Тема: Числовые множества

 1^0 . Натуральные, целые и рациональные числа. Алфавит математики. 2^0 . Конечные и бесконечные десятичные дроби. 3^0 . Отношение равенства на множестве десятичных дробей и его свойства. 4^0 . Равенство и неравенство десятичных дробей. Следствия этих отношений. 5^0 . Линейный порядок на множестве десятичных дробей. 6^0 . Числовая прямая. Интервалы, отрезки и промежутки. Плотность конечных десятичных дробей на любом интервале. 7^0 . Десятичные приближения и их свойства.

6⁰. Важным наглядным свойством любого интервала числовой оси является его геометрическое представление в виде *непрерывного* прямолинейного отрезка. В этой связи выделим следующее важное свойство десятичных дробей.

Лемма (неразрывность интервала). Для любых двух десятичных дробей α и β , $\alpha < \beta$, существует такая конечная десятичная дробь γ , что $\alpha < \gamma < \beta$. Доказательство. Пусть $\alpha < \beta$, α и β — десятичные дроби, причем α не является периодической дробью с периодом 9.

По определению отношения $\alpha < \beta$ существует такой номер p, что $(\beta)_p - (\alpha)_p > 10^{-p}$. По лемме 2 для всех $n \geqslant p$ имеем

$$(\beta)_n - (\alpha)_n > 10^{-p}.$$

Рассмотрим следующую конечную десятичную дробь

$$\gamma = (\alpha)_{p+1} + 2 \cdot 10^{-p-1}$$
.

Считая, что $lpha_{p+1}
eq 9$, получаем $(\gamma)_{p+1} = \gamma$. Далее имеем

$$(\gamma)_{p+1} - (\alpha)_{p+1} = 2 \cdot 10^{-p-1} > 10^{-p-1}.$$

Это по определению означает, что $\alpha < \gamma$. Далее

$$(\beta)_{p+1} - (\gamma)_{p+1} = (\beta)_{p+1} - (\alpha)_{p+1} - 2 \cdot 10^{-p-1} >$$

$$> 10^{-p} - 2 \cdot 10^{-p-1} > 10^{-p-1}.$$

Таким образом, $\gamma < \beta$.

Доказанная лемма переформулируется двумя другими эквивалентными способами. (a) Между любыми двумя вещественными числами лежит конечная десятичная дробь,

(b) Множество конечных десятичных дробей плотно в множестве $\mathbb R$ вещественных чисел.

Для заданной десятичной дроби вводится понятие ее *десятичных приближений*, каж-дое из которых является конечной десятичной дробью.

 7^{0} . Введем для заданной десятичной дроби понятие ее *десятичных приближений* и исследуем свойства этих приближений.

Определение. Пусть десятичная дробь α неотрицительна, $\alpha \geqslant 0$. Тогда конечные десятичные дроби

$$(\alpha)_n = (\alpha)_n$$
 \mathcal{U} $\overline{(\alpha)_n} = (\alpha)_n + 10^{-n}$

называются соответственно нижним и верхним десятичным приближением для α . Если

же десятичная дробь α отрицительна, $\alpha < 0$, то ее нижнее и верхнее десятичные приближения задаются равенствами

$$(\alpha)_n = (\alpha)_n - 10^{-n}$$
 \mathcal{U} $\overline{(\alpha)_n} = (\alpha)_n$.

Из данного определения следует, что для любой десятичной дроби α справедливы следующие оценки:

$$(\alpha)_n - 10^{-n} \leqslant \underline{(\alpha)_n} \leqslant \overline{(\alpha)_n} \leqslant (\alpha)_n + 10^{-n}.$$
 (DA)

Лемма (о десятичных приближениях). Для любой десятичной дроби α справедливы следующие порядковые соотношения:

$$\underline{(\alpha)_n} \leqslant \underline{(\alpha)_{n+1}}, \quad \overline{(\alpha)_n} \geqslant \overline{(\alpha)_{n+1}}, \quad \underline{(\alpha)_n} \leqslant \alpha \leqslant \overline{(\alpha)_n}.$$

3десь n — любое натуральное число.

Доказательство. Рассуждения проведем для нижних десятичных приближений, верхние

десятичные приближения рассматриваются аналогично.

