Math 170B: Probability Theory II

Prof. R. Killip | Spring 2024

Contents

1	Characteristic & Moment-Generating Functions 1.1 Multivariate Characteristic Functions	2 3 3 4				
2	Applications of Characteristic Functions2.1 Uniqueness Theorem2.2 Moment Problem	5 5				
3	Branching Processes					
4	Conditional Expectation	7				
5	Inequalities	8				
6	Modes of Convergence 6.1 Compactness for Convergence in Distribution	9 10				
7	The Central Limit Theorem 11					
8	Laws of Large Numbers 8.1 The Weak Law of Large Numbers	12 12 13				
9	Random Walks9.1 Simple Random Walks9.2 The Gambler's Ruin Problem	14 14 16				
10	Appendix 10.1 Distributions of Discrete Random Variables	17 17 18				

1 Characteristic & Moment-Generating Functions

Definition. Given a random variable X, the *characteristic function* [CF] of X is the function $\phi_X : \mathbb{R} \to \mathbb{C}$ defined by:

$$\phi_X\left(\xi\right) = \mathbb{E}\left(e^{i\xi X}\right)$$

Definition. Given a random variable X, the **moment-generating function** [MGF] of X is the function $M_X : \mathbb{R} \to \mathbb{R}$ defined by:

$$M_X(t) = \mathbb{E}\left(e^{tX}\right)$$

Characteristic & Moment-Generating Functions

Suppose $M_X(t)$ exists in some neighborhood $[-\delta, \delta]$ of 0 $(\delta > 0)$; then $\forall t \in [-\delta, \delta]$:

1. $M_X(t)$ can be expressed as a power series:

$$M_X(t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} \mathbb{E}\left(X^k\right)$$

2. Can derive the moments of X from the characteristic/moment-generating functions:

$$\mathbb{E}\left(X^{k}\right) = \left.\frac{d^{k}}{dt^{k}}M_{X}\left(t\right)\right|_{t=0} = \left.(i\right)^{-k}\frac{d^{k}}{d\xi^{k}}\phi_{X}\left(\xi\right)\right|_{t=0}$$

3. For $\xi \in [-\delta, \delta]$ ($|\xi| \leq \delta$), can treat characteristic function, MGF similarly:

$$\phi_X\left(\xi\right) = M_X\left(i\xi\right)$$

4. ϕ_X is analytic: for every point $\xi \in \mathbb{R}$, ϕ_X has value given in some neighborhood of ξ by power series with radius of convergence $r \geq \delta$

Existence: • Characteristic function $\phi_X(\xi)$ defined/exists $\forall \xi \in \mathbb{R}$

- In particular: if $\mathbb{E}(|X|^n) < \infty$, then $\phi_X(\xi)$ is *n*-times differentiable at the origin and $\phi_X^{(n)}(0) = i^n \mathbb{E}(X^n)$.
- Moment-generating function $M_X(t)$ strictly positive, only guaranteed to exist at t = 0; may not be defined for $t \in \mathbb{R} \setminus \{0\}$
 - $-k^{th}$ moment of X exists iff $M_X(t)$ is k-times differentiable at t=0

1.1 Multivariate Characteristic Functions

Definition. Let X_1, X_2, \ldots, X_n be random variables; then the **joint characteristic function** of $\vec{X} = \langle X_1, X_2, \ldots, X_n \rangle$ is given by:

$$\phi_{\vec{X}}\left(\vec{\xi}\right) = \mathbb{E}\left(e^{i\xi_1X_1 + i\xi_2X_2 + \dots + i\xi_nX_n}\right)$$

Theorem (Joint Characteristic Functions).

$$X_1, X_2, \dots, X_n$$
 independent $\iff \phi_{\vec{X}}\left(\vec{\xi}\right) = \phi_{X_1}\left(\xi_1\right) \cdot \phi_{X_2}\left(\xi_2\right) \cdot \dots \cdot \phi_{X_n}\left(\xi_n\right)$

