LØYSING ØVING 8

Løysing oppgåve 1 Elektron i potensial med to δ -funksjonar

a) Ein deltabrønn er grensa av ein veldig djup og veldig trang brønn. Inne i ein slik brønn blir E-V svært stor, slik at den relative krumninga $\psi''/\psi=2m_e/\hbar^2[V-E]$ blir svært stor og negativ. ψ krummar da svært raskt mot aksen. I grensa får den ein knekk, mot aksen. Ved ein deltabarriere er det motsett. Her knekkjer energieigenfunksjonen ψ utover frå aksen.

Ein bunden tilstand i dette potensialet må ha negativ energi E. Den relative krumninga $\psi''/\psi = 2m_e/\hbar^2[V(x) - E] = 2m_e/\hbar^2[V(x) + |E|]$ blir då positiv for alle $x \neq 0$, b. Difor må ψ krumme utover frå aksen unntatt i origo.

b) Med E=0 følgjer det at ψ_0'' må vere lik null og ψ_0 lineær i alle område der V(x)=0, m.a for x<0. Då ein energieigenfunksjon ikkje får lov å divergere, må den da vere konstant i dette området. Denne konstanten kan vi like godt sette lik 1, da denne tilstanden uansett ikkje er normerbar. (Av same grunn må den også vere konstant for x>b.) Frå det oppgjevne diskontnuitetskravet følgjer det nå at

$$\psi_0'(0^+) = \psi_0'(0^-) - \frac{2g}{a_0}\psi_0(0) = -\frac{2g}{a_0}.$$

Sidan ψ_0 er lineær i området 0 < x < b, følgjer det at $\psi_0(x) = 1 - 2gx/a_0$ i dette området.

c) For $0 < b < a_0/2g \equiv b_0$ ser vi at $\psi_0(b)$ er positiv:

$$\psi_0(b) = 1 - \frac{2gb}{a_0} = 1 - \frac{b}{b_0} > 0.$$

Sidan ψ_0 skal vere lineær for x>b og ikkje får lov å divergere, må den vere konstant i dette området:

$$\psi_0(x) = \psi_0(b) = 1 - \frac{2gb}{a_0}$$
 for $x > b$.

Diskontinuiteten i x = b gjev då

$$0 - \left(-\frac{2g}{a_0}\right) = \frac{2f}{a_0}\psi_0(b).$$

f-verdien som gjev E=0 for denne tilstanden er ein funksjon av b:

$$f_0(b) = \frac{g}{\psi_0(b)} = \frac{g}{1 - 2gb/a_0}.$$

- (i) I grensa $b \to 0$ ser vi at $f_0(0) = g$: Dei to deltafunksjonane opphever då kvarandre, og dette er akkurat det som trengst for å gje oss eigenfunksjonen $\psi_0 = 1$, med energien E = 0.
- (ii) For $b = a_0/4g$ er $f_0 = 2g$, slik at barrierehøgda må vere dobbelt så stor som brønndjupna for at tilstanden ψ_0 skal få null energi.
- (iii) Når b nærmar seg grensa $a_0/2g \ (\equiv b_0)$, ser vi at barrierehøgda f_0 går mot uendeleg for at ψ_0 skal ha energien E=0.
- d) For $b = a_0/4g$ får ψ_0 forma

La oss prøve å finne ei løysing på forma $\psi = Ce^{\kappa x}$ for x < 0, og nøste vidare derifrå. Ein eventuell bunden tilstand må nemleg vere på denne forma til venstre for origo. Her treng ikkje κ å vere stor, men den må vere positiv. Sidan $\psi'(0^-)$ er positiv, følgjer det frå diskontinuiteten i origo at ψ' blir større enn ψ'_0 til høgre for origo. Og fordi ψ i motsetning til ψ_0 må krumme utover frå aksen for 0 < x < b, blir $\psi'(b^-)$ endå litt større enn $\psi'_0(b^-)$. Frå diskontinuitetskravet i x = b følgjer det at løysinga ψ får ein positiv derivert i $x = b^+$. Til høgre for dette punktet skal ψ igjen krumme utover.

Denne løysinga vil difor gå mot uendeleg, og er såleis ingen energieigenfunksjon. Eigenfunksjonen ψ_0 er difor grunntilstanden, og siden grunntilstanden er ubunden, har vi ingen bundne tilstandar for dette systemet.

e) Då ψ' må vere endeleg på begge sider av punktet x=b, følgjer det fra diskontinuitetskravet

$$\psi'(b^+) - \psi'(b^-) = \frac{2f}{a_0} \psi(b)$$

at $\psi(b)$ må gå mot null i grensa $f \to \infty$. I området 0 < x < b kan vi skrive den generelle løysinga som ein lineærkombinasjon

$$\psi = Ae^{\kappa x} + Be^{-\kappa x} = A'e^{\kappa(x-b)} + B'e^{-\kappa(x-b)}.$$

Kravet $\psi(b) = 0$ gjev då B' = -A', slik at bølgjefunksjonen i dette området er på forma

$$\psi = A'(e^{\kappa(x-b)} - e^{-\kappa(x-b)}) = C \sinh[\kappa(x-b)], \text{ q.e.d.}$$

For $x<0\,$ må vi ha $\psi=De^{\kappa x}$, då $e^{-\kappa x}$ divergerer. Diskontinuitetskravet i origo gjev då

$$-\frac{2g}{a_0} = \frac{\psi'(0^+)}{\psi(0)} - \frac{\psi'(0^-)}{\psi(0)} = \kappa \coth[\kappa(-b)] - \kappa,$$

eller

$$\kappa b(\coth(\kappa b) + 1) = \frac{2gb}{a_0} \ (\equiv \frac{b}{b_0}).$$

Ein kan omforme venstresida til $2\kappa b/(1-e^{-2\kappa b})$, slik at diskontinuitetskravet som gjev energien $E=-\hbar^2\kappa^2/(2m_e)$ kan skrivast på forma

$$1 - e^{-2\kappa b} = \frac{2\kappa b}{b/b_0}.$$

Figuren viser ei prinsippskisse av venstre - og høgresids for $b > b_0$. Vi merkar oss at den deriverte av venstresida i origo (med omsyn på variabelen $2\kappa b$) er lik 1, medan den deriverte av høgresida er $b_0/b < 1$. Difor får vi eit skjæringspunkt for positiv κ , og såleis ein bunden grunntilstand. For $b = 2b_0 = a_0/g$ skal vi løyse likninga

$$2(1 - e^{-x}) = x$$
, der $x = 2\kappa b$.

Eit par forsøk med kalkulatoren gjev $x = 2\kappa b \approx 1.5936$. Innsetting gjev då

$$E = -\frac{\hbar^2 \kappa^2}{2m_e} = \dots = -g^2 \frac{\hbar^2}{2m_e a_0^2} \cdot \frac{x^2}{4}.$$

Forholdet mellom denne energien og energien for f = 0 er altså $x^2/4 \approx 0.635$. Løysinga ser slik ut:

Merk at vi får same løysing med ein hard vegg i x = b.