Sesión 2

Erick Oré

12 de octubre de 2016

Procesos Multivariados

Vectores Autoregresivos (VAR)

3 Estrategias de Identificación

Erick Oré

Modelos Multivariados

- Generalización de los procesos univariados $Y_t = [y_{1t}, y_{2t}, ..., y_{nt}]'$
- Estacionariedad de un procesos multivariado.
- El Teorema de Wold aplica, por ende podemos expresar Y(t) en función de sus rezagos:

$$Y(t) = f(Y(t-1), Y(t-2), ...)$$

No olvidar:

$$Y_t: x \to \mathbb{R}^n$$

Donde x es el espacio de los estados de la naturaleza.

Vectores Autoregresivos (VAR)

Asumiendo que f(.) es lineal, llegamos a:

$$Y_t = \Phi_1 Y_{t-1} + \Phi_2 Y_{t-2} + \dots + \epsilon_t \to \Phi(L) Y_t + \epsilon_t$$

Donde $\epsilon_t = [\epsilon_{1t}, \epsilon_{2t}, ..., \epsilon_{nt}]'$.

- La estacionariedad requiere que las raices de $\Phi(z^{-1})$ esten dentro del círculo unitario.
- Los shocks a cada variable son ortogonales a los pasados:

$$E[\epsilon_{mt}\epsilon_{nt-j}]=0$$

$$\forall j > 0, m, n$$

 Sin embargo los shocks del mismo periodo se encuentran correlacionados:

$$E[\epsilon_t \epsilon_t'] = \Omega$$

Representación de un VAR

Companion form de un VAR(p):

$$\mathbb{Y}_t = [Y_t, Y_{t-1}, Y_{t-2}, ..., Y_{t-p}]'$$

• El VAR(p) queda expresado como un VAR(1):

$$\mathbb{Y}_t = \mathbb{A}\mathbb{Y}_{t-1} + \mathbb{E}_t$$

• Forma de Ecuaciones Simultaneas: $Y = [y_1, y_2, ..., y_T]'$, $x_t = [y_{t-1}, y_{t-2}, ..., y_{t-p}]$, $X = [x_1, x_2, ..., x_T]'$ y $A = \mathbb{A}_1'$

$$Y = XA + E$$

Cada columna de esta ecuación implica la dinámica de una variable.
 Apilando estas columnas llegamos a:

$$y=(I_m\otimes X)\alpha+e$$

Estimación de un VAR

Máxima Verosimilitud (Companion Form)

$$\mathbb{Y} \sim N(0, \Sigma_Y)$$

Máxima Verosimilitud Condicional

$$y_t \sim N(\mathbb{A}_1 \mathbb{Y}_t, \Sigma_E)$$

• Mínimos Cuadrados Ordinarios (Forma de Ecuaciones Simultaneas)

$$\alpha = [(I_m \otimes X)'(I_m \otimes X)]^{-1}(I_m \otimes X)'y$$

Consistencia de MCO

Demuestre que bajo MCO, un modelo VAR se estima consistentemente.

◆ロト ◆卸 ト ◆差 ト ◆差 ト ・ 差 ・ か Q (^*)

Especificación de un VAR

- 1 Elegir un rezago máximo para el VAR: \bar{q}
- Verificar que los errores se comporten como un vector normal i.i.d.. En caso de que no, reespecificar.
- Testear la especificación Var(q) contra la Var(q-1). En caso se rechaze, optar por el Var(q).

Consistencia de MCO

¿Que condiciones debe cumplir un vector para que se comporte como i.i.d.?

¿Cómo tratar un vector que no se comporta normalmente pero que si es i.i.d.?

Funciones Impulso-Respuesta

Se parte de la representación base de un VAR:

$$\Phi(L)Y_t = \epsilon_t$$

 Al igual que los procesos univariados, el VAR se puede representar como un VMA infinito:

$$Y_t = \Phi(L)^{-1} \epsilon_t = \Theta(L) \epsilon_t$$

Donde $\Phi_0 = I$

• Notemos que: $\Phi(L)\Theta(L) = I$:

$$(\Phi_0 - \Phi_1 L - \Phi_2 L^2 - ...)(\Theta_0 + \Theta_1 L + \Theta_2 L^2 + ...) = I$$

$$\begin{split} & \Phi_0 \Theta_0 = I \rightarrow \Theta_0 = I \\ & \Phi_1 \Theta_0 - \Phi_0 \Theta_1 = 0 \rightarrow \Theta_1 = (\Phi_1 \Theta_0) \\ & \Phi_0 \Theta_2 - \Phi_1 \Theta_1 - \Phi_2 \Theta_0 = 0 \rightarrow \Theta_2 = (\Phi_1 \Theta_1 + \Phi_2 \Theta_0) \end{split}$$

