General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-CR-170999) SPACE SHUTTLE MAIN ENGINE N84-20635 POWERHEAD STRUCTURAL MODELING, STRESS AND FATIGUE LIFE ANALYSIS. VOLUME 1: GASDYNAMIC ENVIRONMENT OF THE SSME HPFTP AND Unclas HPOTP TURBINES Final (Lockheed Missiles and G3/20 18780

\$ 300 PVA

Lockheed
Missiles & Space Company
Huntsville Research & Engineering Center
4800 Bradford Orive, Huntsville, AL 35807

Lockheed

Missiles & Space Company, Inc

Huntsville Research & Engineering Center

Cummings Research Park 4800 Bradford Drive Huntsville, AL 35807

> SPACE SHUTTLE MAIN ENGINE POWERHEAD STRUCTURAL MODELING, STRESS AND FATIGUE LIFE ANALYSIS

VOLUME I - GASDYNAMIC ENVIRONMENT OF THE SSME HPFTP AND HPOTP TURBINES

December 1983

Contract NAS8-34978

Prepared for National Aeronautics and Space Administration Marshall Space Flight Center, AL 35812

bу

J.C. Hammett

C.H. Haves

J.M. Price

J.K. Robinson

G.A. Teal

J.M. Thomson

D.M. Tilley

C.T. Welch

APPROVED

C.T. Welch, Manager (Acting)

Product Engineering & Development Section

S.V. Bourgeois

Director

Ť

FOREWORD

This report summarizes the results of work performed on Contract NAS8-34978. The work was performed by personnel of the Product Engineering & Development Section of Lockheed's Huntsville Research & Engineering Center, for the National Aeronautics and Space Administration, George C. Marshall Space Flight Center, Alabama. The Contracting Officer's technical representative for this study is Mr. Norman C. Schlemmer, Structures and Propulsion Laboratory, Engineering Analysis Division, Stress Analysis Branch (EP46).

This report is divided into four volumes with a section covering one aspect of analysis for all components and loads, and a fourth section for investigation of unscheduled events and special tasks undertaken during the effort. The volumes are:

- Volume I Gasdynamic Environment of the SSME HPFTP and HPOTP Turbines, LMSC-HREC TR D867333-I.
- Volume II Dynamics of Blades and Nozzles SSME HPFTP and HPOTP, LMSC-HREC TR D867333-II.
- Volume III Stress Summary of Blades and Nozzles at FPL and 115 percent RPL Loads SSME HPFTP and HPOTP Blades and Nozzles, LMSC-HREC TR D867333-III.
- Volume IV Summary of Investigation of Unscheduled Events and Special Tasks, LMSC-HREC TR D867333-IV.

It should be noted that this report summarized our findings. A great body of data exists in the form of computer printout and magnetic tapes and is available to any interested reader for either amplification of the summarized data or as a basis for further work.

CONTENTS

Section		Page
	FOREWORD	ii
1	INTRODUCTION	1
2	GASDYNAMIC ANALYSIS FOR THE TURBINE BLADES AND NOZZLE VANES	2
	2.1 One-Dimensional Flow Analysis2.2 Flowfield Calculations Based on NASA-Lewis Codes Analysis	2
3	HPFTP TURBINE ANALYSIS	5
	3.1 One-Dimensional Analysis results3.2 NASA-Lewis Codes Analysis Results	5 5
4	HPOTP TURBINE ANALYSIS	20
	4.1 One-Dimensional Analysis Results 4.2 NASA-Lewis Codes Analysis Results	20 20
	REFERENCES	28
Appendixes		
A	HPFTP First Stage Nozzle Pressure, Adiabatic Wall Temperature and Heat Transfer Coefficient Distributions	A-1
В	HPFTP First Stage Blade Pressure, Adiabatic Wall Temperature and Heat Transfer Coefficient Distributions	B-1
С	HPFTP Second Stage Blade Pressure, Adiabatic Wall Temperature and Heat Transfer Coefficient Distributions	C-1
D	HPFTP Second Stage Nozzle Pressure, Adiabatic Wall Temperature and Heat Transfer Coefficient	D 1

E	HPOTP First Stage Nozzle Pressure, Adiabatic Wall Temperature and Heat Transfer Coefficient	
	Distributions	E-1
F	HPOTP First Stage Blade Pressure, Adiabatic Wall Temperature and Heat Transfer Coefficient	
	Distributions	F-1
G	HPOTP Second Stage Nozzle Pressure, Adiabatic Wall Temperature and Heat Transfer Coefficient	
	Distributions	G-1
H	HPOTP Second Stage Blade Pressure, Adiabatic Wall	
	Temperature and Heat Transfer Coefficient	
	Di etri butione	H-1

1. INTRODUCTION

The objectives of these analyses are to define the gasdynamic and thermal environments acting on the HPFTP and HPOTP nozzles and turbine blades during steady state engine operation. Flow analyses were performed for operation at full power level (FPL) and 115 percent of rated power level (RPL).

