Was versteht man unter einer $Zielfunktion$?		Die Funtktion $f:G \to \mathbb{R}$, die minimiert wird.	
${\tt aufgabenstellung KOMOT:: Optimier ung sprobleme}$	UUID	$auf gabenstellung \verb KOMOT::Optimierungsprobleme $	UUID
Was ist der zulässiger Bereich G ?		Definitionsbereich der Zielfunktion. $G\subseteq\mathbb{R}^n$.	
aufgabenstellungKOMOT::Optimierungsprobleme	UUID	${\tt aufgabenstellung KOMOT::} Optimierung sprobleme$	UUID
Was verstehen wir unter einer (globalen) Lösung einer Aufgabe.	OA	Ein $x^* \in G$ das die Zielfunktion minimiert.	
was ist eine $lokale\ L\ddot{o}sung\ x^*$ einer OA Aufgabe?	UUID	${\tt aufgabenstellung KOMOT::0ptimierung sprobleme}$	UUID
		$f(x^*) \leq f(x) \forall x \in G \cap U(x^*),$ und es existiert so eine Umgebung von x^* .	
${\tt aufgabenstellung KOMOT::} Optimierung sprobleme$	UUID	${\tt aufgabenstellung KOMOT::} Optimierung sprobleme$	UUID

Was ist eine isolierte Lösung?	Es existiert eine Umgebung $U(x*)$, so dass $f(x^*) < f(x)$. Bzw. es gibt keine witeren lokalen Loßungen in der Umgebung.
aufgabenstellungKOMOT::Optimierungsprobleme UUID	aufgabenstellungKOMOT::Optimierungsprobleme UUID
Wie heißt $f_{\min}\coloneqq f(x^*)$?	Optimalwert oder Minimalwert
aufgabenstellungKOMOT::Optimierungsprobleme UUID	aufgabenstellung%OMOT::Optimierungsprobleme UUID
Eine Menge $G \subseteq \mathbb{R}^n$ heißt $konvex$, wenn	$\forall_{x,y\in G}$ die Verebindungstrecke zwischen den Punkten auch in G liegt. Formel: $\lambda x + (1-\lambda)y \in G, \forall (x,y,\lambda) \in (G\times G\times (0,1))$
konvexitaetKOMOT::Optimierungsprobleme UUID	konvexitaetKOMOT::Optimierungsprobleme UUID
Sei G konvex. Eine Funktion $f:G\to\mathbb{R}$ heißt konvex auf G , wenn	$\forall (x, y, \lambda) \in (G \times G \times (0, 1)):$ $f(\lambda x + (1 - \lambda)y \le \lambda f(x) + (1 - \lambda)f(y).$
konvexitaetKOMOT::Optimierungsprobleme UUID	konvexitaetKOMOT::Optimierungsprobleme UUID

Wann ist eine Funktion $streng\ konvex$ auf einer kompakten Menge G ?	Wie bei normalen konvexität, aber mit $<$ statt \le .
konvexitaetKOMOT::Optimierungsprobleme UUID	konvexitaetKOMOT::Optimierungsprobleme UUID
Sei G konvex. Eine Funktion $f:G\to\mathbb{R}$ heißt $gleichmäßig$ konvex auf G , wenn	$\exists \gamma > 0, \text{ so dass } \forall (x, y, \lambda) \in (G \times G \times (0, 1)):$ $f(\lambda x + (1 - \lambda)y \le \lambda f(x) + (1 - \lambda)f(y) - \gamma \lambda (1 - \lambda) \ x - y\ ^2$
konvexitaetKOMOT::Optimierungsprobleme UUID	konvexitaetKOMOT::Optimierungsprobleme UUID
B offen G konvex und $G\subseteq B\subseteq \mathbb{R}^n, f:B\to \mathbb{R}$ diff'bar. f $konvex$ g.d.w	$\forall_{x,y \in G}$: $f(y) - f(x) \ge \nabla f(x)^{T} (y - x).$
KOMOT::Optimierungsprobleme UUID	KOMOT::Optimierungsprobleme UUID
B offen G konvex und $G\subseteq B\subseteq \mathbb{R}^n, f:B\to \mathbb{R}$ diff'bar. f $streng$ konvex g.d.w	$\forall x, y \in G, x \neq y:$ $f(y) - f(x) > \nabla f(x)^{T} (y - x).$
KOMOT::Optimierungsprobleme UUID	KOMOT::Optimierungsprobleme UUID

