Class + Name + Homework Number

Question Number	1-12(6')	13-16(7')	Total score
Score			

1.Let
$$\lim_{x \to x_0} \frac{f\left(\frac{x+x_0}{2}\right) - f\left(x_0\right)}{x-x_0} = a$$
, then find $f'(x_0)$.

Solu:
$$\lim_{x \to x_0} \frac{f\left(\frac{x+x_0}{2}\right) - f\left(x_0\right)}{x-x_0} = a$$

$$t = x - x_0, \frac{x+x_0}{2} = x_0 + \frac{t}{2}, x \to x_0 \Rightarrow t \to 0$$

$$\therefore \lim_{t \to 0} \frac{\frac{1}{2} \cdot f\left(x_0 + \frac{t}{2}\right) - f\left(x_0\right)}{\frac{t}{2}} = a$$

$$\Rightarrow \frac{1}{2} f'(x_0) = a \Rightarrow f'(x_0) = 2a.$$

2. If
$$f'(x_0)$$
 exists, then find $\lim_{h\to 0} \frac{f(x_0+h^2)-f(x_0-h^2)}{\sin(h^2)}$

$$\begin{aligned} & \text{Solu:} \lim_{h \to 0} \frac{f\left(x_0 + h^2\right) - f\left(x_0 - h^2\right)}{\arcsin\left(h^2\right)} \\ &= \lim_{h \to 0} \frac{f\left(x_0 + h^2\right) - f\left(x_0 - h^2\right)}{h^2} (\arcsin\left(h^2\right) \sim h^2) \\ &= \lim_{h \to 0} \left[\frac{f\left(x_0 + h^2\right) - f\left(x_0\right)}{h^2} - \frac{f\left(x_0 - h^2\right) - f\left(x_0\right)}{h^2} \right] \\ &= 2f'(x_0). \end{aligned}$$

3. Find
$$\lim_{x \to 0} \frac{\cos x - e^{-\frac{x^2}{2}}}{x^2}$$
.

Solu:
$$L = \lim_{x \to 0} \left(\frac{\cos x - 1}{x^2} - \frac{e^{-\frac{x^2}{2}} - 1}{x^2} \right)$$

= $\lim_{x \to 0} \frac{-\frac{x^2}{2}}{x^2} - \lim_{x \to 0} \frac{-\frac{x^2}{2}}{x^2}$
= 0.

4. Find
$$\lim_{x \to +\infty} \left[x - x^2 \ln \left(1 + \frac{1}{x} \right) \right]$$
.

Solu: $L = \lim_{t = \frac{1}{x} \to 0} \left[\frac{1}{t} - \frac{\ln \left(1 + t \right)}{t^2} \right] = \lim_{t \to 0} \frac{t - \ln \left(1 + t \right)}{t^2}$

$$= \lim_{t \to 0} \frac{1 - \frac{1}{1 + t}}{2t} = \lim_{t \to 0} \frac{1}{2(1 + t)} = \frac{1}{2}.$$

5. Find $\lim_{x \to 0} \left(\frac{a_1^x + a_2^x + \dots + a_n^x}{n} \right)^{\frac{1}{x}}.$

Solu: $L = e^{\lim_{x \to 0} \frac{\ln \frac{a_1^x + a_2^x + \dots + a_n^x}{n}}{x}} \left(\frac{0}{0} \right)$

$$= e^{\lim_{x \to 0} \frac{a_1^x \ln a_1 + a_2^x \ln a_2 + \dots + a_n^x \ln a_n}{1}}$$

$$= e^{\lim_{x \to 0} \frac{a_1^x \ln a_1 + a_2^x \ln a_2 + \dots + a_n^x}{x}} = \sqrt[n]{a_1 a_2 \cdots a_n}.$$

The method is not unique.

6. Find
$$\lim_{x \to 0} \frac{x - \int_{0}^{x} \frac{\sin t}{t} dt}{x - \sin x}.$$

Solu:
$$L = \lim_{x \to 0} \frac{x - \int_{0}^{x} \frac{\sin t}{t} dt}{x - \sin x}$$
$$= \lim_{x \to 0} \frac{1 - \frac{\sin x}{x}}{1 - \cos x} = \lim_{x \to 0} \frac{\frac{x - \sin x}{x}}{\frac{1}{2}x^{2}} = 2\lim_{x \to 0} \frac{x - \sin x}{x^{3}}$$
$$= 2\lim_{x \to 0} \frac{1 - \cos x}{3x^{2}} = 2\lim_{x \to 0} \frac{\frac{1}{2}x^{2}}{3x^{2}} = \frac{1}{3}.$$

7. Find the extreme values of $f(x) = (x+1)^{\frac{2}{5}} (5-2x)$.

Solu:
$$f'(x) = \frac{2}{5}(x+1)^{\frac{-3}{5}}(5-2x)-2(x+1)^{\frac{2}{5}} = \frac{2}{5}(x+1)^{\frac{-3}{5}}(5-2x-5x-5) = -\frac{14x}{5}(x+1)^{\frac{-3}{5}}$$

Get stationary point $x_1 = 0$, singular point $x_2 = -1$,

$$f'(x) < 0, x \in (-\infty, -1), f'(x) > 0, x \in (-1, 0), f'(x) < 0, x \in (0, +\infty)$$

So the extreme minimum value $f_{\min}(-1)=0$, extreme maximum value $f_{\max}(0)=5$.

