# Exhibit 67-C







M68503-009BL1-001 Actinolite/Tremolite Crossed Polars

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503                  | -009          | Grid Box#                    | 8631       | No. of Grids<br>Counted | 2          |
| Analyst:               | Jayme C                 | allan         |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/22/2018 - 10/23/2018 |               | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0206                  | 56            | G. O. III Inicrons =         | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 15%        | G.O.s<br>Counted        | 100        |
| 3                      | Screen<br>Magnification | 20 KX         | Area Exa                     | mined mm²  |                         | 1.103      |

| Ctr #  | Grid Opening | Structure | Asbestos<br>Type | Longth        | Width | Datio        | SAED | EDS |
|--------|--------------|-----------|------------------|---------------|-------|--------------|------|-----|
| Str. # | B1-A1        | Bundle    | Tremolite        | Length<br>3.8 | 0.72  | Ratio<br>5.3 | X    | X   |
| NSD    | A2           | Duridie   | Tremonte         | 5.0           | 0.72  | 5.5          | ^    | ^   |
| NSD    | A4           |           |                  |               |       |              |      | -   |
| NSD    | A5           |           |                  |               |       |              |      | -   |
| NSD    | A6           |           |                  |               |       |              |      | 1   |
| NSD    | A7           |           |                  |               |       |              |      | 1   |
| NSD    | A8           | _         |                  |               |       |              | -    | +   |
| NSD    | A9           | -         |                  |               |       |              |      | -   |
| NSD    | A10          |           |                  |               |       |              |      | +   |
| NSD    | B1           |           |                  |               |       |              |      | -   |
| NSD    | B2           |           |                  |               |       |              |      | -   |
|        |              |           |                  |               |       |              |      | -   |
| NSD    | B3           |           |                  |               |       |              |      | -   |
| NSD    | B4           |           |                  |               |       |              |      | 1   |
| NSD    | B5           |           |                  |               |       |              |      | -   |
| NSD    | B6           |           |                  |               |       |              |      | -   |
| NSD    | B7           |           |                  |               |       |              |      | 1   |
| NSD    | B8           |           |                  |               |       |              |      |     |
| NSD    | B9           |           |                  |               | 1     | 1            |      |     |
| NSD    | B10          |           |                  |               |       |              |      |     |
| NSD    | C2           |           |                  |               |       |              |      |     |
| NSD    | C3           |           |                  |               |       |              |      |     |
| NSD    | C4           |           |                  |               |       |              |      |     |
| NSD    | C5           |           |                  |               |       |              |      |     |
| NSD    | C6           |           |                  |               |       |              |      |     |
| NSD    | C7           |           |                  |               |       |              |      |     |
| NSD    | C8           |           |                  |               |       |              |      |     |
| NSD    | C9           |           |                  |               |       |              |      |     |
| NSD    | C10          |           |                  |               |       |              |      | 1   |
| NSD    | D3           |           |                  |               |       |              |      | 1   |
| NSD    | D4           |           |                  |               |       |              |      |     |
| NSD    | D5           |           |                  |               |       |              |      | +   |
| NSD    | D6           |           |                  |               |       |              |      | 1   |
| NSD    | D7           |           |                  |               |       |              |      |     |
| NSD    | D8           |           |                  |               |       |              |      | +   |
| NSD    | D9           |           |                  |               |       |              |      | +   |
| NSD    | D10          |           |                  |               |       |              |      | +   |
| NSD    | E3           |           |                  |               |       |              |      | +   |
| NSD    | E4           |           |                  |               |       |              |      | 1   |
| NSD    | E5           |           |                  | 8             |       |              |      | 1   |
| NSD    | E6           |           |                  |               |       |              |      | 1   |
| NSD    | E7           |           |                  |               |       |              |      | +   |
| NSD    | E8           | -         |                  |               |       |              |      | 1   |
| NSD    | E9           | -         |                  |               |       |              |      | +   |
|        | E10          |           |                  |               |       |              |      | +   |
| NSD    |              |           |                  |               |       |              |      | 1   |
| NSD    | F3           |           |                  |               |       |              |      | -   |
| NSD    | F4           |           |                  |               |       |              |      | -   |
| NSD    | F5           |           |                  |               |       |              |      | 1   |
| NSD    | F6           |           |                  |               |       |              |      |     |
| NSD    | F7           |           |                  |               |       |              |      |     |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503                  | -009          | Grid Box#                    | 8631       | No. of Grids<br>Counted | 2          |
| Analyst:               | Jayme C                 | allan         |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/22/2018 - 10/23/2018 |               | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0206                  | 66            | G. O. III Inicrons =         | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 15%        | G.O.s<br>Counted        | 100        |
| 3                      | Screen<br>Magnification | 20 KX         | Area Exa                     | mined mm²  |                         | 1.103      |

| Str.# | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio | SAED | EDS                                          |
|-------|--------------|-----------|------------------|--------|-------|-------|------|----------------------------------------------|
| NSD   | D6-A1        |           |                  |        |       |       |      |                                              |
| NSD   | A2           |           |                  |        |       |       |      |                                              |
| NSD   | A3           |           |                  |        |       |       |      |                                              |
| NSD   | A4           |           |                  |        |       |       |      | <u>†                                    </u> |
| NSD   | A5           |           |                  |        |       |       |      | 1                                            |
| NSD   | A6           |           |                  |        |       |       |      | 1                                            |
| 2     | A7           | Bundle    | Tremolite        | 3.5    | 0.42  | 8.3   | X    | X                                            |
| NSD   | A8           |           |                  | 3.5    |       | 19.5  |      |                                              |
| NSD   | A9           |           |                  |        |       |       |      | 1                                            |
| NSD   | B1           |           |                  |        |       |       |      | 1                                            |
| NSD   | B2           |           |                  |        |       |       |      | 1                                            |
| NSD   | B3           |           |                  |        |       |       |      | +                                            |
| NSD   | B4           |           |                  |        |       |       |      | 1                                            |
| NSD   | B5           |           |                  |        |       |       |      | +                                            |
| NSD   | B6           |           |                  |        |       |       | -    | +                                            |
|       |              |           |                  |        |       |       |      | -                                            |
| NSD   | B7           |           |                  |        |       |       |      | _                                            |
| NSD   | B8           |           |                  |        |       |       |      | _                                            |
| NSD   | B9           |           |                  |        |       |       |      | -                                            |
| NSD   | B10          | -         |                  |        |       |       |      |                                              |
| NSD   | C1           |           |                  |        |       |       |      |                                              |
| NSD   | C2           |           |                  |        |       |       |      |                                              |
| NSD   | C3           |           |                  |        |       |       |      |                                              |
| NSD   | C4           |           |                  |        |       |       |      |                                              |
| NSD   | C5           |           |                  |        |       |       |      |                                              |
| NSD   | C6           |           |                  |        |       |       |      |                                              |
| NSD   | C7           |           |                  |        |       |       |      |                                              |
| NSD   | C8           |           |                  |        |       | 4     |      |                                              |
| NSD   | C9           |           |                  |        |       |       |      |                                              |
| NSD   | C10          |           |                  |        |       |       |      |                                              |
| NSD   | D1           |           |                  |        |       | 3     |      |                                              |
| NSD   | D2           |           |                  |        |       |       |      |                                              |
| NSD   | D3           |           |                  |        |       | -     |      |                                              |
| NSD   | D4           |           |                  |        |       |       |      | 1                                            |
| NSD   | D5           |           |                  |        |       |       |      |                                              |
| NSD   | D6           |           |                  |        |       | -     |      |                                              |
| NSD   | D7           |           |                  |        |       |       |      | 1                                            |
| NSD   | D8           |           |                  |        |       |       |      | 1                                            |
| NSD   | D9           |           |                  |        |       |       |      | 1                                            |
| NSD   | D10          |           |                  |        |       |       |      | <b>†</b>                                     |
| NSD   | E1           |           |                  |        |       |       |      | +                                            |
| NSD   | E2           |           |                  |        |       |       |      | +                                            |
| NSD   | E5           |           |                  |        |       |       |      | +                                            |
| NSD   | E6           |           |                  |        |       |       |      | +                                            |
| NSD   | E7           |           |                  |        |       |       |      | +                                            |
| NSD   | E8           |           |                  |        |       |       |      | 1                                            |
| NSD   | E9           |           |                  |        |       |       |      | +                                            |
| NSD   | E10          |           |                  |        |       |       |      | +                                            |
|       |              |           |                  |        |       |       |      | +                                            |
| NSD   | F1           | -         |                  |        |       |       |      |                                              |
| NSD   | F2           |           |                  |        |       |       |      | 1                                            |
| NSD   | F4           |           |                  |        |       |       |      |                                              |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503-                 | -009          | Grid Box#                    | 8631       | No. of Grids<br>Counted | 2          |
| Analyst:               | Jayme C                 | allan         |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | Treates to the state of |               | 105                          | 105        | 11025                   |            |
| Initial<br>Weight(g)   | 0.0206                  | 66            | G. O. in microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating Voltage    | 100 KV        | Loading%                     | 15%        | G.O.s<br>Counted        | 100        |
| 3                      | Screen<br>Magnification | 20 KX         | Area Exa                     | mined mm²  |                         | 1.103      |

|        | 14.05.2001   | 1 (2.1 52.11) | Asbestos | 1.64.  |       | S     | 7 - 1 - 1 - 1 |     |
|--------|--------------|---------------|----------|--------|-------|-------|---------------|-----|
| Str. # | Grid Opening | Structure     | Type     | Length | Width | Ratio | SAED          | EDS |

| Org. Sample<br>Wt.                               | Sample Wt.<br>Post HL<br>Separation |          |
|--------------------------------------------------|-------------------------------------|----------|
| 0.02066                                          | 0.02066                             | g        |
| Percent of<br>Orig. Post<br>Separation           | 100                                 | (%)      |
| Wt. Of<br>Sample<br>Analyzed<br>Filter size      | 0.00011327<br>201.1                 | g<br>mm² |
| Number of<br>Structures<br>Counted<br>Structures | 2                                   | Str.     |
| per Gram of<br>Sample                            | 1.77E+04                            | Str./g   |

| Detection<br>Limit | 8.83E+03 | Str./g |
|--------------------|----------|--------|
| Analytical         | 0.002 00 |        |
| Sensitivity        | 8.83E+03 | Str./a |











Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 14 of 251 PageID: 79279



|                        |                         | TEM Bulk      | Talc Structur        | e Count S | heet                    |           |
|------------------------|-------------------------|---------------|----------------------|-----------|-------------------------|-----------|
| Project/<br>Sample No. | M6850                   | M68503-009    |                      | 8631      | No. of Grids<br>Counted | 2         |
| Analyst:               | Jayme (                 | Callan        |                      | Length    | Width                   | G.O. Area |
| Date of<br>Analysis    | 10/22/2018 -            | 10/23/2018    | 23/2018 G. O. in 105 |           | 105                     | 105       |
| Initial<br>Weight(g)   | 0.020                   | 066           | microns =            | 105       | 105                     | 105       |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid<br>Acceptance   | Yes       | Average                 | 11025     |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%             | 15%       | G.O.s<br>Counted        | 100       |
| 3                      | Screen<br>Magnification | 20 KX         | Area                 | Examined  | mm²                     | 1.103     |

| Str. # | Grid Opening | Str./Asb. Type | Length | Width | Ratio | SAED         | EDS      |
|--------|--------------|----------------|--------|-------|-------|--------------|----------|
| Talc 1 | D6-B6        | Fibrous Talc   | 10.9   | 1.5   | 7.3   | Fibrous talc | observed |
|        |              |                |        |       |       | Trace thro   | ughout   |



Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 17 of 251 PageID: 79282





### **Section 5**

| roj#-Spl#             | M68503 - 024ISO        | Analyst          | Paul Hess       | _            | Date 10/28/20    | 18         |
|-----------------------|------------------------|------------------|-----------------|--------------|------------------|------------|
| - 1.97 A O            | 14 Environmental       |                  | c               | lientSpl 20  | 18-0060-76A      |            |
| ocation               |                        |                  |                 |              |                  |            |
| ype_Mat New           | Johnson's Baby Powde   | er               |                 |              |                  |            |
| Gross Off-white       | powder                 |                  |                 |              | % of Sample      | 100        |
| Visual                |                        |                  |                 |              |                  |            |
| -                     | 7                      |                  |                 |              |                  |            |
|                       | OPTICAL D              | ATA FOR AS       | BESTOS IDEI     | NTIFICATION  | ON               |            |
| Morphology            |                        |                  |                 |              |                  |            |
| Pleochroism           |                        | 11               |                 |              |                  |            |
| Refract Index         |                        |                  |                 |              |                  |            |
| Sign^                 |                        |                  |                 |              |                  | 1          |
| Extinction            |                        |                  |                 |              |                  |            |
| Birefringence<br>Melt |                        | -                |                 |              |                  |            |
| Fiber Name            |                        |                  |                 |              |                  |            |
| Fiber Name            |                        |                  |                 |              |                  |            |
| Talc -B/Y DS in 1.    | JS COMPONENTS          |                  | ***             |              |                  |            |
| Opaques               |                        | -                | X               |              |                  |            |
| Talc                  | <del></del>            | -                | X               |              |                  |            |
| Mineral grains        |                        | -                | X               |              |                  |            |
| iorai gianis          |                        |                  |                 |              |                  |            |
| Binder Descript       | ion                    |                  |                 |              |                  |            |
| Comme                 | nts X = Materials dete | ected. *** Trace | e amount of fi  | brous Talc   | observed.        |            |
| Comme                 | 7. Instanta data       | 1140             | - amount of III |              |                  |            |
|                       | -                      | Ti               | ne method det   | ection limit | is 1% unless oth | erwise sta |

| D1 4 4                                                                                         | M68503 - 024BL1    | Analyst Paul Hess    | Date 10/22/2018         |
|------------------------------------------------------------------------------------------------|--------------------|----------------------|-------------------------|
| entName Dept 14                                                                                | Environmental      |                      | ClientSpl 2018-0060-76A |
| cation  oe_Mat New Joh                                                                         | nnson's Baby Powde | r (60mg prep)        |                         |
| 1 7 1 1 1 <del> </del>                                                                         |                    | (comg prep)          | W 10 1 400              |
| iross White debris                                                                             | s on slide         |                      | % of Sample 100         |
| -                                                                                              | OPTICAL D          | ATA FOR ASBESTOS IDE | ENTIFICATION            |
| Morphology                                                                                     |                    |                      |                         |
| Pleochroism                                                                                    |                    |                      |                         |
| Refract Index                                                                                  |                    |                      |                         |
| Sign^<br>Extinction                                                                            |                    |                      |                         |
| Birefringence                                                                                  |                    |                      |                         |
| Melt                                                                                           |                    |                      |                         |
| Fiber Name                                                                                     |                    |                      |                         |
| Chrysotile<br>Amosite<br>Crocidolite<br>Tremolite/Actinolite<br>Anthophyllite<br>DTHER FIBROUS | <b>9</b>           |                      |                         |
| ION FIRRAGIO O                                                                                 | NADONENITO         | 1                    | <del></del>             |
| ION FIBROUS CO                                                                                 | OMPONENTS          |                      |                         |
|                                                                                                | DMPONENTS          | X                    |                         |
| Opaques                                                                                        | OMPONENTS          | X<br>X               |                         |
| NON FIBROUS CO Opaques Talc Wineral grains                                                     | DMPONENTS          |                      |                         |

The method detection limit is 1% unless otherwise stated.

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503                  | -024          | Grid Box#                    | 8631       | No. of Grids<br>Counted | 2          |
| Analyst:               | Mehrdad Me              | otamedi       |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/27/2                 | 018           | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0203                  | 33            | G. O. III Inicrons =         | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 4                      | Screen<br>Magnification | 20 KX         | Area Exa                     | mined mm²  |                         | 1.103      |

| Str.# | Grid Opening | Structure | Asbestos<br>Type | Langth  | Width | Ratio | SAED | EDS |
|-------|--------------|-----------|------------------|---------|-------|-------|------|-----|
| NSD   | E2-A1        | Structure | Туре             | Length  | width | Kallo | SAED | ED  |
| NSD   | A2           |           |                  |         |       |       |      | +   |
| NSD   | A3           |           |                  |         |       |       |      | -   |
| NSD   | A4           |           |                  | -       |       |       |      | -   |
| NSD   | A5           |           |                  |         |       |       |      | -   |
| NSD   | A6           |           |                  |         |       |       |      | 1   |
|       |              |           |                  |         |       |       |      | -   |
| NSD   | A7           |           |                  |         |       |       |      | -   |
| NSD   | A8           |           |                  |         |       |       |      | -   |
| NSD   | A9           |           |                  |         |       |       |      | -   |
| NSD   | A10          |           |                  |         |       |       |      | -   |
| NSD   | B1           |           |                  |         |       |       |      | -   |
| NSD   | B2           |           |                  |         |       |       |      | -   |
| NSD   | B3           |           |                  |         |       |       |      |     |
| NSD   | B4           |           |                  |         |       |       |      | -   |
| NSD   | B5           |           |                  |         |       |       |      | -   |
| NSD   | B6           |           |                  |         |       |       |      | -   |
| NSD   | B7           |           |                  |         |       |       |      |     |
| NSD   | B8           |           |                  |         |       | 1     |      | -   |
| NSD   | B9           |           |                  |         |       |       |      |     |
| NSD   | B10          |           |                  |         |       |       |      |     |
| NSD   | C1           |           |                  |         |       |       |      |     |
| NSD   | C2           |           |                  |         |       |       |      |     |
| NSD   | C3           |           |                  |         |       |       |      |     |
| NSD   | C4           |           |                  |         |       |       |      |     |
| NSD   | C5           |           |                  |         |       |       |      |     |
| NSD   | C6           |           |                  |         |       |       |      |     |
| NSD   | C7           |           |                  |         |       |       |      |     |
| NSD   | C8           |           |                  | Jan 199 |       |       |      |     |
| NSD   | C9           |           |                  |         |       |       |      | 1   |
| NSD   | C10          |           | 1                |         |       | 4     |      |     |
| NSD   | D1           |           |                  |         | 1     |       |      |     |
| NSD   | D2           |           |                  |         | )     |       |      |     |
| NSD   | D3           |           |                  |         |       | 4     |      |     |
| NSD   | D4           |           |                  |         |       |       |      |     |
| NSD   | D5           |           |                  |         |       |       |      |     |
| NSD   | D6           |           |                  | -       |       |       |      |     |
| NSD   | D7           |           |                  |         |       |       |      |     |
| NSD   | D8           |           |                  |         |       |       |      |     |
| NSD   | D9           |           |                  |         | 1     |       |      |     |
| NSD   | D10          |           |                  |         |       |       |      |     |
| NSD   | E1           |           |                  |         |       | - 1   |      |     |
| NSD   | E2           |           |                  |         |       |       | ji - |     |
| NSD   | E3           |           |                  |         |       |       |      |     |
| NSD   | E4           | -         |                  |         |       |       |      |     |
| NSD   | E5           |           |                  |         | 0     |       |      |     |
| NSD   | E6           |           |                  |         |       |       |      | 1   |
| NSD   | E7           |           |                  |         |       |       |      |     |
| NSD   | E8           |           |                  |         | -     |       |      |     |
| NSD   | E9           | -         |                  |         |       |       |      | 1   |
| NSD   | E10          |           |                  |         |       |       |      | 1   |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503                  | -024          | Grid Box#                    | 8631       | No. of Grids<br>Counted | 2          |
| Analyst:               | Mehrdad M               | otamedi       |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/27/2                 | 018           | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.020                   | 33            | G. O. In microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 4                      | Screen<br>Magnification | 20 KX         | Area Exa                     | mined mm²  |                         | 1.103      |

| Str.# | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio | SAED | EDS           |
|-------|--------------|-----------|------------------|--------|-------|-------|------|---------------|
| NSD   | E3-C1        |           |                  |        |       |       |      |               |
| NSD   | C2           |           |                  |        |       |       |      |               |
| NSD   | C3           |           |                  |        |       |       |      |               |
| NSD   | C4           | ,         |                  |        |       |       |      | $\overline{}$ |
| NSD   | C5           |           |                  |        |       |       |      |               |
| NSD   | C6           |           |                  |        |       |       |      | 1             |
| NSD   | C7           |           |                  |        |       |       |      | 1             |
| NSD   | C8           |           |                  |        |       |       |      | $\overline{}$ |
| NSD   | C9           |           |                  |        |       |       |      | <b>†</b>      |
| NSD   | C10          |           |                  |        |       |       |      |               |
| NSD   | D1           |           |                  |        |       |       |      | 1             |
| NSD   | D2           |           |                  |        |       |       |      |               |
| NSD   | D3           |           |                  |        |       |       |      | 1             |
| NSD   | D4           |           |                  |        |       |       |      |               |
| NSD   | D5           |           |                  |        |       | -     |      | 1             |
| NSD   | D6           |           |                  |        |       |       |      | 1             |
| NSD   | D7           |           |                  |        |       |       |      |               |
| NSD   | D8           |           |                  |        |       |       |      |               |
| NSD   | D9           | -         | -                | ,      | -     |       |      | +             |
| NSD   | D10          | _         |                  |        |       |       |      | +             |
| NSD   | E1           |           | -                |        |       |       |      | +             |
| NSD   | E2           |           |                  |        |       |       |      | +             |
| NSD   | E3           | -         |                  |        |       |       |      | +             |
| NSD   | E4           |           |                  |        |       |       |      | -             |
| NSD   | E5           |           |                  |        |       |       |      | 1             |
| NSD   | E6           |           |                  |        |       | -     |      | +             |
| NSD   | E7           |           |                  |        |       |       |      | -             |
| NSD   | E8           |           |                  |        |       |       |      | -             |
| NSD   | E9           | -         |                  |        |       |       |      | +             |
| NSD   | E10          |           |                  |        |       |       |      | 1             |
| NSD   | F1           |           | _                |        | -     |       |      | +             |
| NSD   | F2           | -         |                  |        |       |       |      | +             |
| NSD   | F3           |           |                  |        |       |       |      | +             |
| NSD   | F4           |           |                  |        |       |       |      | +             |
| NSD   | F5           |           |                  |        |       | -     |      | -             |
| NSD   | F6           |           |                  |        |       |       |      | +             |
| NSD   | F7           |           |                  |        |       |       |      | +             |
|       | F8           |           |                  |        |       |       |      | +             |
| NSD   |              |           |                  |        | -     |       |      | -             |
| NSD   | F9           |           |                  |        |       |       |      | +             |
| NSD   | F10          |           |                  |        |       |       |      | +             |
| NSD   | G1           |           |                  |        |       |       |      | -             |
| NSD   | G2           |           |                  |        |       | -     |      | -             |
| NSD   | G3           |           |                  |        |       |       |      | -             |
| NSD   | G4           |           |                  |        |       |       |      | +             |
| NSD   | G5           |           |                  |        |       |       |      |               |
| NSD   | G6           |           |                  |        |       |       |      | -             |
| NSD   | G7           |           |                  |        |       | - 1   |      | -             |
| NSD   | G8           |           |                  |        |       |       |      |               |
| NSD   | G9           |           |                  |        |       |       |      | -             |
| NSD   | G10          |           |                  |        |       |       |      |               |

|                        |                         | I CIVI        | Bulk Talc Structure C | ount Sneet |                         |            |
|------------------------|-------------------------|---------------|-----------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503                  | -024          | Grid Box #            | 8631       | No. of Grids<br>Counted | 2          |
| Analyst:               | Mehrdad Mo              | otamedi       |                       | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/27/2                 | 018           | G. O. in microns =    | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0203                  | 33            | G. O. In microns =    | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance       | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating Voltage    | 100 KV        | Loading%              | 20%        | G.O.s<br>Counted        | 100        |
| 4                      | Screen<br>Magnification | 20 KX         | Area Exa              | mined mm²  |                         | 1.103      |

|     |        |              |           | Asbestos | 1.00   |       | S 41  | 4 - 4 - 1 - 1 |     |
|-----|--------|--------------|-----------|----------|--------|-------|-------|---------------|-----|
| Jr. | Str. # | Grid Opening | Structure | Type     | Length | Width | Ratio | SAED          | EDS |

| Org. Sample                            | Sample Wt.<br>Post HL |                 |
|----------------------------------------|-----------------------|-----------------|
| Wt.                                    | Separation            |                 |
| 0.02033                                | 0.02033               | g               |
| Percent of<br>Orig. Post<br>Separation | 100                   | (%)             |
| Wt. Of<br>Sample<br>Analyzed           | 0.00011146            | g               |
| Filter size                            | 201.1                 | mm <sup>2</sup> |
| Number of<br>Structures<br>Counted     | 0                     | Str.            |
| Structures<br>per Gram of<br>Sample    | <8972                 | Str./g          |

| Detection<br>Limit        | 8.97E+03 | Str./g |
|---------------------------|----------|--------|
| Analytical<br>Sensitivity | 8.97E+03 | Str./a |

|                        |                         | TEM Bulk      | Talc Structur      | e Count S | heet                    |           |
|------------------------|-------------------------|---------------|--------------------|-----------|-------------------------|-----------|
| Project/<br>Sample No. | M6850                   | 3-024         | Grid Box#          | 8631      | No. of Grids<br>Counted | 2         |
| Analyst:               | Mehrdad N               | lotamedi      |                    | Length    | Width                   | G.O. Area |
| Date of<br>Analysis    | 10/27/                  | 2018          | G. O. in           | 105       | 105                     | 105       |
| Initial<br>Weight(g)   | 0.020                   | 033           | microns =          | 105       | 105                     | 105       |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid<br>Acceptance | Yes       | Average                 | 11025     |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%           | 20%       | G.O.s<br>Counted        | 100       |
| 4                      | Screen<br>Magnification | 20 KX         | Area               | Examined  | mm²                     | 1.103     |

| Str. # | Grid Opening | Str./Asb. Type | Length | Width | Ratio | SAED         | EDS      |
|--------|--------------|----------------|--------|-------|-------|--------------|----------|
| Talc 1 | E2-B1        | Fibrous Talc   | 10     | 0.7   | 14.3  | Fibrous Talc | Observed |
|        |              |                |        |       |       | Trace thro   | ughout   |





Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 28 of 251 PageID: 79293



41346

M68503-024-Talc 1 ( 10.0um  $\times 0.7$ um)

10/27/2018

## **Section 6**

| roj#-Spl#                                                                                      | M68503 - 004ISO                                              | Analyst         | Paul Hess         | Date 10/28/2018                                                                                                |
|------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------|-------------------|----------------------------------------------------------------------------------------------------------------|
| lientName Dep                                                                                  | t 14 Environmental                                           |                 | Clier             | ntSpl 2018-0056-25A                                                                                            |
| cation                                                                                         |                                                              |                 |                   | A 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 1111 - 111 |
| pe_Mat New                                                                                     | Johnson's Baby Powder                                        | r               |                   |                                                                                                                |
| cross Off-white                                                                                | e powder                                                     |                 |                   | % of Sample 100                                                                                                |
| /isual                                                                                         |                                                              |                 |                   |                                                                                                                |
| · ·                                                                                            |                                                              |                 |                   |                                                                                                                |
|                                                                                                | OPTICAL DA                                                   | ATA FOR ASE     | BESTOS IDENTI     | FICATION                                                                                                       |
| Morphology                                                                                     | straight                                                     |                 |                   |                                                                                                                |
| Pleochroism                                                                                    | none                                                         |                 |                   |                                                                                                                |
| Refract Index                                                                                  | 1.635/1.618                                                  |                 |                   |                                                                                                                |
| Sign^                                                                                          | positive                                                     |                 |                   |                                                                                                                |
| Extinction                                                                                     | oblique                                                      |                 |                   |                                                                                                                |
| Birefringence                                                                                  | medium                                                       |                 |                   |                                                                                                                |
| Melt                                                                                           | no                                                           |                 |                   |                                                                                                                |
| Fiber Name                                                                                     | Actinolite/Tremolite                                         |                 |                   |                                                                                                                |
| Amosite<br>Crocidolite<br>Fremolite/Actin<br>Anthophyllite<br>DTHER FIBRO<br>Falc -B/Y DS in 1 | olite<br>US COMPONENTS                                       |                 | <0.1<br>***       |                                                                                                                |
| ION FIBROUS                                                                                    | COMPONENTS                                                   | 7               |                   | _                                                                                                              |
| Opaques                                                                                        |                                                              |                 | Χ                 |                                                                                                                |
| alc                                                                                            |                                                              | -               | X                 |                                                                                                                |
| /lineral grains                                                                                |                                                              | -               | X                 | =                                                                                                              |
| Talc Mineral grains Binder Descrip                                                             | tion                                                         |                 | Х                 |                                                                                                                |
| Comme                                                                                          | Actinolite/Tremolite fragments/particles fibrous Talc observ | s exhibiting <3 | -1 length-width r | e/Tremolite cleavage<br>atio observed. *** Trace amount o                                                      |

The method detection limit is 1% unless otherwise stated.

| ientName Dept                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | Analyst Paul Hess                          |                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------|-------------------------|
| the state of the s | 14 Environmental            |                                            | ClientSpl 2018-0056-25A |
| cation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.50                        | - AFF-FF-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T |                         |
| pe_Mat New                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Johnson's Baby Powde        | er (60mg prep)                             |                         |
| ross White de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ebris on slide              |                                            | % of Sample 100         |
| /isual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                                            |                         |
| · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                                            |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OPTICAL D                   | ATA FOR ASBESTOS IDE                       | ENTIFICATION            |
| Morphology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                            |                         |
| Pleochroism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                                            |                         |
| Refract Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                                            |                         |
| Sign^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                                            |                         |
| Extinction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                            |                         |
| Birefringence<br>Melt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | <del></del> ,                              |                         |
| Fiber Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                                            |                         |
| ribei Naille                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                                            |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                                            |                         |
| OTHER FIBRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | US COMPONENTS               |                                            |                         |
| OTHER FIBRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                                            |                         |
| NON FIBROUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | US COMPONENTS               | X                                          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | US COMPONENTS               | X                                          |                         |
| NON FIBROUS Opaques Talc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | US COMPONENTS               |                                            |                         |
| NON FIBROUS Opaques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | US COMPONENTS               | X                                          |                         |
| NON FIBROUS Opaques Talc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | COMPONENTS                  | X                                          |                         |
| NON FIBROUS Opaques Talc Mineral grains Binder Descript                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COMPONENTS  COMPONENTS  ion | X                                          |                         |
| NON FIBROUS Opaques Talc Mineral grains Binder Descript                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | COMPONENTS                  | X                                          |                         |





|                        |                               | TEM    | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------------|--------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503-004                    |        | Grid Box#                    | 8631       | No. of Grids<br>Counted | 2          |
| Analyst:               | Jayme Callan                  |        |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 0.06100                       |        | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   |                               |        | G. O. In microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation Talc Analysis |        | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage       | 100 KV | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 3                      | Screen<br>Magnification       | 20 KX  | Area Examined mm²            |            |                         | 1.103      |

| Str.# | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio | SAED | EDS |
|-------|--------------|-----------|------------------|--------|-------|-------|------|-----|
| NSD   | D10-A1       |           |                  |        |       |       |      |     |
| NSD   | A2           |           | -                |        |       | 1     |      |     |
| NSD   | A3           |           |                  |        | 1     | -     |      |     |
| NSD   | A4           |           |                  |        |       |       |      |     |
| NSD   | A5           |           |                  |        |       |       |      |     |
| NSD   | A6           |           |                  |        |       | 1     |      |     |
| NSD   | A7           |           |                  |        |       |       |      |     |
| NSD   | A8           |           |                  |        |       | -     |      |     |
| NSD   | A9           |           |                  |        |       |       |      |     |
| NSD   | A10          |           |                  |        |       |       |      |     |
| NSD   | B1           |           |                  |        |       |       |      |     |
| NSD   | B2           |           |                  |        |       |       |      |     |
| NSD   | B3           |           |                  |        |       |       |      |     |
| NSD   | B4           |           |                  |        |       | - 1   |      | 1   |
| NSD   | B5           |           |                  |        |       |       |      |     |
| NSD   | B6           |           |                  |        |       |       |      |     |
| NSD   | B7           |           |                  |        |       |       |      |     |
| NSD   | B8           |           |                  |        |       |       |      |     |
| NSD   | B9           |           |                  |        |       |       |      |     |
| NSD   | B10          |           |                  |        |       |       |      |     |
| NSD   | C1           |           |                  |        |       |       |      | 1   |
| NSD   | C2           |           |                  |        |       |       |      | 1   |
| NSD   | C3           |           |                  |        |       |       |      |     |
| NSD   | C4           |           |                  |        |       |       |      |     |
| NSD   | C5           |           |                  |        |       |       |      | 1   |
| NSD   | C6           |           |                  |        |       |       |      |     |
| NSD   | C7           |           |                  |        |       |       |      |     |
| NSD   | C8           |           |                  |        |       |       |      |     |
| NSD   | C9           |           |                  |        |       |       |      | 1   |
| NSD   | C10          |           |                  |        |       |       |      | 1   |
| NSD   | D1           |           |                  |        |       |       |      | 1   |
| NSD   | D2           |           |                  |        |       |       |      | 1   |
| NSD   | D3           |           |                  |        |       |       |      |     |
| NSD   | D4           |           |                  |        |       |       |      | 1   |
| NSD   | D5           |           |                  |        |       |       |      | 1   |
| NSD   | D6           |           |                  |        |       |       |      |     |
| NSD   | D7           |           |                  |        |       |       |      | 1   |
| NSD   | D8           |           |                  |        |       |       |      |     |
| NSD   | D9           |           |                  | 8      |       |       |      |     |
| NSD   | D10          |           |                  |        |       |       |      | +   |
| NSD   | E1           |           |                  |        |       |       | -    | t   |
| NSD   | E2           |           |                  |        |       |       |      | 1   |
| NSD   | E3           |           |                  |        |       |       |      | +   |
| NSD   | E4           |           |                  |        |       |       |      | 1   |
| NSD   | E5           |           |                  |        |       |       |      | +   |
| NSD   | E6           |           |                  |        |       |       |      | +   |
| NSD   | E7           |           |                  |        |       |       |      | _   |
| NSD   | E8           |           |                  |        | 4     |       |      |     |
| NSD   | E9           |           |                  |        |       |       |      | 1   |
| NSD   | E10          |           |                  |        |       |       |      | -   |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503-004              |               | Grid Box#                    | 8631       | No. of Grids<br>Counted | 2          |
| Analyst:               | Jayme C                 | allan         |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 11/1/20                 | 018           | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0610                  | 00            | G. O. In microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 3                      | Screen<br>Magnification | 20 KX         | Area Examined mm²            |            |                         | 1.103      |

| Str.# | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio | SAED | EDS |
|-------|--------------|-----------|------------------|--------|-------|-------|------|-----|
| NSD   | D9-A1        |           |                  |        |       |       |      |     |
| NSD   | A2           |           |                  |        |       |       |      | 1   |
| NSD   | A3           |           |                  |        |       |       |      |     |
| NSD   | A4           |           |                  |        |       |       |      | 1   |
| NSD   | A5           |           |                  |        |       |       |      |     |
| NSD   | A6           |           |                  |        |       |       |      |     |
| NSD   | A7           |           |                  |        |       |       |      |     |
| NSD   | A8           |           |                  |        |       |       |      |     |
| NSD   | A9           |           |                  |        |       |       |      | 1   |
| NSD   | A10          |           |                  |        |       |       |      | 1   |
| NSD   | B1           |           |                  |        |       |       |      |     |
| NSD   | B2           |           |                  |        |       |       |      | 1   |
| NSD   | B3           |           |                  |        |       |       |      | +   |
| NSD   | B5           |           |                  |        |       |       |      | +   |
| NSD   | B6           |           |                  |        |       |       |      | _   |
|       | B7           |           |                  |        |       |       |      | +   |
| NSD   |              |           |                  |        |       |       | 7.7  | -   |
| NSD   | B8           |           |                  |        |       |       |      | -   |
| NSD   | B9           |           |                  |        |       |       |      | -   |
| NSD   | B10          | -         |                  |        |       |       |      | -   |
| NSD   | C1           |           |                  |        |       |       |      |     |
| NSD   | C2           |           |                  |        |       |       |      |     |
| NSD   | C3           |           |                  |        |       |       |      |     |
| NSD   | C4           |           |                  |        |       |       |      |     |
| NSD   | C5           |           |                  |        |       |       |      |     |
| NSD   | C6           |           |                  |        |       |       |      |     |
| NSD   | C7           |           |                  |        |       |       |      |     |
| NSD   | C8           |           |                  |        |       | -     |      |     |
| NSD   | C9           |           |                  |        |       |       |      |     |
| NSD   | C10          |           |                  |        |       |       |      |     |
| NSD   | D1           |           |                  |        |       | 3     |      |     |
| NSD   | D2           |           |                  |        |       |       |      |     |
| NSD   | D3           |           |                  |        |       |       |      |     |
| NSD   | D4           |           |                  |        |       |       |      | _   |
| NSD   | D5           |           |                  |        |       |       |      |     |
| NSD   | D6           |           |                  |        |       | -     |      | 1   |
| NSD   | D7           |           |                  |        |       |       |      | 1   |
| NSD   | D8           |           |                  |        |       |       |      | 1   |
| NSD   | D9           |           |                  |        |       |       |      | +   |
| NSD   | D10          |           |                  |        |       |       |      | +   |
| NSD   | E1           |           |                  |        |       |       |      | +   |
| NSD   | E2           |           |                  |        |       |       |      | +   |
| NSD   | E3           |           |                  |        |       |       |      | +   |
| NSD   | E4           |           |                  |        |       |       |      | -   |
|       | E6           |           |                  |        |       |       |      | +   |
| NSD   | E6           |           |                  |        |       |       |      | +   |
| NSD   |              |           |                  |        |       |       |      | -   |
| NSD   | E8           |           |                  |        |       |       |      | +   |
| NSD   | E9           |           |                  |        |       |       |      | 1   |
| NSD   | E10          |           |                  |        |       |       |      | -   |
| NSD   | F1           |           |                  |        |       |       |      |     |
| NSD   | F2           |           |                  |        |       |       |      |     |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503-004              |               | Grid Box#                    | 8631       | No. of Grids<br>Counted | 2          |
| Analyst:               | Jayme C                 | allan         |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 11/1/20                 | 018           | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.06100                 |               | G. O. In microns =           | 105        |                         | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating Voltage    | 100 KV        | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 3                      | Screen<br>Magnification | 20 KX         | Area Examined mm²            |            | 1.103                   |            |

|        | 14.104.2011  | 12. 52. 1 | Asbestos | 1.64.  |       | S     | 757 5414 1 |     |
|--------|--------------|-----------|----------|--------|-------|-------|------------|-----|
| Str. # | Grid Opening | Structure | Type     | Length | Width | Ratio | SAED       | EDS |

| Org. Sample<br>Wt.                     | Sample Wt.<br>Post HL<br>Separation |        |
|----------------------------------------|-------------------------------------|--------|
| 0.06100                                | 0.06100                             | g      |
| Percent of<br>Orig. Post<br>Separation | 100                                 | (%)    |
| Wt. Of<br>Sample<br>Analyzed           | 0.00033442                          | g      |
| Filter size Number of Structures       | 201.1                               | mm²    |
| Counted Structures                     | 0                                   | Str.   |
| per Gram of<br>Sample                  | <2990                               | Str./g |

|                    |          | 7      |
|--------------------|----------|--------|
| Detection<br>Limit | 2.99E+03 | Str./g |
| Analytical         |          |        |
| Sensitivity        | 2.99E+03 | Str./a |

|                        |                         | TEM Bulk      | Talc Structur      | e Count S             | Sheet                   |           |     |
|------------------------|-------------------------|---------------|--------------------|-----------------------|-------------------------|-----------|-----|
| Project/<br>Sample No. | M68503-004              |               | Grid Box#          | 8631                  | No. of Grids<br>Counted | 2         |     |
| Analyst:               | Jayme (                 | Callan        |                    | Length                | Width                   | G.O. Area |     |
| Date of<br>Analysis    | 11/1/2                  | 2018          | G. O. in           | 105                   | 105                     | 105       |     |
| Initial<br>Weight(g)   | 0.06                    | 0.06100       |                    | 0.06100 microns = 105 | 105                     | 105       | 105 |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid<br>Acceptance | Yes                   | Average                 | 11025     |     |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%           | 20%                   | G.O.s<br>Counted        | 100       |     |
| 3                      | Screen<br>Magnification | 20 KX         | Area Examined mm²  |                       | mm²                     | 1.103     |     |

| Str.#   | Grid Opening | Str./Asb. Type | Length | Width | Ratio | SAED         | EDS      |
|---------|--------------|----------------|--------|-------|-------|--------------|----------|
| Talc #1 | D10-C7       | Fibrous Talc   | 35.7   | 1.22  | 29.3  | Fibrous talc | observed |







# **Section 7**

| roj#-Spl#M6                                                                | 68503 - 014ISO     | Analyst Pau        | l Hess            | Date 10/28/2   | 018   |
|----------------------------------------------------------------------------|--------------------|--------------------|-------------------|----------------|-------|
| lientName Dept 14 E                                                        | nvironmental       | 5.301.05.00        | ClientSp          | 12018-0060-20A |       |
| ocation                                                                    |                    |                    |                   |                |       |
| pe_Mat Johnson's                                                           | Baby Powder        |                    |                   |                |       |
| Gross Off-white pow                                                        | der                |                    |                   | % of Sample    | e 100 |
| /isuai                                                                     |                    |                    |                   |                |       |
|                                                                            | OPTICAL DA         | ATA FOR ASBEST     | OS IDENTIFICA     | ATION          |       |
| Morphology                                                                 |                    |                    |                   |                |       |
| Pleochroism                                                                |                    | 11                 |                   |                |       |
| Refract Index                                                              |                    |                    |                   |                |       |
| Sign^                                                                      |                    |                    |                   |                |       |
| Extinction<br>Birefringence                                                |                    |                    |                   |                |       |
| Melt                                                                       |                    | -                  |                   |                |       |
| Fiber Name                                                                 |                    |                    | -                 |                |       |
| ACDICATOR MINED                                                            | AL C               | FeT                | . VOI 9/          |                |       |
| ASBESTOS MINERA                                                            | ALS                |                    | OS OBSERVED       |                |       |
| Amosite  Crocidolite  Fremolite/Actinolite  Anthophyllite  OTHER FIBROUS C |                    |                    |                   |                |       |
| alc -B/Y DS in 1.55                                                        |                    | **                 | *                 |                |       |
|                                                                            | <u>=</u>           |                    |                   |                |       |
| NON FIBROUS COM                                                            | //PONENTS          | ;                  |                   |                |       |
| Dpaques                                                                    |                    | 1,3                | Κ                 |                |       |
| alc                                                                        |                    |                    | (                 |                |       |
| Mineral grains                                                             |                    |                    | <                 |                |       |
| Binder Description                                                         |                    |                    |                   |                |       |
|                                                                            |                    |                    |                   |                |       |
| Comments                                                                   | X = Materials dete | cted. *** Trace am | ount of fibrous T | alc observed.  |       |
|                                                                            |                    | TL                 |                   | ::+:- 40/      | A     |

| roj#-Spl#                    | M68503 - 014BL1                                                                                                                                                                              | Analyst Paul I | Hess                | Date 10/22/2018             |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|---------------------|-----------------------------|
| lientName [                  | Dept 14 Environmental                                                                                                                                                                        |                | ClientSpl 20        | 18-0060-20A                 |
| ocation                      |                                                                                                                                                                                              |                |                     |                             |
| /pe_Mat                      | Johnson's Baby Powder (60                                                                                                                                                                    | mg prep)       |                     |                             |
| Gross Whit                   | te debris on slide                                                                                                                                                                           | 1.40           |                     | % of Sample 100             |
| -                            | OPTICAL DATA FOR ASBESTOS IDENTIFICATION  Morphology Pleochroism lefract Index Sign^ Extinction irefringence Melt Fiber Name  SBESTOS MINERALS  EST. VOL. % NO ASBESTOS OBSERVED  Invisotile |                |                     |                             |
| Morpholo                     | av                                                                                                                                                                                           |                |                     |                             |
|                              |                                                                                                                                                                                              |                |                     |                             |
|                              | 2.7                                                                                                                                                                                          |                |                     |                             |
| Sigi                         | n^                                                                                                                                                                                           |                |                     |                             |
| Extinction                   | on                                                                                                                                                                                           |                |                     |                             |
| Birefringen                  | ce                                                                                                                                                                                           |                |                     |                             |
| Me                           | elt                                                                                                                                                                                          |                |                     |                             |
| Fiber Nan                    | ne                                                                                                                                                                                           |                |                     |                             |
| Tremolite/Ad<br>Anthophyllit | e                                                                                                                                                                                            |                |                     |                             |
| NON FIBRO                    | OUS COMPONENTS                                                                                                                                                                               |                |                     |                             |
| Opaques                      |                                                                                                                                                                                              | X              |                     |                             |
| Talc                         | 7                                                                                                                                                                                            | X              |                     |                             |
| Mineral grains               | S                                                                                                                                                                                            | X              |                     |                             |
| Pinder Desc                  | printion                                                                                                                                                                                     |                |                     |                             |
| Binder Desc                  |                                                                                                                                                                                              |                |                     |                             |
| Con                          | x = Materials dete                                                                                                                                                                           | ected.         |                     |                             |
|                              |                                                                                                                                                                                              | The met        | hod detection limit | is 1% unless otherwise stat |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503-014              |               | Grid Box#                    | 8631       | No. of Grids<br>Counted | 2          |
| Analyst:               | Jayme C                 | allan         |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/23/2018 - 1          | 0/25/2018     | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.02108                 |               | G. O. In microns =           | 105        |                         | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 3                      | Screen<br>Magnification | 20 KX         | Area Examined mm²            |            |                         | 1.103      |

| Str. # | Grid Opening          | Structure | Asbestos  | Longth | Width | Ratio | SAED | EDS |
|--------|-----------------------|-----------|-----------|--------|-------|-------|------|-----|
| NSD    | Grid Opening<br>A2-A4 | Structure | Туре      | Length | width | Ratio | SAED | ED  |
| NSD    | A5                    |           |           |        |       |       |      | +   |
| NSD    | A6                    |           |           |        |       |       |      | +   |
| NSD    | A7                    |           |           |        |       |       |      | -   |
| NSD    | A8                    |           |           |        |       |       |      | -   |
| NSD    | A9                    |           |           |        |       |       |      | 1   |
|        |                       | -         |           |        |       |       |      | -   |
| NSD    | A10                   |           |           |        |       |       |      | -   |
| NSD    | B3                    |           |           |        |       |       |      | -   |
| NSD    | B5                    |           |           |        |       |       |      | -   |
| NSD    | B6                    |           |           |        |       |       |      | -   |
| NSD    | B7                    |           |           |        |       |       |      | -   |
| NSD    | B8                    |           |           |        |       |       |      | -   |
| NSD    | B9                    |           |           |        |       |       |      |     |
| NSD    | B10                   |           |           |        |       |       |      | -   |
| NSD    | C2                    |           |           |        |       |       |      | -   |
| NSD    | C3                    |           |           |        |       |       |      | -   |
| NSD    | C4                    |           |           |        |       |       |      |     |
| NSD    | C5                    |           |           |        |       | 1     |      | -   |
| NSD    | C6                    |           |           |        |       |       |      |     |
| NSD    | C7                    |           |           |        |       |       |      |     |
| NSD    | C8                    |           |           |        |       |       |      |     |
| NSD    | C9                    |           |           |        |       |       |      |     |
| NSD    | C10                   |           |           |        |       |       |      |     |
| NSD    | D2                    |           |           |        |       |       |      |     |
| NSD    | D3                    |           |           |        |       |       |      |     |
| NSD    | D4                    |           |           |        |       |       |      |     |
| NSD    | D5                    |           |           |        |       |       |      |     |
| NSD    | D6                    |           |           | A      |       |       |      |     |
| NSD    | D7                    |           |           |        |       |       |      | 1   |
| NSD    | D8                    |           |           |        |       | 4     |      |     |
| NSD    | D10                   |           |           |        |       |       |      |     |
| NSD    | E1                    |           |           |        |       |       |      |     |
| NSD    | E2                    |           |           |        |       | 4     |      |     |
| NSD    | E3                    |           |           |        |       |       |      |     |
| NSD    | E4                    |           |           |        |       |       |      |     |
| NSD    | E5                    |           |           | -      |       |       |      |     |
| NSD    | E6                    |           |           |        |       |       |      |     |
| NSD    | E7                    |           |           |        |       |       |      |     |
| 1      | E8                    | Bundle    | Tremolite | 8.6    | 1.3   | 6.6   | X    | X   |
| NSD    | E9                    |           |           |        |       |       |      |     |
| NSD    | E10                   |           |           |        |       |       |      |     |
| NSD    | F1                    |           |           |        |       |       |      |     |
| NSD    | F2                    |           |           |        |       |       |      |     |
| NSD    | F3                    | -         |           |        |       |       |      |     |
| NSD    | F4                    |           |           |        |       |       |      | 1   |
| NSD    | F5                    |           |           |        |       |       |      | 1   |
| NSD    | F6                    |           | -         | 1      |       |       |      |     |
| NSD    | F7                    |           |           |        |       |       |      |     |
| NSD    | F8                    | -         |           |        | -     |       |      | 1   |
| NSD    | F9                    | -         |           |        |       |       |      | 1   |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503-014              |               | Grid Box#                    | 8631       | No. of Grids<br>Counted | 2          |
| Analyst:               | Jayme Callan            |               |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/23/2018 - 1          | 0/25/2018     | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0210                  | 08            | G. O. In microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 3                      | Screen<br>Magnification | 20 KX         | Area Examined mm²            |            |                         | 1.103      |

