Application of GLM Advancements to Non-Life Insurance Pricing

Leonardo Stincone

Università degli Studi di Trieste

11 Maggio 2021

1. Il Pricing nelle Assicurazioni Danni

2. Modelli Statistici per il Pricing nelle Assicurazioni Danni

Modelli Lineari Generalizzati (GLM)

Modelli Additivi Generalizzati (GAM)

Stimatori Shrinkage per i GLM

Stimatori Bayesiani per i GLM

Algoritmi di Machine Learning

Confronto tra i modelli

3. Applicazione Pratica

Indice

1. Il Pricing nelle Assicurazioni Danni

2. Modelli Statistici per il Pricing nelle Assicurazioni Danni

Modelli Lineari Generalizzati (GLM)

Modelli Additivi Generalizzati (GAM)

Stimatori Shrinkage per i GLM

Stimatori Bayesiani per i GLM

Algoritmi di Machine Learning

Confronto tra i modelli

3. Applicazione Pratica

Che cos'è un Contratto Assicurativo

Contratto di Assicurazione, Art. 1882, Codice Civile Italiano

L'assicurazione è il contratto col quale l'assicuratore, verso il pagamento di un **premio**, si obbliga a rivalere l'assicurato, entro i limiti convenuti,

- 1 del danno ad esso prodotto da un sinistro,
- ② ovvero a pagare un capitale o una rendita al verificarsi di un evento attinente alla vita umana.

Da un punto di vista matematico

Distribuzione composta

Assumiamo che

- ① $\forall n > 0, \ Z_1 | N = n, \ Z_2 | N = n, \ \dots, \ Z_n | N = n \ \text{siano i.i.d.};$
- $oldsymbol{2}$ la distribuzione di $Z_i|N=n,\;i\leq n$ non dipenda da n

Sotto queste ipotesi diciamo che

$$S = \begin{cases} 0 & \text{if } N = 0\\ \sum_{i=1}^{N} Z_i & \text{if } N > 0 \end{cases}$$

Proprietà

$$E(S) = E(N)E(Z)$$

Da un punto di vista matematico

Distribuzione composta

Assumiamo che:

- **1** $\forall n > 0, Z_1 | N = n, Z_2 | N = n, \dots, Z_n | N = n \text{ siano i.i.d.};$
- 2 | a distribuzione di $Z_i|N=n,\ i\leq n$ non dipenda da n.

Sotto queste ipotesi diciamo che:

$$S = \begin{cases} 0 & \text{if } N = 0\\ \sum_{i=1}^{N} Z_i & \text{if } N > 0 \end{cases}$$

$$E(S) = E(N)E(Z)$$

Da un punto di vista matematico

Distribuzione composta

Assumiamo che:

- **1** $\forall n > 0, Z_1 | N = n, Z_2 | N = n, \dots, Z_n | N = n \text{ siano i.i.d.};$
- 2 | a distribuzione di $Z_i|N=n, i \leq n$ non dipenda da n.

Sotto queste ipotesi diciamo che:

$$S = \begin{cases} 0 & \text{if } N = 0\\ \sum_{i=1}^{N} Z_i & \text{if } N > 0 \end{cases}$$

Proprietà

$$E(S) = E(N)E(Z)$$

ha distribuzione composta.

Personalizzazione e Variabili Esplicative

Variabili esplicative

Possibili variabili esplicative per il pricing delle assicurazioni motor:

- Informazioni sul veicolo assicurato:
- Informazioni generiche sul contraente;
- Informazioni assicurative sul contraente;
- Opzioni sulla polizza assicurativa;
- Dati telematici.

