Neighborhood Semantics for Modal Logic

Lecture 3

Eric Pacuit

ILLC, Universiteit van Amsterdam staff.science.uva.nl/~epacuit

August 15, 2007

Plan for the Course

- ✓ Introduction, Motivation and Background Information
- ✓ Basic Concepts, Non-normal Modal Logics, Completeness, Incompleteness, Relation with Relational Semantics
- Lecture 3: Decidability/Complexity, Related Semantics:
 Topological Semantics for Modal Logic, More on the
 Relation with Relational Semantics, Subset Models,
 First-order Modal Logic
- Lecture 4: Advanced Topics Model Theory
- Lecture 5: Neighborhood Semantics in Action: Game Logic, Coalgebra, Common Knowledge, First-Order Modal Logic

Quick Review from Yesterday

Theorem

The logic **E** is sound and strongly complete with respect to the class of all neighborhood frames.

Quick Review from Yesterday

Theorem

The logic **E** is sound and strongly complete with respect to the class of all neighborhood frames.

Theorem

The logic **K** is sound and strongly complete with respect to the class of filters.

Theorem

The logic **K** is sound and strongly complete with respect to the class of augmented frames.

Quick Review from Yesterday

Theorem

The logic **E** is sound and strongly complete with respect to the class of all neighborhood frames.

Theorem

The logic **K** is sound and strongly complete with respect to the class of filters.

Theorem

The logic **K** is sound and strongly complete with respect to the class of augmented frames.

Fact: There are logics that are incomplete with respect to neighborhood semantics.

Definition

A general neighborhood frame is a tuple $\mathbb{F}^g = \langle W, N, \mathcal{A} \rangle$, where $\langle W, N \rangle$ is a neighborhood frame and \mathcal{A} is a collection of subsets of W closed under intersections, complements, and the m_N operator.

Definition

A general neighborhood frame is a tuple $\mathbb{F}^g = \langle W, N, \mathcal{A} \rangle$, where $\langle W, N \rangle$ is a neighborhood frame and \mathcal{A} is a collection of subsets of W closed under intersections, complements, and the m_N operator.

A valuation $V: \mathsf{At} \to \wp(W)$ is admissible for a general frame $\langle W, N, \mathcal{A} \rangle$ if for each $p \in \mathsf{At}$, $V(p) \in \mathcal{A}$.

Definition

A general neighborhood frame is a tuple $\mathbb{F}^g = \langle W, N, A \rangle$, where $\langle W, N \rangle$ is a neighborhood frame and A is a collection of subsets of W closed under intersections, complements, and the m_N operator.

A valuation $V: At \to \wp(W)$ is admissible for a general frame $\langle W, N, \mathcal{A} \rangle$ if for each $p \in At$, $V(p) \in \mathcal{A}$.

Definition

Suppose that $\mathbb{F}^g = \langle W, N, \mathcal{A} \rangle$ is a general neighborhood frame. A general modal based on \mathbb{F}^g is a tuple $\mathbb{M}^g = \langle W, N, \mathcal{A}, V \rangle$ where V is an admissible valuation.

Definition

A general neighborhood frame is a tuple $\mathbb{F}^g = \langle W, N, A \rangle$, where $\langle W, N \rangle$ is a neighborhood frame and A is a collection of subsets of W closed under intersections, complements, and the m_N operator.

Definition

Suppose that $\mathbb{F}^g = \langle W, N, \mathcal{A} \rangle$ is a general neighborhood frame. A general modal based on \mathbb{F}^g is a tuple $\mathbb{M}^g = \langle W, N, \mathcal{A}, V \rangle$ where V is an admissible valuation.

Lemma

Let \mathbb{M}^g be an general neighborhood model. Then for each $\varphi \in \mathcal{L}$, $(\varphi)^{\mathbb{M}^g} \in \mathcal{A}$.

Definition

A general neighborhood frame is a tuple $\mathbb{F}^g = \langle W, N, A \rangle$, where $\langle W, N \rangle$ is a neighborhood frame and A is a collection of subsets of W closed under intersections, complements, and the m_N operator.

Lemma

Let L be any logic extending E. Then the general canonical frame validates L ($\mathbb{F}_{L}^{g} \models L$).

