By signing	below,	you	attest	that	you	have	neither	given	nor	received	help	of	any	kind	on	this	exam.
Signature: _							P	rinted	Nan	ne:							

Instructions: Show work to get full credit (the correct answer may NOT be enough). Do all your work on the paper provided. Write clearly! Double check your answers!

You will **not** receive full credit for using methods other than those discussed in class.

EXAM III MATH 214 – LINEAR ALGEBRA

Problem	Available	Your
Number	Points	Points
1	15	
2	15	
3	15	
4	15	
5	15	
6	25	
7	15	
8	25	
Total	100	

Exam III

MATH 214

- 1. Determine whether the following matrices are invertible using few calculations as possible. Be sure to [12]justify your answers.

of Nul(A)?

- (a) $\begin{bmatrix} 6 & 7 \\ -3 & -5 \end{bmatrix}$ (c) $\begin{bmatrix} -7 & 0 & 4 \\ 3 & 0 & -1 \\ 2 & 0 & 9 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & -5 & -4 \\ 0 & 3 & 4 \\ -3 & 6 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 3 & 7 & 4 \\ 0 & 2 & -6 & 2 \\ 0 & 0 & 7 & 8 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
- 2. Use co-factor expansion to find the determinant of $A = \begin{bmatrix} 4 & 2 & 0 & 0 \\ 0 & -3 & 1 & 0 \\ 0 & 2 & 0 & 4 \end{bmatrix}$. [15]
- 3. For this problem, let $H = \left\{ \begin{bmatrix} a+2c\\2a+b+3c\\3b-3c\\3+4b-2c \end{bmatrix} : a,b,c \in \mathbb{R} \right\}$. Show that H is a subspace of \mathbb{R}^4 and find a [15]basis for H.
- 4. For this problem, let $A = \begin{bmatrix} 1 & 2 & 1 & 0 & 1 \\ 0 & 3 & 6 & -3 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 2 & 4 \end{bmatrix}$ which has echelon form of $\begin{bmatrix} 1 & 2 & 1 & 0 & 1 \\ 0 & 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$. Find a [15]basis for Col(A). What is the dimension of Col(A)? Find a basis for Nul(A). What is the dimension
- 5. Let $T: M_{2\times 2} \to \mathbb{R}^3$ be the transformation defined by $T\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = \begin{bmatrix} a+b \\ c \\ d+1 \end{bmatrix}$. Compute T(A) for [15]
 - $A = \begin{bmatrix} 1 & -8 \\ 6 & -1 \end{bmatrix}$. Find the Kernel of T, $\ker(T)$.
- 6. Provide an example of the following. (a) Give an example of a finite dimensional vector space of dimension 12. Be sure to justify your answer.
- (b) Give an example of an infinite dimensional vector space. Be sure to justify your answer. 7. If A is a 6×8 matrix, what is the smallest possible dimension of Nul(A)? Justify your answer.
- 8. For each of the following statements, please circle T (True) or F (False). You do not need to justify your [10]answer.
 - (a) T or F? The matrix $A = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$ is invertible.
 - (b) T or F? Let A be an $n \times n$ matrix. If the rows of A span \mathbb{R}^n , then the columns of A must be linearly independent.
 - (c) T or F? If A is invertible then, $(A^T)^{-1} = A^{-1}$.
 - (d) T or F? Let A, B, C be $n \times n$ matrices, then $\det(ABC) = \det(C) \det(B) \det(A)$.

[8]

[10]