Lectures Notes for Analysis

Emulie Chhor

May 5, 2021

Introduction

Le premier cours d'analyse porte sur la même matière que le calcul différentiel et intégral, mais est plus rigoureux. La majorité du cours met l'emphase sur la démonstration des preuves et théorèmes et très peu sur le calcul.

MAT1000 porte sur les chapitres suivants:

- 1. Nombres Rationnels et Nombres Réels
- 2. Inégalités et Valeur Absolue
- 3. Suprémum et Infimum
- 4. Axiomes de Complétude
- 5. Dénombrabilité
- 6. Suites
- 7. Continuité et Continuité Uniforme
- 8. Dérivabilité
- 9. Séries

1 Nombres Rationnels et Nombres Réels

1.1 Overview

Malgré que le cours ne met pas l'emphase sur la topologie des réels, il est important de comprendre que les réels possèdent certaines propriétés qui nous permettent de manipuler les termes algébriquement. On définit la notion de corps ordonné qui est TODO

1.2 Topologie des Réels

Proposition 1.1. $\forall a \in \mathbb{Q}, a^2 \neq 2$

Lemma 1.2.1. Soit $b \in \mathbb{Z}$. Si b^2 est pair, alors b est pair

Axiome 1. Il existe un corps totalement ordonné de \mathbb{R} tel que:

- 1. $\mathbb{Q} \subseteq \mathbb{R}$ et \mathbb{Q} est un sous-corps de \mathbb{R}
- 2. R possède la propriété de Complétude

Proposition 1.2. Soit $a, b \in \mathbb{Q}$ avec $a \not b$. Alors it exists $c \in \mathbb{Q}$ tel que a < c < b

Theorem 1.2.2 (Propriétés d'un corps). Un corps possède les propriétés suivantes:

- 1. Commutativité
- 2. Associativité
- 3. Distributivité
- 4. Existence d'éléments neutres
- 5. Existence de l'inverse additif et multiplicatif
- 6. Lien entre les relations d'ordre et opérations

Problème (Montrer qu'un nombre est irrationnel).

2 Inégalités et Valeur Absolue

2.1 Overview

TODO

2.2 Définition de la Valeur Absolue

Definition 2.2.1 (Valeur Absolue).

2.3 Propriétés des Valeurs Absolues

Remarque. On peut interpréter la valeur absolue comme la distance entre 2 termes

2.4 Propriétés des Inégalités

Problème (Montrer l'inégalité). Lorsqu'on veut montrer une inégalité, on utilise les astuces suivantes:

- 1. Ajouter et Enlever le même terme
- 2. $x^2 > 0$
- 3. Utiliser la transitivité pour comparer avec un autre terme

Problème (Résoudre des inégalités). Lorsqu'on nous demande de résoudre des inégalités, on doit trouver les valeurs qui satisfont l'inégalité. Pour ce faire, il est pratique d'utiliser un tableau pour tester les intervalles de cohérence.

2.5 Induction

2.6 Inégalité de Bernouilli

Theorem 2.6.1 (Inégalité de Bernouilli). $\forall n \in \mathbb{N}, \forall t > -1, (1+t)^n \ge 1+nt$

3 Suprémum et Infimum

3.1 Overview

3.2 Majorant et Minorant

Definition 3.2.1 (Majorant). Soit $E \subseteq \mathbb{R}$. E est majoré si $\exists c \in \mathbb{R}, \forall x \in E, x \leq c$. On dit que c est un majorant de E

Definition 3.2.2 (Minorant). Soit $E \subseteq \mathbb{R}$. E est minoré si $\exists c \in \mathbb{R}, \forall x \in E, x \geq c$. On dit que c en un minorant de E

Definition 3.2.3 (Ensemble Borné). Soit $E \subseteq \mathbb{R}$. E est borné si E est majoré et minoré

Proposition 3.1. E est borné $\to \exists c \in \mathbb{R}, \forall x \in E, |x| < c$

Remarque. Un majorant et un minorant sont des valeurs que l'ensemble de peut jamais atteindre. Il peut en exister plusieurs

