Combinational Logic and Introduction to Minispec

Combinational Logic and Introduction to Minispec

Reminders:

Quiz 1 review tonight 7:30-9:30pm

Quiz 1 on Thursday 7:30-9:30pm

Lecture Goals

- Learn how to design large combinational circuits through three useful examples:
 - Adder
 - Multiplexers
 - Shifter

Lecture Goals

- Learn how to design large combinational circuits through three useful examples:
 - Adder
 - Multiplexers
 - Shifter
- Learn how to implement combinational circuits in the Minispec hardware description language (HDL)
 - Design each combinational circuit as a function, which can be simulated or synthesized into gates

Building a Combinational Adder

Goal: Build a circuit that takes two n-bit inputs
 a and b and produces (n+1)-bit output s=a+b

Building a Combinational Adder

Goal: Build a circuit that takes two n-bit inputs
 a and b and produces (n+1)-bit output s=a+b

Building a Combinational Adder

Goal: Build a circuit that takes two n-bit inputs
 a and b and produces (n+1)-bit output s=a+b

 Approach: Implement the binary addition algorithm we have seen (called the standard algorithm)

```
1110 carry
1110
+ 0111
10101
```

carry 1110
$$c_4c_3c_2c_10$$
 $a_3a_2a_1a_0$ $+ 0111$ $+ b_3b_2b_1b_0$ $s_4s_3s_2s_1s_0$

The ith step of each addition

carry 1110
$$c_4c_3c_2c_10$$
 $a_3a_2a_1a_0$ $+ 0111$ $+ b_3b_2b_1b_0$ $s_4s_3s_2s_1s_0$

- The ith step of each addition
 - Takes three 1-bit inputs: a_i, b_i, c_i (carry-in)

carry 1110
$$c_4c_3c_2c_10$$
 $a_3a_2a_1a_0$ $+ 0111$ $+ b_3b_2b_1b_0$ $c_4s_3s_2s_1s_0$

- The ith step of each addition
 - Takes three 1-bit inputs: a_i, b_i, c_i (carry-in)
 - Produces two 1-bit outputs: s_i, c_{i+1} (carry-out)
 - The 2-bit output c_{i+1}s_i is the binary sum of the three inputs

carry 1110
$$c_4c_3c_2c_10$$
 $a_3a_2a_1a_0$ $+ 0111$ $+ b_3b_2b_1b_0$ $c_4s_3s_2s_1s_0$

- The ith step of each addition
 - Takes three 1-bit inputs: a_i, b_i, c_i (carry-in)
 - Produces two 1-bit outputs: s_i, c_{i+1} (carry-out)
 - The 2-bit output c_{i+1}s_i is the binary sum of the three inputs

Can you build a circuit that performs a single step with what you've learned so far?

Combinational Logic for an Adder

- First, build a full adder (FA), which
 - Adds three one-bit numbers:a, b, and carry-in
 - Produces a sum bit and a carry-out bit

Combinational Logic for an Adder

- First, build a full adder (FA), which
 - Adds three one-bit numbers:a, b, and carry-in
 - Produces a sum bit and a carry-out bit

Then, cascade FAs to perform binary addition

Combinational Logic for an Adder

- First, build a full adder (FA), which
 - Adds three one-bit numbers:a, b, and carry-in
 - Produces a sum bit and a carry-out bit

Then, cascade FAs to perform binary addition

Result: A ripple-carry adder (simple but slow)

Truth table

a	b	C _{in}	C _{out}	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		
		'	•	

$$c_{out} =$$

Truth table

a	b	C _{in}	C _{out}	S
0	0	0	0	C
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		
			•	

$$c_{out} =$$

Truth table

a	b	C _{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1		
1	0	0	0	1
1	0	1		
1	1	0		
1	1	1		

$$c_{out} =$$

Truth table

a	b	C _{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1		

$$c_{out} =$$

Truth table

a	b	C _{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$c_{out} =$$

Truth table

a	b	C _{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1
1 1	0	1	1	0

$$s = a \oplus b \oplus c_{in}$$

Truth table

a	b	C _{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$s = a \oplus b \oplus c_{in}$$

$$c_{out} = a \cdot b + a \cdot c_{in} + b \cdot c_{in}$$

Truth table

a	b	C _{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$s = a \oplus b \oplus c_{in}$$

$$c_{out} = a \cdot b + a \cdot c_{in} + b \cdot c_{in}$$

■ Truth table with 2⁶⁴ rows and 33 columns

- Truth table with 2⁶⁴ rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA

- Truth table with 2⁶⁴ rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA
- Use some ad-hoc notation to describe recurrences

