

Logică Matematică și Computațională

Anul I, Semestrul I 2022/2023

Laurențiu Leuștean

Pagina web: http://cs.unibuc.ro/~lleustean/

PRELIMINARII

Fie A, B, T mulțimi a.î. $A, B \subseteq T$.

$$A \cup B = \{x \in T \mid x \in A \text{ sau } x \in B\}$$

$$A \cap B = \{x \in T \mid x \in A \text{ si } x \in B\}$$

$$A \setminus B = \{x \in T \mid x \in A \text{ si } x \notin B\}$$

$$C_T A = T \setminus A = \{x \in T \mid x \notin A\}$$

Notații: $\mathbb{N}=\{0,1,2,\ldots\}$ este mulțimea numerelor naturale; $\mathbb{N}^*=\mathbb{N}\setminus\{0\}$; \mathbb{Z} este mulțimea numerelor întregi; \mathbb{R} este mulțimea numerelor reale; \mathbb{Q} este mulțimea numerelor raționale.

Mulţimea părţilor lui T se notează 2^T sau $\mathcal{P}(T)$. Aşadar, $2^T = \mathcal{P}(T) = \{A \mid A \subseteq T\}$.

Notăm cu (a, b) perechea ordonată formată din a și b (care sunt componentele lui (a, b)).

Observații: dacă $a \neq b$, atunci $(a, b) \neq (b, a)$; $(a, b) \neq \{a, b\}$; (7,7) este o pereche ordonată validă; două perechi ordonate (a, b) și (c, d) sunt egale ddacă a = c și b = d.

Definiție

Produsul cartezian a două mulțimi A și B este definit astfel:

$$A \times B = \{(a, b) \mid a \in A \text{ si } b \in B\}$$

Exercițiu.

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

 $A \times (B \cap C) = (A \times B) \cap (A \times C)$

Fie A și B mulțimi și $f: A \rightarrow B$ o funcție.

Spunem că $f: A \to B$ este definită pe A cu valori în B, A se numește domeniul de definiție al funcției f și B se numește domeniul valorilor sau codomeniul lui f.

Fie $X \subseteq A$ și $Y \subseteq B$.

- ▶ $f(X) = \{f(x) \mid x \in X\}$ este imaginea directă a lui X prin f; f(A) este imaginea lui f.
- ▶ $f^{-1}(Y) = \{x \in A \mid f(x) \in Y\}$ este imaginea inversă a lui Y prin f.
- ▶ Fie $f|_X: X \to B$, $f|_X(x) = f(x)$ pentru orice $x \in X$. Funcția $f|_X$ este restricția lui f la X.

Mulţimea funcţiilor de la A la B se notează Fun(A, B) sau B^A .

Fie $f: A \rightarrow B$ o funcție.

- ▶ f este injectivă dacă pentru orice $x_1, x_2 \in A$, $x_1 \neq x_2$ implică $f(x_1) \neq f(x_2)$ (sau, echivalent, $f(x_1) = f(x_2)$ implică $x_1 = x_2$).
- ▶ f este surjectivă dacă pentru orice $y \in B$ există $x \in A$ a.î. f(x) = y (sau, echivalent, f(A) = B).
- ► f este bijectivă dacă f este injectivă și surjectivă.

Funcția identică a lui A: $1_A: A \to A$, $1_A(x) = x$.

Fie $f: A \to B$ și $g: B \to C$ două funcții. Compunerea lor $g \circ f$ este definită astfel:

$$g \circ f : A \to C$$
, $(g \circ f)(x) = g(f(x))$ pentru orice $x \in A$.

 $f:A \to B$ este inversabilă dacă există $g:B \to A$ astfel încât $g\circ f=1_A$ și $f\circ g=1_B$.

f este bijectivă ddacă f este inversabilă.

Observație

- (i) Pentru orice mulțime A, $Fun(\emptyset, A)$ are un singur element, funcția vidă.
- (ii) Pentru orice mulțime nevidă A, $Fun(A, \emptyset) = \emptyset$.

