

Soft Computing – Probabilistic Reasoning

- Introduction to Bayesian Networks-

Prof. Matteo Matteucci – matteo.matteucci@polimi.it

Course Syllabus (Tentative)

Probability basics (fast and furious)

- Frequentists vs Bayesians
- Joint and Naive Distributions

Probabilistic graphical models

- Directed graphical models (Bayesian Networks)
- Conditional independence and d-separation
- Inference in directed graphical models

Dynamical graphical models

- Markov chains
- Hidden Markov models

Learning directed graphical models ...

Beyond Independence ...

We are thankful to the independence hypothesis because:

- It makes computation possible
- It yields optimal classifiers when satisfied
- It gives good enough generalization to our Bayes Classifiers

Seldom satisfied in practice, as attributes are often correlated!

To overcome this limitation we can describe a probability distribution via:

- Conditional Independence Assumptions that apply on subsets of them
- A set of conditional probabilities with their priors

These models are often referred also as Graphical Models

Beyond Independence ...

To overcome this limitation we can describe a probability distribution via:

- Conditional Independence Assumptions that apply on subsets of them
- A set of conditional probabilities with their priors

1 number to describe P(Culprit = Butler)

	Pistol	Knife	Poker
Cook	4%	52%	24%
Butler	16%	2%	2%

4 numbers to describe P(Weapon|Culprit = Butler)and P(Weapon|Culprit = Cook)

Bayesian Belief Networks

A *Bayesian Belief Networks*, or *Bayesian Network*, is a method to describe the joint probability distribution of a set of variables

Let $x_1, x_2, ..., x_N$ be a set of variables a Bayesian Network can tell any combination of these probabilities

- Age, Occupation and Income determine if customer will buy this product.
- Given that customer buys product, whether there is interest in insurance is now independent of Age, Occupation, Income.

Occupation
Age
Buy X
Interested in Insurance

Some sort of independence should be there ...

Bayesian Belief Networks

A *Bayesian Belief Networks*, or *Bayesian Network*, is a method to describe the joint probability distribution of a set of variables

Let $x_1, x_2, ..., x_N$ be a set of variables a Bayesian Network can tells any combination probability.

- The full joint distribution would require $2^N 1 = 2^5 1 = 31$ parameters
- To represent the probabilities in the network we need only the priors and conditionals $3*1+1*2^3+1*2^1=13$ parameters

Some sort of independence should be there ...

Conditional Independence

We say X_1 is Conditionally Independent from X_2 given X_3 if the probability of X_1 is independent of X_2 given some knowledge about X_3 :

$$P(X_1|X_2,X_3) = P(X_1|X_3)$$

The same can be said for a set of variables: X_1, X_2, X_3 is independent from Y_1, Y_2, Y_3 given Z_1, Z_2, Z_3 :

$$P(X_1, X_2, X_3 | Y_1, Y_2, Y_3, Z_1, Z_2, Z_3) = P(X_1, X_2, X_3 | Z_1, Z_2, Z_3)$$

Note: there is a soubtle difference with respect to independence!

Conditional Independence Example (Part 1)

Martin and Norman toss the same coin. Let be A "Norman's outcome", and B "Martin's outcome". Assume the coin might be biased; in this case A and B are not independent: observing that B is Heads causes us to increase our belief in A being Heads.

$$P(A|B) \neq P(A)$$

Variables A and B are both dependent on C "The coin is biased towards Heads with probability θ ". Once we know for C then any evidence about B cannot change our belief about A.

$$P(A|B,C) = P(A|C)$$

Bayesian Belief Network Ingredients

A *Bayesian Network* is a compact representation of the joint probability distribution via explicit indication of conditional independences:

- A Directed Acyclic Graph (DAG) where Nodes represent random variables and Edges represent direct influence
- Conditional Probability Distributions (CPD) for priors and "influenced" variables

P(Income), P(Occupation), P(Age)
P(Buy X|Income, Occupation, Age)
P(Interested in Insurance|Buy X)

Conditional Independence Example (Part 2)

Martin and Norman toss the same coin. Let be A "Norman's outcome", and B "Martin's outcome". Assume they are both dependent on C "The coin is biased towards Heads with probability $\theta = 0.9$ ".

