ECON 3510: Poverty and Economic Development Lecture 8: Voting III (Fujiwara, 2015)

Instructor: Weizheng Lai

Bowdoin College

Fall 2025

Changing the Electorate: Fujiwara (2015)

- Fujiwara (2015) studies the introduction of electronic voting (EV) in Brazilian elections.
- By simplifying voting procedures and reducing errors that lead to invalid ballots, EV effectively enfranchises less-educated voters and may influence policy outcomes.

Voting for (fictional) candidate number 92111 (name: Monteiro Lobato, party: PLT)

Initial screen of the voting technology

DEPUTADO(A) ESTADUAL

SELL VOTO PARA

DEPUTADO ESTADUAI

VERDE para CONFIRMAR

Norman 921111 Name: Montains Lebata Partido: PLT

JUSTICA

JUSTICA ELEITORAL

Background

- ▶ EV was *partially* introduced in the 1998 elections.
- ▶ EV was only introduced in municipalities with more than 40,500 registered voters in 1996.

$$EV_i = \mathbb{1}\{v_{i,1996} - 40,500 > 0\}.$$

▶ After 2002, all municipalities adopted EV.

3

How Does EV Affect Valid Votes?

- Note that where a municipality had EV in 1998 is solely determined by the number of registered voters in 1996 $(v_{i,1996})$.
 - If $v_{i,1996} = 40,499$, no EV, $EV_i = 0$.
 - If $v_{i,1996} = 40,501$, EV, $EV_i = 1!$

 EV_i changes discontinuously around $v_{i,1996} = 40,500$.

► Fujiwara (2015) implements a regression discontinuity design:

$$Y_{i,1998} = \alpha + \beta EV_i + \gamma(v_{i,1996} - 40,500) + \delta \left[EV_i \times (v_{i,1996} - 40,500) \right] + \varepsilon_i.$$

 $Y_{i,1998}$ is municipality i's share of valid votes in total votes in 1998.

How Does EV Affect Valid Votes?

► A closer look:

If
$$v_{i,1996} \le 40,500$$
, $EV_i = 0$, $Y_{i,1998} = \alpha + \gamma(v_{i,1996} - 40,500) + \varepsilon_i$, If $v_{i,1996} > 40,500$, $EV_i = 1$, $Y_{i,1998} = \alpha + \beta + (\gamma + \delta) \times (v_{i,1996} - 40,500) + \varepsilon_i$.

Consider two municipalities, j and k.

$$v_{j,1996}$$
 is just below 40,500, $EV_j = 0$, $Y_{j,1998} \approx \alpha + \varepsilon_j$, $v_{k,1996}$ is just above 40,500, $EV_k = 1$, $Y_{k,1998} \approx \alpha + \beta + \varepsilon_k$.

$$\beta + (\varepsilon_j - \varepsilon_k) = Y_{j,1998} - Y_{k,1998}.$$

If j and k are similar in other aspects. i.e., $\varepsilon_j \approx \varepsilon_k$, β captures the change in the share of valid votes caused by EV.

EV Increases Valid Votes

EV Increases Valid Votes

► Column (1)–(3): The author only uses data of municipalities that satisfy $40,500 - h \le v_{i,1996} \le 40,500 + h$. h is called "bandwidth." Why does he do this?

