

- Cấu trúc cơ bản của CPU
- Bộ xử lý đa lõi
- Kiến trúc tập lệnh của CPU

3.1. Cấu trúc cơ bản của CPU Sơ đồ cấu trúc cơ bản của CPU

3.1. Cấu trúc cơ bản của CPU

a. Tập các thanh ghi

Là bộ nhớ có kích thước nhỏ nằm ngay trên CPU nên nội dung của nó được truy cập nhanh hơn so với các nơi lưu trữ khác có sẵn trong máy tính.

3.1. Cấu trúc cơ bản của CPU

a. Tập các thanh ghi

Phân loại theo khả năng lập trình:

- ✓ Các thanh ghi lập trình được.
- ✓ Các thanh ghi không lập trình được.

Phân loại theo chức năng:

- ✓ Thanh ghi địa chỉ
- ✓ Thanh ghi dữ liệu
- Thanh ghi trạng thái

3.1. Cấu trúc cơ bản của CPU

- a. Tập các thanh ghi
- Một số thanh ghi điển hình:
- ✓ Bộ đếm chương trình PC (Program Counter)
- ✓ Con trỏ dữ liệu DP (Data Pointer)
- ✓ Con trỏ ngăn xếp SP(Stack Pointer)
- ✓ Thanh ghi cơ sở và Thanh ghi chỉ số
 - (Base Register & Index Register)
- ✓ Các thanh ghi dữ liệu
- ✓Thanh ghi trạng thái

3.1. Cấu trúc cơ bản của CPU

a. Tập các thanh ghi

Một số thanh ghi điển hình:

Bộ đếm chương trình PC

✓ Giữ địa chỉ của lệnh tiếp theo sẽ được nhận vào.

✓ Sau khi một lệnh được nhận vào, nội dung PC tự động tăng để trỏ sang lệnh kế tiếp

3.1. Cấu trúc cơ bản của CPU

a. Tập các thanh ghi

Một số thanh ghi điển hình:

Thanh ghi con trỏ dữ liệu

- ✓ Con trỏ dữ liệu DP (Data Pointer.
- ✓ Chứa địa chỉ của ngăn nhớ chứa dữ liệu mà CPU muốn truy nhập (đọc/ghi).

3.1. Cấu trúc cơ bản của CPU

a. Tập các thanh ghiMột số thanh ghi điển hình:

Con trỏ ngăn xếp SP (Stack Pointer)

- ✓ Ngăn xếp là vùng nhớ có cấu trúc LIFO.
- ✓ Ngăn xếp thường được dùng để phục vụ cho chương trình con.

3.1. Cấu trúc cơ bản của CPU

a. Tập các thanh ghi

Một số thanh ghi điển hình:

Con trỏ ngăn xếp SP (Stack Pointer)

✓ Đáy ngăn xếp là một ngăn nhớ xác định, đỉnh ngăn xếp là thông tin nằm ở vị trí trên cùng của ngăn xếp, đỉnh của ngăn xếp có thể bị thay đổi.

3.1. Cấu trúc cơ bản của CPU

a. Tập các thanh ghi

Một số thanh ghi điển hình:

Con trỏ ngăn xếp SP (Stack Pointer)

- ✓ SP chứa địa chỉ của ngăn nhớ đỉnh ngăn xếp.
- ✓ Khi cất một thông tin vào ngăn xếp:
 - Nội dung của SP giảm
 - Thông tin được cất vào ngăn nhớ được trỏ bởi SP.

3.1. Cấu trúc cơ bản của CPU

a. Tập các thanh ghi

Một số thanh ghi điển hình:

Con trỏ ngăn xếp SP (Stack Pointer)

- ✓ Khi lấy một thông tin ra khỏi ngăn xếp:
 - Thông tin được đọc từ ngăn nhớ được trỏ bởi SP.
 - Nội dung của SP tăng
- ✓ Khi ngăn xếp rỗng, SP trỏ vào đáy

3.1. Cấu trúc cơ bản của CPU

Ngăn nhớ cơ sở

dữ liệu cần đọc/gh

a. Tập các thanh ghi

Một số thanh ghi điển hình:

Thanh ghi cơ sở và Thanh ghi chỉ số

- ✓ Để truy nhập một ngăn nhớ có thể sử dụng hai tham số:
 - Địa chỉ cơ sở (Base address)
 - Phần dịch chuyển địa chỉ offset (offset)
 - Địa chỉ của ngăn nhớ cần truy
 nhập = địa chỉ cơ sở + offset
 - ✓ Có thể sử dụng các thanh ghi để quản lý các tham số này: thanh ghi cơ sở & thanh ghi chỉ số.

