On the Existence of Fully Informative Experiment in Optimal Menu *

November 15, 2023

Lemma 1. Given information structure E, $V(E,\theta)$ is continuous with respect to θ .

Corollary 1. The net utility $V(E(\theta), \theta) - t(\theta)$ in a feasible menu (satisfied IC and IR conditions), is lower semi-continuous with respect to θ .

Proof. Suppose \bar{E} is not in the original menu $\mathcal{M} = \{E(\theta), t(\theta)\}.$

For every type θ , θ' , denote $DS(\theta, \theta') = V(E(\theta), \theta) - t(\theta) + t(\theta') - V(E(\theta'), \theta)$ and $DA(\theta, \theta') = (V(\bar{E}, \theta) - V(E(\theta'), \theta)) - (V(\bar{E}, \theta') - V(E(\theta'), \theta'))$.

Case 1: If there exists a buyer θ' such that for any $\theta \neq \theta'$, $DS(\theta, \theta') \geq DA(\theta, \theta') > 0$ or $DA(\theta, \theta') \leq 0$ holds, then we can replace the experiment of θ' as \bar{E} and charge a strictly higher price $\hat{t}(\theta') = t(\theta') + V(\bar{E}, \theta') - V(E(\theta'), \theta')$. Obviously, we only need to verify the IC conditions that other types $\theta \neq \theta'$ are unwilling to imitiate θ' .

$$[V(E(\theta), \theta) - t(\theta)] - [V(\bar{E}, \theta) - \hat{t}(\theta')] = DS(\theta, \theta') - DA(\theta, \theta') \ge 0.$$

Case 2: If for any buyer θ' , there exists a θ such that $DA(\theta, \theta') > DS(\theta, \theta') \geq 0$, denote $f(\theta) \triangleq V(E(\theta), \theta) - t(\theta) - V(\bar{E}, \theta)$, then we can derive that

$$f(\theta) - f(\theta') = DS(\theta, \theta') - DA(\theta, \theta') < 0.$$

,which means for any θ' , there exists a $\theta \neq \theta'$ having a strictly lower value of $f(\theta)$ than that of θ' . However, by Lemma 1 and Corrollary 1, we know that $f(\theta)$ is a lower semi-continuous function over $\theta \in \Theta$. Since Θ as a simplex space is compact, by Weierstrass Theorem, there exists a θ' , for any $\theta \in \Theta$, $f(\theta) \geq f(\theta')$, a contradiction. Thus for every optimal menu not containing \bar{E} , we feasiblely adjust it to a new menu containing \bar{E} which strictly increases the seller's revenue. \square

References

Bergemann, Dirk, Alessandro Bonatti, and Alex Smolin, "The Design and Price of Information," American Economic Review, January 2018, 108 (1), 1–48.

^{*}All notations are directly from Bergemann et al. (2018).