# An Event Study on Cash Dividend Declaration

—— The Case of Apple Inc.

BY

# Wu Xianyuan



Lee Kong Chian School of **Business** 

# LEE KONG CHIAN SCHOOL OF BUSINESS SINGAPORE MANAGEMENT UNIVERSITY

SINGAPORE, MARCH 2022

# Contents

| 1 | Div                                  | ridend Fluctuation                                                                                                                                                                                                                                | 2                                         |
|---|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 2 | Esti<br>2.1<br>2.2                   | Market Model                                                                                                                                                                                                                                      | 2<br>3                                    |
| 3 | Eve 3.1 3.2                          | Benchmark Models and Test Statistics 3.1.1 Market Model 3.1.2 CAPM Equation Model 3.1.3 Market Adjusted Excess Return 3.1.4 Mean Adjusted Excess Return Hypothesis Test Results 3.2.1 Market Model 3.2.2 CAPM 3.2.3 Market Adjusted Excess Return | 4<br>4<br>4<br>4<br>5<br>5<br>6<br>7<br>8 |
| 4 | Cor                                  | nclusion                                                                                                                                                                                                                                          | 8                                         |
|   | 1<br>2<br>3<br>4<br>5<br>6<br>7      | OLS Regression Results for Market Model                                                                                                                                                                                                           | 2<br>3<br>9<br>9<br>10                    |
|   | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8 | AR Statistic from $\tau$ =-10 to $\tau$ = +10 (Market Model)                                                                                                                                                                                      | 5<br>6<br>6<br>7<br>7<br>8<br>8           |

## 1 Dividend Fluctuation

In Figure 1, the left graph shows the changes in Apple's dividends from December 12, 1980 to December 31, 2021, with quarterly dividends. The right graph shows that in the last three years (2019 to 2021), Apple's dividends plunged from 0.82 per share to 0.205 per share on November 6, 2020, which corresponds to the declaration date of October 29, 2020, so this date is chosen as the event date (Day 0) for the estimation.



Figure 1: Dividend Cash Amount of Apple

## 2 Estimation Window and Estimation Results

The period from the first six calendar months (April 14, 2020 to October 14, 2020) prior to Day -11 (October 14, 2020) to Day -11 is chosen as the estimation window with the number of observations L = 129. The market model and CAPM equation model are applied to estimate the parameters from this period.

#### 2.1 Market Model

Perform OLS regression on the market model during the estimation period

$$r_{it} = \alpha_i + \beta_i r_{mt} + e_{it}$$

The OLS regression gives the  $\hat{\alpha}_i$  and  $\hat{\beta}_i$ :

#### OLS Regression Results

| ===========                             |      |                 |               |                         |        | ========           |
|-----------------------------------------|------|-----------------|---------------|-------------------------|--------|--------------------|
| Dep. Variable:                          |      | RET             | R-sq          | uared:                  |        | 0.405              |
| Model:                                  |      | OLS             | Adj.          | R-squared:              |        | 0.401              |
| Method:                                 |      | Least Squares   | F-st          | atistic:                |        | 86.54              |
| Date:                                   | s    | un, 13 Mar 2022 | Prob          | (F-statistic):          |        | 5.12e-16<br>329.99 |
| Time:                                   |      | 19:00:08        | Log-          | Likelihood:             |        |                    |
| No. Observations:                       |      | 129             | AIC:          |                         |        | -656.0             |
| Df Residuals:                           |      | 127             | BIC:          |                         |        | -650.3             |
| Df Model:                               |      | 1               |               |                         |        |                    |
| Covariance Type:                        |      | nonrobust       |               |                         |        |                    |
|                                         |      |                 | ======        |                         |        |                    |
| ·                                       | coef | std err         | t             | P>   t                  | [0.025 | 0.975]             |
| const 0.0                               | 0024 | 0.002           | 1.420         | 0.158                   | -0.001 | 0.006              |
| vwretd 1.3                              | L255 | 0.121           | 9.303         | 0.000                   | 0.886  | 1.365              |
| Omnibus:                                |      | 42.379          | =====<br>Durb | =========<br>in-Watson: |        | 1.828              |
| Prob(Omnibus):                          |      | 0.000           | Jarq          | ue-Bera (JB):           |        | 164.524            |
| Skew:                                   |      | 1.094           | Prob          | (JB):                   |        | 1.88e-36           |
| Kurtosis:                               |      | 8.081           | Cond          | . No.                   |        | 72.8               |
| ======================================= |      |                 |               |                         |        |                    |

