Final results

April 12, 2025

```
[4]: import pandas as pd
     data = pd.read_csv("/content/default_of_credit_card_clients.csv")
     print(data.head())
                                                        PAY_O PAY_2 PAY_3
           LIMIT BAL SEX EDUCATION MARRIAGE
                                                  AGE
                                                                               PAY 4 \
    0
        1
                20000
                         2
                                     2
                                                    24
                                                             2
                                                                    2
                                                                           -1
                                                                                  -1
                                                1
        2
                                     2
    1
               120000
                         2
                                                2
                                                    26
                                                            -1
                                                                    2
                                                                            0
                                                                                   0
                                     2
    2
                90000
                                                2
                                                                            0
                                                                                   0
        3
                                                    34
                                                             0
                                                                    0
    3
                50000
                         2
                                     2
                                                    37
                                                             0
                                                                    0
                                                                            0
                                                                                   0
        4
    4
                                     2
        5
                50000
                                                    57
                                                            -1
                                                                           -1
           BILL_AMT4 BILL_AMT5
                                 BILL_AMT6 PAY_AMT1
                                                        PAY_AMT2
                                                                   PAY_AMT3 \
    0
                   0
                               0
                                           0
                                                     0
                                                              689
                3272
                            3455
                                       3261
                                                     0
                                                             1000
                                                                        1000
    1
    2
               14331
                           14948
                                       15549
                                                  1518
                                                             1500
                                                                        1000
    3
               28314
                           28959
                                       29547
                                                  2000
                                                             2019
                                                                        1200
    4
               20940
                           19146
                                       19131
                                                  2000
                                                            36681
                                                                       10000
       PAY_AMT4 PAY_AMT5 PAY_AMT6
                                       default.payment.next.month
    0
               0
                         0
                                    0
    1
            1000
                         0
                                 2000
                                                                  1
    2
            1000
                       1000
                                 5000
                                                                  0
    3
                                                                  0
            1100
                      1069
                                 1000
            9000
                       689
                                  679
                                                                  0
    [5 rows x 25 columns]
[5]: # Replacing education values = 0, 5 and 6 with 4, since 0, 5 and 6 are not \Box
      \hookrightarrow defined
     fill = (data.EDUCATION == 0) | (data.EDUCATION == 5) | (data.EDUCATION == 6)
     data.loc[fill, 'EDUCATION'] = 4
```

EDUCATION [np.int64(1), np.int64(2), np.int64(3), np.int64(4)]

print('EDUCATION ' + str(sorted(data['EDUCATION'].unique())))

```
[6]: # Replacing marital status value = 0 to 3, since 0 is not defined
    fill = (data.MARRIAGE == 0)
    data.loc[fill, 'MARRIAGE'] = 3
    print('MARRIAGE ' + str(sorted(data['MARRIAGE'].unique())))
    MARRIAGE [np.int64(1), np.int64(2), np.int64(3)]
[7]: # Applying feature engineering to add derived variables
    data['BillAverage'] = data[['BILL_AMT1', 'BILL_AMT2', 'BILL_AMT3', 'BILL_AMT4', __
     ⇔'BILL_AMT5', 'BILL_AMT6']].mean(axis=1).round()
    data['PayAverage'] = data[['PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4',

     ⇔'PAY_AMT5', 'PAY_AMT6']].mean(axis=1).round()
    data.head()
[7]:
       ID
           LIMIT_BAL
                      SEX
                           EDUCATION MARRIAGE AGE PAY_O PAY_2 PAY_3
                                                                         PAY_4 \
                                                                     -1
        1
               20000
                        2
                                   2
                                                24
                                                        2
                                                               2
                                             1
                                                                            -1
    1
        2
              120000
                        2
                                   2
                                             2
                                                26
                                                       -1
                                                               2
                                                                      0
                                                                             0
                                   2
    2
        3
               90000
                        2
                                             2
                                                34
                                                        0
                                                               0
                                                                      0
                                                                             0
                                   2
    3
        4
               50000
                        2
                                             1
                                                37
                                                        0
                                                               0
                                                                      0
                                                                             0
    4
               50000
                                   2
                                             1
                                                57
                                                               0
                                                                     -1
                                                                             0
        5
                        1
                                                       -1
          BILL_AMT6 PAY_AMT1 PAY_AMT2 PAY_AMT3 PAY_AMT4 PAY_AMT5 PAY_AMT6
    0
                  0
                            0
                                    689
                                               0
                                                         0
                                                                   0
                                                                             0
                                                                          2000
    1
               3261
                            0
                                   1000
                                             1000
                                                      1000
                                                                   0
    2
                                   1500
                                             1000
                                                      1000
                                                                1000
                                                                          5000
              15549
                         1518
    3
              29547
                         2000
                                   2019
                                             1200
                                                      1100
                                                                1069
                                                                          1000
    4
              19131
                         2000
                                  36681
                                            10000
                                                      9000
                                                                 689
                                                                           679
       default.payment.next.month BillAverage PayAverage
    0
                                1
                                        1284.0
                                                    115.0
    1
                                1
                                        2846.0
                                                    833.0
    2
                                0
                                       16942.0
                                                    1836.0
    3
                                0
                                       38556.0
                                                    1398.0
    4
                                0
                                       18223.0
                                                   9842.0
    [5 rows x 27 columns]
[8]: categorical_variables = ['SEX', 'EDUCATION', 'MARRIAGE', 'PAY_0', 'PAY_2', __
     →'BILL_AMT1','BILL_AMT2','BILL_AMT3','BILL_AMT4','BILL_AMT5','BILL_AMT6',
      →'PAY_AMT1','PAY_AMT2','PAY_AMT3','PAY_AMT4','PAY_AMT5','PAY_AMT6',
      ⇔'BillAverage', 'PayAverage']
```

```
[9]: #Calculating and printing the Pearson correlation matrix
print("Pearson Correlation Matrix of numeric variables:")
pearson_correlation_matrix = data[numeric_variables].corr().round(2)
pearson_correlation_matrix
```

Pearson Correlation Matrix of numeric variables:

