

Simon Hirländer

Tutorial RL4AA

World state

True dynamics

Problem design - capture the right thing

• Rarely the observation o is the state s, the world state is, but often we assume it is certainty equivalence!

POMDP ⇒ MDPs!

Solve an SDM problem: Information→Decision→Information→Decision→…

Generally stochastic!

Consequently we build a feedback system not planing too far in the future:

• Define a state $s_t = h_t(o_t, a_{t-1}, o_{t-1}, a_{t-2}, o_{t-2}, \dots)$, as a function holding sufficient statistics until time step t for a decision - (example pong)

• Decision based on s_t via: $a_t = \pi_t(s_t)$ - the policy - optimise an expected aggregate of future rewards

 O_{t-1}

 O_{t-2}

O_t

Internal representation

Features

Problem design - capture the right thing

- Solve an SDM problem: Information→Decision→Information→Decision→…
- Generally stochastic!
- Consequently we build a feedback system not planing too far in the future:
 - Define a <u>state</u> $s_t = h_t(o_t, a_{t-1}, o_{t-1}, a_{t-2}, o_{t-2}, \dots)$, as a function holding <u>sufficient statistics</u> until time step t for a decision (example pong)
 - Decision based on s_t via: $a_t = \pi_t(s_t)$ the policy optimise an expected aggregate of future rewards

- Rarely the observation o is the state s, the world state is, but often we assume it is certainty
 equivalence!
- POMDP ⇒ MDPs!

Simon Hirländer

How bad is it?

- Linear POMDP: believe state $O_t = h_t(S_t, A_t, W_t)$
 - \rightarrow Static output feedback is NP hard (linear in O_t and dynamics)
 - General POMDPs are PSPACE hard
- There are ways out separation principle:
 - → Filtering $\hat{s}_t = f(\{o_t\})$ prediction problem
 - Action based on <u>certainty equivalence</u>
 - Optimal filtering if dynamics are linear and noise is Gaussian Kalman filtering general belief propagation - LQG
 - Kalman filtered state optimal in estimation and control
 - ightharpoonup Estimate state with prediction $S_t = h(\tau_t)$, τ_t are time lags