Corollary

Any classical modal logic is strongly complete with respect to some class of general frames.

- Decidability
- Comments on Complexity
- Topological Models for Modal Logic
- From Non-Normal Modal Logics to Normal Modal Logics
- Subset Models
- Neighborhood Semantics for First-Order Modal Logic

Let $\mathbb{M} = \langle W, N, V \rangle$ be a neighborhood model and suppose that Σ is a set of sentences from \mathcal{L} .

For each $w, v \in W$, we say $w \sim_{\Sigma} v$ iff for each $\varphi \in \Sigma$, $w \models \varphi$ iff $v \models \varphi$.

For each $w \in W$, let $[w]_{\Sigma} = \{v \mid w \sim_{\Sigma} v\}$ be the equivalence class of \sim_{Σ} .

If
$$X \subseteq W$$
, let $[X]_{\Sigma} = \{[w] \mid w \in X\}$.

Definition

Let $\mathbb{M}=\langle W,N,V\rangle$ be a neighborhood model and Σ a set of sentences closed under subformulas. A filtration of \mathbb{M} through Σ is a model $\mathbb{M}^f=\langle W^f,N^f,V^f\rangle$ where

- 1. $W^f = [W]$
- 2. For each $w \in W$
 - 2.1 for each $\Box \varphi \in \Sigma$, $(\varphi)^{\mathcal{M}} \in \mathcal{N}(w)$ iff $[(\varphi)^{\mathbb{M}}] \in \mathcal{N}^f([w])$
- 3. For each $p \in At$, V(p) = [V(p)]

Definition

Let $\mathbb{M}=\langle W,N,V\rangle$ be a neighborhood model and Σ a set of sentences closed under subformulas. A filtration of \mathbb{M} through Σ is a model $\mathbb{M}^f=\langle W^f,N^f,V^f\rangle$ where

- 1. $W^f = [W]$
- 2. For each $w \in W$
 - 2.1 for each $\Box \varphi \in \Sigma$, $(\varphi)^{\mathcal{M}} \in \mathcal{N}(w)$ iff $[(\varphi)^{\mathbb{M}}] \in \mathcal{N}^f([w])$
- 3. For each $p \in At$, V(p) = [V(p)]

Theorem

Suppose that $\mathbb{M}^f = \langle W^f, N^f, V^f \rangle$ is a filtration of $\mathbb{M} = \langle W, N, V \rangle$ through (a subformula closed) set of sentences Σ . Then for each $\varphi \in \Sigma$,

$$\mathbb{M}, \mathbf{w} \models \varphi \text{ iff } \mathbb{M}^f, [\mathbf{w}] \models \varphi$$

Definition

Let $\mathbb{M}=\langle W,N,V\rangle$ be a neighborhood model and Σ a set of sentences closed under subformulas. A filtration of \mathbb{M} through Σ is a model $\mathbb{M}^f=\langle W^f,N^f,V^f\rangle$ where

- 1. $W^f = [W]$
- 2. For each $w \in W$
 - 2.1 for each $\Box \varphi \in \Sigma$, $(\varphi)^{\mathcal{M}} \in \mathcal{N}(w)$ iff $[(\varphi)^{\mathbb{M}}] \in \mathcal{N}^f([w])$
- 3. For each $p \in At$, V(p) = [V(p)]

Corollary

E has the finite model property. I.e., if φ has a model then there is a finite model.

Comments on Complexity

Logics without C (eg., $\mathbf{E}, \mathbf{EM}, \mathbf{E} + (\neg \Box \bot), \mathbf{E} + (\Box \varphi \to \Box \Box \varphi)$) are in NP.

Logics without C (eg., $\mathbf{E}, \mathbf{EM}, \mathbf{E} + (\neg \Box \bot), \mathbf{E} + (\Box \varphi \to \Box \Box \varphi)$) are in NP.

Logics with C are in PSPACE.

M. Vardi. On the Complexity of Epistemic Reasoning. IEEE (1989).

What is the relationship between Neighborhood and other Semantics for Modal Logic? What about First-Order Modal Logic?

What is the relationship between Neighborhood and other Semantics for Modal Logic? What about First-Order Modal Logic?

Can we import results/ideas from model theory for modal logic with respect to Kripke Semantics/Topological Semantics?

