

Arduino Initial Prototype Link

<u>Autodesk</u> **EAGLE Link**

RightAir

Pneumatic Sensor Station

Flow and pressure sensor station for COPD assistive medical device

PCB Design / **Autodesk EAGLE**

Medical

Device

Design

C++ (Atom &

3D Printing Training

GitHub)

Machine **Autodesk** Fusion 360

Shop Training **Core Product**

RiahtAir is designing a light-weight, wearable vest for COPD patients that uses a negative pressure shell and compact vacuum to help patients breath

Current Project

Designing a custom LabVIEW panel and physical sensor station to calibrate and measure flow and pressure values on the pneumatic pump driving the core device

LabVIEW Custom User Interface Design

DePuy Synthes Tibial Nail Targeting System

Designed and developed a novel slotted nail and aiming arm design

Tested final prototype using clinical grade surgical drills and attachments

Note: Final design

Stress Testing

Requirements

Gathering

protected under NDA

3D Printing

SolidWorks

Machine

Shop Training

Medical

Device

Design

Medtronic

Product Development & Process Engineering

Designed the discrete manufacturing process for a capsule designed to hold a deployable valve treating pediatric congenital heart defects

Deloitte Consulting

Project Management and Tech Strategy

> Performed Project Management role in effort to refactor 50+ year-old machine language code into Java

LabVIEW

Autodesk

EAGLE

Arduino

Prototyping

Minitab

TMV / Gage R&R

Plastics

Eng

Extrusion / Braiding

Quality

COS Mfg

Relevant Skills

University of Pennsylvania

Master's Candidate - Bioengineering

Project Files Link

Master's Thesis - Fall 2019

Designed and deployed a machine learning algorithm using Tensorflow and Python Scripts to identify breathing patterns in various patients. Features were extracted through a custom RightAir assistive breathing shell (shown in sections above) and performed self training to identify 3 unique classes of breathing. This classification will result in a more custom and optimized experience for the user during assistance.

PCB Development Tensorflow / **Python**

Google Coral MCU / Data Collection

Rehab Engineering & Design

Completed a rehab robotics project to design and develop a functioning social robot to assist an elderly man with autism and anxiety

Assistive Device Design

SolidWorks

Laser Cutting

Arduino Prototyping

Demo Video Link

Brain Comp Interfaces (BCI)

Studied and designed a machine learning algorithm to predict various biomedical applications such as seizure development

Mathematical Modeling

Generated a MATLAB mathematical model of tumor suppressor regulators and their impact on cancer development

University of Delaware Mechanical Engineering

Project Files Link

Junior & Soph Machine Design

Children's Bike Design

Completed multiple machine design courses and received extensive SolidWorks and machine shop experience both in the classroom and in a composite materials lab

SolidWorks

Scissor Link Trash

Compactor

Machine Shop Training

Biomechanics Research

Biomechanics Publications

Contributed to three biomechanics research publications including the study of articular cartilage mechanical properties

