Experimental Characterization and Validation of Simultaneous Gust Alleviation and Energy Harvesting for Multifunctional Wing Spars

AFOSR # FA9550-09-1-0625

Ya Wang¹ and Daniel J. Inman² Department of Aerospace Engineering
University of Michigan
e-mail daninman@umich.edu

¹ Postdoctoral Researcher ² Professor and Chair

maintaining the data needed, and of including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE AUG 2012	2. REPORT TYPE			3. DATES COVE 00-00-2012	RED 2 to 00-00-2012	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
_	racterization and Va			5b. GRANT NUN	1BER	
Alleviation and En	ergy Harvesting for	Mulliunctional w	ing Spars	5c. PROGRAM E	LEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMB	ER	
				5f. WORK UNIT	NUMBER	
	ZATION NAME(S) AND AE igan,Department of	` '	ring,Ann	8. PERFORMING REPORT NUMB	GORGANIZATION ER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited				
Grantees'/Contrac Microsystems Held	otes nd Multifunctional M tors' Meeting for Al 1 30 July - 3 August S. Government or I	FOSR Program on 1 2012 in Arlington, V	Mechanics of Mu VA. Sponsored by	ltifunctional	Materials &	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF	18. NUMBER	19a. NAME OF	
a. REPORT unclassified			Same as Report (SAR)	OF PAGES 29	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Research Issues:

- 1. Characterization of appropriate ambient energy
- 2. Characterization of sensing, harvesting, actuation, associated electronics
- 3. Validation of reduced energy control laws with limited energy
- 4. Validation of autonomous gust alleviation system

Experimental Characterization of Transduction Abilities

UNIVERSITY of MICHIGAN ■ COLLEGE of ENGINEERING

Experimental Setup for Transduction Characterization of QP and MFC

Which is the best

transducer?

What is the coupling

coefficient?

What is the

internal

capacitance?

Property/Component	QP10n	MFC8528P1	Composite Substrate
Overall Length	50.8 mm	112 mm	593.7mm
Overall Width	25.4 mm	40 mm	38mm
Overall Thickness	0.508 mm	0.18 mm	3.175mm
Overall Mass	2.835 gram	4.06 gram	13.97gram
Nominal Distance	34.5 mm	34.5 mm	N/A

Simulations of Normal Vibration and Wind Gust

UNIVERSITY of MICHIGAN ■ COLLEGE of ENGINEERING

Validation of QP 10N Two Mode Harvesting

Peak Power Amplitude [QP]:

28.2mW/g² 1st mode @ 112kΩ

9.8mW/g² 2nd mode @ 20.2kΩ

Validation of MFC Two Mode Harvesting

Peak Power Amplitude [MFC]:

 50.8 mW/g^2 1st mode @ 1.98 MΩ

9.8 mW/g² 2^{nd} mode @ 0.35 M Ω

Looks like MFC is better than QP except not if normalized by active volume of PZT

Experimental Results of Transduction Characterization

Hamilton Principle

Governing

Equations

$$\int_{t_{e}}^{t_{2}} (\delta T_{e} - \delta U + \delta E_{ie} + \delta E_{nc}) dt = 0.$$

$$\int_{t_1}^{t_2} (\delta T_e - \delta U + \delta E_{ie} + \delta E_{nc}) dt = 0.$$

$$M\ddot{\eta} + C\dot{\eta} + K\eta = \mathbf{f} + \theta^h V^h$$

$$C_p^h \dot{V}^h + i^h + \theta^h \dot{\eta}^h = 0$$

Property/Component	QP10n	MFC8528P1	Composite Substrate
Active Length	45mm	85mm	559.2mm
Active Width	20mm	28mm	38mm
Thickness	0.38mm	0.18mm	3.175mm
Mass	2.30gram	4.06gram	13.97gram
Young's Modulus	51GPa	42GPa	10.29GPa
Internal Capacitance	117nF	7.9nF	N/A
Piezoelectric Coefficient d ₃₃	-190e-12	400e-9	N/A
Effective Distance from Clamp	38.4mm	30.5mm	N/A

Optimal length for Harvesting Effectiveness

Stewart, Weaver and Cain (2012) reported theoretically and experimentally that harvested energy in the fundamental mode maximized with an active length (electrode coverage) of exactly 2/3 of the beam length from the root.

Output Power of MFC versus Active Length at Mode 1 of 29 Hz and Mode 2 of 107Hz.

Expanded result to the 2nd mode

Output Power of QP versus Active Length at Mode 1 of 29 Hz and Mode 2 of 107Hz.

Design Consideration on Harvesting Effectiveness

Power vs. Optimal Load Vs. Length MFC 8528P1 @ Mode 1 @ 29Hz

Power vs. Optimal Load Vs. Length MFC 8528P1 @Mode2 @ 107Hz

Devices	MFC 8528P1
active length x width	85mm x 28 mm
thickness	0.18mm
mass	4.06g
elastic modulus	42GPa
operating mode	{3-3}
capacitance	5.7nF
pzt constant d31/d33	400pC/N
coupling coefficient J _p	8.9e-5

Simulations to compare power with active sensing length, load resistance for an MFC Sensor

Design Consideration on Harvesting Effectiveness

Power vs. Optimal Load Vs. Length QP10n @ Mode 1 @ 29Hz

Power vs. Optimal Load Vs. Length QP10n @ Mode 1 @ 29Hz

Devices	QP10n
active length x width	45mm x 25.4mm
thickness	0.38mm
mass	2.3g
elastic modulus	51Gpa
operating mode	{3-1}
capacitance	117nF
pzt constant d31/d33	-190pC/N
coupling coefficient J _p	-4.4e-4

Simulations to compare power with active sensing length, load resistance for an QP Sensor

Experimental Validation of Reduced Energy Control

Experimental Setup for Reduced Energy Control via MFC

Property/Component	MFC	Al Substrate
Clamped Length	112mm	450mm
Width	40mm	28mm
Thickness	0.18mm	3.05mm
Mass	4.06g	139.4g

13/36

Reduced Energy Control Laws


```
Case I: u(t) > 0
If u(t) < V_{ext}, connect to P1, then u=u(t);
if u(t) \ge V_{ext}, connect to P2, then u=V_{ext};
                Case II: u(t) < 0
if u(t) \le V_{ext}, connect to P2, then u = V_{ext};
if u(t) > V_{ext}, connect to P1, then u = u(t).
```

Design Methodology:

Cut off higher levels of actuation voltage by saturating control sources;

Reduce the average actuation power input flowing into piezoceramic actuator until control performance is reached

Ref: *Wang Y., Inman D.J. (2011) "Comparison of Control Laws for AEROSPACE ENGINEERING Vibration Suppression Based on Energy Consumption ," JIMSS, 22(8) pp.795-809 14/36

Experimental Characterization of Control Performance

damping ratio of mode 1: ζ_1 = 0.15 and mode 2: ζ_2 = 0.35

1 st Mode Control Gain	0.8	0.6	0.4
2 nd Mode Control Gain	0.8	0.6	0.4
1 st Mode Reduction	13dB	11dB	9dB
2 nd Mode Reduction	8dB	7dB	6dB

Experimental Characterization of Control Performance

damping ratio of mode 1: $g_1 = 0.6$ and mode 2: $g_2 = 0.6$

Shows that velocity gain in controller does not effect performance

Experimental Comparison of Control Performance

Experimental Comparison: Reduced Energy Control vs.

