COPY

# IAP20 RECIPCTIFTO 06 JAN 2006

Docket No. 62036-PCT (51588)

### IN THE U.S. PATENT AND TRADEMARK OFFICE

APPLICANT:

THE GENERAL HOSPITAL CORPORATION

INVENTOR:

Mark C. Poznansky, et al

INT. APPLN. NO.:

PCT/US04/21725

FILED:

07 July 2004

PRIORITY DATE:

07 July 2003

FOR:

FUGETACTIC PROTEINS, COMPOSITIONS AND

METHODS OF USE

**Box PCT** 

Commissioner for Patents Washington, D.C. 20231

Sir:

## **AMENDMENT UNDER PCT ARTICLE 34**

Pursuant to the terms of PCT Article 34, Applicant respectfully requests that the above-identified application be amended as follows (deletions shown by strike through, additions shown underlined):

#### IN THE SPECIFICATION:

Please amend pages 9, 10, and 19-21 as presented in the addendum to the instant Article 34 amendment.

Amended pages 9, 10, and 19-21 are submitted to show the insertion of sequence identification numbers. On page 19, the deleted text at lines 19-22 has been replaced by the recitation of "may or may not" at line 15. On pages 20-21, unnecessary sequence identification numbers have been deleted. No new matter has been added.

Further, enclosed with this document are replacement sheets (substitute sheets of pages 9, 10, 10A, and 19-21) for the originally filed pages 9, 10 and 19-21 of specification that have been amended as set forth above.

# IAPZO RES'EFETIFTO 06 JAN 2006

THE GENERAL HOSPITAL CORPORATION PCT/US04/21725
Page 2

It is believed that this submission is in compliance with PCT Article 34, PCT Rules 10 and 11 and 37 CFR 1.485 which require that every original sheet of the application which is changed by an Amendment must be replaced by a substitute sheet(s) in the course of Amendment under PCT Article 34.

Entry of this Amendment Under PCT Article 34 prior to the Preliminary Examination of this application in the PCT Chapter II phase of this prosecution, therefore, is respectfully requested.

Respectfully submitted,

18 April 2005

Amy Leahy (Reg. No. 47,739) EDWARDS & ANGELL, LLP

P.O. Box 55874 Boston, MA 02205 (617) 439-4444

Customer No. 21,874

# IAP20 Tas J PUTIFIC 06 JAN 2006

embodiments methods are provided which can further include the administration of a second fugetactic or anti-fugetactic agent.

Each of the limitations of the invention can encompass various embodiments of the invention. It is, therefore, anticipated that each of the limitations of the invention involving any one element or combinations of elements can be included in each aspect of the invention.

These and other aspects of the invention, as well as various advantages and utilities, will be more apparent with reference to the detailed description of the preferred embodiments.

10

15

20

25

# **Brief Description of the Drawings**

- Fig. 1 describes the amino acid sequences of HSP 90 (SEQ ID NOS 1-3), HSP 84 (SEQ ID NOS 4-5), HSP 86 (SEQ ID NO: 6), HSP 60 (SEQ ID NO: 7) and L-plastin (SEQ ID NO: 8).
- Fig. 2 provides the results of a transmigration assay using 1 in 2, 1 in 10 and 1 in 100 dilutions of EL4 24-hour conditioned media (EL4CM24).
- Fig. 3 provides the results of a transmigration assay using negative gradients of heat inactivated or proteinase K digested EL4 24-hour conditioned media (EL4CM24) (1 in 2, 1 in 10 and 1 in 100 dilutions).
- Fig. 4 provides the results of a transmigration assay using negative gradients of EL4 24-hour conditioned media (EL4CM24) with pertussis toxin treated murine lymphocytes and radicical and Geldanamycin treated EL4CM24 (1 in 2, 1 in 10 and 1 in 100 dilutions).
- Fig. 5 provides the results of an *in vivo* study of the migration of immune cells using EL4 24-hour conditioned media (EL4CM24).
- Fig. 6 provides the results of EL4 24-hour conditioned media (EL4CM24) (I0.5 and HSF) run on SDS PAGE.
- Fig. 7 provides the results of the ion exchange chromatography of the EL4 24-hour conditioned media (EL4CM24).
- Fig. 8 provides the results of a transmigration assay using EL4 24-hour conditioned media (EL4CM24) heat shocked at 42°C and treated with Brefeldin A.