3.1. Cấu trúc cơ bản của CPU

a. Tập các thanh ghi

Một số thanh ghi điển hình:

Các thanh ghi dữ liệu

- ✓ Chứa các dữ liệu tạm thời hoặc các kết quả trung gian.
- ✓ Cần có nhiều thanh ghi dữ liệu.
- ✓ Các thanh ghi số nguyên: 8,16,32, 63 bit
- ✓ Các thanh ghi dấu phấy động.

3.1. Cấu trúc cơ bản của CPU

a. Tập các thanh ghi

Một số thanh ghi điển hình:

Thanh ghi trạng thái

- ✓ Chứa các thông tin trạng thái của CPU.
 - Các cờ phép toán: báo hiệu trạng thái của kết quả phép toán.
 - Các cờ điều khiển: biểu thị trạng thái điều khiển của CPU.

3.1. Cấu trúc cơ bản của CPU

a. Tập các thanh ghi

Một số thanh ghi điển hình:

Thanh ghi trạng thái

✓ Còn được gọi là thanh ghi cờ (Flag Register).

3.1. Cấu trúc cơ bản của CPU

b. Đơn vị số học và logic

Có chức năng là thực hiện các phép toán số học và phép toán logic:

- ✓ Số học: cộng, trừ, nhân, chia, tăng, giảm, đảo dấu
- ✓ Logic: AND, OR, XOR, NOT, phép dịch bit

3.1. Cấu trúc cơ bản của CPU b. Đơn vị số học và logic

Mô hình kết nối ALU

3.1. Cấu trúc cơ bản của CPU

b. Đơn vị số học và logic

Các khối bên trongALU

3.1. Cấu trúc cơ bản của CPU

c. Đơn vị điều khiển

Có các chức năng:

- Điều khiển nhận lệnh từ bộ nhớ đưa vào thanh ghi lệnh.
- Tăng nội dung của PC để trỏ sang lệnh kế tiếp.
- Giải mã lệnh đã được nhận để xác định thao tác mà lệnh yêu cầu.
- Phát ra các tín hiệu điều khiến thực hiện lệnh.
- Nhận các tín hiệu yêu cầu từ bus hệ thống và đáp ứng với các yêu cầu đó.

3.1. Cấu trúc cơ bản của CPU

c. Đơn vị điều khiến

Mô hình kết nối đơn vị điều khiển

3.1. Cấu trúc cơ bản của CPU

Nhiệm vụ của CPU:

- ✓ Nhận lệnh (Fetch Instruction): CPU đọc lệnh từ bộ nhớ chính.
- ✓ Nhận dữ liệu (Fetch Data): Nhận dữ liệu từ bộ nhớ hoặc các cổng vào- ra. (Nhận toán hạng)
- ✓ Giải mã lệnh (Decode Instruction): xác định thao tác mà lệnh yêu cầu.
- ✓ Xử lý dữ liệu (Process Data): thực hiện phép toán số học hay phép toán logic với các dữ liệu.
- Ghi dữ liệu (Write Data): ghi dữ liệu ra bộ nhớ hay cổng vào ra. (Cất toán hạng)

3.1. Cấu trúc cơ bản của CPU Sơ đồ trạng thái chu kỳ lệnh:

3.1. Cấu trúc cơ bản của CPU

Sơ đồ trạng thái chu kỳ lệnh đầy đủ

3.2. Bộ xử lý đa lõi

CPU đa nhân, CPU đa lõi (multi-core) là bộ vi xử lý trung tâm (Central Processing Unit) có nhiều đơn vị vi xử lý được tích hợp trên cùng một CPU vật lý duy nhất, như là sự ghép nổi nhiều CPU thông thường thành một CPU duy nhất.

Hiệu năng của máy tính tăng lên do có tính chất đa nhân.

