Recurrence	Case 1:	Case 3:	General format
		Generic Form	General Famou
Def Recurrence equi recursively	- ((m) 6 0 (n) where of	- 4 14 10 True that	T(n)= a. T(n/b) + f(n)
defines a sequence of for	(using big 0 notation) then:	f(n) & w (n') where c > logba	(0)
with different argument.	T(n) & 0 (n10360)	I it is also true that	anl
-Behaviour of recursive algorithm	10 '	a cal - had for some constant h	671
is better represented using	a = 8, b = 2, f(n) = 1000 n	and sufficiently large n (often called the	f(n) = + vc
recurrence ed.	(u) € 0 (u,) mpres c=5	regularity condition) then:	Casa
1. The Substitution Method	Next, we see if we satisfy case I condition	T(n) € 0 (f(n))	1) f(n) < n (m)
	10960 = 10928 = 3 > C		Tin) = O(n (g)?)
This method finds the sol of the	It follows from the 1st case of the master than	Example:	1-0
smallest problem using base condition	$T(n) \in \Theta(n^{\log_b \alpha}) = \Theta(n^2)$	$T(n) = 2T\left(\frac{n}{2}\right) + n^2$	2) f(n) = n all 1 (ogn)
- +he bigger problem is	(The exact sol of the recurrence tel	$a=2$, $b=2$, $f(n)=n^2$, so	7(n) = 00
Obtained using the previously computed	a sumin (1)		3) (Cn) > n 403
Solo of the smaller problem.	$T(n) = 1001 n^3 - 1000 n^2$, assuming $T(i) = 1$	L We Surer	T(n) = \(\theta(\psi(n))\)
This process is repeated until the	Case 2:	Next, we see " therefore yes	
Soln for problem n is achieved.	E-m	Next, we see 11 and therefore yes	
	The is true, for some constant	c > 1096a	
- Backward Substitution	f(n) e B (n' logkn) where c = logs.	The regularity condition also holds	
- This method substitutes the value of	T(n) & O (n' log k+1 n)	CON the shapping to = 1/0	
, n by n-1 necursively, to solve, smaller and smaller problem.	Example	$2\left(\frac{n^{2}}{4}\right) \leq kn^{2} \text{ choosing } k = 1/2$	
It works exactly in teverse order of	$T(u) > 51\left(\frac{3}{u}\right) + 10 u$	It follows from the 3rd case of the master thm	
forward Substitution	0=2, b=2, f(n) = 10 n	$T(n) = \theta(f(n)) = \theta(n^2)$	
	try A (De loak u) where C=1,	Thus the given recurrence relation	
? Master Method	were the cer if we catisfy case a condition	T(n) was in 0 (n=) that comp	
- The master method concerns relations of the form:	logia = 109-2 =1 and therefore yes, coloyba	the fin) of the original formula	
$T(n) = aT\left(\frac{n}{b}\right) + f(n) \text{ where } a \ge 1, b > 1$	It collows from the 2" case of the master Theorem	(This result is confirmed by the exact	
	T(n) = \(\theta\) (n \(\text{log}^k \cdot \n) = \(\theta\) (n'\(\text{log}^k \n)) = \(\theta\) (n'\(\text{log}^k \n))	501" of the recurrence relation	
- In the application to the analysis of a	Thus, the given recurrence relation T(n) was in	which is, assuming T(1)=11)	
recursive algorithm, the constants and function take on the following significance:	O(n log n). (This result is confirmed by the exact sol		
on is the size of the problem.	of the recurrence relation) ->		
. a is the na of subproblems in the recurren	T(n) = n + 10 n log 2 2 assuming T(1) = 1		
on/b is the size of each subproblem	T(v) = 11 + 10 11 10 32 2 2000 20 11 1		
. b(w) is the cost of work done outside			
the recursive calls, which includes the			
cost of dividing the problem and the			
cost of merging the solutions to the			
Subproblems			
	I		