COMPUTER SCIENCE

Database Management System

Query Language

Vijay Agarwal sir

Relational Algebra

02

Operators

OFFD & Normalization

12 Tognsaction 4 Concurrency Control GATE GATE

- 185 ER Model & Foreign Key Concept
 - (4) Query language. 20 to 30 9.] 500 (5) File org & Indexing 10 to 150

Query language

(Formal) Procedural query language ey Relation -Algebra

Non Procedural Query language SSQL 7 TRC

Query Language

Procedural Query Language

· WHAT to Reterive From DB

· HOW to Reterive from DB

Relational Algebra:

Non Procedural Query Language

WHAT to Retaine from DB.

- □ SQL (Structured Query Language)
- TRC (Tople Relational Calculus)

Procedural Query Language and Non-procedural Query Language

Procedural Query Language	Non-procedural Query Language
Formulation of <u>how</u> to access data from the database table and what	Formulation of what data retrieve from DB tables.
data required to retrieve from DB tables.	"Relational Calculus" TRC "SQL"
"Relational Algebra"	

Relational Algebra

) Procedural anery language

By Default eliminate

Dublicate value.

Relational Algebra

(Always generate distinct tuples)

Relational algebra refers to a procedural query language that takes relation instances as input and returns relation instances as output

(Note) Bosic Idea of Query Language is Query executed on DR Tobbe Tuble by Tuble (Rowsh Row) One Tuble at a time.

Relation Algebra.

R: [1,2,3,4,5,6) S: [4,5,6,7,8] R-S= (1,2,3)

R-(R-S) = (4,5,6)

Delived operator

- (D) JOIN (M)
- 2 DIVISION [/]
- 3 Intersection[17

RNS = R - (R - S)

Basic operator

- 1 Salection [0]
- 2 Projection[IT]
- 3 CROSS Product [X]
- UNION [U] Minus | set-Dibbellence [-]
 - **S**

Relational Algebra

Basic operators

- \mathfrak{O} π : Projection operator
- \mathfrak{S} σ : Selection operator
- 3x: Cross-product operator Contesion Product
- U: Union
- 5 -: Set difference
- (6) 9: Rename operator

Relational Algebra

Derived operators

- ① ∩: Intersection {using "_"}
- ② ⋈ : Join {using X, σ}
 - (3)/ or \div : Division {using π , x, -}

Projection [TI]

It Select [Project] Attribute (20)
Attribute List from the Relation

Syntax
Tattobute
Relation
AttobuteList

Trance (Student)

Selection [5]

It select the Tuble Petronn the Relation Based on Specified Condition

Syntax Condition (Relation)

3 OCGPA>9 (STUDENT)

(STUDENT)

(G) OBranch = icsi (Student).

(a) W.A.a [write an away] to Retaine Name of Student Whose CGPA >9. STUDENT Name Branch Gender Contact CGPA Gosan IT M. Therame ogpang (Student)

(a) W.A.a [write an away] to Referive Name of Student Whose CGPA >9. STUDENT Relino Name Branch Gender Contact CGPA Gosan IT M. Thame Branch occept >9 (Student) Branch

Same off

Same off

$$\begin{cases}
\sigma_{C2} \left(\sigma_{C1}(R) \right) \right) = \sigma_{C1} \left(\sigma_{C2}(R) \right) \\
\sigma_{C3} \left(\sigma_{C2}(\sigma_{C1}(R)) \right) = \sigma_{C1} \left(\sigma_{C3}(\sigma_{C2}(R)) \right)
\end{cases}$$

$$\begin{cases}
\sigma_{C3} \left(\sigma_{C2}(R) \right) \\
\sigma_{C3}(R) \\
\sigma_{C3}(R) \\
\sigma_{C3}(R)
\end{cases}$$

$$\begin{cases}
\sigma_{C3}(R) \\
\sigma_{C3}(R)
\end{cases}$$

$$\begin{cases}$$

CINC2 NC3

CSPA>9 n Gendle: M'n Ranch= cs

Relational Algebra

Basic operators

I. π : Projection

- π Attribute name (R): It is used to project required attribute from relation
 R.
- σ_{Condition(P)} (R): It is used to select records from relation R, those satisfied the condition (P).

