Title

D. Zack Garza

Monday $10^{\rm th}$ August, 2020

Contents

1	Grou	p Theory	2
	1.1	Spring 2020 #1	2
	1.2	C 11	2
	1.3	Fall 2019 #1	2
	1.4	Fall 2019 #2	4
			4
			5
			5
			5
	1.5	1 0 "	5
	1.6	1 0 "	6
	1.7	''	6
	1.8	"	6
	1.9		6
		1 0 "	7
		"	7
		''	7
		1 0 "	7
		"	7
		"	8
		1 0 "	8
		1 0 "	8
		"	8
		''	8
		"	9
		1 0 "	9
			9
		"	9
		"	9
		1 0 "	9
		Fall 2014 #2	
		Fall 2014 #6	
			O.

1.30	O Spring 2014 #2	 	 	. 10
1.31	Fall 2013 #1	 	 	. 11
1.32	2 Fall 2013 #2	 	 	. 11
1.33	3 Spring 2013 #3	 	 	. 11
1.34	4 Spring 2013 #4	 	 	. 11
1.35	5 Fall 2019 Midterm #1	 	 	. 11
1.36	5 Fall 2019 Midterm $\#2$. 11
1.37	7 Fall 2019 Midterm #3	 	 	. 11
1.38	3 Fall 2019 Midterm #4	 	 	. 11
1.39	9 Fall 2019 Midterm #5	 	 	. 12

1 Group Theory

1.1 Spring 2020 #1

- a. Show that any group of order 2020 is solvable.
- b. Give (without proof) a classification of all abelian groups of order 2020.
- c. Describe one nonabelian group of order 2020.

1.2 Spring 2020 #2

Let H be a normal subgroup of a finite group G where the order of H and the index of H in G are relatively prime. Prove that no other subgroup of G has the same order as H.

1.3 Fall 2019 #1

Let G be a finite group with n distinct conjugacy classes. Let $g_1 \cdots g_n$ be representatives of the conjugacy classes of G.

Prove that if $g_ig_j=g_jg_i$ for all i,j then G is abelian.

Solution.

Concepts used:

• Centralizer:

$$C_G(h) = Z(h) = \{g \in G \mid [g, h] = 1\}$$
 Centralizer

• Class equation:

$$|G| = \sum_{\substack{\text{One } h \text{ from each conjugacy class}}} \frac{|G|}{|Z(h)|}$$

• Notation:

$$h^g = ghg^{-1}$$
 $h^G = \left\{ h^g \mid g \in G \right\}$ Conjugacy Class
 $H^g = \left\{ h^g \mid h \in H \right\}$
 $N_G(H) = \left\{ g \in G \mid H^g = H \right\} \supseteq H$ Normalizer.

Solution:

Claim 1: $|h^{G}| = [G : Z(h)]$

Claim 2: $\left|\left\{H^g \mid g \in G\right\}\right| = [G:N_G(H)]$

- Proof: Let $G \curvearrowright \{H \mid H \leq G\}$ by $H \mapsto gHg^{-1}$.
- Then the \mathcal{O}_H is the set of conjugate subgroups, $\operatorname{Stab}(H) = N_G(H)$.
- So Orbit-Stabilizer says $\mathcal{O}_h \cong G/\mathrm{Stab}(H)$; then just take sizes.

Claim 3: $\bigcup_{g \in G} H^g = \bigcup_{g \in G} gHg^{-1} \subsetneq G$ for any proper $H \leq G$.

• Proof: By theorem 2, since each coset is of size |H|, which only intersect at the identity, and there are exactly $[G:N_G(H)]$ of them

$$\left| \bigcup_{g \in G} H^g \right| = (|H| - 1)[G : N_G(H)] + 1$$

$$= |H|[G : N_G(H)] - [G : N_G(H)] + 1$$

$$= |G| \frac{|G|}{|N_G(H)|} - \frac{|G|}{|N_G(H)|} + 1$$

$$\leq |H| \frac{|G|}{|H|} - \frac{|G|}{|H|} + 1$$

$$= |G| - ([G : H] - 1)$$

$$< |G|,$$

where we use the fact that $H \subseteq N_G(H) \implies |H| \le |N_G(H)| \implies \frac{1}{|N_G(H)|} \le \frac{1}{|H|}$, and since H < G is proper, $[G:H] \ge 2$.

