РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

Факультет физико-математических и естественных наук Кафедра прикладной информатики и теории вероятностей

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

дисциплина: Операционные системы

Выполнила:

Егорова Александра

Группа: НПМбд-02-20

МОСКВА 2020 г.

Цель работы

Целью данной работы является приобретение практических навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.

Ход выполнения работы

Для начала скачаем VirtualBox, необходимую для запуска виртуальных машин. Скачать можно на официальном сайте: https://www.virtualbox.org (Рис. 1). Необходимо выбрать версию своей операционной системы (Рис. 2).

Далее выполняем установку скачанного файла

Создаём на рабочем столе папку, в которой будет храниться виртуальная машина. Имя папки — имя пользователя. В данном случае «aegorova». Проверяем в свойствах VirtualBox месторасположение папки для виртуальных машин. Для этого открываем VirtualBox, далее «Файл», «Свойства», вкладка «Общие» и в поле «Папка для машин по умолчанию» указываем путь к папке, созданной ранее (Рис.5)

Переходим к созданию виртуальной машины. Для этого нажимаем «Машина» и «Создать» (Рис.6).

(Рис.6).

Укажем имя виртуальной машины и тип операционной системы – Linux, RedHat 64-bit (Puc.7)

(Рис.7)

Указываем размер основной памяти виртуальной машины — 1024 МБ (Puc.8).

Создаём новый виртуальный жёсткий диск (Рис.9)

Задаём конфигурацию жёсткого диска — VDI (BirtualBox Disk Image), динамический виртуальный жёсткий диск (Рис.10, 11).

Задаём расположение и размер диска (Рис.12).

Далее необходимо скачать образ операционной системы. В данном случае – это «CentOS-7-х86_64-DVD-2009.iso». Скачать можно на сайте: https://mirror.yandex.ru/centos/7/isos/x86_64/ (Puc.13).

Теперь в VirtualBox для виртуальной машины выбираем «Свойства» и «Носители». Добавляем новый привод оптических дисков (Рис.14, 15).

После этого необходимо запустить виртуальную машину и продолжить настройку (Рис.16).

После запуска открылось окно настройки установки образа ОС (Рис.17)

Заходим в окно настройки выбора программ: выбираем базовое окружение "Сервер с GUI" и дополнение к выбранному окружению "Средства разработки" (Рис.18).

ВЫБОР ПРОГРАММ	YCTAHOBKA CENTOS 7
Готово	≅ ru Cnpaex
Базовое окружение	Дополнения для выбранного окружения
Минимальная установка Базовая функциональность. Сотрите Node Установка для выполнения вычислений и обработки. Сервер инфраструктуры Сервер служб сетевой инфраструктуры. Сервер файлов и печати Сервер файлов и печати Сервер хранения файлов и печати для предлриятий. Стандартный веб-сервер Сервер для предоставления статического и динамического Интернет-контента. Хост виртуализации Минимальный комплект хоста виртуализации.	сервера печати. Удаленное управление Linux Интерфейс удаленного управления CentOS Linux, включая OpenLMI и SNMP. Надёжное хранилище Кластерное хранилище и GFS2. Клиент виртуализации Клиенты для установки и управления экземплярами виртуализации. Гипервизор виртуализации Минимальная установка хоста виртуализации. Средства виртуализации Средства для антономного управления виртуальными
 Сервер с GUI Сервер служб сетевой инфрактуры с интерактивным интерфейсом. 	образами. Библиотеки совнестиности
Окружение GNOME GNOME — интуитивное окружение рабочего стола.	Библиотеки совместимости для приложений, созданных в предыдущих версиях CentOS Linux.
○ KDE Plasma Workspaces	▼ Гредства разработки Стандартная среда разработки.
KDE Plasma Workspaces — мощный графический интерфейс, включающий в себя панель приложений, рабочий стол, системные значки, управляющие виджеты и целый ряд приложений KDE.	Средства безопасности Средства защиты для обеспечения целостности и проверки подлинности.

(Рис.18)

Далее отключаем KDUMP (Рис.19).

KDUMP			YCTAHOBKA CENTOS 7			
Готон				⊞ ru	Справка	
Kdump предоставляет механизм последующего определения пр для своей работы.						
Включить kdump						
Резервирование памяти Kdump:	• Автоматически	Вручную				
Будет зарезервировано (МБ):	160 - +					
	990 830					
						(Рис.19

Открываем "Сеть и имя узла": включаем сеть и указываем имя узла (в данном случаем "aegorova") (Рис.20).

Начинаем установку (Рис.21). После этого нам нужно придумать пароль root (Рис.22) и создать пользователя (имя должно совпадать, т.е. указываем "aegorova") и делаем пользователя администратором (Рис.23). Как только мы все указали, начинается процесс установки пакетов.