2. GASDYNAMIC ANALYSIS FOR THE TURBINE BLADES AND NOZZLE VANES

2.1 ONE-DIMENSIONAL FLOW ANALYSIS

One-dimensional models of the HPFTP and HPOTP turbines (REf. 1) were used to generate average velocity and pressure data at the inlet and discharge of the turbine blades. Required program inputs consist of the following parameters:

- 1. Turbine inlet pressure and temperature
- 2. Turbine flow rate
- 3. Turbine discharge pressure
- 4. Pump speed.

Program output is described in Table 2-1.

The thermal environment in the first and second stage blade platform and shank regions was calculated based on hot gas leakage and turbine coolant flow rates obtained from the HPFTP and HPOTP turbine coolant models (Ref. 1). Heat transfer coefficients were computed using correlations for flow across a flat plate and a correlation for convection heat transfer in rotating systems (Ref. 2).

Laminar Flow

$$hcx = 0.332 \cdot K \cdot Re^{0.5} \cdot Pr^{0.333}/x$$

<u>Turbulent Flow</u> (Transition at Re = 5×10^5)

$$hcx = 0.0288 \cdot K \cdot Re^{0.8} \cdot Pr^{0.333}/x$$

Table 2-1
NOMENCLATURE FOR ONE-DIMENSIONAL TURBINE ANALYSES

Nomenclature:

- P_{o} fluid total pressure, psia
- P fluid static pressure, psia
- T fluid total temperature, R
- T fluid static temperature, R
- α fluid absolute flow angle, deg
- β fluid relative flow angle, deg
- C fluid absolute velocity, ft/sec
- V fluid tangential velocity, ft/sec
- u fluid axial velocity, ft/sec
- VR fluid relative velocity, ft/sec
- $\mathbf{u}_{\mathbf{m}}$ blade velocity, ft/sec
- w turbine flow rate, 1bm/sec
- RPM pump speed

Velocity Diagrams

Rotating Systems

hc = 0.035 • K •
$$(Re_{ro})^{0.7}$$
 • $(Re_{s})^{0.1}$ • $(r_{i}/r_{o})^{0.3}$ • $(2a/r_{o})^{1.06}/2a$

where:

K is thermal conductivity
Re is the Reynolds no., $\rho\text{-V} \cdot \mathbf{x}/\mu$ Pr is the Prandtl no., $\mu\text{-cp/K}$ X is the flow distance along the plate
Re is the rotational Reynolds no., $\rho\text{-}\omega \cdot r_o^2/\mu$ Re is the source flow Reynolds no., $\dot{\mathbf{w}}/(4\pi\text{-}a\mu)$ r is the inner radius of the rotating disk
r is the outer radius of the rotating disk
a is the gap between the rotating and stationary disks. ω is the rotational velocity, rad/sec $\dot{\mathbf{w}}$ is the flow rate, lbm/sec

2.2 FLOWFIELD CALCULATIONS BASED ON NASA-LEWIS CODES ANALYSIS

The gasdynamic environment of the HPFTP and HPOTP nozzle vanes and turbine blades was calculated with a set of three codes obtained from NASA-Lewis Research Center. The first step in the analysis uses an inviscid flow code designated MERIDL (Refs. 3 and 4) and determines the flow characteristics at the plane located at the midpoint between the two mean-camber lines of adjacent blades. The second step in the inviscid calculation procedure is the blade-to-blade calculation for each of eleven stream sheets using the code TSONIC (Ref. 5). By use of the MERIDL and TSONIC codes, a quasi three-dimensional calculation is effected.

The thermal environment experienced by the blade was determined by use of the boundary layer code BLAYER (Ref. 6). This code sovles the two-dimensional, compressible, laminar and turbulent boundary layer equations in an arbitrary pressure gradient.

3. HPFTP TURBINE ANALYSIS

3.1. ONE-DIMENSIONAL ANALYSIS RESULTS

Average velocity and pressure data at the inlet and discharge of the turbine blades were computed as described in Section 2.1. Data were computed at the FPL and 115 percent power levels using revision F engine balance data. Results of these analyses are presented in Table 3-1.

The thermal environment in the platform and shank region of the turbine blades was also computed at both power levels. Coolant and hot gas leakage flow data used in the analysis are shown in Table 3-2. Results are presented in Tables 3-3 through 3-12. The heat transfer correlations and method of analysis are described in Section 2.1.

3.2 NASA-LEWIS CODES ANALYSIS RESULTS

The computer codes described in Section 2.2 were used to generate thermal and pressure loads for the HPFTP turbine nozzles and blades at the FPL and 115 percent power levels. Input data were obtained from Revision F engine balance data and from the one-dimensional analysis results shown in Table 3-1. Analysis results for vane pressure, heat transfer coefficient and adiabatic wall temperature profiles at five radial locations are contained in Appendixes A through D.

