第三章 微分中值定理与导数的应用 第一节 微分中值定理

一、罗尔(Rolle)定理

费马引理 设函数 y = f(x) 在点 x_0 的某领域 $U(x_0)$ 内函数值满足: $f(x) \ge f(x_0)$ 或 $f(x) \le f(x_0)$,且 $f'(x_0)$ 存在,则 $f'(x_0) = 0$,即函数在局部范围内的最大、最小值点处的导数存在则必为 0.

证 设 $\forall x \in U(x_0)$, $f(x) \leq f(x_0)$, 则

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \begin{cases} f'_-(x_0) \ge 0, x \to x_0^- \\ f'_+(x_0) \le 0, x \to x_0^+ \end{cases}, \quad \text{if } f'(x_0) = 0.$$

罗尔定理 设函数 y = f(x) (1) 在 [a,b] 上连续; (2) 在 (a,b) 内可导; (3) f(a) = f(b) ,则 在 (a,b) 内至少存在一点 ξ ,使得 $f'(\xi) = 0$ 。

证 因函数 y = f(x) 在 [a,b] 上连续,故在该区间上可取最大值 M 和最小值 m 。

若M=m,则在在[a,b]上,f(x)=M,此时,任取 $\xi \in (a,b)$,有 $f'(\xi)=0$;

若 M>m,则由于 f(a)=f(b),故 M 和 m 中至少有一个不等于端点值 f(a)、 f(b);设 $M\neq f(a)$, f(b),则在 (a,b) 内至少存在一点 ξ (最大值点),使得 $M=f(\xi)$,显然 ξ 是一个局部最大值点且 $f'(\xi)$ 存在, 由费马定理, $f'(\xi)=0$;

几何意义 一条不间断的曲线弧 $y = f(x), x \in [a,b]$ 两端等高,且除端点外每点都有切线,则在弧上至少有一点 $(\xi, f(\xi))$ 处的切线水平。

罗尔定理的应用:证明在某区间内至少存在一点满足一个函数等式。

方法: 将函数等式移项或变形移项使得等号一端为 0 一段不为 0 ,在不为 0 的部分中将字母 ξ 或 c 换为 x 后得到的函数如果是某函数 $\varphi(x)$ 的导函数,则对辅助函数 $\varphi(x)$ (相当于定理中的 f(x))验证罗尔定理条件,满足条件即可用罗尔定理证明。

例 设 y = f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(0) = 1, f(1) = 0,证明在 (0,1) 内至少存在一点 ξ ,使得 $f'(\xi) = -\frac{f(\xi)}{\xi}$ 。

分析: 即证在 (0,1) 内至少存在一点 ξ ,使得 $\xi f'(\xi) + f(\xi) = 0$,等式左端不为零的部分 ξ 换为 x 得到的函数 xf'(x) + f(x) = [xf(x)]'。

证 构造辅助函数 $\varphi(x) = xf(x)$,则由于 $\varphi(x)$ 在 [0,1] 上满足罗尔定理条件,故在 (0,1) 内至 少存在一点 ξ ,使得 $\varphi'(\xi) = 0$,结论得证。

例 设方程 $a_0x^n + a_1x^{n-1} + \cdots + a_{n-1}x = 0$ 有一个正根 x_0 , 证明方程

$$a_0 n x^{n-1} + a_1 (n-1) x^{n-2} + \dots + a_{n-1} = 0$$
 必有一个小于 x_0 的正根。

分析:即证在 $(0,x_0)$ 内存在一点 ξ ,使得 $a_0n\xi^{n-1}+a_1(n-1)\xi^{n-2}+\cdots+a_{n-1}=0$,等式左端不为零的部分 ξ 换为x得到的函数

$$a_0 n x^{n-1} + a_1 (n-1) x^{n-2} + \dots + a_{n-1} = (a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x)'$$

证 构造辅助函数 $\varphi(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x$,则由于 $\varphi(x)$ 在 $[0, x_0]$ 上满足罗尔定理条件,故在 $(0, x_0)$ 内至少存在一点 ξ ,使得 $\varphi'(\xi) = 0$,结论得证。

拉格朗日(lagrange)中值定理

设函数 y = f(x) (1) 在 [a,b] 上连续; (2) 在 (a,b) 内可导,则在 (a,b) 内至少存在一点 ξ ,使得 $f'(\xi) = \frac{f(b) - f(a)}{b - a}$ (称为拉格朗日中值公式)。

分析: 即证在(a,b)内至少存在一点 ξ , 使得 $f'(\xi) - \frac{f(b) - f(a)}{b - a} = 0$, 等式左端不为零的 f(b) - f(a)

部分
$$\xi$$
 换为 x 得到的函数 $f'(x) - \frac{f(b) - f(a)}{b - a} = [f(x) - \frac{f(b) - f(a)}{b - a}x]'$ 。

证 构造辅助函数 $\varphi(x) = f(x) - \frac{f(b) - f(a)}{b - a}x$,则由于 $\varphi(x)$ 在 [a,b] 上连续,在 (a,b) 内

可导,且
$$\varphi(a) = \frac{bf(a) - af(b)}{b - a} = \varphi(b)$$
,由罗尔定理结论得证。

几何意义 一条不间断的曲线弧 $y = f(x), x \in [a,b]$ 除端点外每点都有切线,则在弧上至少有一点 $(\xi, f(\xi))$ 处的切线平行于端点连线。

拉格朗日中值定理的应用:证明在某区间内至少存在一点满足一个函数等式或不等式。

方法: 将函数等式或不等式变形出现 $\frac{\varphi(b)-\varphi(a)}{b-a}$, 则对辅助函数 $\varphi(x)$ (相当于定理中的 f(x)) 在区间 [a,b] 或 [b,a] 上验证拉格朗日定理条件,满足定理条件即可用该定理证明。

例 证明 $\arcsin x = \frac{x}{\sqrt{1-\xi^2}}, 0 < \xi < x \le 1$ 。

分析: 即证在
$$(0,x)$$
内存在一点 ξ , $\arcsin x = \frac{x}{\sqrt{1-\xi^2}}$, 亦即 $\frac{\arcsin x - \arcsin 0}{x-0} = \frac{1}{\sqrt{1-\xi^2}}$ 。

证 构造函数 $\varphi(x)=\arcsin x$,则由于 $\varphi(x)$ 在 [0,x] 上满足拉格朗日中值定理条件,故在 (0,x) 内至少存在一点 ξ , 使得 $\varphi'(\xi)=\frac{\varphi(x)-\varphi(0)}{x-0}$, 结论得证。

例 证明 当 x > 0 时, $\frac{x}{1+x} < \ln(1+x) < x$ 。

分析: 即证当x > 0时, $\frac{1}{1+x} < \frac{\ln(1+x)}{x} < 1$,亦即 $\frac{1}{1+x} < \frac{\ln(1+x) - \ln(1+0)}{x-0} < 1$ 。

证 构造函数 $\varphi(t) = \ln(1+t)$,则由于 $\varphi(t)$ 在 [0,x] 上满足拉格朗日中值定理条件,故在 (0,x)

内至少存在一点
$$\xi$$
,使得 $\varphi'(\xi) = \frac{\varphi(x) - \varphi(0)}{x - 0}$,从而 $\frac{1}{1 + x} < \frac{1}{1 + \xi} = \frac{\ln(1 + x)}{x} < 1$,结论得证。

推论 1 若函数 f(x) 在区间 I 上的导数恒为 0,则 f(x) 在区间 I 上是一个常数。

证 在区间I上任取两点 $x_1, x_2(x_1 < x_2)$,则在 $[x_1, x_2] \subset I$ 上运用拉格朗日中值定理得,

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1) = 0, x_1 < \xi < x_2$$
, 由点 x_1, x_2 的任意性, 结论成立。

推论 2 若 f(x), g(x) 在区间 I 上的导数处处相等,则 f(x)-g(x) 在区间 I 上是一个常数。

例 证明
$$\arcsin x + \arccos x = \frac{\pi}{2}, x \in [-1,1]$$
。

证 当
$$x \in (-1,1)$$
 时, $(\arcsin x + \arccos x)' = \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2}} = 0$, 由推论 1,

当 $x = \pm 1$ 时, $\arcsin x + \arccos x = \frac{\pi}{2}$ 。 结论得证。

注 同理可证 $\arctan x + arc \cot x = \frac{\pi}{2}, x \in (-\infty, +\infty)$.

