2024 春近世代数作业

1 第一次作业

Exercise 1.1 对任意集合 X, 我们用 Id_X 表示 X 到自身的恒等映射。设 $f: A \to B$ 为集合间的映射,A 是非空集合,试证:

- (1). f 是单射 \Leftrightarrow 存在 $g: B \to A$,使得 $g \circ f = Id_A$
- (2). f 是满射 \Leftrightarrow 存在 $h: B \to A$,使得 $f \circ h = Id_B$
- (3). f 是双射 \Leftrightarrow 存在唯一的 $g: B \to A$,使得 $g \circ f = Id_A$, $f \circ g = Id_B$

Exercise 1.2 证明容斥原理:

$$|A_1 \cup \dots \cup A_n| = \sum_{j=1}^n (-1)^{j-1} \sum_{\{i_1,\dots,i_n\} \subset \{1,\dots,n\}} |A_{i_j} \cap \dots \cap A_{i_j}|$$

hint: 对 n 归纳

Exercise 1.3 令 G 为实数对 (a,b), $a \neq 0$ 的集合, 在 G 上定义 (a,b)(c,d) = (ac, ad + b), 试证 G 为群

Exercise 1.5 设 G 是一个半群、若:

(1). G 中含有左幺元 e, 即任意 $x \in G$, 有 ex = x

(2). G 的每个元素 x 都有左逆元 x^{-1} , 使得 $x^{-1}x = e$ 试证 G 为群

Exercise 1.6 举例:

- (1). 举出一个含幺半群的例子, 其中存在元素有左逆元但是没有右逆元
- (2). 举出一个含幺半群的例子, 其中存在元素有无数个左逆元

2 第二次作业

2.1 周三

Exercise 2.1 判断下面哪些 2 阶实方阵集合在矩阵乘法意义下构成群:

- (1). $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$, $ac \neq b^2$
- (2). $\begin{pmatrix} a & b \\ c & a \end{pmatrix}$, $a^2 \neq bc$
- (3). $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$, $ac \neq 0$
- (4). $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $a, b, c, d \in \mathbb{Z}$, $ad \neq bc$

Exercise 2.2 定义 $GL_n(\mathbb{R})$ 上运算 [A,B]=AB-BA,则 $(GL_n(\mathbb{R}),[\cdot,\cdot])$ 是否构成群。

Exercise 2.3 $\c m, n \in \mathbb{N}^+, X \in M_{m \times n}(\mathbb{R}), \c \Leftrightarrow G = \{(A, B) | A \in GL_m(\mathbb{R}), B \in GL_n(\mathbb{R})\}, H = \{(A, B) \in G|AXB = X\}$

- (1). G 上定义乘法 $(A_1,B_1)\cdot (A_2,B_2)=(A_1A_2,B_2B_1)$,则 (G,\cdot) 为群,验证 H 为 G 子群
- (2). 设 m, n = 2, G 上定义乘法 $(A_1, B_1) \circ (A_2, B_2) = (A_1 A_2, B_1 B_2)$, 则 (G, \circ) 为群,验证若 $X = I_2$,则 H 不为 G 子群,若 $X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$,则 H 为 G 子群。

Exercise 2.4

- (1). 证明有理数加法群 $(\mathbb{Q},+)$ 和乘法群 \mathbb{Q}^{\times} 不同构。
- (2). 对于群 (G,\cdot) , 定义它的反群为 (G^{op},\circ) , 其中 G^{op} 作为集合与 G 中元 素相同, G^{op} 上面的运算定义为 $a \circ b := ba$, 证明 G 与 G^{op} 同构。

Exercise 2.5 群 G 的自同构 f 称为没有不动点的自同构,是指任意 $1 \neq g \in G$,有 $f(g) \neq g$ 。证明如果有限群 G 具有一个没有不动点的自同构 f 且 $f^2 = 1$,则 G 一定是奇数阶 Abel 群。

Exercise 2.6 令 V 为 n 维 \mathbb{Q} 线性空间,证明 $Aut(V,+) = GL_n(\mathbb{Q})$ 。

3 第三次作业

3.1 周三

Exercise 3.1 令 $G = SL_2(\mathbb{Z}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} | ad - bc = 1, a, b, c, d \in \mathbb{Z} \}, S = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, T = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, 证明 G = \langle S, T \rangle_{\circ}$

Exercise 3.2 设 G 为有限交换群,证明 $g \to g^k$ 为 G 的自同构 $\Leftrightarrow k$ 与 |G| 互素。

Exercise 3.3 \diamondsuit G, H \nearrow #, $\mathbb{Z} \times G \times H = \{(g,h)|g \in G, h \in H\}$, $\mathbb{Z} \times G \times H = \{(g$

- (1). $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}$
- (2). $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$
- (3). $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$

Exercise 3.4 令 G 为 n 阶有限群, 若对 n 的每个因子 m, G 中至多只有一个 m 阶子群, 则 G 为循环群。

Exercise 3.5 设 H 和 K 分别是有限群 G 的两个子群, $HgK = \{hgk | h \in H, k \in K\}$ 。试证:

- (1). $|HgK| = |H| \cdot [K : g^{-1}Hg \cap K]$
- (2). 对所有 $x,y \in G$, HxK 和 HyK 要么相同, 要么不交。

