Comparision between Apriori and FP Growth

Imports

```
In [2]:
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import time
import seaborn as sns
import plotly.express as px
from pandas.api.types import CategoricalDtype
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori, association_rules, fpgrowth
```

Reading the Groceries Dataset into python using Pandas Library and viewing the first 5 elements of the Dataset

```
In [3]:
groceries=pd.read_csv("D:\Groceries_dataset.csv")
groceries.head()
<>:1: DeprecationWarning: invalid escape sequence '\G'
<>:1: DeprecationWarning: invalid escape sequence '\G'
C:\Users\hp\AppData\Local\Temp\ipykernel_22540\4165234428.py:1: DeprecationWarning: invalid escape sequence '\G'
  groceries=pd.read_csv("D:\Groceries_dataset.csv")
Out[3]:
```

itemDescription	Date	Member_number	
tropical fruit	21-07-2015	1808	0
whole milk	05-01-2015	2552	1
pip fruit	19-09-2015	2300	2
other vegetables	12-12-2015	1187	3
whole milk	01-02-2015	3037	4

Getting an idea on the dataset by looking into the info

We can see the number of Columns ,Name,count of the data and the Data type of each columns

In [4]:

```
groceries.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 38765 entries, 0 to 38764
Data columns (total 3 columns):
                     Non-Null Count Dtype
  Column
                     38765 non-null int64
0
    Member_number
1
    Date
                     38765 non-null object
    itemDescription 38765 non-null object
dtypes: int64(1), object(2)
memory usage: 908.7+ KB
```

Checking wheather the dataset contains null values or not

```
In [5]:
```

```
groceries.isna().sum()
Out[5]:
                   0
Member number
Date
                   a
itemDescription
                   0
dtype: int64
```

Converting the date from object type to datetime64 type

```
In [6]:
```

```
groceries['Date']=pd.to_datetime(groceries['Date'])
groceries['Member_number']= groceries['Member_number'].astype('object')
groceries.info()
  <class 'pandas.core.frame.DataFrame'>
  RangeIndex: 38765 entries, 0 to 38764
Data columns (total 3 columns):
     #
                          Column
                                                                                                                        Non-Null Count Dtype
                            Member_number
                                                                                                                         38765 non-null
                                                                                                                                                                                                              object
                                                                                                                        38765 non-null
                          Date
                                                                                                                                                                                                             datetime64[ns]
     1
                          itemDescription 38765 non-null
                                                                                                                                                                                                              object
 dtypes: datetime64[ns](1), object(2)
memory usage: 908.7+ KB
 \verb|C:\Users\hp\anaconda3\envs\tf1\lib\site-packages\pandas\core\tools\datetimes.py:1047: UserWarning: Parsing '21-0' and the packages' a
7-2015' in DD/MM/YYYY format. Provide format or specify infer_datetime_format=True for consistent parsing.
            cache_array = _maybe_cache(arg, format, cache, convert_listlike)
 \verb|C:\Users\hp\anconda3\envs\tf1\lib\site-packages\pandas\core\tools\datetimes.py:1047: UserWarning: Parsing '19-0' and the packages is a superstant of the packages of the 
9-2015' in DD/MM/YYYY format. Provide format or specify infer_datetime_format=True for consistent parsing.
             cache_array = _maybe_cache(arg, format, cache, convert_listlike)
  \verb|C:\Users\hp\anaconda3\envs\tf1\lib\site-packages\pandas\core\tools\datetimes.py:1047: UserWarning: Parsing '14-0' and the packages are also become the packages of the pa
2-2015' in DD/MM/YYYY format. Provide format or specify infer_datetime_format=True for consistent parsing.
            cache array = maybe cache/arg format cache convert listlike)
```

Finding the first top 10 highest sold groceries items

In [7]:

```
Item_distr = groceries.groupby(by = "itemDescription").size().reset_index(name='Frequency').sort_values(by = 'Frequency',ascendin
bars = Item_distr["itemDescription"]
height = Item_distr["Frequency"]
x_pos = np.arange(len(bars))
plt.figure(figsize=(16,9))
plt.bar(x_pos, height)
plt.title("Top 10 Sold Items")
plt.xlabel("Item Name")
plt.xlabel("Number of Quantity Sold")
plt.xticks(x_pos, bars)
plt.show()
```



```
In [8]:

df_date=groceries.set_index(['Date'])
df_date
```

Out[8]:

itembescription	wember_number	
		Date
tropical fruit	1808	2015-07-21
whole milk	2552	2015-05-01
pip fruit	2300	2015-09-19
other vegetables	1187	2015-12-12
whole milk	3037	2015-01-02
sliced cheese	4471	2014-08-10
candy	2022	2014-02-23
cake bar	1097	2014-04-16
fruit/vegetable juice	1510	2014-03-12
cat food	1521	2014-12-26

