1 Algorithm

- 1. Given graph G = (V, E) as input, define its adjacency matrix P where element p_{ij} is the weight (probability) of edge $(i, j) \in E$.
 - p_{ij} is missing for $(i,j) \notin E$.
 - Number of nodes N = |V|, number of edges M = |E|.
 - $p_{ij} = e^{-\gamma \|x_i x_j\|_2^2}$ where $x_i, x_j \in \mathbb{R}^D$ are the attribute vectors of nodes i, j.
 - Time complexity O(MD).
 - **Issue**: how do we choose a value of γ ?
 - Issue: is it better to define $p_{ij} = \frac{1}{2} \left(\frac{x_i^\top x_j}{\|x_i\| \|x_j\|} + 1 \right)$ for DeepWalk features, or $p_{ij} = \frac{x_i^\top x_j}{\|x_i\| \|x_j\|}$ for non-negative DeepWalk features?
- 2. Optimize the following objective function to factorize $P \in \mathbb{R}_+^{N \times N}$ into two non-negative matrices $W \in \mathbb{R}_+^{K \times N}, H \in \mathbb{R}_+^{K \times N}$:

$$\arg\min_{W,H} L = \arg\min_{W,H} \frac{1}{2} \sum_{(i,j) \in E} \left(p_{ij} - w_i^\top h_j \right)^2 + \lambda \left(\sum_{i \in V} \|w_i\|_1 + \sum_{j \in V} \|h_j\|_1 \right)$$

- i.e. non-negative matrix factorization $P \approx W^{\top} H$.
- $K \ll N, K \ll M$ is the number of latent factors.
- $w_i \in \mathbb{R}^K$ is the *i*-th column vector of W, so is h_i of H.
- For those $(i,j) \notin E$, $w_i^{\top} h_i$ predicts their connection likelihood.
- Optimization algorithm: stochastic gradient descent (SGD).

$$-\frac{\partial L_{ij}}{\partial w_i} = -(p_{ij} - w_i^{\top} h_j) h_j + \lambda.$$
$$-\frac{\partial L_{ij}}{\partial h_j} = -(p_{ij} - w_i^{\top} h_j) w_i + \lambda.$$

- Time complexity O(MK) for each epoch.
- **Issue**: how do we choose a value of K and λ ?
- 3. Let $w_i = \mathbf{0}$ if node i has no out-link; let $h_j = \mathbf{0}$ if node j has no in-link.
 - Since the vectors are never learned (i.e. updated) in SGD.
 - We do not want the noise to influence the later steps.
- 4. Normalize each row of prediction matrix $W^{\top}H$.
 - Sum $\sum_{j \in V} w_i^{\top} h_j = w_i^{\top} \sum_{j \in V} h_j$ for row i; hence we compute $\alpha = \sum_{j \in V} h_j \in \mathbb{R}^K$, followed by $w_i^{\top} \alpha$.
 - Let $s = W^{\top} \alpha \in \mathbb{R}^N$ be the row-sum vector where $s_i = w_i^{\top} \alpha$.
 - Let Y be the normalized matrix where s^{\top} divides every row of W; be careful to skip zero division $s_i = 0$ for dangling nodes i.
 - Time complexity O(NK).

5. Run PageRank until convergence:

$$\pi = (1 - d)r + d\left(H^{\top}Y\pi + br\right)$$

- Reset probability vector $r = \frac{1}{N} \mathbf{1}$.
- We first compute $Y\pi$ to reduce time complexity.
- \bullet Dangling node (i.e. zero-out-degree nodes) term br
 - Scalar $b = \sum_{i \in B} \pi_i$ where B is the set of dangling nodes.
- $\bullet\,$ Time complexity O(NK) for each iteration.
- Issue: could it achieve better performance if we re-define $p_{ij} = \beta e^{-\gamma ||x_i x_j||_2^2} + (1 \beta)\pi_j$ and run the algorithm again?