Chapter 1

1.1 Martingales

p.s. for a probability space.

r.v. for a random variable.

Definition 1.1

For a p.s. $(\Omega, \mathcal{F}_0, P)$ a σ -field $\mathcal{F} \subset \mathcal{F}_0$ and a r.v. $X \in \mathcal{F}_0$ with $E|X| < \infty$. We define the conditional expectation of X given \mathcal{F} , $E(X|\mathcal{F})$ to be any r.v. Y that has a. $Y \in \mathcal{F}$.

b. $\int_A X dP = \int_A Y dP$ for all $A \in \mathcal{F}$. and Y is said to be a version of $E(X|\mathcal{F})$.

.

Lemma 1.1

If Y satisfies (a),(b) above, then it is integrable.

Proof

We know

$$\int_{\{Y>0\}} Y dP = \int_{\{Y>0\}} X dP < \infty \int_{\{Y<0\}} Y dP = \int_{\{Y<0\}} X dP < \infty$$

and hence $\int |Y| dP$ finite.

Lemma 1.2

If Y' also satisfies (a),(b) in Def.1.1., then Y = Y' a.s.

Proof

Assume
$$E_n=\{Y'-Y>n^{-1}\}, F_n=\{Y-Y'>n^{-1}\}, n\in\mathbb{N},$$
 then we know
$$n^{-1}P(E_n)\leq \int_{E_n}(Y-Y')dP=\int_{E_n}YdP-\int_{E_n}Y'dP=0$$

and hence $P(E_n)=0$ for any $n\in\mathbb{N}$, similarly, we know $P(F_n)=0$ for any $n\in\mathbb{N}$, therefore, Y=Y' a.s.

Theorem 1.1

If
$$X_1 = X_2$$
 on $B \in \mathcal{F}$ then $E(X_1|\mathcal{F}) = E(X_2|\mathcal{F})$ a.s. on B .

Proof

For any $E \subset B$, we have

$$0 = \int_{\{E(X_1|\mathcal{F}) - E(X_2|\mathcal{F}) > n^{-1}\} \cap E} (X_1 - X_2) dP \ge n^{-1} P(\{E(X_1|\mathcal{F}) - E(X_2|\mathcal{F}) > n^{-1}\} \cap E)$$

and the rest is similar.

Theorem 1.2

$$E(X|\mathcal{F})$$
 exists.

 \sim

Proof

Define $\nu(E)=\int_E XdP$ for $E\in\mathcal{F}$ and we know $\nu\ll P$ and hence there exists $Y\in\mathcal{F}$ such that

$$\int_{E} Y dP = \nu(E) = \int_{E} X dP$$

for all $E \in \mathcal{F}$ by Radon-Nikodym's Theorem.

Example 1.1 a. If $X \in \mathcal{F}$, then $E(X|\mathcal{F}) = X$.

- b. If X is independent to \mathcal{F} , i.e. $P(\{X \in B\} \cap A) = P(X \in B)P(A)$, then X is independent to χ_A for any $A \in \mathcal{F}$ and hence $E(X|\mathcal{F}) = EX$.
- c. Suppose $\Omega_1, \Omega_2, \cdots$ is a finite or infinite partition of Ω into disjoint sets, with $P(\Omega_i) > 0, i \geq 1$ and then let $\mathcal{F} = \sigma(\Omega_1, \Omega_2, \cdots)$ and then

$$E(X|\mathcal{F}) = \frac{E(X;\Omega_i)}{P(\Omega_i)}$$
 on Ω_i

d. Suppose X,Y have joint density f(x,y) i.e.,

$$P((X,Y) \in B) = \int_{B} f(x,y) dx dy$$
 for $B \in \mathbb{R}^{2}$

then if $E|g(X)| < \infty$, then E(g(X)|Y) = h(Y), where

$$h(y) = \int g(x)f(x,y)dx / \int f(x,y)dx$$

on $\{(x,y), \int f(x,y)dx > 0\}$, and hence a.s.

e. Suppose X and Y are independent, let ϕ be a function with $E|\phi(X,Y)|<\infty$ and let $g(x)=E(\phi(x,Y))$, then $E(\phi(X,Y)|X)=g(X)$.

Proof

c. By the $\pi - \lambda$ theorem, it suffices to show that

$$\int_A X dP = \int_A Y dP$$

for any $A \in \{\bigcup_{1 < i < n} \Omega_i\}$ where Y was defined as above.

d. Firstly, we recall any simple function $\phi \geq 0$ will cause $\int \phi(x,y)dy$ is measurable since $\int \phi(x,y)dy = \nu(E_y)$ when $\phi = \chi_E$ and then we know for any $g \geq 0$, $\int g(x)f(x,y)dy$ is measurable and then $\int g(x)f(x,y)dy$ is measurable for general g, then we will know $h(Y) \in \sigma(Y)$.

Consider $A \in \sigma(Y)$, where $A = \{Y \in B\}$, then

$$E(h(Y);A) = \int_{Y \in B} h(y)f(x,y)dxdy = \int_{B} \int h(y)f(x,y)dxdy = \int_{B} \int g(x)f(x,y)dxdy = E(g(X);A)$$

and the conclusion goes.

e. We know $g(X) \in \sigma(X)$ and then for any $A = \{X \in B\}$, we will know

$$E(g(X); A) = \int_{B} g(x)dx = \int_{B} \int \phi(x, y)dydx = E(\phi(X, Y); A)$$

and hence $E(\phi(X,Y)|X) = g(X)$.

Definition 1.2

Denote

$$P(A|\mathcal{G}) = E(1_A|\mathcal{G})$$
$$P(A|B) = P(A \cap B)/P(B)$$

and $E(X|Y) = E(X|\sigma(Y))$.

Theorem 1.3

For the first two parts, we assume $E|X|, E|Y| < \infty$.

- (a) $E(aX + Y|\mathcal{F}) = aE(X|\mathcal{F}) + E(Y|\mathcal{F}).$
- (b) If $X \leq Y$ then $E(X|\mathcal{F}) \leq E(Y|\mathcal{F})$.
- (c) If $X_n \geq 0$ and $X_n \uparrow X$ with $EX < \infty$ then $E(X_n | \mathcal{F}) \uparrow E(X | \mathcal{F})$.

Theorem 1.4

If ϕ is convew and $E[X], E[\phi(X)] < \infty$ then

$$\phi(E(X|\mathcal{F})) \le E(\phi(X)|\mathcal{F})$$

Proof

Let
$$S=\{(a,b): a,b\in\mathbb{Q}, ax+b\leq\phi(x) \text{ for all } x\}$$
, then $\phi(x)=\sup\{ax+b: (a,b)\in S\}$. And we know
$$E(\phi(X)|\mathcal{F})\geq aE(X|\mathcal{F})+b$$

and hence $E(\phi(X)|\mathcal{F}) \ge \phi(E(X|\mathcal{F}))$.

