Vizualizacija Kakeya-množice

Generiranje slik s programskim orodjem Ipe

Terezija Krečič

Fakulteta za matematiko in fiziko Pedagoška matematika

29. maj 2024

Problem, ki ga rešujemo

Vprašanje Kakeye (1917)

Kolikšna je lahko najmanjša ploščina območja, znotraj katerega se daljica dolžine 1 zvezno obrne za 360°?

Problem, ki ga rešujemo

Vprašanje Kakeye (1917)

Kolikšna je lahko najmanjša ploščina območja, znotraj katerega se daljica dolžine 1 zvezno obrne za 360°?

Matematiki, ki so prispevali k rešitvi:

- Abram Besicovitch (RUS)
- Oskar Perron (NEM)
- Gyula Pál (MADŽ-DAN)

Konstrukcija – s čim začnemo

Konstrukcija – translacije podtrikotnikov

Konstrukcija – translacije podtrikotnikov

Konstrukcija – Pálov spoj

Konstrukcija – Pálov spoj

Perronovo drevo

1 Vsak vrh porodi skadna uhlja, ki imata enako ploščino kot taisti vrh.

- Vsak vrh porodi skadna uhlja, ki imata enako ploščino kot taisti vrh.
- ② V *I*-tem koraku ($I=1,2,\ldots,k-2$) dobimo 2^I prekrivajočih se podtrikotnikov, ki skupaj sestavijo osnovnemu trikotniku podoben trikotnik z višino $\frac{I+2}{k}$.

- 1 Vsak vrh porodi skadna uhlja, ki imata enako ploščino kot taisti vrh.
- ② V *I*-tem koraku ($I=1,2,\ldots,k-2$) dobimo 2^I prekrivajočih se podtrikotnikov, ki skupaj sestavijo osnovnemu trikotniku podoben trikotnik z višino $\frac{I+2}{k}$.
- **3** V vsakem koraku se nam skupna ploščina poveča za natanko dvakratno ploščino vrha, s katerim začnemo prvi korak, tj. za $\frac{2}{k^2}$.

- Vsak vrh porodi skadna uhlja, ki imata enako ploščino kot taisti vrh.
- ② V *I*-tem koraku ($I=1,2,\ldots,k-2$) dobimo 2^I prekrivajočih se podtrikotnikov, ki skupaj sestavijo osnovnemu trikotniku podoben trikotnik z višino $\frac{I+2}{k}$.
- **③** V vsakem koraku se nam skupna ploščina poveča za natanko dvakratno ploščino vrha, s katerim začnemo prvi korak, tj. za $\frac{2}{k^2}$.
- **3** Skupna ploščina lika, ki ga dobimo na zadnjem koraku, je $\frac{2}{k}$.

Povzetek konstrukcije

- pravokotni enakostranični trikotnik z višino 1
- $k \in \mathbb{N} \setminus \{1\} \rightarrow n = 2^{k-2}$ podtrikotnikov
- 3 Perronovo drevo s ploščino $\frac{2}{L}$

$$k = 5$$

$$n = 8$$

$$S = \frac{2}{5}$$

$$n = 8$$

$$S = \frac{2}{5}$$

k = 6n = 16

$$n = 10$$
$$S = \frac{1}{3}$$

n = 32

$$S = \frac{2}{5}$$

$$\kappa = 8$$
 $n = 64$

$$S = \frac{1}{4}$$

Povzetek konstrukcije

Povzetek konstrukcije

Ploščina:
$$\frac{2}{k}+(n-1)\epsilon=\frac{2}{k}+(2^{k-2}-1)\epsilon$$

Združimo v Kakeya-množico

Združimo v Kakeya-množico

$$S_{90} = 2 \cdot \left(\frac{2}{k} + (2^{k-2} - 1)\epsilon\right) + \epsilon = \frac{4}{k} + (2^{k-1} - 1)\epsilon \rightarrow \text{poljubno majhna!}$$

Terezija Krečič (FMF)

Ena od alternativnih rešitev

$$S_{60} = 3 \cdot \left(\frac{k+2}{k^2 \sqrt{3}} + (2^{k-2} - 1)\epsilon \right) + 2\epsilon = \frac{\sqrt{3}(k+2)}{k^2} + (3 \cdot 2^{k-2} - 1)\epsilon$$

Vir

- A. S. Besicovitch, "The kakeya problem," *The American Mathematical Monthly*, vol. 70, no. 7, 1963.
- W. contributors, "Kakeya set." https://en.wikipedia.org/w/index.php?title=Kakeya_set&oldid=1216951959, 2024.
- W. contributors, "Deltoid curve." https://en.wikipedia.org/w/index.php?title=Deltoid_curve&oldid=1212969039, 2024.
- Mathologer, "The kakeya needle problem (the squeegee approach)." https://www.youtube.com/watch?v=IM-n9c-ARHU,, 2015.
- Numberphile, "Kakeya's needle problem numberphile.." https://www.youtube.com/watch?v=j-dce6QmVAQ, 2015.