인공신경망

Contents

교육 과정 개요

Part 1 인공신경망

- 1.1 신경망에서 인공신경망으로
- 1.2 인공신경망 학습

Part 2 인공신경망구현

- 2.1 인공신경망 설계
- 2.2 인공신경망 설계 실습
- 2.3 인공신경망의 주요 함수
- 2.4 인공신경망 구현

Part 3 인공신경망성능개선

- 3.1 인공신경망 성능개선
- 3.2 데이터 정규화를 통한 성능 개선

인공신경망

- 1.1 신경망에서 인공신경망으로
- 1.2 인공신경망 학습

- ◆ 인공 신경망(ANN, Artificial Neural Network)
 - 뇌가 어떻게 감각 입력의 자극에 반응하는지에 대한 이해로부터 얻어진 모델
 - 입력 신호와 출력 신호 간의 관계를 모델링
- ◆ 사람의 신경망이 어떻게 동작하는지 이해하면, 인공신경망을 학습시킬 수 있다!

- ◆ 신경망 특징 1: 많다!
 - 인간의 뇌: 약 860억 개의 뉴런

- ◆ 신경망 특징 2: 활성화!
 - 자극의 정도 > 임계치
 - 자극이 다음 신경으로 전달

- ◆ 신경망 특징 3: 강화!
 - 헵의 규칙(Hebb's Rule)
 - 세포의 반복적이고 지속적인 자극에 따라 자극이 전달되는 효과가 증가

(a) 시냅스는 활성에 의존하여 연결이 강화되기도 하고 약화되기도 한다. N, 신경세포의 시냅스의 활성이 높아지면 시냅스가 추가적으로 생긴다. N_2 신경세포의 시냅스에서 활성 이 사라지면 연결이 끊기게 된다.

(b) 두 시냅스가 종종 동시에 활성화되면 두 시냅스에서 모두 시냅스 후 반응이 강화된다.

◆ 사람의 신경망이 어떻게 동작하는지 이해하면, 인공신경망을 학습시킬 수 있다!

◆ 생물학적 신경망을 추상화한 것이 인공신경망이다.

[인공 신경망]

◆ 인공신경망의 활성화 함수, 계단함수(Step Function)

◆ 인공신경망의 활성화 함수, 계단함수(Step Function)

◆ 인공신경망의 활성화 함수, 계단함수(Step Function)

◆ 인공신경망의 학습은 가중치를 찾아내는 과정!

◆ 인공신경망 학습 프로세스

- ◆ 인공신경망 학습 프로세스
 - 환경변수 지정

- ◆ 인공신경망 학습 프로세스
 - 환경변수 지정

- 망구성
 - 신경망의 성능은 뉴런의 연결 구조 및 연산 방법에 따라 차이가 발생
 - 망형태의 3가지 특성
 - » 층(layer) 의 개수
 - » 망에서 정보가 뒷단(backward)으로 전파될 수 있는지
 - » 망의 각 층 내에 있는 노드 개수
 - » 일반적으로 한 층의 모든 노드가 다음 층의 모든 노드와 완전 연결 됨
 - 토폴로지는 망이 학습해야 할 태스크의 복잡성에 좌우됨
- 층의 개수
 - 층의 개수와 정보 진행 방향과 더불어, 각 층의 노드 개수에 따라 복잡성이 다양해짐
 - 입력 노드의 수는 입력 데이터의 속성 개수로 결정
 - 출력 노드의 수는 결과의 분류 개수나 모델의 결과 수로 결정
 - 모델을 시작하기 전 은닉층의 노드 개수를 결정하지만, 적당한 은닉층의 노드 개수를 결정하는 규칙은 없음

- ◆ 인공신경망 학습 프로세스
 - 환경변수 지정

- 하이퍼파라미터(Hyper Parameter)
 - 신경망의 학습에 의해서 자동으로 획득되지 않고, 사람이 직접 설정해야 하는 값
 - 에폭(Epoch)
 - » 딥러닝을 수행하면서 학습데이터가 모두 소진되는 하나의 단위
 - » 1 epoch은 전체 데이터 셋에 대해 한 번 학습을 완료
 - » 예)10,000개를 100개의 batch_size로 학습할 때, 100회가 1epoch
 - » 모든 데이터 셋에 대해 역전파(backpropagation)을 수행함
 - » 적절한 epoch 설정으로 underfitting과 overfitting 방지
 - 배치사이즈 (Batch size)
 - » 한 번의 batch(mini-batch)마다 주는 데이터의 sample size
 - » batch size와 성능 간의 상관관계는 없으나 메모리 한계와 속도 저하 때문에 한번의 epoch에서 모든 데이터 학습 불가능

- ◆ 인공신경망 학습 프로세스
 - 신경망 실행
 - Feedforward Neural Network(FNN)

- ◆ 인공신경망 학습 프로세스
 - 예측값과 실제값 비교

- ◆ 인공신경망 학습 프로세스
 - 가중치 수정

◆ 활성화함수(Activation Function)

- ◆ 활성화함수(Activation Function)
 - 계단함수(Step Function)

- ◆ 활성화함수(Activation Function)
 - 시그모이드(Sigmoid)

- ◆ 활성화함수(Activation Function)
 - tanh

- ◆ 활성화함수(Activation Function)
 - 시그모이드(Sigmoid)

- 기울기 소멸 문제(Vanishing Gradient Problem)
 - 역전파 시, 은닉층으로 오차가 거의 전달 되지 않아 학습이 제대로 되지 않는 문제
 - 은닉층을 여러 단계 거치는 딥러닝에서 가중치를 수정하기 위해 미분을 반복적으로 사용하면서 기울기 가 0이 되어버려 학습이 중단
 - sigmoid나, tanh 등: input을 매우 작은 output range로 짓이겨 넣는('squash') 형태의 연산

- ◆ 활성화함수(Activation Function)
 - 렐루(ReLu)

- ◆ 출력층의 활성화함수(Activation Function)
 - 렐루(ReLu), 시그모이드(Sigmoid), 소프트맥스(Softmax)

