Einfürung in die Algebra Hausaufgaben Blatt Nr. 4

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: November 20, 2023)

- **Problem 1.** (a) Begründen Sie, dass die Permutation $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & 5 & 8 & 3 & 9 & 1 & 6 & 4 & 2 \end{pmatrix} \in S_9$ in der alternierenden Gruppe A_9 liegt.
 - (b) Finden Sie i und k, so dass die Permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 2 & 7 & 4 & i & 5 & 6 & k & 9 \end{pmatrix} \in S_9$ gerade ist.

Proof. (a) Wir schreiben zuerst σ als Zyklus

$$\sigma = (176)(259)(384).$$

Dann stellen wir die Zyklus als Produkte von Transpositionen dar, wie im Beweis von 2.44

$$\sigma = (17)(76)(25)(59)(38)(84).$$

Es gibt 6 Transpositionen, also σ ist gerade, und $\sigma \in A_9$.

(b) Weil jede Zahl nur einmal vorkommen darf, gibt es nur zwei Möglichkeiten

$$i=3$$
 $j=8$,

$$i = 8$$
 $j = 3$.

Wir betrachten die zwei Fälle:

(i)
$$i = 3, j = 8$$
:

Wir schreiben es als Zyklus, und dann von Transpositionen

$$(3765) = (37)(76)(65),$$

also es ist gerade.

 $^{\ ^*} jun-wei.tan@stud-mail.uni-wuerzburg.de\\$

(ii) i = 8, j = 3 wir machen ähnlich

$$(37658) = (37)(76)(65)(58),$$

also es ist in diesem Fall nicht gerade.

Problem 2. Es sei $n \in \mathbb{N}^*$. Die Permutationen $\sigma, \tau \in S_n$ seien disjunkt.

- (a) Beweisen Sie Lemma 2.41: Es gilt $\sigma \tau = \tau \sigma$.
- (b) Folgern Sie: Es ist $ord(\sigma \tau) = kgV(ord(\sigma), ord(\tau))$.

Proof. (a) Kurze Erinnerung am Definition von disjunkter Permutationen:

Definition 1. Zwei Permutationen $\sigma, \tau \in S_n$ heißen disjunkt, falls gilt

$$\sigma(i) \neq i \implies \tau(i) = i$$
, und

$$\tau(i) \neq i \implies \sigma(i) = i$$

Wir brauchen außerdem eine Ergebnis

Lemma 2. Sei $\sigma(i) = j \neq i$. Es gilt dann $\sigma(j) \neq j$.

Proof. Sonst wäre es ein Widerspruch zu die Definition, dass S_n die Gruppe alle bijektive funktionen $\{1,\ldots,n\}\to\{1,\ldots,n\}$ ist. Die Permutation wäre dann nicht injektiv, weil $\sigma(i)=\sigma(j)$, aber per Annahme $i\neq j$ gilt.

Corollary 3. Sei $\sigma, \tau \in S_n$ disjunkter Permutation. Falls $\sigma(i) \neq i$ gilt $\tau \sigma(i) = \sigma(i)$.

Remark 4. Alle Aussagen here gelten natürlich noch, wenn man die Rollen von σ und τ vertauschen.

Die Ergebnis folgt jetzt fast sofort. Wir betrachten drei Fälle:

(i) $\sigma(i) \neq i$, also $\tau(i) = i$.

Es gilt dann

$$\sigma \tau(i) \stackrel{1}{=} \sigma(i) \stackrel{3}{=} \tau \sigma(i).$$

3

(ii)
$$\tau(i) \neq i$$
, also $\sigma(i) = i$.

$$\tau \sigma(i) \stackrel{1}{=} \tau(i) \stackrel{3}{=} \sigma \tau(i).$$

(iii)
$$\tau(i) = i$$
 und $\sigma(i) = i$.

$$\tau \sigma(i) = i = \sigma \tau(i).$$

Insgesamt gilt $\tau \sigma = \sigma \tau$.