

DIRECTION DE l'ORIENTATION ET DES EXAMENS (DOREX)

Concours CAE session 2013

Composition : **Mathématiques 1** (algèbre, analyse)

Durée : 2 Heures

Le sujet comporte quatre (4) exercices indépendants. Les calculatrices ne sont pas autorisées.

Exercice N°1:

 $\mathbb{C}[X]$ désigne l'ensemble des polynômes à coefficients complexes. Soit $P=X^3+X-1$ un polynôme de $\mathbb{C}[X]$. On note x_k avec $k \in \{1, 2, 3\}$, les trois racines complexes de P.

- 1. Vérifier (sans chercher à les calculer) que les trois racines de P sont distinctes.
- 2. En utilisant la division euclidienne de X^5 par P, calculer la valeur de la somme :

$$S = x_1^5 + x_2^5 + x_3^5$$

Exercice N°2:

Soit la fonction g définie sur par :

$$g(x) = \int_{x}^{2x} \frac{\cos t}{t} dt$$

- 1. Montrer que la fonction g est définie et dérivable sur \mathbb{R}^* .
- 2. Etudier la parité de g.
- 3. Montrer que pour tout $x \in [0, \pi/2], 1-x^2 \le \cos x \le 1$.
- 4. Prolonger g par continuité en 0 et montrer que g ainsi prolongée est dérivable en 0.
- 5. Calculer:

$$\lim_{x\to+\infty}g(x)$$

Exercice N°3:

Soit f une fonction définie de $[0,+\infty[$ dans $\mathbb R$, continue, décroissante et telle que :

$$\lim_{x\to +\infty} f(x) = 0.$$

Pour tout entier nature l n, on pose :

$$u_n = \int_{n\pi}^{(n+1)\pi} f(t) \sin t \ dt \quad et \quad J = \int_0^{+\infty} f(t) \sin t \ dt .$$

- 1. Montrer que la série de terme général u_n est une série alternée.
- 2. Montrer que : $|u_n| \le \pi f(n\pi)$.
- 3. Montrer que la série de terme général u_n est convergente.
- 4. Montrer que l'intégrale I est convergente et calculer sa valeur pour $f(x) = e^{-x}$.

Exercice N°4:

On désigne par $M_2(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre 2 à coefficients réels. On donne la matrice A suivante :

$$A = \begin{pmatrix} 3 & -1 \\ 6 & -2 \end{pmatrix}$$

et on définit l'application ϕ_A de $M_2(\mathbb{R})$ dans $M_2(\mathbb{R})$ par :

$$\forall M \in M_2(\mathbb{R}), \ \phi_A(M) = AM - MA$$

- 1. Calculer A^2 . En déduire un polynôme annulateur de A, le plus simple possible.
- 2. Prouver que A est diagonalisable et déterminer une matrice inversible P de $M_2(\mathbb{R})$ et une matrice diagonale D de $M_2(\mathbb{R})$ dont la première colonne est nulle telles que :

$$A = PDP^{-1}$$

Donner la matrice P^{-1} .

- 3. Montrer que ϕ_A est un endomorphisme de $M_2(\mathbb{R})$.
- 4. Etablir que $X^3 X$ est un polynôme annulateur de ϕ_A . En déduire les valeurs propres possibles de ϕ_A .
- 5. Montrer que la matrice M est un vecteur propre de ϕ_A associé à la valeur propre λ si et seulement si la matrice $N = P^{-1}MP$ est non nulle et vérifie l'équation :

$$DN - ND = \lambda N$$

6. On pose :
$$N = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$$
 et $B = \begin{pmatrix} -2 & 1 \\ -6 & 3 \end{pmatrix}$.

- a. Trouver l'ensemble des matrices N telles que DN ND = 0.
- b. En déduire que la famille (A, B) est une base de $Ker\phi_A$, le sous-espace propre de ϕ_A associé à la valeur propre 0.
- c. Déterminer les deux autres valeurs propres non nulles λ_1 et λ_2 de ϕ_A et caractériser les matrices N associées.
- d. Déterminer une base de chaque sous-espace propre $V(\lambda_1)$ et $V(\lambda_2)$ de ϕ_A associé aux valeurs propres λ_1 et λ_2 .
- 7. L'endomorphisme ϕ_A est-il diagonalisable ?