

AUS920000651US1  
1 OF 62



Fig. 1

AUS920000651US1  
2 OF 62



AUS920000651US1  
3 OF 62



Fig. 3A

AUS920000651US1  
4 OF 62



Fig. 3B

5 OF 62



Fig. 3C

AUS920000651US1  
6 OF 62



Fig. 3D

AU\\$920000651US1

7 OF 62



*Fig. 4A*

AUS920000651US1

8 OF 62



Fig. 4B  
329

AUS920000651US1

9 OF 62

ENTITY FXUCHK IS

```

PORT( S_IN      : IN std_ulogic;
       Q_IN      : IN std_ulogic;
       R_IN      : IN std_ulogic;
       clock     : IN std_ulogic;
       fails     : OUT std_ulogic_vector(0 to 1);
       counts    : OUT std_ulogic_vector(0 to 2);
       harvests  : OUT std_ulogic_vector(0 to 1);
);

```

450

452 {  
 -!! BEGIN  
 -!! Design Entity: FXU;

453 {  
 -!! Inputs  
 -!! S\_IN => B.C.S;  
 -!! Q\_IN => A.Q;  
 -!! R\_IN => R;  
 -!! CLOCK => clock;  
 -!! End Inputs

454 {  
 -!! Fail Outputs;  
 -!! 0 : "Fail message for failure event 0";  
 -!! 1 : "Fail message for failure event 1";  
 -!! End Fail Outputs;

455 {  
 -!! Count Outputs;  
 -!! 0 : <event0> clock;  
 -!! 1 : <event1> clock;  
 -!! 2 : <event2> clock;  
 -!! End Count Outputs;

456 {  
 -!! Harvest Outputs;  
 -!! 0 : "Message for harvest event 0";  
 -!! 1 : "Message for harvest event 1";  
 -!! End Harvest Outputs;

457 {  
 -!! End;

440

451

ARCHITECTURE example of FXUCHK IS

BEGIN

... HDL code for entity body section ...

END;

458

*Fig. 4C*

10 OF 62



Fig. 4D



Fig. 4E

09067453 . 113003

AUS920000651US1  
12 OF 62



Fig. 5A

AUS920000651US1  
13 OF 62



Fig. 5B

Fig. 6A



AUS920000651US1  
15 OF 62



Fig. 6B



Fig. 7

17 OF 62



Fig. 8A  
Prior Art

AUS920000651US1  
18 OF 62

## entity FSM : FSM

850

Fig. 8B  
Prior Art

AUS920000651US1  
19 OF 62

```

ENTITY FSM IS
  PORT(
    ....ports for entity fsm....
  );
ARCHITECTURE FSM OF FSM IS
BEGIN
  ... HDL code for FSM and rest of the entity ...
  fsm_state(0 to 2) <= ... Signal 801 ...
  853 { -!! Embedded FSM : examplefsm;
  859 { -!! clock      : (fsm_clock);
  854 { -!! state_vector : (fsm_state(0 to 2));
  855 { -!! states      : (S0, S1, S2, S3, S4);
  856 { -!! state_encoding : ('000', '001', '010', '011', '100');
  857 { -!! arcs        : (S0 => S0, S0 => S1, S0 => S2,
  858 { -!!              (S1 => S2, S1 => S3, S2 => S2,
                           (S2 => S3, S3 => S4, S4 => S0);
  858 { -!! End FSM;
}
END;

```

852 } 860 }

*Fig. 8C*

AUS920000651US1  
20 OF 62

## entity FSM : FSM

850

Fig. 9

AUS920000651US1  
21 OF 62

Fig. 10A



1030      1032      1034      1036  
<instantiation identifier>. <instrumentation entity name>. <design entity name>. <eventname>

