TP 1: Minimisation de fonctions quadratiques

Motivation Dans ce TP, on s'intéresse à la minimisation sur $\Omega = \mathbb{R}^N$ de fonction de la forme

$$f(x) = \frac{1}{2} \langle x | Qx \rangle + \langle b | x \rangle \tag{1}$$

où $Q \in \mathcal{M}_N(\mathbb{R})$ est une matrice symétrique définie positive et $b \in \mathbb{R}^N$ est un vecteur. Ces fonction apparaissent dans de nombreuses applications, et notamment dans la méthode des moindres carrés. On rappelle les définitions suivantes:

- (i) Une matrice symétrique Q est dite positive (ce qu'on note $Q \succeq 0$) si et seulement $\forall x \in \mathbb{R}^N, \langle x|Qx \rangle \geq 0$.
- (ii) Q est dite définie positive si $\forall x \in \mathbb{R}^N \setminus \{0\}, \langle x|Qx \rangle > 0$.

Les résultats des Exercices 1 et 2 forment la base de ce qu'il faut savoir pour ce cours: il faut être capable de les retrouver très rapidement!

Exercice 0. Exemple explicite. On considère $Q = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}, b = (0,0).$

- 1. Montrer que si la fonction f définie par (1) est convexe, alors $\lambda_1, \lambda_2 \geq 0$.
- 2. Montrer que f est minorée si et seulement si $\lambda_1, \lambda_2 \geq 0$.
- 3. Montrer que x=(0,0) est un point critique de f (i.e. $\nabla f(x^*)=0$) mais que c'est un minimiseur global si et seulement si $\lambda_1, \lambda_2 \geq 0$.

Exercice 1. Convexité. Dans cet premier exercice, nous étudions la convexité de f. On suppose que Q est symétrique, mais pas nécessairement positive.

- 1. Montrer que $f(x) = \frac{1}{2} \sum_{1 \leq i,j \leq N} Q_{ij} x_i x_j + \sum_{1 \leq i \leq N} b_i x_i$, $\nabla f(x) = Qx + b$ et $D^2 f(x) = Q$. 2. En déduire que f est convexe si et seulement si Q est positive (on pourra utiliser la carac-
- 2. En déduire que f est convexe si et seulement si Q est positive (on pourra utiliser la caractérisation de la convexité utilisant ∇f).
- 3. Démontrer les égalités suivantes (on utilisera la symétrie de Q):

$$f((1-t)x+ty) - (1-t)f(x) - tf(y) = -\frac{t(1-t)}{2} \langle Qx|x\rangle - \frac{t(1-t)}{2} \langle Qy|y\rangle + t(1-t)\langle Qx|y\rangle$$
$$= -\frac{t(1-t)}{2} \langle Q(x-y)|x-y\rangle$$

En déduire que f est strictement convexe si et seulement si Q est définie positive.

- 4. Soit Q une matrice définie positive.
 - (a) Montrer que la fonction $q_Q: x \mapsto \langle x|Qx \rangle$ atteint son minimum m sur l'ensemble $K = \{x \in \mathbb{R}^N \mid \|x\| = 1\}$, puis que m > 0.
 - (b) En déduire que $\forall x \in K, \langle x | Qx \rangle \geq m$, puis que $\forall x \in \mathbb{R}^d, \langle x | Qx \rangle \geq m \|x\|^2$.
 - (c) Démontrer que la fonction f admet un minimiseur sur \mathbb{R}^d .

Dans les exercices 2 et 3, on suppose que Q est symétrique définie positive

Exercice 2. Caractérisation du minimiseur. Montrer que f admet un unique minimiseur x^* sur \mathbb{R}^N , caractérisé par l'équation $Qx^* + b = 0$.

Exercice 3. Descente de gradient à pas optimal. On considère l'algorithme de descente de gradient à pas optimal pour une fonction f. Les itérées $(x^{(k)})_{k\geq 0}$ de cet algorithmes sont définies de manière itérative par $x^{(0)} \in \mathbb{R}^N$ puis:

$$\begin{cases} d^{(k)} = -\nabla f(x^{(k)}) \\ t^{(k)} = \arg\min_{t \in \mathbb{R}} f(x^{(k)} + td^{(k)}) \\ x^{(k+1)} = x^{(k)} + t^{(k)}d^{(k)} \end{cases}$$

La deuxième ligne signifie que $t^{(k)}$ est le minimiseur de $t \mapsto f(x^{(k)} + td^{(k)})$. On s'intéresse au cas $f(x) = \frac{1}{2} \langle Qx | x \rangle + \langle b | x \rangle$.

- 1. Soit $x \in \mathbb{R}^N$ et $v \in \mathbb{R}^N$ et $g : \mathbb{R} \to \mathbb{R}$ défini par g(t) = f(x + tv).
 - (i) Montrer que g est un polynôme de degré 2 dont le coefficient dominant est > 0.
 - (ii) Donner l'expression de l'unique minimiseur t^* de $t \in \mathbb{R} \mapsto f(x+tv)$.
- 2. En déduire que les itérées de la méthode de descente de gradient à pas optimal vérifient

$$\begin{cases} d^{(k)} = -(Qx^{(k)} + b) \\ t^{(k)} = \frac{\langle d^{(k)} | d^{(k)} \rangle}{\langle d^{(k)} | Qd^{(k)} \rangle} \\ x^{(k+1)} = x^{(k)} + t^{(k)} d^{(k)} \end{cases}$$

Exercice 4. Application aux moindres carrés. Dans cette question, on s'intéresse au problème de minimisation suivant,

$$\min_{x \in \mathbb{R}^N} \frac{1}{2} \left\| Ax - y \right\|^2,$$

où A est une matrice de taille $M \times N$.

- 1. Démontrer que $f(x) := \frac{1}{2} ||Ax y||^2 = \frac{1}{2} \langle Qx|x \rangle + \langle b|x \rangle + c$, où $Q \in \mathcal{M}_N(\mathbb{R})$, $b \in \mathbb{R}^N$ et $c \in \mathbb{R}$ sont à déterminer.
- 2. En déduire l'expression de $\nabla f(x)$ et $D^2 f(x)$ en fonction de A et y.
- 3. Montrer que Q est symétrique, $Q \succeq 0$, et que $x^* \in \arg\min f$ si et seulement si $A^T A x^* = A^T y$, où A^T est la transposée de A.
- 4. On suppose que A est injective (i.e. son noyau est réduit à 0). Démontrer que Q est définie positive, puis que le problème d'optimisation admet une unique solution x^* .