Exercise 3.6

- (1). 设 G 为有限交换群,证明 $\prod\limits_{g\in G}g=\prod\limits_{a\in G,a^2=1}a$
- (2). 证明 Wilson 定理: 若 p 为素数,则 $(p-1)! \equiv -1 \mod p$

4 第四次作业

4.1 周三

Exercise 4.1 令 $G = \{(a,b)|a \in \mathbb{R}^{\times}, b \in \mathbb{R}\}$, 乘法定义为 (a,b)(c,d) = (ac,ad+b), 证明:

- (1). $K = \{(1,b)|b \in \mathbb{R}\} \triangleleft G \text{ L } G/K \cong \mathbb{R}^{\times}$
- (2). $H = \{(a,0) | a \in \mathbb{R}^{\times} \}$ 是否为 G 正规子群

Exercise 4.2 证明:

- (1). 群 G 的中心 $Z(G) \triangleleft G$
- (2). 设 $H \leq G$, 且 [G:H] = 2, 则 $H \triangleleft G$

Exercise 4.3 令 G 为群,证明若 G/Z(G) 为循环群,则 G 为交换群。

Exercise 4.4 设 $f: G \to H$ 为群同态, $M \leq G$,证明 $f^{-1}(f(M)) = \ker(f)M := \{km|k \in \ker(f), m \in M\}$ 。

Exercise 4.5 令 G 为群,对于 $x \in G$,定义 $f_x: G \to G$ 为 $f_x(g) = xgx^{-1}$,证明:

- (1). $f_x \in Aut(G)$, 称为内自同构
- (2). $Inn(G) = \{f_x | x \in G\} \le Aut(G)$
- (3). $G/Z(G) \cong Inn(G)$

Exercise 4.6 令 $U_n \subseteq GL_n(\mathbb{C})$ 为 n 阶酉方阵群, $SU_n = \{A \in U_n | \det(A) = 1\}$, 证明 $U_n/SU_n \cong S^1$

5 第五次作业

5.1 周三

Exercise 5.1 将以下置换写成不相交轮换的积

- (1). (456)(567)(761)
- (2). (257)(47)(571)
- (3). (35)(572)(346)

Exercise 5.2 当 $n \ge 3$ 时,证明 $n-2 \land 3$ 轮换 $(123), (124), \dots, (12n)$ 是 A_n 的生成元。

Exercise 5.3

- (1). 当 $n \geq 3$ 时,令 $\sigma = (12...n) \in S_n$,证明 $C_{S_n}(\sigma) := \{\tau \in S_n | \tau \sigma = \sigma \tau\} = <\sigma >$
- (2). 当 $n \ge 3$ 时, 证明 $Z(S_n) = 1$

Exercise 5.4 在 A_4 中, 验证 (123) 和 (132) 不共轭。

Exercise 5.5

- (1). 对于 $n \geq 2$,考虑 S_n 在 $\{1,2,\ldots,n\}$ 上的置换作用,证明 $H \coloneqq \{g \in S_n | gn = n\} \cong S_{n-1}$
- (2). 对于 $n \ge 2$, 证明 (12) 和 (12...n) 为 S_n 的一组生成元。 hint: 对 n 归纳, 考虑生成元。

Exercise 5.6

- (1). 令 G 为群, $H \leq G$ 且 [G:H] = 2, 证明对任意 $g \in G$, $g^2 \in H$
- (2). 证明当 $n \ge 2$ 时, A_n 是 S_n 唯一的指数为 2 的子群 hint: 结合 (1),考虑 3 轮换作为生成元

6 第六次作业

6.1 周三

Exercise 6.1

- (1). 证明一个置换的阶等于它分解为不相交轮换时各个轮换因子的长度的最小公倍数
- (2). 令 G 为 n 阶群,考虑 G 在 G 上的左乘作用,视为 G 到 S_n 的同态,证明每个 k 阶元 g 的像为 $\frac{|G|}{k}$ 个互不相交的 k 轮换的积

Exercise 6.2

(1). 设 $H = \{z \in \mathbb{C} | im(z) > 0\}$, $G = SL_2(\mathbb{R})$,考虑 G 在 H 上的作用,对于 $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$,令 $\sigma z = \frac{az+b}{cz+d}$,证明此作用可迁,且 i 的稳定子群 $G_i = SO_2(\mathbb{R})$

(2). 上述作用诱导了 $SL_2(\mathbb{Z})$ 在 H 上的作用, H 哪些点的稳定子群非平凡

Exercise 6.3 设 G 为群,作用在集合 X 上,令 t 表示轨道条数,对任意 $g \in G$,令 F(g) 为 X 在 g 作用下不动点个数,证明 $t = \sum_{g \in G} F(g)/|G|$ 。 hint: 考虑 $\Omega = \{(g,x) \in G \times X | gx = x\}$,对 X 按轨道进行划分。

6.2 周五

Exercise 6.4 $\not \in Aut(S_3)$.

Exercise 6.5 设 p 是素数, G 是 p 的方幂阶的群, 试证 G 子群中非正规子群的个数一定是 p 的倍数。

Exercise 6.6 令 G 为阶数为 $2^n m$ 的群,其中 m 为奇数,若 G 有一个 2^n 阶元,证明则 G 含有一个指数为 2^n 的正规子群。

hint: 考虑 Exercise 6.1。