Multivariate Characteristic Functions

- (i) The joint characteristic function $\phi_{\vec{X}}\left(\vec{\xi}\right)$ uniquely determines the joint law of \vec{X}
- (ii) If $X_1, X_2, ..., X_n$ are independent, then the characteristic function of $Y = X_1 + X_2 + ... + X_n$ is:

$$\phi_Y(\xi) = \prod_{i=1}^n \phi_{X_i}(\xi)$$

1.2 Cumulants

Definition. Given a random variable X, the *cumulant-generating function* [CGF] of X is defined (for $|\xi|$ small) as:

$$K: \xi \mapsto \ln[\mathbb{E}\left(e^{i\xi X}\right)] = \ln[\phi_X\left(\xi\right)]$$

Cumulants:

1.
$$\kappa_1 : \kappa_1 = \frac{1}{i} \frac{d}{d\xi} \ln[\phi_X(\xi)] \Big|_{\xi=0} = \mathbb{E}(X)$$

2.
$$\kappa_2 : \kappa_2 = \frac{1}{i^2} \frac{d^2}{d\xi^2} \ln[\phi_X(\xi)] \Big|_{\xi=0} = \text{var}(X)$$

3

1.3 Bochner's Theorem

Recall. A symmetric/Hermitian matrix $A \in M_{n \times n}(\mathbb{C})$ is called:

- 1. Positive semi-definite if $z^T A z \ge 0 \ \forall \ z \in \mathbb{C}^n$
- 2. **Positive definite** if $z^T A z > 0$ strictly.

Properties:

- (i) A is positive semi-definite iff $\lambda \geq 0$ real non-negative for every eigenvalue λ of A. In particular, A is positive definite iff $\lambda > 0$.
 - Corollary: $det(A) \ge 0$ [semi-definite] / det(A) > 0, A invertible [definite]
- (ii) A is positive semi-definite iff $\exists L \in M_{n \times n}(\mathbb{C})$ such that $A = L^*L$. In particular, A is positive definite iff L is invertible.

Theorem (*Bochner's Theorem*). A function $\phi : \mathbb{R} \to \mathbb{C}$ is a characteristic function for some r.v. X iff:

- 1. $\phi(0) = 1$
- 2. ϕ is continuous
- 3. ϕ is "positive-definite": $\sum_{i,j=1}^{n} \overline{\lambda}_{i} \lambda_{j} \phi(\xi_{i} \xi_{j}) \geq 0 \ \forall \ n \in \mathbb{N}, \xi_{i} \in \mathbb{R}, \lambda_{i} \in \mathbb{C}$ Equivalently, the matrix $(\phi(\xi_{i} - \xi_{j}))_{ij}$ is positive-definite, where:

$$(\phi(\xi_i - \xi_j))_{ij} = \begin{pmatrix} \phi(0) & \phi(\xi_2 - \xi_1) & \dots & \phi(\xi_n - \xi_1) \\ \phi(\xi_1 - \xi_2) & \phi(0) & \dots & \phi(\xi_n - \xi_2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi(\xi_1 - \xi_n) & \phi(\xi_2 - \xi_n) & \dots & \phi(0) \end{pmatrix}$$

2 Applications of Characteristic Functions

2.1 Uniqueness Theorem

Theorem (*Characterizations of a Distribution*). Let X, Y be two random variables; then TFAE:

- 1. $F_X(x) = F_Y(x) \ \forall \ x \in \mathbb{R}$
- 2. $\phi_X(\xi) = \phi_Y(\xi) \ \forall \ \xi \in \mathbb{R}$
- 3. $\mathbb{E}(f(X)) = \mathbb{E}(f(Y))$ for all bounded continuous functions $f: \mathbb{R} \to \mathbb{R}/\mathbb{C} \to \mathbb{C}$

2.2 Moment Problem

Moment Problem:

- If an r.v. X has any moment $\mathbb{E}(X^k) = \infty$, then its distribution F_X is not uniquely determined by its moments.
- If F_X is determined by finitely many moments, then X takes only finitely many values.
- (*) All moments $\mathbb{E}\left(X^{k}\right)$ of X exist & are finite iff all even moments exist & are finite

