Appendix 2

Summary Table of the Root Canal Systems of the Permanent Maxillary Teeth

Blaine Cleghorn, and William Christie

See Appendix 4 for a list of references.

Permanent Maxillary Teeth: Number of Canals	illary Teeth:	Number of	f Canals						
		NUN	NUMBER OF CANALS	ANALS		No. of	References	No. of	Most Common Anomaly or Variation (Number of Case Reports In Brackets)
	Most Common	_	N	3 4	0ther				
Central incisors *2 or more canals	1 Canal	99.1%	0.9%*			9	Da Silva, EJ et al 2016 (64), Altunsoy, M et al 2014 (65), Rahimi, S et al 2009 (1), Weng, X-L et al 2009 (2), Sert, S and Bayirli, GS 2004 (3), Çaliskan, MK et al 1995 (4), Vertucci, F 1984 (5), Pineda, F and Kuttler, Y 1972 (6), Barrett MT 1925 (7)	2635	Dens evaginatus (17) 2 roots and 2 canals (14) 1 root and 2 canals (10) Fusion (9) Dens invaginatus (7)
Lateral incisors *2 or more canals	1 Canal	96.0%	4.0%*			9	Da Silva, EJ et al 2016 (64), Altunsoy, M et al 2014 (65), Weng, X-L et al 2009 (2), Sert, S and Bayirli, GS 2004 (3), Çaliskan, MK et al 1995 (4), Vertucci, F 1984 (5), Bjorndal, AM and Skidmore, AE 1983 (8), Pineda, F and Kuttler, Y 1972 (6), Barrett MT 1925 (7)	2531	Dens invaginatus (58) Palatogingival groove (20) Dens evaginatus (talon cusp) (17) 2 roots and 2 canals (10) 1 root and 2 canalsa(10)
Canines *2 or more canals	1 Canal	95.6%	4.4%*			10	Da Silva, EJ et al 2016 (64), Altunsoy, M et al 2014 (65), Somalinga, NS et al 2014 (66), Weng, X-L et al 2009 (2), Sert, S and Bayirli, GS 2004 (3), Çaliskan, MK et al 1995 (4), Vertucci, F 1984 (5), Bjorndal, AM and Skidmore, AE 1983 (8), Pineda, F and Kuttler, Y 1972 (6), Barrett MT 1925 (7)	2815	Dens invaginatus (7) 1 root and 2 canals (2) Dens evaginatus (talon cusp) (2) 2 roots (2)
Caucasian & others (ex- cluding Asian & NA Native)*	2 Canals	11.3%	85.7%	1.7%	1.4%	20	Bürklein, S et al (2017) (9), Abella, F et al 2015 (10), Gupta, S et al (2015) (12), 0k, E et al 2014 (67), Ng'ang'a, RN et al 2010 (14), Weng, X-L et al 2009 (2), Ateih, M 2008 (15), Awawdeh, L et al 2008 (16), Sert, S and Bayirli, GS 2004 (3), Kartal, N et al 1998 (18), Zaatar, El et al 1997 (19), Çaliskan, MK et al 1995 (4), Pecora, JD et al 1991 (20), Bellizzi, R and Hartwell, G 1985 (68), Vertucci, F and Gegauff, A 1979 (21), Carns, EJ and Skidmore, AE 1973 (22), Green, D 1973 (23), Pineda, F and Kuttler, Y 1972 (6), Mueller, AH 1933 (24), Barrett, MT 1925 (7), Hess, W 1925 (69)	6368	3 roots and 3 canals (20) Furcation groove (palatal of B root) (3) Dens evaginatus (2)
Asian & NA Native	2 Canals	34.2%	63.2%	0.4%	2.4%	4	Weng, X-L et al 2009 (2), Cheng, XL and Weng, YL 2008 (26), Loh, HS et al 1998 (27), Walker, RT 1987 (204)	1574	
