Lecture 10 We have seen (Tutorial 2) that the intersection of two subgroups

collection).

is a subgroup.

This is true for any collection

of subgroups (even infinite

Theorem Let G be a group. Let & be a set of

subgroups of G. Then, the

intersection of all subgroups

in S is a subgroup of G.

Proof: Let K= NH.

Closure under inverses:

So 1g E AH = K.

Let $x \in K$. So, for any $H \in S$,

RE H. As H is a subgroup, x'EH.

Identity: 16 EH for all HES

Thus, $x^{-1} \in H$ for all $H \in \mathcal{S}$.

So $x^{-1} \in \bigcap_{H \in \mathcal{S}} H = K$.

Closure under the binary

operation: Let x, y \in K. We want to show that xy \in K.

HES, we have For any As H is a x, y & H. this implies that Subgroup, xy E H. Thus, my & H for all HES. So, $xy \in \bigcap_{H \in \mathcal{S}} H = K$. Thus K is a subgroup.

Subgroup generated by a set. Let G be a group and let 5 be a <u>subset</u> of G. We define (5) to be the intersection of all subgroups of G which contain S. By the previous theorem, (5) is a subgroup of G.

If H is any subgroup of G which contains S, then $\langle S \rangle \subseteq H$. (Because $\langle S \rangle$ is the intersection of all such Sub groups.) Thus, (S) is the smallest subgroup containing S.

What does (S) look like ? Let M be the set of all elements of G which can be written in the form x" x" where - r is a positive integer $-x_1, x_2, \dots x_r \in S$ (not necessarily distinct)

- m₁, m₂, ----, m_r E 7/

It is easy to set that M is a subgroup of G.

Exercise Write a proof of

Exercise Write a proof of this statement.

Also, if H is any subgroup of G containing S, H contains every element of the form $x_1^{m_1}$. where $x_1, x_2 \cdots x_r \in S$ Thus M = H for any such

subgroup H.

Thus, $M \subseteq \langle S \rangle$ (as $\langle S \rangle$ is the intersection of such subgroups).

subgroups).

However, M is a subgroup

containing S. So $\langle S \rangle \subseteq M$.

 $S_{0}, M = \langle S \rangle.$

For example, if S= {a}, $\langle S \rangle = \langle \alpha \rangle = \{1, \alpha, \overline{\alpha}, \overline{\alpha}, \overline{\alpha}, \overline{\alpha}, \dots, \overline{\beta}\}$ If $S = \{a,b\}$, $\langle S \rangle$ is the set of elements of all products of the form a b'a b' --- a b" positive integer where r is a and $m_i, n_i \in \mathbb{Z}$ for all i.

So, a typical element may look like $\overset{?}{a}b^{-3}ab^{-2}$.

Note that we may not be able to collect all the a's

and b's together <u>in general</u>. In special cases we may be able to do so.

For example, in the dihedral group Dn, we have the relation TP= PT which

allows us to rewrite every

expression in the form PMT.

An even simpler situation arises if ab = ba, i.e. a and b

it ab = ba, i.e. a and b commute.

In that case any element of the form $a^m b^n - \cdots - a^m - b^n - a^m - a^m$

be written as a mitmet -- + mr b nither -- + nr

Definition A group G is said to be commutative or abelian if for any $x,y \in G$, we have xy = yx.

Example: \mathbb{Z} , $\mathbb{Z}/m\mathbb{Z}$ are abelian. D_n is not abelian for any $n \ge 3$.

Exercise: Prove the following. Theorem Let (G1,+) be an abelian group. Let $S \subseteq G$. Then (5) is equal to the set of all elements of the form $n_1x_1 + n_2x_2 + \cdots + n_rx_r$ where $\chi_1, \chi_2, \ldots, \chi_r \in G$ and $n_1, n_2 \cdots, n_r \in \mathbb{Z}$

Example: Consider the group (Z, +). Let $a, b \in \mathbb{Z}$. Then (a,b) = {am+bn/m,n = 7/3 But <a, b> is a subgroup of So $\langle a, b \rangle = \langle d \rangle$ for

What is the relation between d and the pair {a, b}? $a \in \langle a, b \rangle = \langle d \rangle \Rightarrow d | a.$ Similarly, d/b. Let g = gcd(a,b). Then, d/g. But gla and glb => glam+bn $all m, n \in \mathbb{Z}$.

