20

National Institute of Technology Calicut Department of Computer Science and Engineering CS2005 Data Structures and Algorithms

Time: 1 Hour

First Midterm Examination, January 2014

(Note: For all the questions given below write your answers only in the space provided in the question

Maximum Marks : 20

paper. Answers written elsewhere will not be evaluated) Solve the recurrences given below. Assume T(1)=1. Here a = 3, b = 3, $f(n) = \Theta(n^2)$. Applying Master's theorem:

1M.

There a = 3, b = 3, $f(n) = \Theta(n^2)$ n = n $eq_3 = n$. Testing $eq_4 = n$ conditions for case II (i) $3(\frac{n}{3})^2 < \frac{3}{9}n^2 < 0.5 n^2 = 3 + 2.2 af(n) < f(n)$ (ii) $f(n) = a(n^2) = \Omega(n^{1+0.5})$ Hence Case III holds: So T(n)=0(n2)
b) T(n)=2T(4n/6)+0(n2) Applying Master's theorem Hue a = 2 b = 6/4 = 1.5 f(n) = B(n2). Testing for Case III $n \log_a = n \log_{1:5} 2 = n^{1:7}$ Condition I: $a f(\underline{n}) = 2 \left(\frac{\underline{n}}{1:5} \right)^2 = 2 n^2 < 0.9 n^2$ Condition 2: $n^2 = \Omega(n^{1:7+o.2}) \in = 0.2$. Hence Case III holds. 30 $T(n) = \Theta(n^2)$ d) $T(n) = T(n/2) + \theta(1)$. 1 Mark Applying Master's theorem $a = 1 \quad b = 2 \quad \cancel{P}(n) = \cancel{O}(1) = c \cdot n$ $n^{\log_b q} = n^{\log_2 1} = n^{-1} \cdot \cancel{P}(n) = \cancel{O}(n^{\log_b q}) = \cancel{O}(n^{\circ})$ Case II holds: So T(n) = O(n° log,n) = O(log n) Which of the following statements regarding Merge sort is not correct? 1 Mark a) The recurrence for Merge sort algorithm is $T(n) = 2(T(n/2)) + \theta(1)$ b) Merge sorts runs in θ (nlogn) time in the best case. c) Merge sort runs in O(n²) time in the worst case. d) The space complexity of the Merge operation is $\theta(n)$. Ans: a. 3. Which of the following arrays is not a Max-heap? a) 12 8 6 3 4 1 b) 21 20 19 18 17 16 c) 15 11 13 10 9 12 d) 56 50 42 48 46 44 1 Mark 4. State True/False for the following statements. a) Insertion sort runs in $\theta(n)$ time in the best case.

b) Insertion sort runs in $\Omega(n)$ time in the worst case. Ans: True

Ans: True

```
5. What would be the minimum and maximum number of elements in a heap of height h?
                                                                  Maximum: 2
           6. Write True/False for the following equality. Justify your answer.
                        a) 100n² +30n+1000 = O(n³). True we demonstrate Ic,no: In < c n³ +10>no 1Mark
                       |100n^2 + 30n + |1000| \le |100n^2 + 30n^2 + |1000| n^2 = |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |100| |1
                                                                               < 11300° poin>,2
       to these exists ceno \leq Cn^3 for n > n_0 for c = 1136 i. \exists c \ni n

thence by definition 100n^2 + 30n + 100n is O(n^3) n_0 = 2
7. Prove that 3n^2 = o(n^3) We prove by contradiction 1 \text{ Mark}
     As there exists cano
             Let the statement be take. The 3n2 + o(n3)
            Then Ic, c70; 3n2 < cn3 +n >no is false for 4no. => 3n2 > cn3 for all n
            =) 3 > cn pall n, det n=3+1
hen =) 3 > C(3+1) =) 3 > 3+C =) c20 - contradiction
8. Solve the recurrence <math>T(n) = T(n^{0.25}) + \log_2 n 50 3 n^2 15 O(n^3) 1Mark
          Let n = 2^m
T(2^m) = T(2^m) + \log_2(2^m)
        1.e T(2m) = T(2m/4)+m let T(2m) = S(m).
              S(m) = S(m/y) + m. Solving this by Master's theorem m = s(m^{o+1}), Also m < 0.5 m. So
                                                                                                                                                                                 Case Al
      S(m) = O(m)
                                                                                                                                                                                      nolds
       Prove or disprove. = O(log_n)
           9. For two positive functions f(n) and g(n)
                    If f(n) = \theta(g(n)) then f(n) = \omega(g(n))
                  we can show that the implication is take by showing
                 that the assumption that the left hand side is true
                  implies that the RMS is also.
                  Let f(n) = 0(g(n))
                =) \left( f(n) = O(g(n)) \wedge (f(n) = 52(g(n))) \right)
              =) f(n) = O(g(n)) (By definition) To coo; f(n) < (g(n))
             => f(n) < cg(n) tn>no
              ⇒7(tc: f(n) ocg(n) ¥n>no)
              =) 7 (f(n) is w(g(n))) by definition of w(g(n))
               => 7 (f(n)=co (g(n)))
```