Queste variabili possono essere codificate come un vettore di numeri reali:

$$\boldsymbol{x}_i = (x_{i1}, x_{i2}, \dots, x_{ip}) \in \mathcal{X} \subseteq \mathbb{R}^p$$

Regola di Pricing

Una Regola di Pricing è una funzione $f(\cdot)$ che da una $x_i \in \mathcal{X}$ restituisce un prezzo P_i :

$$\begin{array}{cccc} f: & \mathcal{X} & \longrightarrow & R_{\dashv} \\ & x_i & \longmapsto & P_i \end{array}$$

Modellare una variabile risposta

 $\label{eq:modellare una variabile risposta} Modellare una variabile risposta Y_i significa stimare una funzione <math>r(\cdot)$ che da una $x_i \in \mathcal{X}$ restituisce la distribuzione di Y_i o alcuni suoi momenti:

$$r: \mathcal{X} \longrightarrow \mathcal{C}$$

 $\mathbf{x}_i \longmapsto F_{Y_i}, E(Y_i), Var(Y_i)$

Personalizzazione e Variabili Esplicative

Variabili esplicative

Possibili variabili esplicative per il pricing delle assicurazioni motor:

- Informazioni sul veicolo assicurato:
- Informazioni generiche sul contraente;
- Informazioni assicurative sul contraente;
- Opzioni sulla polizza assicurativa;
- Dati telematici.

Queste variabili possono essere codificate come un vettore di numeri reali:

$$\boldsymbol{x}_i = (x_{i1}, x_{i2}, \dots, x_{ip}) \in \mathcal{X} \subseteq \mathbb{R}^p$$

Regola di Pricing

Una Regola di Pricing è una funzione $f(\cdot)$ che da una $x_i \in \mathcal{X}$ restituisce un prezzo P_i :

$$f: \quad \mathcal{X} \quad \longrightarrow \quad R_+$$
 $\quad \boldsymbol{x}_i \quad \longmapsto \quad P_i$

Modellare una variabile risposta

 $\label{eq:modellare una variabile risposta} Modellare una variabile risposta Y_i significa stimare una funzione <math>r(\cdot)$ che da una $x_i \in \mathcal{X}$ restituisce la distribuzione di Y_i o alcuni suoi momenti:

$$r: \mathcal{X} \longrightarrow \mathcal{C}$$

 $\mathbf{x}_i \longmapsto F_{Y_i}, E(Y_i), Var(Y_i)$

Variabili Risposta

Distribuzione di Poisson

$$p_N(n) = P(N=n) = e^{-\lambda} \frac{\lambda^n}{n!}, \quad \lambda > 0$$

Distribuzione Gamma

$$f_Z(z) = \frac{\rho^{\alpha}}{\Gamma(\alpha)} z^{\alpha-1} e^{-\rho z}, \quad \alpha > 0, \ \rho > 0$$

Pricing Tecnico e Commerciale

Definizione di Premio

$$\begin{split} P_i^{(\text{risk})} &= E(S_i) \\ P_i^{(\text{tech})} &= E(S_i) + \text{Expenses}_i \\ & & \text{Altri Caricamenti} \\ & \text{Vincoli Normativi} \\ & \text{Commercializzazioni} \\ P_i^{(\text{tariff})} &= P_i^{(\text{tariff})} - \text{Discount}_i \end{split}$$

Ottimizzazione del Prezzo

Si basa su

- Pricing Tecnico
- 2 Aspettativa del Cliente
- 3 Strategia di Business

Ulteriori modelli

- New Business: Probabilità di Conversion
- Rinnovi: Probabilità di Retention

Pricing Tecnico e Commerciale

Definizione di Premio

$$\begin{split} P_i^{(\text{risk})} &= E(S_i) \\ P_i^{(\text{tech})} &= E(S_i) + \text{Expenses}_i \\ & & \text{Altri Caricamenti} \\ & \text{Vincoli Normativi} \\ & \text{Commercializzazioni} \\ P_i^{(\text{tariff})} &= P_i^{(\text{tariff})} - \text{Discount}_i \end{split}$$

Ottimizzazione del Prezzo

Si basa su

- Pricing Tecnico
- Aspettativa del Cliente
- Strategia di Business

Ulteriori modelli

- New Business: Probabilità di Conversion
- Rinnovi: Probabilità di Retention

1. Il Pricing nelle Assicurazioni Dann

2. Modelli Statistici per il Pricing nelle Assicurazioni Danni Modelli Lineari Generalizzati (GLM)

Modelli Additivi Generalizzati (GAM) Stimatori Shrinkage per i GLM Stimatori Bayesiani per i GLM Algoritmi di Machine Learning

3. Applicazione Pratica

Modelli Lineari Generalizzati (GLM)

Modelli Lineari Generalizzati (GLM)

Dato
$$\mathcal{D} = \{(\boldsymbol{x}_1, \omega_1, y_1), \dots, (\boldsymbol{x}_n, \omega_n, y_n)\}$$

con $\boldsymbol{y} = (y_1, \dots, y_n)^t$ realizzazione di $\boldsymbol{Y} = (Y_1, \dots, Y_n)^t$.

