RLC 串联谐振电路的稳态特性实验报告

陈依皓

	② 与W=WoAt,我们和电路游技,此时 p(Wo)=U A(Wo)=1							
	Lett= Quo ws(wot) U(t) = - Quo ws(wot) Lett= Sin(wot).							
	Ult) = Vosin(wt).							
人游林	我们把以(t)与似(t)各别接入核系统品的CHI与CHZ,则用XY纸里式正张信号的若出现 1 / 时,两新极位极同,由此便确定沿板频车.							
侧型>								
	<u>_</u> ,							
4	M€ Q>.							
. `	由我一切由此(t)与以(t)加振幅之的为 k,我们用不依据各别例出二名							
	u乳鱼作比 即同.							
	应丝焉 八形烷器两路输入信号要求规同孙电压多效。							
	EP CH1							
	T R I							

	故 电路等效电阻 Rey=R+RL							
	我们可以用 LCR例试依得到电路监狱电影敌。							

一:对谐振频率与品质系数的测量结果

电路谐振时								
U	1.45							
U _c	3.29							
L	9.68							
R_L	32.41							
R	100.00							
Q _{测量}	2.27							
Q _{理论}	2.35							
f_0 (HZ)	5116.00							

二:对频率特性的测量

实验数据如下

				, ,	- (-)				
f (HZ)	U₀(Vpp)	$U_R(Vpp)$	T (µS)	δT (μs)	$R_L(\Omega)$	f_0 (HZ)	A´	φ	ω/ω_0
1000	1.977	0.132	1000.0	-236.5	31.35	5116	0.08770	-85.140	0.195465
1500	1.970	0.206	666.7	-152.0	31.50	5116	0.13751	-82.076	0.293198
2000	1.950	0.290	500.1	-109.5	31.80	5116	0.19601	-78.824	0.390930
2500	1.936	0.390	400.1	-83.0	32.17	5116	0.26625	-74.678	0.488663
3000	1.890	0.513	333.5	-63.8	32.35	5116	0.35924	-68.870	0.586396
3200	1.865	0.570	312.6	-57.2	32.00	5116	0.40343	-65.873	0.625489
3400	1.834	0.631	293.9	-51.3	32.00	5116	0.45415	-62.838	0.664582
3600	1.800	0.697	277.8	-45.5	32.00	5116	0.51113	-58.963	0.703675
3800	1.753	0.766	263.1	-39.8	32.70	5116	0.57985	-54.458	0.742768
4000	1.700	0.837	250.0	-34.0	32.00	5116	0.64991	-48.960	0.781861
4200	1.672	0.908	238.0	-28.1	32.14	5116	0.71760	-42.504	0.820954
4300	1.642	0.941	232.6	-25.2	32.24	5116	0.75784	-39.003	0.840500
4400	1.614	0.973	227.3	-22.1	32.36	5116	0.79793	-35.002	0.860047
4500	1.584	1.001	222.2	-19.1	32.30	5116	0.83606	-30.945	0.879593
4600	1.556	1.027	217.3	-15.9	32.31	5116	0.87328	-26.341	0.899140
4700	1.534	1.048	212.8	-12.6	32.34	5116	0.90412	-21.316	0.918686
4800	1.514	1.059	208.3	-9.5	32.32	5116	0.92554	-16.419	0.938233
4850	1.504	1.072	206.2	-8.1	32.34	5116	0.94327	-14.142	0.948006
4900	1.496	1.078	204.1	-6.5	32.35	5116	0.95370	-11.465	0.957780
4950	1.490	1.082	202.0	-5.0	32.32	5116	0.96087	-8.911	0.967553
5000	1.485	1.086	200.0	-3.4	32.35	5116	0.96789	-6.120	0.977326
5050	1.482	1.088	198.0	-2.0	32.35	5116	0.97164	-3.636	0.987099
5100	1.484	1.089	196.0	-0.5	32.36	5116	0.97129	-0.918	0.996873
5150	1.482	1.089	194.2	-0.7	32.39	5116	0.97283	-1.298	1.006646
5200	1.486	1.087	192.3	2.2	32.39	5116	0.96842	4.119	1.016419
5250	1.490	1.085	190.5	3.4	32.40	5116	0.96412	6.425	1.026192
5300	1.494	1.082	188.8	4.6	32.40	5116	0.95888	8.771	1.035966
5350	1.502	1.077	186.9	5.8	32.40	5116	0.94937	11.172	1.045739
5400	1.508	1.072	185.2	7.0	32.40	5116	0.94120	13.607	1.055512
5500	1.520	1.059	181.7	9.1	32.42	5116	0.92258	18.030	1.075059
5600	1.540	1.043	178.5	11.0	32.44	5116	0.89698	22.185	1.094605
5700	1.558	1.025	175.3	12.7	32.46	5116	0.87145	26.081	1.114152
5800	1.580	1.005	172.4	14.2	32.47	5116	0.84261	29.652	1.133698
5900	1.600	0.984	169.5	15.5	32.47	5116	0.81469	32.920	1.153245
6000	1.620	0.963	166.5	16.5	32.47	5116	0.78746	35.676	1.172791
6100	1.642 1.650	0.941	164.0	17.5	32.48	5116	0.75922 0.72032	38.415	1.192338 1.231431
6300 6500	1.685	0.897 0.853	158.6 153.8	19.0	32.50	5116 5116		43.127 47.282	1.270524
6700	1.721	0.833	149.3	20.2 21.0	32.60 32.70	5116	0.67126 0.62533	50.636	1.309617
6900	1.749	0.811	144.8	21.8	32.70	5116	0.58661	54.199	1.348710
7100	1.749	0.772	144.8	22.0	33.00	5116	0.55135	56.250	1.387803
7300 7500	1.793 1.813	0.701 0.671	137.0 133.3	22.3 22.4	33.00	5116 5116	0.51998 0.49224	58.599	1.426896 1.465989
7700	1.813	0.671	129.9	22.4	33.00 33.00	5116	0.49224	60.504 62.623	1.505082
8000	1.850	0.602	124.9	22.5		5116	0.43279	64.862	1.563722
9000	1.894			22.5	33.00	5116		70.054	1.759187
12000	1.894	0.499 0.332	111.0 83.4	17.9	33.00 33.00	5116	0.35041 0.22644	77.084	2.345582
15000 18000	1.968 1.972	0.251 0.203	66.7 55.5	14.9 12.7	33.00 34.00	5116 5116	0.16963 0.13794	80.348 82.508	2.931978 3.518374
21000	1.972	0.203	47.6	10.9	34.00	5116	0.13794	82.437	4.104769
24000	1.976	0.171	41.6	9.7	34.00	5116	0.11596	84.288	4.691165
27000	1.989	0.131	37.0	9.7 8.7		5116	0.10157	84.288	5.277561
30000	1.989	0.131	37.0	7.9	34.00 34.00	5116	0.08826	85.622	5.863956
33000	1.990	0.118	30.3	7.9	34.00	5116	0.07946	85.578	6.450352
33000	1.550	0.100	30.3	1.2	34.00	3110	0.07130	03.370	0.430332

对实验数据的拟合

对实验的反思:

1.进行实验前对电阻,电感,电容的选择不够合理,导致品质系数Q的值小于3,应该选择10欧姆的电阻进行实验。

2.测量频率特性时,对电源频率的设置间距不够合理,导致在 4000-6000HZ 范围内测了太多的数据,而在小于 4000,大于 6000 区域内的数据较少。这个失误其实可以通过在实验前简单的计算所避免。