Nitrogen limitation induced by slash-and-burn agriculture in the Brazilian Amazon

Davidson, R. Lucotte, M. Farella, N.

Satellite image of the studied frontier region

SEQÜÊNCIA DOS CULTIVOS E FERTILIDADE

Primeira roça

5 Capoeira

6 Segunda queimada

nstitut des sciences de l'environnement

Slash-and-burn agriculture in the Tapajós River area

Example of a land-use sequence

Land-use begins with short-cycle crops

(bananas, manioc, rice) and ends with pastures.

The number and duration of the diverse land-uses on each site is variable.

Forest

Rice

Fallows

Manioc

Fallows

Manioc

Pastures

After 20 years of land occupation...

Average area of 70 ha

Farella, 2005

Sampling methodology

- Total of 25 families and 4 sites per family
 - Forest, fallows, crops and pastures
 - Historic records of land-use taken into account
- 3 cores per site and 3 depths per core
 - 0-5 cm, 20-25 cm, 50-55 cm
 - Inorganic N from a sub-sample kept frozen
- 4th core (soil density)
- Total: 1200 soil samples

Soil analyses

 Samples were passed through a 2-mm mesh, lyophilized and grinded

 Mineral N (NH₄ and NO₃) was extracted with KCl 2M and analyzed by colorimetry

 Total C and N was measured on Carlo-Erba NA-1500 analyzer

Interpretation of the soil data set

Comparing values of forest soils to deforested soils

- A) Through pooling together all land-uses (crops, pastures, fallows): tables
- B) Through considering the different land-uses through time: figures for trends
 - Time spent in crop, pasture and fallows were added up for each site
 - Each point represents a number of samples falling into time frame categories expressed in years for each land-use
 - Soil values are median values, for more stability due to a skewed distribution of data and important heterogeneity

Contrasting soil types

 Based on a factorial analysis including all sites, 2 soil types could be found on the criteria of fine particle content (FP), defined as < 63 μm

- Clayey soils > 65% FP
- Clay-sandy soils < 65% FP

Contrasting forested soil types

Soil variable	Unit	Clayey (reddish)	Clay-sandy (yellowish)
K+Ca+Mg	cmol/kg	0.94	0.80
Al-cdb + Fe-cdb	μmol/g	987	229
Hg	ppb	130	70
P-org	μmol/g	6.5	2.6
NO_3	μmol/g	1.8	1.1
NH ₄	μmol/g	2.9	1.5

Impacts of deforestation on soil surface properties

Soil		Clayey		Clay-sandy	
variables	Units				
KCaMg	cmol/kg	+4.24	+450%	+2.36	+295%
Hg	ppb	-27	-20.7%	-6.0	-8.5%
P-org	μmol/g	-1.3	-20.0%	+0.4	+15.4%
NO ₃	μmol/g	-0.5	-27.7%	-0.3	-27.3%
NH ₄	μmol/g	-1.7	-58.6%	-0.7	-46.7%
FP For all la	% nd-uses	-7.0 togethe	-9.3% er, includ	+1.0 ing fallov	+2.5%

Deforestation: Total C and N

		Clay	Clay-sandy		
C (%)	-0.2	-6.1%	-0.5	-21.7%	
N (%)	-0.1	-33.3%	-0.1	-50.0%	
C/N	+0.5	+3.5%	+0.1	+0.7%	

Deforestation: inorganic nitrogen Contrasting NH₄ and NO₃ and soil types

	Clay		Clay-sandy			
	μm	ol/g	%	μm	ol/g	%
NH ₄	2.9	1.2	58.6	1.5	0.8	46.7
NO ₃	1.8	1.3	27.8	1.1	0.8	27.3

Deforestation: inorganic nitrogen Relative importance of NH₄ and NO₃

	Forest	Deforested
NH ₄	57.7%	50%
NO ₃	42.3%	50%

Deforestation: inorganic nitrogen Land-uses

NO₃ at surface of clayey soils

NO₃ at surface of clay-sandy soils

Deforestation: inorganic nitrogen Deeper horizon: 50-55 cm

NH₄ in clayey soils

NO₃ in clayey soils

Conclusions

 Inorganic nitrogen is the most important nutrient loss upon deforestation and cultivation

 Lower clay content soils are more fragile and should be devoted to a land-use integrating the presence of trees

Practices favouring longer fallows should be encouraged