2-1. YOLO





| 주제                  |                                                                    |  |  |  |
|---------------------|--------------------------------------------------------------------|--|--|--|
| O. Introduction     | 강의 커리큘럼 소개                                                         |  |  |  |
| 1. Face Recognition | 1-1. Face Recognition 이론 소개                                        |  |  |  |
|                     | 1-2. Face Detection - <b>대표 모델 및 코드 소개</b>                         |  |  |  |
|                     | 1-3. [ <b>실습</b> 1] Dlib <b>및</b> Retina Face 코드 구현                |  |  |  |
|                     | 1-4. Face Alignment - <b>대표 모델 및 코드 소개</b>                         |  |  |  |
|                     | 1-5. [ <b>실습</b> 2] <b>황금비율 계산</b>                                 |  |  |  |
|                     | 1-6. Face Recognition - 대표 모델 및 코드 소개                              |  |  |  |
|                     | 1-7. [실습3] 그룹 가수 사진에서 각각 멤버 인식하기                                   |  |  |  |
| 2. Object Detection | 2-1. Object Detection <b>이론 소개</b>                                 |  |  |  |
|                     | 2-2. <b>대표 모델 –</b> Yolov8 <b>소개</b>                               |  |  |  |
|                     | 2-3. [ <b>실습</b> 1] <b>마스크 착용 유무 프로젝트</b>                          |  |  |  |
|                     | 2-4. [ <b>실습</b> 2] Tensor-RT <b>기반의</b> Yolov8, <b>표지판 신호등 검출</b> |  |  |  |
|                     | 2-5. <b>대표 모델</b> - Complex-Yolov4                                 |  |  |  |
|                     | 2-6. [ <b>실습</b> 3] Lidar Data <b>기반의 차량</b> Detection             |  |  |  |



# YOLOv8



# Object Detection**이란**?

이미지 내의 모든 Object에 대하여 Classification와 Localization을 수행



References https://machinethink.net/blog/object-detection-with-yolo/



# One-Stage Detector VS Two-Stage Detector

# Proposal Generator Objectness Classification Box Regression Object Classification Box Regression Crop

(b) Basic architecture of a two-stage detector.

### One and two stage detectors





(a) Basic architecture of a one-stage detector.

V7 Labs

### References

(Middle) https://www.v7labs.com/blog/yolo-object-detection (Left, Right)https://gaussian37.github.io/vision-detection-table

**Box Classifier** 



# **CONTENT**











**YOLO** 

YOLOv5

**YOLOv8** 

**Experimental Conclusion Results** 



# YOLO



# YOLO (You Only Look Once)

Central real-time object detection system for robotics, driverless cars, and video monitoring applications

End-to-End Network / One-stage object detection

Object Detection 문제를 regression문제로 정의하는 것을 통해 bounding box 좌표 및 각 클래스일 확률을 계산 YOLO의 장점

- Sliding Window 방식이 아닌 CNN을 사용하여 이미지 전역의 Contextual information을 얻어 학습 성능을 높임
- 일반적인 Object의 표현을 학습하기에 Domain이 달라도 높은 성능을 보임





# History of YOLO

- YOLOv1: 24 CNN + 2FC / leaky ReLU
- YOLOv2: Darknet-19, Batch Normalization, Anchor boxes, Multi-scale training
- YOLOv3: Efficient backbone, Spatial pyramid pooling
- YOLOv4: Mosaic data augmentation, anchor-free detection head
- YOLOv5: Modified CSPDarknet53 backbone, SPPF, Several augmentations, Five scaled versions, SiLU
- YOLOv6: RepVGG backbone, Self-distillation, VariFocal & SloU & GloU, Quantization-scheme
- YOLOv7: Without pre-trained backbones, Additional task (Pose estimation)



# YOLOv5

# Architecture



References https://epozen-dt.github.io/Yolov5/



# Convolution Block



SiLU (Sigmoid Linear Unit): Swish activation function

- Unbounded above where x>= 0
- Bounded below where x<0</li>
- Non monotonicity
- Smooth figure



# Bottleneck







References

(Top) https://epozen-dt.github.io/Yolov5/

(Bottom-Left) <a href="https://nearhome.tistory.com/129">https://nearhome.tistory.com/129</a>

(Bottom-Right) https://www.researchgate.net/figure/Visualization-of-a-bottleneck-architecture\_fig1\_282859516



# C3



References https://epozen-dt.github.io/Yolov5/



# SPPF (Spatial Pyramid Pooling - Fast) vs SPP



References https://epozen-dt.github.io/Yolov5/



# SPP (Spatial Pyramid Pooling)



Figure 3: A network structure with a **spatial pyramid pooling layer**. Here 256 is the filter number of the conv<sub>5</sub> layer, and conv<sub>5</sub> is the last convolutional layer.

# SPPF (Spatial Pyramid Pooling - Fast) vs SPP



References https://epozen-dt.github.io/Yolov5/



# Architecture (YOLOv5x6)



References

https://epozen-dt.github.io/Yolov5/



# YOLOv8

# YOLOv8 vs YOLOv5

- Replace the C3 module with the C2f module
- Replace the first 6x6 Conv with 3x3 Conv in the Backbone
- Delete two Convs (No.10 and No.14 in the YOLOv5 config)
- Replace the first 1x1 Conv with 3x3 Conv in the Bottleneck
- Use decoupled head and delete the objectness branch
- Anchor-free model
- Modified Mosaic Augmentation

References

https://m.blog.naver.com/PostView.naver?blogId=skfnsid123&logNo=223000302805&categoryNo=21&proxyReferer=

# Architecture





References https://epozen-dt.github.io/Yolov5/



# C2f Block



References

(Left) https://blog.roboflow.com/whats-new-in-yolov8/

(Right) https://arxiv.org/pdf/2304.00501.pdf



# Replace the first 6x6 Conv with 3x3 Conv in the Backbone



References

(Left) https://blog.roboflow.com/whats-new-in-yolov8/

(Right) https://arxiv.org/pdf/2304.00501.pdf



# Delete Two Convs



References https://epozen-dt.github.io/Yolov5/



# Replace the First 1x1 Conv with 3x3 Conv in the Bottleneck



# Decoupled Head

One-head에 비해 성능이 좋음 (속도, AP)

Anchor Free model





References https://arxiv.org/pdf/2304.00501.pdf



### Loss function

$$L_{Total} = \lambda_{bbox} \cdot L_{bbox} + \lambda_{cls} \cdot L_{cls} + \lambda_{dfl} \cdot L_{dfl}$$

 $L_{bbox}$  (Bounding box loss)

loU 기반으로 측정

 $L_{cls}$  (Class loss)

Binary Cross Entropy

 $L_{dfl}$ (Bounding box loss)

옵션으로, 더 정확한 위치 측정을 위해 사용됨

# Five Scaled Version

| model | d (depth_multiple) | w (width_multiple) | r (ratio) |
|-------|--------------------|--------------------|-----------|
| n     | 0.33               | 0.25               | 2.0       |
| S     | 0.33               | 0.50               | 2.0       |
| m     | 0.67               | 0.75               | 1.5       |
| l     | 1.00               | 1.00               | 1.0       |
| х     | 1.00               | 1.25               | 1.0       |

