Nutrition CH 41

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

Figure 41.1 (Campbell 9th ed)

4 Stages of food processing

- **Ingestion -** the act of eating
- **Digestion -** breaking food down into molecules small enough to absorb
 - Mechanical
 - Chemical
- **Absorption -** uptake of nutrients by body cells
- Elimination passage of undigested material out of the digestive tract

Suspension (filter) feeders

Aquatic animals that sift small food particles from the water

Substrate (deposit) feeder

An animal that ingests organic materials along with the substrate

(Note: definition in book is incorrect)

Earthworms and their castings

Sand dollar

Fluid feeder

Suck nutrient-rich fluid from a living host

Figure 41.6 (Campbell 9th ed)

Bulk feeder

Eat relatively large pieces of food

Figure 41.6 (Campbell 9th eq)

Sea anemone

Breaking food down into molecules small enough to absorb

Intracellular vs Extracellular

In the digestive tract

Phylum: Porifera

Intracellular only

Phyla: Cnidaria & Platyhelminthes

Mostly extracellular in the GVC but also intracellular

In animals w/ a complete digestive tract, digestion is primarily extracellular often w/ specialized structures or compartments to improve efficiency

In mammals most digestion is extracellular but the final stages of protein & carbohydrate digestion are intracellular.

Figure 33.20 (Campbell 9th ed.)

b) clam

Figure 41.8 (Campbell 9th ed)

Extracellular digestion occurs via both mechanical and chemical processes

Mechanical

Mouth and stomach

ney.com

Chemical

Mouth, stomach and small intestine

http://coursewareobjects.elsevier.com/objects/chabner9e_v1/mod05/images/05s01l0707.jpg http://coursewareobjects.elsevier.com/objects/chabner9e_v1/mod05/images/05s01l0708.jpg

Mechanical digestion begins in the mouth

Mastication: Grinding of bolus by teeth in mouth

Mechanical digestion continues in the stomach

In the human stomach, multiple muscle layers in varying directions help agitate and break apart food

The gizzard is a grinding stomach or stomach chamber in some animals (e.g. worms, birds, some insects)

Chemical digestion

Occurs in the mouth, stomach and small intestine

- A. Carbohydrases
 - Carbohydrates
- B. Proteases
 - Proteins
- C. Nucleases
 - Nucleic acids
- D. Lipases

Parotid gland

Parotid duct

gland

Submandibular

Submandibular

Sublingual

- Fats
- 2. Other chemicals
 - A. HCI in stomach
 - B. Bile salts in small intestine

*** Know A) the 4 general classes and B) where each occur as outlined in Table 41.12*** (e.g. mouth contains carbohydrases and lipases, etc...) but do not need to know the names of each specific enzymes in each class (except pepsin).

Chemical digestion begins in the mouth

1. Carbohydrates

 Salivary amylase is a <u>carbohydrase</u> produced by the salivary glands that breaks down (hydrolyzes) the carbohydrate starch

2. Fats

Lingual lipase

Note
Book does not mention that lipase occurs in mouth

Esophagus transports food from mouth to stomach for further digestion

Figure 41.10 (Campbell 9th ed)

Chemical digestion in the stomach

3 layers of smooth muscles running in different directions mix food so that all surfaces are exposed to digestive chemicals

Chemical digestion in the stomach

Gastric glands in stomach have 3 types of epithelial cells that aid digestion

Secretions:

Mucus cells

• mucus

Chief Cells

• pepsinogen

Parietal Cells

• H+ and Cl-

N = mucus // C = chief // P = parietal

Chemical digestion in the stomach

Pepsin is a protease formed in the lumen of the gastric gland

Pepsinogen, H⁺ and Cl⁻ secreted by chief and parietal cells of gastric gland
 Note book incorrectly states that parietal cells secrete HCl

Know this cycle!