Fig. 9 provides the mass peaks from the mass spectrometry analysis of a fraction of EL4 24-hour conditioned media (EL4CM24) that contained a protein of about 84/86 kDa.

Fig. 10 provides the mass peaks from the mass spectrometry analysis of a fraction of EL4 24-hour conditioned media (EL4CM24) that contained a protein of about 94 kDa.

Fig. 11 provides the mass peaks from the mass spectrometry analysis of a fraction of EL4 24-hour conditioned media (EL4CM24) that contained a protein of about 65 kDa.

Fig. 12 provides the MS-Fit and MS-Tag search results of a component protein of about 84 and 86 kDa (SEQ ID NOS 9-45, 121, and 46-51, respectively in order of appearance).

10

15

20

25

Fig. 13 provides the MS-Fit search results of a component protein of about 94 kDa (SEQ ID NOS 52-72, respectively in order of appearance).

Fig. 14 provides the MS-Fit and MS-Tag search results of a component protein of about 65 kDa (SEQ ID NOS 74-106, 121, and 107-118, respectively in order of appearance).

Fig. 15 provides the sequence alignment of human HSP 90-β (SEQ ID NO: 119) and mouse HSP protein 84 (SEQ ID NO: 4).

Fig. 16 provides the sequence alignment of HSP 84 (SEQ ID NO: 4) and HSP 86 (SEQ ID NO: 120), both from the mouse.

## **Detailed Description of the Invention**

It has now been discovered, according to the invention, that tumor cells elaborate both chemokines and other chemokinetically active substances which evoke a fugetactic or chemorepellent response from immune cells, thereby allowing the neoplastic cells to evade recognition and destruction by the host immune system. Using *in vitro* and *in vivo* assays it has now been demonstrated that culture supernatant (i.e., conditioned media) from the EL4 cell line has the ability to repel lymphocytes (i.e., to induce fugetaxis). It has been further shown that migration of lymphocytes away from EL4 24-hour conditioned media (EL4CM24) was diminished by heat inactivation and proteinase digestion of the conditioned media as well as with the use of the specific inhibitors (pertussis toxin and radicicol).

invention the thymoma cell isolate is a substantially pure polypeptide. The term "substantially pure" means that the protein(s) or polypeptide(s) is essentially free of other substances with which it (they) may be found in nature or *in vitro* systems, to an extent practical and appropriate for their intended use. Substantially pure polypeptides may be produced by techniques well known in the art. Because an isolated protein may be admixed with a pharmaceutically acceptable carrier in a pharmaceutical preparation, the protein may comprise only a small percentage by weight of the preparation. The protein is nonetheless isolated in that it has been separated from many of the substances with which it may be associated in living systems, i.e. isolated from certain other proteins.

As stated above, the fugetactic agents include HSPs and L-plastin. These proteins have been discovered to possess fugetactic activity, according to the invention. It has been discovered that eluted fractions of an EL4 24-hour conditioned medium (EL4CM24) comprise proteins having amino acid sequences in common with HSPs and L-plastin. These amino acid sequences are provided in Figs. 12-14. Therefore, the fugetactic agents provided herein include proteins, which include the amino acid sequences depicted in Figs. 12-14 (set forth as SEQ ID NOs:9-118, which may or may not include both end residues). Fugetactic agents also include proteins which comprise a portion of these sequences (e.g. the amino acid sequences set forth as SEQ ID NOs:9A-118A which are the same as SEQ ID NOs:9-118 but lack either or both of the end residues, which are denoted by parenthesis). The fugetactic agents of the invention, therefore, can comprise an amino acid sequence that is any one of SEQ ID NOs:1-8. The fugetactic agents of the invention can be HSP90α (Fig. 1, SEQ ID NO:3), HSP90β (Fig. 1, SEQ ID NOs:1 and 2) or L-plastin (Fig. 1, SEQ ID NO:8).

