

자전거 교통사고 통계 분석으로 본 PM 규제 강화 필요성

목차

A table of Contents

#1 PM의 정의 및 현황

#2 데이터 분석

#3 결론

PM이란?

PM(Personal Mobility)

- 전기를 동력으로 하는 1인용 이동수단
- 전동 휠, 전동 킥보드, 전기 자전거, 초소형 전기차 등
- 편리함, 비용 면에서도 효율적
- 대여 서비스를 제공하는 업체가 많아지고 있음

PM 공유 업체

PM 이용자 현황

- ※ () 안은 전년동기 대비 증가율
- ※ 퍼스널 모빌리티: 전기를 동력으로 삼는 전기 자전거와 전동 킥보드 등

- 코로나19 장기화 속에서 공유모빌리티를 중심으로 '비접촉 공유경제'가 급속히 확산
- 2020년 1~7월 이용건수는 117만3000건으로 지난해 같은 기간(25만4000건)보다 <u>362%</u> 급증
- 안드로이드OS 월 사용자 2019년 4월 3만7294명이던 애플리케이션 이용자가 2020년 4월 21만4451명으로 증가

PM 이용자 현황

PM 이용자 실태

전동킥보드 등 개인형이동수단(PM) 사고후 117 225 447 897 195 사망자수 8 10 3 2017년 2018 2019 2020 2021 ※2021년은3월31일까지 자료: 경찰청

이용자수가 늘어나면서 사고 건수, 사망자 수가 늘어남

PM 이용자 중 주행도로 준수율은 36%

"강력한 규제가 필요"

법률 제17371호

제2조제8호 및 제9호 중 "자전거가"를 각각 "<u>자전거 및 개인형 이동장치가</u>"로 하고, 이하 생략.. [출처] <u>도로교통법[시행 2020. 12. 10.] [법률 제17371호, 2020. 6. 9., 일부개정]</u>

18km/h

15km/h

자전거보다 빠르지 않기에 소형 오토바이 취급하는 것이 아니라 <u>자전거 취급</u>

TAAS 교통사고분석시스템

- 월별 가해운전사 차종별 교통사고 2017.02.16-2019.02.16.csv
- 월별 가해운전자 차종별 교통사고 차로위반 2017-2019.csv
- 월별 가해운전자 차종별 교통사고 차로위반 2015-2017.csv
- 월별 가해운전자 차종별 교통사고 2009.06.08-2011.06.08.csv

R Studio

boxplot

데이터 수집

데이터 분석

결과 도출

- csv 활용
- shapiro.test
- t.test

- 안전거리 확보 관련 규제

- 자전거도로 명칭에 관련된 규제

- 교통 신호와 관련된 규제

Part 2 데이터 분석(법규위반별 교통사고)

데이터 분석 (안전거리 확보 관련 규제)

```
total_data_pos2=as.numeric(qsub(pattern="[^0-9]",replacement="",total_data_pos$자전거))
total_data_pos2=data.frame(total_data_pos2)
total_data_pos2=total_data_pos2[-c(1,2,3,11,24),]
total_data_pos2=data.frame(total_data_pos2)
total_data_pos2
data pre=read.csv("웤별 가해운전자 자종별 교통사고 2011.06.08-2013.06.08.csv")
head(data_pos)
total_data_pre=data_pre %>% select(자전거)# 규제이후 자전거 총 사고건수
total_data_pre2=as.numeric(gsub(pattern="[^0-9]",replacement="",total_data_pre$자전거))
total_data_pre2=data.frame(total_data_pre2)
total_data_pre2=total_data_pre2[-c(1,2,3,11,24),]
total_data_pre2=data.frame(total_data_pre2)
total_graph=data.frame(total_data_pos2,total_data_pre2)
head(total_graph)
colnames(total_graph)=c("규제이전","규제이후")
total_graph$diff= as.numeric(total_graph$규제이후)-as.numeric(total_graph$규제이전)
COCAT_QF aprisuri
total_graph
shapiro.test(total_graph§diff)
t.test(total_graph$diff)
t.test(total_graphSdiff,var.equal=TRUE)
****
data_pos=read.csv("월별 가해운전자 자종별 교통사고 안전거리미확보 2009-2011.csv")
```

