



# Analysis of data set: properties of wines



Statistical Analysis for Applied Physics

Joana Moura February 1<sup>st</sup>, 2022





## **OBJECTIVE**



#### **QUESTIONS:**

- 1. Do red and white wines have the same alcohol percentage?
- 2. How does the pH of the wines depend on the volatile acidity and the fixed acidity?
- 3. Which parameters will be more important on the final quality rate of a wine?

# **ABOUT THE DATASET...**



| number | Type | fixed.acidity | volatile.acidity | citric.acid | residual.sugar | chlorides | free.sulfur.dioxide | total.sulfur.dioxide | density | рН   | sulphates | alcohol | quality |
|--------|------|---------------|------------------|-------------|----------------|-----------|---------------------|----------------------|---------|------|-----------|---------|---------|
| 1      | Red  | 7.4           | 0.7              | 0           | 1.9            | 0.076     | 11                  | 34                   | 0.9978  | 3.51 | 0.56      | 9.4     | 5       |

Nobs = 3198

There are 1599 observations for both types of wines (equal length).





#### DO RED AND WHITE WINES HAVE THE SAME ALCOHOL PERCENTAGE?

Let's start by...

 $H_0$ : mean red = mean white

H<sub>1</sub>: mean red ≠ mean white

## INITIAL METRICS ABOUT THE ALCOHOL(%) PER TYPE OF WINE

| Туре  | Mean<br>μ (%) | Standard Deviation $\sigma$ (%) | Variance $\sigma^2$ (%) |
|-------|---------------|---------------------------------|-------------------------|
| Red   | 10,423        | 1,066                           | 1,136                   |
| White | 10,285        | 1,124                           | 1,263                   |





#### DATA DISTRIBUTIONS: HISTOGRAMS





Fig.1 – Histogram of alcohol percentage in red wines



Fig.2 – Histogram of alcohol percentage in white wines

# T-TEST

#### Requisites:

- Equal Variance
- Independent
- Normally Distributed





## Q-Q PLOT





Fig.5 – Normal Q-Q plot of alcohol percentage in red wines.

Fig.6 – Normal Q-Q plot of alcohol percentage in white wines.

## T-TEST



```
Welch Two Sample t-test
```

```
data: alcohol_red and alcohol_white
t = 3.5562, df = 3187, p-value = 0.0003818
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    0.06179736    0.21368732
sample estimates:
mean of x mean of y
    10.42298    10.28524
```

Fig.5 – Welch's two sample t-test for both types of wine.





## **POWER OF THE T-TEST**



```
Two-sample t test power calculation
```

```
n = 1599

delta = 0.1377423

sd = 1.094817

sig.level = 0.05

power = 0.9447989

alternative = two.sided
```

NOTE: n is number in \*each\* group

Fig.5 – Power of Welch's two sample t-test for both types of wine.







#### **BOOTSTRAP**



Fig.2 – Bootstrap of alcohol percentage for wines



# CONCLUSION



Confidence Interval: (0,13+-0,10) at 95%





#### Dependance of the pH on the fixed acidity and the volatile acidity

#### **CORRELATION**

| Туре  | Correlation (fixed acidity vs pH) | Correlation (volatile acidity vs pH) |  |  |
|-------|-----------------------------------|--------------------------------------|--|--|
| Red   | -0,683                            | 0,235                                |  |  |
| White | -0,504                            | -0,097                               |  |  |

Tab.2 – Correlation values of for fixed acidity vs pH and volatile acidity vs pH



## Dependance of the pH on the fixed acidity



Fig.2 – Fixed acidity in red wines for values of pH



Fig.2 – Fixed acidity in white wines for values of pH

#### Dependance of the pH on the volatile acidity



Fig.2 – Volatile acidity in red wines for values of pH



Fig.2 – Volatile acidity in white wines for values of pH

## Dependance of the pH on the fixed acidity

| Type  | a      | $\delta \mathbf{a}$ | Intercept b | $\delta \mathbf{b}$ | $R^2$ | P-value                 | F-value |
|-------|--------|---------------------|-------------|---------------------|-------|-------------------------|---------|
| Red   | -7,702 | 0,206               | 33,823      | 0,683               | 0,466 | 2.200x10 <sup>-16</sup> | 1396    |
| White | -2,828 | 0,121               | 16,086      | 0,390               | 0,253 | 2.200x10 <sup>-16</sup> | 543,1   |

Tab.2 – Regression coefficients for the fixed acidity in terms of the values of pH



#### Dependance of the pH on the volatile acidity

|   | Type  | a       | $\delta \mathbf{a}$ | Intercept b | $\delta \mathbf{b}$ | $R^2$   | P-value                 | F-value |
|---|-------|---------|---------------------|-------------|---------------------|---------|-------------------------|---------|
|   | Red   | 0.272   | 0.028               | -0.374      | 0.0935              | 0.0546  | 2.200x10 <sup>-16</sup> | 93.3    |
| • | White | -0.0644 | 0.0164              | 0.487       | 0.0527              | 0,00891 | 9,225x10 <sup>-5</sup>  | 15,37   |

Tab.2 – Regression coefficients for the volatile acidity in terms of the values of pH



#### What parameter has the greatest influence the global quality of the wine?



#### A. LM Regression

Standard Least Squares Method

#### **B.** Elastic Net Regression:

- 1. Look for best parameter alpha through K-fold cross validation;
- 2. Use optimized parameter to finally find the coefficients of the regressions.



