# Statistics & Probablities

By Balaji

# **Descriptive Statistics** Agenda-

In this session you will learn about

- Basics of Statistics
- > Types of Variables
- Measure of Central Tendancy
- Measure of Dispersion
- Case studies of Central tendencies and Dispersion
- > Percentile/Quartile & Correlation and Covariance
- Central Limit Theorem
- Data Visualization and distribution

# What is Statistics?



#### What is Statistics

**Statistics** is a way to get information from data.

# Case 1 - Answer in 5 seconds!

#### Case 1 - Answer in 5 seconds!

A college in US has students from the following countries for a Masters degree. Which country is in majority?

#### Case 1 - Answer in 5 seconds!

A college in US has students from the following countries. Which country is in majority?

| US      | China   | US      | Sweden   | China   |
|---------|---------|---------|----------|---------|
| Canada  | China   | Japan   | Mexico   | US      |
| China   | Germany | India   | India    | Japan   |
| US      | US      | US      | China    | China   |
| India   | Japan   | England | India    | Japan   |
| England | India   | China   | Mexico   | US      |
| Mexico  | US      | Canada  | Pakistan | India   |
| Japan   | China   | US      | Japan    | Germany |
| China   | India   | India   | China    | China   |
| Germany | Japan   | China   | US       | Japan   |

# Frequency Table

| Country  | Frequency |
|----------|-----------|
| Canada   | 2         |
| China    | 12        |
| England  | 2         |
| Germany  | 3         |
| India    | 8         |
| Japan    | 8         |
| Mexico   | 3         |
| Pakistan | 1         |
| Sweden   | 1         |
| US       | 10        |

#### Case 2

#### **Problem**

A parent changes school of their Son who is studying in 11<sup>th</sup> standard since his academic results are not good in 10<sup>th</sup> Standard in his current School.

They change Student A from ABC school to XYZ school

#### Case 2

#### **Problem**

A parent changes school of their Son who is studying in 11<sup>th</sup> standard since his academic results are not good in 10<sup>th</sup> Standard in his current School.

They change Student A from ABC school to XYZ school

#### Results

- 1. Ranked 15<sup>th</sup> in ABC school
- 2. Ranked 2<sup>nd</sup> in XYZ school

#### What's the conclusion?

### Case 2

#### **Problem**

A parent changes school of their Son who is studying in 11<sup>th</sup> standard since his academic results are not good in 10<sup>th</sup> Standard in his current School.

They change Student A from ABC school to XYZ school

#### Results

- 1. Ranked 15<sup>th</sup> in ABC school
- 2. Ranked 2<sup>nd</sup> in XYZ school

What's the conclusion: Has the student improved?

#### **Number of Students**

#### No of Students in ABC School



#### No of Students in XYZ School



Knowledge of Statistics allows you to make better sense of the ubiquitous use of numbers.

#### Decision Makers Use Statistics for Various Purposes:

Present and describe business data and information properly

Draw conclusions about large sets using information collected from subsets



# Statistics is ...

- 1. Collecting Data
- 2. Analyzing Data
- 3. Interpreting Data
- 4. Presenting Data

# What does it Tell?



# Classification

**Statistics** 

Descriptive Statistics

Presenting, organizing and summarizing data Inferential Statistics

Drawing conclusions about a population based on data observed in a sample

# **Population and Sample**

# **POPULATION** SAMPLE

# **Census and Survey**

Census: Gathering data from the whole population of interest.

For example, elections, 10-year census, etc.

**Survey:** Gathering data from the **sample** in order to make conclusions about the population.

For example, opinion polls, quality control checks in manufacturing units, etc.

#### Parameter and Statistic

**Parameter:** A descriptive measure of the **population**.

For example, population mean, population variance, population standard deviation, etc.

**Statistic:** A descriptive measure of the **sample**.

For example, sample mean, sample variance, sample standard deviation, etc.



#### **PARAMETERS**

Measures used to describe the population are called parameters

#### **POPULATION**

#### **STATISTICS**

Measures computed from sample data are called statistics.



### Statistical Notations

#### **Greek – Population Parameter**

Mean  $-\mu$ 

Variance – σ<sup>2</sup>

Standard Deviation - σ

#### Roman – Sample Statistic

Mean  $-\bar{x}$ 

Variance - s2

Standard Deviation - s

# Variables



# Categorical Data (Qualitative)

#### Nominal Examples

- Employee ID
- Gender
- Religion
- Ethnicity
- Pin codes
- Place of birth
- Aadhaar numbers

#### Ordinal

#### Examples

- Mutual fund risk ratings
  Fortune 50 rankings
- Movie ratings

While there is an order, difference between consecutive levels are not always equal.

