TD IV: Espérance conditionnelle/Catactérisations

- 29 Septembre 2025-2 octobre 2025
- Master I ISIFAR
- Probabilités

Conventions

Dans les 3 exercices qui suivent, X_1,\dots,X_n,\dots constituent une famille indépendante de variables aléatoires identiquement distribuées à valeur dans $\{-1,1\}$.

L'univers des possibles est $\Omega = \{-1,1\}^{\mathbb{N}}$. Les X_i sont les projections canoniques.

On note \mathcal{F}_n la tribu engendrée par les n premières coordonnées :

$$\mathcal{F}_n = \sigma(X_1, \dots, X_n)$$

L'univers est muni de la tribu des cylindres $\mathcal{F} = \sigma\left(\bigcup_{n} \mathcal{F}_{n}\right)$.

On note Δ une constante à valeur dans (0,1) (la *dérive* de la marche aléatoire).

On note \mathbb{P} la loi produit infini, telle que pour tout $x \in \{-1,1\}^n$

$$\mathbb{P}\left\{ \bigwedge_{i=1}^{n}X_{i}=x_{i}\right\} =\prod_{i=1}^{n}\frac{1}{2}\left(1+x_{i}\Delta\right)$$

On étudie la marche alétoire sur $\mathbb Z$ de dérive $\Delta.$

On note $S_n=\sum_{i=1}^n X_i.$ L'indice n représente le temps, S_n la position à l'instant n.

Solution

Exercice 1 (marches aléatoires biaisées i)

- a. Quelle est la loi de S_n ?
- b. S_n est-elle $\mathcal{F}_n, \mathcal{F}_{n-1}, \mathcal{F}_{n+1}$ mesurable?
- c. Quelle est l'espérance de S_n ?
- d. Quelle est la variance de S_n ?

On admettra l'inégalité de Hoeffding :

Si Y_1, \dots, Y_n sont des variables aléatoires indépendantes telles que $a_i \leq Y_i \leq b_i$ (les Y_i sont bornées), alors

$$P\{Z-\mathbb{E}Z\geq t\}\leq \mathrm{e}^{-2\frac{t^2}{\sum_{i=1}^n(b_i-a_i)^2}}$$

avec $Z = \sum_{i=1}^{n} Y_i$.

Exercice 2 (marches aléatoires biaisées ii)

Pour $0 \le \tau \le n\Delta$,

- a. Majorer $\mathbb{P}\{S_n \leq \tau\}$ à l'aide de l'inégalité de Chebyshev
- b. Majorer $\mathbb{P}\{S_n \leq \tau\}$ à l'aide de l'inégalité de Hoeffding
- c. L'ensemble

$$E = \{\omega : \forall n, S_n(\omega) < \tau\}$$

appartient-il à la tribu \mathcal{F}_m pour un m donné? est-il un événement de \mathcal{F} ?

d. Si E est un événement, quelle est sa probabilité?

Solution

Convention

On suppose $\tau \in \mathbb{N} \setminus \{0\}$. On note $T = \inf\{n : S_n \ge \tau\}$. Si $\forall n, S_n(\omega) < \tau$, alors $T(\omega) = \infty$. On note $S_T\!,$ la fonction définie par

$$S_T(\omega) = \sum_{n=1}^{\infty} \mathbb{I}_{T(\omega)=n} S_n(\omega) \qquad \text{si } T(\omega) < \infty$$

et
$$S_T(\omega) = 0$$
 si $T(\omega) = \infty$.

Exercice 3 (marches aléatoires biaisées iii)

- a. Pourquoi peut-on considérer que T est une variable aléatoire (à valeur dans $\mathbb{N} \cup \{\infty\}$)?
- b. Quelle est la probabilité que $T = \infty$?
- c. L'événement $\{T \leq n\}$ est-il $\mathcal{F}_{n-1}, \mathcal{F}_n, \mathcal{F}_{n+1}$ mesurable ?
- d. Pour quoi peut-on considérer que ${\cal S}_T$ est une variable al éatoire ?
- e. Quelle est l'espérance de S_T ?
- f. Montrer que $\mathbb{E}S_T = \Delta \mathbb{E}T$ En déduire $\mathbb{E}T$.