Example:

	GIVEN	Table		$\pi_{B,C}(R)$:	В	С	
R	Α	В	С					
				0	P	4	5	
	8	4.	. 5			4	6	
	2	4	5			5	5	
	7	4	. 6	2				
				$\sigma_{A > 5}(R)$):	Α	В	С
	3	5	-5			8	4	5
						7	4	6

Reserves (R₁)

1	
4	9
Λ,	$\chi \chi / \chi$
	VV

<u>Sid</u>	<u>Bid</u>	day
22	101	10/10/96
58	103	11/12/96

Sailors(S₁)

Sid	Sname	Rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0

Sailors(S2)

Sid	Sname	Rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Selection (σ)

$$\sigma_{\text{rating} > 8}(S_2)$$

Sailors (S2)

Sid	Sname	Rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Selection (σ)

Ans.1

$$\sigma_{\text{rating} > 8} (S_2)$$

Output:

Sid	Sname	Rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

Sailors (R₂)

Sid	Sname	Rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

$$\pi_{\text{sname, rating}} \left(\sigma_{\text{rating} > 8} \left(S_2 \right) \right)$$

Output:

Sailors(S₂)

Sid	Sname	Rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

$\pi_{\text{sname, rating}} (\sigma_{\text{rating} > 8} (S_2))$

Output:

Sname	Rating
yuppy	9
rusty	10

Sailors(S₂)

Sid	Sname	Rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Projection(π)

Q.2

$$\pi_{age}(S_2)$$

Sailors (E2)

<u>Sid</u>	Sname	Rating	age	
28	yuppy	9	35.0	
31	lubber	8	55.5	
44	guppy	5	35.0	
58	rusty	10	35.0	

Projection(π)

Ans.2 $\pi_{age}(S_2)$

Output:

35.0 55.5

Sailors (B₂)

<u>Sid</u>	Sname	Rating	age 35.0	
28	yuppy	9		
31	lubber	8	55.5	
44	guppy	5	35.0	
58	rusty	10	35.0	

$$\pi_{\text{sname, rating}}(S_2)$$

Output:

Sname	Rating
yuppy	9
lubber	8
guppy	5
rusty	10

S	et	opera	ors:	(1)	/ 1, − J		
	Uni	on. In	terse	c tion,	Minu	s(-)	
R &	S	be the	Two	Relat	tion. I	s Union	Compid
D Now	ber	of Attrib	Degi ute [An	ty) Show	d be sam	R.	
		Attobute	WAST.	le Simil	not to	possible Apply	
		Rellino Name	15 DE	ranch Contact	Not both	esible	

Arity (Degree): Same Rayse: Similar.

Set operator

U: Union operator

-: Except or minus

: Intersection operator

- To apply set operations relations must be union compatible.
- R and S relations are union compatible
- If and only if-
- (i) Arity of R equal to Arity of S and
- (ii) Domain of attributes of R must be same as domain of attributes of s respectively.

U) Now Apply

Axity (Degree): Same Rayee: Similar. (Domain)

Example

Example 1:

$$\pi_{Sid\ Sname}$$
 (.....) $\cap \pi_{Sid}$ (.....)

{Arity not same so, set operation not allowed}

Example 2:

$$\pi_{Sid}$$
 $(\dots \dots) \cap \pi_{Sid}$ $(\dots \dots)$

{Arity same but Sname domain is different from marks so, not allowed}

Example

$$\pi_{Sid\ Sname}$$
 (.....) $\cap \pi_{Stud\ ID\ Stud\ name}$ (.....)

{Arity and domains are same so, allowed for set operation}

1. Set operation on relation:

$$R \cup S: \{X/x \in R \lor x \in S\} \equiv A$$

$$2$$

$$3$$

$$4$$

$$R-S: \{x/x \in R \land x \in S\} \equiv A$$

$$3$$

$$\underline{R \cap S} : \{x / \underline{x \in R} \land x \in S\} \equiv A$$

227 O RUS 2,3.4 2 RNS @ R-S: 3 9 S-R: 4

[X | XER V XES]
[X | XER N X ES]
[X | XER N X & S]
[X | XER N X & R]
[X | XES N X & R]

Assume Relation R & Relation S consist M & N Tuple Respectively

Minimum Maximum

- (1) Range of tuples in R U S = max(M, N) to M + N
- (2) Range of tuples in $R \cap S = \phi$ to min (M, N)
- (3) Range of tuples in $R S = \phi$ to M
- (4) Range of tuples in $S R = \phi$ to N

Union Operation

- Notation: $r \cup s$
- Defined as:

$$r \cup s = \{t | t \in r \text{ or } t \in s\}$$

- \square For $r \cup s$ to be valid.
 - r, s must have the same arity (same number of attributes)
 - The attribute domains must be compatible (example: 2nd column or r deals with the same type of values as does the 2nd column of s)

Example:

To find all courses taught in the Fall 2009 semester, or in the Spring 2010 semester, or in both.