- 2. H⁺ and Cl⁻ combine to form HCl in the <u>lumen</u> of the gastric gland
- 3. HCl converts pepsinogen to the enzyme pepsin in the <u>lumen</u> of the gastric gland
- 4. Pepsin converts (activates) more pepsinogen to pepsin (i,.e. + feedback loop)

Chemical digestion in the small intestine

While some enzymatic breakdown occurs in the mouth and stomach, most occurs in the small intestine and most in the 1st section (duodenum)

- Enzymes in the SI produced in 2 locations:
 - A. SI epithelial cells (aka "brush border")***
 - carbohydrases, proteases, nucleases
 - B. Pancreas***
 - carbohydrases, proteases, nucleases, <u>lipases</u>

- Bile salts, produced by the liver, coat fat and separate it for breakdown by lipase (secreted from the pancreas)
 - Bile stored and concentrated in gallbladder which then secretes bile to small intestine
- In addition to enzymes, pancreas also produces bicarbonate which neutralizes HCl on food from stomach

EXCEPT FOR PEPSIN do not need to know the names of specific enzymes in each class <u>but</u> should know the 4 general classes and <u>where each occur</u> as outlined in Table 41.13 (e.g. mouth contains carbohydrases and lipases etc...)

Other digestive processes

Adaptations in other animals

Foregut fermentation

Fermentation of plant materials before the large intestines

e.g. sheep, cattle, hippopotamus, kangaroos, hamsters

Figure 41.18 (Campbell 9th ed)

Other digestive processes

Hindgut fermentation

Fermentation of plant materials in the cecum (1st part of large intestine) or the colon e.g. horses, elephants, pigs, koalas, opossums, herbivorous birds and lizards (e.g. iguana)

Large intestine morphology varies with diet

Figure 41.17 (Campbell 9th ed)

Carnivore

Granivore

Herbivore

Coprophagy

Many vitamins & proteins produced by bacteria of hindgut fermenters are lost in feces. Some spp eat their feces (coporphagy) to obtain unabsorbed nutrients.

e.g. hamsters, rabbits, guinea pigs and young elephants

Stage 3: Absorption

Uptake of nutrients by body cells in SI and LI Most <u>nutrients</u> are absorbed in parts of the <u>small intestine</u>

Villus (villi) = fingerlike projection of intestinal wall

- Most nutrients enter circulatory system
- Some fats enter lymphatic system

Stage 3: Absorption

H₂O and some vitamins absorbed in colon

- = 3rd & longest part of the <u>large intestine</u>
- 1. Absorption of water
- 2. Absorption of vitamins (biotin, K, B7) created by bacteria in caecum

Parts of colon: 1. Appendix NOT a vestigial cecum! • Immune function? "Safe house" for bacteria? 2. Cecum 3. Colon 4. Rectum Diarrhea 'Safe House'

Do NOT need to know the parts of the colon

Stage 4: Storage and Elimination Occurs in the <u>large intestine (rectum)</u>

Final portion of colon is the rectum

Anatomy of the Rectum and Anal Canal

- Feces = Undigested food
 - particularly fiber
 - little nutrition but helps move food through digestive system
 - 1/3 dry weight = bacteria!

Sphincter muscles:

- Internal sphincter muscle = involuntary
- External sphincter muscle = voluntary

STUDY GUIDE

Section 41.1 (875-879) - skip

Figure 41.12 (886) – Know A) the 4 general classes and B) where each occur (e.g. mouth contains carbohydrases and lipases, etc...) but do not need to know the names of each specific enzymes in each class (except pepsin).

- •Figure 41.14 (888) skip
- •Figure 41.16 (889) skip
- •Section 41.5 (891 895) skip

In general:

- You are NOT responsible for definitions of terms or sections included in the text but which were not discussed in lecture
- You are not responsible for the details of examples used in the text but not discussed in lecture. HOWEVER, these additional examples will help your understanding of concepts discussed and may be used on exams to test if you understand the general concepts.
- You ARE responsible for material covered in lecture but not included in the readings

Next Lecture

Chapter 42

— Circulation and Gas Exchange