

V TOMTO SEŠITĚ

Náš interview	441
Nová organizace radioamatérů	442
Čtenář se ptájí	442
Jak na to	443
Nové součástky	444
Dílna mladého radioamatéra (druhý příjemec pro domácnost)	445
Zajímavá zapojení ze světa	446
Malý televizor	447
Booster ke kytáre	450
Náš test - Hi-Fi přenoskové vložky	451
Plošné spoje v amatérské praxi	453
Stabilizátor ss napěti	454
Měřic rezonance	456
Elektronické zapalování	465
Otočné kondenzátory pro vysílací techniku	472
Detektor AM, CW, SSB	473
Vertikální anténa pro 80 m	473
Návrh špičkového přijímače pro KV	474
Naše předpověď	476
Soutěže a závody	476
Přečteme si	478
Nezapomeňte, že	479
Četli jsme	479
Inzerce	479

Na str. 457 a 458 jako vyjímatelná příloha Programovaný kurs radioelektrotechniky

Na str. 463 a 464 jako vyjímatelná příloha čtyřjazyčný radioamatérský slovník

Na str. 459 až 462 jako vyjímatelná příloha Obsah ročníku 1968.

AMATÉRSKÉ RADIO

Vydává Vydavatelství časopisů MNO, n. p., Praha 1, Vladislavova 26, telefon 234355-7. Šéfredaktor ing. František Smolík, zástupce Lubomír Březina. Redakční rada: K. Bartoš, ing. J. Čermák, K. Donát, ing. L. Hloušek, A. Hofhans, Z. Hradík, ing. J. T. Hynek, K. Krbeč, A. La- vante, K. Novák, ing. O. Petráček, dr. J. Petráček, K. Pytner, ing. J. Vašíček, J. Ženášek. Redakce Praha 2, Lublinská 57, telefon 223630. Ročně vyjde 12 čísel. Cena výtisku 4 Kčs, poštovní předplacené 24 Kčs. Rozšířuje PNS, v jednotkách ozbrojených sil VČ MNO, administrace Praha 1, Vladislavova 26. Objednávky přijímá každá pošta i doručovatel. Dohledací pošta Praha 07. Objednávky do zahraničí vyrábí PNS, vývoz tisku, Jindřišská 14, Praha 1. Tiskne Poligrafia 1, n. p., Praha. Inzerci přijímá Vydavatelství časopisů MNO, Vladislavova 26, Praha 1, tel. 234355-7, linka 294. Za původnost příspěvků ručí autor. Redakce, ručky vrátí, bude-li vyzádán s bude-li připojena frankovaná obálka se zpětnou adresou.

Toto číslo vyšlo 7. prosince 1968.

© Vydavatelství časopisů MNO, Praha

náš interview A B

s ing. Josefem Plzákem, předsedou nové organizace Českomoravského svazu radioamatérů!

V našem časopise píšeme na jiném místě o konferenci 12. 10. 1968, na níž byla ustavena nová organizace českomoravských radioamatérů. Co podle Vašeho názoru nejvíce ovlivnilo takové rozhodnutí?

Při přípravě koncepce vycházel přípravný výbor ze zásady umožnit radioamatérům plnou sportovní a zájmovou samostatnost, zajistit pro radioamatérskou činnost potřebné prostředky a udržet jednotu radioamatérské organizace. Konferenci byly předloženy tři varianty organizačního uspořádání, z nichž první představovala utvoření zcela nezávislé organizace, druhá předpokládala vstup do federace braných a technických sportů a třetí byla kompromisem obou předcházejících variant. Tato třetí varianta, znamenající vytvoření samostatného svazu, který s ostatními technickými svazy vytvoří volné sdružení, byla přijata většinou amatérů jako nejvýhodnější. Tím se podařilo radioamatérům zajistit jak samostatné řízení a rozhodování ve všech věcech týkajících se otázk organizační, tak i materiální a finanční prostředky nutné pro chod organizace.

Tím sice vznikla organizace „de facto“, nikoli však „de jure“. To může být teprve tehdy, až bude nová organizace registrována. Domníváte se, že to bude snadně právě nyní, kdy se přípravuje nový společný zákon? A co bude do té doby Svaz řešit?

Otzádka registrace byla konzultována s legislativními i politickými orgány. Podle této konzultace by měla probíhat hladce. Shodný úmysl mají motoristé, letci a podle posledních zpráv i modeláři. Na dobu do vyřízení registrace požádáme o uznání Svazu a přidělení právní subjektivity UV Svazu armu. Současně zahájíme konkrétní majetková jednání.

Je nám známo, že doposud se přihlásilo k členství 2 750 lidí, z toho 350 ze Slovenska. To znamená, že je to jen o něco málo více než kolik je koncesovaných amatérů vysílačů. Jakým způsobem chcete získat ostatní zájemce o radiotechniku?

