\mathcal{B}	inary.	Search	: Seare	hing l	words	in a	
	0		dictio	nory.	•	potato	
	Divide	e into					
	0	1	2	3	t	, 5	•
	3	10	17	18	2	4 39	<u>)</u>
	↑ S		17 mid			re	
O1)	Given	sosted	alsay w	ith d	i ctirot	o le me	ats
	search	for	K. gR	K is no	nt hae	sent	
	Cretur	index)	K. 96	return	-1		
(9 1	2	3 4	5		7 8	9
3	6	9 1	2 14	19	20	23 25	27
Jd	ea;	Use bi	inary se	arch			
\mathcal{C}	ase 1:	a	r [mid]	==k	Se	tun m	id
	se 2:	as	- [mid]	< k		o Irig	
			Inid 1.	· B		O	
Coz	de 3:	as	[mid] 7	k	goto	left	
					U	U	

6 7 8 9 12 14 20 23 25 27 l h
0 9 R=20 nuid 4 l= mid+1 7 h= mid-1 5 6 found !!! return 6 N -3 N/2 -3 N/4 -----1 (logn) Code int search (int as (), int N, int R)X l=0 h=n-1while LLShJC mid = (l+h)/2 if (arlmid]==k) return mid l= mid+1 if (ar [mid] <k) else h=mid-1 TC: O(logn) Setusn -1 SC: 0(1)

l

92 Sorted allay, find index of first occurence of elem K. 3 4 5678910 0 0 1 1 5 5 5 5 K=5 ⇒ 7 R=0 => 3 K=3 = 2 Use Binary Search Cose I as[mid] == k Rk mid 1 R RB and = mid 90 10 = left Cose IL ar limid 3 < & mid ... k Cose Il ar (mid3 > k mid

Code

int search (int as(), int N, int R)C l=0 h=n-1while $l \leq h$) C mid = (l+h)/2if (arlimid) = k) Cans = mid h=mid-19

if $(arlimid) \leq k$) l=mid+1else h=mid-1 Tc: O(logn)setush ans

1

23 Every element occurs twice except

I which appears once. Find unique element. Note: Duplicates are adjacent

Eg-3311188100001966

Idea

TC:

Obs: Before unique elem -> All 1'st
occurrences at even indexes
After unique elem -> All 1'st
occurrences at odd indexes
Hence binary search
target ->
what to search -> indexes of the array

Cose I allmid] = > unique Seturn ?

Cose II if (allmid] == arlmid-1) A A

0 1 2 3 4 5 6 7 8 9 10 3 3 11 8 8 10 10 19 66 L h m 0 10 5 6 10 8 return a[8] Code int find Unique (int are [], int N) L l= 0 h= n-1 while (L \le h) \lambda mid = (l+h)/2 if (mid ==0// or [mid] != al[mid-1]) ((mid==n-1))/al (mid] ! = al [mid+1)) return as [mid] if ((mid = =0/) or [mid] = = ar [mid-1])) x // second occ if (mid 1/2 = =0) h= mid-1 l= mid fl 11 filet occ if (mid 1/2 ! =0) 70; (log n) h= mid-1 l= mid f 1

07 6		easing -decleosing		elem
धु।	1 3 5 2	1 an	s = 5	
837	1 3 5 1	0 15 12 6	ans = 15	
g <u>dea</u> : Couse 1	•	uch for max elmid-1] & & o		
Case 2 m-		ar (mid) 7 a got		
Case 3	m-1 m	ar (mid) < ar goto	•	

Coole

```
int search ( int as (), int N)X
  l=0 h=n-1
  while LLShJC
nid = l+h/2
! Y(( mid == 0 11 a (mid -1) < a (mid)) & &
      mid==h-1 /1 a [mid+1) < a [mid]))
   setun a [mid]
if ( mid = = 0 11 A (mid-1) < a (mid))
       l= mid+1
       h = mid-1
 else
          0 1 2 3 4 5 6
            1 3 5 10 15 12 6
```

Distinct integers, a lid is minima if smaller than both neighbours. a lod & a ln-i) have only I neighbour a(0) & a ln-i) have only I neighbour a(7) = (9,6,3,14,5,7,4) a(7) = (24,21,19,17,15,9,7)

Jdea: For any elem a [mid]
1) If smaller than neighbours =>

return a [mid]

2) If left neighbour smaller = 6 8 10


```
int search ( int as (), int N)X
 l=0 h=n-1
  while LLSh) C
 mid = l+h/2
  4(( mid == 0 11 a (mid-1) > a (mid)) & &
      mid==h-1 /1 a [mid+1) 7 a [mid]))
       setun a [mid]
  if ( mid = = 0 11 A (mid-1) / a (mid))
        l= mid+1
       h = mid-1
```

(done }

