GENERIC CHARACTER SHEAVES ON GROUPS OVER $k[\epsilon]/(\epsilon^r)$

G. Lusztig

Introduction

0.1. Let \mathbf{k} be an algebraic closure of the finite field \mathbf{F}_q with q elements where q is a power of a prime number p. Let G be a connected reductive group over \mathbf{k} with a fixed split \mathbf{F}_q -rational structure, a fixed Borel subgroup B defined over \mathbf{F}_q , with unipotent radical U and a fixed maximal torus T of B defined over \mathbf{F}_q . Let $\mathfrak{g}, \mathfrak{b}, \mathfrak{t}, \mathfrak{n}$ be the Lie algebras of G, B, T, U. We fix a prime number $l \neq p$. If $\lambda : T(\mathbf{F}_q) \to \bar{\mathbf{Q}}_l^*$ is a character, we can lift λ to a character $\tilde{\lambda} : B(\mathbf{F}_q) \to \bar{\mathbf{Q}}_l^*$ trivial on $U(\mathbf{F}_q)$ and we can form the induced representation $\operatorname{ind}_{B(\mathbf{F}_q)}^{G(\mathbf{F}_q)} \tilde{\lambda}$ of $G(\mathbf{F}_q)$. Its character is the class function $G(\mathbf{F}_q) \to \bar{\mathbf{Q}}_l$ given by

(a)
$$y \mapsto \sum_{\substack{B(\mathbf{F}_q)x \in B(\mathbf{F}_q) \backslash G(\mathbf{F}_q); \\ xyx^{-1} \in B(\mathbf{F}_q)}} \tilde{\lambda}(xyx^{-1}).$$

This class function has a geometric analogue. Namely, we consider the diagram $T \stackrel{h}{\leftarrow} \tilde{G} \stackrel{\pi}{\rightarrow} G$ where $\tilde{G} = \{(Bx, y) \in (B \backslash G) \times G; xyx^{-1} \in B\}, \ \pi(Bx, y) = y$ is the Springer map and $h(Bx,y) = d(xyx^{-1})$; here $d: B \to T$ is the obvious homomorphism with kernel U. Let \mathcal{E} be a fixed \mathbf{Q}_l -local system of rank 1 on Tsuch that $\mathcal{E}^{\otimes m} \cong \bar{\mathbf{Q}}_l$ for some $m \geq 1$ prime to p. The geometric analogue of (a) is the complex $L_1 = \pi_! h^* \mathcal{E} \in \mathcal{D}(G)$. (For any algebraic variety X over **k**, $\mathcal{D}(X)$ denotes the bounded derived category of constructible \mathbf{Q}_l -sheaves on X.) When \mathcal{E} is defined over \mathbf{F}_q and has characteristic function λ then L_1 is defined over \mathbf{F}_q and its characteristic function is (up to a nonzero scalar factor) the function (a). Thus L_1 can be viewed as a categoryfied version of the function (a). More precisely, L_1 is (up to shift) a perverse sheaf on G; indeed, one of the main observations of [L1] was that the (proper) map π is small, which implies that L_1 is an intersection cohomology complex; this was the starting point of the theory of character sheaves on G, see [L2]. This point of view is useful since the complexes L_1 are defined independently of the \mathbf{F}_q -structure and from them one can extract not only the characters (a) for any q but even their twisted versions defined in [DL].

Supported in part by National Science Foundation grant 1303060.

0.2. For any integer $r \geq 1$ we consider the ring $\mathbf{k}_r = \mathbf{k}[\epsilon]/(\epsilon^r)$ (ϵ is an indeterminate). Let $G_r = G(\mathbf{k}_r)$ be the group of points of G with values in \mathbf{k}_r , viewed as an algebraic group over \mathbf{k} of dimension $r\Delta$ where $\Delta = \dim G$. Let $B_r = B(\mathbf{k}_r)$, $T_r = T(\mathbf{k}_r)$, $U_r = U(\mathbf{k}_r)$. Note that G_r inherits from G a natural \mathbf{F}_q -structure and that B_r, T_r, U_r are defined over \mathbf{F}_q . For r = 1, G_r reduces to G; we would like to extend as much as possible the results in 0.1 from r = 1 to a general r. If $\lambda : T_r(\mathbf{F}_q) \to \bar{\mathbf{Q}}_l^*$ is a character, we can lift λ to a character $\tilde{\lambda} : B_r(\mathbf{F}_q) \to \bar{\mathbf{Q}}_l^*$ trivial on $U_r(\mathbf{F}_q)$ and we can form the induced representation $\operatorname{ind}_{B(\mathbf{F}_q)}^{G(\mathbf{F}_q)} \tilde{\lambda}$ of $G(\mathbf{F}_q)$. Its character is the class function $G_r(\mathbf{F}_q) \to \bar{\mathbf{Q}}_l$ given by

(a)
$$g' \mapsto \sum_{\substack{B_r(\mathbf{F}_q)g \in B_r(\mathbf{F}_q) \backslash G_r(\mathbf{F}_q);\\ gg'g^{-1} \in B_r(\mathbf{F}_q)}} \tilde{\lambda}(gg'g^{-1}).$$

It generalizes the function 0.1(a). Again this class function has a geometric analogue. Namely, we consider the diagram $T_r \stackrel{h_r}{\longleftarrow} \tilde{G}_r \xrightarrow{\pi_r} G_r$ where

$$\tilde{G}_r = \{ (B_r g, g') \in (B_r \backslash G_r) \times G_r; gg'g^{-1} \in B_r \},$$

 $\pi_r(B_r g, g') = g', h_r(B_r g, g') = d_r(gg'g^{-1});$

here $d_r: B_r \to T_r$ is the obvious homomorphism with kernel U_r . We can identify $T = \mathcal{Y} \otimes \mathbf{k}^*$ where \mathcal{Y} is the lattice of one parameter subgroups of T and $T(\mathbf{k}_r) = \mathcal{Y} \otimes \mathbf{k}_r^*$ where \mathbf{k}_r^* is the group of units of \mathbf{k}_r . The isomorphism $\mathbf{k}^* \times \mathbf{k}^{r-1} \xrightarrow{\sim} \mathbf{k}_r^*$,

$$(a_0, a_1, \dots, a_{r-1}) \mapsto a_0 + a_1 \epsilon + \dots + a_{r-1} \epsilon^{r-1},$$

identifies $T(\mathbf{k}_r)$ with $T \times \mathfrak{t}^{r-1}$. Let f_1, \ldots, f_{r-1} be linear functions $\mathfrak{t} \to \mathbf{k}$ and let \mathcal{E} be as in 0.1. We can form the local system $\mathcal{E} \boxtimes \mathcal{L}_{f_1} \boxtimes \ldots \boxtimes \mathcal{L}_{f_{r-1}}$ on $T \times \mathfrak{t}^{r-1} = T(\mathbf{k}_r)$ (for the notation \mathcal{L}_{f_i} see 0.3). The geometric analogue of (a) is the complex $L = \pi_{r!} h_r^* (\mathcal{E} \boxtimes \mathcal{L}_{f_1} \boxtimes \ldots \boxtimes \mathcal{L}_{f_{r-1}}) \in \mathcal{D}(G_r)$. Again from the complexes L one can extract the characters (a) for any q. In this paper we are interested in the conjecture in [L3, 8(a)] according to which, when $r \geq 2$, L is (up to shift) an intersection cohomology complex on G_r , provided that f_{r-1} is sufficiently general. This would imply that there is a theory of generic character sheaves on G_r . The conjecture was proved in [L3, no.12] in the case where $G = GL_2$ and r = 2.

In this paper we give a method to attack the conjecture for any G and even r (but with some restriction on p); we carry out the method in detail in the cases where r=2 and r=4 and we prove the conjecture in these cases (with some restriction on p). We also prove a weak form of the conjecture assuming that r=3 (see Theorem 4.7). I believe that the method of this paper should be applicable with any r>2.

Our method is to first replace L by another complex K which is a geometric (categorified) form of the character of a representation constructed by Gérardin

[Ge] in 1975, then to try to describe explicitly the Fourier-Deligne transform of K on G_r (viewed as a vector bundle over G). For r=2 and r=4 we show that this is a simple perverse sheaf of a very special kind, namely one associated to a local system of rank 1 on a closed smooth irreducible subvariety of G_r ; by a result of Laumon, this implies that K is itself a simple perverse sheaf, up to twist. Finally, we show that L is a shift of K for the values of r that we consider and this gives the desired result.

I wish to thank Dongkwan Kim for pointing out an inaccuracy in an earlier version of this paper.

0.3. Notation. In this paper all algebraic varieties are over \mathbf{k} . We fix a nontrivial homomorphism $\psi : \mathbf{F}_p \to \bar{\mathbf{Q}}_l^*$. For any morphism $f : X \to \mathbf{k}$ let $X_f = \{(x, \lambda) \in X \times \mathbf{k}; \lambda^q - \lambda = f(x)\}$ and let $\iota : X_f \to X$ be the Artin-Schreier covering $(x, \lambda) \mapsto x$. Then $\iota_! \bar{\mathbf{Q}}_l$ is a local system with a natural action of \mathbf{F}_p (coming from the \mathbf{F}_p -action $\zeta : (x, \lambda) \mapsto (x, \lambda + \zeta)$ on \tilde{X}); we denote by \mathcal{L}_f the ψ -eigenspace of this action (a local system of rank 1 on X).

Let $\delta = \dim T$.

For $x \in G$ if X is an element of \mathfrak{g} or a subset of \mathfrak{g} we write xX instead of $\mathrm{Ad}(x)X$ and ${}_xX$ instead of $\mathrm{Ad}(x^{-1})X$.

1. The complex K

1.1. Let X_1, X_2, \ldots and Y_1, Y_2, \ldots be two sequences of noncommuting indeterminates. From the Campbell-Baker-Hausdorff formula we deduce the equality

$$(e^{\epsilon X_1}e^{\epsilon^2 X_2}\dots)(e^{\epsilon Y_1}e^{\epsilon^2 Y_2}\dots) = e^{\epsilon z_1}e^{\epsilon^2 z_2}\dots$$

where $z_i = z_i(X_1, X_2, \dots, X_i, Y_1, Y_2, \dots, Y_i)$, $(i \ge 1)$ are universal Lie polynomials with coefficients in $\mathbf{Z}[(i!)^{-1}]$. (Here ϵ commutes with each X_i, Y_i .) For example,

$$z_1(X_1, Y_1) = X_1 + Y_1,$$

$$z_2(X_1, X_2, Y_1, Y_2) = X_2 + Y_2 + [X_1, Y_1]/2,$$

 $z_3(X_1, X_2, X_3, Y_1, Y_2, Y_3) = X_3 + Y_3 + [X_2, Y_1] - [X_1, [X_1, Y_1]]/6 - [Y_1, [X_1, Y_1]]/3$. We deduce that if $X_1, X_2, \ldots, X_1', X_2', \ldots$ and Y_1, Y_2, \ldots are three sequences of noncommuting indeterminates then we have the equality

$$(e^{\epsilon X_1'}e^{\epsilon^2 X_2'}\dots)(e^{\epsilon Y_1}e^{\epsilon^2 Y_2}\dots)(e^{\epsilon X_1}e^{\epsilon^2 X_2}\dots)^{-1} = e^{\epsilon u_1}e^{\epsilon^2 u_2}\dots$$

where $u_i = u_i(X'_1, \ldots, X'_i, Y_1, \ldots, Y_i, X_1, \ldots, X_i)$, $(i \ge 1)$ are universal Lie polynomials with coefficients in $\mathbf{Z}[(i!)^{-1}]$. For example,

$$u_1(X_1, Y_1, X_1') = X_1' - X_1 + Y_1,$$

$$u_2(X_1, X_2, Y_1, Y_2, X_1', X_2') = X_2' - X_2 + Y_2 + [X_1', Y_1]/2 - [X_1', X_1]/2 - [Y_1, X_1]/2,$$

$$u_{3}(X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}, X'_{1}, X'_{2}, X'_{3})$$

$$= X'_{3} - X_{3} + Y_{3} + [X'_{2}, Y_{1}] + [X_{2}, X_{1}] - [X'_{2}, X_{1}] - [Y_{2}, X_{1}] - [X'_{1}, [X'_{1}, Y_{1}]]/6$$

$$- [Y_{1}, [X'_{1}, Y_{1}]]/3 + [X_{1}, [X'_{1}, Y_{1}]]/2 + [X'_{1}, [X'_{1}, X_{1}]]/6 + [X'_{1}, [Y_{1}, X_{1}]]/6$$

$$+ [Y_{1}, [X'_{1}, X_{1}]]/6 + [Y_{1}, [Y_{1}, X_{1}]]/6 - [X_{1}, [X'_{1}, X_{1}]]/3 - [X_{1}, [Y_{1}, X_{1}]]/3.$$

Note that

(a)
$$u_i(X'_1, \ldots, X'_i, Y_1, \ldots, Y_i, X_1, \ldots, X_i) = X'_i - X_i + Y_i + u'_i$$
 where $u'_i = u'_i(X'_1, \ldots, X'_{i-1}, Y_1, \ldots, Y_{i-1}, X_1, \ldots, X_{i-1})$ is a Lie polynomial in $X'_1, \ldots, X'_{i-1}, Y_1, \ldots, Y_{i-1}, X_1, \ldots, X_{i-1}$.

