数值代数实验报告

PB21010483 郭忠炜 2023 年 10 月 19 日

一、问题描述

Exercise1

已知一个 84 阶线性方程组 Ax = b, 其中矩阵 A 为 84x84 的系数矩阵,向量 b 为长度为 84 的常数向量。需要用 C++ 代码编写通用的子程序,实现不选主元的 Gauss 消去法、全主元 Gauss 消去法以及列主元 Gauss 消去法,并利用这些算法求解该 84 阶线性方程组,输出计算结果,计算结果和准确解的误差以及运行时间。

Exercise2

给定一个对称正定的线性方程组 Ax = b,需要用 C++ 代码编写通用的子程序,实现平方根法 (Cholesky 分解) 和改进平方根法,并利用这些算法求解对称正定方程组,输出运行时间。

Exercise3

利用第题中编写的通用子程序分别求解第 2 题中给定的两个方程组,分别使用不选主元的 Gauss 消去法、全主元 Gauss 消去法、列主元 Gaussy 消去法以及平方根法和改进平方根法进行求解,并比较并对比各方法的计算结果。

二、程序介绍

Exercise1

前代法 (Forward Substitution):

- **算法描述:** 前代法用于解决下三角矩阵方程 Lx = b, 其中 L 为下三角矩阵, 对角线上的元素为 1。
- 使用方式: 调用 forward_subs(L, b) 函数,传入下三角矩阵 L 和常数向量 b,函数会修改 b 以得到解向量 x。

对角元为 1 的前代法:

- **算法描述:** 对角元为 1 的前代法是前代法的一种特例,适用于对角元为 1 的下三角矩阵方程 Lx = b。
- 使用方式: 调用 forward_subs1(L, b) 函数,传入下三角矩阵 L 和常数向量 b,函数会修改 b 以得到解向量 x。

回代法 (Backward Substitution):

- **算法描述:** 回代法用于解决上三角矩阵方程 Ux = y, 其中 U 为上三角矩阵。
- 使用方式:调用 back_subs(U, y) 函数,传入上三角矩阵 U 和常数向量 y,函数会修改 y 以得到解向量 x。

对角元为 1 的回代法:

- **算法描述:** 对角元为 1 的回代法是回代法的一种特例,适用于对角元为 1 的上三角矩阵方程 Ux = y。
- 使用方式:调用 back_subs1(U, y) 函数,传入上三角矩阵 U 和常数向量 y,函数会修改 y 以得到解向量 x。

Gauss 消去法:

- 函数名: void gauss_elim(vector<vector<double>>& A);
- 算法描述: Gauss 消去法用于求解线性方程组,通过消元过程将系数矩阵变换为上三角矩阵。

全主元 Gauss 消去法:

- 函数名: void gauss_elim_full_pivoting(vector<vector<double>>& A, vector<int>& u, vector<int>& v);
- **算法描述:** 全主元 Gauss 消去法是一种高级的 Gauss 消去法,选择主元时考虑行列均进行选择, 提高数值稳定性。

列主元 Gauss 消去法:

- 函数名: void gauss_elim_col_pivoting(vector<vector<double>>& A, vector<int>& u);
- **算法描述:** 列主元 Gauss 消去法是 Gauss 消去法的一种改进算法,选择主元时仅在列中选择,提高数值稳定性。

打印矩阵:

- 函数名: void print(vector<vector<double>>& mat);
- 功能描述: 该函数用于打印矩阵到输出, 方便观察矩阵的内容。

Exercise2

对称正定阵标准 Cholesky 分解:

- 函数名: void cholesky_decomp(vector<vector<double>>& A);
- 功能描述: 该函数用于对称正定阵 A 进行标准的 Cholesky 分解,得到 $A=LL^T$,其中 L 是下三角矩阵。

改进的平方根法:

- 函数名: void modified_cholesky_decomp(vector<vector<double>>& A);
- 功能描述: 该函数用于对称正定阵 A 进行改进的平方根法,得到 $A = LDL^T$ 分解,其中 D 是对 角矩阵,L 是下三角矩阵。

