MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

Formai előírások:

- 1. Kérjük, hogy a dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal, olvas- hatóan** javítsa ki.
- 2. A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerüljön.
- 3. **Kifogástalan megoldás** esetén kérjük, hogy a maximális pontszám feltüntetése mellett kipipálással jelezze, hogy az adott gondolati egységet látta, és jónak minősítette.
- 4. Hiányos/hibás megoldás esetén kérjük, hogy **a hiba jelzése** mellett az egyes **részpontszámokat** is írja rá a dolgozatra. Ha a dolgozat javítását jobban követhetővé teszi, akkor a vizsgázó által elvesztett részpontszámok jelzése is elfogadható. Ne maradjon olyan részlet a megoldásban, amelyről a javítás után nem nyilvánvaló, hogy helyes, hibás vagy fölösleges.
- 5. A javítás során alkalmazza az alábbi jelöléseket.
 - helyes lépés: kipipálás
 - elvi hiba: kétszeres aláhúzás
 - számolási hiba vagy más, nem elvi hiba: egyszeres aláhúzás
 - rossz kiinduló adattal végzett helyes lépés: szaggatott vagy áthúzott kipipálás
 - hiányos indoklás, hiányos felsorolás vagy más hiány: hiányjel
 - nem érthető rész: kérdőjel és/vagy hullámvonal
- 6. Az ábrán kívül **ceruzával** írt részeket ne értékelje.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól eltérő megoldás születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- 2. A pontozási útmutató pontjai tovább **bonthatók, hacsak az útmutató másképp nem rendelkezik**. Az adható pontszámok azonban csak egész pontok lehetnek.
- 3. Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- 4. **Elvi hibát** követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységekben vagy részkérdésekben, akkor ezekre a részekre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változott meg.
- 5. Ha a megoldási útmutatóban zárójelben szerepel egy **megjegyzés** vagy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.

- 6. Egy feladatra adott többféle megoldási próbálkozás közül a vizsgázó által megjelölt változat értékelhető. A javítás során egyértelműen jelezze, hogy melyik változatot értékelte, és melyiket nem.
- 7. A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- 8. Egy feladatra vagy részfeladatra adott összpontszám nem lehet negatív.
- 9. Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- 10. Az **ábrák** bizonyító erejű felhasználása (például adatok leolvasása méréssel) nem elfogadható.
- 11. **Valószínűségek** megadásánál (ha a feladat szövege másképp nem rendelkezik) a százalékban megadott helyes válasz is elfogadható.
- 12. Ha egy feladat szövege nem ír elő kerekítési kötelezettséget, akkor az útmutatóban megadottól eltérő, **észszerű és helyes kerekítésekkel** kapott rész- és végeredmény is elfogadható.
- 13. A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha a vizsgázó nem jelölte meg, hogy melyik feladat értékelését nem kéri, és a választás ténye a dolgozatból sem derül ki egyértelműen, akkor a nem értékelendő feladat automatikusan a kitűzött sorrend szerinti utolsó feladat lesz.

írásbeli vizsga 1612 3 / 18 2016. október 18.

I.

1. a)		
A feladat szövege szerint: $\frac{x+27}{2} = \sqrt{27x} + 6$.	1 pont	
$x+15=2\sqrt{27x}$	1 pont	
$x^2 + 30x + 225 = 108x$	1 pont	
$x^2 - 78x + 225 = 0$	1 pont	
Az egyenlet két gyöke $x = 3$ és $x = 75$.	1 pont	
Ellenőrzés: 3 és 27 számtani közepe 15, mértani közepe 9; 75 és 27 számtani közepe 51, mértani közepe 45. Tehát mindkét szám megfelelő.	1 pont	
Összesen:	6 pont	

1. b)		
Az állítás igaz,	1 pont	
mert két különböző pozitív szám mértani közepe kisebb a számtani közepüknél.	2 pont	$\sqrt{27x} < \frac{27 + x}{2}$ $0 < (x - 27)^2, \text{ mert } x > 27.$
Összesen:	3 pont	

1. c)		
Az állítás megfordítása: Ha az <i>x</i> -nek és a 27-nek a mértani közepe kisebb a két szám számtani közepénél, akkor <i>x</i> > 27.	1 pont	
Az állítás hamis.	1 pont	
Egy megfelelő ellenpélda (bármelyik 27-nél kisebb pozitív valós szám).	1 pont	
Összesen:	3 pont	

