

BABEŞ-BOLYAI UNIVERSITY Faculty of Computer Science and Mathematics

ARTIFICIAL INTELLIGENCE

Intelligent systems

Rule-based systems – uncertainty

Content

Intelligent systems

- Knowledge-based systems
 - Rule-based systems in uncertain environments

Intelligent systems – knowledge-based systems(KBS)

- Computational systems composed of 2 parts:
 - Knowledge base (KB)
 - Specific information of the domain
 - Inference engine (IE)
 - Rules for generating new information
 - Domain-independent algorithms

Intelligent systems - KBS

Knowledge base

Content

- Information (in a given representation) about environment
- Required information for problem solving
- Set of propositions that describe the environment

Classification

- Perfect information
 - Classical logic
 - IF A is true THEN A is ¬ false
 - IF B is false THEN B is ¬ true
- Imperfect information
 - Non-exact
 - Incomplete
 - Incommensurable

Intelligent systems - KBS

- Sources of uncertainty
 - Imperfection of rules
 - Doubt of rules
 - Using a vague (imprecise) language
- Modalities to express the uncertainty
 - Probabilities
 - Fuzzy logic
 - Bayes theorem
 - Theory of Dempster-Shafer
- Modalities to represent the uncertainty
 - By using a single value □ certainty factors, confidence, truth value
 - How sure we are that the given facts are valid
 - By using more values

 logic based on ranges
 - Min

 lower limit of uncertainty (confidence, necessity)
 - Max

 upper limit of uncertainty (plausibility, possibility)

Intelligent systems – KBS – Fuzzy systems

- Theory of possibility
- Content and design
- Classification

Tools

Advantages and limits

Intelligent systems – KBS – Fuzzy systems

Why fuzzy?

■ Problem: translate in C++ code the following sentences:

Georgel is tall.

It is cold outside.

When fuzzy is important?

- Natural queries
- Knowledge representation for a KBS
- Fuzzy control then we dead by imprecise phenomena (noisy phenomena)

Theory of possibility – a little bit of history

- Parminedes (400 B.C.)
- Aristotle
 - "Law of the Excluded Middle" every sentence must be True or False
- Plato
 - A third region, between True and False
 - Forms the basis of fuzzy logic
- Lukasiewicz (1900)
 - Has proposed an alternative and systematic approach related to bi-valent logic of Aristotle – trivalent logic: true, false or possible
- Lotfi A. Zadeh (1965)
 - Mathematical description of fuzzy set theory and fuzzy logic: truth functions takes values in [0,1] (instead of {True, False})

He as proposed new operations in fuzzy logic

He has considered the fuzzy logic as a generalisation of the classic logic

He has written the first paper about fuzzy sets

Theory of possibility

Fuzzy logic

- Generalisation of Boolean logic
- Deals by the concept of partial truth

Classical logic – all things are expressed by binary elements

• 0 or 1, white or black, yes or no

Fuzzy logic – gradual expression of a truth

Values between 0 and 1

Logic vs. algebra

- Logical operators are expressed by using mathematical terms (George Boole)
 - Conjunction = minimum $a \land b = min(a, b)$
 - Disjunction = maximum $a \lor b = max (a, b)$
 - Negation = difference $\neg a = 1 a$

Content and design

Main idea

- Cf. to certainty theory:
 - Popescu is tall
- Cf. to uncertainty theory
 - Cf. to probability theory
 - There is 80% chance that Popescu is young
 - Cf. fuzzy logic
- Cf. teoriei informațiilor certe
 - Popescu este tânăr
- Cf. teoriei informațiilor incerte
 - Cf. teoriei probabilităților:
 - Există 80% şanse ca Popescu să fie tânăr
 - Cf. logicii fuzzy:
 - Popescu's degree of membership to the group of young people is 0.80

Necessity

Real phenomena involve fuzzy sets

Example

The room's temperature can be: low,
Medium or
high

These sets of possible temperatures can overlap!

