Type Theory

Week 3

Truth-conditional semantics

 Assumption: a logical formula captures the truth-conditions of an NL sentence—they are true in the same possible models.

Recap: truth, validity, and entailment

- A formula φ is true in a model M iff:
 - \circ [[φ]]^{M,g} = 1 for every variable assignment g
- A formula φ is **valid** ($\vDash \varphi$) iff:
 - φ is true in all models
- A formula φ is **satisfiable** iff:
 - there is at least one model M such that φ is true in M
- A set of formulas Γ entails formula φ ($\Gamma \models \varphi$) iff:
 - \circ ϕ is true in every model in which all formulas in Γ are true
 - the elements of Γ are called the premises or hypotheses
 - φ is called the conclusion

First-order logic

Predication and quantification over individual entities

- First-order logic talks about:
 - Individual objects: $V_M(john) \in U_M$, $g(x) \in U_M$
 - Properties of and relations between individual objects: happy(john), love(john, mary)
 - Quantification over individual objects: ∀x(happy(x))

Limitations of first-order logic

- FOL is not expressive enough to capture all meanings that can be expressed by basic natural language expressions:
 - Predicate modifiers: "Jumbo is a <u>small</u> elephant"
 - Second-order predicates: "being rich is a state of mind"
 - Non-logical sentence operators: "<u>yesterday</u>, it rained"
 - Higher-order quantification: "Bill and John have the same hair color"
- What system can capture these phenomena?
 - Simple idea: introduce higher order predication & quantification

Russell's Paradox

- What if we extend the FOL interpretation of predicates, and simply interpret higher-order predicates as sets *of sets* of properties?
 - For every predicate P, define a set {x | P(x)}
 - higher order predicates are defined as sets of sets, e.g., {P | H(P)}

- ... But: this means that we can formally define a set $S = \{X \mid X \notin X\}$ representing the set of all sets that are not members of themselves
 - Does S belong to itself?

Russell's Paradox

- What if we extend the FOL interpretation of predicates, and simply interpret higher-order predicates as sets *of sets* of properties?
 - For every predicate P, define a set {x | P(x)}
 - higher order predicates are defined as sets of sets, e.g., {P | H(P)}

- ... But: this means that we can formally define a set $S = \{X \mid X \notin X\}$ representing the set of all sets that are not members of themselves
 - Does S belong to itself? Paradox!
 - We need a more restricted way of talking about properties and relations between properties

Type Theory: basic and complex types

- In Type Theory, all non-logical expressions are assigned a type (that may be basic or complex), which restricts how they can be combined.
- Basic types:
 - e: the type of individual terms ("entities")
 - t: the type of formulas ("truth-values")
- Complex types: if π , σ are types, then $\langle \pi, \sigma \rangle$ is a type
 - \circ A functor expression that takes an expression of type π as its argument and returns an expression of type σ
 - \circ Sometimes written as $(\pi \to \sigma)$

- Types for first-order expressions:
 - Individual constants (Luke, Death Star): e
 - One-place predicates (to walk, to be a jedi):
 - Two-place predicates (to admire, to fight with):
 - Three-place predicates (to give, to introduce):

- Types for first-order expressions:
 - Individual constants (Luke, Death Star): e
 - One-place predicates (*to walk*, *to be a jedi*): ⟨*e*, *t*⟩
 - Two-place predicates (to admire, to fight with):
 - Three-place predicates (to give, to introduce):

- Types for first-order expressions:
 - Individual constants (Luke, Death Star): e
 - One-place predicates (to walk, to be a jedi): (e, t)
 - Two-place predicates (to admire, to fight with): ⟨e, ⟨e, t⟩⟩
 - Three-place predicates (to give, to introduce):

- Types for first-order expressions:
 - Individual constants (Luke, Death Star): e
 - One-place predicates (to walk, to be a jedi): (e, t)
 - \circ Two-place predicates (to admire, to fight with): $\langle e, \langle e, t \rangle \rangle$
 - \circ Three-place predicates (to give, to introduce): $\langle e, \langle e, \langle e, t \rangle \rangle \rangle$
- Function application: Combining a functor of complex type $\langle \pi, \sigma \rangle$ with an appropriate argument of type π —results in an expression of type σ
 - \circ jedi: $\langle e, t \rangle$, luke: $e \mapsto jedi(luke)$: t
 - o admire: $\langle e, \langle e, t \rangle \rangle$, luke: $e \mapsto admire(luke)$: $\langle e, t \rangle$