Softmax 확률
$$\frac{e^{z_i}}{\sum_{j=1}^{K} e^{z_j}} \rightarrow \begin{bmatrix} 0.02\\0.90\\0.05\\0.01\\0.02 \end{bmatrix}$$

- ◆ 활성화함수(Activation Function)
 - 입력 신호의 총합을 그대로 사용하지 않고, 입력 신호의 총합이 활성화를 일으키는지 아닌지를 정하는 역할로, 입력 신호를 규칙에 따라 출력 신호로 변환하는 함수

유형	도식	설명
계단함수(step function)	0 557452	양극성 이진 함수 디지털 형태의 출력
시그모이드 함수		• 비선형 연속 함수
tanh함수		• LSTM, GRU의 활성화함수로 많이 사용
ReLU함수	1970	학습속도가 빠르고 학습이 잘 되어 가장 많이 사용
Softmax 함수	Softmax $a_i = \frac{e^{x_i}}{\sum_{j=1}^{N} e^{x_j}} \rightarrow \begin{cases} 0.02\\ 0.90\\ 0.95\\ 0.05\\ 0.01\\ 0.02 \end{cases}$	출력층에서 사용 출력의 결과로 벡터값을 얻고 싶을 때

- ◆ 손실 함수(Loss Function)
 - 비용함수(Cost Function)
 - 가중치에 따라 실제값과 예측값의 오차가 어느 정도인지를 평가
 - 신경망 성능의 "나쁨"을 나타내는 지표
 - 현재의 신경망이 훈련 데이터를 얼마나 잘 처리하지 못하느냐를 나타내는 지표
 - 손실함수 값을 작게 하는 매개변수(가중치와 편향)를 찾는 과정이 인공신경망의 학습
 - 미분: 매개변수 값을 아주 조금 변경했을 때 손실 함수가 어떻게 변하나
 - 경사하강법(Gradient descent algorithm)을 이용하여 loss 최소화

◆ 손실 함수(Loss Function)

손실함수	설명	설명
평균제곱오차 (Mean Squared Error, MSE)	각 원소의 출력(추정) 값 (\widehat{y}_i) 과 정답 레이블(참) 값 (y_i) 의 차를 제공한 총합	$\frac{1}{n}\sum_{i=1}^n(y_i-\hat{y}_i)^2$
교차 엔트로피 오차 (Cross Entropy Error, CEE)	특정 클래스에 속할 정보량의 확률의 합 범주형 데이터를 분류할 때 주로 사용	$-\sum_i y_i \log(\hat{y}_i)$

- ◆ 경사하강법(Gradient Descent Algorithm)
 - 가중치에 대한 손실함수의 최소값의 위치를 찾기 위해 손실함수를 미분하고, 그 미분값의 방향과 크기를 활용해 가중치를 보상하는 방법
 - 손실 함수의 최소값을 찾는 옵티마이저 (Optimizer)의 한 유형
 - 신경망의 연결 가중치 최적화

◆ 경사하강법(Gradient Descent Algorithm)

- ◆ 학습률(Learning Rate)
 - 경사하강법에서 손실함수의 최소값의 위치를 찾기 위한 이동하는 거리의 비율
 - 경사하강법은 오차의 변화에 따라 이차 함수 그래프를 만들고, 적절한 학습률을 설정해 미분 값이 0인 지점을 구함
 - 학습률을 너무 크게 설정한 경우
 - 손실함수의 최소값을 찾지 못하고 값이 발산(explode)하거나 소실(vanish)하는 문제 발생
 - local minima에 빠지는 문제 발생
 - 학습률을 너무 작게 설정한 경우
 - 학습시간이 오래 소요되고, 최소값에 미쳐 도달하지 못한 상태에서 학습이 종료

- ◆ 옵티마이저(Optimizer)
 - 손실함수의 최소값을 찾기 위한 다양한 경사하강법(Gradient Descent Algorithm)

기법	설명	특징
확률적 경사 하강법 (SGD)	매개변수의 기울기를 구해, 기울어진 방향으로 매개변수 값을 갱신하는 일을 반복	(단점)급격한 변곡점이 있는 경우 SGD 한계
모멘텀 (Momentum)	기존에 사용한 기울기의 일정 비율(%)을 현 재 기울기에 반영	이전 그래디언트의 관성, 가속도기반 보정
Adagrad (Adaptive Gradient)	변수의 업데이트 회수에 따라 학 습률 을 조절	학습을 진행하면서 학습률을 점차 줄 여가는 방법(Learning rate decay)
Adam	모멘텀 + Adagrad	관성, 탄력, 가속도,학습률조절

- ◆ 역전파(Backpropagation)
 - 정방(Feedforward) 연산 이후, 예측값과 실제값과의 오차를 후방(Backward)으로 다시 보내줌으로써, 최적의 Weight와 Bias를 학습하는 기법
 - 가중치 매개변수의 기울기는 수치 미분 → 단순하고 구현 쉬우나 계산 시간 오래걸림
 - 빠르게 계산하기 위해 오차역전파(Back propagation)사용

- ◆ 신경망 학습 매커니즘
 - 신경망은 각 은닉층에서 활성화함수를 이용하여 각 층의 연산결과를 여러 층에 걸쳐 전달하여 학습을 진행
 - 각 은닉층의 가중치 매개변수의 최적값을 자동으로 획득
 - 신경망의 학습 목표는 가중치의 매개변수를 최적화 하여 손실함수의 결과값을 가장 작게 하는 것

- ◆ 용어체크
 - Perceptron
 - Hidden layer
 - MLP
 - Back propagation
 - Feedforward Neural Network
 - Activation Function
 - Loss Function

- Gradient Descent Algorithm
- Learning Rate
- Vanishing Gradient
- Overfitting
- Drop out
- Epoch
- Batch size

[01강] 학습 내용 확인하기

[01강] 학습 내용 확인하기

문제1. 다음 중 신경망의 학습에 의해서 자동으로 획득되지 않고, 사람이 직접 설정해야 하는 값은?

