COMP4418 **Knowledge Representation and Reasoning**

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Practical Reasoning - My Interests

- Cognitive Robotics.
- Connect high level. cognition with low-level Project Exam Help sensing/actuators https://eduassistpro.github.io/
- Logical reasoning robot behave intelligentaly. We Chat edu_assist_pro
- Baxter Blocksworld video...

Recap of Weeks 1 & 2

- Week 1: Propositional logic
 - Simple propositions: "Socrates is bald" Project Exam Help
 Semantics: meaning decided using truth tables

 - Syntax: provability de https://eduassistpro.github.io/
 - But... limited express
- Week 2: First-order | WeChat edu_assist_pro
 - Able to capture properties of objects and relationships between objects
 - Semantics: meaning decided using interpretations
 - Syntax: provability using inference rules resolution + unification for CNF
 - highly expressive but... undecidable.

A Brie Tkam Help R

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro Propositional lo

Expressivity

*actually semi-decidable, but distinction is not pmportant for this course.

https://eduassistpro.github.io/

Add WeChat edu_assist_pro
Propositional logic – Satisfiabli lete

Expressivity

First-order logic – Satisfiability is undecidable Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_proproblems: Propositional logic – Satisfiabli lete

Expressivity

Computational Complexity

Many important

- Scheduling
- Timetabling
- Vehicle routing

Complexity

First-order logic – Satisfiability is undecidable Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Propositional logic – Satisfiabli

lete

Expressivity

Computational Complexity

Propositional fragments

When speed is important:

Databases

Higher-order logics – some interest

First-order logic – Satisfiability is undecidable Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Propositional logic – Satisfiabli

lete

Expressivity

Computational Complexity

Propositional fragments

When speed is important:

Databases

https://eduassistpro.github.io/

Add WeChat edu_assist_pro
Propositional logic – Satisfiabli lete

Expressivity

Expressivity

Expressivity

Assignment Project Exam Help
H
https://eduassistpro.github.io/
Add WeChat edu_assist_pro

Clause Recap

From weeks 1 & 2:

- Every formula can be converted to Conjunctive Normal Form (CNF)
 Assignment Project Exam Help
- Any CNF can be v
- Entailment check https://eduassistpro.github.io/utation)
- So using sets of claused drawites hat edu_assist_pro
 - Intuitive language for expressing knowledge

$$\neg a, a \lor b$$
 vs $\neg (a \lor (\neg a \land \neg b))$

Simple proof procedure that can be implemented

Reading Clauses as Implication

Clauses can be intuitively interpreted in two ways:

- As disjunction: rain \vee sleet
- As implication: Assignment Project Exam Help
 - for syntactic co
 so ran he read

 https://eduassistpro.github.io/
 hen "boy"

To understand why this maked the Chat edu_assist_pro

A	В	$\neg A$	$\neg A \lor B$	$A \rightarrow B$
True	True	False	True	True
True	False	False	False	False
False	True	True	True	True
False	False	True	True	True

Horn Clauses

- Horn clause is a clause with at most one positive literal
- A *positive* (or *definite*) *clause* has exactly one positive literal

```
Tchild V Tmale; V boynent Project Exam Help
```

A negative clause (o

```
¬open ∨ ¬closed https://eduassistpro.github.io/
```

- Note, since per dd de Welcharedu elassiste pro
- Hence open \land closed \rightarrow False (open \land closed \rightarrow \bot or open \land closed \rightarrow)
- Also know as a goal when performing refutation proof
- A *fact* is a definite clause with no negative literals (i.e., a single positive literal):

```
raining
```


Resolution with Horn Clauses 1

Two options:

Examples:

Resolution with Horn Clauses 2

It is possible to rearrange derivations (of negative clauses) so that all new derived clauses are negative clauses:

Given clauses: Assignment Project Exam Help

SLD Resolution

Can change derivations such that each derived clause is a resolvent of the previous derived (negative) one and some positive clause in the original set of clauses Assignment Project Exam Help Since each derived clause is negative, one parent must be old new positive (and so from https://eduassistpro.github.i Continue working ba are from the original set of clauses. Add WeChat edu_assist_pro Eliminate all other clauses not on direct path

SLD Example

To show that $KB \models Girl$ derive a contradiction from $KB \cup {\neg Girl}$

```
\negChild \lor \negFemale \lor Girl
                                                                                    \neg Girl
           FirstGraAssignment Project Exam H
KB = \{
           FirstGrade \rightarrow Child
                                                      Female
                                                                             \negChild \lor \negFemale
           \text{Child} \land \text{Male} \rightarrow \text{Boy},
           Kindergarten—https://eduassistpro.git
           Child \land Female \rightarrow Girl,
                                                                                    ¬Child
                                              ¬FirstGrade ∨ Child
           Female
                           Add WeChat edu assist
                                                   FirstGrade
                                                                                 ¬FirstGrade
```

Note: Horn clauses capture a very intuitive way that we express knowledge.