A temperature can belong to more classes (groups) depends on the person that evaluates that temperature

Content and design

Steps for constructing a fuzzy system

- Define the inputs and the outputs by an expert
 - Raw inputs and outputs
 - Fuzzification of inputs and outputs
 - Fix the fuzzy variables and fuzzy sets based on membership functions
- Construct a base of rules by an expert
 - Decision matrix
- Evaluate the rules
 - Inference transform the fuzzy inputs into fuzzy outputs by applying all the rules
- Aggregate the results
- Defuzzification of the result
- Interpret the result

Elements from probability theory (fuzzy logic)

Fuzzy facts (fuzzy sets)

- Definition
- Representation
- Operations complements, containment, intersection, reunion, equality, algebraic product, algebraic sum
- Properties associativity, commutativity, distributivity, transitivity, idempotency, identity, involution
- Hedges

Fuzzy variables

- Definition
- Properties

Establish the fuzzy variables and the fuzzy sets based on membership functions

Set definition – 2 possibilities:

- By enumeration of elements
 - Ex. Set of students = {Ana, Maria, Ioana}
- By specifying a property of elements
 - Ex. Set of even numbers = $\{x \mid x = 2n, where n = 2k\}$

Characteristic function μ for a set

- Let X a universal set and x an element of this set $(x \in X)$
- Classical logic
 - Let R a subset of X: R⊂X, R regular set
 - Every element x belong to set R

$$\mu_R: \ \ \mathsf{X} \ \square \ \{\mathsf{0},\ \mathsf{1}\}, \ \text{where} \qquad \mu_R(x) = \begin{cases} 1, & x \in R \\ 0, & x \notin R \end{cases}$$

Fuzzy logic

- Let F a subset of X (a universe) : F⊂X, F fuzzy set
- Every element x belongs to F by a given degree of membership $\mu_F(x)$
- μ_F : X \square [0, 1], $\mu_F(x)=g$, where $g \in [0,1]$ membership degree of x to F
- g = 0 □ not-belong
- g = 1 □ belong
- A fuzzy set = a pair (F, μ_F), where

$$\mu_F(x) = \begin{cases} 1, & \text{if } x \text{ is totaly in } F \\ 0, & \text{if } x \text{ is not in } F \\ \in (0,1) & \text{if } x \text{ is part of } F(x \text{ is a fuzzy number}) \end{cases}$$

Example 1

- X -set of natural numbers < 11
- R set of natural numbers < 7
- F set of natural numbers that are neighbours of 6

x	μ _R (x)	μ _F (x)
0	1	0
1	1	0.1
2	1	0.25
3	1	0.5
4	1	0.6
5	1	0.8
6	1	1
7	0	0.8
8	0	0.6
9	0	0.5
10	0	0.25

Example 2

A temperature *t* can have 3 truth values:

- Red (0): is not hot
- Orange (0.3): warm
- Blue (0.7): cold

Representation:

Gradual limits $\ \square$ representations based on membership functions

• Singular
•
$$\mu(x) = s$$
, where s is a scalar

Triangular

$$\mu(x) = \max\left\{0, \min\left\{\frac{x-a}{b-a}, 1, \frac{c-x}{c-b}\right\}\right\}$$

Trapezoidal

$$\mu(x) = S(x) = \max\left\{0, \min\left\{\frac{x-a}{b-a}, 1, \frac{d-x}{d-c}\right\}\right\}$$

Z function

$$\mu(x) = 1 - S(x)$$

Π function

$$\mu(x) = \Pi(x) = \begin{cases} S(x), & \text{if } x \le c \\ Z(x), & \text{if } x > c \end{cases}$$

Example:

Age of a person

Definitions

- A fuzzy variable is defined by $V = \{x, l, u, m\}$, where:
 - x name of symbolic variable
 - L set of possible labels for variable x
 - U universe of the variable
 - M semantic regions that define the meaning of labels from L (membership functions)

Membership functions

- Subjective assessment
 - The shape of functions is defined by experts
- Ad-hoc assessment
 - Simple functions that can solve the problem
- Assessment based on distributions and probabilities of information extracted from measurements
- Adapted assessment
 - By testing
- Automated assessment
 - Algorithms utilised for defining functions based on some training data

