LECTURE 31

Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series and let

$$S = \{ x \in \mathbb{R} \mid \sum_{n=0}^{\infty} a_n x^n \text{ converges } \}.$$

Our first aim is to try and understand what this set looks like. Recall that we have already observed that S is non-empty since $0 \in S$.

At the end of last lecture we proved (Proposition 7.9) that if $\sum_{n=0}^{\infty} a_n x_0^n$ converges for some $x_0 \in \mathbb{R}$, then the series $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely for any $x \in \mathbb{R}$ with $|x| < |x_0|$. We can use this fact to get a better understanding of S.

To begin with, if S is not bounded above, then $S = \mathbb{R}$. To see this, we observe that under this assumption, for any $n \in \mathbb{N}$, there exists $x_n \in S$ such that $x_n > n$. Suppose that $|x| < x_n$. Since $x_n \in S$, the series $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely (Proposition 7.9), and hence converges. Therefore $x \in S$. Therefore $(-x_n, x_n) \subset S$ and so $(-n, n) \subset S$. Since this is true for all $n \in \mathbb{N}$, we must have $S = \mathbb{R}$.

Now suppose that S is bounded above. Let $R = \sup(S)$. Note that $R \ge 0$. The series $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely if |x| < R and diverges if |x| > R. To see this, suppose that |x| < R. There exists $y \in S$ such that |x| < y < R, since otherwise |x| would be an upper bound for S smaller than R. Therefore $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely by Proposition 7.9 again. Suppose that |x| > R. If $\sum_{n=0}^{\infty} a_n x^n$ converges, then $\sum_{n=0}^{\infty} a_n y^n$ converges absolutely, and hence converges, if R < y < |x|. But this is a contradiction, since R is an upper bound for S.

Suppose that $R' \geq 0$ is another real number such that $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely if |x| < R' and diverges if |x| > R'. Therefore R' is an upper bound for S (since $x \in S$ implies $|x| \leq R'$). Therefore $R \leq R'$. If R < R' then there exists $x \in \mathbb{R}$ with R < x < R' and hence $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely. But then $x \in S$, contradiction. Therefore R = R'. Therefore R is uniquely determined by the requirement that $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely if |x| < R and diverges if |x| > R.

It follows that

$$(-R,R) \subset S \subset [-R,R]$$

and so S must be an interval. We call S the interval of convergence of the power series $\sum_{n=0}^{\infty} a_n x^n$.

Example: Here are some power series along with their corresponding intervals of convergence:

1.
$$\sum_{n=0}^{\infty} x^n$$
, $S = (-1, 1)$

2.
$$\sum_{n=0}^{\infty} \frac{x^n}{n+1}$$
, $S = [-1, 1)$

3.
$$\sum_{n=0}^{\infty} \frac{x^n}{(n+1)^2}, S = [-1, 1]$$

We look at the second example in some detail. To find the radius of convergence, we want to find the unique real number $R \geq 0$ such that $\sum_{n=0}^{\infty} \frac{x^n}{n+1}$ converges absolutely if |x| < R and diverges if |x| > R. Suppose $x \neq 0$. By the Ratio Test, $\sum_{n=0}^{\infty} \left| \frac{x^n}{n+1} \right|$ converges if |x| < 1 and

diverges if |x| > 1. Therefore the series $\sum_{n=0}^{\infty} \frac{x^n}{n+1}$ converges absolutely if |x| < 1 and diverges if |x| > 1. To determine the interval of convergence we need to examine the cases $x = \pm 1$. If x = 1 then the series becomes the harmonic series $\sum_{n=0}^{\infty} \frac{1}{n+1}$, which diverges. If x = -1 then the series becomes the alternating harmonic series $\sum_{n=0}^{\infty} \frac{(-1)^n}{n+1}$, which converges. Hence the interval of convergence is [-1,1). The other two cases are similar.

In the previous example we introduced the terminology 'radius of convergence'. We make this precise in the following definition.

Definition 7.10: Given a power series $\sum_{n=0}^{\infty} a_n x^n$, the unique 'number' $R \in [0, \infty]$, such that $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely if |x| < R and diverges if |x| > R is called the *radius of convergence*.

Proposition 7.11: Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series and suppose $L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ exists, with $L \in [0, \infty]$. Then $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R = 1/L.

Implicit in the statement of Proposition 7.11 is the understanding that $L = \infty$ means that the sequence $\left|\frac{a_{n+1}}{a_n}\right|$ diverges to ∞ .

Proof: Suppose $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=L<\infty$. If $x\neq 0$, then $\lim_{n\to\infty}\left|\frac{a_{n+1}|x|}{a_n}\right|=L|x|$. Therefore, by the Ratio Test, $\sum_{n=0}^{\infty}|a_nx^n|$ converges if L|x|<1 and diverges if L|x|>1. The series $\sum_{n=0}^{\infty}a_nx^n$ must diverge if L|x|>1, for if it converged, then the series $\sum_{n=0}^{\infty}a_ny^n$ would have to converge absolutely for some y with 1< Ly < L|x|, contradicting the Ratio Test. Hence the radius of convergence of the series is 1/L. The case where $\left|\frac{a_{n+1}}{a_n}\right|\to\infty$ is left as an exercise.

Example: We look at how the previous proposition plays out in two examples.

