Chapter 3-1 Finite Automata

- Find lexemes according to patterns, and create tokens
 - Lexeme a character string
 - Pattern <u>regular expression</u> (lexical errors if no patterns matched)
 - Token <token-class-name, attribute>

- Find lexemes according to patterns, and create tokens
 - Lexeme a character string
 - Pattern <u>regular expression</u> (lexical errors if no patterns matched)
 - Token <token-class-name, attribute>

- Find lexemes according to patterns, and create tokens
 - Lexeme a character string
 - Pattern <u>regular expression</u> (lexical errors if no patterns matched)
 - Token <token-class-name, attribute

key	name	•••
1	position	
2	initial	

symbol table

PART I: Math Preliminaries

Alphabet and Strings

• A language is a set of strings, e.g., { cat, dog, ... }

Alphabet and Strings

- A language is a set of strings, e.g., { cat, dog, ... }
- A string is a sequence of letters defined over an alphabet
 - string example: cat, dog, ...
 - alphabet example: $\Sigma = \{ a, b, c, d, ..., z \}$

Alphabet and Strings

- A language is a set of strings, e.g., { cat, dog, ... }
- A string is a sequence of letters defined over an alphabet
 - string example: cat, dog, ...
 - alphabet example: $\Sigma = \{ a, b, c, d, ..., z \}$
- **Example**: consider a small alphabet $\Sigma = \{ a, b \}$
 - strings: a, b, ab, aab, aabb, ...
 - a language is any subset of { a, b, ab, aab, aabb, ... }

String Operations

Concatenation

• $w_1 = aabb$; $w_2 = bbaa$; $\rightarrow w_1w_2 = aabbbbaa$;

String Operations

Concatenation

•
$$w_1 = aabb$$
; $w_2 = bbaa$; $\rightarrow w_1w_2 = aabbbbaa$;

Reverse

•
$$w = a_1 a_2 a_3 a_4$$
;

$$\rightarrow w^R = a_4 a_3 a_2 a_1;$$

String Operations

Concatenation

•
$$w_1 = aabb$$
; $w_2 = bbaa$; $\rightarrow w_1w_2 = aabbbbaa$;

Reverse

•
$$w = a_1 a_2 a_3 a_4$$
;

$$\rightarrow w^R = a_4 a_3 a_2 a_1;$$

Length

•
$$w = a_1 a_2 a_3 a_4$$
;

$$\rightarrow |w| = 4;$$

Empty String and Sub-String

- Empty String: ϵ
 - $|\epsilon| = 0$
 - $\epsilon aabb = aab\epsilon \epsilon b = aabb\epsilon = aabb$

Empty String and Sub-String

- Empty String: ϵ
 - $|\epsilon| = 0$
 - $\epsilon aabb = aab\epsilon \epsilon b = aabb\epsilon = aabb$
- Substring: a subsequence of consecutive characters
 - abbab, abbab, abbab

Empty String and Sub-String

- Empty String: ϵ
 - $|\epsilon| = 0$
 - $\epsilon aabb = aab\epsilon \epsilon b = aabb\epsilon = aabb$
- Substring: a subsequence of consecutive characters
 - abbab, abbab, abbab, abbab
- Prefix and Suffix: w = uv, where u is prefix and v is suffix
 - prefix of abb includes: ϵ , a, ab, abb
 - suffix of abb includes: abb, bb, b, ϵ

• Power:
$$w^n = \underbrace{ww \dots w}_n$$
; $w^0 = \epsilon$;

• Power:
$$w^n = \underbrace{ww \dots w}_n$$
; $w^0 = \epsilon$;

- $(abb)^2 = abbabb$
- $(abb)^0 = \epsilon$


```
• Power: w^n = ww \dots w; w^0 = \epsilon;
```

- $(abb)^2 = abbabb$
- $(abb)^0 = \epsilon$
- Kleene Star: $\Sigma = \{a, b\} \Rightarrow \Sigma^* = \{\epsilon, a, b, ab, abb, aab, ...\}$