2. a)		
A henger magassága 8 dm, alapkörének sugara 2,5 dm.	1 pont	Ez a pont akkor is jár, ha a vizsgázó cm-ben számol, de a térfogatot jól szá- mítja át literbe.
$V = r^2 \pi m = 2.5^2 \cdot \pi \cdot 8 = 50 \pi \approx 157 \text{ (dm}^3),$	1 pont	
azaz körülbelül 157 liter.	1 pont	
$A = 2r\pi(r+m) = 2 \cdot 2.5 \cdot \pi \cdot (2.5+8) = 52.5\pi$, azaz körülbelül 165 dm ² .	1 pont	
Összesen:	4 pont	

Megjegyzés:

^{1.} Ha a vizsgázó valamelyik válaszában nem kerekít vagy rosszul kerekít, akkor ezért összesen 1 pontot veszítsen.

^{2.} Ha a vizsgázó valamelyik válaszát mértékegység nélkül adja meg, akkor ezért összesen 1 pontot veszítsen.

2. b)		
A térfogatok aránya helyett elegendő a nagyobbik körszelet és a teljes kör területének arányát megadni.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Az ábra szerint az OFA derékszögű háromszögből: $\cos \alpha = \frac{15}{25} = 0,6.$	2 pont	
Ebből $\alpha \approx 53,13^{\circ}$, tehát a nagyobbik körcikk középponti szöge $360^{\circ} - 2\alpha \approx 253,7^{\circ}$.	1 pont	
A nagyobbik körcikket körszeletté kiegészítő AOB egyenlő szárú háromszög alapja (dm-ben számolva): $AB = 2 \cdot \sqrt{2,5^2 - 1,5^2} = 4 \text{ (dm)},$	1 pont	$T_1 = \frac{2.5^2 \cdot \sin 2\alpha}{2} =$
területe $T_1 = \frac{4 \cdot 1,5}{2} = 3 \text{ (dm}^2).$	1 pont	$=\frac{6,25\cdot0,96}{2}=3 \text{ (dm}^2).$
A teljes kör területe $T = 2.5^2 \pi \approx 19.63 \text{ (dm}^2\text{)},$	1 pont*	
ezért a nagyobb körcikk területe $T_2 = \frac{360^\circ - 2\alpha}{360^\circ} \cdot 2,5^2 \pi \approx 13,84 \text{ (dm}^2),$	1 pont*	A kisebb körcikk területe $T_3 = \frac{2\alpha}{360^{\circ}} \cdot 2,5^2 \pi \approx$ $\approx 5,80 \text{ (dm}^2).$
a nagyobb körszelet területe $T_1 + T_2 \approx 16,84 \text{ (dm}^2\text{)}.$	1 pont*	$T-(T_3-T_1)$
A betölthető víz térfogata $\frac{16,84}{19,63} \cdot 100 \approx 86$ százaléka	1 pont*	
a tartály térfogatának.	10 4	
Osszesen:	10 pont	

Megjegyzés:

1. A vizsgázó teljes pontszámot kap, ha jól számítja ki a betölthető víz térfogatát (kb. 135 l), majd ennek és a henger térfogata arányának kiszámítása után helyesen adja meg a válaszát. 2. A *-gal jelölt 4 pontot akkor is megkaphatja a vizsgázó, ha a körszelet és a kör területének

értékét nem számítja ki, a keresett százalékértéket pedig a $\frac{T_1 + T_2}{T} = \frac{\frac{360^\circ - 2\alpha}{360^\circ} \cdot 2,5^2\pi + 3}{2,5^2 \cdot \pi} =$

$$=\frac{360^{\circ}-2\alpha}{360^{\circ}}+\frac{3}{6,25\pi}\approx0,86 \text{ számítás segítségével határozza meg.}$$

3. Ha a vizsgázó az üresen maradó résznek és a teljes térfogatnak az arányát adja meg válaszként, akkor legfeljebb 7 pontot kaphat.

írásbeli vizsga 1612 5 / 18 2016. október 18.

