Laplace Transform Table
Largely modeled on a table in D'Azzo and Houpis, *Linear Control Systems Analysis and Design*, 1988

F(s)	$f(t) 0 \le t$
1. 1	$\delta(t)$ unit impulse at $t = 0$
2. $\frac{1}{s}$	1 or $u(t)$ unit step starting at $t = 0$
$\frac{s}{3. \frac{1}{s^2}}$	$t \cdot u(t)$ or t ramp function
4. $\frac{1}{s^n}$	$\frac{1}{(n-1)!}t^{n-1} \qquad \text{n = positive integer}$ $u(t-a) \qquad \text{unit step starting at } t=a$
5. $\frac{1}{s}e^{-as}$	u(t-a) unit step starting at $t=a$
$ \frac{1}{4. \frac{1}{s^{n}}} $ $ \frac{1}{5. \frac{1}{s}e^{-as}} $ $ \frac{1}{6. \frac{1}{s}(1-e^{-as})} $ $ \frac{1}{5. \frac{1}{s+a}} $	u(t)-u(t-a) rectangular pulse
7. $\frac{1}{s+a}$	e^{-at} exponential decay
$8. \frac{1}{(s+a)^n}$	$\frac{1}{(n-1)!}t^{n-1}e^{-at} n = \text{positive integer}$
9. $\frac{1}{s(s+a)}$	$\frac{1}{a}(1-e^{-at})$
$10. \ \frac{1}{s(s+a)(s+b)}$	$\frac{1}{ab}(1 - \frac{b}{b-a}e^{-at} + \frac{a}{b-a}e^{-bt})$
11. $\frac{s+\alpha}{s(s+a)(s+b)}$	$\frac{1}{ab}\left[\alpha - \frac{b(\alpha - a)}{b - a}e^{-at} + \frac{a(\alpha - b)}{b - a}e^{-bt}\right]$
$12. \ \frac{1}{(s+a)(s+b)}$	$\frac{1}{b-a}(e^{-at}-e^{-bt})$
$13. \ \frac{s}{(s+a)(s+b)}$	$\frac{1}{a-b}(ae^{-at}-be^{-bt})$

F(s)	$f(t)$ $0 \le t$
$14. \ \frac{s+\alpha}{(s+a)(s+b)}$	$\frac{1}{b-a}[(\alpha-a)e^{-at}-(\alpha-b)e^{-bt}]$
$15. \frac{1}{(s+a)(s+b)(s+c)}$	$\frac{e^{-at}}{(b-a)(c-a)} + \frac{e^{-bt}}{(c-b)(a-b)} + \frac{e^{-ct}}{(a-c)(b-c)}$
16. $\frac{s+\alpha}{(s+a)(s+b)(s+c)}$	$\frac{(\alpha - a)e^{-at}}{(b - a)(c - a)} + \frac{(\alpha - b)e^{-bt}}{(c - b)(a - b)} + \frac{(\alpha - c)e^{-ct}}{(a - c)(b - c)}$
$17. \ \frac{\omega}{s^2 + \omega^2}$	sin ωt
$18. \ \frac{s}{s^2 + \omega^2}$	$\cos \omega t$
$19. \ \frac{s+\alpha}{s^2+\omega^2}$	$\frac{\sqrt{\alpha^2 + \omega^2}}{\omega} \sin(\omega t + \phi) \qquad \phi = \tan 2(\omega, \alpha)$
$20. \frac{s\sin\theta + \omega\cos\theta}{s^2 + \omega^2}$	$\sin(\omega t + \theta)$
$21. \ \frac{1}{s(s^2+\omega^2)}$	$\frac{1}{\omega^2}(1-\cos\omega t)$
$22. \frac{s+\alpha}{s(s^2+\omega^2)}$	$\frac{\alpha}{\omega^2} - \frac{\sqrt{\alpha^2 + \omega^2}}{\omega^2} \cos(\omega t + \phi) \qquad \phi = \operatorname{atan2}(\omega, \alpha)$
23. $\frac{1}{(s+a)(s^2+\omega^2)}$	$\frac{e^{-at}}{a^2 + \omega^2} + \frac{1}{\omega \sqrt{a^2 + \omega^2}} \sin(\omega t - \phi)$ $\phi = \tan 2(\omega, \alpha)$
$24. \ \frac{1}{(s+a)^2 + b^2}$	$\frac{1}{b}e^{-at}\sin(bt)$
$24a. \frac{1}{s^2 + 2\zeta\omega_n s + \omega_n^2}$	$\frac{1}{\omega_n \sqrt{1-\zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_n \sqrt{1-\zeta^2} t)$
25. $\frac{s+a}{(s+a)^2+b^2}$	$e^{-at}\cos(bt)$