All studies		15.8%	81.2%	1.4%	1.6%	24	Bürklein, S et al (2017) (9), Abella, F et al 2015 (10), Gupta, S et al (2015) (12), Ok, E et al 2014 (67), Ng'ang'a, RN et al 2010 (14), Weng, X-L et al 2009 (2), Ateih, M 2008 (15), Awawdeh, L et al 2008 (16), Cheng, XL and Weng, YL 2008 (26), Sert, S and Bayirli, GS 2004 (3), Kartal, N et al 1998 (18), Loh, HS et al 1998 (27), Zaatar, El et al 1997 (19), Çaliskan, MK et al 1995 (4), Pecora, JD et al 1991 (20), Walker, RT 1987 (29), Bellizzi, R and Hartwell, G 1985 (68), Vertucci, F and Gegauff, A 1979 (21), Carns, EJ and Skidmore, AE 1973 (22), Green, D 1973 (23), Pineda, F and Kutter, Y 1972 (6), Mueller, AH 1933 (24), Barrett, MT 1925 (7), Hess, W 1925 (69)	7942	
Second premolar	1 or 2 Canals	47.1%	50.8%	0.8%	1.3%	19	Bürklein, S et al (2017) (9), Elnour, M et al 2016 (30), Abella, F et al 2015 (10), Ok, E et al 2014 (67), Yang, L et al 2014 (31), Jayamisha Raj, UJ and Sumitha, M 2009 (70), Weng, X-L et al 2009 (2), Sert, S and Bayirli, GS 2004 (3), Kartal, N et al 1998 (18), Zaatar, El et al 1997 (19), Çaliskan, MK et al 1995 (4), Pecora, JD et al 1992 (32), Sikri, VK and Sikri, P 1991 (33), Bellizzi, R and Hartwell, G 1985 (68), Vertucci, F 1984 (5), Green, D 1973 (23), Pineda, F and Kuttler, Y 1972 (6), Mueller, AH 1933 (24)	5815	3 roots and 3 canals (16) Dens evaginatus (2)

Acosta vigonoux 34 and integera bosadiis, 34 i 97 o (50), nineua, n and nomen, i 1972 (6), Hess, W 1925 (69), Zürcher, E 1925 (95)
Ghobashy, AM et al 2017 (35), Naseri, M et al 2016 (38), Tian, X-M et al 2016 (39), Alrahabi, M and Zafar, MS 2015 (40), Briseno-Marroquin, B et al 2015 (71), Singh, S and Pawar, M 2015 (42), Bhuyan, AC et al 2014 (43), Guo, J et al 2014 (44), Silva, EJ et al 2014 (46), Plotino, G et al 2013 (47), Kim, Y et al 2012 (56), Zhang, R et al 2011 (48), Zheng, Q-H et al 2010 (49), Abiodun-Solanke, IM et al 2008 (76), Weng, X-L et al 2009 (2), Pattanshetti, N et al 2008 (50), Rwenyonyi, CM et al 2007 (51), Sert, S and Bayirli, GS 2004 (3), Alavi, AM et al 2002 (61), Wasti, F et al 2001 (84), al Shalabi, RM et al 2000 (52), Zaatar, El et al 1997 (19), Çaliskan, MK et al 1995 (4), Thomas, RP, Moule, AJ and Bryant, R 1993 (53), Pecora, JD et al 1992 (87), Vertucci, F 1984 (5), Gray, R 1983 (54), Hartwell, G and Bellizzi, R 1982 (110), Acosta Vigouroux SA and Trugeda Bossans, SA 1978 (90), Pineda F and Kuttler, Y
(73), Peeters, HH et al 2011 (74), Somma, F et al 2009 (75), Weng, X-L et al 2009 (2), Abbodun-Solanke, IM et al 2008 (76), Alacam, T et al 2009 (77), Khraisat, A and Smadi, L 2007 (78), Rwenyonyi, CM et al 2007 (51), Eder, A et al 2008 (77), Khraisat, A and Smadi, L 2007 (78), Rwenyonyi, CM et al 2007 (51), Eder, A et al 2006 (79), Smadi, L and Khraisat, A 2006 (80), Jung, I-Y et al 2005 (81), Scott, AE and Apicella, MJ 2004 (82), Sert, S and