Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет» Кафедра астрофизики

Годуновские методы решения систем уравнений гиперболического типа

Хайбрахманов Сергей Александрович

кандидат физико-математических наук, доцент, старший научный сотрудник СПбГУ

Email: s.khaybrakhmanov@spbu.ru

Содержание

- 1) Системы уравнений гиперболического типа (СУГТ)
- 2) Разрывы в газодинамике
- 3) Бегущие волны в газодинамике
- 4) Задача Римана
- 5) Решение задачи Римана для уравнений одномерной идеальной газодинамики (ГД)
- 6) Метод Годунова
- 7) Схемы, основанные на приближенном решении задачи Римана

§6.1 Системы уравнений гиперболического типа

Рассмотрим систему уравнений вида

$$\frac{\partial \vec{u}}{\partial t} + \hat{A}\frac{\partial \vec{u}}{\partial x} = 0, \tag{6.1}$$

где
$$\vec{u} = \{u_1, u_2, ... u_N\}.$$

Введем несколько определений.

- Если $\hat{A} = const$, то система уравнений (6.1) называется **линейной.** Если $\hat{A} = \hat{A}(\vec{u}, x, t)$, то система (6.1) **нелинейная.**
- Если систему уравнений (6.1) можно записать в форме

$$\frac{\partial \vec{u}}{\partial t} + \frac{\partial \vec{F}}{\partial x} = 0, \tag{6.2}$$

то она называется консервативной. Величина \vec{F} называется вектором потоков. Консервативные системы уравнений в физике выражают законы сохранения. Для линейных систем $\vec{F} = \hat{A} \cdot \vec{u}$.

• Консервативную систему уравнений (6.2) можно записать в квазилинейной форме (6.1) при

$$\hat{A} = \frac{\partial \vec{F}}{\partial \vec{u}} \tag{6.3}$$

• Собственные значения матрицы \hat{A} — набор чисел $\lambda_{\alpha} = (\lambda_1, \lambda_2, ... \lambda_N)$, удовлетворяющий системе уравнений

$$\hat{A} \cdot \vec{u} = \lambda_{\alpha} \vec{u}$$
 или $(\hat{A} - \hat{I}\lambda_{\alpha}) \cdot \vec{u} = 0$ (6.4)

• Характеристика – интегральная кривая уравнения

$$\frac{dx}{dt} = \lambda_{\alpha},\tag{6.5}$$

то есть прямая вида $(x - \lambda_{\alpha} t) = const.$

- Система уравнений (6.1) называется **гиперболической**, если
 - а) Все собственные значения матрицы \hat{A} вещественны
 - б) Матрица \hat{A} является диагонализируемой

В этом случае матрица \hat{A} называется **матрицей гиперболичности.**

• Система (6.1) называется **строго гиперболической** (гиперболической в узком смысле), если все λ_{α} попарно различны.

Примеры

1) Простейшее уравнение гиперболического типа – уравнение переноса

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} = 0, \tag{6.6}$$

где a = const – скорость переноса.

2) Уравнение Хопфа (Бюргерса)

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = 0, \tag{6.7}$$

описывающее течения с ударными волнами в газодинамике.

3) Система уравнений идеальной газодинамики. для изэнтропических процессов

$$\begin{cases} \frac{\partial \rho}{\partial t} + \operatorname{div}(\rho \vec{v}) = 0 \\ \rho \frac{d\vec{v}}{dt} = -\nabla p \\ \frac{\partial s}{\partial t} + (\vec{v}\nabla)s = 0 \\ p = p(s, \rho) \end{cases}$$

– уравнение непрерывности, уравнение Эйлера, уравнение сохранения энтропии, уравнение состояния соответственно. Здесь ρ , \vec{v} , p и s – плотность, вектор скорости, давление и удельная энтропия газа.

