Name: Number: Signature:

23.12.2024

BLG 212E Microprocessor Systems Quiz 3

Question 1 (50 Points)

An ARM Cortex M0+-based microcontroller generates interrupts at <u>a frequency of 100 Hz</u>. The program running on the microcontroller is provided below, and <u>no other exception handlers</u> are triggered during the program's execution. Fill in the given table with the register values in hexadecimal just <u>before the BX LR instruction</u> in the interrupt handler function is executed. Assume that all other register and memory values are <u>initialized to zero</u>. The register values at <u>the end of the first interrupt</u> are provided in the table for you.

```
__main
stop B stop

SysTick_Handler
ADDS R1, #1
ADDS R5, #2
ADDS R7, #4
ADD R12, R6
BX LR
```

Interrupt	R1	R5	R6	R7	R12
1 st	0x05	0x1A	0x05	0x44	0x3D
2 nd	0x05	0x1C	0x05	0x48	0x3D
3 rd	0x05	0x1E	0x05	0x4C	0x3D
4 th	0x05	0x20	0x05	0x50	0x3D
5 th	0x05	0x22	0x05	0x54	0x3D
6 th	0x05	0x24	0x05	0x58	0x3D
7 th	0x05	0x26	0x05	0x5C	0x3D
8 th	0x05	0x28	0x05	0x60	0x3D
9 th	0x05	0x2A	0x05	0x64	0x3D
10 th	0x05	0x2C	0x05	0x68	0x3D
11 th	0x05	0x2E	0x05	0x6C	0x3D

Note: The <u>ADDS</u> and <u>ADD</u> instructions perform addition operations. <u>B</u> is an unconditional branch, and <u>BX</u> is a branch using the value in a register.

Question 2 (50 Points)

The ARM Cortex M0+-based microcontroller operates at a <u>24 MHz clock frequency</u>. What should the <u>RELOAD value</u> of the System Tick Timer be to generate interrupts with a <u>50 ms period</u>? Provide the reload value in decimal form.

$$T_{int} = (Load + 1) \times T_{CPU}$$

$$T_{int} = \frac{(Load + 1)}{F_{CPU}}$$

$$Load = T_{int} \times F_{CPU} - 1$$

$$Load = (50 \times 10^{-3}) \times (24 \times 10^{6}) - 1$$

$$Load = 1.200.000 - 1$$

$$Load = 1.199.999$$