# مدارهای الکتریکی و الکترونیکی فصل هشتم: تحلیل پاسخ دائمی سینوسی

استاد درس: محمود ممتازپور ceit.aut.ac.ir/~momtazpour

## فهرست مطالب

- □ مقدمه: موج سينوسى و اعداد مختلط
  - □ پاسخ اجباری به ورودی سینوسی
    - 🗖 مفهوم فازور

## موج سينوسي



- $V_m$  دامنه  $\Box$
- $\omega t$  آرگومان
- س فركانس زاويهای س
  - T دوره تناوب  $\Box$ 
    - f فرکانس

$$f = \frac{1}{T} = \frac{\omega}{2\pi}$$

$$\omega = 2\pi f$$

## فاز موج سینوسی

در حالت کلی تر، موج سینوسی شامل یک فاز  $\theta$  است.



- است. میگوییم موج جدید نسبت به موج اصلی به اندازه heta پیشفاز یا lead است.
  - است. میگوییم موج اصلی نسبت به موج جدید به اندازه heta پسفازیا  $\log$  است.

#### عدد مختلط

- □ یک عدد مختلط را به فرمهای زیر نمایش میدهیم:
- $\Box a + bj \leftrightarrow Ae^{j\theta}$ 
  - $\Box A = \sqrt{a^2 + b^2}, \ \theta = \tan^{-1} \frac{b}{a}$
  - $a = A \cos \theta$ ,  $b = A \sin \theta$ 
    - را بهصورت  $A \not = A$  نیز نشان میدهند.  $Ae^{j\theta}$ 
      - □ مثال:
- $2445^{\circ} = 2e^{j45} = 2\cos 45 + j2\sin 45 = \sqrt{2} + \sqrt{2}j$
- $\frac{1}{1+2i} = \frac{1 \neq 0}{\sqrt{5} \neq \tan^{-1} 2} = \frac{1}{\sqrt{5}} \neq -\tan^{-1} 2$

### پاسخ اجباری به ورودی سینوسی

□ در بسیاری از کاربردها، وقتی ورودی سینوسی است، پاسخ گذرا (طبیعی) برای ما اهمیتی ندارد و فقط بهدنبال یافتن پاسخ دائمی (اجباری) هستیم.



□ در اینجا به دنبال راهی هستیم که بتوانیم این پاسخ را سادهتر به دست آوریم.

## یافتن پاسخ دائمی با استفاده از معادله دیفرانسیل



$$i(t) = I_1 \cos \omega t + I_2 \sin \omega t$$

عادن در معادله دیفرانسیل، ضرایب بهدست میآید:

$$i(t) = \frac{RV_m}{R^2 + \omega^2 L^2} \cos \omega t + \frac{\omega LV_m}{R^2 + \omega^2 L^2} \sin \omega t$$

#### نتیجه؟

- □ میتوان پاسخ اجباری به ورودی سینوسی را مانند قبل با بهدست آوردن معادله دیفرانسیل بهدست آورد.
- آیا راهی برای اجتناب از معادلات دیفرانسیل و تنها با اتکا به محاسبات جبری برای محاسبه پاسخ اجباری سینوسی و جود دارد؟
   □ بله، با استفاده از مفهوم فازور!

#### استفاده از ورودی نمایی مختلط به جای سینوسی حقیقی

□ صورت مسئله اصلی: یافتن پاسخ دائمی مدار N با ورودی سینوسی



□ راه فرعی: بیایید پاسخ مدار به ورودی نمایی زیر را بیابیم:



## پاسخ اجباری به ورودی نمایی مختلط



1. با اعمال KVL داریم:

$$L\frac{di}{dt} + Ri = v_{s}$$

پاسخ اجباری از جنس خروجی:

- عدق دادن در معادله دیفر انسیل:
- $\square j\omega LI_m e^{j(\omega t + \phi)} + RI_m e^{j(\omega t + \phi)} = V_m e^{j(\omega t + \theta)}$
- $\Box j\omega LI_m e^{j\phi} + RI_m e^{j\phi} = V_m e^{j\theta}$
- $I_m e^{j\phi} = \frac{V_m e^{j\theta}}{R + j\omega L} \rightarrow I_m = \frac{V_m}{\sqrt{R^2 + \omega^2 L^2}}, \quad \phi = \theta \tan^{-1}\frac{\omega L}{R}$
- $i(t) = Re\left[I_m e^{j(\omega t + \phi)}\right] = \frac{V_m}{\sqrt{R^2 + \omega^2 L^2}} \cos(\omega t + \theta \tan^{-1}\frac{\omega L}{R})$

## مفهوم فازور



□ در مدار نمونه روبرو، به رابطه زیر رسیدیم:

$$I_m e^{j\phi} = \frac{V_m e^{j\theta}}{R + j\omega L}$$

- $V_m e^{j\theta}$  عدد مختلطی که دارای اندازه  $V_m$  و زاویه  $\theta$  است و با نشان میدهیم را فازور مینامیم.
  - است.  $I_m e^{j\phi}$  است المدین ترتیب، فازور جریان
  - □ رابطه بین فازورهای مدار، یک رابطه جبری است نه دیفرانسیلی!

## فازور مقاومت

- □ فازور ولتاژ و فازور جریان یک مقاومت نیز از قانون اهم پیروی میکنند.
  - □ پس فازور مقاومت همان R است.



## فازور سلف

- □ رابطه دیفرانسیلی بین جریان و ولتاژ سلف در حوزه زمان، به رابطه جبری در حوزه فازور تبدیل میشود.
- است و فازور ولتاژ و جریان آن رابطه اهمی i دار ند



## فازور خازن

است و رابطه بین ولتا و جریان آن در  $\frac{1}{j\omega c}$  است و رابطه بین ولتا و جریان آن در حوزه فازور مانند سلف و مقاومت رابطه اهمی است.



#### خلاصه

#### حوزه زمان

محاسبات دیفر انسیلی با اعداد حقیقی

#### حوزه فازور

$$\mathbf{V} = R\mathbf{I}$$

$$+ \mathbf{V} -$$

$$\mathbf{V} = j\omega L\mathbf{I}$$

$$+ \mathbf{V} -$$

$$\mathbf{V} = \frac{1}{j\omega C}\mathbf{I}$$

$$+ \mathbf{V} -$$

$$\mathbf{V} = \frac{1}{j\omega C}\mathbf{I}$$

$$+ \mathbf{V} -$$

محاسبات جبری با اعداد مختلط

## قوانین کرشهف برای فازورها

□ رابطه KVL برای فازورهای ولتاژ در یک حلقه نیز برقرار است.

$$\mathbf{V}_1 + \mathbf{V}_2 + \dots + \mathbf{V}_N = 0$$

برای فازورهای جریان در یک گره نیز KCL برقرار است.  $\mathbf{I}_1 + \mathbf{I}_2 + \dots + \mathbf{I}_N = \mathbf{0}$ 

## امیدانس

□ به حاصل تقسیم فازور ولتاژ بر فازور جریان، امپدانس میگوییم.

$$Z_R = R$$
  $Z_L = j\omega L$   $Z_C = 1/j\omega C$ 

- □ امپدانس معادل مقاومت در حوزه فازور است.
- □ امپدانس یک عدد مختلط است و واحد آن اهم است.
- به قسمت حقیقی امپدانس، رزیستانس و به قسمت مو هومی آن رآکتانس میگویند.
- □ امپدانسهای سری و موازی مانند مقاومتها قابل ترکیباند.

#### ادميتانس

□ معکوس امپدانس را ادمیتانس مینامیم.

$$Y_R = 1/R$$
  $Y_L = 1/j\omega L$   $Y_C = j\omega C$ 

- □ ادمیتانس معادل رسانایی است
- □ ادمیتانس یک عدد مختلط است و واحد آن زیمنس است.
- □ به قسمت حقیقی ادمیتانس، کنداکتانس و به قسمت مو هو می آن سو سپتانس میگویند.

