- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

15 febbraio 2018

			(Co	ogno	ome)				_			(No	me)			_	ume		trice	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	0	\bigcirc	\bigcirc	_
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	0	\bigcirc	\bigcirc	_
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10	0	\bigcirc	\bigcirc	\bigcirc		

1. Data $f(x) = \frac{x+2}{x^2-1} - \log(2x-3)$. Allora f'(2) è uguale a A: N.A. B: 1 C: 2π D: 0 E: $-\frac{31}{9}$

2. L'integrale

$$\int_0^{-1} \arctan(x) \, dx$$

vale

A: 1 B: N.A. C: $\frac{\pi - \log(4)}{4}$ D: $\pi/2$ E: 0

3. La serie di potenze

$$\sum_{n=1}^{\infty} \frac{2 + \sin(n)}{n^2} (x - 1)^n$$

converge per

A: $x \in [0, 2]$ B: $x \in]-2, 2[$ C: $x \in [0, 2[$ D: N.A. E: |x| < 1

4. L'integrale

$$\int_{1}^{\infty} \frac{1}{\sqrt[a]{x^4 - 1}} \, dx$$

converge per a

A: a > 1 B: $a \in [2, 5]$ C: a < 1 D: $a \in]1, 4[$ E: N.A.

5. Il polinomio di Taylor di $f(x) = \sqrt{1+x} - \sqrt{1-x}$ di grado 3, relativo al punto $x_0 = 0$ vale A: $x + \frac{x^3}{3!}$ B: x^3 C: $x + \left(\frac{x}{2}\right)^3$ D: $1 + \frac{x}{2} + \frac{x^2}{3} + \frac{x^3}{4}$ E: N.A.

6. La funzione $f: [1, \pi^4] \to \mathbb{R}$ definita da $f(x) = x^7 - x$ è

A: concava B: iniettiva C: non continua D: N.A. E: surgettiva

7. Sia y soluzione del problema di Cauchy $y(t)y'(t)=\sin(t),\ y(0)=1.$ Allora $y(\pi/3)$ vale A: $\sin(1)$ B: $\sqrt{2-\pi/3}$ C: $\pi/3$ D: 0 E: N.A.

8. L'argomento delle soluzioni di

$$z^2 + 3iz + 4 = 0$$

è

A: $(\pi/3, \pi/6)$ B: $(0, \pi/2)$ C: $(\pi/2, -\pi/2)$ D: $(0, \pi)$ E: N.A.

9. Il limite

$$\lim_{x \to 0} (e^x + x)^{1/x}$$

vale

A: 1 B: e C: N.E. D: N.A. E: e²

10. Inf, min, sup e max dell'insieme

$$A = \{n \in \mathbb{N} \setminus \{0\} : \tan(n^2/4) < 1\},\$$

valgono

A: $\{1, 1, +\infty, N.E.\}$ B: N.A. C: $\{-1, N.E., 1, N.E.\}$ D: $\{-1, -1, 1, 1\}$ E: $\{0, 0, 1, 1\}$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

15 febbraio 2018

			(Co	gno	me)				_			(No	me)			-	ume	ro d	li ma	atrice	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	0	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10						

1. La serie di potenze

$$\sum_{n=1}^{\infty} \frac{2 + \sin(n)}{n^2} (x - 1)^n$$

converge per

A: N.A. B: |x| < 1 C: $x \in [0, 2[$ D: $x \in [0, 2]$ E: $x \in [-2, 2[$

2. L'integrale

$$\int_{1}^{\infty} \frac{1}{\sqrt[a]{r^4 - 1}} dx$$

converge per a

A: $a \in]1,4[$ B: a > 1 C: N.A. D: $a \in [2,5]$ E: a < 1

- 3. Sia y soluzione del problema di Cauchy $y(t)y'(t)=\sin(t),\ y(0)=1.$ Allora $y(\pi/3)$ vale A: $\pi/3$ B: 0 C: $\sqrt{2-\pi/3}$ D: N.A. E: $\sin(1)$
- 4. Data $f(x) = \frac{x+2}{x^2-1} \log(2x-3)$. Allora f'(2) è uguale a A: 1 B: 0 C: N.A. D: 2π E: $-\frac{31}{9}$
- 5. Il polinomio di Taylor di $f(x)=\sqrt{1+x}-\sqrt{1-x}$ di grado 3, relativo al punto $x_0=0$ vale A: $1+\frac{x}{2}+\frac{x^2}{3}+\frac{x^3}{4}$ B: N.A. C: $x+\frac{x^3}{3!}$ D: x^3 E: $x+\left(\frac{x}{2}\right)^3$
- 6. Inf, min, sup e max dell'insieme

$$A = \{ n \in \mathbb{N} \setminus \{0\} : \tan(n^2/4) < 1 \},$$

valgono

A: $\{0,0,1,1\}$ B: N.A. C: $\{-1,-1,1,1\}$ D: $\{-1,N.E.,1,N.E.\}$ E: $\{1,1,+\infty,N.E.\}$

