Tutorium: Diskrete Mathematik

Abbildungen

Steven Köhler

mathe@stevenkoehler.de mathe.stevenkoehler.de

Definition I

Eine Funktion $f:A\to B$ stellt eine Abbildungsvorschrift dar, die jedem Element der Menge A ein Element der Menge B zuordnet.

Eine Funktion kann formal wie folgt geschrieben werden:

$$f: A \longrightarrow B$$
$$a \mapsto f(a).$$

Definition II

Bildlich lässt sich eine Abbildung so darstellen:

Definition III

Bezeichnungen:

- A: Definitionsbereich, Urbildmenge
- B: Bildmenge, Bildbereich
- $A \rightarrow B$: Signatur
- $a \mapsto f(a)$: Funktionsvorschrift, Abbildungsvorschrift
- Wertebereich: $W_f := f(A) = \{f(a) : a \in A\}$. Nicht alle Elemente der Bildmenge müssen ein Urbild haben. Es gilt $f(A) \subseteq B$.

Definition IV

Beispiel:

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \mapsto x^2$$

Definitions- und Wertebereich dieser Funktion sehen wie folgt aus:

$$D_f = \left\{ x \in \mathbb{R} \right\};$$

$$W_f = \left\{ x \in \mathbb{R} : x \ge 0 \right\}.$$

Für dieses Beispiel gilt also $W_f \subset \mathbb{R}$.

Eigenschaften von Abbildungen I

Eine Abbildung heißt:

- injektiv, falls für alle $x, y \in A$ gilt: Aus $x \neq y$ folgt immer $f(x) \neq f(y)$.
- surjektiv, falls es zu jedem $b \in B$ mindestens ein $a \in A$ gibt, für das f(a) = b gilt.
- bijektiv, falls sie injektiv und surjektiv ist.

Eigenschaften von Abbildungen II

Beispiele

- Es sei $A = \{1, 2, 3\}$ und $B = \{1, 2, 3\}$. $f : A \to B$ sei definiert durch f(1) = 1, f(2) = 1 und f(3) = 2.
- Es sei $A = \{1, 2, 3\}$ und $B = \{1, 2, 3, 4\}$. $f : A \to B$ sei definiert durch f(1) = 1, f(2) = 3 und f(3) = 4.
- Es sei $A = \{1, 2, 3\}$ und $B = \{4, 5\}$. $f : A \to B$ sei definiert durch f(1) = 4, f(2) = 5 und f(3) = 4.
- Es sei $A = \{1, 2, 3\}$ und $B = \{3, 4, 5\}$. $f : A \to B$ sei definiert durch f(1) = 4, f(2) = 5 und f(3) = 3.

Eigenschaften von Abbildungen III

Es sei $f:A\to B$ eine Abbildung mit der endlichen Urbildmenge A und der endlichen Bildmenge B. Es gilt:

- Ist |A| > |B|, so kann f nicht injektiv sein;
- Ist |A| < |B|, so kann f nicht surjektiv sein.

Wichtig: Dies gilt ausschließlich für endliche Mengen A und B.

Umkehrfunktion

Ist $f:A\to B$ eine bijektive Funktion, dann bezeichnet man mit $f^{-1}:B\to A$ die zugehörige Umkehrfunktion.

Der Funktionswert $f^{-1}(y)$ ist definiert als das (eindeutig bestimmte) $x \in A$, für das f(x) = y gilt.

Nachweis der Injektivität I

Der Nachweis der Injektivität erfolgt immer nach demselben einfachen Schema:

$$f(x) = f(y)$$

$$\downarrow$$

$$x = y.$$

Ist f(x) = f(y) nur genau dann wahr, wenn x = y gilt, so ist die Funktion injektiv. Anderfalls ist sie nicht injektiv.

Nachweis der Injektivität II

Aufgabe

Entscheide, ob die folgende Funktion injektiv ist.

$$f: \mathbb{Z} \to \mathbb{Z}$$

$$f(x) = 3x + 1$$

Nachweis der Injektivität III

Lösung

$$f(x) = f(y)$$
$$3x + 1 = 3y + 1$$
$$3x = 3y$$
$$x = y$$

Aus f(x) = f(y) folgt nur die Lösung x = y. Dies bedeutet, dass keine zwei verschiedenen Elemente x und y auf denselben Wert abgebildet werden. Die Funktion ist also injektiv.

Nachweis der Injektivität IV

Aufgabe

Entscheide, ob die folgende Funktion injektiv ist.

$$f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$$

$$f(a,b) = \left(a+b, a^2\right)$$

Nachweis der Injektivität V

Lösung

$$f(a,b) = f(c,d)$$
$$\left(a+b,a^2\right) = \left(c+d,c^2\right)$$

Zwei Tupel sind genau dann gleich, wenn sie in ihren Komponenten übereinstimmen. Es muss gelten:

$$a+b=c+d$$
$$a^2=c^2.$$

Nachweis der Injektivität VI

Aus der zweiten Gleichung folgt $a = \pm c$.

Einsetzen in die erste Gleichung und Umstellen nach b ergibt zwei mögliche Lösungen:

(I)
$$a = c$$
 (II) $a = -c$ $b = d$ $b = 2c + d$

Da es mehr als eine Lösung gibt, folgt also insbesondere, dass die Abbildung nicht injektiv sein kann.