Theorem (*Uniqueness Theorem for Moments*). Let $m_k = \mathbb{E}(X^k)$; then the moments m_k characterize X if, for some a > 0:

$$\sum_{k=0}^{\infty} \frac{a^{2k}}{(2k)!} m_{2k} < \infty$$

3 Branching Processes

Definition. Given a random variable X, the **probability-generating function** of X is the function $G_X : \mathbb{R} \to \mathbb{R}$ defined by:

$$G_X(z) = \mathbb{E}\left(z^X\right)$$

Prop. Let N be an r.v. with values in $\mathbb{N} \cup \{0\}$ and let $X_1, X_2, \dots, X_j, \dots$ i.i.d. and independent of N. Let $Y = X_1 + X_2 + \dots + X_N$; then:

$$\phi_Y(\xi) = \phi_N\left(\frac{1}{i}\ln[\phi_X(\xi)]\right)$$

Corollary: (a) If X and N admit MGFs, have $M_Y(t) = M_N(\ln[M_X(t)])$

- (b) $\mathbb{E}(Y) = \mathbb{E}(X) \cdot \mathbb{E}(N)$
- (c) $\operatorname{var}(Y) = \operatorname{var}(N) \mathbb{E}(X)^2 + \mathbb{E}(N) \operatorname{var}(X)$
- (d) $G_Y(z) = G_n \circ G_X(z)$

Theorem ($Galton-Watson\ Tree$). Suppose an individual [gen 0] has X-many children, each of whom has independently and with distribution X and so on ad infinitum.

Let Z_n denote the number of children in the n^{th} generation $[Z_0 = 1]$; then:

- 1. $\mathbb{E}(Z_n) = \mathbb{E}(X)^n$
- 2. Let $e_n = \mathbb{P}(Z_n = 0)$; then $e_{n+1} \ge e_n$. In particular, $e = \lim_{n \to \infty} e_n$ exists.
- 3. $e \in [0,1]$ is the smallest root/solution to $G_X(x) = x$ for $x \in [0,1]$.
- 4. e < 1 iff either (i) $\mathbb{E}(X) > 1$ or (ii) $X \equiv 1$.
- 5. e = 0 iff $\mathbb{P}(X = 0) = 0$.

4 Conditional Expectation

Theorem (*Conditional Expectation*). Let X,Y random variables and $\mathbb{E}(|Y|) < \infty$; then there is a unique r.v. $\mathbb{E}(Y|X)$ [finite] satisfying:

- (i) $\mathbb{E}(Y|X)$ depends only on X, i.e. $\mathbb{E}(Y|X) = g(X)$ for some function g
- (ii) For any bounded function h, have that:

$$\mathbb{E}\left(Y\cdot h(X)\right) = \mathbb{E}\left(\mathbb{E}\left(Y\,|\,X\right)\cdot h(X)\right)$$

Recall. $\mathbb{E}(Y|X) = g(X)$ defined via:

$$\mathbb{E}(Y \mid X) = \sum_{n \in \mathbb{Z}} 1_{\{X=n\}}(\omega) \mathbb{E}(Y \mid X=n)$$
 [X discrete]

$$\mathbb{E}\left(Y \mid X\right) = \frac{\int y f_{X,Y}\left(x,y\right) dx}{\int f_{X,Y}\left(x,y\right) dy}$$
 [X continuous]

Theorem (*Conditional Expectation*). Let X, Y r.v.s with $\mathbb{E}(|Y|) < \infty$:

(i) Law of Iterated Expectation:

$$\mathbb{E}\left(\mathbb{E}\left(Y\,|\,X\right)\right) = \mathbb{E}\left(Y\right)$$

(ii) Define the **conditional variance** of Y given X:

$$\operatorname{var}\left(Y\,|\,X\right) := \mathbb{E}\left([Y-\mathbb{E}\left(Y\,|\,X\right)]^2\,|\,X\right) = \mathbb{E}\left(Y^2\,|\,X\right) - \mathbb{E}\left(Y\,|\,X\right)^2$$