References https://blog.roboflow.com/whats-new-in-yolov8/



# **Experimental Results**

# Performances

| Model   | size<br>(pixels) | mAP <sup>val</sup><br>50-95 | Speed<br>CPU ONNX<br>(ms) | Speed<br>A100 TensorRT<br>(ms) | params<br>(M) | FLOPs<br>(B) |
|---------|------------------|-----------------------------|---------------------------|--------------------------------|---------------|--------------|
| YOLOv8n | 640              | 37.3                        | 80.4                      | 0.99                           | 3.2           | 8.7          |
| YOLOv8s | 640              | 44.9                        | 128.4                     | 1.20                           | 11.2          | 28.6         |
| YOLOv8m | 640              | 50.2                        | 234.7                     | 1.83                           | 25.9          | 78.9         |
| YOLOv8I | 640              | 52.9                        | 375.2                     | 2.39                           | 43.7          | 165.2        |
| YOLOv8x | 640              | 53.9                        | 479.1                     | 3.53                           | 68.2          | 257.8        |

References https://github.com/ultralytics/ultralytics



# YOLOv8 vs YOLOv5

| Model Size | Detection# | Segmentation#     | Classification*   |
|------------|------------|-------------------|-------------------|
| Nano       | +33.21%    | +32.97%           | +3.10%            |
| Small      | +20.05%    | +18.62%           | +1.12%            |
| Medium     | +10.57%    | +10.89%           | +0.66%            |
| Large      | +7.96%     | +6.73%            | 0.00%             |
| Xtra Large | +6.31%     | +5.33%            | -0.76%            |
|            |            | #Image Size = 640 | *Image Size = 224 |

References

https://the-decoder.com/yolov8-shows-the-enormous-possibilities-of-computer-vision/



# Performance of YOLO



References https://docs.ultralytics.com/



# Conclusion

# Conclusion

- A new state-of-the-art (SOTA) model is proposed, featuring an object detection model for P5 640 and P6 1280 resolutions, as well as a YOLACT-based instance segmentation model. The model also includes different size options with N/S/M/L/X scales, similar to YOLOv5, to cater to various scenarios.
- The backbone network and neck module are based on the YOLOv7 ELAN design concept, replacing the C3 module of YOLOv5 with the C2f module. However, there are a lot of operations such as Split and Concat in this C2f module that are not as deployment-friendly as before.
- The Head module has been updated to the current mainstream decoupled structure, separating the classification and detection heads, and switching from Anchor-Based to Anchor-Free.
- The loss calculation adopts the TaskAlignedAssigner in TOOD and introduces the Distribution Focal Loss to the regression loss.
- In the data augmentation part, Mosaic is closed in the last 10 training epoch, which is the same as YOLOX training part.

# Tensor-RT

### **CONTENT**

01

02

03

04

**TensorRT** 

TensorRT 의 구성 딥러닝 가속화 방법

**Advantages** of TensorRT



# TensorRT

### TensorRT

NVIDIA에서 만든 프레임워크로써, NVIDIA GPU에서 최적화 된 기술



#### References

https://thecho7.tistory.com/entry/PyTorch-20-vs-ONNX-vs-TensorRT-%EB%B9%84%EA%B5%90

https://developer.nvidia.com/ko-kr/blog/nvidia-tensorrt-inference-%EC%B5%9C%EC%A0%81%ED%99%94-%EB%B0%8F-%EA%B0%80%EC%86%8D%ED%99%94%EB%A5%BC-%EC%9C%84%ED%95%9C-nvidia%EC%9D%98-toolkit/



### TensorRT

- GPU가 지원하는 활용 가능한 최적의 연산 자원을 자동으로 사용할 수 있도록 Runtime binary 를 빌드함
- Latency와 Throughput을 향상시킴
- Deep Learning 응용 프로그램 및 서비스의 효율적인 실행이 가능
- Latency 시간 단위 : 작업을 처리하는데 걸리는 시간
- Throughput 일 단위 : 단위시간 (초)당 처리하는 작업의 수



References https://blog.kubwa.co.kr/inference-tensorrt-c1a97404eb0c

# TensorRT의 구성

### TensorRT Workflow

TensorRT는 C++ 및 Python 모두를 API 레벨에서 지원

GPU programming language인 CUDA 지식이 별도로 없더라도 Deep Learning 분야의 개발자들이 쉽게 사용



References https://blog.kubwa.co.kr/inference-tensorrt-c1a97404eb0c



## Optimizer

NVIDIA GPU 연산에 적합한 최적화 기법들을 사용해 훈련된 딥러닝 모델을 최적화하는 역할



References https://blog.kubwa.co.kr/inference-tensorrt-c1a97404eb0c



# Engine

배포할 NVIDIA GPU 에 따라 최적의 연산을 수행할 수 있도록 도와주는 역할



References https://blog.kubwa.co.kr/inference-tensorrt-c1a97404eb0c



# 딥러닝 가속화 방법

## 딥러닝 가속화 방법



#### References

https://developer.nvidia.com/ko-kr/blog/nvidia-tensorrt-inference-%EC%B5%9C%EC%A0%81%ED%99%94-%EB%B0%8F-%EA%B0%80%EC%86%8D%ED%99%94%EB%A5%BC-%EC%9C%84%ED%95%9C-nvidia%EC%9D%98-toolkit/



### **Quantization & Precision Calibration**

양자화 및 정밀도 캘리브레이션

일상 생활에서 흔히 사용되는 소형 edge device 는 메모리, 성능, 저장공간 등 환경이 제한적이기 때문에 모델을 탑재하기에는 적합하지 않음

모델을 가볍게 만들어야 하는 경량화가 필요

낮은 Precision의 Network일 수록 data의 크기 및 weight들의 bit수가 작기 때문에 더 빠르고 효율적인 연산이 가능

- Ouantization
- Precision Calibration

#### References

https://developer.nvidia.com/ko-kr/blog/nvidia-tensorrt-inference-%EC%B5%9C%EC%A0%81%ED%99%94-%EB%B0%8F-%EA%B0%80%EC%86%8D%ED%99%94%EB%A5%BC-%EC%9C%84%ED%95%9C-nvidia%EC%9D%98-toolkit/

### Quantization

- Neural Network 모델 내부의 대부분은 weight와 activation ouput으로 구성
- weight 와 activation output 은 모델의 정확도를 높이기 위해, 32bit floating point (FP32) 로 표현
- 리소스가 제한된 환경에서 모든 weight와 activation output을 32 bit floating point로 표현한 모델은 추론에 사용하기 어려움
- Symmetric Linear Quantization을 사용하여 양자화 진행



# Symmetric linear quantization

x: Input

r : Floating point range

s: Scaling factor

#### References

https://developer.nvidia.com/ko-kr/blog/nvidia-tensorrt-inference-%EC%B5%9C%EC%A0%81%ED%99%94-%EB%B0%8F-%EA%B0%80%EC%86%8D%ED%99%94%EB%A5%BC-%EC%9C%84%ED%95%9C-nvidia%EC%9D%98-toolkit/