7. La funzione $f:\ [1,\pi^4]\to \mathbb{R}$ definita da $f(x)=x^7-x$ è

A: iniettiva B: non continua C: N.A. D: concava E: surgettiva

8. Il limite

$$\lim_{x \to 0} (e^x + x)^{1/x}$$

vale

A: N.E. B: N.A. C: e D: e^2 E: 1

9. L'argomento delle soluzioni di

$$z^2 + 3iz + 4 = 0$$

è

A:
$$(0, \pi)$$
 B: $(\pi/2, -\pi/2)$ C: $(\pi/3, \pi/6)$ D: $(0, \pi/2)$ E: N.A

10. L'integrale

$$\int_0^{-1} \arctan(x) \, dx$$

vale

A: 0 B: $\frac{\pi - \log(4)}{4}$ C: 1 D: $\pi/2$ E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

15 febbraio 2018

			(Co	gno	me)				_			(No	me)			-	ume	ro d	li ma	atrice	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10						

1. L'integrale

$$\int_{1}^{\infty} \frac{1}{\sqrt[a]{x^4 - 1}} \, dx$$

converge per a

A: a>1 B: N.A. C: $a\in[2,5]$ D: a<1 E: $a\in]1,4[$

- 2. Il polinomio di Taylor di $f(x) = \sqrt{1+x} \sqrt{1-x}$ di grado 3, relativo al punto $x_0 = 0$ vale A: $x + \left(\frac{x}{2}\right)^3$ B: x^3 C: $1 + \frac{x}{2} + \frac{x^2}{3} + \frac{x^3}{4}$ D: $x + \frac{x^3}{3!}$ E: N.A.
- 3. Data $f(x) = \frac{x+2}{x^2-1} \log(2x-3)$. Allora f'(2) è uguale a A: 1 B: N.A. C: $-\frac{31}{9}$ D: 2π E: 0
- 4. La serie di potenze

$$\sum_{n=1}^{\infty} \frac{2 + \sin(n)}{n^2} (x - 1)^n$$

converge per

A: |x| < 1 B: $x \in]-2,2[$ C: $x \in [0,2]$ D: N.A. E: $x \in [0,2[$

- 5. La funzione $f: [1, \pi^4] \to \mathbb{R}$ definita da $f(x) = x^7 x$ è A: N.A. B: iniettiva C: concava D: non continua E: surgettiva
- 6. Inf, min, sup e max dell'insieme

$$A = \{n \in \mathbb{N} \setminus \{0\} : \tan(n^2/4) < 1\},\$$

valgono

$$\text{A: } \{1,1,+\infty,N.E.\} \quad \text{B: } \{0,0,1,1\} \quad \text{C: N.A.} \quad \text{D: } \{-1,-1,1,1\} \quad \text{E: } \{-1,N.E.,1,N.E.\}$$

7. L'integrale

$$\int_{0}^{-1} \arctan(x) dx$$

vale

A: 1 B: 0 C: N.A. D:
$$\pi/2$$
 E: $\frac{\pi - \log(4)}{4}$

8. Il limite

$$\lim_{x \to 0} (e^x + x)^{1/x}$$

vale

A: $e B: N.A. C: e^2 D: 1 E: N.E.$

- 9. Sia y soluzione del problema di Cauchy $y(t)y'(t)=\sin(t),\ y(0)=1.$ Allora $y(\pi/3)$ vale A: N.A. B: $\sin(1)$ C: $\sqrt{2-\pi/3}$ D: 0 E: $\pi/3$
- 10. L'argomento delle soluzioni di

$$z^2 + 3iz + 4 = 0$$

è

A:
$$(0, \pi)$$
 B: N.A. C: $(\pi/2, -\pi/2)$ D: $(\pi/3, \pi/6)$ E: $(0, \pi/2)$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

15 febbraio 2018

			(Co	ogno	ome)				_			(No	me)			_	ume		trice	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	0	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
6	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
9	0	\bigcirc	0	\bigcirc	\bigcirc	
10	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

1. Inf, min, sup e max dell'insieme

$$A = \{ n \in \mathbb{N} \setminus \{0\} : \tan(n^2/4) < 1 \},$$

valgono

A:
$$\{1, 1, +\infty, N.E.\}$$
 B: $\{-1, N.E., 1, N.E.\}$ C: $\{0, 0, 1, 1\}$ D: $\{-1, -1, 1, 1\}$ E: N.A.

