

TD_485 隔离收发模块应用指南—2022 版

目录

. RS485 总线基本知识	1
1.1. RS485 总线基本特性	1
1.2. RS485 总线传输距离	1
1.3. RS485 总线的连接方式与终端电阻	1
1.4. 实际接线中通信质量的影响因素	2
2. TD_485 系列产品用于接口硬件设计应注意的问题	3
2.1. CON 引脚的收发控制逻辑	3
2.2. RXD、TXD 接口的默认电平	3
2.3. A、B 总线端口上下拉电阻设计	3
2.4. A、B 总线端口的隔离设计	3
2.5. A/B 总线端口的防雷设计	3
2.6. 总线参考地的连接	4
2.7. 省略 CON 脚控制脚的接线应用	4
5. TD_485 系列产品使用中的常见故障及解决方法	6
TD 485 洗型推荐表	7

1. RS485 总线基本知识

1.1. RS485 总线基本特性

根据 RS485 工业总线标准,RS485 工业总线为采用差分方式传输信号,特性阻抗典型值 120Ω 的半双工主从通讯总线,其最大负载能力为 32 个有效负载(包括主控设备与被控设置);为适应更多节点的通信场合,有些芯片的输入阻抗设计成 1/2 负载($\geq 24k\Omega$)、1/4 负载($\geq 48k\Omega$)甚至 1/8 负载($\geq 96k\Omega$),相应的节点数可增加到 64 个、128 个和 256 个。

1.2. RS485 总线传输距离

当使用 0.56mm(24AWG) 双绞线作为通讯电缆时,根据波特率的不同,最大传输距离理论值如下表:

波特率	最大距离
2400 bps	1800m
4800 bps	1200m
9600 bps	800m
19200 bps	600m

表 1-1 波特率与传输距离对照表

但实际使用时,因线缆质量、线缆线径、网络分布、电气环境、实际节点数等因素的影响,实际的传输距离均达不到理论值。一般节点数越多,传输距离越短。

1.3. RS485 总线的连接方式与终端电阻

RS485 工业总线标准要求各设备之间采用菊花链式连接方式,两头必须接有 120Ω终端电阻(如图 1-1 所示),自动收发除外。

图 1-1 RS485 总线的连接方式与终端电阻

一般使用中的简化连接方式如图 1-2。必须保证支线长度尽量短。所以 PCB 布线时,尽量将 485 收发器放置在接口位置,并保证 485 的 A、B 到设备端口的走线尽量短。

图 1-2 RS485 总线的简化连接方式

1.4. 实际接线中通信质量的影响因素

- (1) 通信距离越短,通信质量越好。如果通信距离超过500米,推荐增加中继器。
- (2) 通信节点数越少,通信质量越好。如果节点数量超过32个,推荐增加中继器。
- (3)通信波特率越低,通信质量越好。在能够满足应用需求的情况下,尽量选取较低的通信波特率。推荐在1200~9600bps之间选取。
- (4) A、B 端口之间的防护器件, 其等效电容越小, 对通信影响越小。所以在端口防护器件(TVS管、压敏电阻等)的选取上要考虑其等效电容参数。
 - (5) 每个通信节点的支线长度应尽量的短,减小支线信号反射对总线的影响。
- (6) 合适的终端匹配电阻需要与通信线的特征阻抗尽量一致,能有效的减小信号反射,一般推 荐接 $120\,\Omega$ 电阻。
- (7)使用屏蔽双绞线,将所有通信节点的参考地通过屏蔽层联接,并在一点接地,能减少干扰, 提高通信质量。

2. TD 485 系列产品用于接口硬件设计应注意的问题

2.1. CON 引脚的收发控制逻辑

TD_485 系列产品与普通的 485 芯片的收发控制逻辑电平刚好相反。当 CON 引脚为 0 时,为总线发送状态,当 CON 引脚为 1 时,为总线接收状态。

根据 485 总线的特点,联接在 485 总线上的各通信节点,在产品上电之初,必须配置为接收状态,以防止总线上多机同时处在发送状态,造成总线信号的混乱。有一些常用的 MCU(如 51 系列单片机)的 I/O 口在初始上电时,默认输出为高电平,这类的 MCU 与普通 485 芯片直接连接使用时,容易在上电之初,I/O 口还没有初始化之前,导致 485 芯片处于发送状态,造成总线信号的混乱。TD_485 系列产品 CON 引脚的收发控制逻辑能够很好的解决这一问题。

同时,设计者在端口硬件设计上也要考虑初始上电时,TD_485 系列产品的总线收发状态,要保证上电时,TD_485 系列产品为总线接收状态,即 CON 引脚为高电平或高阻态。

