2

WHAT IS CLAIMED IS:

1	1. A method for casting a polyacrylamide gel in a plastic gel enclosure,
2	said method comprising
3	(a) forming an aqueous solution of a monomer mixture comprising
4	acrylamide, a crosslinking agent, and an oxygen scavenger which is a member
5	selected from the group consisting of sodium sulfite, sodium bisulfite, sodium
6	thiosulfate, sodium lignosulfate, ammonium bisulfite, hydroquinone,
7	diethylhydroxyethanol, diethylhydroxylamine, methylethylketoxime, ascorbic acid,
8	erythorbic acid, and sodium erythorbate; and
9	(b) polymerizing said monomer mixture in a plastic gel enclosure to form a
0	polyacrylamide gel.
1	2. A method in accordance with claim 1 in which said monomer mixture
2	further comprises a free radical initiator.
1	3. A method in accordance with claim 1 in which said oxygen scavenger
2	is a member selected from the group consisting of sodium sulfite, sodium bisulfite, sodium
3	thiosulfate, sodium lignosulfate, and ammonium bisulfite.
1	4. A method in accordance with claim 1 in which said oxygen scavenger
1 2	is a member selected from the group consisting of sodium sulfite and sodium bisulfite.
2	is a member selected from the group consisting of sodium suffice and sodium distinct.
1	5. A method in accordance with claim 1 in which said oxygen scavenger
2	is sodium sulfite.
1	6. A method in accordance with claim 1 in which the concentration of
2	said oxygen scavenger in said aqueous solution is from about 1 mM to about 30 mM.
1	7. A method in accordance with claim 3 in which the concentration of
2	said oxygen scavenger in said aqueous solution is from about 1 mM to about 30 mM.
1	8. A method in accordance with claim 3 in which the concentration of
2	said oxygen scavenger in said aqueous solution is from about 3 mM to about 15 mM.
1	9. A method in accordance with claim 1 in which said plastic gel

enclosure is a member selected from the group consisting of polycarbonate, polystyrene,

1

2

- stryene-acrylonitrile copolymer, polyethylene terephthalate, polyethylene terephthalate
 glycolate, and poly(ethylene naphthalenedicarboxylate).
- 1 10. A method in accordance with claim 1 in which said monomer mixture 2 comprises acrylamide and N,N'-methylene-bisacrylamide in aqueous solution, the total of 3 said acrylamide and N,N'-methylene-bisacrylamide amounting to from about 5 g to about 4 30 g per milliliter of said aqueous solution.
 - 11. A method in accordance with claim 1 in which said monomer mixture comprises acrylamide and N,N'-methylene-bisacrylamide at a combined concentration of from about 10 g to about 20 g per milliliter of said aqueous solution.
 - 12. A method in accordance with claim 10 in which the weight ratio of acrylamide to N,N'-methylene-bisacrylamide is from about 10:1 to about 100:1.
 - 13. A method in accordance with claim 10 in which the weight ratio of acrylamide to N,N'-methylene-bisacrylamide is from about 25:1 to about 50:1.