Enabling Parallelism Hot Switching for Efficient Training of Large Language Models

Hao Ge¹, Fangcheng Fu¹, Haoyang Li¹, Xuanyu Wang¹, Sheng Lin¹, Yujie Wang¹, Xiaonan Nie¹, Xupeng Miao² and Bin Cui¹

¹Peking University, ²Purdue University

SOSP'24

Presented by Qinghe Wang

Outline

- Background & Motivation
- Design & Implementation
- Evaluation
- Conclusion

- Parallelism strategies
 - ◆ Need to balance between memory consumption and training efficiency

- Skewness in sequence of datasets
 - ◆ Results in imbalanced workloads across different sequences

- Impact of load imbalance
 - ◆ Device idle waiting when using data parallelism
 - ◆ Increase the bubble rate when using pipeline parallelism

- Padding
 - pad the sequences in the same length
 - waste of computation, communication, memory

- Packing
 - Pack multiple samples of different sequence lengths together and modify the selfattention mask

Seq IDs and Lengths

Packed Seq and Lengths

Observation

Efficiency Degradation for Longer Context Lengths

Larger TP leads	to degraded	training	efficiency	,
-----------------	-------------	----------	------------	---

Seq Len	# Seqs	TP=1	<i>TP=2</i>	<i>TP=4</i>	<i>TP=8</i>
1K	512	13.9	14.7	16.2	19.5
2K	256	14.2	15.1	16.6	19.8
4K	128	14.9	15.8	17.4	20.6
8K	64	OOM	17.4	19.1	22.1
16K	32	OOM	OOM	21.8	25.0
32K	16	OOM	OOM	OOM	30.8

Small TP degree leads to long sequence OOM

Runtime (in seconds) of different tensor parallelism degrees (LLaMA2-7B, 8GPUs, DP=8/TP) when processing the same amount of tokens

Different sequence lengths require different parallel strategies!

- Existing systems (Megatron/Deepspeed/Alpa)
 - ◆ Ignore the workload imbalance in LLM training
 - ◆ Leverage a static parallelism strategy
 - Using memory-saving strategy for all samples to avoid OOM
 - Memory-saving strategy reduce the training efficiency of short samples

Motivation

 Can we adopt separate parallelism strategies for sequences with different levels of workloads/lengths?

- Challenges
 - ♦ How to design parallel strategies for samples of different sequence lengths?
 - ♦ How to switch between different parallelism strategies ?

Outline

- Background & Motivation
- Design & Implementation of HotSPa
- Evaluation
- Conclusion

Key ideas of HotSPa

Design of HotSPa

- Logical Graph
 - Only includes calculation operators and data dependencies
- DistConfig
 - ◆ A unified representation for distributed strategies
 - device: the assigned devices
 - duplication: DP degree
 - spilt: how a multi-dimensional parameter is split among devices

Design of HotSPa

- Executable Graph
 - ◆ The computational graph bound to the specific strategy
 - Inserted three type of operators
 - Communication operators
 - Type casting operators
 - Accumulation operators
- Mixed-precision Training
 - ◆ FP16 for forward and backward
 - FP32 for weight update and gradient accumulation

② Orchestration of Executable Graphs

Design of HotSPa

- Orchestration of Executable Graphs
 - ◆ Identify the suitable candidate ExecGraphs for instantiation
 - ◆ ExecGraphs are re-ordered for better efficiency
 - ◆ Actually start running each parallel plan and perform hot switch

- Heuristic hot switching planner
 - ◆ Intra-node communication is preferable than inter-node
 - ◆ GPU connectivities are full-duplex

