第九讲同态基本定理

陈建文

October 27, 2022

定义1. 设(G, \circ)与(\bar{G} , \cdot)为两个群,如果存在一个从G到 \bar{G} 的映射 ϕ ,使得 $\forall a, b \in G$.

$$\phi(a \circ b) = \phi(a) \circ \phi(b)$$

则称 ϕ 为从G到 \bar{G} 的一个同态(homomorphism),而称G与 \bar{G} 同态。如果同态 ϕ 是满射,则称 ϕ 为从G到 \bar{G} 的一个满同态,此时称G与 \bar{G} 为满同态,并记为 $G \sim \bar{G}$ 。类似的,如果同态 ϕ 为单射,则称 ϕ 为单同态。

定理1. 设 (G, \circ) 与 (\bar{G}, \cdot) 为两个群,e和 \bar{e} 分别为其单位元, ϕ 为从G到 \bar{G} 的同态,则,

$$\phi(e) = \bar{e}$$

$$\forall a \in G\phi(a^{-1}) = (\phi(a))^{-1}$$

定理2. 设 (G, \circ) 为一个群, \bar{G} 为一个具有二元代数运算·的代数系。如果存在一个满射 $\phi: G \to \bar{G}$ 使得 $\forall a,b \in G$

$$\phi(a \circ b) = \phi(a) \cdot \phi(b)$$

则(\bar{G} ,·)为一个群。

定理3. 设 ϕ 为从群G到群 \bar{G} 的同态,则

- (1) 如果H为G的子群,那么 $\phi(H)$ 为 \bar{G} 的子群;
- (2) 如果 \bar{H} 为 \bar{G} 的子群,那么 $\phi^{-1}(\bar{H})$ 为G的子群;
- (3) 如果 \bar{N} 为 \bar{G} 的正规子群,那么 $\phi^{-1}(\bar{N})$ 为G的正规子群。

定理4. 设 ϕ 为从群G到群 \bar{G} 的满同态,N为G的正规子群,则 $\phi(N)$ 为 \bar{G} 的正规子群。

定义2. 设 ϕ 为群 (G, \circ) 到群 (\bar{G}, \cdot) 的同态, \bar{e} 为 \bar{G} 的单位元,则G的子群 $\phi^{-1}(\bar{e})$ 称 为同态 ϕ 的核,记为 $Ker\phi \circ \phi(G)$ 称为 ϕ 在G下的同态像。

定理5. 设 ϕ 为从群 (G, \circ) 到群 (\bar{G}, \cdot) 的同态,则 $Ker\phi$ 为群G的正规子群。

定理6. 设N为G的一个正规子群, ϕ 为从G到G/N的一个映射, $\forall x \in G\phi(x) = xN$,则 ϕ 为从G到G/N的一个满同态, $Ker\phi = N$ 。

证明. $\forall x, y \in G, \phi(xy) = (xy)N = (xN)(yN) = \phi(x)\phi(y)$, 这验证了 ϕ 为 从G到G/N的一个同态。

 $\forall g \in G, g \in Ker\phi \Leftrightarrow \phi(g) = N \Leftrightarrow gN = N \Leftrightarrow g \in N$.

定理7 (群的同态基本定理). 设 ϕ 为从群G到群 \bar{G} 的同态,则 $G/KerG\cong\phi(G)$ 。

 $\forall K = KerG \circ \Leftrightarrow f : G/K \to \phi(G), \ \forall gK \in G/K, f(gK) = \phi(g) \circ g$

 $\forall g_1, g_2 \in G$, 如果 $g_1K = g_2K$, 则 $g_1^{-1}g_2 \in K$, 从而 $\phi(g_1^{-1}g_2) = \bar{e}$, 即 $\phi(g_1)^{-1}\phi(g_2) = \bar{e}$

 \bar{e} ,于是 $\phi(g_1) = \phi(g_2)$,所以 $f(g_1K) = f(g_2K)$,这验证了f为映射。

f为单射,这是因为 $\forall g_1K, g_2K \in G/K$,如果 $f(g_1K) = f(g_2K)$,则 $\phi(g_1) = \phi(g_2)$,从而 $\phi(g_1^{-1}g_2) = \bar{e}$,于是 $g_1^{-1}g_2 \in K$,所以 $g_1K = g_2K \circ f$ 为满射,这是因为 $\forall \bar{g} \in \phi(G)$,司 $g \in G$ 使得 $\phi(g) = \bar{g}$,于是 $f(gK) = \phi(g) = \bar{g}$

 $\forall g_1 K, g_2 K \in G/K, \ f((g_1 K)(g_2 K)) = f(g_1 g_2 K) = \phi(g_1 g_2) = \phi(g_1)\phi(g_2) = \phi(g_1 g_2) = \phi(g_1 g$ $f(g_1K)f(g_2K)$, 因此f为从G/K到 $\phi(G)$ 的同构。 课后作业题:

练习1. 设G为m阶循环群, \bar{G} 为n阶循环群,试证: $G \sim \bar{G}$ 当且仅当n|m。

练习2. 设G为一个循环群,H为群G的子群,试证: G/H也为循环群。