作业 07

题 1. 课本 p47 习题 14

(2)

证: 反证法。

假设原公式不是永真式,即存在模型 (M,σ) ,使得 $(\forall x \forall y (x \doteq y \rightarrow y \doteq x))_{M[\sigma]} = F$ 。 也即存在 $a,b \in M$,使得 $(x \doteq y \rightarrow y \doteq x)_{M[\sigma:x=a,y=b]} = F$ 。 由于 $(x \doteq y \rightarrow y \doteq x)_{M[\sigma:x=a,y=b]}$, $(y \doteq x)_{M[\sigma:x=a,y=b]}$, $(y \doteq x)_{M[\sigma:x=a,y=b]}$

(3)

证: 反证法。

假设原公式不是永真式,即存在模型 (M,σ) ,使得 $(\forall x \forall y \forall z ((x \doteq y \land y \doteq z) \rightarrow x \doteq z))_{M[\sigma]} = F_{\circ}$

也即存在 a,b,c \in M,使得(($x \doteq y \land y \doteq z$) $\rightarrow x \doteq z$) $_{M[\sigma:x=a,y=b,z=c]} = F$ 。

$$((x \doteq y \land y \doteq z) \rightarrow x \doteq z)_{M[\sigma: x = a, y = b, z = c]}$$

$$= \mathbf{B}_{\rightarrow}((x \doteq y \land y \doteq z)_{M[\sigma:x=a,y=b,z=c]}, (x \doteq z)_{M[\sigma:x=a,y=b,z=c]})$$

 $= \mathbf{B}_{\rightarrow}(a = b, b = a) = T$,可得矛盾。

$$= \mathbf{B}_{\rightarrow}(\mathbf{B}_{\wedge}(a=b,b=c),a=c)$$
.

有如下两种情况:

- 2. 若 a = b 和 b = c 至 少 一 个 为 假 , 则 $\mathbf{B}_{\wedge}(a = b, b = c) = F$, 从 而 $\mathbf{B}_{\rightarrow}(\mathbf{B}_{\wedge}(a = b, b = c), a = c) = T$ 。

因此,无论 a, b, c 取何值,
$$\mathbf{B}_{\rightarrow}(\mathbf{B}_{\wedge}(a=b,b=c),a=c)=T$$
,矛盾。

题 2. 课本 p48 习题 15

证:对于任意模型(M,σ),有如下几种情况:

$A_{M[\sigma]}$	$B_{M[\sigma]}$	$(\neg(A \land B))_{M[\sigma]}$	$(\neg A \lor \neg B)_{M[\sigma]}$	$(\neg (A \land B)) \leftrightarrow (\neg A \lor \neg B)_{M[\sigma]}$
Т	Т	F	F	Т
Т	F	Т	Т	Т
F	Т	Т	Т	Т
F	F	Т	Т	Т

所以(¬($A \land B$)) ↔ (¬ $A \lor ¬B$)是永真的。

其他式子是永真的证明是类似的,此处省略。

题 3. 课本 p48 习题 16

证: 对于任意模型(M,σ),

$$(\neg \forall x A)_{M[\sigma]} = \begin{cases} B_{\neg}(T), & \not\exists \forall \alpha \in M, A_{M[\sigma[x:=a]]} = T \\ B_{\neg}(F), & \not\exists \exists \alpha \in M, A_{M[\sigma[x:=a]]} = F \end{cases} = \begin{cases} F, & \not\exists \forall \alpha \in M, A_{M[\sigma[x:=a]]} = T \\ T, & \not\exists \exists \alpha \in M, A_{M[\sigma[x:=a]]} = F \end{cases}$$

$$(\exists x \neg A)_{M[\sigma]} = \begin{cases} T, & \vec{z} \exists a \in M, \neg A_{M[\sigma[x:=a]]} = T \\ F, & \vec{z} \forall a \in M, \neg A_{M[\sigma[x:=a]]} = F \end{cases} = \begin{cases} T, & \vec{z} \exists a \in M, A_{M[\sigma[x:=a]]} = F \\ F, & \vec{z} \forall a \in M, A_{M[\sigma[x:=a]]} = T \end{cases}.$$

所以(¬ $\forall xA$) ↔ ($\exists x \neg A$)是永真的。

 \vdash (¬∃xA) \leftrightarrow (∀x¬A)的证明也是类似的。

题 4. 课本 p48 习题 17

(1) Γ_n 可满足。

证:考虑初等算数的标准模型(N,I)。构造赋值 σ ,使得 $\sigma(x) = n+1$,对任何 Γ_n 中的公式,显然对于模型(N, σ)可满足,因此 $N \models_{\sigma} \Gamma_n$ 。

