LINEAR MODEL NOTES

CARSON JAMES

Contents

1.	Matrix Algebra	1
1.1.	. Column and Null Space	1
1.2.	. Generalized Inverses	2
1.3.	. Projections	4
1.4.	. Solving Linear Equations	6
1.5.	. Moore-Penrose Pseudoinverse	6
1.6.	. Differentiation	10
2.	The Linear Model	11
2.1.	. Model Description	11
2.2.	. Least Squares Optimization	11

1. Matrix Algebra

1.1. Column and Null Space.

Exercise 1.1. Let $X \in \mathcal{M}_{m,n}$. Then $\mathcal{N}(X) = \mathcal{N}(X^TX)$.

Proof. Let $a \in \mathcal{N}(X)$. Then Xa = 0. So $X^TXa = 0$. Thus $a \in \mathcal{N}(X^TX)$. Conversely, suppose that $a \in \mathcal{N}(X^TX)$. Then $X^TXa = 0$. So

$$0 = a^T X^T X a$$
$$= (Xa)^T (Xa)$$
$$= ||Xa||^2$$

Hence Xa = 0 and $a \in \mathcal{N}(X)$.

Exercise 1.2. Let $X \in \mathcal{M}_{m,n}$. Then $\mathcal{C}(X^T) = \mathcal{C}(X^TX)$.

Proof.

$$C(X^T) = \mathcal{N}(X)^{\perp}$$
$$= \mathcal{N}(X^T X)^{\perp}$$
$$= C(X^T X)$$

Exercise 1.3. Let $X \in \mathcal{M}_{m,n}$. If $X^TX = 0$, then X = 0.

Proof. Suppose that $X^TX = 0$. Then

$$rank(X^{T}) = \dim \mathcal{C}(X^{T})$$
$$= \dim \mathcal{C}(X^{T}X)$$
$$= rank(X^{T}X)$$
$$= 0$$

So
$$X^T = X = 0$$
.

Exercise 1.4. Let $X \in \mathcal{M}_{m,n}$ and $A, B \in \mathcal{M}_{n,p}$. Then $X^TXA = X^TXB$ iff XA = XB.

Proof. Clearly if XA = XB, then $X^TXA = X^TXB$. Conversely, suppose that $X^TXA = X^TXB$. Then $X^TX(A - B) = 0$. So for each $i = 1, \dots, p$, $X^TX(A - B)e_i = 0$. Thus for each $i = 1, \dots, p$ $X(A - B)e_i \in \mathcal{N}(X^T) \cap \mathcal{C}(X) = \{0\}$. Hence X(A - B) = 0 and XA = XB.

1.2. Generalized Inverses.

Definition 1.5. Let $A \in \mathcal{M}_{m,n}$ and $G \in \mathcal{M}_{n,m}$. Then G is said to be a **generalized** inverse of A if AGA = A.

Theorem 1.6. Let $A \in \mathcal{M}_{m,n}$. Suppose that rank(A) = r. Then there exists $P \in \mathcal{M}_{m,m}, Q \in \mathcal{M}_{n,n}, C \in \mathcal{M}_{r,r}$ such that P, Q, C are non-singular, rank(C) = r and

$$A = P \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix} Q$$

Exercise 1.7. Let

$$A = P \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix} Q$$

as in the previous theorem and $D \in \mathcal{M}_{r,m-r}$, $E \in \mathcal{M}_{n-r,r}$, $F \in \mathcal{M}_{n-r,m-r}$. Put

$$G = Q^{-1} \begin{pmatrix} C^{-1} & D \\ E & F \end{pmatrix} P^{-1}$$

Then G is a generalized inverse of A.

Proof.

$$AGA = \begin{bmatrix} P \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix} Q \end{bmatrix} \begin{bmatrix} Q^{-1} \begin{pmatrix} C^{-1} & D \\ E & F \end{pmatrix} P^{-1} \end{bmatrix} \begin{bmatrix} P \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix} Q \end{bmatrix}$$

$$= P \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} C^{-1} & D \\ E & F \end{pmatrix} \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix} Q$$

$$= P \begin{pmatrix} I & CD \\ 0 & 0 \end{pmatrix} \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix} Q$$

$$= P \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix} Q$$

$$= A$$

Note 1.8. The previous exercise and theorem guarantee the existence of a generalized inverse for all matrices. We will denote a generalized inverse of A by A^- .

