Math 320 / HOMEWORK 1

Name :	
Name:	

Due: Friday 1/25/19

NOTE: Include all necessary steps to receive full or partial credits. Write clearly on the given papers only. No scratch papers are accepted; use the back of the paper if necessary.

(1) (8 points) Prove that $\sqrt{3}$ is irrational.

- (2) (a) (5 points) Write a formal definition for the greatest lower bound inf A for a set $A \subseteq \mathbf{R}$, in the style of sup A.
 - (b) (7 points) Use the Archimedean Property to prove that $\inf\{\frac{1}{n}: n \in \mathbb{N}\} = 0$.

(3) (10 points) Let $A \subseteq \mathbf{R}$ be nonempty and bounded below, and define $B = \{b \in \mathbf{R} : b \text{ is a lower bound for } A\}$. Show that $\sup B = \inf A$.

(4) (10 points) Let S be the set consisting of all sequences of digits 0 and 1. Show that S is **not** countable.

- (5) Let \mathbf{Q} be the set of rational numbers and \mathbf{I} be the set of irrational numbers.
 - (a) (3 points) Show that if $a, b \in \mathbf{Q}$ then $ab \in \mathbf{Q}$ and $a + b \in \mathbf{Q}$.
 - (b) (4 points) Show that if $a \in \mathbf{Q}$ and $t \in \mathbf{I}$, then $a + t \in \mathbf{I}$, and $at \in \mathbf{I}$ as long as $a \neq 0$.
 - (c) (3 points) Given any two real numbers a < b, show that there exists a number $t \in \mathbf{I}$ such that a < t < b.