TABLE II
TREATMENT EFFECTS OF ELECTRONIC VOTING⁸

	Full Sample Mean	Pre-Treat. Mean	IKBW {Obs.}	(1)	(2)	(3)
Panel A: Baseline Results						
Valid Votes/Turnout (1998 Election)	0.755 [0.087]	0.780 (0.013)	11,873 {265}	0.118 (0.015)	0.121 (0.016)	0.124 (0.025)
Turnout/Reg. Voters (1998 Election)	0.765 [0.091]	0.785 (0.011)	12,438 {283}	-0.005 (0.019)	0.013 (0.021)	0.007 (0.033)
Reg. Voters/Population (1998 Election)	0.748 [0.141]	0.737 (0.010)	15,956 {388}	-0.004 (0.027)	0.010 (0.034)	0.032 (0.044)
Panel B: Placebo Tests (Ele	ection Years W	ithout Disco	ntinuous As	signment)		
Valid Votes/Turnout (1994 Election)	0.653 [0.099]	0.697 (0.011)	17,111 {433}	-0.013 (0.019)	-0.008 (0.023)	0.006 (0.032)
Valid Votes/Turnout (2002 Election)	0.928 [0.026]	0.921 (0.002)	17,204 {437}	0.005 (0.005)	0.008 (0.006)	0.009 (0.010)
Panel C: Do Left-Wing Par	rties Benefit D	isproportiona	itely From E	lectronic Vo	ting?	
Vote-Weighted Party Ideology (1998 Elec.)	5.397 [0.692]	5.162 (0.094)	20,000 {558}	-0.222 (0.100)	-0.250 (0.081)	-0.108 (0.170)
Bandwidth Specification				IKBW Linear	10,000 Linear	5000 Linear
N	5281			_	229	116

Validity of Research Design

▶ Key assumption: at the cutoff, the *only* thing that changes discontinuously is the introduction of EV.

TABLE I
SUMMARY STATISTICS AND COVARIATE SMOOTHNESS (1991 CENSUS)^a

	Full Sample Mean [Std. Dev.]	Pre-Treat. Mean	IKBW {Obs.}	(1)	(2)	(3)
Monthly Income	123.13	174.83	20,000	0.908	6.096	14.017
(1991 reais)	[73.10]	(8.102)	{558}	(16.292)	(22.097)	(32.863)
Gini Index	0.559	0.575	15,596	0.005	0.002	-0.005 (0.017)
(Income)	[0.058]	(0.007)	{377}	(0.010)	(0.013)	
Latitude	-16.53	-16.40 (1.078)	16,547	0.174	0.361	-0.674
(Degrees)	[8.23]		{412}	(1.69)	(2.070)	(2.998)
Longitude	46.36	45.18	14,531	0.419	0.550	2.685
(Degrees)	[6.319]	(0.850)	{345}	(1.421)	(1.636)	(2.466)
Illiteracy Rate	0.360 [0.183]	0.274 (0.020)	16,068 {389}	-0.012 (0.020)	-0.076 (0.046)	-0.041 (0.065)
Share w/o 4 Years of Schooling	0.607 [0.179]	0.483 (0.020)	15,415 {372}	0.0006 (0.035)	-0.026 (0.041)	-0.041 (0.065)
Share w/o 8 Years of Schooling	0.876 [0.077]	0.788 (0.008)	20,000 {558}	-0.009 (0.015)	-0.017 (0.020)	-0.030 (0.032)
Population—1991	24.80	58.35	20,000	0.653	1.066	0.962
(Thousands)	[153.69]	(0.583)	{558}	(1.456)	(1.716)	(1.880)
Population—2000	28.73	69.79	17,668	1.619	2.639	7.059
(Thousands)	[170.91]	(1.257)	{454}	(3.043)	(3.937)	(5.011)
Share of Urban	0.507	0.237	20,000	0.004	-0.015 (0.048)	-0.069
Population	[0.258]	(0.021)	{558}	(0.034)		(0.073)
Bandwidth Observations	 5281	_	_	IKBW —	10,000 229	5000 116

Heterogeneous Effects on Valid Votes by Illiteracy Rates

▶ EV should be most useful to less educated voters.