Jsem toho názoru, že nová organizace, má-li být přitažlivější než dřívější, musí uspokojovat potřeby svých členů novými službami i metodami. Pro nejbližší dobu připravujeme otevření prodejny inkurantního materiálu, který bude prodáván výhradně členům za mimorádně výhodné ceny. V odbočkách i centrálních dílnách se začínají vyrábět nedostatkové součástky a materiály. Nejpodstatnější však bude iniciativní a aktivní život v odbočkách a klubech. Pro ten byly splněny organizační předpoklady vznikem nové organizace, ale naplnění bude záležet na každém členu. To znamená, že by odbočky i kluby měly přemýšlet o tom, jak uspokojovat nejen své zájmy, ale jak pomáhat i ostatním zájemcům a začátečníkům v radiotechnice. Univerzální recept neznám.

Na Slovensku bude situace zřejmě složitější. Jak víme, jsou zde nyní utvořeny dvě organizace. Jak se bude tato situace řešit? Domníváte se, že vznikne nějaký orgán, který se bude starat o řešení celostátních problémů?

Slovenští radioamatéři konstatovali, že cíle obou organizací na Slovensku jsou shodné, různé jsou však cesty, kterými k této cíli chtějí dojít. Bude věcí obou organizací na Slovensku, jak se dohodnou na vzájemné spolupráci. Pokud jde o celostátní orgán, máme představu, že bude vytvořen delegovaným zástupcem z naší i slovenských organizací v paritním zastoupení. Tento orgán bude koordinovat sportovní činnost a zastupovat společné zájmy před celostátními orgány a ve styku se zahraničím.

Jaký hlavní program si Svaz českomoravských radioamatérů stanovil?

Podrobný program byl vypracován a předložen radioamatérům k diskusi. Jeho konečné znění bylo schváleno konferencí. V programu nám jde o oživení jednotlivých zájmů i sportů a o odpovídající organizační a materiálové zajištění. Hlavní myšlenky byly otištěny v AR 8/68.

Byla výše příspěvků stanovena s ohledem na míádež? Jak ji Svaz bude získávat a co ji poskytnet?

Pro koncesionáře byl stanoven členský příspěvek Kčs 30,-, pro ostatní členy Kčs 20,-. Podle organizačního rádu předpokládáme vznik nových skupin u Pionýra a Junáka a Závodních klubů ROH. Koncesionáři a posluchači budou využívat existující QSL a diplomové služby a všem zájemcům bude sloužit členská prodejna; ostatní zájmová a sportovní činnost bude organizována v odbočkách a klubech. Půjde o využívání dílen a měřicích přístrojů, poradenskou činnost, přednášky a besedy. Uvažujeme i o získávání vhodných pracovních příležitostí pro mladé členy naší organizace.

Ve zprávě a v některých diskusních příspěvcích se opět objevily názory, že naš časopis neslouží amatérům vysílačům. Ve zprávě se dokonce říká, že časopis změnil svůj obsah. Chtě byl říci, že obsah byl již při zrodu určen. To však není podstatné. Nás zajímá Váš názor na AR a to, chystá-li Českomoravský svaz radioamatérů nějaká nová opatření, popř. vychází-li mu již Radioamatérský zpravodaj.

signálu 50 až 1 000 Hz. Stejnosmerný zesilovací činitel 2 až 100 při proudu emitoru 50 mA a napětí kolektoru 3 V. Minimální absolutní zesilovací činitel 2 při proudu emitoru 5 mA, napětí kolektoru 5 V a kmitočtu 20 MHz. Zbytkový proud kolektoru je až 3 μ A při napětí 10 V, max. 90 μ A při napětí 10 V a teplotě okolo +70 °C. Výstupní vodivost je až 5 μ S při proudu 5 mA a napětí 5 V. Kapacita kolektoru max. 8 pF při napětí 5 V. Mezní hodnoty: napětí kolektoru proti emitoru 15 V (obvod emitor-báze nakrátko), kolektoru proti emitoru 20 V, a 12 V při odporu báze 1 k Ω . Napětí emitor-báze 3 V. Proud kolektoru trvalý 15 mA, pulsní a špičkový 120 mA, střední proud kolektoru při ztrátě kolektoru 100 mW max. 120 mA. Max. ztráta tranzistoru 100 mW, ztráta při pulsním provozu se dovoluje až 250 mW. Teplota přechodu +85 °C, rozsah pracovních teplot okolo -60 až +70 °C. Zapojení vývodu: levý vývod emitor, pravý báze, střední vývod kolektor (orientace patice tranzistoru při pohledu zespodu: střední vývod je vykнут ze středu nahoru).

K dotazu Pavla Antonáka z Humenného:

Dioda SY106 je křemíkový usměrňovač pro usměrňování střídavého proudu nejvyšše do 1 A a pro maximální závěrné napětí 600 V. Nejvyšší střídavé efektivní napětí, které lze připojit na diodu, je 380 V při odporném a indukčním vstupu filtracního řetězu a 190 V při nepoužívání vstupu kapacitním. Maximální špičkový proud diody smí být 5 A, teplota přechodu +125 °C, rozsah pracovních teplot okolo -55 až +100 °C. Statické údaje: diody: při předmětném proudu 1 A je max. úbytek napěti na diodě 1,2 V. Při závěrném napěti 600 V je max. závěrný proud 10 μ A. Tuto diodu lze bez jakýchkoli potíží nahradit diodou TESLA KY725, která je určena pro vyšší závěrné napěti 700 V.

