Earnings and Consumption Dynamics: A Nonlinear Panel Data Framework - By Arellano, Blundell and Bonhomme

Marius Grünewald¹ May 3, 2023

¹European University Institute

Motivation

- New framework for estimating nonlinear earning dynamics
 Implications for consumption (variation)
- New method for studying persistence of shocks to income

Motivation

- New framework for estimating nonlinear earning dynamics
 - ⇒ Implications for consumption (variation)
- New method for studying persistence of shocks to income

Why should we care

- Policy Relevance
 - a) Persistence affects income inequality
 - b) Insurance and taxation
- Methodology Contribution

Overview

Canconical Model

The Model

Identification

Estimation

Results

Conclusion

Canconical Model

Canonical Model

Earnings: $y_{it} = \eta_{it} + \epsilon_{it}$

- η_{it} persistent component, $\eta_{it} = \eta_{i,t-1} + \nu_{it}$
- $\bullet~\eta_{\it it}$ indep. of conditional quantile τ
- ϵ_{it} transitory component, i.i.d.
- ullet u_{it} independent of $\eta_{i,t-1}$

⇒ Random walk and independent shock

$$\implies \frac{\partial \eta_{it}}{\partial \eta_{i,t-1}} = \rho_t(\eta_{i,t-1}) = 1$$

Simulate Life Cycle Model: Given policy functions, get assets and consumption

 \implies DONE

Canonical Model

Are linear models appropriate? Precautionary savings, borrowing constraints?

The Model

Earnings

Earnings: $y_{it} = \eta_{it} + \epsilon_{it}$

Think in Quantiles: Given $\eta_{i,t-1}$ every quantile has different persistence (Nonlinear)

- η_{it} persistent component, $\eta_{it} = Q_t(\eta_{i,t-1}, u_{it})$, where $Q_t(\eta_{i,t-1}, \tau) = \tau$ -th quantile of $\eta_{it}|\eta_{i,t-1} \ \forall \ \tau \in (0,1)$
- $(u_{it}|\eta_{i,t-1}) \sim U(0,1)$
- ϵ_{it} transitory component, i.i.d.

$$\implies \frac{\partial Q_t(\eta_{i,t-1},\tau)}{\partial \eta} = \rho_t(\eta_{i,t-1},\tau), \text{ depends on size and sign of } u_{it}$$
On average: $\rho_t(\tau) = \mathbb{E}\left[\frac{\partial Q_t(\eta_{i,t-1},\tau)}{\partial n}\right]$

Intuitive: ρ 's measure persistence of earnings history

Consumption

Distributions known, today's realizations known

- (1) Assets: $A_{it} = (1+r)A_{i,t-1} + Y_{i,t-1} C_{i,t-1}$
- (2) Log earnings: In $Y_{it} = \kappa_t + \eta_{it} + \epsilon_{it}$
- (3) $V_t(A_{it}, \eta_{it}, \epsilon_{it}) = \max_{C_{it}} u(C_{it}) + \beta \mathbb{E}_t[V_{t+1}(A_{i,t+1}, \eta_{i,t+1}, \epsilon_{i,t+1})]$

Important now: Conditional distribution of $\eta_{i,t+1}$ given $\eta_{i,t}$

Solving for C_{it} using (1), (2) and (3)

$$\implies$$
 $C_{it} = G_t(A_{it}, \eta_{it}, \epsilon_{it})$

But how to get there? Get it directly from the data!

Bringing it to the data

- Log consumption: $g_t(a_{it}, \eta_{it}, \epsilon_{it}, \nu_{it})$, with ν_{it} being unobservables
- Net assets: $a_{it} = h_t(a_{i,t-1}, c_{i,t-1}, y_{i,t-1}, \eta_{i,t-1}, \nu_{it})$, with ν_{it} i.i.d. and independent
- Average Consumption: $\mathbb{E}[g_t(a, \eta, \epsilon, \nu_{i,t})]$, given earnings, assets
- Derivative at the average: $\phi_t(\mathbf{a}, \eta, \epsilon) = \mathbb{E} \frac{\partial g_t(\mathbf{a}, \eta, \epsilon, \nu_{i,t})}{\partial \eta}$

Identification

Earnings

Not the central point of the paper, but...

- Nonlinear Model with latent variable $(\eta_{it}, \epsilon_{it})$
- Goal: Identify joint distributions of η_i 's, ϵ_i 's from earnings data
- Crucial assumption: The distributions of $(y_{it}|y_{i,t-1})$ and $(\eta_{it}|y_{i,t-1})$ both need to satisfy **completeness**
- Intuition: If we only use $y_{i,t-1}$ to estimate $h(y_{it})$, $\mathbb{E}[h(y_{it})|y_{i,t-1}] = 0$ the only instance where this is optimal is if h = 0. Otherwise, we gain information by adding a non-noise variable, i.e. $\eta_{i,t-1}$
- $\implies \eta_{i,t}$ serially correlated

Consumption

Identification strategy:

- Note: $f(a_1|y) = \int f(a_1|\eta_1) f(\eta_1|y) d\eta_1$
- Start with first period. Get initial conditional distribution $f(a_1|y) = \mathbb{E}[f(a_1|\eta_{i1})|y_i = y]$ as ϵ_{it} and u_{it} independent.
- Next, $f(c_1|a_1, y) = \mathbb{E}[f(c_1|a_{i1}, \eta_{i1}, y_{i1})|a_{i1} = a_1, y_i = y]$, as ν_{it} independent
- Next, do the same with t=2 and apply Bayesian updating

Estimation

Estimation

- (1) Use Quantile regression to jointly estimate
 - $Q_t(\cdot,\cdot)$, ϵ_{it} , η_1
 - $Q_t(\eta_{i,t-1},\tau) = \sum_{k=0}^K a_k^Q(\tau)\phi_k(\eta_{i,t-1}, age_{it})$
 - $Q(age_{it}, \tau) = \sum_{k=0}^{K} a_k(\tau) \phi_k(age_{it})$
 - In practice: Use Hermite Polynomials (low order)
- (2) Given these, estimate c and a
 - $g_t(a_{it}, \eta_{it}, \epsilon_{it}, \tau) = \sum_{k=1}^K b_k^g \tilde{\phi}_k(a_{it}, \eta_{it}, \epsilon_{it}, age_{it}) + b_0^g(\tau)$
 - $Q_t(\eta_{i,1}, age_{i1}, \tau) = \sum_{k=0}^{K} b_k^a(\tau) \tilde{\phi}_k(\eta_{i,1}, age_{i1})$
 - $h_t(a_{i,t-1}, c_{i,t-1}, y_{i,t-1}, \eta_{i,t-1}, \tau) = \sum_{k=1}^K b_k^h \tilde{\phi}_k(a_{i,t-1}, c_{i,t-1}, y_{i,t-1}, \eta_{i,t-1}, age_{it}) + b_0^k(\tau)$

Note: All estimates will depend on age and quantile

Results

Persistence of Earnings

Persistence of η - Simulated Data

Consumption Responses

Impulse Response Function - Canonical Model

Impulse Response Function - Nonlinear Model

age

age

Conclusion

Take-away

- 1. We can now model nonlinear persistence
- 2. Simulation-based quantile regression method and conditions for Nonparametric identification
- 3. Consumption responses vary
- 4. Asymmetric persistence pattern, more unusual less persistent