

I COURSE COMPONENTS

the idea

Block I

- Introduction to Urban and Regional Economics and Course Overview
- Topic I: Regional and urban concentration forces
- Topic II: The empirics of agglomeration
- Topic III: Costs and benefits of agglomeration

■ Block 2

- Topic IV: Monocentric city I (household location choice)
- Topic V: Monocentric city II (household location choice)
- Topic VI: Firm location choice
- Topic VII: The urban economy in general equilibrium

Block 3

- Topic VIII: The vertical dimension of cities
- Topic IX: Suburbanization and gentrification
- Topic X: Hedonic analysis

INTRODUCTION

roadmap

- Last time: The monocentric city model I
 - 1) History of thought
 - 2) The household bid-rent model
 - The utility maximization problem
 - Compensating differentials
 - Rent gradients
 - Substitution effects in consumption
 - Convexity of the rent gradient
 - 3) Density gradients
 - Structural density
 - Population density

I INTRODUCTION

roadmap

- This time: The monocentric city model II
 - 1) Equilibrium conditions
 - Additional restrictions
 - 2) Comparative statics: Income
 - What happens if people get richer?
 - Where do the rich and the poor live in cities?
 - 3) Comparative statics: Transport cost
 - What happens if transport gets cheaper?
 - Did cities decentralize over time?
 - 4) Other predictions
 - Distinguishing between open-city and closed-city case

I RECALL

household bid-rent model

II EQUILIBIUM CONDITIONS

additional restrictions

Q: How to determine where the city ends?

II MCM BY BRUECKNER (1987)

additional restrictions

Variable/parameter	Description
D(x)	Population density at x
h(x)	Housing density at x
L	Total city population
$p_q(x)$	Housing rent at x
q(x)	Housing consumption at x
r(x)	Land rent at x
rA	Agricultural rent
S(x)	Structural density at x
t	Transport cost per unit of x
U	City-level utility
X	Distance from the CBD
Y	City-level income per capita

II EQUILIRIUM CONDITIONS

roadmap

- This time: The monocentric city model II
 - 1) Equilibrium conditions
 - Additional restrictions
 - 2) Comparative statics: Income
 - What happens if people get richer?
 - Where do the rich and the poor live in cities?
 - 3) Comparative statics: Transport cost
 - What happens if transport gets cheaper?
 - Did cities decentralize over time?
 - 3) Other predictions
 - Distinguishing between open-city and closed-city case

II AGRICULTURAL RENT

additional restrictions

- For land to be "urban", rent must exceed agricultural rent
 - Land rent paid by residents in Alonso model
 - Land rent paid by developers in Mills-Muth model

II EXOGENOUS VS. ENDOGENOUS VARIABLES

additional restrictions

- - $\blacksquare r_A, y, t$
- Always endogenous: Solved within the model
 - $\blacksquare \overline{x}, p_q, r, S, D$
- "Closed city" case: No between-city migration
 - Population *L* is <u>exogenous</u>
 - Utility U is endogenous
- "Open city" case: Free between-city migration
 - Population *L* is <u>endogenous</u>
 - Utility U is exogenous
 - Similar to system of cities and Rosen-Roback framwork
 - See topics I-III

II COMPARATIVE STATIC ANALYSIS

additional restrictions

- Analyse impact of
 - a change in one <u>exogenous</u> variable
 - on <u>endogenous</u> variables
- Use the structure of the model to establish counterfactuals
- Derive predictions
 - What happens to rents, densities, etc. $\{\overline{x}, p_q, r, S, D, [L, U]\}$ if incomes, transport costs, or oppourtunity cost of land $\{r_A, y, t\}$ change

Central to a host of questions that concern policy makers, planners, developers, investor, etc.

Predictions specific to open/closed-city case Focus on close-city case first

III COMPARATIVE STATICS: INCOME

roadmap

- This time: The monocentric city model II
 - 1) Equilibrium conditions
 - Additional restrictions
 - 2) Comparative statics: Income
 - What happens if people get richer?
 - Where do the rich and the poor live in cities?
 - 3) Comparative statics: Transport cost
 - What happens if transport gets cheaper?
 - Did cities decentralize over time?
 - 4) Other predictions
 - Distinguishing between open-city and closed-city case

Q: What happens to city structure (gradients) if incomes increase?

