Microcontrollers & Embeded System Design ${\bf CSE~315}$

Md Awsaf Alam April 23, 2018

Contents

Ĺ	8086/8088 Hardware Specifications						
	1.1	Introduction					
	1.2	Minimum Mode Pins					
	1.3	Tables					
	_						
2	Lec	ture - 3					
	2.1	Maximum Mode Pins					
	2.2	Clock Generator (8284A)					
		2.2.1 Pin diagram					
		2.2.2 Pin Functions					

1 8086/8088 Hardware Specifications

1.1 Introduction

 \overline{RD}

- Whenever this pin goes to logic 0, the data bus becomes receptive to data from the memory or I?O devices connected to the system.
- Floats to high impedence state during a hold acknowledge
- **READY** μp enters into **WAIT** state and remains idle if this pin is at logic 0
 - No effect on operations of μp , if this pin is at logic 1
- **INTR** Used to request a h/w interrupt
 - If INTR is held high when IF = 1, the μp enters an interrupt acknowledge cycle (\overline{INTA} becomes active) after completion of the current instruction
- \overline{TEST} An input that is tested by the WAIT instruction
 - If TEST is logic 0, the WAIT instruction functions as NOP
 - If TEST is logic 1, the WAIT instruction waits for TEST to become
- NMI Non markable interrupt pin
 - Similar to the **INTR** except that NMI does not check IF (whether it is 1)
- **RESET** Causes the μp to reset itself if this pin remains high for a minimum of four clocking periods
 - whenever the up gets reset , it begins executing instructions at memory location **FFFFOH** and disables future interrupts by clearing IF
- **CLK** Provides the base timing signal to the up
 - Clock signal must have at least 33% duty cycle (high for the one-third of the clocking period and low for two-third of the period)
- **VCC** Power supply input
 - Provides +5.0 volt with 10% tolerance to the up
- **GND** 2 pins, both must be connected to ground
- $\overline{MN}/\overline{MX}$ Selects either minimum mode or maximum mode operation of the up
- $\overline{BHE}/\mathbf{S7}$ Bus high Enable
 - Used in 8086 to enable the most signifant data bus bits (D15 D8) during a read or write operations
 - The state of S7 is always a logic 1

1.2 Minimum Mode Pins

IO/\overline{M} or M/\overline{IO} • Selects memory or I/O

- Indicates the $\mu p's$ address bus contains either a memory address or an I/O port address
- High impedence state during a hold acknowledge

\overline{WR} • Indicates that the μp is outputting data to a mem or I/O device

• Data bus contains valid data for memory or I/O during the time \overline{WR} remains 0

\overline{INTA} • A response to the INTR input pin

• Used to gate the interrupt vector number onto the databus in response to an interrupt request.

\overline{ALE} • Address Latch Enable

- Indicates that the $\mu p's$ address/ data bus contains address information
- \bullet The address can be a mem address or I/O port number
- [Does **NOT** float during a hold acknowledge]

\mathbf{DT}/\overline{R} • Data Transmit or Receive

- Indicates that the $\mu p's$ data bus is transmitting $(DT/\overline{R}=1)$ or receiving $(DT/\overline{R}=0)$ data.
- Used to enable external data bus buffers.

DEN • Data bus enable

• Activates external data bus buffers.

HOLD • Requests a direct memory access (DMA)

- If it is a logic 1, μp stops executing S/W and places its address, data and control bus at high impedence state
- If it is a logic 0, the μp executes S/W normally

HLDA • Hold acknowledge

• Indicates that the μp has entered the hold state

\overline{SSO} • Equivalent to SO pin in maximum mode option of the μp

 \bullet It is combined with IO/\overline{M} and DT/\overline{R} to decode function of the current bus cycle

1.3 Tables

IO/\overline{M}	DT/\overline{R}	\overline{SSO}	Function
0	0	0	Interrupt acknowl- edge
0	0	1	Memory read
0	1	0	Memory write
0	1	1	Halt
1	0	0	Opcode fetch
1	0	1	I/O read
1	1	0	I/O write
1	1	1	Passive inactive

Table 1: Bus cycle status (8088) [Minimum mode]

$\overline{S_2}$	$\overline{S_1}$	$\overline{S_0}$	Function
0	0	0	Interrupt acknowl- edge
0	0	1	I/O read
0	1	0	I/O write
0	1	1	Halt
1	0	0	Opcode fetch
1	0	1	Memory read
1	1	0	Memory write
1	1	1	Passive inactive

Table 2: Bus control functions generated by the bus controller 8288 [Maximum mode]

2 Lecture - 3

2.1 Maximum Mode Pins

For using external coprocessors:

 $\overline{S2}, \overline{S1}$ and $\overline{S0}$ • Indicate the function of current bus-cycle

• Normally decoded by 8288 bus controllers

 $\overline{R1}/\overline{G1}$ and $\overline{R0}/\overline{GT0}$ • Request/grant pins

- Request Direct Memory Access
- Bi-Directional lines
- used to both request and grant a DMA operations

 \overline{LOCK} • Used to lock peripherals off the system

 $\overline{QS_1}$ and $\overline{QS0}$ • Queue status bits

- Show status of the internal instructions queue
- Accessed by numeric coprocessor (8087)

$\overline{QS_1}$	$\overline{QS_0}$	Function
0	0	Queue is idle
0	1	First byte of opcode
1	0	Queue is empty
1	1	Subsequent byte of opcode

Table 3:

2.2 Clock Generator (8284A)

Basic functions • Clock generation

- **RESET** synchronization
- READY synchronization
- TTL-level peripheral clock signal

2.2.1 Pin diagram

Figure 1: Pin Diagram for Intel 8284A

2.2.2 Pin Functions

- **AEN1 and AEN2** Qualify the bus ready signals, RDY1 and RDY2 respectively
 - wait states are generated by the **READY** pin of μP , which is controlled by $\overline{AEN1}$ and $\overline{AEN2}$ pins

RDY1 and RDY2 • Bus ready inputs

 \bullet Cause wait states in conjunction with $\overline{AEN1}$ and $\overline{AEN2}$ pins

\overline{ASYNC} • Ready synchronization

- \bullet Selects either one or two stages of synchronization for RDY1 and RDY2 inputs
- **READY** An output pin that connects to the $\mu P's$ READY input
 - Synchronized with RDY1 and RDY2 inputs