Plan of the Tutorial

- Plan of the Tutorial
- Introduction to NLP
- Overview of Distributional Representation Learning for NLP
- 4 Overview of Transformer based Language Model
- 5 Overview of Large Language Models
- 6 Concept of in-context learning and its application
- Conclusion

Dramatic Entry of Deep Learning!

Advantages

- Unsupervised
- Can work with less data

- No shared representations at sub-word levels
- Scaling to new languages requires new embedding matrices
- Positions of tokens are overlooked

Dramatic Entry of Deep Learning!

Advantages

- Unsupervised
- Can work with less data

- No shared representations at sub-word levels
- Scaling to new languages requires new embedding matrices
- Positions of tokens are overlooked

Inspiration from Computer Vision

Advantages

- Captures local structures
- Performs well on the classification task
- Very fast (In GPUs)

- Can't capture long-range dependencies (words often don't need to be adjacent to be related) in POS tagging, entity extraction, etc.
- Can't capture sequential/temporal information.

Inspiration from Computer Vision

Advantages

- Captures local structures
- Performs well on the classification task
- Very fast (In GPUs)

- Can't capture long-range dependencies (words often don't need to be adjacent to be related) in POS tagging, entity extraction, etc.
- Can't capture sequential/temporal information.

Seq2Seq Model

Advantages

- Captures sequential structures
- Process inputs of any length
- Even if the input sizes increases, the model size remains same
- Weights can be shared across the time steps

- Dealing with long-range dependencies
- The sequential nature of the model prevents parallelization (slow to train)

Seq2Seq Model

Advantages

- Captures sequential structures
- Process inputs of any length
- Even if the input sizes increases, the model size remains same
- Weights can be shared across the time steps

- Dealing with long-range dependencies
- The sequential nature of the model prevents parallelization (slow to train)

Transformer

- No Convolutions or recurrence
- Easy to Parallelize than recurrent network.
- Captures more long-range Dependencies.

The Uprising of Language Models

- After the invention of the Transformer in the year 2017. The language model comes in the post-2017 era.
- Early 2018 era most of the language models follow the paradigm of Pretrain
 → Finetune → Predict.
- Encoder Only
- Encoder- Decoder
- Decoder Only

Pretraining Encoder

- Idea: replace some fraction of words in the input with a special [MASK] token; predict these words.
- Only add loss terms from words that are "masked out."

BERT: Bidirectional Encoder Representations from Transformers

- Devlin et al., 2018 proposed the "Masked LM" objective and released the weights of a pretrained Transformer, a model they labeled BERT.
- Predict a random 15% of word tokens.
 - Replace input word with [MASK] 80% of the time.
 - Replace input word with a random token 10% of the time
 - Leave input word unchanged 10% of the time
- Trained on Bookcorpus (800M words) and English Wikipedia (2500M words)

Finetuning BERT

Input Features

Help Prince Mayuko Transfer Huge Inheritance

Limitations of pretrained encoders

 If our tasks involves generating sequences, consider using a pretrained decoder, BERT, and other pretrained encoders don't naturally lead to nice autoregressive generation methods.

Pretraining encoder-decoders

- For encoder-decoders, we could do something like language modeling, but where a prefix of every input is provided to the encoder and is not predicted.
- This is implemented in text preprocessing: It's still an objective that looks like language modeling on the decoder side.

Original text