Pressure data obtained from the BLAYER program were integrated over the vane surface to obtain the net torque force on the first and second stage blades. These forces are compared to approximate values based on the torque obtained from engine balance data in Table 3-13. The forces obtained from engine balance data are approximately 10 percent higher than those obtained

from the NASA-Lewis codes analysis. Part of this discrepancy is due to smoothing of the pressure profile data which is required to obtain execution of the BLAYER program.

Table 3-1

AVERAGE FLUID PROPERTIES AT INLET AND DISCHRAGE OF HPFTP TURBINE BLADES AT THE MEAN DIAMETER

FPL

115 Percent

	First Stage Blade	Second Stage Blade	First Stage Blade	Second Stage Blade
		Blade In	let	
Po P To T α β C V u V R u W RPM	5564.7 4784.0 1993.6 1917.4 24.5 54.7 2678.0 2436.9 110.6 1361.6 1649.14 160.78 37091.0	4481.5 3838.3 1906.8 1831.7 26.75 59.0 2650.6 2366.9 1193.0 1392.3 1649.14 162.18 37091.0	6009.1 5151.1 1941.5 1865.6 24.5 56.3 2685.6 2443.8 1113.7 1338.6 1700.98 176.34 38257.0	4831.8 4119.5 1854.3 1778.7 26.75 60.4 2669.4 2383.7 1201.5 1381.9 1700.98 177.74 38257.0
		Blade Ex	it	
Po P To T α β C V u VR ul w RPM	4555.3 4427.1 1903.7 1889.7 77.4 30.5 1146.4 250.2 1118.8 2204.4 1649.14 160.78 37091.0	3665.1 3557.5 1809.4 1795.4 79.2 31.1 1145.0 215.1 1124.6 2177.2 1649.14 162.18 37091.0	4900.4 4761.1 1850.9 1837.1 79.5 30.5 1143.7 208.2 1124.6 2215.7 1700.98 176.34 38257.0	3932.8 3815.7 1757.5 1743.7 81.3 31.1 1143.5 172.9 1130.4 2188.4 1700.98 177.74 38257.0

ORIGINAL PAGE IS OF POOR QUALITY

Table 3-2
HPFTP TURBINE COOLANT AND LEAKAGE FLOW ANALYSIS

FPL

115 Fercent

Flow Path	Flow Rate (1bm/sec)	Temperature (R)	Pressure (psia)	Flow Rate (1bm/sec)	Temperature (R)	Pressure (psia)
1	164.18	1917	4784	179.74	1865	5151
2	3.90	1993	4230	4.27	1941	4540
3	0.52	147	4	0.51	152	4
4	4.42	1610	ĺ	4.78	1604	1
5	2.15	1903	į.	2.36	1850	
6	0.52	155	4230	0.52	161	4540
7	7.09	1513	4215	7.66	1513	4525
8	0.24	155	4215	0.26	161	4525
9	3.68	1438	3838	3.97	1439	4120
10	3.65	1435	4205	3.95	1437	4515
11	0.36	145	4205	0.36	151	4515
12	4.02	1221	3558	4.31	1279	3816

ORIGINAL PAGE IS OF POOR QUALITY

Table 3-3 HPFTP FIRST STAGE ROTOR BLADE (TOP OF PLATFORM) GAS FILM COEFFICIENTS AND ADIABATIC WALL TEMPERATURES

Heat Transfer Coefficients Adiabatic Wall Temperatures (Btu/in²-sec-F) (F) (F)

Sta.		115 Percent		115 Percent
No.	FPL	Power Level	FPL	Power Level
1	.012	.013	1535	1485
2	.012	.013	1535	1485
3	.028	.030	1475	1425
4	.025	.027	1475	1425
5	.030	.032	1475	1425
6	.027	.029	1475	1425
7	.026	.028	1475	1425
8	.030	.033	1475	1425
9	.031	.033	1475	1425
10	.031	.033	1475	1425

ORIGINAL PAGE 19 OF POOR QUALITY

Table 3-4 HPFTP FIRST STAGE ROTOR BLADE (BOTTOM OF PLATFORM) GAS FILM COEFFICIENTS AND ADIABATIC WALL TEMPERATURES

Heat Transfer Coefficients Adiabatic Wall Temperatures (Btu/in²-sec-F) (F)

Sta.		115 Percent		115 Percent
No.	FPL	Power Level	FPL	Power Level
1	.012	.013	1535	1485
2	.012	.013	1535	1485
3	.0030	.0031	1493	1446
4	.0016	.0017	1363	1331
5	.0013	.0013	1255	1237
6	.0018	.0018	1458	1415
7	.0013	.0013	1322	1296
8	.0049	.0052	1178	1169
9	.011	.012	1445	1392
10	.011	.012	1445	1392

