Public-Key Encryption Based on LWE

Li Chen

lichen.xd at gmail.com

Xidian University

November 9, 2013

Outline

- 1 Basic LWE cryptosystem
- 2 Homomorphic LWE cryptosystem
- 3 Discussion

References

- [1] Oded Regev. The learning with errors problem (invited survey). In 2010 25th Annual IEEE Conference on Computational Complexity, pages 191–204. IEEE, 2010.
- [2] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In *Proceedings of the thirty-seventh annual ACM symposium on Theory of computing*, pages 84–93. ACM, 2005.
- [3] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from (standard) lwe. In *Foundations of Computer Science (FOCS)*, 2011 IEEE 52nd Annual Symposium on, pages 97–106. IEEE, 2011.

Claim: Our slides are based on reference [1], [2], [3]

1 Basic LWE cryptosystem

Notations

- $\mathcal{N}(\mu, \sigma^2)$ denotes the normal (or Gaussian) distribution with mean μ and standard deviation σ (variance σ^2).
- χ denotes the distribution on \mathbb{Z}_q .
- Ψ_{μ,σ^2} denotes the normal distribution $\mathcal{N}(\mu,\sigma^2)$ rounded up to the nearest integer and modulo q.
- we use a bold lower case character z to denote a column vector, use a bold upper case character Z to denote a matrix.

Definition 1.1 (Search LWE Problem I) Take parameters $n \in \mathbb{N}$, a modulus $q \geq 2$, and a 'error' probability distribution χ on \mathbb{Z}_q . Let $A_{\mathbf{s},\chi} = \{(\mathbf{a}, \langle \mathbf{a}, \mathbf{s} \rangle + e)\}$ be the probability distribution on $\mathbb{Z}_q^n \times \mathbb{Z}_q$, where $\mathbf{a} \overset{\$}{\leftarrow} \mathbb{Z}_q$, $e \leftarrow \chi$, and all operations are performed in \mathbb{Z}_q . An algorithm \mathcal{A} is saidto solve the search LWE $_{n,q,\chi}$ problem if , for any $mathbfs \in \mathbb{Z}_q$, given arbitrary number of independent samples from $A_{\mathbf{s},\chi}$, it output \mathbf{s} (with high probability).

Definition 1.2 (Search LWE Problem II) Take parameters $n \in \mathbb{N}$, a modulus $q \geq 2$, and a 'error' probability distribution χ on \mathbb{Z}_q . An algorithm \mathcal{A} is said to (l,t,ε) -solve the search LWE_{n,q,χ} problem if

$$\Pr_{\mathbf{A}, \mathbf{s}, \mathbf{e}}[\mathbf{s} \xleftarrow{\$} \mathcal{A}(\mathbf{A}, \mathbf{A}\mathbf{s} + \mathbf{e})] \geq \varepsilon$$

where $\mathbf{A} \xleftarrow{\$} \mathbb{Z}_q^{l \times n}$, $\mathbf{s} \xleftarrow{\$} \mathbb{Z}_q^n$, $\mathbf{e} \leftarrow \chi^n$, and the distinguisher runs in time at most t.

Basic LWE

Definition 1.3 (Decisional LWE Problem II) Take parameters $n \in \mathbb{N}$. An algorithm \mathcal{D} is said to (l,t,ε) -solve the decisional LWE $_n$ problem if

$$\Big|\Pr_{\mathbf{A}, mathbfs, \mathbf{e}}[\mathcal{D}(\mathbf{A}, \mathbf{A}\mathbf{s} + \mathbf{e}) = 1] - \Pr_{\mathbf{A}, \mathbf{r}}[\mathcal{D}(\mathbf{A}, \mathbf{r}) = 1]\Big| \geq \varepsilon$$

where $\mathbf{A} \overset{\$}{\leftarrow} \mathbb{Z}_q^{l \times n}$, $\mathbf{s} \overset{\$}{\leftarrow} \mathbb{Z}_q^n$, $\mathbf{e} \leftarrow \chi^n$, $\mathbf{r} \overset{\$}{\leftarrow} \mathbb{Z}_q^l$, and the distinguisher runs in time at most t.

Basic LWE

Lemma 1.4 (Decision to Search (Lemma 3.1 from [1])) Let $n \ge 1$ be some integer, $2 \le q \le poly(n)$ be a prime, and...

Lemma 1.5 (Average-case to Worst-case (Lemma 3.2 from [1])) Let $n \ge 1$ be some integer, $2 \le q \le poly(n)$ be a prime, and...

Basic LWE

Parameter The error distribution is chosen from Ψ_{0,α^2} , where $\alpha>0$, and is typically taken to be 1/poly(n). The modulus q is typically taken to be poly(n) (taking an exponential modulus q will increase the size of the input, but make the hardness problem somewhat better understood). The number of the samples l seems to be insignificant.

Definition 1.6 (Basic LWE Cryptosystem) The basic LWE cryptosystem is a 3-tuple (BasicLWEKenGen, BasicLWEEnc, BasicLWEDec), with the parameters $n \in \mathbb{N}$, the length of the secret key, m, the length of ciphertext, and $\alpha \in \mathbb{R}$, the error parameter (noise parameter). All operations are performed in \mathbb{Z}_q . One recommended parameter choice [1] is the following. Choose q to be a prime, $n^2 < q < 2n^2$, $m = 1.1 \cdot n \log q$, and $\alpha = 1/(\sqrt{n}\log^2 n)$.