38765 rows × 2 columns

In [9]:

No of items sold by month

Converting all the transactions into list of lists by grouping each customers transaction's items

['canned beer', 'misc. beverages'],
['sausage', 'hygiene articles'],
['sausage', 'whole milk', 'rolls/buns'],

['beef', 'white bread']]

[sausage , whole milk , rolls/buns],
['whole milk', 'soda'],
['frankfurter', 'soda', 'whipped/sour cream'],
['frankfurter', 'curd'],

Using Transaction Encoder to create a matrix with products as coloumn names

If the customer bought the product then value underlaying is True Else its False

```
In [13]:
```

```
trans_encoder = TransactionEncoder()
trans_encoder_matrix = trans_encoder.fit(all_transactions).transform(all_transactions)
trans_encoder_matrix = pd.DataFrame(trans_encoder_matrix, columns=trans_encoder.columns_)
```

We changed the data into this format as the function for calculation of Apriori rules and Fp Growth rules in mlxtend library takes this matrix as input

```
In [14]:
trans_encoder_matrix.head()
Out[14]:
      Instant
               UHT-
                      abrasive
                                      artif.
                                                 baby
                                                                baking
                                                                        bathroom
                                                                                                                                  whipped/sour
                                                                                           berries ... turkey vinegar waffles
        food
                                                        bags
                                                                                    beef
                                                                                                                                                  whisky
               milk
                       cleaner sweetener
                                            cosmetics
                                                               powder
                                                                           cleaner
                                                                                                                                         cream
    products
        False
               False
                         False
                                     False
                                                 False
                                                        False
                                                                 False
                                                                             False
                                                                                    False
                                                                                             False
                                                                                                         False
                                                                                                                  False
                                                                                                                           False
                                                                                                                                          False
                                                                                                                                                    False
                                                                                                   ...
        False
               False
                         False
                                     False
                                                        False
                                                                             False
                                                                                    False
                                                                                                         False
                                                                                                                  False
                                                                                                                                                    Fals
              False
                         False
                                     False
                                                                             False False
                                                                                                         False
                                                                                                                  False
                                                                                                                           False
 2
        False
                                                 False
                                                        False
                                                                 False
                                                                                             False
                                                                                                                                          False
                                                                                                                                                    False
        False
               False
                         False
                                     False
                                                        False
                                                                                   False
                                                                                             False
                                                                                                         False
                                                                                                                  False
                                                                                                                           False
                                                                                                                                          False
                                                                                                                                                    False
                                                 False
                                                                 False
                                                                             False
        False False
                         False
                                     False
                                                 False False
                                                                 False
                                                                             False False
                                                                                             False
                                                                                                         False
                                                                                                                  False
                                                                                                                           False
                                                                                                                                          False
                                                                                                                                                    False
5 rows × 167 columns
```

Function for performing Apriori and Fp growth and finding their Execution time

In [33]:

In [22]:

Function for Computing the association rules

```
In [23]:
```

Performing FP Growth for the Groceries dataset

```
In [24]:
```

```
fpgrowth_matrix, fp_time=perform_rule_calculation(trans_encoder_matrix)
print("Fp Growth execution took : {} seconds".format(fp_time))
```

Computed Fp Growth!

Fp Growth execution took: 0.5169107913970947 seconds

Rules generated by FP Growth

```
In [25]:
```

```
fpgrowth_matrix.head()
```

Out[25]:

	support	itemsets	number_of_items
0	0.157923	(whole milk)	1
1	0.051728	(pastry)	1
2	0.018780	(salty snack)	1
3	0.085879	(yogurt)	1
4	0.060349	(sausage)	1

In [26]:

fpgrowth_matrix.tail()

Out[26]:

	support	itemsets	number_of_items
745 0.001403		(yogurt, chewing gum)	2
746	0.001069	(other vegetables, chewing gum)	2
747	0.001002	(soda, chewing gum)	2
748	0.001069	(pasta, whole milk)	2
749	0.001002	(seasonal products, rolls/buns)	2

In [28]:

```
fp_growth_rule_lift = compute_association_rule(fpgrowth_matrix)
```

Generation of association rules

```
In [54]:
```

```
top=fp_growth_rule_lift.head()
top[['antecedents','consequents','antecedent support','consequent support','support','confidence','lift']]
```

