Semestrální zkouška ISS, řádný termín, 10.1.2018, skupina D

Příklad 1 Čtvrtý koeficient Fourierovy řady periodického signálu se spojitým časem x(t) je $c_{x,4} = 1 - j$. Určete tentýž koeficient posunutého signálu $y(t) = x(t - \frac{1}{16}\mu s)$, víte-li, že základní frekvence periodického signálu je $f_1 = 1$ MHz.

 $c_{y,4} = \dots$

Příklad 2 Signál se spojitým časem je dán jako:
$$x(t) = \begin{cases} 5 & \text{pro } -1 \text{s} \leq t \leq 1 \text{s} \\ 0 & \text{jinde} \end{cases}$$

Vypočtěte jeho spektrální funkci $X(j\omega)$ a nakreslete její moďulovou i argumentovou část (do dvou obrázků pod sebou). Vyznačte důležité hodnoty na ose ω i na svislých osách.

Příklad 3 Nakreslete výsledek konvoluce dvou signálů se spojitým časem: $y(t) = x_1(t) \star x_2(t)$.

$$x_1(t) = \begin{cases} t+1 & \text{pro } -1 \le t \le 0 \\ -t+1 & \text{pro } 0 < t \le 1 \\ 0 & \text{jinde} \end{cases}$$
 a $x_2(t) = \delta(t) + \delta(t-2)$.

 $\delta(t)$ označuje Diracův impuls.

Příklad 4 Popište princip fungování anti-aliasingového filtru při vzorkování.

Příklad 5 Vzorek signálu s diskrétním časem je: x[35]=4. Napište a/nebo nakreslete, jak bude tento vzorek přispívat do ideálně rekonstruovaného signálu se spojitým časem. Víte, že vzorkovací frekvence $F_s=8000$ Hz. Pomůcka: rekonstrukční funkce "spouštěná" každým vzorkem je kardinální sinus. Musíte ho správně natáhnout a umístit na časové ose a vynásobit hodnotou vzorku.

Určete hodnotu DTFT na zadané normované kruhové frekvenci nebo napište jasně "nejde to":

$$\omega=1.9\pi$$
 rad. $\tilde{X}(e^{j\omega})=.....$

Příklad 7 Systém se spojitým časem má impulsní odezvu h(t). Napište, jaké podmínky musí splňovat h(t) stabilního a kauzálního systému se spojitým časem.

Příklad 8 Převeďte diferenciální rovnici systému se spojitým časem $\frac{d^2x(t)}{dt^2} + 0.5\frac{dx(t)}{dt} + 0.4x(t) = \frac{d^2y(t)}{dt^2} - 0.2\frac{dy(t)}{dt} - 0.1y(t) \quad \text{na přenosovou funkci.}$

$$H(s) = \dots$$

Příklad 9 Přenosová funkce systému se spojitým časem je: $H(s) = \frac{s}{s+1}$. Nakreslete přibližný průběh modulu frekvenční charakteristiky tohoto systému $|H(j\omega)|$ pro kladné frekvence ω . Přesně určete hodnoty modulu pro $\omega = 0$ rad/s a pro $\omega = \infty$ rad/s.

Příklad 10 Dokažte, že pro periodický signál s diskrétním časem $\tilde{x}[n]$ s periodou N vzorků jsou koeficienty Diskrétní Fourierovy řady (DFŘ) také periodické s periodou N koeficientů. Pomůcka: použijte definiční vzorec DFŘ: $\tilde{X}[k] = \sum_{n=0}^{N-1} \tilde{x}[n]e^{-j\frac{2\pi}{N}kn}$

Příklad 11 Určete všechny nenulové koeficienty a jejich hodnoty Diskrétní Fourierovy transformace (DFT) komplexního signálu o délce N=256 vzorků, který je dán: $x[n]=\frac{1}{256}e^{j2\pi\frac{4}{256}n}$ Pomůcka: zvažte, zda koeficienty nejdou spíše **najít** než vypočítat.

Příklad 12 Je dán signál s diskrétním časem o délce N=8 vzorků. Pro n=0...7 má hodnoty 1 1 1 0 0 0 0. Vypočtěte zadaný koeficient jeho Diskrétní Fourierovy transformace (DFT). Hodnotu $\frac{1}{\sqrt{2}}$ zaokrouhlete na 0.7.

$$X[4] = \dots$$

Příklad 13 Diferenční rovnice číslicového filtru je dána: y[n] = x[n] - 0.5x[n-1] + 0.1x[n-2] - 0.5y[n-1] + 0.25y[n-2]. Určete přenosovou funkci.

$$H(z) = \dots$$

Příklad 14 Frekvenční charakteristika číslicového filtru má pro normovanou kruhovou frekvenci $\omega=0.1\pi$ rad hodnotu $H(e^{j0.1\pi})=5e^{-j\frac{\pi}{2}}$. Do filtru vstupuje diskrétní cosinusovka $x[n]=7\cos(0.1\pi n-\frac{\pi}{2})$. Napište vztah pro signál na výstupu.

$$y[n] = \dots$$

Příklad 15 Modul frekvenční charakteristiky $|H(e^{j\omega})|$ čistě IIR filtru 6-řádu (ve jmenovateli jsou tedy koeficienty $a_1 \dots a_6$) je na obrázku. Nakreslete přibližně pozice pólů filtru. Nezapomeňte, že pokud jsou póly komplexní, musí být v komplexně sdružených párech.

Příklad 16 Na obrázku je signál o délce N=200 vzorků ovlivněný šumem. Odhadněte zadaný autokorelační koeficient. Použijte standardní vychýlený odhad: $\hat{R}_{vych}[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n]x[n+k]$.

Příklad 17 Naměřené hodnoty stacionárního náhodného signálu $\xi[n]$ jsou rovnoměrně rozděleny v intervalu -6 až 6. Určete hodnotu distribuční funkce F(x) pro zadané x.

$$F(7) = \dots$$

Příklad 18 Na Ω 4000 realizacích = náhodného procesu byla naměřena tabulka (sdružený histogram) hodnot mezi časy n_1 a Spočítejte korelační koeficient $R[n_1, n_2]$. n_2 . Jako reprezentativní hodnoty a x_2 při numerickém výpočtu integrálu $R[n_1, n_2] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_1 x_2 p(x_1, x_2, n_1, n_2) dx_1 dx_2$ použijte středy intervalů v tabulce.

intervaly				
x_1	[-20, -10]	[-10, 0]	[0, 10]	[10, 20]
[10, 20]	0	0	0	0
[0, 10]	0	1000	1000	0
[-10, 0]	0	1000	1000	0
[-20, -10]	0	0	0	0

 $R[n_1, n_2] = \dots$

Příklad 19 Nakreslete, jaký bude výsledek operace 2D filtrování $y[k,l] = x[k,l] \star h[k,l]$. Vstup x[k,l] je na obrázku. Výsledek nakreslete do nového obrázku nebo popište. Konvoluční jádro (nebo také 2D filtr, nebo maska) h[k,l] je čtvercové o velikosti 5×5 , všechny hodnoty jsou rovny $\frac{1}{25}$.

Příklad 20 Obrázek o rozměrech 100×100 je celý černý (pouze hodnoty nula), jen 2 pixely jsou bílé: x[0,0] = x[50,50] = 1. Určete zadanou hodnotu jeho 2D diskrétní Fourierovy transformace (2D-DFT).

$$X[2,0] = \dots$$