

WE CLAIM:

1. A compound having the structure

5

wherein

R¹ represents H, (C₁-C₃)alkyl, or cyclopropyl;

R² represents (C₁-C₃)alkyl, cyclopropyl, O(C₁-C₃)alkyl, or NR³R⁴
wherein R³ and R⁴ are H, (C₁-C₃)alkyl, or cyclopropyl;

10 R^{2a} represents H or halogen;

M represents CH or N;

L represents a carbonyl group, O, NR⁵, CR⁶R⁷, or (C₂-C₃)alkylenyl which is
optionally substituted up to twice by groups independently selected from
halogen and OH; wherein

15 R⁵ is H or (C₁-C₃)alkyl; and

R⁶ and R⁷ are independently H, CH₃, halogen, or OH;

J represents an aromatic or heteroaromatic ring selected from the group consisting of

Y represents an aromatic or heteroaromatic ring selected from the group consisting of

20

wherein R⁸ represents H or (C₁-C₃)alkyl;

G" represents a substituent selected from the group consisting of (C₁-C₃)alkyl, cyclopropyl, O(C₁-C₃)alkyl, halogen, CF₃, CN and CO₂R⁹;

wherein

R⁹ represents H or (C₁-C₃)alkyl; and

5 m represents the number of substituents G", and is 0, 1, or 2;

G represents a substituent located on ring J;

G' represents a substituent located on ring Y;

n represents the number of substituents G; and

n' represents the number of substituents G' ;

10 n and n' are independently 0, 1, 2, or 3, subject to the provisos that

- 1) ring J and ring Y each may be substituted independently up to 3 times by substituents listed below as numbers G1-G2, to a maximum total of 4 substituents on rings J and Y,
- 2) ring J and ring Y each may be substituted independently up to 2 times by substituents listed below as numbers G3-G11, to a maximum total of 3 substituents on rings J and Y, and
- 3) ring J and ring Y each may be substituted independently once by a substituent selected from those listed below as numbers G12-G37;

and subject to the further provisos

- 20 4) when J is phenyl, G is other than OH or alkylthio; and when J is phenyl or pyridyl, n is 1, 2, or 3;
- 5) when J is phenyl, and G is G4 shown below, then R² is NR³R⁴;

G and G' moieties are independently selected from the group consisting of:

G1) halogen ;

25

G2) O(C₁-C₄)alkyl which optionally is substituted up to two times by O(C₁-C₂)alkyl;

G3) OH ;

30

G4) (C₁-C₅)alkyl, which is optionally substituted independently up to two times by groups selected from hydroxyl and cyano, or up to three times by halogen;

G5) OCF_3 ;

G6) $\text{NHC(O)(C}_1\text{-C}_3\text{)alkyl}$;

5 G7) $\text{NHSO}_2(\text{C}_1\text{-C}_3\text{)alkyl}$;

G8) $\text{NR}^{10}\text{R}^{11}$, wherein

R^{10} and R^{11} are independently selected from

H,

10 CH₃,

cyclopropyl,

benzyl,

NR¹²R¹³ wherein

R^{12} and R^{13} are independently H or ($\text{C}_1\text{-C}_3$)alkyl,

15 provided that both R^{10} and R^{11} are not NR¹²R¹³ simultaneously,

and

($\text{C}_2\text{-C}_4$)alkyl which is optionally substituted up to three times by halogen, and up to two times by substituent groups independently selected from hydroxyl, O($\text{C}_1\text{-C}_3$)alkyl, and NR¹⁴R¹⁵, wherein

R^{14} and R^{15} are independently H or ($\text{C}_1\text{-C}_3$)alkyl, or

R^{14} and R^{15} can join to form a heterocycle of formula

wherein

Q represents CH₂, O, or NR¹⁶, and

R¹⁶ represents H or ($\text{C}_1\text{-C}_3$)alkyl,

or

30 R^{10} and R^{11} may be joined to form a saturated 5-6-membered N-containing ring which is optionally substituted up to two times by

OH,

NR¹⁷R¹⁸, wherein

R¹⁷ and R¹⁸ are H or (C₁-C₃)alkyl,
 or by
 (C₁-C₃)alkyl which is optionally substituted up to two times by
 halogen, OH, or O(C₁-C₃)alkyl;

5

G9) (CH₂)_a-NR¹⁹R²⁰ wherein
 R¹⁹ and R²⁰ are independently H, (C₁-C₅)alkyl, or
 (C₃-C₆)cycloalkyl, or may be joined to form a saturated
 5-6-membered N-containing ring; and
 the subscript "a" is an integer of 1-4;

10

G10) wherein
 Q' is O or NR²¹ ;
 R²¹ is H, (C₁-C₃)alkyl, or cyclopropyl; and
 the subscript "b" is an integer of 1-3;