三、实验结果

Exercise1

	不选主元	误差	全主元	误差	列主元	误差
1	1	0	1	0	1	0
2	1	2.22E-16	1	2.22E-16	1	0
3	1	4.44E-16	1	4.44E-16	1	0
4	1	8.88E-16	1	8.88E-16	1	0
5	1	1.78E-15	1	1.78E-15	1	0
6	1	3.55E-15	1	3.55E-15	1	0
7	1	7.11E-15	1	7.11E-15	1	0
8	1	1.42E-14	1	1.42E-14	1	0
9	1	2.84E-14	1	2.84E-14	1	0
10	1	5.68E-14	1	5.68E-14	1	0
11	1	1.14E-13	1	1.14E-13	1	0
12	1	2.27E-13	1	2.27E-13	1	0
13	1	4.55E-13	1	4.55E-13	1	0
14	1	9.09E-13	1	9.09E-13	1	0
15	1	1.82E-12	1	1.82E-12	1	0
16	1	3.64E-12	1	3.64E-12	1	0
17	1	7.28E-12	1	7.28E-12	1	0
18	1	1.46E-11	1	1.46E-11	1	0
19	1	2.91E-11	1	2.91E-11	1	0
20	1	5.82E-11	1	5.82E-11	1	0

	不选主元	误差	全主元	误差	列主元	误差
21	1	1.16E-10	1	1.16E-10	1	0
22	1	2.33E-10	1	2.33E-10	1	0
23	1	4.66E-10	1	4.66E-10	1	0
24	1	9.31E-10	1	9.31E-10	1	0
25	1	1.86E-09	1	1.86E-09	1	0
26	1	3.73E-09	1	3.73E-09	1	0
27	1	7.45E-09	1	7.45E-09	0	1
28	1	1.49E-08	1	1.49E-08	16	15
29	1	2.98E-08	1	2.98E-08	-128	129
30	1	5.96E-08	1	5.96E-08	1024	1023
31	1	1.19E-07	1	1.19E-07	-5120	5121
32	1	2.38E-07	1	2.38E-07	24576	24575
33	1	4.77E-07	1	4.77E-07	-98304	98305
34	1	9.54 E-07	1	9.54E-07	327680	32767
35	0.999998	1.91E-06	0.999998	1.91E-06	-1.31E+06	1.31E +
36	1	3.81E-06	1	3.81E-06	6.29E + 06	6.29E +
37	0.999992	7.63E-06	0.999992	7.63E-06	-2.52E+07	2.52E +
38	1.00002	1.53E-05	1.00002	1.53E-05	8.39E + 07	8.39E +
39	0.999969	3.05E-05	0.999969	3.05E-05	-3.36E+08	3.36E +
40	1.00006	6.10E-05	1.00006	6.10E-05	1.61E + 09	1.61E +
41	0.999878	0.000122063	0.999878	0.000122063	-6.44E+09	6.44E +
42	1.00024	0.000244126	1.00024	0.000244126	2.15E + 10	2.15E +
43	0.999512	0.000488251	0.999512	0.000488251	-8.59E+10	8.59E +
44	1.00098	0.000976503	1.00098	0.000976503	$4.12E{+}11$	4.12E +
45	0.998047	0.00195301	0.998047	0.00195301	-1.65E+12	1.65E +
46	1.00391	0.00390601	1.00391	0.00390601	$5.50E{+}12$	5.50E +
47	0.992188	0.00781202	0.992188	0.00781202	-2.20E+13	2.20E +
48	1.01562	0.015624	1.01562	0.015624	1.06E + 14	1.06E +
49	0.968752	0.0312481	0.968752	0.0312481	-4.22E+14	4.22E +
50	1.0625	0.0624962	1.0625	0.0624962	$1.41E{+}15$	1.41E +
51	0.875008	0.124992	0.875008	0.124992	-5.63E+15	5.63E +
52	1.24998	0.249985	1.24998	0.249985	$1.80E{+}16$	1.80E +
53	0.500031	0.499969	0.500031	0.499969	-1.80E + 16	1.80E +
54	1.99994	0.999939	1.99994	0.999939	0	1
55	-0.999878	1.99988	-0.999878	1.99988	0	1
56	4.99976	3.99976	4.99976	3.99976	0	1

