Chapter 1 Approximation Algorithms

Advanced Algorithms U CAS 29, Feb, 2016

Outline

- 1. Approximation, combinatorial approach
- 2. Linear thinking
- 3. Provable approximation via linear programming
- 4. Semidefinite programs (SDPs) and approximation algorithms
- 5. Duality

Definition

For a maximum problem P, for $\alpha \le 1$, an α -approximation algorithm is a poly time algorithm finding for any instance x, a solution achieving

$$\geq \alpha \cdot \mathsf{OPT}$$
.

For minimum problem for $\alpha \ge 1$, the algorithm finds a solution with

$$\leq \alpha \cdot \mathsf{OPT}$$

for every instance.

Cardinality vertex cover

Vertex cover (VC) Given a graph G = (V, E), find a set $S \subset V$ of minimum size that covers V.

Algorithm

- 1) Find a maximal matching M of G
- 2) Let S be the set of all the vertices incident to M.

Then:

- (i) S is a vertex cover
- (2) $|M| \leq OPT$, and $|S| \leq 2 \cdot |M|$.

Metric Steiner tree

(Steiner tree) Given a graph G = (V, E) with nonnegative edge costs and whose vertices are partitioned into two sets, the required and the Steiner, find a minimal cost tree in G that contains the required vertices.

Assume that the edge costs c satisfy the triangle inequality.

Algorithm

- 1) Find a minimum spanning tree T
- 2) Double the edges of the tree T to get T,
- 3) Find an Eulerian graph connecting all the required node from $\ensuremath{\mathcal{T}}$
- 4) Obtain a Hamiltonian cycle on the required nodes using the Euler tour, and short-cutting the Hamiltonian The cost of the algorithm is at most 2 · OPT.

Given G = (V, E), edge weights $w : E \to R^+$, a set $S = \{s_1, s_2, \dots, s_k\} \subset V$, find a minimum weight set of edges whose removal disconnects all the nodes in S.

Algorithm

- 1) For each i, find a set C_i of edges with minimum weight that isolates s_i
- Discard the cut of the largest weight.
- 3) Output the union of the remaining cuts

Approximation $2(1-\frac{1}{k})$

Let *A* be the optimum cut of *G*. Remove *A*, then *G* becomes *k* connected component.

Let $A_i \subset A$ be the set isolating s_i . Then

$$\sum_{i=1}^k w(A_i) = 2w(A).$$

By the algorithm for each i, $w(C_i) \le w(A_i)$. Therefore

$$w(C) \leq (1 - \frac{1}{k}) \sum_{i=1}^{k} w(C_i) \leq 2(1 - \frac{1}{k}) w(A).$$

More combinatorial approach

- Many problems have approximation by this approach
- The most successful result is the PTAS for Euclidean TSP
- No theoretical foundation yet

Linear vs nonlinear

- Linear systems of equations is easy to solve in polynomial time
- 2. Non-linear systems of equations is NP-hard

Vertex set cover

Given a graph G = (V, E) and a natural number k, find a vertex cover set $S \subset V$ of size k. For each i, define $x_i = 1$ if $i \in S$, and 0 otherwise.

The system of the equations:

(1) For every $i \in V$

$$x_i(1-x_i)=0$$

(2) For every edge $\{i, j\}$ of G

$$(1-x_i)(1-x_i)=0$$

$$\sum_{i=1}^{n} x_i^2 = k$$

Idea

- Algebraic approach
- Linear approach

Solving systems of linear equations

Given an $m \times n$ coefficient matrix A and a vector b, then the following are equivalent

- 1. the linear system Ax = b is feasible
- 2. b is in the span of the column vectors of A
- 3. rank(A) = rank(A, b)(A, b) is the matrix of A with a new last column b.

Time complexity: $O(n^3)$

Systems of linear inequalities

A space R is called *convex*, if for every $x, y \in R$,

$$\lambda \cdot \mathbf{x} + (1 - \lambda) \cdot \mathbf{y} \in R$$

for all λ with $0 \le \lambda \le 1$.