Пусть $\alpha \geqslant 0$. Тогда

$$\underline{(\alpha)_{n+1}} - \underline{(\alpha)_n} = (\alpha)_{n+1} - (\alpha)_n =$$

$$=0,\underline{00...0}\alpha_{n+1}=0,\alpha_{n+1}\cdot 10^{-n}\geqslant 0.$$

Цифра $\mathbf{0}$, охваченная в записи выше нижней фигурной скобкой, повторяется n раз. Та-

ким образом, полученное итоговое неравенство эквивалентно требуемому:

$$\underline{(\alpha)_n} \leqslant \underline{(\alpha)_{n+1}}.$$

Пусть теперь $\alpha < 0$. Тогда

$$\underline{(\alpha)_{n+1}} - \underline{(\alpha)_n} = (\alpha)_{n+1} - 10^{-n-1} - (\alpha)_n + 10^{-n} =$$

$$= -0, \underline{00 \dots 0} \alpha_{n+1} + 0, 9 \cdot 10^{-n} = 0, (9 - \alpha_{n+1}) \cdot 10^{-n}.$$

Учтем, что α_{n+1} — это цифра, т.е. $\alpha_{n+1} \leqslant 9$. Поэтому имеем искомое неравенство и для отрицательных десятичных дробей:

$$\underline{(\alpha)_{n+1}}-\underline{(\alpha)_n}\geqslant 0.$$

Неравенство $\underline{(\alpha)_n} \leqslant \alpha$ докажем методом от противного. Пусть для некоторого номера n имеет место противоположная оценка $\alpha < \underline{(\alpha)_n}$. Тогда применяя определение отношения <

на множестве десятичных дробей, а затем лемму 2, найдем такой номер p, что

$$\left(\underline{(\alpha)_n}\right)_m - (\alpha)_m > 10^{-p}$$
 ДЛЯ $\forall m \geqslant p$. (1)

Если $lpha\geqslant 0$, то для любого номера m>n имеем далее

$$(\underline{(\alpha)_n})_m - (\alpha)_m = \alpha_0, \alpha_1 \dots \alpha_n - \alpha_0, \alpha_1 \dots \alpha_m =$$

$$= -0, 00 \dots 0\alpha_{m+1} \dots \alpha_m \leq 0.$$

Взяв здесь $m > \max{(n,p)}$, получим противоречие с оценкой (1).

Если же lpha < 0, то для любого номера m > n имеем

Взяв здесь $m > \max{(n,p)}$, снова получим противоречие с оценкой (1).

Следовательно, для всех номеров n нижнее десятичное приближение $\underline{(\alpha)_n}$ всегда не больше чем соответствующая ему десятичная дробь: $(\alpha)_n \leqslant \alpha$.

Лемма (критерий отношения <). Десятичная дробь α меньше β тогда и только тогда когда для некоторого номера n верхнее десятичное приближение $\overline{(\alpha)_n}$ меньше нижнего десятичного приближения $\underline{(\beta)_n}$, т.е. когда $\overline{(\alpha)_n} < \underline{(\beta)_n}$.

Доказательство. Пусть десятичная дробь α меньше β . Тогда в соответствии с определением отношения $\alpha < \beta$ существует такой

неотрицательный номер p, что

$$(\beta)_p - (\alpha)_p > 10^{-p}$$
.

При этом $(\alpha)_p < (\beta)_p$, а по лемме 2 при всех n>p справедлива оценка

$$(\beta)_n - (\alpha)_n > 10^{-p}.$$

Взяв n = p + 1, воспользуемся неравенствами (DA) и оценим разность снизу:

$$\underline{(\beta)_n} - \overline{(\alpha)_n} \geqslant (\beta)_n - (\alpha)_n - 2 \cdot 10^{-n} >$$

$$> 10^{-p} - 2 \cdot 10^{-p-1} = 10^{-p} \left(1 - \frac{2}{10}\right) > 0.$$

Следовательно, $\overline{(\alpha)_n} < \underline{(\beta)_n}$.

Пусть теперь для некоторого номера n верхнее десятичное приближение $\overline{(\alpha)_n}$ строго меньше нижнего десятичного приближения $(\beta)_n$:

$$\overline{(\alpha)_n} < \underline{(\beta)_n}.$$

По лемме о десятичных приближениях имеем $\alpha\leqslant \overline{(\alpha)_n}$ и $\underline{(\beta)_n}\leqslant \beta$. Подставляя оба этих неравенства в предыдущее, получаем

$$\alpha \leqslant \overline{(\alpha)_n} < \underline{(\beta)_n} \leqslant \beta.$$

Следовательно, $\alpha < \beta$.

