线性代数习题解答

原生生物

作者 QQ:	3257527639
--------	------------

对应讲义: 王新茂老师讲义 (下载地址: mcm.ustc.edu.cn/xxds) 2021 年 9 月 6 日版

使用资料: 个人解题为主, 答案来源包括助教的习题课讲义、同学解出的难题或网络上的论文与解答等。

目录

习题分级	3
第一章 线性方程组	4
§1.1 消元解法	4
§1.2 矩阵表示	4
第二章 矩阵运算	5
§2.1 基本概念	5
§2.2 分块矩阵	10
§2.3 初等方阵	12
§2.4 可逆方阵	13
第三章 行列式	19
§3.1 行列式的定义	19
§3.2 Binet-Cauchy 公式	20
§3.3 Laplace 展开	23
§3.4 行列式与几何	26
第四章 矩阵的相抵	27
§4.1 矩阵的秩与相抵	27
§4.2 相抵标准形的应用	31
§4.3 Smith 标准形	33
第五章 矩阵的相似	35
§5.1 相似的概念	35
§5.2 相似三角化	40
§5.3 Jordan 标准形	42
§5.4 最小多项式	45
§5.5 特征方阵	47
第六章 正交方阵	49
§6.1 正交方阵	49
§6.2 正交相似	52

§6.3 正交相抵	
§6.4 酉方阵	
第七章 二次型	58
§7.1 二次型的化简	58
§7.2 正定方阵	59
§7.3 一些例子	62
第八章 线性空间	64
§8.1 基本概念	64
§8.2 线性相关	65
§8.3 向量组的秩	66
§8.4 基与坐标	67
§8.5 交空间与和空间	69
§8.6 直和与补空间	70
§ 8.7 直积与商空间	71
第九章 线性变换	71
第九章 线性变换 §9.1 基本概念	• -
	71
§9.1 基本概念	71
§9.1 基本概念	71 74 75
§9.1 基本概念	
§9.1 基本概念 \$9.2 线性映射的运算 §9.3 对偶空间 \$9.4 核空间与像空间	71 74 75 76
§9.1 基本概念 §9.2 线性映射的运算 §9.3 对偶空间 §9.4 核空间与像空间 §9.5 不变子空间	
§9.1 基本概念 §9.2 线性映射的运算 §9.3 对偶空间 §9.4 核空间与像空间 §9.5 不变子空间 §9.6 根子空间	
§9.1 基本概念 §9.2 线性映射的运算 §9.3 对偶空间 §9.4 核空间与像空间 §9.5 不变子空间 §9.6 根子空间 §9.7 循环子空间	
§9.1 基本概念 §9.2 线性映射的运算 §9.3 对偶空间 §9.4 核空间与像空间 §9.5 不变子空间 §9.6 根子空间 §9.7 循环子空间 第中章 内积空间	
\$9.1 基本概念 \$9.2 线性映射的运算 \$9.3 对偶空间 \$9.4 核空间与像空间 \$9.5 不变子空间 \$9.6 根子空间 \$9.7 循环子空间 \$10.1 基本概念	
\$9.1 基本概念 \$9.2 线性映射的运算 \$9.3 对偶空间 \$9.4 核空间与像空间 \$9.5 不变子空间 \$9.6 根子空间 \$9.7 循环子空间 \$10.1 基本概念 \$10.2 标准正交基	
\$9.1 基本概念 \$9.2 线性映射的运算 \$9.3 对偶空间 \$9.4 核空间与像空间 \$9.5 不变子空间 \$9.6 根子空间 \$9.7 循环子空间 \$10.1 基本概念 \$10.2 标准正交基 \$10.3 正交变换	

习题分级

- * 答案暂缺: 4.1 9,12(1)、4.2 6、5.1 15(2-4)、7.2 7(4)、7.3 2,8,9,14
- * 习题解答中,引用定义、定理、例题或习题若未标注节数则默认在本节中

容易 (难度分级中未提及的题目): 在完成本讲基础知识的学习后应该做出。

中档: 在基础知识上结合一定的思考, 尽量独立解决。

困难:复杂的拓展与提升,有不少结论值得熟悉。存在极困难的题目,建议及时查阅答案,不宜死磕。 难算(独立于难度级别):有较为繁杂的计算或需要的技巧集中在计算部分。

- 1.2 难算 5,6
- 2.1 中档 6(3,6),7(3,5,6,8),9,11(1,3),13,16、困难 7(7),15,17,18、难算 6(6),7(7)
- 2.2 中档 3-6、难算 1,8(4)
- 2.3 中档 3,8,9
- 2.4 中档 3(2-8),7,9,10,12、困难 13,14、难算 3(6)
- 3.1 中档 5(4,5,7,8,10,14,15)
- 3.2 中档 3,5-7,9,11、困难 4,10,12-14、难算 4,5
- 3.3 中档 1,2,4-9、困难 10-12
- 3.4 中档 2-5、难算 2
- 4.1 中档 5-7,8(1-5)、困难 8(6),9-13
- 4.2 中档 2,7-9,12、困难 5-6,10
- 4.3 中档 2,3-5,8-10
- 5.1 中档 3(7,8),4(3,4),5-7,9,12,13、困难 11(2-4),14,15(2-4),16(1,2,4)、难算 14
- 5.2 中档 3,5,7、困难 9,10
- 5.3 中档 3,10,11、困难 4-9,12
- 5.4 中档 1(5-10),3,5-10、难算 1(9,10)
- 5.5 中档 2,3,5,11,12、困难 4,6,7,9,10、难算 10(2,3),12
- 6.1 中档 4,7(2),9、困难 3,12
- 6.2 中档 4.6、困难 5.8.9
- 6.3 中档 2,4,5,6(1-4),7,9(1,3)、困难 3,6(5,6),8,9(2),10、难算 7(2)
- 6.4 中档 2,5、困难 11-13、难算 4
- 7.1 中档 5(3),6,7、难算 5(3),6
- 7.2 中档 3.5(3).6.7(1).8(3.4).9(1).13(2)、困难 5(2).7(2-4).9(2-4).10(2.3).12.14
- 7.3 中档 1,3,4,7,11、困难 2,5,8-10,12-14
- 8.1 中档 6
- 8.2 中档 3,8,9
- 8.3 中档 5,6,9,10
- 8.4 中档 5、困难 7-10
- 8.5 中档 6,7(2,3),8(2,3),9、困难 3、难算 1
- 8.6 中档 3.5.9.10
- 8.7 中档 2-4,6,7、困难 5
- 9.1 中档 2(10),7(1-3)、困难 7(4,5)、难算 5(2)
- 9.2 中档 4-8
- 9.3 中档 3-6
- 9.4 中档 4(2,3),5(1),6(2),8,9、困难 3,5(2),6(1),7,10
- 9.5 中档 5,6,7(1-4)、困难 4,7(5)
- 9.6 中档 3,7,8(1,2),10(2)、困难 8(3)

第一章 线性方程组 4

- 9.7 中档 1(1),2(2,3),3,4、困难 1(2),2(1),5,6
- 10.1 中档 3(1,2),4-6、 困难 3(3),8
- 10.2 中档 2(2,3),9(1,2)、困难 2(1),5,7,8,9(3),10
- 10.3 中档 2,4、困难 5(3,4)
- 10.4 中档 8(1-3),9(2),10(1)、困难 8(4),9(3),10(2,3)
- 10.5 中档 6
- 10.6 中档 2,4,6、困难 5

第一章 线性方程组

§1.1 消元解法

1. 设 f,g 为 x_1,x_2,x_n ... 的一次多项式, $f=0,g=0 \Rightarrow \lambda f=0,g-\lambda f=0$,故解不减少交换两个方程的位置,其逆变换为再次交换此两方程;

将某个方程替换为其非零常数 λ 倍,其逆变换为将此方程替换为其 $\frac{1}{\lambda}$ 倍;

将某个方程替换成它与另一方程的常数 λ 倍之和,其逆变换为将此方程替换它与对应方程的 $-\lambda$ 倍之和:

故,对于其中的任意操作,可通过其逆操作将其变回,故解亦不增加。综上可知此三操作不改变线性方程组的解。

2. (1)
$$x_1 = \frac{5}{13}, x_2 = \frac{7}{13}, x_3 = -\frac{1}{13}, x_4 = \frac{2}{13}$$

$$(2)$$
 $x_1 = -2t, x_2 = t, x_3 = 0, x_4 = t$, t 为任意实数

(3)
$$x_1 = \frac{2-t}{3}, x_2 = 0, x_3 = \frac{5t-1}{3}, x_4 = -3t, x_5 = t$$
, t 为任意实数

- (4) 无解
- (5) 无解

(6)
$$x_1 = 0, x_2 = -1, x_3 = 0, x_4 = -1$$

3. 初等变换后将方程组化为定理 1.2 中的阶梯形,由变换特点知最右侧必然仍全为 0,且左侧含未知数最少的行至少含有 $n-m+1\geq 2$ 个未知数。将除了此行第一个未知数 x_m 外的数全取为 1,代入可知此时必有解,此即为一个所需的非零解。

§1.2 矩阵表示

- 1. A1 A4 由各 xx 分量加法运算律知成立;
 - M1 M2 计算分量数乘,由乘法运算律知成立;
 - D1 D2 计算分量情况,由加法乘法分配律知成立。
- 2. 注意增广矩阵变换后如何对应线性方程组不同的解的情况。
- 3. 设其为 $ax + by + c = x^2 + y^2$,代入成为线性方程组,解得其为 $x^2 + y^2 \frac{25}{7}x \frac{23}{7}y + \frac{18}{7} = 0$ 。
- 4. 待定系数解出三点所在平面为 6x+3y+2z-6=0,任取一过三点的球,由几何可知与平面交线即为此圆,一切这样的球为 $x^2+y^2+z^2-tx-\frac{t+4}{2}y-\frac{t+9}{3}z+t=0$,t 为任意实数。

5. 由线性方程组解出一特解 $f_0(x)=\frac{1}{60}x^5-\frac{1}{4}x^4+\frac{7}{30}x^3$,若 f_1,f_2 均为解,作差可知 1,2,3,-1,-2,-3 均为 f_1-f_2 的根,故令 g(x)=(x-1)(x-2)(x-3)(x+1)(x+2)(x+3),则一切满足要求的 f 为 $f_0(x)+h(x)g(x)$,其中 h(x) 为任意多项式。

- 6. 由线性方程组解出一特解 $f_0(x) = \frac{1}{2}x^5 \frac{1}{8}x^4 \frac{3}{2}x^3 + \frac{3}{4}x^2 + 2x \frac{5}{8}$,若 f_1, f_2 均为解,作差,由泰勒展开可知 1 与 -1 均为 $f_1 f_2$ 的至少三重根,故令 $g(x) = (x-1)^3(x+1)^3$,则一切满足要求的 f 为 $f_0(x) + h(x)g(x)$,其中 h(x) 为任意多项式。
- 7. 矩阵形式变换为 $\begin{pmatrix} \lambda & 0 & -\lambda & 0 & 0 \\ 0 & \lambda & 0 & -\lambda & 0 \\ 0 & 1 & \lambda & 1 & 1 \\ 1 & 0 & 1 & \lambda & 1 \end{pmatrix}$, 当 $\lambda \neq 0$ 时可变换为 $\begin{pmatrix} \lambda & 0 & -\lambda & 0 & 0 \\ 0 & \lambda & 0 & -\lambda & 0 \\ 0 & 0 & \lambda & 2 & 1 \\ 0 & 0 & 0 & \lambda^2 4 & \lambda 2 \end{pmatrix}$, 当

 $\lambda \neq \pm 2$ 时,解得 $x_1 = x_2 = x_3 = x_4 = \frac{1}{\lambda + 2}$; 当 $\lambda = 2$ 时,解得 $x_1 = c, x_2 = \frac{1}{2} - c, x_3 = c, x_4 = \frac{1}{2} - c, c$ 为任意实数; 当 $\lambda = -2$ 时无解; 当 $\lambda = 0$ 时,解得 $x_1 = a, x_2 = b, x_3 = 1 - a, x_4 = 1 - b, a, b$ 为任意实数。

8. 行初等变换后,增广矩阵可化为 $\begin{pmatrix} 2 & 1 & -1 & 2 & 1 \\ 0 & 1 & 1 & 2 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & a+1 & a+1 \\ 0 & 0 & 0 & 0 & 4-b \end{pmatrix}$,故有解条件为 b=4,有唯一解条件

为 b=4 且 $a \neq -1$,此时解为 $x_1=0, x_2=-1, x_3=0, x_4=1$; 当 a=-1 时,解为 $x_1=t, x_2=t-1, x_3=t, x_4=1-t$, 为任意实数。

第二章 矩阵运算

§2.1 基本概念

1. 两题均考虑对应分量的值并化简求和即可证明。

2.
$$AB = \begin{pmatrix} 4 & 3 & 4 \\ 5 & 3 & 8 \\ 5 & 3 & 6 \\ 2 & 1 & 2 \end{pmatrix}, BC = \begin{pmatrix} 1 & 4 & 3 & 1 \\ 2 & 5 & 3 & 2 \\ 2 & 1 & 1 & 2 \end{pmatrix}, B^2 = \begin{pmatrix} 3 & 2 & 2 \\ 4 & 3 & 4 \\ 2 & 1 & 4 \end{pmatrix}, ABC = \begin{pmatrix} 7 & 11 & 8 & 7 \\ 8 & 19 & 13 & 8 \\ 8 & 15 & 11 & 8 \\ 3 & 5 & 4 & 3 \end{pmatrix}$$

3.
$$b_{ij} = \begin{cases} a_{i+j-2} \mathbf{C}_{i+j-2}^{i-1} & i+j \leq n+2 \\ 0 & i+j > n+2 \end{cases}$$
, $c_{ij} = \begin{cases} a_{i+j-1} & i+j \leq n+1 \\ 0 & i+j > n+1 \end{cases}$, 直接验证可知其对称。

4. (1) 由定理 2.2-5, $B = B^T \Rightarrow ABA^T = (A^T)^T B^T A^T = ABA^T$, 因此成立。

(2) 与上一问类似知
$$ABA^{T} = -ABA^{T}$$
,设 $A = (a_{ij}), B = (b_{ij})$,第 k 个对角元 $\sum_{j=1}^{n} (AB)_{kj} (A^{T})_{jk} = \sum_{i=1}^{n} \left(\sum_{i=1}^{n} a_{ki}b_{ij}\right) a_{kj} = \sum_{i,j=1}^{n} a_{ki}a_{kj}b_{ij}$,由 B 反对称可知其为 0 。

5. 设 A 为
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
;

第一个方程为
$$\begin{pmatrix} 2ab & bc+ad \\ bc+ad & 2cd \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
,解为 $\begin{pmatrix} 0 & \frac{1}{m} \\ m & 0 \end{pmatrix}$ 或 $\begin{pmatrix} \frac{1}{m} & 0 \\ 0 & m \end{pmatrix}$, m 为非零实数;

第二个方程为
$$\begin{pmatrix} 0 & bc-ad \\ ad-bc & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
,只需 $\det A = 1$ 即可。

6. (1)
$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
(2)
$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

(3) 将 A 看成以 $\begin{cases} y=0 \\ x+z=0 \end{cases}$ 为转轴的 180° 旋转 (具体变换为三阶列向量 $x\to Ax$),则自上向下

看顺时针 90° 的旋转为
$$\begin{pmatrix} \frac{1}{2} & \frac{\sqrt{2}}{2} & -\frac{1}{2} \\ -\frac{\sqrt{2}}{2} & 0 & -\frac{\sqrt{2}}{2} \\ -\frac{1}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2} \end{pmatrix}$$

(4)
$$\begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix} (A^3 = A \Rightarrow (-A)^3 = -A)$$

(5)
$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 (将 B 看作置换)

(6) 将 B 看成 x = y = z 为转轴的自上而下顺时针 120° 旋转 (具体变换为三阶列向量 $x \to Bx$),故作以此为转轴的右手 80° 旋转,由下方算法可得结果。

求正交阵一个方根的一般方法:

步骤 0: 预备知识

正交阵即满足 $AA^T = A^TA = I$ 的方阵,均可看作过原点的转轴的旋转。因此,作出对应旋转后便能通过控制角度得到方根。以下讨论均在三阶正交阵 (看成过原点直线为转轴的旋转) 中进行。设此方阵为 M,目标方阵为 X,x, α , β , γ 均为三阶列向量。

步骤 1: 确定转轴与角度

转轴即为不动点集,解方程 Mx = x,解出的 x 构成一条直线,即所求转轴。

若无法直接看出旋转角度,可任取不在转轴上的一点 α ,连接 α 与 $M\alpha$,作垂直平分线,交转轴于 β ,这三点构成的等腰三角形顶角即为旋转角度。

一般化地,接下来寻找过直线 a 作角度为 θ 的右手旋转对应的矩阵 X。

步骤 2: 正交基的确定

在转轴上取一个单位方向向量 α (事实上可任取 α 再作 $\alpha^* = \frac{\alpha}{|\alpha|}$),作出与 α 垂直的平面 $x\alpha^T = 0$,在平面上任取单位方向向量 β ,再待定系数得平面上与 β 垂直,且可由 β 右手旋转 90° 得到的单位向量 γ (若首次求出的 γ 不符合要求,则取 $\gamma^* = -\gamma$),此时 α, β, γ 构成了三维空间的一组标准正交基,由矩阵乘法的线性性,只需确认三个基的像便可以得到任意点的像,反之,利用这三个基已足以构造方程。

步骤 3: 几何得出任意点的像

 α 在旋转下的像显然仍为 α , 而 β 与 γ 均在与转轴垂直的平面上,故退化为平面旋转的情况,可得出 $X\beta = \cos\theta\beta + \sin\theta\gamma, X\gamma = -\sin\theta\beta + \cos\theta\gamma$,故作出任意点在 α , β , γ 表示下的坐标即可由线性组合得到像,即 $t = \lambda_1\alpha + \lambda_2\beta + \lambda_3\gamma \Rightarrow Xt = \lambda_1\alpha + (\lambda_2\cos\theta - \lambda_3\sin\theta)\beta + (\lambda_2\sin\theta + \lambda_3\cos\theta)\gamma$ (事实上,这可以看成把原本的坐标系变换成 α , β , γ 下的新坐标系的过程)。

步骤 4: 矩阵的确定

最后,由任意点的像可以确定矩阵。注意到上一部分中 $\lambda_1 = \alpha^T t, \lambda_2 = \beta^T t, \lambda_3 = \gamma^T t$ (事实上,这是内积的表示,此处可以看成把新坐标系变换回原本坐标系的过程),代入可得:

$$X = \begin{pmatrix} \alpha & \beta & \gamma \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \alpha^T \\ \beta^T \\ \gamma^T \end{pmatrix}$$
* 对于上方的题目,可解出一组 $\alpha = \begin{pmatrix} \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \\ \frac{\sqrt{3}}{3} \end{pmatrix}$, $\beta = \begin{pmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ 0 \end{pmatrix}$, $\gamma = \begin{pmatrix} -\frac{\sqrt{6}}{6} \\ -\frac{\sqrt{6}}{6} \\ \frac{\sqrt{6}}{2} \end{pmatrix}$ 取 $\theta = 80^\circ$,即可计算出

结果。

补充 另一种思路

利用特征值可将正交矩阵利用相似对角化,再求对应对角阵的次方根,亦可得到对应结果 (此方式的合理性将在第六章中解释,主要计算量在于三次方程的求解)。

7. (1)
$$\begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$$
 $\begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$ $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ $\begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix}$ $\begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 阶为 2 循环

(2) $\begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 阶为 2 循环

(3) $2^{m/2}$ $\begin{pmatrix} \cos \frac{m\pi}{4} & -\sin \frac{m\pi}{4} \\ \sin \frac{m\pi}{4} & \cos \frac{m\pi}{4} \end{pmatrix}$

(4) $\begin{cases} 2^{m/2}$ $\begin{pmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \end{pmatrix}$ $m \equiv 1 \mod 2$

(4) $\begin{cases} 2^{m/2}$ $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $m \equiv 0 \mod 2$

(5) $\begin{cases} 1 & m & \frac{m(m-1)}{2} & \frac{m(m-1)(m-2)}{6} \\ 0 & 1 & m & \frac{m(m-1)}{2} \\ 0 & 0 & 1 & m \\ 0 & 0 & 0 & 1 \end{cases}$

(6) $\begin{cases} 1 & m & \frac{m(m+1)}{2} & \frac{m(m+1)(m+2)}{6} \\ 0 & 1 & m & \frac{m(m+1)}{2} \\ 0 & 0 & 1 & m \\ 0 & 0 & 0 & 1 \end{cases}$

(8) 原矩阵
$$A = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix}$$
 $\left(b_1 \quad b_2 \quad b_3 \quad b_4\right)$,由 $\left(b_1 \quad b_2 \quad b_3 \quad b_4\right)$ $\left(\begin{matrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{matrix}\right) = (a_1b_1 + a_2b_2 + a_3b_3 + a_4b_4)$,

使用结合律得 $A^m = (a_1b_1 + a_2b_2 + a_3b_3 + a_4b_4)^{m-1}A$

8. (出现的字母未作说明即为任意实数)

$$(1) \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & d \end{pmatrix} (2) \begin{pmatrix} a & b & c & d \\ d & a & b & c \\ c & d & a & b \\ b & c & d & a \end{pmatrix} (3) \begin{pmatrix} a & b & c & d \\ e & f & g & h \\ c & d & a & b \\ g & h & e & f \end{pmatrix} (4) \begin{pmatrix} a & b & c & d \\ 0 & a & b & c \\ 0 & 0 & a & b \\ 0 & 0 & 0 & a \end{pmatrix}$$

$$(5) \begin{pmatrix} a & 0 & 0 & d \\ 0 & b & 2c & 0 \\ 0 & 3c & b & 0 \\ 4d & 0 & 0 & a \end{pmatrix} (6) \begin{pmatrix} a & b & c & d \\ e & f & g & h \\ h & g & f & e \\ d & c & b & a \end{pmatrix} (7) \begin{pmatrix} a & b & c & d \\ e & f & e & g \\ c & b & a & d \\ h & i & h & j \end{pmatrix} (8) \begin{pmatrix} a & b & c & d \\ b & a & d & c \\ e & f & g & h \\ f & e & h & g \end{pmatrix}$$

- 9. (1) 考虑上题 (1)(2) 类似构造知为 aI, I 为单位阵, a 为任意实数 (复数)。
 - (2) 考虑上题 (1)(3)(8) 类似构造知为 aI, I 为单位阵, a 为任意实数 (复数)。
 - (3) 二阶时为 $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$,大于等于三阶时考虑 $a_{ij}=1, a_{ji}=-1$,其余为 0 的矩阵知只能为 aI,I为单位阵,a 为任意实数 (复数)。
- 10. (1) 展开可消去交叉项,即得结果。
 - (2) 直接展开即可。
 - (3) 利用 (2) 的结论, 比较左右 B^n 项的系数即可。
 - (4) A, B 对称 $\Leftrightarrow (AB)^T = AB \Leftrightarrow B^T A^T = AB \Leftrightarrow BA = AB$ 。
- 11. (1) 左:将 $a_{11} \subseteq a_{mn}$ 按先行后列排序为 $a_1 \subseteq a_k$,B 同理排序,计算得 $\operatorname{tr}(AA^H) = \sum_{i=1}^k |a_i|^2$, $\operatorname{tr}(AB^H) = \sum_{i=1}^k a_i \overline{b_i}$, 左式 $\geq \sum_{i=1}^k |a_i b_i| \cdot \sum_{i=1}^k |a_i b_i| \geq \left| \operatorname{tr}(AB^H) \operatorname{tr}(BA^H) \right|$, 故成立。
 右: $AB^H = (BA^H)^H \Rightarrow \operatorname{tr}(AB^H) = \overline{\operatorname{tr}(BA^H)}$ 因此中式 $= \left| \sum_{i=1}^k a_i b_i \right|^2 \geq 0$ 。

- (2) 由 $\operatorname{tr}(AA^{H}) = \sum_{i=1}^{k} |a_{i}|^{2}$ 可发现需 A 所有元素模长为 0,即全部为 0。
- (3) 由习题 10 类似,B 视为 A^H ,由 (1) 左式的取整条件得结果。
- 12. (1) 直接计算系数知上三角下部仍为 0。
 - (2) 由上问知可乘,与可加性结合知成立。
- 13. (1) 由于 AB 中的每项均为两项乘积的和,按系数展开即得结论。
 - (2) 未必可交换, $\begin{pmatrix} 0 & x^2 \\ x & 0 \end{pmatrix}$ 即为反例。
- 14. (1) 验证可发现 $i \neq j$ 时, AA^T 中,第 i 行第 j 列的值为 i,j 两条线交点数, A^TA 中,第 i 行第 j 列的值为 i,j 点所共的线数,由此知式 2.3 成立。(2) 验证知 k_i 为每条线过点数, d_i 为每点属于的线数。

步骤一:证明所有 k_i 相等,记其为 λ 。任取两条线 e_1, e_2 ,分情况讨论:

若存在一个点 v 同时不在 e_1,e_2 上,则对于过 v 的每一条线 e,考虑 e 和 e_1 唯一确定的交点 $\pi(e)$,由唯一确定知此映射为单射。由于每个 e_1 上的点都与 v 确定一条线,此映射为满射。因此,此映射为过 v 的线到 e_1 上的点的双射。由此可类似构造过 v 的线到 e_1 上的点的双射,因此 e_1,e_2 上的点个数相等。

步骤二:证明所有 d_i 亦均为 λ 。若所有线交于一点 v,由条件三取出四个点,由于 ab,bc,cd 交于 v,由条件一知 b=c=v,因此矛盾。由此对每一点 v 都存在不过其的线 e,利用映射 π 可构造过 v 的线到 e 上的点的双射,故由每条线上有 λ 个点知过每个点有 λ 条线。

步骤三:利用定理 2.2-6 可得 $m\lambda=\operatorname{tr}(AA^T)=\operatorname{tr}(A^TA)=n\lambda\Rightarrow m=n$ 。再计算边的条数。n 个顶点两两确定一条边,共 \mathbf{C}_n^2 条,而由每条边被算了 \mathbf{C}_λ^2 次可知 $\mathbf{C}_n^2=m\mathbf{C}_\lambda^2$,由 m=n 解得 $n=\lambda^2-\lambda+1$ 。

15. (1) 解法一: 归纳。由条件可知 $Q_n = \frac{(Q_{n-2}^2 - 1 - Q_{n-3})(Q_{n-2}^2 - 1 + Q_{n-3})}{Q_{n-2}Q_{n-3}^2}$,由 $Q_{n-1} = \frac{Q_{n-2}^2 - 1}{Q_{n-3}}$

知分母整除 Q_{n-3}^2 ,由 $Q_{n-4}=\frac{Q_{n-3}^2-1}{Q_{n-2}}$ 知分母整除 Q_{n-2} ,辗转相减即可证 $\gcd(Q_{n-2},Q_{n-3})=1$,故其为整系数多项式。

解法二: 变形递推式可得 $\frac{Q_{n+1}+Q_{n-1}}{Q_n}$ 为常值,由此代入前三项知 $Q_{n+1}=xQ_n-Q_{n-1}$,故其为整系数多项式。

16. (1)
$$\begin{pmatrix} x_n \\ x_{n-1} \\ \vdots \\ x_{n-k+1} \end{pmatrix} = \begin{pmatrix} a_1 & a_2 & \cdots & a_k \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} x_{n-1} \\ x_{n-2} \\ \vdots \\ x_{n-k} \end{pmatrix}$$

故
$$x_n = \begin{pmatrix} 1 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} a_1 & a_2 & \cdots & a_k \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}^{n-k} \begin{pmatrix} x_k \\ x_{k-1} \\ \vdots \\ x_1 \end{pmatrix}$$

$$(2) \diamondsuit x_n = \frac{y_n}{z_n}, \ \ \vec{7} \begin{pmatrix} y_n \\ z_n \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} y_{n-1} \\ z_{n-1} \end{pmatrix}, \ \ \vec{a} \ \vec{b} \begin{pmatrix} a & b \\ c & d \end{pmatrix}^n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix}, \ \ \vec{7} \ x_n = \frac{a_n x_0 + b_n}{c_n x_0 + d_n}$$

17. 将递推写为 $\begin{pmatrix} a_{n+1} \\ a_n \end{pmatrix} = \begin{pmatrix} b_n & c_{n-1} \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_n \\ a_{n-1} \end{pmatrix}$,其中 c_{n-1} 由 b_{n-1} 所确定,值为 ±1。

由
$$\begin{pmatrix} b_k & c_{k-1} \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} b_k & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & c_{k-1} \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & c_{k-1} \end{pmatrix} \begin{pmatrix} b_{k-1} & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} b_{k-1} & 1 \\ c_{k-1} & 0 \end{pmatrix},$$
结合 $\begin{pmatrix} 1 & 0 \\ 0 & c_0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ 可将原通项改写为 $\begin{pmatrix} a_{n+1} \\ a_n \end{pmatrix} = \begin{pmatrix} b_n & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} b_{n-1} & 1 \\ c_{n-1} & 0 \end{pmatrix} \dots \begin{pmatrix} b_1 & 1 \\ c_1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix},$
令 $\begin{pmatrix} u_n \\ v_n \end{pmatrix} = \begin{pmatrix} b_{n-1} & 1 \\ c_{n-1} & 0 \end{pmatrix} \dots \begin{pmatrix} b_1 & 1 \\ c_1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \text{则} \begin{pmatrix} a_{n+1} \\ a_n \end{pmatrix} = \begin{pmatrix} b_n u_n + v_n \\ u_n \end{pmatrix}, \quad \text{通过分四类归纳可证明},$
 $b_{n-1} = 1 \Rightarrow u_n \geq 1, v_n \geq 1, u_n + v_n \geq n; b_{n-1} > 1 \Rightarrow u_n \geq n, v_n \leq 0, u_n + v_n \geq 1, \quad \text{故原结论成立}.$

18. 解法一:可直接归纳证明 $u_n = \sum_{i=0}^{\lfloor n/2 \rfloor} \sum_{j_1, \dots, j_n \geq 2} a_{j_1} a_{j_2} \dots a_{j_i}$, 利用对称性推出 $u_n = v_n$ 。

解法二:

$$\begin{pmatrix} u_{k+1} \\ u_{k+1} - u_k \end{pmatrix} = \begin{pmatrix} 1 + a_k & -a_k \\ a_k & -a_k \end{pmatrix} \begin{pmatrix} u_k \\ u_k - u_{k-1} \end{pmatrix}$$
$$\begin{pmatrix} v_{k+1} & v_{k+1} - v_k \end{pmatrix} = \begin{pmatrix} v_k & v_k - v_{k-1} \end{pmatrix} \begin{pmatrix} 1 + a_{n-k} & -a_{n-k} \\ a_{n-k} & -a_{n-k} \end{pmatrix}$$

利用以上两式展开递推可立刻得结果。

解法三:写出 u_n, v_n 以矩阵乘积形式表示的递推公式,可得

$$\begin{split} u_n &= \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & a_{n-1} \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} 1 & a_1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, v_n = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & a_1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} 1 & a_{n-1} \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \; 且有 \\ v_n^T &= v_n = \begin{pmatrix} 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ a_1 & 0 \end{pmatrix} \cdots \begin{pmatrix} 1 & 1 \\ a_{n-1} & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ a_1 & 0 \end{pmatrix} \cdots \begin{pmatrix} 1 & 1 \\ a_{n-1} & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \; 由此可化为相同。 \end{split}$$

§2.2 分块矩阵

1. 均直接书写分量验证即可。

2. (1)
$$X_1A_1Y_1 + X_2A_3Y_1 + X_1A_2Y_2 + X_2A_4Y_2$$

(2)
$$\begin{pmatrix} X_1 A_1 Y_1 + X_2 A_2 Y_3 & X_1 A_1 Y_2 + X_2 A_2 Y_4 \\ X_3 A_1 Y_1 + X_4 A_2 Y_3 & X_3 A_1 Y_2 + X_4 A_2 Y_4 \end{pmatrix}$$

$$(2) \begin{pmatrix} X_1 A_1 Y_1 + X_2 A_2 Y_3 & X_1 A_1 Y_2 + X_2 A_2 Y_4 \\ X_3 A_1 Y_1 + X_4 A_2 Y_3 & X_3 A_1 Y_2 + X_4 A_2 Y_4 \end{pmatrix}$$

$$(3) \begin{pmatrix} A_1 + X A_3 & A_2 + X A_4 - A_1 X - X A_3 X \\ A_3 & A_4 - A_3 X \end{pmatrix}$$

(4)
$$\begin{pmatrix} A_1 + XA_3 + A_2Y + XA_4Y & A_2 + XA_4 \\ A_3 + A_4Y & A_4 \end{pmatrix}$$

(5)
$$\begin{cases} \begin{pmatrix} (XY)^k & O \\ O & (YX)^k \end{pmatrix} & m = 2k \\ \begin{pmatrix} O & (XY)^k X \\ (YX)^k Y & O \end{pmatrix} & m = 2k+1 \end{cases}$$

(6)
$$\begin{pmatrix} X^m & O \\ \sum_{k=0}^{m-1} X^k Y X^{m-1-k} & X^m \end{pmatrix}$$

$$(7) \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}^m \otimes X^m$$

$$(7) \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}^{m} \otimes X^{m}$$

$$(8) \begin{pmatrix} X^{m} & mX^{m-1} & C_{m}^{2}X^{m-2} \\ O & X^{m} & mX^{m-1} \\ O & O & X^{m} \end{pmatrix} (m \ge 2)$$

3. 先设其为 $\begin{pmatrix} X_{11} & X_{12} & X_{13} \\ X_{21} & X_{22} & X_{23} \\ X_{31} & X_{32} & X_{33} \end{pmatrix}$,每部分为 3 阶方阵,可得其中某些存在 $X_i = AX_jA^{-1}$ 的关系,整理 化简后得结果为 $\begin{pmatrix} X & Y & Z \\ A^{-1}ZA & A^{-1}XA & A^{-1}YA \\ AYA^{-1} & AZA^{-1} & AXA^{-1} \end{pmatrix}$,其中 X,Y,Z 为任意三阶方阵。

化简后得结果为
$$\begin{pmatrix} X & Y & Z \\ A^{-1}ZA & A^{-1}XA & A^{-1}YA \\ AYA^{-1} & AZA^{-1} & AXA^{-1} \end{pmatrix}$$
,其中 X,Y,Z 为任意三阶方阵。

4. 观察可得为
$$I_m \otimes P_n + P_m \otimes I_n$$
,其中 I_k 为 k 阶单位阵, P_k 为
$$\begin{pmatrix} 0 & 1 & & \\ 1 & 0 & 1 & & \\ & 1 & 0 & \ddots & \\ & & \ddots & \ddots & 1 \\ & & & 1 & 0 \end{pmatrix}$$
 (与主对角线相

邻的两条对角线为 1, 其余为 0 的 k 阶方阵)。

- 5. 设 G_1 有 m 个顶点, G_2 有 n 个顶点,且排序方式为 $(1,1),\ldots,(1,n),(2,1),\ldots,(m,1),\ldots,(m,n)$, 则由定义可发现 $G = I_m \otimes G_2 + G_1 \otimes I_n$, 且将结果中所有 2 改为 1。
- 6. 设 2^n 个点时为 P_n ,可递推出 $P_{n+1} = \begin{pmatrix} P_n & I_{2^n} \\ I_{2^n} & P_n \end{pmatrix}$ 。
- 7. 按照 B,D 分块,利用分块矩阵乘法知成立。
- 8. (1) 利用分块矩阵加法知成立。
 - (2) 同(1)。
 - (3) 利用分块矩阵转置知成立。
 - (4) 计算左式结果后用张量积提出左侧 A 知剩余为 $B \otimes C$ 。
- 9. (注意按列与按行展开的区别)
 - $(1) y = (I_n \otimes A)x$

- $(2) y = (B^T \otimes I_m)x$
- (3) $y = (B^T \otimes A)x$
- $(4) y = (I_n \otimes A B^T \otimes I_m)x$

§2.3 初等方阵

1. 直接验证可得结果。

2. 由
$$\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
 $\begin{pmatrix} b_1 & b_2 & \cdots & b_n \end{pmatrix} = \begin{pmatrix} a_1b_1 & a_1b_2 & \cdots & a_1b_n \\ a_2b_1 & a_2b_2 & \cdots & a_2b_n \\ \vdots & \vdots & \ddots & \vdots \\ a_nb_1 & a_nb_2 & \cdots & a_nb_n \end{pmatrix}$, S_{ij} 利用 $\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \end{pmatrix}$

(其余位置取 0) 可以构造。 D_{ij} 与单位阵相减为仅有一个对角元的方阵,直接构造。 T_{ij} 亦仅剩一个元素,直接构造。

- 3. $(I + \alpha \beta^T)u = v \Leftrightarrow \alpha(\beta^T u) = v u$, u, v 不共线则 u, v u 不共线。直接取 $\alpha = v u$,则 α, u 不共线。只需证明存在 β 使得 $\beta^T u = 1, \beta^T \alpha = 0$,由不共线, β 至少为二阶列向量,由第一章知识得此方程组必有解。
- 4. (1) 由定义直接计算验证即可。
 - (2) 归纳。一阶时显然成立,若 n-1 阶时成立,n 阶时可通过一次交换使第 n 行第 n 列处为 1,由此化为低阶情况。
- 5. 此题相当于说明置换方阵在左乘时为重排 A 的行,右乘时为重排 A 的列,直接验证可知成立。由习题 4(1),可发现当 $Q = P^T = P^{-1}$ 时,产生的是对行列一同置换,即为此题最后一行结论。
- 6. * 需至少为三阶方阵

通过初等变换可得 $T_{ij}(\lambda) = T_{ik}(\lambda)T_{kj}(1)T_{ik}(-\lambda)T_{kj}(-1)$, 任取与 i,j 不同的 k 即可。

7. 可以说明,任意某些 n 阶的 S_{ij} 乘积为 n 阶置换方阵。对 m 使用数学归纳法:

$$m=1$$
 时,若全为零则满足,若 $a_{1j} \neq 0, D_1(\frac{1}{a_{ij}})AS_{1j}$ 即符合要求。

若 m=k 时可以满足,当 m=k+1 时,先取变换使得第 1 至 k 行成为满足要求的形状。然后左乘 $T_{k+1,1}(-a_{k+1,1})T_{k+1,1}(-a_{k+1,r})\dots T_{k+1,r}(-a_{k+1,r})$ (也即将第 k+1 行的前 r 列均行变换为 0),此时 若第 k+1 行全为 0 则已经结束,否则设 $a_{k+1,t}\neq 0$ (t>r),

左乘 $T_{1,r+1}(-a_{1,r+1})T_{2,r+1}(-a_{2,r+1})\dots T_{r,r+1}(-a_{r,r+1})P_{r+1}\left(\frac{1}{a_{k+1,t}}\right)S_{r+1,k+1}$,右乘 $S_{r+1,t}$ (也即靠初等变换将第 r+1 行整理为目标形式),即使得左上角部分变为 I_{r+1} ,符合要求。

8. 解法一: 此题几乎完全等价于第一章线性方程组的阶梯化。

解法二:单位下三角初等阵只能为部分 T 阵,且注意到, $S_{ij}T_{ab}(\lambda)=T_{ab}(\lambda)S_{ij}$ (i,j,a,b) 互不相同,否则将 a,b 作对应交换仍可找到符合要求的 T^* 使 $ST=T^*S$),再注意到,T 为下三角意味着左乘 T 使下方的行减去上方行的某个倍数,只要保持这点不变,利用这些 T,S 按一定顺序相乘即可化为满足题目要求的形式。

自上而下执行操作:

对第一行不进行操作,接下来,对第 t 行操作时,若 $a_{11}, a_{22}, a_{rr} \neq 0$ $(r < t), a_{r+1,r+1} = 0$ 或不存在,则这次操作中左乘 $S_{t,r+1}T_{tr}(\lambda_r)\dots T_{t2}(\lambda_2)T_{t1}(\lambda_1)$,每个 T_{ti} 使得 a_{ti} 被变换成 0。可以验证,这样的操作符合前述要求,可实现,并能将其变换为上三角阵。

- 9. (1) 直接验证得结果。
 - (2) 由几何关系或直接解方程可得 $\theta_2 = \theta_1 + \theta_3 = \frac{\pi}{2}$ 。

(3) 考虑单位正交基在列向量下的旋转。几何理解为: 先将 e_x 的像通过 z 轴旋转至 xz 平面上, 再通 过 y 轴旋转至 x 轴上。接着,将 e_y 的像通过 x 轴旋转至 xy 平面上,这个旋转不会改变已在 x 轴 上的 e_x 的像, 故满足题意。

由此作以下三步证明:

步骤一:对任意 $A = (a_{ij})_{3\times 3}$,方程 $(P_3(\theta)A)_{21} = 0$ 有解。

这个方程即为 $\sin \theta a_{11} + \cos \theta a_{21} = 0$, 讨论易得有解, 取解为 θ_3

步骤二:对任意 $A=(a_{ij})_{3\times 3}$ 满足 $a_{21}=0$,方程 $(P_2(\theta)A)_{31}=(P_2(\theta)A)_{21}=0$ 有解。

这个方程组即 $-\sin\theta a_{11} + \cos\theta a_{31} = 0$, 讨论易得有解, 取解为 θ_2

步骤三: 对任意 $A=(a_{ij})_{3\times 3}$ 满足 $a_{21}=a_{31}=0$, 方程 $(P_2(\theta)A)_{31}=(P_1(\theta)A)_{21}=(P_1(\theta)A)_{32}=0$ 有解。

这个方程组即为 $\sin \theta a_{22} + \cos \theta a_{32} = 0$, 讨论易得有解, 取解为 θ_1 。

经历三步后所得的结果显然满足题目要求。

(这意味着,除了初等方阵外还有其他的"初等"矩阵可用于消元,6.1节对此有叙述)

§2.4 可逆方阵

1. 定理 2.6 直接相乘验证即可证明。

定理 2.7 对相乘后的结果归纳证明。

定理 2.8 利用例 2.15 与 2.3 节中的定理 2.5 分解即可得出。

- 2. 均为通过分量计算直接验证即可。
- 3. 由定理 2.8 可知,乘一个可逆方阵不影响原方阵的可逆性。同时,又因为初等矩阵均可逆,对矩阵做 行/列初等变换不会影响可逆性。另一方面,可以证明由一行或一列是 0 的方阵必然不可逆 (因为左 乘/右乘必然仍会有一行/列为 0), 因此说明不可逆只需说明可在初等变换后出现某行或某列为 0。

$$(1) \begin{pmatrix} 0 & 0.5 & 0.5 & 0 \\ 1 & -1 & -1 & -1 \\ 1 & 0 & -1 & 0 \\ 0 & 0.5 & 0.5 & 1 \end{pmatrix}$$

$$(1) \begin{pmatrix} 0 & 0.5 & 0.5 & 0 \\ 1 & -1 & -1 & -1 \\ 1 & 0 & -1 & 0 \\ 0 & 0.5 & 0.5 & 1 \end{pmatrix}$$

$$(2) \begin{pmatrix} 0.5 & -0.5 & 0.5 & -0.5 \\ 0.5 & 0.5 & -0.5 & 0.5 \\ -0.5 & 0.5 & 0.5 & -0.5 \\ 0.5 & -0.5 & 0.5 & 0.5 \end{pmatrix}$$

$$(3) \begin{pmatrix} 0 & 1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 1 & 0 \end{pmatrix}$$

$$(3) \begin{pmatrix} 0 & 1 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -1 & 0 & 1 & 0 \end{pmatrix}$$

(4) 设矩阵为 A,有 $A^TA = (a^2 + b^2 + c^2 + d^2)I$,故 a, b, c, d 不全为 0 时可逆, $A^{-1} = \frac{1}{a^2 + b^2 + c^2 + d^2}A^T$ (此题实际为四元数的矩阵表示,转置即为共轭)。

(5)
$$\begin{pmatrix} 0 & a & e & a \\ -a & 0 & f & e \\ -e & -f & 0 & a \\ -a & -e & -a & 0 \end{pmatrix} \not \pm \mathbf{e} = -\frac{b}{b^2 + bd - c^2}, e = \frac{c}{b^2 + bd - c^2}, f = -\frac{d}{b^2 + bd - c^2}$$

- (6) 见 3.2 中例 3.8 的四阶情况。
- (7) 作列变换可使第一列为 0, 故不可逆。
- (8) 作列变换可使第一列为 0, 故不可逆。
- 4. 不妨设其为上三角矩阵。若对角元全不为 0, 可先将每行减去最后一行的倍数消去最后一个分量, 再以此归纳, 最终变换为对角元非零的对角阵, 故可逆。若否,则由抽屉原理必有相邻两行左起的 0 个数相同。找到满足此要求的最低的两行,仍以此操作,将使上面一行均变为 0,即得证不可逆。(或利用第三章知识直接计算行列式得结果)
- 5. (1) 与上题相同消元办法,利用增广矩阵求逆可知逆仍为对应三角阵。

(2) 对称阵:
$$A^T = A \Rightarrow (AA^{-1})^T = (A^{-1})^T A^T = (A^{-1})^T A = I^T = I \Rightarrow (A^{-1})^T = A^{-1}$$
 反对称阵: $A^T = -A \Rightarrow (AA^{-1})^T = (A^{-1})^T A^T = -(A^{-1})^T A = I^T = I \Rightarrow (A^{-1})^T = -A^{-1}$

- (3) 直接将上一问的 T 替换为 H 即可。
- 6. 直接代入计算可得(注意两个方阵若都可以写成方阵 A 的多项式,则可以交换)。

7. (1) 注意到
$$A = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \begin{pmatrix} b_1 & b_2 & \cdots & b_n \end{pmatrix}$$
,直接验算得结果。

(2) 当:利用第一问结论直接代入验算得结果;

仅当: 当 $\lambda = 0$ 时,可以利用行变换直接将 B 第二行变换为 0,故不可逆; 当 $\lambda = \mu$ 时,由第一问有 $B^2 = \mu B$,若 B 可逆,同乘逆得 $B = \mu I$,故 A 为零矩阵,但此时 $\mu = 0$,矛盾。

8. 当 $m \neq n$ 时,利用行列变换可将此矩阵中的 A, B 均变换为 $\begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$ 的形式,但此时由于 $r_A, r_B \leq \min(m,n), r_A + r_B < m + n$,故其中必有全为 0 的行/列,故不可逆;

当 m=n 时,对矩阵作题中相同分块 $\begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}$,相乘有 $AA_1=I, AA_2=O, BA_3=O, BA_4=I$ 。由一四两式知 A,B 均可逆时才可能有解,且此时解出 $A_1=A^{-1}, A_4=B^{-1}, A_2=A_3=O$ 。

综上可知,
$$M$$
 为可逆方阵当且仅当 $m=n$ 且 A,B 均可逆, $M^{-1}=\begin{pmatrix}A^{-1}&O\\O&B^{-1}\end{pmatrix}$ 。

9. 当:利用 2.3 节习题 6 直接代入验证即可;

仅当: 若 A 不可逆,则可行列变换使 A 某行为 0,将 B 看作整体对 $A \otimes B$ 作相同变换 (即每次操作从一行/一列变成 B 的行数/列数) 得出某行 0,故其不可逆;若 B 不可逆,则可行列变换使 B 某行为 0,对 $A \otimes B$ 中的一列 B 块作相同变换,可使此行仍为 0,故其不可逆。

10. 当:直接代入验证即可;

仅当: 乘以可逆方阵不影响可逆性,故 A + BC 可逆等价于 $I + BCA^{-1}$ 可逆,由 3.2 节例 3.12(取 x = 1,例中的 A 此处为 -B,例中的 B 此处为 CA^{-1}), $\det(I_m + BCA^{-1}) = \det(I_n + CA^{-1}B)$,由 可逆与行列式不为 0 等价,其可逆即等价于 $I + CA^{-1}B$ 可逆。

(亦可考虑矩阵
$$\begin{pmatrix} A & -B \\ C & I \end{pmatrix}$$
 对 A 和对 I 的两个 Schur 补)

11. 由 2.1 节习题 15,
$$\frac{dA}{dx}A^{-1} + A\frac{d(A^{-1})}{dx} = \frac{d(AA^{-1})}{dx} = O$$
,变形得此题结论。

12. 若有非零解
$$b_1, b_2 ... b_n$$
,设 $\max_{1 \le i \le n} |b_i| = |b_t| > 0$,则 $|a_{tt}b_t| > \sum_{j \ne t} |a_{tj}b_t| \ge \sum_{j \ne t} |a_{tj}b_j|$,故 $\left| \sum_{k=1}^n a_{tk}b_k \right| \ge |a_{tt}b_t| - \left| \sum_{j \ne t} a_{tj}b_j \right| \ge |a_{tt}b_t| - \sum_{j \ne t} |a_{tj}b_j| > 0$,矛盾。

13. 可以发现 $A = A^{-1}$ 均为主对角线全为 1 的下三角方阵,验证知乘积上半三角 (除主对角线) 均为 0,主对角线均为 1,接下来只需验证 AA^{-1} 的下半三角部分 (即 i > j 时) 符合要求。

此时,乘积的第
$$i$$
 行第 j 列为 $\sum_{k=1}^{n} \mu\left(\frac{k}{j}\right) a_{ik} a_{kj}$,当 $j \mid i$ 时方可能不为 0 。设 $t = \frac{i}{j} = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_n^{\alpha_n}$ (由 其不在主对角线知 n 至少为 1),则所求即为 $\sum_{d \mid t} \mu(d) = \mathbf{C}_n^0 - \mathbf{C}_n^1 + \dots + (-1)^n \mathbf{C}_n^n = (1-1)^n = 0$ (其中, $(-1)^r \mathbf{C}_n^r$ 指的是所有含有 r 个不同素因子的 t 的因数的莫比乌斯函数之和)。

14. 首先, 我们来复习 2.1 节中关于图的矩阵表示的部分, 并加以一定改进:

对于 n 个点构成的有向图 (两点之间可能存在有向的箭头),我们可以通过一个 n 阶非负方阵来表示它。若 $a_{ij} > 0, i \neq j$,则表示存在 i 指向 j 的边,反之则不存在。我们将自己指向自己的边称之为自环,若 $a_{ii} > 0$,则代表第 i 个点存在自环,反之则不存在。此外,可验证本题涉及的不可约与本原均与元素大小无关,因此为了方便,可直接将大于 0 的元素记为 1。

(1.1) 本原 ⇒ 不可约

线代证法:

只需证明其逆否命题 (可约则不为本原) 即可。对于置换方阵 P,利用 2.3 节习题 4(1) 知 $P^TP=I$ 。由于 $P^TAP=\begin{pmatrix}A_{11}&A_{12}\\O&A_{22}\end{pmatrix}$,利用 $P^TP=I$ 可归纳证明 $P^TA^nP=(P^TAP)^n=\begin{pmatrix}A_{11}^n&*\\O&A_{22}^n\end{pmatrix}$ 。由于置换方阵只改变元素分布,不改变元素本身, A^n 中必仍存在 0,故不为本原。

图论证法:

首先,观察 P^TAP 与 A 对应的有向图的关系,可发现其实际上相当于行列一同置换,因此只改变了每个顶点对应的编号,没有改变连接的方式。

其次,所谓"可约", $P^TAP=\begin{pmatrix}A_{11}&A_{12}\\O&A_{22}\end{pmatrix}$ 。设 A_{11} 为 s 阶方阵, A_{22} 为 t 阶方阵,则代表着,可以将这个有向图分为两部分,一部分 s 个点,一部分 t 个点,不存在第一部分指向第二部分的边。如果我们把能顺着边前往称为**到达**,则可以有更简洁的说法:从第一部分的某一个点出发,无法到达第二部分的点。

