EE270 Large scale matrix computation, optimization and learning

Instructor: Mert Pilanci

Stanford University

Thursday, Jan 28 2020

Randomized Linear Algebra Lecture 6: Johnson Lindenstrauss Lemma and Applications

JL - Lemmus

Dimension Reduction

- map a high dimensional vector to low dimensions such that Diay J. certain properites are preserved
- examples so far:
- Approximate Matrix Multiplication $AS^TSB \approx AB$ where S is 5 hg 2 hg random
- \triangleright Freivalds Algorithm ABr Mr where r is random
- ► Trace estimation $r^T M r \approx \mathbf{tr}(M)$ where r is random

Dimension Reduction

- map a high dimensional vector to low dimensions such that certain properites are preserved
- examples so far:
- ▶ Approximate Matrix Multiplication $AS^TSB \approx AB$ where S is random
- ightharpoonup Freivalds Algorithm ABr Mr where r is random
- ▶ Trace estimation $r^T Mr \approx \mathbf{tr}(M)$ where r is random

- Generic dimension reduction problem,
- ▶ Given vectors $x_1, ..., x_n \in \mathbb{R}^d$, compress the data points into low dimensional representation $y_1, ..., y_n \in \mathbb{R}^m$ where m < cd
- another instance is Principal Component Analysis

Randomized Dimension Reduction

▶ Given vectors $x_1, ..., x_n \in \mathbb{R}^d$, compress the data points into low dimensional representation $y_1, ..., y_n \in \mathbb{R}^m$ where m < d

 $\mathbf{m} \quad \mathbf{S}$

- ▶ Linear transformation $y_i = Sx_i$ for i = 1, ..., n
- S is chosen randomly

Randomized Dimension Reduction

where S is random matrix

▶ Given vectors $x_1, ..., x_n \in \mathbb{R}^d$, compress the data points into low dimensional representation $y_1, ..., y_n \in \mathbb{R}^m$ where m < d

Geometry of Random Projections [100]

Johnson Lindenstrauss Lemma

$$\gamma_i = S(x_i) = S \times_i$$

Let $\epsilon \in (0, \frac{1}{2})$. Given any set of points $\{x_1, ..., x_n\}$ in \mathbb{R}^d , there exists a map $S : \mathbb{R}^d \to \mathbb{R}^m$ with $m = \frac{9 \log(n)}{\epsilon^2 - \epsilon^3}$ such that

$$1 - \epsilon \leq \frac{\|Sx_i - Sx_j\|_2^2}{\|x_i - x_j\|_2^2} \leq 1 + \epsilon$$

$$(|-\epsilon|) \cdot \|x_i - x_j\|_{L^{\infty}} \leq \|Y_i - Y_j\|_{L^{\infty}} \leq (|+\epsilon|) \cdot \|x_i - x_j\|_{L^{\infty}}$$

$$\|L - \epsilon| \leq \frac{\|Sx_i - Sx_j\|_2^2}{\|x_i - x_j\|_2^2} \leq 1 + \epsilon$$

$$\|X_i - X_j\|_{L^{\infty}} \leq (|+\epsilon|) \cdot \|x_i - x_j\|_{L^{\infty}}$$

$$\|L - \epsilon| \leq \frac{\|Sx_i - Sx_j\|_2^2}{\|x_i - x_j\|_2^2} \leq 1 + \epsilon$$

$$\|X_i - X_j\|_{L^{\infty}} \leq (|+\epsilon|) \cdot \|x_i - x_j\|_{L^{\infty}}$$

$$\|L - \epsilon| \leq \frac{\|Sx_i - Sx_j\|_2^2}{\|x_i - x_j\|_2^2} \leq 1 + \epsilon$$

Johnson Lindenstrauss Lemma

Let $\epsilon \in (0, \frac{1}{2})$. Given any set of points $\{x_1, ..., x_n\}$ in \mathbb{R}^d , there exists a map $S : \mathbb{R}^d \to \mathbb{R}^m$ with $m = \frac{9 \log(n)}{\epsilon^2 - \epsilon^3}$ such that

$$1 - \epsilon \le \frac{\|Sx_i - Sx_j\|_2^2}{\|x_i - x_j\|_2^2} \le 1 + \epsilon$$

Note that the target dimension m is independent of the original dimension d, and depends only on the number of points n and the accuracy parameter.

