

Report

Star-Shaped polygon of N points with an arbitrary $\boldsymbol{\mathcal{S}}_0$

Professor:

Dr. Mohades (mohades@aut.ac.ir)

Student:

Mohammadreza Ardestani (9513004) 9, Dec, 2020

Table of content:

- 1. Introduction and definitions
- 2. Algorithm
- 3. Implementation with Python

Introduction and definitions

Definition of star shaped polygon:

A star-shaped polygon is a polygonal region in the plane that is a star domain, that is, a polygon that contains a point from which the entire polygon boundary is visible. In other word, star shaped polygon is a polygon that its kernel of visibility is not null.

(for more information check: Computational Geometry and computer graphics in C++)

Example of star shaped polygon:

Algorithm

Description of the problem:

We have N different number of points (whether online or offline) and then we return a polygon chain such that its kernel is not null (and based on our algorithms one of those N points are element of the Kernel and we call that point S_0).

(I will leave the interested reader (perhaps you!) with this question:

can we always convert any star shaped polygon into star shaped polygon such that at least one of its vertices (S_0) is an element of the kernel of visibility?)

Star shaped polygon always exits (due to the following algorithms) and it's not unique.

2 different star shaped polygon with the same set of points:

Variation of this problem:

- 1. Off line given points and an arbitrary S_0
- 2. Off line given points and lowest point as S_0
- 3. Online given points and first points as S_0

Variation 2,3 are reducible to number 1.

So we will solve the first one and then we can use it for solving 2,3 as well.

Diving into the algorithm:

- 1) At first step we generate N random points and one of them as S_0 .
- 2) we find the angle of all points regarding to the Y = \mathcal{Y}_{S_0} :

For instance in this case angles of vertices would be: 180 for S6 and 160 for S5 and 100 for S4 and 40 for S3 and - 80 for S2 and - 150 for S1.

- 3) then we sort all points by their angles.
- 4) by S_0 and all points belong Y = \mathcal{Y}_{S_0} we build a star shaped polygon.

by S_0 and all points belong Y = \mathcal{Y}_{S_0} we build a star shaped polygon. we do it in this way :

We connect S_0 into the first lowest angle and then we connect I'th angle into (i+1)'th angle and finally we connect the last one into S_0 .

(Question: Prove these two polygons are star shaped and S_0 is an element of the Kernel.)

(note: if we don't have any point above and belong the Y = \mathcal{Y}_{S_0} the probem is solved and we don't execute part 5.)

(for instance at the end of this step for the figure in part 3 we have 2 star shaped polygon : S_0 S_3 S_4 S_5 S_6 S_0 and S_0 S_1 S_2 S_0)

5) Merging two star shaped polygon:

Now that we have come up with 2 star shaped polygon we need to merge them. For increasing clarity I introduce 4 type of points: UL, UG, LG, LL.

(if we only have one point belong (or above) the line LL and LG are equal.)

For merging these two Star shaped polygon we do as follow:

If ($UL S_0$ LG is not reflex angle):

merge these 2 polygon by removing LG S_0 edge and UL S_0 edge and add an edge UL LG else:

merge these 2 polygon by removing LL S_0 edge and UG S_0 edge and add an edge UG LL (Legitimize step5 by proving final polygon remains starShaped and S_0 is an element of the Kernel)

Time complexity of algorithm:

- 1) O(n)
- 2) O(n)
- 3) O (n log n) // using Merge sort
- 4) O (n)
- 5) O(1)
- $T(n) = O(n \log n)$

Implementation with Python

Here is the link for .py and .exe file:

.py <u>link</u> .<u>exe link</u>

Sample output:

N = 1000

N = 20

N = 10

Thanks for your attention.