•
$$s_k = a_k \oplus b_k \oplus c_k$$

• $c_{k+1} = a_k \cdot b_k + a_k \cdot c_k + b_k \cdot c_k$ 0 \leq k \leq 31

- Truth table with 2⁶⁴ rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA
- Use some ad-hoc notation to describe recurrences

•
$$s_k = a_k \oplus b_k \oplus c_k$$

• $c_{k+1} = a_k \cdot b_k + a_k \cdot c_k + b_k \cdot c_k$ 0 $\leq k \leq 31$

Circuit diagrams: tedious to draw, error-prone

- Truth table with 2⁶⁴ rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA
- Use some ad-hoc notation to describe recurrences
 - $s_k = a_k \oplus b_k \oplus c_k$ • $c_{k+1} = a_k \cdot b_k + a_k \cdot c_k + b_k \cdot c_k$ 0 $\leq k \leq 31$
- Circuit diagrams: tedious to draw, error-prone

- Truth table with 2⁶⁴ rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA
- Use some ad-hoc notation to describe recurrences
 - $s_k = a_k \oplus b_k \oplus c_k$ • $c_{k+1} = a_k \cdot b_k + a_k \cdot c_k + b_k \cdot c_k$ $0 \le k \le 31$
- Circuit diagrams: tedious to draw, error-prone
- A hardware description language (HDL), i.e., a programming language specialized to describe hardware

- Truth table with 2⁶⁴ rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA
- Use some ad-hoc notation to describe recurrences
 - $s_k = a_k \oplus b_k \oplus c_k$ • $c_{k+1} = a_k \cdot b_k + a_k \cdot c_k + b_k \cdot c_k$ $0 \le k \le 31$
- Circuit diagrams: tedious to draw, error-prone
- A hardware description language (HDL), i.e., a programming language specialized to describe hardware
 - Precisely specify the structure and behavior of digital circuits

- Truth table with 2⁶⁴ rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA
- Use some ad-hoc notation to describe recurrences
 - $s_k = a_k \oplus b_k \oplus c_k$ • $c_{k+1} = a_k \cdot b_k + a_k \cdot c_k + b_k \cdot c_k$ $0 \le k \le 31$
- Circuit diagrams: tedious to draw, error-prone
- A hardware description language (HDL), i.e., a programming language specialized to describe hardware
 - Precisely specify the structure and behavior of digital circuits
 - Designs can be automatically simulated or synthesized to hardware

- Truth table with 2⁶⁴ rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA
- Use some ad-hoc notation to describe recurrences
 - $s_k = a_k \oplus b_k \oplus c_k$ • $c_{k+1} = a_k \cdot b_k + a_k \cdot c_k + b_k \cdot c_k$ $0 \le k \le 31$
- Circuit diagrams: tedious to draw, error-prone
- A hardware description language (HDL), i.e., a programming language specialized to describe hardware
 - Precisely specify the structure and behavior of digital circuits
 - Designs can be automatically simulated or synthesized to hardware
 - Enables building hardware with same principles used to build software (write and compose simple, reusable building blocks)

- Truth table with 2⁶⁴ rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA
- Use some ad-hoc notation to describe recurrences
 - $s_k = a_k \oplus b_k \oplus c_k$ • $c_{k+1} = a_k \cdot b_k + a_k \cdot c_k + b_k \cdot c_k$ $0 \le k \le 31$
- Circuit diagrams: tedious to draw, error-prone
- A hardware description language (HDL), i.e., a programming language specialized to describe hardware
 - Precisely specify the structure and behavior of digital circuits
 - Designs can be automatically simulated or synthesized to hardware
 - Enables building hardware with same principles used to build software (write and compose simple, reusable building blocks)
 - Uses a familiar syntax (functions, variables, control-flow statements, etc.)

- Truth table with 2⁶⁴ rows and 33 columns
- 32 sets of Boolean equations, where each set describes a FA
- Use some ad-hoc notation to describe recurrences
 - $s_k = a_k \oplus b_k \oplus c_k$ • $c_{k+1} = a_k \cdot b_k + a_k \cdot c_k + b_k \cdot c_k$ $0 \le k \le 31$
- Circuit diagrams: tedious to draw, error-prone
- A hardware description language (HDL), i.e., a programming language specialized to describe hardware
 - Precisely specify the structure and behavior of digital circuits
 - Designs can be automatically simulated or synthesized to hardware
 - Enables building hardware with same principles used to build software (write and compose simple, reusable building blocks)
 - Uses a familiar syntax (functions, variables, control-flow statements, etc.)
 But be aware of the differences!

