5.6 Calcul du centre et du rayon du cercle

$$x^{2} + y^{2} - 10 x + 16 = 0$$

$$x^{2} - 10 x + 25 - 25 + y^{2} + 16 = 0$$

$$(x-5)^{2} + y^{2} = 25 - 16 = 9 = 3^{2}$$

$$C(5;0) \text{ et } r = 3$$

1) La droite est tangente au cercle si $\delta(C; d) = r$:

$$\frac{\left| m \cdot 5 - 0 \right|}{\sqrt{m^2 + (-1)^2}} = \frac{\left| 5 m \right|}{\sqrt{m^2 + 1}} = 3$$

On obtient ainsi $5 m = \pm 3 \sqrt{m^2 + 1}$

En élevant au carré les termes de cette égalité, on a :

$$25 \, m^2 = 9 \, (m^2 + 1)$$

$$16 \, m^2 - 9 = 0$$

$$(4m+3)(4m-3) = 0$$

On conclut que la droite et le cercle sont tangents si $m = -\frac{3}{4}$ ou $m = \frac{3}{4}$.

2) La droite et le cercle se coupent si $\delta(C; d) < r$.

On doit donc avoir
$$\frac{|5 m|}{\sqrt{m^2 + 1}} < 3$$
.

Puisque $\sqrt{m^2+1} > 0$, cette inéquation équivaut à $|5m| < 3\sqrt{m^2+1}$.

En élevant au carré les membres de cette inégalité, on arrive à :

$$25 \, m^2 < 9 \, (m^2 + 1)$$

$$16 m^2 - 9 < 0$$

$$(4\,m+3)\,(4\,m-3)<0$$

Étudions le signe du polynôme P(m) = (4m + 3)(4m - 3):

	_	$\frac{3}{4}$	$\frac{3}{4}$
4m + 3	_	+	+
4m - 3		_	+
P(m)	+	_	+

L'inéquation (4m+3)(4m-3) < 0 a pour solution l'intervalle $]-\frac{3}{4};\frac{3}{4}[$.

En résumé, la droite et le cercle se coupent si $\left[-\frac{3}{4} < m < \frac{3}{4}\right]$.