2. Sia y soluzione del problema di Cauchy $y(t)y'(t)=\sin(t),\ y(0)=1.$ Allora $y(\pi/3)$ vale A: 0 B: $\sin(1)$ C: $\sqrt{2-\pi/3}$ D: N.A. E: $\pi/3$

3. Il limite

$$\lim_{x \to 0} (e^x + x)^{1/x}$$

vale

A: $e B: N.E. C: 1 D: e^2 E: N.A.$

4. Il polinomio di Taylor di $f(x) = \sqrt{1+x} - \sqrt{1-x}$ di grado 3, relativo al punto $x_0 = 0$ vale A: $x + \left(\frac{x}{2}\right)^3$ B: $x + \frac{x^3}{3!}$ C: N.A. D: $1 + \frac{x}{2} + \frac{x^2}{3} + \frac{x^3}{4}$ E: x^3

5. La funzione $f: [1, \pi^4] \to \mathbb{R}$ definita da $f(x) = x^7 - x$ è A: N.A. B: non continua C: iniettiva D: surgettiva E: concava

6. L'argomento delle soluzioni di

$$z^2 + 3iz + 4 = 0$$

è

A:
$$(\pi/3, \pi/6)$$
 B: $(0, \pi/2)$ C: $(\pi/2, -\pi/2)$ D: N.A. E: $(0, \pi)$

7. L'integrale

$$\int_0^{-1} \arctan(x) \, dx$$

vale

A:
$$\frac{\pi - \log(4)}{4}$$
 B: 0 C: 1 D: N.A. E: $\pi/2$

8. Data $f(x) = \frac{x+2}{x^2-1} - \log(2x-3)$. Allora f'(2) è uguale a A: 1 B: $-\frac{31}{9}$ C: N.A. D: 2π E: 0

9. La serie di potenze

$$\sum_{n=1}^{\infty} \frac{2 + \sin(n)}{n^2} (x - 1)^n$$

converge per

A:
$$x \in [0,2]$$
 B: $x \in]-2,2[$ C: N.A. D: $x \in [0,2[$ E: $|x|<1$

10. L'integrale

$$\int_{1}^{\infty} \frac{1}{\sqrt[a]{x^4 - 1}} \, dx$$

converge per a

A:
$$a < 1$$
 B: N.A. C: $a \in [2, 5]$ D: $a \in [1, 4]$ E: $a > 1$

15 febbraio 2018

															L				
			(Co	gnor	me)						(No	me)				ume		trice	ola)

1	0	\bigcirc	\bigcirc	\bigcirc	•	
2	0	\bigcirc	•	\bigcirc	\bigcirc	
3	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4	0	\bigcirc	\bigcirc		\bigcirc	-
5	0	\bigcirc	•	\bigcirc	\bigcirc	-
6	0	•	\bigcirc	\bigcirc	\bigcirc	
7	0	\bigcirc	0	\bigcirc	•	
8	0	\bigcirc	•	\bigcirc	\bigcirc	
9	0	\bigcirc	\bigcirc	\bigcirc		
10	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

15 febbraio 2018

			(Co	gno	me)				_			(No	me)			-	ume	ro d	li ma	atrice	ola)

1	0	\bigcirc	\bigcirc	•	0	
2	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3	0	\bigcirc	\bigcirc	•	\bigcirc	
4	0	\bigcirc	\bigcirc	\bigcirc	•	
5	0	\bigcirc	\bigcirc	\bigcirc	•	
6	0	\bigcirc	\bigcirc	\bigcirc	•	
7	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	\bigcirc	\bigcirc	•	\bigcirc	
9	0	•	\bigcirc	\bigcirc	\bigcirc	
10	0		\bigcirc	\bigcirc	\bigcirc	

15 febbraio 2018

(Cognome)									_			(No	me)			_	ume	li ma	atric	ola)						

0	\bigcirc	\bigcirc	\bigcirc	•	
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	\bigcirc	•	\bigcirc	\bigcirc	
0	\bigcirc	•	\bigcirc	\bigcirc	
0	•	\bigcirc	\bigcirc	\bigcirc	
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	_
0	\bigcirc	0	\bigcirc	•	_
0	\bigcirc	•	\bigcirc	\bigcirc	
•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
0	\bigcirc	•	\bigcirc	\bigcirc	