Theorem 1.5

Conditional expectation is a contraction in L^p , $p \ge 1$.

 \odot

Proof

By Theorem 1.5., we have $|E|(X|\mathcal{F})|^p \leq E(|X|^p|\mathcal{F})$, then we know

$$E(|E(X|\mathcal{F})|^p) \le E(E(|X|^p|\mathcal{F})) = E|X|^p$$

Theorem 1.6

If $\mathcal{F} \subset \mathcal{G}$ and $E(X|\mathcal{G}) \in \mathcal{F}$, then $E(X|\mathcal{F}) = E(X|\mathcal{G})$.

m

Theorem 1.7

If $\mathcal{F}_1 \subset \mathcal{F}_2$ then

(i)
$$E(E(X|\mathcal{F}_1)|\mathcal{F}_2) = E(X|\mathcal{F}_1)$$

(ii)
$$E(E(X|\mathcal{F}_2)|\mathcal{F}_1) = E(X|\mathcal{F}_1)$$

 \sim

Proof

For $A \in \mathcal{F}_1$, we know

$$\int_A E(E(X|\mathcal{F}_1)|\mathcal{F}_2)dP = \int_A E(X|\mathcal{F}_1)dP = \int_A XdP$$

$$\int_A E(E(X|\mathcal{F}_2)|\mathcal{F}_1)dP = \int_A E(X|\mathcal{F}_2)dP = \int_A XDP$$

therefore, the equalities go.

Theorem 1.8

If $X \in \mathcal{F}$ and $E|Y|, E|XY| < \infty$ then

$$E(XY|\mathcal{F}) = XE(Y|\mathcal{F})$$

 \sim

Proof

For any $X,Y\geq 0$, assume $\phi_n\uparrow X$ simple, then we know $\phi_nY\uparrow XY$ and then

$$\int_A E(\chi_B Y|\mathcal{F}) = \int_A \chi_B Y dP = \int_{AB} Y dP = \int_{AB} E(Y|\mathcal{F}) dP = \int_A \chi_B E(Y|\mathcal{F})$$

for any $A, B \in \mathcal{F}$ and hence $E(\chi_B Y | \mathcal{F}) = \chi_B E(Y | \mathcal{F})$ for any $B \in \mathcal{F}$, therefore, we know $E(\phi_n Y | \mathcal{F}) = \phi_n E(Y | \mathcal{F})$. By theorem 1.3 we know $E(\phi_n T | \mathcal{F}) \uparrow E(XY | \mathcal{F})$ and hence $E(XY | \mathcal{F}) = XE(Y | \mathcal{F})$, so for any $X \in \mathcal{F}, E|Y| < \infty$, $E|XY| < \infty$, we can consider the positive and negative parts and the conclusion goes.

Theorem 1.9

Suppose $EX^2 < \infty$. $E(X|\mathcal{F})$ is the variable $Y \in \mathcal{F}$ that minimizes the "mean square error" $E(X-Y)^2$.

 \Diamond

Proof

If $Z \in L^2(\mathcal{F})$, then

$$ZE(X|\mathcal{F}) = E(ZX|\mathcal{F})$$

then we know

$$E(ZE(X|\mathcal{F})) = E(E(ZX|\mathcal{F})) = E(ZX)$$

and hence $E(Z(X - E(X|\mathcal{F}))) = 0$ for any $Z \in L^2(\mathcal{F})$.

*

If
$$Z = E(X|\mathcal{F}) - Y$$
, then

$$E(X - Y)^{2} = E(X - E(X|\mathcal{F}) + Z)^{2} = E(X - E(X|\mathcal{F}))^{2} + EZ^{2}$$

and hence $E(X - Y)^2$ are minimal when $Y = E(X|\mathcal{F})$.

Definition 1.3

Let (Ω, \mathcal{F}, P) be a probability space, $X : (\Omega, \mathcal{F}) \to (S, \mathcal{S})$ and \mathcal{G} a σ -algebra contained by \mathcal{F} . $\mu : \Omega \times \mathcal{S} \to [0, 1]$ is said to be a regular conditional distribution for X given \mathcal{G} if

- a. For each A, $\omega \to \mu(\omega, A)$ is a version of $P(X \in A|\mathcal{G})$.
- b. For a.e. ω , $A \to \mu(\omega, A)$ is a probability measure on (S, \mathcal{S}) .

When $S = \Omega$ and X is the identity map, μ is called a regular condition probability.

Proposition 1.1

Suppose X and Y have a joint density f(x,y) > 0. If

$$\mu(y,A) = \int_A f(x,y)dx / \int f(x,y)dx$$

then $\mu(Y(\omega), A)$ is a r.c.d for X given $\sigma(Y)$.

Proof

Here we know $X:(\Omega.\mathcal{F})\to(\mathbb{R},\mathcal{R})$, so we should check:

- a. $\mu(Y(\omega), A) = \int_A f(x, Y(\omega)) dx / \int f(x, Y(\omega)) dx$ is a version of $P(X \in A|Y)$.
- b. For a.e. ω , $\mu_{Y(\omega)}(A) = \mu(Y(\omega), A)$ is a probability measure on $(\mathbb{R}, \mathcal{R})$.

To see the first claim, consider

$$\int_{Y \in B} P(X \in A|Y)dP = \int_{Y \in B} \chi_{X \in A} dP = \int_{B} \int_{A} f(x,y) dx dy$$

$$= \int_{A} \int_{B} f(x,y) dy dx$$

$$= \int_{B} \int_{A} f(x,y) dx dy$$

$$= \int_{B} \int \int_{A} f(x,y) dx / \int f(x,y) dx f(x,y) dx dy = \int_{Y \in B} \mu(Y(\omega), A) dP$$

and the second claim is trivial.

Theorem 1.10

Let $\mu(\omega, A)$ be a r.c.d for X given \mathcal{F} . If $f:(S, \mathcal{S}) \to (\mathbb{R}, \mathcal{R})$ has $E|f(X)| < \infty$ then

$$E(f(x)|\mathcal{F}) = \int \mu(\omega, dx) f(x)$$
 a.s.

Proof

Consider $f = \chi_A$ for some A mrb in \mathcal{R} , then $\int \mu(\omega, dx) f(x) = \mu(\omega, A) = P(X \in A|\mathcal{F})$ and hence the equality holds for all simple functions, then the problem goes.

