

Reduction of Model Complexity

- Partially connected & shared weights
- Convolutional Neural Network (CNN)
- Specialized to sequential data
 - Images, Speech, Text

X, O Classification

A two-dimensional array of pixels

translation

scaling rotation weight

Same?

– How to determine both are the same?

- Both are partially matching
 - Critical LOCAL features are the same

Local Features

- How about finding local features, and
- Matching them

Convolution

A way to find out local features

1	0	1
0	1	1
1	1	0

*

1	0	1
0	1	0
1	0	1

$$I*K = \sum K_{ij} \times I_{ij}$$

$$(I * K)_{xy} = \sum_{i=1}^{w} \sum_{j=1}^{w} K_{ij} \cdot I_{x+i-1,y+j-1}$$

0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0
0	0	1	0	1	1	0	0
0	1	0	0	0	0	1	0
0	1	0	0	0	0	1	0
0	0	1	^	4	4	^	0
	U	1	0	1	1	0	0
0	0	0	1	1	0	0	0

$$(I * K)_{xy} = \sum_{i=1}^{w} \sum_{j=1}^{w} K_{ij} \cdot I_{x+i-1,y+j-1}$$

0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0
0	0	1	0	1	1	0	0
0	1	0	0	0	0	1	0
0	1	0	0	0	0	1	0
0	0	0	0	0	0	0	0

$$(I * K)_{xy} = \sum_{i=1}^{w} \sum_{j=1}^{w} K_{ij} \cdot I_{x+i-1,y+j-1}$$

0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0
0	0	1	0	1	1	0	0
0	1	0	0	0	0	1	0
0	1	0	0	0	0	1	0
0	0	1	0	1	1	0	0
0	0	1 0	0	1	1 0	0	0

$$(I * K)_{xy} = \sum_{i=1}^{w} \sum_{j=1}^{w} K_{ij} \cdot I_{x+i-1,y+j-1}$$

0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0
0	0	1	0	1	1	0	0
0	1	0	0	0	0	1	0
0	1	0	0	0	0	1	0
0	0	1	0	1	1	0	0
0	0	0	1	1	0	0	0
0	0	0	0	0	0	0	0

-1	-2	0	-2	-1	1	
-2	3	-2	-2	-2	-2	
1	-1	-2	0	-4	-1	
-1	-3	0	-2	0	1	
-2	-1	-4	0	2	-2	
1	-2	0	0	-3	-1	

$$(I * K)_{xy} = \sum_{i=1}^{w} \sum_{j=1}^{w} K_{ij} \cdot I_{x+i-1,y+j-1}$$

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	0	0	0	0
0	0	0	1	0	1	1	0	0	0
0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	1	0	0
0	0	0	1	0	1	1	0	0	0
0	0	0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0

0	0	-1	-2	0	1	0	0
0	-1	-2	0	-2	-1	1	0
-1	-2	3	-2	-2	-2	-2	1
-2	1	-1	-2	0	-4	-1	0
0	-1	-3	0	-2	0	1	-2
1	-2	-1	-4	0	2	-2	-1
0	1	-2	0	0	-3	-1	0
0	0	1	0	-2	-1	0	0

Threshold

$$(I * K)_{xy} = \sum_{i=1}^{w} \sum_{j=1}^{w} K_{ij} \cdot I_{x+i-1,y+j-1}$$

0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0
0	0	1	0	1	1	0	0
0	1	0	0	0	0	1	0
0	1	0	0	0	0	1	0
0	0	1	0	1	1	0	0
0	0	0	1	1	0	0	0
0	0	0	0	0	0	0	0

0	0	0	0	0	1	0	0
0	0	0	0	0	0	1	0
0	0	3	0	0	0	0	1
0	1	0	0	0	0	0	0
0	0	0	0	0	0	1	0
1	0	0	0	0	2	0	0
0	1	0	0	0	0	0	0
0	0	1	0	0	0	0	0

Convolution (3D)

$$I * K = \sum_{channel} \sum_{i,j} K_{ij}^{channel} \times I_{ij}^{channel}$$

Convolution (3D)

Convolution (3D)

Q	1	1	Q	0	1	
) () (L 1	1	
	0	0	1	1	0	0
	0	1	1	1	1	0
	1	1	0	0	1	1
	1	1	0	0	1	1
]	0	1	1	1	1	0
	0	0	1	1	0	0

-1	2	4	-2	-1	-4
0	2	5	1	3	2
-2	0	4	2	-6	1
-2	1	0	-2	3	-3
1	2	-4	4	2	-2
1	-2	-4	3	2	1

Examples of Convolution

1	1	1
0	0	0
-1	-1	-1

Horizontal Line

Input

Output (Feature Map)

Pooling

- Subsampling from m by m pixels into 1 pixels
- Max, averaging or L^p pooling

0	0	0	0	0	1	0	0
0	0	0	0	0	0	1	0
0	0	3	0	0	0	0	1
0	1	0	0	0	0	0	0
0	0	0	0	0	0	1	0
4							
1	0	0	0	0	2	0	0
0	1	0	0	0	0	0	0

Feature map

0	0	1	1
1	3	0	1
1	0	2	1
1	1	0	0

Subsampled feature map

Advantage of Pooling

- Reducing the number of parameters
- Generating more robust feature maps: Shift Invariant

More non-zero values are matched!!

Feature Extraction

Graphical Representation

Who determines convolution masks?

designed by EXPERTS!!

In CNN

- CNNs can be converted into neural networks
- Convolution masks are converted into connection weights
- Masks are found with gradient descent methods

Feature Extraction

Convolution & Threshold

- Values in Kernel=> Connection weights
- Most of them are zeros

input

0	0	1	1	0
0	1	0	0	1
1	0	0	0	0
1	0	0	0	0
0	1	0	0	1

0 1 1 0

Kernel

output

0	2	1	0
2	0	0	1
1	0	0	0
0	1	0	0

Convolution & Threshold

- Values in Kernel=> Connection weights
- Most of them are zeros

input

(0	0	1	1	0
	0	1	0	0	1
	1	0	0	0	0
	1	0	0	0	0
	0	1	0	0	1

0	1
1	0

Kernel

output

0	2	1	0
2	0	0	1
1	0	0	0
0	1	0	0

Convolution & Threshold

- Values in Kernel=> Connection weights
- Most of them are zeros

input

0	0	1	1	0
0	1	0	0	1
1	0	0	0	0
1	0	0	0	0
0	1	0	0	1

0 1 1 0

Kernel

output

0	2	1	0
2	0	0	1
1	0	0	0
0	1	0	0

Pooling

- Weight are fixed to 1
- Activation:

$$y = \max(w_1x_1, w_2x_2, w_3x_3, w_4x_4)$$

input

0	0	1	1	0
0	1	0	0	1
1	0	0	0	0
1	0	0	0	0
0	1	0	0	1

output

0	2	1	0
2	0	0	1
1	0	0	0
0	1	0	0

0	1
1	0

Kernel

Subsampled output

Feature Extraction

Feature Extraction

Example

General Structure of CNN

