

Universal Reordering via Linguistic Typology

Joachim Daiber Miloš Stanojević Khalil Sima'an ILLC, University of Amsterdam

OVERVIEW

Intuition: Linguistic typology describes common and salient features of languages.

Question: Can we exploit typological knowledge for reordering in MT?

Evaluation: Build *universal reordering model* for translation of 22 language pairs.

LINGUISTIC TYPOLOGY

World Atlas of Language Structures [1]

- 2,679 languages
- 192 features(32 relevant to reordering)
- → One feature vector per language

EVALUATION

- Phrase-based MT (Moses):
 - -k-best WO predictions via lattice
 - No reordering in decoder [2]
- English to many target languages
- Two datasets:
 - Subtitles (800k sentence pairs each)
 - News/Parl. (1m+ sentence pairs each)

MAIN FINDINGS

- Single, universal reordering model
 - built using WALS data
 - works for diverse set of languages
- Linguistic typology
 - can inform reordering models
 - provides adequate descriptions
 - can benefit low-resource setting

REFERENCES

- [1] Matthew S. Dryer and Martin Haspelmath, editors. *WALS Online*. Max Planck Institute for Evolutionary Anthropology, Leipzig, 2013.
- [2] Joachim Daiber, Miloš Stanojević, Wilker Aziz, and Khalil Sima'an. Examining the relationship between preordering and WO freedom in MT. In *WMT 2016*.
- [3] Adrià de Gispert, Gonzalo Iglesias, and Bill Byrne. Fast and accurate preordering for SMT using neural networks. In *NAACL: HLT 2015*, 2015.

REORDERING & WALS

BUILDING A UNIVERSAL REORDERING MODEL

- Estimate swap probabilities for source dependency tree nodes
- Graph search for best permutation [3]
- Train combined corpus of all language pairs
- Big variance between language pairs
 - → Randomize source WO for class balance

TRANSLATION EXPERIMENTS

Language	BLEU Baseline	Δ BLEU				BLEU	Δ BLEU		
		No WALS	WALS ↓	Gold	Language	Baseline	No WALS	WALS ↓	Gold
Dutch	13.76	+0.11	+0.79	+3.44	Greek	7.22	-0.02	+0.01	+0.49
Italian	23.59	+0.04	+0.48	+1.83	Arabic	5.36	-0.10	-0.01	+0.36
Turkish	5.89	-0.36	+0.43	+0.80	Swedish	25.60	-0.14	-0.03	+2.04
Spanish	23.82	-0.27	+0.29	+1.98	Slovenian	10.56	-0.35	-0.10	+1.21
Portuguese	25.94	-0.48	+0.21	+1.64	Slovak	15.56	-0.09	-0.13	+1.98
Finnish	9.95	+0.13	+0.16	+0.51	Icelandic	14.97	-0.31	-0.14	+0.66
Hebrew	11.64	+0.30	+0.11	+2.24	Polish	17.68	-0.45	-0.16	+0.40
Romanian	16.11	+0.11	+0.11	+1.14	Russian	20.12	-0.47	-0.17	+0.92
Hungarian	8.26	-0.10	+0.10	+0.61	German	17.08	-0.21	-0.19	+3.31
Danish	26.36	-0.13	+0.08	+1.56	Czech	12.81	-0.47	-0.21	+0.70
Chinese	11.09	-0.32	+0.05	+0.44	French	19.92	-0.70	-0.23	+1.20

ACKNOWLEDGEMENTS

This work received funding from EXPERT under EU FP7 Marie Curie ITN grant nr. 317471, NWO VICI grant nr. 277-89-002, DatAptor project STW grant nr. 12271 and QT21 project (H2020 nr. 645452).