Table 1

|                                                             | <u> 1 u</u> |
|-------------------------------------------------------------|-------------|
| Peptide Sequence                                            | Fig.        |
| (K) VTISNR(L)<br>SEQ ID NO:9, 9A                            | 12          |
| (R) ALLFIPR (R)<br>SEQ ID NO:10 <del>, 10A</del>            | 12          |
| (K) FYEAFSK(N)<br>SEQ ID NO:11, 11A                         | 12          |
| (K) IDIIPNPQER(T)<br>SEQ ID NO:12 <del>, 12A</del>          | 12          |
| (K) HFSVEGQLEFR (A)<br>SEQ ID NO:13 <del>, 13A</del>        | 12          |
| (R)GVVDSEDLPLNISR(E)<br>SEQ ID NO:14, 14A                   | 12          |
| (R) YHTSQSGDEMTSLSEYVSR(M)<br>SEQ ID NO:15 <del>, 15A</del> | 12          |
| (K)SIYYITGESKEQVANSAFVER(V)<br>SEQ ID NO:16, 16A            | 12          |
| (K)VTISNR(L) SEQ ID NO:17, 17A                              | 12          |
| SEQ ID NO:18,—18A                                           | 12          |
| (K) FYEAFSK(N)<br>SEQ ID NO:19 <del>, 19A</del>             | 12          |
| (K) IDIIPNPQERT(T)<br>SEQ ID NO:20 <del>, 20A</del>         | 12          |
| (K) HFSVEGQLEFR (A)<br>SEQ ID NO:21, 21A                    | 12          |
| (R)GVVDSEDLPLNISR(E)<br>SEQ ID NO:22 <del>7 22A</del>       | 12          |
| (R) YHTSQS-DEMTSLSEYVSR (M)<br>SEQ ID NO: 23, 23A           | 12          |
| (K) SIYYITGESKEQVANSAFVER (V)<br>SEQ ID NO: 247 24A         | 12          |
| (K) VTISNR (L)<br>SEQ ID NO: 25, 25A                        | 12          |
| (R)ALLFVPR(R) SEQ ID NO:26 <del>, 26A</del>                 | 12          |
| (K) FYEAFSK(N) SEQ ID NO:27, 27A                            | 12          |
| (K) IDILPNPQER(T) SEQ ID NO:28, 28A                         | 12          |
| (K) HESVEGQLEFR (A)<br>SEQ ID NO:29 <sub>7</sub> 29A        | 12          |
| (R)GVVDSEDLPLNISR(E)<br>SEQ ID NO:30 <del>, 30A</del>       | 12          |
| (R) YHTSQSGDEMTSLSEYVSR (M)<br>SEQ ID NO:31                 | <u>12</u>   |
| (K) SIYYITGESKEQVANSAFVER (V)<br>SEQ ID NO: 327 32A         | 12          |
| (K) VTISNR (L)<br>SEQ ID NO:33 <del>, 33A</del>             | 12          |
| (R) ALLFIPR (R)<br>SEQ ID NO: 34, 34A                       | 12          |
| (K) FYEAFSK(N)<br>SEQ ID NO:35 <del>, 35A</del>             | 12          |

