```
<style>
h3 text-align: left;
.center h2 text-align: center;
.center h3 text-align: center; font-size: 1.25rem;
.left h2 text-align: left;
.left h3 text-align: left; </style>
```

Table of contents

	0.1	Evaluación 2									 1	
		0.1.1	Juan	Carlos	Gaviria	Chaverra,	Andrés	Orlando	López	Henao		 1
:::	{layo	ut-ncol	=2									

0.1 Evaluación 2

0.1.1 Juan Carlos Gaviria Chaverra, Andrés Orlando López Henao

1. Título del experimento

Influencia de la longitud de la mecha en la duración de la combustión de las velas.

2. Objetivos

Evaluar cómo diferentes longitudes de mecha afectan la duración de la combustión de las velas.

3. Marco teórico

Transfondo relevante o marco teórico: (a) relaciones teóricas, (b) conocimiento y experiencia de expertos, (c) experimentos previos. ¿Dónde se ubica este experimento en el estudio de algún proceso en el sistema?

4. Variable respuesta

Variable respuesta: Tiempo de combustión de la vela.

Valores usuales de operación: Entre 0 y 60 minutos.

Precisión de medición: Minutos.

Instrumento de medida: Cronómetro.

5. Variable de control

Listado de: (a) cada variable de control o explicativa o factor, (b) los niveles y valores usuales de operación en los cuales el proceso de realiza, su distribución y el rango de operación usual, (c) precisión o rango en el cual se irá a configurar (en el experimento, no necesariamente en las operaciones de la planta) y la precisión a la cual será tomada y su instrumentación, (d) la configuración propuesta de los niveles en el experimento, (e) el efecto predicho (al menos de manera cualitativa) sobre cada una de las variables respuesta.

6. Factores controlables

Listado de: (a) cada variable o factor que se mantendrá constante en el experimento, (b) el nivel deseado o permitido y el rango admisible de variación,(c) la precisión o el rango en el cual se mediará, intrumento de medida, (d) cómo se controlará y (e) el impacto esperado, si existe, en cada variable respuesta.

Diseño Experimental: Se utilizará un diseño completamente aleatorizado con cuatro niveles de mecha donde se mide el tiempo de combustión de las velas.

Factor: Longitud de la mecha.

Tratamientos:

- T1: Mecha 1 cm de longitud.
- T2: Mecha 1,5 cm longitud.
- T3: Mecha 2 cm longitud.
- T4: Mecha 2,5 cm longitud.

Materiales:

- Velas idénticas en tamaño y composición con mechas de diferentes longitudes.
- Soportes para velas.
- Cronómetro.
- Encendedor.

Procedimiento:

- Cortar las mechas de manera uniforme en tres grupos con diferentes longitudes.
- Fijar las mechas en las velas correspondientes según los grupos establecidos.
- Encender cada vela al mismo tiempo y colocarlas en soportes idénticos.
- Registrar el tiempo desde que se encienden hasta que se apagan por completo.
- Repetir el experimento con varias velas para obtener datos adicionales.

Análisis de Datos: Comparar el tiempo promedio de combustión entre los cuatro tipos de longitud de las mechas utilizando análisis estadísticos, como el análisis de varianza (ANOVA) de un factor.

Hipótesis: Se espera que velas con mechas de mayor longitud tengan una duración de combustión más larga.

Resultados Esperados: Se espera que las velas con mechas de mayor longitud tengan una duración de combustión más larga en comparación con las mechas de menor longitud, de acuerdo con la hipótesis.

11. Descripción

Si es posible la descripción de la técnica de análisis y presentación. Es decir gráficas, ANOVAS, regresión, estadísticos de prueba, contrastes, etc.

12. Responsable de coordinación

Juan Carlos Gaviria Chaverra.

13. Premuestreo

No se realizará premuestreo por las siguientes razones:

Simplicidad del experimento: El diseño experimental es directo y no implica procedimientos complicados. Consiste en encender velas con diferentes longitudes de mecha y medir la duración de la combustión. Dado que el procedimiento es simple y fácil de ejecutar, no se requiere una fase preliminar de recolección de datos para ajustar o validar el método experimental.

Condiciones experimentales bien definidas: Las condiciones del experimento, como el ambiente de prueba y los materiales utilizados, son conocidas y estables. Se llevará a cabo en un entorno controlado y las velas utilizadas serán consistentes en calidad y composición. Por lo tanto, se puede tener confianza en la replicabilidad de los resultados sin la necesidad de un premuestreo para ajustar o validar estas condiciones.

