Kolorowanie grafu

Polega na przypisaniu określonym elementom grafu (najczęściej są to wierzchołki, rzadziej krawędzie) wybranych kolorów według ściśle określonych reguł. Klasyczne kolorowanie grafu jest związane z przypisaniem wszystkim wierzchołkom w grafie jednej z wybranych barw w ten sposób, aby żadne dwa sąsiednie wierzchołki nie miały tego samego koloru. W praktyce zamiast kolorów stosuje się kolejne liczby całkowite, zaczynając od zera lub jedynki.

Lista algorytmów:

- 1) Algorytm zachłanny
- 2) Algorytm zachłanny z użyciem BFS lub DFS
- 3) Algorytm Wigderson
- 4) Backtracking approach
- 5) Losowe kolorowanie grafu (Randomized Graph Coloring)
- 6) Algorytm Welsh Powell

Algorytm zachłanny

Sprawdzamy po kolei wierzchołki przypisując pierwszy dostępny kolor. Algorytm ten nie gwarantuje minimalnego użycia kolorów, ale nie przydzieli wierzchołkom więcej niż D+1 kolorów (D to największy stopień wierzchołka w grafie).

Algorytm Welsh-Powell

- 1. Sortujemy wierzchołki malejąco według ich stopnia
- 2. Kolorujemy pierwszy wierzchołek najmniejszym kolorem
- 3. Kolorujemy wierzchołki, które nie są sąsiadami z pokolorowanym wierzchołkiem tym samym kolorem
- 4. Powtarzamy krok 3 na wszystkich niepokolorowanych wierzchołkach z nowym kolorem, w malejącej kolejność stopni, aż wszystkie wierzchołki zostaną pokolorowane

Backtracking Algorithm

Ustalamy liczbę kolorów i przechodzimy kolejno po wierzchołkach przypisując minimalny dostępny kolor. Jeżeli nie możemy pokolorować następnego wierzchołka, cofamy się, zmieniamy kolor wierzchołka i próbujemy pokolorować kolejny wierzchołek.

Przebieg testów

Wygenerowałem cztery grafy na podstawie modelu BA (Barabási–Albert) o wielkości 10, 100, 1000 oraz 2000 wierzchołków, aby przy ich pomocy sprawdzić czas działania algorytmów kolorujących. Testy powtórzyłem stukrotnie i obliczyłem średni czas wykonania algorytmów.

Przebieg testów

Nazwa algorytmu	Test dla 10 wierzchołków	Test dla 100 wierzchołków	Test dla 1000 wierzchołków	Test dla 2000 wierzchołków
Zachłanny	0.001001 μs	0.003643 μs	0.039399 μs	0.08754 μs
Welsh-Powell	0.000259 μs	0.002507 μs	0.021536 μs	0.061708 μs
Backtracking	0.000147 μs	0.000434 μs	0.004477 μs	0.009814 μs

Przebieg testów

Nazwa algorytmu	Test dla 10 wierzchołków [liczba kolorów]	Test dla 100 wierzchołków [liczba kolorów]	Test dla 1000 wierzchołków [liczba kolorów]	Test dla 2000 wierzchołków [liczba kolorów]
Zachłanny	4	5	6	6
Welsh-Powell	4	5	5	5
Backtracking	4	5	6	6

Wnioski

Dla testowanych grafów o zadanych wielkościach, czas wykonywania algorytmów jest bardzo zbliżony. Spośród tych trzech algorytmów najszybszy był algorytm backtracking. Algorytm Welsh-Powell potrzebował najmniejszej liczby kolorów.