Out[54]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift
0	(sausage)	(pastry)	0.060349	0.051728	0.003208	0.053156	1.027617
1	(pastry)	(sausage)	0.051728	0.060349	0.003208	0.062016	1.027617
2	(sausage)	(salty snack)	0.060349	0.018780	0.001136	0.018826	1.002475
3	(salty snack)	(sausage)	0.018780	0.060349	0.001136	0.060498	1.002475
4	(salty snack)	(canned beer)	0.018780	0.046916	0.001002	0.053381	1.137802

```
In [55]:
```

```
end=fp_growth_rule_lift.tail()
end[['antecedents','consequents','antecedent support','consequent support','support','confidence','lift']]
```

Out[55]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift
235	(cat food)	(tropical fruit)	0.011829	0.067767	0.001002	0.084746	1.250543
236	(yogurt)	(chewing gum)	0.085879	0.012030	0.001403	0.016342	1.358508
237	(chewing gum)	(yogurt)	0.012030	0.085879	0.001403	0.116667	1.358508
238	(seasonal products)	(rolls/buns)	0.007084	0.110005	0.001002	0.141509	1.286395
239	(rolls/buns)	(seasonal products)	0.110005	0.007084	0.001002	0.009113	1.286395

In [34]:

```
fp_growth_rule = compute_association_rule(fpgrowth_matrix, metric="confidence", min_thresh=0.2)
fp_growth_rule.head()
```

Out[34]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	
0	(sausage, yogurt)	(whole milk)	0.005748	0.157923	0.001470	0.255814	1.619866	0.000563	1.131541	
1	(sausage, rolls/buns)	(whole milk)	0.005347	0.157923	0.001136	0.212500	1.345594	0.000292	1.069304	

Apriori Algorithm

Performing Apriori Algorithm on the groceries dataset

In [35]:

```
apriori_matrix,ap_time=perform_rule_calculation(trans_encoder_matrix, rule_type="apriori")
print("The time consumed by apriori is {}".format(ap_time))
```

Computed Apriori!

The time consumed by apriori is 4.332183361053467

Viewing the rules generated by Apriori Algorithm

In [36]:

```
apriori_matrix.head()
```

Out[36]:

	support	itemsets	number_of_items
0	0.004010	(Instant food products)	1
1	0.021386	(UHT-milk)	1
2	0.001470	(abrasive cleaner)	1
3	0.001938	(artif. sweetener)	1
4	0.008087	(baking powder)	1

In [37]:

```
apriori_matrix.tail()
```

Out[37]:

	support	itemsets	number_of_items
745	0.001136	(sausage, rolls/buns, whole milk)	3
746	0.001002	(rolls/buns, soda, whole milk)	3
747	0.001337	(rolls/buns, yogurt, whole milk)	3
748	0.001069	(sausage, soda, whole milk)	3
749	0.001470	(sausage, yogurt, whole milk)	3

In [68]:

```
apriori_rules= compute_association_rule(apriori_matrix)
top=apriori_rules.head()
top[['antecedents','consequents','antecedent support','consequent support','support','confidence','lift']]
```

Out[68]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift
0	(tropical fruit)	(UHT-milk)	0.067767	0.021386	0.001537	0.022682	1.060617
1	(UHT-milk)	(tropical fruit)	0.021386	0.067767	0.001537	0.071875	1.060617
2	(beef)	(brown bread)	0.033950	0.037626	0.001537	0.045276	1.203301
3	(brown bread)	(beef)	0.037626	0.033950	0.001537	0.040853	1.203301
4	(citrus fruit)	(beef)	0.053131	0.033950	0.001804	0.033962	1.000349

Finding the rules which satisfies for all support > 0.2

In [69]:

```
apriori_rule = compute_association_rule(apriori_matrix, metric="confidence", min_thresh=0.2)
apriori_rule.head()
```

Out[69]:

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(sausage, rolls/buns)	(whole milk)	0.005347	0.157923	0.001136	0.212500	1.345594	0.000292	1.069304
1	(sausage, yogurt)	(whole milk)	0.005748	0.157923	0.001470	0.255814	1.619866	0.000563	1.131541

Function for comparing the two algorithms execution time

In [70]:

```
def compare_time_exec(algo1=list, alg2=list):
    execution_times = [algo1[1], algo2[1]]
    algo_names = (algo1[0], algo2[0])
    y=np.arange(len(algo_names))

plt.bar(y,execution_times,color=['orange', 'blue'])
    plt.xticks(y,algo_names)
    plt.xlabel('Algorithms')
    plt.ylabel('Time')
    plt.title("Execution Time (seconds) Comparison")
    plt.show()
```

In [71]:

```
algo1 = ['Fp Growth', fp_time]
algo2 = ['Apriori', ap_time]
compare_time_exec(algo1, algo2)
```

