Multilayer packaging film containing a gas barrier

Patent Number:

DE3828355

Publication date:

1990-02-22

Inventor(s):

MURSCHALL URSULA DR (DE); SCHLOEGL GUNTER DR (DE); SCHMIDT ROBERT DR (DE)

Applicant(s):

HOECHST AG (DE)

Requested Patent:

DE3828355

Application Number: DE19883828355 19880820

Priority Number(s): DE19883828355 19880820

IPC Classification:

B32B27/08; B32B31/30; B65D65/40

EC Classification:

B32B27/08; B65D65/40

Equivalents:

Abstract

The invention relates to a biaxially stretch-oriented multilayer plastic film produced by the coextrusion process which contains at least one interlayer which is impermeable to gases and aroma substances. It contains a base layer based on polypropylene, an inner barrier layer which is impermeable to gases and aroma substances and is made from polymers based on partly aromatic polyamides, and at least one further, outer functional top layer.

Data supplied from the esp@cenet database - I2

Description

Die Erfindung bezieht sich auf eine biaxial streckorientierte mehrschichtige Folie aus Kunststoff, die nach dem Coextrusionsverfahren hergestellt ist und wenigstens eine für Gase und Aromastoffe undurchlässige Zwischenschicht enthält.

Eine mehrschichtige Folie mit einer Sperrschicht aus einem Material, das für Gase und Aromastoffe undurchlässig ist, wird in der DE-OS 26 44 209 (=GB-PS 15 67 189) beschrieben. Die bekannte Folie zeigt einen mehrschichtigen Aufbau aus einer Polypropylenbasisfolie, einer auf diese Folie angeordneten Zwischenschicht aus einem modifizierten Polyolefin und einer Sperrschicht zur Verringerung der Sauerstoffdurchlässigkeit, wobei auf letzterer eine Heisssiegelschicht aufgebracht sein kann. Die Folie wird nach dieser Druckschrift in der Weise hergestellt, indem man auf eine zunächst produzierte queroder längsaxial orientierte Basisfolie aus Polypropylen eine aus den Polymeren der Zwischenschicht und der Sperrschicht bestehende, zweischichtige Schmelze aufbringt und die resultierende Verbundfo durch Strecken in Querrichtung orientiert. Die heisssiegelfähige Schicht wird erst nachträglich, d. h. nach Herstellung dieser dreischichtigen Verbundfolie, in einem weiteren Schritt aufgebracht und ist somit im wesentlichen nicht orientiert. Damit ergeben sich für die Schichten aus Basisfolie, Zwischenschicht/ Sperrschicht sowie Heisssiegelschicht verschiedene Werte für ihre Orientierung, was ein aufwendiges Herstellungsverfahren bedingt.

Zur Verbesserung der Gleiteigenschaften der aus der DE-A-26 44 209 bekannten Folie wird in der EP-A-00 62 815 angegeben, die äussere Siegelschicht durch spezielle Zusätze zu modifizieren. Eine Verbesserung der Gasbarriereeigenschaften und Wasserfestigkeit der Folie wird mit dieser Massnahme aber nicht erreicht. Ausserdem zeigen die einzelnen Schichten auch in diesem Fall keine unter gleichen Bedingungen erzielte Orientierung.

Die DE-A-33 06 189 beschreibt eine Folie mit einer Gas- und Aromasperrschicht, die eine gleichmässige Orientierung aller sie bildenden Schichten aufweist. Die Sperrschicht, die in dieser Druckschrift beschrieben ist, besteht aus einem Polymeren auf Basis von Polyvinylalkohol. Um die Herstellung der Folie durch Coextrusion zu ermöglichen, müssen dem Polyvinylalkohol bestimmte Additive zugesetzt werden. Die Sperrwirkung dieser modifizierten Sperrschicht lässt allerdings noch zu wünschen übrig.

