Total Marks: 60 Credits: 3.0 Total Time: 3 Hours

## Part-A

[Answer **All** of the following questions]

1. (a) If you want to put two or more figures side by side then you can use the latex minipage environment. What is super Node? What is the difference between Super Mesh & Mesh?

2

4

4

1

4

5

4

(b) Using nodal analysis, determine the potential across the 4  $\Omega$  resistor in Fig. 1



- (c) Use mess analysis to find currents and voltage  $v_o$  in the circuit of Fig. 2
- 2. (a) State Thevenin's Theorem.
  - (b) Two resistors of values  $1 \text{ k}\Omega$  and  $4 \text{ k}\Omega$  are connected in series across a constant voltage supply of 100 V. A voltmeter having an internal resistance of  $12 \text{ k}\Omega$  is connected across the  $4 \text{ k}\Omega$  resistor. Draw the circuit and calculate:
    - i. True voltage across 4 k $\Omega$  resistor before the voltmeter was connected.
    - ii. Actual voltage across 4 k $\Omega$  resistor after the voltmeter is connected and voltage recorded by the voltmeter.
    - iii. change in supply current when voltmeter is connected.
    - iv. Percentage error in voltage across 4 k $\Omega$  resistor.
  - (c) If you want to insert a Figure(pdf, png, etc) then you can use the **includegraphics** command as shown below. : Find the rms value of the current waveform of Fig.3. If the current flows through a 9  $\Omega$  resistor, calculate the average power absorbed by the resistor.



3. (a) If you want to place two figures side by side then use minipage environment. As for example: For the circuit shown in Fig. 4, calculate the current in the 10  $\Omega$  resistance. Use Thevenin's theorem only.





Fig. 4: Circuit for Thevenin's Theorem

Fig. 5: Circuit for Superposition Theorem

6

2

4

4

2

- (b) What is super position theorem? Find  $i_o$  in the circuit in Fig. 5 using the superposition theorem.
- (c) If a table is needed to insert, then you can use either tabular or tabular. In the table as shown in Table 1, the data are given for a general purpose Silicon diode, draw the I-V characteristic curve.

Table 1: Your Table Title Here

| SL.no | Forward bias voltage (V) | Forward bias                                |
|-------|--------------------------|---------------------------------------------|
|       |                          | $\operatorname{current}(\operatorname{mA})$ |
| 1     | 0                        | 0                                           |
| 2     | 0.2                      | 0.0                                         |
| 3     | 0.4                      | 0.1                                         |
| 4     | 0.5                      | 0.5                                         |
| 5     | 0.53                     | 1.0                                         |
| 6     | 0.6                      | 8.2                                         |
| 7     | 0.66                     | 19.5                                        |
| 8     | 0.7                      | 53.5                                        |
| 9     | 0.71                     | 83.1                                        |
| 10    | 0.73                     | 112.7                                       |

 $\mathbf{OR}$ 

(a) Find the Thevenin's equivalent circuit of Fig. 6 to the left of the terminal.



Fig. 6

(b) Find the magnitude  $R_L$  for the maximum power transfer in the circuit shown in Fig. 7. Also find out the maximum power.



T.

(c) Write short notes on Real power and Reactive power.

November 17, 2022 Page 2

4. (a) Determine  $I_{BQ}$ ,  $I_{CQ}$ ,  $V_{CEQ}$ ,  $V_B$ ,  $V_C$  and  $V_{BC}$  for the fixed-bias configuration shown in Fig. 8.



- (b) Determine the saturation level for the network of Fig. 8.
- (c) For the emitter bias network of Fig. 9 determine  $I_B$ ,  $I_C$ ,  $V_{CE}$ ,  $V_C$ ,  $V_E$  and  $V_B$  for the fixed-bias configuration shown in



- 5. (a) For the circuit in Fig. 10,  $i(t)=4(2-e^{-10t})$  mA. If  $i_2(t)=-1$  mA, find
  - i.  $i_1(t)$
  - ii. v(t),  $v_1(t)$  and  $v_2(t)$
  - iii.  $i_1(t)$  and  $i_2(t)$ .



(b) Find  $i_x$  in the circuit of Fig. 11 using nodal analysis.



Fig. 11

November 17, 2022

Page 3

4

5

3

(c) Determine the currents  $I_1$ ,  $I_2$  and  $I_{D2}$  for the network of Fig. 12.

Fig. 12

- 6. (a) Simplify the Boolean function  $F(w,x,y,z) = \sum (1,3,7,11,15)$ . Which has don't-care condition:  $d(w,x,y,z) = \sum (0,2,5)$ .
  - (b) Simplify  $F(A,B,C,D) = \sum (0,1,2,5,8,9,10)$  in product of sums.
  - (c) Define Minterms and Maxterms and briefly explain De Morgan's law.

.

 $\mathbf{OR}$ 

- (a) Simplify the Boolean function  $F(w, x, y, z) = \sum (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ .
- (b) Suppose you have 3 friends. Design an alarm which will ring when more than one friend come.
- (c) Draw the symbol and truth table of EX-OR gate & EX-NOR gate.

## List of the relevant equations:

$$\begin{bmatrix} A_r \\ A_{\theta} \\ A_{\phi} \end{bmatrix} = \begin{bmatrix} \sin \theta \cos \phi & \sin \theta \sin \phi & \cos \theta \\ \cos \theta \cos \phi & \cos \theta \sin \phi & -\sin \theta \\ -\sin \phi & \cos \phi & 0 \end{bmatrix} \begin{bmatrix} A_x \\ A_y \\ A_z \end{bmatrix}$$

$$\nabla \times \mathbf{A} = \frac{1}{r \sin \theta} \begin{vmatrix} \hat{r} & r\hat{\theta} & r \sin \theta \hat{\phi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ A_r & rA_{\theta} & r \sin \theta A_{\phi} \end{vmatrix}$$

$$= \frac{1}{r \sin \theta} \left[ \hat{r} \left( \frac{\partial}{\partial \theta} (\sin \theta A_{\phi}) - \frac{\partial A_{\theta}}{\partial \phi} \right) + \hat{\theta} \left( \frac{1}{\sin \theta} \frac{\partial A_r}{\partial \phi} - \frac{\partial}{\partial r} (rA_{\phi}) \right) + \hat{\phi} \left( \frac{\partial}{\partial r} (rA_{\theta}) - \frac{\partial A_r}{\partial \theta} \right) \right]$$

$$\begin{bmatrix} a_x \\ a_y \\ a_z \end{bmatrix} = \begin{bmatrix} \sin\theta\cos\phi & \cos\theta\cos\phi & -\sin\phi \\ \sin\theta\sin\phi & \cos\theta\sin\phi & \cos\phi \\ \cos\theta & -\sin\theta & 0 \end{bmatrix} \begin{bmatrix} a_r \\ a_\theta \\ a_\phi \end{bmatrix}.$$

November 17, 2022

3

4

4

2

4

2

Page 4