[9]:		LIMIT_BAL	AGE	BILL_AMT1	BILL	_AMT2 B	ILL_AMT3	BILL_AMT4	\
	LIMIT_BAL	1.00	0.14	0.29		0.28	0.28	0.29	
	AGE	0.14	1.00	0.06		0.05	0.05	0.05	
	BILL_AMT1	0.29	0.06	1.00		0.95	0.89	0.86	
	BILL_AMT2	0.28	0.05	0.95		1.00	0.93	0.89	
	BILL_AMT3	0.28	0.05	0.89		0.93	1.00	0.92	
	BILL_AMT4	0.29	0.05	0.86		0.89	0.92	1.00	
	BILL_AMT5	0.30	0.05	0.83		0.86	0.88	0.94	
	BILL_AMT6	0.29	0.05	0.80		0.83	0.85	0.90	
	PAY_AMT1	0.20	0.03	0.14		0.28	0.24	0.23	
	PAY_AMT2	0.18	0.02	0.10		0.10	0.32	0.21	
	PAY_AMT3	0.21	0.03	0.16		0.15	0.13	0.30	
	PAY_AMT4	0.20	0.02	0.16		0.15	0.14	0.13	
	PAY_AMT5	0.22	0.02	0.17		0.16	0.18	0.16	
	PAY_AMT6	0.22	0.02	0.18		0.17	0.18	0.18	
	BillAverage	0.30	0.05	0.94		0.96	0.96	0.96	
	PayAverage	0.35	0.04	0.26		0.29	0.36	0.35	
		BILL_AMT5	_	_		_	_	_	
	LIMIT_BAL	0.30			.20	0.18			
	AGE	0.05			0.03	0.02			
	BILL_AMT1	0.83			14	0.10			
	BILL_AMT2	0.86			.28	0.10			
	BILL_AMT3	0.88			.24	0.32			
	BILL_AMT4	0.94			.23	0.21			
	BILL_AMT5	1.00			.22	0.18			
	BILL_AMT6	0.95			.20	0.17			
	PAY_AMT1	0.22	C).20 1	.00	0.29			
	PAY_AMT2	0.18			.29	1.00			
	PAY_AMT3	0.25			.25	0.24			
	PAY_AMT4	0.29			.20	0.18			
	PAY_AMT5	0.14			15	0.18			
	PAY_AMT6	0.16			.19	0.16			
	BillAverage	0.95			.23	0.19			
	PayAverage	0.36	C	0.36	.60	0.67	0.59	0.53	
		PAY_AMT5	PAY_AMT	'6 BillAve	rage	PayAver	age		
	LIMIT_BAL	0.22	0.2		0.30	•	.35		
	AGE	0.02	0.0		0.05		.04		
	BILL_AMT1	0.17	0.1		0.94		.26		

```
BILL_AMT2
                 0.16
                           0.17
                                         0.96
                                                     0.29
BILL_AMT3
                 0.18
                           0.18
                                         0.96
                                                     0.36
BILL_AMT4
                 0.16
                           0.18
                                         0.96
                                                     0.35
BILL_AMT5
                 0.14
                           0.16
                                         0.95
                                                     0.36
BILL_AMT6
                 0.31
                           0.12
                                         0.93
                                                     0.36
PAY_AMT1
                 0.15
                           0.19
                                         0.23
                                                     0.60
PAY_AMT2
                 0.18
                                         0.19
                           0.16
                                                     0.67
PAY_AMT3
                 0.16
                           0.16
                                         0.21
                                                     0.59
PAY_AMT4
                 0.15
                           0.16
                                         0.19
                                                     0.53
PAY_AMT5
                 1.00
                           0.15
                                         0.19
                                                     0.49
PAY_AMT6
                 0.15
                            1.00
                                         0.18
                                                     0.53
BillAverage
                 0.19
                           0.18
                                         1.00
                                                     0.34
PayAverage
                                         0.34
                                                     1.00
                 0.49
                           0.53
```

```
[10]: import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt

fig, ax = plt.subplots(figsize=(10,10))
sns.heatmap(pearson_correlation_matrix, cmap='coolwarm', annot=True, ax=ax)
plt.title('Heat Map of numeric variables')
plt.show()
```



```
[11]: # Printing summary statistics of numeric variables:
    print("\nSummary Statistics of numeric variables:")
    data[numeric_variables].describe().transpose()
```

Summary Statistics of numeric variables:

```
[11]:
                      count
                                                        std
                                                                   min
                                                                              25%
                                       mean
                    30000.0
                             167484.322667
                                             129747.661567
                                                               10000.0
                                                                        50000.00
      LIMIT_BAL
      AGE
                    30000.0
                                  35.485500
                                                   9.217904
                                                                  21.0
                                                                           28.00
                                                                         3558.75
      BILL AMT1
                    30000.0
                              51223.330900
                                              73635.860576 -165580.0
```

```
BILL_AMT2
                  30000.0
                            49179.075167
                                           71173.768783 -69777.0
                                                                     2984.75
      BILL_AMT3
                   30000.0
                            47013.154800
                                           69349.387427 -157264.0
                                                                     2666.25
      BILL_AMT4
                   30000.0
                            43262.948967
                                           64332.856134 -170000.0
                                                                     2326.75
      BILL_AMT5
                   30000.0
                            40311.400967
                                           60797.155770 -81334.0
                                                                     1763.00
     BILL_AMT6
                  30000.0
                            38871.760400
                                            59554.107537 -339603.0
                                                                     1256.00
     PAY_AMT1
                  30000.0
                             5663.580500
                                            16563.280354
                                                               0.0
                                                                     1000.00
     PAY AMT2
                  30000.0
                              5921.163500
                                           23040.870402
                                                               0.0
                                                                      833.00
                                            17606.961470
     PAY_AMT3
                   30000.0
                              5225.681500
                                                               0.0
                                                                      390.00
     PAY AMT4
                                                               0.0
                  30000.0
                              4826.076867
                                            15666.159744
                                                                      296.00
     PAY AMT5
                              4799.387633
                                                               0.0
                   30000.0
                                            15278.305679
                                                                      252.50
     PAY AMT6
                                                               0.0
                   30000.0
                              5215.502567
                                           17777.465775
                                                                      117.75
     BillAverage
                  30000.0
                            44976.943700
                                           63260.722001 -56043.0
                                                                     4781.75
     PayAverage
                   30000.0
                              5275.231633
                                            10137.946665
                                                               0.0
                                                                     1113.00
                        50%
                                   75%
                                             max
     LIMIT_BAL
                   140000.0
                            240000.00
                                       1000000.0
      AGE
                       34.0
                                 41.00
                                            79.0
      BILL_AMT1
                    22381.5
                              67091.00
                                        964511.0
      BILL_AMT2
                    21200.0
                              64006.25
                                         983931.0
     BILL_AMT3
                    20088.5
                              60164.75
                                       1664089.0
     BILL_AMT4
                    19052.0
                              54506.00
                                        891586.0
     BILL AMT5
                    18104.5
                              50190.50
                                        927171.0
     BILL_AMT6
                    17071.0
                              49198.25
                                        961664.0
     PAY AMT1
                    2100.0
                              5006.00
                                        873552.0
     PAY AMT2
                    2009.0
                              5000.00
                                       1684259.0
     PAY AMT3
                     1800.0
                              4505.00
                                        896040.0
     PAY_AMT4
                     1500.0
                              4013.25
                                        621000.0
     PAY_AMT5
                    1500.0
                              4031.50
                                        426529.0
     PAY_AMT6
                    1500.0
                              4000.00
                                         528666.0
      BillAverage
                    21052.0
                              57104.25
                                        877314.0
      PayAverage
                     2397.5
                               5584.00
                                         627344.0
[12]: print(data.columns)
     Index(['ID', 'LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PAY_O',
            'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'BILL_AMT1', 'BILL_AMT2',
            'BILL_AMT3', 'BILL_AMT4', 'BILL_AMT5', 'BILL_AMT6', 'PAY_AMT1',
            'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6',
            'default.payment.next.month', 'BillAverage', 'PayAverage'],
           dtype='object')
[13]: # Removing ID column and Bill Amount columns based on high correlation with
      ⇔variable BillAverage
      data = data.drop(columns=['ID', 'BILL AMT1', 'BILL AMT2', 'BILL AMT3', '
       print(data.columns)
```

```
'PAY_3', 'PAY_4', 'PAY_5', 'PAY_6', 'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3',
             'PAY_AMT4', 'PAY_AMT5', 'PAY_AMT6', 'default.payment.next.month',
             'BillAverage', 'PayAverage'],
           dtype='object')
[14]: # Applying One-Hot Encoding technique to categorical variables Sex, Education
       ⇔and Marriage
      from sklearn.preprocessing import OneHotEncoder
      cat_variables = ['SEX', 'EDUCATION', 'MARRIAGE']
      encoder = OneHotEncoder(sparse_output=False)
      one hot encoded = encoder.fit transform(data[cat variables])
      one_hot_df = pd.DataFrame(one_hot_encoded, columns=encoder.
       →get_feature_names_out(cat_variables))
      encoded_df = pd.concat([data, one_hot_df], axis=1)
      encoded_df = encoded_df.drop(['SEX', 'EDUCATION', 'MARRIAGE'], axis=1)
      print(f"Encoded dataframe: \n{encoded df}")
     Encoded dataframe:
            LIMIT_BAL AGE PAY_O PAY_2 PAY_3 PAY_4 PAY_5 PAY_6 PAY_AMT1 \
     0
                 20000
                         24
                                 2
                                        2
                                               -1
                                                      -1
                                                             -2
                                                                    -2
                                                                                0
                                        2
                                                                     2
     1
                120000
                         26
                                -1
                                                0
                                                       0
                                                              0
                                                                                0
     2
                                        0
                                                0
                                                              0
                                                                     0
                 90000
                         34
                                 0
                                                       0
                                                                             1518
     3
                 50000
                         37
                                 0
                                        0
                                                0
                                                       0
                                                              0
                                                                     0
                                                                             2000
     4
                 50000
                         57
                                        0
                                                       0
                                                              0
                                -1
                                               -1
                                                                     0
                                                                             2000
                         •••
     29995
                                        0
                                                0
                                                                     0
                                                                             8500
               220000
                         39
                                 0
                                                       0
                                                              0
               150000
     29996
                         43
                                -1
                                       -1
                                               -1
                                                      -1
                                                              0
                                                                     0
                                                                             1837
     29997
                 30000
                         37
                                 4
                                        3
                                                2
                                                      -1
                                                              0
                                                                     0
                                                                                0
     29998
                 80000
                         41
                                 1
                                       -1
                                                0
                                                       0
                                                              0
                                                                            85900
                                                                     -1
                 50000
                                 0
                                        0
                                                              0
                                                                     0
                                                                             2078
     29999
                         46
                                             SEX_2 EDUCATION_1
            PAY_AMT2 ... PayAverage SEX_1
                                                                  EDUCATION_2 \
     0
                  689
                               115.0
                                        0.0
                                                1.0
                                                             0.0
                                                                           1.0
                 1000 ...
                               833.0
                                        0.0
                                                1.0
                                                             0.0
     1
                                                                           1.0
     2
                 1500 ...
                              1836.0
                                        0.0
                                                1.0
                                                             0.0
                                                                           1.0
     3
                 2019 ...
                              1398.0
                                        0.0
                                                1.0
                                                             0.0
                                                                           1.0
     4
                                                0.0
               36681 ...
                              9842.0
                                        1.0
                                                             0.0
                                                                           1.0
                                        1.0
                                                0.0
                                                                           0.0
     29995
               20000 ...
                              7092.0
                                                             0.0
                 3526 ...
     29996
                              2415.0
                                        1.0
                                                0.0
                                                             0.0
                                                                           0.0
     29997
                   0 ...
                              5217.0
                                        1.0
                                                0.0
                                                             0.0
                                                                           1.0
```