Fig. 10B

|      |    |   |        |      |
|------|----|---|--------|------|
| X1   | B3 | X | COUNT1 | 1040 |
| X1.Z | B1 | Z | COUNT1 | 1041 |
| X1.Z | B2 | Z | COUNT1 | 1042 |
| X2   | B3 | X | COUNT1 | 1043 |
| X2.Z | B1 | Z | COUNT1 | 1044 |
| X2.Z | B2 | Z | COUNT1 | 1045 |
| Y    | B4 | Y | COUNT1 | 1046 |
| Y.Z  | B1 | Z | COUNT1 | 1047 |
| Y.Z  | B2 | Z | COUNT1 | 1048 |

Fig. 10C

AUS920000651US1  
22 OF 62

1030      1034      1036  
<instantiation identifier>. <design entity name>. <eventname>

Fig. 10D

AUS920000651US1  
23 OF 62



Fig. 11A

AUS920000651US1

24 OF 62

--!! Inputs  
--!! event\_1108\_in <= C.[B2.count.event\_1108]; ~~~~~ 1161  
--!! event\_1124\_in <= A.B.[B1.count.event\_1124]; ~~~~~ 1162  
--!! End Inputs

1163                    1165                    1161  
                      { }                    { }  
                      1164                    1166                    1162  
                      { }                    { }

*Fig. 11B*

--!! Inputs  
--!! event\_1108\_in <= C.[count.event\_1108]; ~~~~~ 1171  
--!! event\_1124\_in <= B.[count.event\_1124]; ~~~~~ 1172  
--!! End Inputs

*Fig. 11C*

AUS92000651US1  
25 OF 62

Fig. 12A



AUS920000651US1

26 OF 62

ENTITY X IS

PORT( );

## ARCHITECTURE example of X IS

BEGIN

... HDL code for X ...

1220

1221 { Y:Y  
PORT MAP( );

1222 { A <= ....  
          B <= ....  
          C <= ....

```

1223 { -!! [count, countname0, clock] <= Y.P; ~~~~~ 1 2 3 2
      -!! Q <= Y. [B1.count.count1] AND A; ~~~~~ 1 2 3 4
      -!! [fail, failname0, "fail msg"] <= Q XOR B;
      -!! [harvest, harvestname0, "harvest msg"] <= B AND C;

```

**END;**

1230

= Y.P; — 1232

ND A; 1234  
2 XCB B.

1236

*Fig. 12B*

AUS920000651US1  
27 OF 62

1300



Fig. 13A

AUS920000651US1  
28 OF 62

Fig. 13B

```
ENTITY OVR IS
  PORT( R_IN      : IN std_ulogic_vector(0 .. 4);  

        . . .  

        ... other ports as required ...  

        . . .  

        R_OV      : OUT std_ulogic_vector(0 .. 4);  

        RT       : OUT std_ulogic
      );
```

-!! BEGIN  
-!! Design Entity: FOO;  
-!! Inputs (0 to 4)  
-!! R\_IN = > {R(0 .. 4)}; ~~~~~ 1360  
-!! :  
... other ports as needed ...  
-!! :  
-!! End Inputs

1356 { -!! Outputs  
-!! <R\_OVERRIDE> : R\_OV(0 .. 4) = > R(0 .. 4) [RT];  
-!! End Outputs  
-!! End }

ARCHITECTURE example of OVR IS  
BEGIN  
... HDL code for entity body section ... } 1358  
END;

1361  
1362  
1363  
1340  
1351

Fig. 13C

AUS920000651US1  
30 OF 62

## ENTITY FOO IS

```
PORT( :  
      :  
      :  
    );
```

## ARCHITECTURE example of FOO IS

BEGIN

$$R \leq \dots$$

```

1380 { -!! R_IN <= {R};
      -!! R_OV(0 to 4) <= .....; 1383
      -!! RT <= .....;
      -!! [override, R_OVERRIDE, R(0 .. 4), RT] <= R_OV(0 to 4);
}
      1381
      1382
      1384

```

*Fig. 13D*

AUS920000651US1  
31 OF 62

Fig. 14A



AUS920000651US1  
32 OF 62

Fig. 14B



ENTITY DET IS

PORT( A : IN std\_ulogic;  
B : IN std\_ulogic\_vector(0 to 5);  
C : IN std\_ulogic;  
D : IN std\_ulogic;  
event\_x : OUT std\_ulogic\_vector(0 to 2);  
x\_here : OUT std\_ulogic;  
);