Assumiamo che:

1 $Y = (Y_1, \dots, Y_n)^t$ siano indipendenti con distribuzione appartenente a una stessa famiglia esponenziale lineare:

$$f(y_i; \theta_i, \phi, \omega_i) = \exp\left\{\frac{\omega_i}{\phi} \left[y_i \theta_i - b(\theta_i)\right]\right\} c(y_i, \phi, \omega_i), \quad y_i \in \mathcal{Y} \subseteq \mathbb{R}$$

Q $oldsymbol{x}_i = (1, x_{i1}, \dots, x_{ip})^t$ agisca su Y_i tramite il predittore lineare η_i

$$\eta_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

3 η_i sia legato a $\mu_i = E(Y_i)$ tramite la funzione legame $g(\cdot)$

$$g(\mu_i) = \eta_i = oldsymbol{x}_i^t oldsymbol{eta}$$

Stima di un GLM

Stima di massima verosimiglianza

Data la funzione di verosimiglianza

$$L: \quad \mathbb{R}^{p+1} \times \Lambda \quad \longrightarrow \quad [0, +\infty[$$
$$(\boldsymbol{\beta}, \phi) \quad \longmapsto \quad f_{\boldsymbol{Y}}(\boldsymbol{y}; \boldsymbol{\theta}, \phi)$$

La stima di massima verosimiglianza è:

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,max}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} L\left(\boldsymbol{\beta}, \phi; \boldsymbol{y}\right)$$

$$D(\hat{\boldsymbol{\beta}}, \boldsymbol{y}) = -2\phi \left(\ell \left(\hat{\boldsymbol{\beta}}, \phi; \boldsymbol{y} \right) - \ell_S \left(\boldsymbol{\beta}^*, \phi; \boldsymbol{y} \right) \right)$$

dove
$$\ell\left(\hat{\boldsymbol{\beta}}, \phi; \boldsymbol{y}\right) = \log L\left(\hat{\boldsymbol{\beta}}, \phi; \boldsymbol{y}\right)$$
 e $\boldsymbol{\beta}^*$ sono i parametri del modello saturo

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} D(\boldsymbol{\beta}, \boldsymbol{y})$$

Stima di un GLM

Stima di massima verosimiglianza

Data la funzione di verosimiglianza

$$\begin{array}{cccc} L: & \mathbb{R}^{p+1} \times \Lambda & \longrightarrow & [0, +\infty[\\ & (\boldsymbol{\beta}, \phi) & \longmapsto & f_{\boldsymbol{Y}}(\boldsymbol{y}; \boldsymbol{\theta}, \phi) \end{array}$$

La stima di massima verosimiglianza è:

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,max}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} L\left(\boldsymbol{\beta}, \phi; \boldsymbol{y}\right)$$

Devianza

La devianza è

$$D(\hat{\boldsymbol{\beta}}, \boldsymbol{y}) = -2\phi \left(\ell \left(\hat{\boldsymbol{\beta}}, \phi; \boldsymbol{y} \right) - \ell_S \left(\boldsymbol{\beta}^*, \phi; \boldsymbol{y} \right) \right)$$

dove
$$\ell\left(\hat{\boldsymbol{\beta}}, \phi; \boldsymbol{y}\right) = \log L\left(\hat{\boldsymbol{\beta}}, \phi; \boldsymbol{y}\right)$$
 e $\boldsymbol{\beta}^*$ sono i parametri del modello saturo.