### **Precision Calibration**

- FP16으로의 precision down-scale은 Network의 accuracy drop에 큰 영향을 주지는 않지만, INT8로의 down-scale은 accuracy drop을 보이는 몇 부류의 Network이 존재
- Calibration 작업을 활용하여 Quantization시 가중치 및 intermediate tensor 들의 정보 손실을 최소화
- EntronpyCalibrator, EntropyCalibrator2 그리고 MinMaxCalibrator를 지원

#### Saturate above |T| to 127



In general, Low-bit quantization occurs Significant accuracy loss. Use calibration to get proper |T|
( To minimize information loss,
find value which shows min-entropy
on quantization)

#### References

https://developer.nvidia.com/ko-kr/blog/nvidia-tensorrt-inference-%EC%B5%9C%EC%A0%81%ED%99%94-%EB%B0%8F-%EA%B0%80%EC%86%8D%ED%99%94%EB%A5%BC-%EC%9C%84%ED%95%9C-nvidia%EC%9D%98-toolkit/

## **Graph Optimization**

- 일반적으로 Graph Optimization은 Deep Learning Network에서 사용되는 primitive 연산 형태, compound 연산 형태의 graph node들을 각 platform에 최적화된 code를 구성하기 위하여 사용
- TensorRT에서는 이를 기반으로 Layer Fusion 방식과 Tensor Fusion 방식을 동시에 적용하여 그래프를 단순화 시켜 모델의 Layer 수가 크게 감소
- Layer Fusion : 딥러닝 네트워크에서 이루어진 여러 Layer들을 하나의 Layer로 합치는 작업
- Tensor Fusion : 감소될 준비가 된 모든 텐서를 하나의 감소 연산으로 결합하려고 시도하는 작업



| Networks     | Number of<br>layers (Before) | Number of<br>layers (After) |
|--------------|------------------------------|-----------------------------|
| VGG19        | 43                           | 27                          |
| Inception v3 | 309                          | 113                         |
| ResNet-152   | 670                          | 159                         |

References https://blog.kubwa.co.kr/inference-tensorrt-c1a97404eb0c



## Kernel Auto-tuning

- TensorRT는 NVIDIA의 다양한 platform 및 architecture에 맞는 Runtime 생성을 도움
- CUDA engine 갯수, architecture, memory 그리고 serialized engine 포함 여부에 따라 최적화된 kernel(커널)을 찾아 선택적으로 engine을 생성
- TensorRT Runtime engine build 시에 시행하여 최종적으로 최적의 engine binary 생성을 도움

References https://blog.kubwa.co.kr/inference-tensorrt-c1a97404eb0c Multi-stream execution

## Dynamic Tensor Memory & Multi-Stream Execution

- Dynamic tensor memory
   Memory management를 통하여 footprint를 줄여 재사용을 할 수 있도록 도움
- CUDA stream 기술을 이용하여 multiple input stream의 scheduling을 통해 병렬 효율을 극대화



#### References

https://developer.nvidia.com/ko-kr/blog/nvidia-tensorrt-inference-%EC%B5%9C%EC%A0%81%ED%99%94-%EB%B0%8F-%EA%B0%80%EC%86%8D%ED%99%94%EB%A5%BC-%EC%9C%84%ED%95%9C-nvidia%EC%9D%98-toolkit/

# Advantages of TensorRT

# Advantages of TensorRT

- C++과 python을 API 레벨에서 지원하므로 CUDA를 잘 모르는 Deep Learning 개발자들도 쉽게 사용할 수 있음
- latency 및 throuput을 쉽게 향상
- **다양한** layer **및 연산에 대해** customization**할 수 있는 방법론을 제공**



### ONNX

- Open Neural Network Exchange **오픈 소스 프로젝트**
- ONNX는 인공지능(AI) 모델을 표준 형식으로 표현하고 서로 다른 딥러닝 프레임워크 간에 모델의 변환 및 공유를 지원



References

https://thecho7.tistory.com/entry/PyTorch-20-vs-ONNX-vs-TensorRT-%EB%B9%84%EA%B5%90



# [Practice 1] 마스크 착용 유무 프로젝트

### **CONTENT**

01







실습 소개

데이터셋

실습 튜토리얼

실습 결과



# 실습 소개

# Object Detection**이란**?

이미지 내의 모든 Object에 대하여 Classification와 Localization을 수행



References https://machinethink.net/blog/object-detection-with-yolo/



# [실습1] 마스크 착용 유무 프로젝트

보도자료

### 마스크 착용한 분만 문 열어 드립니다

코로나19 확산 방지를 위해 AI 기술을 활용, 본사 출<mark>입게</mark>이트에서 마스크를 착용한 임직원만 통과시키고 있다



References https://www.lgcns.com/pr/news/12676/

# 데이터셋

# 데이터셋



References https://github.com/VictorLin000/YOLOv3\_mask\_detect



### 데이터셋 소개

- 데이터셋 다운로드 링크 : https://drive.google.com/drive/folders/1aAXDTI5kMPKAHE08WKGP2Pifldc21-ZG
- 678 Images
- 3 Classes (**착용**, **미착용**, **잘못된 착용**)
- Bounding box annotations are provided in the PASCAL YOLO format



\*Mask\_180.txt - Windows 메모장 파일(F) 편집(E) 서식(O) 보기(V) 도움말(H) 2 0.11375 0.379375 0.0375 0.04625 2 0.213125 0.386875 0.04625 0.04625 0 0.305625 0.38125 0.04375 0.0525 0 0.415 0.4375 0.0425 0.05 2 0.57125 0.408125 0.06 0.05375 2 0.740625 0.42375 0.06875 0.0575

References https://github.com/VictorLin000/YOLOv3\_mask\_detect

## 데이터셋 구조

- mask\_yolo
  - Mask\_1.jpg
  - Mask\_1.txt
  - Mask\_10.jpg
  - Mask\_10.txt
  - Mask\_100.jpg
  - Mask\_100.txt
    - Mask\_101.jpg
  - Mask\_101.txt
  - Mask\_102.jpg
  - Mask\_102.txt
  - Mask\_103.jpg
  - Mask\_103.txt
  - Mask\_104.jpg
  - Mask\_104.txt

2 0.11375 0.379375 0.0375 0.04625

2 0.213125 0.386875 0.04625 0.04625

0 0.305625 0.38125 0.04375 0.0525

0 0.415 0.4375 0.0425 0.05

2 0.57125 0.408125 0.06 0.05375

2 0.740625 0.42375 0.06875 0.0575

# 실습 튜토리얼

## YOLOv8 - ultralytics

공식 Github : https://github.com/ultralytics/ultralytics

공식 Documents: https://docs.ultralytics.com/



## 실습 환경 구축

• 실습 환경 구축

pip install ultralytics

or

pip install git+https://github.com/ultralytics/ultralytics.git@main

• 정상 설치 확인

```
import ultralytics
ultralytics.checks()

Ultralytics YOLOv8.0.157 
Python-3.10.12 torch-2.0.1+cu118 CUDA:0 (Tesla T4, 15102MiB)
Setup complete 
(2 CPUs, 12.7 GB RAM, 26.3/166.8 GB disk)
```

