X. Creative Set

Yuxi Fu

BASICS, Shanghai Jiao Tong University

Quotation from Post

The terminology 'creative set' was introduced by E. Post in

Recursively Enumerable Sets of Positive Integers and their Decision Problems. *Bulletin of American Mathematical Society*, 1944.

"... every symbolic logic is incomplete and extensible relative to the class of propositions".

"The conclusion is inescapable that even for such fixed, well-defined body of mathematical propositions, mathematical thinking is, and must remain, essentially creative."

What are the Most Difficult Semi-Decidable Problems?

We know that K is the most difficult semi-decidable problem.

What is then the m-degree $d_m(K)$?

What is an r.e. set C s.t. $A \leq_m C$ for every r.e. set A?

What are the Most Difficult Semi-Decidable Problems?

An r.e. set is very difficult if it is very non-recursive.

An r.e. set is very non-recursive if its complement is very non-r.e..

A set is very non-r.e. if it is easy to distinguish it from any r.e. set.

These sets are creative respectively productive.

Synopsis

- 1. Productive Set
- 2. Creative Set
- 3. The Lattice of m-Degrees

1. Productive Set

Suppose $W_x \subseteq \overline{K}$. Then $x \in \overline{K} \setminus W_x$.

So x witnesses the strict inclusion $W_x \subseteq \overline{K}$.

In other words the identity function is an effective proof that \overline{K} differs from every r.e. set.

Productive Set

A set A is productive if there is a total computable function p such that whenever $W_x \subseteq A$, then $p(x) \in A \setminus W_x$.

The function p is called a productive function for A.

A productive set is not r.e. by definition.

Example

- 1. \overline{K} is productive.
- 2. $\{x \mid c \notin W_x\}$ is productive.
- 3. $\{x \mid c \notin E_x\}$ is productive.
- 4. $\{x \mid \phi_X(x) \neq 0\}$ is productive.

Example

Suppose $A = \{x \mid \phi_x(x) \neq 0\}.$

By S-m-n Theorem one gets a primitive recursive function p(x) such that $\phi_{p(x)}(y)=0$ if and only if $\phi_x(y)$ is defined. Then

$$p(x) \in W_x \Leftrightarrow p(x) \notin A$$
.

So if $W_x \subseteq A$ we must have $p(x) \in A \setminus W_x$.

Thus p is a productive function for A.

Productive Set

Lemma. If $A \leq_m B$ and A is productive, then B is productive.

Proof.

Suppose $r: A \leq_m B$ and p is a production function for A.

By applying S-m-n Theorem to $\phi_X(r(y))$, one gets a primitive recursive function k(x) such that $W_{k(x)} = r^{-1}(W_x)$.

Then rpk is a production function for B.

Productive Set

Theorem. Suppose that \mathcal{B} is a set of unary computable functions with $f_{\emptyset} \in \mathcal{B}$ and $\mathcal{B} \neq \mathcal{C}_1$. Then $\mathcal{B} = \{x \mid \phi_x \in \mathcal{B}\}$ is productive.

Proof.

Suppose $g \notin \mathcal{B}$. Consider the function f defined by

$$f(x,y) \simeq \begin{cases} g(y), & \text{if } x \in W_x, \\ \uparrow, & \text{if } x \notin W_x. \end{cases}$$

By S-m-n Theorem there is a primitive recursive function k(x) such that $\phi_{k(x)}(y) \simeq f(x,y)$.

Clearly $x \notin W_x$ iff $\phi_{k(x)} = f_{\emptyset}$ iff $\phi_{k(x)} \in \mathcal{B}$ iff $k(x) \in \mathcal{B}$.

Hence $k : \overline{K} \leq_m B$.

Property of Productive Set

Lemma. Suppose that g is a total computable function. Then there is a primitive recursive function p such that for all x, $W_{p(x)} = W_x \cup \{g(x)\}.$

Proof.

Using S-m-n Theorem, take p(x) to be a primitive recursive function such that

$$\phi_{p(x)}(y) \simeq \left\{ \begin{array}{l} 1, & \text{if } y \in W_x \lor y = g(x), \\ \uparrow, & \text{otherwise.} \end{array} \right.$$

We are done.

Property of Productive Set

Theorem. A productive set contains an infinite r.e. subset.

Proof.

Suppose p is a production function for A.

Take e_0 to be some index for \emptyset . Then $p(e_0) \in A$ by definition.

By the Lemma there is a primitive recursive function k such that for all x, $W_{k(x)} = W_x \cup \{p(x)\}.$

Apparently $\{e_0, \ldots, k^n(e_0), \ldots\}$ is r.e.

Consequently $\{p(e_0), \ldots, p(k^n(e_0)), \ldots\}$ is a r.e. subset of A, which must be infinite by the definition of k.

Productive Function via a Partial Function

Proposition. A set A is productive iff there is a partial recursive function p such that

$$\forall x. (W_x \subseteq A \Rightarrow (p(x) \downarrow \land p(x) \in A \setminus W_x)). \tag{1}$$

Proof.

Suppose p is a partial recursive function satisfying (1). Let s be a primitive recursive function such that

$$\phi_{s(x)}(y) \simeq \begin{cases} y, & p(x) \downarrow \land y \in W_x, \\ \uparrow, & \text{otherwise.} \end{cases}$$

A productive function q can be defined by running p(x) and p(s(x)) in parallel and stops when either terminates.