Тема: Последовательности и их пределы

 1^0 . Определение числовой последовательности и ее подпоследовательности. Стационарные и ограниченные последовательности. Монотонные последовательности. Примеры. 2^0 . Определение предела числовой последовательности. Определение окрестности числа. Единственность предела. 3^0 . Пределы верхних и нижних десятичных приближений числа. Ограниченность сходящихся к конечному пределу последовательностей. 4^0 . Подпоследовательности сходящихся последовательностей. 5^0 . Теорема о предельном переходе в неравенстве. Теорема о трех последовательностях.

 1^0 . Если любому натуральному числу n поставлено в соответствие вещественное числовал, то говорят, что задана числовая последовательность $\{a_n\}$.

Каждое вещественное число a_n называется элементом последовательности $\{a_n\}$, а натуральное n — номером элемента a_n .

Множество № натуральных чисел бесконечно и поэтому любая числовая последовательность всегда имеет бесконечное число элементов.

Числовые элементы a_n последовательности могут как совпадать друг с другом, так и раличаться.

Если существует такое натуральное N_0 , что для всех $n\geqslant N_0$ элементы a_n совпадают друг

с другом, т.е. $a_{n}=a_{N_{0}}$ для $\forall\,n\geqslant N_{0}$, то последовательность называется *стационарной*.

Пример. Для любой десятичной дроби α ее верхние десятичные приближения $\overline{(\alpha)_n}$ образуют числовую последовательность, элементы которой — это рациональные числа. Аналогично, ее нижние десятичные приближения $\underline{(\alpha)_n}$ — это тоже числовая последовательность из рациональных чисел.

Определение. Последовательность $\{x_n\}$ вещественных чисел называется ограниченной сверху, если существует такое натуральное число M, что для всех $n\geqslant M$ имеет место неравенство $x_n\leqslant M$.

Если же существует такое натуральное число m, что для всех $n\geqslant m$ имеет место неравенство $x_n\geqslant m$, то последовательность $\{x_n\}$

вещественных чисел называется *ограничен*ной снизу.

Последовательность $\{x_n\}$ вещественных чисел, ограниченная как сверху так и снизу, называется *ограниченной*.

Если существует такое вещественное число M, что для всех $n\geqslant 1$ имеет место неравенство $|x_n|\leqslant M$, то последовательность $\{x_n\}$ является ограниченной.

Например, последовательность $\{x_n\}$ с элементами $x_n = (-1)^n$ — это ограниченная последовательность.

Из леммы о десятичных приближениях заключаем, что для любого вещественного числа x последовательность его нижних десятичных приближений $\underline{(x)_n}$ ограничена сверху. В то же время последовательность верхних десятичных приближений $\overline{(x)_n}$ ограничена снизу.

Определение. Последовательность $\{x_n\}$ вещественных чисел называется монотонно возрастающей, если для любого номера n справедливо неравенство $x_n \leqslant x_{n+1}$. Если же для любого номера n справедливо $x_n \geqslant x_{n+1}$, то $\{x_n\}$ — монотонно убывающая.

Пример 1. Пусть $x_n = n$. Тогда $\{x_n\}$ монотонно возрастает.

Пример 2. Если $x_{m n}=-n$, то $\{x_{m n}\}$ монотонно убывает.

Пример 3. Последовательность $x_n = (-1)^n$ не монотонная.

Пример 4. Для любого вещественного числа x последовательность его нижних десятичных приближений $\{\underline{(x)_n}\}$ монотонно возрастает, оставаясь ограниченной сверху.

Пример 5. Последовательность верхних десятичных приближений вещественного числа монотонно убывает, оставаясь ограниченной снизу.

Теорема (о стационарности). *Если монотон*ная последовательность целых чисел ограничена, то она стационарна.

 $\{x_n\}$ целых чисел монотонно возрастает и

ограничена сверху, $x_n \in \mathbb{Z}$. Докажем, что $\{x_n\}$ стационарна. Предположим противное.