What is the relationship between Neighborhood and other Semantics for Modal Logic? What about First-Order Modal Logic?

Can we import results/ideas from model theory for modal logic with respect to Kripke Semantics/Topological Semantics?

- Decidability
- Comments on Complexity
- Topological Models for Modal Logic
- From Non-Normal Modal Logics to Normal Modal Logics
- Subset Models
- Neighborhood Semantics for First-Order Modal Logic

Definition

Topological Space A **topological space** is a neighborhood frame $\langle W, T \rangle$ where W is a nonempty set and

- 1. $W \in \mathcal{T}, \emptyset \in W$
- 2. T is closed under finite intersections
- 3. $\mathcal T$ is closed under arbitrary unions.

Definition

Topological Space A **topological space** is a neighborhood frame $\langle W, \mathcal{T} \rangle$ where W is a nonempty set and

- 1. $W \in \mathcal{T}, \emptyset \in W$
- 2. \mathcal{T} is closed under finite intersections
- 3. T is closed under arbitrary unions.

A neighborhood of w is any set X such that there is an $O \in \mathcal{T}$ with $w \in O \subseteq N$

Let T_w be the collection of all neighborhoods of w.

Definition

Topological Space A **topological space** is a neighborhood frame $\langle W, \mathcal{T} \rangle$ where W is a nonempty set and

- 1. $W \in \mathcal{T}, \emptyset \in W$
- 2. \mathcal{T} is closed under finite intersections
- 3. \mathcal{T} is closed under arbitrary unions.

Lemma

Let $\langle W, \mathcal{T} \rangle$ be a topological space. Then for each $w \in W$, the collection \mathcal{T}_w contains W, is closed under finite intersections and closed under arbitrary unions.

The largest open subset of X is called the interior of X, denoted Int(X). Formally,

$$Int(X) = \cup \{O \mid O \in \mathcal{T} \text{ and } O \subseteq X\}$$

The smallest closed set containing X is called the closure of X, denoted CI(X). Formally,

$$CI(X) = \cap \{C \mid W - C \in \mathcal{T} \text{ and } X \subseteq C\}$$

- ▶ $Int(X) = \cup \{O \mid O \in \mathcal{T} \text{ and } O \subseteq X\}$
- ▶ $CI(X) = \cap \{C \mid W C \in \mathcal{T} \text{ and } X \subseteq C\}$

Lemma

Let $\langle W, \mathcal{T} \rangle$ be a topological space and $X \subseteq W$. Then

- 1. $Int(X \cap Y) = Int(X) \cap Int(Y)$
- 2. $Int(\emptyset) = \emptyset$, Int(W) = W
- 3. $Int(X) \subseteq X$
- 4. Int(Int(X)) = Int(X)
- 5. Int(X) = W CI(W X)

- ▶ $Int(X) = \cup \{O \mid O \in \mathcal{T} \text{ and } O \subseteq X\}$
- ▶ $CI(X) = \cap \{C \mid W C \in \mathcal{T} \text{ and } X \subseteq C\}$

Lemma

Let $\langle W, \mathcal{T} \rangle$ be a topological space and $X \subseteq W$. Then

- 1. $\Box(\varphi \land \psi) \leftrightarrow \Box \varphi \land \Box \psi$
- 2. $\Box \bot \leftrightarrow \bot, \Box \top \leftrightarrow \top$
- 3. $\Box \varphi \rightarrow \varphi$
- 4. $\Box\Box\varphi\leftrightarrow\Box\varphi$
- 5. $\Box \varphi \leftrightarrow \neg \Diamond \neg \varphi$

A topological model is a triple $\langle W, \mathcal{T}, V \rangle$ where $\langle W, \mathcal{T} \rangle$ is a topological space and V a valuation function.