Definiția 1.1

Fie A, T mulțimi a.î. $A \subseteq T$. Funcția caracteristică a lui A în raport cu T este definită astfel:

$$\chi_A: \mathcal{T} o \{0,1\}, \quad \chi_A(x) = egin{cases} 1, & ext{dacă} \ x \in A \ 0, & ext{dacă} \ x
otin A \end{cases}$$

,

Definiția 1.2

Spunem că A este echipotentă cu B dacă există o bijecție $f:A\to B$. Notație: $A\sim B$.

Propoziția 1.3

Pentru orice mulțimi A, B, C, avem

- (i) $A \sim A$;
- (ii) Dacă $A \sim B$, atunci $B \sim A$.
- (iii) Dacă $A \sim B$ și $B \sim C$, atunci $A \sim C$.

Dem.: Exercițiu.

Observație

Prin urmare, A este echipotentă cu B ddacă B este echipotentă cu A. De aceea, spunem de obicei că A și B sunt echipotente.

Următorul rezultat este fundamental.

Teorema 1.4 (Teorema Cantor-Schröder-Bernstein)

Fie A şi B două mulțimi astfel încât există $f: A \to B$ şi $g: B \to A$ funcții injective. Atunci $A \sim B$.

Definiția 1.5

O mulțime A se numește finită dacă $A = \emptyset$ sau dacă există $n \in \mathbb{N}^*$ a.î. A este echipotentă cu $\{1, \ldots, n\}$.

Numărul elementelor unei mulțimi finite A se notează |A| și se mai numește și cardinalul lui A.

Definiția 1.6

O mulțime care nu este finită se numește infinită.

,

Mulțimi (cel mult) numărabile

Definiția 1.7

O mulțime A este numărabilă dacă este echipotentă cu \mathbb{N} .

O mulțime finită sau numărabilă se numește cel mult numărabilă.

Exemple de mulțimi numărabile: \mathbb{N} , \mathbb{N}^* , \mathbb{Z} , $\mathbb{N} \times \mathbb{N}$, \mathbb{Q} .

Teorema Cantor

 \mathbb{R} , $2^{\mathbb{N}}$ nu sunt mulțimi numărabile.

Se poate demonstra că

Propoziția 1.8

 \mathbb{R} este echipotentă cu $2^{\mathbb{N}}$.

- (i) Orice mulțime infinită are o submulțime numărabilă.
- (ii) Orice submulțime a unei mulțimi numărabile este cel mult numărabilă.
- (iii) O mulțime A este cel mult numărabilă ddacă există o funcție injectivă de la A la o mulțime numărabilă.
- (iv) Produsul cartezian a două mulțimi cel mult numărabile este cel mult numărabil.
- (v) Reuniunea a două mulțimi cel mult numărabile este cel mult numărabilă.

Corolar 1.10

Fie A o mulțime numărabilă și B o mulțime nevidă cel mult numărabilă. Atunci $A \times B$ și $A \cup B$ sunt numărabile.

Numerele cardinale sau cardinalele sunt o generalizare a numerelor naturale, ele fiind folosite pentru a măsura dimensiunea unei mulțimi; au fost introduse de Cantor.

Pentru orice mulțime A, cardinalul lui A (sau numărul cardinal al lui A) este un obiect |A| asociat lui A a.î. sunt satisfăcute următoarele:

- ► |A| este unic determinat de A.
- lacktriangle pentru orice mulțimi A, B, avem că |A|=|B| ddacă $A\sim B$.

Această definiție nu specifică natura obiectului |A| asociat unei mulțimi A.

Prin urmare, este naturală întrebarea dacă există cardinale.

Un posibil răspuns este:

definim |A| ca fiind clasa tuturor mulțimilor echipotente cu A.

Un alt răspuns este definiția lui von Neumann din teoria axiomatică a mulțimilor. Conform acestei definiții, pentru orice mulțime A, |A| este tot o mulțime.

- Cardinalul unei mulțimi finite este numărul său de elemente. Cardinalele transfinite sunt cardinalele mulțimilor infinite.
- ▶ $|\mathbb{N}|$ se notează \aleph_0 (se citește alef zero).
- $ightharpoonup |\mathbb{R}|$ se notează \mathfrak{c} și se mai numește și puterea continuumului.
- ▶ O mulţime A este numărabilă ddacă $|A| = \aleph_0$.
- \triangleright $|2^{\mathbb{N}}| \neq \aleph_0$.
- $|2^{\mathbb{N}}| = \mathfrak{c}.$

Familii de mulțimi

Fie I o mulţime nevidă.