More examples of types

- **Higher-order** expressions:
 - Predicate modifiers (expensive, small): ((e, t), (e, t))
 - Second-order predicates (state of mind): ((e, t), t)
 - \circ Degree particles (*very*, *too*): $\langle\langle\langle e, t\rangle, \langle e, t\rangle\rangle, \langle\langle e, t\rangle, \langle e, t\rangle\rangle\rangle$
 - Sentence operators*** (yesterday, unfortunately): \(\)t, t \(\)

• If π , σ are basic types, $\langle \pi, \sigma \rangle$ can be abbreviated as $\pi \sigma$. The types of predicate modifiers and second-order predicates can then be more conveniently written as: $\langle et, et \rangle$ and $\langle et, t \rangle$

Type Theory: Vocabulary

- Non-logical constants: a (possibly empty) set of non-logical constants for every type σ : CON_{σ}
 - such that the sets for all distinct types are pairwise disjoint
- Variables: an infinite set of variables for every type σ (VAR_{σ})
- Logical symbols: \forall , \exists , \neg , \land , \lor , \rightarrow , \leftrightarrow , =
- Brackets: (,)

Type Theory: Syntax

- For every type σ , the set of well-formed expressions (WFFs) WE_{σ} is defined as follows:
 - $CON_{\sigma} \subseteq WE_{\sigma}$ and $VAR_{\sigma} \subseteq WE_{\sigma}$;
 - If $\alpha \in WE_{(\pi, \sigma)}$, and $\beta \in WE_{\pi}$, then $\alpha(\beta) \in WE_{\sigma}$ (function application)
- If A, B are in WE_t , then $\neg A$, $(A \land B)$, $(A \lor B)$, $(A \to B)$, $(A \leftrightarrow B)$ are in WE_t
 - If A is in WE_t and x is a variable of arbitrary type, then ∀xA and ∃xA are in WE_t
 - If α , β are well-formed expressions of the same type, then $\alpha = \beta \in WE_t$;
- Nothing else is a well-formed expression

Type inferencing

- Based on the syntactic structure of a sentence, we can derive its logical form, which defines how functions and arguments are combined
- Each expression that constitutes the logical form obtains a type, which can be inferred from the function-argument structure
- "Luke is a talented jedi" → *talented(jedi)(luke)*

Exercise

 Recommended strategy: Start by describing the logical form of the sentences (how are functions and arguments combined, based on the given syntactic bracketing), then derive types for all relevant sub-expressions

- 1. Yoda_e [is [[fast[er than]] Palpatine_e]
- 2. Yoda_e [is much [faster than]] Palpatine_e]
- 3. [[Han Solo]_e fights] [because [[the Dark Side]_e is rising]]
- 4. Obi-Wan_e [[told [Qui-Gon Jinn]_e] he will take [the Jedi-exam]_e]

Higher-order predicates

Higher-order quantification:

"Leia has the same hair colour as Padmé"

```
\rightarrow \exists C(hair-color(C) \land C(leia) \land C(padme))
```

- Higher-order equality:
 - For $p, q \in CON_{f}$, p = q expresses material equivalence: $p \leftrightarrow q$
 - For F, $G \in CON_{\langle \pi, \sigma \rangle}$, F = G expresses co-extensionality: $\forall x(F(x) \leftrightarrow G(x))$

Type Theory: Semantics (type domains)

- Let U be a non-empty set of entities.
- The domain of possible denotations D_{σ} for every type σ is given by:
 - $OD_{a} = U$
 - $O D_t = \{0, 1\}$
 - O $D_{(\pi, \sigma)}$ is the set of all functions from D_{π} to D_{σ} : $D_{\sigma}^{D\pi}$
- For any type σ , expressions of type σ denote elements of the domain D_{σ}

Example domains

For M = (U, V), let U consist of five entities. For selected types, we have the following sets of possible denotations:

- $D_t = \{0, 1\}$
- $D_e = U = \{e_1, e_2, e_3, e_4, e_5\}$
- $D_{\langle e, t \rangle} = \{\{\}, \{e_1\}, ..., \{e_2, e_3, e_5\}, ..., \{e_1, e_2, e_5\}, ...\}$

Characteristic functions

• Many natural language expressions have a type $\langle \sigma, t \rangle$, expressing functions that map elements of type σ to truth values $\{0, 1\}$

- Such functions with a range of $\{0, 1\}$ are called **characteristic functions** (of a set), because they uniquely specify a subset of their domain D_{σ}
 - The characteristic function of set S in a domain U is the function F_S : $U \rightarrow \{0, 1\}$ such that for all $e \in U$, $F_S(e) = 1$ iff $e \in S$
 - NB: For first-order predicates, the FOL denotation (using sets) and the type-theoretic denotation (using characteristic functions) are equivalent