Johnson Lindenstrauss Lemma
$$1-\epsilon \le \| S(x;-x;) \|_{X_1-X_2} \|_{X_2-X_2} \|_{X_1-X_2}$$

Let $\epsilon \in (0, \frac{1}{2})$. Given any set of points $\{x_1, ..., x_n\}$ in \mathbb{R}^d , there exists a map $S : \mathbb{R}^d \to \mathbb{R}^m$ with $m = \frac{9 \log(n)}{\epsilon^2 - \epsilon^3}$ such that

$$\begin{bmatrix}
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\end{bmatrix} \times_{1} \qquad 1 - \epsilon \leq \frac{\|Sx_{i} - Sx_{j}\|_{2}^{2}}{\|x_{i} - x_{j}\|_{2}^{2}} \leq 1 + \epsilon$$

- Note that the target dimension m is **independent of the** original dimension d, and depends only on the number of points n and the accuracy parameter.
 - more surprises: picking an $m \times d$ random matrix $S = \frac{1}{\sqrt{m}}G$ with $G_{ij} \sim N(0,1)$ standard normal works with high probability!

$$S_X$$

Johnson Lindenstrauss (JL) Lemma

- ▶ Define $u_{ij} \triangleq \frac{x_i x_j}{\|x_i x_i\|_2}$.
- ightharpoonup note that $||u_{ij}||_2 = 1$

▶ JL Lemma:

$$\mathbb{P}\big[\|Su_{ij}\|_2^2\in(1\pm\epsilon)\text{ for all }i,j\in\{1,...,n\}\big]\geq 1-\delta$$
 where $\delta\in(0,1)$ for large enough m

Warm-up: Geometry of Concentration of Measure on the

Sphere

- ightharpoonup Suppose m=1, i.e., we project to dimension one
- S is a uniformly random row vector on the sphere, i.e.,

$$S = \frac{g^T}{\|g\|}$$

$$S = \frac{g^T}{\|g\|_2}$$
 where $g \sim N(0, I)$

- For any fixed unit norm vector u, how large is the product Su?
- ▶ Su is distributed identically to $Se_1 = S_1 = \frac{g_1}{\|g\|_2}$ where e_1 is the first ordinary basis vector

basis vector
$$Su = \frac{g'u}{\|g\|_{L^{\infty}}} = \frac{g'R}{\|g\|_{L^{\infty}}}$$

$$Se_1 = S_1 = \frac{g_1}{\|g\|_2} = \frac{g_1}{\|g\|_2}$$

Warm-up: Geometry of Concentration of Measure on the Sphere

- ▶ Suppose m = 1, i.e., we project to dimension one
- ► S is a uniformly random row vector on the sphere, i.e., $S = \frac{g^T}{\|g\|_2}$ where $g \sim N(0, I)$
- \triangleright For any fixed unit norm vector u, how large is the product Su?
- ▶ Su is distributed identically to $Se_1 = S_1 = \frac{g_1}{\|g\|_2}$ where e_1 is the first ordinary basis vector
- ▶ Lemma: $\mathbb{P}[|S_1| \ge t] \le 2e^{-\frac{dt^2}{2}}$.

Warm-up: Geometry of Concentration of Measure on the Sphere

- ightharpoonup Suppose m=1, i.e., we project to dimension one
- > S is a uniformly random row vector on the sphere, i.e., $S = \frac{g^T}{\|g\|_2}$ where $g \sim N(0, I)$
- For any fixed unit norm vector u, how large is the product Su?
- ▶ Su is distributed identically to $Se_1 = S_1 = \frac{g_1}{\|g\|_2}$ where e_1 is the first ordinary basis vector.

 Lemma: $\mathbb{D} \cap S_1 > t < 2e^{-\frac{dt^2}{2}}$
- ▶ **Lemma:** $\mathbb{P}[|S_1| \ge t] \le 2e^{-\frac{dt^2}{2}}$.
- ▶ The inner product $Su = \left(\frac{g}{\|g\|_2}\right)^T \frac{u}{\|u\|_2}$ is small for all fixed directions $\frac{u}{\|u\|_2}$, implying near-orthogonality

Warm-up: Geometry of Concentration of Measure on the Sphere

- ightharpoonup Suppose m=1, i.e., we project to dimension one
- \triangleright S is a uniformly random row vector on the sphere, i.e., $S = \frac{g^T}{\|g\|_2}$ where $g \sim N(0, I)$
- \triangleright For any fixed unit norm vector u, how large is the product Su?
 - For any fixed unit ...

