

函数逼近 (2)

October 18, 2021

要求:程序应写清注释

一、内容

1. 求如下数据表的二次最小二乘拟合多项式

x_i	0	0.25	0.50	0.75	1.00
$f(x_i)$	1.0000	1.2840	1.6487	2.1170	2.7183

2. 给定如下数据,求最小二乘拟合函数

x_i	0.24	0.65	0.95	1.24	1.73	2.01	2.23	2.52	2.77	2.99
y_i	0.23	-0.26	-1.10	-0.45	0.27	0.10	-0.29	0.24	0.56	1.00

3. 给定如下数据,求形如 ae^{bx} 的拟合函数

x_i	1.00	1.25	1.50	1.75	2.00
$f(x_i)$	5.10	5.79	6.53	7.45	8.46

4. 用 $y = a \sin bx$ 拟合数据

	0.1							
y	0.6	1.1	1.6	1.8	2.0	1.9	1.7	1.3

二、练习

1. 观测物体的直线运动,得到如下数据,求运动方程

时间 t(s)	0	0.9	1.9	3.0	3.9	5.0
距离 S(m)	0	10	30	50	80	110

2. 求拟合下列数据的线性最小二乘多项式解

x	0	0.2	0.4	0.6	0.8	1.0	1.2
y	0.9	1.9	2.8	3.3	4.0	5.7	6.5

3. 试用最小二乘法求形如 $y=ae^{bx}$ 的经验公式,使它与下列数据相拟合

x_i	1	2	3	4	5	6	7	8
y_i	15.3	20.5	27.4	36.6	49.1	65.6	87.8	117.6

4. 已知实验数据如下,用最小二乘法求形如 $y = a + bx^2$ 的经验公式

x_i	10	25	31	38	44
y_i	19.0	32.5	49.0	73.3	97.8

三、 作业

1. 预测人口

实验目的: 最小二乘法练习

实验内容:

(1) 编写程序分别用公式 $y = ax + b, y = ae^{bx}$ 拟合下列数据并计算 2020 年的人口数;

(2) 分析说明那种模型更适合拟合这些数据

年份	1980	1985	1990	1995	2000	2005	2010	2015
人口	9.87	10.59	11.43	12.11	12.67	13.08	13.30	13.60

2. 函数逼近中的病态问题

实验目的: 函数逼近中的病态问题

实验内容:

考虑区间 [0,1] 上定义函数 f(x) 的最小二乘拟合多项式,将该区间等分,计算利用等分节点以及节点处函数值生成 3 次,5 次,10 次,15 次拟合多项式时,法方程系数矩阵的条件数。

3. 插值与函数逼近的比较

实验目的: 曲线的拟合和插值,是逼近函数的基本方法,每种方法具有各自的特点和特定的适用范围,实际工作中合理选择方法是重要的.

实验内容:

- (1) 对于龙格函数,对比该函数的二次和三次拟合多项式,与拉格朗日插值多项式以及样条插值的结果.
- (2) 分析讨论在何种情况下,插值多项式与最小二乘拟合多项式是相同的。