

10. NON-LINEAR LEAST SQUARE FITTING, OPTIMIZATION

10.1.1 Remember: what we saw during the last lesson

Iterative solution for sparse systems (Jacobi, Gauss Seidel, Matlab help sparse)

Non-linear systems Fixed point, Piccard and Newton iterations

Non-linear interpolation

10.1.2 Overview: what you will learn today

Non-linear fitting

Optimization searching for an extremum with-/ out using derivatives

Ordinary differential equations using Euler and Runge-Kutta methods

10.2 Non-linear least square fitting (NAM 6.10, H 6.6)

Example Fit the model function $F(t) = a + b \sin \omega (t - t_0)$ to experimental data.

This yields an overdetermined non-linear system (4 unknowns, 8 equations)

$$\begin{cases} a+b\sin\omega(0.5-t_0)\approx 0.3\\ a+b\sin\omega(0.8-t_0)\approx 0.3\\ a+b\sin\omega(1.0-t_0)\approx 0.5\\ a+b\sin\omega(1.2-t_0)\approx 0.9\\ a+b\sin\omega(1.5-t_0)\approx 1.4\\ a+b\sin\omega(1.8-t_0)\approx 1.1\\ a+b\sin\omega(2.0-t_0)\approx 0.5\\ a+b\sin\omega(2.4-t_0)\approx 0.3 \end{cases} \qquad \text{or} \qquad \begin{cases} a+b\sin\omega(0.5-t_0)-0.3\approx 0\\ a+b\sin\omega(0.8-t_0)-0.5\approx 0\\ a+b\sin\omega(1.0-t_0)-0.5\approx 0\\ a+b\sin\omega(1.2-t_0)-0.9\approx 0\\ a+b\sin\omega(1.5-t_0)-1.4\approx 0\\ a+b\sin\omega(0.8-t_0)-0.5\approx 0$$

which can be solved by demanding that residuals between the measurements y_i and the model $F(t_i)$ be small $||\mathbf{y} - \mathbf{F}||_2 \approx 0$, i.e. $||\mathbf{y} - \mathbf{F}||_2 = \mathbf{f}(\mathbf{c}) \approx \mathbf{0}$.

Gauss-Newton solution obtained from $\mathbf{c}^{\text{new}} = \mathbf{c}^{\text{old}} + \delta \mathbf{c}, \quad \mathbf{J}^T \mathbf{J} \delta \mathbf{c} = -\mathbf{J}^T \mathbf{f}(\mathbf{c}^{\text{old}})$

The coefficients c are obtained from the Newton method for non-linear systems, with an increment δc solving the *overdetermined linear system* $J\delta c \approx -f$. In Matlab, the solution of the normal equations can again be computed with dc=-f J.

Example solution of the non-linear fit with Matlab

```
>> t=[0.5 0.8 1 1.2 1.5 1.8 2 2.4];
                                                                          Model F=a+b \sin\omega(t-t0)
                                                           Data
>> y=[0.3 0.3 0.5 0.9 1.4 1.1 0.5 0.3];
                                                   1.6
                                                                        1.6
>> subplot(1,2,1), h=stem(t,y), title('Data')
>> a=0.7; b=0.7; w=pi; t0=1.2;
                                                   1.4
                                                                        1.4
>> c=[a b w t0]';
                                 %initial guess
                                                   1.2
                                                                        1.2
>> n=size(t,1); iter=0;dcnorm=1.;
>> while dcnorm>1E-6 & iter<10
     u=w*(t-t0); f=a+b*sin(u)-y;
     Ji1=ones(n,1);
                             Ji2=sin(u):
>>
                                                 8.0 😤
                                                                      £0.8
     Ji3=b*(t-t0).*cos(u); Ji4=-w*b*cos(u);
>>
     J=[Ji1 Ji2 Ji3 Ji4];
                                % Jacobian
>>
                                                   0.6
                                                                        0.6
     dc=-J\backslash f; c=c+dc;
                                % Gauss-Newton
>>
     dcnorm=norm(dc); iter=iter+1;
>>
                                                   0.4
                                                                        0.4
     a=c(1); b=c(2); w=c(3); t0=c(4);
>>
     D=[iter ca b w t0 norm(f) norm(dc) ]
>>
                                                   0.2
                                                                        0.2
>> end
\Rightarrow tt=(0:0.05:3)'; Ft=a+b*sin(w*(tt-t0));
                                                               2
                                                                                    2
                                                                    3
                                                                               1
>> subplot(1,2,2), plot(t,y,'o',tt,Ft)
```

