5.

(a) If $r \in \mathbb{R}$, $r \neq 1$ and $n \in \mathbb{Z}_0$, then $P(n) : \sum_{i=0}^n r^i = \frac{1 - r^{n+1}}{1 - r}$ Proof. (Induction).

Let $r \in \mathbb{R}, r \neq 1$.

For the basis case, suppose n = 0. Then $r^0 = 1 = \frac{1 - r}{1 - r} = \frac{1 - r^{0+1}}{1 - r}$, thus P(0).

Now suppose P(n) for some $n \in \mathbb{Z}_0$. Hence $\sum_{i=0}^n r^i = \frac{1-r^{n+1}}{1-r}$. Observe that

$$\begin{split} \sum_{i=0}^{n+1} r^i &= \sum_{i=0}^n r^i + r^{n+1} \\ &= \frac{1 - r^{n+1}}{1 - r} + r^{n+1} \\ &= \frac{1 - r^{n+1}}{1 - r} + (1 - r)r^{n+1} \\ &= \frac{1 - r^{n+1} + (1 - r)r^{n+1}}{1 - r} \\ &= \frac{1 - r^{n+1} + r^{n+1} - r^{(n+1)+1}}{1 - r} \\ &= \frac{1 - r^{(n+1)+1}}{1 - r} \end{split}$$

Thus P(n+1). Therefore, by induction, if $r \in \mathbb{R}, r \neq 1$ and $n \in \mathbb{Z}_0$, then $P(n) : \sum_{i=0}^n r^i = \frac{1-r^{n+1}}{1-r}$.

(b) Let $S = \sum_{i=0}^{n} r^{i}$. Then

$$S - r * S = \sum_{i=0}^{n} r^{i} - r \sum_{i=0}^{n} r^{i}$$

$$S(1 - r) = \sum_{i=0}^{n} r^{i} - \sum_{i=0}^{n} r^{i+1}$$

$$= \sum_{i=0}^{n} r^{i} - \sum_{i=1}^{n+1} r^{i}$$

$$= \sum_{i=0}^{n} r^{i} - \left(\sum_{i=0}^{n} r^{i} - r^{0} + r^{n+1}\right)$$

$$= 1 - r^{n+1}$$

$$\therefore S = \frac{1 - r^{n+1}}{1 - r}.$$