Notebook 100^o UNIFESO

7 de novembro de 2017

Sumário

1	Intro	odução
	1.1	Template
	1.2	Fast Input
	1.3	Bugs do Milênio
	1.4	Recomendações gerais
	1.5	Os 1010 mandamentos
	1.6	Limites da representação de dados
	1.7	Quantidade de números primos de 1 até 10^n
	1.8	Triângulo de Pascal
	1.9	Fatoriais
		Tabela ASCII
		Primos até 10.000
	1.11	
2	\mathbf{Estr}	uturas de dados
	2.1	Prefix Sum 1D
	2.2	Prefix Sum 2D
		BIT - Fenwick Tree
		BIT - Fenwick Tree - Range updates
		BIT - Fenwick Tree 2D
		BIT - Fenwick Tree 2D - Range Update
	$\frac{2.5}{2.7}$	BIT - Fenwick Tree 2D - Comprimida
	2.8	Segment Tree 1D - Lazy Propagation
	$\frac{2.0}{2.9}$	Segment Tree 2D
		Segment Tree 2D Dinâmica
		Kd-Tree
		Treap / Cartesian Tree
		Treap / Cartesian Tree Implícita
		Sparse table
		Persistent Segment Tree
	2.16	Wavelet Tree
3	Dare	$oxed{\operatorname{adigmas}}$
J	3.1	Convex hull trick 1
	$\frac{3.1}{3.2}$	Convex hull trick 2
	3.2	
		± ±
		Knuth optimization
	3.6	Otimização com bitmask
4	Grai	$f_{ m OS}$
-1	4.1	Ford Fulkerson
	$4.1 \\ 4.2$	Edmonds Karp
	$\frac{4.2}{4.3}$	1
	4.4	Min cost max flow
	4.5	Stoer-Wagner
	4.6	Tarjan

SUM'ARIO 2

	4.8 LCA (Sparce Table)	$\frac{25}{25}$
	4.10 Hopcroft Karp	25
	4.11 Blossom	 26
	4.12 Centroid decomposition	 27
	4.13 Heavy-Light Decomposition	27
	4.14 Dijkstra	28
	4.15 Ahu - Tree isomorfismo	 28
5	Matemática	30
-	5.1 Eliminação de Gauss com o XOR	 30
	5.2 Fórmula de Legendre	30
	5.3 Número de fatores primos de N!	30
	5.4 Trailing zeros in factorial	 31
	5.5 Número de divisores de N!	 31
	5.6 Grundy Number	32
	5.7 Baby-Step Giant-Step para Logaritmo Discreto	32
	5.8 Baby-Step Giant-Step FAST	32
	5.9 Números de Catalan	33
	5.10 Fórmulas úteis	33
	5.11 Fast Fourier Transform - FFT	
	5.12 Convolução Circular	 34
6	Processamento de Strings	35
	6.1 Aho-Corasick	 35
	6.2 Rabin-Karp	 35
	6.3 Repetend: menor período de uma string	 36
	6.4 Suffix Array	36
	6.5 Z Function	
	6.6 KMP	 37
7	Geometria Computacional	38
•	7.1 Template - Júnior	 38
	7.2 Menor círculo	39
	7.3 Kit de encolhimento - SBC 2016	
	7.4 Intersecção círculo e segmento	
	7.5 Intersecção e distância entre segmentos	 42
	7.6 Closest pair problem	 43
	7.7 Área de união de retângulo	 43
	7.8 Distância entre segmento e ponto	 44
8	Miscelânea	45
J	8.1 Datas	45
	8.2 Hash C++11	45
	0.2 22002 0 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1	 10
	8.3 Mo's	 45
	8.3 Mo's	$\frac{45}{46}$

Capítulo 1

Introdução

1.1 Template

Digitar o template no inicio da prova. NÃO esquecer de remover o freopen()

```
#include <bits/stdc++.h>
using namespace std;
#define all(v) (v).begin(), (v).end()
#define pb push_back
#define fst first
#define snd second
#define debug(x) cout << #x << "_=_" << x << endl;
typedef pair <int , int > ii;
int main() {
    freopen("in", "rt", stdin);
    return 0;
}
typedef long long ll;
```

1.2 Fast Input

Em casos extremos mete isso sem medo.

1.3 Bugs do Milênio

Cortesia da ITA.

Erros teóricos:

- Não ler o enunciado do problema com calma.
- Assumir algum fato sobre a solução na pressa.
- Não reler os limites do problema antes de submeter.
- Quando adaptar um algoritmo, atentar para todos os detalhes da estrutura do algoritmo, se devem (ou não) ser modificados (ex:marcação de vértices/estados).
- O problema pode ser NP, disfarçado ou mesmo sem limites especificados. Nesse caso a solução é bronca mesmo. Não é hora de tentar ganhar o prêmio nobel.

Erros com valor máximo de variável:

- Verificar com calma (fazer as contas direito) para ver se o infinito é tão infinito quanto parece.
- Verificar se operações com infinito estouram 31 bits.
- Usar multiplicação de *int*'s e estourar 32 bits (por exemplo, checar sinais usando a * b > 0).

Erros de casos extremos:

- Testou caso n=0? n=1? n=MAXN? Muitas vezes tem que tratar separado.
- Pense em todos os casos que podem ser considerados casos extremos ou casos isolados.

- Casos extremos podem atrapalhar não só no algoritmo, mas em coisas como construir alguma estrutura (ex: lista de adj em grafos).
- Não esquecer de self-loops ou multiarestas em grafos.
- Em problemas de caminho Euleriano, verificar se o grafo é conexo.

Erros de desatenção em implementação:

- Errar ctrl-C/ctrl-V em código. Muito comum.
- Colocar igualdade dentro de if? (if(a = 0)continue;)
- Esquecer de inicializar variável.
- Trocar break por continue (ou vice-versa).
- Declarar variável global e variável local com mesmo nome (é pedir pra dar merda...).

Erros de implementação:

- Definir variável com tipo errado (int por double, int por char).
- Não usar variável com nome max e min.
- Não esquecer que .size() é unsigned.
- Lembrar que 1 é int, ou seja, se fizer $long \ long \ a = 1 << 40$;, não irá funcionar (o ideal é fazer $long \ long \ a = 1LL << 40$;).

Erros em limites:

- Qual o ordem do tempo e memória? 10⁸ é uma referência para tempo. Sempre verificar rapidamente a memória, apesar de que o limite costuma ser bem grande.
- A constante pode ser muito diminuída com um algoritmo melhor (ex: húngaro no lugar de fluxo) ou com operações mais rápidas (ex: divisões são lentas, bitwise é rápido)?

1.4 Recomendações gerais

Cortesia da PUC-RJ.

ANTES DA PROVA

- Revisar os algoritmos disponíveis na biblioteca.
- Revisar a referência STL.
- Reler este roteiro.
- Ouvir o discurso motivacional do técnico.

ANTES DE IMPLEMENTAR UM PROBLEMA

- Quem for implementar deve relê-lo antes.
- Peça todas as clarifications que forem necessárias.
- Marque as restrições e faça contas com os limites da entrada.
- Teste o algoritmo no papel e convença outra pessoa de que ele funciona.
- Planeje a resolução para os problemas grandes: a equipe se junta para definir as estruturas de dados, mas cada pessoa escreve uma função.

• O exercício é um caso particular que pode (e está precisando) ser otimizado e não usar direto a biblioteca?

Erros em doubles:

- Primeiro, evitar (a não ser que seja necessário ou mais simples a solução) usar float/double. E.g. conta que só precisa de 2 casas decimais pode ser feita com inteiro e depois %100.
- Sempre usar *double*, não *float* (a não ser que o enunciado peça explicitamente).
- Testar igualdade com tolerância (absoluta, e talvez relativa).
- Cuidado com erros de imprecisão, em particular evitar ao máximo subtrair dois números praticamente iguais.

Outros erros:

- Evitar (a não ser que seja necessário) alocação dinâmica de memória.
- Não usar STL desnecessariamente (ex: vector quando um array normal dá na mesma), mas usar se facilitar (ex: nomes associados a vértices de um grafo map < string, int >) ou se precisar (ex: um algoritmo O(nlogn) que usa < set > é necessário para passar no tempo).
- Não inicializar variável a cada teste (zerou vetores? zerou variável que soma algo? zerou com zero? era pra zerar com zero, com -1 ou com INF?).
- Saída está formatada corretamente?
- Declarou vetor com tamanho suficiente?
- Cuidado ao tirar o módulo de número negativo. Ex.: x%n não dá o resultado esperado se x é negativo, fazer (x%n+n)%n.

DEBUGAR UM PROGRAMA

- Ao encontrar um bug, escreva um caso de teste que o dispare.
- Reimplementar trechos de programas entendidos errados.
- \bullet Em caso de RE, procure todos os [, / e %.

1.5 Os 1010 mandamentos

Também cortesia da PUC-RJ.

- 0. Não dividirás por zero.
- 1. Não alocarás dinamicamente.
- 2. Compararás números de ponto flutuante usando EPS.
- 3. Verificarás se o grafo pode ser desconexo.
- 4. Verificarás se as arestas do grafo podem ter peso negativo.
- 5. Verificarás se pode haver mais de uma aresta ligando dois vértices.
- 6. Conferirás todos os índices de uma programação dinâmica.
- 7. Reduzirás o branching factor da DFS.
- 8. Farás todos os cortes possíveis em uma DFS.
- 9. Tomarás cuidado com pontos coincidentes e com pontos colineares.

1.6 Limites da representação de dados

tipo	bits	mínimo	 máximo	precisão decimal
char	8	0	 127	2
signed char	8	-128	 127	2
unsigned char	8	0	 255	2
short	16	-32.768	 32.767	4
unsigned short	16	0	 65.535	4
int	32	-2×10^{9}	 2×10^{9}	9
unsigned int	32	0	 4×10^9	9
long long	64	-9×10^{18}	 9×10^{18}	18
unsigned long long	64	0	 18×10^{18}	19

tipo	bits	expoente	precisão decimal
float	32	38	6
double	64	308	15
long double	80	19.728	18

1.7 Quantidade de números primos de 1 até 10^n

É sempre verdade que n/ln(n) < pi(n) < 1.26 * n/ln(n).

$pi(10^1) = 4$	$pi(10^2) = 25$	$pi(10^3) = 168$
$pi(10^4) = 1.229$	$pi(10^5) = 9.592$	$pi(10^6) = 78.498$
$pi(10^7) = 664.579$	$pi(10^8) = 5.761.455$	$pi(10^9) = 50.847.534$

1.8 Triângulo de Pascal

n p	0	1	2	3	4	5	6	7	8	9	10
0	1										
1	1	1									
2	1	2	1								
3	1	3	3	1							
4	1	4	6	4	1						
5	1	5	10	10	5	1					
6	1	6	15	20	15	6	1				
7	1	7	21	35	35	21	7	1			
8	1	8	28	56	70	56	28	8	1		
9	1	9	36	84	126	126	84	36	9	1	
10	1	10	45	120	210	252	210	120	45	10	1

C(33, 16)	1.166.803.110	limite do int
C(34,17)	2.333.606.220	limite do unsigned int
C(66, 33)	7.219.428.434.016.265.740	limite do long long
C(67, 33)	14.226.520.737.620.288.370	limite do unsigned long long

1.9 Fatoriais

Fatoriais até $20~{\rm com}$ os limites de tipo.

0!	1	
1!	1	
2!	2	
3!	6	
4!	24	
5!	120	
6!	720	
7!	5.040	
8!	40.320	
9!	362.880	
10!	3.628.800	
11!	39.916.800	
12!	479.001.600	limite do unsigned int
13!	6.227.020.800	
14!	87.178.291.200	
15!	1.307.674.368.000	
16!	20.922.789.888.000	
17!	355.687.428.096.000	
18!	6.402.373.705.728.000	
19!	121.645.100.408.832.000	
20!	2.432.902.008.176.640.000	limite do unsigned long long

1.10 Tabela ASCII

Char	Dec	Oct	Hex	1	Char	Dec	Oct	Hex	1	Char	Dec	Oct	Hex	1	Char	Dec	Oct	Hex
(nul)	0	0000	0x00	I	(sp)	32	0040	0x20	I	@	64	0100	0x40	I	`	96	0140	0x60
(soh)		0001		i	!		0041		i	A		0101		i	a		0141	
(stx)	2	0002	0x02	i	"	34	0042	0x22	i	В	66	0102	0x42	i	b	98	0142	0x62
(etx)	3	0003	0x03	i	#	35	0043	0x23	i	С	67	0103	0x43	i	С	99	0143	0x63
(eot)		0004	0x04	i	\$	36	0044	0x24	i	D	68	0104	0x44	i	d	100	0144	0x64
(eng)	5	0005	0x05	Ĺ	용	37	0045	0x25	İ	E	69	0105	0x45	İ	е	101	0145	0x65
(ack)	6	0006	0x06	Ī	&	38	0046	0x26	1	F	70	0106	0x46	1	f	102	0146	0x66
(bel)	7	0007	0x07	1	1	39	0047	0x27	1	G	71	0107	0x47	1	g	103	0147	0x67
(bs)	8	0010	0x08	1	(40	0050	0x28	1	H	72	0110	0x48	1	h	104	0150	0x68
(ht)	9	0011	0x09	1)	41	0051	0x29	1	I	73	0111	0x49	1	i	105	0151	0x69
(nl)	10	0012	0x0a	1	*	42	0052	0x2a	1	J	74	0112	0x4a	-	j	106	0152	0x6a
(vt)	11	0013	0x0b	1	+	43	0053	0x2b		K	75	0113	0x4b		k	107	0153	0x6b
(np)	12	0014	0x0c	1	,	44	0054	0x2c	-	L	76	0114	0x4c	-	1	108	0154	0x6c
(cr)	13	0015	0x0d	1	-	45	0055	0x2d	-	M	77	0115	0x4d		m	109	0155	0x6d
(so)	14	0016	0x0e	1		46	0056	0x2e	-	N	78	0116	0x4e		n	110	0156	0x6e
(si)	15	0017	0x0f	1	/		0057		1	0	79	0117	0x4f	1	0	111	0157	0x6f
(dle)	16	0020	0x10	1	0	48	0060	0x30		P	80	0120	0x50		p	112	0160	0x70
(dc1)	17	0021	0x11	1	1	49	0061	0x31		Q	81	0121	0x51		q	113	0161	0x71
(dc2)	18	0022	0x12	1	2	50	0062	0x32	-	R	82	0122	0x52	-	r	114	0162	0x72
(dc3)	19	0023	0x13	1	3	51	0063	0x33	-	S	83	0123	0x53	-	s	115	0163	0x73
(dc4)	20	0024	0x14	1	4	52	0064	0x34	-	T	84	0124	0x54	-	t	116	0164	0x74
(nak)		0025	0x15	1	5	53	0065	0x35	-	U		0125		-	u	117	0165	0x75
(syn)		0026	0x16	1	6		0066			V	86	0126			v		0166	
(etb)	23	0027	0x17	1	7	55	0067	0x37		W	87			-	w	119	0167	0x77
(can)		0030	0x18	1	8		0070		-	X		0130		-	x		0170	
(em)		0031	0x19	1	9	57	0071			Y		0131			У		0171	
(sub)		0032	0x1a	1	:	58	0072	0x3a		Z		0132			z		0172	
(esc)			0x1b	1	;		0073	0x3b	-	[0133			{		0173	
(fs)		0034		1	<		0074		-	/		0134		-	1		0174	
(gs)		0035	0x1d		=		0075	0x3d	-]		0135		-	}		0175	
(rs)		0036		-	>		0076			^		0136			~		0176	
(us)	31	0037	0x1f	1	?	63	0077	0x3f		_	95	0137	0x5f		(del)	127	0177	0x7f

1.11 Primos até 10.000

Existem 1.229 números primos até 10.000.

2	3	5	7	11	13	17	19	23	29	31
37	41	43	47	53	59	61	67	71	73	79
83	89	97	101	103	107	109	113	127	131	137
139	149	151	157	163	167	173	179	181	191	193
197	199	211	223	227	229	233	239	241	251	257
263	269	271	277	281	283	293	307	311	313	317
331	337	347	349	353	359	367	373	379	383	389
397	401	409	419	421	431	433	439	443	449	457
461	463	467	479	487	491	499	503	509	521	523
541	547	557	563	569	571	577	587	593	599	601
607	613	617	619	631	641	643	647	653	659	661
673	677	683	691	701	709	719	727	733	739	743
751	757	761	769	773	787	797	809	811	821	823
827	829	839	853	857	859	863	877	881	883	887
907	911	919	929	937	941	947	953	967	971	977
983	991	997	1009	1013	1019	1021	1031	1033	1039	1049
1051	1061	1063	1069	1087	1091	1093	1097	1103	1109	1117
1123	1129	1151	1153	1163	1171	1181	1187	1193	1201	1213
1217	1223	1229	1231	1237	1249	1259	1277	1279	1283	1289
1291	1297	1301	1303	1307	1319	1321	1327	1361	1367	1373
1381	1399	1409	1423	1427	1429	1433	1439	1447	1451	1453
1459	1471	1481	1483	1487	1489	1493	1499	1511	1523	1531
1543	1549	1553	1559	1567	1571	1579	1583	1597	1601	1607
1609	1613	1619	1621	1627	1637	1657	1663	1667	1669	1693
1697	1699	1709	1721	1723	1733	1741	1747	1753	1759	1777
1783	1787	1789	1801	1811	1823	1831	1847	1861	1867	1871
1873	1877	1879	1889	1901	1907	1913	1931	1933	1949	1951
1973	1979	1987	1993	1997	1999	2003	2011	2017	2027	2029
2039	2053	2063	2069	2081	2083	2087	2089	2099	2111	2113
2129	2131	2137	2141	2143	2153	2161	2179	2203	2207	2213
2221	2237	2239	2243	2251	2267	2269	2273	2281	2287	2293
2297	2309	2311	2333	2339	2341	2347	2351	2357	2371	2377
2381	2383	2389	2393	2399	2411	2417	2423	2437	2441	2447
2459	2467	2473	2477	2503	2521	2531	2539	2543	2549	2551
2557	2579	2591	2593	2609	2617	2621	2633	2647	2657	2659
2663	2671	2677	2683	2687	2689	2693	2699	2707	2711	2713
2719	2729	2731	2741	2749	2753	2767	2777	2789	2791	2797
2801	2803	2819	2833	2837	2843	2851	2857	2861	2879	2887
2897	2903	2909	2917	2927	2939	2953	2957	2963	2969	2971
2999	3001	3011	3019	3023	3037	3041	3049	3061	3067	3079
3083	3089	3109	3119	3121	3137	3163	3167	3169	3181	3187
3191	3203	3209	3217	3221	3229	3251	3253	3257	3259	3271
3299	3301	3307	3313	3319	3323	3329	3331	3343	3347	3359
3361	3371	3373	3389	3391	3407	3413	3433	3449	3457	3461
3463	3467	3469	3491	3499	3511	3517	3527	3529	3533	3539
3541	3547	3557	3559	3571	3581	3583	3593	3607	3613	3617
3623	3631	3637	3643	3659	3671	3673	3677	3691	3697	3701
3709	3719	3727	3733	3739	3761	3767	3769	3779	3793	3797
3803	3821	3823	3833	3847	3851	3853	3863	3877	3881	3889
3907	3911	3917	3919	3923	3929	3931	3943	3947	3967	3989
4001	4003	4007	4013	4019	4021	4027	4049	4051	4057	4073
4079	4091	4093	4099	4111	4127	4129	4133	4139	4153	4157