| Str. # | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio | SAED | EDS |
|--------|--------------|-----------|------------------|--------|-------|-------|------|-----|
| NSD    | A4-A1        |           |                  |        |       |       |      |     |
| NSD    | A2           |           |                  |        |       |       |      |     |
| NSD    | A3           |           |                  |        |       |       |      |     |
| NSD    | A4           |           |                  |        |       |       |      | 1   |
| NSD    | A5           |           |                  |        |       |       |      | 1   |
| NSD    | A6           |           |                  |        |       |       |      | 1   |
| NSD    | A7           |           |                  |        |       |       |      |     |
| NSD    | A8           |           |                  |        |       |       |      |     |
| NSD    | A9           |           |                  |        |       |       |      |     |
| NSD    | A10          |           |                  |        |       | - 4   |      |     |
| NSD    | C1           |           |                  |        |       |       |      |     |
| NSD    | C2           |           |                  |        |       |       |      |     |
| NSD    | C3           |           |                  |        |       |       |      |     |
| NSD    | C4           |           |                  |        |       |       |      |     |
| NSD    | C5           | -         |                  | -1     |       |       |      |     |
| NSD    | C6           |           |                  |        |       |       |      |     |
| NSD    | C7           |           |                  |        |       |       |      |     |
| NSD    | C8           |           |                  |        |       |       |      |     |
| NSD    | C9           |           |                  |        |       |       |      | 1   |
| NSD    | C10          |           |                  |        |       |       |      | 1   |
| NSD    | E2           |           |                  |        |       |       |      | 1   |
| NSD    | F1           |           |                  |        |       |       |      | 1   |
| NSD    | F2           |           |                  |        |       |       |      | 1   |
| NSD    | F3           |           |                  |        |       |       |      | 1   |
| NSD    | F4           |           |                  |        |       |       |      |     |
| NSD    | F5           |           |                  |        |       |       |      | 1   |
| NSD    | F6           |           |                  |        |       |       |      |     |
| NSD    | F7           |           |                  |        |       |       |      | 1   |
| NSD    | F8           |           |                  |        |       |       |      |     |
| NSD    | F9           |           |                  |        |       |       |      | 1   |
| NSD    | F10          |           |                  |        |       |       |      | +   |
| NSD    | H1           |           |                  |        |       |       |      | 1   |
| NSD    | H2           |           |                  |        |       |       |      | +   |
| NSD    | H3           |           |                  |        |       |       |      | 1   |
| NSD    | H4           |           |                  |        |       |       |      |     |
| NSD    | H5           | -         |                  |        |       |       |      |     |
| NSD    | H6           |           |                  |        |       |       |      | -   |
| NSD    | H7           |           |                  |        |       |       |      | 1   |
| NSD    | H8           |           |                  |        |       |       |      | +   |
| NSD    | H9           |           |                  |        |       |       |      | 1   |
| NSD    | H10          |           |                  |        |       |       |      | +   |
| NSD    | J1           |           |                  |        |       |       |      | 1   |
| NSD    | J2           |           |                  |        |       |       |      | -   |
| NSD    | J3           |           |                  |        |       |       |      | 1   |
| NSD    | J5           |           |                  |        |       |       |      | +   |
| 2      | J6           | Bundle    | Tremolite        | 7.9    | 0.84  | 9.4   | Х    | X   |
| NSD    | J7           | Duriule   | Henionie         | 1.5    | 0.04  | 5.4   | ^    | ^   |
| NSD    | J8           |           |                  |        |       |       |      | 1   |
| NSD    | J8<br>J9     |           |                  |        |       |       |      | 1   |
| NSD    | J10          |           |                  |        |       |       |      | +   |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet      |                  |            |
|------------------------|-------------------------|---------------|------------------------------|-----------------|------------------|------------|
| Project/<br>Sample No. | M68503                  | -014          | Grid Box#                    | Grid Box # 8631 |                  | 2          |
| Analyst:               | Jayme Callan            |               |                              | Length          | Width            | G. O. Area |
| Date of<br>Analysis    | 10/23/2018 - 1          | 0/25/2018     | G. O. in microns =           | 105             | 105              | 11025      |
| Initial<br>Weight(g)   | 0.0210                  | 08            | G. O. In microns =           | 105             | 105              | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes             | Average          | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 20%             | G.O.s<br>Counted | 100        |
| 3                      | Screen<br>Magnification | 20 KX         | Area Examined mm²            |                 |                  | 1.103      |

|        |              | 1 (       | Asbestos | 1 2 2 2 2 2 2 2 |       |       |      |     |
|--------|--------------|-----------|----------|-----------------|-------|-------|------|-----|
| Str. # | Grid Opening | Structure | Type     | Length          | Width | Ratio | SAED | EDS |

| Org. Sample<br>Wt.                               | Post HL<br>Separation |          |
|--------------------------------------------------|-----------------------|----------|
| 0.02108                                          | 0.02108               | g        |
| Percent of<br>Orig. Post<br>Separation           | 100                   | (%)      |
| Wt. Of<br>Sample<br>Analyzed<br>Filter size      | 0.00011557<br>201.1   | g<br>mm² |
| Number of<br>Structures<br>Counted<br>Structures | 2                     | Str.     |
| per Gram of<br>Sample                            | 1.73E+04              | Str./g   |

| Detection<br>Limit        | 8.65E+03 | Str./g |
|---------------------------|----------|--------|
| Analytical<br>Sensitivity | 8.65F+03 | Str./a |













Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 55 of 251 PageID: 79320





Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 57 of 251 PageID: 79322



Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 58 of 251 PageID: 79323



|                        |                         | TEM Bulk            | Talc Structur      | e Count S | heet                    |           |
|------------------------|-------------------------|---------------------|--------------------|-----------|-------------------------|-----------|
| Project/<br>Sample No. | M6850                   | 68503-014 Grid Bo   |                    | 8631      | No. of Grids<br>Counted | 2         |
| Analyst:               | Jayme (                 | Jayme Callan        |                    | Length    | Width                   | G.O. Area |
| Date of<br>Analysis    | 10/23/2018 -            | 10/25/2018 G. O. in |                    | 105       | 105                     | 105       |
| Initial<br>Weight(g)   | 0.02                    | 108                 | microns =          | 105       | 105                     | 105       |
| Analysis<br>Type       | Post Separation         | Talc Analysis       | Grid<br>Acceptance | Yes       | Average                 | 11025     |
| Scope No.              | Accelerating<br>Voltage | 100 KV              | Loading%           | 20%       | G.O.s<br>Counted        | 100       |
| 3                      | Screen<br>Magnification | 20 KX               | Area               | Examined  | mm²                     | 1.103     |

| Str. #  | Grid Opening | Str./Asb. Type | Length | Width | Ratio | SAED                  | EDS     |
|---------|--------------|----------------|--------|-------|-------|-----------------------|---------|
| Talc #1 | A2-D7        | Fibrous Talc   | 6.7    | 1.1   | 6.1   | Fibrous talc observed |         |
|         |              |                |        |       |       | Trace throu           | ugh out |



Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 61 of 251 PageID: 79326



Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 62 of 251 PageID: 79327



# **Section 8**

| oj#-Spl#<br>_<br>ientName D | M68503 - 011ISO<br>ept 14 Environmental | Analyst Paul        |                     | Date 10/28/2018<br>018-0060-06A |
|-----------------------------|-----------------------------------------|---------------------|---------------------|---------------------------------|
| cation _                    |                                         |                     |                     | pt 6 x 12 11 1 2                |
| pe_Mat E                    | conomy Size Johnson's B                 | aby Powder          |                     |                                 |
| ross Off-w                  | hite powder                             |                     |                     | % of Sample 100                 |
| /isual                      |                                         |                     |                     |                                 |
| -                           |                                         |                     |                     |                                 |
|                             | OPTICAL D                               | OATA FOR ASBEST     | OS IDENTIFICATI     | ON                              |
| Morpholog                   | у                                       |                     |                     |                                 |
| Pleochrois                  | n                                       |                     |                     | 1                               |
| Refract Inde                |                                         |                     |                     |                                 |
| Sign                        |                                         |                     |                     |                                 |
| Extinctio                   |                                         |                     |                     |                                 |
| Birefringenc                |                                         |                     |                     |                                 |
| Me<br>Fiber Nem             | 50                                      |                     |                     |                                 |
| Fiber Nam                   | е                                       |                     |                     |                                 |
|                             | n 1.55                                  | ***                 |                     |                                 |
| NON FIBRO                   | US COMPONENTS                           |                     |                     |                                 |
| Opaques                     |                                         | x                   |                     |                                 |
| Falc                        | <del></del>                             | x                   |                     |                                 |
| Mineral grains              | -                                       | - X                 |                     |                                 |
| g.a.ii                      |                                         |                     |                     |                                 |
| Binder Desc                 | ription                                 |                     |                     |                                 |
| Com                         | ments X = Materials det                 | ected *** Trace amo | unt of fibrous Tale | observed                        |
| Com                         | materials det                           | Traco dillo         | and of fibrodo Talo | - SSSSITOM.                     |
|                             | 1                                       | The me              | thod detection limi | t is 1% unless otherwise sta    |
|                             |                                         | i ne me             | uiou delection ilmi | LIS 170 UHIESS OTHERWISE S      |

| cation  pe_Mat Econo  Gross White det  Visual             | omy Size Johnson's Ba  |                        | entSpl <u>2018-0060-06A</u> |
|-----------------------------------------------------------|------------------------|------------------------|-----------------------------|
| ross White deb                                            |                        | by Powder (60mg prep)  |                             |
| ross White del                                            |                        | by Powder (60mg prep)  |                             |
|                                                           | ate on altho           | -, ( 5   /             |                             |
| ( )                                                       | oris on slide          |                        | % of Sample 100             |
|                                                           | OPTICAL DA             | ATA FOR ASBESTOS IDENT | TIFICATION                  |
| Morphology                                                |                        |                        |                             |
| Pleochroism                                               |                        |                        |                             |
| Refract Index                                             |                        |                        |                             |
| Sign^                                                     |                        |                        |                             |
| Extinction                                                |                        |                        |                             |
| Birefringence<br>Melt                                     |                        |                        |                             |
| Fiber Name                                                |                        |                        |                             |
| ribei Name                                                |                        |                        |                             |
| Tremolite/Actino Anthophyllite  OTHER FIBROU  NON FIBROUS | JS COMPONENTS          |                        |                             |
| Opaques                                                   |                        | X                      |                             |
| Γalc                                                      |                        | X                      |                             |
| Mineral grains                                            |                        | Х                      |                             |
| Binder Descripti                                          | on                     |                        | 3                           |
| Commer                                                    | nts X = Materials dete | cted.                  |                             |
|                                                           | 4.1                    |                        |                             |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503-011              |               | Grid Box#                    | 8636       | No. of Grids<br>Counted | 2          |
| Analyst:               | Jayme Callan            |               |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/25/2018 - 1          | 0/26/2018     | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0300                  | 04            | G. O. In microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 3                      | Screen<br>Magnification | 20 KX         | Area Examined mm²            |            |                         | 1.103      |

| Ctr #         | Grid Onaning          | Structure | Asbestos | Longith | 10/1-141- | Datia | CAED | ED  |
|---------------|-----------------------|-----------|----------|---------|-----------|-------|------|-----|
| Str. #<br>NSD | Grid Opening<br>E7-B1 | Structure | Туре     | Length  | Width     | Ratio | SAED | EDS |
| NSD           | B2                    |           |          |         |           |       |      | -   |
| NSD           | B3                    |           |          |         |           |       |      | +   |
|               |                       |           |          |         |           |       |      | -   |
| NSD           | B4                    |           |          |         |           |       |      | +   |
| NSD           | B5                    |           |          |         |           |       |      | 1   |
| NSD           | B6                    |           |          |         |           |       |      | +   |
| NSD           | B8                    |           |          |         |           |       |      | -   |
| NSD           | B9                    |           |          |         |           |       |      | -   |
| NSD           | B10                   |           |          |         |           |       |      | -   |
| NSD           | C1                    |           |          |         |           |       |      | -   |
| NSD           | C2                    |           |          |         |           |       |      | -   |
| NSD           | C3                    |           |          |         |           |       |      | -   |
| NSD           | C4                    |           |          |         |           |       |      | 1   |
| NSD           | C5                    |           |          |         |           |       |      | -   |
| NSD           | C6                    |           |          |         |           | 1     |      |     |
| NSD           | C7                    |           |          |         |           |       |      | 1   |
| NSD           | C8                    |           |          |         |           |       |      |     |
| NSD           | C9                    |           |          |         | 1         | 1     |      |     |
| NSD           | C10                   |           |          |         |           |       |      |     |
| NSD           | D1                    |           |          |         |           |       |      | 1   |
| NSD           | D2                    |           |          |         |           |       |      |     |
| NSD           | D3                    |           |          |         |           |       |      |     |
| NSD           | D4                    |           |          |         |           |       |      |     |
| NSD           | D5                    |           |          |         |           |       |      |     |
| NSD           | D6                    |           |          |         |           |       |      |     |
| NSD           | D7                    |           |          |         |           |       |      |     |
| NSD           | D8                    |           |          |         |           | 7     |      |     |
| NSD           | D9                    |           |          |         |           |       |      |     |
| NSD           | D10                   |           |          |         |           |       |      | 1   |
| NSD           | E1                    |           |          |         |           |       |      |     |
| NSD           | E2                    |           |          |         |           |       |      |     |
| NSD           | E3                    |           |          |         |           |       |      | 1   |
| NSD           | E4                    |           |          |         |           | 4     |      |     |
| NSD           | E5                    |           |          |         |           |       |      |     |
| NSD           | E6                    |           |          |         |           |       |      |     |
| NSD           | E7                    |           |          |         |           |       |      |     |
| NSD           | E8                    |           |          |         |           | - 1   |      | 1   |
| NSD           | E9                    |           |          |         |           |       |      |     |
| NSD           | E10                   |           |          |         |           |       |      |     |
| NSD           | F1.                   |           |          |         |           |       |      | 1   |
| NSD           | F2                    |           |          |         |           |       |      |     |
| NSD           | F3                    |           |          |         |           |       |      |     |
| NSD           | F4                    |           |          |         |           |       |      | 1   |
| NSD           | F5                    |           |          |         |           |       |      | 1   |
| NSD           | F6                    |           |          |         |           |       |      | 1   |
| NSD           | F7                    |           |          |         |           |       |      | 1   |
| NSD           | F8                    |           |          |         |           |       |      | 1   |
| NSD           | F9                    |           |          |         |           |       |      | 1   |
| NSD           | F10                   |           |          |         |           |       |      | 1   |
| NSD           | G1                    |           |          |         |           |       |      | +   |

|                        |                                    | TEM    | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|------------------------------------|--------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503-011                         |        | Grid Box#                    | 8636       | No. of Grids<br>Counted | 2          |
| Analyst:               | Jayme Callan                       |        |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/25/2018 - 10/26/2018<br>0.03004 |        | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   |                                    |        | G. O. III IIIICIONS -        | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation Talc Analysis      |        | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage            | 100 KV | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 3                      | Screen<br>Magnification            | 20 KX  | Area Examined mm²            |            |                         | 1.103      |

| Str.# | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio | SAED | EDS |
|-------|--------------|-----------|------------------|--------|-------|-------|------|-----|
| NSD   | E6-A1        |           |                  |        |       |       |      |     |
| NSD   | A2           |           |                  |        |       |       |      |     |
| NSD   | A3           |           |                  |        |       |       |      |     |
| NSD   | A4           |           |                  |        |       |       |      |     |
| NSD   | A5           |           |                  |        |       |       |      |     |
| NSD   | A6           |           |                  |        |       |       |      | 1   |
| NSD   | A7           |           |                  |        |       |       |      |     |
| NSD   | A8           |           |                  |        |       |       |      |     |
| NSD   | A9           |           |                  |        |       |       |      |     |
| NSD   | A10          |           |                  |        |       |       |      |     |
| NSD   | B1           |           |                  |        |       |       |      |     |
| NSD   | B2           |           |                  |        |       |       |      |     |
| NSD   | B3           |           |                  |        |       |       |      | †   |
| NSD   | B4           |           |                  |        |       |       |      | 1   |
| NSD   | B5           |           |                  |        |       |       |      | _   |
| NSD   | B6           |           |                  | 6      |       |       |      | 1   |
| NSD   | B7           |           |                  |        |       |       |      | _   |
| NSD   | B8           |           |                  |        |       |       |      | _   |
| NSD   | B9           |           |                  |        |       |       |      | _   |
| NSD   | B10          |           |                  |        |       |       |      | +   |
|       |              |           |                  |        |       |       |      | _   |
| NSD   | C1           |           |                  |        |       |       |      | -   |
| NSD   | C2           |           |                  |        |       |       |      | -   |
| NSD   | C3           |           |                  |        |       |       |      |     |
| NSD   | C4           |           |                  |        |       |       |      | _   |
| NSD   | C5           |           |                  |        |       |       |      | _   |
| NSD   | C6           |           |                  |        |       |       |      |     |
| NSD   | C7           |           |                  |        |       | 4     |      | _   |
| NSD   | C8           |           |                  |        |       |       |      |     |
| NSD   | C9           |           |                  |        |       |       |      |     |
| NSD   | C10          | F         |                  |        |       | 1     |      |     |
| NSD   | D1           |           |                  |        |       |       |      |     |
| NSD   | D2           |           |                  |        |       |       |      |     |
| NSD   | D3           |           |                  |        |       |       |      |     |
| NSD   | D5           |           |                  |        |       |       |      |     |
| NSD   | D6           |           |                  |        |       |       |      |     |
| NSD   | D7           |           |                  |        |       | 1     |      |     |
| NSD   | D8           |           |                  |        | ,     |       |      |     |
| NSD   | D9           |           |                  |        |       |       |      |     |
| NSD   | D10          |           |                  |        |       | 1     |      |     |
| NSD   | E1           |           |                  |        |       |       |      |     |
| NSD   | E2           |           |                  |        |       |       |      |     |
| NSD   | E3           |           |                  |        |       |       |      |     |
| NSD   | E4           |           |                  |        |       |       |      |     |
| NSD   | E5           |           |                  |        |       | 9     |      |     |
| NSD   | E6           |           |                  |        |       |       |      |     |
| NSD   | E7           |           |                  |        |       |       |      |     |
| NSD   | E8           |           |                  |        |       |       |      |     |
| NSD   | E9           |           |                  |        |       |       |      |     |
| NSD   | E10          |           |                  |        |       |       |      |     |
| NSD   | F1           |           |                  |        |       |       |      | 1   |

|                        |                               | TEM       | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------------|-----------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503-011                    |           | Grid Box#                    | 8636       | No. of Grids<br>Counted | 2          |
| Analyst:               | Jayme Callan                  |           |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/25/2018 - 1                | 0/26/2018 | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.03004                       |           | G. O. III IIIICIOIIS -       | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation Talc Analysis |           | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage       | 100 KV    | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 3                      | Screen<br>Magnification       | 20 KX     | Area Examined mm²            |            |                         | 1.103      |

|        | 110.000.001  |           | Asbestos | 100000 |       | Sec. 25 | The State of |     |
|--------|--------------|-----------|----------|--------|-------|---------|--------------|-----|
| Str. # | Grid Opening | Structure | Type     | Length | Width | Ratio   | SAED         | EDS |

| Org. Sample<br>Wt.                     | Post HL<br>Separation |                 |
|----------------------------------------|-----------------------|-----------------|
| 0.03004                                | 0.03004               | g               |
| Percent of<br>Orig. Post<br>Separation | 100                   | (%)             |
| Wt. Of<br>Sample<br>Analyzed           | 0.00016469            | g               |
| Filter size                            | 201.1                 | mm <sup>2</sup> |
| Number of<br>Structures<br>Counted     | 0                     | Str.            |
| Structures<br>per Gram of<br>Sample    | <6072                 | Str./g          |

| Detection<br>Limit        | 6.07E+03 | Str./g |
|---------------------------|----------|--------|
| Analytical<br>Sensitivity | 6.07E+03 | Str./a |

|                        |                               | TEM Bulk            | Talc Structur      | e Count S | Sheet                   |           |
|------------------------|-------------------------------|---------------------|--------------------|-----------|-------------------------|-----------|
| Project/<br>Sample No. | M68503-011                    |                     | Grid Box#          | 8636      | No. of Grids<br>Counted | 2         |
| Analyst:               | Jayme Callan                  |                     |                    | Length    | Width                   | G.O. Area |
| Date of<br>Analysis    | 10/25/2018 -                  | 10/26/2018 G. O. in |                    | 105       | 105                     | 105       |
| Initial<br>Weight(g)   | 0.030                         | 004                 | microns =          | 105       | 105                     | 105       |
| Analysis<br>Type       | Post Separation Talc Analysis |                     | Grid<br>Acceptance | Yes       | Average                 | 11025     |
| Scope No.              | Accelerating<br>Voltage       | 100 KV              | Loading%           | 20%       | G.O.s<br>Counted        | 100       |
| 3                      | Screen<br>Magnification       | 20 KX               | Area Examined mm²  |           |                         | 1.103     |

| Str. # | Grid Opening | Str./Asb. Type | Length | Width | Ratio | SAED            | EDS      |
|--------|--------------|----------------|--------|-------|-------|-----------------|----------|
| NSD    | E7-B1        | (              |        |       |       | No fibrous talo | observed |

