MAT 3007 Optimization Midterm Review

Yuang Chen

School of Data Scienc The Chinese University of Hong Kong, Shenzhen

June 25, 2025

- Exam Logistics
- 2 Problem 1 Short Answers
- 3 Problem 2: Modeling
- Simplex Tableau
- Problem 3: Duality

- Exam Logistics
- 2 Problem 1 Short Answers
- 3 Problem 2: Modeling
- 4 Simplex Tableau
- 5 Problem 3: Duality

Midterm Exam

- Time and date: 1:30-3:20 pm, June 26 (Thursday)
- Location: LIWEN Hall (Seat Assignment will be posted)
- Closed-book, closed-notes, no internet, no calculators
- One cheat sheet (double-sided) is allowed.
- 4 problems: short answers, modeling, simplex tableau, LP duality
- 100 points total with 4 extra points

- Exam Logistics
- 2 Problem 1 Short Answers
- 3 Problem 2: Modeling
- Simplex Tableau
- 5 Problem 3: Duality

Outcomes of Optimization Problem

Mathematical formulation

minimize
$$f(x)$$
 subject to $x \in \mathcal{X}$

- **1** Infeasible: $\mathcal{X} = \phi$
- ② Unbounded: $\exists \{x^i\} \in \mathcal{X}, \text{ s.t. } f(x^i) \to -\infty$
- 3 Bounded but minimizer is not achieved (attained)
- **4** An optimal solution x^* exists

Existence of Optimal Solutions: Weierstrass Theorem

Weierstrass Theorem

For an optimization problem, if the objective function $f: \mathbb{R}^n \to \mathbb{R}$ is continuous, and the feasible region $\mathcal{X} \in \mathbb{R}^n$ is nonempty, closed, bounded, then the problem has an optimal solution.

• (T/F) An optimization problem with a discontinuous objective function can never have an optimal solution.

Describe the impact on the the optimal objective function value for the following actions in an optimization problem.

- Add a constraint
- Delete a constraint
- Increase objective function

Extreme Point and Basic (Feasible) Solution

- A point x in the polyhedron P is an **extreme point** of P if and only if x is not a convex combination of other two different points in P, i.e., there does not exist $y, z \in P$ $(x \neq y, x \neq z)$ and $\lambda \in [0, 1]$ so that $x = \lambda y + (1 \lambda)z$.
- A point x in the polyhedron P is a basic solution if:
 - There are n linearly independent constraints active at x;
 - All equality constraints are active at x.
- If a basic solution x also satisfies all constraints, then it is a basic feasible solution (BFS).
- A basic feasible solution x* is called degenerate if there are more than n active constraints at x*.

Optimality of BFS

Theorem

For a non-empty polyhedron, an extreme point is a basic feasible solution.

Theorem

Suppose P has at least one extreme point. The LP is either unbounded or there exists a extreme point which is optimal.

- Polyhedron in standard form $P = \{x \in \mathbb{R}^n | Ax = b, x \ge 0\}$ always has a BFS.
- Bounded polyhedron always has a BFS.

- Find the extreme points for the polyhedron: $P = \{x \in \mathbb{R}^3 : x \ge 0, x_1 + x_2 x_3 \ge 1\}.$
- If a LP has two optimal solutions, then it has infinity many optimal solutions.
- For a standard form LP (*m* constraints and *n* variables), how many non-zeros can it have in a basic solution? How many basic solutions can it have?

Reduced Costs

$$c^{\mathsf{T}}(x + \theta d) - c^{\mathsf{T}}x = \theta \begin{bmatrix} c_B^{\mathsf{T}} & c_N^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} d_B \\ d_N \end{bmatrix}$$
$$= \theta (c_B^{\mathsf{T}} d_B + c_N^{\mathsf{T}} d_N)$$
$$= \theta (\underbrace{-c_B^{\mathsf{T}} B^{-1} A_j + c_j})$$
reduced cost

Reduced Cost

For each j, we define the **reduced cost** \bar{c}_j of the variable x_j to be $\bar{c}_j = c_j - c_B^{\mathsf{T}} B^{-1} A_j$

• Prove the reduced cost for any basic variable is zero.