STORY OF THE PARTY
नममा मा ज्योतिगम्स्य

National Institute of Technology Calicut

Additional	SI. No
Answer Book	
(Four Pages)	

Signature of the Invigilator with date

STITUTE OF TECHNOLOGY CALICUT NATIONAL INSTITUTE OF TECHNOLOGY CALICUT NATIONA Ilérative Reverse (A) 1. n = A.length 2. ja i = 1 to [N/2] Exchange Afi] with A[n-i+1] Proof of Countriess On the input array $A = (a_1, \dots, a_n)$ we define the following terms Sequence (p, q) stands for the sequence ap aprimaq y p≠q and the sequence aq aq-1 aq-2- ap Sequence $(p,q) = a_q - a_p$, if p < q. $(a_p - a_q) + q < p$ $(a_p - a_q) + q < p$ where a a a are the elements of the the input array at Indices he juspectively. LOOP INVARIANT At the beginning of the iteration is, the array Ass. 1-1] contains the sequence Sequence (naign-i+2) and A[n-i+2...n] contains the sequence Sequence [i-1,1] and the contents of A[i.n-e+i] are undesturbed.

Initialization In the beginning i=1 A[1..0] is a null set; & A[n+1..on] is a null set; I thence trivially five; A[1..n] are underfuebed Maintenance of true at the beginning of it iteration then it is true at the beginning of ith

If true at the beginning of its ileration A[1...i-1] = Sequence [n, n-i+2] and A[n-i+2...n] = Sequence [i-1,1] and A[a...n-i+1] are undusturbed.

uteration

During the iteration, the body statement executed is exchange of A[i] with A[i-i+1] (Let • stand for concatenation)

Thence $A[i...i] \neq Sequence[n, n-i+2] \bullet A[n-i+1]$ = Sequence[n, n-i+1] $A[n+i+1...n] = A[i] \bullet Sequence[i-1, 1]$ = Sequence[i, 1]The A[1...(i+1)-1] = Sequence[n, n-(i+1)+2]and A[n-(i+1)+2...n] = Sequence[(i+1)-1, 1]Also the elements A[i+1...n-i] are undestrabed 1.e A[i+1)...n-(i+1)+1 are undestrabed

True A[i+1] = A[i+1]

Termination (At the beginning of iberation (h +1) (i) $A\left[1...\left[\frac{n}{2}\right]\right]$ contains the Sequence $\left[\frac{n}{2}\right]$, $\left[\frac{n}{2}\right]$ (ii) $A\left[\frac{n-|n|+1}{2}\right]+1...n$ countains Sequence $\left[\frac{n}{2}\right]$, $\left[\frac{n}{2}\right]$ (iii) and elements A [[n]+1:.. n-[n]] are undistribed. . Now, if n is even, then A[1.. n] contains Sequence (n, n +1) $A\left[\frac{n}{2}+1...n\right]$ contains Sequena $\left(\frac{n}{2},1\right)$ A[n+1... n] is a null set (undistrubed trivally). So the array is perfectly reversed. if n is odd, then let $k = \lfloor n \rfloor$ re n = 2k+1A[1.. k] contains Sequence (n, n-K+1) A[n-k+1..n] = A[k+2..n] = Sequence(k..1)and A [K+1...K+1] is deft undesturbed (middle element) Hence the array is perfectly reversed.

National Institute of Technology Calicut

Reg. No.	
Additional Answer Book (Four Pages)	SI. No.

Signature of the Invigilator with date

@11 Algo-solution (A, B) Heapsout (A) Heapsort (B) count = 0 4. a=A.length b = B. length 5. while $(a \geqslant 1)$ and (b > 1)y A [a] > B[b] 7. a = a - 1 clae y A[a] = B[b] a= a-1 10 b=b-1 11 count = count +1 12 else b=b-1 14 return (count) Space Complexity: Heap sorts incurs (10grs) recursions at the same time. At The remaining steps in the Algorithms use O(1) space.

	438
Time Complexity;	
For Heapsont: O(n log n).	
For The while loop is executed at the most (m+n) times	۵
as $m = O(n)$. (A) to equally	
Time complexity of while loop is O(n))
Hence Time Complexity = O(n logn)	