F(s)	$f(t) 0 \le t$
$26. \frac{s+\alpha}{(s+a)^2+b^2}$	$\frac{\sqrt{(\alpha-a)^2+b^2}}{b}e^{-at}\sin(bt+\phi) \qquad \phi = \tan 2b, \alpha-a)$
$\frac{s+\alpha}{s^2+2\zeta\omega_n s+\omega_n^2}$	$\sqrt{\frac{\left(\frac{\alpha}{\omega_n} - \zeta\omega_n\right)^2}{1 - \zeta^2} + 1} \cdot e^{-\zeta\omega_n t} \sin(\omega_n \sqrt{1 - \zeta^2}t + \phi)$
	$\phi = \operatorname{atan2}(\omega_n \sqrt{1-\zeta^2}, \alpha - \zeta \omega_n)$
$\frac{1}{s[(s+a)^2+b^2]}$	$\frac{1}{a^2 + b^2} + \frac{1}{b\sqrt{a^2 + b^2}} e^{-at} \sin(bt - \phi) \qquad \phi = \text{atan2}(b, -a)$
$\frac{1}{s(s^2 + 2\zeta\omega_n s + \omega_n^2)}$	$\frac{1}{\omega_n^2} - \frac{1}{\omega_n^2 \sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_n \sqrt{1 - \zeta^2} t + \phi)$ $\phi = \cos^{-1} \zeta$
$\frac{s+\alpha}{s[(s+a)^2+b^2]}$	$\frac{\alpha}{a^2 + b^2} + \frac{1}{b} \sqrt{\frac{(\alpha - a)^2 + b^2}{a^2 + b^2}} e^{-at} \sin(bt + \phi)$ $\phi = \operatorname{atan2}(b, \alpha - a) - \operatorname{atan2}(b, -a)$
$\frac{s+\alpha}{s(s^2+2\zeta\omega_n s+\omega_n^2)}$	$\frac{\alpha}{\omega_n^2} + \frac{1}{\omega_n \sqrt{1 - \zeta^2}} \sqrt{\frac{(\alpha - \zeta)^2 + (1 - \zeta^2)}{\omega_n} \cdot e^{-\zeta \omega_n t}} \sin(\omega_n \sqrt{1 - \zeta^2} t + \phi)$ $\phi = \operatorname{atan2}(\omega_n \sqrt{1 - \zeta^2}, \alpha - \omega_n \zeta) - \operatorname{atan2}(\sqrt{1 - \zeta^2}, -\zeta)$
29. $\frac{1}{(s+c)[(s+a)^2+b^2]}$	$\frac{e^{-ct}}{(c-a)^2 + b^2} + \frac{e^{-at}\sin(bt - \phi)}{b\sqrt{(c-a)^2 + b^2}} \phi = \tan 2(b, c - a)$

