# Anexo II. Código y resultados para métodos ingenuos, suavizado exponencial y metodología Box-Jenkins

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        %matplotlib inline
        from datetime import datetime
        from math import sqrt, exp
        from statistics import mean
        from statsmodels.api import ProbPlot
        from statsmodels.graphics import tsaplots
        from statsmodels.stats.stattools import jarque_bera as jb
        from statsmodels.stats.diagnostic import acorr_ljungbox as lb
        from statsmodels.tsa.seasonal import seasonal_decompose
        from scipy.stats import kstest, boxcox, gaussian_kde, norm
        from \ stats models.tsa.holtwinters \ import \ Simple ExpSmoothing
        from statsmodels.tsa.holtwinters import Holt
        from statsmodels.tsa.holtwinters import ExponentialSmoothing
        from statsmodels.tsa.arima_model import ARIMA
        from statsmodels.tsa.statespace.sarimax import SARIMAX
        from pmdarima.arima import ndiffs
        from pmdarima.arima import nsdiffs
        from pmdarima.arima import auto_arima
        from pmdarima.arima import AutoARIMA
        from sklearn.metrics import mean_squared_error as mse
        from sklearn.metrics import mean_absolute_error as mae
        from tstoolbox import *
        import warnings
```

```
warnings.filterwarnings("ignore")
In [2]: sns.set(rc = {"figure.figsize":(10,4), "axes.facecolor": "#eeeef4"})
        my_palette = sns.color_palette(sns.diverging_palette(255,
                                                              133,
                                                              1 = 40,
                                                              n=4,
                                                              center="dark"))
        sns.set_palette(my_palette)
In [3]: ts_df = pd.read_csv('wolf_river.csv', sep = ';')
        ts_df['index'] = pd.to_datetime(ts_df['month'])
        ts_df.set_index('index', inplace = True)
        ts_df.drop(["month"], axis = 1, inplace = True) # Serie como pd.DataFrame
        ts = ts_df.iloc[:,0] # Serie como pd.Series
In [4]: type(ts_df)
Out[4]: pandas.core.frame.DataFrame
In [5]: type(ts)
Out[5]: pandas.core.series.Series
In [6]: tsplot(ts)
        plt.savefig("river.png", dpi = 400)
        plt.show()
     250
     200
     150
     100
```

#### División temporal en período de modelización y período de predicción

1930

1915

1920

1925

1935

Tiempo en meses

1940

1945

1950

1955

1960



#### Fechas destacables

#### 0.0.1 Métodos ingenuos

#### Método ingenuo simple

```
In [10]: naive_forecast = naive(train, test)
In [11]: print("Método ingenuo simple")
         print("")
         print("RMSE (test):
                              " + str(round(sqrt(mse(test, naive_forecast)), 2)))
         print("MAE (test):
                              " + str(round(mae(test, naive_forecast), 2)))
         print("sMAPE (test): " + str(round(smape(test, naive_forecast), 2)))
Método ingenuo simple
RMSE (test):
               49.56
MAE (test):
               45.11
sMAPE (test): 79.4
In [12]: forecast_plot(test, naive_forecast)
         plt.savefig("river_naive.png", dpi = 400)
         plt.show()
```



# Método ingenuo estacional



# 0.0.2 No estacionariedad en varianza: Transformación de Box-Cox



# 0.0.3 Métodos de Suavizado Exponencial

# Suavizado Exponencial Simple



```
In [21]: print("Suavizado Exponencial Simple")
        print("")
        print("Observaciones ajustadas: " + str(len(train)))
        print("Observaciones predichas: " + str(len(test)))
        print("")
        print("Parámetro alfa de suavizado: " + str(ses_alpha))
        print("")
        print("AIC: " + str(ses_aic))
        print("Test de Jarque-Bera (p-valor): "
              + str(round(ses_jb_test[1], 6)))
        print("Test de Ljung-Box para k = 6 (p-valor): " +
              str(round(ses_lb_test[1][6], 6)))
        print("Test de Ljung-Box para k = 12 (p-valor): " +
               str(round(ses_lb_test[1][12], 6)))
        print("")
                              " + str(round(sqrt(mse(test, ses_box_forecast)), 2)))
        print("RMSE (test):
        print("MAE (test):
                              " + str(round(mae(test, ses_box_forecast), 2)))
        print("sMAPE (test): " + str(round(smape(test, ses_box_forecast), 2)))
Suavizado Exponencial Simple
Observaciones ajustadas: 452
```

Observaciones predichas: 112

#### Parámetro alfa de suavizado: 1.0

```
AIC: -1924.5128147975815

Test de Jarque-Bera (p-valor): 0.0

Test de Ljung-Box para k = 6 (p-valor): 0.0

Test de Ljung-Box para k = 12 (p-valor): 0.0
```

RMSE (test): 49.56 MAE (test): 45.11 sMAPE (test): 79.4

# 



# Suavizado Exponencial Doble

```
hl_forecast = hl_model.predict(split_date, end_date)
hl_box_forecast = (bc_param * hl_forecast + 1) ** (1 / bc_param)
```

# In [24]: resid\_diag(hl\_resid) plt.show()



```
In [25]: print("Suavizado Exponencial Doble")
        print("")
        print("Observaciones ajustadas: " + str(len(train)))
        print("Observaciones predichas: " + str(len(test)))
        print("")
        print("Parámetro alfa de suavizado: " + str(hl_alpha))
        print("Parámetro beta de suavizado: " + str(hl_beta))
        print("")
        print("AIC: " + str(hl_aic))
        print("Test de Jarque-Bera (p-valor): " + str(round(hl_jb_test[1], 6)))
        print("Test de Ljung-Box para k = 6 (p-valor): "
               + str(round(hl_lb_test[1][6], 6)))
         print("Test de Ljung-Box para k = 12 (p-valor): "
              + str(round(hl_lb_test[1][12], 6)))
        print("")
        print("RMSE (test):
                              " + str(round(sqrt(mse(test, hl_box_forecast)), 2)))
        print("MAE (test):
                              " + str(round(mae(test, hl_box_forecast), 2)))
        print("sMAPE (test): " + str(round(smape(test, hl_box_forecast), 2)))
```

#### Suavizado Exponencial Doble

Observaciones ajustadas: 452 Observaciones predichas: 112

Parámetro alfa de suavizado: 1.0 Parámetro beta de suavizado: 0.0

AIC: -1920.5136536138625

Test de Jarque-Bera (p-valor): 0.0

Test de Ljung-Box para k = 6 (p-valor): 0.0 Test de Ljung-Box para k = 12 (p-valor): 0.0

RMSE (test): 52.5 MAE (test): 48.48 sMAPE (test): 82.59

# 



#### Suavizado Exponencial Triple

```
hw_aic = hw_model.aic
          hw_fitted = hw_model.fittedvalues
          hw_resid = (hw_model.resid - hw_model.resid.mean()) / hw_model.resid.std()
          hw_jb_test = jb(hw_resid)
          hw_lb_test = lb(hw_resid)
          hw_forecast = hw_model.predict(split_date, end_date)
          hw_box_forecast = (bc_param * hw_forecast + 1) ** (1 / bc_param)
In [28]: resid_diag(hw_resid)
          plt.show()
                    Residuales estandarizados
                                                               Densidad teórica N(0, 1) y estimada
                                                     0.4
                                                     0.3
                                                     0.2
                                                     0.1
       -2
       -3
                                                     0.0
           1916 1920 1924 1928 1932 1936 1940 1944 1948
                                                                           0
                                                                          ACF
                         Gráfico QQ
                                                     1.0
        3
                                                     0.8
        2
     Sample Quantiles
                                                     0.6
                                                     0.4
        0
                                                     0.2
       -2
                                                     0.0
```

3

-3

-3

0

Theoretical Quantiles

-0.2

0

15

20

```
print("Test de Jarque-Bera (p-valor): " +
              str(round(hw_jb_test[1], 6)))
         print("Test de Ljung-Box para k = 6 (p-valor): " +
               str(round(hw_lb_test[1][6], 6)))
        print("Test de Ljung-Box para k = 12 (p-valor): " +
              str(round(hw_lb_test[1][12], 6)))
        print("")
                              " + str(round(sqrt(mse(test, hw_box_forecast)), 2)))
        print("RMSE (test):
        print("MAE (test): " + str(round(mae(test, hw_box_forecast), 2)))
        print("sMAPE (test): " + str(round(smape(test, hw_box_forecast), 2)))
Suavizado Exponencial Triple
Observaciones ajustadas: 452
Observaciones predichas: 112
Parámetro alfa de suavizado: 0.5461
Parámetro beta de suavizado: 0.0
Parámetro delta de suavizado: 0.0
AIC: -2292.11
Test de Jarque-Bera (p-valor): 0.001383
Test de Ljung-Box para k = 6 (p-valor): 3e-06
Test de Ljung-Box para k = 12 (p-valor): 1e-06
RMSE (test):
               24.4
MAE (test):
              16.84
sMAPE (test): 36.9
In [30]: forecast_plot(test, hw_box_forecast)
        plt.show()
```



Tiempo (meses)

# 0.0.4 2. Metodología Box-Jenkins

# Estacionariedad en media en la estructura regular y/o estacional





# Test de Canova-Hansen de existencia de raíz unitaria estacional

0

#### Opción 1. Estimación de la estacionalidad por variables dummy

