МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САМАРСКИЙ ГОСУДАРСТВЕННЫЙ АЭРОКОСМИЧЕСКИЙ УНИВЕРСИТЕТ имени академика С.П.КОРОЛЕВА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)»

ОБНАРУЖЕНИЕ ОБЪЕКТОВ НА ИЗОБРАЖЕНИИ

Электронные методические указания к лабораторной работе № 4

CAMAPA

Составители: СЕРГЕЕВ Владислав Викторович

ГАШНИКОВ Михаил Валерьевич

МЯСНИКОВ Владислав Валерьевич

В лабораторной работе № 4 по дисциплине «Математические методы обработки изображений» изучаются методы обнаружения объектов на изображении при помощи линейной обработки "окном"; приведены способы их реализации при работе на ав-томатизированной системе обработки изображений в режиме диалога.

Методические указания предназначены для магистров направления 010400.68 "Прикладная математика и информатика", обучающихся по программе «Математические и компьютерные методы обработки изображений и геоинформатики».

СОДЕРЖАНИЕ

1. Теоретические основы лабораторной работы	4
1.1 Корреляционный метод обнаружения объектов на изображении	4
1.2 Метод согласованной фильтрации	7
1.3 Согласованный фильтр для фона с биэкспоненциальной корреляци	юнной
функцией	10
2. Описание используемых прикладных задач	13
2.1 Синтез поля с биэкспоненциальной автоковариационной функцией	13
2.2 Синтез изображения-константы	14
2.3 Запись значений пикселов изображения	14
2.4 Линейная обработка изображения окном 3х3	15
2.5 Поэлементное преобразование изображений	15
2.6 Вычисление значения переменной	17
2.7 Построение гистограммы отсчетов изображения	17
2.8 Визуализация изображений, гистограмм и таблиц преобразования	18
3. Выполнение лабораторной работы	19
3.1 Общий план выполнения работы	19
3.2 Схема исследования	19
3.3 Варианты лабораторной работы	21
3.4 Содержание отчета	21
4. Контрольные вопросы	22
Библиографилеский список	23

Цель работы - изучение и экспериментальное исследование методов обнаружения объектов на изображениях при помощи линейной обработки "окном", дальнейшее совершенствование навыков работы на автоматизированной системе обработки изображений в режиме диалога.

1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ЛАБОРАТОРНОЙ РАБОТЫ

1.1 Корреляционный метод обнаружения объектов на изображении

Задача обнаружения заключается в установлении наличия на изображении объектов (яркостных областей) с определенными свойствами, а также, если объекты обнаружены, в определении их координат на плоскости изображения.

Основной принцип обнаружения объектов на изображении заключается в сопоставлении функции яркости изображения с некоторым "эталоном" - фрагментом поля яркости, содержащим искомый объект. При реализации процедуры обнаружения эталон последовательно перемещается по полю изображения, и в каждом положении исследуется его сходство с реальной функцией яркости на фрагменте. Полного совпадения эталона и изображения, как правило, не бывает из-за шумов и искажений, а также из-за того, что обычно отсутствует полная информация относительно формы и структуры объекта (приходится использовать эталон, лишь приближенно описывающий объект).

Обозначим через t(k,l), $(k,l) \in D$ функцию яркости эталонного объекта, заданную на некоторой области D в собственной системе координат эталона (обычно рассматривается прямоугольная область D с началом координат в центре). Пусть x(m,n) - отсчеты функции яркости наблюдаемого изображения. В качестве **меры различия** между эталоном и изображением в точке (m,n) чаще всего берут квадратичную меру:

$$\varepsilon^{2}(m,n) = \sum_{(k,l)\in D} \left[x(m+k,n+l)-t(k,l)\right]^{2} . \tag{1}$$

Считается, что имеется сходство фрагмента изображения с эталоном в точке (m,n), если:

$$\varepsilon^2(m,n) < L_{\varepsilon}$$
,

где $\,L_{\!arepsilon}\,$ - некоторый порог, зависящий от интенсивности шумов.

На рис.1 показана схематическая иллюстрация принципа сравнения с эталоном.

