ECE367 Cheatsheet

Hanhee Lee

August 28, 2024

Contents

1	Week 1 (Ch. 2.1-2.2)			
	1.1	Vectors		
		1.1.1 Vector spaces		
		1.1.2 Properties of vector spaces		
		1.1.3 Span and subspace		
		1.1.4 Linear independent (LI) set		
		1.1.5 Basis		
		1.1.6 Cardinality		
	1.2	Norms		
		1.2.1 Norm balls		
	1.3	Inner products		
		1.3.1 Standard inner product		
		1.3.2 Connect inner product with angle		
		1.3.3 Cauchy-Schwartz inequality and its generalization		
	1.4	Orthogonal decomposition		
	1.1	1.4.1 Orthogonality		
		1.4.2 Orthonormal basis		
		1.4.3 Orthogonal component		
		1.4.4 Orthogonal complement		
		1.4.5 Orthogonal decomposition		
		1.4.5 Orthogonal decomposition		
2	Week 2 (Ch. 2.3)			
	2.1	Projection onto subspaces		
		2.1.1 Problem that projections solve		
		2.1.2 Higher dimensional S		
	2.2	Fourier series		
	2.3	Gram-Schmidt and QR decomposition		
	$\frac{2.5}{2.4}$	Hyperplanes and half-spaces		
	$\frac{2.4}{2.5}$	Non-euclidean projection		
	2.0	Tron cuchucan projection.		
3	Wee	ek 3 (Ch. 2.3-2.4)		
	3.1	Projection onto affine sets		
	3.2	Functions		
	3.3	Gradients		
	3.4	Hessians		
	-			
4	Wee	ek 4 (Ch. 3.1-3.5)		
	4.1	Matrices		
	4.2	Range		
	4.3	Null Space		
	4.4	Eigenvalues and eigenvectors		
	4.5	Matrices diagonalization		
5		ek 5 (Ch. 4.1-4.4)		
	5.1	Symmetric matrices		

	Orthogonal matrices Spectral decomposition Positive semidefinite matrices Ellipsoids	9
6	Veek 6 (Ch. 5.1, 5.3.2) .1 Singular value decomposition	
7	Veek 7 (Ch. 5.2-5.3.1) 1 Interpretation of SVD 2 Low-rank approximation	
8	Veek 8 (Ch. 6.1-6.4) 1 Least squares	9
9	Veek 9 (Ch. 6.7.3, 8.1-8.4) 1 Regularized least-squares	
10	Veek 10 (Ch. 8.5, 9.1-9.6) 0.1 Lagrangian method for constrained optimization 0.2 Linear programming and quadratic programming	
11	Veek 11 (Ch. 12.1-12.3) 1.1 Numerical algorithms for unconstrained optimization	
${f L}_{f i}$	t of Figures	
	Vector addition and scalar multiplication. Norm balls of different p values. Visual representation of angle between vectors. Orthogonal complement.	5 6

List of Tables

1 Week 1 (Ch. 2.1-2.2)

1.1 Vectors

Definition: A single collection of numbers, where $x_i \in \mathbb{R}$ or \mathbb{C}

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \mathbf{x}^T = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}.$$

- n: Dimension of \mathbf{x}
- \mathbf{x} : Column vector \mathbf{x}^T : Row vector
- \bullet T: Transpose

Vector spaces

Definition: A set of vectors \mathcal{V} that are closed under addition and scalar multiplication.

Components:

- $\mathbf{v}^{(1)} + \mathbf{v}^{(2)}$ is the sum of the corresponding components: $v_i^{(1)} + v_i^{(2)}$.
- $\alpha \mathbf{v}$ is multiplying each component by α : αv_i .

Figure 1: Vector addition and scalar multiplication.

