BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-049304

(43) Date of publication of application: 21.02.1995

(51)Int.CI.

GO1N 21/27

G01J 1/00

(21)Application number : 06-021400

(71)Applicant: HAMAMATSU PHOTONICS KK

(22)Date of filing:

18.02.1994

(72)Inventor: TSUCHIYA YUTAKA

(30)Priority

Priority number: 05132211

Priority date: 02.06.1993

Priority country: JP

(54) METHOD AND APPARATUS FOR MEASURING INTERNAL INFORMATION OF SCATTERING **ABSORBENT**

(57)Abstract:

PURPOSE: To enable highly accurate measurement of internal information on absorption coefficient or the like by performing an arithmetic processing of more than two kinds of detection signals determined by more than two different distances between a light incident position and a photodecting position.

CONSTITUTION: Light with specified wavelengths λ1 and λ2 is generated from a light source 2 and selected 4 in the wavelength to be incident into the surface of a scattering absorbent 20 through a light guide 6. The light propagated diffusively through the absorbent 20 is detected with light guides 8-10 placed at the positions of distances ρ 1- ρ 3 from the light incident position. Photo detectors 12-14 convert a photodetecting signal into an electrical signal to be amplified and output detection signals a-c. An arithmetic processing section (microcomputer) 16 performs an integral computation of the signals a-c in a time area utilizing a signal (g) synchronizing the generation of the light of the light source 2 and computes measured values d-f

proportional to the quantity of light detected. Then, an arithmetic processing is performed for the wavelengths $\lambda 1$ and $\lambda 2$, the values d-f and values of known parameters $\rho 1$ and $\rho 3$ preset based on three kinds of relationship to calculate an absorption coefficient and a transport scattering coefficient with respect to the wavelength $\lambda 1$ and $\lambda 2$.

LEGAL STATUS

[Date of request for examination]

24.11.2000

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-49304

(43)公開日 平成7年(1995)2月21日

(51) Int.Cl.6

識別記号

FΙ

技術表示箇所

G 0 1 N 21/27

B 9118-2J

G 0 1 J 1/00

8803-2G

庁内整理番号

審査請求 未請求 請求項の数4 OL (全 17 頁)

(21)出願番号

特願平6-21400

(22)出願日

平成6年(1994)2月18日

(32)優先日

(31) 優先権主張番号 特願平5-132211 平5 (1993) 6月2日

(33)優先権主張国

日本 (JP)

(71)出願人 000236436

浜松ホトニクス株式会社

静岡県浜松市市野町1126番地の1

(72)発明者 土屋 裕

静岡県浜松市市野町1126番地の1 浜松ホ

トニクス株式会社内

(74)代理人 弁理士 長谷川 芳樹 (外3名)

(54) 【発明の名称】 散乱吸収体の内部情報計測方法及び装置

(57)【要約】

【目的】 高精度で吸収係数などの散乱吸収体の内部情 報を計測する。

散乱や吸収の影響を受けながら散乱吸収体の 内部を拡散伝搬した光を散乱吸収体の外部で測定し、そ の測定値を演算処理して散乱吸収体の内部情報を計測す る。このとき、散乱吸収体内部を拡散伝搬する光の振る 舞いおよびその結果である信号つまり光検出信号が、散 乱吸収体内部の散乱成分や吸収成分などの性質や濃度に 依存することを利用して、3種以上の異なる光入射位置 - 光検出位置間距離で測定した3種以上の検出信号(計 測値)を演算処理する。ここで計測される内部情報は、 散乱吸収体の吸収係数や輸送散乱係数などの絶対値であ り、さらにこれらを演算処理して、特定散乱成分や特定 吸収成分の濃度に関する情報などを計測することができ る。

第1実施例の装置の構成図

特開平7-49304

1

【特許請求の範囲】

【請求項1】 所定波長の光を散乱吸収体に入射し、 3種以上の異なる光入射位置-光検出位置間距離に対応 する検出位置で、散乱吸収体の内部を拡散伝搬した前記 所定波長の光を検出して3種以上の検出信号を取得し、 前記所定波長の光がそれぞれ拡散伝搬して前記検出位置 に到達するときの前記散乱吸収体内の拡散伝搬経路にお ける散乱特性および吸収特性と前記検出信号との3つ以 上の連立関係に基づいて、前記検出信号を演算処理して 散乱吸収体の内部情報を導出する、

ことを特徴とする散乱吸収体の内部情報計測方法。

【請求項2】 前記所定波長の光は、前記散乱吸収体内 部の特定成分に対して吸収係数が異なる2種類以上の波 長の光であり、

前記演算処理は、1種類の前記所定波長による計測によ って得られる前記散乱吸収体の第1次内部情報の導出処 理と、前記2種以上の波長の光に対する前記第1次内部 情報を利用した前記散乱吸収体の前記特定成分に関する 情報である第2次内部情報の導出処理とである、

ことを特徴とする請求項1記載の散乱吸収体の内部情報 20 計測方法。

【請求項3】 所定波長の光を発生する光発生手段と、 前記所定波長の光を散乱吸収体に入射させる光入射手段 上.

3種以上の異なる光入射位置-光検出位置間距離に対応 する検出位置で、前記散乱吸収体の内部を拡散伝搬した 前記所定波長の光を検出して、3種以上の信号を取得す る光検出手段と、

前記所定波長の光がそれぞれ拡散伝搬して前記検出位置 に到達するときの前記散乱吸収体内の拡散伝搬経路にお ける散乱特性および吸収特性と前記検出信号との3つ以 上の連立関係に基づいて、前記検出信号を演算処理して 前記散乱吸収体の内部情報を導出する演算処理手段と、 を備えることを特徴とする散乱吸収体の内部情報計測装 置。

【請求項4】 前記所定波長の光は、散乱吸収体内部の 特定成分に対して吸収係数が異なる2種類以上の波長の 光であり、

前記演算処理手段は、1種類の前記所定波長による計測 によって得られる前記散乱吸収体の第1次内部情報の導 出処理と、前記2種以上の波長の光に対する前記第1次 内部情報を利用した前記散乱吸収体の前記特定成分に関 する情報である第2次内部情報の導出処理と、を実行す

ことを特徴とする請求項3記載の散乱吸収体の内部情報 計測装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、パルス光や方形波光あ るいは連続光を生体などの散乱吸収体に入射し、散乱吸 50 い。例えば、特願昭62-248590、特願昭62-

収体の内部を拡散伝搬した光を検出して、散乱吸収体の 内部情報を非侵襲に計測するもので、散乱吸収体の吸収 係数や輸送散乱係数の絶対値、さらには特定吸収成分の 濃度の定量、およびそれらの時間変化や空間分布などを

計測すること、あるいはこれらの計測の精度を高めるこ とができる散乱吸収体の内部情報計測方法及び装置に関 するものである。

[0002]

(2)

【従来の技術および発明が解決しようとする課題】生体 10 のような散乱吸収体内部の吸収係数や輸送散乱係数の精 密な測定、あるいは特定吸収成分の濃度の精密な測定に 対する要請は非常に強く、従来いくつかの報告や試みが ある。その中の主なものを、この節の最後に参考文献 1-5)として一括して示す。なお、以降では、1)によって 参考文献の番号を示すものとする。

【0003】一般に、光は散乱吸収体の内部でランダム に散乱、吸収されるため、直進しない。吸収が零である 散乱体では、光の総量が減ることはないが、光は散乱成 分によってランダムに散乱されるため、折れ曲がりなが ら進む。この場合、光が散乱の影響を受けずに進める距 離は、平均自由行程あるいは平均拡散長と呼ばれ、輸送 散乱係数μs ′の逆数となる。生体試料などの場合、こ の平均自由行程は2㎜程度である1)。また、散乱吸収体 では散乱成分のほかに吸収成分も含まれているので、光 が散乱して進む距離に応じて吸収が生じ、その距離に対 して光量が指数関数的に減衰する。

