1. Beschleunigung: Ausrechnen und umformen. Die Formel für die Beschleunigung ist

$$a = \frac{\Delta v}{\Delta t}$$

Hier ist a die Beschleunigung, Δv ein Geschwindigkeitsunterschied und Δt die Zeit, die es dauerte, bis sich die Geschwindigkeit um Δv geändert hat.

- (a) Was für eine Beschleunigung liegt von, wenn sich die Geschwindigkeit in $\Delta t=3$ s um $\Delta v=15\,\frac{\rm m}{\rm s}$ ändert? **Achtung Einheiten!**
- (b) Lösen Sie nach Δv auf. Berechnen Sie die Geschwindigkeitsänderung bei der Beschleunigung $a=5\,\frac{\rm m}{\rm s^2}$ in der Zeit $\Delta t=3\,\rm s.$ Achtung Einheiten!
- (c) Lösen Sie nach Δt auf. Berechnen Sie die Zeit Δt die bei einer Beschleunigung $a=5\,\frac{\rm m}{\rm s^2}$ vergeht, bis sich die Geschwindigkeit um $\Delta v=15\,\frac{\rm m}{\rm s}$ ändert. **Achtung Einheiten!**
- (d) Vervollständigen Sie die Tabelle. Achten Sie auf das Vorzeichen. Achten Sie auf die Einheiten. Geben Sie den vollständigen Rechenweg an.

	Geschwindigkeits- änderung	Beschleunigungszeit	Beschleunigung
	$\Delta v = 15 \tfrac{\rm m}{\rm s}$	$\Delta t = 3 extsf{s}$	$a=5rac{m}{s^2}$
а	$\Delta v = 4.2rac{\mathrm{m}}{\mathrm{s}}$	$\Delta t = 7 extsf{s}$	
b		$\Delta t = 1.2 extsf{s}$	$a = -3.6 \frac{m}{s^2}$
С	$\Delta v = 100{\rm \frac{km}{h}}$	$\Delta t = 3 extsf{s}$	
d	$\Delta v = -9\tfrac{\mathrm{m}}{\mathrm{s}}$		$a = -3 \frac{m}{s^2}$