Bristol Bay Red King Crab Stock Assessment 2017

D'Arcy Webber¹, Jie Zheng², and James Ianelli³

¹Quantifish, darcy@quantifish.co.nz

²Alaska Department of Fish and Game, jie.zheng@alaska.gov

³NOAA, jim.ianelli@noaa.gov

April 2017

Executive Summary

- 1. Stock: Red king crab (RKC), Paralithodes camtschaticus, in Bristol Bay, Alaska.
- 2. Catches: The domestic RKC fishery began to expand in the late 1960s and peaked in 1980 with a catch of 129.95 million lbs (58,943 t). The catch declined dramatically in the early 1980s and remained at low levels during the last three decades. Catches during recent years until 2010/11 were among the high catches in last 15 years. The retained catch in 2015/16 was about 10 million lbs (4,500 t), similar to the catch in 2014/15. The magnitude of bycatch from groundfish trawl fisheries has been stable and small relative to stock abundance during the last 10 years.
- 3. Stock biomass: Estimated mature biomass increased dramatically in the mid 1970s and decreased precipitously in the early 1980s. Estimated mature crab abundance had increased during 1985-2009 with mature females being about three times more abundant in 2009 than in 1985 and mature males being about two times more abundant in 2009 than in 1985. Estimated mature abundance has steadily declined since 2009.
- 4. **Recruitment**: Estimated recruitment was high during 1970s and early 1980s and has generally been low since 1985 (1979 year class). During 1984-2016, only in 1984, 1986, 1995, 1999, 2002 and 2005 were estimated recruitments above the historical average for 1976-2016. Estimated recruitment was extremely low during the last 10 years.
- 5. Management performance: Status and catch specifications (1,000 t) (scenario 2) are given below. In recent assessments, estimated total male catch has been determined as the sum of fishery-reported retained catch, estimated male discard mortality in the directed fishery, and estimated male bycatch mortality in the groundfish fisheries, as these have been the only sources of non-negligible fishing mortality to consider. The stock was above the minimum stock-size threshold (MSST) in 2016/17 and is hence not overfished. Overfishing did not occur in 2016/17 (Tables 1 and 2).
- 6. Basis for the OFL: Estimated mature-male biomass (MMB) on 15 February is used as the measure of biomass for this Tier 4 stock, with males measuring 105 mm CL or more considered mature. The B_{MSY} proxy is obtained by averaging estimated MMB over a specific reference time period, and current CPT/SSC guidance recommends using the full assessment time frame as the default reference period (Table 3).

Table 1: Status and catch specifications (1000 tons) (scenario **Gmacs base**). Notes: A - calculated from the assessment reviewed by the Crab Plan Team in September 2013, B - calculated from the assessment reviewed by the Crab Plan Team in September 2014, C - calculated from the assessment reviewed by the Crab Plan Team in September 2015, D - calculated from the assessment reviewed by the Crab Plan Team in September 2016.

		Biomass		Retained	Total		
Year	MSST	$(MMB_{\rm mating})$	TAC	catch	catch	OFL	ABC
2012/13	13.19^{A}	29.05^{A}	3.56	3.62	3.9	7.96	7.17
2013/14	12.85^{B}	27.12^{B}	3.90	3.99	4.56	7.07	6.36
2014/15	13.03^{C}	27.25^{C}	4.49	4.54	5.44	6.82	6.14
2015/16	12.89^{D}	27.68^{D}	4.52	4.61	5.34	6.73	6.06
2016/17		24.00^{D}				6.64	5.97

Table 2: Status and catch specifications (million pounds) (scenario Gmacs base).

		Biomass		Retained	Total		
Year	MSST	$(MMB_{\rm mating})$	TAC	catch	catch	OFL	ABC
2012/13	29.1^{A}	64.0^{A}	7.85	7.98	8.59	17.55	15.8
2013/14	28.3^{B}	59.9^{B}	8.6	8.8	10.05	15.58	14.02
2014/15	28.7^{C}	60.1^{C}	9.99	10.01	11.99	15.04	13.53
2015/16	28.4^{D}	61.0^{D}	9.97	10.17	11.77	14.84	13.36
2016/17		52.9^{D}				14.63	13.17

A. Summary of Major Changes

Changes in Management of the Fishery

There were no new changes in management of the fishery.

Changes to the Input Data

- a. The new 2016 NMFS trawl survey data and BSFRF side-by-side trawl survey data during 2013-2016 were used.
- b. Catch and biomass data were updated to include the 2016/17 information.

Changes in Assessment Methodology

This assessment was done using Gmacs. There are several differences between the Gmacs assessment model and the previous model. One of the major differences being that natural and fishing mortality are continuous within r M[[2]]\$nseason discrete seasons. Season length in Gmacs is controlled by changing the proportion of natural mortality that is applied during each season. A detailed outline of the Gmacs implementation of the BBRKC model is provided in Appendix A.

Table 3: Basis for the OFL (1000 tons) (scenario **Gmacs base**).

			Biomass					Natural
Year	Tier	B_{MSY}	$(MMB_{\rm mating})$	B/B_{MSY}	F_{OFL}	γ	Basis for B_{MSY}	mortality
2012/13	3b	27.5	26.3	0.96	0.31	1.0	1984-2012	0.18
2013/14	3b	26.4	25.0	0.95	0.27	1.0	1984-2013	0.18
2014/15	3b	25.7	24.7	0.96	0.28	1.0	1984-2014	0.18
2015/16	3b	26.1	24.7	0.95	0.27	1.0	1984-2015	0.18
2016/17	3b	25.8	24.0	0.93	0.27	1.0	1984-2016	0.18

Table 4: Basis for the OFL (millions of lbs) (scenario **Gmacs base**).

			Biomass					Natural
Year	Tier	B_{MSY}	$(MMB_{\rm mating})$	B/B_{MSY}	F_{OFL}	γ	Basis for B_{MSY}	mortality
2012/13	3b	60.7	58.0	0.96	0.31	1.0	1984-2012	0.18
2013/14	3b	58.2	55.0	0.95	0.27	1.0	1984-2013	0.18
2014/15	3b	56.7	54.4	0.96	0.28	1.0	1984-2014	0.18
2015/16	3b	57.5	54.4	0.95	0.27	1.0	1984-2015	0.18
2016/17	3b	56.8	52.9	0.93	0.27	1.0	1984-2016	0.18

Changes in Assessment Results

B. Responses to SSC and CPT Comments

CPT and SSC Comments on Assessments in General

Comment: To come

Response:

CPT and SSC Comments Specific to the BBRKC Stock Assessment

Comment: * [to come] The SSC and CPT requested the following models for review at the spring 2016 meeting:*

- 1. Base: try to match 2015 model but prevent dome shaped selectivity
- 2. Base + add CV for both surveys
- $3. \ Above + Francis \ re-weighting$
- $4. \ Above + remove \ M \ spike$

Response: [to come] Models 1, 3, and 4 are all included and evaluated in this document as the **Gmacs base**, **Gmacs Francis**, and **Gmacs M** scenarios. Model 2 was not included in this document for two reasons. Firstly, if doing Francis iterative re-weighting then additional CV should not be added as well (as the two methods basically do the same thing). Secondly, the SSC recommended against the model runs with additional CV (see the comment from the SSC below).

Comment: * [to come] The SSC is not convinced that the model runs with extra CV are very informative. The inclusion of extra CV seems to be rather arbitrary based on the numbers of points that fall within confidence intervals estimated from trawl surveys. The SSC recommends coming up with some alternative way to consider extra variability, which could be informed by simulation testing.*

Response: [to come] All model runs that estimate additional CV were dropped from this document. Instead we provide two model runs that use the Francis iterative re-weighting method to re-weight the length-frequency data relative to the abundance indices. These runs are the **Gracs Francis**, and **Gracs force**

scenarios. The final Gmacs scenario (**Gmacs force**) is an exploratory model run that upweights both the trawl-survey and pot survey abundance indices (it upweights the pot survey more than the trawl survey).

C. Introduction

Scientific Name

Red king crab (RKC), Paralithodes camtschaticus, in Bristol Bay, Alaska.

Distribution

Red king crab inhabit intertidal waters to depths >200 m of the North Pacific Ocean from British Columbia, Canada, to the Bering Sea, and south to Hokkaido, Japan, and are found in several areas of the Aleutian Islands, eastern Bering Sea, and the Gulf of Alaska.

Stock Structure

The State of Alaska divides the Aleutian Islands and eastern Bering Sea into three management registration areas to manage RKC fisheries: Aleutian Islands, Bristol Bay, and Bering Sea (Alaska Department of Fish and Game (ADF&G) 2012). The Bristol Bay area includes all waters north of the latitude of Cape Sarichef (54°36′ N lat.), east of 168°00′ W long., and south of the latitude of Cape Newenham (58°39′ N lat.) and the fishery for RKC in this area is managed separately from fisheries for RKC outside of this area; i.e., the red king crab in the Bristol Bay area are assumed to be a separate stock from red king crab outside of this area. This report summarizes the stock assessment results for the Bristol Bay RKC stock.

