

Назначение

Установки радиационные поверочные нейтронного излучения серии УРПН-РМ9200 предназначены для автоматизированной поверки, калибровки, градуировки и испытаний средств измерений нейтронного излучения с помощью воспроизведения и передачи единиц плотности потока нейтронного излучения, мощности амбиентного эквивалента дозы и мощности индивидуального эквивалента дозы нейтронного излучения.

Установки с комплектом источников нейтронного излучения обеспечивают создание поля нейтронного излучения быстрых и тепловых нейтронов в коллимированном пучке, а также формирование поля нейтронов в открытой геометрии.

В установках применяются закрытые радионуклидные источники нейтронного излучения из ²³⁸Pu-Be, ²³⁹Pu-Be, ²⁴¹Am-Be и ²⁵²Cf. Установка выпускается в трех модификациях, которые отличаются облучателями.

Состав установки

- 1 Облучатель нейтронного излучения
 - OH-201 (для УРПН-РМ9201)
 - ОН-201Н (для УРПН-РМ9201Н)
 - OH-204 (для УРПН-РМ9200)
- 2 Система линейного перемещения (СЛП)

- 3 Система видеонаблюдения (СВ)
- 4 Автоматизированное рабочее место
- 5 Система управления установкой
- 6 Система радиационного контроля СРК-РМ520 (СРК)

Принцип работы

Принцип работы установок основан на воспроизведении эталонных значений дозиметрических величин с помощью источников нейтронного излучения различной активности изменения расстояния между источником проверяемым прибором.

Источники нейтронного излучения хранятся и эксплуатируются в одно- или многопозиционном облучателе.

Изменение расстояния между источником и проверяемым прибором реализуется с помощью системы линейных перемещений.

Управление выбором источника в облучателе, выводом выбранного источника в рабочее положение и положением проверяемого прибора в пучке излучения установок осуществля-ется оператором дистанционно с пульта управления установки или автоматически при помощи специального метрологического программного обеспечения (ПО), установленного на персональном компьютере (ПК).

Облучатель

Дистанционно управляемый облучатель установки обеспечивают хранение и эксплуатацию радионуклидных источников нейтронов ²³⁸Pu-Be, ²³⁹Pu-Be, ²⁵²Cf, ²⁴¹Am-Be (по требованию заказчика).

УРПН-РМ9201 – облучатель установки ОН-201 обеспечивает подземное размещение и хранение одного источника нейтронов с максимальным потоком нейтронов до $5 \times 10^8 \, \mathrm{c}^{-1}$

УРПН-РМ9201Н – облучатель установки ОН-201Н обеспечивает наземное размещение и хранение одного источника нейтронов с максимальным потоком нейтронов до $1\times10^7~{\rm c}^{-1}$

УРПН-РМ9200 – облучатель установки ОН-204 обеспечивает подземное размещение и хранение четырех источников нейтронов с суммарным максимальным потоком нейтронов до 1 × 10⁹ с⁻¹.

В установках осуществляется дистанционный выбор источника нейтронного излучения и перевод его из положения хранения в рабочее положение.

Установки обеспечивают формирование нейтронного поля:

- коллимированного пучка быстрых нейтронов в геометрии коллимационного узла с использованием вставки-коллиматора из 5%-го борированного полиэтилена
- коллимированного пучка тепловых нейтронов с использованием тепловой вставки из полиэтилена и применением кадмиевого экрана
- широкого пучка быстрых нейтронов в «открытой» геометрии (ОГ) с использованием экранирующего конуса из стали и борированного полиэтилена
- широкого пучка тепловых нейтронов с использованием тепловых сфер из полиэтилена или D2O в соответствии со стандартами ГОСТ8.355 и ISO 8529-2

Переход от коллимированного излучения к ОГ и обратно от ОГ к коллимированному излучению осуществляется за время не более $10 \, \text{минут}.$

Облучатель ОН-201/ОН-204 Коллимированное излучение «Открытая» геометрия

Система перемещения рабочего стола

Система линейного перемещения рабочего стола с установленными на нем для проверки приборами имеет три оси перемещения рабочего стола (Х. Ү. Z) и осуществляет его вращение.

Управление позиционированием платформы в заданной координате осуществляется специальным приводом и программируемым контроллером.

Система управления

Управление перемещением платформы И рабочего стола обеспечивается с виртуальной панели управления на дисплее компьютера.

Дублирующее ручное (наладочное) управление перемещением обеспечивается пультом ручного управления.

Специальное программное обеспечение позволяет максимально автоматизировать процедуры поверки и калибровки различных приборов.

Оператор в специальном ПО создает сценарий прохождения процедуры калибровки для конкретного типа прибора, заполнив специальную форму интерфейса программы.

В форме заполняются данные о точках мощности дозы, в которых прибор должен проверяться, а также время выдержки в каждой точке. Программа сама определяет необходимый источник для создания заданной мощности гамма-излучения и расстояние от центра выбранного источника до центра рабочего стола.

После перемещения прибора в нужную точку необходимый источник устанавливается в рабочее положение, открывается заслонка устройства облучения и происходит облучение прибора.

