Design and Analysis of Algorithms

Presented by Dr. Li Ning

Shenzhen Institutes of Advanced Technology, Chinese Academy of Science Shenzhen, China

Divide and Conquer

- 1 Revisit: Merge Sort
- 2 Example: The Maximum-Subarray Problem
- 3 The Paradigm of Divide and Conquer
- 4 Find The Lost Number
- 5 Matrix Multiplication
- 6 Find The Medians
- 7 The Fast Fourier Transform

Revisit: Merge Sort

```
m = \lfloor (|A| - 1)/2 \rfloor;

B = A[0, ..., m];

C = A[m + 1, ..., |A| - 1];

B = MergeSort(B);

C = MergeSort(C);

A = Merge(B, C);
```

```
0 1 2 3 0 1 2 3 4
m = |(|A| - 1)/2|;
B = A[0, ..., m];
C = A[m+1,...,|A|-1];
B = MergeSort(B);
C = MergeSort(C);
A = Merge(B, C);
```

$$m = \lfloor (|A| - 1)/2 \rfloor;$$

$$0 \ 1 \ 2 \ 3 \ 0 \ 1 \ 2 \ 3 \ 4$$

$$m = \lfloor (|A| - 1)/2 \rfloor;$$

$$B = A[0, ..., m];$$

$$C = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A| - 1];$$

$$D = A[m + 1, ..., |A|$$

Example: The Maximum-Subarray Problem

Brute Force: $O(n^2)$

```
Algorithm: BuySell(P)
n = |P|;
b = s = -1:
max = 0:
for i = 0 to n - 2 do
    for j = i + 1 to n - 1 do
         p = P[i] - P[i];
         if p > max then
              max = p;
             b = i;
             s = i;
         end
    end
end
Return b, s;
```

Day Price

0	1	2	3	4	5	6	7
100	110	90	103	115	108	95	101

Day	0	1	2	3	4	5	6	7
Price	100	110	90	103	115	108	95	101

Day	0	1	2	3	4	5	6	7
Price	100	110	90	103	115	108	95	101

$$-90 + 108 = -90 + 103 - 103 + 115 - 115 + 108$$
$$= (103 - 90) + (115 - 103) + (108 - 115)$$

Day	0	1	2	3	4	5	6	7
Price	100	110	90	103	115	108	95	101
Change	0	10	-20	13	12	-7	-13	6

$$-90 + 108 = -90 + 103 - 103 + 115 - 115 + 108$$

= $(103 - 90) + (115 - 103) + (108 - 115)$

Day	0	1	2	3	4	5	6	7
Price	100	110	90	103	115	108	95	101
Change	0	10	-20	13	12	-7	-13	6

$$-90 + 108 = -90 + 103 - 103 + 115 - 115 + 108$$

= $(103 - 90) + (115 - 103) + (108 - 115)$

$$\arg \max_{(i,j)} P[j] - P[i] \iff \arg \max_{(i,j)} \sum_{k=i+1}^{j} C[k]$$

Problem: Given an array, find the continuous subarray of the maximum sum.

$$L = [0, -2, 3, 1, -2, 5, -6, 2]$$

maximum-subarray:
 $3 + 1 - 2 + 5 = 7$

```
Algorithm: MaxSub(C)
b = s = -1:
max = 0;
for i, j do
     sum = \sum_{k=i+1}^{j} C[k];
     if sum > max then
          max = p;
         b = i;
s = j;
     end
end
Return b, s;
```

10 12 -30 5 20 -25 18 3

10 12 -30 5 20 -25 18 3

Maximum-Subarray Crossing The Separator

```
Algorithm: MaxCross(C, m)
s = 0:
if m < |C| - 1 then
    a = 0:
    for i = m to 0 do
       a = max(a, sum(C[i, m]));
    end
    b = 0:
    for i = m + 1 to |C| - 1 do
         b = max(b, sum(C[m+1, i));
    end
    s = a + b:
end
Return s;
```

- Divide *C* into two parts:
 - A: the first half
 - B: the second half
- Find the maximum subarray in each part: s1 and s2.
- Find the maximum subarray crossing the separator: s3.
- Compare s1, s2 and s3 to find the maximum one.

