

Projeto Final em Engenharia Informática

Projeto de Data Warehouse

IMPLEMENTAÇÃO E ANÁLISE

MANUAL DE UTILIZAÇÃO DA IMPLEMENTAÇÃO DA DATA WAREHOUSE

Pedro Miguel Sequeira Narciso

Professor Luís Cavique

Lisboa 10 de Dezembro de 2020

Descreve-se neste manual a implementação das instruções de SQL realizadas durante a implementação da Datawarehouse resultante do Projeto Final de Engenharia Informática elaborado no âmbito da Licenciatura em Engenharia Informática da Universidade Aberta.

1. Extração de tabelas

1.1 Tabela dim actor

Extração de dados da tabela actor da base de dados sakila

```
INSERT INTO 101_dim_actor (
    actor_id,
    first_name,
    last_name,
    last_update,
    extract_date )

SELECT
    actor.actor_id,
    actor.first_name,
    actor.last_name,
    actor.last_update,
    Now() AS extract_date

FROM actor;
```

1.2 Tabela dim customers

Extração de dados da tabela customers da base de dados sakila

```
INSERT INTO 102 dim customers (
  customer id,
  first_name,
  last_name,
  city,
  store,
  active,
  create_date,
  last_update,
  extract_date)
SELECT
  CST.customer_id,
  CST.first_name,
  CST.last_name,
  CT1.city AS city,
  CT.city AS store,
  CST.active,
  CST.create date,
  CST.last_update, Now() AS [extract]
FROM (city AS CT
INNER JOIN (address AS AD1
INNER JOIN store AS STR ON AD1.address_id = STR.address_id) ON CT.city_id =
AD1.city_id)
INNER JOIN ((address AS ADR
INNER JOIN city AS CT1 ON ADR.city_id = CT1.city_id)
```

```
INNER JOIN customer AS CST ON ADR.address_id = CST.address_id) ON STR.store_id = CST.store_id;
```

1.3 Tabela dim film

Extração de dados da tabela movies da base de dados suppliers

```
INSERT INTO 103_dim_film (
  movie_id,
  title,
  release_year,
  origin,
  last_update,
  extract_date)
SELECT
  movie id,
  title,
  release_year,
  'supp_aquisitions' AS tabela,
  last_update,
  Now() AS Extract date
FROM movies;
   Extração de dados das tabelas film e language da base de dados sakila
INSERT INTO 103 dim film (
  film_id,
  title,
  release_year,
  name,
  origin,
  last_update,
  extract_date)
SELECT
  F.film id,
  F.title,
  F.release_year,
  L.name,
  'Sakila_film' AS origin,
  F.last_update,
  Now() AS extract_date
FROM [language] AS L
INNER JOIN film AS F ON L.language_id = F.language_id;
```

1.4 Tabela dim staff

Extração de dados das tabelas employees e department da base de dados employees

```
INSERT INTO 104_dim_staff (
employee_id,
first_name,
last_name,
```

```
hire_date,
      exit_date,
      department_name,
      last_update,
      extract_date)
    SELECT
      E.employee_id,
      E.first_name,
      E.last name,
      E.hire date,
      E.exit_date,
      D.department_name,
      E.last_update,
      Now() AS extract_date
    FROM departments AS D
    INNER JOIN (employees AS E
    INNER JOIN department_employee AS DE
       ON E.employee_id = DE.employee_id)
       ON D.department_id = DE.department_id;
       Extração de dados da tabela staff da base de dados sakila
    INSERT INTO 104_dim_staff (
      staff id,
      first_name,
      last_name,
      last_update,
       extract date)
    SELECT
      staff id,
      first_name,
      last_name,
      last update,
       Now() AS extract_date;
    FROM staff
1.5 Tabela dim suppliers
       Extração de dados da tabela suppliers da base de dados suppliers
```

```
INSERT INTO 105_dim_suppliers (
  supplier_id,
  name,
  supplier_type,
  last update,
  extract_date )
SELECT
  supplier_id,
  name,
  supplier_type,
```

```
last_update,
Now() AS extract_date
FROM suppliers;
```

1.6 Tabela dim_rental

Extração de dados da tabela *rental* da base de dados *sakila*

```
INSERT INTO 106_dim_rentals (
    rental_id,
    rental_date,
    return_date,
    last_update,
    extract_date )

SELECT
    rental_id,
    rental_id,
    return_date,
    last_update,
    Now() AS extract_date

FROM rental;
```

1.7 Tabela dim category

Extração de dados da tabela category da base de dados sakila

```
INSERT INTO 108_dim_category (
    category_id,
    category_name,
    last_update,
    extract_date )

SELECT
    category_id,
    name,
    last_update,
    Now() AS extract_date

FROM category;
```