#### **Discrete and Continuous**





#### Discrete or Continuous?

- Time between customer arrivals at a retail outlet Continuous
- Sampling 100 voters in an exit poll and determining how many voted for the winning candidate
  Discrete
- Lengths of newly designed automobiles -Continuous
- No. of customers arriving at a retail outlet during a five- minute period
  Discrete
- No. of defects in a batch of 50 items

Discrete

# Numerical or Categorical?

| Age | Gender | Major       | Units | Housing   | GPA |
|-----|--------|-------------|-------|-----------|-----|
| 18  | Male   | 12sychology | 16    | Dorm      | 3.6 |
| 21  | Male   | Nursing     | 15    | Parents . | 3.1 |
| 20  | Female | Business    | 16    | Apartment | 2.8 |

Numerical

□ Categorical

# Numerical or Categorical?

| Age | Gender | Major       | Units | Housing   | GPA |
|-----|--------|-------------|-------|-----------|-----|
| 18  | Male   | l¹sychology | 16    | Dorm      | 3.6 |
| 21  | Male   | Nursing     | 15    | Parents   | 3.1 |
| 20  | Female | Business    | 16    | Apartment | 2.8 |

- Numerical
  - Age
  - Units
  - GPA

- Categorical
  - □ Gender
  - Major
  - Housing

# Variables - Dependent and Independent

Dependent variables on y-axis and Independent on x-axis.

Dependent variable also called Target variable or Class Simple Linear Regression

variable.



# Summarizing Data



# Modality



# Symmetry



# Central Tendency



# Variability



# Central Tendency

A measure of **Central Tendency** is a single value that attempts to describe a set of data **by identifying the central position** within that set of data. In other words, the Central Tendency computes the "center" around which the data is distributed.

The reliable quantity

# Mean

Mean, 
$$\mu = \frac{\Sigma x}{n}$$



Alan went for a trek. On the way, he had to cross a stream. As Alan did not know swimming, he started exploring alternate routes to cross over.

Suddenly he saw a sign-post, which said "Average depth 3 feet". Alan was 5'7" tall and thought he could safely cross the stream.





Alan never reached the other end and drowned in the stream.

## Why did Alan Drown?

## Why did Alan Drown?



### The "Hotshot" Sales Executive



Kurt works as a sales manager at vsellhomes.com. In the monthly sales review, Kurt reports that he will achieve his quarterly target of \$1M.

Kurt claims his average deal size is \$100,000 and he has 10 deals in his pipeline. Kurt's boss Ross is very delighted with his numbers.





At the end of quarter, even after closing 8 deals Kurt fails to meet his target number and falls short by more than \$500,000.

## Discussion



### The Reality of the "Hotshot" Salesman

- Average deal size in pipeline
  - = \$100,000

| Deal # | Deal Value | Deal Status |
|--------|------------|-------------|
| 1      | 70,000     | Open        |
| 2      | 50,000     | Closed      |
| 3      | 55,000     | Closed      |
| 4      | 60,000     | Closed      |
| 5      | 55,000     | Closed      |
| 6      | 50,000     | Closed      |
| 7      | 50,000     | Closed      |
| 8      | 60,000     | Closed      |
| 9      | 50,000     | Closed      |
| 10     | 5,00,000   | Open        |

### The Reality of the "Hotshot" Salesman

- Average deal size in pipeline
  = \$100,000
- Deal #10 is of significantly higher value than all the other deals and impacts the average calculation

| Deal # | Deal Value | Deal Status |
|--------|------------|-------------|
| 1      | 70,000     | Open        |
| 2      | 50,000     | Closed      |
| 3      | 55,000     | Closed      |
| 4      | 60,000     | Closed      |
| 5      | 55,000     | Closed      |
| 6      | 50,000     | Closed      |
| 7      | 50,000     | Closed      |
| 8      | 60,000     | Closed      |
| 9      | 50,000     | Closed      |
| 10     | 5,00,000   | Open        |

# Median

## Median

Median: Arrange data in increasing order and find the mid-point  $\frac{(n+1)}{2}$ .

