

Let $\Omega \subset \mathbb{R}^n$ be a Lipschitz domain and $w = (w_1, \dots, w_n) \in \mathcal{C}^1(\overline{\Omega})$ with outward pointing normal N. Then

$$\int_{\Omega} \nabla \cdot w \, dx = \int_{\partial \Omega} w \cdot N dS$$

Let Ω be a smooth domain and let $u \in \mathcal{C}^2(\overline{\Omega})$ and $v \in \mathcal{C}^1(\overline{\Omega})$ -funtions. Then we have Green's First Identity:

$$\int_{\Omega} \nabla v \cdot \nabla u + v \nabla^2 u dx = \int_{\Omega} \nabla \cdot (v \nabla u) dx = \int_{\partial \Omega} v \frac{\partial u}{\partial N} dS$$

Exchanging u and v in Green's First Identity and finding the difference gives Green's Second Identity:

$$\int_{\Omega} \left(v \nabla^2 u - u \nabla^2 v \right) dx = \int_{\partial \Omega} \left[v \frac{\partial u}{\partial N} - u \frac{\partial v}{\partial N} \right] dS$$

Test functions are smooth functions with compact support, i.e.

$$C_c^{\infty} = \{ u \in C^{\infty} : \operatorname{supp} u \subset V \subseteq \Omega \}.$$

What is a weak derivative of an L^1_{loc} function?

SHKOLLER ANALYSIS CHAPTER 2.1

Why does f have a weak-derivative, but g does not?

$$f(x) = \begin{cases} x & \text{if } x \in (0,1) \\ 1 & \text{if } x \in (1,2) \end{cases}$$

$$g(x) = \begin{cases} x & \text{if } x \in (0,1) \\ 2 & \text{if } x \in (1,2) \end{cases}$$

SHKOLLER ANALYSIS CHAPTER 2.1

Define $W^{1,p}(\Omega)$ for $1 \leq p \leq \infty$. Then define $W^{k,p}(\Omega)$ for $1 \leq p \leq \infty$ and $k \in \mathbb{N}$. What is the norm in $W^{k,p}$?

SHKOLLER ANALYSIS CHAPTER 2.1

Let $u \in L^1_{loc}(\Omega)$. Then $v^{\alpha} \in L^1_{loc}(\Omega)$ is called the α^{th} weak derivative of u, written $v^{\alpha} = D^{\alpha}u$, if

$$\int_{\Omega} u(x) D^{\alpha} \phi(x) \mathrm{d}x = (-1)^{|\alpha|} \int_{\Omega} v^{\alpha}(x) \phi(x) \mathrm{d}x \qquad \forall \phi \in \mathcal{C}^{\infty}_{c}(\Omega),$$

where $\alpha \in \mathbb{N}^n$ is a multi-index with $|\alpha| = \alpha_1 + \cdots + \alpha_n$.

We can explicitly calculate the weak derivative (using integration by parts) of f. For g, however, assuming a weak derivative exists results in a contradiction by exploiting the boundary terms in the integration by parts that don't cancel each other out.

 $W^{1,p}(\Omega) = \{u \in L^p(\Omega) \mid \text{the weak derivative } u' \text{ of } u \text{ exists, and } u' \in L^p(\Omega)\}$

 $W^{k,p}(\Omega) = \left\{ u \in L^1_{\mathrm{loc}}(\Omega) \mid D^{\alpha}u \text{ exists and is in } L^p(\Omega) \text{ for } |\alpha| \leq k \right\}$

$$||u||_{W^{k,p}(\Omega)} = \left(\sum_{|\alpha| < k} ||D^{\alpha}u||_{L^p(\Omega)}^p\right)^{\frac{1}{p}}$$

$$||u||_{W^{k,\infty}(\Omega)} = \sum_{\alpha \le k} ||D^{\alpha}u||_{L^{\infty}(\Omega)}$$

What is the "simple version" of the Sobolev Embedding Theorem?
Shkoller Analysis Chapter 2.1

Let $kp > 2$ and $u \in \mathcal{C}_c^{\infty}(\mathbb{R}^2)$. Then	
$ u _{L^{\infty}(\mathbb{R}^2)} \le C u _{W^{k,p}(\mathbb{R}^2)}$	$\mathbb{R}^2)$
In English, $W^{k,p}$ functions are bounded in \mathbb{R}^2 .	