Introduction to Minispec

A simple HDL based on Bluespec

Combinational Logic as Functions

In Minispec, combinational circuits are described using functions

```
function Bool inv(Bool x);
    Bool result = !x;
    return result;
endfunction
```

```
function name
function Bool inv(Bool x);
Bool result = !x;
return result;
endfunction
```

```
Function name
Return type
function Bool inv(Bool x);
Bool result = !x;
return result;
endfunction
```

```
Return type

Function name
Input arguments

function Bool inv(Bool x);

Bool result = !x;

return result;

endfunction
```

```
Return type

Function name
Input arguments

function Bool inv(Bool x);

Bool result = !x; Statement(s),

return result; including a return
endfunction statement
```

In Minispec, combinational circuits are described using functions

```
Return type

Function name
Input arguments

function Bool inv(Bool x);

Bool result = !x;
    Statement(s),
    return result;    including a return
endfunction    statement
```

 All values have a fixed type, which is known statically (e.g., result is of type Bool)

```
Return type

Function name
Input arguments

function Bool inv(Bool x);

Bool result = !x; Statement(s),

return result; including a return
endfunction statement
```

- All values have a fixed type, which is known statically (e.g., result is of type Bool)
- Note: Types Start With An Uppercase Letter, variable and function names are lowercase

Bool Type and Operations

- Values of type Bool can be True or False
- Bool supports Boolean and comparison operations:

```
Bool a = True;
Bool b = False;

Bool x = !a;  // False since a == True
Bool y = a && b; // False since b == False
Bool z = a || b; // True since a == True

Bool n = a != b; // True; equivalent to XOR
Bool e = a == b; // False; equivalent to XNOR
```

Bool Type and Operations

- Values of type Bool can be True or False
- Bool supports Boolean and comparison operations:

```
Bool a = True;
Bool b = False;

Bool x = !a;  // False since a == True
Bool y = a && b; // False since b == False
Bool z = a || b; // True since a == True

Bool n = a != b; // True; equivalent to XOR
Bool e = a == b; // False; equivalent to XNOR
```

- Bool is the simplest type, but working with many single-bit values is tedious
 - Need a type that represents multi-bit values!

Bit#(n) Type and Operations

- Bit#(n) represents an n-bit value
- Bit#(n) supports the following basic operations:
 - Bitwise logical: ~ (negation), & (AND), | (OR), ^ (XOR)

```
Bit#(4) a = 4'b0011; // 4-bit binary 3
Bit#(4) b = 4'b0101; // 4-bit binary 5
Bit#(4) x = ~a; // 4'b1100
Bit#(4) y = a & b; // 4'b0001
Bit#(4) z = a ^ b; // 4'b0110
```

Bit#(n) Type and Operations

- Bit#(n) represents an n-bit value
- Bit#(n) supports the following basic operations:
 - Bitwise logical: ~ (negation), & (AND), | (OR), ^ (XOR)

```
Bit#(4) a = 4'b0011; // 4-bit binary 3
Bit#(4) b = 4'b0101; // 4-bit binary 5
Bit#(4) x = ~a; // 4'b1100
Bit#(4) y = a & b; // 4'b0001
Bit#(4) z = a ^ b; // 4'b0110
```

Bit selection

```
Bit#(1) l = a[0];  // 1'b1 (least significant)
Bit#(3) m = a[3:1]; // 3'b001
```

Bit#(n) Type and Operations

- Bit#(n) represents an n-bit value
- Bit#(n) supports the following basic operations:
 - Bitwise logical: ~ (negation), & (AND), | (OR), ^ (XOR)

```
Bit#(4) a = 4'b0011; // 4-bit binary 3
Bit#(4) b = 4'b0101; // 4-bit binary 5
Bit#(4) x = ~a; // 4'b1100
Bit#(4) y = a & b; // 4'b0001
Bit#(4) z = a ^ b; // 4'b0110
```

Bit selection

```
Bit#(1) l = a[0];  // 1'b1 (least significant)
Bit#(3) m = a[3:1]; // 3'b001
```