BEST AVAILABLE COPY

® Offenlegungsschrift

₀ DE 3828355 A1

(5) Int. Cl. 5: B32B27/08

> B 32 B 31/30 B 65 D 65/40 // B32B 27/32,27/34

DEUTSCHES PATENTAMT

P 38 28 355.7 21) Aktenzeichen: 20. 8.88 ② Anmeldetag: 22. 2.90

(43) Offenlegungstag:

(7) Anmelder:

Hoechst AG, 6230 Frankfurt, DE

(7) Erfinder:

Murschall, Ursula, Dr., 6505 Nierstein, DE; Schlögl, Gunter, Dr., 6233 Kelkheim, DE; Schmidt, Robert, Dr., 6229 Walluf, DE

Mehrschichtige Verpackungsfolie mit Gasbarriere

Es wird eine biaxial streckorientierte mehrschichtige Folie aus Kunststoff beschrieben, die nach dem Coextrusionsverfahren hergestellt ist und wenigstens eine für Gase und Aromastoffe undurchlässige Zwischenschicht enthält. Sie enthält eine Trägerschicht auf Basis von Polypropylen, eine innere für Gase und Aromastoffe undurchlässige Sperrschicht aus Polymeren auf Basis teilaromatischer Polyamide und wenigstens eine weitere äußere funktionelle Deck-

Beschreibung

Die Erfindung bezieht sich auf eine biaxial streckorientierte mehrschichtige Folie aus Kunststoff, die nach dem Coextrusionsverfahren hergestellt ist und wenigstens eine für Gase und Aromastoffe undurchlässige Zwischenschicht enthält.

Eine mehrschichtige Folie mit einer Sperrschicht aus einem Material, das für Gase und Aromastoffe undurchlässig ist, wird in der DE-OS 26 44 209 (=GB-PS 15 67 189) beschrieben. Die bekannte Folie zeigt einen mehrschichtigen Aufbau aus einer Polypropylenbasisfolie, einer auf diese Folie angeordneten Zwischenschicht aus einem modifizierten Polyolefin und einer Sperrschicht zur Verringerung der Sauerstoffdurchlässigkeit, wobei auf letzterer eine Heißsiegelschicht aufgebracht sein kann. Die Folie wird nach dieser Druckschrift in der Weise hergestellt, indem man auf eine zunächst produzierte quer- oder längsaxial orientierte Basisfolie aus Polypropylen eine aus den Polymeren der Zwischenschicht und der Sperrschicht bestehende, zweischichtige Schmelze aufbringt und die resultierende Verbundfolie durch Strecken in Querrichtung orientiert. Die heißsiegelfähige Schicht wird erst nachträglich, d. h. nach Herstellung dieser dreischichtigen Verbundfolie, in einem weiteren Schritt aufgebracht und ist somit im wesentlichen nicht orientiert. Damit ergeben sich für die Schichten aus Basisfolie, Zwischenschicht/Sperrschicht sowie Heißsiegelschicht verschiedene Werte für ihre Orientierung, was ein aufwendiges Herstellungsverfahren bedingt.

Zur Verbesserung der Gleiteigenschaften der aus der DE-A-26 44 209 bekannten Folie wird in der EP-A-00 62 815 angegeben, die äußere Siegelschicht durch spezielle Zusätze zu modifizieren. Eine Verbesserung der Gasbarriereeigenschaften und Wasserfestigkeit der Folie wird mit dieser Maßnahme aber nicht erreicht. Außerdem zeigen die einzelnen Schichten auch in diesem Fall keine unter gleichen Bedingungen erzielte Orientierung.

Die DE-A-33 06 189 beschreibt eine Folie mit einer Gas- und Aromasperrschicht, die eine gleichmäßige Orientierung aller sie bildenden Schichten aufweist. Die Sperrschicht, die in dieser Druckschrift beschrieben ist, besteht aus einem Polymeren auf Basis von Polyvinylalkohol. Um die Herstellung der Folie durch Coextrusion zu ermöglichen, müssen dem Polyvinylalkohol bestimmte Additive zugesetzt werden. Die Sperrwirkung dieser modifizierten Sperrschicht läßt allerdings noch zu wünschen übrig.

Es ist deshalb Aufgabe der vorliegenden Erfindung, eine Folie von der eingangs genannten Gattung hinsichtlich ihrer physikalischen Eigenschaften, insbesondere bezüglich der Barriereeigenschaften gegenüber Luftsauerstoff und Aromastoffen zu verbessern.