Figure 2: OLS Regression Results for Market Model

Thus

$$\hat{r}_{it} = 0.0024 + 1.1255 \times r_{mt}$$

 $\alpha$  is not significant at 90% confidence level, but  $\beta$  is significantly different from 0 at 99% confidence level.

# 2.2 CAPM Equation Model

Perform OLS regression on the CAPM model during the estimation period

$$r_{it} = r_{ft} + \beta_i (r_{mt} - r_{ft}) + u_{it}$$

The OLS regression result gives the  $\hat{\alpha}_i$  and  $\hat{\beta}_i$ :

#### OLS Regression Results

| Dep. Variable: | ole: stock_exc R-squared ( |                |               | ared (uncente | ered): |           | 0.408    |
|----------------|----------------------------|----------------|---------------|---------------|--------|-----------|----------|
| Model: OLS     |                            | Adj.           | R-squared (ur | ncentered):   |        | 0.404     |          |
| Method:        |                            | Least Squares  | F-sta         | tistic:       |        |           | 88.38    |
| Date:          | Su                         | n, 13 Mar 2022 | Prob          | (F-statistic) | ):     |           | 2.78e-16 |
| Time:          |                            | 19:00:09       | Log-L         | ikelihood:    |        |           | 328.84   |
| No. Observatio | ns:                        | 129            | AIC:          |               |        |           | -655.7   |
| Df Residuals:  |                            | 128            | BIC:          |               |        |           | -652.8   |
| Df Model:      |                            | 1              |               |               |        |           |          |
| Covariance Typ | e:                         | nonrobust      |               |               |        |           |          |
| ==========     |                            |                |               |               |        |           |          |
|                | coef                       | std err        | t             | P>   t        | [0.025 | 0.975]    |          |
| mkt_exc        | 1.1401                     | 0.121          | 9.401         | 0.000         | 0.900  | 1.380     |          |
| Omnibus:       | ======                     | <br>42.427     | Durbi         | n-Watson:     |        | <br>1.793 |          |
| Prob(Omnibus): |                            | 0.000          |               | e-Bera (JB):  |        | 163.728   |          |
| , ,            |                            |                | _             | , ,           |        |           |          |
| Skew:          |                            | 1.098          |               | •             |        | 2.80e-36  |          |
| Kurtosis:      |                            | 8.063          |               |               |        | 1.00      |          |
| =========      | =======                    | =========      | ======        |               |        |           |          |

Figure 3: OLS Regression Results for CAPM

Thus

$$\hat{r}_{it} = r_{ft} + 1.1401 \times r_{mt}$$

 $\beta$  is significantly different from 0 at 99% confidence level.

# 3 Event Window and Hypothests Test

This section analyzes the movement of Apple's stock price before and after the event anouncement and investors' reaction to the new information, which somehow implies the information efficiency. 10 days before and after event day (October 29, 2020) are selected as the event window, i.e., October 15, 2020 to November 12, 2020, with 21 observations. The abnormal return (AR) and cumulative abnormal return (CAR) during this period and the corresponding statistics are calculated based on 4 different benchmark models, and t-test is used for the hypothesis test.

In the statistic test results, '\*\*' means the AR statistic or the CAR statistic is significantly different from 0 at 1% two-tailed significance level; '\*' means the AR statistic or the CAR statistic is significantly different from 0 at 5% two-tailed significance level.