【0004】散乱吸収体内部の吸収係数や輸送散乱係数 の精密測定の分野の従来技術としては、連続光やパルス 光入射に対する透過光あるいは反射光の光量(時間積分 値)を計測するものと、バルス光入射に対する透過光あ るいは反射光を時間分解計測し、その波形を解析するも のがある。これらのうち、前者はよく知られているラン バート・ベール(Lambert-Beer)則を基本原理とする吸光 度測定を利用するもので、これと併せてさらに2波長分 光測定の原理を応用するものもある。ここで、ランバー ト・ベール則は、試料の吸光度(absorbance, またはopti cal density)が試料のモル吸光係数、モル濃度、および 試料の厚さの積に比例する、あるいは厚さを一定とした とき吸光度差が試料の濃度差に比例するというものであ 40

【0005】ところが、散乱吸収体で吸光度を測定する 場合、散乱吸収体の光入射位置と光検出位置との間を拡 散伝搬する光の平均光路長 (optical pathlength) が、 散乱吸収体の吸収係数μ、に依存して変化する。したが って、従来の光路長を一定と仮定する散乱吸収体に対す る吸光度測定では、この平均光路長の吸収係数依存性が 大きな問題となり、吸収係数あるいは吸収成分の濃度な どを正確に計測することができない、あるいはそれらし い計測ができても測定誤差が大きくなるため実用できな

30

(3)

特開平7-49304

336197、特願平2-231378などは、光路長 が一定であると仮定して吸光度を測定することを基本原 理としているから、上記光路長変化に起因する測定誤差 を避けることができない。

3

【0006】また、吸光度測定の際に、あらかじめ別の 方法で測定した平均光路長を利用する方法もあるが、上 記のように平均光路長が吸収係数に依存して変化するの で、これを一定値として近似することに起因する誤差を 避けることはできない。その他、パルス光などを使用し て吸光度差を測定する方法、これらに2波長分光の原理 10 を応用する方法、3種類以上の波長の光を使用して吸光 度を測定する方法2)もあるが、いずれの場合にも散乱吸 収体に対して光路長が一定であると仮定して吸光度測定 法を適用しているため、これら全てに共通して光路長変 化に起因する大きな誤差が発生し、十分な計測精度が得 られない。

【0007】吸光度測定に基づかない従来技術で、パル ス光や変調光を使用して、透過光あるいは反射光を時間 分解計測して波形解析する方法は、時間分解計測をする から、光量つまり光信号の時間積分値を測定する本願の 発明の計測方法や装置に比較して、計測方法や装置がき わめて複雑になり、かつ装置が高価になるという難点が ある。実際に、パルス光を散乱吸収体に入射したときの 反射光あるいは透過光を時間分解計測し、その波形から 内部の吸収情報を計測する試みがいくつかある3-5)。こ のとき測定される光信号は、散乱と吸収の影響によっ て、だらだらと減衰する長い裾をひく信号となる。Patt erson らは、均一な散乱吸収体のモデルを考えて、パル ス光入射に対する出力信号を解析的に求めた3)。Patter son らが求めた式が与える光信号の強度の時間波形は、 均一な散乱吸収体を用いた実験で得られる波形とほぼー 致する。彼らおよび本願の発明者らの実験結果によれ ば、散乱吸収体を構成する吸収成分の吸収係数は、上記 の光信号が十分に減衰したとき、つまり十分時間が経過 したときの波形の傾斜(微分値)で与えられる。しか し、吸収係数を求める部分の光信号が十分に減衰してい る必要があるということは、信号が微弱であるというこ とと等価であるから、被計測信号の信号対雑音比(SN 比)が悪くなり、必然的に測定誤差が増大するので、実 用化することが困難である。以上の他にも種々の試みが 40 あるが、いずれも、計測精度が不十分である。

【0008】さらに、散乱吸収体に対して前配2波長分 光測定の原理を応用するものは、次の共通する問題があ る。そもそも散乱吸収体の吸光度測定では、吸光係数(e xtinction coefficient)が定義上、輸送散乱係数と吸収 係数の和となり、これらが同格のパラメータとして取り 扱われるから、そのままでは散乱と吸収の影響を分離し て吸収の影響、例えば吸収係数を測定することが不可能 である。そこで通常は、2波長分光測定の原理を利用し てこれを解決する。この2波長分光測定では、吸収成分 50

に対して吸収係数が異なる適宜の2種以上の光を用いて 吸光度を測定し、この際に前記2種以上の光に対する散 乱係数あるいは輸送散乱係数が同一、あるいは差があっ ても極めて小さいものと仮定して、前記2種類以上の光 に対する吸光度差から散乱の影響を消去して、吸収係数 あるいは吸収成分の濃度を求めるものである。この方法 は、上記の測定原理から明らかなように、異なる波長に 対して散乱係数あるいは輸送散乱係数が等しいと仮定す ることに起因する誤差が発生するという本質的な欠点が

【0009】上記のように、現在までに開発あるいは報 告されている上記分野の計測法や計測装置では、いずれ の場合にも十分な測定精度が得られていない。このよう な状況に鑑み、本願の発明者は、上記分野の測定の基本 となる散乱吸収体内部の光の振る舞いについて、理論的 かつ実験的に詳細に解析、検討して、従来の解析方法は 散乱吸収体内部の複雑な光の振る舞いを記述するのに十 分でない、あるいは従来の計測法や計測装置の計測原理 を導く過程で導入している多くの近似が、実際の測定対 象や測定現場で成立しないため、その結果として大きな 誤差が測定値に含まれることなどを明らかにした。本願 の発明は、これらの解析、検討、実験などに基づいて、 上記の誤差を著しく小さくして測定精度を高める新しい 計測方法と計測装置を提供することを目的とするもので ある。

【0010】参考文献

- 1) B. C. Wilson and S. L. Jacques: Optical Reflect ance and Transmittance of Tissues: Principle and Ap plication, IEEE J. QuatumElectron., Vol. 26, No. 12, pp. 2186-2199 (1990)
- 2) I. Oda, Y. Ito, H. Eda, T. Tamura, M. Takada, R. Abumi, K. Nagai, H. Nakagawa, and M. Tamura: Non -invasive hemoglobin oxygenationmonitor and comput ed tomography by NIR spectrophotometry, Proc. SPIE, Vol. 1431, pp. 284-293 (1991)
- 3) M.S. Patterson, B. Chance, and B.C. Wilson: Tim e resolvedreflectance and transmittance for the no n-invasive measurement of tissue optical propertie s, Applied Optics, Vol. 28, No. 12, pp. 2331-2336 (198 9)
- 4) M.S. Patterson, J.D. Moulton, B.C. Wilson, and B. Chance: Application of time-resolved light scatt ering measurements tophotodynamic theraphy dosimet ry, Proc. SPIE, Vol. 1203, pp. 62-75(1990)
- 5) E.M. Sevick, N.G. Wang, and B. Chance: Time-depe ndent photon imaging, Proc. SPIE, Vol. 1599, pp. 273-283 (1991)

[0011]

【課題を解決するための手段】本願の発明の散乱吸収体 の内部情報計測方法及び装置は、光路長変化を十分に考

30

5

處した新しい知見、つまり所定液長の光が散乱吸収体の内部を拡散伝搬して所定の検出位置に到達するときの光 検出信号(計測値)と複数の既知のパラメータとの間の 複数の連立関係を利用して、散乱吸収体の吸収係数や輸 送散乱係数の絶対値などの内部情報を計測する。さら に、複数の波長の光を使用して上記計測を行って、特定 吸収成分の濃度などの吸収に関する情報を計測する。

【0012】すなわち、本願の発明の散乱吸収体の内部情報計測方法は、(a) 所定波長の光を散乱吸収体に入射し、(b) 3種類以上の異なる光入射位置一光検出位置間距離に対応する検出位置で、散乱吸収体の内部を拡散伝搬した所定波長の光を検出して3種以上の信号を取得し、(c) 所定波長の光がそれぞれ拡散伝搬して検出位置に到達するときの散乱吸収体内の拡散伝搬経路における散乱特性および吸収特性と前記検出信号との3つ以上の関係に基づいて、検出信号を演算処理して散乱吸収体の内部情報を導出する、ことを特徴とする。