Для одномерного течения вдоль оси x со скоростью v:

$$\begin{cases} \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho v) = 0 \\ \rho \frac{\partial v}{\partial t} + \rho v \frac{\partial v}{\partial x} = -\frac{\partial p}{\partial x} \\ \frac{\partial s}{\partial t} + v \frac{\partial s}{\partial x} = 0 \end{cases}$$
(6.8)

Эти уравнения могут быть записаны в консервативной форме (6.2), если ввести вектор консервативных переменных и вектор потоков:

$$\vec{u} = \begin{bmatrix} \rho \\ \rho v \\ \rho s \end{bmatrix}, \quad \vec{F} = \begin{bmatrix} \rho v \\ \rho v^2 + p \\ \rho v s \end{bmatrix}$$
 (6.11)

Матрица гиперболичности:

$$\hat{A} = \begin{pmatrix} v & \rho & 0\\ \frac{1}{\rho} \left(\frac{\partial p}{\partial \rho} \right)_{s} & v & \frac{1}{\rho} \left(\frac{\partial p}{\partial s} \right)_{\rho} \\ 0 & 0 & v \end{pmatrix}$$
(6.12)

Собственные значения:

$$\lambda_{1,2} = v \pm c_s, \qquad \lambda_3 = v \tag{6.13}$$

где

$$c_{s} = \sqrt{\left(\frac{\partial p}{\partial \rho}\right)_{s}}$$

– адиабатическая скорость звука.

Характеристики 1 и 2 являются *звуковыми*, характеристика 3 – *энтропийной*.

§6.2 Разрывы в газодинамике

В газодинамике выделятся два типа разрывов

1) Слабые разрывы, на которых ГД-величины \vec{u} непрерывны, а их производные испытывают скачки. Например, фронт волны разрежения. Решения на слабых разрывах всегда можно представить в виде

$$\vec{u} = \vec{u}_0 + \delta \vec{u},$$

где малые возмущения $\delta \vec{u}$ распространяются со скоростями λ_{α} .

2) Сильные разрывы, на которых сами величины \vec{u} разрывны. Например, *ударные волны*.

Слабый разрыв:

Сильный разрыв:

Решения на разрывах удовлетворяют условиям Гюгонио

$$D[\vec{u}] = [\vec{F}], \tag{6.14}$$

где

$$D = \frac{dx}{dt} \tag{6.15}$$

- скорость разрыва,

$$[\vec{u}] = \vec{u}_2 - \vec{u}_1 \tag{6.16}$$

– **скачок** величины \vec{u} при переходе через разрыв.

Условия эволюционности разрыва (того, что он не распадется в следующий момент времени)

$$\lambda_{\alpha}^{(1)} \le D \le \lambda_{\alpha+1}^{(1)}, \qquad \lambda_{\alpha-1}^{(2)} \le D \le \lambda_{\alpha}^{(2)},$$
 (6.17)

где индексы (1) и (2) нумеруют состояния по разные стороны разрыва.

Типы сильных разрывов

1) Тангенциальные разрывы (TP), при переходе через которые поток массы остается равным нулю.

Скорость ТР равна скорости газа, давление при переходе через них непрерывно, [p] = 0, тангенциальная скорость может испытывать произвольный скачок.

Условия Гюгонию на ТР в идеальной ГД, в системе отсчета, в которой разрыв покоится:

$$\begin{cases} [\rho v_n^2 + p] &= 0, \\ \rho v_n [\vec{v}_{\tau}] &= 0, \\ \rho v_n \left[\varepsilon + \frac{p}{\rho} + \frac{v_n^2 + v_{\tau}^2}{2} \right] &= 0, \end{cases}$$
(6.18)

где v_n – перпендикулярная к поверхности разрыва компонента скорости газа, \vec{v}_{τ} – тангенциальная компонента.

Частный случай – контактный разрыв, где $[\vec{v}_{ au}] = 0$.

2) **Ударные волны**, поток массы через которые не равен нулю, $\rho v_n \neq 0$.