A topological model is a triple $\langle W, \mathcal{T}, V \rangle$ where $\langle W, \mathcal{T} \rangle$ is a topological space and V a valuation function.

$$\mathbb{M}^T$$
, $w \models \Box \varphi$ iff $\exists O \in T$, $w \in O$ such that $\forall v \in O$, \mathbb{M}^T , $v \models \varphi$

$$(\Box arphi)^{\mathbb{M}^T} = \mathit{Int}((arphi)^{\mathbb{M}^T})$$

A family $\mathcal B$ of subsets of W is called a basis for a topology $\mathcal T$ if every open set can be represented as the union of elements of a subset of $\mathcal B$

A family $\mathcal B$ of subsets of W is called a basis for a topology $\mathcal T$ if every open set can be represented as the union of elements of a subset of $\mathcal B$

Fact: A family \mathcal{B} of subsets of W is a basis for some topology if

- ▶ for each $w \in W$ there is a $U \in \mathcal{B}$ such that $w \in U$
- ▶ for each $U, V \in \mathcal{B}$, if $w \in U \cap V$ then there is a $W \in \mathcal{B}$ such that $w \in W \subseteq U \cap V$

A family $\mathcal B$ of subsets of W is called a basis for a topology $\mathcal T$ if every open set can be represented as the union of elements of a subset of $\mathcal B$

Let $\mathbb{M}=\langle W,N,V\rangle$ be a neighborhood models. Suppose that N satisfies the following properties

- ▶ for each $w \in W$, N(w) is a filter
- ▶ for each $w \in W$, $w \in \cap N(w)$
- ▶ for each $w \in W$ and $X \subseteq W$, if $X \in N(w)$, then $m_N(X) \in N(w)$

Then there is a topological model that is point-wise equivalent to \mathbb{M} .

Main Completeness Result

Theorem

S4 is the logic of the class of all topological spaces.

J. van Benthem and G. Bezhanishvili. *Modal Logics of Space*. Handbook of Spatial Logics (2007).

- Decidability
- Comments on Complexity
- Topological Models for Modal Logic
- From Non-Normal Modal Logics to Normal Modal Logics
- Subset Models
- Neighborhood Semantics for First-Order Modal Logic

We can *simulate* any non-normal modal logic with a bi-modal normal modal logic.

Definition

Given a neighborhood model $\mathcal{M} = \langle W, N, V \rangle$, define a Kripke model $\mathcal{M}^{\circ} = \langle V, R_N, R_{\not\ni}, R_N, Pt, V \rangle$ as follows:

Given a neighborhood model $\mathcal{M}=\langle W,N,V\rangle$, define a Kripke model $\mathcal{M}^\circ=\langle V,R_N,R_{\not\ni},R_N,Pt,V\rangle$ as follows:

$$V = W \cup \wp(W)$$

Given a neighborhood model $\mathcal{M}=\langle W,N,V\rangle$, define a Kripke model $\mathcal{M}^{\circ}=\langle V,R_N,R_{\not\ni},R_N,Pt,V\rangle$ as follows:

- $V = W \cup \wp(W)$
- $\blacktriangleright R_{\ni} = \{(u, w) \mid w \in W, u \in \wp(W), w \in u\}$

Given a neighborhood model $\mathcal{M} = \langle W, N, V \rangle$, define a Kripke model $\mathcal{M}^{\circ} = \langle V, R_N, R_{\not\exists}, R_N, Pt, V \rangle$ as follows:

- $V = W \cup \wp(W)$
- $P_{\ni} = \{(u, w) \mid w \in W, u \in \wp(W), w \in u\}$

Given a neighborhood model $\mathcal{M} = \langle W, N, V \rangle$, define a Kripke model $\mathcal{M}^{\circ} = \langle V, R_N, R_{\not\exists}, R_N, Pt, V \rangle$ as follows:

- $V = W \cup \wp(W)$
- $P_{\ni} = \{(u, w) \mid w \in W, u \in \wp(W), w \in u\}$
- ► $R_N = \{(w, u) \mid w \in W, u \in \wp(W), u \in N(w)\}$

Given a neighborhood model $\mathcal{M} = \langle W, N, V \rangle$, define a Kripke model $\mathcal{M}^{\circ} = \langle V, R_N, R_{\not\exists}, R_N, Pt, V \rangle$ as follows:

- $V = W \cup \wp(W)$
- $P_{\ni} = \{(u, w) \mid w \in W, u \in \wp(W), w \in u\}$
- $\blacktriangleright R_N = \{(w, u) \mid w \in W, u \in \wp(W), u \in N(w)\}$
- ▶ Pt = W

