

Université Internationale de Casablanca

LAUREATE INTERNATIONAL UNIVERSITIES

Compte rendu : Circuit électrique

Omar M'HAIMDAT, Marouane OUKADOUR, Anas ALAMI, Mohammed Amine QOULIGE

CPI1-Groupe 5

18/05/2016

Sous la direction du Pr Leila DAMRI

Partie 1:

A. Les objectifs :

Manipulation et familiarisation avec des outils tels que, l'Oscilloscope, les générateurs de tension ainsi que les Boards pour l'assemblage de circuits.

B. Le matériel utilisé lors du TP:

- L'oscilloscope.
- Le générateur de tension.
- Un condensateur.
- Une résistance :
- Des files.
- Un générateur à base fréquence.

II. Partie 2:

A. Mise en marche:

- 1. On a mis l'oscilloscope en marche, puis on a branché deux adaptateurs BNC-bananes, l'un dans CH-1 et le second dans CH-2.
- 2. Nous avons configuré CH1 et CH2, avec une vitesse de balayage de 1ms/div, et puis une période de 1ms.
- 3. Nous avons réglé l'intensité et la finesse du signal avec les boutons : FOCUS, INTENS et la LUMINOSITE du spot.
- 4. Les deux Channel sont mis sur le GND, et on a mis la trace lumineuse au milieu d'écran.

B. Mesure d'une tension continue :

- 1. On a réglé la sensibilité de l'oscilloscope à 500 mV/div.
- 2. Nous avons appuyé sur le touche XY pour tracer le signal de CH1 en fonction du signal de CH2. Nous avons réglé les deux Channel en mode DC. Il est à constater que qu'un point apparaît avec les coordonnées x=0 et y=2.
- 3. En inversant les polarités de la source continue, nous constatons que le signal s'inverse avec les coordonnées x=2 et y=0.

C. Mesure de fréquences à l'oscilloscope :

f _{GBF}	Toscilloscope	foscilloscope
20 Hz	50 ms	20 Hz
50 Hz	20 ms	50 Hz
300 Hz	3.3 ms	300 Hz
5 kHz	0.2 ms	5 kHz
80 kHz	12.5 us	80 kHz
300 kHz	3.3 us	300 kHz
2 MHz	0.5 us	2 MHz

D. Mesures de différences de phase :

Avec R = 750 Ω , C = 220 nF, Δt = 0.1 ms :

F en Hz	75	150	300	600	1.200	10.000
Δt	0.2 ms	0.2 ms	0.1 ms	0.15 ms	0.12 ms	0.024 ms
T	13 ms	6.6 ms	3.3 ms	1.6 ms	0.8 ms	0.1 ms
9	5.53	10.9	16.36	33.75	54	86.4

E. Utilisation de l'oscilloscope en mode XY :

Avec f = 300 Hz:

f en Hz	150	300	600	1200
Sin ð	0.2	0.3	0.55	0.8
ð en degré	11.54	17.45	33.36	53.13

F. Génération et visualisation des signaux périodiques :

• <u>Signal 1:</u>

Avec f = 1 kHz, $U_{\text{max}} = 5V$, $U_{\text{min}} = -3V$:

$$V_{\text{moy}} = \frac{5 + (-3)}{2} = 1V.$$

$$V_{\text{eff}} = \frac{5}{\sqrt{2}} = 3.54V.$$

• <u>Signal 2 :</u>

Avec f = 1 kHz, $U_{\text{max}} = 2V$, $U_{\text{min}} = -2V$

$$V_{\text{moy}} = \frac{2 + (-2)}{2} = 0V.$$

$$V_{\text{eff}} = \frac{2}{\sqrt{2}} = 1.41V.$$

• <u>Signal 3:</u>

Avec f = 1kHz, $U_{max} = 1.5V$, $U_{min} = -3.5V$

$$V_{\text{moy}} = \frac{1.5 + (-3.5)}{2} = -1V.$$

$$V_{\text{eff}} = \frac{-2}{\sqrt{2}} = -1.41V.$$