3.2. Bộ xử lý đa lõi

3.2. Bộ xử lý đa lõi

3.2. Bộ xử lý đa lõi Intel Core i7

3.2. Bộ xử lý đa lõi

3.3. Kiến trúc tập lệnh của CPU 3.3.1. Đặc điểm tập lệnh

Thực thi chương trình

3.3. Kiến trúc tập lệnh của CPU

3.3.1. Đặc điểm tập lệnh

- Vị trí kiến trúc tập lệnh trong máy tính
 - Nằm giữa phần cứng và ngôn ngữ lập trình bậc cao
 - Giúp cho phần mềm tương thích khi phần cứng thay đổi

3.3. Kiến trúc tập lệnh của CPU

3.3.1. Đặc điểm tập lệnh

- Lệnh máy (machine instructions): là các lệnh mà bộ xử lý thực hiện, quyết định hành động của bộ xử lý
- Mỗi bộ xử lý có một tập lệnh xác định. Tập lệnh (instruction set): tập hợp các lệnh khác nhau mà bộ xử lý có thể hiểu và thực hiện

3.3. Kiến trúc tập lệnh của CPU

Biểu diễn lệnh:

- Trong máy tính, mỗi lệnh được biểu diễn bằng một chuỗi bit.
- Lệnh được chia thành các trường tương ứng với các thành phần cấu thành của lệnh.

 Để thuận tiện: sử dụng cách biểu diễn bằng ký hiệu gợi nhớ. Ví dụ: ADD, SUB, LOAD, STORE,...

3.3. Kiến trúc tập lệnh của CPU

Các thành phần của lệnh máy:

• Mã lệnh (opcode): mã hóa cho thao tác mà bộ xử lý phải thực hiện bằng số nhị phân (làm gì?)

			lastruction		Right instruction		0F9	2
Table 1 The IAS Instruction Set			5	20	3		0FA	
on Opcode	Symbolic Representation	Opcode	Address Figure 1. IAS Inst	truction format	-		0FB 0FC	
00000101 00000111 00000100 00001011 00001100 00010100	ADD M(X) ADD M(X) SUB M(X) SUB M(X) MUL M(X) DIV M(X) LSH RSH	AC. put least significant bits in MO Divide AC by M(X); put the quotient in MO and the remainder in AC Multiply accumulator by 2; that is, shift left one bit positions.				of result in the t position		
	Opcode 00000101 00000111 00000100 00001010 00001100 00001100	On Symbolic Representation 00000101 ADD M(X) 00000111 ADD M(X) 00000110 SUB M(X) 00001000 SUB M(X) tic 00001011 MUL M(X) 0001100 DIV M(X) 00010100 LSH 00010101 RSH	Opcode Symbolic Opcode Representation Opcode Representation Opcode Representation Opcode Op	Opcode Symbolic Representation Opcode Representation Opcode Representation Opcode Address Figure 1. IAS last	On Opcode Symbolic Representation Opcode Address Figure 1. IAS Instruction format Figure 1. IAS Instruction format Add M(X) to AC; put the Add M(X) to AC; put the Opcode AC Opcode Representation Opcode Representation Opcode Address Figure 1. IAS Instruction format Figure 1. IAS Instruction format	Opcode Symbolic Representation Opcode Opcode Opcode Symbolic Representation Opcode Opco	Opcode Symbolic Representation Set Opcode Representation Symbolic Representation Specific Address Figure 1.1AS Instruction format O0000101 ADD M(X) Add M(X) to AC; put the result in AC O0000111 ADD M(X) Add M(X) to AC; put the result in AC O0000110 SUB M(X) Subtract M(X) from AC; put the result in AC O0001000 SUB M(X) Subtract M(X) from AC; put the remainder in AC O0001011 MUL M(X) Multiply M(X) by MQ; put most significant bits of AC. put least significant bits in MO O0001100 DIV M(X) Divide AC by M(X); put the quotient in MQ and remainder in AC O0010101 RSH Divide accumulator by 2; that is, shift left one bits of the properties of the	Opcode Symbolic Representation

3.3. Kiến trúc tập lệnh của CPU

Các thành phần của lệnh máy:

- Địa chỉ toán hạng (operand address): chỉ ra nơi chứa các toán hạng mà thao tác của VXL sẽ tác động (làm ở đâu?)
 - Toán hạng nguồn: dữ liệu vào của thao tác.
 - Toán hạng đích: dữ liệu ra của thao tác
 - Toán hạng: Thanh ghi, bộ nhớ, thiết bị ngoại vi,...
 - Ví dụ: 1 lệnh 16 bit có 2 toán hạng