Life History

Red king crab have a complex life history. Fecundity is a function of female size, ranging from several tens of thousands to a few hundreds of thousands (Haynes 1968; Swiney et al. 2012). The eggs are extruded by females, fertilized in the spring, and held by females for about 11 months (Powell and Nickerson 1965). Fertilized eggs are hatched in the spring, most during April-June (Weber 1967). Primiparous females are bred a few weeks earlier in the season than multiparous females. Larval duration and juvenile crab growth depend on temperature (Stevens 1990; Stevens and Swiney 2007). Male and female RKC mature at 5–12 years old, depending on stock and temperature (Loher et al. 2001; Stevens 1990) and may live >20 years (Matsuura and Takeshita 1990). Males and females attain a maximum size of 227 and 195 mm carapace length (CL), respectively (Powell and Nickerson 1965). Female maturity is evaluated by the size at which females are observed to carry egg clutches. Male maturity can be defined by multiple criteria including spermataphore production and size, chelae vs. carapace allometry, and participation in mating in situ (reviewed by Webb 2014). For management purposes, females >89 mm CL and males >119 mm CL are assumed to be mature for Bristol Bay RKC. Juvenile RKC molt multiple times per year until age 3 or 4; thereafter, molting continues annually in females for life and in males until maturity. Male molting frequency declines after attaining functional maturity.

Fishery

The RKC stock in Bristol Bay, Alaska, supports one of the most valuable fisheries in the United States. A review of the history of the Bristol Bay RKC fishery is provided in Fitch et al. (2012) and Otto (1989). The Japanese fleet started the fishery in the early 1930s, stopped fishing from 1940 to 1952, and resumed the fishery from 1953 until 1974. The Russian fleet fished for RKC from 1959 to 1971. The Japanese fleet

employed primarily tanglenets with a very small proportion of catch from trawls and pots. The Russian fleet used only tanglenets. United States trawlers started fishing Bristol Bay RKC in 1947, but the effort and catch declined in the 1950s. The domestic RKC fishery began to expand in the late 1960s and peaked in 1980 with a catch of 129.95 million lbs (58,943 t), worth an estimated \$115.3 million ex-vessel value. The catch declined dramatically in the early 1980s and has remained at low levels during the last two decades (Table 1). After the early 1980s stock collapse, the Bristol Bay RKC fishery took place during a short period in the fall (usually lasting about a week) with the catch quota based on the stock assessment conducted the previous summer (Zheng and Kruse 2002). Beginning with the 2005/2006 season, new regulations associated with fishery rationalization resulted in an increase in the duration of the fishing season (October 15 to January 15). With the implementation of crab rationalization, historical guideline harvest levels (GHL) were changed to a total allowable catch (TAC). Before rationalization, the implementation errors were quite high for some years and total actual catch from 1980 to 2007 was about 6% less than the sum of GHL/TAC over that period.

Fisheries Management

King and Tanner crab stocks in the Bering Sea and Aleutian Islands are managed by the State of Alaska through a federal king and Tanner crab fishery management plan (FMP). Under the FMP, management measures are divided into three categories: (1) fixed in the FMP, (2) frame worked in the FMP, and (3) discretion of the State of Alaska. The State of Alaska is responsible for determining and establishing the GHL/TAC under the framework in the FMP. Harvest strategies for the Bristol Bay RKC fishery have changed over time. Two major management objectives for the fishery are to maintain a healthy stock that ensures reproductive viability and to provide for sustained levels of harvest over the long term (ADF&G 2012). In attempting to meet these objectives, the GHL/TAC is coupled with size-sex-season restrictions. Only males 6.5-in carapace width (equivalent to 135-mm carapace length, CL) may be harvested and no fishing is allowed during molting and mating periods (ADF&G 2012). Specification of TAC is based on a harvest rate strategy. Before 1990, harvest rates on legal males were based on population size, abundance of prerecruits to the fishery, and postrecruit abundance, and rates varied from less than 20% to 60% (Schmidt and Pengilly 1990). In 1990, the harvest strategy was modified, and a 20% mature male harvest rate was applied to the abundance of mature-sized (120-mm CL) males with a maximum 60% harvest rate cap of legal (135-mm CL) males (Pengilly and Schmidt 1995). In addition, a minimum threshold of 8.4 million mature-sized females (90-mm CL) was added to existing management measures to avoid recruitment overfishing (Pengilly and Schmidt 1995). Based on a new assessment model and research findings (Zheng et al. 1995a, 1995b, 1997a, 1997b), the Alaska Board of Fisheries adopted a new harvest strategy in 1996. That strategy had two mature male harvest rates: 10% when effective spawning biomass (ESB) is between 14.5 and 55.0 million lbs and 15% when ESB is at or above 55.0 million lbs (Zheng et al. 1996). The maximum harvest rate cap of legal males was changed from 60% to 50%. A threshold of 14.5 million lbs of ESB was also added. In 1997, a minimum threshold of 4.0 million lbs was established as the minimum GHL for opening the fishery and maintaining fishery manageability when the stock abundance is low. The Board modified the current harvest strategy by adding a mature harvest rate of 12.5% when the ESB is between 34.75 and 55.0 million lbs in 2003 and eliminated the minimum GHL threshold in 2012. The current harvest strategy is illustrated in Figure 1.

5).

D. Data

Summary of New Information

Data used in this assessment have been updated to include the most recently available fishery and survey numbers. This assessment makes use of two new survey data points including the 2016 NMFS trawl-survey estimate of abudance, and the 2016 ADF&G pot survey CPUE. Both of these surveys have associated size

composition data. The assessment also uses updated 1993-2015 groundfish and fixed gear bycatch estimates based on AKRO data. The 2015/16 directed fishery catch data and associated size composition data were also used. The data used in each of the new models is shown in Figure ??.

Major Data Sources

Major data sources used in this assessment include annual directed-fishery retained-catch statistics from fish tickets (1978/79-1998/99, 2009/10-2012/13, and 2014/15-2015/16; Table ??); results from the annual NMFS eastern Bering Sea trawl survey (1978-2016; Table 8); results from the triennial ADF&G SMBKC pot survey (every third year during 1995-2013), the 2015 pot survey, and the 2016 pot survey (Table 7); size-frequency information from ADF&G crab-observer pot-lift sampling (1990/91-1998/99, 2009/10-2012/13, and 2014/15-2015/16; Table 6); and NMFS groundfish-observer bycatch biomass estimates (1992/93-2015/16; Table ??).

XXXFigure ?? maps stations from which SMBKC trawl-survey and pot-survey data were obtained. Further information concerning the NMFS trawl survey as it relates to commercial crab species is available in Daly et al. (2014); see Gish et al. (2012) for a description of ADF&G SMBKC pot-survey methods. It should be noted that the two surveys cover different geographic regions and that each has in some years encountered proportionally large numbers of male blue king crab in areas where the other is not represented (Figure ??). Crab-observer sampling protocols are detailed in the crab-observer training manual (ADF&G 2013). Groundfish SMBKC bycatch data come from NMFS Bering Sea reporting areas 521 and 524 (Figure ??). Note that for this assessment the newly available NMFS groundfish observer data reported by ADF&G statistical area was not used.

Other Data Sources

XXXRecent model configurations developed for SMBKC makes use of a growth transition matrix based on Otto and Cummiskey (1990), the same growth transition matrix is used in this assessment. Other relevant data sources, including assumed population and fishery parameters, are presented in Appendix A, which also provides a detailed description of the model configuration used for this assessment.

Excluded Data Sources

Groundfish bycatch size-frequency data are available for selected years. These data were used in model-based assessments prior to 2011. However, they have since been excluded because these data tend to be severely limited: for example, 2012/13 data include a total of just 4 90 mm+ CL male blue king crab from reporting areas 521 and 524.

Table 5: Bristol Bay red king crab annual catch and bycatch mortality biomass (t) from June 1 to May 31.

A handling mortality rate of 20 for the Tanner fishery, and 80 mortality biomass.

