Week 6 Hand-in

NumIntro 2019 Department of Computer Science University of Copenhagen

Casper Lisager Frandsen <fsn483@alumni.ku.dk>

Version 2 **Due:** October 23rd, 08:00

Contents

1.	Exercise															3															
	(a)																														3
	(b)																														3
	(c)																														3
	(d)																	•	•	•	•		•	•	•		•				3
2.	Exerci	ise	9																												4
	(a)																														4
	(b)																														4

1. Exercise

(a)

This function has been implemented in the "Q0039.py" file.

(b)

A formal requirement would be that the matrix is invertible. The matrix must also be squure, of the shape $(n \times n)$

(c)

While the power method is quick to compute, inverting a matrix is incredibly slow, on the order of $O(n^3)$. This means that as n increases in the $(n \times n)$ shaped matrix, the time (and number of operations) it takes to compute the inverse increases by a constant multiplied by n^3 .

(d)

To find the condition number, we use the following formula:

$$_{\kappa}(A) = \frac{|\text{max e.v of } A|}{|\text{min e.v of } A|}$$

We calculate the maximum and minimum eigenvalues of A using the power and inverse power methods implemented in the Q-files. With this we get:

$$|\max \text{ e.v of } A| = 2.0005$$

 $|\min \text{ e.v of } A| = 0.0005$
 $\kappa(A) = \frac{2.0005}{0.0005}$
 $\kappa(A) = 4001$

Solving Ax = b for $b = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ we get the vector:

$$x = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$

Solving Ax = b for $b = \begin{pmatrix} 2 \\ 2.001 \end{pmatrix}$ we get the vector:

$$x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

This large change in the output makes sense, even with the extremely small change in the input, given our large condition number of 4001.

Version 2 **Due:** October 23rd, 08:00

2. Exercise

(a)

This function has been implemented in the "Q0041.py" file.

(b)

To complete this exercise I have run the "pseudo_inverse_minimal_solution" function with the following inputs for subexercise (*a*):

$$Ain = np.array([[1,2,4],[1,1,2]])$$

 $bin = np.array([2,1])$

This yields the following results:

$$\begin{bmatrix} 0 & 0.2 & 0.4 \end{bmatrix}$$

To complete this exercise I have run the "pseudo_inverse_minimal_solution" function with the following inputs for subexercise (*b*):

$$Ain = np.array([[4,6],[3,-2],[1,3],[2,6]])$$

 $bin = np.array([8,-7,5,10])$

This yields the following results:

$$\begin{bmatrix} -1 & 2 \end{bmatrix}$$