Problem Sheet 2

1. Draw the solution sets of the following, and name the shape:

a)
$$v^2 - x^2 = 1$$

a)
$$y^2 - x^2 = 1$$
 b) $25x^2 + 36y^2 = 900$ c) $8x = y^2$ d) $xy = -1$

2. a) If $f(x) = x^2 - x$ show that f(x+1) = f(-x)

b) if
$$f(x) = 1/x$$
 show that $f(a) - f(b) = f\left(\frac{ab}{b-a}\right)$

3. Give a formula for a function f whose graph is equal to the solution set of:

a)
$$x^5y + 4x - 2 = 0$$

a)
$$x^5y + 4x - 2 = 0$$
 b) $x = \frac{2+y}{2-y}$

4. What are the domains and ranges of the following:

a)
$$f(x) = \begin{cases} x+2 & \text{if } -1 < x < 0 \\ x & \text{if } 0 \le x < 1 \end{cases}$$
 b) $h(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{if } x \ne 2 \\ 4 & \text{if } x = 2 \end{cases}$

- 5. Give a function whose domain and range are:
- a) (0,2) and (1,7) respectively
- b) (0,1) and $(1,\infty)$ respectively
- 6. Evaluate the following limits:

a)
$$\lim_{x \to \infty} \frac{2x+3}{4x-5}$$

a)
$$\lim_{x \to \infty} \frac{2x+3}{4x-5}$$
 b) $\lim_{x \to \infty} \frac{2x^2+1}{6+x-3x^2}$ c) $\lim_{x \to \infty} \frac{x}{x^2+5}$

c)
$$\lim_{x\to\infty} \frac{x}{x^2+5}$$

- 7. a) What does it mean for the function f to be continuous at the point x=c?
- b) What is a precise formulation of the condition in a?