2023 杭州电子科技大学第十三届研究生数学建模竞赛题目

(请先阅读"2023 杭电第十三届研究生数学建模竞赛参赛须知")

A 题: 并联机械手运动轨迹规划与控制问题

机器人在工业中应用越来越广,许多强度大、快速、重复的工作不断的被机器人所替代。在各种类型的机器人中,工业机器人在实际应用中相对成功,被广泛地用于航空航天、机械、汽车、电子、 化工、食品等领域,可完成诸如加工、装配、搬运、涂装、焊接、包装等操作。因并联机器人具有结构简单、机构重量轻,柔性强和速度快等优点,近年来制造业对其需求不断上升,并广泛应用于食品包装、航空航天、医疗、精密制造等领域。在这类并联机器人当中最具有代表性的当属 Clavel 博士发明的如图 1 Delta 机构的机械手。该机械手由静动两个平台、三个主动臂、三个从动臂、末端执行器构成,通过驱动主动臂旋转,可以使动平台做平移运动。而后在此设计基础上,提出了不同于Delta 机构的变异形式与其它并联机器人,以适于对不同工作空间的要求。

图 1 Clavel 发明的 Delta 机构

为了研究问题方便,图 2 给出了 Delta 并联机械手机构简图。静坐标系 O—XYZ,原点 O 位于静(固定)平台正三角形 $\Delta A_1 A_2 A_3$ 的半径为 R 外接圆的圆心, A_i (i=1、2、3) 表示旋转关节,OX 轴过 A_1 ,OZ 轴垂直于固定平台, OY 轴方向由右手法则确定。 动坐标系 O'—X'Y'Z'原点 O'位于动平台正三角形 $\Delta C_1 C_2 C_3$ 的半径为 r 外接圆的圆心, 坐标轴建立方法与固定平台一致。 B_i (i=1、2、3)表示球铰 A_i B_i 表示主动臂,长度为 L_1 ; B_i C_i 表示从动臂, 长度为 L_2 ; θ_i (i=1、2、3)表示主动臂输出角度; 坐标系 O_{i0} — X_{i0} Y_{i0} Z_{i0} 认为是绕任意 K 轴旋转 θ_i , 再相对坐标系 O_{i0} —XYZ 移动。

图 2 Delta 并联机械手机构简图

图 3 Delta 并联机械手动平台简化为质点机构简图

请你们团队通过合理的假设,建立数学模型解决以下问题:

问题 1 当动平台外接圆半径 r 很小时,可将动平台简化为质点,如 图 3 所示,建立 Delta 并联机械手运动学模型,即在静坐标系 O—XYZ 中,建立主动臂输出角度 θ_i (i=1、2、3)与动平台质点坐标之间的相互对应关系。进一步,设参数 R=130mm、 $L_1=380$ mm、 $L_2=980$ mm,(1)表 1 给定了主动臂输出角度,求解相应动平台质点坐标;(2)表 2 给出了动平台质点坐标,确定相应主动臂输出角度;(3)给出动平台质点可移动的最大坐标空间。

问题 2 在问题 1 设计参数下,给定该动平台质点的运动轨迹为

$$\begin{cases} x = 200\cos(\frac{\pi}{3}t) \\ y = 200\sin(\frac{\pi}{3}t) & t \in [0,6] , 坐标单位 mm; \\ z = -800 \end{cases}$$

建立数学模型,给出主动臂输出角度的最优控制曲线。

问题 3 在问题 1 设计参数下,请设计动平台质点从 P_1 (-250,0,-850)为起始点, 途经 P_2 (-250,25,-850)、 P_3 (0,50,-850)、 P_4 (250,25,-850),最后到放置点 P_5 (250,0,-850) 移动轨迹(坐标单位 mm),使得移动轨迹更加平滑、运动状态更加平稳。

问题 4 动平台为一般情况时,如图 2 机构简图,建立 Delta 并联机械手运动学模型,即在静坐标系 O—XYZ 中,建立主动臂输出角度 θ_i (i=1、2、3)与动平台几何中心的位置坐标之间的对应关系;进一步,设参数 R=135mm、r=40 mm, $L_1=180$ mm、 $L_2=500$ mm,(1)表 3 给定了主动臂输出角度,求解相应动平台几何中心的位置坐标;(2)表 4 给出了动平台几何中心的位置坐标,确定相应主动臂输出角度;(3)为了避免杆件之间不必要的碰撞发生以及杆件和静、动平台之间干涉现象的出现,将主动臂输出角度限制在[-0.785 rad, 1.395 rad],给出动平台几何中心的位置坐标可移动的最大坐标空间。

问题 5 在问题 4 设计参数下,请规划在保证移动速度、加速度不能产生突变前提下,

动平台几何中心的位置从 Q_1 (-100,-100,-350) 为起始点, 途经 Q_2 (-100,-100,-500) 、 Q_3 (0,0,-550) 、 Q_4 (100,100,-500),最后到放置点 Q_5 (100,100,-350) 移动轨迹(坐标单位 mm),且满足角速度不超过 **17**rad/s 条件下,使得机构运行的总时间尽可能地最少的控制策略。

表1问题1主动臂输出角度(rad)五组数据

θ_1	0.6151	0.5261	0.1318	-0.0375	0.0165
θ_2	0.3061	0.2452	0.1318	0.217 5	0.3560
θ_3	0.1185	-0.0512	0.1318	0.476 1	0.5250

表 2 问题 1 动平台质点坐标 (mm) 五组数据

x	-260.2063	-261.5946	65.0000	410.4280	393.9817
У	-202.4381	-165.2073	112.5833	523.6756	453.0147
\overline{z}	-879.3720	-861.7117	-913.4228	-803.9750	-868.2685

表 3 问题 4 主动臂输出角度 (rad) 五组数据

θ_1	0.625	0.5761	0.1217	-0.0485	0.0185	
θ_2	0.336	0.2275	0.1217	0.2275	0.3360	
θ_3	0.0185	-0.0485	0.1217	0.5761	0.6250	

表 4 问题 4 动平台几何中心的位置坐标(mm)五组数据

x	-114.1159	236.6863	47.5000	-113.7664	26.4621
у	-124.1106	340.4747	82.2724	-125.4361	310.7604
\overline{z}	-353.0902	-268.1699	-566.7311	-485.3679	-513.2918

附 Delta 并联机械手工作视频:

- [1] https://www.iqiyi.com/w 19rul800op.html
- [2] https://haokan.baidu.com/v?pd=wisenatural&vid=10413563400560827550