4 bits	6 bits	6 bits			
Opcode	Operand Reference	Operand Reference			
-					

3.3. Kiến trúc tập lệnh của CPU Các kiểu thao tác thông dụng của tập lệnh:

- ✓ Các lệnh chuyển dữ liệu
- ✓ Các lệnh xử lý số học
- ✓ Các lệnh xử lý logic
- ✓ Các lệnh chuyển điều khiển (rẽ nhánh, nhảy)

3.3. Kiến trúc tập lệnh của CPU Các kiểu thao tác thông dụng của tập lệnh:

Các lệnh số học

ADD Cộng hai toán hạng

SUBTRACT Trừ hai toán hạng

MULTIPLY Nhân hai toán hạng

DIVIDE Chia hai toán hạng

ABSOLUTE Láy trị tuyệt đối toán hạng

NEGATE Đổi dấu toán hạng (lấy bù 2)

INCREMENT Tăng toán hạng thêm 1

DECREMENT Giảm toán hạng đi 1

COMPARE Trừ hai toán hạng để lập cờ

3.3. Kiến trúc tập lệnh của CPU Các kiểu thao tác thông dụng của tập lệnh: Các lệnh số học

Lệnh		Giải thích
SUB	Y, A, B	$Y \leftarrow A - B$
MPY	T, D, E	$T \leftarrow D \times E$
ADD	T, T, C	$T \leftarrow T + C$
DIV	Y, Y, T	$Y \leftarrow Y \div T$

3.3. Kiến trúc tập lệnh của CPU Các kiểu thao tác thông dụng của tập lệnh:

Các lệnh chuyển dữ liệu

MOVE	Copy dữ	liêu từ	nguồn	đến đích
I-IOVE	OOPY uu	nça ta	nguon	acii aloii

LOAD Nạp dữ liệu từ bộ nhớ đến bộ xử lý

STORE Cất dữ liệu từ bộ xử lý đến bộ nhớ

EXCHANGE Trao đổi nội dung của nguồn và đích

CLEAR Chuyển các bit 0 vào toán hạng đích

SET Chuyển các bit 1 vào toán hạng đích

PUSH Cất nội dung toán hạng nguồn vào ngăn xếp

POP Lấy nội dung đỉnh ngăn xếp đưa đến

toán hạng đích

3.3. Kiến trúc tập lệnh của CPU Các kiểu thao tác thông dụng của tập lệnh:

Các lệnh chuyển dữ liệu

Lệnh		Giải thích
LOAD	D	AC ← D
MPY	E	$AC \leftarrow AC \times E$
ADD	C	$AC \leftarrow AC + C$
STOR	Y	$Y \leftarrow AC$
LOAD	A	$AC \leftarrow A$
SUB	В	$AC \leftarrow AC - B$
DIV	Y	$AC \leftarrow AC \div Y$
STOR	Y	$Y \leftarrow AC$

3.3. Kiến trúc tập lệnh của CPU Các kiểu thao tác thông dụng của tập lệnh:

Các lệnh logic

 AN 	ID Th	ực hiện	phép	AND	hai	toán	hạng
------------------------	-------	---------	------	------------	-----	------	------

- OR Thực hiện phép OR hai toán hạng
- XOR Thực hiện phép XOR hai toán hạng
- NOT Đảo bit của toán hạng (lấy bù 1)
- TEST Thực hiện phép AND hai toán hạng để lập cờ

3.3. Kiến trúc tập lệnh của CPU Các kiểu thao tác thông dụng của tập lệnh:

Các lệnh logic

Giả sử có 2 thanh ghi chứa dữ liệu:

$$(R1) = 1010 \ 1010$$

$$(R2) = 0000 1111$$

Р	Q	AND	OR	XOR
0	0	0	0	0
0	1	0	1	1
1	0	0	1	1
1	1	1	1	0

■ R1← (R1) AND (R2) = 0000 1010

Phép toán AND dùng để xoá một số bit và giữ nguyên một số bit còn lại của toán hạng.

■ R1← (R1) OR (R2) = 1010 1111

Phép toán OR dùng để thiết lập một số bit và giữ nguyên một số bit còn lại của toán hạng.

R1← (R1) XOR (R2) = 1010 0101

Phép toán XOR dùng để đảo một số bit và giữ nguyên một số bit còn lại của toán hạng.

