Reinforcement Learning

Shai Shalev-Shwartz

School of CS and Engineering, The Hebrew University of Jerusalem

Advanced Practical Machine Learning Course, 2019

Outline

- Reinforcement Learning
- When you have an Expert
- When we know the model
 - Markov Decision Process (MDP)
 - Value Iteration
 - Monte-Carlo Tree Search (MCTS)
 - AlphaZero
 - Linear Dynamics and Concave Reward
 - Linear Quadratic Regulator
- 4 Learning while Playing
 - ullet Q-Learning and Deep-Q-Learning
 - Direct Policy Optimization
 - The Actor-Critic Family
 - Critic: The Value Prediction Problem
 - Actor: Policy Iteration

Reinforcement Learning

Goal: Learn a policy, mapping from state space, S, to action space, A

Learning Process:

For t = 1, 2, ...

- Agent observes state $s_t \in S$
- ullet Agent decides on action $a_t \in A$ based on the current policy
- Environment moves the agent to next state $s_{t+1} \in S$

Reinforcement Learning

Goal: Learn a policy, mapping from state space, S, to action space, A

Learning Process:

For t = 1, 2, ...

- Agent observes state $s_t \in S$
- ullet Agent decides on action $a_t \in A$ based on the current policy
- Environment moves the agent to next state $s_{t+1} \in S$

Many applications, e.g.: Robotics, Playing games, Finance, Inventory management, ...

Feedback for Learning

Generic Reward Function: A function $R: \cup_T (S \times A)^T \to \mathbb{R}$ that assesses the quality of a sequence $\bar{s} := ((s_1, a_1), (s_2, a_2), \dots, (s_T, a_T))$

Feedback for Learning

Generic Reward Function: A function $R: \cup_T (S\times A)^T \to \mathbb{R}$ that assesses the quality of a sequence $\bar{s}:=((s_1,a_1),(s_2,a_2),\ldots,(s_T,a_T))$

The RL problem: solve the optimization problem:

$$\max_{\pi} \mathop{\mathbb{E}}_{\bar{s}} R(\bar{s})$$

where the expectation is w.r.t. both the environment and possibly stochasticity of π .

Feedback for Learning

Generic Reward Function: A function $R: \cup_T (S \times A)^T \to \mathbb{R}$ that assesses the quality of a sequence $\bar{s} := ((s_1, a_1), (s_2, a_2), \dots, (s_T, a_T))$

The RL problem: solve the optimization problem:

$$\max_{\pi} \mathop{\mathbb{E}}_{\bar{s}} R(\bar{s})$$

where the expectation is w.r.t. both the environment and possibly stochasticity of π .

Examples of rewards:

- Average Reward: $R(\bar{s}) = \frac{1}{T} \sum_{t=1}^{T} \rho(s_t, a_t)$
- Discounted Reward: Given $\gamma \in (0,1)$, $R(\bar{s}) = \sum_{t=1}^{T} \gamma^t \rho(s_t, a_t)$

Reinforcement Learning vs. Supervised Learning

SL is a special case of RL in which s_t is the "instance", a_t is the predicted label, $-\rho(s_t,a_t)$ is the loss measuring the discrepancy between a_t and the "true" label, y_t , and s_{t+1} is chosen independent of s_t and a_t .

5 / 72

Reinforcement Learning vs. Supervised Learning

SL is a special case of RL in which s_t is the "instance", a_t is the predicted label, $-\rho(s_t,a_t)$ is the loss measuring the discrepancy between a_t and the "true" label, y_t , and s_{t+1} is chosen independent of s_t and a_t .

Differences:

- In SL, actions do not effect the environment, therefore we can collect training examples in advance, and only then search for a policy
- In SL, the effect of actions is local, while in RL, actions have long-term effect
- In SL we are given the correct answer, while in RL we only observe a reward

Types of Reinforcement Learning

- Single Agent, Constant Environment: e.g. an industrial robotic arm
- Single Agent, Oblivious Environment: e.g. a robotic vacuum cleaner that traverses at a room, and someone might have moved a chair or shut-off the lights
- Two Symmetric Agents, Known Model: e.g. Chess or Go, where the rules of the game are known.
- Multiple Asymmetric Agents, Known Model: e.g. autonomous driving, where given the decisions of all agents we know how they are moving on the road (but we don't know their policies)
- Fully vs. Partially Observed state: On top of the above taxonomy, we distinguish between a fully observed state to partially observed state

6/72

Running Example — Pong

A very abstract version of Ping-Pong, where two paddles attempt to reach a ball before it gets out of the table: https://youtu.be/45L62nSf-Vo

- State space: \mathbb{R}^8 corresponding to position (x,y) and velocity of the ball, as well as the position (y) and velocity of each of the paddles
- Action space: { Stay, Up, Down }.
- Manually coded policies:
 - "Follow": attempts to follow the ball at all times (similar to what a person might do)
 - "Predict": calculates the position where the ball will hit its end of the table and goes there

Outline

- Reinforcement Learning
- When you have an Expert
- When we know the model
 - Markov Decision Process (MDP)
 - Value Iteration
 - Monte-Carlo Tree Search (MCTS)
 - AlphaZero
 - Linear Dynamics and Concave Reward
 - Linear Quadratic Regulator
- 4 Learning while Playing
 - Q-Learning and Deep-Q-Learning
 - Direct Policy Optimization
 - The Actor-Critic Family
 - Critic: The Value Prediction Problem
 - Actor: Policy Iteration

When You Have an Expert — Imitation

Imitation (a.k.a. behavior cloning)

Learn from pairs $\{(s_i,a_i)\},$ where a_i is the action chosen by a good (e.g. human) agent at state s_i

Advantages:

- Supervised learning
- No assumptions on the model are required

Disadvantages:

- Cannot be better than the expert
- Distribution drift

 "Follow" vs. "imitation of Predict" https://www.youtube.com/watch?v=W-LdfZ-qqVI

- "Follow" vs. "imitation of Predict" https://www.youtube.com/watch?v=W-LdfZ-qqVI
- The imitation got 97% accuracy on the test set, so what happened?

- "Follow" vs. "imitation of Predict" https://www.youtube.com/watch?v=W-LdfZ-qqVI
- The imitation got 97% accuracy on the test set, so what happened?
- Maybe sensitivity to noise? No, here is "Follow" vs. a "20% noisy version of Predict"
 - https://www.youtube.com/watch?v=BSH7nZbiHWU

- "Follow" vs. "imitation of Predict" https://www.youtube.com/watch?v=W-LdfZ-qqVI
- The imitation got 97% accuracy on the test set, so what happened?
- Maybe sensitivity to noise? No, here is "Follow" vs. a "20% noisy version of Predict"
 - https://www.youtube.com/watch?v=BSH7nZbiHWU
- Distribution drift: we trained on one distribution, but once we performed a mistake or two, the distribution looks significantly different than the original one, and now the classifier doesn't know what to do

Outline

- Reinforcement Learning
- When you have an Expert
- When we know the model
 - Markov Decision Process (MDP)
 - Value Iteration
 - Monte-Carlo Tree Search (MCTS)
 - AlphaZero
 - Linear Dynamics and Concave Reward
 - Linear Quadratic Regulator
- 4 Learning while Playing
 - Q-Learning and Deep-Q-Learning
 - Direct Policy Optimization
 - The Actor-Critic Family
 - Critic: The Value Prediction Problem
 - Actor: Policy Iteration

Markov Decision Process (MDP)

The Markovian Assumption:

- For every t, $s_{t+1} \sim \tau(s_t, a_t)$ where τ is a deterministic function over $S \times A$
- For every t, the learner observes a random variable, r_t , whose distribution depends deterministically only on (s_t, a_t) and we denote its expected value by $\rho(s_t, a_t)$,
- It follows that (s_{t+1}, r_t) is conditionally independent of $(s_{t-1}, a_{t-1}), (s_{t-2}, a_{t-2}), \ldots, (s_1, a_1)$ given (s_t, a_t)

