Q1

i(t)

i(0) = 6A

$$V_{L}(0) = 12V$$

Q2

$$Z_{1} = Z_{2} = Z_{3} = (10 - 10j) \Omega$$

$$V_{S1} = 2 \cos (\omega t)$$

$$V_{S2} = 2 \sin (\omega t)$$

$$= 2 \cos (\omega t - 90)$$

$$= 2 \angle -90 \cos (\omega t)$$

$$= -2i \cos (\omega t)$$

$$V - V_{S1} + V - V_{S2} + V_{Z2} = 0$$

$$= -2i \cos (\omega t)$$

$$P_{1} = \frac{1}{2} \left(\frac{v - v_{s1}}{2} \right)^{2} \left| \text{Re}(z_{1}) \right|$$

$$= \frac{1}{2} \left(\frac{v - v_{s1}}{z_{1}} \right)^{2} \left| \text{Re}(z_{1}) \right|$$

$$= \frac{1}{2} \left(\frac{16 + y}{z_{1}} \right) \times 10 = \frac{1}{18} \text{W}$$

$$P_{2} = \frac{1}{2} \left(\frac{v}{z_{2}} \right)^{2} \left| \text{Re}(z_{2}) \right| = \frac{1}{4} \text{W}$$

$$P_{3} = \frac{1}{18} \text{W}$$

1

$$\frac{1}{100}$$
 $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$

$$\frac{V+}{R} = \frac{V_0 - V+}{|Z_{eq}|} \Rightarrow 10R = |Z_{eq}|$$

$$(10R)^{2} = 5^{2} + (wL - \frac{1}{w}c)^{2} \times 10^{6}$$

For
$$R = 500 \Omega$$
,

$$w = \frac{1}{\sqrt{LC}} = 10^{6} \text{ rad/s}$$

iv) $V_1 = V_2 = 5V$ Assume $Q_1, Q_2 \rightarrow \text{sat}$. $V_{B1} = V_{B2} = 0.8V$ $i_{B1} = i_{B2} = 0.42 \text{ mA}$ $V_{C1} = V_{C2} = V_0 = 0.2V$ $i_{C1} = i_{C2} = (5-0.2) = 4.8 \text{ mA}$ $i_{C1} = i_{C2} < \beta$ and $V_{BE1} = V_{BE2} = 0.2 < 0.5$ $i_{B1} = i_{B2} < \beta$ and $i_{B2} = 0.2 < 0.5$ Assumption correct.

NOR GATE

Q5

$$\frac{100}{100}$$
 $\frac{100}{100}$
 $\frac{100}{100}$
 $\frac{100}{100}$
 $\frac{100}{100}$
 $\frac{100}{100}$
 $\frac{100}{100}$
 $\frac{100}{100}$

 $V_{1} = 4V$ $V_{2} = 10V$ $V_{DD} = 10V$ $K = 0.25 \text{ mA/V}^{2}$ $V_{T} (M_{1}, M_{2}) = 1V$ $V_{T} (M_{3}, M_{4}) = -1V$

M₂ $M_4 \rightarrow 0FF$ $V_{asy} = 0 > V_{T4}$ $V_{usz} = -6V < V_{T3}$ $V_{usz} = -6V < V_{usz}$ $V_{usz} = -6V < V_{usz}$

 $V_{as} > V_{as} - V_T = 0-5$

 $i_{3} = i_{2} = i_{1}$ $i_{1} = K(V_{01} - V_{T})^{2} = K(11 - 1)^{2} = 9K$ $i_{2} = K(V_{01} - V_{T})^{2} = K(9 - V_{01})^{2}$ $i_{3} = i_{2} \Rightarrow V_{01} = 6V$ $i_{3} = K(2(V_{01} - V_{T})) V_{01} - V_{01}$ $= K(2(V_{01} - V_{T})) V_{01} - V_{01}$ $= K(2(V_{01} - V_{T})) V_{01}$ $= K(2(V_{01} - V_{T})) V_{01}$ $= K(2(V_{01} - V_{T})) V_{01}$ $= V_{01$

 $V_0 = 10 - 1 = 9V$

 $V_{DS2} = -IV > V_{AS3} - V_{T} = -5V$ $\Rightarrow M_{2}$ is in ohmic region $V_{DS2} = V_{0} - V_{DS1} = 3V > V_{GS2} - V_{T} = 3V$ $V_{DS1} = 6V > V_{GS1} - V_{T} = 3V$

<u>Q6</u>

 $Rin = Rp = R_1 \cdot 11 R_2$

