Basic Electronic Circuits (IEC-103)

Lecture-19

Small Signal Analysis

Basic Common Emitter Amplifier

Notation in Transistor Analysis

S. No	Variable	Instantaneous AC	DC	Total
1	Emitter Current	i_e	I_E	i_E
2	Collector Current	i_c	I_C	i_C
3	Base Current	i_b	I_B	i_B
4	Collector-emitter Voltage	v_{ce}	V_{CE}	v_{CE}
5	Emitter-base Voltage	v_{eb}	$oxed{V_{EB}}$	v_{EB}

BJT as a 2 port network

BJT as a 2 port network

Small signal hybrid π equivalent circuit

BJT as a 2 port network

Small signal hybrid π equivalent circuit

 $\beta = Common\ emitter\ current\ gain = i_c/i_b$

BJT as a 2 port network

Small signal hybrid π equivalent circuit

$$\beta = Common\ emitter\ current\ gain = i_c/i_b$$

$$r_{\pi} = v_{be}/i_b = V_T/I_{BQ}$$

= $\beta V_T/I_{CQ} = small \ signal \ resistance, where \ V_T \ is the thermal \ voltage$

With current gain parameter

With current gain parameter

With transconductance parameter

With current gain parameter

With transconductance parameter

$$g_m = \beta/r_\pi = I_{CQ}/V_T = transconductance$$

With current gain parameter

With transconductance parameter

$$g_m = \beta/r_\pi = I_{CQ}/V_T = transconductance$$

 i_c is assumed to be independent of v_{ce} which is not the case in practice and the assumption will be released later to include the "Early effect"

Another Representation

Another Representation

$$r_e = \frac{25\text{mV}}{I_E}$$

□ Load line is drawn on the characteristic curve (current vs voltage) in a nonlinear device like diode or transistor.

- □ Load line is drawn on the characteristic curve (current vs voltage) in a nonlinear device like diode or transistor.
- ☐ It represents the constraint put on the voltage and current in the nonlinear device by the external circuit.

- □ Load line is drawn on the characteristic curve (current vs voltage) in a nonlinear device like diode or transistor.
- ☐ It represents the constraint put on the voltage and current in the nonlinear device by the external circuit.
- ☐ DC load line is the load line of the DC equivalent circuit.

- □ Load line is drawn on the characteristic curve (current vs voltage) in a nonlinear device like diode or transistor.
- ☐ It represents the constraint put on the voltage and current in the nonlinear device by the external circuit.
- □ DC load line is the load line of the DC equivalent circuit.
- ☐ The load line equation is used to determine the correct DC operating point, often called the Q point.

- □ Load line is drawn on the characteristic curve (current vs voltage) in a nonlinear device like diode or transistor.
- ☐ It represents the constraint put on the voltage and current in the nonlinear device by the external circuit.
- □ DC load line is the load line of the DC equivalent circuit.
- ☐ The load line equation is used to determine the correct DC operating point, often called the Q point.
- ☐ AC load line is a straight line with a slope equal to the AC impedance passing through the Q pint.

DC Equivalent Circuit

DC load line is found by writing KVL equations for DC equivalent circuit.

DC load line is found by writing KVL equations for DC equivalent circuit.

$$V^{+} - I_{C}R_{C} - V_{CE} - I_{E}(R_{EI} + R_{E2}) = V^{-}$$

DC load line is found by writing KVL equations for DC equivalent circuit.

$$V^{+}-I_{C}R_{C}-V_{CE}-I_{E}(R_{EI}+R_{E2})=V^{-}$$

If $\beta \gg 1$, $IE \approx IC$

DC load line is found by writing KVL equations for DC equivalent circuit.

$$V^{+} - I_{C}R_{C} - V_{CE} - I_{E}(R_{EI} + R_{E2}) = V^{-}$$

If $\beta \gg 1$, $IE \approx IC$

$$V^{+} - I_{C}R_{C} - V_{CE} - I_{C}(R_{E1} + R_{E2}) = V^{-}$$

DC load line is found by writing KVL equations for DC equivalent circuit.

$$V^{+} - I_{C}R_{C} - V_{CE} - I_{E}(R_{EI} + R_{E2}) = V^{-}$$

If $\beta \gg 1$, $IE \approx IC$

$$V^{+} - I_{C}R_{C} - V_{CE} - I_{C}(R_{E1} + R_{E2}) = V^{-}$$

$$V_{CE}(off) = V^+ - V^-$$

DC load line is found by writing KVL equations for DC equivalent circuit.