8. If $f(x) = \begin{cases} xe^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, (1) find f'(x); (2) determines f(x) and f'(x) is continuous or not

at x = 0.

Solu:

(1) When
$$x = 0$$
, $f'(0) = \lim_{x \to 0} \frac{xe^{-\frac{1}{x^2}} - 0}{x} = \lim_{x \to 0} e^{-\frac{1}{x^2}} = 0$

when
$$x \neq 0$$
, $f'(x) = e^{-\frac{1}{x^2}} + x \cdot e^{-\frac{1}{x^2}} \cdot \left(-\frac{2}{x^3}\right) = e^{-\frac{1}{x^2}} \cdot \left(1 + \frac{2}{x^2}\right)$, namely,

we have
$$f'(x) = \begin{cases} e^{-\frac{1}{x^2}} \cdot \left(1 + \frac{2}{x^2}\right), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

(2)Because f'(0) exists, so f(x) is continuous at x = 0;

Because
$$\lim_{x \to 0} f'(x) = \lim_{x \to 0} e^{-\frac{1}{x^2}} \cdot \left(1 + \frac{2}{x^2}\right)$$

$$= \lim_{t \to \infty} e^{-t^2} \cdot \left(1 + 2t^2\right) = \lim_{t \to \infty} \frac{1 + 2t^2}{e^{t^2}}$$

$$= \lim_{t \to \infty} \frac{4t}{2te^{t^2}} = \lim_{t \to \infty} \frac{2}{e^{t^2}} = 0 = f'(0).$$

so f'(x) is still continuous at x = 0.

9. If
$$\begin{cases} x = \ln \sqrt{t^2 + 1} \\ y = t - \arctan t \end{cases}$$
 implies $y = y(x)$, find $\frac{d^2 y}{dx^2}$.

Solu:
$$\frac{dy}{dx} = \frac{1 - \frac{1}{1 + t^2}}{\frac{1}{2} \frac{1}{1 + t^2} \cdot 2t} = t,$$
$$\frac{d^2 y}{dx^2} = \left(\frac{dy}{dx}\right)_t' \cdot \frac{1}{x'(t)} = 1 \cdot \frac{1}{\frac{t}{1 + t^2}} = \frac{1 + t^2}{t}.$$

10. Let
$$y = x^2 \sin x$$
, find $y^{(100)}$.

Solu: Let
$$u = \sin x$$
, $v = x^2$, by Leibniz formula

$$y^{(100)} = (\sin x)^{(100)} x^2 + 100(\sin x)^{(99)} (x^2)'$$

$$+ \frac{100 \times 99}{2!} (\sin x)^{(98)} (x^2)'' + 0$$

$$= x^2 \sin(x + 100 \times \frac{\pi}{2}) + 200x \sin(x + 99 \times \frac{\pi}{2})$$

$$+ 100 \times 99 \sin(x + 98 \times \frac{\pi}{2})$$

$$= x^2 \sin x - 200x \cos x - 9900 \sin x.$$

10. Let
$$y = xe^{-x}$$
, find $y^{(n)}$.

Solu:
$$y' = e^{-x} - xe^{-x} = (1-x)e^{-x}$$

$$y'' = -e^{-x} + (1-x)e^{-x}(-1) = (-1)(2-x)e^{-x}$$

$$y''' = (-1)[-e^{-x} + (2-x)e^{-x}(-1)] = (-1)^{2}(3-x)e^{-x}$$

So
$$y^{(n)} = (-1)^{n-1} (n-x)e^{-x}$$

The proof is as follows:

when n = 1, it is true

let
$$n = k$$
, we have $y^{(k)} = (-1)^{k-1} (k-x) e^{-x}$

then
$$y^{(k+1)} = (-1)^{k-1} \left[-e^{-x} + (k-x)e^{-x} (-1) \right] = (-1)^{(k+1)-1} \left[(k+1) - x \right] e^{-x}$$
, the result is proved.

11. If
$$\int e^{-x^2} dx = F(x) + C$$
 and $\int f(x) dx = F(\sqrt{\ln x}) + C$, find $f(x)$.

Solu:
$$\int e^{-x^2} dx = F(x) + C \Rightarrow F'(x) = e^{-x^2}$$

$$\int f(x)dx = F(\sqrt{\ln x}) + C$$

$$\Rightarrow f(x) = F'(\sqrt{\ln x}) \cdot \frac{1}{2\sqrt{\ln x}} \cdot \frac{1}{x}$$

$$\Rightarrow f(x) = e^{-\ln x} \cdot \frac{1}{2\sqrt{\ln x}} \cdot \frac{1}{x} = \frac{1}{x} \cdot \frac{1}{2\sqrt{\ln x}} \cdot \frac{1}{x} = \frac{1}{2x^2\sqrt{\ln x}}.$$

12. Let
$$y = y(x)$$
 is determined by
$$\begin{cases} x = 3t^2 + 2t + 3 \\ e^y \sin t - y + 1 = 0 \end{cases}$$
, find $\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{t=0}$.