Markov Decision Process (MDP)

The Markovian Assumption:

 s_{t+1} and r_t are conditional independent of the past given s_t, a_t

Markov Decision Process (MDP)

The Markovian Assumption:

 s_{t+1} and r_t are conditional independent of the past given s_t, a_t

Several useful consequences:

- Suppose we're interested in the discounted reward setting
- Can summarize all the future rewards into a *Value* function:
 - ullet $V(s_t)$ is the expected future reward if we are at state s_t at time t
 - ullet $Q(s_t,a_t)$ is the expected future reward if we pick action a_t at time t
 - ullet The optimal policy only depends on s_t (a proof will come later)

MDP

- Let π be a stochastic policy: $\pi: S \times A \to [0,1]$, s.t. for every s, $\sum_a \pi(a,s) = 1$
- Denote $\bar{s} = (s_1, a_1), (s_2, a_2), \dots$
- Given τ, π , we obtain a probability over sequences:

$$\mathbb{P}(\bar{s}|\pi,\tau) = \tau(s_1|\epsilon) \prod_{t=1}^{\infty} \pi(a_t, s_t) \tau(s_{t+1}|s_t, a_t) .$$

• The objective of reinforcement learning can be written as

$$\max_{\pi} R(\pi) \quad \text{where} \quad R(\pi) := \underset{\bar{s} \sim \mathbb{P}(\bar{s}|\pi,\tau)}{\mathbb{E}} [R(\bar{s})]$$

• Let us focus on the case of discounted regret: $R(\bar{s}) = \sum_{t=1}^{\infty} \gamma^{t-1} \mathbb{E} r_t$ where r_t only depends on (s_t, a_t) and we denote $\mathbb{E}[r_t|s_t, a_t] = \rho(s_t, a_t)$.

• Denote $\bar{s}_{t:\infty} = (s_t, a_t), (s_{t+1}, a_{t+2}), \dots$

- Denote $\bar{s}_{t:\infty} = (s_t, a_t), (s_{t+1}, a_{t+2}), \dots$
- The value function is the expected reward if we start from state s,

$$V^{\pi}(s) = \underset{\bar{s} \sim \mathbb{P}(\bar{s}|\pi,\tau,s_1=s)}{\mathbb{E}} [R(\bar{s})]$$

- Denote $\bar{s}_{t:\infty} = (s_t, a_t), (s_{t+1}, a_{t+2}), \dots$
- The value function is the expected reward if we start from state s,

$$V^{\pi}(s) = \underset{\bar{s} \sim \mathbb{P}(\bar{s}|\pi, \tau, s_1 = s)}{\mathbb{E}} [R(\bar{s})]$$

 \bullet The Q-function is the expected reward if we start from state s and perform action a

$$Q^{\pi}(s,a) = \underset{\bar{s} \sim \mathbb{P}(\bar{s}|\pi,\tau,s_1=s,a_1=a)}{\mathbb{E}}[R(\bar{s})]$$

- Denote $\bar{s}_{t:\infty} = (s_t, a_t), (s_{t+1}, a_{t+2}), \dots$
- The value function is the expected reward if we start from state s,

$$V^{\pi}(s) = \underset{\bar{s} \sim \mathbb{P}(\bar{s}|\pi,\tau,s_1=s)}{\mathbb{E}} [R(\bar{s})]$$

 \bullet The Q-function is the expected reward if we start from state s and perform action a

$$Q^{\pi}(s,a) = \underset{\bar{s} \sim \mathbb{P}(\bar{s}|\pi,\tau,s_1=s,a_1=a)}{\mathbb{E}} [R(\bar{s})]$$

Observe

$$R(\pi) = \sum_{s_1 \in S} \tau(s_1|\epsilon) V^{\pi}(s_1) = \sum_{s_1 \in S} \tau(s_1|\epsilon) \sum_{a_1} \pi(a_1|s_1) Q^{\pi}(s_1, a_1)$$

Recursive Expressions for V^{π} and Q^{π}

$$V^{\pi}(s) = \sum_{a_1} \pi(a_1|s) \sum_{\bar{s}_{2:\infty}} P(\bar{s}_{2:\infty}|\tau, \pi, s, a_1) \left[\rho(s, a_1) + \gamma \rho(s_2, a_2) + \ldots \right]$$
$$= \sum_{a_1} \pi(a_1|s) \left[\rho(s, a_1) + \gamma \left(\sum_{s_2} \tau(s_2|s, a_1) V^{\pi}(s_2) \right) \right]$$

Recursive Expressions for V^π and Q^π

$$V^{\pi}(s) = \sum_{a_1} \pi(a_1|s) \sum_{\bar{s}_{2:\infty}} P(\bar{s}_{2:\infty}|\tau, \pi, s, a_1) \left[\rho(s, a_1) + \gamma \rho(s_2, a_2) + \ldots \right]$$
$$= \sum_{a_1} \pi(a_1|s) \left[\rho(s, a_1) + \gamma \left(\sum_{s_2} \tau(s_2|s, a_1) V^{\pi}(s_2) \right) \right]$$

$$\begin{split} Q^{\pi}(s,a) &= \underset{\bar{s} \sim \mathbb{P}(\bar{s}|\pi,\tau,s_{1}=s,a_{1}=a)}{\mathbb{E}} [R(\bar{s})] \\ &= \rho(s,a) + \gamma \underset{\bar{s} \sim \mathbb{P}(\bar{s}|\pi,\tau,s_{1}=s,a_{1}=a)}{\mathbb{E}} [R(\bar{s}_{2:\infty})] \\ &= \rho(s,a) + \gamma \underset{s_{2},a_{2}}{\sum} \tau(s_{2}|s,a)\pi(a_{2}|s_{2})Q^{\pi}(s_{2},a_{2}) \end{split}$$

Recursive Expressions for V^{π} and Q^{π}

$$V^{\pi}(s) = \sum_{a_1} \pi(a_1|s) \sum_{\bar{s}_{2:\infty}} P(\bar{s}_{2:\infty}|\tau, \pi, s, a_1) \left[\rho(s, a_1) + \gamma \rho(s_2, a_2) + \ldots \right]$$
$$= \sum_{a_1} \pi(a_1|s) \left[\rho(s, a_1) + \gamma \left(\sum_{s_2} \tau(s_2|s, a_1) V^{\pi}(s_2) \right) \right]$$

$$\begin{split} Q^{\pi}(s,a) &= \underset{\bar{s} \sim \mathbb{P}(\bar{s}|\pi,\tau,s_{1}=s,a_{1}=a)}{\mathbb{E}} [R(\bar{s})] \\ &= \rho(s,a) + \gamma \underset{\bar{s} \sim \mathbb{P}(\bar{s}|\pi,\tau,s_{1}=s,a_{1}=a)}{\mathbb{E}} [R(\bar{s}_{2:\infty})] \\ &= \rho(s,a) + \gamma \underset{s_{2},a_{2}}{\sum} \tau(s_{2}|s,a)\pi(a_{2}|s_{2})Q^{\pi}(s_{2},a_{2}) \end{split}$$

Can find V^{π} and Q^{π} by solving a linear system

• Recall: $R(\pi) = \sum_{s_1 \in S} \tau(s_1 | \epsilon) \sum_{a_1} \pi(a_1 | s_1) Q^{\pi}(s_1, a_1)$

- Recall: $R(\pi) = \sum_{s_1 \in S} \tau(s_1 | \epsilon) \sum_{a_1} \pi(a_1 | s_1) Q^{\pi}(s_1, a_1)$
- \bullet Let π^* be an optimal policy, and V^*,Q^* be the corresponding value/Q functions

- Recall: $R(\pi) = \sum_{s_1 \in S} \tau(s_1 | \epsilon) \sum_{a_1} \pi(a_1 | s_1) Q^{\pi}(s_1, a_1)$
- \bullet Let π^* be an optimal policy, and V^*,Q^* be the corresponding value/Q functions
- Question: Given knowledge of Q^* , what is the best value of $\pi(a_1|s_1)$?