Puc. 1

На практике меру (1) обычно не вычисляют, а переходят к связанным с ней, но более просто вычисляемым величинам. Преобразуем выражение для квадратичной меры различия:

$$\varepsilon^{2}(m,n) = \sum_{(k,l)\in D} x^{2}(m+k,n+l) - 2\sum_{(k,l)\in D} x(m+k,n+l)t(k,l) + \sum_{(k,l)\in D} t^{2}(k,l).$$

Здесь первое слагаемое характеризует энергию изображения в пределах "окна" D. Эта энергия обычно меняется довольно медленно в зависимости от (m,n) и практически не характеризует искомый объект. Третье слагаемое характеризует энергию эталона и не зависит от (m,n). Для обнаружения существенным является лишь второе слагаемое, которое с точностью до постоянного множителя задает взаимную корреляцию изображения и эталона:

$$B(m,n) = \sum_{(k,l) \in D} x(m+k,n+l)t(k,l) \tag{2}$$

При совпадении изображения и эталона взаимная корреляция (2) велика, что и обеспечивает малость квадратичной меры (1). Однако непосредственное использование взаимной корреляции в качестве **меры сходства** обычно дает плохое качество обнаружения. Это объясняется тем, что взаимная корреляция может увеличиваться даже при отсутствии соответствия изображения эталону, если яркость изображения в окрестности точки с координатами (m,n) велика. Эту трудность можно обойти, если использовать **нормированную взаимную корреляцию**:

$$R(m,n) = \frac{\sum_{(k,l)\in D} x(m+k,n+l)t(k,l)}{\sqrt{\left[\sum_{(k,l)\in D} x^{2}(m+k,n+l)\right]\left[\sum_{(k,l)\in D} t^{2}(k,l)\right]}}.$$
(3)

Величина R(m,n) равна максимальному значению (единице), если эталон совпадает с изображением с точностью до постоянного неотрицательного множителя. В данном случае объект в точке (m,n) считается обнаруженным, если $R(m,n) > L_R'$, где L_R' - порог для меры (3).

Вид функции (3) можно упростить, если предварительно выполнить нормализацию

исходного изображения x(m,n), выбрав энергию эталона равной единице, то есть обеспечить

$$\sum_{(k,l)\in D} t^2(k,l) = 1,$$

и произведя адаптивную поэлементную обработку изображения с "окном" D для выравнивания энергии (дисперсии) изображения

$$\sum_{(k,l)\in D} x^2(m+k,n+l)$$

по всему полю. Таким образом, дополнительно исключается влияние изменений дисперсии в пределах изображения. Обозначив нормализованное изображение через x'(m,n), вновь приходим к линейной мере взаимной корреляции:

$$B'(m,n) = R'(m,n) = \sum_{(k,l) \in D} x'(m+k,n+l)t(k,l) . \tag{4}$$

Легко видеть, что функция нормированной взаимной корреляции (4) формируется в результате прохождения двумерного сигнала - нормализованного изображения x'(m,n) - через двумерную ЛПП-систему с импульсной характеристикой h(k,l) = t(-k,-l):

$$B'(m,n) = x'(m,n) **h(k,l) = x'(m,n) **t(-k,-l)$$
.

Таким образом, получаем общую схему **корреляционного алгоритма** обнаружения, которая приведена на рис.2. Здесь на последнем этапе получается бинарное изображение с единицами в точках обнаружения объектов:

ЛПП-система, которая называется в данном случае коррелятором, яв—ляется КИХ-

системой и может быть реализована обработкой "окном" (прямой сверткой) или спектральным методом (быстрой сверткой).

Рассмотренный **корреляционный метод** обнаружения отличается относительной простотой, однако ему свойственны довольно большие вероятности ошибок (ложного обнаружения или пропусков объектов), что объясняется игнорированием свойств шумов при синтезе алгоритма обработки изображения.

1.2 Метод согласованной фильтрации

В корреляционном методе обнаружения, рассмотренном в п. 1.1., импульсная характеристика коррелятора определялась самим эталоном, т.е. формой и распределением яркости искомого объекта. Можно поставить оптимизационную задачу построения такой ЛПП-системы, которая обеспечивает наилучшее качество обнаружения в классе линейных систем.

Рассмотрим **аддитивную модель** наблюдения детерминированного объекта t(m,n), наложенного на случайный фон f(m,n). Тогда наблюдаемый сигнал x(m,n) состоит либо из фона:

$$x(m,n)=f(m,n),$$

либо из суммы объекта и фона:

$$x(m,n)=t(m,n)+f(m,n)$$
.

Будем считать, что фон f(m,n) является стационарным случайным процессом. Строго говоря, такая модель наблюдения является приближенной, так как обычно наблюдается не наложение, а "врезка" объекта в фон. Однако эксперименты показывают, что такой подход обеспечивает достаточно высокое качество обнаружения.

