Aufstellen von Geradengleichungen

- 1. Geben Sie jeweils eine Gleichung für die Gerade g an.
- 2. Prüfen Sie, ob der Punkt P auf der Geraden g liegt.
- Die Gerade g verläuft

a) durch die Punkte A(3|-5|2) und B(3|0|-1),

a) g: $\vec{x} = \begin{pmatrix} -1 \\ 3 \\ -4 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$; P(5|9|-1)

- 5 = -1 + 2t
- b) durch die Punkte A (6 | -2 | 1) und B (4 | 3 | 3),

Antwort:

g: \overrightarrow{X} =

- b) g: $\vec{x} = \begin{pmatrix} 3 \\ 6 \\ 4 \end{pmatrix} + t \cdot \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$; P(5|2|2)
- c) parallel zur x_2 -Achse und durch den Punkt A (2 | 4 | 3).
 - g: | x =

- Antwort:
- 3. Der Würfel ABCDEFGH hat die Kantenlänge 2. Der Punkt D liegt im Koordinatenursprung. Geben Sie die Gleichungen der Geraden durch die angegebenen Eckpunkte des Würfels an.

- a) Gerade g durch B und F:

- b) Gerade h durch A und H:
- c) Gerade i durch C und E:
- i: \overrightarrow{X} =
- 4. Die eingezeichneten Punkte sind jeweils Mittelpunkt einer Kante bzw. Mittelpunkt der Grundfläche der Pyramide ABCDS. Bestimmen Sie die Koordinaten für diese Punkte und für jede eingezeichnete Gerade eine Gleichung.

Aufstellen von Geradengleichungen - Lösung

- 1. Geben Sie jeweils eine Gleichung für die Gerade g an.
 Die Gerade g verläuft
 a) g: x = (-1)/3 + t·(-2)/1; P(5|9|-1)
 - a) durch die Punkte A (3|-5|2) und B (3|0|-1),

	3		0
g: \overrightarrow{X} =	-5	+t·	5
	2		-3

Antwort: P liegt nicht auf g.

b) durch die Punkte A(6|-2|1) und B(4|3|3),

g:
$$\overrightarrow{x} = \begin{pmatrix} 6 \\ -2 \\ 1 \end{pmatrix} + t \cdot \begin{pmatrix} 5 \\ 5 \\ 2 \end{pmatrix}$$

b) g: $\vec{x} = \begin{pmatrix} 3 \\ 6 \\ 4 \end{pmatrix} + t \cdot \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}$; P(5|2|2)

$$5 = 3 - t \Rightarrow t = -2$$

$$2 = 6 + 2t \Rightarrow t = -2$$

c) parallel zur x₂-Achse und durch den Punkt A (2 | 4 | 3).

g:
$$\overrightarrow{X} = \begin{pmatrix} 2 \\ 4 \\ 3 \end{pmatrix} + t \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

- Antwort: P liegt auf g.
- **3.** Der Würfel ABCDEFGH hat die Kantenlänge 2. Der Punkt D liegt im Koordinatenursprung. Geben Sie die Gleichungen der Geraden durch die angegebenen Eckpunkte des Würfels an.

a) Gerade g durch B und F:

g:
$$\overrightarrow{x} = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

n: $\overrightarrow{x} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} -2 \\ 0 \\ 2 \end{pmatrix}$

b) Gerade h durch A und H:

$$= \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 2 \\ -2 \\ 2 \end{pmatrix}$$

4. Die eingezeichneten Punkte sind jeweils Mittelpunkt einer Kante bzw. Mittelpunkt der Grundfläche der Pyramide ABCDS. Bestimmen Sie die Koordinaten für diese Punkte und für jede eingezeichnete Gerade eine Gleichung.

g: $\vec{x} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 3 - 2 \\ 2 - (-1) \\ 2 - 0 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$

h:
$$\vec{x} = \begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 1-4 \\ 0-3 \\ 2-0 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} -3 \\ -3 \\ 2 \end{pmatrix}$$

i: $\overrightarrow{x} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} 1-2 \\ 2-1 \\ 2-0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + t \cdot \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$