

Global United Technology Services Co., Ltd.

Report No.: GTSE14090159002

FCC REPORT

Applicant: SHENZHEN GIEC ELECTRONICS CO., LTD.

Address of Applicant: 24/F, Building A Xinian Center, No. 6021 Shennan Road,

Shenzhen, Guangdong, China

Equipment Under Test (EUT)

Product Name: Tablet PC

Model No.: V100MD T, GK-MID1042(A)

Trade Mark: Envizer

FCC ID: ZVRV100MDT

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2013

Date of sample receipt: Sept.12, 2014

Date of Test: Sept.12-19, 2014

Date of report issued: Sept.22, 2014

Test Result: PASS *

Authorized Signature:

Robinson Lo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	Sept.22, 2014	Original

Prepared By:	Edward.Pan	Date:	Sept.22, 2014	
	Project Engineer			
Check By:	hank. yan	Date:	Sept.22, 2014	
	Reviewer			

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	TEST MODE	7
	5.4	DESCRIPTION OF SUPPORT UNITS	7
	5.5	TEST FACILITY	7
	5.6	TEST LOCATION	7
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT:	g
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	Power Spectral Density	
	7.6	BAND EDGES	
	7.6.1		
	7.6.2		
	7.7	Spurious Emission	_
	7.7.1		
	7.7.2	- Nadiatod Emiosion Motilodiniani	
8	TES	T SETUP PHOTO	31
9	EUT	CONSTRUCTIONAL DETAILS	32

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5 General Information

5.1 Client Information

Applicant:	SHENZHEN GIEC ELECTRONICS CO., LTD.
Address of Applicant:	24/F, Building A Xinian Center, No. 6021 Shennan Road,
	Shenzhen, Guangdong, China
Manufacturer:	SHENZHEN GIEC ELECTRONICS CO., LTD.
Address of Manufacturer:	24/F, Building A Xinian Center, No. 6021 Shennan Road,
	Shenzhen, Guangdong, China

5.2 General Description of EUT

Product Name:	Tablet PC	
Model No.:	V100MD T, GK-MID1042(A)	
Operation Frequency:	2402MHz~2480MHz	
Channel Numbers:	40	
Channel Separation:	2MHz	
Modulation Type:	GFSK	
Antenna Type:	Integral Antenna	
Antenna Gain:	1.6dBi (declare by Applicant)	
Power Supply:	Input: DC 5V, 2000mA from adapter	
	Or	
	DC 3.7V, 4000mAh Li-ion Battery	
Adapter Information:	Model No.:GT-WCAU05000200-303	
	Input: AC 100-240V, 50-60Hz, 0.4A	
	Output: DC 5V, 2000mA	

Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz	
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz	
. !			. :	• !	• !		• !	
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz	
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.3 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.4 Description of Support Units

N/A

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS —Registration No.: CNAS L5775

CNAS has accredited Global United Technology Services Co., Ltd. To ISO/IEC 17025 General Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen,

China

Tel: 0755-27798480 Fax: 0755-27798960

Global United Technology Services Co., Ltd.

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 29 2014	Mar. 28 2015	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	Jul. 01 2014	Jun 30 2015	
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jul. 01 2014	Jun 30 2015	
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Jul. 01 2014	Jun 30 2015	
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 27 2014	June 26 2015	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 28 2014	Mar. 27 2015	
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
9	Coaxial Cable	GTS	N/A	GTS213	Mar. 29 2014	Mar. 28 2015	
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 29 2014	Mar. 28 2015	
11	Coaxial cable	GTS	N/A	GTS210	Mar. 29 2014	Mar. 28 2015	
12	Coaxial Cable	GTS	N/A	GTS212	Mar. 29 2014	Mar. 28 2015	
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jul. 01 2014	Jun. 30, 2015	
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jul. 01 2014	Jun. 30, 2015	
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 27 2014	June 26 2015	
16	Band filter	Amindeon	82346	GTS219	Mar. 29 2014	Mar. 28 2015	
17	Power Meter	Anritsu	ML2495A	GTS540	July 01 2014	June 30 2015	
18	Power Sensor	Anritsu	MA2411B	GTS541	July 01 2014	June 30 2015	