Algorithm: MaxSub2(C)

end Return s:

Find The Maximum-Subarray: $O(n \log n)$

$$T(n) = O(n \log n).$$

The Paradigm of Divide and Conquer

Divide and Conquer

- Divide the problem instance into two/several smaller instances of the same problem.
- 2 Conquer the smaller problems.
- Combine the results of the smaller problems to get the result of the original (large) instance.

Recall that in MergeSort,

- **1 Divide** the numbers into two subsets.
- Conquer the sorting problem on each of the subsets.
- **3 Combine** the results, by Merge.

T(n) ...

$$T(n)$$
 n^2

$$1 + \frac{3}{16} + \left(\frac{3}{16}\right)^2 + \dots = \Theta(1)$$

$$1 + \frac{3}{16} + \left(\frac{3}{16}\right)^2 + \dots = \Theta(1)$$

$$T(n) = aT(n/b) + f(n)$$
, where $a \ge 1$ and $b > 1$

$$T(n)=aT(n/b)+f(n)$$
, where $a\geq 1$ and $b>1$
• if $af(n/b)=Kf(n)$ for some constant $K>1$, then
$$T(n)=\Theta(n^{\log_b a})$$

$$T(n) = aT(n/b) + f(n)$$
, where $a \ge 1$ and $b > 1$

• if af(n/b) = Kf(n) for some constant K > 1, then

$$T(n) = \Theta(n^{\log_b a})$$

• if af(n/b) = f(n), then

$$T(n) = \Theta(f(n) \log n)$$

$$T(n) = aT(n/b) + f(n)$$
, where $a \ge 1$ and $b > 1$

• if af(n/b) = Kf(n) for some constant K > 1, then

$$T(n) = \Theta(n^{\log_b a})$$

• if af(n/b) = f(n), then

$$T(n) = \Theta(f(n) \log n)$$

• if $af(n/b) = \kappa f(n)$ for some constant $\kappa < 1$, then

$$T(n) = \Theta(f(n))$$

Master Theorem for $f(n) = O(n^d)$

$$T(n) = aT(n/b) + O(n^d)$$
, where $a \ge 1$, $b > 1$ and $d \ge 0$,

- if $d < log_b a$ then $T(n) = O(n^{\log_b a})$;
- if $d = log_b a$, then $T(n) = O(n^d \log n)$;
- if $d > log_b a$, then $T(n) = O(n^d)$.

Master Theorem for $f(n) = O(n^d)$

$$T(n) = aT(n/b) + O(n^d)$$
, where $a \ge 1$, $b > 1$ and $d \ge 0$,

- if $d < log_b a$ then $T(n) = O(n^{\log_b a})$;
- if $d = log_b a$, then $T(n) = O(n^d \log n)$;
- if $d > log_b a$, then $T(n) = O(n^d)$.

Recall that $af(n/b) = af(n)/b^d$. Then

- $d < log_b a \Leftrightarrow b^d < b^{\log_b a} = a \Leftrightarrow a/b^d > 1;$
- $d = log_b a \Leftrightarrow b^d = b^{log_b a} = a \Leftrightarrow a/b^d = 1;$
- $d > log_b a \Leftrightarrow b^d > b^{log_b a} = a \Leftrightarrow a/b^d < 1$.

$$T(n) = T(3n/4) + n$$

$$T(n) = T(3n/4) + n$$

• $a = 1$, $b = 4/3$, $d = 1$

$$T(n) = T(3n/4) + n$$

• $a = 1$, $b = 4/3$, $d = 1$
• $d = 1 > 0 = \log_{4/3} 1 = \log_b a \Rightarrow T(n) = O(n)$

$$T(n) = 3T(n/2) + n$$

$$T(n) = 3T(n/2) + n$$

• $a = 3, b = 2, d = 1$

$$T(n) = 3T(n/2) + n$$

- a = 3, b = 2, d = 1
- $d = 1 < \log_2 3 = \log_b a \Rightarrow T(n) = O(n^{\log_2 3})$

$$T(n) = 4T(n/2) + n \log n$$

$$T(n) = 4T(n/2) + n \log n$$

• $a = 4, b = 2$

$$T(n) = 4T(n/2) + n \log n$$

- a = 4, b = 2
- $f(n) = n \log n$.

