Mohamed Noordeen Alaudeen

Naïve Bayes Algorithm

NAIVE BAYES CLASSIFIER WORKS ON THE PRINCIPLES OF CONDITIONAL PROBABILITY AS GIVEN BY THE BAYES' THEOREM

> BEFORE WE MOVE AHEAD, LET US GO THROUGH SOME OF THE SIMPLE CONCEPTS IN PROBABILITY THAT WE WILL BE USING

LET US CONSIDER THE FOLLOWING EXAMPLE OF TOSSING TWO COINS

Here, the sample space is:

{HH, HT, TH, TT}

- 1. P(Getting two heads) = 1/4
- 2. P(At least one tail) = 3/4
- 3. P(Second coin being head given first coin is tail) = 1/2
- 4. P(Getting two heads given first coin is a head) = 1/2

Bayes' Theorem gives the conditional probability of an event A given another event B has occurred

Bayes Theorem

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

where:

P(A|B) = Conditional Probability of A given B

P(B|A) = Conditional Probability of B given A

P(A) = Probability of event A

P(B) = Probability of event A

LET US APPLY BAYES THEOREM TO OUR EXAMPLE

Here, the sample space is:

{HH, HT, TH, TT}

- 1. P(Getting two heads) = 1/4
- 2. P(Atleast one tail) = 3/4

FROM THE SAMPLE SPACE

THESE TWO USE SIMPLE

PROBABILITIES CALCULATED DIRECTLY

- 3. P(Second coin being head given first coin is tail) = 1/2
- 4. P(Getting two heads given first coin is a head) = 1/2

5

LET US APPLY BAYES THEOREM TO OUR EXAMPLE

Here, the sample space is:

 $\{HH, HT, TH, TT\}$

THIS USES CONDITIONAL PROBABILITY. LET US UNDERSTAND THIS IN DETAIL

- 1. P(Getting two heads) = 1/4
- 2. P(Atleast one tail) = 3/4
- 3. P(Second coin being head given first coin is tail) = 1/2
- 4. P(Getting two heads given first coin is a head) = 1/2

IN THIS SAMPLE SPACE, LET A BE THE EVENT THAT SECOND COIN IS HEAD AND B BE THE EVENT THAT FIRST COIN IS TAIL

In the sample space:

{HH, HT, TH, TT}

P(Second coin being head given first coin is tail)

- = P(A|B)
- = [P(B|A) * P(A)] / P(B)
- = [P(First coin being tail given second coin is head) * P(Second coin being head)] / P(First coin being tail)
- = [(1/2) * (1/2)] / (1/2)
- = 1/2 = 0.5

Understanding Naïve Bayes Classifier

Where is it used?

Speech Recognition Face Recognition Anti Virus Weather Prediction

Let us learn with an Example - 1

To predict whether a person will purchase a product on a specific combination of Day, Discount and Free Delivery using Naive Bayes Classifier

We have a small sample dataset of 30 rows for our demo

1	Α	В	С	D	
1	Day	Discount	Free Delivery	Purchase	
2	Weekday	Yes	Yes	Yes	
3	Weekday	Yes	Yes	Yes	
4	Weekday	No	No	No	
5	Holiday	Yes	Yes	Yes	
6	Weekend	Yes	Yes	Yes	
7	Holiday	No	No	No	
8	Weekend	Yes	No	Yes	
9	Weekday	Yes	Yes	Yes	
10	Weekend	Yes	Yes	Yes	
11	Holiday	Yes	Yes	Yes	
12	Holiday	No	Yes	Yes	
13	Holiday	No	No	No	
14	Weekend	Yes	Yes	Yes	
15	Holiday	Yes	Yes	Yes	
4	Naive_Bayes_Dataset +				

Converting it to frequency table on each category

Based on this dataset containing three input types of *Day*, *Discount* and *Free Delivery*, we will populate frequency tables for each attribute

Fragues	ov Tabla	Buy		
Frequency Table		Yes	No	
Discount	Yes	19	1	
	No	5	5	

Fraguen	ov Tablo	Buy		
Frequency Table		Yes	No	
Free Delivery	Yes	21	2	
	No	3	4	

Erogue	ancy Table	Buy		
Frequency Table		Yes	No	
Day	Weekday	9	2	
	Weekend	7	1	
	Holiday	8	3	

Based on this dataset containing three input types of *Day*, *Discount* and *Free Delivery*, we will populate frequency tables for each attribute

Now let us calculate the Likelihood table for one of the variable, Day which includes Weekday, Weekend and Holiday

Frequency Table		Buy		
		Yes	No	
Day	Weekday	9	2	11
	Weekend	7	1	8
	Holiday	8	3	11
		24	6	30

Likelihood Table		Buy		
		Yes	No	
Day	Weekday	9/24	2/6	11/30
	Weekend	7/24	1/6	8/30
	Holiday	8/24	3/6	11/30
		24/30	6/30	

P(B) = P(Weekday)= 11/30 = 0.37

P(A) = P(No Buy) = 6/30 = 0.2

P(B|A) = P(Weekday | No Buy) = 2/6 = 0.33