Theorem 1.9. Let $A \in \mathcal{M}_{m,n}$. Suppose that rank(A) = r. Let $P \in \mathcal{M}_{mm}$, $Q \in \mathcal{M}_{n,n}$ permutation matrices and $C \in \mathcal{M}_{r,r}$. Suppose that rank(C) = r and $PAQ = \begin{pmatrix} C & D \\ E & F \end{pmatrix}$. Then $Q \begin{pmatrix} C^{-1} & 0 \\ 0 & 0 \end{pmatrix} P$ is a generalized inverse of A.

Exercise 1.10. Let $X \in \mathcal{M}_{m,n}$. Then $(X^T)^- = (X^-)^T$.

Proof.

$$X^{T}(X^{-})^{T}X^{T} = (XX^{-}X)^{T}$$
$$= X^{T}$$

Exercise 1.11. Let $X \in \mathcal{M}_{m,n}$. Then $\mathcal{C}(XX^{-}) = \mathcal{C}(X)$.

Proof. Clearly $\mathcal{C}(XX^-) \subset \mathcal{C}(X)$. Let $b \in \mathcal{C}(X)$. Then there exists $a \in \mathbb{R}^n$ such that Xa = b. Then

$$XX^{-}b = XX^{-}Xa$$
$$= Xa$$
$$= b$$

So
$$b \in \mathcal{C}(XX^-)$$
. Thus $\mathcal{C}(X) \subset \mathcal{C}(XX^-)$ and $\mathcal{C}(X) = \mathcal{C}(XX^-)$

Exercise 1.12. Let $X \in \mathcal{M}_{m,n}$. Then $\mathcal{N}(X) = \mathcal{N}(X^-X)$

Proof. From the previous exercise, we have that

$$\mathcal{N}(X) = \mathcal{C}(X^T)^{\perp}$$

$$= \mathcal{C}(X^T(X^T)^{-})^{\perp}$$

$$= \mathcal{C}(X^T(X^{-})^T)^{\perp}$$

$$= \mathcal{C}((X^{-}X)^T)^{\perp}$$

$$= \mathcal{N}(X^{-}X)$$

Exercise 1.13. Let $X \in \mathcal{M}_{m,n}$. Then $X^- = (X^T X)^- X^T$.

Proof. By definition, $X^TX(X^TX)^-X^TX = X^TX$. A previous exercise implies that $X(X^TX)^-X^TX = X$. Thus $X^- = (X^TX)^-X^T$.

Exercise 1.14. Let $X \in \mathcal{M}_{m,n}$. Then $(X^T)^- = X(X^TX)^-$.

Proof. The previous exercise tells us that $X^- = (X^T X)^- X^T$. Transposing both sides, we obtain $(X^T)^- = X(X^T X)^-$.

1.3. Projections.

Definition 1.15. Let $A \in \mathcal{M}_{m,m}$. Then X is said to be **idempotent** if $A^2 = A$.

Exercise 1.16. Let $X \in \mathcal{M}_{m,n}$. Then XX^- and X^-X are idempotent

Proof.

$$(XX^{-})(XX^{-}) = (XX^{-}X)X^{-}$$
$$= XX^{-}$$

The case is similar for X^-X .

Exercise 1.17. Let $A \in \mathcal{M}_{m.m}$. If X is idempotent, then I - A is idempotent.

Proof. Suppose that A is idempotent. Then

$$(I - A)(I - A) = I^2 - IA - AI + A^2$$
$$= I - 2A + A$$
$$= I - A$$

Theorem 1.18. Let $A \in \mathcal{M}_{m,m}$. If A is idempotent, then rank(A) = tr(A).

Definition 1.19. Let $P \in \mathcal{M}_{m,m}$ and $S \subset \mathbb{R}^m$ a subspace. Then P is said to be a **projection** matrix onto S if

- (1) P is idempotent
- (2) $\mathcal{C}(X) \subset S$
- (3) for each $x \in S$, Px = x

Note 1.20. In the previous definition, (2) and (3) imply that C(X) = S, so to say that X projects "onto" S is accurate.

Exercise 1.21. Let $S \subset \mathbb{R}^m$ and P, Q projection matrices onto S. Then PQ = Q.

Proof. Let
$$x \in \mathbb{R}^m$$
. Then $Qx \in \mathcal{C}(Q) = S$. So $PQx = Qx$. Thus $PQ = Q$.

Exercise 1.22. Let $X \in \mathcal{M}_{m,n}$. Then XX^- is a projection onto $\mathcal{C}(X)$.