Definiția 1.11

Fie A o mulțime. O familie de elemente din A indexată de I este o funcție $f: I \to A$. Notăm cu $(a_i)_{i \in I}$ familia $f: I \to A$, $f(i) = a_i$ pentru orice $i \in I$. Vom scrie și $(a_i)_i$ sau (a_i) atunci când I este dedusă din context.

Dacă fiecărui $i \in I$ îi este asociată o mulțime A_i , obținem o familie (indexată) de mulțimi $(A_i)_{i \in I}$.

Fie $(A_i)_{i \in I}$ o familie de submulțimi ale unei mulțimi T. Reuniunea și intersecția familiei $(A_i)_{i \in I}$ sunt definite astfel:

$$\bigcup_{i \in I} A_i = \{x \in T \mid \text{ există } i \in I \text{ a.î. } x \in A_i\}$$

$$\bigcap_{i \in I} A_i = \{x \in T \mid x \in A_i \text{ pentru orice } i \in I\}$$

Fie I o mulțime nevidă și $(A_i)_{i\in I}$ o familie de mulțimi.

Definiția 1.12

Produsul cartezian al familiei $(A_i)_{i \in I}$ se definește astfel:

$$\prod_{i \in I} A_i = \left\{ f : I \to \bigcup_{i \in I} A_i \mid f(i) \in A_i \text{ pentru orice } i \in I \right\}$$

$$= \left\{ (x_i)_{i \in I} \mid x_i \in A_i \text{ pentru orice } i \in I \right\}.$$

Fie n număr natural, $n \ge 1$, $I = \{1, \ldots, n\}$ și $A_1, \ldots, A_n \subseteq T$.

$$(x_i)_{i\in I} = (x_1, \dots, x_n)$$
, un *n*-tuplu (ordonat)

$$\bigcup_{i \in I} A_i = \bigcup_{i=1}^n A_i \text{ si } \bigcap_{i \in I} A_i = \bigcap_{i=1}^n A_i$$

$$\prod_{i \in I} A_i = \prod_{i=1}^n A_i = A_1 \times \cdots \times A_n \text{ si } A^n = \underbrace{A \times \cdots \times A_n}_{n}$$

- (i) Reuniunea unei familii cel mult numărabile de mulțimi cel mult numărabile este mulțime cel mult numărabilă.
- (ii) Reuniunea unui număr finit (≥ 2) de mulțimi numărabile este numărabilă.
- (iii) Produsul cartezian al unui număr finit (≥ 2) de mulțimi numărabile este numărabil.

Definiția 1.14

O relație n-ară între A_1, \ldots, A_n este o submulțime a produsului cartezian $\prod_{i=1}^n A_i$.

O relație n-ară pe A este o submulțime a lui A^n . Dacă R este relație n-ară, spunem că n este aritatea lui R.

Definiția 1.15

O relație binară între A și B este o submulțime a produsului cartezian $A \times B$.

O relație binară pe A este o submulțime a lui $A^2 = A \times A$.

Exemple

- ▶ relația de divizibilitate pe N:
 - $|=\{(k,n)\in\mathbb{N}^2\mid \text{ există } m\in\mathbb{N} \text{ a.î. } mk=n\}$
- ▶ relația de ordine strictă pe \mathbb{N} : $<=\{(k,n)\in\mathbb{N}^2\mid \text{ există } m\in\mathbb{N} \text{ a.î. } m\neq 0 \text{ și } m+k=n\}$

Relații binare

Fie A o mulțime nevidă și R o relație binară pe A. Notație: Scriem xRy în loc de $(x,y) \in R$ și $\neg(xRy)$ în loc de $(x,y) \notin R$.

Definiția 1.16

- ▶ R este reflexivă dacă xRx pentru orice $x \in A$.
- ▶ R este ireflexivă dacă $\neg(xRx)$ pentru orice $x \in A$.
- ▶ R este simetrică dacă pentru orice $x, y \in A$, xRy implică yRx.
- ► R este antisimetrică dacă pentru orice $x, y \in A$, xRy și yRx implică x = y.
- R este tranzitivă dacă pentru orice x, y, z ∈ A, xRy şi yRz implică xRz.
- ▶ R este totală dacă pentru orice $x, y \in A$, xRy sau yRx.