	不选主元	误差	全主元	误差	列主元	误差
57	-6.99951	7.99951	-6.99951	7.99951	0	1
58	16.999	15.999	16.999	15.999	0	1
59	-30.998	31.998	-30.998	31.998	0	1
60	64.9961	63.9961	64.9961	63.9961	0	1
61	-126.992	127.992	-126.992	127.992	0	1
62	256.984	255.984	256.984	255.984	0	1
63	-510.969	511.969	-510.969	511.969	0	1
64	1024.94	1023.94	1024.94	1023.94	0	1
65	-2046.87	2047.87	-2046.87	2047.87	0	1
66	4096.74	4095.74	4096.74	4095.74	0	1
67	-8190.47	8191.47	-8190.47	8191.47	0	1
68	16383.9	16382.9	16383.9	16382.9	0	1
69	-32764.5	32765.5	-32764.5	32765.5	0	1
70	65531	65530	65531	65530	0	1
71	-131055	131056	-131055	131056	0	1
72	262097	262096	262097	262096	0	1
73	-524127	524128	-524127	524128	0	1
74	1.05E + 06	1.05E + 06	1.05E + 06	1.05E + 06	0	1
75	-2.09E+06	2.09E + 06	-2.09E+06	2.09E + 06	0	1
76	4.19E + 06	4.19E + 06	4.19E + 06	4.19E + 06	0	1
77	-8.36E+06	8.36E + 06	-8.36E+06	8.36E + 06	0	1
78	1.66E + 07	1.66E + 07	1.66E + 07	1.66E + 07	0	1
79	-3.30E+07	3.30E + 07	-3.30E+07	3.30E + 07	0	1
80	6.50E + 07	6.50E + 07	6.50E + 07	6.50E + 07	0	1
81	-1.26E+08	1.26E + 08	-1.26E+08	1.26E + 08	0	1
82	2.35E + 08	2.35E + 08	2.35E + 08	2.35E + 08	0	1
83	-4.03E+08	4.03E+08	-4.03E+08	4.03E + 08	0	1
84	5.37E + 08	5.37E + 08	5.37E + 08	5.37E + 08	1	0

表 1: 计算结果和准确解的误差表

	不选主元	全主元	列主元
用时	0.108 seconds	0.11seconds	0.09 seconds

表 2: 运行时间表

Exercise 2(1)

