Chapter 13: Surface Areas and Volumes

A. Cuboid

Let length = l, breadth = b, height = h

- Volume (आयतन) = l × b × h
- Total Surface Area (TSA) = 2(lb + bh + hl)
- Lateral Surface Area (LSA) = 2h(l + b)
- Diagonal = $\sqrt{(l^2 + b^2 + h^2)}$

B. Cube

Let edge = a

- Volume = a³
- TSA = 6a²
- LSA = 4a²
- Diagonal = √3 × a
- Tip: Cube is a special case of cuboid where all sides are equal.

C. Cylinder

Let radius = r, height = h

- Volume = $\pi r^2 h$
- Curved Surface Area (CSA) = $2\pi rh$
- TSA = $2\pi r(r + h)$
- ***** Remember: TSA = CSA + 2 × area of base (πr^2)

D. Cone

Let radius = r, height = h, slant height = l

- Volume = $(1/3)\pi r^2h$
- CSA = πrl
- TSA = $\pi r(l + r)$
- Slant height: $l = \sqrt{(h^2 + r^2)}$
- Use Pythagoras to find slant height if height and radius are given.

• E. Sphere

Let radius = r

- Volume = $(4/3)\pi r^3$
- Surface Area = $4\pi r^2$

_

• F. Hemisphere

Let radius = r

- Volume = $(2/3)\pi r^3$
- CSA = $2\pi r^2$
- TSA = $3\pi r^2$
- ★ TSA = CSA + base area

_

Important Concepts & Reasoning

- ✓ Cone, sphere and cylinder with same radius and height → volume ratio = 1:2:3
- ✓ Volume of cone is 1/3rd of cylinder with same base and height
- ✓ Diagonal of cube/cuboid = use 3D Pythagoras theorem
- ✓ Volume remains constant when radius and height are proportionally adjusted (e.g. radius halved, height doubled)

_

Real-Life Applications

- **©** Cylinders = cans, pipes, water tanks
- **Spheres** = balls, bubbles, globes
- **Cones** = ice cream cones, tents
- Cubes/Cuboids = boxes, bricks, tanks

—

📏 Summary Formula Table

Shape	Volume	Surface Area (TSA)	Curved Surface
Cuboid	l×b×h	2(lb + bh + hl)	2h(l + b)
Cube	a³	6a²	4a²
Cylinder	πr²h	2πr(r + h)	2πrh
Cone	(1/3)πr²h	πr(l + r)	πrl
Sphere	(4/3)πr³	4πr²	_
Hemisphere	(2/3)πr³	3πr²	2πr²

_

Example (Conceptual):

If radius of a cone is halved and height is doubled,

→ Volume = $(1/3)\pi \times (r/2)^2 \times 2h = (1/6)\pi r^2h \Rightarrow Halved$

▼ Final volume is halved

_

E Sample Calculation (Example-based):

Q: A cylinder has radius = 3 cm, height = 7 cm

Volume = $\pi r^2 h = \pi \times 9 \times 7 = 198 \text{ cm}^3$

 $CSA = 2\pi rh = 2\pi \times 3 \times 7 = 42\pi = approx. 131.88 cm^{2}$

TSA = CSA + $2\pi r^2$ = $42\pi + 18\pi = 60\pi$ = approx. 188.4 cm² ✓