Demostraciones de Análisis Matemático II

Facundo Linlaud

Contents

1	Sucesiones	
	1.1 Si A está acotado superiormente entonces existe una sucesión creciente que tiende al supre 1.2 Si $\{a_n\}$ es una sucesión creciente y acotada superiormente, a_n converge a su supremo 1.3 Si $\{a_n\} \in \mathbb{R}^n \implies$ tiene subsucesión monótona	3
	1.4 Si $\{a_n\} \in \mathbb{R}^n$ acotada \implies tiene subsucesión convergente (Bolzano-Weierstrass)	
	1.5 Convergencia de sucesión	
	1.6 Divergencia de sucesión	3
2	Espacios como n-uplas	3
	2.1 Desigualdad de Cauchy-Schwartz	
	2.2 Conjunto abierto	3
	2.3 Bola abierta es un conjunto abierto	
	2.4 Punto interior	
	2.5 Punto de acumulación	
	2.6 Conjunto cerrado	
	$C \subset \mathbb{R}$ certado $\iff C$ ablerto	4
3	Conjuntos	4
	3.1 Definiciones	
	3.1.1 Compacto	
	3.1.2 Arcoconexo	4
4	Funciones	5
	4.1 Sucesiones para calcular límites	
	4.2 Propiedades de funciones continuas	
	4.2.1 Si f cont. y $P_n \subset A / \forall n \in \mathbb{N} : f(P_n) \ge 0 \implies \lim f(P) \ge 0 \dots \dots \dots$	
	4.2.2 Si f cont. y $f(P) > 0 \implies f$ es mayor a 0 en un entorno de $P = \dots $	
	4.2.3 Si f cont. en [a, b] $/$ $f(a)f(b) < 0 \implies \exists c \in (a,b) / f(c) = 0$ (Bolzano/T.V.M.) 4.2.4 Si f cont. y su dominio arcoconexo $/$ $f(P)f(Q) < 0 \implies \exists R \in (a,b) / f(R)$	
	$0 \text{ (Bolzano } \mathbb{R}^n/\text{T.V.M.}) \dots \dots$	
	4.2.5 Si f cont. y su dominio compacto $\implies f$ está acotada y tiene máximo y mínimo (Weie	
	strass)	
	4.2.6 Si f cont. y su dominio compacto \implies su imagen también lo es $\dots \dots \dots$	7
5	Derivadas y diferencial	8
3	5.1 Notación: gradiente y plano tangente	
	5.2 Diferenciabilidad	
	5.3 Si f diferenciable en $P \Longrightarrow f$ contínua en $P \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	
	5.4 Si existe transformación lineal diferencial \implies existen todas las direccionales $\dots \dots$	
	5.5 Si f derivable en $c \in (a,b)$ y c extremo local $\implies f'(c) = 0$ (Fermat \mathbb{R})	
	5.6 Si f contínua en $[a,b]$, derivable en (a,b) y $f(a)=f(b) \implies$ existe $c \in (a,b)$ / $f'(c)=0$ (Rolling Eq. (2.1))	
	en \mathbb{R})	
	5.7 Si f contínua en $[a,b]$ y derivable en (a,b) \implies existe $c \in (a,b)$ / $f'(c) = \frac{f(b)-f(a)}{b-a}$ (Lagrange)	ge 12

1 Sucesiones

1.1 Si A está acotado superiormente entonces existe una sucesión creciente que tiende al supremo

<u>Formalización</u>: Si $s = sup(A) \implies \exists$ sucesión creciente $\{a_n\} \subset A \mid \lim_{n \to \infty} a_n = s$

Observación: Si $s \notin A \implies \{a_n\}$ puede ser elegida estrictamente creciente.