(Рис.21)

ль коот		YCTAHOBKA CEN
10		₩ us
Учетная запись администрато	ра (root) предназначена для управления	я системой. Введите пароль root.
Пароль root:	•••••	
		Хороший
Подтверждение:	•••••	
	111	

(Рис.22)

(Рис.23)

После перезагрузки виртуальной машины, нужно принять лицензию и завершить работу. После этого снова начинается перезагрузка машины (Рис.24)

(Рис.24)

Заходим в ОС под заданной при установке учётной записью. В меню "Устройства" виртуальной машины подключим образ диска дополнений гостевой ОС (Рис.25, 26), и вводим пароль пользователя гоот нашей виртуальной ОС.

(Рис.25)

После загрузки дополнений нажимаем "Enter" (Рис.27) и корректно перезагружаем виртуальную машину.

Домашнее задание

Дождаемся загрузки графического окружения и открываем терминал. В окне терминала проанализируем последовательность загрузки системы, выполнив команду dmesg. Появляется большой список.

Используем поиск с помощью grep: dmesg | grep -i "то, что ищем". Получите следующую информацию:

1. Версия ядра Linux (Linux version).

```
[aegorova@aegorova~]$ dmesg | grep -i "Linux version" [ 0.000000] Linux version 3.10.0-1160.el7.x86_64 (mockbuild@kbuilder.bsys.centos.org) (gcc version 4.8.5 20150623 (Red Hat 4.8.5-44) (GCC) ) #1 SMP Mon Oct 19 16:18:59 UTC 2020
```

2. Частота процессора (Detected Mhz processor).

3. Модель процессора (CPU0).

```
[aegorova@aegorova -]$ dmesg | grep -i "CPU0" | 0.136630] smpboot: CPU0: Intel(R) Core(TM) i7-106567 CPU @ 1.306Hz (fam: 06, model: 7e, stepping: 05)
```

4. Объем доступной оперативной памяти (Memory available).

5. Тип обнаруженного гипервизора (Hypervisor detected).

```
[aegorova@aegorova ~]$ dmesg | grep -i "Hypervisor"
[ 0.000000| Hypervisor detected: KVM
[ 1.587615] [drm] Max dedicated hypervisor surface memory is 507904 kiB
```

6. Тип файловой системы корневого раздела.

```
[aegorova@aegorova -]$ dmesg | grep -i "Hount"
[ 0.041621] Hount-cache hash table entries: 2048 (order: 2, 16384 bytes)
[ 0.041623] Mountpoint-cache hash table entries: 2048 (order: 2, 16384 bytes)
[ 2.118946] XFS (dm-0): Hounting V5 Filesystem
[ 2.229820] XFS (dm-0): Binding clean mount
[ 3.587987] XFS (5dal): Mounting V5 Filesystem
[ 3.770085] XFS (sdal): Mounting V5 Filesystem
[ 3.770085] XFS (sdal): Ending clean mount
```

7. Последовательность монтирования файловых систем.

```
| Dain | The past | Dain | The past | Dain |
```

Контрольные вопросы

1) Какую информацию содержит учётная запись пользователя?

Учетная запись пользователя — это необходимая для системы информация о пользователе, хранящаяся в специальных файлах. Информация используется Linux для аутентификации пользователя и назначения ему прав доступа. Аутентификация — системная процедура, позволяющая Linux определить, какой именно пользователь осуществляет вход. Вся

информация о пользователе обычно хранится в файлах /etc/passwd и /etc/group.

Учётная запись пользователя содержит: имя пользователя (user name), идентификационный номер пользователя (UID), идентификационный номер группы (GID), пароль (password), полное имя (full name), домашний каталог (home directory), начальную оболочку (login shell).

2) Укажите команды терминала и приведите примеры:

- для получения справки по команде: man (команда). Например, команда «man ls» выведет справку о команде «ls».
- для перемещения по файловой системе: cd (путь). Например, команда
 «cd newdir» осуществляет переход в каталог newdir.
- для просмотра содержимого каталога: ls (опции) (путь). Например,
 команда
- «ls –a ~/newdir» отобразит имена скрытых файлов в каталоге newdir.
- для определения объёма каталога: du (опция) (путь). Например, команда «du −k ~/newdir» выведет размер каталога newdir в килобайтах.
- для создания / удаления каталогов / файлов: mkdir (опции) (путь) / rmdir (опции) (путь) / rm (опции) (путь). Например, команда «mkdir –p ~/newdir1/newdir2» создаст иерархическую цепочку подкаталогов, создав каталоги newdir1 и newdir2; команда «rmdir -v ~/newdir» удалит каталог newdir; команда «rm –r ~/newdir» так же удалит каталог newdir.
- для задания определённых прав на файл / каталог: chmod [опции] [путь]. Например, команда «chmod g+r ~/text.txt» даст группе право на чтение файла text.txt.

- для просмотра истории команд: history [опции]. Например, команда
 «history 5» покажет список последних 5 команд.
- 3) Что такое файловая система? Приведите примеры с краткой характеристикой.

