Таблица 18

				квадратных	
Damanua	MUHONHUM	CUCTEMA	METOTOM	кваппатных	копнеи
гешение	MAUCHION	CHEICHEN	Inc I o dom	" Buch buch in part	arop mon

aii	a_{i2}	a_{i3}	a ₁₄	a_{i_5}	bi	Σ	Разделы схемы	
1 3 -2 0 -2	3 4 —5 1 —3	-2 -5 3 -2 2	0 1 -2 5 3	—2 —3 2 3 4	0,5 5,4 5,0 7,5 3,3	0,5 5,4 1,0 14,5 7,3	. A	
tin	t_{i_2}	tia	tie	t_{i5}	y_i	Σ		
1 - 1	3 2,2361 <i>i</i>	$ \begin{array}{c} -2 \\ -0,4472i \\ \underline{0,8944}i \end{array} $	$\begin{bmatrix} 0 \\ -0,4472i \\ 2,0125i \\ 3,0414 \end{bmatrix}$	$\begin{array}{c} -2 \\ -1,3416 i \\ 1,5653 i \\ 2,2194 \\ 0,8221 i \end{array}$	-7,5803i $-2,2928$	-3,1081i2,9679	Б	
-6,0978 -5,0973	$\begin{bmatrix} -2,2016 \\ -1,2017 \end{bmatrix}$	$\begin{bmatrix} -6,8011 \\ -5,8004 \end{bmatrix}$	-0,8996 0,1007	0,1998 1,1992		$\frac{x_i}{x_i}$	В	

 $\overline{x}_i = x_i + 1$, помещая их в разделе B. Например,

$$x_{3} = \frac{y_{3} - t_{35}x_{5} - t_{34}x_{4}}{t_{33}} = \frac{-7,5803i - 1,5652i \cdot 0,1998 - 2,0125i \cdot (-0,8996)}{0,8944i} = -6,8011.$$

§ 9. Схема Халецкого

Для удобства рассуждений систему линейных уравнений запишем в матричном виде

 $Ax = b, \tag{1}$

где $A = [a_{ij}]$ — квадратная матрица порядка n и

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ \vdots \\ x_n \end{bmatrix}, \qquad \mathbf{b} = \begin{bmatrix} a_1, & n+1 \\ \vdots & \vdots \\ a_n, & n+1 \end{bmatrix}$$

— векторы-столбцы. Представим матрицу A в виде произведения нижней треугольной матрицы $B = [b_{ij}]$ и верхней треугольной матрицы $C = [c_{ij}]$ с единичной диагональю, т. е.

$$A = BC. (2)$$

где

\$ 9]

$$B = \begin{bmatrix} b_{11} & 0 & \dots & 0 \\ b_{21} & b_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{bmatrix} \quad \text{if} \quad C = \begin{bmatrix} 1 & c_{12} & \dots & c_{1n} \\ 0 & 1 & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}.$$

Тогда элементы b_{ij} и c_{ij} определяются по формулам

$$\begin{vmatrix}
b_{i1} = a_{i1}, \\
b_{ij} = a_{ij} - \sum_{k=1}^{j-1} b_{ik} c_{kj} & (i \geqslant j > 1)
\end{vmatrix}$$
(3)

ı

$$c_{1j} = \frac{a_{1j}}{b_{11}},$$

$$c_{ij} = \frac{1}{b_{ii}} \left(a_{ij} - \sum_{k=1}^{i-1} b_{ik} c_{kj} \right) \qquad (1 < i < j).$$

$$(4)$$

Отсюда искомый вектор $m{x}$ может быть вычислен из цели уравнений

$$By = b, \qquad Cx = y. \tag{5}$$

Так как матрицы B и C—треугольные, то системы (5) легко решаются, а именно:

$$y_{1} = \frac{a_{1, n+1}}{b_{11}},$$

$$y_{i} = \frac{1}{b_{ii}} \left(a_{i, n+1} - \sum_{k=1}^{i-1} b_{ik} y_{k} \right) \qquad (i > 1)$$

$$(6)$$

И

$$x_{n} = y_{n},$$

$$x_{i} = y_{i} - \sum_{k=i+1}^{n} c_{ik} x_{k} (i < n).$$

$$(7)$$

Из формул (6) видно, что числа y_i выгодно вычислять вместе с коэффициентами c_{ij} . Этот метод получил название cxemu Халецкого. В схеме применяется обычный контроль с помощью сумм.

Заметим, что если матрица A — симметрическая, т. е. $a_{ij} = a_{ji}$, то

$$c_{ij} = \frac{b_{ji}}{b_{ii}} \qquad (i < j).$$

Схема Халецкого удобна для работы на вычислительных машинах, так как в этом случае операции «накопления» (3) и (4) можно проводить без записи промежуточных результатов.