```
In [33]: ts_components = seasonal_decompose(bc_train, "add")
         bc_trend
                  = ts_components.trend
         bc_seasonal = ts_components.seasonal
         bc_residual = ts_components.resid
         bc_deseas = bc_train - bc_seasonal
         bc_demean = bc_train - bc_trend
         plt.plot(bc_train)
         plt.title("Serie orginal")
         plt.xlim([train.index[0], train.index[-1]])
         plt.show()
        plt.plot(bc_trend)
         plt.title("Tendencia-ciclo")
         plt.xlim([train.index[0], train.index[-1]])
         plt.show()
         plt.plot(bc_demean)
         plt.title("Serie sin tendencia-ciclo")
         plt.xlim([train.index[0], train.index[-1]])
        plt.show()
         plt.plot(bc_seasonal)
         plt.title("Estacionalidad")
         plt.xlim([train.index[0], train.index[-1]])
         plt.show()
         plt.plot(bc_residual)
         plt.title("Residual")
         plt.xlim([train.index[0], train.index[-1]])
         plt.show()
         plt.plot(bc_deseas)
         plt.title("Serie desestacionalizada")
         plt.xlim([train.index[0], train.index[-1]])
         plt.show()
```













#### Índices estacionales



#### Predicción de la estacionalidad con el método ingenuo estacional



#### Modelización de la serie desestacionalizada

#### Test ADF y KPSS para determinar el tratamiento de la tendencia-ciclo





In [40]: bc\_diff\_deseas = bc\_deseas.diff(1).iloc[1:]

In [41]: tsplot(bc\_diff\_deseas)



RESULTADOS DEL TEST AUMENTADO DE DICKEY FULLER Estadístico de contraste: -7.858234299254451

P-valor: 5.3705132937936725e-12

#### Asumiendo estacionariedad en media en la estructura regualar





Identificación de ordenes Procesos candidatos a generar la serie desestacionalizada: - SARIMA  $(1, 0, 0) \times (1, 0, 0)$ 12 - SARIMA  $(2, 0, 0) \times (1, 0, 0)$ 12 - SARIMA  $(3, 0, 0) \times (1, 0, 0)$ 12 - SARIMA  $(1, 0, 0) \times (1, 0, 0)$ 12

#### SARIMA (1, 0, 0) x (1, 0, 0)12



In [46]: print(sarima1\_model.summary())

#### Statespace Model Results

| Dep. Variable: | value                          | No. Observations: | 452      |
|----------------|--------------------------------|-------------------|----------|
| Model:         | SARIMAX(1, 0, 0)x(1, 0, 0, 12) | Log Likelihood    | 498.122  |
| Date:          | Thu. 04 Jul 2019               | ATC               | -990.244 |

Time: 18:45:01 BIC -977.903
Sample: 01-01-1914 HQIC -985.381
- 08-01-1951

Covariance Type:

opg

| =========               |                 | ======= | ======= | :========   | ======== | =======   |
|-------------------------|-----------------|---------|---------|-------------|----------|-----------|
|                         | coef            | std err | Z       | P> z        | [0.025   | 0.975]    |
| ar.L1                   | 0.9989          | 0.002   | 412.426 | 0.000       | 0.994    | 1.004     |
| ar.S.L12                | 0.1817          | 0.046   | 3.931   | 0.000       | 0.091    | 0.272     |
| sigma2                  | 0.0064          | 0.000   | 15.704  | 0.000       | 0.006    | 0.007     |
| Ljung-Box (G            | ========<br>}): | ======= | 92.22   | Jarque-Bera | (JB):    | <br>14.48 |
| Prob(Q):                |                 |         | 0.00    | Prob(JB):   |          | 0.00      |
| Heteroskedasticity (H): |                 | 1.29    | Skew:   |             | 0.41     |           |
| Prob(H) (two            | -sided):        |         | 0.12    | Kurtosis:   |          | 3.31      |

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

#### Incluímos la componente estacional en la predicción

```
In [47]: sarima1_seas_forecast = sarima1_forecast + bc_seasonality_forecast
         sarima1_box_forecast = (bc_param *
                                 sarima1_seas_forecast + 1) ** (1 / bc_param)
In [48]: print("SARIMA (1, 0, 0) x (1, 0, 0) (serie desestacionalizada)")
         print("")
         print("Observaciones ajustadas: " + str(len(train)))
         print("Observaciones predichas: " + str(len(test)))
         print("")
         print("AIC: " + str(sarima1_aic))
         print("Test de Jarque-Bera (p-valor): " + str(sarima1_jb_test[1]))
         print("Test de Ljung-Box para k = 6 (p-valor): " +
               str(sarima1_lb_test[1][6]))
         print("Test de Ljung-Box para k = 12 (p-valor): " +
               str(sarima1_lb_test[1][12]))
         print("")
         print("RMSE (test): " + str(sqrt(mse(test, sarima1_box_forecast))))
         print("MAE (test): " + str(mae(test, sarima1_box_forecast)))
         print("sMAPE (test): " + str(smape(test, sarima1_box_forecast)))
SARIMA (1, 0, 0) \times (1, 0, 0) (serie desestacionalizada)
Observaciones ajustadas: 452
Observaciones predichas: 112
```

AIC: -990.2436857349406

Test de Jarque-Bera (p-valor): 0.000703689799407352

Test de Ljung-Box para k = 6 (p-valor): 9.348364038617179e-08 Test de Ljung-Box para k = 12 (p-valor): 3.02612164703319e-06

RMSE (test): 35.01214652563524 MAE (test): 21.426091309467676 sMAPE (test): 47.82440889998852

In [49]: forecast\_plot(test, sarima1\_box\_forecast)
 plt.show()



#### SARIMA (2, 0, 0) x (1, 0, 0)12



In [52]: print(sarima2\_model.summary())

Prob(H) (two-sided):

# Statespace Model Results

| =========     |               | ========    |                   |                         |                       | ======= | =======      |
|---------------|---------------|-------------|-------------------|-------------------------|-----------------------|---------|--------------|
| Dep. Variable | e:            |             |                   | value No.               | Observations:         |         | 452          |
| Model:        | SARI          | MAX(2, 0, 0 | 0)x(1, 0, 0)      | , 12) Log               | Likelihood            |         | 510.562      |
| Date:         |               | ٦           | Thu, 04 Jul       | 2019 AIC                |                       |         | -1013.125    |
| Time:         |               |             | 18:4              | 45:02 BIC               |                       |         | -996.670     |
| Sample:       |               |             | 01-01             | -1914 HQIC              | 2                     |         | -1006.641    |
|               |               |             | - 08-01           | -1951                   |                       |         |              |
| Covariance Ty | pe:           |             |                   | opg                     |                       |         |              |
| =========     |               | =======     |                   | ========                |                       | ======  |              |
|               | coef          | std err     | z                 | P> z                    | [0.025                | 0.975]  |              |
|               |               |             |                   |                         |                       |         |              |
| ar.L1         | 0.7665        | 0.045       | 17.075            | 0.000                   | 0.679                 | 0.855   |              |
| ar.L2         | 0.2327        | 0.045       | 5.181             | 0.000                   | 0.145                 | 0.321   |              |
| ar.S.L12      | 0.1612        | 0.047       | 3.432             | 0.001                   | 0.069                 | 0.253   |              |
| sigma2        | 0.0060        | 0.000       | 14.968            | 0.000                   | 0.005                 | 0.007   |              |
| Ljung-Box (Q) | :======<br>): | =======     | ========<br>86.87 | ========<br>Jarque-Bera | =========<br>a (.IB): | <br>1.5 | :===<br>5.04 |
| Prob(Q):      | •             |             | 0.00              | Prob(JB):               | . (02).               |         | 0.00         |
| •             | cicity (H):   |             |                   | · · · · ·               |                       |         |              |
| Heteroskedast | cicity (H):   |             | 1.29              | Skew:                   |                       | C       | .44          |

Kurtosis:

3.17

0.12

\_\_\_\_\_\_\_

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

#### Incluímos la componente estacional en la predicción

```
In [53]: sarima2_seas_forecast = sarima2_forecast + bc_seasonality_forecast
         sarima2_box_forecast = (bc_param *
                                 sarima2_seas_forecast + 1) ** (1 / bc_param)
In [54]: print("SARIMA (2, 0, 0) x (1, 0, 0) (serie desestacionalizada)")
         print("")
         print("Observaciones ajustadas: " + str(len(train)))
         print("Observaciones predichas: " + str(len(test)))
         print("")
         print("AIC: " + str(sarima2_aic))
         print("Test de Jarque-Bera (p-valor): " + str(sarima2_jb_test[1]))
         print("Test de Ljung-Box para k = 6 (p-valor): " +
               str(sarima2_lb_test[1][6]))
         print("Test de Ljung-Box para k = 12 (p-valor): " +
               str(sarima2_lb_test[1][12]))
         print("")
         print("RMSE (test): " + str(sqrt(mse(test, sarima2_box_forecast))))
         print("MAE (test): " + str(mae(test, sarima2_box_forecast)))
         print("sMAPE (test): " + str(smape(test, sarima2_box_forecast)))
SARIMA (2, 0, 0) \times (1, 0, 0) (serie desestacionalizada)
Observaciones ajustadas: 452
Observaciones predichas: 112
AIC: -1013.1247970732632
Test de Jarque-Bera (p-valor): 0.0005838844848180709
Test de Ljung-Box para k = 6 \text{ (p-valor)}: 1.7859542088064174e-07
Test de Ljung-Box para k = 12 (p-valor): 4.306284481982204e-06
RMSE (test): 33.36204984253718
MAE (test): 20.93837409539871
sMAPE (test): 43.256423677042946
In [55]: forecast_plot(test, sarima2_box_forecast)
         plt.show()
```



# SARIMA $(3, 0, 0) \times (1, 0, 0)12$



In [58]: print(sarima3\_model.summary())

# Statespace Model Results

| ======================================= |                                |                   |           |
|-----------------------------------------|--------------------------------|-------------------|-----------|
| Dep. Variable:                          | value                          | No. Observations: | 452       |
| Model:                                  | SARIMAX(3, 0, 0)x(1, 0, 0, 12) | Log Likelihood    | 523.653   |
| Date:                                   | Thu, 04 Jul 2019               | AIC               | -1037.306 |
| Time:                                   | 18:45:03                       | BIC               | -1016.738 |
| Sample:                                 | 01-01-1914                     | HQIC              | -1029.201 |
|                                         | - 08-01-1951                   |                   |           |

| Covariance     | Гуре:<br>    |         | opg                   |           |        |        |  |
|----------------|--------------|---------|-----------------------|-----------|--------|--------|--|
|                | coef         | std err | z                     | P> z      | [0.025 | 0.975] |  |
| ar.L1          | 0.7143       | 0.044   | 16.397                | 0.000     | 0.629  | 0.800  |  |
| ar.L2          | 0.0443       | 0.060   | 0.742                 | 0.458     | -0.073 | 0.161  |  |
| ar.L3          | 0.2407       | 0.047   | 5.154                 | 0.000     | 0.149  | 0.332  |  |
| ar.S.L12       | 0.1845       | 0.047   | 3.928                 | 0.000     | 0.092  | 0.277  |  |
| sigma2         | 0.0057       | 0.000   | 15.434                | 0.000     | 0.005  | 0.006  |  |
| Ljung-Box (Q): |              | 63.64   | <br>Jarque-Bera (JB): |           | 16.30  |        |  |
| Prob(Q):       |              |         | 0.01                  | Prob(JB): |        | 0.00   |  |
| Heteroskedas   | sticity (H): |         | 1.31                  | Skew:     |        | 0.44   |  |