柯西(Cauchy)中值定理

设函数 f(x) 及 F(x) (1) 在 [a,b] 上连续; (2) 在 (a,b) 内可导; (3) 在 (a,b) 内, $F'(x) \neq 0$,

则在
$$(a,b)$$
内至少存在一点 ξ ,使得 $\frac{f(b)-f(a)}{F(b)-F(a)}=\frac{f'(\xi)}{F'(\xi)}$ 。

分析: 即证在(a,b)内至少存在一点 ξ , 使得 $\frac{f(b)-f(a)}{F(b)-F(a)}F'(\xi)-f'(\xi)=0$, 等式左端不

为零的部分
$$\xi$$
 换为 x 得到的函数 $\frac{f(b)-f(a)}{F(b)-F(a)}F'(x)-f'(x)=[\frac{f(b)-f(a)}{F(b)-F(a)}F(x)-f(x)]'$ 。

证 构造辅助函数 $\varphi(x) = \frac{f(b) - f(a)}{F(b) - F(a)} F(x) - f(x)$,则由于 $\varphi(x)$ 在 [a,b] 上连续,在 (a,b)

内可导,且
$$\varphi(a) = \frac{F(a)f(b) - F(b)f(a)}{F(b) - F(a)} = \varphi(b)$$
,由罗尔定理,在 (a,b) 内至少存在一点 ξ ,

使得 $\varphi'(\xi) = 0$,结论得证。

注 柯西中值定理 $\xrightarrow{F(x)=x}$ 拉格朗日中值定理 $\xrightarrow{f(a)=f(b)}$ 罗尔定理;

柯西中值定理 $\xrightarrow{F(x)=x,f(a)=f(b)}$ 罗尔定理。前二者都是构造辅助函数用罗尔定理证明。

柯西中值定理的应用:证明在某区间内至少存在一点满足一个函数等式。

方法: 将函数等式移项或变形移项出现 $\frac{f(b)-f(a)}{F(b)-F(a)} = \frac{f'(\xi)}{F'(\xi)}$,则对辅助函数 f(x),F(x) 验证柯西中值定理条件,满足即可用该定理证明。

例 设函数 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,证明在 (0,1) 内至少存在一点 ξ ,使得 $f'(\xi) = 2\xi(f(1) - f(0))$ 。

分析: 即证在(0,1)内至少存在一点 ξ , 使得 $f(1)-f(0)=\frac{f'(\xi)}{2\xi}$, 亦即证

$$\frac{f(1) - f(0)}{1^2 - 0^2} = \frac{f'(x)\Big|_{x=\xi}}{(x^2)'\Big|_{x=\xi}} \circ$$

证 构造辅助函数 $F(x) = x^2$,则由于 f(x),F(x) 在 [0,1] 上满足柯西中值定理条件,故在

$$(0,1)$$
 内至少存在一点 ξ ,使得 $\frac{f'(\xi)}{F'(\xi)} = \frac{f(1) - f(0)}{F(1) - F(0)}$,结论得证。

注 能用柯西中值定理证明的也能用罗尔定理证明,因为柯西定理是由罗尔定理推出来的。 上题中,构造辅助函数 $\varphi(x) = f(x) - x^2 (f(1) - f(0))$ 在区间 [0,1] 上由罗尔定理一样可证。 练习

1. 函数 $y = x^4$ 在区间 [1,2] 上满足拉格朗日中值定理条件,则中值 $\xi = _{----} (\sqrt[3]{\frac{15}{4}})$; 函数 $y = \ln \sin x$ 在区间 $[\frac{\pi}{6}, \frac{5\pi}{6}]$ 上满足罗尔定理条件,则中值 $\xi = _{----} (\frac{\pi}{2})$

- 2. 设函数 f(x) 在 $[0,\pi]$ 上连续,在 $(0,\pi)$ 内可导,证明至少存在一点 $\xi \in (0,\pi)$,使得 $f'(\xi) = -f(\xi)\cot\xi \text{ . (即证 } \sin\xi \cdot f'(\xi) + \cos\xi \cdot f(\xi) = 0 \text{ . (即证 } \sin x \cdot f'(x) + \cos x \cdot f(x) = [\sin x \cdot f(x)]'$ 知构造辅助函数 $\varphi(x) = \sin x f(x)$)
- 3. 设函数 f(x) 在 $[x_1, x_2]$ 上可导, $f(x_1) = f(x_2) = 0$,证明至少存在一点 $\xi \in (x_1, x_2)$,使得 $f'(\xi) + f(\xi) = 0$ 。 (即证 $e^{\xi} f'(\xi) + e^{\xi} f(\xi) = 0$,由 $e^x f'(x) + e^x f(x) = [e^x f(x)]'$ 知构 造辅助函数 $\varphi(x) = e^x f(x)$)
- 4. 设函数 f(x) 在[0,1]上连续,在(0,1) 内可导,且 f(1)=0,证明至少存在一点 $\xi \in (0,1)$,使得 $\xi f'(\xi) + nf(\xi) = 0$ 。(即证 $\xi^n f'(\xi) + n\xi^{n-1} f(\xi) = 0$,由 $x^n f'(x) + nx^{n-1} f(x) = [x^n f(x)]'$ 知构造辅助函数 $\varphi(x) = x^n f(x)$)
- 5. 设函数 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,且 f(a) = f(b) = 0, $f(x) \neq 0$, $x \in (a,b)$,证 明 对 任 意 实 数 k , 至 少 存 在 一 点 $\xi \in (a,b)$, 使 得 $f'(\xi) = -kf(\xi)$ 。 (即 证 $f'(\xi) + kf(\xi) = 0$,也即证 $e^{k\xi} f'(\xi) + ke^{k\xi} f(\xi) = 0$,由 $e^{kx} f'(x) + ke^{kx} f(x) = [e^{kx} f(x)]'$ 知构造辅助函数 $\varphi(x) = e^{kx} f(x)$))
- 6. 证明: 当0 < a < b时, $\frac{b-a}{b} < \ln \frac{b}{a} < \frac{b-a}{a}$ 。 $(\varphi(x) = \ln x, x \in [a,b])$
- 7. 设函数 f(x) 在 [a,b] 上可导,证明至少存在一点 $\xi \in (a,b)$,使得 $\xi f'(\xi) + f(\xi) = \frac{bf(b) af(a)}{b a} \circ (\varphi(x) = xf(x), x \in [a,b])$
- 8. 设 a,b>0 ,证明至少存在一点 $\xi\in(a,b)$,使得 $ae^b-be^a=(1-\xi)e^\xi(a-b)$ 。

(即证
$$\frac{1}{b}e^{b} - \frac{1}{a}e^{a} = (1 - \xi)e^{\xi}(\frac{1}{b} - \frac{1}{a})$$
,亦即证 $\frac{1}{b}e^{\frac{1}{b}} - \frac{1}{a}e^{\frac{1}{a}} = (1 - \xi)e^{\frac{1}{\xi}}(\frac{1}{b} - \frac{1}{a})$,
$$\varphi(x) = xe^{\frac{1}{x}}, x \in [\frac{1}{b}, \frac{1}{a}])$$

9.
$$\forall 0 < x < \frac{\pi}{2}$$
 , 证明 $x < \tan x < \frac{x}{\cos^2 x}$ 。 (即证 $1 < \frac{\tan x}{x} < \frac{1}{\cos^2 x}$,亦即证 $1 < \frac{\tan x - \tan 0}{x - 0} = (\tan x)' \Big|_{x = \xi} < \frac{1}{\cos^2 x}$, $0 < \xi < x$, $\varphi(x) = \tan x, x \in [0, x]$)

第二节 洛比达法则

洛必达法则 设 $\lim \frac{f(x)}{F(x)} = \frac{0}{0}$ 或 $\frac{\infty}{\infty}$ (即在 x 的同种趋向下分子分母的极限都是 0 或都是无穷

$$\infty$$
),且 $\lim \frac{f'(x)}{F'(x)}$ 是确定常数或为无穷 ∞ ,则 $\lim \frac{f(x)}{F(x)} = \lim \frac{f'(x)}{F'(x)}$ 。

$$\lim_{x \to +\infty} \frac{x^n}{e^{\lambda x}} = \lim_{x \to +\infty} \frac{nx^{n-1}}{\lambda e^{\lambda x}} = \lim_{x \to +\infty} \frac{n(n-1)x^{n-2}}{\lambda^2 e^{\lambda x}} = \dots = \lim_{x \to +\infty} \frac{n!}{\lambda^n e^{\lambda x}} = 0.$$

例
$$\lim_{x\to+\infty} \frac{e^x}{x^2} = \lim_{\frac{\infty}{x}\to+\infty} \frac{e^x}{2x} = \lim_{\frac{\infty}{x}\to+\infty} \frac{e^x}{2} = +\infty$$
.

