

목차

01	인공지능의 등장
02	인공지능의 역사
03	인공지능의 발전 단계
04	AI 반도체
05	Deep Learning

인공지능의 등장

- 1956년 다트머스대학교에서 '지능을 가진 기계'를 주제로 학술회의가 열림
- "학습의 모든 측면, 혹은 지능의 모든 특성이 원칙적으로 정확히 기술되어 서 이를 모사하는 기계를 만들 수 있 다는 가정에 토대를 두고 연구를 진핼 할 것"
- 사람의 다양한 능력을 컴퓨터가 대신 할 수 있도록 하는 것
- 인공지능 (Artificial Intelligence)이라 는 용어를 고안함.
- 인간의 두뇌구조를 본뜬 인공 신경망 (Artificial Neural Network)모델 등장
- 인공 신경망의 초기 모델은 퍼셉트론 (Perceptron, 1958)

관점 (Perspective)

개념 설명 (Concept Description)

사전적 개념 (Dictionary Concept)

철학적인 개념으로, 지성을 갖춘 존재 또는 시스템에 의해 만들어진 인공적인 지능을 의미

전통적 개념 (Traditional Concept)

컴퓨터가 인간의 지능적인 행동을 모방할 수 있도록 하는 소프트웨어로, 인간이 가진 지적 능력의 일부 또는 전체를 구현한 것

기술적 개념 (Technical Concept)

인간의 지능으로 할 수 있는 사고, 학습, 자기계발 등을 컴퓨터가 할 수 있도록 하는 방법을 연구하는 컴퓨터공 학 및 정보기술의 한 분야 AI 개념의 직관적 이해 초기능 미지의 존재 2

일반 지능 인간

옵은 지능 탁구 게임 프로그램 지도 경로 찾기 프로그램 금융사기 감지 프로그램

AI 개념 분류

태동기 (1940년대 ~ 1970년대 중반):

- **초기 개념 정립:** 1940년대에 앨런 튜링이 ' 튜링 테스트'를 제안
- '인공지능' 용어 탄생: 1956년 다트머스 회의에서 '인공지능' 용어 사용
- 초기 연구: LISP 언어 개발 및 퍼셉트론 모
 - 첫 번째 'AI 겨울' (1970년대 중반 ~ 1980년대 초반):
 초기 AI 기술의 제한으로 연구 자금이 감소하고 활
 - 동이 위축된 시기입니다. '조합 폭발(Combinatorial explosion)' 문제 등이 주요 한계로 지적되었습니다.

- 전문가 시스템의 부상과 신경망 연구 재개 (1980 년대):
 - 전문가 시스템: 특정 분야의 전문 지식을 활용한 '전문가 시스템'들이 상업적으로 성공하면서 AI에 대한 관심이 재점화 되었습니다. (예: MYCIN, PROSPECTOR)
 - 신경망 모델 발전: 다층 퍼셉트론(MLP)과 오차 역전파
 알고리즘의 발전으로 신경망 연구가 활기를 되찾았습
 - 두 번째 'AI 겨울' (1980년대 후반 ~ 1990년대 중반):
 - 전문가 시스템의 한계와 새로운 기술 부족으로 AI 연구가 재차 침체되었습니다.

 조용한 발전과 딥러닝의 시작 (1990년대 중반 ~ 2010년대 초반):

- 데이터와 머신러닝의 중요성이 강조되며, 인터넷의 확산과 데이터 양의 급증으로 머신러닝 기술이 주목받기 시작했습니다.
- 딥러닝의 기초가 되는 기술로 심층 오토인코더와 심층 신뢰 신경망(DBN)이 등장했습니다.