```
Prob(H) (two-sided): 0.10 Kurtosis: 3.32
```

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

#### Incluímos la componente estacional en la predicción

```
In [59]: sarima3_seas_forecast = sarima3_forecast + bc_seasonality_forecast
         sarima3_box_forecast = (bc_param *
                                 sarima3_seas_forecast + 1) ** (1 / bc_param)
In [60]: print("SARIMA (3, 0, 0) x (1, 0, 0) (serie desestacionalizada)")
         print("")
         print("Observaciones ajustadas: " + str(len(train)))
         print("Observaciones predichas: " + str(len(test)))
         print("")
         print("AIC: " + str(sarima3_aic))
         print("Test de Jarque-Bera (p-valor): " +
               str(sarima3_jb_test[1]))
         print("Test de Ljung-Box para k = 6 (p-valor): " +
               str(sarima3_lb_test[1][6]))
         print("Test de Ljung-Box para k = 12 (p-valor): " +
               str(sarima3_lb_test[1][12]))
         print("")
         print("RMSE (test): " + str(sqrt(mse(test, sarima3_box_forecast))))
         print("MAE (test): " + str(mae(test, sarima3_box_forecast)))
         print("sMAPE (test): " + str(smape(test, sarima3_box_forecast)))
SARIMA (3, 0, 0) \times (1, 0, 0) (serie desestacionalizada)
Observaciones ajustadas: 452
Observaciones predichas: 112
AIC: -1037.3059844862905
Test de Jarque-Bera (p-valor): 0.0002395300271233465
Test de Ljung-Box para k = 6 \text{ (p-valor)}: 0.0030782005468447606}
Test de Ljung-Box para k = 12 (p-valor): 0.007953950814358884
RMSE (test): 33.264475246335486
MAE (test): 20.640906133344604
sMAPE (test): 43.17662717478427
In [61]: forecast_plot(test, sarima3_box_forecast)
         plt.show()
```



# SARIMA $(1, 0, 0) \times (2, 0, 0)12$



In [64]: print(sarima4\_model.summary())

# Statespace Model Results

| ========     | =======     | =======     | =======     | ====== | =====          | ========     | =======        | =======    |
|--------------|-------------|-------------|-------------|--------|----------------|--------------|----------------|------------|
| Dep. Variabl | e:          |             |             | value  | No. C          | bservations: |                | 452        |
| Model:       | SARI        | MAX(1, 0, 0 | )x(2, 0, 0) | , 12)  | Log L          | ikelihood    |                | 498.760    |
| Date:        |             | ī           | hu, 04 Jul  | 2019   | AIC            |              |                | -989.521   |
| Time:        |             |             | 18:         | 45:05  | BIC            |              |                | -973.066   |
| Sample:      |             |             | 01-01       | -1914  | HQIC           |              |                | -983.036   |
|              |             |             | - 08-01     | -1951  |                |              |                |            |
| Covariance T | ype:        |             |             | opg    |                |              |                |            |
| ========     | =======     | =======     | =======     | ====== | =====          | =========    | ======         |            |
|              | coef        | std err     | Z           | P>     | z              | [0.025       | 0.975]         |            |
| ar.L1        | 0.9990      | 0.003       | 395.285     | 0.     | <br>000        | 0.994        | 1.004          |            |
| ar.S.L12     | 0.1721      | 0.047       | 3.692       | 0.     | 000            | 0.081        | 0.263          |            |
| ar.S.L24     | 0.0545      | 0.045       | 1.225       | 0.     | 221            | -0.033       | 0.142          |            |
| sigma2       | 0.0063      | 0.000       | 15.775      | 0.     | 000            | 0.006        | 0.007          |            |
| Ljung-Box (Q | ):          | =======     | 89.25       | Jarque | =====<br>-Bera | (JB):        | ========<br>14 | ===<br>.19 |
| Prob(Q):     |             |             | 0.00        | Prob(J | B):            |              | 0              | .00        |
| Heteroskedas | ticity (H): |             | 1.29        | Skew:  |                |              | 0              | .40        |
| Prob(H) (two | -sided):    |             | 0.12        | Kurtos | is:            |              | 3              | .32        |

\_\_\_\_\_\_\_

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

#### Incluímos la componente estacional en la predicción

```
In [65]: sarima4_seas_fore = sarima4_forecasted + bc_seasonality_forecast
         sarima4_box_forecasted = (bc_param *
                                   sarima4_seas_fore + 1) ** (1 / bc_param)
In [66]: print("SARIMA (1, 0, 0) x (2, 0, 0) (serie desestacionalizada)")
         print("")
         print("Observaciones ajustadas: " + str(len(train)))
         print("Observaciones predichas: " + str(len(test)))
         print("")
         print("AIC: " + str(sarima4_aic))
         print("Test de Jarque-Bera (p-valor): " + str(sarima4_jb_test[1]))
         print("Test de Ljung-Box para k = 6 (p-valor): " +
               str(sarima4_lb_test[1][6]))
         print("Test de Ljung-Box para k = 12 (p-valor): " +
               str(sarima4_lb_test[1][12]))
         print("")
         print("RMSE (test): " + str(sqrt(mse(test, sarima4_box_forecasted))))
         print("MAE (test): " + str(mae(test, sarima4_box_forecasted)))
         print("sMAPE (test): " + str(smape(test, sarima4_box_forecasted)))
SARIMA (1, 0, 0) x (2, 0, 0) (serie desestacionalizada)
Observaciones ajustadas: 452
Observaciones predichas: 112
AIC: -989.5205192525689
Test de Jarque-Bera (p-valor): 0.0008326123323562449
Test de Ljung-Box para k = 6 \text{ (p-valor)}: 1.1234026340419993e-07
Test de Ljung-Box para k = 12 (p-valor): 3.231483301275644e-06
RMSE (test): 34.30400787973258
MAE (test): 20.96971443804415
sMAPE (test): 45.8176427427
In [67]: forecast_plot(test, sarima4_box_forecasted)
         plt.show()
```



# Considerando procesos integrados







**Identificación de ordenes** Procesos candidatos a generar la serie desestacionalizada: - SARIMA (0, 1, 2) x (1, 0, 0)12 - SARIMA (0, 1, 2) x (2, 0, 0)12

#### SARIMA (0, 1, 2) x (1, 0, 0)12



In [72]: print(sarima5\_model.summary())

# Statespace Model Results

| Dep. Variab | ole:              |           |             | value : | No. O         | bservations: |                | 452         |
|-------------|-------------------|-----------|-------------|---------|---------------|--------------|----------------|-------------|
| Model:      | SARI              | MAX(0, 1, | 2)x(1, 0, 0 | , 12)   | Log L         | ikelihood    |                | 536.624     |
| Date:       |                   | •         | Thu, 04 Jul | 2019    | AIC           |              |                | -1065.247   |
| Time:       |                   |           | 18:         | 45:07   | BIC           |              |                | -1048.801   |
| Sample:     |                   |           | 01-01       | -1914   | HQIC          |              |                | -1058.766   |
|             |                   |           | - 08-01     | -1951   |               |              |                |             |
| Covariance  | Type:             |           |             | opg     |               |              |                |             |
| =======     | coef              | std err   | z           | P> :    | =====<br>z    | [0.025       | 0.975]         |             |
| ma.L1       | -0.3946           | 0.042     | <br>-9.307  | 0.0     | <br>00        | -0.478       | -0.312         |             |
| ma.L2       | -0.2621           | 0.048     | -5.464      | 0.0     | 00            | -0.356       | -0.168         |             |
| ar.S.L12    | 0.1595            | 0.046     | 3.488       | 0.0     | 00            | 0.070        | 0.249          |             |
| sigma2      |                   | 0.000     |             | 0.0     | 00            | 0.005        | 0.006          |             |
| Ljung-Box ( | :=======<br>(Q) : |           | 60.02       | Jarque- | =====<br>Bera | (JB):        | ========<br>23 | ===<br>3.75 |
| Prob(Q):    |                   |           | 0.02        | Prob(JB | ):            |              | C              | 0.00        |
| Heteroskeda | sticity (H):      |           | 1.29        | Skew:   |               | 0.51         |                |             |
| Prob(H) (tw | o-sided):         |           | 0.12        | Kurtosi | s:            |              | 3              | 3.48        |

\_\_\_\_\_\_\_

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

#### Incluímos la componente estacional en la predicción