A *linear programming* (LP) is to solve the problem of the following form:

$$\min c^T \cdot x$$

$$A \cdot x \geq b$$

How to solve the LPs?

Basic algorithms

- 1) Naive way
- 2) Simplex method Khachiyan, 1979, the first polynomial time algorithm Applications of the linear programming, 1939, former Soviet Union, programming economics, Nobel economics award

Why linearity?

Taylor expansion: For a well-defined function f

$$f(x_{1}, x_{2}, \dots, x_{n}) = f(0, 0, \dots, 0) + \sum_{i} x_{i} \frac{\partial f}{\partial x_{i}}(0) + \sum_{i_{1}, i_{2}} x_{i_{1}} x_{i_{2}} \frac{\partial f}{\partial x_{i_{1}} \partial x_{i_{2}}}(0, 0) + \dots$$
(1)

Poly time

Gaussian elimination is a polynomial time procedure. Prove it!

Provable approximation by LP

I Most NP-hard optimization problems involve finding 0/1 solutions
II Using LP, we can find a fractional solution

A general approach of approximation algorithms

Deterministic rounding

- $<\frac{1}{2}-0$
- $\geq \frac{1}{2} 1$

Weighted vertex cover Given G = (V, E) with weight $w: V \rightarrow R^+$

The goal is to find a vertex cover with minimum weights.

$$\min \sum_{i=1}^n w_i x_i$$

Subject to :
$$0 \le x_i \le 1, \forall i \in V$$

and

$$x_i + x_i \ge 1, \forall \{i, j\} \in E$$

Let OPT_f be the optimum value of the LP. Set

$$S = \{i \mid x_i \ge \frac{1}{2}\}$$

(1) S is a vertex cover of V

- (1) S is a vertex cover of V For $\{i,j\} \in E$, $x_i + x_j \ge 1$, so one of the x_i and $x_j \ge \frac{1}{2}$, $i \in S$ or $j \in S$.
- (2) $w(S) \leq 2 \cdot \text{OPT}_f \leq 2 \cdot \text{OPT}$.

$$OPT_{f} = \sum_{i} w_{i} \cdot x_{i} = \sum_{i \in S} w_{i}x_{i} + \sum_{i \notin S} w_{i}x_{i}$$

$$\geq \frac{1}{2} \sum_{i \in S} w_{i} + \sum_{i \notin S} w_{i}x_{i} = \frac{1}{2}w(S) + \sum_{i \notin S} w_{i}x_{i}$$
(2)

Hence

$$\frac{1}{2}w(S) \leq \mathrm{OPT}_f \leq \mathrm{OPT}$$

giving

$$w(S) \leq 2 \cdot \text{OPT}$$
.

Randomized and derandomization

Let ϕ be a CNF formula with Boolean variables x_1, x_2, \dots, x_n and clauses c_1, c_2, \cdots, c_m .

Random assignment σ : For each x_i , assign $x_i = 1$ with probability $\frac{1}{2}$.

Let N be the number of clauses that are satisfied by σ . For each clause c_i , define X_i to be 1 if c_i is satisfied, and 0 otherwise.

Let
$$X = \sum_{j=1}^{m} X_j$$
.

For k, define $\alpha_k = 1 - 2^{-k}$. For each $k \ge 1$, $\alpha_k \ge \frac{1}{2}$. **Lemma** For a clause c with k literals, $E[X_i] = \alpha_k$.

Then
$$E[X] = \sum_{j=1}^{m} E[X_j]$$
.

Design a deterministic algorithm to find an assignment that satisfies at least $\frac{1}{2}$ of the clauses of ϕ .

Randomized rounding: Max 2SAT

Given a fractional solution $\{x_i\}$, with probability x_i , set

$$x_{i}^{*} = 1$$

Then $E[x_i^*] = x_i$.

A 2 CNF formula consists of:

n Boolean variables x_1, x_2, \dots, x_n and *m* clauses of the form $y \vee z$, where y, z are literals, i.e., a variable or its negation.