Properties of vector spaces

Definition:

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- $\bullet \ (\mathbf{u} + \mathbf{v}) + \mathbf{w} = \mathbf{u} + (\mathbf{v} + \mathbf{w})$
- $\alpha(\mathbf{u} + \mathbf{v}) = \alpha \mathbf{u} + \alpha \mathbf{v}$
- $(\alpha + \beta)\mathbf{u} = \alpha\mathbf{u} + \beta\mathbf{u}$
- $\exists \ \mathbf{0} \in \mathbb{V} \text{ s.t. } \mathbf{u} + \mathbf{0} = \mathbf{u}$
- $\exists -\mathbf{u} \in \mathbb{V} \text{ s.t. } \mathbf{u} + (-\mathbf{u}) = \mathbf{0}$
- $\exists \alpha \text{ s.t. } \alpha \mathbf{u} = \mathbf{u} \quad (\alpha = 1)$

1.1.3 Span and subspace

Definition: Let $S = \left\{ \mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots, \mathbf{v}^{(m)} \right\}$, then the span is

$$\operatorname{Span}(S) = \left\{ \sum_{i=1}^{m} \alpha_i \mathbf{v}^{(i)} \mid \alpha_i \in \mathbb{R} \right\}$$

• **Note:** The span of a set of vectors is always a subspace.

Definition: A subspace is a subset of a vector space that is a vector space by itself.

• Note: 0 is always in a subspace.

1.1.4 Linear independent (LI) set

- Definition:

 $S = \left\{ \mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots, \mathbf{v}^{(m)} \right\}$ is LI if no element of S can be expressed as a LC of other elements in S (i.e. The only α_i 's that makes $\sum_{i=1}^{n} \alpha_i \mathbf{v}^{(i)} = 0$ is $\alpha_i = 0, \ \forall i$).
 - If S is a LI set, then for any $u \in span(S)$, there is a unique set of α_i 's s.t. $u = \sum_{i=1}^{m} \alpha_i \mathbf{v}^{(i)}$ (i.e. there is no redundancies in representation)
 - If a set of $\{\mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots, \mathbf{v}^{(m)}\}$ has redundancy, then we can remove the vector that can be represented as a LC of other vectors until all the redundancies are removed.

- Note: Such an irreducible LI set can serve as a basis for $Span\{\mathbf{v}^{(1)},\mathbf{v}^{(2)},\ldots,\mathbf{v}^{(m)}\}$.

1.1.5 Basis

Definition: A set of vectors \mathcal{B} is a basis of a vector space \mathcal{V} if (i) \mathcal{B} is LI, (ii) $Span(\mathcal{B}) = \mathcal{V}$

Example: What is the standard basis?

$$\mathbf{e}^{(1)} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \mathbf{e}^{(2)} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \quad \dots \quad , \quad \mathbf{e}^{(n)} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \quad \text{for } \mathbb{R}^n$$

1.1.6 Cardinality

Definition: The dimension of vector spaces \mathcal{V} is the **cardinality** of \mathcal{B} .

- Cardinality: A set refers to the number of elements in the set.
- Note: Basis is not unique. But $dim(\mathcal{V})$ is well-defined.

1.2 Norms

In optimization problems, different norms are used to achieve various goals.

Definition: Notion of distance, where $\|\mathbf{v}\|$ is a function that maps $\mathcal{V} \to \mathbb{R}$ that satisfies

- 1. $\|\mathbf{v}\| \ge 0$, $\forall \mathbf{v} \in \mathcal{V}$, and $\|\mathbf{v}\| = 0$ iff $\mathbf{v} = \mathbf{0}$
- 2. $\|\alpha \mathbf{v}\| = |\alpha| \|\mathbf{v}\| \ \forall \mathbf{v} \in \mathcal{V}, \ \alpha \in \mathbb{R}$
- 3. $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|, \, \forall x, y \in \mathcal{V} \text{ (triangular inequality)}$

Example: ℓ_p norms:

$$\|\mathbf{x}\|_p \equiv \left(\sum_{k=1}^n |x_k|^p\right)^{1/p}, \quad 1 \le p < \infty.$$