Year	- 3	Retained Ca			• -		Tanner Fshry	Total	
	U.S.	Cost-Recovery	Foreign	Total	Males	Females	Bycatch	Bycatch	Catch
1953	1331.3	V	4705.6	6036.9			U		6036.9
1954	1149.9		3720.4	4870.2					4870.2
1955	1029.2		3712.7	4741.9					4741.9
1956	973.4		3572.9	4546.4					4546.4
1957	339.7		3718.1	4057.8					4057.8
1958	3.2		3541.6	3544.8					3544.8
1959	0		6062.3	6062.3					6062.3
1960	272.2		12200.7	12472.9					12472.9
1961	193.7		20226.6	20420.3					20420.3
1962	30.8		24618.7	24649.6					24649.6
1963	296.2		24930.8	25227					25227
$1964 \\ 1965$	$373.3 \\ 648.2$		26385.5 18730.6	26758.8					26758.8
1966	452.2		19212.4	19378.8 19664.6					19378.8 19664.6
1967	1407		15212.4 15257	16664.1					16664.1
1968	3939.9		12459.7	16399.6					16399.6
1969	4718.7		6524	11242.7					11242.7
1970	3882.3		5889.4	9771.7					9771.7
1971	5872.2		2782.3	8654.5					8654.5
1972	9863.4		2141	12004.3					12004.3
1973	12207.8		103.4	12311.2					12311.2
1974	19171.7		215.9	19387.6					19387.6
1975	23281.2		0	23281.2					23281.2
1976	28993.6		0	28993.6			682.8		29676.4
1977	31736.9		0	31736.9			1249.9		32986.8
1978	39743		0	39743			1320.6		41063.6
1979	48910		0	48910			1331.9		50241.9
1980	58943.6		0	58943.6			1036.5		59980.1
1981	15236.8		0	15236.8			219.4		15456.2
1982	1361.3		0	1361.3			574.9		1936.2
1983 1984	$0 \\ 1897.1$		$0 \\ 0$	$0 \\ 1897.1$			$420.4 \\ 1094$		420.4 2991.1
1985	1893.8		0	1893.8			390.1		2991.1 2283.8
1986	5168.2		0	5168.2			200.6		5368.8
1987	5574.2		0	5574.2			186.4		5760.7
1988	3351.1		0	3351.1			597.8		3948.9
1989	4656		0	4656			174.1		4830.1
1990	9236.2	36.6	0	9272.8	526.9	651.5	247.6		10698.7
1991	7791.8	93.4	0	7885.1	407.8	75	316	1401.8	10085.7
1992	3648.2	33.6	0	3681.8	552	418.5	335.4	244.4	5232.2
1993	6635.4	24.1	0	6659.6	763.2	637.1	426.6	54.6	8541
1994	0	42.3	0	42.3	3.8	1.9	88.9	10.8	147.8
1995	0	36.4	0	36.4	3.3	1.6	194.2	0	235.5
1996	3812.7	49	0	3861.7	164.6	1	106.5	0	4133.9
1997	3971.9	70.2	0	4042.1	244.7	19.6	73.4	0	4379.8
1998	6693.8	85.4	0	6779.2	959.7	864.9	159.8	0	8763.7
1999	5293.5	84.3	0	5377.9	314.2	8.8	201.6	0	5902.4
$2000 \\ 2001$	$3698.8 \\ 3811.5$	39.1 54.6	0	3737.9 3866.2	$360.8 \\ 417.9$	40.5 173.5	100.4 164.6	0	$4239.5 \\ 4622.1$
						7.3		0	
$2002 \\ 2003$	4340.9 7120	43.6 15.3	0	4384.5 7135.3	442.7 918.9	430.4	155.1 172.3	0	4989.6 8656.9
$\frac{2003}{2004}$	6915.2	91.4	0	7133.3	345.5	450.4 187	172.5 119.6	0	7658.8
2004 2005	8305	94.7	0	8399.7	1359.5	498.3	155.2	0	10412.8
2006	7005.3	137.9	0	7143.2	563.8	37	116.7	3.8	7864.4
2007	9237.9	66.1	0	9303.9	1001.3	186.1	138.5	1.8	10631.6
2008	9216.1	0	0	9216.1	1165.5	148.4	159.5	4	10693.5
2009	7226.9	45.5	0	7272.5	7888.1	85.2	103.7	1.6	8351.2
2010	6728.5	33	0	6761.5	797.5	122.6	85.3	0	7767
2011	3553.3	53.8	0	3607.1	395	24	68.8	0	4094.9
2012	3560.6	61.1	0	3621.7	205.2	12.3	61.2	0	3900.5
2013	3901.1	89.9	0	3991	310.6	99.8	136.2	28.5	4566

Table 6: Observed proportion of crab by size class during the ADF&G crab observer pot-lift sampling.

Source: ADF&G Crab Observer Database.

Total pot lifts	Pot lifts sampled	Number of crab (90 mm+ CL)	Stage 1	Stage 2	Stage 3
26,264	10	150	0.113	0.393	0.493
37,104	125	3,393	0.133	0.177	0.690
56,630	71	1,606	0.191	0.268	0.542
58,647	84	2,241	0.281	0.210	0.510
60,860	203	4,735	0.294	0.271	0.434
$48,\!560$	47	663	0.148	0.212	0.640
91,085	96	489	0.160	0.223	0.618
81,117	133	$3{,}195$	0.182	0.205	0.613
91,826	135	1.322	0.193	0.216	0.591
2008/09		FISHERY CLOSED			
10,484	989	19,802	0.141	0.324	0.535
$29,\!356$	2,419	45,466	0.131	0.315	0.553
$48,\!554$	3,359	58,666	0.131	0.305	0.564
37,065	2,841	57,298	0.141	0.318	0.541
		FISHERY CLOSED			
10,133	895	9,906	0.094	0.228	0.679
5,475	419	3,248	0.115	0.252	0.633
	Total pot lifts 26,264 37,104 56,630 58,647 60,860 48,560 91,085 81,117 91,826 2008/09 10,484 29,356 48,554 37,065 10,133	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Total pot lifts Pot lifts sampled Number of crab (90 mm+ CL) $26,264$ 10 150 $37,104$ 125 3,393 $56,630$ 71 1,606 $58,647$ 84 2,241 $60,860$ 203 4,735 $48,560$ 47 663 $91,085$ 96 489 $81,117$ 133 3,195 $91,826$ 135 FISHERY CLOSED $10,484$ 989 19,802 $29,356$ 2,419 45,466 $48,554$ 3,359 58,666 $48,554$ 3,359 58,666 $37,065$ 2,841 57,298 FISHERY CLOSED FISHERY CLOSED	Total pot lifts Pot lifts sampled Number of crab (90 mm+ CL) Stage 1 26,264 10 150 0.113 37,104 125 3,393 0.133 56,630 71 1,606 0.191 58,647 84 2,241 0.281 60,860 203 4,735 0.294 48,560 47 663 0.148 91,085 96 489 0.160 81,117 133 3,195 0.182 91,826 135 FISHERY CLOSED 0.193 2008/09 FISHERY CLOSED 0.141 29,356 2,419 45,466 0.131 48,554 3,359 58,666 0.131 37,065 2,841 57,298 0.141 FISHERY CLOSED FISHERY CLOSED 10,133 895 9,906 0.094	Total pot lifts Pot lifts sampled Number of crab (90 mm+ CL) Stage 1 Stage 2 26,264 10 150 0.113 0.393 37,104 125 3,393 0.133 0.177 56,630 71 1,606 0.191 0.268 58,647 84 2,241 0.281 0.210 60,860 203 4,735 0.294 0.271 48,560 47 663 0.148 0.212 91,085 96 489 0.160 0.223 81,117 133 3,195 0.182 0.205 91,826 135 FISHERY CLOSED 0.193 0.216 2008/09 FISHERY CLOSED 0.141 0.324 42,9356 2,419 45,466 0.131 0.315 48,554 3,359 58,666 0.131 0.305 37,065 2,841 57,298 0.141 0.318 FISHERY CLOSED 57,298 0.141 0.318

Table 7: Size-class and total CPUE (90+ mm CL) with estimated CV and total number of captured crab (90+ mm CL) from the 96 common stations surveyed during the seven triennial ADF&G SMBKC pot surveys and the 2015 and 2016 surveys. Source: D. Pengilly and R. Gish, ADF&G.

	Stage-1	Stage-2	Stage-3			
Year	(90-104 mm)	(105-119 mm)	(120 + mm)	Total CPUE	CV	Number of crabs
1995	1.919	3.198	6.922	12.042	0.13	4624
1998	0.964	2.763	8.804	12.531	0.06	4812
2001	1.266	1.737	5.487	8.477	0.08	3255
2004	0.112	0.414	1.141	1.667	0.15	640
2007	1.086	2.721	4.836	8.643	0.09	3319
2010	1.326	3.276	5.607	10.209	0.13	3920
2013	0.878	1.398	3.367	5.643	0.19	2167
2015	0.198	0.682	1.924	2.805	0.18	1077
2016	0.198	0.456	1.724	2.378	0.186	777

Table 8: NMFS EBS trawl-survey area-swept estimates of male crab abundance (10^6 crab) and of mature male biomass (10^6 lbs). Total number of captured male crab ≥ 90 mm CL is also given. Source: R. Foy, NMFS. The "+" refer to plus group.

11111 5.	The + Telef	Abund	lance			Biomass		
	Stage-1	Stage-2	Stage-3			Total		Number
Year	(90-104 mm)	(105-119 mm)	(120 + mm)	Total	CV	(90 + mm CL)	CV	of crabs
1978	2.213	1.991	1.521	5.726	0.411	15.064	0.394	157
1979	3.061	2.281	1.808	7.150	0.472	17.615	0.463	178
1980	2.856	2.563	2.541	7.959	0.572	22.017	0.507	185
1981	0.483	1.213	2.263	3.960	0.368	14.443	0.402	140
1982	1.669	2.431	5.884	9.984	0.401	35.763	0.344	271
1983	1.061	1.651	3.345	6.057	0.332	21.240	0.298	231
1984	0.435	0.497	1.452	2.383	0.175	8.976	0.179	105
1985	0.379	0.376	1.117	1.872	0.216	6.858	0.210	93
1986	0.203	0.447	0.374	1.025	0.428	3.124	0.388	46
1987	0.325	0.631	0.715	1.671	0.302	5.024	0.291	71
1988	0.410	0.816	0.957	2.183	0.285	6.963	0.252	81
1989	2.169	1.154	1.786	5.109	0.314	13.974	0.271	208
1990	1.053	1.031	2.338	4.422	0.302	14.837	0.274	170
1991	1.147	1.665	2.233	5.046	0.259	15.318	0.248	197
1992	1.074	1.382	2.291	4.746	0.206	15.638	0.201	220
1993	1.521	1.828	3.276	6.626	0.185	21.051	0.169	324
1994	0.883	1.298	2.257	4.438	0.187	14.416	0.176	211
1995	1.025	1.188	1.741	3.953	0.187	12.574	0.178	178
1996	1.238	1.891	3.064	6.193	0.263	20.746	0.241	285
1997	1.165	2.228	3.789	7.182	0.367	24.084	0.337	296
1998	0.660	1.661	2.849	5.170	0.373	17.586	0.355	243
1998	0.223	0.222	0.558	1.003	0.192	3.515	0.182	52
2000	0.282	0.285	0.740	1.307	0.303	4.623	0.310	61
2001	0.419	0.502	0.938	1.859	0.243	6.242	0.245	91
2002	0.111	0.230	0.640	0.981	0.311	3.820	0.320	38
2003	0.449	0.280	0.465	1.194	0.399	3.454	0.336	65
2004	0.247	0.184	0.562	0.993	0.369	3.360	0.305	48
2005	0.319	0.310	0.501	1.130	0.403	3.620	0.371	42
2006	0.917	0.642	1.240	2.798	0.339	8.585	0.334	126
2007	2.518	2.020	1.193	5.730	0.420	14.266	0.385	250
2008	1.352	0.801	1.457	3.609	0.289	10.261	0.284	167
2009	1.573	2.161	1.410	5.144	0.263	13.892	0.256	251
2010	3.937	3.253	2.458	9.648	0.544	24.539	0.466	388
2011	1.800	3.255	3.207	8.263	0.587	24.099	0.558	318
2012	0.705	1.970	1.808	4.483	0.361	13.669	0.339	193
2013	0.335	0.452	0.807	1.593	0.215	5.043	0.217	74
2014	0.723	1.627	1.809	4.160	0.503	13.292	0.449	181
2015	0.992	1.269	1.979	4.240	0.774	12.958	0.770	153
2016	0.535	0.660	1.178	2.373	0.447	7.685	0.393	108

