Real-Time Emotion Detection using Quad-Pi

Tushaar Gangarapu (15IT117) Bharath A. Kinnal (15IT114) Jyoti Prakash Sahoo (15IT213)

Agenda

- Introduction
- ☐ Literature Survey
- Outcome of Literature Survey
- Motivation
- ☐ Problem Statement
- Objectives
- Proposed Work
- Conclusion
- ☐ Timeline of Project
- ☐ Individual Contribution
- References

Introduction

- Present day technology demands for Human-Machine interaction;
 understanding of gestures and emotions by machines
- Emotions text, vocal, verbal, facial expressions
- Real-time, non-uniform illumination facial detection
- Parallelizing the process for speedup

Literature Review

Authors	Methodology	Advantages	Limitations
Suja, P. et al.	Raspberry Pi II, CMU MultiPIE database to detect emotions	Real-time, speed and accuracy	Only facial expressions are used
Horak, K. et al.	Raspberry Pi II, Simulink in Matlab to process images	Speed, real-time, edge, corner, line detection	Increased FPS due to transfer from RPi2 to Simulink
Viji, A. et al.	Raspberry Pi II, Haar cascade classifier, PCA feature extraction, Adaboost classification	Real-time, speed and accuracy	Considers only PCA feature extraction
Viola, P. et al.	Haar feature selection, creating an internal image, Adaboost training, Cascading classifiers	Minimal computation time and high detection accuracy	Real-time conditions were ignored

Outcome of Literature Review

- Current state-of-art implementations consider *facial expressions* to be the primary source of emotion detection
- Various methods for feature extraction have been used in the past like ASM,
 PCA which employ geometric-based feature detection
- ullet Processing on Raspberry Pi can give $speeds\ upto\ 100ms$ and Viola-Jones feature detection gives about $95\%\ accuracy$
- Current state-of-art implementations do not consider parallelization of the process

Issues and Challenges

- Simulation of real-time environment
 - Non-frontal images
 - Different illumination conditions
- Selection of *essential and accurate elements* of emotion detection
 - Text
 - Vocal (7%)
 - Verbal (38%)
 - Facial expressions (55%)
- Image quality vs. Classification tradeoff
- Parallelizing with as less computational and communication cost as possible

Motivation

- If machines can identify human emotions, it can understand human behaviour better which improves *task efficiency*
- Emotions greatly affect *decision making*, learning, attention, motivation, coping, planning, *cognition*, reasoning etc.
- Facial emotion detection from 2D images is well studied field but lack of real-time method to estimate features gives the necessity to develop a method for the same
- Parallelization of the real-time process might lead to higher speeds keeping accuracy at it peak

Problem Statement

- Capturing the image (real-time) using a camera (webcam, for experimental purposes)
- Face detection (and cropping if necessary) using *Viola-Jones detection* algorithm
- Image processing and feature extraction using $Active\ Shape\ Model$ (ASM) or using PCA algorithm
- Classification using *Adaboost* classifier
- The recognized emotion is *displayed* on the monitor
- ullet Finally, parallel model (master-slave) deployment using $Quad ext{-}Pi$ (four RPi3)

Project Objectives

- Simulate and experiment in *near real-time* environment
- Programming the Raspberry Pi III
- Image Processing (cropping and face extraction)
- Feature extraction from grayscale face image extracted
- Classify using Adaptive Boosting classifier trained with CMU MultiPIE database
- ullet Finally, use Quad-Pi (four RPi3) to implement master-slave parallel processing model to the deployed application

Proposed Model

Input image captured via webcam

Display results

Methodology: Input and Output

• Input

- \circ For real-time simulations, input is taken from webcam (further development would be to use a mobile robot) to dynamically recognize emotions
- Serves as input to Raspberry Pi III

Output

 Emotions such as anger, disgust, happiness, neutral and surprise classified by Adaboost classifier (in Raspberry Pi III) are displayed on the monitor

Methodology: RPi3 Processing

Pre-Processing for Facial Feature Extraction

- Viola-Jones Face Detection
 - Haar-Wavelet processing for detecting face
 - Facial image is saved for further processing and non-face part is discarded
- Image Processing
 - Facial image is cropped according to required size and converted to grayscale
 - o Sobel filter is used to smoothen the image and remove noise

Methodology: RPi3 Processing

Feature Extraction

- \circ Active Shape Model (ASM), a geometric approach is used
- ASM automatic fiducial point location algorithm is applied to pre-processed image
- o Euclidean distances (center of gravity, annotated fiducial points) are computed
- Extract geometric deformation difference features between a person's neutral expression and the other basic expressions.
- Compare with shape model to extract feature points of input facial image

Classification using Adaboost

Methodology: Quad-Pi Parallelization

Master-Slave model of Parallel Programming

- Master starts the slave computation, and the slave computation returns the result to the master
- No significant dependencies among the slave computations

Quad-Pi model

- Sobel filter can be parallelized
- In case of multiple people in an image, multiple emotions detection is needed where speeds and task division matter

Work Done

Work Done

Results and Analysis

Results and Analysis

Timeline of Project

Milestones	Feb 2018	Mid-March 2018	End-March 2018	April 2018
Research and Feasibility study	✓	✓	✓	✓
RPi3 configuration and static emotion detection using RPi3		✓	✓	✓
Real-time emotion detection using RPi3			✓	✓
Master-Slave model using Quad-Pi (four Rpi3))			✓

Individual Contributions: (Mid-March 2018)

- Tushaar Gangarapu
- Bharath A. Kinnal
- Jyoti Prakash Sahoo

References

- Suja, P., & Tripathi, S. (2016, February). Real-time emotion recognition from facial images using Raspberry Pi II. In Signal Processing and Integrated Networks (SPIN), 2016 3rd International Conference on (pp. 666-670). IEEE.
- Horak, K., & Zalud, L. (2015). Image Processing on Raspberry Pi in Matlab. Advances in intelligent systems and computing, 4.
- Viji, A., & Pavithra, A. (2017). Real Time Face Recognition using Raspberry Pi II. IJIRSET, Vol. 6, Special Issue 3.
- ✓ Viola, P., & Jones, M. J. (2004). Robust real-time face detection. International journal of computer vision, 57(2), 137-154.
- Suk, M., & Prabhakaran, B. (2014). Real-time mobile facial expression recognition system-a case study. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 132-137).