}} \mathbb{E}_y[C(y, a) \mid \mathbf{x}]$$

is given by

$$a^* = \begin{cases} y & \text{if } \hat{P}(y \mid \mathbf{x}) \ge 1 - c \\ D & \text{otherwise} \end{cases}$$

I.e., pick most likely class only if confident enough!

Demo: "Doubtful" logistic regression

Optimal decisions for LS regression

- Est. cond. dist: $\hat{P}(Y \mid \mathbf{x}) = \mathcal{N}(y; \hat{\mathbf{w}}^T \mathbf{x}, \sigma^2)$
- Action set: $\mathcal{A} = \mathbb{R}$
- Cost function: $C(y, a) = (y a)^2$
- Then the action that minimizes the expected cost

$$a^* = \operatorname*{argmin}_{a \in \mathcal{A}} \mathbb{E}_y[\mathit{C}(y, a) \mid \mathbf{x}] = \operatorname*{argmin}_{a \in \mathcal{A}} \int \hat{\mathit{P}}(\mathit{Y} \mid \mathbf{x}) \mathit{C}(y, a) \, \mathrm{d}y$$

is the conditional mean

$$a^* = \mathbb{E}_y[y \mid \mathbf{x}] = \int \hat{P}(Y \mid \mathbf{x})y \, dy = \hat{\mathbf{w}}^T \mathbf{x}$$

Example: Asymmetric cost for regression

- Est. cond. dist: $\hat{P}(Y \mid \mathbf{x}) = \mathcal{N}(y; \hat{\mathbf{w}}^T \mathbf{x}, \sigma^2)$
- Action set: $\mathcal{A} = \mathbb{R}$
- Cost function:

$$C(y, a) = c_1 \underbrace{\max(y - a, o)}_{\text{Underestimation}} + c_2 \underbrace{\max(a - y, o)}_{\text{Overestimation}}$$

· Then the action that minimizes the expected cost

$$a^* = \operatorname*{argmin}_{a \in \mathcal{A}} \mathbb{E}_y[C(y, a) \mid \mathbf{x}]$$

is given by

$$a^* = \hat{\mathbf{w}}^\mathsf{T} \mathbf{x} + \sigma \Phi^{-1} \left(\frac{c_1}{c_1 + c_2} \right),$$

where Φ^{-1} is the inverse Gaussian CDF.

Demo: Asymmetric cost for regression

Outlook: Active learning

- Labels are expensive (need to ask expert)
- Want to minimize the number of labels

Uncertainty sampling

Simple strategy: Always pick the example that we are most uncertain about

- Given $\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$, estimate $\hat{P}(y|x)$
- For every unlabeled \mathbf{x}_j : $\hat{P}(y_j = +1|\mathbf{x}_j) = p_j$
- Uncertainty score $u_j = f(p_j)$, where f is a function with f(0.5) maximum
- Pick point x_{j^*} with $j^* = \operatorname{argmax}_j u_j$

Uncertainty sampling

- **Given:** Pool of unlabeled examples $\mathcal{D}_X = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$
- Also maintain labeled data set \mathcal{D} , initially empty
- For t = 1, 2, 3, ...
 - Estimate $\hat{P}(Y_i \mid \mathbf{x}_i)$ given current data \mathcal{D}
 - Pick unlabeled example that we are most uncertain about

$$i_t \in \underset{i}{\operatorname{argmin}} |0.5 - \hat{P}(Y_i \mid \mathbf{x}_i)|$$

• Query label y_i and set $\mathcal{D} \leftarrow \mathcal{D} \cup \{(\mathbf{x}_i, y_i)\}$

Demo: Uncertainty sampling

Further comments

- Active learning violates i.i.d. assumption!
- Can get stuck with bad models
- · More advanced selection criteria available
 - E.g.: query point that reduces uncertainty of other points as much as possible

Deriving decision rules

- Bayesian decision theory provides a principled way to derive decision rules from conditional distributions P(Y | x)
- Standard rules arise as special cases:
 - Linear regression: $\hat{\mathbf{w}}^T \mathbf{x}$
 - Logistic regression: $sign(\hat{\mathbf{w}}^T\mathbf{x})$
- Can accommodate more complex settings
 - "Doubt" (i.e., requiring sufficient confidence)
 - Asymmetric losses
 - · Active learning
 - ...

Summary: Learning through MAP inference

- Start with statistical assumptions on data:
 Data points modeled as iid (can be relaxed)
- Choose likelihood function
 - Examples: Gaussian, student-t, logistic, exponential, . . .
 - \Rightarrow loss function
- Choose prior
 - Examples: Gaussian, Laplace, exponential, . . .
 - ⇒ regularizer
- Optimize for MAP parameters
- Choose hyperparameters (i.e., variance, etc.) through cross-validation
- Make predictions via Bayesian Decision Theory

What you should be able to do

- Understand and apply logistic regression and its variants
- Relate logistic regression and Perceptron/SVM
- Derive MAP estimation problems for different priors and likelihood functions
- Solve resulting optimization problems by applying gradient descent
- Derive decision rules from cost functions via Bayesian decision theory
- Apply uncertainty sampling for binary classification