Example

- X = Temperature
- L = {low, medium, high}
- $U = \{x \in X \mid -70^{\circ} \le x \le +70^{\circ}\}$
- M =

Properties

Completeness

A fuzzy variable V is complete if for all $x \in X$ there is a fuzzy set A such as $\mu_A(x) > 0$

Properties

Unit partition

- A fuzzy variable V forms a unit partition if for all input values x we have
- where p is the number of sets that x belongs to
- There are no rules for defining 2 neighbour sets
 - Usually, the overlap is between 25% şi 50%

$$\sum_{i=1}^p \mu_{Ai}(x) = 1$$

Artificial Intelligence - RBS

Unit partition

Non-unit partition

Properties

Unit partition

A complete fuzzy variable can be transformed into a unit partition:

$$\mu_{\hat{A}_i}(x) = \frac{\mu_{A_i}(x)}{\sum_{j=1}^{p} \mu_{A_j}(x)} \text{ for } i = 1, \mathbb{Z}, p$$

Fuzzification of input data

Establish the fuzzy variables and the fuzzy sets based on membership functions

Fuzzification of input data

Mechanism

- Establish the raw (input and output) data of the system
- Define membership functions for each input data
 - Each membership function has associated a quality label linguistic variable
 - A raw variable can have associated one or more linguistic variables
 - Example
 - Raw variable: temperature T
 - Linguistic variable: low

 A1, medium

 A2, high

 A3
- Transform each raw input data into a linguistic data

 fuzzification
 - Establish the fuzzy set of that raw input data
 - How?
 - For a given raw input determine the membership degree for each possible set
 - Example
 - $T (=x_n) = 5^\circ$
 - $A_1 \square \mu_{A1}(T) = 0.6$
 - $A_2 \square \mu_{A2}(T) = 0.4$

Fuzzification of input data

- Example air conditioner device
 - Inputs:
 - x (temperature cold, normal, hot) and
 - y (humidity small, large)
 - Outputs:
 - z (machine power law, medium, high)
 - Input data:
 - Temperature x = 37

•
$$\mu_{A1}(x)=0$$
, $\mu_{A2}(x)=0.6$, $\mu_{A3}(x)=0.3$

- Humidity y = 0.8
 - $\mu_{B1}(x)=0.9$, $\mu_{B2}(x)=0$

Base of rules

Construct a base of rules – by an expert

Rules

- Definition
 - Linguistic constructions
 - Affirmative sentences: A
 - Conditional sentences: if A then B
 - Where A and B are (collections of) sentences that contain linguistic variables
 - A premise of the rule
 - B consequence of the rule
- Typology
 - Non-conditional
 - x is (in) A_i
 - Eg. Save the energy
 - Conditional
 - If x is (in) A_i then z is (in) C_k
 - If x is (in) A_i and y is (in) $B_{j'}$, then z is (in) C_k
 - If x is (in) A_i or y is (in) B_j , then z is (in) C_k

Base of rules -example

	Rules of classical logic	Rules of fuzzy logic
R_1	If temperature is -5, then is cold	If temperature is law, then is cold
R_2	<i>If temperature is 15, then is warm</i>	If temperature is medium, then is warm
R_3	<i>If temperature is 35, then is hot</i>	If temperature is high, then is hot

Base of rules

Rules

- Database of fuzzy rules
 - R₁₁: if x is A₁ and y is B₁ then z is C_u
 - R₁₂: if x is A₁ and y is B₂ then z is C_v
 - ...
 - R_{1n}: : if x is A₁ and y is B_n then z is C_x
 - R₂₁: if x is A₂ and y is B₁ then z is C_y
 - R₂₂: if x is A₂ and y is B₂ then z is C₂
 - ...
 - R_{2n}: if x is A₂ and y is B_n then z is C_v
 - ...
 - R_{m1}: if x is A_m and y is B₁ then z is C_x
 - R_{m2}: if x is A_m and y is B₂ then z is C_v
 - •
 - R_{mn}: if x is A_m and y is B_n then z is C_u

Base of rules

Decision matrix of the knowledge database

- Example air conditioner device
 - Inputs:
 - x (temperature cold, normal, hot) and
 - y (humidity small, large)
 - Outputs:
 - z (machine power low, constant, high)
 - Rules:
 - If temperature is normal and humidity is small then the power is constant

		Input data y	
		Small	Large
Input data x	Cold	Low	Constant
	Normal	Constant	High
	Hot	High	High

Rule evaluation (fuzzy inference)

Which rules are firstly evaluated?

