Assignment 01

Instructor: Mehrdad Nojoumian Course: Secret Sharing Protocols

Deadline: Feb 14

(1) Which one is a primitive root of 7?
a) 3
b) 5
c) 2
(2) Find an inverse of "23" modulo "120". Also solve the following congruent equation 23x ≡ 3 (mod 120) for x. Use the Euclid's Algorithm and the Extended Euclid's Algorithm.
(3) Use the Fermat's little theorem to find: $3^{52} \pmod{11}$.
(4) What are the prime factorizations of "48" and "60"? Also, find GCD(48, 60) and LCM(48, 60).
(5) What is the decimal expansion of $\left(1\mathrm{B6}\right)_{16}$? What is the Hexadecimal expansion of "485"?
(6) What sequences of pseudorandom numbers is generated using the linear congruential generator $x_{n+1} = (4_{xn}+1) \mod 7$ with seed $x_0 = 3$?
(7) The validity of an ISBN can be evaluated as explained in the class.
 If the first 9 digits are "987654321", what is the check digit x₁₀? Is "9753842601" (where x₁=9 & x₁₀=1) a valid ISBN number?
(8) Trace the Miller-Rabin probabilistic primality-test algorithm for a prime as well as a composite number. Provide details with respect to your tracing.