Simple Proof of Sylvester's Inertial Theorem

Warren Leywon

June 22, 2018

Here the notation K denotes either the complex number field $\mathbb C$ or the entire members of the reals $\mathbb R$.

The bilinear forms are defined as below:

Definition 1. Let V be a vector space over the field K, a bilinear form on V is a function $f: V \times V \to K$ such that for $u, v, w \in V$ and $\lambda \in V$

- $f(u + \lambda v, w) = f(u, w) + \lambda f(v, w)$
- $f(w, u + \lambda v) = f(w, u) + \lambda f(w, v)$

That is, the function f(u, v) has linearity property for both its argument u, v and it maps a pair of vectors (u, v) to a unique member in the field K.

It is trivial that

$$f(0+0,0) = f(0,0) + f(0,0) = f(0,0) = 0$$

Now we make the assumption that the bilinear forms are all symmetric:

$$f(u,v) = f(v,u)$$

Under such assumption, the quadratic form q(v) is defined as:

$$q(v) = f(v, v)$$

Since:

$$q(u+w) = f(u+w, u+w)$$

= $f(u, u) + 2f(u, w) + f(w, w)$
= $q(u) + 2f(u, w) + q(w)$

There

$$f(u, w) = \frac{1}{2}(q(u + w) - q(u) - q(w))$$

We see that the bilinear form and its quadratic form are intimately related, they are ascertained by each other.

Define the linear transformation T_f associated with f and is between the vector space V and its dual space V':

$$T_f: V \to V'$$
 $(T_f(v))(w) = f(v, w)$

The transformation T_f is clearly linear.

Two vectors $u, w \in V$ are said to be f-orthogonal if

$$f(u,w) = 0$$

Consider the set

$$u^{\perp} = \{ w \in V | f(u, w) = 0 \}$$

Theorem 1. u^{\perp} is a subspace of V.

Proof. Absolutely $0 \in u^{\perp}$ Let $v, w \in u^{\perp}, \lambda \in K$, because

$$f(u, v + \lambda w) = f(u, v) + \lambda f(u, w)$$

Then $u + \lambda w \in u^{\perp}$

Lemma 1. Let f be a symmetric bilinear form on the vector space V. If $v \in V$ and $q(v) \neq 0$, then

$$V=\operatorname{span}\{v\}\oplus v^\perp$$

Proof. Suppose that $w \in \text{span}\{v\} \cap v^{\perp}$, then $w = \lambda v$, because

$$f(v, w) = \lambda f(v, v) = \lambda q(v) = 0$$

Thus $\lambda = 0$. Also, consider, for any $w \in V$, there

$$w = \frac{f(v, w)}{f(v, v)}v + \left(w - \frac{f(v, w)}{f(v, v)}v\right)$$

Using this lemma, we could prove the following important theorem by mathematical induction:

Theorem 2. For any symmetric bilinear form f on V, there exists an f-orthogonal basis B of V.

We can also in the same way, provide the proof with Gram-Schmidt's procedure. But that involves excessive discussion on the f-orthogonal and the linearly independent properties.

Proof. Assume the theorem holds for the vector space of dimension n, and when n = 1 the theorem becomes trivial. Now n > 1.

2

If the corresponding quadratic form q(v) = 0 for any $v \in V$, then by

$$f(u, w) = \frac{1}{2}(q(u + w) - q(u) - q(w))$$

any basis will suffice. Assume there exists $v \in V$ that $q(v) \neq 0$.

By Lemma 1

$$V = \operatorname{span}\{v\} \oplus v^{\perp}$$

Then the subspace v^{\perp} is (n-1)-dimensional and the only thing to prove is linearly independency, but span $\{v\} \cap v^{\perp} = \{0\}$.

Now we have the preparation, the first step to Sylvester's inertial theorem is as below:

Theorem 3. Let f be a symmetric bilinear form f, let B and B' be two f-orthogonal basis. Called the element v is bilinearly nonzero if $q(v) \neq 0$. Then the number of the bilinearly nonzero elements in B and B' are equal.

Proof. Once the symmetric bilinear form f is fixed, range T_f as a subspace of the dual space V' has unvaried dimension. Suppose the elements of B are

$$b_1, b_2, \cdots, b_r, \cdots$$

The first r's elements are bilinearly nonzero, and the rest are not.

Similarly for B'

$$b'_1, b'_2, \cdots, b'_s, \cdots$$

If there exist $\alpha_1, \alpha_2, \cdots, \alpha_r$ that

$$\alpha_1 T_f(b_1) + \alpha_2 T_f(b_2) + \dots + \alpha_r T_f(b_r) = 0$$

Then by $(\alpha_1 T_f(b_1) + \alpha_2 T_f(b_2) + \cdots + \alpha_r T_f(b_r))(b_i) = 0$ we conclude that $\alpha_i q(b_i) = 0$, since b_i is bilinearly nonzero, $\alpha_i = 0$. The linear functionals

$$T_f(b_1), T_f(b_2), \cdots, T_f(b_r)$$

forms a basis for the subspace range T_f , similarly

$$T_f(b_1'), T_f(b_2'), \cdots, T_f(b_s')$$

also a basis. Because they're for the same subspace, r = s.

A vector v is bilinearly negative if q(v) is a nonzero real negative number, v is bilinearly positive if q(v) is a nonzero real positive number, v is bilinearly complex if q(v) contains a phase factor $e^{i\theta}$ and $\theta \neq k\pi$, where $k \in \mathbb{Z}$.

Theorem 4 (Sylvester's Inertial theorem, 1852). Let V be a vector space over the field \mathbb{R} , let f be a symmetric bilinear form on V. If B and B' are both f-orthogonal bases for the vector space V, then B and B' contains the same number of the bilinearly positive elements, same number of the bilinearly negative elements.

Proof. By Theorem 3, in both bases, the sum of the numbers of the bilinearly positive and bilinearly negative elements are equal. Assume that B has r bilinearly positive elements, and B' has r' bilinearly positive elements.

Let the bilinearly positive elements in B be

$$b_1, b_2, \cdots, b_r$$

The space they span is denoted by U, and the elements that are not bilinearly positive in B' be

$$b'_{r'+1}, b'_{r'+2}, \cdots, b'_{r'}$$

The space the vectors above span is denoted by W.

Let $u \in U$ and $u \neq 0$, then $u = \alpha_1 b_1 + \alpha_2 b_2 + \cdots + \alpha_r b_r$, there

$$q(u) = \alpha_1^2 q(b_1) + \alpha_2^2 q(b_2) + \dots + \alpha_r^2 q(b_r) > 0$$

also, let $w \in W$ and $w \neq 0$, then $w = \beta_{r'+1}b'_{r'+1} + \beta_{r'+2}b'_{r'+2} + \cdots + \beta_n b'_n$, there

$$q(w) = \beta_{r'+1}^2 q(b'_{r'+1}) + \beta_{r'+2}^2 q(b'_{r'+2}) + \dots + \beta_n^2 q(b'_n) \leqslant 0$$

Thus $U \cap W = \{0\}$, we have

$$U \oplus W \subseteq V$$

Thus

$$r + (n - r') \leqslant n$$

or

$$r \leqslant r'$$

By symmetry, $r' \leq r$, hence r' = r. The Sylvester's inertial theorem is proved.