Ггл. VIII

§ 9]

Пример. Решить систему

$$\left. \begin{array}{l} 3x_1 + \ x_2 - x_3 + 2x_4 = 6; \\ -5x_1 + \ x_2 + 3x_3 - 4x_4 = -12; \\ 2x_1 + \ x_3 - \ x_4 = 1; \\ x_1 - 5x_2 + 3x_3 - 3x_4 = 3. \end{array} \right\}$$

Решение (см. таблицу 19).

В первый раздел таблицы 19 впишем матрицу коэффициентов системы, ее свободные члены и контрольные суммы.

Далее, так как $b_{i1}=a_{i1}$ $(i=1,\ 2,\ 3,\ 4)$, то первый столбец из раздела 1 переносится в первый столбец раздела II.

Чтобы получить первую строку раздела II, делим все элементы первой строки раздела I на элемент $a_{11}=b_{11}$, в нашем случае на 3.

Имеем:

$$\begin{split} c_{12} &= \frac{1}{3} = 0, (3); \\ c_{13} &= -\frac{1}{3} = -0, \ (3); \\ c_{14} &= \frac{2}{3} = 0, \ (6); \\ c_{15} &= \frac{6}{3} = 2; \\ c_{16} &= \frac{11}{3} = 2, \ (6). \end{split}$$

Переходим к заполнению второго столбца раздела II, начиная со второй строки. Пользуясь формулами (3), определяем b_{j2} :

$$\begin{split} b_{22} &= a_{22} - b_{21} c_{12} = 1 - \left(-5 \cdot \frac{1}{3} \right) = \frac{8}{3} = 2,66 \ (6); \\ b_{32} &= a_{32} - b_{31} c_{12} = 0 - 2 \cdot \frac{1}{3} = -\frac{2}{3} = 0, \ (6); \\ b_{42} &= a_{42} - b_{41} c_{12} = -5 - 1 \cdot \frac{1}{3} = -5 \frac{1}{3} = -5, \ (3). \end{split}$$

Далее, определяя c_{2j} ($j=3,\ 4,\ 5,\ 6$) по формулам (4), заполняем вторую строку раздела II:

$$\begin{split} c_{23} &= \frac{1}{b_{22}} (a_{23} - b_{21} c_{13}) = \frac{3}{8} \left[3 - (-5) \cdot \left(-\frac{1}{3} \right) \right] = \frac{1}{2} \,; \\ c_{24} &= \frac{1}{b_{22}} (a_{24} - b_{21} c_{14}) = \frac{3}{8} \left[(-4) - (-5) \cdot \frac{2}{3} \right] = -\frac{1}{4} \,; \\ c_{25} &= \frac{1}{b_{22}} (a_{25} - b_{21} c_{15}) = \frac{3}{8} \left[(-12) - (-5) \cdot 2 \right] = -\frac{3}{4} \,; \\ c_{26} &= \frac{1}{b_{22}} (a_{26} - b_{21} c_{16}) = \frac{3}{8} \left[(-17) - (-5) \cdot \frac{11}{3} \right] = \frac{1}{2} \,. \end{split}$$

ица 19	M	11	-17	en Landaria	7	3,666667	6,0	-2	4	-	1	2	က
таолица	To the second	9	-12	10.7	3	2	-0,75	-1,75	3	2	-0,75	-1,75	
	χ_4	2	4	-1	£	0,666667	-0,25	-1,25	2,5 1				
	<i>x</i> ₃	-	8		ဇ	-0,333333 0,666667	0,5	2 1	9				icalif De resultant
	χ_2	1		0	5	0,333333	2,666667 1	-0,666667	-5,333333				
	x_1	က	5	2		3	5	2	1		#		
	<u>M</u>	a_{16}	a ₂₆	-036	446	C16	C26	C36	C46	x_1	x2	x3	X4
	1	a ₁₅	a_{25}	a ₃₅	a ₄₅	C ₁₅	Cab	C ₃₅	C45	91	92	193	94
	χ_4	a ₁₄	d ₂₄	a ₃₄	444	614	C24	C34	b ₄₄ 1				
	χ_3	a_{13}	a_{23}	a_{33}	a_{43}	C ₁₃	C233	b ₅₃ 1	b ₄₃				
	$\chi_{\hat{2}}$	d ₁₂	a_{22}	a ₃₂	a_{42}	C ₁₂	b ₂₂ 1	b ₃₂	b42				
	x_1	$a_{\rm D}$	<i>a</i> ₂₁	a_{31}	a ₄₁	b_{11}	b_{23}	b ₃₁	641				
		= = =											

Затем переходим к третьему столбцу, вычисляя его элементы b_{33} и b_{34} по формулам (3) и т. д., пока не будет заполнена вся таблица раздела II. Таким образом, заполнение раздела II происходит способом «елочки»: столбец — строка, столбец — строка и т. д.