2.2. RXD、TXD 接口的默认电平

异步通信数据以字节的方式传送,在每一个字节传送之前,先要通过一个低电平起始位实现握手。为防止干扰信号误触发 RXD(接收器输出)产生负跳变,使接收端 MCU 进入通信接收等待状态,建议 RXD 外接 10kΩ上拉电阻。当单片机 I/O 选择开漏输出时或者 TXD 驱动能力不足时,需根据实际情况增加 TXD 上拉电阻。

2.3. A、B 总线端口上下拉电阻设计

TD_485 系列产品的 A、B 端口在模块内部有弱上拉电阻和弱下拉电阻,保证总线空闲时,总线电平为逻辑 1 状态,实际应用时可以根据具体负载、节点等因素考虑是否还需再加外部上、下拉电阻。

2.4. A、B 总线端口的隔离设计

485 总线节点一般以菊花链或总线拓扑方式联网,一旦有一个节点的接口芯片故障就可能将整个总线"拉死",因此对其总线端口 A、B 与总线之间应加以隔离。通常在 A、B 与总线之间各串接一只 4-10 Ω 的 PTC 电阻或者 10~47 Ω 普通电阻形成与总线的隔离。当一个节点的接口芯片发生 A、B 短路或 A、B 对电源击穿时,总线与节点之间形成电势垒,从而减小对总线的影响。

2.5. A/B 总线端口的防雷设计

485 总线通信,一般应用在远距离传输方面,所以 A、B 总线端口的防雷设计也是设计者必须考虑的。通常的防雷设计电路如图 2-1。对应器件的相关参数可以参考 TD_485 系列产品技术手册,推荐的电路图和参数仅供参考,需要根据实际情况来确定是否需要推荐的电路图中的器件和适当参数。

图 2-1 RS485 总线防雷设计

2.6. 总线参考地的连接

485 总线虽采用差分方式传输信号,似乎并不需要相对于某个参照点来判定信号,系统只需检 测两线之间的电位差就可以了,但设计者也应该考虑 485 接口模块的共模电压承受范围,如一般的 -7~+12V, 只有满足这个条件,整个网络才能正常工作。当网络线路中共模电压超出此范围时就会 影响通信的稳定可靠,甚至损坏接口。采用隔离技术能够很好的解决共模噪声的问题,所以使用 TD 485 系列 485 隔离收发器构建总线硬件端口能够很好的隔断总线上各节点的接地环路,减小节 点间的地线环路电流,从而减小共模干扰。但对于干扰严重、恶劣的电气环境,仍然推荐设计者使 用屏蔽双绞线,通过屏蔽层将总线上各通信节点的总线参考地联接起来,减小共模及辐射干扰,提 高系统通信可靠性(如图 2-2)。

图 2-2 参考接地图

2.7. 省略 CON 脚控制脚的接线应用

在某些特殊的场合,设计者可能会选择利用 TXD 的发送信号作为 CON 引脚的输入,以节省 MCU 的 I/O 使用(如图 2-3)。TXD 在发送逻辑"0"信号时, CON 引脚为"0"即发送状态,将 TXD 的"0"信号发送到总线上; TXD 在发送逻辑"1"信号时, CON 引脚为"1"即接收状态, 依 靠总线默认空闲电平"1"表示 TXD 所要发送的逻辑"1"信号。这种应用需要重点考虑以下几点:

(1) 波特率的设置。尽量选择比较低的波特率,由于 CON 脚使用光耦控制延时较大,所以至

少让 1 个 bit 的信号保持时间能够大于 485 收发切换延迟时间加接收端 MCU 采样时间以及线路传输延迟时间。

- (2)总线驱动能力。因为这种应用,发送逻辑"1"信号依靠总线默认空闲电平"1"表示,其驱动能力远小于 485 收发器直接驱动输出的驱动能力,所以设计者应根据实际情况选择合适通信节点数和通信距离,以保证通信的可靠性。同时,总线终端匹配电阻会减小信号幅值,设计者也不能简单的按推荐值 120Ω配置终端电阻,需要选择合适的终端匹配电阻,保证总线正常通信时的信号差分幅值在 1.5V 左右。
- (3)利用 TXD 控制 CON 脚,由于信号传输时序的问题,可能会出现 RXD 掉电误触发单片机 RXD 接收,所以实际应用需处理好发送状态下 RXD 电平,防止其误触发。
- (4) TXD 控制 CON 脚应用有风险,若客户不需 CON 脚控制,建议选择 TDxxxx485x-A(自动收发)系列产品。