F(s)	$f(t) \qquad 0 \le 1$
30.	$1 e^{-ct} e^{-at} \sin(bt - \phi)$
1	$\frac{1}{c(a^2+b^2)} - \frac{e^{-ct}}{c[(c-a)^2+b^2]} + \frac{e^{-at}\sin(bt-\phi)}{b\sqrt{a^2+b^2}\sqrt{(c-a)^2+b^2}}$
$s(s+c)[(s+a)^2+b^2]$	$\phi = \operatorname{atan2}(b, -a) + \operatorname{atan2}(b, c - a)$
31.	α $(c-\alpha)e^{-ct}$
$\frac{s+\alpha}{s+\alpha}$	$\frac{\alpha}{c(a^{2}+b^{2})} + \frac{(c-\alpha)e^{-ct}}{c[(c-a)^{2}+b^{2}]}$
$s(s+c)[(s+a)^2+b^2]$	$+\frac{\sqrt{(\alpha-a)^2+b^2}}{b\sqrt{a^2+b^2}}\sqrt{(c-a)^2+b^2}e^{-at}\sin(bt+\phi)$
	$\phi = \operatorname{atan2}(b, \alpha - a) - \operatorname{atan2}(b, -a) - \operatorname{atan2}(b, c - a)$
$32. \ \frac{1}{s^2(s+a)}$	$\frac{1}{a^2}(at-1+e^{-at})$
$\frac{1}{s(s+a)^2}$	$\frac{1}{a^2}(1-e^{-at}-ate^{-at})$
$34. \frac{s+\alpha}{s(s+a)^2}$	$\frac{1}{a^2}[\alpha - \alpha e^{-at} + a(a - \alpha)te^{-at}]$
35. $\frac{s^2 + \alpha_1 s + \alpha_0}{s(s+a)(s+b)}$	$\frac{\alpha_0}{ab} + \frac{a^2 - \alpha_1 a + \alpha_0}{a(a-b)} e^{-at} - \frac{b^2 - \alpha_1 b + \alpha_0}{b(a-b)} e^{-bt}$
36. $\frac{s^2 + \alpha_1 s + \alpha_0}{s[(s+a)^2 + b^2]}$	$\frac{\alpha_0}{c^2} + \frac{1}{bc} [(a^2 - b^2 - \alpha_1 a + \alpha_0)^2]$
	$+b^{2}(\alpha_{1}-2a)^{2}]^{\frac{1}{2}}e^{-at}\sin(bt+\phi)$
	$\phi = \operatorname{atan2}[b(\alpha_1 - 2a), a^2 - b^2 - \alpha_1 a + \alpha_0] - \operatorname{atan2}(b, -a)$
	$\phi = \operatorname{atan2}[b(\alpha_1 - 2a), a^2 - b^2 - \alpha_1 a + \alpha_0] - \operatorname{atan2}(b, -a)$ $c^2 = a^2 + b^2$

F(s)	$f(t)$ $0 \le 1$
37. 1	$\frac{(1/\omega)\sin(\omega t + \phi_1) + (1/b)e^{-at}\sin(bt + \phi_2)}{1}$
$\frac{1}{(s^2+\omega^2)[(s+a)^2+b^2]}$	$[4a^2\omega^2 + (a^2 + b^2 - \omega^2)^2]^{\frac{1}{2}}$
	$\phi_1 = a \tan 2(-2a\omega, a^2 + b^2 - \omega^2)$
	$\phi_2 = \text{atan2}(2ab, a^2 - b^2 + \omega^2)$
$\frac{s+\alpha}{(s^2+\omega^2)[(s+a)^2+b^2]}$	$ \frac{1}{\omega} \left(\frac{\alpha^{2} + \omega^{2}}{c}\right)^{\frac{1}{2}} \sin(\omega t + \phi_{1}) $ $ + \frac{1}{b} \left[\frac{(\alpha - a)^{2} + b^{2}}{c}\right]^{\frac{1}{2}} e^{-at} \sin(bt + \phi_{2}) $ $ c = (2a\omega)^{2} + (a^{2} + b^{2} - \omega^{2})^{2} $
	$\phi_1 = \operatorname{atan2}(\omega, \alpha) - \operatorname{atan2}(2a\omega, a^2 + b^2 + \omega^2)$
	$\phi_2 = \text{atan2}(b, \alpha - a) + \text{atan2}(2ab, a^2 - b^2 - \omega^2)$
39. $\frac{s+\alpha}{s^2[(s+a)^2+b^2]}$	$\begin{vmatrix} \frac{1}{c}(\alpha t + 1 - \frac{2\alpha a}{c}) + \frac{[b^2 + (\alpha - a)^2]^{\frac{1}{2}}}{bc}e^{-at}\sin(bt + \phi) \\ c = a^2 + b^2 \end{vmatrix}$
	$\phi = 2 \operatorname{atan} 2b, a) + \operatorname{atan} 2b, \alpha - a)$
$40. \frac{s^2 + \alpha_1 s + \alpha_0}{s^2 (s+a)(s+b)}$	$\frac{\alpha_{1} + \alpha_{0}t}{ab} - \frac{\alpha_{0}(a+b)}{(ab)^{2}} - \frac{1}{a-b}(1 - \frac{\alpha_{1}}{a} + \frac{\alpha_{0}}{a^{2}})e^{-at}$
	$-\frac{1}{b-a}(1-\frac{\alpha_{1}}{b}+\frac{\alpha_{0}}{b^{2}})e^{-bt}$