1.2 Si $\{a_n\}$ es una sucesión creciente y acotada superiormente, a_n converge a su supremo

Formalización: Si $\{a_n\}$ creciente y acotada superiormente $\implies \lim_{n\to\infty} a_n = \sup(\{a_n\})$

- **1.3** Si $\{a_n\} \in \mathbb{R}^n \implies$ tiene subsucesión monótona
- **1.4** Si $\{a_n\} \in \mathbb{R}^n$ acotada \Longrightarrow tiene subsucesión convergente (Bolzano-Weierstrass)

1.5 Convergencia de sucesión

Formalización:

- $\{P_n\}_{n\in\mathbb{N}}\subset\mathbb{R}^n$
- $P \in \mathbb{R}^n$
- $\lim P_n = P$

Si y sólo si $\forall \ \epsilon > 0, \exists \ n_0 \in \mathbb{N} \ / \ ||P_n - P|| < \epsilon \ \forall \ n \geq n_0$

1.6 Divergencia de sucesión

Formalización:

- $\{P_n\}_{n\in\mathbb{N}}\subset\mathbb{R}^n$
- $\lim P_n = \infty$

Si y sólo si $||P_n|| > M \forall n \geq n_0$

2 Espacios como n-uplas

2.1 Desigualdad de Cauchy-Schwartz

Formalización: $|\langle P, Q \rangle| \leq ||P|| * ||Q||$

2.2 Conjunto abierto

Un conjunto C es abierto si para cada punto $P \in C, \exists$ bola abierta $B_r(P)$ / $B_r(P) \subset C$

2.3 Bola abierta es un conjunto abierto

Formalización: Sea $B_r(P)$ una bola abierta en $\mathbb{R}^n, \forall \ Q \in B_r(P), \exists t > 0 \ / \ B_t(Q) \subset B_r(P)$.

Observación: En particular, una bola abierta es un conjunto abierto.

2.4 Punto interior

Formalización: Un punto $P \in C \subset \mathbb{R}^n$ es interior si $\exists r > 0$ / $B_r(P) \subset C$.

Observación: El conjunto de todos los puntos interiores de C se denomina **interior de C** y se denota C^0 .

2.5 Punto de acumulación

Formalización: Si existe $\{P_n\} \subset C / \lim P_n = P \implies P$ es un punto de acumulación de C.

 $\underline{\mathbf{Observación}} \text{: El conjunto de todos los puntos de acumulación de } C \text{ se denomina } \mathbf{clausura} \text{ de } \mathbf{C} \text{ y se denota}$

2.6 Conjunto cerrado

Formalización: $C \subset \mathbb{R}^n$ es cerrado \iff $(\forall \{P_n\} \subset C \implies \lim P_n = P \in C)$

2.7 $C \subset \mathbb{R}^n$ cerrado $\iff C^c$ abierto

3 Conjuntos

3.1 Definiciones

3.1.1 Compacto

Formalización: Un conjunto $A \subset \mathbb{R}^n$ es **compacto** si:

- · es cerrado y
- · es acotado

3.1.2 Arcoconexo

Formalización: Un conjunto $A \subset \mathbb{R}^n$ es arcoconexo si dados $P,Q \in A$ existe una curva continua $\alpha:[0,1] \to A$ / $\alpha(0)=P$ y $\alpha(1)=Q$.

4 Funciones

4.1 Sucesiones para calcular límites

Formalización: Sea

- $F:A\subset\mathbb{R}^n\to\mathbb{R}^m$
- $P \in \bar{A}$
- $L \in \mathbb{R}^m$

Tenemos que:

$$\lim_{X \to P} F(X) = L \qquad \iff \qquad \begin{array}{c} \forall \ P_n \subset A : P_n \neq P \\ P_n \to P \end{array}$$

4.2 Propiedades de funciones continuas

4.2.1 Si f cont. y $P_n \subset A / \forall n \in \mathbb{N} : f(P_n) \ge 0 \implies \lim f(P) \ge 0$

Formalización: si

- f contínua
- $\{P_n\}\subset A\ /\ P_n\to P$
- $\forall n \in \mathbb{N} : f(P_n) \ge 0$
- $\implies f(P) \ge 0$

Observación: El caso \leq es análogo.

<u>Idea</u>: Por absurdo. Elegir un ϵ cualquiera para la sucesión, plantear el módulo de la definición, splittear el módulo y concluir que f(P) no puede ser negativo.

4.2.2 Si f cont. y $f(P) > 0 \implies f$ es mayor a 0 en un entorno de P

Formalización: si

- f contínua
- f(P) > 0

 $\implies \exists r > 0 / \forall X \in U : f(X) > 0$, siendo $U = B_r(P) \cap A$

Observación: El caso < es análogo.