4150	1177	4901	4011	4917	4910	4990	4001	49.41	49.49	4959
4159	4177	4201	4211	4217	4219	4229	4231	4241	4243	4253
4259	4261	4271	4273	4283	4289	4297	4327	4337	4339	4349
4357	4363	4373	4391	4397	4409	4421	4423	4441	4447	4451
4457	4463	4481	4483	4493	4507	4513	4517	4519	4523	4547
4549	4561	4567	4583	4591	4597	4603	4621	4637	4639	4643
4649	4651	4657	4663	4673	4679	4691	4703	4721	4723	4729
4733	4751	4759	4783	4787	4789	4793	4799	4801	4813	4817
4831	4861	4871	4877	4889	4903	4909	4919	4931	4933	4937
4943	4951	4957	4967	4969	4973	4987	4993	4999	5003	5009
5011	5021	5023	5039	5051	5059	5077	5081	5087	5099	5101
5107	5113	5119	5147	5153	5167	5171	5179	5189	5197	5209
5227	5231	5233	5237	5261	5273	5279	5281	5297	5303	5309
5323	5333	5347	5351	5381	5387	5393	5399	5407	5413	5417
5419	5431	5437	5441	5443	5449	5471	5477	5479	5483	5501
5503	5507	5519	5521	5527	5531	5557	5563	5569	5573	5581
5591	5623	5639	5641	5647	5651	5653	5657	5659	5669	5683
5689	5693	5701	5711	5717	5737	5741	5743	5749	5779	5783
5791	5801	5807	5813	5821	5827	5839	5843	5849	5851	5857
5861	5867	5869	5879	5881	5897	5903	5923	5927	5939	5953
5981	5987	6007	6011	6029	6037	6043	6047	6053	6067	6073
6079	6089	6091	6101	6113	6121	6131	6133	6143	6151	6163
6173	6197	6199	6203	6211	6217	6221	6229	6247	6257	6263
6269	6271	6277	6287	6299	6301	6311	6317	6323	6329	6337
6343	6353	6359	6361	6367	6373	6379	6389	6397	6421	6427
6449	6451	6469	6473	6481	6491	6521	6529	6547	6551	6553
6563	6569	6571	6577	6581	6599	6607	6619	6637	6653	6659
6661	6673	6679	6689	6691	6701	6703	6709	6719	6733	6737
6761	6763	6779	6781	6791	6793	6803	6823	6827	6829	6833
6841	6857	6863	6869	6871	6883	6899	6907	6911	6917	6947
6949	6959	6961	6967	6971	6977	6983	6991	6997	7001	7013
7019	7027	7039	7043	7057	7069	7079	7103	7109	7121	7127
7129	7151	7159	7177	7187	7193	7207	7211	7213	7219	7229
7237	7243	7247	7253	7283	7297	7307	7309	7321	7331	7333
7349	7351	7369	7393	7411	7417	7433	7451	7457	7459	7477
7481	7487	7489	7499	7507	7517	7523	7529	7537	7541	7547
7549	7559	7561	7573	7577	7583	7589	7591	7603	7607	7621
7639	7643	7649	7669	7673	7681	7687	7691	7699	7703	7717
7723	7727	7741	7753	7757	7759	7789	7793	7817	7823	7829
7841	7853	7867	7873	7877	7879	7883	7901	7907	7919	7927
7933	7937	7949	7951	7963	7993	8009	8011	8017	8039	8053
8059	8069	8081	8087	8089	8093	8101	8111	8117	8123	8147
8161	8167	8171	8179	8191	8209	8219	8221	8231	8233	8237
8243	8263	8269	8273	8287	8291	8293	8297	8311	8317	8329
8353	8363	8369	8377	8387	8389	8419	8423	8429	8431	8443
8447	8461	8467	8501	8513	8521	8527	8537	8539	8543	8563
8573	8581	8597	8599	8609	8623	8627	8629	8641	8647	8663
8669	8677	8681	8689	8693	8699	8707	8713	8719	8731	8737
8741	8747	8753	8761	8779	8783	8803	8807	8819	8821	8831
8837	8839	8849	8861	8863	8867	8887	8893	8923	8929	8933
8941	8951	8963	8969	8971	8999	9001	9007	9011	9013	9029
9041	9043	9049	9059	9067	9091	9103	9109	9127	9133	9137
9151	9157	9161	9173	9181	9187	9103	9203	9209	9221	9227
9239	9241	9257	9277	9281	9283	9293	9311	9319	9323	9337
9341	9343	9349	9371	9377	9391	9397	9403	9413	9419	9421
9431	9343	9349	9439	9461	9391	9397	9403	9413	9419	9421
9511	9521	9533	9539	9547	9551	9587	9601	9613	9491	9623
9629	9631	9643	9649	9661	9677	9679	9689	9613	9619	9623
9029	9031	9043	9049	9767	9769	9679	9089	9697	9803	9721
9817	9829	9833	9839	9851	9857	9859	9871	9883	9887	9901
9907	9923	9929	9931	9941	9949	9967	9973	9000	9001	9901
9901	9923	9929	9991	3341	3343	9901	9910			

Capítulo 2

Estruturas de dados

2.1 Prefix Sum 1D

```
Soma a..b em O(1).

#define MAXN 1000
int arr [MAXN];
int prefix [MAXN];

void build (int n) {
    prefix [0] = 0;
    for (int i = 1; i <= n; i++) // arr 1-indexado
}

prefix [i] = prefix [i-1]+arr[i];

int get (int a, int b) {
    return prefix [b] - prefix [a-1];
}
</pre>
```

2.2 Prefix Sum 2D

```
Soma um subretângulo em ponto em O(1).
Indexado em 1.

#define MAXN 1000
int mat [MAXN] [MAXN], prefix [MAXN] [MAXN];

void build(){
   for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            prefix[i][j] = mat[i][j] + prefix[i - 1][j] + prefix[i][j - 1] - prefix[i - 1][j - 1];
}

int get(int x1, int y1, int x2, int y2){
   return prefix[x2][y2] - prefix[x1 - 1][y2] - prefix[x2][y1 - 1] + prefix[x1 - 1][y1 - 1];
}</pre>
```

2.3 BIT - Fenwick Tree

```
Soma 1..N e update em ponto em O(log n).
```

```
#define MAXN 10000
int bit [MAXN];

void update(int x, int val){
    for(; x < MAXN; x+=x&-x)
        bit [x] += val;
}

int get(int x) {
    int ans = 0;
    for(; x; x-=x&-x)
        ans += bit [x];
    return ans;
}
```

2.4 BIT - Fenwick Tree - Range updates

Consulta em range e update em range (v[i..j]+=v) em O(logn).

```
vector < int > bit1, bit2;
                                                                                                       \begin{tabular}{lll} \bf void & \tt update(int i, int j, int v) \\ \end{tabular} 
void init(int n){
                                                                                                            up\,dat\,e\,(\,b\,i\,t\,1\ ,\ i\ ,\ v\,)\;;
      b\,i\,t\,1\,\,.\,\,a\,s\,s\,i\,g\,n\,\,(\,n\,+\,1\,,\quad 0\,)\,\,;
                                                                                                            \begin{array}{l} {\rm update}\,(\,{\rm bit}\,1\ ,\ j+1,\ -v\,)\,;\\ {\rm update}\,(\,{\rm bit}\,2\ ,\ i\ ,\ v*(\,i-1)\,)\,; \end{array}
      bit 2. assign (n+1, 0);
                                                                                                            update(bit2, j+1, -v*j);
int rsq(vector < int > \&bit, int i){
      int ans = 0;
       {\bf for} \; (\; ; \quad i \; ; \quad i \! - \! \! = \! i \& \! \! - \! i \; ) \\
                                                                                                      int rsq(int i){
          ans += bit[i];
                                                                                                            return rsq(bit1, i)*i - rsq(bit2, i);
      return ans:
                                                                                                      \mathbf{int} \ \operatorname{rsq} \left( \ \mathbf{int} \ \ \mathrm{i} \ , \ \ \mathbf{int} \ \ \mathrm{j} \ \right) \{
{f void} update(vector<{f int}> &bit, {f int} i, {f int} v){
                                                                                                           return rsq(j) - rsq(i-1);
      for(; i < bit.size(); i+=i&-i)
           bit [i] += v;
```

2.5 BIT - Fenwick Tree 2D

Soma um subretângulo e update em ponto em $O(log^2n)$.

```
#define MAXN 1000
int bit [MAXN] [MAXN];

void update(int x, int y, int val) {
    for (; x < MAXN; x+=x&-x)
        for(int j = y; j; j-=j&-j)
            ans += bit [x][j];

return ans;
}

for (int j = y; j < MAXN; j+=j&-j)
            bit [x][j] += val;
}

int get(int x, int y) {
    int get(int x, int y) {
        int get(x2, y2) - get(x1-1, y2) - get(x2, y1)
            -1) + get(x1-1, y1-1);
}
</pre>
```

2.6 BIT - Fenwick Tree 2D - Range Update

Update em range, consulta em ponto e em range.

```
\#define MAXN 505
                                                                            update(1, x1, y2+1, val*y2);
                                                                            update(1, x2+1, y1, val*(y1-1));
11 bit [4][MAXN + 50][MAXN + 50];
                                                                            update(1, x2+1, y2+1, -val*y2);
void update(int node, int x, int y, ll v){
                                                                            update(2, x1, y1, val*(1-x1));
    for (; x \le MAXN; x +=x\&-x)
                                                                            update(2, x1, y2+1, (x1-1)*val);
    \mbox{ for (int } \ j \ = \ y \ ; \ \ j \ <= \ \mbox{MAXN}; \ \ j+=j \ \&\!\!-j \ )
                                                                            \begin{array}{l} \text{update(2, x2+1, y1, val*x2);} \\ \text{update(2, x2+1, y2+1, -x2*val);} \end{array}
    bit [node][x][j] += v;
                                                                            u\, p\, d\, a\, t\, e\, (\, 3\,\, ,\  \  \, x\, 1\,\, ,\  \  \, y\, 1\,\, ,\  \  \, (\, x\, 1\, -1\, )\, *\, (\, y\, 1\, -1\, )\, *\, v\, a\, l\,\, )\,\, ;
11 query(int node, int x, int y){
                                                                            update(3, x1, y2+1, -y2*(x1-1)*val);
                                                                            update(3, x2+1, y1, -x2*(y1-1)*val);
     ll ans = 0;
                                                                            update(3, x2+1, y2+1, x2*y2*val);
    for (; x; x=x&=x)
    for(int j = y; j; j-=j\&-j)
    ans += bit [node][x][j];
                                                                        11 queryPoint(int x, int y){
    return ans;
}
                                                                            return query(0, x, y) * x * y + query(1, x, y)
                                                                                * x + query(2, x, y) * y + query(3, x, y);
void updateSubMatrix(int x1, int y1, int x2, int
     y2, ll val) {
    update(0, x1, y1, val);
                                                                        \label{eq:condition} \mbox{ll querySubMatrix} (\mbox{int} \ \ x1 \,, \ \mbox{int} \ \ y1 \,, \ \mbox{int} \ \ x2 \,, \ \mbox{int} \ \ y2 \,) \, \{
    update(0, x1, y2 + 1, -val);
                                                                            return query Point (x2, y2) - query Point (x1 - 1, y2)
                                                                                y2) - query Point (x2, y1 - 1) + query Point (x1 - 1, y1 - 1);
    update(1, x1, y1, val*(1-y1));
```

2.7 BIT - Fenwick Tree 2D - Comprimida

Operações possíveis com x e y até 10⁵

- Inserir 1 em uma posição do grid.
- Remover 1 em uma posição do grid.
- Contar a quantidade de 1's em um retângulo.

 $O(Qlog^2N)$.

```
for(int i = x; i < LIM; i+=i\&-i)
#include <ext/pb_ds/assoc_container.hpp>
                                                                      bit [i].erase(ii(y,x));
#include <ext/pb_ds/tree_policy.hpp>
using namespace std;
{\bf using\ namespace\ \_\_gnu\_pbds};
                                                                  int query(int x, int y){
typedef pair<int, int> pii;
typedef tree<pii, null_type, less<pii>,
                                                                      int ans = 0;
                                                                      \label{eq:for_int} \textbf{for} \, (\, \textbf{int} \quad i \ = \ x \; ; \quad i \; ; \quad i \! - \! \! \! = \! i \, \& \! \! \! \! - \! i \, )
     \verb|rb_tree_tag|, | | | tree_order_statistics_node_update|
                                                                      ans += bit [i].order_of_key(ii(y+1, 0));
     > OST:
                                                                      return ans;
#define N 100010
OST bit [N];
                                                                  int query (int x1, int y1, int x2, int y2) {
return query (x2, y2) - query (x2, y1-1) - query (
                                                                          x1-1, y2) + query (x1-1, y1-1);
    bit [i]. insert (ii(y,x));
                                                                     K\!-th element
void remove(int x, int y){
                                                                      find\_by\_order();
```

2.8 Segment Tree 1D - Lazy Propagation

O build está gerando uma árvore com zeros, alterar quando houver valores iniciais

```
#define NMAX 100010
                                                                     void update(int idx, int l, int r, int i, int j,
#define mid ((l + r) / 2)
                                                                          int val){
#define || long long
                                                                         propagation (idx, l, r);
ll tree [NMAX * 4], lazy [NMAX * 4];
                                                                         if (j < l or i > r)
                                                                         return;
void build(int idx, int l, int r){
                                                                         \textbf{if} \hspace{0.3cm} (\hspace{0.1cm} l \hspace{0.1cm} >= \hspace{0.1cm} i \hspace{0.1cm} \&\& \hspace{0.1cm} r \hspace{0.1cm} <= \hspace{0.1cm} j \hspace{0.1cm} ) \hspace{0.1cm} \{
    l\, a\, z\, y\, \left[\, i\, d\, x\,\, \right] \,\, = \,\, 0\, ;
    tree[idx] = 0;
                                                                             lazy[idx] += val;
                                                                             propagation (idx, l, r);
    if (l == r)
                                                                             return;
    return;
    build(idx * 2, 1, mid);
                                                                         update(idx * 2, 1, mid, i, j, val);
                                                                         update(idx * 2 + 1, mid + 1, r, i, j, val);
    build (idx * 2 + 1, mid + 1, r);
                                                                         tree[idx] = tree[idx * 2] + tree[idx * 2 + 1];
}
void propagation(int idx, int l, int r){
                                                                     ll get(int idx, int l, int r, int i, int j){
    if (lazy[idx]) {
        tree[idx] += (ll)(r - l + 1) * lazy[idx];
                                                                         propagation (idx, l, r);
        if (l != r){
                                                                         if (j < l \text{ or } i > r)
            lazy [idx * 2] += lazy [idx];
                                                                         return 0;
            lazy[idx * 2 + 1] += lazy[idx];
                                                                         if (l >= i && r <= j)
                                                                         return tree[idx];
        \,l\,a\,z\,y\,\,[\,i\,d\,x\,\,]\ =\ 0\,;
                                                                         return get(idx * 2, 1, mid, i, j) + get(idx * 2)
    }
}
                                                                               + 1, mid + 1, r, i, j);
```

2.9 Segment Tree 2D

Quando a consulta é em uma distância de manhattan d, basta rotacionar o grid 45° . Todo ponto (x, y) vira (x+y, x-y). A consulta fica ((x+d, y+d), (x-d, y-d))

```
#define MAXN 1030
int tree[4*MAXN][4*MAXN];
 void buildy (int idxx, int lx, int rx, int idxy,
                  int ly , int ry){
                if (ly == ry) {
                              if(lx == rx)
                                           tree[idxx][idxy] = 0; // Valor inicial
                              else
                                             tree[idxx][idxy] = tree[idxx*2][idxy] +
                                                             tree[idxx*2+1][idxy];
                             return:
               buildy (idxx, lx, rx, idxy *2, ly, (ly+ry)/2);
               \texttt{buildy(idxx, lx, rx, idxy*2+1, (ly+ry)/2+1, ry)}
               tree[idxx][idxy] = tree[idxx][idxy*2] + tree[
                                   idxx][idxy*2+1];
void buildx(int idx, int lx, int rx, int ly, int
                    ry){
               if(lx != rx){
                              buildx(idx*2, lx, (lx+rx)/2, ly, ry);
                              buildx (idx*2+1, (lx+rx)/2+1, rx, ly, ry);
                buildy(idx, lx, rx, 1, ly, ry);
}
 int gety (int idxx, int idxy, int ly, int ry, int
                  y1, int y2){
               \mathbf{if}(\mathbf{ly} > \mathbf{y2} \mid | \mathbf{ry} < \mathbf{y1})
                             return 0;
               \mathbf{i}\,\mathbf{f}\,(\,\mathrm{l}\,\mathrm{y}\,\,>=\,\,\mathrm{y}\,\mathrm{1} && ry <= y2)
                              return tree[idxx][idxy];
               \textbf{return} \hspace{0.2cm} \texttt{gety} \hspace{0.1cm} (\hspace{0.1cm} \texttt{i}\hspace{0.1cm} \texttt{d}\hspace{0.1cm} \texttt{x}\hspace{0.1cm} \texttt{x}\hspace{0.1cm} , \hspace{0.2cm} \texttt{i}\hspace{0.1cm} \texttt{d}\hspace{0.1cm} \texttt{x}\hspace{0.1cm} \texttt{y}\hspace{0.1cm} + \hspace{0.1cm} \texttt{ry} \hspace{0.1cm} ) \hspace{0.1cm} / \hspace{0.1cm} 2 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 2 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} 1 \hspace{0.1cm} , \hspace{0.1cm} \texttt{y}\hspace{0.1cm} 1 \hspace{0.1cm} 
                                 ) + gety(idxx, idxy*2+1, (ly+ry)/2+1, ry,
                                 y1, y2);
}
int getx(int idxx, int lx, int rx, int idxy, int
                    ly, int ry, int x1, int x2, int y1, int y2) {
```

```
if(lx > x2 \mid | rx < x1)
          return 0;
      if(lx >= x1 \&\& rx <= x2)
          \textbf{return} \hspace{0.1in} \texttt{gety} \hspace{0.1in} (\hspace{0.1in} \texttt{i}\hspace{0.1in} \texttt{d}\hspace{0.1in} \texttt{x}\hspace{0.1in} \texttt{,} \hspace{0.1in} \texttt{i}\hspace{0.1in} \texttt{d}\hspace{0.1in} \texttt{x}\hspace{0.1in} \texttt{,} \hspace{0.1in} \texttt{ly}\hspace{0.1in} \texttt{,} \hspace{0.1in} \texttt{ry}\hspace{0.1in} \texttt{,} \hspace{0.1in} \texttt{y}\hspace{0.1in} \texttt{1}\hspace{0.1in} \texttt{,} \hspace{0.1in} \texttt{y}\hspace{0.1in} \texttt{2}\hspace{0.1in} \texttt{)} \hspace{0.1in} ;
     return getx(idxx*2, lx, (lx+rx)/2, idxy, ly, ry
            , x1, x2, y1, y2) -
     g\,et\,x\,\left(\,i\,d\,x\,x\,{*}\,2\,{+}\,1\,,\  \, \left(\,\,l\,x\,{+}\,r\,x\,\,\right)\,/\,2\,{+}\,1\,,\  \, r\,x\,\,,\  \, i\,d\,x\,y\,\,,\  \, l\,y\,\,,\  \, r\,y\,\,,
            x1, x2, y1, y2);
void updatey(int idxx, int lx, int rx, int idxy,
       int ly , int ry , int py , int val){
     if(ly > py | | ry < py)
     return;
     if(ly == ry){
           if(lx == rx)
                t \, ree \, [\, id\, x\, x \,\,] \, [\, id\, x\, y \,\,] \ + = \ v\, a\, l \,\,;
           else
                 tree[idxx][idxy] = tree[idxx*2][idxy] +
                       tree[idxx*2+1][idxy];
           return;
     }
     updatey(idxx, lx, rx, idxy*2, ly, (ly+ry)/2, py
     updatey(idxx, lx, rx, idxy*2+1, (ly+ry)/2+1, ry
             , py, val);
     tree[idxx][idxy] = tree[idxx][idxy*2] + tree[
            idxx \mid [idxy*2+1];
{f void} updatex(int idxx, int lx, int rx, int idxy,
       int ly, int ry, int px, int py, int val) {
     if(lx > px | | rx < px)
     return:
     if(lx != rx){
           updatex(idxx*2, lx, (lx+rx)/2, idxy, ly, ry,
                    px, py, val);
           u\,p\,d\,a\,t\,e\,x\,\left(\,i\,d\,x\,x\,*2\,+\,1\,,\  \  (\,l\,x\,+\,r\,x\,\,)\,/\,2\,+\,1\,,\  \  r\,x\,\,,\  \  i\,d\,x\,y\,\,,\  \  l\,y\,\,,
                    ry, px, py, val);
     updatey(idxx, lx, rx, idxy, ly, ry, py, val);
```