1.2. We now fix $r \geq 2$. We write r = 2r' if r is even and r = 2r' + 1 if r is odd. We always assume that $p \geq r$. Then for any $X \in \mathfrak{g}$ and any $m \geq 1$, the exponential $e^{\epsilon^m X} \in G_r$ is well defined. For any $X_1, X_2, \ldots, X_{r-1}$ in \mathfrak{g} we set

$$|X_1, X_2, \dots, X_{r-1}| = e^{\epsilon X_1} e^{\epsilon^2 X_2} \dots e^{\epsilon^{r-1} X_{r-1}} \in G_r.$$

We have an isomorphism of algebraic varieties

$$G \times \mathfrak{g}^{r-1} \xrightarrow{\sim} G_r$$

given by

$$(x, X_1, X_2, \dots, X_{r-1}) \mapsto x|X_1, X_2, \dots, X_{r-1}| = |x X_1, x X_2, \dots, x X_{r-1}|x.$$

This restricts to isomorphisms of algebraic varieties $B \times \mathfrak{b}^{r-1} \xrightarrow{\sim} B_r$, $U \times \mathfrak{n}^{r-1} \xrightarrow{\sim} U_r$, $T \times \mathfrak{t}^{r-1} \xrightarrow{\sim} T_r$. (The last isomorphism is the same as one in 0.2.)

Let $X_1, X_2, \ldots, X_{r-1}$ and $Y_1, Y_2, \ldots, Y_{r-1}$ be two sequences in \mathfrak{g} and let x, y be in G. We have

$$(x|X_1,\ldots,X_{r-1}|)(y|Y_1,\ldots,Y_{r-1}|)=xy|Z_1,\ldots,Z_{r-1}|$$

where $Z_i = z_i(yX_1, \dots, yX_i, Y_1, \dots, Y_i) \in \mathfrak{g}$ $(i = 1, \dots, r - 1)$ with notation of 1.1 and where [,] becomes the Lie bracket in \mathfrak{g} ; note that Z_i are well defined since $p \geq r$. Moreover, we have

$$(x|X_1,\ldots,X_{r-1}|)(y|Y_1,\ldots,Y_{r-1}|)(x|X_1,\ldots,X_{r-1}|)^{-1} = xyx^{-1}|U_1,\ldots,U_{r-1}|$$

where $U_i = {}^x u_i({}_y X_1, \ldots, {}_y X_i, Y_1, \ldots, Y_i, X_1, \ldots, X_i) \in \mathfrak{g}$ $(i = 1, \ldots, r - 1)$ with notation of 1.1); note that U_i are well defined since $p \geq r$.

1.3. Let $\phi: E \to X$ be an algebraic vector bundle with fibres of constant dimension N. Let $f: E \to \mathbf{k}$ be a morphism such that for any $x \in X$ the restriction $f^x: \phi^{-1}(x) \to \mathbf{k}$ is affine linear. Let X_0 be the set of all $x \in X$ such that f^x is a

constant (depending of x) and let $f_0: X_0 \to \mathbf{k}$ be such that $f(e) = f_0(\phi(e))$ for all $e \in \phi^{-1}(X_0)$. Let $j: X_0 \to X$ be the (closed) imbedding. We show:

(a)
$$\phi_! \mathcal{L}_f \cong j_! \mathcal{L}_{f_0}[-2N]$$
.

For any $x \in X - X_0$ we have $H_c^i(\phi^{-1}(x), \mathcal{L}_f) = 0$ for all i. Hence $\phi_! \mathcal{L}_f|_{X - X_0} = 0$. We are reduced to the case where $X = X_0$. In this case we have $\mathcal{L}_f = \phi^* \mathcal{L}_{f_0}$ hence

$$\phi_! \mathcal{L}_f = \phi_! \phi^* \mathcal{L}_{f_0} = \mathcal{L}_{f_0} \otimes \phi_! \phi^* \bar{\mathbf{Q}}_l \cong \mathcal{L}_{f_0}[-2N],$$

as required. (We ignore Tate twists.)

If in addition we are given a local system \mathcal{F} on X and we denote $\phi^*\mathcal{F}$ and $j^*\mathcal{F}$ again by \mathcal{F} , then from (a) we have immediately

(b)
$$\phi_!(\mathcal{F} \otimes \mathcal{L}_f) \cong j_!(\mathcal{F} \otimes \mathcal{L}_{f_0})[-2N].$$

1.4. In the rest of this paper we assume that a nondegenerate symmetric bilinear invariant form $\langle , \rangle : \mathfrak{g} \times \mathfrak{g} \to \mathbf{k}$ is given and that a sequence $A_1, A_2, \ldots, A_{r-1}$ of elements of \mathfrak{t} is given such that A_{r-1} is regular semisimple. This requires a further restriction on p in addition to the restriction $p \geq r$.

For a subspace E of \mathfrak{g} we set $E^{\perp} = \{ \xi \in \mathfrak{g}; \langle \xi, E \rangle = 0 \}.$

Let \mathcal{X} be the variety of all

$$(Tx, y, X_1, X_2, \dots, X_{r-1}, Y_1, Y_2, \dots, Y_{r-1}) \in (T \setminus G) \times G \times \mathfrak{g}^{2r-2}$$

such that $xyx^{-1} \in T$ and

$$u_j(yX_1, ..., yX_j, Y_1, ..., Y_j, X_1, ..., X_j) \in {}_x\mathfrak{t} \text{ for } 1 \le j \le r' - 1,$$

$$u_j(yX_1,\ldots,yX_j,Y_1,\ldots,Y_j,X_1,\ldots,X_j) \in {}_x\mathfrak{b} \text{ if } j=r' \text{ and } r \text{ is odd.}$$

We have a diagram

$$G_r \stackrel{\pi}{\leftarrow} \mathcal{X} \stackrel{h}{\rightarrow} \mathbf{k}$$

where $\pi(Tx, y, X_1, \dots, X_{r-1}, Y_1, \dots, Y_{r-1}) = y|Y_1, \dots, Y_{r-1}|,$

$$h(Tx, y, X_1, \dots, X_{r-1}, Y_1, \dots, Y_{r-1})$$

$$= \sum_{j \in [1, r-1]} \langle {}_x A_j, u_j ({}_y X_1, \dots, {}_y X_j, Y_1, \dots, Y_j, X_1, \dots, X_j) \rangle.$$

(Note that if x is replaced by tx, $(t \in T)$ in the last sum, the sum remains unchanged since ${}_{t}A_{j} = A_{j}$ for all j.) We define $\iota : \mathcal{X} \to T$ by

$$\iota(Tx, y, X_1, X_2, \dots, X_{r-1}, Y_1, Y_2, \dots, Y_{r-1}) = xyx^{-1}$$

and we set $\tilde{\mathcal{E}} = \iota^* \mathcal{E}$. Let $K = \pi_!(\tilde{\mathcal{E}} \otimes \mathcal{L}_h) \in \mathcal{D}(G_r)$. Via the identification $G_r = G \times \mathfrak{g}^{r-1}$ (see 1.2) we can regard G_r as a vector bundle over G with fibre

 \mathfrak{g}^{r-1} endowed with a nondegenerate symmetric bilinear form. Hence the Fourier-Deligne transform $\hat{K} \in \mathcal{D}(G_r)$ along these fibres is well defined. More explicitly, for i=1,2 we have the diagram $G_r \stackrel{\rho_i}{\longleftarrow} G_r \times_G G_r \stackrel{h'}{\longrightarrow} \mathbf{k}$ where ρ_i is the projection to the i-th factor and

$$h'(x|Y_1,\ldots,Y_{r-1}|,x|R_1,R_2,\ldots,R_{r-1}|) = \sum_{j\in[1,r-1]} \langle Y_j,R_j\rangle.$$

Then $\hat{K} = \rho_{2!}(\rho_1^* K \otimes \mathcal{L}_{h'})[(r-1)\Delta]$ that is,

$$\hat{K} = \rho_{2!}(\rho_1^* \pi_! (\tilde{\mathcal{E}} \otimes \mathcal{L}_h) \otimes \mathcal{L}_{h'})[(r-1)\Delta].$$

Let $\tilde{\mathcal{X}}$ be the variety of all

$$(Tx, y, X_1, X_2, \dots, X_{r-1}, Y_1, Y_2, \dots, Y_{r-1}, R_1, R_2, \dots, R_{r-1}) \in (T \setminus G) \times G \times \mathfrak{g}^{3r-3}$$
 such that $xyx^{-1} \in T$ and

$$u_j({}_yX_1,\ldots,{}_yX_j,Y_1,\ldots,Y_j,X_1,\ldots,X_j)\in{}_x\mathfrak{t} \text{ for } 1\leq j\leq r'-1,$$

$$u_j({}_yX_1,\ldots,{}_yX_j,Y_1,\ldots,Y_j,X_1,\ldots,X_j)\in{}_x\mathfrak{b} \text{ if } j=r' \text{ and } r \text{ is odd }.$$

We have a cartesian diagram

$$\tilde{\mathcal{X}} \xrightarrow{\tilde{\rho}_1} \mathcal{X}$$
 $\sigma \downarrow \qquad \qquad \pi \downarrow$
 $G_r \times_G G_r \xrightarrow{\rho_1} G_r$

where

$$\tilde{\rho}_1(Tx, y, X_1, \dots, X_{r-1}, Y_1, \dots, Y_{r-1}, R_1, \dots, R_{r-1})$$

$$= (Tx, y, X_1, \dots, X_{r-1}, Y_1, \dots, Y_{r-1}),$$

$$\sigma(Tx, y, X_1, \dots, X_{r-1}, Y_1, \dots, Y_{r-1}, R_1, \dots, R_{r-1})$$

= $(y|Y_1, \dots, Y_{r-1}|, y|R_1, \dots, R_{r-1}|).$

It follows that

$$\hat{K} = \rho_{2!}(\sigma_{!}(\tilde{\mathcal{E}} \otimes \tilde{\rho}_{1}^{*}\mathcal{L}_{h} \otimes \mathcal{L}_{h'})[(r-1)\Delta]
= \rho_{2!}\sigma_{!}(\tilde{\mathcal{E}} \otimes \mathcal{L}_{\tilde{h}'} \otimes \mathcal{L}_{\tilde{h}''}) = (\rho_{2}\sigma)_{!}(\tilde{\mathcal{E}} \otimes \mathcal{L}_{\tilde{h}})[(r-1)\Delta]$$

where $\tilde{h}'' = h \operatorname{tr}_1 : \tilde{\mathcal{X}} \to \mathbf{k}$, $\tilde{h}' = h' \sigma : \tilde{\mathcal{X}} \to \mathbf{k}$, $\tilde{h} = \tilde{h}' + \tilde{h}'' : \tilde{\mathcal{X}} \to \mathbf{k}$ and the inverse image of $\tilde{\mathcal{E}}$ under $\tilde{\mathcal{X}} \to T$,

$$(Tx, y, X_1, \dots, X_{r-1}, Y_1, \dots, Y_{r-1}, R_1, \dots, R_{r-1}) \mapsto xyx^{-1}$$

is denoted again by $\tilde{\mathcal{E}}$. Thus,

$$\hat{K} = \pi'_!(\tilde{\mathcal{E}} \otimes \mathcal{L}_{\tilde{h}})[(r-1)\Delta]$$

where $\pi': \tilde{\mathcal{X}} \to G_r$ and $\tilde{h}: \tilde{\mathcal{X}} \to \mathbf{k}$ are given by

$$\pi'(Tx, y, X_1, \dots, X_{r-1}, Y_1, \dots, Y_{r-1}, R_1, \dots, R_{r-1}) = y|R_1, \dots, R_{r-1}|,$$

$$\tilde{h}(Tx, y, X_1, \dots, X_{r-1}, Y_1, \dots, Y_{r-1}, R_1, \dots, R_{r-1})
= \sum_{j \in [1, r-1]} \langle Y_j, R_j \rangle + \sum_{j \in [1, r-1]} \langle {}_x A_j, u_j({}_y X_1, \dots, {}_y X_j, Y_1, \dots, Y_j, X_1, \dots, X_j) \rangle.$$

1.5. Let $\tilde{\mathcal{X}}''$ be the variety of all

$$(Tx, y, X_1, X_2, \dots, X_{r-2}, Y_1, Y_2, \dots, Y_{r-2}, R_1, R_2, \dots, R_{r-1})$$

 $\in (T \setminus G) \times G \times \mathfrak{g}^{(r-2)+(r-2)+(r-1)}$

such that $xyx^{-1} \in T$ and

$$u_j(yX_1, \dots, yX_j, Y_1, \dots, Y_j, X_1, \dots, X_j) \in {}_x\mathfrak{t} \text{ for } 1 \le j \le r' - 1,$$

$$u_j(_yX_1,\ldots,_yX_j,Y_1,\ldots,Y_j,X_1,\ldots,X_j)\in _x\mathfrak{b}$$
 if $j=r'$ and r is odd.

