

DELD – Tutorial 7

ECED SVNIT

SOP K-Maps

	БĊ	БС	ВС	вĒ
Ā	0	1	3	2
Α	4	5	7	6

\overline{CD}	$\overline{C}D$	CD	$C\overline{D}$
0	1	3	2
4	5	7	6
12	13	15	14
8	9	11	10
	0 4 12	0 1 4 5 12 13	0 1 3 4 5 7 12 13 15

Mapping Concept

	$\overline{C}\overline{D}$	\bar{c}	D	C	D	C	D
ĀB	0		1	1	3	1	2
ĀB	4	1	5		7		6
AB	12		13		15		14
$A\overline{B}$	8	1	9	1	11		10

Karnaugh map for $Z = \sum m(0, 2, 3, 5, 9, 11)$

Mapping Concept (From Truth Table)

$X = \overline{A}\overline{B}\overline{C} + A\overline{B}\overline{C}$	$\overline{C} + AB\overline{C} + \overline{C}$	
Inputs	Output	AB C 0 1
A B C	X	00 1
0 0 0	1 -	
0 0 1	0	01
0 1 0	0	
0 1 1	0	$11 \left(\begin{array}{c} 1 \end{array}\right) \left(\begin{array}{c} 1 \end{array}\right)$
1 0 0	1 -	
1 0 1	0	10 1
1 1 0	1 -	
1 1 1	1 -	

Mapping of Non-Standard SOP

Map the following SOP expression on a Karnaugh map: $\overline{A} + A\overline{B} + AB\overline{C}$.

\overline{A}	$+ A\overline{B}$	$+ AB\overline{C}$
000	100	110
001	101	
010		
011		

Writing Minimized Expressions

Simplify the following SOP equation using the Karnaugh mapping technique:

$$X = \overline{A}B + \overline{A}\overline{B}\overline{C} + AB\overline{C} + A\overline{B}\overline{C}$$

Simplify the following equation using the Karnaugh mapping procedure:

$$X = \overline{A}B\overline{C}D + A\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + AB\overline{C}D + AB\overline{C}D + AB\overline{C}D + ABCD$$

Use a Karnaugh map to minimize the following SOP expression:

$$\overline{B}\,\overline{C}\,\overline{D} + \overline{A}B\,\overline{C}\,\overline{D} + AB\,\overline{C}\,\overline{D} + \overline{A}\,\overline{B}CD + A\overline{B}CD + \overline{A}\,\overline{B}C\overline{D} + \overline{A}BC\overline{D} + ABC\overline{D} + ABC\overline{D} + ABC\overline{D}$$

 Determine the type (Synchronous/Asynchronous), (Up/Down), and Modulus of the below structure.

 Determine the Modulus and also write down the valid states (Q3Q2Q1Q0) for the circuit shown below:

 Determine the overall Modulus for both the Configurations. Also determine the output frequency for each case if the input frequency is 268800 Hz.

To Be Continued...