【0013】ここで、所定波長の光は散乱吸収体内部の特定吸収成分に対して吸収係数が異なる2種類以上の光であり、演算処理は1種類の所定波長による計測によっ 20て得られる散乱吸収体の第1次内部情報の導出処理と、2種類以上の波長の光に対する第1次内部情報を利用した散乱吸収体の前記特定成分に関する情報である第2次内部情報の導出処理とである、ことを特徴としてもよい。

【0014】また、本願発明の散乱吸収体の内部情報計測装置は、(a) 所定波長の光を発生する光発生手段と、(b) 所定波長の光を散乱吸収体に入射させる光入射手段と、(c) 3種類以上の異なる光入射位置一光検出位置間距離に対応する検出位置で、散乱吸収体の内部を拡散伝搬した所定波長の光を検出して、3種以上の信号を取得する光検出手段と、(d) 所定波長の光がそれぞれ拡散伝搬して検出位置に到達するときの散乱吸収体内の拡散伝搬経路における散乱特性および吸収特性と前記検出信号との3つ以上の関係に基づいて、検出信号を演算処理して散乱吸収体の内部情報を導出する演算処理手段と、を備えることを特徴とする。

【0015】ここで、所定波長の光は散乱吸収体内部の特定吸収成分に対して吸収係数が異なる2種類以上の光であり、演算処理は1種類の所定波長による計測によって得られる散乱吸収体の第1次内部情報の導出処理と、2種類以上の波長の光に対する第1次内部情報を利用した散乱吸収体の前配特定成分に関する情報である第2次内部情報の導出処理とを実行する、ことを特徴としてもよい。

[0016]

【作用】本願の発明の散乱吸収体の内部情報計測方法及び装置は、散乱と吸収の影響を受けながら散乱吸収体の内部を拡散伝搬した光を散乱吸収体の外部で測定し、その測定値を演算処理して散乱吸収体の内部情報を計測す 50

る。このとき、散乱吸収体内部を拡散伝搬する光の振る 舞いおよびその結果である信号つまり光検出信号が、散 乱吸収体内部の散乱成分や吸収成分などの性質や濃度に 依存することを利用して、3種以上の異なる光入射位置 一光検出位置間距離で測定した3種以上の検出信号(計 測値)を演算処理する。ここで計測される内部情報は、 散乱吸収体の吸収係数や輸送散乱係数などの絶対値であ り、さらにこれらを演算処理して、特定散乱成分や特定 吸収成分の濃度に関する情報などを計測することができる。また、上記の計測を計測対象の多箇所で行えば内部 情報の空間分布、また、同一場所で異なる時間に計測す れば内部情報の時間変化を計測することができる。

【0017】より具体的に説明すると、本願の発明の方法および装置では、所定波長の光を散乱吸収体に入射し、3種以上の異なる光入射位置一光検出位置間距離に対応する散乱吸収体の内部を拡散伝搬した光を検出して、3種類以上の検出信号(計測値)を得る。つぎに、前記所定波長の光が前記検出位置に拡散伝搬して到達するときの散乱および吸収と、前記検出信号(計測値)との3つ以上の連立関係に基づいて、前記3種類以上の検出信号(計測値)と既知のパラメータとを演算処理して、前述したような散乱吸収体の内部情報を定量計測する。以上で用いられる検出信号(計測値)と各種パラメータおよび散乱吸収体の内部情報との関係は、本願によって初めて開示されるものである。

【0018】さらに、複数の異なる所定波長の光を使用して上記の計測を行い、その際に、散乱吸収体内部の特定吸収成分に対する吸収係数が異なるように前記所定波長を選ぶと、散乱吸収体内部の特定吸収成分の精密な定量計測ができる。また、本願の発明による計測では複数の波長に対する輸送散乱係数と吸収係数を高精度に計測することができるから、従来の散乱吸収体に対する2波長分光計測では不可能であった、2つの波長に対して散乱係数が異なる試料あるいは波長の場合でも、散乱吸収体の吸収係数を高精度で計測することができる。このような新しい2波長分光計測は、例えば特定物質の濃度、ヘモグロビンの酸素飽和度、およびこれらの空間分布や時間変化などの精密計測に利用される。

【0019】したがって、前述した従来の吸光度測定に 共通する光路長変化にともなう測定誤差の問題、および 2波長分光測定における2波長間の散乱係数の差の問題 が解決され、計測精度が著しく向上する。さらに、本願 の発明は時間分解計測しない方法であり、光量つまり光 検出信号の時間積分値を計測する方法であるから、装置 構成が極めて簡単になるとともに、光の利用率が向上し て測定時間が短くなり、信号対雑音比(SN比)も向上 する。これらから、本願の発明によってさらに、手術中 や運動中の人の脳内の酸素濃度などのモニタリングある いはリアルタイム計測などが可能になる。

[0020]

(5)

特開平7-49304

【実施例】以下、添付図面を参照して本発明の実施例を 詳細に説明する。なお、図面の説明において同一の要素 には同一の符号を付し、重複する説明を省略する。

【0021】(1) 散乱吸収体の内部情報計測方法

(1.1) 散乱吸収体の内部情報計測の原理

生体のような散乱吸収体内部で、光は散乱、吸収されな がら拡散伝搬し、その一部は表面に出てくる。つまり、 光は散乱吸収体の内部で散乱、吸収されるが、これを透 過することができる。例えば図1は、散乱吸収体内部の を入射し、他の点で拡散光(反射光)を検出する様子を 示す。散乱吸収体に入射された光は、内部でランダムに 散乱されてほぼ全域に広がるが、この図では、光検出器 で検出される光子の飛跡のみが模式的に示してある。つ まり図1は、実際の計測に利用される光子の飛跡を示し

【0022】このような散乱吸収体内部の光の振る舞い は、光拡散理論 (Photon DiffusionTheory)によって、 かなり厳密に記述、解析できることが知られている。こ スは、散乱吸収体内部で散乱、吸収されながら拡散伝搬 する際に、パルス幅が広がっていくことなどが示され る。図2は散乱吸収体内部における光検出量を求めるた めの仮想光源の設定を示す図である。この図に示すよう に、散乱吸収体の表面の1点 ($\rho = 0$, z = 0) に光を 信号は、光拡散方程式から導出することができる。この 場合、散乱吸収体の表面と外部では光拡散が存在しない* *から、これが満足されるように境界条件を設定する必要 がある。Patterson らは、負極性の点光源を仮定してこ の境界条件を満たす方法を開発し、これから得られる理 論値と実際の実験値とがよく一致することを報告してい る。図2では、この負極性の点光源を \bigcirc 印点 ($\rho = 0$, $z = -z_0$) に導入してある。

【0023】他方、散乱吸収体の内部を拡散伝搬する光 子1個1個の振る舞いは、コンピュータを利用したモン テカルロシミュレーション (Monte Carlo Calculation) 光の振る舞いを示した図であり、散乱吸収体の1点に光 10 によって解析、実験、検討することができる。また、実 際に散乱吸収体の物理模型や生体試料などを用いて実験 することもできる。最近得られている知見では、光拡散 理論から導かれる結果、モンテカルロシミュレーション の結果、およびサンプルによる実験結果の間には、それ ぞれ良い一致が得られている。したがって、散乱吸収体 の内部の光の振る舞いは光拡散方程式で十分に記述され ると考えてよい。また、本願の発明者による種々の解 析、実験、検討、および最近のさらに詳しい散乱吸収体 内部の光の振る舞いの解析、実験などでも、散乱吸収体 の光拡散理論によれば、散乱吸収体に入射された光パル 20 の内部の光の振る舞いが光拡散方程式で正確に記述され ることが示されている。

> 【0024】さて、以上のような散乱吸収体の内部の光 の振る舞いを記述する光拡散方程式は、例えば、光子流 動率 (fluence rate) φを用いて次のように記述され