Fie A o mulțime nevidă și R o relație binară pe A.

Definiția 1.17

R este relație de echivalență dacă este reflexivă, simetrică și tranzitivă.

Definiția 1.18

R este relație de

- ordine parțială dacă este reflexivă, antisimetrică și tranzitivă.
- ordine strictă dacă este ireflexivă și tranzitivă.
- ordine totală dacă este antisimetrică, tranzitivă și totală.

Notații: Vom nota relațiile de ordine parțială și totală cu \leq , iar relațiile de ordine strictă cu <.

LOGICA PROPOZIŢIONALĂ

Logica propozițională - informal

Limbajul logicii propoziționale este bazat pe propoziții sau enunțuri declarative, despre care se poate argumenta în principiu că sunt adevărate sau false.

Propoziții declarative

- ► Suma numerelor 2 și 4 este 6.
- Mihai Eminescu a fost un scriitor român.
- Maria a reacţionat violent la acuzaţiile lui lon.
- Orice număr natural par > 2 este suma a două numere prime.
 (Conjectura lui Goldbach).
- Andrei este deştept.
- Marţienilor le place pizza.

Propoziții care nu sunt declarative

- ▶ Poţi să îmi dai, te rog, pâinea?
- ▶ Pleacă!

Logica propozițională - informal

Considerăm anumite propoziții ca find atomice și le notăm p, q, r, \ldots sau p_1, p_2, p_3, \ldots

Exemple: p=Numărul 2 este par. q=Mâine plouă. r=Sunt obosit.

Pornind de la propozițiile atomice, putem crea propoziții complexe (notate φ , ψ , χ , \cdots) folosind conectorii logici \neg (negația), \rightarrow (implicația), \lor (disjuncția), \land (conjuncția), \leftrightarrow (echivalența).

Exemple:

 $\neg p$ = Numărul 2 nu este par.

 $p \lor q$ = Numărul 2 este par sau mâine plouă.

 $p \wedge q$ = Numărul 2 este par și mâine plouă.

p o q = Dacă numărul 2 este par, atunci mâine plouă.

 $p \leftrightarrow q$ = Numărul 2 este par dacă și numai dacă mâine plouă.

Putem aplica repetat conectorii pentru a obține propoziții și mai complexe. Pentru a elimina ambiguitățile, folosim parantezele (,).

Exemplu: $\varphi = (p \land q) \rightarrow ((\neg r) \lor q)$

Logica propozițională - informal

Exemplu:

Fie propoziția:

 φ =Azi este vineri, deci avem curs de logică.

Considerăm propozițiile atomice

p=Azi este vineri. q=Avem curs de logică.

Atunci $\varphi = p \rightarrow q$. Cine este $\neg \varphi$?

 $\neg \varphi = p \land (\neg q) = Azi$ este vineri și nu avem curs de logică.

Exemplu:

Fie propoziția:

 φ =Dacă trenul întârzie și nu sunt taxiuri la gară, atunci lon întârzie la întâlnire.

Considerăm propozițiile atomice

p = Trenul întârzie.

q = Sunt taxiuri la gară.

r = lon întârzie la întâlnire.

Atunci $\varphi = (p \land (\neg q)) \rightarrow r$.

Presupunem că φ , p sunt adevărate și r este falsă (deci $\neg r$ este adevărată). Ce putem spune despre q? q este adevărată.

Definiția 2.1

Limbajul logicii propoziționale LP este format din:

- ightharpoonup o mulțime numărabilă $V = \{v_n \mid n \in \mathbb{N}\}$ de variabile;
- ightharpoonup conectori logici: \neg (se citește non), \rightarrow (se citește implică)
- paranteze: (,).
- Mulțimea Sim a simbolurilor lui LP este

$$Sim := V \cup \{\neg, \rightarrow, (,)\}.$$

• Notăm variabilele cu $v, u, w, v_0, v_1, v_2, \dots$

Definiția 2.2

Mulțimea Expr a expresiilor lui LP este mulțimea tuturor șirurilor finite de simboluri ale lui LP.