Diese Aufgabe wird gelöst durch eine Folie der genannten Art mit den kennzeichnenden Merkmalen, daß sie eine Trägerschicht auf Basis von Polypropylen enthält, daß sie eine innere für Gase und Aromastoffe undurchlässige Sperrschicht aus Polymeren auf Basis teilaromatischer Polyamide enthält und daß sie wenigstens eine weitere äußere funktionelle Deckschicht enthält.

Das Polymere der Trägerschicht besteht aus einem Propylenhomo- oder -mischpolymerisat mit einem Schmelzpunkt von 140°C oder höher, vorzugsweise von 150°C und höher. Beispiele für das Polymere der Trägerschicht sind isotaktisches Polypropylen mit einem heptanlöslichen Anteil von 15 Gew.-% und weniger, Copolymere von Ethylen mit Propylen mit einem Ethylengehalt bis zu 15 Gew.-% sowie Copolymere von Propylen mit Buten, Penten, Hexen, Hepten, Octen und/oder anderen Olefinen. Es können auch Mischungen der genannten Copolymeren verwendet werden. Der Schmelzflußindex (MFI) des Polypropylenpolymeren liegt zweckmäßigerweise in einem Bereich von 0,5 g/10 min bis 8 g/10 min bei 230°C und 2,16 kp/cm² (DIN 53735). Das Polypropylenpolymere kann Zusatzmittel wie Stabilisatoren, Pigmente sowie niedrigmolekulare verträgliche Harze oder Polymere enthalten.

Von den Pigmenten werden solche bevorzugt, die der Folie einen perlmuttartigen Glanz verleihen. Beispiele für derartige Pigmente sind Titandioxid, Calciumcarbonat oder Siliciumdioxid. Die Teilchengröße liegt im Bereich von 0,2 bis 20 µm, die zugesetzte Menge in der Größenordnung von 1 bis 25 Gew.-%. Beispiele für niedrigmolekulare verträgliche Harze sind Petroleumharze, Terpenharze, Erdölharze, die bei der Crackung von Naphtha oder Gasöl anfallen. Die Harze können hydriert und/oder durch Einführung spezieller Monomerer vor der Polymerisation modifiziert sein.

Die Einarbeitung der Harze zur Herstellung der Materialmischungen für die Trägerschicht erfolgt mittels der bekannten Methoden. Die Höhe des Zusatzes richtet sich nach dem Einfluß auf die optischen Eigenschaften und die Streckbarkeit. Mehr als 20 Gew.-%, bezogen auf das Propylenpolymere, sind aus verfahrenstechnischen Gründen beispielsweise bei niedrigmolekularen Harzen wie den Terpenharzen nicht erforderlich.

Das Polymere der Sperrschicht ist insbesondere ein Polykondensat der Komponenten m-Xyloldiamin und Adipinsäure mit der nachfolgend angegebenen Strukturformel

$$H \begin{bmatrix}
0 \\
\parallel \\
C \\
0 \\
\parallel \\
C_4H_8 - C -
\end{bmatrix}$$

$$O H_2 - N C_4H_8 - C -$$

$$O H_3 - C + M_4 - C -$$

$$O H_4 - N C_4 + M_8 - C -$$

$$O H_5 - C + M_8 - C -$$

$$O H_7 - C + M_8 - C -$$

$$O H_8 -$$

$$O H_8 -$$

$$O H_8 -$$

$$O H_8$$

55

Dieses Polymere ist als solches bereits bekannt und beschrieben in einem Datenblatt der Firma Solvay unter der Bezeichnung "NYREF" N-MXD6.

Als dritte funktionelle Deckschicht ist erfindungsgemäß im einfachsten Fall eine Schutzschicht vorgesehen.

Die Schutzschicht kann aus einem beliebigen geeigneten Polymeren bestehen, zweckmäßigerweise besteht die Schutzschicht aus dem gleichen Polymeren wie die Trägerschicht. Vorzugsweise wird jedoch für die funktionelle Deckschicht ein siegelfähiges Polymeres eingesetzt, das vorteilhaft aus einem Homo- oder Copolymeren eines Olefins besteht oder aus einem Ionomeren oder Mischungen von diesen.