- You do not know if the coin is biased
- Martin tosses the coin and gets Tail
- What do you think about Norman toss?
- Now someone tells you the coin is biased
- What do you think about Norman toss?

The Sprinkler Example: Modeling

The event "Grass is wet" (W = true) has two possible causes: either the water "Sprinkler" is on (S = true) or it is "Raining" (R = true).

The Sprinkler Example: Modeling

The event "Grass is wet" (W = true) has two possible causes: either the water "Sprinkler" is on (S = true) or it is "Raining" (R = true).

The Sprinkler Exampe: Joint Probability

The simplest conditional independence encoded in a Bayesian network states: "a node is independent of its ancestors given its parents."

Using the chain rule we get the joint probability:

$$P(C,S,R,W) = P(W|S,R,C)P(S,R,C)$$

$$= P(W|S,R)P(S,R,C)$$

$$= P(W|S,R)P(S|R,C)P(R,C)$$
This is like the biased coin ;-)
$$= P(W|S,R)P(S|C)P(R,C)$$

$$= P(W|S,R)P(S|C)P(R|C)P(C)$$

We observe the fact that the grass is wet. There are two possible causes for this: (a) the sprinkler is on or (b) it is raining. Which is more likely?

We know how to compute the joint distribution:

The posterior probability can be computed as

$$P(E_1|E_2) = \frac{P(E_1 \land E_2)}{P(E_2)} = \frac{\sum_{row \sim E_1 \land E_2} P(row)}{\sum_{row \sim E_2} P(row)}$$

What is the value of

$$P(S|W) = P(S,W)/P(W) = \sum_{C,R} P(C,S,R,W)/P(W)$$

$$= \frac{\sum_{C,R} P(C,S,R,W)}{\sum_{S,R,C} P(C,S,R,W)} = \cdots$$

С	S	R	W	P(C,S,R,W)	P(C,S,R,W)
0	0	0	0	0.5*0.1*0.8*1	0.04
0	0	0	1	0.5*0.1*0.8*0	0
0	0	1	0	0.5*0.1*0.2*0.1	0.001
0	0	1	1	0.5*0.1*0.2*0.9	0.009
0	1	0	0	0.5*0.9*0.8*0.1	0.036
0	1	0	1	0.5*0.9*0.8*0.9	0.324
0	1	1	0	0.5*0.9*0.2*0.01	0.0009
0	1	1	1	0.5*0.9*0.2*0.99	0.0891
1	0	0	0	0.5*0.5*0.5*1	0.125
1	0	0	1	0.5*0.5*0.5*0	0
1	0	1	0	0.5*0.5*0.5*0.1	0.0125
1	0	1	1	0.5*0.5*0.5*0.9	0.1125
1	1	0	0	0.5*0.5*0.5*0.1	0.0125
1	1	0	1	0.5*0.5*0.5*0.9	0.1125
1	1	1	0	0.5*0.5*0.5*0.01	0.00125
1	1	1	1	0.5*0.5*0.5*0.99	0.12375

$$P(S|W) = \frac{\sum_{C,R} P(C,S,R,W)}{\sum_{S,R,C} P(C,S,R,W)}$$

С	S	R	W	P(C,S,R,W)	P(C,S,R,W)
0	0	0	0	0.5*0.1*0.8*1	0.04
0	0	0	1	0.5*0.1*0.8*0	0
0	0	1	0	0.5*0.1*0.2*0.1	0.001
0	0	1	1	0.5*0.1*0.2*0.9	0.009
0	1	0	0	0.5*0.9*0.8*0.1	0.036
0	1	0	1	0.5*0.9*0.8*0.9	0.324
0	1	1	0	0.5*0.9*0.2*0.01	0.0009
0	1	1	1	0.5*0.9*0.2*0.99	0.0891
1	0	0	0	0.5*0.5*0.5*1	0.125
1	0	0	1	0.5*0.5*0.5*0	0
1	0	1	0	0.5*0.5*0.5*0.1	0.0125
1	0	1	1	0.5*0.5*0.5*0.9	0.1125
1	1	0	0	0.5*0.5*0.5*0.1	0.0125
1	1	0	1	0.5*0.5*0.5*0.9	0.1125
1	1	1	0	0.5*0.5*0.5*0.01	0.00125
1	1	1	1	0.5*0.5*0.5*0.99	0.12375

