12 Flowcharts

2025-10-19

Contents

L	Flowcharts - Vision-Based Pick and Place System				
	1.1	Document Control			
	1.2	1. Introduction			
	1.3	2. Main System Flowchart			
		1.3.1 2.1 End-to-End Pick-Place Workflow			
	1.4	3. Vision Pipeline Flowchart			
		1.4.1 3.1 Object Detection & Pose Estimation			
	1.5	4. Grasp Planning Flowchart			
		1.5.1 4.1 Grasp Synthesis & Selection			
	1.6	5. Motion Planning Flowchart (MoveIt2)			
		1.6.1 5.1 Trajectory Planning & Execution			
	1.7	6. State Machine Flowchart			
		1.7.1 6.1 Task Orchestrator FSM			
	1.8	7. Error Handling Flowchart			
		1.8.1 7.1 Error Recovery Logic			
	1.9	8. Calibration Flowchart			
		1.9.1 8.1 Hand-Eye Calibration Procedure			
	1.10	9. Deployment Flowchart			
		1.10.1 9.1 System Deployment & Commissioning			
	1.11	10. Maintenance Flowchart			
		1.11.1 10.1 Preventive Maintenance Procedure			
	1.12	Summary			

1 Flowcharts - Vision-Based Pick and Place System

1.1 Document Control

Item	Details
Document Title	System Flowcharts
Version	1.0
Date	2025-10-18
Status	Draft
Author(s)	System Architect, Technical Lead

1.2 1. Introduction

This document provides flowcharts for all major processes in the vision-based pick-and-place robotic system. Flowcharts are presented using ASCII art and can be rendered with tools like Mermaid or PlantUML.

1.3 2. Main System Flowchart

1.3.1 2.1 End-to-End Pick-Place Workflow

START SYSTEM

Initialize
(Home Robot)

Wait for User presses Start Signal "Start"

SCAN WORKSPACE (Capture RGB-D Image)

DETECT OBJECTS (Run YOLO, Get Boxes)

Any Objects NO Detected?

YES

ESTIMATE POSE Log: No Objects (6DoF for each obj) Return to SCAN

SELECT OBJECT (Highest confidence)

PLAN GRASP (Compute gripper pose + approach vector)

Grasp Valid? NO

(Quality >0.5)

YES

PLAN PICK MOTION Skip Object Select Next (MoveIt: Home→Grasp)

Path Found? NO

(Collision-free)

YES

EXECUTE PICK Replan with - Move to pre-grasp Relaxed - Move to grasp Constraints

- Close gripper

Grasp Successful?

NO

(F/T sensor check)

YES

RETRY GRASP

PLAN PLACE MOTION (Increase (Grasp-Target) force)

EXECUTE PLACE

- Move to target
- Open gripper
- Retract

VERIFY PLACEMENT FAIL

(Optional camera check)

PASS

Log Error

More Objects? Continue or

Alert User

YES NO

RETURN HOME

END (IDLE)

(Loop back to SCAN)

1.4 3. Vision Pipeline Flowchart

$1.4.1 \quad 3.1 \ Object \ Detection \ \& \ Pose \ Estimation$

START VISION PIPELINE

Camera Trigger
(Request RGB-D frame)

Receive RGB-D Frame
- RGB: 1920x1080
- Depth: 1280x720

PREPROCESSING

- Resize to 640x640
- Normalize pixels
- Convert to tensor

OBJECT DETECTION
(YOLOv8 Inference)
Input: 640x640 RGB
Output: [x,y,w,h,c]

Detections NO > 0 ?

