5. Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now

 $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggests you should focus your attention on improving the search

find that for the vast majority of examples on which your algorithm makes a mistake,

1 point

False

algorithm.

True.

False.

6. Consider the attention model for machine translation.

1 point

Further, here is the formula for $\alpha^{< t, t'>}$.

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_x} \exp(e^{< t, t'>})}$$

Which of the following statements about $\alpha^{< t,t'>}$ are true? Check all that apply.

- We expect $\alpha^{< t, t'>}$ to be generally larger for values of $a^{< t>}$ that are highly relevant to the value the network should output for $y^{< t'>}$. (Note the indices in the superscripts.)
- $\sum_{t} \alpha^{< t, t'>} = 1$ (Note the summation is over *t*.)
- We expect $\alpha^{< t, t'>}$ to be generally larger for values of $\alpha^{< t'>}$ that are highly relevant to the value the network should output for $y^{< t>}$. (Note the indices in the superscripts.)
- $\sum_{t} \alpha^{< t, t'>} = 1$ (Note the summation is over t'.)
- 7.The network learns where to "pay attention" by learning the values $e^{< t, t^{>}}$, which are computed using a small neural network:

We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t, t'>}$ which in turn depends on $e^{< t, t'>}$; so at the time we need to evaluate this network, we haven't

computed $s^{<t>}$ yet. False

○ True

8. The attention model performs the same as the encoder-decoder model, no matter the sentence length.

1 point

1 point

False

1 point

9.Under the CTC model, identical repeated characters not separated by the "blank" character (_) are collapsed. Under the CTC model, what does the following string collapse to?

aaa_aaaaaa	rr_ddddddddd	v_aaaaaa_rrrr	kk	
aaaaaaaaaarrdddd	dddddvaaaaaarrrrkk			
aa rd var k				
ardvark				
o aardvark				
10.In trigger word det	ection, $x^{<_{f}>}$ represents t	he trigger word x bein $\mathfrak q$	g stated for the <i>t</i> -th time	1 point
O False				