Concatenation

```
Bit#(8) c = {a, b}; // 8'b00110101
```


function Bit#(2) fullAdder(Bit#(1) a, Bit#(1) b, Bit#(1) cin);


```
function Bit#(2) fullAdder(Bit#(1) a, Bit#(1) b, Bit#(1) cin);
Bit#(1) s = a ^ b ^ cin;
```



```
function Bit#(2) fullAdder(Bit#(1) a, Bit#(1) b, Bit#(1) cin);
Bit#(1) s = a ^ b ^ cin;
Bit#(1) cout = (a & b) | (a & cin) | (b & cin);
```



```
function Bit#(2) fullAdder(Bit#(1) a, Bit#(1) b, Bit#(1) cin);
   Bit#(1) s = a ^ b ^ cin;
   Bit#(1) cout = (a & b) | (a & cin) | (b & cin);
   return {cout, s};
endfunction
```


function Bit#(3) rca2(Bit#(2) a, Bit#(2) b, Bit#(1) cin);


```
function Bit#(3) rca2(Bit#(2) a, Bit#(2) b, Bit#(1) cin);
Bit#(2) lower = fullAdder(a[0], b[0], cin);
```



```
function Bit#(3) rca2(Bit#(2) a, Bit#(2) b, Bit#(1) cin);
Bit#(2) lower = fullAdder(a[0], b[0], cin);
Bit#(2) upper = fullAdder(a[1], b[1], lower[1]);
```



```
function Bit#(3) rca2(Bit#(2) a, Bit#(2) b, Bit#(1) cin);
   Bit#(2) lower = fullAdder(a[0], b[0], cin);
   Bit#(2) upper = fullAdder(a[1], b[1], lower[1]);
   return {upper, lower[0]};
endfunction
```



```
function Bit#(3) rca2(Bit#(2) a, Bit#(2) b, Bit#(1) cin);
   Bit#(2) lower = fullAdder(a[0], b[0], cin);
   Bit#(2) upper = fullAdder(a[1], b[1], lower[1]);
   return {upper, lower[0]};
endfunction
```

- Functions are inlined: Each function call creates a new instance (copy) of the called circuit
 - Allows composing simple circuits to build larger ones


```
function Bit#(5) rca4(Bit#(4) a, Bit#(4) b, Bit#(1) cin);
    Bit#(3) lower = rca2(a[1:0], b[1:0], cin);
    Bit#(3) upper = rca2(a[3:2], b[3:2], lower[2]);
    return {upper, lower[1:0]};
endfunction
```



```
function Bit#(5) rca4(Bit#(4) a, Bit#(4) b, Bit#(1) cin);
  Bit#(3) lower = rca2(a[1:0], b[1:0], cin);
  Bit#(3) upper = rca2(a[3:2], b[3:2], lower[2]);
  return {upper, lower[1:0]};
```

- Composing functions lets us build larger circuits, but writing very large circuits this way is tedious
 - Next lecture: Writing an n-bit adder in a single function

Multiplexers

 A 2-way multiplexer or mux selects between two inputs a and b based on a single-bit input s (select input)

 A 2-way multiplexer or mux selects between two inputs a and b based on a single-bit input s (select input)

Gate-level implementation:

2-way Multiplexer with *n*-bit inputs

- If a and b are n-bit wide, the 2-way multiplexer can be implemented with n one-bit 2-way multiplexers in parallel
 - s is the same input for all the replicated structures

2-way Multiplexer with *n*-bit inputs

 If a and b are n-bit wide, the 2-way multiplexer can be implemented with n one-bit 2-way multiplexers in parallel

 s is the same input for all the replicated structures

 A 4-way multiplexer selects between four inputs based on the value of a 2-bit input s

 A 4-way multiplexer selects between four inputs based on the value of a 2-bit input s

Typically implemented using 2-way multiplexers

 A k-way multiplexer can be implemented with a tree of k-1 2-way multiplexers

- A k-way multiplexer can be implemented with a tree of k-1 2-way multiplexers
 - Example: 8-way multiplexer

March 1, 2022

- A k-way multiplexer can be implemented with a tree of k-1 2-way multiplexers
 - Example: 8-way multiplexer

How many 2-way one-bit muxes needed to implement a k-way n-bit mux?

March 1, 2022

- A k-way multiplexer can be implemented with a tree of k-1 2-way multiplexers
 - Example: 8-way multiplexer

How many 2-way one-bit muxes needed to implement a k-way n-bit mux?