与之相对,如果矩阵不可约,则意味着其对应的图不能分为这样的两部分,这时,从图的任何一个点 出发,都可以到达另一个点。我们将这样的有向图称为**强连通图**。由刚才的讨论,一个非负矩阵不可 约等价于它所对应的有向图是一个强连通图。

接下来,我们考察对于m阶非负方阵A, A^n 中非零元与零元素的含义。

先考察 A^2 ,其中第 i 行第 j 列的元素是 $\sum_{k=1}^m a_{ik}a_{kj}$,只要其中一组 a_{ik},a_{kj} 同时为正,这个元素就为正。为了详细说明这表示什么,我们自然地引入**步**的概念:从一个点到达另一个点,走过的边数就是

步数。特别地,我们规定每个点走 0 步能且只能到达自己。有了步的概念, A^2 中第 i 行第 j 列的元素大于 0,也就是指 i 可以两步到达 j。值得注意的是,可以一步到达时未必可以两步到达。

同理可以归纳证明, A^n 中第 i 行第 j 列的元素非 0,也就是指 i 可以 n 步到达 j。当 n=0 时,幂的结果为单位阵,与规定的 0 步情况相符。

由此,非负矩阵本原,即 A^n 中的元素均大于 0,也就是指存在某个步数使得任两点间都可以通过这个步数到达,此时,当然每个点都可以到达另一个点,即这个图强连通,因此对应矩阵不可约。

接下来两问,我们先给出严谨的代数说明,再以图论作形象的解释性证明。

(1.2) 存在 $\lambda \Rightarrow$ 不可约

仍考虑逆否命题: 若 A 可约,则对任何使逆存在的 λ ,逆中都含 0。

$$P^{T}(\lambda I - A)P = \lambda I - P^{T}AP$$
,由此不妨设 A 已被置换为 $\begin{pmatrix} A_{11} & A_{12} \\ O & A_{22} \end{pmatrix}$ 的形式。可以发现,这时 $\lambda I - A$ 依然是 $\begin{pmatrix} B_{11} & -A_{12} \\ O & B_{22} \end{pmatrix}$ 的形式。

事实上,与上三角矩阵的逆仍为上三角矩阵类似,我们可以证明其逆若存在,必为 $\begin{pmatrix} B_{11}^{-1} & B_{12} \\ O & B_{22}^{-1} \end{pmatrix}$ 。

(可采用伴随矩阵讨论,亦可将其逆分块为 $\begin{pmatrix} M_1 & M_2 \\ M_3 & M_4 \end{pmatrix}$,利用左右乘有: $M_1B_{11} = I, B_{22}M_4 = I, B_{22}M_3 = O$ 。前两式可得 M_1, M_4 的值,又因 B_{22} 可逆,对应线性方程组只有 0 解,故 M_3 只能为零矩阵。)

由此,无论 λ 如何取值,只要逆存在,逆中必含有 0。

(1.3) 不可约 ⇒ 存在 λ

先引入矩阵列收敛的定义:如果一个矩阵列的每一个分量都收敛,则其收敛。

定义 $\max M$ 为矩阵 M 元素绝对值的最大值,容易看出, $\lim_{n\to\infty}\max(A_n-B)=0$ 即是 A_n 收敛于 B 的等价表述。

由乘法定义可以推出,A,B 均为 m 阶方阵时, $\max AB \le m \max A \max B$,因此归纳得 $\max (A^n) \le m^{n-1}(\max A)^n$ 。

由此可以证明,取 $\lambda > 2m \cdot \max A$ 时, $I + \frac{A}{\lambda} + \left(\frac{A}{\lambda}\right)^2 + \dots$ 收敛于 $\lambda(\lambda I - A)^{-1}$ (由于每个分量均单调有界)。

下面即证明,此时目标矩阵 $B = (\lambda I - A)^{-1}$ 没有 0 项。我们从反面说明,若有零项,则矩阵可约。若此矩阵有零项,其必在一切 A^n 中均为 0。在置换矩阵调换后,不妨设左下角的 b_{m1} 为 0。此时,若其所在的行或列恒全为 0,则已满足可约,若否,用置换矩阵调换后可不妨设 b_{11} 与 b_{mm} 不为 0,且第 n 行的 0 集中在前侧,后方均正。设 $b_{m1}, b_{m2} \dots b_{mu}$ 为 0,后方均为正,则可以证明 $b_{u+1,1}, b_{u+2,1} \dots b_{m1}$ 均为 0。此时,对 A 作幂次时,第 m 行与第 1 列的 0 均不会再增加。

因此,我们现在得到的置换后的矩阵 A 的左下角 $(a_{ts}, t > u, s \le u)$ 子矩阵中,最左边一行与最下方一列已经全为 0 了,下面只要证明剩余元素均为 0 即可得到可分的结论。

若此子矩阵中的某元素 $a_{ts} > 0$,则由于 t > u,有 $a_{nt}a_{ts} > 0$,因此 A^2 中第 n 行第 s 列的元素不为 0,因此 $b_{ns} > 0$,但 $s \le u$,与假设矛盾。

(我们实质上说明了比题设更强的结论,即,对充分大的 λ , $(\lambda I - A)^{-1}$ 全为正数。)

(1.4) 1.2 与 1.3 的图论证明

以上的代数证明较为繁琐。下面给出图论的理解。

首先,A 不可约 \Leftrightarrow 有向图强连通 \Leftrightarrow 等价于任意两点 s,t 可通过某步数达到 \Leftrightarrow $\forall 1 \leq s,t \leq m, \exists n \geq 0, A^n_{st} > 0$ (此处暗含结论,m 个点组成的有限图,任意两点若可达到,必可通过有限步达到。事实上,归纳容易证明步数不可能超过 m-1。)

接下来, 仿照 1.3 中矩阵极限相关的构造即可得出 1.2 与 1.3 的结论 (乘正数 λ 不会影响元素的非零性)。

(2) 代数证明:

用第二数学归纳法: 当矩阵阶数 m=1 时显然满足。若 k 阶前均满足。考虑 k 阶时:

如果 A 不可约, A 本身即满足。

如果 A 可约, $P^TAP = \begin{pmatrix} A_{11} & A_{12} \\ O & A_{22} \end{pmatrix}$,其中 A_{11}, A_{22} 阶数均小于 k。由归纳假设, A_{11}, A_{22} 可用置换矩阵调整为符合要求的矩阵形式 (注意分别调整时不会影响到),容易发现此时 A 已经变成了符合要求的形式。

图论证明:

这个结论也就是说,对一个有向图,总可以将其中的点划分为若干个组,并编号为 1,2,3...s 使得:第一,每个组里的点可以互相到达,也即构成一个强连通子图。

第二,每个组无法到达编号小于它的组(至于能否到达大于它的组,这里并不关心)。

这两条中,第一条也就代表着每个对角块均不可约,第二条也就代表着下半三角的部分均为 0。 想要证明这个结论,可以分为两步。

第一步,选出一个点,将所有与它能**相互**到达的点 (含本身)编为一组 (注意这里的相互,指的是它能到达另一个点,另一个点也能到达它;能这样分组其实暗含了结论:相互到达是一个等价关系,如果两个点均与它可以相互到达,这两个点之间也可以相互到达)。若已不存在其他点则停止,若存在,则从中任取一个点,重复操作,直到每个点均属于某一组。

在这一步完成后,我们已经获得了若干个强连通的分组,接下来,我们调整分组的序号。

由于不可能有两个分组之间可以相互到达(否则在分组时它们应该在同一组中),分组之间的到达实际上构成了一个序关系。

首先论证,这个序关系的意义下存在一个极小元,也就是,存在一个组无法到达任何其他组。

如果不存在,我们从某个组出发,找到它能到达的另一个组,再找到另一个组能到达的一个组,以此重复进行。由于每个组均有能到达的其他组,这个过程会无限进行下去,但组的个数是有限的,这意味着,其中必然会有某个组出现两次。但是,假如存在这样的链条: $A \to B \to C \to \cdots \to A$,可以发现,A 可以顺着链条前往 B,B 也可以顺着链条前往 A,因此,AB 之间是可以相互到达的,与不同组之间不能相互到达矛盾。

由此,我们证明了存在无法到达其他组的组。将这个组编号为 s(最后一组),从图中删去。剩下的组中,必然又存在无法到达其他组的组,将它编号为 s-1。重复这个过程,直到所有组均被编号,则此时,我们已经获得了一个满足要求的分组,由此,原结论得证。

(可以发现,这一问的代数证明反而相较图论证明更为简洁,而图论证明有着非常明显的操作性。因此,不同工具间的综合是重要的。)

我们将一条从自己出发到自己的路径称为一个**环**,而某个路径的步数称为这条路径的**长度** (由此,我们也定义了环的长度)。

在第一问中已经证明了,若一个矩阵本原,则其必然不可约。而接下来则说明,一个不可约矩阵为本原矩阵,等价于这个矩阵对应的有向图中所有环的长度的最大公因数为 1。(若两个点可以互相到达,则必然存在过这两个点的环,也即先从第一个点走到第二个点,再走回第一个点。由此,强连通图中一定存在环,故这个最大公因数是存在的。)

在详细证明前,我们先来具体观察一下这个结论。

所有环其实是一个有些奇怪的概念。例如,当一个图中有自环,其中便含有任意长度的环,最大公因数当然是 1。由此即得,只要一个不可约矩阵对应的有向图存在自环(对角元素不全为 0),便一定本原。

此外,我们还可以发现另一个结论,这个结论也是证明的关键:

如果一个不可约矩阵不是本原阵,且其对应的有向图中所有环长度的最大公因数是 d,则有,任取两点 i 和 j,从 i 到 j 的所有可能的路径长度一定模 d 同余。

这个结论的证明如下:

如果 i 到 j 有两条长度为 k_1 与 k_2 的路径,那么任取一条 j 到 i 的路径 (由不可约,这样的路径存在),设其长度为 k,则从 i 到 i 有两个长度分别为 k_1+k 与 k_2+k 的环。由所有环长度的最大公因数为 d, k_1+k , k_2+k 必然都是 d 的倍数,所以 k_1 , k_2 模 d 同余。现在,我们采取图论方式来证明原本的命题,以下设 A 为不可约且非本原的 m 阶矩阵,且已经作出了对应的有向图。

步骤一: 若 ab 互素, n > ab - a - b, 则存在非负整数 x, y 使得 ax + by = n。

由裴蜀定理, 当 $0 \le x \le b-1$ 时, 必存在 y 的整数解, 若这个解不为非负整数, 则 $y \le -1$, 此时 $ax + by \le a(b-1) + b(-1) = ab - a - b < n$ 矛盾, 故解必存在。

步骤二:此有向图中任意两个环长度不互素。

若否,不妨设存在一个过点i的长度为a的环,过点j的长度为b的环,a,b互素。

对任意两点 s,t,设 $s \to i \to j \to t$ 的某条路径长度为 m_{st} ,由于存在 $s \to i \to i \to \dots i \to j \to j \to \dots j \to t$ 的路径,s 到 t 的路径长度可以是 $ax + by + m_{st}$,其中 x,y 为非负整数。这时,取 M 为所有 m_{st} 的最大值,n > M + ab - a - b,可知对于任两点都可以解出合理的 x,y,即任两点都存在长度为 n 的路径,故 A 为本原矩阵,矛盾。

步骤三: 若正整数 a_1, \ldots, a_n 有 $\gcd(a_1, \ldots, a_n) = 1$,对任何正整数 l,存在非负整数 b_1, \ldots, b_{n-1} ,使得 $a_1b_1 + \cdots + a_{n-1}b_{n-1} + a_nl$ 与 a_n 互素。

由裴蜀定理可证若 $gcd(a_1, ..., a_n) = 1$,则必存在 $b_1, ..., b_{n-1}$ 使 $gcd(a_1b_1 + a_2b_2 + ... + a_{n-1}b_{n-1}, a_n) = 1$,又因为在左侧增加 a_ia_n 与 la_n 均不影响互素,可使得所有 b 为非负,并添加 a_nl 项,即得满足条件结论。

步骤四:此有向图中所有环长度最大公因数为 d,则 d > 1。

取一个经过所有点 (未必不重复,但不能遗漏) 的环,由已证,这个环的长度与任何其他环都不互素。而且,设这个环长度为 l,某个环长度为 t,将另一个环添加进这个环中即可得到长度为 l+t 的环 (此处添加,是指将原来环中的某个 i 拆分成 $i \to i$)。因此,若某些环的长度 a_1, a_2, \ldots, a_n 互素,由上一部分证明构造 $a_1b_1+a_2b_2+\cdots+a_{n-1}b_{n-1}+a_nl$,这个长度的环必然存在 $(a_nl$ 由 l 添加自身获得),即与 a_n 互素,与任两环不互素矛盾。由此,所有环长度均不互素,则存在最大公因数 d>1。步骤五:任取两点 i 和 j,从 i 到 j 的所有可能的路径长度一定模 d 同余。

这个结论的证明在之前讨论时已经完成。

步骤六:存在满足题目条件的置换。

任取一个点为 1,对所有点,可以按照前往 1 的路径长度模 d 的余数分为 $0,1,2,\ldots,d-1$ 共 d 类 (特别地,由已证,1 自身属于 0 这类)。利用置换矩阵将这些点的排列变为 $0,1,2,\ldots,d-1$ 的顺序。此时,每一类的点在一步后必然进入下一类 (最后一类将进入第一类),即满足题目中所述的要求。

第三章 行列式

§3.1 行列式的定义

- 1. (1) 由每项都是线性,和仍然保持线性。
 - (2) 由一次对换可使逆序数奇偶性改变得结论。
 - (3) 直接代入验证即可,此时完全展开式中仅有一项。
- 2. (1) 21 (2) 28 (3) 18 (4) 12 (5) $\frac{(k-1)k}{2}$ (6) $\frac{k(k+1)}{2}$ (7) (k-1)k (8) k^2
- 3. $\det(S_{ij}) = -1, \det(D_i(\lambda)) = \lambda, \det(T_{ij}(\lambda)) = 1$ (这也意味着三种操作后行列式值改变对应倍数)
- 4. 由 2.1 节习题 14 知其仍为三角方阵,归纳可得对角元素为 $f(a_{ii})$,结合三角方阵行列式完全展开仅一项得结果。
- 5. (1) 2 (2) 2 (3) 1
 - $(4) (be cd af)^2$
 - (5) $a^2f^2 + b^2e^2 + c^2d^2 2abef 2acdf 2bcde$
 - (6) a(b-a)(c-b)(d-c)
 - $(7) (a^2 + b^2 + c^2 + d^2)^2$
 - (8) 由循环方阵行列式 (3.2 节例 3.10) 知为 $\sum_{k=0}^{3} (a + bi^k + ci^{2k} + di^{3k})$,化简有

$$((a+c)^2 - (b+d)^2)((a-c)^2 + (b-d)^2)$$

- (9) 由范德蒙德行列式 (3.2 节例 3.8) 知为 (b-a)(c-a)(d-a)(c-b)(d-b)(d-c)
- (10) 在其上增添 1,-1,-1,-1,-1,左侧增添一列 0,利用行变换行列式不变得

$$\begin{pmatrix} 1 & -1 & -1 & -1 & -1 \\ 1 & a & a^2 & a^3 & a^4 \\ 1 & b & b^2 & b^3 & b^4 \\ 1 & c & c^2 & c^3 & c^4 \\ 1 & d & d^2 & d^3 & d^4 \end{pmatrix} = 2 \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & a & a^2 & a^3 & a^4 \\ 1 & b & b^2 & b^3 & b^4 \\ 1 & c & c^2 & c^3 & c^4 \\ 1 & d & d^2 & d^3 & d^4 \end{pmatrix} - \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & a & a^2 & a^3 & a^4 \\ 1 & b & b^2 & b^3 & b^4 \\ 1 & c & c^2 & c^3 & c^4 \\ 1 & d & d^2 & d^3 & d^4 \end{pmatrix}$$
由于三个矩阵只相差第

一行,由行列式线性性知可加减,利用范德蒙德行列式计算结果为

$$(2abcd - (a-1)(b-1)(c-1)(d-1))(b-a)(c-a)(d-a)(c-b)(d-b)(d-c)$$
.

- (11)(12) 均可列变换为 0
- (13) 在列变换后知为 (9) 结果的 108 倍

$$(-1)^{n-1}(n-1)2^{n-2}$$

(15) 可以通过变换直接计算,或观察到此矩阵为
$$xI_n - \begin{pmatrix} 1 & -1 \\ 2 & -1 \\ \vdots & \vdots \\ n & -1 \end{pmatrix} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & n \end{pmatrix}$$
,则可利用 3.2 节例
$$3.12$$
 得到行列式为 $x^{n-2} \det \begin{pmatrix} xI_2 - \begin{pmatrix} \frac{n(n+1)}{2} & -n \\ \frac{n(n+1)(2n+1)}{6} & -\frac{n(n+1)}{2} \end{pmatrix}$,结果为 $x^n + \frac{n^4 - n^2}{12}x^{n-2}$

(16)
$$(-1)^{\prod_{1 \le i < j \le p} r_i r_j} \prod_{i=1}^p a_i^{r_i} (-1$$
 的指数即为逆序对的个数)

§3.2 Binet-Cauchy 公式

- 1. $\overline{\det(M)} = \det(M^H) \Rightarrow \det(M) \det(M^H) \ge 0$,由此将 $\det(AA^H)$ 分解为 \mathbf{C}_n^m 个方阵行列式乘积之和,每项均不小于 0,和亦不小于 0。
- 2. 使用两次 Binet-Cauchy 公式即可 (第一次将 BC 看作整体)。
- 3. (1) 首先归纳证明 $\cos n\theta$ 可以写成 $\cos \theta$ 的 n 次多项式,且首项系数为 2^{n-1} : 采用跨度为 2 的第二数学归纳法,由于 $\cos n\theta = 2\cos\theta\cos(n-1)\theta \cos(n-2)\theta$,可以得出结论。因此,原行列式通过列变换可变为范德蒙德行列式乘系数的形式,结果为 $2^{(n-2)(n-1)/2}\prod_{1\leq i < j \leq n}(\cos\theta_j \cos\theta_i)$
 - (2) 每行同乘对应 $\sin\frac{\theta}{2}$ 后三角变换,可知原行列式化简为下一问结果的 $\frac{1}{2^n\prod_{i=1}^n\sin\frac{\theta_i}{2}}$ 倍,化简为 $2^{(n-1)n/2}\prod_{i=1}^n\cos\frac{\theta_i}{2}\prod_{1\leq i< j\leq n}(\cos\theta_j-\cos\theta_i)$
 - (3) 与 (1) 类似可证明, $\frac{\sin n\theta}{\sin \theta}$ 可以写成有关 $\cos \theta$ 的 n-1 次多项式,且首项系数为 2^{n-1} 故提取后可知结果为 $2^{(n-1)n/2}\prod_{i=1}^n \sin \theta_i \prod_{1 \leq i < j \leq n} (\cos \theta_j \cos \theta_i)$
 - (4) 每行提取出 $\sin \frac{\theta}{2}$ 后利用 $\frac{\sin \frac{2n-1}{2}\theta}{\sin \frac{\theta}{2}} = 1 + \sum_{k=1}^{n-1} 2\cos k\theta$ 与列变换共同化简,可得结果为

$$2^{(n-1)n/2} \prod_{i=1}^{n} \sin \frac{\theta_i}{2} \prod_{1 \le i < j \le n} (\cos \theta_j - \cos \theta_i)$$

- (5) 直接代入循环阵 (例 3.10) 公式即可。
- (6) 其可以看作范德蒙德矩阵与其转置之积,结果为 $\prod_{1 \leq i < j \leq n} (x_j x_i)^2$
- (7) 原方阵 $C = f(Z), f(t) = \sum_{i=0}^{n-1} c_i t^i, Z = \begin{pmatrix} O & I_{n-1} \\ -1 & O \end{pmatrix}$,有 $Z^n = -I$ 。令 $\Omega = \left(\omega^{(i-1)(2j-1)}\right)$ (ω 为

$$2n$$
 次单位根),则 $Z\Omega = \Omega \operatorname{diag}(f(\omega), f(\omega^3), \dots, f(\omega^{2n+1}))$,值为 $\prod_{k=1}^n f(\omega^{2k-1})$

(8) 将组合数写为阶乘从行列中分别提取出 $\frac{\prod_{i=1}^{n}(p+i)!}{\prod_{i=1}^{n}(q+i)!}$, 则剩余为 $\left(\frac{1}{(p-q+i-j)!}\right)$, 从每行中同除以第一列,提取出 $\frac{1}{\prod_{i=0}^{n-1}(p-q+i)!}$, 其余通过类似多项式的列变换方式,可化为 $(p+q+i-1)^{j-1}$,

由范德蒙德行列式得值为
$$\prod_{i=0}^{n-1} i!$$
,故最终为 $\prod_{i=1}^{n} \frac{(i-1)!(p+i)}{(p-q+i-1)!(q+i)!}$

4. 此矩阵
$$A = \lambda I + 2K + 2\alpha\alpha^{T}$$
,其中 $\lambda = (1 - a^{2} - b^{2} - c^{2}), K = \begin{pmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{pmatrix}, \alpha = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ 。由于 $K\alpha = O$,有 $A = (\lambda I + 2K)(I + 2\lambda^{-1}\alpha\alpha^{T})$,计算即可。

5. $\Omega\Omega^T$ 可以写成习题 3(6) 的形式, 题中 $x_i = \omega^i$ 。直接计算可得 $\sum_{k=1}^n \omega^{kc}$ 在 $n \mid c$ 时为 n, 否则为 0, 故此式

即
$$\binom{n}{n}$$
 。 因此 $\det\Omega\det\Omega$ $\det\Omega$ $= \det\Omega^2 = (-1)^{(n-2)(n-1)/2}n^n$,由此知 $|\Omega| = n^{n/2}$,接下来确

定辐角。三角变换得 $\omega^a - \omega^b$ 辐角为 $\frac{2a+2b+n}{2n}\pi$ $(a \neq b)$,计算知辐角为 $\sum_{0 \leq a \leq b \leq n-1} \frac{2a+2b+n}{2n}\pi =$ $\frac{(3n-2)(n-1)}{4}\pi$

6. (1) 原式为
$$I_n + \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \begin{pmatrix} b_1 & b_2 & \cdots & b_n \end{pmatrix}$$
,由例 3.12 知 $\det A = \sum_{i=1}^n a_i b_i + 1$,对应代数余子式 $A_{ii} = \sum_{k \neq i} a_k b_k + 1$, $A_{ij} (i \neq j)$ 可以直接由初等变换消元,得 $A_{ij} = -a_{ji}$,由此写出伴随方阵即知逆。

(2) 原式为
$$I_n + \begin{pmatrix} a_1 & 1 \\ \vdots & \vdots \\ a_n & 1 \end{pmatrix} \begin{pmatrix} 1 & \cdots & 1 \\ b_1 & \cdots & b_n \end{pmatrix}$$
,由例 3.12 知 $\det A = \left(1 + \sum_{i=1}^n a_i\right) \left(1 + \sum_{i=1}^n b_i\right) - 1$

$$n\sum_{i=1}^{n}a_{i}b_{i}$$
,对应代数余子式 $A_{ii}=\left(1+\sum_{k\neq i}a_{k}\right)\left(1+\sum_{k\neq i}b_{k}\right)-(n-1)\sum_{k\neq i}a_{k}b_{k}$, A_{ij} $(i\neq j)$ 可以直

接由初等变换消元。以计算
$$A_{12}$$
 为例,变换得 $A_{12}=-\begin{bmatrix}a_2+b_1&b_3-b_1&\cdots&b_n-b_1\\a_3+b_1&1&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\a_n+b_1&0&\cdots&1\end{bmatrix}$,写出完全

 $\begin{vmatrix} a_n + b_1 & 0 & \cdots & 1 \end{vmatrix}$ 展开式可知其为 $-(a_2 + b_1) + \sum_{k \neq 1,2} (b_k - b_1)(a_k + b_1)$ 类似得 $A_{ij} = -(a_j + b_i) + \sum_{k \neq i,j} (b_k - b_i)(a_k + b_i)$,

7. (1)
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$$

$$(2) A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

8. (1)
$$\not\equiv \det \begin{pmatrix} A+B & B \\ B+A & A \end{pmatrix} = \det \begin{pmatrix} A+B & B \\ 0 & A-B \end{pmatrix} = \det(A+B)\det(A-B)$$

(2)
$$\not\equiv \det \begin{pmatrix} A + iB & B \\ iA - B & A \end{pmatrix} = \det \begin{pmatrix} A + iB & B \\ 0 & A - iB \end{pmatrix} = \det(A + iB) \det(A - iB)$$

9. 当 n 为奇数时, $A^T = -A$, $\det A^T = (-1)^n \det A$,又因其相等,故 $\det A = 0$ 。

当 n 为偶数时,利用二重归纳,n=2 验证即可。若 n=2k-2 时满足,将 2k 阶反对称行列式的每列 减去第二列的倍数,消去 $a_{1i}(i \ge 3)$,再用每行减去第二行的倍数,消去 $a_{i1}(i \ge 3)$,此时行列式变为

可直接计算得 $c_{ij} + c_{ji} = 0$, 故 C 为 2k - 2 阶反对称阵, 由归纳假设可知结论。

- 10. V 可以列变换为 $((j-1)!C_{a_i}^{j-1})$,因此 $\det V = \det U \det (C_{a_i}^{j-1})$,由此知整除。
- 11. 更换集合顺序可以视为 QAQ^{-1} ,其中 Q 为置换阵,不影响行列式,因此不妨设其子集以字典序排列。设 n 元时对应矩阵为 M_n , $M_1=(1)$,通过分析可以得到 $M_{n+1}=\begin{pmatrix} M_n & 0_{(2^n-1)\times 1} & M_n \\ 0_{1\times (2^n-1)} & 1 & 1 \\ M_n & 1 & 1 \end{pmatrix}$,
 - 1代表此块全为1。由列变换得

$$\det M_{n+1} = \det \begin{pmatrix} M_n & 0 & M_n \\ 0 & 1 & 1 \\ M_n & 0 & 0 \end{pmatrix} = \det \begin{pmatrix} M_n & 0 & M_n \\ 0 & 1 & 0 \\ M_n & 0 & 0 \end{pmatrix} = (-1)^{2^n-1} \det \begin{pmatrix} M_n & 0 & M_n \\ 0 & 1 & 0 \\ 0 & 0 & M_n \end{pmatrix} = -\det M_n^2$$
 旧知思想要证的结论

- 12. (1) 直接计算 $\left(f_1(y) \cdots f_n(y)\right)V$ 的第 k 个分量为 $\sum_{i=1}^n x_i^{k-1} \prod_{j \neq i} \frac{y-x_j}{x_i-x_j}$, 其为关于 y 的不超过 n-1 次的多项式,且注意到, $y=x_t$ 时其值为 x_t^{k-1} (求和中只有 i=t 这项不为 0),其已经被 n 个不同点处的值唯一确定 (类似 1.2 节习题 5),而 y^{k-1} 满足要求,因此其只能为 y^{k-1} 。
 - (2) 直接计算 $\left(g_1(y) \cdots g_n(y)\right)V$ 的第 k 个分量为 $\sum_{i=1}^n x_i^{k-1} \prod_{j \neq i} \frac{1-x_j y}{x_i-x_j}$, 其为关于 y 的不超过 n-1 次的多项式,分类讨论。当 x_t 中不含有 0 时, $y=\frac{1}{x_t}$ 时其值为 $\frac{x_t^{k-1}}{x_t^{n-1}}$ (求和中只有 i=t 这项 不为 0),其已经被 n 个不同点处的值唯一确定 (类似 1.2 节习题 5),而 y^{n-k} 满足要求,因此其只能为 y^{n-k} 。若有某个 $x_i=0$,可考虑取极限逼近 0 或额外计算发现 y=0 时其余分量为 0,最后一个分量为 1。
 - (3) 直接代入可发现第一个等号成立。设 $A=(x_i^{n-j})$,由 (2) 分每行考虑可知 $(g_j(x_i))=AV^{-1}$,由 $A=V\begin{pmatrix} & 1 \\ & \ddots & \\ 1 \end{pmatrix}$,由 2.1 节定理 2.2-6 知 $\mathrm{tr}=(g_j(x_i))=\mathrm{tr}(AV^{-1})=\mathrm{tr}(V^{-1}A)=\mathrm{tr}\begin{pmatrix} & 1 \\ & \ddots & \\ 1 & \end{pmatrix}$,因此 n 为奇数时为 1,为偶数时为 0。
 - (4) 类似 (3),原式 = $(-1)^{n-1}$ tr $(f_j(-x_i))$,类似构造 A 知 $(f_j(-x_i)) = V$ diag $(1, -1, 1, -1, \dots)V^{-1}$,由此原式 = $(-1)^{n-1}$ tr $(\text{diag}(1, -1, 1, -1, \dots))$,因此 n 为奇数时为 1,为偶数时为 0。
- 13. * 题目结论有误,第一问中 u,v 与 m,n 应对调
 - (1) 法一: 由行变换可不妨设 $f_m = g_n = 1$,此时 $f(x) = \prod_{i=1}^m (x u_i)$ 所求式右边即为 $\prod_{i=1}^n f(v_i)$ 。记 S(f,g) 为所求行列式值。

当 g 为一次函数时时,由 Laplace 展开类似 3.3 节例 3.15 知 $S(f,g)=f(-g_0)$ 。当 $g(x)=\prod_{i=1}^n(x-v_i)$ 时若成立,当 $g(x)=(x-t)\prod_{i=1}^n(x-v_i)$ 时:

若 t=0,则 $g_0=0$,第一列只有 f_0 一项,展开后直接得 $S(f,xg)=f_0\cdot S(f,g)$,满足要求;

若 $t \neq 0$, 由对称,不妨设 f 次数小于等于 g, 行变换可得 S(f,g) = S(f,g-af), 若 $f_0 = 0$, 与上 方情况类似可展开化为低阶的情况,若 $f_0 \neq 0$, $S(f,g) = S\left(f,g - \frac{g_0}{f_0}f\right)$,即化为之前情况,因此 $S(f,g) = \prod_{i=1}^{m} f(c_i), c_i \ \mathcal{H} g - \frac{g_0}{f_0} f \ \text{in } r \ \text{def } 0).$

至此只需证明,所求的 $\det S$ 表达式的等号右侧亦满足 f 次数小于等于 g 时 S(f,g)=S(f,g-af), 由于其可表示成 $(-1)^{mn}\prod_{i=1}^{m}g(u_i)$,而 $f(u_i)=0$,故结论成立。

法二: 考虑结式矩阵乘
$$\begin{pmatrix} 1 \\ x \\ \vdots \\ x^{m+n} \end{pmatrix}$$
后的结果,构造
$$\begin{pmatrix} 1 & \cdots & 1 & 1 & \cdots & 1 \\ u_1 & \cdots & u_m & v_1 & \cdots & v_n \\ \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\ u_1^{m+n} & \cdots & u_m^{m+n} & v_1^{m+n} & \cdots & v_n^{m+n} \end{pmatrix}$$
与原矩

(2) 由(1),两复多项式互素等价于无公共根,故结论成立。

14. (1)
$$b_{ij} = \sum_{k=1}^{\min(n-i+1,j)} (f_{k+i-1}g_{j-k} - g_{k+i-1}f_{j-k})$$
,直接对比系数可知结论成立。

3.11 得此式可以进一步化简为

$$(-1)^{(n-1)n/2} \det \begin{pmatrix} \begin{pmatrix} f_n \\ \vdots & \ddots \\ f_1 & \cdots & f_n \end{pmatrix} \begin{pmatrix} g_0 & \cdots & g_{n-1} \\ & \ddots & \vdots \\ & & & g_0 \end{pmatrix} - \begin{pmatrix} g_n \\ \vdots & \ddots \\ & & & g_n \end{pmatrix} \begin{pmatrix} f_0 & \cdots & f_{n-1} \\ & \ddots & \vdots \\ & & & f_0 \end{pmatrix} \right) ,$$
 再用每组乘积中的第一个式子作行变换知其即为 $\det B$ 。

(3) 由习题 13(2) 知结论成立。

§3.3 Laplace 展开

1. 均记 n 阶行列式为 M_n , 若过程中给出现 M_0 则由通项式代入 0 得出。

(1) 由习题 2 知
$$M_n = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
,类似例 3.16 知 $A_{ij} = \begin{cases} (-1)^{i+j} M_{j-1} M_{n-i} & i > j \\ M_{i-1} M_{n-j} & i \leq j \end{cases}$

(2) 每行减去后一行后归纳知
$$M_{n+1}=(x+1)M_n-(x-1)^n$$
,可得 $M_n=\frac{(x+1)^n+(x-1)^n}{2}$,利用

行列变换进一步计算得
$$A_{ij} = \begin{cases} -(x+1)^{i-j-1}(1-x)^{n+j-i-1} & i > j \\ M_{n-1} & i = j \\ (x+1)^{j-i-1}(x-1)^{n+i-j-1} & i < j \end{cases}$$

(3) 利用习题 2, 进一步计算得
$$M_n = nx - n + 1$$
, $A_{ij} = \begin{cases} iM_{n-j} & i \leq j \\ jM_{n-i} & i > j \end{cases}$

- (4) 变换知 $M_n = 1$,其逆矩阵恰为上一问中取 x = 1 的 n 阶矩阵。
- (5) 类似 3.1 节习题 5(6) 得 $M_n = (-1)^{n-1}n$, n 较小时直接计算。当 $n \ge 3$ 时,类似行列式做法得

$$A_{ij} = \begin{cases} (-1)^n n & i = j = 1\\ (-1)^n 2n & 1 < i = j < n\\ (-1)^n (n-1) & i = j = n\\ (-1)^{n+i} n & j = i+1\\ (-1)^{n+j} n & j = i-1\\ 0 & |i-j| \ge 2 \end{cases}$$

- (6) 由 3.2 节例 3.9 直接得结果。
- 2. (1) 归纳,低阶直接验证知成立,至少三阶时令 $M = \begin{pmatrix} a_3 & b_3 \\ -c_2 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_n & b_n \\ -c_{n-1} & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$,则原行列式由第一行展开为 $a_1 \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ -c_1 & 0 \end{pmatrix} M b_1 c_1 \begin{pmatrix} 1 & 0 \end{pmatrix} M = \begin{pmatrix} a_1 a_2 b_1 c_1 & a_1 b_2 \end{pmatrix} M$,即为此题结论。
 - (2) 与 (1) 类似, 从最后一行展开即可。

3. (1) 左 =
$$\begin{pmatrix} 1 & \cdots & 1 \end{pmatrix} A^* \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & \cdots & 1 \end{pmatrix} A^* \begin{pmatrix} A \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \end{pmatrix} = \det(A) \begin{pmatrix} 1 & \cdots & 1 \end{pmatrix} I \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \Xi$$
(2) 左 = $\begin{pmatrix} 1 & \cdots & 1 \end{pmatrix} A^* \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & \cdots & 1 \end{pmatrix} A^* \begin{pmatrix} A \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \end{pmatrix} = \det(A) \begin{pmatrix} 1 & \cdots & 1 \end{pmatrix} I \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} = \Xi$

- 4. (1) 此处证明 $A_{1i} = A_{1j}$,其余列类似。设去掉第一行后,A 的 n 个 n-1 维列向量为 $\alpha_1, \alpha_2, \ldots, \alpha_n$,则交换行列可知 $(-1)^{i-j}(A_{1i} A_{1j})$
 - $= \det(\alpha_i, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_{j-1}, \alpha_{j+1}, \dots) + \det(\alpha_i, \dots, \alpha_{i-1}, \alpha_{i+1}, \dots, \alpha_{j-1}, \alpha_{j+1}, \dots)$
 - $=\det(\alpha_i+\alpha_j,\ldots,\alpha_{i-1},\alpha_{i+1},\ldots,\alpha_{j-1},\alpha_{j+1},\ldots)$,将所有列加到第一列即知此式为 0。
 - (2) 由 (1) 可知 A^* 所有元素均相等。 $A + \frac{1}{n^2} J$ 所有行加到第一行,接着所有列加到第一列,进一步变换可得 $\lambda = A_{11}$,原命题得证。
 - (3) 直接由 (2) 知左为 $\det\left(nI_n \left(1 \frac{1}{n^2}\right)J\right)J$,类似 3.2 节习题 5(1) 可计算出结果成立。
- 5. 直接由完全展开式求导知结果,或将第 i 行看作 x_i 的函数,求出 n 个偏导,再使每个 $x_i = x$,用偏导复合得到对 x 的导数。
- 6. (1) 设 A, B 的列向量分别为 a_i, b_i ,则 $\det(a_1 + b_1, a_2 + b_2 \dots a_n + b_n) = \sum \det(e_1, e_2 \dots e_n)$,其中每个 e 独立取遍 a 和 b (即共 2^n 个式子),但一旦出现两个 b,列变换得行列式为 0,因此结果为不出现 b 的 $\det(A)$ 与 b 出现一次的 $\sum_{i,j=1}^n A_{ij} x_i y_j$ 之和,即为原式。
 - (2) 先对最后一行展开,再将每个与 y_i 相乘的代数余子式按最后一行展开即可。

7. 特殊做法: 当题中涉及矩阵可逆时易得结果,由此将题中涉及的矩阵中的元素看为独立变量所构成的多项式,则在有理函数的意义下必然可逆,得出结果后再代入值即可。

标准做法:这四问在对应方阵可逆时均容易得到,因此此处只证明不可逆时情况。

(1) 法一: 构造多项式矩阵 A(x) = xI + A, B(x) = xI + B,由于其首项系数为 1,在有理函数意义下可逆, $(A(x)B(x))^* = B(x)^*A(x)^*$,再代入 x = 0 即可。

法二:将初等方阵拓展 $D_i(0)$ (将第 i 行/列乘 0),则所有矩阵可写为初等方阵之积,直接计算证明一边是初等方阵的情况,即可归纳说明。

(2)(3) 直接计算即可。

(4) 利用 (1), 将 A 写为
$$P\begin{pmatrix}I_r & O\\O & O\end{pmatrix}Q$$
 (PQ 可逆) 后直接计算。

- 8. (1) 每次将 m 行 (列) 看作整体进行行列变换将 A 变换为对角元 $a_1 \dots a_m$ 的上三角矩阵,则 $\det(A \otimes B) = \det(a_1 B) \dots \det(a_m B) = a_1^n \dots a_m^n \left(\det(B)\right)^m = \left(\det(A)\right)^n \left(\det(B)\right)^m$
 - (2) 当 AB 均可逆时由 2.4 节习题 9 直接得,若有不可逆 (且阶数高于 1) 行列变换可直接将子式变换为 0,故得证。
- 9. 设 A 主对角线依次为 $a_1, a_2 \dots a_n$,另三个上三角类似假设。使用归纳法,一阶时直接计算。高阶时,利用推广 Laplace 展开 (定理 3.10) 从第 1, n+1 行展开可提取出 $(a_1d_1-b_1c_1)$ 并化为低一阶的情况,由此可知结果为 $\prod_{i=1}^{n} (a_id_i-b_ic_i)$ 。
- 10. 设 B 为 m 行,C 为 n 行,利用 Laplace 展开,设 B 的每个 m 阶子式的行列式依次为 $b_1, b_2 \dots b_t$, $t = C_{m+n}^m$,对应的代数余子式为 $c_1, c_2 \dots c_t$,则左 $= \det(A) \det(A^H) = \sum_{i=1}^t b_i c_i \cdot \sum_{i=1}^t \overline{b_i c_i}$ 。

右侧,由 Binet-Cauchy 公式,结果为 $\sum_{i=1}^t b_i \overline{b_i} \cdot \sum_{i=1}^t c_i \overline{c_i}$ (由于 c_i 与 $\overline{c_i}$ 在代数余子式中带有相同的符号,故抵消)。由柯西不等式可知 $b_i c_i \overline{b_j c_j} + \overline{b_i c_i} b_j c_j \leq b_i \overline{b_i} c_j \overline{c_j} + b_j \overline{b_j} c_i \overline{c_i}$,整理可知左小于等于右。

11. * 两方法均需将 A 中看为 n^2 个不定元,即任意子式可逆。

法一: 利用 $AA^* = \det(A)I$, 由 Binet-Cauchy 公式可知

$$\sum_{1 \le j_1 < j_2 < \dots < j_r \le n} A^* \begin{bmatrix} i_1 & i_2 & \dots & i_r \\ j_1 & j_2 & \dots & j_r \end{bmatrix} A \begin{bmatrix} j_1 & j_2 & \dots & j_r \\ k_1 & k_2 & \dots & k_r \end{bmatrix} = \begin{cases} 0 & \exists m, k_m \ne i_m \\ \det(A)^r & \forall m, k_m = i_m \end{cases}$$

利用不定元的看法可以看作这里的系数均不为0,由此, A^* 所有r 阶子式的行列式值由这些方程唯一确定。又由Laplace 展开,等式右侧的值满足这些方程,故等式成立。

法二: 不失一般性,计算
$$A^*$$
 $\begin{bmatrix} 1 & 2 & \cdots & r \\ 1 & 2 & \cdots & r \end{bmatrix}$ 。设 $A_1 = A \begin{bmatrix} 1 & 2 & \cdots & r \\ 1 & 2 & \cdots & r \end{bmatrix}$,对应分块为 $\begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}$,则有 $\det(A) = \det(A_1 - A_2 A_4^{-1} A_3) \det(A_4)$ 。

$$A^* = \det(A)A^{-1} \Rightarrow A^* \begin{bmatrix} 1 & 2 & \cdots & r \\ 1 & 2 & \cdots & r \end{bmatrix} = \det(A)\det(A_1 - A_2A_4^{-1}A_3)^{-1}$$

计算行列式得结果。

12. (1) 注意到,对可逆方阵 P,Q,Ax = b 有解等价于 PAQx = Pb 有解 (对应构造 $Qx,Q^{-1}x$ 即可,或利用 4.2 节定理 4.8-1)。令 P 为一系列 $T_{ij}(\lambda)$ 与 S_{ij} 的乘积,取 $Q = P^T$,利用 $Char \mathbb{F} = 2$ 可计算得 PAP^T 仍为对称阵,且 Pb 仍为 PAP^T 对角元的顺次排列。

先说明,任意对称阵 A 可利用这样的 PAP^T 化为 $diag(a_{11},\ldots,a_{rr},B)$,其中 B 的对角元全部为 0。

归纳。一阶时直接成立。高阶时,若其无非零对角元,则已得证。若有,先将非零对角元利用 S_{ij} 置换为 a_{11} ,再取 $P=\prod_{i=2}^n T_{i1}(-\frac{a_{i1}}{a_{11}})$,则此时 $PAP^T=\mathrm{diag}(a_{11},A')$,由归纳假设知成立。

此时,直接取x前r个分量为1,其余为0即为解。

- (2) 类似上一问用分块矩阵计算验证可知,上问所述 PAP^T 亦不会影响主子矩阵的可逆性,因此可不妨设 A 已经化为了 $diag(a_{11},...,a_{rr},B)$ 的形式。注意到,由于 P 可逆,当 $b \neq \mathbf{0}$ 时, $Pb \neq \mathbf{0}$,即 PAP^T 中至少有一个对角元非零,不妨设为 a_{11} ,那么,取 $diag(a_{22},...,a_{rr},B)$ 即为所求的 n-1 阶主子式。
- (3) 注意到,第一问的归纳中的 P 只需使用 S_{ij} 与 $T_{ir}(\lambda)$,i > r,利用 ijr 不等时 $S_{ij}T_{ir}(\lambda) = T_{jr}(\lambda)S_{ij}$,类似 2.3 节习题 8,每步选择合适的 S_{ij} 可保证 j > r,由此将其拆分为 TS,T 为下三角 $T_{ij}(\lambda)$ 的乘积,是单位下三角方阵,S 为置换方阵。

取 $P = S^{-1}, L = T^{-1}, D$ 为 diag $(a_{11}, \ldots, a_{rr}, B)$ 。利用条件直接计算 TSb 可发现,此时 D 不含为 0 的对角元,即为满足要求的对角阵。

§3.4 行列式与几何

- 1. 可以直接由三个过原点三角形面积和差验证,或看成三维空间中高为 1 的过原点锥体体积的三倍 (即为柱体,因此系数为 $3 \times \frac{1}{6} = \frac{1}{2}$)。
- 2. 不妨设四个点落在单位圆上,且对应角度分别为 $\theta_A, \theta_B, \theta_C, \theta_D$, O 点落在 x 轴上。由于对角三角形面积和相等,消去后只需证明 $\begin{vmatrix} x_B & y_B & x_A \\ x_C & y_C & x_A \\ x_D & y_D & x_A \end{vmatrix} \begin{vmatrix} x_B & y_B & x_C \\ x_A & y_A & x_C \\ x_D & y_D & x_C \end{vmatrix}$ 在 A, B, C, D 对换后不变。利用三角变换可得出结果 (注意到, $x_B y_D x_D y_B = \sin(\theta_D \theta_B)$))。
- 3. 在空间中任找一点,可将六面体切割为六个有向四棱锥的面积和,由四面体行列式体积公式 (见下题)可计算出棱锥体积之比,从而得到整个占比 (几何法切割亦可得到结果,但需要较强的空间想象能力)。
- 4. 类似习题 1 可知,空间 4 个点 (x_i,y_i,z_i) 构成的有向四面体体积为 $\frac{1}{6}\begin{vmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{vmatrix}$ 。由 Cram-

mer 法则,1,2,3 三个平面的交点可以写成 $\left(\frac{\Delta_{4a}}{\Delta_4},\frac{\Delta_{4b}}{\Delta_4},\frac{\Delta_{4c}}{\Delta_4}\right)$,其中 Δ_{4a} 为将 Δ_4 中 a 所在的列替换为 1 所得行列式 (亦可以看成 Δ 删去首行与末列构成的子式乘以 $(-1)^2$)。由此所求体积为

$$\begin{vmatrix} \frac{\Delta_{1a}}{\Delta_1} & \frac{\Delta_{1b}}{\Delta_1} & \frac{\Delta_{1c}}{\Delta_1} & 1 \\ \frac{\Delta_{2a}}{\Delta_2} & \frac{\Delta_{2b}}{\Delta_2} & \frac{\Delta_{2c}}{\Delta_2} & 1 \\ \frac{\Delta_{3a}}{\Delta_3} & \frac{\Delta_{3b}}{\Delta_3} & \frac{\Delta_{3c}}{\Delta_3} & 1 \\ \frac{\Delta_{4a}}{\Delta_4} & \frac{\Delta_{4b}}{\Delta_4} & \frac{\Delta_{4c}}{\Delta_4} & 1 \end{vmatrix}, \quad \text{即只与} \frac{(\Delta^*)^T}{6\Delta_1\Delta_2\Delta_3\Delta_4} \text{ 相差符号, } \text{而} \det(\Delta^*)^T = \det\Delta^* = \det\Delta^3, \text{ 故原式}$$
 即构成无向体积。

5. 与习题 4 相同, \mathbb{R}^n 中的 n+1 个 n-1 维单纯形 $a_{i1}x_1+a_{i2}x_2+\cdots+a_{in}x_n=1$ 围出的 n 维单纯形 (有向) 体积为 $\frac{\Delta^n}{n!\prod_{i=k}^{n+1}\Delta_k}$,其中 $\Delta=(a_{ij},1)$, Δ_k 为删去第 k 行与最后一列的子式 (计算符号可发 现此处正负合理)。

第四章 矩阵的相抵

§4.1 矩阵的秩与相抵

1. (1) 3 (2) 3 (3) 2 (4) 2 (5) 3 (6) 4

1(4-6) 的一般情形: 考虑 $A_{m\times n}=(a_{ij}), a_{ij}=\left((i+j-1)^k\right)$, 求其秩。

注意到,
$$(i+j-1)^k = \sum_{s=0}^k (i-1)^s C_k^s j^{k-s}$$
,由此

$$A = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & m-1 & \cdots & (m-1)^k \end{pmatrix} \operatorname{diag}(\mathbf{C}_k^0, \mathbf{C}_k^1, \cdots, \mathbf{C}_k^k) \begin{pmatrix} 1 & 2^k & \cdots & n^k \\ 1 & 2^{k-1} & \cdots & n^{k-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

此三矩阵皆满秩,可利用满秩阵的标准形证明 A 的秩为其中最小值,即为 $\min(m,n,k+1)$

- 2. (1) 与 x 无关, 秩恒为 4。
 - (2) 秩最小为 3, 取 x = y = -1 即可。
 - (3) 秩最小为 2, 取 x = y = 2 即可。
- 3. 设 $A = P\begin{pmatrix} I_r & O \\ O & O \end{pmatrix} Q$ (PQ 可逆),则 $A = \sum_{i=1}^r PE_{ii}Q$ (E_{ii} 只有第 i 行第 i 列为 1,其余为 0) 即为满足要求的分解。
- 4. 设 $A = P\begin{pmatrix} I_r & O \\ O & O \end{pmatrix}$ Q (PQ 可逆), P, Q 对应分块为 $\begin{pmatrix} P_1 & P_2 \\ P_3 & P_4 \end{pmatrix}$, $\begin{pmatrix} Q_1 & Q_2 \\ Q_3 & Q_4 \end{pmatrix}$, 则 $A = \begin{pmatrix} P_1 \\ P_3 \end{pmatrix} \begin{pmatrix} Q_1 & Q_2 \end{pmatrix}$ 若其不为列 (7) 满秩,由 Laplace 展开知原矩阵不可逆,矛盾,故此即为满足要求的分解。
- 5. (1) 右逆 \Rightarrow 行满秩: 设 B 为右逆, 则 $m = \text{rank}(AB) \leq \text{rank}(A) \leq m$, 由两侧知只能全部等号成立, 故 A 行满秩。

行满秩 ⇒ 零解: 设 $A = P\begin{pmatrix} I_m & O \end{pmatrix}Q\begin{pmatrix} PQ & \text{可逆} \end{pmatrix}$,则 $A = \begin{pmatrix} P & O \end{pmatrix}Q, A^T = Q^T\begin{pmatrix} P^T \\ O \end{pmatrix}$ 。 $\begin{pmatrix} P^T \\ O \end{pmatrix}$ x = 0 即为 $P^Tx = 0$ 与一些 0 = 0 的组合,因 P^T 可逆只有 0 解,而 Q^T 因可逆可看作这些方程作行初等变换,不影响解。

零解 ⇒ 扩充为可逆: 由其只有零解, A^T 可在行变换下等价为 $\begin{pmatrix} I_m \\ O \end{pmatrix}$,即可以写为 $R \begin{pmatrix} I_m \\ O \end{pmatrix}$,其中 R 可逆 (或在说明列满秩后用 $A^T = Q^T \begin{pmatrix} P^T \\ O \end{pmatrix} = Q^T \begin{pmatrix} P^T & O \\ O & I \end{pmatrix} \begin{pmatrix} I_m \\ O \end{pmatrix}$ 亦可说明),取 $B^T = R \begin{pmatrix} O \\ I_{m-n} \end{pmatrix}$ 即可。

扩充为可逆 \Rightarrow 右逆: 设满足条件的 $\begin{pmatrix} A & B \end{pmatrix}$ 逆为 $\begin{pmatrix} C_{m \times n} \\ D_{(n-m) \times n} \end{pmatrix}$,则可验证 $\mathbb C$ 即为右逆。