- Power: $w^n = ww \dots w$; $w^0 = \epsilon$;
 - $(abb)^2 = abbabb$
 - $(abb)^0 = \epsilon$
- Kleene Star: $\Sigma = \{a, b\} \Rightarrow \Sigma^* = \{\epsilon, a, b, ab, ab, aab, ...\}$
- Plus: $\Sigma^+ = \Sigma^* \{\epsilon\}$

- Power: $w^n = ww \dots w$; $w^0 = \epsilon$;
 - $(abb)^2 = abbabb$
 - $(abb)^0 = \epsilon$
- Kleene Star: $\Sigma = \{a, b\} \Rightarrow \Sigma^* = \{\epsilon, a, b, ab, ab, aab, ...\}$...
- Plus: $\Sigma^+ = \Sigma^* \{\epsilon\}$
- Language: a language is any subset of Σ^* , e.g., $\{\epsilon\}$, $\{\epsilon, a, b\}$, ...

- Power: $w^n = ww \dots w$; $w^0 = \epsilon$;
 - $(abb)^2 = abbabb$
 - $(abb)^0 = \epsilon$
- Kleene Star: $\Sigma = \{a, b\} \Rightarrow \Sigma^* = \{\epsilon, a, b, ab, ab, aab, ...\}$...
- Plus: $\Sigma^+ = \Sigma^* \{\epsilon\}$

• Language: a language is any subset of Σ^* , e.g., $\{\epsilon\}$, $\{\epsilon, a, b\}$, ...

- Usual set operations
 - $L_1 = \{a, b\}; L_2 = \{a, ab\}; \Rightarrow L_1 \cup L_2 = \{a, b, ab\}$
 - $L_1 = \{a, b\}; L_2 = \{a, ab\}; \Rightarrow L_1 \cap L_2 = \{a\}$
 - $L_1 = \{a, b\}; L_2 = \{a, ab\}; \Rightarrow L_1 L_2 = \{b\}$

- Usual set operations
 - $L_1 = \{a, b\}; L_2 = \{a, ab\}; \Rightarrow L_1 \cup L_2 = \{a, b, ab\}$
 - $L_1 = \{a, b\}; L_2 = \{a, ab\}; \Rightarrow L_1 \cap L_2 = \{a\}$
 - $L_1 = \{a, b\}; L_2 = \{a, ab\}; \Rightarrow L_1 L_2 = \{b\}$
- Complement: $\overline{L} = \Sigma^* L$

- Usual set operations
 - $L_1 = \{a, b\}; L_2 = \{a, ab\}; \Rightarrow L_1 \cup L_2 = \{a, b, ab\}$
 - $L_1 = \{a, b\}; L_2 = \{a, ab\}; \Rightarrow L_1 \cap L_2 = \{a\}$
 - $L_1 = \{a, b\}; L_2 = \{a, ab\}; \Rightarrow L_1 L_2 = \{b\}$
- Complement: $\overline{L} = \Sigma^* L$
- Reverse: $L^R = \{w^R : w \in L\}$

- Usual set operations
 - $L_1 = \{a, b\}; L_2 = \{a, ab\}; \Rightarrow L_1 \cup L_2 = \{a, b, ab\}$
 - $L_1 = \{a, b\}; L_2 = \{a, ab\}; \Rightarrow L_1 \cap L_2 = \{a\}$
 - $L_1 = \{a, b\}; L_2 = \{a, ab\}; \Rightarrow L_1 L_2 = \{b\}$
- Complement: $\overline{L} = \Sigma^* L$
- Reverse: $L^R = \{w^R : w \in L\}$
- Concatenation: $L_1L_2 = \{xy: x \in L_1, y \in L_2\}$

• Power:
$$L^n = LL \dots L$$
; $L^0 = \{\epsilon\}$

• Power:
$$L^n = LL \dots L$$
; $L^0 = \{\epsilon\}$

• Star-Closure: $L^* = L^0 \cup L^1 \cup L^2 \cup \cdots$

• Power:
$$L^n = LL \dots L$$
; $L^0 = \{\epsilon\}$

- Star-Closure: $L^* = L^0 \cup L^1 \cup L^2 \cup \cdots$
- Positive-Closure: $L^+ = L^1 \cup L^2 \cup \cdots = L^* \{\epsilon\}$

