Optique Ondulatoire

AVANT PROPOS

La partie de la physique relative à l'optique est souvent réduite, voire absence dans nos programmes. Pourtant à l'époque actuelle, l'optique a pris la dimension d'une nécessité réelle : les sources cohérentes (lasers), les techniques holographiques, les fibres optiques envahissent les laboratoires et les industries. Grâce à cette révolution technologique, l'optique doit prendre la place qu'elle mérite dans l'ensemble de la physique générale, ce qui est loin d'être le cas.

Le présent polycopié, divisé en trois parties : *interférences, diffraction et polarisation* met à la disposition des étudiants de l'EPL un document utile mais non complet du fait de la réduction du volume horaire attribué à cette discipline. Son but sera atteint s'il permet au lecteur de disposer des éléments de base pour comprendre les principaux phénomènes optiques et pour poursuivre sa formation au-delà du niveau du cycle de la licence.

Si l'optique géométrique a été fondée il y a fort longtemps, il faut attendre les travaux de Fresnel (1818), pour faire apparaître le caractère vibratoire de la lumière. Les raisons de cette longue période de stagnation sont d'ordre technologique. L'étude des phénomènes d'optique ondulatoire nécessite des sources de lumière quasi ponctuelles et quasi monochromatiques.

Si maintenant, de telles sources sont obtenues à l'aide de lasers, jadis on ne disposait ni de gaz ni d'électricité permettant la fabrication de signaux convenables. En plus, la vérification des prédictions théoriques n'était pas possible, le seul récepteur existant à l'époque étant l'œil humain.

Notons qu'un grand nombre de phénomène échange à la théorie ondulatoire : ce sont ceux qui font intervenir les interactions matière-rayonnement. Pour ces phénomènes, il faut faire appel à l'optique quantique.

Ce document contient les transparents du cours mais il n'est en aucun cas complet (auto-suffisant); une grande quantité d'informations (commentaires, explications, diagrammes, démonstrations,....etc) sera donnée pendant les séances du cours magistral.

Mes remerciements anticipés s'adressent à mes collègues Enseignants Chercheurs et aux étudiants qui voudront bien me faire part de leurs remarques.

CHAPITRE I

INTERFERENCES LUMINEUSES

I-1. Introduction

Lorsque deux ou plusieurs ondes lumineuses se superposent, on ne peut généralement pas décrire d'une manière simple les phénomènes observés. Prenons le cas de deux ondes provenant d'une même source ponctuelle et monochromatique : dans la région de superposition, l'intensité lumineuses varie d'un point à l'autre entre des maxima qui dépassent la somme des intensités de deux ondes prises séparément et des minima qui peuvent être nuls. Ceci constitue le **phénomène** d'interférences.

Pour préciser les conditions auxquelles deux ondes doivent satisfaire pour pouvoir interférer, il n'est pas nécessaire d'avoir une idée précise de la nature des ondes électromagnétiques. Il suffit d'admettre les principes suivants :

- 1) La lumière monochromatique est composée de vibrations d'une seule fréquence.
- 2) Les vibrations électromagnétiques se propagent à la vitesse de la lumière $v = \frac{c}{n}$.
- 3) Elles sont transverses par rapport à la direction de propagation.
- 4) Elles peuvent être représentées par une fonction sinusoïdale.
- 5) La durée de l'émission de la lumière par un émetteur atomique est de l'ordre de 10⁻⁹ à 10⁻⁸ seconde c'est-à-dire que les trains d'ondes émis ont une longueur comprise entre 30 cm et 3 cm.

Autrement dit, chaque oscillateur atomique émet une onde monochromatique très fine pendant un temps bref, puis une autre sans relation de phase avec la précédente : <u>la source est temporairement incohérente</u>

- 6) Chaque oscillateur atomique travaille indépendamment de ses voisins. Il n'y a pas, en général, de relation de phase permanente entre les radiations qu'ils émettent. On dit que <u>la source est</u> spatialement incohérente.
- 7) Les longueurs d'onde des oscillations voisines sont indépendantes en général, dans ce cas, toutes les radiations sont présentes dans le spectre continu et la lumière est dite blanche.
- 8) Les polarisations des rayonnements émis par les divers oscillateurs sont indépendantes et distribuées au hasard. La source n'est pas polarisée.

I-2. Étude générale

I.2.1 Calcul de l'intensité lumineuse

1) Calcul de l'intensité lumineuse d'un train d'onde

Les phénomènes d'optique que nous percevons sont des réceptions d'énergie. Le détecteur (œil, cellule) n'apprécie pas l'amplitude de l'onde, mais l'énergie qu'elle transporte. Cette énergie est proportionnelle à l'intensité vibratoire, en point donné.

Exemple: Onde sinusoïdale se propageant suivant Oz:

$$E(z,t) = E_o \sin(\omega t - kz)$$

L'intensité instantanée est : $I(z,t) = E^2(z,t) = E_0^2 \sin^2(\omega t - k.z)$

Si le temps caractéristique du détecteur est très supérieur à la période $T = \frac{2\pi}{\omega}$, l'intensité ne dépend pas du temps et s'identifie au carré du module de E.

En effet, I(z,t) varie très rapidement avec le temps, on prend la moyenne sur un temps θ très grand multiple de la période T

$$I \propto \frac{1}{\theta} \int_0^{\theta} E_0^2 \sin^2(\omega t - kz) dt = \frac{E_0^2}{2}$$

L'éclairement est donc proportionnel au carré du module de l'amplitude

2) Calcul de l'intensité lumineuse d'une superposition de trains d'ondes vibrant suivant la même direction

a) Train d'ondes non cohérentes

Une superposition de trains d'ondes se traduit par une addition des vecteurs représentatifs

$$E = \sum_{n} E_{0n} \exp \left[j(\omega t - \varphi_n) \right]$$

$$I = \frac{1}{2\theta} \int_0^{\theta} E.E^* dt = \frac{1}{2\theta} \int_0^{\theta} \left(\sum_m E_{0m} expj[\omega t - \varphi_m] \right) \left(\sum_n E_{0n} exp - j[\omega t - \varphi_n] \right) dt$$

Cette expression se compose de termes carrés m=n qui donnent $\frac{E_{0m}^2}{2}$ et de termes rectangles $m \neq n$ dont la moyenne est nulle car pour tout couple $E_{0m}E_{0n}expj[\varphi_n-\varphi_m]$, on peut trouver un couple $E_{0m}E_{0n}expj[\varphi'_n-\varphi'_m]$ égal et opposé.

Il y a donc simplement addition d'intensités :
$$I = \sum_{n} \frac{E_n^2}{2} = \sum_{n} I_n$$

b) Trains d'ondes cohérentes

Supposons que l'on introduise une différence systématique de phase entre les systèmes de trains de la forme (φ_n ne dépend pas du temps):

$$I = \frac{1}{2\theta} \int_0^{\theta} E. E^* dt = \frac{1}{2\theta} \int_0^{\theta} \left(\sum_m E_{0m} expj [\omega t - \varphi_m] \right) \left(\sum_n E_{0n} exp - j [\omega t - \varphi_n] \right) dt$$

$$I = \frac{1}{2\theta} \int_0^{\theta} \left[\sum_{m=n} E_{0m}^2 + \sum_{m \neq n} E_{0m} E_{0n} expj (\varphi_m - \varphi_n) \right] dt$$

$$= \frac{1}{2} \left[\sum_{m=n} E_{0m}^2 + \sum_{m \neq n} E_{0m} E_{0n} expj (\varphi_m - \varphi_n) \right]$$

- Cas de deux ondes

$$E_1 = E_{01} expj(\omega t - \varphi_1)$$
 et $E_2 = E_{02} expj(\omega t - \varphi_2)$

$$I = \frac{1}{2\theta} \int_{0}^{\theta} (E_1 + E_2)(E_1 + E_2)^* dt = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\varphi_2 - \varphi_1)$$

avec $I_1 = \frac{E_{01}^2}{2}$, $I_2 = \frac{E_{02}^2}{2}$ et $\varphi_2 - \varphi_1$ est la différence de phase entre les deux vibrations

 $I - (I_1 - I_2) = 2\sqrt{I_1}\sqrt{I_2}\cos(\varphi_2 - \varphi_1)$ est le <u>terme d'interférence</u> entre les deux ondes.

1.2.2 Principe de réalisation des interférences en optique

On est amené à superposer deux faisceaux (ou plus) de même fréquence et cohérents (ayant une différence de phase systématique). Ceci peut s'obtenir en prenant deux faisceaux issus de la même source et ayant suivi des chemins différents.

1) Division du front d'onde

Il y a division du front d'onde dans les appareils utilisant le principe de la figure suivante :

La source S émet dans toutes les directions mais on utilise seulement deux portions séparées (1) et (2) du faisceau. Ces deux faisceaux se superposent ensuite dans la région où l'on observe les phénomènes d'interférences.

Exemple: Fentes d'Young, Miroirs de Fresnel.

2) Division d'amplitude

Il y a division d'amplitude dans le cas de la figure suivante :

Le faisceau incident est reçu sur une lame semi-transparente L. Une partie (1) du faisceau incident transmise et une autre partie (2) réfléchie. Les deux faisceaux (1) et (2) se superposent ensuite dans la région où l'on observe les phénomènes d'interférences.

Exemple : interféromètre de Michelson, interféromètre de Fabry Pérot.