 Su is distributed identically to $Se_1 = S_1 = \frac{g_1}{\|g\|_2}$ The property basis vector
 - ▶ **Lemma:** $\mathbb{P}[|S_1| \ge t] \le 2e^{-\frac{dt^2}{2}}$. ▶ Lemma: $\mathbb{P}[|S_1| \ge t] \le 2c$ - .

 The inner product $Su = \left(\frac{g}{\|g\|_2}\right)^T \frac{u}{\|u\|_2}$ is small for all fixed $\log(2n) \le \frac{dt^2}{2}$
- ightharpoonup For n fixed vectors $u_1, ..., u_n$, we can apply union bound
- $\mathbb{P}\left[\max_{i=1,\ldots,n}|Su_{i}|\geq t\right]\leq \sum_{i=1}^{n}2e^{-\frac{dt^{2}}{2}}=2ne^{-\frac{dt^{2}}{2}}=e^{-\frac{dt^{2}}{2}}$ $\leq \mathbb{P}\left[\bigcup_{i=1,\ldots,n}|Su_{i}|\geq t\right]\leq \sum_{i=1}^{n}|Su_{i}|\geq t$ MUX Xi Zt

Concentration of Measure for Uniform Distribution on the Sphere

- ▶ Lemma (rephrased): $\mathbb{P}\left[\left|\frac{g_1}{\|g\|_2}\right| \ge \frac{t}{\sqrt{d}}\right] \le 2e^{-\frac{t^2}{2}}$.
- Note that $\frac{g}{\|g\|_2}$ is distributed uniformly on the unit sphere

- $\mathbb{P}\left[\left|\frac{g_1}{\|g\|_2}\right| \geq \frac{t}{\sqrt{d}}\right] \leq \frac{\text{area of the spherical cap}}{\text{area of the sphere}} \leq \frac{\left(\sqrt{1-\frac{t^2}{d}}\right)^{d-1}}{1}$
- using the fact $(1-\frac{x}{n})^n \leq e^{-x}$ we get

- ▶ We need to show $||Su_{ij}||_2^2$ is concentrated around 1
- ▶ **Lemma** Let $S = \frac{1}{\sqrt{m}}G \in \mathbb{R}^{m \times n}$ where $G_{ij} \sim N(0,1)$ and u be any fixed vector. Then

$$\mathbb{E}||Su||_{2}^{2}=||u||_{2}^{2}$$

- implies that the distance between two points is preserved in
- expectation

- - ▶ Set $S = \frac{1}{\sqrt{m}}G$ where $G \in \mathbb{R}^{m \times d}$ and $G_{ij} \sim N(0,1)$
 - ► Consider the probability that $||Su||_2^2$ deviates from 1, i.e., projected vectors are stretched more than their expectation

projected vectors are stretched more than their expectation we first show that
$$\mathbb{P}\left[\|Su\|_2^2 \geq (1+\epsilon)\|u\|_2^2\right] \leq e^{-(\epsilon^2-\epsilon^3)\frac{m}{4}}$$

We first show that
$$\mathbb{P}[\|Su\|_{2} \geq (1+\epsilon)\|u\|_{2}] \leq \epsilon$$
.

$$\mathbb{P}(\frac{1}{m}\|Gu\|_{2}) > (1+\epsilon). = \mathbb{P}(\frac{1}{m}\sum_{i=1}^{m}(G_{ii}^{T}u)^{2} > 1+\epsilon)$$

$$\mathbb{P}(\frac{1}{m}\|Gu\|_{2}) = \mathbb{P}(\frac{1}{m}\sum_{i=1}^{m}(G_{ii}^{T}u)^{2} > 1+\epsilon)$$

$$\mathbb{P}(\frac{1}{m}\sum_{i=1}^{m}(G_{ii}^{T}u)^{2} > 1+\epsilon)$$

$$\begin{aligned}
\mathcal{Z}_{i} &= \mathcal{D}_{i} G_{i;u_{i}} \\
&= \mathcal{D}_{i} \left(\frac{1}{2} G_{i;u_{i}} \right)^{2} > 1 + \epsilon \right) \\
&= \mathcal{D}_{i} \left(\frac{1}{2} G_{i;u_{i}} \right)^{2} > 1 + \epsilon \right) \\
&= \mathcal{D}_{i} \left(\frac{1}{2} G_{i;u_{i}} \right)^{2} = \mathcal{D}_{i}$$