- ① 파라미터
- ② 가중치
- ③ 편향
- ④ 하이퍼파라미터

문제2. 다음 중 다중 분류 문제의 활성화 함수로 올바른 것은?

- ① 계단함수
- ② 시그모이드
- ③ 소프트맥스
- ④ 렐루

문제3. 예측값과 예측값과 실제값과의 오차를 후방(Backward)으로 다시 보내줌으로써, 최적의 가중치와 편향을 찾는 방법은?

- ① 순전파
- ② 역전파
- ③ 손실함수
- ④ 활성화함수

[01강] 학습 내용 확인하기

문제1. 다음 중 신경망의 학습에 의해서 자동으로 획득되지 않고, 사람이 직접 설정해야 하는 값은?

- ① 파라미터
- ② 가중치
- ③ 편향
- ④ 하이퍼파라미터

문제2. 다음 중 다중 분류 문제의 활성화 함수로 올바른 것은?

- ① 계단함수
- ② 시그모이드
- ③ 소프트맥스
- ④ 렐루

문제3. 예측값과 예측값과 실제값과의 오차를 후방(Backward)으로 다시 보내줌으로써, 최적의 가중치와 편향을 찾는 방법은?

- ① 순전파
- **② 역전파**
- ③ 손실함수
- ④ 활성화함수

- 2.1 인공신경망 설계
- 2.2 인공신경망 설계 실습
- 2.3 인공신경망의 주요 함수
- 2.4 인공신경망 구현

◆ 인공신경망의 구성 요소

Layer(층)		
각 Layer의 노드 수		
활성화함수		
손실함수		
옵티마이저		

◆ 붓꽃 데이터 분류를 위한 인공신경망

이미지 출처: http://www.lac.inpe.br/~rafael.santos/Docs/CAP394/WholeStory-Iris.html

•sepal : 꽃받침 •petal : 꽃잎

- ◆ 붓꽃 데이터 분류를 위한 인공신경망
 - 3종의 붓꽃 데이터(Versicolor, Setosa, Virginica)
 - 4가지 속성(꽃받침 길이/너비, 꽃잎 길이/너비) 150개

			4가지	속성		3종
		꽃받침 길이	꽃받침 너비	꽃잎 길이	꽃잎 너비	품종
		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	Iris-setosa
	1	4.9	3.0	1.4	0.2	Iris-setosa
150개	2	4.7	3.2	1.3	0.2	Iris-setosa
	3	4.6	3.1	1.5	0.2	Iris-setosa
	4	5.0	3.6	1.4	0.2	Iris-setosa

◆ 붓꽃 데이터 분류를 위한 인공신경망

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

Layer(층)	Input	Hidden	Output
각 Layer의 노드 수	4	8	3
활성화함수		relu	softmax
손실함수	spars	e_categorical_cros	sentropy
옵티마이저		adam	

◆ 주어진 데이터

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
0	293	1	3.80	2.80	0	0	0	0	0	0	12	0	0	0	1	0	62	0
1	1	2	2.88	2.16	1	0	0	0	1	1	14	0	0	0	1	0	60	0
2	8	2	3.19	2.50	1	0	0	0	1	0	11	0	0	1	1	0	66	1
3	14	2	3.98	3.06	2	0	0	0	1	1	14	0	0	0	1	0	80	1
4	17	2	2.21	1.88	0	0	1	0	0	0	12	0	0	0	1	0	56	0

- ◆ 어떤 문제인가요?
 - 종속변수가 0,1 두 가지 유형만 있음, 이진 분류 문제

◆ 딥러닝 모델 설계

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
0	293	1	3.80	2.80	0	0	0	0	0	0	12	0	0	0	1	0	62	0
1	1	2	2.88	2.16	1	0	0	0	1	1	14	0	0	0	1	0	60	0
2	8	2	3.19	2.50	1	0	0	0	1	0	11	0	0	1	1	0	66	1
3	14	2	3.98	3.06	2	0	0	0	1	1	14	0	0	0	1	0	80	1
4	17	2	2.21	1.88	0	0	1	0	0	0	12	0	0	0	1	0	56	0

Layer(층)	Input	Hidden	Output
각 Layer의 노드 수	17	30	1
활성화함수		relu	sigmoid
손실함수		binary_crossentro	ру
옵티마이저		adam	

◆ 주어진 데이터

	0	1	2	3	4	5	6	7	8
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

- ◆ 어떤 문제인가요?
 - 종속변수가 0,1 두 가지 유형만 있음, 이진 분류 문제

◆ 딥러닝 모델 설계

	0	1	2	3	4	5	6	7	8
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

Layer(층)	Input	Hidden	Output
각 Layer의 노드 수	8	12, 8	1
활성화함수		relu,relu	sigmoid
손실함수		binary_crossentro	ру
옵티마이저		adam	

◆ 주어진 데이터

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2

- ◆ 어떤 문제인가요?
 - 종속변수가 연속된 실수 값임, 회귀문제

◆ 딥러닝 모델 설계

	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222.0	18.7	396.90	5.33	36.2

Layer(층)	Input	Hidden	Output
각 Layer의 노드 수	13	30, 6	1
활성화함수		relu,relu	relu
손실함수	mean_squared_error		
옵티마이저	adam		

◆ 모델의 구성

◆ 모델의 구성

◆ 모델의 구성

클래스	tf.keras.Model()
클래스	tf.keras.Sequential()
주요 메서드	
add()	레이어 객체를 인자로 넘겨서 모델에 더함
compile()	모델을 학습시키기 위한 환경 설정 셋팅
fit()	모델 학습 수행
predict()	학습이 완료된 모델을 사용하여 예측값 반환
evaluate()	학습이 완료된 모델의 성능 지표 출력
summary()	모델을 구성하는 레이어와 파라미터 정보 출력
get_layer()	모델을 구성하는 특정 레이어를 반환
load_weights()	모델을 구성하는 각 노드의 가중치값을 읽어들임
save()	모델을 HDF5 파일(.h5)로 저장
save_weights()	모델의 각 레이어의 모든 가중치값을 저장