[0025]

【数1】

$$\frac{1}{c} \frac{\partial}{\partial t} \phi(r,t) - D\nabla^2 \phi(r,t) + \mu_a \phi(r,t) = S(r,t) \quad ---(1.1)$$

[0026] ここで、

φ (r, t):位置 r、時刻 t における光子流動率(flu ence rate) (光子/mm² · sec) (但し、r はベクトル である。)

D:光拡散係数 (diffusion coefficient) [mm]

μ.: 吸収係数 (absorption coefficient) [mm⁻¹]

c: 散乱吸収体内部の光速度〔mm/sec〕 (屈折率によっ※

※て定まる)

S (r, t):光源〔光子/m³・sec〕

【0027】インパルス光源はデルタ関数で表されるか ら、原点 (r=0) に t=0 のとき入射する光インパル スは、次のように表される。

[0028]

S
$$(r, t) = \delta (r, t) = \delta (0, 0) = \delta (0) \cdot \delta (0)$$

... (1, 2)

したがって、インパルス光入射に対する光拡散方程式は **★**[0029] 次のようになる。 【数2】

$$\frac{1}{c} \frac{\partial}{\partial t} \phi(r,t) - D\nabla^2 \phi(r,t) + \mu_a \phi(r,t) = \delta(0,0) \quad --- (1.3)$$

【0030】ここで、δ(0,0) は、原点(r=0) にt=0 の とき入射する光インパルスである。

【0031】また、散乱吸収体に関する種々の光学定数

μs: 散乱係数 (scattering coefficient) [mm⁻¹]

μs ':輸送散乱係数 (transport scattering coeffic ient) (mm⁻¹)

μιτ: 輸送減衰係数(transport attenuation coeffici ent) (mm⁻¹)

50 μ.ιι :有効減衰係数 (effective attenuation coeffi

(6)

特開平7-49304

9

*of the scatteringangle)

cient) [mm-1]

g:散乱角hetaに対するcos hetaの平均値(mean cosine * としたとき、

D=
$$\{3 (\mu_{1} + \mu_{5}')\}^{-1} = (3 \mu_{17})^{-1}$$
 ... $(1.4a)$
 $\mu_{5}' = (1-g) \mu_{5}$... $(1.4b)$
 $\mu_{17} = \mu_{1} + \mu_{5}' = \mu_{1} + (1-g) \mu_{5}$... $(1.4c)$
 $\mu_{eff} = \{3 \mu_{1} (\mu_{1} + \mu_{5}')\}^{1/2}$
 $= \{3 \mu_{1} (\mu_{1} + (1-g) \mu_{1})\}^{1/2}$... $(1.4d)$

なる関係にある。

【0032】半空間を占める散乱吸収体にスポット状の 光パルスを入射する場合の境界条件は、前述したPatter 10 R $(\rho, 0, t) = (4\pi D)^{-3/2} z_0 t^{-5/2}$ son らが示したように、図2に示すような負極性の点光 源を位置($\rho=0$, $z=-z_0$)に置くことで実現され る。通常 z_0 は $1/\mu_s$ ′程度の値であるが、厳密には 光の入射方法や散乱吸収体の散乱成分の性質などによつ て変化する。このことは、本願の発明者らのモンテカル ロシミュレーションでも確認されている。

【0033】上記の境界条件で光拡散方程式(1.3) を解いて、散乱吸収体の表面の任意の位置(ρ, 0)に※

$$I(\rho) = \int_0^\infty R(\rho, 0, t) dt$$

※おける光信号R $(\rho, 0, t)$ [光子/ m^2 ・sec] を 求めると、

10

【0034】検出光量 I [ρ] は、上記のR (ρ, 0,

t)を時間積分したものであるから、

[0035]

【数 3 】

【0036】と表され、この式は積分公式を使って下記 **★** [0037] のように解くことができる。 【数4】

$$I(\rho) = \frac{z_0 \{\mu_{\text{eff}}(z_0^2 + \rho^2)^{1/2} + 1\}}{2\pi (z_0^2 + \rho^2)^{3/2}}$$

$$\times \exp(-\mu_{\text{eff}}(z_0^2 + \rho^2)^{1/2})$$

【0038】 ここで、 I [ρ] の自然対数をとると、 ☆【数5】

[0039]

$$\ln I(\rho) = \ln(z_0 / (2\pi)) - (3/2) \ln(z_0^2 + \rho^2) + \ln(\mu_{eff} (z_0^2 + \rho^2)^{1/2} + 1) - \mu_{eff} (z_0^2 + \rho^2)^{1/2} - \cdots (1.8)$$

【0040】となる。したがって、z。が既知値である 場合には、計測値 $I[\rho]$ および既知値 ρ を (1. 7) または(1.8)式に代入して、散乱吸収体のμειι を 求めることができる。図3は、このような計測値 I $[\rho]$ と検出距離 ρ との関係を示す。ここでは、 μ s ′ 夕として示してある。

【0041】ところが、上述した(1.7) および (1.8) 式のz₀は、実際にはz₀≠μ°′となる。 このことは、次の例を考えれば容易に理解できる。つま り、通常の計測系では空気中から散乱吸収体に光を入射 し、散乱吸収体の内部を拡散伝搬した光を空気中で検出 する。この場合、前記の境界条件、つまり、図2に示し た 20 は空気と散乱吸収体との屈折率の差に依存する値 となる。本願の発明者らの詳細な解析およびモンテカル ロシミュレーションによれば、 $z_0 = a/(\mu_1 + 50)$ (1.8)式から、

μs ′)とおいたとき、通常の計測状態では、aの値が 概ね、0.3<a<3の範囲にあることが確認されてい

---(1.7)

【0042】さらに、散乱吸収体に光を入射するとき、 あるいは散乱吸収体から光が出射するとき、何らかの光 =0.45, z₀=1/0.45とし、μ₁をパラメー 40 減衰、例えば表面の着色層などでの吸収があると、前配 の(1.5)式で表される光信号R、および(1.7) 式や(1.8)式で表される検出光量が、上記の減衰に 比例して小さくなる。また通常は、出射光は光検出器で 検出される。したがって、検出信号(計測値)は光検出 器の量子効率に関係した値になる。しかし、この量子効 率は、上記の光減衰率に含めて考えることができる。

> 【0043】以下、このような光減衰がある場合でも、 高い計測精度が得られる計測方法について説明する。上 記のような光減衰の減衰率をηとすると、計測値Qは

(7)

特開平7-49304

II 12
$$lnQ [\rho] = ln (\eta z_0 / (2\pi)) - (3/2) ln (z_0^2 + \rho^2) + ln (\mu_{eff} (z_0^2 + \rho^2)^{1/2} + 1) - \mu_{eff} (z_0^2 + \rho^2)^{1/2} \cdots (1.9)$$

ただし、

$$z_0 = a / (\mu_1 + \mu_5')$$

となる。ここで、aは経験的あるいは実験的に定められ る定数であり、通常は0.3<a<3である。

【0044】上記aを定数と考えると、明らかに(1. 9) 式の未知数は、μ、 μs ′、及びηの3個であ 光検出距離ρを3つ以上の異なる値に設定して、3種以 上の計測値Qを取得し、3種以上のQに対する3つ以上 の連立関係に基づいて、3個の未知数つまり光減衰率 η、吸収係数μα 及び輸送散乱係数μς ′を算出するこ とが可能になる。本願の発明では、上記のような基本的 な知見をさらに展開して、次のように応用する。

【0045】図4は、本願の発明の散乱吸収体の内部情 報計測方法を説明する図である。つまり、均一な散乱吸* ··· (1. 10)

*収体に対して、所定の波長の光を用いて、図4に示した ような異なる3種の検出距離で光検出して、前記計測値 Q [ρ] を得る。なお、以下では、光入射位置と光検出 位置との距離を単に検出距離と呼ぶ。いま、検出距離ρ る。したがって、制御あるいは設定可能な既知数である 10 1 、 ρ 2 および ρ 3 に対する 3 種類の計測値をそれぞ れ、