* * * *

K dotazu Jiřího Vácovského z Nového Bohumína:

V poslední době došlo u některých sovětských tranzistorů ke změně technologie pouzdření – bylo použito pouzdření studeným svárem. Takto svařovaná pouzdra mají jiné rozměry než pouzdra předcházejících typů. Sovětští výrobci proto odlišili oba druhy tranzistorů jiným typovým znakem. Tak tranzistor M139B nazrahuje starší typ M13B, M140A starší typ M14A. Oba tranzistory můžete nahradit výrobky TESLA takto: M139B a M13B tranzistory OC71 nebo GC516, M140A a M14A tranzistory OC70 nebo GC515. Znak M14A není zatím obsazen, jde pravděpodobně o chybě označený typ, i když zde není vyloučena možnost přechodné používání označení pro tranzistory typu M14A.

Protože podobných žádostí přicházelo do redakce AR mnoho, uveřejňujeme převodní tabulku starého a nového značení sovětských diod a tranzistorů spolu s doporučenou náhradou prvků TESLA.

Staré sovětské značení	Nové značení	Náhrada prvky TESLA
D214	D242	KY708
D214A	D242A	KY708
D214B	D242B	KY708
D215	D243	KY710
D215A	D243A	KY710
D215B	D243B	KY710
D231	D245	KY711
D231A	D245A	KY711, KY718
D231B	D245B	KY711
D232	D246	KY712
D232A	D246A	KY712, KY719
D232B	D246B	KY712
D233	D247	2 x KY711 (sériově)
D233B	D247B	2 x KY711 (sériově)
D234B	D248B	2 x KY711 (sériově)
I8	M135	105NU70
I9A	M136A	105NU70, GC526, GC527
I10	M137	105NU70, GC526, GC527
I10A	M137A	105NU70, GC526, GC527
I10B	M137B	106NU70, GC526, GC527
I11	M138	106NU70, GC526, GC527
I11A	M138A	107NU70, GC526, GC527
I13	M139	0C70, GC515
I13A	M139A	0C71, GC516
I13B	M139B	0C71, GC516
I14	M140	0C70, GC515
I14A	M140A	0C70, GC515
I14B	M140B	0C71, GC516
I15	M141	0C71, GC516
I15A	M141A	0C75, GC517
I16	M142	0C72, GC507
I16A	M142A	0C72, GC507
I16B	M142B	0C72, GC507
I101	M111	KC508, ~KF507
I101A	M111A	KC508, ~KF507
I102	M112	KC508, ~KF507
I103	M113	KC508, ~KF507
I105	M115	~KF517
I106	M116	~KF517

Dostali jsme též žádost od OE1FT, zprostředkovanou OK2-14760, nemůžeme-li vyfudit hoje prosbu – chcel by si dopisovat s některým naším radioamatérským vysílačem, který se kromě radia zajímá též o nerosty nebo jejich sbírání. Dopisovat si lze německy, adresa OE1FT je: Franz Tuma, Hauffgasse 19/54, A 1110 Wien.

2 Jak na to AR'68

Napájení elektrického vláčku

V době vánoc a po vánočních přichází starost s elektrickými vláčky. Pro pohon většiny vláčků je třeba stejnosmerný proud s plynulou regulací. Potřebný regulační odpór (reostat) pro zatížení 2 až 3 W však není běžně (či vůbec) k dostání.

Nahrál jsem proto reostat výkonovým tranzistorem P4D (možno použít 0C16, 0C26, 0C27 a jiné pro stejný výkon), jehož báze se napájí napětím z potenciometru (zatížení 0,25 až 0,5 W). K potenciometru je připojen odpor 100 až 500 Ω , 0,25 W. Velikost odporu vyzkoušime (podle napájecího napětí a jakosti tranzistoru). Bude tak vělký, aby na výstupu regulátoru bylo nejvyšše 12 V (pro modely TT) při připojeném vláčku. Regulátor připojíme na zdroj stejnosmerného napětí 13 až

14 V, protože musíme počítat s úbytkem napěti na tranzistoru. Pozor na polaritu: záporný pól musí být na kolektoru. Na výstup regulátoru připojíme páčkový dvoupólový přepínač, kterým měníme polaritu napěti pro kolej. K indikaci napěti lze na výstupu připojit malý voltmetr z výprodeje, který upravíme předřadným odporem pro rozsah do 12 až 15 V. Ostatní je patrné ze schématu.

Tranzistor připevníme na hliníkový plech tloušťky 1,5 až 3 mm s rozměry asi 80 × 50 mm. V případě, že má zdroj 12 V, odpadá odpor R.

Tento regulátor je možno použít i pro tlumení světel v domácím loutkovém divadle apod.

