Homework for week 2, FunkAn, Fall 2018

Problem 1: Recall the Riesz representation theorem for bounded linear functionals on Hilbert spaces, namely, that if H is a Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and $F \colon H \to \mathbb{C}$ is a bounded linear functional on H, then there exists $y \in H$ such that

$$F(x) = \langle x, y \rangle, \quad x \in H.$$

Prove this statement, and use it further to show the following uniqueness result for the Hahn-Banach extension theorem in the case of closed subspaces of Hilbert spaces and seminorm p given by the norm:

Let H be a Hilbert space and M a closed subspace of H. If f is a bounded linear functional on M, then there is a unique extension F of f to H such that ||F|| = ||f||.

Problem 2: [For this exercise you should first recall Hölder's inequality (see, e.g., Section 6.1 in Folland).] Let $1 < q < r < \infty$ and use Hölder's inequality to show that the following inclusions hold. Give examples proving that these inclusions are strict.

- (a) $l_1(\mathbb{N}) \subseteq l_q(\mathbb{N}) \subseteq l_r(\mathbb{N}) \subseteq l_\infty(\mathbb{N})$.
- (b) $L_{\infty}([0,1],m) \subsetneq L_r([0,1],m) \subsetneq L_q([0,1],m) \subsetneq L_1([0,1],m)$, where m stands for Lebesgue measure.

Do the inclusions in (b) remain valid if we replace the measure space ([0, 1], m) by (\mathbb{R}, m) ?

Next, suppose that $f \in L_p(\mathbb{R}, m) \cap L_\infty(\mathbb{R}, m)$, for some $1 \leq p < \infty$. Show that $f \in L_q(\mathbb{R}, m)$, for all q > p.

If time permits, then also show that the inclusion maps in (a) are continuous and compute their norms.

Problem 3: Define $T: c(\mathbb{N}) \to c_0(\mathbb{N})$ by setting Tx = y, for every $x = (x_n)_{n \ge 1} \in c(\mathbb{N})$, where $y = (y_n)_{n \ge 1}$ is given by

$$y_1 = \lim_{n \to \infty} x_n, \quad y_{n+1} = x_n - y_1, \quad n \ge 1.$$

- (a) Prove that T is a one-to-one and onto linear operator.
- (b) Show that T is an isomorphism (of Banach spaces) and compute ||T|| and $||T^{-1}||$.
- (c) Let $F: c(\mathbb{N}) \to c_0(\mathbb{N})$ be any linear isomorphism. Show that there exist $u, v \in c(\mathbb{N})$ such that ||u|| = ||v|| = 1 and ||u + v|| = 2, and moreover, with the property that, if for $n \in \mathbb{N}$ one has $|F(u)(n)| \ge 1/2$, then F(v)(n) = 0. Use this to conclude that F cannot be an isometry.

(<u>Hint</u>: Try with $u = (1, 1, 1, \cdots)$ and a suitably chosen $v \in c_0(\mathbb{N}) \subseteq c(\mathbb{N})$.)

<u>Remark</u>: The purpose Problem 3 is to justify the assertion that $c(\mathbb{N})$ and $c_0(\mathbb{N})$ are isomorphic, but <u>not</u> isomorphic. Yet, as we saw already, they have the same dual space, namely $l_1(\mathbb{N})$ (cf. Remark 1.15, Lecture 1).

Problem 4: Let $\iota: l_1(\mathbb{N}) \to (l_{\infty}(\mathbb{N}))^*$ be the canonical map given by

$$\iota(x)(y) \colon = \sum_{n=1}^{\infty} x_n y_n \,, \quad x = (x_n)_{n \ge 1} \in l_1(\mathbb{N}), \ y = (y_n)_{n \ge 1} \in l_\infty(\mathbb{N}) \,.$$

Prove that ι is an isometry which is not onto.

<u>Hint</u>: In order to show that ι is not onto, consider the linear functional $f: c(\mathbb{N}) \to \mathbb{C}$ given by $f((x_n)_{n\geq 2}) = \lim_{n\to\infty} x_n$, for all $(x_n)_{n\geq 1} \in c(\mathbb{N})$. Apply the Complex Hahn-Banach extension Theorem (or rather, its corollary from Lecture 2) to obtain a linear extension F of f to $l_{\infty}(\mathbb{N})$ with ||F|| = ||f||. Show that $F \in (l_{\infty}(\mathbb{N}))^* \setminus \iota(l_1(\mathbb{N}))$.

The problem below contains further examples of Banach spaces. It will be covered in the exercise classes if time permits.

Problem 5: Let X be a locally compact Hausdorff topological space.

- (a) Show that $(C_b(X), \|\cdot\|_{\infty})$ is a Banach space.
- (b) Prove that $(C_0(X), \|\cdot\|_{\infty})$ is a closed subspace of $C_b(X)$, and hence, a Banach space.

[The relevant spaces above were introduced in Lecture 1.]