Diseño factorial

En la provincia de Corrientes se desea efectuar un ensayo en plantaciones de *Pinus taeda* para comparar el efecto de distintas dosis de fertilización con superfosfato triple (SFT) sobre el crecimiento:

- I. Sin fertilización
- II. 100 g/planta de SFT
- III. 200 g/planta de SFT

Además interesa estudiar la eficacia sobre dos métodos de tratamiento del suelo:

- Pasada doble de rastra hasta los 20 cm de profundidad (método tradicional)
- Subsolado hasta los 50 cm de profundidad más dos pasadas de rastra

¿Cómo diseñar el experimento?

Opción 1:

Efectuar un ensayo para comparar dosis de fertilización con SFT y **otro ensayo** para comparar métodos de tratamiento del suelo: 2 anovas de un factor (un efecto a la vez)

Opción 2:

Efectuar un único ensayo en el que se comparan las dosis de fertilización con SFT para todos los métodos de tratamiento del suelo: 1 anova de dos factores (diseño factorial)

Tratamientos:

¿Por qué no varios experimentos unifactoriales?

- Eficiencia en el uso de los recursos: cada observación proporciona información sobre todos los factores y es posible ver las respuestas de un factor en los diferentes niveles del otro factor
- Evaluación de la interacción entre factores: el efecto de un determinado nivel de un factor puede ser diferente para cada nivel del otro factor. Es decir que los efectos de ambos factores no son aditivos: cuando se dan juntos, su efecto no es la suma de los efectos que tienen cuando están por separado, por lo que, si en un determinado estudio se encuentra interacción entre dos factores, no tiene sentido estimar los efectos de los factores por separado.

¿Qué cambia si hay interacción?

No interacción

Los efectos principales de un factor tienen sentido ya que las diferencias son constantes para todos los niveles del otro factor

Interacción

 Los efectos principales pueden carecer de sentido

Efectos principales y simples

- **Efectos principales** de un factor son las comparaciones entre los niveles de un factor promediados para todos los niveles del otro factor. Tienen sentido cuando no hay interacción
- □ **Efectos simples** de un factor son las comparaciones entre niveles de una factor a un solo nivel del otro. Deben aplicarse cuando hay interacción

No hay Interacción: Los efectos son aditivos

Interacción Significativa:

El efecto del tratamiento del suelo depende de la dosis de fertilizante utilizada (y viceversa)

Hay Interacción: Los efectos no son aditivos

Ventajas y desventajas del diseño factorial

Ventajas

- Es más eficiente que probar un factor por vez
- Las conclusiones son más generales
- Permite estudiar interacción

Desventajas

- El análisis es más complejo
- Puede ser dificultosa la interpretación, sobre todo cuando las interacciones son significativas

El modelo estadístico de ANOVA de 2 factores:

- Donde :
- μ es la media general
- \square α_i es el efecto fila : $\alpha_i = \mu_{i} \mu_{i}$
- □ β_j es el efecto columna: β_j = μ_{.j} μ
- \square $\alpha\beta_{ij}$ es el efecto de la interacción (fila x columna):

$$E(y_{ijk}) = \mu_{ij} = \mu + \alpha_i + \beta_j + \alpha \beta_{ij}$$

$$\alpha \beta_{ij} = \mu_{ij} - \mu - \alpha_i - \beta_j$$

 \square ϵ_{ijk} es el residuo o error aleatorio (dentro)

Hipótesis en ANOVA 2 factores:

Prueba del efecto principal fila (A)

Ho:
$$\alpha_i = 0 \quad \forall i = 1,..., a \quad vs \quad Ha: \exists i / \alpha_i A \neq 0$$

Ho:
$$\mu_{i.} = \mu \quad \forall i = 1,...., a \quad vs \quad Ha: \exists i / \mu_{i.} \neq \mu$$

Prueba del efecto principal columna (B)

Ho:
$$\beta_i = 0 \quad \forall j = 1,...., b \text{ vs} \quad \text{Ha: } \exists j / \beta_i \neq 0$$

Ho:
$$\mu_{.j} = \mu \ \forall \ j = 1,...., b \ vs \ Ha: \exists \ j / \mu_{.j} \neq \mu$$

Prueba de interacción

Ho:
$$\alpha\beta_{ii} = 0 \quad \forall ij$$
, vs Ha: $\exists ij / \alpha\beta_{ij} \neq 0$

Ho:
$$\mu_{ij} = \mu + \alpha_i + \beta_j \quad \forall \ ij \ , \ vs \ Ha: \ \exists \ ij \ / \ \mu_{ij} \neq \mu + \alpha_i + \beta_j \ _{_{11}}$$

Tabla de ANOVA de 2 factores

Fuente de Variación	SC	GL	СМ	F
Entre Celdas	$n_{ij}\sum_{i}\sum_{j}(\overline{y}_{ij}\overline{y})^{2}$	(ab) -1	SC cel	<u>CMe</u>
	i j	(5.5)	GL cel	CMd
Entre Filas (A)	$bn_{ij}\sum_{i}(\bar{y}_{i}\bar{y})^{2}$	a-1	SC filas	<u>CMf</u>
			GL filas	CMd
Entre Columnas (B)	$an_{ij}\sum_{j}(\bar{y}{j}\bar{y})^{2}$	b-1	SC col	<u>CMc</u>
			GL col	CMd
Interacción (AvR)		(a 1)v(b 1)	SC inter	<u>CMi</u>
Interacción (AxB)	SC_{celdas} - SC_{fila} - SC_{col}	(a-1)x(b-1)	GL inter	CMd
Dentro (error)	Sc _{total} -SC _{celdas}	(ni-1)ab	SC dentro	
		= n-ab	GL dentro	
Total	$\sum_{ijk} (y_{ijk} - \overline{y})^2$	n-1		

Regla de decisión ANOVA de 2 factores

Regla de decisión

Prueba del efecto principal fila (A)
$$H_{0A}: \alpha_{iA} = 0 \ \forall \ i=1,...., \ a$$

$$H_{aA}: \exists \ i \ / \ \alpha_{iA} \neq 0$$
 Si
$$F = \frac{CM_{e.filas}}{CM_{dentro}} \ > \ \ \boldsymbol{F}_{GL_{e.filas},GL_{dentro},1-\alpha} \ \text{se rechaza} \ \ H_{o} \ \ \text{con} \ \alpha$$

```
\begin{aligned} & \text{Prueba del efecto principal columna (B)} \\ H_{0B}:\beta_{jB} = 0 & \forall \ j = 1,....,\ b \\ H_{aB}:\exists \ j \ / \ \beta_{jB} \neq 0 \\ \text{Si} & \ F = \frac{CM_{\text{e.columnas}}}{CM_{\text{dentro}}} > \quad \begin{matrix} \textbf{F} \\ \textbf{GL}_{\text{e.columnas}}, \textbf{GL}_{\text{dentro},1-\alpha} \textbf{se rechaza} \end{matrix} \quad H_{0} \ \ \text{con} \ \ \alpha \end{aligned}
```

OJO: recordar que en este caso debo evaluar primero la prueba de interacción antes de evaluas los efectos fila y columna