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	Jul. 01 2014	Jun. 30, 2015		
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	Jul. 01 2014	Jun. 30, 2015		
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	Jul. 01 2014	Jun. 30, 2015		
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	Jul. 01 2014	Jun. 30, 2015		
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	Jul. 01 2014	Jun. 30, 2015		
6	Coaxial Cable	GTS	N/A	GTS227	Jul. 01 2014	Jun. 30, 2015		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Gen	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Barometer	ChangChun	DYM3	GTS257	July 08 2014	July 07 2015	

7 Test results and Measurement Data

7.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is Integral Antenna, the best case gain of the antenna is 1.6dBi

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207	,			
Test Method:	ANSI C63.4:2003				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto			
Limit:	- (2011)	Limit (c	lBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
-	* Decreases with the logarithn				
Test setup:	Reference Plane		•		
Test procedure:	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m				
l est procedure:	The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment.				
	2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).				
	3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement data

Line:

Trace: 456

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

Job No. : 1590RF

Test mode : Bluetooth 4.0 mode

Test Engineer: Mike

	Freq		LISN Factor					Remark
	MHz	dBuV	dB	d₿	dBuV	dBuV	dB	
1 2 3 4 5 6	0.614 1.178	40. 29 31. 00 27. 22 26. 03 23. 36 31. 04	0.12	0.12 0.13 0.15	31. 23 27. 47 26. 29 23. 67	61.64 56.00 56.00 56.00	-30. 41 -28. 53 -29. 71	QP QP QP QP

Neutral:

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Job No. : 1590RF

Test mode : Bluetooth 4.0 mode

Test Engineer: Mike

	Freq	Read	LISN Factor				Over Limit	Remark
	MHz	dBu₹	dB	dB	dBu₹	dBuV	dB	
1		43.49		0.12				
2	0.624	29.38	0.07	0.12	29.57	56.00	-26.43	QP
3	1.172	26.30	0.08	0.13	26.51	56.00	-29.49	QP
4	3.241	25.92	0.13	0.15	26.20	56.00	-29.80	QP
5	9.011	28.35	0.22	0.19	28.76	60.00	-31.24	QP
6	30.000	27.26	0.67	0.24	28.17	60.00	-31.83	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

7.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.4:2003 and KDB558074 D01 DTS Meas Guidance V03
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

Test channel	Output Power (dBm)	Limit(dBm)	Result
Lowest	-5.18		
Middle	-5.08	30.00	Pass
Highest	-5.46		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.4 Channel Bandwidth

Measurement Data

Test channel	Channel Bandwidth (KHz)	Limit(KHz)	Result
Lowest	694.920		
Middle	697.207	>500	Pass
Highest	696.699		

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Lowest channel

Middle channel

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.5 Power Spectral Density

Measurement Data

Test channel	Power Spectral Density (dBm)	Limit(dBm/3kHz)	Result
Lowest	-6.07		
Middle	-6.00	8.00	Pass
Highest	-6.37		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.4:2003 and KDB558074 D01 DTS Meas Guidance V03
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Test plot as follows:

