3-1DN-Angle-terminology

1. As shown below, two lines intersect making four angles: $\angle 1$, $\angle 2$, $\angle 3$, and $\angle 4$.

- (a) Which angle is opposite ∠1? _____
- (b) Name an angle that is adjacent to ∠4. _____
- (c) True or false, $\angle 2$ and $\angle 4$ are vertical angles.
- 2. Measure the required angles of the diagram below and answer the questions.
 - (a) $m \angle AOB = \underline{\qquad} m \angle BOC = \underline{\qquad} m \angle DOE = \underline{\qquad}$
 - (b) Name an angle that is supplementary to $\angle AOB$:
 - (c) Name an angle that is complementary to $\angle DOE$:

3. Given the situation in the diagram, answer each question. Circle True or False.

- (a) True or False: \overrightarrow{RP} and \overrightarrow{UP} are opposite rays.
- (b) True or False: $\angle TPR$ is supplementary to $\angle TPU$.
- (c) True or False: $\angle RPS$ and $\angle TPS$ are complementary angles.
- (d) True or False: $\angle RPS$ and $\angle TPU$ are vertical angles.
- 4. The shape shown below is composed of straight lines and right angles, with some lengths as marked. Find the perimeter of the figure. Show your work.

5. Given \overline{DEFG} , $DE = 1\frac{2}{5}$, $EF = 2\frac{3}{10}$, and $FG = \frac{4}{5}$. (diagram not to scale) Find DG, expressed as a fraction, not a decimal.