Here we skip some properties of regular conditional distribution and continue to martingale.

Definition 1.4

 \mathcal{F}_n is a filtration, i.e. an increasing sequence of σ -fields. A sequence X_n is said to be adapted to \mathcal{F}_n if $X_n \in \mathcal{F}_n$ for all n. If X_n is sequence with

- a. $E|X_n| < \infty$.
- b. X_n is adapted to \mathcal{F}_n .
- c. $E(X_{n+1}|\mathcal{F}_n) = X_n$ for all n then X is said to be a martingale (resp to \mathcal{F}_n). If we replace the equality into \leq or \geq , then X is said to be a supermartingale or submartingale.

Example 1.2 (Random walk)Let ξ_1, ξ_2, \cdots be independent and id.d, $S_n = S_0 + \sum_{i=1}^n \xi_i$ where S_0 is a constant. $\mathcal{F}_n = \sigma(\xi_1, \dots, \xi_n)$ and take $\mathcal{F}_0 = \{\emptyset, \Omega\}$.

a. If $\mu = E\xi_i = 0$ then $S_n, n \ge 0$ is a martingale with respect to \mathcal{F}_n .

b. $\mu=E\xi_i=0$ and $\sigma^2=\mathrm{var}(\xi_i)<\infty$, then $S_n^2-n\sigma^2$ is a martingale.

Proof

a. Notice $E|S_n|<\infty, n\geq 0$, for any $A\in\mathcal{F}_n$, then notice

$$E(S_{n+1}|\mathcal{F}_n) = E(\xi_{n+1}|\mathcal{F}_n) + S_n = E\xi_{n+1} + S_n = S_n$$

b. Notice that $E|S_n - n\sigma^2| < \infty$, and

$$E(S_{n+1}^2 - (n+1)\sigma^2 | \mathcal{F}) = S_n^2 - (n+1)\sigma^2 + \sigma^2 = S_n^2 - n\sigma^2$$

Example 1.3 Let Y_1, Y_2, \cdots be nonnegative i.i.d r.v.s with $EY_m = 1$. If $\mathcal{F}_n = \sigma(Y_1, \cdots, Y_n)$, then $M_n = \prod_{m \leq n} Y_m$ defines a martingale.

Then assume $\phi(\theta) = Ee^{\theta \xi_i}, Y_i = e^{\theta \xi_i}/\phi(\theta)$, then we know $M_n = e^{\theta S_n}/\phi(\theta)^n$.

Theorem 1.11

If X_n is a (super-/sub-)martingale then for n > m, $E(X_n | \mathcal{F}_m) \le (\ge / =) X_m$.

Proof Notice

$$E(X_{m+k}|\mathcal{F}_m) = E(E(X_{m+k}|\mathcal{F}_{m+k-1})|\mathcal{F}_m) \le E(X_{m+k-1}|\mathcal{F}_m)$$

the rest proof is similar.

Theorem 1.12

If X_n is a martingale w.r.t. \mathcal{F}_n and ϕ is a convex function with $E|\phi(X_n)| < \infty$ for all n then $\phi(X_n)$ is a submartingale w.r.t. \mathcal{F}_n . Consequently, if $p \geq 1$ and $E|X_n|^p < \infty$ for all n, then $|X_n|^p$ is a submartingale w.r.t. \mathcal{F}_n .

Proof Notice

$$E(\phi(X_{n+1})|\mathcal{F}_n) \ge \phi(E(X_{n+1})|\mathcal{F}_n) = \phi(X_n)$$

and the problem goes.

Theorem 1.13

If X_n is a submartingale w.r.t. \mathcal{F}_n and ϕ is an increasing convex function with $E|\phi(X_n)| < \infty$ for all n, then $\phi(X_n)$ is a submartingale w.r.t. \mathcal{F}_n . Consequently

a. If X_n is a submartingale then $(X_n - a)^+$ is a submartingale.

b. If X_n is a supermartingale then $\min(X_n, a)$ is a supermartingale.

Proof Notice

$$E(\phi(X_{n+1})|\mathcal{F}_n) \ge \phi(E(X_{n+1})|\mathcal{F}_n) \ge \phi(X_n)$$

then (a) is easy to be checked and hence (b) is correct.

Definition 1.5

Let $\mathcal{F}_n, n \geq 0$ be a filtration. $H_n, n \geq 1$ is said to be a predictable sequence if $H_n \in \mathcal{F}_{n-1}$ for all $n \geq 1$.

Definition 1.6

We denote

$$(H \cdot X)_n = \sum_{m=1}^n H_m(X_m - X_{m-1})$$

Let $X_n, n \ge 0$ be a supermartingale. If $H_n \ge 0$ is predictable and each H_n is bounded then $(H \cdot X)_n$ is a supermartingale.

Proof Consider

$$E((H \cdot X)_{n+1} | \mathcal{F}_n) = E(\sum_{m=1}^{n+1} H_m(X_m - X_{m-1}) | \mathcal{F}_n) = (H \cdot X)_n + E(X_{n+1} | \mathcal{F}_n) - X_n \le (H \cdot X)_n$$

Definition 1.7

A r.v. N is said to be a stopping time if $\{N = n\}$ in \mathcal{F}_n for all $n > \infty$.

4

Theorem 1.15

If N is a stopping time and X_n is a supermartingale, then $X_{N \wedge n}$ is a supermartingale.

 $^{\circ}$

Proof Consider

$$E(X_{N \wedge n+1} | \mathcal{F}_n) = E(X_{n+1} \chi_{N \geq n+1} + \sum_{k=0}^n X_k \chi_{N=k} | \mathcal{F}_n) \le \chi_{N \geq n+1} X_n + \sum_{k=0}^n X_k \chi_{N=k} = X_{N \wedge n}$$

Definition 1.8

Suppose $X_n, n \ge 0$ is a submartingale. Let $a < b, N_0 = -1$ and for $k \ge 1$ let

$$N_{2k-1} = \inf\{m > N_{2k-2}, X_m \le a\}$$
$$N_{2k} = \inf\{m > N_{2k-1}, X_m > b\}$$

The N_i are stopping times so

$$H_m = \begin{cases} 1 & \text{if } N_{2k-1} < m \le N_{2k} \text{ for some } k \\ 0 & \text{otherwise} \end{cases}$$

defines a predictable sequence.