- ightharpoonup Expresia vidă se notează λ .
- Lungimea unei expresii θ este numărul simbolurilor din θ . Sim^n este mulțimea șirurilor de simboluri ale lui LP de lungime n.
- ▶ Prin convenţie, $Sim^0 = \{\lambda\}$. Atunci $Expr = \bigcup_{n \in \mathbb{N}} Sim^n$.

Exemple:

$$((((v_7, v_1 \neg \rightarrow (v_2), \neg v_1 v_2, ((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2)).$$

Operația de bază pentru expresii este concatenarea: dacă $\varphi = \varphi_0 \dots \varphi_{k-1}$ și $\psi = \psi_0 \dots \psi_{l-1}$ sunt expresii, atunci concatenarea lor, notată $\varphi \psi$, este expresia $\varphi_0 \dots \varphi_{k-1} \psi_0 \dots \psi_{l-1}$.

Definiția 2.3

Fie $\theta = \theta_0 \theta_1 \dots \theta_{k-1}$ o expresie a lui LP, unde $\theta_i \in Sim$ pentru orice $i \in \{0, 1, \dots, k-1\}$.

- ▶ Dacă $0 \le i \le j \le k-1$, atunci expresia $\theta_i \dots \theta_j$ se numește (i,j)-subexpresia lui θ_i ;
- Spunem că o expresie ψ apare în θ dacă există $0 \le i \le j \le k-1$ a.î. ψ este (i,j)-subexpresia lui θ .

Formule

Definiția formulelor este un exemplu de definiție inductivă.

Definiția 2.4

Formulele lui LP sunt expresiile lui LP definite astfel:

- (F0) Orice variabilă propozițională este formulă.
- (F1) Dacă φ este formulă, atunci $(\neg \varphi)$ este formulă.
- (F2) Daca φ și ψ sunt formule, atunci ($\varphi \to \psi$) este formulă.
- (F3) Numai expresiile obținute aplicând regulile (F0), (F1), (F2) sunt formule.

Notații: Mulțimea formulelor se notează Form. Notăm formulele cu $\varphi, \psi, \chi, \ldots$

- Orice formulă se obține aplicând regulile (F0), (F1), (F2) de un număr finit de ori.
- ► Form ⊆ Expr. Formulele sunt expresiile "bine formate".

Formule

Exemple:

- \triangleright $v_1 \neg \rightarrow (v_2)$, $\neg v_1 v_2$ nu sunt formule.
- \blacktriangleright $((v_1 \rightarrow v_2) \rightarrow (\neg v_1)), (\neg (v_1 \rightarrow v_2))$ sunt formule.

Citire unică (Unique readability)

Dacă φ este o formulă, atunci exact una din următoarele alternative are loc:

- $\triangleright \varphi = v$, unde $v \in V$;
- $ightharpoonup \varphi = (\neg \psi)$, unde ψ este formulă;
- $\varphi = (\psi \to \chi)$, unde ψ, χ sunt formule.

Mai mult, scrierea lui φ sub una din aceste forme este unică.

Propoziția 2.5

Mulțimea Form a formulelor lui LP este numărabilă.

Dem.: Exercițiu.

Principiul inducției pe formule

Propoziția 2.6 (Principiul inducției pe formule)

Fie P o proprietate. Presupunem că:

- (0) Orice variabilă are proprietatea **P**.
- (1) Pentru orice formulă φ , dacă φ are proprietatea \mathbf{P} , atunci și $(\neg \varphi)$ are proprietatea \mathbf{P} .
- (2) Pentru orice formule φ, ψ , dacă φ și ψ au proprietatea \mathbf{P} , atunci $(\varphi \to \psi)$ are proprietatea \mathbf{P} .

Atunci orice formulă φ are proprietatea P.

Dem.: Pentru orice formulă φ , notăm cu $c(\varphi)$ numărul conectorilor logici care apar în φ . Pentru orice $n \in \mathbb{N}$ definim proprietatea Q(n) astfel:

Q(n) e adevărată ddacă orice formulă φ cu $c(\varphi) \le n$ are proprietatea P.