3.3 Suprémum et Infimum

Definition 3.3.1 (Supremum). Soit $E \subseteq \mathbb{R}$. On dit que $c \in \mathbb{R}$ est le supremum de E si c'est le plus petit majorant de E

Definition 3.3.2 (Infimum). Soit $E \subseteq \mathbb{R}$. On dit que $c \in \mathbb{R}$ est l'infimum de E si c'est le plus grand minorant de E

Proposition 3.2. Soit $A \subseteq \mathbb{R}$, $B \subseteq \mathbb{R}$ tel que Sup A et Sup B existent. Alors, sup(A+B) = supA + supB

Proposition 3.3. Le suprémum et l'infimum sont uniques.

Problème (Montrer que la suite possède un suprémum/infimum). Pour montrer que la suite possède un supremum/infimum, il faut montrer que:

- 1. c est un majorant/minorant
- 2. c est le plus petit majorant/plus grand minorant

Pour montrer la première étape, il suffit d'utiliser la définition. Pour montrer la deuxième étape, on procède par contradiction. On suppose qu'il existe un plus petit majorant/plus grand minorant et on montre que cela contredit l'hypothèse que S' était un majorant/minorant

Problème (Montrer que la suite ne possède pas un suprémum/infimum). Une suite de possède pas de suprémum ou d'infimum si elle n'est pas bornée (l'ensemble est infini). On peut supposer qu'elle est bornée et utiliser l'axiome de complétude pour montrer qu'elle est majorée/minorée, puis on montre qu'il s'agit d'une contradiction avec la propriété Archimédienne.

Problème (Montrer que le suprémum/infimum est atteint).

4 Axiomes de Complétude

4.1 Overview

4.2 Propriété Archimédienne

Theorem 4.2.1 (Propriété Archimédienne). Pour tout $x,y\in\mathbb{R}$ avec x>0, il existe $n\in\mathbb{N}$ tel que nx>y

Remarque. La propriété Archimédienne nous dit que les réels ne sont pas bornés. Ainsi, si on prend un nombre arbitraire, on peut en trouver un autre qui est plus petit ou plus grand.

4.3 Axiome de Complétude

Proposition 4.1 (Axiome de Complétude). Si $E \in \mathbb{R}$ est non-vide et majorée, alors sup E existe dans \mathbb{R}

Corollary 4.3.1 (Corollaire de l'Axiome de Complétude). 1. $\forall y \in \mathbb{R}, \exists n \in \mathbb{N}, n > y$

- 2. $\forall x \in \mathbb{R}, \exists ! n \in \mathbb{R} \ tel \ que \ n \leq x \neq n+1 \ (fonction \ plancher)$
- 3. (Densité de \mathbb{Q} dans \mathbb{Q}): Soit $x, y \in \mathbb{R}$, alors $\exists r \in \mathbb{Q}, x < r < y$
- 4. (Densité de $\mathbb{R} \mathbb{Q}$ dans \mathbb{Q}): Soit $x, y \in \mathbb{R}$, alors $\exists r \in \mathbb{R} \mathbb{Q}, x < r < y$

Theorem 4.3.1. L'axiome de complétude est faux dans \mathbb{Q}

4.4 Densité des Rationnels

Theorem 4.4.1 (Densité de \mathbb{Q} dans \mathbb{R}). Soit $x, y \in \mathbb{R}$, alors $\exists r \in \mathbb{Q}, x < r < y$

Theorem 4.4.2 (Densité de \mathbb{Q}' dans \mathbb{R}). Soit $x, y \in \mathbb{R}$, alors $\exists r \in \mathbb{Q}', x < r < y$

Remarque. Le densité des rationnels et des irrationnels découle de la propriété d'Archimède. Puisque les réels ne sont pas bornés, alors il existe une infinité de nombre dans un intervalle, alors il existe nécessairement un rationnel et un irrationnel dans cet intervalle.

Intuition. La preuve de la densité se fait en construisant un rationnel à partir de la distance entre x et y

4.5 Racine n-ième

Definition 4.5.1 (Definition Racine n-ième).

