5. Деревья

- Опр. Неориентированное дерево связный неограф без циклов.
- Опр. Произвольный неограф без циклов называется лесом.

Свойства деревьев:

G(X,U) - неориентированные дерево

$$|X| = n, |U| = m$$

- 1. m = n 1
- 2. Если $x_i, x_i \in X$, то их соединяет единственная простая цепь
 - существование цепи следует из связности
 - единственность из отсутствия циклов
- 3. Если $x_i, x_j \in X$ не смежны, то введение в дерево ребра $(x_i x_j)$ даёт граф, содержащий ровно один цикл
- 4. Всякое неориентированное дерево содержит по крайней мере 2 концевые вершины
- 5. **Теорема Кайли**. Число различных деревьев, которые можно построить на n вершинах равно 2^{n-2}

Опр. Орграф G(X,U) называют ориентированным деревом(ордеревом, корневым деревом), если выполняются следующие условия:

- существует ровно одна вершина (корень), не имеющая предшествующих ей: $p^+(x_1)=0$
- ullet для всех остальных вершин $p^+(x_i)=1, orall i
 eq 1$
- Опр. Висячие вершины дерева называются листьями.
- Опр. Путь из корня в лист называется ветвью.
- Опр. Длина наибольшей ветви называется высотой дерева.
- Опр. Расстояние (число рёбер) от корня до вершины называется уровнем этой вершины.
- Опр. Все вершины одного уровня называются ярусом.

Если из ордерева удалить корень, то оно распадётся на k деревьев $\{T_1, T_2, \ldots, T_k\}$. На этом множестве деревьев можно задать отношение порядка. Если рекурсивно из этих поддеревьев снова удалить корни задать порядок и продолжить этот процесс, пока все поддеревья не станут вершинами, то получим упорядоченное множество всех вершин дерева. Это позволяет использовать деревья для описания иерархий объектов.

Примеры:

- 1. Разбор математических выражений
- 2. Файловая система
- 3. Описание сложных программных систем

Опр. Если полустепень исхода каждой отличной от листа вершины равна 2 и все листья дерева располагаются в одном ярусе, то дерево называется полным бинарным деревом.

Используя индукцию по высоте, можно доказать, что число листьев полного бинарного дерева высоты h равно 2^h :

1.
$$h = 0, n = 2^0 = 1$$

2.
$$h = 1, n = 2^1 = 2$$

3.
$$h = k, n = 2^k$$

4. Чтобы получить дерево с высотой h=k+1, каждому листу дерева высоты h=k добавить 2 листа, тогда на k+1 уровне получится $2\cdot 2^k=2^{k+1}$ листьев

Теорема. Произвольное бинарное дерево с n листьями имеет высоту не меньше $\log_2 n$

 $\{a_1, a_3, \dots, a_n\}$ - последовательность из n элементов. Нужно ввести на ней отношение порядка - это задача сортировки.

В общем случае придётся рассмотреть n! перестановок. Все сравнения приведут к построению бинарного дерева (дерева решений).

Дерево решений имеет n! вершин, тогда сортировка даёт пути от корня к каждому листу. Число операций пропорционально высоте дерева - $\log_2(n!)$

Приближение для $n! pprox \sqrt{2\pi n} \left(rac{n}{e}
ight)^n$

Тогда получим минимально возможную сложность для алгоритма классической сортировки $O(n \log n)$

В общем случае ордерево - это связный, но не сильно связный орграф. Компонентами связности ордерева являются поддеревья на множестве вершин, образующие путь из корня в некоторый лист. - ???

Поиск в глубину

i - номер яруса

k - номер ребра

0)
$$i = 0, k = 0$$

- 1. Выбираем вершину, смежную текущей из яруса i=i+1 по непомеченному ребру, новую вершину объявляем текущей, пройденное ребро помечаем числом k=k+1
- 2. Повторяем пункт 1 для текущей вершины
- 3. Если текущая вершина является листом, то возвращаемся в смежную ей вершину ярусом выше i=i-1 и переходим к пункту 1
- 4. Если для текущей вершины нет ни одного инцидентного ей непомеченного ребра, возвращаемся в смежную ей вершину ярусом выше i=i-1
- 5. Алгоритм останавливается, когда помечены все рёбра и i=0

Пример:

Поиск в глубину - обход дерева по ярусам

- Оба алгоритма имеют одинаковую вычислительную сложность при обходе всех вершин
- Если требуется найти конкретную вершину/ребро, то:
 - Поиск в глубину применяется для "широких" деревьев
 - Поиск в ширину применяется для "узких" деревьев

Аналогичные подходы можно применять также для неориентированных деревьев