Demonstrăm prin inducție că Q(n) este adevărată pentru orice $n \in \mathbb{N}$.

Principiul inducției pe formule

Pasul inițial. Q(0) este adevărată, deoarece pentru orice formulă φ , $c(\varphi) \leq 0 \iff c(\varphi) = 0 \iff \varphi = v$, cu $v \in V$ și, conform ipotezei (0), v are proprietatea P.

Ipoteza de inducție. Fie $n \in \mathbb{N}$. Presupunem că Q(n) este adevărată.

Pasul de inducție. Demonstrăm că Q(n+1) este adevărată. Fie φ o formulă cu $c(\varphi) \le n+1$. Avem trei cazuri:

- ho $\varphi = v \in V$. Atunci φ are proprietatea P, conform (0).
- $\varphi = (\neg \psi)$, unde ψ este formulă. Atunci $c(\psi) = c(\varphi) 1 \le n$, deci, conform ipotezei de inducție, ψ are proprietatea \boldsymbol{P} . Aplicînd ipoteza (1), rezultă că φ are proprietatea \boldsymbol{P} .
- $\varphi = (\psi \to \chi)$, unde ψ, χ sunt formule. Atunci $c(\psi), c(\chi) \le c(\varphi) 1 \le n$, deci, conform ipotezei de inducție, ψ și χ au proprietatea \boldsymbol{P} . Rezultă din (2) că φ are proprietatea \boldsymbol{P} .

Așadar, Q(n) este adevărată pentru orice $n \in \mathbb{N}$. Deoarece pentru orice formulă φ există $N \in \mathbb{N}$ a.î. $c(\varphi) \leq N$, rezultă că orice formulă φ are proprietatea \boldsymbol{P} .

Propoziția 2.7 (Principiul inducției pe formule - variantă alternativă)

Fie Γ o mulțime de formule care are următoarele proprietăți:

- *V* ⊆ Γ;
- ▶ Γ este închisă la ¬, adică $\varphi \in \Gamma$ implică $(\neg \varphi) \in \Gamma$;
- ▶ Γ este închisă la \rightarrow , adică $\varphi, \psi \in \Gamma$ implică $(\varphi \rightarrow \psi) \in \Gamma$.

Atunci $\Gamma = Form$.

Conform definiției lui Γ , rezultă că sunt satisfăcute ipotezele (0), (1), (2) din Principiul inducției pe formule (Propoziția 2.6), deci îl putem aplica pentru a obține că orice formulă are proprietatea \boldsymbol{P} , deci orice formulă φ este în Γ . Așadar, $\Gamma = Form$.

Definiția 2.8

Fie φ o formulă a lui LP. O subformulă a lui φ este orice formulă ψ care apare în φ .

Notație: Mulțimea subformulelor lui φ se notează SubForm (φ) .

Exemplu:

Fie
$$\varphi = ((v_1 \to v_2) \to (\neg v_1))$$
. Atunci
$$SubForm(\varphi) = \{v_1, v_2, (v_1 \to v_2), (\neg v_1), \varphi\}.$$

Formule

Conectorii derivați \vee (se citește sau), \wedge (se citește și), \leftrightarrow (se citește dacă și numai dacă) sunt introduși prin abrevierile:

$$(\varphi \lor \psi) := ((\neg \varphi) \to \psi)$$
$$(\varphi \land \psi) := (\neg(\varphi \to (\neg \psi)))$$
$$(\varphi \leftrightarrow \psi) := ((\varphi \to \psi) \land (\psi \to \varphi)).$$

Convenții

- ln practică, renunțăm la parantezele exterioare, le punem numai atunci când sunt necesare. Astfel, scriem $\neg \varphi, \varphi \rightarrow \psi$, dar scriem $(\varphi \to \psi) \to \chi$.
- Pentru a mai reduce din folosirea parantezelor, presupunem că
 - ¬ are precedenţa mai mare decât ceilalţi conectori;
 - \land , \lor au precedență mai mare decât \rightarrow , \leftrightarrow .