(The equations make sense since if $1 \le j \le r' - 1$ then $j \le r - 2$ and since when r is odd we have $r' = r - r' - 1 \le r - 2$.) We define $\mu : \tilde{\mathcal{X}} \to \tilde{\mathcal{X}}''$ by

$$(Tx, y, X_1, X_2, \dots, X_{r-1}, Y_1, Y_2, \dots, Y_{r-1}, R_1, R_2, \dots, R_{r-1}) \mapsto (Tx, y, X_1, X_2, \dots, X_{r-2}, Y_1, Y_2, \dots, Y_{r-2}, R_1, R_2, \dots, R_{r-1}).$$

This is a vector bundle; for a fixed

$$s = (Tx, y, X_1, X_2, \dots, X_{r-2}, Y_1, Y_2, \dots, Y_{r-2}, R_1, R_2, \dots, R_{r-1}) \in \tilde{\mathcal{X}}'',$$

the fibre $\mu^{-1}(s)$ can be identified with \mathfrak{g}^2 with coordinates X_{r-1}, Y_{r-1} . The restriction of \tilde{h} to $\mu^{-1}(s)$ is of the form

$$(X_{r-1}, Y_{r-1}) \mapsto \langle Y_{r-1}, R_{r-1} + {}_{x}A_{r-1} + c$$

where c is a constant depending on s. We use that $\langle {}_xA_j, {}_yX_{r-1} - X_{r-1} \rangle = 0$; this holds since ${}^{yx^{-1}}A_{r-1} = {}^{x^{-1}}A_{r-1}$ (recall that $xyx^{-1} \in T$). Thus this restriction is affine linear and is constant precisely when $R_{r-1} = -{}_xA_{r-1}$. Hence the results in 1.3 are applicable. Let $\bar{\mathcal{X}}$ be the variety of all

$$(Tx, y, X_1, X_2, \dots, X_{r-2}, Y_1, Y_2, \dots, Y_{r-2}, R_1, R_2, \dots, R_{r-1}) \in \tilde{\mathcal{X}}''$$

such that $R_{r-1} = -_x A_{r-1}$. We define $\bar{\pi}: \bar{\mathcal{X}} \to G_r$, $\bar{h}: \bar{\mathcal{X}} \to \mathbf{k}$ by

$$\bar{\pi}(Tx, y, X_1, X_2, \dots, X_{r-2}, Y_1, Y_2, \dots, Y_{r-2}, R_1, R_2, \dots, R_{r-1})$$

$$= y|R_1, R_2, \dots, R_{r-1}|,$$

$$\bar{h}(Tx, y, X_1, X_2, \dots, X_{r-2}, Y_1, Y_2, \dots, Y_{r-2}, R_1, R_2, \dots, R_{r-1})
= \sum_{j \in [1, r-2]} \langle Y_j, R_j \rangle + \sum_{j \in [1, r-2]} \langle {}_x A_j, u_j({}_y X_1, \dots, {}_y X_j, Y_1, \dots, Y_j, X_1, \dots, X_j) \rangle
+ \langle {}_x A_{r-1}, u'_{r-1}({}_y X_1, \dots, {}_y X_{r-2}, Y_1, \dots, Y_{r-2}, X_1, \dots, X_{r-2}) \rangle,$$

with notation of 1.1(a). The inverse image of \mathcal{E} under $\bar{\mathcal{X}} \to T$,

$$(Tx, y, X_1, X_2, \dots, X_{r-2}, Y_1, Y_2, \dots, Y_{r-2}, R_1, R_2, \dots, R_{r-1}) \mapsto xyx^{-1}$$

is denoted again by $\tilde{\mathcal{E}}$. Then from 1.3(b) we deduce

(a)
$$\hat{K} = \bar{\pi}_!(\tilde{\mathcal{E}} \otimes \mathcal{L}_{\bar{h}})[(r-5)\Delta].$$

Let $\mathcal{C} \subset \mathfrak{g}$ be the G-orbit of $-A_{r-1}$ for the adjoint action, a regular semisimple orbit. Let $V = \{(y, R) \in G \times \mathcal{C}; {}^{y}R = R\}$. Let Σ be the support of \hat{K} (a closed subset of G_r). From (a) we see that

$$\Sigma \subset \{y | R_1, R_2, \dots, R_{r-1} | \in G_r; (y, R_{r-1}) \in V\}.$$

It is likely that Σ is a smooth subvariety of G_r , isomorphic to a vector bundle over V with fibres isomorphic to $(\mathfrak{t}^{\perp})^{r-2}$. We will we show that this is the case at least when $r \in \{2, 3, 4\}$. Moreover, it is likely that when r is even, \hat{K} is up to shift the intersection cohomology complex associated to a local system of rank 1 on the smooth closed subvariety Σ . We will show that this is the case when $r \in \{2, 4\}$ and that the analogous statement is not true when r = 3.

1.6. The method used in 1.5 to eliminate the variables X_{r-1}, Y_{r-1} can be used to eliminate all variables $X_{r-r'}, \ldots, X_{r-1}, Y_{r-r'}, \ldots, Y_{r-1}$. Let $\tilde{\mathcal{X}}_1''$ be the variety of all

$$(Tx, y, X_1, X_2, \dots, X_{r-r'-1}, Y_1, Y_2, \dots, Y_{r-r'-1}, R_1, R_2, \dots, R_{r-1})$$

 $\in (T \setminus G) \times G \times \mathfrak{g}^{r-1+2(r-r'-1)}$

such that $xyx^{-1} \in T$ and

$$u_j({}_{y}X_1,\ldots,{}_{y}X_j,Y_1,\ldots,Y_j,X_1,\ldots,X_j) \in {}_{x}\mathfrak{t} \text{ for } 1 \leq j \leq r'-1,$$

 $u_j({}_{y}X_1,\ldots,{}_{y}X_j,Y_1,\ldots,Y_j,X_1,\ldots,X_j) \in {}_{x}\mathfrak{b} \text{ if } j=r' \text{ and } r \text{ is odd }.$

(The equations make sense since if $1 \le j \le r' - 1$ then $j \le r - r' - 1$ and since when r is odd we have r' = r - r' - 1.) We define $\mu_1 : \tilde{\mathcal{X}} \to \tilde{\mathcal{X}}_1''$ by

$$(Tx, y, X_1, X_2, \dots, X_{r-1}, Y_1, Y_2, \dots, Y_{r-1}, R_1, R_2, \dots, R_{r-1}) \mapsto (Tx, y, X_1, X_2, \dots, X_{r-r'-1}, Y_1, Y_2, \dots, Y_{r-r'-1}, R_1, R_2, \dots, R_{r-1}).$$

This is a vector bundle; for a fixed

$$s = (Tx, y, X_1, X_2, \dots, X_{r-r'-1}, Y_1, Y_2, \dots, Y_{r-r'-1}, R_1, R_2, \dots, R_{r-1}) \in \bar{\mathcal{X}},$$

the fibre $\mu^{-1}(s)$ can be identified with $\mathfrak{g}^{2r'}$ with coordinates

$$X_{r-r'}, do, X_{r-1}, Y_{r-r'}, \dots, Y_{r-1}.$$

The restriction of \tilde{h} to $\mu^{-1}(s)$ in an affine linear function. This follows from the fact that for $j \in [1, r-1]$, the Lie polynomial

$$u_j(X'_1,\ldots,X'_j,Y_1,\ldots,Y_j,X_1,\ldots,X_j)$$

is a linear combination of terms which are iterated brackets of indeterminates X'_h, Y_h, X_h with sum of indices equal to j (hence $\leq r-1$) hence containing at most one X'_h, Y_h or X_h with $h \geq r-r'$. (If they contained more than one, we would have $2(r-r') \leq r-1$ hence $r \leq 2r'-1$, a contradiction.) Hence the results in 1.3 are applicable and they result in a description of \hat{K} which does not involve $X_{r-r'}, \ldots, X_{r-1}, Y_{r-r'}, \ldots, Y_{r-1}$. But even after this method is applied, one needs further arguments to analyze \hat{K} , as we will see in Sections 2 and 3.

2. The cases
$$r = 2$$
 and $r = 4$

2.1. In this subsection we assume that r=2. Now

$$\bar{\mathcal{X}} = \{ (Tx, y, R_1) \in (T \backslash G) \times G \times \mathfrak{g}; xyx^{-1} \in T, R_1 = -_x A_1. \}$$

We have $\bar{\pi}(Tx, y, R_1) = y|R_1|$ and $\bar{h}: \bar{\mathcal{X}} \to \mathbf{k}$ is identically 0. Using 1.5(a) we have

(a)
$$\hat{K} = \bar{\pi}_! \tilde{\mathcal{E}}[-3\Delta]$$

Note that $\bar{\pi}$ defines an isomorphism of $\bar{\mathcal{X}}$ with

$$\mathcal{Z} = \{y|R_1| \in G_2; R_1 \in \mathcal{C}, {}^{y}R_1 = R_1\}$$

and that \mathcal{Z} is closed in G_2 (we use that \mathcal{C} is closed in \mathfrak{g}). Moreover \mathcal{Z} is a smooth subvariety of G_2 and $\bar{\pi}$ can be viewed as the imbedding $\mathcal{Z} \to G_2$. Since \mathcal{Z} is closed in G_2 and smooth, irreducible of dimension Δ we see that $\bar{\pi}_!\tilde{\mathcal{E}}[\Delta]$ is a simple perverse sheaf on G_2 . Hence $\hat{K}[4\Delta]$ is a simple perverse sheaf on G_2 with support $\Sigma = \mathcal{Z}$. Using Laumon's theorem [La], it follows that

(b) $K[4\Delta]$ is a simple perverse sheaf on G_2 .

2.2. We now assume (until the end of 2.5) that r=4. Now $\bar{\mathcal{X}}$ is the variety of all

$$(Tx, y, X_1, X_2, Y_1, Y_2, R_1, R_2, R_3) \in (T \backslash G) \times G \times \mathfrak{g}^7$$

such that $xyx^{-1} \in T$, $_{y}X_{1} - X_{1} + Y_{1} \in _{x}\mathfrak{t}$ and $R_{3} = -_{x}A_{3}$. We have

$$\bar{\pi}(Tx, y, X_1, X_2, Y_1, Y_2, R_1, R_2, R_3) = y|R_1, R_2, R_3|,$$

$$\begin{split} &\bar{h}(Tx,y,X_1,X_2,Y_1,Y_2,R_1,R_2,R_3) \\ &= \langle Y_1,R_1 \rangle + \langle Y_2,R_2 \rangle + \langle_x A_1,{}_y X_1 - X_1 + Y_1 \rangle \\ &+ \langle_x A_2,{}_y X_2 - X_2 + Y_2 + [{}_y X_1,Y_1]/2 - [{}_y X_1,X_1]/2 - [{}_Y (X_1,X_1)/2 - [{}_Y (X_1,X_1)/2 - [{}_Y (X_1,X_1)/2 - {}_Y (X_1,X_1,X_1)/6 \\ &+ \langle_x A_3,[{}_y X_2,Y_1] + [X_2,X_1] - [{}_y X_2,X_1] - [{}_y X_1,[{}_y X_1,[{}_y X_1,Y_1]]/6 \\ &- [Y_1,[{}_y X_1,Y_1]]/3 + [X_1,[{}_y X_1,Y_1]]/2 + [{}_y X_1,[{}_y X_1,X_1]]/6 + [{}_y X_1,[{}_Y (X_1,X_1)]/3 - [X_1,[{}_Y (X_1,X_1)]/3 \rangle. \end{split}$$

We make a change of variable $Y_1 = X_1 - {}_y X_1 + {}_x \tau$ where $\tau \in \mathfrak{t}$. Then $\bar{\mathcal{X}}$ becomes the variety of all

$$(Tx, y, \tau, X_1, X_2, Y_2, R_1, R_2, R_3) \in (T \backslash G) \times G \times \mathfrak{t} \times \mathfrak{g}^6$$

such that $xyx^{-1} \in T$ and and $R_3 = -_xA_3$. Now $\bar{\pi}: \bar{\mathcal{X}} \to G_4$ and $\bar{h}: \bar{\mathcal{X}} \to \mathbf{k}$ become

$$\bar{\pi}(Tx, y, \tau, X_1, X_2, Y_2, R_1, R_2, R_3) = y|R_1, R_2, R_3|,$$

$$\begin{split} &\bar{h}(Tx,y,\tau,X_1,X_2,Y_2,R_1,R_2,R_3) \\ &= \langle X_1 - {}_yX_1 + {}_x\tau,R_1 \rangle + \langle Y_2,R_2 \rangle + \langle {}_xA_1,{}_x\tau \rangle \\ &+ \langle {}_xA_2,{}_yX_2 - X_2 + Y_2 + [{}_yX_1,X_1 + {}_x\tau]/2 - [{}_yX_1,X_1]/2 - [{}_-yX_1 + {}_x\tau,X_1]/2 \rangle \\ &+ \langle {}_xA_3,[{}_yX_2,X_1 - {}_yX_1 + {}_x\tau] + [X_2,X_1] - [{}_yX_2,X_1] - [Y_2,X_1] \\ &- [{}_yX_1,[{}_yX_1,X_1 + {}_x\tau]]/6 - [X_1 - {}_yX_1 + {}_x\tau,[{}_yX_1,X_1 + {}_x\tau]]/3 \\ &+ [X_1,[{}_yX_1,X_1 + {}_x\tau]]/2 + [{}_yX_1,[{}_yX_1,X_1]]/6 + [{}_yX_1,[{}_-yX_1 + {}_x\tau,X_1]]/6 \\ &+ [X_1 - {}_yX_1 + {}_x\tau,[{}_yX_1,X_1]]/6 - [X_1,[{}_-yX_1 + {}_x\tau,X_1]]/3 \rangle. \end{split}$$