A solution with an accuracy better than 10^{-6} is obtained with 6 steps:

step	a	Ъ	W	tO	f	dc
1	0.7246	0.4614	3.3935	1.1074	0.8034	0.3600
2	0.7772	0.5428	3.9476	1.1123	0.3688	0.5626
3	0.7762	0.5850	3.9219	1.1089	0.2117	0.0496
4	0.7761	0.5850	3.9225	1.1092	0.1928	0.0007
5	0.7761	0.5850	3.9225	1.1092	0.1928	0.0000
6	0.7761	0.5850	3.9225	1.1092	0.1928	0.0000

Example: fit an ellipsis $F(x,y) = \frac{(x-x_c)^2}{a^2} + \frac{(y-y_c)^2}{b^2} - 1 = 0$ to seven data points.

Set-up the overdetermined non-linear system with 7 equations for 4 unknowns (x_c, y_c, a, b) ; caluclate the Jacobian $\partial F_i/\partial x_i$

$$\frac{\partial F}{\partial x_c} = -2\frac{x - x_c}{a^2} \qquad \frac{\partial F}{\partial a} = -2\frac{(x - x_c)^2}{a^3}$$

$$\frac{\partial F}{\partial y_c} = -2\frac{y - y_c}{b^2} \qquad \frac{\partial F}{\partial b} = -2\frac{(y - y_c)^2}{b^3}$$

Non-linear fit to an ellipsis

```
>> x=[1 7 10 17 5 12 14]'; %data
>> y=[6 4 12 7 11 3 4]';
>> xc=10; yc=8; a=8; b=3; %initial guess
                                                     12
                                                     10
>> p=[xc yc a b]'; iter=0; dp=1;
>> while norm(d\bar{p}) > 1e-6 & iter<10
>> iter=iter+1; xd=x-xc; yd=y-yc;
>> f=xd.^2/a^2+yd.^2/b^2-1;
>> J=-2*[xd/a^2'yd/b^2 xd.^2/a^3 yd.^2/b^3];
\Rightarrow dp=-J\f; p=p+dp;
                                   %Gauss-Newton
>> end
>> xc=p(1), yc=p(2), a=p(3), b=p(4)
>> v=0:2*pi/60:2*pi;
>> plot(x,y,'o',xc+a*cos(v),yc+b*sin(v)),
2
                                                              4
                                                                  6
                                                                       8
                                                                           10
                                                                                12
                                                                                    14
                                                                                         16
                                                                          Χ
```

Note that a fit to a circle can be written as a linear least square problem (lab 1.3).

10.3 Optimization in one dimension (NAM 7.1, H 6.4)

In Matlab use fminbnd for real arguments and max for integer arguments argument.

```
>> f=inline('1.3-exp(-(x-1).^2)-min(x/4,max(1./(x-1),0))');
>> [xx,fxx,flag]=fminbnd(f,0,3)
>> x=0:0.001:3; plot(x,feval(f,x),xx,fxx,'o')
```

Janbined to proambined to proam and robust answers; and all the direction from the minima. In: $f(x)=1.3-e^{(x-1)^2}-\min\left[\frac{x}{4},\max\left[0,\frac{1}{x-1}\right]\right]^{\frac{1}{2}}$ lethods that use 1st order (Jacobian) and even an example of an exa

$$f(x) = 1.3 - e^{(x-1)^2} - \min\left[\frac{x}{4}, \max\left[0, \frac{1}{x-1}\right]\right]$$

A discountinuous unimodal function

Methods that use 1st order (Jacobian) and even 2nd order derivatives (Hessian) converge faster... if defined! Check help optimset to set the properties.

