Esperimentazioni 2

Cenni di diffrazione

Modulo di Ottica e Fisica Moderna

Definizioni

- INTERFERENZA: sovrapposizione di radiazione elettromagnetica proveniente da diverse sorgenti
 - se osservo l'effetto su uno schermo vedrò l'effetto dovuto all'interferenza ovvero variazioni locali di l'intensita', legate alla variazione della fase tra le onde che interferiscono
 - il fenomeno è visibile sono quando le sorgenti sono coerenti (hanno differenza di fase costante)
- DIFFRAZIONE: quando la radiazione elettromagnetica incontra un ostacolo, o passa attraverso una fenditura, l'onda interferisce con se stessa producendo frange di interferenza su uno schermo posto oltre l'ostacolo (fenditura)
 - l'effetto è visibile quando la dimensione dell'ostacolo (fenditura) è confrontabile con la lunghezza d'onda della luce
- Simulazione: https://phet.colorado.edu/sims/html/wave-interference en.html

Diffrazione: esempi classici

- diffrazione da disco opaco: punto di Poisson
 - studi di Grimaldi diatriba Fresnel-Poisson risultato sperimentale di Arago
- diffrazione da fenditura
 - a) Diffrazione di Fraunhofer: sia la sorgente che lo schermo sono a distanza infinita, i fronti d'onda sono piani. Sperimentalmente si realizza utilizzando 2 lenti.

b) Diffrazione di Fresnel: sorgente e schermo sono a distanza finita

Figure di diffrazione

- Il risultato della diffrazione da fenditura singola, alla Fraunhofer, è visibile in figura:
 - nei punti sullo schermo allineati col centro della fenditura, ovvero a θ =0, l'intensità luminosa è massima
 - allondanandoci dal centro l'intensità diminuisce fino a un minimo e poi risale.
 - sono visibili massimi di intensità decrescente alternati a zone di buio

Calcolo dell'intensità (1)

- Per calcolare l'intensità in ogni punto P dello schermo si utilizza il principio di Huygens-Fresnel:
 - consideriamo una fenditura di ampiezza **a**
 - ogni punto della fenditura, colpito dal fronte d'onda incidente, sarà sorgente di onde secondarie
 - dividiamo la fenditura in 2 parti e consideriamo il contributo di 2 raggi in un punto P di uno schermo posto a grande distanza.
 - L'inclinazione θ dei raggi in questa ipotesi sarà costante

- Nel punto P₀ tutte le onde sono i fase e quindi fanno interferenza costruttiva.
- Nel punto P₁ i raggi r₁ e r₂ fanno interferenza distruttiva se

$$a/2 \sin \theta = \lambda/2$$

Calcolo dell'intensità (2)

- Per calcolare l'intensità in ogni punto P dello schermo si utilizza il principio di Huygens-Fresnel:
 - consideriamo una fenditura di ampiezza a
 - ogni punto della fenditura, colpito dal fronte d'onda incidente, sarà sorgente di onde secondarie
 - dividiamo la fenditura in 2 parti e consideriamo il contributo di 2 raggi in un punto P di uno schermo posto a grande distanza. L'inclinazione θ dei raggi in questa ipotesi sarà costante

- Lo stesso ragionamento si puo' fare dividendo la fenditura in quattro segmenti di lunghezza a/4 e considerando i raggi a due a due.
- I minimi di intensita' soddisfano

$$a/4 \sin \theta = \lambda/2$$

In generale, soddisfano

a sin
$$\theta$$
 =m λ con m=1,2,3,...

Calcolo dell'intensità (3)

Intensita' dell'onda sullo schermo in funzione di θ :

• Il campo elettrico dell'onda e'

E =
$$\sin (kx - \omega t) = \sin (2\pi x / \lambda - \omega t)$$

- Se dividiamo ancora la fenditura in N segmenti di lunghezza Δx , l'onda che arriva in un punto P caratterizzato da un angolo θ dipendera' dalle fasi delle diverse onde (cioe' se l'interferenza e' costruttiva o distruttiva).
- La differenza di fase tra due onde adiacenti e'

$$\Delta \phi = \frac{2\pi}{\lambda} \cdot (differenza\ di\ cammino)$$

e la differenza di cammino e' $\Delta x \sin \theta$.