$V_0^{(inter)}$	$V_0^{(intra)}$	TP=2, DP=2	DP=4
0	0	GPU 0	GPU 4
0	0	S-	GPU 5
0	0	GPU 2	GPU 6
0	0	GPU 3	GPU 7

```
1 Initialize hot switching plan \mathcal{P} = \{\};
 2 Initialize intra- and inter-node communication
     volume V_i^{(inter)}, V_i^{(intra)} as 0 for each device i;
3 foreach model parameter/gradient slice do
         Determine the owner (source) devices S;
         Determine the target (destination) devices D;
         foreach dst in D do
              if dst \notin S then
                   Partition S into S^{(intra)}, S^{(inter)};
                   if S_i^{(intra)} is not empty then
                        src \leftarrow \arg\min_{i} \{V_{i}^{(intra)} | i \in S^{(intra)}\};
10
                        V_{src}^{(intra)} \leftarrow V_{src}^{(intra)} + \text{sizeof}(slice);
11
                   else
12
                        src \leftarrow arg \min_{i} \{V_{i}^{(inter)} | i \in S^{(inter)}\};
13
                        V_{src}^{(inter)} \leftarrow V_{src}^{(inter)} + \text{sizeof}(slice);
14
                   \mathcal{P} \leftarrow \mathcal{P} \cup (slice, src, dst);
16 return \mathcal{P}:
```

- Heuristic hot switching planner
 - ◆ Intra-node communication is preferable than inter-node
 - ◆ GPU connectivities are full-duplex

$V_0^{(inter)}$	$V_0^{(intra)}$	TP=2, DP=2 DP=4	
0	1	GPU 0 GPU 4	
0	1	S—GPU 5 GPU 5	D
0	0	GPU 2 GPU 6 GPU 6	
0	0	GPU 7	

```
1 Initialize hot switching plan \mathcal{P} = \{\};
 2 Initialize intra- and inter-node communication
     volume V_i^{(inter)}, V_i^{(intra)} as 0 for each device i;
3 foreach model parameter/gradient slice do
         Determine the owner (source) devices S;
         Determine the target (destination) devices D;
         foreach dst in D do
              if dst \notin S then
                   Partition S into S^{(intra)}, S^{(inter)};
                   if S_i^{(intra)} is not empty then
                        src \leftarrow \arg\min_{i} \{V_{i}^{(intra)} | i \in S^{(intra)}\};
10
                        V_{src}^{(intra)} \leftarrow V_{src}^{(intra)} + \text{sizeof}(slice);
11
                   else
12
                        src \leftarrow \arg\min_{i} \{V_{i}^{(inter)} | i \in S^{(inter)}\};
13
                        V_{src}^{(inter)} \leftarrow V_{src}^{(inter)} + \text{sizeof}(slice);
14
                   \mathcal{P} \leftarrow \mathcal{P} \cup (slice, src, dst);
16 return \mathcal{P}:
```

- Heuristic hot switching planner
 - ◆ Intra-node communication is preferable than inter-node
 - ◆ GPU connectivities are full-duplex

$V_0^{(inter)}$	$V_0^{(intra)}$	TP=2, DP=2 DP=4	
0	1	GPU 4	
0	1	S—GPU 1 GPU 5 GPU 5	— D
0	0	GPU 8 GPU 6	
0	0	GPU 9 Inter-node GPU 7	

```
1 Initialize hot switching plan \mathcal{P} = \{\};
 2 Initialize intra- and inter-node communication
     volume V_i^{(inter)}, V_i^{(intra)} as 0 for each device i;
3 foreach model parameter/gradient slice do
        Determine the owner (source) devices S;
         Determine the target (destination) devices D;
         foreach dst in D do
              if dst \notin S then
                   Partition S into S^{(intra)}, S^{(inter)};
                   if S_i^{(intra)} is not empty then
                        src \leftarrow \arg\min_{i} \{V_{i}^{(intra)} | i \in S^{(intra)}\};
10
                        V_{src}^{(intra)} \leftarrow V_{src}^{(intra)} + \text{sizeof}(slice);
11
                   else
12
                        src \leftarrow \arg\min_{i} \{V_{i}^{(inter)} | i \in S^{(inter)}\};
13
                        V_{src}^{(inter)} \leftarrow V_{src}^{(inter)} + \text{sizeof}(slice);
14
                   \mathcal{P} \leftarrow \mathcal{P} \cup (slice, src, dst);
16 return \mathcal{P}:
```