Apply Merkons Inequality

m d zi -(1+e) l·m Te · e

▶ Set $S = \frac{1}{\sqrt{m}}G$ where $G \in \mathbb{R}^{m \times d}$ and $G_{ij} \sim N(0,1)$

we first show that $\mathbb{P}\left[\|Su\|_2^2 \geq (1+\epsilon)\|u\|_2^2\right] \leq e^{-(\epsilon^2-\epsilon^3)\frac{m}{4}}$

 $|P[\frac{\lambda}{m}] = \frac{\lambda}{m} =$

= The Leti). e -(1+e). Im

Moment Generally Forether

212.1

► Consider the probability that $||Su||_2^2$ deviates from 1, i.e.,

projected vectors are stretched more than their expectation

- Proof of JL Lemma $\int e^{\lambda \cdot t} \rho(t) dt = \int_{-\mathcal{U}}^{t}$ ▶ Set $S = \frac{1}{\sqrt{m}}G$ where $G \in \mathbb{R}^{m \times d}$ and $G_{ij} \sim N(0,1)$
 - ► Consider the probability that $||Su||_2^2$ deviates from 1, i.e., projected vectors are stretched more than their expectation

we first show that
$$\mathbb{P}\left[\|Su\|_2^2 \ge (1+\epsilon)\|u\|_2^2\right] \le e^{-(\epsilon^2-\epsilon^3)\frac{n}{4}}$$

$$\mathbb{P}\left[\|Su\|_2^2 \ge (1+\epsilon)\|u\|_2^2\right] < \sum_{i=1}^n e^{-(\epsilon^2-\epsilon^3)\frac{m}{4}} = n^2e^{-(\epsilon^2-\epsilon^3)\frac{n}{4}}$$

- ▶ Set $S = \frac{1}{\sqrt{m}}G$ where $G \in \mathbb{R}^{m \times d}$ and $G_{ij} \sim N(0,1)$
- ▶ Consider the probability that $||Su||_2^2$ deviates from 1, i.e., projected vectors are stretched more than their expectation

we first show that
$$\mathbb{P}\left[\|Su\|_2^2 \geq (1+\epsilon)\|u\|_2^2\right] \leq e^{-(\epsilon^2-\epsilon^3)\frac{m}{4}}$$

Set error probability =
$$\frac{1}{2} = p^2 e^{-(\epsilon^2 - \epsilon^3)\frac{m}{4}} + \log^{6}(\kappa^3)$$

- ▶ Set $S = \frac{1}{\sqrt{m}}G$ where $G \in \mathbb{R}^{m \times d}$ and $G_{ij} \sim N(0,1)$
- Consider the probability that $||Su||_2^2$ deviates from 1, i.e., projected vectors are stretched more than their expectation we first show that $\mathbb{P}\left[||Su||_2^2 \geq (1+\epsilon)||u||_2^2\right] \leq e^{-(\epsilon^2-\epsilon^3)\frac{m}{4}}$

Set error probability $=\frac{1}{2}=n^2e^{-(\epsilon^2-\epsilon^3)\frac{m}{4}}$

for smaller error probability $0.01 = n^2 e^{-(\epsilon^2 - \epsilon^3)\frac{m}{4}}$

$$=$$
 $m = \frac{\text{constant} \times \log n}{\epsilon^2 - \epsilon^3}$

True 'projections': random subspaces also work

- ightharpoonup Pick $S_{(i)}$ uniformly random on the unit sphere
- Pick $S_{(i+1)}$ uniformly random on the unit sphere and $\bot S_{(i)},...S_{(1)}$
- S is a projection matrix, which projects onto a uniformly random subspace

$$\mathbb{P}\left\{\left|\|Su\|_2 - \sqrt{\frac{m}{d}}\right| > t\right\} \le 2e^{\frac{-t^2d}{2}}$$

