Corso di Laurea Magistrale in Ingegneria Aerospaziale

Costruzione di motori per aeromobili

Esercitazioni

Docenti

prof. Botto Daniele prof. Firrone Christian Maria

Doronzo Francesco Messina Francesco Uva Maria Laura

Indice

1	Esercitazione 2 - Collegamenti filettati 1														
		Scelta della vite													
		Serraggio													
	1.3	Deformabilità													
		1.3.1 Diagramma di forzamento													
		1.3.2 Diagramma di forzamento con ripartizione													
	1.4	Verifica													
		1.4.1 Verifica statica													
		1.4.2 Verifica a fatica													
2		Esercitazione 2 - Collegamenti filettati 2													
	2.1	1 Calcolo forze tangenziali e assiali													
	2.2	Scelta della vite													

Capitolo 1

Esercitazione 2 - Collegamenti filettati 1

L'obiettivo è quello di scegliere una vite di collegamento stantuffo/asta per il cilindro idraulico schematizzato in figura 1.1. In seguito si deve verificare la sicurezza rispetto a snervamento e fatica.

Figura 1.1: Insieme cilindro-stantuffo

1.1 Scelta della vite

Per calcolare il carico a cui è soggetta la vite si è dovuta calcolare l'area della testa del pistone su cui agisce la pressione, ovvero una corona circolare di superficie pari a 4535.7 mm^2 . Moltiplicando il massimo della pressione (5.5 MPa) per l'area si è ottenuto un carico massimo pari a 24946.2 N ≈ 25000 N. Il carico è poi stato aumentato dei seguenti passi:

- 1 passo (carichi assiali dinamici applicati concentricamente);
- 1 passo (serraggio con chiave dinanometrica).

Si è arrivati quindi ad una caric di riferimento di 63000 N ed è stata scelta la classe di viti più performante (12.9), in modo da avere viti strette e lunghe \rightarrow **VITE M12** Dalla classe si possono conoscere le tensioni di rottura e snervamento della vite:

$$\sigma_R = 12 \cdot 100 = 1200 \,\mathrm{MPa}$$
 carico di rottura

 $R_{p_{0.2}} = 0.9 \cdot \sigma_R = 1080\,\mathrm{MPa}$ carico di scostamento dalla proporzionalità

1.2 Serraggio

Per il calcolo della tensione limite al montaggio si usa la formula

$$\sigma_M = \frac{0.9R_{p_{0.2}}}{\sqrt{1+3k^2}} \tag{1.1}$$

con k calcolato dalla relazione

$$k = \frac{d_2}{2} \left(\frac{\mu_G}{\cos \beta'} + \frac{P}{\pi d_2} \right) \frac{1}{\frac{2d_3}{8}} = 0.2735$$

dove:

- $d_2 = 11.188 \, mm$
- $d_3 = 10.466 \, mm$
- $\beta' = 30^{\circ}$
- $P = 1.25 \, mm$ (passo fine)
- $\mu_G = \mu_K = 0.08$

Si ottiene quindi $\sigma_M=878.40\,\mathrm{MPa}$. Moltiplicando quest'ultimo per l'area minima della sezione trasversale del bullone (area di nocciolo A_3) si ottiene $F_{M,MAX}=75569.08\,\mathrm{N}$. Il momento di serraggio da prescrivere è

$$M_A = \frac{d_2}{2} \left(\frac{\mu_G}{\cos \beta'} + \frac{P}{\pi d_2} + \frac{D_{k,m}}{d_2} \mu_K \right) F_M = 100937.27 \, N \cdot mm \tag{1.2}$$

con

$$D_{k,m} = \frac{d_{k,MAX} + d_{foro}}{2} = 15.5\,mm$$

dove d_{foro} è pari a 13 mm, ovvero il diametro nominale della vite incrementato di un millimetro.