2.10 Segment Tree 2D Dinâmica

Não consegue comprimir usa essa.

```
struct node1{
   int val;
   node1 *l, *r;
   node1(){
      v\, a\, l \ = \ 0 \ ;
      1 = r = 0:
   }
};
struct node2{
   node1 *tree;
   node2 *l, *r;
   node2(){
      tree = new node1();
      l = r = 0;
int gety(node1 *tree, int ly, int ry, int y1, int
    y2){
   if(!tree) return 0;
```

```
if(ly > y2 | | ry < y1)
     return 0;
     if(ly >= y1 \&\& ry <= y2)
     return tree \rightarrow val;
     int ans = 0;
     \mathbf{int} \hspace{.1in} \mathrm{mid} \hspace{.1in} = \hspace{.1in} (\hspace{.1cm} \mathtt{l}\hspace{.05cm} y + \mathtt{r}\hspace{.05cm} y \hspace{.1cm}) \hspace{.1cm} / \hspace{.1cm} 2 \hspace{.1cm} ;
     if (tree -> l)
     ans += gety(tree -> l, ly, mid, y1, y2);
     if(tree->r)
     \verb"ans" += \verb"gety" ( \verb"tree" -> r", mid + 1, ry", y1", y2") ;
     return ans;
int getx (node2 *tree, int lx, int rx, int ly, int
      ry, int x1, int x2, int y1, int y2) {
     \begin{array}{lll} \textbf{if} \ (!\ tree \ |\ | \ !\ tree \rightarrow tree) & \textbf{return} & 0; \\ \textbf{if} \ (!\ tx \ > \ x2 \ |\ | \ \ rx \ < \ x1) \end{array}
     return 0;
     if(lx >= x1 \&\& rx <= x2)
     return gety(tree->tree, ly, ry, y1, y2);
     int ans = 0;
     int \ mid = (lx+rx)/2;
```

```
if(tree->l)
                                                                                 updatey(tree->r, l, r, lx, rx, mid+1, ry, py
    \verb"ans" += \verb"getx" ( tree-> l \;, \; lx \;, \; mid \;, \; ly \;, \; ry \;, \; x1 \;, \; x2 \;,
        y1, y2);
                                                                             }
    if(tree \rightarrow r)
                                                                             tree \rightarrow val = (tree \rightarrow l?tree \rightarrow l-val:0) + (tree \rightarrow r
    {\tt ans} \; +\!\!= \; {\tt getx} \; (\, {\tt tree} \, -\!\!> \!\! r \; , \; \; mid \! +\! 1 \, , \; \; rx \; , \; \; ly \; , \; \; ry \; , \; \; x1 \; , \; \; x2 \; ,
                                                                                  ? t r e e -> r -> v a l : 0);
         y1, y2);
    return ans;
}
                                                                         void updatex(node2* tree, int lx, int rx, int ly,
                                                                              \mathbf{int} \ \mathrm{ry} \ , \ \mathbf{int} \ \mathrm{px} \ , \ \mathbf{int} \ \mathrm{py} \ , \ \mathbf{int} \ \mathrm{val} \ ) \, \{
void updatey(node1 *tree, node1 *l, node1 *r, int
                                                                             if(lx > px | | rx < px)
   return;
                                                                             if(lx != rx){
                                                                                 int mid = (lx+rx)/2;
    return;
    if(ly == ry){
                                                                                 if (px <= mid) {
        if(lx == rx)
                                                                                     if(!tree->l) tree->l = new node2();
        tree \rightarrow val = val;
                                                                                     updatex(tree->l, lx, mid, ly, ry, px, py,
                                                                                            val):
        tree \rightarrow val = (!1?0:l \rightarrow val) + (!r?0:r \rightarrow val);
        return;
                                                                                 else{
                                                                                     i\tilde{f}(!tree->r) tree->r = new node2();
    int mid = (ly+ry)/2;
                                                                                     updatex(tree->r, mid+1, rx, ly, ry, px,
    if (py <= mid) {
                                                                                          py, val);
        if(!tree->l) tree->l = new nodel();
        1 = 1?1 -> 1?1 -> 1:0:0;
        r = r?r->1?r->1:0:0;
                                                                             updatey(tree->tree, !tree->l? 0 : tree->l->tree
        updatey(tree->l, l, r, lx, rx, ly, mid, py,
                                                                                    !tree \rightarrow r? 0 : tree \rightarrow r->tree, lx, rx, ly,
                                                                                  ry, py, val);
    else{
        if(!tree->r) tree->r = new node1();
                                                                         // IN MAIN
        1 = 1?1 -> r?1 -> r:0:0;
                                                                         \verb"node2 *seg = \textbf{new} \ \verb"node2"();
        r = r?r -> r?r -> r:0:0;
```

2.11 Kd-Tree

Encontra os K pontos mais próximos de um dado ponto O(klog(k)log(n)).

```
\#define MAXN 10100
double dist(int x, int y, int xx, int yy){
    \textbf{return} \hspace{0.1in} \text{hypot} \hspace{0.1in} (\hspace{0.1em} \textbf{x} \hspace{0.1em} \textbf{x} \hspace{0.1em} \textbf{x} \hspace{0.1em} \textbf{y} \hspace{0.1em} \textbf{y} \hspace{0.1em} \textbf{y} \hspace{0.1em} \textbf{y} \hspace{0.1em} ) \hspace{0.1em} ;
// 2D point object
struct point {
     double x, y;
     point (double x = 0, double y = 0): x(x), y(y)
          {}
//\ the\ "hyperplane\ split",\ use\ comparators\ for\ all
        dimensions
bool cmpx(const point& a, const point& b) {return
      a.x < b.x;
bool cmpy (const point & a, const point & b) {return
      a.y < b.y;
struct kdtree {
     point *tree;
     int n;
     // constructor
     kdtree(point p[], int n): tree(new point[n]), n
          (n) {
         copy(p, p + n, tree);
         build(0, n, false);
     // destructor
      `kdtree() {delete[] tree;}
```

```
// k-nearest neighbor query, O(k \log(k) \log(n))
      on average
vector < point > query (double x, double y, int k =
      1) {
    perform_query(x, y, k, 0, n, false); //
         recurse
    vector < point > points;
    while (!pq.empty()) \{ // collect points \}
        points.push back(*pq.top().second);
        pq.pop();
    reverse (points.begin(), points.end());
    return points;
private:
// build is O(n log n) using divide and conquer
void build(int L, int R, bool dvx) {
    if (L >= R) return; int M = (L + R) / 2;
    // get median in O(n), split x-coordinate if
           dvx is true
    nth_element(tree+L, tree+M, tree+R, dvx?cmpx
          : cmpy ) ;
    \  \, b\,u\,i\,l\,d\,\left(\,L\,,\ M,\ !\,d\,v\,x\,\,\right)\,;\  \, b\,u\,i\,l\,d\,\left(M\!\!+\!1,\ R\,,\ !\,d\,v\,x\,\,\right)\,;
}
// priority queue for KNN, keep the K nearest
priority queue <pair <double, point *> > pq;
void perform query (double x, double y, int k,
     int L, int R, bool dvx) {
    if (L >= R) return;
    int M = (L + R) / 2;
    double dx = x - tree[M].x;
    \label{eq:double_dy} \textbf{double} \hspace{0.1cm} \text{dy} \hspace{0.1cm} = \hspace{0.1cm} \text{y} \hspace{0.1cm} - \hspace{0.1cm} \text{tree} \hspace{0.1cm} [\text{M}] \hspace{0.1cm} .\hspace{0.1cm} \text{y} \hspace{0.1cm} ;
```

```
swap(nearL, farL);
swap(nearR, farR);
\mathbf{double} \ delta = dvx ? dx : dy;
double dist = dx * dx + dy * dy;
// if point is nearer to the kth farthest,
    put point in queue
                                                             // query the nearer child
if (pq.size() < k | | dist < pq.top().first)
                                                             perform query (x, y, k, nearL, nearR, !dvx);
   pq.\,push\,(\,make\_pair(\,d\,ist\,\,,\,\,\&t\,ree\,[M]\,)\,\,)\,\,;
                                                             if (pq.size() < k | | delta * delta < pq.top
   if (pq.size() > k) pq.pop(); // keep k
                                                                 query the farther child if there might be
        elements only
                                                                   c\,a\,n\,d\,i\,d\,a\,t\,e\,s
int nearL = L, nearR = M, farL = M + 1, farR
                                                             perform query (x, y, k, farL, farR, !dvx);
     = R:
if (delta > 0) { // right is nearer
                                                      };
```

2.12 Treap / Cartesian Tree

Suporta operações da BST, mais importante lessOrEqualThanK().

```
template < class T>
class Treap {
    private:
    struct node {
       T key;
        int prior;
        int size;
        node *l, *r;
        node(){};
        node(T key, int prior) : key(key), prior(
            prior), size(1), l(NULL), r(NULL) {}
        node(T key) : key(key), prior(rand()), size
             (1), l(NULL), r(NULL) {}
    typedef node* pnode;
    void updateNode(pnode p) {
        if(p) {
            p \rightarrow size = getSize(p \rightarrow l) + getSize(p \rightarrow r) +
                  1;
    void split (pnode t, T key, pnode &l, pnode &r)
        if(!t) l = r = NULL;
         \textbf{else} \quad \textbf{if} \quad (\texttt{key} \ < \ t - \!\!> \!\! \texttt{key}) \quad \texttt{split} \quad (\texttt{t} - \!\!> \!\! \texttt{l} \ , \quad \texttt{key} \ , \quad \texttt{l} \ , \\
            t \rightarrow l), r = t;
        else split (t->r, key, t->r, r), l = t;
        updateNode(t);
    {f void} merge(pnode &t, pnode l, pnode r) {
        if(!1 | | !r) t = 1 ? 1 : r;
        else if (l \rightarrow prior > r \rightarrow prior) merge (l \rightarrow r, l \rightarrow r)
            \mathbf{r}, \mathbf{r}), \mathbf{t} = 1;
        else merge(r\rightarrow l, l, r\rightarrow l), t = r;
        updateNode(t);
    void insert (pnode it, pnode &t) {
        if(!t) t = it;
        else if(it \rightarrow prior > t \rightarrow prior) split(t, it \rightarrow
             key, it -> l, it -> r), t = it;
```

```
else insert (it, it\rightarrowkey < t\rightarrowkey ? t\rightarrowl : t
             ->r);
        updateNode(t);
    void erase (T key, pnode &t) {
        if(!t) return;
        if(t->key == key) merge(t, t->l, t->r);
         \textbf{else} \ \texttt{erase(key, key < t->key ? t->l : t->r);} 
       updateNode(t);
    void preOrder(pnode t) {
       if(!t) return;
        preOrder(t->l);
        {\tt cout} \; << \; t -\!\!> \! k\,ey \; << \; e\,n\,d\,l\;;
       preOrder(t->r);
    int lessOrEqualThanK(T key, pnode t) {
       if(!t) return 0;
        if(t->key \le key) return getSize(t->l) + 1 +
             lessOrEqualThanK(key, t->r);
        else return lessOrEqualThanK(key, t->1);
   public:
   pnode root;
    Treap(){
       root = NULL;
       srand(time(NULL));
    void insert (T key) { insert (new node (key), root
    void erase(T key) { erase(key, root); }
    void preOrder() { preOrder(root); }
   int lessOrEqualThanK(T key) { return
   \begin{array}{c} lessOrEqualThanK(\,key\,\,,\,\,root\,)\,;\,\,\,\}\\ \textbf{int}\  \  getQtdInRange(T\  \, left\,\,,\,\,T\  \, right)\,\,\,\{\,\,\textbf{return}\\ \end{array}
         lessOrEqualThanK(right, root) -
lessOrEqualThanK(left - 1, root); }
   int getSizeTree() { return getSize(root); }
};
// Declaracaoo
Treap<int> tr;
```

2.13 Treap / Cartesian Tree Implícita

Implicit cartesian tree O(logn).

```
 // \ Prior \ e \ size \ obrigatorios \\ // \ Carregar \ o \ que \ precisa 
                                                                        t += informação do no atual
struct node{
    int prior , size , lazy;
                                                                    void split(node *t, node *&l, node *&r, int pos,
    int val;
                                                                         int add = 0)
    node \ *l \ , \ *r \ ;
                                                                        if(!t){
    node() {}
                                                                            l = r = NULL;
    node(int n){}
                                                                            return:
        prior = rand();
        size = 1;
       val = n;
                                                                        lazy(t);
       lazy = 0;
                                                                        int cur pos = add + size(t->l);
       1 = r = NULL;
                                                                        if (cur_pos <= pos)
                                                                            split(t->r, t->r, r, pos, cur_pos + 1), l =
};
                                                                            split(t->l, l, t->l, pos, add), r = t;
int size(node *t){
    return t ? t \rightarrow size : 0;
                                                                        updateSize(t);
                                                                        operation(t);
void updateSize(node *t){
    if(t)
                                                                    void merge(node *&t, node *1, node *r){
    t \rightarrow size = 1 + size(t \rightarrow l) + size(t \rightarrow r);
                                                                        lazy(l);
                                                                        lazy (r);
                                                                        \mathbf{i}\,\mathbf{f}\,(\,!\,\,l\,\,\,|\,\,|\,\,\,!\,\,r\,)
// Lazy para inverter intervalo
                                                                           t = l ? l : r;
                                                                        else if(l \rightarrow prior > r \rightarrow prior)
void lazy(node *t){
    if (!t || !t -> lazy)
                                                                            merge(l \rightarrow r, l \rightarrow r, r), t = l;
       return;
                                                                            merge(r->l, l, r->l), t = r;
    t \! - \! \! > \! l\, a\, z\, y \ = \ t \! - \! \! > \! l\, a\, z\, y \ \% \ 2\,;
                                                                        updateSize(t);
                                                                        operation(t);
    if (t -> lazy) {
        swap(t->r, t->l);
        if ( t →> l )
                                                                     // Inverte o range l..r
           t -> l -> l a z y ++;
        \mathbf{i}\,\mathbf{f}\,(\;t-\!\!>\!r\;)
                                                                    void inverter(node *t, int l, int r){
                                                                        t -> r -> l a z y ++;
    t \! - \! > \! l \, a \, z \, y \ = \ 0 \, ;
                                                                        t - > l a z y + +;
}
                                                                        m\,erg\,e\,(\,mid\,,\ L\,,\ t\,)\;;
// Operator +
                                                                        merge(t, mid, R);
void operation(node *t){
    if(!t)
       return;
                                                                     // Criacao da Treap na main
                                                                    node *Treap;
    lazy(t->l);
    lazy(t->r);
                                                                    for (int i = 0; i < n; i++){
                                                                        if(!i)
                                                                            Treap = new node(v[i]);
    if(t->l)
       t += juncao com filho esquerda
                                                                            merge(Treap, Treap, new node(v[i]));
    if (t −>r)
       t += juncao com filho direita
```

2.14 Sparse table

Suporta min, max, gcd, lcm, build em O(nlogn) e query em O(1).

```
\#define MAXN 100100
                                                                            st[i][j] = min(st[i][j-1], st[i+(1 <<
                        // ~log2 (MAXN)
#define LOG 17
                                                                                   (j - 1))][j - 1]);
                                                                 }
int arr[MAXN], st[MAXN][LOG];
                                                                 int query(int 1, int r){
void build(int n){
                                                                    //\ \textit{Pre processar os logs ou usar} \ \_\_\textit{builtin\_ctz}
    \label{eq:formula} \mbox{\bf for} \, (\, \mbox{\bf i} \, \mbox{\bf n} \, \mbox{\bf i} \, \mbox{\bf i} \, = \, 0 \, \mbox{\bf i} \, \mbox{\bf i} \, + +)
                                                                          se o tempo estiver apertado
                                                                     int k = floor(log2((double)r - l + 1));
       st[i][0] = arr[i];
                                                                     for (int j = 1; (1 << j) <= n; j++)
        for (int i = 0; i + (1 << j) - 1 < n; i++)
```

2.15 Persistent Segment Tree

Persistent aplicada para encontrar o menor elemento que não pode ser formado através da soma de elementos de um subarray.

```
struct node {
    node *l, *r;
                                                                                11 get(node *cur, int l, int r, int x, int y){
    ll sum;
                                                                                     if(l > y | | r < x)
    n\,o\,d\,e\,(\,)\;\{
                                                                                     return 0;
        1 = r = 0;
                                                                                     if(l >= x && r <= y)
                                                                                     return cur->sum;
        sum = 0;
                                                                                     return get(cur-)l, l, (l+r)/2, x, y) + get(cur-)l
    }
};
                                                                                           ->r, (l+r)/2+1, r, x, y);
ii v [MAXN];
node * roots [MAXN];
                                                                                ll get(int l, int r){
\mathbf{int} \quad n \;, \quad q \;;
                                                                                     11 s = 0:
                                                                                     while(1){
void update(node *last, node *cur, int l, int r,
                                                                                         ll cur = get(roots[upper bound(v, v+n, ii(s))]
                                                                                               +1, n+1)) - v], 1, n, l, r);
     int pos, int val) {
    i\,f\,(\,l\ >\ po\,s\ \mid\,\mid\ r\ <\ po\,s\,)
                                                                                          if(cur == s)
    return;
                                                                                         return s+1;
    if(l == r && r == pos){
                                                                                         s \; = \; c\,u\,r\;;
         cur \rightarrow sum = last \rightarrow sum + val;
         return:
                                                                                     return 0;
    int mid = (l+r)/2;
                                                                                void solve(){
                                                                                     \begin{array}{l} {\rm scanf}\,(\,\text{``'d\_''d''}\,,\,\,\&n\,,\,\,\&q\,)\,\,;\\ {\bf for}\,(\,{\bf int}\,\,\,i\,=\,0\,;\,\,\,i\,<\,n\,;\,\,\,i++)\{ \end{array}
    if (pos <= mid) {
         cur \rightarrow l = new node();
                                                                                          scanf("%d", &v[i].fst);
         cur \rightarrow r = last \rightarrow r;
         update(last \rightarrow l, cur \rightarrow l, l, (l+r)/2, pos, val
                                                                                         v[i].snd = i;
                                                                                     sort(v, v+n);
    else{
         cur -> r = new node();
         cur \rightarrow l = last \rightarrow l;
                                                                                     roots[0] = new node();
                                                                                     build (roots [0], 1, n);
         update(last \rightarrow r, cur \rightarrow r, (l+r)/2+1, r, pos,
                                                                                     for (int i = 1; i \le n; i++){
               val);
                                                                                          roots[i] = new node();
                                                                                         u\,pd\,at\,e\,(\,\,ro\,ot\,s\,\,[\,\,i\,\,-1]\,\,,\  \  \, ro\,ot\,s\,\,[\,\,i\,\,]\,\,,\,\,\,1\,\,,\,\,\,n\,\,,\,\,\,v\,\,[\,\,i\,\,-1]\,.
    cur \rightarrow sum = cur \rightarrow l \rightarrow sum + cur \rightarrow r \rightarrow sum;
                                                                                               snd+1, v[i-1].fst);
                                                                                     }
void build(node *cur, int 1, int r){
    if(l == r)
                                                                                     int l, r;
    return;
                                                                                     \mathbf{while} (q--) \{
                                                                                          scanf("%d_%d", &l, &r);
    cur \rightarrow l = new node();
                                                                                          p\,r\,i\,n\,t\,f\,\left(\,"\%\,l\,l\,d\,\backslash\,n\,"\,\,,\,\,g\,e\,t\,\left(\,l\,\,,\,\,\,r\,\,\right)\,\right)\,;
    cur \rightarrow r = new node();
    build (cur->l, l, (l+r)/2);
    build (cur -> r, (l+r)/2+1, r);
```