- ▶ Applying union bound for all points i, j = 1, ..., d gives a similar result
- ▶ Random i.i.d. S matrices are easier to generate and approximately orthogonal: $\mathbb{E}S^TS = I$

Computationally cheaper random matrices

- Gaussian $S_{ij} = \frac{1}{\sqrt{m}}N(0,1)$
- Rademacher

$$S_{ij} = \begin{cases} +\frac{1}{m} & \text{with probability } \frac{1}{\sqrt{m}} \\ -\frac{1}{\sqrt{m}} & \text{with probability } \frac{1}{2} \end{cases}$$
 (1)

Bernoulli-Rademacher

$$S_{ij} = \begin{cases} +\frac{\sqrt{3}}{\sqrt{m}} & \text{with probability } \frac{1}{2} \\ 0 & \text{with probability } \frac{2}{3} \\ -\frac{\sqrt{3}}{\sqrt{m}} & \text{with probability } \frac{1}{2} \end{cases}$$
 (2)

- other sparse matrices (e.g. one non-zero per column)
- Fourier transform based matrices

Optimality of the JL Embedding

Let $\epsilon \in (0, \frac{1}{2})$. Given any set of points $\{x_1, ..., x_n\}$ in \mathbb{R}^d , there exists a map $S : \mathbb{R}^n \to \mathbb{R}^m$ with $m = \frac{9 \log(n)}{\epsilon^2 - \epsilon^3}$ such that

$$1 - \epsilon \le \frac{\|Sx_i - Sx_j\|_2^2}{\|x_i - x_i\|_2^2} \le 1 + \epsilon \qquad (\star)$$

- Can we embed to a smaller dimension?
- maybe using a nonlinear embedding?

Optimality of the JL Embedding

Let $\epsilon \in (0, \frac{1}{2})$. Given any set of points $\{x_1, ..., x_n\}$ in \mathbb{R}^d , there exists a map $S : \mathbb{R}^n \to \mathbb{R}^m$ with $m = \frac{9 \log(n)}{\epsilon^2 - \epsilon^3}$ such that

$$1 - \epsilon \le \frac{\|Sx_i - Sx_j\|_2^2}{\|x_i - x_j\|_2^2} \le 1 + \epsilon \qquad (\star)$$

- Can we embed to a smaller dimension?
- maybe using a nonlinear embedding?
- No Johnson-Lindenstrauss Embedding is optimal
- There exists a set of n points $\{x_1, ..., x_n\}$ such that any linear/nonlinear embedding satisfying (\star) must have $m \geq O(\frac{\log n}{\epsilon^2})$.

Optimality of the Johnson-Lindenstrauss Lemma, Larsen and Nelson, 2016

Applications of JL Embeddings

- ▶ General idea: run algorithms on $Sx_1, ..., Sx_n \in \mathbb{R}^m$ instead of $x_1, ..., x_n$
- Examples:

- approximate nearest neighbor search
- estimating norms and frequency moments
- regression
- classification
- randomized matrix operations (matrix multiplication, decomposition etc)
- optimization
- **...**

Approximate Nearest Neighbors

- ▶ Given a point set $P = \{x_1, ..., x_n\} \in \mathbb{R}^d$
- lacktriangle and a query point $q \in \mathbb{R}^d$
- \blacktriangleright Find an ϵ -approximate nearest neighbor to q from P

Estimating p-norms

Streaming data

$$x_{t+1} = x_t + \delta_t$$

- ightharpoonup Estimate $||x||_2$
- second moment

Estimating p-norms

Streaming data

$$x_{t+1} = x_t + \delta_t$$

- ightharpoonup Estimate $||x||_2$
- second moment
- linear sketch

Generate S randomly such that $\mathbb{E}S^TS = I$

Let
$$y_t = Sx_t$$

$$y_t = Sx_t + S\delta_t$$

► $||Sy||_2^2 \approx ||Sx||_2^2$

Estimating p-norms

Streaming data

$$x_{t+1} = x_t + \delta_t$$

- ightharpoonup Estimate $||x||_2$
- second moment
- linear sketch

Generate S randomly such that $\mathbb{E}S^TS = I$

Let
$$y_t = Sx_t$$

$$y_t = Sx_t + S\delta_t$$

- ► $||Sy||_2^2 \approx ||Sx||_2^2$
- ► Can also be extended to $||x||_p$

Music similarity prediction

- ▶ Predict the similarity score \in [0, 1] between 30 second tracks
- Frequency based features from each 200ms segment results in 10⁶ features
- OLS: randomly pick m features
- COLS: apply random projection to dimension m

