MATH32001 Midterm Cheat Sheet

Available at JTANG.DEV/RESOURCES

alg structures definitions

group: $(G,*), G \neq \emptyset$ such that:

(i) $\forall a, b \in G, a * b \in G$

(ii) $\forall a, b, c \in G, (a * b) * c = a * (b * c)$

(iii) $\exists e \in G, \forall a \in G, a * e = e * a = a$

(iv) $\forall a \in G, \exists a' \in G, a * a' = e = a' * a$

abelian: (G, *) where * is commutative binary operation

subgroup criterion: if G is a group with $H \subseteq G$, then $H \leq G$ if $H \neq \emptyset$ and $\forall a, b \in H$, we have $ab^{-1} \in H$

right coset: suppose G is a group with $H \leq G$, for $a \in G$, $Ha = \{ha \mid h \in H\} \subseteq G$

index of H in G: number of right cosets of H in G

lagranges theorem: suppose G is a finite group with $H \leq G$, then |G| = [G:H]|H|

centraliser: let $g \in G$. $C(g) = \{x \in G \mid xg = gx\} \le G$

centre of G: $Z(G) = \{x \in G \ xg = gx, \forall g \in G\} \le G$

homomorphism: $\varphi: G \to H$ such that $\forall a,b \in G\varphi(ab) = \varphi(a)\varphi(b)$

isomorphism: a bijective homomorphism

conjugate: if G is a group, $x \in G$. $y \in G$ is a conjugate of x if $y = g^{-1}xg$ for some $g \in G$, denoted $y \sim x$

conjugacy class: $x^G = \{g^{-1}xg \mid g \in G\}$

class theorem: suppose G is a finite group with $g \in G$. then $|g^G| = [G:C(g)] = \frac{|G|}{|C(g)|}$

alg structures theorems and friends

(i) if $H \leq G, K \leq G$ and $K \subseteq K$, then $k \leq H$

(ii) if $K \leq G$ and $K \subseteq H$, then [G:K] = [G:H][H:K]

(iii) $(S_n, *)$ is a group and $|S_n| = n!$

(iv) any permutation in S_n can be written as product of pairwise disjoint cycles

(v) suppose G is a group with $H \leq G$. let $x, y \in G$ then either Hx = Hy or $Hx \cap Hy = \emptyset$

examples of groups

direct product: suppose (H,*) and (K,\odot) are groups. define $(h,k)(h',k')=(h*h',k\odot k')\in H\times K$

lemma: every permutation in S_n can be written as a product of transpositions

 ${\bf odd}$ / ${\bf even}$ permutations: we say a permutation is even (odd) if it can be expressed as an even (odd) number of transpositions

 $\mathbf{c}(\sigma)$: the number of cycles when we express σ as product of disjoint cycles

lemma: let $\sigma, \tau \in S_n$, τ transposition, then $c(\sigma\tau) = c(\sigma) \pm 1$

$$\mathbf{s}(\sigma) = (-1)^{n-c(\sigma)} (= \pm 1) \text{ for } \sigma \in S_n$$

lemma: let $n \in \mathbb{N}, n \geq 2$. if $\sigma \in S_n$ can be written as a product of r transpositions, then $s(\sigma) = (-1)^r$

corollary: if σ can be written as a product of r_1 and r_2 transpositions, then r_1 and r_2 have the same parity

 A_n : the set of all even permutations in S_n , i.e. $A = \{ \sigma \in S_n \mid \sigma \text{ is an even permutation} \} \leq S_n$

remark: $|A_n| = \frac{1}{2}n!$

subgroups

definitions: suppose G is a group, $g \in G$, $A, B \subseteq G$.

(i) $A^g = \{g^{-1}ag \mid a \in A\}$

(ii) $AB = \{ab \mid a \in A, b \in B\} \subseteq G$

(iii) $A^- = \{a^{-1} \mid a \in A\}$

definitions: suppose G is a group and $\emptyset \neq S \subseteq G$.

(i) $C_G(S) = \{g \in G \mid xg = gx, \forall x \in S\}$

(ii) $N_G(S) = \{ g \in G \mid S^g = S \}$

(iii) $\langle S \rangle = \{x_1 x_2 \dots x_n \mid x_i \in S \cup S^-, m \in \mathbb{N}\}\$

remarks

(i) $C_G(S) \subseteq N_G(S)$

(ii) if $S \leq G$, then $S \subseteq N_G(S)$

(iii) $S \cup S^- \subseteq \langle R \rangle$ and if $R \subseteq S$, then $\langle R \rangle \subseteq \langle S \rangle$

(iv) if $S = \{x\}$, then $C_G(S) = C_G(x)$ and $\langle S \rangle = \langle x \rangle$

(v) $C_G(S) \leq N_G(S) \leq G$

(vi) if $R \subseteq S$, then $\langle R \rangle \leq \langle S \rangle$

(vii) if $S\langle G, \text{ then } S \subseteq N_G(S)$

lemma: suppose G is a group, $\emptyset \neq S \subseteq G$, then $C_G(S), N_G(S), \langle S \rangle$ are all subgroups of G

lemma: since $Z(G) = C_G(G)$, we have $Z(G) \leq G$

lemma: suppose G is a group and $H \leq G, K \leq G$. then $HK \leq G \iff HK = KH$