MAX 2**SAT**: Given a 2CNF formula, find an assignment to satisfy the maximum number of clauses.

It is interesting to note that:

- 2CNF is in P
- MAX2SAT is NP-hard

LP for MAX2SAT

Given a 2CNF ϕ , let J be the set of clauses and y_{J_1} , y_{j_2} be he two literals of the j-th clause.

For each clause C_j , we introduce a variable z_j such that if C_j is satisfied, then $z_j \ge 1$, and 0, otherwise.

For a variable y,

the value of an occurrence of y is y, and the value of an occurrence of $\neg y$ is 1 - y.

The LP relaxation is:

$$\max \sum_{j \in J} z_j$$

$$0 \le x_i \le 1 : \forall x_i$$

$$y_{i_1} + y_{i_2} \geq z_i : \forall C_i$$

Proofs - I

Let *N* be the number of the clauses satisfied by the the random rounding of the LP solution. *N* is a random variable. We show that

$$E[N] \ge \frac{3}{4} \cdot \text{OPT}_f \ge \frac{3}{4} \cdot \text{OPT}.$$

It suffices to prove that for each clause C_j , the probability that C_j is satisfied is at least $\frac{3}{4} \cdot z_j$.

Case 1
$$C_i = x_r$$

By the definition of the rounding, the probability that C_j is satisfied is x_r . By constraints, this is $\geq z_j$.

Proofs - II

Case 2. Let $C_j = x_r \vee x_s$. Then $x_r + x_s \geq z_j$. The probability that C_j is satisfied is

$$p_j = 1 - (1 - x_r) \cdot (1 - x_s) = x_r + x_s - x_r x_s$$

Using $4x_rx_s \leq (x_r + x_s)^2$, we have

$$p_{j} \geq x_{r} + x_{s} - \frac{1}{4}(x_{r} + x_{s})^{2}$$

$$\geq z_{j} - \frac{1}{4}z_{j}^{2} \geq \frac{3}{4}z_{j}.$$
(3)

Note: Using quadratic function $x - \frac{1}{4}x^2 = 0$ and $z_i \le x_r + x_s \le 2$.

Given a 2CNF formula ϕ , using LP, let $N = \frac{3}{4} \cdot \mathrm{OPT}_f(\phi)$. Let ϕ_a be the 2CNF formula obtained from ϕ by deleting the clauses that have already been decided by $x_1 = a$. Let M_a be the number of clauses that are satisfied by $x_1 = a$.

Let $N_a = \frac{3}{4} \cdot \mathrm{OPT}_f(\phi_a)$.

If $M_a + N_a \ge N$, then set $x_1 = a$.

Continuing the procedure, the algorithms finds an assignment σ that satisfies at least $\frac{3}{4}$ fraction of the clauses of ϕ .

Self-reducibility method: It works for a number of important problems.

MAX-SAT

Given a CNF formula ϕ , let C be the set of all clauses. For each $c \in C$, let S_c^+ be the set of variables that positively occur in c, and S_c^- be the set of negatively occurring variables in c. Let z_c be the variable. z_c takes value 1 if c is satisfied, and 0 otherwise.

The MAX-SAT is

$$\max \sum_{c \in C} w_c z_c$$

subject to

$$orall c \in C: \sum_{i \in S_c^+} y_i + \sum_{i \in S_c^-} (1 - y_i) \ge z_c$$
 $orall c: z_c \in \{0, 1\}$

 $\forall i: y_i \in \{0, 1\}$

LP of MAX-SAT

The LP relaxation is:

$$\max \sum_{c \in C} w_c z_c$$

subject to

$$\forall c \in C: \sum_{i \in S_c^+} y_i + \sum_{i \in S_c^-} (1 - y_i) \ge z_c$$

$$\forall c: 0 \leq z_c \leq 1$$

$$\forall i: 0 \leq y_i \leq 1$$

Solving the LP, let (y, z) be the optimum solution for the LP. Independently, set $x_i = 1$ with probability y_i

Let W_c be the weight contributed by clause c, and W be the sum of all W_c .