For i=1,2,3 we have $[A_i,\tau]=0$ since \mathfrak{t} is abelian; it follows that $\langle A_i,[\xi,\tau]\rangle=0$ for any $\xi\in\mathfrak{g}$. We also have $\langle {}_xA_i,{}_yX_j-X_j\rangle=0$; indeed the left hand side is $\langle {}^{yx^{-1}}A_i-{}^{x^{-1}}A_i,X_j\rangle$ and this is zero since ${}^{xyx^{-1}}A_i=A_i$ (recall that $xyx^{-1}\in T$). Similarly we have $\langle {}_xA_3,[{}_yX_2,-{}_yX_1]+[X_2,X_1]\rangle=0$; indeed, the left hand side is $\langle {}^{yx^{-1}}A_3-{}^{x^{-1}}A_3,[X_1,X_2]\rangle=0$. We see that

$$\begin{split} \bar{h}(Tx,y,\tau,X_1,X_2,Y_2,R_1,R_2,R_3) &= \langle X_1 - {}_y X_1 + {}_x \tau, R_1 \rangle \\ &+ \langle Y_2,R_2 \rangle + \langle {}_x A_1,{}_x \tau \rangle + \langle {}_x A_2,Y_2 - [-{}_y X_1,X_1]/2 \rangle \\ &+ \langle {}_x A_3, -[Y_2,X_1] + [{}_y X_1,[{}_y X_1,{}_x \tau]]/6 + [X_1,[X_1,{}_x \tau]]/6 \\ &+ [X_1,[{}_y X_1,{}_x \tau]]/6 + [{}_y X_1,[{}_y X_1,X_1]]/6 + [X_1,[{}_y X_1,X_1]]/6 \rangle. \end{split}$$

Next we use the identity

$$\langle {}_{x}A_{3}, [Z, [Z', {}_{x}\tau]] \rangle = \langle {}_{x}\tau, [Z, [Z', {}_{x}A_{3}]] \rangle$$

for any Z, Z' in \mathfrak{g} . (This follows from $[{}_xA_3, {}_x\tau] = 0$.) We also use the equality

$$\langle_x A_3, [_y X_1, [_y X_1, _x \tau]]\rangle = \langle_x A_3, [X_1, [X_1, _x \tau]]\rangle.$$

(Since $yx^{-1}\tau = x^{-1}\tau$, $yx^{-1}A_3 = x^{-1}A_3$, the left hand side is

$$\langle {}_{x}A_{3,\,y}[X_{1},[X_{1},{}_{x}\tau]]\rangle = \langle {}^{yx^{-1}}A_{3},[X_{1},[X_{1},{}_{x}\tau]]\rangle = \langle {}_{x}A_{3},[X_{1},[X_{1},{}_{x}\tau]]\rangle,$$

as required.) We see that

$$\begin{split} \bar{h}(Tx,y,\tau,X_1,X_2,Y_2,R_1,R_2,R_3) &= \langle Y_2,R_2 + {}_xA_2 - [X_1,{}_xA_3] \rangle \\ &+ \langle {}_x\tau,R_1 + {}_xA_1 + [X_1,[X_1,{}_xA_3]]/6 + [X_1,[{}_yX_1,{}_xA_3]]/3 \rangle + \langle X_1 - {}_yX_1,R_1 \rangle \\ &+ \langle {}_xA_2,[{}_yX_1,X_1]/2 \rangle + \langle {}_xA_3,[{}_yX_1,[{}_yX_1,X_1]]/6 + [X_1,[{}_yX_1,X_1]]/6 \rangle. \end{split}$$

2.3. Let $\mathcal{T} = \{(Tx, y, X_1, R_1, R_2, R_3) \in (T \setminus G) \times G \times \mathfrak{g}^4; xyx^{-1} \in T, R_3 +_x A_3 = 0\}.$ Let \mathcal{T}_0 be the closed subset of \mathcal{T} consisting of all $(Tx, y, X_1, R_1, R_2, R_3)$ such that

$$R_2 + {}_x A_2 - [X_1, {}_x A_3] = 0,$$

$$R_1 + {}_xA_1 + [X_1, [X_1, {}_xA_3]]/3 + [X_1, [{}_yX_1, {}_xA_3]]/6 \in ({}_x\mathfrak{t})^{\perp}.$$

Define $\tilde{h}_0: \mathcal{T}_0 \to \mathbf{k}$ by

$$\tilde{h}_0(Tx, y, X_1, R_1, R_2, R_3) = \langle X_1 - {}_y X_1, R_1 \rangle + \langle {}_x A_2, [{}_y X_1, X_1]/2 \rangle + \langle {}_x A_3, [{}_y X_1, [{}_y X_1, X_1]]/6 + [X_1, [{}_y X_1, X_1]]/6 \rangle.$$

Define $\bar{\mathcal{X}} \xrightarrow{\phi} \mathcal{T} \xrightarrow{\phi'} G_4$ by

$$\phi(Tx, y, \tau, X_1, X_2, Y_2, R_1, R_2, R_3) = (Tx, y, X_1, R_1, R_2, R_3),$$

$$\phi'(Tx, y, X_1, R_1, R_2, R_3) = y|R_1, R_2, R_3|$$

so that $\pi' = \phi' \phi$. Now ϕ is a vector bundle with fibres of dimension $N = 2\Delta + \delta$. Note that the restriction of $\tilde{h} : \bar{\mathcal{X}} \to \mathbf{k}$ to any fibre of ϕ is affine linear and this restriction is constant precisely at the fibres over points in \mathcal{T}_0 ; moreover the constant is given by the value of \tilde{h}_0 . Using 1.3(b), we see that

(a)
$$\hat{K} = j_!(\tilde{\mathcal{E}} \otimes \mathcal{L}_{\tilde{h}_0})[-5\Delta - 2\delta]$$

where $j: \mathcal{T}_0 \to G_4$ is the restriction of ϕ' .

- **2.4.** Let R be a regular semisimple element in \mathfrak{g} . Let \mathfrak{t}_R be the centralizer of R in \mathfrak{g} ; let T_R be the centralizer of R in T. For any $z \in T_R$ we define a linear map $\Xi_{R,z}: \mathfrak{t}_R^{\perp} \to \mathfrak{g}/\mathfrak{t}_R^{\perp}$ by $\Xi_{R,z}(\xi) = [X, z^{\sharp}] \mod \mathfrak{t}_R^{\perp}$ where X is any element of \mathfrak{g} such that $\xi = [X, R]$. Note that such X exists; if X' is a another element such that $\xi = [X', R]$, then $z^{-1}(X' X) \in \mathfrak{t}_R$ hence $X' = X + \rho$ for some $\rho \in \mathfrak{t}_R$ and $[X', z^{\sharp}] = [X, z^{\sharp}] + [\rho, z^{\sharp}]$. Since $[\rho, z^{\sharp}] \in \mathfrak{t}_R^{\perp}$ we see that our map $\Xi_{R,z}$ is well defined.
- **2.5.** Let $\mathcal{C} \subset \mathfrak{g}$ be the G-orbit of $-A_3$ for the adjoint action, a regular semisimple orbit. Let \mathcal{Z} be the subset of G_4 consisting of all $y|R_1, R_2, R_3|$ such that

 $R_3 \in \mathcal{C};$

 $y \in T_{R_3}$;

 $R_2 + {}_xA_2 \in \mathfrak{t}_{R_3}^{\perp}$ where $Tx \in T \backslash G$ is uniquely determined by $R_3 = -{}_xA_3$;

 $R_1 + {}_xA_1 + \Xi_{R_3,1}(R'_2)/3 + \Xi_{R_3,y^{-1}}(R'_2)/6 = 0$ in $\mathfrak{g}/\mathfrak{t}_{R_3}^{\perp}$ where $R'_2 = R_2 + {}_xA_2$. Note that \mathcal{Z} is closed in G_4 (we use that \mathcal{C} is closed in \mathfrak{g}). Moreover \mathcal{Z} is a smooth subvariety of G_4 . Indeed, $V = \{(y,R) \in G \times \mathcal{C}; y \in T_R\}$ is clearly smooth and \mathcal{Z} is a fibration over V with fibres isomorphic to $\mathfrak{t}^{\perp} \times \mathfrak{t}^{\perp}$.

From the definitions we see that $\mathcal{T}_0 = \phi'^{-1}\mathcal{Z}$ and that the restriction of ϕ' defines a morphism $\phi': \mathcal{T}_0 \to \mathcal{Z}$ whose fibres are exactly the orbits of the free \mathfrak{t} -action on \mathcal{T}_0 given by

$$\tau: (Tx, y, X_1, R_1, R_2, R_3) \mapsto (Tx, y, X_1 + {}_x\tau, R_1, R_2, R_3).$$

Clearly, the local system $\tilde{\mathcal{E}}$ on \mathcal{T}_0 is the inverse image under $\underline{\phi}'$ of a local system on \mathcal{Z} denoted again by $\tilde{\mathcal{E}}$. Next we show that

(a) the function $h_0: \mathcal{T}_0 \to \mathbf{k}$ is constant on each orbit of the \mathfrak{t} -action on \mathcal{T}_0 that is, if $\tau \in \mathfrak{t}$ and $(Tx, y, X_1, R_1, R_2, R_3) \in \mathcal{T}_0$, then

$$\tilde{h}_0(Tx, y, X_1 + {}_x\tau, R_1, R_2, R_3) = \tilde{h}_0(Tx, y, X_1, R_1, R_2, R_3).$$

Thus, we must show that

$$\langle X_{1} +_{x}\tau -_{y}X_{1} -_{x}\tau, R_{1} \rangle + \langle_{x}A_{2}, [_{y}X_{1} +_{x}\tau, X_{1} +_{x}\tau]/2 \rangle$$

$$+ \langle_{x}A_{3}, [_{y}X_{1} +_{x}\tau, [_{y}X_{1} +_{x}\tau, X_{1} +_{x}\tau]]/6 + [X_{1} +_{x}\tau, [_{y}X_{1} +_{x}\tau, X_{1} +_{x}\tau]]/6 \rangle$$

$$= \langle X_{1} -_{y}X_{1}, R_{1} \rangle + \langle_{x}A_{2}, [_{y}X_{1}, X_{1}]/2 \rangle$$

$$+ \langle_{x}A_{3}, [_{y}X_{1}, [_{y}X_{1}, X_{1}]]/6 + [X_{1}, [_{y}X_{1}, X_{1}]]/6 \rangle.$$

(We have used that $xy\tau = x\tau$.) It is enough to show that

$$\begin{split} &\langle_x A_2, [_x\tau, X_1]/2\rangle + \langle_x A_2, [_y X_1, _x\tau]/2\rangle \\ &+ \langle_x A_3, [_y X_1, [_y X_1, _x\tau]]/6 + [_y X_1, [_x\tau, X_1]]/6 + [_x\tau, [_y X_1, _x\tau]]/6 \\ &+ [_x\tau, [_y X_1, X_1]]/6 + [_x\tau, [_x\tau, X_1]]/6 + [X_1, [_y X_1, _x\tau]]/6 + [X_1, [_x\tau, X_1]]/6 \\ &+ [_x\tau, [_y X_1, X_1]]/6 + [_x\tau, [_y X_1, _x\tau]]/6 + [_x\tau, [_x\tau, X_1]]/6\rangle = 0. \end{split}$$

Since $\langle {}_xA_i, [{}_x\tau, \xi] \rangle = 0$ for any $\xi \in \mathfrak{g}$, we see that it is enough to show

$$\langle {}_{x}A_{3}, [{}_{y}X_{1}, [{}_{y}X_{1}, {}_{x}\tau]]/6 + [{}_{y}X_{1}, [{}_{x}\tau, X_{1}]]/6 + [X_{1}, [{}_{y}X_{1}, {}_{x}\tau]]/6 + [X_{1}, [{}_{x}\tau, X_{1}]]/6 \rangle = 0.$$

It is enough to show the following two equalities:

(b)
$$\langle {}_{x}A_{3}, [{}_{y}X_{1}, [{}_{y}X_{1}, {}_{x}\tau]] + [X_{1}, [{}_{x}\tau, X_{1}]] \rangle = 0,$$

(c)
$$\langle {}_{x}A_{3}, [{}_{y}X_{1}, [{}_{x}\tau, X_{1}]] + [X_{1}, [{}_{y}X_{1}, {}_{x}\tau]] \rangle = 0.$$

The left hand side of (b) is

$$\langle {}_{x}A_{3,y}[X_{1},[X_{1},x\tau]]-[X_{1},[X_{1},x\tau]]\rangle = \langle {}^{yx^{-1}}A_{3}-{}^{x^{-1}}A_{3},[X_{1},[X_{1},x\tau]]\rangle$$

and this is zero since $yx^{-1}A_3 = x^{-1}A_3$. The left hand side of (c) is

$$\langle {}_xA_3, [{}_x\tau, [{}_yX_1, X_1]]$$

and this is zero since $\langle {}_xA_3, [{}_x\tau,\xi]\rangle = 0$ for any $\xi \in \mathfrak{g}$. This proves (a).