$$P(S|W) = \frac{\sum_{C,R} P(C,S,R,W)}{\sum_{S,R,C} P(C,S,R,W)}$$

С	S	R	W	P(C,S,R,W)	P(C,S,R,W)
0	0	0	0	0.5*0.1*0.8*1	0.04
0	0	0	1	0.5*0.1*0.8*0	0
0	0	1	0	0.5*0.1*0.2*0.1	0.001
0	0	1	1	0.5*0.1*0.2*0.9	0.009
0	1	0	0	0.5*0.9*0.8*0.1	0.036
0	1	0	1	0.5*0.9*0.8*0.9	0.324
0	1	1	0	0.5*0.9*0.2*0.01	0.0009
0	1	1	1	0.5*0.9*0.2*0.99	0.0891
1	0	0	0	0.5*0.5*0.5*1	0.125
1	0	0	1	0.5*0.5*0.5*0	0
1	0	1	0	0.5*0.5*0.5*0.1	0.0125
1	0	1	1	0.5*0.5*0.5*0.9	0.1125
1	1	0	0	0.5*0.5*0.5*0.1	0.0125
1	1	0	1	0.5*0.5*0.5*0.9	0.1125
1	1	1	0	0.5*0.5*0.5*0.01	0.00125
1	1	1	1	0.5*0.5*0.5*0.99	0.12375

$$P(S|W) = \frac{0.64935}{\sum_{S,R,C} P(C,S,R,W)}$$

С	S	R	W	P(C,S,R,W)	P(C,S,R,W)
0	0	0	0	0.5*0.1*0.8*1	0.04
0	0	0	1	0.5*0.1*0.8*0	0
0	0	1	0	0.5*0.1*0.2*0.1	0.001
0	0	1	1	0.5*0.1*0.2*0.9	0.009
0	1	0	0	0.5*0.9*0.8*0.1	0.036
0	1	0	1	0.5*0.9*0.8*0.9	0.324
0	1	1	0	0.5*0.9*0.2*0.01	0.0009
0	1	1	1	0.5*0.9*0.2*0.99	0.0891
1	0	0	0	0.5*0.5*0.5*1	0.125
1	0	0	1	0.5*0.5*0.5*0	0
1	0	1	0	0.5*0.5*0.5*0.1	0.0125
1	0	1	1	0.5*0.5*0.5*0.9	0.1125
1	1	0	0	0.5*0.5*0.5*0.1	0.0125
1	1	0	1	0.5*0.5*0.5*0.9	0.1125
1	1	1	0	0.5*0.5*0.5*0.01	0.00125
1	1	1	1	0.5*0.5*0.5*0.99	0.12375

$$P(S|W) = \frac{0.64935}{0.77085} = 0.8424$$

We observe the fact that the grass is wet. There are two possible causes for this: (a) the sprinkler is on or (b) it is raining. Which is more likely?

We know how to compute the joint distribution:

The posterior probability can be computed as

$$P(E_1|E_2) = \frac{P(E_1 \land E_2)}{P(E_2)} = \frac{\sum_{row \sim E_1 \land E_2} P(row)}{\sum_{row \sim E_2} P(row)}$$

What is the value of

$$P(R|W) = P(R,W)/P(W) = \sum_{S,C} P(C,S,R,W)/P(W)$$
$$= \frac{\sum_{S,C} P(C,S,R,W)}{\sum_{S,R,C} P(C,S,R,W)} = \cdots$$

