Proračunajte elemente i nacrtajte električne sheme pojačala izvedenih operacijskim pojačalom:

tip pojačala	pojačanje	ulazni otpor
neinvertirajuće pojačalo	15	100 kΩ
invertirajuće pojačalo	-15	100 kΩ

Vrijednost otpornika odaberite tako da je izlazni napon pomaka uslijed ulaznih struja najmanji. Odredite izlazni napon pomaka za ta pojačala na sobnoj temperaturi, te njegovu promjenu uslijed promjene temperature u području od 0–40°C, i to ako su izvedena operacijskim pojačalom LM741 ili TL081 (podaci za navedena operacijska pojačala nalaze se u tablici). Za zadana pojačanja proračunajte iznose otpornika u sklopu za kompenzaciju izlaznog napona pomaka na sobnoj temperaturi (prema shemi na slici).

PARAMETAR	OZNAKA	TL081	LM741
napon pomaka	$U_{\text{pom}} [\text{mV}]$	8	5
temp. klizanje napona	$dU_{pom}/dT [\mu V/^{o}C]$	10	60
pomaka	•		
ulazna struja	$I_{\rm ul}$ [nA]	0,2	200
ulazna struja pomaka	I_{pom} [nA]	0,05	20
temperatura klizanje struje	$dI_{pom}/dT [pA/^{o}C]$	60	60
pomaka			
gustoća napona šuma	$e_{s}[nV/\sqrt{Hz}]@1kHz$	15	23
gustoća struje šuma	$i_{\tilde{s}}[pA/\sqrt{Hz}]@1kHz$	ľ	=.
pojačanje	$A_{\rm v}$ [dB]	106	94
umnožak pojačanja i širine	GBW [MHz]	4	0,7
frekvencijskog pojasa			
najveća brzina porasta	SR [V/µs]	8	0,25
izlaznog napona			
faktor rejekcije	CMMR [dB]	70	70
struja napajanja	$I_{\rm s}$ [mA]	2,5	2,8
napon napajanja	$U_{\rm s}\left[{ m V} ight]$	±6/±18	±22
ulazni otpor	$R\left[\Omega\right]$	10^{12}	

INVERTIRAJUĆE POJAČALO

$$A = -15$$

$$R_{\rm ul} = 100 \text{ k}\Omega$$

$$R_{\rm ul} = R_1 \Longrightarrow R_1 = 100 \text{ k}\Omega$$

$$A = -\frac{R_2}{R_1} \Rightarrow R_2 = -AR_1 = 1.5 \text{ M}\Omega$$

$$R_3 = R_1 || R_2 = 93,75 \text{ k}\Omega$$

$$\begin{split} &U_{izlOFF} = \left\{ \!\! \left\{ \!\! \left| U_{OFF} \right| + \left| I_{+} \right| \cdot R_{3} - \left| I_{-} \right| \cdot R_{2} \right| \!\! \left| R_{1} \right. \!\! \right\} \cdot \left(1 + \frac{R_{2}}{R_{1}} \right) \right. \\ &U_{izlOFF} = \left\{ \!\! \left| U_{OFF} \right| + \left| I_{OFF} \right| \frac{R_{3} + R_{2} \| R_{1}}{2} + \left| I_{B} \right| \cdot \left(R_{3} - R_{2} \| R_{1} \right) \!\! \right\} \cdot \left(1 + \frac{R_{2}}{R_{1}} \right) \!\! \right. \!\! \boldsymbol{\rightarrow} \!\! R_{3} = R_{1} \| R_{2} \right. \boldsymbol{\rightarrow} \end{split}$$

$$U_{izlOFF} = \left\{ \left| U_{OFF} \right| + \left| I_{OFF} \right| \frac{R_3 + R_2 \| R_1}{2} \right\} \cdot \left(1 + \frac{R_2}{R_1} \right)$$