<u>Idea</u>: Por absurdo. Sea $\{a_n\}$ la sucesión que tiende a P pero que $\forall n \in \mathbb{K} : f(a_n) \leq 0$, por el teorema 4.2.1, f(P) tiene el mismo signo (o a lo sumo se nula) que la sucesión, lo cual contradice la hipótesis.

5

4.2.3 Si f cont. en [a, b] / $f(a)f(b) < 0 \implies \exists c \in (a,b)$ / f(c) = 0 (Bolzano/T.V.M.)

Formalización: si

- $f:[a,b] \to \mathbb{R}$ contínua
- f(a)f(b) < 0
- $\implies \exists c \in (a,b) / f(c) = 0.$

Idea:

- 1. Sea $A = \{x \in [a, b] / f(x) > 0\}$
- 2. Como ${\cal A}$ acotado y no nulo existe sucesión convergente ${\cal S}_n$ a su supremo s
- 3. S_n satisface $f(S_n) \geq 0$ (4.2.1) entonces $\lim f(s) \geq 0$
- 4. Si f(s) > 0 entonces f tiene un entorno en s positivo (4.2.2)
- 5. $s + \epsilon$ es más grande que s como $f(s + \epsilon) > 0 \implies f + \epsilon \in A$
- 6. Luego s no es supremo, con lo cual se llega al absurdo. Luego f(s)=0

4.2.4 Si f cont. y su dominio arcoconexo / $f(P)f(Q) < 0 \implies \exists R \in (a,b)$ / f(R) = 0 (Bolzano \mathbb{R}^n /T.V.M.)

Formalización: si

- $f:A\subset\mathbb{R}^n\to\mathbb{R}$
- f contínua
- A arcoconexo
- $\exists P, Q \in A / f(P)f(Q) < 0$
- $\implies \exists R \in A / f(R) = 0.$

Idea:

- 1. Como el dominio de la función es arcoconexo, puedo caminar desde P a Q con una curva contínua α tal que:
 - $\alpha(0) = P$
 - $\alpha(1) = Q$
- 2. Sea $g = f \circ \alpha$
 - Es contínua en $\left[0,1\right]$ porque composición de contínuas
 - g(0) * g(1) < 0 porque $\alpha(0) = P$ y $\alpha(1) = Q$
- 3. Luego, por Bolzano en $\mathbb R$ sobre g, existe c tal que g(c)=0
- 4. Finalmente, el R que buscábamos para f es $\alpha(c)$, donde allí se anula

4.2.5 Si f cont. y su dominio compacto $\implies f$ está acotada y tiene máximo y mínimo (Weierstrass)

Formalización: si

$$\begin{array}{ll} f:A\subset\mathbb{R}^n\to\mathbb{R} \\ \text{f continua} \\ A \text{ compacto} \end{array} \implies \begin{array}{ll} a)\;\exists\; m,M\in\mathbb{R} \text{ / } m\leq f(X)\leq M, \forall X\in A \\ b)\;\exists\; P_m,P_M\in A \text{ / } f(P_m)=m\land f(P_M)=M \end{array}$$

Idea:

- 1. La imagen está acotada
 - (a) Supongamos que no está acotada superiormente, luego $\exists \{a_n\} \subset A / \forall n \in \mathbb{N} : f(a_n) > n$
 - (b) Como esta sucesión $\{a_n\}$ está en A y A es un conjunto acotado, entonces puedo extraer de ella una subsucesión $\{a_{n_k}\}$ convergente a un punto P, luego $f(a_{n_k}) \to f(P)$
 - (c) Pero por (a) se tiene que $\forall n_k \in \mathbb{N} : f(a_{n_k}) > n_k$, y por hipótesis f es contínua en P, o sea, la función no diverge ni pega saltos ahí
 - (d) Finalmente, f debe estar acotada superiormente
- 2. El máximo y mínimo se alcanzan
 - (a) Supongamos que el máximo no se alcanza
 - (b) Por (1), sabemos que la imagen está acotada, por lo tanto puedo extraer de allí una sucesión creciente y convergente al supremo $\{y_n\} \subset Im(f) \ / \ y_n \to sup(Im(f)) = M$
 - (c) Como $\{y_n\}\subset Im(f)$, entonces debe existir una sucesión $\{x_n\}\subset A$ / \forall $n\in\mathbb{N}:y_n=f(x_n)$
 - O sea: $\lim f(x_n) = \lim y_n = M$
 - (d) Como $\{x_n\}$ acotada, extraemos una sucesión convergente $\{x_{n_k}\}$
 - (e) Luego $\lim x_{n_k} = P_M \in A$ porque A (donde vive esta sucesión) es cerrado, jy todo punto "tendible" en A es llegable (o sea, pertenece a A) por definición de punto de acumulación!
 - (f) Finalmente, como f es contínua, $f(P_M) = M$

Observación: El caso m y P_m es análogo.