Proof

Notice

$$\{N_{2k-1}=n\}=\bigcup_{0\leq m\leq n-1}\{N_{2k-2}=m\}\cap (\bigcap_{n-1-m\geq k\geq 0}\{X_{m+k}>a\})\cap \{X_n\leq a\}$$

and

$$\{N_{2k} = n\} = \bigcup_{0 \le m \le n-1} \{N_{2k-1} = m\} \cap (\bigcap_{n-1-m \ge k \ge 0} \{X_{m+k} < b\}) \cap \{X_n \ge b\}$$

and hence N_{2k-1}, N_{2k} are stopping times by induction.

And notice

$$\{N_{2k-1} < m \le N_{2k} \text{ for some } k\} = \bigcup_{k \ge 0} \{N_{2k-1} \le m-1\} \cap \{N_{2k} \ge m\} \in \mathcal{F}_{m-1}$$

and hence H_m is predictable.

Theorem 1.16

(Upcoming inequality) If $X_m, m \geq 0$, is a submartingale then

$$(b-a)EU_n \le E(X_n-a)^+ - E(X_0-a)^+$$

where $U_n = \sup\{k, N_{2k} \le n\}$.

 \sim

Proof

Here we assume $Y_m = a + (X_m - a)^+$ and we have

$$(b-a)U_n \leq (H \cdot Y)_n$$

let $K_m = 1 - H_m$ and then we know that $(K \cdot X)_n$ is a submartingale and then

$$E(K \cdot X)_n \ge E(K \cdot X)_0 = 0$$

so we know

$$E(H \cdot Y)_n \le E(Y_n - Y_0) = E(X_n - a)^+ - E(X_0 - a)^+$$

since $Y_n - Y_0 = (H \cdot Y)_n + (K \cdot Y)_n$

Theorem 1.17

(Martingale convergence theorem) If X_n is a submartingale with $\sup EX_n^+ < \infty$ then as $n \to \infty$, X_n converges a.s. to a limit X with $E|X| < \infty$.

Proof

We know $(X - a)^+ \le X^+ + |a|$, then we know

$$EU_n \le (|a| + EX_n^+)/(b-a)$$

so $\sup X_n^+$ will imply than $EU < \infty$ where $U = \lim U_n$ and hence for all rational a, b, we know

$$P(\{\liminf X_n < a < b < \limsup X_n\}) = 0$$

and hence $\lim X_n$ exists a.s. and $EX^+ \leq \lim \inf EX_n^+ < \infty$ and hence $X < +\infty$ a.s. and notice

$$EX_n^- = EX_n^+ - EX_n \le EX_n^+ - EX_0$$

and hence $EX^- \leq \liminf EX_n^- \leq \liminf EX_n^+ - EX_0 < \infty$ therefore $E|X| < \infty$.

Theorem 1.18

If $X_n \geq 0$ is a supermartingale then as $n \to \infty$, $X_n \to X$ a.s. and $EX \leq EX_0$.

 \sim

Proof

Let $Y_n = -X_n$ and hence a submartingale with $EY_n^+ = 0$, then we know $X_n \to X$ a.s. and we also have

$$EX \le \liminf EX_n^+ \le EX_0$$

Proposition 1.2

The theorem 1.18, provide a method to show that a.s. convergence does not guarantee convergence in L^1 .

•

Proof

Let S_n be a symmetric simple random walk with $S_0 = 1$ and $P(\xi_i = 1) = P(\xi_i = -1) = \frac{1}{2}$, let $N = \inf\{n : S_n = 0\}$ and $X_n = S_{N \wedge n}$. Then we know X_n nonnegative and $EX_n = EX_0 = 1$ since X_n is a martingale, then we know $X_n \to X$ where X is some r.v. and hence X = 0, because there is no way to converge to others and hence X_n do not converge to X in L^1 .

Proposition 1.3

Convergence in probability do not guarantee convergence a.s.

Proof

Let $X_0 = 0$ and $P(X_k = 1 | X_{k-1} = 0) = P(X_k = -1 | X_{k-1} = 0) = \frac{1}{2k}$, $P(X_k = 0 | X_{k-1} = 0) = 1 - \frac{1}{k}$ and $P(X_k = k X_{k-1} | X_{k-1} \neq 0) = \frac{1}{k}$, $P(X_k = 0 | X_{k-1} \neq 0) = 1 - \frac{1}{k}$, then we know $X_k \to 0$ in probability, but $P(X_k = 0, k \geq K)$ and it picks discrete values and hence X_k can not converge to 0 a.s.

Let X_1, X_2, \cdots be a martingale with $|X_{n+1} - X_n| \leq M < \infty$. Let

 $C = \{\lim X_n \text{ exists and is finite}\}$

$$D = \{ \limsup X_n = +\infty \text{ and } \liminf X_n = -\infty \}$$

Then $P(C \cup D) = 1$.

0

Proof We may assume that $X_0 = 0$ and then for $K \ge 0$ denote

$$N = \inf\{n, X_n \le -K\}$$

then we know $X_{n \wedge N}$ is a martingale since

$$E(X_{(n+1)\wedge N}|\mathcal{F}_n) = E(X_{n+1}\chi_{N>n+1} + X_N\chi_{N< n}|\mathcal{F}_n) = X_N\chi_{N< n} + X_n\chi_{N>n+1} = X_{n\wedge N}$$

and $X_{n\wedge N}\geq -K-M$ and hence $X_{n\wedge N}+K+M\geq 0$ and we may know $X_{n\wedge N}$ will converges to X a.s. with X finite. So if $\liminf X_n>-\infty$, then we know there exists K large enough such that $N=\infty$ and hence X_n will converges to a finite limit on $\{\liminf X_n>-\infty\}$. For $\limsup X_n$ consider $N=\inf\{x,X_n\geq K\}$ with $K+M-X_{n\wedge N}$ will converges and the $\limsup X_n$ will exists and be finite on $\{\limsup X_n=+\infty\}$ and hence the conclusion holds.

Theorem 1.20

(Doob's decomposition) Any submartingale X_n , $n \ge 0$ can be written in a unique way as $X_n = M_n + A_n$ where M_n is a martingale and A_n is a predictable increasing sequence with $A_0 = 0$.