		平	方根法解					改进	平方根法解	<u>;</u>	
1	0.2479	34	0.0669	67	-0.0388	1	0.2479	34	0.0669	67	-0.0388
2	0.0129	35	0.1807	68	0.1832	2	0.0129	35	0.1807	68	0.1832
3	0.2611	36	0.0447	69	0.1762	3	0.2611	36	0.0447	69	0.1762
4	0.0467	37	0.2346	70	0.2234	4	0.0467	37	0.2346	70	0.2234
5	0.0144	38	0.0859	71	-0.0439	5	0.0144	38	0.0859	71	-0.0439
6	0.2968	39	0.0999	72	0.1259	6	0.2968	39	0.0999	72	0.1259
7	-0.0464	40	0.1820	73	0.1408	7	-0.0464	40	0.1820	73	0.1408
8	0.0578	41	0.1606	74	0.0579	8	0.0578	41	0.1606	74	0.0579
9	0.1398	42	0.0607	75	0.0653	9	0.1398	42	0.0607	75	0.0653
10	0.2064	43	0.0574	76	0.2498	10	0.2064	43	0.0574	76	0.2498
11	0.0371	44	0.1982	77	-0.0349	11	0.0371	44	0.1982	77	-0.0349
12	0.0475	45	0.1264	78	0.1673	12	0.0475	45	0.1264	78	0.1673
13	-0.0241	46	0.0651	79	0.2223	13	-0.0241	46	0.0651	79	0.2223
14	0.1329	47	0.2775	80	0.1490	14	0.1329	47	0.2775	80	0.1490
15	0.2253	48	-0.0661	81	0.1488	15	0.2253	48	-0.0661	81	0.1488
16	0.1090	49	0.0354	82	0.0365	16	0.1090	49	0.0354	82	0.0365
17	0.2013	50	0.0607	83	0.0248	17	0.2013	50	0.0607	83	0.0248
18	0.0581	51	0.0346	84	0.2709	18	0.0581	51	0.0346	84	0.2709
19	0.0763	52	0.2380	85	0.2031	19	0.0763	52	0.2380	85	0.2031
20	0.1674	53	0.1734	86	-0.0613	20	0.1674	53	0.1734	86	-0.0613
21	-0.0359	54	0.0392	87	0.0039	21	-0.0359	54	0.0392	87	0.0039
22	0.2076	55	0.2865	88	0.1919	22	0.2076	55	0.2865	88	0.1919
23	0.0630	56	-0.0705	89	0.0391	23	0.0630	56	-0.0705	89	0.0391
24	0.1499	57	0.2738	90	0.2649	24	0.1499	57	0.2738	90	0.2649
25	0.2378	58	0.1482	91	0.1919	25	0.2378	58	0.1482	91	0.1919
26	0.1044	59	0.1801	92	0.2077	26	0.1044	59	0.1801	92	0.2077
27	-0.0325	60	0.2074	93	0.0815	27	-0.0325	60	0.2074	93	0.0815
28	0.1311	61	-0.0752	94	0.0381	28	0.1311	61	-0.0752	94	0.0381
29	0.0306	62	0.1387	95	0.0985	29	0.0306	62	0.1387	95	0.0985
30	0.2120	63	-0.0132	96	0.0099	30	0.2120	63	-0.0132	96	0.0099
31	0.1209	64	0.2832	97	0.0491	31	0.1209	64	0.2832	97	0.0491
32	0.0549	65	-0.0679	98	0.1073	32	0.0549	65	-0.0679	98	0.1073
33	0.0396	66	0.3096	99	0.1225	33	0.0396	66	0.3096	99	0.1225
运	行时间	0.07	6 seconds	100	0.5931	运	行时间	0.06	8 seconds	100	0.5931

表 3: 计算结果和运行时间表

Exercise2(2)

在调试时,将 Hilbert 矩阵规模设置为 10 * 10,可得到结果如下表:

	平方根法解	改进平方根法解
1	1.96057	1.96057
2	50.8609	50.8606
3	-1223.86	-1223.86
4	12465.8	12465.7
5	-65930	-65929.8
6	199298	199297
7	-357087	-357086
8	374671	374670
9	-212518	-212517
10	50284.1	50284
运行时间	0.002 seconds	0.002 seconds

表 4: 计算结果和运行时间对比(Hilbert 矩阵规模为 10*10 时)

但当将 Hilbert 矩阵规模设置为 13 * 13 时,情况发生了变化:

	平方根法解	改进平方根法解
1	2.66303	2.01689
2	-17.8955	89.9864
3	1200.63	-3167.5
4	-27813.9	47883.6
5	316988	-385837
6	-2.07E + 06	1.85E + 06
7	8.44E + 06	-5.58E + 06
8	-2.23E+07	1.09E + 07
9	3.90E + 07	-1.37E + 07
10	-4.47E + 07	1.07E + 07
11	3.22E + 07	-4.75E + 06
12	-1.33E+07	909097
13	2.39E + 06	6.28868
运行时间	0.003 seconds	0.003 seconds
备注	矩阵非正定,无法进行 Cholesky 分解	

表 5: 计算结果和运行时间对比(Hilbert 矩阵规模为 13*13 时)

当 Hilbert 的规模增大到 40*40 时,平方根法输出全为 -nan(ind),改进平方根法输出如下:

	改进平方根法										
1	1.77601	11	-1.17E+07	21	0.699359	31	0.507126				
2	228.585	12	2.23E + 06	22	0.675185	32	0.492376				
3	-8030.31	13	0.974661	23	0.652425	33	0.478204				
4	121009	14	0.928553	24	0.63093	34	0.464576				
5	-971857	15	0.886911	25	0.610572	35	0.451457				
6	4.64E + 06	16	0.849017	26	0.591241	36	0.438819				
7	-1.40E+07	17	0.814305	27	0.572844	37	0.426634				
8	2.72E + 07	18	0.782321	28	0.5553	38	0.414879				
9	-3.40E+07	19	0.752696	29	0.538538	39	0.40353				
10	2.65E + 07	20	0.725126	30	0.522498	40	10.6061				
	运行	时间		0.02 seconds							

