	Lacture Note for Laplacian Eigenmaps
<u>i</u> .	Notations and Assumptions.
	X = {x1, xn} CIRD Pata Set on manifold M
	Myrelds a paranetrization, g:12d-> U
	ho:= g-1 denote the coordinate mapping, such that
	for each XEM, y=h(x) EIRd provides coordinate for x in IRd
·	Then Data set y = fy, yn], with y = h(xi) will be the
· ·	DR set.
- i	
	Still, G=[X,E] D the grapher defined very E-ball
· · · · · ·	$W(i) = \{i, i-1\}, O(i) = \{x_i, x_i = x_i\}$
	adjacent indices of Zi. Neighborhood of Xi,
	the second of th
Note	SENCO (=> i ENCS)
	- Italian in the second of the
<u> </u>	Laplace - Beltranic Operator
	The me descriptions programmed to the terms of the terms
leal	1: Riemannian Manofold (M, g.)
	Define $g_{ij} = \langle 3i, 3j \rangle$ g_{ij} satisfy $(g_{ij}) = (g_{ij})^{-1}$
·	For of & C2(W) (G=(9))
One	can define grad f := (gidif) ind
	For vector field X = X'di
<u> </u>	con define div X = Jig de (Jigi X') G1:=def (G)
⇒ Lapla	e-Beltranii Af:= div(gradf) = [w] di(Tiai 94dif)

Resurt of Maximum principle + Soboles Embeldin (M) = (EDB) = HE(M). Rk: D-I is a compact, self-adjoint operator. 2° Export-further If y to mio) for the nonsul basis for P(A) 1° (0) is the only accumulate point of O(A) possible. spare then If A is a compact, self-adoint operator on a Hilbout image of bounded is pre-compact Athort - Schwidt top al - = (great, great) = - la got Tulbfull -= < X, though wh take X = gradly dufx = < gradf, X>+ fdivX 0 = X Julb all & south 19mal + 12 = - IM fot For , 9, f & C2(M) (g,f=0 on 2M) = imor product <+.9> = Sutg. for t-g € 12W) on M., which allows us to discuss interportion on M. Longhy speaking Il El provides a may to define nolume

II .	Seni- Group.
	Let A be a closed densely defined linear operator on
	Let A be a closed densely defined linear operator on
	Banach Space X.
	consider the ODE
	$\begin{cases} u'(t+) = Au(t) \\ u(0) = u. \end{cases}$
	The well unit 81+) is a discharge exp 0 city the
	the will unite $S(+)u := u(+)$ to display explicitly the dependence of $u(+)$ on the initial value of u . (S(+) = e^{+A}
	$Au := \lim_{\leftarrow} \frac{S(+)u - U}{+} (u \in D(A)) (**)$
	A (infinitestmal) generator of semigroup \$\$(+) +20,
	OM D(A)
Rk:	A in (a) & (xx) corresponds if [S(+)]+20 is
	W-contraction, that is 11S(+)11 = ewt (+201 (WEIR)
	Operator
<u> heorem</u>	(H:11e-Yosida) A generate an w-contractive semigroup
	IN. ∞) CP(A) and IIRXII ≤ 1-w, for & x>w.
	where P(A) resolvent set of A
	(/I-A: D(A) -> X is one-to-one and onto)
	$R_{\lambda} u := (\lambda I - A)^{-1} u$ resolvent operator.
- RK:	$ \hat{R}_{\lambda} - \hat{P}_{\mu} = (\mu - \lambda) \hat{P}_{\lambda} \hat{P}_{\mu}$
	is PARM = BURA is RAN = Jie - At S(+) ndt, and so HEATTER
	Laplace. transform of senigrosp.