$$V^{+} - I_{C}R_{C} - V_{CE} - I_{E}(R_{EI} + R_{E2}) = V^{-}$$

 $\beta \gg 1$, $IE \approx IC$

$$V^{+} - I_{C}R_{C} - V_{CE} - I_{C}(R_{E1} + R_{E2}) = V^{-}$$

$$V_{CE}(off) = V^+ - V^-$$

$$I_{CE}(off) = V^{+} - V^{-}$$

$$I_{C}(sat) = \frac{V^{+} - V^{-}}{R_{C} + R_{E1} + R_{E2}}$$

Slope of the DC load line

$$-\frac{1}{R_C + R_{EI} + R_{E2}}$$

AC Equivalent Circuit

AC load line is found by writing KVL equations for AC equivalent circuit.

AC load line is found by writing KVL equations for AC equivalent circuit.

$$i_c R_C + v_{ce} + i_e R_{EI} = 0$$

AC load line is found by writing KVL equations for AC equivalent circuit.

$$i_c R_C + v_{ce} + i_e R_{EI} = 0$$

If $\beta \gg 1$, ie $\approx ic$

AC load line is found by writing KVL equations for AC equivalent circuit.

$$i_c R_C + v_{ce} + i_e R_{E1} = 0$$

If $\beta \gg 1$, ie $\approx ic$

$$v_{ce} = -i_{c} \left(R_C + R_{EI} \right)$$

AC Load Line

AC load line is found by writing KVL equations for AC equivalent circuit.

$$i_c R_C + v_{ce} + i_e R_{EI} = 0$$

If $\beta \gg 1$, ie $\approx ic$

$$v_{ce} = -i_{c} \left(R_C + R_{EI} \right)$$

Slope of the DC load line

AC Load Line

AC load line is found by writing KVL equations for AC equivalent circuit.

$$i_c R_C + v_{ce} + i_e R_{E1} = 0$$

If $\beta \gg 1$, ie $\approx ic$

$$v_{ce} = -i_{c} \left(R_C + R_{EI} \right)$$

Slope of the DC load line

$$-\frac{1}{R_C + R_{EI}}$$

Max. Output Symmetrical Swing

☐ If the Q-point is not set properly, the transistor may enter into saturation or cutoff resulting in nonlinear distortion.

- ☐ If the Q-point is not set properly, the transistor may enter into saturation or cutoff resulting in nonlinear distortion.
- $\hfill \square$ If the Q-point is set too high, the BJT gets into saturation and a reduction of I_{BO} is required.

- ☐ If the Q-point is not set properly, the transistor may enter into saturation or cutoff resulting in nonlinear distortion.
- $\hfill \square$ If the Q-point is set too high, the BJT gets into saturation and a reduction of I_{BQ} is required.
- ☐ Even with a proper Q-point setting, if the signal amplitude is too large, distortion will also result, and a reduction of signal amplitude is required.

Cutoff

Cutoff

 \Box If the Q-point is too low, the BJT gets into cutoff, and an increase in I_{BO} is required.

☐ Many applications cannot be handled with single-transistor amplifiers in order to meet the specification of a given amplification factor, input resistance and output resistance

- Many applications cannot be handled with single-transistor amplifiers in order to meet the specification of a given amplification factor, input resistance and output resistance
- □ Solution transistor amplifier circuits can be connected in series or cascaded amplifiers

- Many applications cannot be handled with single-transistor amplifiers in order to meet the specification of a given amplification factor, input resistance and output resistance
- Solution transistor amplifier circuits can be connected in series or cascaded amplifiers
- ☐ This is done either to increase the overall small-signal voltage gain or provide an overall voltage gain greater than 1 with a very low output resistance

Cascade/RC coupling

Cascade/RC coupling

Cascade/RC coupling

Cascode

Cascode

Cascode

Darlington/Direct coupling

Darlington/Direct coupling

Darlington/Direct coupling

Transformer coupling

Transformer coupling

Transformer coupling

☐ The most widely used configuration.

- ☐ The most widely used configuration.
- □ Coupling a signal from one stage to the another stage and block dc voltage from one stage to the another stage.