1.8 Tabela fact aquisitions

Extração de dados da tabela *aquisitions* da base de dados *suppliers*

```
INSERT INTO 120_fact_aquisitions (
    aquisition_id,
    movie_id,
    supplier_id,
    staff_id,
    unit_price,
    quantity,
    aquisition_date,
    extract_date )

SELECT
```

```
aquisition_id,
movie_id,
supplier_id,
staff_id,
price AS unit_price,
quantity,
aquisition_date,
Now() AS [extract]
FROM aquisitions;
```

1.9 Tabela fact_communications

Extração de dados da tabela *communication, contacts* e *suppliers* da base de dados *suppliers*

```
INSERT INTO 121_fact_communication (
  comm_id,
  supplier_id,
  staff_id, type,
  comm_date,
  extract_date)
SELECT
  CM.comm id,
  S.supplier_id,
  CM.staff_id,
  CM.type,
  CM.comm_date,
  Now() AS [extract]
FROM suppliers AS S
INNER JOIN (contacts AS C
INNER JOIN communications AS CM
  ON C.contact id = CM.contact id)
  ON S.supplier_id = C.supplier_id;
```

1.10 Tabela fact_film_actor

Extração de dados da tabela *film_actor* da base de dados *sakila*

```
INSERT INTO 122_fact_film_actor (
    actor_id,
    film_id,
    last_update,
    extract_date )

SELECT
    actor_id,
    film_id,
    last_update,
    Now() AS extract_date

FROM film_actor;
```

1.10 Tabela fact payment

Extração de dados das tabelas inventory, rental e payment da base de dados sakila

```
INSERT INTO 123_fact_payment (
  payment_id,
  staff id,
  amount,
  payment_date,
  last_update,
  customer_id,
  rental id,
  film_id,
  extract_date )
SELECT
  P.payment id,
  P.staff id,
  P.amount,
  P.payment_date,
  P.last_update,
  P.customer id,
  P.rental_id, I.film_id,
  Now() AS [extract]
FROM (inventory AS I
INNER JOIN rental AS R ON Linventory id = R.inventory id)
INNER JOIN payment AS P ON R.rental_id = P.rental_id;
```

1.11 Tabela fact_relatives

Extração de dados das tabelas relatives da base de dados employee

```
INSERT INTO 124 fact relatives (
  relative id,
  employee id,
  relantionship_id,
  first_name,
  last_name,
  gender,
  birth_date,
  last_update, extract_date )
SELECT
  relative id,
  employee_id,
  relationship_id,
  first_name,
  last_name,
  gender,
  birth_date,
  last_update,
  Now() AS [extract]
FROM relatives;
```

1.12 Tabela fact salaries

Extração de dados das tabelas titles e salaries da base de dados employee

```
INSERT INTO 125_fact_salaries (
    employee_id,
    title,
    salary,
    start_date,
    extract_date )

SELECT
    salaries.employee_id,
    titles.title,
    salaries.salary,
    salaries.start_date,
    Date() AS [extract]

FROM titles
INNER JOIN salaries ON titles.title_id = salaries.title_id;
```

1.13 Tabela film_category

Extração de dados da tabela film_category da base de dados sakila

```
INSERT INTO 126_fact_film_category (
    film_id,
    category_id,
    last_update,
    extract_date )

SELECT
    film_id,
    category_id,
    last_update,
    Now() AS extract_date

FROM film_category;
```

1.14 Tabela dim calendar

Extração de dados da tabela 120_fact_aquisitions

```
INSERT INTO 107_dim_calendar (
    calendar,
    tbl_origem )

SELECT DISTINCT
    aquisition_date,
    '120_fact_aquisitions' AS tabela

FROM 120_fact_aquisitions

GROUP BY aquisition_date;

Extração de dados da tabela 121_fact_communications

INSERT INTO 107_dim_calendar (
    calendar,
    tbl_origem )

SELECT
```

```
comm_date AS calendar,
  'ETL_fact_communications' AS tbl_origem
FROM 121_fact_communication
GROUP BY comm_date;
   Extração de dados da tabela 123_fact_payment
INSERT INTO 107_dim_calendar (
calendar,
tbl_origem )
SELECT DISTINCT
payment_date AS calendar,
'123_fact_payment' AS tbl_origem
FROM 123_fact_payment
GROUP BY payment_date;
   Extração de dados da tabela 124_fact_relatives
INSERT INTO 107_dim_calendar (
  calendar,
  tbl_origem )
SELECT DISTINCT
  birth date,
  '124_fact_relatives' AS tbl_origem
FROM 124_fact_relatives
GROUP BY birth_date;
   Extração de dados da tabela 125_fact_salaries
INSERT INTO 107_dim_calendar (
  calendar,
  tbl_origem)
SELECT DISTINCT
```

start_date AS calendar,

FROM 125_fact_salaries GROUP BY start_date;