From (a) we see that there is a unique morphism $\hat{h}: \mathcal{Z} \to \mathbf{k}$ such that $\tilde{h}_0(s) = \hat{h}(\underline{\phi}'(s))$ for any $s \in \mathcal{T}_0$. It follows that $\mathcal{L}_{\tilde{h}_0} = \underline{\phi}'^* \mathcal{L}_{\hat{h}}$. Now $j: \mathcal{T}_0 \to G_4$ in 2.3 is a composition $\underline{j}\underline{\phi}'$ where $\underline{j}: \mathcal{Z} \to G_4$ is the imbedding. It follows that $j_!(\tilde{\mathcal{E}} \otimes \mathcal{L}_{\tilde{h}_0}) = \underline{j}_!(\tilde{\mathcal{E}} \otimes \underline{\phi}'_!\underline{\phi}'^*\mathcal{L}_{\hat{h}}) \cong \underline{j}_!(\tilde{\mathcal{E}} \otimes \mathcal{L}_{\hat{h}})[-2\delta]$. Combining with 2.3(a) we see that

$$\hat{K} \cong \underline{j}_{!}(\tilde{\mathcal{E}} \otimes \mathcal{L}_{\hat{h}})[-5\Delta - 4\delta].$$

Since \mathcal{Z} is closed in G_4 and smooth, irreducible of dimension $3\Delta - 2\delta$ we see that $\underline{j}_!(\tilde{\mathcal{E}} \otimes \mathcal{L}_{\hat{h}})[3\Delta - 2\delta]$ is a simple perverse sheaf on G_4 . Hence $\hat{K}[8\Delta + 2\delta]$ is a simple perverse sheaf on G_4 with support $\Sigma = \mathcal{Z}$. Using Laumon's theorem [La], it follows that

(b) $K[8\Delta + 2\delta]$ is a simple perverse sheaf on G_4 .

3. The case
$$r = 3$$

3.1. In this section we assume that r=3. Now $\bar{\mathcal{X}}$ is the variety of all

$$(Tx, y, X_1, Y_1, R_1, R_2) \in (T \backslash G) \times G \times \mathfrak{g}^4$$

such that $xyx^{-1} \in T$, $_{y}X_{1} - X_{1} + Y_{1} \in _{x}\mathfrak{b}$ and $R_{2} = -_{x}A_{2}$. In our case we have

$$\hat{K} = \bar{\pi}_!(\tilde{\mathcal{E}} \otimes \mathcal{L}_{\bar{h}})[-2\Delta]$$

where $\bar{\pi}: \bar{\mathcal{X}} \to G_3$ and $\bar{h}: \bar{\mathcal{X}} \to \mathbf{k}$ are given by

$$\bar{\pi}(Tx, y, X_1, Y_1, R_1, R_2) = y|R_1, R_2|,$$

$$\bar{h}(Tx, y, X_1, Y_1, R_1, R_2) = \langle Y_1, R_1 \rangle + \langle {}_x A_1, {}_y X_1 - X_1 + Y_1 \rangle + \langle {}_x A_2, [{}_y X_1, Y_1]/2 - [{}_y X_1, X_1]/2 - [Y_1, X_1]/2 \rangle.$$

Let

$$\bar{\mathcal{X}}' = \{ (Tx, y, X_1, R_1, R_2, \beta); (Tx, y) \in (T \setminus G) \times G, (X_1, R_1, R_2) \in \mathfrak{g}^3, \beta \in {}_x\mathfrak{b}, xyx^{-1} \in T, R_2 = -{}_x A_2 \}.$$

We define an isomorphism $\bar{\mathcal{X}} \xrightarrow{\sim} \bar{\mathcal{X}}'$ by

$$(Tx, y, X_1, Y_1, R_1, R_2) \mapsto (Tx, y, X_1, R_1, R_2, \beta)$$

where $\beta \in {}_{x}\mathfrak{b}$ is given by $\beta = {}_{y}X_{1} - X_{1} + Y_{1}$. We identify $\bar{\mathcal{X}} = \bar{\mathcal{X}}'$ via this isomorphism. Then $\bar{\pi}, \bar{h}$ become

$$\bar{\pi}(Tx, y, X_1, R_1, R_2, \beta) = y|R_1, R_2|,$$

$$\bar{h}(Tx, y, X_1, R_1, R_2, \beta) = \langle X_1 - {}_{y}X_1 + \beta, R_1 \rangle + \langle {}_{x}A_1, \beta \rangle
+ \langle {}_{x}A_2, [{}_{y}X_1, X_1 - {}_{y}X_1 + \beta]/2 - [{}_{y}X_1, X_1]/2 - [X_1 - {}_{y}X_1 + \beta, X_1]/2 \rangle
= \langle X_1 - {}_{y}X_1, R_1 \rangle + \langle {}_{x}A_1 + R_1 + [{}_{x}A_2, X_1 + {}_{y}X_1]/2, \beta \rangle + \langle {}_{x}A_2, [{}_{y}X_1, X_1]/2 \rangle.$$

Let

$$Z = \{ (Tx, y, X_1, R_1, R_2) \in (T \setminus G) \times G \times \mathfrak{g}^3; xyx^{-1} \in T, R_2 = -xA_2 \},\$$

$$Z_0 = \{(Tx, y, X_1, R_1, R_2) \in Z; {}_xA_1 + R_1 + [{}_xA_2, X_1 + {}_yX_1]/2 \in {}_x\mathfrak{n}\}$$

Define $\pi'_0: Z_0 \to G_3$, $\tilde{h}_0: Z_0 \to \mathbf{k}$ by

$$\pi'_0(Tx, y, X_1, R_1, R_2) = y|R_1, R_2|,$$

$$\tilde{h}_0(Tx, y, X_1, R_1, R_2) = \langle X_1 - {}_{y}X_1, R_1 \rangle + \langle {}_{x}A_2, [{}_{y}X_1, X_1]/2 \rangle.$$

The map $\bar{\mathcal{X}}' \to Z$ given by $(Tx, y, X_1, R_1, R_2, \beta) \mapsto (Tx, y, X_1, R_1, R_2)$ is a vector bundle with fibres isomorphic to \mathfrak{b} . Applying 1.3(b) to this vector bundle we see that

$$\hat{K} = \pi'_{0!}(\tilde{\mathcal{E}} \otimes \mathcal{L}_{\tilde{h}_0})[-3\Delta - \delta]$$

where the inverse image of \mathcal{E} under $Z_0 \to T$, $(Tx, y, X_1, R_1, R_2) \mapsto xyx^{-1}$ is denoted again by $\tilde{\mathcal{E}}$. (We have used that $2 \dim \mathfrak{b} = \Delta + \delta$.)

For any $R \in \mathcal{C}$ (see 1.5) let T_R be the centralizer of R in G and let \mathfrak{t}_R be the centralizer of R in \mathfrak{g} . Let $\mathcal{R} \subset \operatorname{Hom}(\mathfrak{t}, \mathbf{k}^*)$ be the set of roots of \mathfrak{g} with respect to \mathfrak{t} ; for any $\alpha \in \mathcal{R}$ let \mathfrak{g}^{α} be the corresponding (1-dimensional) root subspace and let $e^{\alpha}: T \to \mathbf{k}^*$ be the correspondings root homomorphism.

Let $\mathcal{R}^+ = \{\alpha \in \mathcal{R}; \mathfrak{g}^{\alpha} \subset \mathfrak{n}\}, \ \mathcal{R}^- = \mathcal{R} - \mathcal{R}^+$. For $R \in \mathcal{C}$ let $\mathfrak{g}_R^- = \bigoplus_{a \in \mathcal{R}^- x} \mathfrak{g}^{\alpha}, \mathfrak{g}^+ -_R = \bigoplus_{a \in \mathcal{R}^+ x} \mathfrak{g}^{\alpha}$ (where $R = -_x A_2$); we have a direct sum decomposition $\mathfrak{g} = \mathfrak{g}_R^- \oplus \mathfrak{t}_R \oplus \mathfrak{g}_R^+$. Hence for any $X \in \mathfrak{g}$ we can write uniquely $X = X_R^- + X_R^0 + X_R^+$ with $X_R^- \in \mathfrak{g}_R^-, X_R^0 \in \mathfrak{t}_R, X_R^+ \in \mathfrak{g}_R^+$. Let \hat{Z} be the variety of all (y, X, R_1, R) where $R \in \mathcal{C}, R_1 \in \mathfrak{g}, y \in T_R, X \in \mathfrak{g}_R^-$ such that $_x A_1 + R_1 + [_x A_2, X + _y X]/2 \in _x \mathfrak{n}$ for some/any $x \in G$ such that $R = -_x A_2$. Define $\hat{\pi} : \hat{Z} \to G_3, \hat{h} : \hat{Z} \to \mathbf{k}$ by $\hat{\pi}(y, X, R_1, R) = y|R_1, R|$,

$$\hat{h}(y, X, R_1, R) = \langle X - {}_{y}X, R_1 \rangle.$$

We define $\zeta: Z_0 \to \hat{Z}$ by $(Tx, y, X, R_1, R) \mapsto (y, X_R^-, R_1, R)$. This is well defined since, if $\beta \in \mathfrak{b}$, $R = -_x A_2$ and $y \in T_R$, then $[{}_x A_2, {}_x \beta + {}_y ({}_x \beta)] \in {}_x \mathfrak{n}$. Now ζ is a vector bundle with fibres isomorphic to \mathfrak{b} . Note also that $\pi'_0 = \hat{\pi} \zeta$. We show that $\tilde{h}_0 = \hat{h} \zeta$.

For a fixed $(Tx, y, X, R_1, R) \in Z_0$ we have ${}_xA_1 + R_1 + [{}_xA_2, X + {}_yX]/2 \in {}_x\mathfrak{n}$ and in particular

$$R_1^0 + {}_x A_1 = 0,$$

(a)
$$R_1^- = -[{}_x A_2, X^- + {}_y (X^-)]/2$$

where we write X^+, X^-, X^0 instead of X_R^+, X_R^-, X_R^0 . We must show that

$$\langle X - {}_{y}X, R_{1} \rangle + \langle {}_{x}A_{2}, [{}_{y}X, X]/2 \rangle = \langle X^{-} - {}_{y}(X^{-}), R_{1} \rangle$$

or equivalently

$$\langle X^+ + X^0 - y(X^+ + X^0), R_1 \rangle + \langle x A_2, [y(X^+ + X^0), X^-]/2 + [y(X^-), X^+ + X^0]/2 + [y(X^+ + X^0), X^+ + X^0]/2 \rangle = 0,$$

that is,

$$\langle X^+ - y(X^+), R_1^- \rangle + \langle x A_2, [y(X^+), X^-]/2 + [y(X^-), X^+]/2 \rangle = 0.$$

In the left hand side we replace R_1^- by the expression (a) and we obtain

$$\langle X^{+} - y(X^{+}), -[_{x}A_{2}, X^{-} + y(X^{-})]/2 \rangle + \langle_{x}A_{2}, [_{y}(X^{+}), X^{-}]/2 + [_{y}(X^{-}), X^{+}]/2 \rangle$$

$$= \langle_{x}A_{2}, [X^{-} + y(X^{-}), X^{+} - y(X^{+})]/2 + [_{y}(X^{+}), X^{-}]/2 + [_{y}(X^{-}), X^{+}]/2 \rangle$$

$$= \langle_{x}A_{2}, [X^{-}, X^{+}] - [_{y}(X^{-}), y(X^{+})]/2 \rangle = \langle_{y}x^{-1}A_{2} - x^{-1}A_{2}, [X^{-}, X^{+}] \rangle = 0$$

since $yx^{-1}A_2 - x^{-1}A_2 = 0$. Thus our claim is proved. Applying 1.3(b) to the vector bundle ζ we deduce

$$\hat{K} = K'[-4\Delta - 2\delta], \quad K' = \hat{\pi}_!(\tilde{\mathcal{E}} \otimes \mathcal{L}_{\hat{h}}),$$

where the inverse image of \mathcal{E} under $\hat{Z} \to T$, $(y, X, R_1, R) \mapsto xyx^{-1}$ (where $R = -xA_2$) is denoted again by $\tilde{\mathcal{E}}$. (We have used that $2 \dim \mathfrak{b} = \Delta + \delta$.)

3.2. Let \mathcal{Z} be the set of all $y|R_1, R| \in G_3$ such that $R \in \mathcal{C}$, $y \in T_R$ and $(R_1)_R^0 = -_x A_1$ where $R = -_x A_2$. This is clearly a closed, smooth subvariety of G_3 ; it is irreducible of dimension $2\Delta - \delta$. For any $R \in \mathcal{C}$ let \mathcal{Z}_R be the inverse image of R under the map $G_3 \to \mathcal{C}$, $y|R_1, R| \mapsto R$.