15

G11) CH₂NR²²(CH₂)_cOCH₃ wherein
 R²² is H, (C₁-C₃)alkyl, or cyclopropyl; and
 the subscript "c" is an integer of 2-4;

20

G12) OSO₂NR²³R²⁴ wherein
 R²³ and R²⁴ independently represent H, CH₃, or (C₂-C₄)alkyl
 which may optionally be substituted once by OH or
 NR²⁵R²⁶, wherein
 R²⁵ and R²⁶ independently represent H or
 (C₁-C₃)alkyl;

25

G13) CN ;

30

G14) NO₂ ;

G15) cyclopropyl ;

G16) OR²⁷, wherein
R²⁷ represents phenyl or benzyl;

G17) S(C₁-C₃)alkyl;

5

G18) CH=CH-(CH₂)₁₋₃-OR⁵; wherein
R⁵ represents H or (C₁-C₃)alkyl;

10

G21) C(O)NR²⁸R²⁹, wherein
R²⁸ and R²⁹ are independently selected from
H,
15 cyclopropyl, provided that both R²⁸ and R²⁹ are not simultaneously cyclopropyl,

, provided that this group does not constitute both R²⁸ and R²⁹ simultaneously,

20

and
(C₁-C₃)alkyl which is optionally substituted up to two times by OH;

or

25

R²⁸ and R²⁹ may be joined to form a saturated 5-6-membered N-containing ring which is optionally substituted up to two times by OH, or by (C₁-C₃)alkyl which in turn is optionally substituted up to two times by OH or O(C₁-C₃)alkyl;

G22) wherein
 Q'' is O or NR³⁰, and
 R³⁰ is
 H,
 5 cyclopropyl, or
 (C₁-C₃)alkyl which is optionally substituted once by
 halogen, OH, or O(C₁-C₃)alkyl;

G23) O-(CH₂)_d-NR³¹R³² wherein
 10 R³¹ and R³² are independently H, (C₁-C₃)alkyl, or cyclopropyl,
 or may be joined to form a saturated 5-6-membered
 N-containing ring; and
 the subscript "d" is an integer of 2-4;

G24) O-(CH₂)_e-N wherein
 15 the subscript "e" is an integer of 2-3; and
 Q''' is O or NR³³; and
 R³³ is H, (C₁-C₃)alkyl, or cyclopropyl;

G25) wherein
 20 Q'''' is O or NR³⁴; and
 R³⁴ is H, (C₁-C₃)alkyl, or cyclopropyl;

G26) C(O)NR³⁵(CH₂)_fOR³⁶ wherein
 25 R³⁵ is H, (C₁-C₃)alkyl, or cyclopropyl;
 R³⁶ is (C₁-C₆)alkyl optionally substituted up to two times by
 halogen, OH, or O(C₁-C₃)alkyl, and
 the subscript "f" is an integer of 2-4;

G27) CO₂R³⁷ wherein
 30 R³⁷ is H or (C₁-C₃)alkyl;

G28) phenyl, which is optionally substituted by up to 2 groups selected from halogen, (C₁-C₃)alkyl, OR³⁸, CN, CF₃, and NR³⁹R⁴⁰
wherein

5 R³⁸ represents H or (C₁-C₃)alkyl; and
R³⁹ and R⁴⁰ represent H or (C₁-C₃)alkyl;

G29) NR⁴¹SO₂NR⁴²R⁴³ wherein

10 R⁴¹ represents H, or (C₁-C₄)alkyl, and
R⁴² and R⁴³ independently represent H, CH₃, or (C₂-C₃)alkyl
which may optionally be substituted once by -OH or
NR⁴⁴R⁴⁵, wherein
R⁴⁴ and R⁴⁵ independently represent H or
(C₁-C₃)alkyl;

15 G30) OC(O)-CH₂-NR⁴⁶R⁴⁷ wherein
R⁴⁶ and R⁴⁷ independently represent H, (C₁-C₃)alkyl, or
CO₂(t-butyl), provided that R⁴⁶ and R⁴⁷ are not both
simultaneously CO₂(t-butyl);

20 G31) N(R⁴⁸)C(O)R⁴⁹ wherein
R⁴⁸ represents H or (C₁-C₃)alkyl; and
R⁴⁹ represents
(CH₂)₁₋₃-CO₂H,
O(C₂-C₄)alkyl,
(CH₂)₁₋₄-NR⁵⁰R⁵¹ wherein
R⁵⁰ and R⁵¹ independently represent H or
(C₁-C₃)alkyl, or
CH(R⁵²)-NR⁵³R⁵⁴ wherein
30 R⁵² represents (CH₂)₁₋₄-NH₂, CH₂OH,
CH(CH₃)OH, or (C₁-C₃)alkyl; and
R⁵³ and R⁵⁴ independently represent H or
(C₁-C₃)alkyl;

G32) C(O)-(C₁-C₃)alkyl;

G33) (CH₂)_g-N(R⁵⁵)-C(O)-R⁵⁶ wherein

5 g represents 1, 2, or 3;

R⁵⁵ represents H or (C₁-C₃)alkyl;

R⁵⁶ represents

(C₁-C₃)alkyl optionally substituted up to two times by

OR⁵⁷ or NR⁵⁸R⁵⁹, wherein

R⁵⁷ represents H or (C₁-C₃)alkyl, and

10 R⁵⁸ and R⁵⁹ each represents H or

(C₁-C₃)alkyl,

or R⁵⁶ represents wherein

R⁶⁰ represents halogen, (C₁-C₃)alkyl, O(C₁-C₃)alkyl,

CN, OH, CF₃, or NR⁶¹R⁶², wherein

15 R⁶¹ and R⁶² represent H or (C₁-C₃)alkyl;

and

h represents 0, 1, or 2;

G34) (CH₂)_i-N(R⁶³)-C(O)-NR⁶⁴R⁶⁵ wherein

20 i represents 1, 2, or 3;

R⁶³ represents H or (C₁-C₃)alkyl;

R⁶⁴ and R⁶⁵ each represents H or (C₁-C₃)alkyl;

or

25 R⁶⁴ and R⁶⁵ may be joined to form wherein

Q^V represents CH₂, O or NR⁶⁶ wherein

R⁶⁶ represents H or (C₁-C₃)alkyl;

(CH₂)_j-N(R⁶⁷)-SO₂-

G35) R⁶⁸ wherein

j represents 1, 2, or 3;

30 R⁶⁷ represents H or (C₁-C₃)alkyl; and

R^{68} represents H or $(C_1-C_3)alkyl$;

G36) $(CH_2)_k-N(R^{69})-SO_2-R^{70}$ wherein

k represents 1, 2, or 3;

5 R^{69} represents H or $(C_1-C_3)alkyl$; and

R^{70} represents $(C_1-C_4)alkyl$, or phenyl which is optionally substituted up to perhalo by halogen or up to three times by OR^{71} , CN , CF_3 , or $NR^{72}R^{73}$, wherein

10 R^{71} represents H or $(C_1-C_3)alkyl$; and

R^{72} and R^{73} each represents H or $(C_1-C_3)alkyl$;

G37) $CH=CH-(CH_2)_{1-3}-NR^{74}R^{75}$ wherein

R^{74} and R^{75} represent H or $(C_1-C_3)alkyl$;

or a pharmaceutically acceptable salt, solvate, solvate of a salt, or stereoisomer thereof.

15

2. The compound of claim 1

wherein

R^1 represents H;

M represents CH;

20 J represents a heteroaromatic ring selected from the group consisting of

Y represents an aromatic or heteroaromatic ring selected from the group consisting of

n and n' are independently 0, 1, 2, or 3, subject to the provisos that

25

1) ring J and ring Y each may be substituted independently up to 3 times by substituents listed below as numbers G1-G2, to a maximum total of 4 substituents on rings J and Y ,

2) ring J and ring Y each may be substituted independently up to 2 times by substituents listed below as numbers G3-G5 and G8, to a maximum total of 3 substituents on rings J and Y , and

30

3) ring J and ring Y each may be substituted independently once by a substituent selected from those listed below as numbers G12, G13, G22, G29, and G31;

and subject to the further proviso

5 4) when J is pyridyl, n is 1, 2, or 3;

and proviso 5 does not apply;

G and G' moieties are independently selected from the group consisting of:

G1) halogen ;

10 G2) O(C₁-C₄)alkyl which optionally is substituted up to two times by O(C₁-C₂)alkyl;

G3) OH ;

15 G4) (C₁-C₅)alkyl, which is optionally substituted independently up to two times by groups selected from hydroxyl and cyano, or up to three times by halogen;

G5) OCF₃ ;

20 G8) NR¹⁰R¹¹, wherein
R¹⁰ and R¹¹ are independently selected from

H,

CH₃,

cyclopropyl,

benzyl,

NR¹²R¹³ wherein

R¹² and R¹³ are independently H or (C₁-C₃)alkyl,
provided that both R¹⁰ and R¹¹ are not NR¹²R¹³

30 simultaneously,

and

(C₂-C₄)alkyl which is optionally substituted up to three times by halogen, and up to two times by substituent groups

independently selected from hydroxyl, $O(C_1-C_3)alkyl$, and $NR^{14}R^{15}$, wherein

R^{14} and R^{15} are independently H or $(C_1-C_3)alkyl$, or

R^{14} and R^{15} can join to form a heterocycle of

Q represents CH_2 , O, or NR^{16} , and

R^{16} represents H or $(C_1-C_3)alkyl$,

or

10 R^{10} and R^{11} may be joined to form a saturated 5-6-membered N-containing ring which is optionally substituted up to two times by