Proof. A previous exercises tells us that XX^- is idempotent. Another previous exercise tells us that $\mathcal{C}(XX^-) = \mathcal{C}(X)$. Let $b \in \mathcal{C}(X)$. Then there exists $a \in \mathbb{R}^n$ such that Xa = b. So

$$XX^{-}b = XX^{-}Xa$$
$$= Xa$$
$$= b$$

Exercise 1.23. Let $X \in \mathcal{M}_{m,n}$. Then $I - X^-X$ is a projection onto $\mathcal{N}(X)$

Proof. Since X^-X is idempotent, so is $I - X^-X$. Let $b \in \mathcal{C}(I - X^-X)$. Then there exists $a \in \mathbb{R}^n$ such that $(I - X^-X)a = b$. Then

$$Xb = X(I - X^{-}X)a$$

$$= (X - XX^{-}X)a$$

$$= (X - X)a$$

$$= 0a$$

$$= 0$$

So $\mathcal{C}(I-X^-X)\subset\mathcal{N}(X)$. Let $a\in\mathcal{N}(X)$. Then Xa=0 and

$$(I - X^{-}X)a = a - X^{-}Xa$$
$$= a$$

So for each $a \in \mathcal{N}(X)$, $(I - X^{-}X)a = a$.

Exercise 1.24. Let $S \subset \mathbb{R}^m$ be a subspace and $P \in \mathcal{M}_{m,m}$ be a symmetric projection matrix onto S. Then P is unique.

Proof. Let $Q \in \mathcal{M}_{m,m}$ be a symmetric projection matrix onto S. Then

$$(P - Q)^{T}(P - Q) = P^{T}P - P^{T}Q - Q^{T}P + Q^{T}Q$$

= $P^{2} - PQ - QP + Q^{2}$
= $P - Q - P + Q$
= 0

Thus P - Q = 0 and P = Q.

Definition 1.25. Let $X \in \mathcal{M}_{m,n}$. We define P_X by

$$P_X = X(X^T X)^- X^T$$

Exercise 1.26. Let $X \in \mathcal{M}_{m,n}$. Then P_X is well defined. That is, independent of the choice of $(X^TX)^-$.

Proof. Suppose that G, H are generalized inverses of X^TX . By definition, we have

$$\begin{split} X^TXGX^TX &= X^TXHX^TX \Rightarrow XGX^TX = XHX^TX \\ &\Rightarrow X^TXG^TX^T = X^TXHX^T \\ &\Rightarrow XG^TX^T = XHX^T \\ &\Rightarrow XGX^T = XHX^T = P_X \end{split}$$

Note 1.27. Recall that $X^- = (X^TX)^-X^T$. So that $P_X = XX^-$ is indeed a projection onto $\mathcal{C}(X)$. Recall that $[(X^TX)^-]^T$ is a gen. inv. of $(X^TX)^T = (X^TX)$. Hence $P_X^T = X[(X^TX)^-]^TX^T = P_X$. Since P_X is symmetric, it is the unique symmetric projection onto $\mathcal{C}(X)$.

Note 1.28. Recall that $(X^T)^- = X(X^TX)^-$. So that $P_X = (X^T)^-X^T$. A previous exercises tells us that $I - P_X$ is a projection on $\mathcal{N}(X^T)$. Since $I - P_X$ is symmetric, it is the unique symmetric projection onto $\mathcal{N}(X^T)$.

1.4. Solving Linear Equations.

Definition 1.29. Let $A \in \mathcal{M}_{m,n}$ and $b \in \mathbb{R}^m$. Then the system Ax = b is said to be **consistent** if $b \in \mathcal{C}(A)$.

Exercise 1.30. Let $A \in \mathcal{M}_{m,n}$ and $G \in \mathcal{M}_{n,m}$. Then $G = A^-$ iff for each $b \in \mathcal{C}(A)$, Gb solves Ax = b.

Proof. Suppose that $G = A^-$. Let $b \in \mathcal{C}(A)$. Then there exists $x^* \in \mathbb{R}^n$ such that $Ax^* = b$. So

$$A(Gb) = AG(Ax^*)$$

$$= (AGA)x^*$$

$$= Ax^*$$

$$= b$$

So Gb solves Ax = b. Conversely, Suppose that for each $b \in \mathcal{C}(A)$, Gb solves Ax = b. Let $z \in \mathbb{R}^n$. So $Az \in \mathcal{C}(A)$. Then

$$(AGA)z = A[G(Az)]$$
$$= Az$$

Since for each $z \in \mathbb{R}^n AGAz = Az$, AGA = A and $G = A^-$.