2.16 Wavelet Tree

K-ésimo menor elemento de um range, número de ocorrências de X no em um range, número de elementos em um range que são menores que ou iguais a X e soma dos elementos menores que X em um range O(logn).

```
struct wavelet_tree{
    #define vi vector<int>
    #define pb push_back
    int lo, hi;
    wavelet_tree *l, *r;
    vi b;

    //nos are in range [x,y]
    //array indices are [from, to)
    wavelet_tree(int *from, int *to, int x, int y){
        lo = x, hi = y;
    }
}
```

```
if(lo == hi or from >= to) return;
int mid = (lo+hi)/2;
auto f = [mid](int x){
    return x <= mid;
};
b.reserve(to-from+1);
b.pb(0);
for(auto it = from; it != to; it++)
b.pb(b.back() + f(*it));
//see how lambda function is used here
auto pivot = stable_partition(from, to, f);
l = new wavelet_tree(from, pivot, lo, mid);</pre>
```

```
r = new wavelet_tree(pivot, to, mid+1, hi);
//kth smallest element in [l, r]
int kth(int l, int r, int k){
    if(l > r) return 0;
    if(lo == hi) return lo;
    \begin{array}{lll} \textbf{int} & \textbf{inLeft} = \textbf{b[r]} - \textbf{b[l-1]}; \\ \textbf{int} & \textbf{lb} = \textbf{b[l-1]}; \ /\!/\textit{amt of nos in first (l-1)} \end{array}
           nos that go in left
    if(k \le inLeft) return this -> l-> kth(lb+1, rb
           , k);
    \textbf{return } \textbf{this} \mathbin{->} r \mathbin{->} kt\,h\,(\,l \mathbin{-} lb \ , \ r \mathbin{-} rb \ , \ k \mathbin{-} in\,L\,e\,ft \ ) \ ;
//count of nos in [l, r] Less than or equal to
\textbf{int} \  \, \text{LTE}(\,\textbf{int} \  \, l \,\,, \,\, \, \textbf{int} \,\, r \,\,, \,\, \, \textbf{int} \,\, k) \  \, \{
    if(1 > r or k < lo) return 0;
    if(hi \ll k) return r - l + 1;
    int lb = b[l-1], rb = b[r];
    return this \rightarrow l \rightarrow LTE(lb+1, rb, k) + this \rightarrow r \rightarrow
         LTE(l-lb, r-rb, k);
//count of nos in [l, r] equal to k
int count(int 1, int r, int k) {
    if(l > r or k < lo or k > hi) return 0;
```

```
if(k \le mid) return this->l->count(lb+1, rb,
             k);
        return this \rightarrow r \rightarrow count(l-lb, r-rb, k);
    //sum of nos in [l ,r] less than or equal to k int sumk(int l, int r, int k) {
        if(l > r or k < lo) return 0;
        if(hi \le k) return c[r] - c[l-1];
        int lb = b[l-1], rb = b[r];
        return this \rightarrow l \rightarrow sumk(lb+1, rb, k) + this \rightarrow r
            ->sumk(l-lb, r-rb, k);
    }
    delete r;
};
// Main
srand(time(NULL));
int a[n]; // Valores
wavelet_tree T(a, a+n, 1, MAX);
\begin{array}{cccc} T. & \text{kth} (l, r, k) \\ T. & \text{LTE} (l, r, k) \end{array}
T.count(l, r, k)
```

Capítulo 3

Paradigmas

3.1 Convex hull trick 1

Quando o X está ordenado.

Inserir retas do tipo Y = A*X + B.

Para máximo adicionar o A e B negativos e quando consultar coloca negativo o valor.

```
struct hull {
                                                                                            A[len] = a;
    ll A[MAXN];
                                                                                            B[len] = b;
    11 B[MAXN];
                                                                                            len++;
    \mathbf{int} \hspace{0.1in} \mathtt{len} \hspace{0.1in}, \hspace{0.1in} \mathtt{ptr} \hspace{0.1in};
    hull() {
         len = ptr = 0;
                                                                                        ll get(ll x){
                                                                                             ptr = min(ptr, len - 1);
                                                                                             \mathbf{while}\,(\,p\,t\,r\,+\,1\,<\,\,l\,e\,n\,\,\,\&\&\,\,\,A\,[\,\,p\,t\,r\,+\,1\,]\,*\,x\,+\,B\,[\,\,p\,t\,r\,+\,1\,]\,<=
                                                                                                  A[ptr]*x + B[ptr]
    void addLine(ll a, ll b){
         \mathbf{while} (len >= 2 \&\& (B[len - 2] - B[len - 1]) * (a)
                                                                                                 ptr++
               -A[len -1]) >= (B[len -1]-b) * (A[len -1]-A
                                                                                            return A[ptr]*x + B[ptr];
               [len - 2])
              len --;
                                                                                   };
```

3.2 Convex hull trick 2

Quando o X não está ordenado.

```
class ConvexHullTrick {
       struct CHTPoint {
               \mathbf{double} \ x \ , \ y \ , \ lim \ ;
       vector < CHTPoint > pilha;
       inline double get_intersection(CHTPoint a,
                CHTPoint b) {
               double denom = ( double(b.x) - a.x);
               double num = (double(b.y) - a.y);
               \textbf{return} \ -\text{num} \ / \ \text{denom} \, ;
       }
       bool ccw (CHTPoint p0, CHTPoint p1, CHTPoint p2)
               \textbf{return} \hspace{0.3cm} (\hspace{0.1cm} (\hspace{0.1cm} \textbf{double}\hspace{0.1cm}) \hspace{0.1cm} (\hspace{0.1cm} p1 \hspace{0.1cm} .\hspace{0.1cm} y - p0 \hspace{0.1cm} .\hspace{0.1cm} y) \hspace{0.1cm} * \hspace{0.1cm} (\hspace{0.1cm} \textbf{double}\hspace{0.1cm}) \hspace{0.1cm} (\hspace{0.1cm} p2 \hspace{0.1cm} .\hspace{0.1cm} x - p0 \hspace{0.1cm} )
                         (x) > (double)(p2.y-p0.y)*(double)(p1.x-
                         p0.x));
       }
       public:
       void add line(double a, double b) {
              \label{eq:chtpoint} CHTPo\overline{i}nt\ novo\ =\ \{a\,,\ b\,,\ 0\,\};
               int tam = pilha.size();
               \mathbf{while} \hspace{0.2cm} (\hspace{0.1cm} \mathtt{tam} \hspace{0.1cm} > \hspace{-0.1cm} = \hspace{0.1cm} 2 \hspace{0.1cm} \& \& \hspace{0.1cm} !\hspace{0.1cm} \mathtt{ccw} \hspace{0.1cm} (\hspace{0.1cm} \mathtt{pilh}\hspace{0.1cm} \mathtt{a} \hspace{0.1cm} [\hspace{0.1cm} \mathtt{tam} \hspace{0.1cm} - \hspace{0.1cm} 2] \hspace{0.1cm} , \hspace{0.1cm} \mathtt{pilh}\hspace{0.1cm} \mathtt{a} \hspace{0.1cm} [
                        tam-1, novo)) {
```

```
pilha.pop back();
        tam--;
    while (tam >= 1 \&\& fabs(pilha[tam-1].x - a)
        < 1e-8) {
        pilha.pop_back();
        tam - -;
    \begin{array}{ll} pilha.push\_back(\,nov\,o\,)\,;\\ \textbf{if}\ (tam\ >=\ 1)\ pilha\,[\,tam\,-1\,].lim\ =\ \end{array}
         \verb|get_intersection(pilha[tam-1], pilha[tam|
         ]);
double get_maximum(double x) {
    int st = 0, ed = pilha.size() - 1;
    \mathbf{while} \ (\, \mathrm{st} \, < \, \mathrm{ed} \, ) \ \{ \,
        int mid = (st+ed)/2;
        if (pilha[mid].lim < x) st = mid+1;
        else ed = mid;
    return pilha[st].x * x + pilha[st].y;
```

3.3 Convex hull trick 3 - Fully Dynamic

Sem condições especiais para o A e B

```
const ll is query = -(1LL << 62);
struct Line {
    ll m, b;
    mutable function < const Line * () > succ;
    bool operator < (const Line& rhs) const {
         \label{eq:final_continuous_continuous} \textbf{if} \ \ (\texttt{rhs.b} \ != \ \texttt{is\_query}) \ \ \textbf{return} \ \texttt{m} < \ \texttt{rhs.m};
         const Line* s = succ();
         if (!s) return 0;
         ll x = rhs.m;
        return b - s -> b < (s -> m - m) * x;
    }
};
struct HullDynamic : public multiset <Line> { //
      will \ maintain \ upper \ hull \ for \ maximum
    bool bad(iterator y) {
         \mathbf{auto} \ z \ = \ n \operatorname{ext} \left( \, y \, \right) \, ;
         if (y == begin()) 
             if (z == end()) return 0;
             return y->m == z->m \&\& y->b <= z->b;
         \mathbf{auto} \ \mathbf{x} = \mathbf{prev}(\mathbf{y});
```

```
if (z == end()) return y->m == x->m && y->b
           <= x->b;
      return (x->b - y->b)*(z->m - y->m) >= (y->b)
           - z -> b) *(y -> m - x -> m);
   void insert_line(ll m, ll b) {
    auto y = insert({ m, b });
      y \rightarrow succ = [=] { return next(y) == end() ? 0}
           : &*next(y); };
      if (bad(y)) { erase(y); return; }
      while (next(y) != end() \&\& bad(next(y)))
           erase(next(y));
      while (y != begin() && bad(prev(y))) erase(
           prev(y);
   ll eval(ll x) {
      auto l = *lower_bound((Line) { x, is_query
      return l.m * x + l.b;
};
```

3.4 Divide and conquer optimization

Dividir elementos em K pilhas sai de $O(KN^2)$ para O(KNlogN).

```
void solve(int i, int left, int right, int kleft,
    int kright){
    if(left > right)
    return;

int jmid = (right+left)/2;
    dp[i][jmid] = 1 << 30;
    int best k = -1;
    for(int k = kleft; k <= min(kright, jmid); k++)
        {
        if(dp[i-1][k] + get(k+1, jmid) < dp[i][jmid
            ]) {
            dp[i][jmid] = dp[i-1][k] + get(k+1, jmid)
            ; // Cost function</pre>
```

```
bestk = k;
}
}
solve(i, left, jmid-1, kleft, bestk);
solve(i, jmid+1, right, bestk, kright);
}

// Chamada fica assim
for(int i = 1; i <= n; i++) // Casos base
dp[1][i] = get(1, i);

for(int i = 2; i <= k; i++)
solve(i, 1, n, 1, n);</pre>
```

3.5 Knuth optimization

Dividir elementos P elementos em A pilhas.

3.6 Otimização com bitmask

dp[i] é igual a um bitmask onde o i-ésimo bit informa se é possível fazer a soma i usando x elementos, onde x é a posição do bitmask.

```
dp[0] = 1;
for(int i = 0; i < n; i++)
  for(int j = sum/2; j >= v[i]; j--)
    dp[j] |= dp[j-v[i]] << 1LL;

int ans = sum/2;
if(n&1){
    ll x = 1LL << (n/2);</pre>
```

```
ll y = 1LL<<(n/2+1);
while (!(dp[ans]&x) && !(dp[ans]&y))
          ans--;
}
else
while (!(dp[ans]&(1LL<<(n/2))))
          ans--;</pre>
```

Capítulo 4

Grafos

4.1 Ford Fulkerson

Encontra o fluxo máximo em $O(|f^*|E)$.

```
\#define MAXN 100000
struct node {
      \quad \textbf{int} \quad v \;, \quad f \;, \quad c \;; \quad
       node(){}
       \mathtt{node}\left(\overset{.}{\mathbf{int}}\ \underline{\phantom{a}}v\,,\ \mathbf{int}\ \underline{\phantom{a}}f\,,\ \mathbf{int}\ \underline{\phantom{a}}c\right)\{
            v = v, f = f, c = c;
};
vector < node > edges;
vector < int > graph [MAXN];
int vis [MAXN];
int cnt;
\mathbf{void} add(\mathbf{int} u, \mathbf{int} v, \mathbf{int} c){
       edges.pb(node(v, 0, c));
       \overline{\mathtt{graph}}\,[\,u\,]\,.\,\mathtt{pb}\,(\,\mathtt{ed}\,\mathtt{ges}\,.\,\mathtt{si}\,\mathtt{ze}\,(\,)\,-1)\,;
       edges.pb(node(u, 0, 0));
       \operatorname{graph}\left[\,v\,\right]\,.\,\operatorname{pb}\left(\,\operatorname{ed}\operatorname{ges}\,.\,\operatorname{size}\,\left(\,\right)-1\right)\,;
int dfs(int s, int t, int f){
       if (s == t)
       return f;
       vis[s] = cnt;
```

```
for(auto e : graph[s]) {
      if(vis[edges[e].v] < cnt \&\& edges[e].c-edges
          [e].f > 0){
         if(int x = dfs(edges[e].v, t, min(f,edges
            [e].c-edges[e].f))){
            edges[e].f += x;
            edges[e^1].f -= x;
            return x;
      }
   return 0;
int maxFlow(int s, int t){
  int ans = 0;
   cnt = 1;
   memset(vis, 0, sizeof vis);
   while (int flow = dfs(s, t, 1 << 30)) {
      ans += flow;
      cnt++;
   return ans;
```

4.2 Edmonds Karp

Troca a dfs() do Ford Fulkerson por uma bfs() e o fluxo máximo fica em $O(VE^2)$.

4.3 Dinic

Encontra o fluxo máximo em $O(V^2E)$.

```
#define MAXN 5050
#define inf 0x3f3f3f3f

struct node{
   int v, f, c;
   node() {}
   node(int _v, int _f, int _c) {
      v = _v, f = _f, c = _c;
   }
};
vector<node> edges;
```

```
vector<int> graph [MAXN];
int dist [MAXN];
int ptr [MAXN];

void add(int u, int v, int c){
  edges.pb(node(v, 0, c));
  graph [u].pb(edges.size()-1);
  edges.pb(node(u, 0, 0));
  graph [v].pb(edges.size()-1);
}
```

```
\begin{array}{ll} \textbf{bool} & \text{bfs(int s, int t)} \{\\ & \text{memset(dist, inf, sizeof dist)}; \end{array}
                                                                                            int e = graph[s][i];
                                                                                            \mathbf{i}\,\mathbf{f}\,(\;\mathrm{dist}\;[\;\mathrm{edges}\,[\;\mathrm{e}\;]\;.\,\mathrm{v}\,]\;==\;\;\mathrm{dist}\;[\;\mathrm{s}\,]+1\;\;\&\&\;\;\mathrm{edges}\,[\;\mathrm{e}\;
                                                                                                  ].c-edges[e].f>0){
     dist[s] = 0;
     queue < int > q;
                                                                                                 if(int x = dfs(edges[e].v, t, min(f,
     q.push(s);
                                                                                                       edges[e].c-edges[e].f))){
                                                                                                     edges[e].f += x;
                                                                                                     edges[e^1].f -= x;
     while (!q.empty()) {
         int u = q.front(); q.pop();
                                                                                                     return x;
         for (auto e : graph [u]) {
               \mathbf{if}(\operatorname{dist}[\operatorname{edges}[e].v] == \inf \&\& \operatorname{edges}[e].c - \operatorname{edges}[e].f > 0) \{ 
                                                                                           }
                  q.push(edges[e].v);
                   dist[edges[e].v] = dist[u] + 1;
                                                                                       return 0;
              }
         }
                                                                                  int maxFlow(int s, int t){
                                                                                       int ans = 0;
     return dist[t] != inf;
                                                                                       \mathbf{while}(bfs(s, t)){
                                                                                           }
                                                                                            \mathbf{while}\,(\,\mathbf{int}\ f\ =\ \mathrm{d}\,f\,s\,(\,s\,\,,\ t\,\,,\ i\,n\,f\,\,)\,)
int dfs(int s, int t, int f){
                                                                                            ans += f;
    if(s == t)
                                                                                       }
     return f;
                                                                                       return ans;
     for(int \& i = ptr[s]; i < graph[s].size(); i++){
```

4.4 Min cost max flow

Máximo fluxo com custo mínimo.

```
#define MAXN 1100
#define inf 0x3f3f3f3f
struct node{
    int v, f, c, val;
    node(){}
    node(int \_v, int \_f, int \_c, int \_val){
        v = v, f = f, c = c, val = val;
};
int v;
vector < node > edges;
vector < int > graph [MAXN];
int dist[MAXN], ptr[MAXN], pai[MAXN];
\mathbf{void} \ \mathrm{add} \left( \ \mathbf{int} \ \ \mathbf{u} \ , \ \ \mathbf{int} \ \ \mathbf{v} \ , \ \ \mathbf{int} \ \ \mathbf{c} \ , \ \ \mathbf{int} \ \ \mathbf{val} \ \right) \left\{ \right.
    edges.pb(node(v, 0, c, val));
    graph[u].pb(edges.size()-1);
    edges.pb(node(u, 0, 0, -val));
    graph[v].pb(edges.size()-1);
}
ii operator + (ii a, ii b) {
    a.fst += b.fst;
    a.snd += b.snd;
    return a:
}
bool dijkstra (int s, int t) {
    for(int i = 0; i < v; i++){
        dist[i] = inf;
        pai[i] = -1;
    dist[s] = 0;
    priority\_queue < ii \ , \ vector < ii >, \ greater < ii >> \ q;
    q.push(\overline{i}i(0, s));
    while(!q.empty()){
        int d = q.top().fst, u = q.top().snd;
        q.pop();
```

```
if(d > dist[u])
           continue;
       for (auto e : graph [u]) {
           if(dist[u] + edges[e].val < dist[edges[e
               \ ] \ . \ v \ ] \ \&\& \ edges [\ e\ ] \ . \ c-edges [\ e\ ] \ . \ f \ > \ 0 \ ) \ \{
               dist[edges[e].v] = dist[u] + edges[e].
                   val;
               pai[edges[e].v] = u;
              q.push({dist[edges[e].v], edges[e].v})
           }
       }
   return dist[t] != inf;
ii dfs(int s, int t, int f){
   if(s == t)
       return ii(0, f);
   for(int \& i = ptr[s]; i < graph[s].size(); i++){
       int e = graph[s][i];
       if(pai[edges[e].v] == s && dist[edges[e].v]
           = dist[s] + edges[e].val && edges[e].c-
            edges[e].f > 0){
           i\,i\ x \, = \, i\,i\,(\,e\,d\,g\,e\,s\,[\,e\,]\,.\,\,v\,a\,l\,\,,\,\,\,0\,) \,\,+\,\,d\,f\,s\,(\,e\,d\,g\,e\,s\,[\,e\,]\,.
               ].v, t, min(f, edges[e].c-edges[e].f)
               );
           if(x.snd)
              edges[e].f += x.snd;
               edges[e^1].f -= x.snd;
              return x;
           }
       }
   return ii(0, 0);
```

```
ii get(int s, int t){
    ii ans(0, 0);
    while(dijkstra(s, t)){
        memset(ptr, 0, sizeof ptr);
        ii x;

    while((x = dfs(s, t, inf)).snd)
        ans = ans + x;
    }
    return ans;
}
```

4.5 Stoer-Wagner

Custo mínimo para quebrar o grafo em dois componentes.

```
#define NN 105 // Vertices #define MAXW 105 // Max\ value\ of\ edge
                                                                                             int zj = -1;
                                                                                              for (int j = 1; j < n; j++)
                                                                                              i\,f\,(\,!\,a\,[\,v\,[\,j\,]\,]\ \&\&\ (\,z\,j\ <\,0\ |\,|\ w\,[\,j\,]\ >\,w\,[\,z\,j\,]\,)\,)
int g[NN][NN], v[NN], w[NN], na[NN]; //graph
                                                                                              zj = j;
      comeca com tudo 0
\mathbf{bool} \ \ a\,[\,\mathrm{NN}\,]\;;
                                                                                              a[v[zj]] = true;
int minCut(int n)
                                                                                              if(i == n - 1)
     for(int i = 0; i < n; i++)
                                                                                                  best = min(best, w[zj]);
     v[i] = i;
                                                                                                  {f for} \, (\, {f int} \ j = 0 \, ; \ j < n \, ; \ j +\!\!\!\! +)
                                                                                                  g[v[j]][prev] = g[prev][v[j]] += g[v[
     int best = MAXW * n * n;
                                                                                                        zj]][v[j]];
     \mathbf{while}(n > 1)
                                                                                                  v \, [ \,\, {\bf z} \, {\bf j} \,\, ] \,\, = \,\, v \, [- - n \,\, ] \,\, ;
                                                                                                  break;
         a[v[0]] = true;
         for (int i = 1; i < n; i++)
                                                                                              p\,r\,e\,v\ =\ v\,[\ z\,j\ ]\ ;
              a[v[i]] = false;
                                                                                              for(int j = 1; j < n; j++)
              na[i - 1] = i;
                                                                                              if (!a[v[j]])
              w\,[\;i\;]\;=\;g\,[\,v\;[\;0\;]\,]\,[\,v\;[\;i\;]\,]\;;
                                                                                             w[\ j\ ] \ += \ g\ [\ v\ [\ z\ j\ ]\ ]\ [\ v\ [\ j\ ]\ ]\ ;
         int prev = v[0];
                                                                                    return best;
         for (int i = 1; i < n; i++)
```

4.6 Tarjan

Componentes fortemente conexos em O(V+E).

```
#define MAXN 100100
vector < int > graph [MAXN];
stack < int > st;
int in [MAXN], low [MAXN], vis [MAXN], cnt;
int sccs;

void dfs(int u) {
   in [u] = low [u] = cnt++;
   vis [u] = 1;
   st.push(u);

   for (auto v : graph [u]) {
      if (!vis [v]) {
        dfs(v);
        low [u] = min(low [u], low [v]);
      }
      else
        low [u] = min(low [u], in [v]);
   }
   if (low [u] == in [u]) {
```

4.7 Pontos de articulação

Complexidade O(V + E).

```
sccs++;
       int x;
       do{
          x = st.top();
          st .pop();
          i\,n\;[\,x\,]\;=\;1\!<\!<\!30;
       \} while (x != u);
   }
void tarjan(int n){
   cnt = sccs = 0;
   memset(vis, 0, sizeof vis);
   while (! st . empty())
      st .pop();
   for (int i = 0; i < n; i++)
       if (! v is [ i ] )
          dfs(i);
```

```
\#define MAXN 100100
vector < int > graph [MAXN];
int in [MAXN], low [MAXN], vis [MAXN], cnt;
vector < int > points;
void dfs(int u, int p, int root){
   in[u] = low[u] = cnt++;
   vis[u] = 1;
   int total = 0;
   bool ok = 0;
   for (auto v : graph[u]) {
   if (!vis[v]) {
          dfs(v, u, root);
          low[u] = min(low[u], low[v]);
          total++:
          if(low[v] >= in[u])
             0k = 1:
          // if(low[v] > in[u]) u-v eh uma ponte
```

4.8 LCA (Sparce Table)

Complexidade $\langle O(nlog), O(log) \rangle$.

