USA / Canada (https://www.strongtie.com/literature-and-links-canada) | Change Location...

Search strongtie.com

(https://www.strongtie.com)

Strong-Tie

www.strongtie.com

Fastener Designer is a quick, easy-to-use tool for providing Simpson Strong-Tie structural screw alternatives to specified standard NDS fasteners in withdrawal, lateral load parallel-to-grain, lateral load perpendicular-to-grain, multi-ply, ledger connections and sole plate to rim board. This application provides detailed load calculations for both the NDS fastener and the recommended Simpson Strong-Tie structural screw.

Simpson Strong-Tie Fastener Substitution Options

Fastener Type	Click on a fastener tile bel	low to view detailed information regarding the chosen fastener substitution	n
✓ All Types ☐ SDWH TIMBER-HEX Screw ☐ SDWS FRAMING Screw ☐ WSNTL SUBFLOOR Screw ☐ SDS HEAVY-DUTY CONNECTOR Screw ☐ SDWH TIMBER-HEX SS Screw	Supply (30) 3" Strong- Drive® WSNTL SUBFLOOR Screws WSNTL3S	Supply (11) 0.195" × 6" Strong-Drive® SDWS LOG Screws SDWS19600	
☐ SDWS TIMBER Screw ☐ DWP Wood SS Screw	Low	Low 01	/(

☐ SDWS LOG Screw

☐ SDWH TIMBER-HEX HDG Screw

Fastener Designer Fastener Type Corrosion Resistance
☐ All Types ☑ Low
☐ Medium ■
☐ High ■
☐ Severe ■

☐ CALCULATION RESULTS FASTENER DESIGNER AUGUST 01, 2019

O DECTART A CREATE BRE

Input

Input	SST Fastener Capacity
Design Method	Allowable Stress Design (ASD)
Code	NDS 2012/2015
Main Member Thickness, t _m (in)	4
Side Member Thickness, t _s (in)	2
Dowel Length, I (in)	6.0
Main Member Bearing Angle, $\theta_{\rm m}$ (deg)	0
Side Member Bearing Angle, $\theta_{\rm s}$ (deg)	0
Main Member Specific Gravity, G _m	0.5
Side Member Specific Gravity, G _s	0.5
Actual Diameter, D (in)	0.197
Load (lb)	4309
Load Duration Factor, C _D	1.6
Temperature Factor, C _t	1
Wet Service Factor, C _M	1
End Grain Factor, C _{eg}	1

Calculation

Calculation	SST Fastener Capacity
Dowel Root Diameter, D _r (in)	0.177
Main Member Dowel Bearing Length, \mathbf{I}_{m} (in)	4.000
Side Member Dowel Bearing Length, I _s (in)	2.000
Main Member Dowel Bearing Strength, F _{em} (psi)	4637
Side Member Dowel Bearing Strength, F _{es} (psi)	4637
Dowel Bending Yield Strength, F _{yb} (psi)	175000
	1
	2
	0.68
	1.04
	1.14

01/08/2019, 12:46

`	70191101	indepentation and in the state of the state
	Penetration, p (in)	4.00
	Minimum Penetration Requirement, p _{min} (in)	6D = 1.18
	Minimum Penetration Requirement Met	Yes

End/Edge Distance and Spacing

	SST Fastener Capacity
End Distance, Edge Distance, and Spacing	See figure below the fastener image for end distance, edge distance, and spacing requirements

Calculated Reference Design Value

Yield Mode 😈	Yield Limit Equation ⊕	SST Fastener Capacity	
		Yield Limit, Z	Reduction Term, \mathbf{R}_{D}
Mode I _m		Z = 1446 lb	$R_{D} = 2.3$
Mode I _s		Z = 723 lb	$R_D = 2.3$
Mode II		Z = 491 lb	R _D = 2.3
Mode III _m		Z = 500 lb	R _D = 2.3
Mode III _s		Z = 275 lb	R _D = 2.3
Mode IV		Z = 227 lb	R _D = 2.3

Minimum Yield Value @

Z = 227 lb

Tested Yield Value @

Z = 265 lb

Adjusted Yield Value **②**

Z = 424 lb

Solution

Supply (11) 0.195" \times 6" Strong-Drive® SDWS LOG Screws SDWS19600

Strong-Drive® SDWS LOG Screw (https://www.strongtie.c

Structural Wood-to-Wood Connections

The Strong-Drive SDWS Log screw is a structural wood screw available in longer lengths and is designed for log-home construction and general interior applications. These 0.220"- and 0.195"-diameter structural fasteners require less torque to install than comparable fasteners. The large diameter head pulls logs down easily, eliminating the need to use extra washers.

Features:

- Serrated thread reduces log splitting and damage.
- Patented SawToothTM point ensures fast starts, reduces installation torque and eliminates the need for pre-drilling in most applications.
- Deep 6-lobe T-40 recess reduces cam-out, making driving easier.
- Large washer head provides maximum bearing area(0.75" head diameter).
- Size identification on all SDWS screw heads.
- Low-profile head makes countersinking easy.

Notes:

- Loads are based on installation into side grain of the wood with the screw axis perpendicular to the face of the member.
- Adjusted yield value includes the adjustment factors selected above.
- 3. The tested yield value is based on testing conducted in accordance with AC233. It is the average ultimate test value

SDWS Spacing Requirements

drive-sdws-log

https://www2.strongtie.com/webapps/fastenerd...

Design Specification for Wood Construction.

4. For all other general information refer to the <u>Fastening Systems Catalog (http://www.strongtie.com/resources/literature/fastening-systems-catalog)</u>

Codes/Standards:

IAPMO-UES ER-192 (http://www.iapmoes.org/Documents/ER 0192.pdf),

City of Los Angeles PR25906 (https://embed.widencdn.net/pdf/plus/ssttoolbox/kytlmm6k2b/COLA_PR_25906.pdf)

Product Information:

Strong-Drive SDWS LOG Screw (https://www.strongtie.com/strongdrive_interiorwoodscrews/sdws-e_screw/p/strong-drive-sdws-log-screw)

U.S. Patents: 9,523,383

Ф веставт

DEATE DOE

Printed August 1, 2019 from https://www2.strongtie.com/webapps/fastenerdesigner/Default.aspx?Design=1&Conn=1&Dir=0&Load=2

© 2015 Simpson Strong-Tie Company Inc.