Introducción al Procesamiento del Lenguaje Natural con R

Montserrat López Cobo SevillaR, 1 de octubre de 2019

Qué es el PLN (NLP en inglés)

Estudia la interacción entre computadoras y lenguaje humano: cómo hacer a un ordenador comprender, reproducir o generar lenguaje humano, escrito o hablado

<u>Aplicaciones</u>

- traducción automática
- recuperación y extracción de información
- resumen de textos
- análisis de sentimiento

- reconocimiento del habla
- síntesis de voz
- chatbots

topic modelling

• ...

PLN para análisis de texto

- Modelo de espacio vectorial (vector space model):
 - * Modelo algebraico
 - Representación del texto como un vector numérico de identificadores (términos)
 - Útil para: selección o filtrado de documentos, ranking de relevancia, clasificación y clustering (similaridad del coseno)

Matriz de términodocumento

Binaria

Ponderada: frecuencia de ocurrencia

		D1	D2	D3	D4	D5
T1	adversarial	1				
T2	algorithm	1		1		1
Т3	computer		1			
T4	convolutional		1		1	
T 5	dataset			1	 	
T6	deep				1	
T7	learning			1		1
T8	machine			1	 	
T9	network	1	1		1	
T10	neural	1	1		1	
T11	reinforcement				1	
T12	supervised			1	 	
T13	training			1	 	
T14	transfer				 	1
T15	vision		1			

D1	D2	D3	D4	D5
3				
1		3		2
	1			
	1		1	
		1		
			2	
		2		2
		2	 	
3	1		3	
2	1		2	
			1	
		1		
		1		
		 		2
	1			

tf-idf

término documento

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

 $tf_{i,j}$ = number of occurrences of i in j df_i = number of documents containing iN = total number of documents

- tf: prioriza palabras frecuentes en el documento
- idf: prioriza palabras que aparecen en pocos documentos
- tf-idf: prioriza palabras que aparecen mucho en el documento y poco en el resto de documentos

tf-idf

		tf(Ti,D1)	tf(Ti,D2)	tf(Ti,D3)	tf(Ti,D4)	tf(Ti,D5)	df(i)	N/df(i)	idf(i)	tf-idf(Ti,D1)	tf-idf(Ti,D2)	tf-idf(Ti,D3)	tf-idf(Ti,D4)	tf-idf(Ti,D5)
T1	adversarial	3					1	5	0.6990	2.0969	 	1	 	
T2	algorithm	1		3		2	3	1.6667	0.2218	0.2218		0.6655		0.4437
Т3	computer		1				1	5	0.6990		0.6990	1 1 1 1 1 1		
T4	convolutional		1		1		2	2.5	0.3979		0.3979	1 1 1 1 1 1	0.3979	
Т5	dataset			1			1	5	0.6990			0.6990		
Т6	deep				2		1	5	0.6990				1.3979	
Т7	learning			2		2	2	2.5	0.3979			0.7959		0.7959
Т8	machine			2			1	5	0.6990			1.3979		
Т9	network	3	1		3		3	1.6667	0.2218	0.6655	0.2218		0.6655	
T10	neural	2	1		2		3	1.6667	0.2218	0.4437	0.2218		0.4437	
T11	reinforcement				1		1	5	0.6990				0.6990	
T12	supervised			1			1	5	0.6990			0.6990		
T13	training			1			1	5	0.6990			0.6990		
T14	transfer					2	1	5	0.6990					1.3979
T15	vision		1				1	5	0.6990		0.6990	 		

Aplicación

 Caso de uso: Analizar contenido de artículos que caracterizan una disciplina

Objetivos:

- Identificar términos representativos -> caracterización de la disciplina
- Asociar documentos y términos -> caracterización del documento
- Primer ejemplo: Métodos basados en corpus
 - Comparar artículos de distintas disciplinas tecnologías
- Segundo ejemplo: Métodos basados en documento
 - Resumir artículos
 - Extracción de palabras clave, POS tagging
 - Uso posterior: Topic modelling [no en esta sesión]

