List of Concepts for Chapter 6

Section 6.1

Let A be an $n \times n$ matrix.

- A scalar λ is said to be an **eigenvalue** of A if there exists a <u>nonzero</u> vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$. The vector \mathbf{x} is said to be an **eigenvector** belonging to λ .
- λ is an eigenvalue of A if and only if $\det(A \lambda \mathbf{I}) = 0$. If we expand $\det(A \lambda \mathbf{I})$ we obtain a polynomial $p(\lambda)$ called the <u>characteristic polynomial</u> of A. The equation $\det(A \lambda \mathbf{I}) = 0$ is called the characteristic equation of A, thus to find the eigenvalues of A we need to solve the characteristic equation and to find the eigenvectors we need to find a basis for the nullspace of $A \lambda \mathbf{I}$.
- Complex e-values: If $\lambda = a + ib$ is an eigenvalue of A, then $\bar{\lambda} = a ib$ is also an eigenvalue. Also the eigenvectors occur in conjugate pairs.
- The product of the eigenvalues equals the determinant of A: $\lambda_1 \cdot \lambda_2 \cdots \lambda_n = \det(A)$
- The sum of the eigenvalues is equal to the sum of the diagonal elements of A: $\sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} a_{ii} = \text{tr}(A)$
- Theorem: Similar matrices: B is similar to A if there exists a non singular matrix S such that $B = S^{-1} A S$. Two similar matrices have the same eigenvalues.

Section 6.3:

- Theorem: If λ_1 , λ_2 , ..., λ_k are distinct eigenvalues of an $n \times n$ matrix, then the corresponding eigenvectors \mathbf{x}_1 , \mathbf{x}_2 , ... \mathbf{x}_k are linearly independent.
- An $n \times n$ matrix A is **diagonalizable** if there exists a non singular matrix X and a diagonal matrix D such that $A = XDX^{-1}$. We say that X diagonalizes A.
- Theorem: A is diagonalizable if and only if it has n linearly independent eigenvectors. The columns of the matrix X are given by the n linearly independent eigenvectors and the entries of the matrix D are the corresponding eigenvalues (note that some of the eigenvalues may be repeated). Note that X is not unique: we can reorder its columns (the entries of D must then be reordered accordingly) or multiply them by a scalar.
- If A has n distinct eigenvalues, then A is diagonalizable. If the eigenvalues are not distinct, it may or may not be diagonalizable depending on whether A has n linearly independent eigenvectors. If A has fewer than n linearly independent eigenvectors, we say that A is **defective**. A defective matrix is not diagonalizable.
- If A is diagonalizable, it is easy to evaluate powers of A: $A^k = X D^k X^{-1}$.

Section 6.5:

- An $n \times n$ matrix Q is called an **orthogonal** matrix if the the columns of Q are orthonormal. Note that this implies $Q^{T}Q = I$ and since Q has an inverse it follows that $Q^{-1} = Q^{T}$.
- Assume A is $m \times n$, then A can be factored as $A = U \Sigma V^T$, where U is an $m \times m$ orthogonal matrix, V is an $n \times n$ orthogonal matrix and Σ is an $m \times n$ matrix with off diagonal entries all 0's and diagonal elements $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_n \ge 0$. The σ i's are called **singular values** of A and the factorization $A = U \Sigma V^T$ is called the **Singular Value Decomposition** of A, or SVD.

• Let $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_m$ be the columns of U and $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ be the columns of V. We then have:

$$A = U \Sigma V^{T} = \sigma_{1} \mathbf{u}_{1} \mathbf{v}_{1}^{T} + \sigma_{2} \mathbf{u}_{2} \mathbf{v}_{2}^{T} + \dots + \sigma_{n} \mathbf{u}_{n} \mathbf{v}_{n}^{T}$$

- The singular values are given by $\sigma_i = \sqrt{\lambda_i}$ where λ_i are the eigenvalues of A^TA . The columns of V are the corresponding orthonormal eigenvectors. If $\sigma_1, \sigma_2, ... \sigma_r \neq 0$, then the columns of U are $\mathbf{u}_i = \frac{1}{\sigma_i} \mathbf{A} \mathbf{v}_i$ for i = 1, 2, ..., r. The remaining columns, $\mathbf{u}_{r+1}, \mathbf{u}_{r+2}, ... \mathbf{u}_m$, are an orthonormal basis of $N(A^T)$.
- Since $A = U \Sigma V^T = \sigma_1 \mathbf{u_1} \mathbf{v_1}^T + \sigma_2 \mathbf{u_2} \mathbf{v_2}^T + \cdots + \sigma_n \mathbf{u_n} \mathbf{v_n}^T$ and each of the matrices $\mathbf{u_i} \mathbf{v_i}^T$ have rank 1, we have that the rank of A is given by the number of non zero singular values of A.
- If A has rank r then \mathbf{u}_1 , \mathbf{u}_2 , ... \mathbf{u}_r are a basis for the column space of A, and \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_r are a basis for the row space of A.
- If A has rank n, then $A' = \sigma_1 \mathbf{u_1} \mathbf{v_i}^T + \sigma_2 \mathbf{u_2} \mathbf{v_2}^T + \dots + \sigma_{n-1} \mathbf{u_{n-1}} \mathbf{v_{n-1}}^T$ is the <u>matrix of rank n-1 that is closest</u> to A with respect to the Frobenius norm, i.e., $||A A'||_F = \min \max$ among all matrices A' of rank n-1.
- If **A** is nonsingular $n \times n$, then A' is singular and $||A A'||_F = \sigma_n$. Thus σ_n may be taken as a measure of how close a square matrix is to be singular.
 - In general, $B = \sigma_1 \mathbf{u_1} \mathbf{v}_i^T + \sigma_2 \mathbf{u_2} \mathbf{v_2}^T + \dots + \sigma_k \mathbf{u}_k \mathbf{v}_k^T$ is the matrix of rank k that is closest to A with respect to the Frobenius norm. and $||A B||_F = \sqrt{\sigma_{k+1}^2 + \sigma_{k+2}^2 + \dots \sigma_n^2}$
- If $A = U \Sigma V^T$, the <u>least squares solution</u> of $A\mathbf{x} = \mathbf{b}$ is given by $\hat{\mathbf{x}} = \frac{(\mathbf{u}_1^T \mathbf{b})}{\sigma_1} \mathbf{v}_1 + \frac{(\mathbf{u}_2^T \mathbf{b})}{\sigma_2} \mathbf{v}_2 + ... + \frac{(\mathbf{u}_n^T \mathbf{b})}{\sigma_n} \mathbf{v}_n$