• Power:
$$L^n = LL \dots L$$
; $L^0 = \{\epsilon\}$

- Star-Closure: $L^* = L^0 \cup L^1 \cup L^2 \cup \cdots$
- Positive-Closure: $L^+ = L^1 \cup L^2 \cup \cdots = L^* \{\epsilon\}$
- Quiz 1: $L = \{a, b\}; L^3 = ?$
- Quiz 2: $L = \{a^n b^n : n \ge 0\}; L^2 = ?$

PART II: Deterministic Finite Automata

Finite Automata

Input a string, output "accept" or "reject"

Finite Automata

Input a string, output "accept" or "reject"

• Example: finite automata for abba

Input a string, output "accept" or "reject"

Input a string, output "accept" or "reject"

- Example: finite automata for abba
- What if we input "abb"?

Input a string, output "accept" or "reject"

- Example: finite automata for abba
- What if we input "abb"?

Input a string, output "accept" or "reject"

- Example: finite automata for abba
- What if we input "abb"?
- Deterministic Finite Automata!

- A DFA is a five-tuple: $(Q, \Sigma, \delta, q_0, F)$
 - Q: A finite set of states

- A DFA is a five-tuple: $(Q, \Sigma, \delta, q_0, F)$
 - Q: A finite set of states
 - Σ: A finite set of input characters, i.e., an alphabet

- A DFA is a five-tuple: $(Q, \Sigma, \delta, q_0, F)$
 - Q: A finite set of states
 - Σ: A finite set of input characters, i.e., an alphabet
 - $\delta: Q \times \Sigma \mapsto Q$: Transition function, e.g., $\delta(q, \mathbf{a}) = q'$

- A DFA is a five-tuple: $(Q, \Sigma, \delta, q_0, F)$
 - Q: A finite set of states
 - Σ: A finite set of input characters, i.e., an alphabet
 - $\delta: Q \times \Sigma \mapsto Q$: Transition function, e.g., $\delta(q, \mathbf{a}) = q'$
 - $q_0 \in Q$: The start state

- A DFA is a five-tuple: $(Q, \Sigma, \delta, q_0, F)$
 - Q: A finite set of states
 - Σ: A finite set of input characters, i.e., an alphabet
 - $\delta: Q \times \Sigma \mapsto Q$: Transition function, e.g., $\delta(q, \mathbf{a}) = q'$
 - $q_0 \in Q$: The start state
 - $F \subseteq Q$: A finite subset of final states

- A DFA is a five-tuple: $(Q, \Sigma, \delta, q_0, F)$
 - Q: A finite set of states
 - Σ: A finite set of input characters, i.e., an alphabet
 - $\delta: Q \times \Sigma \mapsto Q$: Transition function, e.g., $\delta(q, \mathbf{a}) = q'$
 - $q_0 \in Q$: The start state
 - $F \subseteq Q$: A finite subset of final states
- An extension of transition: $\delta^*: Q \times \Sigma^* \mapsto Q$
 - $\delta^*(q, abba) = q'; \quad \delta^*(q, \epsilon) = q;$

• Take a DFA $M=(Q,\Sigma,\delta,q_0,F)$, language can be accepted by the DFA is written as $L(M)=\{w\in\Sigma^*:\delta^*(q_0,w)\subseteq F\}$.

- Take a DFA $M=(Q,\Sigma,\delta,q_0,F)$, language can be accepted by the DFA is written as $L(M)=\{w\in\Sigma^*:\delta^*(q_0,w)\subseteq F\}$.
- Common application: checking if a string $w \in L(M)$.

- Take a DFA $M=(Q,\Sigma,\delta,q_0,F)$, language can be accepted by the DFA is written as $L(M)=\{w\in\Sigma^*:\delta^*(q_0,w)\subseteq F\}$.
- Common application: checking if a string $w \in L(M)$.

```
void check(w, M) {
    q = q<sub>0</sub>;
    while (true) {
        c = read(w); if (c == None) { print(q ∈ F ? "accept" : "reject"); }
}
```


