Microbial Ecology Analysis Report

Contents

1. Alpha Diversity Analysis
shannon Index
simpson Index
2. Beta Diversity Analysis
P-Tab Results
AOV-Tab Results
3. Taxonomic Feature Analysis

1. Alpha Diversity Analysis

1.1 Alpha Diversity Boxplots

```
alpha_boxplot_results <- generate_alpha_boxplot_single(data.obj = data.obj,</pre>
                                                         alpha.obj = alpha.obj,
                                                         alpha.name = alpha.name,
                                                         subject.var = subject.var,
                                                         time.var = time.var,
                                                         t.level = t.level,
                                                         group.var = group.var,
                                                         strata.var = strata.var,
                                                         base.size = base.size,
                                                         theme.choice = theme.choice,
                                                         custom.theme = custom.theme,
                                                         palette = palette,
                                                         pdf = pdf,
                                                         file.ann = file.ann,
                                                         pdf.wid = pdf.wid,
                                                         pdf.hei = pdf.hei)
alpha_boxplot_results
```

[[1]]

time = 1

[[2]]

time = 1

1.2 Alpha Diversity Test Results

shannon Index

term	Estimate	Std.Error	Statistic	P.Value
(Intercept)	3.531	0.03964	89.09	2.234e-26
sexmale	-0.05447	0.04633	-1.176	0.2542
${\tt groupPlacebo}$	0.09928	0.04486	2.213	0.03931

shannon Index Analysis

The variable (Intercept) has a statistically significant impact on the shannon diversity index with an estimate of 3.53.

The variable sexmale does not appear to have a statistically significant effect on the shannon diversity index. The estimate of its effect is -0.05.

The variable groupPlacebo has a statistically significant impact on the shannon diversity index with an estimate of 0.1.

simpson Index

term	Estimate	Std.Error	Statistic	P.Value
(Intercept)	0.9481	0.005097	186	1.911e-32
sexmale	-0.007223	0.005957	-1.213	0.2401
groupPlacebo	0.008501	0.005768	1.474	0.1569

simpson Index Analysis

The variable (Intercept) has a statistically significant impact on the simpson diversity index with an estimate of 0.95.

The variable sexmale does not appear to have a statistically significant effect on the simpson diversity index. The estimate of its effect is -0.01.

The variable groupPlacebo does not appear to have a statistically significant effect on the simpson diversity index. The estimate of its effect is 0.01.

2. Beta Diversity Analysis

2.1 Beta Diversity Ordination

```
beta_ordination_results <- generate_beta_ordination_single(data.obj = data.obj,</pre>
                                                             dist.obj = dist.obj,
                                                             pc.obj = NULL,
                                                             subject.var = subject.var,
                                                             time.var = time.var,
                                                             t.level = t.level,
                                                             group.var = group.var,
                                                             strata.var = strata.var,
                                                             dist.name = dist.name,
                                                             base.size = base.size,
                                                             theme.choice = theme.choice,
                                                             custom.theme = custom.theme,
                                                             palette = palette,
                                                            pdf = pdf,
                                                            file.ann = file.ann,
                                                             pdf.wid = pdf.wid,
                                                            pdf.hei = pdf.hei)
beta_ordination_results
```


[[2]]

2.2 Beta Diversity Test Results

P-Tab Results

Term	D1.p.value	D2.p.value	omni.p.value
sex	0.785	0.832	0.809
group	0.787	0.839	0.814

Beta Diversity PERMANOVA Analysis for Variable: sex

The variable sex does not appear to have a statistically significant effect on the beta diversity according to the PERMANOVA test with the BC distance matrix.

The variable sex does not appear to have a statistically significant effect on the beta diversity according to the PERMANOVA test with the Jaccard distance matrix.

The variable sex does not appear to have a statistically significant effect on the beta diversity according to the omnibus PERMANOVA test.

Beta Diversity PERMANOVA Analysis for Variable: group

The variable group does not appear to have a statistically significant effect on the beta diversity according to the PERMANOVA test with the BC distance matrix.

The variable group does not appear to have a statistically significant effect on the beta diversity according to the PERMANOVA test with the Jaccard distance matrix.