### The Reality of the "Hotshot" Salesman

- Average deal size in pipeline
  = \$100,000
- Deal #10 is of significantly higher value than all the other deals and impacts the average calculation
- Median = \$55,000 more realistic measure

| Deal # | Deal Value | Deal Status |
|--------|------------|-------------|
| 1      | 70,000     | Open        |
| 2      | 50,000     | Closed      |
| 3      | 55,000     | Closed      |
| 4      | 60,000     | Closed      |
| 5      | 55,000     | Closed      |
| 6      | 50,000     | Closed      |
| 7      | 50,000     | Closed      |
| 8      | 60,000     | Closed      |
| 9      | 50,000     | Closed      |
| 10     | 5,00,000   | Open        |

### The Reality of the "Hotshot" Salesman

- Average deal size in pipeline
  = \$100,000
- Deal #10 is of significantly higher value than all the other deals and impacts the average calculation
- Median = \$55,000 more realistic measure

| Deal # | Deal Value | Deal Status |
|--------|------------|-------------|
| 1      | 70,000     | Open        |
| 2      | 50,000     | Closed      |
| 3      | 55,000     | Closed      |
| 4      | 60,000     | Closed      |
| 5      | 55,000     | Closed      |
| 6      | 50,000     | Closed      |
| 7      | 50,000     | Closed      |
| 8      | 60,000     | Closed      |
| 9      | 50,000     | Closed      |
| 10     | 5,00,000   | Open        |

Median is less susceptible to the influence of Outliers.

# Mode

## Mode

Mode – the most frequently occurring

## Central Tendency: Example

- Timing for the Men's 500-meter Speed Skating event in Winter Olympics is tabulated.
- The Central Tendency measures are computed below:

| Year | Time  |                  | Year | Time  |                                      | Year  | Time |                     |
|------|-------|------------------|------|-------|--------------------------------------|-------|------|---------------------|
| 1928 | 43.4  | Mean             | 1988 | 36.4  | Median                               | 36.4  | 1    | Mode                |
| 1932 | 43.4  | =                | 1980 | 38.03 | = (7 <sup>th</sup> + 8 <sup>th</sup> |       |      | = Value with        |
| 1936 | 43.4  | (43.4++36.4)/1   | 1984 | 38.19 | Value)/2                             | 38.03 | 1    | highest             |
| 1948 | 43.1  | 4<br>= 568.53/14 | 1976 | 39.17 | =<br>(40.2+40.2)/2                   | 38.19 | 1    | frequency<br>= 43.4 |
| 1952 | 43.2  | = 40.61          | 1972 | 39.44 | = 40.2                               | 39.17 | 1    |                     |
| 1956 | 40.2  |                  | 1964 | 40.1  |                                      | 39.44 | 1    |                     |
| 1960 | 40.2  |                  | 1956 | 40.2  |                                      |       |      |                     |
| 1964 | 40.1  |                  | 1960 | 40.2  |                                      | 40.1  | 1    |                     |
| 1968 | 40.3  |                  | 1968 | 40.3  |                                      | 40.2  | 2    |                     |
| 1972 | 39.44 |                  | 1948 | 43.1  |                                      | 40.3  | 1    |                     |
|      |       |                  | 1952 | 43.2  |                                      |       |      |                     |
| 1976 | 39.17 |                  | 1928 | 43.4  |                                      | 43.1  | 1    |                     |
| 1980 | 38.03 |                  | 1932 | 43.4  |                                      | 43.2  | 1    |                     |
| 1984 | 38.19 |                  | 1936 | 43.4  |                                      | 43.4  | 3    |                     |
| 1988 | 36.4  |                  | 1550 | 73.7  | I                                    | 45.4  | 3    |                     |

| Match | Player A | Player B |  |
|-------|----------|----------|--|
| 1     | 40       | 40       |  |
| 2     | 40       | 35       |  |
| 3     | 7        | 45       |  |
| 4     | 40       | 52       |  |
| 5     | 0        | 30       |  |
| 6     | 90       | 40       |  |
| 7     | 3        | 29       |  |
| 8     | 11       | 43       |  |
| 9     | 120      | 37       |  |

| Match | Player A | Player B |
|-------|----------|----------|
| 1     | 40       | 40       |
| 2     | 40       | 35       |
| 3     | 7        | 45       |
| 4     | 40       | 52       |
| 5     | 0        | 30       |
| 6     | 90       | 40       |
| 7     | 3        | 29       |
| 8     | 11       | 43       |
| 9     | 120      | 37       |
| SUM   | 351      | 351      |

| Match | Player A | Player B |
|-------|----------|----------|
| 1     | 40       | 40       |
| 2     | 40       | 35       |
| 3     | 7        | 45       |
| 4     | 40       | 52       |
| 5     | 0        | 30       |
| 6     | 90       | 40       |
| 7     | 3        | 29       |
| 8     | 11       | 43       |
| 9     | 120      | 37       |
| SUM   | 351      | 351      |
| MEAN  | 39       | 39       |

| Match  | Player A | Player B |
|--------|----------|----------|
| 1      | 40       | 40       |
| 2      | 40       | 35       |
| 3      | 7        | 45       |
| 4      | 40       | 52       |
| 5      | 0        | 30       |
| 6      | 90       | 40       |
| 7      | 3        | 29       |
| 8      | 11       | 43       |
| 9      | 120      | 37       |
| SUM    | 351      | 351      |
| MEAN   | 39       | 39       |
| MEDIAN | 40       | 40       |