图 2-3 省略 CON 脚控制脚的接线应用图

3. TD_485 系列产品使用中的常见故障及解决方法

表 3-1 常见故障及解决方法表

客户问题	原因分析	解决方法				
	CON 引脚收发控制逻辑错误;	修正 CON 引脚收发控制逻辑;				
	485 总线接口 A、B 极性接反;	调换 485 总线接口 A、B 极性;				
	模块选型错误;模块 5V 和 3.3V 产品阈值不同	根据单片机供电选择正确的匹配模块,				
	不能兼容使用。	3.3V 选择 TD3xx 系列, 5V 供电选择 TD5xx 系列				
工社通信		模块隔离电源输出 Vo 负载能力有限,一般只为上拉				
无法通信 	隔离电源输出负载过大。	电阻供电使用,有大负载需要供电时推荐使用专门的				
		隔离电源(B0505 系列)。				
	发送器与接收器的波特率不一致;	调整发送器与接收器的波特率为一致;				
	CON 引脚驱动能力不足;	通过下拉电阻增强 CON 引脚驱动能力;				
	R4/R5 代产品没有添加 VCC 对 GND 的电容	按技术手册推荐增加 VCC 对 GND 的滤波电容				
	波特率定时器时钟不准;	使用合适频率的晶体振荡器(如 11.0592M);				
	通信波特率过高;	降低通信波特率;				
	外围器件电路寄生电容过大;	换用寄生电容更小的防护器件;				
fall	上下拉匹配电阻不匹配;	选择合适的终端匹配电阻;				
	A、B 线串联隔离电阻阻值过大;	选择合适的隔离电阻阻值;				
通信误码率高	<i>₩</i> ₩ m #1 + 1/0 x m #1	选择合适的终端匹配电阻,保证总线正常通信时的信				
	终端匹配电阻不匹配; 	号差分幅值在 1.2V 左右;				
	通信节点数过多;	增加 485 中继器;				
	通信距离太远。	增加 485 中继器。				
	收发延时设置过小	设置合理的收发延时时间				
	一代 485 模块接中继器使用	使用我司三代产品				
[L \\\\ +4 14	DOJOS E FITHIUL DOJOS HII	可以,但是通信电气数据必须同时满足 RS485 与				
协议转换	RS485 是否可转化为 RS422 使用	RS422 电气标准与通信标准要求。				

4. TD_485 选型推荐表

表 4-1 产品选型表

类别	通讯	型号电	电源输入	是否带	传输速率		节点	隔离电压	封装
	路数			配电	(MAX.)		数		D/K
单路高速 RS485		TDx01D485	3.3V 5V	否	0600hm	低	32	2500VDC	DIP10
隔离收发模块	1	1DX01D483	3.30 \ 30	À	9600bps	114	32	2300 V DC	DIFIU
单路 RS485	1	TD 01D405H	2 2 1 5 1	示	2001/1	-	22	2500VDC	DID10
隔离收发模块	1	TDx01D485H	3.3V、5V	否	200Kbps	高	32	2500VDC	DIP10
单路高速 RS485		TD 01D 10511 1	2 21/ 51/	*	115 0171	<u> </u>	22	2500VID.G	DID10
隔离收发模块	1	TDx01D485H-A	3.3V、5V	否	115.2Kbps	高	32	2500VDC	DIP10
单路高速 RS485				-		1			
隔离自动收发模块	1	TDx01D485H-E	3.3V、5V	否	500Kbps	高	256	2500VDC	DIP10
单路高速增强版 RS485				1					
隔离收发模块	1	TDHx01D485H	3.3V 5V	否	115.2Kbps	高	32	3750VAC	DIP10
单路高速小体积 RS485									
带配电隔离收发模块	1	TDx01M485	3.3V、5V	是	500Kbps	高	64	2500VDC	DIP8
单路高速 RS485			3.3V、5V、						
带配电隔离收发模块	1	TDx11D485H	12V、24V	是	115.2Kbps	高	32	2500VDC	DIP10
单路高速 RS485 带配电隔									
离收发模块	2	TDx12P485	3.3V、5V	是	9600bps	低	32	2500VDC	DIP24
双路高速 RS485	_								
带配电隔离收发模块	2	TDx12P485H	3.3V、5V	是	115.2Kbps	高	32	2500VDC	DIP24
双路高速 RS485	_								
带配电隔离收发模块	2	TDx1IP485H	3.3V、5V	是	115.2Kbps	高	32	2500VDC	DIP24
双路双隔离 RS485	1								
带配电隔离收发模块		TDx21D485	3.3V、5V	是	9600bps	低	64	2500VDC	DIP10
单路 RS485	1	TDv21D49EU	2 21/ 51/	Ħ	200Vhna	占	6.4	2000VDC	DIB10
带配电隔离收发模块	1	TDx21D485H	3.3V、5V	是	200Kbps	高	64	3000VDC	DIP10

