Infinite Impulse Response Filter Design

Table of Contents

Inputs Provided	. 1
Derivation of order by butterord	
Formula for Order n of Butterworth filter	2
Applying the Butterworth filter function	2
Converting to frequency domain.	2
The PLOT for Butterworth Filter	3
Butterworth Filter Characteristics	4
Derivation of order	4
Applying the Chebyshev Type I filter function	4
Converting to frequency domain.	4
The PLOT for Chebyshev Type I Filter	5
Derivation of order	5
Applying the Chebyshev Type II filter function	
Converting to frequency domain.	5
The PLOT for Chebyshev Type II Filter	6
Author: Kaustubh Shivdikar	6

This code will prove to be classic example for proper use of the given functions for Butterworth filter, Chebyshev Type 1 filter and Chebyshev Type 2 Filter Design

Inputs Provided

```
Passband Attenuation

Ap = 3;

Sampling Frequency

Fs = 500;

Stopband Attenuation

As = 60;

Passband Frequency

Wp = 40;

Dividing by Sampling Frequeny

Wp = Wp / Fs;

Stopband Frequency

Ws = 150;
```

Dividing by Sampling Frequeny

Derivation of order by butterord

[n,Wn] = buttord(Wp,Ws,Ap,As);

Formula for Order n of Butterworth filter

$$n = \frac{\log \varepsilon}{\log \Omega_{p} - \log \Omega_{s} + \frac{1}{n} \log \sqrt{A^{2} - 1}}$$

OR another simplified version will be

$$n = \frac{\log\left(\frac{\varepsilon}{\sqrt{A^2 - 1}}\right)}{\log\left(\frac{\Omega_p}{\Omega_s}\right)}$$

Applying the Butterworth filter function

Converting to frequency domain.

$$[h,w] = freqz(b,a);$$

Since the obtained input was in Normalized Form we get it back by multiplying with Sampling Frequency

```
W = w*Fs/pi;
```

To remove the negative values of h we take absolute

h = abs(h);

The PLOT for Butterworth Filter

```
figure();
plot(W,h);
title('Butterworth Filter')
```


Butterworth Filter Characteristics

Derivation of order

[n,Wp] = cheblord(Wp,Ws,Ap,As);

Applying the Chebyshev Type I filter function

[b,a] = cheby1(n,Ap,Wp);

Converting to frequency domain.

[h,w] = freqz(b,a);

Again since the obtained input was in Normalized Form we get it back by multiplying with Sampling Frequency

W = w*Fs/pi;

Again to remove the negative values of h we take absolute

h = abs(h);

The PLOT for Chebyshev Type I Filter

```
figure();
plot(W,h);
title('Chebyshev Type I Lowpass Filter')
```


Derivation of order

[n,Wp] = cheb2ord(Wp,Ws,Ap,As);

Applying the Chebyshev Type II filter function

[b,a] = cheby2(n,Ap,Wp);

Converting to frequency domain.

```
[h,w] = freqz(b,a);
```

Again since the obtained input was in Normalized Form we get it back by multiplying with Sampling Frequency

```
W = w*Fs/pi;
```

Again to remove the negative values of h we take absolute

h = abs(h);

The PLOT for Chebyshev Type II Filter

```
figure();
plot(W,h);
title('Chebyshev Type II Lowpass Filter')
```


Author: Kaustubh Shivdikar

MATLAB Lab experiment of Linear to circular convolution.

Published with MATLAB® R2015a