3. a)		
Az "egyharmados" előírás teljesüléséhez a napi 16 vonat közül legalább 6-nak pontosan (azaz 0 perces késéssel) kell indulnia.	1 pont	
A már elindított 14 vonat közül 5 a menetrendben előírt időpontban indult, tehát a két utolsó vonat közül legalább az egyiknek pontosan kell indulnia.	1 pont	
A másik vonat késése legyen x perc. A késések átlaga nem haladhatja meg a 3 percet: $\frac{0 \cdot 6 + 1 + 3 + 4 \cdot 2 + 5 \cdot 2 + 6 + 7 + 8 + x}{16} \le 3.$	1 pont	
<i>x</i> ≤ 5	1 pont	
A lehetséges (egész) értékek közül $x = 4$ és $x = 5$ esetén a medián nagyobb lenne 3-nál (mindkét esetben 3,5).	2 pont	
A másik vonat legfeljebb 3 percet késhet az indulás- nál. (Ezekben az esetekben a medián valóban legfel- jebb 3 lesz.)	1 pont	
Összesen:	7 pont	-

Megjegyzés: Ha a vizsgázó szigorú egyenlőtlenséggel dolgozik, akkor legfeljebb 5 pontot kaphat.

3. b)		
$(209+p)\left(1-\frac{p}{100}\right) = 189$	2 pont	
(209+p)(100-p) = 18900	1 pont	
$p^2 + 109 p - 2000 = 0$	1 pont	
A másodfokú egyenlet két gyöke $p = 16$ és $p = -125$.	1 pont	
Ellenőrzés: Ha $p = 16$, akkor $209 + 16 = 225$, $225 \cdot 0,84 = 189$.	1 pont	
(A negatív gyök nem felel meg a feladat szövegének.)		
Tehát $p = 16$.	1 pont	
Összesen:	7 pont	

Megjegyzés: Ha a vizsgázó próbálgatással (például kétoldali becslésekkel) találja meg a helyes megoldást, de nem bizonyítja, hogy más megoldása nincs a feladatnak, akkor 3 pontot kapjon.

4. a) első megoldás		
A lehetőségeket pl. az epres ízesítésű csokoládék száma alapján számolhatjuk össze.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Ha az epres ízesítésű csokoládék száma		
5: akkor 1 lehetőség van;		
4: akkor 2 lehetőség (0 vagy 1 lehet a málnás ízesí-		
tésű, és minden esetben a narancsos ízesítésűek		
száma már meghatározott);	3 pont	
3: akkor 3 (0, 1, 2);		
2: akkor 4 (0, 1, 2, 3);		
1: akkor 5 (0, 1, 2, 3, 4);		
0: akkor 6 (0, 1, 2, 3, 4, 5) lehetőség van.		
Összesen $1 + 2 + 3 + 4 + 5 + 6 = 21$ lehetőség van.	1 pont	
Összesen:	5 pont	

4. a) második megoldás		
(Háromféle csokoládéból öt darabot választunk ki úgy, hogy a kiválasztott csokoládék sorrendje nem		
számít, továbbá az egyes típusokat többször is kiválaszthatjuk.) A lehetőségek száma a háromféle ízesí-	2 pont	
tés ötödosztályú ismétléses kombinációinak a száma,		
$ azaz \begin{pmatrix} 3+5-1 \\ 5 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix} = $	2 pont	
= 21.	1 pont	
Összesen:	5 pont	

Megjegyzés: Ha a vizsgázó felsorolja az összes lehetséges esetet (mindegyiket pontosan egyszer, továbbá hibás lehetőséget nem ad meg), majd ez alapján helyesen válaszol, akkor teljes pontszámot kapjon.

írásbeli vizsga 1612 7 / 18 2016. október 18.

4. b)		
Tegyük fel, hogy n szelet csokoládét vásárolunk.		
(Ha a reklám állítása igaz, akkor) 0,999 ⁿ annak a va-	1 pont	
lószínűsége, hogy mindegyik tömege legalább 100 g,		
így annak valószínűsége, hogy közöttük van	1 mont	
$100 \text{ g-nál kisebb tömegű: } 1-0,999^n$.	1 pont	
A feltétel szerint $1 - 0.999^n \ge 0.05$, azaz	1 ,	
$0.999^n \le 0.95$.	1 pont	
A 10-es alapú logaritmusfüggvény szigorúan monoton növekedő, tehát: $n \lg 0.999 \le \lg 0.95$.	1 pont	A 0,999 alapú exponenciális (logaritmus) függvény szigorúan monoton csökkenő, ezért
(Mivel lg 0,999 negatív, ezért:)		
$n \ge \frac{\lg 0.95}{\lg 0.999} \ (\approx 51.3).$	1 pont	$n \ge \log_{0.999} 0.95 (\approx 51.3).$
Legalább 52 szelet csokoládét kell vásárolnunk.	1 pont	
Összesen:	6 pont	

Megjegyzés: Ha a vizsgázó egyenlőtlenség helyett egyenlettel jól dolgozik, és ez alapján helyes választ ad, akkor 5 pontot kapjon. További 1 pontot akkor kaphat, ha utal arra, hogy az egyenlet megoldásából hogyan következik a kérdésre adott válasza (például a vásárolt csokoládészeletek számának növekedésével növekszik annak a valószínűsége is, hogy közöttük lesz 100 g-nál kisebb tömegű is).