As $d \in \langle a, b \rangle$, there exist integers r,s such that d= ar + bs.

So $g \mid ar + bs = d$.

So, d/g and g/d. As g>0 and

 $d \geqslant 0$, we see that d = g.

So, we have proved: Theorem Let a, b be two integers. Then, there exist integers r,s such that gcd(a,b) = ar + bs.Question: How do we find these integers r,s? (Next lecture.) Cyclic groups A group G is said to be cyclic if there exists an element a E G such that $G = \langle a \rangle$ Example: Z is cyclic.

Z/mZ/ is cyclic for any m>0.

Structure of cyclic groups

Let G be a cyclic group.

Suppose G = <a>>.

We have two possibilities:

- ord(a) is not finite.

- ord (a) is finite.

Case 1: ord(a) is not finite

This means that there does not exist any positive integer m such that $a^m = 1$.

Consider the sequence (extending in both directions):

 $\tilde{a}^2, \tilde{a}^1, l, a, a^2, \cdots$

We claim that all these elements are distinct. In other words, we daim

that if i,j are distinct integers, then a + a1.

Suppose this is not true.

Then, there exist integers i,j such that i < j and $a^i = a^j$.

Then $a^{j-i} = 1$.

Then $a^{1-1} = 1$. As j-1>0, this contradicts our assumption that ord(a) is not finite.

Let $\phi: \mathbb{Z} \rightarrow G$ be the function defined by $\varphi(n) = a^n$. We have proved above that p is a one-to-one function.

 φ is onto as $G = \langle a \rangle$.

Thus, φ is a 1-1 correspondence.

Also,
$$\varphi(m+n) = \alpha^{m+n}$$

$$= \alpha^{m} \cdot \alpha^{n}$$

$$= \varphi(m) \cdot \varphi(n).$$

Thus, φ is a group

isomorphism.

Case 2: ord(a) = m for some meZ

Lemma: Suppose $a^n = 1$ for some integer n. Then, m | n.

Proof: Using the division algorithm, we write n= mg+r where

 $0 \le r < m$. Then $1 = \alpha = \alpha^{mq+r} = (\alpha^{m})^{q} \cdot \alpha^{r} = 1 \cdot \alpha^{r} = \alpha^{r}$.

But r < m, so $a^r = 1$ is impossible unless r= 0. This completes the proof. Suppose i and j are distinct integers such that $a^{i} = a^{j}$. Then $a^{i-j} = 1$. So $m \mid i-j$, i.e. $i \equiv j \pmod{m}$.

Conversely, if $i = j \pmod{m}$ then i = j + mx for some $x \in \mathbb{Z}$. So $\alpha^i = \alpha^{mx+j}$ $= (a^m)^{\chi} \cdot a^{\dot{j}} = a^{\dot{j}}.$ Thus $a^i = a^j$ if and only if i and j lie in the same coset of $m\mathbb{Z}$.

$$\varphi: \mathbb{Z}/_{m\mathbb{Z}} \longrightarrow \langle a \rangle$$
 by

$$\varphi(\pi) = \alpha^{n}.$$

This is well-defined because

if $\overline{n}_1 = \overline{n}_2$, then $n_1 \equiv n_2 \pmod{m}$

and so $a^{n_1} = a^{n_2}$

i.e. $\overline{n_1} = \overline{n_2}$. So p is a one-to-one function. ip is also onto: Indeed, for any neZ, $\varphi(\overline{n}) = a^n$.

Also, if $\varphi(\overline{n}_{1}) = \varphi(\overline{n}_{2})$, we

have seen that $n_1 \equiv n_2 \pmod{m}$

Thus φ is a 1-1 correspondence.

$$\varphi(\overline{n}_1 + \overline{n}_2) = \alpha^{n_1 + n_2}$$

 $= \varphi(\overline{n}_{1}) \cdot \varphi(\overline{n}_{2})$

 $\varphi(\overline{n}_1 + \overline{n}_2) = \alpha^{n_1 + n_2}$

$$\varphi(\overline{n}, + \overline{n}_2) = \alpha^{n_1 + n_2}$$

 $= \alpha \cdot \alpha^2$

Thus, op is a group

isomorphism.

Summary Let $G = \langle \alpha \rangle$. - If ovd(a) is not finite G is isomorphic to Z. - If ord(a) = m, $m \in \mathbb{Z}$, then G is Isomorphic to 7/m7/