```
In [73]: sarima5_seas_fore = sarima5_forecasted + bc_seasonality_forecast
         sarima5_box_forecasted = (bc_param * sarima5_seas_fore + 1) ** (1 / bc_param)
In [74]: print("SARIMA (0, 1, 2) x (1, 0, 0) (serie desestacionalizada)")
         print("")
         print("Observaciones ajustadas: " + str(len(train)))
         print("Observaciones predichas: " + str(len(test)))
         print("")
         print("AIC: " + str(sarima5_aic))
         print("Test de Jarque-Bera (p-valor): " + str(sarima5_jb_test[1]))
         print("Test de Ljung-Box para k = 6 (p-valor): " +
               str(sarima5_lb_test[1][6]))
         print(" Test de Ljung-Box para k = 12 (p-valor): " +
               str(sarima5_lb_test[1][12]))
         print("")
         print("RMSE (test): " + str(sqrt(mse(test, sarima5_box_forecasted))))
         print("MAE (test): " + str(mae(test, sarima5_box_forecasted)))
         print("sMAPE (test): " + str(smape(test, sarima5_box_forecasted)))
SARIMA (0, 1, 2) x (1, 0, 0) (serie desestacionalizada)
Observaciones ajustadas: 452
Observaciones predichas: 112
AIC: -1065.247025938098
Test de Jarque-Bera (p-valor): 4.899060158882278e-06
Test de Ljung-Box para k = 6 (p-valor): 0.06930557174720219
  Test de Ljung-Box para k = 12 \text{ (p-valor)}: 0.0567054705610174
RMSE (test): 33.22208969056615
MAE (test): 20.90303492438331
sMAPE (test): 43.176709437271505
In [75]: forecast_plot(test, sarima5_box_forecasted)
         plt.show()
```



# **SARIMA** (0, 1, 2) *x* (1, 0, 1)12



In [78]: print(sarima6\_model.summary())

Ljung-Box (Q):

Heteroskedasticity (H):

Prob(Q):

# Statespace Model Results

| ========     | =======  | ========     |              | ========  |               | ======= | ======  |
|--------------|----------|--------------|--------------|-----------|---------------|---------|---------|
| Dep. Variabl | .e:      |              | va           | lue No. 0 | Observations: |         | 4       |
| Model:       | SARI     | MAX(0, 1, 2) | )x(1, 0, 1,  | 12) Log I | Likelihood    |         | 537.4   |
| Date:        |          | T            | nu, 04 Jul 2 | 019 AIC   |               |         | -1064.8 |
| Time:        |          |              | 18:45        | :08 BIC   |               |         | -1044.2 |
| Sample:      |          |              | 01-01-1      | 914 HQIC  |               |         | -1056.7 |
|              |          |              | - 08-01-1    | 951       |               |         |         |
| Covariance T | Type:    |              |              | opg       |               |         |         |
| ========     | ======== | ========     |              | =======   |               | ======  |         |
|              | coef     | std err      | Z            | P> z      | [0.025        | 0.975]  |         |
| ma.L1        | -0.3958  | 0.043        | <br>-9.293   | 0.000     | <br>-0.479    | -0.312  |         |
| ma.L2        | -0.2629  | 0.048        | -5.499       | 0.000     | -0.357        | -0.169  |         |
| ar.S.L12     | 0.3981   | 0.227        | 1.753        | 0.080     | -0.047        | 0.843   |         |
| ma.S.L12     | -0.2392  | 0.239        | -1.001       | 0.317     | -0.707        | 0.229   |         |
| sigma2       | 0.0054   | 0.000        | 16.326       | 0.000     | 0.005         | 0.006   |         |

Jarque-Bera (JB):

Prob(JB):

Skew:

22.84

0.00

0.50

55.85

0.05

1.29

```
Prob(H) (two-sided): 0.12 Kurtosis: 3.46
```

### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

## Incluímos la componente estacional en la predicción

```
In [79]: sarima6_seas_fore = sarima6_forecasted + bc_seasonality_forecast
         sarima6_box_forecasted = (bc_param *
                                   sarima6_seas_fore + 1) ** (1 / bc_param)
In [80]: print("SARIMA (0, 1, 2) x (1, 0, 1) (serie desestacionalizada)")
         print("")
         print("Observaciones ajustadas: " + str(len(train)))
         print("Observaciones predichas: " + str(len(test)))
         print("")
         print("AIC: " + str(sarima6_aic))
         print("Test de Jarque-Bera (p-valor): " + str(sarima6_jb_test[1]))
         print("Test de Ljung-Box para k = 6 (p-valor): " +
               str(sarima6_lb_test[1][6]))
         print("Test de Ljung-Box para k = 12 (p-valor): " +
               str(sarima6_lb_test[1][12]))
         print("")
         print("RMSE (test): " + str(sqrt(mse(test, sarima6_box_forecasted))))
         print("MAE (test): " + str(mae(test, sarima6_box_forecasted)))
         print("sMAPE (test): " + str(smape(test, sarima6_box_forecasted)))
SARIMA (0, 1, 2) x (1, 0, 1) (serie desestacionalizada)
Observaciones ajustadas: 452
Observaciones predichas: 112
AIC: -1064.8202474740951
Test de Jarque-Bera (p-valor): 7.840339372635264e-06
Test de Ljung-Box para k = 6 (p-valor): 0.09660711986874868
Test de Ljung-Box para k = 12 \text{ (p-valor)}: 0.0715205434558047
RMSE (test): 33.097596059360754
MAE (test): 20.862229508696394
sMAPE (test): 43.08602581853967
In [81]: forecast_plot(test, sarima6_box_forecasted)
         plt.show()
```



# SARIMA (0, 1, 2) x (2, 0, 0)12



In [84]: print(sarima7\_model.summary())

| ========     | ======= |             | ========     | =======  | =========     | ======== | ========  |
|--------------|---------|-------------|--------------|----------|---------------|----------|-----------|
| Dep. Variabl | e:      |             | v            | alue No. | Observations: |          | 452       |
| Model:       | SAI     | RIMAX(O, 1, | 2)x(2, 0, 0, | 12) Log  | Likelihood    |          | 538.021   |
| Date:        |         |             | Thu, 04 Jul  | 2019 AIC |               |          | -1066.042 |
| Time:        |         |             | 18:4         | 5:09 BIC |               |          | -1045.484 |
| Sample:      |         |             | 01-01-       | 1914 HQI | C             |          | -1057.940 |
|              |         |             | - 08-01-     | 1951     |               |          |           |
| Covariance T | ype:    |             |              | opg      |               |          |           |
| ========     | ======= |             |              | =======  | =========     | =======  |           |
|              | coef    | std err     | Z            | P> z     | [0.025        | 0.975]   |           |
|              |         |             |              |          |               |          |           |
| ma.L1        | -0.3965 | 0.042       | -9.452       | 0.000    | -0.479        | -0.314   |           |

| ========         | ========       | ========= | =======          | ========                | ========           | =======                                |          |
|------------------|----------------|-----------|------------------|-------------------------|--------------------|----------------------------------------|----------|
|                  | coef           | std err   | Z                | P> z                    | [0.025             | 0.975]                                 |          |
| ma.L1            | -0.3965        | 0.042     | <br>-9.452       | 0.000                   | -0.479             | -0.314                                 |          |
| $\mathtt{ma.L2}$ | -0.2650        | 0.047     | -5.592           | 0.000                   | -0.358             | -0.172                                 |          |
| ar.S.L12         | 0.1474         | 0.046     | 3.214            | 0.001                   | 0.058              | 0.237                                  |          |
| ar.S.L24         | 0.0802         | 0.045     | 1.800            | 0.072                   | -0.007             | 0.168                                  |          |
| sigma2           | 0.0054         | 0.000     | 16.338           | 0.000                   | 0.005              | 0.006                                  |          |
| Ljung-Box (      | =======<br>Q): | ========  | =======<br>53.27 | ========<br>Jarque-Bera | =========<br>(JB): | ====================================== | ==<br>21 |
| Prob(Q):         |                |           | 0.08             | Prob(JB):               |                    | 0.                                     | 00       |
| Heteroskeda      | sticity (H):   |           | 1.30             | Skew:                   |                    | 0.                                     | 50       |

```
Prob(H) (two-sided): 0.11 Kurtosis: 3.45
```

### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

## Incluímos la componente estacional en la predicción

```
In [85]: sarima7_seas_fore = sarima7_forecasted + bc_seasonality_forecast
         sarima7_box_forecasted = (bc_param *
                                   sarima7_seas_fore + 1) ** (1 / bc_param)
In [86]: print("SARIMA (0, 1, 2) x (2, 0, 0) (serie desestacionalizada)")
        print("")
        print("Observaciones ajustadas: " + str(len(train)))
        print("Observaciones predichas: " + str(len(test)))
        print("")
        print("AIC: " + str(sarima7_aic))
        print("Test de Jarque-Bera (p-valor): " + str(sarima7_jb_test[1]))
        print("Test de Ljung-Box para k = 6 (p-valor): " +
               str(sarima7_lb_test[1][6]))
         print("Test de Ljung-Box para k = 12 (p-valor): " +
               str(sarima7_lb_test[1][12]))
        print("")
        print("RMSE (test): " + str(sqrt(mse(test, sarima7_box_forecasted))))
         print("MAE (test): " + str(mae(test, sarima7_box_forecasted)))
        print("sMAPE (test): " + str(smape(test, sarima7_box_forecasted)))
SARIMA (0, 1, 2) x (2, 0, 0) (serie desestacionalizada)
Observaciones ajustadas: 452
Observaciones predichas: 112
AIC: -1066.0415922868567
Test de Jarque-Bera (p-valor): 1.0860050176790743e-05
Test de Ljung-Box para k = 6 (p-valor): 0.11830845647215742
Test de Ljung-Box para k = 12 (p-valor): 0.09063065320021838
RMSE (test): 33.0379053381173
MAE (test): 20.871418150460133
sMAPE (test): 43.03383094851058
In [87]: forecast_plot(test, sarima7_box_forecasted)
        plt.show()
```



## Autoarima