- Exam Logistics
- 2 Problem 1 Short Answers
- 3 Problem 2: Modeling
- Simplex Tableau
- 5 Problem 3: Duality

Modeling Problem

- IP
- 3 steps: decision variables, objective function, constraints
- Think how many constraints first
- Part by part
- Linear! Linear! Linear!
- \bullet \geq and \leq !!!
- Consider the relationships between all variables.
- Be PATIENT!

- Exam Logistics
- 2 Problem 1 Short Answers
- 3 Problem 2: Modeling
- 4 Simplex Tableau
- 5 Problem 3: Duality

Apply the two-phase simplex method to solve the following linear program:

minimize
$$x_1 + x_2 + 2x_4$$

subject to $x_1 - x_2 \ge 1$
 $x_1 + x_2 - x_3 - x_4 \le 2$
 $x_2, x_3 \ge 0$.

- Exam Logistics
- Problem 1 Short Answers
- 3 Problem 2: Modeling
- 4 Simplex Tableau
- 6 Problem 3: Duality

Rules to Form Dual Problem

Primal	minimize	maximize	Dual
	$\geq b_i$	≥ 0	
Constraints	$\leq b_i$	≤ 0	Variables
	$= b_i$	free	
Variables	≥ 0	$\leq c_j$	
	≤ 0	$\geq c_j$	Constraints
	free	$= c_j$	

Weak and Strong Duality

Primal		Dual	
min	$c^T x$	max	$b^T y$
s.t.	$Ax = b, x \ge 0$	s.t.	$A^T y \leq c$

Theorem (Weak Duality Theorem)

If x is feasible to the primal and y is feasible to the dual, then

$$b^T y \le c^T x$$

Strong Duality Theorem

If a primal linear program (P) has a finite optimal solution x^* , then its dual linear program (D) must also have a finite optimal solution y^* , and the respective optimal objective values are equal, that is $c^Tx^* = b^Ty^*$.

Table of Possibles and Impossibles

The primal and dual LPs can be finite optimal, or unbounded, or infeasible. So, there are in total 9 combinations. Are all these 9 combinations possible?

	Finite Optimal	Unbounded	Infeasible
Finite Optimal	Possible	Impossible	Impossible
Unbounded	Impossible	Impossible	Possible
Infeasible	Impossible	Possible	Possible

Notice this table is exactly symmetric, because the dual of the dual is the primal.

Complementarity Conditions

Consider the primal-dual pair:

Primal			Dual		
minimize	$c^T x$		maximize	$b^T y$	
subject to	$a_i^T x \geq b_i$,	$i \in M_1$,	subject to	$y_i \geq 0$,	$i \in M_1$
	$a_i^T x \leq b_i$,			$y_i \leq 0$,	$i \in M_2$
	$a_i^T x = b_i$,	$i \in M_3$,		y; free,	$i \in M_3$
	$x_j \geq 0$,			$A_i^T y \leq c_j$,	$j \in N_1$
	$x_j \leq 0$,	$j \in N_2$,		$A_i^T y \geq c_j$,	$j \in N_2$
	x_j free,	$j \in N_3$,		$A_i^T y = c_j$	$j \in N_3$

Theorem

Let x and y are feasible solutions to the primal and dual problems respectively. Then x and y are optimal if and only if

$$y_i \cdot (a_i^T x - b_i) = 0$$
, $\forall i$; $x_i \cdot (A_i^T y - c_i) = 0$, $\forall j$.

Prove Farkas' Lemma.

Theorem (Farkas' Lemma)

Let $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Exactly one of the following two alternatives hold:

- (1) $P := \{x \in \mathbb{R}^n : Ax = b, x \ge 0\} \ne \emptyset$
- (II) $Q := \{ y \in \mathbb{R}^m : A^{\top} y \ge 0, b^{\top} y < 0 \} \ne \emptyset$