Model-theoretic interpretation

- A model structure for a type theoretic language is a tuple M = (U, V) such that:
 - U is a non-empty domain of individuals
 - \circ V is an interpretation function, which assigns to every $\alpha \in CON_{\sigma}$ an element of D_{σ} (where σ is an arbitrary type)

• The variable assignment function g assigns to every typed variable $v \in VAR_{\sigma}$ an element of the domain D_{σ} (where σ is an arbitrary type)— $g: VAR_{\sigma} \to D_{\sigma}$

Interpretation of expressions

• Given model structure M = (U, V) and assignment g:

```
\circ [[α]]<sup>M,g</sup> = V(α) if α is a constant
```

• $[\alpha(\beta)]^{M,g} = [\alpha]^{M,g}([\beta]]^{M,g})$ (function application)

Interpretation of formulas

```
• [\alpha = \beta]^{M,g} = 1 iff [\alpha]^{M,g} = [\beta]^{M,g}
```

•
$$[\neg \phi]^{M,g} = 1$$
 iff $[\phi]^{M,g} = 0$

•
$$[\phi \land \psi]^{M,g} = 1$$
 iff $[\phi]^{M,g} = 1$ and $[\psi]^{M,g} = 1$

```
• [\phi \lor \psi]^{M,g} = 1 iff [\phi]^{M,g} = 1 or [\psi]^{M,g} = 1
```

• ...

Interpretation of formulas

For any variable v of type σ :

• $[[\exists \lor \phi]]^{M,g} = 1$

iff there is a $d \in D_{\sigma}$ such that $[\![\phi]\!]^{M,g[v/d]} = 1$

- iff for all $d \in D_{\sigma}$: $[[\phi]]^{M,g[v/d]} = 1$

Type-theoretic interpretation: example

"Luke is a talented jedi" \mapsto talented_{$(\langle e, t \rangle, \langle e, t \rangle)$} (jedi_{$\langle e, t \rangle$})(luke_e)

```
[[talented(jedi)(luke)]]<sup>M,g</sup>
```

- = $[[talented(jedi)]]^{M,g}([[luke]]^{M,g})$
- = $[[talented]]^{M,g}([[jedi]]^{M,g})$ ($[[luke]]^{M,g}$)
- = $V_M(talented)(V_M(jedi))(V_M(luke))$

Defining the right model

Consider the following model *M*:

- $D_e = U_M = \{e_1, e_2, e_3, e_4, e_5\}$
- $V_M(anakin) = V_M(darth-vader) = e_2$
- $V_M(jedi) = \{e_1, e_2, e_3, e_4\}, V_M(dark-sider) = \{e_2, e_5\}$
- $V_{M}(powerful) = \{$ $\{e_{1}, e_{2}, e_{3}, e_{4}\} \mapsto \{e_{2}, e_{4}\},$ $\{e_{2}, e_{5}\} \mapsto \{e_{2}, e_{5}\},$...

Note that "powerful" is defined to be truth-preserving: powerful($X_{(e, t)}$) $\models X_{(e, t)}$

Meaning postulates: restricting denotations

- Some valid inferences in natural language:
 - Bill is a poor piano player ⊨ Bill is a piano player
 - Bill is a blond piano player ⊨ Bill is blond
 - Bill is a former professor ⊨ Bill isn't a professor
- These entailments do not hold in type theory by definition
- Meaning postulates: restrictions on models that constrain the possible meanings of certain words

Example: meaning postulates for adjective classes

- Restrictive or subsective adjectives (e.g., "poor")
 - Restriction: [[poor N]] ⊆ [[N]]
 - Meaning postulate: $\forall G \forall x (poor(G)(x) \rightarrow G(x))$
- Intersective adjectives (e.g., "blond")
 - Restriction: [[blond N]] = [[blond]] ∩ [[N]]
 - Meaning postulate: $\forall G \forall x(blond(G)(x) \rightarrow (blond*(x) \land G(x))$
 - NB: blond \subseteq WE $_{\langle\langle e, t \rangle, \langle e, t \rangle\rangle} \neq blond^* \subseteq WE_{\langle e, t \rangle}$
- Privative adjectives (e.g., "former")
 - Restriction: [[former N]] ∩ [[N]] = ∅
 - Meaning postulate: $\forall G \forall x (former(G)(x) \rightarrow \neg G(x))$