- (2) 由 (1) 取转置即可证明。
- 6. (1) 先证 (2), 此问由 (2) 取转置即可说明。

$$(2) \ \ \mathcal{U} \ A = P_A \begin{pmatrix} I_A \\ O \end{pmatrix}_{m \times n} Q_A, B = P_B \begin{pmatrix} I_B \\ O \end{pmatrix}_{n \times p} Q_B \ (P_A Q_A P_B Q_B \ \text{可逆}), \ \ \mathcal{U} \ P_A Q_B = R \ (R \ \text{可逆}),$$

则
$$AB = P_A \begin{pmatrix} R \\ O \end{pmatrix}_{m \times n} \begin{pmatrix} I_B \\ O \end{pmatrix}_{n \times p} Q_B$$
,将 $\begin{pmatrix} R \\ O \end{pmatrix}$ 按 $\begin{pmatrix} I_B \\ O \end{pmatrix}$ 分块为 $\begin{pmatrix} R_1 & R_2 \\ R_3 & R_4 \\ O & O \end{pmatrix}$ (R_1, R_4) 为方阵),则

$$AB=P_Aegin{pmatrix}R_1\\R_3\\O\end{pmatrix}Q_B$$
,与习题 5 相同,由 R 可逆可知 $\begin{pmatrix}R_1\\R_3\end{pmatrix}$ 列满秩,故 $\begin{pmatrix}R_1\\R_3\\O\end{pmatrix}$ 列满秩,故 AB 列

(3) 若 A 不为行满秩,AB 为行满秩, $m = \text{rank}(AB) \le \text{rank}(A) < m$,矛盾。

(4) 由(3) 取转置即可证明。

$$(5) 未必。 反例 A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, D = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

- 7. 由 3.3 节习题 7, $(AB)^* = B^*A^*$,而可逆方阵的伴随方阵亦可逆,将 A 写为 $P\begin{pmatrix} I_r & O \\ O & O \end{pmatrix}Q$ (PQ 可逆) 即得证。
- 8. (1) $\operatorname{rank}(A+B) \le \operatorname{rank}(A+B B) = \operatorname{rank}(A B)$

$$(2)\operatorname{rank}\begin{pmatrix} A & B \\ O & B \end{pmatrix} = \operatorname{rank}\begin{pmatrix} A & O \\ O & B \end{pmatrix} = \operatorname{rank}(A) + \operatorname{rank}(B)$$

$$(3) A = P_A \begin{pmatrix} I_A & O \\ O & O \end{pmatrix} Q_A, B = P_B \begin{pmatrix} I_B & O \\ O & O \end{pmatrix} Q_B (P_A Q_A P_B Q_B \ \text{可逆}), \ \text{由 } 3.2 \ \text{节习题 } 8(1) \ \text{得 } P_A \otimes P_B$$

可逆,再由 2.2 节习题 $6\operatorname{rank}(A\otimes B)=\operatorname{rank}\left(\begin{pmatrix}I_A&O\\O&O\end{pmatrix}\otimes\begin{pmatrix}I_B&O\\O&O\end{pmatrix}\right)$,直接计算得 $\operatorname{rank}(A)\operatorname{rank}(B)$ 。

$$(4) \operatorname{rank} \begin{pmatrix} A & B \\ B & A \end{pmatrix} = \operatorname{rank} \begin{pmatrix} I & O \\ -\frac{1}{2}I & I \end{pmatrix} \begin{pmatrix} I & I \\ O & I \end{pmatrix} \begin{pmatrix} A & B \\ B & A \end{pmatrix} \begin{pmatrix} I & -I \\ O & I \end{pmatrix} \begin{pmatrix} I & O \\ \frac{1}{2}I & I \end{pmatrix}$$

$$=\operatorname{rank}\begin{pmatrix}A+B&O\\O&A-B\end{pmatrix}=\operatorname{rank}(A+B)+\operatorname{rank}(A-B)\ (实质为初等变换)$$

(5) 法一: 仍利用初等变换可构造出 rank(A-B) + rank(C-D)

$$= \operatorname{rank} \begin{pmatrix} A - B & O \\ O & C - D \end{pmatrix} = \operatorname{rank} \begin{pmatrix} I & A + B \\ O & I \end{pmatrix} \begin{pmatrix} A - B & O \\ O & C - D \end{pmatrix} \begin{pmatrix} I & C + D \\ O & I \end{pmatrix}$$
$$= \operatorname{rank} \begin{pmatrix} A - B & 2(AC - BD) \\ O & C - D \end{pmatrix} \ge \operatorname{rank}(AC - BD)$$

法二: $\operatorname{rank}(AC - BD) = \operatorname{rank}((A - B)C + B(C - D)) \le \operatorname{rank}((A - B)C) + \operatorname{rank}(B(C - D)) \le \operatorname{rank}(A - B) + \operatorname{rank}(C - D)$

- (6) 只需证明右侧不等号,左侧交换 AB 即可。由于 $\operatorname{rank}(AB) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B))$,若此式不超过 $\frac{m}{2}$,结论已成立,否则由 Sylvester 秩不等式 (4.2 节例 4.9) 知 $\operatorname{rank}(BA) \geq \operatorname{rank}(A) + \operatorname{rank}(B) m \Rightarrow \operatorname{rank}(AB) \operatorname{rank}(BA) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B)) \operatorname{rank}(A) \operatorname{rank}(B) + m \leq m \operatorname{rank}(A) \leq \frac{m}{2}$ (最后一步是由于 $\min(\operatorname{rank}(A), \operatorname{rank}(B)) > \frac{m}{2}$),故结论成立。
- 9. (证明暂缺,第二问结论的最后一句有误)
- 10. 法一:由 3.2 节习题 11 的过程,rank(S(f,g)) = rank(S(f,g-af)),注意到,此题要求中 f_m,g_n 可以为 0。对总阶数归纳:二阶时可得成立,在阶数增加时:

若 $f_0 = 0, g_0 \neq 0$ (可写为 x 的整除关系) 取出 0 项得 $\operatorname{rank}(S(f,g)) = 1 + \operatorname{rank}(S(\frac{f}{x},g))$,又因 g 不为 x 倍数,符合归纳。

若 $f_0 \neq 0, g_0 = 0$,与上同理得符合归纳。

若 f_0, g_0 均不为 0,不妨设 $\deg f \leq \deg g$,利用 g-af 消去 g_0 得到低阶情况,由于 $\gcd(f,g)=\gcd(f,g-af)$,符合归纳。

若 $f_0 = g_0 = 0$,可去除最左一列 0,添加到最右,此时 f 变换为 $\sum_{i=1}^m f_i x^{i-1} + 0 x^m$,g 同理,这样变换直到找到 f_k, g_k 即可化为上述情况。

法二: 考虑
$$S\alpha = \mathbf{0}$$
 的解空间 V ,设 $h = \gcd(f,g), \alpha = (\lambda_0,\ldots,\lambda_{n-1},\mu_0,\ldots,\mu_{m-1})^T, \lambda(x) = \sum_{i=0}^{n-1} \lambda_i x^i,$

$$\mu(x) = \sum_{i=0}^{m-1} \mu_i x^i, \quad \mathbb{M} \ S\alpha = \mathbf{0} \Leftrightarrow \lambda f + \mu g = 0 \Leftrightarrow \lambda = \frac{g}{h} p, \mu = -\frac{f}{h} p, \quad p \in \mathbb{C}[x].$$

曲此,
$$\begin{cases} \deg(\lambda) = \deg(g) - \deg(h) + \deg(p) \le n - 1 \\ \deg(\mu) = \deg(f) - \deg(h) + \deg(p) \le m - 1 \end{cases}$$

$$\Rightarrow \deg(p) \le \min(n - \deg(g), m - \deg(f)) + \deg(h) - 1$$

$$\Rightarrow \dim(V) = \min(n - \deg(g), m - \deg(f)) + \deg(h)$$

$$rank(S) = m + n - dim(V)$$
, 代入即可。

11. 归纳法, 当 n=1 时验证知成立, 在阶数增加时:

若 $f_n = g_n = 0$,则直接退化为低阶情况 (末行列均为 0)。

其余情况,由对称不妨设 $f_n \neq 0$,按 3.2 节习题 12(1) 写出 $B = A_0D_0 - C_0B_0$,则满足 A_0 可逆, $A_0C_0 = C_0A_0$ (在 3.2 节习题 12(1) 过程中已验证)。故由 Schur 公式 (2.4 节例 2.18) 有

$$\begin{pmatrix} A_0 & B_0 \\ C_0 & D_0 \end{pmatrix} = \begin{pmatrix} I & O \\ C_0 A_0^{-1} & I \end{pmatrix} \begin{pmatrix} A_0 & O \\ O & A_0^{-1} \end{pmatrix} \begin{pmatrix} I & O \\ O & A_0 D_0 - C_0 B_0 \end{pmatrix} \begin{pmatrix} I & A_0^{-1} B_0 \\ O & I \end{pmatrix}$$

(由 $A_0C_0 = C_0A_0$ 在 A_0 可逆时两边左右乘逆可知 $A_0^{-1}C_0 = C_0A_0^{-1}$)

由于其中除
$$\begin{pmatrix} I & O \\ O & A_0D_0 - C_0B_0 \end{pmatrix}$$
 外均可逆, $\operatorname{rank}(B) = \operatorname{rank}\begin{pmatrix} I & O \\ O & B \end{pmatrix} - n = \operatorname{rank}\begin{pmatrix} A_0 & B_0 \\ C_0 & D_0 \end{pmatrix} - n$, 而 $\begin{pmatrix} A_0 & B_0 \\ C_0 & D_0 \end{pmatrix}$ 在交换行列后可化为上一题的 Sylvester 结式,代入得原命题得证。

12. (1) 若 rank $A \le 1$,则其各行、列均成比例,由于交换行列不影响秩,不妨设左上角为 1,且第一行、第一列均从小到大排列。此时,右上角与左下角均 $\ge n$,且至少一个严格大于成立,由秩至多为 1 可算出右下角 $> n^2$,矛盾。

(求所有秩为 2 的矩阵 A 答案暂缺)

- (2) 验证知此矩阵为 1 到 n^2 排列。考虑 $(B+nC)x=\mathbf{0}$ 的解。 $Cx=-\frac{1}{n}Bx$,计算知 Bx 的每个分量相等,因此 Cx 每个分量相等。设 $x=\begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix}^T$,将 Cx 相邻分量相减(最后一个分量与第一个相减)可得 $x_i=\frac{1}{n-1}\sum_{k\neq i}x_k$ 对任何 i 成立。考虑最大的 x_i 可知所有 x_i 全部相等,进一步得所有 x_i 全为 0,因此 $A_0x=\mathbf{0}$ 只有零解,由此知 A_0 可逆。
- (3) 将"交换矩阵中的两个相邻元素 (此处相邻包含行、列)"称为一次操作。类似在置换中的推导,可以说明,通过有限次操作,可以交换矩阵中任意两个元素。由此可推知,通过有限次操作,可使任何一个满足所有元素为 1 到 n^2 排列的矩阵变为任一个符合此要求的矩阵。

由于每次操作后的矩阵与操作前矩阵之差是一个秩为 1 的矩阵,利用习题 8(1,2) 可推出操作前后矩阵的秩最多差 1。将 (1) 中的矩阵经过有限次操作变为 (2) 中的矩阵,秩从 2 变化到 n,每步最多变化 1,因此必然经历了 2 到 n 间的所有整数,由此知结论成立。

13. * 项秩定义中应为非零元素, 线秩定义中应为 $\min(p+q,m,n)$

rank(A) < 线秩:考虑 rank(A) = r 阶的可逆子矩阵。若此子矩阵线秩 < r,则由定义其中存在一个 $a \times b$ 阶, a + b > r 的零子矩阵,则考虑这 a 行,这 a 行所有 a 阶子式都为 0,由 Laplace 展开得其 行列式为 0,与可逆矛盾,因此此部分的线秩至少为 r,由定义可知整体的线秩大于等于子矩阵的线 秩,因此至少为 r。

线秩 $\leq \min(m, n)$: 由定义直接得成立。

项秩 < 线秩: 由定义,将矩阵中的非零元素变为 0,线秩不会增大。若项秩为 r,由定义可发现 $r \leq \min(m, n)$,则能取出 r 个不同行不同列的非零元素,在这些行列组成的 r 阶子矩阵中,将其他 元素均变为 0,此时其可逆,由第一问推导知其线秩为 r,因此此部分线秩至少为 r,因此整体线秩 至少为r。

项秩 \geq 线秩: 由定义, 项秩 $k \leq \min(m,n)$, 当 $k = \min(m,n)$ 时由上方知线秩只能为 $\min(m,n)$ 。 而 k 为 0 或 1 时,可直接验证成立,因此下面只考虑 $1 < k < \min(m, n)$ 的情况。注意到,置换行 列不会改变矩阵的项秩或线秩。先证明一个引理:此时,A 置换行列后可分块成 $\begin{pmatrix} H & B \\ C & O \end{pmatrix}$,其中 H为 k 阶方阵且主对角线非零,O 为零矩阵,且对于满足 $a+b \le k$ 的某对自然数 a,b,B 共有 a 个 非零行且全位于 B 的后 a 行,C 共有 b 个非零列且全位于 C 的前 b 列 (此处及本题以下部分的非 零指不全为零)。

引理证明:由于A中有k个不同行不同列的非零元素,可将其中第i个置换到第i行第i列,此时 的 H 已满足要求。若右下角不为零矩阵,则可取出第 k+1 个不同行列的元素,因此矛盾。此时, 对 $1 \le i \le k$ 的 i, B 的第 i 行与 C 的第 i 列均非零,则从中各取出一个非零元替换原本第 i 行第 i列的元素,即取出了 k+1 个不同行列的元素,矛盾。由此,B 的非零行必定对应 C 的零列,因此 a+b < k。注意到,置换相似(即同时对行、列作相同的置换)不会改变原本对角元的非零性,因此, 先对前 k 行置换将 B 的非零行换到 B 的后 a 行, 再对前 k 列作相同置换, 由于此时 H 的对角元 仍然非零,C 的后 a 列必然全为 0,再对前 k-a 列作置换将 C 的非零列换到 C 的前 b 列,并对行 作相同置换。由于此 $a+b \le k$,这样置换后不会改变 B 原本满足的性质。由此,引理得证。

不妨设 A 已置换为引理中形式。若此时有 a=0 或 b=0,即 B,C 之一为零矩阵,直接取出它 与右下角合成的零矩阵即有 p+q=k,因此线秩至多为 k,已得证。若有 a+b=k,将 A 写为

$$\begin{pmatrix} H_1 & H_2 & O \\ H_3 & H_4 & B_1 \\ C_1 & O & O \end{pmatrix}$$
,其中 H_1, H_4 为方阵,且 B_1 的行与 C_1 的列均非零。若 H_2 不为零矩阵,则取出其

中的非零元,将其左侧的主对角线上的元素用该元素下方的 C_1 中对应列的非零元替换,将其下方的 主对角线上的元素用该元素右侧的 B_1 中对应行中的元素替换,即取出了 k+1 个不同行列的元素, 矛盾。因此 H_2 为零矩阵,此时, H_2 与其右侧、下方 (跳过 H_4, B_1) 构成的零子矩阵即有 p+q=k, 因此线秩至多为 k, 得证。

若
$$a>0,b>0,a+b< k$$
,将 A 写为
$$\begin{pmatrix} H_1 & H_2 & H_3 & O \\ H_4 & H_5 & H_6 & O \\ H_7 & H_8 & H_9 & B_1 \\ C_1 & O & O & O \end{pmatrix}$$
,其中 H_1,H_4,H_9 为方阵,且 B_1 的行 与 C_1 的列均非零。记 $A_1=\begin{pmatrix} H_2 & H_3 \\ H_5 & H_6 \end{pmatrix}$,注意到若 A_1 为 $k-a\times k-b$ 阶矩阵,且其中中存在某个

零子矩阵,则可将其向右、向下扩展成行列之和多 m+n-2k 的 A 的零子矩阵。由此,利用线秩定 义可计算得 A 的线秩 $\leq A_1$ 的线秩 +a+b。利用上方类似方法可说明 H_3 为零矩阵,且由之前假设 知 H_5 对角线非零。下面说明,若 H_6 的某行非零,则 H_2 的对应列全为 0(这里的对应指在 A 中恰 为第i列与第i行)。若否,取出其中各一个非零元,并将与它们冲突的 H_1 与 H_9 中的对角元替换

为 C_1 , B_1 中对应列/行的非零元,并删去 H_5 中与它们冲突的对角元 (由于行列对应, H_5 中与两数冲突的为同一个对角元),即取出了 k+1 个不同行列的元素,矛盾。因此,设 H_6 中非零行数为 a_1 , H_2 中非列数为 b_1 ,则子矩阵 A_1 在交换行为 $\begin{pmatrix} H_5 & H_6 \\ H_2 & H_3 \end{pmatrix}$ 后拥有与 A 完全相同的性质。由此,只要 $a_1 > 0, b_1 > 0, a_1 + b_1 < k - a - b$ 不同时满足,则类似之前推导已得证,若同时满足,则可类似作出 A_2, A_3, \ldots ,由于每次的子矩阵行与列均严格小于前次的子矩阵,这样的递降不能无限进行,总有一次会不满足三条件之一,由此得证。

综合上述几部分证明即得原题结论。

§4.2 相抵标准形的应用

- 1. 由 4.1 节例 4.4,当 $a \neq 1, 1-n$ 时,直接解出 $x_i = \frac{a^{i-1}}{a-1} \frac{a^n-1}{(a-1)^2(a+n-1)}$; 当 a = 1 时,只需满足 $\sum_{i=1}^n x_i = 1$ 即可;当 a = 1-n 时,对所有式子求和,左为 0,右为 $-\frac{(1-n)^n-1}{n}$,若有解,讨论知必须 n = 2,此时需 $x_2 x_1 = 1$ 。
- 2. 法一: 通过解作差或取出特解可知 $A_1x = \mathbf{0}, A_2x = \mathbf{0}$ 解集亦相同。因此 A_1x 可通过同解变形得到 A_2x ,即为左乘行变换的可逆方阵 P 后 $PA_1 = A_2$,代入特解即有此时 $Pb_1 = b_2$ 。 法二: 由于 $\binom{A_1}{A_2}x = \binom{b_1}{b_2}$ 与其中任一方程同解, $\operatorname{rank}\binom{A_1}{A_2} = \operatorname{rank}(A_1) = \operatorname{rank}(A_2)$ 。将 $\binom{A_1}{A_2}$ 写 为 $Q\binom{I_r}{O}R$ (QR 可逆),按此分块为 $Q = \binom{Q_1}{Q_3} \binom{Q_2}{Q_3}$,由秩关系可知 $\operatorname{rank}(Q_1) = \operatorname{rank}(Q_3) = r$,
- 3. 对行满秩证明,列满秩取转置即可。设 $A_{m \times n} = P\left(I_m \ O\right)Q$ $(PQ\ \text{可逆})$,则 $A = \begin{pmatrix} P \ O \end{pmatrix}Q$ 。 左推右: 设广义逆矩阵 $B_{n \times m} = Q^{-1}\begin{pmatrix} B_1 \\ B_2 \end{pmatrix}$,其中 B_1 为 m 阶方阵,由广义逆充分必要条件可计 算出 $\left(PB_1P\ O\right)Q = \begin{pmatrix} P\ O \end{pmatrix}Q, Q^{-1}\begin{pmatrix} B_1PB_1 \\ B_2PB_1 \end{pmatrix} = Q^{-1}\begin{pmatrix} B_1 \\ B_2 \end{pmatrix}$,由 $PQ\ \text{可逆有}\ PB_1 = I_m$,故 $B_1 = P^{-1}$,验证得此时的 B 即为右逆。

右推左: 直接由右逆定义, $AB = I_m$, 故 ABA = A, BAB = B。

4. (1) 利用习题 3 结论, $P^{\dagger}P = I$, $QQ^{\dagger} = I$,直接计算验证 $AA^{\dagger}A = A^{\dagger}$, $A^{\dagger}AA^{\dagger} = A$ 即可。

(2) 设对于某个分解
$$A = P_0 \begin{pmatrix} I_r & O \\ O & O \end{pmatrix} Q_0 \ (PQ \ \text{可逆})$$
,对应 $A^{\dagger} = Q_0^{-1} \begin{pmatrix} I_r & O \\ O & O \end{pmatrix} P_0^{-1}$,分解为
$$P = P_0 \begin{pmatrix} I_r \\ O \end{pmatrix}, Q = \begin{pmatrix} I_r & O \end{pmatrix} Q_0 \ \text{即可}.$$

5. (1) 先说明存在 r 阶可逆主子矩阵。

设 $\operatorname{rank}(A) = r, A_{n \times n} = P_{n \times r} Q_{r \times n}$,其中 P 为列满秩,Q 为行满秩(由 4.1 节习题 4 知分解合理),由满秩,P,Q 存在 r 阶可逆子矩阵。设 P 第 $p_1,p_2\dots p_r$ 行构成的子式可逆,Q 第 $q_1,q_2\dots q_r$ 列构成的子式可逆,由 Binet-Cauchy 公式, $A\begin{bmatrix}p_1 & p_2 & \cdots & p_r\\q_1 & q_2 & \cdots & q_r\end{bmatrix}$ 可逆。若 Q 第 $p_1,p_2\dots p_r$ 列构成的子式可逆,则已满足题目条件,否则考虑 $A^T = Q^T P^T$ 。此时 Q^T 列满秩, P^T 行满秩。由 Q 第 $p_1,p_2\dots p_r$ 列构成的子式不可逆,可知 Q^T 第 $p_1,p_2\dots p_r$ 行构成的子式不可逆,由 Binet-Cauchy 公式,对任

意
$$s_1, s_2 \dots s_r$$
, $A^T \begin{bmatrix} p_1 & p_2 & \cdots & p_r \\ s_1 & s_2 & \cdots & s_r \end{bmatrix}$ 不可逆,但 $A^T = A$,与 $A \begin{bmatrix} p_1 & p_2 & \cdots & p_r \\ q_1 & q_2 & \cdots & q_r \end{bmatrix}$ 可逆矛盾,故 Q 第 $p_1, p_2 \dots p_r$ 列构成的子式可逆,因此 $\det A \begin{bmatrix} p_1 & p_2 & \cdots & p_r \\ p_1 & p_2 & \cdots & p_r \end{bmatrix} \neq 0$ 。

考虑 A 的各阶顺序主子式 (即前 i 行前 i 列的子方阵)。可以证明,相邻两个顺序主子式秩相差至多 2。这是因为,相邻的顺序主子式相差为删去末行末列,相当于将最后一行最后一列变为 0。将改变前后的矩阵相减,计算可知差为一个秩至多为 2 的矩阵。再利用 4.1 节习题 7(1,2) 可知秩相差至多 2。最后一个顺序主子式一行一列,因此秩至多为 1。由此,对任意正整数 $k \leq r$,存在某个顺序主子式的秩为 k 或 k+1。由于对称阵的顺序主子式仍对称,由 (1),这个顺序主子式存在某个主子式秩为 k 或 k+1。而主子式的主子式依然为 A 的主子式,由此得证。

(2) 与 (1) 类似,先说明存在 r 阶可逆主子矩阵,又因为反对称方阵的主子式仍为反对称方阵,当其阶数 n 为奇数时,由 3.2 节习题 9 证明过程知行列式为 0,因此 r 一定为偶数。继续仿照 (1) 的过程由于反对称方阵秩为偶数,一定能取到习题 (1) 的 k,k+1 中的偶数,即为所有正偶数。

6. (答案暂缺)

- 7. 由 4.1 节习题 4 设 $A = P_1Q_1, B = P_2Q_2, P_1, P_2$ 列满秩, Q_1, Q_2 行满秩,由 $\left(P_1 \quad P_2\right) \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} = A + B$,由条件可知 $\left(P_1 \quad P_2\right)$ 列满秩, $\left(Q_1 \atop Q_2\right)$ 行满秩(否则利用 $\operatorname{rank}(XY) \leq \min(\operatorname{rank}(x), \operatorname{rank}(y))$ 可知矛盾),由 4.1 节习题 5 知存在 $P = \begin{pmatrix} P_1 & * & P_2 \end{pmatrix}, Q = \begin{pmatrix} Q_1 \\ * \\ Q_2 \end{pmatrix}$ 为可逆方阵,代入计算可得此时 PQ 即符合要求。
- 8. 设 $A = P_0 \begin{pmatrix} I_a & O \\ O & O \end{pmatrix} Q_0 \ (P_0 Q_0 \text{ 可逆})$,对应分块 $B = Q_0^{-1} \begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix} P_0^{-1}$,代入方程可解得 $B_1 = B_2 = B_3 = O$,取可逆矩阵 MN 使 $B_4 = M \begin{pmatrix} O & O \\ O & I_b \end{pmatrix} N$,令 $P = P_0 \begin{pmatrix} I_a & O \\ O & N \end{pmatrix}$, $Q = \begin{pmatrix} I_a & O \\ O & M \end{pmatrix} Q_0$,计算知符合要求。
- 9. (1) 设 $A+I=P_0\begin{pmatrix}I&O\\O&O\end{pmatrix}Q_0$ (P_0Q_0 可逆), Q_0P_0 分块为 $\begin{pmatrix}B_1&B_2\\B_3&B_4\end{pmatrix}$,则 $A+I=P_0\begin{pmatrix}B_1&B_2\\O&O\end{pmatrix}P_0^{-1}$,且由 Q_0P_0 可逆知 $\begin{pmatrix}B_1&B_2\end{pmatrix}$ 行满秩。解方程 (A+I)(A-I)=O 可得 $(B_1-2I)\begin{pmatrix}B_1&B_2\end{pmatrix}=O$,由 4.1 节习题 5 知只能 $B_1=2I$,取 $P=\begin{pmatrix}I&-\frac{1}{2}B_2\\O&I\end{pmatrix}P_0^{-1}$,计算验证知符合要求。
 - (2) 将 A 写为 (4) 中的形式,记形式中的 P,Q 为 P_0,Q_0 ,直接计算可发现 $Q_0^3 = Q_0$,由 Q_0 可逆, $Q_0^2 = I$,由 (1) 设 $R^{-1}Q_0R = \mathrm{diag}(I,-I)$,则取此处 $P = P_0 \begin{pmatrix} R & O \\ O & I \end{pmatrix}$ 即符合要求。
 - (3) $\operatorname{rank}(A^{k+1}) = \operatorname{rank}(A^k \cdot A) \leq \operatorname{rank}(A^k)$,由 Frobenius 秩不等式 $\operatorname{rank}(AA^{k-1}A) + \operatorname{rank}(A^{k-1}) \geq \operatorname{rank}(A^{k-1}A) + \operatorname{rank}(AA^{k-1})$,因此 $2\operatorname{rank}(A^k) \operatorname{rank}(A^{k-1}) \leq \operatorname{rank}(A^{k+1}) \leq \operatorname{rank}(A^k)$,代入条件即得结果。
 - (4) 由于 $\operatorname{rank}(A^{k+1}) = \operatorname{rank}(A^k \cdot A) \leq \operatorname{rank}(A^k)$,由条件可推出 $\operatorname{rank}(A^2) = \operatorname{rank}(A)$ 。设 $A = P_0 \begin{pmatrix} I_a & O \\ O & O \end{pmatrix} R_0 P_0^{-1} \ (P_0, R_0 \ \text{可逆})$, $R_0 = \begin{pmatrix} R_1 & R_2 \\ R_3 & R_4 \end{pmatrix}$,而 $A^2 = P_0 \begin{pmatrix} R_1 & O \\ O & O \end{pmatrix} R_0 P_0^{-1}$,因此 $R_1 \ \text{可逆}$ 。

曲于
$$A = P_0 \begin{pmatrix} R_1 & R_2 \\ O & O \end{pmatrix} P_0^{-1}$$
,取 $P = P_0 \begin{pmatrix} I & -R_1^{-1}R_2 \\ O & I \end{pmatrix}$, $Q = R_1$,计算验证即可。

- 10. (1) 归纳。一阶时显然成立,当阶数大于 1 时,与习题 10(1) 类似操作可先将其列变换为 $\begin{pmatrix} O & A_1 \\ O & A_2 \end{pmatrix} Q_0$,由于 A 幂零,不可能可逆,故至少有一列 0,计算知将其写为 $Q_0^{-1}\begin{pmatrix} O & A_1' \\ O & A_2' \end{pmatrix} Q_0$ 时依然有一列为 0。 计算其 m 次幂验证可知 A_2' 仍为幂零方阵,由归纳假设,存在 P_0 使得 $P_0^{-1}A_2'P_0$ 为对角全为 0 的上 三角阵,因此取 $P = \begin{pmatrix} I & O \\ O & P_0^{-1} \end{pmatrix} Q$ 即满足要求。
 - (2) 将第一问的第一步改为将其行变换为 $P_0\begin{pmatrix}A_2&A_1\\O&O\end{pmatrix}$,然后将所有对行列的操作对调即可 (具体操 作见第三问)。
 - (3) 由于相似可以传递 $(PQAQ^{-1}P^{-1} = (PQ)A(PQ)^{-1})$,不妨设 A 已经是上一问中的形式。

注意到,在第一问的操作下, $A = \begin{pmatrix} C_1 & * & * \\ & \ddots & * \\ & & C_r \end{pmatrix}$,其中每个对角块为方阵,且每个 C_i 及其右下

角为列满秩阵 (* 部分为未定)(理由为在每一步中 $\begin{pmatrix} A_1' \\ A_2' \end{pmatrix}$ 列满秩,之后的操作不改变这个特性)。利 用 $\operatorname{rank}(A) + \operatorname{rank}(B) \leq \operatorname{rank}(A \mid B)$, 可发现每个 C_i 亦为列满秩。

下面由下标从大到小依次对 C_k 进行如下操作:

由于 C_k 为列满秩阵,可行变换为题目要求的 B_k 的形式 $(C_k = Q_k \begin{pmatrix} I \\ O \end{pmatrix} P_k = Q_k \begin{pmatrix} P_k & O \\ O & I \end{pmatrix} \begin{pmatrix} I \\ O \end{pmatrix}$,取行变换矩阵为 $\begin{pmatrix} P_k^{-1} & O \\ O & I \end{pmatrix} Q_k^{-1}$ 即可)。如此进行变换,并右乘其逆。由于右乘其逆相当于对 C_{k-1} 所在的列进行列变换,不会改变 C_{k-1} 的列满秩性质,因此操作可以继续。接下来,利用 T_{ij} 行变换 将 B_k 上方的所有数减为 0。右乘此操作的逆相当于 C_{k-1} 所在的列减去其左侧的列。由于 C_{k-1} 左 侧全部为 O, 故这个操作亦不会影响下一步操作。

如此对所有 C_k 按下标从大到小如此操作 r 次,可得到符合要求的方阵 (直接计算 A^{m-1} 与 A^m 知 此时必然剩下 $m-1 \uparrow B_k$)。

(4) 在第三问的基础上进行操作。在 2.4 节习题 14 中己验证, 左乘置换方阵并右乘其逆相当于置换 下标。由于矩阵为上三角, a_{ij} 只有 i < j 时可能为 1。且容易发现,此时矩阵每行每列最多有一个 1。 按 i 从小到大寻找,第三问的形式中第一行必然有 1。若 $a_{1,i_2}=a_{i_2,i_3}=\cdots=a_{i_n,i_{n+1}}=1$,且 i_{p+1} 行没有 1, 则将 i_1 到 i_m 置换为 1 到 m。然后从第 m+1 行看起,找到此时第一个存在 1 的行,再 次按之前方式找到链条,放在 $m+1,m+2,\ldots$ 的位置,以此直到所有的1都排列完成。可以证明, 这样操作后,每个对角方阵已经成为 Jordan 方阵,且不会有剩下的 1。再利用置换矩阵调整顺序至 满足大小要求 (5.1 节定理 5.1-5) 即可。直接计算可知,此时最大块必然为 m 阶。

(亦可通过类似思路归纳操作,更为简洁)

§4.3 Smith 标准形

1. 本题只按顺序写出 d_i

- (1) 1,60,60 (2) 1,1 (3) 1,1 (4) 1,1
- (5) x + 1, x(x + 1), (x 1)x(x + 1) (6) $x, x(x 1)^2$
- $(7) x, x^2, x^3 (8) 1, x(x-1)$
- 2. (1) 直接设出 a_1, \ldots, a_n 每个数的不同素因子,可发现其中 n 个 n-1 个不同数的乘积的最大公因数为 1,由此知 $D_{n-1}=1$,可得结论。
 - (2) 直接利用最大公因数计算 D_i 即可
- 3. 直接仿照 4.2 节开头部分,注意此时有解条件除 $\beta_2=0$ 外还有 $d_i\mid\beta_{1i}$,因此相抵须加强为模相抵。
- 4. 证明中 k+1, k+2 若 > n,则写为模 n 的余数
 - (1)* 需至少二阶,一阶时 (-1) 无法表示。

由变换的角度,任何整系数方阵都能在整系数初等变换下得到 Smith 标准形,又因整数模方阵的标准形为单位阵,其一定能写为整系数初等方阵的乘积。而 $D_i(n)$ 会导致行列式值为 n 的倍数,故只能 n=-1(n=1) 为单位阵,但 $D_i(-1)=S_{ij}T_{ij}(1)T_{ji}(-1)T_{ij}(1)$,且 $T_{ij}(n)=T_{ij}^n(1)$, $T_{ij}(-n)=T_{ij}^n(-1)$,故可表示为满足题目要求的乘积。

- (2) $P^k S_{12} P^{n-k} = S_{k+1,k+2}$, 再由 $S_{ij}(i < j) = S_{i+1,j} S_{i,i+1} S_{i+1,j}$ 可由 ij 之差归纳出结果。
- (3) $P^k T_{12}(1) P^{n-k} = T_{k+1,k+2}(1), T_{ij}(1) (i < j) = T_{i,i+1}(1) T_{i+1,j}(1) T_{i,i+1}(-1) T_{i+1,j}(-1)$ 与上问类似可由 ij 之差归纳出结果。
- (4) 由于 $S_{ij}T_{ij}(1)T_{ji}(-1)T_{ij}(1) = D_i(-1)$ 与 j 无关,可将 S_{ij} 利用 T 化为 $S_{i1} = S_{1i}$,再利用 T 化为 S_{12} 即可。
- (5) $T_{ij}(1) = S_{1i}S_{2j}T_{12}(1)S_{2j}S_{1i} (S_{ii} = I)$
- 5. (1) 由习题 4(1) 进行分解,又由习题 4(4),可将所有 S_{ij} 化为 S_{12} ,由于行列式为 1,这样的 S_{12} 必 然为偶数个。又因为 $S_{12}T_{ij}(k)=T_{mn}(k)S_{12}(其中 m,n$ 为 i,j 在对换 12 作用下的结果),可以将 S_{12} 两两配对后全部消去,即得证。
 - (2) 阶数为奇时与习题 4(3) 相同,为偶时 $P^kT_{12}(1)P^{n-k} = -T_{k+1,k+2}(-1)$,由习题 4(3),由于 $T_{ij}(1)$ 模为 1,结果可消去所有负号,即得证。
- 6. 直接将定理证明中的整数替换为多项式即可,注意其中配凑系数可控制首一。
- 7. (1) 由 Smith 标准形为对称阵,设 PQ 为模方阵,PAQ 为 A 的 Smith 标准形,则 $Q^TA^TP^T = (PAQ)^T = PAQ$,故 A^T 与 A 模相抵 (转置不影响行列式,故模方阵转置仍为模方阵)。
 - (2) 与(1) 过程相同。
- 8. (1) 左推右: 若否,展开得行列式一定为 $gcd(a_1, a_2 \dots a_n)$,故矛盾

右推左:由于其各分量最大公约数是 1,将此向量写为 α ,可右乘合适的 $D_i(-1)$ 使其均变为正数,再右乘 $T_{21}(-1),T_{12}(-1)$ 的组合进行辗转相减,最终使 a_1 成为 $\gcd(a_1,a_2)$,以此对每个大于 1 的 a_i 操作, a_1 最终变换成 $\gcd(a_1,a_2...a_n)=1$,设这时的 α 变为 β ,有 $\alpha P=\beta$ (由于每步变换均为右乘

整数模方阵,
$$P$$
 亦为整数模方阵) 此时,由于 $\beta_1=1$,
$$\begin{pmatrix} 1 & \beta_2 & \cdots & \beta_n \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix} P^{-1}$$
 即为以 α 为行向量的

整数模方阵。

(2) 与 (1) 过程相同,注意辗转相减时 T_{1i}, T_{i1} 中的内容应更改为多项式辗转相除的方式即可。

9. 考察某个
$$C = A + xB$$
 的子式 $C \begin{bmatrix} p_1 & p_2 & \cdots & p_r \\ q_1 & q_2 & \cdots & q_r \end{bmatrix}$ 。

曲
$$A^T = \overline{A}, B^T = \overline{B}$$
,可得 $f_1(x) = \det C \begin{bmatrix} p_1 & p_2 & \cdots & p_r \\ q_1 & q_2 & \cdots & q_r \end{bmatrix}, f_2(x) = \det C \begin{bmatrix} q_1 & q_2 & \cdots & q_r \\ p_1 & p_2 & \cdots & p_r \end{bmatrix}$ 互为

共轭。而 f_1, f_2 均为 r 次多项式,因此 $gcd(f_1, f_2) = gcd(f_1 + f_2, f_2 - f_1) = gcd(f_1 + f_2, \frac{f_2 - f_1}{2i})$ (因非零复数可逆,除以 2i 不影响多项式最大公因式)。

计算可发现, f_1+f_2 , $\frac{f_2-f_1}{2\mathrm{i}}$ 均为实系数多项式,因此其最大公因式亦为实系数多项式。而对每一个 D_k ,都可以由此配对成若干个实系数多项式的最大公因式,因此亦为实系数多项式,从而 d_k 亦如此。

10. 考虑 (x) 与 (x^2) 即为反例。

可以说明,当 A 和 B 对应的 d_i 均无重根时,条件成立。首先证明:若两个方阵 $M,N\in\mathbb{C}[x]$ 模相抵,则对任何 z,M(z),N(z) 相抵。令 M=PNQ,P,Q 为模方阵,则 M(z)=PNQ(z)=P(z)N(z)Q(z),由于 $\det P(z)$, $\det Q(z)$ 均为 ± 1 ,故 P(z)Q(z) 可逆,因此 M(z),N(z) 相抵。由此,设 A, B 的 Smith 标准形为 A_0 , B_0 ,则对任何 z,A(z) 与 $A_0(z)$,B(z) 与 $B_0(z)$ 相抵,于是 $A_0(z)$ 与 $B_0(z)$ 相抵,设 $A_0(z)=\operatorname{diag}(a_1,a_2\ldots a_k,O)$, $a_i\mid a_{i+1}$, $A_0(z)=\operatorname{diag}(b_1,b_2\ldots b_l,O)$, $a_i\mid b_{i+1}$ 。令 a_i 取一个并非 a_i 为 根的数,此时相抵可知 a_i 为 a_i 与 a_i 不全相同,考虑最小的不相同的 a_i 为 a_i ,由于 a_i 为 a_i 为 无重根,必定根的情况不同,不妨设有一个 a_i 为 a_i 根,则讨论其他方程对 a_i 的根的情况可知此时 a_i 0, a_i 1,不解的 a_i 2,不是相同,考虑最小的不相同的。

由证明过程亦可知,满足题目中要求的 A, B 实际要求为,Smith 标准形中对应位置的每个多项式根相同 (但重数可以不同)。

第五章 矩阵的相似

§5.1 相似的概念

1. $(1)\operatorname{tr}(AB) = \operatorname{tr}(BA)(2.1$ 节定理 $2.2) \Rightarrow \operatorname{tr}(A) = \operatorname{tr}(PBP^{-1}) = \operatorname{tr}(P^{-1}PB) = \operatorname{tr}(B)$ $\det(A) = \det(P)\det(B)\det(P^{-1}) = \det(B)$

rank(A), rank(B) 由秩定义直接得相等。

- (2) 利用 $(P^T)^{-1} = (P^{-1})^T$ 与 $(AB)^T = B^T A^T$ 知成立。
- (3) 直接计算可发现 $A = PBP^{-1} \Rightarrow f(A) = Pf(B)P^{-1}$ 。
- (4) 计算可知 $diag(P,Q)^{-1} = diag(P^{-1},Q^{-1})$, 由此构造即可。
- (5) 设 A_1, A_2 为 m, n 阶方阵,则计算可知 $\operatorname{diag}(A_2, A_1) = \begin{pmatrix} O & I_n \\ I_m & O \end{pmatrix} \operatorname{diag}(A_1, A_2) \begin{pmatrix} O & I_m \\ I_n & O \end{pmatrix}$,且左右方阵互逆,由此归纳可知结果。
- 2. 直接取 $P = \begin{pmatrix} & & 1 \\ & \ddots & \\ 1 & & \end{pmatrix}$,计算知成立。
- 3. (1) 特征值 1,1,1, 但 1 几何重数为 1, 不可对角化。

(2) 特征值 1,1,2,
$$P = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 2 & 2 \\ 0 & 1 & 1 \end{pmatrix}$$

第五章 矩阵的相似 36

(3) 特征值 1,1,1, 但 1 几何重数为 2, 不可对角化。

(4) 特征值 1,2,3,
$$P = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix}$$

- (5) 特征方程 $\lambda^n + a = 0$ 。 a = 0 时特征值全为 0,但 0 几何重数为 1,不可对角化;其余情况可对角化, $P_{ij} = a^{(i-1)/n}\omega^{(i-1)(j-1)}$,其中 ω 为 n 次本原单位根。
- (6) 类似 3.2 节习题 6(1) 知特征值为 n-1 重 0 与 $\frac{n(n+1)(2n+1)}{6}$,计算得 $P = \begin{pmatrix} -n & \cdots & -2 & 1 \\ & & 1 & 2 \\ & & \ddots & & \vdots \\ 1 & & & n \end{pmatrix}$
- (7) 类似 3.2 节习题 6(2) 知特征值为 n-2 重 0 与 $\lambda^2 \frac{n^3 + 2n}{3} \lambda + \frac{n^4 n^2}{12} = 0$ 的两根。0 对应特征向量的基为 $\begin{pmatrix} k & -k-1 & 0 & \dots & 1 & \dots & 0 \end{pmatrix}^T$ $(1 \le k \le n-2)$,第 k+2 个分量为 1,此外除前两个分量均为 0),非零特征值 λ 对应的一个特征向量第 i 个分量为 $\frac{\lambda}{n} \frac{n+1}{2} + i$,分别代入两个 λ ,组合得 P。
- 4. (1) 特征方程为奇数次,必有实根。
 - (2) 特征方程常数项为 $\det(A)$,由于 $\varphi_A(0) = \det(A)$, $\varphi_A(+\infty) = +\infty$,若否,由介值定理知存实根。
 - (3) 由 A 为实对称方阵, $A^H = A$,设特征值 λ 对应特征向量 α ,则 $\alpha^H A \alpha = \alpha^H (\lambda \alpha) = \lambda \alpha^H \alpha$,又由于 $(A\alpha)^H = \alpha^H A = (\lambda \alpha)^H = \overline{\lambda} \alpha^H$,有 $\alpha^H A \alpha = \overline{\lambda} \alpha^H \alpha$ 。综合两式, $\alpha \neq \mathbf{0} \Rightarrow \alpha^H \alpha > 0$,因此 $\lambda = \overline{\lambda} \Rightarrow \lambda \in \mathbb{R}$ 。
 - (4) 与上问类似知 $\lambda = -\overline{\lambda}$, 由此得结论。
- 5. 若否,则可以通过列变换将某列变为 0,因此存在某些 α 使 $\sum_{k=1}^{r} t_k \alpha_{m_k} = \alpha_s$,其中 t_k 为非零常数。 同时左乘若干 A 可知 $\sum_{k=1}^{r} t_k \lambda_{m_k}^l \alpha_{m_k} = \lambda_s^l \alpha_s$ 对任意 1 成立。由于特征值两两不同,利用范德蒙德行列式可证明此时任何一个分量只有 0 解,即所有 $\alpha = \mathbf{0}$,矛盾。
- 6. (1) $c_0 = \det(A)$, 由 5.2 节定理 5.6-1, $A^n (n \in \mathbb{Z})$ 的每个特征值为 A 的每个特征值对应作 n 次方,由此直接计算特征多项式得结果。
 - (2) 注意到 $c_1 = \operatorname{tr}(A^*)$,因此其 n 次与 n-1 次项必为 $x^n + (-1)^n c_1 x^{n-1}$,利用 4.1 节习题 7 可得 A 不可逆时, $\operatorname{rank}(A^*) \leq 1$,类似 3.2 节习题 6(1) 知 0 的代数重数至少为 n-1,因此其只能为 $x^n + (-1)^n c_1 x^{n-1}$ 。
- 7. (1) 记右式中最大值为 M,若否, $\left|\sum_{k=0}^{n-1} c_k \lambda^k\right| \leq \sum_{k=0}^{n-1} |c_k \lambda^k| \leq \sum_{k=0}^{n-1} |M \lambda^k| = M \frac{|\lambda|^n 1}{|\lambda| 1} \leq |\lambda|^n 1 < |\lambda^n|$,矛盾。
 - (2) 记右式中最大值为 M,若否, $\left|\sum_{k=0}^{n-1} c_k \lambda^k\right| \leq \sum_{k=0}^{n-1} |c_k \lambda^k| \leq \sum_{k=0}^{n-1} |M^{n-k} \lambda^k| = M \frac{|\lambda|^n M^n}{|\lambda| M} < |\lambda|^n M^n < |\lambda|^n$,矛盾。
 - (3) 若否, $\lambda I-A$ 的行列式严格行对角优,利用 2.4 节习题 12 可知不为 0。
- 8. 右推左: $f = g \Rightarrow A = B \Rightarrow A, B$ 相似。

左推右: 由于 A,B 相似,特征多项式必相同。又由 Laplace 展开知 $\varphi_A(x)=f(x), \varphi_B(x)=g(x)$,因此 $f=g_\circ$

- 9. 由条件知 $(\lambda I A)(\lambda I B) = \lambda(\lambda I A B)$, 直接计算可得结论。
- 10. (1) 类似 3.2 节习题 6(1) 可知特征根为 n-1 重 0 与 tr(A),由此知结论。
 - (2) 由 rank(A) = 1 知 0 的几何重数为 n-1,因此可对角化等价于 0 的代数重数为 n-1,即 $tr(A) \neq 0$ (否则代数重数为 n)。
 - (3) 讨论是否为 0 可知结论成立 (均为 0 时可用 Jordan 标准形说明相似)。
- 11. (1) 利用 3.2 节例 3.12 可直接得结论。

(2) 设
$$A = P\begin{pmatrix} I_r & O \\ O & O \end{pmatrix}Q, B = Q^{-1}\begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix}P^{-1}(PQ$$
 可逆),由条件算得 $\operatorname{rank}(B_1) = r$,即 B_1 可逆。计算得

$$\begin{pmatrix} I & B_1^{-1}B_2 \\ O & I \end{pmatrix} P^{-1}ABP \begin{pmatrix} I & -B_1^{-1}B_2 \\ O & I \end{pmatrix} = \begin{pmatrix} I & O \\ -B_3B_1^{-1} & I \end{pmatrix} QBAQ^{-1} \begin{pmatrix} I & O \\ B_3B_1^{-1} & I \end{pmatrix} = \begin{pmatrix} B_1 & O \\ O & O \end{pmatrix}$$

因此 AB, BA 相似。

(3) 设
$$A = P\begin{pmatrix} I & O \\ O & O \end{pmatrix}$$
 $Q, B = Q^{-1}\begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix}$ $P^{-1}(PQ 可逆)$,由条件 $\operatorname{rank}(B_1) = \operatorname{rank}\begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix}$ 。
利用 4.2 节例 4.6 知存在 X, Y 使得 $B_1X = B_2, YB_1 = B_2$,计算得

$$\begin{pmatrix} I & X \\ O & I \end{pmatrix} P^{-1}ABP \begin{pmatrix} I & -X \\ O & I \end{pmatrix} = \begin{pmatrix} I & O \\ -Y & I \end{pmatrix} QBAQ^{-1} \begin{pmatrix} I & O \\ Y & I \end{pmatrix} = \begin{pmatrix} B_1 & O \\ O & O \end{pmatrix}$$

因此 AB, BA 相似。

$$(4) \ A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- 12. 利用 3.2 节例 3.11 可得 $\varphi_{H^n}(x) = \det \left((xI H_{n-1})^2 I \right) = \det \left((x+1)I H_{n-1} \right) \left((x-1)I H_{n-1} \right) = \varphi_{H^{n-1}}(x+1)\varphi_{H^{n-1}}(x-1)$,归纳可得特征值为 $C_n^k \uparrow n 2k(0 \le k \le n)$ 。
- 13. (1) 利用习题 7(3) 可知特征值的模 ≤ 2 ,设为 $2\cos\theta$,归纳可得 $\det(2\cos\theta I A) = \frac{\sin(n+1)\theta}{\sin\theta}$,由此解出全部特征值知分解成立。
 - (2) 利用习题 7(3) 可知特征值 \in [0,4],设为 $2\cos\theta + 2$,归纳可得 n > 1 时 $\det((2\cos\theta + 2)I A) = (2\cos\theta + 2)\frac{\sin n\theta}{\sin\theta}$,由此解出全部特征值知分解成立。

(归纳式的由来可以用(1)的结果算出)

14. (1) 令 S 的第 i 行第 j 列为 C_i^j (此处 i,j 均可取 0,规定 $C_0^0 = 1$,j > i 时 $C_i^j = 0$),可证明 $S^{-1}AS = \begin{cases} i-n & i=j-1 \\ 0 & i \neq j-1 \end{cases}$,由相似阵的特征多项式相同可直接得结论。

$$(2) S^{-1}BS = \begin{cases} (n-2i)^2 & i=j \\ 2(i-n)(2i+1) & i=j-1, \text{ 由此直接计算可得结果}. \\ 0 & 其他 \end{cases}$$

* 关于计算细节:可验证 $S^{-1} = ((-1)^{i-j} \mathbf{C}_i^j)$,而计算核心为公式 $\sum_{k=j}^i (-1)^{i-k} \mathbf{C}_i^k \mathbf{C}_k^j = \begin{cases} 1 & i=j \\ 0 & i \neq j \end{cases}$ (具体计算相关的知识点为离散数学中组合数计算)

15. (1) 由定义直接验证即可。

(其余答案暂缺)

- 16. * 谱半径 $\rho(A)$ 定义见 5.3 节习题 11,为 A 的特征值模长最大值,即为此题的 $|\lambda_1|$
 - * 矩阵范数定义见 6.3 节例 6.7
 - * 定义实向量与矩阵之间的 <, <, >, > 代表每个分量对应满足条件
 - (1.1) 对非负矩阵 A, $\rho(A)$ 为 A 特征值 (称其为非负矩阵 A 的最大特征值)。

任意非负矩阵,可以写为一列正矩阵的极限 (矩阵极限即为按分量极限),而由于特征多项式亦为极限,特征值也为极限,由极限保序性,我们只需要说明对 A>O 结论成立。由于矩阵整体数乘正数不影响题中性质,不妨设 $\rho(A)=1$ 。

