MIME 262, Lecture #09, February 06, 2012

Group Members: Alexander Hugh Sam, Gregory Kim, Omer Chughtai, Riham Bichri

Melting points

Quartz (SiO₂): ~1700°C

Covalent bond requires higher energy to break

Soda-Lime Glass: ~550°C

- Production is less expensive
- Lower melting point than Quartz
- Ionic bonds requires less energy than covalent bonds

Lead (Pb) Crystal Glass: ~800°C

Crystal but amorphous

Index of Refraction

Higher index (n) → Greater spreading of white light into its substituting colors → "Prettier to look at"

Quartz: n = 1.5

Soda-Lime glass: n = 1.5 Lead crystal glass: n = 1.7

Diamond: n = 2.42

Artificial Fibers

Glass Fibers:

Inexpensive, light & strong

e.g. Fiberglass (mix of epoxy and glass):

- Good insulator

Carbon (Graphite) Fibers:

- Light and very low density
- Graphite is used as dry lubricant

e.g. pencil, aircrafts, tennis rackets, cars,...

Graphene rolled up

Strong vs Tough

- Strong (brittle): Cracks propagates
- Tough (ductile): Cracks don't propagate

CHAPTER 7 THERMODYNAMICS

Laws of Thermodynamics

1st Law: "Energy (E) is conserved"

Energy can be changed from one form to another, but it cannot be created or destroyed

 $E_k = \frac{1}{2}mv^2$

 $E_w = \hbar w$ ħ: Planck Constant

 $E = mc^2$ c: Speed of Light

2nd Law: Entropy (S)

- In any closed system, the entropy of the system will either remain constant or increase.
- Entropy is the change or disorder of a microstate (Temperature (T), Pressure (P), Volume (V), Energy (E) or Molecule (N)) in a particular system

Example

Ice melting in water

 $S = f(E, V, \{N\})$

Entropy is a function of:

E: Energy

V: Volume

N: Content of the system

Mathematical definition

 $T \triangleq$ "Absolute" = [°K]

P: Pressure

 $\Im \frac{dS}{dN_k} = \frac{-\mu_k}{T}$

 $\mu_k \triangleq$ "Chemical Potential of k^{th} particle" $N_k \triangleq "Mole number k^{th} component"$

Change in Energy, Volume, or Particle → Entropy changes

$$dE = TdS - PdV - \sum_{k} \mu_{k}$$

TdS: Thermal Work (e.g. Steam Engine) PdV: Mechanical Work (e.g. Pressure)

Boltzmann Entropy Formula

$$S(E, V, \{N\}) = k_b ln \Omega (E, V, \{N\})$$

k_b: Boltzmann Constant

 Ω : degeneracy of states in a system (total number of distinct ways of assigning positions and momenta to the particles)

Analogy of degeneracy of states (Ω)

Volume: $V_1 = V_2$

Temperature: $T_1 < T_2$ $N_1 < N_2$ # of people (molecules):

- Ways of assigning positions increased
- Momenta of people increased
- Thus, Ω increases

TYPES OF ENTROPY

1) Electronic Entropy

2) Vibrational Entropy

3) Configurational Entropy

3rd Law: 0°K "nothing happens"

The entropy of a system at absolute zero is typically zero, and in all cases is determined only by the number of different ground states it has.

$$T \rightarrow 0^{\circ}K$$

 $\Omega \rightarrow 1$
 $S \rightarrow 0$

States (S)

1
2
3

- 1 Meta Stable
- ② & ③ Unstable
- (4) Global Minimum

Emitting light on a photocell

Eventually the electron will fall back down to the valence band → emitting photon

Entropy: Mathematical Example

T1 > T2

Perfect Insulator

$$dS = \frac{dE}{T} + \frac{P}{T}dV - \sum_{k} \left[\frac{\mu_{k}}{T}\right] dN_{k}$$

$$dS = dS_{1} + dS_{2}$$

$$dS = \frac{dE_{1}}{T_{1}} + \frac{dE_{2}}{T_{2}}$$

$$dE_{1} = -dE_{2}$$

$$dS = -dE_{2} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) \ge 0$$

$$T_{1} > T_{2}; \left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) < 0$$

$$-dE_{2} \left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right) \ge 0$$

$$dE_{2} > 0$$