La stima di massima verosimiglianza può essere ottenuta come:

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} D(\boldsymbol{\beta}, \boldsymbol{y})$$

Effetto delle variabili in un GLM

Variabili quantitative ed effetti non lineari

Funzione Legame e risposta

Grafici per visualizzare l'effetto delle variabili

Nessun effetto - non raggruppati

Effetto positivo - non raggruppati

Nessun effetto - raggruppati

Effetto positivo - raggruppati

Criteri per la selezione delle variabili nei GLM

Criteri per la selezione delle variabili

- Visualizzazione
- Test di verifica di ipotesi

$$\begin{cases} H_0: & \beta_{j_k} = 0 \ \forall k \in \{1, 2, \dots, s\} \\ H_1: & \exists k: \beta_{j_k} \neq 0 \end{cases}$$

Criteri di informazione

$$AIC = -2\ell(\beta) + 2(p+1)$$

$$BIC = -2\ell(\beta) + \log(n)(p+1)$$

- Divisione del dataset tra training set e test set
- Cross validation

Indice

- 1. Il Pricing nelle Assicurazioni Dann
- 2. Modelli Statistici per il Pricing nelle Assicurazioni Danni

Modelli Lineari Generalizzati (GLM)

Modelli Additivi Generalizzati (GAM)

Stimatori Shrinkage per i GLM Stimatori Bayesiani per i GLM

Algoritmi di Machine Learning

Confronto tra i modelli

3. Applicazione Pratica

Modelli Additivi Generalizzati (GAM)

Modello Additivo Generalizzato (GAM)

- $oldsymbol{1}$ Variabile risposta $oldsymbol{Y}$ come GLM;
- 2 Predittore lineare

$$\eta_i = oldsymbol{x}_i^t oldsymbol{eta} + \sum_{l=1}^q f_l(z_{i,l}), \quad i \in \{1,2,\ldots,n\}$$

con $f_l(\cdot)$ spline cubica;

3 Funzione legame $g(\cdot)$ come GLM.

Stima di Massima Verosimiglianza con Penalizzazione

$$\hat{\mathbf{f}} = \underset{\mathbf{f}}{\operatorname{arg\,min}} \left\{ D(\mathbf{f}, \mathbf{y}) + \sum_{l=1}^{q} \lambda_l \int_{a_l}^{b_l} (f_l''(x_l))^2 dx \right\}$$

con $\lambda_1, \lambda_2, \ldots, \lambda_q$ iperparametri di smoothing.

GAM: esempio

-0.75

-0.75

Indice

1. Il Pricing nelle Assicurazioni Danni

2. Modelli Statistici per il Pricing nelle Assicurazioni Danni

Modelli Lineari Generalizzati (GLM) Modelli Additivi Generalizzati (GAM)

Stimatori Shrinkage per i GLM

Stimatori Bayesiani per i GLM Algoritmi di Machine Learning Confronto tra i modelli

3. Applicazione Pratica

Trade-off tra Bias e Varianza

Scomposizione dello scarto quadratico medio (MSE)

$$MSE\left(\tilde{\beta}_{j}\right) \stackrel{\mathsf{def}}{=} E\left(\left(\tilde{\beta}_{j} - \beta_{j}\right)^{2}\right) = \underbrace{\left(E(\tilde{\beta}_{j}) - \beta_{j}\right)^{2}}_{\mathsf{Bias}^{2}} + \underbrace{Var\left(\tilde{\beta}_{j}\right)}_{\mathsf{Variance}}$$

Stima di Massima Verosimiglianza con Penalizzazione

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \left\{ D(\boldsymbol{\beta}, \boldsymbol{y}) + \lambda \|\boldsymbol{\beta}_{\backslash 0}\|_2^2 \right\}$$

dove

- $\|\beta_{\setminus 0}\|_2^2 = \sum_{j=1}^p \beta_j^2$
- $\lambda \geq 0$ iperparametro di penalizzazione

Modello sottostante:GLM

Regressione Ridge: esempio

Regressione LASSO

Stima di Massima Verosimiglianza con Penalizzazione

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \left\{ D(\boldsymbol{\beta}, \boldsymbol{y}) + \lambda \|\boldsymbol{\beta}_{\setminus 0}\|_1 \right\}$$

dove

- $\|\beta_{\setminus 0}\|_1 = \sum_{j=1}^p |\beta_j|$
- $\lambda \geq 0$ iperparametro di penalizzazione

