Patent claims

5

- 1. A circuit arrangement for compensating for disturbances in a signal generated by means of discrete multitone modulation (DMT), the signal generated by means of discrete multitone modulation exhibiting in the frequency domain a multiplicity of carrier frequencies which are used for transmitting data via a transmission channel, and each carrier frequency exhibiting a signal vector $(a_1', b_1'; a_n, b_n')$, comprising
- a multiplicity of first adder circuits (18, 19; 18-1, 19-1), the multiplicity of first adder circuits (18, 19; 18-1, 19-1) being supplied with a first error signal vector and the multiplicity of first adder circuits (18,
- 15 19; 18-1, 19-1) adding the first error signal vector to at least one first signal vector $(a_n', b_n'; a_1', b_1')$ in order to generate an error-corrected first signal vector $(a_n^*, b_n^*; a_n^*-1, b_n^*-1; a_1^*, b_1^*);$ and
- a multiplicity of first multiplier circuits (14, 15, 16, 17; 14-1, 15-1, 16-1, 17-1) which precede the multiplicity of first adder circuits (18, 19; 18-1, 19-1) and multiply the first error signal vector by adjustable coefficients $(C_{aa}^{(n)}, C_{ba}^{(n)}, C_{bb}^{(n)}, C_{ab}^{(n)}; C_{aa}^{(1,n)}, C_{ba}^{(1,n)}, C_{bb}^{(1,n)}, C_{ab}^{(1,n)}; C_{aa}^{(1,n)}, C_{bb}^{(1)}, C_{ab}^{(1)};$ 25 $C_{aa}^{(n,1)}, C_{ba}^{(n,1)}, C_{bb}^{(n,1)}, C_{ab}^{(n,1)}, C_{ab}^{(n,1)}, C_{ab}^{(n,1)}, C_{ab}^{(n,1)}, C_{ab}^{(n,1)}, C_{ab}^{(n,1)}$
- C_{aa} $(a_r)^{r}$, C_{ba} $(a_r)^{r}$, C_{ab} $(a_r)^{r}$, wherein the first error signal vector is a signal vector $(a_r, b_r; a_{1r}, b_{1r}; a_r-1, b_r-1)$ of a carrier frequency which is not used for transmitting data via the transmission channel.
- 30 2. The circuit arrangement as claimed in claim 1, wherein the first error signal vector is a signal vector (a_r, b_r) of a carrier frequency which, in the frequency domain, is adjacent to a carrier frequency which is used for transmitting data via the transmission channel.

- 3. The circuit arrangement as claimed in claim 1 or 2, wherein the first error signal vector is a signal vector (a_r, b_r) of a carrier frequency which, in the frequency domain, immediately precedes a carrier frequency which is used for transmitting data via the transmission channel.
- 4. The circuit arrangement as claimed in claim 1 or 2, wherein the circuit arrangement also exhibits the following features:
- at least one further multiplicity of first adder
 circuits (18-2, 19-2 to 18-m, 19-m) which follow the
 multiplicity of first adder circuits (18, 19; 18-1, 191), the at least one further multiplicity of first adder
 circuits (18-2, 19-2 to 18-m, 19-m) in each case being
 supplied with a further error signal vector (a_{2r}, b_{2r} to
 a_{mr}, b_{mr}; a_r-2, b_r-2, a_r-3, b_r-3) and the at least one
 further multiplicity of first adder circuits (18-2, 19-2
 to 18-m, 19-m) adding the respective further error
 20 signal vector (a_{2r}, b_{2r} to a_{mr}, b_{mr}; a_r-2, b_r-2, a_r-3, b_r-3)
 to the at least one signal vector (a_n', b_n') in order to
 generate a progressively error-corrected signal vector
 (a_n*-2, b_n*-2 to a_n*-m, b_n*-m); and
- at least one further multiplicity of first multiplier circuits (14-2, 15-2, 16-2, 17-2 to 14-m, 15-m, 16-m, 17-m) which precede the at least one further multiplicity of first adder circuits (18-2, 19-2 to 18-m, 19-m) and multiply the respective further error signal vector (a_{2r} , b_{2r} to a_{mr} , b_{mr} ; a_{r} -2, b_{r} -2, a_{r} -3, b_{r} -3) by adjustable coefficients ($C_{aa}^{(2,n)}$, $C_{ba}^{(2,n)}$, $C_{bb}^{(2,n)}$, $C_{cab}^{(2,n)}$, to $C_{cab}^{(m,n)}$, $C_{cab}^{(m,n)}$, $C_{cab}^{(m,n)}$, $C_{cab}^{(m,n)}$, $C_{cab}^{(n,2)}$, $C_{cab}^{(n,2)}$).
- 5. The circuit arrangement as claimed in claim 4, wherein the respective further error signal vector is in each case a signal vector $(a_{2r},\ b_{2r}$ to $a_{mr},\ b_{mr})$ of a

carrier frequency which is not used for transmitting data via the transmission channel.