## 데이터셋 전처리

- mask\_yolo
  - Mask\_1.jpg
  - Mask\_1.txt
  - Mask\_10.jpg
  - Mask\_10.txt
  - Mask\_100.jpg
  - Mask\_100.txt
  - Mask\_101.jpg
  - Mask\_101.txt
  - Mask\_102.jpg
  - Mask\_102.txt
  - Mask\_103.jpg
  - Mask\_103.txt
  - Mask\_104.jpg
  - Mask\_104.txt





### 데이터셋 전처리

Train/Test Split

```
random.shuffle(file list)
test ratio = 0.1
test_list = file_list[:int(len(file_list)*test_ratio)]
train list = file list[int(len(file list)*test ratio):]
for i in test list:
 f_name = os.path.splitext(i)[0]
  copyfile(os.path.join(road_sign_path, 'images', (f_name+img_)), os.path.join(mask_path,
'val/images', (f name+img )))
  copyfile(os.path.join(road_sign_path, 'labels', (f_name+label_)), os.path.join(mask_path,
'val/labels', (f name+label )))
for i in train list:
 f_name = os.path.splitext(i)[0]
  copyfile(os.path.join(road_sign_path, 'images', (f_name+img_)), os.path.join(mask_path,
'train/images', (f_name+img_)))
  copyfile(os.path.join(road_sign_path, 'labels', (f_name+label_)), os.path.join(mask_path,
'train/labels', (f name+label )))
```

# Config **파일 생성**

```
import yaml
data =dict()

data['train'] = '/content/drive/MyDrive/dataset/mask/train'
data['val'] = '/content/drive/MyDrive/dataset/mask/val'
data['test'] = '/content/drive/MyDrive/dataset/mask/val'

data['nc'] = 3
data['names'] =['OK','improperly', 'NO']

with open('mask_detection.yaml', 'w') as f:
    yaml.dump(data, f)
```

### Train

튜토리얼 링크: https://docs.ultralytics.com/modes/train/

```
from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n.yaml') # build a new model from YAML
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
model = YOLO('yolov8n.yaml').load('yolov8n.pt') # build from YAML and transfer weights

# Train the model
results = model.train(data='coco128.yaml', epochs=100, imgsz=640)
```

yolo train data=coco.yaml



#### Train Arguments

| Key           | Value  | Description                                                                       |  |  |  |
|---------------|--------|-----------------------------------------------------------------------------------|--|--|--|
| model         | None   | path to model file, i.e. yolov8n.pt, yolov8n.yaml                                 |  |  |  |
| data          | None   | path to data file, i.e. coco128.yaml                                              |  |  |  |
| epochs        | 100    | number of epochs to train for                                                     |  |  |  |
| patience      | 50     | epochs to wait for no observable improvement for early stopping of training       |  |  |  |
| batch         | 16     | number of images per batch (-1 for AutoBatch)                                     |  |  |  |
| imgsz         | 640    | size of input images as integer                                                   |  |  |  |
| save          | True   | save train checkpoints and predict results                                        |  |  |  |
| save_period   | -1     | Save checkpoint every x epochs (disabled if < 1)                                  |  |  |  |
| cache         | False  | True/ram, disk or False. Use cache for data loading                               |  |  |  |
| device        | None   | device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu              |  |  |  |
| workers       | 8      | number of worker threads for data loading (per RANK if DDP)                       |  |  |  |
| project       | None   | project name                                                                      |  |  |  |
| name          | None   | experiment name                                                                   |  |  |  |
| exist_ok      | False  | whether to overwrite existing experiment                                          |  |  |  |
| pretrained    | False  | whether to use a pretrained model                                                 |  |  |  |
| optimizer     | 'auto' | optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto] |  |  |  |
| verbose       | False  | whether to print verbose output                                                   |  |  |  |
| seed          | 0      | random seed for reproducibility                                                   |  |  |  |
| deterministic | True   | whether to enable deterministic mode                                              |  |  |  |
| single_cls    | False  | train multi-class data as single-class                                            |  |  |  |
| rect          | False  | rectangular training with each batch collated for minimum padding                 |  |  |  |
| cos_lr        | False  | use cosine learning rate scheduler                                                |  |  |  |

Train Arguments

| Key             | Value  | Description                                                                                    |  |  |  |
|-----------------|--------|------------------------------------------------------------------------------------------------|--|--|--|
| cos_lr          | False  | use cosine learning rate scheduler                                                             |  |  |  |
| close_mosaic    | 10     | (int) disable mosaic augmentation for final epochs (0 to disable)                              |  |  |  |
| resume          | False  | resume training from last checkpoint                                                           |  |  |  |
| amp             | True   | Automatic Mixed Precision (AMP) training, choices=[True, False]                                |  |  |  |
| fraction        | 1.0    | dataset fraction to train on (default is 1.0, all images in train set)                         |  |  |  |
| profile         | False  | profile ONNX and TensorRT speeds during training for loggers                                   |  |  |  |
| freeze          | None   | (int or list, optional) freeze first n layers, or freeze list of layer indices during training |  |  |  |
| IrO             | 0.01   | initial learning rate (i.e. SGD=1E-2, Adam=1E-3)                                               |  |  |  |
| Irf             | 0.01   | final learning rate (IrO * Irf)                                                                |  |  |  |
| momentum        | 0.937  | SGD momentum/Adam beta1                                                                        |  |  |  |
| weight_decay    | 0.0005 | optimizer weight decay 5e-4                                                                    |  |  |  |
| warmup_epochs   | 3.0    | warmup epochs (fractions ok)                                                                   |  |  |  |
| warmup_momentum | 0.8    | warmup initial momentum                                                                        |  |  |  |
| warmup_bias_lr  | O.1    | warmup initial bias Ir                                                                         |  |  |  |
| box             | 7.5    | box loss gain                                                                                  |  |  |  |
| cls             | 0.5    | cls loss gain (scale with pixels)                                                              |  |  |  |
| dfl             | 1.5    | dfl loss gain                                                                                  |  |  |  |
| pose            | 12.0   | pose loss gain (pose-only)                                                                     |  |  |  |
| kobj            | 2.0    | keypoint obj loss gain (pose-only)                                                             |  |  |  |
| label_smoothing | 0.0    | label smoothing (fraction)                                                                     |  |  |  |
| nbs             | 64     | nominal batch size                                                                             |  |  |  |
| overlap_mask    | True   | masks should overlap during training (segment train only)                                      |  |  |  |
| mask_ratio      | 4      | mask downsample ratio (segment train only)                                                     |  |  |  |
| dropout         | 0.0    | use dropout regularization (classify train only)                                               |  |  |  |
| val             | True   | validate/test during training                                                                  |  |  |  |

