第二章 解析函数

一、选择题:

1.	函数 $f(z) = 3 z ^2$ 在点 $z = 1$) 处是()				
	(A) 解析的	(B) 可导的				
	(C) 不可导的	(D) 既不解析·	也不可导			
2.	函数 $f(z)$ 在点 z 可导是 $f(z)$	z)在点 z 解析的()				
	(A) 充分不必要条件	(B) 必要不充 ₂	分条件			
	(C) 充分必要条件	(D) 既非充分:	条件也非必要条件			
3.	下列命题中,正确的是()				
	(A) 设 x, y 为实数,则 $\left \cos(x+iy)\right \le 1$					
	(B) 若 z_0 是函数 $f(z)$ 的	奇点,则 $f(z)$ 在点 z_0	不可导			
	(C) 若 u,v 在区域 D 内满足柯西-黎曼方程,则 $f(z) = u + iv$ 在 D 内解析					
	(D) 若 $f(z)$ 在区域 D 内	解析,则 <i>if(z)</i> 在 <i>D</i> 内	也解析			
4.	4. 下列函数中,为解析函数的是()					
	$(A) x^2 - y^2 - 2xyi$	(B)	$x^2 + xyi$			
	(C) $2(x-1)y+i(y^2-$	$x^2 + 2x) (D)$	$x^3 + iy^3$			
5. 函数 $f(z) = z^2 \operatorname{Im}(z)$ 在 \mathfrak{L} 处的导数 ()						
	(A) 等于 0 (B) 等于	-1 (C) 等于-1	(D) 不存在	•		
6.	若函数 $f(z) = x^2 + 2xy -$	$y^2 + i(y^2 + axy - x^2)$) 在复平面内处处解	· 析,那么实常		
数a	= ()					
	$(A) 0 \qquad (B)$	(C) 2	2	(D) -2		
7.	如果 $f'(z)$ 在单位圆 $ z < 1$	内处处为零,且 $f(0)$:	= -1,那么在 z <	$1 内 f(z) \equiv ($		
	(A) 0 (B)	(C) -	-1 (D) 任意常数		
8.	设函数 $f(z)$ 在区域 D 内有	定义,则下列命题中,	正确的是			

(B) 若 $\mathbf{Re}(f(z))$ 在 \mathbf{D} 内是一常数,则 $f(z)$ 在 \mathbf{D} 内是一常数						
(C) 若 $f(z)$ 与 $f(\overline{z})$ 在 D 内解析,则 $f(z)$ 在 D 内是一常数						
(D) 若 $\operatorname{arg} f(z)$ 在 D 内是一常数,则 $f(z)$ 在 D 内是一常数						
9. 设 $f(z)=x^2+iy^2$,	则 $f'(1+i)=($)				
$(A) 2 \qquad (I$	3) 2 i	(C) $1+i$	(D) $2 + 2i$			
10. iⁱ的主值为 ()						
$(A) 0 \qquad (1$	3) 1	(C) $e^{\frac{\pi}{2}}$	(D) $e^{-\frac{\pi}{2}}$			
11.e ^ī 在复平面上()					
(A) 无可导点 (C) 有可导点,且在	可导点集上解析		导点,但不解析 解析			
12. 设 $f(z) = \sin z$,则下列命题中,不正确的是()						
(A) $f(z)$ 在复平面上	二处处解析	(B) f	(z) 以 2 π 为周期			
(C) $f(z) = \frac{e^{iz} - e^{-z}}{2}$	iz 	(D) $ f $	(z) 是无界的			
$13.$ 设 $lpha$ 为任意实数,则 1^lpha ()						
(A) 无定义 (C) 是复数,其实部 14. 下列数中,为实数的	•	(B) 等于 (- 1 D) 是复数,其模等于 1			
(A) (1-i) ³ 15. 设α是复数,则((C) ln i	$(D) e^{3-\frac{\pi}{2}i}$			
(A) z ^α 在复平面上如	. 处解析	(B) z ^α 的	莫为 z ^a			
(C) z ^a 一般是多值函	i数	(D) z ^a 的转	福角为 z 的辐角的 $ oldsymbol{lpha} $ 倍			

(A) 若|f(z)|在**D**内是一常数,则f(z)在**D**内是一常数

二、填空题

- 2. 设 f(z) = u + iv 在区域 D 内是解析的,如果 u + v 是实常数,那么 f(z) 在 D 内是 _____
- 3. 导函数 $f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x}$ 在区域 D 内解析的充要条件为______

- 5. 若解析函数 f(z) = u + iv 的实部 $u = x^2 y^2$, 那么 f(z) =______
- 6. 函数 $f(z) = z \operatorname{Im}(z) \operatorname{Re}(z)$ 仅在点 z =______处可导
- 7. 设 $f(z) = \frac{1}{5}z^5 (1+i)z$,则方程 f'(z) = 0 的所有根为_____
- 8. 复数 *i* ⁱ 的模为______
- 9. $Im\{ln(3-4i)\} =$
- 10. 方程 $1 e^{-z} = 0$ 的全部解为______
- 三、设f(z) = u(x,y) + iv(x,y)为z = x + iy的解析函数,若记

$$w(z,\overline{z})=u(\frac{z+\overline{z}}{2},\frac{z-\overline{z}}{2i})+iv(\frac{z+\overline{z}}{2},\frac{z-\overline{z}}{2i}), \quad \emptyset \frac{\partial w}{\partial \overline{z}}=0.$$

四、试证下列函数在 2 平面上解析,并分别求出其导数

- 1. $f(z) = \cos x \cosh y i \sin x \sinh y$;
- 2. $f(z) = e^{x}(x\cos y y\sin y) + ie^{x}(y\cos y + ix\sin y);$

五、设
$$w^3 - 2zw + e^z = 0$$
, 求 $\frac{dw}{dz}$, $\frac{d^2w}{dz^2}$.

六、设
$$f(z) = \begin{cases} \frac{xy^2(x+iy)}{x^2+y^4}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$
 试证 $f(z)$ 在原点满足柯西-黎曼方程,但却不可导.

七、已知 $u-v=x^2-y^2$,试确定解析函数 f(z)=u+iv.

八、设 \vec{s} 和 \vec{n} 为平面向量,将 \vec{s} 按逆时针方向旋转 $\frac{\pi}{2}$ 即得 \vec{n} .如果 f(z) = u + iv 为解析函数,

则有
$$\frac{\partial u}{\partial s} = \frac{\partial v}{\partial n}$$
, $\frac{\partial u}{\partial n} = -\frac{\partial v}{\partial s}$ ($\frac{\partial}{\partial s}$ 与 $\frac{\partial}{\partial n}$ 分别表示沿 \vec{s} , \vec{n} 的方向导数).

九、若函数 f(z) 在上半平面内解析,试证函数 $\overline{\overline{f(z)}}$ 在下半平面内解析.

十、解方程 $\sin z + i \cos z = 4i$.

答案