Index(['LIMIT_BAL', 'SEX', 'EDUCATION', 'MARRIAGE', 'AGE', 'PAY_0', 'PAY_2',

```
0.0
                                                             0.0
     29998
                3409 ...
                             24530.0
                                        1.0
                                                                          0.0
     29999
                1800 ...
                              1385.0
                                        1.0
                                                0.0
                                                             0.0
                                                                          1.0
            EDUCATION_3 EDUCATION_4
                                       MARRIAGE_1 MARRIAGE_2 MARRIAGE_3
     0
                     0.0
                                  0.0
                                               1.0
                                                           0.0
                                                                       0.0
                                                           1.0
     1
                     0.0
                                  0.0
                                              0.0
                                                                       0.0
     2
                     0.0
                                  0.0
                                              0.0
                                                           1.0
                                                                       0.0
                                  0.0
     3
                     0.0
                                               1.0
                                                           0.0
                                                                        0.0
     4
                     0.0
                                  0.0
                                               1.0
                                                           0.0
                                                                       0.0
                                               1.0
     29995
                     1.0
                                  0.0
                                                           0.0
                                                                       0.0
     29996
                     1.0
                                  0.0
                                              0.0
                                                           1.0
                                                                       0.0
                     0.0
                                  0.0
     29997
                                              0.0
                                                           1.0
                                                                       0.0
                                  0.0
     29998
                     1.0
                                               1.0
                                                           0.0
                                                                       0.0
                     0.0
                                  0.0
                                                           0.0
                                                                       0.0
     29999
                                               1.0
     [30000 rows x 26 columns]
[15]: print(encoded df.columns)
     Index(['LIMIT_BAL', 'AGE', 'PAY_0', 'PAY_2', 'PAY_3', 'PAY_4', 'PAY_5',
             'PAY_6', 'PAY_AMT1', 'PAY_AMT2', 'PAY_AMT3', 'PAY_AMT4', 'PAY_AMT5',
             'PAY_AMT6', 'default.payment.next.month', 'BillAverage', 'PayAverage',
             'SEX_1', 'SEX_2', 'EDUCATION_1', 'EDUCATION_2', 'EDUCATION_3',
             'EDUCATION 4', 'MARRIAGE 1', 'MARRIAGE 2', 'MARRIAGE 3'],
           dtype='object')
[16]: #Normalizing the numeric attributes
      from sklearn.preprocessing import MinMaxScaler
      # Initializing the scaler
      scaler = MinMaxScaler()
      # Fitting and transforming the data
      normalized_data = scaler.fit_transform(encoded_df)
      normalized df = pd.DataFrame(scaler.transform(encoded_df), index=encoded_df.
       →index, columns=encoded_df.columns)
[17]: # Validating minimum and maximum values are set as 0.00 and 1.00 respectively
      pd.DataFrame(normalized_df).describe()
「17]:
                LIMIT BAL
                                     AGE
                                                PAY 0
                                                               PAY 2
                                                                             PAY 3 \
             30000.000000
                           30000.000000
                                          30000.00000
                                                       30000.000000
                                                                      30000.000000
      count
      mean
                 0.159075
                                0.249750
                                              0.19833
                                                            0.186623
                                                                          0.183380
      std
                 0.131058
                                0.158929
                                              0.11238
                                                            0.119719
                                                                          0.119687
      min
                 0.000000
                                0.000000
                                              0.00000
                                                            0.000000
                                                                          0.000000
      25%
                 0.040404
                                0.120690
                                              0.10000
                                                            0.100000
                                                                          0.100000
```

