Question **1**Incorrect

Mark 0.00 out

Flag question

of 100.00

Download file header ADT Lingkaran dalam circle.h dan buatlah file implementasinya. Kumpulkan hanya file circle.c.

Catatan:

Gunakan Implementasi ADT Point dari Pra-Praktikum!

Buatlah driver sendiri untuk mengetes setiap fungsi/prosedur yang ada!

Question 2

Not answered

Marked out of 100.00

Flag question

Time limit	1 s
Memory limit	64 MB

Transformasi Titik Dengan Bilangan Kompleks

Anda diberikan sebuah titik P(x,y) di dalam bidang kartesian, serta bilangan kompleks C = a+bi. Tugas Anda adalah mengaplikasikan transformasi iteratif terhadap titik P, di mana pada setiap iterasi, titik P akan diputar dan diperbesar menggunakan bilangan kompleks P.

Transformasi ini dilakukan sebanyak n kali, di mana setiap iterasi melibatkan penghitungan hasil perpangkatan bilangan kompleks Ci, kemudian menggunakan hasil perpangkatan tersebut untuk memutar titik P dan memperbesarnya. Pada setiap iterasi, Anda juga perlu memeriksa apakah titik P tetap berada di dalam lingkaran satuan ($x^2 + y^2 \le 1$). Jika titik keluar dari lingkaran satuan, iterasi dihentikan dan program mencetak pada iterasi ke berapa titik keluar dari lingkaran.

Jadi, prosedurnya adalah sebagai berikut:

- 1. Hitung nilai pC = C^i , $(0 \le i \le n)$, i adalah jumlah iterasi saat ini
- 2a. Ambil nilai x baru dengan rumus: nilai point X * Re(pC) nilai point Y * Im(pC)
- 2b. Ambil nilai y baru dengan rumus: nilai point X * Im(pC) + nilai point Y * Re(pC)
- 3. Tentukan apakah titik (x, y) baru melebihi satuan lingkaran $(x^2 + y^2 > 1, x dan y adalah nilai <math>(x,y)$ titik baru setelah transformasi).

Implementasikan fungsi **PowerCOMPLEX** yang menerima bilangan kompleks C jumlah pangkat p serta **TransformPointByComplexPower** yang menerima titik P, bilangan kompleks C, dan jumlah iterasi n. Berikut adalah file headernya rotating_point.h. Implementasikan fungsi-fungsi ini dalam file **rotating_point.c**.

Catatan

Gunakan Implementasi ADT Bilangan Kompleks dan ADT Point dari Pra-Praktikum!

- Re(C) adalah elemen bilangan real dari bilangan kompleks C
- Im(C) adalah elemen bilangan imajiner dari bilangan kompleks C
- Contoh: C = 3+2i, Re(C) = 3, Im(C) = 2

Contoh

No	Masukan	Luaran
1.	0.5 0.5	Titik tetap berada di
	1.0 0.5	dalam lingkaran
	2	setelah 2 iterasi
2.	0.5 0.5	Titik keluar dari
	1.5 0.5	lingkaran pada iterasi
	2	ke 1
X.	Px Py	Px nilai x pada point
	Re(C) Im(C)	Py nilai y pada point
	n	n adalah jumlah iterasi

Penjelasan No.1

- Titik awal adalah P(0.5, 0.5), nilai $x^2 + y^2 = 0.5^2 + 0.5^2 = 0.25 + 0.25 = 0.5$, artinya titik masih berada di dalam lingkaran satuan ($x^2 + y^2 \le 1$)
- Iterasi 1:
 - Nilai C^1 = 1.00 + 0.50i
 - Maka nilai titik X baru adalah 0.5 * 1 0.5 * 0.5 = 0.25
 - Maka nilai titik Y baru adalah 0.5 * 0.5 + 0.5 * 1 = 0.75
 - Maka nilai titik baru adalah P'(0.25, 0.75)

Nilai C^2 = 0.75 + 1.00i
 Menggunakan cara yang sama seperti pada iterasi 1, nilai titik baru adalah P''(-0.56, 0.81), yang nilai x^2 + y^2 =

Iterasi 2:

 $(-0.56)^2 + (0.81)^2 = 0.9697$

 ○ Karena iterasi selesai dan nilai satuan lingkarannya masih ≤ 1, maka luaran yang dikeluarkan adalah "Titik tetap berada di dalam lingkaran setelah 2 iterasi", tanpa tanda petik

Question 3 Partially		Time limit 1 s			
correct Mark 16.00 out		Memory limit 64 MB			
of 100.00		Download file header ADT Lingkaran dalam fraction.h dan buatlah file implementasinya. Kumpulkan hanya file fraction.c .			
question		Catatan:			
		Buatlah driver sendiri untuk mengetes setiap fungsi/prosedur yang ada!			
		C \$			
		fraction.c			