Interpretación de un VAR

Modelos teóricos y series de tiempo:

$$GDP_{t} = \alpha_{0} + \epsilon_{t}^{S} - \alpha_{1}(i_{t} - E_{t}\Delta p_{t+1}) + \epsilon_{t}^{IS}$$

$$M_{t} - p_{t} = \alpha_{2}GDP_{t} - \alpha_{3}i_{t} + \epsilon_{t}^{MD}$$

$$\Delta M_{t} = \epsilon_{t}^{MS}$$

$$\Delta p_{t} = \Delta p_{t-1} + \alpha_{4}(GDP_{t} - \epsilon_{t}^{S})$$

- ullet Efecto del impacto de un shock ϵ_t^k
 - El shock ϵ^S tiene un impacto persistente en *GDP* y esta negativamente correlacionado con Δp .
 - El impacto de ϵ^{IS} incrementa el *GDP*, transitoriamente, incrementa i y también Δp .
 - El impacto ϵ^{MS} esta positivamente correlacionado con GDP y Δp y negativamente correlacionado con i.
 - ¿Cuál es la lógica del choque ϵ^{MD} ?

Interpretación de un VAR

- Se pueden recuperar los impactos de los shocks en las variables haciendo uso de la información muestral y la estimación de un VAR mediante las funciones impulso respuesta.
- Sin embargo, para interpretar los resultados de un VAR se requiere que los shocks ϵ sean ortogonales.
- ¿Como hacer que los shocks que se estiman de un VAR sean ortogonales?

Shocks Ortogonales

Supongamos que existe un vector de error \tilde{e}_t^1 , $\tilde{e}_t^2 \sim N(0,I)$. Si los combinamos se pueden obtener shocks correlacionados: $e_t^1 = \tilde{e}_t^1 + \tilde{e}_t^2$, $e_t^2 = \tilde{e}_t^1 - \tilde{e}_t^2$.

10 / 19

Erick Oré 12 de octubre de 2016

Problema de Identificación

 Se asume que los shocks del modelo reducido son combinaciones lineales de los shocks estructurales (ortogonales):

$$\epsilon_t = \Gamma \tilde{\epsilon}_t$$

- Donde la varianza de $\tilde{\epsilon}_t$ es diagonal.
- Notemos que la cantidad de parámetros a estimar es igual a el número de elementos de Γ , o sea $n \times n$.
- Para estimar dichos parámetros se tiene la matriz de varianzas y covarianzas de e_t : Σ_e .
- Sin embargo:

$$E[\epsilon_t \epsilon_t'] = \Sigma_e = E[\Gamma \Sigma_{\tilde{e}} \Gamma']$$

Se tienen que estimar $n \times n$ parámetros de la matriz Γ y n de la matriz $\Sigma_{\tilde{e}}$, pero solo se tienen n(n+1)/2 ecuaciones.

Problema de Identificación

- El sistema esta subidentificado, se tienen n(n+1) variables a estimar, pero solo se tienen n(n+1)/2. Por ello se restringen los parámetros:
- Generalmente, la diagonal de Γ se identifica considerando que los shocks tienen la misma medida. Se restringieron n parámetros. (Se identifica o la diagonal de la matriz o las varianzas).
- Se tienen que restringir n(n-1)/2 para que el sistema este identificado:
 - Identificación de Cholesky
 - Restricciones de Corto Plazo
 - Restricciones de Largo Plazo

Descomposición de varianza

- Se asume que los shocks ortogonales tienen varianza diagonal $\Sigma_{\tilde{\epsilon}}$. La matriz que identifica los shocks es Γ .
- El error de predicción en un horizonte de proyección *m* es:

$$Y_{t+m} - E_t(Y_{t+m}) = \epsilon_{t+m} + \Theta_1 \epsilon_{t+m-1} + \Theta_2 \epsilon_{t+m-2} + \dots + \Theta_m \epsilon_t$$

• Usando el hecho de que $\epsilon = \Gamma \tilde{\epsilon}$:

$$Y_{t+m} - E_t(Y_{t+m}) = \Gamma \tilde{\epsilon}_t + \Theta_1 \Gamma \tilde{\epsilon}_{t+m-1} + \dots + \Theta_m \Gamma \tilde{\epsilon}_t$$

Se obtienen la función IR para los shocks ortogonales:

$$Y_{t+m} - E_t(Y_{t+m}) = \tilde{\Theta}_0 \tilde{\epsilon}_t + \tilde{\Theta}_1 \tilde{\epsilon}_{t+m-2} + ... + \tilde{\Theta}_m \tilde{\epsilon}_t$$