50%	0.131313	0.224138	0.20000	0.200000	0.200000	
75%	0.232323	0.344828	0.20000	0.200000	0.200000	
max	1.000000	1.000000	1.00000	1.000000	1.000000	
	PAY_4	PAY_5	PAY_6	PAY_AMT1	PAY_AMT2	\
count	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	·
mean	0.177933	0.173380	0.170890	0.006483	0.003516	
std	0.116914	0.113319	0.114999	0.018961	0.013680	
min	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	0.100000	0.100000	0.100000	0.001145	0.000495	
50%	0.200000	0.200000	0.200000	0.002404	0.001193	
75%	0.200000	0.200000	0.200000	0.005731	0.002969	
max	1.000000	1.000000	1.000000	1.000000	1.000000	
	PayAvera	ge SEX	_1 SEX	_2 EDUCATION	_1 \	
count	30000.0000	000 30000.0000	00 30000.0000	00 30000.0000	00	
mean	0.0084	0.3962	67 0.6037	33 0.3528	33	
std	0.0161	0.4891	29 0.4891	29 0.4778	59	
min	0.0000	0.0000	0.0000	0.0000	00	
25%	0.0017	74 0.0000	0.0000	0.0000	00	
50%	0.0038	0.0000	00 1.0000	0.0000	00	
75%	0.0089	1.0000	00 1.0000	1.0000	00	
max	1.0000	1.0000	00 1.0000	1.0000	00	
man	1.0000	1.0000	1.0000	1.0000		
man						
max	EDUCATION_2	EDUCATION_3	EDUCATION_4	MARRIAGE_1	MARRIAGE_2	\
count	EDUCATION_2 30000.000000	EDUCATION_3	EDUCATION_4 30000.000000	MARRIAGE_1 30000.000000	MARRIAGE_2 30000.000000	\
count mean	EDUCATION_2 30000.000000 0.467667	EDUCATION_3 30000.000000 0.163900	EDUCATION_4 30000.000000 0.015600	MARRIAGE_1 30000.000000 0.455300	MARRIAGE_2 30000.000000 0.532133	\
count mean std	EDUCATION_2 30000.000000 0.467667 0.498962	EDUCATION_3 30000.000000 0.163900 0.370191	EDUCATION_4 30000.000000 0.015600 0.123924	MARRIAGE_1 30000.000000 0.455300 0.498006	MARRIAGE_2 30000.000000 0.532133 0.498975	\
count mean std min	EDUCATION_2 30000.000000 0.467667 0.498962 0.000000	EDUCATION_3 30000.000000 0.163900 0.370191 0.000000	EDUCATION_4 30000.000000 0.015600 0.123924 0.000000	MARRIAGE_1 30000.000000 0.455300 0.498006 0.000000	MARRIAGE_2 30000.000000 0.532133 0.498975 0.000000	\
count mean std min 25%	EDUCATION_2 30000.000000 0.467667 0.498962 0.000000 0.000000	EDUCATION_3 30000.000000 0.163900 0.370191 0.000000 0.000000	EDUCATION_4 30000.000000 0.015600 0.123924 0.000000 0.000000	MARRIAGE_1 30000.000000 0.455300 0.498006 0.000000 0.000000	MARRIAGE_2 30000.000000 0.532133 0.498975 0.000000 0.000000	\
count mean std min 25%	EDUCATION_2 30000.000000 0.467667 0.498962 0.000000 0.000000	EDUCATION_3 30000.000000 0.163900 0.370191 0.000000 0.000000	EDUCATION_4 30000.000000 0.015600 0.123924 0.000000 0.0000000	MARRIAGE_1 30000.000000 0.455300 0.498006 0.000000 0.000000	MARRIAGE_2 30000.000000 0.532133 0.498975 0.000000 0.000000	\
count mean std min 25%	EDUCATION_2 30000.000000 0.467667 0.498962 0.000000 0.000000 0.0000000 1.0000000	EDUCATION_3 30000.000000 0.163900 0.370191 0.000000 0.000000 0.000000	EDUCATION_4 30000.000000 0.015600 0.123924 0.000000 0.000000 0.000000	MARRIAGE_1 30000.000000 0.455300 0.498006 0.000000 0.000000 1.0000000	MARRIAGE_2 30000.000000 0.532133 0.498975 0.000000 0.000000 1.000000	\
count mean std min 25%	EDUCATION_2 30000.000000 0.467667 0.498962 0.000000 0.000000	EDUCATION_3 30000.000000 0.163900 0.370191 0.000000 0.000000	EDUCATION_4 30000.000000 0.015600 0.123924 0.000000 0.0000000	MARRIAGE_1 30000.000000 0.455300 0.498006 0.000000 0.000000	MARRIAGE_2 30000.000000 0.532133 0.498975 0.000000 0.000000	\
count mean std min 25% 50% 75%	EDUCATION_2 30000.000000 0.467667 0.498962 0.000000 0.000000 1.000000 1.000000	EDUCATION_3 30000.000000 0.163900 0.370191 0.000000 0.000000 0.000000	EDUCATION_4 30000.000000 0.015600 0.123924 0.000000 0.000000 0.000000	MARRIAGE_1 30000.000000 0.455300 0.498006 0.000000 0.000000 1.0000000	MARRIAGE_2 30000.000000 0.532133 0.498975 0.000000 0.000000 1.000000	
count mean std min 25% 50% 75% max	EDUCATION_2 30000.000000 0.467667 0.498962 0.000000 0.000000 1.000000 1.000000 MARRIAGE_3	EDUCATION_3 30000.000000 0.163900 0.370191 0.000000 0.000000 0.000000	EDUCATION_4 30000.000000 0.015600 0.123924 0.000000 0.000000 0.000000	MARRIAGE_1 30000.000000 0.455300 0.498006 0.000000 0.000000 1.0000000	MARRIAGE_2 30000.000000 0.532133 0.498975 0.000000 0.000000 1.000000	
count mean std min 25% 50% 75% max	EDUCATION_2 30000.000000 0.467667 0.498962 0.000000 0.000000 1.000000 1.000000 MARRIAGE_3 30000.000000	EDUCATION_3 30000.000000 0.163900 0.370191 0.000000 0.000000 0.000000	EDUCATION_4 30000.000000 0.015600 0.123924 0.000000 0.000000 0.000000	MARRIAGE_1 30000.000000 0.455300 0.498006 0.000000 0.000000 1.0000000	MARRIAGE_2 30000.000000 0.532133 0.498975 0.000000 0.000000 1.000000	
count mean std min 25% 50% 75% max count mean	EDUCATION_2 30000.000000 0.467667 0.498962 0.000000 0.000000 1.000000 1.000000 MARRIAGE_3 30000.000000 0.012567	EDUCATION_3 30000.000000 0.163900 0.370191 0.000000 0.000000 0.000000	EDUCATION_4 30000.000000 0.015600 0.123924 0.000000 0.000000 0.000000	MARRIAGE_1 30000.000000 0.455300 0.498006 0.000000 0.000000 1.0000000	MARRIAGE_2 30000.000000 0.532133 0.498975 0.000000 0.000000 1.000000	
count mean std min 25% 50% 75% max count mean std	EDUCATION_2 30000.000000 0.467667 0.498962 0.000000 0.000000 1.000000 1.000000 MARRIAGE_3 30000.000000 0.012567 0.111396	EDUCATION_3 30000.000000 0.163900 0.370191 0.000000 0.000000 0.000000	EDUCATION_4 30000.000000 0.015600 0.123924 0.000000 0.000000 0.000000	MARRIAGE_1 30000.000000 0.455300 0.498006 0.000000 0.000000 1.0000000	MARRIAGE_2 30000.000000 0.532133 0.498975 0.000000 0.000000 1.000000	
count mean std min 25% 50% 75% max count mean std min	EDUCATION_2 30000.000000 0.467667 0.498962 0.000000 0.000000 1.000000 1.000000 MARRIAGE_3 30000.000000 0.012567 0.111396 0.000000	EDUCATION_3 30000.000000 0.163900 0.370191 0.000000 0.000000 0.000000	EDUCATION_4 30000.000000 0.015600 0.123924 0.000000 0.000000 0.000000	MARRIAGE_1 30000.000000 0.455300 0.498006 0.000000 0.000000 1.0000000	MARRIAGE_2 30000.000000 0.532133 0.498975 0.000000 0.000000 1.000000	
count mean std min 25% 50% 75% max count mean std min 25%	EDUCATION_2 30000.000000 0.467667 0.498962 0.000000 0.000000 1.000000 1.000000 MARRIAGE_3 30000.000000 0.012567 0.111396 0.000000	EDUCATION_3 30000.000000 0.163900 0.370191 0.000000 0.000000 0.000000	EDUCATION_4 30000.000000 0.015600 0.123924 0.000000 0.000000 0.000000	MARRIAGE_1 30000.000000 0.455300 0.498006 0.000000 0.000000 1.0000000	MARRIAGE_2 30000.000000 0.532133 0.498975 0.000000 0.000000 1.000000	
count mean std min 25% 50% 75% max count mean std min 25% 50%	EDUCATION_2 30000.000000 0.467667 0.498962 0.000000 0.000000 1.000000 1.000000 MARRIAGE_3 30000.000000 0.012567 0.111396 0.000000 0.000000 0.000000	EDUCATION_3 30000.000000 0.163900 0.370191 0.000000 0.000000 0.000000	EDUCATION_4 30000.000000 0.015600 0.123924 0.000000 0.000000 0.000000	MARRIAGE_1 30000.000000 0.455300 0.498006 0.000000 0.000000 1.0000000	MARRIAGE_2 30000.000000 0.532133 0.498975 0.000000 0.000000 1.000000	
count mean std min 25% 50% 75% max count mean std min 25%	EDUCATION_2 30000.000000 0.467667 0.498962 0.000000 0.000000 1.000000 1.000000 MARRIAGE_3 30000.000000 0.012567 0.111396 0.000000	EDUCATION_3 30000.000000 0.163900 0.370191 0.000000 0.000000 0.000000	EDUCATION_4 30000.000000 0.015600 0.123924 0.000000 0.000000 0.000000	MARRIAGE_1 30000.000000 0.455300 0.498006 0.000000 0.000000 1.0000000	MARRIAGE_2 30000.000000 0.532133 0.498975 0.000000 0.000000 1.000000	