```
In [88]: auto = auto_arima(bc_deseas, m=12, seasonal=True)
         auto
Out[88]: ARIMA(callback=None, disp=0, maxiter=None, method=None, order=(1, 1, 2),
            out_of_sample_size=0, scoring='mse', scoring_args={},
            seasonal_order=(1, 0, 0, 12), solver='lbfgs', start_params=None,
            suppress_warnings=False, transparams=True, trend=None,
            with_intercept=True)
In [89]: autosarima1 = SARIMAX(bc_deseas, order = (1, 1, 1), seasonal_order = (1, 0, 0, 12))
         autosarima1_model = autosarima1.fit()
         autosarima1_aic = autosarima1_model.aic
         autosarima1_fitted = autosarima1_model.fittedvalues
         autosarima1_resid = (autosarima1_model.resid[12:] -
                              autosarima1_model.resid[12:].mean()) / autosarima1_model.resid[12:
         autosarima1_jb_test = jb(autosarima1_resid)
         autosarima1_lb_test = lb(autosarima1_resid)
         autosarima1_forecasted = autosarima1_model.predict(split_date, end_date)
In [90]: resid_diag(autosarima1_resid)
         plt.show()
```



In [91]: print(autosarima1\_model.summary())

| ========     |                 | =======   | =======          | =======            | =========                              | ======= | =======      |
|--------------|-----------------|-----------|------------------|--------------------|----------------------------------------|---------|--------------|
| Dep. Variabl | Le:             |           |                  | value N            | o. Observations:                       |         | 452          |
| Model:       | SARI            | MAX(1, 1, | 1)x(1, 0, 0      | , 12) L            | og Likelihood                          |         | 544.272      |
| Date:        |                 | •         | Thu, 04 Jul      | 2019 A             | IC                                     |         | -1080.545    |
| Time:        |                 |           | 18:              | 45:37 B            | IC                                     |         | -1064.099    |
| Sample:      |                 |           | 01-01            | -1914 H            | QIC                                    |         | -1074.064    |
| -            |                 |           | - 08-01          | -1951              |                                        |         |              |
| Covariance 7 | Type:           |           |                  | opg                |                                        |         |              |
| ========     | coef            | std err   | =======<br>Z     | ======<br>P> z     | ====================================== | 0.975]  |              |
| ar.L1        | 0.5705          | 0.043     | <br>13.176       | 0.00               | <br>0 0.486                            | 0.655   |              |
| ma.L1        | -0.9548         | 0.017     | -55.649          | 0.00               | 0 -0.988                               | -0.921  |              |
| ar.S.L12     | 0.1694          | 0.048     | 3.546            | 0.00               | 0.076                                  | 0.263   |              |
| sigma2       | 0.0052          | 0.000     |                  | 0.00               | 0.005                                  | 0.006   |              |
| Ljung-Box (0 | ========<br>}): | =======   | =======<br>47.67 | ======<br>Jarque-B | ========<br>era (JB):                  | <br>26  | :===<br>5.63 |
| Prob(Q):     |                 |           | 0.19             | Prob(JB)           |                                        | C       | .00          |
| Heteroskedas | sticity (H):    |           | 1.31             | Skew:              |                                        | C       | .53          |
| Prob(H) (two | o-sided):       |           | 0.10             | Kurtosis           | :                                      | 3       | 3.55         |

\_\_\_\_\_\_\_

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

## Incluímos la componente estacional en la predicción

```
In [92]: autosarima1_seas_fore = autosarima1_forecasted + bc_seasonality_forecast
         autosarima1_box_forecasted = (bc_param * autosarima1_seas_fore + 1) ** (1 / bc_param)
In [93]: print("SARIMA (1, 1, 1) x (2, 0, 0) (serie desestacionalizada)")
        print("")
        print("Observaciones ajustadas: " + str(len(train)))
        print("Observaciones predichas: " + str(len(test)))
        print("")
        print("AIC: " + str(autosarima1_aic))
        print("Test de Jarque-Bera (p-valor): " + str(autosarima1_jb_test[1]))
        print("Test de Ljung-Box para k = 6 (p-valor): " +
               str(autosarima1_lb_test[1][6]))
         print("Test de Ljung-Box para k = 12 (p-valor): " +
               str(autosarima1_lb_test[1][12]))
         print("")
        print("RMSE (test): " + str(sqrt(mse(test, autosarima1_box_forecasted))))
        print("MAE (test): " + str(mae(test, autosarima1_box_forecasted)))
        print("sMAPE (test): " + str(smape(test, autosarima1_box_forecasted)))
SARIMA (1, 1, 1) x (2, 0, 0) (serie desestacionalizada)
Observaciones ajustadas: 452
Observaciones predichas: 112
AIC: -1080.5448933279936
Test de Jarque-Bera (p-valor): 1.7693001979751832e-06
Test de Ljung-Box para k = 6 (p-valor): 0.15311810790555627
Test de Ljung-Box para k = 12 (p-valor): 0.3333204025803236
RMSE (test): 33.451003456851836
MAE (test): 20.846279715383275
sMAPE (test): 43.5275472737031
In [94]: forecast_plot(test, autosarima1_box_forecasted)
        plt.show()
```



Procesos finales candidatos a generar la serie desestacionalizada: - SARIMA  $(0, 1, 2) \times (1, 0, 0)$ 12 - SARIMA  $(1, 1, 1) \times (1, 0, 0)$ 12

**SARIMA** (0, 1, 2) x (1, 0, 0)12 Véase sarima5

## SARIMA (1, 1, 1) x (1, 0, 0)12



In [97]: print(sarima8\_model.summary())

Prob(H) (two-sided):

# Statespace Model Results

| ========     | ========     | =======   | -=======    | =======   | =========       | ======= | =======   |
|--------------|--------------|-----------|-------------|-----------|-----------------|---------|-----------|
| Dep. Variab  | le:          |           |             | value No  | . Observations: |         | 452       |
| Model:       | SARI         | MAX(1, 1, | 1)x(1, 0, 0 | , 12) Lo  | g Likelihood    |         | 544.272   |
| Date:        |              |           | Thu, 04 Jul | 2019 AI   | C               |         | -1080.545 |
| Time:        |              |           | 18:         | 45:38 BI  | C               |         | -1064.099 |
| Sample:      |              |           | 01-01       | -1914 HQ  | IC              |         | -1074.064 |
| <u>-</u>     |              |           | - 08-01     | -1951     |                 |         |           |
| Covariance ' | Туре:        |           |             | opg       |                 |         |           |
| ========     |              | =======   | :=======    | =======   | =========       | ======  |           |
|              | coef         | std err   | Z           | P> z      | [0.025          | 0.975]  |           |
| ar.L1        | 0.5705       | 0.043     | 13.176      | 0.000     | 0.486           | 0.655   |           |
| ma.L1        | -0.9548      | 0.017     | -55.649     | 0.000     | -0.988          | -0.921  |           |
| ar.S.L12     | 0.1694       | 0.048     | 3.546       | 0.000     | 0.076           | 0.263   |           |
| sigma2       | 0.0052       | 0.000     | 16.586      | 0.000     | 0.005           | 0.006   |           |
| Ljung-Box (  | <br>Q):      |           | 47.67       | Jarque-Be | <br>ra (JB):    | <br>26  | . 63      |
| Prob(Q):     |              |           | 0.19        | Prob(JB): |                 | 0       | .00       |
| Heteroskeda  | sticity (H): |           | 1.31        | Skew:     |                 | 0       | .53       |

Kurtosis:

3.55

0.10

\_\_\_\_\_\_\_

#### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

## Incluímos la componente estacional en la predicción

```
In [98]: sarima8_seas_fore = sarima8_forecasted + bc_seasonality_forecast
         sarima8_box_forecasted = (bc_param *
                                   sarima8_seas_fore + 1) ** (1 / bc_param)
In [99]: print("SARIMA (1, 1, 1) x (1, 0, 0) (serie desestacionalizada)")
         print("")
         print("Observaciones ajustadas: " + str(len(train)))
         print("Observaciones predichas: " + str(len(test)))
         print("")
         print("AIC: " + str(sarima8_aic))
         print("Test de Jarque-Bera (p-valor): " + str(sarima8_jb_test[1]))
         print("Test de Ljung-Box para k = 6 (p-valor): " +
               str(sarima8_lb_test[1][6]))
         print("Test de Ljung-Box para k = 12 (p-valor): " +
               str(sarima8_lb_test[1][12]))
         print("")
         print("RMSE (test): " + str(sqrt(mse(test, sarima8_box_forecasted))))
         print("MAE (test): " + str(mae(test, sarima8_box_forecasted)))
         print("sMAPE (test): " + str(smape(test, sarima8_box_forecasted)))
SARIMA (1, 1, 1) x (1, 0, 0) (serie desestacionalizada)
Observaciones ajustadas: 452
Observaciones predichas: 112
AIC: -1080.5448933279936
Test de Jarque-Bera (p-valor): 1.7693001979751832e-06
Test de Ljung-Box para k = 6 \text{ (p-valor)}: 0.15311810790555627
Test de Ljung-Box para k = 12 (p-valor): 0.3333204025803236
RMSE (test): 33.451003456851836
MAE (test): 20.846279715383275
sMAPE (test): 43.5275472737031
In [100]: forecast_plot(test, sarima8_box_forecasted)
         plt.show()
```



## Opción 2. Modelo SARIMA.

## Test ADF y KPSS para determinar el tratamiento de la tendencia-ciclo