С	S	R	w	P(C,S,R,W)	P(C,S,R,W)
0	0	0	0	0.5*0.1*0.8*1	0.04
0	0	0	1	0.5*0.1*0.8*0	0
0	0	1	0	0.5*0.1*0.2*0.1	0.001
0	0	1	1	0.5*0.1*0.2*0.9	0.009
0	1	0	0	0.5*0.9*0.8*0.1	0.036
0	1	0	1	0.5*0.9*0.8*0.9	0.324
0	1	1	0	0.5*0.9*0.2*0.01	0.0009
0	1	1	1	0.5*0.9*0.2*0.99	0.0891
1	0	0	0	0.5*0.5*0.5*1	0.125
1	0	0	1	0.5*0.5*0.5*0	0
1	0	1	0	0.5*0.5*0.5*0.1	0.0125
1	0	1	1	0.5*0.5*0.5*0.9	0.1125
1	1	0	0	0.5*0.5*0.5*0.1	0.0125
1	1	0	1	0.5*0.5*0.5*0.9	0.1125
1	1	1	0	0.5*0.5*0.5*0.01	0.00125
1	1	1	1	0.5*0.5*0.5*0.99	0.12375

$$P(R|W) = \frac{\sum_{C,S} P(C,S,R,W)}{\sum_{S,R,C} P(C,S,R,W)}$$

С	S	R	W	P(C,S,R,W)	P(C,S,R,W)
0	0	0	0	0.5*0.1*0.8*1	0.04
0	0	0	1	0.5*0.1*0.8*0	0
0	0	1	0	0.5*0.1*0.2*0.1	0.001
0	0	1	1	0.5*0.1*0.2*0.9	0.009
0	1	0	0	0.5*0.9*0.8*0.1	0.036
0	1	0	1	0.5*0.9*0.8*0.9	0.324
0	1	1	0	0.5*0.9*0.2*0.01	0.0009
0	1	1	1	0.5*0.9*0.2*0.99	0.0891
1	0	0	0	0.5*0.5*0.5*1	0.125
1	0	0	1	0.5*0.5*0.5*0	0
1	0	1	0	0.5*0.5*0.5*0.1	0.0125
1	0	1	1	0.5*0.5*0.5*0.9	0.1125
1	1	0	0	0.5*0.5*0.5*0.1	0.0125
1	1	0	1	0.5*0.5*0.5*0.9	0.1125
1	1	1	0	0.5*0.5*0.5*0.01	0.00125
1	1	1	1	0.5*0.5*0.5*0.99	0.12375

$$P(R|W) = \frac{0.33435}{\sum_{S,R,C} P(C,S,R,W)}$$

С	S	R	w	P(C,S,R,W)	P(C,S,R,W)
0	0	0	0	0.5*0.1*0.8*1	0.04
0	0	0	1	0.5*0.1*0.8*0	0
0	0	1	0	0.5*0.1*0.2*0.1	0.001
0	0	1	1	0.5*0.1*0.2*0.9	0.009
0	1	0	0	0.5*0.9*0.8*0.1	0.036
0	1	0	1	0.5*0.9*0.8*0.9	0.324
0	1	1	0	0.5*0.9*0.2*0.01	0.0009
0	1	1	1	0.5*0.9*0.2*0.99	0.0891
1	0	0	0	0.5*0.5*0.5*1	0.125
1	0	0	1	0.5*0.5*0.5*0	0
1	0	1	0	0.5*0.5*0.5*0.1	0.0125
1	0	1	1	0.5*0.5*0.5*0.9	0.1125
1	1	0	0	0.5*0.5*0.5*0.1	0.0125
1	1	0	1	0.5*0.5*0.5*0.9	0.1125
1	1	1	0	0.5*0.5*0.5*0.01	0.00125
1	1	1	1	0.5*0.5*0.5*0.99	0.12375

$$P(R|W) = \frac{0.33435}{0.77085} = 0.4337$$

We observe the fact that the grass is wet. There are two possible causes for this: (a) the sprinkler is on or (b) it is raining. Which is more likely?

We know how to compute the joint distribution:

The posterior probability can be computed as

$$P(E_1|E_2) = \frac{P(E_1 \land E_2)}{P(E_2)} = \frac{\sum_{row \sim E_1 \land E_2} P(row)}{\sum_{row \sim E_2} P(row)}$$

- P(S|W) = 0.8424
- P(R|W) = 0.4337

The most likely reason for the grass do be wet is ...

The Sprinkler Example: Explaining Away

In Sprinkler Example the two causes "compete" to "explain" the observed data. Hence S and R become conditionally dependent given that their common child, W, is observed.