15 febbraio 2018

(Cognome)									_			(No	me)			-	ume	ro d	li ma	atrice	ola)						

1	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
2	0	\bigcirc	\bigcirc	•	\bigcirc	
3	0	\bigcirc	\bigcirc	•	\bigcirc	
4	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5	0	\bigcirc	•	\bigcirc	\bigcirc	
6	0	\bigcirc	•	\bigcirc	\bigcirc	
7		\bigcirc	\bigcirc	\bigcirc	\bigcirc	
8	0	•	\bigcirc	\bigcirc	\bigcirc	
9	•	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
10	0	\bigcirc	\bigcirc	•	\bigcirc	

15 febbraio 2018

PARTE B

1. Si studi per $\lambda > 0$ la funzione

$$f(x) = \begin{cases} x e^{-\frac{\lambda}{x^2}} & \text{se } x \neq 0\\ 0 & \text{se } x = 0 \end{cases}$$

e in particolare se ne determinino gli intervalli di convessità.

Soluzione. La funzione f(x) è strettamente positiva per x > 0 e strettamente negativa per x < 0. Osserviamo che

$$\lim_{x \to 0} x e^{-\frac{\lambda}{x^2}} = 0$$

da cui deduciamo che la funzione f è continua su tutto $\mathbb R.$ Calcolando i limiti agli estremi del dominio troviamo

$$\lim_{x \to +\infty} f(x) = +\infty, \ \lim_{x \to -\infty} f(x) = -\infty.$$

Inoltre

$$\lim_{x \to +\infty} f(x)/x = +1, \ \lim_{x \to -\infty} f(x)/x = +1,$$

quindi la funzione ha asintoti obliqui per $x \to \pm \infty$. Derivando la funzione una volta si ottiene, per $x \neq 0$,

$$f'(x) = e^{-\frac{\lambda}{x^2}} \left(1 + 2\lambda x^{-2} \right),$$

che è sempre positiva. Si verifica anche facilmente che $\lim_{x\to 0} f'(x) = 0$, da cui segue la continuità della derivata prima in 0. Derivando la funzione due volte troviamo, per $x \neq 0$,

$$f''(x) = \frac{2\lambda e^{-\frac{\lambda}{x^2}} \left(2\lambda - x^2\right)}{x^5}$$

La derivata seconda si annulla per $x = \pm \sqrt{2\lambda}$, è positiva per $x < -\sqrt{2\lambda}$ e per $0 < x < \sqrt{2\lambda}$, intervalli ove la funzione è convessa. Altrove è concava. Abbiamo quindi tre punti di flesso in $x_1 = -\sqrt{2\lambda}$, in $x_2 = 0$ e in $x_3 = \sqrt{2\lambda}$.

2. Si risolva il problema di Cauchy

$$\begin{cases} y'(x) + 4x^3 y(x) = x e^{-x^4} \\ y(0) = y_0 \end{cases}$$

Figura 1: Grafico approssimativo di f(x)

per ogni $y_0 \in \mathbb{R}$.

Si determini poi se esistono y_0 tali che la soluzione y(x) corrispondente al dato iniziale y_0 è tale che

$$\lim_{x \to +\infty} y(x) = 0$$

Soluzione. L'equazione differenziale si può risolvere con il metodo del fattore integrante. Infatti se moltiplichiamo a sinistra e a destra dell'equazione per e^{x^4} troviamo

$$(e^{x^4}y(x))' = x.$$

Integrando a sinistra e destra e tendendo conto della condizione iniziale $y(0) = y_0$ otteniamo

$$y(x) = e^{-x^4} \left(\int_0^x t \, dt + y_0 \right)$$

ovvero

$$y(x) = e^{-x^4} \left(\frac{x^2}{2} + y_0 \right).$$

Per ogni scelta di $y_0 \in \mathbb{R}$ vale $\lim_{x \to +\infty} y(x) = 0$.