Theorem 4.5.1 (Racine n-ième). $\forall n \in \mathbb{N}, \forall x > 0, \exists ! y > 0, y^n = x (\sqrt[n]{x} = y)$

5 Dénombrabilité

5.1 Overview

5.2 Injection, Surjection, Bijection

Definition 5.2.1 (Injection).

Definition 5.2.2 (Surjection).

Theorem 5.2.1 (Bijection).

5.3 Cardinalité

Definition 5.3.1 (Cardinalité). Deux ensembles A et B ont le même cardinal s'il existe une bijection $\Phi: A \to B$

Corollary 5.3.1. Si $\Phi: A \to B$ est une bijection, alors $\Phi^{(-1)}: B \to A$ existe et est bijective

Definition 5.3.2 (Dénombrabilité). Un ensemble A est dénombrable s'il a le même cardinal que $\mathbb N$

Remarque.

 \mathbb{N} est dénombrable

Un ensemble dénombrable est infini

Un ensemble est dénombrable \iff on peut former une suite infinie $a_1, a_2, ...$ contenant une et une seule fois chaque élément de A

Theorem 5.3.1. *Soit* $f : A \rightarrow B$, *une fonction:*

- 1. si f est surjective, alors $|A| \ge |B|$
- 2. si f est injective, alors $|A| \leq |B|$
- 3. si f est bijective, alors |A| = |B|

Proposition 5.1. 1. \mathbb{Z} est dénombrable

- 2. \mathbb{Q} est dénombrable
- 3. \mathbb{R} n'est pas dénombrable

Remarque (Diagonale de Cantor).

6 Suites

6.1 Overview

Dans cette section, on essaie de déterminer si une suite converge et si oui, on veut calculer sa limite

6.2 Convergence d'une suite

Definition 6.2.1 (Suite Borné). La suite (a_n) ,

- 1. majorée si $\exists M \in \mathbb{R}, \forall n \in \mathbb{N}, (a_n) \leq M$
- 2. minorée si $\exists M \in \mathbb{R}, \forall n \in \mathbb{N}, (a_n) \geq M$
- 3. bornée si $\exists M \in \mathbb{R}, \forall n \in \mathbb{N}, |(a_n)| \leq M$

Definition 6.2.2 (Croissance et Décroissance d'une Suite). La suite (a_n) est

- 1. strictement croissante si $a(n+1) > a_n, \forall n \in \mathbb{N}$
- 2. croissante si $a(n+1) \ge a_n, \forall n \in \mathbb{N}$
- 3. strictement décroissante si $a(n+1) < a_n, \forall n \in \mathbb{N}$
- 4. décroissante si $a(n+1) \leq a_n, \forall n \in \mathbb{N}$

Definition 6.2.3 (Suite Monotone). La suite est monotone si la suite est croissante ou décroissante

Definition 6.2.4 (Convergence d'une Suite). Une suite (a_n) est convergente s'il existe un nombre $L \in \mathbb{R}$ tel que pour $\varepsilon > 0$, il existe $N \in \mathbb{N}$ pour lequel $|a_n - L| < \varepsilon$ lorsque $n \ge \mathbb{N}$.

On dit que L est la limite de (a_n) , et on écrit

$$\lim_{n \to \infty} a_n = L$$

Definition 6.2.5 (Divergence d'une suite). Si (a_n) n'est pas convergente, on dit qu'elle est divergente

$$\lim_{n \to \infty} (n \to \infty) a_n \neq L \iff \exists \varepsilon 0, \forall N \in \mathbb{N}, \exists n \ge N, |a_n - L| \ge \varepsilon$$

Problème (Montrer que la suite converge). Pour montrer que la suite converge, il faut trouver un N qui satisfait l'inégalité $|a_n - L| < \varepsilon$. Pour ce faire, il est pratique de partir avec $|a_n - L|$ et de poser N en fonction de ε

Intuition. On s'imaginer que les valeurs de la suite se trouvent à l'intérieur d'un tube $(L - \varepsilon, L + \varepsilon)$ à partir d'un certain N.