'125_fact_salaries' AS tbl_origem

2. Transformações em tabelas

2.1 Tabela dim actor

Transformar de dados da tabela **101_dim_actor**

```
INSERT INTO 201_dim_actor (
    actor_id,
    first_name,
    last_name,
    load_date )

SELECT
    actor_id,
    first_name,
    last_name,
    extract_date

FROM 101_dim_actor;
```

2.2 Tabela dim customers

Transformar dados da tabela 121_dim_customers

Conversão do campo *create_date*, originalmente no formato *data/hora* para o formato de *data*.

```
INSERT INTO 202_dim_customers (
  customer id,
  first_name,
  last_name,
  city, store,
  create date,
  active,
  load_date )
SELECT
  customer_id,
  first name,
  last_name,
  city,
  DateSerial(Year([create date]), Month([create date]), Day([create date])) AS create dt,
  active,
  extract_date
FROM 102_dim_customers;
```

2.3 Tabela dim films

Transformar dados da tabela 103_dim_films

Utilização de Group BY de forma a agrupar os filmes cujos títulos e anos de lançamento sejam idênticos;

Utilização da função agregadora MAX de forma a retirar um só valor dos campos cuja origem foi só uma tabela.

Utilização da função agregadora MIN no campo extract_date.

```
INSERT INTO 203_dim_film (
  film_id,
  movie id,
  title,
  release_year,
  film_language,
  load_date )
SELECT
  Max(film id) AS max film id,
  Max(movie id) AS max movie id,
  title,
  release_year,
  Max(name) AS film_language,
  Min(extract_date) AS load_date
FROM
   103_dim_Film
GROUP BY
  title, release_year;
```

Sobre a tabela resultante deve-se fazer algumas verificações de coerência, por exemplo verificar se o campo title possui um valor "null" ou se os campos movie_id ou film_id não têm referência nas duas tabelas importadas (se tiver valor "zero"). Nesta situação ou o filme só existe numa tabela, ou existe diferença na grafia.

```
SELECT
film_key,
title,
movie_id,
film_id
FROM 203_dim_film
WHERE (((title) Is Null) OR ((movie_id)=0)) OR (((film_id)=0));
```

2.4 Tabela dim staff

Transformar dados da tabela 103_dim_staff

Utilização de Group BY de forma a agrupar os funcionários como mesmo nome e apelido; Utilização da função agregadora MAX de forma a retirar um só valor dos campos cuja origem foi só uma tabela.

Utilização da função agregadora MIN no campo extract_date.

```
INSERT INTO 204_dim_staff (
    staff_id,
    employee_id,
    first_name,
    last_name,
    hire_date,
    exit_date,
    department_name,
    load_date)
```

```
SELECT

Max(staff_id) AS staffid,

Max(employee_id) AS employeeid,

first_name,

last_name,

Max(hire_date) AS HrDt,

Max(exit_date) AS ExtDt,

Max(department_name) AS DepNa,

Min(extract_date) AS Extract

FROM 104_dim_staff

GROUP BY

first_name, last_name;
```

2.5 Tabela dim suppliers

Transformar dados da tabela 105_dim_suppliers

```
INSERT INTO 205_dim_suppliers (
    supplier_id,
    supplier_name,
    supplier_type,
    load_date )

SELECT
    supplier_id,
    name,
    supplier_type,
    extract_date

FROM 105_dim_suppliers;
```

2.6 Tabela dim rental

Transformar dados da tabela 106_dim_rental

Conversão do campo *rental_date* e *return_date*, originalmente no formato *data/hora* para o formato de *data*.

```
INSERT INTO 206_dim_rental (
    rental_id,
    rental_date,
    return_date,
    load_date )

SELECT
    rental_id,
    DateSerial(Year(rental_date),Month(rental_date),Day(rental_date)) AS RenDate,
    DateSerial(Year(return_date),Month(return_date),Day(return_date)) AS RetDate,
extract_date
FROM 106_dim_rental;
```

