

# Observatório do Valongo / UFRJ Métodos Computacionais da Astronomia 2020/1

Professor: Pedro da Silveira Ferreira



## Lista de exercício 4

Entrega: 29/01/2021

### **1.** [Paralelização e algorítimos iterativos – ] – **Verificando a temperatura de estrelas**

a) Leia os arquivos estrela\_n.dat (n vai de 1 até 100, dentro do arquivo estrelas.zip) que contêm os espectros das estrelas de um determinado aglomerado, as colunas são comprimento de onda observado, radiância espectral observada e erro da radiância espectral observada, isto é os arquivos fornecem o quanto de radiação é emitida por comprimento de onda. Armazene todos os espectros em um único array (os dados têm as unidades da tabela nos comentários). b) Utilizando a lei de Planck da radiação do corpo negro\*, e considerando que estrelas são boas aproximações de um corpo negro, encontre o valor da temperatura de cada estrela em Kelvin (ainda sem paralelizar – armazene o tempo utilizado obter o resultado de todas as estrelas), classifique as estrelas de acordo com sua temperatura em OBAFGKM (seguindo a classificação espectral de Harvard). c) Utilizando a lei de Wien\*\* obtenha a temperatura da estrela (aproxime o pico exato como o maior valor da intensidade medido). d) Salve o seu código em um arquivo .py e execute-o em paralelo utilizando o comando parallel, de forma que o argparse seja utilizado para receber o número da estrela (armazene o tempo utilizado para obter o resultado de todas as estrelas) e) Faça a paralelização dentro do seu código em python, agora no notebook jupyter, utilizando o multiprocessing para computar as temperaturas de cada estrela em paralelo. (5 pontos)

### Comentários:

\*Lei de Planck da radiação do corpo negro: No caso de uma estrela nos fornece o quanto de energia ela irradia por comprimento de onda como na figura ao lado.

$$I(\lambda, T) = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda kT}} - 1} \leftarrow$$
**Lei de Planck**

A tabela seguinte descreve as variáveis e unidades utilizadas:

| Variável | Descrição                  | Unidade          |                                              |
|----------|----------------------------|------------------|----------------------------------------------|
| variavei | Descrição                  | Omuaue           |                                              |
| I        | radiância espectral        | W sr^-1 m^-3     | → Fornecido no arquivo                       |
| ν        | Comprimento de onda        | Metros           | → Fornecido no arquivo                       |
| T        | temperatura do corpo negro | kelvin           | → Deve ser obtido                            |
| h        | constante de Planck        | joule / hertz    | $6.62607015 \times 10^{-34} J \cdot Hz^{-1}$ |
| c        | velocidade da luz no vácuo | metros / segundo | 299792458 m·s <sup>-1</sup>                  |
| e        | número de Euler            | sem dimensão     | $np.exp(1) \rightarrow constante$            |
| k        | constante de Boltzmann     | joule / kelvin   | $1.380649 \times 10^{-23} J \cdot K^{-1}$    |



\*Lei de Wien: No caso de uma estrela nos fornece a temperatura da mesma de acordo com o comprimento de onda do pico de emissão de radiação  $\lambda_{max}$ . A lei de Wien é:

$$\lambda_{\max} = \frac{0,0028976}{T} \quad \ \ \, \text{$\leftarrow$ Para obter a temperatura através do pico \'e s\'o isolar T.}$$

#### 2. [Paralelização e algorítimos iterativos 2D] — **Checando a rota de um asteroide**

Usando o arquivo "orbita de um asteroide.dat" vamos verificar se a orbita traçada pode oferecer algum risco a Terra em algum momento, isto é, se ela intercepta o círculo de 1UA com relação ao Sol no futuro (não entrare mos em detalhes da posição da órbita da terra). O asteroide foi recém descoberto e por isso ainda não foi obser vada a órbita completa, apenas um pequeno trecho da mesma. No arquivo as colunas são theta (em graus), raio em UA e erro do raio em UA, onde o raio é medido com relação ao Sol\*. a) Faça um polar plot dos pontos observados. b) ajuste a elipse utilizando o método de minimização do x² (veja mais sobre o método nos comentários e nessa referência) para encontrar os semieixos a e b (para cada valor de a teste múltiplos valores de b, calcule os valores do x² para múltiplos valores de a em paralelo). Se precisar relembre as propriedades da elipse nessa <u>referência</u>. c) Faça um plot da elipse ajustada juntos aos pontos. d) Após algumas considerações sobre o método utilizado na obtenção dos dados foi considerada a hipótese de que o erro poderia estar subestimado, de forma que os semieixos a e b ajustados para a elipse podem ter +/-15% de erro. Plot as duas elipses com mais e menos essa margem nos valores de a e b (faça em uma cor mais clara que a elipse central), preencha o intervalo entre as elipses interna e externa com uma cor com transparência. e) Coloque o fundo do plot na cor preta (lembrando um tema espacial) e um ponto amarelo representando o sol bem no centro r=0, para um melhor contraste utilize cores com um aspecto "neon" nas elipses. (5 pontos). No final você deve obter uma figura similar a colocada abaixo. (5 pontos)



#### \*Comentários:

1- Na questão 2 use a equação da elipse ao redor do foco  $r=\frac{a(1-e^2)}{1+e\cos\theta}$ , com  $e=\frac{\sqrt{a^2-b^2}}{a}$  na equação do  $\chi^2$  . Minimize o  $\chi^2$  variando a e b.

Sobre o método do  $\chi^2$ : Ele difere do MMQ pois leva em consideração o erro da medida ( $\sigma$ ), <u>nós dividimos</u> pelo erro de forma que ele serve como um peso para qualidade da medida daquele ponto, dessa forma a grandeza a ser minimizada no loops será:

$$\chi^2 = \sum_{\text{pontos obs}} \left( \frac{y^{\text{observador}} - y^{\text{ajustado}}}{\sigma} \right)^2$$