3.3. Kiến trúc tập lệnh của CPU Các kiểu thao tác thông dụng của tập lệnh:

Các lệnh chuyển điều khiển

- JUMP (BRANCH) Lệnh nhảy không điều kiện:
 - nạp vào PC một địa chỉ xác định
- JUMP CONDITIONAL Lệnh nhảy có điều kiện:
 - điều kiện đúng → nạp vào PC một địa chỉ xác định
 - điều kiện sai → không làm gì cả
- CALL Lệnh gọi chương trình con:
 - Cất nội dung của PC (địa chỉ trở về) ra một vị trí xác định (thường ở Stack)
 - Nạp vào PC địa chỉ của lệnh đầu tiên của chương trình con
- RETURN Lệnh trở về từ chương trình con:
 - Khôi phục địa chỉ trở về trả lại cho PC để trở về chương trình chính

3.3. Kiến trúc tập lệnh của CPU Các kiểu thao tác thông dụng của tập lệnh:

Các lệnh chuyển điều khiển

3.3. Kiến trúc tập lệnh của CPU

3.3.2. Chế độ định địa chỉ toán hạng

Toán hạng của lệnh có thể là:

- ✓ Một giá trị cụ thể nằm ngay trong lệnh
- ✓ Nội dung của thanh ghi
- ✓ Nội dung của ngăn nhớ hoặc cổng vào/ra

Phương pháp định địa chỉ (addressing modes)

là cách thức địa chỉ hóa trong trường địa chỉ của

lệnh để xác định nơi chứa toán hạng.

3.3. Kiến trúc tập lệnh của CPU

3.3.2. Chế độ định địa chỉ toán hạng

Các phương pháp định địa chỉ thông dụng:

- ✓ Định địa chỉ tức thì
- ✓ Định địa chỉ thanh ghi
- ✓ Định địa chỉ trực tiếp
- ✓ Định địa chỉ gián tiếp qua thanh ghi
- ✓ Định địa chỉ dịch chuyển

3.3. Kiến trúc tập lệnh của CPU

3.3.2. Chế độ định địa chỉ toán hạng

Định địa chỉ tức thì

Mã thao tác Toán hạng

- Toán hạng nằm ngay trong trường địa chỉ của lệnh
- Chỉ có thể là toán hạng nguồn
- Ví dụ: **ADD R1, 5** ; R1=R1+5
- Không tham chiếu bộ nhớ, truy nhập toán hạng nhanh
- Dải giá trị của toán hạng bị hạn chế

3.3. Kiến trúc tập lệnh của CPU

3.3.2. Chế độ định địa chỉ toán hạng

Định địa chỉ thanh ghi

- Trường địa chỉ chứa tên thanh ghi, trong thanh ghi có chứa toán hạng
- Ví du:

ADD R1, R2;
$$R1 = R1 + R2$$

Tên thanh ghi

Mã thao tác

- Số lượng thanh ghi ít nên trường địa chỉ cần ít bit
- Không tham chiếu bộ nhớ nên truy nhập toán hạng nhanh

3.3. Kiến trúc tập lệnh của CPU

3.3.2. Chế độ định địa chỉ toán hạng

Định địa chỉ trực tiếp

- Trường địa chỉ chứa địa chỉ ngăn nhớ, trong ngăn nhớ có chứa toán hạng
- Ví dụ:

ADD R1, A

(Cộng nội dung thanh ghi R1 với toán hạng nằm trong ngăn nhớ có địa chỉ là A)

• CPU tham chiếu bộ nhớ một lần để truy nhập dữ liêu

3.3. Kiến trúc tập lệnh của CPU

3.3.2. Chế độ định địa chỉ toán hạng Định địa chỉ gián tiếp qua thanh ghi

- Trường địa chỉ chứa tên thanh ghi, trong thanh ghi chứa địa chỉ của toán hạng
- Thanh ghi này được gọi là thanh ghi con trỏ
- Vùng nhớ có thể tham chiếu là lớn (2ⁿ) với n là độ dài thanh ghi

3.3. Kiến trúc tập lệnh của CPU

3.3.2. Chế độ định địa chỉ toán hạng Định địa chỉ dịch chuyển

- Để xác định vị trí toán hạng, trường địa chỉ chứa hai thành phần:
 - o Tên thanh ghi
 - o Hằng số

• Địa chỉ toán hạng = nội dung thanh ghi + hằng số

3.3. Kiến trúc tập lệnh của CPU

3.3.2. Chế độ định địa chỉ toán hạng Số lượng địa chỉ toán hạng trong lệnh

Ba địa chỉ toán hạng: phổ biến trên các kiến trúc hiện nay
 ADD R1, R2, R3 #R1 = R2 + R3