E. Analytic Approach

History of Modeling Approaches for this Stock

XXXA four-stage catch-survey-analysis (CSA) assessment model was used before 2011 to estimate abundance and biomass and prescribe fishery quotas for the SMBKC stock (2010 SAFE; Zheng et al. 1997). The four-stage CSA is similar to a full length-based analysis, the major difference being coarser length groups, which are more suited to a small stock with consistently low survey catches. In this approach, the abundance of male crab with a CL of 90 mm or above is modeled in terms of four crab stages: stage 1: 90-104 mm CL; stage 2: 105-119 mm CL; stage 3: newshell 120-133 mm CL; and stage 4: oldshell \geq 120 mm CL and newshell \geq 134 mm CL. Motivation for these stage definitions comes from the fact that for management of the SMBKC stock, male crab measuring at least 105 mm CL are considered mature, whereas 120 mm CL is considered a proxy for the legal size of 5.5 in carapace width, including spines. Additional motivation for these stage definitions comes from an estimated average growth increment of about 14 mm per molt for SMBKC (Otto and Cummiskey 1990).

Assessment Methodology

The 2016 SMBKC assessment model makes use of the modeling framework Gmacs. The aim when developing this model was to first provide a fit to the data that best matched the 2015 SMBKC stock assessment model. A detailed description of the Gmacs model and its implementation is presented in Appendix A.

Model Selection and Evaluation

Five different Gmacs model scenarios were considered, in this document results from these models and the 2015 model are compared. The models inlude:

- 1. **2015 Model**: the 2015 approach with a correction¹. This modification was made prior to comparisons (note that this modification caused the NMFS trawl survey selectivity to exceed 1 for stage-2 crab).
- 2. **Gracs match**: tries to match as closely as possible with the 2015 Model by fixing the stage-1 and stage-2 selectivity parameters and the catchability coefficient (q) for the ADF&G pot survey at those values estimated in the 2015 model (and allows the NMFS trawl survey selectivity to exceed 1 for stage-2 crab). The parameters that are estimated in this model include the average recruitment (\bar{R}) , the recruitment deviations (δ_y^R) , the initial numbers in each stage (n^0) , the natural mortality deviation 1998 (δ_{1998}^M) , and the fishing mortalities for the directed pot fishery, the trawl bycatch fishery, and the fixed bycatch fishery $(\bar{F}^{\text{df}}, \bar{F}^{\text{tb}}, \bar{F}^{\text{fb}}, \delta_{t,y}^{\text{df}}, \delta_{t,y}^{\text{tb}}, \delta_{t,y}^{\text{fb}})$. As in the 2015 model, the robust multinomial distribution was used to model the length-frequency data.
- 3. **Gmacs base**: directed pot, NMFS trawl survey and ADF&G pot survey selectivities are estimated for stage-1 and stage-2 crab (and fixed at 1 for stage-3 crab). These selectivities are bounded so that they cannot be greater than 1. This model also estimates the catchability coefficient (q) for the ADF&G pot survey as well as the average recruitment (\bar{R}) , the recruitment deviations (δ_y^R) , the initial numbers in each stage (n^0) , the natural mortality deviation 1998 (δ_{1998}^M) , and the fishing mortalities for the directed pot fishery, the trawl bycatch fishery, and the fixed bycatch fishery $(\bar{F}^{\text{df}}, \bar{F}^{\text{tb}}, \bar{F}^{\text{fb}}, \delta_{t,y}^{\text{df}}, \delta_{t,y}^{\text{tb}}, \delta_{t,y}^{\text{fb}})$. As in the 2015 model, the robust multinomial distribution was used to model the length-frequency data.
- 4. **Gracs M**: is the same as above except that natural mortality (M) is fixed at 0.18 yr⁻¹ during all years.

¹A correction to the 2015 model code was made in the population dynamics function involving how the growth transition matrix was applied to the numbers at length to calculate the numbers during the following time-step, specifically N(t+1,3)=TM(2,3)*NN(2)+NN(3); was changed to N(t+1,3)=TM(1,3)*NN(1)+TM(2,3)*NN(2)+NN(3);.

- 5. Gmacs Francis: is similar to the scenario above except that it also uses the Francis iterative reweighting method (Francis 2011), to re-weight the size-composition data relative to the abundance indices. The trawl survey and pot survey weights were left as is (i.e. a weight of 1) because upweighting these series resulted in worse standard deviation of the normalised residual (SDNR) and median of the absolute residual (MAR) values for each of the surveys. Down-weighting the two surveys actually improved the SDNR and MAR values, but it would be unwise to down-weight either of these series. When applying the Francis iterative re-weighting method only once iteration was done (i.e. the model was run once with the size composition likelihood weights set to one, the new Francis weights were calculated, and the model was run once more using these weights). In this scenario the multinomial distribution was used instead as the theory underpinning the Francis weighting method is based on this distribution.
- 6. Gracs force: is an exploratory scenario that the same as above except the NMFS trawl survey is up-weighted by $\lambda^{\rm NMFS} = 1.4$ and the ADF&G pot survey is up-weighted by $\lambda^{\rm ADFG} = 1$. After this, the Francis weights for each of the size-compositions were recalculated and applied again in this model. This scenario should not be used for overfishing determination as it upweights the trawl and pot survey abundance indices to force a better fit to each of these data sets and provide some contrast among the Gracs model runs. This scenario forces a better fit to the trawl and pot surveys at the expense of the SDNR (and MAR) for each of these series.

Table 9 outlines the major features of each of the models.

Table 9: Outline of the major features of the five different Gmacs scenarios.

Scenario	Selectivity estimated	Use Francis LF weighting	Estimate M_{1998}
Gmacs match	No	No	Yes
Gmacs base	Yes	No	Yes
Gmacs M	Yes	No	No
Gmacs Francis	Yes	Yes	No
Gmacs force	Yes	Yes	No

Results

Results for all Gmacs scenarios are provided with comparisons to the 2015 model. We recommend the **Gmacs** base scenario for management purposes since it provides the best fit to the data and is most consistent with previous model specifications.

a. Effective sample sizes and weighting factors.

Observed and estimated effective sample sizes are compared in Table 10. Effective sample sizes are also shown on size-composition plots (Figures ??, ??, and ??).

Data weighting factors, SDNRs, and MARs are presented in Table ??. The SDNR for the trawl survey is acceptable at 1.44 in the **Gmacs match** scenario, and improves to 1.41 in the **Gmacs base** scenario. In the **Gmacs M** model the SDNR of the trawl survey is slightly worse at 1.59, and is much worse in the exploratory **Gmacs force** scenario at 2.16. The SDNRs for the pot surveys show much the same pattern between each of the scenarios, but are much higher values (ranging from 3.95 to 5.19). These values are very high, and whilst they can be improved by down-weighting the pot survey, it is recommended that they be left as they are as the pot survey is one of the most important data series in this model. The MAR for the trawl and pot surveys shows the same pattern among each of the scenarios as the SDNR. The SDNR (and MAR) values for the trawl survey and pot survey size compositions were excellent, ranging from 0.78 to 1.30 (except for in the **Gmacs force** scenario where the weights were a little high). The SDNRs for the directed pot fishery size compositions are a little low, ranging from 0.64 to 0.79. However, the SDNRs

(and MARs) were not used when weighting the size composition data sets in those scenarios that used the Francis weighting method (i.e. in the **Gmacs Francis**, and **Gmacs Force** scenarios). Instead, the Francis size composition weights were used (Francis 2011).

b. Tables of estimates.

Model parameter estimates for each of the Gmacs scenarios are summarized in Tables 11, ??, ??, ??, and ??. These parameter estimates are compared in Table ??. Negative log-likelihood values and management measures for each of the Gmacs scenarios are compared in Tables ?? and ??.