На ударных волнах $[\vec{v}_{ au}] = 0$, и из условий Гюгонио следует

$$\left[\varepsilon\right] + \frac{p_1 + p_2}{2} \left[\frac{1}{\rho}\right] = 0 \tag{6.19}$$

 ударная адиабата (связь термодинамических величин за и перед ударной волной).

Например, для идеального газа с уравнением состояния $p = (\gamma - 1)\rho\varepsilon$:

$$\left| \frac{\rho_2}{\rho_1} = \frac{(\gamma + 1) \, p_2/p_1 + (\gamma - 1)}{(\gamma + 1) + (\gamma - 1) p_2/p_1} \right| \to \frac{\gamma + 1}{\gamma - 1}, \text{при } p_2 \gg p_1 \quad (6.20)$$

Здесь γ — показатель адиабаты.

§6.3 Бегущие волны в газодинамике

Характеристики уравнений ГД определяют возможные типы бегущих волн:

- 1. Волны разрежения (при движении происходит уменьшение плотности газа).
- 2. Ударные волны (плотность газа увеличивается).
- 3. Тангенциальный (контактный) разрыв.

Рассмотрим решения в виде бегущих волн в одномерной идеальной ГД. Пусть волны распространяются вдоль оси x. Компоненты скорости газа: $\vec{v} = \{v_x, v_y, v_z\}$.

1) Решение в виде ударной волны (УВ)

УВ – сильный разрыв. На ней происходит рост энтропии газа. Аналогом уравнения состояния является ударная адиабата (6.20).

Тангенциальные компоненты скорости непрерывны:

$$v_{1y} = v_{2y}, \qquad v_{1z} = v_{2z}$$

Поток массы для волн бегущих влево (+) и вправо (-) соответственно:

$$j \equiv \rho v_{\chi} = \pm \rho_1 c_1 \sqrt{\frac{\gamma + 1}{2\gamma} \frac{p_2}{p_1} + \frac{\gamma - 1}{2\gamma}}$$
 (6.21)

Соответствующие скачки скорости:

$$v_{x2} = v_{x1} \mp \frac{1}{\rho_1 c_1} \frac{p_2 - p_1}{\sqrt{\frac{\gamma + 1}{2\gamma} \frac{p_2}{p_1} + \frac{\gamma - 1}{2\gamma}}}$$
(6.22)

25

2) Решение в виде волны разрежения (ВР)

Передний и задний фронты ВР представляют собой слабые разрывы, распространяющиеся с локальной скоростью звука. При прохождении ВР энтропия сохраняется, s = const.

Тангенциальные компоненты скорости непрерывны:

$$v_{1y} = v_{2y}, \qquad v_{1z} = v_{2z}$$

Скачки скорости для волн бегущих влево (–) и вправо (+) соответственно:

$$v_{x2} = v_{x1} \mp \frac{2c_1}{\gamma - 1} \left[\left(\frac{p_2}{p_1} \right)^{\frac{\gamma - 1}{2\gamma}} - 1 \right]$$
 (6.23)

3) Тангенциальный (контактный) разрыв (КР)

Поток массы равен нулю. КР перемещается вместе с газом, т.е.

$$v_{\chi 1} = v_{\chi 2}$$

Тангенциальные компоненты скорости могут испытывать произвольный скачок. Давление непрерывно:

$$p_1 = p_2$$

§6.4 Задача Римана

Задача состоит в поиске решения СУГТ со следующим начальным условием

$$\vec{u} = \begin{cases} \vec{u}_L, & x < 0, \\ \vec{u}_R, & x > 0, \end{cases}$$
 (6.24)

То есть, в начальный момент времени в точке x=0 имеет место **произвольный разрыв**.

Величины \vec{u}_L и \vec{u}_R никак не связаны друг с другом, поэтому в следующий момент времени, вообще говоря, должен произойти **распад разрыва** на некоторое количество бегущих волн, которые с течением времени будут расходиться друг от друга.