◆ 모델의 환경설정

메서드	model.compile()	
주요 인자		
loss	손실 함수	
optimizer	옵티마이저(기본값 = 'rmsprop')	
metrics	모델 성능 지표	

◆ 모델의 학습

클래스	model.fit()
주요 인자	
Х	학습 데이터의 독립변수, 피처
У	학습 데이터의 종속변수, 레이블
epochs	주어진 학습 데이터를 몇 번 반복하여 학습할지 횟수 지정
batch_size	gradient update를 진행할 샘플의 수
verbose	학습 진행 로그 출력 설정(0 : 출력하지 않음, 1 : 진행바로 표시, 2 : 에폭당 한 줄로 표시, 기 본값 = 1)
callbacks	콜백 인스턴스(tf.keras.callbacks) 설정
validation_split	학습 데이터에서 검증용으로 사용할 데이터의 비율
validation_data	학습 중 검증용으로 사용할 데이터 설정
shuffle	각 에폭에서 데이터를 섞을지 여부 설정

In []: model.fit(X_train, y_train, epochs = 50, batch_size = 4)

◆ 모델의 평가

클래스	model.evaluate ()	
주요 인자		
х	테스트 데이터의 독립변수, 피처	
У	테스트 데이터의 종속변수, 레이블	

In []: model.evaluate(X_test, y_test)

◆ 모델의 활용(예측)

클래스	model.predict()	
주요 인자		
х	학습시킨 데이터와 같은 형태로 변환한 독립변수	

In []: model.predict(X_test)

◆ 레이어

클래스 tf_keras_layers_Layer()

◆ 레이어

클래스	tf.keras.layers.lnputLayer()	
주요 인자		
input_shape	입력 데이터의 구조	
name	레이어의 이름(문자열)	

◆ 레이어

클래스	tf.keras.layers.Dense()	
주요 인자		
units	레이어를 구성하는 노드의 수	
activation	활성화 함수 설정	
kernel_regularizer	가중치 행렬에 적용된 정규화 함수 설정	
bias_regularizer	편향 벡터에 적용된 정규화 함수 설정	
activity_regularizer	레이어의 출력에 적용된 정규화 함수 설정	
kernel_constraint	가중치 행렬에 적용되는 제약 조건 함수 설정	
bias_constraint	편향 벡터에 적용되는 제약 조건 함수 설정	

```
In []: model = Sequential()
    model.add(Dense(6, input_dim = 4, activation = 'relu'))
    model.add(Dense(10, activation = 'relu'))
    model.add(Dense(12, activation = 'relu'))
    model.add(Dense(3, activation = 'softmax'))
```

◆ 붓꽃 데이터 분류를 위한 인공 신경망

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
# 데이터 불러오기
iris = load_iris()
df = pd.DataFrame(data = iris.data, columns = iris.feature_names)
df['label'] = iris.target
# 데이터 분할
y = df['label']
X = df.drop(['label'], axis = 1)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 42,
stratify = y)
# 모델의 설정
model = Sequential()
model.add(Dense(8, input_dim = 4, activation = 'relu'))
model.add(Dense(3, activation = 'softmax'))
# 모델 컴파일
model.compile(loss = 'sparse_categorical_crossentropy',
           optimizer = 'adam',
           metrics = ['accuracy'])
# 모델 실행
model.fit(X_train, y_train, epochs = 50, batch_size = 4)
# 모델 평가
model.evaluate(X_test, y_test)
# 값 예측
model.predict(X_test)[0]
```

◆ 데이터 준비

```
In []: X_train.shape
Out []: (112, 4)
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
# 데이터 불러오기
iris = load_iris()
df = pd.DataFrame(data = iris.data, columns = iris.feature_names)
df['label'] = iris.target
# 데이터 분할
y = df['label']
X = df.drop(['label'], axis = 1)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 42,
stratify = y)
# 모델의 설정
model = Sequential()
model.add(Dense(8, input_dim = 4, activation = 'relu'))
model.add(Dense(3, activation = 'softmax'))
# 모델 컴파일
model.compile(loss = 'sparse_categorical_crossentropy',
           optimizer = 'adam',
           metrics = ['accuracy'])
# 모델 실행
model.fit(X_train, y_train, epochs = 50, batch_size = 4)
# 모델 평가
model.evaluate(X_test, y_test)
# 값 예측
```

model.predict(X_test)[0]

◆ 인공신경망 구성

Layer(층)	Input	Hidden	Output
각 Layer의 노드 수	4	8	3
활성화함수		relu	softmax
손실함수	sparse_categorical_crossentropy		
옵티마이저	adam		

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
# 데이터 불러오기
iris = load_iris()
df = pd.DataFrame(data = iris.data, columns = iris.feature_names)
df['label'] = iris.target
# 데이터 분할
y = df['label']
X = df.drop(['label'], axis = 1)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 42,
stratify = y)
# 모델의 설정
model = Sequential()
model.add(Dense(8, input_dim = 4, activation = 'relu'))
model.add(Dense(3, activation = 'softmax'))
# 모델 컴파일
model.compile(loss = 'sparse_categorical_crossentropy',
            optimizer = 'adam',
           metrics = ['accuracy'])
# 모델 실행
model.fit(X_train, y_train, epochs = 50, batch_size = 4)
# 모델 평가
model.evaluate(X_test, y_test)
# 값 예측
model.predict(X test)[0]
```

