# The Hidden Layers of Blockchains: Technical Nuances & their Unforeseen Consequences

PhD Thesis Defence

Shayan Eskandari

15 May 2024



### Agenda

The Hidden Layers of Blockchains: Technical Nuances & their Unforeseen Consequences

- Motivation
- Methodology
- Cryptojacking:
- Front-running:
- Oracles:
- Blockchain Audits:

from Replacing Ads to Invisible Abuse

from Transparency to Extracting Value

from Ground Truth to Market Manipulation

from Existence to Internal Controls

- Conclusion
- Questions

### **Motivation**

- → Influenced by my professional experiences
  - ♦ Blockchain Engineer at a Bitcoin ATM company
    - Friction with the current financial system and the limitations
  - Security Engineer at a Smart Contract Auditing firm
    - Comprehensive perspective into the tech and common false (technical) assumptions
  - ◆ Chief Technology Officer at a Publicly-traded company holding Cryptoassets
    - Experiencing with the disconnect between traditional (financial) auditing methods and the nuanced requirements of cryptoassets custody, ownership, etc
- → Aim to shed some light on the knowledge gaps and discuss potential ethical issues & technical solutions to narrow these gaps

### from

new economical models

decentralized and open networks

real-time financial reporting

to

Invisibile theft

Manipulation and value extraction

complex financial fraud

4

### Methodology

- Most chapters were initially written as a paper, which were accepted in a peer-reviewed conferences or journals
  - Many of these papers fall under "Systemization of Knowledge", or SoK, with addition of measurement studies of the introduced framework
- Critically read, gather data and research
- Looks for themes and behaviours → taxonomy
- Fit the findings into the taxonomy → comparative analysis
- Support with measurements when appropriate

#### SoK + Measurement

### Cryptojacking: from Replacing Ads to Invisible Abuse

#### Based on the paper published at:

- 2018 IEEE Security & Privacy on the Blockchain co-located with the IEEE European Symposium on Security and Privacy (EuroS&P)
- First paper on the topic
- 211 academic citations, so far



### New online economy

- → Current online advertisements money flow is broken
  - Many intermediaries
  - ♦ malvertisement
- → A new system to have direct economical model between the user and the website owner
  - ◆ User sees no ads → pays the website using their computer resources (CPU mining)
  - UNICEF "The HopePage"
    - Donate a CPU to a charity
  - Streaming websites, premium content, etc



Ullah, I., Boreli, R., & Kanhere, S. S. (2023). Privacy in targeted advertising on mobile devices: a survey. International Journal of Information Security, 22(3), 647-678.

### Cryptojacking: Invisible Abuse?

- Anyone with access to the website code could have an income
  - Website (Webmaster, third-party services such as web plugins)
  - Browser Extensions
  - Breaches
  - Man-in-the-middle



| Website           | Results | Query Parameter                            |  |
|-------------------|---------|--------------------------------------------|--|
| Coinhive          | 30611   | 'coinhive.min.js'                          |  |
| JSEcoin           | 1131    | 'load.jsecoin.com'                         |  |
| Crypto-Loot       | 695     | 'CryptoLoot.Anonymous'                     |  |
| Minr              | 324     | 'minr.pw','st.kjli.fi',                    |  |
|                   |         | 'abc.pema.cl', 'metrika.ron.si',           |  |
|                   |         | 'cdn.rove.cl', 'host.d-ns.ga',             |  |
|                   |         | 'static.hk.rs', 'hallaert.online',         |  |
|                   |         | 'cnt.statistic.date', 'cdn.static-cnt.bid' |  |
| CoinImp           | 317     | 'www.coinimp.com/scripts/min.js',          |  |
|                   |         | 'www.hashing.win'                          |  |
| ProjectPoi (PPoi) | 116     | 'projectpoi.min'                           |  |
| AFMiner           | 46      | 'afminer.com/code/miner.php'               |  |
| Papoto            | 42      | 'papoto.com/lib/papoto.js'                 |  |

Invisible Abuse is defined as "the intentional use of the invisible operations of a computer to engage in unethical conduct" - Moor, James H. "What is computer ethics?." The Ethics of Information Technologies. Routledge, 2020.

