Harish Morekonda M12728920

BANA5043 - Statistical Computing - FAA Landing Overrun Analysis

executive summary

The goal of this analysis is to study the impact of factors that could be causing landing overruns. 950 rows of data with flight information of two different aircrafts is examined, and filtered based on the conditions in the variable dictionary. The distribution and spread of all estimator variables are graphically explored and found to be closely normal. Correlation tests are run to show that the no_passenger, duration, height, and pitch are independent of landing distance. Evaluating the aircraft makes against the distance indicates that airbus flights have a significantly lower landing distance and pitch. Tests also show that the variables speed_ground and speed_air variables contribute the most. The regression model for the landing distance predictor variable is built with the two velocity variables and has an r^2 of 0.7479. Introducing the height and pitch as dependent variables slightly increases the r^2 , but renders the speed_ground variable unresponsive.

direct answers to questions

1. How many observations (flights) do you use to fit your final model? If not all 950 flights, why

The model uses 840 records. Please see page 14 for a detailed breakdown of row deletion at different steps.

2. What factors and how they impact the landing distance of a flight?

The landing distances are affected linearly by speed_air and speed_ground. Also to keep in mind is the height, which should not be below 6 meters. Please see page 10-13 for more thorough analysis.

3. Is there any difference between the two makes Boeing and Airbus?

Yes, it is observed that the landing distances are distributed differently between the two aircraft makers, with a lower mean for airbus. The pitch is also slightly lower in airbus. Please see page 10 for more details.

open points

The first impressions on looking at the dataset is that it is too generic and contains very less information. Having answers to the following questions would help to understand and make better sense of the data.

weather

Weather can always be the biggest issue when it comes to landing overruns. Since the dataset does not contain any weather information, the model built using this dataset would assume ideal weather.

airport

Different airports have different runway configurations making it easier/difficult to land. The model will assume that the data was all collected from a single airport and hence it will apply to only that airport.

visibility

Visibility plays an important role and flights landing in the night is riskier than the ones landing with sufficient light. Fog could cause a big problem as well.

equipment malfunctions

The model we are building does not take into account any malfunctions of sensors and transducers. They are strictly out of scope of the model.

pilot error-human factor

Some pilots are better than others. But since the experience/expertise is not taken into account, the model assumes that all the data was collected from a single pilot.

runway contamination

Research suggests that runway contamination is the largest contributor of runway overruns in modern planes. Again, this factor is out of scope of the model.

data preparation

importing and initial quality check

To start off, the two Excel files are imported using PROC IMPORT statement into two datasets and then combined together into one larger dataset.

On importing, it's noticed 50 empty rows with null values from file2 require to be deleted. This is done while combining the data with an if statement to check the number of passenger and distance variables.

Also deleted are 100 duplicate lines across the data from the two files.

The 850 datalines are hardcoded with a serial number to track the datalines and copied to a back up variable.

handling missing values

To look for missing values across the dataset, proc means statement with nmiss argument is used.

```
proc means data=statComp.faaCombined nmiss;
run;
```

The results show that there exists 50 lines with missing duration and 642 lines with missing air speed of the aircraft.

The MEANS Procedure			
Variable	Label	N Miss	
duration	duration	50	
no pasg	no pasg	0	
speed ground	speed ground	0	
speed air	speed air	642	
height	height	0	
pitch	pitch	0	
distance	distance	0	
serialNo		0	

speed_air

From the variable dictionary, if it can be assumed that the speed_air and speed_ground variables are related and indicate the same behavior of the aircraft, then we can still work with datalines with missing speed_air variable. This has to be verified with the provider of the dataset.

This assumption should be confirmed statistically as well.

duration

The entries present in file2 do not contain data for duration variable. This could be because the collected file did not have a means to include the duration data. But, it could also mean that the flight did not take off. A bad landing could have also hypothetically damaged the sensor which lead to blank values. The variable dictionary also specifies that the flight should always be greater than 40 minutes. Ignoring the entire file of data does not make sense as well. For now, these lines are to be considered for the final model, but this could be changed based on what the data owner says.

validity check

aircraft

There are 400 lines of Boeing and 450 lines of Airbus lines in the dataset, after removing the duplicate entries

duration

On sorting the data based on duration, it's observed that there are five datalines with durations less than 40. Following the dictionary requirements, these 5 entries are to be deleted.

The duration, when plotted as a histogram looks normally distributed with mean at about 151 minutes. There doesn't appear to be any outliers as the maximum is about 300 minutes, a normal flight time.