Solution

Exercice 4

Les variables $X_1, X_2, \dots, X_n, \dots$ sont des variables de Bernoulli de probabilité de succès $p \in (0,1)$, indépendantes. On définit $T_1 = \min\{i: X_i = 1\}$ (temps du premier succès), $T_2 = \min\{i: i > T_1, X_i = 1\}$ 1} (temps du premier succès après T_1), et récursivement $T_{n+1} = \min\{i : i > T_n, X_i = 1\}$ (temps du n + 1eme succès).

On admet l'existence d'un espace de probabilité (Ω, \mathcal{F}, P) où $\Omega = \{0, 1\}^{\mathbb{N}}, \mathcal{F}$ est une tribu pour laquelle les X_i sont mesurables, et P tel que X_1, \dots, X_n, \dots est une famille indépendante.

- a. T_1 et plus généralement T_n sont-elles des variables aléatoires?
- b. Calculer $P\{T_1 > k\}$ pour $k \in \mathbb{N}$.
- c. Calculer $P\{T_1 = k\}$ pour $k \in \mathbb{N}$
- d. Calculer $\mathbb{E}T_1$
- e. Calculer $P\{T_1 = k \land T_2 = k + j\}$ pour $k, j \in \mathbb{N}$
- f. Calculer $P\{T_2 = k\}$ pour $k \in \mathbb{N}$
- g. Calculer $\mathbb{E}T_2$
- h. Calculer $\mathbb{E}T_n$

Solution

- a. Les événements de la forme $\{T_n \leq m\}$ sont dans $\sigma(X_1, \dots X_m)$, car la seule connaissance de X_1,\dots,X_m suffit pour déterminer si le $i^{(eme)}$ succès survient avant le temps m.Donc les événements de la forme $\{T_n \leq m\}$ sont tous dans la tribu des cylindres $\sigma\left(\cup_{m}\sigma(X_{1},\ldots X_{m})\right). \text{ Tout événement de la forme }\{T_{n} \ \in \ A\} \text{ avec } A \ \subset \ \mathbb{N} \cup \{\infty\},$ appartient à la tribu engendrée par les événements $\{T_n \leq m\}$, donc à la tribu $\sigma(\cup_m \sigma(X_1, \dots X_m)).$
- b. $P\{T_1 > k\} = (1-p)^k$ (T_1 suit une loi géométrique) c. $P\{T_1 = k\} = P\{T_1 > k-1\} P\{T_1 > k\} = (1-p)^{k-1}p$ pour $k \ge 1$ d. $\mathbb{E}T_1 = \sum_{k=0}^{\infty} P\{T_1 > k\} = \frac{1}{p}$
- e. $P\{T_1 = k \wedge T_2 = k+j\} = (1-p)^{k-1}p(1-p)^{j-1}p$ pour $k, j \in \mathbb{N} \setminus \{0\}, T_1 \perp \!\!\!\perp T_2 T_1$ et
- f. $P\{T_2=k\}=\sum_{j=1}^{k-1}(1-p)^{j-1}p(1-p)^{k-j-1}p=p\binom{k-1}{1}(1-p)^{k-2}p$ pour $k\geq 2$ g. $\mathbb{E}T_2=2\mathbb{E}T_1=\frac{2}{p}$ h. $\mathbb{E}T_n=n\mathbb{E}T_1=\frac{n}{p}$

Exercice 5

On dispose de n urnes numérotées de 1 à n et de n boules. Les boules sont réparties de manière uniforme dans les urnes (chaque boule se comporte de manière indépendante des autres et a probabilité 1/n de tomber dans chaque urne). On note U_i la variable aléatoire désignant le nombre de boules qui tombent dans l'urne i. Dans la suite $\alpha > 1$ est un réel.

