

Building a data pipeline on Google Cloud Platform

พิชิตชัย พิมพ์โคตร

Agenda

- Data pipeline
- Data pipeline Orchestration
- Apache Airflow
 - What is Apache Airflow
 - Airflow DAG definition file example
- Google Cloud Storage
 - Google Cloud Platform
 - Google Cloud Storage
- Workshop#1 upload data to google storage

Agenda

- Google Cloud Composer
 - Google Cloud Composer
- Workshop#2 Automated Data Pipeline with Airflow
 - Workshop Hello world!
 - Workshop ingest from database and stored on data lake(google storage)
- Google BigQuery
 - Google BigQuery
- Workshop#3 Create BigQuery data warehouse and import data to BigQuery
- Workshop#4 Automated load data to BigQuery
- Exercise

Data Pipeline?

Data pipeline คือกระบวนการ หรือขั้นตอนในการ "ย้ายข้อมูลจากต้นทาง (Data Source) ไปยัง ปลายทาง (Destination)"

Technology Stack Overview

Data Pipeline Orchestration

 Data Pipeline Orchestration เป็นการจัดการ Pipeline ต่างๆให้เป็นระเบียบ เช่นการจัดคิว การ monitor การทำงานของ Pipeline ตั้งแต่ต้นจนจบ

Data Pipeline Orchestration Tool

- Oozie เป็นตัวที่มาพร้อมๆ กับ Hadoop เลย เขียน DAG ด้วย XML
- Luigi สร้างโดย Spotify เขียน DAG ด้วย Python
- Azkaban สร้างโดย Linkedin เขียน DAG ด้วย YAML
- Airflow สร้างโดย Airbnb เขียน DAG ด้วย Python

Apache Airflow

พัฒนาโดย บริษัท Airbnb เป็นเครื่องมือที่ใช้จัดการ Task งานต่างๆ จะต้องเขียน Configuration เป็น Python Code โดย Workflow การทำงานจะเป็นแบบเป็นกราฟ DAG (Directed Acyclic Graph)

https://airflow.apache.org/docs/stable/

Directed Acyclic Graph (DAG)

 Directed Acyclic Graph (DAG) คือกราฟที่มีหัวลูกศรหรือทิศทางจากจุดหนึ่งไปอีกจุดหนึ่ง โดยไม่ สามารถวนกลับมาที่จุดเดิมได้

Directed Acyclic Graph (DAG)

ส่วนประกอบต่างๆ ของ DAG ใน Airflow
 DAG ประกอบไปด้วย Task มาเชื่อมต่อกัน แต่ละ Task จะเป็น Operator ที่มีความสามารถ
 ต่างๆ

Directed Acyclic Graph (DAG)

- Airflow DAG definition file
 - 1. Importing Modules
 - 2. Default Arguments
 - 3. Instantiate a DAG
 - 4. Tasks
 - 5. Setting up Dependencies

Airflow DAG definition file example

Airflow DAG definition file example

```
# The DAG object; we'll need this to instantiate a DAG
from airflow import DAG
# Operators; we need this to operate!
from airflow.operators.bash_operator import BashOperator
from airflow.utils.dates import days_ago
```

1 Importing Modules

```
default_args = {
    'owner': 'airflow',
    'depends_on_past': False,
    'start_date': days_ago(2),
    'email': ['airflow@example.com'],
    'email_on_failure': False,
    'email_on_retry': False,
    'retries': 1,
    'retry_delay': timedelta(minutes=5),
```

2 Default Arguments

https://airflow.apache.org/docs/stable/tutorial.html#it-s-a-dag-definition-file

Airflow DAG definition file example

Airflow DAG definition file example

```
dag = DAG(
   'tutorial',
   default_args=default_args,
   description='A simple tutorial DAG',
   schedule_interval=timedelta(days=1),
)
```

```
3 Instantiate a DAG
```

```
t1 = BashOperator(
    task_id='print_date',
    bash_command='date',
    dag=dag,
)

t2 = BashOperator(
    task_id='sleep',
    depends_on_past=False,
    bash_command='sleep 5',
    retries=3,
    dag=dag,
)
```

4 Tasks

https://airflow.apache.org/docs/stable/tutorial.html#it-s-a-dag-definition-file

Airflow DAG definition file example

Airflow DAG definition file example

```
# The bit shift operator can also be
# used to chain operations:
t1 >> t2
```

5 Setting up Dependencies

https://airflow.apache.org/docs/stable/tutorial.html#it-s-a-dag-definition-file

Setting up Dependencies

- T1 >> T2
- or T2 << T1
- or T1.set_downstream(T2)
- or T2.set_upstream(T1)

T1 >> T2 >> T3

T1 >> T3 << T2

- T1 >> [T2,T3]
- or [T2,T3] << T1
- or T1.set_downstream([T2,T3])