I.2.3 Étude quantitative

1) Vibration résultante

Soient deux sources lumineuses S_1 et S_2 ponctuelles monochromatiques et cohérentes. Les vibrations de S_1 et S_2 en un point M sont de la forme :

$$\vec{E}_1 = \vec{E}_{01}cos(\omega t - \varphi_1) \ et \ \vec{E}_2 = \vec{E}_{02}cos(\omega t - \varphi_2)$$

$$\varphi_1 = \frac{2\pi}{\lambda} d_1 \quad \text{et} \qquad \varphi_2 = \frac{2\pi}{\lambda} d_2$$

avec

si le milieu est d'indice n, $\lambda = \frac{\lambda_0}{n}$, $\varphi_1 = \frac{2\pi}{\lambda_0} n d_1$ et $\varphi_2 = \frac{2\pi}{\lambda_0} n d_2$

La vibration résultante en M est : $\vec{E} = \vec{E}_1 + \vec{E}_2$

On suppose (théorie scalaire) que les directions de propagation des rayons sont presque les mêmes :

$$E = E_1 + E_2$$
 et $I = E.E^*$
 $I = I_1 + I_2 + 2\sqrt{I_1}\sqrt{I_2}\cos(\varphi_2 - \varphi_1)$

2) Lieu des points de même intensité lumineuse

a) Les lieux des points de même intensité I sont obtenus pour $\varphi_2 - \varphi_1 = \mathcal{C}te$ ou

$$(d_2 - d_1) = \frac{\lambda}{2\pi} (\varphi_2 - \varphi_1) = Cte$$

La quantité $\delta=d_2-d_1$ s'appelle la différence de marche optique entre les deux rayons.

Les lieux des points tels que la différence des distances à deux points fixes S_1 et S_2 soit constante, représentent des hyperboloïdes de révolution de foyers S_1 et S_2 .

b) Les hyperboloïdes d'amplitude maximum ont pour équation :

$$\varphi = 2k\pi$$
 ou $\delta = d_2 - d_1 = k\lambda$ avec $\varphi = \varphi_2 - \varphi_1$

c) Les hyperboloïdes d'amplitude minimum ont pour équation :

$$\varphi = (2k+1)\pi$$
 ou $\delta = (k+\frac{1}{2})\lambda$

3) Étude de la figure d'interférence

On place un écran d'observation devant les sources S_1 et S_2 parallèlement à la direction S_1S_2 .

Pour que les vibrations puissent s'ajouter scalairement, il faut que les directions de propagation S_1M et S_2M soient presque confondues. S_1 et S_2 doivent être très proches et l'écran éloigné.

Dans ces conditions, la courbure des hyperboles est faible. Les franges sont rectilignes et perpendiculaires à la droite ox.

a) Position de ces franges :

$$\delta = \overline{S_2 M} - \overline{S_1 M}, \quad S_1 S_2 = 2a \quad \text{et} \quad \overline{OM} = x$$

$$d_1^2 = d^2 + (x - a)^2 = d^2 \left[1 + \left(\frac{x - a}{d} \right)^2 \right]$$

$$d_2^2 = d^2 + (x + a)^2 = d^2 \left[1 + \left(\frac{x + a}{d} \right)^2 \right]$$

$$d_1 = d \left[1 + \left(\frac{x - a}{d} \right)^2 \right]^{\frac{1}{2}} \quad \text{et} \quad d_2 = d \left[1 + \left(\frac{x + a}{d} \right)^2 \right]^{\frac{1}{2}}$$

Pour $d \gg x$, a

Dans ce cas, la différence de marche prend l'expression simple : $\delta = d_2 - d_1 \approx \frac{2ax}{d}$

Les franges sont des droites parallèles à Oy et équidistantes. La distance i entre deux franges brillantes consécutives, ou entre deux franges noires consécutives est la même. Elle s'appelle

l'interfrange: $i = \frac{\lambda d}{2a}$

Les franges brillantes sont obtenues pour :

$$\delta = k\lambda = \frac{2ax_k}{d}$$
 ou $x_k = k\frac{\lambda d}{2a}$ $k \in \mathbb{Z}$

Les franges sombres sont obtenues pour :

$$\delta = \left(k' + \frac{1}{2}\right)\lambda = \frac{2ax_k}{d} \qquad \text{ou} \qquad x_{k'} = \left(k' + \frac{1}{2}\right)\frac{\lambda d}{2a} \quad k' \in \mathbf{Z}$$

Les abscisses x_k et x_k , sont donc des multiples entiers (respectivement demi-entiers) de la quantité i qui ne dépend que du système expérimental.

Remarques:

- 1) Entre deux franges lumineuses (ou deux franges sombres) consécutives, $\varphi = \varphi_2 \varphi_1$ varie de 2π et entre une frange lumineuse et une frange sombre adjacentes, φ varie de π .
- 2) Lorsqu'on se déplace dans le champ d'interférences, la conservation de l'énergie impose que la moyenne spatiale de l'intensité soit égale à la somme des intensités que produiraient séparément les deux sources, les interférences ne faisant que modifier la répartition d'énergie :

$$\langle I \rangle = \langle I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\varphi_2 - \varphi_1) \rangle = I_1 + I_2 + 2\sqrt{I_1 I_2} \langle \cos(\varphi_2 - \varphi_1) \rangle = I_1 + I_2$$

b) Ordre d'interférence :

On appelle ordre d'interférence le nombre réel:

$$p = \frac{\delta}{\lambda} = \frac{2ax}{\lambda d} = \frac{x}{i}$$

La frange centrale correspond à l'ordre d'interférence nul.

Exemple:

$$x = i$$

$$x = i$$
 $p = 1$

c) Contraste des franges :

$$I = I_1 + I_2 + 2\sqrt{I_1}\sqrt{I_2}\cos\varphi$$

$$I_{max} = (\sqrt{I_1} + \sqrt{I_2})^2$$
 et $I_{min} = (\sqrt{I_1} - \sqrt{I_2})^2$

L'intensité oscille entre les deux valeurs extrêmes, I_{max} et I_{min}

Le contraste des franges est caractérisé par le facteur de visibilité *V* :

$$V = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = \frac{2E_{01}E_{02}}{E_{01}^2 + E_{02}^2} \qquad 0 \le V \le 1$$

Dans le cas où les vibrations ont même amplitude on a :

$$E_{01}=E_{02}=E_0$$
 et $I(\varphi)=2I_0(1+\cos\varphi)=4I_0\cos^2\frac{\varphi}{2}$ avec $I_0=\frac{E_0^2}{2}$
Dans ce cas , on a le meilleur contraste $(V=1)$

I.2.4 Conditions d'interférence

Pour observer les interférences, certaines conditions doivent être satisfaites :

- **↓** Les sources S₁ et S₂ doivent synchrones ($ω_1 = ω_2 = ω$)
- ♣ Les vibrations issues de S₁ et S₂ doivent être cohérentes c'est-à-dire que $\Delta \varphi = \varphi_2 - \varphi_1 = Cte$ (au cours du temps).

Expérimentalement, ces conditions sont réalisées lorsque les deux sources S_1 et S_2 sont les images d'une même source ponctuelle et monochromatique.

Les divers systèmes interférentiels que nous allons voir ont une caractéristique commune : ils donnent d'une source ponctuelle unique deux images S_1 et S_2 (réelles ou virtuelles) qui constituent alors des sources cohérentes.

I-3 <u>Principaux dispositifs interférentiels permettant l'obtention des</u> <u>franges non localisées</u>

I-3-1 <u>Trous d'Young (1807)</u>

Un écran percé de deux trous de petites dimensions qui diffractent la lumière. Cet écran est éclairé par une source ponctuelle monochromatique S. D'après les lois de l'optique géométrique, nous devrions observer sur un l'écran E les traces M_1 et M_2 des rayons issus de S_1 et S_2 . Du fait des faibles dimensions des trous, la diffraction intervient et l'on obtient un champ d'interférences dans le recouvrement des faisceaux diffractés.

 S_1 et S_2 sont à égale distance de la source S (ponctuelle et monochromatique). Les sources secondaires S_1 et S_2 sont donc synchrones et cohérentes.

L'écran (E) est disposé perpendiculaire au plan de la figure. On observe sur cet écran une alternance de franges alternativement sombre et brillantes.

Les franges d'interférence sont donc rectilignes (en première approche) La frange centrale ($\delta = 0$) correspond à x = 0 est une frange brillante.

I.3.2Biprisme de Fresnel

1) Définition

Ce sont deux prismes identiques accolés par leur base, d'angle A au sommet très faible et d'indice n.

Le système est éclairé par une source S ponctuelle et monochromatique.

 S_1 et S_2 sont deux sources virtuelles images de la même source ponctuelle et monochromatique S. S_1 et S_2 sont donc synchrones et cohérentes. Elles peuvent donc interférer. La zone d'interférence correspond à la zone de recouvrement des deux faisceaux semblant provenir de S_1 et S_2 .

$$S_1S_2 \approx \widehat{S_1S_2} = 2Dd_1$$
 avec $D \approx (n-1)A$

$$\delta = \frac{2ax}{d} = \frac{2(n-1)Ad_1}{d_1 + d_2} x$$

La figure d'interférence est caractérisée par une succession de franges claires et sombres, deux franges successives de même nature étant distantes de :

$$i = \frac{\lambda d}{2a} = \frac{\lambda (d_1 + d_2)}{2(n-1)d_1 A}$$

I.3.3 Bilentilles de Billet :

Une lentille convergente mince L de distance focale f a été coupée en deux suivant un diamètre. On intercale ensuite entre les deux demilentilles, un milieu opaque. Les deux lentilles obtenues sont espacées de $\varepsilon = O_1O_2$.

