

Clustering Optimization objective

K-means optimization objective

- The index of cluster (1,2,...,K) to which example $x^{(i)}$ is currently assigned $\rightarrow \mu_k = \text{clustre centroid} f_k (\mu_k \in \mathbb{R}^n)$ $\mu_{c^{(i)}} = \text{cluster centroid} f_k (\text{duster to which example } x^{(i)} \text{ has been assigned}$ Optimization objective:

K-means algorithm

Randomly initialize K cluster centroids $\mu_1, \mu_2, \ldots, \mu_K \in \mathbb{R}^n$ (Luster sections the cluster sections the cluster sections) $\mu_1, \mu_2, \ldots, \mu_K \in \mathbb{R}^n$ Repeat { (Luster sections) $\mu_1, \mu_2, \ldots, \mu_K \in \mathbb{R}^n$ (Luster sections) $\mu_1, \mu_2, \ldots, \mu_K \in \mathbb{R}^n$

$$for i = 1 \text{ to } m$$

$$c^{(i)} := \text{ index (from 1 to } K \text{) of cluster centroid}$$

$$\text{closest to } x^{(i)}$$

$$\text{for } k = 1 \text{ to } K$$

closest to
$$x^{(i)}$$

for
$$k = 1$$
 to K

$$\mu_k := \text{average (mean) of points assigned to cluster } k$$

Clustering Random initialization

K-means algorithm

Randomly initialize K cluster centroids $\mu_1,\mu_2,\ldots,\mu_K\in\mathbb{R}^n$

$$\label{eq:Repeat of the Repeat of the Repe$$

Random initialization

Should have K < m

examples.

Set μ_1, \dots, μ_K equal to these Set $\mu_1, \dots, \mu_n = K$ K examples. $\mu_1 = K^{(i)}$

Random initialization

For i = 1 to 100 {

Randomly initialize K-means. Run K-means. Get
$$c^{(i)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K$$
 . Compute cost function (distortion)
$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K)$$
 }

Pick clustering that gave lowest cost $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$

Clustering Choosing the number of clusters

Choosing the value of K