◆ 인공신경망 학습

```
In []: #모델 실행
       model.fit(X_train, y_train, epochs = 50, batch_size = 4)
Out [ ]: Epoch 1/50
       28/28 [========] - 0s 1ms/step - loss: 1.1521 - accuracy: 0.1429
       Epoch 2/50
       28/28 [========] - 0s 1ms/step - loss: 1.0838 - accuracy: 0.1964
       Epoch 3/50
       Epoch 4/50
       28/28 [========] - 0s 1ms/step - loss: 0.9815 - accuracy: 0.3929
       ... 중략 ...
       Epoch 45/50
       28/28 [========] - 0s 1ms/step - loss: 0.3479 - accuracy: 0.9554
       Epoch 46/50
       28/28 [===========] - 0s 1ms/step - loss: 0.3472 - accuracy: 0.9375
       28/28 [============= ] - 0s 1ms/step - loss: 0.3414 - accuracy: 0.9643
       Epoch 48/50
       28/28 [========] - 0s 2ms/step - loss: 0.3364 - accuracy: 0.9643
       Epoch 49/50
       28/28 [============= ] - 0s 2ms/step - loss: 0.3288 - accuracy: 0.9554
       28/28 [========] - 0s 1ms/step - loss: 0.3250 - accuracy: 0.9643
       <keras.callbacks.History at 0x7f08831e11d0>
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
# 데이터 불러오기
iris = load iris()
df = pd.DataFrame(data = iris.data, columns = iris.feature_names)
df['label'] = iris.target
# 데이터 분할
y = df['label']
X = df.drop(['label'], axis = 1)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 42,
stratify = y)
# 모델의 설정
model = Sequential()
model.add(Dense(8, input_dim = 4, activation = 'relu'))
model.add(Dense(3, activation = 'softmax'))
# 모델 컴파일
model.compile(loss = 'sparse_categorical_crossentropy',
           optimizer = 'adam',
           metrics = ['accuracy'])
# 모델 실행
model.fit(X_train, y_train, epochs = 50, batch_size = 4)
# 모델 평가
model.evaluate(X_test, y_test)
# 값 예측
```

model.predict(X test)[0]

◆ 인공신경망 평가 및 예측

In []: model.evaluate(X_test, y_test)

```
Out [ ]: 2/2 [========] - 0s 9ms/step - loss: 0.3608 - accuracy: 0.9474
          [0.3608211874961853, 0.9473684430122375]
In [ ]: model.predict(X_test)[0]
Out []: array([0.9544583 , 0.0440354 , 0.00150629], dtype = float32)
In []: # 테스트 데이터로 예측한 값이 가장 큰 값을 반환(argmax)한 결과
        np.argmax(model.predict(X_test)[0])
Out [ ]: 0
In []: # 테스트셋의 실제값
        y test.iloc[0]
Out [ ]: 0
```

```
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
# 데이터 불러오기
iris = load_iris()
df = pd.DataFrame(data = iris.data, columns = iris.feature_names)
df['label'] = iris.target
# 데이터 분할
y = df['label']
X = df.drop(['label'], axis = 1)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 42,
stratify = y)
# 모델의 설정
model = Sequential()
model.add(Dense(8, input_dim = 4, activation = 'relu'))
model.add(Dense(3, activation = 'softmax'))
# 모델 컴파일
model.compile(loss = 'sparse_categorical_crossentropy',
            optimizer = 'adam',
           metrics = ['accuracy'])
# 모델 실행
model.fit(X_train, y_train, epochs = 50, batch_size = 4)
# 모델 평가
model.evaluate(X_test, y_test)
# 값 예측
model.predict(X test)[0]
```

import numpy as np
import pandas as pd

- Activation Function
 - sigmoid, tanh, relu, softmax
- Loss Function
 - categorical_crossentropy, binary_crossentropy, mean_squared_error
- Optimizer
 - adam, adagrid, rmsprop, sgd
- Metric
 - accuracy, mse, ce
- Epochs
- Batch size

Summary - 딥러닝 모델링 절차

- ◆ 데이터셋 생성
 - 원본 데이터를 불러오거나 시뮬레이션을 통해 데이터 생성하고, 데이터 정제(cleansing)진행
 - 딥러닝 모델의 학습 및 평가를 할 수 있도록 포맷 변환
 - 데이터로부터 훈련셋(training set), 검증셋(validation set), 시험셋(test set)을 생성

◆ 모델 구성

- 시퀀스 모델 생성 후, 필요한 레이어 추가
 - layers, models 이용
 - layers : 각 계층 만드는 모듈, add()함수
 - models: 각 layer연결하여 신경망 모델 생성, 컴파일, 학습
 - model 함수: compile(), fit(), predict(), evaluate()
- 학습을 위한 설정값 지정: 에폭(epochs), 배치사이즈(batch size)
- 손실 함수(loss function) 및 최적화 방법(optimizer) 정의
 - 교차 엔트로피(cross entropy), MSE 등
 - SGD, Adam, Adagrad, RMSprop 등
- compile() 이용

Summary - 딥러닝 모델링 절차

- ◆ 모델 학습 시키기
 - 훈련셋(training set)을 이용, 구성한 모델로 학습
 - fit() 이용
 - model.fit(x_train, y_train, validation_data=(x_test, y_test), batch_size=10, epochs=20)
- ◆ 학습과정 살피기
 - 모델 학습 시 훈련셋(training set), 검증셋(validation set)의 손실 및 정확도 측정
 - 반복 횟수에 따른 손실 및 정확도 추이를 보면서 학습 상황 판단
- ◆ 모델 평가
 - 준비된 시험셋(test set) 이용, 학습한 모델 평가.
 - evaluate() 이용
- ◆ 모델 사용(예측)
 - 임의의 입력 모델의 출력값 도출
 - predict() 이용 : pred = model.predict(x_test)

[02강] 학습 내용 확인하기

[02강] 학습 내용 확인하기

문제1. 8개의 독립변수와 1개의 종속변수를 갖는 데이터를 학습하기 위한 인공신경망을 구성할 때, 입력 노드의 수는 ?

- 1)7
- 28
- 39
- **4** 10

문제2. 다음 중 모델의 학습 실행 시 호출하는 메서드는?

- ① compile()
- ② fit()
- ③ predict()
- ④ evaluate()

문제3. 주어진 학습 데이터를 몇 번 반복하여 학습할지 횟수를 지정하는 하이퍼파라미터는?