[8 rows x 26 columns]

```
[19]: # Dataset partition
     X = pd.DataFrame(normalized_df).drop('default.payment.next.month', axis=1,__
       →inplace=False)
     X.head()
[19]:
                        AGE PAY_0 PAY_2 PAY_3 PAY_4 PAY_5 PAY_6 PAY_AMT1 \
        LIMIT_BAL
         0.010101 0.051724
                               0.4
                                      0.4
                                             0.1
                                                    0.1
                                                           0.0
                                                                  0.0 0.000000
         0.111111 0.086207
                               0.1
                                      0.4
                                             0.2
                                                    0.2
                                                           0.2
     1
                                                                  0.4 0.000000
                                      0.2
                                                    0.2
         0.080808 0.224138
                               0.2
                                             0.2
                                                           0.2
                                                                  0.2 0.001738
     3 0.040404 0.275862
                               0.2
                                      0.2
                                             0.2
                                                    0.2
                                                           0.2
                                                                  0.2 0.002290
     4 0.040404 0.620690
                               0.1
                                             0.1
                                                    0.2
                                                           0.2
                                      0.2
                                                                  0.2 0.002290
        PAY_AMT2 ... PayAverage SEX_1 SEX_2 EDUCATION_1 EDUCATION_2 \
     0 0.000409 ...
                       0.000183
                                   0.0
                                          1.0
                                                       0.0
                                                                    1.0
     1 0.000594 ...
                       0.001328
                                   0.0
                                          1.0
                                                       0.0
                                                                    1.0
                                                       0.0
     2 0.000891 ...
                       0.002927
                                   0.0
                                          1.0
                                                                    1.0
     3 0.001199 ...
                                   0.0
                                          1.0
                                                       0.0
                       0.002228
                                                                    1.0
     4 0.021779 ...
                       0.015688
                                   1.0
                                          0.0
                                                       0.0
                                                                    1.0
        EDUCATION_3 EDUCATION_4 MARRIAGE_1 MARRIAGE_2 MARRIAGE_3
                                         1.0
                                                     0.0
     0
                0.0
                             0.0
                                                                 0.0
     1
                0.0
                             0.0
                                         0.0
                                                     1.0
                                                                 0.0
     2
                0.0
                             0.0
                                         0.0
                                                     1.0
                                                                 0.0
     3
                0.0
                             0.0
                                         1.0
                                                     0.0
                                                                 0.0
     4
                0.0
                             0.0
                                         1.0
                                                     0.0
                                                                 0.0
     [5 rows x 25 columns]
[20]: y = data['default.payment.next.month']
[21]: from sklearn.model_selection import train_test_split
      # Splitting data into training and testing sets: training set 70%, test set 30%
     X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,_
       ⇒stratify=y, random_state=42)
 []: print(X_train.shape, X_test.shape)
     (21000, 25) (9000, 25)
[22]: print("Train->")
     print(y_train.value_counts(normalize=True))
     print("Test->")
     print(y_test.value_counts(normalize=True))
     Train->
     default.payment.next.month
          0.77881
```

```
0.22119
     Name: proportion, dtype: float64
     Test->
     default.payment.next.month
          0.778778
          0.221222
     Name: proportion, dtype: float64
[23]: from collections import Counter
      # summarizing class distribution before applying SMOTE
      print(Counter(y_train))
     Counter({0: 16355, 1: 4645})
[24]: from imblearn.over_sampling import SMOTE
      # Applying SMOTE to transform the dataset
      oversample = SMOTE()
      #Fitting and applying the transform
      X_train, y_train = oversample.fit_resample(X_train, y_train)
      # summarizing the new class distribution after applying SMOTE
      print(Counter(y_train))
     Counter({0: 16355, 1: 16355})
[25]: # Starting the timer to measure the time the Logistic Regression model takes to
       ⇒be trained and tested
      import time
      # Start the timer
      start_time_log_reg = time.time()
[26]: from sklearn.linear model import LogisticRegression
      from sklearn.model_selection import cross_val_score
      # Initializing the logistic regression model as baseline model
      log_reg = LogisticRegression()
[27]: # Performing stratified cross-validation for Logistic Regression on the
      ⇔training set
      from sklearn.model_selection import StratifiedKFold, cross_val_score
      sk folds = StratifiedKFold(n_splits = 5, shuffle=True, random_state=42)
      scores = cross_val_score(log reg, X_train, y_train, cv = sk_folds)
```

```
print("Cross Validation Scores: ", scores)
      print("Average CV Score: ", scores.mean())
      print("Number of CV Scores used in Average: ", len(scores))
     /usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_logistic.py:465:
     ConvergenceWarning: lbfgs failed to converge (status=1):
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or scale the data as shown in:
         https://scikit-learn.org/stable/modules/preprocessing.html
     Please also refer to the documentation for alternative solver options:
         https://scikit-learn.org/stable/modules/linear_model.html#logistic-
     regression
       n_iter_i = _check_optimize_result(
     Cross Validation Scores: [0.67471721 0.67823296 0.6718129 0.67853867
     0.674870071
     Average CV Score: 0.6756343625802506
     Number of CV Scores used in Average: 5
[28]: # Training the logistic regression model on the full training set
      log_reg.fit(X_train, y_train)
[28]: LogisticRegression()
[29]: # Making predictions with Logistic Regression on the test set
      y_pred = log_reg.predict(X_test)
[30]: # End the timer for Logistic Regression
      end_time_log_reg = time.time()
      # Calculating the time for Logistic Regression model
      elapsed_time = end_time_log_reg - start_time_log_reg
      print(f"Time Logistic Regression model takes to be trained and tested:⊔
       →{elapsed_time:.2f} seconds")
     Time Logistic Regression model takes to be trained and tested: 22.10 seconds
[32]: from sklearn.metrics import confusion_matrix, accuracy_score, recall_score,
       →precision_score, f1_score
      # Calculating evaluation metrics for Logistic Regression
      accuracy = accuracy_score(y_test, y_pred)
      precision = precision_score(y_test, y_pred)
      recall = recall_score(y_test, y_pred)
      f1 = f1_score(y_test, y_pred)
      conf_matrix = pd.DataFrame(confusion_matrix(y_test, y_pred))
```

```
print("Confusion Matrix Logistic Regression before hyperparameter tuning:\n", u
 print("Accuracy Logistic Regression:", accuracy)
print("Precision Logistic Regression:", precision)
print("Recall Logistic Regression:", recall)
print("F1 score Logistic Regression:", f1)
```

Confusion Matrix Logistic Regression before hyperparameter tuning:

0 0 4784 2225 709 1282

Accuracy Logistic Regression: 0.674

Precision Logistic Regression: 0.36555460507556314 Recall Logistic Regression: 0.6438975389251632 F1 score Logistic Regression: 0.4663514005092761

```
[33]: # Printing precision, recall, f1-score and accuracy from the perspective of
      ⇔each of the class (0 and 1)
     from sklearn.metrics import classification_report
     from sklearn import metrics
     print("Classification Report for Logistic Regression before hyperparameter ⊔
      print(classification_report(y_test, y_pred))
```