• Hai địa chỉ toán hạng: sử dụng trên Intel x86, Motorola 680x0 ADD R1, R2 #R1 = R1 + R2

- Một địa chỉ toán hạng: sử dụng trên các kiến trúc thế hệ trước,
 một toán hạng là ngầm định, thường là thanh ghi tích lũy (accumulator)
 ADD R1
 #Acc = Acc + R1
- Không địa chỉ toán hạng: Các toán hạng được ngầm định ở ngăn xếp, không thông dụng

PUSH A
PUSH B
ADD
POP C #C = A + B

3.3. Kiến trúc tập lệnh của CPU

3.3.2. Chế độ định địa chỉ toán hạng Số lượng địa chỉ toán hạng trong lệnh

Lệnh		Giải thích
SUB	Y, A, B	$Y \leftarrow A - B$
MPY	T, D, E	$T \leftarrow D \times E$
ADD	T, T, C	$T \leftarrow T + C$
DIV	Y, Y, T	$Y \leftarrow Y \div T$

(a) Lệnh có ba địa chỉ

Lệnh		Giải thích
MOVE	Y, A	$Y \leftarrow A$
SUB	Y, B	$Y \leftarrow Y - B$
MOVE	T, D	$T \leftarrow D$
MPY	T, E	$T \leftarrow T \times E$
ADD	T, C	$T \leftarrow T + C$
DIV	Y, T	$Y \leftarrow Y \div T$

(b) Lệnh có hai địa chi

Lệnh		Giải thích
LOAD	D	AC ← D
MPY	E	$AC \leftarrow AC \times E$
ADD	C	$AC \leftarrow AC + C$
STOR	Y	$Y \leftarrow AC$
LOAD	A	$AC \leftarrow A$
SUB	В	$AC \leftarrow AC - B$
DIV	Y	$AC \leftarrow AC \div Y$
STOR	Y	$Y \leftarrow AC$

(c) Lệnh có một địa chỉ

Chương trình tính biểu thức
$$Y = \frac{A - B}{C + (D \times E)}$$

3.3. Kiến trúc tập lệnh của CPU

3.3.3. Kiến trúc tập lệnh MIPS

Kiến trúc tập lệnh CISC và RISC:

- CISC: Complex Instruction Set Computer: Máy tính với tập lệnh đầy đủ. Ví dụ: Intel x86, Motorola 680x0
- RISC: Reduced Instruction Set Computer:
 Máy tính với tập lệnh thu gọn. Ví dụ: SunSPARC,
 Power PC, MIPS, ARM ...

3.3. Kiến trúc tập lệnh của CPU

3.3.3. Kiến trúc tập lệnh MIPS

Kiến trúc tập lệnh CISC và RISC:

Loại	CISC			RISC	<u>.</u>
Hãng SX	IBM	DEC VAX	Intel	Motorola	MIPS
Hệ thống MT	370/168	11/780	486	88000	R4000
Năm SX	1973	1978	1989	1988	1991
Số lượng lệnh	208	303	235	51	94
Kích thước lệnh (B)	2-6	2-57	1-11	4	32
Addressing modes	4	22	11	3	1
Số lượng thanh ghi	16	16	8	32	32
Vi ChươngTrình (KB)	420	480	246	0	0

3.3. Kiến trúc tập lệnh của CPU

3.3.3. Kiến trúc tập lệnh MIPS

Các đặc trưng của RISC

- ✓ Số lượng lệnh ít
- ✓ Hầu hết các lệnh truy nhập toán hạng ở các thanh ghi
- ✓ Truy cập bộ nhớ bằng lệnh LOAD/STORE
- ✓ Thời gian thực hiện lệnh là như nhau
- ✓ Các lệnh có độ dài cố định (32bit)
- ✓ Số lượng dạng lệnh ít
- ✓ Có ít phương pháp định địa chỉ toán hạng
- ✓ CPU có tập thanh ghi lớn
- Hỗ trợ các thao tác của ngôn ngữ bậc cao

3.3. Kiến trúc tập lệnh của CPU

3.3.3. Kiến trúc tập lệnh MIPS

MIPS (Microprocessor without Interlocked Pipeline Stages), là kiến trúc bộ tập lệnh RISC phát triển bởi MIPS Technologies. Ban đầu kiến trúc MIPS là 32bit, và sau đó là phiên bản 64 bit. Nhiều sửa đổi của MIPS, bao gồm MIPS I, MIPS II, MIPS III, MIPS IV, MIPS V, MIPS32 và MIPS64. Phiên bản hiện tại là MIPS32 và MIPS64.

