EJERCICIOS correspondientes al Capítulo 3 CURSO PROPEDEUTICO DE ANÁLISIS REAL DCA - CINVESTAV, Mayo-Junio 2013

- 1. Investiga si las siguientes sucesiones de números reales son (o no son) acotadas y/o (estrictamente??) monótonas (en caso que sí, crecientes o decrecientes?):
 - a) $x_n = 2 \cdot b^n$, para $n \in \mathbb{R}$, con 0 < b < 1;

 - b) $x_n = \frac{3}{n}$; c) $x_n = sen(n) + 1$;
 - d) $x_n = (-1)^n$;
 - e) $x_n = n \cdot sen(n)$.
- **2.** Usando la definición del límite, demuestra que a) $\lim_{n\to\infty}\frac{2n}{n+1}=2$, b) $\lim_{n\to\infty}\frac{1}{n^2-1}=0$.
- 3. Usando la definición del límite, demuestra lo siguiente

Si (x_n) y (y_n) son sucesiones convergentes, entonces la sucesión (x_n+y_n) también es convergente y $\lim_{n\to\infty}(x_n+y_n)=\lim_{n\to\infty}x_n+\lim_{n\to\infty}y_n$.

- **4.** Dar un ejemplo que muestra que la convergencia de $(|x_n|)_{n\geq 1}$ no implica la convergencia de $(x_n)_{n\geq 1}$.
- 5. Dar un ejemplo de dos sucesiones (x_n) , (y_n) , de las cuales al menos una es divergente, tales que la sucesión $(x_n + y_n)$ es convergente.
- **6.** Dar un ejemplo de dos sucesiones (x_n) , (y_n) , de las cuales al menos una es divergente, tales que la sucesión $(x_n \cdot y_n)$ es convergente.
- 7. Dar un ejemplo de una sucesión acotada que no es convergente.
- 8. Establecer la convergencia (en este caso determinar el límite) o divergencia de las siguientes sucesiones:

a) $x_n = \frac{3n^2 + 5}{n^2 + 1}$, b) $x_n = \frac{4n}{n+1}$, c) $x_n = \frac{(-1)^n n}{n+3}$, d) $x_n = \frac{(-1)^n}{n}$.

9. Aplicando la definición, demuestra la divergencia propia de

a) $x_n = \sqrt{n+1}$, b) $x_n = \frac{n}{\sqrt{n+1}}$.
