On normal Sylow subgroups

Claudi Lleyda Moltó

The three Sylow Theorems

Definition 1 (Sylow ♣-subgroup). Let Bē be a group of order ♣ h, where ♣ is a prime number and ♠ ∤ ♣, such that there exists a subgroup ★ of Bē of order ♣ h. Then we say that ★ is a Sylow ♣-subgroup of Bē.

Theorem 2 (First Sylow Theorem). Let $\mathbf{B}\bar{\mathbf{e}}$ be a finite group. Then for every prime \mathbf{B} dividing the order of $\mathbf{B}\bar{\mathbf{e}}$. Then there exists a Sylow \mathbf{B} -subgroup of $\mathbf{B}\bar{\mathbf{e}}$, and every \mathbf{B} -subgroup of $\mathbf{B}\bar{\mathbf{e}}$ is in a Sylow \mathbf{B} -subgroup of $\mathbf{B}\bar{\mathbf{e}}$.

Theorem 3 (Segond Sylow Theorem). Let **Bē** be a finite group. Then for every prime **A** dividing the order of **Bē**, the Sylow **A**-subgroups of **Bē** are conjugate.

Theorem 4 (Third Sylow Theorem). Let $\mathbf{B}\bar{\mathbf{e}}$ be a group of order $\mathbf{A}^{\mathbf{c}}$, where \mathbf{A} is a prime number and $\mathbf{A} \nmid \mathbf{A}$, and let $\mathbf{A}_{\mathbf{c}}$ be the number of Sylow $\mathbf{A}_{\mathbf{c}}$ -subgroups of $\mathbf{B}\bar{\mathbf{e}}$. Then

$$\mathbf{\mathring{L}} = \mathbf{1} \pmod{\mathbf{Q}}.$$

Normal Sylow subgroups

Proposition 5. Let $B\bar{e}$ be a group with $\mathbf{\mathring{4}_{G}}=1$. Then its Sylow $\mathbf{\mathring{>}}$ -subgroup is a normal subgroup of $B\bar{e}$

Proof. Let \clubsuit be the Sylow \clubsuit -subgroup of $B\bar{e}$. By the second Sylow Theorem we have that for every $\& \in B\bar{e}$ we find that

$$3 + 3^{-1} = 4,$$

0

and 3 is a normal subgroup of **Be**.

Theorem 6. Let \mathbf{Be} be a finite group such that there exist two different prime factors \mathbf{AB} and \mathbf{AB} dividing its order with $\mathbf{AB} = 1$ and $\mathbf{AB} = 1$. Then

the elements of the Sylow \clubsuit -subgroup commute with the elements of the Sylow \vartriangle -subgroup of $B\bar{\mathbf{e}}$.

Proof. Let
↑ be the group identity of Bē and let
♦ be the Sylow ♣ subgroup and
★ be the Sylow ♣ subgroup of Bē. By Lagrange's Theorem we find that

$$\clubsuit \cap \cancel{K} = \{ \Upsilon \},$$

and by the last proposition we have that 🕏 and 🌋 are normal subgroups of Bē.

Then, for every $\blacksquare\in \red{\hspace{-0.1cm}\not=\hspace{-0.1cm}}$ and every $\Re\in \red{\hspace{-0.1cm}\not=\hspace{-0.1cm}}$ we have

$$\begin{split} \blacksquare \hat{\boldsymbol{\pi}} \blacksquare^{-1} \hat{\boldsymbol{\pi}}^{-1} &= \left(\blacksquare \hat{\boldsymbol{\pi}} \blacksquare^{-1} \right) \hat{\boldsymbol{\pi}}^{-1} \in \boldsymbol{\mathcal{K}} \\ &= \blacksquare \left(\hat{\boldsymbol{\pi}} \blacksquare^{-1} \hat{\boldsymbol{\pi}}^{-1} \right) \in \boldsymbol{\mathcal{L}} \\ &\in \boldsymbol{\mathcal{L}} \cap \boldsymbol{\mathcal{K}} = \{ \boldsymbol{\Upsilon} \} \\ &= \{ \boldsymbol{\Upsilon} \}, \end{split}$$

with which we find that $\blacksquare \hat{\pi} = \hat{\pi} \blacksquare$

Theorem 7. Let $\mathbf{B}\bar{\mathbf{e}}$ be a finite group, let $\mathbf{B}_1, \ldots, \mathbf{B}_{\mathbf{G}}$ be the different primes dividing the order of $\mathbf{B}\bar{\mathbf{e}}$ and let $\mathbf{p}_1, \ldots, \mathbf{p}_{\mathbf{G}}$ be the Sylow subgroups of $\mathbf{B}\bar{\mathbf{e}}$. Then the Sylow subgroups $\mathbf{p}_1, \ldots, \mathbf{p}_{\mathbf{G}}$ are normal if and only if

0

O

Proof. Suppose that $\mathbf{B}\bar{\mathbf{e}} \cong \mathbf{z}_1 \times \cdots \times \mathbf{z}_{\mathbf{G}}$. We have

$$|\mathbf{B}\bar{\mathbf{e}}| = |\mathbf{\dot{z}}_1 \times \cdots \times \mathbf{\dot{z}}_{\mathbf{G}}| = |\mathbf{\dot{z}}_1| \cdots |\mathbf{\dot{z}}_{\mathbf{G}}|,$$

which implies $\mathbf{\mathring{t}_{sq_1}} = 1, \ldots, \mathbf{\mathring{t}_{sq_0}} = 1$, and by proposition 5 we find that the Sylow subgroups $\mathbf{\mathring{z}_1}, \ldots, \mathbf{\mathring{z}_0}$ are normal.

Suppose now the Sylow subgroups $\not \ge_1, \ldots, \not \ge_0$ are normal. By the previous theorem we have that the elements of two different groups commute. With this we find that the function

$$lacksymbol{\underline{P}}: \slacksymbol{\cancel{\$}}_1 imes \cdots imes \slacksymbol{\cancel{\$}}_0 \longmapsto lacksymbol{B}_1 \cdots lacksymbol{B}_{\mathbf{Q}}$$

is a homomorphism. The homomorphism \blacksquare is injective, since the order of a product of commuting elements with relatively primer orders is equal to the product of their orders. We also have that

$$|\mathbf{B}\bar{\mathbf{e}}| = |\mathbf{x}_1 \times \cdots \times \mathbf{x}_{\mathbf{G}}| = |\mathbf{x}_1| \cdots |\mathbf{x}_{\mathbf{G}}|,$$

with which we find that

is a group isomorphism.

https://kconrad.math.uconn.edu/blurbs/grouptheory/sylowapp.pdf.