## LM REGRESSION

```
Residuals:
     Min
              10 Median
-2.68911 -0.36652 -0.04699 0.45202 2.02498
Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
(Intercept)
                         2.197e+01 2.119e+01
                                               1.036
fixed_acidity_red
                         2.499e-02 2.595e-02
                                               0.963
                                                       0.3357
volatile_acidity_red
                        -1.084e+00 1.211e-01
                                               -8.948
                                                      < 2e-16 ***
citric acid red
                        -1.826e-01 1.472e-01
                                              -1.240
                                                       0.2150
chlorides_red
                                               -4.470 8.37e-06 ***
                        -1.874e+00 4.193e-01
residual_sugar_red
                         1.633e-02 1.500e-02
                                               1.089
                                                       0.2765
free_sulfur_dioxide_red 4.361e-03 2.171e-03
                                               2.009
                                                       0.0447 *
total sulfur dioxide red -3.265e-03 7.287e-04
                                              -4.480 8.00e-06 ***
densitv_red
                        -1.788e+01 2.163e+01
                                               -0.827
                                                       0.4086
pH red
                        -4.137e-01 1.916e-01
                                              -2.159
                                                       0.0310 *
sulphates_red
                         9.163e-01 1.143e-01
                                               8.014 2.13e-15 ***
alcohol red
                         2.762e-01 2.648e-02 10.429 < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.648 on 1587 degrees of freedom
Multiple R-squared: 0.3606.
                               Adjusted R-squared: 0.3561
F-statistic: 81.35 on 11 and 1587 DF, p-value: < 2.2e-16
```

Fig.2 – Regression coefficients for the quality of red wines (Im regression)

```
Min
             10 Median
-3.6088 -0.5130 -0.0316 0.4988 3.0250
Coefficients:
                            Estimate Std. Error t value Pr(>|t|)
(Intercept)
                           2.613e+02 4.076e+01
                                                  6.410 1.91e-10 ***
fixed_acidity_white
                           1.714e-01 4.153e-02
                                                  4.128 3.85e-05 ***
volatile acidity white
                           -1.705e+00 2.053e-01
                                                 -8.308 < 2e-16 ***
citric acid white
                           -9.521e-02 1.605e-01
                                                 -0.593
                                                         0.5532
chlorides_white
                           -9.925e-01 9.347e-01
                                                          0.2885
                                                 -1.062
residual_sugar_white
                           1.066e-01 1.531e-02
                                                  6.963 4.86e-12 ***
free_sulfur_dioxide_white 7.406e-03 1.713e-03
                                                  4.323 1.64e-05 ***
total sulfur dioxide white -7.132e-05 6.758e-04
                                                 -0.106
                                                         0.9160
density white
                          -2.644e+02 4.131e+01
                                                 -6.400 2.04e-10 ***
pH_white
                           1.435e+00 2.035e-01
                                                  7.055 2.58e-12 ***
sulphates_white
                           8.578e-01 1.894e-01
                                                  4.530 6.35e-06 ***
alcohol_white
                           8.678e-02 5.043e-02
                                                 1.721 0.0855 .
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.7888 on 1587 degrees of freedom
Multiple R-squared: 0.2941, Adjusted R-squared: 0.2892
F-statistic: 60.12 on 11 and 1587 DF. p-value: < 2.2e-16
        Fig. 2 – Regression coefficients for the quality
        of white wines (Im regression)
```

Residuals:

# **ELASTIC NET REGRESSION**

#### For $\alpha = 0,1$ :

| (Intercept) fixed_acidity_red volatile_acidity_re citric_acid_red chlorides_red residual_sugar_red free_sulfur_dioxide total_sulfur_dioxid density_red pH_red | 1.927443e-01<br>-1.245722e+00<br>1.724735e-02<br>_red 2.761038e-04<br>e_red -2.092591e-03<br>-3.273324e+01<br>-1.334303e-01 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| pH_red<br>sulphates_red                                                                                                                                       | -1.334303e-01<br>5.734417e-01                                                                                               |
| alcohol_red<br>>                                                                                                                                              | 1.738083e-01                                                                                                                |

Tab.2 – Regression coefficients for the quality of red wines (elastic net regression)

#### For $\alpha$ = 0,9:

|                            | 50           |
|----------------------------|--------------|
| (Intercept)                | 0.812864741  |
| fixed_acidity_white        | -0.001180688 |
| volatile_acidity_white     | -1.335573342 |
| citric_acid_white          |              |
| chlorides_white            | -0.270708187 |
| residual_sugar_white       | 0.001314539  |
| free_sulfur_dioxide_white  | 0.005592644  |
| total_sulfur_dioxide_white |              |
| density_white              |              |
| pH_white                   | 0.634324712  |
| sulphates_white            | 0.063973151  |
| alcohol_white              | 0.308991252  |
| >                          |              |

Tab.2 – Regression coefficients for the quality of white wines (elastic net regression)



# **ELASTIC NET REGRESSION**

#### Parameters that influence the most:

- Sulphates (+)
- Density (-)
- Volatile Acidity (-)
- pH (for the white wine) (+)
- Chlorides (-)





# Conclusion

