AMENDMENT TO THE CLAIMS:

Please add claim 11.

This listing of the claims replaces all prior versions, and listings, of claims in the application.

l	1. (Original) An interface between a master and one or more slave modules
2	comprising:
3	a master;
4	a slave having a set of addressable registers including egress mailbox registers
5	ingress mailbox registers, and indirect access address registers;
6	a direct memory access (DMA) engine coupled to the master by a first bus and
7	to the slave by a second bus, with the second bus comprising:
8	a set of bi-directional data lines for transmitting data between the slave and th
9	DMA engine;
10	a set of master address lines for transmitting address data from the DMA
11	engine to the slave;
12	a master data strobe for strobing data;
13	a master read/write signal for indicating whether data is to be read from or
14	written to the slave;
15	a set of slave select signals for selecting one of a plurality of slaves connected
16	to the second bus;
17	a slave wait signal asserted by a slave to delay a data transfer;
18	a slave reset signal,
19	a clock output signal, and
20	a clock input signal;
21	where the DMA engine performs direct data transfers to the slave by asserting
22	a slave select signal to the slave and transferring data over the set of bi-directional data lines
23	to the slave egress or ingress data registers and performs indirect data transfers to slave
24	memory by writing address data over the set of bi-directional data lines to the indirect addres
25	register of the slave and where the slave utilizes its own memory map and the address data to
26	transfer data between a location indicated by the address data and the DMA engine.

1	2. (Original) The interface of claim 1 where the DMA engine negotiates with
2	a slave to implement either an asynchronous, synchronous, or source synchronous data
3	transfer.
1	3. (Original) The interface of claim 1 where the DMA engine negotiates with
2	all slaves during reset to determine the maximum bus width available to transfer data.
1	4. (Original) The interface of claim 1 where:
2	the slave includes status register and message signal interrupt (MSI) register;
3	and
4	where the slave asserts a bit in the status register to indicate it is ready for a
5	transaction and where the DMA engine asserts a bit in the MSI register to indicate when a
6	transaction is complete.
1	5. (Original) A method for allowing a DMA engine to provide access to a
2	plurality of slave devices to multiple masters, the protocol, implemented by hardware and
3	software on the DMA engine, the master, and the slave devices, comprising the steps of:
4	to implement a direct message transfer to a slave device:
5	accessing a slave status register to read a direct message ready status bit which
6	is set when the slave is ready to transfer data;
7	transferring message data using the DMA engine and a slave mailbox register
8	if the direct message ready status bit is set;
9	setting an message transfer complete status interrupt at the slave to indicate
10	when the transfer of the message is complete; and
11	to implement an indirect data transfer to the memory space of a slave device:
12	accessing a slave status register to read an indirect message ready status bit
13	which is set when the slave is ready to transfer data;
14	transferring address data using the DMA engine and slave indirect address
15	mailbox register if the indirect message ready status bit is set;
16	setting an indirect transfer message interrupt bit at the slave to initiate the
17	indirect transfer;
18	transferring message data between the DMA engine and slave mailbox
19	registers if the indirect message ready status bit is set, where the slave utilizes its own

20 ·	memory map and the address data to transfer data between a location indicated by the address
21	data and the DMA engine; and
22	setting an message transfer complete status interrupt at the slave to indicate
23	when the transfer of the message is complete.
1	6. (Original) The method of claim 5 further comprising the step of:
2	negotiating with all the slaves to implement either an asynchronous,
3	synchronous, or source synchronous data transfer.
1	7. (Original) The method of claim 5 further comprising the step of:
2	starting the bus upon reset at a fixed bus-width and then negotiating with all
3	the slaves to implement acceptable bus bit-width.
1	8. (Original) A system for allowing a DMA engine to provide access to a
2	plurality of slave devices to multiple masters, the protocol, implemented by hardware and
3	software on the DMA engine, the master, and the slave devices, said system comprising:
4	means for implementing a direct message transfer to a slave device including:
5	means for accessing a slave status register to read a direct message ready
6	status bit which is set when the slave is ready to transfer data;
7	means for transferring message data using the DMA engine and a slave
8	mailbox register if the direct message ready status bit is set;
9	means for setting an message transfer complete status interrupt at the slave to
10	indicate when the transfer of the message is complete; and
11	means for implement an indirect data transfer to the memory space of a slave
12	device including:
13	means for accessing a slave status register to read an indirect message ready
14	status bit which is set when the slave is ready to transfer data;
15	means for transferring address data using the DMA engine and slave indirect
16	address mailbox register if the indirect message ready status bit is set;
17	means for setting an indirect transfer message interrupt bit at the slave to
18	initiate the indirect transfer;
19	means for transferring message data between the DMA engine and slave
20	mailbox registers if the indirect message ready status bit is set, where the slave utilizes its

Application No.: 10/798,514 Page 5 21 own memory map and the address data to transfer data between a location indicated by the 22 address data and the DMA engine; and 23 means for setting an message transfer complete status interrupt at the slave to 24 indicate when the transfer of the message is complete. 1 9. (Original) The system of claim 8 further comprising: 2 means for negotiating with all the slaves to implement either an asynchronous, 3 synchronous, or source synchronous data transfer. 1 10. (Original) The system of claim 8 further comprising: 2 means for starting the bus upon reset at a fixed bus-width and then negotiating

with all the slaves to implement acceptable bus bit-width.

PATENT

Singla et. al

3

1

1	11. (New) A slave device for allowing a DMA engine to provide access by multiple
2	masters, said slave device comprising:
3	a slave status register accessed to read a direct message ready status bit which is set
4	when the slave is ready to transfer data directly and accessed to read an indirect message ready bit
5	which is set when the slave is ready to transfer data indirectly;
6	a slave mailbox register for transferring direct message data using the DMA engine if
7	the direct message ready status bit is set and with the slave mailbox registers used for transferring
8	message data using the DMA engine if an indirect message ready status bit is set;
9	a message transfer complete status interrupt at the slave that is set to indicate when
10	the transfer of the message is complete;
11	a slave indirect address mailbox register for transferring address data using the DMA
12	engine if the indirect message ready status bit is set;
13	an indirect transfer message interrupt bit at the slave which is set to initiate the
14	indirect transfer; and
15	a slave memory map used with the address data to transfer data between a location
16	indicated by the address data and the DMA engine.

<u>PATENT</u>