4. **Fall2008.** Let $(R, +, \cdot)$ be a ring. Define a new ring $(S, \oplus, *)$ as follows. The elements of S are those of R, $a \oplus b = a + b + 1$ and $a * b = a \cdot b + a + b$. Prove that S is a ring and S is isomorphic to R.

abelian group under 🕀

commutativity:

$$a \oplus b = a + b + 1$$

$$= b + a + 1$$

$$= b \oplus a$$

associativity:

$$(a \oplus b) \oplus C = (a+b+1) \oplus C$$

$$= a+b+1+c+1$$

$$= a+(b+c+i)+1$$

$$= a \oplus (b \oplus c)$$

identitt:

$$A \oplus (-1) = a + 1 - 1$$

$$a \oplus (-1-a) = a - 1 - a + 1$$

monoid under *

associationty;

$$9*(b*c) = a*(bc+b+c)$$
= $abc+ab+ac+a+bc+b+c$
= $(ab+a+b)c+ab+a+b+c$
= $(ab+a+b)*c$
= $(ab+a+b)*c$

identity:

distributionty

$$a * (b \oplus c) = a(b \oplus c) + a + (b \oplus c)$$

$$= a(b+c+1) + a + b + c + 1$$

$$= ab + ac + a + a + b + c + 1$$

$$= (ab+a+b) + (ac+a+c) + 1$$

$$= (a*b) \oplus (a*c)$$

Define $\phi: 5 \to R$ by $5 \mapsto 5 + 1$.

homomo/phism

$$\phi(a \oplus b) = \phi(a+b+1)$$
= $a+b+1+1$
= $(a+1) + (b+1)$
= $\phi(a) + \phi(b)$

$$\phi(a * b) = \phi(ab + a + b)$$

$$= ab + a + b + 1$$

$$= a(b+1) + b + 1$$

$$= (a+1)(b+1)$$

$$= \phi(a) \phi(b)$$

bijective

Let $s \in \text{trer } \phi = \frac{2}{5} s \in S$ | s+1=0 }. Easy to see trer S=-1 which is the identity in S.

Lef $r \in R$. Then $\phi(r-1) = r-1+1 = r$ (remember elements of R one also elements of S).

we done