- Recall: $R(\pi) = \sum_{s_1 \in S} \tau(s_1 | \epsilon) \sum_{a_1} \pi(a_1 | s_1) Q^{\pi}(s_1, a_1)$
- \bullet Let π^* be an optimal policy, and V^*,Q^* be the corresponding value/Q functions
- Question: Given knowledge of Q^* , what is the best value of $\pi(a_1|s_1)$?
- Answer: We should put all the weight on the action for which $Q^*(s_1,a_1)$ is maximal

- Recall: $R(\pi) = \sum_{s_1 \in S} \tau(s_1 | \epsilon) \sum_{a_1} \pi(a_1 | s_1) Q^{\pi}(s_1, a_1)$
- \bullet Let π^* be an optimal policy, and V^*,Q^* be the corresponding value/Q functions
- Question: Given knowledge of Q^* , what is the best value of $\pi(a_1|s_1)$?
- Answer: We should put all the weight on the action for which $Q^*(s_1,a_1)$ is maximal
- By the Markovian property, the optimal policy must satisfy

$$\pi^*(a|s) = \begin{cases} 1 & \text{if } a = \operatorname{argmax}_a Q^*(s, a) \\ 0 & \text{otherwise} \end{cases}$$

- Recall: $R(\pi) = \sum_{s_1 \in S} \tau(s_1 | \epsilon) \sum_{a_1} \pi(a_1 | s_1) Q^{\pi}(s_1, a_1)$
- \bullet Let π^* be an optimal policy, and V^*,Q^* be the corresponding value/Q functions
- Question: Given knowledge of Q^* , what is the best value of $\pi(a_1|s_1)$?
- Answer: We should put all the weight on the action for which $Q^*(s_1,a_1)$ is maximal
- By the Markovian property, the optimal policy must satisfy

$$\pi^*(a|s) = \begin{cases} 1 & \text{if } a = \operatorname{argmax}_a Q^*(s, a) \\ 0 & \text{otherwise} \end{cases}$$

• corollary: The optimal action is the greedy action w.r.t. Q^* . In particular, the optimal a_t is a deterministic function of s_t .

Bellman's Equation for the Optimal Policy

$$Q^{*}(s,a) = \rho(s,a) + \gamma \sum_{s'} \tau(s'|s,a) \sum_{a'} \pi^{*}(a'|s') Q^{*}(s',a')$$
$$= \rho(s,a) + \gamma \sum_{s'} \tau(s'|s,a) \max_{a'} Q^{*}(s',a')$$
$$V^{*}(s) = \sum_{s'} \pi^{*}(a|s) Q^{*}(s,a) = \max_{a'} Q^{*}(s,a)$$

$$V^*(s) = \sum_{a} \pi^*(a|s)Q^*(s, a) = \max_{a} Q^*(s, a)$$

$$= \max_{a} \left[\rho(s, a) + \gamma \sum_{s'} \tau(s'|s, a) \max_{a'} Q^*(s', a') \right]$$

$$= \max_{a} \left[\rho(s, a) + \gamma \sum_{s'} \tau(s'|s, a)V^*(s') \right]$$

 \bullet The above equations follow by plugging $\pi^*(s) = \underset{\mathbb{R}}{\operatorname{argmax}}_a \, Q^*(s,a)$

Outline

- Reinforcement Learning
- When you have an Expert
- When we know the model
 - Markov Decision Process (MDP)
 - Value Iteration
 - Monte-Carlo Tree Search (MCTS)
 - AlphaZero
 - Linear Dynamics and Concave Reward
 - Linear Quadratic Regulator
- 4 Learning while Playing
 - Q-Learning and Deep-Q-Learning
 - Direct Policy Optimization
 - The Actor-Critic Family
 - Critic: The Value Prediction Problem
 - Actor: Policy Iteration

$$\forall s, \quad V_{t+1}(s) = \max_{a \in A} \left[\rho(s, a) + \gamma \sum_{s'} \tau(s'|s, a) V_t(s') \right]$$

• Iterative algorithm for finding V^* : Start with some arbitrary V_0 and update

$$\forall s, \quad V_{t+1}(s) = \max_{a \in A} \left[\rho(s, a) + \gamma \sum_{s'} \tau(s'|s, a) V_t(s') \right]$$

• Theorem: $\|V_t - V^*\|_{\infty} \le \gamma^t \|V_0 - V^*\|_{\infty}$

$$\forall s, \quad V_{t+1}(s) = \max_{a \in A} \left[\rho(s, a) + \gamma \sum_{s'} \tau(s'|s, a) V_t(s') \right]$$

- Theorem: $||V_t V^*||_{\infty} \le \gamma^t ||V_0 V^*||_{\infty}$
- Proof idea:

$$\forall s, \quad V_{t+1}(s) = \max_{a \in A} \left[\rho(s, a) + \gamma \sum_{s'} \tau(s'|s, a) V_t(s') \right]$$

- Theorem: $||V_t V^*||_{\infty} \leq \gamma^t ||V_0 V^*||_{\infty}$
- Proof idea:
 - Define $T^*: \mathbb{R}^{|S|} o \mathbb{R}^{|S|}$ to be the operator s.t. $V_{t+1} = T^*(V_t)$

$$\forall s, \quad V_{t+1}(s) = \max_{a \in A} \left[\rho(s, a) + \gamma \sum_{s'} \tau(s'|s, a) V_t(s') \right]$$

- Theorem: $||V_t V^*||_{\infty} \leq \gamma^t ||V_0 V^*||_{\infty}$
- Proof idea:
 - Define $T^*:\mathbb{R}^{|S|} o \mathbb{R}^{|S|}$ to be the operator s.t. $V_{t+1} = T^*(V_t)$
 - Show that T^* is a contraction mapping: for any two vector in $\mathbb{R}^{|S|}$ we have $\|T^*(u)-T^*(v)\|_\infty \leq \gamma \|u-v\|_\infty$

$$\forall s, \quad V_{t+1}(s) = \max_{a \in A} \left[\rho(s, a) + \gamma \sum_{s'} \tau(s'|s, a) V_t(s') \right]$$

- Theorem: $||V_t V^*||_{\infty} \leq \gamma^t ||V_0 V^*||_{\infty}$
- Proof idea:
 - Define $T^*: \mathbb{R}^{|S|} o \mathbb{R}^{|S|}$ to be the operator s.t. $V_{t+1} = T^*(V_t)$
 - Show that T^* is a contraction mapping: for any two vector in $\mathbb{R}^{|S|}$ we have $\|T^*(u)-T^*(v)\|_\infty \leq \gamma \|u-v\|_\infty$
 - The proof follows from Banach's fixed point theorem

Value Iteration on Pong — Discretization

- Value iteration provably converges, but the complexity of each iteration scales quadratically with the number of states
- Discretization:
 - Discretize each dimension to 100 values and perform value iteration: https://www.youtube.com/watch?v=JyRumpgScZo
 - But, poor performance on the original (non-discretized) game: https://www.youtube.com/watch?v=7LoBP3JspVY

Value Iteration on Pong — Function Approximation

• Each iteration of Value iteration solves the objective:

$$V_{t+1} = \underset{V}{\operatorname{argmin}} \left[\underset{s \sim \text{uniform}}{\mathbb{E}} \left(V(s) - Y_t(s) \right)^2 \right]$$

where

$$Y_t(s) = \max_{a \in A} \left[\rho(s, a) + \gamma \sum_{s'} \tau(s'|s, a) V_t(s') \right]$$

- Function approximation: Instead of maintaining V_t as a vector of dimension |S|, approximate it by $V_{\theta_t} \in \mathcal{V}$
- Approximate value iteration: Instead of solving the objective exactly, solve it approximately by sampling a training set of states
- Takes only few minutes to run, and works great: https://www.youtube.com/watch?v=H9IOepymPBI

Disadvantages

- Sampling s uniformly is not always possible
- ullet Sampling s uniformly is not always a good choice we might need an exponential accuracy to make it good. E.g.
 - $s_1 \rightarrow s_2$ and $s_1 \rightarrow s_3 \rightarrow s_4 \rightarrow s_5 \rightarrow \ldots \rightarrow s_n$
 - \bullet suppose that the reward for being in s_2 is 1 and the reward for all other states is 0
 - In uniform sampling, we have a probability of 1-1/n not to see s_2 at all, and in such a case we will return V_t which is the all zero function

• Motivation: Value iteration is efficient if |S| and |A| are both small. What if |S| is very large but |A| is small?

