SVODJENJE NA KANONSKI OBLIK (KRIVE DRUGOG REDA)

- POSTUPAK -

Opšta jednačina drugog stepena po x i y je jednačina oblika:

$$Ax^2 + 2Bxy + Cy^2 + 2Dx + 2Ey + F = 0$$

pri čemu za koeficijente A,B,C,D,E,F iz skupa R važi da je $A^2 + B^2 + C^2 > 0$

Kako krivu zadatu u ovom obliku svesti na kanonski oblik?

Moramo vršiti transformacije koordinatnog sistema: TRANSLACIJU I ROTACIJU.

Prvo uvek proverimo da li zadata kriva ima centar!

Naravno, najpre nadjemo vrednosti za koeficijente A,B,C,D,E,F

Ako je D = E = 0 zaključujemo odmah da kriva ima centar u O(0,0) t.j. u koordinatnom početku.

Rešavamo sistem jednačina:

Aa + Bb + D = 0 Ovaj sistem ima jedinstveno rešenje ako je
$$AC - B^2 \neq 0$$
Ba + Cb + E = 0 Tada nadjemo centar O` (a,b).

Ako kriva ima centar O` (a,b) onda vršimo translaciju:

Dalje **vršimo rotaciju** sistema x'O'y' za ugao α , gde je $0 < \alpha < \pi$. Koristimo:

$$ctg2\alpha = \frac{A-C}{2B}$$
 pa kad odavde nadjemo ugao α , idemo u formule rotacije:

$$x' = x'' \cos \alpha - y'' \sin \alpha$$
 $x'' = x'' \sin \alpha + y'' \cos \alpha$ $x'' = x'' \sin \alpha + y'' \cos \alpha$ $x'' = x'' \sin \alpha + y'' \cos \alpha$ $x'' = x'' \sin \alpha + y'' \cos \alpha$ $x'' = x'' \sin \alpha + y'' \cos \alpha$ $x'' = x'' \sin \alpha + y'' \cos \alpha$ $x'' = x'' \sin \alpha + y'' \cos \alpha$ $x'' = x'' \sin \alpha + y'' \cos \alpha$ $x'' = x'' \sin \alpha + y'' \cos \alpha$ $x'' = x'' \sin \alpha + y'' \cos \alpha$ $x'' = x'' \sin \alpha + y'' \cos \alpha$ $x'' = x'' \sin \alpha + y'' \cos \alpha$ $x'' = x'' \sin \alpha + y'' \cos \alpha$ $x'' = x'' \sin \alpha + y'' \cos \alpha$ $x'' = x'' \sin \alpha + y'' \cos \alpha$ $x'' = x'' \sin \alpha + y'' \cos \alpha$ $x'' = x'' \sin \alpha + y'' \cos \alpha$

A odavde, iz oblika $A_2x^2 + C_2y^2 + F_2 = 0$ zaključujemo o kojoj krivi je reč!

PAZI:

Ako se desi da sistem Aa + Bb + D = 0, Ba + Cb + E = 0 nema rešenje,odnosno ako data kriva nema centar onda prvo vršimo rotaciju!

Šta sve može biti naše rešenje?

- kružna linija
$$(x - p)^2 + (y - q)^2 = 0$$
 gde su (p,q) koordinate centra

- elipsa
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 a je velika poluosa, b je mala poluosa (može i obrnuto)

- hiperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 a je realna poluosa, b je imaginarna poluosa

- parabola
$$y^2 = 2px$$
 ili $x^2 = 2py$

- par pravih sa jednom zajedničkom tačkom
- dve paralelne prave
- tačka
- prazan skup tačaka

