Четвертое задание по курсу «Байесовские методы статистического оценивания»

10 октября 2015 г.

1. (1 балл) Плотность случайной величины с центрированным распределением Коши при $y \in \mathbf{R}$ равна

$$p(y) = \frac{1}{\pi} \cdot \frac{1}{c(1+y^2/c^2)}, \quad c > 0.$$

Привести пример преобразования $\varphi(x), \ x \in [0,1]$ такого, что $\varphi(X)$ имеет распределение Коши при случайном $X \sim U[0,1]$. Единственное ли это преобразование?

2. Рассматривается полуэллипсоид в трехмерном пространстве, заданный параметрически:

$$\begin{cases} x = \sqrt{3}\sin\theta\cos\varphi \\ y = \sqrt{2}\sin\theta\sin\varphi \\ z = \cos\theta \end{cases},$$

 $\theta \in [0, \pi/2], \ \varphi \in [0, 2\pi].$

Используя метод выборки с отклонением (http://en.wikipedia.org/wiki/Rejection_sampling) и равномерное на $[0,\pi/2]\times[0,2\pi]$ распределение в качестве вспомогательного распределения

- а) (1 балл) написать алгоритм генерации случайных равномерных (по площади) точек с поверхности;
- б) (2 балла) провести численный эксперимент: построить рассматриваемую поверхность; построить большую выборку, равномерно по площади распределенную на эллипсоиде; построить трехмерный образ равномерной в пространстве параметров большой выборки. Графики строить с равными масштабами по всем осям. Сделать вывод.
- **3.** Задано дискретное распределение на x_0, x_1, \ldots, x_S , такое что $p(x_i) = p_i > 0, i = \overline{0,S}$, и вектор $\mathbf{p} = (p_0, p_1, \ldots, p_S)$ полностью задает такое распределение. Мы оцениваем математическое ожидание I функции $f(\mathbf{x})$ по

распределению, заданному вектором р:

$$I = \sum_{i=0}^{S} f(x_i)p(x_i),$$

причем $f(x_i)$ определена и непостоянна на x_0, \ldots, x_S . Для оценки мы используем идею Монте-Карло:

$$\hat{I} \approx \frac{1}{n} \sum_{\tau=1}^{n} f(x^{(\tau)}),\tag{1}$$

с $x^{(\tau)}$ из распределения, заданного вектором **р**.

Рассмотрим семейство алгоритмов семплирования, для которых генерация новой точки $x^{(\tau+1)}$ на шаге $\tau+1$ имеет вид:

- Сгенерировать точку x^* из опорного распределения $q(x|x^{(\tau)})$.
- Вычислить вероятность принятия точки x^* :

$$A(x^*, x^{(\tau)}) = \frac{s(x^*, x^{(\tau)})}{1 + \frac{p(x^{(\tau)})q(x^*|x^{(\tau)})}{p(x^*)q(x^{(\tau)}|x^*)}}.$$

Здесь $s(x^*,x^{(\tau)})$ — функция симметричная по x^* и $x^{(\tau)}$, выбранная так, что вероятность принять точку $0 \le A(x^*,x^{(\tau)}) \le 1$.

• Сгенерировать случайную величину u из распределения Бернулли с $p(u=1)=A(x^*,x^{(\tau)}).$ Если u=1, то $x^{(\tau+1)}=x^*,$ если u=0, то $x^{(\tau+1)}=x^{(\tau)}.$

Таким образом, алгоритм из семейства и матрица переходных вероятностей для Марковской цепи P определяются матрицами Q и A, где $Q=\{q(x_i|x_j)\}_{i,j=0}^S$ и $A=\{A(x_i,x_j)\}_{i,j=0}^S$.

Задачи:

- а. (1 балл) Привести $s(x^*, x^{(\tau)})$ такую, что полученный алгоритм будет алгоритмом Метрополиса-Хастингса.
- b. (2 балла) Асимптотическая дисперсия оценки \hat{I} для алгоритмов семплирования из такого семейства имеет вид:

$$V = \lim_{n \to \infty} n \operatorname{Var} \left(\frac{1}{n} \sum_{\tau=1}^{n} f(x^{(\tau)}) \right) = \mathbf{f}(2BZ - B - BC) \mathbf{f}^{T}, \tag{2}$$

где

$$C = \xi^{T} \mathbf{p}, \xi = (1, 1, \dots, 1),$$

$$Z = (I - (P - C))^{-1},$$

$$B = \begin{pmatrix} p_{0} & 0 & \dots & 0 \\ 0 & p_{1} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & p_{S}, \end{pmatrix},$$

$$\mathbf{f} = (f(x_{0}), \dots, f(x_{S})).$$

Пусть неприводимые 1 матрицы перехода P_{1} и P_{2} для двух различных цепей Маркова удовлетворяют условию детального равновесия

$$p^*(x_i)q(x_j|x_i) = p^*(x_j)q(x_i|x_j), i, j = \overline{1,n}$$

для некоторого распределения $p^*(x)$.

Доказать, что если недиагональные элементы матрицы P_2 меньше либо равны недиагональным элементам матрицы P_1 , то асимптотическая дисперсия (2) оценки (1) для P_1 не больше, чем дисперсия такой оценки для P_2 .

с. (1 балл) Доказать, что для заданной матрицы Q наименьшая асимптотическая дисперсия V в семействе, которое определено выше, достигается для симметричной функции $s(x^*,x^{(\tau)})$ из алгоритма Метрополиса-Хастингса.

 $^{^1\}Pi$ ерестановкой строк их нельзя привести к блочно-диагональному виду, http://mathworld.wolfram.com/IrreducibleMatrix.html