Insper Supercomputação

Recaptulando...

- Diferenciar dispositivos de latência (CPUs) e de throughput (GPUs)
- Compreender o layout de memória e transferência de dados em sistemas heterogêneos (CPU

 GPU)
- Compilar primeiros programas na GPU

CPUs e GPUs

GPU Optimized for Parallel Tasks

Insper

Speed vs Throughput

Speed

Throughput

Which is better depends on your needs...

CPU vs GPU

 CPUs para partes sequenciais onde uma latência mínima é importante

 CPUs podem ser 10X mais rápidas que GPUs para código sequencial

- GPUs para partes paralelas onde a taxa de transferência(throug hput) bate a latência menor.
 - GPUs podem ser 10X mais rápidas que as CPUs para código paralelo

CPU vs GPU

Minimum Change, Big Speed-up

Programando para GPU

- Compilador especial: <u>nvcc</u>
- Endereçamento de memória separado
 - Dados precisam ser copiados de/para GPU
 - Isto leva tempo
- Funções especiais (kernels) para rodar na GPU

Memória em GPUs

Código da GPU (device) pode:

- Cada thread ler e escrever nos registradores
- Ler e escrever na memória global

Código da CPU (host) pode:

 Transferir dados de e para memória global

Fluxo dos programas

Parte 1: copia dados CPU → GPU

Parte 2: processa dados na GPU

Parte 3: copia resultados GPU → CPU

Acessos em memória

Encontrando o dado

Posição do dado = Linha x Elementos + Coluna = 2 x 4 + 1 = 9

Operações atômicas na DRAM

Todas as operações atômicas são serializadas

Operações atômicas na Cache

- Latência media, aproximadamente 1/10 em comparação a DRAM
- Compartilhado entre todos os blocos

Operações atômicas na Shared Memory

- Latência muito pequena
 - Privado para cada bloco de thread
 - Menor impacto global

Impacto menor