$$T(n) = 4T(n/2) + n \log n$$

- a = 4, b = 2
- $f(n) = n \log n$.
- $af(n/b) = 4(n/2)\log(n/2) = 2n\log n 2n$.

$$T(n) = 4T(n/2) + n \log n$$

- a = 4, b = 2
- $\bullet \ f(n) = n \log n.$
- $af(n/b) = 4(n/2)\log(n/2) = 2n\log n 2n$.
- 2f(n) > af(n/b) > 1.9f(n) for sufficient large n.

$$T(n) = 4T(n/2) + n \log n$$

- a = 4, b = 2
- $\bullet \ f(n) = n \log n.$
- $af(n/b) = 4(n/2)\log(n/2) = 2n\log n 2n$.
- 2f(n) > af(n/b) > 1.9f(n) for sufficient large n.
- $T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$

Problem: Given $2^d - 1$ distinct numbers from $[0, 1, \dots, 2^d - 1]$, find the lost one.

d bits

 2^d numbers represented by d bits

- 1 | 1 | 1
- 1 1 0

- 1 0 0
- 0 1 1
- 0 1 0
- 0 0 1
- 0 0 0

1 1 1

1 1

1 1 0

1 0

1 0 0

0 0

0 1 1

0 1 0

0 0 1

0 0 0

1 1 1

1 1

1 1 0

1 0

1 0 0

0 0

0

0 1 1

0 1 0

0 0 1

0 0 0

Find The Lost Number: O(n)

$$n = 2^d - 1$$

$$T(n) = T(n/2) + n$$

= $T(n/4) + n/2 + n$
= $\dots + n/4 + n/2 + n$
= $O(n)$

Matrix Multiplication

Matrix Multiplication

A $n \times m$ matrix

$$A = \begin{bmatrix} a_{0,0} & a_{0,1} & \cdots & a_{0,m-1} \\ a_{1,0} & a_{1,1} & \cdots & a_{0,m-1} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n-1,0} & a_{n-1,1} & \cdots & a_{n-1,m-1} \end{bmatrix}$$

When n=m, A is called a square matrix. For two $n\times n$ matrices A and B, the multiplication is defined as $C=A\times B$, where C is also a $n\times n$ matrix, and

$$c_{i,j}=\sum_{k=0}^{n-1}a_{i,k}b_{k,j}$$

a _{0,0}	a _{0,1}	a _{0,2}
a _{1,0}	$a_{1,1}$	a _{1,2}
a _{2,0}	a _{2,1}	a _{2,2}

b _{0,0}	$b_{0,1}$	b _{0,2}
b _{1,0}	$b_{1,1}$	$b_{1,2}$
b _{2,0}	$b_{2,1}$	b _{2,2}

a _{0,0}	<i>a</i> _{0,1}	<i>a</i> _{0,2}
a _{1,0}	<i>a</i> _{1,1}	a _{1,2}
a _{2,0}	a _{2,1}	a _{2,2}

b _{0,0}	$b_{0,1}$	b _{0,2}
b _{1,0}	$b_{1,1}$	b _{1,2}
b _{2,0}	$b_{2,1}$	b _{2,2}

c _{0,0}	

$$c_{0,0} = \sum_{k=0}^{2} a_{0,k} b_{k,0}$$

<i>a</i> _{0,0}	a _{0,1}	a _{0,2}
a _{1,0}	$a_{1,1}$	a _{1,2}
a _{2,0}	a _{2,1}	a _{2,2}

b _{0,0}	$b_{0,1}$	b _{0,2}
$b_{1,0}$	$b_{1,1}$	$b_{1,2}$
b _{2,0}	b _{2,1}	b _{2,2}