Chaque demi-lentille donne sa propre image réelle de la source S. Ces deux images S_1 et S_2 jouent le rôle de sources secondaires dont les positions sont définies par : $p' = \frac{pf}{n-f}$

Les triangles SO_1O_2 et SS_1S_2 sont semblables ; on a : Christelle

$$\frac{p}{p+p'} = \frac{O_1 O_2}{S_1 S_2} = \frac{\varepsilon}{S_1 S_2} \implies S_1 S_2 = \left(\frac{p+p'}{p}\right) \varepsilon$$

$$p = \frac{S_1 S_2 x}{\lambda d} = \left(\frac{p+p'}{p}\right) \frac{\varepsilon}{d} \ x = \frac{p\varepsilon x}{\lambda [D(p-f)-p^2]} = \frac{x}{i}$$
et $i = \frac{\lambda d}{S_1 S_2} = \frac{\lambda [D(p-f)-p^2]}{p\varepsilon}$

La bilentille de Billet donne une figure d'interférence symétrique par rapport à la frange centrale. L'avantage du dispositif est que les sources S_1 et S_2 sont réelles et permet aussi l'observation des franges de Meslin. Pour ce faire, au lieu d'écarter les deux demi-lentilles par translation dans leur plan, on les écarte parallèlement à leur axe optique commun. La source S et les deux images réelles S_1 et S_2 sont alors sur l'axe optique.

Le champ d'interférence est cette fois situé entre S_1 et S_2 . Pour améliorer la luminosité, on peut remplacer la source ponctuelle par une fente parallèle à la coupure de la lentille.

Ce sont les interférences entre les rayons incidents et les rayons réfléchis sur le miroir. Un point M de l'écran est éclairé par deux rayons, le premier qui va directement de S à M et le second qui se réfléchit sur le miroir et semble provenir de S_2 (image de S par le miroir). Tout se passe comme si M était éclairé par deux sources synchrones S et S_2 distantes de S_2 et placées à une distance S_2 de l'écran S_2 et S_3 distantes de S_3 et S_4 et placées à une distance S_3 de l'écran S_4 et placées à une distance S_4 de l'écran S_4 et placées à une distance S_4 de l'écran S_4 et placées à une distance S_4 et placées à

Le point $O(S_1O = S_2O)$ est en dehors du champ d'interférence. En plaçant l'écran [E] tout près du bord du miroir, on peut observer la frange centrale et constater qu'elle est sombre : les vibrations provenant de S et S_2 sont en opposition de phase en O'. On voit, en effet que la réflexion air-verre (milieu moins réfringent par rapport au milieu plus réfringent) introduit un déphasage

supplémentaire égal à π ou une différence de marche $\delta_0 = \frac{\lambda}{2}$. La différence de marche globale devient : $\delta = \frac{2ax}{d} + \frac{\lambda}{2}$

I-4Cohérence

Nous avons obtenu des franges d'interférence avec une source lumineuse idéale (source ponctuelle qui émet de la lumière parfaitement monochromatique). Or les expériences ne sont pas toujours dans ces conditions privilégiées. La source S a toujours une certaine étendue et n'émet pas de la lumière parfaitement monochromatique.

I.4.1 Cohérence spatiale

Reprenons l'expérience des trous d'Young et supposons que la source S n'est pas ponctuelle.

Soit S' un point de la source étendue S situé à la distance X de l'axe.

Au point M, la différence du chemin optique est :

$$\Delta = (d_2 + d_2') - (d_1 + d_1') = (d_2 - d_1) + (d_2' - d_1') = \frac{2ax}{d} + \frac{2aX}{d_0}$$

Par conséquent, la différence de marche Δ et la différence de phase φ varient avec le point considéré de la source étendue.

Les fluctuations dans l'espace de la différence de phase φ sont suffisamment petites, elles peuvent n'entraîner que des variations négligeables de l'intensité I: il y a cohérence spatiale.

Des variations importantes de φ peuvent produire des variations de I assez grandes pour que le contraste tombe pratiquement à zéro : les franges ne sont plus visibles, il y a incohérence spatiale.

En effet:

L'ensemble des points de la source constituent des sources ponctuelles incohérentes entre elles.

L'intensité en M due à cette source fente est :

$$I = \int_{-s/2}^{s/2} dI = I_0 \int_{-s/2}^{s/2} \left[1 + \cos\left(\frac{2\pi\Delta}{\lambda}\right) \right] dX = I_0 \int_{-s/2}^{s/2} \left[1 + \cos\frac{4\pi\alpha}{\lambda} \left(\frac{x}{d} + \frac{X}{d_0}\right) \right] dX$$

Posons $m = \frac{4\pi a}{\lambda d_0}$, l'expression ci-dessus devient : $I = I_0 s \left[1 + sinc(ms) \cdot cos(\frac{4\pi ax}{\lambda}) \right]$

La position des franges brillantes est donnée par : $x_k = k \frac{\lambda d}{2a}$ pour $ms < \pi$

On voit que les franges brillantes se trouvent aux mêmes endroits qu'avec une source fine : de même pour les franges sombres.

A un facteur près, cette expression et celle donnée par une source ponctuelle ne différent que par le terme sinc(ms).

Calculons le contraste :

$$\gamma = \frac{I_{max} - I_{min}}{I_{max} + I_{min}} = sinc(ms)$$

Traçons la courbe représentant les variations de γ en fonction de s.

Si la dimension s de la source est très petite (fente fine) γ est proche de 1. Lorsque s augmente γ diminue.

Les franges disparaissent si $ms = \pi$ c'est-à-dire si $s = \frac{\lambda d_0}{2a}$.

Elles réapparaissent ensuite avec un contraste inversé et plus faible ; puis disparaissent à nouveau pour $s = \frac{\lambda d_0}{a}$ et ainsi de suite.

A chaque nouvelle inversion, le contraste est plus faible. Pour avoir un bon contraste, il faut satisfaire à la condition suivante : $s < \frac{\pi}{2m} = \frac{\lambda d_0}{4\pi}$

I.4.2 Cohérence temporelle (ou chromatique)

Tout comme une augmentation de la dimension de la source, l'utilisation d'une lumière non monochromatique affecte la visibilité des franges d'interférences jusqu'à les faire disparaître.

Supposons que la source présente une bande spectrale de largeur $\Delta \nu$ au voisinage d'une fréquence ν . Nous admettons que les diverses fréquences correspondent à des sources incohérentes et que l'intensité lumineuse est constante à l'intérieur de la bande spectrale de largeur $\Delta \nu$.

Soit une radiation v': $v - \frac{\Delta v}{2} \le v' \le v + \frac{\Delta v}{2}$

L'intensité correspondante au point M (trous d'Young) est :

$$\begin{split} dI &= I_0 (1 + \cos \varphi) d\nu' \quad avec \ \varphi = \frac{2\pi}{\nu \prime} = \frac{2\pi \delta}{c} \nu' \\ I &= I_0 \int_{\nu - \frac{\Delta \nu}{2}}^{\nu + \frac{\Delta \nu}{2}} [1 + \cos 2\pi \tau \nu'] d\nu' \qquad avec \ \tau = \frac{\delta}{c} \end{split}$$

$$I = I_0 \Delta \nu + I_0 \int_{\nu - \frac{\Delta \nu}{2}}^{\nu + \frac{\Delta \nu}{2}} [\cos 2\pi \tau \nu'] d\nu'$$

$$I = I_0 \Delta v [1 + sinc(\pi \tau \Delta v) cos(2\pi \tau v)]$$

On remarque l'analogie de cette formule avec la formule précédente (cohérence spatiale).

Nous observons donc au point M, avec cet éclairement pseudo monochromatique un contraste

$$\gamma' = sinc(\pi \tau \Delta \nu)$$

Si $\Delta \nu$ est très petit $\gamma' \rightarrow 1$

Quand on élargit la bande spectrale, γ' diminue, les franges disparaissent pour :

$$\pi \tau \Delta v = \pi$$
 ou $\Delta v = \frac{1}{\tau} = \frac{c}{\delta}$

$$\frac{v}{\Delta v} = v \frac{\delta}{c} = \frac{\delta}{\lambda} = p$$
 p étant l'ordre d'interférence

Donc la première disparition des franges d'interférence se produira pour un ordre d'interférence p tel que :

$$p = \frac{v}{\Delta v} = \frac{\lambda}{\Delta \lambda}$$
 soit $\tau = \frac{1}{\Delta v}$ (temps de cohérence)

Plus $\Delta \nu$ est petit, plus le temps de cohérence est grand et plus l'ordre d'interférence que l'on peut observer pour un ν donné est élevé.

La plus grande différence de marche pouvant encore assurer les interférences est donnée par la relation : $\delta_{coh} = c\tau_{coh} = c\frac{1}{\Delta v} = c\frac{\lambda}{v\Delta\lambda} = \frac{\lambda^2}{\Delta\lambda}$ δ_{coh} : longueur de cohérence

Exemple:

	Meilleures sources thermiques	Lasers
Δν	$10^7 \mathrm{Hz}$	Inférieur à 10 ² Hz
$ au_{coh}$	10 ⁻⁷ s	10 ⁻² s
L_{coh}	1 m	$10^6 \mathrm{m}$

Cas particulier:

1/ Source émettant deux radiations voisines :

Dans ce cas, les deux systèmes de franges données par les deux radiations λ_1 et λ_2 ont même aspect, mais ne coïncident pas.

Au point d'abscisse x = 0, $\delta = 0$ pour les deux radiations λ_1 et λ_2 .

Les deux ondes produisent donc des franges brillantes en ce point. En un point M de l'écran :

$$p_1 = \frac{\delta}{\lambda_1} et \quad p_2 = \frac{\delta}{\lambda_2}$$

Si $|p_2 - p_1| = k$ (entier), on dit qu'il y a concordance en un point A entre les systèmes de franges (c'est-à-dire une frange brillante de la vibration λ_1 coïncide avec une frange brillante de la vibration λ_2). Il y a discordance au point A dans le cas où une frange brillante λ_1 coïncide avec une frange sombre λ_2 . Dans ce cas : $|p_2 - p_1| = k + \frac{1}{2}$

Exemple :flamme de sodium

$$\lambda_1 = 0,5890 \ \mu\text{m}$$

$$\lambda_2 = 0,5896 \ \mu\text{m}$$

$$\left| p_2 - p_1 \right| = \delta \left| \frac{1}{\lambda_2} - \frac{1}{\lambda_1} \right| = \frac{\delta}{\lambda_1} \left| \frac{\lambda_1 - \lambda_2}{\lambda_2} \right| = p_1 \frac{\left| \lambda_1 - \lambda_2 \right|}{\lambda_2}$$

Concordance pour: $|p_2 - p_1| = k$ ou $p_1 \frac{6}{5890} = k$ soit $p_1 \approx 983 \text{ k}$

Pour p_1 multiple entier de 983, il y a concordance.