-!! BEGIN  
-!! Design Entity: LM;

1491 { -!! Inputs  
-!! A => A;  
-!! B => P.Q.B;  
-!! C => P.C;  
-!! D => D;  
-!! End Inputs } 1493

1490 { -!! Detections  
-!! <event\_x>:event\_x(0 to 2) [x\_here]; } 1494

-!! End Detections  
-!! End;

1492 { ARCHITECTURE example of DET IS  
BEGIN  
... HDL code ...  
END; }

Fig. 14C

| 1662 |         |    |   |        |
|------|---------|----|---|--------|
| 1661 |         |    |   |        |
| 1663 | 1: X1   | B3 | X | COUNT1 |
|      | 2: X1.Z | B1 | Z | COUNT1 |
|      | 3: X1.Z | B2 | Z | COUNT1 |
|      | 4: X2   | B3 | X | COUNT1 |
|      | 5: X2.Z | B1 | Z | COUNT1 |
|      | 6: X2.Z | B2 | Z | COUNT1 |
|      | 7: Y    | B4 | Y | COUNT1 |
|      | 8: Y.Z  | B1 | Z | COUNT1 |
|      | 9: Y.Z  | B2 | Z | COUNT1 |

FIG. 15

1601



**FIG. 16B**



FIG. 16C



FIG. 16D



FIG. 17A

1750



**FIG. 17B**



FIG. 17C



FIG. 18A



FIG. 18B



FIG. 19A



FIG. 19B



FIG. 20A

AUS920000651US1  
46 OF 62

2010

| Model Name         | CRC Signature      |
|--------------------|--------------------|
| Cycle Count        | Count <sub>0</sub> |
| Count <sub>1</sub> |                    |
|                    |                    |
|                    | Count <sub>n</sub> |

2011      1751      1752      2012a  
 1753      2012n

**FIG. 20B**

2020      2001      2021a

| Cycle Count        | Count <sub>0</sub> |
|--------------------|--------------------|
| Count <sub>1</sub> |                    |
|                    |                    |
|                    | Count <sub>n</sub> |

2021n

**FIG. 20C**



FIG. 20D



FIG. 20E





FIG. 206

2053



FTG. 20H

P.08/09

S12 838 5882 TO 93436002

DCT 22 01 14:06 FR 512#B38#5882







FIG. 21B

P.03/03

S12 B38 S882 TO 93436002

OCT 26 '01 11:03 FR 512#B38#5882



FIG. 21C



**FIG. 21D**

10/28/2001 14:58 51 0150

1607



FIG. 22A



FIG. 228



FIG. 22C



FIG. 23A



FIG. 23B



FIG. 232

AUS920000651US1

Gabele, et al.

Redundant Collection Of Harvest Events  
Within A Batch Simulation Farm Network

1/62



*Fig. 1*  
*Prior Art*



Fig. 2  
Prior Art



Fig. 3A



Fig. 3B



Fig. 3C



Fig. 3D

7/62



Fig. 4A



Fig. 4B

9/62

ENTITY FXUCHK IS

```
PORT( S_IN      : IN std_ulogic;
       Q_IN      : IN std_ulogic;
       R_IN      : IN std_ulogic;
       clock     : IN std_ulogic;
       fails     : OUT std_ulogic_vector(0 to 1);
       counts    : OUT std_ulogic_vector(0 to 2);
       harvests  : OUT std_ulogic_vector(0 to 1);
);
```

} 450

452 { --!! BEGIN  
--!! Design Entity: FXU;

453 { --!! Inputs  
--!! S\_IN => B.C.S;  
--!! Q\_IN => A.Q;  
--!! R\_IN => R;  
--!! CLOCK => clock;  
--!! End Inputs

454 { --!! Fail Outputs;  
--!! 0 : "Fail message for failure event 0";  
--!! 1 : "Fail message for failure event 1";  
--!! End Fail Outputs;

} 451

455 { --!! Count Outputs;  
--!! 0 : <event0> clock;  
--!! 1 : <event1> clock;  
--!! 2 : <event2> clock;  
--!! End Count Outputs;

} 440.