TL081 (JFET)
 LM 741 (BJT)

$$U_{\text{OFF}} = 8 \text{ mV}$$
 $U_{\text{OFF}} = 5 \text{ mV}$
 $I_{\text{OFF}} = 0.05 \text{ nA}$
 $I_{\text{OFF}} = 20 \text{ nA}$

$$U_{izIOFF} = 128,075 \text{ mV}$$
 $U_{izIOFF} = 110 \text{ mV}$

Promjena napona pomaka određuje se na osnovu dU_{izl}/dT :

$$\Delta U_{izlT} = \frac{\mathrm{d}U_{izl}}{\mathrm{d}T} \Delta T \implies \boxed{\Delta U_{izlT} = \left\{ \left| \frac{\mathrm{d}U_{OFF}}{\mathrm{d}T} \right| + \left| \frac{\mathrm{d}I_{OFF}}{\mathrm{d}T} \right| R_3 \right\} \cdot \left(1 + \frac{R_2}{R_1} \right) \cdot \Delta T}$$

Za $\Delta T = 40^{\circ}$ C:

$$\begin{array}{ccc} TL081 & LM 741 \\ dU_{\mathrm{OFF}} / \mathrm{d}T = 10 \ \mu\mathrm{V/^{\circ}C} & dU_{\mathrm{OFF}} / \mathrm{d}T = 60 \ \mu\mathrm{V/^{\circ}C} \\ dI_{\mathrm{OFF}} / \mathrm{d}T = 60 \ \mathrm{pA/^{\circ}C} & dI_{\mathrm{OFF}} / \mathrm{d}T = 60 \ \mathrm{pA/^{\circ}C} \\ & \Delta U_{izIT} = 10 \ \mathrm{mV} & U_{izIT} = 42 \ \mathrm{mV} \end{array}$$

(domaći rad)NEINVERTIRAJUĆE POJAČALO

$$A = 15$$
$$R_{\rm ul} = 100 \text{ k}\Omega$$

$$R_{\rm ul} = R_3 => R_3 = 100 \text{ k}\Omega$$

$$A = 1 + \frac{R_2}{R_1} \Rightarrow \frac{R_2}{R_1} = 14$$

$$R_3=R_1\big\|R_2$$

$$\frac{R_1 \cdot R_2}{R_1 + R_2} = R_3 \Rightarrow \frac{R_2}{1 + \frac{R_2}{R_1}} = R_3$$

$$R_2 = AR_3 = 1,5 \text{ M}\Omega$$

$$R_1 = R_2/14 = 107,14 \text{ k}\Omega$$

$$U_{izlOFF} = \left\{ \left| U_{OFF} \right| + \left| I_{OFF} \right| \frac{R_3 + R_2 \| R_1}{2} \right\} \cdot \left(1 + \frac{R_2}{R_1} \right)$$
THE SOLE

TL081

$$U_{\text{OFF}} = 8 \text{ mV}$$

 $I_{\text{OFF}} = 0.05 \text{ nA}$

LM 741

$$U_{\text{OFF}} = 5 \text{ mV}$$

 $I_{\text{OFF}} = 20 \text{ nA}$

$$U_{izIOFF} = 120,075 \text{ mV}$$

$$U_{izlOFF} = 105 \text{ mV}$$

$$\Delta U_{izlT} = \frac{\mathrm{d}U_{izl}}{\mathrm{d}t} \Delta T \implies \Delta U_{izlT} = \left\{ \left| \frac{\mathrm{d}U_{OFF}}{\mathrm{d}t} \right| + \left| \frac{\mathrm{d}I_{OFF}}{\mathrm{d}t} \right| R_3 \right\} \cdot \left(1 + \frac{R_2}{R_1} \right) \cdot \Delta T$$

Za $\Delta T = 40^{\circ}$ C:

TL081

$$dU_{OFF}/dT = 10 \mu V/^{\circ}C$$

 $dI_{OFF}/dT = 60 pA/^{\circ}C$

LM 741

$$dU_{OFF}/dT = 10 \mu V/^{\circ}C$$

 $dI_{OFF}/dT = 60 pA/^{\circ}C$

$$\Delta U_{iz/T} = 9.6 \text{ mV}$$

$$U_{izlT} = 39.6 \text{ mV}$$

INVERTIRAJUĆE POJAČALO

Dodaje se R^* s ciljem da pad napona na tom otporniku (U_{100}) kompenzira napon na izlazu koji je posljedica napona pomaka.