Recursos limitados: Los recursos disponibles, como tiempo, dinero y personal, son limitados.

14. Análisis

14.1 Datos

A tibble: 20 x 2

	Tratamientos	Combustion
	<chr></chr>	<dbl></dbl>
1	T1_1cm	15.9
2	T1_1cm	12.6
3	T1_1cm	14.7
4	T1_1cm	13.5
5	T1_1cm	17.2

6	T2_1.5cm	18.4
7	T2_1.5cm	14.5
8	T2_1.5cm	17.2
9	T2_1.5cm	15.7
10	T2_1.5cm	20.1
11	T3_2cm	28.5
12	T3_2cm	22.5
13	T3_2cm	26.7
14	T3_2cm	24.3
15	T3_2cm	31.2
16	T4_2.5cm	31.4
17	T4_2.5cm	24.8
18	T4_2.5cm	29.4
19	T4_2.5cm	26.7
20	T4_2.5cm	34.4

14.2. Análisis gráfico

14.2.1. Histograma

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Gráfico de cajas

14.3. Análisis estadístico

14.3.1. Análisis de normalidad

H0: El tiempo de combustión de las velas sigue una distribución normal.

HA: El tiempo de combustión de las velas no sigue una distribución normal.

14.3.1.1. Prueba de normalidad Shapiro-Wilk

Shapiro-Wilk normality test

data: datos

W = 0.93093, p-value = 0.1609

La distribución de los datos es normal dado que el valor-p 0.1608868 es mayor que el nivel

14.3.1.2. Prueba de normalidad Jarque-Bera

Jarque-Bera Normality Test

data: datos

JB = 1.5958, p-value = 0.4503

alternative hypothesis: greater

La distribución de los datos es normal dado que el valor-p 0.4502818 es mayor que el nivel

14.3.1.3. Prueba de normalidad Kolmogorov-Smirnov

Lilliefors (Kolmogorov-Smirnov) normality test

data: datos

D = 0.15764, p-value = 0.2151

La distribución de los datos es normal dado que el valor-p 0.2151317 es mayor que el nivel

14.3.2. Análisis de normalidad tratamiento T1

H0: El tiempo de combustión de las velas del tratamiento T1 sigue una distribución normal.

HA: El tiempo de combustión de las velas del tratamiento T1 no sigue una distribución normal.

14.3.2.1. Prueba de normalidad Shapiro-Wilk

Shapiro-Wilk normality test

data: datos

W = 0.97904, p-value = 0.9294

La distribución de los datos es normal dado que el valor-p 0.929427 es mayor que el nivel

14.3.2.2. Prueba de normalidad Jarque-Bera

Jarque-Bera Normality Test

data: datos

JB = 0.38199, p-value = 0.8261 alternative hypothesis: greater

La distribución de los datos es normal dado que el valor-p 0.8261381 es mayor que el nivel

14.3.2.3. Prueba de normalidad Kolmogorov-Smirnov

Lilliefors (Kolmogorov-Smirnov) normality test

data: datos

D = 0.15695, p-value = 0.9524

La distribución de los datos es normal dado que el valor-p 0.9523914 es mayor que el nivel

14.3.3. Análisis de normalidad tratamiento T2

H0: El tiempo de combustión de las velas del tratamiento T2 sigue una distribución normal.

HA: El tiempo de combustión de las velas del tratamiento T2 no sigue una distribución normal.

14.3.3.1. Prueba de normalidad Shapiro-Wilk

Shapiro-Wilk normality test

data: datos

W = 0.98663, p-value = 0.9666

La distribución de los datos es normal dado que el valor-p 0.9666263 es mayor que el nivel

14.3.3.2. Prueba de normalidad Jarque-Bera

Jarque-Bera Normality Test

data: datos

JB = 0.33754, p-value = 0.8447 alternative hypothesis: greater

La distribución de los datos es normal dado que el valor-p 0.8447024 es mayor que el nivel

14.3.3.3. Prueba de normalidad Kolmogorov-Smirnov

Lilliefors (Kolmogorov-Smirnov) normality test

data: datos

D = 0.14928, p-value = 0.9716

La distribución de los datos es normal dado que el valor-p 0.9715818 es mayor que el nivel

14.3.4. Análisis de normalidad tratamiento T3

H0: El tiempo de combustión de las velas del tratamiento T3 sigue una distribución normal.

