Lab 10

Titanic Survival Prediction

This lab will return to the titanic dataset to predict survival of a passenger. This dataset is obtained from the earth package in R.

The data frame has 1046 observations on 6 variables.

- pclass passenger class, unordered factor: 1st 2nd 3rd
- survived integer: 0 or 1
- sex unordered factor: male female
- age age in years, min 0.167 max 80.0
- sibsp number of siblings or spouses aboard, integer: 0...8
- parch number of parents or children aboard, integer: 0...6

```
set.seed(11142024)
library(tidyverse)
library(earth)
data("etitanic")
titanic <- etitanic |>
   mutate(survived_factor = factor(survived))
glimpse(titanic)
```

Question 1 (2 points)

What factors in the dataset do you think will influence whether a passenger survives? How do you expect that factors to change survival outcomes?

Passenger class, sex, and age will likely be important. I'd expect an interaction between those factors.

Question 2 (6 points)

Regardless of your response to the first question, create figures to explore survival as a function of age, sex, and pclass. As always, include informative titles, axes, and legends.

```
titanic |>
  ggplot(aes(y = survived, x = age)) +
  geom_point(alpha = .2) +
  geom_smooth(method = 'loess', formula = 'y~x', se = F) +
  facet_grid(sex ~ pclass) +
  theme_bw()
```


Question 3 (2 points)

Construct a training set and a test set. If you plan to do model tuning, also create a validation set.

```
titanic <- titanic |>
  mutate(passenger_id = 1:n())

train_ids <- sample(1:nrow(titanic), ceiling(nrow(titanic) * .7))
train_titanic <- titanic |>
  filter(passenger_id %in% train_ids)
test_titanic <- titanic |>
  filter(!passenger_id %in% train_ids)
```

Question 4 (4 points)

Use a logistic regression model to predict passenger survival. Summarize the model outcome using classification error (% of incorrect predictions on the test set).

```
log_reg <- glm(survived_factor ~ age * pclass * sex, family = binomial(link = 'logit'), data
summary(log_reg)</pre>
```

Call:

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	2.06346	1.29649	1.592	0.1115
age	0.03103	0.03749	0.828	0.4079
pclass2nd	0.68292	1.58541	0.431	0.6666
pclass3rd	-2.10587	1.35423	-1.555	0.1199
sexmale	-0.72702	1.46911	-0.495	0.6207
age:pclass2nd	-0.05854	0.04629	-1.265	0.2059
age:pclass3rd	-0.03517	0.04092	-0.860	0.3901
age:sexmale	-0.07996	0.04113	-1.944	0.0519 .
pclass2nd:sexmale	-0.24372	1.93039	-0.126	0.8995
pclass3rd:sexmale	-0.31654	1.58157	-0.200	0.8414
age:pclass2nd:sexmale	-0.04978	0.06213	-0.801	0.4230
age:pclass3rd:sexmale	0.06506	0.04710	1.381	0.1672

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 994.04 on 732 degrees of freedom
Residual deviance: 634.36 on 721 degrees of freedom
AIC: 658.36
Number of Fisher Scoring iterations: 6
ce <- 1 - mean(test_titanic$survived == round(predict(log_reg, newdata = test_titanic, type =
The classification error for this logistic regression model is 21.1%
Question 5 (4 points)
Use a tree-based model to predict passenger survival. Summarize the model outcome using
classification error (% of incorrect predictions on the test set).
library(randomForest)
rf <- randomForest(survived_factor ~ age + pclass + sex + sibsp + parch, family = binomial(1
print(rf)
Call:
 randomForest(formula = survived_factor ~ age + pclass + sex +
                                                                     sibsp + parch, data = tra
               Type of random forest: classification
                     Number of trees: 500
No. of variables tried at each split: 2
        OOB estimate of error rate: 20.74%
Confusion matrix:
        1 class.error
0 383 47 0.1093023
1 105 198
           0.3465347
```

The random forest algorithm predict a classification error of 21.1%

ce_rf <- 1 - mean(test_titanic\$survived == predict(rf, newdata = test_titanic, type = 'response</pre>

Question 6 (2 points)

Do your model outcomes match your intuition and data visualizations? Why or why not?

 $Yes,\ I\ had\ pretty\ good\ understanding\ of\ the\ factors\ that\ would\ influence\ survival\ -\ thanks\ James\ Cameron.$