- Take a DFA $M=(Q,\Sigma,\delta,q_0,F)$, language can be accepted by the DFA is written as $L(M)=\{w\in\Sigma^*:\delta^*(q_0,w)\subseteq F\}$.
- Common application: checking if a string $w \in L(M)$.

```
void check(w, M) {
    q = q<sub>0</sub>;
    while (true) {
        c = read(w); if (c == None) { print(q ∈ F ? "accept" : "reject"); }
        switch(q) {
        case q<sub>0</sub>:
        case q<sub>1</sub>:
        case q<sub>2</sub>:
        case .....
        }
    }
}
```


- Take a DFA $M=(Q,\Sigma,\delta,q_0,F)$, language can be accepted by the DFA is written as $L(M)=\{w\in\Sigma^*:\delta^*(q_0,w)\subseteq F\}$.
- Common application: checking if a string $w \in L(M)$.

```
void check(w, M) {
    q = q<sub>0</sub>;
    while (true) {
        c = read(w); if (c == None) { print(q ∈ F ? "accept" : "reject"); }
        switch(q) {
        case q<sub>0</sub>: if (c == 'a') { q = q<sub>1</sub>; } break; // δ(q<sub>0</sub>,a)=q<sub>1</sub>; δ(q<sub>0</sub>,!a)=q<sub>0</sub>
        case q<sub>1</sub>:
        case q<sub>2</sub>:
        case .....
        }
    }
}
```


- Take a DFA $M=(Q,\Sigma,\delta,q_0,F)$, language can be accepted by the DFA is written as $L(M)=\{w\in\Sigma^*:\delta^*(q_0,w)\subseteq F\}$
- Common application: checking if a string $w \in L(M)$

```
void check(w, M) {
    q = q<sub>0</sub>;
    while (true) {
        c = read(w); if (c == None) { print(q ∈ F ? "accept" : "reject"); }
        switch(q) {
        case q<sub>0</sub>: if (c == 'a') { q = q<sub>1</sub>; } break; // δ(q<sub>0</sub>,a)=q<sub>1</sub>; δ(q<sub>0</sub>,!a)=q<sub>0</sub>
        case q<sub>1</sub>: ... break;
        case q<sub>2</sub>: ... break;
        case .....
        }
    }
}
```


	а	b
q_0	q_1	q_2
q_1	q_0	q_3
q_2	q_4	q_5
q_3	q_4	q_5
q_4	q_4	q_5
q_5	q_5	q_5

	а	b
q_0	q_1	q_2
q_1	q_0	q_3
q_2	q_4	q_5
q_3	q_4	q_5
q_4	q_4	q_5
q_5	q_5	q_5

Step 1	$\{q_0, q_1, q_5\}, \{q_2, q_3, q_4\}$	Distinguish final and non-final states
Step 2		
Step 3		

Step 1	$\{q_0, q_1, q_5\}, \{q_2, q_3, q_4\}$	Distinguish final and non-final states
Step 2	$\{q_0,q_1$	$\delta(q_0,a/b)$ and $\delta(q_1,a/b)$ are in the same set
Step 3		

Step 1	$\{q_0, q_1, q_5\}, \{q_2, q_3, q_4\}$	Distinguish final and non-final states
Step 2	$\{q_0, q_1\}, \{q_5\}$	$\delta(q_0,a/b)$ and $\delta(q_1,a/b)$ are in the same set, but $\delta(q_5,a/b)$ not
Step 3		

Step 1	$\{q_0, q_1, q_5\}, \{q_2, q_3, q_4\}$	Distinguish final and non-final states
Step 2	$\{q_0, q_1\}, \{q_5\}, \{q_2, q_3, q_4\}$	$\delta(q_0,a/b)$ and $\delta(q_1,a/b)$ are in the same set, but $\delta(q_5,a/b)$ not
Step 3		

Step 1	$\{q_0, q_1, q_5\}, \{q_2, q_3, q_4\}$	Distinguish final and non-final states
Step 2	$\{q_0, q_1\}, \{q_5\}, \{q_2, q_3, q_4\}$	$\delta(q_0,a/b)$ and $\delta(q_1,a/b)$ are in the same set, but $\delta(q_5,a/b)$ not
Step 3	$\{q_0, q_1\}, \{q_5\}, \{q_2, q_3, q_4\}$	The result does not change and the algorithm completes