- Motivation: Value iteration is efficient if |S| and |A| are both small. What if |S| is very large but |A| is small?
- Consider a deterministic MDP $(s_{t+1} = f(s_t, a_t))$ for some deterministic function f

- Motivation: Value iteration is efficient if |S| and |A| are both small. What if |S| is very large but |A| is small?
- Consider a deterministic MDP $(s_{t+1} = f(s_t, a_t))$ for some deterministic function f)
- Suppose that rewards are in [-1,1], and fix T s.t. $T \approx \frac{\log(1/(\epsilon(1-\gamma)))}{1-\gamma}$

- Motivation: Value iteration is efficient if |S| and |A| are both small. What if |S| is very large but |A| is small?
- Consider a deterministic MDP $(s_{t+1} = f(s_t, a_t))$ for some deterministic function f
- Suppose that rewards are in [-1,1], and fix T s.t. $T pprox \frac{\log(1/(\epsilon(1-\gamma)))}{1-\gamma}$
- Exercise: show that for every (deterministic) policy π , if $(s_1,a_1),\ldots,(s_T,a_T)$ is the sequence corresponding to $a_t=\pi(s_t)$ then $|V^\pi(s_1)-\sum_{t=1}^T\gamma^t\rho(s_t,a_t)|\leq\epsilon$

- Motivation: Value iteration is efficient if |S| and |A| are both small. What if |S| is very large but |A| is small?
- Consider a deterministic MDP ($s_{t+1} = f(s_t, a_t)$ for some deterministic function f)
- Suppose that rewards are in [-1,1], and fix T s.t. $T pprox \frac{\log(1/(\epsilon(1-\gamma)))}{1-\gamma}$
- Exercise: show that for every (deterministic) policy π , if $(s_1, a_1), \ldots, (s_T, a_T)$ is the sequence corresponding to $a_t = \pi(s_t)$ then $|V^{\pi}(s_1) \sum_{t=1}^{T} \gamma^t \rho(s_t, a_t)| \leq \epsilon$
- Corollary: Given s', let $\bar{S}(s')$ be all the sequences of length T s.t. $s_1=s'$ and for $t\geq 1$, $a_t\in A$ and $s_{t+1}=f(s_t,a_t)$. Let $\bar{s}(s')=\operatorname{argmax}_{\bar{s}\in\bar{S}_0}R(\bar{s})$. Then, the policy that picks $\pi(s')=a_1$ is ϵ -optimal.

Monte-Carlo-Tree-Search (MCTS) for stochastic MDPs

- What if the MDP is stochastic?
- Kearns, Mansour, Ng (2002): an algorithm that guarantees $|V^\pi(s)-V^*(s)| \leq \epsilon$ with runtime of $(|A|/(\epsilon(1-\gamma)))^T$, where T is as in the deterministic case
- Main idea:
 - Start with $s_1 = s'$ as a root of a tree
 - Given a leaf node of depth $\leq T$ corresponding to being at state s, expand it to C|A| nodes by taking all possible $a \in A$, and for each such a sample C times from $\tau(\cdot|s,a)$.
 - Backpropagate the V,Q values from the leafs to the root by setting V(s)=0, Q(s,a)=0 for the leaves, and for every internal node, s, set Q(s,a) to be the average of V(s') for child nodes for which we chose the action a, and set $V(s)=\max_a Q(s,a)$.

• If T is mildly large (say, 50), then $|A|^T$ is huge, so tree search is infeasible even in the deterministic case

- If T is mildly large (say, 50), then $|A|^T$ is huge, so tree search is infeasible even in the deterministic case
- We can build a sub tree as follows:

- If T is mildly large (say, 50), then $|A|^T$ is huge, so tree search is infeasible even in the deterministic case
- We can build a sub tree as follows:
 - Start with an empty tree

- If T is mildly large (say, 50), then $|A|^T$ is huge, so tree search is infeasible even in the deterministic case
- We can build a sub tree as follows:
 - Start with an empty tree
 - Repeat: create an episode $(s_1, a_1), \ldots, (s_T, a_T)$ by following some policy π and add the episode to a tree

- If T is mildly large (say, 50), then $|A|^T$ is huge, so tree search is infeasible even in the deterministic case
- We can build a sub tree as follows:
 - Start with an empty tree
 - Repeat: create an episode $(s_1, a_1), \ldots, (s_T, a_T)$ by following some policy π and add the episode to a tree
 - ullet Backpropagate to update the estimation of Q,V as before

- If T is mildly large (say, 50), then $|A|^T$ is huge, so tree search is infeasible even in the deterministic case
- We can build a sub tree as follows:
 - Start with an empty tree
 - Repeat: create an episode $(s_1, a_1), \ldots, (s_T, a_T)$ by following some policy π and add the episode to a tree
 - \bullet Backpropagate to update the estimation of Q,V as before
- If π is the uniform distribution and we repeat enough times we'll get a very similar tree to the one of Kearns et al

• Consider some policy π . Given (s,a), we can estimate $Q^{\pi}(s,a)$ by rollout-based MCTS, while performing a as the first action and from there on using π to select actions

- Consider some policy π . Given (s,a), we can estimate $Q^{\pi}(s,a)$ by rollout-based MCTS, while performing a as the first action and from there on using π to select actions
- What is a good action for s given the above tree? One simple idea: use $\pi^1(s) = \operatorname{argmax}_a Q^\pi(s,a)$

- Consider some policy π . Given (s,a), we can estimate $Q^\pi(s,a)$ by rollout-based MCTS, while performing a as the first action and from there on using π to select actions
- What is a good action for s given the above tree? One simple idea: use $\pi^1(s) = \operatorname{argmax}_a Q^\pi(s,a)$
- But, now we got a new policy, $\pi^1(s)$, so maybe we can repeat the above improvement with π^1 instead of π to get π^2

- Consider some policy π . Given (s,a), we can estimate $Q^\pi(s,a)$ by rollout-based MCTS, while performing a as the first action and from there on using π to select actions
- What is a good action for s given the above tree? One simple idea: use $\pi^1(s) = \operatorname{argmax}_a Q^\pi(s,a)$
- But, now we got a new policy, $\pi^1(s)$, so maybe we can repeat the above improvement with π^1 instead of π to get π^2
- ullet The Backpropgation step of MCTS approximately does this, but the selection of actions is based on the original π

- ullet Consider some policy $\pi.$ Given (s,a), we can estimate $Q^\pi(s,a)$ by rollout-based MCTS, while performing a as the first action and from there on using π to select actions
- What is a good action for s given the above tree? One simple idea: use $\pi^1(s) = \operatorname{argmax}_a Q^\pi(s,a)$
- But, now we got a new policy, $\pi^1(s)$, so maybe we can repeat the above improvement with π^1 instead of π to get π^2
- \bullet The Backpropgation step of MCTS approximately does this, but the selection of actions is based on the original π
- The next slide describes UCT, which adapt the policy on the fly

