Convex Optimization

Adrien Taylor

Class notes by Antoine Groudiev

Contents

1	Introduction Convex sets				2
2					
	2.1	Definit	itions		2
	2.2	Examples			
		2.2.1	Hyperplanes and halfspaces		2
		2.2.2	Euclidian balls and ellipsoids		3
		2.2.3	Cones		4
	2.3	Conve	exity-preserving operations		5
		2.3.1	Intersection and union		6
		2.3.2	Affine functions		7
	2.4	Geome	netric elements		7
		2.4.1	Separating and supporting hyperplanes		7
		2.4.2	Cone operators		9
3	3 Convex functions				9
-	3.1	Extend	nded-valued functions		
4	Con	ıvex pr	roblems	1	١0

Abstract

This document is Antoine Groudiev's class notes while following the class *Deep Learning* at the Computer Science Department of ENS Ulm. It is freely inspired by the lectures of Adrien Taylor.

1 Introduction

2 Convex sets

2.1 Definitions

Definition (Convex set). A set C is a *convex set* if every segment that connects two points in C is in C. Formally:

$$\forall x, y \in C, \forall \theta \in [0, 1], \quad \theta x + (1 - \theta)y \in C$$

Example. Here are some examples of convex and non-convex sets:

In many cases, we will use proper (i.e. non-empty) convex sets, and closed convex sets.

Definition (Convex hull). The *convex hull* of S, denoted Conv(S), is the smallest convex set that contains S.

Definition (Convex combinations). The *convex combinations* of x_1, \ldots, x_k are all the point x of the form:

$$x = \theta_1 x_1 + \dots + \theta_k x_k$$

with $\theta_1, \ldots, \theta_k \geqslant 0$ and $\sum_{i=1}^k \theta_i = 1$.

Property 2.1. The convex hull of a set S is the set of all convex combinations of points in S:

$$Conv(S) = \left\{ \sum_{i=1}^k \theta_i x_i \mid (x_i) \in S^k, (\theta_i) \in \mathbb{R}_+^k, \sum_{i=1}^k \theta_i = 1 \right\}$$

2.2 Examples

2.2.1 Hyperplanes and halfspaces

Definition (Hyperplane). A hyperplane is the set of the form:

$$H = \left\{ x \mid a^{\top} x = b \right\}$$

for some $a \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$. a is called the *normal vector* of H. Hyperspaces are affine and convex.

2

Figure 2.1: Hyperplane

Definition (Halfspace). A halfspace is the set of the form:

$$H = \left\{ x \mid a^{\top} x \leqslant b \right\}$$

for some $a \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$. a is called the normal vector of H. Halfspaces are convex.

Figure 2.2: Halfspace

2.2.2 Euclidian balls and ellipsoids

Definition (Euclidian ball). The Euclidian ball of center x_c and radius r is the set:

$$B(x_c, r) = \{ x \mid ||x - x_c||_2 \leqslant r \} = \{ x_c + ru \mid ||u||_2 \leqslant 1 \}$$

Euclidian balls are convex.

Definition (Ellipsoid). An *ellipsoid* is the set of the form:

$$E = \{ x \mid (x - x_c)^{\top} P^{-1} (x - x_c) \le 1 \}$$

with $P \in \mathbb{S}_{++}^{n-1}$ and $x_c \in \mathbb{R}^n$. Ellipsoids are convex.

 $^{{}^{1}\}mathbb{S}^{n}_{++}$ denotes the set of symmetric positive definite matrices of size n

Figure 2.3: Ellipsoid

An alternative representation of an ellipsoid is:

$$E = \{ x_c + Au \mid ||u||_2 \le 1 \}$$

for some nonsingular matrix $A \in GL_n(\mathbb{R})$. We can choose A symmatric and positive definite without loss of generality, for instance by choosing $A = P^{1/2}$.

2.2.3 Cones

Definition (Cones). A set K is a cone, or a nonnegative homogeneous set, if:

$$\forall x \in K, \forall \theta \in \mathbb{R}_+^*, \quad \theta x \in K$$

Definition (Convex cone). A set K is a convex cone if:

$$\forall x_1, x_2 \in K, \forall \theta_1, \theta_2 \in \mathbb{R}_+^*, \quad \theta_1 x_1 + \theta_2 x_2 \in K$$

In the followings, we will denote by:

- $\mathbb{S}^n \subset \mathbb{R}^{n \times n}$ the set of symmetric matrices of size n
- \mathbb{S}^n_+ the set of positive semidefinite matrices of size n, that is matrices verifying:

$$\forall z \in \mathbb{R}^n, z^\top X z \geqslant 0$$

also denoted $X \geq 0$.

• \mathbb{S}^n_{++} the set of positive definite matrices of size n, that is matrices verifying:

$$\forall z \in \mathbb{R}^n, z^\top X z > 0$$

also denoted $X \succ 0$.

 \mathbb{S}^n_+ and \mathbb{S}^n_{++} are convex cones.