Máme-li více kolejí od sebe elektricky oddělených, můžeme pro každé kolejistě zhotovit jeden regulátor.

Václav Čechura

Závady v televizoru Volna a Temp 6

Jednou z častých poruch televizorů Volna a Temp 6 bývá, že obrazovka přestane nájednou svítit a zvuk jde normálně. Při bližším ohledání zjistíme, že nežhaví usměrňovací elektronka vn, avšak vysoké napětí je v pořádku (tzn. koncový stupeň rádkového rozkladu pracuje normálně, měřením nebo výměnou za jinou zjistíme, že i usměrňovací elektronka je v pořádku). Měřením odporu žhavicího závitu, který je zalisován, zjistíme jeho uplné přerušení nebo že má velký odpor; v tomto případě bývá nutná výměna žhavicího závitu, což nebývá právě levná záležitost. Pokusil jsem se opravit tuto závadu a popsanou úpravu se osvědčila.

Sezenímc si asi 10 cm dlouhý kousek sousošeho kabelku pokud možno tenčího, odstraníme z něj vnější izolaci a vnější opletení a ze vnitřku vytáhneme původní měděný vodič. Do takto získané izolační trubičky zasuneme kousek od-

porového drátu o odporu 4 Ω . Upravený drát položíme do volného místa na původní žhavicí závit okolo jádra. Volné konec odporového drátu teplem pájecky propíchneme přesně nad příslušnými dírkami původní patice usměrňovací elektronky dovnitř patice a konce zasuneme do dírek pro kolíky usměrňovací elektronky. Usměrňovací elektronku zasuneme na původní místo a tím je celá úprava hotová a netrvá ani tak dlouho jako popis. Je nutno dbát pouze těho, aby ani kousek odporového drátu nebyl volný a aby izolace kabliku byla až těsně u ochranného krytu z plastické hmoty, přes něj ji propichujeme (nedochází tak k sršení vysokého napětí). Pokud dodržíme odpor drátu 4 až 5 Ω , je úprava rovnocenná původnímu provedení.

Ivo Richter

Domácí telefon se dvěma vodiči, jedním zdrojem a oboustranným vyzváněním

Domácí telefon není dnes už žádnou novinkou. Aktuální jsou především světelné telefony a různá jiná bezdrátová pojítka. Telefon je však zatím přeje jen nejlevnější a nejspolohlivější dorozumívací prostředek. Už v trochu rozsáhlé domácnosti a především pro spojení do dílny, která obvykle zaujímá nejdalejší kout obydlí (případně do garáže) neobejdeme se bez dorozumívacího prostředku.

Podle běžných zapojení je nutné ke spojení dvou účastnických stanic použít tři vodiče a jeden zdroj nebo dva zdroje.

Při konstrukci svého domácího telefonu jsem zvolil nové řešení, při němž jsou menší pořizovací náklady a jež se vyplatí především při spojení účastníků na větší vzdálenost. Posloužilo by také jako rovnocenná náhrada za polní vojenský telefon.

Celé zařízení spočívá pouze v mechanické a elektrické úpravě domácího telefonu značky Tesla.

U stanice č. 1 jsem upravil vidlicový kontakt V, aby se při vyvěšení mikrotelefonu změnila polarita zdroje.

U účastnické stanice č. 2 jsem změnil pouze zapojení (bez mechanické úpravy) – do obvodu jsem přidal diodu (např. KY701 nebo jinou podle odběru zvuku Zv).

Funkce vyplývá ze zapojení, takže nebudu zapojení blíže popisovat. Zařízení má oboustranné vyzvánění. Účastník č. 1 vyzvání zvednutím mikrotelefonu a stačením vyzváněcího tlačítka. Dioda u účastnické stanice č. 2 musí být zapojena vždy s opačnou polaritou, než jakou má vedení při zavěšení sluchátka účastnické stanice č. 1. Vyzvání zpět a hovoř zůstává nezměněn vzhledem k původní funkci telefonu Tesla. Pokud by dělala potíže úprava vidlicového kontaktu účastnické stanice č. 1, je možno použít telefonní přepínač (kipr). Při rozšíření zařízení o dalšího účastníka, tj. paralelně k účastníkovi č. 2, je možno dosáhnout spojení mezi účastníky jen za pomoci stanice č. 1.

Jaromír Heltíšek

Nové součástky

Zenerovy diody KZZ71 a KZZ76

Použití. – Zenerovy diody řady KZZ jsou určeny ke stabilizaci napětí. Základním polovodičovým materiálem je křemík.

Provedení. – Diody jsou v kovovém pouzdro se skleněnou průchodkou. Katoda je vyvedena na kovové pouzdro, anoda na vývod odizolovaný průchodkou.