Let $\mathcal{H}^i_{y,R_1,R}$ be the stalk at $y|R_1,R| \in G_r$ of the *i*-th cohomology sheaf of K', see 3.1. We want to describe the vector spaces $\mathcal{H}^i_{y,R_1,R}$. Note that $\mathcal{H}^i_{y,R_1,R} = 0$ unless $y|R_1R| \in \mathcal{Z}$; we now assume that this condition is satisfied. Using G-equivariance and the G-homogeneity of \mathcal{C} , we see that we may also assume that $R = -A_2$ and we write \mathcal{H}^i_{y,R_1} instead of $\mathcal{H}^i_{y,R_1,R}$. We have

$$\mathcal{H}_{y,R_1}^i = H_c^i(\hat{\pi}^{-1}(y|R_1,R|), \tilde{\mathcal{E}} \otimes \mathcal{L}_{\hat{h}}).$$

For any $X \in \mathfrak{g}$ we can write uniquely $X = X^0 + \sum_{\alpha \in \mathcal{R}} X^\alpha$ where $X^0 \in \mathfrak{t}$, $X^\alpha \in \mathfrak{g}^\alpha$. Note that we have ${}_yX = X^0 + \sum_{\alpha} e^\alpha (y^{-1}) X^\alpha$.

Then $\hat{\pi}^{-1}(y|R_1R|)$ can be identified with the affine space

(a)
$$\{(X^{-\alpha})_{\alpha \in \mathcal{R}^+}; \alpha(A_2)(1 + e^{\alpha}(y))X^{-\alpha}/2 = R_1^{-\alpha}\}.$$

The restriction of \hat{h} to $\hat{\pi}^{-1}(y|R_1R|)$ becomes the affine linear function

(b)
$$(X^{-\alpha})_{\alpha \in \mathcal{R}^+} \mapsto \sum_{\alpha \in \mathcal{R}^+} (1 - e^{\alpha}(y)) \langle X^{-\alpha}, R_1^{\alpha} \rangle.$$

We consider several cases.

- (1) for some $\alpha \in \mathcal{R}^+$ we have $1 + e^{\alpha}(y) = 0$ and $R_1^{-\alpha} \neq 0$;
- (2) for any $\alpha \in \mathcal{R}^+$ such that $1 + e^{\alpha}(y) = 0$ we have $R_1^{-\alpha} = 0$ but for some such α we have $R_1^{\alpha} \neq 0$;
- (3) for any $\alpha \in \mathcal{R}^+$ such that $1 + e^{\alpha}(y) = 0$ we have $R_1^{-\alpha} = 0$ and $R_1^{\alpha} = 0$; In case (1), the affine space (a) is empty and $\mathcal{H}_{y,R_1}^i = 0$.

In case (2), the affine space (a) is nonempty and (b) is non-constant hence $\mathcal{H}_{u,R_1}^i = 0$.

For any $y \in T$ we set $\Xi_y = \{\alpha \in \mathcal{R}^+; 1 + e^{\alpha}(y) = 0\}$. In case (3), the affine space (a) is nonempty of dimension equal to $\sharp(\Xi_y)$ and (b) is constant, hence \mathcal{H}^i_{y,R_1} is 1-dimensional if $i = 2\sharp(\Xi_y)$ and is $0 \ i \neq 2\sharp(\Xi_y)$.

- **3.3.** For any subset Ξ of \mathcal{R}^+ let $T^\Xi = \{y \in T; \Xi_y = \Xi\}$ (the sets T^Ξ form a partition of T). Note that T^\emptyset is an open dense subset of T. For $\Xi \subset \mathcal{R}^+$ let \mathcal{Z}_R^Ξ be the set of all $y|R_1R| \in \mathcal{Z}_R$ such that $y \in T^\Xi$ and $R_1^\alpha = 0$, $R_1^{-\alpha} = 0$ for all $\alpha \in \Xi$. The subsets \mathcal{Z}_R^Ξ are clearly disjoint. Let $\mathcal{Z}_R' = \mathcal{Z}_R \bigcup_{\Xi \subset \mathcal{R}^+} \mathcal{Z}_R^\Xi$. Note that for $y|R_1, R| \in \mathcal{Z}_R^\Xi$, \mathcal{H}_{y,R_1}^i is 1-dimensional if $i = 2\sharp(\Xi)$ and is 0 if $i \neq 2\sharp(\Xi)$. Moreover, for $y|R_1, R| \in \mathcal{Z}_R'$, we have $\mathcal{H}_{y,R_1}^i = 0$ for all i. We show that for any $\Xi \subset \mathcal{R}^+$ we have
- (a) dim $\mathcal{X}_R^{\Xi} + 2\sharp(\Xi) \leq \dim \mathcal{Z}_R$ with strict inequality unless $\Xi = \emptyset$. Indeed, we have dim $\mathcal{X}_R^{\Xi} = \dim T^{\Xi} + 2\sharp(\mathcal{R}^+ - \Xi)$. On the other hand, dim $\mathcal{Z}_R = \delta + 2\sharp(\mathcal{R}^+)$. Thus (a) is equivalent to dim $T^{\Xi} \leq \delta$, with strict inequality unless $\Xi = \emptyset$; this is obvious.
- From (a) we see that $K'|_{\mathcal{Z}_R}$ satisfies half of the defining properties of an intersection cohomology complex (the ones not involving Verdier duality). It follows that $K'|_{\mathcal{Z}}$ itself satisfies the same half of the defining properties of an intersection cohomology complex; moreover Σ (the support of K') is equal to \mathcal{Z} . Hence the perverse cohomology sheaves of $K'[2\Delta \delta]$ satisfy ${}^pH^i(K'[2\Delta d]) = 0$ for i > 0 and ${}^pH^0(K'[2\Delta d])$ is a simple perverse sheaf on G_3 . Since $\hat{K} = K'[-4\Delta 2\delta]$, it follows that ${}^pH^i(\hat{K}[6\Delta + \delta]) = 0$ for i > 0 and ${}^pH^0(\hat{K}[6\Delta + \delta])$ is a simple perverse sheaf on G_3 . Using Laumon's theorem [La] we deduce:
- (b) ${}^{p}H^{i}(K[6\Delta + \delta]) = 0$ for i > 0 and ${}^{p}H^{0}(K[6\Delta + \delta])$ is a simple perverse sheaf on G_{3} .
- **3.4.** Let \mathcal{Z}^{\emptyset} be the set of all $y|R_1, R| \in \mathcal{Z}$ such that for any $\alpha \in \mathcal{R}^+$ we have $e^{\alpha}(xyx^{-1}) \neq -1$ (where $R = -_xA_2$); this is an open dense subset of \mathcal{Z} . We define $f: \mathcal{Z}^{\emptyset} \to \mathbf{k}$ by

$$f(y|R_1, R|) = \sum_{\alpha \in \mathcal{R}^+} \frac{2}{\alpha(A_2)} \frac{1 - e^{\alpha}(xyx^{-1})}{1 + e^{\alpha}(xyx^{-1})} \langle (_xR_1)^{\alpha}, (_xR_1)^{-\alpha} \rangle$$
(a)
$$= \sum_{\alpha \in \mathcal{R}} \frac{2}{\alpha(A_2)} \frac{1}{1 + e^{\alpha}(xyx^{-1})} \langle (_xR_1)^{\alpha}, (_xR_1)^{-\alpha} \rangle.$$

For $(y, X, R_1, R) \in \hat{\pi}^{-1}(\mathcal{Z}^{\emptyset})$ we have

(b)
$$f(\hat{\pi}(y, X, R_1, R)) = \hat{h}(y, X, R_1, R).$$

To prove (b) we can assume that $R = -A_2$. We then have

$$\hat{h}(y, X, R_1, R) = \sum_{\alpha \in \mathcal{R}^+} (1 - e^{\alpha}(y)) \langle X^{-\alpha}, R_1^{\alpha} \rangle.$$

Replacing here $X^{-\alpha}$ by $\frac{2}{\alpha(A_2)(1+e^{\alpha}(y))}R_1^{-\alpha}$ we obtain

$$\hat{h}(y, X, R_1, R) = \sum_{\alpha \in \mathcal{R}^+} (1 - e^{\alpha}(y)) \frac{2}{\alpha(A_2)(1 + e^{\alpha}(y))} \langle R_1^{-\alpha}, R_1^{\alpha} \rangle = f(y|R_1, R|).$$

as required. Since \hat{h} is an isomorphism $\hat{\pi}^{-1}(\mathcal{Z}^{\emptyset}) \xrightarrow{\sim} \mathcal{Z}^{\emptyset}$ (by results in 3.3), we see that $K'|_{\mathcal{Z}^{\emptyset}}$ is the rank 1 local system $\tilde{\mathcal{E}} \otimes \mathcal{L}_f$ on \mathcal{Z}^{\emptyset} where the inverse image of \mathcal{E} under $\mathcal{Z}^{\emptyset} \to T$, $y|R_1, R| \mapsto xyx^{-1}$ (where $R = -_xA_2$) is denoted again by $\tilde{\mathcal{E}}$. It follows that the simple perverse sheaf ${}^pH^0(\hat{K}[6\Delta + \delta])$ on G_3 is associated to the local system $\tilde{\mathcal{E}} \otimes \mathcal{L}_f$ on the locally closed smooth irreducible subvariety \mathcal{Z}^{\emptyset} of G_3 .

3.5. It is likely that $K'[2\Delta - d]$ is a simple perverse sheaf on G_3 . This would imply that $K[6\Delta + \delta]$ is a simple perverse sheaf on G_3 .

4. A COMPARISON OF TWO COMPLEXES

4.1. We preserve the assumptions in 1.4. Let L be as in 0.2 where $f_i : \mathfrak{t} \to \mathbf{k}$ is $\tau \mapsto \langle A_i, \tau \rangle$ for $i = 1, \ldots, r - 1$. In this section we describe a strategy for showing that a shift of L is isomorphic to K in 1.4.

We define a sequence of algebraic varieties $\mathcal{X}_r, \mathcal{X}_{r-1}, \dots, \mathcal{X}_{r-2r'}$ as follows. For $i \in \{r-r', r-r'+1, \dots, r\}$ let \mathcal{X}_i be the variety consisting of all

$$(Tx, y, X_1, \dots, X_{r-1}, Y_1, \dots, Y_{r-1}) \in (T \setminus G) \times G \times \mathfrak{g}^{2r-2}$$
 such that $xyx^{-1} \in B$ and

$$u_j({}_yX_1,\ldots,{}_yX_j,Y_1,\ldots,Y_j,X_1,\ldots,X_j)\in{}_x\mathfrak{b}$$
 for $1\leq j\leq i-1$.
For $i\in\{r-2r',r-2r'+1,\ldots,r-r'-1\}$ let \mathcal{X}_i be the variety of all $(Tx,y,X_1,\ldots,X_{r-1},Y_1,\ldots,Y_{r-1})\in(T\backslash G)\times G\times\mathfrak{g}^{2r-2}$

such that $xyx^{-1} \in T$ and

$$u_{j}(_{y}X_{1},\ldots,_{y}X_{j},Y_{1},\ldots,Y_{j},X_{1},\ldots,X_{j})\in_{x}\mathfrak{t}$$
 for $1\leq j\leq r-r'-i-1,$ $u_{j}(_{y}X_{1},\ldots,_{y}X_{j},Y_{1},\ldots,Y_{j},X_{1},\ldots,X_{j})\in_{x}\mathfrak{b}$ for $r-r'-i\leq j\leq r-r'-1.$ For $i=r,r-1,\ldots,r-2r'$ we have a diagram

$$G_r \stackrel{\pi_i}{\longleftarrow} \mathcal{X}_i \stackrel{h_i}{\longrightarrow} \mathbf{k}$$

where $\pi_i(Tx, y, X_1, \dots, X_{r-1}, Y_1, \dots, Y_{r-1}) = y|Y_1, Y_2, \dots, Y_{r-1}|,$

$$h_i(Tx, y, X_1, \dots, X_{r-1}, Y_1, \dots, Y_{r-1})$$

$$= \sum_{j \in [1, r-1]} \langle {}_x A_j, u_j({}_y X_1, \dots, {}_y X_j, Y_1, \dots, Y_j, X_1, \dots, X_j) \rangle.$$

We define $\iota: \mathcal{X}_i \to T$ by $\iota(Tx, y, X_1, \dots, X_{r-1}, Y_1, \dots, Y_{r-1}) = d(xyx^{-1})$ where $d: B \to T$ is as in 0.1. Let $\tilde{\mathcal{E}} = \iota^* \mathcal{E}$. The inverse image of $\tilde{\mathcal{E}}$ under various maps to \mathcal{X}_i is denoted again by $\tilde{\mathcal{E}}$.

Let $L_i = \pi_{i!}(\tilde{\mathcal{E}} \otimes \mathcal{L}_{h_i}) \in \mathcal{D}(G_r)$. Let H be the kernel of the obvious map $B_r \to T$, a connected unipotent group of dimension $r(\Delta + \delta)/2 - \delta$. Note that \mathcal{X}_r is a principal H-bundle over \tilde{G}_r in 0.2. It follows that $L_r \cong K[r(\Delta + \delta) - 2\delta]$. On the other hand we have $L = L_{r-2r'}$. We would like to show that $L \cong K[r(\Delta + \delta) - 2\delta]$. It is enough to show that

(a)
$$L_r = L_{r-1} = \cdots = L_{r-2r'}$$
.
Note that $\mathcal{X}_r \subset \mathcal{X}_{r-r'} \subset \cdots \subset \mathcal{X}_{r'} \supset \mathcal{X}_{r'-1} \supset \cdots \supset \mathcal{X}_{r-2r'}$. For $r' \leq i \leq r-1$ let

 $\pi'_i: \mathcal{X}_i - \mathcal{X}_{i+1} \to G_r, \ h'_i: \mathcal{X}_i - \mathcal{X}_{i+1} \to \mathbf{k}$ be the restrictions of π_i, h_i to $\mathcal{X}_i - \mathcal{X}_{i+1}$; let $L'_i = p'_{i!}(\tilde{\mathcal{E}} \otimes \mathcal{L}_{h'_i}) \in \mathcal{D}(G_r)$.