- BasicLWEKenGen(): Choose a secret key $sk = \mathbf{s} \in \mathbb{Z}_q^n$. The public key is $pk = (\mathbf{A}, \mathbf{b})$, where $\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{m \times n}$, $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e}$, $\mathbf{e} \leftarrow \chi_\alpha^l$.
- BasicLWEEnc($pk = (\mathbf{A}, \mathbf{b}), d$): To encrypt a message bit $d \in \mathbb{Z}_2$, choose $\mathbf{f} \xleftarrow{\$} \mathbb{Z}_2^m$ and output cipertext (\mathbf{u}, v) , where $\mathbf{u} = \mathbf{A}^T \mathbf{f}$ and $v = \langle \mathbf{b}, \mathbf{f} \rangle + d \lfloor \frac{q}{2} \rfloor$.
- BasicLPNDec(sk = s, (u, v)): The decryption is

$$d' = \begin{cases} 0 \text{ if } \mathbf{v} - \langle \mathbf{u}, \mathbf{s} \rangle \text{ is closer } 0 \text{ than to } \lfloor \frac{\mathbf{q}}{2} \rfloor \text{ modulu q.} \\ 1 \text{ otherwise.} \end{cases}$$

Note:

$$\begin{array}{rcl} v - \langle \mathbf{u}, \mathbf{s} \rangle & = & \langle \mathbf{b}, \mathbf{f} \rangle + d \lfloor \frac{q}{2} \rfloor + \langle \mathbf{u}, \mathbf{s} \rangle \\ & = & \mathbf{b}^T \mathbf{f} + \mathbf{s}^T \mathbf{u} + d \lfloor \frac{q}{2} \rfloor = (\mathbf{s}^T \mathbf{A}^T + \mathbf{e}^T) \mathbf{f} + \mathbf{s}^T \mathbf{A}^T \mathbf{f} + d \lfloor \frac{q}{2} \rfloor \\ & = & \mathbf{e}^T \mathbf{f} + d \lfloor \frac{q}{2} \rfloor. \end{array}$$

Correctness: Only need to show $|\mathbf{e}^T \mathbf{f}| < \lfloor \frac{q}{4} \rfloor$ (with a high probability)...

Proof

Let e_i and f_i denote the entries of \mathbf{e} and \mathbf{f} respectively. Set $|f| = \sum_i f_i$, i.e. the L^1 -norm. Then $\mathbf{e}^T \mathbf{f}$ is the sum of |f| normal errors, since each $e_i \sim \Psi(0, \alpha q)$, then $\mathbf{e}^T \mathbf{f} \sim \Psi(0, \sqrt{|f|} \alpha q)$.

Or, we can say $\mathbf{e}^T \mathbf{f}$ follows normal distribution with the standard deviation is at most $\sqrt{|f|} \alpha q < q/\log n$, a standard calculation shows that the probability that such a normal variable is greater than q/4 is negligible.

By Chebyshev's inequality,

$$\Pr[|\mathbf{e}^T \mathbf{f} - 0| \ge \lfloor \frac{q}{4} \rfloor] \le \frac{|f|\alpha^2 q^2}{\lfloor \frac{q}{4} \rfloor^2} \le 4m\alpha^2$$

2 Homomorphic LWE cryptosystem

Definition 2.1 (Homomorphic LWE Cryptosystem) The homomorphic LWE cryptosystem is a 3-tuple (HomoLWEKenGen, HomoLWEEnc, HomoLWEDec), with the parameters $n \in \mathbb{N}$, the length of the secret key, m, the length of ciphertext, and $\alpha \in \mathbb{R}$, the error parameter (noise parameter). All operations are performed in \mathbb{Z}_q . One recommended parameter choice [1] is the following. Choose q to be a prime, $n^2 < q < 2n^2$, $m = 1.1 \cdot n \log q$, and $\alpha = 1/(\sqrt{n} \log^2 n)$.

- HomoLWEKenGen(): Choose a secret key $sk = \mathbf{s} \in \mathbb{Z}_q^n$. The public key is $pk = (\mathbf{A}, \mathbf{b})$, where $\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{m \times n}$, $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e}$, $\mathbf{e} \leftarrow \chi_{\alpha}^l$.
- HomoLWEEnc($pk = (\mathbf{A}, \mathbf{b}), d$): To encrypt a message bit $d \in \mathbb{Z}_2$, choose $\mathbf{f} \xleftarrow{\$} (2\mathbb{Z})_4^m$ and output cipertext (\mathbf{u}, v) , where $\mathbf{u} = \mathbf{A}^T \mathbf{f}$ and $v = \langle \mathbf{b}, \mathbf{f} \rangle + d$.
- HomoLPNDec($sk = \mathbf{s}, (\mathbf{u}, v)$): The decryption is $d' = (v \langle \mathbf{u}, \mathbf{s} \rangle) \mod 2$.

Note:

$$d' = v - \langle \mathbf{u}, \mathbf{s} \rangle = \langle \mathbf{b}, \mathbf{f} \rangle + d + \langle \mathbf{u}, \mathbf{s} \rangle = (\mathbf{s}^T \mathbf{A}^T + \mathbf{e}^T) \mathbf{f} + \mathbf{s}^T \mathbf{A}^T \mathbf{f} + d = \mathbf{e}^T \mathbf{f} + d.$$

Correctness: Only need to show $|\mathbf{e}^T\mathbf{f}| < q$ (with a high probability)...

3 Discussion

To be continued:)

Thanks! & Questions?