- 딥러닝의 부활과 AI의 대중화 (2012년 이후):
 - GPU 발전: GPU의 발전이 딥러닝 알고리즘의 병렬 처리를 가능하게 했습니다.
 - 빅데이터: 인터넷과 모바일 기기의 확산으로 대량의 데이터가 축적되어 딥러닝 모델 학습에 활용됩니다.
 - 알고리즘 발전: ImageNet에서의 성과를 통해 딥러닝 알고리즘이 크게 발전했습니다.
 - 알파고의 등장: 2016년 구글의 알파고가 이세돌과의 대결에서 승리하며 AI 연구에 대한 관심과 투자가 증가했습니다.
 - 생성형 AI의 시대: 최근 GPT와 같은 대규모 언어 모델이 등장하여 다양한 창작 활동 이 가능해지고 있습니다.

인공지능 발전 단계

- 약인공지능 (Narrow Al / Weak Al)
 - 특정 작업에 특화된 AI로, 음성 비서나 이미지 인식, 번역 프로그램 등을 포함합니다.
- 강인공지능 (General Al / Strong Al / AGI)
 - 인간처럼 다양한 지적 활동을 수행하고 스스로 학습하는 AI로, 아직 개발되지 않은 기술입니다.
- 초인공지능 (Super Intelligence / ASI)
 - 인간의 지능을 모든 면에서 초월하는 AI로, 주로 SF 영화에서 다루어집니다.

규칙 기반, 인공지능의 구현

- 세계 최초의 프로그래머로 알려진 **에이다 러브** 레이스(Ada Lovelace, 1815~52)는 컴퓨터가 개 발되기 이전에 프로그래밍의 기본 원리를 확립 했습니다.
- 그녀는 19세기 당시 "기계가 앞으로 정교하게 작곡할 수 있을 것"이라고 예측했습니다.
- 하지만 그녀는 "기계는 인간이 지시한 작업만 수행하며, 어떠한 해석이나 진실을 예측할 능력 은 없다"고 언급했습니다.

규칙 기반, 인공지능의 구현

- 프로그래밍이란?
- 규칙(알고리즘) + 데이터(자료구조)

If 신호등이 (color = ??)이라면,

Then 멈춰라.

If 신호등이 (color = ??)이라면, Then 길을 건너라.

스스로 규칙을 찾다

• 1980년대 머신러닝 (Machine Learning;기계학습)이라고 부르는 알고리즘을 활용하기 시작함.

인공신경망의 성과

- 규칙을 찾아내는 머신러닝의 시대가 열리면서 인공신경망 연구가 활 기를 찾게됨.
- 2010년, 스탠퍼드대학교의 페이페이 리(Fei-Fei Li / 1976 ~) 교수는 100만장의 이미지를 1,000개의 카테고리로 분류하는 이미지넷 대규모 시각 인식 챌린지(ILSVRC)를 주최하게 됨.
- 정답 데이터의 생성은 아마존 메케니컬 터크(Amazon Mechanical Turk) 에서 담당

이미지넷 정확도 100% 전통적인 방식 80% 60% 40% 20% 0% 2011 2012 2013 2014 2015

ImageNet 대회

- 대회의 정확도는 매년 1~2%씩 상승했음 (72% -> 74%).
- 2012년, 토론토대학교의 제프리 힌튼(Geoffrey Hinton)교수팀이 무려 84.7%의 정확도를 보이며 우승을 차지함.
- 딥러닝(Deep Learning) 방식으로 높은 성능 달성

Deep Learning

- 힌튼 교수팀이 사용한 방법은 그림과 같은 컨볼루션(Convolution) 기법을 사용한 딥러닝.
- 모델의 이름은 알렉스넷(AlexNet)
- 컨볼루션 신경망은 얀 르쿤(Yann LeCun)이 정립

Deep Learning & Data

• 알고리즘의 발전과 제대로 학습할 수 있는 방법을 찾아내자 딥러닝이라는 새로운 이름을 부여받게 됨.

- 사람의 두뇌를 흉내낸 방식
 - GPT-3는 매개변수 1,750억
 - 사람은 약 1,000억개의 뉴런

GPU가 완성한 AI

게임과 그래픽 카드가 인공지능과 무슨 관련이 있을까?

GPU vs CPU

GPU, 왜 AI에 필수적인가?