Nachweis der Injektivität VII

Alternative Lösung

Der Nachweis, dass die Funktion nicht injektiv ist, hätte auch durch Angabe eines Gegenbeispiels erfolgen können:

$$f(1,2) = (3,1) = f(-1,4).$$

Es gibt also für mindestens ein Element der Bildmenge mehrere Urbilder, im Widerspruch zur Injektivitätsbedingung.

Nachweis der Injektivität VIII

Aufgabe 1

Entscheide, ob die folgenden Funktionen injektiv sind.

$$f: \mathbb{Z} \to \mathbb{Z}$$
$$f(x) = (x+2)^2$$

$$g: \mathbb{N} \to \mathbb{Z}$$
$$g(x) = (x+2)^2$$

$$h: \mathbb{Z}^2 \to \mathbb{Z}^3$$
$$h(a,b) = \left(ab, (a+1)b, a(b^2+1)\right)$$

Nachweis der Injektivität IX

Abschließend noch zwei Bemerkungen zur Injektivität:

• Falls die Bildmenge ein Tupel ist, ist keine Aussage über die Injektivität der Abbildung möglich, wenn die Injektivität lediglich für einzelne Komponenten gezeigt wurde.

$$f: \mathbb{Z}^2 \to \mathbb{Z}^2$$
$$f(a,b) = \left(3a+2, (b-1)^2\right)$$

• Obwohl für keine der Komponenten Injektivität gilt, kann die gesamte Abbildung dennoch injektiv sein.

$$f: \mathbb{Z}^2 \to \mathbb{Z}^2$$
$$f(a,b) = \left(a+b, \ a-b\right)$$

Nachweis der Surjektivität I

Der Nachweis der Surjektivität ist im Allgemeinen deutlich schwieriger als der Nachweis der Injektivität.

Für jedes Element b der Bildmenge muss gezeigt werden, dass es mindestens ein Element a der Urbildmenge gibt, für das f(a) = b gilt.

Es gibt leider kein allgemeingültiges Verfahren, dies zu bewerkstelligen. Eine Möglichkeit ist es jedoch, die Umkehrfunktion zu bestimmen, falls diese existiert.

Nachweis der Surjektivität II

Aufgabe

Entscheide, ob die folgende Funktion surjektiv ist.

$$f: \mathbb{Z} \to \mathbb{Z}$$

$$f(x) = 3x + 1$$

Nachweis der Surjektivität III

Lösung

Es gilt

$$y = f(x) = 3x + 1$$

Um die Umkehrfunktion zu bestimmen, stellen wir die Gleichung nach x um.

$$3x = y - 1$$
$$x = \frac{y - 1}{3}$$

Dies sieht wie die Umkehrfunktion aus, ABER im Allgemeinen gilt $\frac{y-1}{3} \notin \mathbb{Z}$. Beispielsweise hat y=2 kein zugehöriges $x \in \mathbb{Z}$. Die Funktion ist also nicht surjektiv.

Nachweis der Surjektivität IV

Aufgabe

Entscheide, ob die folgende Funktion surjektiv ist.

$$f: \mathbb{Z} \to \mathbb{Z}$$

$$f(x) = x + 7$$

Nachweis der Surjektivität V

Lösung

Es gilt

$$y = f(x) = x + 7.$$

Um die Umkehrfunktion zu bestimmen, stellen wir die Gleichung nach x um:

$$x = y - 7.$$

Ist $y \in \mathbb{Z}$, so ist auch $y - 7 \in \mathbb{Z}$. Es bleibt zu prüfen, ob y - 7 tatsächlich ein Urbild für y ist. Einsetzen in f ergibt

$$f(y-7) = y-7+7$$
$$= y.$$

Die Funktion f ist also surjektiv.

Nachweis der Surjektivität VI

Aufgabe 2

Entscheide, ob die folgenden Funktionen surjektiv sind.

$$f: \mathbb{Z}^2 \to \mathbb{Z}$$
$$f(a,b) = a+b$$

$$g: \mathbb{Z} \to \mathbb{Z}$$
$$g(x) = \left| \frac{x+1}{2} \right|$$

$$h: \mathbb{Z}^2 \to \mathbb{Z}^3$$
 $h(a,b) = \left(2a + 3b, \ a^2, \ (b-1)^2 a\right)$

Nachweis der Surjektivität VII

Abschließend noch zwei Bemerkungen zur Surjektivität:

• Ist eine Komponente einer Abbildung nicht surjektiv, so ist es auch die gesamte Abbildung nicht.

$$h: \mathbb{Z}^2 \to \mathbb{Z}^3$$
$$h(a,b) = \left(2a + 3b, \ a^2, \ (b-1)^2 a\right)$$

• Ist jede Komponente einer Abbildung surjektiv, so muss dies dennoch nicht für die gesamte Abbildung gelten.

$$f(a) = \left(a, \ a+1\right)$$

Verkettung von Funktionen I

Es sei $h:A\to C$ eine Komposition (Verkettung) der Funktionen $f:A\to B$ und $g:B\to C$.

$$h = g \circ f$$
$$h(x) = g(f(x))$$

Statt Komposition kann man auch Nacheinanderausführung sagen. $g \circ f$ bedeutet also, g wird nach f ausgeführt.

Verkettung von Funktionen II

Es gelten die folgenden Eigenschaften:

- Sind sowohl f als auch g injektiv, so ist auch $g \circ f$ injektiv.
- Sind sowohl f als auch g surjektiv, so ist auch $g \circ f$ surjektiv.