2.7 Tabela dim calendar

```
Transformar dados da tabela 107_dim_calendar
Efetua-se o Group_by de forma a eliminar as datas repetidas
INSERT INTO 207_dim_calendar (
   calendar,
   nDay,
   nWeekDay,
   tWeekDay,
   nYearDay,
   nYearWeek,
   nMonth,
   tMonth,
   nQuarter,
   nYear)
SELECT
   DateSerial(Year([calendar]), Month([calendar]), Day([calendar])) AS Calendario,
   Day([calendar]) AS nDay,
   Weekday([calendar]) AS nWeekDay,
   WeekdayName(Weekday([calendar]),True,1) AS tWeekDay,
   Format([calendar],'y') AS nYearDay,
   Format([calendar],'ww') AS nWeekYear,
   Month([calendar]) AS nMonth,
   MonthName(Month([calendar]),True) AS tMonth,
   Format([calendar],'q') AS nQuarter,
   Year([calendar]) AS nYear
FROM 107_dim_calendar
GROUP BY
   DateSerial(Year([calendar]),
   Month([calendar]),
   Day([calendar])),
   Day([calendar]),
   Weekday([calendar]),
   WeekdayName(Weekday([calendar]),True,1),
   Format([calendar],'y'),
   Format([calendar],'ww'),
   Month([calendar]),
```

2.8 Tabela dim category

Format([calendar],'q'), Year([calendar]);

Transformar dados da tabela 108_dim_category

MonthName(Month([calendar]),True),

```
INSERT INTO 208_dim_category (
    category_id,
    category_name,
    load_date )

SELECT
    category_id,
    category_name,
    extract_date

FROM 108_dim_category;
```

2.9 Tabela fact aquisitions

Transformar dados da tabela 120_fact_aquisitions

Conversão do campo *aquisition_date*, originalmente no formato *data/hora* para o formato de *data*.

Criado o campo *total_price*, resultante da multiplicação: [price]*[quantity]

```
INSERT INTO 220_fact_aquisitions (
       aquisition_id,
       movie_id,
       supplier_id,
       staff id,
       unit_price,
       total_price,
       quantity,
       aquisition_date,
       load_date )
    SELECT
       aquisition_id,
       movie_id,
       supplier_id,
       staff_id,
       price,
       [price]*[quantity] AS total,
       DateSerial(Year([aquisition_date]), Month([aquisition_date]), Day([aquisition_date])) AS
AquDate,
       extract_date
    FROM 120_fact_aquisitions;
```

2.10 Tabela fact communications

Transformar dados da tabela 121_fact_communications

```
INSERT INTO 221_fact_communications (
  comm_id,
  supplier_id,
  staff_id,
```

```
comm_type,
comm_date,
load_date)

SELECT
comm_id,
supplier_id,
staff_id,
type,
comm_date,
extract_date

FROM 121_fact_communications;
```

2.11 Tabela fact_film_actor

Transformar dados da tabela 122_fact_film_actor

```
INSERT INTO 222_fact_film_actor (
    actor_id,
    film_id,
    load_date )

SELECT
    actor_id AS aid,
    film_id AS fid,
    extract_date AS load_date

FROM 122_fact_film_actor;
```

2.12 Tabela fact_payment

Transformar dados da tabela 123_fact_payment

Conversão do campo *payment_date*, originalmente no formato *data/hora* para o formato de *data*.

```
INSERT INTO 223_fact_payment (
  payment_id,
  customer_id,
  staff_id,
  rental_id,
  film_id,
  amount,
  payment_date,
  load_date )
SELECT
  payment_id,
  customer_id,
  staff_id,
  rental_id,
  film_id,
  amount,
```

```
DateSerial(Year(payment_date), Month(payment_date), Day(payment_date)) AS
PaymDate,
       extract date
    FROM 123_fact_payment;
2.13
         Tabela fact relatives
   Transformar dados da tabela 124 fact relatives
    Só se efetua a transformação nos registos dos "filhos" e "filhas".
    INSERT INTO 224_fact_relatives (
       relative_id,
       employee_id,
       child_first_name,
       child_last_name,
       child_gender,
       child_birth_date,
       load date)
    SELECT
       relative_id,
       employee_id,
```

2.14 Tabela fact_salaries

FROM 124_fact_relatives

first_name, last_name, gender, birth_date, extract_date

Transformar dados da tabela 125_fact_salaries

WHERE (relantionship_id)=3 Or (relantionship_id)=4;

```
INSERT INTO 225_fact_salaries (
    employee_id,
    title,
    salary,
    start_date,
    load_date)

SELECT
    employee_id,
    title,
    salary,
    start_date,
    extract_date

FROM 125_fact_salaries;
```

2.15 Tabela fact_film_category

Transformar dados da tabela 126_fact_film_category

```
INSERT INTO 226_fact_film_category (
    film_id,
    category_id,
    load_date )

SELECT
    film_id,
    category_id,
    extract_date

FROM 126_fact_film_category;
```

3. Transformações em tabelas

3.1 Tabela dim_actor

Carregar dados da tabela 201_dim_actor

```
INSERT INTO 301_dim_actor (
    actor_id,
    first_name,
    last_name,
    load_date )

SELECT
    actor_id,
    first_name,
    last_name,
    load_date

FROM 201_dim_actor;
```