类别	通讯	##I FJ.	中源科	是否带	传输速率	速率	九节	7	÷÷⊁
火 利	路数	型号	电源输入	配电	(MAX.)	等级	数	隔离电压	封装
单路高速 RS485 带配电隔离收发模块	1	TDx21D485H-A	3.3V、5V	是	500Kbps	高	128	3000VDC	DIP10
单路高速 RS485 隔离带配电自动收发模块	1	TDx21D485H-E	3.3V、5V	是	500Kbps	高	256	3000VDC	DIP10
单路高速加强型 RS485 隔离带配电收发模块	2	TDx22D485H-A	3.3V、5V	是	120Kbps	高	32	2500VDC	DIP12
双路双隔离带配电高速型 485 隔离收发模块	1	TDx21S485H-E	3.3V、5V	是	500Kbps	高	256	3000VDC	SMD10
单路高速增强版带配电 RS485 隔离收发模块	1	TDx21S485H-A	3.3V、5V	是	500Kbps	高	128	3000VDC	SMD10
单路高速带配电 RS485 隔离自动收发模块	1	TDx21S485H	3.3V、5V	是	200Kbps	高	64	3000VDC	SMD10
单路高速 带配电 RS485 隔离收发模块	1	TDx21S485	3.3V、5V	是	19.2Kbps	低	64	2500VDC	SMD10
单路 RS485 隔离收发模块	1	TDxB1D485	3.3V、5V	是	19.2Kbps	低	64	2500VDC	DIP10
单路低功耗带配电 RS485 隔离收发模块	1	TDx21D485-L	3.3V、5V	是	19.2Kbps	低	16	3000VDC	DIP10
集成隔离 485 的 ACDC 电源	1	TLA03-03K485	3.3V、5V、 12V	是	500Kbps	侗	128	4000VAC	DIP34
单路空壳带配电 RS485 隔 离收发模块	1	TDx31S485	3.3V、5V	是	19.2Kbps	低	64	2500VDC	SMD12
单路空壳带配电低功耗高 速 485 隔离收发模块	1	TDx31S485-L	3.3V、5V	是	19.2Kbps	低	16	2500VDC	SMD12
单路空壳带配电高速 RS485 隔离收发模块	1	TDx31S485H	3.3V、5V	是	150Kbps	高	128	2500VDC	SMD12
单路空壳带配电高速 RS485 隔离自动收发模块	1	TDx31S485H-A	3.3V、5V	是	150Kbps	高	128	2500VDC	SMD12

类别	通讯		+ ME+A)	是否带	传输速率	速率	节点	एन केट -	4144
- 	路数	型号	电源输入	配电	(MAX.)	等级	数	隔离电压	封装
单路空壳带配电增强型 RS485 隔离收发模块	1	TD*31S485H-E	3.3V、5V	是	500Kbps	高	256	2500VDC	SMD12
单路 DFN 封装带隔离电源 高速 RS485 隔离收发模块	1	TD541S485H	5V	是	1Mbps	高	256	3000VDC	DFN16
单路 DFN 封装带隔离电源 高速高隔离 RS485 隔离收 发模块		TDH541S485H	5V	是	1Mbps	高	256	5000VDC	DFN16
单路 DFN 封装 高速 RS485 隔离收发模块	1	TD041S485H	3.3/5V	否	1Mbps	高	256	3750Vrms	DFN16
单路高速高隔离 RS485 隔离收发模块	1	TDHx01D485H2	3.3/5V	是	1Mbps	高	128	5000VAC	DIP10
单路高速高隔离 RS485 隔离收发模块(增强型)	1	TDHx01D485H- E	3.3/5V	是	1Mbps	高	256	5000VAC	DIP10
单路 DFN 封装 自动收发 RS485 隔离收发模块	1	TD041S485H-A	3.3/5V	否	1Mbps	高	256	3750Vrms	DFN16
单路 DFN 封装带隔离电源 自动收发 RS485 隔离收发 模块		TD541S485H-A	5V	是	1Mbps	高	256	3000VDC	DFN16
单路 DFN 封装带隔离电源 自动收发 RS485 隔离收发 模块		TDH541S485H- A	5V	是	1Mbps	高	256	5000VDC	DFN16
单路 DFN 封装 全双工 RS485 隔离收发模块	1	TD041S485S-F	3.3/5V	否	1Mbps	高	256	3750Vrms	DFN16
单路 DFN 封装带隔离电源 全双工 RS485 隔离收发 模块	1	TD541S48S-F	5V	是	1Mbps	高	256	3000VDC	DFN16
单路 DFN 封装带隔离电源	1	TDH541S485S-	5V	是	1Mbps	高	256	5000VDC	DFN16

广州金升阳科技有限公司 MORNSUN Guangzhou Science & Technology Co., Ltd.

类别	通讯路数	型号	电源输入	是否带 配电	传输速率 (MAX.)	速率等级	节点数	隔离电压	封装
全双工 RS485 隔离收发		F							
模块									
IC 封装 带隔离电源	1	TDA51S485HC	3.3/5V	是	500kbps	高	256	5000Vrms	SOIC16