Aplicación

ETL & NLP processes

Métodos basados en corpus

Datos de entrada

- 4000 artículos de investigación:
 - 1000 de conferencias de Inteligencia artificial (IA)
 - 1000 de revistas de Observación de la tierra (EO)
 - 1000 de revistas de Sistemas de información geográfica (GIS)
 - 1000 de revistas de Fotónica (PH)
 - Fuente: Scopus y arXiv.org

View issue TOC Volume 50, Issue February 11, 201 Pages 1492–152

Abstract

This Review summarizes recent developments in the field of responsive photonic crystal structures, including principles for design and fabrication and many strategies for applications, for example as optical switches or chemical and biological sensors. A number of fabrication methods are now available to realize responsive photonic structures, the majority of which rely on self-assembly processes to achieve ordering. Compared with microfabrication techniques, self-assembly approaches have lower processing costs and higher production efficiency, however, major efforts are still needed to further develop such approaches. In fact, some emerging techniques such as spin coating, magnetic assembly, and flow-induced self-assembly have already shown great promise in overcoming current challenges. When designing new systems with improved performance, it is always helpful to bear in mind the lessons learnt from natural photonic structures.

article_id	journal	description	title	tech [‡]	year [‡]
ai_1	ICML	Orthogonal matching pursuit (OMP) is a widely used a	Signal and Noise Statistics Oblivious Orthogonal Matc	ai	2018
ai_2	NIPS	Due to their simplicity and excellent performance, par	Breaking the Nonsmooth Barrier: A Scalable Parallel M	ai	2017
ai_3	NIPS	Automaton models are often seen as interpretable m	Interpreting Finite Automata for Sequential Data	ai	2016
ai_4	CVPR	This paper presents our contribution to the ChaLearn	Cultural Event Recognition with Visual ConvNets and	ai	2015
ai_5	NIPS	We present a method for explaining the image classifi	Using KL-divergence to focus Deep Visual Explanation	ai	2017
ai_6	AAAI	We advance the state of the art in biomolecular intera	Extracting Biomolecular Interactions Using Semantic P	ai	2015
ai_7	NIPS	We suggest a loss for learning deep embeddings. The	Learning Deep Embeddings with Histogram Loss	ai	2016
ai_8	AAAI	This paper aims to shed some light on the concept of	Exploring Text Virality in Social Networks	ai	2012
ai_9	NIPS	Majorization-minimization algorithms consist of itera	Stochastic Majorization-Minimization Algorithms for	ai	2013

Toquenización de textos

- Tokenizar: segmentar el texto en palabras
- Lematizar: extraer la raíz de la palabra: reduce variantes de una palabra a su raíz

```
text_word <- data0_text %>%
     unnest_tokens(word, text) %>%
     mutate(word = str_extract(word, "[a-zA-Z0-9']+")) %>%
     filter(!is.na(word)) %>%
     mutate(word_stemm = (wordStem(word)))
```

article_id [‡]	journal [‡]	tech [‡]	year [‡]	word [‡]	word_stemm
ai_1	ICML	ai	2018	orthogonal	orthogon
ai_1	ICML	ai	2018	matching	match
ai_1	ICML	ai	2018	pursuit	pursuit
ai_1	ICML	ai	2018	omp	omp
ai_1	ICML	ai	2018	is	i
ai_1	ICML	ai	2018	a	a
ai_1	ICML	ai	2018	widely	wide
ai_1	ICML	ai	2018	used	us

nb words: 761.719

nb unique words: 27.140

Palabras más frecuentes

Stop words

- Palabras que no aportan sentido al texto
- Que se repiten en todos los textos
- No sirven para discriminar, no aportan información
- Suelen ser: preposiciones, conjunciones, verbos...
- data("stop_words") (tidytext):
 - 1149 stop words
 - fuentes: "onix", "SMART", "snowball"
 - Ejemplos:

```
"no"
                       "hello"
                                   "don't"
           "turn"
                                               "doing"
"here"
       "he's"
                                   "been"
                                               "nine"
                       "whole"
                                   "is"
"especially" "whole"
                       "longer"
                                               "merely"
"ordered"
        "grouping" "everything" "obviously" "anyone"
```

