Бази от данни

Нормализация (втора част)

доц. д-р Димитър Димитров

Въведение (1)

- Всеки служител може да има един или повече телефонни номера
- Как да представим това в релация?

Въведение (2)

name	phone
Елена	123
Елена	4567
Иван	23456
Георги	7890
Георги	567

Въведение (3)

• Всеки служител освен телефони може да има и едно или повече умения

Въведение (4)

name	phone	skill
Елена	123	Java
Елена	123	SQL
Елена	4567	Java
Елена	4567	SQL
Иван	23456	Python
Иван	23456	R
Георги	7890	Node.js
Георги	7890	React
Георги	7890	Python
Георги	567	Node.js
Георги	567	React
Георги	567	Python

Въведение (5)

- Очевидни проблеми, например
 - Как ще добавим нов телефон или умение?
 - Как ще изтрием телефон или умение?
- Но: няма основание да свържем телефон с едно умение и да не го свържем с друго
 - Как бихме намерили по даден списък с телефони кой от служителите знае SQL?

Въведение (6)

- В коя нормална форма е тази релация?
- B BCNF!
 - Следователно и в 3NF, 2NF и 1NF
 - Защо е в BCNF?
 - От кои атрибути се състои ключът?
 - От всички
 - Имаме ли нетривиални функционални зависимости?

Въведение (7)

- Решение: четвърта нормална форма (4NF)
- Как предполагаме, че трябва да се представи примерната информация?

Многозначни зависимости

Многозначни зависимости

- Два атрибута (или множества от атрибути) са независими помежду си
- Обобщение на функционалните зависимости
- Наличие на ситуации, при които независимостта на атрибутите не се изразява чрез ФЗ

Дефиниция

- Multivalued dependency (MVD)
- Х»Ү утвърждава, че ако два кортежа в една релация съвпадат по всички атрибути на Х, то техните компоненти от множеството атрибути Y могат да бъдат разменени и резултатът ще даде два нови кортежа, които също принадлежат на релацията

Нагледно представяне

• X»Y

Формална дефиниция

• $A_1A_2...A_n * B_1B_2...B_m$ е многозначна зависимост в R, ако:

за всяка двойка кортежи t, u от R, за които

$$t[A_1A_2...A_n] = u[A_1A_2...A_n],$$

съществува кортеж v от R, за който:

(1)
$$v[A_1A_2...A_n] = t[A_1A_2...A_n] = u[A_1A_2...A_n]$$

(2)
$$V[B_1B_2...B_m] = t[B_1B_2...B_m]$$

(3)
$$v[C_1C_2...C_k] = u[C_1C_2...C_k],$$

където С₁С₂...С_k са всички атрибути от R с изключение на

$$A_1A_2...A_nB_1B_2...B_m$$

Пример

- name » street, city
- Ако съществуват следните кортежи, съвпадащи по name:

name	street	city	title	year
C. Fisher	5 Locust Ln.	Hollywood	Star Wars	1977
C. Fisher	123 Maple Str.	Malibu	Empire Strikes Back	1980

• То със сигурност съществуват и:

name	street	city	title	year
C. Fisher	123 Maple Str.	Malibu	Star Wars	1977
C. Fisher	5 Locust Ln.	Hollywood	Empire Strikes Back	1980

Пояснение към примера

- Всяка филмова звезда може да има няколко адреса и няколко филма
- Множеството от адресите на дадена звезда е напълно независимо от множеството от филмите, в които е играла тя

Свойства

- Тривиални зависимости
- Правило за транзитивност
- Правило за попълнение
- Правило за обединение

Тривиални многозначни зависимости

- Нека А и В са множества от атрибути
- Дадена е МЗ А»В в релация R
- Тривиална МЗ, ако:
 - В е подмножество на А или
 - A∪B съдържа всички атрибути на R
- Нетривиална МЗ, ако:
 - Нито един от атрибутите В не принадлежи на А
 - Не всички атрибути на R принадлежат на A∪B

Правило за транзитивност

• Aко A»B и B»C, то A»C

Правило за попълнение

- Ако А»В, то А»С, където С е множеството от всички атрибути на R с изключение на А∪В
- В сила ли е аналогично правило за Ф3?

Правило на попълнението – пример

- Многозначна зависимост в Stars:
 - name * street city
- Според правилото на попълнението имаме и:
 - name * title year

Правило за обединение

Ако А»В и А»С, то А»В U С

Още свойства

- Както и при ФЗ, не можем да разделяме лявата част на МЗ
- За разлика от ФЗ, не можем да разделяме и дясната част понякога се налага да оставяме няколко атрибута в дясната част

Пример

- name » street, city
- name » street ?

name	street	city	title	year
C. Fisher	5 Locust Ln.	Hollywood	Star Wars	1977
C. Fisher	123 Maple Str.	Malibu	Star Wars	1977

Връзка с ФЗ

- Всяка ФЗ е и многозначна зависимост
 - $-AKOA\rightarrow B$, TO $A\gg B$
- Доказателство чрез (1), (2) и (3) от дефиницията на МЗ

Четвърта нормална форма (4NF)