Here is an example of an optimization where the argument is an integer and the

```
>> n=1000000; f=randn(1,n); [fmin,indx]=min(f)
fmin = -4.6365 indx = 198438
```

Golden section search of a minimum $x_* \in [a; b]$ without computing derivatives

Two evaluations are required to decide if the minimum is located in the left or right interval: f(x)

if
$$f(x_1)>f(x_2)$$
 then $x_*\in[x_1;b]$ else $x_*\in[a;x_2]$

end

For efficiency, choose the proportions so that

$$\tau = \frac{b - x_1}{b - a} = \frac{b - x_2}{b - x_1}$$

in order to reuse the previous evaluations. By symmetry $(x_2 - a)/(b - a) = \tau$

$$\frac{b-x_2}{b-a} = 1 - \tau \qquad \Rightarrow \qquad \frac{b-x_2}{b-x_1} = \frac{1-\tau}{\tau}$$

$$\tau = \frac{1-\tau}{\tau} \qquad \Rightarrow \qquad \tau^2 + \tau - 1 = 0 \qquad \Rightarrow \qquad \tau = \frac{\sqrt{5}-1}{2} \approx 0.6180$$

which reminds the golden ratio $1+\sqrt{5}/2\approx 1.6180$ from the antiquity. Finally

$$x_1 = a + (b-a)(1-\tau)$$

 $x_2 = a + (b-a)\tau$

Fibonacci search can be used when the argument is an integer Write a relation between steps in a golden search

$$L_{i+2} = L_i + L_{i+1}$$

This yields a recursion formula for the Fibonacci numbers

$$L_{i+2}$$
 L_{i+1} L_{i+2} L_{i+1} L_{i+1}

$$F \in \{1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, \ldots\}$$

where consecutive integers approximate the golden section $34/55 = 0.6182 \approx \tau$. This suggests a more efficient algorithm than Matlab's max to find the maximum of Ff (n) in the interval i = 0...120 starting from a larger Fibonacci number:

```
function f=Ff(n);
  f=\exp(\operatorname{sqrt}(n)/10) - \cos(n/30+19); return
                                                                           n1
                                                                                  n2
                                                                                         n
\Rightarrow a=0; b=144; n2=89; n1=a+b-n2; F1=Ff(n1); F2=Ff(n2);
                                                                           55
                                                                                        144
>> disp([a n1 n2 b])
                                                                     55
                                                                           89
                                                                                 110
                                                                                        144
>> while b-a>1
                                                                     89
                                                                           110
                                                                                 123
                                                                                        144
     if F1>F2, b=n2; n2=n1; F2=F1; n1=a+b-n2; F1=Ff(n1);
                                                                           102
                                                                                        123
                                                                     89
                                                                                 110
                 a=n1; n1=n2; F1=F2; n2=a+b-n1; F2=Ff(n2);
                                                                                        110
                                                                     89
                                                                           97
                                                                                 102
     else
>>
     end
                                                                     97
                                                                          102
                                                                                 105
                                                                                        110
>>
     disp([a n1 n2 b])
                                                                     97
                                                                          100
                                                                                 102
                                                                                        105
>>
>> end; Fmax=[F1 F2]
                                                                          102
                                                                                 103
                                                                                        105
                                                                    100
                                                                    100
                                                                          101
                                                                                 102
                                                                                        103
            3.6630
Fmax =
                       3.6629
                                                                    101
                                                                          102
                                                                                 102
                                                                                        103
                                                                    102
                                                                          102
                                                                                 103
                                                                                        103
```

10.4 Optimization in higher dimensions n (NAM 7.2, H 6.5)

Efficient methods such as *steepest descent, conjugate-gradients*) do not require evaluating the Jacobian: they are the subject of advanced courses.