3. Studiare, al variare di $\alpha > 0$ la convergenza dell'integrale

$$\int_{\mathbb{R}} \frac{1}{\cosh(\alpha x)} \, dx$$

e chiamato $\Phi(\alpha) := \int_{\mathbb{R}} \frac{1}{\cosh(\alpha x)} dx$, dove è definita, studiare

$$\lim_{\alpha \to 0^+} \Phi(\alpha)$$

Soluzione. Ricordiamo che

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$

e quindi

$$\frac{1}{\cosh(\alpha x)} = \frac{2}{\mathrm{e}^{\alpha x} + \mathrm{e}^{-\alpha x}}.$$

Vogliamo verificare che gli integrali $\int_{-\infty}^{0} \frac{1}{\cosh(\alpha x)} dx$ e $\int_{0}^{+\infty} \frac{1}{\cosh(\alpha x)} dx$ convergono per ogni $\alpha > 0$. Osserviamo che $\frac{1}{\cosh(\alpha x)}$ è una funzione limitata ed integrabile su ogni intervallo del tipo [0,c] con $c \in \mathbb{R}$ costante positiva arbitraria. Ci interessa quindi studiare il comportamento per $x \to +\infty$. In virtù della formula scritta sopra abbiamo per $x \to +\infty$

$$\frac{1}{\cosh(\alpha x)} \sim \frac{2}{\mathrm{e}^{\alpha x}}$$

ed in particolare possiamo dire per ogni α esiste $c_{\alpha}>0$ tale che se $x>c_{\alpha}$ allora

$$\frac{1}{\cosh(\alpha x)} \sim \frac{2}{\mathrm{e}^{\alpha x}} < \frac{2}{x^2}.$$

Riassumendo, per ogni $\alpha > 0$ possiamo scrivere

$$\int_0^{+\infty} \frac{1}{\cosh(\alpha x)} dx = \int_0^{c_\alpha} \frac{1}{\cosh(\alpha x)} dx + \int_{c_\alpha}^{+\infty} \frac{1}{\cosh(\alpha x)} dx$$

ove il primo integrale converge perché integriamo una funzione limitata su un intervallo limitato, mentre il secondo integrale converge perché maggiorato dall'integrale convergente $\int_{c_{\alpha}}^{+\infty} \frac{1}{x^2} dx$. Infine, siccome $\cosh(\alpha x)$ è una funzione pari, abbiamo

$$\int_{-\infty}^{0} \frac{1}{\cosh(\alpha x)} dx = \int_{0}^{+\infty} \frac{1}{\cosh(\alpha x)} dx$$

quindi anche l'integrale su $(-\infty,0)$ converge. Usando che

$$\frac{1}{\cosh(\alpha x)} = \frac{2e^{\alpha x}}{e^{2\alpha x} + 1},$$

calcoliamo

$$\int_0^{+\infty} \frac{1}{\cosh(\alpha x)} dx = \lim_{a \to +\infty} \int_0^a \frac{1}{\cosh(\alpha x)} dx$$

$$= \lim_{a \to +\infty} \int_0^a \frac{2e^{\alpha x}}{e^{2\alpha x} + 1} dx$$

$$= \lim_{a \to +\infty} \frac{2}{\alpha} \int_1^{e^{\alpha a}} \frac{1}{t^2 + 1} dt$$

$$= \lim_{a \to +\infty} \frac{2}{\alpha} [\arctan(t)]_1^{e^{\alpha a}}$$

$$= \lim_{a \to +\infty} \frac{2}{\alpha} [\arctan(e^{\alpha a}) - \pi/4] = \frac{\pi}{2\alpha}.$$

Allora

$$\int_{\mathbb{R}} \frac{1}{\cosh(\alpha x)} dx = 2 \int_{0}^{+\infty} \frac{1}{\cosh(\alpha x)} dx = \frac{\pi}{\alpha},$$

e

$$\lim_{\alpha \to 0^+} \Phi(\alpha) = +\infty.$$

4. Sia f(x) una funzione continua e c
n derivata continua e che si annulla per x=0,1 Dimostrare che

$$\lim_{n \to +\infty} \int_0^1 f(x) \sin(nx) \, dx = 0.$$

Cosa si può dire invece di

$$\lim_{n \to +\infty} \int_0^1 f(x) \cos(nx) \, dx?$$

Soluzione. Integrando per parti si ha

$$\int_0^1 f(x)\sin(nx) \, dx = -\frac{1}{n}f(x)\cos(nx)\Big|_0^1 + \frac{1}{n}\int_0^1 f'(x)\cos(nx) \, dx$$

Il termine finito si annulla dato che f(0)=f(1)=0, mentre l'integrale converge a zero, dato che f' è limitata e quindi

$$\left|\frac{1}{n}\int_0^1 f'(x)\cos(nx)\,dx\right| \leq \frac{1}{n}\max_{[0,1]}|f'(x)| \to 0 \qquad \text{per } n \to +\infty.$$

Con lo stesso ragionamento si ha anche

$$\lim_{n \to +\infty} \int_0^1 f(x) \cos(nx) \, dx = 0.$$