Optimal Surplus Capacity Utilization in Polling Systems via Fluid Models

Ayush Rawal¹ email: ayush.rawal@iitb.ac.in

Industrial Engineering and Operations Research Indian Institute of Technology, Bombay

WiOpt, 2014 Hammamet, Tunisia

Outline

- Introduction
- 2 Steady State Fluid Model
- 3 Achievable Region
- 4 Optimization
- Conclusions

Polling Systems: Definition and Applications

- Class of queuing system.
- Single server visits a set of queues.
- Non zero time to walk/switch.
- Non work conserving.
- Application areas:
 - Communication Systems,
 - Production Systems,
 - Traffic and Transportation Systems, etc.

What is 'Differential Fairness'?

Providing special treatment to the users/processes, depending upon the requirements.

- Applications of differential fairness:
 - Application driven,
 - Price driven,
 - Market driven.
- Two scenarios:
 - Underprivileged users
 - High demand users
- Two customer classes, one class demands certain Quality of Service (QoS).

Problem Description and Approach

- Primary customers served by a server.
 - System stable ⇒Surplus capacity.
 - Can we get extra revenue? Secondary customers.
- Goal: Allocate resources to secondary customers ∋QoS requirements of primary not compromised.
- Can delay priority schedulers help?
 - Achievable Region, A.
 - Complete class of schedulers.
- Optimize performance over A, we propose two constrained optimization problem:
 - Admission control, controlling λ_2 .
 - Limited buffer, with loss.

System Description

- Single server polling system, two queues Q_1 and Q_2 .
- Infinite buffer capacity.
- Arrival rates $\lambda_i's$ and Service rates $\mu_i's$, where $i \in \{1,2\}$.
- Switching times, IID with mean s.
- FCFS, Non-preemptive queuing discipline.
- Customers leave system only when service is completed.
- Time invariant, state dependent scheduling policies.

β -priority/ Exhaustive Switching Policy

Let \tilde{w}_i and \tilde{w}_{-i} be the waiting time of longest waiting time of customer in Q_i and Q_{-i} respectively.

When in Q_i , the switching rule $\beta=(\beta_1,\beta_2)$ implies the following:

- **1** If $\beta_i = ex$, switch from Q_i , when Q_i is empty.
- 2 Else switch from Q_i , when $\beta_i \tilde{w}_i \leq \tilde{w}_{-i}$.

From Discrete to Fluid Model

- Discrete System $(\lambda_1, \lambda_2, \mu) \xrightarrow{\mu \to \infty}$ Fluid System $(\lambda_1, \lambda_2, \mu)$
- Waiting time performance Fluid System $(\lambda_1, \lambda_2, \mu)$ = Waiting time performance of Fluid System $(\rho_1, \rho_2, 1)$, when $\rho_i = \frac{\lambda_i}{\mu}$

Fig. 1: From Discrete System to Fluid Model

Steady State Fluid Model

- SSFM consists of two storage tanks, two inlets and one outlet pipe.
- Fluid flows from inlets to the corresponding tanks at a constant rate.
- Outlet pipe switches between the tanks.
- Consider the following notational analogy.
 - Switching time: s, time required to move outlet pipe from one storage tank to another.
 - Service rate: μ_1 and μ_2 , rate of outflow from tank 1 and tank 2 respectively.
 - Arrival rate: λ_1 and λ_2 , rate of inflow in tank 1 and tank 2 respectively.
 - Switching policy parameters: γ_1 and γ_2 are delay priority parameters based on height of fluid/number of waiting customers.