The variable group does not appear to have a statistically significant effect on the beta diversity according to the omnibus PERMANOVA test.

AOV-Tab Results

Variable	DF	Sum_Sq	$Mean_Sq$	F_Statistic	$R_Squared$	P_Value	Distance
sex	1	0.043	0.043	0.644	0.032	0.785	BC
group	1	0.042	0.042	0.621	0.031	0.787	$_{\mathrm{BC}}$
Residuals	19	1.277	0.067	NA	0.938	NA	$_{\mathrm{BC}}$
Total	21	1.362	NA	NA	1	NA	$_{\mathrm{BC}}$
sex	1	0.099	0.099	0.707	0.035	0.832	Jaccard
group	1	0.094	0.094	0.668	0.033	0.839	Jaccard
Residuals	19	2.669	0.14	NA	0.933	NA	Jaccard
Total	21	2.862	NA	NA	1	NA	Jaccard

sex Variable Analysis

The variable sex does not appear to have a statistically significant effect on the beta diversity according to the PERMANOVA test with the BC distance matrix.

The variable sex does not appear to have a statistically significant effect on the beta diversity according to the PERMANOVA test with the Jaccard distance matrix.

group Variable Analysis

The variable group does not appear to have a statistically significant effect on the beta diversity according to the PERMANOVA test with the BC distance matrix.

The variable group does not appear to have a statistically significant effect on the beta diversity according to the PERMANOVA test with the Jaccard distance matrix.

Residuals Variable Analysis

Warning: NAs introduced by coercion

Warning: NAs introduced by coercion

Total Variable Analysis

Warning: NAs introduced by coercion

Warning: NAs introduced by coercion

3. Taxonomic Feature Analysis

3.1 Taxa Barplot

```
t.level = t.level,
                                                      group.var = group.var,
                                                      strata.var = strata.var,
                                                      feature.level = feature.level,
                                                      feature.dat.type = feature.dat.type,
                                                      feature.number = feature.number,
                                                      base.size = base.size,
                                                      theme.choice = theme.choice,
                                                      custom.theme = custom.theme,
                                                      palette = NULL,
                                                      pdf = pdf,
                                                      file.ann = file.ann,
                                                      pdf.wid = pdf.wid,
                                                      pdf.hei = pdf.hei)
taxa_barplot_results
```

[[1]] ## [[1]][[1]]

[[1]][[2]]

##

[[2]]

[[2]][[1]]

[[2]][[2]]

3.2 Taxa Dotplot

```
taxa_dotplot_results <- generate_taxa_dotplot_single(data.obj = data.obj,</pre>
                                                      subject.var = subject.var,
                                                      time.var = time.var,
                                                      t0.level = t.level,
                                                      group.var = group.var,
                                                      strata.var = strata.var,
                                                      feature.level = feature.level,
                                                      feature.dat.type = feature.dat.type,
                                                      features.plot = features.plot,
                                                      top.k.plot = top.k.plot,
                                                      top.k.func = top.k.func,
                                                      prev.filter = prev.filter,
                                                      abund.filter = abund.filter,
                                                      base.size = base.size,
                                                      theme.choice = theme.choice,
                                                      custom.theme = custom.theme,
                                                      palette = palette,
                                                      pdf = pdf,
                                                      file.ann = file.ann,
                                                      pdf.wid = pdf.wid,
                                                      pdf.hei = pdf.hei)
taxa_dotplot_results
```

[[1]]

[[2]]

3.3 Taxa Heatmap

```
feature.level = feature.level,
    feature.dat.type = feature.dat.type,
    features.plot = features.plot,
    top.k.plot = top.k.plot,
    top.k.func = top.k.func,
    prev.filter = prev.filter,
    abund.filter = abund.filter,
    base.size = base.size,
    palette = NULL,
    cluster.cols = NULL,
    cluster.rows = NULL,
    pdf = pdf,
    file.ann = file.ann,
    pdf.wid = pdf.wid,
    pdf.hei = pdf.hei)
```