(iii) Can obtain the Law of Total Variance:

$$\operatorname{var}(Y) = \mathbb{E}(\operatorname{var}(Y \mid X)) + \operatorname{var}(\mathbb{E}(Y \mid X))$$

5 Inequalities

Theorem (*Markov's Inequality*). Let X non-negative; then for any $\lambda > 0$

$$\mathbb{P}\left(X \geq \lambda\right) \leq \frac{1}{\lambda} \mathbb{E}\left(X\right)$$

Corollary (*Chebyshev's Inequality*). Let X r.v. and $\mu \in \mathbb{R}$; then:

$$\mathbb{P}\left(|X - \mu| \ge \lambda\right) \le \frac{1}{\lambda^2} \mathbb{E}\left((X - \mu)^2\right)$$

In particular, if $\mu = \mathbb{E}(X)$:

$$\mathbb{P}\left(\left|X - \mathbb{E}\left(X\right)\right| \ge \lambda\right) \le \frac{1}{\lambda^{2}} \text{var}\left(X\right)$$

Corollary (*Exponential Markov*). For any $s \ge 0$, have:

$$\mathbb{P}\left(X \ge \lambda\right) \le e^{-s\lambda} \mathbb{E}\left(e^{sX}\right)$$

Large Deviation Argument (*Cramer's Method*): To obtain a smaller upper bound for $\mathbb{P}(X \geq \lambda)$, can solve for $e^{-s\lambda}\mathbb{E}(e^{sX})$ and minimize over all s.

Theorem (Cauchy-Schwarz Inequality).

$$\mathbb{E}\left(XY\right)^{2} \leq \mathbb{E}\left(X^{2}\right) \mathbb{E}\left(Y^{2}\right)$$

Theorem (*Jensen's Inequality*). For any convex function ϕ :

$$\phi(\mathbb{E}(X)) \le \mathbb{E}(\phi(X))$$

6 Modes of Convergence

Definition. Say that random variables X_n converge in distribution to a random variable X if, \forall bounded continuous functions f:

$$\mathbb{E}\left(f(X_n)\right) \xrightarrow{n \to \infty} \mathbb{E}\left(f(X)\right)$$

Theorem (*Levy-Cramer*). Given random variables X_n and X, TFAE:

- 1. $\mathbb{E}(f(X_n)) \to \mathbb{E}(f(X)) \forall$ bounded & continuous f
- 2. $F_{X_n}(x) \to F_X(x)$ for every $x \in \mathbb{R}$ at which $F_X(x)$ is continuous
- 3. $\phi_{X_n}(\xi) \to \phi_X(\xi) \ \forall \ \xi \in \mathbb{R}$

Mode of Convergence

Say that a sequence of r.v.s X_n converge to an r.v. X [on the same probability space]:

1. ...in p-mean/L^p $(1 \le p < \infty)$ if:

$$\mathbb{E}\left(\left|X - X_n\right|^p\right) \to 0 \text{ as } n \to \infty$$

2. ...**in probability** if, $\forall \epsilon > 0$:

$$\mathbb{P}(|X_n - X| > \epsilon) \to 0 \text{ as } n \to \infty$$

3. ... $\underline{\mathbf{almost\ surely}}$ [a.s.] if:

$$\mathbb{P}\left(\left\{\omega:X_n(\omega)\to X(\omega)\right\}\right)=1$$

Theorem. Fix $1 \le p \le r < \infty$. Given r.v.s $X_n, X : \Omega \to \mathbb{R}$, the modes of convergence of X_n to X are interrelated as follows:

$$r$$
-mean convergence \implies p -mean convergence \implies convergence in \mathbb{P} (1)

convergence almost surely
$$\implies$$
 convergence in \mathbb{P} (2)

convergence in
$$\mathbb{P} \implies$$
 convergence in distribution (3)

6.1 Compactness for Convergence in Distribution

Definition. A family of r.v.s X_n is called **tight** if, for every $\epsilon > 0$, $\exists L > 0$ s.t.:

$$\mathbb{P}\left(|X_n| \ge L\right) < \epsilon \ \forall \ n \in \mathbb{N}$$

Theorem (**Prokhorov**). If a sequence of r.v.s X_n are tight, then there is a subsequence X_{n_k} that converges in distribution.