```
In [101]: adf_test = stationarity_test(bc_train)[0]
         kpss_test = stationarity_test(bc_train)[1]
         print("RESULTADOS DEL TEST AUMENTADO DE DICKEY FULLER")
         print("Estadístico de contraste: " + str(adf_test[0]))
         print("P-valor: " + str(adf_test[1]))
         print("")
         print("RESULTADOS DEL TEST KPSS")
          print("Estadístico de contraste: " + str(kpss_test[0]))
         print("P-valor: " + str(kpss_test[1]))
RESULTADOS DEL TEST AUMENTADO DE DICKEY FULLER
Estadístico de contraste: -3.812926799047772
P-valor: 0.0027777917233248674
RESULTADOS DEL TEST KPSS
Estadístico de contraste: 0.31804791289067974
P-valor: 0.1
In [102]: diff_bc_train = bc_train.diff(1).iloc[1:]
In [103]: tsplot(diff_bc_train)
```











Identificación de ordenes Procesos candidatos a generar la serie: - SARIMA (2, 0, 0) x (2, 0, 0)12 - SARIMA (1, 0, 1) x (2, 0, 0)12 - SARIMA (1, 0, 2) x (2, 0, 0)12 - SARIMA (3, 1, 0) x (2, 0, 0)12 - SARIMA (2, 1, 2) x (2, 0, 0)12 SARIMA (2, 0, 0) x (2, 0, 0)12



In [108]: print(sarima9\_model.summary())

| ======================================= |                                |                   | ======================================= |
|-----------------------------------------|--------------------------------|-------------------|-----------------------------------------|
| Dep. Variable:                          | value                          | No. Observations: | 452                                     |
| Model:                                  | SARIMAX(2, 0, 0)x(2, 0, 0, 12) | Log Likelihood    | 456.353                                 |
| Date:                                   | Thu, 04 Jul 2019               | AIC               | -902.707                                |
| Time:                                   | 18:45:42                       | BIC               | -882.138                                |
| Sample:                                 | 01-01-1914                     | HQIC              | -894.601                                |
|                                         | - 08-01-1951                   |                   |                                         |
| Covariance Type:                        | opg                            |                   |                                         |

| Covariance  | ıype:<br>    |         | opg               |           |        |        |
|-------------|--------------|---------|-------------------|-----------|--------|--------|
|             | coef         | std err | z                 | P> z      | [0.025 | 0.975] |
| ar.L1       | 0.8028       | 0.049   | 16.306            | 0.000     | 0.706  | 0.899  |
| ar.L2       | 0.1824       | 0.049   | 3.736             | 0.000     | 0.087  | 0.278  |
| ar.S.L12    | 0.4422       | 0.042   | 10.457            | 0.000     | 0.359  | 0.525  |
| ar.S.L24    | 0.3433       | 0.043   | 8.063             | 0.000     | 0.260  | 0.427  |
| sigma2      | 0.0075       | 0.000   | 16.334            | 0.000     | 0.007  | 0.008  |
|             |              | 90.02   | Jarque-Bera (JB): |           | 15.65  |        |
| Prob(Q):    |              |         | 0.00              | Prob(JB): |        | 0.00   |
| Heteroskeda | sticity (H): |         | 1.22              | Skew:     |        | 0.39   |

```
Prob(H) (two-sided): 0.22 Kurtosis: 3.47
```

### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [109]: print("SARIMA (2, 0, 0) x (2, 0, 0)")
          print("")
          print("Observaciones ajustadas: " + str(len(train)))
         print("Observaciones predichas: " + str(len(test)))
          print("AIC: " + str(sarima9_aic))
          print("Test de Jarque-Bera (p-valor): " +
                str(sarima9_jb_test[1]))
          print("Test de Ljung-Box para k = 6 (p-valor): " +
                str(sarima9_lb_test[1][6]))
          print("Test de Ljung-Box para k = 12 (p-valor): " +
                str(sarima9_lb_test[1][12]))
          print("")
          print("RMSE (test): " + str(sqrt(mse(test, sarima9_box_forecasted))))
         print("MAE (test): " + str(mae(test, sarima9_box_forecasted)))
          print("sMAPE (test): " + str(smape(test, sarima9_box_forecasted)))
SARIMA (2, 0, 0) \times (2, 0, 0)
Observaciones ajustadas: 452
Observaciones predichas: 112
AIC: -902.7066634500046
Test de Jarque-Bera (p-valor): 0.00035697719434374587
Test de Ljung-Box para k = 6 (p-valor): 2.089838109582137e-06
Test de Ljung-Box para k = 12 (p-valor): 6.379352048463386e-06
RMSE (test): 40.02521988513189
MAE (test): 25.897865650314316
sMAPE (test): 79.37610123282874
In [110]: forecast_plot(test, sarima9_box_forecasted)
         plt.show()
```



## SARIMA (1, 0, 1) x (2, 0, 0)12



In [113]: print(sarima10\_model.summary())

Heteroskedasticity (H):

# Statespace Model Results

| ========     | ========        | ========    |             | =====  | ======          | ========          | =======       | =======    |
|--------------|-----------------|-------------|-------------|--------|-----------------|-------------------|---------------|------------|
| Dep. Variab  | le:             |             |             | value  | No. O           | bservations:      |               | 452        |
| Model:       | SARI            | MAX(1, 0, 1 | l)x(2, 0, 0 | , 12)  | Log L           | ikelihood         |               | 464.686    |
| Date:        |                 | ٦           | Thu, 04 Jul | 2019   | AIC             |                   |               | -919.373   |
| Time:        |                 |             | 18:         | 45:44  | BIC             |                   |               | -898.804   |
| Sample:      |                 |             | 01-01       | -1914  | HQIC            |                   |               | -911.268   |
|              |                 |             | - 08-01     | -1951  |                 |                   |               |            |
| Covariance : | Гуре:           |             |             | opg    |                 |                   |               |            |
| ========     | =======         | =======     |             | =====  | =====           | ========          | ======        |            |
|              | coef            | std err     | Z           | P:     | > z             | [0.025            | 0.975]        |            |
| ar.L1        | 0.9977          | 0.004       | 223.033     | 0      | .000            | 0.989             | 1.006         |            |
| ma.L1        | -0.4223         | 0.042       | -10.079     | 0      | .000            | -0.504            | -0.340        |            |
| ar.S.L12     | 0.4405          | 0.040       | 10.976      | 0      | .000            | 0.362             | 0.519         |            |
| ar.S.L24     | 0.3570          | 0.041       | 8.677       | 0      | .000            | 0.276             | 0.438         |            |
| sigma2       | 0.0072          | 0.000       | 15.738      | 0      | .000            | 0.006             | 0.008         |            |
| Ljung-Box (  | ========<br>3): | =======     | 85.42       | Jarque | =====<br>e-Bera | ========<br>(JB): | =======<br>10 | ===<br>.18 |
| Prob(Q):     | 77.             |             | 0.00        | Prob(  |                 | <b>\</b> /-       |               | .01        |

Skew:

0.34

1.28

```
Prob(H) (two-sided): 0.13 Kurtosis: 3.28
```

### Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [114]: print("SARIMA (1, 0, 1) x (2, 0, 0)")
          print("")
          print("Observaciones ajustadas: " + str(len(train)))
          print("Observaciones predichas: " + str(len(test)))
          print("AIC: " + str(sarima10_aic))
          print("Test de Jarque-Bera (p-valor): " + str(sarima10_jb_test[1]))
          print("Test de Ljung-Box para k = 6 (p-valor): " +
                str(sarima10_lb_test[1][6]))
          print("Test de Ljung-Box para k = 12 (p-valor): " +
                str(sarima10_lb_test[1][12]))
          print("")
          print("RMSE (test): " + str(sqrt(mse(test, sarima10_box_forecasted))))
          print("MAE (test): " + str(mae(test, sarima10_box_forecasted)))
          print("sMAPE (test): " + str(smape(test, sarima10_box_forecasted)))
SARIMA (1, 0, 1) \times (2, 0, 0)
Observaciones ajustadas: 452
Observaciones predichas: 112
AIC: -919.3728280518599
Test de Jarque-Bera (p-valor): 0.005843389176126087
Test de Ljung-Box para k = 6 \text{ (p-valor)}: 5.763337363937166e-05
Test de Ljung-Box para k = 12 (p-valor): 7.224410996546479e-05
RMSE (test): 27.449553412296037
MAE (test): 17.665500442180765
sMAPE (test): 39.854219835874
In [115]: forecast_plot(test, sarima10_box_forecasted)
          plt.show()
```



## SARIMA (1, 0, 2) x (2, 0, 0)12



In [118]: print(sarima11\_model.summary())

Ljung-Box (Q):

Prob(Q):

# Statespace Model Results

| =========    | ======== | ========    | :========      | ======= | :========     | ======== |
|--------------|----------|-------------|----------------|---------|---------------|----------|
| Dep. Variab  | le:      |             | val            | ue No.  | Observations: |          |
| Model:       | SARI     | MAX(1, 0, 2 | e)x(2, 0, 0, 1 | 2) Log  | Likelihood    |          |
| Date:        |          | Т           | hu, 04 Jul 20  | 19 AIC  |               |          |
| Time:        |          |             | 18:45:         | 47 BIC  |               |          |
| Sample:      |          |             | 01-01-19       | 14 HQIC | ;             |          |
|              |          |             | - 08-01-19     | 51      |               |          |
| Covariance ' | Type:    |             | 0              | pg      |               |          |
| ========     | ======== | =======     | :========      | ======  |               | ======   |
|              | coef     | std err     | z              | P> z    | [0.025        | 0.975]   |
| ar.L1        | 0.9993   | 0.002       | 505.130        | 0.000   | 0.995         | 1.003    |
| ma.L1        | -0.3539  | 0.043       | -8.244         | 0.000   | -0.438        | -0.270   |
| ma.L2        | -0.3131  | 0.046       | -6.816         | 0.000   | -0.403        | -0.223   |
| ar.S.L12     | 0.4166   | 0.039       | 10.556         | 0.000   | 0.339         | 0.494    |
| ar.S.L24     | 0.3422   | 0.042       | 8.216          | 0.000   | 0.261         | 0.424    |
| sigma2       | 0.0067   | 0.000       | 16.242         | 0.000   | 0.006         | 0.007    |
| -            |          |             |                |         |               |          |

52.13

0.09

Jarque-Bera (JB):

Prob(JB):

23.12

0.00