Fard et al. Compressed Least-Squares Regression on Sparse Spaces, 2012

Music similarity prediction

- ▶ Predict the similarity score \in [0, 1] between 30 second tracks
- ► Frequency based features from each 200ms segment results in 10⁶ features
- OLS: randomly pick m features
- COLS: apply random projection to dimension m

matrices A and B output AS^TSB where S is a random projection matrix

- ▶ matrices A and B output AS^TSB where S is a random projection matrix
- ▶ need to characterize $||Sx||_2^2 ||x||_2^2$ for vectors x
- **Definition:** (ϵ, δ, p) JL moment property

$$\mathbb{E}\left|\|Sx\|_2^2 - 1\right|^p \le \epsilon^p \delta$$

for any unit norm x where $p \ge 2$

- ▶ matrices A and B output AS^TSB where S is a random projection matrix
- ▶ need to characterize $||Sx||_2^2 ||x||_2^2$ for vectors x
- **Definition:** (ϵ, δ, p) JL moment property

$$\mathbb{E}\left|\|Sx\|_2^2 - 1\right|^p \le \epsilon^p \delta$$

for any unit norm x where $p \ge 2$

▶ $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{random i.i.d. sub-Gaussian, e.g., } \pm 1$, or N(0,1) with $m = \frac{c_1}{\epsilon^2} \log \frac{1}{\delta}$ satisfies $(\epsilon, \delta, \log \frac{1}{\delta})$ JL moment property

- ▶ matrices A and B output AS^TSB where S is a random projection matrix
- ▶ need to characterize $||Sx||_2^2 ||x||_2^2$ for vectors x
- **Definition:** (ϵ, δ, p) JL moment property

$$\mathbb{E}\left|\|Sx\|_2^2 - 1\right|^p \le \epsilon^p \delta$$

for any unit norm x where $p \ge 2$

- ▶ $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{random i.i.d. sub-Gaussian, e.g., } \pm 1$, or N(0,1) with $m = \frac{c_1}{\epsilon^2} \log \frac{1}{\delta}$ satisfies $(\epsilon, \delta, \log \frac{1}{\delta})$ JL moment property
- ▶ $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{CountSketch matrix (one nonzero per column, which is } \pm 1$ at a uniformly random location) with $m = \frac{c_2}{\epsilon^2 \delta}$ satisfies $(\epsilon, \delta, 2)$ JL moment property

- ▶ matrices A and B output AS^TSB where S is a random projection matrix
- ▶ need to characterize $||Sx||_2^2 ||x||_2^2$ for vectors x
- **Definition:** (ϵ, δ, p) JL moment property

$$\mathbb{E}\left|\|Sx\|_2^2 - 1\right|^p \le \epsilon^p \delta$$

for any unit norm x where $p \ge 2$

- ▶ $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{random i.i.d. sub-Gaussian, e.g., } \pm 1$, or N(0,1) with $m = \frac{c_1}{\epsilon^2} \log \frac{1}{\delta}$ satisfies $(\epsilon, \delta, \log \frac{1}{\delta})$ JL moment property
- ► $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{CountSketch matrix (one nonzero per column, which is } \pm 1$ at a uniformly random location) with $m = \frac{c_2}{\epsilon^2 \delta}$ satisfies $(\epsilon, \delta, 2)$ JL moment property
- ▶ $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{Fast JL Transform with } m = \frac{c_3}{\epsilon} \log \frac{1}{\delta}$ satisfies $(\epsilon, \delta, \log \frac{n}{\delta})$ JL moment property