Примеры

1) Уравнение переноса (6.6) с НУ виду (6.24) имеет решение

$$u(x,t) = \begin{cases} u_L, & x < at, \\ u_R, & x > at, \end{cases}$$
 (6.25)

то есть, в данном случае разрыв не распадается, а просто смещается со временем со скоростью D=a.

2) Линейная СУГТ

Разрыв распадается на серию упорядоченных сильных разрывов, движущихся со скоростями λ_{α} . На каждом разрыве выполняются условия Гюгонио.

O

3) Система нелинейных уравнений гиперболического типа

Разрыв распадается на серию упорядоченных сильных и слабых разрывов, разделенных областями постоянного течения и волнами разрежения, и движущихся со скоростями λ_{α} .

В идеальной ГД при распаде разрыва может образоваться не более *трех бегущих волн*.

§6.5 Решение задачи Римана для уравнений одномерной ГД

При распаде разрыва образуется не более 3-х бегущих волн: ВР, КР и УВ.

Возможные конфигурации:

1) Решение для конфигурации «А»

1) Решение для конфигурации «А»

Область между ВР и УВ, содержащая КР:

$$v_{xL}^* = v_{xL} - \frac{2c_L}{\gamma - 1} \left[\left(\frac{p^*}{p_L} \right)^{\frac{\gamma - 1}{2\gamma}} - 1 \right]$$
 (6.26)

$$\rho_L^* = \rho_L \left(\frac{p^*}{p_L}\right)^{1/\gamma} \tag{6.27}$$

$$v_{xR^*} = v_{xR} + \frac{1}{\rho_R c_R} \frac{p^* - p_R}{\sqrt{\frac{\gamma + 1}{2\gamma} \frac{p^*}{p_R} + \frac{\gamma - 1}{2\gamma}}}$$
(6.28)

$$\rho_R^* = \rho_R \frac{(\gamma + 1) \, p^* / p_R + (\gamma - 1)}{(\gamma + 1) + (\gamma - 1) \, p^* / p_R} \tag{6.29}$$

Давление $p^* = p_L^* = p_R^*$ определяется из равенства

$$v_{\chi L}^* = v_{\chi R}^* \tag{6.30}$$

ВР разрежения, распространяющаяся влево:

Скорость движения переднего фронта:

$$v_H^{RW} = v_L - c_L \tag{6.31}$$

Скорость движения заднего фронта:

$$v_T^{RW} = v^* - c_L \left(\frac{p^*}{p_L}\right)^{\frac{\gamma - 1}{2\gamma}} \tag{6.32}$$

Скорость, плотность и давление газа внутри ВР:

$$v^{RW} = v_L \frac{\gamma - 1}{\gamma + 1} + \frac{2}{\gamma + 1} \left(\frac{x}{t} + c_L\right) \tag{6.33}$$

$$\rho^{RW} = \rho_L \left[\frac{2}{\gamma + 1} + \frac{\gamma - 1}{(\gamma + 1)c_L} \left(v_L - \frac{x}{t} \right) \right]^{\frac{2}{\gamma - 1}}$$
(6.34)

$$p^{RW} = p_L \left[\frac{2}{\gamma + 1} + \frac{\gamma - 1}{(\gamma + 1)c_L} \left(v_L - \frac{x}{t} \right) \right]^{\frac{\gamma}{\gamma - 1}}$$
(6.35)

УВ, распространяющаяся вправо

Скорость распространения:

$$D = v_R + c_R \left[\frac{\gamma + 1}{2\gamma} \frac{p^*}{p_R} + \frac{\gamma - 1}{2\gamma} \right]^{\frac{1}{2}}$$
 (6.36)

Конфигурация «А» реализуется при условии

$$v_A < v_{xL} - v_{xR} < v_B (6.37)$$

где

$$v_A = \frac{2c_L}{\gamma - 1} \left[\left(\frac{p_R}{p_L} \right)^{\frac{\gamma - 1}{2\gamma}} - 1 \right] < 0 \tag{6.38}$$

$$v_B = \frac{1}{\rho_R c_R} \frac{p_L - p_R}{\sqrt{\frac{\gamma + 1}{2\gamma} \frac{p_L}{p_R} + \frac{\gamma - 1}{2\gamma}}} > 0$$
 (6.39)