```
1.28
Heteroskedasticity (H):
                                          Skew:
                                                                          0.50
Prob(H) (two-sided):
                                   0.13
                                          Kurtosis:
                                                                          3.47
______
Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
In [119]: print("SARIMA (1, 0, 2) x (3, 0, 0)")
         print("")
         print("Observaciones ajustadas: " + str(len(train)))
         print("Observaciones predichas: " + str(len(test)))
         print("")
         print("AIC: " + str(sarima11_aic))
         print("Test de Jarque-Bera (p-valor): " + str(sarima11_jb_test[1]))
         print("Test de Ljung-Box para k = 6 (p-valor): " +
               str(sarima11_lb_test[1][6]))
         print("Test de Ljung-Box para k = 12 (p-valor): " +
               str(sarima11_lb_test[1][12]))
         print("")
         print("RMSE (test): " + str(sqrt(mse(test, sarima11_box_forecasted))))
         print("MAE (test): " + str(mae(test, sarima11_box_forecasted)))
         print("sMAPE (test): " + str(smape(test, sarima11_box_forecasted)))
SARIMA (1, 0, 2) \times (3, 0, 0)
Observaciones ajustadas: 452
Observaciones predichas: 112
AIC: -952.6298121517603
Test de Jarque-Bera (p-valor): 9.727564739286202e-06
Test de Ljung-Box para k = 6 \text{ (p-valor)}: 0.5646576512181141}
Test de Ljung-Box para k = 12 (p-valor): 0.3835095315373295
RMSE (test): 28.661457482477648
MAE (test): 16.488395863188817
sMAPE (test): 35.81959586469082
In [120]: forecast_plot(test, sarima11_box_forecasted)
         plt.show()
```



## SARIMA (3, 1, 0) x (2, 0, 0)12



In [123]: print(sarima12\_model.summary())

Ljung-Box (Q):

Prob(Q):

# Statespace Model Results

| ========     | ========    | ========     |              | :=======   | =========    | ======= | ====== |
|--------------|-------------|--------------|--------------|------------|--------------|---------|--------|
| Dep. Variabl | le:         |              | va           | alue No. O | bservations: |         | 4      |
| Model:       | SARI        | MAX(3, 1, 0) | )x(2, 0, 0,  | 12) Log L  | ikelihood    |         | 478.3  |
| Date:        |             | T            | nu, 04 Jul 2 | 2019 AIC   |              |         | -944.7 |
| Time:        |             |              | 18:45        | 5:49 BIC   |              |         | -920.1 |
| Sample:      |             |              | 01-01-1      | .914 HQIC  |              |         | -935.0 |
|              |             |              | - 08-01-1    | .951       |              |         |        |
| Covariance 7 | Гуре:       |              |              | opg        |              |         |        |
| =========    |             | =======      |              | ========   | =========    | ======  |        |
|              | coef        | std err      | Z            | P> z       | [0.025       | 0.975]  |        |
| ar.L1        | <br>-0.2784 | 0.047        | -5.892       | 0.000      | -0.371       | -0.186  |        |
| ar.L2        | -0.2951     | 0.046        | -6.468       | 0.000      | -0.384       | -0.206  |        |
| ar.L3        | -0.1674     | 0.048        | -3.514       | 0.000      | -0.261       | -0.074  |        |
| ar.S.L12     | 0.4443      | 0.041        | 10.775       | 0.000      | 0.364        | 0.525   |        |
| ar.S.L24     | 0.3332      | 0.043        | 7.734        | 0.000      | 0.249        | 0.418   |        |
| sigma2       | 0.0069      | 0.000        | 16.246       | 0.000      | 0.006        | 0.008   |        |

Jarque-Bera (JB):

Prob(JB):

16.70

0.00

62.17

0.01

```
Heteroskedasticity (H):
                                  1.25
                                          Skew:
                                                                          0.42
Prob(H) (two-sided):
                                  0.17
                                          Kurtosis:
                                                                           3.44
______
Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
In [124]: print("SARIMA (3, 1, 0) x (3, 0, 0)")
         print("")
         print("Observaciones ajustadas: " + str(len(train)))
         print("Observaciones predichas: " + str(len(test)))
         print("")
         print("AIC: " + str(sarima12_aic))
         print("Test de Jarque-Bera (p-valor): " + str(sarima12_jb_test[1]))
         print("Test de Ljung-Box para k = 6 (p-valor): " +
               str(sarima12_lb_test[1][6]))
         print("Test de Ljung-Box para k = 12 (p-valor): " +
               str(sarima12_lb_test[1][12]))
         print("")
         print("RMSE (test): " + str(sqrt(mse(test, sarima12_box_forecasted))))
         print("MAE (test): " + str(mae(test, sarima12_box_forecasted)))
         print("sMAPE (test): " + str(smape(test, sarima12_box_forecasted)))
SARIMA (3, 1, 0) \times (3, 0, 0)
Observaciones ajustadas: 452
Observaciones predichas: 112
AIC: -944.7731123922366
Test de Jarque-Bera (p-valor): 0.0002618782499241982
Test de Ljung-Box para k = 6 \text{ (p-valor)}: 0.24156163398839642
Test de Ljung-Box para k = 12 (p-valor): 0.2557396125217794
RMSE (test): 30.131423011307717
MAE (test): 24.87668745101635
sMAPE (test): 53.169159504076674
In [125]: forecast_plot(test, sarima12_box_forecasted)
         plt.show()
```



## SARIMA (2, 1, 2) x (2, 0, 0)12



In [128]: print(sarima13\_model.summary())

| ==========     |                                |                   | ========= |
|----------------|--------------------------------|-------------------|-----------|
| Dep. Variable: | value                          | No. Observations: | 452       |
| Model:         | SARIMAX(2, 1, 2)x(2, 0, 0, 12) | Log Likelihood    | 497.181   |
| Date:          | Thu, 04 Jul 2019               | AIC               | -980.363  |
| Time:          | 18:45:52                       | BIC               | -951.582  |
| Sample:        | 01-01-1914                     | HQIC              | -969.020  |

- 08-01-1951

Covariance Type: opg

| ========= | ======== | ======== |        | ======= | ======== | ======= |
|-----------|----------|----------|--------|---------|----------|---------|
|           | coef     | std err  | z      | P> z    | [0.025   | 0.975]  |
| ar.L1     | -0.3731  | 0.073    | -5.104 | 0.000   | -0.516   | -0.230  |
| ar.L2     | 0.5758   | 0.059    | 9.731  | 0.000   | 0.460    | 0.692   |
| ma.L1     | -0.0203  | 0.145    | -0.140 | 0.888   | -0.304   | 0.263   |
| ma.L2     | -0.9793  | 0.143    | -6.838 | 0.000   | -1.260   | -0.699  |
| ar.S.L12  | 0.4327   | 0.042    | 10.420 | 0.000   | 0.351    | 0.514   |
| ar.S.L24  | 0.3139   | 0.042    | 7.415  | 0.000   | 0.231    | 0.397   |
| sigma2    | 0.0063   | 0.001    | 6.368  | 0.000   | 0.004    | 0.008   |

Ljung-Box (Q): 47.39 Jarque-Bera (JB): 26.08

```
Prob(Q):
                                    0.20
                                           Prob(JB):
                                                                            0.00
Heteroskedasticity (H):
                                    1.26
                                                                            0.53
                                           Skew:
Prob(H) (two-sided):
                                    0.15
                                           Kurtosis:
                                                                            3.50
______
Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
In [129]: print("SARIMA (2, 1, 2) x (2, 0, 0)")
         print("")
         print("Observaciones ajustadas: " + str(len(train)))
         print("Observaciones predichas: " + str(len(test)))
         print("")
         print("AIC: " + str(sarima9_aic))
         print("Test de Jarque-Bera (p-valor): " + str(sarima13_jb_test[1]))
         print("Test de Ljung-Box para k = 6 (p-valor): " +
               str(sarima13_lb_test[1][6]))
         print("Test de Ljung-Box para k = 12 (p-valor): " +
               str(sarima13_lb_test[1][12]))
         print("")
         print("RMSE (test): " + str(sqrt(mse(test, sarima13_box_forecasted))))
         print("MAE (test): " + str(mae(test, sarima13_box_forecasted)))
         print("sMAPE (test): " + str(smape(test, sarima13_box_forecasted)))
SARIMA (2, 1, 2) \times (2, 0, 0)
Observaciones ajustadas: 452
Observaciones predichas: 112
AIC: -902.7066634500046
Test de Jarque-Bera (p-valor): 2.416370941312278e-06
Test de Ljung-Box para k = 6 \text{ (p-valor)}: 0.34316962540957
Test de Ljung-Box para k = 12 \text{ (p-valor)}: 0.48554474723781593}
RMSE (test): 28.209171874266634
MAE (test): 16.694862572380313
sMAPE (test): 36.412646030162946
In [130]: forecast_plot(test, sarima13_box_forecasted)
         plt.show()
```



#### Autoarima