c _{0,0}	c _{0,1}	

$$c_{0,0} = \sum_{k=0}^2 a_{0,k} b_{k,0}$$
 $c_{0,1} = \sum_{k=0}^2 a_{0,k} b_{k,1}$

a _{0,0}	a _{0,1}	a _{0,2}
a _{1,0}	a _{1,1}	a _{1,2}
a _{2,0}	a _{2,1}	a _{2,2}

b _{0,0}	$b_{0,1}$	b _{0,2}
b _{1,0}	$b_{1,1}$	b _{1,2}
b _{2,0}	$b_{2,1}$	b _{2,2}

$$egin{array}{cccc} c_{0,0} & c_{0,1} & c_{0,2} \ c_{1,0} & c_{1,1} & c_{1,2} \ c_{2,0} & c_{2,1} & c_{2,2} \ \end{array}$$

$$c_{0,0} = \sum_{k=0}^{2} a_{0,k} b_{k,0}$$
 $c_{0,1} = \sum_{k=0}^{2} a_{0,k} b_{k,1}$ $c_{2,2} = \sum_{k=0}^{2} a_{2,k} b_{k,2}$

Follow The Definition: $O(n^3)$

```
Algorithm: MatrixMul(A, B)
C = \mathbf{0}^{n \times n}:
for i = 0 to n - 1 do
     for j = 0 to n - 1 do
          for k = 0 to n - 1 do
           c_{i,i} = c_{i,i} + a_{i,k}b_{k,i};
           end
     end
end
Return C;
```


n

A ₀₀	A ₀₁
A ₁₀	A_{11}

 B_{01} B_{00} B_{10} B_{11}

n

•
$$T(n) = 8T(n/2) + n^2$$

Algorithm: MatrixMul2(A , B)

 $C = \mathbf{0}^{n \times n}$;

for $i, j = 0, 1$ do

 $M_0 = MatrixMul2(A_{i0}, B_{0j})$;

 $M_1 = MatrixMul2(A_{i1}, B_{1j})$;

 $C_{ij} = M_0 + M_1$;

end

Return C ;

•
$$T(n) = 8T(n/2) + n^2$$
 Alg
• $a = 8$ $C = 6$
• $b = 2$ for
• $d = 2$

```
Algorithm: MatrixMul2(A, B)
C = \mathbf{0}^{n \times n};
for i, j = 0, 1 do
M_0 = MatrixMul2(A_{i0}, B_{0j});
M_1 = MatrixMul2(A_{i1}, B_{1j});
C_{ij} = M_0 + M_1;
end
Return C:
```

•
$$T(n) = 8T(n/2) + n^2$$

- a = 8
- b = 2
- d = 2
- $\log_b a = 3 > d$

Algorithm: MatrixMul2(A, B)

```
C = \mathbf{0}^{n \times n};

for i, j = 0, 1 do

M_0 = MatrixMul2(A_{i0}, B_{0j});

M_1 = MatrixMul2(A_{i1}, B_{1j});

C_{ij} = M_0 + M_1;
```

end

Return C;

•
$$T(n) = 8T(n/2) + n^2$$

• $a = 8$
• $b = 2$
• $d = 2$
• $\log_b a = 3 > d$

• $T(n) = O(n^{\log_b a})$

Algorithm: MatrixMul2(A, B)

```
C = \mathbf{0}^{n \times n};

for i, j = 0, 1 do

M_0 = MatrixMul2(A_{i0}, B_{0j});

M_1 = MatrixMul2(A_{i1}, B_{1j});

C_{ij} = M_0 + M_1;
```

end

Return C;

$$T(n) = 8T(n/2) + n^2$$

$$\Rightarrow T(n) = O(n^3)$$

•
$$T(n) = {7 \over 7} T(n/2) + n^2$$

$$T(n) = 8T(n/2) + n^2$$

$$\Rightarrow T(n) = O(n^3)$$

- $T(n) = {7 \over 7} T(n/2) + n^2$
- a = 7
- b = 2
- d = 2

$$T(n) = 8T(n/2) + n^2$$

$$\Rightarrow T(n) = O(n^3)$$

- $T(n) = {7 \over 7} T(n/2) + n^2$
- a = 7
- b = 2
- d = 2
- $\log_b a \approx 2.807 > d$