OH ,

$NR^{17}R^{18}$, wherein

15 R^{17} and R^{18} are H or $(C_1-C_3)alkyl$,

or by

$(C_1-C_3)alkyl$ which is optionally substituted up to two times by halogen, OH, or $O(C_1-C_3)alkyl$;

20 G12) $OSO_2NR^{23}R^{24}$ wherein

R^{23} and R^{24} independently represent H, CH_3 , or $(C_2-C_4)alkyl$ which may optionally be substituted once by OH or $NR^{25}R^{26}$, wherein

25 R^{25} and R^{26} independently represent H or

$(C_1-C_3)alkyl$;

G13) CN ;

30 Q'' is O or NR^{30} , and

R^{30} is

H,

cyclopropyl, or
 $(C_1\text{-}C_3)\text{alkyl}$ which is optionally substituted once by
 halogen, OH, or $O(C_1\text{-}C_3)\text{alkyl}$;

5 G29) $NR^{41}\text{SO}_2\text{NR}^{42}\text{R}^{43}$ wherein
 R^{41} represents H, or $(C_1\text{-}C_4)\text{alkyl}$, and
 R^{42} and R^{43} independently represent H, CH_3 , or $(C_2\text{-}C_3)\text{alkyl}$
 which may optionally be substituted once by -OH or
 $NR^{44}\text{R}^{45}$, wherein
 10 R^{44} and R^{45} independently represent H or
 $(C_1\text{-}C_3)\text{alkyl}$; and

15 G31) $N(R^{48})\text{C(O)R}^{49}$ wherein
 R^{48} represents H or $(C_1\text{-}C_3)\text{alkyl}$; and
 20 R^{49} represents
 $(\text{CH}_2)_{1\text{-}3}\text{-CO}_2\text{H}$,
 $O(C_2\text{-}C_4)\text{alkyl}$,
 $(\text{CH}_2)_{1\text{-}4}\text{-NR}^{50}\text{R}^{51}$ wherein
 R^{50} and R^{51} independently represent H or
 $(C_1\text{-}C_3)\text{alkyl}$, or
 $25 \text{CH}(R^{52})\text{-NR}^{53}\text{R}^{54}$ wherein
 R^{52} represents $(\text{CH}_2)_{1\text{-}4}\text{-NH}_2$, CH_2OH ,
 $\text{CH}(\text{CH}_3)\text{OH}$, or $(C_1\text{-}C_3)\text{alkyl}$; and
 R^{53} and R^{54} independently represent H or
 $(C_1\text{-}C_3)\text{alkyl}$.

3. The compound of claim 2

wherein

30 R^1 represents H;
 R^2 represents $O(C_1\text{-}C_3)\text{alkyl}$ or $NR^3\text{R}^4$
 wherein R^3 and R^4 are H or $(C_1\text{-}C_3)\text{alkyl}$;
 R^{2a} represents H;
 L represents O or $CR^6\text{R}^7$ wherein

R⁶ and R⁷ are independently H, CH₃, or OH;

G" represents a substituent selected from the group consisting of O(C₁-C₃)alkyl, halogen, and CF₃;

n and n' are independently 0 or 1, and provisos 1-3 do not apply;

5 G and G' moieties are independently selected from the group consisting of:

G1) Cl or F;

10 G2) O(C₁-C₃)alkyl;

G3) OH ;

15 G4) (C₁-C₃)alkyl, which is optionally substituted up to three times by halogen;

G5) OCF₃ ;

20 G8) NR¹⁰R¹¹, wherein

R¹⁰ and R¹¹ are independently selected from

H,

25 CH₃,

cyclopropyl,

benzyl,

NR¹²R¹³ wherein

25 R¹² and R¹³ are independently H or (C₁-C₃)alkyl,

provided that both R¹⁰ and R¹¹ are not NR¹²R¹³

simultaneously,

and

30 (C₂-C₄)alkyl which is optionally substituted up to three times

by halogen, and up to two times by substituent groups

independently selected from hydroxyl, O(C₁-C₃)alkyl,

and NR¹⁴R¹⁵, wherein

R¹⁴ and R¹⁵ are independently H or

(C₁-C₃)alkyl, or

R^{14} and R^{15} can join to form a heterocycle of

wherein
Q represents CH_2 , O, or NR^{16} , and

R^{16} represents H or $(C_1-C_3)alkyl$,

5

G12) $OSO_2NR^{23}R^{24}$ wherein

R^{23} and R^{24} independently represent H, CH_3 , or $(C_2-C_4)alkyl$ which may optionally be substituted once by OH or $NR^{25}R^{26}$, wherein

10 R^{25} and R^{26} independently represent H or $(C_1-C_3)alkyl$;

G13) CN ;