Exercise 1.31. Let $b \in C(A)$. Then

$${x \in \mathbb{R}^n : Ax = b} = {A^-b + (I - A^-A)z : z \in \mathbb{R}^n}$$

.

Proof. Let $x \in \{A^-b + (I - A^-A)z : z \in \mathbb{R}^n\}$. Then there exists $z \in \mathbb{R}^n$ such that $x = A^-b + (I - A^-A)z$. Since $(I - A^-A)$ is a projection onto $\mathcal{N}(A)$,

$$Ax = AA^{-}b$$
$$= b$$

So $x \in \{x \in \mathbb{R}^n : Ax = b\}$. Conversely, let $x \in \{x \in \mathbb{R}^n : Ax = b\}$. Then

$$\begin{split} x &= A^{-}(Ax) + (x - A^{-}Ax) \\ &= A^{-}(b) + (I - A^{-}A)x \\ &\in \{A^{-}b + (I - A^{-}A)z : z \in \mathbb{R}^{n}\} \end{split}$$

1.5. Moore-Penrose Pseudoinverse.

Theorem 1.32. (Singular Value Decomposition):

Let $A \in \mathcal{M}_{m,n}$. Suppose that rank(A) = r. Then there exist $U \in \mathcal{M}_{m,m}V \in \mathcal{M}_{n,n}$, and $D_0 \in \mathcal{M}_{r,r}$ such that

$$(1) \ A = U \begin{pmatrix} D_0 & 0 \\ 0 & 0 \end{pmatrix} V^T$$

(2)
$$U^TU = I$$

$$(3) V^T V = I$$

(4) $D_0 = diagonal(d_1, d_2, \dots, d_r)$ with $d_1 \ge d_2 \ge \dots \ge d_r > 0$

Note 1.33. Put
$$D = \begin{pmatrix} D_0 & 0 \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{m,n}$$

- (1) Since D_0 is symmetric, $D^T = \begin{pmatrix} D_0 & 0 \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{n,m}$
- (2) Since D_0 is diagonal, D_0^{-1} is also diagonal and symmetric

Definition 1.34. Let $A \in \mathcal{M}_{m,m}$ and $A^+ \in \mathcal{M}_{n,m}$. Then A^+ is said to be a **Moore-Penrose pseudoinverse** of A if

- $(1) AA^{+}A = A$
- (2) $A^+AA^+ = A^+$
- (3) AA^+ is symmetric
- (4) A^+A is symmetric

Note 1.35. We have that $P_X = XX^+ = X(X^TX)^-X^T$.

Exercise 1.36. Let $A \in \mathcal{M}_{m,n}$ and $S, T \in \mathcal{M}_{n,m}$. If S and T are m-p pseudoinverses of A, then S = T.

Proof. Suppose that S, T satisfy properties (1)-(4). Then

$$S = SAS$$

$$= (SA)^{T}S$$

$$= A^{T}S^{T}S$$

$$= (ATA)^{T}S^{T}S$$

$$= A^{T}T^{T}A^{T}S^{T}S$$

$$= (TA)^{T}(SA)^{T}S$$

$$= (TA)(SA)S$$

$$= TA(SAS)$$

$$= TAS$$

and

$$T = TAT$$

$$= T(AT)^{T}$$

$$= TT^{T}A^{T}$$

$$= TT^{T}(ASA)^{T}$$

$$= TT^{T}A^{T}S^{T}A^{T}$$

$$= T(AT)^{T}(AS)^{T}$$

$$= T(AT)(AS)$$

$$= (TAT)AS$$

$$= TSA$$

So S = T

Exercise 1.37. Let $A \in \mathcal{M}_{m,n}$ have singular value decomposition $A = UDV^T = U \begin{pmatrix} D_0 & 0 \\ 0 & 0 \end{pmatrix} V^T$. Define $D^+ = \begin{pmatrix} D_0^{-1} & 0 \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{n,m}$. Then D^+ is the m-p pseudoinverse of D.

Proof.

(1)

$$DD^{+}D = \begin{pmatrix} D_{0} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} D_{0}^{-1} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} D_{0} & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} D_{0} & 0 \\ 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} D_{0} & 0 \\ 0 & 0 \end{pmatrix}$$
$$= D$$

(2) Similar to (1).

(3)

$$(DD^{+})^{T} = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}^{T}$$
$$= \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$$
$$= DD^{+}$$

(4) Similar to (3).