2/ Franges en lumière blanche:

La différence de marche en un point où deux ondes interfèrent est δ , qui dépend de la position de ce point. La différence de phase des ondes en ce point est $\varphi = \frac{2\pi}{\lambda} \delta$, qui dépend à la fois de δ et de la longueur d'onde λ . Lorsqu'on réalise des interférences en lumière blanche, chaque longueur d'onde crée son propre système de franges qui se superpose à ceux des autres longueurs d'onde : pour chaque longueur d'onde, on a :

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos(\frac{2\pi}{\lambda}\delta)$$

Au centre de la figure d'interférence, $\delta=0$ et les interférences sont constructives pour toutes les longueurs d'ondes : on voit une frange blanche. Lorsque δ augmente un peu, les interférences sont destructives pour certaines longueurs d'onde, et constructives pour d'autres. On observe des teintes colorées appelées teintes de Newton. Elles apparaissent pour des différences de marche de $0,1~\mu m$ à $5~\mu m$. Lorsque δ est plus importante, on observe une couleur blanche appelée blanc d'ordre supérieur. De nombreuses longueurs d'ondes sont absentes du spectre du blanc d'ordre supérieur car il leur correspond des interférences destructives : le spectre est composé de fines raies colorées et de fines raies sombres alternées.

I.5 Interférence lumineuses par division d'amplitude :

I.5.1 <u>Lame à faces parallèles : (franges d'égale inclinaison)</u>

V.5.1.1 Anneaux par réflexion :

Soit une lame transparente d'épaisseur e ($e >> \lambda$) isotrope d'indice n, éclairée par une source monochromatique (qui peut être étendue) sous un angle d'incidence i.

On obtient des interférences localisées à l'infini en faisant interférer deux rayons obtenus par dédoublement du rayon incident SI.

Origine des interférences :

L'onde incidente est divergente et est donc constituée d'une infinité de rayons contenus dans le cône d'émission de la source. Un rayon particulier issu de la source se réfléchit en partie au point I sur le haut de la lame. De façon complémentaire une fraction du rayon incident est transmise à travers la lame en subissant une réfraction avant de se réfléchir au point I du bas de la lame pour ressortir au point K après une seconde réfraction. Au point I, l'onde incidente d'amplitude E_0 subit donc une division d'amplitude puisque le champ réfléchi s'écrit rE_0 et le champ transmis tE_0 . Les coefficients r et t sont respectivement les coefficients de réflexion et de transmission en amplitude du dioptre air-lame. Ces coefficients sont définis par les relations de Fresnel qui traduisent la continuité du champ électrique et de sa dérivée à l'interface.

En incidence normale, on peut montrer que : $r = \frac{1-n}{n+1}$ et $t = \frac{2n}{n+1}$

On peut observer les interférences directement à l'œil nu, mais il est plus commode de faire converger les rayons dans le plan focal d'une lentille.

a) Calcul de la différence de marche δ

$$\delta' = (IJK) - (IH) \text{ avec } (IJK) = 2(IJ) = 2nIJ \text{ et } IH = IK.\sin(i) = n\sin(r).IK$$

$$IH = 2ne\frac{\sin^2(r)}{\cos(r)} \text{ et } \delta' = \frac{2ne}{\cos(r)} - 2ne\frac{\sin^2(r)}{\cos(r)} = 2ne\cos(r)$$

À δ' il faut ajouter le retard supplémentaire $\frac{\lambda}{2}$ dû à l'avance de phase π produite par réflexion air-verre au point I.

Finalement: $\delta = 2necos(r) + \frac{\lambda}{2}$

Remarques:

1) Cas d'une source étendue

Soit S_2 un autre point de la source. Parmi les rayons émis par S_2 considérons le rayon S_2I_2 // S_1I_1 . Le même phénomène se produit et les deux rayons I_2L_2 aboutissement au même point M où ils interférent.

$$(I_1J_1K_1L_1'M) - (I_1L_1M) = (I_2J_2K_2L_2'M) - (I_2L_2M)$$

Les phénomènes d'interférences produits en M par S_1 et S_2 sont incohérents mais comme ils sont identiques, la visibilité du phénomène reste la même. Ceci est vrai pour tous les rayons émis par les différents points de S et qui sont parallèles à S_1I_1 .

2) Contraste

Sous l'incidence normale, le rapport de l'intensité réfléchie à l'intensité incidente (pouvoir réflecteur) est donné par :

$$R_1 = \left(\frac{n-1}{n+1}\right)^2$$

Sur la première face $R_1 = \frac{4}{100}$ pour n = 1,5 (verre)

 $I_1 = 0.04 I_0 = R_1 I_0$ c'est-à-dire 96% de la lumière sera transmise.

Sur la deuxième face, le pouvoir réflecteur sera :

$$R_{2} = \left(\frac{\frac{1}{n} - 1}{\frac{1}{n} + 1}\right)^{2} = \left(\frac{n - 1}{n + 1}\right)^{2} = R_{1} = R$$

$$I_2 = T^2.R.I_0 = R(1-R)^2I_0 \quad (\text{ car } R + T = 1) \qquad I_2 \cong I_1$$

Les faisceaux (1) et (2) ont sensiblement la même intensité et par suite la même amplitude ; les minima sont pratiquement nuls ce qui correspond à un bon contraste.

b) Dispositif expérimental :

Comme on a à faire à un faisceau conique, ce qui fait que l'on obtient sur l'écran (E) non pas un point M mais une famille de points correspondant à i = Cte (cône de demi angle au sommet i).

Le système admet donc une symétrie de révolution autour de l'axe optique de l'objectif O. les franges sont des anneaux d'égale inclinaison.

c) Rayon des anneaux :

Le rayon des anneaux dépend évidemment de leur ordre. A l'ordre p, on a donc

$$p = \frac{\delta}{\lambda} = \frac{2ne\cos(r)}{\lambda} + \frac{1}{2}$$

Au point *F* (centre des anneaux) $p_0 = \frac{2ne}{\lambda} + \frac{1}{2}$

L'anneau central admet l'ordre d'interférence le plus élevé (pas forcément entier).

Pour les premiers anneaux (i est petit)

$$\cos(r) \cong 1 - \frac{r^2}{2} = 1 - \frac{i^2}{2n^2} \quad et \ p_0 - p = \frac{ei^2}{\lambda n}$$
$$i \cong tg(i) = \frac{x}{f} \quad et \quad p_0 - p = \frac{ex^2}{\lambda n f^2}$$

On aura, en un point M de la figure d'interférence, le même état d'interférence qu'au centre si :

 $p_0 - p = k$ (k entier): nombre d'anneaux entre le centre et l'anneau de rayon \boldsymbol{x}

$$k \cong \frac{ex^2}{\lambda n f^2} \implies x = f \sqrt{\frac{n\lambda}{e}} \sqrt{k}$$

Remarque:

- ♣ Du point de vue expérimental il convient de remarquer que la mesure effectuée est toujours celle du rayon de l'anneau et non celle du rayon angulaire.
- \bot La mesure de x permet par exemple de déterminer soit e, soit n, soit λ .
- $\stackrel{\downarrow}{\bullet}$ i étant proportionnel à $\frac{1}{\sqrt{e}}$, les anneaux sont donc d'autant plus serrés que la lame est épaisse.
- lacktriangle les anneaux se resserrent d'autant plus que k augmente.

I.5.1.2 Anneaux par transmission

T₁ et T₂ sont parallèles. On obtient des interférences à l'infini. La différence de marche géométrique est identique et s'identifie avec la différence de marche optique puisque les réflexions sont de type verre air n'introduisant pas de déphasage supplémentaire :

$$\delta = (J_1 K_1 L_1) - (J_1 H_1) = 2n\cos(r)$$

Dans ces conditions si les anneaux par réflexion sont à centre brillant, les anneaux par transmission seront à centre sombre.

 $T_2 = R^2 T_1$, les amplitudes sont très inégales, le contraste sera faible et la visibilité des anneaux sera médiocre car l'intensité qui domine sur l'écran est celle du premier rayon. Cet argument est cependant qualitatif car la compréhension du phénomène ne peut se faire correctement qu'en tenant compte des réflexions et transmissions multiples dans la lame (anneaux de Fabry-Pérot, ou interférence à ondes multiples).

I.5.2 <u>Lame à épaisseur variable (franges d'égale épaisseur ou franges de</u> Fizeau)

I.5.2.1 Lame coin: localisation des franges:

Une source monochromatique, envoie un faisceau de lumière parallèle sur une lame en forme de coin d'angle α très petit et d'indice n > 1. Cette lame baigne dans l'air.

L'arrête 0 de la lame est perpendiculaire au plan de la figure.

Un rayon incident R_o fournit les deux rayons R_1 et R_2 qui se coupent en M. quand R_o se déplace parallèlement à lui-même, tous les angles de la figure restent constants, tous les triangles restent semblables à eux-mêmes. Le triangle OI_1M reste donc aussi semblable à lui-même, l'angle θ est constant. M décrit la droite fixe Δ . Par suite la surface de localisation (lieu des points M) est un plan de trace OM passant par l'arrête du coin. Ce plan est très voisin de la lame.

Incidence normale:

Le lieu des points M est entre Σ_1 et Σ_2 .

L'angle α étant très petit. Le calcul de δ effectué dans le cas d'une lame à faces parallèles reste valable.

$$\delta = 2ne + \frac{\lambda}{2}$$

Une frange est le lieu des points où la lame a une épaisseur constante (d'où le nom : franges d'égale épaisseur). Ce sont des segments parallèles à l'arrête du coin où se trouve la frange sombre (e = 0).