• La varianza del error de predicción es:

$$VE(m) = \Theta_0 \Sigma_{\tilde{\epsilon}} \Theta_0' + \Theta_1 \Sigma_{\tilde{\epsilon}} \Theta_1' + \dots$$

Erick Oré 12 de octubre de 2016 13 / 19

Descomposición de varianza

• Para una variable específica la varianza del error de predicción es:

$$VE(m)^{i} = \sum_{s} (\sigma_{s}^{2} \Theta_{0}^{s}(i)^{2} + \sigma_{s}^{2} \Theta_{1}^{s}(i)^{2} + \sigma_{s}^{2} \Theta_{3}^{s}(i)^{2} + ...)$$

Donde $\Theta_t^s(i)$ es el elemento i del vector columna s de Θ_t .

Identificación de Cholesky

• Se requieren n(n-1)/2 restricciones para identificar la matriz Γ .

$$\epsilon = \Gamma \tilde{\epsilon}$$

La estrategia de Cholesky implica una identificación recursiva:

$$\epsilon_t = egin{bmatrix} 1 & \gamma_{12} & \gamma_{13} & \dots \ 0 & 1 & \gamma_{23} & \dots \ 0 & 0 & 1 & \dots \ \dots & \dots & \dots & \dots \end{bmatrix} ilde{\epsilon}_t$$

- El orden de las variables en la identificación de Cholesky importa:
 - El shock reducido de la primera variable es el que esta afectado por todos los shocks ortogonales, por ende esta se supone que es la variable "más endógena".
 - El shock reducido de la última variable es igual al shock ortogonal, por lo que esta variable debería ser la "más exógena".

Restricciones de Corto Plazo

 Un modelo VAR, considerando una especificación estructural lineal puede representarse de la siguiente forma:

$$\Psi Y_t = \Lambda_1 Y_{t-1} + \Lambda_2 Y_{t-2} + \dots + \tilde{\epsilon}_t$$

Los shocks reducidos se pueden recuperar considerando que:

$$Y_t = \Psi^{-1} \Lambda Y_{t-1} + ... + \Psi^{-1} \tilde{\epsilon}_t$$

 El error reducido en el modelo se puede identificar usando tanto Ψ como Γ:

$$\Gamma \tilde{\epsilon} = \Psi \epsilon$$

- ullet Las restricciones de corto plazo son aquellas impuestas sobre Ψ , dadas las relaciones contemporaneas que existen entre las variables.
 - Restricciones de ceros.
 - Estimación usando variables instrumentales.

Restricciones de Corto Plazo

- Blanchard y Perotti plantean una estrategia para identificar los shocks estructurales de impuestos y gasto, y valorar su impacto en la actividad económica.
 - $b_2 = 0$
 - Fuente externa para calcular a_2 (Elasticidad de la recaudación respecto a la actividad).
 - c_1 y c_2 estimados mediante IV.
 - *a*₁ y *b*₁ en discusión.

$$\begin{bmatrix} 1 & 0 & -a_1 \\ -b_1 & 1 & 0 \\ -c_1 & -c_2 & 1 \end{bmatrix} \begin{bmatrix} \tau_t \\ g_t \\ x_t \end{bmatrix} = \begin{bmatrix} 1 & a_2 & 0 \\ b_2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e_t^{\tau} \\ e_t^{g} \\ e_t^{\chi} \end{bmatrix}$$

17 / 19

Restricciones de Largo Plazo

- En algunos casos las mvariables que se incluyen en un VAR son no-estacionarias. En el VAR se incluye una transformación estacionaria de dicha variable, por ejemplo, la variación.
- Sobre este tipo de variables se pueden usar restricciones de identificación de los shocks de largo plazo, o sea, el impacto total.

Proceso I(1)

Supongase un proceso no estacionario:

$$\Delta y_t = \phi \Delta y_{t-1} + \epsilon_t$$

Halle el impacto de largo plazo.

Restricciones de Largo Plazo

Dado un modelo no estacionario expresado en su forma MA:

$$\Delta y_t = \Theta(L)\epsilon_t = \tilde{\Theta}(L)\Gamma\tilde{\epsilon}_t$$

• El impacto de largo plazo de los shocks del modelo reducido son:

$$\tilde{\Theta}(1)\Gamma\tilde{\epsilon}_t = \Theta(1)\epsilon$$

• Se pueden recuperar los shocks estructurales imponiendo restricciones sobre $\tilde{\Theta}(1)$.

Blanchard-Quah

Para identificar los shocks producidos por cambios tecnológicos o por cambios de demanda en la actividad se asume que los shocks de demanda no tienen efecto de largo plazo.

4 □ ト 4 □ ト 4 亘 ト 4 亘 り 9 0 0