Charakteristické údaje

Typ	Zenerovo napětí U_z [V]			Zpětný dyn. odpor r_{KA} [Ω]	Zene- rův proud I_z [mA]
	jmenov.	min.	max.		
KZZ71	6,7	5,8	7,5	≤ 8	5
		6,0	7,4	≤ 30	1
KZZ72	7,7	7,0	8,5	≤ 6	5
		6,8	8,4	≤ 12	1
KZZ73	8,7	8,0	9,5	≤ 10	5
		7,8	9,4	≤ 18	1
KZZ74	9,7	9,0	10,5	≤ 12	5
		8,8	10,5	≤ 25	1
KZZ75	11,0	10,0	12,0	≤ 15	5
		9,8	12,0	≤ 30	1
KZZ76	12,6	11,2	14,0	≤ 18	5
		10,8	14,0	≤ 35	1

Závěrný proud I_{KA} je pro všechny typy menší než $0,1 \mu\text{A}$ při napětí $U_{KA} = 1 \text{ V}$. Napětí U_{AK} je menší než 1 V při proudu 50 mA .

Mezní údaje

Závěrný proud I_{KA} je u KZZ71 maximálně 36 mA , u KZZ72 33 mA , KZZ73 30 mA , KZZ74 26 mA , KZZ75 23 mA , KZZ76 20 mA . Ztrátový výkon bez chladiče do teploty okolo 50°C $P_d \text{ max} = 280 \text{ mW}$. Teplota přechodu maximálně 155°C . Celkový tepelný odpor $R_t = 200^\circ\text{C}/\text{W}$. Maximální teplota okolo při provozu $-65 \pm +125^\circ\text{C}$.

Vývody se nesmějí namáhat ve vzdálenosti menší než 3 mm od okraje pouzdra. Zkrácený smějí být až na délku 6 mm .

Slíďové zalisované kondenzátory

Použití. – Kondenzátory s dielektrikem zě slíďových destiček lze používat všude, kde se vyžaduje malý ztrátový činitel, stabilita elektrických parametrů, velká odolnost proti klimatickým vlivům. Jsou vhodné pro provoz ve vf obvodech.

Provedení. – Tento druh kondenzátorů má dielektrikum zě slíďových destiček, zalisované do speciální izolační hmoty. U typů TC 210 až TC 222 tvoří polepy vrstva stříbra, napařeného ve vakuu na dielektrikum, u typů TC 223, TC 230 a TC 231 tvoří polepy prokládané fólie. Vývody jsou z měděného pocínovaného drátu (tvar a rozměry jsou na obrázku).

Technické údaje

Isolační odpor je u všech typů při $+20^\circ\text{C}$ minimálně $10\,000 \text{ M}\Omega$ (do kapacity 1 nF), popř. $7\,500 \text{ M}\Omega$ (přes 1 nF). Při teplotě $+70^\circ\text{C}$ se izolační odpor zmenší na $2\,500 \text{ M}\Omega$, popř. $1\,000 \text{ M}\Omega$. Teplotní součinitel kapacity je $\pm 100 \cdot 10^{-6}/^\circ\text{C}$ (v rozsahu teplot $+20$ až $+70^\circ\text{C}$).

Rozsah provozních teplot je -55 až $+70^\circ\text{C}$.

Ztrátový činitel při $+20^\circ\text{C}$

Typové označení		
TC 210 až TC 222		TC 230 až TC 233
do 100 pF	přes 100 pF	
<i>Ztrátový činitel</i>		
$\leq 295 - 2C \cdot 10^{-3}$	$\leq 0,001$	$\leq 0,002$
95		

C je jmenovitá kapacita v pF; měříci kmitočet do $1\,000 \text{ pF}$ je 1 MHz , přes $1\,000 \text{ pF}$ $0,3 \text{ MHz}$.

Vlastnosti kondenzátorů

Typové označení	Jmenovitá kapacita [pF]	Doporučené odchylky*	Jmenovitě stejnometré napětí	Typ	Váha [g]
TC 210	4,7 až 750	$\pm 20\%$ $\pm 10\%$ $\pm 5\%$	500 V	1	1,2
TC 211	15 až 91	$\pm 20\%$ $\pm 10\%$	1 000 V	2	2,4
	100 až 1 000	$\pm 20\%$ $\pm 10\%$ $\pm 5\%$	500 V	2	2,4
TC 211a	100 až 510	$\pm 20\%$ $\pm 10\%$ $\pm 5\%$	1 000 V	2	2,4
TC 212	470 až 3 300	$\pm 20\%$ $\pm 10\%$ $\pm 5\%$	500 V	4	5,5
	3 301 až 6 800		500 V	4	6,8
TC 213	1 000 až 10 000	$\pm 20\%$ $\pm 10\%$ $\pm 5\%$	500 V	3	6,0
TC 222	100 až 2 700	$\pm 20\%$ $\pm 10\%$ $\pm 5\%$	1 000 V	4	5,5
TC 230	220 až 680	$\pm 20\%$	500 V	1	1,2
TC 231	330 až 1 500	$\pm 20\%$	500 V	2	2,4
TC 233	2 200 až 4 700	$\pm 20\%$	500 V	3	6,0

* Nejmenší odchylka je 1 pF

Rady vyráběných hodnot: E6, E12, E24.

