Part II of today's talk

- Structure Learning of Discrete Pairwise Graphical Models
 - Sparse logistic regression provably recovers the graph structure
 - Sample complexity improves the previous state-of-the-art (k^5 vs k^4)
 - Can be efficiently optimized (total runtime $\tilde{O}(n^2)$)
 - Experimental results support our analysis
- Learning a Compressed Sensing Measurement Matrix

Motivation

- High-dimensional data are often sparse
 - Amazon employee dataset: d = 15k, nnz = 9
 - RCV1 text dataset: d = 47k, nnz = 76
 - Wiki multi-label dataset: d = 31k, nnz = 19

One-hot encoded categorical data

- Unlike image/video data, there is no notion of spatial/time locality
- Reduce the dimensionality via a linear sketching/embedding

Can we have a lossless linear sketch of high-dimensional sparse data?

Compressed Sensing (Donoho; Candès et al.; ...)

- Suppose *x* is sparse
- $A \in \mathbb{R}^{m \times d}$ satisfies RIP
- Recovery algorithms
 - ℓ_1 -min, CoSaMP, IHT, AMP...
- NP-hard to check RIP
 - Gaussian matrix works w.h.p.

Compressed Sensing (Donoho; Candès et al.; ...)

- Suppose x is sparse
- $A \in \mathbb{R}^{m \times d}$ satisfies RIP
- Recovery algorithms
 - ℓ_1 -min, CoSaMP, IHT, AMP...
- NP-hard to check RIP
 - Gaussian matrix works w.h.p.

Model-based Compressed Sensing (Baraniuk et al.)

- If in addition to sparsity, x satisfies a known sparsity model M
 - E.g., M is the block-sparsity model or tree-sparsity model

Then model-based CoSaMP is better than vanilla CoSaMP

Project onto M in every iteration

Let's look at an example

- Generate 1000 random sparse vectors in \mathbb{R}^{1000}
 - Each vector has 10 non-zeros
 - Support ∈ {1-10, 11-20, ..., 991-1000} Block sparse
 - Set the non-zeros as Uniform[0,1]
- Measurement matrix:
 - Random Gaussian matrix
- Recovery algorithms:
 - ℓ_1 -min: $\hat{x} := \operatorname{argmin}_{x'} ||x'||_1$ s.t. Ax' = y
 - Model-based CoSaMP: block-sparsity model

Comparisons of the recovery performance

Comparisons of the recovery performance

What if we do not have the prior knowledge?

Given n sparse vectors $x_1, x_2, ..., x_n \in \mathbb{R}^d$ as training samples.

Can we still achieve performance similar to model-based CoSaMP?

Comparisons of the recovery performance

• Training data: n sparse vectors $x_1, x_2, ..., x_n \in \mathbb{R}^d$

• Training data: n sparse vectors $x_1, x_2, ..., x_n \in \mathbb{R}^d$

Objective function:
$$\min_{A \in \mathbb{R}^{m \times d}} \sum_{i=1}^{n} \|x_i - f(A, Ax_i)\|_2^2$$

• Training data: n sparse vectors $x_1, x_2, ..., x_n \in \mathbb{R}^d$

Objective function:
$$\min_{A \in \mathbb{R}^{m \times d}} \sum_{i=1}^{n} \|x_i - f(A, Ax_i)\|_2^2$$

Problem:

How to compute gradient w.r.t. A?

• Training data: n sparse vectors $x_1, x_2, ..., x_n \in \mathbb{R}^d$

Objective function:

$$\min_{A \in \mathbb{R}^{m \times d}} \sum_{i=1}^{n} ||x_i - f(A, Ax_i)||_2^2$$

Problem:

How to compute gradient w.r.t. A?

Key idea:

Replace f(A, y) by a few steps of projected subgradient

$$f(A, y) := \operatorname{argmin}_{x'} ||x'||_1 \quad \text{s. t. } Ax' = y$$

- Initialize: $x^{(1)} = A^{\dagger}y$
- **Iterate**: for t = 1, 2, ..., T do

$$x^{(t+1)} = \Pi(x^{(t)} - \alpha_t \operatorname{sign}(x^{(t)}))$$
$$= x^{(t)} - \alpha_t (I - A^{\dagger}A) \operatorname{sign}(x^{(t)})$$

• Define: $\widetilde{f}_T(A, y) := x^{(T+1)}$

$$A^{\dagger} = A^T (AA^T)^{-1}$$
: Pseudoinverse $Ax^{(1)} = y$

Π: projection onto ${x: Ax = y}$ $α_t$: step size at t-th iteration

$$f(A, y) := \operatorname{argmin}_{x'} ||x'||_1$$
 s.t. $Ax' = y$

- Initialize: $x^{(1)} = A^{\dagger}y$
- **Iterate**: for t = 1, 2, ..., T do

$$x^{(t+1)} = \Pi(x^{(t)} - \alpha_t \operatorname{sign}(x^{(t)}))$$
$$= x^{(t)} - \alpha_t (I - A^{\dagger}A) \operatorname{sign}(x^{(t)})$$

• Define: $\widetilde{f}_T(A, y) := x^{(T+1)}$

$$A^{\dagger} = A^{T} (AA^{T})^{-1}$$
: Pseudoinverse $Ax^{(1)} = y$

Π: projection onto ${x: Ax = y}$ $α_t$: step size at t-th iteration

$$f(A, y) := \operatorname{argmin}_{x'} ||x'||_1$$
 s.t. $Ax' = y$

- Initialize: $x^{(1)} = A^{\dagger}y$
- **Iterate**: for t = 1, 2, ..., T do

$$x^{(t+1)} = \Pi(x^{(t)} - \alpha_t \operatorname{sign}(x^{(t)}))$$
$$= x^{(t)} - \alpha_t (I - A^{\dagger} A) \operatorname{sign}(x^{(t)})$$