Theorem 6.2.1 (La limite est unique). $Si(a_n)$ est convergente, alors la limite est unique

Theorem 6.2.2 (La limite est bornée). $Si(a_n)$ est convergente, alors $a_n|n \in \mathbb{N}$ est bornée

Corollary 6.2.1. $Si(a_n)$ n'est pas bornée, alors elle diverge

Remarque. $Si(a_n)$ converge, alors elle est bornée, mais le contraire n'est pas vrai

Theorem 6.2.3 (Théorème des suites monotones).

Si (a_n) est croissante et majorée , alors $\lim_{n\to\infty} a_n = \sup_n |n\in\mathbb{N}| =: L$. On écrit $a_n \nearrow L$

Si (a_n) est décroissante et minorée, alors $\lim_{n\to\infty} a_n = \inf a_n | n \in \mathbb{N} =: L$. On écrit $a_n \searrow L$

Remarque. On peut tracer le graphique pour voir que la limite tend vers sup/inf. De plus, le premier terme de la suite correspond à l'inf/sup respectivement

Theorem 6.2.4. Pour tout $M \in \mathbb{N}$, on a $\lim_{n\to\infty} a_n = \lim_{n\to\infty} a(n+M-1)$

6.3 Limites suppérieures et Limites Inférieures

Definition 6.3.1. Soit (a_n) , une suite

- 1. $\sup m \ge na_m := \sup a_m | m \in \mathbb{N}, m \ge n$
- 2. inf $m \ge na_m := \inf a_m | m \in \mathbb{N}, m \ge n$

Proposition 6.1. Soit (a_n) , une suite bornée. On pose $b_n := \sup_{m \geq n} a_m$ et $c_n := \inf_{m \geq n} a_m$, alors

- 1. (b_n) est décroissante et convergente et $\lim_{n\to\infty} b_n = \inf_{n\geq 1} \sup_{m\geq n} a_m$
- 2. (b_n) est croissante et convergente et $\lim_{n\to\infty} c_n = \sup n \ge 1 \inf m \ge na_m$

6.4 Limites Infinies

Definition 6.4.1 (Limite à l'infinie). On dit qu'une suite (a_n) tend (diverge) vers l'infinie si $\forall M\mathbb{R}, \exists N \in \mathbb{N}, \forall n \geq N, a_n \geq M$

Remarque. Si a_n tend vers $-\infty$, alors $a_n \leq M$

6.5 Opérations Élémentaire des Limites

Theorem 6.5.1. Supposons que $\lim_{n\to\infty} a_n$ et $\lim_{n\to\infty} b_n = b, a, b, \in \mathbb{R}$, alors

- 1. $\lim_{n\to\infty} |a_n| = |a|$
- 2. $\lim_{n\to\infty} (a_n + b_n) = a + b$
- 3. $\lim_{n\to\infty} (a_n \cdot b_n) = ab$
- 4. Si $b_n \neq 0, b \neq 0, \forall n > N$, alors $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$
- 5. Si $a_n \leq b_n \forall n \geq N$, alors $a \leq b$
- 6. Si $a_n \ge 0$, alors $\lim_{n\to\infty}^p \sqrt(a_n) = \sqrt(a) \forall p \in \mathbb{N}$

Corollary 6.5.1. 1. $\lim_{n\to\infty} (ka_n) = ka, \forall k \in \mathbb{R}$

2. $\lim_{n\to\infty} (a_n - b_n) = a - b$

6.6 Critère de Comparaison

Theorem 6.6.1 (Théorème des 2 Gendarmes). Soit $(a_n), (b_n), (c_n), des$ suites tel que $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$ et $a_n \leq b_n \leq c_n$, alors $\lim_{n\to\infty} b_n = L$

Corollary 6.6.1. $Si |a_n| \to 0$, alors $a_n \to 0$

Theorem 6.6.2. Si $a_n \to \infty$ et $b_n \ge a_n$, alors $b_n \to \infty, \forall n \ge N$

6.7 Progression Géométrique

Definition 6.7.1 (Progression Géométrique). Une progession géométrique de raison $q \neq 1$ est une suite de la forme $(a, aq, aq^2, ...) = (aq^(n-1))_{n \in \mathbb{N}}$