 Upper Confidence Bound (UCB): an algorithm for selecting arms in the multi-armed bandit problem based on the principle of "optimism in the face of uncertainty"

- Upper Confidence Bound (UCB): an algorithm for selecting arms in the multi-armed bandit problem based on the principle of "optimism in the face of uncertainty"
- UCT (Kocsis and Szepesvari) is Upper Confidence bound for Trees

- Upper Confidence Bound (UCB): an algorithm for selecting arms in the multi-armed bandit problem based on the principle of "optimism in the face of uncertainty"
- UCT (Kocsis and Szepesvari) is Upper Confidence bound for Trees
- The idea of UCT is to apply UCB for every node of the tree:

- Upper Confidence Bound (UCB): an algorithm for selecting arms in the multi-armed bandit problem based on the principle of "optimism in the face of uncertainty"
- UCT (Kocsis and Szepesvari) is Upper Confidence bound for Trees
- The idea of UCT is to apply UCB for every node of the tree:
 - \bullet When visiting a node s, use the current UCB estimate of Q(s,a) to pick action

- Upper Confidence Bound (UCB): an algorithm for selecting arms in the multi-armed bandit problem based on the principle of "optimism in the face of uncertainty"
- UCT (Kocsis and Szepesvari) is Upper Confidence bound for Trees
- The idea of UCT is to apply UCB for every node of the tree:
 - \bullet When visiting a node s, use the current UCB estimate of Q(s,a) to pick action
 - ullet At the end of the episode, update Q for all the root-to-leaf path by backpropagation

Outline

- Reinforcement Learning
- When you have an Expert
- When we know the model
 - Markov Decision Process (MDP)
 - Value Iteration
 - Monte-Carlo Tree Search (MCTS)
 - AlphaZero
 - Linear Dynamics and Concave Reward
 - Linear Quadratic Regulator
- 4 Learning while Playing
 - Q-Learning and Deep-Q-Learning
 - Direct Policy Optimization
 - The Actor-Critic Family
 - Critic: The Value Prediction Problem
 - Actor: Policy Iteration

AlphaZero MCTS

- At the heart of Deepmind's algorithm for playing the Go game is a variant of the UCT algorithm
- Input: Initial state s_0 , a stochastic policy π , and a value function V
- Parameters: Number of rollouts, max depth, and exploration/exploitation parameter
- The algorithm repeats the following two steps:
 - Select
 - 2 Evaluate and Backpropagate

AlphaZero MCTS — Select step

- Each edge of the tree maintains the number of visits to the edge, N(s,a), and an estimation of the Q value, Q(s,a)
- Create an episode by starting from s_0 while at step t, pick an action $a_t = \operatorname{argmax}_a(Q(s_t, a) + U(s_t, a))$
- $U(s_t,a)$ is the upper confidence bound: $c \pi(a|s_t) \frac{\sqrt{\sum_b N(s_t,b)}}{1+N(s_t,a)}$, where c is a constant
- The rule initially prefers actions with high prior probability (according to π) and low visit count (exploration), but as the values of Q differentiates between actions, it will start exploiting and use actions with high Q value.
- We stop the episode creation when someone won the game or when max depth has been reached

AlphaZero MCTS — Evaluate and Backpropagate step

- Let s_L be the leaf node we've reached and let $V(s_L)$ be the estimation of value for s_L
- For all edges (s, a) from the root node to s_L :
 - Increment N(s,a)
 - Update $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha V(s_L)$, where $\alpha = 1/(N(s,a)+1)$

AlphaZero MCTS — the resulting policy

- After building the tree, the action to be taken for s_0 is to select an action a with probability $N(s_0,a)^{1/\psi}/\sum_b N(s_0,b)^{1/\psi}$
- For $\psi \to 0$, it means picking the action $\operatorname{argmax}_a N(s_0, a)$, while larger values of ψ gives more exportation

The AlphaZero Algorithm

- ullet Given π , let M(pi) be the AlphaZero MCTS policy
- \bullet The AlphaZero Assumption: $M(\pi)$ is better than π
- If this is true, a natural algorithm is to apply M recursively, namely, $M(\cdots M(M(\pi)))$
- But, this is computationally infeasible

The AlphaZero Algorithm

- Define neural network architecture with parameter θ that receives s as input and output $\pi(\cdot|s)$ and V(s)
- Initialize θ_0 and Loop:
- Play many games with $M(\pi_{\theta_t})$, and record triplets (s,a,r), indicating that we were at step s, performed action a, and the total reward of the episode was r
- Imitation learning: Train θ_{t+1} to minimize the loss $(V_{\theta}(s) r)^2 \log(\pi_{\theta}(a|s))$
- Validation: check if θ_{t+1} is indeed better than θ (by letting $M(\pi_{\theta_{t+1}})$ play agains $M(\pi_{\theta_t})$). If so, continue. Otherwise, continue the SGD of the imitation part.

Alpha-Pong-Zero

• https://www.youtube.com/watch?v=m6ijH41_jAk

Outline

- Reinforcement Learning
- When you have an Expert
- When we know the model
 - Markov Decision Process (MDP)
 - Value Iteration
 - Monte-Carlo Tree Search (MCTS)
 - AlphaZero
 - Linear Dynamics and Concave Reward
 - Linear Quadratic Regulator
- 4 Learning while Playing
 - Q-Learning and Deep-Q-Learning
 - Direct Policy Optimization
 - The Actor-Critic Family
 - Critic: The Value Prediction Problem
 - Actor: Policy Iteration

Linear Dynamics

- ullet The state at time t is represented as a vector $s_t \in \mathbb{R}^d$ and the action is a vector $a_t \in \mathbb{R}^k$
- The next state is a linear function:

$$s_{t+1} = As_t + Ba_t$$

where $A \in \mathbb{R}^{d,d}$ and $B \in \mathbb{R}^{d,k}$

Linear Dynamics

- ullet The state at time t is represented as a vector $s_t \in \mathbb{R}^d$ and the action is a vector $a_t \in \mathbb{R}^k$
- The next state is a linear function:

$$s_{t+1} = As_t + Ba_t$$

where $A \in \mathbb{R}^{d,d}$ and $B \in \mathbb{R}^{d,k}$

Example:

- The state of a car is given by the vector of its position and velocity $s_t = (x(t), y(t), x'(t), y'(t))$
- The action is acceleration $a_t = (x''(t), y''(t))$
- The next state is given by the matrices

$$A = \begin{bmatrix} 1 & 0 & \delta & 0 \\ 0 & 1 & 0 & \delta \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad , \quad B = \begin{bmatrix} 0.5 \, \delta^2 & 0 \\ 0 & 0.5 \, \delta^2 \\ \delta & 0 \\ 0 & \delta \end{bmatrix}$$

Concave Rewards

• The state at time t+1 can be written as

$$s_{t+1} = As_t + Ba_t = A(As_{t-1} + Ba_{t-1}) + Ba_t = \dots$$
$$= A^{t-1}s_0 + \sum_{i=0}^{t} A^{t-i}Ba_i$$

- Note that this is a linear function of s_0 and a_0, \ldots, a_t
- Assume that the reward function, $\rho(s,a)$, is a concave function over \mathbb{R}^{d+k} .
- ullet It follows that the problem of planning, w.r.t. a horizon of T steps, is a convex optimization problem

$$\max_{a_0,\dots,a_T} \sum_{t=1}^T \rho(s_t, a_t)$$

Outline

- Reinforcement Learning
- When you have an Expert
- When we know the model
 - Markov Decision Process (MDP)
 - Value Iteration
 - Monte-Carlo Tree Search (MCTS)
 - AlphaZero
 - Linear Dynamics and Concave Reward
 - Linear Quadratic Regulator
- 4 Learning while Playing
 - Q-Learning and Deep-Q-Learning
 - Direct Policy Optimization
 - The Actor-Critic Family
 - Critic: The Value Prediction Problem
 - Actor: Policy Iteration

