# Локально-аппроксимирующие модели в анализе сигналов головного мозга

Маркин В. О., Исаченко Р. В, Стрижов В. В.

Московский Физико-Технический Институт

29 ноября 2019 г.

# Общее описание исследования

#### Задача

По записям электрических импульсов головного мозга восстановить траекторию движения руки.

#### Проблема

Исходное признаковое пространство избыточно, признаки сильно коррелированы.

#### Предлагаемое решение

Построить локальную модель, учитывающую пространственную структуру сигнала. Использовать параметры модели как новое признаковое описание.

# Описание данных

- ullet s(t)  $\in \mathbb{R}^{N_{\mathsf{ch}}}$  сигналы.  $N_{ch}$  число электродов.  $^1$
- ullet Координаты электродов  $Z = \left\{ (\mathbf{z_i} \in \mathbb{R}^2, j \in \{1 \dots, N_{ch}\} \right\}$
- Положение кисти в пространстве  $\mathbf{v}(t) \in \mathbb{R}^3$





Координата руки

Пространственное расположение электродов

<sup>&</sup>lt;sup>1</sup>Chao ZC, Nagasaka Y, Fujii N (2010). "Long-term asynchronous decoding of arm motion using electrocorticographic signals in monkeys." Frontiers in Neuroengineering 3:3.

# Формальная постановка задачи

#### Общая схема решения

$$\mathbf{s}(t) \in \mathbb{R}^{N_{\mathsf{ch}}} \xrightarrow{\mathsf{local}} \underline{\mathbf{\Theta}}_m \in \mathbb{R}^{N_{\mathsf{f}} \times T \times F} \xrightarrow{\mathsf{PLS}} \mathbf{y}_m \in \mathbb{R}^3$$

 $N_{\rm f}$  – число признаков в новом описании

F — число частот

Т – число моментов времени в предыстории

## Локальная модель временного ряда

Локальная модель временного ряда  $\{s_m, m \in \overline{1,M}\}$  – параметрическое отображение

$$g:\, [s_{m-t},\dots s_m] \longrightarrow [\hat{s}_{m-t},\dots \hat{s}_m], \forall m \in \overline{t,M}$$

где параметры этого отображения  $\theta_m$  используются в качестве нового описания момента времени m. При настройки параметров локальной модели не используются ответы  $y_m$ .

# Используемые локальные модели

**Основная идея:** для описания каждого момента времени учесть его предысторию, пространственные и частотные свойства сигнала.

#### Схема проведенных преобразований

$$\mathbf{s}(t) \in \mathbb{R}^{N_{\mathsf{ch}}} \xrightarrow{\text{spectral}} \underline{\mathbf{X}}_m \in \mathbb{R}^{N_{\mathsf{ch}} \times T \times F} \xrightarrow{\quad \mathsf{ND} \quad } \underline{\mathbf{\Theta}}_m \in \mathbb{R}^{N_{\mathsf{f}} \times T \times F}$$

Процесс построения частотно-временного описания  $\underline{\mathbf{X}}_m$  использует вейвлет-преобразование.  $^2$ 



<sup>&</sup>lt;sup>2</sup>Anastasia Motrenko and Vadim Strijov. Multi-way feature selection for ecog-based brain-computer84interface. Expert Systems with Applications, 114, 07 2018.

# Вейвлет-преобразование

Дискретное вейвлетпреобразование сигнала s(t) с вейвлетом  $\psi(t)$ :

$$\psi_{m,n} = a_0^{-m/2} \psi \left( \frac{t - nb_0}{a_0^m} \right)$$
(1)
$$T_{m,n} = \int_{-\infty}^{\infty} x(t) \, \psi_{m,n}^*(t) \, dt$$
(2)

$$T_{m,n} = \int_{-\infty}^{\infty} x(t) \, \psi_{m,n}^*(t) \, dt \quad (2)$$



Рис.: Вейвлет Морле, используемый в задаче

Данное преобразование является классическим в задачах ECoG и используется в большинстве работ посвященных этой теме.