 $\label{thm:table III} \textbf{TREATMENT EFFECTS OF ELECTRONIC VOTING, BY ILLITERACY RATEa}$

	Pre-Treat. Mean	IKBW {Obs.}	(1)	(2)	(3)	(4)
Panel A: Municipalities	With Above-	Median Illite	racy			
Valid Votes/Turnout	0.759	11,873	0.147	0.150	0.152	0.176
	(0.017)		(0.019)	(0.015)	(0.020)	(0.031)
N	_	_	116	279	103	49
Panel B: Municipalities	With Below-l	Median Illite	racy			
Valid Votes/Turnout	0.799	11,873	0.092	0.113	0.096	0.089
	(0.018)		(0.020)	(0.016)	(0.022)	(0.032)
N	` — ´	_	149	279	126	67
Test of Equality in TEs (p-Value)	_	_	0.049	0.090	0.056	0.054
Bandwidth	_	_	IKBW	20,000	10,000	5000

Impacts of EV on Policies

- ▶ EV effectively incorporates more less educated voters into the electorate. By the MVT, policies should shift toward the preferences of these newly incorporated voters.
- Less educated, poor households rely more on the public healthcare system. The author looks at public health spending and infant health outcomes.
- ▶ Only state-level data are available. The author comes up with a clever design that leverages the timing of EV.

$$y_{i,1998} - y_{i,1994} = \alpha_{1998} + \theta_{1998} S_i + \beta_{1998} X_i + \varepsilon_{i,1998},$$

 $y_{i,2002} - y_{i,1998} = \alpha_{2002} + \theta_{2002} S_i + \beta_{2002} X_i + \varepsilon_{i,2002}.$

 S_i is state *i*'s share of voters eligible for EV in 1998.

- $\theta_{1998} > 0$: From 1994 to 1998, EV was partially introduced. High S_i states adjusted policies in favor of less educated voters.
- θ_{2002} < 0: From 1998 to 2002, EV was full introduced. Low S_i states also adjusted policies in favor of less educated voters.

Impacts of EV on Policies: Results

 $\label{eq:table_iv} \textbf{TABLE IV}$ Main Outcomes and the Sign-Switch Pattern a

				Linear Combinations	
Parameter: Sample (Terms):		θ^{98} 1994—1998	θ ⁰² 1998–2002	$(\theta^{98}-\theta^{02})/2$	$(\theta^{98} + \theta^{02})/2$
	Sample Avg.	(Paper–Disc.) (1)	(Disc.–Electr.) (2)	(3)	(4)
Panel A: Electoral Outcom	ies				
Valid Votes/Turnout	0.829 [0.112]	0.092 (0.033) {0.102}	-0.111 (0.010) $\{0.002\}$	0.102 (0.017) {0.008}	-0.009 (0.018) {0.630}
Seat-Weighted Policy Position	4.623 [0.601]	-0.112 (0.641) {0.842}	0.299 (0.167) {0.154}	-0.206 (0.350) {0.574}	0.094 (0.302) {0.800}
Panel B: Fiscal Outcomes log(Total Spending)	(Health Care —	Spending) -0.004 (0.093) {0.946}	-0.257 (0.156) {0.274}	0.127 (0.097) {0.254}	-0.131 (0.082) {0.228}
Share of Spending in Health Care	0.099 [0.037]	0.039 (0.017) {0.104}	-0.029 (0.013) {0.044}	0.034 (0.008) {0.000}	0.005 (0.013) {0.678}
log(Health Spending p.c.)	_	0.428 (0.264) {0.200}	-0.677 (0.262) {0.034}	0.552 (0.096) {0.000}	-0.125 (0.242) {0.628}
Panel C: Birth Outcomes (
Share With 7+ Visits	0.362 [0.123]	0.122 (0.065) {0.154}	-0.023 (0.033) {0.558}	0.069 (0.040) {0.182}	0.047 (0.039) {0.320}
Share With Low-Weight Births (×100)	7.721 [1.110]	-0.370 (0.304) {0.266}	0.528 (0.269) {0.104}	-0.529 (0.246) {0.044}	0.201 (0.236) {0.450}
N (State-Terms) N (States/First-Diffs)	_	54 27	54 27	_	=

References I

Fujiwara, Thomas (2015). "Voting technology, political responsiveness, and infant health: Evidence from Brazil". *Econometrica* 83.2, pp. 423–464.