(2) 在标准模型 N 中, Γ 不可满足。

证: 反证法。

假设 Γ 可满足,即存在一个模型 (N,σ) ,使得对于 Γ 中任意的公式可满足。

对于此处赋值 σ ,不妨设 $\sigma(x) = a \in N$,

那么对于 Γ 中的公式 $x > S^{a}0$,它的解释为假,矛盾。

作业 08

题 1. 证明~为等价关系(课本 p43 命题 3.28)。

证:下证~有自反性、对称性和传递性。

自反性: $\forall t \in T$, 由 Hintikka 集定义第 13 条, 知 $t \doteq t \in \Psi$, 即 $t \sim t$ 。

对称性: $\forall t, s \in T$,若 t~s,则 t \doteq s \in Ψ。由 Hintikka 集定义第 14 条,知 t \doteq s \rightarrow s \doteq t \in Ψ。 又由 Hintikka 集定义第 3 条,知 s \doteq t \in Ψ,即 s~t。

传递性: $\forall t, s, u \in T$,由 Hintikka 集定义第 15 条,知 $t \doteq s \rightarrow (s \doteq u \rightarrow t \doteq u) \in \Psi$ 。若 $t \sim s$ 且 $s \sim u$,则 $t \doteq s \in \Psi$ 且 $s \doteq u \in \Psi$ 。又由 Hintikka 集定义第 3 条,知 $s \doteq u \rightarrow t \doteq u \in \Psi$,从而 $t \doteq u \in \Psi$,即 $t \sim u$ 。

题 2. 课本 p48 习题 18

证:对于任意模型(M,σ),

$$(\forall x A)_{M[\sigma]} = \begin{cases} T, & \Xi \forall a \in M, A_{M[\sigma[x:=a]]} = T \\ F, & \Xi \exists a \in M, A_{M[\sigma[x:=a]]} = F \end{cases}$$

$$(\forall y A[y/x])_{M[\sigma]} = \begin{cases} T, & \text{ \vec{z}} \forall a \in M, A[y/x]_{M[\sigma[y:=a]]} = T \\ F, & \text{ \vec{z}} \exists a \in M, A[y/x]_{M[\sigma[y:=a]]} = F \end{cases}$$

$$= \begin{cases} T, & \text{ \vec{z}} \forall a \in M, A_{M[\sigma[y:=a][x:=y_{M[\sigma[y:=a]]}]]} = T \\ F, & \text{ \vec{z}} \exists a \in M, A_{M[\sigma[y:=a][x:=y_{M[\sigma[y:=a]]}]]} = F \end{cases}$$

$$= \begin{cases} T, & \text{ \vec{z}} \forall a \in M, A_{M[\sigma[y:=a][x:=a]]} = T \\ F, & \text{ \vec{z}} \exists a \in M, A_{M[\sigma[y:=a][x:=a]]} = F \end{cases} = \begin{cases} T, & \text{ \vec{z}} \forall a \in M, A_{M[\sigma[x:=a]]} = T \\ F, & \text{ \vec{z}} \exists a \in M, A_{M[\sigma[y:=a][x:=a]]} = F \end{cases}$$

所以($\forall xA$) \leftrightarrow ($\forall yA[y/x]$)是永真的。 \models ($\exists yA[y/x]$)的证明也是类似的。

题 3. 课本 p48 习题 19

(1)

证: 反证法,假设存在模型(M, σ),使得($\forall xA \leftrightarrow A[t/x]$) $_{M[\sigma]} = F$ 。则有两种情况:情况 1: $(\forall xA)_{M[\sigma]} = T$,(A[t/x]) $_{M[\sigma]} = F$ 。由语义的定义和替换引理,可知 $\forall a \in M$, $A_{M[\sigma[x:=a]]} = T$, $A_{M[\sigma[x:=t_{M[\sigma]}]]} = F$ 。当 $a = t_{M[\sigma]}$,可得 $A_{M[\sigma[x:=t_{M[\sigma]}]]} = T$,矛盾。情况 2: $(\forall xA)_{M[\sigma]} = F$,(A[t/x]) $_{M[\sigma]} = T$ 。??

(2)

证: 反证法,假设存在模型 (M,σ) ,使得 $(A[t/x] \to \exists xA)_{M[\sigma]} = F$ 。 则 $(A[t/x])_{M[\sigma]} = T$, $(\exists xA)_{M[\sigma]} = F$ 。由语义的定义和替换引理,可知 $A_{M[\sigma[x:=t_{M[\sigma]}]]} = T$, $\forall a \in M$, $A_{M[\sigma[x:=a]]} = F$ 。 当 $a = t_{M[\sigma]}$,可得 $A_{M[\sigma[x:=t_{M[\sigma]}]]} = F$,矛盾。