淘宝前台系统性能分析与优化

讲师介绍

· 产品技术部-中间件&稳定性平台-叔同

• 2005年毕业于吉林大学, 计算机科学与技术专业; 2010年 加入淘宝. 4年行业软件开发经验,3年互联网开发经验; 对构建高性能、可扩展的Web应用十分感兴趣;目前在淘 宝Java中间件团队从事性能优化相关的工作

:淘宝叔同

:jlusdy

优化的目的

・提升容量

- 提升QPS
- 降低Server RT
- 降低服务器成本

・提升用户体验

- 降低响应时间
- 提升用户体验
- 提升转化率和交易量

优化的步骤

• 优化是持续性的工作

- 衡量现状
 - Qps
 - RT
 - 页面大小
 - 每请求内存
- 设定目标
- 性能优化

前台系统结构

课程内容

- ・服务器端分析
- ・服务器端优化
- ・浏览器端分析
- ・浏览器端优化

服务器端分析

章节内容

- 1. 线上压测
- 2. 分析工具
- 3. 时间消耗分析
- 4. 瓶颈查找

单机压测

- Ab
 - ab -c 12 -n 20000 localhost/market.htm
- Httpload
 - http_load -rate 300 -seconds 120 item-urls
 - http_load -parallel 40 -seconds 120 item-urls
- Apache Nginx分流
 - 非幂等性请求
- 得到QPS/RT/页面大小/请求内存数
- 注意事项
 - Offline机器
 - 避免本机压测
 - 关闭Keep alive
 - 关注系统表现

集群压测

- httpload
- 负载均衡配置
- VIP offline机器

- 注意事项
 - 凌晨压测
 - 关注系统表现
 - 关注依赖集群表现
 - 相关人员在场

分析工具

OS

top, sar, vmstat, mpstat, iostat, netstat

JVM

– jps, jstack, jmap, jstat

• GC

Gchisto, PrintGCStats

分析工具

- WebX Profiler
- TProfiler
- BTrace

- VisualVM(Remote Edition), Xming
- 性能分析平台

OProfile/Perf Google-Perftools

服务器端特点

- Velocity
- 页面较大
- ・外部调用多
 - DB, HSF, Tair, Search, TFS
- ・磁盘读写少
 - Log
 - Vmcommon
- · QPS相对较低

时间消耗分析

瓶颈查找

・什么是瓶颈

瓶颈是系统中比较慢的部分,在瓶颈完成前,其他部分需要等待

・ 使用TProfiler

一般性瓶颈

・ CPU计算

- 字符串查找 替换 拼接
- 编码解码
- Gzip压缩

・外部调用

- 网络IO开销
- 序列化反序列化

服务器端优化

章节内容

- 1. 软件升级
- 2. JVM调优
- 3. 应用自身优化

软件升级

- Apache -- > Nginx
 - 提升10%+
- Jboss 4 -- > Tomcat 7
 - 线程池/ NIO
 - 提升10%-
- JVM 1.6.0_23 -- > 1.6.0_32
- OS
 - 32bit -- > 64bit
 - 内核升级 提升40%
- ・ 成本最低 效果明显

JVM调优

- ・ 減少major GC
- ・合理分配堆大小
- ・优化相关参数

PV与GC的关系

吞吐量与GC的关系

NewSize(M)	QPS(3M)	OPS(4M)	OPS(5M)	OPS(6M)	OPS(7M)	GC(count)	GC(real)
78		509	-	292	240		
128		634					
178		704			350		
228	951	739				-	The second second second second
278	983	757	601	490	409	3316	28.62
328	980	767	609	507	427	2734	23.24
378	953	769	610	513	436	2306	19.28
428	996	766	618	521	449	2002	16.8
478	973	757	629	528	450	1756	15.78
528	992	765	633	531	453	1576	13.23
578	1006	786	624	533	466	1431	11.66
628	977	776	634	535	461	1304	11.03
678	1003	775	633	544	462	1202	10.2
728	1001	783	638	534	465	1115	9.19
778	999	792	643	531	474	1037	8.68
828	1014	787	642	538	472	971	8.18
878	1014	782	640	545	471	913	7.59
928	1006	790	645	542	473	859	7.12
978	998	793	643	535	466	812	6.76

选择垃圾收集器

GC Pause

Mostly-Concurrent GC

GC Pause Time

You should try to maximize the number of objects reclaimed in the young generation

JVM堆结构

· 减少young晋升到old的对象

- 合理设置各个分区大小
- Survivor Space Size
- Tenuring Threshold
- 优化系统代码
 - 及时回收对象
 - 减少内存使用
 - 减小页面大小