#### 3.1 Benchmark Models and Test Statistics

#### 3.1.1 Market Model

The AR and CAR are given by

$$AR_{i\tau} = r_{i\tau} - (\hat{\alpha}_i + \hat{\beta}_i r_{m\tau})$$
  
=  $r_{i\tau} - (0.0024 + 1.1255 \times r_{m\tau})$ 

$$CAR_{i}(\tau_{1}, \tau_{k}) = \sum_{\tau=\tau_{1}}^{\tau_{k}} AR_{i\tau}$$

$$= \sum_{\tau=\tau_{1}}^{\tau_{k}} (r_{i\tau} - (0.0024 + 1.1255 \times r_{m\tau}))$$

#### 3.1.2 CAPM Equation Model

The AR and CAR are given by

$$AR_{i\tau} = r_{i\tau} - (r_{f\tau} + \hat{\beta}_i (r_{m\tau} - r_{f\tau}))$$
  
=  $r_{i\tau} - (r_{f\tau} + 1.1401 \times (r_{m\tau} - r_{f\tau}))$ 

$$CAR_{i}(\tau_{1}, \tau_{k}) = \sum_{\tau=\tau_{1}}^{\tau_{k}} [r_{i\tau} - (r_{f\tau} + 1.1401 \times (r_{m\tau} - r_{f\tau}))]$$

#### 3.1.3 Market Adjusted Excess Return

The AR and CAR are given by

$$AR_{i\tau} = r_{i\tau} - r_{m\tau}$$

$$CAR_i(\tau_1, \tau_k) = \sum_{\tau = \tau_1}^{\tau_k} (r_{i\tau} - r_{m\tau})$$

#### 3.1.4 Mean Adjusted Excess Return

The AR and CAR are given by

$$AR_{i\tau} = r_{i\tau} - \overline{r}_i$$

$$CAR_i(\tau_1, \tau_k) = \sum_{\tau = \tau_1}^{\tau_k} (r_{i\tau} - \overline{r}_i)$$

where

$$\bar{r}_i = \frac{1}{L} \sum_{t=-L-10}^{-11} r_{it}$$

# 3.2 Hypothesis Test Results

The test statistic for AR and CAR is given by

$$\frac{AR_{i\tau}}{\hat{\sigma_i}} \cong t_{L-2}$$

$$\frac{CAR_i(\tau_1, \tau_k)}{\sqrt{(\tau_k - \tau_1 + 1)\hat{\sigma_i}^2}} \approx N(0, 1)$$

where

$$\hat{\sigma_i} = \sqrt{\frac{1}{L-2} \sum_{t=-L-10}^{-11} AR_{it}^2}$$

#### 3.2.1 Market Model

| Date       | AR-Stat | Date       | AR-Stat  |
|------------|---------|------------|----------|
| 2020-10-15 | -0.2899 | 2020-10-29 | 1.2109   |
| 2020-10-16 | -0.8256 | 2020-10-30 | -2.3109* |
| 2020-10-19 | -0.6346 | 2020-11-02 | -0.8905  |
| 2020-10-20 | 0.3443  | 2020-11-03 | -0.4353  |
| 2020-10-21 | -0.2099 | 2020-11-04 | 0.8683   |
| 2020-10-22 | -0.9991 | 2020-11-05 | 0.4969   |
| 2020-10-23 | -0.6787 | 2020-11-06 | -0.1839  |
| 2020-10-26 | 0.9557  | 2020-11-09 | -1.8174  |
| 2020-10-27 | 0.7670  | 2020-11-10 | -0.2526  |
| 2020-10-28 | -0.6234 | 2020-11-11 | 1.0012   |
|            |         | 2020-11-12 | 0.3256   |