### **Section 9**

| roj#-Spl#                                                 | M68503 - 027ISO          | Analyst Paul Hess             | Date 10                | /28/2018              |  |  |
|-----------------------------------------------------------|--------------------------|-------------------------------|------------------------|-----------------------|--|--|
|                                                           | pt 14 Environmental      | ental ClientSpl 2018-0061-09A |                        |                       |  |  |
| ocation Sh                                                | ower to Chouse Dady De-  | udor                          |                        |                       |  |  |
| 1 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                   | ower to Shower Body Pov  | waer                          | also survey            | 100                   |  |  |
| Gross Off-white Visual                                    | ite powder               |                               | % of Sa                | imple 100             |  |  |
| Visual                                                    |                          |                               |                        |                       |  |  |
|                                                           | OPTICAL D                | ATA FOR ASBESTOS IDE          | ENTIFICATION           |                       |  |  |
| Morphology                                                |                          |                               |                        |                       |  |  |
| Pleochroism                                               |                          |                               |                        |                       |  |  |
| Refract Index                                             |                          |                               |                        |                       |  |  |
| Sign^<br>Extinction                                       |                          |                               |                        |                       |  |  |
| Birefringence                                             |                          |                               |                        |                       |  |  |
| Melt                                                      |                          |                               |                        |                       |  |  |
| Fiber Name                                                |                          |                               |                        |                       |  |  |
| ACDECTOC N                                                | UNEDALE                  | EST VOL                       | 0/                     |                       |  |  |
| ASBESTOS N                                                | IINEKALS                 | EST. VOL. NO ASBESTOS OBS     |                        |                       |  |  |
| Amosite<br>Crocidolite<br>Tremolite/Acti<br>Anthophyllite | nolite                   |                               |                        |                       |  |  |
| Talc -B/Y DS in                                           |                          | ***                           |                        |                       |  |  |
|                                                           |                          |                               |                        |                       |  |  |
|                                                           |                          |                               |                        |                       |  |  |
| NON FIBROU                                                | S COMPONENTS             |                               |                        |                       |  |  |
| Opaques                                                   |                          | X                             |                        |                       |  |  |
| Talc                                                      |                          | X                             |                        |                       |  |  |
| Mineral grains                                            |                          | X                             |                        |                       |  |  |
|                                                           |                          |                               |                        |                       |  |  |
| Binder Descri                                             | ption                    |                               |                        |                       |  |  |
| Comm                                                      | nents X = Materials dete | ected. *** Trace amount on    | fibrous Talc observed. |                       |  |  |
|                                                           |                          | Th                            |                        | alo care especie sur. |  |  |

| Proj#-Spl#                                     | M68503 - 027BL1                          | Analyst Paul H   | less                | Date 10/22/2018               |
|------------------------------------------------|------------------------------------------|------------------|---------------------|-------------------------------|
| lientName                                      | Dept 14 Environmental                    | 30-1-30-1        | ClientSpl 20        | 018-0061-09A                  |
| ocation                                        |                                          |                  |                     |                               |
| ype_Mat                                        | Shower to Shower Body Por                | wder (60mg prep) |                     |                               |
| Gross Wh                                       | ite debris on slide                      |                  |                     | % of Sample 100               |
| -                                              | OPTICAL D                                | ATA FOR ASBESTO  | S IDENTIFICATI      | ON                            |
| Morpholo                                       | ogw.                                     |                  |                     |                               |
| Pleochroi                                      |                                          |                  |                     |                               |
| Refract Inc                                    | (32.7)                                   |                  |                     |                               |
|                                                | gn^                                      |                  |                     |                               |
| Extinct                                        |                                          |                  |                     |                               |
| Birefringer                                    | nce                                      |                  |                     |                               |
| N                                              | /lelt                                    |                  |                     |                               |
| Fiber Na                                       | me                                       |                  |                     |                               |
| Crocidolite. Tremolite/A Anthophylli OTHER FIE | Actinolite                               |                  |                     |                               |
|                                                | OUS COMPONENTS                           |                  |                     |                               |
| Opaques                                        |                                          | X                |                     |                               |
| Talc                                           |                                          | X                |                     |                               |
| Mineral grain                                  | ns                                       | X                |                     |                               |
| Binder Des                                     | scription                                | ected.           |                     |                               |
|                                                | (100 (10 (10))) 1 (10 (10) (10) (10) (10 |                  | and detection limit | t is 1% unless otherwise stat |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503-                 | -027          | Grid Box#                    | 8632       | No. of Grids<br>Counted | 2          |
| Analyst:               | Mehrdad Mo              | otamedi       |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 11/1/2018-11            | 1/2/2018      | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0608                  | 35            | G. O. In microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 4                      | Screen<br>Magnification | 20 KX         | Area Examined mm²            |            | 1.103                   |            |

| Str.# | Grid Opening | Structure | Asbestos | Longth | Width | Ratio | SAED | EDS |
|-------|--------------|-----------|----------|--------|-------|-------|------|-----|
| NSD   | D10-A1       | Structure | Туре     | Length | width | Ratio | SAED | EDS |
| NSD   | A2           |           |          |        |       | -     |      | +   |
| NSD   | A3           |           |          |        |       |       |      | +   |
| NSD   | A4           |           |          |        |       |       |      | +   |
| NSD   | A5           |           |          |        |       |       |      | +   |
|       | A6           |           |          |        |       |       |      | 1   |
| NSD   |              |           |          |        |       |       |      | +   |
| NSD   | A7           |           |          |        |       |       |      | -   |
| NSD   | A8           |           |          |        |       |       |      | +   |
| NSD   | A9           |           |          |        |       |       |      | +   |
| NSD   | A10          |           |          |        |       | -     |      | -   |
| NSD   | C1           |           |          |        |       |       |      | -   |
| NSD   | C2           |           |          |        |       |       |      | -   |
| NSD   | C3           |           |          |        |       |       |      | -   |
| NSD   | C4           |           |          |        |       |       |      | -   |
| NSD   | C5           |           |          |        |       |       |      | -   |
| NSD   | C6           |           |          |        |       |       |      | -   |
| NSD   | C7           |           |          |        |       |       |      |     |
| NSD   | C8           |           |          |        |       | 1     |      | -   |
| NSD   | C9           |           |          |        |       |       |      |     |
| NSD   | C10          |           |          |        |       |       |      |     |
| NSD   | E1           |           |          |        | 1     | 1     |      |     |
| NSD   | E2           |           |          |        |       |       |      |     |
| NSD   | E3           |           |          |        |       | 1     |      |     |
| NSD   | E4           |           |          |        |       |       |      |     |
| NSD   | E5           |           |          |        |       |       |      |     |
| NSD   | E6           |           |          |        |       |       |      |     |
| NSD   | E7           |           |          |        |       |       |      |     |
| NSD   | E8           |           |          | A      |       | 4     |      |     |
| NSD   | E9           |           |          | 0      |       | (     |      |     |
| NSD   | E10          |           | 1        |        |       | 4     |      |     |
| NSD   | G1           |           |          |        | 1     |       |      |     |
| NSD   | G2           |           |          |        | 0     |       |      |     |
| NSD   | G3           |           |          |        |       | 4     |      |     |
| NSD   | G4           |           |          |        |       |       |      |     |
| NSD   | G5           |           |          |        | H III |       |      | 1   |
| NSD   | G6           |           |          | -      |       |       |      |     |
| NSD   | G7           |           |          |        |       |       |      |     |
| NSD   | G8           |           |          |        |       |       |      |     |
| NSD   | G9           | - 3       |          |        |       |       |      |     |
| NSD   | G10          |           |          |        |       |       |      |     |
| NSD   | 11           |           |          |        |       |       |      |     |
| NSD   | 12           |           |          |        |       |       |      |     |
| NSD   | 13           |           |          |        |       |       |      |     |
| NSD   | 14           | -         |          |        |       |       |      | 1   |
| NSD   | 15           |           |          |        |       |       |      | 1   |
| NSD   | 16           |           |          |        |       |       |      |     |
| NSD   | 17           |           |          | 1      |       |       |      |     |
| NSD   | 18           |           |          |        |       |       |      | 1   |
| NSD   | 19           |           |          |        |       |       |      |     |
| NSD   | I10          |           |          |        |       |       |      | 1   |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503                  | -027          | Grid Box#                    | 8632       | No. of Grids<br>Counted | 2          |
| Analyst:               | Mehrdad Me              | otamedi       |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 11/1/2018-1             | 1.0.00111     |                              | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0608                  | 85            | G. O. in microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 4                      | Screen<br>Magnification | 20 KX         | Area Examined mm²            |            |                         | 1.103      |

| Str.# | Grid Opening          | Structure | Asbestos | Longth | Width | Ratio | SAED | EDS |
|-------|-----------------------|-----------|----------|--------|-------|-------|------|-----|
| NSD   | Grid Opening<br>D9-J1 | Structure | Туре     | Length | width | Ratio | SAED | ED  |
| NSD   | J2                    |           |          |        |       |       |      | +   |
| NSD   | J3                    |           |          |        |       |       |      | 1   |
| NSD   | J4                    |           |          |        |       |       |      | +   |
| NSD   | J5                    |           |          |        |       |       |      | +   |
| NSD   | J6                    |           |          |        |       |       |      | +   |
| NSD   | J7                    |           |          |        |       |       |      | -   |
| NSD   | J8                    |           |          |        |       |       |      | +   |
| NSD   | J9                    |           |          |        |       |       |      | +   |
| NSD   | J10                   |           |          |        |       |       |      | 1   |
|       |                       |           |          |        |       |       |      | +   |
| NSD   | H1                    |           |          |        |       |       |      | +   |
| NSD   | H2                    |           |          |        |       |       |      | -   |
| NSD   | H3                    |           |          |        |       | 1     |      | -   |
| NSD   | H4                    |           |          |        |       |       |      | _   |
| NSD   | H5                    |           |          |        |       |       |      | _   |
| NSD   | H6                    |           |          |        |       |       |      | _   |
| NSD   | H7                    |           |          |        |       |       |      | _   |
| NSD   | H8                    |           |          |        |       |       |      |     |
| NSD   | H9                    | -         |          |        |       | 4     |      |     |
| NSD   | H10                   |           |          |        |       |       |      |     |
| NSD   | F1                    |           | -        |        |       |       |      |     |
| NSD   | F2                    |           |          |        |       |       |      |     |
| NSD   | F3                    |           |          |        |       |       |      |     |
| NSD   | F4                    |           |          |        |       |       |      |     |
| NSD   | F5                    |           |          |        |       |       |      |     |
| NSD   | F6                    |           |          |        |       | 4     |      |     |
| NSD   | F7                    |           |          |        |       | £     |      |     |
| NSD   | F8                    |           |          |        |       | 7     |      |     |
| NSD   | F9                    | -         |          |        |       |       |      |     |
| NSD   | F10                   |           |          |        |       | 1     |      |     |
| NSD   | D1                    |           |          |        |       |       |      |     |
| NSD   | D2                    |           |          |        |       |       |      |     |
| NSD   | D3                    |           |          |        |       |       |      |     |
| NSD   | D4                    |           |          |        |       |       |      |     |
| NSD   | D5                    |           |          |        |       |       |      |     |
| NSD   | D6                    |           |          |        |       |       |      |     |
| NSD   | D7                    |           |          |        |       |       |      |     |
| NSD   | D8                    |           |          |        |       | - 1   |      | 1   |
| NSD   | D9                    |           |          |        |       |       |      |     |
| NSD   | D10                   |           |          |        |       |       |      |     |
| NSD   | B1                    |           |          |        |       |       |      |     |
| NSD   | B2                    |           |          |        |       |       |      |     |
| NSD   | B3                    |           |          |        |       |       |      | 1   |
| NSD   | B4                    |           |          |        |       | 1     |      |     |
| NSD   | B5                    |           |          |        |       |       |      |     |
| NSD   | B6                    |           |          |        |       |       |      | 1   |
| NSD   | B7                    |           |          |        |       |       |      |     |
| NSD   | B8                    |           |          |        |       |       |      |     |
| NSD   | B9                    |           |          |        |       |       |      |     |
| NSD   | B10                   |           |          |        |       |       |      | 1   |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503                  | -027          | Grid Box#                    | 8632       | No. of Grids<br>Counted | 2          |
| Analyst:               | Mehrdad Mo              | otamedi       |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 11/1/2018-1             | 1/2/2018      | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0608                  | 35            | G. O. In microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 4                      | Screen<br>Magnification | 20 KX         | Area Examined mm²            |            | 1.103                   |            |

|        | 10.000       | 1 ( )     | Asbestos | 1 2 2 2 2 2 2 2 2 |       |       |      |     |
|--------|--------------|-----------|----------|-------------------|-------|-------|------|-----|
| Str. # | Grid Opening | Structure | Type     | Length            | Width | Ratio | SAED | EDS |

| Org. Sample<br>Wt.                     | Sample Wt.<br>Post HL<br>Separation |                 |
|----------------------------------------|-------------------------------------|-----------------|
| 0.06085                                | 0.06085                             | g               |
| Percent of<br>Orig. Post<br>Separation | 100                                 | (%)             |
| Wt. Of<br>Sample<br>Analyzed           | 0.00033360                          | g               |
| Filter size                            | 201.1                               | mm <sup>2</sup> |
| Number of<br>Structures<br>Counted     | 0                                   | Str.            |
| Structures<br>per Gram of<br>Sample    | <2998                               | Str./g          |

|             |          | 7      |
|-------------|----------|--------|
| Detection   |          | 1.0    |
| Limit       | 3.00E+03 | Str./g |
| Analytical  |          |        |
| Sensitivity | 3.00F+03 | Str./a |

|                        |                         | TEM Bulk      | Talc Structur      | e Count S | heet                    |           |
|------------------------|-------------------------|---------------|--------------------|-----------|-------------------------|-----------|
| Project/<br>Sample No. | M6850                   | 3-027         | Grid Box#          | 8632      | No. of Grids<br>Counted | 2         |
| Analyst:               | Mehrdad N               | lotamedi      |                    | Length    | Width                   | G.O. Area |
| Date of<br>Analysis    | 11/1/2018-              | 11/2/2018     | G. O. in           | 105       | 105                     | 105       |
| Initial<br>Weight(g)   | 0.060                   | 085           | microns =          | 105       | 105                     | 105       |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid<br>Acceptance | Yes       | Average                 | 11025     |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%           | 20%       | G.O.s<br>Counted        | 100       |
| 4                      | Screen<br>Magnification | 20 KX         | Area               | Examined  | mm²                     | 1.103     |

| Str.#  | Grid Opening | Str./Asb. Type | Length | Width | Ratio | SAED         | EDS     |
|--------|--------------|----------------|--------|-------|-------|--------------|---------|
| Talc 1 | D10-C10      | Fibrous Talc   | 22.4   | 2     | 11.2  | Fibrous talc | bserved |
|        |              |                |        |       |       | Trace throu  | ugh out |



Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 78 of 251 PageID: 79343



41420

M68503-027-Talc 1 Diffraction @ 50cm

11/1/2018

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 79 of 251 PageID: 79344



# **Section 10**

| oj#-Spl#<br>ientName Dep                  | M68503 - 019ISO<br>ot 14 Environmental | Analyst Paul         |                      | <b>Date</b> 10/28/2018<br>018-0060-44A |
|-------------------------------------------|----------------------------------------|----------------------|----------------------|----------------------------------------|
| cation                                    |                                        |                      |                      |                                        |
| pe_Mat Eco                                | onomy Size Johnson's Ba                | aby Powder           |                      |                                        |
| ross Off-whi                              | te powder                              |                      |                      | % of Sample 100                        |
| isual                                     |                                        |                      |                      |                                        |
| -                                         | OPTICAL D                              | ATA FOR ASBEST       | OS IDENTIFICAT       | ION                                    |
| Morphology                                |                                        |                      |                      |                                        |
| Pleochroism                               |                                        |                      |                      |                                        |
| Refract Index                             |                                        |                      |                      |                                        |
| Sign^                                     |                                        |                      |                      |                                        |
| Extinction                                |                                        |                      |                      |                                        |
| Birefringence                             |                                        |                      |                      |                                        |
| Melt                                      |                                        |                      |                      |                                        |
| Fiber Name                                |                                        |                      |                      |                                        |
| Anthophyllite OTHER FIBRO Talc -B/Y DS in | OUS COMPONENTS                         | ***                  |                      |                                        |
| NON FIBROUS                               | S COMPONENTS                           |                      |                      |                                        |
| Opaques                                   |                                        | ×                    |                      |                                        |
| Гalc                                      |                                        | X                    |                      |                                        |
| Mineral grains                            |                                        | ×                    |                      |                                        |
|                                           | <u> </u>                               |                      |                      |                                        |
| Binder Descrip                            | otion                                  |                      |                      |                                        |
| Comm                                      | ents X = Materials dete                | ected. *** Trace amo | ount of fibrous Talo | observed.                              |
|                                           | 1                                      | The me               | thod detection lim   | it is 1% unless otherwise sta          |

| roj#-Spl#                                     | M68503 - 019BL1           | Analyst Paul Hess       | Date 10/22/2018                         |
|-----------------------------------------------|---------------------------|-------------------------|-----------------------------------------|
| ientName D                                    | ept 14 Environmental      | Clier                   | ntSpl 2018-0060-44A                     |
| cation                                        |                           |                         | X-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y-y |
| pe_Mat E                                      | conomy Size Johnson's Ba  | by Powder (60mg prep)   |                                         |
| Gross White                                   | e debris on slide         |                         | % of Sample 100                         |
| -                                             | OPTICAL DA                | ATA FOR ASBESTOS IDENTI | FICATION                                |
| Morpholog                                     | y                         |                         |                                         |
| Pleochrois                                    | n                         |                         |                                         |
| Refract Inde                                  | ×                         |                         |                                         |
| Sign                                          |                           |                         |                                         |
| Extinctio                                     | Y .                       |                         |                                         |
| Birefringenc                                  |                           |                         |                                         |
| Me                                            | 55'                       |                         |                                         |
| Fiber Nam                                     | е                         |                         |                                         |
| Crocidolite<br>Tremolite/Act<br>Anthophyllite | ROUS COMPONENTS           |                         |                                         |
| NON FIBRO                                     | US COMPONENTS             | ,                       | _                                       |
| Opaques                                       | <del></del>               | X                       | <del>-</del>                            |
| Talc                                          | <del></del>               | X                       | _                                       |
| Mineral grains                                |                           | X                       | _                                       |
|                                               |                           | X                       |                                         |
| Binder Desc                                   | 1                         |                         |                                         |
| Com                                           | ments X = Materials deter | ciea.                   |                                         |
|                                               | 1 3-                      | The method detect       | ion limit is 1% unless otherwise        |

|                        |                         | TEM                  | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|----------------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503                  | -019                 | Grid Box#                    | 8631       | No. of Grids<br>Counted | 2          |
| Analyst:               | Mehrdad Me              | otamedi              |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/24/2018-10           | 0/25/2018            | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.02042                 | G. O. III Inicrons = | 105                          | 105        | 11025                   |            |
| Analysis<br>Type       | Post Separation         | Talc Analysis        | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV               | Loading%                     | 15%        | G.O.s<br>Counted        | 100        |
| 4                      | Screen<br>Magnification | 20 KX                | Area Exa                     | mined mm²  |                         | 1.103      |

| Str.# | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio | SAED | EDS |
|-------|--------------|-----------|------------------|--------|-------|-------|------|-----|
| NSD   | C2-A1        |           |                  |        |       |       |      |     |
| NSD   | A2           | P 7       | -                |        |       |       |      |     |
| NSD   | A3           |           |                  |        | 1     |       |      |     |
| NSD   | A4           |           |                  |        |       |       |      |     |
| NSD   | A5           |           |                  |        |       |       |      |     |
| NSD   | A6           |           |                  |        |       | 1     |      |     |
| NSD   | A7           |           |                  |        |       |       |      |     |
| NSD   | A8           |           |                  |        |       | -     |      |     |
| NSD   | A9           |           |                  |        |       |       |      |     |
| NSD   | A10          |           |                  |        |       |       |      |     |
| NSD   | B1           |           |                  |        |       |       |      | 1   |
| NSD   | B2           |           |                  |        |       |       |      |     |
| NSD   | B3           |           |                  |        |       |       |      |     |
| NSD   | B4           |           |                  |        |       |       |      | 1   |
| NSD   | B5           |           |                  |        |       |       |      |     |
| NSD   | B6           |           |                  |        |       |       |      | t — |
| NSD   | B7           |           |                  |        |       |       |      | 1   |
| NSD   | B8           |           |                  |        |       |       |      |     |
| NSD   | B9           |           |                  |        |       |       |      | _   |
| NSD   | B10          |           |                  |        |       | -     |      | 1   |
| NSD   | C1           |           |                  |        |       |       |      | 1   |
| NSD   | C2           |           |                  |        |       |       |      |     |
| NSD   | C3           |           |                  |        |       |       |      | 1   |
| NSD   | C4           |           |                  |        |       |       |      | 1   |
| NSD   | C5           |           |                  |        | -     |       |      | 1   |
| NSD   | C6           |           |                  |        |       |       |      | +   |
| NSD   | C7           |           |                  |        |       |       |      | 1   |
| NSD   | C8           |           |                  |        |       |       |      | 1   |
| NSD   | C9           |           |                  |        |       |       |      | +   |
| NSD   | C10          |           |                  |        |       |       |      | 1   |
| NSD   | D1           |           |                  |        |       |       |      | +   |
| NSD   | D2           |           |                  |        |       |       |      | +   |
| NSD   | D3           |           |                  |        |       |       |      | 1   |
| NSD   | D4           |           |                  |        |       |       |      | -   |
| NSD   | D5           |           |                  |        |       |       |      | 1   |
| NSD   | D6           |           |                  |        |       |       |      | +   |
| NSD   | D7           |           |                  |        |       |       |      | 1   |
| NSD   | D8           |           |                  |        |       |       |      | 1   |
| NSD   | D9           |           |                  | 8      |       |       |      | 1   |
| NSD   | D10          |           |                  |        |       |       |      | 1   |
| NSD   | E1           |           |                  |        |       |       |      | 1   |
| NSD   | E2           |           |                  |        |       |       |      | -   |
| NSD   | E3           |           |                  |        |       |       |      | +   |
| NSD   | E4           |           |                  |        |       |       |      | 1   |
| NSD   | E5           |           |                  |        |       |       |      | -   |
| NSD   | E6           |           |                  |        |       |       |      | -   |
| NSD   | E7           |           |                  |        |       |       |      | -   |
| NSD   | E8           |           |                  |        |       |       |      |     |
| NSD   | E9           |           |                  |        |       |       |      | -   |
| NOD   | E10          |           |                  |        |       |       |      |     |

|                        |                         | TEM           | Bulk Talc Structure C | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|-----------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503                  | -019          | Grid Box#             | 8631       | No. of Grids<br>Counted | 2          |
| Analyst:               | Mehrdad Me              | otamedi       |                       | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/24/2018-1            | 0/25/2018     | G. O. in microns =    | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0204                  | 0.02042       | G. O. In microns =    | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance       | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%              | 15%        | G.O.s<br>Counted        | 100        |
| 4                      | Screen<br>Magnification | 20 KX         | Area Exa              | mined mm²  |                         | 1.103      |

| Str. #     | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio | SAED | EDS |
|------------|--------------|-----------|------------------|--------|-------|-------|------|-----|
| NSD        | C3-J1        | Structure | туре             | Length | width | Ratio | JALD | LDS |
| NSD        | J2           |           | 1                |        |       |       |      | +   |
| NSD        | J3           |           | 1                |        |       |       |      | +   |
| NSD        | J4           |           |                  |        |       |       |      | +   |
| NSD        | J5           |           |                  |        |       |       |      | +   |
| NSD        | J6           |           |                  |        |       |       |      | +   |
| NSD        | J7           |           |                  |        |       |       |      | +   |
| NSD        | J8           |           |                  |        |       |       |      | +   |
| NSD        | J9           |           | 1                |        |       |       |      | +   |
| NSD        | J10          |           | 1                |        |       |       |      | _   |
| NSD        | 11           |           | 1                |        |       |       |      | _   |
| NSD        | 12           |           | -                |        |       |       |      | +   |
| NSD        | 13           |           | + +              |        |       |       |      | _   |
| NSD        | 14           |           | + +              |        |       |       |      | +   |
| 1          | 15           | Bundle    | Anthophyllite    | 20     | 1     | 20.0  | X    | X   |
|            | 16           | Bullule   | Anthopriyinte    | 20     |       | 20.0  | ^    |     |
| NSD<br>NSD | 17           |           |                  |        |       |       |      | +   |
| NSD        | 18           |           |                  |        |       |       |      | +   |
| NSD        | 19           |           |                  |        |       |       |      | -   |
|            |              |           |                  |        |       |       |      | -   |
| NSD<br>NSD | I10          |           |                  |        |       |       |      | -   |
| NSD        | H1<br>H2     |           |                  |        |       |       |      | +   |
|            |              |           |                  |        |       |       |      | -   |
| NSD        | H3           |           |                  |        |       |       |      | _   |
| NSD        | H4           |           |                  |        |       |       |      | -   |
| NSD        | H5           |           |                  |        |       |       |      | -   |
| NSD<br>NSD | H6<br>H7     |           |                  |        |       |       |      | _   |
|            |              |           |                  |        |       |       |      | -   |
| NSD        | H8           |           | -                |        |       |       |      | -   |
| NSD        | H9           |           |                  |        |       |       |      | -   |
| NSD        | H10          |           | -                |        |       |       |      | -   |
| NSD        | G1           |           | -                |        |       |       |      | -   |
| NSD        | G2           |           | -                |        |       |       |      | _   |
| NSD        | G3           |           | -                |        |       |       |      | _   |
| NSD        | G4           |           |                  |        |       |       |      | -   |
| NSD        | G5           |           |                  |        |       |       |      |     |
| NSD        | G6           |           |                  |        |       |       |      | -   |
| NSD        | G7           |           |                  |        |       |       |      | 1   |
| NSD        | G8           |           |                  |        | -     | -     |      | -   |
| NSD        | G9           |           |                  |        |       | 1     |      |     |
| NSD        | G10          |           |                  |        |       |       |      | -   |
| NSD        | F1           |           |                  |        | 2     |       |      |     |
| NSD        | F2           |           |                  |        |       |       |      | -   |
| NSD        | F3           |           |                  |        |       |       |      | _   |
| NSD        | F4           |           |                  |        |       |       | 11   | 1   |
| NSD        | F5           |           |                  |        |       |       |      |     |
| NSD        | F6           |           |                  |        |       |       |      |     |
| NSD        | F7           |           |                  |        |       | 4     |      |     |
| NSD        | F8           |           |                  |        |       |       |      |     |
| NSD        | F9           |           |                  |        |       |       |      |     |
| NSD        | F10          |           |                  |        |       |       |      |     |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503                  | -019          | Grid Box#                    | 8631       | No. of Grids<br>Counted | 2          |
| Analyst:               | Mehrdad Me              | otamedi       |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/24/2018-1            |               |                              | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0204                  | 0.02042       | G. O, in microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 15%        | G.O.s<br>Counted        | 100        |
| 4                      | Screen<br>Magnification | 20 KX         | Area Exa                     | mined mm²  |                         | 1.103      |

|        | The Lot and the | 12. 52. 1 | Asbestos | 1.00   |       | S     | 4 - 4 - 1 - 1 |     |
|--------|-----------------|-----------|----------|--------|-------|-------|---------------|-----|
| Str. # | Grid Opening    | Structure | Type     | Length | Width | Ratio | SAED          | EDS |

| Org. Sample<br>Wt.                               | Sample Wt.<br>Post HL<br>Separation |          |
|--------------------------------------------------|-------------------------------------|----------|
| 0.02042                                          | 0.02042                             | g        |
| Percent of<br>Orig. Post<br>Separation           | 100                                 | (%)      |
| Wt. Of<br>Sample<br>Analyzed<br>Filter size      | 0.00011195<br>201.1                 | g<br>mm² |
| Number of<br>Structures<br>Counted<br>Structures | 1                                   | Str.     |
| per Gram of<br>Sample                            | 8.93E+03                            | Str./g   |

| Detection<br>Limit        | 8.93E+03 | Str./g |
|---------------------------|----------|--------|
| Analytical<br>Sensitivity | 8 93F+03 | Str /a |







Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 89 of 251 PageID: 79354



|                        |                         | TEM Bulk      | Talc Structur      | e Count S | heet                    |           |
|------------------------|-------------------------|---------------|--------------------|-----------|-------------------------|-----------|
| Project/<br>Sample No. | M6850                   | 3-019         | Grid Box#          | 8631      | No. of Grids<br>Counted | 2         |
| Analyst:               | Mehrdad N               | lotamedi      |                    | Length    | Width                   | G.O. Area |
| Date of<br>Analysis    | 10/24/2018-             | 10/25/2018    | G. O. in           | 105       | 105                     | 105       |
| Initial<br>Weight(g)   | 0.020                   | 042           | microns =          | 105       | 105                     | 105       |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid<br>Acceptance | Yes       | Average                 | 11025     |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%           | 15%       | G.O.s<br>Counted        | 100       |
| 4                      | Screen<br>Magnification | 20 KX         | Area               | Examined  | mm²                     | 1.103     |

| Str. # | Grid Opening | Str./Asb. Type | Length | Width | Ratio | SAED         | EDS      |
|--------|--------------|----------------|--------|-------|-------|--------------|----------|
| TALC 1 | C3-H2        | Fibrous Talc   | 15.5   | 2     | 7.8   | Fibrous talc | observed |



Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 92 of 251 PageID: 79357



M68503-019-Talc 1 Diffraction @ 50cm 41324

10/25/2018



# **Section 11**

| Proj#-Spl#                                                                           | M69042 - 003        | Analyst Paul Hess Date 10/12/2018                       |
|--------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------|
| lientName LEVY                                                                       | & KONIGSBERG        | ClientSpl 20180056-31D                                  |
| ocation                                                                              |                     |                                                         |
| ype_Mat Johns                                                                        | on & Johnson Talcum | Powder                                                  |
| Gross Off-white                                                                      | powder              | % of Sample 100                                         |
| Visual                                                                               | 1000000             |                                                         |
|                                                                                      |                     |                                                         |
|                                                                                      | OPTICAL D           | ATA FOR ASBESTOS IDENTIFICATION                         |
| Morphology                                                                           |                     |                                                         |
| Pleochroism                                                                          |                     |                                                         |
| Refract Index                                                                        |                     |                                                         |
| Sign^                                                                                |                     |                                                         |
| Extinction                                                                           |                     |                                                         |
| Birefringence<br>Melt                                                                |                     |                                                         |
| Fiber Name                                                                           |                     |                                                         |
| .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                              |                     |                                                         |
| Amosite Crocidolite Tremolite/Actinol Anthophyllite OTHER FIBROU Talc -B/Y DS in 1.5 | lite                | ***                                                     |
| NON FIBROUS                                                                          | COMPONENTS          |                                                         |
| Opaques                                                                              |                     | x                                                       |
| Talc                                                                                 | 7                   | X                                                       |
| Mineral grains                                                                       |                     | X                                                       |
|                                                                                      |                     |                                                         |
| Binder Description                                                                   | on                  |                                                         |
| Commen                                                                               | X = Materials dete  | ected.*** Moderate amount Fibrous talc observed.        |
|                                                                                      | 10                  | The method detection limit is 1% unless otherwise state |

| Proj#-Spl#                                  | M69042 - 003BL          | Analyst Paul Hess    | <b>Date</b> 10/15/2018                      |
|---------------------------------------------|-------------------------|----------------------|---------------------------------------------|
| lientName L                                 | EVY & KONIGSBERG        |                      | ClientSpl 20180056-31D                      |
| ocation _                                   |                         |                      |                                             |
| ype_Mat J                                   | ohnson & Johnson Talcum | Powder               |                                             |
| Gross White                                 | e debris on slide       |                      | % of Sample 100                             |
| -                                           | ODTION D                | 474 FOR 400F0700 ID  | - I                                         |
|                                             | OPTICAL D               | ATA FOR ASBESTOS IDE | ENTIFICATION                                |
| Morpholog                                   | ау                      |                      |                                             |
| Pleochrois                                  | 111                     |                      |                                             |
| Refract Inde                                | 70                      |                      |                                             |
| Sign                                        |                         |                      |                                             |
| Extinctio                                   |                         |                      |                                             |
| Birefringend<br>Me                          |                         |                      |                                             |
| Fiber Nam                                   | 7.7                     | -                    |                                             |
|                                             |                         |                      |                                             |
| Tremolite/Ac<br>Anthophyllite<br>OTHER FIBI | ROUS COMPONENTS         |                      |                                             |
| NON FIBRO                                   | US COMPONENTS           |                      |                                             |
| Opaques                                     |                         | X                    |                                             |
| Talc                                        | -                       | X                    |                                             |
| Mineral grains                              |                         | X                    |                                             |
|                                             |                         |                      |                                             |
| Binder Desc                                 | ription                 |                      |                                             |
| Com                                         | X = Materials dete      | ected.               |                                             |
|                                             | 1                       | The method de        | etection limit is 1% unless otherwise state |

|                        |                               | TEM                                             | <b>Bulk Talc Structure C</b> | ount Sheet      |                  |            |
|------------------------|-------------------------------|-------------------------------------------------|------------------------------|-----------------|------------------|------------|
| Project/<br>Sample No. | M69042                        | M69042-003 Grid Box # 8621 No. of Grids Counted |                              | Grid Box # 8621 |                  | 2          |
| Analyst:               | Jayme C                       | allan                                           |                              | Length          | Width            | G. O. Area |
| Date of<br>Analysis    | 9/28/2018 - 10<br>10/27/2     | 2 47 2 4 5 2 4 2 5                              | G. O. in microns =           | 105             | 105              | 11025      |
| Initial<br>Weight(g)   | 0.0202                        | 0.02025                                         | G. O. In microns –           | 105             | 105              | 11025      |
| Analysis<br>Type       | Post Separation Talc Analysis |                                                 | Grid Acceptance              | Yes             | Average          | 11025      |
| Scope No.              | Accelerating<br>Voltage       | 100 KV                                          | Loading%                     | 15%             | G.O.s<br>Counted | 100        |
| 3                      | Screen<br>Magnification       | 20 KX                                           | Area Examined mm²            |                 | 1.103            |            |

| Str.#      | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio | SAED | EDS |
|------------|--------------|-----------|------------------|--------|-------|-------|------|-----|
| NSD        | A2-A2        |           |                  | \      |       |       |      |     |
| NSD        | A3           |           |                  | 7      |       |       |      |     |
| NSD        | A4           |           |                  | 1      |       | 1     |      |     |
| NSD        | A5           |           |                  | 5      |       |       |      |     |
| NSD        | A6           |           |                  | 4      |       | -     |      | 1   |
| NSD        | A7           |           |                  | 1      |       | 2000  |      |     |
| 1          | A8           | Bundle    | Tremolite        | 4.52   | 0.44  | 10.3  | X    | X   |
| NSD        | A9           |           |                  |        |       |       |      |     |
| NSD        | A10          |           |                  |        |       |       |      |     |
| NSD        | B2           |           |                  |        |       |       |      |     |
| NSD        | B3           |           |                  |        |       |       |      |     |
| NSD        | B4           |           |                  |        |       |       |      |     |
| NSD        | B5           |           |                  |        |       |       |      |     |
| NSD        | B6           |           |                  |        |       | - 1   |      | 1   |
| NSD        | B7           |           |                  |        |       |       |      | 1   |
| NSD        | B8           |           |                  |        |       |       |      | 1   |
| NSD        | B9           |           |                  |        |       |       |      | 1   |
| NSD        | B10          |           |                  |        |       |       |      | 1   |
| NSD        | C1           |           |                  |        |       |       |      | +   |
| NSD        | C2           |           |                  |        |       | -     |      | 1   |
| NSD        | C3           |           |                  |        |       |       |      | +   |
| NSD        | C4           |           |                  |        |       |       |      | +   |
| NSD        | C8           |           |                  |        |       |       |      | +   |
| NSD        | C9           |           |                  |        |       |       |      | +   |
| NSD        | C10          | -         |                  |        |       |       | 1    | +   |
| NSD        | D1           |           |                  |        |       | -     |      | -   |
| NSD        | D2           |           |                  |        |       |       |      | +   |
| NSD        | D3           |           |                  |        |       |       |      | +   |
| NSD        | D3           |           |                  |        |       |       |      | +   |
| NSD        | D6           |           |                  |        |       |       |      | -   |
| NSD        | D8           |           |                  | -      |       |       |      | +   |
|            |              |           |                  |        |       |       |      | +   |
| NSD<br>NSD | D9           |           |                  |        |       |       |      |     |
|            | D10          |           |                  |        |       |       |      | +   |
| NSD        | E1           |           |                  |        |       |       |      | -   |
| NSD        | E2           |           |                  |        |       |       |      | +   |
| NSD        | E3<br>E7     |           |                  |        |       |       |      | 1   |
| NSD        |              |           |                  |        |       |       |      | -   |
| NSD        | E8           |           |                  |        |       |       |      | -   |
| NSD        | E9           |           |                  |        |       |       |      | -   |
| NSD        | E10          |           |                  |        |       |       |      | -   |
| NSD        | F1           |           |                  |        |       |       |      | 1   |
| NSD        | F2           |           |                  |        |       |       |      | -   |
| NSD        | F3           |           |                  |        |       |       |      |     |
| NSD        | F4           |           |                  |        |       |       |      | -   |
| NSD        | F5           |           |                  |        |       |       |      | -   |
| NSD        | F6           |           |                  |        |       |       |      | -   |
| NSD        | F7           |           |                  |        |       |       |      |     |
| NSD        | F8           |           |                  |        |       |       |      | 1   |
| NSD        | F9           |           |                  |        |       |       |      | _   |
| NSD        | F10          | 1. 11     |                  |        |       |       |      |     |

|                        |                               | TEM          | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------------|--------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M69042                        | -003         | Grid Box #   8621            |            | No. of Grids<br>Counted | 2          |
| Analyst:               | Jayme C                       | allan        |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 9/28/2018 - 10<br>10/27/2     | 247-24-24-25 | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0202                        | 25           | G. O. In microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation Talc Analysis |              | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage       | 100 KV       | Loading%                     | 15%        | G.O.s<br>Counted        | 100        |
| 3                      | Screen<br>Magnification       | 20 KX        | Area Examined mm²            |            | 1.103                   |            |

| Str. # | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio | SAED | EDS                                              |
|--------|--------------|-----------|------------------|--------|-------|-------|------|--------------------------------------------------|
| NSD    | A1-B1        |           |                  |        |       |       |      |                                                  |
| NSD    | B2           |           |                  |        |       |       |      |                                                  |
| NSD    | B3           |           |                  |        |       |       |      |                                                  |
| NSD    | B4           |           |                  |        |       |       |      | <u> </u>                                         |
| NSD    | B5           |           |                  |        |       |       |      | †                                                |
| NSD    | B6           |           |                  |        |       |       |      | 1                                                |
| NSD    | B7           |           |                  |        |       |       |      | 1                                                |
| NSD    | B9           |           |                  |        |       |       |      | +-                                               |
| NSD    | B10          |           |                  |        |       |       |      | +                                                |
| NSD    | C1           |           |                  |        |       |       |      | <del>                                     </del> |
| NSD    | C2           |           |                  |        |       |       |      | +                                                |
| NSD    | C3           |           |                  |        |       |       |      | +                                                |
| NSD    | C4           |           | +                |        |       |       |      | +                                                |
| NSD    | C5           |           |                  |        |       |       |      | +                                                |
| NSD    | C6           |           |                  |        |       |       |      | -                                                |
|        |              |           |                  |        |       |       |      | -                                                |
| NSD    | C7           |           |                  |        |       |       |      | +                                                |
| NSD    | C8           |           |                  |        |       |       |      |                                                  |
| NSD    | C9           |           |                  |        |       |       |      | -                                                |
| NSD    | C10          | -         | -                |        |       |       |      |                                                  |
| NSD    | F1           |           |                  |        |       |       |      |                                                  |
| NSD    | F2           |           |                  |        |       |       |      |                                                  |
| 2      | F3           | Bundle    | Anthophyllite    | 3.4    | 0.42  | 8.1   | X    | X                                                |
| NSD    | F4           |           |                  |        |       |       |      |                                                  |
| NSD    | F5           |           |                  |        |       |       |      |                                                  |
| NSD    | F6           |           |                  |        |       |       |      |                                                  |
| NSD    | F7           |           |                  |        |       |       |      |                                                  |
| NSD    | F8           |           |                  |        |       | 4     |      |                                                  |
| NSD    | F9           |           |                  |        |       |       |      |                                                  |
| NSD    | F10          |           |                  |        |       |       |      |                                                  |
| NSD    | H1           |           |                  |        |       | 3     |      |                                                  |
| NSD    | H2           |           |                  |        |       |       |      |                                                  |
| NSD    | H3           |           |                  |        |       | -     |      |                                                  |
| NSD    | H4           |           |                  |        |       |       |      | -                                                |
| NSD    | H5           |           |                  |        |       |       |      | 1                                                |
| NSD    | H6           |           |                  | -      |       | -     |      | 1                                                |
| NSD    | H7           |           |                  |        |       |       |      |                                                  |
| NSD    | H8           |           |                  |        |       |       |      |                                                  |
| NSD    | H9           |           |                  |        |       | -     |      | +                                                |
| NSD    | H10          |           |                  |        |       |       |      | +                                                |
| NSD    | 1110         |           |                  |        |       |       |      | +                                                |
| NSD    | 12           |           |                  |        |       |       |      | +                                                |
| NSD    | 13           |           |                  |        |       |       |      | +                                                |
| NSD    | 14           |           |                  |        |       |       |      | +                                                |
| NSD    | 15           |           |                  |        |       |       |      | +                                                |
| NSD    | 16           |           |                  | -      |       |       |      | +                                                |
|        | 17           |           |                  |        |       |       |      | 1                                                |
| NSD    |              |           |                  |        |       |       |      | -                                                |
| NSD    | 18           |           |                  |        |       | - 1   |      | -                                                |
| NSD    | 19           |           |                  |        |       |       |      |                                                  |
| NSD    | I10          |           |                  |        |       |       |      | -                                                |
| NSD    | J3           |           |                  |        |       |       |      |                                                  |

|                        |                               | TEM     | <b>Bulk Talc Structure C</b>            | ount Sheet |                  |            |
|------------------------|-------------------------------|---------|-----------------------------------------|------------|------------------|------------|
| Project/<br>Sample No. | M69042-                       | -003    | Grid Box # 8621 No. of Grids<br>Counted |            |                  | 2          |
| Analyst:               | Jayme C                       | allan   |                                         | Length     | Width            | G. O. Area |
| Date of<br>Analysis    | 9/28/2018 - 10<br>10/27/2     |         | C O ii                                  | 105        | 105              | 11025      |
| Initial<br>Weight(g)   | 0.0202                        | 0.02025 | G. O. in microns =                      | 105        | 105              | 11025      |
| Analysis<br>Type       | Post Separation Talc Analysis |         | Grid Acceptance                         | Yes        | Average          | 11025      |
| Scope No.              | Accelerating<br>Voltage       | 100 KV  | Loading%                                | 15%        | G.O.s<br>Counted | 100        |
| 3                      | Screen<br>Magnification       | 20 KX   | Area Exar                               | mined mm²  |                  | 1.103      |

| ľ |        |              | 15. 52. 1 | Asbestos | 1 - 6 - 6 - 6 |       | 1.00  | 400 2014 |     |
|---|--------|--------------|-----------|----------|---------------|-------|-------|----------|-----|
| ı | Str. # | Grid Opening | Structure | Type     | Length        | Width | Ratio | SAED     | EDS |

| Org. Sample                            | Sample Wt.<br>Post HL |                 |
|----------------------------------------|-----------------------|-----------------|
| Wt.                                    | Separation            |                 |
| 0.02025                                | 0.02025               | g               |
| Percent of<br>Orig. Post<br>Separation | 100                   | (%)             |
|                                        | 7.5.2                 |                 |
| Wt. Of                                 |                       |                 |
| Sample                                 |                       |                 |
| Analyzed                               | 0.00011102            | g               |
| Filter size                            | 201.1                 | mm <sup>2</sup> |
| Number of<br>Structures                |                       |                 |
| Counted                                | 2                     | Str.            |
| Structures<br>per Gram of              |                       |                 |
| Sample                                 | 1.80E+04              | Str./g          |

|             |          | 7      |
|-------------|----------|--------|
| Detection   |          |        |
| Limit       | 9.01E+03 | Str./g |
| Analytical  |          | 150    |
| Sensitivity | 9.01F+03 | Str./a |











2 4799

M69042-003-002 Anthophyllite Diffraction - 2 @ 50cm

10/27/2018



|                        |                         | TEM Bulk            | Talc Structur      | e Count S | Sheet                   |           |
|------------------------|-------------------------|---------------------|--------------------|-----------|-------------------------|-----------|
| Project/<br>Sample No. | M6904                   | 2-003               | Grid Box#          | 8621      | No. of Grids<br>Counted | 2         |
| Analyst:               | Jayme Callan            |                     |                    | Length    | Width                   | G.O. Area |
| Date of<br>Analysis    | 9/28/2018 - 1<br>10/27/ | AND THE PROPERTY OF | (U.Z.1.1.7/3)      |           | 105                     | 105       |
| Initial<br>Weight(g)   | 0.020                   | 025                 | microns =          | 105       | 105                     | 105       |
| Analysis<br>Type       | Post Separation         | Talc Analysis       | Grid<br>Acceptance | Yes       | Average                 | 11025     |
| Scope No.              | Accelerating<br>Voltage | 100 KV              | Loading%           | 15%       | G.O.s<br>Counted        | 100       |
| 3                      | Screen<br>Magnification | 20 KX               | Area Examined mm²  |           | 1.103                   |           |

| Str.#   | Grid Opening | Str./Asb. Type | Length | Width | Ratio | SAED                 | EDS    |
|---------|--------------|----------------|--------|-------|-------|----------------------|--------|
| Talc #1 | A1-B5        | Fibrous Talc   | 22.5   | 1.9   | 11.8  | Fibrous talc observe |        |
|         |              |                |        |       |       | Trace thro           | ughout |







| roj#-Spl#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M69042 - 005            | Analyst        | Paul Hess    |              | Date 10/12/2     | 2018           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|--------------|--------------|------------------|----------------|
| and the same of the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Y & KONIGSBERG          |                |              | ClientSpl 20 | 180060-25D       |                |
| ocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.17                    | 5              |              |              |                  |                |
| /pe_Mat John                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nson & Johnson Talcum   | Powder         |              |              |                  |                |
| ACM CONTRACTOR OF THE PROPERTY | e powder                |                |              |              | % of Sampl       | le 100         |
| Visual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                |              |              |                  |                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OPTICAL D               | ATA FOR AS     | BESTOS IDE   | ENTIFICATI   | ON               |                |
| Morphology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                |              |              |                  |                |
| Pleochroism                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         |                |              |              |                  |                |
| Refract Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                |              |              |                  |                |
| Sign^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |                |              |              |                  | 1              |
| Extinction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                |              |              |                  |                |
| Birefringence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         |                |              |              |                  | - 4            |
| Melt<br>Fiber Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                |              |              |                  |                |
| Fiber Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |                |              |              |                  |                |
| Talc -B/Y DS in 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | US COMPONENTS           |                | ***          |              |                  |                |
| NON FIBROUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | COMPONENTS              |                |              |              |                  |                |
| Opaques                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                | Х            |              |                  |                |
| Talc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                | Χ            |              |                  |                |
| Mineral grains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                | Χ            |              |                  |                |
| Binder Descript                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ents X = Materials dete | ected.*** Mode | erate amount | Fibrous talc | observed.        |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                |              |              | t is 1% unless o | therwise state |

| Proj#-Spl#            | M69042 - 005BL       | Analyst Paul   | Hess           | Date 10/15/2018                 |
|-----------------------|----------------------|----------------|----------------|---------------------------------|
| lientName LEVY        | & KONIGSBERG         |                | ClientSpl 2    | 20180060-25D                    |
| ocation               |                      |                |                |                                 |
| ype_Mat Johns         | son & Johnson Talcum | Powder         |                |                                 |
| Gross White del       | oris on slide        |                |                | % of Sample 100                 |
| -                     | OPTICAL D            | ATA FOR ASBEST | OS IDENTIFICAT | TION                            |
| Morphology            |                      |                |                |                                 |
| Pleochroism           |                      |                |                |                                 |
| Refract Index         |                      |                |                |                                 |
| Sign^                 |                      |                |                |                                 |
| Extinction            |                      |                |                |                                 |
| Birefringence<br>Melt |                      |                |                | - 4                             |
| Fiber Name            |                      |                | -              |                                 |
| Tibel Hallie          |                      |                |                |                                 |
|                       | JS COMPONENTS        |                |                |                                 |
| NON FIBROUS           | COMPONENTS           |                |                |                                 |
| Opaques               |                      | X              | -              |                                 |
| Talc                  | 7                    | X              |                |                                 |
| Mineral grains        |                      | X              |                |                                 |
| Binder Descripti      | -                    |                |                |                                 |
| Commer                | X = Materials dete   |                |                | it is 1% unless otherwise state |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M69042-005              |               | Grid Box#                    | 8621       | No. of Grids<br>Counted | 2          |
| Analyst:               | Jayme C                 | allan         | Length                       |            | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/1/2018 -10           | 0/2/2018      | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0208                  | 37            | G. O. In microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating Voltage    | 100 KV        | Loading%                     | 15%        | G.O.s<br>Counted        | 100        |
| 3                      | Screen<br>Magnification | 20 KX         | Area Exa                     | mined mm²  |                         | 1.103      |