- Since $[g_i, g_j] = 1$, we have $g_i \in Z(g_j)$ for every i, j.
- Then

$$g \in G \implies g = g_i^h$$
 for some h

$$\implies g \in Z(g_j)^h \text{ for every } j \text{ since } g_i \in Z(g_j) \ \forall j$$

$$\implies g \in \bigcup_{h \in G} Z(g_j)^h \text{ for every } j$$

$$\implies G \subseteq \bigcup_{h \in G} Z(g_j)^h \text{ for every } j,$$

which by Theorem 3, if $Z(g_j) < G$ were proper, then the RHS is properly contained in G.

• So it must be the case that that $Z(g_i)$ is not proper and thus equal to G for every j.

- But $Z(g_i) = G \iff g_i \in Z(G)$, and so each conjugacy class is size one.
- So for every $g \in G$, we have $g = g_j$ for some j, and thus $g = g_j \in Z(g_j) = Z(G)$, so g is central.
- Then $G \subseteq Z(G)$ and G is abelian.

1.4 Fall 2019 #2

Let G be a group of order 105 and let P, Q, R be Sylow 3, 5, 7 subgroups respectively.

- (a) Prove that at least one of Q and R is normal in G.
- (b) Prove that G has a cyclic subgroup of order 35.
- (c) Prove that both Q and R are normal in G.
- (d) Prove that if P is normal in G then G is cyclic.

Solution.

Relevant Concepts:

- The pqr theorem.
- Sylow 3: $|G| = p^n m$ implies $n_p \mid m$ and $n_p \cong 1 \mod p$.
- Theorem: If $H, K \leq G$ and any of the following conditions hold, HK is a subgroup:
 - $-H \leq G \text{ (wlog)}$
 - [H, K] = 1
 - $-H \leq N_G(K)$
- **Theorem**: For a positive integer n, all groups of order n are cyclic $\iff n$ is squarefree and, for each pair of distinct primes p and q dividing n, $q-1 \neq 0 \mod p$.
- Theorem:

$$A_i \leq G$$
, $G = A_1 \cdots A_k$, $A_k \cap \prod_{i \neq k} A_i = \emptyset \implies G = \prod A_i$.

- The intersection of subgroups is a again a subgroup.
- Any subgroups of coprime order intersect trivially?

Solution

1.4.1 a

We have

- $n_3 \mid 5 \cdot 7$, $n_3 \cong 1 \mod 3 \implies n_3 \in \{1, 5, 7, 35\} \setminus \{5, 35\}$
- $n_5 \mid 3 \cdot 7, \quad n_5 \cong 1 \mod 5 \implies n_5 \in \{1, 3, 7, 21\} \setminus \{3, 7\}$
- $n_7 \mid 3 \cdot 5, \quad n_7 \cong 1 \mod 7 \implies n_7 \in \{1, 3, 5, 15\} \setminus \{3, 5\}$

Thus

$$n_3 \in \{1,7\}$$
 $n_5 \in \{1,21\}$ $n_7 \in \{1,15\}$.

Toward a contradiction, if $n_5 \neq 1$ and $n_7 \neq 1$, then

$$\left| \text{Syl}(5) \bigcup \text{Syl}(7) \right| = (5-1)n_5 + (7-1)n_7 + 1 = 4(21) + 6(15) = 174 > 105 \text{ elements}$$

using the fact that Sylow p-subgroups for distinct primes p intersect trivially (?).

1.4.2 b

Not finished

By (a), either Q or R is normal. Thus $QR \leq G$ is a subgroup, and it has order $|Q| \cdot |R| = 5 \cdot 7 = 35$.

By the pqr theorem, since 5 does not divide 7-1=6, QR is cyclic.

1.4.3 c

We want to show $Q, R \leq G$, so we proceed by showing **not** $(n_5 = 21 \text{ or } n_7 = 15)$, which is equivalent to $(n_5 = 1 \text{ and } n_7 = 1)$ by the previous restrictions.

