Дисперсионный анализ, часть 1

Математические методы в зоологии с использованием R

Марина Варфоломеева

- Множественные сравнения
- Дисперсионный анализ
- З Post hoc тесты
- 4 Графическое представление результатов пост-хок теста

Знакомимся дисперсионным анализом

Вы сможете

- Объяснить, в чем опасность множественных сравнений, и как с ними можно бороться
- Рассказать, как в дисперсионном анализе моделируются значения зависимой переменной
- Перечислить и проверить условия применимости дисперсионного анализа
- Интерпретировать и описать результаты, записанные в таблице дисперсионного анализа
- Провести множественные попарные сравнения при помощи post hoс теста Тьюки, представить и описать их результаты

Множественные сравнения

Множественные сравнения

Пример: сон у млекопитающих

- TotalSleep общая продолжительность сна. В нашем анализе это будет зависимая переменная
- Danger уровень опасности среды для вида, пять градаций (1 5)

Скачиваем данные с сайта

Не забудьте войти в вашу директорию для матметодов при помощи setwd()

```
library(downloader)
# в рабочем каталоге создаем суб-директорию для данных
if(!dir.exists("data")) dir.create("data")
# скачиваем файл в xlsx, либо в текстовом формате
if (!file.exists("data/sleep.xlsx")) {
  download(
    url = "https://varmara.github.io/mathmethr/data/sleep.xlsx",
    destfile = "data/sleep.xlsx")
}
if (!file.exists("data/sleep.csv")) {
  download(
    url = "https://varmara.github.io/mathmethr/data/sleep.xls",
    destfile = "data/sleep.csv")
```

Читаем данные из файла одним из способов

Чтение из xlsx

```
library(readxl)
sleep <- read_excel(path = "data/sleep.xlsx", sheet = 1)</pre>
```

Чтение из csv

```
sleep <- read.table("data/sleep.csv", header = TRUE, sep = "\t")</pre>
```

Все ли правильно открылось?

```
str(sleep) # Структура данных
  'data frame': 62 obs. of 11 variables:
                : Factor w/ 62 levels "Africanelephant",..: 1 2 3 4 5 6 7 8 9
   $ Species
                      6654 1 3.38 0.92 2547 ...
   $ BodvWt
                : num
#
   $ BrainWt
                : num 5712 6.6 44.5 5.7 4603 ...
#
   $ NonDreaming: num
                      NA 6.3 NA NA 2.1 9.1 15.8 5.2 10.9 8.3 ...
   $ Dreaming
                      NA 2 NA NA 1.8 0.7 3.9 1 3.6 1.4 ...
                : num
#
   $ TotalSleep : num
                      3.3 8.3 12.5 16.5 3.9 9.8 19.7 6.2 14.5 9.7 ...
#
   $ LifeSpan
                      38.6 4.5 14 NA 69 27 19 30.4 28 50 ...
                : num
#
   $ Gestation
                      645 42 60 25 624 180 35 392 63 230 ...
                : num
   $ Predation
                : int
                      3 3 1 5 3 4 1 4 1 1 ...
#
   $ Exposure
                : int
                          1 2 5 4 1 5 2 1 ...
   $ Danger
                : int
                      3 3 1 3 4 4 1 4 1 1 ...
```

```
head(sleep, 2) # Первые несколько строк файла
```

```
# Species BodyWt BrainWt NonDreaming Dreaming
# 1 Africanelephant 6654 5712.0 NA NA
# 2 Africangiantpouchedrat 1 6.6 6.3 2
# TotalSleep LifeSpan Gestation Predation Exposure Danger
```

Знакомимся с данными

Есть ли пропущенные значения?

```
sapply(sleep, function(x)sum(is.na(x)))
```

```
# Species BodyWt BrainWt NonDreaming Dreaming # 0 0 0 14 12 # TotalSleep LifeSpan Gestation Predation Exposure # 4 4 4 0 0 0 # Danger # 0
```

К счастью про уровень опасности (Danger) информация есть для всех объектов.