设 α 为 λ_1 对应的特征向量,各分量为 $\alpha_1, \ldots, \alpha_n$,取 $\beta = \begin{pmatrix} |\alpha_1| & \ldots & |\alpha_n| \end{pmatrix}^T$,有 $\beta \geq \mathbf{0}$ 且不可能 为 $\mathbf{0}$,下证 β 是 A 的对应 1 的特征向量,由此即有 $\lambda_1 = 1$ 。

由条件, $\forall k, \lambda_1 \alpha_k = \sum_{i=1}^n a_{ki} \alpha_i$,取模即有 $|\alpha_k| \leq \sum_{i=1}^n a_{ki} |\alpha_i|$,因此 $\beta \leq A\beta$,也即 $(A-I)\beta \geq \mathbf{0}$,若等 号成立则已得证,否则,由于 A > 0, $A(A-I)\beta > \mathbf{0}$,因此存在正实数 b 使 $A(A-I)\beta \geq bA\beta$,即 $A^2\beta \geq (b+1)A\beta$ 。

令 $B = \frac{A}{b+1}$,则 $BA\beta \ge A\beta$,递推知 $\forall k, B^k A\beta \ge A\beta$ 。但由于 $\rho(B) = \frac{1}{b+1} < 1$,由 5.3 节习题 11 得 $\lim_{k \to \infty} B^k = O$,由此只能 $A\beta = \mathbf{0}$,由假设 $\beta = \mathbf{0}$,故 $\alpha = \mathbf{0}$,矛盾。

因此, $\rho(A)\beta = A\beta$,即 β 是 A 的对应 1 的特征向量, $\lambda_1 = 1$ 。

(2.1) 不可约矩阵中最大特征值对应的某个特征向量各分量同正。

在 (1.1) 中,已经取出了最大特征值对应的一个非负特征向量 β ,下面证明,对不可约矩阵 A 与非负非零向量 β , $\exists m, A^m \beta > \mathbf{0}$,又由 $A^m \beta = \rho(A)^m \beta$ 可知 $\beta > \mathbf{0}$,因此 β 各分量同正或同负。

步骤一:对不可约矩阵 A,存在 s 使 A^s 对角元均为正。

我们回到图论。回忆 2.4 节习题 14 证明过程中说明的,不可约矩阵等价于其对应的图强连通,即任 意两点可以互相到达。

由于这里的"任意两点"可以取为同一点,可以设点 i 通过 m_i 步可以到达自身 (回忆证明过程中的结论,此即表示 A^{m_i} 的第 i 行第 i 列为正),由此,取 $s = \text{lcm}(m_1, \ldots, m_n)$,容易发现,每点均可以通过 s 步到达自身,也即 A^s 对角元全为正。由此,将 A^s 记为 B。

步骤二:若非负非零向量 β 恰好有 k < n 个分量为正,则 $B\beta$ 至少有 k+1 个分量为正。由于置换不影响结论,不妨设 $\beta = \begin{pmatrix} \beta_0 \\ \mathbf{0} \end{pmatrix}$,其中 $\beta_0 > \mathbf{0}$ 。设 B 对应分块为 $\begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix}$,则由于 B 对角元均正, $\exists \varepsilon, B - \varepsilon I$

对角元均正,其仍为不可约阵,设 $B - \varepsilon I$ 对应分块为 $\begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix}$,则 $B\beta = \varepsilon \begin{pmatrix} \beta_0 \\ \mathbf{0} \end{pmatrix} + \begin{pmatrix} B_1 \beta_0 \\ B_3 \beta_0 \end{pmatrix}$,由

 ε $\binom{\beta_0}{\mathbf{0}}$ 部分可知 $B\beta$ 至少有 k 个分量为正,若不足 k+1,则 $B_3\beta_0=O$,由于 $\beta_0>\mathbf{0}$,只有 $B_3=O$,与 $B-\varepsilon I$ 不可约矛盾。

步骤三:归纳可知 $B^{n-1}\beta > \mathbf{0}$,即 $A^{s(n-1)}\beta > \mathbf{0}$,原命题得证。

(1.2) 不可约阵中最大特征值的代数重数为 1。

步骤一:不可约阵中最大特征值对应的 Jordan 块均为一阶。

继续假设 $\rho(A) = 1$ 。这即是需要证明,1 对应的所有 Jordan 块均为 $J_1(1)$ 。

设 A 对应 1 的某个特征向量为 α ,由 (2.1) 知可取 $\alpha > \mathbf{0}$,且有 $A\alpha = \alpha \Rightarrow A^k\alpha = \alpha$ 。令 α 最大分量为 x,最小分量为 y,则考虑 $A^k\alpha = \alpha$ 左右各分量有 $x \geq \alpha_i = \sum_{j=1}^n a_{ij}^{(k)} \alpha_j \geq a_{ij}^{(k)} \alpha_j \geq a_{ij}^{(k)} y$,其中 $a_{ij}^{(k)}$ 表示 A^k 中第 i 行第 j 列的元素。由此可得, A^k 中任意元素 $\leq \frac{x}{y}$,也即有界。

若 1 对应的某个 Jordan 块为 $J_s(1)$, s > 1, 则存在 P 使 $P^{-1}AP$ 为其 Jordan 标准形,不妨设第一个对角块即为 $J_s(1)$,则其 k 次方中第一行第二列为 k,且前两个对角元仍为 1,因此 $(P^{-1}AP)^k = P^{-1}A^kP$ 无界,考虑 $||A||_F$ 计算可知与 A^k 有界矛盾。

步骤二:不可约阵中最大特征值的代数重数为1。

由 2.4 节习题 14(1),对特征值为 $\lambda_1,\ldots,\lambda_n$ 的不可约矩阵 A, $\exists \lambda,(\lambda I-A)^{-1}>O$,且证明过程中已经说明了,对充分大的 λ 有 $(\lambda I-A)^{-1}>O$ 。因此,可取 $\lambda>\rho(A)$ 。计算可知 $(\lambda I-A)^{-1}$ 的每个特征值为 $\frac{1}{\lambda-\lambda_i}$,且对应的特征向量一致。由于 $(\lambda I-A)^{-1}$ 的最大特征值为实数,其对应的 λ_i 也必为实数,又由于 λ 充分大,若实特征值 $\lambda_i>\lambda_j$,有 $\frac{1}{\lambda-\lambda_i}>\frac{1}{\lambda-\lambda_j}$ 。因此, $(\lambda I-A)^{-1}$ 的最大特征值即对应 A 的最大特征值。也即,只需证明对所有 A>O 满足题述性质即可。

继续假设 $\rho(A) = 1$ 。(2.1) 中说明,特征值 1 对应一个正特征向量 β ,设其分量为 β_1, \ldots, β_n 。若结论不成立,不妨设 A 中 1 的代数重数为 r > 1,由于对应的 Jordan 块均一阶,由 5.3 节定理 5.12,其几何重数亦为 r,再由定理 5.2-5 知 1 对应的特征向量空间的维数为 r > 1。

由于 A-I 为实方阵, $(A-I)x=\mathbf{0}$ 的解空间的基可以取为实数,由此可取出与 β 线性无关的实特征向量 α ,设其分量为 α_1,\ldots,α_n 。令 $t=\max_{1\leq i\leq n}\frac{\alpha_i}{\beta_i}$,由于 $\beta_i>0$,可知 $t\beta-\alpha\geq\mathbf{0}$,但 $t\beta-\alpha$ 为 A 对应 1 的特征向量,由于 A>O, $A(t\beta-\alpha)=t\beta-\alpha$,知 $t\beta-\alpha>\mathbf{0}$ 。然而, $t=\max_{1\leq i\leq n}\frac{\alpha_i}{\beta_i}$,因此 $t\beta-\alpha$ 必有分量为 0,矛盾。

由此可知,A中 1 的几何维数为 1,又因最大特征值对应的 Jordan 块均为一阶,从而代数维数为 1,从而原结论成立。

(2.2) 不可约矩阵中最大特征值对应的一切特征向量各分量同号。

由 (1.2) 已知其特征向量空间维数为 1,因此所有特征向量为 (2.1) 中 β 的非零实数倍,因此各分量同号。

- (3) 利用习题 7(3) 可知 $\rho(A) \le 1$,列变换可知 1 为特征值,故得证。
- (4) 左推右:

引理: A 为非负矩阵, $\rho(A) = \lim_{k \to \infty} ||A^k||^{1/k}$

引理证明:定义 $A_+ = \frac{1}{\rho(A) + \varepsilon} A, A_- = \frac{1}{\rho(A) - \varepsilon} A$,计算可知 $\rho(A_+) < 1 < \rho(A_-)$ 。类似 5.3 节习题 11 做法可得,对非负矩阵 $B, \rho(B) > 1 \Leftrightarrow \lim_{k \to \infty} ||B^k|| = +\infty, \rho(B) < 1 \Leftrightarrow \lim_{k \to \infty} ||B^k|| = 0$ 。由此, $\exists N, \forall k > N, ||A_+^k|| < 1 < ||A_-^k||$ 。于是 $(\rho(A) - \varepsilon)^k < ||A^k|| < (\rho(A) + \varepsilon)^k$,因此 $\forall \varepsilon, \exists k, \left| \rho(A) - ||A^k||^{1/k} \right| < \varepsilon$,故引理成立。

继续假设 $\rho(A) = 1$, 设特征值 λ 模长为 1。

若 $\lambda \neq 1$,设其实部为 $\cos \theta$ (由于不关注虚部,不妨设 $\theta \in [0,\pi]$),则 $\operatorname{Re}(\lambda^n) = \cos n\theta$ 。若 $\theta \neq 0$,对 每个自然数 k,必有 n 使 $n\theta \in \left(2k\pi + \frac{\pi}{2}, 2k\pi + \frac{3\pi}{2}\right] \Rightarrow \cos n\theta < 0$ (此处可用数轴理解:每步长度固定且 $\leq \pi$,走过长度为 π 的区域时必会落入),由此 $\forall N, \exists m > N, \operatorname{Re}(\lambda^m) < 0$ (取充分大的 k 即有充分大的 m)。

由于 A 本原, $\exists t, \forall n > t, A^n > O$ 。取某个 m > t,再取一充分小正数 ε 满足 $A^m - \varepsilon I > 0$,直接计算可发现, $\lambda^m - \varepsilon$ 是 $A^m - \varepsilon I$ 的特征值,且由于 $\operatorname{Re}(\lambda^m) < 0$, $|\lambda^m - \varepsilon| > |\lambda^m| = 1$ 。

可证明 $\sqrt{1+\varepsilon^2} < |\lambda^m - \varepsilon| \le \rho(A^m - \varepsilon I)$,因此 $\rho(A^m - \varepsilon I) > 1$ 。

(不等号 1: λ^m 与 $-\varepsilon$ 看作复平面向量,夹角 $<\frac{\pi}{2}$,故其和的模长大于夹角恰为 $\frac{\pi}{2}$ 时的模长。

不等号 2: 由于 $\lambda^m - \varepsilon$ 是 $A^m - \varepsilon I$ 的特征值,由定义,模长小于等于最大模长。)

另一方面,由于 $A^m-\varepsilon I$ 每个元素对应小于等于 A^m 且不全相等,计算可知 $(A^m-\varepsilon I)^k$ 与 A^{mk} 仍 保持此性质。

 $\forall B > O, \exists \alpha > \mathbf{0}$ 使 $||B\alpha||$ 取到最大值 (将 α 某位变号不影响 $||\alpha|| = 1$, 变为全同号时模长不会减小)。 由上述性质, $\forall \alpha > \mathbf{0}, ||(A^m - \varepsilon I)^k \alpha|| < ||A^{mk} \alpha||$,于是 $||(A^m - \varepsilon I)^k|| < ||A^{mk}|| \Rightarrow ||(A^m - \varepsilon I)^k||^{1/k}$ $< ||A^{mk}||^{1/k}$ 。取极限即有 $\rho(A^m - \varepsilon I) \leq \rho(A^m)$ 。

但由特征值性质, $\rho(A^m) = \rho(A)^m = 1$,故 $\rho(A^m - \varepsilon I) \le 1$,矛盾。这个矛盾说明,对任何模长为 1 的特征值 λ ,其值必为 1,再结合 (1),由 2.4 节习题 14(1) 知本原阵必然不可约,即知左推右成立。 [推论不可约矩阵的模长为 $\rho(A)$ 的特征值一定为 $\rho(A)$ 乘以单位根

注意到,上一部分中的证明其实对所有对角元均为正的非负矩阵均成立,因此我们得到,对角元均为正的非负矩阵满足模长为 $\rho(A)$ 的特征值只能为最大特征值。

由第二小问证明中的步骤 1,对不可约矩阵 A,存在 m 使 A^m 对角元均为正。由此运用 5.2 节定理 5.6-1, A^m 的特征值为 A 特征值对应 m 次方,而 A^m 满足 $|\lambda|=\rho(A^m)$ 的特征值只能为最大特征值, $\rho(A^m)=\rho(A)^m$,因此对 A 的每一个模长为 $\rho(A)$ 的特征值 λ 有 $\lambda^m=\rho(A^m)=\rho(A)^m$,因此 原命题得证。]

右推左 (题目表述不严谨, 需要 A 不可约为条件):

反证。若 A 不为本原,可化为 2.4 节习题 14(4) 形式 (注意 $m \geq 2$)。则此时计算可知, A^m 为非负准对角阵 $\operatorname{diag}(A_1A_2\dots A_m,A_2A_3\dots A_1,\dots,A_mA_1\dots A_2)$,由于任意两个不同对角元都可看成 AB 与 BA,利用 3.2 节例 3.12 即知所有对角元非零特征值完全相同,因此,每个对角块模最大的特征值完全相同,因此 A^m 中模最大特征值的重数至少为 m,而 A^m 的模最大特征值均为 A 模最大的特征值,即模长 $\rho(A)$ 的特征值至少有 m 个,矛盾。

§5.2 相似三角化

- 1. (1) 利用上三角方阵多项式下的特性可说明。
 - (2) 直接考虑上三角方针的形式即可。
 - (3) 由上三角方阵逆仍然为上三角方阵可推知。
 - (4) 考虑对角线含 0 的上三角阵在幂次后的情况即可。
 - (5) 拆分上三角方阵可发现秩的关系,从而得证。
- 2. 法一:由 5.1 节定理 5.2 及韦达定理得 $\sum_{i=1}^{n} \lambda_i^2 = \left(\sum_{i=1}^{n} \lambda_i\right)^2 2\sum_{1 \leq i < j \leq n} \lambda_i \lambda_j = \sigma_1^2 2\sigma_2 = \left(\sum_{i=1}^{n} a_{ii}\right)^2 2\sum_{1 \leq i < j \leq n} (a_{ii}a_{jj} a_{ij}a_{ji}) = \sum_{i,j=1}^{n} a_{ij}a_{ji}$ 法二、 A^2 特征值为一切 A^2 用此 A^2 中征 A^2

法二:
$$A^2$$
 特征值为一切 λ_i^2 , 因此 $\sum_{i=1}^n \lambda_i^2 = \operatorname{tr}(A^2) = \sum_{i,j=1}^n a_{ij} a_{ji}$

3. (1) 由 f 形式, 设乘积为 $g_0(x)$, 则有 $g_0(x) = g_0(\omega x)$, 由此解出 $g_0(x) = g(x^m)$ 。

(2) 相似三角化知,设
$$\varphi_A(x) = \prod_{i=1}^n (x - \lambda_i)$$
,则 $\varphi_B(x) = \prod_{i=1}^n (x - \lambda_i^m) = \prod_{i=1}^n \prod_{k=1}^m (x^{1/m} - \omega^k \lambda_i) = \prod_{i=1}^n \prod_{k=1}^m \omega^k (\omega^k x^{1/m} - \lambda_i) = \omega^{nm(m-1)/2} \prod_{i=1}^n \varphi_A(\omega^k x^{1/m})$,注意到 $\omega^{m/2} = -1$ 即得结论。

- 4. 等式两边右乘 P 后计算左下角可得 $BP_3 = P_3A$,利用定理 5.8 知 $BP_3 P_3A = O$ 有唯一解,且 $P_3 = O$ 为解,由此知命题成立。
- 5. (1) $A\alpha\beta^T \alpha\beta^T B = \lambda_1 \alpha\beta^T (\mu_1 \beta \alpha^T)^T = (\lambda_1 \mu_1)X = O$
 - (2) 仅当:由 (1)与 B, B^T 特征值相同可知。

当:由定理 5.8 知唯一性。由 $\varphi_B(A)$ 为 A 的多项式,其与 A 可交换。由定理 5.6-2 知 $\varphi_B(A)$ 可逆, 逆亦与 A 可交换, 故

$$\varphi_B(A)(AX - XB) = \sum_{i,j \ge 0} b_{i+j+1}(A^{i+1}CB^j - A^iCB^{j+1}) = \sum_{k=0}^n b_k(A^kC - CB^k)$$

- $= \varphi_B(A)C C\varphi_B(B) = \varphi_B(A)C$
- (3) 仅当: 若 $\lambda_1 \mu_1 = 1$,类似 (1) 取 $X = \alpha \beta^T$ 即为 X AXB = O 的解。

当:利用 2.2 节例 2.11 方式将方程表示为线性方程组 $(I-A\otimes B^T)x=y$,则方程存在唯一解 $\Leftrightarrow I-A\otimes B^T$ 可逆 $\Leftrightarrow A\otimes B^T$ 特征值无 1,而相似三角化知 $A\otimes B^T$ 所有特征值为一切 $\lambda_i\mu_j$,由此得证。

- 6. 相似三角化可得,设 $\varphi_A(x) = \prod_{i=1}^n (x \lambda_i)$,则 $\varphi_{A^m}(x) = \prod_{i=1}^n (x \lambda_i^m)$,由此成立。
- 7. (1) 特征值满足 $\lambda^2 = \lambda$,只能为 0,1,考虑将 A 相似三角化后形成定理 5.9 形式,所得上三角方阵 B 满足 $B^2 = B$,先通过计算证明主对角线上方的 j = i + 1 对角线上全为零,同理向上归纳可知除主对角线外必然全为 0,由此 B 为对角阵,原命题得证。

(或利用 5.3 节 Jordan 标准形可直接计算结果)

- (2) 特征值满足 $\lambda^3 = \lambda$,只能为 $0,\pm 1$,考虑将 A 相似三角化后形成定理 5.9 形式,所得上三角方阵 B 满足 $B^3 = B$,类似 (1) 归纳可知 B 必然为对角阵,由此得证。
- (3) 考虑将 A 相似三角化后形成定理 5.9 形式,所得上三角方阵 B 满足 $B^k=B$,类似上方讨论可知结果。
- 8. (1) 直接归纳计算可得结论。
 - (2) * 此处证明实方阵的情况,对一般情况,由于多项式友方阵均为 Hessenberg 方阵,利用 5.5 节定 理 5.18 第一步证明即可。

由于 $\varphi_A(x)$ 为实系数多项式, 其虚根必成对出现 (即 a + bi 为根 $\Rightarrow a - bi$ 为根)。

设
$$A$$
 特征值为 $c_1, \ldots, c_k, a_1 \pm b_1 \mathbf{i}, \ldots, a_l \pm b_l \mathbf{i}, a_j, b_j, c_j \in \mathbb{R}$,下证 A 与对角元为 $c_1, \ldots, c_k, \begin{pmatrix} a_1 & b_1 \\ -b_1 & a_1 \end{pmatrix}$,

$$\ldots$$
, $\begin{pmatrix} a_l & b_l \\ -b_l & a_l \end{pmatrix}$ 的广义上三角方阵 (此方阵即为 Hessenberg 方阵) 相似。

使用归纳法。n=1 显然成立。 $n\geq 2$ 时,若存在实特征值 c,直接以定理 5.5 方式即可化为三角阵。若否,设其存在特征值 $a\pm bi, a,b\in\mathbb{R}$,且 a+bi 对应的特征向量为 λ 。可以验证, $\overline{\lambda}$ (对 λ 的每一个元素取共轭)为 a-bi的一个特征向量。由于特征值不同,两特征向量线性无关,存在以 $\operatorname{Re}(\lambda),\operatorname{Im}(\lambda)$

(对每一个元素取实部、虚部) 为前两列的可逆实方阵 P,计算可验证 $AP = P \begin{pmatrix} a & b & * \\ -b & a & * \\ \mathbf{0} & \mathbf{0} & B \end{pmatrix}$ (利用

$$\operatorname{Re}(\lambda) = \frac{\lambda + \overline{\lambda}}{2}, \operatorname{Im}(\lambda) = \frac{\lambda - \overline{\lambda}}{2i}$$
),故满足归纳假设。

9. 归纳。二阶时,设 A 的对角元素为 x,y,分类讨论。

若
$$a_{12} \neq 0$$
 $(a_{21} \neq 0$ 同理),则此时取 $P = \begin{pmatrix} 1 & 0 \\ \frac{a_1 - x}{a_{12}} & 1 \end{pmatrix}$ 即可。

若 $a_{12} = a_{21} = 0$, 由条件知 $x \neq y$, 则 $T_{12}(1)AT_{12}(-1)$ 即化为前一种情况。

若 n-1 阶时成立,考虑 n 阶时,设 $a_{11}=x$ 。仍分类讨论。

若
$$A$$
 不为对角阵,不妨设 $a_{12} \neq 0$,先以 $P = T_{21} \left(\frac{a_1 - x}{a_{12}} \right)$ 作相似,则 $C = P^{-1}AP = \begin{pmatrix} a_1 & * \\ * & B \end{pmatrix}$ 。

此时若
$$B$$
 不为纯量方阵,由归纳假设取 Q 使 $Q^{-1}BQ=\begin{pmatrix}a_2&*&*\\ *&\ddots&*\\ *&*&a_n\end{pmatrix}$,则 $\begin{pmatrix}1&0\\0&Q^{-1}\end{pmatrix}C\begin{pmatrix}1&0\\0&Q\end{pmatrix}$

即满足要求。

若否,
$$C = \begin{pmatrix} a_1 & * \\ * & kI \end{pmatrix}$$
。若 C 不为对角阵,设 $a_{12} \neq 0$,计算得 $T_{13}(-1)T_{32} \begin{pmatrix} a_{13} \\ a_{12} \end{pmatrix} CT_{32} \begin{pmatrix} -a_{13} \\ a_{12} \end{pmatrix} T_{13}(1)$ 首个对角元仍为 a_1 且 $a_{32} \neq 0$, B 已经不为纯量方阵,因此可类似构造 Q 。若 C 为对角阵,类似二阶时构造出非零项即可。

若 A 为对角阵,由条件 A 对角元不可能全相同,类似二阶时化为上一种情况即可。

10. (1) 先说明两个方阵时的请况:

 $AB = BA, A\alpha = \lambda \alpha \Rightarrow AB\alpha = \lambda B\alpha$,因此,对 A 的每个特征向量 α , $B\alpha$ 也是 A 的特征向量。由于任意多项式 f, f(B)A = Af(B),因此 $f(B)\alpha$ 也是 A 的特征向量。设 $d_{B,\alpha} = \prod_{i=1}^s (x - \mu_i)^{t_i}$ (定义见 5.4 节,由于 $\alpha \neq \mathbf{0}$, f 次数至少为 1),取 $f = \frac{d_{B,\alpha}}{x - \mu_1}$,则此时 $Bf(B)\alpha = \mu_1 f(B)\alpha$,故 $f(B)\alpha$ 即为公共特征向量。

接着将情况归纳至有限多个方阵 $(k \land f)$ 方阵时成立推 k+1):

设 α 是 $A_1, \ldots A_k$ 的公共特征向量,考虑类似之前构造的 $f = \frac{d_{A_{k+1},\alpha}}{x-\mu_1}$, $f(A_{k+1})\alpha$ 即为公共特征向量。

最后反证任意指标集 I 的情况:

若 $\{A_i\}$ 可互相交换,可说明 $\mathrm{Span}\{A_i\}$ 可互相交换 (定义见 8.2 节),由于 $\mathrm{Span}\{A_i\}\subset M_n(\mathbb{C})$,其基 (定义见 8.3 节) 必然有限,利用上一种情况知其基具有共同的特征向量,计算发现此时 $\mathrm{Span}\{A_i\}$ 具有共同的特征向量,因此 $\{A_i\}$ 具有共同的特征向量。

- (2) 类似定理 5.5 进行归纳,每次取 P 的第一列为公共特征向量,直接计算可验证每次相似后的 B_i 仍然两两可交换,由此即可证明。
- (3) 对任意数域,在其代数闭包(任何多项式可分裂的扩域上存在共同的特征向量。

§5.3 Jordan 标准形

1. (1) $J_1(1), J_1(1), J_1(1), J_1(-1), J_1(-1)$

- (2) $J_3(1), J_2(-1)$
- (3) $J_2(1), J_1(1), J_2(-1)$
- $(4) J_3(1), J_2(-1)$
- (5) $J_3(1), J_1(-1), J_1(-1)$
- (6) $J_1(1), J_1(1), J_1(1), J_1(-1), J_1(-1)$
- 2. (1) 由于重数为相似不变量,直接计算即可。
 - (2) 对角阵为 Jordan 标准形的形式,由此知结论。
 - (3) 由 5.4 节习题 7 可知 Jordan 块的最小多项式即为特征多项式,结合 5.3 节定理 5.13-3 得结论。
- 3. 由于相似不影响结论,可设 A 已相似成 Jordan 标准形。又因对角块可以分别计算,只需考虑一个对角块。

因此,只需说明 $J_n(1)$ 与 $J_n(1)^k$ 相似。直接计算可知 $J_n(1)^k$ 中 1 的代数重数为 n,几何重数为 1,由此知相似。设 $P_n^{-1}J_n(1)P_n=J_n(1)^k$ (P_n 可逆),组合即可得原结论。

- 4. 由相似知 A^{i} 与 A^{j} 特征值相同,设 A 特征值为 $\lambda_{1}, \ldots, \lambda_{n}$,由可逆知无 0,则 $\lambda_{1}^{i}, \ldots, \lambda_{n}^{i}$ 与 $\lambda_{1}^{j}, \ldots, \lambda_{n}^{j}$ 只相差排列。对任意 λ ,设 $\lambda^{i} = \lambda_{a_{1}}^{j}, \lambda_{a_{1}}^{i} = \lambda_{a_{2}}^{j}, \ldots$ 由于特征值数量有限,必有 $\lambda_{a_{s}}^{i} = \lambda^{j}$,由此算得 $\lambda^{i^{s+1}-j^{s+1}} = 1$,由于 $s+1 \leq n$,可知 $i^{s+1}-j^{s+1} \mid i^{n!}-j^{n!}$,因此 $\forall \lambda, \lambda^{i^{n!}-j^{n!}} = 1$,从而 $i^{n!}-j^{n!}$ 就 是所求一个的 k。
- 5. 由于相似不影响结论,可设 A 已相似成 Jordan 标准形。

利用 A^2 与 A 特征值关系,结合习题 4 知知特征值只能为 0 或单位根,若为 0,计算可得当 n>1 时, $J_n(0)^2$ 的最大 Jordan 块小于 $J_n(0)$,由此考虑特征值 0 的最大 Jordan 块可知其特征值 0 的 Jordan 块只能为若干个 $J_1(0)$ 。

- ω 为 k 次本原单位根时可计算出, $J_n(\omega)^2$ 的 Jordan 标准形为 $J_n(\omega^2)$,由此,A 的相似标准形中除 0 外的 Jordan 块一定可以分组为若干的 $J_n(\omega), J_n(\omega^2), \ldots, J_n(\omega^{2^{s-1}})$ ($\omega^{2^s} = \omega$)。
- 6. 计算可发现,将 B 按照 A 形式分块后,所得 B_{ij} 为 $n_i \times n_j$ 阶矩阵,需满足 $J_{n_i}(0)B_{ij} = B_{ij}J_{n_j}(0)$,因此只需寻找满足 $J_a(0)X = XJ_b(0)$ 的 $a \times b$ 阶矩阵,计算得 X 须满足: i j 不变时 x_{ij} 不变 (即每条与主对角线平行的对角线元素相同),且 $i j > \min(a, b) b$ 时 $x_{ij} = 0$ 。
- 7. 由于相似不影响结论,可设 A 已相似成 Jordan 标准形。

设 $A = \text{diag}(J_{n_1}(a_1), \ldots, J_{n_k}(a_k))(a_i$ 可能相同),由于 $\text{diag}(I_{n_1}, 2I_{n_2}, \ldots, kI_{n_k})$ 与 A 可交换,直接计算发现 B 必然可写成 $\text{diag}(B_{n_1}, B_{n_2}, \ldots, B_{n_k})$ 。

由于 A, B 可交换, $J_{n_i}(a_i)B_{n_i} = B_{n_i}J_{n_i}(a_i)$,由于 $J_{n_i}(a_i)$ 的特征多项式与最小多项式相同,利用 5.4 节例 5.17 知 $B_{n_i} = f_i(J_{n_i}(a_i))$, f_i 为多项式。

当 A 特征值均为 a 时,设有 $n_1 \leq \cdots \leq n_k$ 。考虑 C 为按照 A 分块后, $C_{12} = \begin{pmatrix} I & O \end{pmatrix}$,其余 均为 0 的矩阵,计算知此矩阵与 A 可交换,代入 BC = CB 知 $f_1(J_{n_1}(A)) = f_2(J_{n_1}(A))$ 。因此, $d_{J_{n_1}(A)} = \varphi_{J_{n_1}(A)} = (x-a)^{n_1} \mid f_1 - f_2$ 。同理可知, $\forall i < j, f_i - f_j \mid (x-a)^{n_i}$ 。由此,所求 $f \equiv f_i \mod (x-a)^{n_i}$,取 $f = f_k$ 即可。

当 A 有不同特征值时,先对每个特征值的部分进行上述构造,由于不同特征值处对应的特征多项式 互素,直接利用多项式中国剩余定理可得到最终的 f。

8. 由于相似不影响结论,可设 A 已为 Jordan 标准形,此时 $B = \operatorname{diag}(\lambda_1 I_{b_1}, \lambda_2 I_{b_2}, \dots, \lambda_t I_{b_t})$ 为对角元 素构成的方阵, λ_i 互不相同,C = A - B,计算验证可知合理。下面证明这样的分解唯一。

对任意方阵 A,设有满足条件的分解 A = B + C,令 $B' = P^{-1}BP = \operatorname{diag}(\lambda_1 I_{b_1}, \lambda_2 I_{b_2}, \dots, \lambda_t I_{b_t})$, λ_i 互不相同。设 $P^{-1}AP = A', P^{-1}CP = C'$,则 B'C' = C'B',可算得 $C' = \operatorname{diag}(C_{b_1}, C_{b_2}, \dots, C_{b_n})$ (其中 C_{b_i} 为 b_i 阶方阵)。由于 C 幂零,任意 C_{b_i} 均幂零。注意到,若 $Q = \operatorname{diag}(Q_{b_1}, Q_{b_2}, \dots, Q_{b_n})$ (其中 Q_{b_i} 为任意 b_i 阶可逆方阵),则 $Q^{-1}B'Q = B'$ 。由此,取 Q_{b_i} 使 $Q_{b_i}^{-1}C_{b_i}Q_{b_i}$ 为 C_{b_i} 的相似标准形,利用 Q 相似即可得 A'' = B' + C''。考察此时形式可知,A'' 为 A 的相似标准形,唯一确定。若还有 $A = B_0 + C_0$,由之前讨论可知,存在可逆方阵 T 使得 $A = T^{-1}AT$, $B = T^{-1}B_0T$ 。由 $A = T^{-1}AT$ 知 AT = TA,因此 T 与 A 可交换。类似习题 6 可验证此时 T 必然可写成 $\operatorname{diag}(T_{b_1}, T_{b_2}, \dots, T_{b_n})$,由此 $TB = BT \Rightarrow B_0 = B$,唯一性得证。

9. (1) 由于相似不影响结论,可设 A 已相似成 Jordan 标准形。

特征值不为 0 的部分,由例 5.15 知可找到 B,故是否存在仅与 $J_{n_i}(0)$ 的情况相关,可不妨设 A 特征值只有 0,若 B 存在,也必然只有 0 特征值。

利用类似 4.2 节习题 11(4) 的构建方法,可以证明:

令 $n = qm + r(q, r \in \mathbb{N}, 0 \le r \le m - 1)$,则 $J_n(0)^m$ 的标准形为 r 个 $J_{q+1}(0)$ 与 m - r 个 $J_q(0)$ 由此,1 推 2 直接成立,按原本每个 $J_n(0)$ 生成的 $J_{q+1}(0)$, $J_q(0)$ 排为一列即可。反之,2 推 1 时,由于每列的 q, r 确定,也可直接构造出对应的 n (由于每列有 m 个数,可使 $0 \le r \le m - 1$)。

(2) 由于 5.5 节习题 3, 在上一题条件下, 由 5.5 节例 5.21 类似得:

若 m 为奇数则必然可相似,m 为偶数时,再保证 A 中特征值为负实数的 Jordan 块成对出现 (指必须两个一模一样) 即可。

大致思路为:两个复特征值互相共轭的相同大小 Jordan 块可以"合成"一个例 5.21 中右侧的 A_i 。A 中的 Jordan 块有四种情况:本来为正实数,可直接找到对应次方根后与复方阵相同构造;本来为共轭复数合成的块,在方根后仍可以共轭复数合成;本来为 0,则满足的条件与复方阵所需的相同。本来为负实数,则 m 为奇数时与正实数无区别,m 为偶数时,若不能找到配对,则无法合成,因此无法找到全为实数的 B 与其方根相似;找到配对后,由于共轭复数幂次的实部相同,将两个块的次方根取为一对共轭复数,即可实现合成。

10.
$$\left(1 + \frac{1}{k}A\right)^k = I + \sum_{t=1}^k \frac{A^t}{t!} \prod_{s=0}^{t-1} \left(1 - \frac{s}{n}\right)$$
, 由分析知识可计算得原式成立。

11. (1) 充分性: A^k 有特征值 λ^k ,由 $\rho(A) < 1$ 可知 A^k 一切特征值极限为 0。考虑 Jordan 标准形的幂次极限即可知结论。

必要性:零矩阵一切特征值为 0,若有特征值 $|\lambda| \ge 0$, λ^k 极限不为 0,矛盾。

(2) 同样只需考虑 Jordan 标准形时的情况,且由分块矩阵的特点,只需考虑一个对角块,此时此对 角块的 $\rho(A)$ 即为对角元 λ 。

记幂级数为 f,可直接算出 $f(J_n(\lambda)) = \begin{cases} \frac{f^{(m)}(\lambda)}{m!} & j = i + m \\ 0 & j < i \end{cases}$ ($m \ge 0, f^{(m)}$ 指 m 阶导数),因此只需

证明 f' 的收敛半径与 f 相同,此结论将在分析中证明。

12. (1) 由 5.2 节定理 5.6-1 知,若要 e^X 特征值全为 1,则 X 的所有特征值需满足 $e^{\lambda} = 1$,因此 $\lambda = 2k\pi i$ $(k \in \mathbb{Z})$ 。由于 $P^{-1}e^XP = e^{P^{-1}XP}$,只需考虑 X 的相似标准形。

利用习题 11 结论知
$$\mathrm{e}^{J_n(\lambda)} = egin{cases} \frac{\mathrm{e}^{\lambda}}{m!} & j=i+m \\ 0 & j < i \end{cases} (m \geq 0)$$
。由于其为 I ,可知阶数 n 只能为 1 。

又由于所求 X 为实方阵, $2k\pi$ i 与 $-2k\pi$ i 必然成对出现,由此,所求的所有 X 在 \mathbb{R} 上的相似标准 形 (定义见 5.5 节) 为 diag(A_1,A_2,\ldots,A_t,O),其中每个 A_i 为 $\begin{pmatrix} 0 & -2k\pi \\ 2k\pi & 0 \end{pmatrix}$,k 为正整数,O 为任意阶零方阵。

- (2) 由计算结果可发现, $e^{J_n(\lambda)}$ 相似于 $J_n(e^{\lambda})$,因此,类似习题 9 讨论可知,只要 A 可逆 ($e^x=0$ 在 复数域中无解) 且相似标准形中特征值为负实数的 Jordan 块均成对出现 ($e^x<0$ 无实数解),就能找到符合要求的 X。
- (3) 由于 $e^x = t(t \neq 0)$ 在复数域一定有解,任意可逆方阵均存在符合要求的 X。

§5.4 最小多项式

- 1. 后面的部分小题运用结论: $\deg d_A \leq \operatorname{rank}(A) + 1$ (事实上 A 可改为任意 $\lambda I A$, 证明方式相同) 结论证明: 考虑 Jordan 标准形中 0 的重数,由于几何重数为 $n \operatorname{rank}(A)$,在定理 5.13-3 作 lcm 时,x 的幂次至少减少 $n \operatorname{rank}(A) + 1$,由此得证。
 - (1) 特征多项式与最小多项式均为 $x^3 3x^2 + 5x 3$
 - (2) 特征多项式 $(x-1)^2(x+1)$, 最小多项式 (x-1)(x+1)
 - (3) 特征多项式与最小多项式均为 (x-1)x(x+1)
 - (4) 特征多项式与最小多项式均为 $(x-1)(x+1)^2$
 - (5) 当 (n,k) = 1 时,直接计算可发现特征多项式为 $x^n 1$,否则,可以通过分块化为此情况。因此,当 (n,k) = d 时,特征多项式为 $(x^{n/d} 1)^d$,同样利用分块直接计算知最小多项式为 $x^{n/d} 1$
 - (6) 与 (5) 类似,特征多项式为 $(x^{n/d} (-1)^k)^d$,最小多项式 $x^{n/d} (-1)^k$
 - (7) 特征多项式 x^n , 最小多项式 $x^{[n/k]}$
 - (8) 特征多项式为 $\begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} x & 1 \\ 1 & 0 \end{pmatrix}^n \begin{pmatrix} 1 \\ 0 \end{pmatrix}$,利用习题 7 的结论知最小多项式亦为此。
 - (9) 类似例 5.15 知 $\varphi_A(x) = x^{n-2} \left(x^2 \sum_{i=1}^n (a_i + b_i) x + \sum_{i=1}^n a_i \sum_{i=1}^n b_i n \sum_{i=1}^n a_i b_i \right)$ 。考虑 rank(A),计算可知:

 $a_i = b_i = 0$ 时,最小多项式为 x 其他情况下,若 a_i 或 b_i 全相等时,最小多项式为 $x^2 - \sum_{i=1}^n (a_i + b_i)x$

其他情况则为
$$x\left(x^2 - \sum_{i=1}^n (a_i + b_i)x + \sum_{i=1}^n a_i \sum_{i=1}^n b_i - n \sum_{i=1}^n a_i b_i\right)$$

(10) 直接列变换可计算得特征多项式为 $\prod_{i=1}^{n} (x-i) \left(1 - \sum_{i=1}^{n} \frac{a_i b_i}{x-i}\right)$

设 $B = \operatorname{diag}(1,2,\ldots,n), C = A - B \ a_i, b_i$ 均不为 0 时, $1,2,\ldots,n$ 均不为特征值,因此对任意特征值 λ , $\operatorname{rank}(\lambda I - A) = \operatorname{rank}(\lambda I - B - C) \ge \operatorname{rank}(\lambda I - B) - \operatorname{rank}(C) = n - 1$,由习题 7 法二类似知此时最小多项式即为特征多项式。

否则,设
$$S = \{i \mid a_i b_i = 0, \operatorname{rank}(iI - A) = n - 2\}$$
,考虑 $\operatorname{rank}(iI - A)$ 可知 $d_A(x) = \frac{\varphi_A(x)}{\prod_{i \in S}(x - i)}$

- 2. (1) 直接设出函数计算导数即可。
 - (2) f' 次数小于 f,故由 2 可推出 1,从而推出 4。不必要性取 λ_i 在 \mathbb{F} 中即得到。
 - (3) 与 (2) 相同构造知不必要,考虑实数域中 $(x^2 + 1)^2$ 知不充分。

3. 此题结论基本等价于: 任意置换可拆分为不相交轮换。从置换角度考虑, 先可考虑从 1 开始形成的 环,再考虑下一个不在环中的数,直到所有数都在轮换中。接着通过共轭将下标变为顺序即可(矩阵 角度即为用一系列 S_{ij} 相似,类似 4.2 节习题 11(4) 操作)。

- 4. 由定理 5.13-3 与 f_i 互素知结论成立。
- 5. 法一:由 $d_{A,\alpha}$ 定义,考虑对左侧进行列变换。若前 r 列线性相关,则可以相应构造出不超过 r 次的 A 关于 α 的零化多项式,再由 $d_{A,\alpha}$ 的次数最小性知结论 (此处运用之后线性相关结论:矩阵的秩等 于其列秩)。

法二:考虑 $\left(\alpha \quad A\alpha \quad \cdots \quad A^{k-1}\alpha\right)x = \mathbf{0}$ 的解空间,非零解 (x_0, \ldots, x_{n-1}) 可对应多项式 $\sum_{i=1}^{n-1} x_i A^i \alpha = \mathbf{0}$ 0,由此利用最小性知结论。

- 6. $(1)d_{A,\alpha}d_{A,\beta}(A)(\alpha+\beta)=d_{A,\beta}(A)d_{A,\alpha}(A)\alpha+d_{A,\alpha}(A)d_{A,\beta}(A)\beta=\mathbf{0}$, it $d_{A,\alpha+\beta}\mid d_{A,\alpha}d_{A,\beta}$. 而由 $d_{A,\beta}d_{A,\alpha+\beta}(A)(\alpha+\beta)=d_{A,\beta}d_{A,\alpha+\beta}(A)\alpha=\mathbf{0}$, $d_{A,\alpha}\mid d_{A,\beta}d_{A,\alpha+\beta}$,由互素知 $d_{A,\alpha}\mid d_{A,\alpha+\beta}$,同 理 $d_{A,\beta} \mid d_{A,\alpha+\beta}$, 结合 $d_{A,\alpha+\beta} \mid d_{A,\alpha}d_{A,\beta}$, 再由互素知原结论成立。
 - (2) 运用归纳法可知,若 $d_{A,\alpha_1},\ldots,d_{A,\alpha_n}$ 两两互素,则 $d_{A,\alpha_1+\cdots+\alpha_n}=d_{A,\alpha_1}\ldots d_{A,\alpha_n}$
- 7. 法一:由 5.2 节习题 8(1)可计算得,若 $\deg(d_A) = k < n$,由条件 i = j + k 斜行均不为 0,即矛盾。 因此 $\deg(d_A) = n$,又由 $d_A \mid \varphi_A$ 知结论。

法二: 取左下角 n-1 阶子式知 $\forall \lambda$, $\operatorname{rank}(\lambda I-A) \geq n-1$, 因此 A 的任何特征值几何重数均为 1, 考虑 Jordan 标准形的形式,由于 Jordan 块的最小多项式即为特征多项式,而 A 的每个特征值只有 一个 Jordan 块,利用定理 5.13-3 知结论。

8. * 此题结论只在可分域内保证成立 (事实上关键在于对不可约多项式 f, f' 不为 0, 这个条件成立实 际需要在可分域内),作为弱一些的结论,容易证明 $Char \mathbb{F} = 0$ 的域内成立。

设 B 阶数为 m, A 阶数为 mn, 计算知 $\varphi_A = \varphi_B^n$, 又由 φ_B 不可约, $d_A = \varphi_B^k$, $k \le n$ 。设 $\varphi_B(x) =$

$$c_0+c_1x+\cdots+c_mx^m$$
,由于 B,I 可交换,计算知 $\varphi_B(A)=\begin{pmatrix} f(B) & * & * \\ & \ddots & * \\ & & f(B) \end{pmatrix}$ 其中 $f(x)=\varphi_B'(x)$

(事实上对角线上为 $\varphi_B(B)=O$), 由 $\varphi_B=d_B$, $f(B)\neq O$, 直接计算知满足 $\varphi_B^k(A)=O$ 的最小 k为n,由此即得证。

9. 法一:由于相似不影响结论,不妨设 A 已相似为 Jordan 标准形。

先考虑一个对角块的情况。设此对角块为 $J = J_n(\lambda), f(x) = (x - \lambda)^a g(x), g(\lambda) \neq 0$ 。直接计算可发 现 g(J) 对角元非零且上三角,因此可逆,于是 $\operatorname{rank}(f(J)) = \operatorname{rank}((J-\lambda I)^a g(J)) = \operatorname{rank}(J-\lambda I)^a$

由定理 3.12-3 知 Jordan 块
$$d_J = \varphi_J$$
,计算知秩为
$$\begin{cases} n-a & a < 0 \\ 0 & a \ge n \end{cases} = n - \deg(\gcd(d_J, f))$$

由定理 3.12-3,A 每个 Jordan 块特征值不同,设 A 不同特征值 $\lambda_1,\ldots,\lambda_k$,且 λ_i 对应的 Jordan 块

$$J_i$$
 阶数为 n_i ,则 J_i 互素。且由定理 5.13-3 知 $d_A = \prod_{i=1}^k d_{J_i}$,因此 $\operatorname{rank}(f(A)) = \sum_{i=1}^k \operatorname{rank}(f(J_i)) = \sum_{i=1}^k n_i - \operatorname{deg}(\gcd(d_{J_i}, f)) = n - \operatorname{deg}\prod_{i=1}^k \gcd(d_{J_i}, f) = n - \operatorname{deg}\left(\gcd\left(\prod_{i=1}^k d_{J_i}, f\right)\right) = n - \operatorname{deg}(\gcd(d_A, f))$,由此得证。

法二:利用定理 5.16 推论,取 α 使 $d_{A,\alpha}=d_A$,考虑 $f(A)x=\mathbf{0}$ 的解空间 V:

 $p(A)\alpha \in V \Leftrightarrow f(A)p(A)\alpha = \mathbf{0} \Leftrightarrow d_A|fp \Leftrightarrow \frac{d_A}{g}|p$,记 $h = \frac{d_A}{g}$,则 $V = \{p(A)\alpha \mid \deg(p) \leq n-1, h|p\}$ 。由于 p 取值为 h 乘任意一个次数小于等于 $n-1-\deg(h)$ 的多项式 (含常数项共有 $n-\deg(h)$ 个分量), $\dim(V)$ (即方程组基础解系的个数)= $n-\deg(h)=n-\deg(d_A)+\deg(g)=\deg(g)$,由 4.2 节定理 4.8 知 $\operatorname{rank}(f(A))=n-\deg(g)$ 。

10. 若 A 可逆, $d_A(x) = c_0 + c_1 x + \dots + c_k x^k$,由可逆 $c_0 \neq 0$ (否则 A 可约去),可直接算出 $f(x) = -\frac{\det(A)}{c_0} \frac{d_A(x) - c_0}{x} = (-1)^{n-1} (c_1 + c_2 x + \dots + c_k x^{k-1})$ 若 A 不可逆,取 t 不为 A 特征值,则 B = tI - A 可逆, $d_B(x) = d_0 + d_1 x + \dots + d_m x^m$,则 $(tI - A)^* = g(B), g(x) = (-1)^{n-1} (d_1 + \dots + d_m x^{m-1})$ 。验证可知,此多项式的系数均为 t 的多项式,取 t = 0 时即知结果,结果仍为 $f(x) = (-1)^{n-1} (c_1 + c_2 x + \dots + c_k x^{k-1})$ 。

§5.5 特征方阵

1. $A = \text{diag}(J_2(1), J_2(1)), B = \text{diag}(J_3(1), J_1(1))$ * 事实上,此处 A, B 满足更强条件。 $\forall x \in \mathbb{C}, k \in \mathbb{N}, \text{rank}(xI - A^k) = \text{rank}(xI - B^k)$

相抵。而 $xI - A_1$ 初等因子组为 $1, \ldots, 1, f_1$,考察 Smith 标准形知相似。

- 2. (1) 设 $Q(xI-A)R = \operatorname{diag}(f_1,\ldots,f_n)$ (QR 可逆),则 $(xI-A)R\operatorname{diag}\left(\frac{\lambda}{f_1},\ldots,\frac{\lambda}{f_n}\right)Q = Q^{-1}\lambda IQ = \lambda I$ (2) 将例 5.18 中的 φ_A 替换为 λ , $(xI-A)^*$ 替换为 P 即可。
 - (3) 计算可知两方阵次数相同,由定理 5.17,只需证明 $xI \operatorname{diag}(A_1, \ldots, A_n)$ 与 $\operatorname{diag}(f_1, \ldots, f_n)$ 模
- 3. 考虑 xI A = xI B 的 Smith 标准形即可 (注意 4.3 节定理 4.14 表述,由于两矩阵系数均在 $\mathbb{F}[x]$ 中,一切公因式仍在其中,其标准形与看成 $\mathbb{K}[x]$ 上的 Smith 标准形无区别,也即,不变因子在任何扩域上不变)。
- 4. 由于第二个矩阵为第一个的转置,利用定理例 5.19,证明与第一个 (记为 A) 相似即可。 由 p_i 不可约,利用 5.4 节习题 2 可知 C 的特征值两两不同,设 $P^{-1}CP$ 为相似对角化 $\operatorname{diag}(\lambda_1,\dots\lambda_k)$,

则
$$\operatorname{diag}(P^{-1},\dots,P^{-1})A\operatorname{diag}(P,\dots,P)$$
 即为 $\begin{pmatrix} D & & & \\ I & D & & \\ & \ddots & \ddots & \\ & & I & D \end{pmatrix}$,其中 D 为对角阵,再利用置换方

阵即可相似成 $J_t(\lambda_1), \ldots, J_t(\lambda_k)$,可发现此方阵满足 $d_A = \varphi_A$,因此与定理中 B_{ij} 相似,因此与 M_{ij} 相似。

5. 类似 5.4 节例 5.16 知其可相似对角化,故需配对共轭特征值为例 5.21 形式,特征多项式 x^n+1 所有根为 $\lambda_k = \cos \frac{(2k-1)\pi}{n} + \mathrm{i} \sin \frac{(2k-1)\pi}{n}, k = 1, 2, \dots, n$,令 $B_k = \begin{pmatrix} \cos \frac{(2k-1)\pi}{n} & -\sin \frac{(2k-1)\pi}{n} \\ \sin \frac{(2k-1)\pi}{n} & \cos \frac{(2k-1)\pi}{n} \end{pmatrix}$

当 n 为偶数时,与例 5.22 类似得标准形为 $\operatorname{diag}(B_1, B_2, \ldots, B_{n/2})$

当 n 为奇数时,与例 5.22 类似得标准形为 $\operatorname{diag}(-1,B_1,B_2,\dots,B_{(n-1)/2})$

6. 利用 5.3 节例 5.10 结论, $J_n(\lambda)^m \lambda \neq 0$ 时标准形为 $J_n(\lambda^m)$,结合 5.3 节习题 9 证明过程: $\varphi_A(x), d_A(x)$ 如题,标准形为 $J_{12}(0), J_6(1), J_6(-1)$ $\varphi_{A^2}(x) = (x-1)^{12}x^{12}, d_{A^2}(x) = (x-1)^6x^6$,标准形为 $J_6(0), J_6(0), J_6(1), J_6(1)$ $\varphi_{A^3}(x) = (x-1)^6x^{12}(x+1)^6, d_{A^3}(x-1)^6x^4(x+1)^6$,标准形为 $J_4(0), J_4(0), J_4(0), J_6(1), J_6(-1)$

$$\varphi_{A^4}(x) = (x-1)^{12}x^{12}, d_{A^4}(x) = (x-1)^6x^3, \text{ 标准形为 } J_3(0), J_3(0), J_3(0), J_3(0), J_6(1), J_6(1)$$

$$\varphi_{A^5}(x) = (x-1)^6x^{12}(x+1)^6, d_{A^5}(x) = (x-1)^6x^3(x+1)^6,$$
标准形为 $J_3(0), J_3(0), J_2(0), J_2(0), J_2(0), J_6(1), J_6(-1)$

$$\varphi_{A^6}(x) = (x-1)^{12}x^{12}, d_{A^6}(x) = (x-1)^6x^3,$$

标准形为 $J_2(0), J_2(0), J_2(0), J_2(0), J_2(0), J_2(0), J_6(1), J_6(1)$

- 7. (1) 错误,反例 $\begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix}$ 。
 - (2) 正确,见 5.3 节习题 9。
- 8. 注意到 $\operatorname{diag}(A,\ldots,A)$ $(k \land A)$ 的 Jordan 块为 A 的每个 Jordan 块复制 $k \land$,直接考虑 Jordan 块或考虑特征方阵的 Smith 标准型即可。
- 9. *题目结论中模相抵应改为在 \mathbb{F} 上相抵 (作为 \mathbb{F} 上相抵的矩阵,若看作 $\mathbb{F}[x]$ 上的矩阵,则必定模相抵,这是由于 \mathbb{F} 上的可逆阵由定义均为模方阵。因此,题目的结论是正确的,但对 \mathbb{F} 上矩阵来说表述非常不自然)

定义: 若域 $\mathbb F$ 上的 m 阶多项式方阵 $P=\sum_{i=0}^k x^i A_i(A_k$ 为 $\mathbb F$ 上的 m 阶方阵),则代入 $\mathbb F$ 上的 n 阶方阵 X 后的方阵 P(X) 定义为 mn 阶方阵 $\sum_{i=0}^k A_i\otimes X^i$ 。

由 2.2 节习题 7,8 可以验证,P(X) + Q(X) = (P+Q)(X), P(X)Q(X) = (PQ)(X) 注意到, $I(X) = I_m \otimes I_n = I_{mn}$,因此,当 P 为模方阵时, $P(X)P^{-1}(X) = I(X) = I$,P(X) 可逆,其逆即为 $P^{-1}(X)$ 。由此,设 $P(xI-B)Q = \operatorname{diag}(f_1, f_2, \ldots, f_n)$,PQ 为多项式模方阵,则直接计算验证:

$$I \otimes A = (xI)(A), B \otimes I = B(A) \Rightarrow P(A)(I \otimes A - B \otimes I)Q(A) = (P(xI - B)Q)(A)$$

= $\operatorname{diag}(f_1, f_2, \dots, f_n)(A) = \operatorname{diag}(f_1(A), f_2(A), \dots, f_n(A))$,又因 $P(A)Q(A)$ 可逆得结论。

- 10. (1) 利用 2.2 节习题 9 知 AX XA = O 的解与 $(I \otimes A A^T \otimes I)x = \mathbf{0}$ 的解一一对应,再由 4.2 节 定理 4.8 知原题结论。
 - (2) 注意到, $(I\otimes P^{-1})(I\otimes A-B\otimes I)(I\otimes P)=I\otimes P^{-1}AP-B\otimes I$,因此可不妨设 A 已经相似为了 Jordan 标准形。又由例 5.19, $xI-A^T$ 与 xI-A 的 Smith 标准形相同,因此其不变因子相同,再由习题 9 知第一个等号成立。

假设 A 的某 Jordan 块为 $J_m(\lambda)$,由于当 $(x-\lambda) \nmid f$ 时 $f(J_m(\lambda))$ 可逆,其秩只与 f 中 $x-\lambda$ 的次数有关。由此,A 的不同特征值互相不影响,可不妨设 A 特征值都相同,Jordan 块的阶数分别为 a_1, a_2, \ldots, a_k 非递减排列,则非 1 的 d_i 为 $(x-\lambda)^{a_i}$ 。计算可直接得出 $d_i(J_{a_t}(\lambda)) = J_{a_t}(0)^{a_i}$,其秩

为
$$\begin{cases} a_t - a_i & a_t > a_i \\ 0 & a_t \le a_i \end{cases}$$
,由此计算出中 = $\sum_{i \le j} (\deg d_j - \deg d_i) = \Xi$,第二个等号成立。

(在习题 3 已说明不变因子在 \mathbb{F} 的任意扩域上不变,由此,不妨在 \mathbb{F} 的代数闭包上考虑,使所有不变因子均可完全分解为一次因式,A 也可以直接相似为 Jordan 标准形,这就规避了 Frobenius 标准形的过程。若不这么处理,则需考虑 Frobenius 标准形中的各个友方阵,并得到类似 $d_i(J_{a_t}(\lambda))$ 秩的结论。)

(3) 再次利用习题 9 知第一个等号成立,接着利用定理 5.18 中不变因子与初等因子的关系即可计算出结果 (注意表中的次数相加关系)。

(值得注意的是,此题就不能直接放在代数闭包考虑,因为初等因子组在不同的域下会改变。不过,也可考虑先说明完全分裂,所有 $\deg(p_i) = 1$ 的情况,再说明右式在不同扩域中值不变。)

11. 5.3 节例 5.10 已证明 $\lambda \neq 0 \Rightarrow J_n(\lambda)^m$ 与 $J_n(\lambda^m)$ 相似,由此采用反证法反证。先删去所有 A 与 B 相同的 Jordan 块,此时若对 A 的某个 Jordan 块 $J_n(t)$,B 的同阶 Jordan 块为 $J_n(t_1)$, $J_n(t_2)$,…, $J_n(t_k)$,且 $t \neq t_i$ (若否则此两块应已配对删去),令 $t^n = t_i^n$ 成立的最小正整数 n 为 n_i (若这样的 n 不存在则直接忽略此 t_i),先证 $t^n = t_i^n$ 的全部 n 为 zn_i , $z \in \mathbb{Z}$ 。

证明: 若 $t^n = t_i^n, t^m = t_i^m$,则 $t^{an+bm} = t_i^{an+bm}$,由裴蜀定理可知 $t^{(m,n)} = t_i^{(m,n)}$ 。因此,若由某个 使 $t^n = t_i^n$ 的 n 不为 n_i 倍数, (n,n_i) 为比 n_i 更小的正整数,矛盾。

又由于 $t \neq t_i$, 每个 n_i 均大于 1, 取 $r = zn_1n_2 \dots n_k + 1$, z 可任意大,则 $t^r \neq t_i^r$,与条件矛盾。

12. (1) 由于 $A = I \otimes B + B \otimes I + I \otimes I$,类似习题 9 可知,将 B 替换为相似标准形后 A 亦与原本的 A 相似,不影响所求的内容。类似 5.1 节习题 10 计算可知:

当 B 的阶数为奇数时,B 的相似标准形为左上角为 1,其余全为 0 的方阵,此时 A 为对角阵,直接计算出 A 行列式为 $0(n \ge 2)$, 秩为 $n^2 - 2n + 2$, 特征多项式 $x^{2n-2}(x+1)^{n^2-2n+2}$, 相似标准形为 $n^2 - 2n + 2$ 个 $J_1(1)$, 2n - 2 个 $J_1(0)$ 。

当 B 的阶数为偶数时,B 的相似标准形为一个 $J_2(0)$,其余全为 $J_1(0)$ 的方阵 (设 $J_2(0)$ 在左上角),此时 A 为对角元全为 1 的上三角方阵,且除左上角 2n 阶方阵外已经成为了 Jordan 标准形的形式,直接计算出 A 行列式为 1,秩为 n^2 ,特征多项式 $(x+1)^{n^2}$,相似标准形为 n^2-4n+5 个 $J_1(1)$,2n-4 个 $J_2(1)$ 与一个 $J_3(1)$ 。

(2) * 此题假设 B 在分裂域上的特征值为 $\lambda_1, \lambda_2, \ldots, \lambda_n$ 已知,且 A 的相似标准形基本不能直接计算,只计算行列式、秩与特征多项式

由于 $A = I \otimes B + B \otimes I$,类似习题 9 可知,将 B 替换为相似标准形后 A 亦与原本的 A 相似,不影响所求的内容。取左下角 n-1 阶子式,类似定理 5.18 证明过程可知 xI - B 的前 n-1 个不变因子均为 1,而 $A = I \otimes B - B^T \otimes I$,由习题 10 算出 $\operatorname{rank}(A) = n^2 - n$ 。

将 B 替换为相似标准形后,可发现 A 成为对角元素为一切 $\lambda_i + \lambda_j, i, j = 1, 2, ..., n$ 的上三角方阵,由此知特征多项式、行列式。

第六章 正交方阵

§6.1 正交方阵

- 1. (1) 由行列式可乘得结论。
 - (2) $(P^{-1})^T = (P^T)^{-1} = P$
 - (3) 左 = $\alpha^T P^T P \beta = \alpha^T (P^T P) \beta = 右$
 - (4) 不妨设为上三角,由下三角阵 $A^T = \bot$ 三角阵 A^{-1} ,可知其只能为对角阵,又由每列模长为 1 得结论。
 - (5) $PQ(PQ)^T = P(QQ^T)P^T = I = (PQ)^T PQ$
 - (6) 由 (2) 有 $(P^{-1}AP)^T = P^TA^TP = P^{-1}A^TP$, $A^T = \lambda A \Rightarrow (P^{-1}AP)^T = \lambda P^{-1}AP$, λ 取 ±1 即为对称与反对称。
- 2. 取 α 第 i 分量为 1,其他为 0 可知 $\sum_{k=1}^{n} a_{ki}^{2} = 1$,即每个列向量长度为 1;取 α 第 i 与第 j 分量为 1,其他为 0 可知 $\sum_{k=1}^{n} (a_{ki} + a_{kj})^{2} = 2 \Rightarrow \sum_{k=1}^{n} a_{ki}^{2} + \sum_{k=1}^{n} a_{kj}^{2} + 2 \sum_{k=1}^{n} a_{ki} a_{kj} = 2 \Rightarrow \sum_{k=1}^{n} a_{ki} a_{kj} = 0$,即列向量两两正交。由此知结论。

3. 第一步: 单位化,
$$\alpha_1 = \frac{1}{\sqrt{6}}\alpha, \beta_1 = \frac{1}{\sqrt{6}}\beta$$

第二步: 找到以
$$\alpha_1, \beta_1$$
 为第一列的正交阵 A, B (可由向量组正交化构造) $A = \begin{pmatrix} \frac{2}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \end{pmatrix}$,

$$B = \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{2}{\sqrt{6}} & 0 & -\frac{1}{\sqrt{3}} \end{pmatrix}$$

第三步: P 即为所有满足 $PA = B \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\delta\sin\theta & \delta\cos\theta \end{pmatrix}$ ($\delta = \pm 1$) 的正交阵 (由正交阵积仍为正交阵, $\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\delta\sin\theta & \delta\cos\theta \end{pmatrix}$ 为所有保持 B 第一列不动的正交阵,因此知结论), $B \perp P = B \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\delta\sin\theta & \delta\cos\theta \end{pmatrix} A^T, \delta = \pm 1, \theta \in [0, 2\pi).$

阵,
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\delta \sin \theta & \delta \cos \theta \end{pmatrix}$$
 为所有保持 B 第一列不动的正交阵,因此知结论).

因此
$$P = B \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\delta \sin \theta & \delta \cos \theta \end{pmatrix} A^T, \delta = \pm 1, \theta \in [0, 2\pi).$$

4. (1) 设
$$P\alpha = \begin{pmatrix} p_1^T \alpha \\ p_2^T \alpha \\ p_3^T \alpha \end{pmatrix}$$
,直接计算可知结论。

(2) 是。取 α, β 分别为不同方向单位向量,可知 P 任意两行向量按序叉乘可得第三行向量,由此三 行向量相互正交,且模长均为1,由此得结论。

5. (1) 这里直接说明 (2)。

(2) Givens 方阵:利用定理 6.3-1 证明过程,依次将 $a_{21},\ldots,a_{n1}.a_{32},\ldots,a_{n2},\ldots,a_{n,n-1}$ 合并到对角 元中,则最后形成对角的正交阵,又因为此阵除 a_{nn} 外对角元全为正,且其行列式值为 1,由定理 6.1-4 知其为 I,因此特殊正交阵可以写作 $\frac{(n-1)n}{2}$ 个 Givens 方阵乘积。

Householder 方阵: 类似上方讨论,利用定理 6.3-2 证明过程,依次将每列合并到对角元中(注意由 于 Householder 方阵行列式为 -1,按奇偶决定是否最后要对 a_{nn} 进行处理),因此特殊正交阵可以 写作 $2\left|\frac{n}{2}\right|$ 个 Householder 方阵乘积。

- 6. 利用 5.1 节定理 5.4, 由例 6.3 推论, 考察几何重数与代数重数可知两方阵都可对角化, Givens 方阵 除两特征值 $\cos \theta \pm i \sin \theta$ 外均为 1, Householder 除一个 -1 外均为 1。
- 7. (1) 左侧取 v' 为原本的 v 后增添若干个 0,右侧取 v' 为原本的 v 前增添若干个 0 即可。
 - (2) 由于 rank(H-I)=1,利用 4.1 节习题 4 满秩分解 H-I 知可设 $H=I+\alpha\beta^T(\alpha,\beta)$ 为列向量), 又由于 $H^T=H$ 可知 $\alpha=\lambda\beta(\lambda\in\mathbb{R})$,因此 $H=I+\lambda vv^T$ 。利用 3.2 节习题 6 计算 H 行列式,其 为 $1 + \lambda v^T v = -1 \Rightarrow \lambda = -\frac{2}{v^T v}$,由此得证。
- 8. * 注意三种 QR 分解算法的掌握

$$(1) Q = \begin{pmatrix} \frac{1}{5} & \frac{2}{5} & \frac{4}{5} & -\frac{2}{5} \\ \frac{2}{5} & -\frac{1}{5} & -\frac{2}{5} & -\frac{4}{5} \\ \frac{4}{5} & -\frac{2}{5} & \frac{1}{5} & \frac{2}{5} \\ \frac{2}{5} & \frac{4}{5} & -\frac{2}{5} & \frac{1}{5} \end{pmatrix}, R = \begin{pmatrix} 5 & 0 & 10 & 5 \\ 0 & 5 & 0 & -5 \\ 0 & 0 & 5 & -10 \\ 0 & 0 & 0 & 5 \end{pmatrix}$$

$$(2) Q = \begin{pmatrix} -\frac{1}{3} & \frac{2}{3} & 0 & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} & 0 \\ 0 & \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ -\frac{2}{3} & 0 & \frac{2}{3} & \frac{1}{3} \end{pmatrix}, R = \begin{pmatrix} 3 & -6 & -6 & 0 \\ 0 & 3 & 0 & 6 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

$$(2) \ Q = \begin{pmatrix} -\frac{1}{3} & \frac{2}{3} & 0 & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{1}{3} & -\frac{2}{3} & 0 \\ 0 & \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ -\frac{2}{3} & 0 & \frac{2}{3} & \frac{1}{3} \end{pmatrix}, R = \begin{pmatrix} 3 & -6 & -6 & 0 \\ 0 & 3 & 0 & 6 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

$$(3) Q = \begin{pmatrix} \frac{1}{5} & \frac{4}{5} & \frac{2}{5} & -\frac{2}{5} \\ \frac{4}{5} & \frac{1}{5} & -\frac{2}{5} & \frac{2}{5} \\ \frac{2}{5} & -\frac{2}{5} & -\frac{1}{5} & -\frac{4}{5} \\ \frac{2}{5} & -\frac{2}{5} & \frac{4}{5} & \frac{1}{5} \end{pmatrix}, R = \begin{pmatrix} 5 & 10 & -5 & -1 \\ 0 & 5 & -5 & -1 \\ 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

- 9. (1) 由 5.1 节习题 4(4) 知特征值不为 -1,因此可逆。 $(I-A)^T = I^T A^T = I + A$, $(I+A)^{-1}(I-A)^T = I^T A^T = I + A$, $(I+A)^{-1}(I-A)^T = I^T A^T = I + A$, $(I+A)^{-1}(I-A)^T = I^T A^T = I + A$, $(I+A)^{-1}(I-A)^T = I^T A^T = I + A$, $(I+A)^{-1}(I-A)^T = I^T A^T = I + A$, $(I+A)^{-1}(I-A)^T = I^T A^T = I + A$, $(I+A)^{-1}(I-A)^T = I^T A^T = I + A$, $(I+A)^T = I + A$ $A)((I+A)^{-1}(I-A))^T = (I+A)^{-1}(I-A)(I+A)(I-A)^{-1}$ 。由于均为 A 的多项式,I-A,I+A可交换,因此此式 = I,同理可验证另一边亦成立。
 - (2) 由 (1) 可发现 AB + A + B = I, 由此想到取 $A = (I B)(I + B)^{-1}$, 由 $(I + B)^T = I + B^{-1}$ 可 验证 $(I+B)^T(A+A^T)(I+B) = O$,此时 A 即反对称。
- 10. * 此结论可推广至酉方阵 (定义见 6.4 节), 直接证明推广的结论:

利用置换方阵为酉方阵,而酉方阵乘积仍为酉方阵性质,只需要证明结论对左上角任意 k 阶方阵成 立。设其分块为 $\begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}$,直接计算有 $A_1^H A_1 + A_3^H A_3 = I$,若 $A_1 \alpha = \lambda \alpha (\alpha \neq \mathbf{0})$,则对等式左 乘 α^H ,右乘 α ,可知 $\lambda^H \dot{\lambda} \alpha^H \alpha + (A_3 \alpha)^H (A_3 \alpha) = \alpha^H \alpha$,由于 $\alpha^H \alpha = ||\alpha||^2$, $|\lambda|^2 ||\alpha||^2 \le ||\alpha||^2$,即 $|\lambda| \leq 1$ °

11. 取 A 为 $a_{ii}=1$,其余为 0,计算知 P^{-1} 第 i 个列向量为 P 第 i 个行向量转置的倍数,因此存在 $\lambda_1, \ldots, \lambda_n$, $P^{-1} = P^T \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, 令 $B = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, 则 $B^T = B$ 。又因 A 实对称时, $(P^TBAP)^T = P^TA^TB^TP \Leftrightarrow BA = AB$ 成立,由 2.1 节习题 8 知 $B = \mu I$,因此 $P^{-1} = \mu P^T$,计算 行列式可知 $\mu > 0$,取 $\lambda = \sqrt{\mu}$ 即符合要求。

(满足此条件的 P 构成的集合为在旋转与反射外复合伸缩变换)

12. 先取置换方阵 P_1 使 $P_1^T A$ 的行向量按模长非递减排列,再去 P_2 使 $P_1^T A P_2^T$ 的列向量按模长非递减 排列,可以发现,此时行向量仍然非递减。设 $P_1^TAP_2^T=B$,证明 B 有题设中 $\operatorname{diag}(\lambda_1Q_1,\ldots,\lambda_kQ_k)$ 的形式即可。

由于 B 行/列单位化后均正交,存在均非零非递减的 μ_1, \ldots, μ_n ; $\delta_1, \ldots, \delta_n$ 使 $B = \operatorname{diag}(\mu_1, \ldots, \mu_n) P$ $= Q \operatorname{diag}(\delta_1, \ldots, \delta_n)$,且 P, Q 正交,进一步的将 2n 个数所有不相等的取值递减排列为 $\lambda_1, \lambda_2, \ldots \lambda_k$, 则 $\operatorname{diag}(\mu_1,\ldots,\mu_n) = \operatorname{diag}(\lambda_1 I_{n_1},\ldots,\lambda_k I_{n_k})$, $\operatorname{diag}(\delta_1,\ldots,\delta_n) = \operatorname{diag}(\lambda_1 I_{m_1},\ldots,\lambda_k I_{m_k})$ 。 计算 BB^T 知 $\operatorname{diag}(\lambda_1^2 I_{n_1}, \dots, \lambda_k^2 I_{n_k})Q = Q \operatorname{diag}(\lambda_1^2 I_{m_1}, \dots, \lambda_k^2 I_{m_k})$, 由此 Q 可分块为 $\operatorname{diag}(Q_1, \dots, Q_k)$, 每个 Q_i 阶数为 $n_i \times m_i$, 由于 Q 正交, 计算得每个对角块均为正交阵, 因此 $n_i = m_i$, 由此满足题设。

(特别地,如果 A 中不含 0,可发现 $A = \lambda Q$, λ 非零, Q 为正交阵。)

§6.2 正交相似

- 1. (1) 利用定理 6.3, 讨论有无复特征值即可, 注意此处 θ 可取 $0,\pi$ 。
 - (2) 正交阵可以看作三维空间中刚体变换,即旋转变换与反射复合。
- 2. 左推右: 由正交阵 k 次方仍正交, $(P^{-1}AP)^k = P^{-1}A^kP$,故成立。

右推左:由定理 6.6 可推知正交阵 $\mathbb C$ 上的相似标准形为对角元模长均为 1 的对角阵,若 A^k 有此性质,由于 A^k 可逆且 $J_n(\lambda)^m$ 相似于 $J_n(\lambda^m)$,可知 A 亦可相似对角化。由于 A^k 特征值为 A 特征值的 k 次方,A 仍有此性质。

3. 左推右:利用定理 6.9, \mathbb{R} 上规范 \Leftrightarrow 可在 \mathbb{R} 上相似为定理 6.9 形式,而其中每个对角元都可在 \mathbb{C} 上对角化,由此得证。

右推左:考察其在 ℝ 上的相似标准形 (5.5 节例 5.21),由于其在 ℂ 上可对角化,只能为例 6.9 的形式,即为可相似成的规范方阵。

- 4. 归纳,一阶时显然成立,n 阶时由 AA^T 与 A^TA 第一行第一列相等可发现 A 第一行除对角均为 0,而右下角为低一阶的规范方阵,由此归纳假设成立。
- 5. (1) 由 5.4 节习题 7 知结论。
 - (2) 考虑对角阵 $P = (p_{ij})$, $P^{-1}AP$ 对称可解出对 i < n, $\frac{p_{ii}^2}{p_{i+1,i+1}^2} = \frac{a_{i,i+1}}{a_{i+1,i}}$,令 $p_{11} = 1$ 可归纳构造出符合条件的 P。
 - (3) 考虑 Jordan 标准形,由(1) 知每个特征值对应唯一 Jordan 块,由(2) 知 Jordan 块均为一阶,由此得结论。
- 6. (1) 利用习题 8 得 $A^T = f(A)$, 因此 $A^T = B$ 可交换, 取转置得 $B^T = A$ 可交换。
 - (2) 利用 (1), $(A+B)^T(A+B) = A^TA + A^TB + B^TA + B^TB = AA^T + BA^T + AB^T + BB^T$ = $(A+B)(A+B)^T$, $(AB)^TAB = B^TA^TAB = ABA^TB^T = AB(AB)^T$

7. (1)
$$A = B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

(2) $A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

8. 由于 $P^TAP = (P^TA^TP)^T$,当 A,B 正交相似时, A^T,B^T 正交相似。由此不妨设 A 已正交相似为定理 6.9 形式。为证正交相似,我们只需要证明每个对角块与其转置正交相似即可。对 λ_i 显然成立,对 A_i 直接构造 $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ 即可。

为证存在多项式,设 P 正交,若 $A^T=f(A)$,有 $(P^TAP)^T=f(P^TAP)$,因此同样只要说明对定理 6.9 形式成立即可。考虑每个对角块对应的 $f=f_j$,其最小多项式为 d_j ,则只需构造 f 满足 $f\equiv f_j$

$$\mod d_j$$
 即可,构造 f 使得
$$\begin{cases} f \equiv \lambda_i & \mod x - \lambda_i \\ f \equiv -x + 2a_i & \mod x^2 - 2a_i x + a_i^2 + b_i^2 \end{cases}$$
(对一切 λ_i, A_i),由于若对角

块含公共特征值 (即最小多项式不互素),必为相同对角块,因此方程可只保留一个,由中国剩余定理可知这样的 f 存在,可验证此 f 满足要求。

(对一般方阵,正交相似未必成立,见 7.1 节习题 6(2))

9. 只要说明能使 $P^{-1}A_iP$ 成为对应形式的准上三角方阵,由于其仍规范,类似习题 3 即可证明其为准对角方阵。

采用归纳法。一阶时显然成立,n 阶时,由 5.2 节习题 9 知存在公共特征向量 α ,由于特征向量倍数 仍为特征向量,不妨设 α 为单位向量。

若其为实向量,取 P 为使 α 为第一列的正交阵,则 $P^{-1}A_iP$ 的第一列除对角元全为 0,右下为 n-1 阶互相可交换的规范阵,类似 5.2 节定理 5.5 归纳即可。

若其不为实向量,考虑其实部与虚部构成的向量 u,v,若 u,v 共线,则此向量除以 u+vi 即为实向量,矛盾。否则,取以 u,v 标准正交化为前两列的正交阵 P,可发现 $P^{-1}A_iP$ 的前两列成为符合要求的形式 (除前两行外全为 0,左上角二阶子矩阵形式如定理 6.9 中 A_i),类似 5.2 节习题 7(2) 归纳即可。

10. (1)
$$e^A(e^A)^T = e^A e^{A^T} = e^{(A+A^T)} = I = (e^A)^T e^A$$
,再由 5.4 节例 5.16-3 知 $\det(B) = e^t r(A) = 1$ 。

(2) 由于正交相似不改变结论,不妨设
$$B$$
 已正交相似为定理 6.6 形式,且由于 $\det(B) = 1$, -1 可两两配对,即 $B = \operatorname{diag}(B_1, \ldots, B_s, I)$,其中 $B_i = \begin{pmatrix} \cos \theta_i & \sin \theta_i \\ -\sin \theta_i & \cos \theta_i \end{pmatrix}$, $\theta_i \in [0, 2\pi)$ ($\theta = \pi$ 时为配对的 -1),取 $A = \operatorname{diag}(A_1, \ldots, A_s, O)$,其中 $A_i = \begin{pmatrix} 0 & \theta_i \\ -\theta_i & 0 \end{pmatrix}$,可算得成立。

(3) 未必。
$$A = \begin{pmatrix} 0 & \pi \\ -4\pi & 0 \end{pmatrix}, B = I$$
 为反例。

§6.3 正交相抵

- 1. 利用 P 正交阵则 $||P\alpha|| = ||\alpha^T P|| = ||\alpha||$ 可将 A 拆分为行/列向量直接算出结果,或利用 A, B 奇异值均相等由例 6.7-1 知结论。
- 2. 由定理 6.10 证明过程,设 A 的奇异值分解为 $P_1\begin{pmatrix} \Sigma & O \\ O & O \end{pmatrix}Q$,则 B 可分解为 $P_2\begin{pmatrix} \Sigma & O \\ O & O \end{pmatrix}Q$,因此 取 $P=P_2P_1^T$ 即可。
- 3. 由习题 2 类似知存在正交阵 P,Q,PA = AQ = B。设 A 奇异值分解为 $U\begin{pmatrix} \Sigma & O \\ O & O \end{pmatrix} V$,令 $X = U^T P U$,其为正交阵乘积,因此为正交阵,分块为 $\begin{pmatrix} X_1 & X_2 \\ X_3 & X_4 \end{pmatrix}$ 计算可知 $X_2\Sigma = O$ 。由 Σ 可逆知 $X_2 = O$,由定理 6.6 证明过程准三角正交阵必为准对角阵,因此 $X_3 = O$,此时 X_1, X_4 必均为正交阵。

令 $R_1=X_1$ 可知 $B=U\begin{pmatrix}R_1\Sigma&O\\O&O\end{pmatrix}V$, R_1 为正交阵。同理可知 $B=U\begin{pmatrix}\Sigma R_2&O\\O&O\end{pmatrix}V$, R_2 为正交阵。因此 $R_1\Sigma^2R_1^T=\Sigma R_2R_2^T\Sigma^2=\Sigma^2$,即 R_1 与 Σ^2 可交换,设 $\Sigma^2=\mathrm{diag}(\sigma_1^2I_1,\ldots,\sigma_s^2I_s)$,不同的 σ_i 值不同,则 $R_1=\mathrm{diag}(P_1,\ldots,P_s)$, P_i 为正交阵,阶数与 I_i 相同。由此得全部的 $B=U\begin{pmatrix}P\Sigma&O\\O&O\end{pmatrix}V$, $P=\mathrm{diag}(P_1,\ldots,P_s)$, P_i 为正交阵,且阶数对应每个不同奇异值的重数(注意到,P 与 Σ 可交换,因此这样的 B 一定为解)。

4. (1) 取 $P_1, P_2 = \frac{A \pm A^T}{2}$ 即可 (由于实对称/反对称方阵一定规范)。

(2)
$$A$$
 的奇异值分解为 $P\begin{pmatrix} \Sigma & O \\ O & O \end{pmatrix}Q$, $P_1 = PQ, P_2 = Q^T\begin{pmatrix} \Sigma & O \\ O & O \end{pmatrix}Q$ 即可。

(3) 设 $A = P \operatorname{diag}(A_1, \ldots, A_s, \lambda_{2s+1}, \ldots, \lambda_n) P^T$ 为正交相似后 6.2 节定理 6.9 形式,取 $P_1 = PBP^T, P_2 = PCP^T$,其中 B 为把每个 A_i 替换成 $\operatorname{diag}(1, -1)$, λ_i 替换成 1; C 为把每个 A_i 替换成 $\operatorname{diag}(1, -1)A_i$, λ_i 不变,验证知其符合要求。

- 5. (1) 见习题 6(1)(2)。
 - (2) 置换行列后不妨设 B 为 A 左上角子矩阵,则 $||B|| = \left\| \begin{pmatrix} B & O \\ O & O \end{pmatrix} \right\| = \left\| \begin{pmatrix} I & O \\ O & O \end{pmatrix} A \begin{pmatrix} I & O \\ O & O \end{pmatrix} \right\|$, 中 (1) 得成文 (第一个第号是由于 $\forall \alpha, ||B\alpha|| = \left\| \begin{pmatrix} B & O \\ O & O \end{pmatrix} \right\|$
 - 由 (1) 得成立 (第一个等号是由于 $\forall \alpha, ||B\alpha|| = \left\| \begin{pmatrix} B & O \\ O & O \end{pmatrix} \begin{pmatrix} \alpha \\ * \end{pmatrix} \right\|$)。
 - (3) 由定理 6.10 非零奇异值个数为 r,且 σ_1 最大,再由例 6.7(1,2) 直接得结论。
 - (4) 若模长最大的特征值为实数,直接取 α 为其对应的模长为 1 的特征向量,即有 $\rho(A) = ||A\alpha|| \le ||A||$ 。若为复数,不妨设为 $a \pm bi$,设其对应的特征向量为 $u \pm vi$,取 α 为 u 的单位化,则 $\rho(A) = ||A\alpha|| \le ||A||$ 。(或直接考虑复数域上的二范数)
- 6. * 本题中,对应向量范数 $||x||_p$ 定义的矩阵范数为该向量范数诱导的矩阵范数。容易发现, $||A||_F$ 不为任何向量范数诱导的矩阵范数,因为任何向量范数诱导的矩阵范数都应有 ||I||=1。
 - (1) 由 Minkowski 不等式, p > 1 时 $||(A + B)x||_p \le ||Ax||_p + ||Bx||_p$, 由此得证。
 - (2) $\forall p$ 范数长为 1 的 x, $||ABx||_p \le ||A||_p ||Bx||_p \le ||A||_p ||B||_p$,由此得证。
 - (3) $||A||_1 = \max_{\sum_{i=1}^n |x_i|=1} \sum_{i=1}^m \left| \sum_{j=1}^n x_j a_{ij} \right|$,而 $\sum_{i=1}^m \left| \sum_{j=1}^n x_j a_{ij} \right| \le \sum_{j=1}^n x_i \sum_{i=1}^m |a_{ij}| \le$ 右式,当 x 使 $\sum_{j=1}^m |a_{ij}|$ 最大的分量为 1,其他为 0 时可取到,因此成立。
 - (4) 左: 取 x 使 $\sum_{j=1}^{m} |a_{ij}|$ 最大的分量 (设为第 k 个) 为 1,其他为 0,则 $||A|| \ge ||Ax|| = \sqrt{\sum_{i=1}^{m} |a_{ik}|}$ $\ge \frac{\sum_{i=1}^{m} |a_{ik}|}{\sqrt{m}} = \frac{||A||_1}{\sqrt{m}}$

右: 由习题
$$5(3)$$
, $||A|| \le ||A||_F \le \sqrt{n \max_{1 \le j \le n} \sum_{i=1}^m a_{ij}^2} \le \sqrt{n \left(\max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|\right)^2} = \sqrt{n}||A||_1$ (第三个不等号可放缩列和得到)。

(5) 引理: $||A||_P = \max_{||x||_p = ||y||_q = 1} y^T Ax (x, y$ 维数为 n, m)

引理证明:由范数定义只需证明对向量 α , $||\alpha||_p = \max_{||\beta||_q=1} \beta^T \alpha$,即 $\alpha \cdot \beta \leq ||\alpha||_p ||\beta||_q$,且可取到满足等号的 β ,这即是 Hölder 不等式,由取等条件可知能取到合适的 β ,因此成立。

由引理,由于转置不影响一阶方阵的值,因此左 = $\max_{||x||_p = ||y||_q = 1} y^T A x = \max_{||x||_p = ||y||_q = 1} (y^T A x)^T$

$$=\max_{||y||_q=||x||_p=1} x^T A^T y = \text{π :}$$

(6) 先证明 $||A^TA|| \le ||A^TA||_p$ 。由定理 6.10 过程, A^TA 为对称阵且特征值均为正,因此 A^TA 的奇异值即为其特征值,再利用例 6.7-2 知 $||A^TA||$ 为其最大的特征值 λ 。实矩阵的实特征值对应实特征向量,取 λ 对应的实特征向量 α ,可乘倍数调整使 $||\alpha||_p = 1$,计算得 $||A^TA\alpha||_p = ||\lambda\alpha||_p = \lambda = ||A^TA||_p$ 因此 $||A^TA|| \le ||A^TA||_p$ 。

由奇异值定义结合 (2,5) 知 $||A||^2 = ||A^T A|| \le ||A^T A||_p \le ||A^T ||_p ||A||_p = ||A||_p ||A||_q$, 由此得证。

- 7. * 利用例 6.8 思路,此变换可看作在 x 方向放大为 σ_1 倍,y 方向放大为 σ_2 倍,再逆时针旋转角度 θ 。利用倾角可计算出直线的斜率,由此可知直线方程的变化。
 - (1) 注意到 $\sigma_1 \geq \sigma_2$,因此焦点为 $\pm \sqrt{\sigma_1^2 \sigma_2^2} (\cos \theta, \sin \theta)$

(2) 标准方程 $\frac{x^2}{\sigma_1^2} - \frac{y^2}{\sigma_2^2} = 1$, 实轴 $y \cos \theta = x \sin \theta$, 虚轴 $y \sin \theta = -x \cos \theta$, 顶点 $\pm \sigma_1(\cos \theta, \sin \theta)$, 焦点 $\pm \sqrt{\sigma_1^2 + \sigma_2^2}(\cos \theta, \sin \theta)$, 渐近线 $\cos \left(\theta \pm \arctan \frac{\sigma_2}{\sigma_1}\right) y = \sin \left(\theta \pm \arctan \frac{\sigma_2}{\sigma_1}\right) x$

- (3) 标准方程 $y = \frac{\sigma_2 x^2}{\sigma_1^2}$,对称轴 $y \sin \theta = -x \cos \theta$,顶点 (0,0),焦点 $\frac{\sigma_1^2}{4\sigma_2}(-\sin \theta, \cos \theta)$
- 8. * 本题均只求出一个使取到最小值的解
 - (1) 设 A 中元素按行列排为 a_1, \ldots, a_n , B 中对应位置 b_1, \ldots, b_n ,所求即需保证 $\sum_{i=1}^n (\lambda a_i b_i)^2$ 最小,直接由二次函数知识知 $\lambda = \frac{\sum_{i=1}^n a_i b_i}{\sum_{i=1}^n a_i^2} (亦可写为 \frac{\operatorname{tr}(A^T B)}{\operatorname{tr}(A^T A)})$ 。
 - $(2) ||PA B||_F^2 = \operatorname{tr}((PA B)^T(PA B)) = ||A||_F^2 + ||B||_F^2 2\operatorname{tr}(B^TPA)$ 。由 2.1 节定理 2.2-6, $\operatorname{tr}(B^TPA) = \operatorname{tr}(PAB^T)$ 。设 AB^T 奇异值分解为 $U\Sigma V$,则 $\operatorname{tr}(B^TPA) = \operatorname{tr}(VPU\Sigma) \leq \operatorname{tr}(\Sigma)$ (VPU 为正交方阵,对角元小于等于 1,直接计算可得最后一个不等号)。取 $P = V^TU^T$ 即为一个满足条件的最小值。
 - (3) $||\lambda PA B||_F^2 = \operatorname{tr}((\lambda PA B)^T(\lambda PA B)) = \lambda^2 ||A||_F^2 + ||B||_F^2 2\lambda \operatorname{tr}(B^T PA)$ 。由于 λ , P 同时 变为负结果不变,不妨设 λ 为正,此时先取 P 为上题中 $V^T U^T$,再取 $\lambda = \frac{\operatorname{tr}(\Sigma)}{\operatorname{tr}(A^T A)}$ 时即可取到最小值。
- 9. (1) 由例 6.10 可知此矩阵方程组仅一解,故唯一。
 - (2) 直接验证其满足例 6.10 中的矩阵方程组即可。
 - (3) 由 4.2 节定理 5.9,在例 6.10 证明过程中只保留 AXA = X, XAX = A 即可得到本题的形式。 (注意例题有误,应为 $X_4 = X_3\Sigma X_2$)
- 10. 当:由于正交相似不影响此性质,可设 A 已正交相似为 6.2 节定理 6.9 中的形式,直接计算可知 A^TA 的特征值为 A 的每个特征值模长平方,由此即可得 A 的奇异值满足条件。

仅当: 由置换方阵不影响正交相抵,不妨设 $|\lambda_1| \leq \cdots \leq |\lambda_n|$,则此时其即为 A 的奇异值。因此, A^TA 的特征值为 A 的每个特征值模长平方。由于正交相似不影响此性质,可设 A 已正交相似为 6.2 节定理 6.5 中的形式,且 $A_i = \begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix}$ 。

一方面,
$$\operatorname{tr}(A^T A)$$
 为其特征值之和,即 $\sum_{i=1}^n |\lambda_i|^2 = 2 \sum_{i=1}^s |\lambda_{2i-1}|^2 + \sum_{i=2s+1}^n \lambda_i^2$

另一方面,
$$\operatorname{tr}(A^T A) = \sum a_{ij}^2 \ge \sum_{i=1}^s ||A_i||_F^2 + \sum_{i=2s+1}^n \lambda_i^2$$

验证可知, $2\sum_{i=1}^{s}|\lambda_{2i-1}|^2 \leq \sum_{i=1}^{s}||A_i||_F^2$,由此可知每个不等号均成立等号。

$$\sum a_{ij}^2 = \sum_{i=1}^s ||A_i||_F^2 + \sum_{i=2s+1}^n \lambda_i^2 \ 意味着 \ A \ 相似后为准对角阵,而 $2 \sum_{i=1}^s |\lambda_{2i-1}|^2 = \sum_{i=1}^s ||A_i||_F^2 \ \text{可计算}$ 知
$$\begin{pmatrix} a_i & b_i \\ c_i & d_i \end{pmatrix} = \begin{pmatrix} a_i & b_i \\ -b_i & a_i \end{pmatrix} \ \text{对每个} \ A_i \ \text{成立,由此由 } 6.2 \ \text{节定理 } 6.5 \ \text{知} \ A \ \text{为规范方阵。}$$$$

§6.4 酉方阵

1. 完全仿照之前的对应例题、定理即可,注意 $(AB)^H = B^H A^H, \det(A^H) = \overline{\det(A)}$ 。

- 2. (1) 设为 $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, 直接计算知 $|a|^2 + |b|^2 = |c|^2 + |d|^2 = 1$, $a\bar{c} + b\bar{d} = 0$ 。由此,设 $a = k\bar{d}$,则 $b = -k\bar{c}$,由条件知 |k| = 1。取 μ 使得 $\mu^2 = k$,记 $z = \frac{a}{\mu}$, $w = \frac{b}{\mu}$,计算验证即可。
 - (2) 利用例 6.11,令 $\theta_1 = \arg \mu \arg z \arg w$, $\theta_2 = \arctan \frac{|w|}{|z|}$, $\theta_3 = \arg z$, $\theta_4 = \arg w$,计算验证即可。
 - (3) 酉相似不改变 Hermite 性,不影响结论,利用定理 6.15 不妨设 A 已酉相似为对角阵 $\operatorname{diag}(a+b\mathrm{i},c+d\mathrm{i})$,b=d 时取 $\lambda=b\mathrm{i},\mu=1$,否则取 $\lambda=\frac{bc-ad}{b-d}$, $\mu=a-\lambda+b\mathrm{i}$,计算验证知成立。
 - (4) 酉相似后酉方阵仍为酉方阵,不影响结论,利用定理 6.15 不妨设 A 已酉相似为对角阵 $\mathrm{diag}(x,y)$ 。 取 $\lambda=\frac{x+y}{2},\mu=\left|\frac{x-y}{2}\right|$,计算验证知成立。
- 3. 设酉方阵 P 写为习题 2(1) 形式, $\begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ $P = P\begin{pmatrix} a & c \\ 0 & d \end{pmatrix}$, 计算得 $w = 0, cz = b\overline{z}$ 。取模知 $|b| \neq |c|$ 时无解,|b| = |c| 时若全为 0 可任取,否则取 z 使 $z^2 = \frac{b}{c}$,计算验证知成立。

4. (1)
$$Q = \begin{pmatrix} 0 & \frac{2i}{\sqrt{6}} & \frac{1-i}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{6}} & \frac{i-1}{\sqrt{6}} \\ \frac{i}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1+i}{\sqrt{6}} \end{pmatrix}, R = \begin{pmatrix} \sqrt{2} & -\frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ 0 & \frac{\sqrt{6}}{2} & \frac{1-2i}{\sqrt{6}} \\ 0 & 0 & \frac{\sqrt{6}}{3} \end{pmatrix}$$

(2)* 只对规范方阵有谈论酉相似标准形的意义

验证知 A 规范,可相似对角化为 $\operatorname{diag}\left(1+\mathrm{i},\frac{-1+\sqrt{3}}{2}(1+\mathrm{i}),\frac{-1-\sqrt{3}}{2}(1+\mathrm{i})\right)$

- (3) 计算 A^HA 知 A 奇异值为 $\frac{\sqrt{6}+\sqrt{2}}{2},\sqrt{2},\frac{\sqrt{6}-\sqrt{2}}{2}$
- 5. 由于相似不影响此题结论,可设 A 已经酉相似为上三角方阵,此时 A-I 为秩为 1 的上三角方阵,可知其只有一行 (或列) 不为 0,利用置换可使其第一行/最后一列不为 0。因此,A 为所有可酉相似为 I+ 对应上三角方阵的方阵。
- 6. 完全仿照 6.2 节习题 4 即可。
- 7. * 此映射实际为环的嵌入同态

双射证明:直接验证单射、满射即可

- (1) 直接计算验证即可,注意 $(A + Bi)^H = A^T B^Ti$ 。
- (2) 由(1) 第二个式子构造逆知结论。
- (3) 由(1) 第二、三个式子代入条件知结论。
- (4) 由 (1) 第三个式子代入条件知结论。
- (5) 由(1)第三个式子代入条件知结论。
- (6) 由(1)第二、三个式子代入条件知结论。
- 8. 由于 $\operatorname{tr}(AA^H) = ||A||_F^2$, $\operatorname{tr}(B^H A) = \operatorname{tr}((A^H B)^H) = \overline{\operatorname{tr}(A^H B)}$, 此题即为 2.1 节习题 11。
- 9. 完全仿照 6.3 节例 6.10 即可。
- 10. 完全仿照 6.3 节例 6.9 即可。

11. 注意到 A = X + Yi,设特征值 $\lambda = k + t$ i 对应的特征向量为 α ,即有 (X + Yi) $\alpha = (a + bi)\alpha$ 。 设 $X = P^H \operatorname{diag}(x_1, \dots, x_n)P, Y = Q^H \operatorname{diag}(y_1, \dots, y_n)Q$ 为酉相似对角化,上式左右同乘 α^H 得 $(P\alpha)^H \operatorname{diag}(x_1, \dots, x_n)P\alpha + \mathrm{i}(Q\alpha)^H \operatorname{diag}(y_1, \dots, y_n)Q\alpha = k\alpha^H\alpha + t\alpha^H\alpha \mathrm{i}$ 由实部相等可知 $k\alpha^H\alpha = (P\alpha)^H \operatorname{diag}(x_1, \dots, x_n)P\alpha = \sum_{i=1}^n x_i |(P\alpha)_i|^2$

因此
$$k\alpha^H \alpha \ge x_1 \sum_{i=1}^n |(P\alpha)_i|^2 = x_1 (P\alpha)^H P\alpha = x_1 \alpha^H \alpha \Rightarrow k \ge x_1$$
,其余不等号同理。

12. 设酉方阵 $U_0 = A_0 + B_0$ i,其中 A_0, B_0 为实方阵。只需证明,存在正交阵 P, Q 使 PA_0Q, PB_0Q 均 为对角阵即可。

令 $P_AA_0Q_A$ 为 A_0 的奇异值分解形式,令 $A=P_AA_0Q_A=\mathrm{diag}(\sigma_1I_1,\ldots,\sigma_kI_k,O)$,其中 σ_1,\ldots,σ_k 为不同的非零奇异值,再记 $\Sigma=\mathrm{diag}(\sigma_1I_1,\ldots,\sigma_kI_k)$, $B=P_AB_0Q_A$,由于 $A+B\mathrm{i}=P_A(A_0+B_0\mathrm{i})Q_A$,正交方阵为酉方阵,酉方阵乘积为酉方阵,因此 $U=A+B\mathrm{i}$ 仍为酉方阵。由于 $(A+B\mathrm{i})^H=A^T-B^T\mathrm{i}$,由酉方阵性质直接计算 UU^H,U^HU 虚部可知 $A^TB=B^TA,AB^T=BA^T$,由于对角阵 $A=A^T$,可化为 $AB=B^TA^T,A^TB^T=BA$,即 $AB=(AB)^T,BA=(BA)^T$,AB,BA 均为对称阵。

由之前假设, $A=\begin{pmatrix} \Sigma & O\\O & O\end{pmatrix}$,对 B 同样分块为 $\begin{pmatrix} B_1 & B_2\\B_3 & B_4\end{pmatrix}$,由 AB,BA 对称可得 $\Sigma B_3=B_2\Sigma=O$,由 Σ 可逆知 $B_2=B_3=O$,设 $P_BB_4Q_B$ 为 B_4 的奇异值分解形式,接下来考察 B_1 。

由条件, ΣB_1 与 $B_1\Sigma$ 均为对称阵。先说明 $B_1=\mathrm{diag}(C_1,\ldots,C_k)$, C_i 与 I_i 同阶。这是由于,若 B 在 这些区域外有元素 b_{ij} (不妨设为 σ_1,σ_2 交叉处),则有 $\sigma_1b_{ij}=\sigma_2b_{ji},\sigma_2b_{ij}=\sigma_1b_{ji}$,解得 $b_{ij}=b_{ji}=0$ 。进一步计算知一切 C_i 均为对称阵,因此由 6.2 节定理 6.7 存在正交阵 P_i 使得 $P_iC_1P_i^T$ 为对角阵。取 $P=\mathrm{diag}(P_1,\ldots,P_k,P_B)P_A,Q=Q_A\,\mathrm{diag}(P_1^T,\ldots,P_k^T,Q_B)$,计算验证知即符合要求。

13. 设 $A = UBU^H$, U 为酉方阵。由习题 12 取 P,Q 使 $U_0 = PUQ$ 为对角阵,则 $PAP^T = U_0Q^TBQU_0^H$, 由于 A,B 正交相似等价于 PAP^T,Q^TBQ 正交相似,这样处理可不妨设 U 为对角酉方阵,即对角元模全为 1 的复对角阵。记其为 $\operatorname{diag}(u_1,\ldots,u_n)$,接下来说明 A,B 正交相似。

由于 $a_{ij} = u_i \overline{u_j} b_{ij}, u_i \overline{u_j} > 0$, A, B 含零情况相同。

将 A 看作无向图的邻接矩阵 (与 2.1 节类似,但不完全相同),定义若 a_{ij} 或 a_{ji} 不为 0,则称点 i 与点 j 之间有一条边,若两点之间可通过无向边到达,则称为两点**连通**,若图中任意两点连通,则称此图为**连通图**。

先说明,若 A 为连通图对应的矩阵,则原命题成立。由于将 U 改为 tU, |t|=1 仍有 $A=UBU^H$,取 $t=\overline{u_1}$ 即有此时 $u_1=1$ 。可以证明此时 $u_i\in\mathbb{R}$,从而 U 即为正交阵。首先,若不存在含 1 的边,则 A 不连通,因此可不妨设 $a_{12}\neq 0$,此时 $a_{12}=\overline{u_2}b_{12}$,由于 $a_{12},b_{12}\in\mathbb{R}$, $|u_2|=1$ 可发现 $u_2=\pm 1\in\mathbb{R}$ 。以此类推,由于 A 连通,可以通过这样的方式确定一切 u_i 的值,从而原命题成立。

接着说明,若 A 不连通,则可置换相似为 $\operatorname{diag}(A_1,\ldots,A_k)$,且 A_i 连通。证明思路为,找到所有与 1 连通的点,说明这些点互相连通,类似 2.4 节习题 14(注意那题为有向图,此题为无向图,存在差异) 将它们置换到 A_1 的位置,然后继续找下一个点,直到所有点被置换完成。此时若 $\operatorname{diag}(A_1,\ldots,A_k)$ 之外有不为 0 的值,可得有更大的互相连通的分支,矛盾。

设置换阵 P 使 PAP^T 为上述形式,可发现 $(PAP^T) = PUP^T(PBP^T)P^TU^HP$,可发现 PUP^T 仍 为对角阵,由于其主子矩阵仍为酉方阵,可知每个 A_i 与 B_i 酉相似,由己证,它们正交相似,设 $A_i = P_iB_iP_i^T$, P_i 为正交阵,则 $A = \mathrm{diag}(P_1,\ldots,P_k)B\,\mathrm{diag}(P_1,\ldots,P_k)^T$,因此两者正交相似。

第七章 二次型

§7.1 二次型的化简

1. 直接对比系数发现对角元为对应 x_i^2 的系数,其余为对应 x_ix_j 系数的一半,由于 $x_ix_j=x_jx_i$ 得对称。

2.
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} 0 & bc + ad \\ bc + ad & 0 \end{pmatrix}$$
, 在特征二域中, $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc = bc + ad$, 由可逆不为 0,因此其不可能为对角方阵。

3. * 由于 A 一定为二次项构成的二次型对应的对称阵,由此可解出 b,进一步算出 c

$$(1) \ A = \begin{pmatrix} 1 & 0 & 0.5 & 0 \\ 0 & 1 & 0.5 & 0.5 \\ 0.5 & 0.5 & 0 & 0 \\ 0 & 0.5 & 0 & 0 \end{pmatrix}, b = \begin{pmatrix} 1 \\ -1 \\ 0 \\ -1 \end{pmatrix}, c = -3$$

$$(2) A = \begin{pmatrix} 1 & 0.5 & -0.5 & 0.5 \\ 0.5 & 1 & 0 & 0 \\ -0.5 & 0 & 1 & 0 \\ 0.5 & 0 & 0 & 0 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -3 \end{pmatrix}, c = 0$$

