Charlie Sowerby

charlie.sowerby@gmail.com | charlie.sowerby.com | github.com/csowerby

Education

June 2021 University of California, Los Angeles - Physics (B.S.) & Mathematics (B.S.), GPA: 3.72/4.00

Relevant Coursework: Intro C++ (x2), Machine Learning, Optimization, Differential Geometry

Differential Geometry, Electronics, Nuclear Physics Lab.

Honors: Highest Honors in Physics (Departmental Honors), College Honors Program

Technical Skills

Technical Circuit design, Soldering, Raspberry Pi/Arduino Programming, Computer Aided PCB Design

Equipment Oscilloscope, Pulse Generator, Multimeter

Languages Python, C++, C, IATEX, MATLAB, Java, HTML/CSS

Mathematical Numerical methods for differential equations (coupled PDE's in particular)

Technical Research and Lab Experience

For more information on my research projects visit my website

Aug-Jun 2021

Eigenmode Solver

Basic Plasma Science Facility, UCLA

- Reformulated a simplified electrostatic version of the Braginskii two-fluid equations to include electromagnetic corrections.
- Learned how to use an existing linear eigenmode solver and modified it to incorporate the derived corrections and used the finite difference method to numerically solve PDE's.
- Implemented this eigenmode solver to simulate more accurate drift waves in the Large Plasma Device at UCLA.

 $\operatorname{Mar-Aug}$

Plasma Imaging

2020

Basic Plasma Science Facility, UCLA

- Programmed Raspberry Pi/Arduino Camera Modules in an attempt to capture images of plasmas on timescales of less than 100ns.
- Experimented with different operating systems on Raspberry Pi, (Linux vs Real Time Operating System), etc to get optimal quick image capturing.
- Experimentally determined which combination of hardware and software on these inexpensive devices was able capture images with the least latency and jitter using a pulse generator and flashing LEDs.

 $\operatorname{Mar-Jun}$

Relay Circuit

Basic Plasma Science Facility, UCLA

- Designed and soldered my own remotely controlled relay circuit to be used for adjusting resistors in a Langmuir Probe
- Programmed a Raspberry Pi to control the circuit and implemented a network socket connection to the lab computer for easier control.
- Modeled a digital PCB using Altium's CircuitMaker to be printed to minimize physical space occupied by the circuit.

Theoretical or Academic Experience

 ${\rm Mar}~2020$ - ${\rm Now}$

Reading Program in Grdauate-Level Mathematics

University of Chicago Mathematics / UCLA Mathematics

Independently studied two separate topics in advanced mathematics: (1) Fourier/Complex Function Theory (ongoing) with UChicago Professor Carlos Kenig and (2) Smooth Manifolds/Riemannian Geometry (complete) with UCLA graduate student Nicholas Boschert.

Winter 2020

Undergraduate Grader

UCLA Physics & Astronomy

Graded homework assignments for upper-division class Physics 131A: Mathematical Methods in Physics. Some of the topics discussed were Linear Algebra, PDEs, Fourier Series, Green's Functions, Bessel Functions, and Cauchy's Integral Theorem for complex functions.

Other Skills and Interests

Languages | Conversational German

Interests | Chess, Gardening, Distance/Cross Country Running