Palabras más frecuentes (sin stop words)

Palabras más frecuentes (sin stop words, ni números)

Términos representativos por tecnología

 Usamos TF-IDF para identificar los términos más representativos de cada grupo de artículos

• tf: prioriza palabras frecuentes en el documento

• idf: prioriza palabras que aparecen en pocos documentos

• **tf-idf**: prioriza palabras que aparecen <u>mucho en el</u> documento y poco en el resto de documentos

Cobertura del corpus

Bigramas

```
text_bigram <- data0_text %>%
        unnest_tokens(bigram, text, token = "ngrams", n=2) %>%
                                                                       bigram
                                                                                               n
        filter(!is.na(bigram)) %>%
                                                                        <chr>
                                                                                            <int>
                                                                      1 remote sensing
        separate(bigram, c("word1", "word2"), sep = " ") %>%
                                                                                             587
                                                                      2 land cover
                                                                                             362
        mutate(word1 = str_extract(word1, "[a-z0-9']+"),
                                                                      3 neural networks
                                                                                             271
               word2 = str_extract(word2, "[a-z0-9']+")) %>%
                                                                      4 time series
                                                                                             219
        filter(!is.na(word1)) %>%
                                                                      5 experimental results
                                                                                             215
        filter(!is.na(word2)) %>%
                                                                      6 taylor francis
                                                                                             209
        filter(!word1 %in% stop_words$word) %>%
                                                                      7 photonic crystal
                                                                                             205
        filter(!word2 %in% stop_words$word) %>%
                                                                      8 soil moisture
                                                                                             205
        mutate(word1_stemm = (wordStem(word1)),
                                                                      9 data sets
                                                                                             198
               word2_stemm = (wordStem(word2))) %>%
                                                                     10 neural network
                                                                                             198
        filter(!is.na(word1_stemm)) %>%
                                                                     # ... with 138,658 more rows
        filter(!is.na(word2_stemm)) %>%
        unite(bigram_stemm, word1_stemm, word2_stemm, sep = " ") %>%
        unite(bigram, word1, word2, sep = ' ')
```

Bigramas representativos (tf-idf)

Bigramas repres. stemm (tf-idf)

Red de bigrams stemm

Pero, qué pasa si...?

- ... **no** tenemos 4 grupos de artículos para comparar y queremos conocer los términos representativos de uno
- ... o necesitamos conocer el contenido de cada artículo de manera resumida, para hacer clusters de artículos por tema (por ejemplo con topic modelling)?

TF-IDF deja de funcionar -> Vamos a verlo con los 1000 artículos de Inteligencia artificial

Top 15 tf-idf en IA

Métodos basados en documento

- RAKE (rapidraker y slowraker)
- Co-occurencies (udpipe)

Extracción de palabras clave con RAKE

RAKE (Rapid Automatic Keyword Extraction):

- Algoritmo no supervisado para extracción de términos clave
- Independiente del dominio
- Analiza frecuencia de aparición de términos en el texto y coocurrencia con otros (grado del nodo en la red de términos)
- Identifica frases clave desde ngram =1 hasta 20+
- <u>Inconveniente</u>: las frases clave muy largas pierden el objetivo de resumir el texto en lo que entendemos como palabras clave