Given a neighborhood model $\mathcal{M} = \langle W, N, V \rangle$, define a Kripke model $\mathcal{M}^{\circ} = \langle V, R_N, R_{\not\exists}, R_N, Pt, V \rangle$ as follows:

- $V = W \cup \wp(W)$
- $P_{\ni} = \{(u, w) \mid w \in W, u \in \wp(W), w \in u\}$
- ► $R_N = \{(w, u) \mid w \in W, u \in \wp(W), u \in N(w)\}$
- ► *Pt* = *W*

Let \mathcal{L}' be the language

$$\varphi := p \mid \neg \varphi \mid \varphi \wedge \psi \mid [\ni] \varphi \mid [\not\ni] \varphi \mid [N] \varphi \mid \mathsf{Pt}$$

where $p \in At$ and Pt is a unary modal operator.

$$ightharpoonup ST(p) = p$$

- ightharpoonup ST(p) = p

- ightharpoonup ST(p) = p
- $ightharpoonup ST(\neg \varphi) = \neg ST(\varphi)$
- $\mathsf{ST}(\varphi \wedge \psi) = \mathsf{ST}(\varphi) \wedge \mathsf{ST}(\varphi)$

- ightharpoonup ST(p) = p
- $ightharpoonup ST(\neg \varphi) = \neg ST(\varphi)$
- $\mathsf{ST}(\varphi \wedge \psi) = \mathsf{ST}(\varphi) \wedge \mathsf{ST}(\varphi)$
- $\blacktriangleright ST(\Box\varphi) = \langle N \rangle ([\ni]ST(\varphi) \wedge [\not\ni] \neg ST(\varphi))$

Define $ST: \mathcal{L} \to \mathcal{L}'$ as follows

- ightharpoonup ST(p) = p
- $ightharpoonup ST(\neg \varphi) = \neg ST(\varphi)$
- $ightharpoonup ST(\varphi \wedge \psi) = ST(\varphi) \wedge ST(\varphi)$

Lemma

For each neighborhood model $\mathcal{M} = \langle W, N, V \rangle$ and each formula $\varphi \in \mathcal{L}$, for any $w \in W$,

$$\mathcal{M}, w \models \varphi \text{ iff } \mathcal{M}^{\circ}, w \models \mathit{ST}(\varphi)$$

Monotonic Models

Lemma

On Monotonic Models $\langle N \rangle ([\ni] ST(\varphi) \wedge [\not\ni] \neg ST(\varphi))$ is equivalent to $\langle N \rangle ([\ni] ST(\varphi))$

More on this tomorrow!

O. Gasquet and A. Herzig. From Classical to Normal Modal Logic. .

 $\mbox{M. Kracht and F. Wolter. } \mbox{\it Normal Monomodal Logics can Simulate all Others.} \ .$

The key idea is to replace neighborhood models with a two-sorted Kripke model.

- Decidability
- Comments on Complexity
- Topological Models for Modal Logic
- From Non-Normal Modal Logics to Normal Modal Logics
- Subset Models
- Neighborhood Semantics for First-Order Modal Logic

A Logic for Two-sorted Neighborhood Structures

A. Dabrowski, L. Moss and R. Parikh. *Topological Reasoning and The Logic of Knowledge*. APAL (1996).

R. Parikh, L. Moss and C. Steinsvold. *Topology and Epistemic Logic*. Handbook of Spatial Logic (2007).

Subset Models

A Subset Frame is a pair $\langle W, \mathcal{O} \rangle$ where

- W is a set of states
- $ightharpoonup \mathcal{O} \subseteq \wp(W)$ is a set of subsets of W, i.e., a set of observations

Neighborhood Situation: Given a subset frame $\langle W, \mathcal{O} \rangle$, (w, U) is called a neighborhood situation, provided $w \in U$ and $U \in \mathcal{O}$.

Model: $\langle W, \mathcal{O}, V \rangle$, where $V : At \rightarrow \wp(W)$ is a valuation function.