| D ::1 0                                               | Fig. |
|-------------------------------------------------------|------|
| Peptide Sequence                                      | No.  |
| (K) HFSVEGQLEFR (A)<br>SEQ ID NO: 36, 36A             | 12   |
| (R)GVVDSEDLPLNISR(E)<br>SEQ ID NO:37 <del>, 37A</del> | 12   |
| (R) YMTSQSGDEMTSLSEYVSR (M)                           | 12   |
| SEQ ID NO:38, 38A<br>(K) SIYYITGESKEQVANSAFVER(V)     |      |
| SEQ ID NO:39, 39A                                     | 12   |
| (K) IDILPNPQER (T)<br>SEQ ID NO: 40, 40A              | 12   |
| (K) IDILPNPQER(T)<br>SEQ ID NO:41, 41A                | 12   |
| (K) IDIIPNPQER (T)                                    | 12   |
| SEQ ID NO: 42, 42A<br>(K) IDILPNPQER(T)               | +    |
| SEQ ID NO: 437-43A<br>(K) IDILPNPQER(T)               | 12   |
| SEQ ID NO: 44, 44A                                    | 12   |
| (K) IDIIPNPQER (T)<br>SEQ ID NO: 457-45A              | 12   |
| (R)ALLFVPR(R)<br>SEQ ID NO:46 <del>, 46A</del>        | 12   |
| (R) ALLFYPR (R)                                       | 12   |
| SEQ ID NO: 47, 47A<br>(K) AILFVPR(R)                  | 12   |
| SEQ ID NO:48, 48A                                     | 12   |
| (R)ALLFVPR(R)<br>SEQ ID NO:49 <del>, 49A</del>        | 12   |
| (R) ALLFVPR (R)<br>SEQ ID NO:50, 50A                  | 12 . |
| (K)AILFVPR(R)                                         | 12   |
| SEQ ID NO:51, 51A<br>(K) VLTFYR(K)                    | 12   |
| SEQ ID NO:527-52A                                     | 13   |
| (K)NTVQGFKR(F)<br>SEQ ID NO:53 <del>, 53A</del>       | 13   |
| (K) VLATAFDTTLGGR (K)                                 | 13   |
| SEQ ID NO: 54, 54A<br>(K) NAVEEYVYEMR (D)             | 13   |
| SEQ ID NO:55, 55A                                     | 13   |
| (R)AGGIETIANEYSDR(C)<br>SEQ ID NO:567-56A             | 13   |
| (R)EFSITDVVPYPISLR(W) SEQ ID NO:57, 57A               | 13 : |
| (R) WNSPAEEGSSDCEVFPK(N)                              | 13   |
| SEQ ID NO:58 <del>, 58A</del> (K) VLTFYR(K)           |      |
| SEQ ID NO:59, 59A                                     | 13   |
| (K)NTVQGFKR(F)<br>SEQ ID NO:60 <del>, 60A</del>       | 13   |
| (K)QVYVDKLAELK(S)<br>SEQ ID NO:61 <del>, 61A</del>    | 13   |
| (K) VLATAFDTTLGGR (K)                                 | 13   |
| SEQ ID NO: 62, 62A                                    |      |

| Peptide Sequence                                         | Fig. |
|----------------------------------------------------------|------|
| (K) NAVEEYVYEMR (D)<br>SEQ ID NO: 63, 63A                | 13   |
| (R) AGGIETIANEYSDR (C)<br>SEQ ID NO: 647 64A             | 13   |
| (R) EFSITDVVPYPISLR (W)                                  | 13   |
| SEQ ID NO: 65, 65A<br>(K) VLTFYR (K)                     |      |
| SEQ ID NO: 66, 66A<br>(K) NTVQGFKR (F)                   | 13   |
| SEQ ID NO:67, 67A<br>(K)QVYVDKLAELK(S)                   | 13   |
| SEQ ID NO: 68, 68A                                       | 13   |
| (K) VLATAFDTTIGGR (K)<br>SEQ ID NO:69, 69A               | 13   |
| (K) NAVEEYVYEMR (D)<br>SEQ ID NO:70, 70A                 | 13   |
| (R)AGGIETIANEYSDR(C)<br>SEQ ID NO:71 <del>, 71A</del>    | 13   |
| (R)EFSITDVVPYPISLR(W) SEQ ID NO:72, 72A                  | 13   |
| (K) VFHGLK(S)<br>SEQ ID NO:74, 74A                       | 14   |
| (K) YAISMAR (K)<br>SEQ ID NO:75, 75A                     | 14   |
| (R) VNKPPVPK(L)                                          | 14   |
| SEQ ID NO:76, 76A<br>(K) LSPEELLLR (W)                   | 14   |
| SEQ ID NO:77, 77A<br>(K) IKVPVDWNR(V)                    |      |
| SEQ ID NO:78 <del>, 78A</del> (R)QFVTATDVVR(G)           | 14   |
| SEQ ID NO: 79 <del>7 79A</del> (R) NWMNSLGVNPR(V)        | 14   |
| SEQ ID NO:80, 80A                                        | 14   |
| (K)MINLSVPDTIDER(T)<br>SEQ ID NO:81, 81A                 | 14   |
| (R) VYALPEDLVEVNPK (M)<br>SEQ ID NO:82 <del>, 82A</del>  | 14   |
| (K) FSLVGIAGQDLNEGNR(T)<br>SEQ ID NO:83, 83A             | 14   |
| (K)GDEEGIPÄVVIDMSGLR(E)<br>SEQ ID NO:84 <del>, 84A</del> | 14   |
| (K) VFHGLK(S)<br>SEQ ID NO:85, 85A                       | 14   |
| (K) YAISMAR (K)<br>SEQ ID NO:86, 86A                     | 14   |
| (R) VNKPPYPK(L)                                          | 14   |
| SEQ ID NO:87, 87A<br>(K) LSPEELLLR(W)                    | 14   |
| SEQ ID NO:887 88A<br>(K) IKVPVDWMR(V)                    |      |
| SEQ ID NO:89 <del>7 89A</del> (R)QFVTATDVVR(G)           | 14   |
| SEQ ID NO: 907 90A                                       | 14   |
| (R)NWMNSLGVNPR(V)<br>SEQ ID NO:91 <del>, 91A</del>       | 14   |

