	Hashing and Hash Tables
1.	Suppose our hash function simply returns 17 every time it is called. Is such a hash function legal? If so, describe the effect of using it. If not, explain why.
2.	Describe an algorithm to delete an element in a hash table using linear probing.
Q	Describe the algorithm used to delete an element in a hash table using separate chaining.
3.	Describe the algorithm used to delete an element in a hash table using separate chaming.
4.	Insert the keys E A S Y Q U T I O N in that order into an initially empty table of $M=5$ lists, using separate chaining. Use the hash function $11k\%M$ to transform the kth letter of the alphabet into a table index. You do not need to resize the hash table as a part of your solution. Show only the final hash table after all insertions have been completed.
5.	Insert the keys E A S Y Q U T I O N in that order into an initially empty table of size $M=16$ using linear probing. Use the hash function $11k\%M$ to transform the kth letter of the alphabet into a table index. You do not need to resize the hash table as a part of your solution. Show only the final hash

Homework 5

 ${\rm CompSci~404.1}$

Name: __

table after all insertions have been completed.

	$6-2\\2-0$	$5-2\\2-3$	$5-10\\4-1$
	3 - 6	8 - 1	1 - 11
	$11-8\\8-4$	$7 - 11 \\ 7 - 8$	$\begin{array}{c} 0-6\\ 4-8 \end{array}$
	10 - 3	3 - 10	• ~
	T)		
	Figure	1: A set of vertices connected within a	graph
Г			
L			
J	Undirected Graphs	S	
6. V	_	memory, when is it better to use an ad	jacency list? When is it better to
6. V	When representing a graph in see an adjacency matrix?		
6. V	When representing a graph in see an adjacency matrix?	memory, when is it better to use an ad	
6. V	When representing a graph in see an adjacency matrix?	memory, when is it better to use an ad	
6. V	Vhen representing a graph in se an adjacency matrix?	memory, when is it better to use an ad	
6. V	Vhen representing a graph in se an adjacency matrix?	memory, when is it better to use an ad	
6. V	Vhen representing a graph in se an adjacency matrix?	memory, when is it better to use an ad	
6. V	Vhen representing a graph in se an adjacency matrix?	memory, when is it better to use an ad	
6. V	Vhen representing a graph in se an adjacency matrix?	memory, when is it better to use an ad	
6. V	Vhen representing a graph in se an adjacency matrix?	memory, when is it better to use an ad	
6. V	Vhen representing a graph in se an adjacency matrix?	memory, when is it better to use an ad	
6. V	Vhen representing a graph in se an adjacency matrix?	memory, when is it better to use an ad	

Name:

Homework 5

CompSci 404.1

8. Given the list of vertices and edges in Figure 1, write out the resulting adjacency list once the graph is loaded into memory.

Co	mpSci 404.1	Name:				Homework 5		
9.	Does breadth f the root of the	irst search tell u search?	ıs anything a	bout the d	istance from	node v to no	ode w when	neither is at
10.		ggests you to us s suggestion stil						