

What is claimed is:

- 1 1. A method of moving a volume of a reaction mixture, comprising:
2 introducing a first volume of a first fluid into a first channel segment, the first fluid
3 comprising an environmental control reagent; and
4 flowing a first volume of a second fluid into the first channel segment, the second
5 fluid comprising the reaction mixture.

- 1 2. The method of claim 1, wherein the first volume of the first fluid is
2 introduced into the first channel segment after the first volume of the second fluid is flowed through
3 the first channel segment.

- 1 3. The method of claim 2, further comprising flowing a volume of a first
2 volume of a third fluid through the first channel segment after the first fluid is flowed through the
3 first channel segment.

- 1 4. The method of claim 1, wherein the second fluid comprises a first test
2 compound.

- 1 5. The method of claim 4, wherein the second fluid comprises at least a first
2 component of a biochemical system.

- 1 6. The method of claim 1, wherein the environmental reagent comprises a
2 degassing fluid.

- 1 7. The method of claim 6, wherein the degassing fluid comprises a fluid that is
2 not gas saturated.

- 1 8. The method of claim 6, wherein the degassing fluid comprises a fluid having
2 less than 90% gas saturation.

1 9. The method of claim 6, wherein the degassing fluid comprises a fluid having
2 less than 80% gas saturation.

1 10. The method of claim 6, wherein the degassing fluid comprises a fluid having
2 less than 60% gas saturation.

1 11. The method of claim 6, wherein the degassing fluid comprises a fluid having
2 less than 50% gas saturation.

1 12. The method of claim 6, further comprising degassing the first fluid
2 immediately prior to the step of flowing the first volume of first fluid through the first channel
3 segment.

1 13. The method of claim 12, wherein the degassing step comprises heating the
first fluid.

1 14. The method of claim 12, wherein the degassing step comprises subjecting the
first fluid to a negative pressure.

1 15. The method of claim 1, wherein the first fluid comprises a channel surface
2 modifying reagent.

1 16. The method of claim 15, wherein the surface modifying reagent comprises a
2 surface adsorbing polymer.

1 17. The method of claim 16, wherein the surface adsorbing polymer comprises a
2 silica adsorbing polymer.

1 18. The method of claim 1, wherein the first fluid comprises a viscosity adjusting
2 reagent.

1 19. The method of claim 1, wherein the first fluid comprises a complexing
2 reagent.

1 20. The method of claim 1, wherein the first fluid comprises a reaction inhibiting
2 reagent, and the second fluid comprises at least a first reactant.

1 21. The method of claim 20, wherein the reaction inhibiting reagent comprises an
2 inhibitor of a reaction involving the at least first reactant.

1 22. The method of claim 21, wherein the first reactant comprises a first enzyme,
2 and the inhibitor inhibits an action of the enzyme.

1 23. The method of claim 21, wherein the first reactant comprises a specific
2 binding pair of reagents, and the inhibitor inhibits binding of a first member of the binding pair to
3 the second member of the binding pair.

1 24. The method of claim 23, wherein the specific binding pair comprises one or
2 more of an antibody/antigen pair, a complementary nucleic acid pair, a nucleic acid binding
3 protein/nucleic acid pair, and a receptor/ligand pair.

1 25. A microscale channel, comprising:
2 a first fluid region disposed therein, the first fluid region comprising at least one
3 environmental control reagent; and
4 a second fluid region disposed therein, the second fluid region comprising at least a
5 first reactant.

1 26. The microscale channel of claim 25, wherein the first and second fluid
2 regions are adjacent to each other within the first channel.

1 27. The microscale channel of claim 25, wherein the second fluid region is
2 bounded on both sides within the channel by the first fluid.

1 28. The microscale channel of claim 25, wherein the second fluid comprises a
2 first test compound.

1 29. The microscale channel of claim 28, wherein the second fluid comprises at
2 least a first component of a biochemical system.

1 30. The microscale channel of claim 25, wherein the environmental reagent
2 comprises a degassing fluid.