Table 1: AR Statistic from  $\tau$ =-10 to  $\tau$  = +10 (Market Model)

| Date       | CAR-Stat | Date       | CAR-Stat |
|------------|----------|------------|----------|
| 2020-10-15 | -0.2899  | 2020-10-29 | -0.2965  |
| 2020-10-16 | -0.7888  | 2020-10-30 | -0.9510  |
| 2020-10-19 | -1.0105  | 2020-11-02 | -1.1606  |
| 2020-10-20 | -0.7029  | 2020-11-03 | -1.2348  |
| 2020-10-21 | -0.7226  | 2020-11-04 | -0.9687  |
| 2020-10-22 | -1.0675  | 2020-11-05 | -0.8137  |
| 2020-10-23 | -1.2449  | 2020-11-06 | -0.8340  |
| 2020-10-26 | -0.8266  | 2020-11-09 | -1.2389  |
| 2020-10-27 | -0.5236  | 2020-11-10 | -1.2638  |
| 2020-10-28 | -0.6939  | 2020-11-11 | -1.0079  |
|            |          | 2020-11-12 | -0.9126  |

Table 2: CAR Statistic from  $\tau$ =-10 to  $\tau$  = +10 (Market Model)

On Day 1, the AR is significantly different from 0 on 5% two-tailed significance level, rejecting the null hypothesis  $H_0$ : the event has no impact on stock abnormal returns. This indicates that the news of the

dividend reduction significantly affects the stock price performance on the next trading day, and investors have a relatively big reaction to this news.

CAR statistic does not reject the null hypothesis at both 1% and 5% two-tailed significant level, cannot reject the null hypothesis, meaning that this news did not cause a significant increase or decrease in cumulative abnormal returns.

#### 3.2.2 CAPM

| Date       | AR-Stat | Date       | AR-Stat  |
|------------|---------|------------|----------|
| 2020-10-15 | -0.1540 | 2020-10-29 | 1.3235   |
| 2020-10-16 | -0.6858 | 2020-10-30 | -2.1491* |
| 2020-10-19 | -0.4861 | 2020-11-02 | -0.7598  |
| 2020-10-20 | 0.4696  | 2020-11-03 | -0.3139  |
| 2020-10-21 | -0.0741 | 2020-11-04 | 0.9769   |
| 2020-10-22 | -0.8630 | 2020-11-05 | 0.6083   |
| 2020-10-23 | -0.5443 | 2020-11-06 | -0.0495  |
| 2020-10-26 | 1.0924  | 2020-11-09 | -1.6767  |
| 2020-10-27 | 0.8938  | 2020-11-10 | -0.118   |
| 2020-10-28 | -0.4622 | 2020-11-11 | 1.1182   |
|            |         | 2020-11-12 | 0.4629   |

Table 3: AR Statistic from  $\tau$ =-10 to  $\tau$  = +10 (CAPM)

| Date       | CAR-Stat | Date       | CAR-Stat |
|------------|----------|------------|----------|
| 2020-10-15 | -0.1540  | 2020-10-29 | 0.1537   |
| 2020-10-16 | -0.5938  | 2020-10-30 | -0.4733  |
| 2020-10-19 | -0.7655  | 2020-11-02 | -0.6654  |
| 2020-10-20 | -0.4282  | 2020-11-03 | -0.7251  |
| 2020-10-21 | -0.4161  | 2020-11-04 | -0.4483  |
| 2020-10-22 | -0.7321  | 2020-11-05 | -0.2820  |
| 2020-10-23 | -0.8836  | 2020-11-06 | -0.2856  |
| 2020-10-26 | -0.4403  | 2020-11-09 | -0.6727  |
| 2020-10-27 | -0.1172  | 2020-11-10 | -0.6818  |
| 2020-10-28 | -0.2573  | 2020-11-11 | -0.4145  |
|            |          | 2020-11-12 | -0.3035  |

Table 4: CAR Statistic from  $\tau$ =-10 to  $\tau$  = +10 (CAPM)

The hypothesis test based on CAPM parameters gives a similar result to the market model. On Day 1 the AR statistic significantly rejects the null hypothesis  $H_0$ : the event has no impact on stock abnormal returns at 5% two-tailed significance level, indicating that the event significantly affects the stock price performance on the next trading day, and investors have a relatively big reaction to this news. Thus AR is different from 0. But it cannot reject the null hypothesis at 1% two-tailed significance level.