4.9 Posição de elemento em K passos em um ciclo

Encontra onde estará um elemento após executar K passos dentro de um ciclo O(nlogn)

```
#define N 100000

#define LOG 31

int dp[N][LOG];

// Caso base

for (int i = 0; i < n; i++)

dp[i][0] = ligacao[i];
```

```
for(int i = 1; i < LOG; i++)
  for(int j = 0; j < n; j++)
    dp[j][i] = dp[dp[j][i-1]][i-1];

for(int j = 0; j < LOG; j++)
  if(k&(1<<j))
    u = dp[u][j];</pre>
```

4.10 Hopcroft Karp

Maior matching em grafo bipartido. O(E * sqrt(V))

```
#define MAXN 100100
vector<int> graph [MAXN];
int dist[MAXN], match[MAXN];
```

```
bool bfs(){ queue<int> q;
```

```
\quad \textbf{for} \, (\, \textbf{auto} \  \, \textbf{v} \  \, : \  \, \textbf{graph} \, [\, \textbf{u} \, ] \, ) \, \{ \,
      \label{eq:for_int} \mbox{for} \, (\, \mbox{int} \  \, i \, = \, 1 \, ; \  \, i \, < = \, n \, ; \  \, i \, + +) \{
                                                                                                                                       \hspace{.15in} \textbf{if} \hspace{.08in} (\hspace{.08in} \mathtt{dist} \hspace{.08in} [\hspace{.08in} \mathtt{match} \hspace{.08in} [\hspace{.08in} \mathtt{v}\hspace{.08in}]\hspace{.08in}] \hspace{.15in} = \hspace{.15in} \hspace{.15in} \hspace{.15in} \mathtt{dist} \hspace{.08in} [\hspace{.08in} \mathtt{u}\hspace{.08in}] + 1) \hspace{.08in} \{
             if (! match [ i ] ) {
                   dist[i] = 0;
                                                                                                                                              if ( dfs ( match [ v ] ) ) {
                                                                                                                                                    \  \, match\,[\,v\,] \ = \ u\;;
                   q.push(i);
                                                                                                                                                    match[u] = v;
             else
                                                                                                                                                    return 1;
             \mathrm{d}\,i\,s\,t\,\left[\;i\;\right]\;=\;1\!<\!<\!30;
                                                                                                                                      }
      dist[0] = 1 < < 30;
                                                                                                                                 dist[u] = 1 << 30;
      while (!q.empty()) {
                                                                                                                                return 0;
            int u = q.front(); q.pop();
             if(u){
                                                                                                                          return 1;
                   for(auto v : graph[u])
if(dist[match[v]] == 1<<30){
    dist[match[v]] = dist[u]+1;</pre>
                                                                                                                     // Grafo indexado de 1
                                                                                                                   int hopcroftKarp(){
                          q. push (match [v]);
                                                                                                                          int ans = 0;
                                                                                                                          memset (match, 0, sizeof match);
            }
                                                                                                                          while (bfs())
                                                                                                                                for (int^{i} = 1; i \le n; i++)
      return dist [0] != 1 << 30;
                                                                                                                                       if(!match[i] && dfs(i))
}
                                                                                                                                            ans++;
                                                                                                                          return ans;
bool dfs(int u){
      if(u){
```

4.11 Blossom

Matching para grafos genéricos.

```
int lca(vi &match, vi &base, vi &p, int a, int b){
    vi used (match.size(), 0);
    while(1){
         a = base[a];
         used[a] = 1;
         if(match[a] == -1)
            break;
         a = p[match[a]];
    while(1){
        b = base[b];
         if(used[b])
            return b;
         b = p[match[b]];
    }
}
void markPath (vi &match, vi &base, vi &blossom, vi
       &p, int v, int b, int children) {
    for (; base [v] != b; v = p[match[v]]) {
         blossom [base [v]] = blossom [base [match [v]]] =
                true
         p[v] = children;
         \verb|children| = match[v];
}
\textbf{int} \hspace{0.2cm} \texttt{findPath} \hspace{0.1cm} (\hspace{0.1cm} \texttt{vector} \hspace{0.1cm} < \hspace{0.1cm} \texttt{vi} \hspace{0.1cm} \hspace{0.1cm} \& \hspace{0.1cm} \texttt{graph} \hspace{0.1cm}, \hspace{0.1cm} \texttt{vi} \hspace{0.1cm} \& \hspace{0.1cm} \texttt{p} \hspace{0.1cm},
     int root) {
    int n = graph.size();
    vi used(n, 0);
    \  \   \   \   \   \  fill (p.begin () \ , \ p.end () \ , \ -1);
    vi base(n, 0);
    for (int i = 0; i < n; i++)
         base[i] = i;
    used[root] = 1;
    \mbox{int} \ \ qh \ = \ 0 \ , \ \ qt \ = \ 0 \, ;
    vi q(n, 0);
```

```
q\,[\,\,q\,t\,++]\,\,=\,\,r\,o\,o\,t\,\,;
    \mathbf{while}(qh < qt)
         \quad \mathbf{int} \quad v \ = \ q \, [\, q \, h \, + \, + \,] \, ; \quad
         for (int to : graph [v]) {
             if(base[v] = base[to] || match[v] == to)
                  continue:
             if(to == root || match[to] != -1 && p[
    match[to]] != -1) {
                  \label{eq:curbase} \textbf{int} \ \ \texttt{curbase} \ = \ \texttt{lca} \, (\, \texttt{match} \; , \; \; \texttt{base} \; , \; \; \texttt{p} \; , \; \; \texttt{v} \; ,
                        to);
                  vi blossom (n, 0);
                  markPath(match, base, blossom, p, v,
                        curbase, to);
                  markPath(match, base, blossom, p, to,
                        curbase, v);
                  for (int i = 0; i < n; i++){
                      if(blossom[base[i]]){
                           base[i] = curbase;
                           if (! used[i]) {
                               used[i] = true;
                               q\,[\; q\,t\,++]\; =\; i\; ;
                      }
                 }
             else if (p[to] == -1){
                 p[to] = v;
                  if(match[to] == -1)
                     return to;
                  to = match[to];
                  used[to] = true;
                  q\,[\; q\,t\,++]\; =\; t\,o\;;
        }
    }
    return -1;
int maxMatching(vector<vi> &graph){
    int n = graph.size();
```

```
vi \quad match(n, -1);
vi p(n, 0);
for(int i = 0; i < n; i++){
                                                                  }
   if(match[i] == -1){
       int v = findPath(graph, match, p, i);
                                                                  int matches = 0;
                                                                  for (int i = 0; i < n; i++)
       while (v != -1)
           \quad \textbf{int} \quad pv \ = \ p \, [\, v \,\,] \ ;
                                                                      if(match[i] != -1)
           int ppv = match[pv];
                                                                         matches++;
           \mathrm{match}\,[\,v\,]\ =\ pv\;;
                                                                  return matches;
           match[pv] = v;
           v = ppv;
```

4.12 Centroid decomposition

```
\#define MAXN 10000
                                                                                                        return u;
vector < int > tree [MAXN];
int subTree[MAXN], removed[MAXN], parent[MAXN];
                                                                                                  void decompose(int root, int p){
                                                                                                        t\,ot\,a\,l\,V\ =\ 0\,;
int totalV;
\mathbf{int} \hspace{0.1cm} \mathrm{dfs1} \hspace{0.1cm} (\hspace{0.1cm} \mathbf{int} \hspace{0.1cm} u \hspace{0.1cm}, \hspace{0.1cm} \mathbf{int} \hspace{0.1cm} p \hspace{0.1cm}) \hspace{0.1cm} \{
                                                                                                        dfs1(root, root);
                                                                                                        int centroid = dfs2 (root, root);
      subTree[u] = 1;
      totalV++;
                                                                                                        if(p == -1)
      for(auto v : tree[u])
                                                                                                             p = centroid;
      if(v != p && !removed[v]){
                                                                                                        parent [centroid] = p;
           dfs1(v, u);
                                                                                                        removed[centroid] = 1;
            subTree[u] += subTree[v];
                                                                                                        for (auto v : tree [centroid])
                                                                                                             if(!removed[v] \&\& v != p)
}
                                                                                                                   decompose(v, centroid);
\mathbf{int} \hspace{0.1cm} \mathtt{dfs2} \hspace{0.1cm} (\hspace{0.1cm} \mathbf{int} \hspace{0.1cm} \mathtt{u} \hspace{0.1cm}, \hspace{0.1cm} \mathbf{int} \hspace{0.1cm} \mathtt{p} \hspace{0.1cm}) \hspace{0.1cm} \{
      \quad \quad \mathbf{for} \, (\, \dot{\mathbf{auto}} \, \, \mathbf{v} \, : \, \, \mathbf{tree} \, [\, \mathbf{u} \, ] \, )
           if(v != p && !removed[v] && subTree[v] >
                                                                                                      Chamar na main
                  totalV/2)
                                                                                                  decompose(0, -1);
           \mathbf{return} \ \mathrm{dfs2}(v, u);
```

4.13 Heavy-Light Decomposition

Divide a árvore em logn cadeias com isso pode responder consultas de máximo/mínimo/soma em um caminho entre dois vértices em log^2n se utilizar uma Segment Tree.

```
#define MAXN 100100
#define LOG 20
vector < ii> tree [MAXN];
int parent [MAXN] [LOG], height [MAXN], subTree [MAXN
int head [MAXN], chainNode [MAXN], posArray [MAXN];
int cnt, pos;
int pesos [MAXN];
void dfs(int u, int p, int h){
    parent \, [\, u \, ] \, [\, 0 \, ] \ = \ p \, ;
    height[u] = h;
    subTree[u] = 1;
    for(int i = 1; i < LOG; i++)
    if (parent [u] [i−1] != −1)
    parent[u][i] = parent[parent[u][i-1]][i-1];
    for (auto v : tree [u])
    if(v.fst != p){
       dfs(v.fst, u, h+1);
       subTree[u] += subTree[v.fst];
}
void hld(int u, int p, int val){
    \mathbf{if}(\text{head}[\text{cnt}] = -1)
```

```
head[cnt] = u;
    chain Node [u] = cnt;
    posArray[u] = pos;
    pesos[pos++] = val;
    int id = -1, sz = -1, edge;
    for (auto v : tree [u])
    if(v.fst != p && subTree[v.fst] > sz){
        sz = subTree[v.fst];
        id = v.fst;
        edge = v.snd;
    \mathbf{if} (id != -1)
    hld(id, u, edge);
    for (auto v : tree [u])
    if(v.fst != p && v.fst != id){
         cnt++;
         hld (v.fst, u, v.snd);
    }
}
\mathbf{int} \ \gcd \operatorname{Lca} \left( \, \mathbf{int} \ u \, , \ \mathbf{int} \ v \, \right) \, \{
    if(height[u] > height[v])
    \operatorname{swap} \left( \, u \;, \quad v \; \right) \;;
    for(int i = LOG-1; i >= 0; i--)
if(parent[v][i]!= -1 && height[parent[v][i]]
         >= height [u])
```

```
v = parent[v][i];
                                                                                     \mathtt{ans} \; = \; \max \left( \, \mathtt{ans} \, , \; \; \mathtt{get} \, \left( \, \mathtt{posArray} \, [ \, \mathtt{head} \, [ \, \mathtt{chainU} \, ] \, \right] \, ,
                                                                                          posArray[u]));
    if(v == u)
    return u;
                                                                                    u = head[chainU];
                                                                                     u = parent[u][0];
    for(int i = LOG-1; i >= 0; i--)
    if(parent[u][i] != parent[v][i]) {
        v = parent[v][i];
                                                                                return ans;
        u = parent[u][i];
    return parent [u][0];
                                                                               Maior\ aresta\ entre\ o\ path\ u-v
}
                                                                            int solve(int u, int v, int lca){
                                                                                if(u == v)
// get() eh a estrutura de dados que sera
                                                                                return 0;
                                                                                \textbf{return} \ \max(\ solve(\ u\ , \ lca\ )\ , \ solve(\ v\ , \ lca\ )\ )\ ;
      utilizada
int solve(int u, int v){
    \label{eq:int_chain_U} \textbf{int} \hspace{0.2cm} \texttt{chain} \textbf{N} \, \texttt{ode} \, [\, \textbf{u} \, ] \, , \hspace{0.2cm} \texttt{chain} \, \textbf{N} \, \texttt{ode} \, [\, \textbf{v} \,
                                                                            // IN MAIN
                                                                            memset(parent, -1, sizeof parent);
    int ans = 0;
                                                                            memset(head, -1, sizeof head);
    while(1){
                                                                            cnt = pos = 0;
        chainU = chainNode[u];
                                                                            d\,f\,s\,\left(\,0\,\,,\,\,0\,\,,\,\,0\,\right)\,;
         if(chainU = chainV){
                                                                            hld(0, 0, 0);
             i f ( u == v )
                                                                            // Construir alguma estrutura de consulta em range
             break;
                                                                                   no \ array \ pesos
             ans = max(ans, get(posArray[v]+1,
                                                                            // Ele tem tamanho pos, pode ser Segtree,
                  posArray[u]));
                                                                                  SparseTable, BIT, etc.
                                                                                build (pos);
             break:
```

4.14 Dijkstra

Complexidade $\langle O((V+E)logE) \rangle$.

```
#define INF 0x3f3f3f3f3f
                                                                                  int d = pq.top().first, u = pq.top().second;
typedef pair < int, int > ii;
                                                                                  pq.pop();
\textbf{typedef} \ \ \text{vector} \negthinspace < \negthinspace \text{ii} \negthinspace > \ \ \text{vii} \enspace ;
                                                                                  if(d > dist[u])
vector < vii > graph;
                                                                                  continue;
int V, E;
                                                                                  {f for}\,(\,{f int}\ i\ =\ 0\,;\ i\ <\ {f graph}\,[\,u\,]\,.\,\,{f size}\,(\,)\,;\ i++)\{
void dijkstra(int s){
                                                                                       ii v = graph[u][\bar{i}];
    vector < int > dist(V, INF);
                                                                                       if(dist[u] + v.second < dist[v.first]) {
    dist[s] = 0;
                                                                                           dist[v.first] = dist[u] + v.second;
    priority\_queue < ii \;, \; \; vector < ii >, \; \; greater < ii > > \; pq
                                                                                           pq.push(ii(dist[v.first], v.first));
                                                                                  }
    pq.push(ii(0, s));
                                                                              }
                                                                          }
    while (!pq.empty()) {
```

4.15 Ahu - Tree isomorfismo

Verifica se duas árvores são iguais, ou seja, possui a mesma configuração dos nós. O(nlogn).

```
struct tree {
    int n;
    vector < vector < int >> adj;
    tree(int n) : n(n), adj(n) {
      void add_edge(int src, int dst) {
         adj[src].push_back(dst);
         adj[dst].push_back(src);
    }
    vector < int > centers() {
      vector < int > prev;
      int u = 0;
      for (int k = 0; k < 2; ++k) { // double sweep</pre>
```

```
queue<int> que;
prev.assign(n, -1);
que.push(prev[u] = u);
while (!que.empty()) {
    u = que.front(); que.pop();
    for (auto v: adj[u]) {
        if (prev[v] >= 0) continue;
            que.push(v);
            prev[v] = u;
        }
    }
}
vector<int> path = {u}; // median on a path
while (u != prev[u])
```

```
path.push\_back(u = prev[u]);
        int m = path.size();
        if (m \% 2 = 0) return \{path [m/2-1], path [m
              /2]};
        else
                               return \{path[m/2]\};
    }
    vector < vector < int >> layer;
    vector < int > prev;
    \mathbf{int} \ \ \mathsf{levelize} \, (\, \mathbf{int} \ \ \mathsf{r} \,) \ \ \{ \ \ // \ \ \mathit{split} \ \ \mathit{vertices} \ \ \mathit{into}
        prev.assign(n,-1); prev[r] = n;
        layer = \{\{r\}\};
        while (1) {
            {\tt vector}\!<\!\!\mathbf{int}\!>\ \mathtt{next}\;;
            for (int u: layer.back()) {
                for (int v: adj[u]) {
                     if (prev[v] >= 0) continue;
                     prev[v] = u;
                     next push back(v);
            if (next.empty()) break;
            layer.push back(next);
        return layer.size();
};
bool isomorphic (tree S, int s, tree T, int t) {
    \quad \textbf{if} \ (S.n \ != \ T.n) \ \textbf{return} \ \textbf{false} \, ; \\
    if (S.levelize(s) != T.levelize(t)) return
          false:
    vector < vector < int>> longcodeS(S.n+1), longcodeT
          (T.n+1);
    v\,ect\,or\!<\!\mathbf{int}\!>\;co\,deS\,(S\,.\,n)\;,\;\;codeT\,(T\,.\,n\,)\;;
```

```
map < vector < int >, int > bucket;
      for (int u: S.layer[h]) {
          sort (all (longcodeS [u]));
          bucket[longcodeS[u]] = 0;
      for (int u: T.layer[h])
          sort (all (longcodeT [u]));
          bucket[longcodeT[u]] = 0;
      int id = 0;
      for (auto &p: bucket) p.snd = id++;
      for (int u: S.layer[h]) {
         codeS[u] = bucket[longcodeS[u]];
          longcodeS[S.prev[u]].push_back(codeS[u]);
      codeT[u] = bucket[longcodeT[u]];
          longcodeT[T.prev[u]].push back(codeT[u]);
   return codeS[s] == codeT[t];
\textbf{bool} \ \ isomorphic (\, tree \ S \,, \ \ tree \ T) \ \ \{
   \mathbf{auto} \ \mathbf{x} \ = \ \mathbf{S.centers} \, (\,) \,\, , \ \ \mathbf{y} \ = \ \mathbf{T.centers} \, (\,) \,\, ;
   if (x.size() != y.size()) return false;
   if (isomorphic(S, x[0], T, y[0])) return true;
   return x.size() > 1 \&\& isomorphic(S, x[1], T, y)
       [0]);
// Main
tree a(n), b(n);
a.add\_edge(x, y);
b.add_e^-edge(z, w);
isomorphic(a, b);
```

