Final SY09 Printemps 2020

- Répondre de manière manuscrite sur des feuilles au format A4.
- Chaque feuille doit comporter vos nom, prénom et signature.
- La qualité de la présentation sera prise en compte dans la notation.

Exercice 1 (3 points)

On dispose d'un ensemble de trois individus mesurés par deux variables quantitatives. En effectuant l'ACP sur ces données, on obtient les axes factoriels

$$\mathbf{u}_1 = (0.816, -0.578)^T$$
 et $\mathbf{u}_2 = (-0.578, -0.816)^T$,

et les composantes principales

$$\mathbf{c}_1 = (-3.03, -1.97, 5)^T$$
 et $\mathbf{c}_2 = (0.916, -1.06, 0.139)^T$.

1. Reconstituer le tableau X_c des données centrées.

3. Sachant que les moyennes des variables initiales X_1 et X_2 étaient respectivement 5 et 4, déterminer le tableau de données initial.

Exercice 2 (2 points)

À la suite d'une analyse ascendante hiérarchique, on obtient la hiérarchie indicée suivante.

1. Placer les 4 points sur l'axe ainsi que leur inter-distance de telle sorte qu'une analyse ascendante hiérarchique avec le critére d'agrégation minimum donne la hiérarchie indicée ci-dessus.

2. On souhaite à présent faire une CAH avec le critère d'agrégation maximum. Quel est l'indice de l'ensemble $\{A,D\}$? Justifier.

Exercice 3 (2 points)

On dispose d'une matrice de distance (ci-dessous, à gauche) portant sur 4 éléments, A, B, C et D. À la suite d'une AFTD projetée en dimension 2, on obtient la représentation suivante (ci-dessous, à droite).

	A	В	С	D
A	0.00	1.80	4.00	0.39
В	1.80	0.00	2.58	3.22
\mathbf{C}	4.00	2.58	0.00	1.06
D	0.39	3.22	1.06	0.00

1. Tracer le diagramme de Shepard ; quel est le couple de points le moins bien représenté lors de la projection ?

Exercice 4 (3 points)

1. On considère cette fois 6 points situés dans le plan. On applique l'algorithme des centres mobiles avec 2 centres initiaux repérés dans l'étape L_0 par 2 carrés. Donner la suite des autres étapes en entourant à chaque fois les points constituant chaque groupement et en dénotant par un carré les 2 centres courants.

Exercice 5 (5 points)
On considère un problème de discrimination à $g=2$ classes gaussiennes caractérisées par les paramètres suivants :
$\boldsymbol{X} \omega_k \sim \mathcal{N}(\mu_k, \Sigma_k), \mu_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \Sigma_1 = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}, \mu_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}, \Sigma_2 = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix};$
1. Donner l'expression de la règle de décision optimale au sens de Neyman-Pearson. Quelle est la

forme de la frontière de décision? On l'exprimera en fonction de x_1, x_2 et on calculera la valeur exacte du seuil critique.
-
On suppose que les classes sont présentes en proportions π_1 et $\pi_2 = 1 - \pi_1$, connues. Calculer la règle de décision optimale au sens de Bayes, et exprimer la frontière en fonction de x_1 et x_2 .
Calculer la probabilité d'erreur de Bayes ε^* , puis de la règle de Neyman-Pearson ε_{NP} , pour $\pi_1 = \pi_2 = 1/2$.

Exercice 6 (4 points)

On considère un problème de discrimination à deux classes (avec ω_1 la classe « triangle », et ω_2 la classe « carré »); la figure 1 représente la partition associée à un arbre binaire de classification en cours de construction.

represer	ntera les nœud	is en tes nume	TOTANI AANS	i orare aans le	quei us sont (riees par i aigor	rınm
Quelle e	est la complex	ité $\xi(\mathcal{A})$ de l'a	arbre \mathcal{A} ains	i obtenu?			
Dans l'a	arbre complets terminales;	t, calculer le quelle est la r	gain (en ten noins inform	rmes d'indice	de Gini) po	ur chacune de	s tro

FIGURE 1 – Partition induite par un arbre en cours de construction.

Exercice 7 (7 points)

Dans le cadre d'un contrôle de qualité, on cherche à prédire si des briques de lait ont été correctement pasteurisées ou non : pour ce faire, on mesure le nombre de spores X de clostridium botulinum présentes dans une quantité de liquide donnée (fixe) après pasteurisation. On suppose que X suit une loi de Poisson dépendant du fait que la pasteurisation est correcte (Z=1) ou non (Z=0) :

$$p_k(x) = \mathbb{P}(X = x | Z = k) = \exp(-\lambda_k) \frac{(\lambda_k)^x}{x!}, \text{ pour } k = 1, 0.$$

On note également $\pi = \mathbb{P}(Z=1)$ la probabilité que la pasteurisation est a priori correcte. On cherche à mettre en œuvre une stratégie permettant de détecter les erreurs de pasteurisation basée sur des mesures de X sur des échantillons pris au hasard. On veut pour cela apprendre les paramètres λ_1 , λ_0 et π permettant de discriminer les deux classes. On dispose pour cela d'un ensemble d'apprentissage $(x_1, z_1), \ldots, (x_n, z_n)$, où $x_i \in \mathbb{N}$ correspond à la mesure du nombre de spores effectuée sur le i^{e} tube à essai, et $z_i \in \{1,0\}$ indique la qualité de pasteurisation.

. Calcular respicts som de la probabilité i (x - x, z - z), en ioneción de $p_1(x)$ et $p_0(x)$, π et z.

3. En déduire $\mathbb{P}(X=x)$ puis $\mathbb{P}(Z=z|X=x)$.

	Calculer la log-vraisemblance jointe ln $L(\theta;(x_1,z_1),\ldots,(x_n,z_n))$, où $\theta=(\pi,\lambda_1,\lambda_0)$.
ó.	Calculer les estimateurs du maximum de vraisemblance des paramètres λ_1 et λ_0 .
	On supposera maintenant qu'on ne compte plus le nombre x de spores dans un volume de lait on se contente seulement d'identifier la présence $(y=1)$ ou l'absence $(y=0)$ de spores dans c même volume. Comment peut-on adapter la stratégie de décision développée ci-dessus ? (On n demande de faire aucun calcul.)