Bayirli, GS 2004 (3), Alavi, AM et al 2002 (61), Schwarze, T et al 2002 (83), Wasti, F et al 2001 (84), al Shalabi, RM et al 2000 (52), Weine, FS et al 1999 (85), Imura, N et al 1998 (86), Çaliskan, MK et al 1995 (4), Thomas, RP, Moule, AJ and Bryant, R 1993 (53), Pecora, JD et al 1992 (87), Kulilid, JC and Peters, DD 1990 (88), Gilles, J and Reader, A 1990 (89), Vertucci, F 1984 (5), Gray, R 1983 (54), Acosta Vigouroux SA and Trugeda Bosaans, SA 1978 (90), Seidberg, BH et al 1973 (91), Pineda, F and Kuttler, Y 1972 (6), Sykaras, SN and Economou, PN 1971 (92), Weine, FS 1969 (93), Okamura, T 1927 (94), Hess, W 1925 (69), Zürcher, E 1925 (95), Moral, H 1914 (96), Ghobashy, AM et al 2017 (35), Khademi, A et al 2, MS017 (36), Betancourt, P et al 2016 (39), Guo, J et al 2014 (44), Silva, EJ et al 2014 (46), Abuabara, A et al 2013 (99), Plotino, G et al 2013 (47), Reis, AG et al 2013 (100), Kim, Y et al 2016 (39), Biodun-Solanke, IM et al 2008 (76), Pattanshetti, N et al 2008 (50), Hartwell, G et al 2007 (102), Wolcott, J et al 2002 (103), Buhrley, LJ et al 2008 (50), Hartwell, G et al 2007 (102), Wolcott, J et al 2002 (103), Buhrley, LJ et al 2008 (50), Hartwell, G et al 2007 (102), Wolcott, J et al 2002 (103), Buhrley, LJ et al 1997 (19), Fogel, HM, Peikoff, MD and Christie, WH 1994 (107), Weller, RN and Hartwell, GR 1989 (108), Neaverth, EJ et al 1987 (109), Hartwell, G and Bellizzi, R 1982 (110), Pomeranz, HH and, Fishelberg, G 1974 (111), Slowey, RR 1974 (112), Nosonowitz, DM and Brenner, MR 1973 (113), Seidberg, BH et al 1973 (91)
Bet al 2015 (71), Singh, S and Pawar,

*NA Native = North American Native	Third molar	Palatal	B	Second molar (three roots) *2 or more canals MB	Palatal
North Ameri	3 canals	1 Canal	1 Canal	1 Canal	1 Canal
can Native	9.8%	99.8%	99.5%	56.5%	99.3%
	13.4%	0.2%*	0.5%*	43.5%*	0.7%*
	51.5% 20.4%				
	% 2.2% 6	20	21	<u></u>	34
	Rawtiya, M et al 2016 (59), Singh, S and Pawar, M 2015 (42), Weng, X-L et al 2009 (2), Alavi, AM 2002 (61), Sidow, SJ et al 2000 (62), Guerisoli, DM et al 1998 (63)	Ghobashy, AM et al 2017 (35), Wolf, TG et al 2017 (114), Tian, X-M et al 2016 (39), Singh, S and Pawar, M 2015 (42), Silva, EJ et al 2014 (46), Plotino, G et al 2013 (47), Kim, Y et al 2012 (56), Zhang, R et al 2011 (48), Weng, X-L et al 2009 (2), Rwenyonyi, CM et al 2007 (51), Sert, S and Bayirli, GS 2004 (3), Alavi, AM et al 2002 (61), al Shalabi, RM et al 2000 (52), Zaatar, EI et al 1997 (19), Çaliskan, MK et al 1995 (4), Pecora, JD et al 1992 (87), Vertucci, F 1984 (5), Hartwell, G and Bellizzi, R 1982 (110), Pineda, F and Kuttler, Y 1972 (6), Hess, W 1925 (69)	Ghobashy, AM et al 2017 (35), Wolf, TG et al 2017 (114), Tian, X-M et al 2016 (39), Singh, S and Pawar, M 2015 (42), Silva, EJ et al 