

Assignment N. 4:

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

ISPR Course A.Y. 2020/2021 Marco Petix

Unpaired Image-to-Image Translation

Solving the problem of **Image Translation**

 \bullet $G: X \to Y$

Using **Unpaired training data**

- Paired data may not exist
- Underlying relationship between the domains **X** and **Y** (e.g. **context of a scene**)

Low Diversity Output and Mode Collapse

Pairing up x and y in a meaningful way

Reverse Mapping and Cycle-Consistency

 \bullet $F: Y \to X$

Monet Paintings ↔ Photos

Style Transfer

Photo

Monet

Van Gogh

Cezanne

Ukiyo-e

Object Transfiguration

Season Transfer

Aerial Photos ↔ Google Maps

Cycle - Consistent Adversarial Networks

Applying Adversarial Losses to the mapping functions G and F

•
$$\mathcal{L}_{GAN}(F, D_X, Y, X) = \mathbb{E}_{x \sim P_{data}(x)} [\log D_X(x)]$$

$$+ \mathbb{E}_{y \sim P_{data}(y)} \left[\log(1 - D_X(F(y))) \right]$$

$$+ \mathbb{E}_{y \sim P_{data}(y)} \left[\log D_Y(y) \right]$$

$$+ \mathbb{E}_{x \sim P_{data}(x)} \left[\log(1 - D_Y(G(x))) \right]$$

Avoiding **Mode Collapse** by enforcing

Cycle-Consistency

$$\mathcal{L}_{cyc}(G, F) = \mathbb{E}_{x \sim P_{data}(x)} [\|F(G(x)) - x\|_1] + \mathbb{E}_{y \sim P_{data}(y)} [\|G(F(y)) - y\|_1]$$

Representing the Full Objective

$$\mathcal{L}(G, F, D_X, D_Y) = \mathcal{L}_{GAN}(G, D_Y, X, Y)$$

$$+ \mathcal{L}_{GAN}(F, D_X, Y, X)$$

$$+ \lambda \mathcal{L}_{cuc}(G, F)$$

Color Composition and Identity Loss

$$\mathcal{L}_{identity}(G, F) = \mathbb{E}_{x \sim P_{data}(x)} [||F(x) - x||_1]$$

$$+ \mathbb{E}_{y \sim P_{data}(y)} [||G(y) - y||_1]$$

Model Architecture

Generator

- Encoding
 - o 3 Convolutional Layers (ReLU)
- Transformation
 - 6 ResNet Blocks for 128 × 128 images
 - 9 ResNet Blocks for 256 × 256 images
- Decoding
 - o 2 De-Convolutional Layers (ReLu)
 - 1 Convolutional Layer (ReLU)

Discriminator

- 70 x 70 Patch-GAN
 - 4 Convolutional Layers (Leaky ReLU)
 - o 1 Final Conv. Layer for the Decision

Also, Instance Normalization

Empirical Results: Comparison on the Cityscapes dataset

Input

CycleGAN

Ground Truth

BiGAN

CycleGAN

Loss	Per-pixel acc.	Per-class acc.	Class IOU
BiGAN	0.41	0.13	0.07
CoGAN	0.45	0.11	0.08
Feature Loss + GAN	0.50	0.10	0.06
SimGAN	0.47	0.12	0.07
CycleGAN	0.58	0.22	0.16
pix2pix	0.85	0.40	0.32

BiGAN

CoGAN

CoGAN

Feature Loss + GAN

Cityscapes labels → **Photos**

Loss	Per-pixel acc.	Per-class acc.	Class IOU
BiGAN	0.19	0.06	0.02
CoGAN	0.40	0.10	0.06
Feature Loss + GAN	0.06	0.04	0.01
SimGAN	0.20	0.10	0.04
CycleGAN	0.52	0.17	0.11
pix2pix	0.71	0.25	0.18

Marco Petix

Final Considerations

Pushing the boundaries of **Unsupervised Learning**

- Compelling results for tasks revolving around color and texture changes
- Dependent on the distribution characteristics of the training datasets
- Less performant on shape changes

CycleGAN's Descendants

- Toward Multimodal Image-to-Image
 Translation (Zhu et Al., 2017)
- CyCADA: Cycle-Consistent Adversarial
 Domain Adaptation (Isola et Al., 2018)
- Contrastive Learning for Unpaired
 Image-to-Image Translation (Park et Al., 2020)

Man on Horse → Zebra Centaur

The card Multimental Image-to-lung: Translation

of the date of the card of th

Isola et Al. 2018

Park et Al. 2020

