```
In [83]:
           import pandas as pd
            import warnings
            warnings.filterwarnings("ignore")
In [84]:
                 data=pd.read csv("/home/placement/Downloads/fiat500.csv")
In [85]:
           data.describe()
Out[85]:
                            ID engine power
                                              age_in_days
                                                                     km previous_owners
                                                                                                    lat
                                                                                                               lon
                                                                                                                            price
             count 1538.000000
                                  1538.000000
                                               1538.000000
                                                             1538.000000
                                                                              1538.000000 1538.000000
                                                                                                       1538.000000
                                                                                                                     1538.000000
                     769.500000
                                    51.904421
                                               1650.980494
                                                             53396.011704
                                                                                 1.123537
                                                                                             43.541361
                                                                                                          11.563428
                                                                                                                     8576.003901
             mean
                                                                                                           2.328190
               std
                     444.126671
                                     3.988023
                                               1289.522278
                                                             40046.830723
                                                                                 0.416423
                                                                                              2.133518
                                                                                                                     1939.958641
                      1.000000
                                    51.000000
                                                366.000000
                                                             1232.000000
                                                                                 1.000000
                                                                                             36.855839
                                                                                                           7.245400
                                                                                                                     2500.000000
               min
              25%
                     385.250000
                                    51.000000
                                                670.000000
                                                                                 1.000000
                                                                                             41.802990
                                                                                                           9.505090
                                                                                                                     7122.500000
                                                             20006.250000
              50%
                     769.500000
                                    51.000000
                                               1035.000000
                                                             39031.000000
                                                                                 1.000000
                                                                                             44.394096
                                                                                                          11.869260
                                                                                                                     9000.000000
                    1153.750000
                                    51.000000
                                               2616.000000
                                                             79667.750000
                                                                                 1.000000
                                                                                             45.467960
                                                                                                          12.769040
                                                                                                                    10000.000000
              max 1538.000000
                                    77.000000
                                               4658.000000
                                                           235000.000000
                                                                                 4.000000
                                                                                             46.795612
                                                                                                          18.365520
                                                                                                                    11100.000000
In [86]:
           data.head()
Out[86]:
                   model engine_power age_in_days
                                                          km previous_owners
                                                                                               lon price
                                                                                     lat
             0
                1
                   lounge
                                     51
                                                 882
                                                       25000
                                                                            1 44.907242
                                                                                          8.611560
                                                                                                    8900
                2
                      pop
                                     51
                                                1186
                                                       32500
                                                                              45.666359 12.241890
                                                                                                    8800
                3
                     sport
                                     74
                                                4658
                                                      142228
                                                                               45.503300
                                                                                        11.417840
                                                                                                    4200
                                     51
                                                2739
                                                      160000
                                                                               40.633171 17.634609
                                                                                                    6000
                   lounge
                                     73
                                                3074
                                                      106880
                                                                            1 41.903221 12.495650
                                                                                                    5700
                5
                      pop
```

localhost:8888/notebooks/ElasticNet.ipynb

In [87]: data1=data.loc[(data.previous owners)==1]

In [88]: data1

Out[88]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	рор	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	pop	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	рор	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	рор	51	1766	54276	1	40.323410	17.568270	7900
1389 r	ows ×	9 colum	nns						

In [89]: data2=data1.drop(['lat','lon','ID'],axis=1)

In [90]: data2

Out[90]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	pop	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1389 rows × 6 columns

In [91]: data2=pd.get_dummies(data2)

In [92]: data2

Out[92]:

	engine_power	age_in_days	km	previous_owners	price	model_lounge	model_pop	model_sport
0	51	882	25000	1	8900	1	0	0
1	51	1186	32500	1	8800	0	1	0
2	74	4658	142228	1	4200	0	0	1
3	51	2739	160000	1	6000	1	0	0
4	73	3074	106880	1	5700	0	1	0
1533	51	3712	115280	1	5200	0	0	1
1534	74	3835	112000	1	4600	1	0	0
1535	51	2223	60457	1	7500	0	1	0
1536	51	2557	80750	1	5990	1	0	0
1537	51	1766	54276	1	7900	0	1	0

1389 rows × 8 columns

```
In [93]: y=data2['price']
x=data2.drop('price',axis=1)
```

```
In [94]: y
Out[94]: 0
           8900
           8800
           4200
      2
      3
           6000
      4
           5700
      1533
           5200
      1534
           4600
      1535
           7500
      1536
           5990
           7900
      1537
      Name: price, Length: 1389, dtype: int64
In [96]: x_test.head(5)
```

Out[96]:

	engine_power	age_in_days	km	previous_owners	model_lounge	model_pop	model_sport
625	51	3347	148000	1	1	0	0
187	51	4322	117000	1	1	0	0
279	51	4322	120000	1	0	1	0
734	51	974	12500	1	0	1	0
315	51	1096	37000	1	1	0	0

```
In [97]: from sklearn.linear model import ElasticNet
          from sklearn.model selection import GridSearchCV
          elastic = ElasticNet()
          parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
          elastic regressor = GridSearchCV(elastic, parameters)
          elastic regressor.fit(x_train, y_train)
Out[97]:
                 GridSearchCV
           ▶ estimator: ElasticNet
                 ▶ ElasticNet
In [98]: elastic regressor.best params
Out[98]: {'alpha': 0.01}
In [99]: elastic=ElasticNet(alpha=.01)
          elastic.fit(x train,y train)
          v pred elastic=elastic.predict(x test)
In [100]: from sklearn.metrics import r2 score
          r2_score(y_test,y_pred_elastic)
Out[100]: 0.8602162350730707
In [102]: from sklearn.metrics import mean squared error
          elastic_Error=mean_squared error(y pred elastic, y test)
          elastic Error
Out[102]: 515349.9787871871
```

```
In [103]: Results=pd.DataFrame(columns=['Actual','predicted'])
    Results['Actual']=y_test
    Results['predicted']=y_pred_elastic
    Results=Results.reset_index()
    Results['ID']=Results.index
    Results.head(10)
```

Out[103]:

	index	Actual	predicted	ID
0	625	5400	5482.171479	0
1	187	5399	5127.531740	1
2	279	4900	4803.203231	2
3	734	10500	9662.825235	3
4	315	9300	9408.645424	4
5	652	10850	10350.952605	5
6	1472	9500	9806.127960	6
7	619	7999	8341.142824	7
8	992	6300	5913.786719	8
9	1154	10000	10149.093829	9

```
In [104]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='Actual',data=Results.head(50))
sns.lineplot(x='ID',y='predicted',data=Results.head(50))
plt.plot()
```

Out[104]: []

Tn [].	1.	
In []:	:	