

Chapter 3 - Data Visualization 数据可视化

Instructor: Zach Zhizhong ZHOU, Shanghai Jiao Tong

University

主讲教师:周志中,上海交通大学

ggplot2 Elegant Graphics for Data Analysis Hadley Wickham

R Graphics Cookbook Winston Chang

安装软件

- □下载并安装R: http://mirrors.ustc.edu.cn/CRAN/
- □下载并安装R Studio:

http://www.rstudio.com/products/rstudio/download/

- □安装之后运行R Studio,选择菜单Tools,Install Packages...,然后输入ggplot2,R Studio会自动安装ggplot2。
- □安装之后点击Packages菜单,然后选择ggplot2。
- □用同样的方法安装gcookbook package。
- □在命令行输入data(),可看到所有的datasets,其中包含在ggplot2中的datasets有8个。
- □输入View(diamonds)可看到名为diamonds的dataset的前 1000个记录值。

Line Graph 线图

plot(pressure\$temperature, pressure\$pressure, type="1")

plot(pressure\$temperature, pressure\$pressure)

qplot(carat, price, data = diamonds)

Rescaling to Log Scale

qplot(log(carat), log(price), data = diamonds)

Sampling 抽样

> set.seed(1400) # Make the sample reproducible 随机抽样之前先设好种子的数值,可确保每次运行的时候随机抽的数据都是相同的。这有助于保证结果的可重复性便于他人检查结果正确性。如果不设置种子数值,则每次运行随机抽出来的数据都与上次运行时抽出的数据不同。这在正式进行随机抽样时使用。

> dsmall <- diamonds[sample(nrow(diamonds), 100),] #从diamonds 数据集随机抽出100个数值存入dsmall中。

qplot(carat, price, data = dsmall, colour = color)

qplot(carat, price, data = dsmall, shape = cut)

qplot(carat, price, data = dsmall, colour = cut)

直线拟合

qplot(carat, price, data = dsmall, geom = c("point", "smooth"), method = "lm")
#Geom: geometric object

Boxplot 盒状图

qplot(color,price/carat, data = dsmall, geom = c("boxplot"))

Histograms 直方图

qplot(carat, data = diamonds, geom = "histogram")

Histograms 直方图

qplot(carat, data = diamonds, geom = "histogram", binwidth = 0.3, xlim = c(0,3))

Density Plot 密度图

qplot(carat, data = diamonds, geom = "density")

Bar Chart 柱状图

qplot(color, data = diamonds, geom = "bar")

Bar Chart 柱状图

qplot(color, data = diamonds, geom = "bar", weight =
carat)+scale_y_continuous("carat")

Line Plot 曲线图

qplot(date, unemploy / pop, data = economics, geom = "line")

Path Plot 路径图

qplot(unemploy / pop, uempmed, data = economics,geom = c("point",
"path"))

No Jittering

qplot(color, price / carat, data = diamonds)

Jittering

qplot(color, price / carat, data = diamonds,geom="jitter")

Jittering

qplot(color, price / carat, data = diamonds, geom = "jitter", alpha
= I(1 / 8))

Heat Maps 热度图

>install.packages("corrplot")

>library(corrplot) #也可以在RStudio的Packages中点击 选中corrplot包

>mcor <- cor(mtcars) #generate the numerical correlation matrix using cor

>round(mcor, digits=2) # Print mcor and round to 2 digits

>corrplot(mcor)

Heat Maps 热度图

corrplot(mcor)

Heat Maps 热度图

corrplot(mcor, method="shade", shade.col=NA, tl.col="black", tl.srt=45)

Matrix Plot 矩阵图

pairs(iris[,1:4])

Matrix Plot 矩阵图

Sepal.Length Sepal.Width Petal.Length Petal.Wi
--

Sepal.Length 1.0000000 -0.1175698 0.8717538 0.8179411

Sepal.Width -0.1175698 1.0000000 -0.4284401 -0.3661259

Petal.Length 0.8717538 -0.4284401 1.0000000 0.9628654

Petal.Width 0.8179411 -0.3661259 0.9628654 1.0000000

cor(iris[,1:4])

Parallel Coordinate Plot 平行坐标图

library(lattice)
parallelplot(~iris[1:4] | Species, iris)

Plotting a Function 函数画图

- > chippy <- function(x) sin(cos(x)*exp(-x/2))
- > plot (chippy, -8, 7)

Plotting a Function 函数画图

- > chippy <- function(x) sin(cos(x)*exp(-x/2))
- > curve(chippy, -8, 7, n = 2000)

Network Graph 网络图

- >install.packages("igraph")
- >library(igraph)
- >gd <- gr
- >plot(gd)

