# **Smart Farmer-IOT Enabled Smart Farming Application**

## IBM NALAIYATHIRAN

# **SPRINT DELIVERY – 4**

| TITLE            | Smart Farmer-IOT Enabled Smart Farming |
|------------------|----------------------------------------|
|                  | Application                            |
| DOMAIN NAME      | INTERNET OF THINGS                     |
| TEAM ID          | PNT2022TMID51347                       |
| LEADER NAME      | JESTO C J                              |
| TEAM MEMBER NAME | SUJITH S G                             |
|                  | AKHIL R                                |
|                  | NISHANTH PS                            |

# 5.5 Receiving commands from IBM cloud using Python program

import time import sys
import ibmiotf.application
import ibmiotf.device import random

## **#Provide your IBM Watson Device Credentials**

```
organization = "157uf3" deviceType = "abcd" deviceId = "7654321" authMethod = "token" authToken = "87654321"
```

#### # Initialize GPIO

except Exception as e:

print("Caught exception connecting device: %s" % str(e))

```
sys.exit()
# Connect and send a datapoint "hello" with value "world" into the cloud as an event
of type "greeting" 10 times deviceCli.connect()
while True:
    #Get Sensor Data from DHT11
temp=random.randint(90,110)
Humid=random.randint(60,100)
Mois=random. Randint(20,120)
                                 data =
{ 'temp' : temp, 'Humid': Humid , 'Mois':
Mois}
    #print data
                    def
myOnPublishCallback():
      print ("Published Temperature = %s C" % temp, "Humidity = %s
%%" % Humid, "Moisture =%s deg c" % Mois "to IBM Watson")
success = deviceCli.publishEvent("IoTSensor", "json", data, qos=0,
on_publish=myOnPublishCallback)
                                       if not success:
print("Not connected to IoTF")
time.sleep(10)
    deviceCli.commandCallback = myCommandCallback #
Disconnect the device and application from the cloud
deviceCli.disconnect()
```



#### 6. Flow Chart



#### 7. Observations & Results







# 8. Advantages & Disadvantages Advantages:

- Farms can be monitored and controlled remotely.
- Increase in convenience to farmers.
- Less labor cost.
- Better standards of living.

### **Disadvantages:**

- Lack of internet/connectivity issues.
- Added cost of internet and internet gateway infrastructure.
- Farmers wanted to adapt the use of Mobile App.

#### 9. Conclusion

Thus the objective of the project to implement an IoT system in order to help farmers to control and monitor their farms has been implemented successfully.

### 10. Bibliography

IBM cloud reference: https://cloud.ibm.com/

IoT simulator: https://watson-iot-sensor-simulator.mybluemix.net/

OpenWeather: https://openweathermap.org/