There is little difference in the parameter estimates within the **Gmacs match** and **Gmacs base** scenarios. This is reflected in the log-likelihood components and the management quantities. The parameter estimates in the **Gmacs M** scenario are a little different to the previous scenarios, particularly the estimate of the ADF&G pot survey catchability (q) (see Table ??).

c. Graphs of estimates.

Estimated (and fixed) selectivities are compared in Figure 4.

The various model fits to total male (> 89 mm CL) trawl survey biomass are compared in Figures 5 and 6. The fits to pot survey CPUE are compared in Figures ?? and ??. Standardized residuals of total male trawl survey biomass and pot survey CPUE are plotted in Figures 7 and ??.

Fits to stage compositions for trawl survey, pot survey, and commercial observer data are shown in Figures ??, ??, and ?? for the all scenarios. Bubble plots of stage composition residuals for trawl survey, pot survey, and commercial observer data are shown for the **Gmacs base**, **Gmacs M**, **Gmacs Francis**, and **Gmacs force** scenarios in Figures ??, ??, and ??, respectively.

Fits to retained catch numbers and by catch biomass are shown for all Gmacs scenarios in Figure 8.

Estimated recruitment is compared in Figure 9. Estimated abundances by stage and mature male biomasses for all scenarios (including the 2015 model) are shown in Figures 12 and 10. Estimated natural mortality each year (M_t) is presented in Figure 13.

d. Graphic evaluation of the fit to the data.

There is little difference between model estimated survey biomass in the gmacs scenarios when compared with the 2015 model (Figures 5 and ??). Looking at the model fits to the NMFS trawl survey biomass (Figure 5), the Gmacs match scenario is the most similar to the 2015 model, and the Gmacs base model is very similar as well. In all scenarios, Gmacs produces a better fit during the mid-late 1980s. However, since about 2010 Gmacs estimates a slighly lower survey biomass than the 2015 model in an attempt to better fit the ADF&G pot survey CPUE (Figure ??). The three Gmacs scenarios that do not attempt to estimate natural mortality in 1998/99 (Gmacs M, Gmacs Francis, and Gmacs force) predict lower survey biomass from 1992 to 1998 than the other scenarios and the 2015 model. These same two runs also predict a lower survey biomass in recent years (since about 2010). While these two models may result in slightly worse fits to the data, they do not risk over-fitting the data in the same way the other scenarios do. As expected the model that upweights the NMFS survey biomass and ADF&G pot survey CPUE (Gmacs force) provides a better fit to the survey biomass during the mid-late 1980s and a much better fit to the pot survey CPUE in the most recent two years (Figures 5, 6, ??, and ??). Keep in mind that this scenario was only included for exploratory purposes and forcing these weights resulted in worse SDNR and MAR values for the two abundance indices.

Estimated recruitment to the model is variable over time (Figure 9). Estimated recruitment during recent years is generally low in all scenarios. Estimated mature male biomass on 15 February also fluctuates strongly over time (Figure 10).

e. Retrospective and historic analyses.

Gmacs retrospective analyses under development.

f. Uncertainty and sensitivity analyses.

Estimated standard deviations of parameters and selected management measures for the five Gmacs scenarios are summarized in Tables 11, ??, ??, ??, and ??. Probabilities for mature male biomass and OFL in 2016 are illustrated in Section F.

g. Comparison of alternative model scenarios.

Both the **Gmacs match** and **Gmacs base** scenarios provide adequate matches between the 2015 model and its Gmacs equivalent. In fact, despite a few minor differences, estimates produced by the 2015 model are generally encompassed the in the uncertainty bounds of the **Gmacs match** model.

Looking at the plot of mature male biomass (Figure 10), the **Gmacs force** scenario stands out as being quite different to the other models (including the 2015 model). This scenario results in a lower MMB from the mid-1908s through to the late-1990s, and is again lower in the most recent 5 years. This scenario upweights both the trawl survey and the pot survey abundance indices (it upweights the pot survey more than the trawl survey) and represents a model run that places greater trust in the abundance indices, particularly the pot survey, than other data sources.

Although the **Gmacs M** scenario presents a worse fit to the data, particularly the NMFS trawl-survey time series, this model does not simply allow a better fit to by estimating an unconstrained pulse in natural mortality. Although doing so produces a better fit to the model, it reduces predictive power and support for such a phenomena, anecdotal or otherwise, seems to be limited. It also raises concerns about what the implications would be for an "average" true natural mortality which can affect the management measures. Despite these concerns, more work is needed in the future to explore more parsimonious alternatives that provide better fits to the data.

In summary, we recommend the **Gmacs base** scenario for management purposes since it provides the best fit to the data and is most consistent with previous model specifications. Our initial preference was for **Gmacs M** since we had difficulty justifying an abrubt, single-year anomaly in natural mortality. However, the fact that the residual pattern is worse and until further work can be completed on alternative model specifications (e.g., better accounting of spatial processes affecting the data), the **Gmacs base** model was considered reasonable and should be used for overfishing determination for this stock in 2016.

F. Calculation of the OFL and ABC

The overfishing level (OFL) is the fishery-related mortality biomass associated with fishing mortality F_{OFL} . The SMBKC stock is currently managed as Tier 4 (2013 SAFE), and only a Tier 4 analysis is presented here. Thus given stock estimates or suitable proxy values of B_{MSY} and F_{MSY} , along with two additional parameters α and β , F_{OFL} is determined by the control rule

$$F_{OFL} = \begin{cases} F_{MSY}, & \text{when } B/B_{MSY} > 1\\ F_{MSY} \frac{(B/B_{MSY} - \alpha)}{(1 - \alpha)}, & \text{when } \beta < B/B_{MSY} \le 1 \end{cases}$$

$$F_{OFL} < F_{MSY} \text{ with directed fishery } F = 0 \text{ when } B/B_{MSY} \le \beta$$

$$(1)$$

where B is quantified as mature-male biomass (MMB) at mating with time of mating assigned a nominal date of 15 February. Note that as B itself is a function of the fishing mortality F_{OFL} (therefore numerical

approximation of F_{OFL} is required). As implemented for this assessment, all calculations proceed according to the model equations given in Appendix A. F_{OFL} is taken to be full-selection fishing mortality in the directed pot fishery and groundfish trawl and fixed-gear fishing mortalities set at their model geometric mean values over years for which there are data-based estimates of bycatch-mortality biomass.

The currently recommended Tier 4 convention is to use the full assessment period, currently 1984-2016, to define a B_{MSY} proxy in terms of average estimated MMB and to set $\gamma = 1.0$ with assumed stock natural mortality $M = 0.18 \text{ yr}^{-1}$ in setting the F_{MSY} proxy value γM . The parameters α and β are assigned their default values $\alpha = 0.10$ and $\beta = 0.25$. The F_{OFL} , OFL, ABC, and MMB in 2016 for all scenarios are summarized in Table ??. ABC is 80% of the OFL.

G. Rebuilding Analysis

This stock is not currently subject to a rebuilding plan.

H. Data Gaps and Research Priorities

- 1. Growth increments and molting probabilities as a function of size.
- 2. Trawl survey catchability and selectivities.
- 3. Temporal changes in spatial distributions near the island.
- 4. Natural mortality.

I. Projections and Future Outlook

With the decline of estimated population biomass during recent years, outlook for this stock is not promising. If the decline continues, the stock will fall to depleted status soon.

J. Acknowledgements

We thank the Crab Plan Team, Doug Pengilly for reviewing the earlier draft of this manuscript. Some materials in the report are from the SAFE report prepared by Bill Gaeuman in 2014. We thank Andre Punt for his input into the Gmacs model and for finding the error in the old SMBKC model code.

K. References

Alaska Department of Fish and Game (ADF&G). 2013. Crab observer training and deployment manual. Alaska Department of Fish and Game Shellfish Observer Program, Dutch Harbor. Unpublished.

Collie, J.S., A.K. Delong, and G.H. Kruse. 2005. Three-stage catch-survey analysis applied to blue king crabs. Pages 683-714 [In] Fisheries assessment and management in data-limited situations. University of Alaska Fairbanks, Alaska Sea Grant Report 05-02, Fairbanks.

Daly, B., R. Foy, and C. Armistead. 2014. The 2013 eastern Bering Sea continental shelf bottom trawl survey: results for commercial crab species. NOAA Technical Memorandum, NMFS-AFSC.

Donaldson, W.E., and S.C. Byersdorfer. 2005. Biological field techniques for lithodid crabs. University of Alaska Fairbanks, Alaska Sea Grant Report 05-03, Fairbanks.

Fitch, H., M. Deiman, J. Shaishnikoff, and K. Herring. 2012. Annual management report for the commercial and subsistence shellfish fisheries of the Bering Sea, 2010/11. Pages 75-1776 [In] Fitch, H., M. Schwenzfeier, B. Baechler, T. Hartill, M. Salmon, M. Deiman, E.

Evans, E. Henry, L. Wald, J. Shaishnikoff, K. Herring, and J. Wilson. 2012. Annual management report for the commercial and subsistence shellfish fisheries of the Aleutian Islands, Bering Sea and the Westward Region's Shellfish Observer Program, 2010/11. Alaska Department of Fish and Game, Fishery Management Report No. 12-22, Anchorage.

Fournier, D.A., H.J. Skaug, J. Ancheta, J. Ianelli, A. Magnusson, M.N. Maunder, A. Nielsen, and J. Sibert. 2012. AD Model Builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim. Methods Softw. 27:233-249.

Francis, R.I.C.C. 2011. Data weighting in statistical fisheries stock assessment models. Can. J. Fish. Aquat. Sci. 68: 1124-1138.

