Repetition

Theorem

Let $\{X_n\}$ be a discrete-time Markov chain with state space $S = \{0, 1, ..., N\}$ and transitition probability matrix **P**. Let $A \subset S$ be the set of absorbing states. Then

2. If v_i is the expected time to absorption conditional on $X_0 = i$, then

$$v_i = 0, \quad i \in A,$$

 $v_i = 1 + \sum_{k \in A^{\mathcal{C}}} P_{ik} v_k, \quad i \in A^{\mathcal{C}}.$

Note: This arises from 1) conditioning on the first transition, and 2) using that the Markov property implies no memory of the past conditional on the present.

Definition

Consider a Markov chain $\{X_n : n = 0, 1, ...\}$ with finite state space $\{0, 1, ..., N\}$ and transition probability matrix **P**. If there exists an integer k > 0 so that all elements of \mathbf{P}^k are strictly positive, we call **P** and $\{X_n\}$ regular.

Note: This means that the discrete-time Markov chain is regular if there exist a power k > 0 for which all k-step transition probabilities are positive. I.e., $P_{ij}^{(k)} > 0$ for all pairs of states i and j.