Classification Report for Logistic Regression before hyperparameter tuning:

	precision	recall	f1-score	support
0	0.87	0.68	0.77	7009
1	0.37	0.64	0.47	1991
accuracy			0.67	9000
macro avg	0.62	0.66	0.62	9000
weighted avg	0.76	0.67	0.70	9000

```
[34]: tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel()
      print("True Negatives_LG (TN):", tn)
      print("False Positives_LG (FP):", fp)
      print("False Negatives_LG (FN):", fn)
      print("True Positives_LG (TP):", tp)
```

True Negatives_LG (TN): 4784 False Positives_LG (FP): 2225 False Negatives_LG (FN): 709 True Positives_LG (TP): 1282

```
[35]: from sklearn.metrics import roc_auc_score, roc_curve
      from matplotlib import pyplot
      import matplotlib.pyplot as plt
      # Calculating AUC-ROC
      auc = roc_auc_score(y_test, y_pred)
      print(f'AUC-ROC for Logistic Regression before hyperparameter tuning: {auc:.
       ⇔2f}')
      # Plotting the ROC Curve
      fpr, tpr, _ = roc_curve(y_test, y_pred)
      plt.figure()
      plt.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {auc:.2f})')
      plt.plot([0, 1], [0, 1], color='gray', lw=2, linestyle='--')
      plt.xlim([0.0, 1.0])
     plt.ylim([0.0, 1.0])
      plt.xlabel('False Positive Rate')
      plt.ylabel('True Positive Rate')
      plt.title('Logistic Regression Receiver Operating Characteristic (ROC) Curve')
      plt.legend(loc="lower right")
      plt.show()
      from sklearn.metrics import roc_curve, auc
      false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)
      roc_auc = auc(false_positive_rate, true_positive_rate)
      roc_auc
```

AUC-ROC for Logistic Regression before hyperparameter tuning: 0.66

[35]: np.float64(0.6632242723873926)

Fitting 3 folds for each of 10 candidates, totalling 30 fits

```
[36]: RandomizedSearchCV(cv=3, estimator=LogisticRegression(), n_jobs=-1, param_distributions={'C': [0.001, 0.01, 0.1, 1, 10, 100], 'penalty': ['11', '12'],
```

```
'solver': ['liblinear']},
                         random_state=42, verbose=2)
[37]: print("Best Hyperparameters for Logistic Regression:", random_search.
       ⇔best_params_)
      print("Best Cross-Validation Score:", random search.best score )
     Best Hyperparameters for Logistic Regression: {'solver': 'liblinear', 'penalty':
     '12', 'C': 1}
     Best Cross-Validation Score: 0.6749314140274337
[38]: best_log_reg = LogisticRegression(solver= 'liblinear', penalty= '12', C= 1)
      best log reg.fit(X train, y train)
[38]: LogisticRegression(C=1, solver='liblinear')
[39]: y_pred = best_log_reg.predict(X_test)
      accuracy = accuracy_score(y_test, y_pred)
      print(f"Test Accuracy: {accuracy:.4f}")
      print("Classification Report for Logistic Regression after hyperparameter ⊔
       →tuning:\n", classification_report(y_test, y_pred))
      print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
      auc = roc_auc_score(y_test, y_pred)
      print(f'AUC-ROC for Logistic Regression after hyperparameter tuning: {auc:.2f}')
     Test Accuracy: 0.6746
     Classification Report for Logistic Regression after hyperparameter tuning:
                    precision
                                 recall f1-score
                                                     support
                0
                        0.87
                                  0.68
                                            0.77
                                                       7009
                1
                        0.37
                                  0.64
                                            0.47
                                                       1991
                                            0.67
                                                       9000
         accuracy
                        0.62
                                            0.62
                                                       9000
        macro avg
                                  0.66
     weighted avg
                        0.76
                                  0.67
                                            0.70
                                                       9000
     Confusion Matrix:
      [[4789 2220]
      [ 709 1282]]
     AUC-ROC for Logistic Regression after hyperparameter tuning: 0.66
[40]: # Calculating AUC-ROC
      auc = roc_auc_score(y_test, y_pred)
      print(f'AUC-ROC for Logistic Regression after hyperparameter tuning: {auc:.2f}')
```

```
# Plotting the ROC Curve
fpr, tpr, _ = roc_curve(y_test, y_pred)
plt.figure()
plt.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {auc:.2f})')
plt.plot([0, 1], [0, 1], color='gray', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Logistic Regression Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
from sklearn.metrics import roc_curve, auc
false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)
roc_auc = auc(false_positive_rate, true_positive_rate)
roc_auc
```

AUC-ROC for Logistic Regression after hyperparameter tuning: 0.66

[40]: np.float64(0.6635809566504829)

```
[41]: # Building feature importance for Logistic Regression
      importance = best_log_reg.coef_[0]
      feature names = X.columns
      feature imp df = pd.DataFrame({'Feature': feature names, 'Importance':
       →importance}).sort_values('Importance', ascending=False)
      print(feature_imp_df)
      # Plotting feature importance
      features = X.columns
      plt.figure(figsize=(12, 6))
      sns.barplot(x=features, y=importance)
      plt.title('Feature Importance for Logistic Regression', fontsize=14)
      plt.xlabel('Features', fontsize=12)
      plt.ylabel('Importance', fontsize=12)
      plt.xticks(rotation=90)
      plt.savefig("feature_importance_tuned.png", transparent=True)
      plt.show()
```

```
Feature Importance
2
         PAY 0
                  5.513111
4
         PAY 3
                  0.683906
         PAY_2
                  0.573585
5
                  0.391358
         PAY_4
7
         PAY_6
                  0.281144
18 EDUCATION_1
                  0.209200
1
           AGE
                  0.180915
19 EDUCATION 2
                  0.080706
20 EDUCATION_3
                  0.017270
6
         PAY 5
                -0.023273
22
    MARRIAGE_1
                -0.136642
24
    MARRIAGE_3
                -0.180589
16
         SEX_1
                -0.281881
23
    MARRIAGE_2
                -0.361449
17
         SEX 2
                -0.396799
12
      PAY AMT5
                -0.914096
21 EDUCATION 4
                 -0.985856
0
     LIMIT_BAL
                -1.258508
      PAY_AMT3
                -1.532369
10
14 BillAverage
                -1.618102
13
      PAY_AMT6
                -2.111717
11
      PAY_AMT4
                -3.130799
9
      PAY AMT2
                -3.369230
15
    PayAverage
                -3.739289
8
      PAY_AMT1
                -4.094235
```



```
import time
# Start the timer
start_time_rf_classifier = time.time()

[43]: from sklearn.ensemble import RandomForestClassifier
# Initializing the Random Forest classifier
rf_classifier = RandomForestClassifier()

[44]: # Performing stratified cross-validation for Random Forest on the training set
sk_folds = StratifiedKFold(n_splits = 5, shuffle=True, random_state=42)
scores = cross_val_score(rf_classifier, X_train, y_train, cv = sk_folds)
print("Cross Validation Scores: ", scores)
print("Average CV Score: ", scores.mean())
print("Number of CV Scores used in Average: ", len(scores))
```

Cross Validation Scores: [0.86105167 0.86105167 0.84974014 0.86105167

[42]: # Starting the timer to measure the time the Random Forest model takes to be

⇔trained and tested

0.85661877]

