Алгоритмы и структуры данных. Лекция 1

Сергей Григорян

4 сентября 2024 г.

1 Инфа

Лектор: Степанов Илья Данилович.

telegram: @irkstepanov

2 Основные понятия

Фабула решения задачи

- Условие
- Алгоритм (реализация)
- Корректность
- Асимптотика/Время работы

Элементарные действия

- Сложение, умножения, сравнение чисел;
- Условные конструкции;
- Обращение по индексу (! Большое кол-во = иногда вредно);

Модель вычислений: RAM модель (Random Access Memory)

Замечание. Бывают и др. модели:

- Параллельные вычисления
- Внешняя память

3 Асимптотика, время работы

Пример. Найти минимум в массиве.

```
int n;
read(n);
int a[n];
read(a);
int x = +inf;
for i = 0..n-1:
    if (x < a[i]):
        x = a[i]
print(x)</pre>
```

Листинг 1: Нахождение минимума

 $A c u м n m o m u \kappa a : O(n)$

Определение 3.1. Пусть $f, g : \mathbb{N} \to \mathbb{N}$. Тогда:

$$f = O(g) \iff \exists N, C \colon \forall n \ge N \colon f(n) \le C * g(n)$$

Пример.

$$6n + 4 = O(n), 6n + 4 \le 7n, npu \ n \ge 4.$$

Утверждение 3.1.
$$f = O(g) \iff \exists D \colon \forall n \colon f(n) \leq D * g(n)$$

Доказательство.

$$\Leftarrow$$
) $N = 1: n \ge N, C = D, f(n) \le c * g(n)$

⇒) Надо обеспечить:

$$f(1) \le Dg(1)$$

$$f(2) \le Dg(2)$$

$$\vdots$$

$$f(N) \le Dg(N).$$

$$\Rightarrow D = \max(C, \frac{f(1)}{g(1)}, \frac{f(2)}{g(2)}, \cdots, \frac{f(N)}{g(N)})$$

Определение 3.2. Пусть $f,g:\mathbb{N}\to\mathbb{N}.$ Тогда $f=\Omega(g),$ если $\exists C>0,N:\forall n\geq N:$

$$f(n) \ge C * g(n)$$

Определение 3.3. $f,g:\mathbb{N}\to\mathbb{N}$. Тогда $f=\Theta(g)\iff\exists c_1,c_2>0$, $N:\forall n\geq N$:

$$c_1 * g(n) \le f(n) \le c_2 * g(n).$$

Пример. 1. $n^a, n^b, a, b = const$

$$n^{a} = O(n^{b}), a \le b.$$

$$n^{a} = \Omega(n^{b}), a \ge b.$$

$$n^{a} = \Theta(n^{b}), a = b.$$

- 2. $\log_a n = \Theta(\log_b n); a, b = const$
- 3. $n^n = O(2^{2^n}), 2^{2^n} = \omega(n^n)$

Утверждение 3.2.

$$\log n^a < n^b < c^n, \forall a > 0, b > 0, c > 1.$$

Утверждение 3.3. Пусть T(n) - время работы влгоритма на входных данных. Пусть:

$$T(n) = T(\lfloor \frac{n}{2} \rfloor) + T(\lceil \frac{n}{2} \rceil) + O(n).$$

Tогда $T(n) = O(n \log n)$

Доказательство. $T(n) \leq T(\left\lfloor \frac{n}{2} \right\rfloor) + T(\left\lceil \frac{n}{2} \right\rceil) + Dn$ Докажем по индукции, что:

$$T(n) \leq C * n \log n$$
, при $n \geq 2$

База индукции: $T(2), T(3), \cdots, T(10)$ - Взяли C, чтоб было верно. **Переход**: Пусть $T(k) \le Ck \log_2 k, k \le n-1$ Докажем для k=n:

$$T(n) \leq 2*T(\left\lceil\frac{n}{2}\right\rceil) + Dn$$

$$\left\lceil\frac{n}{2}\right\rceil \leq \frac{n+1}{2} \Rightarrow$$

$$\Rightarrow T(n) \leq 2*T(\left\lceil\frac{n}{2}\right\rceil) + Dn \leq$$

$$\leq 2*C*\frac{n+1}{2}\log_2\frac{n+1}{2} + Dn = C(n+1)(\log_2(n+1)-1) + Dn ==$$

$$n+1 \leq n\sqrt{2}$$

$$\Rightarrow \log_2 n + 1 \leq \log_2 n\sqrt{2} = \log_2 n + \frac{1}{2}$$

$$== C(n+1)(\log_2 n - \frac{1}{2}) + Dn = Cn\log_2 n - \frac{1}{2}Cn + C\log_2 n - \frac{1}{2}C + Dn \leq Cn\log_2 n.$$
 Достаточно д-ть, что $Dn + C\log_2 n \leq \frac{1}{2}Cn$ Для этого дост. положить $C \geq 6D$:

$$C = 6D.$$

$$Dn + 6D \log_2 n \le 3Dn.$$

$$6 \log_2 n \le 2n.$$

4 Бинарный поиск

Задача 4.1. $a_0 \le a_1 \le a_2 \le \cdots \le a_{n-1}$ Узнать, есть ли x в a. Наивное решение: q запросов $\Rightarrow O(nq)$

Решение. Используем бинпоиск:

```
int left = 0, right = n;
while (right - left > 1) {
    mid = (left + right) / 2
    if (a[mid] > x) right = mid
    else left = mid
}
```

```
if (a[left] == x) print("Yes");
else print("No");
```

Листинг 2: Binary Search

 $A c u м n m o m u \kappa a$: $O(\log_2 n)$