Обозначим импульсную характеристику искомой ЛПП-системы через h(k,l). Будем судить о наличии объекта по уровню сигнала y(m,n) на выходе этой системы. Если объект отсутствует, то

$$y(m,n) = y_f(m,n) = h(m,n) ** f(m,n)$$
.

Если объект есть, то

$$y(m,n) = y_t(m,n) + y_f(m,n) = h(m,n)**t(m,n) + h(m,n)**f(m,n)$$

Допустим, что центр объекта находится в точке (0,0). Тогда для того, чтобы сравнение y(0,0) с порогом обеспечивало наиболее надежное обнаружение, нужно, чтобы превышение

сигнала $y_t(0,0)$ над фоном $y_f(m,n)$ было бы максимально возможным. Иначе говоря, в точке (0,0) превышение энергии полезного сигнала (объекта)над энергией фона (шумом) должно быть максимально возможным:

$$\delta^2 = \frac{y_t^2(0,0)}{\overline{y}_f^2} \to \max, \qquad (5)$$

где \overline{y}_f^2 - дисперсия фона (считаем, что фон имеет нулевое среднее).

Оптимальная по критерию (5) ЛПП-система называется **согласованным фильтром**. Решим задачу построения согласованного фильтра, воспользовавшись частотным методом.

Обозначим через $H\left(e^{iw_1},e^{iw_2}\right)$ частотную характеристику искомого фильтра. Тогда

$$y_t(0,0) = \frac{1}{4\pi^2} \int_{-\pi-\pi}^{\pi} \int_{-\pi}^{\pi} H(e^{iw_1}, e^{iw_2}) T(e^{iw_1}, e^{iw_2}) dw_1 dw_2$$

где $T(e^{iw_1}, e^{iw_2})$ - спектр объекта.

Дисперсия фона $y_f(m,n)$ на выходе согласованного фильтра равна:

$$\overline{y}_{f}^{2} = \frac{1}{4\pi^{2}} \int_{-\pi-\pi}^{\pi} \int_{-\pi}^{\pi} \left(H\left(e^{iw_{1}}, e^{iw_{2}}\right) \left(e^{iw_{1}}, e^{iw_{2}}\right) dw_{1} dw_{2} \right),$$

где $\Phi(e^{iw_1},e^{iw_2})$ - энергетический спектр фона f(m,n) на входе. Согласованный фильтр должен обеспечивать максимум величины

$$\delta^{2} = \frac{1}{4\pi^{2}} \frac{\int_{-\pi-\pi}^{\pi} H(e^{iw_{1}}, e^{iw_{2}}) T(e^{iw_{1}}, e^{iw_{2}}) dw_{1} dw_{2}}{\int_{-\pi-\pi}^{\pi} \int_{-\pi}^{\pi} (H(e^{iw_{1}}, e^{iw_{2}}))^{2} \Phi_{f}(e^{iw_{1}}, e^{iw_{2}}) dw_{1} dw_{2}}.$$
(6)

Воспользовавшись неравенством Коши-Буняковского-Шварца, можно показать, что максимум (6) достигается при частотной характеристике

$$H(e^{iw_1}, e^{iw_2}) = \frac{T(e^{-iw_1}, e^{-iw_2})}{\Phi_f(e^{iw_1}, e^{iw_2})}.$$
 (7)

В том случае, если фон описывается белым шумом с дисперсией D_f , согласованный фильтр (7) принимает вид:

$$H(e^{iw_1}, e^{iw_2}) = \frac{1}{D_f} T(e^{-iw_1}, e^{-iw_2})$$
.

Его импульсная характеристика $h(k,l) = \frac{1}{D_f} t(-k,-l)$ равна (с точностью до постоянно-

го множителя) искомому объекту (т.е. эталону), развернутому на 180 градусов. Следовательно, если фон описывается белым шумом, то имеем тот же результат, что и в корреляционном методе обнаружения, т.е. корреляционный метод является в данном случае оптимальным. Однако для изображений фон, как правило, не описывается белым шумом: фон - это тоже изображение со своей структурой, с другими объектами. Поэтому корреляционный метод обнаружения для изображений не всегда эффективен.