3.4 Taxa Test

```
## For proportion and other data types, posterior sampling will not be performed!
## The data has 22 samples and 8 features will be tested!
## On average, 1 outlier counts will be replaced for each feature!
## Permutation testing ...
## ......
## Completed!
## For proportion and other data types, posterior sampling will not be performed!
## The data has 22 samples and 21 features will be tested!
## On average, 1 outlier counts will be replaced for each feature!
## Permutation testing ...
## ......
## ......
## Completed!
## ## Taxa Test Results
```

• Phylum:

Table 5: Table continues below

Variable	Group	R.Squared	F.Statistic	Estimate
Actinobacteria	Placebo	0.008281	1.622	0.0371656495862313
Actinobacteria	LGG	0.008281	1.622	0.0371656495862313
Bacteroidetes	Placebo	3.171e-05	0.007819	-0.00522944015520488
Bacteroidetes	LGG	3.171e-05	0.007819	-0.00522944015520488
Cyanobacteria	Placebo	0.007035	0.215	-0.00426210232386587
Cyanobacteria	LGG	0.007035	0.215	-0.00426210232386587
Firmicutes	Placebo	1.488e-08	3.721e-05	-0.00021666603778836
Firmicutes	LGG	1.488e-08	3.721e-05	-0.00021666603778836
Fusobacteria	Placebo	0.004317	0.102	0.000446912815084747
Fusobacteria	LGG	0.004317	0.102	0.000446912815084747
Proteobacteria	Placebo	0.009319	3.424	-0.0250120304262438
Proteobacteria	$_{ m LGG}$	0.009319	3.424	-0.0250120304262438
Spirochaetes	Placebo	0.0612	1.45	-0.00213813810466464
Spirochaetes	LGG	0.0612	1.45	-0.00213813810466464
Verrucomicrobia	Placebo	0.002485	0.3079	-0.0142760721608877
Verrucomicrobia	LGG	0.002485	0.3079	-0.0142760721608877

Table 6: Table continues below

P.Value	Adjusted.P.Value	Mean.Proportion	Mean.Prevalence	SD.Abundance
0.24	0.7104	0.03858	1	0.02768
0.24	0.7104	0.03887	1	0.02551
0.96	0.9874	0.2133	1	0.1164
0.96	0.9874	0.1783	1	0.1418
0.61	0.9815	0.0008715	0.2857	0.002676
0.61	0.9815	0.0006973	0.5	0.0009465
0.98	0.9874	0.7056	1	0.129
0.98	0.9874	0.7568	1	0.1375
0.76	0.9815	2.213e-05	0.2143	5.433e-05
0.76	0.9815	0	0	0
0.09	0.5354	0.01829	1	0.01254
0.09	0.5354	0.01256	1	0.006984
0.32	0.7104	2.993e-05	0.2143	6.179 e - 05
0.32	0.7104	0	0	0
0.64	0.9815	0.02332	1	0.0224
0.64	0.9815	0.01274	1	0.008737

SD.Prevalence
0
0
0
0
0.4688
0.5345
0
0
0.4258

SD.Prevalence
0
0
0
0.4258
0
0
0

• Family:

Table 8: Table continues below

Variable	Group	R.Squared	F.Statistic
Actinobacteria	Placebo	0.008281	1.622
Actinobacteria	LGG	0.008281	1.622
Bacilli	Placebo	0.007595	2.078
Bacilli	$_{ m LGG}$	0.007595	2.078
Bacteroidetes	Placebo	3.171e-05	0.007819
Bacteroidetes	$_{ m LGG}$	3.171e-05	0.007819
Clostridium cluster I	Placebo	0.03478	1.937
Clostridium cluster I	$_{ m LGG}$	0.03478	1.937
Clostridium cluster III	Placebo	0.0009978	0.3254
Clostridium cluster III	LGG	0.0009978	0.3254
Clostridium cluster IV	Placebo	0.0005453	0.3611
Clostridium cluster IV	$_{ m LGG}$	0.0005453	0.3611
Clostridium cluster IX	Placebo	0.02899	5.118
Clostridium cluster IX	$_{ m LGG}$	0.02899	5.118
Clostridium cluster XI	Placebo	0.0002079	0.2086
Clostridium cluster XI	$_{ m LGG}$	0.0002079	0.2086
Clostridium cluster XIII	Placebo	0.02201	0.4589
Clostridium cluster XIII	$_{ m LGG}$	0.02201	0.4589
Clostridium cluster XIVa	Placebo	3.245 e - 05	0.03652
Clostridium cluster XIVa	$_{ m LGG}$	3.245 e - 05	0.03652
Clostridium cluster XV	Placebo	0.00284	0.4938
Clostridium cluster XV	$_{ m LGG}$	0.00284	0.4938
Clostridium cluster XVI	Placebo	0.001252	0.1505
Clostridium cluster XVI	$_{ m LGG}$	0.001252	0.1505
Clostridium cluster XVII	Placebo	0.00913	0.6283
Clostridium cluster XVII	$_{ m LGG}$	0.00913	0.6283
Clostridium cluster XVIII	Placebo	0.0008333	0.1064
Clostridium cluster XVIII	$_{ m LGG}$	0.0008333	0.1064
Cyanobacteria	Placebo	0.007035	0.215
Cyanobacteria	$_{ m LGG}$	0.007035	0.215
Fusobacteria	Placebo	0.004317	0.102
Fusobacteria	LGG	0.004317	0.102
Proteobacteria	Placebo	0.009319	3.424
Proteobacteria	LGG	0.009319	3.424
Spirochaetes	Placebo	0.0612	1.45
Spirochaetes	LGG	0.0612	1.45
Uncultured Clostridiales	Placebo	4.582e-05	0.004194
Uncultured Clostridiales	$_{ m LGG}$	4.582e-05	0.004194

Variable	Group	R.Squared	F.Statistic
Uncultured Mollicutes	Placebo	0.008615	0.4431
Uncultured Mollicutes	$_{ m LGG}$	0.008615	0.4431
Verrucomicrobia	Placebo	0.002485	0.3079
Verrucomicrobia	LGG	0.002485	0.3079

Table 9: Table continues below

Estimate	P.Value	Adjusted.P.Value	Mean.Proportion
0.0371656495862313	0.28	0.8956	0.03858
0.0371656495862313	0.28	0.8956	0.03887
-0.0380311099488204	0.21	0.8956	0.04462
-0.0380311099488204	0.21	0.8956	0.04312
-0.00522944015520488	0.95	0.949	0.2133
-0.00522944015520488	0.95	0.949	0.1783
-0.00778505857179085	0.18	0.8956	0.0004309
-0.00778505857179085	0.18	0.8956	0.0003633
0.00307464254072209	0.61	0.8984	0.001921
0.00307464254072209	0.61	0.8984	0.002703
0.022308499587939	0.53	0.8984	0.2038
0.022308499587939	0.53	0.8984	0.2228
0.0284837310780048	0.07	0.6768	0.006706
0.0284837310780048	0.07	0.6768	0.006017
0.00223243108522325	0.64	0.8984	0.005256
0.00223243108522325	0.64	0.8984	0.005965
0.000419187792751176	0.71	0.8984	7.779e-06
0.000419187792751176	0.71	0.8984	0
-0.00785830208245519	0.86	0.9484	0.4268
-0.00785830208245519	0.86	0.9484	0.4572
-0.00433160436417467	0.48	0.8984	0.001428
-0.00433160436417467	0.48	0.8984	0.001955
0.00485366929249193	0.7	0.8984	0.003553
0.00485366929249193	0.7	0.8984	0.005731
0.00668670952996451	0.48	0.8984	0.001052
0.00668670952996451	0.48	0.8984	0.00137
-0.00387419196078766	0.77	0.8984	0.004027
-0.00387419196078766	0.77	0.8984	0.004411
-0.00426210232386587	0.62	0.8984	0.0008715
-0.00426210232386587	0.62	0.8984	0.0006973
0.000446912815084747	0.75	0.8984	2.213e-05
0.000446912815084747	0.75	0.8984	0
-0.0250120304262438	0.11	0.7879	0.01829
-0.0250120304262438	0.11	0.7879	0.01256
-0.00213813810466464	0.44	0.8956	2.993e-05
-0.00213813810466464	0.44	0.8956	0
-0.000912135473189165	0.96	0.949	0.004694
-0.000912135473189165	0.96	0.949	0.004054
-0.00648233320320809	0.51	0.8984	0.001222
-0.00648233320320809	0.51	0.8984	0.001134
-0.0142760721608877	0.6	0.8984	0.02332
-0.0142760721608877	0.6	0.8984	0.01274