Example: Suppose the grass is wet, but we know that it is raining. Then the posterior probability of sprinkler being on becomes:

$$P(S|W,R) = \frac{P(S,W|R)}{P(W|R)} = \frac{\sum_{C} P(C,S,W|R)}{\sum_{S,C} P(C,S,W|R)}$$

С	S	R	W	P(C,S,R,W)	P(C,S,R,W)
0	0	0	0	0.5*0.1*0.8*1	0.04
0	0	0	1	0.5*0.1*0.8*0	0
0	0	1	0	0.5*0.1*0.2*0.1	0.001
0	0	1	1	0.5*0.1*0.2*0.9	0.009
0	1	0	0	0.5*0.9*0.8*0.1	0.036
0	1	0	1	0.5*0.9*0.8*0.9	0.324
0	1	1	0	0.5*0.9*0.2*0.01	0.0009
0	1	1	1	0.5*0.9*0.2*0.99	0.0891
1	0	0	0	0.5*0.5*0.5*1	0.125
1	0	0	1	0.5*0.5*0.5*0	0
1	0	1	0	0.5*0.5*0.5*0.1	0.0125
1	0	1	1	0.5*0.5*0.5*0.9	0.1125
1	1	0	0	0.5*0.5*0.5*0.1	0.0125
1	1	0	1	0.5*0.5*0.5*0.9	0.1125
1	1	1	0	0.5*0.5*0.5*0.01	0.00125
1	1	1	1	0.5*0.5*0.5*0.99	0.12375

$$P(S|W,R) = \frac{\sum_{C} P(C,S,W|R)}{\sum_{S,C} P(C,S,W|R)}$$
$$= \frac{0.201475}{\sum_{S,C} P(C,S,W|R)}$$

С	S	R	W	P(C,S,R,W)	P(C,S,R,W)
0	0	0	0	0.5*0.1*0.8*1	0.04
0	0	0	1	0.5*0.1*0.8*0	0
0	0	1	0	0.5*0.1*0.2*0.1	0.001
0	0	1	1	0.5*0.1*0.2*0.9	0.009
0	1	0	0	0.5*0.9*0.8*0.1	0.036
0	1	0	1	0.5*0.9*0.8*0.9	0.324
0	1	1	0	0.5*0.9*0.2*0.01	0.0009
0	1	1	1	0.5*0.9*0.2*0.99	0.0891
1	0	0	0	0.5*0.5*0.5*1	0.125
1	0	0	1	0.5*0.5*0.5*0	0
1	0	1	0	0.5*0.5*0.5*0.1	0.0125
1	0	1	1	0.5*0.5*0.5*0.9	0.1125
1	1	0	0	0.5*0.5*0.5*0.1	0.0125
1	1	0	1	0.5*0.5*0.5*0.9	0.1125
1	1	1	0	0.5*0.5*0.5*0.01	0.00125
1	1	1	1	0.5*0.5*0.5*0.99	0.12375

$$P(S|W,R) = \frac{\sum_{C} P(C,S,W|R)}{\sum_{S,C} P(C,S,W|R)}$$

$$= \frac{0.201475}{\sum_{S,C} P(C,S,W|R)} = \frac{0.201475}{0.33435}$$

$$= 0.6026$$

The Sprinkler Example: Explaining Away

In Sprinkler Example the two causes "compete" to "explain" the observed data. Hence S and R become conditionally dependent given that their common child, W, is observed.

Example: Suppose the grass is wet, but we know that it is raining. Then the posterior probability of sprinkler being on becomes:

$$P(S|W,R) = \frac{P(S,W|R)}{P(W|R)} = \frac{\sum_{C} P(C,S,W|R)}{\sum_{S,C} P(C,S,W|R)}$$

This means that the probability of Sprinkler goes down

$$P(S|W,R) \le P(S|W)$$

This is called Explaining Away

Explaining Away Phenomenon

Explaining Away is known in Statstics as *Berkson's Paradox*, or *Selection Bias*, and it describes two variable which become dependent because you observe a third one.

<u>Example</u>: Consider a college which admits students who are either <u>Brainy</u> or <u>Sporty</u> (or both!). Let C denote the event "admitted to College", which is **True** if a student is either Brainy (B) or Sporty (S).

Suppose in population, B and S are independent.