G22)

wherein

15 Q'' is O or NR^{30} , and

R^{30} is H or $(C_1-C_3)alkyl$; and

G31) $N(R^{48})C(O)R^{49}$ wherein

R^{48} represents H or $(C_1-C_3)alkyl$; and

20 R^{49} represents

$(CH_2)_{1-3}-CO_2H$,

$O(C_2-C_4)alkyl$,

$(CH_2)_{1-4}-NR^{50}R^{51}$ wherein

25 R^{50} and R^{51} independently represent H or $(C_1-C_3)alkyl$,

or

$CH(R^{52})-NR^{53}R^{54}$ wherein

R^{52} represents $(CH_2)_{1-4}-NH_2$, CH_2OH , $CH(CH_3)OH$, or

$(C_1-C_3)alkyl$; and

30 R^{53} and R^{54} independently represent H or $(C_1-C_3)alkyl$.

4.

The compound of claim 1

wherein

R¹ represents H;

M represents CH;

J represents a heteroaromatic ring selected from the group consisting of

5 Y represents an aromatic or heteroaromatic ring selected from the group consisting of

n and n' are independently 0, 1, 2, or 3, subject to the provisos that

- 1) ring J and ring Y each may be substituted independently up to 3 times by substituents listed below as numbers G1-G2, to a maximum total of 4 substituents on rings J and Y,
- 2) ring J and ring Y each may be substituted independently up to 2 times by substituents listed below as numbers G3-G5 and G8, to a maximum total of 3 substituents on rings J and Y, and
- 3) ring J and ring Y each may be substituted independently once by a substituent selected from those listed below as numbers G12, G21, G25, G26, and G31;

10 and subject to the further proviso

- 4) when J is pyridyl, n is 1, 2, or 3;

15 and proviso 5 does not apply;

G and G' moieties are independently selected from the group consisting of:

20 G1) halogen ;

G2) O(C₁-C₄)alkyl which optionally is substituted up to two times by O(C₁-C₂)alkyl;

25

G3) OH ;

30

G4) (C₁-C₅)alkyl, which is optionally substituted independently up to two times by groups selected from hydroxyl and cyano, or up to three times by halogen;

G5) OCF_3 ;

G8) $\text{NR}^{10}\text{R}^{11}$, wherein

5 R^{10} and R^{11} are independently selected from

H,

CH_3 ,

cyclopropyl,

benzyl,

10 $\text{NR}^{12}\text{R}^{13}$ wherein

R^{12} and R^{13} are independently H or $(\text{C}_1\text{-C}_3)\text{alkyl}$,
provided that both R^{10} and R^{11} are not $\text{NR}^{12}\text{R}^{13}$
simultaneously,

and

15 $(\text{C}_2\text{-C}_4)\text{alkyl}$ which is optionally substituted up to three times
by halogen, and up to two times by substituent groups
independently selected from hydroxyl, $\text{O}(\text{C}_1\text{-C}_3)\text{alkyl}$,
and $\text{NR}^{14}\text{R}^{15}$, wherein

R^{14} and R^{15} are independently H or
 $(\text{C}_1\text{-C}_3)\text{alkyl}$, or

20 R^{14} and R^{15} can join to form a heterocycle of

formula wherein

Q represents CH_2 , O, or NR^{16} , and

R^{16} represents H or $(\text{C}_1\text{-C}_3)\text{alkyl}$,

25 or

R^{10} and R^{11} may be joined to form a saturated 5-6-membered
N-containing ring which is optionally substituted up to two
times by

OH,

30 $\text{NR}^{17}\text{R}^{18}$, wherein

R^{17} and R^{18} are H or $(\text{C}_1\text{-C}_3)\text{alkyl}$,

or by

(C₁-C₃)alkyl which is optionally substituted up to two times by halogen, OH, or O(C₁-C₃)alkyl;

5 G12) OSO₂NR²³R²⁴ wherein

R²³ and R²⁴ independently represent H, CH₃, or (C₂-C₄)alkyl which may optionally be substituted once by OH or NR²⁵R²⁶,

wherein

R²⁵ and R²⁶ independently represent H or (C₁-C₃)alkyl;

10 G21) C(O)NR²⁸R²⁹, wherein

R²⁸ and R²⁹ are independently selected from

H,

cyclopropyl, provided that both R²⁸ and R²⁹ are not simultaneously cyclopropyl,

15 , provided that this group does not constitute both R²⁸ and R²⁹ simultaneously,

and

(C₁-C₃)alkyl which is optionally substituted up to two times by OH;

20 or

R²⁸ and R²⁹ may be joined to form a saturated 5-6-membered N-containing ring which is optionally substituted up to two times by OH, or by (C₁-C₃)alkyl which in turn is optionally substituted up to two times by OH or O(C₁-C₃)alkyl;

25

G25) wherein

Q^{iv} is O or NR³⁴; and

R³⁴ is H, (C₁-C₃)alkyl, or cyclopropyl;