Modello sottostante: GLM

Regressione LASSO: esempio

Stima di Massima Verosimiglianza con Penalizzazione

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \left\{ D(\boldsymbol{\beta}, \boldsymbol{y}) + \lambda \sum_{j=1}^{p} \left(\alpha |\beta_j| + (1-\alpha) |\beta_j|^2 \right) \right\}$$

dove

- $\|\beta_{\setminus 0}\|_1 = \sum_{j=1}^p |\beta_j|$
- $\|oldsymbol{eta}_{\backslash 0}\|_2^2 = \sum_{j=1}^p eta_j^2$
- $\lambda \geq 0$ iperparametro di penalizzazione
- $\alpha \in [0,1]$ iperparametro che determina il peso della LASSO

Modello sottostante: GLM

Indice

1. Il Pricing nelle Assicurazioni Dann

2. Modelli Statistici per il Pricing nelle Assicurazioni Danni

Modelli Lineari Generalizzati (GLM)
Modelli Additivi Generalizzati (GAM)
Stimatori Shrinkage per i GLM
Stimatori Bayesiani per i GLM
Algoritmi di Machine Learning
Confronto tra i modelli

3. Applicazione Pratica

Il Framework Bayesiano

Teorema di Bayes

$$\pi(\boldsymbol{\theta}|\boldsymbol{y}) = \frac{p(\boldsymbol{y}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})}{p(\boldsymbol{y})}$$

Stimatori Bayesiani per i GLM

Stima di Massima Verosimiglianza

$$\hat{oldsymbol{eta}}^{ML} = rg \max_{oldsymbol{eta} \in \mathbb{R}^{p+1}} L\left(oldsymbol{eta}, \phi \mid oldsymbol{y}
ight) \ = rg \max_{oldsymbol{eta} \in \mathbb{R}^{p+1}} \ell\left(oldsymbol{eta}, \phi \mid oldsymbol{y}
ight) \ = rg \min_{oldsymbol{eta} \in \mathbb{R}^{p+1}} D\left(oldsymbol{eta}, oldsymbol{y}
ight) \ eta \in \mathbb{R}^{p+1}$$

Stima di Massimo a Posteriori

$$\begin{split} \hat{\boldsymbol{\beta}}^{MAP} &= \operatorname*{arg\,max}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \boldsymbol{\pi} \left(\boldsymbol{\beta}, \boldsymbol{\phi} \mid \boldsymbol{y} \right) \\ &= \operatorname*{arg\,max}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \left\{ L \left(\boldsymbol{\beta}, \boldsymbol{\phi} \mid \boldsymbol{y} \right) \boldsymbol{\pi} (\boldsymbol{\beta}) \right\} \\ &= \operatorname*{arg\,max}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \left\{ \ell \left(\boldsymbol{\beta}, \boldsymbol{\phi} \mid \boldsymbol{y} \right) + \log \left(\boldsymbol{\pi} (\boldsymbol{\beta}) \right) \right\} \\ &= \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \left\{ D (\boldsymbol{\beta}, \boldsymbol{y}) - 2 \boldsymbol{\phi} \log \left(\boldsymbol{\pi} (\boldsymbol{\beta}) \right) \right\} \end{split}$$

Stimatori Bayesiani per i GLM

Stima di Massima Verosimiglianza

$$\hat{\boldsymbol{\beta}}^{ML} = \operatorname*{arg\,max}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} L\left(\boldsymbol{\beta}, \phi \mid \boldsymbol{y}\right)$$

$$= \operatorname*{arg\,max}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \ell\left(\boldsymbol{\beta}, \phi \mid \boldsymbol{y}\right)$$

$$= \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} D\left(\boldsymbol{\beta}, \boldsymbol{y}\right)$$

Stima di Massimo a Posteriori

$$\begin{split} \hat{\boldsymbol{\beta}}^{MAP} &= \operatorname*{arg\,max}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \pi \left(\boldsymbol{\beta}, \phi \mid \boldsymbol{y} \right) \\ &= \operatorname*{arg\,max}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \left\{ L \left(\boldsymbol{\beta}, \phi \mid \boldsymbol{y} \right) \pi (\boldsymbol{\beta}) \right\} \\ &= \operatorname*{arg\,max}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \left\{ \ell \left(\boldsymbol{\beta}, \phi \mid \boldsymbol{y} \right) + \log \left(\pi (\boldsymbol{\beta}) \right) \right\} \\ &= \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \left\{ D (\boldsymbol{\beta}, \boldsymbol{y}) - 2\phi \log \left(\pi (\boldsymbol{\beta}) \right) \right\} \end{split}$$