Rozměry

Typ	A	B	C	d	L
1	13		7	4,6	85
2	18		11	5,5	90
3 ¹⁾	26		18	6,5	98
4	20		20	6,5 ¹⁾	92

¹⁾ Rozměry se budou měnit na $27 \times 16,5 \times 9 \text{ mm}$.

²⁾ 9,0 u TC 212 se jmenovitou kapacitou větší než $3\,300 \text{ pF}$ a u TC 222 se jmenovitou kapacitou větší než $2\,200 \text{ pF}$.

TC 210 až TC 222

TC 230 až TC 233

Nové aktívny stavební prvky

Pro mikrovlnný přijímač s pásmem 94 GHz byl vyvinut speciální monolitický spínací polovodičový obvod, který sdružuje tři gallium-arsenidové Gunnovy diody. První z nich pracuje jako oscilátor, druhá jako ztrojovač kmitočtu a třetí jako směšovač. Gunnův oscilátor pracuje na kmitočtu 30 GHz. Oba další stupně jsou složeny z epitaxně rostlých vrstev.

Podle ETZ-B 4/1968

Účinnost 20 až 25 % má nová gallium-arsenidová Gunnova dioda firmy RCA. Odezdá impulsní výstupní výkon 150 W v kmitočtovém rozsahu 1 až 2 GHz. Pomocí mikrovlnných diodových matic s paralelně spojenými Gunnovými diodami lze laboratorně dosáhnout výstupního výkonu většího než 1 kW v uvedeném kmitočtovém rozsahu.

Funkschau 23/67

Pouzdra z plastických hmot, která jsou velmi levná, se postupně zavádějí i v výkonových tranzistorů. Nová řada křemíkových výkonových tranzistorů Motorola se ztrátovým výkonem 35 W (při teplotě okolo 25°C) a maximálním proudem kolektoru 4 A je již opatřena pouzdem z plastických hmot. Mezní kmitočet těchto tranzistorů, určených pro nízkofrekvenční obvody, je 4 MHz, proudové zesílení 25 až 100 při proudu 1,5 A. Jsou dodávány s mezním napětím kolektor-emitor 40, 60 nebo 80 V v provedení n-p-n a p-n-p. Velmi dobré se osvědčují jako výkonové komplementární zesilovače.

Podle podkladu Motorola

242 jednotlivých emitorů má systém planárního vf výkonového tranzistoru BFW69 firmy SGS-Fairchild. Tento tranzistor, vestavěný v pouzdro TO-39, odevzdá na kmitočtu 175 MHz výstupní výkon 2,5 W. Větší výkon, min. 7,5 W na kmitočtu 100 MHz, odevzdá tranzistor BLY74 v pouzdro TO-60. Oba tranzistory lze používat jako výkonové zesilovače, násobiče kmitočtu, v přenosných tranzistorových přijímačích nebo ve vf spinacích obvodech, v obvodech pro pulsní kódovou modulaci apod.

Podle podkladu SGS-Fairchild

DÍLNA mladého radioamatéra

Druhý přijímač pro domácnost

O tom, co se rozumí pod pojmem druhý přijímač pro domácnost, není jistě zapotřebí psát. Bývá to obvykle jednoduchý přijímač, určený převážně pro příjem silných místních stanic. Není nikdy konstruován jako miniaturní, protože reproduktor o průměru 8 cm nebo méně není schopen zajistit požadovanou jakost reprodukce. Z těchto základních předpokladů a požadavků vychází i naše konstrukce v poslední „Dílně mladého radioamatéra“ v tomto roce.

Zapojení a funkce

Původně jsme měli v úmyslu vyjít ze zapojení reflexního přijímače s integrovaným obvodem, popsaného v Dílně v AR 10/68 a doplnit jej pouze vhodným koncovým stupněm, umožňujícím poslech na reproduktor. Během experimentování se však zjistilo, že zesilovač s integrovaným obvodem má příliš velké zesílení; jako nevhodnější se ukázalo zapojení přímozesilujícího přijímače. Při připojení reflexní větve docházelo totiž k zahlcování zesilovače

a trimrem R_2 . Odpor R_3 s kondenzátorem C_3 slouží k filtraci napájecího napětí pro integrovaný obvod. Z výstupu integrovaného obvodu je přímo buzen koncový zesilovač s doplňkovou dvojicí tranzistorů T_1 , T_2 . Pracovní režim této dvojice je nastaven jednak odporem R_4 , jednak trimrem R_2 . Reproduktor je připojen k emitorům obou tranzistorů přes kondenzátor C_5 .

Možná, že se teď mnozí z vás zamyslí a položí otázku – „a kde je detekce?“ Bylo velkým překvapením při experi-

Obr. 1:
Schéma přijímače

a k nasazování oscilací. Použitím přímozesilujícího zapojení se přijímač značně zjednodušil. Konečné schéma je na obr. 1.

