Московский Физико-Технический Институт (государственный университет)

Работа 3.4.2

Цель работы:

Изучение температурной зависимости магнитной восприимчивости ферромагнетика выше точки Кюри

В работе используются:

катушка с образцом из гадолиния, термостат, частотомер, цифровой вольтметр, LC-автогенератор, термопара медь-константан.

Описание работы

Теоретическая справка

Ферромагнитики обладают свойством намагничиваться даже в слабых магнитных полях. В настоящей работе для изучения температурной зависимости магнитной восприимчивости ферроматгнетика выше точки Кюри (то есть в парамагнитной области) используется закон Кюри-Вейса:

$$\chi = \frac{C}{T - \Theta_p} \sim \frac{1}{T - \Theta_p},\tag{1}$$

где χ - магнитная восприимчивость, C - постоянная Кюри, зависящая от вещества, T - абсолютная температура, Θ_p - парамагнитная температура Кюри.

При повышении температуры T возрастает дезориентирующее действие телового движения частиц, и магнитная восприимчивость парамагнетиков убывает, в простейшем случае (в постоянном магнитном поле) - по закону Кюри

Рис. 1: Теоретический график зависимости обратной магнитной восприимчивости от температуры

При $T \to 0$ тепловое движиние всё меньше препятствует магнитным моментам атомов ориентироваться в одном направлении при сколь угодно слабом внешнем поле. В ферромагнетиках (под влиянием обменных сил) это происходит при понижении температуры не до абсолютного нуля, а до температуры Кюри Θ , в котором добавка к температуре Θ_p - некая температура, называемая парамеагнитной точкой Кюри. Она близка к Θ , но немного больше её (рис. 1). Оказывается, что у ферромагнетиков закон Кюри должен быть заменён законом Кюри-Вейсса (1). Эта формула хорошо описывает поведение ферромагнитных вещется после их перехода в парамагнитную фазу при заметном удалении температуры от 0, но недостаточно точна при $T \approx \Theta$

В нашей работе изучается температурная зависимость $\chi(T)$ гадолиния при температурах выше точки Кюри. Выбор материала определяется тем, что

его точка Кюри лежит в интервале комнатных температур.

Рис. 2: Схема экспериментальной установки

Экспериментальная установка

Схема установки для проверки закона Кюри-Вуйерса показана на рис. 2. Исследуемый ферромагнитный образец (гадолиний) расположен внутри пустотулой катушки самоиндукции, которая служит индуктивностью колебательного контура, входящего в состав LC-автогенератора.

Гадолиний является хорошим проводником электрического тока, а рабочая частота генератора достаточно велика (50 кГц), поэтому для уменьшения вихревых токов образец изготовлен их мелких кусочков размеров 0,5 мм. Катушка 1 с образцом помещена в стеклянный сосуд 2, залитый трансформаторным маслом. Масло предохраняет образец от окисления и способствует ухудшению электрического контакта между отдельными частичками образца. Кроме того, оно улучшает тепловой контакт между образцом и термостатируемой (рабочей) жидкостью 3 в термостате. Ртутный термометр 4 используется для приближенной оценки температуры. При изменении температуры меняется магнитная восприимчивость образца χ , а следовательно, самоиндукция катушки и период колебаний τ автогенератора. Для измерения периода используется частотомер.

Закон Кюри-Вейса справедлив, если выполнено соотношение

$$\frac{1}{\chi} \sim T - \Theta_p \sim \frac{1}{\tau^2 - \tau_0^2},$$

где au_0 - период колебаний без образца.

Для нагрева используется термостат. Температура исследуемого образца всегда несколько отличается от температуры дистилированной воды в сосуде. После того, как вода достигла заданной температуры, идёт медленный процесс выравнивания температур образца и воды. Разность их температур контролируется с помощью медноконтантавой трмопары 6 и цифрового вольтметра. Один из спаев термопары находится в тепловом контакте с образцом, а другой погружен в воду. Концы термопары подключены к цифровому вольтметру. Рекомендуется измерять период колебаний автогенератора в тот момент, когда указанная разность температур становится $\leq 0,5^{\circ}C$. Чувствительность термопары k=24

град/мВ.

Выполнение работы

1. Исследуем зависимость периода колебаний LC - генератора от температуры образца. Запишем данные в таблицу:

\delta_T, C	\tau, мкс	T, C
0,192	7,938	14,19
0,192	7,912	15,1
0,192	7,877	16,1
0,192	7,828	17,1
0,192	7,766	18,1
0,192	7,686	19,1
0,192	7,58	20,1
0,25	7,376	22,08
0,25	7,215	24,1
0,192	7,143	26,08
0,25	7,103	28,08
0,25	7,078	30,09
0,37	7,061	32,07
0,37	7,047	34,08
0,37	7,038	36,08
0,4	7,029	38,08
0,4	7,021	40,08

Рис. 3: Зависимость $\tau(T)$

- 2. Период колебаний без образца уаказан на установке и равен $\tau_0 = 6,9092$ мкс.
- 3. По полученным данным построим графики зависимости $f(T)=\tau^2-\tau_0^2$ и $f(T)=1/(\tau^2-\tau_0^2).$
- 4. Определим парамагнитную точку Кюри для гадолиния:

$$T_1 - \Theta_p = k \frac{1}{\tau_1^2 - \tau_0^2}$$

$$T_2 - \Theta_p = k \frac{1}{\tau_2^2 - \tau_0^2}$$

Преобразуя данные уравнения получаем:

Рис. 4:
$$f(T) = \tau^2 - \tau_0^2$$

Рис. 5:
$$f(T) = 1/(\tau^2 - \tau_0^2)$$

$$\Theta_p = \frac{T_1(\tau_1^2 - \tau_0^2) - T_2(\tau_2^2 - \tau_0^2)}{(\tau_1^2 - \tau_0^2) - (\tau_1^2 - \tau_0^2)}$$

При помощи МНК найдем значение $\Theta_p \simeq = 14,5\,^{\circ}C = 287,65\,K.$ Погрешность измерений составила - $\sigma_{\Theta_p} = 5,3\,K.$

В итоге получаем:

$$\Theta_p = 287,65 \pm 5,3 \, K$$

Сравним с табличным значением: $\Theta_{p \text{ табл}} = 292 \ K$. Полученные экспериментальным путем результаты сходятся с табличными в пределах погрешности.