Файловая система (англ. «file system») — это архитектура хранения данных в системе, хранение данных в оперативной памяти и доступа к конфигурации ядра. Файловая система устанавливает физическую и логическую структуру файлов, правила их создания и управления ими. В физическом смысле файловая система Linux представляет собой пространство раздела диска, разбитое на блоки фиксированного размера. Их размер кратен размеру сектора: 1024, 2048, 4096 или 8120 байт.

- **XFS** начало разработки 1993 год, фирма Silicon Graphics, в мае 2000 года предстала в GNU GPL, для пользователей большинства Linux систем стала доступна в 2001-2002 гг. Отличительная черта системы прекрасная поддержка больших файлов и файловых томов, 8 эксбибайт (8*260 байт) для 64-х битных систем.
- ext (extended filesystem) появилась в апреле 1992 года, это была первая файловая система, изготовленная специально под нужды Linux OC. Разработана Remy Card с целью преодолеть ограничения файловой системы Minix.
- ext2 (second extended file system) была разработана Remy Card в 1993 году. Не журналируемая файловая система, это был основной её недостаток, который исправит ext3.
- ext3 (third extended filesystem) по сути расширение исконной для Linux ext2, способное к журналированию. Разработана Стивеном Твиди (Stephen Tweedie) в 1999 году, включена в основное ядро Linux в ноябре 2001 года. На фоне других своих сослуживцев

- обладает более скромным размером пространства, до 4 тебибайт (4*240 байт) для 32-х разрядных систем.
- **Reiser4** первая попытка создать файловую систему нового поколения для Linux. Впервые представленная в 2004 году, система включает в себя такие передовые технологии как транзакции, задержка выделения пространства, а также встроенная возможность кодирования и сжатия данных. Ханс Рейзер (Hans Reiser) главный разработчик системы.
- **ext4** попытка создать 64-х битную ext3 способную поддерживать больший размер файловой системы (1 эксбибайт). Позже добавились возможности непрерывные области дискового пространства, задержка выделения пространства, онлайн дефрагментация и прочие.
- Btrfs (B-tree FS или Butter FS) проект, изначально начатый компанией Oracle, впоследствии поддержанный большинством Linux систем. Ключевыми особенностями данной файловой системы являются технологии: сору-on-write, позволяющая сделать снимки областей диска (снапшоты), которые могут пригодится для последующего восстановления; контроль за целостностью данных и метаданных (с повышенной гарантией целостности); сжатие данных; оптимизированный режим для накопителей SSD (задаётся при монтировании) и прочие. Немаловажным фактором является возможность перехода с ext3 на Btrfs.
- **4)** Как посмотреть, какие файловые системы подмонтированы в ОС? Команда «findmnt» или «findmnt --all» будет отображать все подмонтированные файловые системы или искать файловую систему.
- 5) Как удалить зависший процесс?

Основные сигналы, которые используются для завершения процесса:

- SIGINT самый безобидный сигнал завершения, означает Interrupt. Он отправляется процессу, запущенному из терминала с помощью сочетания клавиш Ctrl+C. Процесс правильно завершает все свои действия и возвращает управление;
- SIGQUIT это еще один сигнал, который отправляется с помощью сочетания клавиш, программе, запущенной в терминале. Он сообщает ей что нужно завершиться, и программа может выполнить корректное завершение или проигнорировать сигнал. В отличие от предыдущего, она генерирует дамп памяти. Сочетание клавиш Ctrl+/;
- SIGHUP сообщает процессу, что соединение с управляющим терминалом разорвано, отправляется, в основном, системой при разрыве соединения с интернетом;
- SIGTERM немедленно завершает процесс, но обрабатывается программой, поэтому позволяет ей завершить дочерние процессы и освободить все ресурсы;
- SIGKILL тоже немедленно завершает процесс, но, в отличие от предыдущего варианта, он не передается самому процессу, а обрабатывается ядром. Поэтому ресурсы и дочерние процессы остаются запущенными.

Для передачи сигналов процессам в Linux используется утилита kill, её синтаксис: kill [-сигнал] [pid_процесса] (PID — уникальный идентификатор процесса). Сигнал представляет собой один из выше перечисленных сигналов для завершения процесса.

Перед тем, как выполнить остановку процесса, нужно определить его PID. Для этого используют команды ps и grep. Команда ps предназначена для вывода списка активных процессов в системе и информации о них. Команда grep запускается одновременно с ps (в канале) и будет выполнять поиск по результатам команды ps.

Утилита pkill – это оболочка для kill, она ведет себя точно так же, и имеет тот же синтаксис, только в качестве идентификатора процесса ей нужно передать его имя.

killall работает аналогично двум предыдущим утилитам. Она тоже принимает имя процесса в качестве параметра и ищет его PID в директории /proc. Но эта утилита обнаружит все процессы с таким именем и завершит их.

Вывод: в ходе данной лабораторной работы я приобрела практические навыков установки операционной системы на виртуальную машину, настройки минимально необходимых для дальнейшей работы сервисов.