#### Validation

튜토리얼 링크 : https://docs.ultralytics.com/modes/val/

```
from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom model

# Validate the model
metrics = model.val() # no arguments needed, dataset and settings remembered
metrics.box.map # map50-95
metrics.box.map50 # map50
metrics.box.map75 # map75
metrics.box.maps # a list contains map50-95 of each category
```

```
yolo val model=yolov8n.pt
or
model('yolov8n.pt').val()
```



### Validation

#### Validation Arguments

| Key         | Value | Description                                                        |  |  |  |
|-------------|-------|--------------------------------------------------------------------|--|--|--|
| data        | None  | oath to data file, i.e. coco128.yaml                               |  |  |  |
| imgsz       | 640   | size of input images as integer                                    |  |  |  |
| batch       | 16    | number of images per batch (-1 for AutoBatch)                      |  |  |  |
| save_json   | False | save results to JSON file                                          |  |  |  |
| save_hybrid | False | save hybrid version of labels (labels + additional predictions)    |  |  |  |
| conf        | 0.001 | object confidence threshold for detection                          |  |  |  |
| iou         | 0.6   | tersection over union (IoU) threshold for NMS                      |  |  |  |
| max_det     | 300   | naximum number of detections per image                             |  |  |  |
| half        | True  | se half precision (FP16)                                           |  |  |  |
| device      | None  | levice to run on, i.e. cuda device=0/1/2/3 or device=cpu           |  |  |  |
| dnn         | False | use OpenCV DNN for ONNX inference                                  |  |  |  |
| plots       | False | show plots during training                                         |  |  |  |
| rect        | False | rectangular val with each batch collated for minimum padding       |  |  |  |
| split       | val   | dataset split to use for validation, i.e. 'val', 'test' or 'train' |  |  |  |

튜토리얼 링크: https://docs.ultralytics.com/modes/predict/#inference-sources

```
from ultralytics import YOLO

# Load a pretrained YOLOv8n model
model = YOLO('yolov8n.pt')

# Define path to the image file
source = 'path/to/image.jpg'

# Run inference on the source
results = model(source) # list of Results objects
```

```
from ultralytics import YOLO

# Load a pretrained YOLOv8n model
model = YOLO('yolov8n.pt')

# Run inference on 'bus.jpg' with arguments
model.predict('bus.jpg', save=True, imgsz=320, conf=0.5)
```



#### Attributes of Results

| Attribute  | Type                | Description                                                                             |  |
|------------|---------------------|-----------------------------------------------------------------------------------------|--|
| orig_img   | numpy.ndarray       | The original image as a numpy array.                                                    |  |
| orig_shape | tuple               | The original image shape in (height, width) format.                                     |  |
| boxes      | Boxes, optional     | A Boxes object containing the detection bounding boxes.                                 |  |
| masks      | Masks, optional     | A Masks object containing the detection masks.                                          |  |
| probs      | Probs, optional     | A Probs object containing probabilities of each class for classification task.          |  |
| keypoints  | Keypoints, optional | A Keypoints object containing detected keypoints for each object.                       |  |
| speed      | dict                | A dictionary of preprocess, inference, and postprocess speeds in milliseconds per image |  |
| names      | dict                | A dictionary of class names.                                                            |  |
| path       | str                 | The path to the image file.                                                             |  |

튜토리얼 링크: https://docs.ultralytics.com/modes/predict/#inference-sources

```
from ultralytics import YOLO

# Load a pretrained YOLOv8n model
model = YOLO('yolov8n.pt')

# Run inference on an image
results = model('bus.jpg') # results list

# View results
for r in results:
    print(r.boxes) # print the Boxes object containing the detection bounding boxes
```



```
from ultralytics import YOLO
import cv2
import os
from ultralytics.yolo.utils.plotting import Annotator
import matplotlib.pyplot as plt
import numpy as np
model = YOLO('./best mask.pt')
root_folder = '../dataset/mask/val/images'
result_folder = '../dataset/mask/result'
test_img_list = os.listdir(root_folder)
device = 'cpu'
color_dict = [(0, 255, 0), (255, 0, 0), (0, 0, 255)]
```

```
for idx , file in enumerate(test img list):
    black = np.zeros(shape = (640, 1280,3), dtype = np.uint8)
    test img = cv2.imread(os.path.join(root folder, file))
    img_src = cv2.cvtColor(test_img, cv2.COLOR_BGR2RGB)
    results = model(test img)
   for result in results:
        annotator = Annotator(img src)
        boxes = result.boxes
       for box in boxes:
            b = box.xyxy[0] # get box coordinates in (top, left, bottom, right) format
            cls = box.cls
            annotator.box label(b, model.names[int(cls)], color dict[int(cls)])
    test_img = annotator.result()
    h,w,_ = test_img.shape
   if h <w:
        r = min(640/h, 1280/w)
        test img = cv2.resize(test_img, (0,0), fx=r, fy=r)
        black[:test_img.shape[0],:test_img.shape[1],:] = test_img[:,:,:]
        cv2.imwrite(os.path.join(result_folder, file), cv2.cvtColor(black, cv2.COLOR_RGB2BGR))
```



# [Practice 2] Tensor-RT 기반의 Yolov8, 표지판 신호등 검출 프로젝트

### **CONTENT**

01







실습 소개

데이터셋

실습 튜토리얼

실습 결과



# 실습 소개

# Object Detection**이란**?

이미지 내의 모든 Object에 대하여 Classification와 Localization을 수행



References https://machinethink.net/blog/object-detection-with-yolo/



# [실습2] Road Sign Detection





# 데이터셋

# 데이터셋 - (Road Sign Detection -Kaggle)

# **Road Sign Detection**

877 images belonging to 4 classes.



Data Card Code (16) Discussion (0)

#### **About Dataset**











Usability ①

8.75

License

CC0: Public Domain

**Expected update frequency** 

Never

**Tags** 

References https://www.kaggle.com/datasets/andrewmvd/road-sign-detection



### 데이터셋 소개

- 데이터셋 소개 페이지 : https://www.kaggle.com/datasets/andrewmvd/road-sign-detection
- 877 Image
- Class 4개: Trafic Light, Stop, Speedlimit, Crosswalk
- Bounding box annotations are provided in the PASCAL VOC format



```
<annotation>
   <folder>images</folder>
   <filename>road0.png</filename>
   <size>
       <width>267</width>
       <height>400</height>
       <depth>3</depth>
   </size>
   <segmented>0</segmented>
   <object>
       <name>trafficlight</name>
       <pose>Unspecified</pose>
       <truncated>0</truncated>
       <occluded>0</occluded>
       <difficult>0</difficult>
       <br/>bndbox>
            <xmin>98</xmin>
            <ymin>62</ymin>
            <xmax>208</xmax>
            <ymax>232</ymax>
        </bndbox>
   </object>
/annotation>
```