Gaeuman, W.B. 2013. Summary of the 2012/13 mandatory crab observer program database for the Bering Sea/Aleutian Islands commercial crab fisheries. Alaska Department of Fish and Game, Fishery Data Series No. 13-54, Anchorage.

Gish, R.K., V.A. Vanek, and D. Pengilly. 2012. Results of the 2010 triennial St. Matthew Island blue king crab pot survey and 2010/11 tagging study. Alaska Department of Fish and Game, Fishery Management Report No. 12-24, Anchorage.

Jensen, G.C. and D.A. Armstrong. 1989. Biennial reproductive cycle of blue king crab, Paralithodes platypus, at the Pribilof Islands, Alaska and comparison to a congener, P. camtschatica. Can. J. Fish. Aquat. Sci. 46: 932-940.

Moore, H., L.C. Byrne, and D. Connolly. 2000. Alaska Department of Fish and Game summary of the 1998 mandatory shellfish observer program database. Alaska Dept. Fish and Game, Commercial Fisheries Division, Reg. Inf. Rep. 4J00-21, Kodiak.

North Pacific Fishery Management Council (NPFMC). 1998. Fishery Management Plan for Bering Sea/Aleutian Islands king and Tanner crabs. North Pacific Fishery Management Council, Anchorage.

North Pacific Fishery Management Council (NPFMC). 1999. Environmental assessment/regulatory impact review/initial regulatory flexibility analysis for Amendment 11 to the Fishery Management Plan for Bering Sea/Aleutian Islands king and Tanner crabs. North Pacific Fishery Management Council, Anchorage.

North Pacific Fishery Management Council (NPFMC). 2000. Environmental assessment/regulatory impact review/initial regulatory flexibility analysis for proposed Amendment 15 to the Fishery Management Plan for king and Tanner crab fisheries in the Bering Sea/Aleutian Islands and regulatory amendment to the Fishery Management Plan for the groundfish fishery of the Bering Sea and Aleutian Islands area: A rebuilding plan for the St. Matthew blue king crab stock. North Pacific Fishery Management Council, Anchorage. Draft report

North Pacific Fishery Management Council (NPFMC). 2007. Public Review Draft: Environmental assessment for proposed Amendment 24 to the Fishery Management Plan for Bering Sea and Aleutian Islands king and Tanner crabs to revise overfishing definitions. 14 November 2007. North Pacific Fishery Management Council, Anchorage.

Otto, R.S. 1990. An overview of eastern Bering Sea king and Tanner crab fisheries. Pages 9-26 [In] Proceedings of the international symposium on king and Tanner crabs. University of Alaska Fairbanks, Alaska Sea Grant Program Report 90-4, Fairbanks.

Otto, R.S., and P.A. Cummiskey. 1990. Growth of adult male blue king crab (Paralithodes platypus). Pages 245-258 [In] Proceedings of the international symposium on king and Tanner crabs. University of Alaska Fairbanks, Alaska Sea Grant Report 90-4, Fairbanks.

Paul, J.M., A. J. Paul, R.S. Otto, and R.A. MacIntosh. 1991. Spermatophore presence in relation to carapace length for eastern Bering Sea blue king crab (Paralithodes platypus, Brandt, 1850) and red king crab (P. Camtschaticus, Tilesius, 1815). J. Shellfish Res. 10: 157-163.

Pengilly, D. and D. Schmidt. 1995. Harvest Strategy for Kodiak and Bristol Bay Red king Crab and St. Matthew Island and Pribilof Blue King Crab. Alaska Department of Fish and Game, Commercial Fisheries Management and Development Division, Special Publication Number 7, Juneau.

Schirripa, M.J., C.P. Goodyear, and R.M. Methot. 2009. Testing different methods of incorporating climate data into the assessment of US West Coast sablefish. ICES Journal of Marine Science, 66: 1605–1613.

Somerton, D.A., and R.A. MacIntosh. 1983. The size at sexual maturity of blue king crab, Paralithodes platypus, in Alaska. Fishery Bulletin 81: 621-828.

Wilderbuer, T., D. G. Nichol, and J. Ianelli. 2013. Assessment of the yellowfin sole stock in the Bering Sea and Aleutian Islands. Pages 619-708 in 2013 North Pacific Groundfish Stock Assessment and Fishery Evaluation Reports for 2014. North Pacific Fishery Management Council, Anchorage.

Zheng, J. 2005. A review of natural mortality estimation for crab stocks: data-limited for every stock? Pages 595-612 [In] Fisheries Assessment and Management in Data-Limited Situations. University of Alaska Fairbanks, Alaska Sea Grant Program Report 05-02, Fairbanks.

Zheng, J., and G.H. Kruse. 2002. Assessment and management of crab stocks under uncertainty of massive die-offs and rapid changes in survey catchability. Pages 367-384 [In] A.J. Paul, E.G. Dawe, R. Elner, G.S. Jamieson, G.H. Kruse, R.S. Otto, B. Sainte-Marie, T.C. Shirley, and D. Woodby (eds.). Crabs in Cold Water Regions: Biology, Management, and Economics. University of Alaska Fairbanks, Alaska Sea Grant Report 02-01, Fairbanks.

Zheng, J., M.C. Murphy, and G.H. Kruse. 1997. Application of catch-survey analysis to blue king crab stocks near Pribilof and St. Matthew Islands. Alaska Fish. Res. Bull. 4:62-74.

Table 10: Observed and assumed sample sizes for observer data from the directed pot fishery, the NMFS trawl survey, and the ADF&G pot survey.

1awi sur	vey, and the AD	served sample s		Assumed sar	mplo sizos	
Year	Observer pot	NMFS trawl	ADF&G pot	Observer pot	NMFS trawl	ADF&G pot
$\frac{16a1}{1978}$	Observer pot	157	ADF&G pot	Observer por	50	ADF&G pot
1979		178			50 50	
1980		185			50 50	
1981		140			50	
1982		271			50	
1983		231			50	
1984		105			50	
1985		93			46.5	
1986		46			23	
1987		71			35.5	
1988		81			40.5	
1989		208			50	
1990	150	170		15	50	
1991	3393	197		25	50	
1992	1606	220		25	50	
1993	2241	324		25	50	
1994	4735	211		25	50	
1995	663	178	4624	25	50	100
1996	489	285		25	50	
1997	3195	296		25	50	
1998	1323	243	4812	25	50	100
1999		52			26	
2000		61			30.5	
2001		91	3255		45.5	100
2002		38			19	
2003		65			32.5	
2004		48	640		24	100
2005		42			21	
2006		126			50	
2007		250	3319		50	100
2008		167			50	
2009	19802	251		50	50	
2010	45466	388	3920	50	50	100
2011	58667	318		50	50	
2012	57282	193		50	50	
2013		74	2167		37	100
2014	9906	181		50	50	
2015	3248	153	1077	50	50	100
2016		108	777		50	100

Table 11: Model parameter estimates, selected derived quantities, and their standard deviations (SD) for

0.300

the Gmacs			Cu o	NT A	NT A	NT A	NT 4	NT A	NT A	NT A		NT A		
Year	Stage-1	Stage-2	Stage-3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
1975.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
1976.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
1977.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
1978.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
1979.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
1980.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
1981.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
1982.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
1983.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
1984.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
1985.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1.
1986.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
1987.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
1988.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
1989.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
1990.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
1991.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
1992.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
1993.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
1994.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
1995.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1.
1996.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1.
1997.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
1998.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
1999.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
2000.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1.
2001.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
2002.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1.
2003.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
2004.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
2005.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
2006.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
2007.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
2008.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
2009.000	0.200	0.300	0.300	$0.400 \\ 0.400$	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1.
2010.000	0.200	0.300	0.300		0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500		
2011.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500 1.500	1.700	1
2012.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300		1.700	1
2013.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
2014.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
2015.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1
2016.000 1975.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	1.000	1.100	1.300	1.500	1.700	1.
	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.100	1.200	1.300	1.500	1
1976.000 1977.000	$0.200 \\ 0.200$	$0.300 \\ 0.300$	$0.300 \\ 0.300$	$0.400 \\ 0.400$	0.500	0.600	$0.700 \\ 0.700$	$0.800 \\ 0.800$	$0.900 \\ 0.900$	1.100 1.100	1.200 1.200	1.300 1.300	$1.500 \\ 1.500$	1.
1977.000	0.200	0.300	0.300	0.400	0.500	$0.600 \\ 0.600$	0.700	0.800	0.900	1.100	1.200 1.200	1.300 1.300	1.500 1.500	
1979.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.100	1.200 1.200	1.300 1.300	1.500 1.500	1
1980.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.100	1.200 1.200	1.300 1.300	1.500 1.500	1.
1980.000	0.200	0.300	0.300	0.400	$0.500 \\ 0.500$	0.600	0.700	0.800	0.900	1.100	1.200 1.200	1.300 1.300	1.500 1.500	
1981.000	0.200	0.300	0.300	0.400		0.600	0.700	0.800	0.900	1.100	1.200 1.200	1.300 1.300	1.500	1
	0.200	0.300			0.500						1.200 1.200			1
1983.000 1984.000	0.200 0.200	0.300	$0.300 \\ 0.300$	$0.400 \\ 0.400$	$0.500 \\ 0.500$	$0.600 \\ 0.600$	$0.700 \\ 0.700$	$0.800 \\ 0.800$	$0.900 \\ 0.900$	1.100 1.100	1.200 1.200	1.300 1.300	1.500 1.500	1
1984.000	0.200 0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.100 1.100	1.200 1.200	1.300 1.300	1.500 1.500	1.
1986.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.100	1.200 1.200	1.300 1.300	1.500	1
1980.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.100	1.200 1.200	1.300 1.300	1.500	1
1988.000	0.200	0.300	0.300	0.400	0.500	0.600	0.700	0.800	0.900	1.100	1.200 1.200	1.300 1.300	1.500	1
1900.000	0.200	0.300	0.300	0.400	0.500	0.000	0.700	0.000	0.900	1.100	1.200	1.300	1.500	1

0.300 - 0.400 - 0.500 - 0.600 - 0.700 - 0.800 - 0.900 - 1.100 - 1.200 - 1.300 - 1.500

Figure 1: Comparisons of the estimated (and fixed to match the 2015 model selectivities in the Gmacs base scenario) stage-1 and stage-2 selectivities for each of the different model scenarios (the stage-3 selectivities are all fixed at 1). Estimated selectivities are shown for the directed pot fishery, the trawl bycatch fishery, the fixed bycatch fishery, the NMFS trawl survey, and the ADF&G pot survey. Two selectivity periods are estimated in the directed pot fishery, from 1978-2008 and 2009-2016.