- Heuristic hot switching planner
 - ◆ Intra-node communication is preferable than inter-node
 - ◆ GPU connectivities are full-duplex

$V_0^{(inter)}$	$V_0^{(intra)}$	TP=2, DP=2	DP=4
1	0	GPU 0	GPU 8
1	0	S-	GPU 9 D
0	0	GPU 2	GPU 10
0	0	GPU 3	GPU 11

```
1 Initialize hot switching plan \mathcal{P} = \{\};
 2 Initialize intra- and inter-node communication
     volume V_i^{(inter)}, V_i^{(intra)} as 0 for each device i;
3 foreach model parameter/gradient slice do
         Determine the owner (source) devices S;
         Determine the target (destination) devices D;
         foreach dst in D do
              if dst \notin S then
                   Partition S into S^{(intra)}, S^{(inter)};
                   if S_i^{(intra)} is not empty then
                        src \leftarrow \arg\min_{i} \{V_{i}^{(intra)} | i \in S^{(intra)}\};
10
                        V_{src}^{(intra)} \leftarrow V_{src}^{(intra)} + \text{sizeof}(slice);
11
                   else
12
                        src \leftarrow arg \min_{i} \{V_{i}^{(inter)} | i \in S^{(inter)}\};
13
                        V_{src}^{(inter)} \leftarrow V_{src}^{(inter)} + \text{sizeof}(slice);
14
                   \mathcal{P} \leftarrow \mathcal{P} \cup (slice, src, dst);
16 return \mathcal{P}:
```

Layout optimization

- The problem
 - ◆ Column-partitioning degree change causes non-sequential memory accesses
- Layout optimization
 - Flip the layout argument as column-major ordered and do row-partitioned TP

Implementation

- Build on top of Hetu
 - ◆ AI framework developed by a Peking University team
 - Automatic parallel strategy
 - Supports 3D parallelism
 - ◆ Communication optimization
 - Memory management

- Performance of parallel strategy
 - ◆ Similar performance against Megatron-LM

Outline

- Background & Motivation
- Design & Implementation
- Evaluation
- Conclusion

Evaluation

- Experimental Setup
- End-to-end Evaluation
- Case Studies
- Overhead of Hot Switching
- Ablation Studies of Hot Switching

Evaluation Setup

- Environments
 - ♦ 8~32 NVIDIA A800-80GB GPUs
 - ♦ NVLink with a bandwidth of 400GB/s in servers
 - ◆ IB with a bandwidth of 200GB/s between servers
- Baselines
 - Megatron
 - ◆ Deepspeed
- Models

Model	Layer	Heads	Hidden Dim
LLaMA2-7B	32	32	4096
LLaMA2-13B	40	40	5120
LLaMA2-32B	60	64	6656

Evaluation Setup

- Datasets
 - ◆ CommonCrawl
 - ◆ Github
 - ◆ Changed the sequence length from 4K to 32K
 - ◆ Batchsize is set to **512** (Large gradient accumulation steps)

End-to-end Evaluation

- LLama-32B, 32GPUs
 - ◆ 4K: static parallelism strategies, similar performance
 - ◆ 8K~32K: HotSPa achieves up to 1.96x speed up

End-to-end Evaluation

- LLama-13B, 16GPUs
 - ◆ 4K: static parallelism strategies, similar performance
 - ◆ 8K~32K: HotSPa achieves up to 1.84x speed up

End-to-end Evaluation

- LLama-13B, 8GPUs
 - ◆ 4K: static parallelism strategies, similar performance
 - ◆ 8K~32K: HotSPa achieves up to 2.99x speed up

Case studies

- LLama-32B, 32GPUs, s=32K
 - ◆ The benefits are most evident on short sequence lengths
 - ♦ Hot switching incurs little overhead

