3D and Multi-View Video Streaming

Standards and Use cases

Thomas Schierl

Fraunhofer Heinrich Hertz Institute (HHI), Berlin, Germany

Outline

Adaptive 3D Multi-view Streaming

Motivation: Varying Channel Conditions

Solution: Adaptive transport of 3D Video

Technology: 3D Transport (Example: H.264 MVC)

- Broadcast transport

- IP transport

Outlook: Fully scalable 3D

Use cases: 3D Multi-view over

- IPTV channels
- Mobile Ad-hoc Networks
- Mobile Broadcast Channels

Transmission in the context of 3D

3D and Multi-view Video Transmission

• an important part of the chain as shown on next slides

Motivation: Varying channel conditions

- → Streaming requires Quality of Service
- Impossible to provide Quality of Service
 - e.g. over the Internet
- Or high cost to provide Quality of Service
 - e.g. in satellite transmission, or mobile broadcast networks
 - service coverage needs to satisfy all (~99%) of the users

Solution: Adaptive 3D Streaming

3D Media:

Provision of scalability (remove parts of bit-stream): Graceful degradation

Prioritized Transport – PHYSICAL layer:

• Use of different QoS parameters as modulation, channel code...

Prioritized Transport – APPLICATION layer:

Unequal packet loss protection schemes, prioritized retransmission...

3D Video Formats

- Different types of video coding and presentation
 - 2D+Depth, Multi View Coding (MVC), Depth-enhanced Stereo (DES)
 - All have a *layered* approach
 - Suitable for layered transmission
 - Unequal treatment in error protection
- **Example: DES** → Hierarchy in layer importance

Outline

Adaptive 3D Multi-view Streaming

Motivation: Varying Channel Conditions

Solution: Adaptive transport of 3D Video

Technology: 3D Transport (Example: H.264 MVC)

- Broadcast transport

- IP transport

Outlook: Fully scalable 3D

Use cases: 3D Multi-view over

- IPTV channels
- Mobile Ad-hoc Networks
- Mobile Broadcast Channels

Broadcast Transport – MVC over TS

- MVC over MPEG-2 Transport Stream (TS) [Schierl, Grüneberg]
- Goal: Visibility of view importance + prio. view de-multiplexing
- Layered Transmission of views in Elementary Streams
 - synchronization via Decoding Timestamps (DTS)
 - backward-compatible introduction of 3D

Fraunhofer

Broadcast Transport – MVC over TS (cont.)

- New MPEG-2 Transport Stream (TS) receiver buffering model
 - borrowed from SVC
- Per Media: multiple streams and buffers
 - up to one view per Elementary Stream / PID
 - requires synchronization before decoding
- System Target Decoder model:

IP Transport – MVC over RTP

- IEFT RTP Payload Format for MVC video [Wang, Schierl]
- Goal: Visibility of view importance + prio. view de-multiplexing
 - RTP + SDP signaling -> e.g. Diffserv. and other QoS mechanisms
- **Layered Multicast + Media-Aware Network Element**
 - on-the-fly service (view) adaptation
 - backward-compatible 2D

Fraunhofer HHI 2009

IP Transport – MVC over RTP (cont.)

- **MVC Multi Session Transmission Media Packetization**
 - Views (Layers) are transported in different sessions

IP Transport – MVC over RTP (cont.)

RTP Multi Session Synchronization

- Different from Transport Stream
- Synchronization based
 - on timestamps (presentation time)
 - and transmission order (decoding order)

Outlook – Fully scalable 3D Video

- Scalable Multi View/3D Coding
 - Scalability per View / Layer, e.g. SNR fidelity scalability
- May be applied to depth and occlusion layers
- Combination of SVC and MVC
 - Not possible due to high level syntax conflicts
- May be part of a new 3D standard beyond MVC and 2D+D
- Needs further study!
 - Unsolved problems in scaling vs. quality
 - Unsolved problems in transport

Outline

Adaptive 3D Multi-view Streaming

Motivation: Varying Channel Conditions

Solution: Adaptive transport of 3D Video

Technology: 3D Transport (Example: H.264 MVC)

- Broadcast transport

- IP transport

Outlook: Fully scalable 3D

Use cases: 3D Multi-view over

- IPTV channels
- Mobile Ad-hoc Networks
- Mobile Broadcast Channels

View-scalable IPTV using MVC

- Two stereoscopic views in different network streams
- Using RTP Payload for MVC
- Dropping of 2nd network stream in case of congestion, e.g. at DSL Access, etc.
- Seamless switch to 2D rendering on display

[Schierl, Hellge, Mirta, George, Grüneberg]

Fraunhofer HHI 2009

slide 15

MVC over Mobile Ad hoc networks

- Solution for route losses: [Schierl, Johansen, Hellge, Wiegand]
 - Use of multiple sources
 - + partitioned transport with rateless FEC

MVC over Mobile Ad hoc networks

- Solution for route losses: [Schierl, Johansen, Hellge, Wiegand]
 - Use of multiple sources
 - + partitioned transport with rateless FEC

Mobile Broadcast Multi View

- Layered Transmission
- may be included in DVB-NGH
- The approach:

DVB-NGH Transmitter

 Combination of MVC and FEC following the media dependencies:

Challenges: Heterogeneity

MVC Server

Enh. View #2

Enh. View #1

SNR Enh. #0

Base View #0

- Receiver capability
- Channel state

Fraunhofer HHI 2009

2D Client

Dependency structure – L-FEC

FEC generation follows the dependencies in the media

- Higher view/layer information is anyway useless, if a lower layer is lost
- Allows independent decoding
- Increases recovering probability for lower views/layers

Fraunhofer

Thanks for your attention!

Please visit also demonstration on **3D STREAMING**

thomas.schierl@hhi.fraunhofer.de

slide 20