PRINTABLE VERSION

Quiz 12

You scored 0 out of 100

Question 1

You did not answer the question.

Express in sigma notation

$$(5)(6) + (6)(7) + (7)(8) + (8)(9) + ... + (15)(16)$$

$$\sum_{k=0}^{9} (k+5)(k+6) = (5)(6) + (6)(7) + (14)(15) \times$$

$$\sum_{k=0}^{10} (k+5)(k+7) = (5)(7) + 111 \times$$

$$\sum_{k=0}^{10} (k+5)(k+6) = (5)(6)+(6)(7)+(1+(14)(15)+(15)(16))$$

$$\sum_{k=0}^{11} (k+5) (k+6)$$

$$\sum_{k=1}^{10} (k+5)(k+7)$$

Question 2

You did not answer the question.

Which of the following shows both correct sigma notations for

$$\frac{1}{3^{(2)}} + \frac{1}{3^{(3)}} + \ldots + \frac{1}{3^{(9)}}$$

$$= \frac{\left[\sum_{k=3}^{7} \frac{1}{3^{k}}, \sum_{i=0}^{10} \frac{1}{3^{i+2}}\right]}{11}$$

$$= \frac{1}{3^{3}} + \frac{1}{3^{4}} + 111 \times$$

$$\frac{1}{35} + \frac{1}{36} + 1/1 \times 1$$
h)
$$\begin{bmatrix} \sum_{k=3}^{10} \frac{1}{3^{k+2}}, \sum_{i=0}^{7} \frac{1}{3^{i+2}} \end{bmatrix} \times \frac{1}{30} + \frac{1}{3^{1}} + 1/1 + \frac{1}{30} \times 1$$
e)
$$\begin{bmatrix} \sum_{k=3}^{7} \frac{1}{3^{k}}, \sum_{i=3}^{10} \frac{1}{3^{i+2}} \end{bmatrix} \times \frac{1}{30} + \frac{1}{3^{1}} + 1/1 + \frac{1}{30} \times 1$$
e)
$$\begin{bmatrix} \sum_{k=0}^{7} \frac{1}{3^{k}}, \sum_{i=3}^{10} \frac{1}{3^{i+2}} \end{bmatrix} \times \frac{1}{30} + \frac{1}{3^{1}} + 1/1 + \frac{1}{30} \times 1$$
e)
$$\begin{bmatrix} \sum_{k=0}^{9} \frac{1}{3^{k}}, \sum_{i=0}^{7} \frac{1}{3^{i+2}} \end{bmatrix} \times \frac{1}{30} + \frac{1}{3^{1}} + 1/1 + \frac{1}{30} \times 1$$
e)
$$\begin{bmatrix} \sum_{k=0}^{9} \frac{1}{3^{k}}, \sum_{i=0}^{7} \frac{1}{3^{i+2}} \end{bmatrix} \times \frac{1}{30} + \frac{1}{3} \times 1 + \frac{1}{30} \times 1$$

Ouestion 3

You did not answer the question.

partial fraction

Find the sum of the series

$$\sum_{k=4}^{\infty} \frac{2}{k^2 - k} = \sum_{k=4}^{\infty} \frac{2}{\mathsf{K}(\mathsf{k} + \mathsf{j})}$$

$$= \sum_{k=4}^{3} + \sum_{k=4}^{4} + \sum_{k=5}^{4} + \sum_{k=6}^{4} + \sum_{k=6}^{4}$$

$$= \frac{2}{3} \quad \text{since } \stackrel{?}{\rightleftharpoons} \quad \text{and } \stackrel{?}{\rightleftharpoons} \quad \text{tend to o}$$

Question 4

You did not answer the question.

Find the sum of the series

$$\sum_{k=0}^{\infty} \frac{(-1)^k}{6^k} = \sum_{k=0}^{\infty} \left(-\frac{1}{6}\right)^k = \frac{6}{1-\left(-\frac{1}{6}\right)} = \frac{6}{7}$$

$$A = 1, Y = -\frac{1}{6}$$
Thirtial common ratio

a)
$$\frac{12}{7}$$

b) $\frac{18}{7}$

c) $\frac{4}{7}$

d) $\frac{9}{7}$

e) $\frac{6}{7}$

Question 5

You did not answer the question.

Find the sum of the series.

$$\sum_{k=0}^{\infty} \frac{1-6^k}{8^k}$$

By Geometric series

$$\frac{60}{7}$$
 Since $\frac{1}{8}$ and $\frac{6}{8} < 1$

$$-\frac{40}{7}$$
 So both of them converges = $\frac{1}{1-\frac{1}{8}} - \frac{1}{1-\frac{1}{8}}$

$$\frac{20}{7}$$

into two sums.
$$= \frac{\$}{7} - 4 = -\frac{20}{7}$$

7 2 (8) + - W (3) +

Ouestion 6

You did not answer the question.