3.2 Tabela dim_customer

Carregar dados da tabela 202_dim_customers

```
INSERT INTO 302_dim_customer (
    customer_id,
    first_name,
    last_name,
    city,
    store,
    create_date,
    active,
    load_date )

SELECT
    customer_id,
    first_name,
```

```
last_name,
       city,
       store,
       create_date,
       active,
       load_date
    FROM 202_dim_customers;
3.3 Tabela dim_film
   Extração de dados da tabela 203_dim_film
    INSERT INTO 303_dim_film (
       film_id,
       movie_id,
       title,
       release_year,
       film_language,
       load_date )
    SELECT
       film_id,
       movie_id,
      title,
       release_year,
      film_language,
       load_date
    FROM 203_dim_film;
3.4 Tabela dim_staff
   Carregar dados da tabela 204_dim_staff
    INSERT INTO 304_dim_staff (
       staff_id,
       employee_id,
       first_name,
       last_name,
       hire_date,
       exit_date,
       department_name,
       load_date )
    SELECT
       staff_id,
       employee_id,
       first_name,
       last_name,
       hire_date,
       exit_date,
       department_name,
       load_date
    FROM 204_dim_staff;
```

3.5 Tabela dim suppliers

```
Carregar dados da tabela 205_dim_suppliers
```

```
INSERT INTO 305_dim_suppliers (
    supplier_id,
    supplier_name,
    supplier_type,
    load_date )

SELECT
    supplier_id,
    supplier_name,
    supplier_type,
    load_date

FROM 205_dim_suppliers;
```

3.6 Tabela dim_rental

Carregar dados da tabela 206_dim_rental

```
INSERT INTO 306_dim_rental (
    rental_id,
    rental_date,
    return_date,
    load_date )

SELECT
    rental_id,
    rental_date,
    return_date,
    load_date

FROM 206_dim_rental;
```

3.7 Tabela dim category

Carregar dados da tabela 208_dim_category

```
INSERT INTO 308_dim_category (
    category_id,
    category_name,
    load_date )

SELECT
    category_id,
    category_name,
    load_date

FROM 208_dim_category;
```