II.

5. a)		
$x^2 + y^2 - 2.8x + 4.4y - 2.2 = 0$	1 pont	
Átalakítva: $(x-1,4)^2 + (y+2,2)^2 = 9$.	1 pont	
A kapott egyenletből következik, hogy a kör középpontja az (1,4; –2,2) pont, sugara pedig 3 egység.	1 pont	
Összesen:	3 pont	

5. b)		
$\overrightarrow{KA} = (-4; 14) - (-5; 7) = (1; 7)$ a keresett egyenes egy normálvektora,	1 pont	
az egyenes egyenlete $x + 7y = 94$.	2 pont	
Összesen:	3 pont	

5. c) első megoldás		
$KA = \sqrt{1^2 + 7^2} = \sqrt{50}$	1 pont	
Az egyenes metszéspontjait a körrel jelölje B és C . A KAC derékszögű háromszögből $CA = \sqrt{r^2 - KA^2} = \sqrt{100 - 50} = \sqrt{50}$.	2 pont	
A <i>KBC</i> háromszög egyenlő szárú, <i>KA</i> magassága ezért felezi a <i>CB</i> alapot.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból kerül ki.
A húr hossza ezért $CB = 2CA = 2\sqrt{50}$ ($\approx 14,14$).	1 pont	
Összesen:	5 pont	

5. c) második megoldás		
A <i>k</i> egyenlete $(x+5)^2 + (y-7)^2 = 100$, tehát az		
$(x+5)^2 + (y-7)^2 = 100$	1 pont	
$x + 7y = 94 \int$	1 point	
egyenletrendszer megoldása adja a metszéspontokat.		
A második egyenletből $x = 94 - 7y$, ezt az első egyenletbe behelyettesítve: $(99 - 7y)^2 + (y - 7)^2 = 100$.	1 pont	
$50y^2 - 1400y + 9750 = 0$	1 pont	$y^2 - 28y + 195 = 0$
Ebből $y_1 = 13$ és $y_2 = 15$, tehát az e egyenes és a k kör metszéspontjai: $B(3; 13)$, $C(-11; 15)$.	1 pont	
A húr hossza $CB = \sqrt{14^2 + (-2)^2} = \sqrt{200} \ (\approx 14,14).$	1 pont	
Összesen:	5 pont	

Megjegyzés: Ha a vizsgázó a b) feladatban rossz egyenletet kap, és a kapott egyenlettel, mint kiinduló adattal, a c) feladatban jól számol, akkor a megfelelő pontok járnak, ha a megoldandó probléma lényegében nem változott meg (a felírt egyenlethez tartozó egyenes metszi a kört).

5. d)		
(Mivel K rácspont, ezért) a körvonal egy P pontja pontosan akkor lesz rácspont, ha $\overrightarrow{KP} = (a;b)$ koordinátái egészek.	1 pont*	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
$a^2 + b^2 = 100$, tehát a 100-at kell két négyzetszám összegére felbontani.	1 pont*	
A lehetőségek: a 0 ± 6 ± 8 ± 10 b ± 10 ± 8 ± 6 0	2 pont	
Összesen $(2+4+4+2=)$ 12 rácspont van a körvonalon.	1 pont	
Összesen:	5 pont	

Megjegyzés:

- 1. A *-gal jelzett 2 pontot a következő gondolatmenetért is megkaphatja a vizsgázó: Azoknak az (x; y) rendezett számpároknak a számát keressük, amelyek kielégítik az $(x+5)^2 + (y-7)^2 = 100$ egyenletet, továbbá x és y is egész szám.
- 2. Ha a vizsgázó indoklás nélkül felsorolja a 12 rácspontot, és ez alapján válaszol, akkor ezért 3 pont jár. A rácspontok a következők: (-15; 7), (-13; 13), (-11; 15), (-5; 17), (1; 15), (3; 13), (5; 7), (3; 1), (1; -1), (-5; -3), (-11; -1), (-13; 1).