Linear Quadratic Regulator

- Linear Quadratic Regulator (LQR) is a model in which the transition is linear and the reward s a quadratic function, $\rho(s_t, a_t) = s_t^\top Q s_t + a_t^\top R a_t$
- Exercise: show that the solution can be written as $a_t=F_ts_t$ for a matrix F_t that depends only A,B,Q,R and t

Outline

- Reinforcement Learning
- When you have an Expert
- When we know the model
 - Markov Decision Process (MDP)
 - Value Iteration
 - Monte-Carlo Tree Search (MCTS)
 - AlphaZero
 - Linear Dynamics and Concave Reward
 - Linear Quadratic Regulator
- 4 Learning while Playing
 - Q-Learning and Deep-Q-Learning
 - Direct Policy Optimization
 - The Actor-Critic Family
 - Critic: The Value Prediction Problem
 - Actor: Policy Iteration

Outline

- Reinforcement Learning
- When you have an Expert
- When we know the model
 - Markov Decision Process (MDP)
 - Value Iteration
 - Monte-Carlo Tree Search (MCTS)
 - AlphaZero
 - Linear Dynamics and Concave Reward
 - Linear Quadratic Regulator
- 4 Learning while Playing
 - Q-Learning and Deep-Q-Learning
 - Direct Policy Optimization
 - The Actor-Critic Family
 - Critic: The Value Prediction Problem
 - Actor: Policy Iteration

• Bellman's equation for the Q^* function:

$$Q^*(s, a) = \rho(s, a) + \gamma \mathop{\mathbb{E}}_{s' \sim \tau(s, a)} \max_{a'} Q^*(s', a')$$

• Bellman's equation for the Q^* function:

$$Q^*(s, a) = \rho(s, a) + \gamma \mathop{\mathbb{E}}_{s' \sim \tau(s, a)} \max_{a'} Q^*(s', a')$$

• Given (s_t, a_t, s_{t+1}, r_t) , define

$$\delta_{s_t, a_t}(Q) = Q(s_t, a_t) - \left(r_t + \gamma \max_{a'} Q(s_{t+1}, a')\right)$$

• Bellman's equation for the Q^* function:

$$Q^*(s, a) = \rho(s, a) + \gamma \mathop{\mathbb{E}}_{s' \sim \tau(s, a)} \max_{a'} Q^*(s', a')$$

• Given (s_t, a_t, s_{t+1}, r_t) , define

$$\delta_{s_t, a_t}(Q) = Q(s_t, a_t) - \left(r_t + \gamma \max_{a'} Q(s_{t+1}, a')\right)$$

• Initialize Q_1 and update

$$Q_{t+1}(s, a) = Q_t(s, a) - \eta_t \delta_{s_t, a_t}(Q_t) 1[s = s_t, a = a_t]$$

• Bellman's equation for the Q^* function:

$$Q^*(s, a) = \rho(s, a) + \gamma \mathop{\mathbb{E}}_{s' \sim \tau(s, a)} \max_{a'} Q^*(s', a')$$

• Given (s_t, a_t, s_{t+1}, r_t) , define

$$\delta_{s_t, a_t}(Q) = Q(s_t, a_t) - \left(r_t + \gamma \max_{a'} Q(s_{t+1}, a')\right)$$

• Initialize Q_1 and update

$$Q_{t+1}(s, a) = Q_t(s, a) - \eta_t \delta_{s_t, a_t}(Q_t) 1[s = s_t, a = a_t]$$

• The above update aims at converging to Bellman's equation

• Bellman's equation for the Q^* function:

$$Q^*(s, a) = \rho(s, a) + \gamma \mathop{\mathbb{E}}_{s' \sim \tau(s, a)} \max_{a'} Q^*(s', a')$$

• Given (s_t, a_t, s_{t+1}, r_t) , define

$$\delta_{s_t, a_t}(Q) = Q(s_t, a_t) - \left(r_t + \gamma \max_{a'} Q(s_{t+1}, a')\right)$$

• Initialize Q_1 and update

$$Q_{t+1}(s, a) = Q_t(s, a) - \eta_t \delta_{s_t, a_t}(Q_t) 1[s = s_t, a = a_t]$$

- The above update aims at converging to Bellman's equation
- The update only relies on quadruples (s_t, a_t, s_{t+1}, r_t) (no knowledge of τ is assumed)

Q-Learning is off policy

- The algorithm can be applied on any set of quadruples (s_t, a_t, s_{t+1}, r_t) (no matter what was the policy that was used to set a_t)
- Speed of convergence can be very slow (and the algorithm might even not converge at all) depending on the policy
- Exploration/exploitation: to converge, we need to explore (see all state-action pairs), but speed of convergence might be too slow for random sampling
- ullet ϵ -greedy: use the argmax of current estimate of Q^* in $(1-\epsilon)$ of the steps, and at the rest of the steps pick actions at random

The Curse of Dimensionality

- ullet The Q function is a table of size $|S| \times |A|$
- ullet This size grows exponentially with the dimensions of S and A
- Solution: Function approximation

Function Approximation for Q-Learning

ullet Maintain a parametric hypothesis class of Q functions

Function Approximation for Q-Learning

- ullet Maintain a parametric hypothesis class of Q functions
- Rewrite δ as a function of the parameter θ :

$$\delta_{s_t, a_t}(\theta) = Q_{\theta}(s_t, a_t) - \left(r_t + \gamma \max_{a'} Q_{\theta_t}(s_{t+1}, a')\right)$$

Function Approximation for Q-Learning

- ullet Maintain a parametric hypothesis class of Q functions
- Rewrite δ as a function of the parameter θ :

$$\delta_{s_t, a_t}(\theta) = Q_{\theta}(s_t, a_t) - \left(r_t + \gamma \max_{a'} Q_{\theta_t}(s_{t+1}, a')\right)$$

• Since we want to minimize $\frac{1}{2}\delta_{s_t,a_t}(\theta)^2$ we take a gradient step:

$$\theta_{t+1} = \theta_t - \eta_t \delta_{s_t, a_t}(\theta_t) \nabla Q_{\theta}(s_t, a_t)$$

• Used by DeepMind to learn to play Atari games

- Used by DeepMind to learn to play Atari games
- \bullet Use a deep network (parametrized by $\theta)$ as a function approximation for Q

- Used by DeepMind to learn to play Atari games
- \bullet Use a deep network (parametrized by $\theta)$ as a function approximation for Q
- Exploration: ϵ -greedy

- Used by DeepMind to learn to play Atari games
- \bullet Use a deep network (parametrized by $\theta)$ as a function approximation for Q
- Exploration: ϵ -greedy
- Memory replay: After executing a_t and observing r_t, s_{t+1} we store the example (s_t, a_t, r_t, s_{t+1}) in a database. Instead of updating just based on the last example, update based on a mini-batch of random examples from the database

- Used by DeepMind to learn to play Atari games
- \bullet Use a deep network (parametrized by $\theta)$ as a function approximation for Q
- Exploration: ϵ -greedy
- Memory replay: After executing a_t and observing r_t, s_{t+1} we store the example (s_t, a_t, r_t, s_{t+1}) in a database. Instead of updating just based on the last example, update based on a mini-batch of random examples from the database
- Freezing Q: Every C steps, freeze the value of Q_{θ} and denote it by \hat{Q} . Then, redefine δ to be

$$\delta_{s_t, a_t}(\theta) = Q_{\theta}(s_t, a_t) - \left(r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a')\right)$$

This has some stabilization effect on the algorithm

Deep-Q-Learning on Pong

- 8000 episodes
- 1385847 SGD steps
- Around 10 hours
- 97% win rate
- https://www.youtube.com/watch?v=VaqCVq7by7