Google Cloud Platform Services

Google Cloud Console : https://cloud.google.com/

https://github.com/gregsramblings/google-cloud-4-words/blob/master/DarkPoster-medres.png

Cloud

Spanner

Cloud SQL

Cloud

Storage

CITE@DPU

Cloud

Bigtable

Cloud

Datastore

Google Cloud Storage

■ บริการพื้นที่จัดเก็บข้อมูลแบบวัตถุ มีชื่อเรียกอย่างเป็นทางการว่า object storage ซึ่งสามารถเก็บข้อมูลได้หลากหลายประเภท เช่น Text, Image, Video เนื่องจากเป็นการเก็บข้อมูลบน Cloud จึงสามารถเข้าถึงข้อมูลได้จากทุกที่ สามารถเพิ่มลด ขนาดพื้นที่ในการจัดเก็บข้อมูลได้ง่าย อีกทั้งยังสามารถ กำหนดตำแหน่งทางภูมิศาสตร์ที่ใช้เก็บข้อมูลได้หลายที่เพื่อป้องกัน เหตุการณ์ที่จะเป็นอันตรายต่อข้อมูล เช่น พายุ น้ำท่วม ไฟไหม้ เป็นต้น

Google Cloud Storage Option

Google Cloud Storage Option Source: https://cloud.google.com/images/storage-options/flowchart.svg

Google Cloud Storage Pricing

Singapore (asia-southeast1)	ast1) ▼		
Standard Storage (per GB per Month)	Nearline Storage (per GB per Month)	Coldline Storage (per GB per Month)	Archive Storage (per GB per Month)
\$0.020	\$0.010	\$0.005	\$0.0015

https://cloud.google.com/storage/pricing

Workshop#1

Workshop#1 upload data to google storage

https://cloud.google.com/storage/docs/how-to

Choose a default storage class for your data

A storage class sets costs for storage, retrieval, and operations. Pick a default storage class based on how long you plan to store your data and how often it will be accessed. Learn more

Standard

Best for short-term storage and frequently accessed data

Nearline

Best for backups and data accessed less than once a month

Coldline

Best for disaster recovery and data accessed less than once a quarter

Archive

Best for long-term digital preservation of data accessed less than once a year

CONTINUE

Choose how to control access to objects

Access control

O Fine-grained

Specify access to individual objects by using object-level permissions (ACLs) in addition to your bucket-level permissions (IAM). Learn more

Uniform

Ensure uniform access to all objects in the bucket by using only bucket-level permissions (IAM). This option becomes permanent after 90 days. <u>Learn more</u>

CONTINUE

4 กำหนดประเภทของข้อมูลที่เก็บ

กำหนดประเภทสิทธิ์การเข้าถึงข้อมูล

Advanced settings (optional)

Encryption

- Google-managed key
 No configuration required
- Customer-managed key

 Manage via Google Cloud Key Management Service

Retention policy

Set a retention policy to specify the minimum duration that this bucket's objects must be protected from deletion or modification after they're uploaded. You might set a policy to address industry-specific retention challenges. Learn more

Set a retention policy

Labels

Labels are key:value pairs that allow you to group related buckets together or with other Cloud Platform resources. Learn more

+ ADD LABEL

CREATE

CANCEL

กำหนดระยะเวลาเมื่อข้อมูลถูกสั่งลบ

Create Bucket on Google Storage (command line)

Create Bucket on Google Storage (command line)

Create Bucket on Google Storage (command line)

Edit & Delete Bucket

Upload data to Google Storage (console)

Upload data to Google Storage (console)

Upload data to Google Storage (command line)

Upload data to Google Storage (command line)

Synopsis

```
gsutil cp [OPTION]... src_url dst_url
gsutil cp [OPTION]... src_url... dst_url
gsutil cp [OPTION]... -I dst_url
```

Description

The gsutil cp command allows you to copy data between your local file system and the cloud, copy data within the cloud, and copy data between cloud storage providers. For example, to upload all text files from the local directory to a bucket you could do:

```
gsutil cp *.txt gs://my-bucket
```

Upload data to Google Storage (command line)

Google Cloud Composer

 Cloud Composer คือ Service ที่เป็น Fully-managed ที่ไว้ควบคุมการทำงาน Workflow ต่างๆ ที่ สร้างมาจาก Apache Airflow หน้าที่หลัก ๆ ก็คือ ทำ Schedule, Monitor เป็นต้น

Google Cloud Composer Environment

Google Cloud Composer & Google Cloud Service

CITE@DPU

Google Cloud Composer Pricing

Tokyo (asia-northeast1)	
Item	Price (USD)
Web core hours	\$0.094 / vCPU hour
Database core hours	\$0.163 / vCPU hour
Web and database storage	\$0.354 per GB / month
Network egress	\$0.156 / GB

If you pay in a currency other than USD, the prices listed in your currency on Cloud Platform SKUs apply.