B offen G konvex und $G\subseteq B\subseteq \mathbb{R}^n, f:B\to \mathbb{R}$ diff'bar. f gleichmäßig konvex g.d.w	$\exists \gamma > 0, \text{ so dass } \forall_{x,y \in G}:$ $f(y) - f(x) \ge \nabla f(x)^{T} (y - x) + \gamma x - y ^2.$
KOMOT::Optimierungsprobleme UUID	KOMOT::Optimierungsprobleme UUID
Wann ist eine quadratische Matrix $M \in \mathbb{R}^{n \times n}$ positiv semi-definit?	wenn $s^{T} M s \geq 0 \forall s \in \mathbb{R}^n$. (\Leftrightarrow : Alle Eigenwerte ≥ 0 .)
definitheitKOMOT::Optimierungsprobleme UUID	definitheitKOMOT::Optimierungsprobleme UUID
Wann ist eine quadratische Matrix $M \in \mathbb{R}^{n \times n}$ positiv definit?	wenn $s^{T}Ms > 0$, $\forall s \in \mathbb{R}^n / \{0\}$. (\Leftrightarrow : Alle Eigenwerte > 0 .)
definitheitKOMOT::Optimierungsprobleme UUID	definitheitKOMOT::Optimierungsprobleme UUID
$G\subseteq\mathbb{R}^n$ offen und konvex, $f:G\to\mathbb{R}$ zweimal stetig diff'bar. Dann f is $konvex$ auf G , genau dann wenn	$\forall x \in G : \nabla^2 f(x)$ positiv semidefinit.
KOMOT::Optimierungsprobleme UUID	KOMOT::Optimierungsprobleme UUID

$G\subseteq\mathbb{R}^n$ offen und konvex, $f:G\to\mathbb{R}$ zweimal stetig diff'bar. Dann f is $streng\ konvex$ auf G , genau dann wenn	$\forall x \in G : \nabla^2 f(x)$ positiv definit.
KOMOT::Optimierungsprobleme UUID	KOMOT::Optimierungsprobleme UUID
$G\subseteq\mathbb{R}^n$ offen und konvex, $f:G\to\mathbb{R}$ zweimal stetig diff'bar. Dann f is $streng\ konvex$ auf $G,$ genau dann wenn	$\exists \gamma > 0, \text{ so dass } \forall s, x \in G:$ $s^{T} \nabla^2 f(x) s \ge \gamma \ s\ ^2$
KOMOT::Optimierungsprobleme UUID	KOMOT::Optimierungsprobleme UUID
Die Zielfunktion sei konvex, was gibt uns das (bezogen auf Lösugnen)?	Jede lokale Lösung ist auch eine globale Lösung
KOMOT::Optimierungsprobleme UUID	KOMOT::Optimierungsprobleme UUID
Die Zielfunktion sei streng konvex, was gibt uns das (bezogen auf Lösugnen)?	Es gibt höchstens eine globale Lösung.
KOMOT::Optimierungsprobleme UUID	KOMOT::Optimierungsprobleme UUID

Die Zielfunktion sei gleichmäßig konvex, was gibt uns da bezogen auf Lösugnen)?	as (Falls G nicht nur konvex aber auch abgeschlossen und nicht leer, dann besitzt die OA $genau\ eine$ Lösung.	5-
KOMOT::Optimierungsprobleme	UUID	KOMOT::Optimierungsprobleme UU	ID
Was ist die Definition der quasikonvexität?		$G\subseteq \mathbb{R}^n$ konvex. $f:G\to \mathbb{R}$ heißt $quasikonvex$ auf G , wenn $f(\lambda x+(1-\lambda)y)\leq \max\big\{f(x),f(y)\big\}$	
KOMOT::Optimierungsprobleme	UUID	KOMOT::Optimierungsprobleme UU	ID
Was bedeutet, dass eine Funktion $pseudokonvex$ ist?		Sei G konvex, B offen mit $G \subseteq B \subseteq \mathbb{R}^n$. Sei $f: B \to \mathbb{R}^n$ diff'bar. f ist pseudokonvex auf G , wenn $\forall x,y \in G$: $ (y-x)^T \nabla f(x) \geq 0 \Rightarrow f(y) \geq f(x). $	$ m I\!R$
KOMOT::Optimierungsprobleme	UUID	KOMOT::Optimierungsprobleme UU	ID
Was ist stärker, pseudokonvexität oder quasikonvexität?		pseudokonvexität	
KOMOT::Optimierungsprobleme	UUID	KOMOT::Optimierungsprobleme UU	ID

Definiere den Kegel der zulässigen Richtungen in $x \in G$.	$Z(x)\coloneqq \mathrm{cone}\left\{d\in\mathbb{R}^n\mid x+\alpha d\in G,\ \forall\alpha\in[0,1]\right\}$, wobei $\mathrm{cone}(S)\coloneqq\left\{\lambda s\mid s\in S,\ \lambda\in[0,\infty)\right\}.$
KOMOT::Optimalitaetsbedinugngen UUID	KOMOT::Optimalitaetsbedinugngen UUID
Sei G konvex, die Zielfunktion f [(1)] x^* [(2)], und es gilt [(3)], dann ist x^* eine globale Lösung der OA.	1. pseudokonvex 2. lokale Lösung 3. $\nabla f(x^*)^T(x-x^*) \geq 0, \ \forall x \in G$
KOMOT::Optimalitaetsbedinugngen UUID	KOMOT::Optimalitaetsbedinugngen UUID