Switching Cycle

Fig. 2: Fluid level of deterministic system in one cycle

Waiting Time

Average waiting time of fluid in tank 1

$$\begin{split} \bar{w}_1 &= \frac{1}{\lambda_1} \left(\frac{c_1 + \gamma_2 \, c_2}{\gamma_1 \gamma_2 - 1} \right) + \varpi_1, \text{ with } \varpi_1 := \frac{s(1 - \rho_1)}{1 - \rho}, \\ c_1 &= \frac{s\lambda_1 (1 - \rho_1 + \rho_2)}{1 - \rho} \text{ and } c_2 = \frac{s\lambda_2 (1 + \rho_1 - \rho_2)}{1 - \rho}. \end{split}$$

Average waiting time of fluid in tank 2

$$\bar{w}_2 = \frac{1}{\lambda_2} \left(\frac{c_2 + \gamma_1 c_1}{\gamma_1 \gamma_2 - 1} \right) + \varpi_2, \text{ with } \varpi_2 := \frac{\mathsf{s}(1 - \rho_2)}{1 - \rho}.$$

Theorem (Stability)

 β priority schedulers are stable if:

(i)
$$\rho < 1$$

(ii)
$$\gamma_1 \times \gamma_2 > 1$$

Achievable Region

Set of all possible performance vectors obtained by all possible combinations of (β_1, β_2) for a set of switching times, arrival and departure rates.

Fig. 3: Achievable Region of performance ($\lambda_i = 4.5, \mu = 10, s = 0.1$)

Theorem (Achievable Region)

Achievable region of performance for SSFM is given by:

$$\mathscr{A} = \{ [\boldsymbol{\varpi}_1, \infty) \times [\boldsymbol{\varpi}_2, \infty) \}, \text{ where } \boldsymbol{\varpi}_i = \frac{s(1-\rho_i)}{1-\rho},$$

and $\{Exhaustive \cup \beta - priority\} \leftarrow complete class.$

$oldsymbol{eta}$ versus $oldsymbol{\gamma}$ Schedulers

Result: β and γ relationship

 β and γ schedulers, achieve same performance when:

$$\frac{\gamma_1}{\beta_1} = \frac{\beta_2}{\gamma_2} = \frac{\lambda_2}{\lambda_1}.$$

			Simulation		SSFM	
μ	β_1	β_2	\bar{w}_1	\bar{w}_2	\bar{w}_1	\bar{w}_2
100	2	4	0.1848	0.1446	0.2245	0.1775
200	2	4	0.2048	0.1615	0.2245	0.1775
500	2	4	0.2169	0.1712	0.2245	0.1775
100	7	17	0.1420	0.1167	0.1484	0.1246
200	7	17	0.1464	0.1228	0.1484	0.1246
500	7	17	0.1478	0.1242	0.1484	0.1246

TABLE I: Performance of Random System and SSFM ($\lambda_1/\lambda_2=0.5, \rho=0.3$)

Optimizing Surplus Capacity

Two constrained optimization problem to optimally utilize surplus capacity.

1. Admission Control (controlling λ_2):

$$P1: \max_{\lambda_1, \beta \in \mathscr{B}^P} \lambda_2 P(\bar{w}_2)$$
 Subject to: $\bar{w}_1 \leq \eta_1$

where, $P(\bar{w}_2)$: price paid by secondary customer, monotonically decreasing function in \bar{w}_2 .

2 Limited Buffer with loss:

$$P2: \max_{B,B \in \mathscr{B}^P} \lambda_2(1-f)P(\bar{w}_2)$$
 Subject to: $\bar{w}_1 \leq \eta_1$

where, f is fraction of customer lost due to limited buffer capacity, B.

Theorem (Optimization)

Both P1 and P2, are optimized by exhaustive schedulers, $\beta = (ex, ex)$. To determine optimal λ_2 or B, price function is required.

Contribution and Conclusions

- Idea of differential fairness is investigated in case of polling systems.
- We proposed and proved that a class of delay priority schedulers along with exhaustive policy forms the complete achievable region.
- Used Monte Carlo simulations to show that performance of random systems, converges to that of analyzed limit system with fluid queues.
- We obtained achievable region for **fluid system**.
- We conclude that:
 - achievable region of performance is unbounded, and
 - exhaustive service discipline is optimal from individual queue perspective.
- Future work: We are trying to prove convergence of performance of discrete system to that of SSFM.

Thank you