> Q [ρ₁]:検出距離ρ₁ での計測値 Q [ρ₂]:検出距離ρ₂での計測値 Q [ρ₃]:検出距離ρ₃での計測値

のように表すことにする。すると、3種の検出距離に対 する3つの計測値は、次の3連の連立方程式を満足す

[0046]

$$\begin{split} \ln Q \ [\rho_1\] = & \ln \left(\eta \ z_0\ /\ (2\ \pi)\ \right) - (3\ /\ 2) \ \ln \left(z_0\ ^2 + \rho_1\ ^2\right) \\ & + \ln \left(\mu_{eff}\ (z_0\ ^2 + \rho_1\ ^2\)^{1/2} + 1\right) \\ & - \mu_{eff}\ (z_0\ ^2 + \rho_1\ ^2\)^{1/2} \quad \cdots (1.\ 11\ a) \\ \ln Q \ [\rho_2\] = & \ln \left(\eta \ z_0\ /\ (2\ \pi)\ \right) - (3\ /\ 2) \ \ln \left(z_0\ ^2 + \rho_2\ ^2\ \right) \\ & + \ln \left(\mu_{eff}\ (z_0\ ^2 + \rho_2\ ^2\)^{1/2} + 1\right) \\ & - \mu_{eff}\ (z_0\ ^2 + \rho_2\ ^2\)^{1/2} \quad \cdots (1.\ 11\ b) \\ \ln Q \ [\rho_3\] = & \ln \left(\eta \ z_0\ /\ (2\ \pi)\ \right) - (3\ /\ 2) \ \ln \left(z_0\ ^2 + \rho_3\ ^2\ \right) \\ & + \ln \left(\mu_{eff}\ (z_0\ ^2 + \rho_3\ ^2\)^{1/2} + 1\right) \\ & - \mu_{eff}\ (z_0\ ^2 + \rho_3\ ^2\)^{1/2} \quad \cdots (1.\ 11\ c) \end{split}$$

この連立方程式 (1. 11a) 乃至 (1. 11c) (以 後、総称して(1.11)とも呼ぶ)を構成する3連の およびηの3個である。したがって、3個の計測値と既 知あるいは別の方法で測定した値 ρ_1 、 ρ_2 、および ρ s を用いて、3個の未知数 μ_s 、 μ_s ' および η 、さら には必要に応じてμειι や 20 を求めることができる。 なお、普通は7や20を求める必要はない。また、以上 のような μ 。と μ s '、あるいは μ err を求めるには、 (1.6) または(1.7) 式から導かれる3連のそれ ぞれ独立した式であればどんな形の式でもよい。さら に、ηが既知数として取り扱える場合には、(1.1 1) 式の中の任意の2つの式からなる連立方程式、ある いは(1.6) または(1.7) 式から導かれる2連の それぞれ独立な式からなる連立方程式を解くことによっ T、 μ と μ s ' 、さらには μ err を求めることができ る。以上のような連立方程式を解く計算は、コンピータ を利用して高速に実行することができる。また、当然で あるが、互いに独立な計測値Qの数が多いほど上記の計 算精度が向上する。

【0047】さらに上記の計測で、異なる波長入」と入 2 の光を用いると、それぞれの波長に対する吸収係数μ

 μ_{11} ' と μ_{12} ' を求めることができる。したがって、例 えばμ11/μ12の値からヘモグロビンの酸素飽和度など 式は、それぞれ独立であり、かつ未知数は μ_{*} 、 μ_{*} ' 30 を算出することができる。このような2波長分光計測で は、散乱吸収体に含まれる吸収成分の吸収係数の波長依 存性を利用する。例えば、図5に吸収スペクトルを示す 酸化・還元ヘモグロビンや酸化・還元ミオグロビンの計 測では、酸化・還元に対して吸収係数の差が大きい波長 の光、つまり700 n mから1. 2μmの波長の光がよ く使用される。

> 【0048】ここで重要なことは、本願の発明による計 測方法や装置では、前述したように輸送散乱係数μ11′ とμ,2′の絶対値を求めることができることである。し 40 たがって、従来の2波長分光における仮定、つまり異な る2つの波長の光に対する散乱成分の散乱係数が同一ま たは差があっても極めて小さいという仮定が成立しなく ても、本願の発明による計測方法および装置によって精 度の高い計測ができる。このように、本願の発明による 計測方法や装置は、従来の2波長分光計測の適用範囲を 大幅に拡大して、計測精度を大きく向上することができ

【0049】本願の発明は、光検出信号の積分値を利用 するので、入射する光パルスの波形はどんな形のもので 11とμ12、およびそれぞれの波長に対する輸送散乱係数 50 あっても、積分時間が規定できるものであれば、問題な

く利用することができる。例えば方形液や連続光でもよいことは明らかである。また、3種以上の液長の光や4種以上の検出距離で計測すれば、さらに計測精度を向上させること、あるいはバックグラウンド吸収のある試料を計測することなどが可能になる。なお、図4では1つの光入射位置に対して異なる3つの位置で光検出したが、異なる3つの位置に光を入射して1つの光検出位置で検出する方法などでもよく、要は、3種以上の検出距離を利用すればよい。

【0050】また以上では、計測対象が半空間を占める散乱吸収体である場合について説明したが、実際には、有限の大きさの散乱吸収体を計測することが多い。この場合、図4の散乱吸収体の表面および外で前記の境界条件が満足され、かつ散乱吸収体内部を拡散伝搬する大部分の光に対して光拡散の条件が成立すればよい。この条件は、検出距離 ρ_1 、 ρ_2 および ρ_3 に比較して散乱吸収体が十分大きいと見做せるときに成立する。例えば、図4に示した波線内の部分は、検出位置に到達する大部分の光が通過する領域を示す。なお、このような領域があることは、例えば、前述したSevickらが報告した散乱吸収体内部のバナナ状の光の束、あるいは本願の発明者らのモンテカルロシミュレーションの結果からも明らかである。

【0051】また、検出距離 ρ_1 、 ρ_2 および ρ_3 に比較して散乱吸収体の厚さ(α 2方向)が十分に大きいと見*

$$I(d) = \frac{\exp(-d\mu_{eff})}{2\pi d^3}$$

$$\left\{ (1 + \frac{3z_0}{d}) (\mu_{eff}(d - z_0) + 1) (d - z_0) \exp(z_0 \mu_{eff}) - (1 - \frac{3z_0}{d}) (\mu_{eff}(d + z_0) + 1) (d + z_0) \exp(-z_0 \mu_{eff}) \right\}$$
--- (1:12)

【0054】また、(1.9)式に相当する式は、

$$Q[d] = \eta I[d]$$

となる。ところが、これらの式は(1. 7)式および はコンピュータ (1. 9)式の式の形が変わっただけ、つまり未知数や 既知数の数が同じで、パラメータも同一であるから、前 記の場合と同様に演算処理することができ、前記と同様 40 の結果が得られる。したがって、前記と同様にして3個 の計測値と既知の値 ρ_1 、 ρ_2 および ρ_3 を用いて、3 個の未知数 μ_a 、 μ_a 、

14

*做せないときは、散乱吸収体の背面側(光入射面と対向 する反対側の表面)に、境界条件を満足させるような第 2の負極性と正極性の点光源を導入すればよい。このと き、原理的には、この第2の負極性と正極性の点光源の 影響を補正するために、さらに第3の負極性と正極性の 点光源、さらにそれを補正するために第4の負極性と正 極性の点光源などが必要となる。しかし、これらで導入 する点光源の出力光への影響は、その順序に従って急激 に減少するので、有限の点光源で近似することができ る。この場合、前出の(1.5)式乃至(1.9)式 は、追加した負極性と正極性の点光源の影響に関する項 を追加して修正する必要がある。しかし、この修正は、 項の数が増えるだけで、未知数の数や各式の独立性など は不変であるから、前記と同様のことが成立する。

