Wydział Informatyki	
Katedra Mediów Cyfrowych i Grafiki Komputerowej	
Laboratorium Techniki Cyfrowej	
Ćwiczenie nr 6	Prowadzący:
Temat: Układy asynchroniczne.	dr inż. Wiktor Jakowluk

Treść zadania nr 9

Zaprojektuj układ sygnalizujący każde rozpoczęcie sygnału b w przerwie między sygnałami g przez przepuszczenie na wyjście y jednego pełnego sygnału g. Założyć ,że przerwy między impulsami b są większe od okresu sygnału g

Realizacja zadania

Wykres czasowy przedstawiający realizujący założenia zadania

Tablica stanów i jej minimalizacja

Realizacja na przerzutnikach RS:

Wnioski

W układach asynchronicznych zmiana sygnałów wejściowych natychmiast powoduje zmianę wyjść. W związku z tym układy te są szybkie, ale jednocześnie podatne na zjawisko hazardu i wyścigu. Zjawisko wyścigu występuje, gdy co najmniej dwa sygnały wejściowe zmieniają swój stan w jednej chwili (np. 11_b -> 00_b). Jednak, ze względu na niezerowe czasy przełączania bramek i przerzutników, zmiana jedno z sygnałów może nastąpić nieco wcześniej niż innych. Wyjścia układu przez moment mogą mieć stan tak jakby na wejściach było 10_b lub 01_b , powodując trudne do wykrycia błędy. Dlatego też w analizie układów asynchronicznych uznaje się, że jednoczesna zmiana kilku sygnałów jest niemożliwa.[1] Jeżeli zjawisko wyścigu występuje w układzie asynchronicznym trzeba wprowadzić dodatkowe stany przez które oryginalne będą przechodzić aby usunąć hazard.

Realizacja w programie Max+ Plus II:

Źródła:

[1] https://pl.wikipedia.org/wiki/Uk%C5%82ad_sekwencyjny