Total No. of Printed Pages:2

F.E. Semester-II (Revised Course 2019-20) EXAMINATION AUGUST 2021 Mathematics-II

[Duration: Two Hours] [Total Mark			ks: 60]
ii		 i) Answer THREE FULL QUESTIONS with ONE QUESTION FR EACH PART. ii) Assume suitable data, if necessary iii) Figures to the right indicate full marks Part A	OM
Q.1	a)	The asteroid $x^{2/3} + y^{2/3} = 4$ is revolved about the x-axis. Find the surface area of the	7
	b)	object generated. Find the length of the cycloid $x = (\theta + \sin\theta)$, $y = (1 - \cos\theta)be$ tween $\theta = 0$ and $\theta = \pi$.	6
	c)	Change the order of integration and evalute $\int_0^1 \int_{y-1}^1 2x + 1 dx dy$	7
Q.2	a)	Change to polar coordinates and evaluate $\int_0^2 \int_0^{\sqrt{2x-x^2}} \frac{y}{x^2+y^2} dxdy$	6
	b)	Evalute $\iiint \frac{zdxdydz}{(1+x^2+y^2)}$ over the region $x^2+y^2 \le 4$ and $y \ge 0.0 \le z \le 2$	7
	c)	Write a single integral and evaluate $\int_0^1 \int_{1-x}^1 3x + 1 dy dx + \int_1^2 \int_{x-1}^1 3x + 1 dy dx$	7
Q.3	a)	Evaluate $\iint 2xy + 3dxdy$ over the region $x^2 \le y, x \ge 0, y \le x + 2$	6
	b)	Find the area of the surface generated by the revolution of the curve $y = \sqrt{x+1}$, $0 \le x \le 4$ about the axis.	7
	c)	Evaluate $\int_0^1 \int_{y^2}^1 \int_0^{1-x} x + y \ dz dx dy$	6
Q.4	a)	Find the directional derivative of $f(x, y, z) = z^2x + 2yx$ in the direction of $\hat{i} - \hat{j} + 2\hat{k}$ at the point (-1,1,0).	6
	b)	Find the work done inmoving aparticle in the force $F = 3y\hat{i} + xz\hat{j} + (yz - 2)\hat{k}$ along the curve $x = 2t^2$, $y = 3t$ and $z = t^2$ from $t = 0$ to $t = 1$.	7
	c)	Solve the differential equation $ (D^2 + 2D + 1)y = x^3 + 2x^2 $	7
Q.5	a)	Verify Green's Theorem in a plane for $\oint (y + 2x^2)dx + yx^2dy$ along the boundry of the	8

region $y \ge 0$, $y^2 \le 4x$ and $x \le 1$.

b) Solve the following

(i)
$$(D^2 - 5D + 6)y = 3e^{3x} + e^{2x}$$

- (ii) $x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + y = 2x^3$ a) Define gradient of a scalar field. Show that if f and g are scalar fields then grad(fg) =Q6 f(gradg) + g(gradf)
 - b) Use Gauss Divergence Theorem to evaluate $\iint_S \vec{F} \cdot \hat{nds}$ where $\vec{F} = xy\hat{\imath} + yz\hat{\jmath} + y\hat{k}$ and S 8 is the surface of the closed region bounded by the coordinate planes and the planes x =1, y = 1 and z = 1.
 - c) Solve the differential equation $(D^2 4D + 5)y = xe^x$ 6
- a) Find the length of $x = \frac{y^3}{6} + \frac{1}{2y}$ from y = 1 to y = 16. 7 Q.7
 - b) Find the equation of the line, normal to the surface $2x + 3y^2 z^2 = 10$ at the point (1,-6
 - c) Solve $D^2 + 4D 12$ $y = \sin^2 x$ 7
- a) Show that the vector field $\bar{f} = 2xy\bar{\iota} + (x^2 + 2z)\bar{\jmath} + (2y + 2z)\bar{k}$ is irrational and find its 7 Q.8
 - scalar potential. b) Evaluate $\int_0^{\pi/2} \int_0^{\pi} \int_0^{1+\cos\varphi} 3\rho \sin\varphi \, dp d\theta d\varphi$ 6
 - c) The region $y^2 \le x, x \le 1$ is revolved about the y-axis, find the volume of the object generated. 7