1. Responda V o F

F	a.	Sea P un poset y m ∈ P. Si m es maximal entonces es máximo.
V	b.	Sea P un poset y m ∈ P. Si m es máximo entonces es maximal.
F	C.	$(\{1,2,3,9,18\},)$ es un subreticulado de $(D_{18},)$
F	d.	D_{35} es un algebra de Boole.
V	e.	Si Γ es consistente y $\triangle \subseteq \Gamma$ entonces \triangle consistente.
F	f.	Si Γ es inconsistente y $\triangle \subseteq \Gamma$ entonces \triangle inconsistente.
V	g.	Si Γ es consistente maximal entonces es cerrado por derivaciones
F	h.	Para todo Γ consistente \exists uno y solo un consistente maximal que lo contiene
V	i.	Si $L_1 \in LR^{\Sigma}$ y $\alpha_1, \ldots, \alpha_k \in \Sigma^*$, entonces $(L_1 \cup \{\alpha_1, \ldots, \alpha_k\}) \in LR^{\Sigma}$
Ŧ	j.	Si $L_1 \in LR^{\Sigma}$ y $L_2 \subseteq L_1$, entonces $L_2 \in LR^{\Sigma}$
٧	k.	El lenguaje $\{a^i b^j : i, j \in N\}$ es regular
F	l.	El lenguaje $\{a^i b^j : i, j \in N \ y \ i \neq j\}$ es regular

- a) Pueden existir solo dos maximales, entonces no habría máximo.
- b) Si m es máximo m >= x para todo x en P, entonces
- si existe un $t \ge m$ es porque m = t.
- c) No se preservan las operaciones de supremo e ínfimo, sup(2,3) = 6 en D_18 pero en el subreticulado no esta definido.

d) Verdadero.

Todos los D_n son distrivutivos y este es complementado.

- e) Si Γ es consistente y $\Delta \subseteq \Gamma$ entonces Δ consistente.
- Si Γ es consistente entonces $\Gamma / \vdash \bot$

Supongamos que \triangle inconsistente, entonces $\triangle \vdash \bot$ es decir existe una derivación D tq:

 $Hip(D) = \triangle$

Concl(D) = \bot

Como $\triangle \subseteq \Gamma$ podemos decir que $\Gamma \vdash \bot$. Absurdo de suponer que \triangle es inconsistente.

- f) Si Γ es inconsistente y $\Delta \subseteq \Gamma$ entonces Δ inconsistente.
- Si Γ es inconsistente entonces $\Gamma \vdash \bot$

Tomemos $\Gamma = \{\varphi, \neg \varphi\}$ claramente $\Gamma \vdash \bot$

Ahora tomemos un subconjunto $\triangle = \{\varphi\}$ el cual no tiene forma de derivar \bot , por lo tanto no es cierto que si Γ es inconsistente y $\triangle \subseteq \Gamma$ entonces \triangle inconsistente.

g) Si Γ es consistente maximal y Γ $\vdash \varphi$ entonces φ esta en Γ

h) Para todo Γ consistente \exists uno y solo un consistente maximal que lo contiene Si Γ es consistente, existe un Γ* consistente maximal tq Γ \subseteq Γ*.

Para construir Γ^* comenzando con Γ , vamos agregándole proposiciones de una cuidando que no se vuelva inconsistente hasta obtener $\Gamma^* = U \Gamma_n$, n >= 0 Dependiendo de como se agreguen las proposiciones, podemos formar diferentes conjuntos maximales consistentes. Por ejemplo, $\{\varphi\}$ se agrego en Γ^* , entonces $\{\neg\varphi\}$ no puede estar y viceversa.

i) Si $L1 \in LR\sum$ y $\alpha 1$, , $\alpha k \in \sum^*$, entonces $(L1 \cup \{\alpha 1,, \alpha k\}) \in LR\sum$

veamos si L2 = $(\alpha 1, ..., \alpha k)$ con $\alpha i \in \Sigma^*$ y k >= 0 es un lenguaje regular: si k = 0 entonces L2 = Vacio => es regular por caso base.

si k >= 1 entonces L2 = $\{\alpha 1\}$ U, , U $\{\alpha k\}$ => L es regular si $\{\alpha i\}$ es regular:

- $\alpha i = \epsilon : \{\epsilon\} \in LR\Sigma$ por caso base.
- α i = a1...an. con n >= 1, entonces $\{\alpha$ i $\}$ = $\{a1\}$... $\{an\}$ luego $\{ai\} \in LR\Sigma$ por caso base. entonces $\{\alpha$ i $\} \in LR\Sigma$

j) Supongamos L1 = Σ^* , ahora tomamos el subconjunto

 $L2 = {\alpha : \alpha = a^n . b^n : n >= 0}$

Claramente L2 no es regular.

k) El lenguaje $\{a^{i} : b^{j} : i,j \in \mathbb{N}\}$ es regular. Verdadero.

Existe un AFD que lo acepta


```
I) El lenguaje \{a^n : b^n : i,j \in N \ y \ i \neq j \} es regular

Por tomar la cadena: (con n constante de bombeo)
\alpha = a^n \cdot b^n (n - s') con n - s' >= 0, n,s' >= 1

Por pumping lemma la podemos descomponer como \alpha = \alpha 1\alpha 2\alpha 3\alpha 1 = a^n \cdot r, r >= 0
\alpha 2 = a^n \cdot s, s >= 1
\alpha 3 = a^n \cdot (n - (s + r))b^n
para i = 0 tenemos
\alpha = \alpha 1\alpha 2^n 0\alpha 3 = a^n \cdot a^n s^n 0 \cdot a^n \cdot (n - (s + r))b^n
= a^n \cdot (n - s) \cdot b^n \cdot (n - s')
como s, s' >= 1, puede ocurrir que s - s = n - s'. Absurdo.
```

3. a. Determinar si es distributivo con Birkhoff:

b. Sea L un reticulado distributivo y sea a,b,c \in L. Pruebe que:

Sia
$$\Lambda$$
c= $b\Lambda$ c ya V c= bV c entonces a= b


```
a)
Como L es un reticulado distributivo se da que:
a v (b ^ c) = (a v b) ^ (a v c)
a ^ (b v c) = (a ^ b) v (a ^ c)
a = a \wedge (a \vee c) (absorción)
 = a \wedge (b \vee c) (hipótesis)
 = (a ^ b) v (a ^ c)
b = b \wedge (b \vee c) (absorción)
  = b ^ (a v c) (hipótesis)
 = (b ^ a) v (b ^ c)
por hipótesis
  = (b ^ a) v (a ^ c)
=> a = b
  4. a. Derivar \vdash \neg(\varphi v \omega) \leftrightarrow \neg \varphi \land \neg \omega
        b. Sea \Gamma \subseteq PROP. Mediante transformaciones de derivación pruebe que:
                     \Gamma \vdash \varphi si y solo si \Gamma \cup \{\neg \varphi\} es inconsistente
```


- 5. Considerando los autómatas con alfabeto $\Sigma = \{a,b\}$
 - Para M1 dar un AFD con el mismo lenguaje aceptado por medio de los algoritmos dados en la materia.

M1:

Estado inicial q0, estado final q1

	а	b	ε
q0	q1, q2		
q1		q0	
q2		q2	q1

 Para M2 dar una expresión regular para un lenguaje aceptado por medio del Teorema de Kleene

M2:

Estado inicial q0, estado final q0 y q2

	а	b			
q0	q1, q2				
q1	q1, q2	q0			
q2		q2			