37

2) Решение для конфигурации «Б»

2) Решение для конфигурации «Б»

Область между фронтами УВ

$$v_{xL}^* = v_{xL} - \frac{1}{\rho_L c_L} \frac{p^* - p_L}{\sqrt{\frac{\gamma + 1}{2\gamma} \frac{p^*}{p_L} + \frac{\gamma - 1}{2\gamma}}}$$
(6.40)

$$\rho_L^* = \rho_L \frac{(\gamma + 1) p^* / p_L + (\gamma - 1)}{(\gamma + 1) + (\gamma - 1) p^* / p_L}$$
(6.41)

$$v_{xR^*} = v_{xR} + \frac{1}{\rho_R c_R} \frac{p^* - p_R}{\sqrt{\frac{\gamma + 1}{2\gamma} \frac{p^*}{p_R} + \frac{\gamma - 1}{2\gamma}}}$$
(6.42)

$$\rho_R^* = \rho_R \frac{(\gamma + 1) \, p^* / p_R + (\gamma - 1)}{(\gamma + 1) + (\gamma - 1) p^* / p_R} \tag{6.43}$$

Скорости фронтов УВ

$$D_L = v_L - c_L \left[\frac{\gamma + 1}{2\gamma} \frac{p^*}{p_L} + \frac{\gamma - 1}{2\gamma} \right]^{\frac{1}{2}}$$
 (6.44)

$$D_R = \nu_R + c_R \left[\frac{\gamma + 1}{2\gamma} \frac{p^*}{p_R} + \frac{\gamma - 1}{2\gamma} \right]^{\frac{1}{2}}$$
 (6.45)

Конфигурация реализуется при

$$v_{xL} - v_{xR} > v_B \tag{6.46}$$

3) Решение для конфигурации «В»

3) Решение для конфигурации «В»

Решение в области между слева от КР:

Аналогично конфигурации «А».

Область между КР и правой ВР

$$v_{\chi R}^* = v_{\chi R} + \frac{2c_R}{\gamma - 1} \left[\left(\frac{p^*}{p_R} \right)^{\frac{\gamma - 1}{2\gamma}} - 1 \right]$$
 (6.47)

$$\rho_R^* = \rho_R \left(\frac{p^*}{p_R}\right)^{1/\gamma} \tag{6.48}$$

ВР разрежения, распространяющаяся вправо.

Скорость движения переднего фронта:

$$v_H^{RW} = v_R + c_R \tag{6.49}$$

Скорость движения заднего фронта:

$$v_T^{RW} = v^* + c_R \left(\frac{p^*}{p_R}\right)^{\frac{\gamma - 1}{2\gamma}}$$
 (6.50)

Скорость, плотность и давление газа внутри ВР:

$$v^{RW} = \frac{\gamma - 1}{\gamma + 1} v_R + \frac{2}{\gamma + 1} \left(\frac{x}{t} - c_R \right)$$
 (6.51)

$$\rho^{RW} = \rho_R \left[\frac{2}{\gamma + 1} - \frac{\gamma - 1}{(\gamma + 1)c_R} \left(v_R - \frac{x}{t} \right) \right]^{\frac{2}{\gamma - 1}}$$
(6.52)

$$p^{RW} = \rho_R \left[\frac{2}{\gamma + 1} - \frac{\gamma - 1}{(\gamma + 1)c_R} \left(v_R - \frac{x}{t} \right) \right]^{\frac{-\gamma}{\gamma - 1}}$$
(6.53)