 $\underline{https:/\!/cloud.google.com/composer/pricing?authuser=0\&hl=ID}$

Google Cloud Platform Console (https://console.cloud.google.com/) >> ไปที่เมนู
 Composer (อยู่ในกลุ่ม BIG DATA)

CITE@DPU 41

=	Google Cloud I	Platfo	rm 🦆 My First Project 🔻			Q	Search products and resources	•	ii	>.	0	•	i (9
Si	Composer	+	Environment details	C REFRESH	DELETE									
This er	tltraining nvironment is running TORING BETA		DIMENT CONFIGURATION	AIRFLOW CONFIGUR	ATION OVERRIDE	ES	ENVIRONMENT VARIABLES LABELS	PYPI PACKAGES						
be four	y any required libraries nd, it will be removed. I packages		e Python Package Index (PyPI).	lf a library cannot										
Packa	ge name		Extras and version				หลังจาก	าติดตั้ง Cloud Con	mposer เรีย	บร้อ	EILLE	ล้ว		
reque	ests		for example: [extra]==1.1				(9)	. ત્રી ૧	inpodor tob.		D 000			
pand	as		for example: [extra]==1.1				ระบุ Pa	ckages ที่ใช้						
pymy	/sql		for example: [extra]==1.1											
+ A	DD PACKAGE													
SAV	CANCEL													

CITE@DPU

Workshop#2

Workshop#2 Automated Data Pipeline with Airflow

- Workshop Hello world!
- Workshop ingest from database and stored on data lake(google storage)

Google BigQuery

Google BigQuery เป็น Data Warehouse ที่ตั้งอยู่บนโครงสร้างของ Google Cloud Platform (เป็น Serverless) สามารถทำงานกับข้อมูลขนาดใดๆ ตั้งแต่จาก Excel เล็กๆ จนถึง Big Data ขนาดหลาย Petabyte ได้ในเวลาอันสั้น

BigQuery เน้นสนับสนุนข้อมูลที่การ เขียนเข้าเป็นหลัก ไม่เอื้อแก่การแก้ไขหรือลบข้อมูล (append-only tables) เท่าไหร่นักจึงเหมาะจะใช้ เป็น Data Warehouse (LDAP) สำหรับเก็บข้อมูล

Google Big Query ที่ไม่ต้องถูกแก้ไขบ่อยนัก เช่น Event Logs, Analytical Data, หรือ Time Series Events Data แทนที่จะใช้ เป็น Operational Database (OLTP) สำหรับเก็บข้อมูลแบบทั่วไป

BigQuery Pricing

- ปริมาณข้อมูลทั้งหมดที่มีอยู่ โดยคิด \$0.02/GB ต่อเดือน
- ปริมาณของข้อมูลที่ถูกนำเข้า โดยคิด \$0.0136/200MB
- ปริมาณของข้อมูลทั้งหมดที่ถูกค้นหา โดยคิด \$6.75/TB
- *** Storage: The first 10 GB per month is free.
- *** Queries (analysis): The first 1 TB of query data processed per month is free

<u>ตัวอย่าง</u> คำนวนการ Query ข้อมูล Query ข้อมูลขนาด 500GB วันละ 50 ครั้ง = (0.5∗6.75)∗50 = 168.75 USD = 168.75∗31 = 5,231.25 THB

Singapore (asia	a-southeast1)	▼ Monthly
Operation	Pricing	Details
Active storage	\$0.020 per GB	The first 10 GB is free each month. See Storage pricing for details.
Long-term storage	\$0.010 per GB	The first 10 GB is free each month. See Storage pricing for details.
BigQuery Storage API	Unavailable	The BigQuery Storage API is not included in the free tier.
Streaming Inserts	\$0.0136 per 200 MB	You are charged for rows that are successfully inserted. Individual rows are calculated using a 1 KB minimum size. See Streaming pricing for details.
Queries (on- demand)	\$6.75 per TB	First 1 TB per month is free, see On-demand pricing for details.
Queries (hourly Flex slots)	\$27.00 per 500 slots	You can purchase additional slots in 500 slot increments. See Flex slots pricing for details.
Queries (monthly flat- rate)	\$13,500 per 500 slots	You can purchase additional slots in 500 slot increments. See Monthly flat-rate pricing for details.
Queries (annual flat- rate)	\$11,475 per 500 slots	You can purchase additional slots in 500 slot increments. You are billed monthly. See Annual flat-rate pricing for details.