For $r - 2r' + 1 \leq i \leq r'$ let $\pi_i'' : \mathcal{X}_i - \mathcal{X}_{i-1} \to G_r$, $h_i'' : \mathcal{X}_i - \mathcal{X}_{i-1} \to \mathbf{k}$ be the restrictions of π_i , h_i to $\mathcal{X}_i - \mathcal{X}_{i-1}$; let $L_i'' = p_{i!}''(\tilde{\mathcal{E}} \otimes \mathcal{L}_{h_i''}) \in \mathcal{D}(G_r)$.

From the definitions we have distinguished triangles (L'_i, L_i, L_{i+1}) (for $i = r', r' + 1, \ldots, r - 1$) and (L''_i, L_i, L_{i-1}) (for $r - 2r' + 1 \le i \le r'$). Hence (a) would follow from statements (b),(c) below.

- (b) $L''_{r'} = L''_{r'-1} = \dots = L''_{r-2r'+1} = 0.$
- (c) $L'_{r'} = L'_{r'+1} = \dots = L'_{r-1} = 0.$

Here is a strategy to prove (b),(c).

For $r-2r'+1 \leq i \leq r'$ one should partition $\mathcal{X}_i - \mathcal{X}_{i-1}$ into pieces isomorphic to \mathfrak{g} so that the restriction of h_i'' to each piece is a nonconstant affine linear function and the restriction of $\tilde{\mathcal{E}}$ is $\bar{\mathbf{Q}}_l$. For $r' \leq i \leq r-1$ one should partition $\mathcal{X}_i - \mathcal{X}_{i+1}$ into pieces isomorphic to an affine space so that the restriction of h_i' to each piece is a nonconstant affine linear function and the restriction of $\tilde{\mathcal{E}}$ is $\bar{\mathbf{Q}}_l$. This should give the desired result. In 4.2-4.5 we carry out this strategy in several cases which are sufficient to deal with the cases where $r \in \{2, 3, 4\}$.

4.2. In this subsection we show that

(a) $L_{r'}'' = 0$.

Note that $\mathcal{X}_{r'} - \mathcal{X}_{r'-1}$ is the set of all

 $(Tx, y, X_1, \dots, X_{r-1}, Y_1, \dots, Y_{r-1}) \in (T \setminus G) \times G \times \mathfrak{g}^{2r-2}$ such that $xyx^{-1} \in B - T$ and

 $u_j(_yX_1,\ldots,_yX_j,Y_1,\ldots,Y_j,X_1,\ldots,X_j)\in _x\mathfrak{b}$ for $1\leq j\leq r-r'-1.$ Let Z be the set of all

 $(Tx, y, X_1, \dots, X_{r-2}, Y_1, \dots, Y_{r-1}) \in (T \setminus G) \times G \times \mathfrak{g}^{2r-3}$ such that $xyx^{-1} \in B - T$ and

$$u_j(yX_1, \dots, yX_j, Y_1, \dots, Y_j, X_1, \dots, X_j) \in {}_x\mathfrak{b} \text{ for } 1 \leq j \leq r - r' - 1.$$

Now $\pi''_{r'}$ is a composition $\mathcal{X}_{r'} - \mathcal{X}_{r'-1} \xrightarrow{a} Z \xrightarrow{a'} G_r$ where

$$a(Tx, y, X_1, \dots, X_{r-1}, Y_1, \dots, Y_{r-1}) = (Tx, y, X_1, \dots, X_{r-2}, Y_1, \dots, Y_{r-1}),$$

 $a'(Tx, y, X_1, \dots, X_{r-2}, Y_1, \dots, Y_{r-1}) = y|Y_1, \dots, Y_{r-1}|.$

It is enough to show that $a_!(\tilde{\mathcal{E}} \otimes \mathcal{L}_{h''_{r'}}) = 0$. Clearly, $\tilde{\mathcal{E}}$ is the inverse image under a of a local system on Z denoted again by $\tilde{\mathcal{E}}$. Hence

$$a_!(\tilde{\mathcal{E}}\otimes\mathcal{L}_{h''_{r'}})=\tilde{\mathcal{E}}\otimes a_!(\mathcal{L}_{h''_{r'}})$$

and it is enough to show that $a_!(\mathcal{L}_{h''_{r'}}) = 0$. It is also enough to show that for any $s = (Tx, y, X_1, \dots, X_{r-2}, Y_1, \dots, Y_{r-1}) \in \mathbb{Z}$ we have $H_c^*(a^{-1}(s), \mathcal{L}_{h''_{r'}}) = 0$. Now $a^{-1}(s)$ may be identified with the affine space \mathfrak{g} with coordinate X_{r-1} and $h''_{r'}$ is of the form $X_{r-1} \mapsto \langle_x A_{r-1}, {}_y X_{r-1} - X_{r-1}\rangle + c$ where c is a constant (for fixed s). It is enough to show that the linear form

$$X_{r-1} \mapsto \langle {}_{x}A_{r-1}, {}_{y}X_{r-1} - X_{r-1} \rangle = \langle {}^{yx^{-1}}A_{r-1} - {}^{x^{-1}}A_{r-1}, X_{r-1} \rangle$$

on \mathfrak{g} is not identically zero. If it was identically zero, we would have $yx^{-1}A_{r-1} = x^{-1}A_{r-1}$ hence xyx^{-1} centralizes A_{r-1} hence $xyx^{-1} \in T$ contradicting $xyx^{-1} \in B - T$. This proves (a).

- **4.3.** In this subsection we show that
 - (a) $L''_{r'-1} = 0$ (assuming that r = 4).

Note that $\mathcal{X}_1 - \mathcal{X}_0$ is the set of all $(Tx, y, X_1, X_2, X_3, Y_1, Y_2, Y_3) \in (T \setminus G) \times G \times \mathfrak{g}^6$ such that $xyx^{-1} \in T$ and ${}_yX_1 - X_1 + Y_1 \in {}_x\mathfrak{b} - {}_x\mathfrak{t}$.

We have a free action of \mathfrak{g} on $\mathcal{X}_1 - \mathcal{X}_0$:

$$E: (Tx, y, X_1, X_2, X_3, Y_1, Y_2, Y_3) \mapsto (Tx, y, X_1, X_2 + E, X_3 + [E, X_1], Y_1, Y_2, Y_3).$$

The orbit of $(Tx, y, X_1, 0, X_3, Y_1, Y_2, Y_3)$ is

$$\mathcal{O} = \{ (Tx, y, X_1, E, X_3 + [E, X_1], Y_1, Y_2, Y_3), E \in \mathfrak{g} \}.$$

It is enough to show that $H_c^*(\mathcal{O}, \tilde{\mathcal{E}} \otimes \mathcal{L}_{h_1''}) = 0$ for any such \mathcal{O} . Clearly $\tilde{\mathcal{E}} \cong \bar{\mathbf{Q}}_l$ on \mathcal{O} . Hence it is enough to show that $H_c^*(\mathcal{O}, \mathcal{L}_{h_1''}) = 0$. We can identify \mathcal{O} with the affine space \mathfrak{g} with coordinate E. On this affine space h_1'' is of the form

$$E \mapsto \langle {}_{x}A_{2}, {}_{y}E - E \rangle + \langle {}_{x}A_{3}, {}_{y}[E, X_{1}] - [E, X_{1}] + [{}_{y}E, Y_{1}] + [E, X_{1}] - [{}_{y}E, X_{1}] \rangle + c$$

where c is a constant (for our fixed \mathcal{O}). We have

$$\langle {}_{x}A_{2}, {}_{y}E - E \rangle = \langle {}^{yx^{-1}}A_{2} - {}^{x^{-1}}A_{2}, E \rangle = 0$$

since $yx^{-1}A_2 = x^{-1}A_2$ (recall that $xyx^{-1} \in T$). Hence h''_1 is of the form

$$E \mapsto \langle {}_{x}A_{3}, [{}_{y}E, {}_{y}X_{1}] + [{}_{y}E, Y_{1}] - [{}_{y}E, X_{1}] \rangle + c = \langle {}_{y}E, [\xi, {}_{x}A_{3}] \rangle + c$$

where $\xi = {}_{y}X - X_{1} + Y_{1}$. It is enough to show that the linear form $E \mapsto \langle {}_{y}E, [\xi, {}_{x}A_{3}] \rangle$ on \mathfrak{g} is not identically zero. If it is identically zero we would have $[\xi, {}_{x}A_{3}] = 0$ that is, ξ is in the centralizer of ${}_{x}A_{3}$ so that $\xi \in {}_{x}\mathfrak{t}$, contradicting $\xi \in {}_{x}\mathfrak{b} - {}_{x}\mathfrak{t}$. This proves (a).

- **4.4.** In this subsection we show that
 - (a) $L'_{r-1} = 0$.

Note that $\mathcal{X}_{r-1} - \mathcal{X}_r$ is the set of all

 $(Tx,y,X_1,X_2,\ldots,X_{r-1},Y_1,Y_2,\ldots,Y_{r-1})\in (T\backslash G)\times G\times \mathfrak{g}^{2r-2}$ such that $xyx^{-1}\in B$ and

$$u_j({}_{y}X_1,\ldots,{}_{y}X_j,Y_1,\ldots,Y_j,X_1,\ldots,X_j) \in {}_{x}\mathfrak{b} \text{ for } j=1,2,\ldots,r-2, u_j({}_{y}X_1,\ldots,{}_{y}X_j,Y_1,\ldots,Y_j,X_1,\ldots,X_j) \notin {}_{x}\mathfrak{b} \text{ for } j=r-1.$$

Now π'_{r-1} is a composition $\mathcal{X}_{r-1} - \mathcal{X}_r \xrightarrow{a} Z \xrightarrow{a'} G_r$ where Z is the set of all

$$(Bx, y, X_1, X_2, \dots, X_{r-1}, Y_1, Y_2, \dots, Y_{r-1}) \in (B \setminus G) \times G \times \mathfrak{g}^{2r-2}$$

satisfying the same conditions as the points of $\mathcal{X}_{r-1} - \mathcal{X}_r$ and a is the obvious map. It is enough to show that $a_!(\tilde{\mathcal{E}} \otimes \mathcal{L}_{h'_{r-1}}) = 0$. Clearly $\tilde{\mathcal{E}}$ is the inverse image under a of a local system on Z denoted again by $\tilde{\mathcal{E}}$. Hence $a_!(\tilde{\mathcal{E}} \otimes \mathcal{L}_{h'_{r-1}}) = \tilde{\mathcal{E}} \otimes a_!(\mathcal{L}_{h'_{r-1}})$ and it is enough to show that $a_!(\mathcal{L}_{h'_{r-1}}) = 0$. It is also enough to show that for any $s = (Bx, y, X_1, X_2, \ldots, X_{r-2}, Y_1, Y_2, \ldots, Y_{r-1}) \in Z$ we have $H_c^*(a^{-1}(s), \mathcal{L}_{h'_{r-1}}) = 0$. Now $a^{-1}(s)$ may be identified with U by

$$u \mapsto (Tux, y, X_1, X_2, \dots, X_{r-1}, Y_1, Y_2, \dots, Y_{r-1})$$

where x is a fixed representative of Bx. For $j \in [1, r-1]$ we set

$$\xi_j = {}^x u_j({}_yX_1, \dots, {}_yX_j, Y_1, \dots, Y_j, X_1, \dots, X_j) \in \mathfrak{g}.$$

Then h'_{r-1} becomes the function $U \to \mathbf{k}$ given by

$$u \mapsto \sum_{j \in [1, r-1]} \langle u_x A_j, {}_x \xi_j \rangle$$

$$= \sum_{j \in [1, r-2]} (\langle A_j, {}^u \xi_j - \xi_j \rangle + \langle A_j, \xi_j \rangle) + \langle A_{r-1}, \xi_{r-1} \rangle + \langle {}_u A_{r-1} - A_{r-1}, \xi_{r-1} \rangle.$$

For $j \in [1, r-2]$ we have $\xi_j \in \mathfrak{b}$ hence ${}^u\xi_j - \xi_j \in \mathfrak{n}$ so that $\langle A_j, {}^u\xi_j - \xi_j \rangle = 0$. Thus h'_{r-1} becomes the function $U \to \mathbf{k}$ given by

$$u \mapsto \langle uA_{r-1} - A_{r-1}, \xi_{r-1} \rangle + c$$

where c is a constant (for fixed s). We identify U with \mathfrak{n} by $u \mapsto {}_{u}A_{r-1} - A_{r-1}$. Then h'_{r-1} becomes the function $\mathfrak{n} \to \mathbf{k}$ given by $\zeta \mapsto \langle \zeta, \xi_{r-1} \rangle + c$. This function is affine linear and nonconstant since $\xi_{r-1} \notin \mathfrak{b} = \mathfrak{n}^{\perp}$. It follows that $H_c^*(a^{-1}(s), \mathcal{L}_{h'_{r-1}}) = 0$ and (a) is proved.

