Homework 4

The work handed in should be entirely your own. You can consult any abstract algebra textbook (e.g. Dummit and Foote, Artin), the course textbook and/or the class notes but nothing else. To receive full credit, justify your answer in a clear and logical way. Due Mar. 30.

- 1. The most important exercise is that you should find some time during the break to review what we have learnt so far. Also, read Chapter 4 on fundamental regions.
- 2. Prove the following Proposition we stated in class.

Proposition 0.1. Let G be a group acting on a set S, and let $s,t \in S$ be two elements lying in the same orbit, i.e., there is a $g \in G$ such that g * s = t. Then there is an isomorphism of stablizer subgroups

$$\Phi_g: Z_G(s) \longrightarrow Z_G(t), \quad x \mapsto gxg^{-1}.$$

In particular, if the stablizer groups are finite, then $|Z_G(s)| = |Z_G(t)|$.

- 3. Use the stablizer-orbit counting formula $|G| = |Z_G(s)||O_s|$ for a finite transitive group action to give an alternative count of the number of elements in the dihedral group D_2^n . (Hint: Consider the action of the dihedral group on the set of sides or vertices of a regular ngon and use the formula).
- 4. Use the following inductive procedure to prove that $|S_n| = n!$.
 - (1) Show that the group S_n acts transitively on the set $I_n = \{1, \dots, n\}$, and determine the stablizer subgroup of the element n.
 - (2) Use part (1) and induction (S_1 obviously has only one element) to prove the desired formula.
- 5. Show that the product of two reflections of \mathbb{R}^2 is a rotation through twice the angle between their reflecting lines. More precisely, say that S_i has reflecting line at angle θ_i with the positive x-axis, with $0 \le \theta_i < \pi$, and say that $\theta_1 < \theta_2$, Then S_2S_1 is a counterclockwise rotation through angle $2(\theta_1 \theta_2)$, and S_1S_2 is a clockwise rotation through angle $2(\theta_2 \theta_1)$.