Econometrics May 13, 2023

Topic 15: Sparse Orthogonal Factor Regression

by Sai Zhang

Key points: Sparcity and dimensionality reduction for Multivariate Linear Regression models.

Disclaimer: The note is built on Prof. Jinchi Lv's lectures of the course at USC, DSO 607, High-Dimensional Statistics and Big Data Problems.

15.1 Motivation

Consider a Mutlivariate Linear Regression (MLR) model

$$\mathbf{Y}_{n\times q} = \mathbf{X}_{n\times p} \cdot \mathbf{C}_{p\times q} + \mathbf{E}_{n\times q}$$

How to apply regularization methods to this model? There are several approaches to consider

- Shrinkage: ridge regression to overcome multicollinearity
- sparsity: variable selection in multivariate setting
- Reduced-rank
 - Dimension reduction via reducing rank of C
 - $\min \|\mathbf{Y} \mathbf{XC}\|_F^2$ s.t. $\operatorname{rank}(\mathbf{C}) \le r$
- Combinations
- Low-rank plus sparse decomposition: robust PCA, latent variable graphical models, covariance estimation
- Regularized matrix or tensor regression

Or, we can introduce a very attractive sparsity structure to achieve simultaneous dimension reduction and variable selection. This structure should be characterized by

- Having a few distinct channels/pathways relating responses and predictors
- Each of such associations may involve only a smaller subset, but not all of the responses and predictors

that is

$$Y = XC + E$$

$$= X \cdot \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1q} \\ c_{21} & c_{22} & \cdots & c_{2q} \\ \vdots & \vdots & \ddots & \vdots \\ c_{p1} & c_{p2} & \cdots & c_{pq} \end{pmatrix} + E$$

$$= X \cdot \begin{pmatrix} 0 & u_{12} & \cdots & u_{1r} \\ u_{21} & 0 & \cdots & c_{2r} \\ \vdots & \vdots & \ddots & \vdots \\ u_{p1} & u_{p2} & \cdots & u_{pr} \end{pmatrix} \cdot \begin{pmatrix} d_1 \\ d_2 \\ & \ddots \\ & & & \ddots \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & \cdots & v_{q1} \\ v_{12} & v_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ v_{1r} & v_{2r} & \cdots & v_{qr} \end{pmatrix} + E$$

This way, we can have

- Sparsity: selection of both <u>latent</u> and <u>original</u> variables
- Low-rank SVD: different subsets of responses allowed to be associated with different subsets of predictors

Consider an example:

Example 15.1.1: Dimension Reduction and Variable Selection via Sparse SVD

Consider the case where p = 1000, q = 100, then C, as a $p \times q$ matrix, contains 100000 coefficients. Meanwhile, for a rank-3 SVD model:

$$\mathbf{C} = d_1 \mathbf{u}_1 \mathbf{v}_1' + d_2 \mathbf{u}_2 \mathbf{v}_2' + d_3 \mathbf{u}_3 \mathbf{v}_3'$$

where \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 are all $p \times 1$, \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 are all $q \times 1$, d_1 , d_2 , d_3 are all scalars. Hence, there are only $3 \times (1000 + 100 + 1) = 3303$ paramaters to estimate. If futher assume sparcity, the dimension would be even lower.

Now let's develop a scalable procedure for this idea.

15.2 Sparse Orthogonal Factor Regression

Consider the sigular value decomposition of C

$$\mathbf{C} = \mathbf{U}\mathbf{D}\mathbf{V}' = \sum_{k=1}^r d_k \mathbf{u}_k \mathbf{v}_k'$$