Highest channel

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	and 15.205		
Test Method:	ANSI C63.4: 20				
Test Frequency Range:	All of the restric	t bands were	tested, only	the worst ba	and's (2310MHz to
, , ,	2500MHz) data	was showed.	_		•
Test site:	Measurement D	istance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	Above 1GHz	Peak	1MHz	3MHz	Peak
	Above IGIIZ	RMS	1MHz	3MHz	Average
Limit:	Freque	ency	Limit (dBuV/	m @3m)	Value
	Above 1	GH ₇	54.0		Average
	710070	0112	74.0	0	Peak
Test setup:	Antenna Tower Horn Antenna Spectrum Analyzer Turn Table Amplifier Amplifier				
Test Procedure:	the ground a determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota the maximun 5. The test-rece Specified Ba 6. If the emission the limit specified by the EUT where 10dB meak or aversheet. 7. The radiation And found the self-miniment of the self-meak or aversheet.	t a 3 meter care position of the set 3 meters che was mount height is varietermine the mad vertical polant. Spected emissing antenna was trable was turner reading. Server system would be reported by the sified, then test rould be reported age method as a measurement of the surround server system would be reported and the server would be reported as a measurement of the surround server would be reported as a measurement of the surround server would be age method as a measurement of the surround server would be reported as a measureme	mber. The take highest race away from the ed on the top ed from one maximum value rizations of the con, the EUT tuned to heighed from 0 decent as set to Peadaximum Hole EUT in peake ting could be ed. Otherwise ere-tested or as specified and ts are performoning which is	ole was rotardiation. The interference of a variable of a variable of the field one antenna at the was arranged of the firm of the was a suranged of the emission of the emission of the mode was the emission of the firm of the firm of the firm of the mode was the emission of the firm of the fir	e-height antenna meters above the strength. Both are set to make the ed to its worst case neter to 4 meters of degrees to find anction and odB lower than the peak values ons that did not sing peak, quasi-
Test Instruments:	Refer to section				
Test mode:	Refer to section	5.3 for details			
Test results:	Pass				

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	45.57	27.91	5.30	30.37	48.41	74.00	-25.59	Vertical
2390.00	45.33	27.59	5.38	30.18	48.12	74.00	-26.49	Vertical
2400.00	49.40	27.58	5.39	30.18	52.19	74.00	-22.66	Vertical
2310.00	45.74	27.91	5.30	30.37	48.58	74.00	-25.94	Horizontal
2390.00	45.16	27.59	5.38	30.18	47.95	74.00	-26.52	Horizontal
2400.00	46.73	27.58	5.39	30.18	49.52	74.00	-25.11	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	35.07	27.91	5.30	30.37	37.91	54.00	-16.94	Vertical
2390.00	34.43	27.59	5.38	30.18	37.22	54.00	-17.39	Vertical
2400.00	37.24	27.58	5.39	30.18	40.03	54.00	-14.49	Vertical
2310.00	34.79	27.91	5.30	30.37	37.63	54.00	-16.95	Horizontal
2390.00	34.11	27.59	5.38	30.18	36.90	54.00	-17.45	Horizontal
2400.00	36.22	27.58	5.39	30.18	39.01	54.00	-15.83	Horizontal

Test channel: Highest

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	46.55	27.53	5.47	29.93	49.62	74.00	-25.05	Vertical
2500.00	44.00	27.55	5.49	29.93	47.11	74.00	-27.14	Vertical
2483.50	44.52	27.53	5.47	29.93	47.59	74.00	-26.98	Horizontal
2500.00	44.15	27.55	5.49	29.93	47.26	74.00	-27.09	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	34.48	27.53	5.47	29.93	37.55	54.00	-16.62	Vertical
2500.00	33.52	27.55	5.49	29.93	36.63	54.00	-17.79	Vertical
2483.50	33.97	27.53	5.47	29.93	37.04	54.00	-17.31	Horizontal
2500.00	33.79	27.55	5.49	29.93	36.90	54.00	-17.79	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.7 Spurious Emission

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2003 and KDB558074 D01 DTS Meas Guidance V03					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test plot as follows:

Lowest channel

30MHz~10GHz

30MHz~10GHz

Highest channel

30MHz~10GHz

10GHz~25GHz

10GHz~25GHz

10GHz~25GHz

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209								
Test Method:	ANSI C63.4: 200	ANSI C63.4: 2003							
Test Frequency Range:	30MHz to 25GHz	30MHz to 25GHz							
Test site:	Measurement Dis	Measurement Distance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Value				
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
	Above 1G112	RMS	1MHz	3MHz	Average				
Limit:	Frequen	су	Limit (dBuV	/m @3m)	Value				
	30MHz-88	MHz	40.0	0	Quasi-peak				
	88MHz-216	SMHz	43.5	0	Quasi-peak				
	216MHz-96	0MHz	46.0	0	Quasi-peak				
	960MHz-1	GHz	54.0	0	Quasi-peak				
	Above 10	`U-7	54.0	0	Average				
	Above ic)	74.0	0	Peak				
	Tum 0.8m Table 0.8m A Ground Plane — Above 1GHz	Antenna Tower Antenna Tower							
Test Procedure:	1. The EUT was	placed on the	top of a rot	ating table 0	.8 meters above				

Global United Technology Services Co., Ltd.

2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District,

Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

	the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	 The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi- peak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 26 of 32

Measurement Data

■ Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
30.105	50.40	14.33	0.55	32.06	33.22	40.00	-6.78	Vertical
45.375	49.99	15.54	0.72	32.00	34.25	40.00	-5.75	Vertical
60.280	51.61	14.69	0.86	31.94	35.22	40.00	-4.78	Vertical
87.725	53.65	13.18	1.09	31.73	36.19	40.00	-3.81	Vertical
150.011	60.27	10.26	1.57	31.98	40.12	43.50	-3.38	Vertical
197.893	57.67	12.57	1.83	32.13	39.94	43.50	-3.56	Vertical
60.280	52.10	14.69	0.86	31.94	35.71	40.00	-4.29	Horizontal
79.243	53.42	10.43	1.02	31.77	33.10	40.00	-6.90	Horizontal
121.123	54.74	12.29	1.37	31.86	36.54	43.50	-6.96	Horizontal
163.182	58.44	10.77	1.65	32.03	38.83	43.50	-4.67	Horizontal
202.100	56.84	12.64	1.85	32.14	39.19	43.50	-4.31	Horizontal
292.058	49.00	14.89	2.32	32.18	34.03	46.00	-11.97	Horizontal

■ Above 1GHz

Test channel	Fest channel: Lowest							
Peak value:				•				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	35.21	31.78	8.60	32.09	43.50	74.00	-30.50	Vertical
7206.00	37.57	36.15	11.65	32.00	53.37	74.00	-20.63	Vertical
9608.00	35.13	37.95	14.14	31.62	55.60	74.00	-18.40	Vertical
12010.00	28.10	39.08	15.03	35.51	46.70	74.00	-27.30	Vertical
14412.00	*					74.00		Vertical
4804.00	35.34	31.78	8.60	32.09	43.63	74.00	-30.37	Horizontal
7206.00	41.68	36.15	11.65	32.00	57.48	74.00	-16.52	Horizontal
9608.00	30.32	37.95	14.14	31.62	50.79	74.00	-23.21	Horizontal
12010.00	28.81	39.08	15.03	35.51	47.41	74.00	-26.59	Horizontal
14412.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	25.77	31.78	8.60	32.09	34.06	54.00	-19.94	Vertical
7206.00	27.79	36.15	11.65	32.00	43.59	54.00	-10.41	Vertical
9608.00	25.32	37.95	14.14	31.62	45.79	54.00	-8.21	Vertical
12010.00	18.21	39.08	15.03	35.51	36.81	54.00	-17.19	Vertical
14412.00	*					54.00		Vertical
4804.00	25.77	31.78	8.60	32.09	34.06	54.00	-19.94	Horizontal
7206.00	31.66	36.15	11.65	32.00	47.46	54.00	-6.54	Horizontal
9608.00	21.13	37.95	14.14	31.62	41.60	54.00	-12.40	Horizontal
12010.00	18.07	39.08	15.03	35.51	36.67	54.00	-17.33	Horizontal
14412.00	*					54.00		Horizontal

Remark:

Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
 "*", means this data is the too weak instrument of signal is unable to test.