Average CV Score: 0.8579027820238461 Number of CV Scores used in Average: 5

```
[45]: # Training the Random Forest classifier
      rf_classifier.fit(X_train, y_train)
[45]: RandomForestClassifier()
[46]: # Making predictions with Random Forest classifier on the test set
      y_pred = rf_classifier.predict(X_test)
 []: # End the timer for Random Forest
      end_time_rf_classifier = time.time()
      # Calculating the time for Random Forest model
      elapsed_time = end_time_rf_classifier - start_time_rf_classifier
      print(f"Time Random Forest model takes to be trained and tested: {elapsed_time:.
       ⇒2f} seconds")
     Time Random Forest model takes to be trained and tested: 39.30 seconds
[47]: # Calculating evaluation metrics for Random Forest
      accuracy = accuracy_score(y_test, y_pred)
      precision = precision_score(y_test, y_pred)
      recall = recall_score(y_test, y_pred)
      f1 = f1_score(y_test, y_pred)
      conf_matrix = pd.DataFrame(confusion_matrix(y_test, y_pred))
      print("Confusion Matrix Random Forest before hyperparameter tuning:\n", u
       print("Accuracy Random Forest:", accuracy)
      print("Precision Random Forest:", precision)
      print("Recall Random Forest:", recall)
      print("F1 score Random Forest:", f1)
     Confusion Matrix Random Forest before hyperparameter tuning:
            Λ
                 1
     0 6278 731
     1 1094 897
     Accuracy Random Forest: 0.79722222222223
     Precision Random Forest: 0.550982800982801
     Recall Random Forest: 0.45052737317930686
     F1 score Random Forest: 0.4957170489085383
[48]: |# Printing precision, recall, f1-score and accuracy from the perspective of
      ⇔each of the class (0 and 1)
      from sklearn.metrics import classification_report
      from sklearn import metrics
      print('Classification Report for Random Forest before hyperparameter tuning:')
```

```
print(classification_report(y_test, y_pred))
     Classification Report for Random Forest before hyperparameter tuning:
                                recall f1-score
                   precision
                                                    support
                0
                        0.85
                                   0.90
                                             0.87
                                                       7009
                1
                        0.55
                                   0.45
                                             0.50
                                                       1991
         accuracy
                                             0.80
                                                       9000
                                                       9000
                        0.70
                                   0.67
                                             0.68
        macro avg
                                             0.79
                                                       9000
     weighted avg
                        0.79
                                   0.80
[49]: tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel()
      print("True Negatives_LG (TN):", tn)
      print("False Positives LG (FP):", fp)
      print("False Negatives_LG (FN):", fn)
      print("True Positives_LG (TP):", tp)
     True Negatives LG (TN): 6278
     False Positives LG (FP): 731
     False Negatives_LG (FN): 1094
     True Positives_LG (TP): 897
[50]: # Calculating AUC-ROC for Random Forest
      auc = roc_auc_score(y_test, y_pred)
      print(f'AUC-ROC for Random Forest before hyperparameter tuning: {auc:.2f}')
      # Plotting the ROC Curve
      fpr, tpr, _ = roc_curve(y_test, y_pred)
      plt.figure()
      plt.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {auc:.2f})')
      plt.plot([0, 1], [0, 1], color='gray', lw=2, linestyle='--')
      plt.xlim([0.0, 1.0])
      plt.ylim([0.0, 1.0])
      plt.xlabel('False Positive Rate')
      plt.ylabel('True Positive Rate')
      plt.title('Random Forest Receiver Operating Characteristic (ROC) Curve')
      plt.legend(loc="lower right")
      plt.show()
      from sklearn.metrics import roc_curve, auc
      false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)
      roc_auc = auc(false_positive_rate, true_positive_rate)
      roc auc
```

AUC-ROC for Random Forest before hyperparameter tuning: 0.67

[50]: np.float64(0.6731164473258499)

```
print("Best Hyperparameters:", random_search.best_params_)
     print("Best Cross-Validation Score:", random_search.best_score_)
     Fitting 3 folds for each of 5 candidates, totalling 15 fits
     Best Hyperparameters: {'n_estimators': 50, 'min_samples_split': 5,
     'min_samples_leaf': 1, 'max_features': 'log2', 'max_depth': None}
     Best Cross-Validation Score: 0.831796935546289
[52]: best_rf = RandomForestClassifier(n_estimators= 50, min_samples_split= 5,_
      best_rf.fit(X_train, y_train)
[52]: RandomForestClassifier(max_features='log2', min_samples_split=5,
                            n estimators=50)
[53]: y_pred = best_rf.predict(X_test)
     accuracy = accuracy_score(y_test, y_pred)
     print(f"Test Accuracy: {accuracy:.4f}")
     print("Classification Report for Random Forest after hyperparameter tuning:\n", __

¬classification_report(y_test, y_pred))
     print("Confusion Matrix:\n", confusion matrix(y test, y pred))
     auc = roc_auc_score(y_test, y_pred)
     print(f'AUC-ROC for Random Forest after hyperparameter tuning: {auc:.2f}')
     Test Accuracy: 0.7953
     Classification Report for Random Forest after hyperparameter tuning:
                                recall f1-score
                   precision
                                                  support
               0
                       0.85
                                 0.89
                                           0.87
                                                    7009
               1
                       0.54
                                 0.47
                                           0.50
                                                    1991
                                           0.80
                                                    9000
         accuracy
                       0.70
                                 0.68
                                           0.69
                                                    9000
        macro avg
                                           0.79
     weighted avg
                       0.79
                                 0.80
                                                    9000
     Confusion Matrix:
      [[6232 777]
      [1065 926]]
     AUC-ROC for Random Forest after hyperparameter tuning: 0.68
[54]: # Calculating AUC-ROC for Random Forest
     auc = roc_auc_score(y_test, y_pred)
     print(f'AUC-ROC for Random Forest after hyperparameter tuning: {auc:.2f}')
```

```
# Plotting the ROC Curve
fpr, tpr, _ = roc_curve(y_test, y_pred)
plt.figure()
plt.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {auc:.2f})')
plt.plot([0, 1], [0, 1], color='gray', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Random Forest Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
from sklearn.metrics import roc_curve, auc
false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)
roc_auc = auc(false_positive_rate, true_positive_rate)
roc_auc
```

AUC-ROC for Random Forest after hyperparameter tuning: 0.68

[54]: np.float64(0.6771177245815615)

```
Feature Importance
2
          PAY 0
                   0.142349
0
      LIMIT BAL
                   0.092095
1
            AGE
                   0.068333
14 BillAverage
                   0.065802
9
       PAY_AMT2
                   0.062079
    PayAverage
                   0.060097
15
8
       PAY_AMT1
                  0.056128
10
      PAY_AMT3
                   0.054445
13
       PAY_AMT6
                   0.054430
12
       PAY_AMT5
                   0.053185
11
       PAY_AMT4
                   0.050372
3
          PAY_2
                   0.045291
4
          PAY_3
                   0.040514
7
          PAY_6
                   0.032653
6
          PAY_5
                   0.030525
5
          PAY_4
                   0.029863
19 EDUCATION 2
                   0.009479
18 EDUCATION_1
                   0.008730
22
    MARRIAGE 1
                   0.008412
23
    MARRIAGE_2
                   0.008392
                   0.008192
          SEX_2
17
16
          SEX_1
                   0.007698
20 EDUCATION 3
                   0.007057
21 EDUCATION_4
                   0.002136
24
    MARRIAGE 3
                   0.001741
```



```
[57]: from sklearn.ensemble import GradientBoostingClassifier
# Initializing the Gradient Boosting Classifier
gb_clf = GradientBoostingClassifier()
```

Cross Validation Scores: [0.80755121 0.81228982 0.80051972 0.80923265

0.79914399]

