

Foundations of Machine Learning (CS 725)

FALL 2024

Lecture 14:

- Backpropagation

Instructor: Preethi Jyothi

Training Feedforward Neural Networks

Optimization Problem

- To train a neural network, define a loss function $L(y,\tilde{y})$: a function of the true output y and the predicted output \tilde{y}
- $L(y,\tilde{y})$ assigns a non-negative numerical score to the neural network's output, \tilde{y}
- The parameters of the network are set to minimise L over the training examples (i.e. a sum of losses over different training samples)
- · L is typically minimised using a gradient-based method

Loss Function

Overall loss function, $J(\theta)$, measures the total loss over the entire training set:

$$J(\theta) = \sum_{i=1}^{N} L(\text{NN}(\mathbf{x}_i; \theta), y_i)$$

Cross-entropy loss is one of the most popular classification-based loss functions. Assuming $NN(\mathbf{x}_i; \theta)$ returns a probability, binary cross-entropy can be defined as:

$$J(\theta) = -\sum_{i=1}^{N} y_i \log \left(\text{NN}(\mathbf{x}_i; \theta) \right) + (1 - y_i) \log \left(1 - \text{NN}(\mathbf{x}_i; \theta) \right)$$

Stochastic Gradient Descent (SGD)

SGD Algorithm

Inputs: NN(x; θ), Training examples, x_1 ... x_n ; outputs, y_1 ... y_n and Loss function L

Randomly initialize θ do until **stopping criterion**Pick a training example $\{x_i, y_i\}$ Compute the loss $L(NN(x_i; \theta), y_i)$ Compute gradient of L, $\nabla_{\theta}L$ with respect to θ $\theta \leftarrow \theta - \eta \nabla_{\theta}L$ Weight
Update Rule

Learning

Rate

Return: θ

Mini-batch Gradient Descent (GD)

Mini-batch GD Algorithm

Inputs: $NN(x; \theta)$, Training examples, $x_1 \dots x_n$; outputs, $y_1 \dots y_n$ and Loss function L

Randomly initialize θ do until **stopping criterion**

Randomly sample a batch of training examples $\{x_i, y_i\}_{i=1}^b$ (where the batch size, b, is a hyperparameter) Compute gradient of L over the batch, $\nabla_{\theta} L$ with respect to θ $\theta \leftarrow \theta - \eta \nabla_{\theta} L$

done

Return: θ

Randomly pick an initial (θ_0, θ_1)

© Alexander Amini and Ava Soleimany MIT 6.S191: Introduction to Deep Learning IntroToDeepLearning.com

Take small step in opposite direction of gradient

Repeat until convergence

IntroToDeepLearning.com

Training a Neural Network

Define the **Loss function** to be minimised as a node L

Goal: Learn weights for the neural network which minimise ${\cal L}$

Gradient Descent: Find $\partial L/\partial w$ for every weight w, and update it as $w \leftarrow w - \eta \partial L/\partial w$

How do we efficiently compute $\partial L/\partial w$ for all w?

Will compute $\partial L/\partial u$ for every node u in the network!

 $\partial L/\partial w = \partial L/\partial u \cdot \partial u/\partial w$ where u is the node which uses w

Training a Neural Network

New goal: compute $\partial L/\partial u$ for every node u in the network

Algorithm: Backpropagation

Key fact: Chain rule of differentiation

If L can be written as a function of variables $v_1,...,v_n$, which in turn depend (partially) on another variable u, then

$$\partial L/\partial u = \sum_{i} \partial L/\partial v_{i} \cdot \partial v_{i}/\partial u$$

Backpropagation

If L can be written as a function of variables $v_1,...,v_n$, which in turn depend (partially) on another variable u, then

$$\partial L/\partial u = \sum_{i} \partial L/\partial v_{i} \cdot \partial v_{i}/\partial u$$

Consider $v_1,...,v_n$ as the layer above u, $\Gamma(u)$

Then, the chain rule gives

$$\partial L/\partial u = \sum_{v \in \Gamma(u)} \partial L/\partial v \cdot \partial v/\partial u$$

Backpropagation

$$\partial L/\partial u = \sum_{v \in \Gamma(u)} \partial L/\partial v \cdot \partial v/\partial u$$

Backpropagation

Base case: $\partial L/\partial L = 1$

For each u (top to bottom):

For each $v \in \Gamma(u)$:

Inductively, have computed $\partial L/\partial v$

Directly compute $\partial v/\partial u$

Compute $\partial L/\partial u$

Compute $\partial L/\partial w$ where $\partial L/\partial w = \partial L/\partial u \cdot \partial u/\partial w$ Where values computed in the

Where values computed in the forward pass are needed

Forward Pass

First, in a forward pass, compute values of all nodes given an input (The values of each node will be needed during backprop)

Regularization

Early stopping: Stop training when performance on a validation set has stopped improving

Regularization

L2 regularization: Introduce a loss term that penalizes the squared magnitude of all parameters. That is, for every weight w in the network, add the term λw^2 to the objective.

Dropout: During training, keep a neuron active with a (keep) probability of p or set it to 0 otherwise. During inference/testing, all units will be present and their outputs will be scaled by a factor of p.

Dropout

Dropout trains an ensemble consisting of various subnetworks (constructed by removing non-output nodes from a base network at random)

Ensemble of subnetworks

Learning Rate Schedule

- Observe training losses to understand the effect of different learning rates
- Helpful to decay the learning rate over time. E.g. step decay, exponential decay, etc.

Learning Rate Schedule

- Observe training losses to understand the effect of different learning rates
- Helpful to decay the learning rate over time. E.g. step decay, exponential decay, etc.
- Adaptive learning rate methods like Adagrad, Adam are popular optimizers.

Illustration