Конфигурация реализуется при условии

$$v_{xL} - v_{xR} < v_A. {(6.54)}$$

Возможен случай, когда в области между ВР образуется вакуумная область (с нулевой плотность газа). Этот случай соответствует условию

$$v_{xL} - v_{xR} < v_C, (6.55)$$

где

$$v_C = -\frac{2}{\gamma - 1}(c_L + c_R) < 0 \tag{6.56}$$

Алгоритм решения задачи

1) Решение нелинейного уравнения

$$v_{\chi L}^*(p^*) = v_{\chi R}^*(p^*) \tag{6.57}$$

Рекомендуется использовать итерационный метод Ньютона. Начальные приближения:

$$p^0 = \frac{1}{2}(p_L + p_R), (6.58)$$

$$p^{0} = \frac{\rho_{R}c_{R}p_{L} + \rho_{L}c_{L}p_{R} + \Delta v\rho_{L}\rho_{R}c_{L}c_{R}}{\rho_{L}c_{L} + \rho_{R}c_{R}}$$
(6.59)

2) После этого все величины в области *, скорости УВ и ВР, характеристики течения в области УВ и ВР определяются по вышеприведенным формулам для соответствующих конфигураций.

§6.6 Метод Годунова

В основе метода решит процедура решения задачи Римана о распаде произвольного разрыва.

Заметим, что дискретное представление величин на расчетной сетке приводит к тому, что при t^n на границе каждой ячейки имеет место произвольный разрыв

Рассмотрим базовую схему, полученную интегроинтерполяционным методом:

$$\frac{\vec{u}_j^{n+1} - \vec{u}_j^n}{\Delta t} + \frac{\vec{F}_{j+1/2} - \vec{F}_{j-1/2}}{\Delta x} = 0$$
 (6.60)

где \vec{u}_j^n – среднее значение сеточной функции в ячейке j в момент времени t^n , $\vec{F}_{j+1/2}$ – поток величины \vec{u} через грань j+1/2.

В методе Годунова делается естественное предположение: в последующий момент времени t^{n+1} каждый разрыв на границах ячеек должен распасться. В результате на границах между ячейками сеточная функция примет значение

$$\vec{u}^* = \vec{u}(x_{j+1/2}, t^n) \tag{6.61}$$

которое определяется из решения задачи Римана. Соответствующие потоки определяются как

$$\vec{F}_{j+1/2} = \vec{F}(\vec{u}^*) \tag{6.62}$$

Замечания

1) Условие того, что образующиеся бегущие волны от соседних граней ячеек не достигнут данной грани и не повлияют на решение \vec{u}^* , приводят к условию устойчивости КФЛ

$$\Delta t \le \frac{\Delta x}{v_{max}} \tag{6.63}$$

- 2) Схема (6.60) имеет первый порядок аппроксимации по t и x, является консервативной и монотонной (не дает нефизических осцилляций).
- 3) В методе Годунова считается, что на границе каждой ячейки может присутствовать сильный разрыв, поэтому эта схема хорошо подходит для решения ГД-задач с ударными волнами и контактными разрывами.

Схема для уравнения переноса

В этом случае решение задачи Римана соответствует перемещению разрыва с постоянной скоростью a, поэтому на границе каждой ячейки:

$$u^* = \begin{cases} u_L, & a > 0, \\ u_R, & a < 0, \end{cases}$$
 (6.64)

где $u_L = u_j$, $u_R = u_{j+1}$.

Это решение можно записать в компактном виде:

$$u^* = h(a)u_L + h(-a)u_R, (6.65)$$

где

$$h(x) = \begin{cases} 1, & x > 0, \\ 0, & x \le 0 \end{cases}$$
 (6.66)

– функция Хевисайда.

Соответствующие потоки:

$$F^* = au^* \tag{6.67}$$

можно записать как

$$F^* = \frac{F_L + F_R}{2} - \frac{|a|}{2} (u_R - u_L), \tag{6.68}$$

где $F_L = F(u_L), F_L = F(u_R).$

Тогда базовая схема (6.29) запишется как

$$\begin{cases} \frac{u_j^{n+1} - u_j^n}{\Delta t} + \frac{F_{j+1/2} - F_{j-1/2}}{\Delta x} = 0\\ F_{j+1/2} = \frac{F_j^n + F_{j+1}^n}{2} - \frac{|a|}{2} (u_{j+1}^n - u_j^n) \end{cases}$$
(6.69)

§6.7 Схемы, основанные на приближенном решении задачи Римана

Точное решение задачи Римана построено лишь для ряда простых систем.