A simplified algorithm

Loop:

- ullet Play 1000 episodes with $\epsilon\text{-greedy}$ over the current Q
- Perform few Q-iterations with the entire batch

A simplified algorithm

Loop:

- Play 1000 episodes with ϵ -greedy over the current Q
- Perform few Q-iterations with the entire batch
- After ≈ 15 minutes:

https://www.youtube.com/watch?v=QqWWxVUMwwM

Outline

- Reinforcement Learning
- When you have an Expert
- When we know the model
 - Markov Decision Process (MDP)
 - Value Iteration
 - Monte-Carlo Tree Search (MCTS)
 - AlphaZero
 - Linear Dynamics and Concave Reward
 - Linear Quadratic Regulator
- 4 Learning while Playing
 - Q-Learning and Deep-Q-Learning
 - Direct Policy Optimization
 - The Actor-Critic Family
 - Critic: The Value Prediction Problem
 - Actor: Policy Iteration

Direct Policy Optimization

Recall, the objective of reinforcement learning is to maximize the expected reward:

$$\underset{\pi}{\operatorname{argmax}} R(\pi) \quad \text{where} \quad R(\pi) = \mathbb{E}[R(\bar{s})|\pi]$$

Direct Policy Optimization

Recall, the objective of reinforcement learning is to maximize the expected reward:

$$\underset{\pi}{\operatorname{argmax}} \ R(\pi) \quad \text{ where } \quad R(\pi) = \mathbb{E}[R(\bar{s})|\pi]$$

Remark: Here, we do not need to assume Markovity, but only that π is Markovian, that is

$$\mathbb{P}(\bar{s}|\pi) = \tau(s_1|\epsilon) \prod_{t=1}^{\infty} \pi(a_t|s_t) \tau(s_{t+1}|\bar{s}_{1:t-1})$$

Policy Stochastic Gradient

- Hypothesis class of parametric stochastic policies: $\{\pi_{\theta}: \theta \in \Theta\}$, where for all θ, s we have $\sum_a \pi_{\theta}(a|s) = 1$
- Assume that $\pi_{\theta}(s,a)$ is differentiable w.r.t. θ (e.g. deep network)
- ullet $P_{ heta}(ar{s})$ is the probability of $ar{s}$ when actions are chosen according to $\pi_{ heta}$
- The Learning Problem:

$$\underset{\theta \in \Theta}{\operatorname{argmax}} R(\theta) \quad \text{ where } \quad R(\theta) = \sum_{\bar{s}} P_{\theta}(\bar{s}) R(\bar{s})$$

Policy Stochastic Gradient

- Hypothesis class of parametric stochastic policies: $\{\pi_{\theta}: \theta \in \Theta\}$, where for all θ, s we have $\sum_a \pi_{\theta}(a|s) = 1$
- Assume that $\pi_{\theta}(s,a)$ is differentiable w.r.t. θ (e.g. deep network)
- ullet $P_{ heta}(ar{s})$ is the probability of $ar{s}$ when actions are chosen according to $\pi_{ heta}$
- The Learning Problem:

$$\underset{\theta \in \Theta}{\operatorname{argmax}} R(\theta) \quad \text{where} \quad R(\theta) = \sum_{\bar{s}} P_{\theta}(\bar{s}) R(\bar{s})$$

Lemma (Policy Gradient)

Sample $\bar{s} \sim P_{\theta}$ and set $\hat{\nabla} = R(\bar{s}) \sum_{t=1}^{T} \nabla_{\theta} \log(\pi_{\theta}(a_{t}|s_{t}))$. Then, $\hat{\nabla}$ is an unbiased estimate of $R(\theta)$.

Policy Gradient: proof

Step 1: The Likelihood Ratio Trick:

$$\begin{split} \nabla_{\theta} R(\theta) &= \nabla_{\theta} \sum_{\bar{s}} P_{\theta}(\bar{s}) R(\bar{s}) & \text{(definition of expectation)} \\ &= \sum_{\bar{s}} R(\bar{s}) \nabla_{\theta} P_{\theta}(\bar{s}) & \text{(linearity of derivation)} \\ &= \sum_{\bar{s}} P_{\theta}(\bar{s}) R(\bar{s}) \frac{\nabla_{\theta} P_{\theta}(\bar{s})}{P_{\theta}(\bar{s})} & \text{(multiply and divide by } P_{\theta}(\bar{s})) \\ &= \sum_{\bar{s}} P_{\theta}(\bar{s}) R(\bar{s}) \nabla_{\theta} \log(P_{\theta}(\bar{s})) & \text{(derivative of the log)} \end{split}$$

Policy Gradient: proof (cont.)

Step 2: use the properties of the log

$$= \sum_{\bar{s}} P_{\theta}(\bar{s}) R(\bar{s}) \nabla_{\theta} \left(\sum_{t=1}^{T} \log(\tau(s_{t}|\bar{s}_{1:t-1})) + \sum_{t=1}^{T} \log(\pi_{\theta}(s_{t}, a_{t})) \right)$$

$$(\text{def of } P_{\theta})$$

$$= \sum_{\bar{s}} P_{\theta}(\bar{s}) R(\bar{s}) \left(\sum_{t=1}^{T} \nabla_{\theta} \log(\tau(s_{t}|\bar{s}_{1:t-1})) + \sum_{t=1}^{T} \nabla_{\theta} \log(\pi_{\theta}(s_{t}, a_{t})) \right)$$

$$(\text{linearity of derivative})$$

$$= \sum_{\bar{s}} P_{\theta}(\bar{s}) R(\bar{s}) \left(0 + \sum_{t=1}^{T} \nabla_{\theta} \log(\pi_{\theta}(s_{t}, a_{t})) \right)$$

$$= \underset{\bar{s} \sim P_{\theta}}{\mathbb{E}} \left[R(\bar{s}) \sum_{t=1}^{T} \nabla_{\theta} \log(\pi_{\theta}(s_{t}, a_{t})) \right].$$

The Variance Problem

- The policy gradient theorem tells us how to find an unbiased estimator, $\hat{\nabla}$, of the true gradient, ∇
- The convergence of SGD heavily depends on the variance (e.g. Moulines and Bach, 2011, Ghadimi and Lan 2013)

$$\mathbb{E}[\|\hat{\nabla} - \nabla\|^2]$$

- The variance of the policy gradient estimator can be very large
- How to reduce the variance ?

Policy Gradient — Intuition

• If $a_t = \pi_{\theta}(s_t)$ for some good policy π_{θ} , then the negative gradient of the SL loss is

$$\frac{1}{T} \sum_{t} \nabla_{\theta} \log(\pi_{\theta}(s_{t}, a_{t}))$$

Policy Gradient — Intuition

• If $a_t = \pi_{\theta}(s_t)$ for some good policy π_{θ} , then the negative gradient of the SL loss is

$$\frac{1}{T} \sum_{t} \nabla_{\theta} \log(\pi_{\theta}(s_t, a_t))$$

Compare to the update direction of Policy Gradient:

$$R(\bar{s}) \sum_{t} \nabla_{\theta} \log(\pi_{\theta}(s_t, a_t))$$

Policy Gradient — Intuition

• If $a_t = \pi_{\theta}(s_t)$ for some good policy π_{θ} , then the negative gradient of the SL loss is

$$\frac{1}{T} \sum_{t} \nabla_{\theta} \log(\pi_{\theta}(s_{t}, a_{t}))$$

Compare to the update direction of Policy Gradient:

$$R(\bar{s}) \sum_{t} \nabla_{\theta} \log(\pi_{\theta}(s_t, a_t))$$

 We perform the update of SL if we "succeeded" at the episode, and the opposite update if we "failed" at the episode

