НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «ВЫСШАЯ ШКОЛА ЭКОНОМИКИ»

Факультет компьютерных наук, Департамент программной инженерии Дисциплина: «Архитектура вычислительных систем»

Вариант 1 ПРОБЛЕМА СПЯЩЕГО БРАДОБРЕЯ

Пояснительная записка

Выполнила: Абу Аль Лабан Надя,

студент гр. БПИ198.

Москва 2020

Содержание

1. Текст	задания	3
2. Прі	именяемые расчетные методы	4
-	Теория решения задания	
	Дополнительный функционал программы	
	тирование программытирование программы	
	Корректные значения	
	Некорректные значения	
Список Л	итературы	C

1. Текст задания

Задача о парикмахере.

В тихом городке есть парикмахерская. Салонпарикмахерской мал, ходить там может только парикмахер и один посетитель. Парикмахер всю жизнь обслуживает посетителей. Когда в салоне никого нет, он спит в кресле. Когда посетитель приходит и видит спящего парикмахера, он будет его, садится в кресло и спит, пока парикмахер занят стрижкой. Если посетитель приходит, а парикмахер занят, то он встает в очередь и засыпает. После стрижки парикмахер сам провожает посетителя. Если есть ожидающие посетители, то парикмахер будит одного из них и ждет пока тот сядет в кресло парикмахера и начинает стрижку. Если никого нет, он снова садится в свое кресло и засыпает до прихода посетителя.

Создать многопоточное приложение, моделирующее рабочий день парикмахерской.

2. Применяемые расчетные методы

2.1. Теория решения задания

В информатике проблема спящего парикмахера — классическая проблема синхронизации и межпроцессного взаимодействия (interporcess) в многопроцессорной OS.

Доступно множество возможных решений. Основной элемент каждого — mutex, который гарантирует, что изменить состояние (isBusy) может только один из участников. Парикмахер должен захватить это mutex исключение, прежде чем проверить клиентов, и освободить его, когда он начинает или спать, или работать.

Клиент должен захватить mutex, прежде чем войти в магазин, и освободить его, как только он займет место или в приемной, или у парикмахера. Это устраняет обе проблемы, упомянутые в предыдущей секции.

2.2. Дополнительный функционал программы

Пользователь вводит количество посетителей. Поскольку это число должно быть положительным и целым, при попытке ввести число меньше 1 или строку программа заменяет количество посетителей на значение по умолчанию (1).

3. Тестирование программы

При запуске программы через консоль нужно первым (и единственным) аргументом ввести количество посетителей.

3.1. Корректные значения

Для начала введем корректные значения и проверим, что программа работоспособна.

Введем 20 и увидим вывод (рис.1)

```
C:\Users\HYPERPC\source\repos\Nadya\Nadya>Nadya 20
Barber is sleeping
Rarber is sleeping
Client 19 is having a new haircut.
Client 7 is having a new haircut.
Client 20 is having a new haircut.
Client 8 is having a new haircut.
Client 9 is having a new haircut.
Barber is sleeping
Client 10 is having a new haircut.
Client 11 is having a new haircut.
Client 12 is having a new haircut.
Barber is sleeping
Client 13 is having a new haircut.
Client 1 is having a new haircut.
Client 2 is having a new haircut.
Client 14 is having a new haircut.
Client 15 is having a new haircut.
Client 3 is having a new haircut.
Barber is sleeping
Client 16 is having a new haircut.
Client 4 is having a new haircut.
Client 17 is having a new haircut.
Client 5 is having a new haircut.
Client 18 is having a new haircut.
Client 6 is having a new haircut.
Barber is sleeping
Barber is sleeping
Barber is sleeping
Rarber is sleeping
Barber is sleeping
Rarber is sleeping
Barber is sleeping
```

.Рисунок 1. Корректный ввод.

Введем значение для размерности 5 и количество потоков меньшее 5, например, 3 (рис. 4). Результат верный (рис. 5).

Рисунок 4. Ввод количества потоков меньшего, чем размерность.

```
    7
    1
    5
    5
    6
    7
    9
    9
    6
    6
    6
    3
    4
    0
    5
    0
    0
    6
    8
    7
    9
    1
    5
    1
    1
    1
    1
    1
    5
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1</t
```

Рисунок 5. Подсчет результата второго примера на калькуляторе.

3.2. Некорректные значения

Чтобы проверить работу программы при некорректном вводе, введем отрицательное число.

```
C:\Users\HYPERPC\source\repos\Nadya\Nadya>Nadya -2
Barber is sleeping
Barber is sleeping
Barber is sleeping
Client 1 is having a new haircut.
Barber is sleeping
```

Рисунок 2. Некорректный ввод.

Таким образом, мы показали, что программа обрабатывает некорректные данные и работает на значениях по умолчанию.

ПРИЛОЖЕНИЕ 1

Список литературы

- 1. The Sleeping-Barbers Problem. [Электронный ресурс] // Режим доступа: свободный, URL: http://courses.washington.edu/css503/prog/prog2.pdf (дата обращения: 13.12.2020)
- 2. Проблема спящего парикмахера. [Электронный ресурс] // Режим доступа: свободный, URL: https://dic.academic.ru/dic.nsf/ruwiki/1854686 (дата обращения: 13.12.2020)