- ① epochs
- ② batch_szie
- 3 x
- **4** y

[02강] 학습 내용 확인하기(정답)

문제1. 8개의 독립변수와 1개의 종속변수를 갖는 데이터를 학습하기 위한 인공신경망을 구성할 때, 입력 노드의 수는 ?

- 1)7
- **28**
- 39
- **4** 10

문제2. 다음 중 모델의 학습 실행 시 호출하는 메서드는?

- ① compile()
- ② fit()
- ③ predict()
- ④ evaluate()

문제3. 주어진 학습 데이터를 몇 번 반복하여 학습할지 횟수를 지정하는 하이퍼파라미터는?

- ① epochs
- 2 batch_szie
- 3 x
- **4** y

- 3.1 인공신경망 성능개선
- 3.2 데이터 정규화를 통한 성능 개선

과적합

◆ 어떤 모델이 더 좋은 모델인가?

과적합

- ◆ 과적합(Overfitting)
 - 학습데이터에 성능이 좋지만 실제 데이터에 관해 성능이 떨어지는 현상
 - 지도학습을 통해 만들어진 모델이 학습 데이터(Training data) 내에서는 분류가 잘 되나, 새로운 데이터(Unseen Data or Test Data)에서는 분류성능이 떨어지는 상황
- ◆ 부적합(Underfitting)
 - 적정 수준의 학습을 하지 못해 실제 성능이 떨어지는 현상

- ◆ 은닉층의 수와 노드 수를 증가시킬수록 분류가 정확해진다!
 - 이것의 문제점?
 - 학습데이터만 분류를 잘하는 분류기가 탄생함

- ◆ 딥러닝은 일반적인 데이터에 대해서도 잘 동작하는 모델을 만드는 것이 목표 !
 - 일반화(Generalization)
 - 일반화된 모델이란?

Underfitting, Generalization, Overfitting

- ◆ Underfitting, Overfitting이 아닌 Generalization 모델을 만드는 방법
 - 1) 학습 데이터를 충분하게 늘린다
 - Data Augmentation
 - 2) 과적합이 발생하기 전에 학습을 종료한다
 - Early stopping
 - 3) 모델의 복잡도를 낮춘다
 - L2, L1
 - Dropout

- ◆ Underfitting, Overfitting이 아닌 Generalization 모델을 만드는 방법
 - 1) <mark>학습 데이터를 충분하게 늘린다</mark>
 - Data Augmentation
 - 2) 과적합이 발생하기 전에 학습을 종료한다
 - Early stopping
 - 3) 모델의 복잡도를 낮춘다
 - L2, L1, Dropout

원본이미지

180도 회전

90도 회전

상하 반전

좌우 반전

- ◆ Underfitting, Overfitting이 아닌 Generalization 모델을 만드는 방법
 - 1) 학습 데이터를 충분하게 늘린다
 - Data Augmentation
 - 2) <mark>과적합이 발생하기 전에 학습을 종료한다</mark>
 - Early stopping
 - 3) 모델의 복잡도를 낮춘다
 - L2, L1, Dropout

- ◆ Underfitting, Overfitting이 아닌 Generalization 모델을 만드는 방법
 - 1) 학습 데이터를 충분하게 늘린다
 - Data Augmentation
 - 2) 과적합이 발생하기 전에 학습을 종료한다
 - Early stopping
 - 3) 모델의 복잡도를 낮춘다
 - L2, L1, Dropout

정규화= 모델의 복잡도를 낮춘다

손실함수에 페널티(penalty)를 부여한다(Regularization) 학습 중에 랜덤하게 노드를 꺼뜨린다

= 학습을 진행하지 않는다

= Dropout

- ◆ Underfitting, Overfitting이 아닌 Generalization 모델을 만드는 방법
 - 드롭아웃(Drop out)
 - 딥러닝 학습 중에 은닉층의 뉴런을 무작위로 삭제하여 과적합을 예방하는 기법
 - dropout(p)
 - p라는 확률로 출력 노드의 신호를 보내다 말다 함
 - 드롭아웃을 적용한 다음에 오는 계층은 앞 계층의 일부 노드들의 신호가 p라는 확률로 단절되기 때문에 훨씬 더 견고하게 신호에 적응

(a) Standard Neural Net

(b) After applying dropout.

- ◆ 과적합 해결방법
 - 가중치 감소(Weight decay)
 - 딥러닝 학습 과정에서 큰 가중치에 대해서 큰 페널티를 부과하여 과적합을 예방하는 기법
 - 정규화(Normalization)
 - 데이터 값의 범위를 변환(rescaling)시켜 학습 결과가 특정 데이터 분포에 과적합될 가능성을 낮추는 방법

- ◆ 정규화(Normalization)
 - bank.csv

df.describe()

df.head()																	
	age	job	marital	education	default	balance	housing	Ioan	contact	day	month	duration	campaign	pdays	previous	poutcome	deposit
0	59	admin.	married	secondary	no	2343	yes	no	unknown	5	may	1042	1	-1	0	unknown	yes
1	56	admin.	married	secondary	no	45	no	no	unknown	5	may	1467	1	-1	0	unknown	yes
2	41	technician	married	secondary	no	1270	yes	no	unknown	5	may	1389	1	-1	0	unknown	yes
3	55	services	married	secondary	no	2476	yes	no	unknown	5	may	579	1	-1	0	unknown	yes
4	54	admin	married	tertiary	no	184	no	no	unknown	5	may	673	2	-1	0	unknown	VAS

age balance duration campaign pdays previous count 11162,000000 11162,000000 11162,000000 11162,000000 11162,000000 11162,000000 11162,000000 mean 41.231948 1528.538524 15.658036 371.993818 2.508421 51.330407 0.832557 11.913369 3225.413326 8.420740 347.128386 2.722077 108.758282 2.292007 -1.000000 0.000000 18.000000 -6847.000000 1.000000 2.000000 1.000000 25% 32.000000 122.000000 8.000000 138.000000 1.000000 -1.000000 0.000000 50% 39.000000 550.000000 15.000000 2.000000 -1.000000 0.000000 255.000000 75% 49.000000 1708.000000 22.000000 496.000000 3.000000 20.750000 1.000000 95.000000 81204.000000 31.000000 3881.000000 63.000000 854.000000 58.000000 max