1 31. The microscale channel of claim 30, wherein the degassing fluid comprises a
2 fluid that is not gas saturated.

32. The microscale channel of claim 30, wherein the degassing fluid comprises a
fluid having less than 90% gas saturation.

33. The microscale channel of claim 30, wherein the degassing fluid comprises a
fluid having less than 80% gas saturation.

34. The microscale channel of claim 30, wherein the degassing fluid comprises a
fluid having less than 60% gas saturation.

35. The microscale channel of claim 30, wherein the degassing fluid comprises a
fluid having less than 50% gas saturation.

36. The microscale channel of claim 25, wherein the first fluid comprises a
channel surface modifying reagent.

37. The microscale channel of claim 36, wherein the surface modifying reagent
comprises a surface adsorbing polymer.

38. The microscale channel of claim 37, wherein the surface adsorbing polymer
comprises a silica adsorbing polymer.

1 39. The microscale channel of claim 25, wherein the first fluid comprises a
2 viscosity adjusting reagent.

1 40. The microscale channel of claim 25, wherein the first fluid comprises a
2 complexing reagent.

1 41. The microscale channel of claim 25, wherein the first fluid comprises a
2 reaction inhibiting reagent, and the second fluid comprises at least a first reactant.

1 42. The microscale channel of claim 41, wherein the reaction inhibiting reagent
2 comprises an inhibitor of a reaction involving the at least first reactant.

1 43. The microscale channel of claim 42, wherein the first reactant comprises a
2 first enzyme, and the inhibitor inhibits an action of the enzyme.

1 44. The microscale channel of claim 42, wherein the first reactant comprises a
2 specific binding pair of reagents, and the inhibitor inhibits binding of a first member of the binding
3 pair to the second member of the binding pair.

1 45. The microscale channel of claim 44, wherein the specific binding pair
2 comprises one or more of an antibody/antigen pair, a complementary nucleic acid pair, a nucleic
3 acid binding protein/nucleic acid pair, and a receptor/ligand pair.

1 46. A method of preventing bubble formation in a fluid containing microchannel
2 structure, comprising:

3 providing a first fluid in the first microchannel, the first fluid having a first dissolved
4 gas concentration; and

5 maintaining the first fluid at a first temperature and pressure once the first fluid is
6 introduced into the microchannel, the first temperature and pressure being sufficient to prevent
7 bubble formation within the first fluid having the first dissolved gas concentration.

1 47. The method of claim 46, further comprising providing a second fluid having
2 a second dissolved gas concentration within the first microscale channel, wherein the first
3 temperature and pressure and the first dissolved gas concentration in the first fluid are sufficient to
4 absorb sufficient gas from the second fluid in order to prevent bubble formation from the second
5 fluid having the second dissolved gas concentration under the first temperature and pressure.

1 48. The method of claim 47, wherein the step of providing the first fluid in the
2 first microchannel having a first dissolved gas concentration comprises elevating a temperature of
3 the first fluid to a temperature greater than the first temperature prior to introducing the first fluid
4 into the first microscale channel.

1 49. The method of claim 47, wherein the step of providing the first fluid in the
2 first microchannel having a first dissolved gas concentration comprises subjecting the first fluid to a
3 pressure lower than the first pressure prior to introducing the first fluid into the first microscale
4 channel.

1 50. The method of claim 46, wherein the first fluid is heated to a temperature at
2 least about 5°C higher than the first temperature, prior to introducing the first fluid into the first
3 microchannel.

1 51. The method of claim 46, wherein the first microchannel has at least one
2 cross-sectional dimension between 0.1 and 100 µm.

1 52. A method of preventing bubble formation in a fluid containing microchannel,
2 comprising:
3 maintaining a first fluid at a first temperature prior to introducing the first fluid into
4 the microchannel;
5 applying a vacuum to the first microchannel to draw the first fluid into the first
6 microchannel; and
7 maintaining the first fluid at a second temperature once the first fluid is introduced
8 into the microchannel, the second temperature being less than the first temperature.