RAKE

INPUT: text_clean_text: vector con texto original con términos alfanum. sin stopwords

doc_id [‡]	keyword	freq	score [‡]	stem
Al_1	performance comparable omp priori knowledge spars	1	52.849998	perform compar omp priori knowledg sparsiti nois st
Al_1	analytical results numerical simulations real synthetic	1	49.000000	analyt result numer simul real synthet data
Al_1	priori knowledge sparsity regression vector noise stat	1	47.099998	priori knowledg sparsiti regress vector nois statist
Al_1	signal noise statistics oblivious orthogonal matching	1	44.099998	signal nois statist oblivi orthogon match pursuit
Al_1	omp priori knowledge sparsity noise statistics	1	39.349998	omp priori knowledg sparsiti nois statist
Al_1	sparse dimensional vectors linear regression models	1	37.000000	spars dimension vector linear regress model
Al_1	finite sample support recovery guarantees	1	36.000000	finit sampl support recoveri guarante
Al_1	statistics rarely priori difficult estimate	1	28.100000	statist rare priori difficult estim
Al_1	pursuit omp widely algorithm	1	18.750000	pursuit omp wide algorithm
Al_1	optimal performance omp	1	13.750000	optim perform omp
Al_1	orthogonal	1	4.000000	orthogon
Al_1	residual ratio	1	4.000000	residu ratio
Al_1	paper	1	1.000000	paper
Al_1	rrt	1	1.000000	rrt
Al_1	technique	1	1.000000	techniqu
AI_2	theoretical linear speedup respect sequential version	1	159.0000	theoret linear speedup respect sequenti version assu
Δ1 2	narallel asynchronous variants stochastic gradient de	1	55 799999	narallel asynchron variant stochast gradient descent

Extracción de palabras clave con UDPIPE

udpipe: versión para R de UDPipe de C++

- "UDPipe provides language-agnostic tokenization, tagging, lemmatization and dependency parsing of raw text"
- Tiene 3 funciones para detectar palabras clave: RAKE, Point-Wise Mutual Information Collocation, Parts of Speech phrase sequence detection. Pero no funcionan muy bien...
- Otra opción: usar co-occurrence. **Inconveniente**: solo detecta bigramas

UDPIPE

INPUT: text_clean_original: data frame original con términos alfanum. sin stopwords

```
# -- Download model (inly the first time) --
ud_model <- udpipe_download_model(language = "english")</pre>
ud_model <- udpipe_load_model(ud_model$file_model)</pre>
# -- Anotate data --
# pre-Cleaned text
text_clean_udpipe <- udpipe_annotate(ud_model, x = text_clean_original text,
                                      doc_id = text_clean_original$article_id)
text_udpipe <- as.data.table(text_clean_udpipe)</pre>
## bigrams from co-occurrence
text_terms_2gram <- text_udpipe[,cooccurrence(x = lemma,
                                                relevant = upos %in% c("NOUN", "ADJ"),
                                                skipgram = 1),
                                 by=doc_id]
text_terms_2gram[,cooc:=.N,by=list(term1,term2)]
text_terms_2gram <- text_terms_2gram[term1!=term2 & cooc>1,]
|text_terms_2gram[,term:= paste(term1, term2, sep = " ")]
|text_terms_udpipe <- text_terms_2gram
```

RAKE vs UDPIPE

text keywords.RAKE

keywords. UDPIPE

Orthogonal matching pursuit (OMP) is a widely used algorithm for recovering sparse high dimensional vectors in linear regression models. The optimal performance of OMP requires a priori knowledge of either the sparsity of regression vector or noise statistics. Both these statistics are rarely known a priori and are very difficult to estimate. In this paper, we present a novel technique called residual ratio thresholding (RRT) to operate OMP without any a priori knowledge of sparsity and noise statistics and establish finite sample and large sample support recovery guarantees for the same. Both analytical results and numerical simulations in real and synthetic data sets indicate that RRT has a performance comparable to OMP with a priori knowledge of sparsity and noise statistics. Signal and Noise Statistics Oblivious Orthogonal Matching Pursuit

performance comparable omp priori knowledge sparsity noise statistics -analytical results numerical simulations real synthetic data -- priori knowledge sparsity regression vector noise statistics -- signal noise statistics oblivious orthogonal matching pursuit -- omp priori knowledge sparsity noise statistics -- sparse dimensional vectors linear regression models -- finite sample sample support recovery guarantees -statistics rarely priori difficult estimate -- pursuit omp widely algorithm -- optimal performance omp -orthogonal -- residual ratio -paper -- rrt -- technique

priori
knowledge -dimensional
vector -- real
synthetic -synthetic
data -sparse
vector -result
simulation -real data