4.2.6 Si f cont. y su dominio compacto \implies su imagen también lo es

5 Derivadas y diferencial

5.1 Notación: gradiente y plano tangente

Gradiente de f en p: $\nabla f_P = (f_{x_1}(P), \dots, f_{x_n}(P))$

Diferencial de f en p: $Df_P(Y) = \langle \nabla f_P, Y \rangle = \sum_{i=1...n} f_{x_i}(P) * y_i$

Plano tg a f en p: $x_{n+1} = f(P) + \langle \nabla f_P, X - P \rangle$

Designaldad Cauchy–Schartz: $|Df_P(X)| = |\langle \nabla f_P, X \rangle| \leq ||\nabla f_P|| \cdot ||X||$

5.2 Diferenciabilidad

Formalización:

 $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$

 $P \in A^0$

f diferenciable en p \iff

Las derivadas parciales de f existen en ${\cal P}$

 $\lim_{X \to P} \frac{|f(X) - f(P) - \langle \nabla f_P, X - P \rangle|}{||X - P||} = 0$

5.3 Si f diferenciable en $P \implies f$ contínua en P

Formalización:

$$P\in A^0$$

$$f:A\subset \mathbb{R}^n\to \mathbb{R} \qquad \Longrightarrow \qquad f \text{ continua en } P$$
 f differenciable en P

<u>Idea</u>: quiero ver que $|f(X) - f(P)| \to 0$ con $x \to P$

$$\begin{split} |f(X)-f(P)| &= |f(X)-f(P)-Df_P(X-P)+Df_P(X-P)| &\leq \\ &|f(X)-f(P)-Df_P(X-P)|+|Df_P(X-P)| &\leq \\ &|f(X)-f(P)-Df_P(X-P)|+<\nabla f_P, X-P> &\leq \text{(c-s)} \\ &|f(X)-f(P)-Df_P(X-P)|+||\nabla f_P||\cdot||X-P|| &\to 0 \end{split}$$

Porque:

•
$$|f(X) - f(P) - Df_P(X - P)| = \frac{|f(X) - f(P) - Df_P(X - P)|}{||X - P||} \cdot ||X - P||$$

- Como f es diferenciable, la cosa grande tiende a 0.
- ||X P|| también tiende a 0 dado que $X \rightarrow P$
- $||\nabla f_P||$ es anulado por ||X-P||

5.4 Si existe transformación lineal diferencial ⇒ existen todas las direccionales

Formalización: si

- $f:A\subset\mathbb{R}^n\to\mathbb{R}$
- $P \in A^0$
- $\exists T_P : \mathbb{R}^n \to \mathbb{R} / \lim_{X \to P} \frac{|f(X) f(P) T_P(X P)|}{||f(X P)||} = 0$

entonces:

- 1. Existen todas las derivadas direccionales de f en P y vale: $f_V(p) = T_P(V) \ \forall \ V \in \mathbb{R}^n$, con ||V|| = 1
- 2. En particular, existen todas las parciales (utilizando los vectores canónicos)
- 3. Se tiene $T_P(X) = Df_P(X) = \langle \nabla f_P, X \rangle \forall X \in \mathbb{R}^n$ y f differenciable en P