Table 3-5

HPFTP FIRST STAGE ROTOR BLADE (SHANK) GAS FILM
COEFFICIENTS AND ADIABATIC WALL TEMPERATURES

	(Btu/	in ² -sec-F)		(F)
Sta.	EDI	115 Percent		115 Percent
No.	FPL	Power Level	FPL	Power Level
1	.012	.013	1153	1112
2	.0026	.0027	1149	1111
3	.0015	.0016	1150	1123
4	.0053	.0056	1151	1135
5	.0049	.0052	1152	1144
6	.0036	.0037	1148	1110
7	.0018	.0019	1150	1120
8	J014	.0014	1151	1130
9	.0051	.0055	1152	1141
10	.012	.013	1309	1282

Heat Transfer Coefficients Adiabatic Wall Temperatures

ORIGINAL PAGE IS OF POOR QUALITY

Table 3-6
HPFTP FIRST STAGE ROTOR BLADE (SHANK) GAS FILM
COEFFICIENTS AND ADIABATIC WALL TEMPERATURES

		sfer Coefficients in ² -sec-F)	Adiabati	c Wall Temperatures
Sta. No.	FPL	115 Percent Power Level	FPL	115 Percent Power Level
110	ri L	tower Feder	FFL	LOWEL TEAST
1	.014	.015	443	437
2	.0030	.0031	541	522
3	.0016	.0017	750	736
4	.0058	.0061	941	932
5	.0051	.0054	1096	1089
6	.0032	.0033	545	525
7	.0017	.0018	732	717
8	.0061	.0065	885	873
9	.0053	.0056	1050	1042
10	.013	.014	1264	1243

ORIGINAL PAGE IS

Table 3-7

HPFTP FIRST STAGE ROTOR BLADE (SHANK) GAS FILM COEFFICIENTS AND ADIABATIC WALL TEMPERATURES

		sfer Coefficients in ² -sec-F)	Adiabati	ic Wall Temperatures (F)
Sta. No.	FPL	115 Percent Power Level	FPL	115 Percent Power Level
1 2 3 4 5 6 7 8	.039 .030 .0089 .0069 .0058 .030 .0089	.041 .031 .0091 .0073 .0061 .031 .0091	-312 -163 204 542 852 -163 204 542	-307 -159 205 541 848 -159 205
9 10	.0058	.0061 .015	852 1242	541 848 1223

Table 3-8

HPFTP SECOND STAGE ROTOR BLADE (TOP OF PLATFORM) GAS FILM COEFFICIENTS AND ADIABATIC WALL TEMPERATURES

Heat Transfer Coefficients
(Btu/in²-sec-F)

Adiabatic Wall Temperatures
(F)

115 Percent
FPL Power Level

FPL Power Level

Sta.		110 Percent		115 Percent
No.	FPL	Power Level	FPL	Power Level
1	.015	.016	976	976
2	.015	.016	976	976
3	.024	.026	1392	1340
4	.021	.023	1392	1340
5	.025	.027	1392	1340
6	.023	.025	1392	1340
7	.022	.024	1392	1340
8	.026	.028	1392	1340
9	.026	.028	1392	1340
10	.026	.028	1392	1340

ORIGINAL PAGE IS OF POOR QUALITY

Table 3-9 HPFTP SECOND STAGE ROTOR BLADE (BOTTOM OF PLATFORM) GAS FILM COEFFICIENTS AND ADIABATIC WALL TEMPERATURES

Heat Transfer Coefficients Adiabatic Wall Temperatures (Etu/in²-sec-F) (F)

Sta.		115 Percent		115 Percent
No.	FPL	Power Level	FPL	Power Level
1	.015	.017	977	977
2	.015	.017	977	977
3	.0028	.0029	977	977
4	.0015	.0015	977	977
5	.0012	.0012	977	977
6	.0017	.0017	977	977
7	.0012	.0012	977	977
8	.0043	.0046	977	977
9	.015	.017	787	801
10	.015	.017	787	801

ORIGINAL PAGE IS OF POOR QUALITY

Table 3-10

HPFTP SECOND STAGE ROTOR BLADE (SHANK) GAS FILM COEFFICIENTS AND ADIABATIC WALL TEMPERATURES

		isfer Coefficients in ² -sec-F)	Adiabatic Wall Tempera (F)	
Sta. No.	FPL	115 Percent Power Level	FPL	115 Percent Power Level
1 2 3 4 5 6 7 8	.015 .0024 .0014 .0011 .0043 .0032 .0016 .0012	.016 .0024 .0014 .0049 .0046 .0034 .0017 .0013	977 977 977 977 977 977 977 977	977 977 977 977 977 977 977 977
10	.015	.017	773	788