6. a) első megoldás		
Vagy három olyan szerző könyvét viheti magával, akiktől 1-1 mű választható, vagy két könyvet választ ilyen szerzőtől, a harmadikat pedig attól, akinek 2 műve is választható.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Az első esetben $\binom{6}{3}$ (= 20)-féle,	1 pont	
a második esetben $\binom{6}{2}$ · 2 (= 30)-féle választási lehetősége van.	1 pont	
A választási lehetőségek száma az előző két érték összege, tehát 50.	1 pont	
Összesen:	4 pont	

írásbeli vizsga 1612 10 / 18 2016. október 18.

6. a) második megoldás		
Az összes eset számából levonjuk a kedvezőtlen esetek számát.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
Kedvezőtlen esetek azok, amelyekben Andi azt a két könyvet is kiválasztja, amelyeknek azonos a szerzője. Ekkor a harmadik könyvet 6-féleképpen választhatja ki.	1 pont	
A nyolc könyvből összesen $\binom{8}{3}$ (= 56)-féleképpen választhat ki hármat.	1 pont	
Összesen tehát $(56 - 6 =) 50$ választási lehetősége van Andinak.	1 pont	
Összesen:	4 pont	

6. b) első megoldás		
Csak a nemek szerinti elrendezéseket tekintve négy jó sorrend van: LFLFLF, LFLFFL, LFFLFL és FLFLFL.	2 pont*	
Minden jó sorrenden belül a lányok és a fiúk is $3!(=6)$ -féle sorrendben helyezkedhetnek el.	1 pont	
Összesen tehát $(4 \cdot 6 \cdot 6 =)$ 144-féleképpen ülhetnek le a feltételeknek megfelelően.	1 pont	
Összesen:	4 pont	

Megjegyzés: Egy hiba (hiányzó, hibás vagy duplán említett lehetőség) esetén a *-gal jelölt 2 pontból 1 pontot, egynél több hiba esetén 0 pontot kapjon a vizsgázó.

6. b) második megoldás		
A 3 fiú sorrendje 3!-féle lehet.	1 pont	
A 3 fiú 4 "köztes helyet" határoz meg (a közöttük lévő két hely, továbbá a három fiútól jobbra, illetve balra eső egy-egy hely), ezekből hármat választunk ki a lányok számára.	1 pont	Ez a pont akkor is jár, ha ez a gondolat csak a meg- oldásból derül ki.
A 3 lány a 4 helyre 4·3·2-féleképpen ültethető le,	1 pont	
így a megfelelő sorrendek (ülésrendek) száma (3!·4·3·2 =) 144.	1 pont	
Összesen:	4 pont	

6. c)		
A három egymás mellett ülő lányt egy egységnek tekintve ők és az n fiú $(n + 1)!$ -féle sorrendben ülhetnek egymás mellé.	1 pont	
Mivel a három lány $3!(=6)$ -féle sorrendben ülhet egymás mellett, a kedvező esetek száma összesen $3! \cdot (n+1)!$.	1 pont	
Az $n + 3$ személy $(n + 3)!$ -féle különböző sorrendben ülhet le egymás mellé (összes eset száma).	1 pont	
Annak a valószínűsége tehát, hogy a három lány egymás mellett ül: $\frac{6 \cdot (n+1)!}{(n+3)!} = \frac{1}{26}.$	1 pont	
Egyszerűsítve: $\frac{6}{(n+2)(n+3)} = \frac{1}{26}.$	1 pont	
$n^2 + 5n - 150 = 0$	1 pont	
Az egyenlet két gyöke $n = 10$ és $n = -15$.	1 pont	
A -15 nem megoldása a feladatnak, tehát csak $n = 10$ lehetséges (és ez valóban megfelelő).	1 pont	
Összesen:	8 pont	

7. a)		
Megoldandó a $ 10x + 8 \ge 8$ egyenlőtlenség a valós	1 pont	
számok halmazán.	1	
(Az abszolútérték definíciója miatt)	1 pont	
$10x + 8 \ge 8$, vagy	- P	
$10x + 8 \le -8,$	1 pont	
tehát $x \ge 0$ vagy $x \le -1,6$.	1 pont	A megoldáshalmaz: $]-\infty; -1,6] \cup [0; +\infty[.$
	$]-\infty;-1,6]\cup[0;+\infty[.$	
Összesen:	4 pont	

