Bioinformatic approaches to regulatory genomics and epigenomics

376-1347-00L | week 06

Pierre-Luc Germain

Plan

New packages to install (see slack)

Debriefing on last week's assignment

Overview of transcription factors and their binding specificity

DNA motifs and related analysis

```
'``{r, without reference}
# without reference
peakList <- list(biValMe_2, H3K4me3_eb, H3K27me3_eb)
names(peakList) <- c("Bivalent mESCs", "H3K4me3 Erythroblasts", "H3K27me3 Erythroblasts")
regionUpset(peakList)
'``</pre>
```



```
'``{r, with reference}
# with reference
regionUpset(peakList, reference=peakList[[1]])
'``
```



```
```{r, with reference}
with reference
regionUpset(peakList, reference=peakList[[1]])
```
```



```
> sum(overlapsAny(biValMe_2, H3K4me3_eb))
[1] 1206
=87+1119
```

```
'``{r, with reference}
# with reference
regionUpset(peakList, reference=peakList[[1]])
'``
```



```
> sum(overlapsAny(biValMe_2, H3K27me3_eb))
[1] 3080
=1916+1119
```

When no reference is specified, one is created automatically by merging and *reducing* the regions (unless otherwise specified in the arguments):

| regions1 | |
|-------------------------------|--|
| regions2 | |
| reduce(c(regions1, regions2)) | |

Intersection & overlap: The example of bivalent domains

H3K4me3: H3K27me3: method one (overlapsAny): find the H3K4me3 peaks that overlap a H3K27me3 domain method two (intersect): find the regions that are covered by both H3K4me3 and H3K27me3

Annotations:

ENCFF247GVM

Histone ChIP-seq in ES-Bruce4

Mus musculus strain Bruce4 ES-Bruce4

Target: H3K4me3

Lab: Bing Ren, UCSD

Project: ENCODE

Reference Epigenome: ENCSR343RKY

candidate Cis-Regulatory Elements (cCREs): SCREEN

ENCFF326VMV

Histone ChIP-seq in smooth muscle cell

Homo sapiens smooth muscle cell originated from H9

Target: H3K4me3

Lab: Bradley Bernstein, Broad

Project: ENCODE

Reference Epigenome: ENCSR116JEF

candidate Cis-Regulatory Elements (cCREs): SCREEN

```
regionUpset(peaks, nsets=length(peaks))
```

```
## Warning in .merge_two_Seqinfo_objects(x, y): Each of the 2 combined objects has sequence levels not in the oth
er:
## - in 'x': chr20, chr21, chr22
## - in 'y': chr4_GL456216_random, chrUn_GL456368, chrUn_GL456370, chrUn_GL456378, chrUn_JH584304, chrX_GL45623
3_random
## Make sure to always combine/compare objects based on the same reference
## genome (use suppressWarnings() to suppress this warning).
```


https://youtu.be/SMtWvDbfHLo

Additional regulatory elements

Enhancer-driven gene regulation

What is a transcription factor?

Proteins capable of both:

- 1) Binding DNA in a sequence-specific manner
- 2) Regulating transcription

(Lambert et al., Cell 2018)

Anatomy of a transcription factor (TF)

Review (Cell 2018)

The Human Transcription Factors

Samuel A. Lambert ^{1, 9}, Arttu Jolma ^{2, 9}, Laura F. Campitelli ^{1, 9}, Pratyush K. Das ³, Yimeng Yin ⁴, Mihai Albu ², Xiaoting Chen ⁵, Jussi Taipale ^{3, 4, 6} \bowtie \bowtie , Timothy R. Hughes ^{1, 2} \bowtie \bowtie , Matthew T. Weirauch ^{5, 7, 8} \bowtie

Proteins capable of both:

- 1) Binding DNA in a sequence-specific manner
- 2) Regulating transcription

According to their census, humans have 1570 transcription factors

78 TFs with Multiple DBDs

713 TFs with C2H2 ZF arrays

779 TFs with a single DBD

Transcription factors are highly conserved

DNA binding domains show much higher conservation than effector domains

(Soto et al., Molecular Cell 2021)

1554 Human TFs

(Lambert et al., Cell 2018)

Sequence-specificity

E.g. The LexA bacterial TF recognizes the consensus sequence

5'-GAACAnnTGTTC-3'

An example of TF motif degeneracy: Nuclear hormone receptors

Variations in DNA binding specificity

POU_{HD} site

variable-length spacers (82); motifs from (73,74)

of its two DNA-binding domains (91,92);

Gcn4 dimers can bind to bipartite

sites with half-sites separated by

Oct-1 can bind to different DNA sites using different arrangements

motifs from (24)

POU_s site

POU site

Multiple Modes of DNA Binding

Elk1 can bind both as a monomer or as a dimer (95)

D

Alternate Structural Conformations

Multiple DBDs

SREBP can bind to different DNA sites by adopting alternate structural conformations (96,97); motifs from (44)

(Siggers and Gordân, NAR 2014)

Cooperative binding

A

Multi-Protein Recognition Codes

Enhanced binding to composite site

(Siggers and Gordân, NAR 2014)

Two examples of Cooperative binding

OCT4 (POU5f1) binding upon differentiation

(Merino et al., Structure 2014)

Clock-Bmal-Cry during circadian rythm

Motif analysis

- Motif discovery aims at finding new motifs that are enriched in a set of sequences (e.g. peaks)
 versus a background
 - Example method: meme (Meme suite)
 - Bioconductor method: rGADEM package (see also the memes R package)
- Motif enrichment analysis aims at finding known motifs that are enriched in a set of sequences (e.g. peaks) versus a background
 - Example method: AME (Meme suite)
 - Bioconductor method: PWMEnrich package
- Motif scanning aims at finding the occurrences of known motifs in a set of sequences (methodologically fairly simple – which method doesn't matter much)
 - Example method: fimo (Meme suite)
 - Bioconductor method: motifmatchr (see also TFBSTools package)

Genetic variation at TF binding sites

- Genetic variation at TF binding sites can affect the binding of the protein, and hence impact development and health
- Nevertheless, while most coding sequences show evidence of evolutionary constraint (e.g. purifying selection), only a small fraction of TF binding sites (11.6% of footprints) show evidence of constraint – the vast majority appears to be evolving neutrally

(Vierstra et al., Nature 2020)

This suggests a degree of (at least partial) redundancy between regulatory elements

Assignment

- Choose a transcription factor, e.g. CREB1, REST, GATA5, EGR1, GCR (or any of your choice that has a motif and available ChIPseq data)
- Download the (e.g. Mouse) peaks for that factor (whatever cell type)
- Identify the instances of the factor's motif
- Answer the following questions:
 - Of all the peaks, what proportion contains a motif for the factor?
 - Expected form of an answer: of the XX peaks, XX (XX%) contain a motif
 - Of all instances of that motif in the genome (or in one chromosome), what proportion is bound by the factor (i.e. has a peak)?
 - Expected form of an answer: of the XX motif instances, XX (XX%) overlap a peak

Don't forget to render your markdown and push it as assignment.html!