2014 (46), Plotino, G et al 2013 (47), Kim, Y et al 2012 (56), Zhang, R et al 2011 (48), Weng, X-L et al 2009 (2), Rwenyonyi, CM et al 2007 (51), Sert, S and Bayirli, GS 2004 (3), Alavi, AM et al 2002 (61), al Shalabi, RM et al 2000 (52), Zaatar, El et al 1997 (19), Çaliskan, MK et al 1995 (4), Singh, C et al 1994 (117), Pecora, JD et al 1992 (87), Vertucci, F 1984 (5), Hartwell, G and Bellizzi, R 1982 (110), Pineda, F and Kuttler, Y 1972 (6), Hess, W 1925 (69)	Ghobashy, AM et al 2017 (35), Khademi, A et al 2017 (36), Wolf, TG et al 2017 (114), Betancourt, P et al 2016 (97), Coelho, MS et al 2016 (98), Tian, X-M et al 2016 (39), Singh, S and Pawar, M 2015 (42), Silva, EJ et al 2014 (46), Plotino, G et al 2013 (47), Reis, AG et al 2013 (100), Han, X et al 2012 (115), Kim, Y et al 2012 (56), Zhang, R et al 2011 (48), Weng, X-L et al 2009 (2), Rwenyonyi, CM et al 2007 (51), Sert, S and Bayirli, GS 2004 (3), Alavi, AM et al 2002 (61), Schwarze, T et al 2002 (83), al Shalabi, RM et al 2000 (52), Stropko, JJ 1999 (106), Imura, N et al 1998 (86), Zaatar, El et al 1997 (19), Çaliskan, MK et al 1995 (4), Eskoz, N and Weine, FS 1995 (116), Singh, C et al 1994 (117), Pecora, JD et al 1992 (87), Kulild, JC and Peters, DD 1990 (88), Gilles, J and Reader, A 1990 (89), Vertucci, F 1984 (5), Hartwell, G and Bellizzi, R 1982 (110), Pomeranz, HH and Fishelberg, G 1974 (111), Nosonowitz, DM and Brenner, MR 1973 (113), Pineda, F and Kuttler, Y 1972 (6), Hess, W 1925 (69)	Ghobashy, AM et al 2017 (35), Naseri, M et al 2016 (38), Marceliano-Alves, M et al 2016, Tian, X-M et al 2016 (39), Alrahabi, M and Zafar, MS 2015 (40), Briseno-Marroquin, B et al 2015 (71), Singh, S and Pawar, M 2015 (42), Bhuyan, AC et al 2014 (43), Guo, J et al 2014 (44), Silva, EJ et al 2014 (46), Plotino, G et al 2013 (47), Kim, Y et al 2012 (56), Zhang, R et al 2011 (48), Zheng, Q-H et al 2010 (49), Abiodun-Solanke, IM et al 2008 (76), Weng, X-L et al 2009 (2), Pattanshetti, N et al 2008 (50), Rwenyonyi, CM et al 2007 (51), Sert, S and Bayirli, GS 2004 (3), Alavi, AM et al 2002 (61), Wasti, F et al 2001 (84), al Shalabi, RM et al 2000 (52), Zaatar, El et al 1997 (19), Çaliskan, MK et al 1995 (4), Thomas, RP, Moule, AJ and Bryant, R 1993 (53), Pecora, JD et al 1992 (87), Vertucci, F 1984 (5), Gray, R 1983 (54), Hartwell, G and Bellizzi, R 1982 (110), Acosta Vigouroux SA and Trugeda Bosaans, SA 1978 (90), Pineda, F and Kuttler, Y 1972 (6), Hess, W 1925 (69), Zürcher, E 1925 (95)
	715 4 C-	5003	5053	8059 3 4	8804
	4 roots (3) C-shaped canal (1)			4 roots (MB, DB and 2 Palatal) and 4 canals (MB, DB and 2 Palatal) (57) 3 roots and 4 canals (MB, DB and 2 Palatal canals) (7) 3 roots and 5 canals (3 MB, DB and Palatal canals) (3) DB and Palatal canals) (3)	