In *College*, being *Brainy* makes you less likely to be *Sporty*, because either are sufficient to explain C

$$P(S = True | C = True, B = True) \le P(S = True | B = True)$$

Sporty

College

Brainy

Bottom-Up vs Top-Down Reasoning

Looking at the simple Sprinkler Example we can already see the two kind of reasoning we can make with Bayesian Networks:

- <u>Bottom-Up</u>: we had evidence of an effect (*Grass is Wet*), and inferred the most likely cause; it goes from effects to causes as in diagnostic systems;
- <u>Top-Down</u>: we can compute the probability grass will be wet given that it is cloudy; this is predictive use of Bayesian Networks as "generative" models.

The most interesting property of Bayesian Networks is that they can be used to reason about causality on a solid mathematical basis:

- <u>Question</u>: Can we distinguish causation from mere correlation? So we don't need to make experiments to infer causality.
- <u>Answer:</u> Yes, sometimes, but we need to measure the relationships between at least three variables.

 Causality: Models, Reasoning and

Inference, Judea Pearl, 2000.

Conditional Independence in Bayesian Networks

Two (sets of) nodes A and B are conditionally independent (d-separated) given C if and only if all the path from A to B are shielded by C.

The dotted arcs indicate direction of flow in the path, if they do not traverse the node then the path is shielded.

Conditional Independence in Bayesian Networks

- <u>C is a "root":</u> if C is hidden, children are dependent due to a hidden common cause. If C is observed, they are conditionally independent;
- <u>C is a "leaf":</u> if C is hidden, its parents are marginally independent, but if C is observed, the parents become dependent (Explaining Away);
- <u>C is a "bridge":</u> nodes upstream and downstream of C are dependent if and only if C is hidden, because conditioning breaks the graph at that point.

Examples on d-separtion

Simply using d-separation:

$$P(B,S|C) = P(B|C) * P(S|C)$$

$$P(B,S) = P(B) * P(S)$$

Examples on d-separtion

Simply using d-separation:

P(W,C) = P(W) * P(C)

Examples on d-separtion

What can you say about ...

- P(FF|L,C)
- P(L,C|FF,BT)
- P(T|BT)
- P(S|T,L,FF)
- P(C|FF,L)
- P(FF|T,C,S)
- P(FF,T|L)
- P(FF,T,L,C,S,BT)
- •

Bayesian Network Applications (1)

A famous example is the reformulation of the Quick Medical Reference model (1990)

- Top layer represents 534 hidden disease;
- Bottom layer represents 4040 possibly observed symptoms;
- The goal is to infer the posterior probability of each disease given all the symptoms (which can be present, absent or unknown).

A Probabilistic Reformulation of the Quick Medical Reference System ael Shwe, Blackford Middleton, David Heckerman, Max Henrion,* An arc of probabilistic dependency between nodes representing a disease d and finding f exists in the QMR-DT KB if and only if there exists a link between d and f in the QMR disease profile of d. Disease-to-disease dependencies are not modeled presently in the QMR-DT KB. The current QMR-DT KB contains n = 534 adult diseases and m = 4040findings, with 40,740 arcs depicting disease-to-finding dependencies. Figure 1 The two-level belief-network representation of the current QMR-DT KB. The disease nodes are labeled $d_1,...,d_n$ and the finding nodes are labeled $f_1,...,f_m$. The probabilistic dependencies between diseases and findings are specified with directed arcs between nodes, where an arc points in the causal direction that we assume; that is, we assume that diseases cause findings.

QMR-DT was so densely connected that exact inference was impossible.

Bayesian Network Applications (2)

The most widely used Bayesian Networks were embedded in Microsoft's products (2000):

- Answer Wizard in Office 95;
- Office Assistant in Office 97;
- Over 30 Technical Support Troubleshooters.

Check more on the Economist article (22/3/01) about Microsoft's Bayesian Networks (https://www.cs.ubc.ca/~murphyk/Bayes/econ.22mar01.html).

More modern applications exists being Bayesian Networks a general framework

Bayesian Networks as Unifying Framework

We can have Bayesian Networks with both real and discrete nodes:

- Discrete nodes with continuous parents, we use logistic/softmax distribution;
- Most common distribution for real nodes is Gaussian.