7. b)		
Az f függvény minimumhelye $x = 0$, a [2; 8] intervallumon a függvény szigorúan monoton növekvő.	1 pont	y 4 g
$f(2) = 2 \ (>0)$	1 pont	20
$g(x) = -(x-5)^2 + 35$	1 pont	10
A g függvény maximumhelye $x = 5$, az adott intervallumon felvett legkisebb értéke $g(2) = g(8) = 26 (> 0)$,	1 pont	10 f 10 x
így a függvények az adott intervallumon valóban csak pozitív értékeket vesznek fel.	1 pont	
Összesen:	5 pont	

(7. c)		
(A [2; 8] intervallumon a függvényértékek pozitívak,		
igy) $\int_{2}^{t} (x^{2} - 2) dx = \int_{t}^{8} (-x^{2} + 10x + 10) dx.$	1 pont	
$\left[\frac{x^3}{3} - 2x \right]_2^t = \left[-\frac{x^3}{3} + \frac{10x^2}{2} + 10x \right]_t^8$	2 pont	
$\left[\frac{t^3}{3} - 2t \right] - \left(\frac{2^3}{3} - 2 \cdot 2 \right) =$ $= \left(-\frac{8^3}{3} + \frac{10 \cdot 8^2}{2} + 10 \cdot 8 \right) - \left(-\frac{t^3}{3} + \frac{10 \cdot t^2}{2} + 10 \cdot t \right)$	2 pont	
$5t^2 + 8t - 228 = 0$	1 pont	
A keresett szám az egyenlet [2; 8] intervallumba eső gyöke: $t = 6$. ($t = -7.6$ nem lehetséges.)	1 pont	$\int_{2}^{6} (x^{2} - 2)dx = \frac{184}{3}$ $\int_{6}^{8} (-x^{2} + 10x + 10)dx = \frac{184}{3}$
Összesen:	7 pont	

Megjegyzés: Ha a vizsgázó megmutatja, hogy a t=6 megoldása a feladatnak, de nem igazolja, hogy más megoldás nincs, akkor 3 pontot kapjon.

8. a) első megoldás		
(Az eladott I., II. és III. kategóriás jegyek számát jelölje rendre a , b és c .) A feladat szövege szerint $a+b+\frac{2}{3}(a+b)=200$,	1 pont	
ahonnan $a + b = 120$.	1 pont	
A 120-at 9 : 11 arányban felosztva: $a = 54$ és $b = 66$.	2 pont	
c = (200 - 120 =) 80	1 pont	
Tehát I. kategóriás jegyből 54-et, II. kategóriásból 66-ot, III. kategóriásból pedig 80-at adtak el (így a feladat szövegének feltételei teljesülnek).	1 pont	
Összesen:	6 pont	

8. a) második megoldás		
Az eladott I., illetve II. kategóriás jegyek száma a feladat szövege szerint 9 <i>x</i> , illetve 11 <i>x</i> ,	1 pont	
a III. kategóriás jegyek száma pedig $\frac{2}{3}(9x+11x)$.	1 pont	
$20x + \frac{2}{3} \cdot 20x = 200$	1 pont	
x = 6	1 pont	
$9x = 54$, $11x = 66$, $\frac{2}{3}(54 + 66) = 80$.	1 pont	
Tehát I. kategóriás jegyből 54-et, II. kategóriásból 66-ot, III. kategóriásból pedig 80-at adtak el (így a feladat szövegének feltételei teljesülnek).	1 pont	
Összesen:	6 pont	

8. b) első megoldás		
A téglalap oldalainak hossza (méterben): 6 sin α, illetve 12 cos α,	2 pont	
a téglalap területe pedig $72 \sin \alpha \cos \alpha$ (m ²).	1 pont	
Keressük az f függvény maximumát, ha		Ez a pont akkor is jár, ha
$f(\alpha) = 72 \sin \alpha \cos \alpha \text{ (és } 0 < \alpha < \frac{\pi}{2}).$	1 pont	ez a gondolat csak a meg- oldásból derül ki.
(f deriválható, és) $f'(\alpha) = 72\cos^2 \alpha - 72\sin^2 \alpha$.	1 pont*	
Az <i>f</i> -nek ott lehet szélsőértéke, ahol a deriváltja 0: $\cos^2 \alpha - \sin^2 \alpha = 0$.	1 pont*	
$(0 < \alpha < \frac{\pi}{2} \text{ figyelembe vételével}) \text{ tg}^2 \alpha = 1,$ amiből $\alpha = \frac{\pi}{4}$.	1 pont*	45° is elfogadható.
Ezen a helyen az f' pozitívból negatívba megy át, tehát itt f -nek maximuma van.	1 pont*	$f''\left(\frac{\pi}{4}\right) = -144\sin\left(2\cdot\frac{\pi}{4}\right),$ ami negativ.
A maximális területű téglalap oldalainak hossza (méterben) $3\sqrt{2}$ ($\approx 4,24$), illetve $6\sqrt{2}$ ($\approx 8,49$),	1 pont	
a legnagyobb terület $(3\sqrt{2} \cdot 6\sqrt{2}) = 36 \text{ m}^2$.	1 pont	
Összesen:	10 pont	