- Излишеството на данни, което произтича от многозначните зависимости, не може да се отстрани чрез привеждане в BCNF
- Необходима е по-строга нормална форма, наречена 4NF, която третира МЗ като ФЗ по отношение на декомпозицията, но не и по отношение на ключовете

Преговор

- Дефиниция на BCNF
- Релацията R удовлетворява BCNF, ако за всяка нетривиална ФЗ A → B е изпълнено, че A е суперключ

4NF – дефиниция

- Релацията R удовлетворява 4NF, ако за всяка нетривиална M3 А»В е изпълнено, че A е суперключ
 - Понятието ключ се основава на дефиницията на Ф3

Пример

- Релация, нарушаваща 4NF
 - Employees (name, phone, skill)

4NF — свойства

- След като всяка ФЗ е и МЗ, то привеждането в 4NF осигурява и BCNF
- Всяко нарушение на BCNF е и нарушение на 4NF
- Разбира се, не всяка релация в BCNF е и в 4NF М3 са неуловими от BCNF
- Всяка релация с два атрибута е в 4NF

Декомпозиция в 4NF

- Аналогична на декомпозицията в BCNF
- Ако А»В нарушава 4NF за релацията R, то създаваме следните две релации:
 - Първата съдържа атрибутите А∪В
 - Втората съдържа всички атрибути на R без тези от В
- Повтаряме процеса, докато осигурим, че всички нови релации са в 4NF

Пример

- Stars не е в 4NF
- name * street city
 - Нетривиална MVD
 - name не е суперключ
- Прилагаме декомпозиция:
 - StarAddresses (name, street, city)
 - StarsIn (name, title, year)
- name » street city в StarAddresses?
- name » title year в StarsIn?

Пример – пояснения

- В новите релации има МЗ, но те са тривиални
- Какво ще се получи при естественото съединение на двете нови релации?

- Както и при BCNF, декомпозицията в 4NF води до получаване на релации с по-малък брой атрибути
- Следователно в даден момент със сигурност ще стигнем до схема, която няма да има нужда да се декомпозира повече и ще се намира в 4NF
- Верността на декомпозицията е в сила и при декомпозиция в 4NF
- Когато декомпозираме според МЗ, тази зависимост е достатъчна да ни гарантира, че може да възвърнем оригиналната релация от декомпозираните релации, без да получаваме лъжливи кортежи

Съединение без загуба

- Декомпозицията на R до S(B₁,...) и
 T(C₁,...) е без загуба, ако
 R = S ⋈ T
 - т.с.т.к., когато за R е изпълнена поне една от следните М3:
 - B∩C » B-C или
 - $-B \cap C \gg C-B$

Вградени МЗ

- Нека R удовлетворява множеството D от дадени ФЗ и МЗ, S проекция на R
- ФЗ, които следват от D и участват само атрибути на S, важат и в S
- Аналогично се "проектират" и МЗ, но
- може да има такива М3, които са в сила за S, но не и за R вградени

Нормални форми – обобщение

Нормални форми – обобщение

- Първа нормална форма (1NF) изисква всеки компонент в кортежите да е атомарна стройност
- Втора нормална форма (2NF) за всяка нетривиална ФЗ A₁A₂...A_n → B, която е изпълнена за R, имаме, че B е елемент на ключ или {A₁, A₂, ..., A_n} не е собствено подмножество на някой ключ на R
- Трета нормална форма (3NF) ако A₁A₂...A_n → В е нетривиална ФЗ, която е в сила за R, то или {A₁A₂...A_n} да е суперключ за R, или В да е член на някой ключ. Казано по друг начин, всеки атрибут да не е транзитивно зависим от първичния ключ
- Нормална форма на Бойс-Код (BCNF) изисква ако A₁A₂...A_n → В е нетривиална ФЗ, която е в сила за R, то {A₁A₂...A_n} да е суперключ за R
- **Четвърта нормална форма (4NF)** изисква ако A₁A₂...A_n*В е нетривиална МЗ, която е в сила за R, то {A₁A₂...A_n} е суперключ за R

Връзка между нормалните форми

Сравнение

Свойство	3NF	BCNF	4NF
Отсъствие на излишества, породени от Ф3	В повечето случай	Да	Да
Отсъствие на излишества, породени от M3	He	Не	Да
Запазване на ФЗ	Да	Невинаги	Невинаги
Запазване на МЗ	Невинаги	Невинаги	Невинаги

Още едно неформално обобщение

Връзка с E/R

- Да анализираме дали при преобразуването на Е/R модел до релационен се спазват нормалните форми
 - Връзка М:1
 - Връзка M:N
 - Йерархии
 - и т.н.

Заключение

- Препоръчва се релационните схеми да са в (поне) 3NF
- Следването на подхода от E/R модел към релационен ни помага да постигнем нормализирана БД

Допълнителен материал

- Други нормални форми
- Денормализирани бази
 - Предимства на аномалиите (недостатъци на нормализацията)

Упражнения

- Задачи за МЗ
 - Ако AC»В, в сила ли е AC»ВС?
 - Ако А»В и премахнем тези атрибути от В, които принадлежат и на А, ще се получи ли отново МЗ?
- Задачи за 4NF

Въпроси?