Capítulo 5

Matemática

5.1 Eliminação de Gauss com o XOR

Retorna o valor máximo de xor que é possível se obter fazendo xor entre os elementos da array. Pode ser necessário o ull ou bitset.

```
modified.pb(buckets[i][0]);
int len(ll x){
                                                                              for(int j = 1; j < buckets[i].size(); j
   \mathbf{int} \ \ a\, n\, s \ = \ 0\,;
                                                                                   ++){}
   while(x){
                                                                                  ll temp = buckets[i][0] ^ buckets[i][j
                                                                                      1;
       ans++;
       x >>= 1;
                                                                                  buckets[len(temp)].pb(temp);
   return ans;
                                                                          }
}
ll gaussxor(ll arr[], int n){
                                                                      // Ans = maximum x or subset
   vector < ll > buckets [65];
                                                                      ll ans = 0;
   for (int i = 0; i < n; i++)
                                                                      \textbf{for}\,(\,\textbf{auto}\,\,\texttt{m}\,\,:\,\,\,\texttt{modified}\,)
       buckets[len(arr[i])].pb(arr[i]);
                                                                          i f (ans < ans^m)
                                                                             ans = m;
                                                                      {\bf return}\ {\bf ans}\;;
   vector < ll > modified;
   for(int i = 64; i; i--){
       if (buckets [i]. size ()) {
```

5.2 Fórmula de Legendre

Dados um inteiro n e um primo p, calcula o expoente da maior potência de p que divide n! em O(log n).

```
11 legendre(ll n, ll p){
    ll ans = 0;
    ll prod = p;
    while(prod <= n) {
        ans += n/prod;
    }
    prod *= p;
    return ans;
}</pre>
```

5.3 Número de fatores primos de N!

Dado um N encontra quantos fatores o N! possui

```
// Sieve of Eratosthenes to mark all prime number
// in array prime as 1
void sieve(int n, bool prime[])
{
    // Initialize all numbers as prime
    for (int i=1; i<=n; i++)
    prime[i] = 1;

    // Mark composites
    prime[1] = 0;
}
</pre>
for (int i=2; i*i<=n; i++)
{
    for (int j=i*i; j<=n; j += i)
        prime[j] = 0;
}

}
```

```
// Returns the highest exponent of p in n!
int expFactor(int n, int p)
{
   int x = p;
   int exponent = 0;
   while ((n/x) > 0)
   {
      exponent += n/x;
      x *= p;
   }
   return exponent;
}

// Returns the no of factors in n!
countFactors(int n)
{
    // ans stores the no of factors in n!
```

```
11 ans = 1;

// Find all primes upto n
bool prime[n+1];
sieve(n, prime);

// Multiply exponent (of primes) added with 1
for (int p=1; p<=n; p++)
{
    // if p is a prime then p is also a
    // prime factor of n!
    if (prime[p]==1)
    ans *= (expFactor(n, p) + 1);
}

return ans;
}</pre>
```

5.4 Trailing zeros in factorial

```
int findTrailingZeros(int n) {
    // Initialize result
    int count = 0;

// Keep dividing n by powers of 5 and update
        count
```

5.5 Número de divisores de N!

Dado um N encontra quantos divisores o N! possui

```
// all Primes[] stores all prime numbers less
// than or equal to n.
vector < ull > allPrimes;
// Fills above vector all Primes [] for a given n
void sieve(int n)
   // Create a boolean array "prime [0..n]" and
   // initialize all entries it as true. A value
   // in prime[i] will finally be false if i is // not a prime, else true.
   vector < bool > prime(n+1, true);
   // Loop to update prime[]
   for (int p=2; p*p \le n; p++)
      // If prime[p] is not changed, then it // is a prime
      if (prime[p] == true)
      {
          // Update all multiples of p
          for (int i=p*2; i \le n; i += p)
         prime[i] = false;
      }
   }
   // Store primes in the vector allPrimes
   for (int p=2; p \le n; p++)
   if (prime[p])
   allPrimes.push back(p);
}
```

```
// Function to find all result of factorial number
ull factorialDivisors(ull n)
   sieve(n); // create sieve
   // Initialize result
   ull result = 1;
   // find exponents of all primes which divides n
   // and less than n
    \label{eq:formula} \textbf{for (int} \quad i=0; \quad i \ < \ \texttt{allPrimes.size()}; \quad i++) 
       // Current divisor
      ull p = all Primes[i];
         Find the highest power (stored in exp),
      // of allPrimes[i] that divides n using
      // Legendre's formula.
      ull exp = 0;
       \mathbf{while} \ (p \le n)
          \exp = \exp + (n/p);
          p = p*allPrimes[i];
       // Multiply exponents of all primes less
       // than n
       result = result *(exp+1);
   // return total divisors
   return result;
```

5.6 Grundy Number

Faz o xor de todos os números grundy de todas as pilhas, se for diferente de 0 ganha o jogo.

```
if(x perde jogo)
    return 0;

ll ans = 0;
    while(st.count(ans)) ans++;
    return ans;
}

unordered_set<ll> st;
for(int i = 0; i < l; i++)
    st.insert(grundy(novoX)); // Transicoes
    return mex(st);
}</pre>
```

5.7 Baby-Step Giant-Step para Logaritmo Discreto

Resolve a equação $a^x = b(modm)$ em O(sqrt(m)logm). Retorna -1 se não há solução.

```
template <typename T>
T baby (T a, T b, T m) {
                                                                                                      \label{eq:for_to_sign} \begin{array}{lll} \mbox{for} & (T & i = 0 \,, & c\,u\,r = b \,; & i < = n \;; & + + i \,\,) \end{array} \left. \right. \left. \left. \left\{ \right. \right. \right. \right.
                                                                                                            if (vals.count(cur)) {
     a %= m; b %= m;
     T\ n = \ (T)\ sqrt\ (m + \ .0)\ + \ 1;
                                                                                                                 T ans = vals[cur] * n - i;
     T an = 1;
                                                                                                                 if (ans < m)
     \mbox{\bf for} \ (T \ i = 0 \, ; \ i < n \; ; \ + + i \, )
                                                                                                                      return ans;
          an = (an * a) \% m;
     map < T, T > vals;
                                                                                                                 cur = (cur * a) \% m;
     \label{eq:for_to_sign} \textbf{for} \ (T \ i \!=\! 1 \,, \ cur \!=\! an \;; \ i \!<\! =\! n \;; \ +\!\!+ i \;) \ \{
           if (!vals.count(cur))
                                                                                                      return -1;
                vals[cur] = i;
           cur = (cur * an) % m;
```

5.8 Baby-Step Giant-Step FAST

Resolve a equação $a^x = b(modm)$ em O(sqrt(m)logm). Retorna -1 se não há solução.

```
class Hash
    static const int HASHMOD = 7679977;
    int top, myhash[HASHMOD + 100], value[HASHMOD +
           [100], stack [1 << 16];
    int locate (const int x) const
    {
        int h = x \% HASHMOD;
         while (myhash[h] != -1 \&\& myhash[h] != x) ++
        return h:
    public:
    Hash\left(\right) \ : \ top\left(0\right) \ \left\{ \ memset\left(myhash \, , \ 0xFF \, , \ \textbf{sizeof}\right(\right.
         myhash)); }
    void insert(const int x, const int v)
        const int h = locate(x);
        \mathbf{if} (myhash [h] == -1)
        myhash[h] = x, value[h] = v, stack[++top] =
    int get (const int x) const
        \mathbf{const} \ \mathbf{int} \ h = \ \mathsf{locate}(x);
        return myhash[h] == x ? value[h] : -1;
    \mathbf{void} \ \mathsf{clear} \ () \ \ \{ \ \ \mathbf{while} \ \ (\texttt{top}) \ \ \mathsf{myhash} \ [ \ \mathsf{stack} \ [ \ \mathsf{top} - - ] ]
          = -1;  }
} myhash;
struct Triple
```

```
Triple(const ll a, const ll b, const ll c) : x(
         a), y(b), z(c) { }
Triple ExtendedGCD(const ll a, const ll b)
    if (b == 0) return Triple(1, 0, a);
    \textbf{const} \hspace{0.2cm} \texttt{Triple} \hspace{0.2cm} \texttt{last} \hspace{0.2cm} = \hspace{0.2cm} \texttt{ExtendedGCD} \hspace{0.1cm} (\hspace{0.1cm} \texttt{b} \hspace{0.1cm}, \hspace{0.1cm} \texttt{a\%b} \hspace{0.1cm}) \hspace{0.1cm} ;
    return Triple(last.y, last.x - a / b * last.y,
          last.z);
ll Baby Step (ll A, ll B, ll C)
    const int sqrtn = static cast < int > (std :: ceil (
          std::sqrt(C)));
    ll base = 1:
    myhash.clear();
    for (int i = 0; i < sqrtn; ++i)
        myhash.insert (base, i);
        base = base*A \% C;
    i = 0, j = -1, D = 1;
    for (; i < sqrtn; ++i)
         Triple res = ExtendedGCD(D, C);
        \mathbf{const} \ \mathbf{int} \ \mathbf{c} = \mathbf{C} \ / \ \mathbf{res.z} \, ;
        res.x = (res.x * B / res.z \% c + c) \% c;
        j = myhash.get(res.x);
        if (j != -1) return i * sqrtn + j;
        D = D * base \% C;
```

```
}
return -1;
```

5.9Números de Catalan

Computa os números de Catalan de 0 até n em (nlogn). Olhar mais exemplos no CP3 pg. 206

- $Cat(n) = \text{número de árvores binárias completas de } n+1 \text{ folhas ou } 2^*n+1 \text{ elementos}$
- Cat(n) = número de combinações válidas para n pares de parêntesis.
- Cat(n) = número de formas que o parentesiação de <math>n+1 elementos pode ser feito.
- Cat(n) = número de triangulações de um polígono convexo de n+2 lados.
- Cat(n) = número de caminhos monotônicos discretos para ir de (0,0) a (n,n).

```
 \begin{array}{c} g \, = \, \gcd \left( 2 * (2 * i - 1) \, , \, \, i + 1 \right) \, ; \\ cat \, [\, i \, ] \, = \, \left( (\, 2 * (\, 2 * i - 1)\,) \, / \, g \, \right) * (\, cat \, [\, i \, - 1\,] \, / \, ((\, i + 1) \, / \, g) \\ ) \, ; \\ \} \\ \end{array} \right) \\ \end{array} 
ll cat [MAXN];
void catalan(int n){
        cat[0] = cat[1] = 1;
         ll g;
        for(int i = 2; i \le n; i++){
```

5.10Fórmulas úteis

Olhar mais fórmulas no CP3 pg. 345

- Soma dos n primeiros fibonacci: f(n+2) 1.
- Soma dos n primeiros fibonacci ao quadrado: f(n) * f(n+1).
- Soma dos quadrados de todos números de 1 até n: n*(n+1)*(2n+1)/6.
- Fórmula de Cayley: existem n^{n-2} árvores geradoras em um grafo completo de n vértices.
- Desarranjo: o número der(n) de permutações de n elementos em que nenhum dos elementos fica na posição original é dado por: der(n) = (n-1)(der(n-1) + der(n-2)), onde der(0) = 1 e der(1) = 0.
- Teorema de Erdos Gallai: é condição suficiente para que uma array represente os graus dos vértices de um nó: $d_1 \geq d_2 \geq ... \geq d_n, \; \sum_{i=1}^n d_i = 2k, \; \sum_{i=1}^k d_i \leq k(k-1) + \sum_{i=k+1}^k \min(d_i,k).$
- Fórmula de Euler para grafos planares: V E + F = 2, onde F é o número de faces.
- ullet Círculo de Moser: o número de peças em que um círculo pode ser divido por cordas ligadas a n pontos tais que não se tem 3 cordas internamente concorrentes é dada por: $g(n) = C_4^n + C_2^n + 1$.
- ullet Teorema de Pick: se I é o número de pontos inteiros dentro de um polígono, A a área do polígono e b o número de pontos inteiros na borda, então A = i + b/2 - 1.
- O número de árvores geradores em um grafo bipartido completo é $m^{n-1} \times n^{m-1}$.
- Teorema de Kirchhoff: o número de árvores geradoras em um grafo é igual ao cofator da sua matriz laplaciana L. L = D - A, em que D é uma matriz diagonal em que $a_{ii} = d_i$ e A é a matriz de adjacência.
- Teorema de Konig: a cobertura mínima de vértices em um grafo bipartido (o número mínimo de vértices a serem removidos para se remover todas as arestas) é igual ao pareamento máximo do grafo.
- Teorema de Zeckendorf: qualquer inteiro positivo pode ser representado pela soma de números de Fibonacci que não inclua dois números consecutivos. Para achar essa soma, usar o algoritmo guloso, sempre procurando o maior número de fibonacci menor que o número.
- Teorema de Dilworth: em um DAG que representa um conjunto parcialmente ordenado, uma cadeia é um subconjunto de vértices tais que todos os pares dentro dele são comparáveis; uma anti-cadeia é um subconjunto tal que todos os pares de vértices dele são não comparáveis. O teorema afirma que a partição mínima em cadeias é igual ao comprimenton da maior anti-cadeia. Para computar, criar um grafo bipartido: para cada vértice x, duplicar para u_x e v_x . Uma aresta $x \to y$ é escrita como $u_x \to v_y$. O tamanho da partição mínima, também chamada de largura do conjunto, é N- o emparelhamento máximo.
- Teorema de Mirsky: semelhante ao teorema de Dilworth, o tamanho da partição mínima em anti-cadeias é igual ao comprimento da maior cadeia.

5.11 Fast Fourier Transform - FFT

```
if (i < j) swap(a[i], a[j]);
struct base {
                                                                                              }
     double x, y
     base() : x(0), y(0) \{ \}
                                                                                              for (int len = 2; len <= n; len <<=1) {
     \begin{array}{lll} base(\textbf{double} \ a \,, \ \textbf{double} \ b=0) \ : \ x(a) \,, \ y(b) \ \{\} \\ base \ \textbf{operator}/=(\textbf{double} \ k) \ \{ \ x/=k; \ y/=k; \ \textbf{return} \end{array}
                                                                                                   double ang = 2*M_PI/len * (invert ? -1 : 1);
                                                                                                   base wlen (\cos(ang), \sin(ang));
for (int i=0; i< n; i+=len) {
           (*this); }
     base \ \ \textbf{operator*}(\ base \ a) \ \ \textbf{const} \ \ \{ \ \ \textbf{return} \ \ base \ (x*a.
                                                                                                        base w(1);
          x - y*a.y, x*a.y + y*a.x); }
                                                                                                         \  \  \, \textbf{for} \  \  \, (\, \textbf{int} \  \  \, j = 0 \, ; \  \, j \! < \! l\, e\, n \, \, /\, 2 \, ; \  \, + \! + j \, \, ) \  \  \, \{ \,
     base operator *= (base a) {
                                                                                                             b\,a\,s\,e\ u\ =\ a\,[\,\,i\!+\!j\,]\ ,\quad \  v\ =\ a\,[\,\,i\!+\!j\!+\!l\,e\,n\,\,/\,2\,]\ *\ w
          \mathbf{double} \hspace{0.2cm} t\hspace{0.05cm} x \hspace{0.1cm} = \hspace{0.1cm} x \hspace{0.05cm} *\hspace{0.05cm} a \hspace{0.1cm} .\hspace{0.1cm} x \hspace{0.1cm} - \hspace{0.1cm} y \hspace{0.1cm} *\hspace{0.1cm} a \hspace{0.1cm} .\hspace{0.1cm} y \hspace{0.1cm} ;
          double ty = x*a.y + y*a.x;
                                                                                                             a[i+j] = u + v;
                                                                                                             a[i+j+len/2] = u - v;
          x = tx; y = ty;
          return (*this);
                                                                                                             w *= wlen;
                                                                                                        }
                                                                                                   }
     base operator+(base a) const { return base(x+a.
          x, y+a.y);
     base operator-(base a) const { return base(x-a.
                                                                                              if (invert)
                                                                                              \label{eq:formula} \mbox{for } (\mbox{ int } i = 0; \ i \! < \! n\; ; \ +\! + i\; )
          x, y-a.y;
     double real() { return x; }
double imag() { return y; }
                                                                                              a[i] /= n;
                                                                                         void convolution (vector < base > a, vector < base > b,
typedef complex <double> base; // Se tiver com
                                                                                               vector<br/><br/>base> & res) {
      tempo bom
                                                                                              int n = 1;
                                                                                              while (n < max(a.size(), b.size())) n <<= 1;
void fft (vector<base> & a, bool invert) {
                                                                                              n <<= 1;
     int n = (int) a.size();
                                                                                              a.resize(n), b.resize(n);
                                                                                              fft(a, false); fft(b, false);
     for (int i=1, j=0; i < n; ++i) {
          int bit = n >> 1;
                                                                                              res.resize(n);
          for (; j>=bit; bit>>=1)
    j -= bit;
                                                                                              for (int i=0; i < n; ++i) res [i] = a[i] * b[i];
                                                                                              fft (res, true);
          j += bit;
```

5.12 Convolução Circular

```
template <typename T>
void circularconvolution(vector<T> a, vector<T> b, vector<T> & res) {
   int n = a.size();
   b.insert(b.end(), b.begin(), b.end());
   convolution(a, b, res);
   res = vector<T>(res.begin()+n, res.begin()+(2*n));
}
```

Capítulo 6

Processamento de Strings

6.1 Aho-Corasick

Após inserir todas as strings, chamar a função aho();

```
#define MAXN 100100
#define ALPHA 15
{f int} trie [MAXN] [ALPHA];
int term [MAXN];
int failure [MAXN];
int cnt;
void insert(string s){
    int node = 0;
    for (auto c : s) {
        if (! trie [node] [c-'a'])
        trie[node][c-',a'] = cnt++;
        node = trie[node][c-'a'];
    term[node] = 1;
}
void aho(){
    queue < int > q;
    \quad \textbf{for} \, (\, \textbf{int} \quad i \ = \ 0 \, ; \quad i \ < \, \text{ALPHA} \, ; \quad i + +) \{ \quad
        if(trie[0][i]){
            failure[trie[0][i]] = 0;
            q.push(trie[0][i]);
    while(!q.empty()){
```

int u = q.front(); q.pop();for (int i = 0; i < ALPHA; i++){ ${\bf i}\,{\bf f}\,(\;t\;r\,i\,e\;[\,u\,]\,[\;i\;]\,)\;\{$ int v = failure[u]while (v && !trie[v][i]) v = failure[v];v = trie[v][i];failure[trie[u][i]] = v;term[trie[u][i]] = term[v];q.push(trie[u][i]); } } } int next(int node, int c){ while(node && !trie[node][c]) node = failure[node]; return trie[node][c]; void init(){ memset(trie, 0, sizeof trie); $memset \, (\, t\, erm \; , \quad 0 \; , \quad \textbf{sizeof} \quad t\, erm \,) \; ;$ memset(failure, 0, sizeof failure); memset(vis, 0, sizeof vis); cnt = 1;

6.2 Rabin-Karp

String matching O(|S| + |T|).

```
string s, t; // input
const int p = 31;
vector<ull> p_pow(max(s.size(), t.size()));
p_pow[0] = 1;
for(int i = 1; i < p_pow.size(); i++)
    p_pow[i] = p_pow[i-1]*p;

vector<ull> h(t.size());
for(int i = 0; i < t.size(); i++){
    h[i] = (t[i]-'a'+1) * p_pow[i];
    if(i)
        h[i] += h[i-1];</pre>
```

```
| }
| ull h_s = 0;
| for (int i = 0; i < s.size(); i++)
| h_s += (s[i]-'a'+1) * p_pow[i];
| for (int i = 0; i + s.size()-1 < t.size(); i++){
| ull cur_h = h[i+s.size()-1];
| if(i)
| cur_h -= h[i-1];
| if(cur_h == h_s * p_pow[i])
| cout << i << """;
| }
| </pre>
```

6.3 Repetend: menor período de uma string

Menor período de uma string em O(n).

