Predicting Employee Salary Based on Experience

Background:

In the corporate world, employee compensation is a crucial factor for both the employers and the employees. Determining a fair and competitive salary based on an employee's experience is important for maintaining job satisfaction, motivation, and retention. This dataset contains data on employees' years of experience and their corresponding salaries.

Objective:

The objective of this analysis is to build a predictive model that can accurately forecast an employee's salary based on their years of experience. This model will help in understanding the salary trends related to experience and assist companies in establishing fair compensation practices.

Dataset Description:

The dataset consists of the following columns:

- 1. Experience_Years: Number of years of experience the employee has.
- 2. Salary: Salary of the employee (in dollars).

Importing libraries

What does the code aim to achieve?

Importing data

```
In [6]: h=pd.read_csv("salary_exp.csv")
In [7]: h
```

:47 PM F				
Out[7]:		Experience Years	Salar y	
	0	1.1	39343	
	1	1.2	42774	
	2	1.3	46205	
	3	1.5	37731	
	4	2.0	43525	
	5	2.2	39891	
	6	2.5	48266	
	7	2.9	56642	
	8	3.0	60150	
	9	3.2	54445	
	10	3.2	64445	
	11	3.5	60000	
	12	3.7	57189	
	13	3.8	60200	
	14	3.9	63218	
	15	4.0	55794	
	16	4.0	56957	
	17	4.1	57081	
	18	4.3	59095	
	19	4.5	61111	
	20	4.7	64500	
	21	4.9	67938	
	22	5.1	66029	
	23	5.3	83088	
	24	5.5	82200	
	25	5.9	81363	
	26	6.0	93940	
	27	6.2	91000	
	28	6.5	90000	
	29	6.8	91738	
	30	7.1	98273	

31

32

7.9 101302

8.2 113812

	Experience Years	Salar y
33	8.5	111620
34	8.7	109431
35	9.0	105582
36	9.5	116969
37	9.6	112635
38	10.3	122391
39	10.5	121872

Data columns

```
In [9]: h.columns
Out[9]: Index(['Experience Years', 'Salary'], dtype='object')
```

Checking shape of dataset

```
In [11]: h.shape
Out[11]: (40, 2)
```

We can see that our dataset consists of 40 observations and 2 rows only. These are very small dataset as it is created randomly to show how we can build a regression model.

Checking dataset Information

Checking count

```
h.count()
In [16]:
```

Out[16]: Experience Years 40
Salary 40

dtype: int64

We observed that there are no missing values are present in our dataset.

Why is linear regression chosen for this scenario?

Model Building

Splitting of dataset into Independent and Dependent variables.

```
In [28]: x=h.iloc[:,:-1].values
y=h.iloc[:,1].values
```

Independent variable

A variable (often denoted by x) whose variation does not depend on that of another.

```
In [31]: x
```

```
Out[31]: array([[ 1.1],
                 1.2],
               Γ
                  1.3],
               1.5],
               [ 2. ],
               2.2],
               2.5],
               2.9],
               [ 3. ],
               3.2],
               [
                  3.2],
               3.5],
               3.7],
               3.8],
               3.9],
               4. ],
                 4. ],
               [
                  4.1],
               4.3],
               4.5],
               4.7],
               [
                  4.9],
               5.1],
               5.3],
               5.5],
               5.9],
               [ 6. ],
                 6.2],
               6.5],
               [
               6.8],
                  7.1],
               7.9],
               8.2],
               8.5],
                 8.7],
               [ 9. ],
                 9.5],
               [
                  9.6],
               [
               [10.3],
               [10.5]])
```

Dependent variable

A variable (often denoted by y) whose value depends on that of another.

Plotting Scatter plot to check relationship between Independent variable and Dependent variable

import matplotlib.pyplot as plt
In [37]:

plt.scatter(x,y,color="orange")

Out[37]: <matplotlib.collections.PathCollection at 0x15bfb865350>

We observed that the Independent and Dependent variables are linearly related to each other.