MIPS là kiến trúc RISC điển hình và được sử dụng trong nhiều sản phẩm thực tế.

3.3. Kiến trúc tập lệnh của CPU

3.3.3. Kiến trúc tập lệnh MIPS

Tập thanh ghi của MIPS

- MIPS có tập 32 thanh ghi 32 bit, được đánh số từ 0 đến 31 (mã hóa bằng 5- bit)
- Chương trình hợp dịch Assembler đặt tên:
 - Bắt đầu bằng dấu \$
 - o \$t0, \$t1,....\$t9 chứa các giá trị tạm thời
 - \$s0, \$s1,....\$s7 cất các biến
- Qui ước gọi dữ liệu trong MIPS
 - Dữ liệu 32 bit được gọi là "word"
 - o Dữ liệu 16 bit gọi là "halfword"

3.3. Kiến trúc tập lệnh của CPU

3.3.3. Kiến trúc tập lệnh MIPS

Tập thanh ghi của MIPS

Tên thanh ghi	Số hiệu thanh ghi	Công dụng
\$zero	0	the constant value 0, chứa hằng số = 0
\$at	1	assembler temporary, giá trị tạm thời cho hợp ngữ
\$v0-\$v1	2-3	procedure return values, các giá trị trả về của thủ tục
\$a0-\$a3	4-7	procedure arguments, các tham số vào của thủ tục
\$t0-\$t7	8-15	temporaries, chứa các giá trị tạm thời
\$s0-\$s7	16-23	saved variables, lưu các biến
\$t8-\$t9	24-25	more temporarie, chứa các giá trị tạm thời
\$k0-\$k1	26-27	OS temporaries, các giá trị tạm thời của OS
\$gp	28	global pointer, con trỏ toàn cục
\$sp	29	stack pointer, con trỏ ngăn xếp
\$fp	30	frame pointer, con trỏ khung
\$ra	31	procedure return address, địa chỉ trở về của thủ tục

3.3. Kiến trúc tập lệnh của CPU

3.3.3. Kiến trúc tập lệnh MIPS

Mã máy trong MIPS

- Các lệnh của MIPS:
 - O Được mã hóa bằng các từ lệnh 32 bit
 - Mỗi lệnh chiếm 4 byte trong bộ nhớ
 - Có ít dạng lệnh

```
add $t0, $s1, $s2
add $t1, $s3, $s4
sub $s0, $t0, $t1
```

3.3. Kiến trúc tập lệnh của CPU

3.3.3. Kiến trúc tập lệnh MIPS

Các kiểu lệnh máy của MIPS

Lệnh kiểu R	ор	rs	rt	rd	shamt	funct
	6 bits	5 bits	5 bits	5 bits	5 bits	6 bits
Lệnh kiểu I	ор	rs	rt		imm	
	6 bits	5 bits	5 bits		16 bits	
Lệnh kiểu J	ор			address	<u> </u>	
	6 bits		26 bits			

3.3. Kiến trúc tập lệnh của CPU

3.3.3. Kiến trúc tập lệnh MIPS

Các kiểu lệnh máy của MIPS

ор	rs	rt	rd	shamt	funct
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits

- Các trường của lệnh
 - op (operation code opcode): m\u00e4 thao t\u00e4c
 - với các lệnh kiểu R, op = 000000
 - rs: số hiệu thanh ghi nguồn thứ nhất
 - rt: số hiệu thanh ghi nguồn thứ hai
 - rd: số hiệu thanh ghi đích
 - shamt (shift amount): số bit được dịch, chỉ dùng cho lệnh dịch bit, với các lệnh khác shamt = 00000
 - funct (function code): mã hàm

3.3. Kiến trúc tập lệnh của CPU

3.3.3. Kiến trúc tập lệnh MIPS

Các kiểu lệnh máy của MIPS

Ví dụ: Mã máy của lệnh add, sub

ор	rs	ŗt	rd	shamt	funct
6 bits	5 bits	5 bits	5 bits	5 bits	6 bits
add \$t	0, \$s1	, \$s2			
0	\$s1	\$s2	\$tO	0	add
0	17	18	8	0	32
000000	10001	10010	01000	00000	100000
				(0x	02324020)
sub \$s	sub \$s0, \$t3, \$t5				
0	\$t3	\$t5	\$s0	0	sub
0	11	13	16	0	34
000000	01011	01101	10000	00000	100010
(0x016D8022)					

