How to Prove It Chapter 3 Summary & Exercises

Math 2155

Summary

•

3.1 Proofs

1. (a) Done in OneNote here.

3.2 Proofs with Negations and Conditionals

1. (a) Given & Goal Table:

$$\begin{array}{c|c} \text{Given} & \text{Goal} \\ P \to Q & R \\ Q \to R & \\ P & \end{array}$$

Suppose $P. P \to Q, Q.$ And since $Q \to R, R.$ $P \to R.$

(b) Given & Goal Table:

$$\begin{array}{c|c} Given & Goal \\ \hline \neg R \rightarrow (P \rightarrow \neg Q) & \not R \\ P & Q \\ Q & \neg R & \end{array}$$

Suppose $\neg R$ and P, then $\neg Q$. Contradicts Q. It follows that $P \to (Q \to R)$.

2. (a) Given & Goal Table:

$$\begin{array}{c|c} \text{Given} & \text{Goal} \\ \hline P \to Q & \neg R \\ R \to \neg Q & \\ P & \\ Q \to \neg R & \\ \end{array}$$

Suppose $P.\ P \to Q,\ Q.$ Taking the contrapositive, $Q \to \neg R,\ \neg R.$ $\therefore P \to \neg R.$

- (b) Using logical equivalences, $\neg(Q \to \neg P)$ is the same as $\neg(\neg Q \lor \neg P)$ and of course $Q \land P$. Since P, the whole thing simplifies to $Q \to Q$.
- 3. Suppose $x \in A$, Since $A \subseteq C$, $x \in C$. Of course, $B \cap C = \emptyset$, and naturally $x \notin B$.
- 4. Suppose $x \in C$, Since $A \setminus B \cap C = \emptyset$, $x \notin A \setminus B$. Logical equivalent is, $x \notin A \vee x \in B$. But, $x \in A$, hence $x \notin B$
- 5. Suppose $a \in A \setminus B$. Logical equivalent is, $a \in A \land a \notin B$. But, $a \in A \cap C \subseteq B$. Contradicts $a \notin B$. Hence $a \notin A \setminus B$.
- 7. Suppose y = 0. Then x = -x. This is impossible as $x \neq 0$. $y \neq 0$.
- 8. Immediately derive that $a < b \land b/a < 1$. Multiplying by a, we have $b > a \iff a < 0$. Now, from a < 1/a, $a^2 < 1$ Which is only possible if the absolute value of a > 1. Hence a < -1.
- 9. Suppose x = 0, contradiction. hence $x \neq 0$.
- 10. Simple algebra and some factoring gives $y(x^2+2-2)=3x^2$. It is then clear that y=3.
- 11. (a) The negation is applied incorrectly. $\neg(x \neq 3 \land x \neq 8) = (x = 3 \lor x = 8.)$.
 - (b) $x = 3 \land y = 7$
- 12. (a) $x \in C \land x \notin B$ is possible.
 - (b) let $A = \{1\}, B = \{2\}, C = \{1, 2\}, x = 1.$

3.3 Proofs involving Quantifiers

1. $[\exists x (P(x) \to Q(x))] \to [\forall x P(x) \to \exists x Q(x)]$

Suppose $\exists x(P(x) \to Q(x))$. Then we can choose some x_0 such that $P(x_0) \to Q(x_0)$. Now suppose that $\forall x P(x)$. Then in particular, $P(x_0)$, and since $P(x_0) \to Q(x_0)$, it follows that $Q(x_0)$. Since we have found a particular value of x for which Q(x) holds, we can conclude that $\exists x Q(x)$. Thus $\forall x P(x) \to \exists x Q(x)$.

- 2. Proof by contradiction.
 - Suppose $x \in A \cap B$, and $x \notin C$. Logically, $x \in B \setminus C$. But since $x \in A \cap x \in B \setminus C$, $x \in A \cap B \setminus C = \emptyset$. $\therefore x \notin C$ is false. Hence if $x \in A \cap B$, then $x \in C$, or in other words $A \cap B \subseteq C$.
- 3. Trivial proof by contradiction. Suppose $x \in A \land x \in C$. Then $A \subseteq B \setminus C$ cannot be true. $\therefore x \in A \rightarrow x \neq C$.
- 4. Suppose $x \in P(A)$. Then $x \subseteq A \land x \subseteq P(A)$. Hence, $x \in P(P(A)) \land P(A) \subseteq P(P(A))$. Not tricky but clearly powersets have more to them than has been revealed haha.
- 5. (a) ∅
 - (b) Nope, the null set is the only one.
- 6. (a) Solve to $y = \frac{2x+1}{x-1}$. Sub y into $\frac{y+1}{y-2}$. Reduces to x. $\therefore \exists y(\frac{y+1}{y-2}) = x$
 - (b) Proof by contradiction. Suppose x = 1, then clearly 1 = -2. Absurd.
- 7. Identify quadratic and solve for $y = \frac{x + \sqrt{x^2 4}}{2}$. Note that the discriminant is positive due to x > 2. Plug back in, reduce to x.
- 9. $\forall x \in \cap F (A \in F \to x \in A)$. As x is arbitrary, $\cap F \subseteq A$.
- 12. Suppose $A_0 \in F \land x \in A_0$. Since $F \subseteq G$, $A_0 \in G$. It's now clear that $x \in \cup G$. As x is arbitrary, $\cup F \subseteq \cup G$.
- 14. Suppose $x \in \bigcup_{i \in I} P(A_i) \land x \in P(A_t) \land t \in I$. Then $x \subseteq A_t$ and naturally, $x \in P(\bigcup_{i \in I} A_i)$. x is arbitrary, so conclude $\bigcup_{i \in I} P(A_i) \subseteq P(\bigcup_{i \in I} A_i)$.
- 15. Yeah couldn't do this one. Went and read a nice article tho: Terence Tao 1984.
- 16. Suppose $x \in \cup F$, then $x \in B$. x is arbitrary, and thus $\cup F \subseteq B$.