https://cloud.google.com/bigquery/pricing

CITE@DPU 45

การลดค่าใช้จ่ายที่เกิดจาก BigQuery

BigQuery ใช้ระบบ Columnar Storage บนเครื่อง Cluster หลายๆเครื่อง (Distributed File System) ซึ่งทำให้ การอ่านและคำนวณข้อมูลมหาศาลสามารถทำขนานกัน สเกลได้ง่าย และทำได้เร็วมาก

แต่โครงสร้างดังกล่าวทำให้ BigQuery ไม่มีระบบ Indexing เหมือน Database/Data Warehouse ทั่วไป ทำให้ การ Query ข้อมูลแต่ละครั้ง ไม่ว่าจะทำกับข้อมูลส่วนไหนก็ตาม ก็ต้องเริ่มต้นจากการค้นหาจากข้อมูลทั้งตาราง จากข้อจำกัดดังกล่าว ทำให้แนวทางการลดค่าใช้จ่ายที่เกิดจาก BigQuery สามารถทำได้สามวิธีหลักๆ ดังนี้

- 1. Monitor ดูค่าใช้จ่ายที่ผ่านมาและสถิติการใช้งาน และใส่ลิมิตไว้คุมค่าใช้จ่ายไม่ให้ใช้เยอะเกินไป
- 2. ลดจำนวน Query ที่ใช้ลง
- 3. ลดขนาดข้อมูลที่ต้องใช้ในแต่ละ Query ลง

Workshop#3

Workshop#3 Create BigQuery data warehouse and import data to BigQuery

Create BigQuery Dataset

Create BigQuery Dataset

Import data to BigQuery (console)

Import data to BigQuery (console)

10.00

Number of errors allowed:	Unknown values:	
0	Ignore unknown values	
Field delimiter: ②	Custom field delimiter:	
Custom	;	
Header rows to skip: ②	Quoted newlines 💮	Jagged rows ②
1	Allow quoted newlines	Allow jagged rows
Encryption Data is encrypted automatically. Sele Google-managed key No configuration required Customer-managed key Manage via Google Cloud Key M	ect an encryption key management solution.	

Clustering order (optional): (?) Clustering order determines the sorbartitioned and non-partitioned table	t order of the data. Clustering can be used on t es.	poth
Comma-separated list of fields	to define clustering order (up to 4)	
Advanced options A Write preference: Write if empty	8	วระบุเครื่องหมายที่คั่น
Number of errors allowed: 0	Unknown values: Ignore unknown values	🖊 Columns ของข้อมูล
ield delimiter: 🕜	Custom field delimiter:	
Custom	;	
Header rows to skip: ②	Quoted newlines Allow quoted newlines	Jagged rows Allow jagged rows
Encryption Data is encrypted automatically. Sel	lect an encryption key management solution.	
Google-managed key No configuration required Customer-managed key Manage via Google Cloud Key N	Management Service	ว ระบุประเภทการเข้ารหัส

Query data from BigQuery

Query from Normal table

Query from Partition table

Workshop#4

Workshop#4 automated load data to BigQuery

Import data to BigQuery

Create with auto detection schema

```
'bq load --source_format=CSV --autodetect --skip_leading_rows=1 \
[DATASET_ID].[TABLE_NAME] \
gs://[GCS_BUCKET_NAME]/data/online_retail_result.csv'
```

Create partition table

```
'bq load \
--source_format=CSV \
--skip_leading_rows=1 \
--schema
```

Invoice No: STRING, Stock Code: STRING, Description: STRING, Quantity: INTEGER, Invoice Date: DATE, UnitPrice: FLOAT, Customer ID: Invoice No: STRING, Stock Code: STRING, Description: STRING, Quantity: INTEGER, Invoice Date: DATE, UnitPrice: FLOAT, Customer ID: Invoice No: STRING, Stock Code: STRING, Description: STRING, Quantity: INTEGER, Invoice Date: DATE, UnitPrice: FLOAT, Customer ID: Invoice No: STRING, Stock Code: STRING, Description: STRING, Quantity: INTEGER, Invoice Date: DATE, UnitPrice: FLOAT, Customer ID: Invoice No: STRING, Stock Code: STRING,

FLOAT,Country:STRING,InvoiceTimestamp:TIMESTAMP,date:DATE,Rate:FLOAT,THBPrice:FLOAT \

```
--time_partitioning_field=InvoiceDate \
--time_partitioning_type=DAY \
[DATASET_ID].[TABLE_NAME] \
qs:// [GCS_BUCKET_NAME]/data/online_retail_result.csv'
```

Exercise

- 1. อ่านข้อมูล "online_retail_from_result.csv" จาก data lake
- 2. แก้ไขข้อมูลฟิวส์ Rate = 31.0
- 3. คำนวน THBPrice จาก Rate ใหม่
- 4. บันทึกข้อมูลใน data lake ชื่อ online_retail_result31.csv
- 5. สร้าง table ใน BigQuery โดย Import ข้อมูลจาก online_retail_result31.csv