YES

Non-Max Suppression Return (Remove duplicates) Empty List

Filter Low Confidence (threshold = 0.7)

For Each Detection: POSE ESTIMATION

Extract ROI (Crop RGB-D to bbox)

Generate Point Cloud
(Deproject depth)

Estimate 6DoF Pose
- Method: PnP / ICP
- Output: (x,y,z,
 qx,qy,qz,qw)

Transform to Robot Frame (TF2) Camera → Base

Publish Object Poses

(/vision/object_poses

END

1.5 4. Grasp Planning Flowchart

1.5.1 4.1 Grasp Synthesis & Selection

START GRASP PLANNING

Input:

- Object Pose
- Point Cloud
- Gripper Type

SAMPLE GRASPS

Method:

- Parallel Jaw:
 Antipodal points
- Suction:
 Top-down normals

Generate N=50 Candidate Grasps

For Each Grasp: COLLISION CHECK

 $\begin{array}{ll} {\tt Gripper-} & {\tt Gripper-} \\ {\tt Object} & {\tt Table} \end{array}$

Collision? Collision?

YES YES

Mark Grasp INVALID

NO (both checks)

COMPUTE QUALITY

Metrics:

- Force closure
- Reachability
- Stability

Quality > 0.5? NO

YES

Add to Valid List Discard

All Grasps Checked? NO

YES

Valid Grasps > 0? NO

YES

RANK GRASPS	Return
(Sort by quality)	Failure
<i>v</i> 1 <i>v</i>	
SELECT TOP GRASP	
SEEDOT TOT GIVEST	
Compute Approach	
Compute Approach	
Vector (pre-grasp)	
Data	
Return:	
- Grasp Pose	
- Approach Vector	
- Quality Score	
END	

1.6 5. Motion Planning Flowchart (MoveIt2)

$1.6.1 \quad 5.1 \ {\rm Trajectory \ Planning} \ \& \ {\rm Execution}$

START MOTION PLANNING

Input:

- Target Pose
- Current State
- Planning Scene

UPDATE PLANNING

SCENE

- Add obstacles (from point cloud

INVERSE KINEMATICS
Target Pose → []

IK Solution

IK Failed?

Found?

YES YES

Try Alternate IK Solver (TRAC-IK)

(if found)

(if still fails)

Return Error (Unreachable)

VALIDATE GOAL

- Joint limits OK?
- Self-collision?

Valid Invalid

YES NO

Return Error

PATH PLANNING
Algorithm: RRT*
- Start: current
- Goal: IK solution

Planning Loop (max 5 sec timeout)

Path Timeout? Found?

YES YES

Relax Constraints (Retry)

(if found)

(if still fails)

Return Error (No solution)

TRAJECTORY GENERATION

- Time-param path
- Apply vel/acc limits

TRAJECTORY SMOOTHING

- Shortcut
- Jerk limiting

SEND TO CONTROLLER (FollowJoint Trajectory Action)

MONITOR EXECUTION

- Track feedback
- Check errors

Success Error?

E-stop or Following Error Large

Return Error

END

1.7 6. State Machine Flowchart

1.7.1 6.1 Task Orchestrator FSM

IDLE

(Start command)

SCAN

(Image captured)

DETECT

Objects No Objects Found (Timeout)

ERROR

PLAN_GRASP

Grasp No Valid Valid Grasp PLAN_PICK

Path Planning Found Failed

EXECUTE_PICK

Success Grasp Failed

PLAN_PLACE

Path Planning Found Failed

 ${\tt EXECUTE_PLACE}$

Success	Failed	
VERIFY		
Pass	Fail	
I	ERROR	
Ra	etry or	
	Abort?	
	(Retry: back to SCAN)	
	(Abort)	
	IDLE	
RETURN_HOME		
IDLE		

1.8 7. Error Handling Flowchart

1.8.1 7.1 Error Recovery Logic

ERROR DETECTED
(Vision fail, grasp fail, etc.)

Classify Error

- Vision timeout
- Grasp failure
- Planning failure
- Execution error
- Safety violation

Log Error
(timestamp, type,
 context)

Safety Violation? (E-stop, collision) Recoverable Error?

YES

Retry Count Non< Max (3)? Recoverable</pre>

YES NO (Try Again) (Give Up

RECOVERY ACTION

- Rescan
- Adjust params
- Retry with fallback

Recovery
Successful?