Proof If so we know

$$E(X_{n+1}|\mathcal{F}_n) = M_n + A_{n+1} = X_n - A_n + A_{n+1}$$

and hence set

$$A_n = \sum_{k=1}^{n} (E(X_k | \mathcal{F}_{k-1}) - X_{k-1})$$

and

$$M_k = X_k - A_k$$

then it is easy to check A_n is predictable increasing sequence and

$$E(M_{n+1}|\mathcal{F}_n) = E(X_{n+1} - \sum_{k=1}^{n+1} (E(X_k|\mathcal{F}_{k-1}) - X_{k-1})|\mathcal{F}_n) = X_n - A_n = M_n$$

Theorem 1.21

(Second Borel-Cantelli lemma) Let \mathcal{F}_n , $n \geq 0$ be a filtration with $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and let B_n , $n \geq 1$ a sequence of events with $B_n \in \mathcal{F}_n$. Then

$$\{B_n, i.o.\} = \{\sum_{n=1}^{\infty} P(B_n | \mathcal{F}_{n-1}) = \infty\}$$

Proof We know

$$\sum_{i=1}^{\infty} \chi_{B_i} = \infty$$

on $\{B_n \ i.o.\}$ and we know

$$\chi_{B_n} = M_n + \sum_{k=1}^n (E(\chi_{B_k} | \mathcal{F}_{k-1}) - \chi_{B_{k-1}})$$

and hence

$$M_n = \sum_{i=1}^n \chi_{B_i} - \sum_{i=1}^n E(\chi_{B_i} | \mathcal{F}_{i-1})$$

is a martingale. Then we know

$$EM_n = EX_0 < \infty$$

which means M_n is a martingale with bounded increments and we know

$$\{B_n \ i.o.\} = \{\sum P(B_n | \mathcal{F}_{n-1}) = \infty\}$$

on both part of Ω .

Example 1.4 (Polya's Urn Scheme) An urn contains r red and g green balls. At each time we draw a ball out, then replact it with c balls with the same color. Let X_n be the fraction of green balls after the n^{th} draw.

Proof

 X_n is a martingale because assume \mathcal{F}_n is is consisting by $E_{i,j} = \{\text{There are } i \text{ green balls and } j \text{ red balls in the urn.} \}$ and it suffices to show that

$$\frac{j}{i+j}P(E_{i,j}) = \int_{E_{i,j}} E(X_{n+1}|\mathcal{F}_n)$$

where we know

$$X_{n+1} = \begin{cases} (j+c)/(i+j+c) & \text{with probability } j/(i+j) \\ (j)/(i+j+c) & \text{with probability } i/(i+j) \end{cases}$$

and the equality is easy to be checked. Since $X_n \ge 0$, then we know X_n will converges to X.

Theorem 1.22

Assume μ is a finite measure and ν a probability measure on (ω, \mathcal{F}) with $\mathcal{F}_n \uparrow \mathcal{F}$, i.e. $\sigma(\bigcup \mathcal{F}_n) = \mathcal{F}$ and μ_n, ν_n are the restrictions on \mathcal{F}_n of μ, ν . Suppose $\mu_n \leq \nu_n$ for all n. Let $X_n = \frac{d\mu_n}{d\nu_n}$ and let $X = \limsup X_n$, then

$$\mu(A) = \int_A X d\nu + \mu(A \cap \{X = \infty\})$$

for any $A \in \mathcal{F}$.

 \Diamond

Proof

We should show a lemma at first.

Lemma 1.3

 X_n defined on $(\Omega, \mathcal{F}, \nu)$ is a martingale w.r.t. \mathcal{F}_n .

 \odot

Proof

For any $A \in \mathcal{F}_n$, we know

$$\int_{A} X_n d\nu = \int_{A} X_n d\nu_n = \mu_n(A) = \mu(A)$$

and which means $\int_A X_n d\nu = \int_A X_{n+1} d\nu$ for any $A \in \mathcal{F}_n$.

Now let's come back to the proof of the original theorem.

Now we know X_n is a nonnegative martingale on $(\Omega, \mathcal{F}, \nu)$ and hence $X_n \to X$ ν -a.s. Without loss of the generality, we may assume μ is a probability measure and let $\rho = (\mu + \nu)/2$, then we know $\mu \ll \nu \ll \rho$ and similarly define ρ_n and $Y_n = d\mu_n/d\rho_n$, $Z_n = d\nu_n/d\rho_n$ and $Y_n + Z_n = 2$, $Y_n, Z_n \ge 0$ ρ_n -a.s. By the lemma, we will know that Y_n, Z_n are bounded martingales and we may assume they have limits Y, Z.

Notice for $A \in \mathcal{F}_n$, we have

$$\mu(A) = \int_A Y_n d\rho \to \int_A Y d\rho$$

by the DCT and hence $\mu(A)=\int_A Y d\rho$ for all $A\in\bigcup_m \mathcal{F}_m$ and we will know $\mu(A)=\int_A Y d\rho$ for $A\in\mathcal{F}$ by the $\pi-\lambda$ theorem and hence $Y=d\mu/d\rho$, then we will know $Z=d\nu/d\rho$. Then notice

$$0 = \int_{\{Z_n = 0\}} Z_n d\rho_n = \nu_n(\{Z_n = 0\})$$

and hence $\int_{Z_n=0} Y_n d\rho_n = \mu_n(\{Z_n=0\}) = 0$, which means $Y_n=0$ ρ -a.s. on $\{Z_n=0\}$ which means $Z_n>0$ a.s. since

 $\{Y_n=Z_n=0\}$ is ho-null. Then we know $X_n=Y_n/Z_n$ ho-a.s. and hence X=Y/Z ho-a.s. and hence ν -a.s. Let $W=(1/Z)\chi_{Z>0}$ and then $1=ZW+\chi_{Z=0}$ and we have

$$\mu(A) = \int_A YWZd\rho + \int_A \chi_{Z=0}Yd\rho = \int_A Xd\nu + \mu(A \cap \{X = \infty\})$$

since $\nu(\{Z=0\})=\int_{\{Z=0\}}Zd\rho=0$ and $\{X=\infty\}=\{Z=0\}$ ρ -a.s. and hence μ -a.s.

Definition 1.9

Let $\xi_i^n, i, n \geq 1$ be i.i.d. nonnegative integer-valued r.v.s and define

$$Z_{n+1} = \begin{cases} \xi_1^{n+1} + \dots + \xi_{Z_n}^{n+1} & Z_n > 0\\ 0 & Z_n = 0 \end{cases}$$

where $Z_0 = 1$ and Z_n is called a Galton – Watson process, $p_k = P(\xi_i^n = k)$ is called the offspring distribution.

l.

Lemma 1.4

Let
$$\mathcal{F}_n = \sigma(\xi_i^m : i \geq 1, 1 \leq m \leq n)$$
 and $\mu = E\xi_i^m \in (0, \infty)$, then Z_n/μ^n is a martingale w.r.t. \mathcal{F}_n .