В случае "небелого" фона согласованный фильтр не является коррелятором. Физическую трактовку согласованного фильтра можно дать, условно представив этот фильтр в виде последовательного соединения двух звеньев:

$$H\left(e^{iw_{1}},e^{iw_{2}}\right) = \frac{1}{\left[\Phi_{f}\left(e^{iw_{1}},e^{iw_{2}}\right)\right]^{\frac{1}{2}}} \times \frac{T\left(e^{-iw_{1}},e^{-iw_{2}}\right)}{\left[\Phi_{f}\left(e^{iw_{1}},e^{iw_{2}}\right)\right]^{\frac{1}{2}}} = H_{1} \times H_{2}.$$

Первое звено является **разбеливающим фильтром** для фона. Его частотная характеристика обеспечивает превращение фона в белый шум с единичной дисперсией:

$$\Phi_{f'}(e^{iw_1}, e^{iw_2}) = (H_1(^2 \Phi_f(e^{iw_1}, e^{iw_2})) = 1$$

Полезный сигнал (объект) при прохождении через разбеливающий фильтр также изменяется, поэтому и эталон необходимо разбеливать. Спектр "разбеленного" эталона становится равным:

$$T'\!\!\left(e^{iw_{\!1}},e^{iw_{\!2}}\right) = H_1 \cdot T\!\left(e^{iw_{\!1}},e^{iw_{\!2}}\right) = \frac{T\!\left(e^{iw_{\!1}},e^{iw_{\!2}}\right)}{\left[\Phi_f\left(e^{iw_{\!1}},e^{iw_{\!2}}\right)\right]^{\frac{1}{2}}}$$

Второе звено имеет частотную характеристику

$$H_2(e^{iw_1}, e^{iw_2}) = T'(e^{-iw_1}, e^{-iw_2})$$

т.е. реализует корреляционный метод обнаружения "разбеленного" эталона на фоне белого шума.

Известно, что энергетический спектр изображения (фона) $\Phi_f\left(e^{iw_1},e^{iw_2}\right)$ довольно бы-

стро убывает с увеличением частот (w_1, w_2) . Поэтому действие разбеливающего фильтра H_1 заключается в подъеме верхних частот. Как известно, это приводит к оконтуриванию (подчеркиванию границ) изображения. Тем самым получает объяснение эмпирически найденная многими исследователями рекомендация подвергать изображение оконтуриванию для надежного обнаружения объектов корреляционным методом.

На рис. 3 приведена схема метода согласованной фильтрации для обнаружения объектов на изображении. Передаточная функция согласованного фильтра

$$H(z_1, z_2) = \frac{T(z_1^{-1}, z_2^{-1})}{\Phi_f(z_1, z_2)}$$
(8)

получена из частотной характеристики (7) заменой переменных:

$$e^{iw_1} \rightarrow z_1, e^{iw_2} \rightarrow z_2$$

В общем случае фильтр с передаточной функцией (8) можно реализовать в частотной области при помощи ДПФ. Если энергетический спектр фона $\Phi_f(z_1, z_2)$ является дробнорациональной функцией, то согласованный фильтр можно построить в виде гибридного (спектрально-рекуррентного) двухпроходного алгоритма обработки изображений. И, наконец, если дробно-рациональный энергетический спектр фона не имеет нулей, то согласованный фильтр является КИХ-системой и легко реализуется в пространственной области в виде процедуры обработки "окном".

1.3 Согласованный фильтр для фона с биэкспоненциальной корреляционной функцией

Рассмотрим частный случай построения алгоритма обнаружения, когда фон можно аппроксимировать случайным полем с биэкспоненциальной корреляционной функцией:

$$B_f(m,n) = D_f \rho^{|m|+|n|}$$

где D_f - дисперсия фона,

 ρ - коэффициент корреляции между соседними отсчетами фона (одинаковый по строкам и столбцам).

Энергетический спектр такого поля определяется двумерным z - преобразованием от $B_f\left(m,n\right)$:

$$\Phi_{f}(z_{1}, z_{2}) = \sum_{m, n = -\infty}^{\infty} B_{f}(m, n) z_{1}^{-m} z_{2}^{-n} =$$

$$= \frac{D_{f}(1 - \rho^{2})^{2}}{(1 - \rho z_{1})(1 - \rho z_{1}^{-1})(1 - \rho z_{2})(1 - \rho z_{2}^{-1})}.$$

