Worksheet #8

(1) Solve the initial value problem. Describe the behavior of the solution as $t \to \infty$.

9y" - 12y' + 4y = 0,
$$y(0) = 2$$
, $y'(0) = -1$

1- Unwarderistic early

 $Q(2-12) + 4 = 0$

2- Find roots

 $C = \frac{12+\sqrt{44-4(4)(4)}}{2(9)} = \frac{12}{18} = \frac{2}{3}$
 $C = \frac{12+\sqrt{44-4(4)(4)}}{2(9)} = \frac{12}{18} = \frac{2}{3}$

3- Solim $C = \frac{2}{3} = \frac{2}{3$

(2) Use the method of reduciton of order to find a second solution of the following differential equation: $t^2y'' - 4ty' + 6y = 0, t > 0,$

 $t^2y'' - 4ty' + 6y = 0,$ where the first solution is $y_1(t) = t^2$.

(nuess
$$y_{2}(t) = V(t)t^{2}$$

 $y_{2}(t) = 2V + t + t^{2}V'$
 $y_{2}''(t) = 2V + 2tV' + t^{2}V'' + 2tV' = t^{2}V'' + 4tV' + 2V'$
Plogginthis into the DE, we find
 $t^{2}(2V + 2t + t^{2}V'') - 4t(2Vt + t^{2}V') + 6Vt^{2} = 0$

Collect like terms

$$E''V'' + (4t^3 - 4t^3)V' + (2t^2 - 8t^2 + 6t^3)V = 0$$

$$V'' = 0 \Rightarrow V(t) = C_1t + C_2$$

$$\Rightarrow y_2(t) = C_1t^3 + C_2t^2$$

$$\Rightarrow y_2(t) = t_3$$

$$\Rightarrow y_2(t) = t_3$$