Proof We know

$$E(Z_{n+1}/\mu^{n+1}|\mathcal{F}_n) = E(\sum_{i=1}^{n} \chi_{Z_n=k} \sum_{i=1}^{k} \xi_i^{n+1})/\mu^{n+1} = k\chi_{Z_n=k}/\mu^n = Z_n/\mu^n$$

Theorem 1.23

If $\mu < 1$ then $Z_n = 0$ for all n sufficiently large, so $Z_n/\mu^n \to 0$.

Proof

 $E(Z_n/\mu^n) = E(Z_0) = 1$ and hence

$$P(Z_n > 0) \le \mu^n$$

and hence

$$P(Z_n > 0 \ i.o.) = 0$$

by the Borel-Cantelli's theorem, which means $Z_n = 0$ for all n sufficiently large almost surely.

Theorem 1.24

If $\mu = 1$ and $P(\xi_i^m = 1) < 1$, then $Z_n = 0$ for all n sufficiently large.

Proof

 $2P(Z_n > 1) \le \mu^n$ and hence $Z_n \le 1$ for all n sufficiently large almost surely, and the $Z_n = 0$ for all n sufficiently large will not happen iff $Z_n = 1$ for all n sufficiently large, which owns the probability of 0 and hence the conclusion holds.

Definition 1.10

For $s \in [0,1]$, let $\phi(s) = \sum_{k \geq 0} p_k s^k$ and ϕ is called the generating function for the offspring distribution p_k .

Theorem 1.25

Suppose $\mu > 1$. If $Z_0 = 1$ then $P(Z_n = 0 \text{ for some } n) = \rho$ which is the only solution of $\phi(\rho) = \rho$ in [0,1).

Proof

Firstly let us show the existence. We can calculate

$$\phi'(s) = \sum k p_k s^{k-1}$$

by some methods in real analysis and hence $\phi'(s) > h + \epsilon$ for some $\epsilon > 0$ near 1 and hence there have to be a point in

[0,1) such that $\phi(\rho) = \rho$ since $\phi(0) \ge 0$. And ϕ' is increasing strictly on [0,1) guaranteeing that the point is unique.

Then consider $\theta_m = P(Z_m = 0)$, then $\theta_m = \phi(\theta_{m-1})$ which can be implied by consider $Z_1 = k$ separately.

Then notice $\theta_0 = 0$ and then $\theta_m \le \rho$ may implie that $\theta_{m+1} = \phi(\theta_m) \le \phi(\rho) \le \rho$ and hence $\phi(\theta_m) \ge \theta_m$, which means θ_m is increasing, then we know $\theta_m \uparrow \rho$.

Theorem 1.26

If X_n is a submartingale and N is a stopping time with $P(N \le k) = 1$, then

$$EX_0 \leq EX_N \leq EX_k$$

Proof

We know that $X_{N \wedge n}$ is a submartingale, since

$$E(X_{N \wedge (n+1)} | \mathcal{F}_n) = \chi_{N > n} E(X_{n+1} | \mathcal{F}_n) + \sum_{i=0}^n \chi_{N=i} X_i \ge \chi_{N > n} X_n + \sum_{i=0}^n \chi_{N=i} X_i = X_{N \wedge n}$$

so

$$EX_0 = EX_{N \wedge 0} \leq EX_{N \wedge K} = EX_k$$

Similarly, we let $K_n = \chi_{N < n}$ and we know

$$E[(K \cdot X)_{n+1} | \mathcal{F}_n] = E[(\sum_{i=1}^{n+1} K_i(X_i - X_{i-1})) | \mathcal{F}_n] = (K \cdot X)_n + K_{n+1} E(X_{n+1} - X_n | \mathcal{F}_n) \ge (K \cdot X)_n$$

and hence $(K \cdot X)_m$ becomes a submartingale. And notice $(K \cdot X)_m = X_m - X_{N \wedge m}$ and hence

$$EX_k - EX_{N \wedge k} = EX_k - EX_N \ge E(K \cdot X)_0 = 0$$

Theorem 1.27

(Doob's inequality)Let X_m be a submartingale,

$$\bar{X}_n = \max_{0 \le m \le n} X_m^+$$

and let $\lambda > 0, A = \{\bar{X}_n \geq \lambda\}$, then

$$\lambda P(A) \le EX_n \chi_A \le EX_n^+$$

Proof

Let $N = \inf\{m, X_m \ge \lambda\} \land n$ and it is easy to check that N is a stopping time, since we know $X_N \ge \lambda$ on A and by theorem 1.26, we know

$$\lambda P(A) \le EX_N \chi_A \le EX_n \chi_A$$

since

$$EX_N\chi_{A^c} = EX_n\chi_{A^c}$$

and the second inequality is trivial.

Theorem 1.28

(L^p maximum inequality) If X_n is a submartingale, then for $1 <math display="block">E(\bar{X}_n^p) \le \left(\frac{p}{p-1}\right)^p E(X_n^+)^p$

$$E(\bar{X}_n^p) \le \left(\frac{p}{n-1}\right)^p E(X_n^+)^p$$

Consequently, if Y_n is a martingale and $Y_n^* = \max_{0 \le m \le n} |Y_m|$, we have

$$E|Y_n^*|^p \le \left(\frac{p}{n-1}\right)^p E(|Y_n|^p)$$

Proof We may know that

$$E[(\bar{X}_n \wedge M)^p] = \int_0^\infty p\alpha^{p-1}P(\bar{X}_n \wedge M \ge \alpha)d\alpha$$

$$\le p\int_0^\infty \alpha^{p-1}(\alpha^{-1}\int X_n^+\chi_{(\bar{X}_n \wedge M)\ge \alpha}dP)d\alpha$$

$$= \int p\int \alpha^{p-2}\chi_{(\bar{X}_n \wedge M)\ge \alpha}d\alpha X_n^+dP$$

$$= \int \left(\frac{p}{p-1}X_n^+(\bar{X}_n \wedge M)^{p-1}\right)dP$$

$$= \left(\frac{p}{p-1}\right)(E(X_n^+)^p)^{1/p}(E((\bar{X}_n \wedge M)^{p-1})^{p'})^{1/p'}$$

and hence the inequality holds. For the latter consequence, notice we have $|Y_n|$ is a submartingale by the Jensen's inequality, and hence we may use the first inequality to $|Y_n|$ and the inequality holds.

Theorem 1.29

(L^p convergence theorem) If X_n is a martingale with $\sup E|X_n|^p < \infty$ where p > 1, then $X_n \to X$ a.s. and in L^p .

Proof It is easy to check that $\sup EX_n^+$ is finite and we may use the Martingale convergence theorem to X_n and hence there exists X such that $X_n \to X$ a.s. Also we may know that

$$E(X_n^*) * p \le \left(\frac{p}{p-1}\right)^p E|X_n|^p < M$$

for some positive constant M and by the MCT, we know $\sup |X_n| \in L^p$ and hence we may use the DCT to X_n and hence $X_n \to X$ in L^p .