Передаточная функция согласованного фильтра в этом случае не содержит полюсов и равна

$$H(z_{1},z_{2}) = \frac{T(z_{1}^{-1},z_{2}^{-1})}{\Phi_{f}(z_{1},z_{2})} = \frac{a_{0}}{D_{f}} \left[1 + a_{1} \left(z_{1} + z_{2} + z_{1}^{-1} + z_{2}^{-1} \right) + a_{2} \left(z_{1}z_{2} + z_{1}z_{2}^{-1} + z_{1}^{-1}z_{2} + z_{1}^{-1}z_{2}^{-1} \right) \right] T(z_{1}^{-1},z_{2}^{-1})$$

$$(9)$$

где

$$a_0 = \left[\frac{1+\rho^2}{1-\rho^2}\right]; a_1 = -\frac{\rho}{1+\rho^2}; a_2 = \frac{\rho^2}{\left(1+\rho^2\right)^2}.$$

Постоянный коэффициент $\left(\frac{a_0}{D_f}\right)$ в (9) играет роль масштаба яркости и его можно не учиты-

вать при обработке, так как он оказывает влияние лишь на выбор порога при выделении корреляционных пиков на обработанном согласованным фильтром изображении.

Из (9) видим, что согласованный фильтр может быть реализован в два этапа последовательной линейной обработкой "окном":

1) "разбеливание" фона обработкой "окном" 3х3 с маской

2) **реализация коррелятора** обработкой "окном" с маской, соответствующей повернутому на 180 градусов эталону: $\{t(-k,-l)\}, (k,l) \in D$.

Заметим, что при $\rho = 0$ имеем фон в виде белого шума, и согласованный фильтр (9) становится коррелятором, т.е. $a_0 = 1, a_1 = a_2 = 0$.

В таблице приведены значения коэффициентов согласованного фильтра для различной степени коррелированности фона с биэкспоненциальной корреляционной функцией.

Таблица 1

Коэффициент	Коэффициенты	Коэффициенты фильтра			
корреляции $ ho$	a_0	a_1	a_2		
0	1	0	0		
0,1	1,041	-0,0990	0,0098		
0,5	2,778	-0,4000	0,1600		
0,8	20,75	-0,4878	0,2380		
0,9	90,75	-0,4972	0,2472		
0,95	382,8	-0,4993	0,2493		
0,98	2451	-0,4999	0,2499		
→1	$\rightarrow \infty$	-0,5	0,25		

2. ОПИСАНИЕ ИСПОЛЬЗУЕМЫХ ПРИКЛАДНЫХ ЗАДАЧ

В данной лабораторной работе используется система обработки изображений ResLook. Необходимые сведения о системе ResLook содержатся в описании системы ResLook. Далее приводится необходимая информация о некоторых прикладных модулях системы ResLook, необходимых для выполнения данной лабораторной работы. Все прикладные модули системы ResLook вызываются в режиме командной строки с помощью вспомогательной программы RL.exe. Формат вызова:

2.1 Синтез поля с биэкспоненциальной автоковариационной функцией

Модуль формирует прямоугольный фрагмент псевдослучайного стационарного гауссовского поля с заданным средним (математическим ожиданием) и ковариационной функцией вида:

$$\operatorname{Covar}(k,l) = D \cdot RV^{|k|} \cdot RH^{|l|}$$

Обращение к модулю:

RL Gnr GnBiexp VerSise HorSize E D RV RH ImgOut

Обязательные параметры

Имя	Описание	Тип	Пример зна-
			чения
VerSize	Размер по вертикали	Целый	256
HorSize	Размер по горизонтали	Целый	256
E	Среднее	Вещественный	128
D	Дисперсия	Вещественный	1600
RV	Корреляция по вертикали	Вещественый	0,9
RH	Корреляция по горизонтали	Вещественный	0,9
ImgOut	Выходное изображение	Строка	BiExpImg

Необязательные параметры

Имя	Описание	Тип	Атрибут	По умолчанию
BPS	Бит на отсчет	Целый	Входной	32
InitValue	Начальное значение датчика случайных чисел	Целый	Входной	12345

2.2 Синтез изображения-константы

Модуль формирует изображение с заданным постоянным значением отсчетов. Обращение к модулю:

RL Gnd GnConst VerSise HorSize Const ImgOut [BPS=<значение>]

Обязательные параметры

Имя	Описание	Тип	Пример зна-
			чения
VerSize	Размер по вертикали	Целый	256
HorSize	Размер по горизонтали	Целый	256
Const	Константа	Вещественный	128
ImgOut	Выходное изображение	Строка	ConstImg