III DECREASE IN TRANSPORT COST

comparative statics

■ The slope of housing rent gradient (see topic IV):

$$\frac{\partial p_q}{\partial x} = -\frac{t}{q(y)} < 0 \qquad \left[p_q = \frac{y - tx - c}{q(y)} \right]$$

Budget constraint

Effect of a marginal increase in income y on the slope of bid-rent curve:

Housing is a normal good ⇒ Consumption increases in income

$$\frac{\partial \left(\frac{\partial p_q}{\partial x}\right)}{\partial y} = \frac{t \frac{\partial q}{\partial y}}{[q(y)]^2} > 0$$

Income *y* increases ⇒ rent gradient flatter!

 $\frac{\partial q}{\partial v} > 0$

Slope less negative!

III INCREASE IN INCOME

comparative statics

III COMPARATIVE STATIC ANALYSIS

additional restrictions

- Housing rents <u>decrease in centre</u>, <u>increase in periphery</u>
 - Structural / housing density and land rent behave similarly
 - Housing consumption q rises in centre (where p falls)
 - Population density must decrease in centre
 - q must increase at city margin (higher income, same rent)
 - Ambiguous change of q between rotation point and city new city margin
- Of course, <u>utility increases</u> since residents consume more

Q: Lessons for within-city income segregation?

III INCOME SEGREGATION

comparative statics

Bid-rents by rich and poor with monetary commuting cost

III INCOME SEGREGATION

additional restrictions

- With monetary t, rich live in suburbs, poor live in centre
- If we add the <u>value of time</u>, *t* likely depends on income

$$\frac{\partial p_q}{\partial x} = -\frac{t(y)}{q(y)} < 0 \qquad \frac{d\left(\frac{\partial p_q}{\partial x}\right)}{dy} = -\frac{\frac{b_0}{t'(y)q(y)} - \frac{b_0}{t(y)q'(y)}}{\frac{d}{dy}}$$

Theoretically ambiguous, elasticities matter!

• Income elasticities of commuting cost and housing consumption appear to be similar (Wheaton, 1977)

$$\frac{\partial t(y)}{\partial y} \approx \frac{\partial q(y)}{\partial y}$$

In line with observed cross-city differences (central Paris rich, downtown Detroit poor)

III BID-RENT CURVES VS. PRICE GRADIENTS

comparative statics

■ The observed <u>price gradient</u> (house prices, rents, etc.) is the <u>envelope</u> of individual <u>bid-rent curves</u>

IV COMPARATIVE STATICS: TRANSPORT COST

■ This time: The monocentric city model II

- 1) Equilibrium conditions
 - Additional restrictions
- 2) Comparative statics: Income
 - What happens if people get richer?
 - Where do the rich and the poor live in cities?
- 3) Comparative statics: Transport cost
 - What happens if transport gets cheaper?
 - Did cities decentralize over time?
- 4) Other predictions
 - Distinguishing between open-city and closed-city case

IV DECREASE IN TRANSPORT COST

comparative statics

■ The slope of housing rent gradient (see topic IV):

$$\frac{\partial p_q}{\partial x} = -\frac{t}{q}$$
 $\left[p_q = \frac{y - tx - c}{q} \right]$ Budget constraint

Effect of a marginal increase in transport cost t on the slope of bid-rent curve:

Larger transport *t* cost ⇒ steeper bid-rent curve

$$\frac{d\left(\frac{\partial p_q}{\partial x}\right)}{dt} = -\frac{1}{q} < 0$$

Slope more negative!

Transport cost *t* decrease ⇒ rent gradient flatter!

IV DECREASE IN TRANSPORT COST

comparative statics

IV COMPARATIVE STATIC ANALYSIS

additional restrictions

- Housing rents decrease in centre, increase in periphery
 - Structural / housing density and land rent behave similarly
 - Housing consumption q
 - rise in centre (where p falls)
 - fall in periphery (where p increases)
 - Population density
 - Falls in centre, rises in periphery
- <u>Utility increases</u> since cost of commuting decreases
 - Similar to a positive income shock

IV DECENTRALIZATION

comparative statics

- Steady <u>income growth</u> in real terms over more than a century
 - Real GDP p.c. growth since 1900 in US, Western Europe (and world) about 2% per year (Maddison Project Data)

Could possibly lead to decentralization

- Major transport improvements since late 19th century
 - Subway and commuter rail
 - Mass produced cars and highways
 - Passenger travel p.c. growth since 1880 in the US about 2.7% per year (Asubel et al. 1998)

Should most likely cause decentralization Q: Is there evidence?