Extr	Extreme Observations				
Lowest		Highest			
Value	Value Obs		Obs		
14.7642	831	289.320	18		
16.8935	346	293.230	722		
17.3755	634	298.522	590		
31.3910	845	302.967	345		
31.7017	234	305.622	56		

Moments					
N	800	Sum Weights	800		
Mean	154.006538	Sum Observations	123205.231		
Std Deviation	49.2592338	Variance	2426.47211		
Skewness	0.12147943	Kurtosis	-0.0551851		
Uncorrected SS	20913162.3	Corrected SS	1938751.22		
Coeff Variation	31.9851574	Std Error Mean	1.74157691		

no_pasg

Nothing looks out of ordinary. The data is again spread out normally at an average of 60 passengers.

Extreme Observations				
Low	Lowest		est	
Value	Value Obs		Obs	
29	604	80	378	
36	24	80	743	
38	338	82	271	
40	194	82	547	
41	355	87	410	

speed_ground

On throwing the data into a scatter plot, it's observed that the speed is spread between 27 mph, all the way up to 141 mph.

Moments					
N	845	Sum Weights	845		
Mean	79.400624	Sum Observations	67093.5273		
Std Deviation	19.0638891	Variance	363.431868		
Skewness	0.12145975	Kurtosis	-0.0956391		
Uncorrected SS	5634004.43	Corrected SS	306736.497		
Coeff Variation	24.0097472	Std Error Mean	0.65581772		

The box plot however, does show some outliers. As stated in the dictionary, any speed below 30 mph and above 140 mph could cause abnormal landings. There are three datalines with this outliers.

speed_air

Applying the same steps, we observe that the lowest speed on air is 90 mph and crosses 140 mph limit once.

Extreme Observations				
Lowest		Highest		
Value Obs		Value	Obs	
90.0029	822	128.418	705	
90.1110	803	131.338	181	
90.3674	785	132.911	495	
90.4767	777	136.423	815	
90.5033	487	141.725	557	

comparing speed_ground and speed_air

On graphically exploring both the speed variables, it's observed that speed_air is empty for speed_ground less than around 90 mph. This could indicate a strong correlation between the two variables and there could be a specific reason for blank speed_air cells.

The reason for this observation has to be explored thoroughly since it could throw valuable insights.

Both the speed variables contain very few outliers above the 120 mph limit. Although the dictionary says that 140 mph is the limit, bringing it down to 120 mph could help build a safer model that reduces the risk of overruns.

height

Throwing the height data on a scatter plot shows negative entries, which clearly does not sound plausible. The 5 lines with negative values should be ignored from the final model. Also, according to the dictionary, a height below 6 meters can cause landing problems and we notice 5 datalines that matches this criterion. Otherwise, the data looks normally distributed around a mean height of around 31 meters.

Extreme Observations					
Lowest Highest					
Value	Obs	Value	Obs		
-3.5462524	449	55.0935	842		
-3.3323880	1	58.0818	843		
-2.9153359	2	58.0835	844		
-1.5281292	450	58.2278	448		
-0.0677586	3	59.9460	845		

pitch

Nothing abnormal is observed. The mean of the pitch data is about 4 degrees with a standard deviation of 0.52 degrees.

Extreme Observations				
Lowe	Lowest		st	
Value	Value Obs		Obs	
2.28448	284	5.31068	571	
2.66891	399	5.32475	805	
2.67133	201	5.52678	30	
2.67599	379	5.55640	819	
2.68955	128	5.92678	470	

distance

The distance between the threshold of the runway and the point where the aircraft can be fully stopped varies between 34 feet to 6400 feet, with the majority of the data around 1000 feet. Clearly there are a lot of outliers.

Extreme Observations				
Lowest		Highest		
Value Obs		Value	Obs	
41.7223	29	5147.41	779	
133.0869	75	5343.20	490	
180.5652	25	5381.96	700	
241.1610	177	6309.95	810	
242.5959	3	6533.05	552	

The dictionary says that airport runways are typically 6000 feet long. Taking this definition at its word would mean that any row with a distance below 6000 feet landed before the strip even starts. At the same time, the lower this number, the closer it got to going out the runway.

Setting the limits at 200 feet on the lower end and 6000 m on the upper end, we see 5 datalines that fall out of this range. While modeling the algorithm, these data lines with serial numbers 559, 818, 32, 78, 28 would be great indicators for overrun prediction.

dependency tests

Testing each variable against the target variable to check for relations between the two.

aircraft

To test if the distances vary across Airbus and Boeing, a ttest is run. Comparing the 445 airbus and 395 Boeing records, it's 99.99% certain that the mean distances are vary between the two. The Boeing flights have an average 440 feet higher landing distance than airbus.