Language:

$$\varphi := \mathbf{p} \mid \varphi \wedge \varphi \mid \neg \varphi \mid \mathbf{K} \varphi \mid \Diamond \varphi$$

 $w,U \models \varphi$ with $w \in U$ is defined as follows:

• $w, U \models p \text{ iff } w \in V(p)$

- ▶ $w, U \models p \text{ iff } w \in V(p)$
- $w, U \models \neg \varphi$ iff $w, U \not\models \varphi$
- $ightharpoonup w, U \models \varphi \land \psi \text{ iff } w, U \models \varphi \text{ and } w, U \models \psi$

- ▶ $w, U \models p \text{ iff } w \in V(p)$
- $w, U \models \neg \varphi \text{ iff } w, U \not\models \varphi$
- $w, U \models \varphi \land \psi$ iff $w, U \models \varphi$ and $w, U \models \psi$
- $w, U \models K\varphi$ iff for all $v \in U$, $v, U \models \varphi$

- ▶ $w, U \models p \text{ iff } w \in V(p)$
- \blacktriangleright $w, U \models \neg \varphi$ iff $w, U \not\models \varphi$
- $ightharpoonup w, U \models \varphi \wedge \psi \text{ iff } w, U \models \varphi \text{ and } w, U \models \psi$
- $w, U \models K\varphi$ iff for all $v \in U$, $v, U \models \varphi$
- $w, U \models \Diamond \varphi$ iff there is a $V \in \mathcal{O}$ such that $w \in V$ and $w, V \models \varphi$

Axioms

- 1. All propositional tautologies
- 2. $(p \to \Box p) \land (\neg p \to \Box \neg p)$, for $p \in At$.
- 3. $\Box(\varphi \to \psi) \to (\Box\varphi \to \Box\psi)$
- 4. $\Box \varphi \rightarrow \varphi$
- 5. $\Box \varphi \rightarrow \Box \Box \varphi$
- 6. $K(\varphi \to \psi) \to (K\varphi \to K\psi)$
- 7. $K\varphi \rightarrow \varphi$
- 8. $K\varphi \to KK\varphi$
- 9. $\neg K\varphi \rightarrow K\neg K\varphi$
- 10. $K\Box\varphi \rightarrow \Box K\varphi$

We include the following rules: modus ponens, K_i -necessitation and \square -necessitation.

Subset Models

Theorem

The previous axioms are sound and complete for the class of all subset models.

L. Moss and R. Parikh. *Topological Reasoning and The Logic of Knowledge*. TARK (1992).

Subset Models

Fact: $\Box \Diamond \varphi \rightarrow \Diamond \Box \varphi$ is sound for spaces closed under intersections.

Fact: $\Diamond \varphi \wedge L \Diamond \psi \rightarrow \Diamond [\Diamond \varphi \wedge L \Diamond \psi \wedge K \Diamond L (\varphi \vee \psi)]$ is sound for spaces closed under binary unions.

Overview of Results

- ▶ (Georgatos: 1993, 1994, 1997) completely axiomatized Topologic where 𝒪 is restricted to a topology and showed that the logic has the finite model property. Similarly for treelike spaces.
- (Weiss and Parikh: 2002) showed that an infinite number of axiom schemes is required to axiomatize Topologics in which O is closed under intersection.
- ▶ (Heinemann: 1999, 2001, 2003, 2004) has a number of papers in which temporal operators are added to the language. He also worked on Hybrid versions of Topologic (added nominals representing neighborhood situations)

Overview of Results

- ► (Georgatos: 1993, 1994, 1997) completely axiomatized Topologic where O is restricted to a topology and showed that the logic has the finite model property. Similarly for treelike spaces.
- (Weiss and Parikh: 2002) showed that an infinite number of axiom schemes is required to axiomatize Topologics in which O is closed under intersection.
- ▶ (Heinemann: 1999, 2001, 2003, 2004) has a number of papers in which temporal operators are added to the language. He also worked on Hybrid versions of Topologic (added nominals representing neighborhood situations)

Overview of Results

- ► (Georgatos: 1993, 1994, 1997) completely axiomatized Topologic where O is restricted to a topology and showed that the logic has the finite model property. Similarly for treelike spaces.
- (Weiss and Parikh: 2002) showed that an infinite number of axiom schemes is required to axiomatize Topologics in which O is closed under intersection.
- ▶ (Heinemann: 1999, 2001, 2003, 2004) has a number of papers in which temporal operators are added to the language. He also worked on Hybrid versions of Topologic (added nominals representing neighborhood situations)

- Decidability
- Comments on Complexity
- Topological Models for Modal Logic
- From Non-Normal Modal Logics to Normal Modal Logics
- Subset Models
- Neighborhood Semantics for First-Order Modal Logic

A formula of *first-order modal logic* will have the following syntactic form

$$\varphi := F(x_1, \ldots, x_n) \mid \neg \varphi \mid \varphi \wedge \varphi \mid \Box \varphi \mid \forall x \varphi$$

A constant domain neighborhood frame is a tuple $\langle W, N, D \rangle$ where W and D are sets, and $N: W \to \wp\wp(W)$.

