Frühjahr 23 Themennummer 2 Aufgabe 3 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

a) Zeigen Sie, dass die Funktion

$$f: \mathbb{C} \to \mathbb{C}, \ 2z^2 + 2 + e^{iz}$$

genau eine Nullstelle ξ in $U \coloneqq \{z \in \mathbb{C} : |z-i| < 1\}$ besitzt und diese einfach ist. Folgern Sie hieraus, dass

$$g: U \setminus \{\xi\} \to \mathbb{C}, \ z \mapsto \frac{e^z}{f(z)}$$

keine Stammfunktion besitzt.

b) Es sei G ein Gebiet in $\mathbb{C}, f: G \to \mathbb{C}$ holomorph, $u \coloneqq \text{Re}(f), v \coloneqq \text{Im}(f)$. Skizzieren Sie die Menge

$$Q := \{ w \in \mathbb{C} : |\text{Re}(w)| + |\text{Im}(w)| = 1 \}$$

und zeigen Sie: Falls |u(z)| + |v(z)| = 1 für jedes $z \in G$, so ist f konstant.

Lösungsvorschlag:

a) Wir benutzen den Satz von Rouché und prüfen alle Voraussetzungen. Wir wollen den Satz auf die Funktionen $h_1: B_2(i) \to \mathbb{C}, h_1(z) = 2z^2 + 2$ und $h_2: B_2(i) \to \mathbb{C}, h_2(z) = e^{iz}$ und die Kurve $\Gamma: [0,2\pi] \to \mathbb{C}, \Gamma(t) = i + e^{it}$ anwenden. Natürlich sind die Funktionen holomorph auf \mathbb{C} , die Kurve zusammenziehbar und $B_2(i)$ ist offen und beschränkt. Auf der Spur von Γ liegen keine Nullstellen oder Pole von h_1 , denn es gibt keine Pole und die Nullstellen von f in \mathbb{C} sind i und -i, die beide nicht auf der Spur liegen. Für alle $z \in \mathbb{C}\backslash \mathrm{Spur}(\Gamma)$ gilt $\mathrm{Ind}_z(\Gamma) \neq 0 \iff z \in U \iff \mathrm{Ind}_z(\Gamma) = 1$ und für alle $z \in \mathrm{Spur}(\Gamma)$ gilt

$$|h_1(z)| = |2(i+e^{it})^2 + 2| = |4ie^{it} + 2e^{2it}| \ge ||4ie^{it}| - |2e^{2it}|| = 2$$

sowie

$$|h_2(z)| = |e^{ie^{it}-1}| = e^{\operatorname{Re}(i\cos(t)-\sin(t)-1)} = e^{-\sin(t)-1} \le e^0 = 1,$$

also $|h_2(z)| \le 1 < 2 \le |h_1(z)|$. Damit sind alle Voraussetzungen erfüllt und es folgt

$$\sum_{z \in U} \operatorname{Ord}_f(z) = \sum_{z \in U} \operatorname{Ord}_{h_1 + h_2}(z) = \sum_{z \in U} \operatorname{Ord}_{h_1}(z) = 1,$$

da h_1 genau die Nullstellen i und -i besitzt von denen nur i in U liegt. Also gibt es genau eine Nullstelle ξ von f in U und diese ist von erster Ordnung, d. h. einfach. Demnach hat g bei ξ einen Pol erster Ordnung und das Residuum ist durch $\mathrm{Res}_g(\xi) = \frac{e^{\xi}}{f'(\xi)} = \frac{e^{\xi}}{4\xi + ie^{i\xi}} \neq 0$ gegeben (nicht 0, da der Zähler nie 0 werden kann). Das Integral von g über den geschlossenen Weg $\gamma: [0,2\pi] \to \mathbb{C}, \ \gamma(t) = i + \frac{1}{2}e^{it}$ ist nach dem Residuensatz also ebenfalls nicht 0 und damit besitzt g keine Stammfunktion.

b) Wir zeigen zuerst, dass das Innere von Q die leere Menge ist. Ist $z \in Q$ irgendein Punkt, so ist entweder der Realteil oder der Imaginärteil von 0 verschieden, wir nehmen jetzt an, dass es der Realteil ist, denn für den Imaginärteil kann man analog argumentieren. Ist also $\text{Re}(z) \neq 0$, so verschwindet auch der Betrag nicht. Wir betrachten jetzt für $0 < \varepsilon < \frac{\text{Re}(z)}{2}$ die Zahl $z + \varepsilon$, dann ist $\text{Im}(z) = \text{Im}(z + \varepsilon)$, also sind auch die Beträge gleich, es gilt aber $|\text{Re}(z + \varepsilon)| = |\text{Re}(z) + \varepsilon| \neq |\text{Re}(z)|$, da wir keine Vorzeichenwechsel im Argument haben und die Argumente verschieden sind (auf $(-\infty, 0)$ und $(0, \infty)$ ist die Beträgsfunktion injektiv). Also ist

$$|\operatorname{Re}(z+\varepsilon)| + |\operatorname{Im}(z+\varepsilon)| = |\operatorname{Re}(z+\varepsilon)| + |\operatorname{Im}(z)| \neq |\operatorname{Re}(z)| + |\operatorname{Im}(z)| = 1$$

und $z + \varepsilon \notin Q$. D. h. aber, dass z kein innerer Punkt ist und weil z beliebig in Q gewählt war, dass es gar keinen inneren Punkt von Q gibt. Nun zur Aufgabe: Wäre f nicht konstant, so müsste nach dem Satz von der Gebietstreue auch das Bild von f ein Gebiet sein, insbesondere also offen. Nach der Voraussetzung ist das Bild aber eine Teilmenge von Q und die einzige (in \mathbb{C} !) offene Teilmenge von Q ist die leere Menge. Dies liefert einen Widerspruch, also ist f konstant.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$