# Dispersion Measures

**Measures of Dispersion** describe the data spread or how far the measurements are from the center.



# **Spread of Data - Range**

Range = Max - Min

# Spread of Data - SD and Variance

Variance = 
$$\frac{\Sigma(x-\mu)^2}{n}$$

Standard Deviation,  $\sigma = \sqrt{Variance}$ 

## Who's Best?

| Match              | Player A         | Player B         |
|--------------------|------------------|------------------|
| 1                  | 40               | 40               |
| 2                  | 40               | 35               |
| 3                  | 7                | 45               |
| 4                  | 40               | 52               |
| 5                  | 0                | 30               |
| 6                  | 90               | 40               |
| 7                  | 3                | 29               |
| 8                  | 11               | 43               |
| 9                  | 120              | 37               |
| SUM                | 351              | 351              |
| MEAN               | 39               | 39               |
| MEDIAN             | 40               | 40               |
| STANDARD DEVIATION | 41.5180683558376 | 7.28010988928052 |

# Measuring Variability and Spread

Basketball coach Statson is in a dilemma choosing between 3 players all having the same average scores.

| Points scored per game | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
|------------------------|---|---|---|----|----|----|----|
| Frequency, f           | 1 | 1 | 2 | 2  | 2  | 1  | 1  |

| Points scored per game | 7 | 9 | 10 | 11 | 13 |
|------------------------|---|---|----|----|----|
| Frequency, f           | 1 | 2 | 4  | 2  | 1  |

| Points scored per game | 3 | 6 | 7 | 10 | 11 | 13 | 30 |
|------------------------|---|---|---|----|----|----|----|
| Frequency, f           | 2 | 1 | 2 | 3  | 1  | 1  | 1  |

## Measuring Variability and Spread

Basketball coach Statson is in a dilemma choosing between 3 players all having the same average scores.

| Points scored per game | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
|------------------------|---|---|---|----|----|----|----|
| Frequency, f           | 1 | 1 | 2 | 2  | 2  | 1  | 1  |

| Points scored per game | 7 | 9 | 10 | 11 | 13 |
|------------------------|---|---|----|----|----|
| Frequency, f           | 1 | 2 | 4  | 2  | 1  |

| Points scored per game | 3 | 6 | 7 | 10 | 11 | 13 | 30 |
|------------------------|---|---|---|----|----|----|----|
| Frequency, f           | 2 | 1 | 2 | 3  | 1  | 1  | 1  |

Mean = Median = Mode = 10 for all 3.

# **Measuring Variability and Spread**

Range = Max - Min

| Points scored per game | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
|------------------------|---|---|---|----|----|----|----|
| Frequency, f           | 1 | 1 | 2 | 2  | 2  | 1  | 1  |

| Points scored per game | 7 | 9 | 10 | 11 | 13 |
|------------------------|---|---|----|----|----|
| Frequency, f           | 1 | 2 | 4  | 2  | 1  |

| Points scored per game | 3 | 6 | 7 | 10 | 11 | 13 | 30 |
|------------------------|---|---|---|----|----|----|----|
| Frequency, f           | 2 | 1 | 2 | 3  | 1  | 1  | 1  |

| Points scored per game | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
|------------------------|---|---|---|----|----|----|----|
| Frequency, f           | 1 | 1 | 2 | 2  | 2  | 1  | 1  |

| Points scored per game | 7 | 9 | 10 | 11 | 13 |
|------------------------|---|---|----|----|----|
| Frequency, f           | 1 | 2 | 4  | 2  | 1  |

| Points scored per game | 3 | 6 | 7 | 10 | 11 | 13 | 30 |
|------------------------|---|---|---|----|----|----|----|
| Frequency, f           | 2 | 1 | 2 | 3  | 1  | 1  | 1  |

MEAN = MEDIAN = MODE = 10 RANGE = 5,5,27

| Points scored per game | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
|------------------------|---|---|---|----|----|----|----|
| Frequency, f           | 1 | 1 | 2 | 2  | 2  | 1  | 1  |

| Points scored per game | 7 | 9 | 10 | 11 | 13 |
|------------------------|---|---|----|----|----|
| Frequency, f           | 1 | 2 | 4  | 2  | 1  |

| Points scored per game | 3 | 6 | 7 | 10 | 11 | 13 | 30 |
|------------------------|---|---|---|----|----|----|----|
| Frequency, f           | 2 | 1 | 2 | 3  | 1  | 1  | 1  |

