Biophysics 101: Genomics & Computational Biology

Section 9: Mass Spectrometry and Proteomics Michael Jones Nov. 18th 2003

- Macromolecular MS only became feasible with past ~15 yrs with advent of new milder ionization methods:
 - Electrospray ionization (ESI)
 - Matrix-assisted laser desorption/ionization (MALDI)
- Molecular weight precision ~± 0.01%

Instrumentation

- Purpose to measure the mass of molecules
- Three Components
 - Ion Source Convert molecules to ion's in the gas phase – Nebulize and charge
 - Mass Analyzer Separate or filter the mixture of ions by their mass to charge ratio (m/z)
 - Detector Detect ions and abundances and convert to electrical signal to produce a digital response

Instrumentation

- Ion-Source
 - API (Atmospheric Pressure Ionization) or Electrospray (ESI)
 - High pressure gradient, heat and electric field aids ionization and nebulization
 - Charges in solvent collapse onto analyte
 - One of the first methods used to ionize large biomolecules

Instrumentation

- Ion Source
 - MALDI (Matrix Assisted Laser Desorption Ionization)
 - Analyte, matrix and cation (H+) are co-crystalized
 - Matrix has absorbance at the wave length of the laser
 - Laser excites matrix, energy is transferred to analyte as matrix evaporates leaving bare analyte molecules
 - (At some point the cation is transferred from solution to matrix and then to the analyte)
 - Charged analyte ions are accelerated through a voltage gradient to the mass analyzer

Instrumentation

- Ion Source
 - MALDI (Matrix Assisted Laser Desorption Ionization)

Instrumentation

- Mass Analyzers
 - quadrupole mass spectrometer (Most popular method)
 - DC and alternating RF voltages applied to four parallel rods creates electric field that focuses ions of a particular m/z towards the detector
 - Relatively easy to build
 - Limited Mass Range
 - Need multiple analyzers for ms/ms

Instrumentation

- · Mass Analyzers
 - Time of Flight (TOF)
 - lons are accelerated through a voltage gradient into a field free tube towards a detector
 - Velocities resulting from kinetic energy generated at gradient determines "time of flight"
 - · Lighter ions Lower TOF
 - Unlimited mass range
 - Fast scan times
 - High quality spectra

Instrumentation

Instrument	Application	Comments
ESI-Triple QP	LCMS, tandem MS	Limited Mass Range, relatively easy to make
ESI-QP Ion-Trap	LCMS, tandem MS	Limited mass range, trap improves sensitivity and automated analysis
MALDI-TOF	Analysis of purified samples	Low sample consumption, tolerant of buffer and salt contaminants (Ex. 2D Gel samples)
QP-TOF	LCMS, Tandem MS	High mass accuracy, fast scan times.
Fourier (transform ion cyclotron resonance)	LCMS, Tandem MS, Top- Down MS (Fragment large biomolecules)	Very High mass accuracy, ability to fragment very large molecules

Tandem Mass Spectrometry

(ms/ms)

- Hit peptide with high energy gas and fragment
- •Trade off between identification and quantization
 - •Mass Spec will not be collecting quantitative data when it is fragmenting peptide

Tandem Mass Spectrometry (ms/ms)

Peptide Fragmentation

x, y , z	Fragment between aa residues with charge retained on C-Terminal	William Con
a, b , c	Fragment between aa residues with charge retained on N-Terminal	40-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
Neutral Loss, NH ₃ and H ₂ 0 loss	R, K, Q, N can lose $\mathrm{NH_3}$ and S, T, E, D can lose $\mathrm{H_2O}$	
Internal Fragments	Double fragmentation of the peptide bond – Common at Prolines	
Immonium Ions	A single aa chain fragment	HD4-

Tandem Mass Spectrometry (ms/ms)

Peptide Fragmentation Nomenclature

- •Integers indicate amino acid closest to charged terminus
- $\label{eq:b-NH3} \bullet b\text{-NH}_3\text{, y-NH}_3\text{ contains one residue with ammonia neutral loss}$
- •b++ a double charge b ion
- •Fragments generated dependent on peptide sequence

Detection of Post Translational Modifications (PTM's)

- MALTI-TOF Mass Spectrum of tryptic digestion of purified protein (GCSF)
- All of the masses of the detected peptides match except 3227.8 and 3243.8
- These are 16 and 32 amu more then the native N-Terminal peptide MKLMVLQLLLWHSALWTVHEATPLGPAR
- Delta amu of 16 indicates an oxidation. Met is known to be susceptible to oxidation
- If you want to know which amino acid is modified in the 3227.8 amu peptide you need to do ms/ms

Quantization

Method	Comments	
Stable-isotope protein labeling	Need to synthesize proteins in presence of isotope, experimental design issues of two-color system	
ICAT	Enriches (and limited) for peptides with particular amino acids (Ex. Cys), experimental design issues of two-color system	
AproxiQuant	Very approximate absolute quantization, easy to implement and use	
LC-MS Only	Very good absolute quantization, computationally challenging (Component detection, alignment, noise), identification requires additional steps	

Computational Methods for Identification of proteins

- · de novo sequencing of ms/ms data
 - Graph Algorithms, dynamic programming
 - Rarely give exact sequence information
 - Computationally expensive
 - Often used to interpret good quality spectra that can't be interpreted by other methods (Last Chance)
- Comparison of experimental data to sequence database
 - Peptide Mass Fingerprint, Protein Identification
 - Quality of match highly dependent on mass accuracy of instrument

Computational Methods for Identification of proteins

- · Peptide Mass Fingerprint
 - Compare spectra of peptides from experimental digestion of purified protein to theoretical digestion of sequence database
 - The better the experimental digest corresponds to the theoretical digest the higher the score
 - Mass Accuracy, incomplete digestion, contaminations, PTM's all affect the result
- PeptIdent includes pl (SwissProt)
- · Mascot (MatrixScience)
- MS R SpectrumMill (Agilent)

Computational Methods for Identification of proteins

- · MS/MS Ion or MS-Tag Search
 - Compare spectra of experimentally fragmented peptide (ms/ms) to theoretical fragmentation of predicted sequence database peptides
 - · Uses parent mass and fragment ion-masses
 - Does not require a purified protein
 - Not always easy to predict how a peptide will fragment
 Incomplete fragmentation along peptide bonds, neutral losses, differing intensities
- MS Tag SpectrumMill (Agilent)
- Sequest
- Mascot (MatrixScience)

Computational Methods for Identification of proteins

MS/MS Ion or MS-Tag Search

Mixture Functional Classification

- Pie Charts often show subjective representation of complex mixture
- · Use statistical categorization method

Sample – Synovial fluid of arthritis patients Category Set (n) – GO

Process

Scoring Method – Fishers Exact

Universe (N)- All Human LocusLink

Resources

- Base Peak (http://www.spectroscopynow.com)
- http://www-methods.ch.cam.ac.uk/meth/ms/theory/maldi.html
- http://www-methods.ch.cam.ac.uk/meth/ms/theory/quadrupole.html
- http://elchem.kaist.ac.kr/vt/chem-ed/ms/ionizatn.htm
- http://www.spectroscopynow.com/Spy/basehtml/SpyH/1,1181,4-1-2-0-0news_detail-4729775854-842,00.html
- http://www.matrixscience.com/help/fragmentation_help.html
- http://www.nature.com/cgi-taf/DynaPage.taf?file=/nbt/journal/v21/n3/full/nbt0303-255.html
- http://www.spectroscopynow.com/Spy/pdfs/1519_a.pdf (TOF)
- http://david.niaid.nih.gov/david/ease.htm (Categorization)