Table 3-11

HPFT? SECOND STAGE ROTOR BLADE (SHANK) GAS FILM
COEFFICIENTS AND ADIABATIC WALL TEMPERATURES

	Heat Transfer Coefficients (Btu/in ² -sec-F)		Adiabatic Wall Temperatures (F)	
Sta. No.	FPL	115 Percent Power Level	FPL	115 Percent Power Level
1 2 3 4 5 6 7 8 9	.015 .0024 .0014 .0011 .0044 .0026 .0015 .0012 .0045	.016 .0025 .C014 .0049 .0046 .0027 .0015 .0012	977 977 977 977 977 977 977 977 977	977 977 977 977 977 977 977 977 977

Table 3-12

HPFTP SECOND STAGE ROTOR BLADE (SHANK) GAS FILM COEFFICIENTS AND ADIABATIC WALL TEMPERATURES

	Heat Transfer Coefficients (Btu/in ² -sec-F)		Adiabatic Wall Temperatures (F)		
Sta.	FPL	115 Percent Power Level	FPL	115 Percent Power Level	
No.	FFL	tomer reser	ri u	TOWEL DEVEL	
1	.015	.016	977	977	
2	.0024	.0025	977	977	
3	.0014	.0015	977	977	
4	.0011	.0011	977	977	
5	.0045	.0047	977	977	
6	.0024	.0025	977	977	
7	.0014	.0015	977	977	
8	.0011	.0011	977	977	
9	.0045	.0047	977	977	
10	.038	.040	-304	-298	

Table 3-13
HPFTP TURBINE BLADE TORQUE FORCES (1bf)

	FPL		115 Percent	
	BLAYER Program	Approximate (based on engine balance data)	BLAYER Program	Approximate (based on engine balance data)
First Stage	188	209	204	226
Second Stage	191	213	209	231

4. HPOTP TURBINE ANALYSIS

4.1 ONE-DIMENSIONAL ANALYSIS RESULTS

The one-dimensional turbine program (described in Section 2.1) was used to generate average velocity and pressure data at the inlet and discharge of the turbine blades. Data were computed at the FPL and 115 percent power levels using revision F engine balance data. Results of these analyses are presented in Table 4-1.

Coolant and hot gas leakage flow data for the HPOTP nozzles and blades are shown in Fig. 4-1 and Table 4-2. These data were used to generate the thermal environment in the platform and shank region of the turbine blades (Tables 4-3 and 4-4). The heat transfer correlations and method of analysis are described in Section 2.1.

4.2 NASA-LEWIS CODES ANALYSIS RESULTS

The computer codes described in Section 2-2 were used to generate thermal and pressure loads for the HPOTP turbine nozzles and blades at the FPL and 115 percent levels. Input data were obtained from Revision F engine balance data and from the one-dimensional analysis results shown in Table 3-1. Analysis results for vane pressure, heat transfer coefficien, and adiabatic wall temperature profiles at three radial locations are contained in Appendixes E through H.

Pressure data obtained from the BLAYER program were integrated over the vane surface to obtain the net torque force on the first and second stage blades. These forces are compared to approximate values based on the torque obtained from engine balance data in Table 4-5. The forces obtained from

engine balance data are 8 to 15 percent higher than those obtained from the NASA-Lewis codes analysis. Part of this discrepancy is due to smoothing of the pressure profile data which is required to obtain execution of the BLAYER Program.

Table 4-1

AVERAGE FLUID PROPERTIES AT INLET AND DISCHARGE OF HPOTP TURBINE BLADES AT THE MEAN DIAMETER

		FPL		
	First Stage Blade	Second Stage Blade	First Stage Blade	Second Stage Blade
		Blade Inle	t	
P_{o}	5459.5	4219.3	5980.5	4580.7
P	4182.1	3664.7	4537.9	3948.5
$T_{\mathbf{o}}$	1499.8	1407.0	1686.0	1585.1
T	1395.4	1354.2	1566.5	1523.4
ŧχ	16.0	22.5	16.0	22.5
β	26.2	46.8	26.1	46.0
C	3327.6	2368.7	3648.2	2494.5
V	3198.7	2188.4	3333.9	2304.6
u	917.2	906.5	956.0	954.6
٧ĸ	2075.4	1243.6	2172.7	1327.0
uт	1336.94	1336.94	1382.81	1382.81
u _T	66.73	67.85	72.00	73.18
RPM	30367.0	30367.0	31409.0	31409.0
		Blade Exit	:	
P_{o}	4271.8	3597.0	4640.7	3874.5
P	4152.5	3534.2	4504.6	3802.5
$T_{\mathbf{o}}$	1404.6	1342.8	1582.5	1511.7
T	1393.9	1336.4	1570.0	1504.1
α	69.9	85.6	69.1	83.6
β	30.5	30.5	30.5	30.5
С	1069.4	827.5	1125.0	877.4
V	367.8	63.8	401.3	97.4
u	1004.2	825.1	1050.9	871.9
VR	1978.5	1625.7	2070.6	1717.9
ΨŢ	1336.94	1336.94	1382.81	1382.81
w T	66.73	67.85	72.00	73.18
RPM	30367.0	30367.0	31409.0	31409.0