Theorem (*Helly selection theorem*). Given a sequence F_n of non-decreasing cadlag functions that are uniformly bounded on a bounded interval [a, b), there is:

- 1. A subsequence F_{n_k} of F_n , and
- 2. A non-decreasing caddag function $F:[a,b)\to\mathbb{R}$

such that $F_{n_k} \to F$ pointwise [for points where F is continuous].

Proof. Can enumerate the rationals by q_m ; at each q_m , find a subsequence F_{n_k} s.t. $F_{n_k}(q_m)$ converges. Via the Cantor diagonal slash argument, find the subsequence s.t. $F_{n_k}(q_m)$ converges $\forall q_m$ and take F to be the limit of F_{n_k} .

Lemma (*Borel-Cantelli*). If the sum of probabilities of events E_n is finite [i.e. $\sum_{n=1}^{\infty} \mathbb{P}(E_n) < \infty$], then the probability of infinitely many E_n 's occurring is 0:

$$\mathbb{P}\left(\limsup_{n\to\infty} E_n\right) = 0$$

7 The Central Limit Theorem

Theorem (*Central Limit Theorem*). Let X_i be <u>i.i.d.</u> random variables with mean $\mathbb{E}(X_i) = \mu$ and finite variance var $(X_i) = \sigma^2 < \infty$. Then:

$$Z_n = \frac{X_1 + X_2 + \dots + X_n - n\mu}{\sqrt{n\sigma^2}} \xrightarrow{\text{in dist.}} N(0, 1)$$

Proof. Via characteristic functions:

$$\phi_{Z_n}(\xi) \to \phi_{N(0,1)}(\xi)$$
 pointwise $\forall \xi \in \mathbb{R}$.

Theorem (*Berry-Esseen Theorem*). Suppose X_i are i.i.d. r.v.s with $\mathbb{E}(|X_i|^3) < \infty$, and define the Z_n 's by

$$Z_n = \frac{X_1 + X_2 + \ldots + X_n}{n}.$$

Then the CDFs F_n of the Z_n 's satisfy that:

$$\sup_{z} |F_n(z) - \Phi(z)| \le \frac{1}{\sqrt{n}} \frac{\mathbb{E}(|X_i|^3)}{\sigma^3}$$

8.1 The Weak Law of Large Numbers

Theorem. Suppose that $var(X_i) < \infty$; then:

$$\frac{X_1 + \ldots + X_n}{n} \xrightarrow[n \to \infty]{L^2} \mathbb{E}(X_i)$$

Lemma. If a sequence of random variables Z_n converge $Z_n \xrightarrow{d} C$ to some $C \in \mathbb{R}$, then $Z_n \to C$ in probability as well.

Theorem (*Weak/Khinchin LLN*). If X_i are i.i.d. r.v.s with $\mathbb{E}(|X_i|) < \infty$, then:

$$\frac{X_1 + X_2 + \ldots + X_n}{n} \xrightarrow[n \to \infty]{p} \mathbb{E}(X_i)$$

Proof. Can show that:

$$Z_{n} = \frac{X_{1} + \ldots + X_{n} - n\mu}{n} \implies \phi_{Z_{n}}(\xi) \to \phi_{0}(\xi) \text{ pointwise } \forall \xi \in \mathbb{R}$$

and apply Lemma.