3.8 Tabela dim calendar

Carregar dados da tabela 207_dim_calendar

```
INSERT INTO 307_dim_calendar (
calendar,
nDay,
nWeekday,
```

```
tWeekDay,
       nYearDay,
       nYearWeek,
       nMonth.
       tMonth,
       nQuarter,
       nyear)
    SELECT
       calendar,
       nDay,
       nWeekday,
       tWeekDay,
       nYearDay,
       nYearWeek,
       nMonth,
       tMonth,
       nQuarter,
       nyear
    FROM 207_dim_calendar;
3.9 Tabela fact aquisitions
   Carregar dados da tabela 220_fact_aquisitions
   Carregar dados da tabela 303_dim_film
   Carregar dados da tabela 304_dim_staff
   Carregar dados da tabela 305_dim_suppliers
   Carregar dados da tabela 307_dim_calendar
    INSERT INTO 320_fact_aquisitions (
       aquisition_id,
       film_key,
       supplier_key,
        staff_key,
        unit_price,
       total_price,
        quantity,
        aquisition_date_key,
        load_date )
    SELECT
            QFA.aquisition_id,
        DF.film_key,
        DS.supplier_key,
        DST.staff_key,
        QFA.unit_price,
        QFA.total_price,
        QFA.quantity,
        DC.calendar_key,
        QFA.load_date
    FROM ((((SELECT
          aquisition_id,
          movie_id,
```

```
supplier_id,
          staff_id,
          unit price,
          total_price,
          quantity,
          aquisition_date,
          load_date
        FROM 220 fact aquisitions) AS QFA
    INNER JOIN 303 dim film AS DF ON QFA.movie id = DF.movie id)
    INNER JOIN 304 dim staff AS DST ON QFA.staff id = DST.staff id)
    INNER JOIN 305_dim_suppliers AS DS ON QFA.supplier_id = DS.supplier_id)
    INNER JOIN 307_dim_calendar AS DC ON QFA.aquisition_date = DC.calendar;
      Tabela fact communications
3.10
   Carregar dados da tabela 221_fact_communications
   Carregar dados da tabela 305_dim_suppliers
   Carregar dados da tabela 304_dim_staff
   Carregar dados da tabela 307_dim_calendar
    INSERT INTO 321_fact_communication (
       comm_id,
       supplier_key,
       staff_key,
       comm_type,
       comm_date_key,
       load date)
    SELECT
       QFC.comm id,
       SUP.supplier key,
       STF.staff key,
       QFC.comm_type,
       CAL.calendar_key,
       QFC.load date
    FROM (((SELECT
             comm id,
             supplier_id,
             staff_id,
             comm_type,
             comm date,
             load date FROM 221 fact communications) AS QFC
    INNER JOIN 305 dim suppliers AS SUP ON QFC.supplier id = SUP.supplier id)
    INNER JOIN 304 dim staff AS STF ON QFC.staff id = STF.staff id)
    INNER JOIN 307_dim_calendar AS CAL ON QFC.comm_date = CAL.calendar;
3.11
       Tabels fact film actor
   Carregar dados da tabela 222 fact film actor
   Carregar dados da tabela 303_dim_film
   Carregar dados da tabela 301_dim_actor
    INSERT INTO 322 fact film actor (
```

```
actor_key,
      film_key,
      load_date )
    SELECT
      ACT.actor_key,
      FLM.film_key,
      FFA.load_date
    FROM ((SELECT
         actor id,
         film id,
         load_date
       FROM 222_fact_film_actor IN) AS FFA
    INNER JOIN 303_dim_film AS FLM ON FFA.film_id = FLM.film_id)
    INNER JOIN 301_dim_actor AS ACT ON FFA.actor_id = ACT.actor_id;
3.12
       Tabela fact payment
   Carregar dados da tabela 223 fact payment
   Carregar dados da tabela 302_dim_customer
   Carregar dados da tabela 304_dim_staff
   Carregar dados da tabela 306_dim_rental
   Carregar dados da tabela 303 dim_film
   Carregar dados da tabela 307_dim_calendar
    INSERT INTO 323 fact payment(
      INSERT INTO 323_fact_payment (
       payment_id,
      customer_key,
      staff_key,
       rental_key,
      film_key,
       amount,
       payment_date_key,
      load date)
    SELECT
      PYM.payment_id,
       CTM.customer_key,
      STF.staff_key,
      RTL.rental_key,
       FLM.film_key,
       PYM.amount,
       CLD.calendar_key,
       PYM.load date
    FROM (((((SELECT
              payment_id,
              customer id,
              staff_id,
              rental_id,
              film_id,
              amount,
              payment_date,
              load_date FROM 223_fact_payment ) AS PYM
```

```
INNER JOIN 302_dim_customer AS CTM ON PYM.customer_id = CTM.customer_id)
    INNER JOIN 304_dim_staff AS STF ON PYM.staff_id = STF.staff_id)
    INNER JOIN 306_dim_rental AS RTL ON PYM.rental_id = RTL.rental id)
    INNER JOIN 307 dim calendar AS CLD ON PYM.payment date = CLD.calendar)
    INNER JOIN 303_dim_film AS FLM ON PYM.film_id = FLM.film_id;
      Tabela fact relatives
3.13
   Carregar dados da tabela 224_fact_relatives
   Carregar dados da tabela 304_dim_staff
   Carregar dados da tabela 307_dim_calendar
    INSERT INTO 324_fact_relatives (
       relative_id,
      staff key,
       child first name,
       child_last_name,
       child_gender,
       child birth date key,
       load date)
    SELECT
       RTL.relative id,
       STF.staff key,
       RTL.child_first_name,
       RTL.child_last_name,
       RTL.child gender,
       CLD.calendar_key,
       RTL.load date
    FROM ((SELECT
             relative id,
             employee id,
             child first name,
             child last name,
             child gender,
             child birth date,
             load_date FROM 224_fact_relatives) AS RTL
    INNER JOIN 304 dim staff AS STF ON RTL.employee id = STF.employee id)
    INNER JOIN 307_dim_calendar AS CLD ON RTL.child_birth_date = CLD.calendar;
3.14
       Tabela fact salaries
   Carregar dados da tabela 225 fact salaries
   Carregar dados da tabela 304_dim_staff
   Carregar dados da tabela 307_dim_calendar
    INSERT INTO 325 fact salaries (
      staff_key,
      title,
      salary,
```

start_date_key,
load_date)

STF.staff_key,

SELECT

```
EMP.title, EMP.salary,
       CLD.calendar_key,
       EMP.load_date
    FROM ((SELECT
            employee_id,
            title,
            salary,
            start_date,
            load date
          FROM 225 fact salaries) AS EMP
    INNER JOIN 304_dim_staff AS STF ON EMP.employee_id = STF.employee_id)
    INNER JOIN 307_dim_calendar AS CLD ON EMP.start_date = CLD.calendar;
3.15 Tabela fact film category
   Carregar dados da tabela 226_fact_film_category
   Carregar dados da tabela 308_dim_category
   Carregar dados da tabela 303_dim_film
    INSERT INTO 326_fact_film_category (
      film_key,
      category_key,
      load date)
    SELECT
      FLM.film_key,
      CAT.category_key,
       FFC.load_date
    FROM ((SELECT
             film_id,
             category_id,
             load_date FROM 226_fact_film_category) AS FFC
    INNER JOIN 308 dim category AS CAT ON FFC.category id = CAT.category id)
    INNER JOIN 303_dim_film AS FLM ON FFC.film_id = FLM.film_id;
```

