《统计计算》教学大纲

一、课程基本信息

课程编号:

课程名称(中/英文):统计计算(Statistical Computing)

课程类别: 选修

学时/学分: 32/2

先修课程: 数学分析、高等代数、数理统计、贝叶斯统计、R语言

适用专业: 统计学专业

教材、教学参考书: 自编讲义; 参考书如下

- 1. 李东风(2016). 统计计算. 高等教育出版社.
- 2. Hoff, P. D. (2009). A first course in Bayesian statistical methods. Springer Science & Business Media.
- 3. Gelman, A., Stern, H. S., Carlin, J. B., Dunson, D. B., Vehtari, A., and Rubin, D. B. (2013). Bayesian data analysis. Chapman and Hall/CRC.

二、 课程达成目标

统计计算是数理统计、计算数学和计算机科学的交叉学科。《统计计算》系统地介绍了统计计算的基本方法和前沿方法,并给出各种算法的统计原理和数值计算的步骤,以及部分例子,使学生掌握使用统计方法解决具体问题的全过程。

三、课程的基本要求

知识: 掌握统计计算的基本方法与原理

能力: 能将统计计算的基本方法应用于随机模拟和统计模型的计算。

素质:对实际数据问题,能构建合理的统计模型并运用统计计算方法对模型进行估计和 推断。

四、教学内容、重点难点及教学设计.

	教学内容	总学时	学时分配		****	±4. W. →A-	*************************************
章节			讲课 (含研讨)	实践	教学重点	教学难 点	教学方案设计(含教 学方法、教学手段)
第1章	随机变量的产 生	3	3		一元随 机变量 的产生	非均匀分 布的抽样	
第2章	随机向量的产 生	3	3		多元随 机变量 的产生	随机矩阵 的抽样	
第3章	随机过程的产 生	2	2		随机过 程的产 生	高斯过程 等随机过 程的产生	
第4章	Gibbs 抽样	1	1		Gibbs 抽 样	Markov chain 理 论	

第5章	MCMC 算法	2	2		M-H, HMC 和 SMC 算法	算法的实 现与收敛 理论	
第6章	EM 算法	1	1		EM 算法	EM 算法的 理论	
第7章	梯度下降法	1	1		梯度下 降法	收敛性分 析	
第8章	Newton 迭代	1	1		Newton 迭代	收敛性分 析	
第9章	坐标下降法	1	1		坐标下 降法	算法应用	
第 10 章	支持向量机	2	2		SVM 模 型	凸优化理 论	
第 11 章	深度学习	1	1		神经网络	卷积神经 网络	
	论文报告与研 讨	18		18			

五、学生报告论文基本要求

每名学生在课程期间至少做一次 25 分钟论文报告(含 5 分钟提问),选取的论文最好涉及复杂统计模型的估计算法,建议报告包含以下几部分: 1. 实际问题及数据介绍 2. 运用的统计模型 3. 模型的估计算法 4. 应用与结果展示。

六、考核方式及成绩评定

	考核内容	成绩比例(%)	备注
平时成绩	课堂参与、提问与回答问题	40	
报告论文	选取论文的难度 x 报告的条理清 晰度 + 回答问题的准确性	60	