Homework 5

Mitchel Fields

March 4, 2016

Part 1

S_n	S_{n+1}
S_0	S_1
S_1	S_2
S_2	S_3
S_3	S_4
S_4	S_5
S_5	S_2
S_6	S_7
S_7	S_6

 $8\ \mathrm{states}$ means $3\ \mathrm{bits}.$

o states mea						
S_n	S_{n+1}					
S_0	110					
S_1	100					
S_2	000					
S_3	001					
S_4	011					
S_5	010					
S_6	101					
S_7	111					

Q_2^n	Q_1^n	Q_0^n	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}
1	1	0	1	0	0
1	0	0	0	0	0
0	0	0	0	0	1
0	0	1	0	1	1
0	1	1	0	1	0
0	1	0	0	0	0
1	0	1	1	1	1
1	1	1	1	0	1

$$D_{2} = Q_{2}(Q_{1} + Q_{0})$$

$$D_{1} = Q_{0}(\overline{Q_{1}} + \overline{Q_{2}})$$

$$D_{0} = \overline{Q_{2}}.\overline{Q_{1}} + Q_{2}Q_{0}$$

Q_2^n	Q_1^n	Q_0^n	R	Y	G
1	1	0	1	0	0
1	0	0	1	0	0
0	0	0	0	0	1
0	0	1	0	1	0
0	1	1	1	0	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	1	0	0

```
Python simulation:
Q2 = 1
Q1 = 1
Q0 = 1
def NOT( a ):
    return 1 - a
for step in range( 20 ):
    D2 = Q2 \& (Q1 | Q0)
    D1 = Q0 \& (NOT(Q2) | NOT(Q1))
    D0 = (NOT(Q2) \& NOT(Q1)) | (Q2 \& Q0)
    \begin{array}{lll} R = & (Q2 \& NOT(Q0)) & | & Q1 \\ Y = & NOT(Q2) \& & (Q1 & Q0) \end{array}
    G = NOT(Q2) \& NOT(Q1) \& NOT(Q0)
    (Q2, Q1, Q0, R, Y, G)
    input ( ">-" )
    Q0 = D0
    Q1 = D1
    Q2 = D2
```

```
Q2 Q1 Q0 = 1 1 0 | R Y G = 1 0 0
Q2 Q1 Q0 = 1 0 0 | R Y G = 1 0 0
Q2 Q1 Q0 = 0 0 0 | R Y G = 0 0 1
Q2 Q1 Q0 = 0 0 1 | R Y G = 0 1 0
Q2 Q1 Q0 = 0 1 1 | R Y G = 1 0 0
Q2 Q1 Q0 = 0 1 0 | R Y G = 1 1 0
Q2 Q1 Q0 = 0 0 0 | R Y G = 0 0 1
Q2 Q1 Q0 = 0 0 1 | R Y G = 0 1 0
Q2 Q1 Q0 = 0 1 1 | R Y G = 1 0 0
Q2 Q1 Q0 = 0 1 0 | R Y G = 1 1 0
Q2 Q1 Q0 = 1 0 1 | R Y G = 0 0 0
Q2 Q1 Q0 = 1 1 1 | R Y G = 1 0 0
Q2 Q1 Q0 = 1 0 1 | R Y G = 0 0 0
Q2 Q1 Q0 = 1 1 1 | R Y G = 1 0 0
Q2 Q1 Q0 = 1 0 1 | R Y G = 0 0 0
Q2 Q1 Q0 = 1 1 1 | R Y G = 1 0 0
Q2 Q1 Q0 = 1 0 1 | R Y G = 0 0 0
```


Part 2

There are 4 ways to connect S_6 or S_7 to another state by changing only one bit: $101 \rightarrow 100, \ 101 \rightarrow 001, \ 111 \rightarrow 110, \ and \ 111 \rightarrow 011$ Of these options, only $101 \rightarrow 001$ reduces the number of covers in a Karnaugh map of the affected bits.

Becomes:

The result changes the equation for D_2 from $D_2 = Q_2(Q_1 + Q_0)$ to $D_2 = Q_2Q_1$. The adjusted circuit diagram is as follows:

