Learning Journal - IV

Student Name: Dakshina Ravishankar

Course: SOEN 6841- Software Project Management

Journal URL: https://github.com/dashi1601/SOEN6841LJ 40267664/

Dates Range of activities: 4/11/2024 - 8/11/2024

Date of the journal: 4/11/2024

Key Concepts Learned:	Application in Real Projects:	Peer Interactions:	Challenges Faced:	Personal developmen t activities:	Goals for the Next Week:
Project closure involves steps that are executed when the project is coming to an end. It includes assessing whether everything in project went according to plan, archiving project data, lessons learnt and releasing unused resources. Each artifact produced is assessed and evaluated to improve future software projects	Closure fosters continuous improvement of software project execution by finding areas to work on so that future projects will not undergo the same problems. This step does not directly affect the software product but may help improve future products. Further, configuration management system helps in archiving all versions of artifact.	Discussed with my classmate who was a project manager about how closure is implemented in real projects. Documentation of analysis is very important at this stage; it must be consistent and accurate.	Difficult to understand how releasing software resources (tools, licences, etc.) worked in real like projects.	Answered exercise questions from textbook from chapter 8 to improve understandin g on closure	Review case study from textboo k
Lessons learnt facilitate better ways of doing a task, areas to improve on, figure out what went wrong, better negotiation with customers and what techniques worked better than others. It also helps assess risks that were handled better than others and what contingency or mitigation plan worked the best for a risk.	Lessons learnt are formulated by assessing different versions of artifacts produced in project lifetime. Software measurements, analysis and visualisation techniques can be used to form lessons learnt. These are then archived and can be referred to during future projects to improve decision making.	-	projects.	Referred to sample lessons learnt template	Read case studies from textboo k
Software lifecycle refers to the sequence of process executed while developing a software. Software lifecycle models include waterfall, iterative, incremental, etc. Each model is based on its unique principal thus, requiring careful analysis before choosing a software lifecycle model for a software project. Selection of lifecycle	Waterfall models are used for business-critical projects and when most steps and requirements are determined and will not encounter much changes. On the other hand, iterative and agile models are suitable for projects that need to delivered in small increments and is susceptible to change. It	Discussed with my classmate who was a project manager about how a decision is made on the type of model to use. It usually involves comparing similar past projects and reviewing empirical studies that suggest	Difficulty in understand ing the why sometimes waterfall model is preferred over iterative model that seem to	Referred to some research papers that compared different aspects of iterative and waterfall model on domain	Read case studies from textboo k

model changes every aspect of	is also ideal when requirements	what model is better	have more	specific	
software project	are not clear at the start.	for a particular use	advantages	software	
management.		case.		project.	
Software lifecycle metrics are	All the versions of work	-	Difficulty to	Read	Read
measurement strategies used	products are stored in		understand	through a	case
to measure software process	configuration management.		process	common	studies
and product attributes.	Lifecycle metrics helps assess		measurem	metrics used	from
Essentially, they are used to	the progress and quality of		ent in	to measure	textboo
measure the work products. It	processes and products. It is		iterative	processes	k
also involves finding	used to determine whether the		model as	and products	
relationship between different	quality metrics estimated in		each	and how it is	
work products, degree of	software project planning phase		process is	measured in	
association and impact, etc.	is going according to plan.		executed	real time.	
			more than		
			once.		
There are two types of	A detailed SRS document is	Discussed with my	Difficulty in	Referred to	Read
software requirements,	drafted that mentions a list of	classmate who was a	understand	sample SRS	case
functional and non functional	all functional and non-	project manager	ing	documents	studies
(quality attributes).	functional requirements, its	about whether	measurabili	for web-	from
Requirements are finetuned	measurability, why the	amount of	ty of	based	textboo
overtime by following	requirement arose, who drafted	refinement possible	functional	software	k
requirement development	the requirement, etc. This	depends on the	requiremen	projects.	
steps like interacting with	document is updated as	lifecycle model. Yes,	ts.		
customers and stakeholders	requirements are finetuned,	it does in some			
frequently.	thus, multiple versions exist.	cases.			

Final Reflections:

Overall Course Impact:

Software closure is crucial in software project as it ensures success of future project success. It involves analysing all software artifacts, forming lessons learnt and closing unused resources like budget and resources. Lessons learnt help understand what went wrong and how this situation can be avoided in future projects. Further, software lifecycle models have an impact on project outcome as different projects work better for different lifecycles. Finally, software requirements are developed and refined overtime to ensure maximum customer satisfaction.

Application in Professional Life:

By applying the skills and knowledge from these chapters, I can improve my effectiveness in project closure process and requirement development. Additionally, have an understanding as to what type of lifecycle model will be suitable for a software project. These practices will not only streamline project workflows but also create a more resilient and responsive team environment.

Peer Collaboration Insights:

I learned how theory applies to real-life projects as each project is unique, requiring thorough analysis of its complexity before making any critical decision. Requirement development is crucial as any misunderstanding in requirement may lead to project failure.

Personal Growth:

I gained a clearer understanding of project closure, software lifecycle models and software requirement development, recognizing that it is not straightforward and that project managers play a critical role in a project's success.