3.3. Kiến trúc tập lệnh của CPU

3.3.3. Kiến trúc tập lệnh Intel x86

- ✓ Thuật ngữ x86 dùng để chỉ tới kiến trúc tập lệnh của dòng vi xử lý 8086 của Intel. 8086 được Intel đưa ra năm 1978.
- ✓ Kiến trúc x86 có độ dài chỉ lệnh không cố định.
- ✓ Các phép toán có thể thực hiện với 8, 16, 32, 64 bit tùy theo thế hệ kiến trúc. Opcode chính của x86 có thể lên đến 3 byte nên rất linh hoạt.

3.3. Kiến trúc tập lệnh của CPU

3.3.3. Kiến trúc tập lệnh Intel x86

Moves

MOV DST,SRC	Move SRC to DST
PUSH SRC	Push SRC onto the stack
POP DST	Pop a word from the stack to DST
XCHG DS1,DS2	Exchange DS1 and DS2
LEA DST,SRC	Load effective addr of SRC into DST
CMOVcc DST,SRC	Conditional move

Arithmetic

ADD DST,SRC	Add SRC to DST
SUB DST,SRC	Subtract SRC from DST
MUL SRC	Multiply EAX by SRC (unsigned)
IMUL SRC	Multiply EAX by SRC (signed)
DIV SRC	Divide EDX:EAX by SRC (unsigned)
IDIV SRC	Divide EDX:EAX by SRC (signed)
ADC DST,SRC	Add SRC to DST, then add carry bit
SBB DST,SRC	Subtract SRC & carry from DST
INC DST	Add 1 to DST
DEC DST	Subtract 1 from DST
NEG DST	Negate DST (subtract it from 0)

Binary coded decimal

DAA	Decimal adjust
DAS	Decimal adjust for subtraction
AAA	ASCII adjust for addition
AAS	ASCII adjust for subtraction
AAM	ASCII adjust for multiplication
AAD	ASCII adjust for division

Boolean

AND DST,SRC	Boolean AND SRC into DST
OR DST,SRC	Boolean OR SRC into DST
XOR DST,SRC	Boolean Exclusive OR SRC to DST
NOT DST	Replace DST with 1's complement

Shift/rotate

SAL/SAR DST,#	Shift DST left/right # bits
SHL/SHR DST,#	Logical shift DST left/right # bits
ROL/ROR DST,#	Rotate DST left/right # bits
RCL/RCR DST,#	Rotate DST through carry # bits

3.3. Kiến trúc tập lệnh của CPU

3.3.3. Kiến trúc tập lệnh Intel x86

Transfer of control

JMP ADDR	Jump to ADDR
Jxx ADDR	Conditional jumps based on flags
CALL ADDR	Call procedure at ADDR
RET	Return from procedure
IRET	Return from interrupt
LOOPxx	Loop until condition met
INT n	Initiate a software interrupt
INTO	Interrupt if overflow bit is set

Strings

LODS	Load string
STOS	Store string
MOVS	Move string
CMPS	Compare two strings
SCAS	Scan Strings

Test/compare

TEST SRC1,SRC2	Boolean AND operands, set flags
CMP SRC1,SRC2	Set flags based on SRC1 - SRC2

Miscellaneous

SWAP DST	Change endianness of DST
CWQ	Extend EAX to EDX:EAX for division
CWDE	Extend 16-bit number in AX to EAX
ENTER SIZE,LV	Create stack frame with SIZE bytes
LEAVE	Undo stack frame built by ENTER
NOP	No operation
HLT	Halt
IN AL,PORT	Input a byte from PORT to AL
OUT PORT,AL	Output a byte from AL to PORT
WAIT	Wait for an interrupt

SRC = source # = shift/rotate count
DST = destination LV = # locals

3.3. Kiến trúc tập lệnh của CPU

3.3.3. Kiến trúc tập lệnh Intel x86

Thống kê 10 lệnh Intel x86 sử dụng nhiều nhất

<u>TT Lệnh</u>	1	<u>Tỷ lệ (%)</u>
1	load	22%
2	conditional branch	20%
3	compare	16%
4	store	12%
5	add	8%
6	and	6%
7	sub	5%
8	move register-register	4%
9	call	1%
<u>10</u>	return	1%
	Total	96%

Thank you!