Simulation-based evaluation of susceptibility distortion correction methods in dMRI

O. Esteban^{1,2} A. Daducci² E. Caruyer³ K. O'Brien⁴ MJ. Ledesma-Carbayo¹ M. Bach-Cuadra^{5,2} A. Santos¹

- Connectivity analyses rely on complex workflows to extract the network from dMRI datasets.
- ➤ One important pitfall that potentially bias the extracted connectome is susceptibility distortion, a typical artifact on dMRI [Irfanoglu et al. 2012].
- ► In this work, we evaluate three widely used methodologies for bias correction, originally proposed for fMRI data: fieldmap-based method (FMB, [Jezzard et al 1995]), reverse-encoding method (REB, [Cordes et al. 2000, Chiou et al. 2000]), and T2-weighted intensity-based registration (T2B, [Kybic et al. 2000]).
- ► Benchmarking includes geometrical accuracy scores, signal recovery scores, and a preliminary study of impact on the extracted tractography and connectivity matrices.

Digital dMRI phantom & theory-based warping

We generated a test set using low-resolution dMRI phantoms (online available¹) with corresponding T1-weighted and T2-weighted images at high-resolution. We simulate the artifact (geometrical distortion and signal dropout) using a synthetic fieldmap.

A) T2w; B) undistorted b0 volume; C, D) distorted b0 volumes with opposed phase encoding directions, maximum displacement of 3.80 mm.

Evaluation framework

We use *nipype*², a powerful tool for building processing pipelines in neuroimaging. The evaluation framework includes the phantom distortion module, the three correction methodologies, DTI&HARDI reconstruction methodologies, tractography, and a final module to analyse downstream impact on geometry, tractography and connectivity.

Visual results

Coronal section of b0

Tractography

(Only tracks connecting regions are shown)

Connectivity Matrices Matrix elements w.r.t. ground-truth:

True Neg.

True Pos.

False Neg.

Quantitative results

Table : Accuracy results

	J								
	Overla	ap (Jac	card In	dex, %)	Signal	Correlation (%)			
	Av.	CSF	WM	GM	Ь0	DWIs			
FMB	93.00	88.57	96.74	94.02	80.05	$96.26 \pm .06$			
REB	96.64	94.31	98.26	96.75	91.00	$97.65 \pm .03$			
T2B	79.19	66.31	89.85	82.14	64.58	$90.10 \pm .13$			

Table: Tractography and connectivity results.

	# tracks	length (mm)	FP	FN
Original	735	40.87 ± 13.55	40	4
Distorted	878	40.54 ± 13.73	42	4
FMB	743	40.04 ± 13.60	43	4
REB	830	39.87 ± 13.93	44	4
T2B	825	41.44 ± 12.85	40	5

Conclusions and references

- ▶ DTI dataset was rejected in evaluation: extracted connectivity matrices were biased, as the phantom is designed for high angular resolution methods.
- ▶ In terms of geometry, the results indicate that REB method ranks first.
- ▶ In terms of tractography, visual assessment and quantitative results suggest that FMB could be better.
- ➤ Connectivity matrices are evaluated, but a more appropriate phantom is required. A phantom with the connecting interface densely covered by the seeding regions may be the key to characterize the impact on connectivity.
- Connectome analyses demand the standardization of processing techniques and pipelining sofware tools to ensure replicability of experiments and reliability of results.

Links and references

- 1. emmanuelcaruyer.com/phantomas.php
- 2. nipy.sourceforge.net/nipype