### Cryptojacking: Discussion

- The use of cryptojacking
  - (1) On a breached website

← Unethical

- By the website owner
  - (2) Without user's consent

←— Unethical

■ (3) With user's consent

- Ambiguity in:
  - Obtaining user's consent <> Effectiveness of the current EU cookie banners
  - Policy Void in ethical use of user's resources as form of payment
    - Regulations on capped usage of resources (with consent) to replace Ads

### Blockchain Front-running: from Transparency to Extracting Value

#### Based on the paper published at:

- 3rd Workshop on Trusted Smart Contracts
   In Association with Financial Cryptography (FC)
   February 2019.
- First paper on the topic
- 236 academic citations, so far
- Presented at:
  - Stanford Blockchain Conference SBC 2020
  - DevCon V, Osaka, Japan



### Blockchain: "Open Finance"

#### Permissionless

Pseudonymous

#### Public

Peer to Peer

#### Transparent

- Everyone (Full Nodes) in the network have access to all information
  - Unconfirmed Transactions → "Privilege Information" in TradFi

#### Irreversible

Programmable

### Blockchain Front-running



### Blockchain Front-running Attacks Taxonomy



Figure 1: Illustrative examples of the three frontrunning attack types.

Torres, Christof Ferreira, and Ramiro Camino. "Frontrunner jones and the raiders of the dark forest: An empirical study of frontrunning on the ethereum blockchain." 30th USENIX Security Symposium (USENIX Security 21). 2021.

### Key Mitigations

#### Transaction Sequencing

- not trivial to order transactions on a distributed network
- might introduce centralization

#### Confidentiality

- limit the visibility of transactions
- o side-channels leak information and signal intention

#### Design Practices

o assume front-running is unpreventable —> remove any benefit from it

#### Embracing Front-running

"Democratizing MEV": sharing the profit of the front-running opportunities

### Oracles: from Ground Truth to Market Manipulation

#### Based on the paper published at:

- AFT 2021 3rd ACM Conference on Advances in Financial Technologies
- 45 academic citations, so far
- Follow up work presented at:ethCC[4]



### What is special about Oracles?

- Blockchain are closed systems, that value decentralization of trust
  - Smart Contracts → "Code is Law"
- There are different approaches to get data in & out of a blockchain → "Oracles"
  - Who can bend the truth and how?
- We break down the design of blockchain oracle systems into modules
  - Modular lens provides better methodology to find the weak/trusted points



### Oracles: Modular Workflow

- Ground Truth
- Data Sources
- Data Feeders
- Selection of Data Feeders
- Aggregation
- Dispute Phase
- Off-chain Infrastructure
- Blockchain Infrastructure
- Smart Contracts
  - Oracle
  - Data Consumer



## Oracles Classification

Data Soutice Selection Meethanism Aggregation Meethanism Data Letting the Fruith Consequences Stasth Bar.

| Oracle                          |                        | Data Feeder                | a e |                        |   | Dispute                |        |
|---------------------------------|------------------------|----------------------------|-----|------------------------|---|------------------------|--------|
| ChainLink [41]                  | API                    | Reputation,<br>Staking     | •   | Statistical<br>Measure | P | Statistical<br>Measure | s      |
| UMA [104]                       | Human, API             | FCFS <sup>†</sup>          | •   | ×                      | D | Staking                | S      |
| Augur [87]                      | Human                  | Single<br>Source*          | •   | ×                      | D | Voting                 | s      |
| Uniswap [105]                   | Smart Contract         | ×                          | ×   | TWAP                   | × | ×                      | ×      |
| MakerDAO V1 [74]                | Human, API             | Centralized<br>Allowlist   | ×   | Median                 | × | ×                      | ×      |
| MakerDAO V2 [74]                | Human, API             | Decentralized<br>Allowlist | ×   | Median                 | P | Voting                 | В      |
| NEST [81]                       | Human                  | ×                          | •   | ×**                    | D | Arbitrage              | L      |
| Band protocol [89]              | API                    | Random<br>Selection        | •   | Statistical<br>Measure | P | Staking                | s      |
| Tellor [31]                     | Human, API             | PoW                        | •   | Median                 | P | Staking                | S<br>B |
| ASTRAEA [3]<br>TruthCoin [99]   | Human                  | Staking                    | •   | Mode                   | D | Voting                 | S      |
| Provable [10]<br>PriceGeth [44] | API                    | ×                          | ×   | ×                      | × | ×                      | ×      |
| DIA Oracle [38]                 | API,<br>Smart Contract | ×                          | ×   | ×                      | D | Staking                | В      |
| DECO [116]<br>TownCrier [115]   | HTTPS                  | ×                          | ×   | ×                      | × | ×                      | ×      |
| API3 [9] \w Kleros [68]         | Oracles                | Decentralized<br>Allowlist | •   | Statistical<br>Measure | P | Voting                 | S<br>B |