shapiro.test 결과

p-value가 0.05 이상 → 정규성을 띈다 ⇒ T검증에 적합한 데이터

t.test 결과 p-value가 0.05 이하 → 해당 규제가 효과가 있었다

데이터 분석 (자전거도로 명칭에 관련된 규제)

```
data_pos=read.csv("월별 가해운전사 자증별 교통사고 2017.02.16-2019.02.16.csv")
head(data_pos)
total_data_pos=data_pos %% select(자전거)# 규제이후 자전거 총 사고건수
total_data_pos2=as.numeric(gsub(pattern="[^0-9]",replacement="",total_data_pos(자전거))
total_data_pos2=data.frame(total_data_pos2)
total_data_pos2=total_data_pos2[-c(1,2,3,15,28),]
total_data_pos2=data.frame(total_data_pos2)
total_data_pos2
data_pre=read.csv("월별 가해운전사 자중별 교통사고 2015.02.16-2017.02.16.csv")
head(data_pre)
total_data_pre=data_pre %% select(자전거)# 규제이전 자전거 총 사고건수
total_data_pre2=as.numeric(gsub(pattern="[^0-9]",replacement="",total_data_ore$자천거))
total_data_pre2=data.frame(total_data_pre2)
total_data_pre2=total_data_pre2[-c(1,2,3,15,28),]
(total_data_pre2)
total_graph=data.frame(total_data_pos2,total_data_pre2)
head(total_graph)
total_graph
colnames(total_graph)=c("규제이전","규제이후")
total_graphSdiff= as.numeric(total_graphS규제이후)-as.numeric(total_graphS규제이전)
shapiro.test(total_graphidiff)
t.test(total_graphSdiff)
t.test(total_graphSdiff,var.equal=TRUE)
var.test(total_graphSdiff ~ ., data=total_graph)
                                           면서 variance test가 되고 있지 않으므로 분산이 같다고 가정하고 다시 t.test를 수행됐으나
evar.equal=TRUE 호텔의 설명을 가능하고 있다. 말스
#결과값이 같으므로 var.test가 무의미하다고 가정.
```

shapiro.test 결과

p-value가 0.05 이상 → 정규성을 띈다 ⇒ T검증에 적합한 데이터

t.test 결과 p-value가 0.05 이하 → 해당 규제가 효과가 있었다

데이터 분석 (교통 신호와 관련된 규제)

```
data_hap=read.csv("연도별 자전거 신호위반사건 합계.csv")
data_hap$x
data_hap=as.numeric(unlist(data_hap$x))
shapiro.test(as.numeric(data_hap))
shapiro.test(log(as.numeric(data_hap)))
shapiro.test(sqrt(as.numeric(data_hap)))
```

규제 전, 후 차가 정규성이 없음 → shapiro.test() shapiro.test(log()) shapiro.test(sqrt()) 결과 모두 0.05 이상 → 정규성을 띈다 → 해당 규제의 영향이 없었다.

효과가 있었던 규제

안전거리 확보 관련 규제

자전거도로 명칭에 관련된 규제

• PM에도 이와 같은 규제를 적용하여 사고 발생률을 줄일 수 있도록 해야한다

효과가 없었던 규제

교통 신호와 관련된 규제

- 13년~21년 13번의 규제 개정
- 뚜렷한 성과가 없었음

위반 행위	범칙금
인도 주행	3만원
음주 운전	10만원
음주 측정 거부	13만원
약물, 과로 운전	10만원
무면허 운전	10만원
승차 정원 위반	4만원
헬멧 미착용	2만원
방향지시등 <mark>미작동</mark>	1만원
어린이 운전시킨 보호자	10만원(보호자 과태료)
동승자 안전모 미착용	2만원(운전자 과태료)

#. PM은 전동킥보드, 세그웨이, 전기자전거 등 포함

범칙금, 과태료는 도로교통법 시행령 개정 이후 5월 13일부터 시행 # 전동킥보드 와 세그웨이 승차 정원은 1명. 전기자전거는 2명

- 1. 신호위반 규제강화
- 2. 다양한 정부차원의 캠페인을 통한 문제상황 강조