30

G26) C(O)NR³⁵(CH₂)_fOR³⁶ wherein

R^{35} is H, (C_1-C_3)alkyl, or cyclopropyl;

R^{36} is (C_1-C_6)alkyl optionally substituted up to two times by halogen, OH, or $O(C_1-C_3)$ alkyl, and the subscript "f" is an integer of 2-4; and

5

G31) $N(R^{48})C(O)R^{49}$ wherein

R^{48} represents H or (C_1-C_3)alkyl; and

R^{49} represents

$(CH_2)_{1-3}-CO_2H$,

$O(C_2-C_4)$ alkyl,

$(CH_2)_{1-4}-NR^{50}R^{51}$ wherein

R^{50} and R^{51} independently represent H or (C_1-C_3)alkyl,

or

$CH(R^{52})-NR^{53}R^{54}$ wherein

R^{52} represents $(CH_2)_{1-4}-NH_2$, CH_2OH , $CH(CH_3)OH$, or

(C_1-C_3)alkyl; and

R^{53} and R^{54} independently represent H or (C_1-C_3)alkyl.

10

15

5. The compound of claim 4

20

wherein

R^1 represents H;

R^2 represents $O(C_1-C_3)$ alkyl or NR^3R^4

wherein R^3 and R^4 are H or (C_1-C_3)alkyl;

R^{2a} represents H;

25

L represents O or CR^6R^7 , wherein

R^6 and R^7 are independently H, CH_3 , or OH;

G'' represents a substituent selected from the group consisting of $O(C_1-C_3)$ alkyl, halogen, and CF_3 ;

n and n' are independently 0 or 1, and provisos 1-3 do not apply;

30

G and G' moieties are independently selected from the group consisting of:

G1) Cl or F;

G2) $O(C_1-C_3)$ alkyl;

5 G3) OH ;

G4) (C_1 - C_3)alkyl, which is optionally substituted up to three times by halogen;

10 G5) OCF_3 ;

G8) $NR^{10}R^{11}$, wherein

R^{10} and R^{11} are independently selected from

H,

CH_3 ,

cyclopropyl,

benzyl,

$NR^{12}R^{13}$ wherein

15 R^{12} and R^{13} are independently H or (C_1 - C_3)alkyl,
provided that both R^{10} and R^{11} are not $NR^{12}R^{13}$
simultaneously,

and

20 (C_2 - C_4)alkyl which is optionally substituted up to three times
by halogen, and up to two times by substituent groups
independently selected from hydroxyl, $O(C_1$ - $C_3)$ alkyl,
and $NR^{14}R^{15}$, wherein

R^{14} and R^{15} are independently H or
(C_1 - C_3)alkyl, or

25 R^{14} and R^{15} can join to form a heterocycle of

formula wherein

Q represents CH_2 , O, or NR^{16} , and

R^{16} represents H or (C_1 - C_3)alkyl,

30 G12) $OSO_2NR^{23}R^{24}$ wherein

R^{23} and R^{24} independently represent H, CH_3 , or (C_2 - C_4)alkyl which
may optionally be substituted once by OH or $NR^{25}R^{26}$,
wherein

R²⁵ and R²⁶ independently represent H or (C₁-C₃)alkyl;

G21) C(O)NR²⁸R²⁹, wherein

R^{28} and R^{29} are independently selected from

5 H
and
(C₁-C₃)alkyl which is optionally substituted up to two times by
OH;

G26) $C(O)NR^{35}(CH_2)_fOR^{36}$ wherein

15 R³⁵ is H or (C₁-C₃)alkyl;

R^{36} is (C_1 - C_6)alkyl optionally substituted up to two times by halogen, OH, or $O(C_1$ - $C_3)$ alkyl, and the subscript "f" is an integer of 2-4; and

20 G31) N(R⁴⁸)C(O)R⁴⁹ wherein

R^{48} represents H or (C_1-C_3) alkyl; and

R^{49} represents

$$(\text{CH}_2)_{1-3}\text{-CO}_2\text{H},$$

O(C₂-C₄)alkyl,

$(CH_2)_{1-4}-NR^{50}R^{51}$ wherein

R^{50} and R^{51} independently represent H or $(C_1-C_3)alkyl$,

Or

$\text{CH}(\text{R}^{52})\text{-NR}^{53}\text{R}^{54}$ wherein

R^{52} represents $(CH_2)_{1-4}-NH_2$, CH_2OH , $CH(CH_3)OH$, or

(C₁-C₃)alkyl; and

R^{53} and R^{54} independently represent H or (C₁-C₃)alkyl.

wherein

R¹ represents H;

M represents CH;

J represents an aromatic or heteroaromatic ring selected from the group consisting of

