Assignment 3

Task I: Business understanding: business goals

- problemdefinition:
 In case of changing a module we want to know the relations between modules
- reduce costs for development process:
 - → through minimal amount of module
 - → less complexity
 - → most efficient usage of the resources
- improve customer satisfaction through no bugs in his software

Task I: Business Understanding business goals

- who has the problem?
 - → the company who want to use the system
- definition in company term:
 - → detect the degree of component coupling to be able to ensure the most efficient usage of the resources
- succes: if we can prevent bugs during the change of modules
 - → more efficient development, reduced costs for development

Task I: Business Understanding data mining goals

 data mining goal : create a model which is able to show the coupling between modules

success criteria:

→ coupling estimated by the model equals coupling in real projects

→ when rules are based on TRUE-Values

Task II: Data Understanding

- The Data show an extract of the development of the X-Window system
- In the first column are given the change-id's
- For every change-id, there are the sets of the modules containing the changes
 - which were made, with 1 and 0 as possible values
- 10875 changes
- 14 different modules

Task III: Data Preparation

• It is necessary to transform the data for weka

We convert the data as hereinafter: 1 -> t 0 -> FALSE

 We also have to take off the change-id column, because the numerical entries here don't give us information about the component coupling

Task IV : Modeling

no split of the data set, using every information

using the apriori-algorithm to do association

 running the algorithm gives us as output these 19 rules as rules with the highest probability

Task V: Evaluation

- 1. Module_id_4=t Module_id_5=t Module_id_10=t 1114 ==> Module_id_7=t 1114 conf:(1)
- 2. Module_id_4=t Module_id_5=t 1156 ==> Module_id_7=t 1155 conf:(1)
- 3. Module_id_1=t Module_id_5=t 1670 ==> Module_id_10=t 1651 conf:(0.99)
- 4. Module_id_1=t Module_id_5=t Module_id_7=t 1434 ==> Module_id_10=t 1416 conf:(0.99)

- - 1

Task V: Evaluation

We've detected component coupling

(easy) Interpretation possible

makes sense according to our problem

Task VI: Plan deployment

- Usage in development process to receive information about the influence the change has on coupled modules (get knowledge about the relation)
- remove of coupling between modules could be difficult though
- could affect performance