- Se θ =0 allora $\Delta \phi$ =0 e tutte le onde sono in fase,
 - quindi si ha sempre interferenza costruttiva e l'intensita' risultante (I = E²) ha un massimo
- Aumentando θ le onde si sfasano e l'intensita' decresce. Sommando i contributi di ciascun campo elettrico associato alle onde si ottiene

$$I(\theta) = I_{max} f^{2}(\theta) \left[\frac{\sin \frac{\alpha}{2}}{\frac{\alpha}{2}} \right]^{2} = I_{max} f^{2}(\theta) \left[\frac{\sin \frac{\pi a \sin \theta}{\lambda}}{\frac{\pi a \sin \theta}{\lambda}} \right]^{2}$$

dove la funzione f è il fattore di inclinazione $f(\theta) = \left(\frac{1+\cos\theta}{2}\right)^2$

Larghezza del massimo centrale

• la distanza tra i primi minimi (simmetrici rispetto a θ =0) ci permette di definire la larghezza del massimo centrale

$$\Delta(\sin\theta) = \frac{2\lambda}{a}$$

 da questo risultato deduciamo che aumentando la larghezza della fenditura diminuisce la larghezza del massimo centrale e viceversa

Diffrazione da foro circolare e da parte di un disco opaco

I minimi di intensita' soddisfano $\sin \vartheta = 1.22 \frac{\lambda}{D}$ dove D e' il diametro del foro.

- il fattore 1.22 che differenzia il foro circolare dalla fenditura. Ogni forma dell'ostacolo produce un fattore diverso.
- Una lente puo' essere considerata un foro circolare e produce diffrazione
- Le figure di diffrazione generate dalle lenti possono impedire di distinguere oggetti vicini: POTERE RISOLUTIVO O SEPARATORE DELLA LENTE
- Consideriamo 2 sorgenti S_1 e S_2 viste attraverso una lente. Quando l'angolo visuale vale $\alpha_R=1.22\frac{\lambda}{D}$ il primo minimo della figura di diffrazione di una sorgente coincide con il centro del massimo dell'altra sorgente e si dice che le sorgenti sono appena risolte
 - questo criterio di distinzione è noto come criterio di Rayleigh ed è comunemente usato in ottica
 - l'angolo α_{R} si chiama angolo minimo risolvibile e il suo inverso è detto potere risolutivo o separatore della lente

SORGENTI S₁ E S₂: al variare della distanza la separazione tra le immagini generate dalle lenti varia

Diffrazione da doppia fenditura

- Interferenza + diffrazione
 - Solo interferenza a $<<\lambda$
 - Una sola fenditura
 - Due fenditure con a paragonabile a $\boldsymbol{\lambda}$

Reticolo di diffrazione

Passo da 2 a N fenditure

- I massimi soddisfano L/N sin $\theta = m \lambda$
 - dove L e' la larghezza del reticolo e N il numero di fenditure
 - il principio e' uguale a quello della doppia fenditura (che corrisponde a N=2).
- L/N è definito p= passo del reticolo e ha le dimensioni di una lunghezza
- viene spesso fornito come numero di fenditure al mm

Intensità dei picchi

 L'intensità dei picchi dovuta a interferenza tra N sorgenti coerenti distanti d è:

$$I(\theta) = I_1 \left(\frac{\sin \frac{N\delta}{2}}{\sin \frac{\delta}{2}} \right)^2 = I_1 \left(\frac{\sin \frac{N\pi d \sin \theta}{\lambda}}{\sin \frac{\pi d \sin \theta}{\lambda}} \right)^2$$

 L'intensità dei picchi dovuta a diffrazione da una fenditura di larghezza a è:

$$I_D(\theta) = I_{max} f^2(\theta) \left[\frac{\sin \frac{\alpha}{2}}{\frac{\alpha}{2}} \right]^2 = I_{max} f^2(\theta) \left(\frac{\sin \frac{\pi a \sin \theta}{\lambda}}{\frac{\pi a \sin \theta}{\lambda}} \right)^2$$

 L'intensità dei picchi di un reticolo di diffrazione sarà la convoluzione dei 2 effetti, ovvero l'interferenza è modulata dalla diffrazione

$$I(\theta) = I_0 \left(\frac{\sin \frac{N\pi d \sin \theta}{\lambda}}{\sin \frac{\pi d \sin \theta}{\lambda}} \right)^2 \left(\frac{\sin \frac{\pi a \sin \theta}{\lambda}}{\frac{\pi a \sin \theta}{\lambda}} \right)^2$$

Determined by separation d between slits

