DATA SCIENCE WITH R

HYPOTHESIS TESTING

Introduction to Hypothesis Testing

Basic Framework of a Hypothesis Test

Distance Measures

Central Limit Theorem

Types of Hypothesis Tests

Another way to think about the test is to look at distance from mean

Critical Value:

Distance from mean, beyond which the null will be rejected

Another way to think about the test is to look at distance from mean

Critical Value:

Distance from mean, beyond which the null will be rejected

Another way to think about the test is to look at distance from mean

Critical Value:

Distance from mean, beyond which the null will be rejected

Another way to think about the test is to look at distance from mean

Critical Value:

Distance from mean, beyond which the null will be rejected

Rejection Region:

Values of the test statistic (distance) that are unlikely if null is true, associated with the probability distribution

Test Statistic:

A function of the random sample, usually measured as standardized distance from mean

Test Statistic Z: (X - μ)/σ

$$X = 2.68$$

$$\mu = 2.5$$

$$\sigma = 0.12$$

$$Z = (2.68 - 2.5)/0.12$$

Test Statistic:

A function of the random sample, usually measured as standardized distance from mean

Critical Distance:

Distance equivalent to Sig Level

Test Statistic Z: (X - μ)/σ

$$X = 2.68$$

 $\mu = 2.5$
 $\sigma = 0.12$

$$Z = (2.68 - 2.5)/0.12$$
 1.5

Probability Content from -oo to Z

z	I							0.06			
0.0	Ī							0.5239			
0.1	ı	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	ı	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	ı	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	ı	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	ı	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	ı	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	ı	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	ı	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	ı	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	ı	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	ı	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	ı	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	ı	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	ı	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	ı	0.9332	0.9345	0.9357	0.9370	0.0392	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	ı	0.9452	0.9463	0.9474	0.9484	0.9495).9505	0.9515	0.9525	0.9535	0.9545
1.7	ı	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	ı	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	ı	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	ı	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	ı	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	ı	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	ı	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	i	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	ı	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	ı	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	ı	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	Ī	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
	-										

Test Statistic Z: $(X - \mu)/\sigma$

```
X = 2.68
```

$$\mu = 2.5$$

$$\sigma = 0.12$$

$$Z = (2.68 - 2.5)/0.12$$

1.5

Critical distance = 1.64

Critical distance = 1.64

Test Statistic Z: (X - μ)/σ

$$X = 2.68$$

 $\mu = 2.5$

 $\sigma = 0.12$

$$Z = (2.68 - 2.5)/0.12$$

1.5

Critical distance = 1.64

Since outcome is closer to mean than critical (1.5 > 1.64), we fail to reject the null

= 1.64

Probability Content from -oo to Z

z	I	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	ı	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	ı	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	ı	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	ı	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	ı	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	ı	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	ı	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	ı	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	ı	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	ı	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	ı	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	ı	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	ı	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	ı	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	ı	0 0192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	I	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	1	0.9432	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	ı	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	ı	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	ı	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	ı	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	ı	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	ı	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	ı	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	ı	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	ı	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	ı	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	ı	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	I	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981

1. If you have access to Excel / SAS / Calculators

- Directly calculate p values to decide
- If calculated p-value is less than significance level: Reject the null

2. If you don't have access to Excel / Calculators

- Use distance measures to reject (or not reject) the null hypothesis, or probability tables
- If calculated Test Statistic is further away from the mean than the critical value: Reject the null

IMPORTANT TO NOTE:

IMPORTANT TO NOTE:

Confidence level

➤ This is (1 – significance level), and is used to show how confident you are about your conclusion.

IMPORTANT TO NOTE:

Confidence level

- ➤ This is (1 significance level), and is used to show how confident you are about your conclusion.
 - If null hypothesis is rejected at a 5% level of significance, you are 95% confident about your conclusion.

IMPORTANT TO NOTE:

Confidence level

- ➤ This is (1 significance level), and is used to show how confident you are about your conclusion.
 - If null hypothesis is rejected at a 5% level of significance, you are 95% confident about your conclusion.
 - If significance level is set to 1%, confidence level will be?

IMPORTANT TO NOTE:

Choosing significance level

IMPORTANT TO NOTE:

Choosing significance level

Most often set to 5%

IMPORTANT TO NOTE:

Choosing significance level

Most often set to 5%

 May choose to set stricter levels depending on business requirements

IMPORTANT TO NOTE:

Choosing significance level

Most often set to 5%

- May choose to set stricter levels depending on business requirements
- May also choose to relax (but less often)

IMPORTANT TO NOTE:

Statistically Significant Result

 A result is said to be statistically significant if it is unlikely to have occurred by chance.

Hypothesis Testing is a statistical technique used to make decisions based on data

Hypothesis Testing is a statistical technique used to make decisions based on data

➤ It relies on calculation of the random chance probability of seeing an observed outcome (sample based mean) to test a hypothesis

Hypothesis Testing is a statistical technique used to make decisions based on data

➤ It relies on calculation of the random chance probability of seeing an observed outcome (sample based mean) to test a hypothesis

- Essential steps of hypothesis testing:
 - 1. Set up null and alternate hypothesis

Hypothesis Testing is a statistical technique used to make decisions based on data

➤ It relies on calculation of the random chance probability of seeing an observed outcome (sample based mean) to test a hypothesis

- Essential steps of hypothesis testing:
 - 1. Set up null and alternate hypothesis
 - Decide on a significance level

Hypothesis Testing is a statistical technique used to make decisions based on data

➤ It relies on calculation of the random chance probability of seeing an observed outcome (sample based mean) to test a hypothesis

Essential steps of hypothesis testing:

- 1. Set up null and alternate hypothesis
- 2. Decide on a significance level
- 3. Calculate p-value

Hypothesis Testing is a statistical technique used to make decisions based on data

➤ It relies on calculation of the random chance probability of seeing an observed outcome (sample based mean) to test a hypothesis

Essential steps of hypothesis testing:

- 1. Set up null and alternate hypothesis
- Decide on a significance level
- 3. Calculate p-value
- 4. Compare to significance level

Hypothesis Testing is a statistical technique used to make decisions based on data

➤ It relies on calculation of the random chance probability of seeing an observed outcome (sample based mean) to test a hypothesis

Essential steps of hypothesis testing:

- 1. Set up null and alternate hypothesis
- 2. Decide on a significance level
- 3. Calculate p-value
- 4. Compare to significance level
- 5. Reject null if p-value is less than significance level

THANK YOU