For $k \ge 1$, define

$$\beta_k = 1 - (1 - \frac{1}{k})^k.$$

Lemma. If *c* contains *k* literals, then

$$E[W_c] \geq \beta_k w_c z_c$$
.

Proofs

Suppose without loss of the generality that $c = x_1 \lor x_2 \lor \cdots \lor x_k$. Then the probability that c is satisfied is:

$$1 - \prod_{i=1}^{k} (1 - y_i) \ge 1 - \left(\frac{\sum_{i=1}^{k} (1 - y_i)}{k}\right)^k$$

$$= 1 - \left(1 - \frac{\sum_{i=1}^{k} y_i}{k}\right)^k$$

$$\ge 1 - \left(1 - \frac{z_c}{k}\right)^k \ge \beta_k.$$
(4)

where the first inequality follows from the arithmetic/geometric mean inequality, and the second from the constraints of the LP. Let $g(z) = 1 - (1 - \frac{z}{k})^k$. Then g is concave with g(0) = 0 and $g(1) = \beta_k$.

$$E[W] = \sum_{c} E[W_{c}] \ge \beta_{k} \sum_{c} w_{c} z_{c} = \beta_{k} OPT_{f} \ge \beta_{k} OPT.$$

For all k,

$$(1-\frac{1}{k})^k<\frac{1}{e}.$$

So this is a 1 - 1/e factor approximation algorithm for MAX-SAT.

By the self-reducibility of CNF formula, we can give a deterministic approximation algorithm for MAX-SAT with approximation ratio 1 - 1/e.

Convex program

A set of points K is called *convex*, if for every two $x, y \in K$, the line segment joining x, y lies entirely inside K.

A function $f: \mathbb{R}^n \to \mathbb{R}^n$ is *convex* if:

$$f(\frac{x+y}{2}) \leq \frac{1}{2}(f(x)+f(y))$$

for all x, y.

A *convex program* consists of a convex function *f* and a convex body *K*.

The goal is to find $x \in K$ to minimise f(x). That is

$$\min f(x), x \in K$$

Positive semidefinite

A symmetric $m \times n$ matrix M is positive semi-definite (PSD), if there exists a matrix A such that

$$M = AA^{\mathrm{T}}$$

where A^{T} is the transpose of AThis is a generalisation of linear programming. The semi-definite programming can be solved with error ϵ in time polynomial in n, $\log \frac{1}{\epsilon}$, using the *ellipsoid algorithm*.

MAX CUT

Given an undirected graph G = (V, E), edge weights $w : E \to Q+$, find a partition (S, \bar{S}) of V to maximize the total weight of the edges in the cut, that is, the edges between S and \bar{S} , the complement of S.

Quadratic programs

Given an instance of MAX CUT, i.e., a graph *G* with *n* nodes and *m* edges.

For each i, assign $y_i = \pm 1$, set $S = \{i \mid y_i = 1\}$.

Then if i, j in the same side, then $y_i y_j = 1$, and -1, otherwise.

The MAX CUT is:

$$\max \quad \frac{1}{2} \cdot \sum_{1 \leq i < j \leq n} w_{i,j} (1 - y_i y_j)$$
$$y_i^2 = 1, \forall i \in V$$
$$y_i \in Z, \forall i \in V$$

Vector program

Provable approximation: LP

We interpret y_i as a vector v_i in \mathbb{R}^n .

Then the vector program is:

$$\max \frac{1}{2} \cdot \sum_{1 \le i < j \le n} w_{ij} (1 - v_i \cdot v_j)$$
$$v_i \cdot v_i = 1$$
$$v_i \in R^n$$

for all $i \in V$.

 v_i are in the *n*-dimensional unit sphere.

The program is solvable with error ϵ in time polynomial in n and $\log(\frac{1}{\epsilon})$.