◆ 정규화(Normalization)

- 표준화(standardization)
 - 입력 데이터에서 평균을 빼고 표준편차로 나눠주는 과정을 거쳐 데이터 분포를 표준정규분포 형태로 변경
 - 평균은 0, 분산은 1
 - 입력값이 일정한 분포로 들어오기 때문에 학습에 유리
- 최소극대화(minmax)
 - 입력 데이터를 0에서 1사이로 압축하거나 늘리는 방법
 - 데이터에서 최소값을 빼준 값을 데이터의 최대값과 최소값의 차이로 나눠주어 변형
 - 0~1 사이 밖에 있는 값: 0과 1사이로 압축
 - 전체 범위가 1이 안되던 값: 0과 1사이로 늘어남
 - 평균적 범위를 넘어서는 너무 작거나 너무 큰 이상치가 있는 경우: 오히려 학습에 방해가 됨

- ◆ 배치 정규화(Batch Normalization)
 - 한 번에 입력으로 들어오는 배치 단위로 데이터 분포의 평균이 0, 분산이 1이 되도록 정규화 진행
 - 정규화된 데이터를 스케일 및 시프트(scale & shift)하여 다음 레이어에 일정한 범위의 값들
 만 전달
 - 은닉층 단위마다 배치 정규화를 넣어줌
 - 효과: 학습 전체 과정의 안정화
 - 빠른 학습 가능: learning rate를 높게 잡을 수 있음
 - 자체적인 regularization 효과
 - drop out 제거 가능: drop out을 사용하면 학습 속도가 느려짐

In []:

import numpy as np

Boston dataset

```
import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.datasets import load boston
         # 데이터 불러오기
         boston = load_boston()
         boston df = pd.DataFrame(data = boston.data, columns = boston.feature names)
         boston_df['PRICE'] = boston.target
         boston_df.head()
Out [ ]:
                     CRIM
                                ZN
                                     INDUS
                                                    PTRATIO
                                                                         LSTAT
                                                                                  PRICE
             0
                  0.00632
                              18.0
                                      2.31
                                                      15.3
                                                                396.90
                                                                          4.98
                                                                                   24.0
                  0.02731
                               0.0
                                      7.07
                                                      17.8
                                                                396.90
                                                                          9.14
                                                                                   21.6
             1
                  0.02729
                               0.0
                                      7.07
                                                      17.8
                                                                392.83
                                                                          4.03
                                                                                   34.7
                  0.03237
                               0.0
                                      2.18
                                                      18.7
                                                                394.63
                                                                          2.94
                                                                                   33.4
             3
                  0.06905
                                                                           5.33
                                                                                   36.2
                               0.0
                                      2.18
                                                      18.7
                                                                396.90
```

◆ 데이터 분할 및 모델 생성

```
In [ ]: from sklearn.model_selection import train_test_split
         from tensorflow.keras.models import Sequential
         from tensorflow.keras.layers import Dense
         # 데이터 분할
         y = boston df['PRICE']
         X = boston_df.drop(['PRICE'], axis = 1)
         X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 42)
         # 모델의 설정
         model = Sequential()
         model.add(Dense(16, input_dim = 13, activation = 'relu'))
         model.add(Dense(1, activation = 'relu'))
```

◆ 모델 컴파일

```
In []: # 모델 컴파일
       model.compile(loss = 'mean_squared_error',
                   optimizer = 'adam',
                   metrics = ['mse'])
       model.summary()
Out [ ]: Model: "sequential"
       Layer (type)
                            Output Shape
                                               Param #
       dense (Dense)
                            (None, 16)
                                               224
       dense_1 (Dense)
                            (None, 1)
                                               17
       _____
       Total params: 241
       Trainable params: 241
       Non-trainable params: 0
```

◆ 모델 학습

```
In []: # 모델 실행
model.fit(X_train, y_train, epochs = 50, batch_size = 10)
```

```
Epoch 1/50
Out [ ]:
        38/38 [========= ] - 0s 620us/step - loss: 749.4234 - mse: 749.4234
         Epoch 2/50
         38/38 [========= ] - 0s 728us/step - loss: 747.5175 - mse: 747.5174
        Epoch 3/50
        38/38 [============ ] - 0s 674us/step - loss: 667.5957 - mse: 667.5957
         Epoch 4/50
         38/38 [========== ] - 0s 728us/step - loss: 640.8848 - mse: 640.8848
        Epoch 5/50
         38/38 [========== ] - 0s 809us/step - loss: 575.4298 - mse: 575.4298
        ... 중략 ...
         Epoch 47/50
         38/38 [==========] - 0s 701us/step - loss: 52.0202 - mse: 52.0202
         Epoch 48/50
         38/38 [=========] - 0s 809us/step - loss: 45.9028 - mse: 45.9028
         Epoch 49/50
         Epoch 50/50
         38/38 [==========] - 0s 809us/step - loss: 47.4613 - mse: 47.4613
         <tensorflow.python.keras.callbacks.History at 0x1bfa11172e0>
```

- ◆ 예측값 확인
 - 하나의 예측값 비교

- ◆ 예측값 확인
 - 여러 개의 예측값 비교

```
In []: y_pred = np.reshape(y_pred,(127,))
Out [ ]: result = pd.DataFrame({'y': y_test.values,
                                'y_pred': y_pred,
                                 'diff': np.abs(y test.values - y pred)})
         result.sort values(by = ['diff'], ascending = False)
 In [ ]: result = pd.DataFrame({'y': y_test.values, 'y_pred': y_pred, 'diff':
          np.abs(y_test.values - y_pred)})
          result.sort_values(by = ['diff'], ascending = False)
 Out [ ]:
                                                                 diff
                               У
                                            y_pred
               96
                            50.0
                                         21.840014
                                                            28.159986
              111
                            27.5
                                          4.602501
                                                            22.897499
                            50.0
                                         37.318615
                                                            12.681385
               18
               35
                            19.4
                                          7.782295
                                                            11.617705
               42
                            50.0
                                         38.431679
                                                            11.568321
              • • •
                                         11.762398
                                                             0.237602
              102
                            12.0
               59
                            18.5
                                         18.596060
                                                             0.096060
              122
                             8.8
                                          8.705296
                                                             0.094704
               28
                            21.7
                                         21.743273
                                                             0.043273
               61
                            35.4
                                         35.384048
                                                             0.015952
```

