# DEBUNKING FAKE NEWS BY LEVERAGING SPEAKER CREDIBILITY AND BERT BASED MODEL

Thoudam Doren Singh, Divyansha, Apoorva Vikram Singh, Anubhav Sachan, Abdullah Khilji

IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT 2020)

### TABLE OF CONTENTS

Introduction

Motivation

Feature

Extraction

Architecture

Results

# **INTRODUCTION**

#### **FAKE NEWS**

Fake news is a type of propaganda that consists of deliberate misinformation or hoaxes spread via traditional print and broadcast news media or online social media.

#### INTRODUCTION

# A new study kills the notion that fake news swung the US election to Trump

Singapore Study auggeste that exposure to memorination vaccines

A team of Howard University researchers wants to know how disinformation impacts Black people

Facebook, Google extend political ad ban amid misinformation rise

Trump may owe his 2016 victory to

'fake news,' new study suggests

# **MOTIVATION**

#### **MOTIVATION**

- Most of the fake news content is created by fabricating true news so it is more reasonable to perform multi-class classification that can help us assess the level of falsification of the fake news.
- Adding additional details about the subject can make the prediction model more efficient by assisting it in making more informed decisions.

# FEATURE EXTRACTION

#### **DATASETS**

| LIAR                 | Speaker2Credit        |
|----------------------|-----------------------|
| Statement            |                       |
| Topic                |                       |
| Speaker Profile      | Global Credit History |
| Credibility Count    |                       |
| Six different labels |                       |

The choice of a political news dataset was due to the fact that false political news travels nearly three times faster and appeals to a larger audience than news of any other category.

#### **FEATURES**

#### Speaker Statement

#### Speaker Profile

#### Attributes

job of the speaker, political party affiliation of the speaker, state of residency of the speaker, topic on which statement is made, and the location of the speech

#### Speaker Credibility Speaker2Credit

#### CREATING CREDIT VECTORS FROM CREDIT HISTORY

$$credit_{i_{\alpha}} = \left(\frac{count(\mu_0|i) + \alpha}{\sum_{\mu} count(i) + 5\alpha} \cdots \frac{count(\mu_5|i) + \alpha}{\sum_{\mu} count(i) + 5\alpha}\right)$$

#### **FEATURE GENERATION**





#### PROPOSED ARCHITECTURE





#### **EXPERIMENTAL SETUP**

- Dataset: LIAR (labeled articles from Politifact with speaker credentials)
- · Baselines:
  - Hybrid-CNN (Proposed in LIAR dataset paper) [5]
  - Multi-source multi-class fake news detection (MMFD) [2]
  - LSTM-Attention [4]
  - Bi-LSTM [1]
  - CreditLSTM [3]
- Evaluation Metric: Accuracy (Fraction of dataset correctly labeled)

#### **RESULTS**



Figure 1: Accuracy Curves for Different Sequence Models

| Model    | Accuracy | Batch size |
|----------|----------|------------|
| LSTM     | 0.427827 | 64         |
| CNN      | 0.442835 | 32         |
| LSTM-CNN | 0.468040 | 128        |
| RCNN     | 0.443182 | 128        |

Table 1: Accuracy comparison among different sequence encoding models.

| Features                 | Accuracy |
|--------------------------|----------|
| Word2Vec                 | 0.2636   |
| BERT                     | 0.2718   |
| Word2Vec + MetaData      | 0.2741   |
| BERT + MetaData          | 0.3099   |
| BERT + MetaData + Credit | 0.4680   |

Table 2: Performance analysis of different feature models

| Model                       | Accuracy |
|-----------------------------|----------|
| Hybrid-CNN [ <u>5</u> ]     | 0.274    |
| MMFD [ <u>2</u> ]           | 0.348    |
| LSTM-Attention [ <u>4</u> ] | 0.415    |
| Bi-LSTM [ <u>1</u> ]        | 0.415    |
| CreditLSTM [ <u>3</u> ]     | 0.457    |
| BERT + MetaData + Credit    | 0.4680   |

Table 3: Performance of previous works on the LIAR dataset

#### REFERENCES I



M. K. Balwant.
Bidirectional lstm based on pos tags and cnn architecture
for fake news detection.

In 2019 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pages 1–6, 2019.



H. Karimi, P. Roy, S. Saba-Sadiya, and J. Tang. Multi-source multi-class fake news detection. In Proceedings of the 27th International Conference on Computational Linguistics, pages 1546–1557, Santa Fe, New Mexico, USA, Aug. 2018. Association for Computational Linguistics.

#### REFERENCES II



Exploiting a speaker's credibility to detect fake news. In Proceedings of Data Science, Journalism & Media workshop at KDD (DSJM'18), 2018.

Y. Long, Q. Lu, R. Xiang, M. Li, and C.-R. Huang. Fake news detection through multi-perspective speaker profiles.

In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pages 252–256, Taipei, Taiwan, Nov. 2017. Asian Federation of Natural Language Processing.

#### REFERENCES III



W. Y. Wang.

"liar, liar pants on fire": A new benchmark dataset for fake news detection.

In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 422–426, 2017.

## **QUESTIONS?**

Reach out: anubhav\_ug@ece.nits.ac.in twitter.com/anubhav4sachan