8.2 Strong Laws of Large Numbers

Theorem (*Kolmogorov Maximal Theorem*). Let W_i i.i.d. r.v.s with $\mathbb{E}(W_i) = 0$, $\mathbb{E}(W_i^2) < \infty$. Then for each $N \in \mathbb{N}$, $\lambda > 0$:

$$\mathbb{P}\left(\sup_{1\leq n\leq N}\left|\sum_{i=1}^{n}W_{i}\right|>\lambda\right)\leq\frac{\sum_{i=1}^{N}\operatorname{var}\left(W_{i}\right)}{\lambda^{2}}$$

In particular, sending $N \to \infty$:

$$\left\| \mathbb{P}\left(\sup_{n\in\mathbb{N}} \left| \sum_{i=1}^{n} W_i \right| > \lambda \right) \le \frac{1}{\lambda^2} \left(\sum_{i=1}^{\infty} \operatorname{var}\left(W_i\right) \right) \right\|$$

Lemma (Kronecker). Let $y_k \in \mathbb{R}$ such that $\sum_{k=1}^{\infty} \frac{y_k}{k}$ converges. Then:

$$\frac{y_1 + y_2 + \ldots + y_n}{n} \to 0$$

Theorem (*Strong/Kolmogorov LLN*). If X_i are i.i.d. random variables with $\mathbb{E}(|X_i|) < \infty$, then:

$$\frac{X_1 + X_2 + \ldots + X_n}{n} \xrightarrow[n \to \infty]{\text{almost surely}} \mathbb{E}(X_i)$$

Proof. (Finite 4th Moment) Via Chebyshev's inequality.

(Finite Variance) Via Kronecker's Lemma.

(Kolmogorov LLN) Define $X_n = X_n' + X_n'', X_n' = 1_{|X_n| \le n} X_n, X_n'' = 1_{|X_n| > n} X_n$.

Can split up original expression:

$$\frac{X_1 + \ldots + X_n}{n} = \frac{[X_1' - \mathbb{E}(X_1')] + \ldots + [X_n' - \mathbb{E}(X_n')]}{n} + \frac{\mathbb{E}(X_1') + \ldots + \mathbb{E}(X_n')}{n} + \frac{1}{n} \sum_{k=1}^n X_k''$$

and show separately that all three terms $\rightarrow 0$ almost surely.

9 Random Walks

9.1 Simple Random Walks

Setup: Let X_k be i.i.d. random variables defined by:

$$X_k = \begin{cases} +1 & \text{with probability } p \\ -1 & \text{with probability } q = 1 - p \end{cases}$$

and define for $n \in \mathbb{N}$:

$$S_n = \sum_{k=1}^n X_k$$

Lemma. Define:

$$u_n = \mathbb{P}\left(\text{return to origin at time } n\right) = \mathbb{P}\left(S_n = 0\right)$$

Then $\forall m \in \mathbb{N}$:

$$u_{2m+1} = 0; \quad u_{2m} = {2m \choose m} p^m (1-p)^m$$

Proof. Trivial.

Lemma. For $z \in \mathbb{R}$ with $|z|^2 \leq \frac{1}{4pq}$:

$$U(z) := \sum_{n=0}^{\infty} u_n z^n = \frac{1}{\sqrt{1 - 4pqz^2}}$$

Proof. Can keep taking derivatives $\frac{d}{d\epsilon}(1-\epsilon)^{-(m-\frac{1}{2})}$ to find that

$$(1-\epsilon)^{-\frac{1}{2}} = 1 + \sum_{m=1}^{\infty} \frac{(2m-1)\cdot \dots \cdot 3\cdot 1}{2^m m!} \epsilon^m$$

and substitute $\epsilon = 4pqz^2$.

Theorem. Define:

$$f_n = \mathbb{P}\left(\text{first return to origin at time } n\right) = \mathbb{P}\left(S_n = 0 \text{ but } S_{n-1}, \dots, S_2, S_1 \neq 0\right)$$

Then:

$$F(z) := \sum_{n=0}^{\infty} f_n z^n = 1 - \frac{1}{U(z)}$$

In particular:

$$f_{2m+1} = 0;$$
 $f_{2m} = \frac{1}{2m-1} {2m \choose m} p^m (1-p)^m$

Proof. Can use that:

$$u_n = f_n + \sum_{m=1}^{n-1} f_m u_{n-m}$$

and substitute into expression for U(z).

Corollary.

$$\mathbb{P}$$
 (eventually return to origin) = $1 - |p - q|$

Prop. Let $T_1 = \text{time of } 1^{st} \text{ return}; \ T_1 = \min\{n: S_n = 0\} \text{ for a symmetric SRW } [p = q].$ Then $\mathbb{E}(T_1) = \infty$.