Theorem 1.30

(Orthogonality of martingale increments) Let X_n be a martingale with $EX_n^2 < \infty$ for all n. If $m \le n$ and $Y \in \mathcal{F}_m$ has $EY^2 < \infty$ then

$$E((X_n - X_m)Y) = 0$$

and hence if l < m < n

$$E((X_n - X_m)(X_m - X_l)) = 0$$

Proof We know

$$E|(X_n - X_m)Y| < \infty$$

Then we know

$$E((X_n - X_m)Y) = E[E((X_n - X_m)Y | \mathcal{F}_m)] = E(YE(X_n - X_m | \mathcal{F}_m)) = 0$$

Theorem 1.31

(Conditional variance formula) If X_n is a martingale with $EX_n^2 < \infty$ for all n,

$$E((X_n - X_m)^2 | \mathcal{F}_m) = E(X_n^2 | F_m) - X_m^2$$

Definition 1.11

Assume X_n is a martingale with $X_0 = 0$ and $EX_n^2 < \infty$ for all n, then we know X_n^2 is a submartingale and by Doob's decomposition we may write

$$X_n^2 = M_n + A_n$$

with M_n a marignale and

$$A_n = \sum_{m=1}^{n} E((X_m - X_{m-1})^2 | F_{m-1})$$

and then A_n is called the increasing process associated with X_n .

Theorem 1.32

$$E(\sup_m |X_m|^2) \le 4EA_\infty$$
 where $A_\infty = \lim_{n\to\infty} A_n$.

Proof We know

$$E|X_n^*|^2 \le 4E(X_n^2)$$

by the L^p maximum inequality and notice

$$E(A_n) = E(X_n^2) - E(M_n) = E(X_n^2) - E(X_0^2) = E(X_n^2)$$

and the rest is by the MCT.

Theorem 1.33

 $\lim_{n\to\infty} X_n$ exists and is finite a.s. on $\{A_\infty < \infty\}$.

Proof Let $N = \inf\{n, A_{n+1} > a^2\}$ and N will be a stopping time. Then we know $X_{N \wedge n}$ will be a martingale and we know the increasing process of $X_{N \wedge n}$ will be $A_{N \wedge n}$ and hence

$$E(\sup X_{N\wedge n}^2) \le 4a^2$$

and then we know $X_{N \wedge n}$ converges a.s. and in L^2 , since on $A_{\infty} < a^2$, there exists b^2 such that $X_{N \wedge n} = X_n$, so we know $\lim X_n$ exists a.s. on $A_{\infty} < a^2$, let $n \in \mathbb{N}$ and the conclusion holds.

Definition 1.12

A collection of r.v.s X_i , $i \in I$ is uniformly integrable if

$$\lim_{M \to \infty} \left(\sup_{i \in I} E(|X_i|; |X_i| > M) \right) = 0$$

Theorem 1.34

Given a probability space $(\Omega, \mathcal{F}_0, P)$ and an $X \in L^1$ then $\{E(X|\mathcal{F}), \mathcal{F} \text{ is a } \sigma\text{-field} \subset \mathcal{F}_0\}$ is uniformly integrable.

Proof For any $\epsilon > 0$, we know there exists M such that $E|X|/M < \delta$, and for any $A, P(A) < \delta$, we have $E(|X|;A) < \epsilon$, now we notice

$$|E(X|\mathcal{F})| \le E(|X||\mathcal{F})$$

by the Jensen's inequality and hence we know

$$E(|E(X|\mathcal{F})|;|E(X|\mathcal{F})| > M) \le E(E(|X||\mathcal{F});E(|X||\mathcal{F}) > M) = E(|X|;E(|X||\mathcal{F}) > M)$$

and then

$$P\{E(|X||\mathcal{F}) > M\} \le E|X|/M < \delta$$

and hence

$$E(|E(X|\mathcal{F})|; |E(X|\mathcal{F})| > M) < \epsilon$$

for any \mathcal{F} .

Let $\phi \geq 0$ be any function with $\phi(x)/x \to \infty$ as $x \to \infty$. If $E\phi(|X_i|) \leq C$ for all $i \in I$, then $\{X_i, i \in I\}$ is uniformly integrable.

Proof Let $\epsilon_M = \sup\{x/\phi(x), x \geq M\}$, then for $i \in I$

$$E(|X_i|;|X_i|>M) \le \epsilon_M E(\phi(|X_i|);|X_i|>M) \le C\epsilon_M$$

and $\epsilon_M \to 0$ as $M \to \infty$.

Suppose that $E|X_n| < \infty$ for all n. If $X_n \to X$ in probability then the following are equivalent

- a. $\{X_n, n \geq 0\}$ is uniformly integrable.
- b. $X_n \to X$ in L^1 .
- $c. E|X_n| \to E|X| < \infty.$

C

Proof (i) \Longrightarrow (ii). Let $\phi_M(x) = sgn(x)M$ if |x| > M else $\phi_M(x) = x$ and we know

$$|\phi_M(Y) - Y| = (|Y| - M)^+ \le |Y|\chi_{|Y| > M}$$

and we know

$$E|X_n - X| \le E|\phi_M(X_n) - \phi_M(X)| + E(|X_n|; |X_n| > M) + E(|X|; |X| > M)$$

by the triangle inequality. Then it is easy to check $\phi_M(X_n) \to \phi(X)$ in probability, then since $\phi_M(X_n) - \phi(X)$ is bounded, we know

$$E|\phi_M(X_n) - \phi_M(X)$$

converges to 0. Then by the Fatou's lemma we know $E|X| < \infty$ and the rest is easy to be check by choosing M large.

- $(ii) \Longrightarrow (iii)$. Trivial
- (iii) \Longrightarrow (i). Let ϕ_M be x when $x \in [0, M-1]$ and 0 on $[M, \infty)$, the rest is linear. We know $E\phi_M(|X|) \to E|X|$ by the DCT and it is easy to check that $E\phi_M(|X_n|) \to E\phi_M(|X|)$. Then

$$E(|X_n|;|X_n| > M) \le E|X_n| - E\phi_M(|X_n|) \le E|X| - E\phi_M(|X|) < \epsilon$$

for M, n large enough.

Theorem 1.37

For a submartingale, the following are equivalent

- a. It is uniformly integrable
- b. It converges a.s. and in L^1 .
- c. It converges in L^1 .