Но есть пропущенные значения продолжительности сна (TotalSleep).

Каков объем выборки?

В одной из переменных, которые нам интересны, есть пропущенные значения. Это нужно учесть при рассчете объема выборки.

Удалим из датафрейма sleep строки, где TotalSleep принимает значение NA.

```
flt <- ! is.na(sleep$TotalSleep)
sl <- sleep[flt, ]</pre>
```

Дальше будем работать с датафреймом sl. В нем нет пропущенных значений в интересующих нас переменных

```
nrow(sl)
```

```
# [1] 58
```

Каков объем выборки в каждой группе?

```
tapply(X = sl$TotalSleep,
    INDEX = sl$Danger,
    FUN = length)
```

```
# очень низкий низкий средний высокий очень высокий
# 18 14 10 9 7
```

Задание

Постройте график зависимости общей продолжительности сна (TotalSleep) от уровня опасности среды (Danger). Используйте geom_boxplot.

Раскрасьте график в зависимости от уровня опасности среды (используйте эстетики fill или colour)

Придумайте, каким образом посчитать, в какой группе животных общая продолжительность сна больше?

Дополнительное задание:

Попробуйте сменить палитру раскраски, используя scale_colour_brewer (варианты можно посмотреть в справке в подразделе примеров или в интернете Colors (ggplot2): раздел RColorBrewer palette chart)

Решение

```
library(ggplot2)
theme_set(theme_bw())

gg_sl <- ggplot(data = sl, aes(x = Danger, y = TotalSleep, colour = Danger))
labs(x = "Уровень опасности", y = "Продолжительность сна") +
scale_colour_brewer("Уровень опасности", palette = "Dark2")
gg_sl + geom_boxplot()</pre>
```


Множественные сравнения

Мы могли бы сравнить среднюю продолжительность сна в разных группах при помощи t-критерия.

- 5 групп
- 10 сравнений

Если для каждого сравнения вероятность ошибки первого рода будет $lpha_{\it per\ comparison}=$ 0.05, то для группы — ?

Множественные сравнения

Мы могли бы сравнить среднюю продолжительность сна в разных группах при помощи t-критерия.

- 5 групп
- 10 сравнений

Если для каждого сравнения вероятность ошибки первого рода будет $lpha_{\it per\ comparison}=0.05$, то для группы — ?

$$\alpha_{\it family wise} = 0.05*10$$

В половине случаев мы рискуем найти различия там где их нет!!!

Поправка Бонферрони

Если нужно много сравнений можно снизить $lpha_{\it per\ comparison}$

$$\alpha_{\textit{per comparison}} = \frac{\alpha_{\textit{family wise}}}{\textit{n}}$$

Поправка Бонферрони

Если нужно много сравнений можно снизить $lpha_{\it per\ comparison}$

$$\alpha_{\mathit{per\ comparison}} = \frac{\alpha_{\mathit{family\ wise}}}{\mathit{n}}$$

Например, если хотим зафиксировать $lpha_{\mathit{familv wise}} = 0.05$

С поправкой Бонферрони $lpha_{\it per comparison} = 0.05/10 = 0.005$

Очень жесткий критерий!

Дисперсионный анализ

Дисперсионный анализ

Модель дисперсионного анализа

$$\mathbf{y}_{ij} = \mu + \mathbf{a}_i + \epsilon_{ij}$$

Из чего складываются средние значения в группах по фактору?

Группа	Общее среднее	Эффект	Случайная изменчивость
очень низкий	μ	a_1	ϵ_{1j}
низкий	μ	a ₂	ϵ_{2j}
очень высокий	μ	a ₅	ϵ_{5j}

Danger TotalSleep # 1 средний 3.3 # 2 средний 8.3 # 3 очень низкий 12.5 # 4 средний 16.5

Структура общей изменчивости

Общая изменчивость (SSt) = Факторная (SSx) + Случайная (SSe)

Если выборки из одной совокупности, то Факторная изменчивость = Случайная изменчивость

