Cours d'Algèbre Linéaire : Espaces Vectoriels, Sous-Espaces Vectoriels et Applications Linéaires

Introduction

L'algèbre linéaire est une branche des mathématiques fondamentales, essentielle dans plusieurs domaines, notamment la physique, l'informatique, et l'économie. Ce cours aborde trois concepts clés : les espaces vectoriels, les sous-espaces vectoriels et les applications linéaires.

1 Espaces Vectoriels

Définition

Un espace vectoriel est un ensemble V muni de deux opérations :

- Addition $+: V \times V \to V$,
- Multiplication par un scalaire $\cdot : \mathbb{K} \times V \to V$,

où \mathbb{K} est un corps (souvent \mathbb{R} ou \mathbb{C}).

Ces opérations doivent satisfaire les 8 axiomes suivants :

- 1. Associativité de l'addition : u + (v + w) = (u + v) + w,
- 2. Commutativité de l'addition : u + v = v + u,
- 3. Élément neutre pour l'addition : Il existe $0 \in V$ tel que u + 0 = u,
- 4. Inverse pour l'addition : Pour tout $u \in V$, il existe $-u \in V$ tel que u + (-u) = 0,
- 5. Compatibilité avec la multiplication scalaire : $\alpha \cdot (u+v) = \alpha \cdot u + \alpha \cdot v$,
- 6. Distributivité sur les scalaires : $(\alpha + \beta) \cdot u = \alpha \cdot u + \beta \cdot u$,
- 7. Associativité de la multiplication scalaire : $\alpha \cdot (\beta \cdot u) = (\alpha \beta) \cdot u$,
- 8. Multiplication par l'identité : $1 \cdot u = u$.

Exemples

- \mathbb{R}^n avec l'addition et la multiplication classique.
- L'ensemble des polynômes de degré inférieur ou égal à n, $\mathbb{P}_n(\mathbb{R})$.
- L'espace des fonctions continues C([a, b]).

2 Sous-Espaces Vectoriels

Définition

Un sous-espace vectoriel W d'un espace vectoriel V est un sous-ensemble de V qui :

- 1. Contient l'élément neutre 0,
- 2. Est fermé pour l'addition : Si $u, v \in W$, alors $u + v \in W$,
- 3. Est fermé pour la multiplication par un scalaire : Si $\alpha \in \mathbb{K}$ et $u \in W$, alors $\alpha \cdot u \in W$.

Exemples

- $\{(x,y) \in \mathbb{R}^2 \mid y=0\}$ est un sous-espace de \mathbb{R}^2 .
- L'ensemble des solutions d'un système linéaire homogène $A\mathbf{x} = 0$.

3 Applications Linéaires

Définition

Une application linéaire $f:V\to W$ entre deux espaces vectoriels V et W est une fonction qui vérifie :

- 1. f(u+v) = f(u) + f(v) pour tous $u, v \in V$,
- 2. $f(\alpha \cdot u) = \alpha \cdot f(u)$ pour tout $\alpha \in \mathbb{K}$ et $u \in V$.

Exemples

- $f: \mathbb{R}^2 \to \mathbb{R}^2$, définie par f(x,y) = (2x,3y).
- Dérivation $D:C^1([a,b])\to C([a,b]),\, D(f)=f'.$

Représentation par des Matrices

Toute application linéaire $f: \mathbb{R}^n \to \mathbb{R}^m$ peut être représentée par une matrice $A \in M_{m \times n}(\mathbb{R})$, telle que pour tout vecteur $\mathbf{x} \in \mathbb{R}^n$,

$$f(\mathbf{x}) = A\mathbf{x}$$
.

Exemple

Considérons l'application $f: \mathbb{R}^2 \to \mathbb{R}^3$ définie par :

$$f(x,y) = (x + y, 2x - y, x).$$

Sa matrice associée dans les bases canoniques est :

$$A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ 1 & 0 \end{bmatrix}.$$

Noyau et Image

• Noyau : $ker(f) = \{ \mathbf{v} \in V \mid f(\mathbf{v}) = 0 \}$, sous-espace de V.

• Image : $Im(f) = \{f(\mathbf{v}) \mid \mathbf{v} \in V\}$, sous-espace de W.

Théorème Fondamental

Pour toute application linéaire $f: V \to W$,

$$\dim(V) = \dim(\ker(f)) + \dim(\operatorname{Im}(f)).$$

Exercices

1. Démontrer que l'ensemble $W=\{(x,y,z)\in\mathbb{R}^3\mid x+y+z=0\}$ est un sous-espace de $\mathbb{R}^3.$

2. Trouver le noyau et l'image de l'application linéaire $f: \mathbb{R}^3 \to \mathbb{R}^2$ définie par f(x,y,z)=(x+y,y+z).

3. Représenter l'application $f: \mathbb{R}^2 \to \mathbb{R}^3$, donnée par f(x,y) = (x-y,x+y,2x), par une matrice.

4. Montrer que l'ensemble des matrices symétriques $S_n(\mathbb{R})$ est un sous-espace de $M_n(\mathbb{R})$.

Conclusion

Ce cours a introduit les bases des espaces vectoriels, leurs sous-espaces et les applications linéaires, notamment leur représentation matricielle. Ces concepts sont essentiels pour des sujets avancés comme les transformations linéaires, les valeurs propres et les applications pratiques en sciences.