Заметим, что сама сеточная функция u_j^n известна лишь приближенно.

Поэтому в ряде методов для построения годуновских потоков F^* используется не точное, а приближенное решение задачи Римана.

В таком решении учитывается только определенное число или определенные типы волн, возникающих в результате распада разрыва: схема Лакса-Фридрихса, Хартена-Лаксаван Лира (HLL) и ее модификации (HLLC, HLLD), Роу, Ошера и т.д.

1) Уравнения идеальной ГД в одномерном случае

$$\begin{cases} \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x} (\rho v) = 0 \\ \frac{\partial v}{\partial t} + v \frac{\partial v}{\partial x} = -\frac{1}{\rho} \frac{\partial p}{\partial x} \end{cases}$$
 (6.70)

$$\frac{\partial v}{\partial t} + v \frac{\partial v}{\partial x} = -\frac{1}{\rho} \frac{\partial p}{\partial x} \tag{6.71}$$

$$\frac{\partial \varepsilon}{\partial t} + v \frac{\partial \varepsilon}{\partial x} = -\frac{p}{\rho} \frac{\partial v}{\partial x} \tag{6.72}$$

Система замыкается уравнением состояния

$$p = \rho \varepsilon (\gamma - 1), \tag{6.73}$$

где ε – внутренняя энергия газа, γ – показатель адиабаты.

Уравнения (6.70-6.72) могут быть записаны в консервативной форме (6.2) при

$$\vec{u} = \begin{bmatrix} \rho \\ \rho v \\ \rho \left(\varepsilon + \frac{v^2}{2}\right) \end{bmatrix}, \quad \vec{F} = \begin{bmatrix} \rho v \\ \rho v^2 + p \\ \rho v \left(\varepsilon + \frac{v^2}{2} + \frac{p}{\rho}\right) \end{bmatrix}$$
(6.74)

Матрица гиперболичности:

$$\hat{A} = \begin{pmatrix} v & \rho & 0\\ (\gamma - 1)\frac{\varepsilon}{\rho} & v & (\gamma - 1)\\ 0 & \frac{p}{\rho} & v \end{pmatrix}$$
 (6.75)

Собственные значения:

$$\lambda_{1,2} = v \mp c_s, \qquad \lambda_3 = v$$

где

$$c_{s} = \sqrt{\gamma \frac{p}{\rho}} \tag{6.76}$$

– адиабатическая скорость звука

Характеристики 1 и 2 являются *звуковыми*, характеристика 3 – *энтропийной*.

2) Схема Лакса-Фридрихса

Полагается, что в результате распада разрыва образуется только 2 УВ, распространяющихся в противоположные стороны с одинаковыми скоростями.

Скорости волн определяются как максимальные по модулю собственные значения матрицы гиперболичности,

$$D = \max_{\alpha} \{ |\lambda_{\alpha}(\vec{u}_L)|, |\lambda_{\alpha}(\vec{u}_R)| \}$$
 (6.77)

В таком случае условия Гюгонио дают решение

$$\vec{u}^* = \frac{\vec{u}_R + \vec{u}_L}{2} - \frac{1}{2D} (\vec{F}_R - \vec{F}_L)$$

$$\vec{F}^* = \frac{\vec{F}_R + \vec{F}_L}{2} - \frac{D}{2} (\vec{u}_R - \vec{u}_L)$$
(6.78)