A *-gal jelölt pontokat az alábbi gondolatmenetért is megkaphatja a vizsgázó:

A $2 \sin \alpha \cos \alpha = \sin(2\alpha)$ azonosság miatt $f(\alpha) = 36 \sin(2\alpha)$.	1 pont
Az f maximális, ha sin (2α) maximális.	1 pont
(Mivel $0 < \alpha < \frac{\pi}{2}$, ezért) $\alpha = \frac{\pi}{4}$.	2 pont

8. b) második megoldás		
A téglalap oldalainak hossza (méterben): 6 sin α, illetve 12 cos α,	2 pont	
a téglalap területe pedig 72 sin α cos α (m²).	1 pont	
Két pozitív szám mértani és négyzetes közepe közötti egyenlőtlenség miatt:	1 pont	
$72\sin\alpha\cos\alpha \le 72 \cdot \frac{\sin^2\alpha + \cos^2\alpha}{2},$	2 pont	
vagyis $72 \sin \alpha \cos \alpha \le 72 \cdot \frac{1}{2} = 36$.	1 pont	
Egyenlőség pontosan akkor lehetséges, ha $\sin \alpha = \cos \alpha$.	1 pont	
Ekkor tg $\alpha = 1$, vagyis $\alpha = 45^{\circ}$.	1 pont	
Tehát a színpad maximális területe $(72 \sin 45^{\circ} \cos 45^{\circ} =) 36 \text{ m}^2.$	1 pont	
Összesen:	10 pont	

	10 pont	
8. b) harmadik megoldás		
A tervrajzot helyez- zük el az ábra szerint koordináta-rendszer- ben. A félkör egyenlete: $x^2 + y^2 = 36$, ahol $y \ge 0$, az ori- gón átmenő, α irányszögű egyenes egyenlete pedig: $y = mx$, ahol $m = tg \alpha$ és $m > 0$.	1 pont	
Ez az egyenes a félkört az $(x_0; mx_0)$ pontban metszi, tehát $x_0^2 + m^2 x_0^2 = 36$, ebből $x_0^2 = \frac{36}{m^2 + 1}$.	1 pont	
A téglalap területe $t(m) = 2x_0 \cdot mx_0 = 2mx_0^2 =$	1 pont	
$=72\cdot\frac{m}{m^2+1} \ (m>0).$	1 pont	
$t'(m) = 72 \cdot \frac{m^2 + 1 - 2m^2}{(m^2 + 1)^2} = 72 \cdot \frac{1 - m^2}{(m^2 + 1)^2}$	2 pont	
Szélsőérték ott lehet, ahol $t'(m) = 0$, ahonnan $(m > 0 \text{ miatt})$ $m = 1$.	1 pont	
Ezen a helyen a derivált pozitívból negatívba megy át, tehát a függvénynek itt maximuma van.	1 pont	
A legnagyobb terület: $\left(t(1) = 72 \cdot \frac{1}{1^2 + 1} = \right) 36 \text{ m}^2$,	1 pont	
az α szög ekkor 45°-os.	1 pont	
Összesen:	10 pont	

8. b) negyedik megoldás		
Tükrözzük a félkört és a téglalapot is a félkör átmérőjének egyenesére, és egyesítsük a tükrözéssel kapott alakzatokat az eredetiekkel. (Egy téglalapot és ennek körülírt körét kapjuk; a kör átmérője 12 m.)	2 pont	
A legnagyobb területű színpadot akkor kapjuk, amiko a 12 m átmérőjű körbe írt téglalap területe (vagyis a színpad területének a kétszerese) a legnagyobb.	2 pont	
Az ábra jelölése szerint: egy adott r sugarú körbe írt $ABCD$ téglalap területe $2rh$. Ez akkor a legnagyobb, ha a h maximális, vagyis $h = r$, azaz a téglalap négyzet.	2 pont*	
Ekkor a keresett szög $\alpha = 45^{\circ}$,	2 pont	_
a legnagyobb színpad területe pedig a négyzet területének a fele: 36 m².	2 pont	
Összesen:		

Megjegyzés: Ha a vizsgázó kijelenti, hogy az adott körbe írható legnagyobb területű téglalap a négyzet, de az állítását nem bizonyítja, akkor a *-gal jelölt 2 pontból 1 pontot kapjon.