| Str. # | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio | SAED | EDS |
|--------|--------------|-----------|------------------|--------|-------|-------|------|-----|
| NSD    | E1-A3        |           |                  |        |       |       |      |     |
| NSD    | A4           |           |                  |        |       |       |      |     |
| NSD    | A5           |           |                  |        |       | -     |      |     |
| NSD    | A6           |           |                  |        |       |       |      |     |
| NSD    | A7           |           |                  |        |       |       |      |     |
| NSD    | A8           |           |                  |        |       |       |      | 1   |
| NSD    | A9           |           |                  |        |       |       |      | 1   |
| NSD    | A10          |           |                  |        |       |       |      |     |
| NSD    | B1           |           |                  |        |       |       |      | 1   |
| NSD    | B2           |           |                  |        |       |       |      |     |
| NSD    | B3           |           |                  |        |       | -     |      | 1   |
| NSD    | B4           | -         |                  |        |       |       |      | +   |
| NSD    | B5           |           |                  |        |       |       |      | +   |
| NSD    | B6           | -         |                  |        |       |       |      | +   |
| NSD    | B7           |           |                  |        |       |       |      | +   |
| NSD    | B8           |           |                  |        |       |       |      | +   |
| NSD    | B9           |           |                  |        |       |       | -    | +   |
|        |              |           |                  |        |       |       |      | -   |
| NSD    | B10          |           |                  |        |       | -     |      | -   |
| NSD    | C1           |           |                  |        |       |       |      | -   |
| NSD    | C2           |           |                  |        |       |       |      | 1   |
| NSD    | C3           |           |                  |        |       |       |      |     |
| NSD    | C4           |           |                  |        |       |       |      |     |
| NSD    | C5           |           |                  |        |       |       |      |     |
| NSD    | C6           |           |                  |        |       |       |      |     |
| NSD    | C7           |           |                  |        |       |       |      |     |
| NSD    | C8           |           |                  |        |       |       |      |     |
| NSD    | C9           |           |                  |        |       |       |      |     |
| NSD    | C10          |           |                  |        | 1     |       | 1    |     |
| NSD    | G1           |           |                  |        |       |       |      | 1   |
| NSD    | G2           |           |                  |        |       |       |      |     |
| NSD    | G3           |           |                  |        |       |       |      |     |
| NSD    | G4           |           |                  |        |       |       |      |     |
| NSD    | G5           |           |                  |        |       |       |      |     |
| NSD    | G6           |           |                  |        |       |       |      |     |
| NSD    | G7           |           |                  |        |       | -     |      | 1   |
| NSD    | G8           |           |                  |        |       |       |      |     |
| NSD    | G9           |           |                  |        |       |       |      | 1   |
| NSD    | G10          |           |                  |        |       |       |      |     |
| NSD    | H1           |           |                  | Š.     |       |       |      |     |
| NSD    | H2           |           |                  |        |       |       |      | 1   |
| NSD    | H3           |           |                  |        |       |       |      | +   |
| NSD    | H4           | -         |                  |        |       |       |      | +   |
| NSD    | H5           |           |                  |        |       |       |      | +   |
| NSD    | H6           |           |                  |        |       |       |      | +   |
| NSD    | H7           |           |                  |        |       |       |      | +   |
|        |              |           |                  |        |       |       |      | 1   |
| NSD    | H8           |           |                  |        |       |       |      | +   |
| NSD    | H9           |           |                  |        |       |       |      | 1   |
| NSD    | H10          |           |                  |        |       |       |      | 1   |
| NSD    | I1           |           |                  |        |       |       |      |     |
| NSD    | 12           |           |                  |        |       |       |      |     |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M69042-005              |               | Grid Box#                    | 8621       | No. of Grids<br>Counted | 2          |
| Analyst:               | Jayme C                 | allan         | Length Width                 |            | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/1/2018 -10           | 0/2/2018      | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0208                  | 37            | G. O. In microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating Voltage    | 100 KV        | Loading%                     | 15%        | G.O.s<br>Counted        | 100        |
| 3                      | Screen<br>Magnification | 20 KX         | Area Exa                     | mined mm²  |                         | 1.103      |

| Str. # | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio | SAED | EDS |
|--------|--------------|-----------|------------------|--------|-------|-------|------|-----|
| NSD    | D1-A1        | Ciractare | туре             | Lengur | Widdi | Katio | UALD | LD. |
| NSD    | A2           |           |                  |        |       |       |      | 1   |
| NSD    | A3           |           |                  |        |       |       |      | +   |
| NSD    | A4           |           |                  | _      |       |       |      | +   |
| NSD    | A5           |           |                  |        |       |       |      | +   |
| NSD    | A6           |           |                  |        |       |       |      | +   |
| NSD    | A7           |           |                  |        |       |       |      | +   |
| NSD    | A8           |           |                  |        |       |       |      | +   |
| NSD    | A9           |           |                  |        |       |       |      | +   |
| NSD    | A10          |           |                  |        |       |       |      | -   |
|        |              |           |                  |        |       |       |      | +   |
| NSD    | B1           |           |                  |        |       |       |      | -   |
| NSD    | B2           |           |                  |        |       |       |      | 1   |
| NSD    | B3           |           |                  |        |       | 1     |      | -   |
| NSD    | B4           |           |                  |        |       |       |      | -   |
| NSD    | B5           |           |                  |        |       |       |      |     |
| NSD    | B6           |           |                  |        |       |       |      |     |
| NSD    | B7           |           |                  |        |       |       |      |     |
| NSD    | B8           |           |                  |        |       |       |      |     |
| NSD    | B9           | p 4       |                  |        |       |       |      |     |
| NSD    | B10          |           |                  |        |       |       |      |     |
| NSD    | C1           |           |                  | 0      |       |       |      |     |
| NSD    | C2           |           |                  |        |       |       |      | 1   |
| NSD    | C3           |           |                  |        |       |       |      |     |
| NSD    | C4           |           |                  |        |       |       |      |     |
| NSD    | C5           |           |                  |        |       |       |      |     |
| NSD    | C6           |           |                  |        |       |       |      | 1   |
| NSD    | C7           |           |                  |        |       |       |      |     |
| NSD    | C8           |           |                  |        |       |       |      |     |
| NSD    | C9           |           |                  |        |       |       |      | 1   |
| NSD    | C10          |           |                  |        |       |       |      | 1   |
| NSD    | D1           |           |                  |        |       |       |      | 1   |
| NSD    | D2           |           |                  |        |       |       |      | 1   |
| NSD    | D3           |           |                  |        |       |       |      | +   |
| NSD    | D4           |           |                  |        |       |       |      | 1   |
| NSD    | D5           |           |                  |        |       |       |      | 1   |
| NSD    | D6           |           |                  |        |       |       |      | 1   |
| NSD    | D7           |           |                  |        |       |       |      | +   |
| NSD    | D8           |           |                  |        |       |       |      | 1   |
| NSD    | D9           |           |                  |        |       |       |      | +   |
| NSD    | D10          |           |                  |        |       |       |      | +   |
| NSD    | E1           |           |                  |        |       |       |      | +   |
| NSD    | E2           |           |                  |        |       |       |      | +   |
| NSD    | E3           |           |                  |        |       |       |      | 1   |
| NSD    | E4           |           |                  |        |       |       |      | 1   |
| NSD    | E5           |           |                  |        |       |       |      | +   |
| NSD    | E6           |           |                  |        |       |       |      | 1   |
| NSD    | E7           |           |                  |        |       |       |      | +   |
|        |              |           |                  |        |       |       |      | +   |
| NSD    | E8           |           |                  |        |       |       |      | -   |
| NSD    | E9<br>E10    |           |                  |        |       |       |      | 1   |
| NSD    | EIU          |           |                  |        |       |       |      |     |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b>            | ount Sheet |                  |       |  |
|------------------------|-------------------------|---------------|-----------------------------------------|------------|------------------|-------|--|
| Project/<br>Sample No. | M69042                  | -005          | Grid Box # 8621 No. of Grids<br>Counted |            |                  | 2     |  |
| Analyst:               | Jayme C                 | allan         | Length Width                            |            | G. O. Area       |       |  |
| Date of<br>Analysis    | 10/1/2018 -1            | 0/2/2018      | G. O. in microns =                      | 105        | 105              | 11025 |  |
| Initial<br>Weight(g)   | 0.0208                  | 37            | G. O. In microns =                      | 105        | 105              | 11025 |  |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance                         | Yes        | Average          | 11025 |  |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                                | 15%        | G.O.s<br>Counted | 100   |  |
| 3                      | Screen<br>Magnification | 20 KX         | Area Exar                               | mined mm²  |                  | 1.103 |  |

|        | 14.000       | 1 (       | Asbestos | 1 2 2 2 2 2 2 2 2 |       |       |      |     |
|--------|--------------|-----------|----------|-------------------|-------|-------|------|-----|
| Str. # | Grid Opening | Structure | Type     | Length            | Width | Ratio | SAED | EDS |

| Org. Sample<br>Wt.                          | Post HL<br>Separation |          |
|---------------------------------------------|-----------------------|----------|
| 0.02087                                     | 0.02087               | g        |
| Percent of<br>Orig. Post<br>Separation      | 100                   | (%)      |
| Wt. Of<br>Sample<br>Analyzed<br>Filter size | 0.00011442<br>201.1   | g<br>mm² |
| Number of<br>Structures<br>Counted          | 0                     | Str.     |
| Structures<br>per Gram of<br>Sample         | <8740                 | Str./g   |

| 4E+03 Str./g |              |
|--------------|--------------|
|              |              |
|              | 4E+03 Str./g |

|                        |                         | TEM Bulk      | Talc Structur      | e Count S                               | heet             |           |
|------------------------|-------------------------|---------------|--------------------|-----------------------------------------|------------------|-----------|
| Project/<br>Sample No. | M6904                   | 2-005         | Grid Box#          | Grid Box # 8621 No. of Grids<br>Counted |                  | 2         |
| Analyst:               | Jayme (                 | Callan        |                    | Length                                  | Width            | G.O. Area |
| Date of<br>Analysis    | 10/1/2018 -             | 10/2/2018     | G. O. in           | 105                                     | 105              | 105       |
| Initial<br>Weight(g)   | 0.020                   | 087           | microns =          | 105                                     | 105              | 105       |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid<br>Acceptance | Yes                                     | Average          | 11025     |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%           | 15%                                     | G.O.s<br>Counted | 100       |
| 3                      | Screen<br>Magnification | 20 KX         | Area               | Examined                                | mm²              | 1.103     |

| Str. #  | Grid Opening | Str./Asb. Type | Length | Width | Ratio | SAED                 | EDS    |
|---------|--------------|----------------|--------|-------|-------|----------------------|--------|
| Talc #1 | D1-A2        | Fibrous Talc   | 5.9    | 0.4   | 14.8  | Fibrous talc observe |        |
|         |              |                |        |       |       | Trace thro           | ughout |





Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 120 of 251 PageID: 79385



| roj#-Spl#                                                                             | M69042 - 006           | Analyst        | Paul Hess    |               | Date 10/12/2      | 2018            |
|---------------------------------------------------------------------------------------|------------------------|----------------|--------------|---------------|-------------------|-----------------|
|                                                                                       | Y & KONIGSBERG         |                |              | ClientSpl 20  | 0180060-49D       |                 |
| ocation                                                                               | 0 1 7 T T              | <b>D</b>       |              |               |                   |                 |
| ype_Mat John                                                                          | son & Johnson Talcum   | Powder         |              |               |                   |                 |
| Gross Off-white                                                                       | powder                 |                |              |               | % of Samp         | le 100          |
| Visual                                                                                |                        |                |              |               |                   |                 |
|                                                                                       | OPTICAL D              | ATA FOR AS     | BESTOS IDI   | ENTIFICATI    | ON                |                 |
| Morphology                                                                            |                        |                |              |               |                   |                 |
| Pleochroism                                                                           |                        |                |              |               |                   |                 |
| Refract Index                                                                         |                        |                |              |               |                   |                 |
| Sign^                                                                                 |                        |                |              |               |                   |                 |
| Extinction                                                                            |                        |                |              |               |                   | _               |
| Birefringence<br>Melt                                                                 |                        |                |              |               |                   |                 |
| Fiber Name                                                                            |                        |                |              |               |                   | -               |
| 3,1890,1180,119                                                                       |                        |                |              |               |                   |                 |
| Crocidolite<br>Tremolite/Actino<br>Anthophyllite<br>OTHER FIBRO<br>Talc -B/Y DS in 1. | US COMPONENTS          |                | ***          |               |                   |                 |
| NON FIBROUS                                                                           | COMPONENTS             | -              |              |               |                   |                 |
| Opaques                                                                               |                        | _              | X            |               |                   |                 |
| Talc                                                                                  | -                      | -              | X            |               |                   |                 |
| Mineral grains                                                                        |                        | -              | X            |               |                   |                 |
| 3                                                                                     |                        | <del>;</del>   |              |               |                   |                 |
| Binder Descript                                                                       | ion                    |                |              |               |                   |                 |
| Comme                                                                                 | nts X = Materials dete | ected.*** Mode | erate amount | Fibrous tale  | c observed.       |                 |
|                                                                                       |                        | Ť              | he method d  | etection limi | t is 1% unless of | otherwise state |

| Proj#-Spl#                                     | M69042 - 006BL          | Analyst Paul H  | less                | Date 10/15/2018                |
|------------------------------------------------|-------------------------|-----------------|---------------------|--------------------------------|
| lientName LEV                                  | Y & KONIGSBERG          | 7.7 = -2.5      | ClientSpl 20        | 0180060-49D                    |
| ocation                                        |                         |                 |                     |                                |
| ype_Mat Joh                                    | nson & Johnson Talcum   | Powder          |                     |                                |
| Gross White d                                  | ebris on slide          |                 |                     | % of Sample 100                |
| 1111                                           | OPTICAL D               | ATA FOR ASBESTO | S IDENTIFICATI      | ON                             |
| Morphology                                     |                         |                 |                     | -                              |
| Pleochroism                                    |                         |                 |                     | 1                              |
| Refract Index                                  |                         |                 |                     |                                |
| Sign^                                          |                         |                 |                     |                                |
| Extinction                                     |                         |                 |                     |                                |
| Birefringence<br>Melt                          |                         |                 |                     |                                |
| Fiber Name                                     |                         |                 |                     |                                |
| ASBESTOS M                                     | INEDALS                 | EeT 1           | VOL. %              |                                |
| Chrysotile Amosite Crocidolite Tremolite/Actin | olite                   |                 |                     |                                |
| OTHER FIBRO                                    | OUS COMPONENTS          |                 |                     |                                |
| NON FIBROUS                                    | S COMPONENTS            |                 |                     |                                |
| Opaques                                        |                         | X               |                     |                                |
| Talc                                           |                         | X               |                     |                                |
| Mineral grains                                 |                         | X               |                     |                                |
| Binder Descrip                                 | tion                    |                 | 3                   |                                |
| Comm                                           | ents X = Materials dete | cted.           |                     |                                |
|                                                | 19                      | The meth        | nod detection limit | t is 1% unless otherwise state |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M69042-                 | -006          | Grid Box#                    | 8633       | No. of Grids<br>Counted | 2          |
| Analyst:               | Jayme C                 | allan         |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/17/2018 - 1          | 0/18/2018     | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0307                  | 75            | 105                          |            | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating Voltage    | 100 KV        | Loading%                     | 15%        | G.O.s<br>Counted        | 100        |
| 3                      | Screen<br>Magnification | 20 KX         | Area Exa                     | mined mm²  |                         | 1.103      |

| Str.# | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio | SAED | EDS |
|-------|--------------|-----------|------------------|--------|-------|-------|------|-----|
| NSD   | D6-A1        | Structure | Туре             | Length | width | Ratio | SAED | ED  |
| NSD   | A2           |           |                  | -      |       | -     |      | +   |
| NSD   | A3           |           |                  |        |       |       |      | +   |
| NSD   | A4           |           |                  |        |       |       |      | -   |
| NSD   | A5           |           |                  |        |       |       |      | +   |
| NSD   | A6           |           |                  |        |       |       |      | 1   |
|       |              |           |                  |        |       |       |      | +   |
| NSD   | A7           |           |                  |        |       |       |      | -   |
| NSD   | A8           |           |                  |        |       |       |      | +   |
| NSD   | A9           |           |                  |        |       |       |      | +   |
| NSD   | A10          |           |                  |        |       |       |      | -   |
| NSD   | B1           |           |                  |        |       |       |      | -   |
| NSD   | B2           |           |                  |        |       |       |      | -   |
| NSD   | B3           |           |                  |        |       |       |      | -   |
| NSD   | B4           |           |                  |        |       |       |      | -   |
| NSD   | B5           |           |                  |        |       | 1     |      |     |
| NSD   | B6           |           |                  |        |       |       |      |     |
| NSD   | B7           |           |                  |        |       |       |      |     |
| NSD   | B8           |           |                  |        | 1     | 1     |      |     |
| NSD   | B9           |           |                  |        |       |       |      |     |
| NSD   | B10          |           |                  |        |       |       |      |     |
| NSD   | C1           |           |                  |        |       |       |      |     |
| NSD   | C2           |           |                  |        |       |       |      |     |
| NSD   | C3           |           |                  |        |       |       |      |     |
| NSD   | C4           |           |                  |        |       |       |      |     |
| NSD   | C5           |           |                  |        |       |       |      |     |
| NSD   | C6           |           |                  |        |       |       |      | 1   |
| NSD   | C7           |           |                  | 7      |       |       |      |     |
| NSD   | C8           |           |                  | ă      |       |       |      |     |
| NSD   | C9           |           |                  | 0      |       |       |      | 1   |
| NSD   | C10          |           |                  |        |       |       |      |     |
| NSD   | D2           |           |                  |        |       |       |      |     |
| NSD   | D3           |           |                  |        |       |       |      | 1   |
| NSD   | D4           |           |                  |        |       | 4     |      |     |
| NSD   | D5           |           |                  |        |       |       |      |     |
| NSD   | D6           |           |                  |        |       |       |      |     |
| NSD   | D7           |           |                  | -      |       |       |      |     |
| NSD   | D8           |           |                  |        |       |       |      |     |
| NSD   | E2           | (         |                  | 0      |       |       |      |     |
| NSD   | E3           |           |                  | 5      | 1     |       |      |     |
| NSD   | E4           |           |                  |        |       |       |      | 1   |
| NSD   | E5           |           |                  |        |       |       |      |     |
| NSD   | E6           |           |                  | 7      |       |       |      |     |
| NSD   | E7           |           |                  |        |       |       |      | 1   |
| NSD   | E8           |           |                  |        |       |       |      | 1   |
| NSD   | E9           |           |                  |        |       |       |      | 1   |
| NSD   | E10          |           |                  |        |       |       |      | 1   |
| NSD   | F1           |           |                  |        |       |       |      | 1   |
| NSD   | F2           |           |                  |        |       |       |      | 1   |
| NSD   | F3           |           |                  |        |       |       |      | 1   |
| NSD   | F4           |           |                  |        |       |       |      | +   |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M69042                  | -006          | Grid Box#                    | 8633       | No. of Grids<br>Counted | 2          |
| Analyst:               | Jayme C                 | allan         |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/17/2018 - 1          | 0/18/2018     | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.030                   | 75            | G. O. III Microns –          | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 15%        | G.O.s<br>Counted        | 100        |
| 3                      | Screen<br>Magnification | 20 KX         | Area Exa                     | mined mm²  |                         | 1.103      |

| Str.# | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio   | SAED | EDS                                              |
|-------|--------------|-----------|------------------|--------|-------|---------|------|--------------------------------------------------|
| NSD   | B1-A1        |           | .,,,,,           |        |       | 7,4,4,4 |      | 1                                                |
| NSD   | A2           |           |                  |        |       |         |      | †                                                |
| NSD   | A3           |           |                  |        |       |         |      | 1                                                |
| NSD   | A4           |           |                  |        |       |         |      | <del>                                     </del> |
| NSD   | A5           |           |                  |        |       |         |      | +                                                |
| NSD   | A6           |           |                  |        |       |         |      | +                                                |
| NSD   | A7           |           |                  |        |       |         |      | +                                                |
| NSD   | A8           |           |                  |        |       |         |      | +-                                               |
| NSD   | A9           |           |                  |        |       |         |      | +                                                |
| NSD   | A10          |           |                  |        |       |         |      | +                                                |
| NSD   | B1           |           |                  |        |       |         |      | +                                                |
| NSD   | B2           |           |                  |        |       |         |      | +                                                |
| NSD   | B3           |           |                  |        |       |         |      | +                                                |
| NSD   | B4           |           |                  |        |       |         |      | _                                                |
| NSD   | B5           |           |                  |        |       |         |      | +                                                |
| NSD   | B6           |           |                  |        |       |         |      | +                                                |
| NSD   | B7           |           |                  |        |       |         |      | +                                                |
| NSD   | B8           |           |                  |        |       |         |      | +                                                |
| NSD   | B9           |           |                  |        |       |         |      | +                                                |
|       |              |           |                  |        |       | -       |      | +                                                |
| NSD   | B10          |           |                  |        |       |         |      | -                                                |
| NSD   | C1           |           |                  |        |       |         |      | +                                                |
| NSD   | C2           |           |                  |        |       |         |      | ₩                                                |
| NSD   | C3           |           |                  |        |       |         |      | +                                                |
| NSD   | C4           |           |                  |        |       |         |      | -                                                |
| NSD   | C5           |           |                  |        |       |         |      | -                                                |
| NSD   | C6           |           |                  |        |       |         |      | -                                                |
| NSD   | C7           |           |                  |        |       | 1       |      | -                                                |
| NSD   | C8           |           |                  |        |       |         |      | -                                                |
| NSD   | C9           |           |                  |        |       |         |      | -                                                |
| NSD   | C10          |           |                  |        |       | 1       |      | -                                                |
| NSD   | D1           |           |                  |        |       |         |      | _                                                |
| NSD   | D2           |           |                  |        |       |         |      |                                                  |
| NSD   | D3           |           |                  |        |       |         |      |                                                  |
| NSD   | D4           |           |                  |        |       |         |      |                                                  |
| NSD   | D5           |           |                  |        |       |         |      |                                                  |
| NSD   | D6           | 4         |                  |        |       |         |      |                                                  |
| NSD   | D7           |           |                  |        |       |         |      | 1                                                |
| NSD   | D8           | F         |                  |        |       | - 1     |      | 1                                                |
| NSD   | D9           |           |                  |        |       |         |      |                                                  |
| NSD   | D10          |           |                  |        |       |         |      |                                                  |
| NSD   | E1           |           |                  |        | 1     |         |      |                                                  |
| NSD   | E2           |           |                  |        | 1     |         |      | 4 2                                              |
| NSD   | E3           |           |                  |        |       |         |      | -                                                |
| NSD   | E4           |           |                  |        |       | 1       |      |                                                  |
| NSD   | E5           | 1         |                  |        |       |         |      | 1                                                |
| NSD   | E6           |           |                  |        |       |         |      |                                                  |
| NSD   | E7           |           |                  |        |       |         |      |                                                  |
| NSD   | E8           |           |                  |        |       | 1       |      |                                                  |
| NSD   | E9           |           |                  |        |       |         |      |                                                  |
| NSD   | E10          |           |                  |        |       |         |      |                                                  |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M69042                  | M69042-006 Gr |                              | 8633       | No. of Grids<br>Counted | 2          |
| Analyst:               | Jayme C                 | allan         |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/17/2018 - 1          | 0/18/2018     | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0307                  | 75            |                              |            | 105 105                 | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 15%        | G.O.s<br>Counted        | 100        |
| 3                      | Screen<br>Magnification | 20 KX         | Area Exar                    | mined mm²  |                         | 1.103      |

|        | 14.05.2001   | 1 (2.1 52.11) | Asbestos | 1.00   |       | S     | 7 - 7 - 1 - 1 |     |
|--------|--------------|---------------|----------|--------|-------|-------|---------------|-----|
| Str. # | Grid Opening | Structure     | Type     | Length | Width | Ratio | SAED          | EDS |

| Org. Sample<br>Wt.                               | Post HL<br>Separation |          |
|--------------------------------------------------|-----------------------|----------|
| 0.03075                                          | 0.03075               | g        |
| Percent of<br>Orig. Post<br>Separation           | 100                   | (%)      |
| Wt. Of<br>Sample<br>Analyzed<br>Filter size      | 0.00016858<br>201.1   | g<br>mm² |
| Number of<br>Structures<br>Counted<br>Structures | 0                     | Str.     |
| per Gram of<br>Sample                            | <5932                 | Str./g   |

| D-4                       |          | 7      |
|---------------------------|----------|--------|
| Detection<br>Limit        | 5.93E+03 | Str./g |
| Analytical<br>Sensitivity | 5 93F+03 | Str /a |

|                        |                         | TEM Bulk      | Talc Structur      | e Count S | Sheet                   |           |
|------------------------|-------------------------|---------------|--------------------|-----------|-------------------------|-----------|
| Project/<br>Sample No. | M6904                   | 2-006         | Grid Box#          | 8633      | No. of Grids<br>Counted | 2         |
| Analyst:               | Jayme                   | Callan        |                    | Length    | Width                   | G.O. Area |
| Date of<br>Analysis    | 10/17/2018 -            | 10/18/2018    | G. O. in           | 105       | 105                     | 105       |
| Initial<br>Weight(g)   | 0.030                   | 075           | microns =          | 105       | 105                     | 105       |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid<br>Acceptance | Yes       | Average                 | 11025     |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%           | 15%       | G.O.s<br>Counted        | 100       |
| 3                      | Screen<br>Magnification | 20 KX         | Area               | Examined  | mm²                     | 1.103     |

| Str. # | Grid Opening | Str./Asb. Type | Length | Width | Ratio | SAED            | EDS      |
|--------|--------------|----------------|--------|-------|-------|-----------------|----------|
| NSD    | D6-A1        | (              |        |       |       | No fibrous talo | observed |