Таблица дисперсионного анализа

Источник	Суммы квадра- тов отклоне- ний, SS	Число степе- ней свобо- ды, df	Средний квадрат отклоне- ний(дисперсия), MS	E
изменчивости	SS	ar	MS	F

Название фактора

$$SS_{x} = \sum (\vec{y}^{df_{x}} \overline{\vec{y}_{i}})^{a-1} \quad MS_{x} = \frac{SS_{x}}{df_{x}} \qquad F_{df_{r},df_{e}} = \frac{MS}{MS}$$

Случайная

$$SS_e = \sum (y_i^{df_e} \overline{y_i})^{N-a} \quad MS_e = \frac{SS_e}{df_e}$$

Дисперсионный анализ в R

mod <- lm(TotalSleep ~ Danger, data=sl)</pre>

Используем Anova из пакета саг, хотя есть и другие функции. Зачем? Когда факторов будет больше одного, эта функция сможет правильно оценить достоверность каждого из них независимо от других.

Anova(результат_функции_lm) - дисперсионный анализ

```
# Anova Table (Type II tests)
#
# Response: TotalSleep
# Sum Sq Df F value Pr(>F)
# Danger 457.26 4 8.0523 0.0000378 ***
# Residuals 752.41 53
# ---
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

• Общая продолжительность сна различается у видов животных, которые в разной степени подвержены опасностям в течение жизни ($F_{4.53} = 8.05$,

library(car)

sl anova

sl anova <- Anova(mod)</pre>

Вопрос:

Назовите условия применимости дисперсионного анализа

• Подсказка: дисперсионный анализ - линейная модель, как и регрессия

Ответ:

Условия примененимости дисперсионного анализа:

- Случайность и независимость групп и наблюдений внутри групп
- Нормальное распределение остатков
- Гомогенность дисперсий остатков

Другие ограничения:

- Лучше работает, если размеры групп примерно одинаковы (т.наз. сбалансированный дисперсионный комплекс)
- Устойчив к отклонениям от нормального распределения (при равных объемах групп или при больших выборках)

Задание: Проверьте условия применимости

Проверьте условия применимости дисперсионного анализа используя графики остатков

Решение

1. Данные для проверки условий применимости на графиках остатков

```
# Данные для анализа остатков
sl_diag <- fortify(mod)
head(sl_diag)
```

```
TotalSleep
                                                            .fitted
                  Danger
                               .hat
                                      .sigma
                                                  .cooksd
                 средний 0.10000000 3.663258 0.0854675133 10.310000
        3.3
       8.3
                 средний 0.10000000 3.792511 0.0070267928 10.310000
   12.5 очень низкий 0.05555556 3.802964 0.0002985783 13.083333
       16.5
                 средний 0.10000000 3.694691 0.0666417404 10.310000
      3.9
                 высокий 0.11111111 3.734657 0.0477828562 8.811111
        9.8
                 высокий 0.11111111 3.801093 0.0019373477
                                                           8.811111
      resid stdresid
1 -7.0100000 -1.9611318
2 -2.0100000 -0.5623217
 -0.5833333 -0.1593084
  6.1900000 1.7317270
5 -4.9111111 -1.3825029
```

0.9888889 0.2783773

2. Выбросы, гомогенность дисперсий

```
gg_res <- ggplot(sl_diag, aes(x = .fitted, y = .stdresid)) +
   geom_hline(yintercept = 0)
gg_1 <- gg_res + geom_point(aes(size = .cooksd))
gg_2 <- gg_res + geom_boxplot(aes(x = Danger))
library(gridExtra)
grid.arrange(gg_1, gg_2, ncol = 2)</pre>
```


 Остатки в пределах двух стандартных отклонений, расстояния Кука маленькие - можно продолжать.

2. Выбросы, гомогенность дисперсий