Approximating inner products

Lemma

$$\mathbb{E}\left|\|Sx\|_2^2 - 1\right|^p \le \epsilon^p \delta$$

for any unit norm x implies that

$$\mathbb{E}\left|x^T S^T S y - x^T y\right|^p \le 3\epsilon^p \delta$$

since

$$x^{T}y = \frac{1}{2} (\|x\|_{2}^{2} + \|y\|_{2}^{2} - \|x - y\|_{2}^{2})$$
$$x^{T}S^{T}Sy = \frac{1}{2} (\|Sx\|_{2}^{2} + \|Sy\|_{2}^{2} - \|S(x - y)\|_{2}^{2})$$

ightharpoonup Let $C = AS^TSB$

$$\mathbb{P}[\|AB - C\|_{F} > 3\epsilon \|A\|_{F} \|B\|_{F}] = [\|AB - C\|_{F}^{p} > (3\epsilon)^{p} \|A\|_{F}^{p} \|B\|_{F}^{p}]$$

$$\leq \frac{\mathbb{E}\|AB - C\|_{F}^{p}}{(3\epsilon \|A\|_{F} \|B\|_{F})^{p}}$$

▶ Let $a_i = A_{(i)}$ and $b_i = B_{(i)}$

$$||AB - C||_F^2 = \sum_{ii} |(Sa_i)^T (Sb_j) - a_i^T b_j|^2$$

ightharpoonup Let $C = AS^TSB$

$$\mathbb{P}[\|AB - C\|_{F} > 3\epsilon \|A\|_{F} \|B\|_{F}] = [\|AB - C\|_{F}^{p} > (3\epsilon)^{p} \|A\|_{F}^{p} \|B\|_{F}^{p}]$$

$$\leq \frac{\mathbb{E}\|AB - C\|_{F}^{p}}{(3\epsilon \|A\|_{F} \|B\|_{F})^{p}}$$

▶ Let $a_i = A_{(i)}$ and $b_i = B_{(i)}$

$$||AB - C||_F^2 = \sum_{ij} |(Sa_i)^T (Sb_j) - a_i^T b_j|^2$$

we can normalize $\frac{a_i}{\|a_i\|_2}$, $\frac{b_i}{\|b_i\|_2}$ and apply JL moment property to get

$$\mathbb{P}\left[\|AB - C\|_F > 3\epsilon \|A\|_F \|B\|_F\right] \leq \delta$$

Final error bound for random projection

▶ Let the approximate product of AB be $C = AS^TSB$

$$\mathbb{P}\left[\|AB - C\|_F > 3\epsilon \|A\|_F \|B\|_F\right] \le \delta$$

- Follows from JL Moment property
- $S \in \mathbb{R}^{m imes n} \sim rac{1}{\sqrt{m}} imes ext{random i.i.d. sub-Gaussian, e.g., } \pm 1$, or N(0,1) with $m=rac{c_1}{\epsilon^2}\lograc{1}{\delta}$
- ► $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{CountSketch matrix (one nonzero per column, which is } \pm 1$ at a uniformly random location) with $m = \frac{c_2}{\epsilon^2 \delta}$
- ▶ $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \mathsf{Fast} \ \mathsf{JL} \ \mathsf{Transform} \ \mathsf{with} \ m = \frac{c_3}{\epsilon} \mathsf{log} \, \frac{1}{\delta}$

Final error bound for random projection

▶ Let the approximate product of AB be $C = AS^TSB$

$$\mathbb{P}\left[\|AB - C\|_F > 3\epsilon \|A\|_F \|B\|_F\right] \le \delta$$

- Follows from JL Moment property
- $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{random i.i.d. sub-Gaussian, e.g., } \pm 1$, or N(0,1) with $m=\frac{c_1}{\epsilon^2}\log \frac{1}{\delta}$
- ► $S \in \mathbb{R}^{m \times n} \sim \frac{1}{\sqrt{m}} \times \text{CountSketch matrix (one nonzero per column, which is } \pm 1$ at a uniformly random location) with $m = \frac{c_2}{c^2 \delta}$
- $ightharpoonup S \in \mathbb{R}^{m imes n} \sim rac{1}{\sqrt{m}} imes ext{Fast JL Transform with } m = rac{c_3}{\epsilon} \log rac{1}{\delta}$
- Sparse JL and Fast JL are more efficient
- advantages: doesn't require any knowledge about matrices A and B (oblivious)
- optimal sampling probabilities depend on the column/row norms of A and B

Questions?