6.4 Suffix Array

```
\#define MAXN 100100
int suffix [MAXN];
int RA[MAXN], aux [MAXN], lcp [MAXN], invSuffix [MAXN
     ], c[MAXN];
   Lembrar de colocar o ultimo caractere alguem
     menor\ que\ o\ alfabeto
   A..Z pode usar $
// a..z pode usar {
string p;
 // O(n^2 \log n)
bool cmpSlow(int a, int b){
    return p.substr(a) < p.substr(b);
void saSlow(){
    \label{eq:formula} \mbox{\bf for} \, (\, \mbox{\bf int} \  \  \, \mbox{\bf i} \  \, = \  \, 0 \, ; \  \  \, \mbox{\bf i} \, < \, \, p \, . \, \, \mbox{\bf size} \, (\, ) \, \, ; \  \  \, \mbox{\bf i} \, + +)
        suffix[i] = i;
    sort (suffix , suffix+p.size(), cmpSlow);
void lcpSlow(){
    lcp[p.size()-1] = 0;
    \mbox{for} \, (\, \mbox{int} \  \  \, i \, = \, 0 \, ; \  \  \, i \, < \, p \, . \, s \, i \, z \, e \, (\,) \, -1; \  \  \, i \, + +) \{
        int l = 0;
        \mathbf{while} (p[suffix[i]+l] == p[suffix[i+1]+l]) l
        lcp[i] = 1;
    }
}
// O(n log^2(n)) - Se usar o sort()
// O(n \log n)
                      - Se usar counting Sort
int n;
void countingSort(int k){
    memset(c, 0, sizeof c);
    int maxi = max(300, n);
    for(int i = 0; i < n; i++)
       c[RA[i+k]]++;
    int sum = 0;
    for(int i = 0; i < maxi; i++){
        int aux = c[i];
        c[i] = sum;
        sum += aux;
    for(int i = 0; i < n; i++)
       aux[c[RA[suffix[i]+k]]++] = suffix[i];
    for (int i = 0; i < n; i++)
        suffix[i] = aux[i];
}
void saFast(){
    n = p.size();
```

```
memset (RA, 0, sizeof RA);
    \label{eq:for_int} \mbox{for} \, (\, \mbox{int} \, \  \, i \, = \, 0 \, ; \  \, i \, < \, n \, ; \  \, i \, + +) \{
        suffix[i] = i;
        RA[i] = p[i];
    countingSort(k); // Ordena por second countingSort(0); // Ordena por first
        aux[suffix[0]] = 0;
        int newRa = 0;
for(int i = 1; i < n; i++){
             \mathbf{if}(RA[suffix[i]] == RA[suffix[i-1]] \&\&
                      RA[suffix[i]+k] == RA[suffix[i-1]+
                 aux[suffix[i]] = newRa;
             else
                 aux[suffix[i]] = ++newRa;
        \mbox{for} \, (\, \mbox{int} \  \  \, i \, = \, 0 \, ; \  \  \, i \, < \, n \, ; \  \  \, i + +)
            RA[\;i\;]\;=\;aux\,[\;i\;]\;;
        if(RA[suffix[n-1]] == n-1)
             break:
void lcpFast(){
    l\,c\,p\,\left[\,n\,{-}1\,\right] \;=\; 0\;;
    for(int i = 0; i < n; i++)
        invSuffix [suffix [i]] = i;
    int k = 0;
    for (int i = 0; i < n; i++){
        if(invSuffix[i] == n-1){
            k = 0;
            continue;
        int j = suffix [invSuffix [i] + 1];
        \mathbf{while}\,(\;i\!+\!k\!<\!n\;\;\&\&\;\;j\!+\!k\!<\!n\;\;\&\&\;\;p\,[\;i\!+\!k]\!=\!=\!p\,[\;j\!+\!k\,]\,)\quad k\!+\!+;
        lcp[invSuffix[i]] = k;
        if(k)
            k--;
    }
}
// Para LCS de muitas strings
int sz [MAXN] ;
int owner[MAXN], separators[MAXN];
int words;
void buildOwner(){
    memset(owner, 0, sizeof owner);
```

6.5 Z Function

Criação do array Z em O(n).

6.6 KMP

Matching O(n).

Capítulo 7

Geometria Computacional

7.1 Template - Júnior

```
\#define pi acos(-1.0)
\#define eps 1e-6
struct Point {
   \mathbf{double} \ \mathbf{x} \ , \ \ \mathbf{y} \ ;
   Point() { };
   Point (double _x, double _y) {
      void read() { scanf("%lf_%lf", &x, &y); }
       double distance (Point other) { return hypot (
       x - other.x, y - other.y); } Point operator + (Point other) { return
           Point(x + other.x, y + other.y); 
       Point operator - (Point other) { return
            Point(x - other.x, y - other.y);
       Point operator * (double t) { return Point(x
            * t , y * t); }
       Point operator / (double t) { return Point(x
             / t, y / t); }
       double operator * (Point q) {return x * q.x
            + y * q.y; \} //a*b = /a//b/cos(ang) //a*b
            Positivo se o vetor B esta do mesmo lado
             do vetor perpendicular a A
       double operator % (Point q) {return x * q.y - y * q.x;} //a%b = /a//b/sin(ang) //
            Angle\ of\ vectors
       double polar() { return ((y > -eps) ? atan2(
           y, x) : 2*pi + atan2(y, x)); }
       Point rotate (double t) { return Point (x *
            \cos(t) - y * \sin(t), x * \sin(t) + y *
            cos(t)); }
       Point rotateAroundPoint(double t, Point p) {
          return (\mathbf{this} - p).rotate(t) + p;
       bool operator < (Point other) const {
           if(other.x != x) return x < other.x;
           else return y < other.y;
       }
   };
   struct Line {
       double a, b, c;
       Line() { };
       Line(double _a, double _b, double _c)  {
          egin{array}{lll} a &=& \_a; \\ b &=& \_b; \\ c &=& \_c; \\ \end{array}
       Line(Point s, Point t) {
```

```
a = t.y - s.y;

b = s.x - t.x;
        c = -a * s.x - b * s.y;
    bool parallel(Line other) { return fabs(a *
         other.b - b * other.a) < eps; 
    Point intersect (Line other) {
        if(this->parallel(other)) return Point(-
             HUGE VAL, -HUGE VAL);
        else {
            \mathbf{double} \hspace{0.2cm} \mathtt{determinant} \hspace{0.2cm} = \hspace{0.2cm} \mathbf{t}\hspace{0.2cm} \mathbf{his} \hspace{-0.2cm} -\hspace{-0.2cm} > \hspace{-0.2cm} b \hspace{0.2cm} * \hspace{0.2cm} \mathtt{other.a}
                   - this->a * other.b;
            \mathbf{double} \ \mathbf{x} = (\mathbf{this} -> \mathbf{c} * \mathbf{other.b} - \mathbf{this} ->
                 b * other.c) / determinant;
            double y = (this \rightarrow a * other.c - this \rightarrow
                 c * other.a) / determinant;
            return Point(x, y);
    Line perpendicular (Point point) {
        return Line(-b, a, b * point.x - a *
             point.y);
    double distance(Point r) {
        Point\ p\,,\ q\,;
        if(fabs(b) < eps)  { p = Point(-c / a, 0);
            q = Point((-c - b) / a, 1);
        else {
            p = Point(0, -c / b);
            q = Point(1, (-c - a) / b);
        P\,oint\ A = r \,-\, q\,,\ B = r \,-\, p\,,\ C = \,q \,-\, p\,;
        double a = A * A, b = B * B, c = C * C;
        return fabs(A % B) / sqrt(c);
};
class GeometricUtils {
    public:
    GeometricUtils() { };
    static double cross (Point a, Point b, Point
        return (dx1 * dy2 - dx2 * dy1);
    static bool above (Point a, Point b, Point c)
        \mathbf{return} \ \mathbf{cross} \left( \mathbf{a} \, , \ \mathbf{b} \, , \ \mathbf{c} \, \right) \, < \, 0 \, ;
```

```
static bool under (Point a, Point b, Point c)
       return cross(a, b, c) > 0;
    static bool sameLine (Point a, Point b, Point
          c) {
       return cross(a, b, c) < eps;
    static double segDistance(Point p, Point q,
        Point r) {
       \label{eq:point} \mbox{Point } A = \mbox{ } r \mbox{ } - \mbox{ } q \mbox{ }, \mbox{ } B = \mbox{ } r \mbox{ } - \mbox{ } p \mbox{ }, \mbox{ } C = \mbox{ } q \mbox{ } - \mbox{ } p \mbox{ };
       double a = A * A, b = B * B, c = C * C;
       \mbox{\bf if} \ (\mbox{cmp}(\, b \, , \ a \, + \, c \, ) \, > = \, 0 \, ) \ \mbox{\bf return} \ \ \mbox{sqrt} \, (\, a \, ) \, ;
       else if (cmp(a, b + c) >= 0) return sqrt(
       else return fabs(A % B) / sqrt(c);
};
struct Circle {
   \mathbf{double} \ \mathbf{x} \; , \ \mathbf{y} \; , \ \mathbf{r} \; ;
    Circle() { };
    Circle (double x, double y, double r) {
       Circle(Point a, Point b, Point c) {
       Line ab = Line(a, b);
       Line bc = Line(b, c);
       \mathbf{double} \ xAB = (a.x + b.x) * 0.5;
       double yAB = (a.y + b.y) * 0.5;
       double xBC = (b.x + c.x) * 0.5;
       double yBC = (b.y + c.y) * 0.5;
       ab = ab.perpendicular(Point(xAB, yAB));
       bc = bc.perpendicular(Point(xBC, yBC));
       if(ab.parallel(bc)) {
           x = -1;
           y = -1;
           r = -1;
       Point center = ab.intersect(bc);
       x = center.x:
       y = center.y;
       r = center.distance(a);
    double getIntersectionArea(Circle c) {
       double d = hypot(x - c.x, y - c.y);
       if(d >= r + c.r) return 0.0;
       else if (c.r >= d + r) return pi * r * r;
       else if (r >= d + c.r) return pi * c.r *
```

```
else {
          double a1 = 2 * a cos((d * d + r * r - c))
              r * c r) / (2 * d * r));
          double a2 = 2 * acos((d * d + c.r * c.r
               - r * r) / (2. * d * c.r));
          double num1 = (ld)a1 / 2. * r * r - r
              * r * sin(a1) * 0.5;
          double num2 = (ld)a2 / 2. * c.r * c.r
              - c.r * c.r * sin(a2)*0.5;
          return num1 + num2;
      }
   }
};
Point getCircuncenter(Point a, Point b, Point c
   Line l1 = Line(a, b);
   double xab = (a.x + b.x) * 0.5, yab = (a.y + b.x)
        b.y) * 0.5;
   Line 12 = Line(b, c);
   double xbc = (b.x + c.x) * 0.5, ybc = (b.y + c.x)
        c y) * 0.5;
   l1 = l1.perpendicular(Point(xab, yab));
   12 = 12.perpendicular(Point(xbc, ybc));
   return 11. intersect (12);
vector < Point > ConvexHull(vector < Point > &
    polygon) {
   \verb|sort| (\verb|polygon|.begin| () , | | polygon|.end| ());
   vector < Point > down, up;
   up.pb(polygon[0]);
   up.pb(polygon[1]);
   down.pb(polygon[0]);
   down.pb(polygon[1]);
    \begin{array}{lll} \textbf{for (int } i = 2; & i < \texttt{polygon.size()}; & ++i) & \{ & \\ \textbf{while (up.size()} > = 2 & \& & Geometric Utils. \\ \end{array} 
           above(up[up.size() - 2], up[up.size()
            - 1], polygon[i])) up.pop_back();
       while (down.size() >= 2 && GeometricUtils.
           under (down [down. size () -2], down [
           down.size() - 1, polygon[i]) down.
           pop back();
       up.pb(polygon[i]);
      down.pb(polygon[i]);
   vector < Point > sol = up;
   for(int i = down.size() - 2; i > 0; --i) sol
        .pb(down[i]);
   return sol;
```

7.2 Menor círculo

Menor círculo que engloba todos os pontos. O(n).

```
struct point {
    double x, y;
    point(){}
    point (double _x, double _y){
        x = _x, y = _y;
    }
    point subtract(point p){
        return point(x-p.x, y-p.y);
    }
    void read() { scanf("%lf_%lf", &x, &y); }
    double distance(point p){
        return hypot(x-p.x, y-p.y);
    }
}
```

```
double norm() {
    return x*x + y*y;
}
double cross(point p) {
    return x*p.y - y*p.x;
}
};
struct circle {
    double x, y, r;
    circle() {}
    circle(double _x, double _y, double _r) {
        x = _x, y = _y, r = _r;
}
```

```
\texttt{circle}\,(\,\texttt{point}\  \, \texttt{a}\,,\  \, \textbf{double}\  \, \texttt{b}\,)\,\{
                                                                                 pq.cross(point(left->x, left->y).
       x = a.x, y = a.y;
                                                                                 subtract(p))))
       r = b;
                                                                            left = c;
                                                                            else if (cross < 0 && (right == NULL || pq.
   bool contains (point p) {
                                                                                 cross(point(c->x, c->y).subtract(p)) <
       return point(x, y).distance(p) <= r + eps;
                                                                                 pq.cross(point(right -> x, right -> y).
                                                                                 subtract(p))))
   bool contains (vector < point > ps) {
                                                                            right = c;
       for (auto p : ps)
                                                                        }
                                                                        return right == NULL || left != NULL && left ->r
       if (!contains(p))
       return 0;
                                                                              <= right -> r ? *left : *right;
       return 1:
};
                                                                    circle makeCircleOnePoint(vector<point> points,
                                                                         point p) {
circle *makeCircumcircle(point a, point b, point c
                                                                        circle c = circle(p, 0);
                                                                        \label{eq:formula} \mbox{for} \, (\, \mbox{int} \, i \, = \, 0 \, ; \  \, i \, < \, \, p \, \mbox{oin} \, t \, s \, . \, s \, i \, z \, e \, (\,) \, \, ; \  \, i \, + +) \{
   double d = (a.x * (b.y - c.y) + b.x * (c.y - a.
                                                                            point q = points[i];
                                                                            if (!c.contains (q)) {
        y) + c.x * (a.y - b.y)) * 2;
   \mathbf{i} \mathbf{f} (\mathbf{d} = 0)
                                                                                if(c.r == 0)
   return NULL;
                                                                                c = makeDiameter(p, q);
   \mathbf{double} \ x \ = \ (\mathtt{a.norm}() \ * \ (\mathtt{b.y} \ - \ \mathtt{c.y}) \ + \ \mathtt{b.norm}() \ *
                                                                                else{
          (c.y - a.y) + c.norm() * (a.y - b.y)) / d;
                                                                                    v\,ector\!<\!p\,oint\!>\;aux(\&\,p\,oint\,s\,[\,0\,]\;,\;\&\,p\,oint\,s\,[
   double y = (a.norm() * (c.x - b.x) + b.norm() *
                                                                                        i + 1]);
          \left(\,a\,\,.\,x\,\,-\,\,c\,\,.\,x\,\right)\,\,+\,\,c\,\,.\,norm\,(\,)\  \  *\,\,\left(\,b\,.\,x\,\,-\,\,a\,.\,x\,\right)\,\right)\  \  /\, \  \, d\,;
                                                                                    c = makeCircleTwoPoints(aux, p, q);
   point p = point(x, y);
   return new circle(p, p.distance(a));
                                                                           }
}
                                                                        }
                                                                        return c;
circle makeDiameter(point a, point b){
   circle makeCircle(vector<point> points){
                                                                        vector < point > shuffled = points;
                                                                        random_shuffle(shuffled.begin(), shuffled.end()
circle makeCircleTwoPoints(vector<point> points,
                                                                             );
    point p, point q){
    circle temp = makeDiameter(p, q);
                                                                        circle c;
   \mathbf{i}\,\mathbf{f}\,(\,\mathrm{temp}\,.\,\,\mathrm{contains}\,(\,\mathrm{points}\,)\,)
                                                                        bool first = true;
                                                                        for(int i = 0; i < shuffled.size(); i++){
   return temp;
                                                                            point p = shuffled[i];
                                                                            if(first || !c.contains(p))
   circle *left = NULL;
                                                                                v\,ect\,or\!<\!p\,oint\!>\;aux\,(\&\,s\,h\,u\,ffle\,d\,\,\bigr[\,0\,]\;,\;\&\,s\,h\,u\,ffle\,d
   circle * right = NULL;
                                                                                     [i + 1]);
                                                                                c = makeCircleOnePoint(aux, p);
   for(point r : points){
       point pq = q.subtract(p);
                                                                                first = false;
       double cross = pq.cross(r.subtract(p));
                                                                           }
       circle *c = makeCircumcircle(p, q, r);
       if(c == NULL)
                                                                        return c;
       continue:
       else if (cross > 0 \&\& (left == NULL || pq.
            cross(point(c->x, c->y).subtract(p)) >
```