I.5.2.2 Coin d'air (incidence normale)

Position des franges sombres

Les franges sombres sont données par :

$$\delta = 2e + \frac{\lambda}{2} = \left(k + \frac{1}{2}\right)\lambda \qquad \text{soit} \qquad e = k\frac{\lambda}{2}$$

$$OM = x \approx \frac{e}{d} = k\frac{\lambda}{2\alpha} \qquad \text{et} \qquad i = x_k - x_{k-1} = \frac{\lambda}{2\alpha}$$

I.5.2.3 Anneaux de Newton:

Ce sont des franges d'égales épaisseurs données par une lame d'air qui est constituée par une lentille plan convexe en contact avec la face plane d'une lame de verre. Leur géométrie est due à la symétrie circulaire du système.

Ce système est éclairé par une source monochromatique sous l'incidence normale et étudié par réflexion.

Le triangle 010' est rectangle en I, nous avons :

$$x^2 = OH.HO' = e(2R - e) \cong 2Re \ car \ R \gg e$$

Les rayons qui se réfléchissent sur la face convexe de la lentille interfèrent avec ceux qui se réfléchissent sur la face supérieure de la lame à face parallèles.

Différence de marche

La différence de marche ontre les deux rayons réfléchis est :

$$\delta = 2e + \frac{\lambda}{2}$$

Au point O, on a un centre noir. La figure d'interférence localisée sur la lame présente une symétrie de révolution autour de l'axe OO'. Nous observons donc un système d'anneaux de centre O, localisés sur la lame lorsque nous utilisons une source étendue (anneaux de Newton).

Les anneaux sombres donnés par : $\delta = 2e + \frac{\lambda}{2} = k\lambda + \frac{\lambda}{2}$

$$2e = k\lambda$$
 c'est-à-dire $e = \frac{x^2}{2R} = k\frac{\lambda}{2}$

$$x = \sqrt{k}.\sqrt{R.\lambda}$$

Les rayons des anneaux successifs varient comme la suite des racines carrées des nombres entiers consécutifs.

Intensité des ondes interférant en réflexion

$$I = I_0 \left(1 + \cos \frac{2\pi\delta}{\lambda} \right) \qquad avec \qquad \delta = 2e + \frac{\lambda}{2} = \frac{x^2}{R} + \frac{\lambda}{2}$$

$$I = I_0 \left(1 - \cos \frac{2\pi x^2}{\lambda R} \right)$$

$$\frac{I}{I_0}$$

$$\frac{I}{I_$$

Intensité des ondes interférant en transmission

La transmission se fait sans déphasage donc on a interférence constructive quand la différence de marche δ vaut $k\lambda$. Donc tout est inversé par rapport aux franges par réflexion(les franges brillantes deviennent sombres, les sombres deviennent brillantes).

$$I = I_1 + I_2 + 2\sqrt{I_1 \cdot I_2} \cos \frac{2\pi x^2}{\lambda R} = I_0 \left(1 + m \cdot \cos \frac{2\pi x^2}{\lambda R} \right)$$

avec $m \simeq 0.06$ (verre d'indice 1,65)

CHAPITRE II

DIFFRACTION

II.1 Introduction:

La diffraction est le phénomène d'éparpillement de la lumière que nous observons lorsqu'une onde est matériellement limitée. Elle joue un rôle décisif dans la formation des images puisque tout système optique limite l'étendue du faisceau incident.

L'interprétation de ce phénomène repose sur une théorie ondulatoire dont les précurseurs sont Huygens-Fresnel. Leurs contributions sont rassemblées sous le nom de principe de Huygens-Fresnel.

II.2 Principe de Huygens-Fresnel:

L'énoncé de ce principe comporte 2 parties :

- A) La lumière se propage de proche en proche. Chaque élément de surface atteint par celleci se comporte à son tour comme une source secondaire (fictive) qui réémet des ondelettes dont l'amplitude est proportionnelle à cet élément de surface.
- B) L'amplitude complexe de la vibration lumineuse en un point M est la somme des amplitudes complexes des vibrations produites par toutes les sources secondaires.

Remarques:

- a) Les sources fictives sont cohérentes : les ondes émises par ces sources secondaires interfèrent donc entre elles.
- b) Le phénomène de diffraction intervient dans des domaines de la physique autres que l'optique. Nous pensons aux ondes électromagnétiques radioélectriques et à la diffraction des électrons sur les cristaux. Elle est une signature de la nature ondulatoire d'un phénomène.
- c) Le principe de Huygens-Fresnel est une approximation de la solution rigoureuse au problème de diffraction donné par la résolution de l'équation d'onde. Il est valable dans le cadre de l'approximation paraxiale.
- d) Soient S une source ponctuelle monochromatique et Σ la surface d'onde à l'instant t. Nous avons vu que, dans un milieu homogène et isotrope, Σ est une sphère de rayon Vt. La surface d'onde Σ 'à un instant ultérieur $t+\theta$ est alors l'enveloppe des surfaces d'ondes centrées sur les points précédents et de rayon $V\theta$.

e) Une onde sphérique engendre ainsi une onde sphérique, une onde plane engendre une onde plane, etc.

Construction de Huygens

La construction de Huygens a été complétée par l'hypothèse de Fresnel selon laquelle, il peut y avoir des interférences entre les différentes ondelettes. Autrement dit, la figure de diffraction observée résulte de l'interférence des ondes émises par l'ensemble des sources secondaires uniformément répartie sur le diaphragme diffractant.

II.3 Domaine de l'étude :

Soit une onde monochromatique tombant sur un diaphragme plan. On suppose la longueur d'onde λ est très inférieure aux dimensions de cette ouverture.

• Diffraction à distance finie ou diffraction de Fresnel :

Il s'agit de décrire la répartition d'intensité lumineuse sur un écran placé à proximité de la pupille diffractante

• Diffraction à l'infini ou diffraction de Fraunhofer :

Il s'agit alors de décrire la répartition d'intensité lumineuse sur un écran placé à grande distance de la pupille diffractante, théoriquement à « l'infini ».

II.4. Diffraction de Fraunhofer:

II.4.1 Étude générale :

Dans ce qui suit, on supposera que la source lumineuse (ponctuelle, monochromatique) est à l'infini. L'écran D, percé de l'ouverture T, est normal au faisceau incident. Calculons l'intensité diffractée à l'infini par T dans une direction α .

Chaque point P de l'écran (E) reçoit la superposition d'une infinité de vibrations issues des points M de l'ouverture T.

L'intensité lumineuse au point P dépend donc de la direction α et de la forme de l'ouverture T.

Si l'ouverture est uniformément éclairée, la vibration en un point M est $E_0 expj\omega t$ où E_0 est nul en dehors de l'ouverture. Choisissons comme origine des phases, la phase au point P due à la vibration issue du point O pris comme origine.

La vibration produite en P par l'élément de surface dS centré autour du point Mest :

$$E_0. expj \left[\omega t + \frac{2\pi}{\lambda} (OP - MP) \right] dS$$

L'amplitude au point P due à toutes les vibrations diffractées par l'ouverture T est :

$$f(\alpha) = E_0 \int_T expj \left[\omega t + \frac{2\pi}{\lambda} (OP - MP) \right] dS$$

Comme P est voisin de o, on a : $u \simeq \frac{x}{f}$, $v \simeq \frac{y}{f}$

La différence de marche : $\delta = (OP - MP) = OH = \vec{q} \cdot \overrightarrow{OM} = uX + vY$

L'amplitude en P devient :

$$f(u,v) = E_0 \cdot \exp j\omega t \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \exp j\frac{2\pi}{\lambda} (uX + vY) dX dY$$

D'où l'intensité:

$$I(u, v) = f(u, v) \cdot f^{*}(u, v)$$

Remarque:

L'amplitude de la vibration diffractée par l'ouverture T a été établie en supposant que l'amplitude E_0 est la même en tous les points de T. On peut généraliser ceci en supposant qu'il y a à la fois variation d'amplitude et de phase. Ces deux effets peuvent être représentés par une fonction $F(X,Y) = A(X,Y)expj\emptyset(X,Y)$ où F(X,Y) est identiquement nul en dehors de l'ouverture T.

A(X,Y) et $\emptyset(X,Y)$ caractérisent les répartitions d'amplitude et de phase sur l'ouverture T. Dans ce cas, l'expression de l'amplitude s'écrit :

$$f(u,v) = E_0 \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} F(X,Y) \cdot \exp j \frac{2\pi}{\lambda} (uX + vY) dX dY$$

f(u, v) est donc la transformée de Fourier de la fonction F(X, Y).

II.4.2. <u>Diffraction par une ouverture rectangulaire:</u>

On intègre la relation précédente sur une ouverture rectangulaire de largeur 2a et de longueur 2b en remarquant que les variables X et Y sont indépendantes (l'origine O est prise au centre de l'ouverture).

La lentille L est placée tout près de l'écran (D) pour que tous les rayons diffractés par l'ouverture T soient recueillis par cette lentille.Le centre O de l'ouverture T est situé sur l'axe principal OCS' de la lentille.

L'amplitude en *P* de la vibration diffractée est :

$$f(u,v) = E_0 \int_{-a}^{+a} \int_{-b}^{+b} F(X,Y) \cdot \exp j\frac{2\pi}{\lambda} (uX + vY) dXdY$$

$$f(u,v) = 4E_0ab. sinc(kua). sinc(kvb)$$
 avec $k = \frac{2\pi}{\lambda}$ et $sinc(x) = \frac{sinx}{x}$

et l'intensité au point P sera :

$$I(u, v) = I_0 sinc^2(kua) \cdot sinc^2(kvb)$$
 où $I_0 = 16a^2b^2$

Remarques:

- a) L'intensité en un point de la figure de diffraction est proportionnelle au carré de la surface libre du diaphragme.
- b) Cette intensité est égale au produit de deux facteurs qui dépendent uniquement : le premier de la coordonnée u, le deuxième de la coordonnée v.