9. a)		
A számtani sorozat tagjai az $5k + 4$ alakú számok,	1 pont	
ahol $k \in \mathbb{N}$.	т роп	
A sorozat 1000-nél kisebb tagjainak száma 200.	1 pont	
(A legnagyobb megfelelő tag $k = 199$ esetén 999.)	1 point	
A mértani sorozat tagjai $3 \cdot 2^{n-1}$ alakúak $(n \in \mathbb{N}^+)$,	1 pont	
közöttük 9 olyan van, amelyik kisebb 1000-nél	1 pont	
(3, 6, 12, 24, 48, 96, 192, 384, 768).	1 pont	
A mértani sorozat $5k + 4$ alakú tagjai 4-re végződnek		
(a 9 végződés nem lehetséges), ezek a 24 és 384	1 pont	
(ez a két szám tehát mindkét sorozatnak tagja).		
A két sorozatnak együtt összesen $200 + 9 - 2 = 207$		
olyan tagja van, amely 1000-nél kisebb (kedvező ese-	1 pont	
tek száma).		
Az összes eset száma 999.	1 pont	
A kérdezett valószínűség $\frac{207}{999}$ ($\approx 0,207$),	1 pont	
ami a kért alakban $\frac{23}{111}$.	1 pont	
Összesen:	9 pont	

0 b) 1 " 11"		
9. b) első megoldás		
Legyen a három teljes gráf pontjainak száma a , $a + d$, $a + 2d$, ahol a és d pozitív egész számok.	1 pont	Legyen a három teljes gráf pontjainak száma a – d, a, a + d, ahol a, d pozitív egész számok, a > d.
Az élek száma rendre $\frac{a(a-1)}{2}, \frac{(a+d)(a+d-1)}{2}, \frac{(a+2d)(a+2d-1)}{2}.$	1 pont	$Az \text{ \'elek sz\'ama rendre} \\ \frac{(a-d)(a-d-1)}{2}, \frac{a(a-1)}{2} \\ , \frac{(a+d)(a+d-1)}{2}.$
Indirekt módon tegyük fel, hogy az élek száma egy számtani sorozat három szomszédos tagja! Ekkor (mivel a szomszédos tagok sorrendje megegyezik a megfelelő gráfok pontjai számának sorrendjével) $\frac{a(a-1)}{2} + \frac{(a+2d)(a+2d-1)}{2} = \frac{(a+d)(a+d-1)}{2}.$	1 pont	
$\frac{a^2 - a + a^2 + 2ad - a + 2ad + 4d^2 - 2d}{2} =$ $= a^2 + 2ad + d^2 - a - d$	1 pont	
$2a^{2} + 4ad + 4d^{2} - 2a - 2d =$ $= 2a^{2} + 4ad + 2d^{2} - 2a - 2d$	1 pont	$2a^2 + 2d^2 - 2a = 2a^2 - 2a$
d = 0	1 pont	
Mivel a feladat szövege szerint $d > 0$, ezért ellent- mondásra jutottunk. Tehát a három gráf éleinek száma nem lehet egy számtani sorozat három egymást követő tagja.	1 pont	
Osszesen:	7 pont	

9. b) második megoldás		
Az n + 1 pontú teljes gráf éleinek száma		
$\frac{n(n+1)-n(n-1)}{2} = n\text{-nel t\"{o}bb, mint az } n \text{ pont\'{u} teljes}$	2 pont	
gráf éleinek száma.		
Ennek alapján ha d egy pozitív egész szám, akkor az $n+d$ pontú teljes gráfnak $n+(n+1)++(n+d-1)=$	1 pont	
$= nd + \frac{d(d-1)}{2} \text{ -vel t\"obb \'ele van, mint az } n \text{ pont\'u}$	1 pont	
gráfnak,		
az $n + 2d$ pontú teljes gráfnak pedig $(n+d)d + \frac{d(d-1)}{2}$ -vel több éle van, mint az $n+d$	1 pont	
pontú teljes gráfnak.		
Mivel $d > 0$, ezért $(n + d)d$ $(= nd + d^2)$ nem lehet egyenlő nd -vel,	1 pont	
tehát a feladat állítása igaz.	1 pont	
Összesen:	7 pont	