- Sum-of-absolute-values length p = 1: $\|\mathbf{x}\|_1 \equiv \sum_{k=1}^n |x_k|$
 - For p < 1, triangular inequality doesn't hold.
- Euclidean length p = 2: $\|\mathbf{x}\|_2 \equiv \sqrt{\sum_{k=1}^n x_k^2}$
- Max absolute value norm $p = \infty$: $\|\mathbf{x}\|_{\infty} \equiv \max_{k=1,...,n} |x_k|$
 - Longest term will dominate.
- Cardinality p = 0: The number of non-zero vectors in x is

$$\|\mathbf{x}\|_0 = \operatorname{card}(\mathbf{x}) \equiv \sum_{k=1}^n \mathbb{I}(x_k \neq 0), \text{ where } \mathbb{I}(x_k \neq 0) \equiv \begin{cases} 1 & \text{if } x_k \neq 0 \\ 0 & \text{otherwise.} \end{cases}$$

- Not a norm since $\|\alpha \mathbf{x}\|_0 = \|\mathbf{x}\|_0 \neq |\alpha| \cdot \|\mathbf{x}\|_0$

1.2.1 Norm balls

Definition: The set of all vectors with ℓ_p norm less than or equal to one,

$$B_p = \{ \mathbf{x} \in \mathbb{R}^n : ||\mathbf{x}||_p \le 1 \} \tag{1}$$

Example:

- ℓ_2 : $B_2 = \left\{ \mathbf{x} \mid \sqrt{x_1^2 + x_2^2} \le 1 \right\}$ ℓ_1 : $B_1 = \left\{ \mathbf{x} \mid |x_1| + |x_2| \le 1 \right\}$ ℓ_∞ : $B_\infty = \left\{ \mathbf{x} \mid \max |x_i| \le 1 \right\}$

- $\ell_0: B_0 = \{ \mathbf{x} \mid \text{card}(\mathbf{x}) \le 1 \}$

Figure 2: Norm balls of different p values.

1.3 Inner products

Definition: $\mathbf{x}, \mathbf{y} \in \mathcal{V}: \mathcal{V} \to \mathbb{R}$ into a scalar denoted by $\langle \mathbf{x}, \mathbf{y} \rangle$. The inner product satisfies the following axioms: for any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathcal{V}$ and scalar α ,

- $\langle \mathbf{x}, \mathbf{x} \rangle \geq 0$
- $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ iff $\mathbf{x} = 0$
- $\langle \mathbf{x} + \mathbf{y}, \mathbf{z} \rangle = \langle \mathbf{x}, \mathbf{z} \rangle + \langle \mathbf{y}, \mathbf{z} \rangle$
- $\langle \alpha \mathbf{x}, \mathbf{y} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle$
- $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$ in \mathbb{R}^n and $\langle \mathbf{x}, \mathbf{y} \rangle = \overline{\langle \mathbf{y}, \mathbf{x} \rangle}$ in \mathbb{C}^n .

Standard inner product 1.3.1

Definition: Notion of angle between two vectors in \mathbb{R}^n , defined as the row-column product of two vectors:

- In \mathbb{R}^n : $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n x_i y_i = \mathbf{x}^\top \mathbf{y}$ In \mathbb{C}^n : $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=1}^n \overline{x_i} y_i = \mathbf{x}^H \mathbf{y}$

1.3.2 Connect inner product with angle

Definition:

$$\cos \theta = \frac{\langle \mathbf{x}, \mathbf{y} \rangle}{\|\mathbf{x}\|_2 \|\mathbf{y}\|_2} = \left\langle \frac{\mathbf{x}}{\|\mathbf{x}\|_2}, \frac{\mathbf{y}}{\|\mathbf{y}\|_2} \right\rangle$$
(2)

- Orthogonal: $\langle \mathbf{x}, \mathbf{y} \rangle = 0$, the angle between vectors \mathbf{x} and \mathbf{y} is $\theta = \pm 90^{\circ}$.
- Parallel: When the angle θ is 0° or $\pm 180^{\circ}$, vectors **x** and **y** are aligned, meaning $\mathbf{y} = \alpha \mathbf{x}$ for some scalar α .

Figure 3: Visual representation of angle between vectors.