```
In [131]: auto = auto_arima(bc_train, m = 12, seasonal = True)
          auto
Out[131]: ARIMA(callback=None, disp=0, maxiter=None, method=None, order=(2, 1, 2),
             out_of_sample_size=0, scoring='mse', scoring_args={},
             seasonal_order=(2, 0, 2, 12), solver='lbfgs', start_params=None,
             suppress_warnings=False, transparams=True, trend=None,
             with_intercept=True)
In [132]: autosarima2 = SARIMAX(bc_train, order = (2, 1, 2), seasonal_order = (2, 0, 2, 12))
          autosarima2_model = autosarima2.fit()
          autosarima2_aic = autosarima2_model.aic
          autosarima2_fitted = autosarima2_model.fittedvalues
          autosarima2_resid = (autosarima2_model.resid[12:] -
                               autosarima2_model.resid[12:].mean()) / autosarima2_model.resid[12
          autosarima2_jb_test = jb(autosarima2_resid)
          autosarima2_lb_test = lb(autosarima2_resid)
          autosarima2_forecasted = autosarima2_model.predict(split_date, end_date)
          autosarima2_box_forecasted = (bc_param * autosarima2_forecasted + 1) ** (1 / bc_param)
In [133]: resid_diag(autosarima2_resid)
          plt.savefig("resid_best.png", dpi=400)
         plt.show()
```



In [134]: print(autosarima2\_model.summary())

| ======================================= |                                                                | =========                                                                                                                   |
|-----------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| value                                   | No. Observations:                                              | 452                                                                                                                         |
| SARIMAX(2, 1, 2)x(2, 0, 2, 12)          | Log Likelihood                                                 | 508.362                                                                                                                     |
| Thu, 04 Jul 2019                        | AIC                                                            | -998.724                                                                                                                    |
| 18:47:08                                | BIC                                                            | -961.721                                                                                                                    |
| 01-01-1914                              | HQIC                                                           | -984.141                                                                                                                    |
|                                         | SARIMAX(2, 1, 2)x(2, 0, 2, 12)<br>Thu, 04 Jul 2019<br>18:47:08 | value No. Observations:  SARIMAX(2, 1, 2)x(2, 0, 2, 12) Log Likelihood  Thu, 04 Jul 2019 AIC  18:47:08 BIC  01-01-1914 HQIC |

- 08-01-1951

Covariance Type: opg

|          |         | VI      |        |       |         |        |
|----------|---------|---------|--------|-------|---------|--------|
|          | coef    | std err | z      | P> z  | [0.025  | 0.975] |
| ar.L1    | 0.0699  | 16.423  | 0.004  | 0.997 | -32.118 | 32.258 |
| ar.L2    | 0.2944  | 9.546   | 0.031  | 0.975 | -18.416 | 19.004 |
| ma.L1    | -0.4520 | 16.408  | -0.028 | 0.978 | -32.610 | 31.706 |
| ma.L2    | -0.4921 | 15.802  | -0.031 | 0.975 | -31.463 | 30.478 |
| ar.S.L12 | 0.2502  | 0.371   | 0.675  | 0.500 | -0.476  | 0.977  |
| ar.S.L24 | 0.7220  | 0.365   | 1.978  | 0.048 | 0.007   | 1.437  |
| ma.S.L12 | -0.0607 | 0.350   | -0.174 | 0.862 | -0.747  | 0.625  |
| ma.S.L24 | -0.6413 | 0.285   | -2.249 | 0.024 | -1.200  | -0.082 |
| sigma2   | 0.0059  | 0.000   | 15.570 | 0.000 | 0.005   | 0.007  |

```
Ljung-Box (Q):
                                   57.04
                                           Jarque-Bera (JB):
                                                                          25.93
Prob(Q):
                                   0.04
                                           Prob(JB):
                                                                           0.00
Heteroskedasticity (H):
                                   1.34
                                           Skew:
                                                                           0.55
Prob(H) (two-sided):
                                   0.08
                                           Kurtosis:
                                                                           3.42
______
Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
In [135]: print("SARIMA (2, 1, 2) x (2, 0, 0)")
         print("")
         print("Observaciones ajustadas: " + str(len(train)))
         print("Observaciones predichas: " + str(len(test)))
         print("")
         print("AIC: " + str(autosarima2_aic))
         print("Test de Jarque-Bera (p-valor): " + str(autosarima2_jb_test[1]))
         print("Test de Ljung-Box para k = 6 (p-valor): " +
               str(autosarima2_lb_test[1][6]))
         print("Test de Ljung-Box para k = 12 (p-valor): " +
               str(autosarima2_lb_test[1][12]))
         print("")
         print("RMSE (test): " + str(sqrt(mse(test, autosarima2_box_forecasted))))
         print("MAE (test): " + str(mae(test, autosarima2_box_forecasted)))
         print("sMAPE (test): " + str(smape(test, autosarima2_box_forecasted)))
SARIMA (2, 1, 2) \times (2, 0, 0)
Observaciones ajustadas: 452
Observaciones predichas: 112
AIC: -998.7244026526776
Test de Jarque-Bera (p-valor): 1.925192263208415e-06
Test de Ljung-Box para k = 6 \text{ (p-valor)}: 0.21515469923533817
Test de Ljung-Box para k = 12 (p-valor): 0.2760923446894693
RMSE (test): 29.9846699649396
MAE (test): 16.04973322417936
sMAPE (test): 33.00127011320319
In [136]: forecast_plot(test, autosarima2_box_forecasted)
         plt.show()
```

\_\_\_\_\_\_



## • SARIMA (2, 1, 2) x (2, 0, 1)12



In [139]: print(sarima14\_model.summary())

| Dep. Variable: | value                             | No. Observations: | 452       |
|----------------|-----------------------------------|-------------------|-----------|
| Model:         | SARIMAX(2, 1, 2) $x(2, 0, 1, 12)$ | Log Likelihood    | 511.934   |
| Date:          | Thu, 04 Jul 2019                  | AIC               | -1007.869 |
| Time:          | 18:47:13                          | BIC               | -974.977  |
| Sample:        | 01-01-1914                        | HQIC              | -994.906  |

- 08-01-1951

Covariance Type: opg

|          | coef    | std err | z       | P> z  | [0.025 | 0.975] |
|----------|---------|---------|---------|-------|--------|--------|
| ar.L1    | -0.3689 | 0.050   | -7.386  | 0.000 | -0.467 | -0.271 |
| ar.L2    | 0.6247  | 0.041   | 15.366  | 0.000 | 0.545  | 0.704  |
| ma.L1    | -0.0083 | 0.104   | -0.080  | 0.936 | -0.213 | 0.196  |
| ma.L2    | -0.9916 | 0.123   | -8.043  | 0.000 | -1.233 | -0.750 |
| ar.S.L12 | 1.1777  | 0.059   | 20.078  | 0.000 | 1.063  | 1.293  |
| ar.S.L24 | -0.1918 | 0.054   | -3.538  | 0.000 | -0.298 | -0.086 |
| ma.S.L12 | -0.8739 | 0.049   | -17.853 | 0.000 | -0.970 | -0.778 |
| sigma2   | 0.0058  | 0.001   | 7.970   | 0.000 | 0.004  | 0.007  |

```
Ljung-Box (Q):
                                     47.30
                                             Jarque-Bera (JB):
                                                                               24.65
Prob(Q):
                                      0.20
                                             Prob(JB):
                                                                                0.00
                                                                                0.53
Heteroskedasticity (H):
                                      1.26
                                             Skew:
Prob(H) (two-sided):
                                      0.16
                                             Kurtosis:
                                                                                3.42
Warnings:
[1] Covariance matrix calculated using the outer product of gradients (complex-step).
In [140]: print("SARIMA (2, 1, 2) x (2, 0, 1)")
          print("")
          print("Observaciones ajustadas: " + str(len(train)))
          print("Observaciones predichas: " + str(len(test)))
          print("")
          print("AIC: " + str(sarima14_aic))
          print("Test de Jarque-Bera (p-valor): " + str(sarima14_jb_test[1]))
          print("Test de Ljung-Box para k = 6 (p-valor): " +
                str(sarima14_lb_test[1][6]))
          print("Test de Ljung-Box para k = 12 (p-valor): " +
                str(sarima14_lb_test[1][12]))
          print("")
          print("RMSE (test): " + str(sqrt(mse(test, sarima14_box_forecasted))))
          print("MAE (test): " + str(mae(test, sarima14_box_forecasted)))
          print("sMAPE (test): " + str(smape(test, sarima14_box_forecasted)))
SARIMA (2, 1, 2) \times (2, 0, 1)
Observaciones ajustadas: 452
Observaciones predichas: 112
AIC: -1007.8686734324268
Test de Jarque-Bera (p-valor): 2.8743969410190724e-06
Test de Ljung-Box para k = 6 \text{ (p-valor)}: 0.15446746927782673
Test de Ljung-Box para k = 12 (p-valor): 0.45015879016303895
RMSE (test): 24.823649386547004
MAE (test): 15.352171959400692
sMAPE (test): 33.52102774477333
In [141]: forecast_plot(test, sarima14_box_forecasted)
          plt.show()
```

