Problema 2. Sean G, H grupos abelianos finitos tales que $G \times G \simeq H \times H$. Demuestra que $G \simeq H$.

Soluci'on. Para demostrar esta proposici\'on utilizaramos el teorema de estructua de grupos abelianos finitos. Sea

$$G \simeq \mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_r\mathbb{Z}$$

$$H \simeq \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_s\mathbb{Z}$$

la descomposición de G y H en producto directo de grupos cíclicos. Además estas descomposiciones son únicas ya que asumimos que cada m_i y n_i divide a m_{i-1} n_{i-1} respectivamente. El producto directo $G \times G$ será

$$G \times G \simeq \mathbb{Z}/m_1\mathbb{Z} \times \mathbb{Z}/m_1\mathbb{Z} \times \cdots \times \mathbb{Z}/m_r\mathbb{Z} \times \mathbb{Z}/m_r\mathbb{Z}$$

donde hemos utilizado la conmutatividad del producto directo. Volviendo a aplicar el teorema de estructura vemos que esta descomposición es única salvo isomorfismos, ya que cada m_i divide a m_{i-1} , y obviamente m_i divide a m_i . Aplicamos el mismo razonamiento para $H \times H$:

$$H \times H \simeq \mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_s\mathbb{Z} \times \mathbb{Z}/n_s\mathbb{Z}$$
,

Como tenemos que $G \times G \simeq H \times H$ y utilizando el teorema de estructura que los grupos abelianos finitos concluimos que r=s y $m_i=m_i$ para todo $i=1,\ldots r$. Luego se verifica que $G\simeq H$.