CAR statistic does not reject the null hypothesis at both 1% and 5% two-tailed significance level, meaning that this news did not cause a significant increase or decrease in cumulative abnormal returns.

#### 3.2.3 Market Adjusted Excess Return

| Date       | AR-Stat | Date       | AR-Stat  |
|------------|---------|------------|----------|
| 2020-10-15 | -0.1662 | 2020-10-29 | 1.3874   |
| 2020-10-16 | -0.6940 | 2020-10-30 | -2.2398* |
| 2020-10-19 | -0.5938 | 2020-11-02 | -0.6741  |
| 2020-10-20 | 0.4892  | 2020-11-03 | -0.1811  |
| 2020-10-21 | -0.1047 | 2020-11-04 | 1.1092   |
| 2020-10-22 | -0.8203 | 2020-11-05 | 0.7528   |
| 2020-10-23 | -0.5195 | 2020-11-06 | -0.0568  |
| 2020-10-26 | 0.9486  | 2020-11-09 | -1.5975  |
| 2020-10-27 | 0.8612  | 2020-11-10 | -0.128   |
| 2020-10-28 | -0.7049 | 2020-11-11 | 1.1647   |
|            |         | 2020-11-12 | 0.3824   |

Table 5: AR Statistic from  $\tau$ =-10 to  $\tau$  = +10 (Market Adjusted Excess Return)

| Date       | CAR-Stat | Date       | CAR-Stat |
|------------|----------|------------|----------|
| 2020-10-15 | -0.1662  | 2020-10-29 | 0.0250   |
| 2020-10-16 | -0.6082  | 2020-10-30 | -0.6226  |
| 2020-10-19 | -0.8395  | 2020-11-02 | -0.7851  |
| 2020-10-20 | -0.4824  | 2020-11-03 | -0.8050  |
| 2020-10-21 | -0.4783  | 2020-11-04 | -0.4913  |
| 2020-10-22 | -0.7715  | 2020-11-05 | -0.2875  |
| 2020-10-23 | -0.9106  | 2020-11-06 | -0.2927  |
| 2020-10-26 | -0.5164  | 2020-11-09 | -0.6610  |
| 2020-10-27 | -0.1998  | 2020-11-10 | -0.6727  |
| 2020-10-28 | -0.4125  | 2020-11-11 | -0.3953  |
|            |          | 2020-11-12 | -0.3023  |

Table 6: CAR Statistic from  $\tau$ =-10 to  $\tau$  = +10 (Market Adjusted Excess Return)

The hypothesis test result shows that on Day 1, the AR statistic significantly rejects the null hypothesis  $H_0$ : the event has no impact on stock abnormal returns at 5% two-tailed significance level, indicating that the event significantly affects the stock price performance on the next trading day, and investors have a relatively big reaction to this news. Thus AR is different from 0. But it cannot reject the null hypothesis at 1% two-tailed significance level.

CAR statistic does not reject the null hypothesis at both 1% and 5% two-tailed significance level, meaning that this news did not cause a significant increase or decrease in cumulative abnormal returns.

#### 3.2.4 Mean Adjusted Excess Return

| Date       | AR-Stat  | Date       | AR-Stat  |
|------------|----------|------------|----------|
| 2020-10-15 | -0.357   | 2020-10-29 | 1.3174   |
| 2020-10-16 | -0.7669  | 2020-10-30 | -2.4824* |
| 2020-10-19 | -1.2381  | 2020-11-02 | -0.2291  |
| 2020-10-20 | 0.3433   | 2020-11-03 | 0.4316   |
| 2020-10-21 | -0.4176  | 2020-11-04 | 1.472    |
| 2020-10-22 | -0.5865  | 2020-11-05 | 1.2539   |
| 2020-10-23 | -0.4457  | 2020-11-06 | -0.2416  |
| 2020-10-26 | -0.1917  | 2020-11-09 | -1.0106  |
| 2020-10-27 | 0.3547   | 2020-11-10 | -0.3181  |
| 2020-10-28 | -2.0861* | 2020-11-11 | 1.0440   |
|            |          | 2020-11-12 | -0.291   |

