

第五章 双稳态触发器及应用第六章 555定时器及其应用

- 一、基本RS触发器(5.1)
- 二、边沿触发器(5.2)
- 三、双稳态触发器的应用(5.3)
- 四、单稳和多谐振荡器的概念(6)

二、边沿触发器

§5.2 边沿触发器

边沿触发方式

可控触发器

Department of Electrical & Electronic Technology, SAEE, USTB

脉冲跃迁检测器

Department of Electrical & Electronic Technology, SAEE, USTB

常用边沿触发器

JK触发器——在结构上的完善

J - 相当于置"1"端 K-相当于置"0"端 J、K-高电平有效

功能表

CP	J	K	Q^{n+1}	功能
\downarrow	0	0	Q ⁿ	保持
\downarrow	0	1	0	置 0
\	1	0	1	置1
	1	1	$\overline{m{Q}}^{ ext{n}}$	翻转

例:画出 JK 触发器在给定输入下的输出波形

СР	$oldsymbol{J}$	K	Q^{n+1}	功能		
\downarrow	0	0	Q^{n}	保持		
, l	0	1	0	置①		
, l	1	0	1	置1	K	
.	1	1	$\overline{m{Q}}^{ ext{n}}$	翻转		

JK触发器的特性方程

功能表

J	K	Q ⁿ⁺¹
0	0	Q ⁿ
0	1	0
1	0	1
1	1	$\overline{m{Q}}^{ ext{n}}$

状态表

J	K	Q n	Q n+1	功能	
0	0	0	0	保持	
0	0	1	1	冰灯	
0	1	0	0	聖 0	
0	1	1	0	置 0	
1	0	0	1	₩ A	
1	0	1	1	置1	
1	1	0	1	采 和 <i>大</i> 土	
1	1	1	0	翻转	

JK触发器的特性方程

$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

状态表

J	K	Q n	Q n+1
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

D触发器

功能表

CP	D	Q ⁿ⁺¹	功能
↑	0	0	置 0
↑	1	1	置1

逻辑符号

特性方程 $Q^{n+1} = D$

例:时钟CP及输入信号的波形如图所示,试画出触发器输出端Q的波形(设各触发器初始状态为0)

异步置数和清零端子——异步的含义(重要)

画出电路在给定输入情况下的输出波形

(1Q)

画出输出波形

T′触发器

JK端都接高电平,每 来一个时钟信号有效沿 触发器就翻转一次

练习: 若电路输入波形如图, 且Q的初态为"0", 试画出输出波形

练习:设各触发器初态为0,画出 Q_1 和 Q_2 的波形