Regressione Ridge e LASSO come Stimatori Bayesiani

Considerazioni sugli Stimatori Bayesiani

Altri distribuzioni a priori

• Diverse varianze a priori

$$\beta_j \sim \mathcal{N}(0, \sigma_j^2)$$

Diverse medie a priori

$$\beta_j \sim \mathcal{N}(\beta_{j0}, \sigma_j^2)$$

• Altre distribuzioni a priori

$$\pi(\beta_j) = \begin{cases} \frac{\sqrt{2}}{\sqrt{\pi}\sigma} e^{-\frac{1}{2\sigma^2}\beta_j^2} & \text{if } \beta_j \geq 0\\ 0 & \text{altrimenti} \end{cases}$$

Vantaggi stimatori Bayesiani

- Introduzione informazione esterna ai dati con una robusta metodologia statistica
- Rimpiazzamento degli offset Scelgo σ_j^2 tale che $\hat{oldsymbol{eta}}^{MAP}=\hat{oldsymbol{eta}}^{ ext{offset}}$
 - Ho accortezza di quanto è forte la correzzione applicata
 - Se cambio qualche altro parametro e rifitto il modello, in automatico $\hat{\boldsymbol{\beta}}^{MAP}$ viene ristimato

Considerazioni sugli Stimatori Bayesiani

Altri distribuzioni a priori

• Diverse varianze a priori

$$\beta_j \sim \mathcal{N}(0, \sigma_j^2)$$

• Diverse medie a priori

$$\beta_j \sim \mathcal{N}(\beta_{j0}, \sigma_j^2)$$

Altre distribuzioni a priori

$$\pi(\beta_j) = \begin{cases} \frac{\sqrt{2}}{\sqrt{\pi}\sigma} e^{-\frac{1}{2\sigma^2}\beta_j^2} & \text{if } \beta_j \geq 0\\ 0 & \text{altrimenti} \end{cases}$$

Vantaggi stimatori Bayesiani

- Introduzione informazione esterna ai dati con una robusta metodologia statistica
- Rimpiazzamento degli offset Scelgo σ_i^2 tale che $\hat{oldsymbol{eta}}^{MAP}=\hat{oldsymbol{eta}}^{ ext{offset}}$
 - Ho accortezza di quanto è forte la correzzione applicata
 - Se cambio qualche altro parametro e rifitto il modello, in automatico $\hat{\boldsymbol{\beta}}^{MAP}$ viene ristimato

Indice

1. Il Pricing nelle Assicurazioni Dann

2. Modelli Statistici per il Pricing nelle Assicurazioni Danni

Modelli Lineari Generalizzati (GLM) Modelli Additivi Generalizzati (GAM) Stimatori Shrinkage per i GLM Stimatori Bayesiani per i GLM Algoritmi di Machine Learning

Controlled trail infodem

3. Applicazione Pratica

Algoritmi di Machine Learning

Modelli di Machine Learning

- Gradient Boosting Machine (GBM)
- Random Forest (RF)
- Neural Network (NN)
- Altri . . .

Caratteristiche

 Funzione di regressione con minime assunzioni

$$E(Y_i) = \boldsymbol{f}(x_{i1}, \dots, x_{ip})$$

 Sofisticati algoritmi per prevenire l'overfitting

Algoritmi di Machine Learning

Modelli di Machine Learning

- Gradient Boosting Machine (GBM)
- Random Forest (RF)
- Neural Network (NN)
- Altri . . .

