Sistemi di numerazione e rappresentazione binaria

CORSO DI ARCHITETTURA DEGLI ELABORATORI E LABORATORIO-MODULO LABORATORIO

GABRIELLA VERGA

Numeri virgola fissa

- Un bit di segno
- Una porzione di bit fissa per la parte intera
- Una porzione di bit fissa per la parte decimale

Con 32 bit, per un intero con segno in complemento a due, possono essere codificati i numeri nell'intervallo da a -2^{-31} , $+2^{31}$ -1, ovvero in decimale da a -10^{-10} , $+10^{10}$ circa. Per numeri frazionari si può considerare che la virgola sia presente (fissa) tra il bit₃₁ e il bit₃₀ (appena dopo il bit di segno), si può quindi rappresentare un valore piccolo come 10^{-10} .

Per numeri piccoli va bene, per numeri grandi no **>** Intervallo non sufficiente per calcoli scientifici

Numeri virgola mobile

Per rappresentare numeri sia grandi che piccoli si usa la rappresentazione in virgola mobile.

Un numero binario in virgola mobile può quindi essere rappresentato:

- un **SEGNO** *s* per il numero
- la MANTISSA m (bit significativi escluso il bit più significativo)
- un **ESPONENTE** *e* con segno in base 2

Standard

- Standard IEEE 754 numeri 32 bit:
 - ✓ 1 bit (segno)
 - ✓ 23 bit (mantissa)
 - √ 8 bit (esponente)
- Standard IEEE 754 numeri 64 bit
 - ✓ 1 bit (segno)
 - ✓ 52 bit (mantissa)
 - ✓ 11 bit (esponente)

Standard IEEE 754 numeri 32 bit

e' = e + 127

Intervallo esponente: $-126 \le e \le 127$

Fattore di scala nell'intervallo: [2⁻¹²⁶, 2¹²⁷] in decimale [±10⁻³⁸, ±10³⁸]

-118,5

- 1) 118 = 1110110; 0,5 = 10 → 1110110,10
- 2) $e = 6 \rightarrow e + 127 = 133 \rightarrow 10000101$

In definitiva:

- •s = 1
- •e' = 10000101
- **1 10000101 110110100**00000000000000000

-109,78125

- 1) 109 = 1101101; 0,78125 = 11001 → 1101101,11001
- 2) $e = 6 \rightarrow e + 127 = 133 \rightarrow 10000101$

In definitiva:

- •e' = 10000101
- •m = **101101110010000000000000**
- 1 10000101 10110111001000000000000

23,6875

- 1) 23 = 10111; 0,6875 = 1011 → 10111,1011
- 2) $e = 4 \rightarrow e + 127 = 131 \rightarrow 1000\ 0011$

In definitiva:

•e' = 1000 0011

0 10000011 011110110000000000000000

Standard IEEE 754 numeri 64 bit

e' = e + 1023

Intervallo esponente: $-1022 \le e \le 1023$

Fattore di scala nell'intervallo: [2-1022, 21023]

Rappresentare in decimale il seguente numero binario:

a) 0 10000010 011010...0

Rappresentare in decimale i seguenti numeri binari in formato a precisione singola:

a) 0 10000010 011010...0

Si ha:

•Segno 0 → positivo

• e': 130 e: 130 – 127 = 3

• m: 01101

Decimale: $1,01101 * 2^3 = 1011,01 = 11,25$

CODICE ASCII

- **Codice ASCII** (American Standard Code for Information Interchange)
- Rappresenta lettere, cifre decimali, punteggiatura e caratteri speciali
- Definito su 7 bit → alfabeto di 2⁷ = 128
 elementi
- Lettere e numeri con codici in ordine crescente

	Bit 654							
Bit 3210	000	001	010	011	100	101	110	111
0000	NUL	DLE	SPACE	0	@	P	4	р
0001	SOH	DC1	!	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	b	r
0011	ETX	DC3	#	3	C	S	c	S
0100	EOT	DC4	\$	4	D	T	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	V	f	v
0111	BEL	ETB	,	7	G	W	g	W
1000	BS	CAN	(8	Н	X	h	X
1001	HT	EM)	9	I	Y	i	y
1010	LF	SUB	*	:	J	Z	j	Z
1011	VT	ESC	+	;	K]	k	{
1100	FF	FS	,	<	L	/	1	
1101	CR	GS	_	=	M]	m	}
1110	SO	RS		>	N	^	n	-
1111	SI	US	/	?	О	-	o	DEL

Standard di internalizzazione

Necessita di codici più ricchi per gestire le diverse lingue con caratteri speciali, accenti, etc.

Standard internazionali:

- Famiglia ISO 8859-x: estendono il codice ASCII usando 8 bit (doppio dei simboli)
- •ISO/IEC 10646 (UCS): rappresentazione universale di caratteri che estende su più byte la ISO 8859
- Standard di codifica basati su UCS: come ad esempio UNICODE e UTF-8

Esercizi

- 1. Data la coppia di numeri 12 e 14
 - I. Convertirli in numeri di 5 bit in complemento a 2
 - II. Eseguire la somma
 - III. Valutare se è avvenuto trabocco
- 2. Rappresentare il numero 25,45 come numeri binari a virgola mobile e formato a precisione singola (32 bit). Nella conversione approssimare il numero alla 4 cifra binaria dopo la virgola.

Esercizio 1

12:2	6	0
6:2	3	0
3:2	1	1
1:2	0	1

Esercizio 2

Valore assoluto in binario: 11001,0111

m: 10010111

e: 4 e': 127 + 4 = 131 = 10000011

segno: 0

0 10000011 100101110...0