Density Parameters

Add more functions in 'density_formula.py'

1. Sphere:

- rho_1 density of sphere
- radius_1 radius of sphere

2. Cylinder:

- rho_1 density of cylinder
- radius_1 radius of cylinder
- Length (z_dim) length of cylinder

Make sure z_dim = 2*radius_1

3. Core Shell:

- rho_1 inside density
- rho_2 outside density
- radius_1 radius of the outside of the cylinder
- radius_2 radius where the density changes inside the cylinder
- Length (z_dim) length of cylinder

4. Gaussian cylinder:

- radius_1 The distance from the centre to the edge of the box.
- radius_2 standard deviation of the distribution
- Length (z_dim) length of cylinder

5. Chopped Cone:

- radius_1 furthest from detector (-Z direction)
- radius_2 closest to detector (+Z direction)

radius_1 must be greater than radius_2!!!! (just rotate it by 180 degrees if you need to.)

- rho 1 density inside the chopped cone
- Length (z_dim) length of the cone

6. Hexagonal Prism:

- radius_1 the the distance from the centre to the corner
- Length (z_dim) length of the prism
- rho_1 density inside the prism

7. Rectangular Prism:

- radius_1 width
- radius_2 height

radius_1 must be greater than radius_2!!!!!

• Length (z_dim) – length

• rho 1 – density inside the prism

8. String of bubbles:

- radius_1 radius of the bubbles
- radius_2 distance between the centres of two bubbles
- rho_1 density inside the bubble

9. Randomly chopped up cylinder:

- radius_1 radius of cylinder
- radius_2 width of the gap
- rho_1 density inside the chopped cone
- rho_2 number of gaps

10. Custom defined radius:

- How to enter data:
 - o make a txt file.
 - Open it and put in ONE NUMBER PER LINE IN METERS!!
 - o rename it to 'custom.csv'
- How the function works:
 - The program opens 'custom.csv' as a list.
 - Each element is given a value from
 -z_dim/2 to z_dim/2 at equal increments
 - The first element will be at -z_dim/2 (away from detector)
 - The last element will be at z_dim/2 (closest to detector)
 - A linear fit goes between two adjacent points in the list
- Length (z_dim) length of shape.
- rho 1 density inside the shape

11. Double Slit

Consider the outside and inside edges of the slits.

- radius_1 distance between the outsides of the slits
- radius_2 distance between the insides of the two slits.
- Length (z_dim) length of slits
- If you want to make the slits less wide, make a sequence with one frame, the variable y_dim, and enter the height of the slits into start sequence.

12. N-Gon Truncated Cone.

It starts as an n-gon at one end, and goes to a smaller n-gon at the far end.

- radius_1 On the large n-gon, it is the distance from the origin to a point
- radius_2 On the small n-gon, it is the distance from the origin to a point.
- Length (z_dim) length of shape
- rho_1 density of points inside the shape
- rho_2 number of sides (i.e. a hexa-cone would have 6 sides, octa-cone would have 8 sides)

13. Sine Shaped Oscillations

- z-dim length of shape
- radius_1 distance from origin to a peak
- radius_2 distance from origin to a trough
- rho_1 density inside the shape.
- rho_2 number of oscillations

14. Double Cone

- z-dim length of shape
- radius_1 Radius at the ends
- radius_2 Radius in the centre

Analytic Parameters

Add more in 'analytic_formula.py'

1. Sphere:

- rho_1 density of sphere
- radius 1 radius of sphere

2. Cylinder:

- rho_1 density of cylinder
- radius 1 radius of cylinder

3. Core Shell:

- rho_1 inside density
- rho_2 outside density
- radius 1 radius of the outside of the cylinder
- radius 2 radius where the density changes inside the cylinder

4. Gaussian:

- radius_1 distance from the centre to the edge of the box.
- radius_2 standard deviation of the distribution