例
$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^3 - x^2 - x + 1} = \lim_{x \to 1} \frac{3x^2 - 3}{3x^2 - 2x - 1} = \lim_{x \to 1} \frac{6x}{6x - 2} = \frac{3}{2}$$
。

例 对
$$\mu > 0$$
, $\lim_{x \to +\infty} \frac{\ln x}{x^{\mu}} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{\mu x^{\mu-1}} = \lim_{x \to +\infty} \frac{1}{\mu x^{\mu}} = 0$ 。

错误做法
$$\lim_{x \to +\infty} \frac{\ln x}{x^{\mu}} = \lim_{x \to +\infty} \frac{\frac{1}{x}}{\mu x^{\mu-1}} = \lim_{x \to +\infty} \frac{1}{\mu x^{\mu}} = \lim_{x \to +\infty} \frac{0}{\mu^2 x^{\mu-1}} = \lim_{x \to +\infty} 0 = 0$$

注 2) 洛必达法则是求 $\frac{0}{0}$ 或 $\frac{\infty}{\infty}$ 型未定式极限的一种方法,具体求极限时,应尽可能与其他方法结合使用,如等价无穷小替换,通分、根式有理化,代数化简等,可简化求导运算。

例
$$\lim_{x \to 0} \frac{\tan x - x}{x^2 \tan x} = \lim_{x \to 0} \frac{\tan x - x}{x^2 \cdot x} = \lim_{x \to 0} \frac{\sec^2 x - 1}{3x^2} = \lim_{x \to 0} \frac{\tan^2 x}{3x^2} = \lim_{x \to 0} \frac{x^2}{3x^2} = \frac{1}{3}$$

错误做法
$$\lim_{x\to 0} \frac{\tan x - x}{x^2 \tan x} = \lim_{x\to 0} \frac{x - x}{x^2 \cdot x} = \lim_{x\to 0} 0 = 0$$

例
$$\lim_{x \to \frac{\pi}{2}} \frac{\tan x}{\tan 3x} = \lim_{\infty \atop \infty} \frac{\sec^2 x}{3 \sec^2 3x} = \lim_{x \to \frac{\pi}{2}} \frac{\cos^2 3x}{3 \cos^2 x} = \frac{1}{3} (\lim_{x \to \frac{\pi}{2}} \frac{\cos 3x}{\cos x})^2$$

$$= \frac{1}{\frac{0}{0}} \left(\lim_{x \to \frac{\pi}{2}} \frac{-3\sin 3x}{-\sin x} \right)^2 = \frac{1}{3} \left(\frac{-3(-1)}{-1} \right)^2 = 3$$

错误做法
$$\lim_{x \to \frac{\pi}{2}} \frac{\tan x}{\tan 3x} = \lim_{\tan 3x \to 3} \frac{x}{x \to \frac{\pi}{2}} \frac{1}{3x} = \lim_{x \to \frac{\pi}{2}} \frac{1}{3} = \frac{1}{3}$$

 ≥ 3) 运用洛必达法则可求 $0\cdot\infty,\infty-\infty,0^0,1^\infty,\infty^0$ 型未定式极限,需转化为 $\frac{0}{0}$ 或 $\frac{\infty}{\infty}$ 型未定式极限再用洛必达法则求解。

例 对
$$\mu > 0$$
, $\lim_{x \to 0^+} x^{\mu} \ln x = \lim_{0 \to \infty} \frac{\ln x}{x^{-\mu}} = \lim_{\infty x \to 0^+} \frac{\frac{1}{x}}{-\mu x^{-\mu-1}} = \lim_{\kappa \to 0^+} \frac{x^{\mu}}{-\mu} = 0$

例
$$\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x) = \lim_{\substack{\infty \to \infty \\ \text{代数变形}}} \frac{1 - \sin x}{\cos x} = \lim_{\substack{0 \\ 0 \text{ } x \to \frac{\pi}{2}}} \frac{-\cos x}{-\sin x} = 0$$

例
$$\lim_{x\to 0^+} x^x = \lim_{\substack{0^0 \\ \text{代数变形}}} e^{x \ln x} = e^{\lim_{x\to 0^+} x \ln x} = e^0 = 1$$

例
$$\lim_{x \to 1} x^{\frac{1}{1-x}} = = \lim_{\substack{x \to 1 \\ \text{代数变形}}} e^{\frac{1}{1-x}\ln x} = e^{\frac{\ln x}{\lim_{l \to x}}} = e^{\frac{1}{\lim_{x \to l}}} = e^{-l}$$

例
$$\lim_{x \to 0^+} \cot x^{\frac{1}{\ln x}} = \lim_{\substack{\infty^0 \\ \text{代数变形}}} e^{\frac{1}{\ln x} \ln \cot x} = e^{\frac{1}{\ln x} \frac{\ln \cot x}{\ln x}} = e^{\frac{1}{\frac{\ln \cot x}{\ln x}}} = e^{\frac{1}{\frac{1}{\cot x} \frac{1}{\sin^2 x}}} = e^{\frac{1}{\frac{1}{\cot x} \frac{1}{\sin^2 x}}} = e^{\frac{1}{\ln x} \frac{-x}{\cos x \sin x}} = e^{-1}$$

注 4) 当 $\lim \frac{f'(x)}{F'(x)}$ 不是确定常数或 ∞ 时,不能断言 $\lim \frac{f(x)}{F(x)}$ 不存在,需用其他求极限方

法求
$$\lim_{x\to\infty} \frac{f(x)}{F(x)}$$
 。 例如,对 $f(x) = x + \cos x$, $F(x) = x$, 极限 $\lim_{x\to\infty} \frac{f'(x)}{F'(x)} = \lim_{x\to\infty} \frac{1-\sin x}{1}$ 不是确

定常数或
$$\infty$$
, 不能说 $\lim \frac{f(x)}{F(x)}$ 不存在,因为 $\lim_{x\to\infty} \frac{f(x)}{F(x)} = \lim_{x\to\infty} \frac{x+\cos x}{x} = \lim_{x\to\infty} (1+\frac{1}{x}\cos x) = 1$ 存在。

再比如,对
$$f(x) = x^2 \sin \frac{1}{x}$$
, $F(x) = \sin x$,极限 $\lim_{x \to 0} \frac{f'(x)}{F'(x)} = \lim_{x \to 0} \frac{2x \cdot \sin \frac{1}{x} + x^2 \cdot \cos \frac{1}{x} \cdot (-\frac{1}{x^2})}{\cos x}$

$$= \lim_{x \to 0} \frac{2x \cdot \sin \frac{1}{x} - \cos \frac{1}{x}}{\cos x}$$
 不是确定常数或 ∞ , 不能说 $\lim \frac{f(x)}{F(x)}$ 不存在,因为

$$\lim_{x \to 0} \frac{f(x)}{F(x)} = \lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x} = \lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{x} = \lim_{x \to 0} x \sin \frac{1}{x} = 0 \ \text{存在}.$$

第三节 泰勒公式

泰勒公式解决了一个函数 f(x) 在什么条件下可以用一个n次多项式来近似,并且给出了误差。

泰勒中值定理 1 如果函数 f(x) 在点 x_0 具有 n 阶导数时,则有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x), x \in U(x_0),$$
 (1)

其中 $R_n(x) = o((x-x_0)^n)$ 称为<u>皮亚诺(Peano)余项</u>,公式(1)称为f(x) 在点 x_0 的带皮亚诺余项的n阶

泰勒公式,记 $P_n(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$,称为 f(x) 在点 x_0 的 n 阶泰勒多项式。证明略

定理 1 中的误差 $R_n(x) = o((x-x_0)^n)$ 是 $(x-x_0)^n$ 的高阶无穷小,不知道具体表达式,无法计算误差范围。下述定理给出了 $R_n(x)$ 的具体表达式,可用来计算误差范围。

泰勒中值定理 2 如果函数 f(x) 在点 x_0 的某个领域 $U(x_0)$ 内具有 n+1 阶导数时,则有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + R_n(x), x \in U(x_0),$$
 (2)

其中 $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$ 称为<u>拉格朗日 (Lagrange) 余项</u>, 这里 ξ 介于 x 和 x_0 之间,可表示为

 $\xi = x_0 + \theta(x - x_0), 0 < \theta < 1$ 。公式(2)称为f(x)在点 x_0 的带拉格朗日余项的n阶泰勒公式。证明略

注 1) 当n = 0时,公式(2)即拉格朗日中值公式;

2)在公式(2)中,由于出现了 $f^{(n+1)}(\xi)$, ξ 介于 x_0 与x之间,故要求函数f(x)在点 x_0 的某个领域 $U(x_0)$

内具有n+1阶导数;在公式(1)中,由于只出现了 $f^{(n)}(x_0)$,故只要求函数f(x)在点 x_0 具有n阶导数。

3)当 $\left|f^{(n+1)}(x)\right|$ ≤ 某正数 M, $x \in U(x_0)$ 时,可得 $\left|R_n(x)\right|$ ≤ $\frac{M}{(n+1)!}\left|x-x_0\right|^{n+1}$,已知 x_0 ,n 的值可求 出误差范围。

特别地,当 $x_0 = 0$ 时公式(1)和(2)称为**麦克劳林公式**,于是得到

f(x) 的带皮亚诺余项的n 阶麦克劳林公式为

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^n + \dots + \frac{f^{(n)}(0)}{n!}x^n + o(x^n), x \in U(0),$$
(3)

f(x) 的带拉格朗日余项的n 阶麦克劳林公式为

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}x^{n+1}, x \in U(0),$$
(4)

这里 ξ 介于x和0之间,也可表示为 $\xi = \theta x$, $0 < \theta < 1$ 。

例 1 求 $f(x) = e^x$ 的 n 阶麦克劳林公式,并估算用 10 次多项式近似 e^x 时的误差。

解
$$f^{(n)}(x) = e^x$$
, $f^{(n)}(0) = 1$, $n = 0,1,2,\dots$, 得 $f(x) = e^x$ 的 n 阶麦克劳林公式为

$$e^{x} = f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^{2} + \dots + \frac{f^{(n)}(0)}{n!}x^{n} + \begin{cases} \frac{o(x^{n})}{(n+1)!} & o(x^{n}) \\ \frac{f^{(n+1)}(\theta x)}{(n+1)!} & o(x^{n}) \end{cases}$$

$$=1+x+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!}+\left\{\frac{o(x^n)}{\frac{e^{\theta x}}{(n+1)!}}x^{n+1},0<\theta<1\right\},\quad \dot{\boxtimes} \pm \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1}=\frac{e^{\theta x}}{(n+1)!}x^{n+1},0<\theta<1.$$

用 10 次多项式近似
$$e^x$$
 时, $e^x \approx 1 + x + \frac{x^2}{2!} + \dots + \frac{x^{10}}{10!}$, 误差 $\left| \frac{e^{\theta x}}{11!} x^{11} \right| \leq \frac{e^{\theta |x|}}{11!} |x|^{11} \leq \frac{e^{|x|}}{11!} |x|^{11}$.

