

DEPT. ELECTRICAL AND ELECTRONIC ENGINEERING

ELECTRICAL WIRING AND DRAFTING [EEE 2200] TRIMESTER - SPRING 241 SECTION – A

PROJECT SPECIFICATION: Designing a 3451+ sq ft of 5 storied building [located at 416no. house, word 14, Narayanganj, Bangladesh] with civil layout, fitting fixture layout, conduitlayout, SB calculation, SB group calculation, SB grouping, SB connection diagram, SDB calculation, SDB connection diagram. And designing the full building with MDB calculation, MDB connection diagram, single line diagram, lightning protection setup, earthing system, light calculation, PV system, rooftop PV connection setup, fire detection and protection system layout.

PRESENTED BY
Joyanta Debnath
ID: O21182032

PRESENTED TO
S M Monzurul Haque Chowdhury
Lecturer, Dept. of EEE

PROJECT INDEX

- ✓ Civil Layout
- ✓ Fitting & Fixture Layout
- ✓ Conduit Layout
- ✓ Light Loads Connection
- ✓ Heavy Loads Connection
- ✓ Switch Board & SDB Connection
- ✓ Junction & MDB Connection
- ✓ Switch Board Calculation
- ✓ Switch Board Connection & Groups
- ✓ SDB & MDB Calculation
- ✓ Sub-Distribution Board Diagram
- ✓ Main-Distribution Board Diagram
- ✓ Load Division
- ✓ Single Line Diagram for Substation
- ✓ PV Calculation
- ✓ PV Diagram
- ✓ Earthing System
- ✓ Lightening Protection System
- ✓ Emergency Fire Protection System

[3451+ sq ft of 5 storied building]

FITTINGS AND FIXTURES LAYOUT

LEGEND CONDUIT LAYOUT FOR LIGHT LOAD LAYOUT 1 N O c1 C1 C2 C2 C3 **Q**1 **®**■ $C1 - 2*1.5 \text{mm}^{\Lambda} 2$ C1 € C2 C2 - 4*1.5mm^2 C2 0 **ြ** င₃ C3 - 6*1.5mm^2 C5 - 2*4mm^2 C6 - 2*6mm^2 C3 C2 C1[©]₹ C22 > 2 * C2 > 8*1.5 2 C1 C2 C1,22 - C1 + C22**E**○ C1 Po СЗ C3 C2 C2 C1 O O C1 Faculty Name: S M Monzurul Haque Chowdhury Drawing Title: Civil layout Student Name: Joyanta Debnath ID: 021182032

LEGEND CONDUIT LAYOUT FOR HEAVY LOAD LAYOUT 1 N 0 0 0 ₽ F O <u>₹</u> 0:4 C52 C5 - 2*4mm^2 Q F C252 F C52 - 4*4mm^2 C5 C5,52 = C5 + C52=2*4mm^2 + 4*4mm^2 C52,252=C52+2*C52 0 0 C6 - 2*6mm^2 \bigcirc C26 - 2*C6,2c 0 (T) C5 **⊕**¥ C6,C26=C6+C26,3 E E C52 0.4 ⊕<u>¥</u> C252 🗑 C5 E E E Faculty Name: 0 0 \circ S M Monzurul Haque Chowdhury Drawing Title: Civil layout Student Name: Joyanta Debnath ID: 021182032

LEGEND CONDUIT LAYOUT FOR SWITCHBOARD **GROUPING AND CONNECTION** LAYOUT 1 N 0 0 0 W F 0 <u>§</u> Ose C5 - 2*4mm^2 F F C52 - 4*4mm^2 (L) C5,52 = C5 + C52=2*4mm^2 + 4*4mm^2 C52,252=C52+2*C52 0 0 C6 - 2*6mm^2 **₩** C5 💍 C26 - 2*C6,2c 0 C6 **⊕**¥ (-) E C6,C26=C6+C26,3 E **₹**(3) 0.00 0-¥ E E E \bigcirc Faculty Name: 0 0 0 S M Monzurul Haque Chowdhury Drawing Title: Civil layout Student Name: Joyanta Debnath ID: 021182032

LEGEND CONDUIT LAYOUT FOR ANTENNA JUNCTIONS AND MDB CONNECTION LAYOUT 1 N 0 0 0 W 0 0 C5 - 2*4mm^2 F C52 - 4*4mm^2 C5,52 = C5 + C52=2*4mm^2 + 4*4mm^2 C52,252=C52+2*C52 0 C6 - 2*6mm^2 **₩** C26 - 2*C6,2c 0 C6,C26=C6+C26,3 E E 0 0 E E E Faculty Name: 0 0 0 S M Monzurul Haque Chowdhury Drawing Title: Civil layout Student Name: Joyanta Debnath ID: 021182032