Figure 2: Comparisons of the estimated (and fixed to match the 2015 model selectivities in the Gmacs base scenario) stage-1 and stage-2 selectivities for each of the different model scenarios (the stage-3 selectivities are all fixed at 1). Estimated selectivities are shown for the directed pot fishery, the trawl bycatch fishery, the fixed bycatch fishery, the NMFS trawl survey, and the ADF&G pot survey. Two selectivity periods are estimated in the directed pot fishery, from 1978-2008 and 2009-2016.

Figure 3: Probability of growth transition by stage. Each of the panels represent the stage before a transition. The x-axes represent the stage after a transition. The size transition matrix was provided as an input directly to Gmacs (as it was during the 2015 SMBKC assessment).

Figure 4: Comparisons of the estimated (and fixed to match the 2015 model selectivities in the Gmacs base scenario) stage-1 and stage-2 selectivities for each of the different model scenarios (the stage-3 selectivities are all fixed at 1). Estimated selectivities are shown for the directed pot fishery, the trawl bycatch fishery, the fixed bycatch fishery, the NMFS trawl survey, and the ADF&G pot survey. Two selectivity periods are estimated in the directed pot fishery, from 1978-2008 and 2009-2016.

Figure 5: Comparisons of area-swept estimates of total male survey biomass (tons) and model predictions for the 2015 model and each of the Gmacs model scenarios. The error bars are plus and minus 2 standard deviations.

Figure 6: Comparisons of area-swept estimates of total male survey biomass (tons) and model predictions for the 2015 model and each of the Gmacs model scenarios. The solid black error bars are plus and minus 2 standard deviations derived using the original survey CVs. The dotted error bars are plus and minus 2 standard deviations but represent the weighted survey CVs.

Figure 7: Standardized residuals for area-swept estimates of total male survey biomass for each of the G made scenarios.

Figure 8: Comparison of observed and model predicted retained catch and bycatches in each of the Gmacs models. Note that difference in units between each of the panels, some panels are expressed in numbers of crab, some as biomass (tons).

Figure 9: Comparisons of estimated recruitment time series during 1979-2016 in each of the scenarios. The solid horizontal lines in the background represent the estimate of the average recruitment parameter (\bar{R}) in each model scenario.

Figure 10: Comparisons of estimated mature male biomass (MMB) time series on 15 February during 1978-2016 for each of the model scenarios.

Figure 11: Distribution of carapace width (mm) at recruitment.

Figure 12: Numbers by stage each year (at the beginning of the model year, i.e. 1 July, season 1) in each of the models including the 2015 model.

Figure 13: Time-varying natural mortality (M_t) . Estimated pulse period occurs in 1998/99 (i.e. M_{1998}).

Appendix A: SMBKC Model Description

1. Introduction

The Gmacs model has been specified to account only for male crab at least 90 mm in carapace length (CL). These are partitioned into three stages (size-classes) determined by CL measurements of (1) 90-104 mm, (2) 105-119 mm, and (3) 120+ mm. For management of the St. Matthew Island blue king crab (SMBKC) fishery, 120 mm CL is used as the proxy value for the legal measurement of 5.5 mm in carapace width (CW), whereas 105 mm CL is the management proxy for mature-male size (5 AAC 34.917 (d)). Accordingly, within the model only stage-3 crab are retained in the directed fishery, and stage-2 and stage-3 crab together comprise the collection of mature males. Some justification for the 105 mm value is presented in Pengilly and Schmidt (1995), who used it in developing the current regulatory SMBKC harvest strategy. The term "recruit" here designates recruits to the model, i.e., annual new stage-1 crab, rather than recruits to the fishery. The following description of model structure reflects the Gmacs base model configuration.

2. Model Population Dynamics

Within the model, the beginning of the crab year is assumed contemporaneous with the NMFS trawl survey, nominally assigned a date of 1 July. Although the timing of the fishery is different each year, MMB is measured 15 February, which is the reference date for calculation of federal management biomass quantities. To accommodate this, each model year is split into 4 seasons (t) and a proportion of the natural mortality (τ_t) is applied in each of these seasons where $\sum_{t=1}^{t=5} \tau_t = 1$. Each model year consists of the following processes:

- 1. Season 1
 - Beginning of the SMBKC fishing year (1 July)
 - $\tau_1 = 0$
 - Surveys
- 2. Season 2
 - τ_2 ranges from 0.05 to 0.44 depending on the time of year the fishery begins each year (i.e. a higher value indicates the fishery begins later in the year; see Table ??)
- 3. Season 3
 - $\tau_3 = 0$
 - Fishing mortality applied
- 4. Season 4
 - $\tau_4 = 0.63 \sum_{i=1}^{i=4} \tau_i$
 - Calculate MMB (15 February)
- 5. Season 5
 - $\tau_5 = 0.37$
 - Growth and molting
 - Recruitment (all to stage-1)

The proportion of natural mortality (τ_t) applied during each season in the model is provided in Table ??. The beginning of the year (1 July) to the date that MMB is measured (15 February) is 63% of the year. Therefore 63% of the natural mortality must be applied before the MMB is calculated. Because the timing of the fishery is different each year τ_2 is different each year and thus τ_4 differs each year.

With boldface lower-case letters indicating vector quantities we designate the vector of stage abundances during season t and year y as

$$\mathbf{n}_{t,y} = n_{l,t,y} = [n_{1,t,y}, n_{2,t,y}, n_{3,t,y}]^{\top}.$$
 (2)

The number of new crab, or recruits, of each stage entering the model each season t and year y is represented as the vector $\mathbf{r}_{t,y}$. The SMBKC formulation of Gmacs specifies recruitment to stage-1 only during season t = 5, thus the recruitment size distribution is

$$\phi_l = \begin{bmatrix} 1, 0, 0 \end{bmatrix}^\top, \tag{3}$$

and the recruitment is

$$\mathbf{r}_{t,y} = \begin{cases} 0 & \text{for } t < 5\\ \bar{R}\phi_l \delta_y^R & \text{for } t = 5. \end{cases}$$
 (4)

where \bar{R} is the average annual recruitment and δ_y^R are the recruitment deviations each year y

$$\delta_{y}^{R} \sim \mathcal{N}\left(0, \sigma_{R}^{2}\right). \tag{5}$$

Using boldface upper-case letters to indicate a matrix, we describe the size transition matrix G as

$$G = \begin{bmatrix} 1 - \pi_{12} - \pi_{13} & \pi_{12} & \pi_{13} \\ 0 & 1 - \pi_{23} & \pi_{23} \\ 0 & 0 & 1 \end{bmatrix}, \tag{6}$$

with π_{jk} equal to the proportion of stage-j crab that molt and grow into stage-k within a season or year.

The natural mortality each season t and year y is

$$M_{t,y} = \bar{M}\tau_t + \delta_y^M \text{ where } \delta_y^M \sim \mathcal{N}\left(0, \sigma_M^2\right)$$
 (7)