当
$$x = 1$$
 时, $e \approx 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{10!}$, 误差 $|R_{10}(1)| \le \frac{e}{11!} < \frac{3}{11!} < 10^{-6}$

例 2 求 $f(x) = \sin x$ 的 2m 阶麦克劳林公式,并估算用 3 次多项式近似 $\sin x$ 时的误差

$$\widetilde{H} f^{(n)}(x) = \sin(x + \frac{n\pi}{2}), f^{(n)}(0) = \sin(\frac{n\pi}{2}), f^{(2m)}(0) = \sin(m\pi) = 0,$$

$$f^{(2m-1)}(0) = \sin(\frac{(2m-1)\pi}{2}) = \sin((m-1)\pi + \frac{\pi}{2}) = \cos((m-1)\pi) = (-1)^{m-1}, \quad m = 1, 2, 3, \dots$$

于是得 $\sin x$ 的n阶麦克劳林公式为

$$\sin x = f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \begin{cases} o(x^n) \\ \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1}, 0 < \theta < 1 \end{cases}$$

日余项
$$\frac{f^{(2m+1)}(\theta x)}{(2m+1)!} x^{2m+1} = \frac{\sin(\theta x + \frac{2m+1}{2}\pi)}{(2m+1)!} x^{2m+1} = \frac{(-1)^m \cos \theta x}{(2m+1)!} x^{2m+1}, 0 < \theta < 1$$
,这里

$$\sin(\theta x + \frac{2m+1}{2}\pi) = \cos(\theta x + m\pi) = (-1)^m \cos(\theta x)$$

用 3 次多项式近似
$$\sin x$$
 时, $\sin x \approx x - \frac{x^3}{3!}$, 误差 $|R_4(x)| = \frac{|\cos \theta x|}{5!} |x|^5 \le \frac{|x|^5}{5!}$,

当
$$x = 1$$
时, $\sin 1 \approx 1 - \frac{1}{3!}$,误差 $|R_4(1)| \le \frac{1}{5!} = \frac{1}{120} < 0.01$ 。

同理可得, $\cos x$ 的 2m+1 阶麦克劳林公式为

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^m x^{2m}}{(2m)!} + \begin{cases} o(x^{2m+1}) \\ \frac{(-1)^{m+1} \cos \theta x}{(2m+2)!} x^{2m+2}, 0 < \theta < 1 \end{cases}$$

事实上,设
$$f(x) = \cos x$$
,则 $f^{(n)}(x) = \cos(x + \frac{n\pi}{2})$, $f^{(n)}(0) = \cos(\frac{n\pi}{2})$,

 $f^{(2m-1)}(0) = 0$, $f^{(2m)}(0) = \cos(m\pi) = (-1)^m, m = 1, 2, 3, \cdots$,于是得 $\cos x$ 的 n 阶麦克劳林公式为

$$\cos x = f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \begin{cases} o(x^n) \\ \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1}, 0 < \theta < 1 \end{cases}$$

日余项
$$\frac{f^{(2m+2)}(\theta x)}{(2m+2)!} x^{2m+2} = \frac{\cos(\theta x + \frac{2m+2}{2}\pi)}{(2m+2)!} x^{2m+2} = \frac{(-1)^{m+1}\cos\theta x}{(2m+2)!} x^{2m+2}, 0 < \theta < 1$$
,这里

$$\cos(\theta x + \frac{2m+2}{2}\pi) = \cos(\theta x + (m+1)\pi) = (-1)^{m+1}\cos(\theta x)$$

例3 求 $f(x) = \ln(1+x)$ 的 n 阶麦克劳林公式。

于是得 $\ln(1+x)$ 的n阶麦克劳林公式为

$$\ln(1+x) = f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \begin{cases} o(x^n) \\ \frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1}, 0 < \theta < 1 \end{cases}$$

$$= x - \frac{x^2}{2} + \frac{x^2}{3} - \dots + \frac{(-1)^{n-1}x^n}{n} + \begin{cases} \frac{o(x^n)}{(n+1)(1+\theta x)^{n+1}}x^{n+1}, 0 < \theta < 1 \end{cases}$$

$$\frac{f^{(n+1)}(\theta x)}{(n+1)!}x^{n+1} = \frac{(-1)^n}{(n+1)(1+\theta x)^{n+1}}x^{n+1}, 0 < \theta < 1 \end{cases}$$

例 4 求 $f(x) = (1+x)^{\alpha}, x > -1$ (α 为实数)的 n 阶麦克劳林公式。

$$\mathbb{R}$$
 $f^{(n)}(x) = \alpha(\alpha - 1) \cdots (\alpha - n + 1)(1 + x)^{\alpha - n}, \quad f^{(n)}(0) = \alpha(\alpha - 1) \cdots (\alpha - n + 1), n = 1, 2, 3, \cdots,$

$$(1+x)^{\alpha} = f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \begin{cases} \frac{o(x^n)}{(n+1)!} \\ \frac{f^{(n+1)}(\theta x)}{(n+1)!} \\ \frac{f^{(n+1)}(\theta x)}{(n+1)!} \end{cases}$$

$$=1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2-\cdots+\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n+\left\{\frac{o(x^n)}{\alpha(\alpha-1)\cdots(\alpha-n)(1+\theta x)^{\alpha-n-1}},\frac{o(x^n)}{(n+1)!}\right\}$$

其中拉格朗日余项
$$\frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1} = \frac{\alpha (\alpha - 1) \cdots (\alpha - n) (1 + \theta x)^{\alpha - n - 1}}{(n+1)!} x^{n+1}, \quad 0 < \theta < 1$$
。

注 由于 $\lim_{x\to 0} [(1+x)^{\alpha}-1]=0$, $\lim_{x\to 0} \alpha x=0$, $\lim_{x\to 0} \frac{(1+x)^{\alpha}-1}{\alpha x}=1$ (将上面的麦克劳林公式代入极限 式子易得),所以 $x \to 0$ 时, $(1+x)^{\alpha} - 1 \sim \alpha x$ (α 为实数), 特别地, $x \to 0$ 时, $\sqrt[n]{1+x} - 1 \sim \frac{1}{x}x$ 。

小结: 1. f(x) 在点 x_0 的 n 阶泰勒公式:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \begin{cases} o((x - x_0)^n) \\ \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1}, \\ x \in U(x_0), & \xi = x_0 + \theta(x - x_0), 0 < \theta < 1 \end{cases}$$

2. f(x) 的 n 阶麦克劳林公式:

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \begin{cases} o(x^n) \\ \frac{f^{(n+1)}(\xi)}{(n+1)!}x^{n+1} \end{cases}, \quad x \in U(0), \quad \xi = \theta x, 0 < \theta < 1$$

3. 5个常见函数的麦克劳林公式(带皮亚诺余项)

(1)
$$\sin x$$
 的 $2m$ 阶麦克劳林公式 $\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \frac{(-1)^{m-1} x^{2m-1}}{(2m-1)!} + o(x^{2m})$

(2)
$$\cos x$$
 的 $2m+1$ 阶麦克劳林公式 $\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + \frac{(-1)^m x^{2m}}{(2m)!} + o(x^{2m+1})$ °

另外 3 个函数的 n 阶麦克劳林公式

(3)
$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + o(x^n),$$

(4)
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^2}{3} - \dots + \frac{(-1)^{n-1}x^n}{n} + o(x^n),$$

(5)
$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 - \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} x^n + o(x^n)$$
, (α 为实数)

上述 $o(x^n)$ 是 $x \to 0$ 时的 x^n 的高阶无穷小,所以 x 的范围都是 $x \in U(0)$ 。

一、单项选择题

1、函数 f(x) 的 n 阶泰勒公式中 $(x-x_0)^2$ 项的系数是(

A,
$$\frac{1}{2!}$$

$$\mathsf{B} \cdot \frac{f''(x_0)}{2!}$$

$$C, f''(x_0)$$

A,
$$\frac{1}{2!}$$
 B, $\frac{f''(x_0)}{2!}$ C, $f''(x_0)$ D, $\frac{1}{2!}f''(\xi)$

2、 e^x 的麦克劳林公式为(

A.
$$1+x+x^2+o(x^2)$$

B.
$$1 + x + x^2 + o(x^n)$$

C.
$$1+x+\frac{x^2}{2!}+o(x^2)$$
 D. $1+x+\frac{x^2}{2!}+o(x^n)$

D.
$$1+x+\frac{x^2}{2!}+o(x^n)$$

3、函数 $f(x) = \sin x^2$ 在 x = 0 点的麦克劳林公式为 (

A.
$$x - \frac{x^3}{3!} + \dots + \frac{(-1)^{n+1} x^{2n-1}}{(2n-1)!} + o(x^{2n-1})$$
B. $x + \frac{x^3}{3!} + \dots + \frac{x^{2n-1}}{(2n-1)!} + o(x^{2n-1})$