```
gg_res <- ggplot(sl_diag, aes(x = .fitted, y = .stdresid)) +
   geom_hline(yintercept = 0)
gg_1 <- gg_res + geom_point(aes(size = .cooksd))
gg_2 <- gg_res + geom_boxplot(aes(x = Danger))
library(gridExtra)
grid.arrange(gg_1, gg_2, ncol = 2)</pre>
```


- Остатки в пределах двух стандартных отклонений, расстояния Кука маленькие - можно продолжать.
- Подозрительно маленькая дисперсия продолжительности сна в группе с очень высоким уровнем опасности.

3. Нормальность распределения

```
ggplot(sl_diag) + geom_point(stat = "qq", aes(sample = .stdresid)) +
  geom_abline(intercept = 0, slope = sd(sl_diag$.stdresid))
```


• Распределение практически нормальное

Немного более удобный квантильный график для проверки нормальности распределения

qqPlot() из пакета car

qqPlot(mod)

• Нет отклонений от нормального распределения

Post hoc тесты

Post-hoc тесты

Дисперсионный анализ показывает, есть ли влияние фактора (= различаются ли средние значения зависимой переменной между группами)

Пост-хок тесты показывают, какие именно из возможных пар средних значений различаются.

Свойства post-hoc тестов для попарных сравнений средних

- Применяются, если влияние фактора значимо
- Делают поправку для снижения вероятности ошибки I рода α , (но не слишком, чтобы не снизилась мощность, чтобы не возросла β)
- Учитывают величину различий между средними
- Учитывают количество сравниваемых пар
- Различаются по степени консервативности (Тьюки разумный компромисс)
- Работают лучше при равных объемах групп, при гомогенности дисперсий

Пост-хок тест Тьюки в R

- glht() "general linear hypotheses testing"
- linfct аргумент, задающий гипотезу для тестирования
- mcp() функция, чтобы задавать множественные сравнения (обычные пост-хоки)
- Danger = "Tukey" тест Тьюки по фактору Danger

```
library(multcomp)
sl_pht <- glht(mod, linfct = mcp(Danger = "Tukey"))</pre>
```

Результаты попарных сравнений (тест Тьюки)

Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: Tukey Contrasts

BLICOKNĂ -- 0

```
summary(sl_pht)
```

высокий - средний == 0

Марина Варфоломеева

очень высокий - средний == 0

#

#

```
#
#
 Fit: lm(formula = TotalSleep ~ Danger, data = sl)
#
 Linear Hypotheses:
#
                                 Estimate Std. Error t value Pr(>|t|)
# низкий - очень низкий == 0
                                              1.343
                                   -1.333
                                                     -0.993
                                                             0.8553
# средний - очень низкий == 0
                                 -2.773
                                              1.486 -1.866 0.3441
# высокий - очень низкий == 0
                                              1.538 -2.777
                                                             0.0550 .
                                  -4.272
# очень высокий - очень низкий == 0 -9.012
                                              1.678 -5.370 <0.001 ***
# средний - низкий == 0
                                   -1.440
                                              1.560
                                                     -0.923
                                                             0.8850
# высокий - низкий == 0
                                 -2.939
                                              1.610
                                                     -1.826
                                                             0.3662
# очень высокий - низкий == 0
                                  -7.679
                                              1.744
                                                     -4.402
                                                             < 0.001 ***
```

-1.499

-6.239

1 7/0

Дисперсионный анализ, часть 1

1.731 -0.866

-3.360

2 406

1.857

1 200

0.9066

0.0118 *

32 / 40

Описываем результаты пост-хок теста

• Продолжительность сна у видов, подвергающихся очень высокому уровню опасности в течение жизни, значительно меньше, чем у тех, кто живет при среднем, низком и очень низком уровне опасности (тест Тьюки, p < 0.05).

Графическое представление результатов пост-хок теста

Посчитаем описательную статистику по группам

```
library(dplyr) # есть удобные функции для описания данных
sl_summary <- sl %>% # берем датафрейм sl
group_by(Danger) %>% # делим на группы по Danger
# по каждой группе считаем разное
summarise(
    .n = sum(!is.na(TotalSleep)),
    .mean = mean(TotalSleep, na.rm = TRUE),
    .sd = sd(TotalSleep, na.rm = TRUE),
    .upper_cl = .mean + 1.98*.sd,
    .lower_cl = .mean - 1.98*.sd)
sl_summary
```

Этот график можно использовать для представления результатов