$$T(n) = 8T(n/2) + n^2$$

$$\Rightarrow T(n) = O(n^3)$$

•
$$T(n) = {7 \over 7} T(n/2) + n^2$$

- a = 7
- b = 2
- d = 2
- $\log_b a \approx 2.807 > d$
- $T(n) = O(n^{\log_b a}) = O(n^{2.807})$

$$C_{00} = A_{00}B_{00} + A_{01}B_{10}$$

$$C_{01} = A_{00}B_{01} + A_{01}B_{11}$$

$$C_{10} = A_{10}B_{00} + A_{11}B_{10}$$

$$C_{11} = A_{10}B_{01} + A_{11}B_{11}$$

- 8 multiplications; each cost $O(n^3)$ operations
- 4 additions; each cost $O(n^2)$ operations

Better Divide and Conquer Algorithm: $O(n^{2.807})$

$$C_{00} = P_5 + P_4 - P_2 + P_6$$
 \bullet $T(n) = 7T(n/2) + O(n^2)$
 $C_{01} = P_1 + P_2$
 $C_{10} = P_3 + P_4$
 $C_{11} = P_5 + P_1 - P_3 - P_7$

- S: 10 additions
- P: 7 multiplications
- C: 8 additions

Better Divide and Conquer Algorithm: $O(n^{2.807})$

$$C_{00} = P_5 + P_4 - P_2 + P_6$$

$$C_{01} = P_1 + P_2$$

$$C_{10} = P_3 + P_4$$

$$C_{11} = P_5 + P_1 - P_3 - P_7$$

•
$$T(n) = 7T(n/2) + O(n^2)$$

- *a* = 7
- b = 2
- d = 2

- S: 10 additions
- P: 7 multiplications
- C: 8 additions

Better Divide and Conquer Algorithm: $O(n^{2.807})$

$$C_{00} = P_5 + P_4 - P_2 + P_6$$

$$C_{01} = P_1 + P_2$$

$$C_{10} = P_3 + P_4$$

$$C_{11} = P_5 + P_1 - P_3 - P_7$$

•
$$T(n) = 7T(n/2) + O(n^2)$$

- *a* = 7
- *b* = 2
- d = 2
- $\log_b a = 2.807$
- $T(n) = n^{2.807}$

• S: 10 additions

P: 7 multiplications

• C: 8 additions

Fibonacci Number

The *n*-th Fibonacci number is defined by

$$F_n = \begin{cases} F_{n-1} + F_{n-2}, & n \ge 2\\ 1, & n = 1\\ 0, & n = 0 \end{cases}$$

$$\begin{bmatrix} F_{n+2} & F_{n+1} \\ F_{n+1} & F_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n$$

Find The Medians

Median of An Array

Problem: Given an array $A = [a_0, a_1, \dots, a_{n-1}]$ of n numbers, find the $(\lfloor n/2 \rfloor)$ -th smallest element.

Problem: Given an array $A = [a_0, a_1, \dots, a_{n-1}]$ of n numbers and $1 \le i \le n$, find the i-th smallest element.

 $-5 \mid -1 \mid 1 \mid 2 \mid 3 \mid 7 \mid n=6$

$$-5$$
 -1 1 2 3 7 $i=3$

$$\begin{vmatrix} -5 & | & -1 & | & 1 & | & 2 & | & 3 & | & 7 & | & i = 3 \end{vmatrix}$$

-5 -1 1 2 3 7 i=5

$$-5$$
 -1 1 2 3 7 $i=5$

Sort at First: $O(n \log n)$

Finding the *i*-th smallest element is trivial if *A* is sorted.

- Sort A in the increasing order;
- Return the *i*-th number.

Special Cases

- The smallest element (i = 1) can be found in O(n) comparisons.
- The largest element (i = n) can be found in O(n) comparisons.

There is a lower bound on the number of necessary comparisons to find the i-th smallest element: $\Omega(n)$.