Newton's method is however sufficient if the function can differentiated analytically to calculate an extremum by solving

$$\nabla \Phi(x_1, x_2, \dots, x_n) = 0$$

using iterations

$$x^{\text{new}} = x^{\text{old}} + dx, \quad Jdx = -f(x^{\text{old}})$$

Example: maximum of $\Phi(x, y) = (x + \sin y)e^{-(x^2+y^2)}$ around $(x, y) = (\frac{1}{4}, \frac{1}{4})$.

$$\nabla \Phi = \begin{pmatrix} \frac{\partial \Phi}{\partial x} \\ \frac{\partial \Phi}{\partial y} \end{pmatrix} = \begin{pmatrix} (1 - 2x(x + \sin y))e^{-(x^2 + y^2)} \\ (\cos y - 2x(x + \sin y))e^{-(x^2 + y^2)} \end{pmatrix} = \begin{pmatrix} f_1(x, y) \\ f_2(x, y) \end{pmatrix} = 0$$

To solve this system of the form f(x) = 0, calculate the Jacobian $J_{ij} = \partial f_i / \partial x_j$

$$\mathbf{J} = \begin{pmatrix} 4x + 2\sin y & 2x\cos y \\ 2y & 2x + 3\sin y + 2y\cos y \end{pmatrix}$$

In matlab the solution is then obtained with

```
>> x=1/4; y=1/4;
>> F = (x + \sin(y)) * \exp(-(x^2+y^2));
>> z=[x y]'; dznorm=1; iter=0;
>> disp([iter dznorm x y F])
>> while dznorm>1e-6 & iter < 30
>> s=x+sin(y);
                                                      0.6
\Rightarrow f=[1-2*x*s; cos(y)-2*y*s];
>> J=[-4*x-2*sin(y) -2*x*cos(y);
>> -2*y -2*x-3*sin(y)-2*y*cos(y)];
                                                      0.4
\Rightarrow dz=-J\f; z=z+dz;
                                                      0.2
                                                    \Phi(x,y)
>> dznorm=norm(dz,inf); iter=iter+1;
>> x=z(1); y=z(2);
>> F=(x+\sin(y))*\exp(-(x^2+y^2));
                                                     -0.2
   disp([iter dznorm x y F])
>> end
                                                     -0.4
                                                     -0.6
-1
                                                                                             0 у
                                                            -0.5
            112-11
                                                                     0
                                                                          0.5
```

ıter	dz 	X	уу	
0 1.0000 2.0000 3.0000 4.0000 5.0000	1.0000 0.4055 0.1240 0.0133 0.0002 0.0000	0.2500 0.6555 0.5315 0.5182 0.5181 0.5181	0.2500 0.5497 0.4695 0.4635 0.4634 0.4634	0.4390 0.5666 0.5950 0.5953 0.5953 0.5953

11. ORDINARY DIFFERENTIAL EQUATIONS (ODEs)

11.2 Euler and Runge-Kutta methods (NAM 8.2, H 9.3)

Problem: numerically solve the ordinary differential equation for y(t) for $t > t_0$

$$\frac{d\mathbf{y}}{dt} = \mathbf{f}(t, \mathbf{y}), \text{ with } \mathbf{y}(t_0) = \mathbf{y_0}$$

using approximations with small steps in time t_0, t_1, \ldots such that $t_{i+1} = t_i + h$.

Euler's method directly follows from the forward difference

$$\frac{\mathbf{y}(t_i+h)-\mathbf{y}(t_i)}{h}\approx\mathbf{f}(t,\mathbf{y}),\quad\Rightarrow\quad \boxed{\mathbf{y}(t_{i+1})\approx\mathbf{y_i}+h\mathbf{f}(t_i,\mathbf{y_i})}$$

Starting from the *initial condition* (t_0, y_0) , one step with Euler's method produces an approximation (t_1, y_1) with a *local error* $\mathcal{O}(h^2)$; after n steps to reach the final time $t_n = t_0 + nh$, the solution (t_n, y_n) has a *global error* $n\mathcal{O}(h^2) \sim \mathcal{O}(h)$.

Example solve $y'(t) = \sin(ty)$ with y(0) = 6 using Euler's method

```
function fend=feuler(h)
  y=6; t=0; tend=2; n=tend/h; T=t; Y=y;
  for i=1:n
    f=sin(t*y); y=y+h*f; t=t+h;
    T=[T; t]; Y=[Y; y];
  end
  fend=y; plot(T,Y,T,Y,'o');
return

>> h=0.2; Y2=[];
>> for k=0:3, Y2=[Y2 feuler(h/2^k)], end;
Y2 = 5.9379  5.9007  5.8823  5.8731
```


A Richardson extrapolation can be used to cancel the leading (global) error in $\mathcal{O}(h)$ and calculate the value $y(2) \approx 5.8731 + \frac{5.8731 - 5.8823}{2^Q - 1} = 5.8639$.

Peer Teaching (2×1) minutes to think, explain to your neighbour and vote)

Richardson extrapolation. Which value for Q should you use here above?

$$\leftarrow 0 \qquad \uparrow 1 \qquad \rightarrow 2$$

Runge-Kutta (RK2) achieves a better precision with a global error in $\mathcal{O}(h^2)$

$$\mathbf{y_{i+1}} = \mathbf{y_i} + \frac{h}{2}(\mathbf{k_1} + \mathbf{k_2}), \quad \text{with} \quad \begin{cases} \mathbf{k_1} = \mathbf{f}(t_i, \mathbf{y_i}) \\ \mathbf{k_2} = \mathbf{f}(t_i + h, \mathbf{y_i} + h\mathbf{k_1}) \end{cases}$$

Runge-Kutta (RK4) achieves a high precision with a global error in $\mathcal{O}(h^4)$

$$\mathbf{y_{i+1}} = \mathbf{y_i} + \frac{h}{6}(\mathbf{k_1} + 2\mathbf{k_2} + 2\mathbf{k_3} + \mathbf{k_4}), \quad \text{with} \quad \begin{cases} \mathbf{k_1} = \mathbf{f}(t_i, \quad \mathbf{y_i}) \\ \mathbf{k_2} = \mathbf{f}(t_i + \frac{h}{2}, \quad \mathbf{y_i} + \frac{h}{2}\mathbf{k_1}) \\ \mathbf{k_3} = \mathbf{f}(t_i + \frac{h}{2}, \quad \mathbf{y_i} + \frac{h}{2}\mathbf{k_2}) \\ \mathbf{k_4} = \mathbf{f}(t_i + h, \quad \mathbf{y_i} + h\mathbf{k_3}) \end{cases}$$

In Matlab use help ode23, ode45, odeset for RK methods with variable step size, where the step size h is continually adjusted to achieve a specified precision with a minimum number of steps.

Example solve $y'(t) = \sin(ty)$ with y(0) = 6 using the RK4 method

```
function f=fsin(t,y),
 f=sin(t*y);
                                                       Runge-Kutta RK4 method with fixed h=0.2, 0.1
return
                                                  6.4
function fend=rk4(h)
 y=6; t=0; tend=2; n=tend/h;
                                                  6.3
 T=t; Y=y; h2=h/2;
 for i=1:n
                                                  6.2
   k1=fsin(t,
   k2=fsin(t+h2,y+h2*k1);
                                                €6.1
   k3=fsin(t+h2,y+h2*k2);
   k4=fsin(t+h,y+h*k3);
   y=y+h/6*(k1+2*k2+2*k3+k4);
   t=t+h:
   T = [T; t]; Y = [Y; y];
                                                  5.9
 end
 plot(T,Y); fend=y;
return
                                                  5.8<sup>L</sup>
                                                             0.5
                                                                                1.5
>> h=0.2; YN=[];
\Rightarrow for k=0:1, YN=[YN rk4(h/2^k)]; Y2=YN(end), end;
Y2 = 5.86346010701075 5.86390480621220
>> % --- Alternative using Matlab's solvers
>> tend=2; y0=6; options=odeset('RelTol',1e-6,'AbsTol',1e-4]);
>> [T,Y]=ode23(@fsin,[0 tend],y0,options);
>> [T,Y]=ode45(@fsin,[0 tend],y0,options);
```

A Richardson extrapolation again cancels the leading (global) error, here in $\mathcal{O}(h^4)$ with $y(2) \approx 5.86390 + \frac{5.86390 - 5.86346}{2^4 - 1} = 5.86392$.