(3)
$$A = \begin{pmatrix} 0 & 0 & 0.5 & 0 \\ 0 & 0 & -1 & -0.5 \\ 0.5 & -1 & 0 & -1 \\ 0 & -0.5 & -1 & 0 \end{pmatrix}, b = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \end{pmatrix}, c = 5$$

$$(4) \ A = \begin{pmatrix} 0 & 0.5 & -1 & 0 \\ 0.5 & 0 & 1 & -0.5 \\ -1 & 1 & 0 & -1 \\ 0 & -0.5 & -1 & 0 \end{pmatrix}, b = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \end{pmatrix}, c = 2$$

4. * 若选取的先后次序不同,结果未必唯一,但正负式子的个数一定唯一

$$(1) \left(x_1 + x_2\right)^2 - 3\left(x_2 - \frac{1}{3}x_3\right)^2 + \frac{4}{3}\left(x_3 - \frac{9}{8}x_4\right)^2 - \frac{27}{16}x_4^2$$

(2)
$$(x_1 + x_3 - 2x_4)^2 + x_2^2 + \frac{9}{4}x_3^2 - 4\left(x_4 - \frac{3}{4}x_3\right)^2$$

(3)
$$2\left(\frac{1}{2}x_1+x_2\right)^2+4x_4^2-\frac{1}{2}(x_1-2x_4)^2-(x_3-x_4)^2$$

$$(4) \frac{1}{4}(x_1 + 2x_2 + x_3 + 3x_4)^2 + 4x_4^2 - \frac{1}{4}(x_1 + 2x_2 - x_3 + 5x_4)^2$$

- 5. * 由 6.2 节定理 6.7,实对称矩阵可正交相似为对角阵 (由此亦可知特征值全为实数),而对角阵可用对角阵相合将非零特征值模长变为 1,由此可知正负惯性指数即为其特征值中正负的个数。
 - (1) 对应矩阵对角元为 n-1,其余均为 -1,行列变换可知特征值为 n-1 重 n 与 0,因此正惯性指数为 n-1,负惯性指数为 0。
 - (2) 对应矩阵对角元为 0,其余均为 $\frac{1}{2}$,行列变换可知特征值为 n-1 重 $-\frac{1}{2}$ 与 $\frac{n-1}{2}$,因此正惯性指数为 1,负惯性指数为 n-1。
 - (3) 设 n 阶时为 Q_n ,利用例 7.2 类似的配方技巧,注意到,从 Q_n 中提取出 $(x_1+x_n)(x_2+x_3)-(x_3-x_4)(x_n-x_{n-1})$ 后,相当于 Q_{n-4} ,而提取出的是 $\frac{1}{4}(x_1+x_n+x_2+x_3)^2-\frac{1}{4}(x_1+x_n-x_2-x_3)^2$

 $(x_3)^2 - \frac{1}{4}(x_3 + x_n - x_4 - x_{n-1})^2 + \frac{1}{4}(x_3 + x_{n-1} - x_4 - x_n)^2$,为 ±1 各两个,因此 Q_n 比 Q_{n-4} 正负惯性指数均多 2,由此模 4 分类得:

n = 4k + 1 时,正惯性指数 2k + 1,负惯性指数 2k;

n = 4k + 2 时,正惯性指数 2k + 1,负惯性指数 2k + 1;

n = 4k + 3 时,正惯性指数 2k + 1,负惯性指数 2k + 2;

n=4k 时,正惯性指数 2k-1,负惯性指数 2k-1。

6. (1) 设
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, 令 $\theta = \arctan \frac{b+c}{a-d} \ (a-d=0 \ \text{则为} \ \frac{\pi}{2})$, 取正交阵 $P = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$, 计算验证知成立。

(2) 由 5.5 节例 5.19,
$$A$$
 与 A^T 相似。
$$\begin{pmatrix} -1 & 0 & 1 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} A \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = A^T$$
,因此相合 (此方阵假

设上三角可强行解出)。

设
$$P = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$
 为正交阵,若相似可设 $PA = A^T P$,计算后可知 $b = d, a = e, c = g, f = h, a + c = g$

$$f,b+f=c$$
,因此 $P=\begin{pmatrix} a & -a & c \\ -a & a & a+c \\ c & a+c & i \end{pmatrix}$ 。考虑 PP^T 前两个对角元知 $2a^2+c^2=2a^2+(a+c)^2=1$,中于 P 可逆 $a \neq 0$ 因此 $a=2c$ 优)直接计算 PP^T 第一行第二列发现不为 0 因此 P 不为正

由于 P 可逆, $a \neq 0$,因此 a = -2c,代入直接计算 PP^T 第一行第二列发现不为 0,因此 P 不为正交阵,从而不正交相似。

- 7. (2) 先证明第二问。可设 A 已正交相似为 6.2 节定理 6.8 形式,不妨设 $b_i > 0$,否则用置换阵 $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ 相似即可,再取 $P = \operatorname{diag}(b_1^{-1/2}, b_1^{-1/2}, b_2^{-1/2}, b_2^{-1/2}, \dots, b_s^{-1/2}, b_s^{-1/2}, I)$,则 $A_1 = P^T A P$ 中每个 t_i 已 被相合为 1。然后寻找置换方阵 Q 使 $Q^T A_1 Q$ 为符合条件的形式,取 Q 的左上角 2s 阶为将 2k+1 列换到 k 列,将 2k 列换到 s+k 列的置换阵,右下角为 I 即可。
 - (1) 对阶数归纳。不妨设 $\leq n$ 阶时已经成立,下面考虑 n+1。注意到右乘 $T_{ij}(\lambda)$ 表示把第 i 列 λ 倍加至第 j 列,左乘其转置为第 i 行 λ 倍加至第 j 行,由此只要 λ 不为反对称,可以使用合适的 $T_{ij}(1)$ 使有对角元不为 λ 0,不妨设 λ 10。

右乘 $T_{1i}\left(-\frac{a_{i1}}{a_{11}}\right)$, $i=2,\ldots,n+1$, 可使第一列只有 a_{11} 不为 0。若此时右下角不为反对称,则已经成立。若右下角为反对称,可将其相合为第二问中 A_1 的形式。设此时第一行为 $a_{11},b_2,\ldots,b_{n+1}$, α 使 $(a_{11}+b_3\alpha)(b_2-\alpha)\neq 0$,右乘 $T_{31}(\alpha)T_{12}\left(-\frac{\alpha}{a_{11}+b_3\alpha}\right)$ 相合,此操作将 a_{22} 变为了 $-\frac{\alpha(b_2-\alpha)}{a_{11}+b_3\alpha}$,而其余 0 项不变,故此时右下角不再为反对称,可以运用归纳假设,由此原命题成立。

§7.2 正定方阵

- 1. 定理 7.3: 验证即可,注意到,由于 *P* 可逆,从当即可推出当且仅当。 定理 7.5: 类似验证即可,注意 Hermite 矩阵酉相似标准型可大量简化证明过程。
- 2. 注意到,将 A 进行正交相似对应 x_1, \ldots, x_n 的正交代换,积分不变,因此设 A 特征值为 $\lambda_1, \ldots, \lambda_n$ (由 正定知均正),由 6.2 节定理 6.7 不妨设 A 为它们构成的对角阵,此时 $x^TAx = \sum_{i=1}^n \lambda_i x_i^2$,再做倍数

换元可知积分结果为 λ_i 全为 1 的情况的 $\prod_{i=1}^n \frac{1}{\sqrt{\lambda_i}} = \frac{1}{\sqrt{\det(A)}}$ 倍 (运用 5.1 节定理 5.2)。

(1) 注意此为 n 维球体积 (可直接积分递推等计算),为 $\frac{V_n}{\sqrt{\det(A)}} = \frac{1}{\Gamma\left(\frac{n}{2}+1\right)} \sqrt{\frac{\pi^n}{\det(A)}}$,其中 Γ 为 Γ 函数。

(2) 原式 =
$$\frac{1}{\sqrt{\det(A)}} \left(\int_{\mathbb{R}} e^{-x_i^2} dx_i \right)^n = \sqrt{\frac{\pi^n}{\det(A)}}$$

- 3. 法一: 几何,利用定理 7.4-4(实矩阵 H 即为 T),设 $P = \begin{pmatrix} u & v & w \end{pmatrix}$,可发现 P 可逆等价于 u,v,w 不共面 (用线性相关或列变换证明),解 $A = P^T P$ 可知 $||u|| = ||v|| = ||w|| = 1, u^T v = \cos\theta_1, u^T w = \cos\theta_2, v^T w = \cos\theta_3$,又由于单位向量内积即为夹角余弦,可知 A 正定等价于存在三个相互夹角分别为 $\theta_{1,2,3}$ 的不共面向量。考虑四面体三个顶角可知此即等价于题中所述关系。
 - 法二: 计算顺序主子式发现一阶为 1 必然大于 0,二阶 $\sin\theta_1^2 > 0 \Leftrightarrow \theta_1 \neq 0, \pi$ 。三阶顺序主子式,即 其行列式值为 $1 \cos^2\theta_1 \cos^2\theta_2 \cos^2\theta_3 + 2\cos\theta_1\cos\theta_2\cos\theta_3$ 。由题目条件猜测验证可知其有因式 $\cos\theta_3 \cos(\theta_1 + \theta_2)$,由对称知其有因式 $T = (\cos\theta_3 \cos(\theta_1 + \theta_2))(\cos\theta_2 \cos(\theta_1 + \theta_3))(\cos\theta_1 \cos(\theta_2 + \theta_3))$,计算可知其实际上为 $\frac{T}{1 \cos(\theta_1 + \theta_2 + \theta_3)}$,由此可验证条件(可发现三阶顺序子式大于 0 时二阶必然大于 0)。
- 4. 存在性: 利用 6.4 节定理 6.15-2 将其酉相似为对角阵,注意到其特征值均为实数,由此设其对角元为 $\lambda_1, \ldots, \lambda_n, \mathbf{0}$,再取对角阵 $\operatorname{diag}\left(\sqrt{\frac{1}{|\lambda_1|}}, \ldots, \sqrt{\frac{1}{|\lambda_n|}}, I\right)$ 共轭相合即可得到。

唯一性:直接仿照 7.1 节定理 7.2 即可。

(类似 7.1 节定义 7.3 定义正负惯性指数,则可发现正定当且仅当正惯性指数为阶数,半正定当且仅 当负惯性指数为 0)

- 5. (1) 由于 A 正定可知其特征值均正,利用 5.2 节定理 5.6-3 知 A^{-1} 特征值均正,再结合定理 7.4-2,6 即有结论。
 - (2) $\det(A) \leq \det(A_{11}) \det(A_{22})$

由于 A_{11} 正定,其可逆且行列式大于 0,由 2.4 节例 2.18 消元知只需证明 $\det(A_{22} - A_{12}^H A_{11}^{-1} A_{12}) \le \det(A_{22})$ 。由 (1) 知 A_{11}^{-1} 正定,类似定理 7.3 可知 $A_{12}^H A_{11}^{-1} A_{12}$ 半正定。通过 Schur 公式计算验证可知 $A_{22} - A_{12}^H A_{11}^{-1} A_{12} = B_{22}^{-1}$,因此 $A_{22} - A_{12}^H A_{11}^{-1} A_{12}$ 正定。

利用例 7.7,用 P 将 $A_{22} - A_{12}^H A_{11}^{-1} A_{12}$ 与 $A_{12}^H A_{11}^{-1} A_{12}$ 同时相合对角化 (那么 A_{22} 为两者之和亦被对角化),由于 $\det(P^H M P) = |\det(P)|^2 \det(M)$,可知只需证明对角化后行列式存在大小关系,而由于前述正定、半正定性,每个对角元均对应小于等于,且全为正,因此大小关系成立。

 $\det(A_{22})\det(B_{22}) \geq 1$ (由对称性,另一个式子可直接类似过程得出)

由上一部分已证, $\det(A_{22} - A_{12}^H A_{11}^{-1} A_{12}) \leq \det(A_{22})$,又由 $A_{22} - A_{12}^H A_{11}^{-1} A_{12} = B_{22}^{-1}$ 可直接得到结果 (由于 B_{22} 正定,其逆的行列式大于 0)。

(3) 同样只证明对 $A_{22}B_{22}$ 成立,由 (1) 知其正定,故 $\lambda > 0$ 。

 $A_{22}B_{22}=A_{22}(A_{22}-A_{12}^HA_{11}^{-1}A_{12})^{-1}=(I-A_{12}^HA_{11}^{-1}A_{12}A_{22}^{-1})^{-1}$,由例 7.6 可知 $A_{22}B_{22}$ 特征值均大于 0,由此只需证 $I-A_{12}^HA_{11}^{-1}A_{12}A_{22}^{-1}$ 的特征值均 ≤ 1 。

之前已说明 $A_{12}^H A_{11}^{-1} A_{12}$ 半正定, A_{22}^{-1} 正定,设 $A_{12}^H A_{11}^{-1} A_{12} = Q^H Q$, $A_{22}^{-1} = P^H P$,且 P 可逆,可发现 $I - A_{12}^H A_{11}^{-1} A_{12} A_{22}^{-1} = I - Q^H Q P^H P = P^{-1} (I - (QP^H)^H Q P^H) P$,由于相似矩阵特征值相同,可知 $I - A_{12}^H A_{11}^{-1} A_{12} A_{22}^{-1}$ 与 $I - (QP^H)^H Q P^H$ 特征值完全相同,又因 $I - A_{12}^H A_{11}^{-1} A_{12} A_{22}^{-1}$ 全部特征值大于 0 可知 Hermite 阵 $I - (QP^H)^H Q P^H$ 正定,而 $(QP^H)^H Q P^H$ 半正定,因此 $I - (QP^H)^H Q P^H$ 特征值均 ≤ 1 ,由此即得证。

6. 利用例 7.7,用 P 将 A,B 同时对角化,可知 P^HAP 每个对角元大于/大于等于 P^HBP 的对应对角元,而 $(P^HAP)^{-1}=P^{-1}A^{-1}P^{-H}$,由此 $P^{-1}A^{-1}P^{-H}$ 每个对角元为 P^HAP 对应对角元的倒数,小于/小于等于 $P^{-1}B^{-1}P^{-H}$ 的对应对角元。因此, $P^{-1}(B^{-1}-A^{-1})P^{-H}$ 正定/半正定,由定理 7.3 知 $B^{-1}-A^{-1}$ 正定/半正定。

7. (1) 由 6.4 节定理 15,设 $A = P^H BP$,P 为酉方阵,B 为对角阵,又因其对角元均非负,取 C 为每个对角元的对应次方根中的非负数,则 $X = P^H CP$ 即符合要求。若有 Y 满足,令 $Y = Q^H DQ$,Q 为酉方阵,D 为对角阵,则有 $P^H C^m P = Q^H D^m Q$,因此 C^m 与 D^m 酉相似,根据特征值可知只能对应分量相等,再由半正定可知 C,D 的对应分量相等,因此 C = D,由 $P^H C^m P = Q^H D^m Q$ 直接计算可知 X = Y。

(2)
$$A = \begin{pmatrix} 3.01 & 1 \\ 1 & 2 \end{pmatrix}, B = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}, m = 2$$

(3) 由例 7.7,设 $A = P^H D_1 P, B = P^H D_2 P$,为 A, B 同时相合对角化,由相合对角化后仍为半正定, D_1, D_2 对角元 (记为 λ_i, μ_i) 大于等于 0。直接计算 $A^2 - B^2 = P^H (D_1 P P^H D_1 - D_2 P P^H D_2) P, A - B = P^H (D_1 - D_2) P$ 。

 $A^2 - B^2$ 正定/半正定 $\Leftrightarrow D_1 P P^H D_1 - D_2 P P^H D_2$ 正定/半正定 \Rightarrow 其所有对角元大于/大于等于 0 (由定理 7.4/5-4),又由于 $P P^H$ 正定,计算得 $\lambda_i^2 > / \ge \mu_i^2$,由对角元非负知 $\lambda_i > / \ge \mu_i$,因此 A - B 正定/半正定。

- (4) (结论正确,但解决需要较高级的知识)
- 8. (1) 法一: 我们接着定理 7.4 留作习题部分的证明继续 (设 A 的 k 阶顺序主子式值为 M_k):

采用归纳法,一阶显然满足,若
$$n$$
 阶满足, $n+1$ 阶时,由于 $M_1=a_{11}>0$,取 $P_1=\prod_{i=2}^{n+1}T_{1i}\left(-\frac{a_{i1}}{a_{11}}\right)$,则 $P_1^HAP_1=\operatorname{diag}(a_{11},A_1)$ 。

由于 P_1 为上三角阵,分块计算知 $P_1^H A P_1$ 的 k 阶顺序主子式为 $\det(P_1^{H(k)} A^{(k)} P_1^{(k)})$,其中 $A^{(k)}$ 为 A 的 k 阶顺序主子式,又由于 P_1 对角元均为 1,这个式子的值即为 M_k 。因此, P_1 共轭相合不改变 A 各阶顺序主子式的值,由此可知 A_1 的 k 阶顺序主子式为 $\frac{M_{k+1}}{M_1}$ 。设 P_2 使 A_1 =

$$P_2 \operatorname{diag}\left(\frac{M_2}{M_1}, \frac{M_3}{M_2}, \dots, \frac{M_{n+1}}{M_n}\right) P_2^H$$
,则取 $L = P_1^{-H} \begin{pmatrix} 1 & \mathbf{0} \\ \mathbf{0} & P_2 \end{pmatrix}$ 即满足题目中要求。

法二: 设 $A=S^HS$, S 可逆, 设 S=QR 为其 QR 分解 (6.1 节定理 6.3),则 $A=R^HR$,而 R 即 为上三角阵。

(下三角类似 5.1 节习题 2 即可对应构造)

(2) 法一: 设 $A = S^H S$,S 可逆,则 $S^{-H} B S^{-1}$ 亦为 Hermite 阵,利用 6.4 节定理 6.15,设酉方阵 P 使得 $P^H S^{-H} B S^{-1} P$ 为对角阵,则 $S^{-1} P$ 即符合要求。

法二:由于 A 正定,我们只要证明,存在正数 t 使 A+tB 半正定,即可类似例 7.7 将 A, A+tB 同时相似为对角阵,由此即知此时 B 对角。利用定理 7.4-8,t 趋向 0 时 A+tB 的各阶顺序主子式均大于 0,因此由极限保号性一定存在充分小的 t 满足条件,由此得证。

(3) 法一:将半正定阵看作一列正定阵的极限,利用例 7.7,实数列极限为实数,由此得证。

法二: 由习题 7(1) 知存在 $A^{1/2}$,而 $\det(xI - AB) = \det(xI - A^{1/2}A^{1/2}B) = \det(xI - A^{1/2}BA^{1/2})$ (利用 3.2 节例 3.12),而 $A^{1/2}BA^{1/2}$ 为 Hermite 阵,由此得证。

(4) 法一: 同上述法一, 非负实数列极限为非负实数, 由此得证。

法二: 同上述法二,拆分 B 为 Q^HQ 可知此时 $A^{1/2}BA^{1/2}$ 半正定,由此得证。

9. (1) 正确,证明方式同习题 8(1) 法二。

(2) 错误,反例
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 , $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ 。

(3) 错误,反例
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$
。

(4) 错误,反例
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$$
。

- 10. (1) 类似 2.2 节习题 8(3) 可知 $(A \otimes B)^H = A^H \otimes B^H$, 由此验证知成立。
 - (2) 由定理 7.4-4,存在可逆 PQ 使 $A=P^HP, B=Q^HQ$ 。因此由 2.2 节习题 7 知 $D=(P\otimes Q)^H(P\otimes Q)$,而 PQ 可逆可知由 2.4 节习题 9 知 $P\otimes Q$ 可逆,由此 D 正定。

令
$$P = (p_{ij}), Q = (q_{ij})$$
,可知 C 的第 i 行第 j 列为 $\sum_{k=1}^{n} (\overline{p_{ki}} p_{kj}) \sum_{k=1}^{n} (\overline{q_{ki}} q_{kj})$ 。令 n 阶方阵 R_k 的的第 i 行第 j 列为 $p_{kj}q_{ij}$,令 $R = \begin{pmatrix} R_1 & \cdots & R_n \end{pmatrix}^T$,则 $C = R^H R$ 。由于 $R_k = \operatorname{diag}(p_{k1}, \ldots, p_{kn})Q$,可 发现 RQ^{-1} 通过行变换可使前 n 行构成 P ,因此其列满秩,因此 R 列满秩,由此得证。

- (3) 与(2) 相同构造矩阵即可。
- 11. (1) 利用 2.4 节习题 12, 对其任何 $\lambda \leq 0$, $A \lambda I$ 为主角占优矩阵,因此行列式不为 0, 由此知其所有特征值均正,由定理 7.4-2 得成立。
 - (2) 将上一问证明中 $\lambda \leq 0$ 改为 $\lambda < 0$,由此知其所有特征值非负,由定理 7.5-2 得成立。
- 12. 由于 $B^TB = D + A$, P 应与 B 形式类似,事实上,由于 B 每行代表连接两个顶点的一条边,因此 必恰有两个 1,将 B 每行的第二个 1 变为 -1,其余不变,即为所求的 P。
- 13. (1) 由 6.4 节习题 11 知成立 (或仿照那题证法亦可)。
 - (2) 利用 6.4 节定理 6.14 设 P^HAP 为 A 的酉相似三角化,可发现 P^HBP 的对角元为 P^HAP 对角元的实部,再利用习题 5 归纳可知 $\det(B) = \det(P^HBP) \le P^HBP$ 对角元乘积 $\le P^HAP$ 对角元乘积的模 $= |\det(P^HAP)| = |\det(A)|$ 。利用习题 5 证明过程发现取等要求 P^HAP 对角,即 A 为 Hermite 阵,矛盾。
- 14. 先证明 B+C 可逆: 若否,设特征值 0 对应特征向量 α ,则 $(B+C)\alpha=\mathbf{0}$,左侧同乘 α^H 得 $\alpha^H B\alpha=-\alpha^H C\alpha$,由正定定义知 $\alpha^H C\alpha$ 为负实数,从而 $\alpha^H A\alpha=-\alpha^H (B+C+C^H)\alpha=\alpha^H C^H\alpha=(\alpha^H C\alpha)^H$ 仍为负实数,矛盾。

任取 $(B+C)^{-1}C$ 特征值 λ , 对应特征向量 α , 有 $(B+C)^{-1}C\alpha = \lambda\alpha$, 左侧同乘 $\alpha^H(B+C)$ 得 $\alpha^H C\alpha = \lambda(\alpha^H B\alpha + \alpha^H C\alpha)$ 。由于 B 为记 $\alpha^H C\alpha = a + bi$, $\alpha^H B\alpha = t$, a, b, $c \in \mathbb{R}$, 计算知 $|\lambda|^2 = \frac{a^2 + b^2}{(a+t)^2 + b^2}$ 。由正定定义知 $\alpha^H A\alpha = 2a + t > 0$, t > 0, 可计算得 $|\lambda|^2 < 1$, 原命题得证。

§7.3 一些例子

- 1. 由 6.4 节定理 6.15,设 $A = UDU^H$,U 为酉方阵, $D = \operatorname{diag}(\lambda_1, \dots, \lambda_k, O)(\lambda_i$ 为非零特征值),取 $D_1 = \operatorname{diag}(|\lambda_1|, \dots, |\lambda_k|, O), D_2 = \operatorname{diag}(\frac{\lambda_1}{|\lambda_1|}, \dots, \frac{\lambda_k}{|\lambda_k|}, I)$ 令 $S = UD_1U^H, P = UD_2U^H$,验证得成立。
- 2. (暂缺,疑似不可做)

3. 利用例 7.10,
$$A = \begin{pmatrix} 2 & 1 & & \\ 1 & \ddots & \ddots & \\ & \ddots & 2 & 1 \\ & & 1 & 1 \end{pmatrix}$$
, c 只有第 i 个分量为 1,其他为 0。行列变换可知 $\det(A) = 1$,

而记 A 的第 k 顺序主子式为 $A_k(k < n)$,利用 3.3 节习题 2 可递推证明 $A_k = k + 1$,因此 A 正定。由例 7.10 知 x_i 最大值为 A^{-1} 第 i 个对角元的平方根,利用伴随方阵知为 $\begin{cases} 1 & i < n \\ \sqrt{n} & i = n \end{cases}$ 。进一步得

$$x_i$$
 取值范围为
$$\begin{cases} [-1,1] & i < n \\ [-\sqrt{n},\sqrt{n}] & i = n \end{cases}$$

- 4. 利用例 7.10,此时 A 除对角元为 1 外均为 $\frac{1}{2n}$,因此 A 每行元素和均为 $k = \frac{3n+1}{2n}$,估算验证知 A 正定。c 的所有分量均为 1。记 $B = \frac{1}{k}A$,由 3.3 节习题 3(2) 知 $\sum_{i,j=1}^{n} B_{ij} = n \det(B)$,而利用例 7.10 知 最大值即为 A^{-1} 各行列元素和的平方根,为 $\sqrt{\sum_{i,j=1}^{n} \frac{A_{ij}}{\det(A)}} = \sqrt{\sum_{i,j=1}^{n} \frac{k^{n-1}B_{ij}}{k^n \det(B)}} = \sqrt{\frac{n}{k}} = \sqrt{\frac{2n^2}{3n+1}}$,进一步得其取值范围为最大值的相反数到最大值的闭区间。
- 5. 设 P,Q 为置换阵,由置换阵为正交阵知 $(PAQ)(PAQ)^T = PAA^TP^T = nPP^T = nI$,因此不妨设这个子矩阵在左上角,分块为 $\begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}$,可发现 AA^T 的左上角为 p 阶方阵 $A_1A_1^T + A_2A_2^T$,且 $A_1A_1^T$ 的所有元素均为 q。由结论可算得 A_2 任意不同两行看作向量 (共 p 个向量),任意两不同行内积结果为 -q,每个向量与自身内积为 n-q,所有向量之和的模长平方为 p(n-q)+p(p-1)(-q),而模长平方和不可能为负,由此解出 $pq \geq n$ 。
- 6. 仿照例 7.12 设出奇异值分解,取出右式中最大的 k,完全仿照证明即可 (注意运用 6.4 节例 6.14 即 可知 $||B-A||_F$)。
- 7. 类似例 7.11 设出 $R_A(x) = \frac{\sum_{i=1}^n \lambda_i |y_i|^2}{\sum_{i=1}^n |y_i|^2}$,由于 P 可逆,x,y 的维数相同,不妨直接考虑 y。 当 V 为 \mathbf{e}_1 到 \mathbf{e}_k 生成的 k 维子空间时,可发现 $\min_{y \in V} R_A(x)$ 在 $y = \mathbf{e}_k$ 时取到,此时最小值即为 $\lambda_k(A)$ 。 类似 2.3 节习题 7 考虑基可知 V 的任意 k 维子空间中都存在一个前 k-1 个分量均为 0 的非零向量,取 y 为这个向量时即发现此时值不超过 $\lambda_k(A)$,因此最小值不超过 $\lambda_k(A)$,左侧等号成立。对于右侧等号,对称地类似验证即可。
- 8. (暂缺)
- 9. (暂缺)
- 10. 利用数论知识知 $i \mid n, j \mid n \Rightarrow \operatorname{lcm}(i,j) \operatorname{gcd}\left(\frac{n}{i}, \frac{n}{j}\right) = n, \sum_{d \mid n} \varphi(d) = n,$ 由此可计算: 原式 = $\sum_{i \mid n,j \mid n} \frac{x_i x_j}{\operatorname{lcm}(i,j)} = \sum_{i \mid n,j \mid n} \frac{x_i x_j}{\operatorname{lcm}\left(\frac{i}{n}, \frac{j}{n}\right)} = \frac{1}{n} \sum_{i \mid n,j \mid n} x_i x_j \operatorname{gcd}(i,j) = \frac{1}{n} \sum_{i \mid n,j \mid n} x_i x_j \sum_{d \mid \operatorname{gcd}(i,j)} \varphi(d) = \frac{1}{n} \sum_{d \mid n} \varphi(d) \sum_{d \mid i \mid n,d \mid j \mid n} x_i x_j = \frac{1}{n} \sum_{d \mid n} \varphi(d) \left(\sum_{d \mid i,i \mid n} x_i \right)^2$

这样配方后,d=n 的项即为要证式的右侧,而其他项均为平方,因此大于等于号成立。

11. (1) 由于 (3) 中的 Q 为下三角方阵, 其可逆, 利用 7.2 节定理 7.4-4 知 A 正定。

(2)
$$P^T P$$
 第 i 行第 j 列为 $\sum_{k=1}^m p_{ki} p_{kj} = \sum_{i|k,j|k,k \le m} \frac{ij}{m} = \frac{ij}{m} \frac{m}{\text{lcm}(i,j)} = \gcd(i,j)$, 由此得证。

(3) 由数论知识知
$$\sum_{d|n} \varphi(d) = n$$
。 $Q^T Q$ 第 i 行第 j 列为 $\sum_{k=1}^n q_{ki}q_{kj} = \sum_{k|i,k|j} \varphi(k) = \gcd(i,k) = a_{ij}$,由此得证。

12. 由于同号时可取到最大值,不妨设 x_i 均正,以下若出现编号 x_{2n+i} ,视为 x_i 。

利用
$$a + b = 1, a > 0, b > 0 \Rightarrow ab \leq \frac{1}{4}$$
, 计算可知
$$\sum_{1 \leq i \leq j \leq 2n} \min((j - i), (2n - j + i))x_i x_j = \sum_{n=1}^{\infty} \left(\sum_{i=1}^{n} x_{i+j-1}\right) \cdot \left(\sum_{i=1}^{n} x_{i+j+n-1}\right) \leq \sum_{i=1}^{n} \frac{1}{4} = \frac{n}{4}$$

曲于 $\min((j-i),(2n-j+i)) \le n$, $Q \le n \sum_{1 \le i \le j \le 2n} \min((j-i),(2n-j+i))x_ix_j \le \frac{n^2}{4}$, 且取 $x_1 = x_{n+1} = \frac{1}{2}$, 其他为零时可取到最大值。

13. 类似 3.1 节习题 5(6) 可知 A 的 k 阶顺序主子式为 $\frac{1}{k}\prod_{i=1}^{k-1}\left(\frac{1}{i}-\frac{1}{i+1}\right)=\frac{1}{(k!)^2}>0$,由 7.2 节定理 7.4-8 知其正定。

考察 A 正交相似后的对角阵 (不妨设特征值从大到小排列),由于正定,其所有特征值均正,此对角阵即为奇异值的形式,因此由 6.3 节例 6.7-3 与例 7.11 知 $||A|| = \sigma_1(A) = \lambda_1(A) = \max_{n \in \mathbb{Z}} R_A(x)$ 。

$$x^TAx = \sum_{k=1}^n \frac{x_k}{k} \left(\sum_{i=1}^{k-1} 2x_i + x_k \right), \quad \text{只需证明 } x_i \text{ 不全为 0 时其小于 4} \sum_{k=1}^n x_k^2. \quad \text{设 } S_0 = 0, S_k(k > 0) = \sum_{k=1}^k x_k, \quad \text{即要证 } \sum_{k=1}^n \frac{S_k^2 - S_{k-1}^2}{k} < 4 \sum_{k=1}^n (S_k - S_{k-1})^2, \quad \text{至此交叉项只剩下了相邻项,可归纳配方解决。}$$

14. (暂缺)

第八章 线性空间

§8.1 基本概念

- 1. (1) 若有 $\mathbf{0}_1, \mathbf{0}_2$ 为零向量,则 $\mathbf{0}_1 = \mathbf{0}_1 + \mathbf{0}_2 = \mathbf{0}_2$ 。
 - (2) 若有 β_1, β_2 为 $-\alpha$, $\beta_1 = \beta_1 + (\alpha + \beta_2) = (\beta_1 + \alpha) + \beta_2 = \beta_2$ 。
 - (3) $\lambda \mathbf{0} = \lambda (\mathbf{0} + \mathbf{0}) = \lambda \mathbf{0} + \lambda \mathbf{0}, 0\alpha = (0+0)\alpha = 0\alpha + 0\alpha$, 消去知成立。
 - (4) 若 $\lambda \neq 0, \lambda \alpha = \mathbf{0}$,则 $\alpha = \frac{1}{\lambda} \lambda \alpha = \mathbf{0}$ 。
- 2. (1) 是。
 - (2) 不是,不存在零向量。
 - (3) 是。
 - (4) 不是,不满足加法封闭性。
 - (5) 是。
 - (6) 不是,不存在零向量。

- 3. (1) 否, U 不是 V 的子集。
 - (2) 是。
 - (3) 否,函数定义域不同。
 - (4) 是。
 - (5) 不是,不满足数乘封闭性。
 - (6) 不是,不满足加法封闭性 (6.2 节习题 7(2))。
- 4. $\mathbb{F}^{m \times n}$ 上的矩阵到 \mathbb{F}^{mn} 上的向量可按分量作映射 $a_{ij} \to x_{(n-1)i+j}$, 此映射即为同构.
- 5. 由同构可逆,不妨设 m > n,考虑 \mathbb{F}^m 中只有第 i 个分量为 1,其他为 0 的 m 个向量,映射到 \mathbb{F}^n 后, 由于 n < m, 必然存在某个的像可以由其他的像用加法与数乘表出,与其在 \mathbb{F}^m 中不可被表出矛盾。
- 6. 为子空间直接验证即可。

 $\mathbb{F}[x]$ 到 V_1 的同构为 $f(x) \to f(x^2)$, $\mathbb{F}[x]$ 到 V_2 的同构为 $f(x) \to (x-1)(f(x-1)-f(0))+f(0)$ 。

§8.2 线性相关

- 1. 由定义与定理 8.4 直接验证即可。
- 2. (1) 线性无关。
 - (2) 线性无关。
 - (3) $n \ge 3$ 时线性相关。注意到 $x^t + x^{t-1}(1-x) = x$
 - (4) 线性无关。利用定义,问题转化为 $\begin{pmatrix} 1 & a_0 & \cdots & a_0^n \\ 1 & a_1 & \cdots & a_1^n \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \sim & \cdots & a^n \end{pmatrix} \begin{pmatrix} \lambda_0 \\ \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$ 是否存在非零解。利用 3.2 节例 3.8

知此矩阵可逆,再由 2.4 节定理 2.9 知不存在非零解

3. (1) 线性无关。

若存在 λ_i 使 $\sum_{k=1}^m \lambda_k \sin(n_k x) = 0$,求两次导知 $\sum_{k=1}^m \lambda_k n_k^2 \sin(n_k x) = 0$,类似可知 $\sum_{k=1}^m \lambda_k n_k^{2t} \sin(n_k x) = 0$ $0, t \in \mathbb{N}^*$, 有这些式子类似习题 2(4) 可推出 $\lambda_i \sin(n_i x)$ 全为 0, 因此 λ_i 全为 0, 即为线性无关。

- (2) 线性无关。类似 (1) 可证明。
- (3) 线性相关。 $\sin(2x)\cos(2x) = \sin(x)\cos(3x) + \sin(x)\cos(x)$ 。
- (4) 线性相关。 $\sin^3(x)\cos(x) = \sin(x)\cos(x) \sin(x)\cos^3(x)$ 。
- 4. 利用 3.4 节习题 1 说明即可。
- 5. $\mathbb{F}_n(x) = \text{Span}(1, x, \dots, x^{n-1})$,利用定理 8.8 反证知结论。
- 6. 取每个分量为 1, 其余为 0 的一组 mn 个向量可生成 $\mathbb{F}^{m \times n}$, 利用定理 8.8 反证知结论。
- 7. 反证。若线性相关,中定义 8.5 取下标最大的非零 λ_i ,即有 α_i 可由 $\alpha_1, \ldots, \alpha_{i-1}$ 线性表出。
- 8. (1) 错误。 $\alpha_k(k < n) = \mathbf{e}_k, \alpha_n = \mathbf{e}_{n-1}$ 即矛盾。
 - (2) 正确。在 S_2 中增添一个 α_1 为 S_2' ,其与 S_1 等价,线性无关,而 $S_2 \subset S_2'$,由定理 8.2 线性无关。

9. (1) 正确。设 $S_1 \subset \operatorname{Span}(S)$,由线性相关知可取 S 中向量个数小于 n,而 $S_2 \subset \operatorname{Span}(S_1) \subset \operatorname{Span}(S)$,利用定理 8.8 反证知结论。

- (2) n 为奇数时正确,为偶数时错误。令 $S = \sum_{i=1}^{n-1} (-1)^i (\alpha_i + \alpha_{i+1}) + (-1)^n (\alpha_n + \alpha_1) = 0$,n 为偶数时 S = 0,因此必然线性相关。n 为奇数时, $S = -2\alpha_1$,类似构造后可由 S_2 表出 S_1 ,由定理 S_1 ,由定理 S_2 等价,因此结论正确。 S_1 , S_2 等价,因此结论正确。 S_1
- 10. 当:证明逆否命题,若其线性相关,利用行变换可变换出一行 0,因此此方阵必然不可逆,由此得证。仅当:设此方阵的行列式为 $g(x_1,\ldots,x_n)$ 。由向量组线性无关,此函数不恒为 0(在定义域上恒为 0的函数只有零函数),因此可取合适的 x_1,\ldots,x_n 使其不为 0,由此得证。

§8.3 向量组的秩

- 1. (1) 234,123 (2) 除 2345 外的四元组
- 2. (1) 任意三元组 (2) 除 145 外的三元组
- 3. (1) 任意三元组 (2) 任意四元组
- 4. (1) 先证 $\operatorname{rank}(S) = \operatorname{rank}\operatorname{Span}(S)$ 。设 S 的极大线性无关组为 T,则 $S \subset \operatorname{Span}(T) \Rightarrow \operatorname{Span}(S) \subset \operatorname{Span}(T)$,利用定理 8.9 知结论成立。因此, $\operatorname{rank}(S_1) = \operatorname{rank}\operatorname{Span}(S_1) = \operatorname{rank}\operatorname{Span}(S_2) = \operatorname{rank}(S_2)$ 。
 - (2) 设 S_1 的极大线性无关组为 T,构造可知 $\operatorname{Span}(S_1) = \operatorname{Span}(T)$ 。利用定理 8.10 与数量计算可知 T 亦为 S_2 的极大线性无关组,因此 $\operatorname{Span}(S_2) = \operatorname{Span}(T) = \operatorname{Span}(S_1)$ 。
 - (3) $S_1 = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n, \dots\}, S_2 = \{\mathbf{e}_2, \dots, \mathbf{e}_n, \dots\}$
- 5. 设 $\alpha_1, \ldots, \alpha_n$ 的极大线性无关组为 T,由定理 8.9,设 $\alpha_1, \ldots, \alpha_m$ 的极大线性无关组为 T_0 ,则有 $T_0 \subset T \cup \{\alpha_{n+1}, \ldots, \alpha_m\}$,由此 $|T_0| |T| \leq m n$,由秩定义即为题目结论。
- 6. (1) 接例 8.13 继续,此时 T_2 可由 T_1 线性表出,且 $|T_2| = |T_1|$,由定理 8.9, T_2 是 $\mathrm{Span}(T_1)$ 的极大 线性无关组,因此 T_1 可由 T_2 线性表出,即存在对应的 X。
 - (2) 由 (1) 知 A, AB 的列向量组等价。同时行变换不改变列的相对关系,因此行变换后仍可以用相同的方式将 YA, YAB 的列向量组互相表出,由此得证。
- 7. 与习题 6 相同,取那题的 A, B, Y 为 A^{k-1}, A, A 即可。
- 8. 设 A 的列向量组 S_1 的极大线性无关组为 T,记 (A,B) 的列向量组 S_2 ,由习题 4(2) 过程可知 T 亦为 S_2 的极大线性无关组,因此 B 的列向量组可由 T 线性表出。由 $T \subset S_1$ 知 B 的列向量组可由 A 的列向量组线性表出,即存在对应的 X。
- 9. 必要: 类似习题 8 考虑行向量组可知存在 Y 使 (C,D) = Y(A,B),再由习题 8 结论知存在 X 使 B = AX,由此得结论。

充分: 与 4.2 节例 4.6 相同说明。

10. 设 A, B 的列向量组为 S_A, S_B ,极大线性无关组为 T_A, T_B , $A \pm B$ 的列向量组为 $S_{A \pm B}$ 。由于 $S_{A \pm B} \subset \operatorname{Span}(T_A, T_B)$,由定理 8.9 知 $\operatorname{rank}(S_{A \pm B}, S_A, S_B) \leq \operatorname{rank}(T_A, T_B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$,因此 $\operatorname{rank}(A \pm B) \leq \operatorname{rank}(A) + \operatorname{rank}(B)$ 。右侧不等号取加号,左侧不等号取减号并代换即可。

§8.4 基与坐标

- 1. (1) 基为 $\mathbf{e}_1 \mathbf{e}_n$, $\mathbf{e}_2 \mathbf{e}_n$, ..., $\mathbf{e}_{n-1} \mathbf{e}_n$, 维数 n-1, (a_1, \ldots, a_n) 坐标为 (a_1, \ldots, a_{n-1}) 。
 - (2) 基为一切 $\mathbf{e}_{ij}, i \leq j$, 维数 $\frac{n(n+1)}{2}$, 坐标直接确定即可。
 - (3) 基为一切 $\mathbf{e}_{ij}, i \neq j$ 与 $\mathbf{e}_{11} \mathbf{e}_{nn}, \mathbf{e}_{22} \mathbf{e}_{nn}, \dots, \mathbf{e}_{n-1,n-1} \mathbf{e}_{nn}$,维数 $n^2 1$,坐标类似 (1) 可确定。
 - (4) 基为 $1,(x-1)^2,(x-1)^3,\ldots,(x-1)^{n-1}$, 维数 n-1, 类似例 8.17 可知坐标。
 - (5) 基为一切 $\mathbf{e}_{ij} \mathbf{e}_{ji}, i \leq j$, 维数 $\frac{n(n-1)}{2}$, 坐标直接确定即可。
 - (6) 基为一切 $\mathbf{e}_{kj} \mathbf{e}_{jk}$, $(\mathbf{e}_{kj} \mathbf{e}_{jk})$ i, $k \leq j$, 维数 n(n-1), 坐标直接确定即可。
 - (7) 基为 $x i, (x i)^2, ..., (x i)^{n-1}$, 维数 n 1, 类似例 8.17 可知坐标。
 - (8) 基为 $x-i, (x-i)^2, \dots, (x-i)^{n-1}, (x-i)i, (x-i)^2i, \dots, (x-i)^{n-1}i$,维数 2n-2,类似例 8.17 可知坐标。

$$2. (1) \begin{pmatrix} 3 & 3 & 4 \\ -1 & -3 & -3 \\ 4 & 4 & 6 \end{pmatrix}$$

$$(2) \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

$$(3) \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$

$$(4) \begin{pmatrix} -1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$$

3. 左推右: 由基的定义,基可互相线性表出,利用定理 8.13-1 知结论。

右推左;利用 P^{-1} 可将 a_i 用 b_i 线性表出,因此 b_i 包含一组 V 的基,再由数量关系知其即为基。

- 4. 利用矩阵乘法展开即可。
- 5. 新坐标 (a,b) 则原坐标 $(a\cos\theta b\sin\theta, a\sin\theta + b\cos\theta)$, 因此 $f(x\cos\theta y\sin\theta, x\sin\theta + y\cos\theta) = 0$.
- 6. 由习题 5 假设有 $2(x\cos\theta y\sin\theta)^2 + (x\cos\theta y\sin\theta + x\sin\theta + y\cos\theta)^2 = 1$,交叉项为 $(2(\cos\theta + \sin\theta)(\cos\theta \sin\theta) 4\cos\theta\sin\theta)xy = 0$,化简得 $\cos 2\theta = \sin 2\theta$,取 $\theta = \frac{\pi}{8}$ 得标准方程为 $(2 + \sqrt{2})x^2 + (2 \sqrt{2})y^2 = 1$ 。
- 7. 同构。设 \mathbb{R} 在 \mathbb{Q} 上的基为 $a_t(t \in I)$,则 \mathbb{C} 在 \mathbb{Q} 上的基为 $a_t, a_t \mathrm{i}(t \in I)$,下面说明 $|I| = |\mathbb{R}|$ 。令 $\{q_n\}$ 为所有有理数的某个排列, $A_r = \sum_{q_n < r} \frac{1}{n!}$,且 $A = \{A_r | r \in \mathbb{R}\}$ 。由定义 $0 < A_r < \mathrm{e}$,且 $|A| = |\mathbb{R}|$,下证 A 在 \mathbb{Q} 上线性无关。

由于有理数稠密性, $A_r = A_s \Leftrightarrow r = s$ 。若线性相关,设 $\alpha_1 A_{r_1} + \dots + \alpha_k A_{r_k} = 0, \alpha_i \in \mathbb{Q}, r_1 > \dots > r_k$,同乘可以使 $\alpha_i \in \mathbb{Z}$ 。由有理数稠密性,可以取任意大的 n 使 $r_1 > q_n > r_2$ 。等式两边同乘 n!,可得 $z = \sum_{i=1}^k \alpha_i \sum_{n \in \mathbb{Z}} \frac{n!}{m!}, z \in \mathbb{Z}$,又由于 $r_1 > q_n > r_2$ 类似证明 e 是无理数那样,取足够大的 n

可以使 $\sum_{i=1}^k |a_i| \sum_{m>n} \frac{n!}{m!}$ 任意小,由此可得得 $\sum_{i=1}^k \alpha_i \sum_{q_m < r, m > n} \frac{n!}{m!}$ 只能为 0。计算可知 z = 0 等价于 $\alpha_1 = -\sum_{i=1}^k \alpha_i \sum_{q_m < r_i, m < n} \frac{n!}{m!}$ 。右侧必为 n 的倍数,取 $n > |\alpha_1|$ 知 $\alpha_1 = 0$,同理可得 $\alpha_i = 0$,与线性 相关矛盾。

由此,利用 8.3 节定理 8.10 可知 $A \subset I \subset \mathbb{R}$,由康托-伯恩斯坦定理知 $|I| = |\mathbb{R}|$ 。

利用定理 8.12 知只需说明两组基等势,由 $|I|=|\mathbb{R}|$, \mathbb{C} 基数为 $|\mathbb{R}|+|\mathbb{R}|=|\mathbb{R}\times(0,1)|$,构造

$$(a,0) o \arctan a, (a,1) o egin{cases} a + \frac{\pi}{2} & a > 0, a \notin \mathbb{Z} \\ a - \frac{\pi}{2} & a < 0 \\ a + \frac{\pi}{2} + 1 & a \in \mathbb{N} \end{cases}$$
,即成立。

- 8. 不同构。反证, $\mathbb{R}[x]$ 的基为 $1, x, x^2, \ldots$,若其可以与 $\mathbb{R}[[x]]$ 的基作一一映射,不妨设这组基为 $t_1 = \sum_{n=0}^{\infty} a_{1n} x^n, t_2 = \sum_{n=0}^{\infty} a_{2n} x^n, \ldots$,利用方程知识知,任取 b_1 ,可取 b_2 使 $b_1 + b_2 x$ 不能用 t_1 前两项表出,因此 $b_1 + b_2 x$ 为前两项的幂级数不可由 t_1 表出;接着可取 b_3 使 $b_1 + b_2 x + b_3 x^2$ 不能用 t_1, t_2 前三项表出,由此归纳构造可构造出 $\sum_{n=0}^{\infty} b_n x^n$,其前 n+1 项不可由 t_1 到 t_n 前 n 项表出,因此其不可由 t_1 到 t_n 表出对任意 n 成立,与其可以被有限表出矛盾 (此即说明 $\mathbb{R}[[x]]$ 的基不为可数)。
- 9. 设 M 为线性空间,且其中所有矩阵的秩最大值为 p,只需证明 $\dim(M) \leq pn$ 即可。由于对可逆阵 P,Q,M 中所有矩阵左乘 P,右乘 Q 后相当于所有基对应相乘,空间维数不变,因此不妨左右乘合适的 P,Q 使 $Y = \begin{pmatrix} I_p & O \\ O & O \end{pmatrix} \in M$ 。

令
$$E = \left\{ \begin{pmatrix} O & B \\ B^T & A \end{pmatrix}, A \in M_{n-p \times n-p}(\mathbb{R}), B \in M_{p \times n-p}(\mathbb{R}) \right\}$$
,则 $\dim(E) = n(n-p)$ 设 $X = \begin{pmatrix} O & B_0 \\ B_0^T & A_0 \end{pmatrix} \in M \cap E$,由于 $Y \in M$, $X + aY \in M$,即 $\operatorname{rank} \begin{pmatrix} aI & B_0 \\ B_0^T & A_0 \end{pmatrix} \leq p$ 。行列变换知 $\operatorname{rank} \begin{pmatrix} aI & O \\ O & A_0 - a^{-1}B_0^T B_0 \end{pmatrix} \leq p$ 对任意 $a \neq 0$ 成立,故 $A_0 = B_0^T B_0 = O$,考察 $\operatorname{tr}(B_0^T B_0)$ 知 $A_0 = B_0 = O$,即 $M \cap N = \{O\}$ 。

由 8.5 节定理 8.15 知 $\dim(M) + \dim(E) = \dim(M+E) \le n^2$, 因此 $\dim(M) \le pn$ 。

10. 归纳,一阶时成立,若 n-1 阶时成立,则 n 阶时,类似习题 9 中的讨论,利用 5.2 节习题 10(1),可不妨设 V 中全为上三角阵。记 $t_n = \left\lceil \frac{n^2}{4} \right\rceil + 1$,下证 $\dim(V) \leq t_n$ 。

若 $\dim(V) \geq t_n + 1$,取 $t_n + 1$ 个线性无关的 V 中矩阵 $A_1, \ldots, A_{t_n + 1}$,将 A_i 的删去首行首列后的 子方阵记为 M_i 。分块计算可知,由于 A_i 可交换且为上三角阵, M_i 亦为一组可交换的 n-1 阶上三角阵。设 $\{M_i\}$ 的秩 (此处含义为向量组的秩) 为 k,由归纳假设 $k \leq t_{n-1}$,不妨设 M_1, \ldots, M_k 为 其极大线性无关组,则 $\forall i > k, \exists n_{i1}, \ldots, n_{ik}, M_i = \sum_{j=1}^k n_{ij} M_j$,此时记 $B_i = A_i - \sum_{j=1}^k n_{ij} A_j$,则 B_i 只有首行不为 0,且 $\{B_i\}$ 线性无关 $(i = k + 1, k + 2, \ldots, t_n + 1)$ 。类似地,我们可以得到线性无关的 $C_{s+1}, \ldots, C_{t_n + 1} \in V, s \leq t_{n-1}$,且 C_i 只有末列不为 0。由于 B_i, C_j 可交换,考察右上角可知一切 $B_i C_j$ 的右上角为 0。

令 B 为所有 $\{B_i\}$ 行向量排成的 $(t_n+1-k)\times n$ 矩阵, C 为所有 $\{C_i\}$ 列向量排成的 $n\times (t_n+1-s)$ 矩阵, 利用 8.3 节例 8.11 知 $\mathrm{rank}(B)=t_n+1-k$, $\mathrm{rank}(C)=t_n+1-s$, 而由一切 B_iC_i 的右上角为 0 可知

BC = O。利用 4.2 节例 4.9, $\operatorname{rank}(B) + \operatorname{rank}(C) \leq \operatorname{rank}(BC) + n$,即 $n \geq 2t_n + 2 - s - k \geq 2t_n - 2t_{n-1} + 2$,分奇偶讨论知矛盾。