Vorzugsweise besteht die siegelfähige Außenschicht aus einem Ethylen-Homopolymerisat niedriger oder hoher Dichte oder einem Ethylen-Copolymerisat. Besonders bevorzugt sind Ethylen-Propylen-Copolymerisate und Ethylen-Propylen-Butylen-Terpolymere, wobei der Ethylengehalt dieser Polymeren vorzugsweise im Bereich von 0,1 bis 15 Gew.-% und der Butylengehalt im Bereich von 1 bis 20 Gew.-% liegt. Das Siegelschichtpolymere der Deckschicht kann zur Verbesserung der Siegelfähigkeit, der Kratzfestigkeit und Laufsicherheit in schnellaufenden Verpackungsmaschinen Zusätze wie niedermolekulare Harze, Schlupf-, Gleit- und Antiblockmittel enthalten. Zur Optimierung der sehr unterschiedlichen Anforderungen an die Siegeleigenschaften werden bevorzugt Kombinationen von Copolymeren und/oder Terpolymeren mit Polymeren, niedermolekularen Harzen und Polydiorganosiloxanen verwendet. Die Dichte des Siegelschichtpolymeren liegt vorzugsweise in einem Bereich von 0,89 bis 0,96 g/cm³, der Schmelzindex in einem Bereich von 0,1 bis 16 g/10 min und 2,16 kp/cm² (DIN 53735) und der Erweichungspunkt im Bereich von 60 bis 180°C (ASTM E 28), besonders bevorzugt von 80 bis 140°C.

Die Schichtdicke einer siegelfähigen Deckschicht liegt vorzugsweise in einem Bereich von 0,1 bis 10 μm, besonders bevorzugt im Bereich von 1 bis 3 μm.

Die gesamte biaxial streckorientierte Folie besitzt erfindungsgemäß eine Gesamtdicke von 10 bis 100 μm, vorzugsweise von 15 bis 35 μm, wobei der überwiegende Anteil an der Gesamtdicke auf die Trägerschicht entfällt.

Um die Haftung der bislang beschriebenen Schichten der erfindungsgemäßen Mehrschichtfolie untereinander noch zu verbessern, können in einer besonderen Ausführungsform zusätzliche Haftvermittlerschichten zwischen den einzelnen Schichten vorgesehen sein. Die Haftvermittlerschichten bestehen vorteilhaft aus einem durch Pfropfung modifizierten Olefinhomo- oder -copolymerisat, einem partiell verseiften Ethylen-Vinylalkohol-Copolymeren mit einem niedrigen Verseifungsgrad oder Mischungen derselben mit anderen Polyolefinen. Besonders bevorzugt sind durch Pfropfung mit Carbonsäuren bzw. deren Anhydriden modifizierte Polypropylenhomo- oder -copolymerisate.

Die Herstellung der erfindungsgemäßen Folie erfolgt nach dem Coextrusionsverfahren, bei dem die Polymeren der einzelnen Schichten in getrennten Extrudern aufgeschmolzen und dann in flüssigem Zustand in einer Mehrschicht-T-Düse oder nach dem Adapterverfahren vereinigt werden. Die schmelzflüssige Schichtstruktur wird dann auf einer Kühlwalze abgeschreckt und nachfolgend zur Verfestigung biaxial streckorientiert und einer Wärmenachbehandlung unterworfen. Die Streckorientierung der Folie kann sowohl biaxial simultan als auch biaxial stufenweise erfolgen. Bei der bevorzugten biaxialen stufenweisen Streckung wird zunächst mittels beheizter Walzen längs- und nachfolgend mittels eines Streckrahmens quergestreckt und anschließend thermofixiert. Die Strecktemperaturen liegen in dem für Polypropylenfolien üblichen Bereich. Die Längsstrecktemperatur liegt zweckmäßigerweise in einem Bereich von 80 bis 150°C, vorzugsweise bei 110 bis 130°C, die Querstrecktemperatur (Lufttemperatur des Querstreckrahmens) vorteilhaft in einem Bereich von 100 bis 170°C, bevorzugt bei 110 bis 130°C. Das Längsstreckverhältnis liegt erfindungsgemäß im Bereich von 4 bis 5 und das Querstreckverhältnis im Bereich von 8 bis 10.

