

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería Mecánica Automotriz

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA Transferencia de Calor

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL

Séptimo	311073	102
SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS

OBJETIVO(S) GENERAL(ES)DE LA ASIGNATURA

Proporcionar al participante los conocimientos para enfrentar problemas industriales que involucren fenómenos termodinámicos e hidrodinámicos dentro de la ingeniería eléctrica, química y mecánica.

TEMAS Y SUBTEMAS

1. Introducción

- 1.1 Relación de la transferencia de calor con la termodinámica
- 1.2 Leyes básicas de la transferencia de calor
- 1.3 Analogía entre el flujo de calor y el flujo eléctrico

2. Conducción de calor en estado estable

- 2.1 Métodos de análisis
- 2.2 Obtención de la ecuación de conducción de calor
- 2.3 Solución analítica
- 2.4 Métodos analógicos
- 2.5 Métodos numéricos de relajación

3. Conducción de calor en estado inestable

- 3.1 Flujo de calor transitorio y periódico
- 3.2 Flujo de calor en una placa infinita
- 3.3 Método gráfico
- 3.4 Método numérico

4. Transferencia de calor por radiación

- 4.1 Absorción , reflexión y transmisión de radiación
- 4.2 Ley de Kirchhoff y cuerpo negro
- 4.3 Intercambio de calor por radiación entre superficies negras
- 4.5 Flujo de calor entre superficies grises
- 4.6 Radiación combinada con convección y conducción
- 4.7 Radiación debida a gases, vapores y flamas
- 4.8 Origen de la Radiación solar
- 4.9 Interacción de la radiación solar con la atmósfera
- 4.10 Factor de visión
- 4.11 Intercambio de calor en recintos cerrados
- 4.12 Datos empíricos para la absorción y emisión de radiaciones por gases no luminosos

5. Convección Libre

- 5.1 Parámetros de similitud para convección libre
- 5.2 Cálculo de coeficientes de calor por convección
- 5.3 Mecanismo de transporte de energía y flujo de fluidos
- 5.4 Calculo de la conductancia por unidad de superficie
- 5.5 Convección libre causada por fuerzas centrifugas
- 5.6 Convección originada por discos, conos, esferas y cilindros giratorios

6. Convección forzada

de ingeniería mecánica AUTOMOTRIZ

- 6.1 Analogía entre transferencia de calor y transferencia de cantidad de Movimiento
- 6.2 Convección forzada dentro de tubos y ductos
- 6.3 Coeficiente de transferencia de calor para flujo turbulento
- 6.4 Convección forzada en flujo laminar
- 6.5 Convección forzada sobre superficies exteriores
- 6.6 Flujo transversal en haces de tubos

7. Cambiadores de calor

- 7.1 Flujo transversal en haces de tubos
- 7.2 Diseño y selección de cambiadores de calor
- 7.3 Tipos básicos de cambiadores de calor
- 7.4 Corrección de DML para cambiadores de flujo cruzado
- 7.5 Eficiencia de los cambiadores de calor
- 7.6 Factores de incrustación

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora. Asimismo se desarrollarán programas de cómputo sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACION Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final.

Además se considerará el trabajo extra clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

Básica:

Yunus A. Cengel, Afshin Ghajar, "Transferencia de calor y masa", Ed. McGraw Hill, 4ª edicion 2011 Necati Ozisik, "Transferencia de calor", Mc Graw Hill Kern, D. Q., "Procesos de transferencia de calor", CECSA 1992

Valiente, B. A. " Problemas de transferencia de calor ", Limusa 1988

Frank Kreith, M. S. Bohn, "Principios de transferencia de calor", Ed. Thompson 2001, 6ª edicion J. P. Holman, Transferencia de calor, 8 ed. McGrall Hill, 1998.

F. P. Incropera, Dewitt, Fundamentos de transferencia de calor, 4 edición Prentice Hall, 1999.

A. F. Mills, Transferencia de calor, McGraw Hill, 1997.

Manrique , J. A. " Transferencia de calor " , Ed. HARLA

PERFIL PROFESIONAL DEL DOCENTE

Maestro o Doctor en Ciencias de la Ingeniería Mecánica, con especialidad en térmica.

M.C VÍCTOR MANUEL CRUZ MARTÍNEZ JEFE DE CARRERA

DR. AGUSTIN SANTIAGO ALVARADO VICE-RECTOR ACÂDEMICO

x A C **TEFATURA DE CARBERA** DE INGENIERÍA MECÁNICA AUTOMOTEIZ