Přijímaný signál je zachycen rezonančním obvodem C_0L , cívka L je navinuta na feritové anténě. Naprostě neobvyklé a až trochu drastické je zapojení potenciometru P_1 paralelně k vinutí cívky L . Potenciometr slouží k regulaci hlasitosti. K tomuto zapojení jsme sáhli proto, že nebylo možné najít v tomto jednoduchém zapojení jiné místo, kde by se dala účinně a bez obtíží řídit hlasitost přijímaného signálu.

Z rezonančního obvodu C_0L je signál odebíráno vazebním vinutím L' a přivedeno na vstup lineárního integrovaného zesilovače Z_1 . Pracovní podmínky zesilovače jsou nastaveny odporem R_1

mentování s tímto přijímačem, když po odpojení reflexní větve (která měla zároveň detekovat vf signál) přijímač nejen že hrál dál, ale navíc hlasitěji a s menším zkreslením. Nezbývá tedy než předpokládat, že na některém z přechodů tranzistorů integrovaného lineárního zesilovače se signál moduluje. Faktum zůstává, že k detekci dochází a koncový stupeň je buzen nízkofrekvenčním signálem.

Přijímač je napájen z jedné ploché baterie 4,5 V a hlasitost reprodukce je naprostě dosačující. V případě, že by někdo chtěl použít větší napájecí napětí, je nutné oddělit napájení integrovaného obvodu od napájení koncového stupně, protože integrovaný obvod „vydrží“ napájecí napětí až 7 V (použité napětí 4,5 V je pro něj optimální).

Obr. 2. Obrazec plošných spojů a rozmištění součástek na destičce B 42 (ze strany součástek)

Konstrukce a součástky

Přestože přijímač je velmi jednoduchý a přestože všechny jeho součástky lze umístit na destičce (B42) o rozměrech 60×35 mm (obr. 2), je vzhledem k velikosti reproduktoru vestavěn do dřevěné skřínky rozměrů $200 \times 100 \times 80$ mm (obr. 3). Reproduktor je přišroubován k přední stěně skřínky, ladící kondenzátor a potenciometr k řízení hlasitosti jsou připevněny k jedné z bočních stěn, k horní stěně je na distančním sloupku připevněna destička se součástkami. Na dno skřínky upevněme feritovou anténu a plochou baterii 4,5 V (obr. 4).

Celý přijímač je postaven z běžně dostupných součástek. Integrovaný obvod je typu MAA125 nebo MAA145, tranzistory mohou být jakékoli běžné nízkofrekvenční typy, vybrané tak, aby dvojice měla stejný proudový zesilovací činitel β a zbytkový proud (v rozmezí asi 10 %). Cívka L je navinuta na feritové tyčce o $\varnothing 8$ mm a délce 160 mm, potenciometr je se spínačem a s co největším odporem, minimálně $1\text{M}\Omega$, ale raději více.

Na feritové tyčce je navinuto asi 80 závitů drátu o $\varnothing 0,6$ mm CuP tak, aby vinutí bylo roztaženo po celé délce feritové tyčky. Indukčnost vinutí má být asi $200 \mu\text{H}$. Vazební vinutí L' má 4 závity libovolným vodičem a je posuvné po vinutí cívky L .

Kondenzátor ve vstupním obvodu je dvojitý ladící kondenzátor typu WN70401, 2×380 pF, z něhož je zapojena pouze jedna sekce. V době na-

Obr. 3. Rozměry jednotlivých dílů dřevěné skřínky

vrhování přijímače byl k dostání ve výprodeji v Praze za 10,— Kčs, jinak je k dostání i „nový“ za 65,— Kčs. Je možné použít ovšem jakýkoli jiný ladící kondenzátor s kapacitou mezi 350 a 500 pF (samořejmě i vzduchový s vělkými rozdíly), ve skřínce přijímače je dost místa. Změnu indukčnosti cívky L vzhledem ke změně kapacity vypočítáme podle známého Thomsonova vzorce.

Ostatní součástky jsou běžné, miniaturní, vhodné pro plošné spoje. To znamená odpory pro zatížení 0,05 W, kondenzátory ploché keramické a elektrolytické kondenzátory do plošných spojů.

Skříňka přijímače

Dřevěná skříňka je slepena z překližky tloušťky 4 mm. Po zaschnutí ji vybrousimo, namoříme podle vlastního vkusu a natřeme několika vrstvami bezbarvého laku. Přední stěna je pokryta brokátem. Celá mechanická konstrukce pochopitelně „není povinná“ a každý si ji přizpůsobi podle svých potřeb.

Uvádění do chodu

Při uvádění do chodu nemohou nastat žádné potíže. Po osazení destičky součástkami a navinutí feritové antény všechny části pospojujeme a připojíme baterii 4,5 V. Nastavíme ladící kondenzátor do polohy, kde bychom asi očekávali silnou místní stanici a trimrem R_2 otáčíme tak dlouho, až uslyšíme z reproduktoru signál. Stanici přesně vyladíme ladícím kondenzátorem a trimrem R_2 . Nastavíme optimum mezi hlasitostí a zkreslením. Během dne je možné na tento přijímač zachytit 2 až 3 stanice, večer 6 až 8 i více podle místa příjmu. Další zvětšení citlivosti a hlasitosti reprodukce přijímače dosáhneme připojením jednoduché venkovní antény přes kondenzátor asi 10 až 30 pF k hornímu konci cívky L (nebo lépe k odbočce na antennní vinutí; odbočka asi v jedné třetině celkového počtu závitů od studeného konca).