PSF

REC cut off
higher levels of
actuation voltage

current from REC
has sharp change
while the saturation
occurs, due to the
sharp switching in
voltage, and it drops
down rapidly after
saturation finishes

Schematic Autonomous Gust Alleviation System

Ref: Wang, Y., Inman, D. J. (2012) Journal of Composite Materials

Experimental Comparison of Actuation Power to

reach 5% settling time

Element	PSF	REC	Ratio of Reduction
Voltage RMS (V)	100	82.3	18 %
Current RMS (mA)	0.065	0.053	18 %
Required Energy E _{tr} (mJ)	6.6	1.6	76 %
Average Power P _{st} (mW)	1.2	1.0	17 %

Experimental Validation on Multifunctional Composite Wing Spar

Experimental Setup for Autonomous Gust Alleviation

Property/Component	QP10n	MFC8528P1	Composite Substrate
Active Length	45mm	85mm	559.2mm
Active Width	20mm	28mm	38mm
Thickness	0.38mm	0.18mm	3.175
Mass	2.30gram	4.06gram	13.97gram
Young's Modulus	51GPa	42GPa	10.29GPa
Internal Capacitance	117nF	7.9nF	N/A
Piezoelectric Coefficient d ₃₃	-190e-12	400e-9	N/A
Effective Distance from Clamp	38.4mm	30.5mm	N/A

Equivalent Circuit of a Reduced Energy Controller

$$\frac{v_o}{v_i} = k \frac{\omega_f^2}{s^2 + 2\zeta_f \omega_f s + \omega_f^2}.$$

1st order PSF control

$$k = \frac{R_2}{R_1} (1 + \frac{R_5}{R_4}), \omega_f^2 = \frac{1}{C_1 C_2 R_2 R_3}, \zeta_f = \frac{C_1 (R_2 + R_3) \omega_f}{2}$$

Component	Nominal	Component
Symbol	Values	Purpose
C1	150pF	C1_1 st Mode
C2	5600pF	C2_1 st Mode
С3	150pF	C1_2 nd Mode
C4	500pF	C2_2 nd Mode
R1	7.5ΜΩ	R1_1 st Mode
R2	7.5ΜΩ	R2_1 st Mode
R3	10ΜΩ	R3_1 st Mode
R4	7.5ΜΩ	R4_1 st Mode
R5	22.5MΩ	R5_1 st Mode
R6	$7.5M\Omega$	R1_2 nd Mode
R7	7.5ΜΩ	R2_2 nd Mode
R8	7.5ΜΩ	R3_2 nd Mode
R9	7.5ΜΩ	R4_2 nd Mode
R10	15ΜΩ	R5_2 nd Mode
R11	7.5ΜΩ	Summing R1
R12	7.5ΜΩ	Summing R2
R13	7.5ΜΩ	Summing R3
J1		Inputs
J2		Outputs
U1		LT1179SW
U2		LT1782IS5

Experimental Characterization of Component Properties

Property/Component	РСВ
Length	40 mm
Width	10 mm
Thickness	1.016 mm
Distance from clamp to start of PCB	114 mm
Mass	2.625gram
Young's Modulus	30 GPa

Experimental Measurement of Gust Alleviation

0.45 mm (RMS) to 0.09 mm (RMS)

14 dB reduction

60

@ 1st Mode

50

12 dB reduction

@ 2nd Mode

Does it work?

• For any wind gust duration t_g > settling time t_s >0.8s, the total control energy satisfy:

$$E_{tot} = E_{tr} + P_{st} * (t_g - t_s).$$

• Then the total control energy required by PSF and REC becomes:

$$E_{tot}^{PSF} = 6.6 + 1.2 * (t_g - 0.8).$$

$$E_{tot}^{REC} = 1.6 + 1.0 * (t_g - 0.8).$$

• For average harvested power $P^{\rm harv}$, the required harvesting time t_h to control a wind gust of duration t_q yields:

$$t_h = \frac{E_{tot}}{P^{harv}}.$$

Concluding Remarks

Summary Comments

- 1) Established ambient vibration levels in time histories
- 2) Fabricated a multifunctional wing spar
- 3) Derived a predictive model for energy conversion from embedded PZT and MFC including associated electronics
- 4) Experimentally characterized reduced energy control law based on limited energy constraints
- 4) Experimentally validated simultaneous energy harvesting and vibration control

Acknowledgements

Supported by:

U.S. Air Force Office of Scientific Research

F9550-09-1-0625

Monitored by Dr. Les Lee