2025-02-08 STEP Practice: Problem 32 (7013.01.62)

$$f(x) = \frac{\lfloor x \rfloor}{2} = | \forall x \in \mathbb{Z} \setminus \{0\}$$

i)

* * * * * * * * * * * * * * * * * * * *	X	Lx1	
$x = 0.5 \text{s} f(x) = \frac{L0.51}{0.5} = 0 \implies f(x) = 0 \forall x \epsilon(0,1) : \frac{0}{x} = 0$	(-3, <i>-</i> 2)	-3	-3/K
<i>V.</i> 3	[-2,-1)	-2	-2/2
	[-1,0)	-1	-
afcc)	0	0	undefined
	(0,1)	0	0
	[1,2)	1	<u>'</u>
y -	[2,3)	2	3

$$\lim_{x \to -3^+} f(x) = \lim_{x \to -3^+} -\frac{3}{x} = |+$$

$$\lim_{x\to -2^-} f(x) = \lim_{x\to -2^-} -\frac{3}{x} = \left(\frac{3}{2}\right)^-$$

and similarly at other points of discontinuity

(i)
$$f(x) = \frac{7}{12}$$
. $y = \frac{7}{12}$ only intersects the graph in the interval $[1,2)$, where $f(x) = \frac{1}{2}$

$$\frac{1}{2} = \frac{7}{12} \implies \chi = \frac{12}{2}$$

$$f(xe) = \frac{17}{24}$$
. $y = \frac{17}{24}$ interects $f(xe)$ once in [1,2) and once in [2,3).

$$\frac{1}{x} = \frac{17}{24} \implies \frac{24}{14} \cdot \frac{2}{x} = \frac{17}{24} \implies x = \frac{48}{17}$$

$$\frac{1}{3}(x) = \frac{4}{3}$$
. $y = \frac{4}{3}$ intersects f(x) once in [-1,0), [-2,-1), and [-3,-2) each.

$$-\frac{1}{x} = \frac{1}{3} \Rightarrow x = -\frac{2}{4} \cdot -\frac{2}{x} = \frac{4}{3} \Rightarrow x = -\frac{2}{5} \cdot -\frac{2}{x} = \frac{4}{3} \Rightarrow x = -\frac{9}{4}$$

iii) For
$$x \in [9,10)$$
, $\lim_{x \to 10^{-}} f(x) = \lim_{x \to 10^{-}} \frac{q}{x} = \frac{q}{10}$. Note that $f(10) \neq \frac{q}{10}$ so $y = \frac{q}{10}$ does not intersect $f(x)$ in $[9,10)$ breatest root of $f(x) = \frac{q}{10}$ is in $[8,9)$, where $f(x) = \frac{8}{x}$. $\frac{8}{x} = \frac{q}{10} \implies x = \frac{20}{9}$.

$$f(x) = C$$
 has 2 notes if $\frac{3}{3} < C \le \frac{3}{4}$ or if $\frac{3}{2} \le C < 2$

In general, $f(x) = C$ has exactly n mode if $\frac{n}{n+1} < C \le \frac{n+1}{n+2} < C$	or if $\frac{n+1}{n} \le C < \frac{n}{n-1}$
hoving n roots meens c must be in the intervals given. once, be condition is necessary and sufficient.	n-1 is undefined for n
nce, be condition is necessary and sufficient.	The conditions for it a
	given above.
	,