Prin urmare, formula $(((\varphi \to (\psi \lor \chi)) \land ((\neg \psi) \leftrightarrow (\psi \lor \chi)))$ va fi scrisă $(\varphi \to \psi \lor \chi) \land (\neg \psi \leftrightarrow \psi \lor \chi)$.

Propoziția 2.9 (Principiul recursiei pe formule)

Fie A o mulțime și funcțiile

$$G_0: V \to A, \quad G_\neg: A \to A, \quad G_\to: A \times A \to A.$$

Atunci există o unică funcție

$$F: Form \rightarrow A$$

care satisface următoarele proprietăți:

(R0)
$$F(v) = G_0(v)$$
 pentru orice variabilă $v \in V$.

(R1)
$$F(\neg \varphi) = G_{\neg}(F(\varphi))$$
 pentru orice formulă φ .

(R2)
$$F(\varphi \to \psi) = G_{\to}(F(\varphi), F(\psi))$$
 pentru orice formule φ, ψ .

Principiul recursiei pe formule se folosește pentru a da definiții recursive ale diverselor funcții asociate formulelor.

Exemplu:

Fie $c: Form \to \mathbb{N}$ definită astfel: pentru orice formulă φ , $c(\varphi)$ este numărul conectorilor logici care apar în φ .

O definiție recursivă a lui c este următoarea:

$$\begin{array}{rcl} c(v) &=& 0 & \text{pentru orice variabilă } v \\ c(\neg\varphi) &=& c(\varphi)+1 & \text{pentru orice formulă } \varphi \\ c(\varphi\to\psi) &=& c(\varphi)+c(\psi)+1 & \text{pentru orice formule } \varphi,\psi. \end{array}$$

În acest caz,
$$A=\mathbb{N},\ G_0:V o A,\ G_0(v)=0,$$

$$G_\neg:\mathbb{N}\to\mathbb{N},\qquad G_\neg(n)=n+1,$$

$$G_\to:\mathbb{N}\times\mathbb{N}\to\mathbb{N},\quad G_\to(m,n)=m+n+1.$$

Notație:

Pentru orice formulă φ , notăm cu $Var(\varphi)$ mulțimea variabilelor care apar în φ .

Observație

Mulţimea $Var(\varphi)$ poate fi definită și recursiv.

Dem.: Exercițiu.

SEMANTICA LP

. Valori de adevăr

Folosim următoarele notații pentru cele două valori de adevăr:

1 pentru adevărat și 0 pentru fals. Prin urmare, mulțimea valorilor de adevăr este $\{0,1\}.$

Definim următoarele operații pe $\{0,1\}$ folosind tabelele de adevăr.

$$ag{7}: \{0,1\} \rightarrow \{0,1\}, \qquad \begin{array}{c|c}
p & \neg p \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

Se observă că $\neg p = 1 \iff p = 0$.

Se observă că $p \rightarrow q = 1 \iff p \leq q$.

Operațiile V : $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$, $\Lambda : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}$ și \leftrightarrow : $\{0,1\} \times \{0,1\} \rightarrow \{0,1\}$ se definesc astfel:

p	q	$p \lor q$	р	q	$p \wedge q$	р	q	$p \leftrightarrow q$
0	0	0	0	0	0	0	0	1
0	1	1	0	1	0	0	1	0
1	0	1	1	1 0 1	0	0 0 1 1	0	0
1	0 1 0 1	1	1	1	1	1	1	1

Observatie

Pentru orice $p, q \in \{0, 1\}$, $p \lor q = \neg p \to q$, $p \land q = \neg(p \to \neg q)$ și $p \leftrightarrow q = (p \to q) \land (q \to p)$.

Dem.: Exercițiu.

Definiția 2.10

O evaluare (sau interpretare) este o funcție $e: V \rightarrow \{0,1\}$.

Teorema 2.11

Pentru orice evaluare e : $V \rightarrow \{0,1\}$ există o unică funcție

$$e^+:\textit{Form} \rightarrow \{0,1\}$$

care verifică următoarele proprietăți:

- $ightharpoonup e^+(v) = e(v)$ pentru orice orice $v \in V$.
- $e^+(\neg \varphi) = \neg e^+(\varphi)$ pentru orice $\varphi \in Form$,
- $e^+(\varphi \to \psi) = e^+(\varphi) \to e^+(\psi)$ pentru orice φ , $\psi \in Form$.