```
gg_means <- ggplot(sl_summary, aes(x = Danger, y = .mean)) +
  geom_bar(stat = "identity", fill = "turquoise3", colour = "black", width =
  geom_errorbar(aes(ymin = .lower_cl, ymax = .upper_cl), width = 0.1) +
  labs(x = "Οδραδοτκα", y = "Bec, r") +
  geom_text(aes(label = c("A", "A", "A", "AB", "B"), vjust = -0.3, hjust = 1.
gg_means</pre>
```


 Достоверно различающиеся по пост-хок тесту группы обозначим разными буквами.

Можно "опустить" прямоугольники на ось х

```
upperlimit <- max(sl_summary$.upper_cl + 1)
gg_means +
scale_y_continuous(expand = c(0,0),
    limit = c(0, upperlimit))</pre>
```


Сохраняем таблицу дисперсионного анализа в файл

 При множественных попарных сравнениях увеличивается вероятность ошибки первого рода. Поправка Бонферрони - способ точно рассчитать, насколько нужно снизить уровень значимости для каждого из сравнений

- При множественных попарных сравнениях увеличивается вероятность ошибки первого рода. Поправка Бонферрони - способ точно рассчитать, насколько нужно снизить уровень значимости для каждого из сравнений
- При помощи дисперсионного анализа можно проверить гипотезу о равенстве средних значений

- При множественных попарных сравнениях увеличивается вероятность ошибки первого рода. Поправка Бонферрони - способ точно рассчитать, насколько нужно снизить уровень значимости для каждого из сравнений
- При помощи дисперсионного анализа можно проверить гипотезу о равенстве средних значений
- Условия применимости (должны выполняться, чтобы тестировать гипотезы)

- При множественных попарных сравнениях увеличивается вероятность ошибки первого рода. Поправка Бонферрони - способ точно рассчитать, насколько нужно снизить уровень значимости для каждого из сравнений
- При помощи дисперсионного анализа можно проверить гипотезу о равенстве средних значений
- Условия применимости (должны выполняться, чтобы тестировать гипотезы)
- Случайность и независимость групп и наблюдений внутри групп

- При множественных попарных сравнениях увеличивается вероятность ошибки первого рода. Поправка Бонферрони - способ точно рассчитать, насколько нужно снизить уровень значимости для каждого из сравнений
- При помощи дисперсионного анализа можно проверить гипотезу о равенстве средних значений
- Условия применимости (должны выполняться, чтобы тестировать гипотезы)
- Случайность и независимость групп и наблюдений внутри групп
- Нормальное распределение

- При множественных попарных сравнениях увеличивается вероятность ошибки первого рода. Поправка Бонферрони - способ точно рассчитать, насколько нужно снизить уровень значимости для каждого из сравнений
- При помощи дисперсионного анализа можно проверить гипотезу о равенстве средних значений
- Условия применимости (должны выполняться, чтобы тестировать гипотезы)
- Случайность и независимость групп и наблюдений внутри групп
- Нормальное распределение
- Гомогенность дисперсий

- При множественных попарных сравнениях увеличивается вероятность ошибки первого рода. Поправка Бонферрони - способ точно рассчитать, насколько нужно снизить уровень значимости для каждого из сравнений
- При помощи дисперсионного анализа можно проверить гипотезу о равенстве средних значений
- Условия применимости (должны выполняться, чтобы тестировать гипотезы)
- Случайность и независимость групп и наблюдений внутри групп
- Нормальное распределение
- Гомогенность дисперсий
- Post hoc тесты это попарные сравнения после дисперсионного анализа, которые позволяют сказать, какие именно средние различаются

Дополнительные ресурсы

- Quinn, Keough, 2002, pp. 173-207
- Logan, 2010, pp. 254 282
- Open Intro to Statistics, pp.236-246
- Sokal, Rohlf, 1995, pp. 179-260
- Zar, 2010, pp. 189-207