Morning.

Properties of Regular Languages

1. Pumping lemma

Regular language satisfies the pumping lemma. If somebody presents you with fake regular language, use the pumping lemma to show a contradiction.

2. Closure properties

Building automata from components through operations.

The Pigeonhole Principle

4 pigeons

3 pigeonholes

The Pigeonhole Principle

m pigeons

n pigeonholes

There is a pigeonhole with at least 2 pigeons

The DFA Principle

m symbols

$$w = a_1 a_2 \cdot \cdot \cdot \cdot \cdot a_m$$

n states

$$a_n \cdot \cdot \cdot \cdot \cdot a_m$$
?

$$m \ge n$$

Property of regular languages

L is a regular language $\Rightarrow \exists DFA \ A : L(A) = L$

Let
$$A = (Q, \Sigma, \delta, q_0, F)$$
, and $n = |Q|$

Get $w \in L$, and suppose $w = a_1 a_2 \cdot \dots \cdot a_m$, $m \ge n$

Let
$$q_i = \overline{\delta}(q_0, a_1 a_2 \cdots a_i)$$

$$\Rightarrow \exists 0 < i < j \leq n : q_i = q_j$$

Property of regular languages

Property of regular languages

$$\Rightarrow w = x y z \begin{cases} |xy| \le n \\ |y| \ge 1 \text{ or } y \ne \varepsilon \\ xy^k z \in L, \text{ for any } k \ge 0 \end{cases}$$

Pumping Lemma

Pumping lemma for regular languages.

Let L be regular. Then

 $\exists n, \forall w \in L : |w| \ge n \Rightarrow w = xyz \text{ such that }$

- **y** ≠ ε
- $|xy| \le n$
- $\forall k \geq 0$, $xy^k z \in L$

Example 6.1 Let $L = \{ 0^n1^n \mid n \ge 0 \}$, is it regular?

Suppose L is regular. Get $w=0^n1^n \in L$.

By pumping lemma w=xyz, $|xy| \le n$, $y \ne \varepsilon$, and $xy^kz \in L$.

Let k=0, then $xz \in L$.

But xz has fewer 0's than 1's, that $xz \notin L$.

It derived a contradiction.

So L is not regular.

Example 6.2 Prove $L = \{vv^R \mid v \in (a,b)^*\}$ is not regular.

Suppose L is regular.

Get $w=a^nb^nb^na^n \in L$.

for k=0, $xz=a^{n-|y|}b^nb^na^n \in L$.

Example 6.3 Prove $L = \{a^n b^l c^{n+l} \mid n, l \ge 0\}$ is not regular.

Suppose L is regular.

Get $w=a^nb^nc^{2n} \in L$.

for k=0, $xz=a^{n-|y|}b^nc^{2n} \in L$.

- \rightarrow union : $L \cup M$
- \rightarrow intersection : $L \cap M$
- > complement
- > difference: L M
- > reversal
- > closure(star)
- > concatenation
- > homomorphism
- > inverse homomorphism

Let L and M be regular.

Then the following languages are all regular:

- > Union : $L \cup M$
- > Concatenation: LM
- > Closure : L*
- > Difference: L M

> Union : $L \cup M$

Suppose
$$L(A)=L$$
, $L(B)=M$

Let
$$A = (Q_1, \Sigma_1, \delta_1, q_1, F_1), B = (Q_2, \Sigma_2, \delta_2, q_2, F_2)$$

$$C = (Q_1 \cup Q_2 \cup \{q_0\}, \Sigma_1 \cup \Sigma_2, \delta, q_0, F_1 \cup F_2)$$

$$\delta \colon \delta (q_0, \varepsilon) = \{q_1, q_2\}$$

$$\delta(q, a) = \delta_1(q, a), \forall (q, a) \in Q_1 \times \Sigma_1$$

$$\delta(q, a) = \delta_2(q, a), \forall (q, a) \in \mathbb{Q}_2 \times \Sigma_2$$

Then
$$L(C) = L \cup M$$

> Reversal $L^R = \{ w^R \mid w \in L \}$

Convert A(L) into $A(L^R)$ by :

- Reverse all the arcs of A(L)
- Convert start state of A(L) to accepting state of $A(L^R)$
- Create a new state as start state of $A(L^R)$ with ε -transitions to all the accepting states of A(L)

> Complement

$$\overline{L} = \{ w \mid w \in \Sigma^* \text{ and } w \notin L \}$$

Let DFA
$$A=(Q, \Sigma, \delta, q_0, F)$$
, and $L(A)=L$

Let DFA
$$B=(Q, \Sigma, \delta, q_0, S)$$
, and $S=Q-F$

Then L(B)=
$$\overline{L}$$

> Intersection : $L \cap M$

Suppose
$$L(A)=L$$
, $L(B)=M$

Let
$$A = (Q_1, \Sigma, \delta_1, q_1, F_1)$$
, $B = (Q_2, \Sigma, \delta_2, q_2, F_2)$
 $C = (Q_1 \times Q_2, \Sigma, \delta, (q_1, q_2), F_1 \times F_2)$
 $\delta : (Q_1 \times Q_2) \times \Sigma \to Q_1 \times Q_2$
 $\delta ((p, q), a) = (\delta_1(p, a), \delta_2(q, a))$

Then
$$L(C) = L \cap M$$

Homomorphism

$$\begin{array}{ll} h: & \Sigma^{\star} \to \Gamma^{\star} \\ \text{Let } w = a_1 a_2 a_n \in \Sigma^{\star}, \text{ then} \\ & h(w) = h(a_1) h(a_2) h(a_n) \\ \\ \text{Let } \Sigma = \{ \ 0, \ 1 \ \}, \ \Gamma = \{ \ a, \ b \ \}, \ h(0) = ab, \ h(1) = \epsilon \\ & h(0110) = h(0) h(1) h(1) h(0) = ab \epsilon \epsilon ab = ab ab \\ & h(L) = \{ \ h(w) \ | \ w \ \text{is in L} \ \} \end{array}$$

> Homomorphism

Regular language is closed under homomorphism.

Assume r is a regular expression.

For any symbol a of r, h(a) is a regular expression So is h(r).

It says that L(h(r)) is regular.

> Inverse Homomorphism

$$h: \Sigma^* \to \Gamma^*$$

 $h^{-1}(L)=\{ w \mid h(w) \text{ is in } L \}$

$$\forall w \in L \Rightarrow h(w) \in h(L)$$

$$\forall v \in h(L)$$

 $\Rightarrow \exists w \in L: h(w) = v$

$$\Sigma^*$$
 $h^{-1}(L)$
 $h \rightarrow$
 L

$$\forall w \in h^{-1}(L) \Rightarrow h(w) \in L$$

$$\forall v \in L \Rightarrow$$

$$\exists w \in h^{-1}(L) : h(w) = v$$
?

Example 6.4

Let Σ ={ a, b }, Γ ={ 0, 1 }, h(a)=01, h(b)=10 Let L=L((00+1)*) then $h^{-1}(L)=L((ba)*)$

 $h^{-1}(L)=\{ba\}^*, h(h^{-1}(L))=\{1001\}^*\subset L=\{00,1\}^*$

> Inverse Homomorphism

RL is closed under inverse homomorphism.

$$A = (Q, T, \delta, q_0, F), \quad B = (Q, \Sigma, \gamma, q_0, F)$$

where
$$\gamma(q,a) = \hat{\delta}(q,h(a))$$

Good good Study day Up