Схема записывается в виде

$$\begin{cases}
\frac{\vec{u}_{j}^{n+1} - \vec{u}_{j}^{n}}{\Delta t} + \frac{\vec{F}_{j+1/2} - \vec{F}_{j-1/2}}{\Delta x} = 0 \\
\vec{F}_{j+1/2} = \frac{\vec{F}_{j}^{n} + \vec{F}_{j+1}^{n}}{2} - \frac{\lambda_{j+1/2}}{2} \left(\vec{u}_{j+1}^{n} - \vec{u}_{j}^{n} \right)
\end{cases} (6.79)$$

где

$$\lambda_{j+1/2} = \max_{j} \{ |v_j| + c_{s,j} \}$$
 (6.80)

либо

$$\lambda_{j+1/2} = \max\{|v_j| + c_{s,j}, |v_{j+1}| + c_{s,j+1}\}$$
 (6.81)

2) Cxema HLL

Полагается, что в результате распада разрыва образуется только 2 ударных волны, распространяющихся с разными скоростями. В качестве оценки скоростей можно принять

$$D_{L} = \min_{\alpha} \{ |\lambda_{\alpha}(\vec{u}_{L})|, |\lambda_{\alpha}(\vec{u}_{R})| \}$$

$$D_{R} = \max_{\alpha} \{ |\lambda_{\alpha}(\vec{u}_{L})|, |\lambda_{\alpha}(\vec{u}_{R})| \}$$
(6.43)

В таком случае условия Гюгонио дают решение

$$\vec{F}^* = \begin{cases} \vec{F}_L & D_L \ge 0 \\ \vec{F}_C & D_L \le 0 \le D_R, \\ \vec{F}_R & D_R \le 0 \end{cases}$$
 (6.44)

$$\vec{F}_C = \frac{D_R \vec{F}_L - D_L \vec{F}_R + D_L D_R (\vec{u}_R - \vec{u}_L)}{D_R - D_L}$$
(6.45)

В одномерной ГД можно использовать:

$$D_{L} = \min\{v_{L}, v_{R}\} - \max\{c_{s,L}, c_{s,R}\}$$

$$D_{R} = \max\{v_{L}, v_{R}\} + \max\{c_{s,L}, c_{s,R}\}$$
(6.46)

2) Cxema HLL

Полагается, что в результате распада разрыва образуется только 2 ударных волны, распространяющихся с разными скоростями. В качестве оценки скоростей можно принять

$$D_{L} = \min_{\alpha} \{ |\lambda_{\alpha}(\vec{u}_{L})|, |\lambda_{\alpha}(\vec{u}_{R})| \}$$

$$D_{R} = \max_{\alpha} \{ |\lambda_{\alpha}(\vec{u}_{L})|, |\lambda_{\alpha}(\vec{u}_{R})| \}$$
(6.43)

В таком случае условия Гюгонио дают решение

$$\vec{F}^* = \begin{cases} \vec{F}_L & D_L \ge 0 \\ \vec{F}_C & D_L \le 0 \le D_R, \\ \vec{F}_R & D_R \le 0 \end{cases}$$
 (6.44)

$$\vec{F}_C = \frac{D_R \vec{F}_L - D_L \vec{F}_R + D_L D_R (\vec{u}_R - \vec{u}_L)}{D_R - D_L}$$
(6.45)

В одномерной ГД можно использовать:

$$D_{L} = \min\{v_{L}, v_{R}\} - \max\{c_{s,L}, c_{s,R}\}$$

$$D_{R} = \max\{v_{L}, v_{R}\} + \max\{c_{s,L}, c_{s,R}\}$$
(6.46)

Список литературы

- 1) Бисикало Д.В., Жилкин А.Г., Боярчук А.А. Газодинамика тесных двойных звезд. М.: Физматлит, 2013.
- 2) Рождественский Б.Л., Яненко Н.Н. Системы квазилинейных уравнений. М.: Наука, 1978.
- 3) Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Науку, 1966.
- 4) Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. VI. Гидродинамика. М.: Физматлит, 2003.
- 5) Toro E.F. Riemann solvers and numerical methods for fluid dynamics. A practical introduction. Springer, 2009.