Fig. 4-1 HPOTP Turbine Coolant and Leakage Flow Analysis

Table 4-2
HPOTP TURBINE COOLANT AND LEAKAGE FLOW ANALYSIS

FPL 115 Percent Flow Rate Temperature Pressure Flow rate Temperature Pressure Flow Path (1bm/sec) (R) (psia) (1bm/sec) (R) (psia) 65.88 71.11 0.84 0.88 1.47 1.57 2.78 2.60 0.09 0.10 0.09 0.11 0.17 0.18 0.39 0.42

Table 4-3

HPOTP FIRST STAGE ROTOR BLADE SHANK, PLATFORM AND SHROUD GAS FILM COEFFICIENTS AND ADIABATIC WALL TEMPERATURES

		Heat Transi (Btu/in ² -s		Adiabati	c Wall Temp. (F)
Zon	e Description	FPL	115 Percent	FPL	115 Percent
1	Front Face of Shank	.018	.017	255	330
2	Back Face of Shank	.013	.013	950	1130
3	Sides of Shank	.00014	.00016	255	330
4	Under Side of Platform	Same as zon as zone 3 d	nes 1 and 2 at on sides.	front an	d back, same
5	Top of Platform	•	ion of pressur ta at the hub		
6	Bottom of Shroud	•	ion of pressur		_

Table 4-4

HPOTP SECOND STAGE ROTOR BLADE SHANK, PLATFORM AND SHROUD GAS FILM COEFFICIENTS AND ADIABATIC WALL TEMPERATURES

			ransfer Coeff. in ² -sec-F)	Adiab	eatic Wall Temp. (F)
Zone	Description	FPL	115 Percent	FPL	115 Percent
1	Front Face of Shank	.015	.016	580	700
2	Back Face of Shank	.012	.012	350	435
3	Both Sides of Shank	.0002	.0002	580	700
4	Under Side of Platform		s zones 1 and 2 s zone 3 on sic		and back,
5	Top of Platform		olation of pres l data at the h		
6	Bottom of Shroud		olation of pres l data at the t		

Table 4-5

HPOTP TURBINE BLADE TORQUE FORCES (LBF)

	FPL		115 per	rcent
	BLAYER Program	Approximate (based on engine balance data)	BLAYER Program	Approximate (based on engine balance data)
First Stage	80	92	90	97
Second STage	57	66	65	70

REFERENCES

- 1. Teal, G.A., "SSME Turbopump Flow Models User's Manual," LMSC-HREC TR D867623, Lockheed Missiles & Space Company, Huntsville, Ala., October 1982.
- 2. Keith, F., Advances in Heat Transfer Vol. 5, Academic Press, New York, 1968, p. 192.
- 3. Katsanis, Theodore, and W.D. McNally, "Revised FORTRAN Program for Calculating Velocities and Streamlines on the Hub-Shroud Mid-Channel Stream Surface of an Axial-, Radial-, or Mixed-Flow Turbomachine or Annular Duct Vol. II Programmer's Manual," NASA TN D-8431, July 1977.
- 4. Katsanis, Theodore, and W.D. McNally, "Revised FORTRAN Program for Calculating Velocities and Streamlines on the Hub-Shroud Mid-Channel Stream Surface of an Axial-, Radial-, or Mixed-Flow Turbomachine or Annular Duct Vol. I User's Manual," NASA TN D-8430, March 1977.
- 5. Katsanis, Theodore, "FORTRAN Program for Calculating Transonic Velocities on a Blade-to-Blade Stream Surface of a Turbomachine," NASA TND-5427, September 1969.
- 6. McNally, William D., "FORTRAN Program for Calculating Compressible Laminar and Turbulent Boundary Layers in Arbitrary Pressure Gradients," NASA TN D-5681, May 1970.

