Национальный исследовательский ядерный университет «МИФИ», Москва

РАЗРАБОТКА МОДУЛЯ ОБРАБОТКИ ГРУППОВЫХ ЗАПРОСОВ MODBUS В СРЕДЕ OWEN LOGIC

Доклад посвящен вопросам повышения эффективности обмена данными в системах промышленной автоматизации. Рассмотрены архитектура и алгоритмы модуля групповой обработки запросов для протокола Modbus, интегрируемого в среду разработки Owen Logic. Приведены результаты тестирования, подтверждающие повышение производительности и надежности взаимодействия с устройствами.

Введение

Актуальность темы обусловлена растущими требованиями к скорости и надежности обмена данными в распределенных системах управления технологическими процессами (АСУ ТП). Протокол Modbus остается одним из наиболее распространенных стандартов в промышленной автоматизации. Однако его базовая реализация, особенно в средах конфигурирования ПЛК, зачастую не использует потенциал групповых операций чтения и записи, что приводит к избыточному сетевому трафику и увеличению времени отклика системы.

Среда программирования Owen Logic, предназначенная для контроллеров компании «ОВЕН», предоставляет средства для создания алгоритмов управления, но обладает ограниченными возможностями по оптимизации Modbus-обмена. Разработка модуля групповой обработки запросов направлена на устранение этого недостатка и актуальна по следующим причинам:

- необходимость снижения нагрузки на каналы связи в реальном времени;
- требование повышения общей производительности системы за счет сокращения количества транзакций;
- потребность в гарантированной целостности данных при групповой записи связанных параметров.

Учет ограничений протокола Modbus

Важным аспектом при проектировании модуля являлся учет аппаратных и программных ограничений протоколов Modbus RTU и ASCII. Для устройств платформы КС1 размер буфера передачи данных фиксирован и составляет 256 байт. Модуль динамически рассчитывает максимально допустимое количество регистров в одном запросе, опираясь на выбранный протокол и функцию Modbus.

Таблица 1. Ограничения на количество регистров в запросе

No	Тип	Номер	макс.	Примечание	
п/п	протокола	функции	кол-во		
			регистров		
1	RTU	0x03,	125		
		0x04		Ограничение на ввод параметра в UI - 125.	
2	RTU	0x10	123	При пользовательской настройке в 125	
				регистров модуль формирует 2 посылки:	
				на 123 и на 2 регистра.	
3	RTU	0x01,	125	Максимальное количество бит/койлов. В	
		0x02		UI ограничено 125.	
4	RTU	0x0F	125	Максимальное количество бит/койлов. В	
				UI ограничено 125.	
5	ASCII	0x03,	61	При пользовательской настройке в 125	
		0x04		регистров модуль формирует 3 посылки:	
				две по 61 и одну на 3 регистра.	
6	ASCII	0x10	59	При пользовательской настройке в 125	
				регистров модуль формирует 3 посылки:	
				две по 59 и одну на 7 регистров.	
7	ASCII	0x01,	125	Максимальное количество бит/койлов. В	
		0x02		UI ограничено 125.	
8	ASCII	0x0F	125	Максимальное количество бит/койлов. В	
				UI ограничено 125.	

Модуль рассчитывает максимальный размер группы переменных, выбирая меньшее значение между пользовательской настройкой и ограничением протокола. Если количество регистров в группе превышает этот лимит, модуль автоматически разбивает ее на несколько отдельных запросов.

Условия группировки переменных

Модуль предназначен для автоматического объединения одиночных запросов к переменным Modbus в групповые на основе анализа их атрибутов. Для корректной группировки должны быть выполнены все условия, приведенные в таблице 2.

Таблица 2. Условия формирования группового запроса

№	Условие формирования	Пример	Пример
	группового запроса	валидного	невалидного
		условия	условия
1	Группировка только для	устройство адрес	разные адреса
	переменных одного устройства	16, var1, регистр 0;	устройств (16 и
		var2, регистр 2	17)
2	Тип данных переменных должен	var1:real (0),	var1:real,
	быть одинаковым	var2:real (2),	var2:int16
		var3:real (4)	
3	Адреса регистров/битов должны	var1:per.0,	var1:per.0,
	идти подряд без разрывов	var2:peг.2,	var2:peг.3
		var3:peг.4	
4	Функции чтения/записи должны	все var1,var2:	var1: чтение 0x03,
	совпадать	чтение 0х03	var2: чтение 0x04
5	Условия опроса (период,	var1,var2: период	var1: 100мс, var2:
	команды) должны совпадать	100мс	200мс
6	Для опроса по команде «Запуск	var1,var2: чтение	var1: var_b1, var2:
	чтение» – одна командная	по команде var_b1	var_b2
	переменная		
7	Для опроса по команде «Запуск	var1,var2: запись	var1: var_b1, var2:
	записи» – одна командная	по команде var_b1	var_b2
	переменная		
8	Переменные статуса должны быть	var1,var2: статус	var1: статус var_i1,
	одинаковы или не заданы	var_i1	var2: не выбран

Алгоритм модуля последовательно проверяет эти условия для каждого набора переменных. Это обеспечивает формирование только семантически корректных групповых запросов, что исключает ошибки при взаимодействии с устройствами.

Алгоритм группировки

Основная логика работы модуля построена на последовательном анализе отсортированного списка переменных и формировании групп с проверкой условий совместимости и ограничений протокола. Ключевые проверки включают оценку:

- превышения лимита регистров;
- наличия разрыва в адресах;
- изменения функции Modbus;
- совместимости типов данных.

Модуль тесно интегрирован с существующей архитектурой Owen Logic через специализированный сервис и взаимодействует с глобальным словарем переменных. Это обеспечивает согласованность данных и позволяет использовать модуль в рамках стандартного жизненного цикла проекта.

Тестирование и результаты

Для верификации корректности работы модуля разработан комплекс тестов:

- Юнит-тесты для алгоритмов группировки и валидации.
- Интеграционные тесты, проверяющие взаимодействие модуля с ядром Owen Logic.
- Функциональные тесты на реальном оборудовании КС1.

Результаты тестирования подтвердили:

- Сокращение количества Modbus-запросов на 60-80% для типовых конфигураций с большим количеством переменных.
- Корректную обработку граничных случаев (разрывы в адресах, разные типы данных).
- Соблюдение ограничений протоколов RTU и ASCII.
- Стабильную работу при длительной эксплуатации.

Выводы

Разработанный модуль групповой обработки запросов Modbus решает актуальную задачу оптимизации обмена данными в системах на базе контроллеров «ОВЕН». Реализованный функционал позволяет:

- 1. Существенно повысить производительность за счет сокращения сетевого трафика.
- 2. Обеспечить целостность данных при групповых операциях записи.
- 3. Минимизировать нагрузку на каналы связи в реальном времени.

Внедрение модуля в среду Owen Logic расширяет ее возможности, делая ее более конкурентоспособным решением для построения сложных и высоконагруженных систем промышленной автоматизации, где требования к времени отклика и надежности являются критичными.

Список литературы

- 1. Официальная документация MAP Modbus Application Protocol. URL: https://modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf
- 2. Смит С.И. Разработка программного обеспечения с использованием микросервисов. М.: Диалектика, 2021. 350 с.
- 3. Иванов О.П. Основы программирования с OWEN Logic. М.: Наука, 2020. 280 с.
- 4. Петров В.К. Промышленные сети и протоколы связи в АСУ ТП. М.: Техносфера, 2019. 320 с.
- 5. Документация на программное обеспечение Owen Logic. Компания «OBEH». URL: https://owen.ru/documents