What is the upper bound?


```
Algorithm: Median(A, i)
if |A| < 5 then return The i-th smallest element of A;
Divide A into groups of size 5;
M = \text{medians of the groups};
x = Median(M, \lceil |M|/2 \rceil);
B = elements in A smaller than x;
C = elements in A larger than x;
k = |B| + 1;
if i < k then return Median(B, i);
else if i > k then return Median(C, i - k);
else return x;
```

$$T(n) \leq T(\max(k-1,n-k)) + T(\lceil n/5 \rceil) + O(n)$$

Efficiency of The Pivot

$$max(k-1, n-k) \le 7n/10$$

Efficiency of The Pivot

at least half of the group medians $\leq x$: n/10

$$max(k-1, n-k) \le 7n/10$$

Efficiency of The Pivot

X

at least half of the group medians $\leq x$: n/10

3 numbers inside each group \leq the median: 3n/10

$$max(k-1, n-k) \le 7n/10$$

$$T(n) \leq T(7n/10) + T(n/5) + O(n)$$

If
$$T(n) \le T(a \cdot n) + T(b \cdot n) + c \cdot n$$
 and $a + b < 1$, then $T(n) = O(n)$.

$$T(n) \leq T(7n/10) + T(n/5) + O(n)$$

If
$$T(n) \le T(a \cdot n) + T(b \cdot n) + c \cdot n$$
 and $a + b < 1$, then $T(n) = O(n)$.

• Induction on n: $T(n) \le C \cdot n$ for some C > 1.

$$T(n) \leq T(7n/10) + T(n/5) + O(n)$$

- Induction on n: $T(n) \le C \cdot n$ for some C > 1.
- Base case n = 1: T(1) = 1 < C.

$$T(n) \leq T(7n/10) + T(n/5) + O(n)$$

- Induction on n: $T(n) \le C \cdot n$ for some C > 1.
- Base case n = 1: T(1) = 1 < C.
- Assume $T(k) \le C \cdot k$ for all k < n.

$$T(n) \leq T(7n/10) + T(n/5) + O(n)$$

- Induction on n: $T(n) \le C \cdot n$ for some C > 1.
- Base case n = 1: T(1) = 1 < C.
- Assume $T(k) \le C \cdot k$ for all k < n.
- $T(n) \leq C \cdot a \cdot n + C \cdot b \cdot n + c \cdot n = (C(a+b)+c) \cdot n$.

$$T(n) \leq T(7n/10) + T(n/5) + O(n)$$

- Induction on n: $T(n) \le C \cdot n$ for some C > 1.
- Base case n = 1: T(1) = 1 < C.
- Assume $T(k) \le C \cdot k$ for all k < n.
- $T(n) \leq C \cdot a \cdot n + C \cdot b \cdot n + c \cdot n = (C(a+b)+c) \cdot n$.
- $C(a+b)+c \le C$ as long as $C \ge c/(1-a-b)$.

$$k = 5 \Rightarrow O(n)$$
. What about $k = 3$?

$$k = 5 \Rightarrow O(n)$$
. What about $k = 3$?

• n elements are divided into n/3 groups, each of size 3.

$$k = 5 \Rightarrow O(n)$$
. What about $k = 3$?

- n elements are divided into n/3 groups, each of size 3.
- x be the median of the medians.

$$k = 5 \Rightarrow O(n)$$
. What about $k = 3$?

- n elements are divided into n/3 groups, each of size 3.
- x be the median of the medians.
- half of the medians \leq than x: n/6.

$$k = 5 \Rightarrow O(n)$$
. What about $k = 3$?

- n elements are divided into n/3 groups, each of size 3.
- x be the median of the medians.
- half of the medians \leq than x: n/6.
- 2 numbers \leq than the median: n/3.

$$k = 5 \Rightarrow O(n)$$
. What about $k = 3$?

- n elements are divided into n/3 groups, each of size 3.
- x be the median of the medians.
- half of the medians \leq than x: n/6.
- 2 numbers \leq than the median: n/3.
- $T(n) \leq T(2n/3) + T(n/3) + O(n)$.

$$k = 5 \Rightarrow O(n)$$
. What about $k = 3$?

