Лабораторная работа №2

Шеховцова Е. Г.

Задача №1

На звероферме могут выращиваться черно-бурые лисицы и песцы. Для обеспечения нормальных условий их выращивания используется три вида кормов. Количество кормов каждого вида, которое должны получать животные, приведено в таблице. В ней также указаны общее количество корма каждого вида, которое может быть использовано зверофермой ежедневно, и прибыль от реализации одной шкурки лисицы и песца. Определить, сколько лисиц и песцов можно вырастить при имеющихся запасах корма.

Таблица					
Вид корма	Количество единиц корма, которое ежедневно должны получать		Запас корма		
	лисица	песец			
A	2	2	180		
Б	4	1	240		
В	6	7	426		
Прибыль от реализации одной шкурки, руб.	1600	1200			

X1 – количество лисиц x2 – количество песцов

Построим математическую модель:

$$\begin{cases} 2x1 + 2x2 \le 180 \\ 4x1 + x2 \le 240 \\ 6x1 + 7x2 \le 426 \end{cases}$$

$$x1 \ge 0, x2 \ge 0$$

$$F = 1600x1 + 1200x2 \rightarrow max$$

Построим на графике следующие прямые

$$2x1 + 2x2 = 180$$

$$4x1 + x2 = 240$$

$$6x1 + 7x2 = 426$$

$$x1 = 0$$

Обозначим область допустимых значений

Построим график целевой функции и перенесем его параллельно до точки пересечения остальных графиков на границе допустимых значений

(0;0)

F=1600*0+1200*0=0

(60;0)

F=1600*60+1200*0=96000

(57;12)

F=1600*57+1200*12=105600

Максимум функции достигается в точке (57;12)

Ответ: 57 лисиц, 12 песцов

Задача №2

При подкормке посевов необходимо внести на 0,01 га почвы не менее 8 единиц азота, не менее 24 единиц фосфора и не менее 16 единиц калия. Фермер закупает комбинированные удобрения двух видов "Азофоска" и "Комплекс". В таблице указаны содержание количества единиц химического вещества в 1 кг каждого вида удобрений и цена 1 кг удобрений. Определить графически потребность фермера в удобрениях того и другого вида на 0,01 га посевной площади при минимальных затратах на потребление.

Химические вещества	Содержание химических веществ в 1 кг удобрения		
	Азофоска	Комплекс	

Азот	1	2
Фосфор	12	3
Калий	4	4
Цена 1 кг удобрения, руб.	50	20

Х1 – количество Азофокса, х2 – количество Комплекса

Математическая модель

$$\begin{cases} x1 + 2x2 \ge 8\\ 12x1 + 3x2 \ge 24\\ 4x1 + 4x2 \ge 16 \end{cases}$$

$$x1 \ge 0, x2 \ge 0$$

$$F = 50x1 + 20x2 \rightarrow min$$

Построим на графике следующие прямые

$$x1 + 2x2 = 8$$

$$12x1 + 3x2 = 24$$

$$4x1 + 4x2 = 16$$

$$x1 = 0$$

$$x2 = 0$$

Найдем значение целевой функции в точках пересечения прямых

$$x2 = 8 - 2x1$$

$$x2 = 4 - x1$$

$$8 - 2x1 = 4 - x1$$

$$x1 = 4$$

$$x^2 = 0$$

F=50*4+20*0=200

$$x1 = 4 - x2$$

$$x1 = (24 - 3x2)/12$$

$$4 - x2 = (24 - 3x1)/12$$

$$x1 = \frac{8}{3}$$

$$x2 = \frac{4}{3}$$

$$F = 50 * \frac{8}{3} + 20 * \frac{4}{3} \approx 160$$

$$x1 = 8 - 2x2$$

$$x1 = (24 - 3x2)/12$$

$$8 - 2x^2 = (24 - 3x^2)/12$$

$$x2 = \frac{24}{7}$$

$$x1 = \frac{8}{7}$$

$$F = 50 * \frac{8}{7} + 20 * \frac{24}{7} \approx 125.7$$

Целевая функция достигает наименьшего значения в точке $(1\frac{1}{7}; 3\frac{3}{7})$

Необходимо $1\frac{1}{7}$ кг Азофокса и $3\frac{3}{7}$ кг Комплекса

Задача №3

Полной даме необходимо похудеть, а за помощью она обратилась к подруге. Подруга посоветовала перейти на рациональное питание, состоящее из двух продуктов P и Q.

Суточное питание этими продуктами должно давать менее 14 единиц жира (чтобы похудеть), но не менее 300 килокалорий. На упаковке продукта P написано, что в одном килограмме этого продукта содержится 15 единиц жира и 150 килокалорий, а на упаковке с продуктом Q — 4 единицы жира и 200 килокалорий соответственно. При этом цена продукта P равна 250 руб./кг, а цена продукта Q равна 210 руб./кг.

Так как дама была стеснена в средствах, то ее интересовал вопрос: в какой пропорции нужно брать эти продукты для того, чтобы выдержать условия диеты и истратить как можно меньше денег?

Продукт	Жир	Килокалории	Цена
Р	15	150	250
Q	4	200	210
	14	300	

X1 – продукт Р, x2 – продукт Q

Математическая модель

$$\begin{cases} 15x1 + 4x2 \le 14 \\ 150x1 + 200x2 \ge 300 \end{cases}$$

$$x1 \ge 0, x2 \ge 0$$

$$F = 250x1 + 210x2 \rightarrow min$$

Построим следующие прямые на графике

$$15x1 + 4x2 = 14$$

$$150x1 + 200x2 = 300$$

$$x1 = 0$$

$$x2 = 0$$

Найдем значение целевой функции в точках пересечения прямых

$$x2 = (14 - 15x1)/4$$

$$x2 = (300 - 150x1)/200$$

$$x2 = 0.667$$

$$x1 = 1$$

$$F = 250 * 0.667 + 210 * 1 = 376$$

$$x1 = 0$$

$$x2 = (14 - 15x1)/4$$

$$x2 = 3.5$$

$$F = 250 * 0 + 210 * 3.5 = 735$$

$$x1 = 0$$

$$x2 = (300 - 150x1)/200$$

$$x2 = 1.5$$

$$F = 250 * 0 + 210 * 1.5 = 315$$

Целевая функция достигает минимума в точке (0;1.5)

Необходимо 1,5 кг продукта Q