1.	True/False: Suppose you learn a word embedding for a vocabulary of 20000 words. Then the embedding vectors could be 1000 dimensional, so as to capture the full range of variation and meaning in those words.		1/1 point
	True□ Talso		
	✓ False✓ Correct		
	The dimension of word vectors is usually smaller than the size of the vocabulary. Most common sizes for word vectors range between 50 and 1000.		
2.	True/False: t-SNE is a non-linear dimensionality reduction technique.		1/1 point
	True		
	O False		
	 ✓ Correct t-SNE is a non-linear dimensionality reduction technique. 		
3.	Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.		1/1 point
	x (input text)	y (happy?)	
	I'm feeling wonderful today!	1	
	I'm bummed my cat is ill.	0	
	Really enjoying this!	1	
	Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label $y=1$.		
	TrueFalse		
	⊘ Correct		
	Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic" would contain a positive/happy connotation which will probably make your model classify the sentence as a "1".		
4.	Which of these equations do you think should hold for a good word embedding? (Check all that apply)		1/1 point
	$ ightharpoonup e_{man} - e_{woman} pprox e_{king} - e_{queen}$		
	○ Correct The order of words is correct in this analogy.		
	\square $e_{man} - e_{king} pprox e_{queen} - e_{woman}$		
	\square $e_{man} - e_{woman} pprox e_{queen} - e_{king}$		
	$lacksquare e_{man} - e_{king} pprox e_{woman} - e_{queen}$		
	⊘ Correct The order of words is correct in this analogy.		
5.	True/False: The most computationally efficient formula for Python to get the embedding of word 1021, if C is		1/1 point
	an embedding matrix, and o_{1021} is a one-hot vector corresponding to word	d 1021, is $C^Tst o_{1021}$.	
	FalseTrue		
	⊘ Correct		
	It is computationally wasteful because the element-wise multiplicati	on will be extremely inefficient.	
6.	When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings. True False		1/1 point
	⊘ Correct		
7.	True/False: In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. t and c are chosen from the training set to be nearby words.		1/1 point
	True		
	O False		
	✓ CorrectYes, t and c are chosen from the training set to be nearby words.		
8.	Suppose you have a 10000 word vocabulary, and are learning 100-dimensional word embeddings. The word2vec model uses the following softmax function:		1/1 point
	$P(t \mid c) = rac{e^{ heta_t^T e_c}}{\sum_{t'=1}^{10000} e^{ heta_t^T e_c}}$		
	True/False: After training, we should expect $ heta_t$ to be very close to e_c when	tand c are the same word.	
	O True		
	False		
	○ Correct To review this concept watch the Word2Vec lecture.		
9.	Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe		1/1 point
	model minimizes this objective: $min \sum_{i=1}^{10,000} \sum_{i=1}^{10,000} f(\mathbf{V}_{i}) (oT_{i} + \mathbf{k}_{i} + \mathbf{k}_{i}) = 1.5 \text{ eV} $		
	$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - log X_{ij})^2$ True/False: θ_i and e_j should be initialized to 0 at the beginning of training.		
	True False		
	● False⊘ Correct		
	$ heta_i$ and e_j should be initialized randomly at the beginning of training		
10.	You have trained word embeddings using a text dataset of t_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of t_2 words. Keeping in mind		1/1 point
	that using word embeddings is a form of transfer learning, under which of these circumstances would you expect the word embeddings to be helpful?		
	$lacktriangle$ When t_1 is larger than t_2		
	$igcup$ When t_1 is equal to t_2		

 \bigcirc When t_1 is smaller than t_2

Transfer embeddings to new tasks with smaller training sets.

⊘ Correct