4.KPI's

4.1 Filmes com melhor saída

R1 Filmes mais alugados (top mês 4)

SELECT TOP 10
FIL.title AS Titulo,
Count(REN.rental_key) AS Alugueres
FROM 307_dim_calendar AS CAL
INNER JOIN (306_dim_rental AS REN
INNER JOIN (323_fact_payment AS PAY
INNER JOIN 303_dim_film AS FIL
ON PAY.film_key = FIL.film_key)
ON REN.rental_key = PAY.rental_key)
ON CAL.calendar_key = PAY.payment_date_key
GROUP BY FIL.title, CAL.nMonth
HAVING (CAL.nMonth=4)
ORDER BY Count(REN.rental_key) DESC;

4.2 Relação semanal de filmes alugados

R2 Relação semanal filmes alugados

TRANSFORM Count(REN.rental_key) AS Contar
SELECT
CAL.nYearWeek AS Semana,
Count(REN.rental_key) AS Contar1
FROM 307_dim_calendar AS CAL
INNER JOIN (306_dim_rental AS REN
INNER JOIN 323_fact_payment AS PAY
ON REN.rental_key = PAY.rental_key)
ON CAL.calendar_key = PAY.payment_date_key
GROUP BY CAL.nYearWeek
PIVOT CAL.nWeekday;

4.3 Preferência de atores alugados por mês

R3 Relatório mensal atores e alugueres

TRANSFORM Count(REN.rental_id) AS ContarDerental SELECT

ACT.first_name & ' ' & ACT.last_name AS Actor,
 Count(REN.rental_id) AS QtyAlugueres

FROM (((303_dim_film AS FIL
INNER JOIN (301_dim_actor AS ACT
INNER JOIN 322_fact_film_actor AS FAC
 ON ACT.actor_key = FAC.actor_key)
 ON FIL.film key = FAC.film key)

```
INNER JOIN 323_fact_payment AS PAY
ON FIL.film_key = PAY.film_key)
INNER JOIN 306_dim_rental AS REN
ON PAY.rental_key = REN.rental_key)
INNER JOIN 307_dim_calendar AS CAL
ON REN.rental_date = CAL.calendar
GROUP BY
ACT.first_name & ' ' & ACT.last_name
PIVOT CAL.nMonth;
```

R3 Relatório mensal atores e alugueres (ForExcel)

```
SELECT
  ACT.first_name & ' ' & ACT.last_name AS Actor,
  Count(REN.rental_id) AS QtyAlugueres,
  CAL.nMonth
FROM (((303 dim film AS FIL
INNER JOIN (301 dim actor AS ACT
INNER JOIN 322 fact film actor AS FAC
  ON ACT.actor_key = FAC.actor_key)
  ON FIL.film key = FAC.film key)
INNER JOIN 323 fact payment AS PAY
  ON FIL.film key = PAY.film key)
INNER JOIN 306_dim_rental AS REN
  ON PAY.rental key = REN.rental key)
INNER JOIN 307 dim calendar AS CAL
  ON REN.rental date = CAL.calendar
GROUP BY
  ACT.first_name & ' ' & ACT.last_name,
  CAL.nMonth
ORDER BY
  Count(REN.rental id) DESC;
```

4.4 Evolução semanal de alugueres por categoria

R4 Evolução semanal de alugueres por categoria

```
TRANSFORM Count(CAT.category_key) AS Soma

SELECT CAT.category_name

FROM ((326_fact_film_category AS FCA

INNER JOIN ((303_dim_film AS FIL

INNER JOIN 323_fact_payment AS PAY ON FIL.film_key = PAY.film_key)

INNER JOIN 306_dim_rental AS REN ON PAY.rental_key = REN.rental_key) ON

FCA.film_key = FIL.film_key)

INNER JOIN 308_dim_category AS CAT ON FCA.category_key = CAT.category_key)

INNER JOIN 307_dim_calendar AS CAL ON REN.rental_date = CAL.calendar

GROUP BY CAT.category_name

PIVOT CAL.nYearWeek;
```