HA: El tiempo de combustión de las velas del tratamiento T3 no sigue una distribución normal.

14.3.4.1. Prueba de normalidad Shapiro-Wilk

Shapiro-Wilk normality test

data: datos

W = 0.98538, p-value = 0.9612

La distribución de los datos es normal dado que el valor-p 0.9611567 es mayor que el nivel

14.3.4.2. Prueba de normalidad Jarque-Bera

Jarque-Bera Normality Test

data: datos

JB = 0.3389, p-value = 0.8441 alternative hypothesis: greater

La distribución de los datos es normal dado que el valor-p 0.8441285 es mayor que el nivel

14.3.4.3. Prueba de normalidad Kolmogorov-Smirnov

Lilliefors (Kolmogorov-Smirnov) normality test

data: datos

```
D = 0.15288, p-value = 0.9633
```

La distribución de los datos es normal dado que el valor-p 0.963337 es mayor que el nivel

14.3.5. Análisis de normalidad tratamiento T4

H0: El tiempo de combustión de las velas del tratamiento T4 sigue una distribución normal.

HA: El tiempo de combustión de las velas del tratamiento T4 no sigue una distribución normal.

14.3.5.1. Prueba de normalidad Shapiro-Wilk

Shapiro-Wilk normality test

data: datos
W = 0.98332, p-value = 0.9516

La distribución de los datos es normal dado que el valor-p 0.9515727 es mayor que el nivel

14.3.5.2. Prueba de normalidad Jarque-Bera

Jarque-Bera Normality Test

data: datos

JB = 0.34669, p-value = 0.8408 alternative hypothesis: greater

La distribución de los datos es normal dado que el valor-p 0.8408454 es mayor que el nivel

14.3.5.3. Prueba de normalidad Kolmogorov-Smirnov

Lilliefors (Kolmogorov-Smirnov) normality test

data: datos

D = 0.15701, p-value = 0.9522

La distribución de los datos es normal dado que el valor-p 0.9522275 es mayor que el nivel

- 14.3.6. Comparación de medias entre dos poblaciones
- 14.3.7. Comparación de varianzas entre dos poblaciones

14.3.7.1. Comparación de varianzas T1 y T2

F test to compare two variances

data: datos1 and datos2
F = 0.69672, num df = 4, denom df = 4, p-value = 0.7347
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 0.07254073 6.69166442
sample estimates:
ratio of variances
 0.6967196

[1] "Valor crítico1: 0.00108477764761528"
[1] "Valor crítico1: 10.0069821966136"

14.3.7.2. Comparación de varianzas T1 y T3

F test to compare two variances

[1] "Valor crítico1: 0.00108477764761528"
[1] "Valor crítico1: 10.0069821966136"

14.3.7.3. Comparación de varianzas T1 y T4

F test to compare two variances

[1] "Valor crítico1: 0.00108477764761528"
[1] "Valor crítico1: 10.0069821966136"

14.3.7.4. Comparación de varianzas T2 y T3

F test to compare two variances

[1] "Valor crítico1: 0.00108477764761528"
[1] "Valor crítico1: 10.0069821966136"

14.3.7.5. Comparación de varianzas T2 y T4

F test to compare two variances

data: datos1 and datos2
F = 0.33758, num df = 4, denom df = 4, p-value = 0.3179
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 0.03514819 3.24231483
sample estimates:

```
ratio of variances 0.3375818
```

[1] "Valor crítico1: 0.00108477764761528"
[1] "Valor crítico1: 10.0069821966136"

14.3.7.6. Comparación de varianzas T3 y T4

F test to compare two variances

- [1] "Valor crítico1: 0.00108477764761528"
 [1] "Valor crítico1: 10.0069821966136"
- 14.3.8. Modelo de medias
- 14.3.9. Modelo de efectos
- 14.3.10. Modelo de regresión
- 14.3.11. Tabla ANOVA

```
Df Sum Sq Mean Sq F value Pr(>F)
datos$Tratamientos 3 753.8 251.28 29.3 9.8e-07 ***
Residuals 16 137.2 8.58
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Tukey multiple comparisons of means
95% family-wise confidence level
```

Fit: aov(formula = datos\$Combustion ~ datos\$Tratamientos, data = datos)

\$`datos\$Tratamientos`