- **4.5.** In this subsection we show that
 - (a) $L'_{2r'-2} = 0$ (assuming that r = 4).

Note that $\mathcal{X}_2 - \mathcal{X}_3$ is the set of all

 $(Tx, y, X_1, X_2, X_3, Y_1, Y_2, Y_3) \in (T \backslash G) \times G \times \mathfrak{g}^6$ such that $xyx^{-1} \in B$,

(b) $_{y}X_{1} - X_{1} + Y_{1} \in _{x}\mathfrak{b},$

(c) $_{y}X_{2} - X_{2} + Y_{2} + [_{y}X_{1}, Y_{1}]/2 - [_{y}X_{1}, X_{1}]/2 - [Y_{1}, X_{1}]/2 \notin _{x}\mathfrak{b}.$

Let $Z = \{(Tx, y, Y_1, Y_2, Y_3) \in (T \setminus G) \times G \times \mathfrak{g}^3; xyx^{-1} \in B\}$. The inverse image of \mathcal{E} under $Z \to T$, $(Tx, y, Y_1, Y_2, Y_3) \mapsto d(xyx^{-1})$ is denoted by $\tilde{\mathcal{E}}_0$.

Now π_2' is a composition $\mathcal{X}_2 - \mathcal{X}_3 \xrightarrow{a} Z \xrightarrow{a'} G_r$ where

$$a(Tx, y, X_1, X_2, X_3, Y_1, Y_2, Y_3) = (Tx, y, Y_1, Y_2, Y_3),$$

 $a'(Tx, y, Y_1, Y_2, Y_3) = y|Y_1, Y_2, Y_3|$

. We have $a^*\tilde{\mathcal{E}}_0 = \tilde{\mathcal{E}}$. It is enough to show that $a_!(\tilde{\mathcal{E}} \otimes \mathcal{L}_{h_2'}) = 0$ that is, $\tilde{\mathcal{E}}_0 \otimes a_!(\mathcal{L}_{h_2'}) = 0$. Thus it is enough to prove that $a_!(\mathcal{L}_{h_2'}) = 0$. Hence it is enough to show that for any $s = (Tx, y, Y_1, Y_2, Y_3) \in (T \setminus G) \times G \times \mathfrak{g}^3$ we have $H_c^*(a^{-1}(s), \mathcal{L}_{h_2'}) = 0$.

Let $\mathcal{G} = \{|E, E', E''| \in G_4; E \in \mathfrak{n}, E' \in \mathfrak{n}, E'' \in \mathfrak{n}\};$ this is a closed subgroup of G_4 .

We fix a representative x in Tx and we define a free \mathcal{G} -action on $a^{-1}(s)$ by

$$|E, E', E''|: (Tx, y, X_1, X_2, X_3, Y_1, Y_2, Y_3) \mapsto (Tx, y, X_1 + {}_xE, X_2 + {}_xE' + [{}_xE, X_1]/2, X_3 + {}_xE'' + [{}_xE', X_1] - [{}_xE, [{}_xE, X_1]]/6 - [X_1, [{}_xE, X_1]]/3, Y_1, Y_2, Y_3).$$

We verify that this action is well defined (that is, the equations (b),(c) are preserved). To show that (b) is preserved it is enough to verify that $xyE - xE \in x\mathfrak{b}$ or that $xy^{-1}x^{-1}E - E \in \mathfrak{b}$; this follows from $E \in \mathfrak{n}$, $xyx^{-1} \in B$. To show that (c) is preserved it is enough to verify that

$$x_y E' + [x_y E, yX_1]/2 - xE' - [xE, X_1]/2 + [x_y E, Y_1]/2$$

 $- [yX_1, xE]/2 - [x_y E, X_1]/2 - [x_y E, xE]/2 - [Y_1, xE]/2 \in x \mathfrak{b}$

(when (b) holds) or that

$$[x_y E, yX_1 - X_1 + Y_1]/2 + [x_x E, yX_1 - X_1 + Y_1]/2 - [x_y E, xE]/2 + x_y E' - xE' \in x\mathfrak{b}$$

and this follows from (b) and from $xyE \in x\mathfrak{b}$, $xE \in x\mathfrak{b}$, $xyE' \in x\mathfrak{b}$, $xE' \in x\mathfrak{b}$.

It is enough to show that for any \mathcal{G} -orbit \mathcal{O} in $a^{-1}(s)$ we have $H_c^*(\mathcal{O}, \mathcal{L}_{h_2'}) = 0$. We may identify $\mathcal{O} = \mathcal{G}$ using a base point $(Tx, y, X_1, X_2, X_3, Y_1, Y_2, Y_3) \in \mathcal{O}$ (with a fixed representative x for Tx) and we identify $\mathcal{G} = \mathfrak{n}^3$ using $[E, E', E''] \leftrightarrow (E, E', E'')$. Then h_2' becomes a function $h'' : \mathfrak{n}^3 \to \mathbf{k}$ of the following form (we have substituted $Y_1 = X_1 - {}_y X_1 + {}_x \beta$ where $\beta \in \mathfrak{b}$):

$$(E, E', E'') \mapsto h''(E, E', E'') = \langle_x A_1, \xi_1 \rangle + \langle_x A_2, \xi_2 + \xi_2' \rangle + \langle_x A_3, \xi_3 + \xi_3' + \xi_3'' \rangle$$

where

$$\xi_1 = {}_x\beta + {}_{xy}E - {}_xE,$$

$$\xi_2 = {}_{y}X_2 + [{}_{xy}E, {}_{y}X_1]/2 - X_2 - [{}_{x}E, X_1]/2 + Y_2 + [{}_{y}X_1 + {}_{xy}E, X_1 - {}_{y}X_1 + {}_{x}\beta]/2 - [{}_{y}X_1 + {}_{xy}E, X_1 + {}_{x}E]/2 - [X_1 - {}_{y}X_1 + {}_{x}\beta, X_1 + {}_{x}E]/2,$$

$$\xi_2' = {}_{xy}E' - {}_xE'$$

$$\xi_{3} = {}_{y}X_{3} - X_{3} + Y_{3} - [{}_{xy}E, [{}_{xy}E, {}_{y}X_{1}]]/6 - [{}_{y}X_{1}, [{}_{xy}E, {}_{y}X_{1}]]/3$$

$$+ [{}_{x}E, [{}_{x}E, X_{1}]]/6 + [X_{1}, [{}_{x}E, X_{1}]]/3$$

$$+ [{}_{y}X_{2} + [{}_{xy}E, {}_{y}X_{1}]/2, X_{1} - {}_{y}X_{1} + {}_{x}\beta] + [X_{2} + [{}_{x}E, X_{1}]/2, X_{1} + {}_{x}E]$$

$$- [{}_{y}X_{2} + [{}_{xy}E, {}_{y}X_{1}]/2, X_{1} + {}_{x}E] - [Y_{2}, X_{1} + {}_{x}E]$$

$$- [{}_{y}X_{1} + {}_{xy}E, [{}_{y}X_{1} + {}_{xy}E, X_{1} - {}_{y}X_{1} + {}_{x}\beta]]/6$$

$$- [X_{1} - {}_{y}X_{1} + {}_{x}\beta, [{}_{y}X_{1} + {}_{xy}E, X_{1} - {}_{y}X_{1} + {}_{x}\beta]]/3$$

$$+ [X_{1} + {}_{x}E, [{}_{y}X_{1} + {}_{xy}E, X_{1} + {}_{x}E]]/6$$

$$+ [{}_{y}X_{1} + {}_{xy}E, [X_{1} - {}_{y}X_{1} + {}_{x}\beta, X_{1} + {}_{x}E]]/6$$

$$+ [X_{1} - {}_{y}X_{1} + {}_{x}\beta, [{}_{y}X_{1} + {}_{xy}E, X_{1} + {}_{x}E]]/6$$

$$+ [X_{1} - {}_{y}X_{1} + {}_{x}\beta, [X_{1} - {}_{y}X_{1} + {}_{x}\beta, X_{1} + {}_{x}E]]/6$$

$$- [X_{1} + {}_{x}E, [{}_{y}X_{1} + {}_{xy}E, X_{1} + {}_{x}E]]/3$$

$$- [X_{1} + {}_{x}E, [X_{1} - {}_{y}X_{1} + {}_{x}\beta, X_{1} + {}_{x}E]]/3\rangle,$$

$$\xi_3' = {}_{xy}E'' + [{}_{xy}E', {}_{y}X_1] - {}_{x}E'' - [{}_{x}E', X_1]$$

$$+ [{}_{yx}E', X_1 - {}_{y}X_1 + {}_{x}\beta] + [{}_{x}E', X_1] - [{}_{xy}E', X_1],$$

$$\xi_3'' = [{}_{x}E', {}_{x}E] - [{}_{xy}E', {}_{x}E].$$

It is enough to show that for any fixed E', E'' in \mathfrak{n} , the function $E \mapsto h_1''(E) = h''(E, E', E'')$ is affine linear and nonconstant. Let

$$S = {}_{y}X_{2} - X_{2} + Y_{2} + [{}_{y}X_{1}, Y_{1}]/2 - [{}_{y}X_{1}, X_{1}]/2 - [Y_{1}, X_{1}]/2.$$

A computation shows that

$$\xi_1 - C_1 \in {}_x\mathfrak{n}, \xi_2 - C_2 \in {}_x\mathfrak{n}, \xi_3 - [{}_xE, S] - C_3 \in {}_x\mathfrak{n}, \xi_3' = C_4$$

where C_1, C_2, C_3, C_4 are vectors in \mathfrak{g} independent of E. Moreover, $\xi_2' \in {}_x\mathfrak{n}, \xi_3'' \in {}_x\mathfrak{n}$. Since $\langle {}_xA_i, {}_x\mathfrak{n} \rangle = 0$, for some constant $c \in \mathbf{k}$ we have

$$h_1''(E) = \langle {}_xA_3, [{}_xE, S] \rangle + c = \langle S, [{}_xA_3, {}_xE] \rangle + c.$$

In particular, $E \mapsto h_1''(E)$ is affine linear on \mathfrak{n} . To show that it is nonconstant it is enough to show that $E \mapsto \langle S, [{}_xA_3, {}_xE] \rangle$ is not identically zero. Assume that it is identically zero. Since $E \mapsto [A_3, E]$ is a vector space isomorphism $\mathfrak{n} \stackrel{\sim}{\to} \mathfrak{n}$ it would follow that $\langle S, {}_x\tilde{E} \rangle = 0$ for any $\tilde{E} \in \mathfrak{n}$ hence $S \in {}_x(\mathfrak{n}^{\perp})$ that is, $S \in {}_x\mathfrak{b}$. This contradicts the definition of $\mathcal{X}_2 - \mathcal{X}_3$ and proves (a).

4.6. In this subsection we assume that $r \in \{2, 3, 4\}$. From 4.2, 4.3, 4.4, 4.5 we see that 4.1(b),(c) hold. Hence 4.1(a) holds. Hence $L \cong K[2\Delta]$ if r = 2, $L \cong K[3\Delta + \delta]$ if r = 3 and $L \cong K[4\Delta + 2\delta]$ if r = 4.

Using now 2.1(b), 2.5(b), 3.3(b) we deduce the following result.

Theorem 4.7. (a) $L[r\Delta]$ is a simple perverse sheaf on G_r provided that r=2 or r=4.

(b) If r=3 we have ${}^pH^i(L[r\Delta])=0$ for i>0 and ${}^pH^0(L[r\Delta])=0$ is a simple perverse sheaf on G_r .

It is likely that in fact $L[r\Delta]$ is a simple perverse sheaf on G_r for any $r \geq 2$. For r = 3 this would follow if the truth of the statements in 3.5 could be established.

References

- [DL] P.Deligne and G.Lusztig, Representations of reductive groups over a finite field, Ann.Math. 103 (1976), 103-161.
- [Ge] P.Gérardin, Construction de séries discrètes p-adiques, Lecture Notes in Math., vol. 462, Springer Verlag, 1975.
- [La] G.Laumon, Transformation de Fourier, constantes d'équations fonctionnelles et conjecture de Weil, Publ. Math. IHES 65 (1987), 131-210.
- [L1] G.Lusztig, Green polynomials and singularities of unipotent classes, Adv.Math. 42 (1981), 169-178.
- [L2] G.Lusztig, Character sheaves I, Adv.Math. 56 (1985), 193-237; II, Adv.Math. 57 (1985), 226-265; III, Adv.Math. 57 (1985), 266-315; IV, Adv.Math. 59 (1986), 1-63; V, Adv.Math. 61 (1986), 103-155.
- [L3] G.Lusztig, Character sheaves and generalizations, The Unity of Mathematics, ed.P.Etingof et al., Progress in Math.244, Birkhäuser Boston, 2006, pp. 443-455.

DEPARTMENT OF MATHEMATICS, M.I.T., CAMBRIDGE, MA 02139