

It can happen to you: Sources and proximity of lack of reproducibility

Ross Hardison
Penn State University

There is a problem

- For example, a substantial majority of prominent results in preclinical cancer studies fail to be reproduced independently.
- Prinz et al. 2011. Nature Reviews Drug Discovery.
 Bayer HealthCare, Germany
- Begley and Ellis. 2012. Nature. Amgen, Thousand Oaks, CA

Only 20-25% of published results are consistent with independent tests in-house

Prinz et al. 2011. Nature Reviews Drug Discovery.

Similar poor experience at Amgen

- Begley and Ellis. 2012. Nature 483: 531-533.
- Over the past decade, scientists in the hematology and oncology department at Amgen tried to confirm published findings related to potential drug targets of interest.
- 53 papers described "landmark" studies
- Significant findings were confirmed in only 6 cases –
 11% of the studies.
- Contact original authors, discuss discrepant findings, exchange reagents, etc: Still low rate of reproducibility

Sources of lack of reproducibility

- A. Fabrication
- B. Inadequate measures for data quality
- C. Inadequate measures for reproducibility
- D. Biased reporting of results
- E. Inappropriate analysis
- F. Incomplete description of methods

A. Fabrication: Infamous examples

- William Summerlin (1974) Memorial Sloan-Kettering Research Institute
 - Transplant research: expected change in coat color; drew patches on mice with a black marker pen
- Eric Poehlman (1992-2002), University of Vermont
 - Fabricated data in 10 research papers on hormone replacement therapy and ageing
- Andrew Wakefield (1998): Lancet paper linking autism with MMR vaccine
 - "highly selective reporting of data"
- Hwang Woo-Suk (2004-2005): papers in Science on production of human embryonic stem cells by somatic cell nuclear transfer
 - Data fabrication
- Later today: Keith Baggerly video on inability to reproduce results for cancer treatment predictions from transcriptomes. Was Anil Potti guilty of fabrication, or was it all data mix-ups and poor analysis?
- Selected examples from presentation by Chris Willmott (University of Leicester)
- http://www.slideshare.net/cjrw2/infamous-cases-of-research-misconduct

Is it just someone else's problem?

- When I was training, I thought you'd have to be crazy to think you'd get away with fabrication
- Seriously using your marker pen to paint mice???

Is fabrication rare or common?

- I've reviewed cases of fabrication at this University, under the direction of the Office for Research Protections
 - If you suspect data fabrication or other research misconduct, contact Candice A. "Candy" Yekel, Associate Vice President for Research, Director, Office for Research Protections
- Two years ago, a Ph.D. thesis and degree were withdrawn because of plagiarism
- It does happen!

B. Inadequate measures for data quality

- Ideal situation: high quality measurements fall within a range of a quality metric score agreed upon by the community of experimentalists
- Unfortunately, this is not always achieved
- The issue is more challenging with large volumes of data from massively parallel assays, such as hybridizations to microarrays and second generation sequencing machines (e.g. Illumina)

Quality inference, KLF1 at HBB locus

- KLF1 is an important transcription factor, but notoriously hard to ChIP
- Earlier data was very noisy (eryR3R4)
- Tagged protein KLF1-eGFP has an obvious peak, but how robust is evidence for 2nd peak?

Quality inference, KLF1 at HBA locus

Some of these peak calls are surprising

Progress on quality metrics

- With respect to massively parallel, sequencing data, the ENCODE consortium has set some standards
- Landt et al. 2012. Genome Research 22: 1813-1831:
 ChIP-seq
 - E.g. fraction of reads in peaks (FRiP)
- RNA-seq, others: ENCODE data portal
- https://www.encodeproject.org
- Work on standards continues.

C. Inadequate measures for data reproducibility

- First of all: Always replicate the experiments!
 - Major issue stressed by Begley and Ellis
- When replicates are done, can still have errors arising from not knowing what is reproducible
- More later from Dr. Qunhua Li
- Back when we had 3 determinations in an assay for each condition, and tens of experiments, reproducibility or not was pretty obvious
- Data space now is enormous
- When you have hundreds of millions of observations (e.g. mapped sequencing reads), how do you assess reproducibility in an objective manner?