合理分配堆大小

- ・线上现状
 - 线上参数扫描
- · 新生代占堆的30%-50%
- 新生代500M-->2560M QPS提升70%

优化相关参数

应用自身优化

- · 优化Velocity
- ・压缩模版大小
- ・设置最佳并发数
- 代码瓶颈优化
- ・二方包优化
- ・外部调用
- ・其他优化

- <u>Sketch</u> Char to byte 提升100%
- 解析执行改编译执行 提升10%

页面大小	优化前 QPS	优化前 RT(ms)	优化后的 QPS	优化后 RT(ms)	提升%	
47355	319.05	109.7	455.87	76.776	43%	
48581	306.85	114.061	445.39	78.582	45%	
55735	296.65	117.983	437.46	80.007	47%	
63484	193.69	180.698	302.55	115.684	56%	
83152	180.88	193.498	236	148.305	30%	
92890	170.68	205.064	214.27	163.342	26%	
99732	103.64	337.707	161.46	216.77	56%	
144292	108.76	321.81	148.18	236.199	36%	
67144	148.49	235.714	268.07	130.565	81%	
79703	124.51	281.1	243.64	143.657	96%	
92537	123.85	282.595	190.8	183.44	54%	
127047	117.52	297.829	164.1	213.284	40%	
129479	105.36	332.197	155	225.8	47%	

压缩模板大小

- 删除空行
- 删除多余空格
- 长URL压缩
 - List 减小5%以上
- ・ 用URL別名
 - List 去掉http:头,减小1%
- ・业务上去重
- 模板大小和QPS成反比
 - 大小减少10% QPS提升10%

并发数与资源消耗

最佳并发线程

· 从CPU的角度计算:

– 并发数=((CPU时间+CPU等待时间) / CPU时间) * CPU数量

· 从堆内存的角度计算:

– 并发数= young gc/((小GC时间间隔/rt) * (request memory))

代码瓶颈优化

方法信息	执行时间(ms)	执行次数	总时间(ms)
com/taobao/common/tair/comm/TairClient:invoke:143	4	12996	53478
com/taobao/detail/web/module/screen/ltemDetail:processMarket:1176	9	3796	35687
com/taobao/clientSide/web/ThreadLocalCacheFilter:doFilter:49	3	9753	31563
com/taobao/item/domain/protobuf/ItemDOHolder\$PbltemDO\$Builder:mergeFrom:1693	7	3104	21090
com/taobao/session/TaobaoSessionFilter:doFilter:228	1	9852	14406
com/taobao/biz/item/detail/ao/impl/DefaultItemDetailAO:getItemDetailQuery:550	3	4183	10763
com/taobao/remoting/impl/DefaultRespFuture:get:89	11	840	9064
com/taobao/item/serialize/type/ProtoBufSerializer:deserialize:973	2	3487	7298

・案例

- 去掉吞异常,CPU使用率提高30%

二方包优化

案例

- Bean copy 提升20倍以上
 - 可以做一次不做多次
- IP库 提升1倍
 - 可以提前做的提前做

· 不受业务影响,永久受益

外部调用

- ・ 并行HSF
- ・并行搜索
- · 合并外部调用
- 会降低响应时间,不会提升吞吐量

- · 减少压缩解压
 - Tair client
- 使用更优的序列化协议
 - Protocol Buffers
 - Kryo 比PB快20%

其他优化

・ 类中Field要排序

- 频繁使用的放一起
- 基本类型引用类型分开放
- ・批量处理数组
 - 按行处理不要按列 可以快20倍
- 使用乐观策略
- ・正确处理异常

其他优化

- · 动态资源静态化
- · 后台依赖前台化
 - 降低复杂度
 - 提升性能
- ・浏览器渲染页面
 - 数据远小于页面的场景
- ・善用缓存
 - 整页缓存

性能黄金法则

• 80 % -90% of the end-user response time is spent on the frontend

-- Steve Souders

浏览器端分析

章节内容

- 1. 基础知识
- 2. 请求分析
- 3. 分析工具
- 4. 性能指标

一些限制

・光速

- 光纤中的光速 200000kmps
- 北京到杭州1120km 来回需要10ms

・网速

- 2Mbps(256KBps) 下载50KB页面 需要195ms

网卡

- 服务器1000M网卡
- 虚拟机理论最大QPS = 1000/8/3(台)/50KB * 1024 = 850 🕑

• 浏览器并发数限制

<u>Browser</u>	<u>HTTP/1.1</u>	<u>HTTP/1.0</u>
IE 6,7	2	4
IE 8	6	6
Firefox 2	2	8
Firefox 3	6	6
Safari 3,4	4	4
Chrome 1,2	6	?
Chrome 3	4	4
Opera 9.63,10.00alpha	4	4

了解HTTP

・请求头

- Cache-Control
- keep-alive
- User-Agent
- Cookie
- If-Modified-Since

・响应头

- Expires
- Cache-Control
- Content-Encoding

・状态码

页面请求 🚆

用户角度

页面请求

DNS TCP Request Response Processing onLoad

O Request start time since the beginning

Request phases start and elapsed time relative to the request start:

O 3ms DNS Lookup

+3ms 4ms Connecting

+7ms 0 Sending

+7ms 36ms Waiting

+43ms 17ms Receiving

Event timing relative to the request start:

+858ms DOMContentLoaded

页面请求

实际情况

http://hotspot.taobao.net:9999/hotspot/waterfall

分析工具

Firefox

- Firebug
- YSlow
- NetExport

Chrome

- Speed Tracer
- PageSpeed
- Fiddler 2
- HttpWatch
- dynaTrace AJAX Edition
- WebPagetest/Aol PageTest

性能指标

- ・开始渲染时间
- Domready
- ・可交互时间
- ・首屏时间
- onLoad

线上监测

浏览器端优化

章节内容

- 1. 减少请求数
- 2. 减小响应大小
- 3. 减少DNS查询
- 4. 浏览器渲染优化

减少请求数

- ・ 缓存资源
- ・ 组合CSS/JS
- CSS Sprites
- ・必要时再加载
 - 根据用户行为
- 杜绝404
- ・减少重定向

減小响应大小 🗿

・ 减小HTML

- 页面越小延迟越小
- Gzip
- HTML瘦身
- 减小Cookie大小

・减小静态资源

- 最小化CSS/JS
- 优化图片

HTML瘦身

- ・移除空白
- ・删除属性引号
- ・避免行内样式
- ·为JS变量设置别名
 - document.getElementById -- > \$
- · 使用相对的URL

使用相对URL

http://www.example.com/path/page.html			
完整URL	相对URL	减小	
http://subdomain.example.com	//subdomain.example.com	17.86%	
http://www.example.com/path/page2.html	page2.html	73.68%	
http://www.example.com/index.html	/index.html	66.67%	
http://www.example.com/path2/page.html	/path2/page.html	52.63%	
http://www.example.com/path/page.html#f=bar	#f=bar	86.05%	
http://www.example.com/path/page.html?q=foo	?q=foo	86.05%	

减少域名查询

• 数量上平衡

- 多, DNS查询多
- 少,并发受限制

· 有些域名不推荐使用

img05~8.taobaocdn.com

域名	出现次数
http://www.taobao.com/	
http://a.tbcdn.cn/	18
http://img02.taobaocdn.com/	4*
http://img03.taobaocdn.com/	
http://img04.taobaocdn.com/	
http://img01.taobaocdn.com/	

浏览器渲染优化

- ・首屏优先
 - 减少Dom数量
- ・按需加载
- ・次要信息异步化
 - 多,请求数多
 - 少,页面大
- 避免页面缩放图片

淘宝版YSlow

基本信息

综合评价:C 分数:75

F 控制JS脚本数量

B 控制css样式文件数量

A 控制css背景数量

F 控制图片数量

A 控制iframe数量

B 不使用imgextra 的图片

A 避免404

C减少域名使用

F 控制JS脚本数量 [45/100]帮助

js 21 个, 其中 global x 4, apps x 4, other x 3, kissy x 6, jsdata x 2, ad x 2,

4 x global

- http://a.tbcdn.cn/??s/kissy/1.1.6/kissy-min.js,p/global/1.0/global-min.js,apps/hesper/list/2 gest.js,apps/hesper/list/20110922/base.js?...
- http://a.tbcdn.cn/s/ac.js
- http://a.tbcdn.cn/s/atp.js
- http://a.tbcdn.cn/p/global/1.0/minicart-min.js?...

4 x apps

- http://a.tbcdn.cn/p/market/2011/common_v2.js?...
- http://a.tbcdn.cn/apps/hesper/list/20110922/p4p.js?...
- http://a.tbcdn.cn/apps/hesper/list/??20110922/list.js,20110922/love-hate.js?...
- http://a.tbcdn.cn/apps/shop-street/love-jie/mods/public/streettools/love-street-tools.js?...

3 x other

- http://a.tbcdn.cn/tbra/1.0/tbra-aio.js?...
- http://a.tbcdn.cn/sys/promo/directional_promo.js?...
- http://tmatch.simba.taobao.com/?...

6 x kissy

- http://a.tbcdn.cn/s/kissy/1.0.0/build/monitor/monitor-min.js?...
- http://a.tbcdn.cn/s/kissy/1.1.6/suggest/suggest-pkg-min.js
- http://a.tbcdn.cn/s/kissy/1.1.6/uibase/uibase-pkg-min.js
- http://a.tbcdn.cn/s/kissy/1.1.6/overlay/overlay-pkg-min.js
- http://a.tbcdn.cn/s/kissy/1.1.6/datalazyload/datalazyload-pkg-min.js
- http://a.tbcdn.cn/s/kissy/1.1.6/switchable/switchable-pkg-min.js

总结

- 1、系统的优化程度,取决于你对它的了解程度
- 2、优化的方法有两种,做得更少或者做得更快

推荐资料

- 淘宝开源
- Java Performance
- 构建高性能Web站点
- 高性能网站建设指南
- 高性能网站建设进阶指南
- Troubleshooting Guide for Java SE 6 with HotSpot VM
- Java SE 6 HotSpot Virtual Machine Garbage Collection Tuning
- Step by Step GC Tuning in the HotSpot Java Virtual Machine

Q&A