Fuzzy inference

- Rules are evaluated in **parallel**, each rules contributing to the shape of the final result
- Resulted fuzzy sets are defuzzified after all the rules have been evaluated

Rule evaluation (fuzzy inference)

Evaluation of causes

- For each premise of a rule (if s is (in) A) establish the membership degree of raw input data to all fuzzy sets
- A rule can have more premises linked by logic operators AND, OR or $NOT \square$ use fuzzy operators
 - Operator AND

 intersection (minimum) of 2 sets
 - Operator OR □ union (maximum) of 2 sets
 - $\mu_{A \cup B}(x) = \max\{\mu_A(x), \mu_B(x)\}$
 - Operator NOT

 negation (complement) of a set
- The result of premise's evaluation
 - Degree of satisfaction
 - Other names:
 - Rule's firing strength
 - Degree of fulfillment

Rule evaluation (fuzzy inference)

Determine the results

• Establish the membership degree of variables (involved in the consequences) to different fuzzy sets

Each output region must be de-fuzzified in order to obtain crisp value

Based on the consequence's type

- Mamdani model consequence of rule: "output variable belongs to a fuzzy set"
- Sugeno model consequence of rule: "output variable is a crisp function that depends on inputs"
- Tsukamoo model consequence of rule: "output variable belongs to a fuzzy set following a monotone membership function"

Mamdani model

Main idea:

- consequence of rule: "output variable belongs to a fuzzy set"
- Result of evaluation is applied for the membership function of the consequence
- Example
 - if x is in A and y is in B, then z is in C

Classification based on how the results is applied on the membership function of the consequence:

- Clipped fuzzy sets
- Scaled fuzzy sets

Mamdani model - Classification

Clipped fuzzy sets

- Membership function of the consequence is cut at the level of the result's truth value
- Advantage
 □ easy to compute
- Disadvantage

 some information are lost

Scaled fuzzy sets

 Membership function of the consequence is adjusted by scaling (multiplication) at the level of the result's truth value

Mamdani model

- Example air conditioner device
 - > Inputs:
 - x (temperature cold, normal, hot) and
 - y (humidity small, large)
 - Outputs:
 - z (machine power law, constant, high)
 - Input data:
 - Temperature x = 37

•
$$\mu_{A1}(x)=0$$
, $\mu_{A2}(x)=0.6$, $\mu_{A3}(x)=0.3$

- Humidity y = 0.8
 - $\mu_{B1}(x)=0.9$, $\mu_{B2}(x)=0$

		Input data y		
		Small	Large	
Input data x	Cold	Law	Constant	
	Normal	Constant	High	
	Hot	High	High	

Mamdani model

Sugeno model

Main idea

consequence of rule: "output variable is a crisp function that depends on inputs"

Example

If x is in A and y is in B then z is f(x,y)

Classification based on characteristics of f(x,y)

Sugeno model of degree 0

if (f(x,y) = k - constant (membership function of the consequences are singleton – a fuzzy set whose membership functions have value 1 for a single (unique) point of the universe and 0 for all other points)

Sugeno model of degree 1

if
$$f(x,y) = ax + by+c$$

Sugeno model

Tsukamoto model

Main idea

consequence of rule:

output variable belongs to a fuzzy set following a monotone membership function

A crisp value is obtained as output \(\preceiv \text{rule's firing strength} \)

Tsukamoto model

Content and design I rule evaluation I Evaluation of consequences I Tsukamoto model

Aggregate the results

- Union of outputs for all the applied rules
- Consider the membership functions for all the consequences and combine them into a single fuzzy set (a single result)
- Aggregation process have as
 - Inputs □ membership functions (clipped or scaled) of the consequences
 - Outputs □ a fuzzy set of the output variable