Caratteristiche

 Funzione di regressione con minime assunzioni

$$E(Y_i) = \boldsymbol{f}(x_{i1}, \dots, x_{ip})$$

 Sofisticati algoritmi per prevenire l'overfitting

Indice

1. Il Pricing nelle Assicurazioni Dann

2. Modelli Statistici per il Pricing nelle Assicurazioni Danni

Modelli Lineari Generalizzati (GLM) Modelli Additivi Generalizzati (GAM) Stimatori Shrinkage per i GLM Stimatori Bayesiani per i GLM Algoritmi di Machine Learning Confronto tra i modelli

3. Applicazione Pratica

Confronto tra i modelli

GLM Classici vs GBM/RF/NN

- d Maggior interpretabilità
- 🖒 Maggior controllo delle variabili
 - Selezione variabili
 - ▶ Effetti variabili quantitative
 - Offset
- 🖒 Facile utilizzo di informazioni esterne
- Minore automazione e scalabilità
- Minore flessibilità

GLM Advancements vs GLM Classici

- Mantenimento interpretabilità
- Mantenimento controllo delle variabili
- Miglior utilizzo delle informazioni esterne (stimatori bayesiani)
- Maggior automazione e scalabilità
 - ► Selezione variabil
 - Effetti variabili quantitative

Confronto tra i modelli

GLM Classici vs GBM/RF/NN

- d Maggior interpretabilità
- 🖒 Maggior controllo delle variabili
 - Selezione variabili
 - ▶ Effetti variabili quantitative
 - Offset
- 🖒 Facile utilizzo di informazioni esterne
- Minore automazione e scalabilità
- Ninore flessibilità

GLM Advancements vs GLM Classici

- 🖒 Mantenimento interpretabilità
- 🖒 Mantenimento controllo delle variabili
- Miglior utilizzo delle informazioni esterne (stimatori bayesiani)
- Maggior automazione e scalabilità
 - Selezione variabili
 - Effetti variabili quantitative

L'importanza dell'attuario

Indice

- 1. Il Pricing nelle Assicurazioni Dann
- 2. Modelli Statistici per il Pricing nelle Assicurazioni Dann

Modelli Lineari Generalizzati (GLM)

Modelli Additivi Generalizzati (GAM)

Stimatori Shrinkage per i GLM

Stimatori Bayesiani per i GLM

Algoritmi di Machine Learning

Contronto tra i modelli

3. Applicazione Pratica

Esposizione e Variabile Risposta

Set	Osservazioni	Esposizione (rischi anno)	Assicurati	Esposizione per Assicurato	Numero Sinistri	Frequenza Sinistri
Train	227 226	107 998.4	27 346	3.95	4 823	0.045
Test	56 603	26 806.3	6 824	3.93	1 131	0.042
Tot	283 829	134 804.7	34 170	3.95	5 954	0.044

Variabili esplicative

Descrizione	Numero di variabili per categoria
Informazioni sul veicolo assicurato	12
Informazioni generiche sul contraente	14
Informazioni assicurative sul contraente	9
Opzioni sulla polizza assicurativa	11
Customer information on the policyholder	2
Dati telematici	4
Totale	52

Modelli e Valutazione

Modelli considerati

ld	Model
Mod1	GLM Tot
Mod2	Elastic Net Tot
Mod3	Ridge Tot
Mod4	GLM AIC
Mod5	Elastic Net AIC
Mod6	GAM AIC
Mod7	GBM Tot

Valutazione

Devianza della distribuzione di Poissor calcolata sul test set

$$D(\hat{\boldsymbol{\beta}}, \boldsymbol{y}) = 2 \sum_{i=1}^{n} \left\{ y_i \log \left(\frac{y_i}{\hat{\mu}_i} \right) - (y_i - \hat{\mu}_i) \right\}$$

Modelli e Valutazione

Modelli considerati

ld	Model
Mod1	GLM Tot
Mod2	Elastic Net Tot
Mod3	Ridge Tot
Mod4	GLM AIC
Mod5	Elastic Net AIC
Mod6	GAM AIC
Mod7	GBM Tot

Valutazione

Devianza della distribuzione di Poisson calcolata sul test set

$$D(\hat{\boldsymbol{\beta}}, \boldsymbol{y}) = 2 \sum_{i=1}^{n} \left\{ y_i \log \left(\frac{y_i}{\hat{\mu}_i} \right) - (y_i - \hat{\mu}_i) \right\}$$

Titolo di prova capitolo 3

