Pierwsza seria zadań trudniejszych z RP2, 2009/2010

Termin oddawania rozwiązań: 13 XI 2009

- 1. Dane są ciągi (X_n) , (Y_n) zmiennych losowych spełniających warunki
- (i) rozkład X_n nie zależy od n,
- (ii) (X_n, Y_n) zbiega według rozkładu do (X, Y).

Udowodnić, że dla dowolnej funkcji borelowskiej $\phi : \mathbb{R} \to \mathbb{R}$, ciąg $((\phi(X_n), Y_n))$ zbiega według rozkładu do $(\phi(X), Y)$. Co jeśli opuścimy założenie (i)?

2. Dany jest ciąg (X_n) zmiennych losowych, przy czym dla $n \geq 1$ zmienna X_n ma rozkład z gęstością

$$g_n(x) = n^{-1} \sinh(x) e^{(1-\cosh x)/n} 1_{[0,\infty)}(x).$$

- (i) Udowodnić, że ciąg $(\log(\cosh X_n) \log n)$ jest zbieżny według rozkładu i wyznaczyć rozkład graniczny.
- (ii) Wywnioskować stąd, że ciąg $(\frac{X_n}{\log n})$ zbiega do 1 według prawdopodobieństwa.