Table 7: AR Statistic from  $\tau$ =-10 to  $\tau$  = +10 (Mean Adjusted Excess Return)

| Date       | AR-Stat | Date       | AR-Stat |
|------------|---------|------------|---------|
| 2020-10-15 | -0.3570 | 2020-10-29 | -1.2285 |
| 2020-10-16 | -0.7947 | 2020-10-30 | -1.8928 |
| 2020-10-19 | -1.3637 | 2020-11-02 | -1.8821 |
| 2020-10-20 | -1.0094 | 2020-11-03 | -1.6983 |
| 2020-10-21 | -1.0896 | 2020-11-04 | -1.2606 |
| 2020-10-22 | -1.2341 | 2020-11-05 | -0.9071 |
| 2020-10-23 | -1.3110 | 2020-11-06 | -0.9386 |
| 2020-10-26 | -1.2942 | 2020-11-09 | -1.1504 |
| 2020-10-27 | -1.1019 | 2020-11-10 | -1.1927 |
| 2020-10-28 | -1.7050 | 2020-11-11 | -0.9290 |
|            |         | 2020-11-12 | -0.9701 |

Table 8: CAR Statistic from  $\tau$ =-10 to  $\tau$  = +10 (Mean Adjusted Excess Retur)

The hypothesis test result based on mean adjusted excess return also shows that on Day 1, the AR statistic significantly rejects the null hypothesis  $H_0$ : the event has no impact on stock abnormal returns at 5% two-tailed significance level, indicating that the event significantly affects the stock price performance on the next trading day. Additionally, it also reject the null at 5% two-tailed significance level on Day -1, implying that there could be a information leakage, so that the market react before the event announcement.

CAR statistic does not reject the null hypothesis at both 1% and 5% two-tailed significance level, meaning that this news did not cause a significant increase or decrease in cumulative abnormal returns.

### 4 Conclusion

The results of the hypothesis tests based on the Market model, CAPM, and market-adjusted excess return model show that the AR and CAR are not significantly different from 0 before the event day (Day -11 to Day -1) and after Day 1 (Day 2 to Day 10). Therefore, there is no information leakage. However, the results of the hypothesis test based on the mean adjusted excess return model show that there is information leakage on the day before the event, and the AR of the four models (Figure 4(a)-7(a)) show that there is a drop in AR, which shows that the market reacts in advance.

The four models all agree that market reacted significantly to the new information on Day 1, and the AR (Figure 4(a)-7(a)) and holding period returns (Figure 8) manifest that this information exert negative effect on investors' confidence in Apple, causing positive abnormal returns to drop to negative abnormal returns. However, the market reacts afterward and reflects this information in the stock price,

so AR and CAR are insignificantly different from zero after Day 1.

As seen in Figure 4(b)-7(b), CAR generally shows a downward trend after Day 1, which means that AR is actually not zero after the event, indicating that the market has a lag and does not adjust quickly enough, and the negative impact of Apple lower its dividends continues during the event period. Thus proving the information inefficiency.



Figure 4: AR and CAR of APPLE from October 15 to November 11, 2020 (Market Model)



Figure 5: AR and CAR of APPLE from October 15 to November 11, 2020 (CAPM Model)



Figure 6: AR and CAR of APPLE from October 15 to November 11, 2020 (Market Adjusted Excess Return)



Figure 7: AR and CAR of APPLE from October 15 to November 11, 2020 (Mean Adjusted Excess Return)



Figure 8: Holding Period Returns of APPLE from October 15 to November 11, 2020

One of the limitations of the research is that it only considers the impact of a single heterogeneous

event on stock performance. Systematic risks such as market risk and political risk may also cause significant declines in Apple's stock abnormal returns. In addition, since the study looks at only one stock, the conclusion of information inefficiency does not necessarily hold. What's more, the estimated results may not be accurate enough due to the existence of market noise and the limitations of the models. Further research would be more meaningful by considering multi-factor models and increasing the number of stocks for research.