- n elements are divided into n/3 groups, each of size 3.
- x be the median of the medians.
- half of the medians \leq than x: n/6.
- 2 numbers \leq than the median: n/3.
- $T(n) \leq T(2n/3) + T(n/3) + O(n)$.
- $\bullet \ T(n) = O(n \log n).$

$$k = 5 \Rightarrow O(n)$$
. What about $k = 3$?

- n elements are divided into n/3 groups, each of size 3.
- x be the median of the medians.
- half of the medians \leq than x: n/6.
- 2 numbers \leq than the median: n/3.
- $T(n) \leq T(2n/3) + T(n/3) + O(n)$.
- $\bullet \ T(n) = O(n \log n).$
- Other *k*?

Random Pivot: O(n) in Expectation

```
Algorithm: RandMedian(A, i)

if |A| is small then return The i-th smallest element of A; x = \text{random element in } A;

B = \text{elements in } A \text{ smaller than } x;

C = \text{elements in } A \text{ larger than } x;

k = |B| + 1;

if i < k then return RandMedian(B, i);

else if i > k then return RandMedian(C, i - k);

else return X;
```

The Fast Fourier Transform

Value Representation of Polynomials

Fact: A degree-d polynomial

$$A(x) = a_0 + a_1 x + \cdots + a_d x^d$$

is uniquely characterized by its values at d+1 distinct points.

Value Representation of Polynomials

Fact: A degree-d polynomial

$$A(x) = a_0 + a_1 x + \cdots + a_d x^d$$

is uniquely characterized by its values at d+1 distinct points.

The polynomial given by the coefficients a_0, a_1, \ldots, a_d can be alternatively represented by values

$$A(x_0), A(x_1), \ldots, A(x_d)$$

at points x_0, x_1, \ldots, x_d .

Value Representation of Polynomials

Why the value representations? Consider the multiplication of two polynomials: $C(x) = A(x) \times B(x)$.

Value Representation of Polynomials

Why the value representations? Consider the multiplication of two polynomials: $C(x) = A(x) \times B(x)$.

• If
$$A(x) = \sum_{i=0}^d a_i x^i$$
 and $B(x) = \sum_{i=0}^d b_i x^i$, then

$$C(x) = \sum_{i=0}^{2d} c_i x^i \text{ and } c_i = \sum_{k=0}^{i} a_k b_{i-k}$$

Value Representation of Polynomials

Why the value representations? Consider the multiplication of two polynomials: $C(x) = A(x) \times B(x)$.

• If $A(x) = \sum_{i=0}^d a_i x^i$ and $B(x) = \sum_{i=0}^d b_i x^i$, then

$$C(x) = \sum_{i=0}^{2d} c_i x^i \text{ and } c_i = \sum_{k=0}^{i} a_k b_{i-k}$$

• Given A(x) as $A(x_0)$, $A(x_1)$, ..., $A(x_{2d})$, and B(x) is given by $B(x_0)$, $B(x_1)$, ..., $B(x_{2d})$, then C(x) can be represented by

$$C(x_0) = A(x_0)B(x_0), \ldots, C(x_{2d}) = A(x_{2d})B(x_{2d}).$$

Transform between Representations

$$a_0, a_1, \ldots, a_d \Rightarrow A(x_0), A(x_1), \ldots, A(x_d)$$

For each point x_i , calculate

$$A(x_i) = \sum_{j=0}^d a_i x_i^j$$

It requires $O(d \times d)$ operations.

Careful Selection of The Points

$$x_0 = 1, x_1 = \omega, x_2 = \omega^2, \dots, x_d = \omega^d$$

 ω : $(d+1)$ -th (complex) root of 1

$$\omega = e^{i\theta} = \cos\theta + i\sin\theta$$
$$\theta = 2\pi/(d+1)$$

Divide The Calculations

For
$$x_i=\omega^i$$
, $i=0,1,\ldots,d$ with $d=2k+1$,

$$\sum_{j=0}^{d} a_i x_i^j = \sum_{j=0}^{k} a_{2j} x_i^{2j} + \sum_{j=0}^{k} a_{2j+1} x_i^{2j+1}$$

where
$$A_e(x) = \sum_{j=0}^k a_{2j} x^j$$
, $A_o(x) = \sum_{j=0}^k a_{2j+1} x^j$.