Step 1	$\{q_0, q_1, q_5\}, \{q_2, q_3, q_4\}$	Distinguish final and non-final states
Step 2	$\{q_0, q_1\}, \{q_5\}, \{q_2, q_3, q_4\}$	$\delta(q_0,a/b)$ and $\delta(q_1,a/b)$ are in the same set, but $\delta(q_5,a/b)$ not
Step 3	$\{q_0, q_1\}, \{q_5\}, \{q_2, q_3, q_4\}$	The result does not change and the algorithm completes

Step 1	$\{q_0, q_1, q_5\}, \{q_2, q_3, q_4\}$	Distinguish final and non-final states
Step 2	$\{q_0, q_1\}, \{q_5\}, \{q_2, q_3, q_4\}$	$\delta(q_0,a/b)$ and $\delta(q_1,a/b)$ are in the same set, but $\delta(q_5,a/b)$ not
Step 3	$\{q_0, q_1\}, \{q_5\}, \{q_2, q_3, q_4\}$	The result does not change and the algorithm completes

Minimizing DFA can improve the efficiency of computation

We remove all unreachable states before the above steps

• Best Average Complexity: $O(n \log \log n)$!

Theoretical Computer Science

Volume 417, 3 February 2012, Pages 50-65

Average complexity of Moore's and Hopcroft's algorithms

Julien David ᄎ 🖾

Have a Try!!

Solution

DFA Bi-Simulation

• Checking the equivalence of the DFAs, i.e., $L(M_1) = L(M_2)$

DFA Bi-Simulation

- Checking the equivalence of the DFAs, i.e., $L(M_1) = L(M_2)$
 - $L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \subseteq F \}$

DFA Bi-Simulation

- Checking the equivalence of the DFAs, i.e., $L(M_1) = L(M_2)$
 - $L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \subseteq F \}$
- Given an input string, let M₁ and M₂ evaluate it at the same time,
 M₁ reaches a final state if and only if M₂ reaches a final state

State Pairs	а	b	
$\{q_0,A\}$			
			$ m M_1$ reaches final state if and only if $ m M_2$ reaches final state

State Pairs	а	b	
$\{q_0,A\}$	$\{q_1,A\}$	$\{q_2, B\}$	
			M ₁ reaches final state if and only if M ₂ reaches final state

State Pairs	а	b	
$\{q_0, A\}$ $\{q_1, A\}$ $\{q_2, B\}$	$\{q_1,A\}$	$\{q_2,B\}$	M ₁ reaches final state if and only if M ₂ reaches final state

State Pairs	а	b	
$\left\{\begin{array}{l}q_{0},A\end{array}\right\}$ $\left\{\begin{array}{l}q_{1},A\end{array}\right\}$	$\{ q_1, A \}$ $\{ q_0, A \}$	$\{q_2, B\}$ $\{q_3, B\}$	
$\{q_1, B\}$	(40,21 }	(43, D)	M ₁ reaches final state if and only if M ₂ reaches final state

State Pairs	а	b	
$\{ q_0, A \}$ $\{ q_1, A \}$ $\{ q_2, B \}$	$\{q_1,A\}$	$\{q_2, B\}$	and only if

State Pairs	а	b	
$\{q_0, A\}$ $\{q_1, A\}$ $\{q_2, B\}$ $\{q_3, B\}$	$\{q_1, A\}$ $\{q_0, A\}$ $\{q_4, B\}$	$\{q_2, B\}$ $\{q_3, B\}$ $\{q_5, C\}$	$ m M_1$ reaches final state if and only if $ m M_2$ reaches final state

State Pairs	а	b	
$\{q_0,A\}$	$\{q_1,A\}$	$\{q_2, B\}$	
$\{q_1,A\}$	$\{q_0,A\}$	$\{q_3, B\}$	M₁ reaches final state if
$\{q_2, B\}$	$\{q_4, B\}$	$\{q_5,C\}$	'
$\{q_3, B\}$			and only if
$\{q_4, B\}$			M ₂ reaches final state
$\{q_5,C\}$			

