				1.0	t3)		J m
$ au_1^{\#2}$	0	0	0	$\frac{2i}{k(1+2k^2)(r_1+r_5)}$	$\frac{i\sqrt{2}(3k^2(r_1+r_5)+2t_3)}{k(1+2k^2)^2(r_1+r_5)t_3}$	0	$\frac{6k^2(r_1+r_5)+4t_3}{(1+2k^2)^2(r_1+r_5)t_3}$
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{k^2 (1+2 k^2) (r_1 + r_5)}$	$\frac{3k^2(r_1+r_5)+2t_3}{(k+2k^3)^2(r_1+r_5)t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_1+r_5)+2t_3)}{k(1+2k^2)^2(r_1+r_5)t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 \left(r_1 + r_5\right)}$	$\frac{\sqrt{2}}{k^2 (1+2 k^2) (r_1+r_5)}$	0	$-\frac{2i}{k(1+2k^2)(r_1+r_5)}$
$\tau_{1}^{\#1}{}_{+}\alpha\beta$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}\ \tau_{1}^{\#1}{}_{\alpha\beta}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2\left(2r_1+r_5\right)}$	0	0	0	0	0	0
	$\sigma_1^{\#1} + \alpha \beta$	$\sigma_1^{\#2} + \alpha^{\beta}$	$ au_1^{\#1} \dagger^{lphaeta}$	$\sigma_{1}^{\#_1} +^{\alpha}$	$\sigma_{1}^{\#2} + ^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} +^{\alpha}$

$f_{1}^{\#2}$	0	0	0	$-\frac{2}{3}$ Ikt $_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2 k^2 t_3}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>t3</u> 3	0	$-\frac{1}{3}$ i $\sqrt{2}$ kt ₃
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$k^2 (r_1 + r_5) + \frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_{1}^{\#1}$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$.	0	0	0	0	0	0	0
$\omega_1^{\#1}_{+}{}_{\alpha\beta}$	$k^2 (2 r_1 + r_5)$	0	0	0	0	0	0
	$\omega_1^{\#1} +^{\alpha\beta}$	$\omega_1^{\#_2} + ^{\alpha \beta}$	$f_1^{\#1} + ^{\alpha\beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{\#2} \dagger^{lpha}$

Lagrangian density	$rac{2}{3}t_3\;\omega_{'}^{lpha_{\prime}}\;\omega_{\kappalpha}^{$	$rac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{} + rac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{} + r_{5}\partial_{\alpha}\omega_{\lambda}^{\alpha\beta} - r_{5}\partial_{\alpha}\omega_{\lambda}^{\alpha} + r_{5}\partial_{\alpha}\omega_{\lambda}^{$	$r_5\partial_\theta\omega_\lambda^{\alpha}\partial_\kappa\omega^{\theta\kappa\lambda}$ - $r_5\partial_\alpha\omega_\lambda^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta}$ + $2r_5\partial_\theta\omega_\lambda^{\alpha}\partial_\kappa\omega^{\kappa\lambda\theta}$ -	$\frac{2}{3}t_{3}\;\omega_{\kappa\alpha}^{\;\;\alpha}\;\partial^{\kappa}f'_{\;\;l}-\frac{2}{3}t_{3}\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;l}-\frac{4}{3}t_{3}\;\partial^{\alpha}f_{\;\kappa\alpha}\;\partial^{\kappa}f'_{\;\;l}+\frac{2}{3}t_{3}\;\partial_{\kappa}f^{\lambda}_{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;l}+$	$\frac{2}{3}t_3\;\omega_{_{I}\alpha}^{\alpha}\partial^{\kappa}f'_{\kappa}+\frac{2}{3}t_3\;\omega_{_{I}\lambda}^{\lambda}\partial^{\kappa}f'_{\kappa}+\frac{2}{3}t_3\partial^{\alpha}f^{\lambda}_{\alpha}\partial^{\kappa}f_{\lambda\kappa}+$	$rac{2}{3} r_1 \partial_\kappa \omega^{lphaeta heta} \partial^\kappa \omega_{lphaeta heta}^{-} rac{2}{3} r_1 \partial_\kappa \omega^{ hetalphaeta} \partial^\kappa \omega_{lphaeta heta}^{+} + rac{2}{3} r_1 \partial^eta \omega_{lpha}^{} \partial_\lambda \omega_{lphaeta}^{\prime} -$	$rac{8}{3}r_1\partial^{eta}\omega_{,}{}^{\lambdalpha}\partial_{\lambda}\omega_{lphaeta}^{\;$	Added source term: $\left f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} \right $
--------------------	--	---	---	---	--	--	---	--

 $\omega_{0^+}^{\#1}$

 $\sigma_{0}^{\#1} == 0$

 $\tau_{0}^{\#2} == 0$

 $f_{0^{+}}^{\#1}$

 $-i\sqrt{2} kt_3$

 $f_{0^{+}}^{#2}$

0

0

 $\sigma_{2^{-}}^{\#1} \alpha eta \chi$

0

0

0

0

Total #:

 $\tau_2^{\#1}\alpha\beta$

0

? k^{μ}	Quadratic pole	2
	Pole residue:	$\left -\frac{1}{r_1 (r_1 + r_5) (2 r_1 + r_5) p^2} > 0 \right $
?	Polarisations:	2

Ur	Unitarity conditions							
	. 0	7.			11.		2 . \	

 $r_1 < 0 \&\& (r_5 < -r_1 || r_5 > -2 r_1) || r_1 > 0 \&\& -2 r_1 < r_5 < -r_1$

(No massive particles)