9.2 The Gambler's Ruin Problem

Setup: Assign values V(0) = 0, V(N) = 1; a person starting at 0 < n < N performs a simple random walk (\mathbb{P} (step right) = p, \mathbb{P} (step left) = q) until reaching either 0 ("lose") or N ("win").

- \Rightarrow Want to find the "value" $V(n) = \mathbb{E}(V \mid \text{start at } n)$ of a position 0 < n < N.
 - 1. Boundary conditions: V(0) = 0, V(N) = 1
 - 2. Difference equation: v(n) = pv(n+1) + qv(n-1)

Symmetric SRW (simple case: p = q = 1/2):

$$v(n) = \frac{v(n+1) + v(n-1)}{2} \implies v(n) = \frac{n}{N}$$

Biased SRW (hard case: $p \neq q$):

$$v(n) = \frac{\left(\frac{q}{p}\right)^n - 1}{\left(\frac{q}{p}\right)^N - 1}$$

Can compute expected game length e(n):

$$e(n) = \begin{cases} n \cdot (N-n) & p = q = 1/2 \\ \frac{1}{q-p} \left[N \frac{\left(\frac{q}{p}\right)^n - 1}{\left(\frac{q}{p}\right)^N - 1} - n \right] & p \neq q \end{cases}$$

10 Appendix

10.1 Distributions of Discrete Random Variables

Name	Parameters	Distribution	Characteristic
Bernoulli (p)	$p \in [0,1]$	$f_X(k) = \begin{cases} p & k = 1\\ 1 - p & k = 0 \end{cases}$	$1 - p + pe^{i\xi}$
Binomial(n, p)	$n \in \mathbb{N}, p \in [0, 1]$	$f_X(k) = \begin{cases} \binom{n}{k} p^k (1-p)^{n-k} & k = 0, 1, \dots, n \\ 0 & \text{otherwise} \end{cases}$	$(1 - p + pe^{i\xi})^n$
Geometric(p)	$p \in (0,1]$	$f_X(k) = \begin{cases} (1-p)^{k-1}p & k = 1, 2, 3, \dots \\ 0 & \text{otherwise} \end{cases}$	$\frac{pe^{i\xi}}{1 - (1 - p)e^{i\xi}}$
$Poisson(\lambda)$	$\lambda \ge 0$	$f_X(k) = \frac{\lambda^k}{k!} e^{-\lambda}$	$e^{\lambda(e^{i\xi}-1)}$

10.2 Distributions of Continuous Random Variables

Definition (*Gamma Function*). The *gamma function* is the function defined by:

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt$$

Name	Parameters	Distribution	Characteristic
$N(\mu, \sigma^2)$	$\mu, \sigma \in \mathbb{R}$	$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$e^{i\mu\xi - \frac{1}{2}\sigma^2\xi^2}$
$N(\vec{\mu}, \Sigma)$	$\vec{\mu} \in \mathbb{R}^k, \Sigma \in \mathbb{R}^{k \times k}$	$\frac{1}{(2\pi)^{k/2}\det(\Sigma)^{\frac{1}{2}}}\exp\left(-\frac{(\vec{x}-\vec{\mu})^T\Sigma^{-1}(\vec{x}-\vec{\mu})}{2}\right)$	$e^{i\vec{\xi}\cdot\vec{\mu}-\frac{1}{2}\vec{\xi}\cdot\Sigma\vec{\xi}}$
$\Gamma(k,\lambda)$	$k, \lambda > 0$	$f_X(x) = \begin{cases} \frac{\lambda^k}{\Gamma(k)} x^{k-1} e^{-\lambda x} & x > 0\\ 0 & \text{otherwise} \end{cases}$	$(1 - \frac{i\xi}{\lambda})^{-k}$
$\operatorname{Exp}(\lambda)$	$\lambda > 0$	$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$	$\frac{\lambda}{\lambda - i\xi}$