(k-1)*n

Multiplexers in Minispec

2-way mux → Conditional operator

Multiplexers in Minispec

2-way mux → Conditional operator

Minispec

s? b : a

2-way mux → Conditional operator

Minispec

s has type Bool; True is treated as 1 and False as 0

2-way mux → Conditional operator

2-way mux → Conditional operator

• k-way mux \rightarrow Case expression

■ 2-way mux → Conditional operator

• k-way mux → Case expression

March 1, 2022 MIT 6.004 Spring 2022 L08-20

2-way mux → Conditional operator

• k-way mux \rightarrow Case expression

case (s)
 0 : a;
 1 : b;
 2 : c;
 3 : d;
endcase

s has type Bit#(2)

March 1, 2022 MIT 6.004 Spring 2022 L08-20

Given this conditional statement...

s? foo(x) : bar(y)

Given this conditional statement...

```
s? foo(x) : bar(y)
```

 In software, the program would first evaluate s, then run either foo(x) or bar(y)

Given this conditional statement...

```
s? foo(x) : bar(y)
```

- In software, the program would first evaluate s, then run either foo(x) or bar(y)
- But in hardware, this statement instantiates and evaluates both foo(x) and bar(y), in parallel!

Given this conditional statement...

- In software, the program would first evaluate s, then run either foo(x) or bar(y)
- But in hardware, this statement instantiates and evaluates both foo(x) and bar(y), in parallel!

assume x is 4 bits wide

Constant selector: e.g., x[2]

assume x is 4 bits wide

Constant selector: e.g., x[2]

assume x is 4 bits wide

Constant selector: e.g., x[2]

assume x is 4 bits wide

Constant selector: e.g., x[2]

Dynamic selector: x[i]

assume x is 4 bits wide

Constant selector: e.g., x[2]

Dynamic selector: x[i]

Shift operators

- Fixed-size shift operation is cheap in hardware
 - Just wire the circuit appropriately

- Fixed-size shift operation is cheap in hardware
 - Just wire the circuit appropriately

- Fixed-size shift operation is cheap in hardware
 - Just wire the circuit appropriately

- Fixed-size shift operation is cheap in hardware
 - Just wire the circuit appropriately
- Arithmetic shifts are similar

- Fixed-size shift operation is cheap in hardware
 - Just wire the circuit appropriately
- Arithmetic shifts are similar

Arithmetic right shift by n divides integer in two's complement representation by 2ⁿ

- Fixed-size shift operation is cheap in hardware
 - Just wire the circuit appropriately
- Arithmetic shifts are similar

Arithmetic right shift by n divides integer in two's complement representation by 2ⁿ

 Suppose we want a shifter that right-shifts an N-bit input x by s, where N=32 and 0≤s≤31

- Suppose we want a shifter that right-shifts an N-bit input x by s, where N=32 and 0≤s≤31
- Naïve approach: Create 32 different fixed-size shifters and select using a mux

- Suppose we want a shifter that right-shifts an N-bit input x by s, where N=32 and 0≤s≤31
- Naïve approach: Create 32 different fixed-size shifters and select using a mux

- Suppose we want a shifter that right-shifts an N-bit input x by s, where N=32 and 0≤s≤31
- Naïve approach: Create 32 different fixed-size shifters and select using a mux

How many 2-way 1-bit muxes are needed to implement this 32-way 32-bit mux?

- Suppose we want a shifter that right-shifts an N-bit input x by s, where N=32 and 0≤s≤31
- Naïve approach: Create 32 different fixed-size shifters and select using a mux

How many 2-way 1-bit muxes are needed to implement this 32-way 32-bit mux?

(32-1)

- Suppose we want a shifter that right-shifts an N-bit input x by s, where N=32 and 0≤s≤31
- Naïve approach: Create 32 different fixed-size shifters and select using a mux

How many 2-way 1-bit muxes are needed to implement this 32-way 32-bit mux?

$$(32-1)*32 = 992$$

- Suppose we want a shifter that right-shifts an N-bit input x by s, where N=32 and 0≤s≤31
- Naïve approach: Create 32 different fixed-size shifters and select using a mux

How many 2-way 1-bit muxes are needed to implement this 32-way 32-bit mux?

$$(32-1)*32 = 992$$

= ~4k gates

- Suppose we want a shifter that right-shifts an N-bit input x by s, where N=32 and 0≤s≤31
- Naïve approach: Create 32 different fixed-size shifters and select using a mux

How many 2-way 1-bit muxes are needed to implement this 32-way 32-bit mux?

$$(32-1)*32 = 992$$

= ~4k gates

We can do better!

