WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: H04N 5/58, 5/70

(11) International Publication Number: A1

WO 98/09433

(43) International Publication Date:

Published

5 March 1998 (05.03.98)

(21) International Application Number:

PCT/US97/14606

(22) International Filing Date:

19 August 1997 (19.08.97)

(30) Priority Data:

08/705.613

30 August 1996 (30.08.96) US With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(81) Designated States: CA, JP, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

(71) Applicant: UNITED TECHNOLOGIES AUTOMOTIVE, INC. [US/US]; 5200 Auto Club Drive, Dearborn, MI 48126 (US).

(72) Inventor: PALALAU, Silviu; 1445 Holland, Brimingham, MI 48009 (US).

(74) Agents: OLDS, Theodore, W. et al.; Howard & Howard Attorneys, P.C., Suite 101, 1400 North Woodward Avenue, Bloomfield Hills, MI 48304-2856 (US).

(54) Title: METHOD FOR CONTROLLING THE BRIGHTNESS LEVEL OF A SCREEN DISPLAY

(57) Abstract

A method of controlling the brightness level of a screen display having a matrix of pixels that each have a brightness level controlled by a first and second voltage (VCOLUMN, VROW) includes maintaining the first voltage (VCOLUMN) of each pixel at a preselected voltage level. The second voltage level (V_{ROW}) is controlled and adjusted depending on the ambient light conditions. The second voltage is increased during daytime conditions to increase the brightness of the screen display and decreased during nighttime conditions to decrease the brightness of the display. The ambient light conditions are determined by using a light-sensitive sensor at terminal (48) or a manually adjustable control at terminal (50).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
B,J	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portuga!		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

-1-

METHOD FOR CONTROLLING THE BRIGHTNESS LEVEL OF A SCREEN DISPLAY

5

BACKGROUND OF THE INVENTION

This invention relates to a method of controlling the brightness of a screen display in response to changing environmental light conditions.

10

15

A variety of electronic screen displays are commercially available. As a result of improvements in technology, screen displays are being used for an increasing variety of applications. Some of those applications result in the screen display being used under a variety of environmental conditions. One example is having a visual screen display mounted within an automobile. A driver's or passenger's ability to view the screen while traveling in a vehicle is affected by the outside light conditions, for example. Different levels of screen brightness are required during daytime hours as compared to nighttime hours. Accordingly, there is a need for an efficient and relatively simple way of adjusting the brightness of a screen display in response to environmental light conditions.

20

This invention provides a method of adjusting the brightness of a screen display depending on ambient light conditions. The method of this invention can be implemented through software or relatively simple dedicated circuitry that can be included with a screen display control.

25

30

SUMMARY OF THE INVENTION

In general terms, this invention is a method of controlling the brightness level of a screen display having a matrix of screen pixels that each has a brightness level controlled by a first and a second voltage level. The method includes five basic steps. First, maintaining the first voltage of each pixel at a preselected voltage level. Second, a current screen display

brightness level is determined. The next step is to determine an ambient light condition. The current brightness level is then compared to a desired brightness level that corresponds to the determined ambient light condition. Lastly, the second voltage of each pixel is adjusted when the current brightness level does not correspond to the desired brightness level so that the brightness level of the screen display is adjusted and corresponds to the desired brightness level, given the current ambient light conditions.

Various features and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiment. The drawings that accompany the detailed description can be described as follows.

BRIEF DESCRIPTION OF THE DRAWINGS

15

10

5

Figure 1 is a diagrammatic illustration of a visual screen display.

Figure 2 is a schematic diagram illustrating a model of a pixel from the screen of Figure 1.

Figure 3 is a graphical illustration of the relationship between screen brightness and voltage.

20

Figure 4 is a schematic diagram of the preferred circuitry for implementing the method of this invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

25

Figure 1 schematically illustrates a visual display screen 20 that includes a matrix of pixels 22. Those skilled in the art will appreciate that the pixels 22 illustrated in Figure 1 are much larger than they would be in an actual embodiment and that only a few pixels are shown for illustration purposes only. The pixels 22 are arranged in a matrix of a plurality of rows

PCT/US97/14606

and columns. Each pixel, therefore, has a row and column location or identifier on the screen 20.