【0052】さらに、本願の発明の計測方法と装置は、スラブ状の試料に適用することもでき、その様子を図6に示す。ただし、図6では3つの位置から光を入射しているが、1箇所から光を入射して検出距離の異なる3箇所で検出してもよい。なお、スラブ状の試料の場合には、光拡散方程式(1.3)から導かれる結果、つまり前述の(1.7)式に相当する式は、検出距離をdとしたとき、例えば、

[0053]

【数6】

... (1. 13)

はコンピュータを利用して高速に実行される。

【0055】さらに、以上に説明したような散乱吸収体の内部情報は、光入射位置から光検出位置に拡散伝搬する光の光路に沿う情報の平均値である。したがって、内部情報が図4示した光入射位置一光検出位置間の距離、あるいは図6に示した光入射位置の間隔に比較して、十分粗に分散している場合には、各種の計測値の空間分布の画像化、つまり簡単なイメージングができる。さらに、当然ではあるが前記の計測を異なる時間に行えば、前記内部情報の時間変化を計測することができ、脳内酸素量などのモニタリングや計測に応用することができる。以上のような場合の画像化演算などは、メモリ、ディスプレイなどを備えるコンピュータ装置によって高速に実行される。

(9)

特開平7-49304

15

【0056】なお、以下に本願の発明の有効性を示す1 つの例として、本願の発明による方法と従来の一定の光 路長を仮定する吸光度法との計測誤差について述べてお く。前述の図4に示したような半空間を占める散乱吸収 体を考えた場合、検出される光信号は(1.5)式で表* *せる。このような信号に対して、平均光路長<L>、つ まり時間分解波形の重心を考えると、

16

[0057] 【数7】

$$\int_{0}^{\infty} R(\rho, 0, t) dt$$
3. (43 + 45') (70² + 0²)

$$= \frac{3}{2} \frac{(\mu z + \mu s') (z_0^2 + \rho^2)}{1 + (z_0^2 + \rho^2)^{1/2} \mu_{\text{eff}}} --- (1.14)$$

【0058】となる。

【0059】ここで、生体試料に対する標準的な値とし τ , μ_s ' = 0, 45 (mm⁻¹), $z_0 = 1/\mu_s$ ', tた計測条件として $\rho = 50$ (mm) を考え、 μ 。が0.0 1から0.02に変化するときの平均光路長をそれぞ※ $%h, < L (\mu = 0. 01) > \xi < L (\mu = 0. 0$ 2) >とすれば、平均光路長を一定と仮定するときの平 均光路長に対する誤差∆は、

[0060]

【数8】

$$\Delta = \frac{\langle L(\mu_a = 0.01) \rangle - \langle L(\mu_a = 0.02) \rangle}{\langle L(\mu_a = 0.01) \rangle} \times 100$$

= 14 (%)

--- (1, 15)

【0061】となる。したがって、光路長が一定である と仮定して求めた吸光度は、14%程度の誤差を含むこ とがわかる。これに対して、本願の発明の方法および装 置では、上記平均光路長の変化を考慮した関係を利用し て演算処理しているので、上記の誤差をなくすことがで きる。以上のことは、スラブ状の散乱吸収体を計測する 願の発明の有効性が明らかである。

【0062】(1.2)吸収情報の計測方法 以下、上記で求めた吸収係数を使用して、吸収成分に関 する情報を演算処理して導出する方法について説明す

【0063】(1) ヘモグロビンの酸素飽和度の計測方

★哺乳類の脳における吸収成分の主なものは、水、チトク ローム (cytochrom)、酸化および還元へモグロビンであ る。近赤外線領域での水とチトクロームの吸収は、酸化 および還元ヘモグロビンに対して、ほぼ無視することが できる程度に少ない。また、酸化および還元ヘモグロビ ンは、前出の図5に示すように吸収スペクトルが異な 場合でも同様であり、誤差の程度の差は少しあるが、本 30 る。さらに、頭蓋骨は、近赤外線に対して散乱体と考え てよい。

> 【0064】以上に対して、いま、波長入1 と入2 の2 種の光を考える。すると、入1 と入2 に対する吸収係数 μιιとμι2は、ランパート・ベール則によって、次のよ うになる。

[0065]

 $\mu_{\bullet 1} = \epsilon_{\text{Hb}, 1} \text{ (Hb)} + \epsilon_{\text{HbO}, 1} \text{ (HbO)}$

··· (2, 1a)

 $\mu_{12} = \varepsilon_{11b,2} \text{ (Hb)} + \varepsilon_{11b0,2} \text{ (HbO)}$ ··· (2. 1b) 40 ☆ E I bo 2 :酸化ヘモグロビンの波長入2 に対するモル吸

εпь, 1: 還元ヘモグロビンの波長入: に対するモル吸 収係数 [mm-1・M-1]

但し、

εньо. г : 酸化ヘモグロビンの波長 λ г に対するモル吸 収係数〔mm-1・M-1〕

ε ε ι δ ι 2 : 還元ヘモグロビンの波長λ 2 に対するモル吸 収係数 (mm-1・M-1)

収係数〔mm-1・M-1〕 (Hb): 還元ヘモグロビンのモル濃度 [M]

(HbO):酸化ヘモグロビンのモル濃度 [M]

【0066】ここで酸素飽和度Yは、

Y = (HbO) / ((Hb) + (HbO))... (2. 2)

であるから、次式を得る。

 $\mu_{*1}/\mu_{*2} = (\epsilon_{Hb,1} + Y (\epsilon_{Hb0,1} - \epsilon_{Hb,1}))$ $/ (\epsilon_{Bb,2} + Y (\epsilon_{Bb0,2} - \epsilon_{Bb,2}))$... (2. 3) (10)

特開平7-49304

17

したがって、前述の計測によって求めたμ11とμ12、あ るいは μ_{*1}/μ_{*2} と既知のパラメータ $\epsilon_{8b,1}$ 、 επьο.1 、επь.2 およびεπьο.2 とを用いて、還元へモ グロビンのモル濃度〔Hb〕、酸化ヘモグロビンのモル 濃度〔Hb〇〕、ヘモグロピンのモル濃度〔Hb〕+ (HbO) および酸素飽和度Yを算出することができ る。なお、酸化および還元ヘモグロビンに対して吸収が

同一になる波長 (≒800 nm 、isosbestic wavelengt *

$$\mu_{a1} = \epsilon_{Hb,1}$$
 (Hb) $+ \epsilon_{Hb0,1}$ (HbO) $+ a_1$
 $\mu_{a2} = \epsilon_{Hb,2}$ (Hb) $+ \epsilon_{Hb0,2}$ (HbO) $+ a_2$
 $\mu_{a3} = \epsilon_{Hb,3}$ (Hb) $+ \epsilon_{Hb0,3}$ (HbO) $+ a_3$

この式を整理すると、

$$(\mu_{b1} - \mu_{b2}) / (\mu_{b3} - \mu_{b2})$$

$$= [(\epsilon_{Bb,1} - \epsilon_{Bb,2}) + Y (\epsilon_{Bb0,1} - \epsilon_{Bb0,2} - \epsilon_{Bb,1} + \epsilon_{Bb,2}) + K (a_1 - a_2)]$$

$$+ [(\epsilon_{Bb,3} - \epsilon_{Bb,2}) + Y (\epsilon_{Bb0,3} - \epsilon_{Bb0,2} - \epsilon_{Bb,3} + \epsilon_{Bb,2}) + K (a_3 - a_2)] \cdots (2.5)$$

成立する。

[0069]

但し、

$$K=1/((Hb) + (HbO))$$

··· (2. 6)

18

【0068】 (ii) バックグラウンド吸収がある場合

生体などでは、パックグラウンドの吸収が無視できない

場合がある。この場合は、波長入1、入2 および入3 に

対するバックグラウンド吸収を、それぞれai、a2 およ

びa。とすれば、ランパート・ペール則によって次式が

··· (2. 4 a)