Salida de udpipe_annotate

doc_id	paragraph_id	sentence_id	token_id	token	lemma	upos	xpos	feats		head_token_id	dep_rel	deps	misc
AI_1	1	1	1	Orthogonal	Orthogonal	ADJ	JJ	Degree=Pos		3	amod		
AI_1	1	1	2	matching	matching	NOUN	NN	Number=Sing		3	compound		
AI_1	1	1	3	pursuit	pursuit	NOUN	NN	Number=Sing		11	nsubj		
AI_1	1	1	4	((PUNCT	-LRB-			5	punct		SpaceAfter=No
AI_1	1	1	5	ОМР	OMP	PROPN	NNP	Number=Sing		3	appos		SpaceAfter=No
AI_1	1	1	6))	PUNCT	-RRB-			5	punct		
\I_1	1	1	7	is	be	AUX	VBZ	Mood=Ind Number=Sing Pers	on=3 Tense=Pres VerbForm=Fin	11	сор		
AI_1	1	1	8	a	а	DET	DT	Definite=Ind PronType=Art		11	det		
\I_1	1	1	9	widely	widely	ADV	RB			10	advmad 4		
\I_1	1	1	10	used	use	VERB	VBN	Tense=Past VerbForm=Part	• ADJ: adjective				
\I_1	1	1	11	algorithm	algorithm	NOUN	NN	Number=Sing					
\I_1	1	1	12	for	for	SCONJ	IN		• ADP: adposition				
\I_1	1	1	13	recovering	recovere	VERB	VBG	VerbForm=Ger	• <u>ADV</u> : adverb				
\I_1	1	1	14	sparse	sparse	ADV	RB		• AUX: auxiliary				
\I_1	1	1	15	high	high	ADJ	JJ	Degree=Pos	<u>CCONJ</u> : coordinating co	onju	nction		
\I_1	1		16	dimensional	dimensiona	ADJ	JJ	Degree=Pos	• DET: determiner				
\I_1	1		17	vectors	vector	NOUN	NNS	Number=Plur	• INTJ: interjection				
\I_1	1		18	in	in	ADP	IN		• NOUN: noun				
\I_1	1		19	linear	linear	ADJ	IJ	Degree=Pos					
AI_1	1		20	regression	regression		NN	Number=Sing	• <u>NUM</u> : numeral				
\I_1	1			models	model	NOUN	NNS	Number=Plur	• PART: particle				SpaceAfter=No
\I_1	1	1	22			PUNCT			• PRON: pronoun				
									• PROPN: proper noun				
									• PUNCT: punctuation				
									sconj: subordinating	coni	unction		
									• SYM: symbol	,	-		

https://universaldependencies.org/format.html

Gráfico de dependency parsing

Enlaces útiles

- Paquetes y Frameworks de R para PLN: https://cran.r-project.org/web/views/NaturalLanguageProcessing.html
- Tutorial text mining con tidytext: https://www.tidytextmining.com/
 index.html
- udpipe R: https://bnosac.github.io/udpipe/en/
 UDPipe (C++):
 - Documentación https://ufal.mff.cuni.cz/udpipe
 - Udpipe Demo URL: https://lindat.mff.cuni.cz/services/udpipe/
- RAKE (Automatic keyword extraction from individual documents): http://media.wiley.com/product_data/excerpt/22/04707498/0470749822.pdf
- Otros paquetes muy usados: quanteda, tm...

linkedin.com/in/montserrat-lópez-cobo-25069ab1

montse.lopezcobo@gmail.com