- La fonction $sinc^2(u)$ présente un maximum absolu, appelé maximum principal, égal à 1 en u = 0 et s'annule pour $u = n\pi$, avec $n \in N^*$
- Les maxima secondaires sont obtenus par : $\frac{d}{du} [sinc^2(u)] = 0$
- Il n'y a pas d'expression analytique des racines et on doit se contenter soit d'une résolution numérique (de la fonction tgu = u) soit d'une résolution graphique.
- c) La représentation graphique de l'éclairement est donnée sur les figures suivantes:

d) Les franges secondaires de diffraction sont deux fois moins larges que la frange centrale et beaucoup moins lumineuses.

II.4.3. <u>Diffraction par une fente fine:</u>

Supposons que l'une des dimensions de l'ouverture rectangulaire est très petite devant l'autre. On a par exemple $a\gg b$. C'est-à-dire $\frac{\lambda}{2a}\ll\frac{\lambda}{2b}$

La lumière diffractée s'étale pratiquement sur S'y car le facteur sinc(kua) pratiquement nul dès que l'on s'écarte de l'axe S'y et égal à 1 sur cet axe.

En effet, La tache centrale est comprise entre $kvb = -\pi \ et \ kvb = +\pi$ c'est-à-dire v compris entre $-\frac{\lambda}{2b}$ et $\frac{\lambda}{2b}$. C'est donc bien le rapport $\frac{\lambda}{b}$ qui pilote la diffraction. Plus b est petit, plus la tache principale de diffraction, c'est-à-dire la tache centrale est grande. De plus, l'éclairement de l'écran n'est pas uniforme : autour de la tâche centrale existent des tâches secondaires, moins larges et moins lumineuses.

Remarque:

La diffraction par une fente peut également s'appliquer, en raison du théorème des écrans complémentaires, pour décrire la figure de diffraction obtenue avec un fil placé sur le trajet d'un faisceau lumineux.

La distribution de l'intensité sur l'axe S'y devient : $I_0 sinc^2(kvb)$.

Remarque:

Si la source ponctuelle à l'infini est remplacée par une source fente, chaque point de la fente source S donne un diagramme de diffraction identique au précédent, mais centré sur l'image géométrique S' de S. la juxtaposition de tous ces systèmes donne des franges parallèles à la direction de la fente source.

II .4.4 <u>Diffraction par une ouverture circulaire</u>:

C'est un cas très fréquent en diffraction car la monture des lentilles ou des miroirs utilisés dans les instruments d'optique sont généralement circulaires. La figure de diffraction obtenue a la symétrie de révolution autour de l'axe de la pupille: elle se compose d'anneaux alternativement sombres et brillants, entourant une tache centrale beaucoup plus brillante.

Considérons un faisceau cylindrique normal au plan contenant l'ouverture circulaire T de rayon R. L'image géométrique de la source se trouve au point S'. Les phénomènes sont de révolution autour de CS'.

L'amplitude au point *P* est donnée par :

$$f(u,v) = E_0 \int_T expj \left[\omega t - \frac{2\pi}{\lambda} (uX + vY) dX dY \right]$$

Posons: $X = r\cos\theta$, $Y = r\sin\theta$, on a: $ds = rdrd\theta$ et

$$u = \frac{x}{f}\rho\cos\theta' = \alpha\cos\theta', \qquad v = \frac{y}{f}\rho\sin\theta' = \alpha\sin\theta'$$

Si R est le rayon de l'ouverture T, l'amplitude en P est donnée par :

$$f(\alpha) = E_0 expj\omega t \int_0^R \int_0^{2\pi} expj \frac{2\pi}{\lambda} [r.\alpha.\cos(\theta - \theta')] r dr d\theta$$

Cette expression ne s'intègre pas au moyen des fonctions élémentaires mais nécessite l'introduction des fonctions de Bessel.

Si J_0 est la fonction de Bessel de première espèce d'ordre éro, on a :

$$\int_{0} exp - jkr\alpha cos\alpha \cdot d\alpha = 2\pi J_{0}(kr\alpha)$$

Et si J_1 est la fonction de Bessel de première espèce d'ordre un, on a :

$$kR\alpha.J_1(kR\alpha) = \int_0^{k\alpha_0\alpha} kr\alpha.J_0(kr\alpha) d(kr\alpha)$$

et en remplaçant dans l'équation précédente de $f(\alpha)$, on trouve :

$$f(\alpha) \propto \pi a_0^2 \frac{2J_1(Z)}{(Z)}$$
 avec $k = \frac{2\pi}{\lambda}$ et $Z = kR\alpha = \frac{2\pi R}{\lambda f} \sqrt{x^2 + y^2}$

Et l'intensité diffractée en
$$P$$
 s'écrit : $I(\alpha) = \left[\pi R^2 \frac{2J_1(Z)}{(Z)}\right]^2$

La figure de diffraction se compose d'une tache centrale appelée tache d'Airy très lumineuse entourée d'anneaux alternativement brillants et noirs.

Les anneaux noirs correspondent aux racines de $J_1(Z) = 0$ soit :

$$Z_1 = 3,83$$
 , $Z_2 = 7.02$, $Z_3 = 10,17$

Le rayon linéaire du premier anneau noir est :

$$\rho_1 = \frac{\lambda f}{2\pi R} Z_1 = 1.22 \frac{\lambda f}{2R}$$

Remarque: Influence de la diffraction sur la qualité des images

• Retenir l'expression de la demi-largeur angulaire à la base des deux pupilles les plus couramment rencontrées :

	Fente rectangulaire de largeur 2 <i>b</i>	Trou circulaire de rayon R
Demi-largeur de la tache centrale de diffraction	$\frac{\lambda f}{2b}$	$1.22\frac{\lambda f}{2R}$

• La diffraction cause donc un élargissement de l'image géométrique d'autant plus grand que la pupille diffractante est de faible dimension.

Dans le cas de deux images ponctuelles très rapprochées, les taches centrales de diffraction peuvent empiéter l'une sur l'autre et, par addition des intensités lumineuses, donner

finalement une répartition d'intensité ne présentant plus deux maxima mais un seul maximum. Dans ces conditions, l'œil ou tout autre récepteur optique ne voit alors plus deux images distinctes mais une seule "tache" lumineuse : cette dégradation des performances d'un instrument d'optique par suite de la diffraction doit être tout particulièrement maîtrisée dans les spectroscopes destinés à mesurer des longueurs d'onde très voisines. Dans la pratique on adopte le critère de Rayleigh : Dans le cas d'un système à symétrie de révolution, les images de deux points lumineux incohérents sont résolues si le maximum de la figure d'Airy relative à l'un des points est situé sur ou au-delà du premier minimum de la figure d'Airy relative à l'autre.

Images résolues

Images tout juste résolues

Images non résolues

II .4.5 <u>Diffraction par deux fentes identiques</u>:

Le phénomène de diffraction est à la base même des interférences d'Young puisqu'il permet le recouvrement des faisceaux après le passage des deux ouvertures, qu'il s'agisse de trous ou de fentes diffractantes. En supposant :

- les deux ouvertures identiques, distantes de 2a,
- une diffraction isotrope, c'est à dire que chaque onde transporte la même intensité lumineuse dans toutes les directions du demi-espace situé à droite des ouvertures

Les fentes sont de largeur 2b, leurs centres sont distants de 2a. On obtient l'amplitude diffractée en un point P de l'écran par intégration :

$$f(\alpha) = E_0 expj\omega t \iint_{fentes} expj \frac{2\pi}{\lambda} [vY] dY$$

$$f(\alpha) = E_0 expj\omega t \left[\int_{-a-b}^{-a+b} expj \frac{2\pi}{\lambda} [vY] dY + \int_{a-b}^{a+b} expj \frac{2\pi}{\lambda} [vY] dY \right]$$
$$f(\alpha) = 4bE_0 expj\omega t \left[cos \left(\frac{2\pi ay}{\lambda f} \right) . sinc \left(\frac{2\pi by}{\lambda f} \right) \right]$$

L'intensité résultante est donc:

$$I(u, v) = I_0 cos^2 \left(\frac{2\pi ay}{\lambda f}\right) . sinc^2 \left(\frac{2\pi by}{\lambda f}\right)$$

Cette expression est composée de deux facteurs, le premier représente le phénomène des interférences obtenu par les fentes d'Young et le second la figure de diffraction. Nous avons donc obtenu des franges d'interférence modulées par le phénomène de diffraction.

Remarque:

Pour retrouver l'image d'interférences décrite dans le chapitre sur les « Interférences », il faut que la diffraction soit suffisamment importante, de façon à ce que la fonction sinus cardinal ait ses premiers zéros rejetés très loin de O. Dans ce cas, on reste dans le pic central (qui est très étalé) et on ne voit pas la décroissance lente de l'enveloppe. On considère ainsi que la largeur des fentes tend vers zéro.

II.4.6 <u>Diffraction par plusieurs fentes identiques</u>:

On cherche à généraliser le cas précédent à *N* fentes éclairées sous incidence normale par un même point source pour le même dispositif. Tous les points du plan des fentes sont en phase. Les fentes sont très fines de manière à ce que seule la diffraction due à la largeur soit significative.

Les N fentes fines ont pour largeur 2b et sont équidistantes de 2a. La contribution de la fente N_i à la vibration résultante en P s'écrit : $f(v) \propto sinc(kvb)$

La contribution N des fentes est donc :

$$f_p(v) = \left[\sum_{m=0}^{N} expj(kma)\right] sinc(kvb)$$

L'intensité en P est :

$$I_{p} = I_{0} \left(\frac{\sin^{2} \left(N \frac{2\pi ay}{\lambda f} \right)}{\sin^{2} \left(\frac{2\pi ay}{\lambda f} \right)} \right)^{2} \operatorname{sinc}^{2} \left(\frac{2\pi by}{\lambda f} \right)$$

Répartition de l'intensité

Le tableau suivant montre l'évolution des franges lorsqu'on considère cinq fentes , quinze fentes et un grand nombre de fentes .