Each pixel 22 can be modeled or represented by a capacitor. Figure 2 illustrates a capacitor 24 having a top plate 26 and a bottom plate 28. The capacitor 24 is a model for a screen pixel 22. The total voltage on the capacitor 24, which is equal to the difference between the voltages on the plate 26 and the plate 28, determines the brightness of the pixel. Accordingly, the entire screen 20 can be modeled by a matrix of capacitors 24, each having a voltage that determines the brightness of that particular pixel.

10

5

The capacitor further serves as a good illustration of a screen pixel because, as mentioned above, each pixel has a row and column location. In screen displays such as electroluminescent displays, each pixel is controlled by two voltages; a row voltage and a column voltage. In the illustration of Figure 2, the voltage on the plate 26 corresponds to a column voltage and the voltage on the plate 28 corresponds to a row voltage of each pixel.

15

Figure 3 is a graphical illustration 30 of a relationship between screen brightness and the voltage of each pixel. A threshold voltage 32 preferably is within the range from approximately 120 volts to about 160 volts. As can be appreciated from the illustrated curve, as the total voltage on each pixel increases, the brightness of the screen increases. Accordingly, the brightness of the screen can be controlled by adjusting the voltage on each pixel.

20

The method of this invention includes controlling the brightness of the screen by adjusting the row voltage of the screen pixels. Preferably, the row voltage is adjusted within a preselected range 34. The column voltage is preferably maintained at a preselected value. Since the column voltage is constant, adjusting the row voltage changes the total voltage on the pixels.

25

30

The row voltage preferably is adjusted or changed to a different value for daytime, twilight and nighttime conditions. Although it is presently preferred to have preselected voltages for each of the three mentioned conditions, it is within the scope of this invention to permit the row voltage

-4-

to be varied to any value within a range such as the range 34. In Figure 3, the voltage value 36 corresponds to a preferred total pixel voltage during nighttime conditions. Similarly, the voltage 38, which equals the threshold voltage, is a preferred total pixel voltage for twilight conditions and the voltage 40 is a preferred total pixel voltage for daytime conditions. During the daytime, when the ambient light is typically more intense, the screen must be brighter in order to be seen, compared to nighttime conditions when a lower brightness level would be acceptable.

5

10

15

20

25

Figure 4 schematically illustrates a circuit 42 designed according to this invention. The circuit 42 includes a circuit block 44 having a DC/DC converter with a feedback input that is coupled with to an OR gate 46. The input 48 to OR gate 46 preferably is coupled to a light-sensitive sensor that is capable of detecting the amount of ambient light in the general vicinity of the display screen. The input 50 to the OR gate 46 preferably is coupled to a manually controllable adjustment switch or knob that allows a user to select the screen brightness level depending on the ambient light. For example, the control coupled to the input 50 can be a rotary knob having three settings; one corresponding to daytime, one corresponding to twilight and a third corresponding to nighttime conditions. Either the sensor 48 or the control 50 produces a signal indicative of the ambient light conditions.

The DC/DC converter of circuit block 44 produces a constant column voltage at the output 54. The row voltage for the pixels is produced along the output 56. The row voltage is varied depending on the input from the sensor 48 or the control 50. The circuit block 44 preferably includes software or dedicated circuitry for comparing the current row voltage on the output 56 with a desired row voltage that corresponds to the ambient light condition as determined by the sensor 48 or the control 50. When the current row voltage is not the same as a desired row voltage, given the ambient light conditions, the DC/DC converter 44 changes the row voltage so that it is equal to the

desired voltage. Therefore, the total voltage on the screen pixels is changed and the screen brightness is adjusted according to the ambient light conditions.

Those skilled in the art will realize that a variety of photo-sensitive sensors are commercially available for accomplishing the purposes described above. Further, the circuit 42 is intended as a schematic example of one embodiment of circuitry for accomplishing the method of this invention. Those skilled in the art will realize that a variety of circuit components and/or microprocessors are commercially available for accomplishing the method of this invention.