$$\pi_{\text{course_id}}(\sigma_{\text{semester} = \text{``Fall''} \land \text{ year} = 2009} \text{ (section))} \cup \\ \pi_{\text{course_id}}(\sigma_{\text{semester} = \text{``Spring''} \land \text{ year} = 2010} \text{ (section))}$$

Set Difference Operation

- Notation: r s
- Defined as:

$$r - s = \{t \mid t \in r \text{ and } t \notin s\}$$

- Set differences must be taken between compatible relations.
 - r and s must have the same arity
 - attribute domains of r and s must be compatible

Example:

Example: to find all courses taught in the Fall 2009 semester, but not in the Spring 2010 semester

```
\pi_{\text{course\_id}}(\sigma_{\text{semester = "Fall"} \land \text{year = 2009}} (\text{section})) - \pi_{\text{course\_id}}(\sigma_{\text{semester = "Spring"} \land \text{year = 2010}} (\text{section}))
```


Sail	ors	(S_1)
		L

bune	bunors (b)				
Sid	Sname	Rating	age		

Sailors (S₂)

<u>Sid</u>	Sname	Rating	age
28	Yuppy	9	35.0
31	Lubber	8	55.5
44	Guppy	5	35.0
58	rusty	10	35.0

Sid	Sname	Rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

S1 U S2

Sid	Sname	Rating	age
22	dustin	7	45.0

S1 - S2

Sid	Sname	Rating	age
31	lubber	8	55.5
58	rusty	10	35.0

S1 ∩ S2

Relational Algebra

Basic operators

II.Cross product (x):

- R × S: It result all attributes of R followed by all attributes of S, and each record of R paired with every record of S.
- Degree (R × S) = Degree (R) + Degree (S)
- \square $|(R \times S)| |R| \times |S|$

NOTE:

- Relation R with n tuples and
- Relation S with 0 tuples then
- \square number of tuples in R × S = 0 tuples

Join (⋈)

I. Natural join (⋈)

 $R\bowtie S \equiv \pi_{distinct \ attributes} (\sigma_{equality \ between \ common \ attributes \ of \ R \ and \ S} (R \times S))$

Example:

T₁ (ABC) and T₂ (BCDE)

$$\therefore T_1 \bowtie T_2 = \pi_{ABCDE} \begin{pmatrix} \sigma_{T_1 \cdot B} = T_{2 \cdot B} (T_1 \times T_2) \\ \cap T_1 \cdot C = T_2 \cdot C \end{pmatrix}$$

 \square T₁ (AB) and T₂ (CD)

$$T_1 \bowtie T_2 \equiv T_1 \times T_2 = \pi_{ABCD} (T_1 \times T_2)$$

NOTE:

Natural join equal to cross-product if join condition is empty.

Join (⋈)

II. Conditional Join (⋈。)

$$\square$$
 $R \bowtie_c S \equiv \sigma_c (R \times S)$

Join (⋈)

III. Outer Joins:

- (a) LEFT OUTER JOIN
 - $R \bowtie S : It produces$
 - $(R \bowtie S) \cup \{Records \text{ of } R \text{ those are failed join condition with remaining attributes null}\}$
- (b) RIGHT OUTER JOIN (⋈)
 - $R \bowtie S : It produces$
 - $(R \bowtie S) \cup \{Records \text{ of } S \text{ those are failed join condition with remaining attributes null}\}$
- (C) FULL OUTER JOIN (\bowtie) $R \bowtie S = (R \bowtie S) \cup (R \bowtie S)$

Natural Join 🖂

R

A	В	C
1	2	4
3	2	6

S

В	С	D
2	4	8
2	7	4

 $R \times S =$

R.A	R.B	R.C	S.B	S.C	S.D
1	2	4	2	4	8
1	2	4	2	7	4
3	2	6	2	4	8
3	2	6	2	7	4

$$R \bowtie S = \pi_{ABCD} \left\{ \begin{matrix} \sigma_{R.B} = S.B \Lambda(R \times S) \\ R.C = S.C \end{matrix} \right\}$$

R ⋈S =	A	В	C	D
IC PAS	1	2	4	8

Left Outer Join [∞]

 $(R \bowtie S)$

R

A	В	С
1	2	4
3	2	6

S

В	С	D
2	4	8
2	7	4

 $(R \bowtie S) =$

A	В	С	D
1	2	4	8

Right Outer Join [⋈]

R ⋈ S =	A	В	С	D
	1	2	4	8
	Null	2	7	4

Full outer join = Left outer join Union Right outer join

$$R \bowtie S = R \bowtie S \cup R \bowtie S$$

В	С	D
2	4	8
2	6	Null
	2	2 4

U

Α	В	С	D
1	2	4	8
Null	2	7	4

R(P, Q, R1, R2, R3)

S(P, Q, S1, S2)

Where {P, Q} is the key for both schemas. Which of the following queries are equivalent?