## خلاصه روش استفاده از فازور

- □ امپدانس همه المانها را با توجه به فركانس منبع بهدست آوريد.
  - $Z_R = R$   $Z_L = j\omega L$   $Z_C = 1/j\omega C$ 
    - مقدار منابع را نیز با فازور آنها جایگزین کنید.
- □ مدار را در حوزه فازور مانند یک مدار مقاومتی تحلیل کنید و فازور همه جریانها و ولتاژهای مدار را بهدست آورید.
  - $e^{j\omega t}$  بردن فازور به حوزه زمان: فازور مورد نظر را در خرب کنید و قسمت حقیقی آن را به عنوان پاسخ نهایی نگه دارید.

### مثال 1: استفاده از فازور



$$V_S = 3 \not = 0$$
,  $Z_R = 1$ ,  $Z_C = \frac{1}{j\omega C} = \frac{1}{10j} = -0.1j$   
 $V_C = \frac{-0.1j}{1 - 0.1j} \times 3 = \frac{3}{1 + 10j} = \frac{3 \not = 0}{\sqrt{101} \not = \tan^{-1} 10}$   
 $= 29.8 \not = -84.3$ 

$$v_C(t) = Re[29.8e^{j(5t-84.3)}] = 29.8\cos(5t - 84.3)$$

## مثال 2: محاسبه امیدانس معادل

□ امیدانس معادل مدار زیر را در فرکانس 5 rad/s بیابید.



## مثال 3: تحلیل گره

ے فازور ہای ولتاڑ  $oldsymbol{V}_1$  و  $oldsymbol{V}_2$  را بیابید.



### مثال 4: تحلیل مش

را بیابید.  $i_2(t)$  و  $i_1(t)$  را بیابید.



## مثال 5: جمع آثار

اصل جمع آثار برای فازورها نیز صادق است. با استفاده از آن ولتاثر  $\mathbf{V}_1$  را بیابید.



## مثال 6: مدار معادل تونن

ے قضایای تونن و نورتن نیز برای فازورها صادق است با محاسبه مدار معادل تونن شکل زیر، ابتدا جریان گذرنده بین گرههای  $V_1$  و  $V_2$  را بهدست آورده و سپس ولتاژ  $V_1$  را بهدست آورید



## دیاگرام برداری فازورها

- □ فرض کنید در صفحه اعداد مختلط برداری داریم که با سرعت زاویه ای  $\omega$  حول مبدأ مختصات میچرخد.
- ے شکل زیر وضعیت این بردار را در لحظه t=0 نشان میدهد. این همان فازور ولتار  $V_1$  است با اندازه 10 و زاویه 53.1.

**Imaginary**  $V_1 = 10e^{j53.1}$ axis (V)



 $v_1(t) = 10\cos(\omega t + 53.1)$ 

## دیاگرام برداری فازور: مثال

ے با فرض 0کے I=1 داریم:





- □ سلف 90 درجه پسفاز است. یعنی جریانش
   90 درجه از ولتاژش عقبتر است.
  - 🗖 خازن 90 درجه پیشفاز است.

## دیاگرام برداری فازور: مثال 2

ریم: V=1 داریم: =



# پاسخ دائمی منابع با فرکانسهای مختلف

- □ سؤال: اگر در یک مدار همزمان منابعی با فرکانسهای متفاوت و جود داشتند چه کنیم؟
  - یم دام محاسبه  $j\omega L$  و  $j\omega C$  کدام  $\omega$  را قرار دهیم  $\sigma$
- پاسخ: در این حالت باید اثر هر یک از منابع را جداگانه بهدست آوریم و پاسخها را در حوزه زمان با یکدیگر جمع کنیم (اصل جمع آثار)
- □ مهم: دقت کنید فازورهایی که متعلق به دو فرکانس متفاوتند با هم جمعپذیر نیستند! باید ابتدا آنها را به حوزه زمان برد و بعد با هم جمع کرد.

### تمرین کلاسی

□ در مدار زیر توان مصرفی مقاومت 10 اهمی را در حالت دائمی بیابید.