Average CV Score: 0.8057474778355243 Number of CV Scores used in Average: 5

```
[59]: # Training the Gradient Boosting model
     gb_clf.fit(X_train, y_train)
[59]: GradientBoostingClassifier()
[60]: # Making predictions with Gradient Boosting classifier
     y_pred = gb_clf.predict(X_test)
[61]: # End the timer for Gradient Boosting
     end_time_gb_clf = time.time()
      # Calculating the time for Gradient Boosting model
     elapsed_time = end_time_gb_clf - start_time_gb_clf
     print(f"Time Gradient Boosting model takes to be trained and tested:⊔
       Time Gradient Boosting model takes to be trained and tested: 99.69 seconds
[62]: # Calculating evaluation metrics for Gradient Boosting
     accuracy = accuracy_score(y_test, y_pred)
     precision = precision_score(y_test, y_pred)
     recall = recall_score(y_test, y_pred)
     f1 = f1_score(y_test, y_pred)
     conf_matrix = pd.DataFrame(confusion_matrix(y_test, y_pred))
     print("Confusion Matrix Gradient Boosting before hyperparameter tuning:\n", __
       print("Accuracy Gradient Boosting:", accuracy)
     print("Precision Gradient Boosting:", precision)
     print("Recall Gradient Boosting:", recall)
     print("F1 score Gradient Boosting:", f1)
     Confusion Matrix Gradient Boosting before hyperparameter tuning:
           Λ
                1
     0 6259 750
     1 1040 951
     Accuracy Gradient Boosting: 0.8011111111111111
     Precision Gradient Boosting: 0.5590828924162258
     Recall Gradient Boosting: 0.4776494224008036
     F1 score Gradient Boosting: 0.5151679306608884
[63]: |# Printing precision, recall, f1-score and accuracy from the perspective of
      ⇔each of the class (0 and 1)
     from sklearn.metrics import classification_report
     from sklearn import metrics
```

```
print('Classification Report for Gradient Boosting before hyperparameter tuning:
 ' )
print(classification_report(y_test, y_pred))
```

support

Classification Report for Gradient Boosting before hyperparameter tuning: recall f1-score

	procession	rocarr	II DOOLO	Duppor
0	0.86	0.89	0.87	7009
1	0.56	0.48	0.52	1991
accuracy			0.80	9000
macro avg	0.71	0.69	0.70	9000
weighted avg	0.79	0.80	0.80	9000

precision

```
[64]: tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel()
      print("True Negatives_LG (TN):", tn)
      print("False Positives_LG (FP):", fp)
      print("False Negatives_LG (FN):", fn)
      print("True Positives LG (TP):", tp)
```

True Negatives_LG (TN): 6259 False Positives_LG (FP): 750 False Negatives_LG (FN): 1040 True Positives LG (TP): 951

```
[65]: # Calculating AUC-ROC
      auc = roc auc score(y test, y pred)
      print(f'AUC-ROC for Gradient Boosting before hyperparameter tuning: {auc:.2f}')
      # Plotting the ROC Curve
      fpr, tpr, _ = roc_curve(y_test, y_pred)
      plt.figure()
      plt.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {auc:.2f})')
      plt.plot([0, 1], [0, 1], color='gray', lw=2, linestyle='--')
      plt.xlim([0.0, 1.0])
      plt.ylim([0.0, 1.0])
      plt.xlabel('False Positive Rate')
      plt.ylabel('True Positive Rate')
      plt.title('Gradient Boosting Receiver Operating Characteristic (ROC) Curve')
      plt.legend(loc="lower right")
      plt.show()
      from sklearn.metrics import roc_curve, auc
      false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)
      roc_auc = auc(false_positive_rate, true_positive_rate)
      roc_auc
```


[65]: np.float64(0.6853220717368549)

```
# Printing the best parameters
      print("Best Hyperparameters:", random_search.best_params_)
      print("Best Cross-Validation Score:", random_search.best_score_)
      best_model_random = random_search.best_estimator_
     Fitting 3 folds for each of 3 candidates, totalling 9 fits
     Best Hyperparameters: {'n_estimators': 300, 'max_depth': 5, 'learning_rate':
     np.float64(0.08)}
     Best Cross-Validation Score: 0.8194804209251608
[67]: best_gb = GradientBoostingClassifier(n_estimators= 300, max_depth= 5,__
       →learning_rate= 0.08)
      best_gb.fit(X_train, y_train)
      y_pred = best_gb.predict(X_test)
      accuracy = accuracy_score(y_test, y_pred)
      print(f"Test Accuracy: {accuracy:.4f}")
      print("Classification Report for Gradient Boosting after hyperparameter tuning:

¬\n", classification_report(y_test, y_pred))
      print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
      auc = roc_auc_score(y_test, y_pred)
      print(f'AUC-ROC for Gradient Boosting after hyperparameter tuning: {auc:.2f}')
     Test Accuracy: 0.8113
     Classification Report for Gradient Boosting after hyperparameter tuning:
                    precision
                                 recall f1-score
                                                    support
                0
                        0.84
                                  0.93
                                            0.88
                                                      7009
                        0.61
                                  0.40
                                            0.48
                                                       1991
                                            0.81
                                                      9000
         accuracy
                                            0.68
                                                      9000
        macro avg
                        0.73
                                  0.66
                                            0.80
                                                      9000
     weighted avg
                        0.79
                                  0.81
     Confusion Matrix:
      [[6506 503]
      [1195 796]]
     AUC-ROC for Gradient Boosting after hyperparameter tuning: 0.66
[68]: # Calculating AUC-ROC
      auc = roc_auc_score(y_test, y_pred)
      print(f'AUC-ROC for Gradient Boosting after hyperparameter tuning: {auc:.2f}')
      # Plotting the ROC Curve
```

```
fpr, tpr, _ = roc_curve(y_test, y_pred)
plt.figure()
plt.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {auc:.2f})')
plt.plot([0, 1], [0, 1], color='gray', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Gradient Boosting Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()

from sklearn.metrics import roc_curve, auc
false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)
roc_auc = auc(false_positive_rate, true_positive_rate)
roc_auc
```

AUC-ROC for Gradient Boosting after hyperparameter tuning: 0.66

[68]: np.float64(0.6640171110989609)

```
[69]: import seaborn as sns
      #Feature Importances after Hyperparameter Tuning
      importances = best_gb.feature_importances_
      feature_names = X.columns
      feature_imp_df = pd.DataFrame({'Feature': feature_names, 'Importance':__
       →importances}).sort_values('Importance', ascending=False)
      print(feature_imp_df)
      features = X.columns
      plt.figure(figsize=(12, 6))
      sns.barplot(x=features, y=importances)
      plt.title('Feature Importance for Gradient Boosting', fontsize=14)
      plt.xlabel('Features', fontsize=12)
      plt.ylabel('Importance', fontsize=12)
      plt.xticks(rotation=90)
      plt.savefig("feature importance tuned.png", transparent=True)
      plt.show()
```

```
Feature Importance
2
                  0.383101
         PAY_0
0
     LIMIT_BAL
                  0.224334
1
           AGE
                  0.096891
7
         PAY_6
                  0.042047
4
         PAY_3
                  0.029737
15
    PayAverage
                  0.028561
14 BillAverage
                  0.028496
13
      PAY_AMT6
                  0.023523
5
         PAY_4
                  0.023244
6
         PAY_5
                  0.020635
8
      PAY_AMT1
                  0.020494
9
      PAY_AMT2
                  0.015146
12
      PAY_AMT5
                  0.014518
10
      PAY_AMT3
                  0.013896
11
      PAY_AMT4
                  0.012209
3
         PAY_2
                  0.011003
21 EDUCATION 4
                  0.003576
18 EDUCATION 1
                  0.001827
19 EDUCATION_2
                  0.001670
22
    MARRIAGE_1
                  0.001437
16
         SEX 1
                  0.001431
20 EDUCATION_3
                  0.000862
         SEX 2
17
                  0.000728
23
    MARRIAGE_2
                  0.000429
24
    MARRIAGE_3
                  0.000206
```


[]: #!apt-get install -y texlive-xetex texlive-fonts-recommended texlive-latex-extra #!apt-get install texlive texlive-latex-extra pandoc #!jupyter nbconvert --to pdf "/content/Big_Data_Analytics_Project_Data_
→ Transformation & Modeling_Mar16.ipynb"