Divide The Calculations

For
$$x_i = \omega^i$$
, $i = 0, 1, ..., d$ with $d = 2k + 1$,
$$\sum_{j=0}^d a_i x_i^j = \sum_{j=0}^k a_{2j} x_i^{2j} + \sum_{j=0}^k a_{2j+1} x_i^{2j+1}$$

$$= \sum_{i=0}^k a_{2j} x_i^{2j} + x_i \sum_{i=0}^k a_{2j+1} x_i^{2j}$$

where
$$A_e(x) = \sum_{j=0}^k a_{2j} x^j$$
, $A_o(x) = \sum_{j=0}^k a_{2j+1} x^j$.

Divide The Calculations

For
$$x_i = \omega^i$$
, $i = 0, 1, ..., d$ with $d = 2k + 1$,
$$\sum_{j=0}^d a_i x_i^j = \sum_{j=0}^k a_{2j} x_i^{2j} + \sum_{j=0}^k a_{2j+1} x_i^{2j+1}$$

$$= \sum_{j=0}^k a_{2j} x_i^{2j} + x_i \sum_{j=0}^k a_{2j+1} x_i^{2j}$$

$$= A_e(x_i^2) + x_i A_o(x_i^2).$$

where $A_e(x) = \sum_{i=0}^k a_{2i} x^i$, $A_o(x) = \sum_{i=0}^k a_{2i+1} x^i$.

152 / 158

Careful Selection of The Points

$$(k+1) = (d+1)/2$$
. Thus the $x_0, x_2, x_4, \dots, x_{2k}$ are the $(k+1)$ -th roots of 1.

$$x_0 = 1, x_1 = \omega, x_2 = \omega^2, \dots, x_d = \omega^d$$

$$\omega^d = e^{-i\cdot\theta}$$

$$\omega^{2d} = e^{-i \cdot 2\theta}$$

The Fast Fourier Transform

- $a = [a_0, a_1, \ldots, a_d]$
- d = 2k + 1
- (d+1)-th roots: $1, \omega, \omega^2, \ldots, \omega^d$
- (k+1)-th roots: $1, \omega^2, \omega^4, \dots, \omega^{2k}$

Algorithm: FFT(a, ω)

The Fast Fourier Transform

•
$$a = [a_0, a_1, \ldots, a_d]$$

- d = 2k + 1
- (d+1)-th roots: $1, \omega, \omega^2, \ldots, \omega^d$
- (k+1)-th roots: $1, \omega^2, \omega^4, \dots, \omega^{2k}$
- T(d) = 2T(d/2) + O(d)
- $T(d) = O(d \log d)$

Algorithm: FFT(a, ω)

Transform between The Representations

$$x_0 = 1, x_1 = \omega, x_2 = \omega^2, \dots, x_d = \omega^d$$

$$\begin{bmatrix} A(1) \\ A(\omega) \\ \vdots \\ A(\omega^d) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^2 & \cdots & \omega^d \\ & \vdots & & & \\ 1 & \omega^d & \omega^{2d} & \cdots & \omega^{d^2} \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_d \end{bmatrix}$$

$$M(\omega)^{-1} = \frac{1}{n}M(\omega^{-1})$$

Multiplication of Polynomials

Given
$$A(x) = \sum_{i=0}^d a_i x^i$$
 and $B(x) = \sum_{i=0}^d b_i x^i$,

- calculate the value representation of A(x) and B(x): $O(d \log d)$
- calculate the value representation of C(x) = A(x)B(x): O(d)
- calculate the c_i 's for $C(x) = \sum_{i=0}^{d} c_i x^i$: $O(d \log d)$ In total, it costs $O(d \log d)$.

THANK YOU