Splitting dataset for training set and testing set

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.33,random_state

Displaying x_train

In [41]:

x_train
In [43]:

```
Out[43]: array([[10.5],
                 7.1],
               Γ
                 8.7],
               4.],
                 9.5],
               [ 3. ],
               3.8],
               2.2],
               4.1],
                  3.9],
               [
                 8.5],
               2.9],
               8.2],
               1.2],
               [ 6. ],
                 3.7],
               7.9],
               [
                 5.5],
               2.5],
               5.3],
                 4.9],
               Γ
               [
                 4.5],
               [3.2],
               [10.3],
               [1.5],
               [ 1.1]])
```

Displaying y_train

Displaying x_test

```
In [50]: x_test

Out[50]: array([[5.1],
[4.7], [5.9], [2. ],
[3.2], [4. ], [6.5],
[3.5], [4.3], [6.8],
[6.2], [9. ], [9.6],
[1.3]])
```

Displaying y_test

```
y_test
In [53]:

Out[53]: array([ 66029, 64500, 81363, 43525, 64445, 55794, 90000, 60000, 59095, 91738, 91000, 105582, 112635, 46205], dtype=int64)
```

Fitting Simple Linear regression to the training set

```
from sklearn.linear_model import LinearRegression regressor =
In [56]:

LinearRegression() regressor.fit(x_train,y_train)

Out[56]: 
LinearRegression
LinearRegression()
```

Linear regression analysis is used to predict the value of a variable based on the value of another variable.

Predicting the Test set results

```
y_pred = regressor.predict(x_test)
In [59]:
```

Displaying y_pred (Predicted salary)

Displaying y_test (Real salary)

```
y_test
In [65]:
Out[65]: array([ 66029, 64500, 81363, 43525, 64445, 55794, 90000, 60000, 59095, 91738, 91000, 105582, 112635, 46205], dtype=int64)
```

Calculating Error

```
error= y_pred - y_test
In [68]:
```

error

```
Out[68]: array([ 8744.24876271, 6350.52528566, 1255.69571679, 847.14181561, -8304.68775326, 8191.75920083, -1497.21906764, -917.64514547, 7832.80180862, -293.17645986, -5439.26167542, 7437.80266389, 6268.88787946, -8697.62426922])
```

What insights can be gained from the fitting line in the scatter plot?

Visualizing the training set results

```
In [72]: plt.scatter(x_train,y_train,color="red")
    plt.plot(x_train,regressor.predict(x_train),color="green")
    plt.title("Salary VS Experience(Training Set)")
    plt.xlabel("Years of Experience")
    plt.ylabel("Salary")
    plt.show()
```


Visualizing the testing set results

```
In [75]: plt.scatter(x_test,y_test,color="red")
  plt.plot(x_train,regressor.predict(x_train),color="green")
  plt.title("Salary VS Experience(Training Set)")
  plt.xlabel("Years of Experience")
```

```
plt.ylabel("Salary")
plt.show()
```


Calculating Intercept and Coefficient

Intercept:

It represents the mean value of the response variable when all the predictor variables in the model are equal to zero.

Coefficient:

Coefficients are the values that multiply the predictor values.

```
In [78]: print(regressor.coef_)
    print(regressor.intercept_)

       [9806.80869261]
       24758.52443038839

In [80]: y_test.shape

Out[80]: (14,)

In [82]: y_pred.shape
```

Out[82]: (14,)

Regressor:

Regressor is a statistical term.It refers to any variable in a regression model that is used to predict a response variable.

```
In [84]: regressor.predict([[5.7]])
Out[84]: array([80657.33397827])
```

What do Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) represent in this context?

Mean Squared Error:

Mean squared error measures the average squared difference between predicted and actual values.

Root Mean Squared Error:

It measures the average difference between values predicted by a model and the actual values.

Model Evaluation

```
In [59]: from sklearn.metrics import r2_score from
    sklearn.metrics import mean_squared_error rmse =
    np.sqrt(mean_squared_error(y_test,y_pred)) r2 =
    r2_score(y_test,y_pred) print("RMSE =", rmse)
    print("R2 Score=",r2)
```

RMSE = 6091.7673348888875 R2 Score= 0.9148126520965504

Conclusion

Here, We build a regression model and check the model RMSE which is equal to 6091.7673348888875. We also checked for R2 score of our model which is equal to 0.9148126520965504 or 91%. Which is a very good R2 score.