

Preliminary Technical Information

PolarP™ **Power MOSFET**

IXTK32P60P IXTX32P60P

- 600V - 32A $350 m\Omega$

P-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum R	atings
V _{DSS}	$T_J = 25^{\circ}C$ to $150^{\circ}C$	- 600	V
V _{DGR}	$T_{\rm J}$ = 25°C to 150°C, $R_{\rm GS}$ = 1M Ω	- 600	V
V _{GSS}	Continuous	±20	V
V _{GSM}	Transient	±30	V
I _{D25}	T _c = 25°C	- 32	Α
I _{DM}	$T_{\rm C}$ = 25°C, pulse width limited by $T_{\rm JM}$	- 90	Α
I _{AR}	$T_{c} = 25^{\circ}C$	- 32	Α
E _{as}	$T_{c} = 25^{\circ}C$	3.5	J
dV/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$	10	V/ns
$\overline{P_{D}}$	T _C = 25°C	890	W
T		-55 +150	°C
T _{JM} T _{stg}		150 -55 +150	°C °C
	4 Occas (0 000 in) from a confort to		
T _L T _{SOLD}	1.6mm (0.062 in.) from case for 10s Plastic body for 10s	300 260	°C °C
M _d	Mounting force (PLUS247) Mounting torque (TO-264)	20120/4.527 1.13/10	N/lb. Nm/lb.in.
Weight	PLUS247 TO-264	6 10	g g

Symbol **Test Conditions Characteristic Values** (T_J = 25°C, unless otherwise specified) Max. Min. Typ. BV_{DSS} $V_{GS} = 0V, I_{D} = -250\mu A$ - 600 $V_{DS} = V_{GS}, I_{D} = -250 \mu A$ - 2.5 - 4.5 V_{GS(th)} $V_{GS} = \pm 20V, V_{DS} = 0V$ ±100 nA l_{GSS} $V_{DS} = V_{DSS}$ $V_{GS} = 0V$ - 50 μA I_{DSS} T₁ = 125°C - 250 μA

TO-264 (IXTK)

G = Gate D = DrainS = Source TAB = Drain

Features

- International standard packages
- Rugged PolarP[™] process
- Avalanche Rated
- Low package inductance

Applications

- High side switching
- Push-pull amplifiers
- DC Choppers

350 $m\Omega$

Automatic test equipment

 $V_{GS} = -10V, I_{D} = 0.5 \bullet I_{D25}, \text{ Note 1}$

 $\boldsymbol{R}_{DS\underline{(on)}}$

Symbol (T _J = 25°C	D, u	Test Conditions nless otherwise specified)	Cha Min.	racterist Typ.	ic Values Max.
g _{fs}		V _{DS} = -10V, I _D = 0.5 • I _{D25} , Note 1	21	32	S
C _{iss})			11.1	nF
C _{oss}	}	$V_{GS} = 0V, V_{DS} = -25V, f = 1MHz$		925	pF
C _{rss}	J			77	pF
t _{d(on)}	١	Resistive Switching Times		37	ns
t _r		$V_{GS} = -10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		27	ns
$\mathbf{t}_{d(off)}$		$R_{\rm G} = 10$ (External)		95	ns
t _f .	J			33	ns
Q _{g(on)})			196	nC
Q_{gs}	}	$V_{GS} = -10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		54	nC
\mathbf{Q}_{gd}	J			58	nC
R _{thJC}					0.14 °C/W
R _{thCS}				0.15	°C/W

Source-Drain Diode

Symbol $(T_J = 25^{\circ}C, t)$		haracteris n. Typ.	tic Valu Max	
I _s	$V_{GS} = 0V$		- 32	Α
I _{SM}	Repetitive, pulse width limited by $T_{_{JM}}$		-128	Α
V _{SD}	$I_F = -16A$, $V_{GS} = 0V$, Note 1		- 2.8	V
$\left\{egin{array}{c} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array}\right\}$	$I_F = -16A$, $-di/dt = -150A/\mu s$ $V_R = -100V$, $V_{GS} = 0V$	480 11.4 - 47.6		nS μC A

Note 1: Pulse test, $t \le 300\mu s$; duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

Terminals: 1 - Gate

- 2 Drain (Collector)
- 3 Source (Emitter)
- 4 Drain (Collector)

Dim.	Millimeter Ir		Inc	ches	
	Min.	Max.	Min.	Max.	
Α	4.83	5.21	.190	.205	
A,	2.29	2.54	.090	.100	
A ₂	1.91	2.16	.075	.085	
b	1.14	1.40	.045	.055	
b,	1.91	2.13	.075	.084	
b ₂	2.92	3.12	.115	.123	
С	0.61	0.80	.024	.031	
D	20.80	21.34	.819	.840	
E	15.75	16.13	.620	.635	
е	5.45 BSC		.215	BSC	
L	19.81	20.32	.780	.800	
L1	3.81	4.32	.150	.170	
Q	5.59	6.20	.220	0.244	
R	4.32	4.83	.170	.190	

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 1. Output Characteristics @ 25°C

Fig. 2. Extended Output Characteristics @ 25°C

Fig. 3. Output Characteristics @ 125°C

Fig. 4. $R_{DS(on)}$ Normalized to $I_D = -16A$ vs. Junction Temperature

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = -16A$ vs.

Drain Current

Fig. 6. Maximum Drain Current vs.

Case Temperature

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Maximum Transient Thermal Impedance