Solu:
$$t = 0, x = 3, y = 1, \begin{cases} x'_t = 6t + 2 \\ e^y y'_t \sin t + e^y \cos t - y'_t = 0 \end{cases} \Rightarrow \begin{cases} x'_t = 2 \\ e - y'_t = 0 \end{cases}, \frac{dy}{dx}\Big|_{t=0} = \frac{e}{2}.$$

12. Let
$$y = y(x)$$
 is determined by $x^y + y^x = 17$, find $\frac{dy}{dx}$ at $x = 2$, $y = 3$.

Solu:
$$e^{y \ln x} + e^{x \ln y} = 17, x^y \left(y' \ln x + \frac{y}{x} \right) + y^x \left(\ln y + \frac{x}{y} y' \right) = 0,$$

$$y'8\ln 2 + 12 + 9\ln 3 + 6y' = 0, \Rightarrow \frac{dy}{dx}$$
 at $x = 2, y = 3$: $-\frac{12 + 9\ln 3}{6 + 8\ln 2}$.

13. Prove $e^x > \frac{e}{2}(x^2 + 1)$ when x > 1.

Proof: Let $f(x) = e^x - \frac{e}{2}(x^2 + 1)$, f(x) is continuous on $[1, +\infty)$ and derivative in $(1, +\infty)$.

$$f'(x) = e^x - ex$$
, $f''(x) = e^x - e > 0$, then $f'(x)$ in monotonic increasing on $[1, +\infty)$.

And f'(x) > f'(1) = 0, so f(x) in monotonic increasing on $[1, +\infty)$, f(x) > f(1) = 0.

14. Prove
$$\lim_{x \to x_0} \sqrt{x} = \sqrt{x_0} (x_0 > 0)$$
 by $\varepsilon - \delta$.

Proof: (The method in not unique)

 $|x - x_0| \le x_0$ makes that $x \ge 0$

 $\forall \varepsilon > 0$, in order to $|f(x) - L| < \varepsilon$

Only need to $|x - x_0| < \sqrt{x_0 \varepsilon}$ and x > 0

Take $\delta = \min \{x_0 \sqrt{x_0} \varepsilon\}$ when $0 < |x - x_0| < \delta$

we have $\left| \sqrt{x} - \sqrt{x_0} \right| < \varepsilon, : \lim_{x \to x_0} \sqrt{x} = \sqrt{x_0}$.

15. Find a point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the first quadrant to minimize the triangle area

bounded by the tangent line passing through the point and the two coordinate axes. Solu:

Derivative for the equation
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 for x , then $\frac{2x}{a^2} + \frac{2y}{b^2} \cdot y' = 0$, $y' = -\frac{xb^2}{va^2}$,

So, the tangent line passing through
$$(x_0, y_0)$$
: $y - y_0 = -\frac{x_0 b^2}{y_0 a^2} (x - x_0)$, namely $\frac{x x_0}{a^2} + \frac{y y_0}{b^2} = 1$

Let x = 0, we have $y = \frac{b^2}{y_0}$, let y = 0 we have $x = \frac{a^2}{x_0}$, the area of triangle is:

$$s = \frac{1}{2} \frac{a^2}{x_0} \frac{b^2}{y_0} = \frac{a^2 b^2}{2x_0 \sqrt{b^2 \left(1 - \frac{x_0^2}{a^2}\right)}} = \frac{a^3 b}{2x_0 \sqrt{a^2 - x_0^2}}$$

Let $f(x) = x^2(a^2 - x^2)$, $x \in (0, a)$, and thenlet $f'(x) = (a^2x^2 - x^4)' = 2a^2x - 4x^3 = 0$, we get the unique stationary point $x_0 = \frac{\sqrt{2}}{2}a$, and $y_0 = \frac{\sqrt{2}}{2}b$.

The unique stationary point is our minimum point, so the point $\left(\frac{\sqrt{2}}{2}a, \frac{\sqrt{2}}{2}b\right)$ is our desired pointt.

16. When $x \to 1$, the two infinitesimals $\alpha = \ln(x^3 - 3x^2 + 3x)$ and $\beta = A(\sqrt{x+3} - 2)^k$ are equivalent, fined constants A, k.

Solu:

$$1 = \lim_{x \to 1} \frac{\beta}{\alpha}$$

$$= \lim_{x \to 1} \frac{A(\sqrt{x+3} - 2)^k}{\ln(1 + x^3 - 3x^2 + 3x - 1)}$$

$$= \lim_{x \to 1} \frac{A(\sqrt{x+3} - 2)^k \cdot (\sqrt{x+3} + 2)^k}{\ln(1 + (x-1)^3) \cdot (\sqrt{x+3} + 2)^k}$$

$$= \lim_{x \to 1} \frac{A(x-1)^k}{(\sqrt{x+3} + 2)^k (x-1)^3} \Rightarrow \text{ then we get}$$

$$k = 3,$$

$$A = 64.$$