Table 2: A classification of the existing oracle implementations using the modular framework described in Section 4.

<sup>•</sup> indicates the properties (columns) are implemented in the corresponding oracle (rows), and × indicates the property is not applicable.

<sup>†</sup> First Come First Serve \*The Market Creator assigns the designated reporter \*\* The series of reported prices will be sent to requester without aggregation (See 4.6.1)

### Blockchain Audits: from Existence to Internal Controls

Building upon the paper published in:

- JIS 2021 American Accounting Association Journal of Information Systems
- 59 academic citations, so far
- Follow up work presented at:
  - ETHDenver 2023



financial audit of the crypto-assets

(>)
technical audit of the smart contracts

### Blockchain Audits Framework



- Existence: verify the reported cryptoassets actually exist and how to verify
- **Ownership:** verify the custody of the cryptoassets
- Valuation: verify values reported in the financial statements are accurate and represent the underlying economic reality
- Internal Control: key management, access control, IT security, etc

### Blockchain Audits: Real-time Financial Reporting (RFR)

4 Case Studies



### Blockchain Audits: Paths Forward

| Paths Forward                           |  |  |
|-----------------------------------------|--|--|
| Reject Cryptoassets Audits              |  |  |
| Collaborate with Experts                |  |  |
| Develop In-house Expertise              |  |  |
| Maturity of Cryptoassets (Test of Time) |  |  |
| Precedence of Previous Audits           |  |  |

### Concluding Remarks

- Blockchain technology can enable really novel approaches to remove trust in the intermediaries and significantly change the information flow in different businesses.
- Also brings forth some unforeseen consequences that were not possible before the existence of this technology
  - Cryptojacking: from Replacing Ads to Invisible Abuse
  - Blockchain Front-running: from Transparency to Extracting Value
  - Oracles: from Ground Truth to Market Manipulation
  - Blockchain Audits: from Existence to Internal Controls

### from

new economical models

decentralized and open networks

real-time financial reporting

to

Invisibile theft

Manipulation and value extraction

complex financial fraud

### **Publications**

- **Eskandari, S.**, Leoutsarakos, A., Mursch, T., & Clark, J. (2018, April). **A first look at browser-based cryptojacking**. In 2018 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW) (pp. 58-66). IEEE.
- Gaggioli, A., Eskandari, S., Cipresso, P., & Lozza, E. (2019). The middleman is dead, long live the middleman: the "trust factor" and the psycho-social implications of blockchain. Frontiers in Blockchain, 2, 20.
- Rahimian, R., **Eskandari, S.**, & Clark, J. (2019, June). **Resolving the multiple withdrawal attack on erc20 tokens**. In 2019 IEEE European symposium on security and privacy workshops (EuroS&PW) (pp. 320-329). IEEE.
- **Eskandari, S.**, Moosavi, S., & Clark, J. (2020). **Sok: Transparent dishonesty: front-running attacks on blockchain**. In *Financial Cryptography and Data Security: FC 2019 International Workshops*, Springer International Publishing.
- Pimentel, E., Boulianne, E., **Eskandari, S.**, & Clark, J. (2021). **Systemizing the challenges of auditing blockchain-based assets**. *Journal of Information Systems*, 35(2), 61-75.
- **Eskandari, S.**, Salehi, M., Gu, W. C., & Clark, J. (2021, September). **SoK: oracles from the ground truth to market manipulation**. In Proceedings of the *3rd ACM Conference on Advances in Financial Technologies* (pp. 127-141).

