Tutorial 6

Machine Learning and Big Data for Economics and Finance

List of activities

- I. Complete Section 5.3 Lab: Cross-validation and the Boostrap, subsection 5.3.4.
- II. Complete the list of exercises in this tutorial.

Exercise 1. Bootstrap for the logistic regression model

Consider the logistic regression model

$$\Pr\{Y = 1 | X = x\} = \frac{1}{1 + e^{-\beta_0 - \beta_1 x - \beta_2 x^2}}$$

Write your own code to maximize the likelihood function with respect to $(\beta_0, \beta_1, \beta_2)$ and to compute the standard errors of the parameter estimators by the bootstrap method. Test your code on the dataset in LR2.csv.

Exercise 2. Linear discriminant analysis

Derive formula 4.13 in the textbook.

Solution.

Method 1: (much shorter than method 2)

Follow the argument in the slides while using $p_k(x) \propto \pi_k e^{-\frac{1}{2\sigma^2}(x-\mu_k)^2}$.

Method 2:

Given that the posterior probability is

$$p_k(x) = \frac{\pi_k \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2} (x - \mu_k)^2}}{\sum_{k'} \pi_{k'} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2} (x - \mu_{k'})^2}}$$

we deduce that $p_k > p_j$ for some $j \neq k$ if and only if

$$\frac{\pi_k \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu_k)^2}}{\sum_{k'} \pi_{k'} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu_{k'})^2}} > \frac{\pi_j \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu_j)^2}}{\sum_{k'} \pi_{k'} \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu_{k'})^2}}$$

Simplifying the denominators

 $p_k > p_j$ if and only if

$$\pi_k \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu_k)^2} > \pi_j \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu_j)^2}$$

Again $p_k > p_j$ only if $\log(p_k) > \log(p_j)$ which implies that $p_k > p_j$ if and only if

$$\log(\pi_k) + \log\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \frac{1}{2\sigma^2}(x - \mu_k)^2 > \log(\pi_j) + \log\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right) - \frac{1}{2\sigma^2}(x - \mu_j)^2$$

Simplifying $\log\left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)$ away yields $p_k > p_j$ if and only if

$$\log(\pi_k) - \frac{1}{2\sigma^2}(x - \mu_k)^2 > \log(\pi_j) - \frac{1}{2\sigma^2}(x - \mu_j)^2$$

which is the same as

$$\log(\pi_k) - \frac{1}{2\sigma^2}x^2 + x\frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} > \log(\pi_j) - \frac{1}{2\sigma^2}x^2 + x\frac{\mu_j}{\sigma^2} - \frac{\mu_j^2}{2\sigma^2}$$

1

Since $-\frac{1}{2\sigma^2}x^2$ does not depend on either k or j, then simplyfing it out yields $p_k > p_j$ if and only if

$$\log(\pi_k) + x \frac{\mu_k}{\sigma^2} - \frac{\mu_k^2}{2\sigma^2} > \log(\pi_j) + x \frac{\mu_j}{\sigma^2} - \frac{\mu_j^2}{2\sigma^2}$$

which is the same as sying that $p_k(x) > p_j(x)$ if and only if $\delta_k(x) > \delta_j(x)$ where $\delta_k(x)$ is defined by equation 4.13.