Example

- Transform the fuzzy result into a crisp (raw) value
- Inference

 obtain some fuzzy regions for each output variable
- Defuzzification

 I transform each fuzzy region into a crisp value

Methods

- Based on the gravity center
 - COA Centroid Area
 - BOA Bisector of area
- Based on maximum of membership function
 - MOM Mean of maximum
 - SOM Smallest of maximum
 - LOM Largest of maximum

COA - Centroid Area

Identify the z point from the middle of aggregated set

$$COG = \frac{\sum_{i=0}^{n} x_{i} \mu_{A}(x_{i})}{\sum_{i=0}^{n} \mu_{A}(x_{i})} \quad \text{sau } COG = \frac{\int_{i=0}^{n} x_{i} \mu_{A}(x_{i})}{\int_{i=0}^{n} \mu_{A}(x_{i})}$$

- Example
 - Mamdani model \square estimation of COA by using a sample of n points $(x_i, i = 1, 2, ..., n)$ of the resulted fuzzy set

$$COA = \frac{5*0+6*0.3+7*0.5+8*0.7+9*0.9+10*0.9+11*0.7+12*0.5+13*0.3+14*0.3+15*0.3+16*0.3}{0+0.3+0.5+0.7+0.9+0.9+0.7+0.5+0.3+0.3+0.3+0.3+0.3+0.3}$$

Sugeno or Tsukamoto model
COA becomes a weighted average of m crisp values obtained by applying all m rules

$$COA = \frac{9*0.9 + 11*0.3}{0.9 + 0.3}$$
$$COA \cong 9.5$$

BOA - Bisector of area

Identify the point z that determine the splitting of aggregated set in 2 parts of equal area

$$BOA = \int_{\alpha}^{z} \mu_{A}(x)dx = \int_{z}^{\beta} \mu_{A}(x)dx,$$
where $\alpha = \min\{x \mid x \in A\}$ and $\beta = \min\{x \mid x \in A\}$

> MOM - Mean of maximum

 Identify the point z that represents the mean of that points (from the aggregated set) that have a maximum membership function

$$MOM = \frac{\sum_{x_i \in \max \mu} x_i}{|\max \mu|}, \text{ where } \max \mu = \mu^* = \{x \mid x \in A, \mu(x) = \max m\}$$

- SOM Smallest of maximum
 - Identify the smallest point z (from the aggregated set) that have a maximum membership function
- LOM Largest of maximum
 - Identify the largest point z (from the aggregated set) that have a maximum membership function

- Main idea
 - Transform the fuzzy result into a crisp (raw) value
 - Inference

 obtain some fuzzy regions for each output variable
 - Defuzzification

 transform each fuzzy region into a crisp value
- Methods
 - Based on the gravity center
 - COA Centroid Area
 - BOA Bisector of area
 - Based on maximum of membership function
 - MOM Mean of maximum

 - LOM Largest of maximum

Intelligent systems – KBS – Fuzzy systems

Advantages

- Imprecision and real-world approximations can be expressed through some rules
- Easy to understand, to test and to maintain
- Robustness can operate when rules are not so clear
- Require few rules then other KBSs
- Rules are evaluated in parallel

Disadvantages

- Require many simulations and tests
- Do not automatically learn
- It is difficult to identify the most correct rules
- There is not mathematical model

Applications

Space control

Altitude of satellites, Setting the planes

Auto-control

- Automatic transmission, traffic control, anti-braking systems
 Business
- Decision systems, personal evaluation, fond management, market predictions, etc
 Industry
- Energy exchange control, water purification control
- pH control, chemical distillation, polymer production, metal composition

Electronic devices

Camera exposure, humidity control. Air conditioner, shower setting,
 Freezer setting, Washing machine setting

Applications

Nourishment

Cheese production

Military

• Underwater recognition, infrared image recognition, vessel traffic decision

Navy

Automatic drivers, route selection

Medical

 Diagnostic systems, pressure control during anesthesia, modeling the neuropathology results of Alzheimer patients

Robotics

Kinematics (arms)