Special cases of cones include:

Positive orthant $K = \mathbb{R}^n_+ = \{ x \in \mathbb{R}^n \mid x_i \geqslant 0, \forall i \}$

Norm cones $K = \{ (x,t) \in \mathbb{R}^n \times \mathbb{R} \mid ||x|| \leq t \}$. A particular case is the second-order cone (SOC), based on the ℓ_2 norm.

Positive polynomials $K_n = \{ x \in \mathbb{R}^{n+1} \mid \forall t \in \mathbb{R}, \sum_{i=0}^n x_i t^i \geq 0 \}$

Positive semidefinite cone $\mathbb{S}^n_+ = \{ X \in \mathbb{S}^n \mid \forall z \in \mathbb{R}^n, z^\top X z \geqslant 0 \}$

Co-positive cone $\mathbb{S}^n_+ = \{ X \in \mathbb{S}^n \mid \forall z \in \mathbb{R}^n_+, z^\top X z \geqslant 0 \}$

Exponential cone $\{(x, y, z) \in \mathbb{R} \times \mathbb{R}_+^* \times \mathbb{R} \mid z \geqslant ye^{x/y} \}$

Definition (Dual cones). The dual cone to a convex cone K is the set:

$$K^* = \left\{ y \mid \forall x \in K, \quad y^\top x \geqslant 0 \right\}$$

Convex cones and their duals are particularly useful for convex duality. A convex cone that satisfies $K = K^*$ is called *self-dual*.

Definition (Polar cones). The *polar cone* to a convex cone K is the set:

$$K^{\diamond} = \left\{ y \mid \forall x \in K, \quad y^{\top} x \leqslant 0 \right\}$$

We have the identity $K^{\diamond} = -K^*$.

2.3 Convexity-preserving operations

To establish the convexity of a set C, the most basic approach is to apply the definition by proving that every segment that connects two points in C is in C. However, this can be tedious in practice. Instead, we can use operations that preserve convexity.

5

2.3.1 Intersection and union

Property 2.2 (Convexity is preserved by intersection). For any convex sets C_1 and C_2 , the intersection $C_1 \cap C_2$ is convex.

Likewise, the intersection of an arbitrary number of convex sets is convex.

Remark. The union of convex sets is not necessarily convex. For instance in \mathbb{R} , both [0,1] and [2,3] are convex, but their union $[0,1] \cup [2,3]$ is not.

Definition (Polyhedron). A *polyhedron* is the solution set of finitely many linear inequalities and equalities:

$$S = \{ x \in \mathbb{R}^n \mid Ax \leqslant b, Cx = d \}$$

for $A \in \mathcal{M}_{m,n}(\mathbb{R})$ and $C \in \mathcal{M}_{p,n}(\mathbb{R})$. Polyhedra are convex, since they are the intersection of halfspaces and hyperplanes which are convex.

Example. Let:

$$S = \left\{ x \in \mathbb{R}^m \,\middle|\, \forall t \in \mathbb{R}, \quad |t| \leqslant \frac{\pi}{3} \implies \left| \sum_{k=1}^m x_k \cos(kt) \right| \leqslant 1 \right\}$$

6

S is convex, since it can be written as the intersection of convex sets.

Example. \mathbb{S}^n_+ is convex since it is the intersection of convex sets:

$$\mathbb{S}^n_+ = \left\{ X \in \mathbb{S}^n \ \middle| \ \forall z \in \mathbb{R}^n, z^\top X z \geqslant 0 \right\} = \mathbb{S}^n \cap \bigcap_{z \in \mathbb{R}^n} \left\{ X \in \mathscr{M}_n(\mathbb{R}) \ \middle| \ z^\top X z \geqslant 0 \right\}$$

Each set $\{X \in \mathcal{M}_n(\mathbb{R}) \mid z^\top X z \ge 0\}$ being convex, their intersection is convex. In particular, it doesn't matter if the number of sets is finite, countable or uncountable.

2.3.2 Affine functions

Property 2.3 (The image of a convex set by an affine function is convex). If $L: \mathbb{R}^n \to \mathbb{R}^m$ is an affine function, then if C is convex, L(C) is convex.

More explicitly, let $A \in \mathcal{M}_{m,n}(\mathbb{R})$ and $b \in \mathbb{R}^m$. The affine function L(x) = Ax + b maps C to $L(C) = \{ y \in \mathbb{R}^m \mid \exists x \in C, y = Ax + b \}, \text{ which is convex if } C \text{ is convex.}$

Property 2.4 (The pre-image of a convex set by an affine function is convex). If $L: \mathbb{R}^n \to \mathbb{R}^m$ is an affine function, then $L^{-1}(C)$, the pre-image of C by L defined by:

$$L^{-1}(C) = \{ x \in \mathbb{R}^n \mid L(x) \in C \}$$

is convex if C is convex.