Appendix A

HPFTP FIRST STAGE NOZZLE PRESSURE, ADIABATIC WALL TEMPERATURE AND HEAT TRANSFER COEFFICIENT DISTRIBUTIONS

- A.1 FPL Pressure Distributions
- A.2 115 Percent Power Level Pressure Distributions
- A.3 FPL Heat Transfer Coefficients
- A.4 115 Percent Power Level Heat Transfer Coefficients

Surface 1 - Pressure Surface \triangle Surface 2 - Suction Surface \square

Approximate Adiabatic Wall Temperatures (F)

	FPL	115 Percent
Case 1 - R = 4.5965 Hub	1530	1476
Case $2 - R = 4.79$ Intermediate	,	
Case $3 - R = 5.033$ Mean		Ì
Case $4 - R = 5.23$ Intermediate	7	. ↓
Case $5 - R = 5.4695 \text{ Tip}$	V	Y

A.1.1

A.1.2

ORIGINAL PAGE IS OF POOR QUALITY

A.1.3

ORIGINAL PAGE IS OF POOR QUALITY

A.2.3

ORIGINAL PAGE 19 OF POOR QUALITY

ORIGINAL PAGE 19 OF POOR QUALITY

0.60

X

0.80

1.00

1.20

1.40

Appendix B

HPFTP FIRST STAGE BLADE PRESSURE, ADIABATIC WALL TEMPERATURE AND HEAT TRANSFER COEFFICIENT DISTRIBUTIONS

- B.1 FPL Pressure Distributions
- B.2 115 Percent Power Level Pressure DistributionsB.3 FPL Heat Transfer Coefficients
- B.4 115 Percent Power Level Heat Transfer Coefficients
 - Surface 1 Suction Surface Δ Surface 2 - Pressure Surface

Approximate Adiabatic Wall Temperatures (F)

	FPL	115 Percent
Case 1 - R = 4.6438 Hub	1475	1420
Case 2 - R = 4.83 Intermedia	ste	
Case $3 - R = 5.0797$ Mean		
Case 4 - R = 5.27 Intermedia	ate	
Case $5 - R = 5.5156$ Tip	Y	*

LMSC-HREC TR D867333-I

B.1.3

B.1.4

ORIGINAL PAGE SE OF POOR QUALITY

B.2.1

Appendix C

HPFTP SECOND STAGE BLADE PRESSURE, ADIABATIC WALL TEMPERATURE AND HEAT TRANSFER COEFFICIENT DISTRIBUTIONS

- C.1 FPL Pressure Distributions
- C.2 115 Percent Power Level Pressure Distributions
- C.3 FPL Heat Transfer Coefficients
- C.4 115 Percent Power Level Heat Transfer Coefficients

Surface 1 - Suction Surface \triangle Surface 2 - Pressure Surface \square

Approximate Adiabatic Wall Temperatures (F)

Case 1 - R = 4.5936 Hub 1390 1340
Case 2 - R = 4.80 Intermediate
Case 3 - R = 5.0795 Mean
Case 4 - R = 5.29 Intermediate
Case 5 - R = 5.5655 Tip

Appendix D

HPFTP SECOND STAGE NOZZLE PRESSURE, ADIABATIC WALL TEMPERATURE AND HEAT TRANSFER COEFFICIENT DISTRIBUTIONS

- D.1 FPL Pressure Distributions
- D.2 115 Percent Power Level Pressure Distributions
- D.3 FPL Heat Transfer Coefficients
- D.4 115 Percent Power Level Heat Transfer Coefficients

Surface 1 - Pressure Surface △
Surface 2 - Suction Surface □

Approximate Adiabatic Wall Temperatures (F)

FPL 115 Percent

Case 1 - R = 4.55 Hub 1445 1400
Case 2 - R = 4.76 Intermediate
Case 3 - R = 5.037 Mean
Case 4 - R = 5.25 Intermediate
Case 5 - R = 5.523 Tip

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS

ORIGINAL PAGE 19 OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE 19 OF POOR QUALITY,

ORIGINAL PAGE IS OF POOR QUALITY

D.2.5

ORIGINAL PAGE 19 OF POOR QUALITY

ORIGINAL FAGE 17 OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE 19 OF POOR QUALITY

ORIGINAL PAGE 15 OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

Appendix E

HPOTP FIRST STAGE NOZZLE PRESSURE, ADIABATIC WALL TEMPERATURE AND HEAT TRANSFER COEFFICIENT DISTRIBUTIONS

- E.1 FPL Pressure Distributions
- E.2 115 Percent Power Level Pressure Distributions
- E.3 FPL Heat Transfer Coefficients
- E.4 115 Percent Power Level Heat Transfer Coefficients

Surface	1	-	Suction	Surface	∇
Surface	2	_	Pressure	Surface	

Approximate Adiabatic Wall Temperatures (F)

	FPL	Percent
Streamline $1 - R = 4.795$	1030	1215
Streamline $6 - R = 5.04$	1030	1215
Streamline $11 - R = 5.285$	1030	1215