Mean.Prevalence	SD.Abundance	SD.Prevalence
1	0.02768	0
1	0.02551	0
1	0.02371	0
1	0.03268	0
1	0.1164	0
1	0.1418	0
0.8571	0.0005898	0.3631
0.625	0.0004214	0.5175
1	0.0009628	0
1	0.001215	0
1	0.06958	0
1	0.09082	0
1	0.005046	0
1	0.005356	0
1	0.001698	0
1	0.001659	0
0.07143	2.91e-05	0.2673
0	0	0
1	0.109	0
1	0.1352	0
1	0.001012	0
1	0.002454	0
1	0.00294	0
1	0.006604	0
1	0.001502	0
1	0.002487	0
0.9286	0.002957	0.2673
1	0.002947	0
0.2857	0.002676	0.4688
0.5	0.0009465	0.5345
0.2143	5.433e-05	0.4258
0	0	0
1	0.01254	0
1	0.006984	0
0.2143	6.179e-05	0.4258
0	0	0
1	0.005238	0
1	0.003825	0
0.7857	0.003023	0.4258
0.75	0.001711	0.4629
1	0.0224	0.1023
1	0.008737	0

3.5 Taxa Boxplot for Significant Taxa

```
group.var = group.var,
                                                               strata.var = strata.var,
                                                               feature.level = feature.level,
                                                               feature.dat.type = feature.dat.type,
                                                               features.plot = significant_taxa,
                                                               top.k.plot = top.k.plot,
                                                               top.k.func = top.k.func,
                                                               Transform = Transform,
                                                               prev.filter = prev.filter,
                                                               abund.filter = abund.filter,
                                                               base.size = 10,
                                                               theme.choice = theme.choice,
                                                               custom.theme = custom.theme,
                                                               palette = palette,
                                                               pdf = pdf,
                                                               file.ann = file.ann,
                                                               pdf.wid = pdf.wid,
                                                               pdf.hei = pdf.hei)
names(taxa_boxplot_results) <- feature.level</pre>
taxa_boxplot_results
```

\$Phylum

##

\$Family


```
taxa_indiv_boxplot_results <- generate_taxa_indiv_boxplot_single(data.obj = data.obj,</pre>
                                    subject.var = subject.var,
                                    time.var = time.var,
                                    t.level = t.level,
                                    group.var = group.var,
                                    strata.var = strata.var,
                                    feature.level = feature.level,
                                    features.plot = significant taxa,
                                    feature.dat.type = feature.dat.type,
                                    top.k.plot = top.k.plot,
                                    top.k.func = top.k.func,
                                    Transform = Transform,
                                    prev.filter = prev.filter,
                                    abund.filter = abund.filter,
                                    base.size = 10,
                                    theme.choice = theme.choice,
                                    custom.theme = custom.theme,
                                    palette = palette,
                                    pdf = TRUE,
                                    file.ann = file.ann,
                                    pdf.wid = pdf.wid,
                                    pdf.hei = pdf.hei)
```

The boxplot results for individual taxa or features can be found in the current working directory. The relevant file is named: taxa_indiv_boxplot_single_subject_subject_time_time_feature_level_Phylum_transform_log_prev_filter_0_abund_filter_0_group_group_strata_sex_Phylum.pdf. Please refer to this file for more detailed visualizations. The boxplot results for individual taxa or features can be found in the current working directory. The relevant file is named: taxa_indiv_boxplot_single_subject_subject_time_time_feature_level_Family_transform_log_prev_filter_0_abund_filter_0_group_group_strata_sex_Family.pdf. Please refer to this file for more detailed visualizations.