- 6. The circuit arrangement as claimed in claim 4 or 5, wherein the respective further error signal vector $(a_r-2, b_r-2, a_r-3, b_r-3)$ is in each case a previous version of a particular error signal vector (a_r-1, b_r-1) .
- 7. The circuit arrangement as claimed in claim 6, wherein the circuit arrangement has at least one buffer circuit (20-1, 20-2) for storing a previous version of an error signal vector (a_r-1, b_r-1) .
- 8. The circuit arrangement as claimed in claim 1, 2 or 15 3, wherein the circuit arrangement also exhibits the following features:
 - a decision circuit (4-1) which maps the error-corrected first signal vector $({a_1}^*,\ {b_1}^*)$ into a value-discrete first signal vector $({a_1}^*,\ {b_1}^*)$; and
- 20 a subtracting circuit (6-1, 7-1) for forming a second error signal vector (Δa_1 , Δb_1) which subtracts the first signal vector (a_1 ', b_1 ') and the value-discrete first signal vector (a_1 ", b_1 ") from one another,
- the second error signal vector $(\Delta a_1, \Delta b_1)$ being used for generating an error-corrected second signal vector (a_2^*, b_2^*) of a second signal vector $(a_2^!, b_2^!)$ of a carrier frequency which is immediately adjacent to the carrier frequency of the first signal vector $(a_1^!, b_1^!)$.
- 30 9. The circuit arrangement as claimed in claim 8, wherein the circuit arrangement also exhibits the following features:
 - a multiplicity of second adder circuits (12-1, 13-1), the multiplicity of second adder circuits (12-1,
- 35 13-1) being supplied with the second error signal vector $(\Delta a_1, \Delta b_1)$ and the multiplicity of second adder circuits

- (12-1, 13-1) adding the second error signal vector (Δa_1 , Δb_1) to the second signal vector (a_2 ', b_2 ') in order to generate the error-corrected second signal vector (a_2 *, b_2 *); and
- 5 a multiplicity of second multiplier circuits (8-1, 9-1, 10-1, 11-1) which precede the multiplicity of second adder circuits (12-1, 13-1) and multiply the second error signal vector $(\Delta a_1, \Delta b_1)$ by adjustable coefficients $(C_{aa}^{(2)}, C_{ba}^{(2)}, C_{bb}^{(2)}, C_{ab}^{(2)})$.

20

- 10. The circuit arrangement as claimed in claim 9, wherein the circuit arrangement also exhibits the following features:
- a further decision circuit (4-2) which maps the error-corrected second signal vector $({a_2}^*,\ {b_2}^*)$ into a value-discrete second signal vector $({a_2}^*,\ {b_2}^*)$; and
 - a further subtracting circuit (6-2, 7-2) for forming a third error signal vector $(\Delta a_2, \Delta b_2)$ which subtracts the second signal vector (a_2', b_2') and the value-discrete second signal vector (a_2'', b_2'') from one another.
 - the third error signal vector $(\Delta a_2, \ \Delta b_2)$ being used for generating an error-corrected third signal vector (a_3^*, b_3^*) of a third signal vector (a_3^*, b_3^*) of a carrier frequency which is immediately adjacent to the carrier frequency of the second signal vector (a_2^*, b_2^*) .
- 11. A circuit arrangement for compensating for disturbances in a signal generated by means of discrete multitone modulation (DMT), the signal generated by means of discrete multitone modulation exhibiting in the frequency domain a multiplicity of carrier frequencies which are used for transmitting data via a transmission channel, and each carrier frequency exhibiting a signal vector (a₁', b₁'; a_n', b_n'), comprising