Dimenzioniranje otpora:

- $U_{R^*}\cdot (1+R_2/R_1) \ge U_{izl}|_{off}$
- $R^* \ll R_3$;
- $R_4 >>$ (ograničava I_{R4}), takav da na R^* dobijemo odgovarajući napon
- $R_5: I_{R4} = 2 5 \text{ mA}$

$$\left| \left(1 + \frac{R_2}{R_1} \right) U_{100} \right| \ge U_{izl_{off}}$$

$$U_{100} \ge \frac{R_1}{R_1 + R_2} U_{izl_{off}} = \frac{1}{16} U_{izl_{off}}$$

$$U_{100} = 15 \text{ V} \frac{100}{100 + R_4}$$

$$R_4 = 15 \text{ V} \frac{100}{U_{100}} - 100$$

TL081
 LM 741

$$U_{\text{OFF}} = 128,075 \text{ mV}$$
 $U_{\text{OFF}} = 110 \text{ mV}$
 $R_1 = 100 \text{ k}\Omega$; $R_2 = 1,5 \text{ M}\Omega$
 $R_1 = 107,14 \text{ k}\Omega$; $R_2 = 1,5 \text{ M}\Omega$
 $U_{100} \ge 8,005 \text{ mV}$
 $U_{100} \ge 6,875 \text{ mV}$
 $R_4 \le 187,3 \text{ k}\Omega$
 $R_4 \le 217,98 \text{ k}\Omega$
 $R_4 = 150 \text{ k}\Omega$
 $R_4 = 180 \text{ k}\Omega$

NEINVERTIRAJUĆE POJAČALO

$$\begin{aligned} & \left| \frac{R_2}{R_1} U_{100} \right| \ge U_{izl_{off}} \\ & U_{100} \ge \frac{R_2}{R_1} U_{izl_{off}} = \frac{1}{14} U_{izl_{off}} \\ & U_{100} = 15 \text{ V} \frac{100}{100 + R_4} \\ & R_4 = 15 \text{ V} \frac{100}{U_{100}} - 100 \end{aligned}$$

TL081
$$U_{\text{OFF}} = 120,075 \text{ mV}$$

 $R_I = 107,14 \text{ k}\Omega$; $R_2 = 1,5 \text{ M}\Omega$ LM 741
 $U_{\text{OFF}} = 105 \text{ mV}$
 $R_I = 107,14 \text{ k}\Omega$; $R_2 = 1,5 \text{ M}\Omega$ $U_{100} \ge 8,577 \text{ mV}$
 $R_4 \le 174,791 \text{ k}\Omega$
 $R_4 = 150 \text{ k}\Omega$ $U_{100} \ge 7,5 \text{ mV}$
 $U_{100} \ge 7,5 \text{ mV}$

Operacijskim pojačalom s nekompenziranom amplitudno – frekvencijskom karakteristikom zadanom slikom (A_0 =80 dB, frekvencije polova $f_{\rm p1}$ =5 kHz, $f_{\rm p2}$ = 200 kHz, $f_{\rm p3}$ = 700 kHz) treba izvesti neinvertirajuće pojačalo pojačanja 10.

Odredite frekvenciju dominantnog pola kojim treba kompenzirati amplitudno – frekvencijsku karakteristiku pojačala da ne dođe do samooscilacija za zadano pojačanje, uz fazno osiguranje 45°.

Nacrtajte amplitudno i fazno frekvencijsku karakteristiku kompenziranog pojačala (Bode-ov dijagram).

Izračunajte najvišu frekvenciju signala koji se tim neinvertirajućim pojačalom može pojačati uz pogrešku uslijed konačnog pojačanja manju od 1 %.

$$A_0$$
=80 dB
 f_{p1} =5 kHz
 f_{p2} = 200 kHz
 f_{p3} = 700 kHz
 A = 10
 f_{β} = 1 kHz
F.O. = 45°

Pojačanje povratne veze iznosi:

$$\beta = \frac{R_1}{R_1 + R_2}$$

Ako je $A\beta >> 1$, pojačanje zatvorene petlje iznosi:

$$A = \frac{1}{\beta} = 1 + \frac{R_2}{R_1} = 10 = 20 \,\mathrm{dB}$$

Opća formula za pojačanje zatvorene petlje:

$$u_{\beta} = \frac{R_{1}}{R_{1} + R_{2}} u_{izl}$$

$$u_{izl} = (u_{ul} - u_{\beta}) \cdot A(f)$$

$$A(f) = \frac{A(f)}{1 + \frac{R_{1}}{R_{1} + R_{2}}} A(f)$$

<u>Kompenzacija dominantnim polom</u> $(f_{dp} << f_{p1})$

F.O. = $45^{\circ} = (180^{\circ} - \varphi)$ \rightarrow Fazni kut mora biti barem $\varphi = 135^{\circ}$, na frekvenciji kod koje je pojačanje petlje (loop gain) $A(f_{\beta})\beta = 1 \rightarrow A(f_{\beta}) = 1/\beta$ Za $f >> f_{\rm dp}$ dominantni pol zakreće fazu za -90° . Na frekvenciji prvog slijedećeg pola (f_1) dolazi do dodatnog zakreta faze od dodatnih -45° . \rightarrow Ukupno: $\varphi = 135^{\circ}$. $\rightarrow f_{\beta} = f_{\rm pl} = 5 \text{ kHz}$

$$\frac{A(f_{\beta}) = \frac{1}{\beta}}{A(f_{dp}) = A_{o}} A_{o} f_{dp} = \frac{1}{\beta} f_{\beta}; f_{dp} = \frac{f_{\beta}}{A_{o} \beta} = \frac{f_{p1}}{A_{o} \beta} = \frac{5000}{10000 \cdot 0.1} = 5 \text{ Hz}$$

Pogreška:

$$\begin{aligned} \left| p \right| &= \left| \frac{A_{real} - A_{ideal}}{A_{ideal}} \right| = \left| \frac{A_{real}}{A_{ideal}} - 1 \right| \le 0,01 \\ \left| \frac{\beta A(f_g)}{1 + \beta A(f_g)} - 1 \right| &= \left| \frac{\beta A(f_g) - 1 - \beta A(f_g)}{1 + \beta A(f_g)} \right| = \left| \frac{-1}{1 + \beta A(f_g)} \right| \le 0,01 \\ 1 + \beta A_o(f_g) \ge 100 \end{aligned}$$

$$A_o(f_g) \ge \frac{99}{\beta} = 990 = 59,91 \,\mathrm{dB}$$

Očitano na frekvencijskoj karakteristici: $f_{\rm g}$ = 50 Hz

(Domaći rad) Neinvertirajućim pojačalom izvedenim operacijskim pojačalom treba pojačavati zadane napone:

amplituda ulaznog napona	pojačanje
U_{ul} [V]	
0,01	750
0,1	100
1	7,5
2	1
5	2
10	1

Odredite amplitudu izlaznog napona operacijskog pojačala. Izračunajte najviše frekvencije sinusnog i trokutastog napona tih amplituda koji se može pojačati bez izobličenja uslijed konačne brzine porasta izlaznog napona pojačala.

Vrijednosti odredite za operacijska pojačala LM741 i TL081 za koje se podaci nalaze u tablici.

PARAMETAR	OZNAKA	TL081	LM741
napon pomaka	$U_{\text{pom}} [\text{mV}]$	8	5
temp. klizanje napona	$dU_{\text{pom}}/dT \left[\mu \text{V}/^{\text{o}}\text{C}\right]$	10	60
pomaka			
ulazna struja	$I_{\rm ul}$ [nA]	0,2	200
ulazna struja pomaka	$I_{\text{pom}}[\text{nA}]$	0,05	20
temperatura klizanje struje	$dI_{pom}/dT [pA/^{o}C]$	60	60
pomaka	•		
gustoća napona šuma	$e_{\S}[nV/\sqrt{Hz}]@1kHz$	15	23
gustoća struje šuma	$i_{\tilde{s}}[pA/\sqrt{Hz}]@1kHz$	-	-
pojačanje	$A_{\rm v}$ [dB]	106	94
umnožak pojačanja i širine	GBW [MHz]	4	0,7
frekvencijskog pojasa			
najveća brzina porasta	SR [V/µs]	8	0,25
izlaznog napona			
faktor rejekcije	CMMR [dB]	70	70
struja napajanja	$I_{\rm s}$ [mA]	2,5	2,8
napon napajanja	$U_{\rm s}\left[{ m V} ight]$	±6/±18	±22
ulazni otpor	$R\left[\Omega\right]$	10^{12}	

amplituda ulaznog napona	pojačanje	amplituda izlaznog
U_{ul} [V]		napona
0,01	750	7,5
0,1	100	10
I	7,5	7,5
2	1	2
5	2	10
10	1	10

