

образовательная программа «Анализ данных в биологии и медицине», ФКН ВШЭ

Анализ эволюции семейств генов у аллотетраплоида Capsella bursa-pastoris

Выпускная квалификационная работа магистра Элины Шнайдер

Научный руководитель: м.н.с. лаборатории геномики растений ИППИ РАН Клепикова А. В.

ПОЛИПЛОИДИЯ У ВЫСШИХ РАСТЕНИЙ

- Основной фактор в эволюции высших растений
- Позволяет осваивать нехарактерные для диплоидных видов территории

PACIPOCTPAHEHUE CAPSELLA BURSA-PASTORIS

ПОПУЛЯЦИОННАЯ СТРУКТУРА И ПРОИСХОЖДЕНИЕ CAPSELLA BURSA-PASTORIS

- Аллотетраплоид: субгеном A (*C. orientalis*), субгеном В (предок *C. rubella/C. grandiflora*)
- На основании морфологических и генетических данных выделено три большие популяции: Дальневосточная, Европейская и Ближневосточная
- Филогенетический анализ пластидных геномов указывает на иное происхождение растений из Дальневосточной популяции

Фрагмент филогенетического дерева из курсовой работы

ЦЕЛЬ ИССЛЕДОВАНИЯ:

поиск различий в геномах и генах растений из разных популяций, которые могут помочь в изучении того, каким образом вид *C. bursa-pastoris* смог распространиться по всей планете и приспособиться ко всем климатическим поясам

ЗАДАЧИ:

- Выявить межпопуляционные различия на уровне структуры генома
- Установить, происходит ли поток генов между популяциями
- Идентифицировать гены и их принадлежность к семействам, наиболее различающиеся между популяциями
- Найти для каждой популяции гены из сети ответа на холодовой стресс, где наблюдается положительный отбор

ИСПОЛЬЗОВАННЫЕ ДАННЫЕ

Данные WGS 68 линий:

- 25 растений из европейской популяции (EUR)
- 10 из ближневосточной (МЕ)
- 33 растения из дальневосточной (ASI)

Источники данных:

- SRA NCBI (55 линий)
- Лаборатории
 эволюционной геномики
 ФББ МГУ (13 линий)

ПРЕДВАРИТЕЛЬНАЯ ОБРАБОТКА ДАННЫХ

- Триммирование (Trimmomatic-0.3)
- Картирование на ядерный референсный геном *C. bursa-pastoris* (Kasianov et al., 2017), взятый из базы NCBI Genome, представленный 8186 скаффолдами и 32319 контигами (bwa mem-0.7.12)
- Генотипирование (GATK4) и фильтрация по покрытию

	Медианное	Медианное
	количество	количество
	SNP	инделей
ASI	563222	96496
EUR	373814	62736
ME	581323	95325

ОПИСАТЕЛЬНЫЕ СТАТИСТИКИ

АНАЛИЗ ГЕНЕТИЧЕСКОГО СМЕШЕНИЯ

АНАЛИЗ ГЕНОВ С ВЫСОКИМ F_{ST}

	Среднее значение Fst	Максимальное значение Fst	Количество генов с Fst > 0.25
ASI-ME	0.049	0.49	108
ASI-EUR	0.056	0.48	112
ME-EUR	0.047	0.47	27

АНАЛИЗ ГЕНОВ С ВЫСОКИМ F_{ST} : ДАЛЬНЕВОСТОЧНАЯ И БЛИЖНЕВОСТОЧНАЯ ПОПУЛЯЦИИ

Ген *Сbр19252* – пример субфункциализации

- Семейство и функции не известны
- Ортолог у *A. thaliana* экспрессируется в тычинках и розеточных листья при холодовом стрессе
- Экспрессируется в отвечает на стресс в семядолях
- Гомеолог экспрессируется в тычинках

Trava.org

АНАЛИЗ ГЕНОВ С ВЫСОКИМ F_{ST} : БЛИЖНЕВОСТОЧНАЯ И ЕВРОПЕЙСКАЯ ПОПУЛЯЦИИ

Регулятор Flowering Locus C

- 4 несинонимичные замены, уникальные для большинства растений из европейской популяции
- 2 несинонимичные замены, уникальные для растений из ближневосточной популяции

Фенотипы мутантов A. thaliana:

- удлиненные листья с рассеченной листовой пластинкой
- позднее зацветание

Различия между популяциями:

- очень длинные листья с рассеченным краем у ближневосточных растений
- переход к цветению у европейских линий происходит на третьючетвертую неделю после прорастания, у ближневосточных растений - на второй неделе.

АНАЛИЗ ГЕНОВ С ВЫСОКИМ F_{ST} : ДАЛЬНЕВОСТОЧНАЯ И ЕВРОПЕЙСКАЯ ПОПУЛЯЦИИ

Ответ на каррикины

• Каррикины - класс регуляторных веществ, выделяемых во время сгорания растения

- Способствуют прорастанию семян многих видов растений, в особенности тех, которые обитают в местах частых природных пожаров
- 4 несинонимичные замены, уникальные для всех растений из дальневосточной популяции

ПОЛОЖИТЕЛЬНЫЙ ОТБОР В ГЕНАХ, УЧАСТВУЮЩИХ В ОТВЕТЕ НА ХОЛОДОВОЙ СТРЕСС

Ортологи 1352 генов *A. thaliana* из сети ответа на холодовой стресс

	Дальневосточная	Европейская	Ближневосточная
	(ASI)	(EUR)	(ME)
Субгеном А	74	49	36
Субгеном В	82	44	42
Всего генов	167	99	83

ПОЛОЖИТЕЛЬНЫЙ ОТБОР В ГЕНАХ, УЧАСТВУЮЩИХ В ОТВЕТЕ НА ХОЛОДОВОЙ СТРЕСС

ВЫВОДЫ

- Анализ покрытия линий *Capsella bursa-pastoris* показал, что геномы линий, принадлежащих к дальневосточной (азиатской) популяции, имеют наибольшие отличия от линий остальных популяций, что соответствует ранее полученным данным о независимом происхождении дальневосточной популяции.
- Популяции Capsella bursa-pastoris географически и репродуктивно не изолированы, и между ними происходит поток генов
- Сравнение уровня генного полиморфизма в линиях *Capsella bursa-pastoris* позволил обнаружить гены, наиболее различающиеся между популяциями. Среди них наиболее часто встречались гены, участвующие в ответе на биотические и абиотические стрессы, в формировании клеточной стенки и метаболических процессах, что может объяснять морфологические и физиологические различия растений, принадлежащих разным популяциям.
- Все три популяции Capsella bursa-pastoris имеют разные направления эволюции сети ответа на холодовой стресс, что может являться одной из причин широкого ареала вида Capsella bursa-pastoris и его экологической пластичности.