Exercise 1.38. Let $A \in \mathcal{M}_{m,n}$ have singular value decomposition $A = UDV^T$. So $A^T \in \mathcal{M}_{n,m}$ has singular value decomposition $A^T = VD^TU^T$. Then $(D^T)^+ = (D^+)^T$

Proof. Since
$$D^T = \begin{pmatrix} D_0 & 0 \\ 0 & 0 \end{pmatrix} \in \mathcal{M}_{n,m}$$
, we have that $(D^T)^+ = \begin{pmatrix} D_0^{-1} & 0 \\ 0 & 0 \end{pmatrix} = (D^+)^T$

Exercise 1.39. Let $A \in \mathcal{M}_{m,n}$ have singular value decomposition $A = UDV^T$. Define $A^+ = VD^+U^T$. Then A^+ is the m-p pseudoinverse of A.

Proof. (1)

$$AA^{+}A = (UDV^{T})(VD^{+}U^{T})(UDV^{T})$$

$$= UDD^{+}DV^{T}$$

$$= UDV^{T}$$

$$= A$$

(2) Similar to (1)

(3)

$$(AA^+)^T = [(UDV^T)(VD^+U^T)]^T$$

$$= (UDD^+U^T)^T$$

$$= U(DD^+)^TU^T$$

$$= UDD^+U^T$$

$$= (UDV^T)(VD^+U^T)$$

$$= AA^+$$

(4) Similar to (3).

Exercise 1.40. Let $A \in \mathcal{M}_{m,n}$ have singular value decomposition $A = UDV^T$. Then $(A^T)^+ = (A^+)^T$.

Proof.

$$(A^{T})^{+} = [(UDV^{T})^{T}]^{+}$$

$$= (VD^{T}U^{T})^{+}$$

$$= U(D^{T})^{+}V^{T}$$

$$= U(D^{+})^{T}V^{T}$$

$$= (VD^{+}U^{T})^{T}$$

$$= (A^{+})^{T}$$

Exercise 1.41. Let $A \in \mathcal{M}_{m,n}$. Then there exists a unique matrix $A^+ \in \mathcal{M}_{n,m}$ such that A^+ is the m-p pseudoinverse of A.

Proof. The existence of and uniqueness of A^+ are shown in the previous exercises.

Exercise 1.42. Let $A \in \mathcal{M}_{m,m}$. Then $(A^+)^+ = A$.

Proof. We observe that A satisfies properties (1)-(4) for A^+ . By uniqueness, $(A^+)^+=A$. \square

Exercise 1.43. Let $A \in \mathcal{M}_{m,n}$ and $b \in \mathcal{C}(A)$. Pur $S = \{x \in \mathbb{R}^n : Ax = b\}$. Then

$$||A^+b|| = \min_{x \in S} ||x||$$

Proof. Let $x \in S$. A previous exercise tells us that there exists $z \in \mathbb{R}^n$ such that $x = A^+b + (I - A^+A)z$. Then

$$\begin{split} \|x\|^2 &= \|A^+b + (I - A^+A)z\|^2 \\ &= (A^+b + (I - A^+A)z)^T (A^+b + (I - A^+A)z) \\ &= \|A^+b\|^2 - 2z^T (I - A^+A)^T (A^+b) + \|(I - A^+A)z\|^2 \\ &= \|A^+b\|^2 - 2z^T (I - A^+A)A^+b + \|(I - A^+A)z\|^2 \\ &= \|A^+b\|^2 + \|(I - A^+A)z\|^2 \\ &\geq \|A^+b\|^2 \end{split}$$

1.6. Differentiation.

Definition 1.44. Let $Q: \mathbb{R}^n \to \mathbb{R}$ given by $b \mapsto Q(b)$. Suppose that $Q \in C^1(\mathbb{R}^n)$. We define

$$\frac{\partial Q}{\partial b} = \begin{pmatrix} \frac{\partial Q}{\partial b_1} \\ \vdots \\ \frac{\partial Q}{\partial b_n} \end{pmatrix}$$

Exercise 1.45. Let $a, b \in \mathbb{R}_n$ and $A \in \mathcal{M}_{n,n}$. Then

$$\frac{\partial a^T b}{\partial b} = a$$

$$\frac{\partial b^T A b}{\partial b} = (A + A^T)b$$

Proof.