Example (Linear matrix inequalities). Let $A_1, \ldots, A_m \in \mathbb{S}^n(\mathbb{R})$. The set:

$$\left\{ x \in \mathbb{R}^m \, \middle| \, \sum_{i=1}^m x_i A_i \succcurlyeq 0 \right\}$$

is an affine pre-image of \mathbb{S}^n_+ for the mapping $L: \mathbb{R}^m \to \mathbb{S}^n$ defined by:

$$L(x) = \sum_{i=1}^{m} x_i A_i$$

 \mathbb{S}^n_+ being convex, the set is convex. $\sum_{i=1}^m x_i A_i \geq 0$ is called a *linear matrix inequality*.

2.4Geometric elements

2.4.1 Separating and supporting hyperplanes

Property 2.5 (Separating hyperplanes). Soppose that $C, D \subseteq \mathbb{R}^n$ are two non-intersecting convex sets (that is $C \cap D = \emptyset$). Then there exists a hyperplane that separates C and D, that is:

$$\exists s \in \mathbb{R}^n \setminus \{0\}, \exists r \in \mathbb{R}, \quad \forall x \in C, s^\top x \leqslant r \quad \text{and} \quad \forall x \in D, s^\top x \geqslant r$$

where $\{x \in \mathbb{R}^n \mid s^\top x = t\}$ is called the *separating hyperplane*.

Property 2.6 (Strict separating hyperplanes). Suppose that $C, D \subseteq \mathbb{R}^n$ are two non-intersecting **closed** convex sets, and that one of them is compact (closed and bounded in finite dimension). Then there exists a hyperplane that strictly separates C and D, that is:

$$\exists s \in \mathbb{R}^n \setminus \{0\}, \exists r \in \mathbb{R}, \quad \forall x \in C, s^\top x < r \quad \text{and} \quad \forall x \in D, s^\top x > r$$

Note that a closed convex set C is the intersection of all halfspaces that contain it.

Definition (Supporting hyperplanes). Supporting hyperplanes touch the boundary of a convex set, and have the entire set on one side. Formally, a hyperplane $H = \{y \mid s^{\top}y = r\}$ is a supporting hyperplane to a convex set C at a point $x \in \partial C$ if:

$$x^{\top}x = r$$
 and $\forall y \in C$, $a^{\top}y \leqslant r = s^{\top}x$

We also say that H supports C at x.

Property 2.7. Let $C \subseteq \mathbb{R}^n$ be a non-empty convex set, and let $x \in \partial C$. Then there exists a supporting hyperplane to C at x.

2.4.2 Cone operators

Definition (Normal cone operator). The *normal cone operator* to a set C at a point x is the set:

$$N_C(x) = \begin{cases} \left\{ g \in \mathbb{R}^n \mid \forall y \in C, \quad g^\top(y - x) \leqslant 0 \right\} & \text{if } x \in C \\ \varnothing & \text{if } x \notin C \end{cases}$$

Intuitively, it is the set of vectors g that form obtuse angles for all y-x with $y \in C$.

For $x \in \mathring{C}$, we have $N_c(x) = \{0\}$. For $x \in \partial C$, $N_C(x)$ is the set of the normal vectors to the supporting hyperplanes to C at x. If $x \notin C$, $N_C(x)$ is empty.

Definition (Tangent vector). Let $C \subseteq \mathbb{R}^n$ be a convex set. A vector $d \in \mathbb{R}^n$ is tangent to C at x if:

$$\exists \{x_k\}_k \subseteq C, \exists \{\lambda_k\}_k \subset \mathbb{R}_+, \quad \lim_{k \to +\infty} \lambda_k(x_k - x) = d$$

Definition (Tangent cone). The tangent cone of a convex set C at x is:

$$T_C(x) = N_C^{\diamond}(x)$$

3 Convex functions

3.1 Extended-valued functions

Definition (Extended-valued function). A function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is extended-valued if its domain is \mathbb{R}^n and its range is $\bar{\mathbb{R}} := \mathbb{R} \cup \{+\infty\}$.

Example (Indicator function). We consider the indicator function of interval [a, b]:

$$\mathbb{1}_{[a,b]}(x) := \begin{cases} 0 & \text{if } x \in [a,b] \\ +\infty & \text{otherwise} \end{cases}$$

Definition (Effective domain). The *effective domain* of $f: \mathbb{R}^n \longrightarrow \overline{\mathbb{R}}$ is the set of points where f is finite:

$$\operatorname{dom} f := \{ x \in \mathbb{R}^n \mid f(x) < +\infty \}$$

A function is said to be proper if its effective domain is non-empty: dom $f \neq \varnothing$.

Definition (Epigraph). The *epigraph* of a function $f: \mathbb{R}^n \longrightarrow \overline{\mathbb{R}}$ is the set of points lying above the graph of f:

$$\operatorname{epi} f := \{ (x, t) \in \mathbb{R}^n \times \mathbb{R} \mid f(x) \leqslant t \}$$

4 Convex problems