• Define: $\widetilde{f}_T(A, y) := x^{(T+1)}$

$$A^{\dagger} = A^{T} (AA^{T})^{-1}$$
: Pseudoinverse $Ax^{(1)} = y$

Π: projection onto ${x: Ax = y}$ $α_t$: step size at t-th iteration

$$f(A, y) := \operatorname{argmin}_{x'} ||x'||_1$$
 s.t. $Ax' = y$

- Initialize: $x^{(1)} = A^{\dagger}y$
- **Iterate**: for t = 1, 2, ..., T do

$$x^{(t+1)} = \Pi(x^{(t)} - \alpha_t \operatorname{sign}(x^{(t)}))$$
$$= x^{(t)} - \alpha_t (I - A^{\dagger}A) \operatorname{sign}(x^{(t)})$$

• Define: $\widetilde{f}_T(A, y) := x^{(T+1)}$

$$A^{\dagger} = A^{T} (AA^{T})^{-1}$$
: Pseudoinverse $Ax^{(1)} = y$

 Π : projection onto $\{x: Ax = y\}$ α_t : step size at t-th iteration

Summary of our idea

Objective function:

$$\min_{c \in \mathbb{D}^{m \times d}} \sum_{i=1}^{n} ||x_i - f(A, Ax_i)||_2^2$$

Problem:

Hard to compute gradient w.r.t. A

$$\min_{A \in \mathbb{R}^{m \times d}} \sum_{i=1}^{n} \left\| x_i - \widetilde{f}_T(A, Ax_i) \right\|_2^2$$

Replace f(A, y) by $\widetilde{f}_T(A, y)$, where $\widetilde{f}_T(A, y) \coloneqq T$ steps of projected subgradient update

Summary of our idea

Objective function:

$$\min_{f \in \mathbb{R}^{m \times d}} \sum_{i=1}^{n} ||x_i - f(A, Ax_i)||_2^2$$

Problem:

Hard to compute gradient w.r.t. A

Replace f(A, y) by $\widetilde{f}_T(A, y)$, where $\widetilde{f}_T(A, y) \coloneqq T$ steps of projected subgradient update

$$\min_{A \in \mathbb{R}^{m \times d}} \sum_{i=1}^{n} \left\| x_i - \widetilde{f_T}(A, Ax_i) \right\|_2^2$$

Summary of our idea

Objective function:

$$\min_{\boldsymbol{\epsilon} \in \mathbb{R}^{m \times d}} \sum_{i=1}^{n} \|\boldsymbol{x}_i - f(\boldsymbol{A}, \boldsymbol{A}\boldsymbol{x}_i)\|_2^2$$

Problem:

Hard to compute gradient w.r.t. A

$$\frac{\partial \tilde{f}_T}{\partial A} \rightarrow \frac{\partial \tilde{f}_{T-1}}{\partial A} \rightarrow \dots \rightarrow \frac{\partial \tilde{f}_0}{\partial A}$$

Key idea:

Replace f(A, y) by $\widetilde{f}_T(A, y)$, where $\widetilde{f}_T(A, y) \coloneqq T$ steps of projected subgradient update

New objective function:

$$\min_{A \in \mathbb{R}^{m \times d}} \sum_{i=1}^{n} \left\| x_i - \widetilde{f}_T(A, Ax_i) \right\|_2^2$$

Tuning param: *T*=10 in the experiments

ℓ_1 -AE: a novel autoencoder architecture

ℓ_1 -AE: a novel autoencoder architecture

One step of projected subgradient

$$x^{(t+1)} = x^{(t)} - \alpha_t (I - A^T A) \operatorname{sign}(x^{(t)})$$

ℓ_1 -AE: a novel autoencoder architecture

Training objective function:

$$\min_{A \in \mathbb{R}^{m \times d}, \{\alpha_t\}_{t=1}^T} \frac{1}{n} \sum_{i=1}^n ||x_i - \widehat{x_i}(A, \{\alpha_t\}_{t=1}^T)||_2^2$$

Performance metrics

- We evaluate two performance metrics on the test data set.
- Metric 1: Fraction of exactly recovered points

$$||x_i - \widehat{x_i}|| \le 10^{-10}$$

Metric 2: Test RMSE

$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} ||x_i - \widehat{x_i}||_2^2}$$

Synthetic data: d = 1k, nnz = 10

Real-world sparse datasets

ℓ_1 -AE + model-based decoder

 ℓ_1 -AE also improves the performance of model-based CoSaMP

Unrolling/unfolding an iterative algorithm

- Sparse coding [Gregor and LeCun'2010, ...]
- NMF [Hershey et al.'2014]
- Image reconstruction [Mardani et al.'2017, ...]
- Optimization [Andrychowicz et al.'2016, ...]
- Adversarial attacks [Zugner and Gunnemann'2019, ...]
- Learning a compressed sensing matrix for ℓ_1 -min [Ours]

Seek a trained NN to replace the original iterative algorithm in inference

Summary of Part II

- Structure Learning of Discrete Pairwise Graphical Models
 - Sparse logistic regression provably recovers the graph structure
 - Sample complexity improves the previous state-of-the-art (k^5 vs k^4)
 - Can be efficiently optimized (total runtime $\tilde{O}(n^2)$)
 - Experimental results support our analysis
- Learning a Compressed Sensing Measurement Matrix
 - By unrolling the projected subgradient of ℓ_1 -min
 - Implemented as an autoencoder ℓ_1 -AE
 - Compare 12 algorithms over 6 datasets (3 synthetic and 3 real)
 - Our method can create perfect reconstruction with 1.1-3X fewer measurements than the state-of-the-art methods