MY472 - Week 10 NoSQL and Working with Online Databases

Outline

- Introduction
- · SQL vs. noSQL
- Cloud solutions
- Coding session
 - Online database example with SQL: BigQuery
 - NoSQL example: MongoDB

Introduction

Big Data

Today's data can be very large and also quite complicated

From: Bigdata Dimension

Database solutions for Big Data

- Different types of databases (SQL vs. NoSQL)
- Cloud solutions using fully managed services

SQL or noSQL?

SQL

· Relational databases have a strict structure

A simple e-commerce example:

noSQL

- Originally referring to "non SQL", "non relational" or "not only SQL"
- Provides a mechanism for storage and retrieval of data which is modeled in means other than the tabular relations used in relational databases
- No strict structure/schema
- noSQL databases are good for data with
 - High **velocity** Lots of data coming in very quickly
 - High variety Data can be structured, semi-structured, and unstructured
 - High volume Total size of data
 - High **complexity** Stored in many locations

noSQL types

O Simplilearn. All rights reserved.

simpl_ilearn

From: Simplelern

noSQL: Pros and Cons

PROS	CONS
Massive scalability	Limited query capabilities
High availability	Not standardized
Schema flexibility	Not matured
Sparse and semistructured data	Developer heavy

MongoDB

- Document-based database
- Mapping of concepts

SQL Terms/Concepts	MongoDB Terms/Concepts
database	database
table	collection
row	document or BSON document
column	field

- Reference
- Each document is constructed as a BSON (Binary JSON)
- Not UTF-8 string encoded like JSON, but binary machine readable
- · Can store more data types: Dates, separate kinds of numerics (int, float, etc.)

MongoDB documents

A document looks like this:

```
first name: 'Paul',
                                          String
                                                           Typed field values
             surname: 'Miller',
             cell: 447557505611,
                                         Number
             city: 'London',
             location: [45.123,47.232],
Fields
                                                                     Fields can contain
             Profession: ['banking', 'finance', 'trader'],
                                                                     arrays
             cars: [
                { model: 'Bentley',
                  year: 1973,
                  value: 100000, ... },
                                               Fields can contain an array of sub-
                                               documents
                { model: 'Rolls Royce',
                  year: 1965,
                  value: 330000, ... }
```

From: datawow.io

MongoDB this week

- We will look at MongoDB as an example of a popular noSQL database this week
- We thereby try to replicate basic queries from last week using MongoDB via R with the package mongolite
- For a simple selection of documents (i.e. rows in SQL), we will use its find()
 method
- For a bit more sophisticated queries, we will use the aggregate() method
- Search queries are in JSON like notation
- Detailed documentation of MongoDB commands and operators
- Resource 1 (pdf) and resource 2 (website) for the R package mongolite

Cloud solutions

Some exemplary services

Database Type	AWS	GCP	Azure
Managed RDS	Amazon RDS	Cloud SQL	Azure SQL
Data Warehousing	Redshift	BigQuery	Snowflake
NoSQL (simple key-value)	DynamoDB	BigTable	Azure Tables
NoSQL (document)	MongoDB on EC2	MongoDB on GCE	DocumentDB

Google Cloud Platform: BigQuery

- To create and query online databases, we will look at Google BigQuery's sandbox version as an example
- Database warehouse with other features, used by many financial and commercial companies
- Queried via SQL syntax (API access allows integration with R or Python)
- Scalable to very large databases
- Good documentation
- Many similar databases exist from other providers

Coding session

Files this week

- · 01-bigquery-create-own-database.Rmd
- · 02-bigquery-examples.Rmd
- · 03-mongodb-demo.Rmd