由此,原命题成立。

§8.5 交空间与和空间

- 1. (1) (-17, 7, -16, 0), (6, -6, 3, -5) (2) (10, -2, 3, -6), (4, -9, -8, 10)
- 2. (1) (0,1,1,0,1), (0,1,2,0,0), (1,0,2,-1,0)
 - (2) (1,-1,0,0,0), (0,0,0,1,1), (0,1,-1,0,0), (0,0,3,1,0)
- 3. (1) 设 $f \in V_1 \cap V_2$,则 $f = \sum_{k=1}^n a_k \sin^k x = \sum_{k=1}^n b_k \cos^k x$,考虑 $\sin x$ 值域知 $\forall s \in [-1,1], \sum_{k=1}^n a_k s^k = \sum_{k=1}^n b_k (1-s^2)^{k/2}$,由此 $2 \nmid k$ 时 $b_k = 0$,又由常数项为 0,可知交空间的一组基为 $\cos^{2k} x \cos^2 x, k \geq 2$ 。 和空间的一组基为 $\cos^n x, \sin^{2n+1} x, n \geq 0$ 。计算知此集合生成空间即为 $V_1 + V_2$ 。注意到, $\sin^{2n+1} x = h(\cos x) \sin x$,h 为 2n 次多项式。若 $f(\cos x) g(\cos x) \sin x = 0$,f, g 为多项式,将 $\sin x$ 写为 $\cos x$ 即可验证出 f = g = 0,由此知线性无关。
 - (2) 交空间为 0, 和空间的基为两集合并集。

利用积化和差可说明
$$\int_{-\pi}^{\pi} \cos(nx) \sin(mx) dx = 0$$
。若 $f = \sum_{i=1}^{s} a_i \sin(m_i x) = \sum_{i=1}^{t} b_i \cos(n_i x)$,则 $f^2 = \sum_{i=1}^{s} a_i \sin(m_i x) \sum_{i=1}^{t} b_i \cos(n_i x)$ 在 $(-\pi, \pi)$ 上积分为 0,因此只有 $f = \mathbf{0}$,由此可知和空间基为两集合并集。

- 4. 为子空间直接验证即可。类似 2.1 节习题 8(4) 可知 V_1 维数为 n,由定义可知 V_2 为 V_1 中每个矩阵 转置所构成的空间,因此维数为 n,由其形式知其交为 $\{aI\}$,维数为 1,由定理 8.15 知和空间维数 2n-1。
- 5. 为子空间直接验证即可。

计算可知其交为被 f(x) = x(x-1)(x+1) 整除的多项式,基为 $f(x), xf(x), x^2f(x), \dots$; 其和为被 x 整除的多项式,基为 x, x^2, \dots 。

- 6. 证明其逆否命题。设 V_1, V_2 的基为 $\{\alpha_i\}, \{\beta_j\}$,由于不存在包含关系,必然有某个 α_s 不可被 $\{\beta_j\}$ 线性表出,某个 β_k 不可被 $\{\alpha_i\}$ 线性表出。考虑 $\mathrm{Span}(\alpha_s, \beta_k)$,其包含于 $V_1 + V_2$,若包含于 V_1 ,则 β_k 可被表出,矛盾,同理其不包含于 V_2 ,因此原命题得证。
- 7. (1) $V_1 \cap W \subset V_1, V_2 \cap W \subset V_2 \Rightarrow (V_1 \cap W) + (V_2 \cap W) \subset V_1 + V_2$ $V_1 \cap W \subset W, V_2 \cap W \subset W \Rightarrow (V_1 \cap W) + (V_2 \cap W) \subset W$ 综合以上两式知成立。
 - (2) $V = \mathbb{R}^2$, $V_1 = \{(a,0)\}$, $V_2 = \{(0,a)\}$, $W = \{(a,a)\} \Rightarrow V_1 \cap W = V_2 \cap W = \mathbf{0}$, $(V_1 + V_2) \cap W = W$ (3) 证明第一个等号,第二个类似即可。

设 $V_1 \cap W$ 基为 $\{\alpha_i\}$, $V_2 \cap W$ 基为 $\{\beta_j\}$, 利用 8.3 节定理 8.10 知可设 V_2 的基为 $\{\beta_j, \gamma_k\}$, 反证可知 $\{\gamma_k\} \cap W = \emptyset$ 。左侧即为 $\mathrm{Span}\{\alpha_i, \beta_j\}$,而右侧为 $\mathrm{Span}\{\alpha_i, \beta_j, \gamma_k\} \cap W$,由定义可知 $\{\alpha_i, \beta_j\} \subset W$,再由 $\{\gamma_k\} \cap W = \emptyset$ 知右侧即为 $\mathrm{Span}\{\alpha_i, \beta_j\}$,与左侧相同。

- 8. (1) $V_1 \cap V_2 \subset V_1 \Rightarrow (V_1 \cap V_2) + W \subset V_1 + W$, 同理得另一部分, 由此成立。
 - (2) 与习题 7(2) 解答相同构造即可。
 - (3) 证明第二个等号,第一个类似即可。由于 $W = W \cap (V_2 + W)$,利用习题 7(3),
 - $(V_1+W)\cap (V_2+W) = (W\cap (V_2+W)+V_1)\cap (V_2+W) = W\cap (V_2+W)+V_1\cap (V_2+W) = V_1\cap (V_2+W)+W$
- 9. 错误。取习题 7(2) 解答中的 V_1, V_2, W 取为 V_1, V_2, V_3 即为反例。

§8.6 直和与补空间

- 1. 任意矩阵 $A = \frac{A + A^T}{2} + \frac{A A^T}{2}$,前者对称后者反对称,且计算知既对称又反对称的实方阵只有 O,由此得证。
- 2. 任意多项式 $f(x) = \frac{f(x) + f(-x)}{2} + \frac{f(x) f(-x)}{2}$,前者偶后者奇,且计算知既偶又奇的多项式只有零多项式,由此得证。
- 3. (1) 由定义可发现, V_2 为与 V_1 中任何向量内积均为 0 的向量所构成的空间,且包含满足此条件的全部向量。由于只有零向量与自身内积为 0, $V_1 \cap V_2 = \mathbf{0}$ 。利用 4.2 节定理 4.8-2 与 8.3 节例 8.11 可知 $\dim(V_1) + \dim(V_2) = n$,由 8.4 节定理 8.15 知 $\dim(V_1 + V_2) = n$,因此 $V_1 + V_2 = \mathbb{R}^n$,由定理 8.16 知结论。
 - (2) 不成立。例如,复数域中取 $A = \begin{pmatrix} 1 & i \end{pmatrix}$,则 $(1,i) \in V_1 \cap V_2$,因此矛盾。
- 4. 充分性: 利用定义 8.14 与定理 8.16 归纳即可. 必要性: 反证,利用定理 8.18 得矛盾。
- 5. 1 推 2: 由直和定义知成立。
 - 2 推 4: 反证,由线性相关定义,若线性相关,必可取出有限个空间,其中有线性相关的向量,由定理 8.18 知矛盾。
 - 4 推 3: 若基相交,取出相交的基向量则与条件 4 矛盾。由于 $\bigcup_{i \in I} S_i$ 可生成 $\sum_{i \in I} V_i$,只需证明其线性 无关。若否,存在不全为 0 的 λ_{ij} ,使 $\lambda_{11} s_{11} + \dots + \lambda_{1k_1} s_{1k_1} + \lambda_{21} s_{21} + \dots + \lambda_{2k_2} s_{2k_2} + \dots + \lambda_{n1} s_{n1} + \dots + \lambda_{nk_n} s_{nk_n} = 0$,其中 $s_{ij} \in S_i$,则取 $\alpha_i = \lambda_{i1} s_{i1} + \dots + \lambda_{ik_i} s_{ik_i}$,即与条件 4 矛盾。
 - 3 推 1: 取出条件 3 中取出的基对应 $\sum_{i \in I} V_i$ 的坐标,由坐标为唯一表示可知此和为直和。
- 6. 类似 8.4 节例 8.17 知满足 f(1) = 0 的多项式可唯一写为 $(x-1) \sum_{k=0}^{n} a_k (x+1)^k = (x-1) \sum_{k=1}^{n} a_k (x+1)^k$ 1) $^k + a_0 (x-1)$,因此补空间为 x-1 生成的空间。
- 7. 与习题 1 类似得补空间为一切反对称方阵,类似 8.5 节习题 1(6) 知补空间维数为 n(n-1)。
- 8. 与习题 1 类似得补空间为一切反对称方阵,类似 8.5 节习题 1(5) 知补空间维数为 $\frac{n(n-1)}{2}$
- 9. 利用习题 3 证明过程中的结论,可发现 $\bigcap_{i \in I} V_i$ 中的向量与任何 U_i 中的向量内积为 0,因此与 $\sum_{i \in I} U_i$ 中的任何向量内积为 0。反之,与 $\sum_{i \in I} U_i$ 中的任何向量内积为 0 的向量必须与每个 U_i 中的向量内积均 0,因此属于 $\bigcap_{i \in I} V_i$ 。由此,构造 A 使得 A 的行向量组生成 $\bigcap_{i \in I} V_i$ (注意到 A 的行向量组生成的子空间可以为任意 \mathbb{R}^n 的子空间),则 $Ax = \mathbf{0}$ 的解空间即为 $\sum_{i \in I} U_i$,因此两空间互补,结论成立。
- 10. 未必, 如 $V = \mathbb{R}^2$, $V_1 = \{(a,0)\}$, $V_2 = \{(0,a)\}$, $U_1 = U_2 = \{(a,a)\}$ 即为反例。

第九章 线性变换 71

§8.7 直积与商空间

1. 构成线性空间验证即可。将每个 f(x) 映射至对 $\forall i \in I$ 下的坐标分量为 f(i),即为同构映射。

- 2. (1) 由于子空间的和仍为子空间,只需说明对 V_i 的子空间 T_i , $T_1 \times T_2$ 是 $V_1 \times V_2$ 的子空间。直接验证为子集与封闭性即可。
 - (2) 错误,右侧两者之交为 $\mathbf{0} \times V_2$, V_2 不为 $\mathbf{0}$ 时不为直和。

若将所有直和改为和则正确: 左侧的每个元素可写为 (u+w,v), 其中 u,v,w 分别取遍 U_1,V_2,W_1 , 右侧即为 $(u,v_1)+(w,v_2)$, 直接计算可发现左右相等。

- 3. 设 $U \cap W$ 对 U 的补空间为 A,由定理 8.22,只需证明 $W \oplus A = U + W$ 。由定义 W 与 A 交为 $\mathbf{0}$ 。另一方面,设 $U \cap W$ 的基为 $\{\alpha_i\}$,利用 8.3 节定理 8.10 知可设 U 的基为 $\{\alpha_i, \beta_j\}$,W 的基为 $\{\alpha_i, \gamma_k\}$,而 A 的基为 $\{\beta_j\}$,因此 $W + A = \operatorname{Span}\{\alpha_i, \gamma_k, \beta_j\} = U + W$,由 8.6 节定理 8.16 知结论成立。
- 4. 取出 V 的基,则与这组基内积全为 0 的向量构成线性空间 U,类似 8.6 节习题 3 得 U 为 V 的补空 间,维数为 n-r,取 U 的基作为 A 的行向量,类似计算验证知成立。
- 5. 利用 8.6 节习题 3,构造 $a+W\to a, a\in U$,由直和可知 a 取遍 U 中元素后一切 a+W 即为 \mathbb{F}^n/W ,验证其为同构即可。
- 6. 为子空间直接验证即可。

7. 利用例 8.25,取 $V_i = \{ax^i, a \in \mathbb{R}\}, W_i = \mathbf{0}, i \in \mathbb{N}$ 即可。

第九章 线性变换

§9.1 基本概念

- 1. (1) $A(0) = A(0+0) = A(0) + A(0) \Rightarrow A(0) = 0$
 - (2) 由定义展开即得结果。
 - (3) 利用(1)与(2)得结论。
 - (4) 利用 (1) 与 (2) 得结论。
 - (5) $\mathcal{A}\alpha = \mathcal{A}\beta, \alpha \neq \beta \Leftrightarrow \mathcal{A}(\alpha \beta) = \mathbf{0}$
 - (6) 利用 (2) 即可知结论。
- 2. (1) 是。
 - (2) 是。
 - (3) 是。
 - (4) 不是。 $I \rightarrow I$,但 $iI \rightarrow -iI \neq iI$ 。
 - (5) 是。
 - (6) 不是。 $I \to I$,但 $2I \to \frac{1}{2}I \neq 2I$ 。
 - (7) 是。

第九章 线性变换 72

- (8) 不是。 $1+x \Rightarrow (1+x)^2 \neq 1+x^2$ 。
- (9) 是。

(10) 是由。
$$\int_{-\infty}^{+\infty} e^{-(x+t)^2} p(t^2) \mathrm{d}t = \int_{-\infty}^{+\infty} e^{-t^2} p((t-x)^2) \mathrm{d}(t-x) = \int_{-\infty}^{+\infty} e^{-t^2} p((t-x)^2) \mathrm{d}t$$
 可验证。

- 3. 是线性映射、单射。不是满射,因此不为双射,不可逆。
- 4. 1 推 2: 由定理 9.1 直接得结果。

2 推 1: 利用定理 9.2,考虑线性映射: 将 $\{\alpha_i\}$ 的极大线性无关组映射到对应的 β_i ,将此无关组扩充 为U的一组基,并将这组基中剩下的元素映射到0。验证可知此线性映射即符合要求。

5. (1)
$$\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

(2) 利用 2.1 节习题 6(6) 的结果,注意到两题对应的转轴相同,取出的 α, β, γ 相同,直接得到包含 θ 的结果。

$$(3) \begin{pmatrix} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

$$(4) \begin{pmatrix} \frac{1}{3} & -\frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

$$(4) \begin{pmatrix} \frac{1}{3} & -\frac{2}{3} & -\frac{2}{3} \\ -\frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{pmatrix}$$

$$\begin{pmatrix}
a_{11} & 0 & 0 & a_{11} \\
a_{12} & 0 & 0 & a_{12} \\
a_{21} & 0 & 0 & a_{21} \\
a_{22} & 0 & 0 & a_{22}
\end{pmatrix}$$

(6) 利用 2.2 节习题 9 可知结果为
$$P \otimes Q^T$$
,即
$$\begin{pmatrix} p_{11}q_{11} & p_{11}q_{21} & p_{12}q_{11} & p_{12}q_{21} \\ p_{11}q_{12} & p_{11}q_{22} & p_{12}q_{12} & p_{12}q_{22} \\ p_{21}q_{11} & p_{21}q_{21} & p_{22}q_{11} & p_{22}q_{21} \\ p_{21}q_{12} & p_{21}q_{22} & p_{22}q_{12} & p_{22}q_{22} \end{pmatrix}$$

$$(7) \begin{pmatrix} p_{11}q_{11} & p_{12}q_{11} & p_{11}q_{21} & p_{12}q_{21} \\ p_{11}q_{12} & p_{12}q_{12} & p_{11}q_{22} & p_{12}q_{22} \\ p_{21}q_{11} & p_{22}q_{11} & p_{21}q_{21} & p_{22}q_{21} \\ p_{21}q_{12} & p_{22}q_{12} & p_{21}q_{22} & p_{22}q_{22} \end{pmatrix}$$

$$(8) \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$(9) \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2 \\
-1 & 0 & 0 & 0 \\
0 & -2 & 0 & 0
\end{pmatrix}$$

6. * 设 $\beta_i = \sum_{k=1}^n a_k \alpha_k$,则 $a_k \to \sum_{k=1}^n a_k \alpha_k$,而 $\beta_i = \sum_{k=1}^n a_k \alpha_k \to \sum_{k=1}^n a_k \beta_k$,由此 α, β 表示下矩阵相同。

$$\begin{pmatrix}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{pmatrix}, \begin{pmatrix}
2 & 1 & 1 \\
1 & 1 & 1 \\
-1 & -1 & 0
\end{pmatrix}, \begin{pmatrix}
2 & 1 & 1 \\
1 & 1 & 1 \\
-1 & -1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 1
\end{pmatrix}, \begin{pmatrix}
0 & 1 & 1
\end{pmatrix}, \begin{pmatrix}
0 & 1 & 1
\end{pmatrix}$$

$$(2) \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

- 7. * 记 E_{ij} 为只有第 i 行第 j 列为 1,其他为 0 的方阵, \mathbf{e}_i 为只有第 i 个分量为 1,其他为 0 的向量。
 - (1) $AE_{ij} = AE_{ji}$,因此 $A(E_{ij} E_{ji}) = O$,由 8.4 节习题 1(5) 知 A 需满足将反对称方阵映射为 O。
 - (2) $AE_{ij} = (AE_{ji})^T$,因此 $A(E_{ij} + E_{ji}) = (AE_{ji})^T + AE_{ji}$,类似 8.4 节习题 1(5) 知 A 需满足将对称阵映射为对称阵。
 - (3) 由于 $\mathcal{A}(E_{i1}E_{1j}) \mathcal{A}(E_{1j}E_{i1}) = \mathcal{A}E_{ij} = O, i \neq j$,且 $\mathcal{A}(E_{ij}E_{ji}) \mathcal{A}(E_{ji}E_{ij}) = \mathcal{A}(E_{ii} E_{jj}) = O, i \neq j$,可推知 $\mathcal{A}X$ 恒为 O。
 - (4) 若 AX 恒为 O 显然满足要求,下面设 A 不恒为 O。

引理: $\operatorname{rank}(X) \leq \operatorname{rank}(Y) \Rightarrow \exists P, Q, X = PYQ$ 。不妨只考虑相抵标准型,由 $\begin{pmatrix} I_r & O \\ O & O \end{pmatrix}\begin{pmatrix} I_s & O \\ O & O \end{pmatrix} = 0$

$$\begin{pmatrix} I_t & O \\ O & O \end{pmatrix}, t = \min(r,s)$$
 可构造出合适的 P,Q 。

第一步: $AX = O \Leftrightarrow X = O$ 。 $AX = O \Rightarrow A(PXQ) = O$, P,Q 为任意方阵。由引理可知一切秩小于等于 X 的矩阵均被映射至 O。若 X 的秩至少为 1,可知 $AE_{ij} = O$ 对一切 E_{ij} 成立,由此 AX 恒为 O,矛盾,因此只能 X = O。

第二步: A 是双射,AI = I。若 A 的像空间的维数不足 n^2 , AE_{ij} , $1 \le i, j \le n$ 必然线性相关,因此存在非零 X 使 AX = O,矛盾。由此可知 A 是满射。利用定理 9.1-5 知 A 是单射,由此其是双射。设 AX = I,则 A(XI) = AXAI,化简即为 AI = I。

第三步: 记 $A_{ij} = AE_{ij}$,则 $\operatorname{rank}(A_{ij}) = 1$ 。由于 $I = A(P^{-1}P) = AP^{-1}AP$,可知可逆阵的像仍然可逆。由此,若 $\operatorname{rank}(AX) = r$,则 $\operatorname{rank}(A(PXQ)) = \operatorname{rank}(APAXAQ) \leq r$ 。若 P,Q 可逆,则等号成立。由引理, $\operatorname{rank}(X) < \operatorname{rank}(Y) \Rightarrow \operatorname{rank}(AX) \leq \operatorname{rank}(AY)$,且秩相同的矩阵的像仍然秩相同。由此,若某个 $\operatorname{rank}(A_{ij}) \neq 1$,由其不为 O 知大于 1,则所有非零矩阵的像的秩均大于 1,与双射矛盾。第四步: 存在可逆阵 P 使 $A_{ii} = P^{-1}E_{ii}P, i = 1, \ldots, n$ 。由于 $\operatorname{rank}(A_{ii}) = 1$,利用 4.1 节习题 4 可设 $A_{ii} = \alpha_i\beta_i^T$,其中 α_i,β_i 为 n 维列向量。令 $Q = \begin{pmatrix} \alpha_1 & \cdots & \alpha_n \end{pmatrix}, P = \begin{pmatrix} \beta_1 & \cdots & \beta_n \end{pmatrix}^T$,计算知使 $A_{ii} = QE_{ii}P$,只需证明 PQ = I。由于 $E_{ii}^2 = E_{ii}$,可知 $A_{ii}^2 = \alpha_i\beta_i^T\alpha_i\beta_i^T = (\beta_i^T\alpha_i)\alpha_i\beta_i^T = A_{ii} = \alpha_i\beta_i^T$,由于 $A_{ii} \neq O$, $\beta_i^T\alpha_i = 1$ 。而由于 $E_{ii}E_{jj} = O$, $i \neq j$,类似有 $(\beta_i^T\alpha_j)\alpha_i\beta_j^T = O$,由秩可知 α_i,β_j 均 不为 $\mathbf{0}$,因此 $\alpha_i\beta_j^T \neq O$, $\beta_i^T\alpha_j = 0$ 。由于 PQ 的第 i 行第 j 列为 $\beta_i^T\alpha_j$,由此即得证。

第五步: 上一步中构造的 P 使 $\mathcal{A}X = P^{-1}\mathcal{B}XP$,其中 \mathcal{B} 将 E_{ij} 映射为其倍数。由于只需要说明基的情况,需证 $A_{ij} = cP^{-1}E_{ij}P$,不失一般性,说明 $A_{12} = cP^{-1}E_{12}P$ 。设 $PA_{12}P^{-1} = B = \alpha\beta^T$,由于 $E_{11}E_{12} = E_{12}$,计算得 $E_{11}B = B$,也即 $(\mathbf{e}_1^T\alpha)\mathbf{e}_1\beta^T = \alpha\beta^T$ 。由 $\beta \neq \mathbf{0}$ 可知 $(\mathbf{e}_1^T\alpha)\mathbf{e}_1 = \alpha$,再由

 $\alpha \neq \mathbf{0}$ 可推出只能 α 为 \mathbf{e}_1 倍数;再由 $E_{12}E_{22}=E_{12}$,类似可证 β 为 \mathbf{e}_2 倍数,因此 $B=cE_{12}$,由此得证。

第六步: 存在可逆对角阵 Q 使上一步中的 $\mathcal{B}X = Q^{-1}XQ$ 。由假设知 $\mathcal{B}E_{ii} = E_{ii}$,且计算得 $\mathcal{B}(XY) = \mathcal{B}X\mathcal{B}Y$ 。设 $\mathcal{B}E_{ij} = b_{ij}E_{ij}$,下面证明取 $Q = \operatorname{diag}(1,b_{12},\ldots,b_{1n})$ 即可。由于 $(E_{ij} + E_{ji})^2 = E_{ii} + E_{jj}$,代入计算可发现 $b_{ij}b_{ji} = 1$;又由于 $E_{i1}E_{1j} = E_{ij}$,可算得 $b_{i1}b_{1j} = b_{ij}$ 。由此可知 $b_{ij} = \frac{b_{1j}}{b_{1i}}$,代入计算知 Q 符合要求。

综合第五步第六步的结果,取 R = QP,可知 $AX = R^{-1}XR$,再验证充分性可知其为充要条件。

(5) 验证知将(4)中所有的解复合转置变换即得(5)的所有解。

§9.2 线性映射的运算

1. 定理 9.4: 验证双射、保加法、数乘即可。

定理 9.5: 利用线性映射矩阵表示的定义,类似 2.1 节例 2.3 验证即可。

- 2. $\mathbf{e}_{k} \to \begin{cases} \mathbf{e}_{j} & k = i \\ \mathbf{0} & k \neq i \end{cases}$, i, j 分别取遍 1 到 m, 1 到 n, 即为一组基。设 e_{k} 的像为 $\sum_{t=1}^{n} a_{kt} \mathbf{e}_{t}$, 按 i 先 j 后 的顺序,坐标即为 $(a_{11}, \ldots, a_{1n}, a_{21}, \ldots, a_{2n}, \ldots, a_{m1}, \ldots, a_{mn})$ 。
- 3. 利用矩阵表示,设 A, B 的矩阵表示为 A, B,恒等变换的矩阵表示为 I。由于 $Char F \nmid n$,利用定理 2.2-6 可知 $tr(AB BA) = 0 \neq n = tr(I)$,由此即得证。
- 4. 利用 2.2 节习题 9,可知此线性映射可矩阵表示为 $P \otimes Q^T$,因此问题变为此矩阵何时存在逆/左逆/右逆,类似 2.4 节习题 9、3.3 节习题 8 考虑行列变换,再还原为线性变换,可得此题的结论。
 - (1) P 有左逆 P_0 , Q 有右逆 Q_0 时,A 有左逆 $X \to P_0 X Q_0$,所有左逆即为 P_0 , Q_0 分别取遍 P 的 左逆与 Q 的右逆。
 - (2) P 有右逆 P_0 ,Q 有左逆 Q_0 时,A 有右逆 $X \to P_0 X Q_0$,所有右逆即为 P_0 , Q_0 分别取遍 P 的右逆与 Q 的左逆。
 - (3) P,Q 可逆时,A 有逆 $X \to P^{-1}XQ^{-1}$ 。
- 5. (1) 当 $a = \pm b$ 时,A 的像均为对称/反对称阵,因此其不为满射,不可逆。

其他情况,构造变换 $X \to -\frac{b}{a^2-b^2}X + \frac{a}{a^2-b^2}X^T$,验证可发现其即为 \mathcal{A}^{-1} 。

- (2) 若 b=0,最小多项式为 x-a; 若 $b\neq 0$,最小多项式不为一次,计算可验证 $(\mathcal{A}-a\mathcal{I})^2=b^2\mathcal{I}$,因此最小多项式为 $x^2-2ax+a^2-b^2$ 。
- 6. (1) 法一: 由于 dim $L(V) = n^2$, I, A, \ldots, A^{n^2} 必然线性相关, 由此存在所求多项式。

法二: 考虑其矩阵表示,矩阵的最小多项式即为所求的p。

(2) 单射推可逆: 考虑 V 的一组基。若这组基的像线性相关,则存在某个非零元素的像为 $\mathbf{0}$,与单射矛盾。由 8.3 节定理 8.10,8.11 可知这组基的像亦为空间的一组基,由此即知可逆。

满射推可逆:考虑 V 的一组基。若这组基的像线性相关,则像空间的维数低于 V 的维数,与满射矛盾。由 8.3 节定理 8.10,8.11 可知这组基的像亦为空间的一组基,由此即知可逆。

(3) 未必成立。

考虑例 9.1 中的微分变换,若其存在化零多项式,则意味着 $\forall f, a_n f^{(n)} + \cdots + a_1 f' + a_0 f = 0$, a_i 不 全为 0。取次数超过 n 的多项式,考虑最高次项即矛盾。

微分变换为满射,但不可逆; $f(x) \to xf(x)$ 为单射,但不可逆。

- 7. (1) 线性变换直接验证即可, 其逆为 $f(x) \rightarrow f(x-1)$, 因此可逆。
 - (2) 计算可知第 i 行第 j 列为 C_{j-1}^{i-1} (约定 $C_0^0 = 1$, a > b 时 $C_b^a = 0$)。
 - (3) 考虑 f(x+t) 在 x 处泰勒展开为 $\sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} t^n$,由题设,n 阶及以上导数均为 0,取 t=1 即得结论。
- 8. (1) $\mathcal{D} \circ \mathcal{S} = \mathcal{I}$, $\mathcal{S} \circ \mathcal{D}$ 为 $f(x) \to f(x) f(0)$ 。由此 \mathcal{D} 为 \mathcal{S} 左逆, \mathcal{S} 为 \mathcal{D} 右逆,而 \mathcal{D} 不为单射, \mathcal{S} 不为满射,因此均不可逆,另一侧逆不存在。
 - (2) (xf(x))' xf'(x) = f(x), 由此得证。
 - (3) 归纳构造。设 $\deg(f) = n$ 。 $\mathcal{A} \circ \mathcal{D}(1) = \mathcal{A}(0) = 0$,因此 $\mathcal{D} \circ \mathcal{A}(1) = 0$,即 $\mathcal{A}(1)$ 为常数,记为 a_n 。 当 $\mathcal{A}(1), \mathcal{A}(x), \ldots, \mathcal{A}(x^{k-1})$ 已确定,类似可发现 $\mathcal{A}(x^k) k\mathcal{S} \circ \mathcal{A}(x^{k-1})$ 为常数,令其为 $\frac{a_{n-k}}{k!}$ 。 由于对 n 次多项式 f ,只要确定 n+1 个像,最后一项即为 $\frac{a_0}{k!}$,利用 $\mathcal{D} \circ \mathcal{S} = \mathcal{T}$ 计算验证可知此时

由于对 n 次多项式 f,只需确定 n+1 个像,最后一项即为 $\frac{a_0}{n!}$,利用 $\mathcal{D}\circ\mathcal{S}=\mathcal{I}$ 计算验证可知此时 \mathcal{A} 即为题目条件所述形式。

(4) 由于从 1 出发可通过 p(S) 成为任何多项式,可设 A(1) = p(S)(1)。由于 $A(x^n) = S \circ A(nx^{n-1})$,此时 A 已唯一确定,计算验证可知 A 满足题设。

§9.3 对偶空间

- 1. 由定义 $\alpha_k^* \left(\sum_{i=1}^n \alpha_i x_i \right) = x_k$,即 $\sum_{j=1}^n b_{kj} \sum_{i=1}^n \alpha_{ij} x_j = x_k$ 。取 $x_t = 1$,其他为 0 知 $\sum_{j=1}^n b_{kj} a_{tj} = \begin{cases} 1 & t = j \\ 0 & t \neq j \end{cases}$,由此考虑 BA^T 的各分量即得证。
- 2. (1) 设 S^* 元素为 α_i^* , 由例 9.8 得 $\alpha_i^*: f(x) \to \frac{f^{(0)}(1)}{(i-1)!}$, 由定义 9.7 得 $\sigma = \left(1, \frac{1}{2}, \dots, \frac{1}{n}\right)$ 。

 (2) 设 T^* 元素为 β_i^* , 由例 9.8 得 $\beta_i^*: f(x) \to \frac{f^{(i-1)}(1)}{(i-1)!}$, 由定义 9.7 得 $\sigma = \left(1, -\frac{1}{2}, \dots, (-1)^{n-1} \frac{1}{n}\right)$ 。
- 3. 考虑 $f(x) \to f'(0)$ 。若存在 $\sum_{i=1}^{t} a_i f(b_i) = f'(0)$ 对任意多项式成立,考虑零次项可知 $\sum_{i=1}^{t} a_i s_i = 0$ 对任意 s_i 成立,于是只能 a_i 全为 0,矛盾。
- 4. 设基分别为 s_i, t_i, s_i^*, t_i^* ,设 $t_j = \sum_{i=1}^n p_{ij} s_i, s_j = \sum_{i=1}^n q_{ij} t_i, P = (p_{ij}), Q = (q_{ij})$,由 8.4 节定理 8.13-1 知 $Q = P^{-1}$,且 $t_j^* = \sum_{i=1}^n t_j^* (s_i) s_i^* = \sum_{i=1}^n t_j^* \left(\sum_{k=1}^n q_{ki} t_k\right) s_i^*$ 。由定义可知 $t_j^* \left(\sum_{k=1}^n q_{ki} t_k\right) = q_{ji}$,因此 $t_j^* = \sum_{i=1}^n q_{ji} s_i^*$,由此利用定义可知所求过渡矩阵为 P^{-T} 。
- 5. (1) 验证线性性可知 $f_{\alpha} \in V^{**}$,设 V 维数为 n,由定义可知矩阵表示为 $\left(s_{1}^{*}(\alpha) \quad s_{2}^{*}(\alpha) \quad \cdots \quad s_{n}^{*}(\alpha)\right)$ 。 (2) 直接验证可知 τ 为线性映射。设 α 在 S 表示下的坐标为 $(\alpha_{1},\ldots,\alpha_{n})$,则 (1) 中的矩阵表示可以 化为 $\left(\alpha_{1} \quad \cdots \quad \alpha_{n}\right)$,由此可证明其是同构。
- 6. (1) 为子空间直接验证即可。由 f 的线性性可验证 $f(x) = 0, x \in S \Rightarrow f(x) = 0, x \in \mathrm{Span}(S)$,而由于 $S \subset \mathrm{Span}(S)$, $f(x) = 0, x \in \mathrm{Span}(S) \Rightarrow f(x) = 0, x \in S$,由此可知 $\mathrm{Ann}(S) = \mathrm{Ann}(\mathrm{Span}(S))$ 。
 (2) 设 S 的极大线性无关组为 s_1, \ldots, s_k ,扩充为 V 的基为 s_1, \ldots, s_n 。由于 $f(s_i) = 0, i \leq k$,可直接验证 $\mathrm{Ann}(S)$ 的一组基为 $f_i(s_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$, $i = k+1, \ldots, n$,由此知 $\mathrm{dim}\,\mathrm{Ann}(S) = n-k = \mathrm{dim}(V) \mathrm{rank}(S)$ 。

(3) $f \in Ann(V_1 \cap V_2) \Leftrightarrow f(x) = 0, x \in V_1 \cap V_2$,类似 (2) 的过程,考虑基可知此即等价于 $f \in Span(Ann(V_1), Ann(V_2))$,即 $f \in Ann(V_1) + Ann(V_2)$ 。

 $f \in \operatorname{Ann}(V_1 + V_2) \Leftrightarrow f(x) = 0, x \in V_1 + V_2 \Leftrightarrow f(x) = 0, x \in \operatorname{Span}(V_1 \cup V_2) \Leftrightarrow f(x) = 0, x \in V_1 \cup V_2 \Leftrightarrow f(x) = 0, x \in V_1 \perp f(x) = 0, x \in V_2 \Leftrightarrow f \in \operatorname{Ann}(V_1) \cap \operatorname{Ann}(V_2)$

(4) 由 (3), $Ann(V_1) + Ann(V_2) = Ann(V_1 \cap V_2) = Ann(\mathbf{0}) = V^*, Ann(V_1) \cap Ann(V_2) = Ann(V_1 + V_2) = Ann(V) = \mathbf{0}$,由此得证。

§9.4 核空间与像空间

1.
$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \Rightarrow AX + XA = \begin{pmatrix} 2a+b-c & -a-d \\ a+d & b-c-2d \end{pmatrix}$$
, Ker \mathcal{A} 的一组基为 $\{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & -2 \\ 0 & -1 \end{pmatrix}\}$, Im \mathcal{A} 的一组基为 $\{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}\}$ 。

- 2. Ker A 为全体反对称方阵, Im A 为全体对称方阵, 类似 8.4 节习题 1(5) 可知基。
- 3. 由 8.7 节定理 8.23,考虑 $(U_1 \cap W)/(U_2 \cap W)$ 到 U_1/U_2 的映射 $\pi: a + U_2 \cap W \to a + U_2$ 。由于 $a + U_2 \neq b + U_2 \Rightarrow a b \notin U_2 \Rightarrow a b \notin U_2 \cap W \Rightarrow a + U_2 \cap W \neq b + U_2 \cap W$,因此同一个元素的像 唯一,此映射定义合理。

而若 $a \notin U_2 \cap W$,由 $a \in U_1 \cap W$ 知 $a \notin U_2$,因此 $a + U_2 \neq U_2$,也即 $\operatorname{Ker} \pi = \{\mathbf{0}\}$,此映射为单射,由此知维数关系。

若等号成立,则意味着此映射为满射,利用定理 8.22 设 U_2 对 U_1 一个补空间为 U_3 ,若 $\exists a \in U_3$, $a \notin W$,取此 $a + U_2$ 即无原象,反之,若 $U_3 \subset W$,可发现此即为满射,因此充要条件为 $U_3 \subset W$,进一步由题目条件可写为 $AU_1 = AU_2$ 。

- 4. (1) $Ax = \mathbf{0} \Rightarrow \mathcal{B}Ax = \mathcal{B}\mathbf{0} = \mathbf{0}$, 由此知 Ker 的关系; $\mathcal{B}(Ax) = \mathcal{B}y$, 由此知 Im 的关系。
 - (2) 由条件,若 x = Ay, $\mathcal{B}x = \mathbf{0}$,则只有 $x = \mathbf{0}$,因此限制在 $\operatorname{Im} A$ 上的 \mathcal{B} 为单射。由此存在限制在 $\operatorname{Im} \mathcal{B}A$ 上的 $\mathcal{C}($ 可验证其为线性映射) 使得 $\forall x \in \operatorname{Im} A, \mathcal{C}\mathcal{B}x = \mathcal{B}x$,令 x = Ay 可发现其已经满足题目条件,再将 $\operatorname{Im} \mathcal{B}A$ 的一个补空间全部映射到 $\mathbf{0}$ 即可。
 - (3) 对 V 的一组基 $\{c_i\}$,由条件可设 $\mathcal{B}\mathcal{A}t_i = \mathcal{B}c_i$,则令 $\mathcal{C}c_i = t_i$ 。利用线性性可验证对 V 中的元素 均有 $\mathcal{B}\mathcal{A}\mathcal{C}c = \mathcal{B}c$,由此知构造出的 \mathcal{C} 符合要求。
- 5. (1) 取 Ker \mathcal{A} 的补空间 V,由 8.7 节定理 8.20 与定理 9.1 可知 V 与 Im \mathcal{A} 同构,令 \mathcal{B} 限制在 Im \mathcal{A} 上为到 V 的同构映射,再将 Im \mathcal{A} 的一个补空间全部映射到 $\mathbf{0}$,计算验证知成立。
 - (2) * 结论应该为 A 为双射或零映射 (即像恒为 0)

右推左: A 为双射时, $AB = ABAA^{-1} = AA^{-1} = \mathcal{I}$, 由此得 B 只能为 A^{-1} 。

A 为零映射时, $\mathcal{B}x = \mathcal{B}(A\mathcal{B}x) = \mathbf{0}$,由此唯一。

左推右: 先证明引理, U 为 V 子空间, 其补空间唯一当且仅当 $U = \{0\}$ 或 U = V。直接验证知当成立,对于仅当,若 U 两者均非,取 U 的某个补空间,从中取出一组基,由选择公理取出一个基 s,再用选择公理取出 U 的一个基 t,则将 s 替换为 s+t 即获得了与原本不同的补空间。

利用引理,在 5(1) 的构造中,可发现只要取的补空间不同,构造出的 $\mathcal B$ 即不同。由此,若 $\mathcal B$ 唯一,只能 $\operatorname{Ker} \mathcal A$, $\operatorname{Im} \mathcal A$ 均为 $\{\mathbf 0\}$ 或全空间,分类讨论即得 $\mathcal A$ 为双射或零映射。

6. (1) 设 $x \in \operatorname{Ker} A \cap \operatorname{Im} B$,则 $x = By = BA(By) = B\mathbf{0} = \mathbf{0}$,由此 $\operatorname{Ker} A \cap \operatorname{Im} B = \{\mathbf{0}\}$ 。

若 Ker $\mathcal{A} \oplus \operatorname{Im} \mathcal{B} \neq U$,由定义知存在 $a \in U$ 使 $a + \operatorname{Ker} \mathcal{A}$ 均不在 Im \mathcal{B} 中,由此不存在 x 使 $\mathcal{A}(\mathcal{B}x - a) = \mathbf{0}$,与 $\mathcal{A}(\mathcal{B}\mathcal{A}a - a) = \mathbf{0}$ 矛盾。

同理可说明第二个式子。

- (2) 设 $x = \mathcal{B}t \in \operatorname{Im} \mathcal{B}$,代入 $\mathcal{B}A\mathcal{B}t = \mathcal{B}t$ 知 $\mathcal{B}Ax = x$,同理 $y \in \operatorname{Im} \mathcal{A}$ 可推出 $\mathcal{A}\mathcal{B}y = \mathcal{A}$,分别限制 在像空间中可知互为逆映射。
- 7. 设 $U_3 = \operatorname{Ker} \mathcal{A} \cap \operatorname{Ker} \mathcal{B}$, U_3 对 U 的一个补空间为 U_0 , \mathcal{A} , \mathcal{B} 限制在 U_0 上为 \mathcal{A}' , \mathcal{B}' , $U_2 = \operatorname{Ker} \mathcal{A}'$, $U_1 = \operatorname{Ker} \mathcal{B}'$, 接下来验证这样的 U_1, U_2, U_3 即符合要求。

 $\operatorname{Ker} \mathcal{A} = U_2 \oplus U_3$: 由 $U_2 \in U_0, U_0 \cap U_3 = \{\mathbf{0}\}$ 知 $U_2 \cap U_3 = \{\mathbf{0}\}$,将 $\operatorname{Ker} \mathcal{A}$ 中的元素拆分为 $a_1 + a_2, a_1 \in U_3, a_2 \in U_0$ 可发现 $\mathcal{A}'a_2 = \mathbf{0}$,由此知成立。同理有 $\operatorname{Ker} \mathcal{B} = U_1 \oplus U_3$ 。

 $U_1+U_2+U_3$ 是直和:定义可算出 Ker $\mathcal{A}'\cap$ Ker $\mathcal{B}'=\{\mathbf{0}\}$,即 U_1+U_2 是直和。再由 $U_3+(U_1\oplus U_2)=U_3+U_0$ 是直和,利用 8.6 节习题 4 可知结论。

 $U_0 = U_1 + U_2$: 计算知 Ker $\mathcal{A} \cap \text{Ker } \mathcal{B} \subset \text{Ker}(\mathcal{A} + \mathcal{B})$,由此拆分可发现 Im $\mathcal{A} = \text{Im } \mathcal{A}', \text{Im } \mathcal{B} = \text{Im } \mathcal{B}', \text{Im}(\mathcal{A} + \mathcal{B}) = \text{Im}(\mathcal{A}' + \mathcal{B}')$,因此 $\mathcal{A}', \mathcal{B}'$ 也满足条件式。任取 $c \in U_0$,考虑 $\mathcal{A}c \in \text{Im } \mathcal{A} \oplus \text{Im } \mathcal{B}$,由条件 $\mathcal{A}c = (\mathcal{A} + \mathcal{B})t$,因此 $\mathcal{A}(c - t) = \mathcal{B}t$,由 Im $\mathcal{A} + \text{Im } \mathcal{B}$ 是直和知只能 $\mathcal{A}(c - t) = \mathcal{B}t = \mathbf{0}$,由此 $t \in \text{Ker } \mathcal{B}, c - t \in \text{Ker } \mathcal{A} \Rightarrow c = (c - t) + t \in U_1 + U_2$,原命题得证。

 $U = U_1 \oplus U_2 \oplus U_3$: 结合以上两条即可推出。

 \mathcal{A} 的限制映射可逆: 利用 $\operatorname{Ker} \mathcal{A} = U_2 \oplus U_3$ 可知 $U = \operatorname{Ker} \mathcal{A} \oplus U_1$, 由例 9.14 得结论。

8. (1) 右推左: $x = At \Rightarrow x = \mathcal{B}(At) \in \operatorname{Im} \mathcal{B}$,同理有另一边包含,由此知 $\operatorname{Im} A = \operatorname{Im} \mathcal{B}$ 。

左推右: 由例 9.15, \mathcal{A} 在 $\operatorname{Im} \mathcal{A}$ 上为恒等映射, $\mathcal{B}x \in \operatorname{Im} \mathcal{B} = \operatorname{Im} \mathcal{A} \Rightarrow \mathcal{A}(\mathcal{B}x) = \mathcal{B}x$, 同理可证另一边。

(2) 右推左: $Ax = \mathbf{0} \Rightarrow \mathcal{B}x = \mathcal{B}Ax = \mathcal{B}\mathbf{0} = \mathbf{0}$, 同理有另一边包含,由此知 $\operatorname{Ker} A = \operatorname{Ker} \mathcal{B}$ 。

左推右: 利用例 9.15, 任意 V 中元素, 设其为 $u+v, u \in \operatorname{Im} \mathcal{A}, v \in \operatorname{Ker} \mathcal{A} = \operatorname{Ker} \mathcal{B}, \mathcal{B} \mathcal{A}(u+v) = \mathcal{B} \mathcal{A} u$, 由 \mathcal{A} 在 $\operatorname{Im} \mathcal{A}$ 上为恒等映射知此即为 $\mathcal{B} u = \mathcal{B}(u+v)$,同理可证另一边。

(3) 右推左: $\operatorname{rank} A = \operatorname{rank}(AC) = \operatorname{rank}(CB) = \operatorname{rank} B$ 。

左推右: 考虑对应的矩阵表示,由于 $A^2=A$,其相似标准型亦满足此性质,可发现只能为 0 与 1 构成的对角阵,再由秩相同知 A,B 相似标准型相同,因此存在可逆阵 C 使 $C^{-1}AC=B$,将 C 对应为线性变换即为所求。

9. (1) 左推右: 考虑基可知 ${\rm Im}\, A$ 包含 ${\rm Ker}\, A$ 的一个补空间,由例 9.14 可知其为满射。

石推左: 若有某个 $a+\operatorname{Ker} \mathcal{A}$ 均不在 $\operatorname{Im} \mathcal{A}$ 中,考虑 $\mathcal{A}a$,利用例 9.14 知 $\mathcal{A}x=\mathcal{A}a$ 的解为 $x=a+\operatorname{Ker} \mathcal{A}$,因此 $\mathcal{A}a\notin\mathcal{A}(\operatorname{Im} \mathcal{A})$,而 $\mathcal{A}a\in\operatorname{Im} \mathcal{A}$,与满射矛盾,由此知结论成立。

(2) 左推右: 由例 9.14 直接得成立。

右推左:设 \mathcal{A} 在 $\operatorname{Im} \mathcal{A}$ 上的限制映射为 \mathcal{A}' ,由于 \mathcal{A}' 为单射, $\operatorname{Ker} \mathcal{A}' = \mathbf{0}$,类似习题 7 证明过程知 $\operatorname{Ker} \mathcal{A} \cap \operatorname{Im} \mathcal{A} = \operatorname{Ker} \mathcal{A}' = \{\mathbf{0}\}$,再结合 (1) 知结论。

10. 对 m 归纳, m=1 时直接成立, 若 m-1 时成立, 考虑 m 时:

由 $\mathcal{A}^m = \mathcal{O}$,可知限制在 $\operatorname{Im} \mathcal{A}$ 的 $\mathcal{A}^{m-1} = \mathcal{O}$ 。取 $\operatorname{Im} \mathcal{A}$ 的子空间 U_0 使 $\operatorname{Im} \mathcal{A} = \bigoplus_{i=1}^{m-1} \mathcal{A}^{i-1} U_0$ 。设 U_0 的一组基为 $\{\mathcal{A}\alpha_i\}$,记 $V_0 = \operatorname{Span}\{\alpha_i\}$ 。

 $V_0 \cap \operatorname{Im} \mathcal{A} = \{\mathbf{0}\}$: 由归纳假设, $\mathcal{A}(\operatorname{Im} \mathcal{A}) \cap U_0 = \{\mathbf{0}\}$,而 $\mathcal{A}V_0 \subset U_0$,由此 $\mathcal{A}V_0 \cap \mathcal{A}(\operatorname{Im} \mathcal{A}) = \{\mathbf{0}\}$,即 $V_0 \cap \operatorname{Im} \mathcal{A} \subset \operatorname{Ker} \mathcal{A}$ 。由 V_0 定义, $\mathcal{A}\alpha_i$ 线性无关,因此 $\mathcal{A}v = \mathbf{0}, v \in V_0$ 当且仅当 $v = \mathbf{0}$,即 $V_0 \cap \operatorname{Ker} \mathcal{A} = \{\mathbf{0}\}$,结合 $V_0 \cap \operatorname{Im} \mathcal{A} \subset \operatorname{Ker} \mathcal{A}$ 即有结论。

 $V = V_0 + \operatorname{Im} \mathcal{A} + \operatorname{Ker} \mathcal{A}$: 由 U_0 定义, $\forall \alpha \in V, \exists \beta_i \in \mathcal{A}^{i-1}U_0, \mathcal{A}\alpha = \sum_{i=1}^{m-1} \beta_i$ 。对 i > 1, $\beta_i \in \operatorname{Im} \mathcal{A}$,由于 $U_0 \operatorname{Im} \mathcal{A}$, $\beta_i \in \operatorname{Im} \mathcal{A}$,设其原象为 γ_i ,当 i > 1 时, $\beta_i \in \mathcal{A}U_0 \in \operatorname{Im} \mathcal{A}^2$,由此可取 $\lambda_i \in \operatorname{Im} \mathcal{A}$,而 $\beta_1 \in U_0$,因此由 V_0 定义可取 $\gamma_1 \in V_0$ 。此时, $\mathcal{A}(\alpha - \gamma_1 - \sum_{i=2}^{m-1} \gamma_i) = \mathbf{0}$,因此 $\alpha - \gamma_1 - \sum_{i=2}^{m-1} \gamma_i \in \operatorname{Ker} \mathcal{A}$,即有 $\alpha \in V_0 + \operatorname{Im} \mathcal{A} + \operatorname{Ker} \mathcal{A}$ 。

存在符合要求的 U: 由于 $V_0 \cap \operatorname{Im} A = \{0\}$,分析基可知,可取出 $\operatorname{Ker} A$ 的一个子空间 W 使得 $V = V_0 \oplus \operatorname{Im} A \oplus W$,取 $U = V_0 \oplus W$,计算可知 $AU = U_0$,由此利用归纳假设知结论成立。

§9.5 不变子空间

- 1. $\mathcal{A}U$ 不变: $\alpha = \mathcal{A}u, u \in U \Rightarrow \mathcal{A}\alpha = \mathcal{A}(\mathcal{A}u)$, 由 U 不变知 $\mathcal{A}u \in U$, 因此 $\mathcal{A}\alpha \in \mathcal{A}U$, 由此得证。 $\mathcal{A}^{-1}U$ 不变: $\mathcal{A}\alpha \in U \Rightarrow \mathcal{A}\mathcal{A}\alpha \in U \Rightarrow \mathcal{A}\alpha \in \mathcal{A}^{-1}U$, 由此得证,
- 2. (此处 $\mathbb{F} = \mathbb{R}$,否则无统一结论)

由定义可发现,设 t(a,b) 为一维不变子空间 (t 为参数),则存在 r 使得 a+b=ra, a-b=rb,且 a,b 不全为 0,由此解得结果为 $t(\sqrt{2}+1,1)$ 与 $t(1-\sqrt{2},1)$ 。

- 3. 由 9.4 节习题 1,类似习题 2 解出 r 只能为 0,因此结果为 $\operatorname{Ker} \mathcal{A}$ 的一维子空间。
- 4. 利用 9.4 节习题 2 可知 Ker A 与 Im A。

设 A' 为 A 在 U 上的限制映射, $\operatorname{Ker} A' \subset \operatorname{Ker} A$ 为反对称方阵的子空间。而由不变子空间定义, $\operatorname{Im} A' \in U$,其为实对称方阵的一个子空间。由于 $A'^2 = 2A'$,类似 9.4 节例 9.15 可知 $\operatorname{Ker} A' \oplus \operatorname{Im} A' = U$,由此 U 可拆分成一个对称方阵子空间与一个反对称方阵子空间的直和。

若 U 为一个对称方阵子空间与一个反对称方阵子空间的直和,分析基可验证其为不变子空间,因此此为充要条件,由此可知 k=1,2,3 时的 U。

(本题实际证明的结论:幂等变换的不变子空间一定为 Ker 的子空间与 Im 的子空间的直和)

5. 设 V 的一组基为 $\{\alpha_i\}$,由一维子空间均为不变子空间可知 $\mathcal{A}\alpha_i$ 为 α_i 倍数,记某个基为 α , $\mathcal{A}\alpha=a\alpha$,下证 $\mathcal{A}=a\mathcal{I}$ 。

