CSC352 HW5

Alex Zhang

Feb 2023

Question 1

(a)

Since $\mathbf{x} \in \mathbb{R}^m$, let $\mathbf{q_1} = \frac{\mathbf{x_1}}{\|\mathbf{x_1}\|_2}$. Because \mathbf{x} is a vector, it only has one column, the matrix \mathbf{Q} is just $\mathbf{q_1}$. For \mathbf{R} , since there is only one columne, $\mathbf{R} = \mathbf{r_{11}} = \|\mathbf{x_1}\|_2$. The QR decomposition will be

$$\mathbf{x} = \frac{\mathbf{x_1}}{\|\mathbf{x_1}\|_2} \cdot \|\mathbf{x_1}\|_2$$

(b)

Given and orthogonal matrix $\mathbf{J} \in \mathbb{R}^{m \times n}$. Let $\mathbf{q}_1 = \frac{\mathbf{j}_1}{\|\mathbf{j}_1\|_2}$, and \mathbf{q}_2 is,

$$\mathbf{q}_2 = \frac{\mathbf{j}_2 - (\mathbf{q}_1^\top \mathbf{j}_2) \mathbf{q}_1}{\|\mathbf{j}_2 - (\mathbf{q}_1^\top \mathbf{j}_2) \mathbf{q}_1\|_2}$$

Since **J** is an orthogonal matrix, $\mathbf{q}_1 \cdot \mathbf{j}_2 = 0$, indicating

$$\mathbf{q}_2 = \frac{\mathbf{j}_2}{\|\mathbf{j}_2\|_2}$$

This case can be generalized into any column \mathbf{q}_i for matrix \mathbf{Q} . For matrix \mathbf{R} , $\mathbf{r}_{ij} = \mathbf{q}_i^{\top} \mathbf{j}_j$. In this case, since \mathbf{Q} is orthonormal matrix to \mathbf{J} , $\mathbf{r}_{ij} = 0 \ \forall i, j \leq m, n$. And for diagonal entries

$$\mathbf{r}_{jj} = \|\mathbf{j}_j - \sum_{i=1}^{i-1} \mathbf{r}_{ij} \mathbf{q}_i\|_2$$

Where $\sum_{i=1}^{i-1} \mathbf{r}_{ij} \mathbf{q}_i \|_2 = 0$ because $\mathbf{r}_{ij} = 0$. Therefore, $\mathbf{r}_{jj} = \|\mathbf{j}_j\|_2$.

Overall, after doing QR decomposition on an orthogonal matrix, we get \mathbf{Q} is an orthonormal matrix and each column is the normal vector from \mathbf{J} . \mathbf{R} is a diagonal matrix with each entry represents the 2-norm of the corresponding column vector in \mathbf{J} .

orthgonal. If it is orthgonal, Q is normalizing each (general proof needed). and the R is having the norm on main diagonal.

(c)

upper traingular. This will make Q to be a identity matrix and R is just the original matrix (proof needed).

Question 2