Brzina porasta signala mora biti manja od maksimalne brzine porasta signala:

Trokutasti napon

$$\left(\frac{du}{dt}\right)_{MAX} = \frac{2U_M}{\frac{T}{2}} = 4U_M f \le SR$$

$$f_{\scriptscriptstyle M} \le \frac{SR}{4U_{\scriptscriptstyle M}}$$

Sinusni napon

$$\left(\frac{du}{dt}\right)_{MAX} = \omega U_{\scriptscriptstyle M} \leq SR$$

$$f_{\scriptscriptstyle M} \leq \frac{SR}{2\pi U_{\scriptscriptstyle M}}$$

	TL081: S	R= 8 V/μs	LM741: SR	$e = 0.25 V/\mu s$
	$f_{ m M}$ [l	kHz]	$f_{ m M}$ [1	kHz]
$U_{\mathrm{M}}[\mathrm{V}]$	sinus	trokut	sinus	trokut
2	637	1000	19,9	31,3
7,5	170	267	5,3	8,3
10	127	200	4	6,3

Šum mjernog pojačala zadan je spektralnim gustoćama naponskog šuma 6,7 nV/ $\sqrt{\text{Hz}}$ i strujnog šuma 1,2 pA/ $\sqrt{\text{Hz}}$ (izvori bijelog šuma). Izračunajte ukupnu vršnu vrijednost ulaznog napona šuma, ako se na pojačalo priključi izvor signala izlaznog otpora 2 k Ω ? Koliki je faktor šuma u tom slučaju? Odredite optimalnu vrijednost unutarnjeg otpora izvora signala i faktor šuma za tu vrijednost otpora.

$$u_{s}^{*} = 6.7 \text{ nV}/\sqrt{\text{Hz}}$$

 $i_{s}^{*} = 1.2 \text{ pA}/\sqrt{\text{Hz}}$
 $R_{g} = 2 \text{ k}\Omega$
 $T = 298 \text{ K}$
 $k = 1.3806*10^{-23} \text{ J/K}$

Termički šum izlaznog otpora izvora je:

$$u_{\tilde{s}Rg}^* = \sqrt{4kTR_g} = 5,737 \,\text{nV} / \sqrt{\text{Hz}}$$

Ukupna efektivna vrijednost šuma na ulazu pojačala jednaka je korijenu zbroja kvadrata svih izvora šuma:

$$u_{suk}^* = \sqrt{u_s^{*2} + (i_s^* \cdot R_g)^2 + u_{sRg}^{*2}} = 9.14 \text{ nV}/\sqrt{\text{Hz}}$$

Kako je šum stohastički signal, a efektivna vrijednost odgovara standardnom odstupanju, da bi dobili vrijednost od vrha do vrha moramo uzeti u obzir interval $\pm 3\sigma$.

$$u_{\delta ukVV}^* = 6 \cdot u_{\delta uk}^* = 54,85 \,\text{nV}/\sqrt{\text{Hz}}$$

Faktor šuma je jednak omjeru ukupnog šuma i šuma na ulazu:

$$F = \frac{u_{s}^{*2} + (i_{s}^{*} \cdot R_{g})^{2} + u_{sRg}^{*2}}{u_{sRg}^{*2}} = 2,539 = 4,05 \,\mathrm{dB}$$

Optimalna vrijednost unutarnjeg otpora izvora signala s obzirom na faktor šum je vrijednost za koju imamo minimum faktora šuma:

$$\left(\frac{\partial F}{\partial R_g}\right) = \frac{\partial}{\partial R_g} \frac{u_s^{*2} + \left(i_s^* \cdot R_g\right)^2 + 4kTR_g}{4kTR_g} = 0$$

$$\left(\frac{\partial F}{\partial R_g}\right) = -\frac{u_s^{*2}}{4kTR_g^2} + \frac{i_s^{*2}}{4kT} = 0$$

$$R_{gOPT} = \sqrt{\frac{u_{\tilde{s}}^{*2}}{i_{\tilde{s}}^{*2}}} = 5,583 \text{ k}\Omega$$

$$F_{OPT} = 1 + \frac{\sqrt{u_{\tilde{s}}^{*2} \cdot i_{\tilde{s}}^{*2}}}{2kT} = 1,977 = 2,96 \text{ dB}$$