Examen Final: Carlos Rodríguez Martínez

Ejercicio 1

a)

La Latencia del circuito es el camino crítico, que en este caso es ACFJ, lo cual tarda 170 ps

A	В	С	D	E	F	G	н	I	J
X		X			X				X
30		50			60				30

Latencia total es: 30ps + 50ps + 60ps + 30ps = 170ps

b)

La máxima productividad es la inversa del tiempo de ciclo del camino crítico, en este caso, si suponemos que esta segmentado quiere decir que cada etapa puede realizarse a la vez, por lo que F con tiempo de ciclo de 60ps marca el camino crítico. Por lo tanto el resultado es:

$$Pmax = (tc)^{-1} = (60ps)^{-1} = 16.7G Ops/s$$

c)

Etapas	Bloques	Latencia Total
1 ^a	ABDE	60ps
2 ^a	CHG	50ps
3ª	FI	60ps
4 ^a	J	30ps

Como vemos, aprovechamos la máxima productividad pues la latencia máxima que obtenemos es de 60ps

d)

Etapas	Bloques	Latencia Total
1 ^a	ABCDE	80ps
2 ^a	FGHI	60ps
3 ^a	J	30ps

La máxima latencia es de 80ps, por lo que mantenemos la condición de que almenos una operación se hace cada 85ps.

e)

ordinales	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
R1			Χ			Χ				Χ			Х			
R2								Х		Χ	Χ	Χ	Χ			

Ejercicio 2

a)

_	cort	ocircu	itos				4			
fuente	destino									
a										
ģ										
Ç										
d										
e	1	2	3							
ť										
g	4	5	6							
þ	7	8	9							
į										
i										

b)

$$D = Multiplexor + máx(ALU, M2, BR) = 15ns + 55ns = 70ns$$

$$A = RegDes + máx(ALU, M1) = 40ns + 10ns = 50ns$$

$$M = RegDes + M2 = 10ns + 50ns = 60ns$$

Tc = **70ns**

c)

	cortocircuitos											
fue	nte		destino									
	a											
	þ											
	Ç											
	d											
	e											
	ţ											
	g		1	2	3							
	Ď											
	į		4	5	6							
	į		7	8	9							

d)

$$D = BR = 55ns$$

$$A = Multiplexor + máx(ALU, M1) + RegDes = 15ns + 40ns + 10ns = 65ns$$

$$M = RegDes + M2 = 10ns + 50ns = 60ns$$

e)

CICLOS	1	2	3	4	5	6	7	8
load R0 , 0(R1)	СР	В	D	Α	М	E		
add R2, R0 , R3		СР	В	D	D	Α	М	Е

f)

Depende de los cortocircuitos que tenemos y de las etapas que provienen. Al tener 3 cortocircuitos que además provienen de 3 etapas diferentes. Por lo tanto, necesitamos 3 * 3 = 9 comparadores.

3 comparadores por cada salida. Para comparar dicha salida con el registro que tenemos en las etapas de las que salen de los cortocircuitos.

Ejercicio 3

a)

1		ciclos	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
2	1\$:	load R1 , 0(R2)	CP	BUS	D/L	A	M	ES		0	9	10	11	12	13	14	13	10	1/	10	19	20	21
3	ıφ.	cmpeq R4 , R1 , R6			BUS		-																
		cmpeg R4, R1, R0		<u>CP</u>	BUS	D/Ļ	nop	nop	nop														
4							D/Ļ	D/L	nop	nop. M	ES												
5		1100 00 00			CD.	DUIG		υ/Ļ	A	ÎĂÎ	ES												
6		add R2, R2, #8			<u>CP</u>	BUS																	
7							BUS																
8								BUS	D/Ļ	Α	W	ES											<u> </u>
9																							
10		beg R4 , \$1				S.B.																	
11							<u>CP</u>																
12								SE	BUS	D/Ļ	nop	nop	nop										
13											D/L	Α	М	ES									
14									CP	BUS	BUS	D/L	nop	nop	nop								
15	1\$:										CP	BUS	D/L	nop	nop	nop							
16		load R1 , 8(R2)										CP	BUS	D/L	Α	М	ES						
17																							
18																							
19		ciclos perdidos																					
20		3ciclos, marcados	con ne	gro																			
21			Riesg	o de	datos				3														
22		ciclos perdidos	Riesg	o de	secue	nciam	iento	4	4														
23																							
24																							
25		CPI	11cio	clos /	4 inst	<u>r. = 2,</u>	75c/į																
26]																				
27																							
28																							

b)

1h = 3600s

Ebatería = Amperios * Segundos * Voltios = 1 A * 3600s * 5V = **18000J**

c)

Ecpu = P * tc = P / f = 30 W / 500Mhz = 60 nJ

d)

Niteraciones = (Ebatería/2) / (Ecpu * 10^6) = (18.000J/2) / (60nJ * 10^6) = **150.000** MIteracions

Ejercicio 4

a)

ciclo		4		5	6	ò
instrucción	m3	m4	m5	m6	m1	m2
store	5	6	9	X	0	2
load	5	6	9	11	0	2
INT	5	7	9	10	0	2
<u>B</u> r salta	4	6	9	10	X	3
Br No salta	4	7	8	10	1	2

b)

Etapa	max	min
СР	mx1 + S + mx2 + r1 = 400ps	mx2(memoria) = 150ps
ALU	máx(mx3,mx4) + ALU + mx5 + r4 = 450ps	mx4 + EV + r4 = 250ps
М	MD + mx6 + r5 = 500ps	mx6 + r5 = 150ps

Tiempo de ciclo tiene que ser por lo tanto **500ps**