Determine whether the series converges or diverges

$$p$$
-series $\sum \frac{1}{k^p} = \begin{cases} converges & \text{if } p > 1 \\ diverges & \text{if } p \leq 1 \end{cases}$

$$\sum \frac{k}{6k^3+3} \sim \sum \frac{k}{k^3} = \sum \frac{1}{k^2} (271)$$

which converges

So by limit Comparison, it converges

You did not answer the question.

Determine whether the series converges or diverges.

$$\sum \frac{6}{\sqrt{k+1}} \sim \sum \frac{1}{|K|} = \sum_{k=1}^{\infty} \frac{1}{|K|} \left(\frac{1}{2} < 1 \right)$$
which diverges

a) diverges

c) converges Question 7

b) cannot be determined

You did not answer the question.

Determine whether the series converges or diverges

$$\sum \frac{1}{\sqrt{4k^2 - 2k}} \sim \sum \frac{1}{\sqrt{k^2}} = \sum \frac{1}{k^2} (1 \le 1)$$
Which diverges
by p-series

n) converges

Onestion 9

You did not answer the question.

Determine whether the series converges or diverges. $\sum \frac{1}{k(k+3)(k+2)} \sim \sum \frac{1}{3}$ which converges a) converges

50 by limit Comparison, it convergee

So by Basic Comparison text, it divergee

c) cannot be determined

Question 13

You did not answer the question.

Question 15

You did not answer the question.

Determine whether the series converges or diverges.

Note: $AF \rightarrow I$ as $F \rightarrow M$ $\sum k \left(\frac{7}{9}\right)^n$ (check it by L'HOPITAL'S RULE)

lot $q_{k}=k\cdot \lfloor \frac{2}{q} \rfloor^{k}$. $f_{q_{k}}=f_{k}\cdot \frac{7}{q}\rightarrow \frac{7}{q}$ By Rout lost,

it converges

b) converges

c) cannot be determined

Question 16

You did not answer the question.

Determine whether the series converges or diverges.

Let
$$ak = \frac{k!}{27^{10}k}$$
, $\frac{ak+1}{ak} = \frac{(k+1)!}{27^{10(k+1)}}$. $\frac{27^{10}k}{k!} = \frac{(k+1)!}{27^{10}} = \frac{700}{100}$

By Ratio fast, it diverges.

You did not answer the question.

Determine whether the series converges absolutely, converges conditionally or diverges

$$\sum \frac{(-1)^k (2k)}{5^k}$$

- a) diverges
- h) converges absolutely
- c) converges conditionally
- d) cannot be determined

Question 24

You did not answer the question.

Determine whether the series converges absolutely, converges conditionally or diverges

$$\sum \left(-1\right)^{k} (k) e^{-k}$$

- at) __converges absolutely
- b) cannot be determined
- c) diverges
- d) converges conditionally

Question 25

You did not answer the question.

Determine whether the series converges absolutely, converges conditionally or diverges.

$$\sum \frac{(-1)^k \cos(\pi k)}{6k+5}$$

- a) converges conditionally
- b) cannot be determined

(a) Check absolutely converges:

$$\sum \frac{(-1)^{k}(2k)}{5^{k}} = \sum \frac{2k}{5^{k}}$$
 let $0k = \frac{2k}{5^{k}}$ $0k = \frac{2(k+1)}{5^{k}}$ $\frac{5^{k}}{5^{k}} = \frac{1}{5}$ $\frac{2k+2}{5^{k}}$ $\frac{2}{5}$ $\frac{2k+2}{5^{k}}$ $\frac{2}{5}$ By Ratio test, $\frac{1}{5}$ $\frac{2k+2}{5^{k}}$ is absolutely converges

Check absolutely converges (A.C.)

\[\left(\frac{1+\text{to}}{6\xi\text{ts}}\right) = \frac{1}{6\xi\text{ts}} \right) = \frac{1}{6\xi\text{ts}} \le

NOT A.C.

Check conditionally converges
$$\sum \frac{(-1)^k \cos(\Pi k)}{6k+5} = \sum \frac{(-1)^k (-1)^k}{6k+5} = \sum \frac{(-1)^k (-1)$$

Cheek
lim. (K+1) = lim e lim (K+1) k
K700 = lime kon(E) KAN En(E) = example (E)