# 실습 튜토리얼

# YOLOv8 - ultralytics

공식 Github : https://github.com/ultralytics/ultralytics

공식 Documents: https://docs.ultralytics.com/



## 실습 환경 구축

• 실습 환경 구축

pip install ultralytics

or

pip install git+https://github.com/ultralytics/ultralytics.git@main

• 정상 설치 확인

```
import ultralytics
ultralytics.checks()

Ultralytics YOLOv8.0.157 
Python-3.10.12 torch-2.0.1+cu118 CUDA:0 (Tesla T4, 15102MiB)
Setup complete 
(2 CPUs, 12.7 GB RAM, 26.3/166.8 GB disk)
```

Annotation convert

Pascal VOC to Yolo

```
def xml_to_yolo_bbox(bbox, w, h):
    # xmin, ymin, xmax, ymax
    x_center = ((bbox[2] + bbox[0]) / 2) / w
    y_center = ((bbox[3] + bbox[1]) / 2) / h
    width = (bbox[2] - bbox[0]) / w
    height = (bbox[3] - bbox[1]) / h
    return [x_center, y_center, width, height]
```

[xmin, ymin, xmax, ymax]



+ Normalize

[x\_center, y\_center, width, height]

Annotation convert

```
for fil in tqdm(files):
   basename = os.path.basename(fil)
   filename = os.path.splitext(basename)[0]
   result = []
   tree = ET.parse(fil)
   root = tree.getroot()
   width = int(root.find("size").find("width").text)
   height = int(root.find("size").find("height").text)
   for obj in root.findall('object'):
       label = obj.find("name").text
       if label not in classes:
            classes.append(label)
       index = classes.index(label)
       pil bbox = [int(x.text) for x in obj.find("bndbox")]
       yolo_bbox = xml_to_yolo_bbox(pil_bbox, width, height)
       bbox string = " ".join([str(x) for x in yolo bbox])
       result.append(f"{index} {bbox string}")
   if result:
       with open(os.path.join(label_path, f"{filename}.txt"), "w", encoding="utf-8") as f:
           f.write("\n".join(result))
```

Annotation convert

Pascal VOC to Yolo

```
<object>
    <name>Text</name>
   <pose>Unspecified</pose>
   <truncated>0</truncated>
   <occluded>0</occluded>
   <difficult>0</difficult>
   <br/>bndbox>
                                       5 0.49953703703703706 0.5822185061315496 0.2990740740740741 0.03511705685618729
       <xmin>379
       <ymin>1014
                                       Yolo Format
       <xmax>702</xmax>
                                       Class(1) + coordinates of bounding box (4)
        <ymax>1077
                                       Class Cx Cy w h
   </bndbox>
</object>
```

References

 $https://www.researchgate.net/figure/An-example-of-conversion-from-Pascal-VOC-XML-to-YOLO-TXT\_fig2\_362694426$ 



Train/Test Split

```
random.shuffle(file list)
test ratio = 0.1
test_list = file_list[:int(len(file_list)*test_ratio)]
train list = file list[int(len(file list)*test ratio):]
for i in test list:
 f_name = os.path.splitext(i)[0]
  copyfile(os.path.join(road_sign_path, 'images', (f_name+img_)), os.path.join(road_sign_path,
'val/images', (f name+img )))
  copyfile(os.path.join(road_sign_path, 'labels', (f_name+label_)), os.path.join(road_sign_path,
'val/labels', (f name+label )))
for i in train list:
 f_name = os.path.splitext(i)[0]
  copyfile(os.path.join(road_sign_path, 'images', (f_name+img_)), os.path.join(road_sign_path,
'train/images', (f_name+img_)))
  copyfile(os.path.join(road_sign_path, 'labels', (f_name+label_)), os.path.join(road_sign_path,
'train/labels', (f_name+label_)))
```

# Config **파일 생성**

```
import yaml
data =dict()

data['train'] = '/content/drive/MyDrive/dataset/road_sign/train'
data['val'] = '/content/drive/MyDrive/dataset/road_sign/val'
data['test'] = '/content/drive/MyDrive/dataset/road_sign/val'

data['nc'] = 4
data['names'] =['Trafic_light', 'Speedlimit', 'Crosswalk', 'Stop']

with open('road_sign.yaml', 'w') as f:
    yaml.dump(data, f)
```

튜토리얼 링크: https://docs.ultralytics.com/modes/train/

```
from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n.yaml') # build a new model from YAML
model = YOLO('yolov8n.pt') # load a pretrained model (recommended for training)
model = YOLO('yolov8n.yaml').load('yolov8n.pt') # build from YAML and transfer weights

# Train the model
results = model.train(data='coco128.yaml', epochs=100, imgsz=640)
```

yolo train data=coco.yaml



#### Train Arguments

| Key           | Value  | Description                                                                       |  |  |  |
|---------------|--------|-----------------------------------------------------------------------------------|--|--|--|
| model         | None   | path to model file, i.e. yolov8n.pt, yolov8n.yaml                                 |  |  |  |
| data          | None   | path to data file, i.e. coco128.yaml                                              |  |  |  |
| epochs        | 100    | number of epochs to train for                                                     |  |  |  |
| patience      | 50     | epochs to wait for no observable improvement for early stopping of training       |  |  |  |
| batch         | 16     | number of images per batch (-1 for AutoBatch)                                     |  |  |  |
| imgsz         | 640    | size of input images as integer                                                   |  |  |  |
| save          | True   | save train checkpoints and predict results                                        |  |  |  |
| save_period   | -1     | Save checkpoint every x epochs (disabled if < 1)                                  |  |  |  |
| cache         | False  | True/ram, disk or False. Use cache for data loading                               |  |  |  |
| device        | None   | device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu              |  |  |  |
| workers       | 8      | number of worker threads for data loading (per RANK if DDP)                       |  |  |  |
| project       | None   | project name                                                                      |  |  |  |
| name          | None   | experiment name                                                                   |  |  |  |
| exist_ok      | False  | whether to overwrite existing experiment                                          |  |  |  |
| pretrained    | False  | whether to use a pretrained model                                                 |  |  |  |
| optimizer     | 'auto' | optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto] |  |  |  |
| verbose       | False  | whether to print verbose output                                                   |  |  |  |
| seed          | 0      | random seed for reproducibility                                                   |  |  |  |
| deterministic | True   | whether to enable deterministic mode                                              |  |  |  |
| single_cls    | False  | train multi-class data as single-class                                            |  |  |  |
| rect          | False  | rectangular training with each batch collated for minimum padding                 |  |  |  |
| cos_lr        | False  | use cosine learning rate scheduler                                                |  |  |  |