Note that we can write

$$G = \{\text{elements of order } n\} \coprod \{\text{elements of order not } n\}.$$

for any n, so we count for n = 5, 7:

- Elements in QR of order **not** equal to 5: $|QR Q\{id\} + \{id\}| = 35 5 + 1 = 31$
- Elements in QR of order **not** equal to 7: $|QR \{id\}R + \{id\}| = 35 7 + 1 = 29$

Since $QR \leq G$, we have

- Elements in G of order **not** equal to $5 \ge 31$.
- Elements in G of order **not** equal to $7 \ge 29$.

Now both cases lead to contradictions:

• $n_5 = 21$:

$$|G| = |\{\text{elements of order 5}\} \coprod \{\text{elements of order not 5}\}|$$

 $\geq n_5(5-1) + 31 = 21(4) + 31 = 115 > 105 = |G|.$

• $n_7 = 15$:

$$|G| = |\{\text{elements of order 7}\} \coprod \{\text{elements of order not 7}\}|$$

 $\geq n_7(7-1) + 29 = 15(6) + 29 = 119 > 105 = |G|.$

1.4.4 d

Suppose P is normal and recall |P| = 3, |Q| = 5, |R| = 7.

- $P \cap QR = \{e\} \text{ since } (3,35) = 1$
- $R \cap PQ = \{e\} \text{ since } (5,21) = 1$
- $Q \cap RP = \{e\} \text{ since } (7,15) = 1$

We also have PQR = G since |PQR| = |G| (???).

We thus have an internal direct product

$$G \cong P \times Q \times R \cong \mathbb{Z}_3 \times \mathbb{Z}_5 \times \mathbb{Z}_7 \cong \mathbb{Z}_{105}$$
.

by the Chinese Remainder Theorem, which is cyclic.

1.5 Spring 2019 #3

How many isomorphism classes are there of groups of order 45?

Describe a representative from each class.

1.6 Spring 2019 #4

For a finite group G, let c(G) denote the number of conjugacy classes of G.

(a) Prove that if two elements of G are chosen uniformly at random, then the probability they commute is precisely

$$\frac{c(G)}{|G|}.$$

- (b) State the class equation for a finite group.
- (c) Using the class equation (or otherwise) show that the probability in part (a) is at most

$$\frac{1}{2} + \frac{1}{2[G:Z(G)]}.$$

Here, as usual, Z(G) denotes the center of G.

1.7 Fall 2012 #1

Let G be a finite group and X a set on which G acts.

- a. Let $x \in X$ and $G_x := \{g \in G \mid g \cdot x = x\}$. Show that G_x is a subgroup of G.
- b. Let $x \in X$ and $G \cdot x := \{g \cdot x \mid g \in G\}$. Prove that there is a bijection between elements in $G \cdot x$ and the left cosets of G_x in G.

1.8 Fall 2012 #2

Let G be a group of order 30.

- a. Show that G contains normal subgroups of orders 3, 5, and 15.
- b. Give all possible presentations and relations for G.
- c. Determine how many groups of order 30 there are up to isomorphism.

1.9 Spring 2012 #2

Let G be a finite group and p a prime number such that there is a normal subgroup $H \subseteq G$ with $|H| = p^i > 1$.

- a. Show that H is a subgroup of any Sylow p-subgroup of G.
- b. Show that G contains a nonzero abelian normal subgroup of order divisible by p.

1.10 Spring 2012 #3

Let G be a group of order 70.

- a. Show that G is not simple.
- b. Exhibit 3 nonisomorphic groups of order 70 and prove that they are not isomorphic.

1.11 Fall 2018 #1

Let G be a finite group whose order is divisible by a prime number p. Let P be a normal p-subgroup of G (so $|P| = p^c$ for some c).

- (a) Show that P is contained in every Sylow p-subgroup of G.
- (b) Let M be a maximal proper subgroup of G. Show that either $P \subseteq M$ or $|G/M| = p^b$ for some $b \le c$.

1.12 Fall 2018 #2

- (a) Suppose the group G acts on the set X . Show that the stabilizers of elements in the same orbit are conjugate.
- (b) Let G be a finite group and let H be a proper subgroup. Show that the union of the conjugates of H is strictly smaller than G, i.e.

$$\bigcup_{g \in G} gHg^{-1} \subsetneq G$$

(c) Suppose G is a finite group acting transitively on a set S with at least 2 elements. Show that there is an element of G with no fixed points in S.