1.3 Deformabilità

La cedevolezza della vite è la somma dei contributi delle differenti sezioni:

$$\delta_i = \frac{l_i}{E_i \cdot A_i} \tag{1.3}$$

$$\delta_s = \delta_{sk} + \delta_1 + \delta_{GM} + \delta_{Gew} \tag{1.4}$$

con

- $l_{sk} = 0.4 \cdot d_{nom}$ lunghezza trave-equivalente della testa della vite
- $l_g = 0.5 \cdot d_{nom}$ lunghezza trave-equivalente dei filetti della vite ingaggiati
- $l_m = 0.4 \cdot d_{nom}$ lunghezza trave-equivalente dei filetti della madrevite ingaggiati
- $l_{tot} = 80 \, mm$ lunghezza totale della vite
- \bullet $b=36\,mm$ lunghezza della parte filettata della vite
- $l_1 = l_{tot} b = 44 \, mm$ lunghezza della parte non filettata della vite
- $l_{Gew}=23.5\,mm$ lunghezza della parte filettata della vite non ingaggiata
- $\bullet~E=210\,\mathrm{GPa}$ modulo di Young dell'acciaio
- $A_N = \frac{\pi}{4} d_{nom}^2 = 113.10 \, mm^2$ area nominale

•
$$A_3 = \frac{\pi}{4} d_3^2 = 86.03 \, mm^2$$
 area di nocciolo

La lunghezza complessiva della vite è stata scelta in base a considerazioni geometriche (ovvero le dimensioni del sistema pistone - stantuffo) più la lunghezza tale per cui 10 filetti siano ingaggiati nella madrevite.

Si ottengono quindi le cedevolezze della vite e del pezzo:

$$\delta_s = 3.890 \times 10^{-6} \, mm/N$$

$$\delta_p = 5.40 \times 10^{-7} \, mm/N$$

1.3.1 Diagramma di forzamento

Figura 1.2: Diagramma di forzamento

1.3.2 Diagramma di forzamento con ripartizione

Per il calcolo del fattore di ripartizione ci serviamo della seguente relazione:

$$n = \frac{\delta_{pk}}{\delta_p} \tag{1.5}$$

Figura 1.3: Tipi di collegamento.

I _A /h		0	,00		0,10				0,20				≥ 0,30			
a _k /h	0,00	0,10	0,30	≥ 0,50	0,00	0,10	0,30	≥ 0,50	0,00	0,10	0,30	≥ 0,50	0,00	0,10	0,30	≥ 0,50
SV 1	0,70	0,55	0,30	0,13	0,52	0,41	0,22	0,10	0,34	0,28	0,16	0,07	0,16	0,14	0,12	0,04
SV 2	0,57	0,46	0,30	0,13	0,44	0,36	0,21	0,10	0,30	0,25	0,16	0,07	0,16	0,14	0,12	0,04
SV 3	0,44	0,37	0,26	0,12	0,35	0,30	0,20	0,09	0,26	0,23	0,15	0,07	0,16	0,14	0,12	0,04
SV 4	0,42	0,34	0,25	0,12	0,33	0,27	0,16	0,08	0,23	0,19	0,12	0,06	0,14	0,13	0,10	0,03
SV 5	0,30	0,25	0,22	0,10	0,24	0,21	0,15	0,07	0,19	0,17	0,12	0,06	0,14	0,13	0,10	0,03
SV 6	0,15	0,14	0,14	0,07	0,13	0,12	0,10	0,06	0,11	0,11	0,09	0,06	0,10	0,10	0,08	0,03

Figura 1.4: Tabella di valori del fattore di ripartizione

Il sistema in esame è vicino allo standard SV6 di figura 1.3; interpolando i dati della tabella in figura 1.4 si è ottenuto un fattore di ripartizione

$$n = 0.144$$

Figura 1.5: Diagramma di forzamento con fattore di ripartizione.