Using these we can obtain a rich toolbox for probabilistic modeling

Bayesian Networks as Unifying Framework

We can have Bayesian Networks with both real and discrete nodes:

- Discrete nodes with continuous paras. S. Roweis, Z. Ghahramani. "A Unifying
- Most common distribution f Review of Linear Gaussian Models", Neural Computation 11(2):305-345. 1999 Using these we can obtain a rich took.

 X_N Mixture factor Analysis Factor Analysis / PCA Mixture of Experts Hierarchical Y_{M} Mixture of Experts

Factor Analysis

JUCITIO

Independent Factor Analysis

Bayesian Networks Wrap-up!

Bayesian Network

- A Directed Acyclic Graph (DAG) where Nodes represent random variables and Edges represent direct influence
- Conditional Probability Distributions (CPD) for priors and "influenced" variables

Joint Distribution Factorization

$$P(X) = P(X_1, X_2, ..., X_N) = \prod_{k=1}^{N} P(X_k | parents(X_k)) = \prod_{k=1}^{N} P(X_k | pa_k)$$

Bayesian Networks Wrap-up!

<u>Independencies</u>

$$P(X,Y,Z) = P(X|Z)P(Y|Z)P(Z)$$

$$P(X,Y|Z) = \frac{P(X,Y,Z)}{P(Z)} = P(X|Z)P(Y|Z)$$

$$P(X,Y,Z) = P(X)P(Y)P(Z|X,Y)$$

$$P(X,Y) = P(X)P(Y)\sum_{Z} P(Z|X,Y) = P(X)P(Y)$$

$$P(X,Y,Z) = P(X)P(Z|X)P(Y|Z)$$

$$P(X,Y|Z) = \frac{P(X,Y,Z)}{P(Z)} = \frac{P(X,Z)P(Y|Z)}{P(Z)}$$
$$= P(X|Z)P(Y|Z)$$

The Sprinkler Example: Making Inference (Return)

We observe the fact that the grass is wet. There are two possible causes for this: (a) the sprinkler is on or (b) it is raining. Which is more likely?

We know how to compute the joint distribution:

The posterior probability can be computed as

$$P(E_1|E_2) = \frac{P(E_1 \land E_2)}{P(E_2)} = \frac{\sum_{row \sim E_1 \land E_2} P(row)}{\sum_{row \sim E_2} P(row)}$$

What is the value of

$$P(S|W) = P(S,W)/P(W) = \sum_{C,R} P(C,S,R,W)/P(W)$$
$$= \frac{\sum_{C,R} P(C,S,R,W)}{\sum_{S,R,C} P(C,S,R,W)} = \cdots$$
Can w

Sprinkler Raining

Pass is wet

Can we save some computation?

The Sprinkler Example: Making Inference (Return)

We observe the fact that the grass is wet. There are two possible causes for this: (a) the sprinkler is on or (b) it is raining. Which is more likely give that yesterday was cloudy?

Let' workout some math!

$$P(S = T | W = T, C = T) = \frac{P(W = T | S = T, C = T)P(S | C = T)}{P(W = T | C = T)} = \frac{?*?}{?}$$

$$P(W = T | C = T) = \sum_{R,S} P(W = T, R, S | C = T)$$

$$= \sum_{R,S} P(W = T | R, S, C = T) P(R, S | C = T)$$

$$= \sum_{R,S} P(W = T | R, S) P(R | C = T) P(S | C = T) = \cdots$$

The Sprinkler Example: Making Inference (Return)

We observe the fact that the grass is wet. There are two possible causes for this: **(a)** the sprinkler is on or **(b)** it is raining. Which is more likely give that yesterday was cloudy?

Can we do it

automatically /

efficiently?

Let' workout some math!

$$P(S = T | W = T, C = T) = \frac{P(W = T | S = T, C = T)P(S | C = T)}{P(W = T | C = T)} = \frac{?*?}{?}$$

$$P(W = T | S = T, C = T) = \sum_{R} P(W = T, R | S = T, C = T)$$

$$= \sum_{R} P(W = T | R, S = T, C = T) P(R | S = T, C = T)$$

$$= \sum_{R} P(W = T | R, S = T) P(R | C = T) = \cdots$$