1.13 Spring 2018 #1

- (a) Use the Class Equation (equivalently, the conjugation action of a group on itself) to prove that any p-group (a group whose order is a positive power of a prime integer p) has a nontrivial center.
- (b) Prove that any group of order p^2 (where p is prime) is abelian.
- (c) Prove that any group of order $5^2 \cdot 7^2$ is abelian.
- (d) Write down exactly one representative in each isomorphism class of groups of order $5^2 \cdot 7^2$.

1.14 Fall 2017 #1

Suppose the group G acts on the set A. Assume this action is faithful (recall that this means that the kernel of the homomorphism from G to $\operatorname{Sym}(A)$ which gives the action is trivial) and transitive (for all a, b in A, there exists g in G such that $g \cdot a = b$.)

(a) For $a \in A$, let G_a denote the stabilizer of a in G. Prove that for any $a \in A$,

$$\bigcap_{\sigma \in G} \sigma G_a \sigma^{-1} = \{1\}.$$

(b) Suppose that G is abelian. Prove that |G| = |A|. Deduce that every abelian transitive subgroup of S_n has order n.

1.15 Fall 2017 #2

(a) Classify the abelian groups of order 36.

For the rest of the problem, assume that G is a non-abelian group of order 36.

You may assume that the only subgroup of order 12 in S_4 is A_4 and that A_4 has no subgroup of order 6.

- (b) Prove that if the 2-Sylow subgroup of G is normal, G has a normal subgroup N such that G/N is isomorphic to A_4 .
- (c) Show that if G has a normal subgroup N such that G/N is isomorphic to A_4 and a subgroup H isomorphic to A_4 it must be the direct product of N and H.
- (d) Show that the dihedral group of order 36 is a non-abelian group of order 36 whose Sylow-2 subgroup is not normal.

1.16 Spring 2017 #1

Let G be a finite group and $\pi: G \longrightarrow \operatorname{Sym}(G)$ the Cayley representation. (Recall that this means that for an element $x \in G$, $\pi(x)$ acts by left translation on G.)

Prove that $\pi(x)$ is an odd permutation \iff the order $|\pi(x)|$ of $\pi(x)$ is even and $|G|/|\pi(x)|$ is odd.

1.17 Spring 2017 #2

- a. How many isomorphism classes of abelian groups of order 56 are there? Give a representative for one of each class.
- b. Prove that if G is a group of order 56, then either the Sylow-2 subgroup or the Sylow-7 subgroup is normal.
- c. Give two non-isomorphic groups of order 56 where the Sylow-7 subgroup is normal and the Sylow-2 subgroup is *not* normal. Justify that these two groups are not isomorphic.

1.18 Fall 2016 #1

Let G be a finite group and $s, t \in G$ be two distinct elements of order 2. Show that subgroup of G generated by s and t is a dihedral group.

Recall that the dihedral groups of order 2m for $m \geq 2$ are of the form

$$D_{2m} = \left\langle \sigma, \tau \mid \sigma^m = 1 = \tau^2, \tau \sigma = \sigma^{-1} \tau \right\rangle.$$

1.19 Fall 2016 #3

How many groups are there up to isomorphism of order pq where p < q are prime integers?

1.20 * Fall 2016 #7

- a. Define what it means for a group G to be solvable.
- b. Show that every group G of order 36 is solvable.

Hint: you can use that S_4 is solvable.

1.21 Spring 2016 #3

- a. State the three Sylow theorems.
- b. Prove that any group of order 1225 is abelian.
- c. Write down exactly one representative in each isomorphism class of abelian groups of order 1225.

1.22 Spring 2016 #5

Let G be a finite group acting on a set X. For $x \in X$, let G_x be the stabilizer of x and $G \cdot x$ be the orbit of x.

- a. Prove that there is a bijection between the left cosets G/G_x and $G \cdot x$.
- b. Prove that the center of every finite p-group G is nontrivial by considering that action of G on X = G by conjugation.

1.23 Fall 2015 #1

Let G be a group containing a subgroup H not equal to G of finite index. Prove that G has a normal subgroup which is contained in every conjugate of H which is of finite index.