10

5

The foregoing description is exemplary rather than limiting in nature. Variations and modifications to the disclosed embodiment will become apparent to those skilled in the art that do not necessarily depart from the purview and spirit of this invention. Accordingly, the legal scope of this invention can only be determined by studying the appended claims.

5

15

20

CLAIMS

What is claimed is:

- 1. A method of controlling the brightness level of a screen display having a matrix of screen pixels that each have a brightness level controlled by a first and second voltage value, comprising the steps of:
- (A) maintaining the first voltage of each pixel at a preselected voltage value;
 - (B) determining a current screen display brightness level;
 - (C) determining an ambient light condition;
- (D) comparing the current brightness level from step (B) with a desired brightness level corresponding to the ambient light condition from step (C); and
 - (E) adjusting the second voltage of each pixel when the current brightness level does not correspond to the desired brightness level from step (D) to thereby adjust the current brightness level of the screen display so that it corresponds to the desired brightness level.
 - 2. The method of claim 1, wherein step (B) is performed by determining the current second voltage level of the screen pixels.
 - 3. The method of claim 2, wherein step (D) is performed by comparing the current second voltage level of the screen pixels to a desired second voltage level associated with the desired brightness level.
- 4. The method of claim 3, wherein step (E) is performed by changing the current second voltage level to the desired second voltage level when the current second voltage level is not equal to the desired second voltage level.

5. The method of claim 1, wherein step (C) is performed by detecting ambient light intensity in an area near and exterior to the screen using a sensor that is responsive to ambient light intensity.

5

6. The method of claim 5, wherein the sensor produces a first signal that corresponds to a daytime desired second voltage when the ambient light condition corresponds to a daytime condition and a second signal that corresponds to a nighttime desired second voltage when the ambient light condition corresponds to a nighttime condition.

10

7. The method of claim 1, wherein step (C) is performed by a user manually manipulating a control to a condition corresponding to the ambient light condition as perceived by the user.

15

8. The method of claim 7, wherein the control produces a first signal that corresponds to a daytime desired second voltage when the ambient light condition corresponds to a daytime condition and a second signal that corresponds to a nighttime desired second voltage when the ambient light condition corresponds to a nighttime condition.

20

9. The method of claim 8, wherein step (B) is performed by determining a current second voltage level of the screen pixels and wherein step (D) is performed by comparing the current second voltage level of the screen pixels to the desired second voltage corresponding to the signal produced by the control.

25

30

10. The method of claim 9, wherein step (E) is performed by changing the current second voltage level to the desired second voltage when the current second voltage level is not equal to the desired second voltage level.

-8-

11. The method of claim 1, wherein the matrix of screen pixels are arranged in a plurality of columns and rows and wherein the first voltage of each pixel is a column voltage and the second voltage of each pixel is a row voltage.

5

10

12. The method of claim 1, wherein a difference between the first and second voltage levels defines a total voltage level for each pixel and wherein step (A) is performed by determining a range of second voltage levels within which the second voltage level varies depending on the desired brightness level and selecting the first voltage level such that the total voltage level for each pixel is greater than a threshold voltage level where the screen display has a minimum acceptable brightness level, using the determined range of second voltage levels.

Fish & Richardson - Washington, DC 10 Floor

48-

50

Inter 'ional Application No PCT/US 97/14606

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 H04N5/58 H04N5/70

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\begin{array}{ll} \mbox{Minimum documentation searched (classification system followed by classification symbols)} \\ \mbox{IPC 6} & \mbox{H04N} & \mbox{G09G} & \mbox{G09F} \\ \end{array}$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	"COMPREHENSIVE LUMINANCE CONTROL FOR ELECTROLUMINESCENT DISPLAY MONITORS" IBM TECHNICAL DISCLOSURE BULLETIN, vol. 29, no. 3, 30 August 1986, NEW YORK US, pages 1219-1220, XP002050153 see the whole document	1-12
Y	US 5 057 744 A (BARBIER B. ET AL) 15 October 1991 see the whole document	1-12
Y	EP 0 391 755 A (CENTAURE SA) 10 October 1990 see column 7, line 27 - line 36	1-12
A	US 4 514 727 A (ANTWERP J.) 30 April 1985 see column 2, line 19 - line 54 -/	1-12