Тогда существует номер $n_1>1$, для которого $x_{n_1}>x_1$, затем существует номер $n_2>n_1$ такой что $x_{n_2}>x_{n_1}$, и так далее.

Таким образом, имеется последовательность $x_{n_k},\; k=1,2,\ldots$, обладающая свойствами

$$k=1,2,\ldots \quad \Rightarrow \quad x_{oldsymbol{n}_k} \in \mathbb{Z} \quad ext{ VI} \quad x_{oldsymbol{n}_k} > x_{oldsymbol{n}_{k-1}},$$

причем $x_{n_0} = x_1$. По условию x_{n_k} — целое, поэтому

$$x_{n_k} > x_{n_{k-1}} \quad \Rightarrow \quad x_{n_k} \geqslant x_{n_{k-1}} + 1.$$

Последовательно применяя это неравенство для номеров $n_k,\ n_{k-1},\ \dots,\ n_1,\$ получаем оценку снизу

$$x_{n_k} \geqslant x_1 + k, \quad k = 1, 2, \ldots$$

По условию существует такое целое число M что $x_{n_k} \leqslant M$. Подставляя эту оценку в предыдущее неравенство, получаем

$$x_1+k\leqslant M,$$
 или $k\leqslant M-x_1,$

где $k=1,2,\ldots$ Это означает, что натуральное число $M-x_1$ должно больше любого другого натурального числа k, что противоречит бесконечности множества натуральных чисел.

Определение. Последовательность $\{x_n\}$ вещественных чисел называется строго монотонно возрастающей, если для любого номера n справедливо строгое неравенство

$$x_n < x_{n+1}$$
.

Если же $x_n > x_{n+1}$ для любого номера n, то $\{x_n\}$ — строго монотонно убывающая.

Как следует из теоремы о стационарности, любая строго монотонная последовательность целых чисел неограничена.

Пусть есть две числовых последовательности $\{x_n\}$ и $\{y_n\}$. Если для любого k существует такой номер $n=n_k$, что $y_k=x_{n_k}$, и при этом последовательность номеров $\{n_k\}$ строго возрастающая, то $\{y_k\}$ называется

подпоследовательностью последовательности $\{x_n\}$. Для обозначения подпоследовательности $\{y_k\}$ применяется двухуровневый индекс: $\{y_k\} \equiv \{x_{n_k}\}$.

Следствие (теоремы о стационарности). *Если монотонно возрастающая последовательность* целых чисел не является стационарной, то у нее найдется строго возрастающая подпоследовательность.

 2^{0} . Дадим определение предела последовательности вещественных чисел, не используя при этом понятия суммы и разности вещественных чисел, которые мы еще не определили.

Определение. Вещественное число x называется пределом числовой последовательности $\{x_n\}$, если выполняется следующее условие: для любого интервала (a,b) такого что x

принадлежит (a,b) существует номер N, обладающий тем свойством, что

$$\forall \, n \geqslant N \implies x_n \in (a,b).$$

Отметим, что номер N, начиная с которого все элементы x_n последовательности попадают в интервал (a,b), существенно от этого

интервала зависит. Тот факт, что x является пределом последовательности $\{x_n\}$, записывается в следующем виде:

$$\lim_{n o\infty}x_n=x,$$
 ИЛИ $(x_n o x$ ПРИ $n o\infty).$

В этом случае говорят также, что x_n сходится к x.

Определение. Любой интервал (a,b), содержащий x, называется окрестностью числа x и обозначается через O(x).

Используя понятие окрестности числа, определение предела можно дать следующим образом:

$$\lim_{n o\infty}x_n=x\Leftrightarrow$$

$$\forall\, O(x)\,\,\exists\, N: \forall\, n\geqslant N \implies x_{m n}\in O(x).$$

Помимо конечных пределов числовых последовательностей рассматриваются также бесконечные пределы, определяемые одним из

следующих соотношений:

$$\lim_{n\to\infty}x_n=+\infty\Leftrightarrow$$

$$orall M \; \exists \, N : orall \, n \geqslant N \implies x_{m n} > M, \qquad (+\infty)$$

$$\lim_{n o \infty} x_n = -\infty \Leftrightarrow$$

$$\forall m \; \exists \, N : \forall \, n \geqslant N \implies x_n < m.$$
 $(-\infty)$

Здесь $-\infty$ и $+\infty$ — это соответственно левая и правая бесконечно удаленные точки

числовой прямой

$$\mathbb{R} = \{x \mid -\infty < x < +\infty\}.$$

Расширенной числовой прямой называется множество

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\} \cup \{+\infty\}.$$

Окрестностью точки $\{-\infty\}$ называется любой интервал вида $(-\infty, a)$, а окрестностью точки $\{+\infty\}$ — любой интервал вида $(b, +\infty)$.