表 6: 改进平方根法运行时间(Hilbert 矩阵规模为 40*40 时)

Exercise 3(1)

	不进	主元			全:	主元			列:	主元	
1	0.0794	51	0.0537	1	0.0794	51	0.0286	1	0.0794	51	0.0537
2	0.0717	52	0.0066	2	0.0650	52	0.0508	2	0.0717	52	0.0066
3	0.0650	53	0.0508	3	0.0717	53	0.0066	3	0.0650	53	0.0508
4	0.0379	54	0.0750	4	0.0311	54	0.0530	4	0.0379	54	0.0750
5	0.0311	55	0.0530	5	0.0379	55	0.0750	5	0.0311	55	0.0530
6	0.0326	56	0.0127	6	0.0176	56	0.0144	6	0.0326	56	0.0127
7	0.0176	57	0.0144	7	0.0326	57	0.0127	7	0.0176	57	0.0144
8	0.0484	58	0.0464	8	0.0652	58	0.0163	8	0.0484	58	0.0464
9	0.0652	59	0.0163	9	0.0484	59	0.0464	9	0.0652	59	0.0163
10	0.0844	60	0.0635	10	0.0292	60	0.0837	10	0.0844	60	0.0635
11	0.0292	61	0.0837	11	0.0844	61	0.0635	11	0.0292	61	0.0837
12	0.0051	62	0.0244	12	-0.0060	62	0.0254	12	0.0051	62	0.0244
13	-0.0060	63	0.0254	13	0.0051	63	0.0244	13	-0.0060	63	0.0254
14	0.0680	64	0.0572	14	0.0905	64	0.0674	14	0.0680	64	0.0572
15	0.0905	65	0.0674	15	0.0680	65	0.0572	15	0.0905	65	0.0674
16	0.0244	66	0.0498	16	0.0448	66	0.0411	16	0.0244	66	0.0498
17	0.0448	67	0.0411	17	0.0244	67	0.0498	17	0.0448	67	0.0411
18	0.0467	68	0.0850	18	0.0682	68	0.0690	18	0.0467	68	0.0850