Breakdown		CommonCrav	wl (time in seco	onds)	GitHub (time in seconds)			
Dreakdown	Static C1		C2	C3	Static	C1	C2	C3
0~1K	42.1	22.7 (2.40×)	22.7 (2.40×)	12.8 (3.28X)	34.9	26.3 (2.78×)	26.3 (2.78×)	8.6 (4.05×)
1K~4K	12.5	22.7 (2.40%)	22.7 (2.40×)	8.2 (1.52×)	38.4	20.3 (2.76×)	20.3 (2.76×)	17.1 (2.24×)
4K~8K	3.5	5.4 (1.18×)	2.7 (1.29×)	2.7 (1.29×)	25.0	37.4 (1.40×)	15.4 (1.62×)	15.4 (1.62×)
8K~16K	2.9	3.4 (1.18×)	2.2 (1.31×)	2.2 (1.31×)	27.3	37.4 (1.40×)	20.2 (1.35×)	20.2 (1.35×)
16K~32K	2.4	2.4 (1.00×)	2.4 (1.00×)	2.4 (1.00×)	53.0	53.0 (1.00×)	53.0 (1.00×)	53.0 (1.00×)
Others		1.8	3.5	4.9	-	1.8	3.5	4.9
Total	63.4	32.3 (1.96×)	33.5 (1.89×)	33.2 (1.90×)	178.6	118.5 (1.50×)	118.4 (1.50×)	119.2 (1.49×)

(Static) $0 \sim 32$ K: $\langle 1, 16, 2 \rangle$ (C1) $0 \sim 4$ K: $\langle 4, 2, 4 \rangle$; 4K ~ 16 K: $\langle 2, 8, 2 \rangle$; 16K ~ 32 K: $\langle 1, 16, 2 \rangle$

(C2) $0\sim4$ K: $\langle4,2,4\rangle$; 4K ~8 K: $\langle4,4,2\rangle$; 8K ~16 K: $\langle2,8,2\rangle$; 16K ~32 K: $\langle1,16,2\rangle$

(C3) $0 \sim 1$ K: $\langle 8, 4, 1 \rangle$; 1K ~ 4 K: $\langle 4, 2, 4 \rangle$; 4K ~ 8 K: $\langle 4, 4, 2 \rangle$; 8K ~ 16 K: $\langle 2, 8, 2 \rangle$; 16K ~ 32 K: $\langle 1, 16, 2 \rangle$

Overhead of Hot Switching

- LLama-32B, 32GPUs, s=32K
 - ◆ Hot switching incurs less overhead after optimization

Time cost (in seconds) of switching between parallelism strategies

Ablation Studies of Hot Switching

- LLama-32B, 32GPUs, s=32K
 - ◆ Baseline
 - BCAST: a naïve algorithm that **ignores workload balance**
 - RR: focus on workload balance but **ignores the bandwidth differences**
 - ◆ Results
 - Improving by 1.33-1.68x and 1.47-2.69x compared to BCAST and RR

Ablation Studies of Hot Switching

- LLama-32B, 32GPUs, s=32K
 - ◆ Other Optimization techniques
 - Mixed precision: communicates only the 16-bit values
 - Layout optimization: designed for column-partitioning TP
 - ◆ Results
 - Mixed precision saves **79%-90%** of hot switching cost
 - Layout optimization contributes 1.16-1.38x of speedup

Outline

- Background & Motivation
- Design & Implementation
- Evaluation
- Conclusion

Conclusion

- Strength
 - ◆ Points out that **static** strategies can lead to **reduced training efficiency**
 - ◆ Proposed a novel distributed training paradigm of parallelism hot switching
 - ◆ Developed a system(HotSPa) that supports parallelism hot switching

Weakness

- ◆ Reliance on user-provided combinations of strategies
 - Group partitioning influences the number of sequences in each group
 - **High time cost** of searching optimal parallelism strategies
- ◆ Hot switching is not worthwhile sometimes
 - More devices and less gradient accumulation steps