# Аппроксимация нормальным распределением

Для учета пространственной структуры сигнала предлагается в качестве признаков использовать выборочные оценки параметров нормального распределения.

$$\mathbf{m}^{(f,t)} = \frac{\sum_{j=1}^{N_{ch}} s_j \mathbf{z}_j}{\sum_{j=1}^{N_{ch}} s_j}$$
(3)

$$\Sigma^{(f,t)} = \frac{1}{N_{ch}} Z^T diag(s) Z \tag{4}$$

а так же их производные по времени

$$\mathbf{m}'^{(f,t)} = \frac{\mathbf{m}^{(f,t+1)} - \mathbf{m}^{(f,t-1)}}{2\Delta t}$$
,  $\Sigma'^{(f,t)} = \frac{\Sigma^{(f,t+1)} - \Sigma^{(f,t-1)}}{2\Delta t}$ . Число признаков  $N_f$  при таком подходе равно  $10$ .

### Предсказание

• Предполагается линейная зависимость признаков и целевой переменной

Где матрица параметров  $\Theta$  находится из условия минимизации  $L_2$ -нормы невязки

$$\mathbf{\Theta}^* = \arg\max_{\mathbf{\Theta}} \|\mathbf{Y} - \mathbf{X}\mathbf{\Theta}\| \tag{6}$$

• В данной задаче размерность признакового пространства  $N_f \times T \times F \approx 1000$ , причем признаки сильно коррелированы между собой. Предлагается использовать метод, понижающий размерность, в частности, PLS

# Метод проекции в скрытое пространство

• Алгоритм PLS находит матрицы  $\mathbf{T}, \mathbf{U} \in \mathbb{R}^{m imes I}$ , описывающую исходные матрицы  $\mathbf{X}$  и  $\mathbf{Y}$ . Метод позволяет учитывать зависимость исходной и целевой переменных. <sup>3</sup>

$$\mathbf{X}_{m \times n} = \mathbf{T}_{m \times l} \cdot \mathbf{P}_{l \times n} + \mathbf{F}_{m \times n} = \sum_{k=1}^{l} \mathbf{t}_{k} \cdot \mathbf{p}_{k} + \mathbf{F}_{m \times n}, \tag{7}$$

$$\mathbf{Y}_{m \times r} = \mathbf{U}_{m \times l} \cdot \mathbf{Q}_{l \times r} + \mathbf{E}_{m \times r} = \sum_{k=1}^{l} \mathbf{u}_{k} \cdot \mathbf{q}_{k} + \mathbf{E}_{m \times r}.$$
 (8)



 $<sup>^3</sup>$ Isachenko R.V., Strijov V.V. Quadratic Programming Optimization with Feature Selection for Non-linear Models // Lobachevskii Journal of Mathematics, 2018, 39(9): 1179-1187.

PLS - итеративный алгоритм, находящий последовательно  $\mathbf{t}_k, \mathbf{u}_k, \mathbf{p}_k, \mathbf{q}_k$  таким образом, что корреляция между матрицами  $\mathbf{U}, \mathbf{T}$  - максимальна. Метод позволяет учитывать зависимость исходного и целевого пространства.



Иллюстрация метода для случая размерности 2

# Описание экспериментов

- 5 временных рядов по 20 минут, первые 15 минут обучение, остальные 5 минут тест
- метрика: коэффициент корреляции между предсказанной траекторией и истинной



Зависимость предсказанной и истинной траекторий от времени

# Результаты сравнения методов

Проведено сравнение результатов работы алгоритма PLS на данных содержащих только частотно-временное описание сигнала,  $\underline{\mathbf{X}}_m$ , и данных, дополнительно учитывающих пространственную структуру,  $\underline{\mathbf{\Theta}}_m$  Из графика видно, что метод предложенный в работе меньше переобучается и дает лучшие результаты.



#### Заключение

- Предложен метод, учитывающий пространственную структуру сигнала в задаче анализа ECoG.
- Разработанный подход понижает размерность задачи в 3 6 раз.
- Проведен численный эксперимент, показывающий эффективность предложенного решения.
- Подтверждена гипотеза об избыточности признаков и необходимости понижения размерности.

# Дальнейшие исследования

- Использование смеси моделей для лучшего разделения фаз движения и покоя
- Применение локальных моделей к целевой функции
- Борьба с переобучением