and

- decision circuits which are in each case supplied with a reference signal vector $(a_{1r}, b_{1r} \text{ to } a_{mr}, b_{mr})$ and which map the respective reference signal vector $(a_{1r}, b_{1r} \text{ to } a_{mr}, b_{mr})$ into a respective value-discrete reference signal vector;
- subtracting circuits for forming a respective error signal vector which subtract the respective reference signal vector $(a_{1r}, b_{1r} \text{ to } a_{mr}, b_{mr})$ and the respective value-discrete reference signal vector from one another;
- 10 groups of first adder circuits (18-1, 19-1 to 18-m,
 19-m), each group of first adder circuits (18-1, 19-1 to
 18-m, 19-m) in each case being supplied with an error
 signal vector and the groups of first adder circuits
 (18-1, 19-1 to 18-m, 19-m) adding the respective error
 15 signal vector to at least one signal vector (an', bn';
 an', bn') in order to generate a progressively errorcorrected signal vector (an*-1, bn*-1 to an*-m, bn*-m);
- groups of first multiplier circuits (14-1, 15-1, 16-1, 17-1 to 14-m, 15-m, 16-m, 17-m) which in each case precede a group of first adder circuits (18-1, 19-1 to 18-m, 19-m) and multiply the respective error signal vector by adjustable coefficients $(C_{aa}^{(1,n)}, C_{bb}^{(1,n)}, C_{ab}^{(1,n)}, C_{ba}^{(m,n)}, C_{bb}^{(m,n)}, C_{ab}^{(m,n)})$.
 - 12. The circuit arrangement as claimed in one of the preceding claims, wherein the adjustable coefficients can be adjusted by means of a correcting variable.
- 30 13. The circuit arrangement as claimed in claim 12, wherein a power of 2 is selected for the correcting variable.
- 14. A method for compensating for disturbances in a signal generated by means of discrete multitone modulation (DMT), the signal generated by means of

discrete multitone modulation exhibiting in the frequency domain a multiplicity of carrier frequencies which are used for transmitting data via a transmission channel, and each carrier frequency exhibiting a signal vector $(a_1', b_1'; a_n', b_n')$, comprising the following steps:

- multiplying at least one error signal vector by adjustable coefficients $(C_{aa}{}^{(n)}, C_{ba}{}^{(n)}, C_{bb}{}^{(n)}, C_{ab}{}^{(n)}; C_{aa}{}^{(1,n)}, C_{ba}{}^{(1,n)}, C_{bb}{}^{(1,n)}, C_{ab}{}^{(1,n)}; C_{aa}{}^{(1)}, C_{ba}{}^{(1)}, C_{bb}{}^{(1)}, C_{ab}{}^{(1)}; C_{aa}{}^{(n,1)}, C_{bb}{}^{(n,1)}, C_{bb}{}^{(n,1)}, C_{ab}{}^{(n,1)}; and$
- adding the at least one error signal vector multiplied by the adjustable coefficients to at least one signal vector $(a_n', b_n'; a_1', b_1')$ in order to generate an error-corrected signal vector $(a_n^*, b_n^*; a_n^*-1, b_n^*-1; a_1^*, b_1^*)$, wherein the at least one error
- 15 a_n^*-1 , b_n^*-1 ; a_1^* , b_1^*), wherein the at least one error signal vector is a signal vector $(a_r, b_r; a_{1r}, b_{1r}; a_r-1, b_r-1)$ of a carrier frequency which is not used for transmitting data via the transmission channel.
- 15. The method as claimed in claim 14, wherein the first error signal vector is a signal vector (a_r, b_r) of a carrier frequency which, in the frequency domain, is adjacent to a carrier frequency which is used for transmitting data via the transmission channel.

25

30

- 16. The method as claimed in claim 14 or 15, wherein the first error signal vector is a signal vector $(a_r,\ b_r)$ of a carrier frequency which, in the frequency domain, immediately precedes a carrier frequency which is used for transmitting data via the transmission channel.
- 17. The method as claimed in claim 14 or 15, wherein the method also exhibits the following steps:
- multiplying a respective further error signal vector $(a_{2r}, b_{2r} \text{ to } a_{mr}, b_{mr}; a_{r}-2, b_{r}-2, a_{r}-3, b_{r}-3)$ by adjustable coefficients $(C_{aa}^{(2,n)}, C_{ba}^{(2,n)}, C_{bb}^{(2,n)}, C_{ab}^{(2,n)})$

10

to $C_{aa}^{(m,n)}$, $C_{ba}^{(m,n)}$, $C_{bb}^{(m,n)}$, $C_{ab}^{(m,n)}$; $C_{aa}^{(n,2)}$, $C_{ba}^{(n,2)}$, $C_{bb}^{(n,2)}$, $C_{ab}^{(n,2)}$); and