E.1.1

E.1.2

ORIGINAL PAGE IS

E.1.3

ORIGINAL PAGE IS OF POOR QUALITY

E.2.1

ORIGINAL PAGE IS OF POOR QUALITY

E.2.2

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER

ORIGINAL PAGE 19 OF POOR QUALITY

E.2.3

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER

E.3.1

ORIGINAL PAGE SE OF POOR QUALITY

E.3.2

E.3.3

ORIGINAL PACE 19 OF POOR QUALITY

E.4.1

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER

ORIGINAL PAGE TO OF POOR QUALITY

E.4.2

ORIGINAL PAGE 19 OF POOR QUALITY

E.4.3

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER

Appendix F

HPOTP FIRST STAGE BLADE PRESSURE, ADIABATIC WALL TEMPERATURE AND HEAT TRANSFER COEFFICIENT DISTRIBUTIONS

- F.1 FPL Pressure Distributions
- F.2 115 Percent Power Level Pressure Distributions
- F.3 FPL Heat Transfer Coefficients
- F.4 115 Percent Power Level Heat Transfer Coefficients

Surface	1	-	Pressure	Surface	\triangle
Surface	2	_	Suction	Surface	

Approximate Adiabatic Wall Temperatures (F)

						FPL	115 Percent
Streamline	1	-	R	=	4.7915	975	1150
Streamline	6	-	R	=	5.04	975	1150
Streamline	11	_	R	=	5.2885	975	1150

ORIGINAL PAGE 19 OF POOR QUALITY

F.1.1

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER

ORIGINAL PAGE 19 OF POOR QUALITY

F.1.2

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER

F.1.3

F.2.1

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER

F.2.2

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER

F.2.3

ORIGINAL PAGE IS OF POOR QUALITY.

F.3.1

F.3.2

ORIGINAL PAGE IS OF POOR QUALITY

F.3.3

ORIGINAL PAGE IN

F.4.1

LOCKHEED-HUNTSVILLE RESEARCH & ENGINEERING CENTER

ORIGINAL PACE IS OF POOR QUALITY

F.4.2

ORIGINAL PAGE 13 OF POOR QUALITY

F.4.3

Appendix G

HPOTP SECOND STAGE NOZZLE PRESSURE, ADIABATIC WALL TEMPERATURE AND HEAT TRANSFER COEFFICIENT DISTRIBUTIONS

- G.1 FPL Pressure Distributions
- G.2 115 Percent Power Level Pressure Distributions
- G.3 FPL Heat Transfer Coefficients
- G.4 115 Percent Power Level Heat Transfer Coefficients

Surface	1	-	Suction	Surface	Δ
Surface	2	_	Pressure	Surface	П

Approximate Adiabatic Wall Temperatures (F)

いっきが、中の一つにものなる。連門神学の神学の神学の神経、神できないのでいたが、文明典別は代表をしてき

						FPL	115 Percent
Streamline	1		R	=	4.705	945	1120
Streamline	6	-	R	=	5.04	945	1120
Streamline	11	_	R	=	5.375	945	1120

ORIGINAL PAGE 19 OF POOR QUALITY

G.1.2

G.1.3

ORIGINAL PAGE IS

ORIGINAL PAGE IS

ORIGINAL PAGE IS OF POOR QUALITY

G.2.3

ORIGINAL PAUL 13 OF POOR QUALITY

G.3.1

ORIGINAL PAGE 18 OF POOR QUALITY

G.3.2

ORIGINAL PAGE SA OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

G.4.1

ORIGINAL PROSESS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

Appendix H

HPOTP SECOND STAGE BLADE PRESSURE, ADIABATIC WALL TEMPERATURE AND HEAT TRANSFER COEFFICIENT DISTRIBUTIONS

- H.1 FPL Pressure Distributions
- H.2 115 Percent Power Level Pressure Distributions
- H.3 FPL Heat Transfer Coefficients
- H.4 115 Percent Power Level Heat Transfer Coefficients

Surface	1	-	Pressure	Surface	Δ
Surface	2	_	Suction	Surface	

Approximate Adiabatic Wall Temperature (F)

		FPL	115 Percent
Streamline	1 - R = 4.703	910	1080
Streamline	6 - R = 5.039	910	1080
Streamline	11 - R = 5.375	910	1080

H.1.1

H.1.2

ORIGINAL PAGE 19 OF POOR QUALITY

H.1.3

LOCKHEED-HUNTSVILLE RESZARCH & ENGINEERING CENTER

ORIGINAL PAGE IS OF POOR QUALITY

H.2.1

H.2.2

ORIGINAL PAGE IS OF POOR QUALITY

H.2.3

ORIGINAL PAGE 19 OF POOR QUALITY

H.3.1

ORIGINAL PAGE 19 OF POOR QUALITY

H.3.2

ORIGINAL TOUR IS

H.3.3

ORIGINAL PAGE IS OF POOR QUALITY

H.4.1

ORIGINAL PAGE IS

H.4.2

ORIGINAL PAGE IS OF POOR QUALITY

H.4.3