2023-24-M

TUTORIAL SHEET-3

- 1. Let a be a real number satisfying $0 \le a < \epsilon$ for every real number $\epsilon > 0$. Show that a = 0.
- 2. Let n be a fixed positive integer. Show that if a function $f: \mathbb{R}^n \to \mathbb{R}$ has a limit at a point $\mathbf{a} \in \mathbb{R}^n$, then it is unique.
- 3. Show that the limits of the following functions do not exist as $(x,y) \to (0,0)$.

(a) $\frac{xy}{x^2+y^2}$.

(c) $\frac{x^2-y^2+2xy}{x^2+y^2}$

(b) $\frac{x^2}{x^2+y}$.

(d)
$$f(x,y) = \begin{cases} \frac{x^3 + y^3}{x - y}, & \text{if } x \neq y; \\ 0, & \text{if } x = y. \end{cases}$$

Instructor: Dr. Raj Kumar Mistri

4. In the following problems, how close to the origin should we take the point (x, y) or (x, y, z) to make

$$|f(x,y) - f(0,0)| < \epsilon,$$

or

$$|f(x, y, z) - f(0, 0, 0)| < \epsilon$$

for the given ϵ ?

- (a) $f(x,y) = xy, \epsilon = 0.0004$.
- (b) $f(x, y, z) = x^2 + y^2 + z^2, \epsilon = 0.01.$
- 5. (a) For the function $f(x,y) = \frac{xy}{x^2+y^2}$, prove that the simultaneous limit does not exist at (0,0), while the two repeated limits exist and are equal.
 - (b) For the function $f(x,y) = \frac{(y-x)(1+x^2)}{(y+x)(1+y^2)}$, show that

$$\lim_{x\to 0}(\lim_{y\to 0}f(x,y))=-1 \text{ and } \lim_{y\to 0}(\lim_{x\to 0}f(x,y))=1.$$

Decide the existence of simultaneous limit of f(x,y) as $(x,y) \to (0,0)$.

(c) Let
$$f(x,y) = \begin{cases} 1 + xy, & \text{if } xy \neq 0; \\ 0, & \text{if } xy = 0. \end{cases}$$

Then prove that

$$\lim_{x \to 0} (\lim_{y \to 0} f(x, y)) = 1 = \lim_{y \to 0} (\lim_{x \to 0} f(x, y))$$

but $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist.

- 6. Show that the following functions are continuous at (0,0,0).
 - (a) $f(x, y, z) = x \sin y + y \sin z + z \sin x$ using $\epsilon \delta$ definition of continuity.
 - (b) $f(x, y, z) = e^x \cos y + e^y \cos z + e^z \cos x$ by directly evaluating the limit.
 - (c) f(x, y, z) = |x| + |y| + |z| using $\epsilon \delta$ definition of continuity.
 - (d) $f(x,y,z) = \ln(1+x^2+y^2+z^2)$ by writing f as a composition of two functions.
- 7. Show that the following functions are not continuous at (0,0).

(a)
$$f(x,y) = \begin{cases} \frac{x^2y}{x^3+y^2}, & \text{if } (x,y) \neq (0,0); \\ 2, & \text{if } (x,y) = (0,0). \end{cases}$$
 (b) $f(x,y) = \begin{cases} y\sin\frac{1}{x} + x\sin\frac{1}{y}, & \text{if } x \neq 0, y \neq 0; \\ 1, & \text{otherwise.} \end{cases}$

8. Let $\pi_j : \mathbb{R}^n \to \mathbb{R} : \pi_j(x_1, x_2, \dots, x_n) = x_j$ be the j-th projection, $1 \le j \le n$. Prove that π_j is a continuous function using $\epsilon - \delta$ definition of continuity.