- 25. $\forall x \exists y (\forall z (y * z = (x + z)^2 (x^2 + z^2)))$ Doing some expanding, arrive at y = 2x. Where all vars were arbitrary real numbers.
- 26. (a) Goals with $\forall x P(x)$ and givens with $\exists x P(x)$ require us to introduce a new variable to move forward with the proof.

Introduce new variable.

(b) Goals with $\exists x P(x)$ and givens with $\forall x P(x)$ require us to find an x for which P(x) is true.

Find specific value.

(c) Proof by contradiction requires us to assume $\neg \forall x P(x)$ when proving $\forall x P(x)$. Logical equivalent is $\exists x \neg P(x)$ Vice versa as well.

3.4 Proofs involving Conjunctions and Biconditionals

- 1. Trivial.
- 3. Suppose $x \in C \setminus B$. Equivalently, $x \in C \land x \notin B$. It follows that, $x \notin A$. Then $x \in C \land x \notin B \to x \in C \land x \notin A$. $x \in C \land x \notin A$ is arbitrary, hence conclusion reached.
- 6. $x \in A \land \neg(x \in (B \cap C))$ $= x \in A \land \neg(x \in B \land x \in C)$ $= x \in A \land (x \notin B \lor x \notin C)$ $= (x \in A \land x \notin B) \lor (x \in A \land x \notin C)$ $= x \in (A \land B) \cup (A \land C)$
- 7. (\rightarrow) Given $x \subseteq (A \cap B)$, suppose $y \in x$, then $y \in (A \cap B)$.

Logically equivalent is $y \in A \land y \in B$. Of course, y is arbitrary, and hence $x \subseteq A \land x \subseteq B$. Conclusion of $x \in P(A) \land x \in P(B)$ reached.

- (\leftarrow) Follow above steps in reverse.
- 9. Suppose $int \ x, y, z = 2i + 1, 2j + 1, 2ij + i + j$. Then xy = 4ij + 2i + 2j + 1 = 2(2ij + i + j) + 1 = 2z + 1. Hence, two odd numbers multiplied together will produce an odd number.
- 10. Suppose int $n, m = 2i, i^3$. Then $n^3 = 8i^3 = 2(4m)$, even.
- 12. Arrive at $\frac{1}{y} = \frac{x}{x-1}$. Solve for $x + y = x + \frac{x}{x-1} = xy$. Naturally, we also conclude that $x \neq 1$.
- 22. (a) 1. $P \leftrightarrow Q$ 2. $P \rightarrow Q$ 3. $P \land Q$ 4. $\forall x P(x)$
 - (b) Suppose $x \in B \setminus (\bigcup_{i \in I} A_i)$

$$= x \in B \land \neg \exists i \in I(x \in A_i)$$

$$= x \in B \land \forall i \in I(x \notin A_i)$$

$$= \forall i \in I(x \in B \land x \notin A_i)$$

$$= x \in \cap_{i \in I}(B \setminus A_i)$$

(c) Suppose $x \in B \setminus (\cap_{i \in I} A_i)$

$$= x \in B \land \neg \forall i \in I(x \in A_i)$$

= $x \in B \land \exists i \in I(x \notin A_i)$

$$= \exists i \in I(x \in B \land x \notin A_i)$$

= $\exists i \in I(x \in B \setminus A_i)$
= $x \in \bigcup_{i \in I}(B \setminus A_i)$

As always, note the brilliant and beautiful parallel. Math is fucking awesome.

- 26. (a) (\rightarrow) Clearly, n=15*k and naturally, n=3*5k=5*3k, thus, $3|n \wedge 5|n$. (\leftarrow) 5 and 3 are both prime, given $5|k \wedge 3|l$, we derive 5p=k, 3q=l. Naturally, n=3k=5l=15p=15q, thus, $p=q \wedge 15|n$.
 - (b) Counter example: n = 150

3.5 Proofs involving Disjunctions

- 1. Suppose $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$. Then $A \cup B \in \mathcal{P}(A \cup B)$. Two cases arise,
 - 1. Suppose $A \cup B \in \mathcal{P}(A)$. Then $A \cup B \subseteq A$, it follows that $B \subseteq A$.
 - 2. Similar logic leads to $B \subseteq A$.

Thus, either $A \subseteq B \vee B \subseteq A$.

- 12. (a)
 - (b)
 - (c) I don't understand the proof.
- 18. Considering this the end of this document. Learned a lot about LaTeX, Overleaf, and proofs. 3.6 3.7 will be part of Chapter 4, done in VSCode instead. Summaries can be found in OneNote (link at start).

Cheers.