1 An Introduction to Complex Field

ENSY SILVER¹

Sunday 5th July, 2020

¹Thanks to my family, my friend and freedom.

1 Complex Set

The set of all complex numbers is denoted by \mathbb{C} , which is similar to \mathbb{R}^2 , but with some difference. We omit the definition and operation of complex numbers and only introduce the some important properties.

1.1 Cauchy sequence in \mathbb{C}

Completeness is essential for a metric space such that we can do operations. A metric space is complete iff Its Cauchy sequence converge. It is trivial to prove that every Cauchy sequence in $\mathbb C$ converge. We have thus the following result

Theorem 1.1. \mathbb{C} *is complete.*

1.2 Sets in the comples plane

We first define the **open disc** $D_r(z_0)$ of radius r centered at z_0 by

$$D_r(z_0) = \{ z \in \mathbb{C} : |z - z_0| < r \}$$

Then we define **closed disc** $\overline{D}_r(z_0)$ radius r centered at z_0 by

$$\overline{D}_r(z_0) = \{ z \in \mathbb{C} : |z - z_0| \le r \}$$

and the boundary of either the open or closed disc is the circle

$$C_r(z_0) = \{ z \in \mathbb{C} : |z - z_0| = r \}$$

Since the **unit disc** plays an important role in complex analysis, we often denote it by \mathbb{D} ,

$$\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}$$

Gigen a set $\Omega \subset \mathbb{C}$, z_0 is an **interior point** of Ω if there exists r > 0 such that

$$D_r(z_0) \subset \Omega$$

We can also define the **interior** of a set by all its interior points.

Now we introduce the most critical concepts in this section: open set and closed set. A set Ω is open if $\forall z \in \Omega, \exists r > 0$ such that $D_r(z) \in \Omega$. A set Ω is closed if its complement $\Omega^c = \mathbb{C} - \Omega$ is open.

A point $z \in \mathbb{C}$ is a **limit point** of the set Ω if there exists a sequence of points $\{z_n\} \in \Omega$ such that $z_n \neq z$ and $\lim_{n\to\infty} z_n = z$. Then we ca define the **closure** of a set Ω by $\Omega \cup \Omega'$ where Ω' is the set of all limit points of Ω .

With definitions above, we define the **boundary** of a set Ω by its closure minus its interior.

A set Ω is bounded if there exists M>0 such that |z|< M whenever $z\in\Omega$. If Ω is bounded, we define its **diameter** by

$$\operatorname{diam}(\Omega) = \sup_{z,w \in \Omega} |z - w|$$

A set Ω is **compact** if it is closed and bounded. Arguing as in the case of real variables, one can prove the following

Theorem 1.2. The set $\Omega \subset \mathbb{C}$ is compact if and only if every sequence $\{z_n\} \subset \Omega$ has a subsequence that converges to a point in Ω .

An **open covering** of Ω is a family of open sets $\{U_{\alpha}\}$ such that

$$\Omega \subset \bigcup_{\alpha} U_{\alpha}$$

In analogy with the situation in \mathbb{R} , we have the following equivalent formulation of compactness.

Theorem 1.3. A set Ω is compact if and only if every open covering of Ω has a finite subcovering.

Proposition 1.3.1. If $\Omega_1 \supset \Omega_2 \supset \cdots \supset \Omega_n \supset \cdots$ is a sequence of non-empty compact sets in \mathbb{C} with property that

$$diam(\Omega_n) \longrightarrow 0$$
 as $n \to \infty$

then there exists a unique point $w \in \mathbb{C}$ such that $w \in \Omega_n$ for all n.

The last notion is that of connectedness. An open set $\Omega \subset \mathbb{C}$ is said to be **connected** if it is not possible to find two disjoint non-empty open sets Ω_1 anf Ω_2 such that

$$\Omega = \Omega_1 \cup \Omega_2$$

We also call the connected open set in $\mathbb C$ region. Similarly, we can define the connectedness of a closed set.