- a. Déterminer la loi de U_i .
- b. Montrer que l'on a :

$$\mathbb{P}(\max_{1 \leq i \leq n} U_i > \alpha \ln n) \leq n \mathbb{P}(U_1 > \alpha \ln n).$$

- c. Calculer $\mathbb{E}(\exp(U_1))$.
- d. Montrer que pour tout $\beta > -n$, on a $(1 + \beta/n)^n \le \exp(\beta)$.
- e. Montrer que $\mathbb{P}(U_1 > \alpha \ln n) \leq \frac{\exp(\exp(\alpha) 1)}{n^{\alpha}}$
- f. En déduire que si $\alpha > 1$, on a

$$\mathbb{P}(\max_{1\leq i\leq n}U_i>\alpha\ln n)\to_{n\to\infty}0.$$

Solution

- a. $U_i \sim \text{Binom}(n, 1/n)$
- b. Les U_i ne sont pas indépedantes (on a toujours $\sum_{i=1}^n U_i = n$), mais elles sont identiquement distribuées.

$$\begin{split} \mathbb{P}(\max_{1 \leq i \leq n} U_i > \alpha \ln n) &= \mathbb{P}(\cup_{1 \leq i \leq n} \{U_i > \alpha \ln n\}) \\ &\leq \sum_{i=1}^n \mathbb{P}(\{U_i > \alpha \ln n\}) \\ &= n \mathbb{P}(\{U_1 > \alpha \ln n\}) \end{split}$$

- c. $\mathbb{E}(\exp(U_1)) = \left(1 + \frac{1}{n}\left(e 1\right)\right)^n \le \exp\left(e 1\right)$
- d. En utilisant l'inégalité de Markov,

$$\begin{split} \mathbb{P}(\max_{1 \leq i \leq n} U_i > \alpha \ln n) & \leq n \mathbb{P}(\{U_1 > \alpha \ln n\}) \\ & \leq n \frac{\mathbb{E}(\exp(U_1))}{n^{\alpha}} \\ & \leq \frac{\exp\left(\mathrm{e} - 1\right)}{n^{\alpha - 1}} \end{split}$$

Exercice 6 (Restitution Organisée de Connaissances)

- Soient A,B,C trois événements dans un espace probabilisé. A-t-on toujours : $A \perp\!\!\!\perp B$ et $B \perp\!\!\!\!\perp C \Rightarrow A \perp\!\!\!\perp C$?
- Soient P et Q deux lois de probabilités sur (Ω, \mathcal{F}) , on définit l'ensemble $\mathcal{M} = \{A : A \in \mathcal{F}, P(A) = Q(A)\}$. Répondre par vrai/faux/je ne sais pas aux questions suivantes :
 - a. \mathcal{M} est-il toujours une classe monotone?
 - b. \mathcal{M} est-il toujours une σ -algèbre?
 - c. \mathcal{M} est-il toujours une π -classe?
- Soient G et F sont deux fonctions génératrices de probabilité. Répondre par vrai/faux aux questions suivantes :
 - a. Est-il vrai que $G \times F$ est toujours une fonction génératrice?
 - b. Est-il vrai que G + F est toujours une fonction génératrice de probabilité?
 - c. Est-il vrai que $\lambda G + (1-\lambda)F$ avec $\lambda \in [0,1]$ est toujours une fonction génératrice de probabilité?
- Si \hat{F} est la fonction caractéristique de la loi de X, et si $\epsilon \perp \!\!\! \perp X$, avec $P\{\epsilon = 1\} = P\{\epsilon = -1\} = 1/2$, quelle est la fonction caractéristique de la loi de ϵX ?

Solution

Exercice 7

Si X est une variable aléatoire positive intégrable, la version biaisée par la taille de X est la variable aléatoire X^* dont la loi Q est absolument continue par rapport à celle de X (notée P) et dont la densité (par rapport à celle de X) est proportionnelle à X:

$$\frac{\mathrm{d}Q}{\mathrm{d}P}(x) = \frac{x}{\mathbb{E}X}.$$

- a. Caractériser X^* lorsque X est une Bernoulli.
- b. Caractériser X^* lorsque X est binomiale.
- c. Caractériser X^* lorsque X est Poisson.
- d. Caractériser X^* lorsque X est Gamma.
- e. Si X est à valeurs entières, exprimer la fonction génératrice de X^* en fonction de celle de X.
- f. Exprimer la transformée de Laplace de X^* en fonction de celle de X.
- g. Si U est une transformée de Laplace, dérivable à droite en 0, U'/U'(0) est-elle la transformée de Laplace d'une loi sur $[0, \infty)$?