- adding the respective further error signal vector $(a_{2r}, b_{2r} \text{ to } a_{mr}, b_{mr}; a_{r}-2, b_{r}-2, a_{r}-3, b_{r}-3)$ multiplied by the adjustable coefficients $(C_{aa}^{(2,n)}, C_{ba}^{(2,n)}, C_{bb}^{(2,n)}, C_{bb}^{(2,n)}, C_{bb}^{(2,n)}, C_{bb}^{(2,n)}, C_{bb}^{(n,n)}, C_{bb}^{(m,n)}, C_{ab}^{(m,n)}; C_{aa}^{(n,2)}, C_{ba}^{(n,2)}, C_{bb}^{(n,2)}, C_{ab}^{(n,2)}, C$
- 18. The method as claimed in claim 17, wherein the respective further error signal vector is in each case a signal vector $(a_{2r}, b_{2r} \text{ to } a_{mr}, b_{mr})$ of a carrier frequency which is not used for transmitting data via the transmission channel.
- 19. The method as claimed in claim 17 or 18, wherein the respective further error signal vector $(a_r-2, b_r-2, a_r-3, b_r-3)$ is in each case a previous version of a particular error signal vector (a_r-1, b_r-1) .
 - 20. The method as claimed in claim 14, 15 or 16, wherein the method also exhibits the following steps:
- mapping the error-corrected first signal vector (a_1^*, b_1^*) into a value-discrete first signal vector (a_1^*, b_1^*) ; and
- subtracting the first signal vector (a_1', b_1') and the value-discrete first signal vector (a_1'', b_1'') from one another in order to form a second error signal vector $(\Delta a_1, \Delta b_1)$, the second error signal vector $(\Delta a_1, \Delta b_1)$ being used for generating an error-corrected second signal vector (a_2^*, b_2^*) of a second signal vector (a_2', b_2') of a carrier frequency which is immediately adjacent to the carrier frequency of the first signal vector (a_1', b_1') .

- 21. The method as claimed in claim 20, wherein the method also exhibits the following steps:
- multiplying the second error signal vector (Δa_1 , Δb_1) by adjustable coefficients ($C_{aa}^{(2)}$, $C_{ba}^{(2)}$, $C_{bb}^{(2)}$, $C_{ab}^{(2)}$); and
- adding the second error signal vector $(\Delta a_1, \Delta b_1)$ multiplied by the adjustable coefficients $(C_{aa}^{(2)}, C_{ba}^{(2)}, C_{ba}^{(2)}, C_{ba}^{(2)})$ to the second signal vector $(a_2^{\ \prime}, b_2^{\ \prime})$ in order to generate the error-corrected second signal vector $(a_2^{\ \prime}, b_2^{\ \prime})$.
- 22. The method as claimed in claim 21, wherein the method also exhibits the following steps:
- mapping the error-corrected second signal vector (a_2^*, b_2^*) into a value-discrete second signal vector (a_2^*, b_2^*) ; and
- subtracting the second signal vector (a₂', b₂') and the value-discrete second signal vector (a₂", b₂") from one another in order to form a third error signal vector
 (Δa₂, Δb₂), the third error signal vector (Δa₂, Δb₂) being used for generating an error-corrected third signal vector (a₃*, b₃*) of a third signal vector (a₃', b₃') of a carrier frequency which is immediately adjacent to the carrier frequency of the second signal vector (a₂', b₂').
- 23. A method for compensating for disturbances in a signal generated by means of discrete multitone modulation (DMT), the signal generated by means of discrete multitone modulation exhibiting in the frequency domain a multiplicity of carrier frequencies which are used for transmitting data via a transmission channel, and each carrier frequency exhibiting a signal vector (a₁', b₁'; a_n', b_n'), comprising the following steps:

- mapping a respective reference signal vector (a_{1r}, b_{1r}) to a_{mr}, b_{mr} into a respective value-discrete reference signal vector;
- subtracting the respective reference signal vector $(a_{1r}, b_{1r} \text{ to } a_{mr}, b_{mr})$ and the respective value-discrete reference signal vector from one another in order to form a respective error signal vector;
 - multiplying the respective error signal vector by adjustable coefficients $(C_{aa}^{\ (1,n)},\ C_{ba}^{\ (1,n)},\ C_{bb}^{\ (1,n)},\ C_{ab}^{\ (1,n)}$ to $C_{aa}^{\ (m,n)},\ C_{ba}^{\ (m,n)},\ C_{ab}^{\ (m,n)}$; and
- adding the respective error signal vector multiplied by the adjustable coefficients $(C_{aa}^{\ (1,n)}, C_{ba}^{\ (1,n)}, C_{bb}^{\ (1,n)}, C_{ab}^{\ (1,n)}$ to $C_{aa}^{\ (m,n)}, C_{ba}^{\ (m,n)}, C_{bb}^{\ (m,n)}, C_{ab}^{\ (m,n)}$ to at least one signal vector $(a_n', b_n'; a_1', b_1')$ in order to generate a progressively error-corrected signal vector $(a_n^*-1, b_n^*-1$ to $a_n^*-m, b_n^*-m)$.
- 24. The method as claimed in one of claims 14 to 23, wherein the adjustable coefficients can be adjusted by 20 means of a correcting variable.
 - 25. The method as claimed in claim 24, wherein a power of 2 is selected for the correcting variable.