| Peptide Sequence                | Fig.         |
|---------------------------------|--------------|
| (K) MINLSVPDTIDER (T)           |              |
| SEQ ID NO:93, 93A               | 14           |
| (R) VYALPEDLVEVNPK (M)          |              |
| SEQ ID NO:94, 94A               | 14           |
| (K) ESLVGIAGQDLNEGNR (T)        |              |
| SEQ ID NO:95, 95A               | 14           |
| (K) GDEEGIPAVVIDMSGLR (E)       |              |
| SEQ ID NO: 96, 96A              | 14           |
| (K) VFHGLK(T)                   | <del> </del> |
| SEQ ID NO: 97, 97A              | 14           |
| (K) YAISMAR(K)                  | <del></del>  |
| SEQ ID NO:98, 98A               | 14 .         |
| (R) VNKPPYPK(L)                 | <b></b>      |
| SEQ ID NO: 99, 99A              | 14           |
| (K) LSPEELLLR (W)               | ļ            |
| SEQ ID NO:100, 100A             | 14           |
|                                 |              |
| (K) IKVPVDWNR (V)               | 14           |
| SEQ ID NO: 101, 101A            |              |
| (R) QFVTATDVVR(G)               | 14           |
| SEQ ID NO:102 <del>, 102A</del> |              |
| (R) NWMNSLGVNPR (V)             | 14           |
| SEQ ID NO:1037-103A             | 17           |
| (K) MINLSVPDTIDER (T)           | 14           |
| SEQ ID NO:104 <del>, 104A</del> | 11           |
| (R) VYALPEDLVEVNPK (M)          | 14           |
| SEQ ID NO:105, 105A             | 14           |
| (K) GDEEGIPAVVIDMSGLR (E)       | 14 .         |
| SEQ ID NO:106 <del>, 106A</del> | 14,          |
| (R) NWMNSLGVNPR (V)             | 14           |
| SEQ ID NO:107, 107A             | 14           |
| (R) NWMNSLGVNPR (V)             | 14           |
| SEQ ID NO:108, 108A             | 14           |
| (R) NWMNSLGVNPR (V)             | 7.4          |
| SEQ ID NO:109, 109A             | 14           |
| (R) NWMNSLGVNPR (V)             |              |
| SEQ ID NO:110, 110A             | 14           |
| (R) NWMNSLGVNPR(V)              |              |
| SEQ ID NO:111, 111A             | 14           |
| (R) NWMNSLGVNPR (V)             |              |
| SEQ ID NO:112, 112A             | 14           |
| (R) NWMNSLGVNPR (V)             |              |
| SEQ ID NO:113, 113A             | 14 :         |
| (R) NWMNSLGVNPR (V)             |              |
| SEQ ID NO:114 <del>, 114A</del> | 14           |
| (R) NWMNSLGVNPR (V)             |              |
| SEQ ID NO:115, 115A             | 14           |
| (R) NWMNSLGVNPR (V)             |              |
| SEQ ID NO:116, 116A             | 14 .         |
| (R) NWMNSLGVNPR (V)             |              |
| SEQ ID NO:117, 117A             | 14           |
| (R) NWMNSLGVNPR (V)             |              |
| SEQ ID NO:118, 118A             | 14           |
|                                 |              |