Solution

Exercice 8

Rappel

La loi normale centrée réduite $\mathcal{N}(0,1)$ admet pour densité $x\mapsto \frac{1}{\sqrt{2\pi}}\exp\left(-\frac{x^2}{2}\right)$,

- Si $X \sim \mathcal{N}(0,1)$, donner une densité de la loi de $Y = \exp(X)$ (Loi log-normale). Calculer l'espérance et la variance de Y.
- Même question si $X \sim \mathcal{N}(\mu, \sigma^2)$.
- Si $X,Y \sim \mathcal{N}(0,1)$, avec $X \perp \!\!\! \perp Y$, donner une densité de la loi de Z=Y/X (Loi de Student à 1 degré de liberté)
- Si $X, Y \sim \mathcal{N}(0, 1)$, avec $X \perp \!\!\!\perp Y$, donner une densité de la loi de $W = Y/\sqrt{X^2}$.
- Si $X \sim \mathcal{N}(0,1)$ et ϵ vaut ± 1 avec probabilité 1/2 (variable de Rademacher) avec $X \perp \!\!\! \perp \epsilon$, donner une densité de la loi de $Y = \epsilon X$. Y et X sont-elles indépendantes?

Exercice 9

Principe de réflexion

Dans cet exercice, X_1, X_2, \dots sont des variables de Rademacher indépendantes $(P\{X_i = \pm 1\} = \frac{1}{2}), S_n = \sum_{i=1}^n X_i, S_0 = 0$ et $M_n = \max_{k \le n} S_n$.

Montrer que, pour a > 0,

$$P\{M_n > a\} \le 2P\{S_n > a\}$$

Statistique des rangs/Statistiques d'ordre

Les statistiques d'ordre $X_{1:n} \leq X_{2:n} \leq X_{n:n}$ d'un n-échantillon X_1, \ldots, X_n d'observations indépendantes identiquement distribuées sont formées par le réarrangement croissant (convention) de l'échantillon.

Quand n est clair d'après le contexte on peut les noter $X_{(1)} \leq ... \leq X_{(n)}$.

Exercice 10

- a. Vérifier que la loi jointe des statistiques d'ordre est absolument continue par rapport à la loi de l'échantillon.
- b. On suppose que X est une variable aléatoire réelle, absolument continue, de densité continue. Montrer que l'échantillon est presque sûrement formé de valeurs deux à deux distinctes.
- c. Donner la densité de la loi jointe des statistiques d'ordre.
- d. Si la loi des X_i définie par sa fonction de répartition F, admet une densité f, quelle est la densité de la loi de $X_{k:n}$ pour $1 \le k \le n$?
- e. Montrer que conditionnellement à $X_{k:n}=x,$ la suite

$$(X_{i:n} - X_{k:n})_{i=k+1,\dots,n}$$

est distribuée comme les statistiques d'ordre d'un n-k échantillon de la loi d'excès au dessus de x (fonction de survie $\overline{F}(x+\cdot)/\overline{F}(x)$) avec la convention $\overline{F}=1-F$).

- f. Si X_1, \dots, X_n est un échantillon i.i.d. de la loi exponentielle d'espérance 1 (densité $\mathbb{I}_{x>0}\mathrm{e}^{-x}$), et $X_{n-1} \in X_{n-1} \in X_{n-1}$... $X_{n-1} \in X_{n-1} \in X_{n-1}$... $X_{n-1} \in X_{n-1} \in X_{n-1}$
- g. avec la convention $X_{0:n}=0$, les écarts $(X_{i:n}-X_{i-1:n})_{1\leq i\leq n}$ (spacings) forment une collection de variables aléatoires indépendantes ;
- h. $X_{i:n} X_{i-1:n}$ est distribuée selon une loi exponentielle d'espérance $\frac{1}{i}$.
- i. Maintenant, X_1, \ldots, X_n est un échantillon i.i.d. de la loi exponentielle d'espérance 1 (densité $\mathbb{I}_{x>0}\mathrm{e}^{-x}$), et $X_{n:n} \geq X_{n-1:n} \geq \ldots \geq X_{1:n}$ les statistiques d'ordre associées, et $(k_n)_n$ est une suite croissante d'entiers qui tend vers l'infini, telle que k_n/n tende vers une limite finie (éventuellement nulle). Montrer que

$$\frac{X_{k_n:n} - \mathbb{E} X_{k_n:n}}{\sqrt{\mathrm{var}(X_{k_n:n})}}$$

converge en loi vers une Gaussienne centrée réduite.

Solution