R4 Evolução semanal de alugueres por categoria (ForExcel)

```
SELECT
  CAT.category_name,
  Count(CAT.category_key) AS Soma,
  CAL.nYearWeek
FROM ((326_fact_film_category AS FCA
INNER JOIN ((303_dim_film AS FIL
INNER JOIN 323_fact_payment AS PAY
  ON FIL.film_key = PAY.film_key)
INNER JOIN 306 dim rental REN
  ON PAY.rental key = REN.rental key)
  ON FCA.film_key = FIL.film_key)
INNER JOIN 308_dim_category AS CAT
  ON FCA.category_key = CAT.category_key)
INNER JOIN 307_dim_calendar AS CAL
  ON REN.rental_date = CAL.calendar
GROUP BY
  CAT.category_name,
  CAL.nYearWeek;
```

4.5 Relação de funcionários e vencimentos

R5 Relação Funcionários e vencimentos

```
SELECT
```

STA.first_name & ' ' & STA.last_name AS Nome,
SAL.title AS Categoria,
SAL.salary AS Vencimento
FROM 304_dim_staff AS STA
INNER JOIN 325_fact_salaries AS SAL
ON STA.staff_key = SAL.staff_key;

4.6 Festa de natal crianças até 14 anos

R6 Festa natal crianças idade até 14 anos

```
TRANSFORM Count(REL.relative_key) AS numero

SELECT

REL.child_gender

FROM 324_fact_relatives AS REL

INNER JOIN 307_dim_calendar AS CAL

ON REL.child_birth_date_key = CAL.calendar_key

WHERE

(((Year((Date()-[calendar]))-1900)<=14))

GROUP BY

REL.child_gender

PIVOT Year((Date()-[calendar]))-1900;
```

4.7 Relação de aquisições semanais por funcionário

R7 Aquisições semanais por funcionário

```
TRANSFORM Count(AQU.aquisition_id) AS Aquisições
SELECT
CAL.nYearWeek AS Semana,
Count(AQU.aquisition_id) AS [Total Aquisições]
FROM ((320_fact_aquisition AS AQU
INNER JOIN 304_dim_staff AS STA
ON AQU.staff_key = STA.staff_key)
INNER JOIN 303_dim_film AS FIL
ON AQU.film_key = FIL.film_key)
INNER JOIN 307_dim_calendar AS CAL
ON AQU.aquisition_date_key = CAL.calendar_key
GROUP BY
CAL.nYearWeek
PIVOT STA.first_name & ' ' & STA.last_name;
```

R7 Aquisições semanais por funcionário (ForExcel)

```
SELECT
STA.first_name & ' ' & STA.last_name AS Funcionario,
Count(AQU.aquisition_id) AS Aquisições,
CAL.nYearWeek AS Semana
FROM ((320_fact_aquisition AS AQU
INNER JOIN 304_dim_staff AS STA
ON AQU.staff_key = STA.staff_key)
INNER JOIN 303_dim_film AS FIL
ON AQU.film_key = FIL.film_key)
INNER JOIN 307_dim_calendar AS CAL
ON AQU.aquisition_date_key = CAL.calendar_key
GROUP BY
STA.first_name & ' ' & STA.last_name,
CAL.nYearWeek;
```

4.8 Contactos mensais com fornecedores

R8 Contactos mensais com fornecedores

```
TRANSFORM
Count(COM.comm_key) AS ContarDecomm_key

SELECT
STA.first_name & ' ' & STA.last_name AS Nome,
SUP.supplier_name, Count(COM.comm_key) AS Total

FROM ((321_fact_communication AS COM
INNER JOIN 304_dim_staff AS STA
ON COM.staff_key = STA.staff_key)
INNER JOIN 305_dim_suppliers AS SUP
ON COM.supplier_key = SUP.supplier_key)
INNER JOIN 307_dim_calendar AS CAL
ON COM.comm_date_key = CAL.calendar_key
GROUP
BY STA.first_name & ' ' & STA.last_name,
```

```
SUP.supplier_name PIVOT CAL.nMonth;
```

R8 Contactos mensais com fornecedores (ForExcel)

```
SELECT
  STA.first_name & ' ' & STA.last_name AS Nome,
  COM.comm type,
  SUP.supplier_name,
  Count(COM.comm_key) AS ContarDecomm_key,
  CAL.nMonth
FROM ((321_fact_communication AS COM
INNER JOIN 304_dim_staff AS STA
  ON COM.staff_key = STA.staff_key)
INNER JOIN 305_dim_suppliers AS SUP
  ON COM.supplier_key = SUP.supplier_key)
INNER JOIN 307 dim calendar AS CAL
  ON COM.comm_date_key = CAL.calendar_key
GROUP BY
  STA.first_name & ' ' & STA.last_name,
  COM.comm type,
  SUP.supplier name,
  CAL.nMonth;
```