- I. $\pi_P(R \bowtie S)$
- II. $\pi_{P}(R) \bowtie \pi_{P}(S)$

III. $\pi_{P}(\pi_{P,Q}(R) \cap \pi_{P,Q}(S))$

IV. $\pi_P(\pi_{P,Q}(R) - (\pi_{P,Q}(R) - \pi_{P,Q}(S)))$

A Only I and II

B Only I and III

C Only I, II and III

D

Only I, III and IV

Rename operator (g)

It is used to rename table name and attribute names for query processing.

Example:

- (I) Stud (Sid, Sname, age)g(Temp, Stud): Temp (Sid, Sname, age)
- (II) $g_{I, N, A}$ (Stud): Stud (I, N, A) All attributes renaming
- (III) $Q \operatorname{Sid} \to I$ (Stud): Stud (I, Sname, A) $age \to A$

Some attribute renaming

- It is used to retrieve attribute value of R which has paired with every attribute value of other relation S.
- \square $\pi_{AB}(R)/\pi_B(S)$: It will retrieve values of attribute 'A' from R for which there must be pairing 'B' value for every 'B' of S.

Expansion of '/' by using basic operator

- Example: Retrieve sid's who enrolled every course.
- Result:

```
\pi_{\text{sidcid}}(\text{Enroll})/\pi_{\text{cid}}(\text{Course})
```

Step 1: Sid's not enrolled every course of course relation.

(Sid's enrolled proper subset of course)

$$\pi_{sid}((\pi_{sid}(Enroll) \times \pi_{cid}(course)) - \pi_{sidcid}(Enroll))$$

☐ Step 2:

[sid's enrolled every course] = [sid's enrolled some course] - [sid's
not enrolled every course]

$$\therefore \pi_{\text{sidcid}}(E)/\pi_{\text{cid}}(C) = \pi_{\text{sid}}(E) - \pi_{\text{sid}}((\pi_{\text{sid}}(E) \times \pi_{\text{cid}}(C) - \pi_{\text{sidcid}}(E))$$

Q.

Retrieve all student who are Enrolled Some course or Any

course or at least one course?

Solution Π_{Sid} (Enrolled)

Enrolled		
Sid	Cid	
S_1	C_1	
S_1	C ₂	
S_1	C ₃	
S ₂	C_1	
S ₂	C ₃	
S_3	C_1	

Course
Cid
C_1
C_1
C ₂

Retrieve all student who are Enrolled every course?

Solution

Enrolled		
Sid	Cid	
S_1	C_1	
S_1	C ₂	
S_1	C ₃	
S_2	C_1	
S_2	C ₃	
S_3	C_1	

Course	
Cid	
C_1	
C_1	
C_3	

 Π_{Sid} (Enrolled) – Π_{Sid} [Π_{Sid} (Enrolled) × Π_{Cid} (Course) – Enrolled]

$$\Pi_{AB}(R) / \Pi_{B}(S) = \Pi_{A}(R) - \Pi_{A}[\Pi_{A}(R) \times \Pi_{B}(S) - R]$$
Connection
Find

$$\Pi_{ABCD}(R) / \Pi_{CD}(S) \Rightarrow \Pi_{AB}(R) - \Pi_{AB}[\Pi_{AB}(R) \times \Pi_{CD}(S) - R]$$

Q.

Consider the following three relations in a relational database:

Employee (eld, Name), Brand (bld, bName), Own(eld, bld)

Which of the following relational algebra expressions return the set of elds who own all the brands? [GATE: 2022]

- A π_{eld} ($\pi_{eld, bld}$ (Own/ π_{bld} (Brand))
- B π_{eld} (Own) π_{eld} ((π_{eld} (Own) × π_{bld} (Brand)) $\pi_{eld, bld}$ (Own))
- C $\pi_{eld} (\pi_{eld, bld} (Own) / \pi_{bld} (Own))$
- D $\pi_{eld} ((\pi_{eld} (Own) \times \pi_{bld} (Own) / \pi_{bld} (Brand))$

Consider the two relation Suppliers and Parts are given below.

Sup	pliers	Parts	
S _{no}	P _{no}	P _{no}	
S ₁ S ₁ S ₂ S ₂ S ₃ S ₄ S ₄	P ₁ P ₂ P ₃ P ₄ P ₁ P ₂ P ₂	P ₂ P ₄	

$$\pi_{S_{no}P_{no}}$$
 (Suppliers) / $\pi_{P_{no}}$ (Parts)

The number of tuples are there in the result when the above relational algebra query executes is _____.