Network Graph 网络图

> relations <- data.frame(from=c("Bob", "Cecil", "Cecil", "David", "David", "Esmeralda"), to=c("Alice", "Bob", "Alice", "Alice", "Bob", "Alice"), weight=c(4,5,5,2,1,1))

- > g <- graph.data.frame(relations, directed=TRUE)
- > plot(g, edge.width=E(g)\$weight)

	from	to	weight
1	Bob	Alice	4
2	Cecil	Bob	5
3	Cecil	Alice	5
4	David	Alice	2
5	David	Bob	1
6	Esmeralda	Alice	1

Network Graph 网络图

Treemap 矩阵树图


```
>install.packages("treemap")
```

```
>library(treemap)
```

>data(GNI2010)

```
>treemap(GNI2010,index=c("continent", "iso3"),vSize="population",vColor="GNI",type="value")
```

Treemap 矩阵树图

treemap(GNI2010,index=c("continent", "iso3"),vSize="population",vColor="GNI",type="value")

Treemap 矩阵树图

data <- read.csv('c:/BA/Visualization/AppleFinance.csv',T) treemap(data, index=c("item", "subitem"), vSize="time1206", vColor="time1106", type="comp", title='苹果公司财务报表可视化', palette='RdBu')

Pie Chart 饼图

>library(MASS) #for dataset

># Get a table of how many cases are in each level of fold

```
2 L on R Neither R on L y$Fold)
29 18 120
```

>fold

Pie Chart 饼图

pie(fold)

Creating a Map 绘制地图


```
>install.packages("maps")
>library(maps)
```

>east_asia <- map_data("world", region=c("Japan", "China", "North Korea", "South Korea")) # Map region to fill color

```
>ggplot(east_asia, aes(x=long, y=lat, group=group, fill=region)) +geom_polygon(colour="black") +scale_fill_brewer(palette="Set1")
```

Creating a Map 绘制地图

Creating a Choropleth Map 绘制分区统计图画

>crimes <- data.frame(state = tolower(rownames(USArrests)), USArrests) # Transform the USArrests data set to the correct format

>crimes

	state	Murder	Assault	UrbanPop	Rape
Alabama	alabama	13.2	236	58	21.2
Alaska	alaska	10.0	263	48	44.5
Arizona	arizona	8.1	294	80	31.0
• • •					
West Virginia	west virginia	5.7	81	39	9.3
Wisconsin	wisconsin	2.6	53	66	10.8
Wyoming	wyoming	6.8	161	60	15.6

>library(maps) # For map data

>states_map <- map_data("state") # Merge the data sets together

>crime_map <- merge(states_map, crimes, by.x="region", by.y="state")

After merging, the order has changed, which would lead to polygons drawn in the incorrect order. So, we sort the data.

Creating a Choropleth Map 绘制分区统计图

>head(crime_map)

```
lat group order subregion Murder Assault UrbanPop Rape
region
            long
alabama -87.46201 30.38968
                              1
                                    1
                                           <NA>
                                                 13.2
                                                          236
                                                                    58 21.2
alabama -87.48493 30.37249
                                    2
                                                 13.2
                                                          236
                                                                    58 21.2
                                          <NA>
alabama -87.95475 30.24644
                                  13
                                          <NA> 13.2
                                                          236
                                                                    58 21.2
alabama -88.00632 30.24071
                                          <NA> 13.2
                                  14
                                                          236
                                                                    58 21.2
alabama -88.01778 30.25217
                                   15
                                          <NA>
                                                 13.2
                                                          236
                                                                    58 21.2
                              1
alabama -87.52503 30.37249
                                   3
                                                 13.2
                                                                    58 21.2
                              1
                                          <NA>
                                                          236
```

>library(plyr) # For arrange() function. Sort by group, then order

>crime_map <- arrange(crime_map, group, order)</pre>

>head(crime_map)

region	long	lat	group	order	subregion	Murder	Assault	UrbanPop	Rape
alabama	-87.46201	30.38968	1	1	<na></na>	13.2	236	58	21.2
alabama	-87.48493	30.37249	1	2	<na></na>	13.2	236	58	21.2
alabama	-87.52503	30.37249	1	3	<na></na>	13.2	236	58	21.2
alabama	-87.53076	30.33239	1	4	<na></na>	13.2	236	58	21.2
alabama	-87.57087	30.32665	1	5	<na></na>	13.2	236	58	21.2
alabama	-87.58806	30.32665	1	6	<na></na>	13.2	236	58	21.2

Creating a Choropleth Map 绘制分区统计图像

```
>install.packages("mapproj")
>library(mapproj)

>ggplot(crime_map, aes(x=long, y=lat, group=group, fill=Assault)) +geom_polygon(colour="black")
+coord_map("polyconic")
```

Creating a Choropleth Map 绘制分区统计图题

Creating a Choropleth Map 绘制分区统计图题

