November 15, 2005

Bulk composition variations (continued)

<u>Metamorphosed mudstones or shales – pelites</u>

 $SiO_2 - Al_2O_3 - K_2O - MgO - FeO$ system, abundant in tectonically active areas CaO and Na₂O are not as abundant as these five because they are carried away in solution during surface weathering.

In weathering, plagioclase is the first phase to dissolve from a pelite, through seracitic alteration

Calc-silicates

Less abundant, but more attractive are calcareous pelites ($CaCO_3 + SiO_2$) or muddy limestones. When metamorphosed, these become calcareous schists (in Europe, called "marl").

<u>Siliceous Dolomites</u> (siliceous carbonates)

Kaapval craton -3.1 Billion years ago platform carbonates - stromatolites grow there, might be older stuff but lost since pT.

Only one way to make subduction zones: make pluton-sized granites/rhyoliutes or hydroalter ocean floor basalts and remelt oceans for a long time We can't see back that far in the rock record

 $\label{eq:meta-basic rocks-metamorphosed mafic volcanics} \\ Ultramafic - serpentinites \\ Peridotite protoliths \\ MgO-SiO_2-H_2O \\$

Iron formations – sedimentary rocks, SiO₂-FeO-Fe₂O₃-H₂O BIFs

Metamorphic facies + isograds

1. Isograds

Barrow – mapped metamorphic rocks in Scotland, recognized zones of progressive metamorphism – based on pressure of index minerals

Boundaries between zones marked by the appearance of each index mineral

Pelite sequence: chlorite \rightarrow biotite \rightarrow garnet \rightarrow staurolite \rightarrow kyanite \rightarrow sillimanite See in field: Chlorite zone | Biotite zone, etc.

Boundaries marking the appearance or disappearance of minerals between zones were called isograds.

Isograd – "equal grade" – intersection of a surface of equal P&T with the ground topography

Appearance depends on P, T, fluids, and the bulk composition of a rock

Barrovian metamorphism – classic example of middle P-T conditions (usually in orogenic or tectonic setting)

2. Facies

Eskola (1910-20, later than Barrow) – recognized a distinct set of mineral assemblages that were characteristic of a set of P-T conditions – metamorphic facies

This got complicated because of the large number of named facies. Fortunately, people stopped naming new facies. In common use now:

Barrow's zones	Mafic rock facies	Calc-silicate rock facies
Biotite	Greenschist	Talc-phlogopite
Garnet	Epidote-amphibolite	Tremolite-actinolite-
Staurolite		epidote-zoisite
Staurolite-kyanite	Amphibolite	Diopside-grossular-
Sillimanite		scapolite
	Pyroxene granulite	Forsterite
K-feldspar		

Plate Tectonics + Metamorphism

Miyashiro – worked in Japan in 1950s, most famous Ryoke belt – discovered new types of metamorphic rocks

Metamorphic belts were recognized that recorded contrasting P-T conditions

Al₂SiO₅ triple point @ 3.5 kbars, 500°C 1 kbar \approx 3 km in mantle, 4 km in crust 10^5 Pa = 1 atm

Types

- I. Zeolite \rightarrow prehnite-pumpellyite \rightarrow blueschist \rightarrow eclogite
- II. Barrovian
- III. Low P, high T sequence andalusite → sillimanite → greenschist → amphibolite

In the 60s when plate tectonics were recognized, it became clear that these zones represented different parts of the subduction environment

I – characteristic of subducted oceanic lithosphere

III – characteristic of the active volcanic arc

Interpretation

3. how do isograds and mineral assemblages record changes in P and T?

system – CaO – Al $_2$ O $_3$ – SiO $_2$, 3 components, phase rule F = c + 2 – ϕ F = # degrees of freedom c = # components 2 = T and P ϕ = # phases so F = 5 – ϕ

if F=0 (no degrees of freedom, invariant point), 5 phases coexist at aluminosilicate triple point, 3 of those phases are the three isomers of Al_2SiO_5