CALCULATION FOR SWITCHBOARD

Switchboard-1

- •Light= 2*40W
- •Fan= 1*80W
- •TV Socket= 1*500W
- •2pin Socket= 1*500W

Total= 1160W

P= V*I*0.9

Here,

I= 1160/230*0.9= 5.6A

Switchboard-4

•Light= 1*18W

Total= 18W

P= V*I*0.9

Here,

I= 18/230*0.9= 0.09A

Switchboard-7

•Light= 1*40W

Total= 40W

P= V*I*0.9

Here,

I= 40/230*0.9= 0.2A

Switchboard-10

•Light= 1*40W

Total= 40W

P= V*I*0.9

Here,

I= 40/230*0.9= 0.2A

Switchboard-2

- •Light= 1*40W
- •Exhaust Fan= 1*60W
- •2pin Socket= 1*500W

Total= 600W

P= V*I*0.9

Here,

I= 600/230*0.9= 2.9A

Switchboard-5

- •Light= 2*40W
- •Fan= 1*80W
- •TV Socket= 1*500W
- •2pin Socket= 1*500W

Total= 1160W

P= V*I*0.9

Here,

I= 1160/230*0.9= 5.6A

Switchboard-8

- •Light= 2*40W
- •Fan= 1*80W
- •TV Socket= 1*500W
- •2pin Socket= 1*500W

Total= 1160W

P= V*I*0.9

Here,

I= 1160/230*0.9= 5.6A

Switchboard-11

•Light= 1*40W

Total= 40W

P= V*I*0.9

Here,

I= 40/230*0.9= 0.2A

Switchboard-9

Switchboard-6

Switchboard-3

•Light= 1*18W

•Light= 2*40W

•2pin Socket= 1*500W

I= 660/230*0.9= 3.2A

•Fan= 1*80W

Total= 660W

P= V*I*0.9

Here,

I= 18/230*0.9= 0.09A

Total= 18W

P= V*I*0.9

Here,

- •Light= 2*40W
- •Fan= 1*80W
- •TV Socket= 1*500W
- •2pin Socket= 1*500W

Total= 1160W

P= V*I*0.9

Here,

I= 1160/230*0.9= 5.6A

Switchboard-12

- •Light= 1*40W
- •Exhaust Fan= 1*60W
- •2pin Socket= 1*500W

Total= 600W

P= V*I*0.9

Here,

I= 600/230*0.9= 2.9A

$Switchboard \hbox{-} 13$

- •Light= 1*40W
- •Chandelier= 1*60W
- •2pin Socket= 1*500W

Total= 600W

P= V*I*0.9

Here,

I= 600/230*0.9= 2.9A

Switchboard-14

- •Light= 2*40W
- •Exhaust Fan= 1*60W

•2pin Socket= 1*500W

Total= 640W

P= V*I*0.9

Here,

I= 640/230*0.9= 3.1A

CIRCUIT BREAKER SELECTION FOR SWITCHBOARD GROUPS

Group-1
For, Switchboard 1,2,3,4,5,6,7
I=
(5.6+2.9+0.09+0.09+5.6+3.2+0.2)
A
= 17.68A
So, 20A Circuit Breaker chosen.

Group-2
For, Switchboard 8
I= 5.6A
So, 10A Circuit Breaker chosen.

Group-3
For, Switchboard
9,10,11,12,13,14
I= (5.6+0.2+0.2+2.9+2.9+3.1) A
= 14.9A
So, 20A Circuit Breaker chosen.

SWITCHBOARD GROUPING

CALCULATION FOR SDB

3-Pin Socket 15A

9*3S= (9*1500) W

= 13500W

AC 20A

1*M= (1*2500) W

= 2500W

Total Power

= (7896*0.6) + (13500*0.7) + (2500*1) W

= 16687.6W

48 KW > 16.69KW > 9 KW So, required 3 phase line and supply must be 415V L_L.

Now, P= 1.73*V_L*I_L*0.9

Here, I_L= 16687.6/(1.73*415*0.9) A

= 25.83A

Including Safety Factor, I= (I_L*S.F.) + I_spare

= [(25.83*1.5) + 15] A

= 53.74A

So, 60A 440V TP Circuit Breaker chosen.