Fishing mortality by year y and season t is denoted $F_{t,y}$ and calculated as

$$F_{t,y} = F_{t,y}^{\text{df}} + F_{t,y}^{\text{tb}} + F_{t,y}^{\text{fb}} \tag{8}$$

where $F_{t,y}^{\text{df}}$ is the fishing mortality associated with the directed fishery, $F_{t,y}^{\text{tb}}$ is the fishing mortality associated with the fixed bycatch fishery. Each of these are derived as

$$\begin{split} F_{t,y}^{\mathrm{df}} &= \bar{F}^{\mathrm{df}} + \delta_{t,y}^{\mathrm{df}} \quad \text{where} \quad \delta_{t,y}^{\mathrm{df}} \sim \mathcal{N}\left(0, \sigma_{\mathrm{df}}^{2}\right), \\ F_{t,y}^{\mathrm{tb}} &= \bar{F}^{\mathrm{tb}} + \delta_{t,y}^{\mathrm{tb}} \quad \text{where} \quad \delta_{t,y}^{\mathrm{df}} \sim \mathcal{N}\left(0, \sigma_{\mathrm{tb}}^{2}\right), \\ F_{t,y}^{\mathrm{fb}} &= \bar{F}^{\mathrm{fb}} + \delta_{t,y}^{\mathrm{fb}} \quad \text{where} \quad \delta_{t,y}^{\mathrm{df}} \sim \mathcal{N}\left(0, \sigma_{\mathrm{fb}}^{2}\right), \end{split} \tag{9}$$

where $\delta^{\mathrm{df}}_{t,y}$, $\delta^{\mathrm{tb}}_{t,y}$, and $\delta^{\mathrm{fb}}_{t,y}$ are the fishing mortality deviations for each of the fisheries, each season t during each year y, \bar{F}^{df} , \bar{F}^{tb} , and \bar{F}^{fb} are the average fishing mortalities for each fishery. The total mortality $Z_{l,t,y}$ represents the combination of natural mortality $M_{t,y}$ and fishing mortality $F_{t,y}$ during season t and year y

$$Z_{t,y} = Z_{l,t,y} = M_{t,y} + F_{t,y}. (10)$$

The survival matrix $S_{t,y}$ during season t and year y is

$$\boldsymbol{S}_{t,y} = \begin{bmatrix} 1 - e^{-Z_{1,t,y}} & 0 & 0\\ 0 & 1 - e^{-Z_{2,t,y}} & 0\\ 0 & 0 & 1 - e^{-Z_{3,t,y}} \end{bmatrix}.$$
(11)

The basic population dynamics underlying Gmacs can thus be described as

$$n_{t+1,y} = S_{t,y} n_{t,y},$$
 if $t < 5$
 $n_{t,y+1} = G S_{t,y} n_{t,y} + r_{t,y}$ if $t = 5$. (12)

3. Model Data

Data inputs used in model estimation are listed in Table 12.

Table 12: Data inputs used in model estimation.

Data	Years	Source
Directed pot-fishery retained-catch number	1978/79 - 1998/99	Fish tickets
(not biomass)	2009/10 - 2015/16	(fishery closed $1999/00 - 2008/09$)
Groundfish trawl bycatch biomass	1992/93 - 2015/16	NMFS groundfish observer program
Groundfish fixed-gear bycatch biomass	1992/93 - 2015/16	NMFS groundfish observer program
NMFS trawl-survey biomass index		
(area-swept estimate) and CV	1978-2016	NMFS EBS trawl survey
ADF&G pot-survey abundance index		
(CPUE) and CV	Triennial 1995-2016	ADF&G SMBKC pot survey
NMFS trawl-survey stage proportions		
and total number of measured crab	1978-2016	NMFS EBS trawl survey
ADF&G pot-survey stage proportions		
and total number of measured crab	Triennial 1995-2016	ADF&G SMBKC pot survey
Directed pot-fishery stage proportions	1990/91 - 1998/99	ADF&G crab observer program
and total number of measured crab	2009/10 - 2015/16	(fishery closed $1999/00 - 2008/09$)

4. Model Parameters

Table 13 lists fixed (externally determined) parameters used in model computations. In all scenarios, the stage-transition matrix is

$$G = \begin{bmatrix} 0.2 & 0.7 & 0.1 \\ 0 & 0.4 & 0.6 \\ 0 & 0 & 1 \end{bmatrix}$$
 (13)

which is the combination of the growth matrix and molting probabilities.

Table 13: Fixed model parameters for all scenarios.

Parameter	Symbol	Value	Source/rationale
Trawl-survey catchability	q	1.0	Default
Natural mortality	M	$0.18 \ {\rm yr}^{-1}$	NPFMC (2007)
Size transition matrix	${m G}$	Equation 13	Otto and Cummiskey (1990)
Stage-1 and stage-2	w_1, w_2	$0.7,1.2~\mathrm{kg}$	Length-weight equation (B. Foy, NMFS)
mean weights			applied to stage midpoints
Stage-3 mean weight	$w_{3,y}$	Depends on year	Fishery reported average retained weight
		Table ??	from fish tickets, or its average, and
			mean weights of legal males
Recruitment SD	σ_R	1.2	High value
Natural mortality SD	σ_{M}	10.0	High value (basically free parameter)
Directed fishery		0.2	2010 Crab SAFE
handling mortality			
Groundfish trawl		0.8	2010 Crab SAFE
handling mortality			
Groundfish fixed-gear		0.5	2010 Crab SAFE
handling mortality			

Estimated parameters are listed in Table 14 and include an estimated natural mortality deviation parameter in 1998/99 (δ_{1998}^{M}) assuming an anomalous mortality event in that year, as hypothesized by Zheng and Kruse (2002), with natural mortality otherwise fixed at 0.18 yr⁻¹.

5. Model Objective Function and Weighting Scheme

The objective function consists of the sum of several "negative log-likelihood" terms characterizing the hypothesized error structure of the principal data inputs (Table ??). A lognormal distribution is assumed to characterize the catch data and is modelled as

$$\sigma_{t,y}^{\text{catch}} = \sqrt{\log\left(1 + \left(CV_{t,y}^{\text{catch}}\right)^2\right)}$$
(14)

$$\delta_{t,y}^{\text{catch}} = \mathcal{N}\left(0, \left(\sigma_{t,y}^{\text{catch}}\right)^2\right)$$
 (15)

where $\delta_{t,y}^{\text{catch}}$ is the residual catch. The relative abudance data is also assumed to be lognormally distributed

$$\sigma_{t,y}^{I} = \frac{1}{\lambda} \sqrt{\log\left(1 + \left(CV_{t,y}^{I}\right)^{2}\right)} \tag{16}$$

$$\delta_{t,y}^{\mathrm{I}} = \log\left(I^{\mathrm{obs}}/I^{\mathrm{pred}}\right)/\sigma_{t,y}^{\mathrm{I}} + 0.5\sigma_{t,y}^{\mathrm{I}} \tag{17}$$

and the likelihood is

$$\sum \log \left(\delta_{t,y}^{\mathrm{I}}\right) + \sum 0.5 \left(\sigma_{t,y}^{\mathrm{I}}\right)^{2} \tag{18}$$

Gmacs calculates standard deviation of the normalised residual (SDNR) values and median of the absolute residual (MAR) values for all abundance indices and size compositions to help the user come up with resonable likelihood weights. For an abundance data set to be well fitted, the SDNR should not be much

Table 14: The lower bound (LB), upper bound (UB), initial value, prior, and estimation phase for each estimated model parameter.

Parameter	LB	Initial value	UB	Prior	Phase
Average recruitment $\log(\bar{R})$	-7	10.0	20	Uniform(-7,20)	1
Stage-1 initial numbers $\log(n_1^0)$	5	14.5	20	Uniform(5,20)	1
Stage-2 initial numbers $\log(n_2^0)$	5	14.0	20	Uniform(5,20)	1
Stage-3 initial numbers $\log(n_3^0)$	5	13.5	20	Uniform(5,20)	1
ADF&G pot survey catchability q	0	4.0	5	Uniform(0,5)	1
Stage-1 directed fishery selectivity 1978-2008	0	0.4	1	Uniform(0,1)	3
Stage-2 directed fishery selectivity 1978-2008	0	0.7	1	Uniform(0,1)	3
Stage-1 directed fishery selectivity 2009-2015	0	0.4	1	Uniform(0,1)	3
Stage-2 directed fishery selectivity 2009-2015	0	0.7	1	Uniform(0,1)	3
Stage-1 NMFS trawl survey selectivity	0	0.4	1	Uniform(0,1)	4
Stage-2 NMFS trawl survey selectivity	0	0.7	1	Uniform(0,1)	4
Stage-1 ADF&G pot survey selectivity	0	0.4	1	Uniform(0,1)	4
Stage-2 ADF&G pot survey selectivity	0	0.7	1	Uniform(0,1)	4
Natural mortality deviation during 1998 δ_{1998}^{M}	-3	0.0	3	Normal $(0, \sigma_M^2)$	4
Recruitment deviations δ_{y}^{R}	-7	0.0	7	Normal $(0, \sigma_R^2)$	3
Average directed fishery fishing mortality \bar{F}^{df}	-	0.2	-	-	1
Average trawl by catch fishing mortality \bar{F}^{tb}	-	0.001	-	-	1
Average fixed gear by catch fishing mortality \bar{F}^{fb}	-	0.001	-	-	1

greater than 1 (a value much less than 1, which means that the data set is fitted better than was expected, is not a cause for concern). What is meant by "much greater than 1" depends on m (the number of years in the data set). Francis (2011) suggests upper limits of 1.54, 1.37, and 1.26 for m = 5, 10, and 20, respectively. Although an SDNR not much greater than 1 is a necessary condition for a good fit, it is not sufficient. It is important to plot the observed and expected abundances to ensure that the fit is good.

Gmacs also calculates Francis weights for each of the size composition data sets supplied (Francis 2011). If the user wishes to use the Francis iterative re-weighting method, first the weights applied to the abundance indices should be adjusted by trial and error until the SDNR (and/or MAR) are adequte. Then the Francis weights supplied by Gmacs should be used as the new likelihood weights for each of the size composition data sets the next time the model is run. The user can then iteratively adjust the abudance index and size composition weights until adequate SDNR (and/or MAR) values are achieved, given the Francis weights.

6. Estimation

The model was implemented using the software AD Model Builder (Fournier et al. 2012), with parameter estimation by minimization of the model objective function using automatic differentiation. Parameter estimates and standard deviations provided in this document are AD Model Builder reported values assuming maximum likelihood theory asymptotics.