7.3 Kit de encolhimento - SBC 2016

Encontra a menor área de um polígono convexo os vértices são deslocados ou para o ponto médio de Ax ou Bx.

```
point operator+(point other) {
#define inf 0x3f3f3f3f
                                                                   return point (x+other.x, y+other.y);
\#define eps 1e-9
\#define MAXN 100010
                                                                point operator/(double v){
                                                                   return point (x/v, y/v);
struct point {
   \mathbf{double} \ \mathbf{x} \ , \ \ \mathbf{y} \ ;
                                                                double operator * (point q) {
    point(){}
                                                                   return x*q.x + y*q.y;
    point (double a, double b) {
                                                                double angle(){
      x = a;
       y = b;
                                                                   return atan2(double(y), double(x));
    point operator - (point other) {
                                                                void read() { scanf("%lf_%lf", &x, &y); }
       return point (x-other.x, y-other.y);
                                                             };
    }
```

```
double cross(point p, point q) \{ return p.x*q.y-p.
     y*q.x; }
// Sort by angle with pivot
bool cmp(point a, point b) {
    point pivot = point (px, py);
    int x = direction(pivot, a, b);
    if(x == 0)
       \mathbf{return} (pivot -a) * (pivot -a) < (pivot -b) * (
            pivot-b);
    return x==1;
\mathbf{double} \ \det (\ point \ a \,, \ point \ b \,, \ point \ c \,) \, \{
    \textbf{return} \ (a.x \ * \ b.y) \ + \ (b.x \ * \ c.y) \ + \ (c.x \ * \ a.y)
          -(a.x * c.y) - (b.x * a.y) - (c.x * b.y);
    double val = (b.y-a.y) * (c.x-b.x) -
    (b.x-a.x) * (c.y-b.y);
    return val;
}
\mathbf{int} \  \  \mathbf{direction} \, (\, \mathbf{point} \  \  \, \mathbf{a} \, , \  \  \, \mathbf{point} \  \  \, \mathbf{b} \, , \  \, \mathbf{point} \  \  \, \mathbf{c} \, ) \, \{
    double val = det(a, b, c);
    if(fabs(val) < eps)
    return 0;
    {f return} val > 0 ? 1 : 2; // 0 {\it Colinear}, 1
         Clockwise, 2 Counter
\textbf{double} \ \text{area} \, (\, \texttt{point} \ a \,, \ \texttt{point} \ b \,, \ \texttt{point} \ c \,) \, \{
    return fabs (det (a, b, c));
int n;
point v [MAXN];
point medio[MAXN][2];
point A, B;
double dp [MAXN] [ 2 ] [ 2 ] [ 2 ] [ 3 ] ;
int vis[MAXN][2][2][2][3];
int cnt:
int first , second;
double solve(int id, int penul, int ult, int
     temArea, int ori){
    if(id == n){
        int o1 = direction (medio [id -2][penul], medio
            [id-1][ult], medio [0][first]);
        int o2 = direction (medio [id -1][ult], medio
             [0][first], medio[1][second]);
        // Tratar concavidade na hora de fechar o
             poligono
        if(o2 == 0)
       o2 = o1;
        if(o1 != o2)
        return 1LL<<60;
        if(o1 != 0 \&\& o1 != ori)
        return 1LL<<60;
        if(temArea == 0)
       return 1LL<<60;
        return 0;
    double &ans = dp[id][penul][ult][temArea][ori];
    if (vis [id] [penul] [ult] [temArea] [ori] == cnt)
    return ans;
    vis[id][penul][ult][temArea][ori] = cnt;
    ans = 1LL << 60;
```

```
\mbox{for}\,(\,\mbox{int}\  \  \, i\ =\ 0\,;\  \  \, i\ <\ 2\,;\  \  \, i\,+\!+)\{
        \mathbf{int} \hspace{.2cm} \mathtt{going} \hspace{.1cm} = \hspace{.1cm} \mathtt{direction} \hspace{.05cm} (\hspace{.05cm} \mathtt{medio}\hspace{.05cm} [\hspace{.05cm} \mathtt{id}\hspace{.05cm} -2\hspace{.05cm} ] [\hspace{.05cm} \mathtt{penul}\hspace{.05cm} ] \hspace{.1cm} ,
             medio[id-1][ult], medio[id][i]);
        double a = area(medio[0][first], medio[id]
              -1 [ult], medio[id][i]);
        if(ori == 0)
            ans = min(ans, a+solve(id+1, ult, i,
                 temArea | (a>eps), going));
        else if (going == ori || going == 0) {

// Tratar \ casos \ de \ espiral
            double c = cross(medio[id][i] - medio[id
                  -1][ult], medio[0][first] - medio[id
                  -\,1\,]\,[\,\,u\,l\,t\,\,]\,\,)\,\,;
            if(going == 0)
            ans = min(ans, a+solve(id+1, ult, i,
                 temArea | (a>eps), ori));
            else{
                if(fabs(c) < eps)
                 ans = min(ans, a+solve(id+1, ult, i,
                    temArea | (a>eps), ori));
                 else if (going == 2 \&\& c > 0)
                else if (going == 1 \&\& c < 0)
                continue;
                else
                ans = min(ans, a+solve(id+1, ult, i,
                      temArea | (a>eps), ori));
            }
        }
    return ans;
int main(){
    scanf("%d", &n);
    for(int i = 0; i < n; i++)
    v[i].read();
   A. read ();
   B. read();
    \mbox{for}\,(\,\mbox{int}\  \  \, i \ = \ 0\,;\  \  \, i \ < \ n\,;\  \  \, i+\!+)\{
        double ans = 1LL < <60;
    for (int i = 0; i < 2; i++){
        \dot{f}irst = i;
        for (int j = 0; j < 2; j++){
            second = j;
            cnt++:
            for (int k = 0; k < 2; k++){
                double a = area ( medio [0] [i], medio [1] [
                     j], medio[2][k]);
                 ans = min(ans, a+solve(3, j, k, a))
                      eps, direction (medio [0][i], medio
                      [1][j], medio[2][k]));
            }
        }
    printf("\%.3 lf\n", ans/2.0);
    return 0;
```

7.4 Intersecção círculo e segmento

```
\_inline(int cmp)(double x, double y = 0, double
    tol = EPS)
                                                                   // Encontra o ponto do segmento mais proximo a C
                                                                   point circle_closest_point_seg(point p, point q,
   return (x \le y + tol) ? (x + tol < y) ? -1 : 0
                                                                        circle c)
        : 1;
                                                                       point A = q - p, B = c.first - p;
                                                                       double proj = (A * B)/abs(A);
double abs(point p)
                                                                       if (cmp(proj) < 0) return p;
                                                                       \label{eq:cmp} \textbf{if} \ (\hspace{.1cm} \texttt{cmp}\hspace{.1cm} (\hspace{.1cm} \texttt{proj}\hspace{.1cm}, \hspace{.1cm} \texttt{abs}\hspace{.1cm} (\hspace{.1cm} \texttt{A})\hspace{.1cm}) \hspace{.1cm} > \hspace{.1cm} 0\hspace{.1cm}) \hspace{.1cm} \hspace{.1cm} \textbf{return} \hspace{.1cm} \hspace{.1cm} q\hspace{.1cm};
   return hypot(p.x, p.y);
                                                                       return p + (A * proj)/abs(A);
double arg(point p)
   return atan2(p.y, p.x);
                                                                        typedef pair < point , double > circle;
                                                                    / Decide se o segmento pq se interseca com c
                                                                   bool seg_circle_intersect(point p, point q, circle
bool in circle (circle C, point p)
                                                                         c)
   return cmp(abs(p - C.first), C.second) \leq 0;
                                                                       point \ r = circle\_closest\_point\_seg\left(p,\ q,\ c\right);
                                                                       return in circle(c, r);
```

7.5 Intersecção e distância entre segmentos

Código bem doido.

```
typedef double co;
///geometry
struct pu {
   co \ x \ , y \ ;
   pu(co a=0, co b=0) \{x=a; y=b; \}
pu operator - (const pu &a, const pu &b) {
   return pu(a.x-b.x,a.y-b.y);
^{\prime\prime}/ Not always necessary!
bool operator == (const pu &a, const pu &b) {
   return a.x == b.x \&\& a.y == b.y;
pu operator *(co a, const pu &b) {
   return pu(a*b.x, a*b.y);
double operator !(const pu & a ){
   return sqrt (a.x*a.x + a.y*a.y);
co kr (const pu &a, const pu &b) { // z component
    of the cross product \$a \mid times b\$
   return a.x*b.y-b.x*a.y;
co kr(const pu &a, const pu &b, const pu &c) { //
    z component of the cross product \$(b-a) | times
    (c-a)$
   return kr(b-a,c-a);
// Intersection of the (infinite) lines $a 1a 2$
    and $b 1b 2$ (if they aren't parallel).
  You obviously have to use floating point
    numbers, here!
pu inter(const pu &a1, const pu &a2, const pu &b1,
     const pu &b2) {
   return (1/kr(a1-a2,b1-b2))*(kr(a1,a2)*(b1-b2) -
        kr(b1,b2)*(a1-a2));
}
```

```
\mathbf{bool} \;\; \mathbf{between} \left( \;\; \mathbf{const} \;\; \mathbf{pu} \;\; \& \mathbf{a} \;, \;\; \mathbf{const} \;\; \mathbf{pu} \;\;\; \& \;\; \mathbf{b} \;\;\;, \;\; \mathbf{const} \;\;
   return (c.x - a.x) * (c.x - b.x) <= 0 &&
   (\ c.y{-}a.y\ )*\ (\ c.y{-}b.y\ )\ <=\ 0\ ;
bool gr( const pu &a1 , const pu &a2 , const pu &
   b1 , const pu &b2 ) {
   co\ w1\ =\ kr\,(\ b1{-}a1\ ,\ a2{-}a1\ )\ ,\ w2\ =\ kr\,(\ a2{-}a1\ ,
       b2-a1);
   if(w1 == 0 \&\& w2 == 0)
   {\bf return} between ( {\tt a1} , {\tt a2} , {\tt b1} ) || between ( {\tt a1}
        , a2 , b2 )
                       between (b1, b2, a1) | between (b1, b2, a1)
         a2);
   {f return} (w1 >= 0 && w2 >= 0) || (w1 <= 0 && w2
        <= 0 ) ;
bool intersects ( const pu &a1 , const pu &a2 ,
    \mathbf{const} pu &b1 , \mathbf{const} pu &b2 ) {
   a1 , a2 ) ;;
// Pra baixo eh distancia entre segmentos
bool comp ( double a, double b ) {
   return fabs (a - b) > EPS; //TODO < EPS?
struct P{
double x, y;
   P(\text{ double } x=0, \text{ double } y=0): x(x), y(y)  {}
   P operator + ( P in ) { return P(x + in.x, y +
       in.y ); }
   P operator - ( P in ) { return P(x - in.x, y - in.x)
        in.y ); }
   double operator * ( P in ) { return x * in.x +
        y * in.y
   P operator / ( P in ) { double f = (P(x,y) * in
        )/(in*in); return P( in.x * f, in.y * f); }
```

```
double operator ! ( ) { return sqrt(x*x + y*y )
    ; }
};

pu go( P & a) { return pu( a.x, a.y ); }

double distSP(P a, P b, P c) {
    if(!comp(a.x,b.x) &&!comp(a.y,b.y)) return
        !( c-a );
    P pp = a + (c-a)/(b-a);
    if(!comp(!(a-pp) + !(pp-b), !(a-b))) return
        !( c-pp );
return min(!(a-c), !(b-c));

double distSS( P a, P b, P c, P d){
    if( intersects( go(a), go(b), go(c), go(d)))
    return min(min(distSP(a,b,c), distSP(a,b,d)),
    min(distSP(c,d,a), distSP(c,d,b)));
}

}

return min(!(a-c), !(b-c));

if( intersects( go(a), go(b), go(c), go(d)))
    return min(distSP(a,b,c), distSP(a,b,d)),
    min(distSP(c,d,a), distSP(c,d,b)));
}

}

**Teturn min(!(a-c), !(b-c));

**Teturn min(distSP(a,b,c), distSP(a,b,d)),
        min(distSP(c,d,a), distSP(c,d,b)));

**Teturn min(!(a-c), !(b-c));

**Tetu
```

7.6 Closest pair problem

O(nlogn).

```
while (left < i \&\& pnts[i].px-pnts[left].px >
#define px second
                                                                                   best)
                                                                                  box.erase(pnts[left++]);
#define py first
                                                                              for (typeof(box.begin()) it=box.lower bound(
typedef pair < long long, long long > pairll;
pairll pnts [MAX];
                                                                                   make pair (pnts [i].py-best, pnts [i].px-
int compare(pairll a, pairll b){
                                                                                   best)); it!=box.end() && pnts[i].py+best
    \mathbf{return} a.px<br/><br/>b.px;
                                                                                   >=it ->py ; it ++)
                                                                                  best = min(best, sqrt(pow(pnts[i].py - it
\mathbf{double} \ \mathtt{closest\_pair} (\ \mathtt{pairll} \ \mathtt{pnts} \ [] \ , \mathbf{int} \ \mathtt{n}) \ \{
                                                                                       -\!\!>\!\!py\;,\quad 2\;.\;0\;)\!+\!\!pow\,(\;p\,n\,t\,s\;[\;i\;]\;.\;px\;\;-\;\;i\,t\;-\!\!>\!\!px\;,
    sort (pnts , pnts+n , compare);
                                                                                       2.0)));
    double best=INF;
                                                                              box.insert(pnts[i]);
    set < pairll > box;
                                                                          return best;
    box.insert(pnts[0]);
    int left = 0:
    for (int i=1; i < n; ++i) {
```

7.7 Área de união de retângulo

Complexidade $O(N^2)$, pode diminuir se colocar uma BST no lugar do array de booleano.

```
\#define MAX 1000
struct event {
    int ind; // Index of rectangle in rects
    bool type; // Type of event: 0 = Lower-left; 1
         = Upper-right
    event() {};
    event(int ind, int type) : ind(ind), type(type)
          {};
struct point{
    int x, y;
{\tt point rects [MAX][12];} \ /\!/ \ \textit{Each rectangle consists}
     of 2 points: [0] = lower-left; [1] = upper-
     right
bool compare_x (event a, event b) { return rects [a.
     ind ] [a.type].x<rects[b.ind][b.type].x; }
bool compare_y (event a, event b) { return rects[a.
     ind ] [a.type].y<rects[b.ind][b.type].y; }
\mathbf{int} \ \ \mathbf{union\_area} \big( \ \mathbf{event} \ \ \mathbf{events\_v} \ [] \ , \ \mathbf{event} \ \ \mathbf{events\_h} \ [] \ ,
    int n, int e) {
    //n is the number of rectangles, e=2*n, e is
         the number of points (each rectangle has
         two points as described in declaration of
         rects)
    bool in \underline{\phantom{}} set [MAX] = \{0\}; int area = 0;
    sort (events_v, events_v+e, compare_x); //Pre-sort of vertical edges
    \verb|sort(events_h|, events_h+e|, compare_y); // \textit{Pre-}
        sort set of horizontal edges
    in\_set[events\_v[0].ind] = 1;
```

```
for (int i=1; i< e; ++i)
{ // Vertical sweep line
   ev\,ent\ c\ =\ ev\,ents\_v\,[\ i\ ]\ ;
   int cnt = 0; // Counter to indicate how many
         rectangles are currently overlapping
   // Delta x: Distance between current sweep
        line and previous sweep line
   int delta_x = rects[c.ind][c.type].x - rects
        [events\_v[i-1].ind][events\_v[i-1].type].
   int begin_y;
   if (delta x==0){
       in set[c.ind] = (c.type==0);
       continue;
   for (int j=0; j< e; ++j)
   if (in\_set[events\_h[j].ind]==1)
                            //Horizontal sweep line
        for active rectangle
       if (events h[j].type==0)
            //If i\overline{t} is a bottom edge of rectangle
           i\,f\ (\,c\,n\,t\!=\!=\!0)\ begin\,\underline{\phantom{a}}y\ =\ r\,e\,c\,t\,s\,[\,ev\,en\,t\,s\,\underline{\phantom{a}}h\,[\,j\,
               ].ind][0].y; // Block starts
               incrementing \ number \ of \ overlapping
                 rectangles
       }
       else
           //If it is a top edge
```

7.8 Distância entre segmento e ponto

Distância entre segmento e ponto

Capítulo 8

Miscelânea

8.1 Datas

```
struct Date {
     int d, m, y;
     static int mnt[], mntsum[];
     Date() : d(1), m(1), y(1) \{ \}
     Date(\,\textbf{int}\ d\,,\ \textbf{int}\ m,\ \textbf{int}\ y\,)\ :\ d(\,d\,)\,\,,\,\,m(m)\,\,,\,\,y\,(\,y\,)\ \{\,\}
     Date(\textbf{int} \ days) \ : \ d(1) \ , \ m(1) \ , \ y(1) \ \{ \ advance(
           days); }
     \textbf{bool} \ \ bissexto() \ \ \{ \ \textbf{return} \ \ (y\%4 == 0 \ \textbf{and} \ \ y\%100)
           or (y\%400 == 0);
     \textbf{int} \hspace{0.2cm} mdays\hspace{0.05cm} (\hspace{0.1cm}) \hspace{0.2cm} \{ \hspace{0.2cm} \textbf{return} \hspace{0.2cm} mnt\hspace{0.05cm} [\hspace{0.1cm} m \hspace{0.1cm}] \hspace{0.2cm} + \hspace{0.2cm} (m =\!\!\!\! = 2) * \texttt{bissexto}
            (); }
     int ydays() { return 365+bissexto(); }
     int msum() \{ return mntsum[m-1] + (m > 2) *
           bissexto(); }
     int ysum() { return 365*(y-1) + (y-1)/4 - (y
            -1)/100 + (y-1)/400;
     int count() \{ return (d-1) + msum() + ysum(); \}
     int day() {
          int x = y - (m<3);
return (x + x/4 - x/100 + x/400 + mntsum[m]
                 -1] + d + 6)%7;
```

```
void advance(int days) {
            \mathrm{d}\,\mathrm{ay}\,\mathrm{s}\ +\!=\ \mathrm{count}\,(\,)\;;
            d = m = 1, y = 1 + days/366;
            \mathrm{d}\,\mathrm{ay}\,\mathrm{s}\ -\!\!=\ \mathrm{count}\,(\,)\;;
            \mathbf{while}\,(\,\mathrm{day}\,\mathrm{s}\,>=\,\mathrm{y}\,\mathrm{day}\,\mathrm{s}\,(\,)\,\,)\,\,\,\mathrm{day}\,\mathrm{s}\,-\!\!=\,\mathrm{y}\,\mathrm{day}\,\mathrm{s}\,(\,)\,\,,\,\,\,\mathrm{y}\,+\!+;
            \mathbf{while}(days >= mdays()) days == mdays(), m++;
            d += days;
      }
};
int Date::mntsum[13] = \{\};
\textbf{for} \hspace{0.1cm} (\hspace{0.1cm} \textbf{int} \hspace{0.3cm} i \hspace{0.1cm} = \hspace{0.1cm} 1; \hspace{0.3cm} i \hspace{0.1cm} < \hspace{0.1cm} 13\hspace{0.1cm} ; \hspace{0.3cm} + \hspace{0.1cm} i \hspace{0.1cm} ) \hspace{0.3cm} \hspace{0.1cm} \texttt{Date} :: \\
        mntsum[i-1] + Date::mnt[i];
// Week day
int v[] = \{ 0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4 \};
int day(int d, int m, int y) \{
      y = m < 3;
      return (y + y/4 - y/100 + y/400 + v[m-1] + d)
              %7:
```

8.2 Hash C++11

```
hash<string> hashFunc;
cout << hashFunc("Gabriel") << endl;</pre>
```

8.3 Mo's

Cada query em O(sqrt(N)).

```
#define MAXN 100100
int BLOCK; // ~sqrt (MAXN)

struct query {
  int l, r, id;
  bool operator < (const query foo) const {
   if (l / BLOCK != foo.l / BLOCK)
      return l / BLOCK < foo.l / BLOCK;
  return r < foo.r;</pre>
```

```
};
int vis[MAXN], resp;

void add(int id){
   if(!vis[id]){
      // Add element and update resp
}
else{
```

```
// Remove element and update resp
                                                                              for(int i = 0; i < q; i++){
    vis[id] ^= 1;
                                                                                  int l = queries[i].l, r = queries[i].r;
}
                                                                                   while (curL < 1)
                                                                                                           add(curL++);
// IN MAIN
                                                                                   while (curL > 1) add(-curL);
                                                                                   \mathbf{while}\,(\,\mathrm{curR}\,<=\,\mathrm{r}\,)\ \mathrm{add}\,(\,\mathrm{curR}++)\,;
int q;
sort(queries, queries+q);
                                                                                   while (curR > r+1) add(--curR);
\mathbf{int} \ \mathrm{ans} \left[ \right. q \left. \right];
                                                                                   ans[queries[i].id] = resp;
\mathbf{int} \ \mathtt{curL} \ = \ 0 \, , \ \mathtt{curR} \ = \ 0 \, ;
resp = 0;
```

8.4 Problema do histograma

Maior retângulo do histograma em O(n).

```
tp = s.top();
ll histograma(ll vet[], int n){
                                                                                  s.pop();
   stack < ll > s;
                                                                                  cur = vet[tp]*(s.empty() ? i : i - s.top
   l\, l \ ans \ = \ 0 \; , \ t\, p \; , \ c\, u\, r \; ;
                                                                                      () - 1);
   \quad \textbf{int} \quad i \ = \ 0 \, ; \quad
                                                                                  if (ans < cur)
   while(i < n | | !s.empty()){
                                                                                      ans = cur;
       if(i < n \&\& (s.empty() || vet[s.top()] <=
            v et [ i ] ) )
           s.push(i++);
                                                                          return ans;
        else {
```

8.5 Sliding Window - Mediana

Mediana de todas as janelas de tamanho K de um array O(nlog).

```
if (i == nums.size())
int k;
                                                                                   break;
vector < int > nums;
multiset < int > window(nums.begin(), nums.begin() +
                                                                               window.insert(nums[i]);
                                                                               if (nums[i] < *mid)
     k);
                                                                                   mid - -:
auto mid = next(window.begin(), k / 2);
\quad \textbf{for} \quad (\, \textbf{int} \quad i \!=\! k \; ; \quad ; \quad i \!+\!+) \quad \{ \quad
                                                                               if (nums[i-k] \ll *mid)
    int janela = (int)((double(*mid) + *prev(mid, 1))
                                                                                   mid++:
           - \ k\%2)) \ / \ 2) \ ; \ // \ \mathit{Tratando} \ \mathit{par} \ \mathit{e} \ \mathit{impar}
                                                                               window.erase(window.lower bound(nums[i-k]));
```