C,
$$x^2 - \frac{x^6}{3!} + \dots + \frac{(-1)^{n+1} x^{4n-2}}{(2n-1)!} + o(x^{4n-2})$$
 D, $x^2 + \frac{x^6}{3!} + \dots + \frac{x^{4n-2}}{(2n-1)!} + o(x^{4n-2})$

4、(填空)函数
$$f(x) = \sin x^2$$
 的麦克劳林公式中 x^6 的系数为_____。 $(-\frac{1}{6})$

二、求函数 $f(x) = \ln x$ 按 (x-2) 的幂展开的带有皮亚诺型余项的 n 阶泰勒公式

解: 令 t = x - 2 ,则 $f(x) = \ln x = \ln(t + 2) = \ln(1 + \frac{t}{2}) + \ln 2$,根据带皮亚诺余项的 $\ln(1 + x)$ 的

麦克劳林公式 $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^2}{3} - \dots + \frac{(-1)^{n-1}x^n}{n} + o(x^n)$, 立刻可得

$$\ln(1+\frac{t}{2}) = \frac{t}{2} - \frac{1}{2} \cdot \left(\frac{t}{2}\right)^2 + \frac{1}{3} \cdot \left(\frac{t}{2}\right)^3 + \dots + \frac{(-1)^{n-1}}{n} \cdot \left(\frac{t}{2}\right)^n + o\left(\frac{t}{2}\right)^n$$

$$= \frac{t}{2} - \frac{1}{2} \cdot \frac{t^2}{4} + \frac{1}{3} \cdot \frac{t^3}{8} + \dots + \frac{(-1)^{n-1}}{n} \cdot \frac{t^n}{2^n} + o(t^n)$$

$$= \frac{x-2}{2} - \frac{1}{2} \cdot \frac{(x-2)^2}{4} + \frac{1}{3} \cdot \frac{(x-2)^3}{8} + \dots + \frac{(-1)^{n-1}}{n} \cdot \frac{(x-2)^n}{2^n} + o((x-2)^n)$$
(
\tilde{\pi}\) \(\frac{\pi}{2}\) \(\frac{\pi}{2}\)

于是 $f(x) = \ln x$ 按 x - 2 的幂展开的带皮亚诺余项的 n 阶泰勒公式为

$$f(x) = \ln x = \ln 2 + \frac{x-2}{2} - \frac{1}{2} \cdot \frac{(x-2)^2}{4} + \frac{1}{3} \cdot \frac{(x-2)^3}{8} + \dots + \frac{(-1)^{n-1}}{n} \cdot \frac{(x-2)^n}{2^n} + o((x-2)^n) \circ$$

一、函数单调性定理

定理1 设函数 y = f(x) 在 [a,b] 上连续,

(1) 若在(a,b) 内 $f'(x) \ge 0$,且等号仅在有限多个点处成立,则函数 y = f(x) 在[a,b] 上单调增加;

(2) 若在
$$(a,b)$$
内 $f'(x) \le 0$,且等号仅在有限多个点处成立,则函数 $y = f(x)$ 在 $[a,b]$ 上单调减少。

证 仅证明(1), (2)的证明类似。设在(a,b)内有限多个点 $c_1,c_2,\cdots,c_n(a < c_1 < c_2 < \cdots < c_n < b)$ 处,

有
$$f'(c_i) = 0, i = 1, 2, \dots, n$$
。则在 $(a, c_1), (c_1, c_2), (c_2, c_3), \dots, (c_{n-1}, c_n), (c_n, b)$ 内,均有 $f'(x) > 0$ 。

任取
$$x_1, x_2 \in [c_i, c_{i+1}], i = 1, 2, \cdots, n-1, x_1 < x_2$$
,由拉格朗日中值定理,有

$$f(x_2)-f(x_1)=f'(\xi)(x_2-x_1)>0$$
, $x_1<\xi< x_2$, 故 $f(x_1)< f(x_2)$, 由 x_1,x_2 的任意性,得 $f(x)$ 在 $[c_i,c_{i+1}]$, $i=1,2,\cdots,n-1$ 上单调增加,同理可证 $f(x)$ 在 $[a,c_1]$ 和 $[c_n,b]$ 上单调增加,结论得证。

注 将定理 1 中的闭区间 [a,b] 换成其他区间,结论仍成立,比如函数 $y=x^3$ 在 (-2,4] 上连续、在 (-2,4) 内可导, $f'(x)=3x^2\geq 0, x\in (-2,4)$,等号仅在 x=0 成立,按定理 1,函数 $y=x^3$ 在 (-2,4] 上单增;函数 $y=x^5+x^3-1$ 在 $(-\infty,+\infty)$ 上连续、可导, $f'(x)=5x^4+3x^2\geq 0$, $x\in (-\infty,+\infty)$,等号仅在 x=0 成立,按定理 1,函数 $y=x^5+x^3-1$ 在 $(-\infty,+\infty)$ 上内单增。

函数单调性定理的应用

1.单调区间划分: 用所有 f'(x) = 0 和 f'(x) 不存在的点将函数 f(x) 的定义域分成几个开区间,则每个开区间内无 f'(x) = 0 的点,当 f'(x) 在这些开区间内连续时,则 f'(x) 在这些开区间内定号,从而由单调性定理可确定单调区间。

例 确定 $v = 2x^3 - 9x^2 + 12x - 3$ 的单调区间。

解 $y = 2x^3 - 9x^2 + 12x - 3$ 在 $(-\infty, +\infty)$ 内连续,令 $y' = 6x^2 - 18x + 12 = 6(x - 1)(x - 2) = 0$ 得 x = 1, 2。

当 x < 1时, y' > 0, 故 $y = 2x^3 - 9x^2 + 12x - 3$ 在 $(-\infty,1]$ 单增;

当1 < x < 2时,y' < 0,故 $y = 2x^3 - 9x^2 + 12x - 3$ 在[1,2]单减;

当 2 < x 时, y' > 0, 故 $y = 2x^3 - 9x^2 + 12x - 3$ 在 $[2, +\infty)$ 单增;

例 确定 $v = \sqrt[3]{x-1}$ 的单调区间。

解
$$y = \sqrt[3]{x-1}$$
 在 $(-\infty, +\infty)$ 内连续, $y' = \frac{1}{3}(x-1)^{-\frac{2}{3}} = \frac{1}{3\sqrt[3]{(x-1)^2}}$ 不存在的点为 $x = 1$ 。

当x < 1时,y' > 0,故 $y = \sqrt[3]{(x-1)}$ 在 $(-\infty,1]$ 单增;

当
$$x>1$$
时, $y'>0$,故 $y=\sqrt[3]{(x-1)}$ 在 $[1,+\infty)$ 单增;综上, $y=\sqrt[3]{x-1}$ 在 $(-\infty,+\infty)$ 内单增。

例 确定 $y = (x-1)\sqrt[3]{x^2}$ 的单调区间。

解
$$y = (x-1)\sqrt[3]{x^2}$$
 在 $(-\infty, +\infty)$ 内连续, $y' = \frac{5x-2}{3\sqrt[3]{x}}$ 等于 0 的点为 $x = \frac{2}{5}$,不存在的点为 $x = 0$ 。

当
$$x < 0$$
时, $y' > 0$,故 $y = (x-1)\sqrt[3]{x^2}$ 在 $(-\infty, 0]$ 单增;

当
$$0 < x < \frac{2}{5}$$
时, $y' < 0$,故 $y = (x-1)\sqrt[3]{x^2}$ 在 $[0, \frac{2}{5}]$ 单减;

当
$$x > \frac{2}{5}$$
 时, $y' > 0$, 故 $y = (x-1)\sqrt[3]{x^2}$ 在 $\left[\frac{2}{5}, +\infty\right)$ 单增。

2. 证明不等式

方法: 将要证明的不等式移项,使得一端为 0 一端不为 0,不为 0 的函数设为辅助函数,对辅助函数运用单调性定理。

例 证明 当
$$x > 1$$
 时, $2\sqrt{x} > 3 - \frac{1}{x}$

证 设
$$f(x) = 2\sqrt{x} + \frac{1}{x} - 3$$
, 则 $f'(x) = \frac{1}{x^2}(x\sqrt{x} - 1) > 0$, $x > 1$, 又 $f(x) = 2\sqrt{x} + \frac{1}{x} - 3$ 在 $[1, +\infty)$ 上

<u>连续</u>, 根据定理 1, 所以 $f(x) = 2\sqrt{x} + \frac{1}{x} - 3$ 在 $[1,+\infty)$ 单增, 故当 x > 1 时, f(x) > f(1) = 0,即证。

例 证明 当
$$0 < x < \frac{\pi}{2}$$
 时, $\sin x + \tan x > 2x$ 。

证 设
$$f(x) = \sin x + \tan x - 2x$$
, 则 $f'(x) = \cos x + \sec^2 x - 2 = \frac{\cos^3 x + 1 - 2\cos^2 x}{\cos^2 x}$

$$= \frac{\cos^2 x(\cos x - 1) + 1 - \cos^2 x}{\cos^2 x} = \frac{(1 - \cos x)(1 + \cos x - \cos^2 x)}{\cos^2 x} > 0, \quad 0 < x < \frac{\pi}{2},$$