Необязательные параметры

Имя	Описание	Тип	Флаг	По умолчанию
BPS	Бит на отсчет	Целый	Входной	8
	(8, 16, 32)			

2.3 Запись значений пикселов изображения

Модуль записывает массив значений пикселов в изображение в соответствии с заданным направлением Dir. Для многокомпонентных изображений интерпретация массива значений производится в соответствии с параметром PC. Обращение к модулю:

RL Frg WritePix ImgIn V0 H0 Value [Dir=<значение> PC=<значение>]

Обязательные параметры

Имя	Описание	Тип	Пример значе-
			ния
ImgIn	Входное изображение	Строка	ImgIn
V0	Начальная координата по вертикали	Целый	0
Н0	Начальная координата по горизонтали	Целый	0
Value	Значения пикселов	Массив	0,1,2

Необязательные параметры

Имя	Описание	Тип	Флаг	По умолча-
				нию
Dir	Направление записи:	Целый	Входной	0
	0 - по горизонтали			
	1 - по вертикали			
PC	Расположение отсчетов в	Целый	Входной	1
	массиве:			
	0 - по пикселам			
	1 - по слоям			

2.4 Линейная обработка изображения окном 3х3

Обращение к модулю:

RL Local3 LinFil3 ImgIn w11 w12 w13 w21 w22 w23 w31 w32 w33 ImgOut [MulConst=<значение> DivConst=<значение> AddConst=<значение>]

Обязательные параметры

Имя	Описание	Тип	Пример значения
ImgIn	Входное изображение	Строка	ImgIn
w11	Весовой коэффициент (1,1) окна 3×3	Вещественный	1
w12	Весовой коэффициент (1,2) окна 3×3	Вещественный	1
w13	Весовой коэффициент (1,3) окна 3×3	Вещественный	1
w21	Весовой коэффициент (2,1) окна 3×3	Вещественный	1
w22	Весовой коэффициент (2,2) окна 3×3	Вещественный	1
w23	Весовой коэффициент (2,3) окна 3×3	Вещественный	1
w31	Весовой коэффициент (3,1) окна 3×3	Вещественный	1
w32	Весовой коэффициент (3,2) окна 3×3	Вещественный	1
w33	Весовой коэффициент (3,3) окна 3×3	Вещественный	1
ImgOut	Выходное изображение	Строка	ImgOut

Необязательные параметры

Имя	Описание	Тип	Атрибут	По умолчанию
AddConst	Аддитивная кон-	Вещественный	Входной	0
	станта			
MulConst	Мультипли-	Вещественный	Входной	1
	кативная константа			
DivConst	Делитель	Вещественный	Входной	1

Модуль осуществляет преобразование вида:

$$Y(i, j) = (X(i-1, j-1) \cdot w11 + X(i-1, j) \cdot w12 + X(i-1, j+1) \cdot w13 + X(i, j-1) \cdot w21 + X(i, j) \cdot w22 + X(i, j+1) \cdot w23 + X(i+1, j-1) \cdot w31 + X(i+1, j) \cdot w32 + X(i+1, j+1) \cdot w33) \cdot \frac{MulConst}{DivConst} + AddConst,$$

где X(i,j), Y(i,j) - отсчеты входного и выходного изображений, w11...w33, MulConst, DivConst, AddConst – задаваемые параметры.

2.5 Поэлементное преобразование изображений

Обращение к модулю:

RL Clc CalcI Expression [BPSOut=<значение>]

Модуль формирует новое изображение из входных изображений и переменных в соответствии с заданным *аналитическим выражением* (*Expression*).

При записи аналитического выражения можно использовать:

- математические операции: "+" сложение, "-" вычитание, "*" умножение, "/" деление, ^ возведение в степень;
- функции: \sin синус (аргумент считается заданным в радианах), \cos косинус, \tan тангенс, atan арктангенс (результат выражается в радианах), sqrt квадратный корень, \log натуральный логарифм, exp экспонента, rand(x) генерация случайной величины в диапазоне 0÷32767 ("x" начальное значение);
 - вспомогательные функции:

$$bin(x) = \begin{cases} 0, & \text{при } x \le 0; \\ 1, & \text{при } x > 0, \end{cases} \quad sign(x) = \begin{cases} -1, & \text{при } x < 0; \\ 0, & \text{при } x = 0; \\ 1, & \text{при } x > 0, \end{cases}$$

byte(x)=
$$\begin{cases} 0, & \text{при } x \le 0; \\ [x], & \text{при } 0 < x < 255; \\ 255, & \text{при } x \ge 255, \end{cases}$$

где [x] - целая часть числа x.