19	0.0682	69	0.0690	19	0.0467	69	0.0850	19	0.0682	69	0.0690
20	0.0065	70	0.0263	20	0.0639	70	0.0128	20	0.0065	70	0.0263
21	0.0639	71	0.0128	21	0.0065	71	0.0263	21	0.0639	71	0.0128
22	0.0056	72	0.0662	22	0.0865	72	0.0335	22	0.0056	72	0.0662
23	0.0865	73	0.0335	23	0.0056	73	0.0662	23	0.0865	73	0.0335
24	0.0106	74	0.0362	24	-0.0009	74	0.0287	24	0.0106	74	0.0362
25	-0.0009	75	0.0287	25	0.0106	75	0.0362	25	-0.0009	75	0.0287
26	0.0935	76	0.0640	26	-0.0030	76	0.0461	26	0.0935	76	0.0640
27	-0.0030	77	0.0461	27	0.0935	77	0.0640	27	-0.0030	77	0.0461
28	0.0674	78	0.0409	28	0.0606	78	0.0091	28	0.0674	78	0.0409
29	0.0606	79	0.0091	29	0.0674	79	0.0409	29	0.0606	79	0.0091
30	0.0226	80	0.0982	30	0.0707	80	-0.0168	30	0.0226	80	0.0982
31	0.0707	81	-0.0168	31	0.0226	81	0.0982	31	0.0707	81	-0.0168
32	0.0176	82	0.0771	32	0.0099	82	0.0749	32	0.0176	82	0.0771
33	0.0099	83	0.0749	33	0.0176	83	0.0771	33	0.0099	83	0.0749
34	0.0450	84	0.0103	34	0.0690	84	0.0571	34	0.0450	84	0.0103
35	0.0690	85	0.0571	35	0.0450	85	0.0103	35	0.0690	85	0.0571
36	0.0055	86	0.0238	36	0.0787	86	0.0643	36	0.0055	86	0.0238
37	0.0787	87	0.0643	37	0.0055	87	0.0238	37	0.0787	87	0.0643
38	0.0691	88	0.0572	38	-0.0061	88	0.0454	38	0.0691	88	0.0572
39	-0.0061	89	0.0454	39	0.0691	89	0.0572	39	-0.0061	89	0.0454
40	0.0877	90	0.0779	40	0.0601	90	0.0445	40	0.0877	90	0.0779
41	0.0601	91	0.0445	41	0.0877	91	0.0779	41	0.0601	91	0.0445
42	0.0029	92	-0.0005	42	0.0740	92	0.0024	42	0.0029	92	-0.0005
43	0.0740	93	0.0024	43	0.0029	93	-0.0005	43	0.0740	93	0.0024
44	-0.0042	94	0.0818	44	0.0410	94	0.0150	44	-0.0042	94	0.0818
45	0.0410	95	0.0150	45	-0.0042	95	0.0818	45	0.0410	95	0.0150
46	0.0170	96	0.0598	46	-0.0069	96	0.0823	46	0.0170	96	0.0598
47	-0.0069	97	0.0823	47	0.0170	97	0.0598	47	-0.0069	97	0.0823
48	0.0998	98	0.0273	48	-0.0111	98	0.0557	48	0.0998	98	0.0273
49	-0.0111	99	0.0557	49	0.0998	99	0.0273	49	-0.0111	99	0.0557
50	0.0286	100	0.1099	50	0.0537	100	0.1099	50	0.0286	100	0.1099
运	行时间	0.076	seconds	运	行时间	0.103	3 seconds	运	行时间	0.095	seconds

表 7: 计算结果和用时对比

Exercise 3(2)

	7	下选主元		全主元	列主元		
	1	1	1	1	1	1	
	2	1	2	0.999997	2	0.999998	
	3	0.999994	3	1.00006	3	1.00019	
	4	1.00006	4	1	4	1.00003	
	5	0.999723	5	1.00031	5	1.00001	
	6	1.00076	6	1.00002	6	0.999931	
	7	0.998763	7	1.00048	7	1	
	8	1.00119	8	0.999887	8	0.99969	
	9	0.999377	9	0.999749	9	1.0003	
	10	1.00014	10	0.999499	10	0.999844	
运行时间	0.0	03 seconds	0.00	01 seconds	0.003 seconds		

	-	不选主元		全主元		列主元
	1	0.999999	1	1	1	1
	2	1.00017	2	0.998426	2	1.00056
	3	0.99352	3	-47.8937	3	0.203514
	4	1.1081	4	1.00004	4	-1.46658
	5	0.0504351	5	-6.43881	5	5.38361
	6	5.81279	6	0.777825	6	1.1154
	7	-13.3839	7	-2.61425	7	0.999987
	8	24.7593	8	-61.3392	8	4.8446
	9	-14.2507	9	1.0257	9	-12.6205
	10	-5.00823	10	-13.0946	10	36.8833
	11	-13.8618	11	-85.9081	11	-67.9851
	12	98.2343	12	2.13049	12	93.1463
	13	-145.2	13	-53.1714	13	-76.8821
	14	90.4002	14	8.86779	14	34.8013
	15	4.77186	15	40.7346	15	-2.41486
	16	-62.1442	16	100.224	16	0.989265
	17	96.3345	17	22.2882	17	19.6988
	18	-89.5854	18	66.5434	18	-45.3425
	19	47.7277	19	17.2066	19	48.7222
	20	-8.75859	20	27.6634	20	-22.0773
运行时间	0.0	06 seconds	0.00	06 seconds	0.0	11 seconds