D. Biased reporting of results

Examples

- Reporting only some of the results the ones that support the major conclusion
- Showing only portions of a Western blot
- Not using fully validated reagents
- This issue is emphasized by Begley and Ellis and by Prinz et al.
- Remedies:
 - Analysts blind to experimental and control groups
 - Have a different investigator replicate the result
 - Journals publish negative results

E. Inappropriate analysis

Analysis is wrong

- Striking examples in video lecture from Keith Baggerly, UTHSC Houston (this afternoon)
- Reports of gene expression signatures that distinguish drug-sensitive from resistant cancers, Anil Potti and colleagues at Duke University
- Errors in gene ids and mix-ups of labels (resistant vs sensitive)
- Suspect that "the most simple mistakes are common"

Analysis is misleading

- Usually inadvertent
- Have plenty of high quality data in a well-designed experiment
- But are the results of your analyses robust and biologically meaningful?

General example: Choice of negative controls

- Genomes of most eukaryotes are large, complex, and highly heterogeneous
- The sequences are not random
- What do we mean by the "null expectation" when we calculate enrichment?
- This question does not have one common answer for all applications, e.g.
 - Random sequences of the same base composition as the targets of interest
 - Randomly chosen DNA segments in the vicinity of the targets of interest
 - Randomly chosen DNA segments with a similar distribution of distances from gene features (start site, exons, etc) as those in the targets of interest

E.g. Search for features that distinguish TF-bound from unbound DNA segments

- Match foreground
 (TF bound) and
 background (not
 bound) for
 potentially
 confounding
 features
- GC content
- Matches to primary motif

Ying Zhang et al. 2009. NAR

E. Inappropriate analysis: summary

- This may be one of the most pervasive problems in scientific research
- It is certainly a huge issue in Big Data
- In genomics, the negative dataset is not always obvious
 - Use more than one!
- Even with appropriate negative datasets, care is needed in applying the analysis
 - Vetting by independent analysts

F. Incomplete description of methods

- If you don't tell people what you did, how can they reproduce it?
- This is a common problem, but it is not acceptable
- Supplementary material rarely has a limit, you can explain it there
- Have another researcher read the methods and ask them Can you do this procedure following these methods?
- Use workflows that you make public, e.g. via Galaxy
- More later in the Boot Camp

Reproducibility studies are being funded and published

- Shan et al. 2017. eLife; 6:e25306
- "The Reproducibility Project: Cancer Biology (RP:CB) ... seeks to address concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology (Errington et al., 2014).
- For each of these papers a Registered Report detailing the proposed experimental designs and protocols for the replications was peer reviewed and published prior to data collection.
- The present paper is a Replication Study that reports the results of the replication experiments detailed in the Registered Report (Fung et al., 2015), for a paper by Dawson et al.
- Collaboration between the Center for Open Science and Science Exchange"

Replication study: Inhibition of BET recruitment ...

REPLICATION STUDY

Replication Study: Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia

Xiaochuan Shan¹, Juan Jose Fung², Alan Kosaka², Gwenn Danet-Desnoyers¹, Reproducibility Project: Cancer Biology*

¹University of Pennsylvania, Perelman School of Medicine, Stem Cell and Xenograft Core, Philadelphia, United States; ²ProNovus Bioscience, LLC, Mountain View, United States

 "We found treatment of MLL-fusion leukemia cells ... with the BET bromodomain inhibitor I-BET151 resulted in selective growth inhibition, ..., this is similar to the findings reported in the original study"

Another replication study

REPLICATION STUDY

Replication Study: The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate

Megan Reed Showalter^{1†}, Jason Hatakeyama^{2,3†}, Tomas Cajka^{1†}, Kacey VanderVorst^{2,3}, Kermit L Carraway III^{2,3}, Oliver Fiehn¹, Reproducibility Project: Cancer Biology*

¹West Coast Metabolomics Center, University of California, Davis, United States; ²Department of Biochemistry and Molecular Medicine, University of California, California, United States; ³University of California Davis Comprehensive Cancer Center, University of California, California, United States

"These results are similar to those reported in the original study"

Sources of lack of reproducibility

- A. Fabrication
- B. Inadequate measures for data quality
- C. Inadequate measures for reproducibility
- D. Biased reporting of results
- E. Inappropriate analysis
- F. Incomplete description of methods