A constant domain neighborhood model is a tuple $\langle W, N, D, I \rangle$, where for each *n*-ary relation symbol F and $w \in W$, $I(F, w) \subseteq D^n$.

A **substitution** is any function $\sigma: \mathcal{V} \to D$.

A substitution σ' is said to be an x-variant of σ if $\sigma(y) = \sigma'(y)$ for all variable y except possibly x, this will be denoted by $\sigma \sim_x \sigma'$.

Let $\mathcal{M}=\langle W,N,D,I\rangle$ be any constant domain neighborhood model and σ any substitution

- 1. $\mathcal{M}, w \models_{\sigma} F(x_1, \ldots, x_n) \text{ iff } \langle \sigma(x_1), \ldots, \sigma(x_n) \rangle \in I(F, w)$
- 2. $\mathcal{M}, w \models_{\sigma} \Box \varphi \text{ iff } (\varphi)^{\mathcal{M}, \sigma} \in \mathcal{N}(w)$
- 3. $\mathcal{M}, w \models_{\sigma} \forall x \varphi(x)$ iff for each *x*-variant σ' , $\mathcal{M}, w \models_{\sigma'} \varphi(x)$

Classical First-order Modal Logic

Let $\bf S$ be any classical propositional modal logic, by ${\bf FOL} + {\bf S}$ we mean the set of formulas closed under the following rules and axiom schemes:

- S All axiom schemes and rules from S.
- $\forall \ \forall x \varphi(x) \rightarrow \varphi[y/x]$ is an axiom scheme.
- Gen $\frac{\varphi \to \psi}{\varphi \to \forall x \psi}$, where x is not free in φ .

Barcan Schemas

- ▶ Barcan formula (*BF*): $\forall x \Box \varphi(x) \rightarrow \Box \forall x \varphi(x)$
- **▶ converse Barcan formula** (*CBF*): $\Box \forall x \varphi(x) \rightarrow \forall x \Box \varphi(x)$

Barcan Schemas

- ▶ Barcan formula (*BF*): $\forall x \Box \varphi(x) \rightarrow \Box \forall x \varphi(x)$
- ▶ converse Barcan formula (*CBF*): $\Box \forall x \varphi(x) \rightarrow \forall x \Box \varphi(x)$

Observation 1: CBF is provable in FOL + EM

Barcan Schemas

- ▶ Barcan formula (*BF*): $\forall x \Box \varphi(x) \rightarrow \Box \forall x \varphi(x)$
- ▶ converse Barcan formula (*CBF*): $\Box \forall x \varphi(x) \rightarrow \forall x \Box \varphi(x)$

Observation 1: CBF is provable in FOL + EM

Observation 2: *BF* and *CBF* both valid on relational frames with constant domains

Barcan Schemas

- ▶ Barcan formula (*BF*): $\forall x \Box \varphi(x) \rightarrow \Box \forall x \varphi(x)$
- ▶ converse Barcan formula (*CBF*): $\Box \forall x \varphi(x) \rightarrow \forall x \Box \varphi(x)$

Observation 1: CBF is provable in FOL + EM

Observation 2: *BF* and *CBF* both valid on relational frames with constant domains

Observation 3: *BF* is valid in a *varying* domain relational frame iff the frame is anti-monotonic; *CBF* is valid in a *varying* domain relational frame iff the frame is monotonic.

Fitting and Mendelsohn. First-Order Modal Logic. 1998.

High Probability

The *BF* instantiates cases of what is usually known as the '**lottery paradox**':

For each individual x, it is *highly probably* that x will loose the lottery; however it is not necessarily highly probably that each individual will loose the lottery.