После прохождения прибора (или кассеты с приборами) по всем точкам мощности дозы, программа выдает сигнал об окончании процедуры калибровки.

По результатам измерений автоматически формируется протокол с вычисленными погрешностями измерений.

Система радиационного контроля

Осуществляет контроль за радиационной обстановкой и состоит из пульта и трех интеллектуальных блоков детектирования гаммаизлучения.

Детекторы размещаются на стене в помещении установки, в комнате оператора, в проходе от комнаты оператора в помещение установки.

На экран пульта выводится информация о текущих измеренных значениях МЭД с детекторов и сигнализация о превышении установленных по каждому детектору порогов. Пороги срабатывания можно задать с пульта.

Система видеонаблюдения

Позволяет наблюдать за показаниями приборов на рабочем столе, дистанционно контролировать положение подвижной платформы с помощью визира и отсчетной шкалы, наблюдать за процессами в помещении, а также дистанционно управлять камерой наблюдения за показаниями приборов.

Система сигнализации и блокировки

Представляет собой набор механизмов и устройств, которые совместно с системой управления обеспечивают защиту персонала от

В состав системы входят следующие механизмы и устройства:

- стальная дверь из комнаты оператора в помещение установки
- световой и звуковой извещатели, которые оповещают персонал о том, что стальная дверь в помещение установки будет закрыта через 10 с
- светящееся табло над дверью, указывающее на то, что открыта заслонка облучателя
- выключатель, контролирующий состояние двери (открыта или закрыта)
- переключатель с ключом, блокирующий возможность открытия
- электромеханический замок двери, который позволяет открыть дверь только при закрытой заслонке облучателя.

Дополнительное вспомогательное оборудование и принадлежности

поставляются по отдельному заказу.

Установки дозиметрические гамма-излучения автоматизированные серии УДГА-РМ9200

Технические характеристики	УРПН-РМ9201	УРПН-РМ9200Н	УРПН-РМ9200
Количество источников	1	1	до 4
Максимальные геометрические размеры применяемых источников, Ø×h, мм	35 × 45	35 × 45	35 × 45
Максимальная активность применяемых источников, поток			
быстрых нейтронов в телесный угол 4 π ср, с ⁻¹	- 100	1 107	- 100
²⁵² Cf	5 × 10 ⁸	1 × 10 ⁷	5 × 10 ⁸
²³⁸ Pu-Be ²³⁹ Pu-Be	5 × 10 ⁷	1 × 10 ⁷	5×10^{7}
ع ^{دی} Pu-Be ²⁴¹ Am-Be	1 × 10 ⁷ 5 × 10 ⁷	1 × 10 ⁷ 1 × 10 ⁷	1 × 10 ⁷ 5 × 10 ⁷
Суммарный поток быстрых нейтронов от источников,	2 × 10,	1 × 10′	3 × 10,
размещенных в облучателе установки не должен превышать, с ⁻¹	5 × 10 ⁸	1 × 10 ⁷	1 × 10 ⁹
Плотность потока быстрых нейтронов, с ⁻¹ ·см ⁻²	2,5-24,0·10 ³	2,5-400	2,5-24,0·10 ³
Плотность потока тепловых нейтронов, с ⁻¹ ·см ⁻²	1,0-5,6·10 ³	1,0-160	1,0-5,6·10 ³
Мощность амбиентного эквивалента дозы нейтронного излучения (МАЭД), мкЗв/ч	3,5-3,4·10 ⁴	3,5-800	3,5-3,4·10 ⁴
Мощность индивидуального эквивалента дозы (МИЭД), мкЗв/ч	3,5-3,4·10 ⁴	3,5-800	3,5-3,4·10 ⁴
Доверительные границы относительных погрешностей установок при доверительной вероятности 0,95 должны быть не более:			
• при воспроизведении единиц плотности потока	5 %	5 %	5 %
• нейтронов при воспроизведении единиц МАЭД и МИЭД	7 %	7 %	7 %
Время перевода источника из положения хранения/	15	10	15
рабочего в положение рабочее/хранения не более, с	13	10	10
Максимальная активность применяемых источников, при создании широкого пучка нейтронов в «открытой» геометрии	5 × 10 ⁸	1 × 10 ⁷	1 × 10 ⁹
Уровень собственного радиационного фона установки при использовании источника с максимальной активностью находящимися, в положении "хранение" на расстоянии 1 м от			
поверхности облучателя, мкЗв/ч, не более:			
• по гамма излучению		0,2	
• по нейтронному излучению		1,0	
• по суммарному излучению	1,0		1,0
Габаритные размеры облучателя, В×Ш×Г, мм	2550×730×700	2550×930×865	2550×730×700
Масса облучателя, кг	190	840	190
Потребление установки от однофазной сети переменного тока напряжением (230±23) В частотой (50±1) Гц, не более, В.А	600	600	600
Масса приборов, устанавливаемых на рабочем столе, не более, кг	70	70	70

ООО «Радметрон» 220141, Республика Беларусь г. Минск, ул. Ф. Скорины, 51 +375 17 396-36-75, +375 17 268-68-19 info@radmetron.com

Система менеджмента качества

- клиентоориентированность
- удовлетворённость клиента
 непрерывное совершенствов