又 $f(x) = \sin x + \tan x - 2x$ 在 $\left[0, \frac{\pi}{2}\right)$ 上连续,根据定理 1,所以 $f(x) = \sin x + \tan x - 2x$ 在 $\left[0, \frac{\pi}{2}\right)$ 单增,

故当
$$0 < x < \frac{\pi}{2}$$
时, $f(x) > f(0) = 0$,即证。

二、曲线的凹凸性与拐点

定义 设函数 f(x) 在区间 I 上连续, $\forall x_1, x_2 \in I$,

(1) 若恒有
$$f(\frac{x_1 + x_2}{2}) < \frac{f(x_1) + f(x_2)}{2}$$
,则称 $f(x)$ 在区间 I 上的图形是凹弧 (向上凹的)

(2) 若恒有
$$f(\frac{x_1 + x_2}{2}) > \frac{f(x_1) + f(x_2)}{2}$$
,则称 $f(x)$ 在区间 I 上的图形是凸弧(向上凸的);

定理 2(凹凸性定理) 设函数 y = f(x) 在 [a,b] 上连续,

- (1) 若在(a,b)内f''(x) > 0,则函数y = f(x)在[a,b]上的图形是凹弧;
- (2) 若在(a,b)内f''(x)<0,则函数y = f(x)在[a,b]上的图形是凸弧

注 1) 可通过 f'(x) 是曲线 y = f(x) 上点 (x, f(x)) 的切线斜率单增、单减来理解;

2)将定理 2 中的闭区间 [a,b] 换成其他区间,结论仍成立,比如函数 $y = \ln x$ 在 (2,4] 上连续, $f''(x) = -\frac{1}{x^2} < 0, x \in (2,4)$,按定理 2,曲线 $y = \ln x$,(2,4] 是凸弧;函数 $y = x^2$ 在 $(-\infty,+\infty)$ 内连续,y'' = 2 > 0, $-\infty < x < +\infty$,按定理 2,曲线 $y = x^2$, $x \in (-\infty,+\infty)$ 是凹弧。

定义 曲线 y = f(x) 上凹凸弧的分界点 $(x_0, f(x_0))$ 称为**曲线** y = f(x) 拐点 比如原点 (0, 0) 分别是曲线 $y = x^3$ 和 $y = \sqrt[3]{x}$ 的拐点

函数凹凸性定理的应用

划分凹凸区间、确定拐点: 用所有 f''(x) = 0 和 f''(x) 不存在的点将函数 f(x) 的定义域分成几个开区间,则每个开区间内无 f''(x) = 0 的点,当 f''(x) 在这些开区间内连续时,则 f''(x) 在这些开区间内定号,从而由凹凸性定理确定凹凸区间; 凹凸区间公共端点 x_0 对应的点 $(x_0, f(x_0))$ 即拐点 (画图即知)。 **注** 从这个划分方法知拐点 $(x_0, f(x_0))$ 横坐标 x_0 处的二阶导数值 f''(x) = 0 或 f''(x) 不存在。

例 判定曲线 $y = 3x^4 - 4x^3 + 1$ 的凹凸性并求拐点。

解
$$y = 3x^4 - 4x^3 + 1$$
 在 $(-\infty, +\infty)$ 内连续,令 $y'' = 36x(x - \frac{2}{3}) = 0$,得 $x = 0, \frac{2}{3}$ 。

当 x < 0 , y'' > 0 , 函数 $y = 3x^4 - 4x^3 + 1$ 在 $(-\infty, 0]$ 上的图形是凹的;

当
$$0 < x < \frac{2}{3}$$
, $y'' < 0$, 函数 $y = 3x^4 - 4x^3 + 1$ 在 $\left[0, \frac{2}{3}\right]$ 上的图形是凸的;

当
$$x > \frac{2}{3}$$
 , $y'' > 0$, 函数 $y = 3x^4 - 4x^3 + 1$ 在 $\left[\frac{2}{3}, +\infty\right]$ 上的图形是凹的。

$$(0, f(0)) = (0,1)$$
和 $(\frac{2}{3}, f(\frac{2}{3})) = (\frac{2}{3}, \frac{11}{27})$ 均是拐点。

例 判定曲线 $y = \sqrt[3]{x}$ 的凹凸性。

解
$$y = \sqrt[3]{x}$$
 在 $(-\infty, +\infty)$ 内连续, $y'' = \frac{-2}{9x \cdot \sqrt[3]{x^2}}$ 等于 0 的点没有,不存在的点为 $x = 0$ 。 当 $x < 0$,

当 x<0 , y''>0 , 函数 $y=\sqrt[3]{x}$ 在 $(-\infty,0]$ 内的图形是凹的; 当 x>0 , y''<0 , 函数 $y=\sqrt[3]{x}$ 在 $[0,+\infty)$ 内的图形是凸的; 原点 (0,0) 是曲线 $y=\sqrt[3]{x}$ 的拐点

例 已知点 (1,3) 为曲线 $y = ax^3 + bx^2$ 的拐点,求常数的值。

解 $y' = 3ax^2 + 2bx$, y'' = 6ax + 2b, 由点 (1,3) 为曲线 $y = ax^3 + bx^2$ 的拐点, 得

$$\begin{cases} y''(1) = 0 \\ y(1) = 3 \end{cases}, \quad \mathbb{P} \begin{cases} 6a + 2b = 0 \\ a + b = 3 \end{cases}$$
 $\text{ if } \begin{cases} 6a + 2b = 0 \\ a + b = 3 \end{cases}$

第五节 函数的极值与最大最小值

一、函数的极值及其求法

定义 若 x_0 左右附近的函数值都比 $f(x_0)$ 小,则称 $f(x_0)$ 是函数f(x) 的一个极大值, x_0 称为函数的一个极大值点;若 x_0 左右附近的函数值都比 $f(x_0)$ 大,则称 $f(x_0)$ 是函数f(x) 的一个极小值; x_0 称为函数的一个极小值点。极大值极小值统称为极值,极大值点极小值点统为极值点。

例 x = 0 为 $y = x^2$ 的极小值点,也为 y = -|x| 的极大值点,但不是 $y = x^3$ 的极值点。

注 1) 按定义, x_0 为 f(x) 的极大值(极小值) 点 \Leftrightarrow 点 x_0 附近的函数值比点 x_0 的函数值都小(都大);

- 2)区间端点不是极值点,因为定义要求极值点左右两侧附近都要能取函数值;极值是局部范围内的最大最小值,最值是定义域内的最大最小值,所以极值可能是最值,最值不一定是极值,因为最值可能在区间端点取到,而区间端点不是极值点;
- 3) 对连续函数的曲线,由定义,波峰或尖峰 ↔ (极大值点,极大值),波谷或尖谷 ↔ (极小值点,极小值);极值可能有多个;极大值可能大于、也可能小于极小值,极小值可能小于、也可能大于极大值;

定理 1 (极值的必要条件或费马引理) 设函数 f(x) 在点 x_0 处可导,且在 x_0 处取得极值,则 $f'(x_0) = 0$ 。 由定理 1 的逆否命题知, $f'(x_0)$ 存在且 $f'(x_0) \neq 0$ 的点 x_0 不是 f(x) 的极值点,又 $f'(x_0)$ 存在且 $f'(x_0) = 0$ 的点 x_0 (我们称为**驻点**)可能为 f(x) 的极值点,如 $x_0 = 0$ 为函数 $y = -x^2$ 的驻点也是极大值点; $f'(x_0)$ 不存在的点 x_0 也可能为 f(x) 极值点,如 $x_0 = 0$ 为函数 f(x) = |x| 的极小值点, $f'(x_0)$ 不存在;因此,极值点只能在一阶导数等于 0 和一阶导数不存在的点去找。如何判定?

定理 2(第一充分条件) 设函数 f(x) 在 x_0 处连续,

- (1) 若在 x_0 左侧附近, f'(x) > 0, 在 x_0 右侧附近, f'(x) < 0, 则f(x)在 x_0 处取得极大值;
- (2) 若在 x_0 左侧附近, f'(x) < 0, 在 x_0 右侧附近, f'(x) > 0, 则f(x)在 x_0 处取得极小值;
- (3) 若在 x_0 左右两侧附近, f'(x)不变号, 则 f(x) 在 x_0 处没有极值。

注 由第一充分条件和单调性定理知,极值点就是单增、单减区间的公共端点,因此运用单调性定理确定单调区间的同时,也确定了极值,再运用第一充分条件可确定是极大值还是极小值。

例 求函数 $f(x) = (x-4)\sqrt[3]{(x+1)^2}$ 的单调区间和极值。

解
$$f(x) = (x-4)\sqrt[3]{(x+1)^2}$$
 在 $(-\infty,+\infty)$ 内连续; $f'(x) = \frac{5(x-1)}{3\cdot\sqrt[3]{x+1}}$, 当 $x < -1$, $f'(x) > 0$, 当

-1 < x < 1, f'(x) < 0 , 当 x > 1, f'(x) > 0 , 故 函 数 的 单 減 区 间 为 [-1,1] , 单 增 区 间 为 $(-\infty,-1],[1,+\infty)$, 极大值为 f(-1)=0 , 极小值为 $f(1)=-3\cdot\sqrt[3]{4}$ 。