MEAN = MEDIAN = MODE = 10 RANGE = 5, 5, 27 Reject Player 3

# Basketball coach Statson is in a dilemma choosing between 3 players all having the same average scores.

| Points scored per game | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
|------------------------|---|---|---|----|----|----|----|
| Frequency, f           | 1 | 1 | 2 | 2  | 2  | 1  | 1  |

| Points scored per game | 7 | 9 | 10 | 11 | 13 |
|------------------------|---|---|----|----|----|
| Frequency, f           | 1 | 2 | 4  | 2  | 1  |

#### STANDARD DEVIATION

Player 1 = 1.7873008824606

Player 2 = 3.30823887354653

What is your Decision?????????

A

## **Box Plot**

columns



- Shows the data spread for individual

# Percentile & Quartile

Nth percentile states that there are atleast N% of values less than or equal to this value and (100-N) values are greater or equal to this value

$$i = (N/100)*n$$

- N The percentile you are interested
- n Number of values

### **Key points**

- 1. If i is decimal then round off to next value
- 2. If i is integer then take average of i and i+1 value

## Let's calculate 85th percentile

### Data:

3310 3355 3450 3480 3480 3490 3520 3540 3550 3650 3730 3925

Calculate 85<sup>th</sup> percentile?

# Quartile

### Data:

3310 3355 3450 3480 3480 3490 3520 3540 3550 3650 3730 3925

### Quartile

Dividing data into  $\frac{1}{4}$  – 4 parts

Q1 – First Quartile – 25th percentile

Q2 – Second Quartile – 50th percentile (Median)

Q3 – Third Quartile – 75<sup>th</sup> percentile

IQR (Inter Quartile Range) = Q3 - Q1

# Inter Quartile Range

### Quartile

Dividing data into  $\frac{1}{4}$  – 4 parts

Q1 – First Quartile – 25<sup>th</sup> percentile

Q2 – Second Quartile – 50th percentile (Median)

Q3 – Third Quartile – 75<sup>th</sup> percentile

IQR (Inter Quartile Range) = Q3 - Q1

# Case Study

In an Under 19 World Cup selection squad for 2018 the BCCI needs to select 1 player based on the current performance in 2017 – 2018 Ranji Trophy. There are 2 players with similar stats and the board is not sure whom to select.

- Can you help the board members with your analysis?

# Stats - Player X & Y

Runs scored by both players in last 14 matches

| Player X | Player Y |     |
|----------|----------|-----|
|          | 40       | 35  |
|          | 20       | 40  |
|          | 5        | 7   |
|          | 20       | 23  |
|          | 10       | 20  |
|          | 75       | 26  |
|          | 100      | 12  |
|          | 25       | 30  |
|          | 15       | 27  |
|          | 15       | 102 |
|          | 20       | 18  |
|          | 17       | 17  |
|          | 11       | 14  |
|          | 5        | 7   |

## Coefficient of Variation

Coeff of Variation = (Standard deviation/ Mean) \* 100 %



#### Coefficient of Variation:

$$(5/100*100=5\%)$$

$$CV = \left(\frac{S}{\overline{X}}\right) \cdot 100\%$$

## **Coefficient of Variation**

Calculate the descriptive statistics of both players and if the coefficient of variation is greater than 85% then drop that player

Coeff of Variation = (Standard deviation/ Mean) \* 100 %

# Measures of association between 2 variables

- 1. Covariance
- 2. Correlation coefficient

## Covariance

$$|Cov(X,Y) = \frac{\sum (X_i - \overline{X})^* (Y_i - \overline{Y})}{n}$$

Higher the value stronger the relation between them

## **Correlation coefficient**

$$r_{xy} = \frac{\text{Cov}(x, y)}{S_x \times S_y}$$

### **Key Points**

- 1.A measure of relationship not affected by the units of measurements
- 2. Ranges from -1 to +1

# **Types of Correlation**



## **Central Limit Theorem**

When samples of size n>=30 are drawn from a population and distributed with individual samples mean then any distribution changes to normal distribution



## **Key Points**

- Also called as Standard Error (SE)
  Standard deviation of sample mean = (population standard deviation/square root(n))
- 2. Mean of sample means distribution = **Population mean**

**NOTE:** As n increases SE decreases - SE is inversely proportional to n