On exploring graphically, it's clear that airbus aircrafts have a lower distribution compared to Boeing.

It is also observed that the airbus flights stop closer to the end of the runway (distance too low) and the Boeing flights land way before the runway strip starts (distance>6000).

duration

To test the dependancies of duration and landing distance, a correlation test is run. As evident in the x-y plot below, the duration and the landing distances are not related.

The correlation coefficient is too small at -0.05287 to be related. The p-value is greater than 0.05, which tells us to accept the null hypothesis that there is no correlation. The imaginary points are too spread out around the linear line.

Pearson Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations	
	duration
distance distance	-0.05287 0.1376 790

no_pasg, height, pitch

Running correlation tests for number of passengers, height and pitch, it's pretty clear that they do not influence the landing distance.

```
proc corr data=statComp.faaCombinedStep3;
        var no pasg height pitch;
       with distance;
run:
proc plot data=statComp.faaCombinedStep3;
       plot distance*no pasg='N'
              distance*height='H'
              distance*pitch='P'/overlay;
run;
             Pearson Correlation Coefficients, N = 840
                 Prob > |r| under H0: Rho=0
                    no_pasg
                           height
                                   pitch
                                 0.09726
             distance
                    -0.02457
                           0.11543
             distance
                     0.4770
                           0.0008
                                  0.0048
```


The correlation coefficient numbers do not show any statistical significance. The p-value is less than 0.05 for all three parameters. However, one must keep in mind that the height has a 6 meter limitation for a safe landing.

speed_ground

Evidently, speed_ground and landing distance are related as it can be seen from the results of correlation check and scatter plot. The correlation factor is pretty high and the dependent values are densely packed.

Another insight that one can see in the distribution graph is that at extreme values of speed ground, the distance dependence become more pronounced.

speed_air

As it can be seen in the results below, speed_air very much influences the landing distance of the flight.

But, it has already been observed that, of the 840 datalines that we are have, only 205 lines contain speed_air. With this high a correlation, it makes sense to keep the speed_air variable for analysis when developing the model.

Simple Statistics							
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	Label
distance	840	1528	926.27751	1283220	41.72231	6533	distance
speed_air	205	103.83225	10.30684	21286	90.00286	141.72494	speed_air

Pearson Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations		
	speed_air	
distance	0.94787	
distance	<.0001	
	205	

As seen in the scatter plot above, the speed_air and distance variables have a very high linear relationship.

data engineering

As seen earlier above, speed_air and speed_ground are linearly correlated.

We have also established that speed_air is a dependent variable to predict overruns. Thus to make use of speed_air more effectively, it can be calculated from speed_ground for rows with null values. This is done through regression analysis.

Pearson Correlation Coefficients Prob > r under H0: Rho=0 Number of Observations				
	speed_air			
speed_ground	0.98930			
speed_ground	<.0001			
	205			

```
proc reg data=statComp.faaCombinedStep3;
    model speed_air=speed_ground;
run;
```

205 observations, out of the 840 rows were used to generate the plot and as expected, we get a very linear relationship with an r² 0.9787.

This model is used to replace null values of speed_air.

Parameter Estimates							
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept	Intercept	1	2.58580	1.05339	2.45	0.0149	
speed_ground	speed_ground	1	0.97580	0.01010	96.60	<.0001	

The univariate processes before and after engineering is available below. The mean has decreased significantly and this was expected as speed_air had null values only for speed_ground less than 90mph.

Moments						
N	205	Sum Weights	205			
Mean	103.832246	Sum Observations	21285.6105			
Std Deviation	10.3068422	Variance	106.230995			
Skewness	1.04901428	Kurtosis	0.87026547			
Uncorrected SS	2231803.87	Corrected SS	21671.123			
Coeff Variation	9.92643665	Std Error Mean	0.71986108			
	Мо	ments	ı			
N	840	Sum Weights	840			
Mean	80.1308288	Sum Observations	67309.8962			
Std Deviation	18.6218748	Variance	346.774222			
Skewness	0.12636849	Kurtosis	-0.0576897			
Uncorrected SS	5684541.34	Corrected SS	290943.57			
Coeff Variation	23.2393389	Std Error Mean	0.64251572			

This can be observed again when we look at the extreme values. Only the lower portion of the data has been replaced.