若对另一个基 $\beta \in \{\alpha_i\}$, $A\beta = b\beta$, 由于 $A(\alpha + \beta) = c(\alpha + \beta)$, 由 α, β 线性无关可算得只能 c = b = a, 由此, $\forall \alpha_i, A\alpha_i = a\alpha_i$,利用 $\{\alpha_i\}$ 为一组基计算得 $A = a\mathcal{I}$,原命题得证。

- 6. 须先证明此映射良好定义: 考虑 [u] 中的 $u + w_1, u + w_2, w_1, w_2 \in W$,由于 $\mathcal{A}(u + w_1) = \mathcal{A}u + \mathcal{A}w_1, \mathcal{A}(u + w_2) = \mathcal{A}u + \mathcal{A}w_2$,由 W 不变, $\mathcal{A}w_1, \mathcal{A}w_2 \in W$,因此 $[\mathcal{A}(u + w_1)] = [\mathcal{A}(u + w_2)] = [\mathcal{A}u]$,由此映射良好定义。
 - (1) * 此题须 $W \subset U$

由定义, $u \in U \Rightarrow \mathcal{A}u \in U$, 因此 $[u] \in U/W \Rightarrow u \in U \Rightarrow \mathcal{A}u \in U \Rightarrow \mathcal{B}[u] = [\mathcal{A}u] \in U/W$ 。

- (2) 取 $U = \{u_i \mid [u_i] \in \tilde{U}\}$,直接验证可知其线性。 $u \in U \Rightarrow [u] \in \tilde{U} \Rightarrow [\mathcal{A}u] = \mathcal{B}[u] \in \tilde{U} \Rightarrow \mathcal{A}u \in U$ 。
- 7. (1) 错误。 $V = \mathbb{F}^2, A = \mathcal{O}, U = \{(a,0)\}$,则 $\operatorname{Ker} p(A)$ 只可能为 $\{(0,0)\}$ 或 \mathbb{F}^2 ,因此不存在。
 - (2) 错误。反例同 (1), Im p(A) 只可能为 $\{(0,0)\}$ 或 \mathbb{F}^2 , 因此不存在。
 - (3) 错误。 $V = \mathbb{F}^2$, A(x,y) = (x,0), $U = \{(a,0)\}$, 验证可知 U 的任何补空间均不为不变子空间。
 - (4) 错误。 $V=\mathbb{F}^2, \mathcal{A}(x,y)=(x,0), \mathcal{B}(x,y)=(0,y), U=\{(a,0)\}$, $\mathcal{AB}=\mathcal{BA}=\mathcal{O}$,而 U 不为 \mathcal{B} 的不变子空间。

(5) 错误。V 为一切 $\frac{g(x)}{h(x)},g,h\in\mathbb{F}[x],h\neq0$ 构成的集合, $\mathcal{A}f(x)=xf(x),\mathcal{B}f(x)=\frac{1}{x}f(x),U=\mathbb{F}[x]$,可验证 $1\in U,\frac{1}{x}\notin U$,由此 U 为 \mathcal{A} 的不变子空间,但不为 \mathcal{B} 的不变子空间。

§9.6 根子空间

- 1. 考虑其矩阵表示为 $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, 因此特征值 1 对应特征子空间 $\{c \mid c \in \mathbb{R}\}$, 亦为根子空间; 特征值
 - 0 对应特征子空间 $\{c(x^3-3x^2+2x)\mid c\in\mathbb{R}\}$,亦为根子空间;特征值 2 对应特征子空间 $\{cx\mid c\in\mathbb{R}\}$,根子空间 $\{c_1x^2+c_2x\mid c_1,c_2\in\mathbb{R}\}$ 。
- 2. 任何实数 a 均为特征值,对应特征子空间 $\{ce^{ax} \mid c \in \mathbb{R}\}$,考虑每阶导数对应微分方程可知根子空间为 $\{f(x)e^{ax} \mid f \in \mathbb{R}[x]\}$ 。
- 3. 1 推 3: 取每个不变子空间的基,利用直和定义可知其构成 V 的一组基,再由不变子空间定义知此基下的 A 矩阵表示为对角阵。
 - 3 推 4: 由 5.4 节定理 5.14 知成立。
 - 4 推 2: 由定理 9.15 知成立。
 - 2 推 1: 考虑每个特征子空间 $Ker(\lambda I A)$ 的一组基,由于这组基均满足 $A\alpha = \lambda \alpha$,因此每个基都生成了一维不变子空间,由此拆分可知成立。
- 4. 左推右: λ 为 \mathcal{A} 特征值 $\Rightarrow \exists \alpha \neq \mathbf{0}, \mathcal{A}\alpha = \lambda \alpha \Rightarrow \exists \alpha \neq \mathbf{0}, d_{\mathcal{A}}(\mathcal{A})\alpha = d_{\mathcal{A}}(\lambda)\alpha \Rightarrow \exists \alpha \neq \mathbf{0}, d_{\mathcal{A}}(\lambda) = \mathbf{0} \Rightarrow d_{\mathcal{A}}(\lambda) = 0$

右推左: 若 λ 不为特征值, 记 $d'(x) = \frac{d_A(x)}{x - \lambda}$ 由定义知 $\operatorname{Ker}(\lambda \mathcal{I} - \mathcal{A}) = \{\mathbf{0}\}$, 由此 $(\lambda \mathcal{I} - \mathcal{A})(d'\mathcal{A}) = \mathcal{O} \Rightarrow d'\mathcal{A} = \mathcal{O}$, 因此 d' 亦为化零多项式,且次数更小,矛盾。

- 5. 由根子空间定义,利用定理 9.13 知其中任意有限个的和为直和,再由 8.6 节习题 5 知结论。
- 6. $(\lambda \mathcal{I} \mathcal{A}) f_i(\mathcal{A}) = d_A(\mathcal{A}) \prod_{j \neq i} (\lambda_i \lambda_j)^{-1} = \mathcal{O}$,因此 $f_i(\mathcal{A}) \alpha \in \operatorname{Ker}(\lambda \mathcal{I} \mathcal{A})$ 。而 $\sum_{i=1}^k f_i(x) 1$ 为 k 1 次 多项式,代入可验证 $\lambda_1, \ldots, \lambda_k$ 均为其零点,因此其只能恒为 0,即 $\sum_{i=1}^k f_i(x) = 1 \Rightarrow \sum_{i=1}^k f_i(\mathcal{A}) = \mathcal{I}$,由此得证。
- 7. 习题 6 的证明过程可发现,将 d_A 改为 A 的任何一个化零多项式均成立,而 $x^n 1 = \prod_{i=0}^{n-1} (x \omega^i)$,由此利用习题 6 只需说明 $\prod_{i \neq k} \frac{x \omega^j}{\omega^k \omega^j} = \frac{1}{n} \sum_{i=0}^{n-1} \omega^{-kj} x^j$ 。

8. (1) 由于 $\operatorname{Ker}(\lambda\mathcal{I}-\mathcal{A})^m\subset \operatorname{Ker}(\lambda\mathcal{I}-\mathcal{A})^n, \forall m< n$,只需证明 $\operatorname{Ker}(\lambda\mathcal{I}-\mathcal{A})^n=W_i, \forall n>m_i$ 。由于 $d_{\mathcal{A}}(x)(x-\lambda_i)^{n-m_i}$ 亦为化零多项式,利用定理 9.15 可知 $\operatorname{Ker}(\lambda\mathcal{I}-\mathcal{A})^n$ 与 W_i 均为 $\bigoplus_{j\neq i}W_j$ 的补空 间,再由包含关系分析基知只能相等,由此即得证。

(2) 由 W 定义可知 $d_i(x)$ 为化零多项式,因此最小多项式为其因式。若 $m < m_i$, $(x - \lambda_i)^m$ 为最小多项式,可发现 $W_i = \mathrm{Ker}(\lambda \mathcal{I} - \mathcal{A})^m$ 。由此利用定理 9.15 写为直和可计算发现 $\frac{d_{\mathcal{A}}(x)}{(x - \lambda_i)^{m_i - m}}$ 亦为化零多项式,与 $d_{\mathcal{A}}(x)$ 最小性矛盾,由此最小多项式即为 $d_i(x)$ 。

(3) 左侧不等号:由于 W_i 上存在最小多项式次数为 m_i 的线性映射 (由 (2) 知即为 A 在其上的限制映射),考虑矩阵表示即知至少为 m_i 阶矩阵,即 $\dim W_i \geq m_i$ 。

右侧不等号: 先证明,当 $\operatorname{Ker} A$, $\operatorname{Ker} B$ 为有限维时, $\dim \operatorname{Ker} (AB) \leq \dim \operatorname{Ker} A + \dim \operatorname{Ker} B$ 。

由 $\mathcal{AB}x = \mathbf{0} \Rightarrow \mathcal{B}x \in \operatorname{Ker} \mathcal{A}$,设 $\operatorname{Ker} \mathcal{B}$ 的补空间为 U,利用 9.4 节例 9.14, $\operatorname{Ker} \mathcal{A} \cap \operatorname{Im} \mathcal{B}$ 在 U 上的 原象 W 维数为 $\dim(\operatorname{Ker} \mathcal{A} \cap \operatorname{Im} \mathcal{B}) \leq \dim \operatorname{Ker} \mathcal{A}$,而一切满足要求的 x 为 $W + \operatorname{Ker} \mathcal{B}$,利用 8.5 节定理 8.15 知不等式成立。

由此归纳可得 $\operatorname{Ker}(\lambda \mathcal{I} - \mathcal{A})^m \leq m \operatorname{Ker}(\lambda \mathcal{I} - \mathcal{A})$,原结论成立。

- 9. $\alpha \in W \Leftrightarrow \exists n, \alpha \in \text{Ker}(\lambda \mathcal{I} \mathcal{A})^n \Leftrightarrow (\mathcal{A} \lambda \mathcal{I})^n \alpha = \mathbf{0} \Leftrightarrow \exists n, d_{A,\alpha}(x) | (x \lambda)^n \Leftrightarrow \exists m, d_{A,\alpha} = (x \lambda)^m$
- 10. (1) $xf'(x) = \lambda f(x)$,可解得一切自然数 n 为特征值,对应的特征子空间为 $\{cx^n \mid c \in \mathbb{F}\}$,其亦为根子空间。
 - (2) 设 α 次数为 n,可考虑 \mathcal{A} 限制在 $\mathbb{F}_{n+1}[x]$ 上的矩阵表示,其为 $\mathrm{diag}(0,1,\ldots,n)$ 。由此,对任意 次数的 α 可知,若 α 的 a_1,a_2,\ldots,a_k 次项不为 0,最小多项式即为 $\prod_{i=1}^k (x-a_i)$ 。

§9.7 循环子空间

- 1. (1) 对于 n 次多项式 f,考虑最高次项可知 f, $\mathcal{D}f$, ..., $\mathcal{D}^n f$ 可生成 $\mathbb{F}_{n+1}[x]$ 。由此,考虑不变子空间 (由非平凡设其非空) 中次数最高的多项式,若不存在,则一列次数趋于无穷的 f 可生成 $\mathbb{F}[x]$,平凡。若存在,此不变子空间包含于 $\mathbb{F}_{n+1}[x]$,又由 $\mathbb{F}[\mathcal{D}]f = \mathbb{F}_{n+1}[x]$ 知其只能为 $\mathbb{F}_{n+1}[x]$,即为 f 生成的循环子空间。
 - (2) 考虑不变子空间 (由非平凡设其非空) 中次数最低的多项式 f。若有 $g \in \mathbb{F}[A]f$,设 $\deg g \deg f = n$,则每次考虑最高次项,直接构造 a_i 可使 $g a_n \mathcal{S}^n f \cdots a_1 \mathcal{S} f a_0 f$ 次数比 f 更低,矛盾,由此得证。
- 2. (1) 设 $U_1 = \mathbb{F}[\mathcal{A}]\alpha$, 由 9.5 节例 9.17-3 可知 $U_1 \cap U_2$ 亦为不变子空间,其中每个元素均可写成 $f(\mathcal{A})\alpha$, $f \in \mathbb{F}($ 若有多个 f 可以表示,取其中次数最小的 f 作为表示),考虑其中次数最小的 f 对应 的 $f(\mathcal{A})\alpha$,若有某个 $g(\mathcal{A})\alpha$ 不在其生成的循环子空间中,即 $f \nmid g$,由裴蜀定理可知 $\gcd(f,g)(\mathcal{A})\alpha \in U_1 \cap U_2$,dim $\gcd(f,g) < \dim f$,矛盾,由此知结论成立。
 - (2) $V = \mathbb{F}^2$, $A = \mathcal{I}$, $U_1 = \{(a,0)\}$, $U_2 = \{(0,a)\}$, 分析知 A 的循环子空间为一切一维子空间,因此 U_1, U_2 皆循环, $U_1 \oplus U_2 = V$ 不循环。
 - (3) 取习题 1 中的微分变换, $U_1 = \mathbb{F}_1[x]$,由习题 1 知其不变子空间只能为 $\mathbb{F}_n[x]$,因此不存在 U_2 。
- 3. 1、2 等价:利用习题 2(1) 可知 A-循环子空间的任何不变子空间仍为 A-循环子空间,由此由 1 可推出 2;而 V 为不变子空间,由此 2 可推出 1。
 - 1 推 4: 设线性空间维数为 n, 循环向量为 α , 取基为 α , $A\alpha$, ..., $A^{n-1}\alpha$, 计算验证知成立。
 - 4 推 3: 由 5.4 节例 5.14 知成立。
 - 3 推 1: 由定理 9.19,取 α 使得 $d_{A,\alpha} = d_A = \varphi_A$,可直接验证其生成的循环子空间维数等于空间维数,因此其即为循环向量。

4. * 设线性空间维数为 n, 循环向量为 α

左推右: 若否,设 $\varphi_A = fg$, f, g 均不为零次,则 $g(A)fA\alpha$,由此 g 为 A 对 $fA\alpha$ 的化零多项式, 其次数小于 φ_A ,与其为循环向量矛盾。

右推左:由于 $d_{A,\alpha} \mid d_A \mid \varphi_A$,由于 φ_A 不可约, $d_{A,\alpha}$ 只能为零次多项式或 φ_A ,而 $\alpha \neq \mathbf{0}$,因此只能 为 φ_A 。由此, $\alpha, A\alpha, \ldots, A^{n-1}\alpha$ 线性无关,生成空间维数为 n,因此其为循环向量。

5. 数学归纳法可证明 9.4 节习题 10 结论, 由此构造:

由于 Ker $\mathcal{A} \subset \text{Ker } \mathcal{A}^2 \subset \cdots \subset \text{Ker } \mathcal{A}^m = V$,可取出 $U \cap \text{Ker } \mathcal{A}$ 的一组基,扩充为 $U \cap \text{Ker } \mathcal{A}^2$ 的一组基,依次进行,最后一步是扩充为 $U \cap \text{Ker } \mathcal{A}^m = U$ 的一组基。设这组基为 $\alpha_1, \ldots, \alpha_k$ 。

由 9.4 节习题 10 的构造过程,设 $\alpha_1,\ldots,\alpha_s\in \operatorname{Ker}\mathcal{A}$,则 $\mathcal{A}\alpha_{s+1},\ldots,\mathcal{A}\alpha_k$ 线性无关,且生成了 $\mathcal{A}U$ 。以此类推可证明, $\mathcal{A}^t\alpha_i$ 中不为 **0** 者生成了 \mathcal{A}^tU ,由于 $V=\bigoplus_{i=0}^{m-1}\mathcal{A}^iU$,因此 $V=\bigoplus_{i=1}^k\mathbb{F}[\mathcal{A}]\alpha_i$ 。

- 6. (1) 设循环向量为 α , 由定义存在 g 使得 $\mathcal{B}\alpha = g(\mathcal{A})\alpha$, 从而, 对 V 中任何 $\beta = f(\mathcal{A})\alpha$, $\mathcal{B}\beta = \mathcal{B}f(\mathcal{A})\alpha$, 由可交换可算得其与任何 \mathcal{A} 的多项式交换, 因此其为 $f(\mathcal{A})\mathcal{B}\alpha = f(\mathcal{A})g(\mathcal{A})\alpha = g(\mathcal{A})f(\mathcal{A})\alpha = g(\mathcal{A})\beta$ 。 两映射对 V 中任何向量的像都相同,因此相等。
 - (2) 考虑限制在 (U,V) 上的 \mathcal{B} ,证明方式与上一问完全相同,可知 $\exists f, \mathcal{B}\beta = f(\mathcal{A})\beta, \forall \beta \in U$,将 β 写为 $g(\mathcal{A})\alpha$, α 为生成此空间的向量,可知 $\mathcal{B}\beta$ 仍在此循环子空间中,由此其为 \mathcal{B} 的不变子空间。

第十章 内积空间

§10.1 基本概念

- 1. (1) 取 x = (0,0,1) 知不满足正定性,不为内积。
 - (2) 不满足对称性,不为内积。
 - (3) 为内积。
 - (4) 取 $X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ 知不满足正定性,不为内积。
 - (5) 值域不在 ℝ 中,不为内积。
 - (6) 为内积。
- 2. * 此处只计算基的内积结果,由结果可直接构造出矩阵
 - (1) 相异基内积为 1, 相同基内积为 2。
 - (2) 同为 $E_{ii} E_{11}$ 时内积为 2,同为 E_{ij} 或为 $E_{ii} E_{11}, E_{jj} E_{11}, i \neq j$ 时内积为 1,其余情况内积为 0。
 - (3) 类似 8.5 节 3(2) 可说明相异基内积为 0, 计算可得同为 1 内积为 2π , 其余情况内积为 π 。
 - $(4) \int_0^1 x^k |\ln x| dx = -\int_0^1 x^k \ln x dx$,分部积分递推可算出其为 $\frac{1}{(k+1)^2}$,由此可知内积结果。
- 3. (1) $V = \mathbb{R}_n[x]$, $\rho(f,g) = \int_0^1 x f(x) g(x) dx$, $S = \{1, x, \dots, x^{n-1}\}$, 验证知 A 构成度量矩阵,由定理 10.1 知正定。
 - (2) $V = \mathbb{R}_n[x], \rho(f,g) = -\int_0^1 x \ln x f(x) g(x) dx, S = \{1, x, \dots, x^{n-1}\}$, 验证知 A 构成度量矩阵,由定理 10.1 知正定。

(3)
$$V = \mathbb{R}_n[x], \rho(f,g) = \int_0^{+\infty} x^2 f(x) g(x) e^{-x} dx, S = \left\{1, \frac{x}{2}, \dots, \frac{x^{n-1}}{n!}\right\}$$
, 验证知 A 构成度量矩阵,由定理 10.1 知正定。

4. * 此题正定指为对称阵且正定

左推右: 若 S 不对称,设 $s_{ij} \neq s_{ji}$,取 $X = E_{1i}, Y = E_{1j}$ (仅一个分量为 1,其他为 0 的方阵) 可算 出与内积对称性矛盾。若 S 不正定,存在非零 y 使 $y^T S y \leq 0$,取 Y 第一列为 y,其余为 0,与内积 正定性矛盾。

右推左: $Y = (y_1 \cdots y_n)$,则 $\rho(Y,Y) = \sum_{i=1}^n y_i^T S y_i$,由此知正定。利用 2.1 节定理 2.2-6 与 $\operatorname{tr}(A) = \operatorname{tr}(A^T)$ 可知对称。直接计算可知线性。

5. (1) 计算知对称、线性必然成立,由此只需证明正定与 $w(x) > 0, x \in [0, 1]$ 等价。

左推右: 若否,可用多项式 f(x) 逼近 $\sqrt{-\max(w(x),0)}$ 可验证充分接近时其内积小于 0,由此不正定。

右推左: 若 f 不为 0,其零点有限,因此 $f^2(x)$ 在除了有限点外均大于 0,由此必有 $f^2(x)w(x) > 0$ 的点 (否则由连续知 w(x) 恒为 0),再由 $f^2(x)w(x)$ 连续非负可知积分大于 0,再验证得 f 为 0 时积分为 0,由此正定。

- (2) 右推左与 (1) 相同知成立,左推右未必成立: 取 $V = \mathbb{R}_2[x], w(x) = |6x 3| 1$,几何比较或计算验证可知此满足正定性,为内积。
- 6. (1) 设列向量 x 分量为 $x_1, ..., x_n$,计算得 $x^T G x = \rho \left(\sum_{i=1}^n x_i \alpha_i, \sum_{i=1}^n x_i \alpha_i \right)$,由内积正定性知其大于等于 0,因此半正定。
 - (2) 1,3 等价: 利用第一问结论,其正定当且仅当不存在非零 x 使 $\sum_{i=1}^{n} x_i \alpha_i = \mathbf{0}$,即等价于线性无关。 1,2 等价: 由 G 半正定,利用 7.4 节定理 7.4-2,7.5-2 可知结论。
- 7. 由定义直接计算,第三问平方后利用定理 10.3 即可。
- 8. (1) 若有 n+2 个合要求的向量 $\alpha_1, \ldots, \alpha_{n+2}$,由 $\alpha_1, \ldots, \alpha_{n+1}$ 线性相关,有不全为 0 的 x_i 使 $\sum_{i=1}^{n+1} x_i \alpha_i = 0$,由此 $\sum_{i=1}^{n+1} x_i (\alpha_i, \alpha_{n+2}) = 0$ 。由于每个内积都小于 0, x_i 必然有正有负,由此可分为 $\sum_t x_t \alpha_t = -\sum_s x_s \alpha_s$, $x_t > 0$, $x_t < 0$,左右均不为 $x_t < 0$ 。记左右结果为 $x_t < 0$,则 $x_t < 0$,是有结果为 $x_t < 0$,是有结果为 $x_t < 0$,则 $x_$
 - (2) 归纳,一维时直接计算知成立。

假设 n-1 维时成立,n 维时,若能取出 2n+1 个合要求的向量 $\alpha_1,\ldots,\alpha_{2n+1}$,设每个向量在包含 α_1 的一组正交基的表示为 (a_{i1},\ldots,a_{in}) ,其中 α_1 为 $(1,0,\ldots,0)$ 。由 $(\alpha_1,\alpha_i)<0$,可知 $a_{i1}\leq 0,i>1$ 。若有其他除第一个分量外全为 0 的向量,计算知其只能为 $(-t,0,\ldots,0),t>0$,且最多存在一个。因此,可不妨设 $\alpha_3,\ldots,\alpha_{2n+1}$ 后 n-1 个分量不全为 0。由归纳假设,其中必有两向量后 n-1 个分量的内积大于 0,又由于第一个分量同号,此两向量内积 >0,矛盾。

9. $p(\mathbf{e}_1 + \mathbf{e}_2) = 2^{1/p} > 2 = p(\mathbf{e}_1) + p(\mathbf{e}_2)$, 由此其不为范数。

§10.2 标准正交基

1.
$$\emptyset$$
 10.5: $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

例 10.7: Gram-Schmidt 标准正交化可得 $1, x - 1, \frac{x^2 - 4x + 2}{2}$

2. (1)
$$\rho(f,g) = \int_{-1}^{1} f(x)g(x)dx$$

证明:分析知 $\deg P_n(x) = n$,由此为说明正交性,只需证明 $\int_{-1}^1 P_n(x) x^m \mathrm{d}x$ 对 m < n 成立。利用分部积分可算出 $\int_{-1}^1 P_n(x) x^m \mathrm{d}x = -\frac{m}{2n} \int_{-1}^1 P_{n-1}(x) x^{m-1} \mathrm{d}x$,原命题化为 $\int_{-1}^1 P_n(x) \mathrm{d}x \, \mathrm{d}x = n > 0$ 时为 0,再次分部积分可说明这个结论。

(2)
$$\rho(f,g) = \int_0^{2\pi} f(\cos\theta)g(\cos\theta)d\theta$$

(3)
$$\rho(f,g) = \int_0^{2\pi} \sin^2 \theta f(\cos \theta) g(\cos \theta) d\theta$$

3. 左推右:由定理10.4直接得结论。

右推左:设
$$T = \{t_1, \dots, t_n\}, S = \{s_1, \dots, s_n\}$$
,过渡矩阵 P ,计算知 $(t_i, t_j) = \left(\sum_{k=1}^n p_{ki} s_k, \sum_{k=1}^n p_{kj} s_k\right)$,由 S 为标准正交基知其为 $\sum_{k=1}^n p_{ki} p_{kj} = (P^T P)_{ij} = I_{ij}$,由此知结论。

4. 设
$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
,则 $AX = \begin{pmatrix} a+2c & b+2d \\ 3a+6c & 3b+6d \end{pmatrix}$,可发现 $\operatorname{Ker} \mathcal{A}$ 的一组基 $\begin{pmatrix} -2 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & -2 \\ 0 & 1 \end{pmatrix}$ 正交,由此类似得:

$$\operatorname{Ker} A$$
 一组标准正交基为 $\frac{\sqrt{5}}{5} \begin{pmatrix} -2 & 0 \\ 1 & 0 \end{pmatrix}, \frac{\sqrt{5}}{5} \begin{pmatrix} 0 & -2 \\ 0 & 1 \end{pmatrix};$

$$(\operatorname{Ker} A)^{\perp}$$
 的一组标准正交基为 $\frac{\sqrt{5}}{5} \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}, \frac{\sqrt{5}}{5} \begin{pmatrix} 0 & 1 \\ 0 & 2 \end{pmatrix};$

$$\operatorname{Im} \mathcal{A}$$
 的一组标准正交基为 $\frac{\sqrt{10}}{10} \begin{pmatrix} 1 & 0 \\ 3 & 0 \end{pmatrix}, \frac{\sqrt{10}}{10} \begin{pmatrix} 0 & 1 \\ 0 & 3 \end{pmatrix};$

$$(\operatorname{Im} \mathcal{A})^{\perp}$$
 的一组标准正交基为 $\frac{\sqrt{10}}{10} \begin{pmatrix} -3 & 0 \\ 1 & 0 \end{pmatrix}, \frac{\sqrt{10}}{10} \begin{pmatrix} 0 & -3 \\ 0 & 1 \end{pmatrix}$ 。

5. 设
$$B = P\begin{pmatrix} I_r & O \\ O & O \end{pmatrix}Q$$
, P , Q 可逆, 令 $x = Q^{-1}y$, 则 $Bx = \mathbf{0} \Leftrightarrow P^{-1}Bx = \mathbf{0} \Leftrightarrow \begin{pmatrix} I_r & O \\ O & O \end{pmatrix}y = \mathbf{0}$, 可发现此时 y 前 r 个分量为 0 , 其余可任取,由此 $y = \begin{pmatrix} O_{r \times r} & O \\ O & I_{n-r} \end{pmatrix}z$, $z \in \mathbb{R}^n$, 记 $A' = AQ^{-1}\begin{pmatrix} O & O \\ O & I_{n-r} \end{pmatrix}$,则问题变为求 $||A'z - \alpha||, z \in \mathbb{R}^n$ 的最小值,由例 10.13 知结果。

6. 若否,不妨设有不全为
$$0$$
(可设 $\lambda_1 \neq 0$) 的 λ_i 使 $\sum_{k=1}^n \lambda_k \alpha_k = \mathbf{0}$,但类似定理 10.7 -2 知 $\left\| \sum_{k=1}^n \lambda_k \alpha_k \right\|^2 = \sum_{k=1}^n \lambda_k^2 ||\alpha_k||^2 \ge \lambda_1^2 ||\alpha_1||^2 > 0$,矛盾。

7. 考虑
$$\mathbb{R}$$
 上的线性空间 $V = \operatorname{Span}\{\cos(ax), a \in (0,1]\}$,定义内积为 $\rho(f,g) = \lim_{x \to \infty} \frac{2\int_0^x f(t)g(t)\mathrm{d}t}{x}$ 。

类似 8.2 节习题 3(1) 可说明 $\{\cos(ax), a \in (0,1]\}$ 线性无关,将 f,g 写为基的和可说明内积定义合理。 a,b 不同时, $\int_0^x \cos(at)\cos(bt)\mathrm{d}t$ 有界,因此内积为 0;而 $\lim_{x\to\infty} \frac{2\int_0^x \cos^2(at)\mathrm{d}t}{x} = \frac{2a}{\pi}\int_0^{\pi/a}\cos^2(at)\mathrm{d}t$ = 1,由此其构成标准正交基。

- 8. 考虑 \mathbb{R} 上的线性空间 $V = \operatorname{Span}\{\cos(nx), \sin(nx), e^x, n \in \mathbb{N}^*\}, U = \operatorname{Span}\{\cos(nx), n \in \mathbb{N}^*\}, 定义内$ 积 $\rho(f,g) = \int_0^{2\pi} f(x)g(x)\mathrm{d}x$,则 $U^{\perp} = \operatorname{Span}\{\sin(nx), n \in \mathbb{N}^*\}, (U^{\perp})^{\perp} = U$,但 $U \oplus U^{\perp} \neq V$ 。
- 9. (1) $x \in (U_1 + U_2)^{\perp} \Leftrightarrow x \in \text{Span}\{U_1, U_2\}^{\perp} \Leftrightarrow \forall u_1 + u_2, u_1 \in U_1, u_2 \in U_2, x \perp (u_1 + u_2);$ 左推右取 u_1, u_2 分别为 $\mathbf{0}$ 可知 $x \perp u_1, x \perp u_2$,由此成立;右推左由内积线性性得成立。
 - $x \in U_1^\perp + U_2^\perp \Rightarrow x = y + z, y \in U_1^\perp, z \in U_2^\perp$,由 $y, z \in (U_1 \cap U_2)^\perp$ 与内积线性性知 $x \in (U_1 \cap U_2)^\perp$ 。
 - (2) 当 V 维数有限时,由 8.5 节定理 8.15, $\dim(U_1 \cap U_2)^{\perp} = \dim V \dim(U_1 \cap U_2) = \dim V \dim U_1 \dim U_2 + \dim(U_1 + U_2) = \dim U_1^{\perp} + \dim U_2^{\perp} \dim(U_1 + U_2)^{\perp} = \dim U_1^{\perp} + \dim U_2^{\perp} \dim(U_1^{\perp} \cap U_2^{\perp}) = \dim(U_1^{\perp} + U_2^{\perp})$,再由 (1) 中包含关系知结论。

当 V 维数无限时,记 $W \subset U_1 + U_2$ 对 $U_1 + U_2$ 的正交补空间为 W',由上方分析知 $U_1' + U_2' = (U_1 \cap U_2)'$,而分析基可知 $W^{\perp} = W' \oplus (U_1 + U_2)^{\perp}$,由此可知结论。

- (3) 习题 8 的解答中,取 $U_1 = e^x, U_2 = \text{Span}\{\cos(nx), n \in \mathbb{N}^*\}$,则 $(U_1 \cap U_2)^{\perp}$ 为全空间, $U_1^{\perp} = \{\mathbf{0}\}, U_2^{\perp} = \text{Span}\{\sin(nx), n \in \mathbb{N}^*\}$,由此不等。
- 10. 未必。习题 8 的解答中,可验证 $\left\{\sqrt{\frac{2}{\mathrm{e}^{4\pi}-1}}\mathrm{e}^{x}\right\}$ 构成极大标准正交向量组 (由于除零向量外没有其他向量与其垂直),估算可发现取 $\alpha=\sin x$ 不满足等式。

§10.3 正交变换

- 1. $||\mathcal{A}\mathcal{B}\alpha|| = ||\mathcal{B}\alpha|| = ||\alpha||$ $||\mathcal{A}^{-1}\alpha|| = ||\mathcal{A}\mathcal{A}^{-1}\alpha|| = ||\alpha||$
- 2. (1) $||\mathcal{A}(x+y) \mathcal{A}x \mathcal{A}y||^2$ $= (\mathcal{A}(x+y), \mathcal{A}(x+y)) + (\mathcal{A}x, \mathcal{A}x) + (\mathcal{A}y, \mathcal{A}y) - 2(\mathcal{A}(x+y), \mathcal{A}y) - 2(\mathcal{A}(x+y), \mathcal{A}x) + 2(\mathcal{A}x, \mathcal{A}y)$ $= (x+y, x+y) + (x, x) + (y, y) - 2(x+y, y) - 2(x+y, x) + 2(x, y) = ||x+y-x-y||^2 = 0$ $||\mathcal{A}(rx) - r\mathcal{A}x||^2 = (\mathcal{A}(rx), \mathcal{A}(rx)) + r^2(\mathcal{A}x, \mathcal{A}x) - 2r(\mathcal{A}(rx), \mathcal{A}x) = (rx, rx) + r^2(x, x) - 2r(rx, x) = 0$ 由此知结论成立。
 - (2) $V=\mathbb{R}[x]$,内积 $\rho\bigg(\sum_k a_k x^k, \sum_k b_k x^k\bigg)=\sum_k a_k b_k$, $\mathcal{A}f(x)=xf(x)$,其保内积但不为满射,故不可逆。
 - (3) $V = \mathbb{R}$, $\mathcal{A}x = \begin{cases} x & |x| \neq 1 \\ -x & |x| = 1 \end{cases}$, 保范数但不为线性映射。
- 3. 在定理 10.10 证明中将 e_1, \ldots, e_n 改为 $\{e_i\}$ 中的任意有限个向量即可说明。
- 4. 由可逆知其为单射,因此 $\mathcal{A}\alpha = \mathbf{0} \Leftrightarrow \alpha = \mathbf{0}$ 。任取非零 α_0 ,记 $\lambda = \frac{||\alpha_0||}{||\mathcal{A}\alpha_0||} > 0$,下证 $\forall \alpha, \lambda ||\mathcal{A}\alpha|| = ||\alpha||$,由此即得证。

设 $||\alpha|| = c||\alpha_0||, c > 0$,可发现 $(\alpha - c\alpha_0) \perp (\alpha + c\alpha_0)$,因此 $\mathcal{A}(\alpha - c\alpha_0) \perp \mathcal{A}(\alpha + c\alpha_0)$,展开计算得 $||\mathcal{A}\alpha|| = c||\mathcal{A}\alpha_0||$,因此 $\lambda ||\mathcal{A}\alpha|| = ||\alpha||$ 。

- 5. (1) 设特征值对应特征向量 α ,则 $||\alpha|| = ||A\alpha|| = ||\lambda\alpha|| = |\lambda|||\alpha||$,由此可知 $\lambda = \pm 1$ 。
 - (2) $(\alpha, \beta) = (\mathcal{A}\alpha, \mathcal{A}\beta) = (\alpha, -\beta)$,由此知 $(\alpha, \beta) = 0$ 。
 - (3) 先证明: $Ker(\mathcal{I} \mathcal{A}) \perp Im(\mathcal{I} \mathcal{A})$ 。

设 $x \in \text{Ker}(\mathcal{I} - \mathcal{A}), y = (\mathcal{I} - \mathcal{A})z$,则 $(x, y) = (x, (\mathcal{I} - \mathcal{A})z) = (x, z) - (x, \mathcal{A}z) = (\mathcal{A}x, \mathcal{A}z) - (x, \mathcal{A}z) = ((\mathcal{A} - \mathcal{I})x, \mathcal{A}z) = (\mathbf{0}, \mathcal{A}z) = 0$,由此得证。

因此, $x \in \text{Ker}(\mathcal{I} - \mathcal{A})^2 \Leftrightarrow (\mathcal{I} - \mathcal{A})x \in \text{Ker}(\mathcal{I} - \mathcal{A})$,但由两空间垂直可知交为 $\mathbf{0}$,因此只能 $(\mathcal{I} - \mathcal{A})x = \mathbf{0}$,即 $x \in \text{Ker}(\mathcal{I} - \mathcal{A})$ 。

对 I + A, 类似证明即可。

(4) 构造复线性空间 $V' = \{u + iv, u, v \in V\}$ 与其上变换 $\mathcal{A}'(u + iv) = \mathcal{A}u + i\mathcal{A}v$,计算知其为酉变换且最小多项式与 \mathcal{A} 相同。

与 (1) 类似知 \mathcal{A}' 任一特征值 λ 的模长为 1,若 λ_i 不为特征值,则 $\mathcal{A}' - \lambda_i \mathcal{I}$ 可逆,因此除去这项后仍然为化零多项式,与最小矛盾;若有某个特征值出现两次,与 (3) 类似知 $\operatorname{Ker}(\mathcal{A}' - \lambda \mathcal{I}) = \operatorname{Ker}(\mathcal{A}' - \lambda \mathcal{I})^2$,因此去除一次后仍然为化零多项式,与最小矛盾。由此知结论成立。

§10.4 伴随变换

- 1. 若有 B, \mathcal{B}' 均为 A 的伴随变换,有 $((\mathcal{B}' \mathcal{B})\alpha, \beta) = (\mathcal{B}'\alpha, \beta) (\mathcal{B}'\alpha, \beta) = 0$,取 $\beta = (\mathcal{B}' \mathcal{B})\alpha$ 知 $\mathcal{B}'\alpha = \mathcal{B}\alpha$,因此两变换相等。
- 2. (1) 由定理 10.15 知结论。
 - (2) 即为 10.2 节定理 10.4。
- 3. 由定义 $(x + (\alpha, x)\beta, y) = (x, \mathcal{A}^*y)$, 化简得 $(x, (\beta, y)\alpha + y \mathcal{A}^*y) = 0$, 取 $x = (\beta, y)\alpha + y \mathcal{A}^*y$ 知 $\mathcal{A}^*y = (\beta, y)\alpha + y$ 。
- 4. 由定义 $\operatorname{tr}(Q^TX^TP^TY) = \operatorname{tr}(X^TA^*Y)$ 。由 2.1 节定理 2.2-6 知 $\operatorname{tr}(Q^TX^TP^TY) = \operatorname{tr}(X^TP^TYQ^T)$,由 此 $\mathcal{A}^*Y = P^TYQ^T$ 。
- 5. 由定义 $\int_{-1}^{1} x f(-x)g(x) dx = \int_{-1}^{1} f(x) \mathcal{A}^{*}g(x) dx$ 。由于 $\int_{-1}^{1} x f(-x)g(x) dx = \int_{-1}^{1} f(x)(-x)g(-x) dx$, $\mathcal{A}^{*}: g(x) \to -xg(-x)$ 。
- 6. $1, x, x^2$ 下度量矩阵 $\begin{pmatrix} 2 & 0 & \frac{2}{3} \\ 0 & \frac{2}{3} & 0 \\ \frac{2}{3} & 0 & \frac{2}{5} \end{pmatrix}$, 类似例 10.19 知 \mathcal{D}^* 矩阵表示 $\begin{pmatrix} 0 & -\frac{5}{2} & 0 \\ 3 & 0 & 1 \\ 0 & \frac{15}{2} & 0 \end{pmatrix}$ 。
- 7. \mathcal{AB} 是自伴变换 \Leftrightarrow $(x,\mathcal{B}(\mathcal{A}y)) = (\mathcal{AB}x,y) = (x,\mathcal{AB}y) \Leftrightarrow \forall y,\mathcal{AB}y = \mathcal{B}(\mathcal{A}y) \Leftrightarrow \mathcal{AB} = \mathcal{BA}$ 。
- 8. (1) $(x, (\mathcal{A}^{-1})^* \mathcal{A}^* y) = (\mathcal{A}^{-1} x, \mathcal{A}^* y) = (\mathcal{A} \mathcal{A}^{-1} x, y) = (x, y)$,因此 $(\mathcal{A}^{-1})^* \mathcal{A}^* = \mathcal{I}$,同理 $\mathcal{A}^* (\mathcal{A}^{-1})^* = \mathcal{I}$,由此得证。
 - (2) $(x,(A^*)^{-1}y) = (AA^{-1}x,(A^*)^{-1}y) = (A^{-1}x,y)$,由此得证。
 - (3) $\mathcal{A}^*x = \mathbf{0} \Leftrightarrow ||\mathcal{A}^*x||^2 = 0 \Leftrightarrow ||\mathcal{A}x||^2 = 0$,由 \mathcal{A} 可逆知 $\operatorname{Ker} \mathcal{A}^* = \{\mathbf{0}\}$,由此得证。
 - (4) 利用 10.3 节习题 2(2) 解答中定义的内积。设 $\mathcal{A}f(x)=f(x)+\frac{f(x)-f(0)}{x}$,可验证 $\mathcal{A}^*f(x)=(1+x)f(x)$ 。考虑基可知 \mathcal{A} 可逆,但 \mathcal{A}^* 不可逆。

- 9. (1) 仅当: \mathcal{A} 斜自伴 \Rightarrow $(\alpha, \mathcal{A}\alpha) = (-\mathcal{A}\alpha, \alpha) \Rightarrow (\alpha, \mathcal{A}\alpha) = 0$ 。
 - $\stackrel{\text{dis}}{=} (\alpha, \mathcal{A}\alpha) = 0 \Rightarrow (x, \mathcal{A}y) + (\mathcal{A}x, y) = (x, \mathcal{A}y) + (\mathcal{A}x, y) + (x, \mathcal{A}x) + (y, \mathcal{A}y) = (x + y, \mathcal{A}(x + y)) = 0.$
 - (2) 先说明 $\mathcal{I} \pm \mathcal{A}$ 可逆: $(\mathcal{I} + \mathcal{A})x = \mathbf{0} \Leftrightarrow x = -\mathcal{A}x \Leftrightarrow (x, -\mathcal{A}x) = -||x||^2 = 0 \Leftrightarrow x = \mathbf{0}$,因此其是单射,由有限维知可逆,对 $\mathcal{I} \mathcal{A}$ 同理。
 - 计算知 $(\mathcal{I} + \mathcal{A})^* = \mathcal{I} \mathcal{A}$,利用习题 8 知 $((\mathcal{I} + \mathcal{A})^{-1})^* = (\mathcal{I} \mathcal{A})^{-1}$,再由定理 10.16 知 $((\mathcal{I} + \mathcal{A})^{-1}(\mathcal{I} \mathcal{A}))^* = (\mathcal{I} + \mathcal{A})(\mathcal{I} \mathcal{A})^{-1}$,由于 \mathcal{A} 的有理函数互相可交换,其即为逆,由此为正交变换。
 - (3) 未必。考虑习题 5 中的 A,由习题 5 知其为斜自伴变换,而 $\mathcal{I} \pm A$ 的像集均没有 1,因此其不为满射,不可逆。
- 10. (1) 计算知 $||d_A(A^*)x||^2 = (d_A(A^*)x, d_A(A^*)x) = (d_A(A)d_A(A^*)x, x) = 0$,若有次数更小的 g 为 A^* 的化零多项式,类似可得 $g(A) = \mathcal{O}$,矛盾,由此得证。
 - (2) 类似 10.3 节习题 5 将 \mathcal{A} 扩充为复线性空间上的线性变换,从而完全分解 $d_{\mathcal{A}}$ 。对某个特征值 λ ,先说明 $\operatorname{Ker}(\lambda\mathcal{I}-\mathcal{A})=\operatorname{Ker}(\lambda\mathcal{I}-\mathcal{A}^*)$ 。记 $\mathcal{B}=\lambda\mathcal{I}-\mathcal{A}$,由定理 10.16 知 $\mathcal{B}^*=\lambda\mathcal{I}-\mathcal{A}^*$,由于 \mathcal{A} 规范, \mathcal{B} 为 \mathcal{A} 多项式, $||\mathcal{B}x||^2=0\Leftrightarrow (\mathcal{B}x,\mathcal{B}x)=0\Leftrightarrow (\mathcal{B}^*\mathcal{B}x,x)=0\Leftrightarrow (\mathcal{B}\mathcal{B}^*x,x)=0\Leftrightarrow (\mathcal{B}^*x,x)=0\Leftrightarrow (\mathcal{B}^*x,x)=0$

设 $x \in \text{Ker}(\lambda \mathcal{I} - \mathcal{A}), y = (\lambda \mathcal{I} - \mathcal{A})z$,则 $(x,y) = (x,(\lambda \mathcal{I} - \mathcal{A})z) = (x,\lambda z) - (x,\mathcal{A}z) = (\lambda x,z) - (\mathcal{A}^*x,z)$,由上一部分证明知其为 0,由此可知 $\text{Ker}(\lambda \mathcal{I} - \mathcal{A}) \perp \text{Im}(\lambda \mathcal{I} - \mathcal{A})$ 。类似 10.3 节习题 5(5) 知 $d_{\mathcal{A}}$ 没有相同特征根。

(3) 右推左: 直接计算验证即可。

左推右: 类似 6.2 节习题 8,利用 9.6 节定理 9.15 拆分为各个根子空间,由 (2) 证明过程知 $\lambda \mathcal{I} - \mathcal{A}$ 与 $\lambda \mathcal{I} - \mathcal{A}^*$ 对应根子空间相同,再对每个根子空间的最小多项式使用中国剩余定理即可。

§10.5 复内积空间

- 1. 所有结论仍均正确,计算验证即可 (余弦定理可定义夹角为 $\frac{\operatorname{Re}(a,b)}{||a||\cdot||b||}$)。
- 2. 类似实内积空间中对应定理验证即可。

3.
$$\gamma_1 = \frac{\sqrt{2}}{2}(i, 1, 0), \gamma_2 = \frac{\sqrt{6}}{6}(1, i, 2), \gamma_3 = \frac{\sqrt{6}}{6}(1 - i, 1 + i, i - 1)$$

- 4. 由于实际计算过程与实内积空间时并无区别,因此结果与 10.2 节例 10.10 相同。
- 5. (1) $(Ax,y) = \overline{(\alpha,x)}(\beta,y) = (x,\alpha)(\beta,y) = (x,(\beta,y)\alpha)$, $\text{in } A^*y = (\beta,y)\alpha$.
 - (2) $\operatorname{tr}(Q^H X^H P^H Y) = \operatorname{tr}(X^H \mathcal{A}^* Y)$ 。由 2.1 节定理 2.2-6 知 $\operatorname{tr}(Q^H X^H P^H Y) = \operatorname{tr}(X^H P^H Y Q^H)$,由 此 $\mathcal{A}^* Y = P^H Y Q^H$ 。

(3)
$$1, x, x^2$$
 下度量矩阵 $\begin{pmatrix} 2 & 0 & \frac{2}{3} \\ 0 & \frac{2}{3} & 0 \\ \frac{2}{3} & 0 & \frac{2}{5} \end{pmatrix}$, 类似 10.4 节例 10.19 知 \mathcal{A}^* 矩阵表示 $\begin{pmatrix} \frac{7}{2} & 0 & \frac{3}{2} \\ 0 & -\mathrm{i} & 0 \\ -\frac{15}{2} & 0 & \frac{7}{2} \end{pmatrix}$.

- 6. * 题目有误,应为 $tr(X^HSY)$
 - (1) 与 6.1 节习题 4 类似知结论等价于 S 正定 (Hermite 阵意义下)。
 - (2) 设一组基为 $E_{11}, \ldots, E_{1n}, \ldots, E_{m1}, \ldots, E_{mn}$,则 A 的矩阵表示为 $P^T \otimes Q$,而度量矩阵为 $S \otimes I_n$,由 2.2 节习题 7,8 与 2.4 节习题 9,类似 10.4 节例 10.19 知 A^* 的矩阵表示为 $S^{-1}PS \otimes Q^T$,由此:

酉变换 \Leftrightarrow $\mathcal{A}^* = \mathcal{A}^{-1} \Leftrightarrow P^T S^{-1} P S \otimes Q Q^T = I$,分析知其等价于 $P^T S^{-1} P S = a I$, $Q Q^T = b I$,a b = 1。 自伴变换 \Leftrightarrow $\mathcal{A}^* = \mathcal{A}$,分析知须 $P^T = a S^{-1} P S$, $Q = b Q^T$,a b = 1,分析对应元素知只能 $P^T = S^{-1} P S$, $Q = Q^T$ 或 $P^T = -S^{-1} P S$, $Q = -Q^T$ 。

斜自伴变换 \Leftrightarrow $\mathcal{A}^* = -\mathcal{A}$,分析知须 $P^T = aS^{-1}PS, Q = bQ^T, ab = -1$,分析对应元素知只能 $P^T = -S^{-1}PS, Q = Q^T$ 或 $P^T = S^{-1}PS, Q = -Q^T$ 。

规范变换 $\Leftrightarrow AA^* = A^*A$,分析知须 $P^T = S^{-1}PS$ 可交换, $Q = Q^T$ 可交换。

§10.6 内积的推广

- 1. 记 $f(x,y) = \frac{\rho(x,y) + \rho(y,x)}{2}$, $g(x,y) = \frac{\rho(x,y) \rho(y,x)}{2}$, 可验证符合要求。由 $f(x,y) + g(x,y) = \rho(x,y)$, $f(x,y) g(x,y) = \rho(y,x)$ 可解出唯一解,因此唯一。
- 2. (1) ρ(x,y) + ρ(y,x) = ρ(x,y) + ρ(y,x) + ρ(x,x) + ρ(y,y) = ρ(x + y, x + y) = 0, 由此得证。
 (2) F₂ 上定义 ρ(x,y) = xy, 可验证其符合要求 (当 Char F ≠ 2 时,由于 ρ(α,α) = -ρ(α,α) 可知反对称)。
- 3. 利用双线性性类似 10.1 节定理 10.1-2 验证即可。
- 4. 1 推 2: 直接展开计算即可。

2 推 1: 当 $\rho(x,y)$ 恒为 0 时满足,否则,取 x,y 使 $\rho(x,y) \neq 0$,变形有 $\rho(\alpha,\beta) = \frac{\rho(\alpha,y)\rho(x,\beta)}{\rho(x,y)}$,取 $f(\alpha) = \frac{\rho(\alpha,y)}{\rho(x,y)}, g(\beta) = \rho(x,\beta)$,可验证其线性,由此知成立。

- 5. (1) 记 n 维时的结果为 a_n ,归纳。当 n=1,2 时验证知成立。若 n=k 时成立,当 n=k+2 时:由于 $\alpha_i^T\alpha_i=0$,每个 α_i 必然有偶数个分量为 1,又由于同时翻转 (即 0 变为 1,1 变为 0) 所有向量的偶数个位置不会影响结果,不妨设 $\alpha_1=(1,1,0,\ldots,0)$ 。由于此 α_1 的存在,所有 α_i 的前两位只能全为 0 或全为 1,否则其与 α_1 内积为 1。前两位全为 0 的不同向量相当于 k 维情形,至多有 a_k 个,同理前两位全为 1 的也至多有 a_k 个,因此 $a_{k+2} \leq 2a_k$,由此得证。
 - (2) 记 $\beta_i = (\alpha_i, 1)$, 则 $\beta_i \in \mathbb{F}^{n+1}$, $\beta_i^T \beta_j = 0$, 利用 (1) 可知结论。
- 6. 设变换 A 矩阵表示为 A,类似 10.4 节例 10.19 知 A^* 矩阵表示为 $G^{-1}A^TG$,由此:

辛变换 $\Leftrightarrow G^{-1}A^TG = A^{-1}$,即 $A^TGA = G(\text{由 } G \text{ 可逆,此蕴含 } A \text{ 可逆})$ 。可验证辛变换在复合、取 逆下仍然是辛变换,由此辛变换形成群。由于 A^{-1} 与 A^T 相似,进而与 A 相似,辛变换的特征值的 倒数仍为特征值 (4.2 节例 4.12 有辛矩阵的一些性质)。

自伴变换 $\Leftrightarrow G^{-1}A^TG=A$ 。将 A 分块为 $\begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}$ 计算可知 $A_4=A_1^T$,且 A_2,A_3 均为反对称阵。

斜自伴变换 $\Leftrightarrow G^{-1}A^TG = -A$,分块计算可知 $A_4 = -A_1^T$,且 A_2, A_3 均为对称阵。

规范变换 $\Leftrightarrow G^{-1}A^TGA = AG^{-1}A^TG$ 。