表 8: Hilbert 矩阵规模分别为 10*10 和 20*20 时,三种 Gauss 消去法对比

	 不选主元		 全主元		 列主元	
1	1	1	0.999999	1	1	
2	1.00007	2	0.994283	2	0.998159	
3	0.997396	3	221.128	3	1.34066	
4	1.04062	4	1.00019	4	-197.13	
5	0.688188	5	51.7217	5	375.545	
6	2.16725	6	1.14704	6	60.1569	
7	-0.09895	7	353.146	7	1.00005	
8	-6.48777	8	42.3566	8	2.4463	
9	32.0032	9	1.05077	9	-8.20327	
10	-47.142	10	-683.862	10	16.95	
11	23.3459	11	430.28	11	4.98925	
12	22.2094	12	349.822	12	-40.2305	
13	-18.2317	13	930.253	13	36.736	
14	1.72533	14	-4.49972	14	-35.4382	
15	-14.1245	15	-269.77	15	147.314	
16	4.57317	16	-158.185	16	1.02657	
17	53.4637	17	-60.1119	17	67.7104	
18	-72.8923	18	602.663	18	10.5476	
19	53.59	19	-417.383	19	3.96324	
20	-53.7596	20	-138.321	20	-47.5535	
21	74.8231	21	-558.489	21	158.6	
22	-17.048	22	399.168	22	-11.9498	
23	-68.6389	23	-395.482	23	-122.167	
24	56.6681	24	342.492	24	-113.586	
25	-11.1791	25	290.033	25	26.8195	
26	19.5501	26	63.2139	26	201.084	
27	32.2028	27	-573.267	27	97.0492	
28	-98.1378	28	450.221	28	-252.567	
29	5.36355	29	-119.802	29	80.3402	
30	63.8895	30	-285.384	30	-122.646	
31	97.906	31	186.689	31	0.83012	
32	-114.617	32	-19.9021	32	-391.711	
33	-21.487	33	-231.583	33	38.7715	
34	-6.23057	34	-612.265	34	95.8394	
35	-7.30572	35	-52.2416	35	150.707	
36	81.1841	36	-200.499	36	-122.862	
37	-22.3064	37	560.419	37	-173.557	

	38	19.2249	38	-170.929	38	-180.102
	39	-56.1343	39	385.507	39	93.6363
	40	27.2058	40	-672.326	40	184.301
运行时间	0.011 seconds		0.025 seconds		0.021 seconds	

表 9: Hilbert 矩阵规模为 40*40 时, 三种 Gauss 消去法对比

四、结果分析

Exercise1

从运算结果来看,在 $x1\sim x26$ 的求解中,不选主元的 Gauss 消去法、全主元的 Gauss 消去法和列主元的 Gauss 消去法表现出了很好的一致性。而随着矩阵规模的增大,列主元的 Gauss 消去法开始变得不稳定,而不选主元的 Gauss 消去法和全主元的 Gauss 消去法全程表现出了一致性。从运行时间来看,三者几乎没有差别。

Exercise2(1)

在对系数矩阵为对称正定矩阵的线性方程组的求解时,平方根法和改进的平方根法得到了相同的结果,而改进的平方根法有一定的性能优势。

Exercise2(2)

在 Hilbert 矩阵规模较小(10*10)时,平方根法和改进的平方根法可以表现出相同的性能;当 Hilbert 矩阵规模设置为 13*13 时,由于 Hilbert 矩阵本身的性质,使得开方操作出错,致使平方根法无法进行 Cholesky 分解;对于题给的 Hilbert 矩阵(40*40)规模,平方根法输出全为-nan(ind),改进平方根法正常给出了输出。

Exercise3(1)

从运算结果来看,不选主元的 Gauss 消去法和列主元的 Gauss 消去法全程表现出了很好的一致性。 而通过观察会发现全主元的 Gauss 消去法在求解时时不时会与另外两种方法求解出现相同大小分量的 错位,但三者输出的解的范数相差不大。

从运行时间来看,全主元的 Gauss 消去法的运行速度明显有优势,而不选主元的 Gauss 消去法又优于列主元的 Gauss 消去法。

Exercise3(2)

随着 Hilbert 矩阵规模的增大,不选主元的 Gauss 消去法、全主元的 Gauss 消去法和列主元的 Gauss 消去法在规模较小时能保持输出结果的大体相同(全主元的 Gauss 消去法运行时间最短),在较大规模时会出现三种方法的输出各不相同的现象。