Данное выше определение предела является корректным: если предел последовательно-сти существует, то он единствен.

Доказательство единственности основано на следующем свойстве.

Лемма (об отделимости). Если $x \in \mathbb{R}$ и $y \in \mathbb{R}$, $x \neq y$, то существуют непересекающиеся окрестности O(x) и O(y), $O(x) \cap O(y) = \emptyset$.

 \mathcal{Q} оказательство. Пусть x < y. Если $x = -\infty$ и $y = +\infty$, то возьмем

$$O(x) = (-\infty, a_1)$$
 $O(y) = (a_2, +\infty),$

где $a_1 < a_2$. Из определения интервала следует, что $O(x) \cap O(y) = \emptyset$.

Пусть числа x и y конечны. Тогда по лемме о неразрывности интервала существует конечная десятичная дробь a, лежащая между x и y: x < a < y. В этом случае возьмем

 $O(x)=(-\infty,a)$ и $O(y)=(a+1,+\infty).$ Тогда справедливо равенство $O(x)\cap O(y)=\emptyset.$

Пусть $x=-\infty$, а число y конечно. Тогда возьмем $a=\underline{(y)_0}-1$, $b=\overline{(y)_0}+1$ и заметим, что интервал (a,b) представляет собой некоторую окрестность O(y) числа y.

Взяв $O(x) = (-\infty, a-1)$, получаем $O(x) \cap O(y) = \emptyset$. Аналогично рассматривается случай, когда x — конечно, а $y = +\infty$.

Теорема (единственности предела). Числовая последовательность может иметь только один предел (конечный или бесконечный).

Доказательство. Предположим, что последовательность $\{x_n\}$ имеет два разных предела:

$$\lim_{n \to \infty} x_n = x, \quad \lim_{n \to \infty} x_n = y, \quad x \neq y.$$

По лемме об отделимости существуют окрестности O(x) и O(y) такие что $O(x) \cap O(y) = \emptyset$.

Из условия, что x и y — пределы, получаем

$$\exists N_1: \forall \, n\geqslant N_1 \quad \Longrightarrow \quad x_n\in O(x),$$

$$\exists N_2 : \forall n \geqslant N_2 \implies x_n \in O(y).$$

Возьмем $n=\max\{N_1,N_2\}$. Тогда $x_n\in O(x)$ и одновременно $x_n\in O(y)$. Следовательно, пересечение $O(x)\cap O(y)$ не пусто, $O(x)\cap O(y)\neq\emptyset$. Это противоречит выбору окрестностей.

Пример 6. Любая стационарная последовательность имеет предел:

$$orall n \quad x_{m n} = C \quad \Rightarrow \quad \lim_{m n o \infty} x_{m n} = C.$$

Пример 7. Для любого вещественного числа $m{x}$ справедливы предельные равенства

$$\lim_{n o \infty} \underline{(x)_n} = x$$
 V $\lim_{n o \infty} \overline{(x)_n} = x.$ (L)

 \mathcal{A} оказательство. Пусть (a,b) — произвольная конечная окрестность вещественного числа

x, то есть a < x < b. Тогда по критерию отношения < имеем

$$\exists N: \overline{(a)_N} < (x)_N.$$

Следовательно, в соответствии со свойствами десятичных приближений справедливы неравенства

$$a \leqslant (a)_{N} < \underline{(x)_{N}} \leqslant x < b,$$

$$orall \, n \geqslant N \quad \implies \quad \underline{(x)_N} \leqslant \underline{(x)_n} \leqslant x.$$

Таким образом, для любого $n\geqslant N$ имеем неравенства $a<\underbrace{(x)_n}< b$. Это и означает, по определению, что $\lim_{n\to\infty} \underbrace{(x)_n}=x$.

Второе из равенств (L) доказывается аналогично. В частности, для x=0 имеем равенство $\overline{(x)_n}=10^{-n}$. Следовательно, существует $\lim_{n\to\infty}10^{-n}$, равный нулю: $\lim_{n\to\infty}10^{-n}=0$.