456 { --!! Harvest Outputs;  
--!! 0 : "Message for harvest event 0";  
--!! 1 : "Message for harvest event 1";  
--!! End Harvest Outputs;

457 { --!! End;

ARCHITECTURE example of FXUCHK IS

BEGIN

... HDL code for entity body section ...

END;

} 458

Fig. 4C

10/62



Fig. 4D





420

Fig. 5A



Fig. 5B

Fig. 6A



15/62



Fig. 6B



Fig. 7



*Fig. 8A*  
*Prior Art*

entity FSM : FSM

850



*Fig. 8B*  
*Prior Art*

ENTITY FSM IS

```
PORt(  
    ....ports for entity fsm....  
)
```

ARCHITECTURE FSM OF FSM IS

BEGIN

... HDL code for FSM and rest of the entity ...

fsm\_state(0 to 2) <= ... Signal 801 ...

```
853 { --!! Embedded FSM : examplefsm;  
859 { --!! clock      : (fsm_clock);  
854 { --!! state_vector : (fsm_state(0 to 2));  
855 { --!! states      : (S0, S1, S2, S3, S4);  
856 { --!! state_encoding : ('000', '001', '010', '011', '100');  
     { --!! arcs       : (S0 => S0, S0 => S1, S0 => S2,  
857 { --!!           : (S1 => S2, S1 => S3, S2 => S2,  
     { --!!           : (S2 => S3, S3 => S4, S4 => S0);  
858 { --!! End FSM;
```

852 } 860 }

END;

*Fig. 8C*

entity FSM : FSM

850



*Fig. 9*

Fig. 10A



<instantiation identifier>. <instrumentation entity name>. <design entity name>. <eventname>

1030      1032      1034      1036

Fig. 10B

|      |      |        |        |
|------|------|--------|--------|
| X1   | 1030 | COUNT1 | 1040   |
| X1.Z | 1032 | X      | 1041   |
| X1.Z | 1034 | Z      | 1042   |
| X2   | 1036 | Z      | 1043   |
| X2.Z | B3   | X      | COUNT1 |
| X2.Z | B1   | Z      | 1044   |
| Y    | B2   | Z      | COUNT1 |
| Y.Z  | B4   | Y      | 1045   |
| Y.Z  | B1   | Z      | COUNT1 |
| Y.Z  | B2   | Z      | 1046   |
|      |      |        | COUNT1 |
|      |      |        | 1047   |
|      |      |        | COUNT1 |
|      |      |        | 1048   |
|      |      |        | COUNT1 |

Fig. 10C

<instantiation identifier>. <design entity name>. <eventname>

1030      1032      1034      1036

Fig. 10D

Fig. 11A



--!! Inputs  
--!! event\_1108\_in <= C.[B2.count.event\_1108]; ~~~~~ 1161  
--!! event\_1124\_in <= A.B.[B1.count.event\_1124]; ~~~~~ 1162  
--!! End Inputs  
                1163                         1165  
                                               1164                         1166

*Fig. 11B*

--!! Inputs  
--!! event\_1108\_in <= C.[count.event\_1108]; ~~~~~ 1171  
--!! event\_1124\_in <= B.[count.event\_1124]; ~~~~~ 1172  
--!! End Inputs

*Fig. 11C*

Fig. 12A



## ENTITY X IS

PORT(

10

## ARCHITECTURE example of X IS

BEGIN

1

- 2 -

- 5 -

... HDL code for X ...