5

Y represents an aromatic or heteroaromatic ring selected from the group consisting of

n and n' are independently 0, 1, 2, or 3, subject to the provisos that

- 1) ring J and ring Y each may be substituted independently up to 3 times by substituents listed below as numbers G1-G2, to a maximum total of 4 substituents on rings J and Y,
- 2) ring J and ring Y each may be substituted independently up to 2 times by substituents listed below as numbers G3-G5 and G8, to a maximum total of 3 substituents on rings J and Y, and
- 15 3) ring J and ring Y each may be substituted independently once by a substituent selected from those listed below as numbers G12, G22, and G31;

and subject to the further proviso

- 20 4) when J is pyridyl, n is 1, 2, or 3;

and proviso 5 does not apply;

G and G' moieties are independently selected from the group consisting of:

25 G1) halogen ;

G2) O(C₁-C₄)alkyl which optionally is substituted up to two times by O(C₁-C₂)alkyl;

G3) OH ;

G4) (C_1-C_5)alkyl, which is optionally substituted independently up to two times by groups selected from hydroxyl and cyano, or up to three times by halogen;

5 G5) OCF_3 ;

G8) $NR^{10}R^{11}$, wherein
 R^{10} and R^{11} are independently selected from

H,

10 CH_3 ,

cyclopropyl,

benzyl,

$NR^{12}R^{13}$ wherein

15 R^{12} and R^{13} are independently H or (C_1-C_3)alkyl,
provided that both R^{10} and R^{11} are not $NR^{12}R^{13}$
simultaneously,

and

20 (C_2-C_4)alkyl which is optionally substituted up to three times
by halogen, and up to two times by substituent groups
independently selected from hydroxyl, $O(C_1-C_3)$ alkyl,
and $NR^{14}R^{15}$, wherein

R^{14} and R^{15} are independently H or
(C_1-C_3)alkyl, or
 R^{14} and R^{15} can join to form a heterocycle of

25 formula wherein

Q represents CH_2 , O, or NR^{16} , and

R^{16} represents H or (C_1-C_3)alkyl,

or

30 R^{10} and R^{11} may be joined to form a saturated 5-6-membered
N-containing ring which is optionally substituted up to two
times by

OH ,

$NR^{17}R^{18}$, wherein

R^{17} and R^{18} are H or $(C_1\text{-}C_3)\text{alkyl}$,

or by

$(C_1\text{-}C_3)\text{alkyl}$ which is optionally substituted up to two times by halogen, OH, or $O(C_1\text{-}C_3)\text{alkyl}$;

5

G12) $\text{OSO}_2\text{NR}^{23}\text{R}^{24}$ wherein

R^{23} and R^{24} independently represent H, CH_3 , or $(C_2\text{-}C_4)\text{alkyl}$ which may optionally be substituted once by OH or $\text{NR}^{25}\text{R}^{26}$, wherein

R^{25} and R^{26} independently represent H or $(C_1\text{-}C_3)\text{alkyl}$;

10

G22) wherein

Q'' is O or NR^{30} , and

15

R^{30} is

H,

cyclopropyl, or

$(C_1\text{-}C_3)\text{alkyl}$ which is optionally substituted once by halogen, OH, or $O(C_1\text{-}C_3)\text{alkyl}$; and

20

G31) $\text{N}(\text{R}^{48})\text{C}(\text{O})\text{R}^{49}$ wherein

R^{48} represents H or $(C_1\text{-}C_3)\text{alkyl}$; and

R^{49} represents

$(\text{CH}_2)_{1\text{-}3}\text{-CO}_2\text{H}$,

$\text{O}(\text{C}_2\text{-}\text{C}_4)\text{alkyl}$,

$(\text{CH}_2)_{1\text{-}4}\text{-NR}^{50}\text{R}^{51}$ wherein

R^{50} and R^{51} independently represent H or $(C_1\text{-}C_3)\text{alkyl}$,

or

$\text{CH}(\text{R}^{52})\text{-NR}^{53}\text{R}^{54}$ wherein

25

R^{52} represents $(\text{CH}_2)_{1\text{-}4}\text{-NH}_2$, CH_2OH , $\text{CH}(\text{CH}_3)\text{OH}$, or

$(C_1\text{-}C_3)\text{alkyl}$; and

30

R^{53} and R^{54} independently represent H or $(C_1\text{-}C_3)\text{alkyl}$.