YES NO

RESUME TASK

CRITICAL ERROR HANDLING

- 1. Stop all motion (E-stop if safety)
- 2. Move to safe state (home position)
- 3. Alert operator (dashboard, alarm)
- 4. Await manual intervention
- Option A: Operator fixes issue, resume
- Option B: Operator aborts task

User Action Required Resume Abort

Continue Task IDLE

1.9 8. Calibration Flowchart

1.9.1 8.1 Hand-Eye Calibration Procedure

START CALIBRATION WIZARD

Display Welcome Instructions

- Place checkerboard
- Ensure good light

Initialize:

- Calibration data
- Position counter
 (i = 1)

Move Robot to
Position i
(Pre-defined joint angles)

Prompt User: "Press OK when

robot stopped"

Capture Image (RGB from camera)

Detect Checkerboard Corners

Corners Detection Detected? Failed?

YES YES

Display Error "Retry Position i"

Record:

- Robot pose (FK)
- Image corners

i = i + 1

i <= N (e.g., 5)? NO

YES

COMPUTE CALIBRATION

- Solve AX=XB
- Hand-eye matrix

VALIDATION

- Place known object
- Detect & measure position error

Error Error <5mm? >=5mm?

YES NO

Warn User "Recalibrate"

SAVE CALIBRATION

- Write to YAML
- /config/camera_ robot_tf.yaml

Display Success "Calibration Complete!"

END

1.10 9. Deployment Flowchart

1.10.1 9.1 System Deployment & Commissioning

START DEPLOYMENT

SITE PREPARATION

- Clear workspace
- Install power
- Network setup

HARDWARE INSTALL

- Mount robot
- Install camera
- Connect cables

POWER-ON CHECKS

- Verify voltages
- E-stop test
- Network ping

All Checks Any Checks

Pass? Fail?

YES YES

Troubleshoot

- Recheck connections

(if fixed)

SOFTWARE INSTALL

- Docker pull
- Load ROS2 pkgs
- Config files

CALIBRATION

- Hand-eye calib
- Workspace zones
- Gripper tuning

SMOKE TEST

- Single pick-place
- Verify all subsystems work

Success Failure

Debug & Fix

(if fixed)

TRAINING

- Operator (2 days)
- Maintenance (1 d)

ACCEPTANCE TEST

- Run 100 picks
- Measure KPIs

All Any KPI Pass? Fail?

YES YES

${\tt Remediate}$

- Tune params
- Retest

(if fixed)

CUSTOMER SIGN-OFF

- UAT approval
- Handover docs

PRODUCTION READINESS

- Transition to ops
- Support handoff

END

1.11 10. Maintenance Flowchart

1.11.1 10.1 Preventive Maintenance Procedure

MAINTENANCE DUE (Calendar-based or condition-based)

Schedule Downtime (Notify operators)

RUN DIAGNOSTIC HEALTH CHECK

- Camera test
- Motor test
- Sensor test

All Tests Any Test Pass? Fail?

YES YES

REPAIR

- Replace component

LUBRICATION

- Joint bearings
- Gripper mechanics

CLEAN & INSPECT

- Camera lens
- Cables, connectors

UPDATE LOGS

- Maintenance date
- Parts replaced
- Next due date

POST-MAINT TEST

- Run smoke test
- Verify performance

Success Issues

Troubleshoot

RETURN TO SERVICE (Notify operators)

END

1.12 Summary

This document provides 10 comprehensive flowcharts covering:

- 1. Main System End-to-end pick-place workflow
- 2. Vision Pipeline Object detection and pose estimation
- 3. Grasp Planning Grasp synthesis and selection
- 4. Motion Planning MoveIt2 trajectory planning
- 5. State Machine Task orchestrator FSM
- 6. Error Handling Recovery logic
- 7. Calibration Hand-eye calibration wizard
- 8. **Deployment** System commissioning
- 9. Maintenance Preventive maintenance procedure

Usage: - Convert to Mermaid diagrams for rendering - Use in design reviews, training materials - Reference during development and debugging

Document Status: Complete **Last Updated:** 2025-10-18 **Format:** ASCII art (convertible to Mermaid/PlantUML) **Review Status:** Pending Technical Review