(1) Since

$$a^T b = \sum_{i=1}^n a_i b_i$$

We have that

$$\frac{\partial a^T b}{\partial b_i} = a_i$$

and therefore

$$\frac{\partial a^T b}{\partial b} = a$$

(2) Since
$$b^{T}Ab = \sum_{i=1}^{n} b_{i} \sum_{j=1}^{n} A_{i,j}b_{j}$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} b_{i}A_{i,j}b_{j}$$

The terms containing b_i are

$$A_{i,i}b_i^2 + \sum_{\substack{j=1\\j\neq i}}^n (A_{i,j} + A_{j,i})b_ib_j$$

This implies that

$$\frac{\partial b^T A b}{\partial b_i} = 2A_{i,i}b_i + \sum_{\substack{j=1\\j\neq i}}^n (A_{i,j} + A_{j,i})b_j$$
$$= \sum_{j=1}^n (A_{i,j} + A_{i,j}^T)b_j$$
$$= [(A + A^T)b]_i$$
$$\frac{\partial b^T A b}{\partial b} = (A + A^T)b$$

So

2. The Linear Model

2.1. Model Description.

Definition 2.1. Given $y \in \mathbb{R}_m$ a vector of observed responses to the matrix $X \in \mathcal{M}_{m,n}$ of observed inputs, we will consider the model

$$y = Xb + e$$

where $b \in \mathbb{R}_n$ is a vector of unknown parameters and $e \in \mathbb{R}^m$ is a random vector of unobserved errors with zero mean.

Definition 2.2. For a parameter vector $b \in \mathbb{R}^n$, we have that e = y - Xb. For this reason, e is called the **residual vector** or simply the "residuals".

Note 2.3. The goal will be to find a parameter vector $b \in \mathbb{R}^n$ that makes the causes the residuals to be as small as possible.

2.2. Least Squares Optimization.

Definition 2.4. We define the **cost function**, $Q: \mathbb{R}^n \to \mathbb{R}$ by

$$Q(b) = ||y - Xb||^{2}$$

= $(y - Xb)^{T}(y - Xb)$

Definition 2.5. Let $b \in \mathbb{R}^n$. Then b is said to be a **least squares solution** for the model if

$$Q(b) = \inf_{c \in \mathbb{R}^n} Q(c)$$

Exercise 2.6. If b is a least squares solution for the model, then $X^TXb = X^Ty$.

Proof. Suppose that b is a least squares solution for the model, then Q has a local minimum at b. Since Q is convex in b, this global minimum is also a local minimum. Thus

$$\frac{\partial Q}{\partial b}(b) = 0$$

By definition,

$$Q(b) = y^T y - y^T X b - b^T X^T y + b^T X^T X b$$
$$= y^T y - 2y^T X b + b^T X^T X b$$

Thus

$$0 = \frac{\partial Q}{\partial b}(b)$$
$$= -2X^{T}y + 2X^{T}Xb$$

Hence $X^T X b = X^T y$.

Definition 2.7. For $y \in \mathbb{R}^m$ and $X \in \mathcal{M}_{m,n}$, we define the **normal equation** to be

$$X^T X b = X^T y$$

Exercise 2.8. The normal equation is consistent.

Proof. We have that
$$X^T y \in \mathcal{C}(X^T) = \mathcal{C}(X^T X)$$
.

Exercise 2.9. Let $b \in \mathbb{R}^n$. Then b is a least squares solution for the model iff b satisfies the normal equation.

Proof. The previous exercises tells us that if b is a least squares solution for the model, then b satisfies the normal equation. Conversely, suppose that b satisfies the normal equation. Then

$$Q(c) = (y - Xc)^{T}(y - Xc)$$

$$= (y - Xb + Xb - Xc)^{T}(y - Xb + Xb - Xc)$$

$$= (y - Xb)^{T}(y - Xb) - (y - Xb)^{T}(X(b - c)) - (b - c)^{T}X^{T}(y - Xb) + (b - c)^{T}X^{T}(X(b - c))$$

$$= Q(b) - 2(b - c)^{T}X^{T}(y - Xb) + ||X(b - c)||^{2}$$

$$= Q(b) + ||X(b - c)||^{2}$$

Thus b minimizes Q.

Exercise 2.10. Let $b \in \mathbb{R}^n$ be a least squares solution for the model. Then $||y||^2 = ||Xb||^2 + ||e||^2$

Proof. Since b satisfies the normal equation, we have that $X^{T}(y - Xb) = 0$. Thus

$$Xb \cdot e = b^{T}X^{T}e$$

$$= b^{T}X^{T}(y - Xb)$$

$$= b^{T}0$$

$$= 0$$

So Xb and e are orthogonal. Therefore

$$||y||^2 = ||Xb + e||^2$$

= $||Xb||^2 + ||e||^2$