Кроме того, в качестве имени функции может выступать имя файла — таблицы, созданного при помощи модулей *TablePL*, *TableEq*. В качестве аргументов функций могут выступать константы, имена изображений и переменные, записанные в файл параметров "рагаms.mem" (имена переменных нужно предварять символом "\$").

Пример аналитического выражения:

$$ImgA = 15*sin(ImgB)*Tabl(ImgC)-\$VarName*sqrt(exp(\$x^2+\$y^2))$$

Параметр *BPSOut* задает количество бит на один отсчет одной цветовой компоненты выходного изображения. Возможные значения 8,16,32,0. Если указать 0, то количество бит будет выбрано автоматически и равно максимальному из встречающихся в правой части выражения *Expression*. Например, если в правой части есть 8-битное и 16-битное изображения, то результат будет 16-битным.

Обязательные параметры

Имя	Описание	Тип	Пример значения
Expression	Аналитическое выражение	Строка	img2=2*img1+\$var

Необязательные параметры

Имя	Описание	Тип	Атрибут	По умолчанию
BPSOut	Количество бит на отсчет для вы-	Целый	Входной	0
	ходного изображения			

2.6 Вычисление значения переменной

Обращение к модулю:

RL Clc CalcV Expression

Обязательные параметры

Имя	Описание	Тип	Пример значения
Expression	Аналитическое выражение	Строка	var2=3.14*\$var1+10

Модуль вычисляет значение переменной, имя которой задано в левой части *аналитического* выражения (Expression). Аналитическое выражение формируется по тем же правилам, что и для модуля CalcI (см. предыдущий раздел). Отличие заключается в том, что результатом *аналитического выражения* должно быть число, а не изображение.

Имя переменной в левой части *аналитического выражения* не предваряется знаком "\$", имена переменных в правой части *аналитического выражения* предваряются знаком "\$" (как и для модуля *CalcI*):

ResultVariable=\$MyVarriable*10

2.7 Построение гистограммы отсчетов изображения

Модуль обрабатывает только байтовые изображения, для них строится гистограмма в диапазоне значений пикселов $0\div255$ и сохраняется в файл с расширением .HST, который потом используется модулями StatHst, Quantil, TableEq. Обращение к модулю:

RL Stat Hst ImgIn HstFile

Обязательные параметры

Имя	Описание	Тип	Пример значения
ImgIn	Входное изображение	СТРОКА	ImgIn
FileHst	Имя файла, в который будет помещена	Строка	FileHst
	гистограмма изображения		

2.8 Визуализация изображений, гистограмм и таблиц преобразования

Обращение к модулю

Vis Time Name1 Name2 Name3 ...

Параметры:

Time - время демонстрации на экране (в секундах),

Name1, Name2, Name3, ... - имена визуализируемых файлов.

Выведенные на монитор файлы сохраняются в течение времени *Time* или до первого нажатия любой клавиши. Все файлы отображаются в окнах одинакового размера. Весь экран равномерно распределяется в соответствии с числом файлов и так, чтобы окна были близки к квадратным. Имена файлов указываются без расширений.

Если существуют файлы с одинаковыми именами и различными расширениями, то отображение производится в соответствии с приоритетом. Наибольший приоритет имеют файлы с расширением .PIC, затем - с расширениями .HST, .TAB (в порядке убывания приоритетов). Если файл с заданным именем отсутствует, то соответствующее место на мониторе останется пустым. После завершения отображения всех файлов можно сменить палитру цветов клавишей Enter.

3. ВЫПОЛНЕНИЕ ЛАБОРАТОРНОЙ РАБОТЫ

3.1 Общий план выполнения работы

- 1. Изучить методы обнаружения объектов на изображениях.
- 2. Ознакомиться с описанием команд входного языка системы.
- 3. Составить последовательность команд с указанием значений параметров и с комментариями для выполнения исследования методов обнаружения по каждому из приведенных ниже вариантов.
- 4. Согласовать план проведения обработки с преподавателем, получить разрешение на практическую работу.
- 5. Выполнить обработку.
- 6. Составить отчет о выполненной работе.
- 7. Сдать отчет преподавателю, ответить на контрольные вопросы, получить зачет по работе.

3.2 Схема исследования

Сначала получаем изображение фона в виде поля с биэкспоненциальной корреляционной функцией. Размеры изображения - 64 × 64, среднее - нулевое, дисперсия и коэффициенты корреляции - в зависимости от варианта.

