群論 (第5回)の解答

問題 5-1 の解答

 S_4 の任意の元は互換の積で表せるので、 $<S>=S_4$ を示すには各互換が S の元の積で表せることを言えばよい.実際、 S_4 の互換は $(1\ 2)$, $(1\ 3)$, $(1\ 4)$, $(2\ 3)$, $(2\ 4)$, $(3\ 4)$ の 6 つであり、

$$(2\ 3) = (1\ 2)(1\ 3)(1\ 2), \quad (2\ 4) = (1\ 2)(1\ 4)(1\ 2), \quad (3\ 4) = (1\ 3)(1\ 4)(1\ 3).$$

以上より S_4 の互換は $(1\ 2)$, $(1\ 3)$, $(1\ 4)$ の積でかける. よって $S_4 = < S >$.

問題 5-2 の解答

x の位数を n とすると, n=2m-1 $(m\in\mathbb{N})$ と表せる. $x^{2m-1}=1_G$ より

$$x = x \cdot x^{2m-1} = (x^2)^m \in \langle x^2 \rangle$$
.

従って $< x > \subseteq < x^2 >$. 逆の包含は明らか.

問題 5-3 の解答

G は巡回群より, G=< x> を満たす $x\in G$ が取れる. $y,z\in G$ を取り, $y=x^m,\ z=x^n\ (m,n\in\mathbb{Z})$ で表す. このとき,

$$y \cdot z = x^m \cdot x^n = x^{m+n} = x^{n+m} = x^n \cdot x^m = z \cdot y.$$

従ってGはアーベル群である.

問題 5-4 の解答

H を巡回群 G の部分群とする. G は巡回群より, G=< x> を満たす $x\in G$ がある. $H=\{1_G\}$ なら問題ないので, $H\neq\{1_G\}$ の場合を考える. $x^n\in H$ を満たす最小の自然数 n を取ると, H は G の部分群より $< x^n>\subseteq H$. 逆に $y\in H$ を取ると, $y\in G$ より $y=x^m$ $(m\in\mathbb{Z})$ と表せる. ここで, m=qn+r $(0\leq r< n)$ を満たす整数 q,r を取ると,

$$x^{r} = x^{m} \cdot (x^{n})^{-q} = y \cdot (x^{n})^{-q} \in H.$$

n の最小性から r=0 でなければならない. よって $y=x^m=(x^n)^q \in < x^n>$. これより $< x^n>=H$ を得る.

copyright ⓒ 大学数学の授業ノート