An efficient circuit to perform variable-size shifts

 A barrel shifter performs shift by s using a series of fixed-size power-of-2 shifts

An efficient circuit to perform variable-size shifts

- A barrel shifter performs shift by s using a series of fixed-size power-of-2 shifts
 - For example, shift by 5 (=4+1) can be done with shifts of sizes 4 and 1

An efficient circuit to perform variable-size shifts

- A barrel shifter performs shift by s using a series of fixed-size power-of-2 shifts
 - For example, shift by 5 (=4+1) can
 be done with shifts of sizes 4 and 1
 - The bit encoding of *s* tells us which shifts are needed: if the *i*th bit of *n* is 1, then we need to shift by 2ⁱ
 - Ex: 5 = 0b00101

An efficient circuit to perform variable-size shifts

- A barrel shifter performs shift by s using a series of fixed-size power-of-2 shifts
 - For example, shift by 5 (=4+1) can be done with shifts of sizes 4 and 1
 - The bit encoding of *s* tells us which shifts are needed: if the *i*th bit of *n* is 1, then we need to shift by 2ⁱ
 - Ex: 5 = 0b00101
 - Implementation: A cascade of log₂N muxes that choose between shifting by 2ⁱ and not shifting

An efficient circuit to perform variable-size shifts

- A barrel shifter performs shift by s using a series of fixed-size power-of-2 shifts
 - For example, shift by 5 (=4+1) can be done with shifts of sizes 4 and 1
 - The bit encoding of *s* tells us which shifts are needed: if the *i*th bit of *n* is 1, then we need to shift by 2ⁱ
 - Ex: 5 = 0b00101
 - Implementation: A cascade of log₂N muxes that choose between shifting by 2ⁱ and not shifting

How many 2-way 1-bit muxes?

An efficient circuit to perform variable-size shifts

- A barrel shifter performs shift by s using a series of fixed-size power-of-2 shifts
 - For example, shift by 5 (=4+1) can be done with shifts of sizes 4 and 1
 - The bit encoding of *s* tells us which shifts are needed: if the *i*th bit of *n* is 1, then we need to shift by 2ⁱ
 - Ex: 5 = 0b00101
 - Implementation: A cascade of log₂N muxes that choose between shifting by 2ⁱ and not shifting

How many 2-way 1-bit muxes?

$$N*log_2N = 32*5 = 160$$

- Example in Minispec for N=4
 - Only need 2 bits for s, why?

- Example in Minispec for N=4
 - Only need 2 bits for s, why?


```
function Bit#(4) barrelShifter(Bit#(4) x, Bit#(2) s);
```

- Example in Minispec for N=4
 - Only need 2 bits for s, why?
- Use conditional operator for 2-way muxes


```
function Bit#(4) barrelShifter(Bit#(4) x, Bit#(2) s);
```

- Example in Minispec for N=4
 - Only need 2 bits for s, why?
- Use conditional operator for 2-way muxes
- Use concatenation and bit selection for fixed shifts


```
function Bit#(4) barrelShifter(Bit#(4) x, Bit#(2) s);
```

- Example in Minispec for N=4
 - Only need 2 bits for s, why?
- Use conditional operator for 2-way muxes
- Use concatenation and bit selection for fixed shifts


```
function Bit#(4) barrelShifter(Bit#(4) x, Bit#(2) s);
Bit#(4) r1 = (s[1] == 0) ? x : \{2'b00, x[3:2]\};
```

- Example in Minispec for N=4
 - Only need 2 bits for s, why?
- Use conditional operator for 2-way muxes
- Use concatenation and bit selection for fixed shifts


```
function Bit#(4) barrelShifter(Bit#(4) x, Bit#(2) s);
Bit#(4) r1 = (s[1] == 0) ? x : {2'b00, x[3:2]};
Bit#(4) r0 = (s[0] == 0) ? r1 : {1'b0, r1[3:1]};
```

- Example in Minispec for N=4
 - Only need 2 bits for s, why?
- Use conditional operator for 2-way muxes
- Use concatenation and bit selection for fixed shifts


```
function Bit#(4) barrelShifter(Bit#(4) x, Bit#(2) s);
   Bit#(4) r1 = (s[1] == 0) ? x : {2'b00, x[3:2]};
   Bit#(4) r0 = (s[0] == 0) ? r1 : {1'b0, r1[3:1]};
   return r0;
endfunction
```

Thank you!

Next lecture:
Complex combinational circuits
and advanced Minispec