State Pairs	а	b	
$\{q_0,A\}$	$\{q_1,A\}$	$\{q_2, B\}$	
$\{q_1,A\}$	$\{q_0,A\}$	$\{q_3, B\}$	M₁ reaches final state if
$\{q_2, B\}$	$\{q_4, B\}$	$\{q_5,C\}$	'
$\{q_3,B\}$	$\{q_4, B\}$	$\{q_5,C\}$	and only if
$\{q_4,B\}$			M ₂ reaches final state
$\{q_5,C\}$			

State Pairs	a	b	
$\{q_0,A\}$	$\{q_1,A\}$	$\{q_2, B\}$	
$\{q_1,A\}$	$\{q_0,A\}$	$\{q_3, B\}$	M wasabaa final atata if
$\{q_2, B\}$	$\{q_4, B\}$	$\{q_5,C\}$	M ₁ reaches final state if
$\{q_3,B\}$	$\{q_4, B\}$	$\{q_5,C\}$	and only if
$\{q_4, B\}$	$\{q_4, B\}$	$\{q_5,C\}$	M ₂ reaches final state
$\{q_5,C\}$			

State Pairs	а	b	
$\{q_0,A\}$	$\{q_1,A\}$	$\{q_2, B\}$	
$\{q_1,A\}$	$\{q_0,A\}$	$\{q_3,B\}$	M reaches final state if
$\{q_2, B\}$	$\{q_4, B\}$	$\{q_5,C\}$	M₁ reaches final state if
$\{q_3, B\}$	$\{q_4, B\}$	$\{q_5,C\}$	and only if
$\{q_4, B\}$	$\{q_4, B\}$	$\{q_5,C\}$	M ₂ reaches final state
$\{q_5,C\}$	$\{q_5,C\}$	$\{q_5,C\}$	

State Pairs	а	b	
$\{q_0,A\}$	$\{q_1,A\}$	$\{q_2, B\}$	
$\{q_1,A\}$	$\{q_0,A\}$	$\{q_3,B\}$	M was also a final atota if
$\{q_2, B\}$	$\{q_4, B\}$	$\{q_5,C\}$	M₁ reaches final state if
$\{q_3, B\}$	$\{q_4, B\}$	$\{q_5,C\}$	and only if
$\{q_4, B\}$	$\{q_4, B\}$	$\{q_5,C\}$	M ₂ reaches final state
$\{q_5,C\}$	$\{q_5,C\}$	$\{q_5,C\}$	

Have a Try!!

State Pairs	а	b	
(A, A')	(B, BD')	(D, BD')	
			$ m M_1$ reaches final state if and only if $ m M_2$ reaches final state

State Pairs	а	b	
(A, A')	(B, BD')	(D, BD')	
(B, BD') (D, BD')			M ₁ reaches final state if and only if M ₂ reaches final state

State Pairs	а	b	
(A, A')	(B, BD')	(D, BD')	
(B, BD') (D, BD')	(C, C')	(E, E')	$ m M_1$ reaches final state if and only if $ m M_2$ reaches final state

State Pairs	а	b	
(A, A')	(B, BD')	(D, BD')	
(B, BD') (D, BD') (C, C') (E, E')	(C, C')	(E, E')	$ m M_1$ reaches final state if and only if $ m M_2$ reaches final state

State Pairs	а	b	
(A, A')	(B, BD')	(D, BD')	
(B, BD') (D, BD') (C, C') (E, E')	(C, C') (C, C')	(E, E') (E, E')	$ m M_1$ reaches final state if and only if $ m M_2$ reaches final state

State Pairs	а	b	
(A, A')	(B, BD')	(D, BD')	
(B, BD')	(C, C')	(<i>E</i> , <i>E</i> ')	M_1 reaches final state if and only if M_2 reaches final state
(D, BD')	(C, C')	(<i>E</i> , <i>E</i> ')	
(C, C')	(B, BD')	(<i>E</i> , <i>E</i> ')	
(E, E')			W ₂ reaches inial state
			1

State Pairs	а	b	
(A, A')	(B, BD')	(D, BD')	
(B, BD')	(C, C')	(E, E')	$ m M_1$ reaches final state if and only if $ m M_2$ reaches final state
(D, BD')	(C, C')	(E, E')	
(C, C')	(B, BD')	(E, E')	
(E, E')	(E, E')	(E, E')	