Пример 8. Последовательность $x_n = (-1)^n$ не имеет предела.

Пример 9.
$$\lim_{n\to +\infty} n = +\infty$$
, $\lim_{n\to -\infty} n = -\infty$.

Пример 10. Последовательность $x_n = (-1)^n n$ не имеет ни конечного, ни бесконечного предела.

Доказательство. Предположим противное, то есть пусть существует вещественное число x такое что $x_n \to x$ при $n \to \infty$. Полагаем

$$a = \underline{(x)_0} - 1, \quad b = \overline{(x)_0} + 1, \quad N = \max\{|a|, |b|\}.$$

Здесь N — натуральное.

Интервал (a,b) представляет собой окрестность O(x), причем вне этой окрестности лежит любое число x_n с номером n>N: если n

— нечетное, то $x_n\leqslant a$, если же n — четное, n>N, то $x_n\geqslant b$. Это противоречит определению предела. Аналогично рассматривается предположение, что $x=+\infty$ и $x=-\infty$.

Числовая последовательность называется сходящейся, если у нее имеется конечный предел. В противном случае последовательность называется расходящейся.

Иногда говорят, что последовательность, имеющая пределом $\pm \infty$, сходится (расходится) к $\pm \infty$.

Теорема (об ограниченности). *Если после*довательность имеет конечный предел, то она ограничена.

 \mathcal{A} оказательство. Пусть $x_n \to x$ при $n \to \infty$, где x — вещественное число. Возьмем его про-извольную конечную окрестность — интер-

вал O(x) = (a,b). Тогда существует номер N такой что при всех $n \geqslant N$ справедливы неравенства $a < x_n < b$.

Следовательно, вне интервала (a,b) может находиться лишь конечное число элементов рассматриваемой последовательности, а именно числа $x_1, x_2, \ldots, x_{N-1}$. Полагаем

$$m = \min\{a, b, x_1, x_2, \dots, x_{N-1}\},$$

а также

$$M = \max\{a, b, x_1, x_2, \dots, x_{N-1}\}.$$

Тогда для всех $n\geqslant 1$ имеем $m\leqslant x_n\leqslant M$. Это и означает, что рассматриваемая последовательность $\{x_n\}$ ограничена.

Обратное теореме утверждение неверно: последовательность $x_n=(-1)^n$, $n=1,2,\ldots$, ограничена, но предела не имеет. Докажите в качестве упражнения, что если последовательность сходится к $+\infty$, то она ограничена снизу и неограничена сверху.

 4^0 . Переход от сходящейся последовательности к ее к подпоследовательности не приводит к нарушению сходимости.

Теорема (о подпоследовательностях). Любая подпоследовательность сходящейся последовательности также сходится и имеет тот же самый предел.

 \mathcal{A} оказательство. Пусть $\{x_{n_k}\}$ — подпоследовательность $\{x_n\}$ и существует $\lim_{n o \infty} x_n = x$. Тогда

$$orall \, O(x) \quad \exists \, N : orall \, n \geqslant N \quad x_{m n} \in O(x).$$

Но $n_k\geqslant k$ и поэтому для всех $k\geqslant N$ число x_{n_k} принадлежит O(x). Это означает, по определению предела, что $\lim_{k\to\infty}x_{n_k}=x$.

 5^0 . Установим правила предельного перехода в неравенствах, связывающих числовые последовательности.

Теорема. Пусть пределы двух числовых последовательностей связаны неравенством

$$x = \lim_{n \to \infty} x_n < y = \lim_{n \to \infty} y_n.$$

Tогда существует такой номер N, что при всех $n\geqslant N$ справедлива оценка $x_n< y_n$.

Доказательство. Из неравенства x < y по лемме о неразрывности интервала следует, что существует такое вещественное число a, что x < a < y. По определению предела имеем

$$\exists N_1: \forall n \geqslant N_1 \implies x_n \in (-\infty, a);$$

$$\exists \, N_2 : \forall \, n \geqslant N_2 \quad \Longrightarrow \quad y_n \in (a, +\infty).$$

Возьмем $N = \max{\{N_1, N_2\}}$, тогда для всех номеров $n \geqslant N$ имеем $x_n < a < y_n$.