IV EVIDENCE FROM CHICAGO

comparative statics

Ahlfeldt & McMillen 2018

IV LAND PRICE GRADIENTS IN CHICAGO

IV LAND PRICE GRADIENTS OVER TIME

comparative statics

IV FAR GRADIENT IN NEW YORK OVER TIME

comparative statics

$$\ln FAR_i = \beta DIST_i + \varepsilon_i$$

IV POPULATION DENSITY GRADIENTS IN CHIAGO

comparative statics

McMillen & McDonald, ch. 8

Population density gradient also flattens

IV CAUSES OF DECENTRALIZATION

comparative statics

- Strong evidence for <u>urban "decentralization"</u>
 - In line with <u>transport improvements</u> since mid-19th century (rail & road)
- But other explanations theoretically possible
 - Increase in income (in MCM with monetary travel cost)
 - Increase in preference for suburban amenities
 - Increase in downtown disamenities (pollution, noise)
 - Aeging of dowtown housing (Brueckner & Rosethal 2009)

Q: Is there "causal" evidence for transport effects on decentralization?

IV HIGHWAYS AND POPULATION DECENTRALIZATION

comparative statics

TABLE I
AGGREGATE TRENDS IN SUBURBANIZATION, 1950–1990

	1950	1960	1970	1980	1990	Percent change 1950–1990
Panel A: Large MSAs						
MSA population	92.9	115.8	134.0	144.8	159.8	72
Total CC population	44.7	48.5	51.3	49.2	51.0	14
Constant geography CC population	44.7	44.2	42.6	37.9	37.1	-17
N for constant geog. CC population	139	132	139	139	139	
Panel B: Large Inland MSAs						
MSA population	39.2	48.9	57.0	65.0	73.5	88
Total CC population	16.8	19.7	22.1	22.1	23.2	38
Constant geography CC population	16.8	16.5	15.4	13.3	12.5	-26
N for constant geog. CC population	100	94	100	100	100	
Total U. S. population	150.7	178.5	202.1	225.2	247.1	64

Baum-Snow (2006)

Total US MSA population increased

Constant-geography central population decreased

IV BAUM-SNOW (2006)

comparative statics

Estimation equation:

Causal effect of an additional highway passing through on central city population: -18%!

Highways decentralize population

IV RAIL EXPANSION IN PRE-WWII BERLIN

comparative statics

Estimated travel time (min) to the CBD accounting for rapid transit (U-/S-Bahn)

Ahlfeldt & Wendland (2011)

IV HISTORIC LAND PRICES IN BERLIN

comparative statics

IV DECENTRALIZATION

comparative statics

IV DECENTRALIZATION

comparative statics

H2: Travel Time Gradients

Almost three quarters of "decentralization" (change in distance gradient β over time) can be explained by changes in travel time!

IV SUBWAYS AND "LIGHT" DECENTRALIZATION

comparative statics

 Gonzalez-Navarro and Turner (2016) look at decentralization of "lights at night" in response to subway expansions in 138 cities

IV GONZALEZ-NAVARRO AND TURNER (2016)

comparative statics

- 1st step
 - Estimate "light" gradient at five-year intervals t for city c

$$\ln LIGHTINTENSITY_{ict} = \boldsymbol{\beta_{ct}} \ln DIST_{it} + \varepsilon_{ict}$$

- 2nd-step
 - Estimate elasticity of gradient with respect to network size s

$$\Delta \ln \widehat{\boldsymbol{\beta}}_{ct} = \gamma \Delta \ln s_{ct} + X_{ct}b + \epsilon_{ct}$$

- X is a vector of controls
- Find that $\frac{\partial \beta}{\partial s} = 0.06$

Elastictiy of light gradient with respect to network size is 6% Subways decentralize light emissions

IV URBAN DECENTRALIZATION

comparative statics

- Cities around the world have been <u>decentralizing</u> in terms of prices (housing rent, land price) and quantities (densities)
- Causal evidence that part of this trend is due to better transport
 - *If* we build radial connections, urban structure *will* decentralize
 - Direct implications
 - People will move to periphery and travel longer distances
 - Demand for housing will increase in periphery
 - Prices/values will increase in periphery

Causal evidence important for predictions. Relevant for planners, developers, investors, etc.