First, consider the geometric series $\sum_{n=0}^{\infty} x^n$. This is of the form $\sum_{n=0}^{\infty} a_n x^n$ with $a_n = 1$ for all n. Therefore $a_{n+1}/a_n = 1$ for all n. Proposition 7.11 implies that the radius of convergence is R = 1, which is consistent with our previous experience (note that the interval of convergence is (-1,1) in this example).

Secondly, consider the power series $\sum_{n=0}^{\infty} n! x^n$. This is of the form $\sum_{n=0}^{\infty} a_n x^n$ with $a_n = n!$ for all n. Therefore $a_{n+1}/a_n = n+1 \to \infty$. Proposition 7.11 implies that the radius of convergence is R = 0.

Suppose that the power series $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R. Then we can define a function $f: (-R, R) \to \mathbb{R}$ whose value at x with |x| < R is

$$f(x) = \sum_{n=0}^{\infty} a_n x^n.$$

There are several natural questions that we may ask about this function:

- 1. Is f continuous?
- 2. Is f differentiable? Moreover, if f is differentiable, is the derivative f' given by differentiating the power series 'term-by-term', i.e. is $f'(x) = \sum_{n=0}^{\infty} (n+1)a_{n+1}x^n$?
- 3. Is f integrable?

The value of the function f at x with |x| < R is given by $f(x) = \lim_{N \to \infty} s_N(x)$, where

$$s_N(x) = a_0 + a_1 x + \dots + a_N x^N.$$

The reason that the series diverges if |x| > 1 is because, if it converged for some x with |x| > 1 then the series $\sum_{n=0}^{\infty} \frac{y^n}{n+1}$ would have to converge absolutely for y with 1 < y < |x|, contradicting the Ratio Test.

Thus f is the limit of a sequence of functions. Therefore we embark on a study of sequences of functions.

Sequences of functions

Consider the following general situation: suppose $S \subset \mathbb{R}$ and for every $n \in \mathbb{N}$ we have a function $f_n \colon S \to \mathbb{R}$, so that we have a sequence of functions

$$f_1, f_2, f_3, \dots$$

Suppose that $f: S \to \mathbb{R}$ is a function. We want to think about what it means for the sequence of functions $(f_n)_{n=1}^{\infty}$ to converge to the function f. There are two possibilities.

Definition 8.1: We say that the sequence $(f_n)_{n=1}^{\infty}$ converges pointwise to f on S if for every $x \in S$ the sequence of real numbers $(f_n(x))_{n=1}^{\infty}$ converges to f(x), i.e. $\lim_{n\to\infty} f_n(x) = f(x)$ for all $x \in S$.

Definition 8.2: We say that the sequence $(f_n)_{n=1}^{\infty}$ converges uniformly to f on S if for all $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, if $n \geq N$ then $|f_n(x) - f(x)| < \epsilon$ for all $x \in S$.

Notes: we make the following observations.

1. A necessary condition for f_n to converge uniformly to f on S is that the sequence of functions $|f_n - f|$ is eventually bounded on S, i.e. there is a an $N \in \mathbb{N}$ such that for all $n \geq N$, the function $|f_n - f|$ is bounded (for example, taking $\epsilon = 1$ in Definition 8.2 above shows that there is an $N \in \mathbb{N}$ such that $|f_n(x) - f(x)| \leq 1$ for all $x \in S$ if $n \geq N$. Therefore, the sequence (M_n) , defined by $M_n := \sup_{x \in S} |f_n(x) - f(x)|$ is well-defined. Note that $f_n \to f$ uniformly on S if and only if $M_n \to 0$.

To see the equivalence of these statements, suppose firstly that $f_n \to f$ uniformly on S. We prove that $M_n \to 0$. Let $\epsilon > 0$. Choose $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, if $n \geq N$ then $|f_n(x) - f(x)| < \epsilon/2$ for all $x \in S$. Hence if $n \geq N$ then $M_n = \sup_{x \in S} |f_n(x) - f(x)| \leq \epsilon/2 < \epsilon$. Therefore $M_n \to 0$. The proof of the converse statement is left as an exercise.

- 2. If $f_n \to f$ uniformly on S then $f_n \to f$ pointwise on S.
- 3. If $T \subset S$ and $f_n \to f$ uniformly on S, then $f_n \to f$ uniformly on T.

Example: Consider the sequence of functions $(f_n)_{n=1}^{\infty}$ on [0,1] defined by $f_n(x) = x^n$. If $0 \le x < 1$ then $\lim_{n \to \infty} x^n = 0$, while if x = 1 then $\lim_{n \to \infty} x^n = 1$. Therefore $f_n \to f$ pointwise on [0,1] where $f:[0,1] \to \mathbb{R}$ is the function defined by

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1, \\ 1 & \text{if } x = 1. \end{cases}$$

The graphs of the first few functions in this sequence are pictured below

However, $f_n \nrightarrow f$ uniformly on [0,1] (i.e. the convergence is not uniform on [0,1]). To see this, note that

$$\sup_{x \in [0,1]} |f_n(x) - f(x)| = \sup_{x \in [0,1]} |x^n - 0| = \sup_{x \in [0,1]} x^n = 1$$

Therefore $M_n = \sup_{x \in [0,1]} |f_n(x) - f(x)|$ is the constant sequence (1) and hence does not converge to 0. Therefore (f_n) does not converge uniformly to f on [0,1].