Überraschend zeigte sich, daß die erfindungsgemäße Folie nach diesem Verfahren ohne Schwierigkeiten herstellbar war und daß die Folie aufgrund ihrer besonders günstigen Sperreigenschaften gegenüber Gasen und Aromastoffen geeignet ist als Verpackungsmaterial von gegen Aromaverlust oder Verderb bei Sauerstoffzutritt besonders empfindlichen Nahrungs- und Genußmitteln.

Die erfindungsgemäße Folie wird nachfolgend anhand einer Zeichnung beispielhaft näher erläutert.

Die Zeichnung stellt einen senkrechten Schnitt durch eine Folie mit fünf Schichten in seitlicher Ansicht dar. Im einzelnen sind durch Bezugsziffern die Trägerschicht 1 aus Polypropylen, die Barriereschicht 2 aus dem Polykondensat aus m-Xyloldiamin und Adipinsäure sowie eine funktionelle Deckschicht 3, die in dem Beispiel als Schutzschicht aus Polypropylen ausgebildet sein soll, dargestellt. Zwischen der Trägerschicht 1 und der Barriereschicht 2 einerseits und zwischen der Barriereschicht 2 und der funktionellen Deckschicht 3 andererseits sind Haftvermittlerschichten 4/4' angeordnet, die beispielhaft aus einem durch Pfropfung mit Maleinsäureanhydrid modifizierten Polyethylencopolymerisat bestehen, das unter der Handelsbezeichnung "Bynel 3000" im Handel erhältlich ist.

Patentansprüche

1. Biaxial streckorientierte mehrschichtige Folie aus Kunststoff, die nach dem Coextrusionsverfahren hergestellt ist und wenigstens eine für Gase und Aromastoffe undurchlässige Zwischenschicht enthält, dadurch gekennzeichnet, daß sie eine Trägerschicht auf Basis von Polypropylen enthält, daß sie eine innere für Gase und Aromastoffe undurchlässige Sperrschicht aus Polymeren auf Basis teilaromatischer Polyamide enthält und daß sie wenigstens eine weitere äußere funktionelle Deckschicht enthält.

55

- 2. Folie nach Anspruch 1, dadurch gekennzeichnet, daß die Trägerschicht aus einem Propylenhomopolymeren besteht.
- 3. Folie nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das Polymere der Sperrschicht ein Polykondensat der Komponenten m-Xyloldiamin und Adipinsäure ist.
- 4. Folie nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß sie als dritte funktionelle Deckschicht eine Schutzschicht aus dem gleichen Polymeren enthält, wie es auch für die Trägerschicht eingesetzt wird.

DE 38 28 355

5. Folie nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die funktionelle Deckschicht eine siegelfähige Schicht ist.

6. Folie nach Anspruch 5, dadurch gekennzeichnet, daß die Schichtdicke der siegelfähigen Deckschicht in

einem Bereich von 0,1 bis 10 µm, bevorzugt im Bereich von 1 bis 3 µm liegt.

7. Folie nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sie eine Gesamtdicke von 10 bis 100 μm , vorzugsweise von 15 bis 35 μm , besitzt. 8. Folie nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß sie zusätzliche Haftvermittler-

schichten zwischen den einzelnen Schichten enthält.

9. Verwendung einer Folie nach einem der Ansprüche 1 bis 8 als Verpackungsmaterial von gegen Aromaverlust oder Verderb bei Sauerstoffzutritt besonders empfindlichen Nahrungs- und Genußmitteln.

Hierzu 1 Seite(n) Zeichnungen

15

5

10

20

25

30

35

40

45

50

55

60

65

- Leerseite -

.

Nummer: Int. Cl.⁵: Offenlegungstag: DE 38 28 355 A1 B 32 B 27/08 22. Februar 1990

908 868/349

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.