State Pairs	а	b	
(A, A')	(B, BD')	(D, BD')	
(B, BD')	(C, C')	(E, E')	$ m M_1$ reaches final state if and only if $ m M_2$ reaches final state
(D, BD')	(C, C')	(E, E')	
(C, C')	(B, BD')	(E, E')	
(E, E')	(<i>E</i> , <i>E</i> ')	(E, E')	

PART III: Non-deterministic Finite Automata

There are multiple choices of state transition

There are multiple choices of state transition

• Given a string, aa, there are two choices for the first transition

There are multiple choices of state transition

- Given a string, aa, there are two choices for the first transition
- If one choice does not work, we need try others

There are multiple choices of state transition

- Given a string, aa, there are two choices for the first transition
- A string, e.g., aa, can be accepted by NFA as long as there exists one computation of the NFA accepts the string

ϵ -Transition

Transition to the next states without reading any inputs

• NFA also allows ϵ -transitions!

Recap: Definition of DFA

- A DFA is a five-tuple: $(Q, \Sigma, \delta, q_0, F)$
 - Q: A finite set of states
 - Σ: A finite set of input characters, i.e., an alphabet
 - $\delta: Q \times \Sigma \mapsto Q$: Transition function, e.g., $\delta(q, a) = q'$
 - $q_0 \in Q$: The start state
 - $F \subseteq Q$: A finite subset of final states

Definition of NFA

- A DFANFA is a five-tuple: $(Q, \Sigma \cup \{\epsilon\}, \delta, q_0, F)$
 - Q: A finite set of states
 - Σ: A finite set of input characters, i.e., an alphabet
 - $\delta: Q \times (\Sigma \cup \{\epsilon\}) \mapsto \mathbb{Q}^{2^Q}$: Transition function, e.g., $\delta(q, a) = \{q', q''\}$
 - $q_0 \in Q$: The start state
 - $F \subseteq Q$: A finite subset of final states

ϵ -Closure

ϵ-closure(q) returns all states *q* can reach via *ϵ*-transitions, including *q* itself

ϵ -Closure

- ε-closure(q) returns all states q can reach via ε-transitions, including q itself
- An extension of transition: $\delta^*: Q \times \Sigma^* \mapsto 2^Q$
 - $q' \in \delta^*(q, w)$, where $w \in \Sigma^*$, if and only if

ϵ -Closure

- ε-closure(q) returns all states q can reach via ε-transitions, including q itself
- An extension of transition: $\delta^*: Q \times \Sigma^* \mapsto 2^Q$
 - $q' \in \delta^*(q, w)$, where $w \in \Sigma^*$, if and only if
 - (1) there's a walk from q to q" with w
 - (2) $q' \in \epsilon$ -closure(q'')

Defining a Language by NFA

- Recap: language defined by DFA
- Take a DFA $M=(Q,\Sigma,\delta,q_0,F)$, language can be accepted by the DFA is written as $L(M)=\{w\in\Sigma^*:\delta^*(q_0,w)\subseteq F\}$

Defining a Language by NFA

- Recap: language defined by DFA
- Take a DFA $M=(Q,\Sigma,\delta,q_0,F)$, language can be accepted by the DFA is written as $L(M)=\{w\in\Sigma^*:\delta^*(q_0,w)\subseteq F\}$
- Take a NFA $M=(Q,\Sigma\cup\{\epsilon\},\delta,q_0,F)$, language can be accepted by the NFA is written as $L(M)=\{w\in\Sigma^*:\delta^*(q_0,w)\cap F\neq\emptyset\}$

NFA = DFA

- Every DFA is trivially an equivalent NFA
- Every NFA N can be converted to an equivalent DFA D

NFA = DFA

- Every DFA is trivially an equivalent NFA
- Every NFA N can be converted to an equivalent DFA D
 - Every string accepted by the NFA is accepted by the DFA
 - Every string rejected by the NFA is rejected by the DFA
 - i.e., L(N) = L(D)

From NFA to DFA

- Given an NFA $M = (Q, \Sigma \cup \{\epsilon\}, \delta, q_0, F)$
 - Step 1: initialize a DFA with a start state $\{q_0\}$, which is a set of NFA states

