

A Quick Recap

List the codes of the airports in London

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	os

irport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

A Quick Recap

List the airlines that fly directly from London to Glasgow

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

ort	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

 $\pi_{\text{airline}} \ \ \text{((Flight } \bowtie_{\text{origin=code}} \text{(} \sigma_{\text{city='London'}} \ \text{Airport))} \bowtie_{\text{destination=code}} \text{(} \sigma_{\text{city='Glasgow'}} \ \text{Airport))}$

Advanced Database Systems (ADBS), University of Edinburgh, 2023/24

Conjunctive Queries: Syntax and Semantics

(Chapters 12 and 13 of DBT)

[DBT] Database Theory, https://github.com/pdm-book/community

Relational Calculus

List all the airlines

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	os

{BA, U2, OS}

{z | ∃x∃y (Flight(x,y,z))}

Codd's Theorem

Relational Algebra = Relational Calculus

Edgar F. Codd (1923 - 2003) Turing Award 1981

- Queries are written using a declarative language
- DBMS converts declarative queries into procedural queries that are optimized and executed

Relational Calculus

List the codes of the airports in London

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	os

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

{LHR, LGW}

{x | Airport(x,London)}

Relational Calculus

List the airlines that fly directly from London to Glasgow

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	os

port	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

 $\{z \mid \exists x \exists y (Airport(x,London) \land Airport(y,Glasgow) \land Flight(x,y,z))\}$

Syntax of Conjunctive Queries

 $Q(\mathbf{x}) := \exists \mathbf{y} (R_1(\mathbf{v_1}) \land \cdots \land R_m(\mathbf{v_m}))$

- R₁,...,R_m are relation names
- \mathbf{x} , \mathbf{y} , \mathbf{v}_1 ,..., \mathbf{v}_m are tuples of variables
- each variable mentioned in \mathbf{v}_i appears either in \mathbf{x} or \mathbf{y}
- the variables in **x** are free called distinguished or output variables

It is very convenient to see conjunctive queries as rule-based queries of the form

$$Q(x) := R_1(v_1),...,R_m(v_m)$$

this is called the body of Q that can be seen as a set of atoms

A Core Relational Query Language

Conjunctive Queries (CQ)

- = {σ,π,⋈}-fragment of relational algebra
- = relational calculus without ¬, ∀, ∨, =
- = simple SELECT-FROM-WHERE SQL queries (only AND and equality in the WHERE clause)

List all the airlines

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	os

 Airport
 code
 city

 VIE
 Vienna

 LHR
 London

 LGW
 London

 LCA
 Larnaca

 GLA
 Glasgow

 EDI
 Edinburgh

{BA, U2, OS}

 π_{airline} Flight

Q(z) :- Flight(x,y,z)

{z | ∃x∃y Flight(x,y,z)}

Conjunctive Queries: Example 2

List the codes of the airports in London

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

 π_{code} ($\sigma_{city='London'}$ Airport)

{x | Airport(x,London)}

Q(x) :- Airport(x,London)

Conjunctive Queries: Example 3

List the airlines that fly directly from London to Glasgow

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	os

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

Conjunctive Queries: Example 3

List the airlines that fly directly from London to Glasgow

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	os
			Л

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LCA	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

 $\pi_{\text{airline}} \ \ \text{((Flight } \bowtie_{\text{origin=code}} \ (\sigma_{\text{city='London'}} \ \text{Airport))} \bowtie_{\text{destination=code}} \ (\sigma_{\text{city='Glasgow'}} \ \text{Airport))}$

 $\{z \mid \exists x \exists y \; (Airport(x,London) \land Airport(y,Glasgow) \land Flight(x,y,z))\}$

Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

Airport(VIE,Vienna), Flight(VIE,LHR,BA), Airport(LHR,London), Flight(LHR,EDI,BA), Airport(LGW,London), Flight(LGW,GLA,U2), Airport(LCA,Larnaca), Flight(LCA,VIE,OS), Airport(GLA,Glasgow), Airport(EDI,Edinburgh)

Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

Pattern Matching Problem List the airlines that fly directly from London to Glasgow Airport(VIE,Vienna), Flight(VIE,LHR,BA), Airport(LHR,London), Flight(LHR,EDI,BA), Airport(LGW,London), Flight(LGW,GLA,U2), Airport(LCA,Larnaca), Airport(GLA,Glasgow), Airport(EDI,Edinburgh) Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

Homomorphism

- Pattern matching properly formalized via the key notion of homomorphism
- A substitution from a set of terms S to a set of terms T is a function h: S → T, i.e., h
 is a set of mappings of the form s → t, where s ∈ S and t ∈ T
- A homomorphism from a set of atoms A to a set of atoms B is a substitution
 h: terms(A) → terms(B) such that:
 - 1. t is a constant value \Rightarrow h(t) = t
 - 2. $R(t_1,...,t_k) \in \mathbf{A} \implies h(R(t_1,...,t_k)) = R(h(t_1),...,h(t_k)) \in \mathbf{B}$

 $(terms(A) = \{t \mid t \text{ is a variable or a constant value that occurs in } A\})$

Semantics of Conjunctive Queries

- A match of a conjunctive query Q(x₁,...,x_k):- body in a database D is a homomorphism
 h from the set of atoms body to the set of atoms D
- The answer to $Q(x_1,...,x_k)$:- body over D is the set of k-tuples $Q(D) := \{(h(x_1),...,h(x_k)) \mid h \text{ is a match of } Q \text{ in D} \}$
- The answer consists of the witnesses for the distinguished variables of Q