Given $n \times n$ matrix A, it is called *positive semi-definite*, if: $\forall x \in R^n, x^T A x > 0.$

Theorem 3.1 Let A be $n \times n$ real symmetric matrix. Then the following are equivalent:

- 1) For all $x \in R^n$, $x^T A x > 0$.
- 2) All eigenvalues of A are > 0.
- 3) There is an $n \times n$ real matrix W such that

$$A = W^{\mathrm{T}}W$$

For 1)
$$\Rightarrow$$
 2).

$$Ax = \lambda x$$
 implies $0 \le x^T Ax = \lambda x^T x$, giving $\lambda \ge 0$, since $x^T x > 0$.

For 2)
$$\Rightarrow$$
 3).

Suppose $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues of A with corresponding eigenvectors v_1, v_2, \dots, v_n , which are orthonormal.

Let *U* be the matrix with columns v_1, v_2, \dots, v_n . Let Λ be the diag matrix of the $\lambda_1, \lambda_2, \dots, \lambda_n$.

$$AU = U\Lambda, UU^{T} = I.$$

$$W = U(\Lambda)^{\frac{1}{2}}$$
 works.

$$3) \Rightarrow 1)$$
.

Easy.

Decomposition

Define Λ , U as before.

$$A = U \Lambda U^{\mathrm{T}}$$

A PSD iff in the above decomposition, all $\lambda_i > 0$. The decomposition is found in poly time.

Proposition IF A, B are positive semidefine, then so it A + B.

Definitions

Given $A \in \mathbb{R}^{n \times n}$, the trace of A,

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{i,i}.$$

Let A, B real, $n \times n$ matrices. The *Frobenius inner product* of A and B is:

$$A \odot B = \operatorname{tr}(A^{\mathrm{T}}B) = \sum_{i,i} a_{i,j}b_{i,j}.$$

The semi-definite programming problem

Let Y be $n \times n$ real valued variables with y_{ij} the (i, j)-th entry. Suppose C, D_1, \dots, D_k are positive semi-definite, d_1, d_2, \dots, d_k are reals.

The SDP is:

max
$$C \odot Y$$

$$D_i \odot Y = d_i, 1 \leq i \leq k$$

- i) If C, D_1, \dots, D_k are diagonal, it is the linear programming.
- ii) The set of all feasible solutions form a convex.

Solving SDPs

Theorem Let S be a semi-definite programming problem, and A be a point in $R^{n \times n}$. We can determine, in poly time, whether or not A is a feasible solution for S, and if it is not, then find a separating hyperplane.

Proof Easy if *A* is a feasible solution. Otherwise:

Case 1. A is not symmetric. If $a_{ij} > a_{j.i}$, then $y_{ij} \le y_{ji}$ is a separating hyperplane.

Case 2. A is not positive SDP. There is an eigenvalue $\lambda < 0$ with eigenvector v. Then $v^T Y v \ge 0$ is a separating hyperplane.

Case 3. If any of the linear constraints is violated, then it directly gives a separating hyperplane.

SDP for MAX-Cut

Lemma Vector program \mathcal{V} is equivalent to \mathcal{S} . Easy.

$$\max \quad \frac{1}{2} \cdot \sum_{1 \le i < j \le n} w_{ij} (1 - y_i y_j)$$

subject to:

$$y_i^2 = 1, i \in V$$

Suppose that a_1, a_2, \dots, a_n are the optimal solution and OPT_V be the optimal value of the vector programming. Note the vectors lie on the *n*-dimensional unit sphere.

Randomized rounding

For i, j, let θ_{ii} be the angle between a_i and a_i . The contribution of a_i and a_i to OPT_v is:

$$\frac{w_{ij}}{2}(1-\cos\theta_{ij}).$$

If $\theta_{ii} \approx \frac{\pi}{2}$, then $\cos \theta_{i,i} \approx -1$, the contribution is large. This means that is θ_{ii} is large, then v_i , v_i are split. **Rounding**: Pick a random *r* on the unit sphere. Define

$$S = \{v_i \mid a_i \cdot r \geq 0\}.$$

Probability of splitting

Lemma The probability that v_i and v_j are separated is exactly $\frac{\theta_{ij}}{\pi}$.