1.24 Fall 2015 #2

Let G be a finite group, H a p-subgroup, and P a sylow p-subgroup for p a prime. Let H act on the left cosets of P in G by left translation.

Prove that this is an orbit under this action of length 1.

Prove that xP is an orbit of length $1 \iff H$ is contained in xPx^{-1} .

1.25 Spring 2015 #1

For a prime p, let G be a finite p-group and let N be a normal subgroup of G of order p. Prove that N is contained in the center of G.

1.26 Spring 2015 #4

Let N be a positive integer, and let G be a finite group of order N.

a. Let $\operatorname{Sym} G$ be the set of all bijections from $G \longrightarrow G$ viewed as a group under composition. Note that $\operatorname{Sym} G \cong S_N$. Prove that the Cayley map

$$C: G \longrightarrow \operatorname{Sym} G$$

 $g \mapsto (x \mapsto gx)$

is an injective homomorphism.

- b. Let $\Phi: \operatorname{Sym} G \longrightarrow S_N$ be an isomorphism. For $a \in G$ define $\varepsilon(a) \in \{\pm 1\}$ to be the sign of the permutation $\Phi(C(a))$. Suppose that a has order d. Prove that $\varepsilon(a) = -1 \iff d$ is even and N/d is odd.
- c. Suppose N > 2 and $n \equiv 2 \mod 4$. Prove that G is not simple.

Hint: use part (b).

1.27 Fall 2014 #2

Let G be a group of order 96.

- a. Show that G has either one or three 2-Sylow subgroups.
- b. Show that either G has a normal subgroup of order 32, or a normal subgroup of order 16.

1.28 Fall 2014 #6

Let G be a group and H, K < G be subgroups of finite index. Show that

$$[G:H\bigcap K] \le [G:H] \ [G:K].$$

1.29 Spring 2014 #1

Let p, n be integers such that p is prime and p does not divide n. Find a real number k = k(p, n) such that for every integer $m \ge k$, every group of order $p^m n$ is not simple.

1.30 Spring 2014 #2

Let $G \subset S_9$ be a Sylow-3 subgroup of the symmetric group on 9 letters.

- a. Show that G contains a subgroup H isomorphic to $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_3$ by exhibiting an appropriate set of cycles.
- b. Show that H is normal in G.
- c. Give generators and relations for G as an abstract group, such that all generators have order 3. Also exhibit elements of S_9 in cycle notation corresponding to these generators.
- d. Without appealing to the previous parts of the problem, show that G contains an element of order 9.

1.31 Fall 2013 #1

Let p, q be distinct primes.

- a. Let $\bar{q} \in \mathbb{Z}_p$ be the class of $q \mod p$ and let k denote the order of \bar{q} as an element of \mathbb{Z}_p^{\times} . Prove that no group of order pq^k is simple.
- b. Let G be a group of order pq, and prove that G is not simple.

1.32 Fall 2013 #2

Let G be a group of order 30.

- a. Show that G has a subgroup of order 15.
- b. Show that every group of order 15 is cyclic.
- c. Show that G is isomorphic to some semidirect product $\mathbb{Z}_{15} \rtimes \mathbb{Z}_2$.
- d. Exhibit three nonisomorphic groups of order 30 and prove that they are not isomorphic. You are not required to use your answer to (c).

1.33 Spring 2013 #3

Let P be a finite p-group. Prove that every nontrivial normal subgroup of P intersects the center of P nontrivially.

1.34 Spring 2013 #4

Define a simple group. Prove that a group of order 56 can not be simple.

1.35 Fall 2019 Midterm #1

Let G be a group of order p^2q for p,q prime. Show that G has a nontrivial normal subgroup.

1.36 Fall 2019 Midterm #2

Let G be a finite group and let P be a sylow p-subgroup for p prime. Show that N(N(P)) = N(P) where N is the normalizer in G.

1.37 Fall 2019 Midterm #3

Show that there exist no simple groups of order 148.

1.38 Fall 2019 Midterm #4

Let p be a prime. Show that $S_p = \langle \tau, \sigma \rangle$ where τ is a transposition and σ is a p-cycle.

$1.39 \ \mathsf{Fall} \ 2019 \ \mathsf{Midterm} \ \#5$

Let G be a nonabelian group of order p^3 for p prime. Show that Z(G) = [G,G]