第一章布置习题参考解

1-1

This problem concerns wind measurements made by the wireless weather station illustrated in Example 1-1. The wind-speed measurement used a rotating anemometer connected by a shaft to an enclosed disk that is one-half clear and one-half black. There is a light above and a photodiode below the disk *in the enclosure*. The photodiode produces a 3 V signal when exposed to light and a 0 V signal when not exposed to light.

- (a) Sketch the *relative* appearance of voltage waveforms produced by this sensor
- (1) when the wind is calm, (2) when the wind is 10 mph, and (3) when the wind is 100 mph.
- (b) Explain verbally what information the microcomputer must have available and the tasks it must perform to convert the voltage waveforms produced into a binary number representing wind speed in miles per hour.

这个问题涉及例 1-1 中所示无线天气站的风力测量。风速测量采用旋转的风速计,风速计通过轴连接到一个封闭的盘片,盘片一半透明(清晰)一半黑。在这个封闭体内,盘片上面有一个光源(灯),盘片下面有个光电二极管。当光电二极管暴露在光线下,产生一个 3 V 的信号,没有暴露在光线下产生 0 V信号。

- (a) 画出这种传感器产生的电压的波形相对形状
 - (1) 当风是平静的, (2) 当风力为 10 英里, 和 (3) 当风是 100 英里。
- (b) 执行(传感器)产生的电压波形转换成二进制数的风速(用英里每小时表示),口头解释微机必须有那些有用信息。

1-2

Use the scheme in Example 1-1, find the discrete, quantized value of voltage and the binary code for each of the following Fahrenheit temperatures -34,+31,+77, and +108.

P9, Figure 1-4:

 $-40^{\circ} \text{ F} \sim 102^{\circ} \text{ F} \rightarrow 0\text{V} \sim 16\text{V} \rightarrow 0000 \sim 1111$

采样分辨率: (120-(-40))/16=°F 10/1V

温度模拟电压值: V=aF+b

V=0.1F+4

° F	-40	-30	-20	-10	-0	10	20	30	40	50	60	70	80	100	110	120
V	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Bin	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	11111
voltage		0.6V						7.1V					11.7V			14.8V
		-34						31					77			108

1-4

 $96K = 96 \times 2^{10} = 98304$ Bits

 $640M = 640 \times 2^{20} = 671088640$ Bits

 $4G=4\times2^{30}=4294967296$ Bits

1-7

Decimal	Binary	Octal	Hexadecimal
369.3125	101110001.0101	561.24	171.5
189.625	10111101.101	275.5	BD.A
214.625	11010110.101	326.5	D6.A
62407.625	1111001111000111.101	171707.5	F3C7.A

1-12

1-13

算法:

	积	差	部分余	偏商
1	101×10000=1010000	1010110-1010000= 0000110	0000110 ≥101≥0	10000
2	101×01000=0101000	0000110 -0101000 <0	0001110 ≥101	00000
3	101×00100= 0010100	0000110 -0010100<0	0000110 ≥ 101	00000
4	101×00100= 0010100	0000110 -0010100<0	0000110 ≥ 101	00000
4	101×00001= 0000101	$0001110 - 0000101 = 001 \ge 0$	001 <101	00001
	Algorithm stops	Partial Remainder < Divisor	001	10001

1-15

a)

基数		基																		
20	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F	J	Н	I	J

$$(2007)_{10} = (507)_{20}$$

c)

$$(BCI.G)_{20} = 11 \times 20^2 + 12 \times 20^1 + 18 \times 20^0 + 16 \times 20^{-1} = (4658.8)_{10}$$

1-16

a) (BEE)
$$r = (2699)10$$

$$11 \times r^2 + 14 \times r^1 + 14 \times r^0 = 2699$$
$$11 \times r^2 + 14 \times r - 2685 = 0$$

解二次方程得::
$$r = 15$$
 or $r \approx -16.27$ 取: $r = 15$

b)
$$3 \times r^2 + 6 \times r^1 + 5 \times r^0 = 194$$

$$3 \times r^2 + 6 \times r^1 + 5 \times r^0 = 194$$

$$3 \times r^2 + 6 \times r - 189 = 0$$
 解二次方程得: $= -9$ or $r = 7$ 取: $r = 7$

1-19

a)
$$(694)_{10} \!\!=\!\! (0110\ 1001\ 0100)_{BCD} \\ (835)_{10} \!\!=\!\! (1000\ 0011\ 0101)_{BCD}$$

