Supplementary material: Quantifying replicability and consistency in systematic reviews

Iman Jaljuli

Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv, Israel. email: jaljuli.iman@gmail.com

and

Yoav Benjamini

Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv, Israel. $email: {\it ybenja@gmail.com}$

and

Liat Shenhav

Department of Computer Science, University of California Los Angeles, Los Angeles, CA, USA. $email: {\it liashenhav@gmail.com}$

and

Orestis A. Panagiotou

Department of Health Services, Policy & Practice, Brown University, USA. $email: {\it orestis_panagiotou@brown.edu}$

and

This paper has been submitted for consideration for publication in *Biometrics*

Ruth Heller

Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv, Israel. $\it email: ruheller@gmail.com$

1. Simulations

1.1 Simulation settings

For study $i \in \{1, ..., n\}$, the estimated effect size, $\hat{\theta}_i$, is sampled from the normal distribution with mean θ_i and standard deviation $SE_i = \sqrt{1/n_{Ci} + 1/n_{Ti}}$, where n_{Ci} and n_{Ti} are the control and treatment group sizes, respectively. We examined a wide range of values for $(\theta_1, ..., \theta_n)$, n, and $\{(n_{Ci}, n_{Ti}) : i = 1, ..., n\}$.

In the paper, we displayed results for n=8, with unequal group sizes as follows: $\{22,210,26,192,60,38,53,15\}$ for the control groups and $\{22,121,24,187,31,53,49,16\}$ for the treatment groups (these values are similar to those in the example detailed in Figure 8). Simulations for other variations of n=4,8,20 with unequal samples sizes or equal ($\{n_{Ci}=n_{Ti}=25 \ \forall i=1,\ldots,n\}$) are shown in figures 1 and 2

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

Figure 4 shows results for the random effects settings in figure 4 in the body of the paper. Here we show for N=4,8,20 with unequal samples sizes (like in fig. 1), or with equal group sizes ($\{n_{Ci}=n_{Ti}=25 \ \forall i=1,\ldots,n\}$).

[Figure 4 about here.]

2. Replicability-analysis: Assuming common effect

Proof of proposition 6:

Let Z_v , $\hat{\theta}_v$, and SE_v be the fixed-effect meta-analysis test statistic, estimated effect, and SE, respectively, for the intersection hypotheses indexed by $v \in \Pi(n-u+1)$. Since $\sum_{v \in \Pi(n-u+1)} \frac{z_v}{SE_v} = \binom{n-1}{n-u} \sum_{i=1}^n \frac{\hat{\theta}_i}{SE_i}$, the meta-analysis test statistic can be expressed in

terms of $(z_v, SE_v), v \in \Pi(n-u+1)$:

$$Z = \frac{1}{\binom{n-1}{n-u}} \sum_{v \in \Pi(n-u+1)} \frac{z_v}{SE_v} SE \tag{1}$$

Let $v^* = \arg \max_{v \in \Pi(n-u+1)} Z_v$. By definition, $r^L = \Phi(Z_{v^*})$. We shall show that if Z < 0, $p^L < r^L$ and $\min(p^L, p^R) < \min(r^L, r^R)$. Clearly, $p^L < 0.5$ since Z < 0. Therefore, the result follows by showing that $p^L < r^L$ and $r^R > 0.5$.

We start by showing that $p^L < r^L$. If $Z_{v^*} > 0$, then by definition $r^L > 0.5$ and therefore it follows that $P^L < r^L$. If $Z_{v^*} < 0$ then

$$Z \leqslant \frac{Z_{v^*}}{\binom{n-1}{n-u}} \sum_{v \in \Pi(n-u+1)} \frac{SE}{SE_v} \leqslant \frac{Z_{v^*}}{\binom{n-1}{n-u}} \sum_{v \in \Pi(n-u+1)} \frac{SE^2}{SE_v^2} = Z_{v^*},$$

where the first inequality follows from (1) and the definition of v^* , the second inequality follows since $SE/SE_v < 1$ for all $v \in \Pi(n-u+1)$, and the last equality follows since

$$\sum_{v \in \Pi(n-u+1)} \frac{1}{SE_v^2} = \binom{n-1}{n-u} \sum_{i=1}^n \frac{1}{SE_i^2} = \binom{n-1}{n-u} \frac{1}{SE^2}.$$

Since $Z \leqslant Z_{v^*}$ it thus follows that $p^L < r^L$.

Next, we show that $r^R > 0.5$. By definition, $r^R = 1 - \Phi(\min_{v \in \Pi(n-u+1)} Z_v)$. Since Z < 0 and

$$\frac{\min_{v \in \Pi(n-u+1)} Z_v}{\binom{n-1}{n-u}} \sum_{v \in \Pi(n-u+1)} \frac{SE}{SE_v} < Z,$$

it follows that $\min_{v \in \Pi(n-u+1)} Z_v < 0$ and therefore that $r^R > 0.5$.

Therefore, if Z < 0 we have $p^R < r^R$ and $\min(p^L, p^R) < \min(r^L, r^R)$. Similar arguments show that if Z > 0, $p^R < r^R$ and $\min(p^L, p^R) < \min(r^L, r^R)$. It thus follows that p < r.

remarkhe property that, with probability one, the global null p-value is smaller than the r-value, is not satisfied with popular combining functions such as Fisher, Simes, and Bonferroni. For example, if $p_{(1)} \leq \ldots \leq p_{(n)}$ are the ordered p-values, then the Bonferroni meta-analysis p-value is $n \times p_{(1)}$, its r-value for u = 2 is $(n-1) \times p_{(2)}$, and $Pr\left(n \times p_{(1)} < (n-1) \times p_{(2)}\right) > 0$.

Received XXX 201X. Revised XXX 201X. Accepted XX 201X.

Figure 1. Each panel shows the results of a simulation similar to figure 2 in the body of the paper. The different panels differentiate by the number of studies N and whether the group sizes are equal on not (detailed in the panel title).

Figure 2. Each panel shows the results of a simulation similar to figure 2 in the body of the paper. The different panels differentiate by the number of studies N and whether the group sizes are equal on not (detailed in the panel title).

Figure 3. Each panel shows the results of a simulation similar to figure 3 in the body of the paper. The different panels differentiate by the number of studies N and whether the group sizes are equal on not (detailed in the panel title).

Figure 4. Each panel shows the results of a simulation similar to figure 3 in the body of the paper. The different panels differentiate by the number of studies N and whether the group sizes are equal on not (detailed in the panel title).