 $\cdot \cdot \cdot (2.4b)$

··· (2. 4c)

*h) を使用すれば上記の式はさらに簡単になる。

となる。したがって、a₁ ≒ a₂ ≒ a₃ となるように適 宜に波長を選択すれば、前記と全く同様にして、3種類 の波長の光に対する計測値と既知のパラメータの値を用 いて μ 11、 μ 12 および μ 13 を求めて、これらと既知のパ ラメータの値を(2.4)式あるいは(2.5)式に代 入して、(Hb)、(HbO)、(Hb) + (Hb O〕、あるいは飽和度Yを求めることができる。なお、 上記の条件 a1 ≒ a2 ≒ a3 は、計測対象である生体な どに対して波長をうまく選べば実現できる。

【0070】(2)散乱吸収体の内部情報計測装置 (2.1)第1の実施例に係わる装置

図7は、本願の発明に係る散乱吸収体の内部情報計測方 法を実施する装置の第1実施例である。レーザーダイオ ードなどを使用した光源2は所定波長入1 と入2 の光を 発生する。計測に使用する光の波長は、計測対象に応じ て適宜に選ぶ必要がある。一般に生体では、ヘモグロビ ンなどの吸収の関係から700〔㎜〕以上の光がよい。 また、酸化ヘモグロビンと還元ヘモグロビンでは、前出 の図5に示したように、吸収係数が異なるから、適宜に 40 波長を選択して使用することによって、これらを分離し て計測することができる。光源には、発光ダイオード、 レーザーダイオード、HeNeレーザーなど種々のもの が使用できる。また、前述したようにパルス光や方形波 光を発生するものでもよい。

【0071】光源2からの光は波長選択器4で波長選択 され、光ガイド6を通して計測対象である散乱吸収体2 0の表面に入射される。この場合、後述するような集光 レンズやピンホールを使用する方法もある。つまり、前 述したように生体試料などの散乱吸収体では平均拡散長 50 シェフォトダイオード、PINフォトダイオードなど、

が2 [mm] 程度であるため、入射光は約2 [mm] 直進す るまでに散乱し、光の方向性がなくなる。したがって、 数cm以上の散乱吸収体では平均拡散長の影響を無視する ことができるから、スポット状に光を入射すれば良い。 また、太いピーム状の光を散乱吸収体に入射してもよ い。この場合には、複数のスポット状光源が並んでいる と考えればよい。

【0072】光ガイド6と計測対象20の間の空間は、 30 図7の実施例では微小になっている。しかし実際には、 これを大きくして、この空間に計測対象である散乱吸収 体20とほぼ等しい屈折率と散乱係数をもつ液状体やゼ リー状物体(以下、インターフェース材と呼ぶ)を満た しておいても良い。つまり、光はこのインターフェース 材中を拡散伝搬して計測対象に入射するから何ら問題は 生じない。また、散乱吸収体20の表面反射が問題にな るときには、インターフェース材を適宜に選択すること によって、表面反射などの影響を低減することができ

【0073】散乱吸収体20の内部を拡散伝搬した光 は、前記光入射位置から距離 ρ_1 、 ρ_2 および ρ_3 の位 置に置いた光ガイド8、9および10で受光される。こ こでも前記と同様の理由によって、インターフェース材 を使用してもよい。

【0074】第1の光検出器12、第2の光検出器13 および第3の光検出器14は、前記受光信号を電気信号 に変換して増幅し、それぞれ検出信号a、bおよびcを 出力する。この光検出器12、13および14は、光電 子増倍管のほか、光電管、フォトダイオード、アパラン

-34-

あらゆる種類の光検出器を使用することができる。光検 出器の選択に際しては、所定波長の光が検出できる分光 感度特性をもっていれば良い。また、光信号が微弱であ るときは高感度あるいは高利得の光検出器を使用する。 光検出器の受光面以外の場所は、光を吸収あるいは遮光 する構造にしておくことが望ましい。また、散乱吸収体 の内部を拡散伝搬した光が複数の波長の光を含む場合に は、光検出器12、13および14と散乱吸収体20と の間の適宜の位置に波長選択フィルタ(図示せず)を入 れる。

【0075】演算処理部16は、第1の光検出器12、 第2の光検出器13および第3の光検出器14からの検 出信号a、bおよびcを信号処理して、それぞれ検出光 量に比例した計測値d、eおよびfに変換する。具体的 には、演算処理部16は光源2の光発生に同期した信号 gを利用して、検出信号a、bおよびcに対する時間域 での積分演算を行って、検出光量に比例する計測値は、 e および f を演算する。ただし、パルス光などを利用す る場合には、この同期信号gを省略することができる。 つぎに、波長 λ_1 と λ_2 に対して、計測値d、e および 20 fと、予め別の方法で測定あるいは設定された既知のパ ラメータ ρ_1 、 ρ_2 および ρ_3 の値とを、前述した3連 の関係に基づいて演算処理し、散乱吸収体の内部情報つ まり波長入1 と波長入2 とに対する吸収係数と輸送散乱 係数、つまり μ 12と μ 11′ および μ 12と μ 12′ を算出す る。この種の演算処理は、演算処理手段に組み込んだマ イクロコンピュータなどで高速に実行することができ る。また必要に応じて、上記で求めた内部情報つまり μ *1とμ*2の値を用いて、特定吸収成分の濃度などを算出 する。さらに、バックグラウンド吸収などがある場合に 30 は、既に述べたように3種以上の波長の光を使用する。

【0076】以上の場合、異なる波長の光を時分割で発光させて使用する方法と、異なる波長の光を同時に含む光を使用する方法とがある。具体的な波長選択手段としては、ミラーを用いた光ビーム切り換え器、フィルターを用いた波長切り換え器、光スイッチを用いた光切り換え器、光スイッチを用いた光切り換え器などを利用する方法(図8(a))がある。また、異なる波長の光を同軸状のビームにして、光入射点の直前に設けた波長選択フィルタで波長選択する方法、あるいはそのまま平行に散乱吸収体に入射して(図8b)、前記光検出器の直前に設けた波長選択フィルタで波長選択フィルタで波長選択フィルタで波長選択フィルタで波長選択フィルタで波長選択フィルタで波長選択フィルタで波長選択フィルタで波長選択フィルタで波長選択フィルタで波長選択フィルタで波長選択フィルタで波長選択フィルタで波長選択する方法(図9)、さらには6個の光検出器を用いてそれぞれの検出位置で2種の波長の光を並列に検出する方法、およびこれらを適宜に組み合わせる方法などがある。

【0077】光を生体などの散乱吸収体に入射する手段としては、図7に示した光ガイドを使用する方法の他に、集光レンズ(図10(a)、光ファイバー(図10(b))、ピンホール(図10(c))を利用する方法、胃カメラのように体内から入射する方法(図10

(d))などがある。また、散乱吸収体の内部を拡散伝搬した光を受光して検出する手段としては、図7に示した光ガイドを用いる方法以外に、直接検出する方法(図11(a))、光ファイバーを用いる方法(図11(b))

(b))、レンズを用いる方法(図11(c)) などが ある。

【0078】また、光検出器で得られる信号を低雑音で増幅する必要がある場合には、狭帯域アンプ(図12(a))、ロックインアンプ(図12(b))などを利10用することができる。ロックインアンプを使用する場合には、参照信号として前記同期信号度を利用する。この方法は、方形波光やパルス光を用いてダイナミックレンジの高い計測を行うときに有効である。また、散乱吸収体20が生体試料などで、表面部に吸収層がある場合には、検出距離ρ1、ρ2 およびρ3の場所の予め別の方法で測定した吸収の値を用いて、前記計測値d、e およびfの値を補正することもできる。