127 rows × 3 columns

◆ 검증용 데이터 셋 설정

```
In [ ]: history = model.fit(X_train, y_train, epochs = 500, verbose = 0, validation_
          split = 0.2
In [ ]: def plot_loss(history):
              plt.plot(history.history['loss'], label = 'loss')
              plt.plot(history.history['val_loss'], label = 'val_loss')
              plt.ylim([0, 40])
              plt.xlabel('Epoch')
              plt.ylabel('Error')
              plt.legend()
              plt.grid(True)
         plot_loss(history)
 Out [ ]:
            35
          D 25
            15
                     100
                           200
                                  300
                                        400
                              Epoch
```

- ◆ 데이터 정규화
 - 모델 생성

```
In []: from tensorflow.keras.layers.experimental import preprocessing
    normalizer = preprocessing.Normalization(axis = -1)
    normalizer.adapt(np.array(X_train))

    normalized_model = Sequential()
    normalized_model.add(normalizer)
    normalized_model.add(Dense(16, activation = 'relu'))
    normalized_model.add(Dense(1, activation = 'relu'))

    normalized_model.summary()
```

```
Out [ ]: Model: "sequential_1"
```

Layer (type)	Output	Shape	Param #
normalization (Normalization	(None,	13)	27
dense_2 (Dense)	(None,	16)	224
dense_3 (Dense)	(None,		17

Total params: 268
Trainable params: 241
Non-trainable params: 27

- ◆ 데이터 정규화
 - 모델 컴파일 및 학습

- ◆ 데이터 정규화
 - 예측값과 실제값 시각화

```
In []: y_pred = normalized_model.predict(X_test).flatten()

a = plt.axes(aspect = 'equal')
plt.scatter(y_test, y_pred)
plt.xlabel('True Values')
plt.ylabel('Predictions')
lims = [0, 60]
plt.xlim(lims)
plt.ylim(lims)
_ = plt.plot(lims, lims)
```


- ◆ 데이터 정규화
 - 예측값과 실제값 시각화

```
In [ ]: result = pd.DataFrame({'y': y_test.values, 'y_pred': y_pred, 'diff': y_test.
         values - y_pred, 'diff(abs)': np.abs(y_test.values - y_pred)})
         result.sort_values(by = ['diff(abs)'], ascending = False)
Out [ ]:
                       y_pred
                                           diff
                                                       diff(abs)
                                                       20.215195
             96
                         50.0
                                      29,784805
                                                                         20.215195
                         27.5
                                      11.743855
                                                       15.756145
                                                                         15.756145
            111
            113
                         36.2
                                      29.294373
                                                        6.905627
                                                                          6.905627
             79
                          7.0
                                      13.791144
                                                       -6.791144
                                                                          6.791144
             99
                         17.2
                                      10.795241
                                                        6.404759
                                                                          6.404759
             54
                         43.5
                                      43.560184
                                                      In []:
                                                                  sns.histplot(data = result['diff'], kde = True)
                                      21.384632
            101
                         21.4
                         20.0
                                      19.992371
                                                     Out [ ]: <AxesSubplot:xlabel = 'diff', ylabel = 'Count'>
            121
                                      24.394968
                         24.4
             62
                         31.5
                                      31.495457
                                                                     30
        127 rows × 4 columns
                                                                     25
                                                                     20
                                                                   15 IS
```

10

Summary

Summary

- ◆ Underfitting, Overfitting이 아닌 Generalization 모델을 만드는 방법
 - 1) 학습 데이터를 충분하게 늘린다
 - Data Augmentation
 - 2) 과적합이 발생하기 전에 학습을 종료한다
 - Early stopping
 - 3) 모델의 복잡도를 낮춘다
 - L2, L1
 - Dropout

[03강] 학습 내용 확인하기

[03강] 학습 내용 확인하기

문제1. 학습데이터에 성능이 좋지만 실제 데이터에 관해 성능이 떨어지는 현상은?

- ① 적합
- ② 부적합
- ③ 과적합
- ④ 일반화

문제2. 이른 종료를 위해 학습 과정을 성능을 모니터링하는데 사용하는 데이터 셋은?

- ① 학습용 데이터 셋
- ② 검증용 데이터 셋
- ③ 테스트용 데이터 셋
- ④ 모두 사용

문제3. 데이터 값의 범위를 변환시켜 학습 결과가 특정 데이터 분포에 과적합 될 가능성을 낮추는 방법은?

- ① 정규화
- ② 이른종료
- ③ 드롭아웃
- ④ 데이터 증강

[03강] 학습 내용 확인하기

- 문제1. 학습데이터에 성능이 좋지만 실제 데이터에 관해 성능이 떨어지는 현상은?
 - ① 적합
 - ② 부적합
 - ③ 과적합
 - ④ 일반화
- 문제2. 이른 종료를 위해 학습 과정을 성능을 모니터링하는데 사용하는 데이터 셋은?
 - ① 학습용 데이터 셋
 - ② 검증용 데이터 셋
 - ③ 테스트용 데이터 셋
 - ④ 모두 사용
- 문제3. 데이터 값의 범위를 변환시켜 학습 결과가 특정 데이터 분포에 과적합 될 가능성을 낮추는 방법은?
 - ① 정규화
 - ② 이른종료
 - ③ 드롭아웃
 - ④ 데이터 증강

Thanks