| roj#-Spl#                                                                     | M69042 - 007            | Analyst Paul Hess Date 10/12/2018                |
|-------------------------------------------------------------------------------|-------------------------|--------------------------------------------------|
| lientName LEV                                                                 | Y & KONIGSBERG          | ClientSpl 20180060-50D                           |
| ocation                                                                       |                         |                                                  |
| ype_Mat John                                                                  | nson & Johnson Talcum   | Powder                                           |
| Gross Off-whit                                                                | e powder                | % of Sample 100                                  |
| Visual                                                                        |                         |                                                  |
|                                                                               |                         |                                                  |
|                                                                               | OPTICAL D               | ATA FOR ASBESTOS IDENTIFICATION                  |
| Morphology                                                                    |                         |                                                  |
| Pleochroism                                                                   |                         |                                                  |
| Refract Index                                                                 |                         |                                                  |
| Sign^                                                                         |                         |                                                  |
| Extinction                                                                    | -                       |                                                  |
| Birefringence<br>Melt                                                         |                         |                                                  |
| Fiber Name                                                                    |                         |                                                  |
| Tiber Haine                                                                   |                         |                                                  |
| Amosite Crocidolite Tremolite/Actin Anthophyllite OTHER FIBRO Talc -B/Y DS in | oolite                  | ***                                              |
| NON FIBROUS                                                                   | COMPONENTS              |                                                  |
| Opaques                                                                       |                         | X                                                |
| Talc                                                                          | <del></del>             | X                                                |
| Mineral grains                                                                |                         | X                                                |
| William grains                                                                |                         | X                                                |
| Binder Descrip                                                                | ition                   |                                                  |
| Comm                                                                          | ents X = Materials dete | ected.*** Moderate amount Fibrous talc observed. |
|                                                                               |                         |                                                  |
|                                                                               |                         |                                                  |

| Proj#-Spl#        | M69042 - 007BL           | Analyst Paul Hess      | Date 10/15/2018                         |
|-------------------|--------------------------|------------------------|-----------------------------------------|
| lientName L       | EVY & KONIGSBERG         | Clie                   | entSpl 20180060-50D                     |
| ocation           |                          |                        |                                         |
| ype_Mat Jo        | ohnson & Johnson Talcum  | Powder                 |                                         |
| Gross White       | e debris on slide        |                        | % of Sample 100                         |
| -                 | OPTICAL                  | ATA FOR ASBESTOS IDENT | TEICATION                               |
|                   | OFTICALD                 | ATA FOR ASBESTOS IDENT | IFICATION                               |
| Morpholog         |                          |                        |                                         |
| Pleochrois        |                          |                        |                                         |
| Refract Inde      | 711                      |                        |                                         |
| Sign<br>Extinctio |                          |                        |                                         |
| Birefringenc      |                          |                        | -                                       |
| Me                |                          |                        |                                         |
| Fiber Nam         |                          |                        |                                         |
| ASBESTOS          |                          | EST. VOL. %            |                                         |
|                   | ROUS COMPONENTS          |                        |                                         |
| NON FIBRO         | US COMPONENTS            | -                      |                                         |
| Opaques           |                          | X                      | <del></del>                             |
| Talc              |                          | X                      |                                         |
| Mineral grains    | -                        | X                      |                                         |
|                   |                          |                        | 3,-                                     |
| Binder Descr      | ription                  |                        |                                         |
| Com               | ments X = Materials dete | ected.                 |                                         |
|                   |                          |                        |                                         |
|                   |                          | The method detec       | ction limit is 1% unless otherwise stat |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M69042-                 | -007          | Grid Box#                    | 8633       | No. of Grids<br>Counted | 2          |
| Analyst:               | Jose Car                | rrillo        |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/18/20                | 018           | C O ii                       | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0307                  | 76            | G. O. in microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation 1       | Γalc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating Voltage    | 100 KV        | Loading%                     | 15%        | G.O.s<br>Counted        | 100        |
| 1                      | Screen<br>Magnification | 20 KX         | Area Exa                     | mined mm²  |                         | 1.103      |

| Str.# | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio | SAED | EDS                                              |
|-------|--------------|-----------|------------------|--------|-------|-------|------|--------------------------------------------------|
| NSD   | B9-J2        |           |                  |        |       | 7     |      |                                                  |
| NSD   | J3           |           | -                |        |       |       |      |                                                  |
| NSD   | J4           |           |                  |        |       | 4     |      |                                                  |
| NSD   | J5           |           |                  |        |       |       |      |                                                  |
| NSD   | J6           |           |                  |        |       |       |      |                                                  |
| NSD   | J7           |           |                  | 1      |       | 5. 4  |      |                                                  |
| NSD   | J8           |           |                  |        |       |       |      |                                                  |
| NSD   | J9           |           |                  |        |       |       |      |                                                  |
| NSD   | J10          |           |                  |        |       |       |      |                                                  |
| NSD   | I1           |           |                  |        |       |       |      |                                                  |
| NSD   | 12           |           |                  |        |       |       |      |                                                  |
| NSD   | 13           |           |                  |        |       |       |      |                                                  |
| NSD   | 14           |           |                  |        |       |       |      |                                                  |
| NSD   | 15           |           |                  |        |       |       |      | †                                                |
| NSD   | 16           |           |                  |        |       |       |      | 1                                                |
| NSD   | 17           |           |                  |        |       |       |      | <del>                                     </del> |
| NSD   | 18           |           |                  |        |       |       |      | 1                                                |
| NSD   | 19           |           |                  |        |       |       |      |                                                  |
| NSD   | I10          |           |                  |        |       |       |      | 1                                                |
| NSD   | F1           |           |                  |        |       |       |      | _                                                |
| NSD   | F2           |           |                  |        |       |       |      | 1                                                |
| NSD   | F3           |           |                  |        |       |       |      | 1                                                |
| NSD   | F4           |           |                  |        |       |       |      |                                                  |
| NSD   | F5           |           |                  |        |       |       |      | 1                                                |
| NSD   | F6           |           |                  |        |       | -     |      | 1                                                |
| NSD   | F7           | -         |                  |        |       |       |      | +                                                |
| NSD   | F8           |           |                  |        |       |       |      | +                                                |
| NSD   | F9           |           |                  |        |       |       |      | +                                                |
| NSD   | F10          |           |                  |        |       |       |      | +                                                |
| NSD   | E1           |           |                  |        |       |       |      | +                                                |
| NSD   | E2           |           |                  |        |       |       |      | +                                                |
| NSD   | E3           |           |                  |        |       |       |      | +                                                |
| NSD   | E4           |           |                  |        |       |       |      | +                                                |
| NSD   | E5           |           |                  |        |       |       |      | +                                                |
| NSD   | E6           |           |                  |        |       |       |      | +                                                |
| NSD   | E7           |           |                  |        |       |       |      | +                                                |
| NSD   | E8           |           |                  |        |       |       |      | _                                                |
| NSD   | E9           |           |                  |        |       |       |      | +                                                |
| NSD   | E10          |           |                  | 8      |       |       |      | +                                                |
| NSD   | D1           |           |                  |        |       |       |      | +                                                |
| NSD   | D2           |           |                  |        |       |       |      | +                                                |
| NSD   | D3           |           |                  | ÿ      |       |       |      | +                                                |
| NSD   | D3           |           |                  |        |       |       |      | +                                                |
| NSD   | D5           |           |                  |        |       | 1     |      | +                                                |
| NSD   | D6           |           |                  |        |       |       |      | +                                                |
|       |              |           |                  |        | l'    |       |      | -                                                |
| NSD   | D7           |           |                  |        |       |       |      | -                                                |
| NSD   | D8           |           |                  |        |       |       |      | -                                                |
| NSD   | D9           |           |                  |        |       |       |      | -                                                |
| NSD   | D10          |           |                  |        |       |       |      |                                                  |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M69042-                 | -007          | Grid Box#                    | 8633       | No. of Grids<br>Counted | 2          |
| Analyst:               | Jose Car                | rrillo        |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/18/20                | 018           | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0307                  | 76            | G. O. In microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation 1       | Γalc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 15%        | G.O.s<br>Counted        | 100        |
| 1                      | Screen<br>Magnification | 20 KX         | Area Exa                     | mined mm²  |                         | 1.103      |

| Str. #     | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio | SAED | EDS |
|------------|--------------|-----------|------------------|--------|-------|-------|------|-----|
| NSD        | B8-J1        | Structure | туре             | Lengui | width | Natio | JALD | LDC |
| NSD        | J2           |           |                  |        |       |       |      | -   |
|            | J3           |           |                  |        |       |       |      | -   |
| NSD<br>NSD | J3           |           |                  |        |       |       |      | +   |
| NSD        | J5           | -         |                  |        |       |       |      | +   |
| NSD        | J6           |           |                  |        |       |       |      | +   |
| NSD        | J7           | -         | -                |        |       |       |      | -   |
|            |              |           |                  |        |       |       |      | +   |
| NSD        | J8           |           |                  |        |       |       |      | -   |
| NSD        | J9           |           |                  |        |       |       |      | -   |
| NSD        | J10          |           |                  |        |       | -     |      | -   |
| NSD        | 15           |           |                  |        |       |       |      | -   |
| NSD        | 16           |           |                  |        |       |       |      | _   |
| NSD        | 17           |           |                  |        |       | 1     |      |     |
| NSD        | 18           |           |                  |        |       |       |      |     |
| NSD        | 19           |           |                  |        |       |       |      |     |
| NSD        | I10          |           |                  |        |       |       |      |     |
| NSD        | G1           |           |                  |        |       |       |      |     |
| NSD        | G2           |           |                  |        |       |       |      |     |
| NSD        | G3           |           |                  |        |       |       |      |     |
| NSD        | G4           |           |                  |        |       |       |      |     |
| NSD        | G5           |           |                  |        |       |       |      |     |
| NSD        | G6           |           |                  |        |       |       |      |     |
| NSD        | G7           |           |                  |        |       |       |      | 1   |
| NSD        | G8           |           |                  |        |       |       |      |     |
| NSD        | G9           |           |                  |        |       |       |      |     |
| NSD        | G10          |           |                  |        |       | 4     |      |     |
| NSD        | E1           |           |                  |        |       | 7     |      |     |
| NSD        | E2           |           |                  |        | 5     |       |      |     |
| NSD        | E3           |           |                  |        |       |       |      |     |
| NSD        | E4           |           |                  |        |       |       |      |     |
| NSD        | E5           |           |                  |        |       |       |      | 1   |
| NSD        | E6           |           |                  |        |       |       |      |     |
| NSD        | E7           |           |                  |        |       |       |      | 1   |
| NSD        | E8           |           |                  |        |       |       |      |     |
| NSD        | E9           |           |                  |        |       |       |      |     |
| NSD        | E10          |           |                  |        |       |       |      |     |
| NSD        | D1           |           |                  |        |       |       |      | 1   |
| NSD        | D2           |           |                  |        |       |       |      | +   |
| NSD        | D3           |           |                  |        |       |       |      | +   |
| NSD        | D3           |           |                  |        |       |       |      | +   |
| NSD        | D5           |           |                  |        |       | -     |      | +   |
| NSD        | D6           |           |                  |        |       |       |      | 1   |
|            |              |           |                  |        |       |       |      | -   |
| NSD<br>NSD | D7<br>D8     |           |                  |        |       |       |      | +   |
| NSD        | D9           |           |                  |        |       |       |      | +   |
|            |              |           |                  |        |       |       |      | -   |
| NSD        | D10          |           |                  |        |       |       |      | -   |
| NSD        | C7           |           |                  |        |       | -     |      | -   |
| NSD<br>NSD | C8<br>C9     |           |                  |        |       |       |      | -   |
|            | (19          |           |                  |        |       |       |      | 1   |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M69042                  | -007          | Grid Box#                    | 8633       | No. of Grids<br>Counted | 2          |
| Analyst:               | Jose Ca                 | rrillo        |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/18/2                 | 018           | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0307                  | 76            | G. O. In microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 15%        | G.O.s<br>Counted        | 100        |
| 1                      | Screen<br>Magnification | 20 KX         | Area Exar                    | mined mm²  |                         | 1.103      |

|        | 14.000       | 1 ( )     | Asbestos |        |       |       |      |     |
|--------|--------------|-----------|----------|--------|-------|-------|------|-----|
| Str. # | Grid Opening | Structure | Type     | Length | Width | Ratio | SAED | EDS |

| Org. Sample<br>Wt.                               | Sample Wt.<br>Post HL<br>Separation |          |
|--------------------------------------------------|-------------------------------------|----------|
| 0.03076                                          | 0.03076                             | g        |
| Percent of<br>Orig. Post<br>Separation           | 100                                 | (%)      |
| Wt. Of<br>Sample<br>Analyzed<br>Filter size      | 0.00016864<br>201.1                 | g<br>mm² |
| Number of<br>Structures<br>Counted<br>Structures | 0                                   | Str.     |
| per Gram of<br>Sample                            | <5930                               | Str./g   |

| Detection<br>Limit        | 5.93E+03 | Str./g |
|---------------------------|----------|--------|
| Analytical<br>Sensitivity | 5.93E+03 | Str./g |

|                        |                         | TEM Bulk      | Talc Structur      | e Count S | Sheet                   |           |
|------------------------|-------------------------|---------------|--------------------|-----------|-------------------------|-----------|
| Project/<br>Sample No. | M6904                   | 2-007         | Grid Box#          | 8633      | No. of Grids<br>Counted | 2         |
| Analyst:               | Jose C                  | arrillo       |                    | Length    | Width                   | G.O. Area |
| Date of<br>Analysis    | 10/18/                  | 2018          | G. O. in           | 105       | 105                     | 105       |
| Initial<br>Weight(g)   | 0.030                   | 076           | microns =          | 105       | 105                     | 105       |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid<br>Acceptance | Yes       | Average                 | 11025     |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%           | 15%       | G.O.s<br>Counted        | 100       |
| 1                      | Screen<br>Magnification | 20 KX         | Area               | Examined  | mm²                     | 1.103     |

| Str. # | <b>Grid Opening</b> | Str./Asb. Type | Length | Width | Ratio | SAED           | EDS        |
|--------|---------------------|----------------|--------|-------|-------|----------------|------------|
| NSD    | B9-J2               | S-2            |        |       |       | No Fibrous Tal | c Observed |

| Proj#-Spl#                                | M68503 - 038ISO           | Analyst Paul        | Hess                | Date 10/28/2018                  |
|-------------------------------------------|---------------------------|---------------------|---------------------|----------------------------------|
| The second second                         | ept 14 Environmental      |                     | ClientSpl 2         | 2018-0061-40A                    |
| ocation<br>ype_Mat Sh                     | nower to Shower Body      |                     |                     |                                  |
| - T                                       | nite powder               |                     |                     | % of Sample 100                  |
| Gross Off-wh<br>Visual                    | ille powdei               |                     |                     | 70 or cample 100                 |
|                                           | OPTICAL DA                | TA FOR ASBEST       | OS IDENTIFICAT      | ION                              |
| Morphology                                | /                         |                     |                     |                                  |
| Pleochroism                               | 7                         |                     |                     |                                  |
| Refract Index                             |                           |                     |                     |                                  |
| Sign/                                     |                           | -                   |                     |                                  |
| Extinction<br>Birefringence               |                           | -                   |                     |                                  |
| Mel                                       |                           |                     |                     |                                  |
| Fiber Name                                |                           |                     |                     |                                  |
| ASBESTOS N                                | MINERALS                  |                     | . VOL. %            |                                  |
| Anthophyllite. OTHER FIBR Talc -B/Y DS in |                           | ***                 |                     |                                  |
| NON FIBROU                                | JS COMPONENTS             |                     |                     |                                  |
| Opaques                                   |                           | ×                   |                     |                                  |
| Talc                                      |                           | ×                   | (                   |                                  |
| Mineral grains                            |                           | ×                   |                     |                                  |
| Binder Descri                             | iption                    |                     |                     |                                  |
| Comr                                      | ments X = Materials detec | eted. *** Trace amo | ount on fibrous Tal | lc observed.                     |
|                                           | -                         | The me              | thod detection lim  | nit is 1% unless otherwise state |

| roj#-Spl#     | M68503 - 038BL1           | Analyst Paul   | Hess                | Date 10/22/2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------|---------------------------|----------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ientName      | Dept 14 Environmental     | 3.3.11.11.3.22 | ClientSpl 20        | 18-0061-40A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| cation        |                           |                |                     | # 4 A   4 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A   5 A |
| pe_Mat        | Shower to Shower Body (1) | 00mg prep)     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Gross Whi     | te debris on slide        |                |                     | % of Sample 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| /isual        |                           |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -             |                           |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | OPTICAL D                 | ATA FOR ASBEST | OS IDENTIFICATION   | ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Morpholo      | gy                        |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Pleochrois    | sm                        |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Refract Ind   |                           |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sig           |                           |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Extincti      |                           |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Birefringen   | ce<br>elt                 |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Fiber Nar     | P3P', 1                   |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Fiber Nai     | ile                       |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| OTHER FIB     | ROUS COMPONENTS           |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NON FIBRO     | OUS COMPONENTS            |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Opaques       |                           | X              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Talc          |                           | X              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Mineral grain | S                         | X              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |                           |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Binder Des    | cription                  |                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Con           | mments X = Materials dete | ected.         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | 1                         | The med        | had detection limit | is 1% unless otherwise state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503-038              |               | Grid Box#                    | 8632       | No. of Grids<br>Counted | 2          |
| Analyst:               | Mehrdad Mo              | otamedi       |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 11/1/20                 | 18            | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.059                   | 9             | G. O. In microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation 1       | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating Voltage    | 100 KV        | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 4                      | Screen<br>Magnification | 20 KX         | Area Examined mm²            |            |                         | 1.103      |

| Str.# | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio | SAED | EDS |
|-------|--------------|-----------|------------------|--------|-------|-------|------|-----|
| NSD   | B10-A1       |           |                  |        |       |       |      |     |
| NSD   | A2           |           |                  |        |       | 1     |      | 1   |
| NSD   | A3           |           |                  |        |       |       |      |     |
| NSD   | A4           |           |                  |        |       |       |      |     |
| NSD   | A5           |           |                  |        |       |       |      |     |
| NSD   | A6           |           |                  |        |       | 1     |      |     |
| NSD   | A7           |           |                  |        |       |       |      |     |
| NSD   | A8           |           |                  |        |       | -     |      |     |
| NSD   | A9           |           |                  |        |       |       |      |     |
| NSD   | A10          |           |                  |        |       |       |      |     |
| NSD   | B1           |           |                  |        |       |       |      |     |
| NSD   | B2           |           |                  |        |       |       |      |     |
| NSD   | B3           |           |                  |        |       |       |      |     |
| NSD   | B4           |           |                  |        |       | - 1   |      | 1   |
| NSD   | B5           |           | -                |        |       |       |      | 1   |
| NSD   | B6           |           |                  |        |       |       |      |     |
| NSD   | B7           |           |                  |        |       |       |      |     |
| NSD   | B8           |           |                  |        |       |       |      |     |
| NSD   | B9           |           |                  |        |       |       |      |     |
| NSD   | B10          |           |                  |        |       |       |      | 1   |
| NSD   | D1           |           |                  |        |       |       |      | 1   |
| NSD   | D2           |           |                  |        |       |       |      | 1   |
| NSD   | D3           |           |                  |        |       |       |      |     |
| NSD   | D4           |           |                  |        |       |       |      | 1   |
| NSD   | D5           |           |                  |        |       |       |      | 1   |
| NSD   | D6           |           |                  |        |       |       |      | 1   |
| NSD   | D7           |           |                  |        |       |       |      | 1   |
| NSD   | D8           |           |                  |        |       |       |      | 1   |
| NSD   | D9           |           |                  |        |       |       |      | 1   |
| NSD   | D10          |           |                  |        |       |       |      | 1   |
| NSD   | F1           |           |                  |        |       |       |      | +   |
| NSD   | F2           |           |                  |        |       |       |      | 1   |
| NSD   | F3           |           |                  |        |       |       |      |     |
| NSD   | F4           |           |                  |        |       |       |      | +   |
| NSD   | F5           |           |                  |        | 14    |       |      | +   |
| NSD   | F6           |           |                  |        |       |       |      | 1   |
| NSD   | F7           |           |                  |        |       | -     |      | 1   |
| NSD   | F8           |           |                  |        |       |       |      | 1   |
| NSD   | F9           |           |                  | 5      |       |       |      | 1   |
| NSD   | F10          |           |                  |        |       |       |      | 1   |
| NSD   | H1           |           |                  |        |       |       | -    | +   |
| NSD   | H2           |           |                  |        |       |       |      | 1   |
| NSD   | H3           |           |                  |        |       |       |      | 1   |
| NSD   | H4           |           |                  |        |       |       |      | 1   |
| NSD   | H5           |           |                  |        |       |       |      | 1   |
| NSD   | H6           |           |                  |        |       |       |      | 1   |
| NSD   | H7           |           |                  |        |       |       |      | 1   |
| NSD   | H8           |           |                  |        |       |       |      | 1   |
| NSD   | H9           |           |                  |        |       |       |      | 1   |
| NSD   | H10          |           |                  |        |       |       |      | 1   |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503-038              |               | Grid Box#                    | 8632       | No. of Grids<br>Counted | 2          |
| Analyst:               | Mehrdad Mo              | otamedi       |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 11/1/20                 | 18            | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.059                   | 9             | G. O. In microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation 1       | Γalc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating Voltage    | 100 KV        | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 4                      | Screen<br>Magnification | 20 KX         | Area Examined mm²            |            |                         | 1.103      |

| Str.# | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio | SAED | EDS      |
|-------|--------------|-----------|------------------|--------|-------|-------|------|----------|
| NSD   | B9-J1        |           |                  |        |       |       |      |          |
| NSD   | J2           |           |                  |        |       |       |      | 1        |
| NSD   | J3           |           |                  |        |       |       |      |          |
| NSD   | J4           |           | _                |        |       |       |      |          |
| NSD   | J5           |           |                  |        |       |       |      | 1        |
| NSD   | J6           |           |                  |        |       |       |      | 1        |
| NSD   | J7           |           |                  |        |       |       |      | 1        |
| NSD   | J8           |           |                  |        |       |       |      |          |
| NSD   | J9           |           |                  |        |       |       |      | 1        |
| NSD   | J10          |           |                  |        |       |       |      |          |
| NSD   | H1           |           |                  |        |       |       |      | 1        |
| NSD   | H2           |           |                  |        |       |       |      |          |
| NSD   | H3           |           |                  |        |       |       |      | 1        |
| NSD   | H4           |           |                  |        |       |       |      | 1        |
| NSD   | H5           |           |                  |        |       |       |      |          |
| NSD   | H6           |           |                  | 6      |       |       |      | 1        |
| NSD   | H7           |           |                  |        |       |       |      | +        |
| NSD   | H8           |           |                  |        |       |       |      | _        |
| NSD   | H9           | -         |                  |        |       |       |      | +        |
|       |              |           |                  |        |       |       |      | -        |
| NSD   | H10          |           |                  |        |       |       |      | -        |
| NSD   | F1           |           |                  |        |       |       |      | 1        |
| NSD   | F2           |           |                  |        |       |       |      |          |
| NSD   | F3           |           |                  |        |       |       |      |          |
| NSD   | F4           |           |                  |        |       |       |      |          |
| NSD   | F5           |           |                  |        |       |       |      |          |
| NSD   | F6           |           |                  |        |       |       |      |          |
| NSD   | F7           |           |                  |        |       | 4     |      |          |
| NSD   | F8           |           |                  |        |       |       |      |          |
| NSD   | F9           |           |                  |        |       |       |      |          |
| NSD   | F10          |           |                  |        |       | 1     |      |          |
| NSD   | D1           |           |                  |        |       |       |      |          |
| NSD   | D2           |           |                  |        |       |       |      |          |
| NSD   | D3           |           |                  |        |       |       |      |          |
| NSD   | D4           |           |                  |        |       | 4     |      |          |
| NSD   | D5           |           |                  |        |       |       |      |          |
| NSD   | D6           |           |                  |        |       |       |      |          |
| NSD   | D7           |           |                  |        |       |       |      |          |
| NSD   | D8           |           |                  |        |       |       |      | 1        |
| NSD   | D9           |           |                  |        |       | 1     |      |          |
| NSD   | D10          |           |                  |        |       |       |      |          |
| NSD   | B1           |           |                  |        |       | /     |      |          |
| NSD   | B2           |           |                  |        |       |       |      |          |
| NSD   | B3           |           |                  |        |       |       |      |          |
| NSD   | B4           |           |                  |        |       | 9     |      |          |
| NSD   | B5           | h - (     |                  |        | j     |       |      |          |
| NSD   | B6           |           |                  |        |       |       |      |          |
| NSD   | B7           |           |                  |        |       |       |      |          |
| NSD   | B8           | 1         |                  | 7      |       |       |      |          |
| NSD   | B9           |           | -                |        |       |       |      | <b>†</b> |
| NSD   | B10          |           |                  |        |       |       |      | 1        |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503-038              |               | Grid Box#                    | 8632       | No. of Grids<br>Counted | 2          |
| Analyst:               | Mehrdad Mo              | otamedi       |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 11/1/20                 | 018           | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.059                   | 9             | G. O. In microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating Voltage    | 100 KV        | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 4                      | Screen<br>Magnification | 20 KX         | Area Examined mm²            |            |                         | 1.103      |

|        |              | 1 52 1    | Asbestos | 1.00   |       | Sec. 2 11 | 4 - 4 - 5 - 1 - 1 |     |
|--------|--------------|-----------|----------|--------|-------|-----------|-------------------|-----|
| Str. # | Grid Opening | Structure | Type     | Length | Width | Ratio     | SAED              | EDS |

| Ora Cample                             | Sample Wt.            |                 |
|----------------------------------------|-----------------------|-----------------|
| Org. Sample<br>Wt.                     | Post HL<br>Separation |                 |
| 0.05990                                | 0.05990               | g               |
| Percent of<br>Orig. Post<br>Separation | 100                   | (%)             |
| Wt. Of<br>Sample<br>Analyzed           | 0.00032839            | g               |
| Filter size                            | 201.1                 | mm <sup>2</sup> |
| Number of<br>Structures<br>Counted     | 0                     | Str.            |
| Structures<br>per Gram of<br>Sample    | <3045                 | Str./a          |

| Detection<br>Limit        | 3.05E+03 | Str./g |
|---------------------------|----------|--------|
| Analytical<br>Sensitivity | 3.05E+03 | Str./a |

|                        |                         | TEM Bulk      | Talc Structur      | e Count S | Sheet                   |           |
|------------------------|-------------------------|---------------|--------------------|-----------|-------------------------|-----------|
| Project/<br>Sample No. | M68503-038              |               | Grid Box#          | 8632      | No. of Grids<br>Counted | 2         |
| Analyst:               | Mehrdad N               | Motamedi      |                    | Length    | Width                   | G.O. Area |
| Date of<br>Analysis    | 11/1/2                  | 2018          | G. O. in           | 105       | 105                     | 105       |
| Initial<br>Weight(g)   | 0.059                   | 990           | microns =          | 105       | 105                     | 105       |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid<br>Acceptance | Yes       | Average                 | 11025     |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%           | 20%       | G.O.s<br>Counted        | 100       |
| 4                      | Screen<br>Magnification | 20 KX         | Area               | Examined  | mm²                     | 1.103     |

| Str. # | Grid Opening | Str./Asb. Type | Length | Width | Ratio | SAED                 | EDS     |
|--------|--------------|----------------|--------|-------|-------|----------------------|---------|
| Talc 1 | B10-A1       | Fibrous Talc   | 9      | 1     | 9.0   | Fibrous talc observe |         |
|        |              |                |        |       |       | Trace throu          | ugh out |