	- quengimes a K- contraction sourge A vatured.
m-dx.	$B[u,v]:=\int_{\mathbb{R}^{n}} \frac{1}{\sqrt{2}} d^{2}(v) u_{X_{1}} u_{X_{2}} + \int_{\mathbb{R}^{n}} b^{2}(x) u_{X_{1}} u_{Y_{2}} + c(x)$
	,, <u>, , , , , , , , , , , , , , , , , ,</u>
	(U) (U)
	WEH212
	1.2 0 5 \$. 0 < \$ E 2-1, with say
(U) 2 h 3	Define $A = -L$, $D(A) := H_3(U) \cap H^2(U)$ done
,1310 र डि.ड	L Sutisfies strong ellipticity condition.
[0	= +3 × 0 40 E=N
	Second-order parabolla PDE / L= 0. 94 30 x Co.
	$\lim_{n \to \infty} c = n + n \int_{-\infty}^{\infty} \frac{1}{n} dx$
	Application:
	·
	V'

	Basic Idea of Laplacian Eigenner
	Approximate the coordinate map $h = Lh',h', by$ a linear combination of $\{Q_j\}$ $\{Q_j\} are argonizations of Δ, such that $\Delta Q_j = \lambda_j Q_j.$
	In general, consider $h^{2} \approx h^{2} = \sum_{j=1}^{\infty} \lambda_{j}^{2}(\varphi_{j}, \varphi_{j})$ $\lambda_{j}^{2} = \sum_{j=1}^{\infty} \lambda_{j}^{2}(\varphi_{j}, \varphi_{j})$
	Problem: We have no access to Eq.]
	Rounte (*) => minssignad (hi-hi) 112 (=> min shi shi under certain constraine.
<u> </u>	Approximation of Laplace-Beltram's Operator. Let $L=-\Delta$, and consider the ODE publicum.
	$\int \dot{u} + L u = 0$ $\Rightarrow \frac{1}{2} = 2 $ $u(0) = u_0$
	$2 = \lim_{t \to 0^+} \frac{S_t - Id}{t} \Rightarrow \Delta f = \frac{1}{t} (f - S_t f)$ for some t small:
Red	all the heat kernel in $IR^{-1}d$ (the approximate $S+$) $G_{+}(x,y) = \begin{cases} (4\pi + 1)^{2} & + > 0 \end{cases}$
then.	S+for (4x+) = Sn e -1x-913/4+ fuy)
	1

	,
	veitibres - org - 50
7/-0	as our discrete form of A. = D=[Id-D-IW]
7/1	0W=11-0-12=; 2 x17tpm strumpg of alpt ou
711	1(5/1 W 2/C 0 - DI) DI) DI)
	D= diag (di da)
	ten [0f(x,) st(x,)] = 1 [1d - D-1 W] F , where
	then of the F= [f(x1) f(xw)]
	EK: Wy = Wys worther W = (Wy) is symustic.
	. 28/26
	$\frac{1}{(x-x)!} = \frac{1}{x} + \frac{1}{x} = \frac{1}{x}$
	introduce the notation.
	whose di = x coci)
	$\frac{\sqrt{ x_i-x_i ^2}}{\sqrt{ x_i ^2}} = \frac{ x_i-x_i ^2}{\sqrt{ x_i-x_i ^2}} = \frac{ x_i-x_i ^2}{\sqrt{ x_i-x_i ^2}}$
· .	$\frac{2}{1}(x-x)^2$
	The discuste form is given by,
	((b)) +0<1/2 - 0 /2/p-(+x+) -f) 2 +0<-1 = for =
	47/216-X1-1)3/p-

ŢīL,	DR Data Sot
	Let Y=[y,yn] EIRdxn be our DR Pata Set.
	Take it ith pow $Y_i = [Lh^i(x_i),h^i(x_n)]$ then
	Sundi a Yi. LYiT
>	We obtain Y by solving
	min tr(YLYT) s.t YI=0, YYT-Id
Rk	1° this is an eigenvalue problem of L. Lie Symmetric - semi-pocitive-definite and sparse. In particular. D'121 is a 0-eigenvetor.
	20 this justifies the weight-methods introduces in Justifies the previous meetings. The are All those methods one minimizing contain evengy.