Converse Barcan Formulas and Neighborhood Frames

A frame \mathcal{F} is **consistent** iff for each $w \in W$, $N(w) \neq \emptyset$

A first-order neighborhood frame $\mathcal{F} = \langle W, N, D \rangle$ is **nontrivial** iff |D| > 1

Lemma Let $\mathcal F$ be a consistent constant domain neighborhood frame. The converse Barcan formula is valid on $\mathcal F$ iff either $\mathcal F$ is trivial or $\mathcal F$ is supplemented.

$$X \in N(w)$$

 $Y \notin N(w)$

$$\forall v \notin Y, I(F, v) = \emptyset$$

$$\forall v \in X, I(F, v) = D = \{a, b\}$$

$$\forall v \in Y - X, I(F, v) = \{a\}$$

$$(F[a])^{\mathcal{M}} = Y \notin N(w)$$
 hence $w \not\models \forall x \Box F(x)$

$$(\forall x F(x))^{\mathcal{M}} = (F[a])^{\mathcal{M}} \cap (F[b])^{\mathcal{M}} = X \in N(w)$$
 hence $w \models \Box \forall x F(x)$

Barcan Formulas and Neighborhood Frames

We say that a frame closed under $\leq \kappa$ intersections if for each state w and each collection of sets $\{X_i \mid i \in I\}$ where $|I| \leq \kappa$, $\cap_{i \in I} X_i \in N(w)$.

Lemma Let \mathcal{F} be a consistent constant domain neighborhood frame. The Barcan formula is valid on \mathcal{F} iff either

- 1. \mathcal{F} is trivial or
- 2. if D is finite, then \mathcal{F} is closed under finite intersections and if D is infinite and of cardinality κ , then \mathcal{F} is closed under $\leq \kappa$ intersections.

Theorem FOL + **E** is sound and strongly complete with respect to the class of **all** frames.

Theorem FOL + **E** is sound and strongly complete with respect to the class of **all** frames.

Theorem FOL + **EC** is sound and strongly complete with respect to the class of frames that are closed under intersections.

Theorem FOL + **E** is sound and strongly complete with respect to the class of **all** frames.

Theorem FOL + **EC** is sound and strongly complete with respect to the class of frames that are closed under intersections.

Theorem FOL + **EM** is sound and strongly complete with respect to the class of supplemented frames.

Theorem FOL + **E** is sound and strongly complete with respect to the class of **all** frames.

Theorem FOL + **EC** is sound and strongly complete with respect to the class of frames that are closed under intersections.

Theorem FOL + **EM** is sound and strongly complete with respect to the class of supplemented frames.

Theorem FOL + **E** + *CBF* is sound and strongly complete with respect to the class of frames that are either non-trivial and supplemented or trivial and not supplemented.

FOL + K and FOL + K + BF

Theorem FOL + K is sound and strongly complete with respect to the class of filters.

FOL + K and FOL + K + BF

Theorem FOL + K is sound and strongly complete with respect to the class of filters.

Observation The augmentation of the smallest canonical model for $\mathbf{FOL} + \mathbf{K}$ is not a canonical model for $\mathbf{FOL} + \mathbf{K}$. In fact, the closure under infinite intersection of the minimal canonical model for $\mathbf{FOL} + \mathbf{K}$ is not a canonical model for $\mathbf{FOL} + \mathbf{K}$.

FOL + K and FOL + K + BF

Theorem FOL + K is sound and strongly complete with respect to the class of filters.

Observation The augmentation of the smallest canonical model for $\mathbf{FOL} + \mathbf{K}$ is not a canonical model for $\mathbf{FOL} + \mathbf{K}$. In fact, the closure under infinite intersection of the minimal canonical model for $\mathbf{FOL} + \mathbf{K}$ is not a canonical model for $\mathbf{FOL} + \mathbf{K}$.

Lemma The augmentation of the smallest canonical model for $\mathbf{FOL} + \mathbf{K} + BF$ is a canonical for $\mathbf{FOL} + \mathbf{K} + BF$.

Theorem FOL + **K** + BF is sound and strongly complete with respect to the class of augmented first-order neighborhood frames.

H. Arlo-Costa and EP. *Classical Systems of First-Order Modal Logic*. Studia Logica (2006).

Thank You!