Train Arguments

| Key             | Value  | Description                                                                                    |  |  |  |
|-----------------|--------|------------------------------------------------------------------------------------------------|--|--|--|
| cos_lr          | False  | use cosine learning rate scheduler                                                             |  |  |  |
| close_mosaic    | 10     | (int) disable mosaic augmentation for final epochs (0 to disable)                              |  |  |  |
| resume          | False  | resume training from last checkpoint                                                           |  |  |  |
| amp             | True   | Automatic Mixed Precision (AMP) training, choices=[True, False]                                |  |  |  |
| fraction        | 1.0    | dataset fraction to train on (default is 1.0, all images in train set)                         |  |  |  |
| profile         | False  | profile ONNX and TensorRT speeds during training for loggers                                   |  |  |  |
| freeze          | None   | (int or list, optional) freeze first n layers, or freeze list of layer indices during training |  |  |  |
| IrO             | 0.01   | initial learning rate (i.e. SGD=1E-2, Adam=1E-3)                                               |  |  |  |
| lrf             | 0.01   | final learning rate (IrO * Irf)                                                                |  |  |  |
| momentum        | 0.937  | SGD momentum/Adam beta1                                                                        |  |  |  |
| weight_decay    | 0.0005 | optimizer weight decay 5e-4                                                                    |  |  |  |
| warmup_epochs   | 3.0    | warmup epochs (fractions ok)                                                                   |  |  |  |
| warmup_momentum | 0.8    | warmup initial momentum                                                                        |  |  |  |
| warmup_bias_lr  | O.1    | warmup initial bias Ir                                                                         |  |  |  |
| box             | 7.5    | box loss gain                                                                                  |  |  |  |
| cls             | 0.5    | cls loss gain (scale with pixels)                                                              |  |  |  |
| dfl             | 1.5    | dfl loss gain                                                                                  |  |  |  |
| pose            | 12.0   | pose loss gain (pose-only)                                                                     |  |  |  |
| kobj            | 2.0    | keypoint obj loss gain (pose-only)                                                             |  |  |  |
| label_smoothing | 0.0    | label smoothing (fraction)                                                                     |  |  |  |
| nbs             | 64     | nominal batch size                                                                             |  |  |  |
| overlap_mask    | True   | masks should overlap during training (segment train only)                                      |  |  |  |
| mask_ratio      | 4      | mask downsample ratio (segment train only)                                                     |  |  |  |
| dropout         | 0.0    | use dropout regularization (classify train only)                                               |  |  |  |
| val             | True   | validate/test during training                                                                  |  |  |  |

#### Validation

튜토리얼 링크 : https://docs.ultralytics.com/modes/val/

```
from ultralytics import YOLO

# Load a model
model = YOLO('yolov8n.pt') # load an official model
model = YOLO('path/to/best.pt') # load a custom model

# Validate the model
metrics = model.val() # no arguments needed, dataset and settings remembered
metrics.box.map # map50-95
metrics.box.map50 # map50
metrics.box.map75 # map75
metrics.box.maps # a list contains map50-95 of each category
```

```
yolo val model=yolov8n.pt
or
model('yolov8n.pt').val()
```



### Validation

#### Validation Arguments

| Key         | Value | Description                                                        |  |  |  |
|-------------|-------|--------------------------------------------------------------------|--|--|--|
| data        | None  | oath to data file, i.e. coco128.yaml                               |  |  |  |
| imgsz       | 640   | size of input images as integer                                    |  |  |  |
| batch       | 16    | number of images per batch (-1 for AutoBatch)                      |  |  |  |
| save_json   | False | save results to JSON file                                          |  |  |  |
| save_hybrid | False | save hybrid version of labels (labels + additional predictions)    |  |  |  |
| conf        | 0.001 | object confidence threshold for detection                          |  |  |  |
| iou         | 0.6   | tersection over union (IoU) threshold for NMS                      |  |  |  |
| max_det     | 300   | naximum number of detections per image                             |  |  |  |
| half        | True  | se half precision (FP16)                                           |  |  |  |
| device      | None  | levice to run on, i.e. cuda device=0/1/2/3 or device=cpu           |  |  |  |
| dnn         | False | use OpenCV DNN for ONNX inference                                  |  |  |  |
| plots       | False | show plots during training                                         |  |  |  |
| rect        | False | rectangular val with each batch collated for minimum padding       |  |  |  |
| split       | val   | dataset split to use for validation, i.e. 'val', 'test' or 'train' |  |  |  |

튜토리얼 링크: https://docs.ultralytics.com/modes/predict/#inference-sources

```
from ultralytics import YOLO

# Load a pretrained YOLOv8n model
model = YOLO('yolov8n.pt')

# Define path to the image file
source = 'path/to/image.jpg'

# Run inference on the source
results = model(source) # list of Results objects
```

```
from ultralytics import YOLO

# Load a pretrained YOLOv8n model
model = YOLO('yolov8n.pt')

# Run inference on 'bus.jpg' with arguments
model.predict('bus.jpg', save=True, imgsz=320, conf=0.5)
```



#### Attributes of Results

| Attribute  | Type                | Description                                                                             |  |
|------------|---------------------|-----------------------------------------------------------------------------------------|--|
| orig_img   | numpy.ndarray       | The original image as a numpy array.                                                    |  |
| orig_shape | tuple               | The original image shape in (height, width) format.                                     |  |
| boxes      | Boxes, optional     | A Boxes object containing the detection bounding boxes.                                 |  |
| masks      | Masks, optional     | A Masks object containing the detection masks.                                          |  |
| probs      | Probs, optional     | A Probs object containing probabilities of each class for classification task.          |  |
| keypoints  | Keypoints, optional | A Keypoints object containing detected keypoints for each object.                       |  |
| speed      | dict                | A dictionary of preprocess, inference, and postprocess speeds in milliseconds per image |  |
| names      | dict                | A dictionary of class names.                                                            |  |
| path       | str                 | The path to the image file.                                                             |  |

튜토리얼 링크: https://docs.ultralytics.com/modes/predict/#inference-sources

```
from ultralytics import YOLO

# Load a pretrained YOLOv8n model
model = YOLO('yolov8n.pt')

# Run inference on an image
results = model('bus.jpg') # results list

# View results
for r in results:
    print(r.boxes) # print the Boxes object containing the detection bounding boxes
```



```
from ultralytics import YOLO
import cv2
import os
from ultralytics.yolo.utils.plotting import Annotator
import matplotlib.pyplot as plt
import numpy as np
model = YOLO('best road sign.pt')
root folder = 'test'
result folder = 'result'
test_img_list = os.listdir(root_folder)
device = 'cpu'
color_dict = [(0, 255, 0), (255, 255, 0), (0, 0, 255), (255, 0, 0)]
color_dict_2 = [(0, 0, 0), (0, 0, 0), (255, 255, 255), (255, 255, 255)]
```

```
for idx , file in enumerate(test img list):
    \#black = np.zeros(shape = (400, 400,3), dtype = np.uint8)
    test img = cv2.imread(os.path.join(root folder, file))
    img_src = cv2.cvtColor(test_img, cv2.COLOR_BGR2RGB)
    results = model(test img)
    for result in results:
        annotator = Annotator(img src)
        boxes = result.boxes
       for box in boxes:
            b = box.xyxy[0] # get box coordinates in (top, left, bottom, right) format
            cls = box.cls
            annotator.box label(b, model.names[int(cls)], color dict[int(cls)], color dict 2[int(cls)])
    img src = annotator.result()
    img_src = cv2.resize(img_src, (400,400))
    cv2.imwrite(os.path.join(result folder, file), cv2.cvtColor(img src, cv2.COLOR RGB2BGR))
```