1.3.3 Cauchy-Schwartz inequality and its generalization

Definition:

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le \|\mathbf{x}\|_2 \|\mathbf{y}\|_2 \tag{3}$$

Hölder's Inequality (generalization):

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le \|\mathbf{x}\|_p \|\mathbf{y}\|_q \quad \text{where } 1 \le p, q < \infty \text{ and } \frac{1}{p} + \frac{1}{q} = 1$$
 (4)

1.4 Orthogonal decomposition

1.4.1 Orthogonality

Definition: A set of non-zero vectors $S = \left\{ \mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots, \mathbf{v}^{(d)} \right\}$ is **mutually orthogonal** if $\langle \mathbf{v}^{(i)}, \mathbf{v}^{(j)} \rangle = 0 \ \forall \ i \neq j$.

• Fact: Orthogonal set of vectors form a basis for $Span = \left\{ \mathbf{v}^{(1)}, \mathbf{v}^{(2)}, \dots, \mathbf{v}^{(d)} \right\}$

1.4.2 Orthonormal basis

Definition: Set of orthogonal basis vectors that have unit norm:

$$\left\{\frac{\mathbf{v}^{(1)}}{\|\mathbf{v}^{(1)}\|},\dots,\frac{\mathbf{v}^{(d)}}{\|\mathbf{v}^{(d)}\|}\right\}$$

1.4.3 Orthogonal component

Definition: Given $S \subseteq \mathcal{V}$ is a subspace of \mathcal{V} , a vector $\mathbf{x} \in \mathcal{V}$ is said to be **orthogonal** to S if $\forall \mathbf{v} \in S$, we have $\langle \mathbf{x}, \mathbf{v} \rangle = 0$.

1.4.4 Orthogonal complement

Definition: A vector $\mathbf{x} \in \mathcal{V}$ is orthogonal to a subset S of an inner product space \mathcal{V} if $\mathbf{x} \perp s$ for all $s \in S$. The set of vectors in \mathcal{V} that are orthogonal to S is called the *orthogonal complement* of S:

$$S^{\perp} = \{ \mathbf{x} \in \mathcal{V} \mid \mathbf{x} \perp S \} \tag{5}$$

• $dim(S) + dim(S^{\perp}) = dim(V)$

Figure 4: Orthogonal complement.

1.4.5 Orthogonal decomposition

Definition: Any $\mathbf{x} \in \mathcal{V}$ can be expressed as

- $\bullet \ \mathbf{x} = \mathbf{x}_S + \mathbf{x}_{S^{\perp}}$
- $\mathcal{V} = \tilde{S} \oplus \tilde{S}^{\perp}$

2 Week 2 (Ch. 2.3)

2.1 Projection onto subspaces

2.1.1 Problem that projections solve

Definition: Given a vector $\mathbf{x} \in \mathcal{V}$. Find the closest point in S to x:

$$\operatorname{Proj}_{S}(x) = \arg\min_{y \in S} \|y - x\| \tag{6}$$

• ||y - x||: Some norm.

2.1.2 Higher dimensional S

Definition:

- 2.2 Fourier series
- 2.3 Gram-Schmidt and QR decomposition
- 2.4 Hyperplanes and half-spaces
- 2.5 Non-euclidean projection
- 3 Week 3 (Ch. 2.3-2.4)
- 3.1 Projection onto affine sets
- 3.2 Functions
- 3.3 Gradients
- 3.4 Hessians
- 4 Week 4 (Ch. 3.1-3.5)
- 4.1 Matrices
- 4.2 Range
- 4.3 Null Space
- 4.4 Eigenvalues and eigenvectors
- 4.5 Matrices diagonalization
- 5 Week 5 (Ch. 4.1-4.4)
- 5.1 Symmetric matrices
- 5.2 Orthogonal matrices
- 5.3 Spectral decomposition
- 5.4 Positive semidefinite matrices
- 5.5 Ellipsoids
- 6 Week 6 (Ch. 5.1, 5.3.2)
- 6.1 Singular value decomposition
- 6.2 Principle component analysis
- 7 Week 7 (Ch. 5.2-5.3.1)
- 7.1 Interpretation of SVD
- 7.2 Low-rank approximation
- 8 Week 8 (Ch. 6.1-6.4)
- 8.1 Least squares
- 8.2 Overdetermined linear equation
- 8.3 Underdetermined linear equation
- 9 Week 9 (Ch. 6.7.3, 8.1-8.4)
- 9.1 Regularized least-squares
- 9.2 Convex sets and convex functions