- AI, 특히 딥러닝 모델은 **병렬 연산**에 최적화되어 있으며, GPU는 수천 개의 코어로 많은 연산을 동시에 처리합니다. 이 **대규모 병렬 처리 능력** 덕분에 GPU는 AI 학습과 추론에 필수적입니다.
 - **딥러닝 학습 가속화:** 복잡한 모델 학습에 필요한 행렬 곱셈을 GPU가 빠르게 처리하여 학습 시간을 크게 단축시킵니다.
 - 실시간 AI 서비스 가능: 자율주행차와 같은 AI 서비스에서 GPU는 실시간 데이터 처리를 지원하여 빠른 판단을 가능하게 합니다.
 - AI 생태계 확장: NVIDIA와 같은 GPU 제조사는 CUDA와 같은 소프트웨어 플랫폼을 제공해 AI 개발자들이 GPU를 효율적으로 활용하도록 돕고 있습니다.

Home Work

폰 노이만 아키텍처

폰 노이만 병목 현상

캐시 메모리

하버드 아키텍처

파이프라이닝

멀티코어 프로세서

왜 AI 반도체인가?

- AI 연산은 기존의 범용 프로세서(CPU)로는 감당하기 힘든 독특한 특징을 가집니다.
- 전통적인 컴퓨터 구조는 CPU와 메모리 사이의 데이터 이동 경로가 하나뿐이라, 대규모 데이터를 처리해야 하는 AI 연산 시심각한 성능 저하가 발생합니다. 이를 '폰 노이만 병목 현상'이라고 합니다.

왜 AI 반도체인가?

- CPU가 연산을 하려면 메모리에서 데이터를 가져와야 하고, 결과 를 다시 메모리에 저장해야 합니다.
- AI는 이 과정이 수없이 반복되어 데이터 이동 경로에 병목이 생 깁니다.

반도체 유형

범주	CPU (중앙 처리 장 치)	GPU (그래픽 처리 장치)	TPU (텐서 처리 장치)	ASIC (주문형 반도체)	FPGA (필드 프로그래머블 게이트 어레이)	NPU (신경망 처리 장치)
핵심 특징	범용, 순차 처리, 소 수 빅코어	병렬 처리, 수천 개 리 틀코어	텐서 연산 특화, 구글 맞춤형	특정 작업 맞춤 설 계		신경망 연산 특화, 뇌 모방
장점	높은 유연성, 다양 한 작업 처리	뛰어난 병렬 처리, AI 학습 및 추론 고성능	고속 행렬 연산, 높은 AI 연산 성능	최고 성능/효율성 (목표 작업)		높은 전력 효율성, 실시간 추론
단점	AI 연산에 낮은 에 너지 효율성, 낮은 계산 성능	높은 전력 소모, 발열 심함	높은 비용(클라우드 서비스 유리)	높은 개발 비용, 긴 개발 기간, 설계 변 경 어려움	복잡한 로직 설계, 칩당 단가 높음.	활용 폭 좁음 (AI 연 산에만 특화).
주요 활용 분야	일반 컴퓨팅, 복잡 한 제어	딥러닝 학습, 대규모 추론, 자율주행, 클라우 드 Al	구글 AI 모델 학습, 데이터 센터 연산 최 적화	임베디드 시스템, 대량 생산 제품	고주파수 트레이딩, 실시간 의료 영상 분석	모바일 기기, IoT, 엣지 컴퓨팅
아키텍처 초점	범용	병렬 연산	텐서 연산	맞춤형	재구성 가능	신경망

Deep Learning Framework

주요 프레임워크 비교 #1

TensorFlow

PyTorch

Keras

TensorFlow

Google에서 개발한 딥러닝 프레임워크로, 강력한 확장성과 생산 환경 배포를 위한 풍부한 생태계가 특징 입니다. TFX, TensorFlow.js, TensorFlow Lite 등 다양한 플랫폼을 지원하여 아이디어 구상부터 대규 모 서비스까지 전 과정을 커버합니다.