Dem.: Aplicăm Principiul recursiei pe formule (Propoziția 2.9) cu $A = \{0,1\}, G_0 = e, G_{\neg} : \{0,1\} \rightarrow \{0,1\}, G_{\neg}(p) = \neg p$ și $G_{\neg} : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}, G_{\rightarrow}(p,q) = p \rightarrow q.$

Dacă e : $V \rightarrow \{0,1\}$ este o evaluare, atunci pentru orice formule φ , ψ ,

$$e^{+}(\varphi \lor \psi) = e^{+}(\varphi) \lor e^{+}(\psi),$$

$$e^{+}(\varphi \land \psi) = e^{+}(\varphi) \land e^{+}(\psi),$$

$$e^{+}(\varphi \leftrightarrow \psi) = e^{+}(\varphi) \leftrightarrow e^{+}(\psi).$$

Dem.: Exercițiu.

Pentru orice formulă φ și orice evaluări $e_1, e_2: V \to \{0, 1\}$,

(*)
$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: Definim următoarea proprietate P: pentru orice formulă φ ,

$$\varphi$$
 are proprietatea P ddacă pentru orice evaluări $e_1, e_2: V \to \{0, 1\}, \varphi$ satisface (*).

Demonstrăm că orice formulă φ are proprietatea \boldsymbol{P} folosind Principiul inducției pe formule. Avem următoarele cazuri:

•
$$\varphi = v$$
. Atunci $e_1^+(v) = e_1(v) = e_2(v) = e_2^+(v)$.

Pentru orice formulă φ și orice evaluări $e_1, e_2: V \to \{0, 1\}$,

(*)
$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: (continuare)

• $\varphi = \neg \psi$ și ψ satisface \boldsymbol{P} . Fie $e_1, e_2 : V \rightarrow \{0,1\}$ a.î. $e_1(v) = e_2(v)$ pentru orice $v \in Var(\varphi)$. Deoarece $Var(\varphi) = Var(\psi)$, rezultă că $e_1(v) = e_2(v)$ pentru orice $v \in Var(\psi)$. Așadar, aplicând \boldsymbol{P} pentru ψ , obținem că $e_1^+(\psi) = e_2^+(\psi)$. Rezultă că

$$e_1^+(\varphi) = \neg e_1^+(\psi) = \neg e_2^+(\psi) = e_2^+(\varphi),$$

deci φ satisface \boldsymbol{P} .

Pentru orice formulă φ și orice evaluări $e_1, e_2 : V \to \{0, 1\}$,

(*)
$$e_1(v) = e_2(v)$$
 pentru orice $v \in Var(\varphi) \implies e_1^+(\varphi) = e_2^+(\varphi)$.

Dem.: (continuare)

 $\begin{array}{l} \blacktriangleright \ \varphi = \psi \rightarrow \chi \ \text{si} \ \psi, \chi \ \text{satisfac} \ \textbf{\textit{P}}. \ \text{Fie} \ e_1, e_2 : V \rightarrow \{0,1\} \ \ \text{a.î.} \\ e_1(v) = e_2(v) \ \text{pentru orice} \ v \in Var(\varphi). \ \ \text{Deoarece} \\ Var(\psi) \subseteq Var(\varphi) \ \text{si} \ Var(\chi) \subseteq Var(\varphi), \ \text{rezultă că} \\ e_1(v) = e_2(v) \ \text{pentru orice} \ v \in Var(\psi) \ \text{si pentru orice} \\ v \in Var(\chi). \ \ \text{Așadar, aplicând} \ \textbf{\textit{P}} \ \text{pentru} \ \psi \ \text{si} \ \chi, \ \text{obținem că} \\ e_1^+(\psi) = e_2^+(\psi) \ \text{si} \ e_1^+(\chi) = e_2^+(\chi). \ \ \text{Rezultă că} \\ \end{array}$

$$e_1^+(\varphi) = e_1^+(\psi) \to e_1^+(\chi) = e_2^+(\psi) \to e_2^+(\chi) = e_2^+(\varphi),$$

deci φ satisface \boldsymbol{P} .