• Given an NFA $M = (Q, \Sigma \cup \{\epsilon\}, \delta, q_0, F)$

DFA state is a subset of NFA states

• Step 1: initialize a DFA with a start state $\{q_0\}$, which is a set of NFA states

- Given an NFA $M = (Q, \Sigma \cup \{\epsilon\}, \delta, q_0, F)$
 - Step 1: initialize a DFA with a start state $\{q_0\}$, which is a set of NFA states
 - Step 2: for each DFA state $\{q_i, q_j, ..., q_m\}$, and char in the alphabet, $a \in \Sigma$

- Given an NFA $M = (Q, \Sigma \cup \{\epsilon\}, \delta, q_0, F)$
 - Step 1: initialize a DFA with a start state $\{q_0\}$, which is a set of NFA states
 - Step 2: for each DFA state $\{q_i, q_j, ..., q_m\}$, and char in the alphabet, $a \in \Sigma$

$$\det S = \bigcup \begin{cases} \delta^*(q_i, a \in \Sigma) \\ \delta^*(q_j, a \in \Sigma) \\ \dots \\ \delta^*(q_m, a \in \Sigma) \end{cases}$$

- Given an NFA $M = (Q, \Sigma \cup \{\epsilon\}, \delta, q_0, F)$
 - Step 1: initialize a DFA with a start state $\{q_0\}$, which is a set of NFA states
 - Step 2: for each DFA state $\{q_i, q_j, ..., q_m\}$, and char in the alphabet, $a \in \Sigma$

$$\det S = \bigcup \begin{cases} \delta^*(q_i, a \in \Sigma) \\ \delta^*(q_j, a \in \Sigma) \\ \dots \\ \delta^*(q_m, a \in \Sigma) \end{cases}$$

• Step 3: add transition $\delta(\{q_i, q_j, ..., q_m\}, a) = S$ in the DFA

- Given an NFA $M = (Q, \Sigma \cup \{\epsilon\}, \delta, q_0, F)$
 - Step 1: initialize a DFA with a start state $\{q_0\}$, which is a set of NFA states
 - Step 2: for each DFA state $\{q_i, q_j, ..., q_m\}$, and char in the alphabet, $a \in \Sigma$

$$\det S = \bigcup \begin{cases} \delta^*(q_i, a \in \Sigma) \\ \delta^*(q_j, a \in \Sigma) \\ \dots \\ \delta^*(q_m, a \in \Sigma) \end{cases}$$

if any q_i is a final state, S is a final state of the DFA

• Step 3: add transition $\delta(\{q_i, q_j, ..., q_m\}, a) = S$ in the DFA

- Given an NFA $M = (Q, \Sigma \cup \{\epsilon\}, \delta, q_0, F)$
 - Step 1: initialize a DFA with a start state $\{q_0\}$, which is a set of NFA states
 - Step 2: for each DFA state $\{q_i, q_j, ..., q_m\}$, and char in the alphabet, $a \in \Sigma$

$$\det S = \bigcup \begin{cases} \delta^*(q_i, a \in \Sigma) \\ \delta^*(q_j, a \in \Sigma) \\ \dots \\ \delta^*(q_m, a \in \Sigma) \end{cases}$$

For any input string, the DFA and the NFA reach the final state at the same time, thus DFA=NFA

• Step 3: add transition $\delta(\{q_i, q_j, ..., q_m\}, a) = S$ in the DFA

Because the DFA states consist of sets of NFA states, an n-state NFA may be converted to a DFA with at most 2^n states. For every n, there exist n-state NFAs such that every subset of states is reachable from the initial subset, so that the converted DFA has exactly 2^n states, giving $\Theta(2^n)$ worst-case time complexity.

Because the DFA states consist of sets of NFA states, an n-state NFA may be converted to a DFA with at most 2^n states. For every n, there exist n-state NFAs such that every subset of states is reachable from the initial subset, so that the converted DFA has exactly 2^n states, giving $\Theta(2^n)$ worst-case time complexity.

When converting an NFA to a DFA, there is no guarantee that we will have a smaller DFA.

Have a Try!!

Summary

Languages defined by DFA/NFA

Summary

Languages defined by DFA/NFA → Regular Language

THANKS!