 $^{\circ}$

Proof (i) \Longrightarrow (ii). We know $\sup E|X_n| < \infty$ so the martingale convergence theorem implies $X_n \to X$ a.s. and hence in probability, which implies that the convergence in L^1 by theorem 1.36. (ii) \Longrightarrow (iii) is trivial.

(iii) \Longrightarrow (i). Convergence in L^1 implies convergence in probability, and the rest is due to Theorem 1.36.

Lemma 1.5

If integrable random variables $X_n \to X$ in L^1 , then

$$E(X_n; A) \to E(X; A)$$

 \bigcirc

Proof We know

$$|EX_m\chi_A - EX\chi_A \le E|X_m\chi_A - X\chi_A| \le E|X_m - X| \to 0$$

Lemma 1.6

If a martingale $X_n \to X$ in L^1 then $X_n = E(X|\mathcal{F}_n)$.

 \sim

Proof We know

$$E(X_m|\mathcal{F}_n) = X_n$$

for any m > n, and hence for $A \in \mathcal{F}_n$, we know $E(X_n; A) = E(X_m; A)$. However, $E(X_n; A) \to E(X; A)$, so we know $E(X_n; A) = E(X; A)$ for any $A \in \mathcal{F}_n$ and hence $X_n = E(X | \mathcal{F}_n)$.

For a martingale, the following are equivalent

- a. It is uniformly integrable
- b. It converges a.s. and in L^1
- c. It converges in L^1
- d. There is an integrable random variable X such that $X_n = E(X|\mathcal{F}_n)$.

\sim

Theorem 1.39

Suppose $\mathcal{F}_n \uparrow \mathcal{F}_{\infty}$ then

$$E(X|\mathcal{F}_n) \to E(X|\mathcal{F}_\infty)$$
 a.s.and in L^1

Proof We know $Y_n = E(X|\mathcal{F}_n)$ is a martingale and uniformly integrable, so Y_n converges a.s. and in L^1 to Y and we know

$$\int_A X = \int_A Y$$

for any $A \in \mathcal{F}_n$, then we may use the $\pi - \lambda$ theorem to show that for any $A \in \mathcal{F}_{\infty}$ the equality holds, so $Y = E(X|\mathcal{F}_{\infty})$ since Y is \mathcal{F}_{∞} measurable.

Theorem 1.40

(Levy 0-1 Law) If $\mathcal{F}_n \uparrow \mathcal{F}_\infty$ and $A \in \mathcal{F}_\infty$ then $E(\chi_A | \mathcal{F}_n) \to \chi_A$ a.s.

\sim

Theorem 1.41

(DCT for conditional expectations) Suppose $Y_n \to Y$ a.s. and $|Y_n| \le Z$ for all n where $EZ < \infty$. If $\mathcal{F}_n \uparrow \mathcal{F}_\infty$ then

$$E(Y_n|\mathcal{F}_n) \to E(Y|\mathcal{F}_\infty) \ a.s.$$

Proof Let $W_N = \sup\{|Y_n - Y_m| : n, m \ge N\}$ and we know $W_N \le 2Z$, and

$$\limsup_{n \to \infty} E(|Y_n - Y||\mathcal{F}_n) \le \lim_{n \to \infty} E(W_N | \mathcal{F}_n) = E(W_N | \mathcal{F}_\infty)$$

since $W_N \downarrow 0$ a.s. and we know

$$E(W_N|\mathcal{F}_{\infty})\downarrow 0$$

by theorem 1.3.c and hence

$$|E(Y_n|\mathcal{F}_n) - E(Y|\mathcal{F}_n)| \le E(|Y_n - Y||\mathcal{F}_n) \to 0$$

by Jensen's ineq. Also $E(Y|\mathcal{F}_n) \to E(Y|\mathcal{F}_\infty)$ by theorem 1.39. So the rest is easy to be checked.

Theorem 1.42

If X_n is a uniformly integrable submartingale then for any stopping time N, $X_{N \wedge n}$ is uniformly integrable.

 \sim

Proof We know X_n^+ is a submartingale and then

$$EX_{N\wedge n}^+ \le EX_n^+$$

by theorem 1.26. Notice X_n^+ is uniformly integrable and hence

$$\sup_{n\geq 0} EX_{N\wedge n}^+ \leq \sup_{n\geq 0} EX_n^+ < \infty$$

So we know $X_{N \wedge n} \to X_N$ where $X_{\infty} = \lim X_n$ and $E[X_N] < \infty$. Then

$$E(|X_{N \wedge n}|; |X_{N \wedge n}| > K) = E(|X_N|; |X_N > K, N \le n) + E(|X_n|; |X_n| > K, N > n)$$

and the rest is easy to be checked.

If $E|X_N| < \infty$ and $X_n \chi_{N>n}$ is uniformly integrable, then $X_{N \wedge n}$ is uniformly integrable and hence $EX_0 \leq EX_N$.

Proof Notice

$$E(|X_{N \wedge n}|; |X_{N \wedge n}| > K) = E(|X_N|; |X_N > K, N \le n) + E(|X_n|; |X_n| > K, N > n)$$

Theorem 1.44

If X_n is a uniformly integrable submartingale then for any stopping time $N \le \infty$, we have $EX_0 \le EX_N \le EX_\infty$, where $X_\infty = \lim X_n$.

Proof We know

$$EX_0 \le E_{N \wedge n} \le EX_n$$

and since $X_n \to X_\infty$ in L^1 and $X_{N \wedge n} \to X_N$ in L^1 and the rest is easy to be checked.

Theorem 1.45

If X_n is a nonnegative supermartingale and $N \leq \infty$ is a stopping time, then $EX_0 \geq EX_N$ where $X_\infty = \lim X_n$.

Proof $X_{[\infty]} = \lim X_n$ exists by the martingale convergence theorem. By Fatou's lemma

$$EX_0 \ge \liminf EX_{N \wedge n} \ge X_N$$

Theorem 1.46

Suppose X_n is a submartingale and $E(|X_{n+1}-X_n|\mathcal{F}_n)\leq B$ a.s. If N is a stopping time with $EN<\infty$ then $X_{N\wedge n}$ is uniformly integrable and hence $EX_N\geq EX_0$.

Proof We know

$$|X_{N \wedge n}| \le |X_0| + \sum_{m=0} |X_{m+1} - X_m| \chi_{N > m}$$

Notice

$$E(|X_{m+1} - X_m|; N > m) = E(E(|X_{m+1} - X_m||\mathcal{F}_m); N > m) \le BP(N > m)$$

and hence

$$E\sum_{m=0} |X_{m+1} - X_m| \chi_{N>m} = BEN$$

and the rest is easy to be checked.