Further documents are listed in the continuation of box C.	Patent family members are tisted in annex.
Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publicationdate of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of theinternational search	Date of mailing of the international search report
15 December 1997	22/01/1998
Name and mailing address of the ISA European Patent Office, P.B. 5518 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Verschelden, J

INTERNATIONAL SEARCH REPORT

Intr tional Application No PCT/US 97/14606

		PC1/US 9//14606
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 238 799 A (MITSUBISHI DENKI KABUSHIKI KAISHA) 30 September 1987 see page 1, line 6 - line 14 see page 7, line 1 - line 15	1-12
A	US 5 270 818 A (OTTENSTEIN J.) 14 December 1993 see column 1, line 28 - line 37 see column 2, line 11 - line 19	1-12
A	GB 2 285 329 A (NEC CORPORATION) 5 July 1995 see the whole document	1-12
Α	EP 0 679 549 A (NIPPONDENSO CO. LTD.) 2 November 1995 see column 5, line 7 - line 26	1-12
Α .	US 4 358 713 A (SENOO T. ET AL) 9 November 1982 see column 2, line 58 - column 6, line 33	1,5-7
A	US 3 761 617 A (TSUCHIYA M. ET AL) 25 September 1973 see the whole document	1-12
A	EP 0 595 792 A (SHARP KABUSHIKI KAISHA) 4 May 1994 see column 1, line 10 - column 3, line 19	1-12
A	US 3 975 661 A (KANATANI Y. ET AL) 17 August 1976 see column 3, line 62 - column 5, line 29	1-4

IN I ENNA HUNAL BEARUN REFUR

information on patent family members

Intr tional Application No PCT/US 97/14606

Patent docum cited in search r		Publication date	Patent family member(s)	Publication date
US 5057744	4 A	15-10-91	FR 2613572 A DE 3869449 A EP 0285521 A	07-10-88 30-04-92 05-10-88
EP 0391755	5 A	10-10-90	FR 2644001 A CA 2011349 A	07-09-90 03-09-90
US 4514727	7 A	30-04-85	NONE	
EP 0238799) A	30-09-87	JP 1929667 C JP 6054963 B JP 62171386 A CA 1278891 A DE 3778192 A	12-05-95 20-07-94 28-07-87 08-01-91 21-05-92
US 5270818	A	14-12-93	NONE	
GB 2285329	Α	05-07-95	JP 7234656 A US 5617112 A	05-09-95 01-04-97
EP 0679549	Α	02-11-95	US 5677701 A JP 8011580 A	14-10-97 16-01-96
US 4358713	Α	09-11-82	JP 1204110 C JP 56046422 A JP 58037484 B DE 3036032 A FR 2466046 A GB 2068178 A,B	25-04-84 27-04-81 16-08-83 26-03-81 27-03-81 05-08-81
US 3761617	Α	25-09-73	CA 949159 A DE 2131228 A FR 2095389 A GB 1352889 A	11-06-74 03-02-72 11-02-72 15-05-74
EP 0595792	A	04-05-94	JP 1307797 A JP 2015295 A JP 2618994 B JP 2010530 C JP 2028691 A	12-12-89 18-01-90 11-06-97 02-02-96 30-01-90

VIERNATIONAL SEARCH REPURT

information on patent family members

Intrational Application No PCT/US 97/14606

			
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0595792 A		JP 7048139 (JP 2010531 (JP 2028692 / JP 7048140 (DE 3850964 (DE 3850964 (DE 3856011 (EP 0345399 / US 5311169 /	02-02-96 30-01-90 30-01-90 24-05-95 08-09-94 09-02-95 02-10-97 13-12-89
US 3975661 A	17-08-76	JP 1001278 C JP 50018193 A JP 54037800 B DE 2429318 A GB 1474251 A	26-02-75 3 16-11-79 16-01-75