对驻点是否为极值点还可用第二充分条件判断。

定理 3(第二充分条件) 设 $f'(x_0) = 0, f''(x_0) \neq 0$,

- (1) 当 $f''(x_0) < 0$ 时,则 f(x) 在 x_0 处取得极大值;
- (2) 当 $f''(x_0) > 0$ 时,则 f(x) 在 x_0 处取得极小值。

证 只证(1), (2) 类似证明。由 $f''(x_0) < 0$,即 $f''(x_0) = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} < 0$,根据极限的局部保

号性,在
$$x_0$$
 的某去心领域 $U^0(x_0,\delta)$ 内, $\frac{f'(x)-f'(x_0)}{x-x_0}=\frac{f'(x)}{x-x_0}<0$ 。 若 $x\in (x_0-\delta,x_0)$

时, f'(x) > 0, 而 $x \in (x_0, x_0 + \delta)$ 时, f'(x) < 0, 则 f(x) 在 x_0 处取得极大值。

例 判断 f(0) = 0 是否是 $f(x) = (x^2 - 1)^3 + 1$ 的极值, 当是极值时是极大值还是极小值?

$$f'(x) = 3(x^2 - 1)^2 \cdot 2x$$
, $f''(x) = 6(x^2 - 1)(5x^2 - 1)$,

法一 因 f'(0) = 0, f''(0) = 6 > 0, 故根据第二充分条件, f(0) = 0为极小值。

法二 因 f(x) 在 x = 0 连续,在 x = 0 左侧附近, f'(x) < 0,在 x = 0 右侧附近, f'(x) > 0,故根据第一充分条件, f(0) = 0 为极小值。

注 极值第一充分条件解决了求极值,对驻点和一阶导数不存在的点均适用,第二充分条件只能对驻点使用。

二、最大值最小值问题

类型 1 设函数 y=f(x) 在 [a,b] 上连续,在 (a,b) 内可导,且 f'(x)=0 和 f'(x) 不存在的点为有限个,求 y=f(x) 在 [a,b] 上的最大最小值。

求法,设 f'(x)=0 和 f'(x) 不存在的有限个点为 x_1,x_2,\cdots,x_m ,则 y=f(x) 在 [a,b] 上的最大值

$$f_{\text{max}} = \max(f(a), f(b), f(x_1), f(x_2), \dots, f(x_m))$$
, 最小值 $f_{\text{min}} = \min(f(a), f(b), f(x_1), f(x_2), \dots, f(x_m))$.

解析 闭区间上的连续函数必在该区间上取最大最小值;最大最小值可能在区间端点取到,也可能在区间内部取到,若在区间内部取到,则最大最小值也是极大极小值,只能在驻点和一阶导数不存在的点取到。

例 求函数 $y = x + \sqrt{1 - x}$, $-5 \le x \le 1$ 的最大最小值。

解
$$y'=1+\frac{-1}{2\sqrt{1-x}}$$
,驻点 $x=\frac{3}{4}$ 和不可导点为 $x=1$,比较 $y(-5)=-5+\sqrt{6}$, $y(\frac{3}{4})=1.25$, $y(1)=1$,

得
$$f_{\text{max}} = 2.15, f_{\text{min}} = -5 + \sqrt{6}$$
。

类型 2 设函数 y=f(x) 在一个区间 I 内 (I 是有限区间或无限区间,或开区间或闭区间) 可导,且驻点 x_0 唯一,则 $f(x_0)$ 为极大值时也是该区间上的最大值, $f(x_0)$ 为极小值时也是该区间上的最小值。 解析 根据函数图形从直观上易知。

例 求函数 $y = x^2 - \frac{54}{x}, x < 0$ 的最小值。

解 $y' = 2x + \frac{54}{x^2}$, x < 0, 驻点 x = -3 (唯一)。当 x < -3 时, y' < 0;当 -3 < x < 0 时, y' > 0,

故 y(-3) = 2 为极小值, 也为最小值。

例 求函数 $y = \frac{x}{x^2 + 1}, x \ge 0$ 的最大值。

解 $y' = \frac{1-x^2}{1+x^2}$, $x \ge 0$, 驻点 x = 1 (唯一)。当 $0 \le x < 1$ 时, y' > 0; 当 x > 1 时, y' < 0, 故 $y(1) = \frac{1}{2}$ 为极大值,也为最大值。

类型 3 实际问题中,根据问题的性质可断定可导函数有最大值或最小值,且在区间内部取得。如果区间内驻点唯一,则驻点处的函数值就是最大值或最小值。

解析 可导函数在区间内的最大最小值也是极大极小值,只能在驻点处取得,如果区间内驻点唯一,则就是最大值点或最小值点,其函数值就是最大值或最小值。

例 某车间靠墙要盖一长方形小屋,现有存砖只够砌 20 米长的墙壁。问怎样围成的长方形才能使小屋的面积最大。

解 设长方形小屋的宽为 x 米, 其面积 S=x(20-2x) , 0< x<10 , S'(x)=20-4x , 驻点 x=5 . 根据问题的实际意义,其面积有最大值,故长方形小屋的宽为 5 米时面积最大。

例 构造一个体积为V 且有盖的圆柱形油罐,当底面半径r 和高h 各为多少时材料用得最省?此时的直径和高之比是多少?

解 圆柱形油罐的体积 $V = \pi r^2 \cdot h$,材料最省即表面积最小,其表面积

据问题的实际意义,体积一定的圆周形油罐其表面积有最小值,故底圆半径 $_{r}=\sqrt[3]{rac{V}{2\pi}}$ 时表面积最小,此

时底圆直径和高之比为 $2r: h = 2r: \frac{V}{\pi r^2} = \frac{2\pi r^3}{V} = 1$ 。

渐近线

定义 曲线 y = f(x) 上的动点 (x, f(x)) 无限远离原点时,若动点 (x, f(x)) 与某直线无限接近,则称此直线为曲线 y = f(x) 的一条**渐近线**。

确定渐近线的方法如下:

- (1) 若 $\lim_{x\to x_0} f(x) = \infty, -\infty, +\infty$,则称直线 $x = x_0$ 为曲线 y = f(x) 的**垂直渐近线**:
- (2) 若 $\lim_{x\to\infty,-\infty,+\infty} f(x) = A$,则称直线 y = A 为曲线 y = f(x) 的水平渐近线;
- (3) 若 $\lim_{x\to\infty,-\infty,+\infty} \frac{f(x)}{x} = k$, $\lim_{x\to\infty,-\infty,+\infty} (f(x)-kx) = b$, 则称直线 y = kx + b 为曲线 y = f(x) 的**船** 渐近线。

(事实上,当
$$\lim_{x \to \infty, -\infty, +\infty} \frac{f(x)}{x} = k$$
, $\lim_{x \to \infty, -\infty, +\infty} (f(x) - kx) = b$ 时,则 $\lim_{x \to \infty, -\infty, +\infty} [f(x) - (kx + b)]$

$$= \lim_{x \to \infty, -\infty, +\infty} [f(x) - kx] - b = b - b = 0$$
,反之,当 $\lim_{x \to \infty, -\infty, +\infty} [f(x) - (kx + b)] = 0$ 时,则
$$0 = \lim_{x \to \infty, -\infty, +\infty} [f(x) - (kx + b)] = \lim_{x \to \infty, -\infty, +\infty} x [\frac{f(x)}{x} - (k + \frac{b}{x})] = \lim_{x \to \infty, -\infty, +\infty} [\frac{f(x)}{x} - k] / \frac{1}{x}$$
,得到
$$\lim_{x \to \infty, -\infty, +\infty} [\frac{f(x)}{x} - k] = \lim_{x \to \infty, -\infty, +\infty} \frac{1}{x} [(\frac{f(x)}{x} - k) / \frac{1}{x}] = 0$$
,得 $k = \lim_{x \to \infty, -\infty, +\infty} \frac{f(x)}{x}$ 。另外,易得

$$b = \lim_{x \to \infty, -\infty, +\infty} (f(x) - kx)$$

注 寻找垂直渐近线 $x = x_0$ 时,一般 x_0 是函数 f(x) 无定义的点。

例 (1) 因
$$\lim_{x\to 0} \frac{1}{x} = \infty$$
,故 $x = 0$ 为曲线 $y = \frac{1}{x}$ 的垂直渐近线;因 $\lim_{x\to \infty} \frac{1}{x} = 0$,故 $y = 0$ 为曲线 $y = \frac{1}{x}$

的水平渐近线; (2) 因
$$\lim_{x\to 1} \frac{2x-1}{(x-1)^2} = \infty$$
 , 故 $x=1$ 为曲线 $y=\frac{2x-1}{(x-1)^2}$ 的垂直渐近线; 因

$$\lim_{x\to\infty} \frac{2x-1}{(x-1)^2} = 0$$
,故 $y = 0$ 为曲线 $y = \frac{2x-1}{(x-1)^2}$ 的水平渐近线:

例 对曲线
$$f(x) = x^{\frac{2}{3}} (6-x)^{\frac{1}{3}}$$
,因 $k = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} (\frac{6}{x} - 1)^{\frac{1}{3}} = -1$,

$$b = \lim_{x \to \infty} (f(x) + x) = \lim_{x \to \infty} \left[x^{\frac{2}{3}} (6 - x)^{\frac{1}{3}} + x \right] = \lim_{x \to \infty} \left[\frac{(\frac{6}{x} - 1)^{\frac{1}{3}} + 1}{\frac{1}{x}} \right] = \lim_{x \to \infty} \left[\frac{\frac{1}{3} (\frac{6}{x} - 1)^{-\frac{2}{3}} \cdot (-\frac{6}{x^2})}{-\frac{1}{x^2}} \right] = 2,$$

故
$$y = -x + 2$$
 为曲线 $f(x) = x^{\frac{2}{3}} (6 - x)^{\frac{1}{3}}$ 的斜渐近线。

例 见教材

第七节 曲率

一、弧微分(有向弧的值的微分)

定义 设曲线 y=f(x) 上定点 $M_0(x_0,y_0)$ 和动点 M(x,y) 间的弧长为 $\left|\hat{M}_0M\right|$,当点 M 在点 M_0 右侧时,规定<u>有向弧 \hat{M}_0M </u> 的值 s 等于 $\left|\hat{M}_0M\right|$; 当点 M 在点 M_0 左侧时,规定<u>有向弧 \hat{M}_0M </u> 的值 s 等于 $\left|\hat{M}_0M\right|$;

记曲线
$$y = f(x)$$
 上两点 $M(x, y)$ 和 $M'(x + \Delta x, y + \Delta y)$ 间的弦长为 $\left| \overrightarrow{MM'} \right|$, 则 $\lim_{M' \to M} \frac{\left| \widehat{M}M' \right|}{\left| \overrightarrow{MM'} \right|} = 1$ 。

对应于自变量 x 产生的增量 Δx ,有向弧的值 s 产生的增量 $\Delta s = \pm \left| \widehat{M} M' \right|$ 且

$$\Delta s = \begin{cases} |\widehat{M}M'|, \stackrel{.}{\cong} M' \stackrel{.}{\leftarrow} M \stackrel{.}{\leftarrow} [M] & (\Delta x > 0) \\ -|\widehat{M}M'|, \stackrel{.}{\cong} M' \stackrel{.}{\leftarrow} M \stackrel{.}{\leftarrow} [M] & (\Delta x < 0) \end{cases} \circ \frac{ds}{dx} = \lim_{\Delta x \to 0} \frac{\Delta s}{\Delta x} = \begin{cases} \lim_{\Delta x \to 0} \frac{|\widehat{M}M'|}{|MM'|} \cdot \frac{|\widehat{M}M'|}{\Delta x}, \Delta x > 0 \\ \lim_{\Delta x \to 0} \frac{-|\widehat{M}M'|}{|MM'|} \cdot \frac{|\widehat{M}M'|}{\Delta x}, \Delta x < 0 \end{cases}$$

$$= \begin{cases} \lim_{\Delta x \to 0} \frac{\left| \widehat{M} M' \right|}{\left| \overline{M} M' \right|} \cdot \frac{\sqrt{\Delta x^2 + \Delta y^2}}{\Delta x}, \Delta x > 0 \\ \lim_{\Delta x \to 0} \frac{-\left| \widehat{M} M' \right|}{\left| \overline{M} M' \right|} \cdot \frac{\sqrt{\Delta x^2 + \Delta y^2}}{\Delta x}, \Delta x < 0 \end{cases} = \begin{cases} \lim_{\Delta x \to 0} \frac{\sqrt{\Delta x^2 + \Delta y^2}}{\Delta x}, \Delta x > 0 \\ \lim_{\Delta x \to 0} \left(-\frac{\sqrt{\Delta x^2 + \Delta y^2}}{\Delta x} \right), \Delta x < 0 \end{cases} = \lim_{\Delta x \to 0} \sqrt{1 + \left(\frac{\Delta y}{\Delta x} \right)^2} = \sqrt{1 + \left(\frac{dy}{dx} \right)^2}, \quad \stackrel{\text{def}}{=} \frac{1}{\Delta x} = \frac{1}{\Delta x} \left(\frac{1}{\Delta x} \right) \left(\frac{\Delta x}{\Delta x} \right) \left(\frac{1}{\Delta x} \right) \left(\frac{\Delta x}{\Delta x} \right) \left(\frac{\Delta x}$$

M'在M右侧或左侧均成立,于是得到<u>有向弧的值 s 的微分(弧微分)</u> $ds = \sqrt{1 + (\frac{dy}{dx})^2} dx$

二、曲率及其计算公式

容易知道(图 3-28, 3-29), 弧长相等时, 弧的弯曲程度与弧的切线转过的角度成正比; 弧的切线转过的角度相等时, 弧的弯曲程度与弧的长度成反比。

对<u>光滑曲线</u> y=f(x) 上两点 M(x,y) 和 $M'(x+\Delta x,y+\Delta y)$ 。对应于自变量 x 产生的增量 Δx ,有向弧的值 s 产生的增量 $\Delta s=\pm\left|\hat{M}M'\right|$,切点从 M 到 M' 转过的角度设为 $\Delta \alpha$ 。

定义
$$\left| \frac{\Delta \alpha}{\Delta s} \right|$$
 表示弧段 $\hat{M}M'$ 的平均弯曲程度,称为**弧段 $\hat{M}M'$ 的平均曲率**:若 $\lim_{\Delta s \to 0} \frac{\Delta \alpha}{\Delta s} = \frac{d \alpha}{ds}$ 存在,则称 $\left| \frac{d \alpha}{ds} \right|$ 为**曲线** $y = f(x)$ 在点 $M(x,y)$ 处的曲率,记为 K ,即 $K = \left| \frac{d \alpha}{ds} \right|$ 。

因为
$$\tan \alpha = y'$$
(α 是曲线 $y = f(x)$ 在点 $M(x,y)$ 处的切线倾斜角),则 $\sec^2 \alpha \cdot \frac{d\alpha}{dx} = y''$, $\frac{d\alpha}{dx} = \frac{y''}{1+\tan^2 \alpha} = \frac{y''}{1+(y')^2}$,故 $d\alpha = \frac{y''}{1+(y')^2}dx$,除以弧微分公式
$$ds = \sqrt{1+(\frac{dy}{dx})^2}dx$$
 得**曲线** $y = f(x)$ 在点 $M(x,y)$ 处的曲率 $K = \frac{|y''|}{(1+(y')^2)^{\frac{3}{2}}}$ 。

例 直线 y = ax + b 上任一点的曲率 K = 0;

例 求圆周 $x^2 + y^2 = R^2$ 上任一点的曲率。

解 方程两端对x求导得 $2x + 2y \cdot y' = 0$, 得到y' = -x/y.

例 求抛物线 $v = ax^2 + bx + c$ 上哪点的曲率最大?

解
$$y' = 2ax + b$$
, $y'' = 2a$, 曲率 $K = \frac{|y''|}{(1+(y')^2)^{\frac{3}{2}}} = \frac{|2a|}{(1+(2ax+b)^2)^{\frac{3}{2}}}$, 当 $x = -\frac{b}{2a}$, 曲率

最大,即在抛物线顶点 $\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right)$ 处曲率最大,最大曲率为 $K=\left|2a\right|$ 。

三、曲率圆与曲率半径

设曲线 y=f(x) 上点 M(x,y) 处的曲率为 $K(K\neq 0)$,在点 M(x,y) 处的法线上,凹的一侧取一点 D 为圆心,以 $\left|DM\right|=\frac{1}{K}=\rho$ 为半径作圆,该圆称为曲线 y=f(x) 在点 M(x,y) 处的曲率圆, $\rho=\frac{1}{K}$ 称为曲线 y=f(x) 在点 M(x,y) 处的曲率半径。

例 抛物线 $y = x^2 - 4x + 3$ 上顶点处的曲率 K = |2a| = 2,曲率半径为 $\frac{1}{2}$ 。

例 求摆线
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}, (a > 0) \perp t = \frac{\pi}{2}$$
 处对应点的曲率和曲率半径。

$$\widetilde{H} \quad \frac{dy}{dx} = \frac{dy}{dt} / \frac{dx}{dt} = \frac{a \sin t}{a(1 - \cos t)} = \frac{\sin t}{1 - \cos t}; \quad \frac{d}{dt} (\frac{\sin t}{1 - \cos t}) = \frac{\cos t(1 - \cos t) - \sin t \cdot \sin t}{(1 - \cos t)^2} = \frac{-1}{1 - \cos t},$$

$$\frac{d^2y}{dx^2} = \frac{d}{dt}\left(\frac{dy}{dx}\right) / \frac{dx}{dt} = \frac{d}{dt}\left(\frac{\sin t}{1-\cos t}\right) / a(1-\cos t) = \frac{-1}{a(1-\cos t)^2}$$

$$y'\Big|_{t=\frac{\pi}{2}}=1$$
, $y''\Big|_{t=\frac{\pi}{2}}=\frac{-1}{a}$, $t=\frac{\pi}{2}$ 处对应点的曲率为 $K\Big|_{t=\frac{\pi}{2}}=\frac{|y''|}{(1+(y')^2)^{\frac{3}{2}}}\Big|_{t=\frac{\pi}{2}}=\frac{1}{2\sqrt{2}a}$, 曲率半径

为 $2\sqrt{2}a$.