Obtenha uma estimativa do erro (ou resto) R_n para a enésima soma parcial S_n da série convergente $\sum_{n=1}^{\infty} \frac{1}{n^{1,1}}$ com relação à soma total S.

Resolução:

Não sabemos e não vamos deduzir aqui a expressão para S_n , no entanto, mesmo não conhecendo a fórmula, podemos estimar o erro para um dado n.

Observemos que se trata de uma p-série, em que p=1,1>1, logo converge.

Como os termos são não negativos e decrescentes, podemos estimar o erro ${\cal R}_n$ através da desigualdade:

$$\int_{n+1}^{+\infty} \frac{1}{x^{1,1}} dx \le R_n \le \int_n^{+\infty} \frac{1}{x^{1,1}} dx$$

$$\operatorname{Logo} \left[\frac{10}{(n+1)^{0,1}} \le R_n \le \frac{10}{n^{0,1}} \right].$$

Exemplo: para n=1000000, com auxílio de um software ou calculadora, obtemos $S_{1000000}\approx 8,07$ com a margem de erro $\frac{10}{1000000^{0,1}}\approx 2,51$ com relação à soma total.

Documento compilado em Thursday $13^{\rm th}$ March, 2025, 00:08, UTC +0.

Comunicar erro: "a.vandre.g@gmail.com".