Затем получаем изображение с набором объектов размером 3×3 . Для этого генерируем изображение размером 64×64 , состоящее из нулей, и заносим в него несколько ненулевых отсчетов (например, яркостью 128). Затем пропускаем его через линейный фильтр с одной из масок $(x, +, T, 0, \vdash)$, которые являются эталоном объектов $\{t(k, l)\}$:

Результирующее изображение получаем суммированием фона и изображения объектов. Для получения достоверных результатов обнаружения, изображение не должно содержать пересекающихся объектов.

Затем производится разбеливание фона при помощи обработки "окном" с маской (10) (для метода согласованной фильтрации) и обработка коррелятором. При реализации коррелятора целесообразно выбирать общий масштабный множитель яркости эталонов меньше единицы с тем, чтобы средняя яркость изображения корреляционных пиков не выходила за

"видимый" на экране монитора диапазон [0...255]. Например, при выборе коэффициентов коррелятора из соотношения

$$\sum_{(k,l)\in D} t(-k,-l) = 1$$

средняя яркость изображения не изменится.

Если требуется обнаружить объекты нескольких типов, то обработка коррелятором и последующая обработка выполняется отдельно для каждого типа объектов.

Полученное изображение, содержащее корреляционные пики, подвергается пороговой обработке для выделения максимумов с использованием стандартной процедуры (см. лабораторную работу \mathbb{N} 1):

- расчет гистограммы,
- ее визуализация,
- выбор порога;
- поэлементное преобразование.

Целью исследования является установление зависимости качества обнаружения (количество ложных объектов, количество пропущенных объектов) от интенсивности шума (дисперсии фона), его коррелированности (ρ) и применяемого метода.

В конце исследования необходимо уничтожить все созданные поля в рабочем файле.

3.3 Варианты лабораторной работы

Вариант 1. Для заданного преподавателем типа объекта исследовать корреляционный метод обнаружения при некоррелированном фоне. Число объектов - 4. Определить число ложных и пропущенных объектов для дисперсии фона 3000 и 5000.

Вариант 2. Для двух типов объектов, заданных преподавателем, провести сравнение двух методов обнаружения (корреляционного и согласованной фильтрации). Число объектов каждого типа - 2. Дисперсия фона - 3000. Коэффициент корреляции фона - 0,8. Определить число ложных и пропущенных объектов для каждого из методов.

3.4 Содержание отчета

Отчет по работе должен содержать:

- 1. Последовательность команд обработки с комментариями и числовыми значениями параметров.
- 2. Перечень созданных полей на рабочем файле с указанием их смыслового содержания и шифров.
- 3. Выводы по результатам исследования.

4. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Корреляционный метод обнаружения объектов на изображении.
- 2. Реализация корреляционного метода.
- 3. Метод согласованной фильтрации.
- 4. В чем преимущества метода согласованной фильтрации?
- 5. Что такое «разбеливающий фильтр»?
- 6. Как можно реализовать метод согласованной фильтрации?
- 7. Согласованный фильтр для фона с биэкспоненциальной корреляционной функцией.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Анисимов Б.В., Курганов В.Д., Злобин В.К. *Распознавание и цифровая обработка изо- бражений* (Москва: Высшая школа, 1983)
- 2. Гонсалес Р., Вудс Р. Цифровая обработка изображений (Москва: Техносфера, 2005)
- 3. *Методы компьютерной обработки изображений* // Под редакцией В.А. Сойфера. (Москва: Физматлит, 2003)
- 4. Павлидис Т. *Алгоритмы машинной графики и обработка изображений* (Москва: Радио и связь, 1988)
- 5. Прэтт У.К. Цифровая обработка изображений (Москва: Мир, 1982, 2 т.)
- 6. Рабинер Р., Гоулд Б. *Теория и применение цифровой обработки сигналов* (Москва: Мир, 1978)
- 7. Ту Дж., Гонсалес Р. Принципы распознавания образов (Москва: Мир, 1978)
- 8. Фуканага К. *Введение в статистическую теорию распознавания образов* (Москва: Наука, 1979)
- 9. Ярославский Л.П. *Введение в цифровую обработку изображений* (Москва: Советское радио, 1979)
- 10. Ярославский Л.П. *Цифровая обработка сигналов в оптике и голографии: Введение в цифровую оптику* (Москва: Радио и связь, 1987)