【0079】さらに、散乱吸収体に対する光の入射位置と光検出位置とを同期して走査(図示せず)させて、散乱吸収体の各部の内部情報を求めて、フレームメモリー(図示せず)に蓄積し、これをテレビ方式で読み出せば、内部情報の分布を示す画像が得られる。また、異なる時刻に計測すれば、内部情報の時間的変化を計測することができる。前記演算処理部16は、このようにして得た内部情報を記憶する機能をもち、図7の中の表示記録手段18はこれらの途中経過や結果を表示あるいは記録するものである。この際、これらの演算処理は、メモリ、ディスプレイなどを備えるコンピュータ装置によって高速に実行することができる。

7 【0080】またさらに、スラブ状試料に対しても上記と同様の計測ができる。この場合には、拡散伝搬した透過光を検出するように、光入射位置と光検出位置とを、図6に示したように、散乱吸収体の対向する表面に設置するとともに、検出距離が異なるように設定する必要がある。

【0081】(2.2)第2の実施例に係わる装置 図13は、本願の発明に係る散乱吸収体の内部情報計測 方法を実施する装置の第2実施例の構成図である。この 装置は、散乱吸収体の光学定数を計測する装置で、容器 24の中に入れた試料20は散乱吸収体であり、その吸 収係数や輸送散乱係数は未知である。この実施例に示す 装置は、1つの所定波長の光を使用するもので、2波長 を使うこと以外の動作は第1の実施例の装置とほぼ同じ である。また、図13では、前出の図7で説明したもの と同一の機能をもつものに図7と同一の番号や記号が付 けてある。

【0082】光源2からの所定波長の光は光ガイド6を 通して容器24に入れた液状の試料20に入射される。 散乱吸収体である試料の内部を拡散伝搬した光は、前記 50 光入射位置から距離 ρ_1 、 ρ_2 および ρ_3 の位置に置い

た光ガイド8、9および10で受光され、検出部22の中の配置した光検出器(図示せず)で検出信号a、b およびc に変換され、信号ケーブル17を介して、次段の演算処理部16に供給される。演算処理部16は、前記検出信号a、b およびc を信号処理して、それぞれ検出光量に比例した計測値d、e およびf に変換する。つぎに、計測値d、e およびf と、予め別の方法で測定あるいは設定された既知のパラメータ ρ_1 、 ρ_2 および ρ_3 の値とを、前述した3連の関係に基づいて演算処理し、散乱吸収体の吸収係数 μ_{11} と輸送散乱係数 μ_{31} を算出する。この種の演算処理は、演算処理部16に組み込まれたマイクロコンピュータで高速に実行する。

【0083】以上の場合、光源、光入射手段、光検出手段、光検出信号の増幅手段などは、第1の実施例で説明したものが利用できる。このような装置は、未知の散乱吸収体の光学定数を測定する汎用性の高い装置となり、理工学、生物学、分光分析などの広い分野で利用することができる。

【0084】(2.3)第3の実施例

図14は、本願の発明に係る散乱吸収体の内部情報計測 20 度が 方法を実施する装置の第3の実施例の構成の一部分を示す。この装置は、人の脳内の酸化ヘモグロビンの濃度あるいはヘモグロビンの酸素飽和度を計測あるいはモニタリングする装置である。バンド型の容器26は、鉢巻きのように頭部30に装着され、脳内のヘモグロビンの酸素飽和度が計測される。この実施例に示す装置は、第1 の実施例と同様に、2つの所定波長入1と入2の光を使用し、その動作は第1の実施例の装置とほぼ同じである。また、図14では、前出の図7で説明したものと同一の機能をもつものに図7と同一の番号や記号が付けて 30 る。ある。

【0085】光源2からの所定波長 λ_1 と λ_2 との光は、波長選択器4で波長選択され、光ガイド6を通して計測対象である頭部30に入射される。この際、2つの波長は適宜に選ぶ必要がある。散乱吸収体である頭部内を拡散伝搬した光は、前記光入射位置から距離 ρ_1 、 ρ_2 および ρ_3 の位置に置いた光ガイド8、9および10で受光され、第1の光検出器12、第2の光検出器13 および第3の光検出器14で電気信号に変換、増幅される。このとき、電源、信号などは容器26に付けたコネ 40 クタ28を介して、外部機器(図示せず)と接続される。信号に対する演算処理(図示せず)と接続される。信号に対する演算処理(図示せず)は、第1の実施例と同様であり、この実施例ではヘモグロビンの酸素飽和度を出力、表示する。また、上記で、信号を電液や光信号に変換して、伝送することもできる。

【0086】以上の場合、光源、光入射手段、光検出手段、光検出信号の増幅手段などは、第1の実施例で説明したものが利用できる。また、人体頭部などでは、表面反射や光ガイドと頭部間の隙間などが問題になることがある。この場合には、前述したインターフェース材を利 50

用するとよい。図15は、図14に示した装置の光入射、検出部の変形例を詳細に示す。この例では、図14に示した光ガイドを省略して、頭部と波長選択器4との間、および頭部と光検出器12との間に、計測対象とほぼ同一の散乱係数と吸収係数をもつインターフェース材11を使用している。このようにすると、集光率が良くなるとともに、ρ1、ρ2 およびρ3 の位置に置いたそれぞれの光検出と頭部との光結合状態の差を小さくする

【0087】このような装置は、脳内の情報の計測以外に、例えばマラソン中の人の脚の筋肉中の酸化ヘモグロビン濃度の計測あるいはモニタリングなどに使用することができる。

[0088]

ことができる。

【発明の効果】以上に述べたように、本願の発明による 散乱吸収体の内部情報計測方法および装置によれば、散 乱吸収体の内部情報の高精度計測、つまり輸送散乱係数 μs / および吸収係数μ。の絶対値測定が可能となる。 これらに2波長分光の原理を応用すれば、特定成分の濃 度などの内部情報の精密な計測ができる。また、前記内 部情報の空間分布や時間的変化を計測することができ る。さらに、本発明を利用した計測装置では、光信号の 時間積分値を使用するから、光の利用率が高くなり、信 号対雑音比が大きくなって計測精度が高くなる。したが って、人体頭部や胴体部、立ち木などの植物体などに対 して、簡単な装置で、非侵襲で内部情報を計測し、これ らのイメージングなどを行うことが可能になる。

【図面の簡単な説明】

【図1】散乱吸収体内部の光の振る舞いを示す図である。

【図2】散乱吸収体内部における光検出量を求めるため の説明図である。

【図3】検出光量 I [
ho] と検出距離 ho との関係を示す グラフである。

【図4】本願の発明の原理を説明する図である。

【図5】各種生体物質の吸収スペクトルを示すグラフである。

【図6】スラブ状試料の計測を示す図である。

【図7】第1実施例の装置の構成を示す図である。

【図8】波長の異なる光の切り換えまたは混合を行うための構成図である。

【図9】 波長の異なる光の検出を行うための構成図である

【図10】散乱吸収体への光入射方法を示す説明図であ ス

【図11】受光方法を示す説明図である。

【図12】検出信号の低雑音増幅方法を示す説明図である。

【図13】第2実施例の装置の構成を示す図である。

【図14】第3実施例の装置の要部構成図である。

(13)

特開平7-49304

23

【図15】光入射・検出部の詳細構成図である。 【符号の説明】

2…光源、4…波長選択器、6, 8, 9, 10…光ガイド、11…インターフェス材、12, 13, 14…光検

出器、16…演算処理部、17…信号ケーブル、18… 表示記録手段、20…散乱吸収体、22…検出部、24 …容器、26…パンド状容器、28…コネクター、30 …人体頭部。

【図1】

【図2】

散乱吸収体内部における光検出量を求めるための図

散乱吸収体内部の光の振る舞い

【図4】

検出光量 [[] と検出距離 p の関係

(14)

·特開平7-49304

各種の生体物質の吸収スペクトル

散乱吸収体

【図10】

波長の異なる光の検出

(15)

特開平7-49304

第1実施例の装置の構成図

第3実施例の装置の変形例の 光入射. 検出部の詳細構成

(16)

特開平7-49304

【図8】

(a)異なる波長の光の切り換え

(b)異なる波長の光の混合

波長の異なる光の切り換と混合

(17)

特開平7-49304

検出信号の低雑音増幅方法

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.