Productive Function Made Injective

Proposition. A productive set has an injective productive function.

Proof.

Suppose p is a productive function of A. Let

$$W_{h(x)} = W_x \cup \{p(x)\}.$$

Clearly

$$W_{\mathsf{x}} \subseteq \mathsf{A} \Rightarrow W_{\mathsf{h}(\mathsf{x})} \subseteq \mathsf{A}.$$
 (2)

Define q(0) = p(0).

- ▶ If p(x+1), ph(x+1),..., $ph^{x+1}(x+1)$ are pairwise distinct, let q(x+1) be the smallest one not in $\{q(0), \ldots, q(x)\}$.
- ▶ Otherwise we can let q(x+1) be $\mu y.y \notin \{q(0), \dots, q(x)\}$. This is fine since $W_x \not\subseteq A$ due to (2).

It is easily seen that q is an injective production function for A.

Myhill's Characterization of Productive Set

Theorem. (Myhill, 1955) A is productive iff $\overline{K} \leq_1 A$ iff $\overline{K} \leq_m A$.

 $\overline{K} \leq_1 A$ implies $\overline{K} \leq_m A$, which in turn implies "A is productive".

Proof

Suppose p is a productive function for A. Define

$$f(x, y, z) \simeq \begin{cases} 0, & \text{if } z = p(x) \text{ and } y \in K, \\ \uparrow, & \text{otherwise.} \end{cases}$$

By S-m-n Theorem there is an injective primitive recursive function s(x, y) such that

$$\phi_{s(x,y)}(z) \simeq f(x,y,z).$$

By definition,

$$W_{s(x,y)} = \begin{cases} \{p(x)\}, & \text{if } y \in K, \\ \emptyset, & \text{otherwise.} \end{cases}$$

Proof

By Recursion Theorem there is an injective primitive recursive function n(y) such that $W_{s(n(y),y)} = W_{n(y)}$ for all y. So

$$W_{n(y)} = \begin{cases} \{p(n(y))\}, & \text{if } y \in K, \\ \emptyset, & \text{otherwise.} \end{cases}$$

We claim that $\overline{K} \leq_m A$.

$$y \in K \Rightarrow W_{n(y)} = \{p(n(y))\} \Rightarrow p(n(y)) \notin A.$$

 $y \notin K \Rightarrow W_{n(y)} = \emptyset \Rightarrow p(n(y)) \in A.$

By the previous theorem we may assume that p is injective. So the reduction function $p(n(_{-}))$ is injective. Conclude $\overline{K} \leq_1 A$.

A set A is creative if it is r.e. and its complement \overline{A} is productive.

Intuitively a creative set A is effectively non-recursive in the sense that the non-recursiveness of \overline{A} , hence the non-recursiveness of A, can be effectively demonstrated.

- 1. K is creative.
- 2. $\{x \mid c \in W_x\}$ is creative.
- 3. $\{x \mid c \in E_x\}$ is creative.
- 4. $\{x \mid \phi_x(x) = 0\}$ is creative.

Theorem. Suppose that $A \subseteq C_1$ and let $A = \{x \mid \phi_x \in A\}$. If A is r.e. and $A \neq \emptyset$, \mathbb{N} , then A is creative.

Proof.

Suppose A is r.e. and $A \neq \emptyset$, \mathbb{N} . If $f_{\emptyset} \in \mathcal{A}$, then A is productive by a previous theorem. This is a contradiction.

So \overline{A} is productive by the same theorem. Hence A is creative.

The set $K_0 = \{x \mid W_x \neq \emptyset\}$ is creative. It corresponds to the set $\mathcal{A} = \{f \in \mathcal{C}_1 \mid f \neq f_\emptyset\}$.

Creative Sets are m-Complete

Theorem. (Myhill, 1955)

C is creative iff C is m-complete iff C is 1-complete iff $C \equiv K$.

3. The Lattice of m-Degrees

What Else?

Q: In the world of recursively enumerable sets, is there anything between the recursive sets and the creative sets?

What Else?

Q: In the world of recursively enumerable sets, is there anything between the recursive sets and the creative sets?

A: There is plenty.

Trivial m-Degrees

- 1. $\mathbf{o} = \{\emptyset\}.$
- 2. $\mathbf{n} = \{\mathbb{N}\}.$
- 3. $\mathbf{o} \leq_m \mathbf{a}$ provided $\mathbf{a} \neq \mathbf{n}$.
- 4. $\mathbf{n} \leq_m \mathbf{a}$ provided $\mathbf{a} \neq \mathbf{o}$.

Nontrivial m-Degrees

- 5. The recursive m-degree $\mathbf{0}_m$ consists of all the nontrivial recursive sets.
- 6. An r.e. m-degree contains only r.e. sets.
- 7. The maximum r.e. m-degree $d_m(K)$ is denoted by $\mathbf{0}'_m$.

The Distributive Lattice of m-Degrees

The m-degrees ordered by \leq_m form a distributive lattice.

Problem with m-Degree

The m-reducibility has two unsatisfactory features:

- (i) The exceptional behavior of \emptyset and \mathbb{N} .
- (ii) The invalidity of $A \not\equiv_m \overline{A}$ in general.

The problem is due to the restricted use of oracles.

We shall remove this restriction in Turing reducibility.