Machine Learning

Deep Learning

Instructor: Prof. Yi Fang

yfang@nyu.edu

CNN Architectures

- Basics of CNN
- Classic Networks

Standard Convolution Operation

CNN Basics

Basic Convolution Operation

Stride:

Padding:

Input							_	F	ilter	
0	0	0	0	0	0	0	0			
0	4	9	2	5	8	3	0			
0	5	6	2	4	0	3	0		1	0
0	2	4	5	4	5	2	0	*	1	0
0	5	6	5	4	7	8	0		1	0
0	5	7	7	9	2	1	0	1	<mark>Para</mark> Size:	met
0	5	8	5	3	8	4	0		Stride Pado	
0	0	0	0	0	0	0	0			3

-1 -1

<u>ters:</u>

f = 3s = 2

p = 1

Result

Dimension: 6 x 6

Pooling layer:

Avg Pooling

Softmax layer:

Image source: https://developers.google.com/machine-learning/crash-course/multi-class-neural-networks/softmax

Engineering Division | NYU Abu Dhabi

Source: https://stats.stackexchange.com/questions/273465/neural-network-softmax-activation

CNN on Volume (Tensors)

Multiple Filters

Shorthand Representation

Sample Network Structure

1*1 Convolutions

6x6x5

<u>Parameters:</u>

Size: f = 1#channels: $n_C = 5$ Stride: s = 1 Result

6x6x2

Can repeat many times

One Layer Representation

A Convolution Layer

Convolution Neural Network

An example of ConvNet architecture.

Activation Functions

- Sigmoid Function
- ReLU Function
- More

Engineering Division | NYU Abu Dhabi

Name	Plot	Equation	Derivative
Identity		f(x) = x	f'(x) = 1
Binary step		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x \neq 0 \\ ? & \text{for } x = 0 \end{cases}$
Logistic (a.k.a Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x) = f(x)(1 - f(x))
TarH		$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$	$f'(x) = 1 - f(x)^2$
årcTan		$f(x) = \tan^{-1}(x)$	$f'(x) = \frac{1}{x^2 + 1}$
Rectified Linear Unit (ReLU)		$f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} 0 & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Parameteric Rectified Linear Unit (PReLU) ^[2]		$f(x) = \begin{cases} \alpha x & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
Exponential Linear Unit (ELU) ^[3]		$f(x) = \begin{cases} \alpha(e^x - 1) & \text{for } x < 0 \\ x & \text{for } x \ge 0 \end{cases}$	$f'(x) = \begin{cases} f(x) + \alpha & \text{for } x < 0 \\ 1 & \text{for } x \ge 0 \end{cases}$
SoftPlus		$f(x) = \log_e(1 + e^x)$	$f'(x) = \frac{1}{1 + e^{-x}}$

Source: https://towardsdatascience.com/activation-functions-neural-networks-1cbd9f8d91d6

Derivatives of Activation Functions

Source: https://www.picswe.com/pics/relu-activation-7d.html

Gradient Vanishing and Exploding

$$egin{aligned} w_1^+ &= w_1 - \eta rac{\partial E_{total}}{\partial w_1} \ y_i &= \sigma\left(z_i
ight) = \sigma\left(w_i x_i + b_i
ight) \ \chi &= \left(w_1
ight) rac{\dot{c}_{i_2}^+}{\sqrt[3]{2}} \left(w_2
ight) rac{\dot{c}_{i_3}^+}{\sqrt[3]{2}} \left(w_3
ight) rac{\dot{c}_{i_4}^+}{\sqrt[3]{2}} E_{total} \ rac{\partial E_{total}}{\partial w_1} &= rac{\partial E_{total}}{\partial y_4} rac{\partial y_4}{\partial z_4} rac{\partial z_4}{\partial x_4} rac{\partial x_4}{\partial z_3} rac{\partial z_3}{\partial x_3} rac{\partial x_3}{\partial z_2} rac{\partial z_2}{\partial x_2} rac{\partial x_2}{\partial z_1} rac{\partial z_1}{\partial w_1} \ &= rac{\partial E_{total}}{\partial y_4} \sigma'\left(z_4
ight) w_4 \sigma'\left(z_3
ight) w_3 \sigma'\left(z_2
ight) w_2 \sigma'\left(z_1
ight) x_1 \end{aligned}$$

