# DSA INTERNSHALA Graphs

# What is a Graph?

A graph is a non-linear data structure that consists of following two elements –

- 1. Nodes (vertices) : Nodes will contain data.
- 2. Edges : Each edge is made up of a unique pair of nodes.



## • Undirected graph

In an undirected graph all the edges are bidirectional.



# • Directed graph (Digraph)

In directed graph all the edges are unidirectional.

# Loop in a directed graph

When a node has an edge to itself it is called a self-loop or buckle.



## Cyclic graphs

A cyclic graph consists of a single cycle.

All the nodes are connected in a closed chain.



# Weighted Vs. Unweighted graphs

A weight is numerical value assigned to an edge of a graph.

This numeric value is called an edge.

An unweighted graph does not have weight assigned to any edge.



# Representation through adjacent matrix



# Linked representation





#### Map

- Fast key lookup data structure.
- Different from arrays where indices have to be only integers.
- Indices in maps can be of any data type.
- Indices into the elements of a map are called keys.
- Keys and associated values are stored in the map.
- Keys are always unique.

## Hashing

- A file organization technique to compute unique addresses of records.
- The functions used by this technique are called hash functions.
- Popular hash functions:
  - Division/remainder method
    - Suppose we want to store records of 100 students of a university
    - Each student is assigned a 4-digit unique roll number

- The memory pool consists of 100 2-digit addresses from 00 to 99
- Calculating a unique address for storing record of a student with roll number 6534 -
  - Select a prime number m close to last address 99. Let m = 97
  - Find the remainder after dividing 6534 with 97. R = 35
  - 35 address location is selected from the memory pool for storing the record with roll number 6534

#### Midsquare method

- Calculating a unique address for storing record of a student with roll number 2592.
  - Square the key value 2592
  - Let s = 6718464
  - Now remove the digits from both sides of the square value so that we get a 2digit address t
     = 84
  - 84 address location is selected from the memory pool for storing the record with roll number 2592

#### Folding

- Calculate unique address for roll number 8247-
  - Chop the key value into two parts and add them
  - Let c = 82+47 = 129
  - Remove the leading digit 1 as addresses are 2digit numbers only
  - 29 address location is selected from the memory pool for storing the record with roll number 8247.