Extreme Observations					
st	Highe	st			
Obs	Value	Obs			
817	128.418	700			
798	131.338	178			
780	132.911	490			
772	136.423	810			
482	141.725	552			
	St Obs 817 798 780 772	St Highe Obs Value 817 128.418 798 131.338 780 132.911 772 136.423			

Extreme Observations						
Lowe	st	Highe	st			
Value	Obs	Value	Obs			
29.6503	560	128.418	700			
31.1061	547	131.338	178			
35.3474	332	132.911	490			
35.5902	753	136.423	810			
35.8779	718	141.725	552			

Following what we have observed above and the information available in the data dictionary, there are four variables that could indicate landing overruns.

Variable	Conditions	Number of rows
distance	If > 6000 or < 200	5
speed_ground	If > 140 or < 30	3
speed_air	If > 140 or < 30	2
height	If < 6 and > 0	5

Using these conditions, a new categorical variable overrunYesNo is created. It's observed that there are 12 lines that returned a TRUE.

```
data statComp.FaaCombinedStep4;
    set statComp.faaCombinedStep3;
        overrunYesNo='FALSE';
    if distance < 200 or distance > 6000 then
        overrunYesNo='TRUE';
    if speed_ground < 30 or speed_ground > 140 then
        overrunYesNo='TRUE';
    if speed_air < 30 or speed_air2 > 140 then
        overrunYesNo='TRUE';
    if height < 6 then
        overrunYesNo='TRUE';
run;</pre>
```

Before going ahead and building the model, below is a review of the datelines deleted during different steps of the analysis.

- 1. Started with 950 rows.
- 2. Deleted 100 duplicate records 850
- 3. Deleted 5 rows where duration is less than 40 minutes 845
- 4. Deleted 5 rows where height was negative 840

Final model will have 840 rows.

modelling

The distance directly depends upon the ground and air velocities, with a limitation on height at 6 meter. The regression model will hence only contain the velocities as estimators.

```
proc reg data=statComp.faaCombinedStep5;
  model distance = speed_ground speed_air;
run;
```

The generated model has an r² value of 0.7479, with loss in precision when the speed is too low or high, as we already expected it to happen while checking dependencies.

Parameter Estimates							
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	
Intercept	Intercept	1	-2049.28340	88.71689	-23.10	<.0001	
speed_ground	speed_ground	1	-52.72828	21.14420	-2.49	0.0128	
speed_air	speed_air	1	96.93086	21.65153	4.48	<.0001	

Running a Q-Q and normality tests on the residual data shows that the residuals are not normally distributed. Although the Q-Q plot may almost look straight, the test for normality contains p-value all less than 0.05, which indicates that the residual errors are not normally distributed.

The residual plot also indicates a high variance in the data.

On a positive note, the mean of the residuals is zero.

Tests for Normality							
Test	St	atistic	p Val	lue			
Shapiro-Wilk	w	0.929902	Pr < W	<0.0001			
Kolmogorov-Smirnov	D	0.084489	Pr > D	<0.0100			
Cramer-von Mises	W-Sq	2.022038	Pr > W-Sq	<0.0050			
Anderson-Darling	A-Sq	12.94733	Pr > A-Sq	<0.0050			

Although it has been established that height and pitch do not play a role in the model, it is tempting prospect to include them to see if the model improves. Surprisingly, the r² value does improve to 0.7826

Parameter Estimates								
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t		
Intercept	Intercept	1	-3296.36351	146.22588	-22.54	<.0001		
speed_ground	speed_ground	1	-38.06407	19.68998	-1.93	0.0536		
speed_air	speed_air	1	82.35832	20.15991	4.09	<.0001		
height	height	1	13.16833	1.49401	8.81	<.0001		
pitch	pitch	1	212.22676	28.36391	7.48	<.0001		

The residuals, have a mean zero and fail the normality test. The variances are larger for the velocity variables and comparatively smaller for the height and pitch. This model looks more promising than the previous one.

```
proc univariate data=statComp.faaResiduals normaltest;
var residual;
qqplot residual/Normal(mu=est sigma=est color=red l=1);
run;
```

Tests for Normality							
Test Statistic p Value							
Shapiro-Wilk	w	0.897113	Pr < W	<0.0001			
Kolmogorov-Smirnov	D	0.105625	Pr > D	<0.0100			
Cramer-von Mises	W-Sq	3.367659	Pr > W-Sq	<0.0050			
Anderson-Darling	A-Sq	20.84926	Pr > A-Sq	<0.0050			

The problem with the model, however, is that the speed_ground variable takes a p-value greater than 0.05, meaning it no longer exerts a strong correlation. This is against what we have observed so far, casting doubts on the strength of the model.

The increased R² value is only minimal and the residual normality test pass can be attributed to smaller parameter estimates of height and pitch. Taking into consideration the height and pitch would probably be overfitting the model.

Thus the previous model with only the velocity variables as estimators would be the best fit for the given dataset.