주요 사용 사례

Google

검색, 번역, 포토 등 핵심 서비스 전반

Twitter

사용자 타임라인의 트윗 랭킹 시스템

Airbnb

이미지 분류 및 객체 탐지를 통한 서비스 개선

Coca-Cola

모바일 앱의 구매 증명 이미지 인식

장점

- ✓ 강력한 MLOps 및 배포 도구(TFX, Serving)
- ✓ 모바일/웹/엣지 등 다양한 플랫폼 지원
- ✓ 대규모 분산 학습 및 TPU 하드웨어 최적화
- ✓ 가장 큰 커뮤니티와 풍부한 레퍼런스

단점

- 초기 버전의 가파른 학습 곡선 (현재 많이 개선됨)
- ★ 상대적으로 무겁고 장황한 코드 스타일
- x 유연성 측면에서 PyTorch보다 다소 경직됨

주요 프레임워크 비교 #2

TensorFlow

PyTorch

Keras

PyTorch

Meta(구 Facebook)에서 개발했으며, 파이썬 친화적이고 직관적인 API로 연구자들 사이에서 큰 인기를 얻고 있습니다. Define-by-Run 방식을 채택하여 모델을 유연하게 구축하고 디버깅하기 용이합니다.

주요 사용 사례

Meta

Facebook, Instagram 등 서비스의 AI 기능

Microsoft

Azure 클라우드 플랫폼에서 PyTorch 적극 지원

Tesla

자율 주행 시스템의 컴퓨터 비전 모델 개발

OpenAl

GPT와 같은 LLM 초기 연구 및 개발

장점

- ✓ 파이썬다운 직관적이고 간결한 코드
- √ 동적 계산 그래프로 높은 유연성 및 쉬운 디버깅
- ✓ 학계 및 연구 커뮤니티의 압도적인 지지
- ✓ Hugging Face 등 최신 AI 라이브러리와의 뛰 어난 호환성

단점

- X TensorFlow 대비 배포 및 운영 생태계가 상대 적으로 미흡
- 과거 시각화 도구(TensorBoard) 지원 부족 (현 재 통합됨)
- χ 상대적으로 적은 상업적 이용 사례 및 레퍼런스

주요 프레임워크 비교 #3

TensorFlow

PyTorch

Keras

Keras

딥러닝을 더 쉽게 접근할 수 있도록 만든 고수준 API입니다. TensorFlow 위에서 동작하며(현재는 멀티백엔드 지원), 마치 레고 블록을 조립하듯 간단한 코드로 신경망을 구축할 수 있어 입문자에게 가장 적합합니다.

주요 사용 사례

Netflix

추천 시스템의 빠른 프로토타이핑

NASA

위성 이미지 분석 및 천문학 연구

Uber

다양한 머신러닝 문제 해결에 활용

Startups

빠른 PoC(개념 증명) 모델 개발

장점

- ✓ 가장 쉽고 직관적인 API로 빠른 프로토타이핑 가능
- ✓ 코드 가독성이 높고 문서화가 잘 되어 있음
- ✓ TensorFlow 2.0부터 공식 API로 통합되어 안 정성 확보
- ✓ 멀티 백엔드(TF, PyTorch, JAX) 지원으로 유연성 증대

단점

- 🗶 저수준의 세밀한 모델 제어가 어려움
- 고수준 API이므로 내부 동작 이해가 어려울 수 있음

Deep Learning Workflow

1) Problem Definition

CLASSIFICATION

NEURAL STYLE TRANSFER

DETECTION

IMAGE CAPTION

SEGMENTATION

COLORIZATION

2) Dataset preparation/annotation

• Cityscape/Camvid Semantic Segmentation

MNIST

Hand-written digit

2) Dataset preparation/annotation - cont'd

- CIFAR-10 dataset
 - Label : 10 classes
 - Consists of 60,000 (32x32) color images, with 6000 images per class.

IMAGENET

- Label: 1000 classes
- Consists of 800,000 (256x256 or 224x224) color Images, with 800 images per class.

3) Model selection & Training

Session Break

HUMAN POSE ESTIMATION

INSTANCE SEGMENTATION

Optical Character Recognition

Thank you