# Export

- 튜토리얼 링크 : <a href="https://docs.ultralytics.com/modes/export/">https://docs.ultralytics.com/modes/export/</a>
- Export Arguments

| Key       | Value         | Description                                          |  |  |
|-----------|---------------|------------------------------------------------------|--|--|
| format    | 'torchscript' | format to export to                                  |  |  |
| imgsz     | 640           | image size as scalar or (h, w) list, i.e. (640, 480) |  |  |
| keras     | False         | use Keras for TF SavedModel export                   |  |  |
| optimize  | False         | TorchScript: optimize for mobile                     |  |  |
| half      | False         | FP16 quantization                                    |  |  |
| int8      | False         | INT8 quantization                                    |  |  |
| dynamic   | False         | ONNX/TensorRT: dynamic axes                          |  |  |
| simplify  | False         | ONNX/TensorRT: simplify model                        |  |  |
| opset     | None          | ONNX: opset version (optional, defaults to latest)   |  |  |
| workspace | 4             | TensorRT: workspace size (GB)                        |  |  |
| nms       | False         | CoreML: add NMS                                      |  |  |

# Export

- 튜토리얼 링크 : <a href="https://docs.ultralytics.com/modes/export/">https://docs.ultralytics.com/modes/export/</a>
- Export Format

| Format              | format Argument | Model                   | Metadata | Arguments                                 |
|---------------------|-----------------|-------------------------|----------|-------------------------------------------|
| <u>PyTorch</u>      | -               | yolov8n.pt              | ~        | -                                         |
| <u>TorchScript</u>  | torchscript     | yolov8n.torchscript     | ~        | imgsz, optimize                           |
| <u>ONNX</u>         | onnx            | yolov8n.onnx            | ~        | imgsz, half, dynamic, simplify, opset     |
| <u>OpenVINO</u>     | openvino        | yolov8n_openvino_model/ | <b>✓</b> | imgsz, half                               |
| <u>TensorRT</u>     | engine          | yolov8n.engine          | ~        | imgsz, half, dynamic, simplify, workspace |
| CoreML              | coreml          | yolov8n.mlpackage       | <b>~</b> | imgsz, half, int8, nms                    |
| TF SavedModel       | saved_model     | yolov8n_saved_model/    | ~        | imgsz, keras                              |
| TF GraphDef         | pb              | yolov8n.pb              | ×        | imgsz                                     |
| <u>TF Lite</u>      | tflite          | yolov8n.tflite          | ~        | imgsz, half, int8                         |
| TF Edge TPU         | edgetpu         | yolov8n_edgetpu.tflite  | ~        | imgsz                                     |
| <u>TF.js</u>        | tfjs            | yolov8n_web_model/      | <u> </u> | imgsz                                     |
| <u>PaddlePaddle</u> | paddle          | yolov8n_paddle_model/   | <b>✓</b> | imgsz                                     |
| <u>ncnn</u>         | ncnn            | yolov8n_ncnn_model/     | ~        | imgsz, half                               |

### Export

```
from ultralytics import YOLO
model = YOLO('runs/detect/road_sign_s/weights/best.pt')
model.export(format='engine', device=0, half=False)
```

```
#float 16
model = YOLO('runs/detect/road_sign_s/weights/best.engine')
#results = model.predict(test_img, imgsz=640, device=0, half=False)
results = model.val(data="road_sign.yaml", batch=1, imgsz=640, plots=False, device=0, half=False, verbose=False)
metric, speed = results.results_dict['metrics/mAP50-95(B)'], results.speed['inference']
print(metric, speed)
```

```
Ultralytics Y0L0v8.0.157  Python-3.10.12 torch-2.0.1+cu118 CUDA:0 (Tesla T4, 15102MiB)

Loading runs/detect/road_sign_s/weights/best.engine for TensorRT inference...

val: Scanning /content/drive/MyDrive/dataset/road_sign/val/labels.cache... 87 images, 0 backgrounds, 0 corrupt: 100%| 87/87 [00:00<?, ?it/s]

Class Images Instances Box(P R mAP50 mAP50-95): 100%| 87/87 [00:01<00:00, 44.23it/s]

all 87 112 0.919 0.927 0.936 0.781

Speed: 0.3ms preprocess, 5.4ms inference, 0.0ms loss, 1.0ms postprocess per image
0.7808557837857013 5.435370850837094
```





Torch / TensorRT (float16) / TensorRT (flat32)

```
Ultralytics YOLOv8.0.157 🚀 Python-3.10.12 torch-2.0.1+cu118 CUDA:0 (Tesla T4, 15102MiB)
YOLOv8s summary (fused): 168 layers, 11127132 parameters, 0 gradients
Downloading https://ultralytics.com/assets/Arial.ttf to '/root/.config/Ultralytics/Arial.ttf'...
100%| TIME | 755k/755k [00:00<00:00, 17.2MB/s]
val: Scanning /content/drive/MyDrive/dataset/road_sign/val/labels.cache... 87 images, 0 backgrounds, 0 corrupt: 100%| 87/87 [00:00<?, ?it/s]
                                          Box(P
                                                       Class
                       Images Instances
                                          0.918
                all
                                 112
                                                   0.917
                                                          0.94
                                                                      0.791
Speed: 0.4ms preprocess, 20.1ms inference, 0.0ms loss, 1.5ms postprocess per image
```

```
Ultralytics Y0L0v8.0.157  Python-3.10.12 torch-2.0.1+cu118 CUDA:0 (Tesla T4, 15102MiB)

Loading runs/detect/road_sign_s/weights/best.engine for TensorRT inference...

val: Scanning /content/drive/MyDrive/dataset/road_sign/val/labels.cache... 87 images, 0 backgrounds, 0 corrupt: 100%| 87/87 [00:00<?, ?it/s]

Class Images Instances Box(P R mAP50 mAP50-95): 100%| 87/87 [00:01<00:00, 44.23it/s]

all 87 112 0.919 0.927 0.936 0.781

Speed: 0.3ms preprocess, 5.4ms inference, 0.0ms loss, 1.0ms postprocess per image
0.7808557837857013 5.435370850837094
```

```
Ultralytics YOLOv8.0.157  Python-3.10.12 torch-2.0.1+cu118 CUDA:O (Tesla T4, 15102MiB)

Loading runs/detect/road_sign_s/weights/best.engine for TensorRT inference...

val: Scanning /content/drive/MyDrive/dataset/road_sign/val/labels.cache... 87 images, 0 backgrounds, 0 corrupt: 100%| 87/87 [00:00<?, ?it/s]

Class Images Instances Box(P R mAP50 mAP50-95): 100%| 87/87 [00:03<00:00, 23.09it/s]

all 87 112 0.919 0.927 0.936 0.788

Speed: 0.4ms preprocess, 13.1ms inference, 0.0ms loss, 1.9ms postprocess per image
0.7881495053534824 13.130434628190667
```

# Thank You.