(N = 5)

Entre deux minima nuls les maxima secondaires sont deux fois moins larges que les maxima principaux.

La largeur à la base d'un maximum principal vaut : $\frac{4\pi}{N}$

La largeur à la base d'un maximum secondaire vaut : $\frac{2\pi}{N}$

(N = 15)

Plus *N* est important, plus la largeur des maxima principaux est faible et plus l'intensité des maxima secondaires est petite (ce résultat est admis afin de ne pas compliquer les calculs).

 $(N \to \infty)$

On aurait des pics infiniment fins obtenus pour $\varphi=2k\pi$. Les maxima secondaires n'existeraient plus (intensité nulle).

La figure de diffraction module l'intensité des maxima principaux.

Remarque:

- Plus les fentes sont fines, plus le profil de diffraction est large et l'intensité des pics principaux diminue ;
- Plus le nombre total de fentes éclairées est important et plus les pics sont fins.
- Au fur et à mesure que le nombre des fentes augmente, les maxima principaux s'affinent et les maxima secondaires deviennent de plus en plus nombreux et de plus en plus faibles. Entre deux maxima principaux, on a (N-1) minima nuls et (N-2) maxima secondaires.

II.4.7 Réseaux de diffraction :

Un réseau est un objet diffractant dont la transparence est périodique. La période p s'appelle le pas du réseau. L'inverse du pas est la fréquence spatiale du réseau; celle-ci s'exprime souvent en "traits par millimètre", ce qui correspond à l'unité : mm^{-1} . L'objet étant de largeur finie L, la périodicité n'existe l'intérieur d'une "fenêtre" de largeur L.

La possibilité de réaliser des réseaux en enregistrant des franges d'interférences a été suggérée par Michelson en 1927. Mais ce n'est qu'avec l'invention des lasers que cette technique s'est répandue.

1) <u>Différents types de réseaux :</u>

- ♣ Réseaux de phase : un réseau de phase diffracte par effet de retard de phase du à son profil microscopique sans variation d'absorption.
- Réseaux d'absorption ou d'amplitude : un réseau d'amplitude ou d'absorption diffracte par une absorption sélective du faisceau incident.
- ♣ Réseaux mélangés : ce sont ceux dans lesquels à la fois la constante diélectrique et la constante d'absorption sont modulées partiellement.
- ♣ Réseaux numériques : peuvent être utilisés en traitement d'image par double transformée de Fourier.

2) Caractérisation d'un réseau :

Quand nous éclairons un réseau par une onde plane monochromatique. Les divers faisceaux diffractés interfèrent de telle façon que la lumière soit pratiquement localisée dans les directions qui satisfont la condition :

$$2a(\sin\theta_d - \sin\theta_i = m\lambda \ m \in \mathbb{Z}$$

 θ_d et θ_i sont les angles d'incidence et de diffraction, 2a est le pas du réseau et n l'ordre de diffraction.

Pouvoir de résolution :

Si la lumière incidente est composée de deux radiations λ et $\lambda' = \lambda + \Delta \lambda$, les maxima du nième ordre se trouvent en $\frac{m\lambda}{p}$ et $\frac{m\lambda'}{p}$. Selon le critère de Rayleigh, on considère que deux raies de longueur d'onde λ et λ' sont séparées l'une de l'autre dans l'ordre m si le maximum de l'une des taches de diffraction de l'une coïncide avec le minimum de l'autre. Le plus petit écart en longueur d'onde correspond à la limite de résolution : $(\lambda - \lambda')_{min} = \frac{p\lambda}{Lm}$. D'où le pouvoir de résolution :

$$R = \frac{\lambda}{\Delta \lambda} = mN$$
 avec N le nombre total de motifs du réseau.

Remarque:

La résolution d'un réseau de longueur L ne peut pas être augmentée infiniment en diminuant le pas p. En effet, d'après la relation des réseaux, L'onde n'est pas déphasée en sortie du réseau si et seulement si la différence de marche entre les deux faisceaux vaut $m\lambda$.

La différence des sinus étant au plus égale à 2, la relation est bornée et : $R_{max} = \frac{2L}{\lambda}$ Avec un réseau donné, il suffirait de choisir un ordre d'interférence m élevé mais dans ce cas l'intensité de la lumière analysée chute très rapidement. Le compromis consiste à :

- Utiliser des réseaux blazés où pratiquement toute l'énergie lumineuse diffractée est concentrée dans un seul ordre.
- Utiliser des réseaux holographiques dans lesquels on peut contrôler (par un choix convenable de la modulation de l'épaisseur ou de l'indice de réfraction ou des deux)
 l'intensité diffractée dans un ordre bien déterminé.

CHAPITRE III

Polarisation des ondes électromagnétiques dans le vide

Les ondes électromagnétiques sont caractérisées par deux grandeurs vectorielles : leur champ électrique \vec{E} et son champ magnétique \vec{B} . Nous considérons des ondes planes progressives sinusoïdales se propageant en ligne droite. L'axe de propagation sera l'axe Oz. Dans ces conditions, on sait que les champs \vec{E} et \vec{B} sont contenus dans le plan perpendiculaire à l'axe Oz, à savoir le plan Oxy.

Par ailleurs, il existe des dispositifs permettant précisément d'identifier une direction de vibration (dans le plan orthogonal à la direction de propagation) : ces dispositifs sont des analyseurs directionnels.

On constate ainsi que la vibration d'un champ électromagnétique et sa propagation peuvent se présenter sous différentes formes : vibration non-polarisée ou vibration polarisée.

2.1 Etats de polarisation

2.1.1 Définition

Les phénomènes de polarisation sont les phénomènes liés au caractère vectoriel des deux caractéristiques de l'onde lumineuse à savoir le champ électrique \vec{E} et son champ magnétique \vec{B} . Les évolutions de \vec{E} et \vec{B} étant liées au cours du temps, il suffit de d'écrire le comportement du champ électrique \vec{E} . C'est pourquoi, par la suite, toute l'attention est portée sur le champ électrique.

On appelle plan de polarisation de l'onde, le plan formé par le vecteur d'onde \vec{k} et le champ électrique \vec{E} .

2.1.2 Perception d'un état de polarisation

Pour percevoir un état de polarisation de l'onde, il faut placer son œil sur la direction de propagation de l'onde, face à l'onde. On observe alors l'évolution au cours du temps du champ électrique \vec{E} dans le plan perpendiculaire à la direction de propagation.

2.1.3 Polarisation rectiligne

Le champ électrique conserve une direction fixe au cours du temps dans le plan perpendiculaire à \vec{k} qui marque la direction de propagation. Dans ce cas, l'expression du champ électrique de l'onde est de la forme :

$$\vec{E} = E_0 cos(\omega t - kz)\vec{e}_x$$

Dans un cas le plus général de l'onde polarisée rectilignement où le champ électrique occupe de façon permanente, une direction fixe quelconque dans le plan Oxy, la forme mathématique du champ électrique est :

$$\vec{E} = E_{0x}\cos(\omega t - kz)\vec{e}_x + E_{0y}\cos(\omega t - kz)\vec{e}_y \tag{1}$$

2.1.4 Onde non polarisée

Lorsque le champ électrique \vec{E} de l'onde observée possède une direction qui évolue de façon complétement aléatoire au cours du temps, toujours dans le plan perpendiculaire à la direction de propagation, on dit que l'onde n'est pas polarisée.

Ce cas de figure correspond au modèle de polarisation adopté pour l'onde naturelle (la lumière solaire avant qu'elle ne soit diffusée par l'atmosphère n'est pas polarisée). Après sa diffusion, elle l'est partiellement. La lumière émise par une lampe classique à incandescence n'est pas non plus polarisée. Pour les lasers, on peut rencontrer plusieurs cas de figure : polarisée, polarisée de façon partielle ou encore non polarisée. Pour comprendre la notion de polarisation partielle, on peut se contenter de dire que le champ électrique de l'onde résulte de deux contributions comme par exemple celle d'un champ \vec{E}_1 dont la direction est fixe (polarisation rectiligne) et celle d'un champ \vec{E}_2 dont la direction est complètement aléatoire.

2.1.5 Polarisation elliptique

Dans ce cas, la direction du champ électrique évolue en permanence au cours du temps. Pour autant, le comportement du champ électrique n'est pas quelconque. Si on fixe son origine, au point O du plan Oxy, on constate que son extrémité décrit une ellipse dans ce même plan.

La forme mathématique de l'onde polarisée elliptiquement est :

$$\vec{E} = E_{0x}\cos(\omega t - kz)\vec{e}_x + E_{0y}\cos(\omega t - kz - \varphi)\vec{e}_y$$

On parle de polarisation elliptique droite (gauche) si l'ellipse est décrite au cours du temps dans le sens des aiguilles d'une montre (sens inverse des aiguilles d'une montre).