Data Normalization for Deep Learning training

Batch Normalization

 Batch normalization speeds up the training by setting high learning rate

 Batch normalization prevents the gradients from getting too small or too large by normalizing data across each batch, as the name suggests. It also acts as a regularization method, similar to dropout.

Cited: https://zhuanlan.zhihu.com/p/34480619 and Prof. Lee from TW Univ.

Feature Scaling

Feature Scaling

Make different features have the same scaling

Feature Scaling

In general, gradient descent converges much faster with feature scaling than without it.

Created with EverCam. http://www.camdemy.com

Scaling at Hidden Layer

Internal Covariate Shift

The statistics change during the training ...

Batch of Data

Batch normalization

$$\tilde{z}^{i} = \frac{z^{i} - \mu}{\sigma}$$
$$\hat{z}^{i} = \gamma \odot \tilde{z}^{i} + \beta$$

BN at Testing

Batch normalization

Acc μ_{100} μ_{300} Updates

· At testing stage:

We do not have **batch** at testing stage.

Ideal solution:

Computing μ and σ using the whole training dataset.

Practical solution:

Computing the moving average of μ and σ of the batches during training.

BN: Benefits

Reduce the covariate shift, speed up the training

Reduce the vanishing/exploding gradients

Less affected by weights initialization

Residual Training

Deep Residual Learning

Residual net

H(x) is any desired mapping, hope the 2 weight layers fit H(x)hope the 2 weight layers fit F(x)let H(x) = F(x) + x

Cite: Kaiming He, etc, Deep Residual Learning for Image Recognition, CVPR 21016

Deep Residual Learning

• F(x) is a residual mapping w.r.t. identity

- If identity were optimal, easy to set weights as 0
- If optimal mapping is closer to identity, easier to find small fluctuations

Engineering Division | NYU Abu Dhabi

Cite: Kaiming He, etc, Deep Residual Learning for Image Recognition, CVPR 21016 & Zhubo Jiang Youtube Resnet Explained

plain net

Network Design

Benefits

Speed up the training

Deeper network with reduced gradient vanishing

References

- CNN: ML Lecture 10: Convolutional Neural Network by Hongyi Li (youtube)
- Chapter 20 from Berkeley Artificial Intelligence: A Modern Approach (link: http://aima.eecs.berkeley.edu/)
- Module 2: Convolutional Neural Networks from course notes of Stanford CS231n (link: http://cs231n.github.io/convolutional-networks/)
- Full connection blog (link: <u>https://www.superdatascience.com/blogs/convolutional-neural-networks-cnn-step-4-full-connection</u>)
- http://aima.eecs.berkeley.edu/
- http://cs231n.github.io/convolutional-networks/

Classic Networks

- LeNet
- AlexNet
- VGG Net
- ResNet
- GooLeNet

LeNet

AlexNet

VGG-16

ResNet

GoogLeNet

Inception Module

GoogLeNet:

Summary of Networks

Year	CNN	Developed by	Place	Top-5 error rate	No. of parameters
1998	LeNet(8)	Yann LeCun et al			60 thousand
2012	AlexNet(7)	Alex Krizhevsky, Geoffrey Hinton, Ilya Sutskever	1st	15.3%	60 million
2014	GoogLeNet(1 9)	Google	1st	6.67%	4 million
2014	VGG Net(16)	Simonyan, Zisserman	2nd	7.3%	138 million
2015	ResNet(152)	Kaiming He	1st	3.6%	