### Thank you

For being part of this journey with me

Shayan Eskandari May 2024





### Timetable

| Term        | Academic Progress                                                                                 | Work Experience                         |  |  |  |
|-------------|---------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|
|             | INSE 6110 - Foundation of Cryptography (A+)                                                       | Blockchain Engineer<br>Bitaccess        |  |  |  |
| Fall 2017   | INSE 6630 - Recent Development in Information Systems Security (A+)                               |                                         |  |  |  |
|             | Research: Cryptojacking and browser-based mining                                                  |                                         |  |  |  |
| Winter 2018 | Published: A first look at browser-based cryptojacking $[\overline{121}]$                         |                                         |  |  |  |
|             | Research: Ethereum & Smart Contracts Security                                                     |                                         |  |  |  |
| Summer 2018 | Research: front-running attacks on blockchain                                                     | Bloc                                    |  |  |  |
| Fall 2018   | Research: front-running attacks on blockchain                                                     |                                         |  |  |  |
| Winter 2019 | Published: SoK: Transparent Dishonesty: front-running attacks on Blockchain $[\overline{122}]$    |                                         |  |  |  |
|             | INSE 6421 - Systems Integration and Testing (A+)                                                  |                                         |  |  |  |
| Summer 2019 | Research: blockchain oracles and security frameworks                                              | or                                      |  |  |  |
|             | Co-authored: Resolving the multiple withdrawal attack on erc20 tokens [276]                       | udite                                   |  |  |  |
| Fall 2019   | Co-authored: the "trust factor" & the psycho-social implications of blockchain $[\overline{144}]$ | ty A                                    |  |  |  |
| Winter 2020 | Research: challenges of auditing crypto-assets in finance                                         | Security Auditor<br>ConsenSys Diligence |  |  |  |
|             | ENCS 8501 - Comprehensive Exam                                                                    |                                         |  |  |  |
| Winter 2021 | ${\it Co-authored: Systemizing the challenges of auditing blockchain-based assets ~~[264]}$       |                                         |  |  |  |
| Summer 2021 | Research: modular framework design for Blockchain Oracles                                         |                                         |  |  |  |
| Fall 2021   | Published: SoK: oracles from the ground truth to market manipulation [123]                        |                                         |  |  |  |
| Winter 2022 |                                                                                                   |                                         |  |  |  |
| Summer 2022 |                                                                                                   | CTO<br>Ether Capital                    |  |  |  |
| Fall 2022   |                                                                                                   | 1                                       |  |  |  |
| Winter 2023 | PhD Proposal                                                                                      |                                         |  |  |  |
| Summer 2023 | Follow up research on auditing crypto-assets                                                      |                                         |  |  |  |
| Fall 2023   | PhD Seminar                                                                                       |                                         |  |  |  |
| Winter 2024 | Writing the dissertation                                                                          |                                         |  |  |  |
|             | Follow up research on security of oracles                                                         | Head of Security                        |  |  |  |
| Summer 2024 | Dissertation defense                                                                              | Puffer Finance                          |  |  |  |

### Methodology - SoK

- Many of the chapters fall under "Systemization of Knowledge"
  - o Introduced in 2010 at the IEEE Symposium on Security and Privacy ("Oakland" conference)
- "our community... produces too many incremental results that don't always lead to better general understanding... Some of this has been blamed on the lack of appropriate high-visibility venues in which to publish these types of papers since the top security venues (including Oakland research papers) emphasize novel research contributions."
- "We believe an SoK paper will be at least as valuable of a contribution to our research community as a typical Oakland paper, and expect these papers will be widely read and cited."