- ☐ The most widely used configuration.
- □ Coupling a signal from one stage to the another stage and block dc voltage from one stage to the another stage.
- ☐ The signal developed across the collector resistor of each stage is coupled into the base of the next stage.

- ☐ The most widely used configuration.
- Coupling a signal from one stage to the another stage and block dc voltage from one stage to the another stage.
- ☐ The signal developed across the collector resistor of each stage is coupled into the base of the next stage.
- ☐ The overall gain = product of the individual gain.

Example

Draw the AC equivalent circuit and calculate $A_{\rm v},\ R_i,$ and $R_o.$

Example

Draw the AC equivalent circuit and calculate A_v , R_i , and R_o .

Example

Draw the AC equivalent circuit and calculate A_v , R_i , and R_o .

DC analysis

The circuit under DC condition (stage 1 and 2 are identical)

Applying Thévenin's theorem, the circuit becomes

$$I_{BQ1} = I_{BQ2} = 19.89 \,\mu\text{A}$$
 $I_{CQ1} = I_{CQ2} = 3.979 \,\text{mA}$
 $r_{\pi 1} = r_{\pi 2} = 1.307 \,\text{k}\Omega$
 $g_{m1} = g_{m2} = 0.153 \,\text{A/V}$

AC analysis

The small-signal equivalent circuit

AC analysis

The small-signal equivalent circuit

AC analysis

The small-signal equivalent circuit

$$R_{B1} = R_1 /\!/ R_2$$

$$R_{B2} = R_3 /\!/ R_4$$

$$V_o = -g_{m2} v_{\pi 2} R_{C2}$$

$$V_o = -g_{m2}v_{\pi 2}R_{C2}$$

$$A_2 = \frac{V_o}{v_{\pi 2}} = -g_{m2}R_{C2}$$

$$V_o = -g_{m2}v_{\pi 2}R_{C2}$$

$$A_2 = \frac{V_o}{v_{\pi 2}} = -g_{m2}R_{C2}$$

$$v_{\pi 2} = -g_{m1}v_{\pi 1}(R_{C1}//R_{B2}//r_{\pi 2})$$

$$V_o = -g_{m2} v_{\pi 2} R_{C2}$$

$$A_2 = \frac{V_o}{v_{\pi 2}} = -g_{m2}R_{C2}$$

$$v_{\pi 2} = -g_{m1}v_{\pi 1}(R_{C1} // R_{B2} // r_{\pi 2})$$

$$=-g_{m1}V_{i}(R_{C1}//R_{B2}//r_{\pi2})$$

$$\left[v_{\pi 1} = V_i\right]$$

$$V_o = -g_{m2} v_{\pi 2} R_{C2}$$

$$A_2 = \frac{V_o}{v_{\pi 2}} = -g_{m2}R_{C2}$$

$$v_{\pi 2} = -g_{m1}v_{\pi 1}(R_{C1} // R_{B2} // r_{\pi 2})$$

$$= -g_{m1}V_i(R_{C1} // R_{B2} // r_{\pi 2})$$

$$\left[v_{\pi 1} = V_i\right]$$

$$A_{1} = \frac{v_{\pi 2}}{V_{i}} = -g_{m2} \left(R_{C1} // R_{B2} // r_{\pi 2} \right)$$

The small-signal voltage gain

$$A = A_1 A_2 = g_{m1} g_{m2} R_{C2} (R_{C1} // R_{B2} // r_{\pi 2})$$

The small-signal voltage gain

$$A = A_1 A_2 = g_{m1} g_{m2} R_{C2} (R_{C1} // R_{B2} // r_{\pi2})$$

Substituting values

$$R_{B1} = R_{B2} = R_3 // R_4 = 15 // 4.7 = 3.579 \text{ k}\Omega$$

$$R_{C1} // R_{B2} // r_{\pi 2} = 2.2 // 3.579 // 1.307 = 667 \Omega$$

$$A = 0.153 \times 0.153 \times 2200 \times 667 = 34350 \text{ V/V}$$

The input resistance

$$R_{in} = R_{B1} // r_{\pi 1} = 3.579 // 1.307 = 0.957 \text{ k}\Omega$$

The input resistance

$$R_{in} = R_{B1} // r_{\pi 1} = 3.579 // 1.307 = 0.957 \text{ k}\Omega$$

The output resistance

$$R_{o} = R_{C2} = 2.2 \text{ k}\Omega$$