Informed (Heuristic) Search Strategies

A* Search

Outline

- Greedy Best First Search
- A* Search
- Graph Search
- Heuristic Design

Recap: Search

• Search problem:

- States (configurations of the world)
- Successor function: a function from states to
 lists of (state, action, cost) triples; drawn as a graph
- Start state and goal test

• Search tree:

- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)

• Search Algorithm:

- Systematically builds a search tree
- Chooses an ordering of the fringe (unexplored nodes)
- Optimal: finds least-cost plans

Example: Pancake Problem

Example: Pancake Problem

State space graph with costs as weights

General Tree Search

Uniform Cost Search

- Strategy: expand lowest path cost
- The good: UCS is complete and optimal!
- The bad:
 - Explores options in every "direction"
 - No information about goal location

Search Heuristics

- Heuristic function h(n) (a function from states to numbers): Any estimate of how close a state is to a goal (h(n)=0) for goal node)
- Designed for each particular search problem
- Example: Manhattan distance, Euclidean distance

Example: Heuristic Function

Straight—line distance

Example: Heuristic Function

Heuristic: the largest pancake that is still out of place

Greedy Best-First Search

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

What can go wrong?

Example: Heuristic Function

Red Pa	th (GBF)	= 450
\sim	1 /7700	

Green path(UCS)=418

Straight—line distance			
to Bucharest	\		
Arad	366		
Bucharest	0		
Craiova	160		
Dobreta	242		
Eforie	161		
Fagaras	178		
Giurgiu	77		
Hirsova	151		
Iasi	226		
Lugoj	244		
Mehadia	241		
Neamt	234		
Oradea	380		
Pitesti	98		
Rimnicu Vilcea	193		
Sibiu	253		
Timisoara	329		
Urziceni	80		
Vaslui	1/99		
Zerind	374		
	/ _		

Greedy Best-First Search

- A common case:
 - Best-first takes youstraight to the (wrong) goal
- Worst-case: like a badly-guided
 DFS in the worst case
 - Can explore everything
 - Can get stuck in loops if no cycle checking
- Not optimal
 - heuristic is just an estimate to goal
 and GBF ignores the distance from root
- Like DFS in completeness
 - complete only if finite states with cycle checking

Combining UCS and Greedy

- Uniform-cost orders by path cost, or *backward cost* g(n)
- Greedy orders by goal proximity, or *forward cost* h(n)

• A* Search orders by the sum: f(n) = g(n) + h(n)

Combining UCS and Greedy

- Uniform-cost orders by path cost, or *backward cost* g(n)
- Greedy orders by goal proximity, or *forward cost* h(n)

• A* Search orders by the sum: f(n) = g(n) + h(n)

When should A* terminate?

• Should we stop when we enter a goal in the frontier?

No: only stop when we select a goal for expansion

Is A* optimal?

Overestimated *h*

- What went wrong?
- Actual cost of bad goal < estimated cost of good goal
- We need estimates to be less than actual costs!

Admissible Heuristics

• A heuristic *h* is *admissible* if:

$$h(n) \leq h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

- Admissible heuristics are optimistic (underestimate the cost)
- Examples:

 Coming up with admissible heuristics is most of what's involved in using A* in practice.

Optimality of A*: Blocking

Notation: ...

- $g(n) = \cos t$ from root to node n
- h(n) = estimated cost from n to the nearest goal (heuristic)
- f(n) = g(n) + h(n) =estimated total cost via n
- G*: a lowest cost goal node
- G: another goal node

Optimality of A*: Blocking

Proof:

- What could go wrong?
- We'd have to have to pop a suboptimal goal G off the fringe before G*.

- This can't happen if h admissible:
 - Imagine a suboptimal
 goal G is on the queue
 - Some node n which is a subpath of G* must also be on the fringe (why?)
 - − *n* will be popped before *G*

$$f(n) = g(n) + h(n)$$

$$g(n) + h(n) \le g(G^*)$$
 h admissible

$$g(G^*) < g(G)$$

by assumption

$$g(G) = f(G)$$

for goals h(G)=0

Properties of A*

- A* does not expand any node with f(n) > C* (Pruning).
 While UCS might expand nodes with g(n) < C* but f(n) > C*.
- Optimally efficient,
 no other algorithm guarantees to expand
 nodes less than A*.
 (but not good choice for every search problem)
- Complete if
 costs exceeds positive epsilon
 and b is finite
- Complexity $O(b^d)$!!!!

UCS vs. A* Contours

Uniform-cost expanded
 in all directions
 (Contours of UCS are cheapest *g*)

A* expands mainly toward the goal, but does ensure optimality
(Contours of A* are cheapest f.)

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where there are fewer restrictions on the actions (or new actions available)

Inadmissible heuristics are often useful too (why?)

Example: 8 Puzzle

Start State

Goal State

- What are the states?
- How many states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?

8 Puzzle (I)

- Heuristic 1: Number of tiles misplaced
- Why is it admissible?
- h(start) = 8
- This is a relaxed-problem heuristic

	Average nodes expanded when optimal path has length				
	4 steps	8 steps	12 steps		
IDS	112	6,300	3.6 x 10 ⁶		
TILES	13	39	227		

8 Puzzle (II)

Heuristic 2:

Sum of Manhattan distances of the tiles from

their goal positions

3 6

• Why admissible?

Start State

Goal State

•
$$h(\text{start}) =$$

 $3+1+2+2+2+3+3+2 = 18$

• This is also a relaxed-problem

heur	istic
IICUI.	

18	Average nodes expanded when optimal path has length		
problem	4 steps	8 steps	12 steps
TILES	13	39	227
MANHATTAN	12	25	73

8 Puzzle (III)

- How about using the *actual cost* as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?

• With A*: a trade-off between quality of estimate and work per node!

Dominance

- Dominance: h_a dominates h_c if $\forall n : h_a(n) \ge h_c(n)$
- Dominance → efficiency

A* using h_a never expands more nodes than A* using h_c .

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

$$h(n) = \max (h_a(n), h_b(n))$$

- Trivial heuristics
 - Bottom of lattice is the zero heuristic(what does this give us?)
 - Top of lattice is the exact heuristic

Other A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition

•

Tree Search: Extra Work!

• Failure to detect repeated states can cause exponentially more work. Why?

Example

In BFS, for example,
 we shouldn't bother
 expanding the circled nodes
 (why?)

Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed-set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state is new (neither in expanded set nor in frontier)
 - If not new, skip it
- Important: store the closed-set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

A* Graph Search Gone Wrong?

State space graph

Search tree

Consistency of Heuristics

• Stronger than admissibility

• Definition:

$$cost(A to C) + h(C) \ge h(A)$$

 $cost(A to C) \ge h(A) - h(C)$
real arc cost \ge cost implied by heuristic

• Consequences:

- The f value along a path never decreases
- A* graph search is optimal

Optimality

• Tree search:

- A* is optimal if heuristic is admissible (and non-negative)
- UCS is a special case of A^* (with h = 0)

• Graph search:

- A* optimal if heuristic is consistent
- UCS is optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

Summary: A*

 A* uses both backward costs and (estimates of) forward costs

• A* is optimal with admissible / consistent heuristics

• Heuristic design is key: often use relaxed problems