Kako da znamo koja je kriva u pitanju? Posmatramo $A_2x^2 + C_2y^2 + F_2 = 0$

- i) Ako je A_2C_2 = $AC-B^2>0$, to jest ako su A_2 i C_2 istog znaka, kriva je **ELIPTIČKOG** tipa i to :
- elipsa ako je F_2 suprotnog znaka od A_2
- tačka, ako je $F_2 = 0$
- **prazan skup** tačaka (imaginarna elipsa) ako je F₂ istog znaka kao A₂
- **kružna linija**, ako je $A_2 = C_2$ i F_2 različitog znaka od A_2

ii) Ako je $A_2C_2 = AC - B^2 < 0$ to jest A_2 i C_2 su različitog znaka kriva je **HIPERBOLIČKOG** tipa i to:

- hiperbola za F₂ ≠ 0 i još važi: Ako su F₂ i A₂ suprotnog znaka O'x'' je realna osa, a ako su F₂ i A₂ istog znaka realna osa je O'y''

- **par pravih koje se seku** u tački O` ako je F₂= 0

iii) Krive PARABOLIČKOG tipa

Šta se dešava u slučaju kada je $AC - B^2 = 0$, to jest kada sistem Aa + Bb + D = 0, Ba + Cb + E = 0 nema jedinstveno rešenje?

Već smo pomenuli da tada prvo vršimo rotaciju!

Dobijemo jednačinu : $A_1x^2 + C_1y^2 + 2D_1x + 2E_1y + F_1 = 0$

Desiće nam se jedna od sledeće dve situacije: $A_1 = 0$ ili $C_1 = 0$

1) $A_1 = 0$, i tada jednačina postaje $C_1y^2 + 2D_1x^2 + 2E_1y^2 + F_1 = 0$, ovde izvršimo dopunu do punog kvadrata po ipsilon i izvršimo translaciju koja nam daje **parabolu**! Za one koji ne vole mnogo da mozgaju evo gotove formule

te translacije: x``= x` +
$$\frac{F_1}{2D_1} - \frac{F_1^2}{2C_1D_1}$$
 i y`` = y` + $\frac{E_1}{C_1}$

Ako je i $D_1 = 0$ onda jednačina postaje kvadratna po ipsilon $C_1y^2 + 2E_1y + F_1 = 0$, probamo da je rešimo i ako ima realna rešenja, onda ta rešenja predstavljaju **dve paralelne prave**; ako su rešenja ista, onda se te dve prave **poklapaju**; i ako nema rešenja u pitanju je **imaginarna kriva.**

2) **Ako je** C_1 =0 onda imamo $A_1x^2 + 2D_1x^2 + 2E_1y^2 + F_1 = 0$, slično kao malopre vršimo dopunu do punog kvadrata, samo sad po iks, itd......

Dobijamo parabolu, dve paralelne prave ili imaginarnu krivu.

Šta najčešće pravi problem?

Kad radimo rotaciju i koristimo formulu $ctg2\alpha = \frac{A-C}{2B}$ može se desiti da vrednost $\frac{A-C}{2B}$ ne bude "lep" broj.

Lepi su brojevi 0, $\pm \frac{\sqrt{3}}{3}$, ± 1 , $\pm \sqrt{3}$, $\pm \infty$ jer za njih znamo o kom uglu se radi!

Ako nam padne neki drugi broj, onda moramo koristiti trigonometrijske formulice:

 $ctg2\alpha = \frac{ctg^2\alpha - 1}{2ctg\alpha}$ pa odavde oformimo kvadratnu jednačinu po ctg α i nađemo ctg α

Dalje znamo da je $ctg\alpha = \frac{\cos \alpha}{\sin \alpha}$ i $\sin^2 \alpha + \cos^2 \alpha = 1$

Odavde nadjemo vrednosti za $\sin \alpha$ i $\cos \alpha$ i to menjamo u formule rotacije:

 $x' = x'' \cos \alpha - y'' \sin \alpha$

 $y' = x'' \sin \alpha + y'' \cos \alpha$

Najbolje je da pogledate nekoliko uradjenih primera iz sledećeg fajla, pa onda probajte sami!