1.4 Verifica

Prima di iniziare la verifica, si calcola la forza minima (precarico residuo sul pezzo) sotto la quale non si desidera scendere in esercizio, pari a

$$F_{Kerf} = p_{min} \cdot A_{contatto} = 3.78 \times 10^3 \, N$$

La perdita di interferenza, pari a

$$\Delta i = 3 + 2.5 + 1.5 = 7 \,\mu m$$

ci permette di calcolare l'allentamento nel tempo, la quota di carico esterno sulla vite e la quota di carico esterno sul pezzo

$$\Delta F_s = \frac{\Delta i}{\delta_s + \delta_p} = 1.58 \times 10^3 N$$

$$F_{SA} = F_A \frac{\delta_p}{\delta_s + \delta_p} = 438.42 N$$

$$F_{PA} = F_A \frac{\delta_s}{\delta_s + \delta_p} = 24507.78 N$$

1.4.1 Verifica statica

Per la verifica statica si impone la seguente condizione:

$$\sigma_{SA} \le 0.1 \cdot R_{p_{0,2}} \tag{1.6}$$

Sapendo che

$$\sigma_{SA} = \frac{F_{SA}}{A_{min}} = 5.1 \, MPa$$

abbiamo che la condizione è rispettata

$$5.1\,MPa \leq 1080\,MPa$$

1.4.2 Verifica a fatica

In questo caso la condizione da imporre è:

$$\sigma_a \le 0.9 \cdot \sigma_m \tag{1.7}$$

con

$$\sigma_m = \sigma_{M,max} + \frac{\sigma_{SA}}{2} = 880.95 MPa$$

$$\sigma_a = \frac{\sigma_{SA}}{2} = 2.55 MPa$$

Anche questa condizione risulta rispettata:

$$2.55\,MPa \leq 792.86\,MPa$$

Inoltre si è calcolato il rapporto $\frac{\sigma_m}{R_{p_{0.2}}}=0.816$, ottenendo un risultato che rientra nella fascia in cui ci si aspetta di trovarsi nel diagramma di Haigh, ossia quella tra il 70-90% di $R_{p_{0.2}}$.

Capitolo 2

Esercitazione 2 - Collegamenti filettati 2

L'obiettivo è quello di dimensionare il collegamento filettato di due dischi di uno stadio di turbina di pressione flangiati sull'albero. In particolare si devono definire il tipo di vite e il numero di viti che realizza l'accoppiamento.

2.1 Calcolo forze tangenziali e assiali

Le forze tangenziali si ricavano prima calcolando le coppie:

$$C_1 = \frac{S_t P_1}{\omega} = 5604.4 \ N \cdot m$$

$$C_2 = \frac{S_t P_2}{\omega} = 6892.7 \ N \cdot m$$

Da qui si ottiene:

$$F_{t1,aero} = \frac{C_1}{r_{CP,1}} = 26067 \; N$$

$$F_{t2,aero} = \frac{C_2}{r_{CP,2}} = 32059 \ N$$

La forza assiale totale è invece la forza massima tra le due forze assiali presenti (questo per come sono montati i dischi, che sono in parallelo).

$$F_{t1,fori} = \frac{C_1}{r_{fori}} = 50039 N$$

$$F_{t2,fori} = \frac{C_2}{r_{fori}} = 61542 N$$

$$F_{ax,1} = \frac{F_{t1,fori}}{\mu_{flange}} = 125098 N$$

$$F_{ax,2} = \frac{F_{t2,fori}}{\mu_{flange}} = 153855 N$$

$$F_{ax,min} = max(F_{ax,1}, F_{ax,2}) = 153855 N$$

2.2 Scelta della vite

La scelta della vite deve avvenire rispettando due vincoli

dimensione max della testa della vite,
$$d_{T,max} = 14 \ mm$$
 passo bullonatura $\geq 2.5 \cdot d_{foro}$

Scegliendo la vite M8 e un numero di viti Z = 20, i due vincoli risultano rispettati

$$\begin{cases} d_T = 13 \ mm < 14 \ mm \\ P = \frac{2\pi r_{fori}}{Z} = 35.2 \ mm \ge 22.5 \ mm \end{cases}$$