CALCULATION FOR MDB

Every Unit= 16687.6W

10 Units= 10*16687.6 W

= 166.876KW

Extra Load (Lights at lift and staircase),

Number of load*Load value*Number of floor

= 4*40*5 W

= 800W

Water Pump (1 of 7HP),

= 7*746 W

= 5222W

Lift (Single lift),

Chosen 800Kg lift (Around 8 person)

Speed= 1.8m/s

Motor Capacity= 9KW

MCCB Capacity= 30A

Total Power= (166.876+0.8+5.222+9) KW

= 181.9KW

Now, P= 1.73*V_L*I_L*0.9

Here, I_L= (181.9*1000)/(1.73*415*0.9) A

= 281.52A

So, 300A TP Circuit Breaker chosen.

SUB-DISTRIBUTION BOARD DIAGRAM

MAIN DISTRIBUTION BOARD DIAGRAM

SINGLE LINE DIAGRAM OF A TYPICAL 11KV/400V INDOOR SUBSTATION 11KV LINE

PV CALCULATION

Rooms	Light[T1]	Light[L]	Chandelier	Fan	TV
Bed	0	6	0	3	1
Toilet	2	2	0	0	0
Closet	2	0	0	0	0
Balcony	0	3	0	0	0
Kitchen	0	2	0	0	0
Drawing	0	2	0	1	1
Dinning	0	3	1	1	0

Content	Number	Power[Watt]	Usage[hr]	Energy[Whr]
Light[T1]	4	18	9	648
Light[L]	18	40	9	6480
Chandelier	1	60	6	360
Fan	5	80	9	3600
TV	2	500	6	6000

Total energy consumption = 17088 Whr [*Each unit*]

[Note. 5 storied building, each floor 2 units.]

For, Each floor = (17088*2) Whr = 34176Whr

For, All floors [10 units] = (34176*5) Whr = 170880Whr

Now, Total energy consumption for entire building at 5% load,

E = 170880*0.05 = 8544Whr

Here, Total power consumption each floor = (2252*2) W = 4504W

Now, Total power consumption for entire building at 5% load,

Ptotal = (4504*5)*0.05 W = 1.126KW [Here, system nominal voltage 12V]

[Note. If system processing up to about 1.5KW- hr then system nominal voltage is 12 volts]

Total energy & power consumption

Chosen Solar Panel Model - STM435/120-S3

Maximum Power = 435W

Maximum Voltage $(V_{mp}) = 33.76V$

Maximum Current I_{MAX-PV} = 12.89A

Open Circuit Voltage V_{OC} = 40.8V

Nominal Output Voltage = 12V

Short Circuit Current I_{SC} = 13.34A **Solar panel Model**

Total Amp-hr per Day= Total System Load/(Inverter loss*System Nominal Voltage)

= 8544/(0.85*12) Amp-hr/day = 837.65 Amp-hr/day

Total Amp-hr per Day with Batteries = Total Amp-hrs/Day*Losses and safety factor

= 837.65 Amp-hr/day*1.25

= 1047.063Amp-hr/day Battery side calculation

Now, Parallel PV Module

- = Total energy in Whr/(T peak solar*nPV*nINV*nBATTERY*VS.Nominal*Imax-PV)
- = 8544/(7*0.9*0.85*0.8*12*12.89) = 12.89 = 14 Module

Now, Series PV Module

- = Vsys Nominal/Vpv Nominal
- = 12/12 = 1 Module

Total No. of PV Module = No. of parallel PV module/ No. of series PV module

= 14*1 = 14 Module No. PV calculation

Chosen Lithium Battery Model - RB300 12V 300Ah LiFePO4 Battery.

Voltage = 12V

Amp hours = 300Ah

Desired Reserve Time (Days) = 2 days

Now Minimum Battery Capacity

Battery Hours = (Total Amp-hr per day*Desired Reserve Time)/0.80 = (1047.063*2)/0.80 = 2617.66Amp-hr

Number of Batteries in Parallel

Parallel Batteries = Required Battery Capacity/Capacity of Selected Battery = 2617.66/300 = 8.72 = 8 Batteries

Number of Batteries in Series

Series Batteries = Vsys Nominal/Vbattery

$$= 12/12 = 1$$
 Battery

Total No. of Batteries = No. of parallel batteries*No. of series batteries

Charge Controller Size = (PVparallel*IPV
$$_{Sc}$$
*S.F.) Amp
$$= (14*13.34*1.25) \text{ Amp}$$

$$= 233.45 \text{Amp}$$

PV DIAGRAM

EARTHING SYSTEM

Ground Rod in the Grounding System - Sizing & Installation

EMERGENCY FIRE PROTECTION SYSTEM

ADDRESSABLE FIRE ALARM SYSTEM

LIGHTENING PROTECTIONSYSTEM

THANK YOU