Theorem 6.7.1. 1. Si |q| > 1, alors $|q|^n \to \infty$

2. Si |q| < 1, $alors |q|^n \rightarrow 0$

Theorem 6.7.2. Soit $q \neq 1$. On pose $S_n = 1 + q + q^2 + ... + q^{(n-1)}$

- 1. $S_n = \frac{1-q^n}{1-q}$
- 2. |q| < 1, alors $S_n \to \frac{1}{1-q}$
- 3. |q| > 1, alors S_n diverge et $|S_n| \to \infty$

6.8 Racine n-ième

Theorem 6.8.1. 1. $n(1/n) \to 1 (n \to \infty)$

2. Si a > 0, alors $a(\frac{1}{n}) \to 1$

6.9 Sous-suites

Definition 6.9.1 (Sous-suites).

Remarque. Lorsque $k \to \infty$, alors $n_k \to \infty$, car $n_{k-1} < n_k$

Theorem 6.9.1. $a_n \to L \iff toutes \ sous-suites \ de \ (a_n) \ convergent \ vers \ L$

Corollary 6.9.1. 1. Si une sous-suite diverge, alors (a_n) diverge

- 2. Si (a_n) converge et $(a_{n_k}) \to L$, alors $a_n \to L$
- 3. Si (a_n) est monotone et $(a_{n_k}) \to L$, alors $a_n \to L$

Theorem 6.9.2 (Théorème de Bolzano-Weistrass). Soit (a_n) , une suite. Si (a_n) est bornée, alros (a_n) possède une sous-suite convergente

Remarque (Méthode de Dichotomie). La preuve du théorème de Bolzano se fait avec la méthode de la dichotomie. On prend l'intervalle fermé et on le sépare en 2 jusqu'à temps d'avoir un intervalle tellement petit qu'on peut le considérer comme un point, et on dit qu'un point converge vers la même valeur.

6.10 Suites de Cauchy

Definition 6.10.1 (Suite de Cauchy). On dit que (a_n) est une suite de Cauchy si

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n, m > N, |a_{n+k} - a_n| < \varepsilon$$

Remarque (Définition alternative de la suite de Cauchy).

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n, m \geq N, |a_m - a_n| < \varepsilon$$

Theorem 6.10.1. (a_n) est une suite de Cauchy \iff (a_n) est une suite convergente

Intuition. Intuitivement, la suite de Cauchy mesure la distance entre 2 termes consécutifs. Pour que la suite converge, on veut que la distance deviennent de plus en plus petite et converge vers 0.

6.11 Suites définies par récurrence

Proposition 6.2 (Nombre d'Euler).

Theorem 6.11.1.

Problème.

Corollary 6.11.1.

Definition 6.11.1.

Intuition.

Corollary 6.11.2.

Corollary 6.11.3.

Remarque.

7 Continuité et Continuité Uniforme

- 7.1 Overview
- 7.2 Definition de la Continuité
- 7.3 Théorème des Valeurs Intermédiaires

8 Dérivabilité

- 8.1 Overview
- 8.2 Définition de la dérivabilité
- 8.3 Propriété des fonctions dérivables
- 8.4 Théorème de Rolle
- 8.5 Théorème des Accroissements Finis
- 8.6 Corollaire du théorème des acroissements finis Cauchy
- 8.7 Extremums Relatifs et Absolues
- 8.8 Approximation
- 8.9 Développements Limités
- 8.10 Théorème de Taylor
- 8.11 Méthode de Newton
- 8.12 Déterminer les zéros d'une fonction
- 8.13 Problèmes de Points Fixes

- 9 Séries
- 9.1 Overview
- 9.2 Convergence des séries
- 9.3 Séries célèbres
- 9.4 Critères de Convergence pour les séries à termes positifs
 - 1. Critère de Comparaison
 - 2. Critère du Quotient
 - 3. Critère de Condensation de Cauchy
 - 4. Critère d'Alembert (du rapport)
 - 5. Critère de la Racine de Cauchy
 - 6. Critère de Dirichlet
- 9.5 Convergence des séries alternées et Critère de Leibniz