В разделе III, пользуясь формулами (6) и (7), определяем y_i

 $u x_i$ (i = 1, 2, 3, 4).

Текущий контроль осуществляется с помощью столбца \sum , над которым производятся те же действия, что и над столбцом свободных членов.

§ 10. Метод итерации

При большом числе неизвестных линейной системы схема метода Гаусса, дающая точное решение, становится весьма сложной. В этих условиях для нахождения корней системы иногда удобнее пользоваться приближенными численными методами. Изложим здесь один из этих методов — метод итерации.

Пусть дана линейная система

$$\begin{vmatrix}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\
\dots \dots \dots \dots \dots \dots \dots \dots \\
a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n.
\end{vmatrix}$$
(1)

Введя в рассмотрение матрицы

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}, \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \qquad b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix},$$

систему (1) коротко можно записать в виде матричного уравнения

$$Ax = b. (1')$$

Предполагая, что диагональные коэффициенты

$$a_{ii} \neq 0$$
 $(i = 1, 2, ..., n),$

разрешим первое уравнение системы (1) относительно x_1 , второе — относительно x_2 и т. д. Тогда получим эквивалентную систему

$$\begin{cases}
 x_1 = \beta_1 + \alpha_{12}x_2 + \alpha_{13}x_3 + \dots + \alpha_{1n}x_n, \\
 x_2 = \beta_2 + \alpha_{21}x_1 + \alpha_{23}x_3 + \dots + \alpha_{2n}x_n, \\
 \vdots & \vdots & \vdots \\
 x_n = \beta_n + \alpha_{n1}x_1 + \alpha_{n2}x_2 + \dots + \alpha_{n, n-1}x_{n-1},
 \end{cases}$$
(2)

гле

§ 10]

$$eta_i = rac{b_i}{a_{ji}};$$
 $lpha_{ij} = -rac{a_{ij}}{a_{ii}}$ при $i
eq j$

н $\alpha_{ij} = 0$ при i = j (i, j = 1, 2, ..., n). Введя матрицы

$$lpha = \left[egin{array}{cccc} lpha_{11} & lpha_{12} & \ldots & lpha_{1n} \ lpha_{21} & lpha_{22} & \ldots & lpha_{2n} \ & \ddots & \ddots & \ddots & \ lpha_{n1} & lpha_{n2} & \ldots & lpha_{nn} \end{array}
ight] \quad \qquad \beta = \left[egin{array}{c} eta_1 \ eta_2 \ \vdots \ eta_n \end{array}
ight],$$

систему (2) можем записать в матричной форме

$$x = \beta + \alpha x. \tag{2'}$$

Систему (2) будем решать методом последовательных приближений. За нулевое приближение принимаем, например, столбец свободных членов $x^{(0)} = \beta$.

Далее, последовательно строим матрицы-столбцы

$$x^{(1)} = \beta + \alpha x^{(0)}$$

(первое приближение),

$$x^{(2)} = \beta + \alpha x^{(1)}$$

(второе приближение) и т. д.

Вообще говоря, любое (k+1)-е приближение вычисляют по формуле

$$\mathbf{x}^{(k+1)} = \beta + \alpha \mathbf{x}^{(k)}$$
 $(k = 0, 1, 2, ...).$ (3)

Если последовательность приближений $x^{(0)}, x^{(1)}, \ldots, x^{(k)}, \ldots$ имеет предел

$$x = \lim_{k \to \infty} x^{(k)},$$

то этот предел является решением системы (2). В самом деле, переходя к пределу в равенстве (3), будем иметь:

$$\lim_{k\to\infty} x^{(k+1)} = \beta + \alpha \lim_{k\to\infty} x^{(k)}$$

или

$$x = \beta + \alpha x,$$

т. е. предельный вектор x является решением системы (2'), а следовательно, и системы (1).

Напишем формулы приближений в развернутом виде:

$$x_{i}^{(0)} = \beta_{i},$$

$$x_{i}^{(k+1)} = \beta_{i} + \sum_{j=1}^{n} \alpha_{ij} x_{j}^{(k)}$$

$$(\alpha_{ij} = 0; i = 1, ..., n; k = 0, 1, 2, ...).$$
(8')