Test channel	 :			N	/liddle			
Peak value:			_					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	I EVEL	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4884.00	37.37	31.86	8.67	32.12	45.78	74.00	-28.22	Vertical
7326.00	35.85	36.41	11.72	31.89	52.09	74.00	-21.91	Vertical
9768.00	30.72	38.35	14.27	31.62	51.72	74.00	-22.28	Vertical
12210.00	28.36	38.89	15.16	35.65	46.76	74.00	-27.24	Vertical
14652.00	*					74.00		Vertical
4884.00	36.21	31.86	8.67	32.12	44.62	74.00	-29.38	Horizontal
7326.00	40.23	36.41	11.72	31.89	56.47	74.00	-17.53	Horizontal
9768.00	29.42	38.35	14.27	31.62	50.42	74.00	-23.58	Horizontal
12210.00	27.68	38.89	15.16	35.65	46.08	74.00	-27.92	Horizontal
14652.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	i evei	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4884.00	27.06	31.86	8.67	32.12	35.47	54.00	-18.53	Vertical
7326.00	30.70	36.41	11.72	31.89	46.94	54.00	-7.06	Vertical
9768.00	19.80	38.35	14.27	31.62	40.80	54.00	-13.20	Vertical
12210.00	17.83	38.89	15.16	35.65	36.23	54.00	-17.77	Vertical
14652.00	*					54.00		Vertical
4884.00	27.83	31.86	8.67	32.12	36.24	54.00	-17.76	Horizontal
7326.00	25.98	36.41	11.72	31.89	42.22	54.00	-11.78	Horizontal
9768.00	20.99	38.35	14.27	31.62	41.99	54.00	-12.01	Horizontal
12210.00	18.81	38.89	15.16	35.65	37.21	54.00	-16.79	Horizontal
14652.00	*					54.00		Horizontal

Remark:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channel	 :				Highest				
Peak value:			_						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prean Facto (dB)	or .	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	33.98	31.93	8.73	32.1	6	42.48	74.00	-31.52	Vertical
7440.00	33.11	36.59	11.79	31.7	8	49.71	74.00	-24.29	Vertical
9920.00	32.22	38.81	14.38	31.8	8	53.53	74.00	-20.47	Vertical
12400.00	28.20	38.76	15.27	35.2	7	46.96	74.00	-27.04	Vertical
14880.00	*						74.00		Vertical
4960.00	32.92	31.93	8.73	32.1	6	41.42	74.00	-32.58	Horizontal
7440.00	38.98	36.59	11.79	31.7	8	55.58	74.00	-18.42	Horizontal
9920.00	28.52	38.81	14.38	31.8	8	49.83	74.00	-24.17	Horizontal
12400.00	28.82	38.76	15.27	35.2	7	47.58	74.00	-26.42	Horizontal
14880.00	*						74.00		Horizontal
Average val	ue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prean Facto (dB)	or .	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	24.05	31.93	8.73	32.1	6	32.55	54.00	-21.45	Vertical
7440.00	23.79	36.59	11.79	31.7	8	40.39	54.00	-13.61	Vertical
9920.00	22.85	38.81	14.38	31.8	8	44.16	54.00	-9.84	Vertical
12400.00	18.74	38.76	15.27	35.2	7	37.50	54.00	-16.50	Vertical
14880.00	*						54.00		Vertical
4960.00	22.77	31.93	8.73	32.1	6	31.27	54.00	-22.73	Horizontal
7440.00	29.05	36.59	11.79	31.7	8	45.65	54.00	-8.35	Horizontal
9920.00	19.11	38.81	14.38	31.8	8	40.42	54.00	-13.58	Horizontal
12400.00	18.74	38.76	15.27	35.2	7	37.50	54.00	-16.50	Horizontal
14880.00	*						54.00		Horizontal

Remark:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Conducted Emissions

9 EUT Constructional Details

Reference to the test report No. GTSE14090159001

-----End-----