

guestion 2:

と

No.

0

D

6

10

10

0

0

0

7

When we expand $K_{\beta}(x, z) = (1 + \beta x. z)^{3}$, we get:

KB(X,Z)=1+3(BX,Z)+3(BX,Z)2+(Bx,Z)

Since $X. Z = X_1 Z_1 + X_2 Z_2$ when $X_1 Z \in \mathbb{R}^2$, we can further simplify:

 $K\beta = 1 + 3\beta(x_1z_1 + x_2z_2) + 3\beta^2(x_1z_1 + x_2z_2)^2 + \beta^3(x_1z_1 + x_2z_2)^3$

= 1+3B(x121+x222)+3B2(x121+2x121x222+x22) +B3(x121+3x121x22+3x121x222+x222)

Therefore, we can get the feature map:

φ₅(·)= (1, √3βx, √3βx₂, √3βx₁², √3β√2x, x₂, √3βx₂², √β³x₃³, √β³√3x₁x₂², √3√β³ x₁³x₂, √β³x₂³)

= $(1, \sqrt{3}\beta x_1, \sqrt{3}\beta x_2, \sqrt{3}\beta x_1^2, \sqrt{6}\beta x_1 x_2, \sqrt{3}\beta x_2^2, \sqrt{3}\beta^3 x_1^2 x_2, \sqrt{3}\beta^3 x_1^2 x_2, \sqrt{\beta}^3 x_2^3)$

clearly, the feature map is very similar to the feature map of $K(X,Z)=(1+X,Z)^3$. However