•

1

- 2 -

1221 { Y:Y  
PORT MAP( );

1222 { A <= ...  
          B <= ...  
          C <= ...

```

1 2 2 3 { --!! [count, countname0, clock] <= Y.P; ~~~~~ 1 2 3 2
           --!! Q <= Y. [B1.count.count1] AND A; ~~~~~ 1 2 3 4
           --!! [fail, failname0, "fail msg"] <= Q XOR B;
           --!! [harvest, harvestname0, "harvest msg"] <= B AND C;

```

END;

- 1230

$$= Y.P; \quad r^{1232}$$

ND A;    1234  
S/N 200-

*last msg"] <= B AND C;*

)

*Fig. 12B*

27/62



*Fig. 13A*



Fig. 13B

*Fig. 13C*

## ENTITY FOO IS

PORT( );

## ARCHITECTURE example of FOO IS

BEGIN

$R \leq$

```

1380 { --!! R_IN <= {R};
      --!! R_OV(0 to 4) <= .....;
      --!! RT <= .....;
      --!! [override, R_OVERRIDE, R(0 .. 4), RT] <= R_OV(0 to 4);
}

```

*Fig. 13D*

Fig. 14A



Fig. 14B



ENTITY DET IS

```
PORT( A      : IN std_ulogic;
       B      : IN std_ulogic_vector(0 to 5);
       C      : IN std_ulogic;
       D      : IN std_ulogic;
       ...
       event_x : OUT std_ulogic_vector(0 to 2);
       x_here : OUT std_ulogic;
);
```

--!! BEGIN  
--!! Design Entity: LM;

--!! Inputs  
--!! A => A;  
--!! B => P.Q.B;  
--!! C => P.C;  
--!! D => D;  
--!! End Inputs } 1493

--!! Detections  
--!! <event\_x>:event\_x(0 to 2) [x\_here]; } 1494  
--!! End Detections } 1495

--!! End;

1491 { ARCHITECTURE example of DET IS  
1492 { BEGIN  
... HDL code ...  
END;

1480 }

Fig. 14C

S 1660

|    | 1661 | 1662 |   |        |
|----|------|------|---|--------|
| 1: | X1   | B3   | X | COUNT1 |
| 2: | X1.Z | B1   | Z | COUNT1 |
| 3: | X1.Z | B2   | Z | COUNT1 |
| 4: | X2   | B3   | X | COUNT1 |
| 5: | X2.Z | B1   | Z | COUNT1 |
| 6: | X2.Z | B2   | Z | COUNT1 |
| 7: | Y    | B4   | Y | COUNT1 |
| 8: | Y.Z  | B1   | Z | COUNT1 |
| 9: | Y.Z  | B2   | Z | COUNT1 |

Fig. 15

Fig. 16A





*Fig. 16B*



Fig. 16C



Fig. 17A

1750



*Fig. 17B*



Fig. 17C

41/62



Fig. 18A



**AUS920000651US1**  
 Gabele, et al.  
 Non-Redundant Collection Of Harvest Events  
 Within A Batch Simulation Farm Network

43/62



Fig. 19A



Fig. 19B



Fig. 20A

46/62



Fig. 20B



Fig. 20C



Fig. 20D



Fig. 20E



*Fig.* 20F

| 2060                     |      |
|--------------------------|------|
| 8914                     | 2061 |
| <X1.Z>.<B1>.<Z>.<count1> | 57   |
| <X1.Z>.<B2>.<Z>.<count1> | 102  |
| <X2.Z>.<B1>.<Z>.<count1> | 1092 |
| <X2.Z>.<B2>.<Z>.<count1> | 16   |
| <Y.Z>.<B1>.<Z>.<count1>  | 2921 |
| <Y.Z>.<B2>.<Z>.<count1>  | 701  |
| 2063                     |      |
| 2064                     |      |
| 2065                     |      |
| 8914                     |      |
| <B1>.<Z>.<count1>        | 4070 |
| <B2>.<Z>.<count1>        | 819  |
| 2066                     |      |

Fig. 20G



Fig. 20H



Fig. 20I



Fig. 21A

54/62



Fig. 21B



Fig. 21C



Fig. 21D

AUS920000651US1

Gabele, et al.

Non-Redundant Collection Of Harvest Events  
Within A Batch Simulation Farm Network



Fig. 22A

58/62

2250

Begin

*Fig. 22B*



*Fig. 22C*



60/62



Fig. 23A

61/62



Fig. 23B

62/62



Fig. 23C