Diskrete Mathematik - Übungen SW08

David Jäggli

19. April 2023

Inhaltsverzeichnis

1	Rekursionen	2
2	Lösen von linearen Rekursionsbeziehungen	2
3	Erweitertes Ein- und Ausschlussprinzip	3

1 Rekursionen

I.)

Gleichung:
$$a_n = 2^n + 5 \cdot 3^n$$

RB: $a_n = 5a_{n-1} - 6a_{n-2}$

Einsetzen:

$$5(2^{n-1} + 5 \cdot 3^{n-1}) - 6(2^{n-2} + 5 \cdot 3^{n-2}) = 5 \cdot 2^{n-1} + 25 \cdot 3^{n-1} - 6 \cdot 2^{n-2} - 30 \cdot 3^{n-2} = 2^{n-2}(5 \cdot 2 - 6) + 3^{n-2}(25 \cdot 3 - 30) = 2^{n-2} \cdot 4 + 3^{n-2} \cdot 45 = 2^{n-2} \cdot 2^2 + 3^{n-2} \cdot 5 \cdot 3^2 = 2^n + 5 \cdot 3^n = a_n, \forall n$$

II.)

Wenn mit 1 endet dann gibt es n^{-1} Möglichkeiten.

Es gibt 2^{n-1} Bitstrings mit Länge n-1 mit a_{n-1} Möglichkeiten für eine gerade Anzahl Nullen.

$$a_n = a_{n-1} + (2^{n-1} - a_{n-1}) = 2^{n-1}$$

Daraus folgt, dass $a_{n-1} = 2^{n-2}$ einsetzen:

$$a_n = a_{n-1} + (2^{n-1} - a_{n-1}) = a_{n-1} + (2^{n-1} - 2^{n-2}) = a_{n-1} + 2^{n-2} = 2a_{n-1}$$

2 Lösen von linearen Rekursionsbeziehungen

III.)

Standardform:
$$a_n - 4a_{n-1} + 4a_{n-2} = 0$$

$$a_n = r^n$$

$$0 = r^n - 4r^{n-1} + 4r^{n-2}$$

$$0 = r^{n-2}(r^2 - 4r + 4)$$

$$0 = r^2 - 4r + 4$$
$$0 = (r - 2)^2$$

$$a_n^{(h)} = (\alpha_1 + \alpha_2 n)r^n = (\alpha_1 + \alpha_2 n)2^n$$

3 Erweitertes Ein- und Ausschlussprinzip

IV.)

Anzahl mögliche Fälle:

$$\binom{15}{13} = 105$$

Nicht-valide Lösungen:

Wenn 1 oder 2 Zahlen ≥ 6 :

$$\binom{7+3-1}{2} = \binom{9}{2} = 36$$

dies gilt pro Zahl/ x_i , heisst gesamthaft gibt es $36 \cdot 3 = 108$ (- doppelt gerechnete) nichtvalide Lösungen.

Zieht man die doppelt gerechneten Fälle ab (wie z.B.) kommt man auf:

$$\binom{1+3-1}{2} = \binom{3}{2} = 3 \cdot 3 = 9$$

Insgesammt valide Fälle: 105 - 108 + 9 = 6