Equivalences of Temporal Properties

19CSE205: PROGRAM REASONING

Dr. Swaminathan J

Assistant Professor

Department of Computer Science and Engineering

Jul - Dec 2020

Contents

- F and G connection
- 2 X in the presence of U, \wedge and \vee
- $\textbf{3} \ \mathsf{F} \ \mathsf{and} \ \mathsf{G} \ \mathsf{in} \ \mathsf{the} \ \mathsf{presence} \ \mathsf{of} \ \land \ \mathsf{and} \ \lor$
- $lackbox{4}$ U in the presence of \wedge and \vee
- U and R connection

F and G connection

- 1. $\neg \mathsf{G} \mathsf{p} = \mathsf{F} \neg \mathsf{p}$
 - p is not globally true
 - There is at least one state where p is false

- 2. $\neg \mathsf{F} \mathsf{p} = \mathsf{G} \neg \mathsf{p}$
 - p is not true in any future
 - Globally p is false

X in the presence of U, \wedge and \vee

3. Is $\neg X p = X \neg p$ true?

4. Is $X(p \land q) = Xp \land Xq$ true?

5. Is $X (p \lor q) = X p \lor X q \text{ true}$?

6. Is X (p U q) = X p U X q true?

F and G in the presence of \land and \lor

7. Is $F(p \lor q) = Fp \lor Fq$ true?

8. Is $F(p \land q) = Fp \land Fq$ true?

9. Is $G(p \land q) = Gp \land Gq$ true?

10. Is $G(p \lor q) = Gp \lor Gq$ true?

U in the presence of \land and \lor

11. Is p U (q \vee r) = (p U q) \vee (p U r) true?

12. Is p U (q \wedge r) = (p U q) \wedge (p U r) true?

13. Is $(p \land q) \cup r = (p \cup r) \land (q \cup r)$ true?

14. Is $(p \lor q) U r = (p U r) \lor (q U r)$ true?

U and R connection

15.
$$\neg (p \cup q) = (\neg p R \neg q)$$

16.
$$\neg$$
 (p R q) = (\neg p U \neg q)

17. F p = F F p

18. G p = G G p