<u>Idea</u>: quiero ver que $\lim_{t\to 0} \frac{|f(P+tV)-f(P)|}{t} = 0$

$$\lim_{X \to P} \frac{|f(X) - f(P) - T_P(X - P)|}{||X - P||} = \lim_{X \to P} \frac{|f(X) - f(P) - T_P(X - P)|}{||X - P||}$$

$$= \lim_{t \to 0} \frac{|f(P + tV) - f(P) - t \cdot T_P(V)|}{||t||}$$

$$= \lim_{t \to 0} \left| \frac{f(P + tV) - f(P) - t \cdot T_P(V)}{t} \right|$$

$$= \lim_{t \to 0} \left| \frac{f(P + tV) - f(P) - t \cdot T_P(V)}{t} \right|$$

$$= \lim_{t \to 0} \left| \frac{f(P + tV) - f(P)}{t} - T_P(V) \right|$$

- 1. $\lim_{t\to 0}\left|\frac{f(P+tV)-f(P)}{t}\right|=T_P(V)$ y $T_P(V)$ está definida para todo $V\in\mathbb{R}^n$ por ser T transformación lineal.
- 2. En particular, tomando cualquier E_i se tiene que el límite existe, por lo tanto las parciales existen
- 3. Te la debo

5.5 Si f derivable en $c \in (a,b)$ y c extremo local $\implies f'(c) = 0$ (Fermat \mathbb{R})

Formalización:

$$\begin{array}{ll} f:[a,b]\to\mathbb{R}\\ f \text{ derivable en } (a,b) &\Longrightarrow &f'(c)=0\\ c\in(a,b) \text{ extremo local} \end{array}$$

Idea:

- 1. Supongamos que f tiene un máximo local en c, luego existe un $\epsilon > 0$ / $\forall x \in (c \epsilon, c + \epsilon) : f(x) \le f(c)$
- 2. Si nos acercamos a c por izquierda: $\lim_{t\to 0^-} \frac{f(c+t)-f(c)}{t} \geq 0$
- 3. Y si lo hacemos por derecha, tenemos: $\lim_{t \to 0^+} \frac{f(c+t) f(c)}{t} \leq 0$
- 4. Por lo tanto, la única posiblidad que queda es que $\lim_{t\to 0} \frac{f(c+t)-f(c)}{t}=0$, o sea f'(c)=0

Observación: El caso de extremo mínimo es análogo

5.6 Si f contínua en [a,b], derivable en (a,b) y $f(a)=f(b) \implies$ existe $c\in(a,b)$ / f'(c)=0 (Rolle en $\mathbb R$)

Formalización:

$$\begin{array}{l} f:[a,b]\to\mathbb{R}\\ f \ \text{contı́nua en } [a,b]\\ f \ \text{derivable en } (a,b) \end{array} \implies \qquad \exists \ c\in(a,b) \ / \ f'(c)=0 \\ f(a)=f(b) \end{array}$$

Idea:

- 1. Si f constante entonces $\forall x \in (a,b) : f'(x) = 0$
- 2. Si f no es constante, como es contínua en [a,b] y derivable en (a,b), entonces por Weierstrass su imagen está acotada y sus extremos son alcanzados (también se podría decir que su imagen es cerrada por corolario)
- 3. Sea $c \in (a,b)$ un extremo en f, luego, por Fermat: f'(c) = 0

5.7 Si f contínua en [a,b] y derivable en (a,b) \implies existe $c \in (a,b)$ / $f'(c) = \frac{f(b)-f(a)}{b-a}$ (Lagrange en $\mathbb R$)

Formalización:

$$\begin{array}{ll} f:[a,b]\to\mathbb{R} \\ f \text{ continua en } [a,b] &\Longrightarrow &\exists \ c\in(a,b) \ / \ f'(c) = \frac{f(b)-f(a)}{b-a} \\ f \text{ derivable en } (a,b) &\end{array}$$

Idea:

- 1. Sea L la función lineal que conecta las dos puntas de f, o sea: (a, f(a)) con (b, f(b))
- 2. Y sea g(x) = f(x) L(x) que es contínua y derivable pues f lo es y L es función lineal
- 3. Como g(a)=f(a)-L(a)=0 y $g(b)=f(b)-L(b)=0 \implies g(a)=g(b)$
- 4. Por Rolle, existe $c \in (a,b)$ / g'(c) = 0
- 5. Tomemos la derivada de g en c, que es: g'(c) = f'(c) L'(c) = 0
- 6. Pasando para el otro lado: f'(c) = L'(c)
 - (a) Recordemos que L es de la forma mx+k, por lo tanto L'(x)=m con m pendiente de L
- 7. Por lo tanto f'(c)=m donde $m=\frac{\nabla y}{\nabla x}=\frac{f(b)-f(a)}{b-a}$
- 8. Finalmente $f'(c)=rac{f(b)-f(a)}{b-a}$, como se quería probar