SLD Resolution (formal)

An <u>SLD-derivation</u> of a clause c from a set of clauses S is a sequence of clauses $c_1, c_2, ... c_n$ such that $c_n = c$, and

- l. $c_i \in S$ Assignment Project Exam Help
- 2. c_{i+1} is a resolven https://eduassistpro.github.io/

```
Written as: S \vdash^{\text{SLD}} c Add Wro Ghat edu_assist_pro L(inear) form D(efinite) clauses
```


In General SLD is incomplete

SLD resolution is not complete for general clauses.

Add WeChat edu_assist_pro

So S is unsatisfiable, that is: $S \vdash \bot$, but $S \not\vdash^{\operatorname{SLD}} \bot$

SLD cannot derive the contradition because it needs to eventually perform resolution on the intermediate clauses p and $\neg p$ (or q and $\neg q$)

Completeness of SLD

But SLD resolution IS complete for Horn clauses.

Theorem: If Hais is ignificant days es the Exam Life III Land Land

- This is a good re resolve on is sim

 https://eduassistpro.gflauses.to/
- Satisfiability for propositionat Girat edu_assistpleper.o
- Nothing is for free: loss of expressivity.
- Cannot express simple (positive) disjunctions.

open \vee closed

Back to the KRR Overview

First-order logic – Satisfiability is undecidable Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro
Propositional logic – Satisfiabli lete

Expressivity

Computational Complexity

Propositional fragments – **Horn clauses**

Back to the KRR Overview

First-Order (FO) Clauses

Week 2 recap:

- Conversion to FO CNF is same as propositional case except:

 Standardise variable names
 - Skolemise (g https://eduassistpro.glfhub.io/
 - Drop universal quantifiers
 Add WeChat edu_assist_pro
 FO resolution is same as proposition
- - Find substitutions to unify the two clauses

First-Order (FO) Horn Clauses

- Same as propositional case except in a FO language
- SLD-resolution also same; with addition of unification
- Completeness of Fe Horn also holds Exam Help

Theorem: If H is a set https://eduassistprolgithubilio/

But...

Add WeChat edu_assist_pro

First-Order (FO) Horn Clauses

 FO Horn is undecidable. With Horn SLD resolution we can still generate an infinite sequence of resolvents.

Assignment Project Exam Help

```
LessThan(succ(x), y) \rightarrow LessThan(x, y) \negLT(s(x), y) \lor LT(x, y) \negLT(0, 0) https://eduassistpro.github.io/

Query:

LessThan(0, 0) Add WeChat edu_assist_pro

\negLT(s(x), y) \lor LT(x, y) \negLT(1, 0)

\negLT(s(x), y) \lor LT(x, y) \negLT(2, 0)

Should fail since KB \not\models LessThan(0, 0) \negLT(s(x), y) \lor LT(x, y) \negLT(2, 0) \negLT(3, 0)
```


Basis for Logic Programming

- Since FO Horn is undecidable it is also very expressive.
- FO Horn and Als Biresolution (dept to be set to from the last to the last to
 - A general pu sed on logic
 - Provides an https://eduassistpro.github.jo/knowledge
 - Prolog is TuringAcdolpNateChat edu_assist_pro
 - Prolog is a form of declarative programming you specify what the program should do not how it should do it

Assignment Project Exam Help

https://eduassistpro.github.io/

....go to Prol Add WeChat edu_assist_pro

Assignment Project Exam Help

Conhttps://eduassistpro.ganus/

Add WeChat edu_assist_pro

Conclusion

- Scoped out the KRR landscape and relationship between formalisms
- Looked at propositional and first order Horn clauses and SLD resolution
 - Empasised d

- Syntax
- Entailme https://eduassistpro.github.io/
- Inference (symbol-wariphlat edu assist pro
- Looked at Prolog
 - Turing complete: general purpose programming language
 - Declarative programming allows for compact representations

Coming Weeks

- Prolog's expressivity comes with a cost
 - Efficiency Assoig and enterthic bitted the Exam Help
 - Operational b ordering of cl
 https://eduassistpro.github.io/
- In coming weeks will a three edu_assistated a different approach to balance expressibility-c ciency