Proof. v_i and v_j are separated if and only if they are separated by r, which occurs with prob $\frac{\theta_{ij}}{\pi}$.

Algorithm for MAX-CUT

Clearly, $\langle v_i, v_i \rangle = \cos \theta_{ii}$.

The algorithm for MAX-CUT proceeds as follows:

- 1. Solve the vector programming. Let a_1, a_2, \dots, a_n be the optimum solution.
- 2. Pick r randomly and uniformly
- 3. Let $S = \{i \mid a_i \cdot r \geq 0\}$.

Let W be the weight of the cut (S, \bar{S}) , and

$$\alpha = \frac{2}{\pi} \cdot \min_{0 \le \theta \le \pi} \frac{\theta}{1 - \cos \theta}$$

Exercise. Using calculus, show that $\alpha > 0.87856$.

Proofs

Lemma

$$E[W] \ge \alpha \cdot OPT_{V} \ge \alpha \cdot OPT.$$

Proof.

$$E[W] = \sum_{0 \le i < j \le n} w_{ij} \frac{\theta_{ij}}{\pi}$$

$$\ge \alpha \cdot \sum_{1 \le i < j \le n} \frac{1}{2} w_{ij} (1 - \cos \theta_{ij}) = \alpha \cdot \text{OPT}_{V}.$$
 (5)

Randomized approximation for MAX-CUT

Theorem There exists a randomized approximation algorithm for MAX-CUT achieving an approximation factor of 0.87856. *Proof* Let T be the total weight, let a be such that E[W] = aT. Let $p = \Pr[W < (1 - \epsilon)aT]$. We have

$$aT \leq p(1-\epsilon)aT + (1-p)T$$

giving

$$p\leq \frac{1-a}{1-a+a\epsilon}.$$

Proofs

Now

$$T \ge E[W] = aT \ge \alpha \cdot OPT_v \ge \alpha \cdot OPT \ge \frac{\alpha \cdot T}{2}$$

so $1 \ge a \ge \alpha/2$ and

$$p \leq 1-c$$

for
$$c = \frac{\epsilon \alpha/2}{1 + \epsilon \alpha/2 - \alpha/2}$$

Run the algorithm $\frac{1}{c}$ many times, let W' be the maximal weight, then

$$\Pr[W' \ge (1 - \epsilon)aT] \ge 1 - (1 - c)^{1/c} \ge 1 - \frac{1}{a}$$

Exercise

Give a factor $\frac{1}{2}$ approximation algorithm for the MAX-CUT. A simple greedy

Primal and dual

 $\min c^{T}x$

subject to:

$$Ax \geq b, x \geq 0$$

 $max Y^T b$

subject to:

$$Y^TA < c^T, Y > 0$$

Constraints, variables exchanged, min and max exchanged.

Duality theorem

Theorem If both the primal and the dual of the LP are feasible, then the two optima coincide.

This provides a game theoretical approach to algorithms, for example the max flow and min cut problem.

Will be developed in algorithmic game theorem.

Here we note that

the game approach is also an important idea for approximation algorithms.

Conclusions

- 1. Approximation is a general approach to hard problems
- 2. There are general methodology for approximation:
 - Linear programming
 - Semi-definite programming
 Idea To amplify solution space, so that the optimum of the
 generalised problem is solvable, and then find the closest
 solution to the generalised solution, prove a guaranteed
 bound.
 - Game approach, primal and dual Apply to only specific problems
 - Combinatorial approach open, no theoretical foundation Clever ideas for understanding the structures of the solutions, from which good algorithms are found

Questions

- 1. Real applications of approximation algorithms
- The limit of the approximation
- 3. New method for approximation
- 4. Further reading: Vijay V. Vazirani Approximation Algorithms, Springer, 2003