Policy Gradient on Pong

- We estimate the gradient with 1000 episodes, for 3500 gradient steps
- Very very very slow... Eventually we got 88% winning rate
- https://www.youtube.com/watch?v=2LUt4bkqylk

Outline

- Reinforcement Learning
- When you have an Expert
- When we know the model
 - Markov Decision Process (MDP)
 - Value Iteration
 - Monte-Carlo Tree Search (MCTS)
 - AlphaZero
 - Linear Dynamics and Concave Reward
 - Linear Quadratic Regulator
- 4 Learning while Playing
 - Q-Learning and Deep-Q-Learning
 - Direct Policy Optimization
 - The Actor-Critic Family
 - Critic: The Value Prediction Problem
 - Actor: Policy Iteration

Actor-Critic Intuition

Lemma (Policy Gradient with Advantage function)

Define

$$A_{\pi}(s, a) = Q_{\pi}(s, a) - \frac{1}{|A|} \sum_{a' \in a} Q_{\pi}(s, a')$$

Sample $\bar{s} \sim P_{\theta}$ and set $\hat{\nabla} = \sum_{t=1}^{T} A_{\pi}(s_t, a_t) \nabla_{\theta} \log(\pi_{\theta}(a_t|s_t))$. Then, $\hat{\nabla}$ is an unbiased estimate of $R(\theta)$.

• Intuition: We want to scale each individual $\nabla_{\theta} \log(\pi_{\theta}(a_t|s_t))$ by the quality of doing a_t at state s_t

Actor-Critic Learning

- Actor-Critic learning: The actor performs policy gradient while the critic estimates the advantage function
- More generally:

Actor-Critic

Loop:

- Evaluate current policy (Critic)
- Improve current policy based on the evaluation (Actor)

Outline

- Reinforcement Learning
- When you have an Expert
- When we know the model
 - Markov Decision Process (MDP)
 - Value Iteration
 - Monte-Carlo Tree Search (MCTS)
 - AlphaZero
 - Linear Dynamics and Concave Reward
 - Linear Quadratic Regulator
- 4 Learning while Playing
 - Q-Learning and Deep-Q-Learning
 - Direct Policy Optimization
 - The Actor-Critic Family
 - Critic: The Value Prediction Problem
 - Actor: Policy Iteration

• The Value Evaluation problem: Given some policy π , find V^{π}

- The Value Evaluation problem: Given some policy π , find V^{π}
- By Bellman's equation, this is a linear system:

$$\forall s, \quad V^{\pi}(s) = \sum_{a} \pi(a|s) \left[\rho(s, a) + \gamma \sum_{s'} \tau(s'|s, a) V^{\pi}(s') \right]$$

- The Value Evaluation problem: Given some policy π , find V^{π}
- By Bellman's equation, this is a linear system:

$$\forall s, \quad V^{\pi}(s) = \sum_{a} \pi(a|s) \left[\rho(s, a) + \gamma \sum_{s'} \tau(s'|s, a) V^{\pi}(s') \right]$$

ullet Can be also solved by an iterative algorithm: Start with some arbitrary V_0 and update

$$\forall s, \quad V_{t+1}(s) = \sum_{a} \pi(a|s) \left[\rho(s,a) + \gamma \sum_{s'} \tau(s'|s,a) V_t(s') \right]$$

- The Value Evaluation problem: Given some policy π , find V^{π}
- By Bellman's equation, this is a linear system:

$$\forall s, \quad V^{\pi}(s) = \sum_{a} \pi(a|s) \left[\rho(s, a) + \gamma \sum_{s'} \tau(s'|s, a) V^{\pi}(s') \right]$$

ullet Can be also solved by an iterative algorithm: Start with some arbitrary V_0 and update

$$\forall s, \quad V_{t+1}(s) = \sum_{a} \pi(a|s) \left[\rho(s,a) + \gamma \sum_{s'} \tau(s'|s,a) V_t(s') \right]$$

• Same convergence guarantee as in Value iteration

Value Prediction — Monte Carlo Sampling

• The Value Prediction problem: Given some policy π , find V^{π}

Value Prediction — Monte Carlo Sampling

- The Value Prediction problem: Given some policy π , find V^{π}
- Monte-Carlo Sampling: Sample episodes, and for every t in an episode of length T, create an "example" based on:

$$V^{\pi}(s_t) \approx \sum_{k=1}^{T} \gamma^k r_{t+k}$$

Value Prediction — Monte Carlo Sampling

- The Value Prediction problem: Given some policy π , find V^{π}
- Monte-Carlo Sampling: Sample episodes, and for every t in an episode of length T, create an "example" based on:

$$V^{\pi}(s_t) \approx \sum_{k=1}^{T} \gamma^k r_{t+k}$$

Average all the estimates

Temporal Difference and $TD(\lambda)$

ullet temporal-difference learning: Sample episodes, and for every t in an episode of length T, update V based on the "example"

$$(s_t, r_t + \gamma V(s_{t+1}))$$

Temporal Difference and $TD(\lambda)$

ullet temporal-difference learning: Sample episodes, and for every t in an episode of length T, update V based on the "example"

$$(s_t, r_t + \gamma V(s_{t+1}))$$

• $TD(\lambda)$: a combination of temporal difference learning and monte-carlo sampling

Outline

- Reinforcement Learning
- When you have an Expert
- When we know the model
 - Markov Decision Process (MDP)
 - Value Iteration
 - Monte-Carlo Tree Search (MCTS)
 - AlphaZero
 - Linear Dynamics and Concave Reward
 - Linear Quadratic Regulator
- 4 Learning while Playing
 - Q-Learning and Deep-Q-Learning
 - Direct Policy Optimization
 - The Actor-Critic Family
 - Critic: The Value Prediction Problem
 - Actor: Policy Iteration

Policy Iteration

- Initialize π_0 somehow
- For t = 1, 2, ...
 - Evaluate V^{π_t} and set $Q^{\pi_t}(s,a)=\rho(s,a)+E_{s'|s,a}V^{\pi_t}(s')$ (or, evaluate $Q^{\pi_t}(s,a)$ directly)
 - Update π_{t+1} to be s.t. $\pi_{t+1}(s) = \operatorname{argmax}_a Q^{\pi_t}(s, a)$

Evaluating Q^{π} for policy iteration

Goal: A policy $\pi = \operatorname{argmax}_a Q_0(s,a)$ is given and we want to evaluate Q^π Input: a set of episodes where we've played using π

- Initialize Q_1 (by a network with random parameters)
- For j = 1, 2, ...
 - For every (s,a) from every episode, construct the "example" (s,a,y) where $y = \rho(s,a) + \gamma \sum_{s'} \tau(s'|s,a) Q_j(s',\pi(s'))$
 - Train a network to minimize $Q_{j+1} \approx \operatorname{argmin}_{\theta} \mathbb{E}_{s,a,y} (Q_{\theta}(s,a) y)^2$

Policy Iteration on Pong

- ullet Use a neural network for expressing Q
- ullet Initialized $Q_{ heta_0}$ for some random $heta_0$
- For t = 1, 2, ...
 - Play several episodes with π_t s.t. $\pi_t(s) = \operatorname{argmax}_a Q_{\theta_t}(s,a)$
 - Evaluate $Q_{\theta_{t+1}} pprox Q^{\pi_t}$ (see next slide)
- Converges within very few iterations (sometimes achieve 50% winning rate after a single iteration)
- https://www.youtube.com/watch?v=KO5nIiim5i4

Deep-Policy-iteration vs. Deep-Q-learning

- Why Policy iteration is so much better than Q learning?
- In Deep-Q-Learning, at iteration t, we play by (ϵ -greedy of) π_t , and from that try to estimate Q^*
- In Deep-Policy-Iteration, at iteration t, we play by π_t in order to estimate Q^{π_t}

What to read next?

Read Jonathan Fiat's blog !!!