En effet;

Si φ est quelconque, et en nous plaçant en z=0, nous avons :

$$\vec{E} = E_{0x} cos\omega t \vec{e}_x + E_{0y} cos(\omega t - \varphi) \vec{e}_y$$

$$E_x = E_{0x} cos\omega t \text{ et } E_y = E_{0y} cos(\omega t - \varphi)$$

$$\frac{E_x}{E_{0x}} = cos\omega t \text{ et } \frac{E_y}{E_{0y}} = cos(\omega t - \varphi) = cos\omega t. cos\varphi + sin\omega t. sin\varphi$$

$$\frac{E_y}{E_{0y}} = \frac{E_x}{E_{0x}}. cos\varphi + \sqrt{1 - cos^2\omega t}. sin\varphi$$

$$\left[\frac{E_{y}}{E_{0y}} - \frac{E_{x}}{E_{0x}} \cdot \cos\varphi\right]^{2} = (1 - \cos^{2}\omega t)\sin^{2}\varphi$$

$$\left[\frac{E_{y}}{E_{0y}} - \frac{E_{x}}{E_{0x}} \cdot \cos\varphi\right]^{2} = \left[1 - \left(\frac{E_{x}}{E_{0x}}\right)^{2}\right]\sin^{2}\varphi$$

$$\left(\frac{E_{x}}{E_{0x}}\right)^{2} + \left(\frac{E_{y}}{E_{0y}}\right)^{2} - 2\frac{E_{x}}{E_{0x}}\frac{E_{y}}{E_{0y}}\cos\varphi = \sin^{2}\varphi$$
(2)

L'extrémité du champ \vec{E} décrit donc une ellipse et nous parlons dès lors naturellement de "polarisation elliptique".

Suivant la valeur de φ , cette ellipse peut être parcourue dans un sens ou dans l'autre. Pour déterminer ce sens, dérivons l'expression du champ et plaçons nous à t=0 toujours dans le même plan d'onde en z=0

$$d_t \vec{E} = \frac{d}{dt} \begin{cases} E_{0x} cos\omega t \\ E_{0y} cos(\omega t - kz - \varphi) = \begin{cases} -\omega E_{0x} sin\omega t \\ -E_{0y} sin(\omega t - kz - \varphi) = \begin{cases} 0 \\ \omega E_{0y} sin(\varphi) \end{cases} \end{cases}$$
(3)

Si $0 < \varphi < \frac{\pi}{2}$ l'ellipse est parcourue dans le sens direct (inverse des aiguilles d'une montre). Nous disons alors que la polarisation est "elliptique gauche".

Si $\pi < \varphi < \frac{3\pi}{2}$ l'ellipse est parcourue dans le sens horaire (sens des aiguilles d'une montre). Nous disons alors que la polarisation est "elliptique gauche".

Remarque:

- si l'un des champs \vec{E} ou \vec{B} se propage, l'autre aussi, et avec les mêmes caractéristiques de propagation : vitesse, direction et sens,
- si l'un est polarisé, l'autre aussi et dans une direction telle que le trièdre $(\vec{E}, \vec{B}, \vec{k})$ est direct,
- la valeur de la norme de l'un des champs impose l'autre,
- plus généralement, il n'y a pas d'action sur l'un qui ne soit en même temps action sur l'autre.

Cette raison de structure s'exprime par le terme de champ "électromagnétique" en un seul mot... puisqu'il s'agit en fait d'un seul champ trièdre (\vec{E}, \vec{B}) .

2.1.6 Polarisation circulaire

C'est un cas particulier de la polarisation elliptique, obtenu quand :

$$\varphi = \pm \frac{\pi}{2} \ et \ E_{0x} = E_{0y} = E_0$$

De même que la polarisation elliptique, la polarisation circulaire peut être droite ou gauche suivant le sens de parcours du cercle

Polarisation circulaire gauche:

$$\vec{E} = E_0 \cos(\omega t - kz)\vec{e}_x + E_0 \sin(\omega t - kz)\vec{e}_y \tag{4}$$

Polarisation circulaire droite:

$$\vec{E} = E_0 \cos(\omega t - kz)\vec{e}_x - E_0 \sin(\omega t - kz)\vec{e}_y$$
 (5)

2.1.7 Conclusion

Le schéma de la figure ci-dessous présente l'ensemble des situations de polarisations possibles.

La polarisation linéaire : $\varphi = 0$ ou $\varphi = \pi$

La polarisation elliptique : $0 < \varphi < \frac{\pi}{2}$ ou $\pi < \varphi < \frac{3\pi}{2}$

La polarisation circulaire : $\varphi = \frac{\pi}{2}$ ou $\varphi = \frac{3\pi}{2}$

2.2. Biréfringence

2.2.1. Définition de la biréfringence

La biréfringence est une propriété de certains cristaux transparents anisotropes qui ont la propriété de décomposer la lumière en deux rayons de polarisation croisée. Cette double réfraction est due au fait qu'il existe dans le cristal une direction particulière (axe de biréfringence) où l'indice n_e dit indice extraordinaire est différent de l'indice dans les directions perpendiculaires n_o dit indice ordinaire. Le rayon extraordinaire est polarisé dans le plan contenant l'axe de biréfringence et le rayon ordinaire perpendiculairement à l'axe. Remarque : n_e et n_0 dépendent de la longueur d'onde λ de la lumière

2.2.2. Lames polarisantes

Ce sont des lames minces à faces parallèles taillées dans un cristal biréfringent de manière que l'axe de biréfringence soit parallèle aux faces. Ces lames sont utilisées en incidence normale, ainsi les deux rayons ordinaire et extraordinaire sont confondus (ils ne sont pas déviés). les deux rayons ne voient pas le même indice donc ils ne se déplacent pas à la même vitesse, l'un va à $\frac{c}{n_o}$, l'autre à $\frac{c}{n_e}$, ce qui fait qu'ils se retrouvent déphasés à la sortie.

Si l'épaisseur de la lame est L, le retard de l'un sur l'autre est $\Delta t = \frac{L}{c} (n_0 - n_e)$ le déphasage est donc $\varphi = \frac{2\pi L}{\lambda} (n_0 - n_e)$ (6)

2.3. Production de lumière polarisée

2.3.1. Production de lumière polarisée rectilignement

a - Polarisation par réflexion

Si un miroir (M) d'indice n reçoit un faisceau de lumière naturelle sous une incidence i_B (dite de Brewster) telle que $tgi_B = n$, la lumière réfléchie est polarisée rectilignement et son vecteur champ électrique est perpendiculaire au plan d'incidence.

b - Polarisation par transmission

Les polariseurs par transmission sont des systèmes optiques qui permettent de sélectionner dans la lumière naturelle de la lumière polarisée rectilignement. Ils sont donc caractérisés par une direction privilégiée du vecteur de polarisation \vec{E} .

Ils se présentent sous la forme de lames à faces parallèles et utilisent :

- soit la propriété de biréfringence
- soit la propriété de dichroïsme de certains cristaux.

Nous considérerons toujours des faisceaux lumineux perpendiculaires aux faces des polariseurs.

2.3.2. Production de lumière elliptique ou circulaire

Pour produire de la lumière elliptique, nous utiliserons des lames biréfringentes. Une lame biréfringente est une lame à faces parallèles taillée dans un milieu n'ayant pas les mêmes propriétés optiques selon toutes les directions et caractérisée par deux axes orthogonaux OX et OY parallèles aux faces de la lame. Nous utiliserons toujours des faisceaux lumineux perpendiculaires aux faces de la lame ; le plan d'onde du faisceau lumineux sera confondu avec les faces de la lame. Soit $\vec{E} = \overrightarrow{E_0} \cos \omega t$ le champ électrique d'une onde : il est parallèle au plan XOY et fait un angle α avec l'axe.

Décomposons \vec{E} suivant OX et OY:

$$X = E \cos \alpha = E_0 \cos \omega t \cos \alpha$$

$$Y = E \sin \alpha = E_0 \cos \omega t \sin \alpha$$
(7)

La propriété de biréfringence se traduit par le fait que les composantes X et Y de \vec{E} se propagent à des vitesses différentes dans la lame.

Soit V_x la vitesse suivant OX et V_y la vitesse suivant OY. La vibration X voit un indice $n_x = c/V_x$ et la vibration Y un indice $n_y = c/V_y$.

A la sortie de la lame, les deux composantes présentent un déphasage φ . Elles s'écrivent par

exemple
$$X_1 = Eo \cos \alpha \cos \omega t$$

$$Y_1 = Eo \sin \alpha \cos(\omega t - \varphi)$$
(8)

C'est l'équation d'une ellipse quelconque.

Dans ce cas, Y_1 présente un retard de phase par rapport à X_1 . La composante Y de \vec{E} se propage plus lentement que la composante X. Par conséquent, l'axe OX est appelé l'axe rapide et OY axe lent

En conclusion, si φ est quelconque, la vibration rectiligne est transformée en vibration elliptique par la lame biréfringente.

2.3.3. Cas particulier important de lames

- $\varphi = 2k\pi$: lame onde, le champ \vec{E} ressort inchangé de la lame
- $\varphi = (2k+1)\pi$: lame demi-onde
- La vibration \vec{E} émergente est symétrique de l'onde incidente par rapport aux lignes neutres de la lame.
- Une lame biréfringente particulière pour laquelle le déphasage est $\varphi = \pi/2$ est appelée lame quart d'onde. La différence de marche entre les deux composantes X et Y de \vec{E} vaut un quart de longueur d'onde.
- De même, une lame demi onde crée un déphasage $\varphi = \pi$ et une différence de marche $\delta = \lambda/2$.

2.4. Interférences en lumière polarisée

A la sortie des lames biréfringentes, l'intensité de la lumière est uniforme comme on peut aisément s'en persuader en considérant le module du champ électrique dont les composantes sont données par la relation (8). Pour faire apparaître sur l'intensité les effets d'interférence liée au déphasage, un analyseur, qui va "mélanger" les deux composantes du champ, doit être placé à la sortie de la lame.

2.4.1 Conditions d'observation

On observe les interférences entre les rayons ordinaire et extraordinaire. Pour qu'ils interfèrent, il faut :

- qu'ils se recouvrent dans certaines régions de l'espace, ce qui implique que la lame ne soit pas trop épaisse
- que leurs polarisations respectives ne soient pas orthogonales. C'est pourtant le cas des vibrations ordinaire et extraordinaire. Ainsi, il va falloir les "recombiner" sur un analyseur en sortie de lame.

Autrement dit, pour observer des interférences avec des lames biréfringentes, on se placera donc toujours entre polariseur et analyseur.