41418

M68503-038-Talc 1 Diffraction @ 50cm

11/1/2018

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 144 of 251 PageID: 79409



## **Section 16**

## MAS, LLC PLM ANALYSIS

|                                                                                    | t 14 Environmental               | ClientSpl 2018-0061-08A         |
|------------------------------------------------------------------------------------|----------------------------------|---------------------------------|
| cation                                                                             | t 14 Environmental               | Chemopi 2010-0001-00A           |
|                                                                                    | wer to Shower Body Pow           | vder                            |
|                                                                                    | e powder                         | % of Sample 100                 |
| /isual                                                                             |                                  |                                 |
| -                                                                                  | ODTICAL DA                       | ATA FOR ASBESTOS IDENTIFICATION |
|                                                                                    | OPTICAL DA                       | ATA FOR ASBESTOS IDENTIFICATION |
| Morphology                                                                         | straight                         |                                 |
| Pleochroism                                                                        | none                             |                                 |
| Refract Index                                                                      | 1.620/1.605                      |                                 |
| Sign^                                                                              | positive                         |                                 |
| Extinction                                                                         | oblique                          |                                 |
| Birefringence                                                                      | medium                           |                                 |
| Melt                                                                               | no                               |                                 |
| Fiber Name                                                                         | Tremolite/Actinolite             |                                 |
| ASBESTOS M                                                                         | WELVIN E                         | EST. VOL. %                     |
|                                                                                    | olite                            | <0.1                            |
| Tremolite/Actin<br>Anthophyllite<br>OTHER FIBRO                                    | olite<br>DUS COMPONENTS          | <0.1<br>***                     |
| Tremolite/Actin Anthophyllite OTHER FIBRO Falc -B/Y DS in                          | olite<br>DUS COMPONENTS          | ***                             |
| Tremolite/Actin Anthophyllite DTHER FIBRO Falc -B/Y DS in                          | OUS COMPONENTS 1.55              | ***                             |
| Tremolite/Actin Anthophyllite DTHER FIBRO Falc -B/Y DS in NON FIBROUS Dpaques Falc | OUS COMPONENTS 1.55              | ***  X X                        |
| Tremolite/Actin Anthophyllite DTHER FIBRO Falc -B/Y DS in NON FIBROUS Dpaques Falc | OUS COMPONENTS 1.55              | ***                             |
| Tremolite/Actin<br>Anthophyllite<br>OTHER FIBRO<br>Falc -B/Y DS in                 | DUS COMPONENTS  1.55  COMPONENTS | ***  X X                        |

The method detection limit is 1% unless otherwise stated.

## MAS, LLC PLM ANALYSIS

| roj#-Spl#                                                                 | M68503 - 026BL1        | Analyst Paul Hess                                                        | Date 10/24/2018   |
|---------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------|-------------------|
| The second second                                                         | t 14 Environmental     | Clients                                                                  | Spl 2018-0061-08A |
| ocation                                                                   |                        | 1 (00                                                                    |                   |
| /pe_Mat Shor                                                              | wer to Shower Body Pov | vder (60mg prep)                                                         | 0.000.00.00       |
| Gross White de<br>Visual                                                  | ebris on slide         |                                                                          | % of Sample 100   |
| Y 4                                                                       | OPTICAL D              | ATA FOR ASBESTOS IDENTIFIC                                               | CATION            |
| Morphology                                                                | straight               |                                                                          | ]                 |
| Pleochroism                                                               | none                   |                                                                          |                   |
| Refract Index                                                             | 1.620/1.605            |                                                                          |                   |
| Sign^                                                                     | positive               |                                                                          |                   |
| Extinction                                                                | oblique                |                                                                          |                   |
| Birefringence                                                             | medium                 |                                                                          |                   |
| Melt                                                                      | no                     |                                                                          |                   |
| Fiber Name                                                                | Tremolite/Actinolite   |                                                                          |                   |
| Amosite<br>Crocidolite<br>Tremolite/Actin<br>Anthophyllite<br>OTHER FIBRO | olite                  | <0.1                                                                     |                   |
| NON FIBROUS                                                               | COMPONENTS             |                                                                          |                   |
| Opaques                                                                   |                        | X                                                                        | Ť                 |
| Talc                                                                      |                        | X                                                                        |                   |
| Mineral grains                                                            |                        | X                                                                        | -                 |
| Binder Descrip                                                            | 1                      |                                                                          |                   |
| Comme                                                                     |                        | e asbestos observed. Actinolite/T<br>s exhibiting <3-1 length to width r |                   |

The method detection limit is 1% unless otherwise stated.

















































|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503-026              |               | Grid Box#                    | 8632       | No. of Grids<br>Counted | 2          |
| Analyst:               | Anthony K               | eeton         |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/23/2018 - 1          | 0/30/2018     | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0210                  | 09            | G. O. In microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating Voltage    | 100 KV        | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 2                      | Screen<br>Magnification | 20 KX         | Area Examined mm²            |            | 1.103                   |            |

| Str.# | Grid Opening | Structure | Asbestos<br>Type | Length | Width     | Ratio | SAED | EDS        |
|-------|--------------|-----------|------------------|--------|-----------|-------|------|------------|
| NSD   | E10-A1       |           |                  |        |           |       |      |            |
| 1     | A2           | Bundle    | Tremolite        | 7.1    | 0.40      | 17.8  | X    | X          |
| NSD   | A3           |           |                  |        |           |       |      |            |
| NSD   | A4           |           |                  | 7      | 0         |       |      |            |
| NSD   | A5           |           |                  |        |           |       |      |            |
| 2     | A6           | Bundle    | Tremolite        | 10.6   | 1.80      | 5.9   | X    | X          |
| 3     | A7           | Fiber     | Tremolite        | 3.1    | 0.23      | 13.5  | X    | X          |
| 4     |              | Bundle    | Tremolite        | 7.6    | 0.80      | 9.5   | X    | X          |
| 5     |              | Bundle    | Tremolite        | 3.2    | 0.50      | 6.4   | X    | X          |
| NSD   | A8           |           |                  |        |           |       |      |            |
| 6     | A9           | Bundle    | Tremolite        | 7.3    | 1.20      | 6.1   | X    | X          |
| NSD   | A10          |           |                  |        |           |       |      |            |
| NSD   | B1           |           |                  |        |           |       |      |            |
| 7     | B2           | Bundle    | Tremolite        | 7.3    | 0.70      | 10.4  | X    | X          |
| NSD   | B3           |           |                  |        |           | 7.7   |      |            |
| NSD   | B4           |           |                  |        |           |       |      |            |
| NSD   | B5           |           |                  | 0      | J = = = = |       |      | 1          |
| 8     | B6           | Bundle    | Tremolite        | 9.8    | 1.80      | 5.4   | X    | X          |
| 9     | B7           | Bundle    | Tremolite        | 4.3    | 0.80      | 5.4   | X    | X          |
| 10    | B8           | Bundle    | Tremolite        | 7.0    | 0.80      | 8.8   | X    | X          |
| 11    | B9           | Bundle    | Tremolite        | 7.4    | 1.10      | 6.7   | X    | X          |
| NSD   | B10          |           | 11011101110      |        |           |       |      | _ ^        |
| 12    | C1           | Bundle    | Tremolite        | 13.3   | 0.70      | 19.0  | Х    | X          |
| NSD   | C2           |           |                  | 0      |           |       |      |            |
| 13    | C3           | Bundle    | Tremolite        | 3.7    | 0.45      | 8.2   | X    | X          |
| NSD   | C4           | Banaio    | Tromo            |        | 0.10      | 0.2   |      | 1          |
| 14    | C5           | Bundle    | Tremolite        | 3.4    | 0.60      | 5.7   | X    | X          |
| 15    | C6           | Bundle    | Tremolite        | 3.2    | 0.23      | 13.9  | X    | X          |
| NSD   | C7           | Buridio   | Tromonto         | 0.2    | 0.20      | 10.0  |      | _ ^        |
| NSD   | C8           |           |                  |        |           |       |      | +          |
| NSD   | C9           |           |                  |        |           |       |      | 1          |
| NSD   | C10          |           |                  |        |           |       |      | +          |
| NSD   | D1           |           |                  |        |           |       |      | 1          |
| NSD   | D2           |           |                  |        |           |       |      | + -        |
| NSD   | D3           |           |                  |        |           |       |      | +          |
| 16    | D3           | Bundle    | Tremolite        | 30.8   | 4.0       | 7.7   | X    | X          |
| NSD   | D5           | Duriule   | Hemonia          | 30.0   | 4.0       | 1.1   | ^    | 1 ^        |
| NSD   | D6           |           |                  |        |           |       |      |            |
| 17    | D7           | Bundle    | Tremolite        | 2.8    | 0.50      | 5.6   | Х    | X          |
| 18    | D8           | Bundle    | Tremolite        | 7.9    | 0.50      | 8.6   | X    | X          |
| NSD   | D9           | Duildle   | Henionie         | 1.5    | 0.32      | 0.0   | ^    | <b>+</b> ^ |
| NSD   | D10          | -         |                  |        |           |       |      | 1          |
| NSD   | G1           |           |                  |        |           |       |      | 1          |
| NSD   | G2           |           |                  |        |           |       |      | +          |
| NSD   | G2<br>G3     |           |                  |        |           |       |      | +          |
|       |              |           |                  |        |           |       |      | +          |
| NSD   | G4           |           |                  |        |           |       |      | +          |
| NSD   | G5           |           |                  |        |           |       |      | +          |
| NSD   | G6           |           |                  |        |           |       |      | 1          |
| NSD   | G7<br>G8     |           |                  |        |           |       |      | -          |
| NSD   | Go           |           |                  |        |           |       |      | 1          |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503-026              |               | Grid Box#                    | 8632       | No. of Grids<br>Counted | 2          |
| Analyst:               | Anthony K               | eeton         |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/23/2018 - 1          | 0/30/2018     | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0210                  | 09            | G. O. In microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating Voltage    | 100 KV        | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 2                      | Screen<br>Magnification | 20 KX         | Area Examined mm²            |            | 1.103                   |            |

| Str. # | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio   | SAED | EDS |
|--------|--------------|-----------|------------------|--------|-------|---------|------|-----|
| NSD    | G9           |           | -3,6-            |        |       | 7.55.00 |      |     |
| 19     | G10          | Bundle    | Tremolite        | 7.5    | 0.80  | 9.4     | X    | X   |
| NSD    | E9-A1        |           |                  | ****   | 34.54 |         | **   | 1   |
| 20     | A2           | Bundle    | Tremolite        | 3.9    | 0.60  | 6.5     | Х    | X   |
| 21     | A3           | Bundle    | Tremolite        | 4.1    | 0.60  | 6.8     | X    | X   |
| NSD    | A4           |           |                  |        |       |         |      |     |
| NSD    | A5           |           |                  |        |       |         |      | 1   |
| NSD    | A6           |           |                  |        |       |         |      |     |
| NSD    | A7           |           |                  |        |       |         |      |     |
| NSD    | A8           |           |                  |        |       |         |      |     |
| NSD    | A9           |           |                  |        |       |         |      |     |
| NSD    | A10          |           |                  |        |       |         |      |     |
| NSD    | B1           |           |                  |        |       |         |      | 1   |
| NSD    | B2           |           |                  |        |       |         |      | 1   |
| NSD    | B3           |           |                  |        |       |         |      |     |
| NSD    | B4           |           |                  | 9      |       |         |      |     |
| NSD    | B5           |           |                  |        |       |         |      |     |
| 22     | B6           | Bundle    | Tremolite        | 3.0    | 0.46  | 6.5     | X    | X   |
| NSD    | B7           | Danas     | Tromo            | 0.0    | 0.10  | 0.0     |      |     |
| NSD    | B8           |           |                  |        |       |         |      | 1   |
| NSD    | B9           |           |                  |        |       |         |      | 1   |
| 23     | B10          | Bundle    | Tremolite        | 24.4   | 3.00  | 8.1     | Х    | X   |
| 24     |              | Bundle    | Tremolite        | 6.5    | 1.10  | 5.9     | X    | X   |
| 25     | C1           | Bundle    | Tremolite        | 8.6    | 0.92  | 9.3     | X    | X   |
| NSD    | C2           | Darialo   | Tromonto         | 0.0    | 0.02  | 0.0     |      | - " |
| NSD    | C3           |           |                  |        |       |         |      | 1   |
| NSD    | C4           |           |                  |        |       |         |      |     |
| NSD    | C5           |           |                  |        |       |         |      | +   |
| NSD    | C6           |           |                  |        |       |         |      |     |
| 26     | C7           | Bundle    | Tremolite        | 27.6   | 3.70  | 7.5     | X    | X   |
| 27     | -            | Bundle    | Tremolite        | 18.4   | 2.30  | 8.0     | X    | X   |
| NSD    | C8           | Buridio   | Tromonto         | 10.1   | 2.00  | 0.0     |      | 1 1 |
| NSD    | C9           |           |                  |        |       |         |      | 1   |
| NSD    | C10          |           |                  |        |       |         |      | 1   |
| NSD    | D1           |           |                  |        |       |         |      |     |
| 28     | D2           | Bundle    | Tremolite        | 75.9   | 4.60  | 16.5    | X    | X   |
| NSD    | D3           | Duridio   | Tromone          | 70.0   | 4.00  | 10.0    |      | 1 ^ |
| NSD    | D4           |           |                  |        |       | -       | 1    | 1   |
| NSD    | D5           |           |                  |        |       |         |      | 1   |
| NSD    | D6           |           |                  |        |       |         |      | +   |
| NSD    | D7           |           |                  | 4      |       | -       |      |     |
| NSD    | D8           |           |                  |        |       |         |      |     |
| NSD    | D9           |           |                  |        |       |         |      | 1   |
| NSD    | D10          |           |                  |        |       |         |      | 1   |
| NSD    | H1           |           |                  |        |       |         |      | 1   |
| NSD    | H2           | 1         |                  |        |       |         |      | 1   |
| 29     | H3           | Bundle    | Tremolite        | 9.2    | 1.40  | 6.6     | Х    | X   |
| NSD    | H4           | Danielo.  |                  | 2.2    |       | 5.0     |      | 1 ^ |
| NSD    | H5           |           |                  |        |       |         |      | 1   |
| NSD    | H6           |           |                  |        |       |         |      | 1   |

|                        |                         | TEM           | <b>Bulk Talc Structure C</b> | ount Sheet |                         |            |
|------------------------|-------------------------|---------------|------------------------------|------------|-------------------------|------------|
| Project/<br>Sample No. | M68503-026              |               | Grid Box#                    | 8632       | No. of Grids<br>Counted | 2          |
| Analyst:               | Anthony K               | eeton         |                              | Length     | Width                   | G. O. Area |
| Date of<br>Analysis    | 10/23/2018 - 1          | 0/30/2018     | G. O. in microns =           | 105        | 105                     | 11025      |
| Initial<br>Weight(g)   | 0.0210                  | 09            | G. O. In microns =           | 105        | 105                     | 11025      |
| Analysis<br>Type       | Post Separation         | Talc Analysis | Grid Acceptance              | Yes        | Average                 | 11025      |
| Scope No.              | Accelerating<br>Voltage | 100 KV        | Loading%                     | 20%        | G.O.s<br>Counted        | 100        |
| 2                      | Screen<br>Magnification | 20 KX         | Area Examined mm²            |            |                         | 1.103      |

| Str.# | Grid Opening | Structure | Asbestos<br>Type | Length | Width | Ratio              | SAED | EDS |
|-------|--------------|-----------|------------------|--------|-------|--------------------|------|-----|
| 30    | H7           | Bundle    | Tremolite        | 4.6    | 0.70  | 6.6                | X    | X   |
| NSD   | H8           |           |                  |        |       |                    |      |     |
| NSD   | H9           |           |                  |        |       | Taranta Page and S |      |     |
| 31    | H10          | Bundle    | Tremolite        | 6.9    | 1.00  | 6.9                | X    | X   |

| Org. Sample<br>Wt.                     | Sample Wt.<br>Post HL<br>Separation |                 |
|----------------------------------------|-------------------------------------|-----------------|
| 0.02109                                | 0.02109                             | g               |
| Percent of<br>Orig. Post<br>Separation | 100                                 | (%)             |
| Wt. Of<br>Sample<br>Analyzed           | 0.00011562                          | g               |
| Filter size                            | 201.1                               | mm <sup>2</sup> |
| Number of<br>Structures<br>Counted     | 31                                  | Str.            |
| Structures<br>per Gram of<br>Sample    | 2.68E+05                            | Str./g          |

| Detection<br>Limit        | 8.65E+03 | Str./g |
|---------------------------|----------|--------|
| Analytical<br>Sensitivity | 8.65E+03 | Str./g |



2 4680

M68503-026-001 Tremolite Diffraction @ 50cm

10/23/2018

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 177 of 251 PageID: 79442



2 4678

M68503-026-001 Tremolite (7.1 um x 0.40 um)

10/23/2018



M68503-026-002 Tremolite Diffraction @ 50cm

10/23/2018





M68503-026-003 Tremolite Diffraction @ 50cm

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 183 of 251 PageID: 79448



M68503-026-003 Tremolite (3.1 um x 0.23 um)



M68503-026-004 Tremolite Diffraction @ 50cm

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 186 of 251 PageID: 79451



M68503-026-004 Tremolite (7.6 um x 0.8 um)



M68503-026-005 Tremolite Diffraction @ 50cm

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 189 of 251 PageID: 79454



M68503-026-005 Tremolite (3.2 um x 0.5 um)



M68503-026-006 Tremolite Diffraction @ 50cm

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 192 of 251 PageID: 79457



M68503-026-006 Tremolite (7.3 um x 1.2 um)



M68503-026-007 Tremolite Diffraction @ 50cm

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 195 of 251 PageID: 79460



M68503-026-007 Tremolite (7.3 um x 0.7 um) 10/24/2018



M68503-026-008 Tremolite Diffraction @ 50cm

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 198 of 251 PageID: 79463



M68503-026-008 Tremolite (9.8 um x 1.8 um)



M68503-026-009 Tremolite Diffraction @ 50cm 10/24/2018

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 201 of 251 PageID: 79466



M68503-026-009 Tremolite (  $4.3 \text{ um} \times 0.8 \text{ um}$ )



2 4715 M68503-026-010 Tremolite Diffraction @ 50cm

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 204 of 251 PageID: 79469



2 4717 M68503-026-010 Tremolite (7.0 um x 0.8 um)



M68503-026-011 Tremolite Diffraction @ 50cm

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 207 of 251 PageID: 79472



M68503-026-011 Tremolite (  $7.4 \text{ um} \times 1.1 \text{ um}$ )



M68503-026-012 Tremolite Diffraction @ 50cm

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 210 of 251 PageID: 79475



M68503-026-012 Tremolite ( 13.3 um x 0.7 um)



M68503-026-013 Tremolite Diffraction @ 50cm

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 213 of 251 PageID: 79478



M68503-026-013 Tremolite (3.7 um x 0.45 um)



M68503-026-014 Tremolite Diffraction @ 50cm

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 216 of 251 PageID: 79481



M68503-026-014 Tremolite (3.4 um x 0.6 um)



. . . . . . . . . . .

. . . . . . . . . . . . .

· · · • · · · · · · · ·

......

. . . . . . . . .

. . . . . .

2 4731

M68503-026-015 Tremolite Diffraction @ 50cm

10/25/2018

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 219 of 251 PageID: 79484



M68503-026-015 Tremolite (3.2 um x 0.23 um)

10/25/2018





M68503-026-016 Tremolite Diffraction @ 50cm 10/26/2018 2 4734

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 222 of 251 PageID: 79487



M68503-026-016 Tremolite ( 30.8 um x 4.0 um)



M68503-026-017 Tremolite Diffraction @ 50cm

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 225 of 251 PageID: 79490



M68503-026-017 Tremolite (  $2.8 \text{ um} \times 0.5 \text{ um}$ )



M68503-026-018 Tremolite Diffraction @ 50cm

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 228 of 251 PageID: 79493



M68503-026-018 Tremolite (7.9  $\mu$  x 0.92  $\mu$  m)



M68503-026-019 Tremolite Diffraction @ 50cm

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 231 of 251 PageID: 79496



M68503-026-019 Tremolite (7.5 um  $\times$  0.8 um)



M68503-026-020 Tremolite Diffraction @ 50cm

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 234 of 251 PageID: 79499



M68503-026-020 Tremolite (  $3.9~\text{um}\times0.6~\text{um})$ 



M68503-026-021 Tremolite Diffraction @ 50cm

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 237 of 251 PageID: 79502



M68503-026-021 Tremolite (4.1 um  $\times$  0.6 um)



M68503-026-022 Tremolite Diffraction @ 50cm

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 240 of 251 PageID: 79505



M68503-026-022 Tremolite (3.0 um  $\times$  0.46 um)





Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 243 of 251 PageID: 79508



M68503-026-023 Tremolite ( 24.4 um x 3.0 um)



M68503-026-024 Tremolite Diffraction @ 50cm

10/30/2018

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 246 of 251 PageID: 79511



M68503-026-024 Tremolite ( 6.5 um x 1.1 um)



M68503-026-025 Tremolite Diffraction @ 50cm

Case 3:16-md-02738-MAS-RLS Document 9902-2 Filed 05/30/19 Page 249 of 251 PageID: 79514



M68503-026-025 Tremolite (  $8.6\ \text{um}\ \text{x}\ 0.92\ \text{um})$ 



M68503-026-026 Tremolite Diffraction @ 50cm