7. The compound of claim 6

wherein

R¹ represents H;

R² represents O(C₁-C₃)alkyl, or NR³R⁴

5 wherein R³ and R⁴ are H or (C₁-C₃)alkyl;

R^{2a} represents H;

L represents O or CR⁶R⁷, wherein

R⁶ and R⁷ are independently H, CH₃, or OH;

G" represents a substituent selected from the group consisting of O(C₁-C₃)alkyl,

10 halogen, and CF₃;

n and n' are independently 0 or 1, and provisos 1-3 do not apply;

G and G' moieties are independently selected from the group consisting of:

G1) Cl or F;

15

G2) O(C₁-C₃)alkyl;

G3) OH ;

20 G4) (C₁-C₃)alkyl, which is optionally substituted up to three times by halogen;

G5) OCF₃;

25 G8) NR¹⁰R¹¹, wherein

R¹⁰ and R¹¹ are independently selected from

H,

CH₃,

cyclopropyl,

benzyl,

NR¹²R¹³ wherein

R¹² and R¹³ are independently H or (C₁-C₃)alkyl,
provided that both R¹⁰ and R¹¹ are not NR¹²R¹³
simultaneously,

and

(C₂-C₄)alkyl which is optionally substituted up to three times by halogen, and up to two times by substituent groups independently selected from hydroxyl, O(C₁-C₃)alkyl, and NR¹⁴R¹⁵, wherein

R¹⁴ and R¹⁵ are independently H or (C₁-C₃)alkyl, or

R¹⁴ and R¹⁵ can join to form a heterocycle of

Q represents CH₂, O, or NR¹⁶, and

R¹⁶ represents H or (C₁-C₃)alkyl;

G12) OSO₂NR²³R²⁴ wherein

R²³ and R²⁴ independently represent H, CH₃, or (C₂-C₄)alkyl which may optionally be substituted once by OH or NR²⁵R²⁶, wherein

R²⁵ and R²⁶ independently represent H or (C₁-C₃)alkyl;

G22) wherein

Q'' is O or NR³⁰, and

R³⁰ is H or (C₁-C₃)alkyl; and

G31) N(R⁴⁸)C(O)R⁴⁹ wherein

R⁴⁸ represents H or (C₁-C₃)alkyl; and

R⁴⁹ represents

(CH₂)₁₋₃-CO₂H,

O(C₂-C₄)alkyl,

(CH₂)₁₋₄-NR⁵⁰R⁵¹ wherein

R⁵⁰ and R⁵¹ independently represent H or (C₁-C₃)alkyl,

or

CH(R⁵²)-NR⁵³R⁵⁴ wherein

R^{52} represents $(CH_2)_{1-4}-NH_2$, CH_2OH , $CH(CH_3)OH$, or $(C_1-C_3)alkyl$; and
 R^{53} and R^{54} independently represent H or $(C_1-C_3)alkyl$.

- 5 8. A compound selected from the group consisting of
4-{3-[(2-amino-6-phenylpyrimidin-4-yl)amino]phenoxy}-*N*-methylpyridine-2-carboxamide;
4-{3-[(2-amino-6-phenylpyrimidin-4-yl)amino]phenoxy}pyridine-2-carboxamide;
4-{4-[(2-amino-6-phenylpyrimidin-4-yl)amino]phenoxy}pyridine-2-carbonitrile;
10 6-phenyl-*N*⁴-(4-{[2-(trifluoromethyl)pyridin-4-yl]oxy}phenyl)pyrimidine-2,4-diamine;
*N*⁴-{4-[(2-chloropyridin-4-yl)oxy]phenyl}-6-phenylpyrimidine-2,4-diamine;
4-{2-amino-6-[(4-{[2-(trifluoromethyl)pyridin-4-yl]oxy}phenyl)amino]pyrimidin-4-yl}phenyl sulfamate;
15 *N*-(4-{2-amino-6-[(4-{[2-(trifluoromethyl)pyridin-4-yl]oxy}phenyl)amino]pyrimidin-4-yl]oxy}phenyl)glycinamide trifluoroacetate;
6-(4-aminophenyl)-*N*⁴-(4-{[2-(trifluoromethyl)pyridin-4-yl]oxy}phenyl)pyrimidine-2,4-diamine;
20 6-(6-aminopyridin-3-yl)-*N*⁴-(4-{[2-(trifluoromethyl)pyridin-4-yl]oxy}phenyl)pyrimidine-2,4-diamine;
6-pyridin-3-yl-*N*⁴-(4-{[2-(trifluoromethyl)pyridin-4-yl]oxy}phenyl)pyrimidine-2,4-diamine;
25 *N*-[(4-{4-[(2-amino-6-phenylpyrimidin-4-yl)amino]phenoxy}pyridin-2-yl)methyl]-4-methoxybenzenesulfonamide trifluoroacetate;
N-[(4-{4-[(2-amino-6-phenylpyrimidin-4-yl)amino]phenoxy}pyridin-2-yl)methyl]methanesulfonamide trifluoroacetate;
and
(4-{4-[(2-amino-6-phenylpyrimidin-4-yl)amino]phenoxy}pyridin-2-yl)methanol trifluoroacetate (salt).
30 9. A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.

10. A method of treatment for a hyperproliferative disorder comprising administering an effective amount of a compound of claim 1 to a subject in need thereof.
11. The method of claim 10 wherein said hyperproliferative disorder is cancer.