IV COMPARATIVE STATICS: TRANSPORT COST

roadmap

- This time: *The monocentric city model II*
 - 1) Equilibrium conditions
 - Additional restrictions
 - 2) Comparative statics: Income
 - What happens if people get richer?
 - Where do the rich and the poor live in cities?
 - 3) Comparative statics: Transport cost
 - What happens if transport gets cheaper?
 - Did cities decentralize over time?
 - 4) Other predictions
 - Distinguishing between open-city and closed-city case

V INCREASE IN AGRICULTURAL RENT

other predictions

■ Increase in r_A creates scarcity at all locations in the city

V INCREASE IN POPULATION

other predictions

■ Increase in *L* increases demand at all locations in the city

IV OPEN-CITY CASE

other predictions

- "Open city" case: Free between-city migration
 - Population *L* is <u>endogenous</u>
 - Utility U is exogenous
- Predictions in open-city case are similar, but require an additional step
 - 1) Hold *L* constant and evaluate the change using closed-city model
 - Same as before in closed-city case
 - 2) Adjust population to cancel the utility change
 - Larger *L* => higher prices and lower housing consumption

Q: What does an increase in income mean for the centre?

IV OPEN-CITY CASE: INCREASE IN INCOME

other predictions

IV SUMMARY OF PREDICTIONS

comparative statics

Homework: Can you derive these predictions?

IV WHEN TO APPLY OPEN- OR CLOSD-CITY MODEL

other predictions

- Recall
 - "Closed city" Case: No between-city migration
 - "Open city" case: Free between-city migration
- When doing predictions, ask the quesiton:
 - Do we expect cross-city migration?
 - If all cities change in the same way => no migration
 - If just one city changes => migration incentive

Use <u>closed-city</u> model to predict changes occuring in <u>all cities</u> in country Use <u>open-city</u> model to predict changes occuring in <u>one city</u> in a country

SUMMARY

Conclusion

Monocentric city model provides useful predictions

- Higher income leads to decentralization (monetary commuting cost)
- Better transport leads to decentralization
 - Flatter gradients
 - Larger city areas
- Higher agricultural rent shrinks cities
- Some predictions substantiated by causal evidence
 - City decentralizes with better transport
- Predictions are useful for planners, developers, investors
 - Insights into expected effects on demand, prices, densities
- Next: Firm location
 - Determinants of firm locations within cities

READING

Core readings:

- Ahlfeldt, Gabriel M., Wendland, Nicolai (2011), Fifty years of urban accessibility: The impact of the urban railway network on the land gradient in Berlin 1890–1936. Regional Science and Urban Economics. Vol.41(2), pp.77-88
- Brueckner J., 1987, "The Structure of Urban Equilibria", Handbook of Regional and Urban Economics, Vol II, 821-846.
- DiPasquale-Wheaton, chapter 3: The urban land market: Rents and prices
- McDonald & McMillen, chapter 6 & 7
- Complementary readings and references:
 - Ahlfeldt, McMillen (2018): Tall buildings and land values. Height and construction cost elasticities in Chicago 1870-2010. Review of Economics and Statistics, forthcoming
 - Asubel, J., Marchetti, C., Meyer, P. (1998): Toward green mobility: the evolution of transport. European review 6(2), 137-156.
 - Barr, J., & Cohen, J. P. (2014). The Floor Area Ratio Gradient: New York City, 1890-2009. Regional Science and Urban Economics, 48(0), 110-119
 - Baum-Snow, N. (2006): Did highways cause suburbanization? The Quarterly Journal of Economics 122 (2), 775-805.
 - Gonzalez-Navarro, Marco, Turner, Matthew A. (2016): Subways and Urban Growth: Evidence from Earth. Working paper.
 - Wheaton, W. (1977): American Economic Review, 67(4), pp. 620-631

APPENDIX: URBAN POPULATION

additional restrictions

lacktriangle Urban population must fit into the urban area marked by \overline{x}

1 radian ≈ 57.3°

 $0 < \theta < 2\pi$ is the number of radians available for housing (rest for e.g. infrastructure)

With $\theta = 2\pi$ all area for a given radius x will be used for housing

 $\int_0^{\overline{x}} \theta x D(x, t, y, u) dx = L$

At every *x*, population is the product of area and population density

Integrate over all x to get population

Note: With $\theta=1$, a ring with a width of dx=1km at x=5km from the CDB has an area of $A=1\times1km\times5km=5km^2$