Rozpiska součástek

Integrovaný obvod MAA125	1 ks	56,30	Kčs
Tranzistor 104NU71	1 ks	18,50	
Tranzistor 0C77	1 ks	26,—	
Ladicí kondenzátor WN70401 (výprodej) 2 x 380 pF	1 ks	10,—	
Potenciometr 5 MΩ/G se spináčem	1 ks	11,50	
Reprodukтор ARE467 (výprodej)	1 ks	22,—	
Trim 0,47 MΩ	1 ks	2,50	
Odpór 330 Ω/0,05 W	1 ks	0,40	
Odpór 390 Ω/0,05 W	1 ks	0,40	
Odpór 470 Ω/0,05 W	1 ks	0,40	
Odpór 1 kΩ/0,05 W	1 ks	0,40	
Elektrolytický kondenzátor 100 μF/6 V	2 ks	14,—	
Elektrolytický kondenzátor 10 μF/6 V	1 ks	7,—	
Elektrolytický kondenzátor 5 μF/6 V	1 ks	7,—	
Kondenzátor 0,1 μF/40 V plochý	1 ks	9,50	
Kondenzátor 15 nF/40 V plochý	1 ks	1,60	
Kondenzátor 6,8 nF/40 V plochý	1 ks	1,60	
Feritová tyčka, Ø8 × 160 mm	1 ks	8,50	
Baterie plocha 4,5 V	1 ks	2,40	
Knofliky	2 ks	4,40	
Destička s plošnými spoji B42	1 ks	6,—	

Celkem 210,40 Kčs

Destičku s plošnými spoji B42 si můžete zakoupit v prodejně Radioamatér v Praze nebo vám ji zašle na dohídku radioklub SMARAGD (3. ZO Svazarmu v Praze 10), poštovní schránka 116, Praha 10, stejně jako všechny označené destičky z každého AR.

Obr. 4. Rozmístění
dílů přijímače
ve skřínce

ZAJÍMAVÁ ZAPOJENÍ ZE SVĚTA

Zkoušec tyristorů

Jednoduchý zkoušec, jehož schéma je na obr. 1, je určen pro informativní zkoušení řízených křemíkových ventili, tyristorů.

Zapojime-li do přívodních zdírek zkoušený tyristor a zmačkneme tlačítko T_1 , přivedeme na řídící elektrodu napětí. Okamžitě po zmačknutí tlačítka se rozsvítí žárovka \tilde{z}_1 ; znamená to, že tyristor je v pořádku. Bliká-li žárovka \tilde{z}_1 před zmačknutím tlačítka T_1 , je zkrat v napájení.

Svíti-li obě žárovky, je tyristor proražen, má zkrat mezi elektrodami. Nesvítí-li ani jedna z žárovek, je tyristor přerušen.

Sekundární napětí transformátoru je asi 25 V, žárovky jsou na 6,3 V/300 mA (nebo podobné) a diody mohou být libovolné pro napětí kolem 100 V a proud asi 1,5 A.

—Mi—

Radio und Fernsehen (NDR), č. 5/67

Generátor napětí pilovitého průběhu pro osciloskop

Generátor napětí pilovitého průběhu pro osciloskop (obr. 1) je charakteristický dobrou linearitu a stabilní amplitudou pulsů. Obvod lze použít jak pro přenosný tranzistorový osciloskop vlastní výroby, tak i k modernizaci starých továrních osciloskopů. Nelinearity napěti pilovitého průběhu je v kmitočtové oblasti 20 až 200 000 Hz menší než 1 %, v kmitočtovém rozsahu 6 Hz až 450 kHz je lepší než 15 %. Výstupní

špičkové napětí je 3 V, spouštěcí napětí 0,5 až 5 V.

Generátor má tři tranzistory, z nichž T_1 a T_2 tvoří vlastní generátor napěti pilovitého průběhu a tranzistor T_3 slouží ke zlepšení linearity vyráběných pulsu.

Abychom pochopili, jak celé zařízení pracuje, objasníme si jednou pracovní cykl. Po připojení napájecího napěti otevře proud, protékající odporem 8,2 kΩ a potenciometrem 56 kΩ tranzistor T_2 . Kondenzátory 0,1 μF a 10 μF se nabíjejí přes odporník 1 kΩ. Odpór v kolektoru T_2 (1 kΩ) je proto tak malý, aby čas potřebný k nabíjení kondenzátorů byl co nejkratší. Jakmile se kondenzátor nabije, tranzistor T_1 se uzavře. Vybraný kondenzátor, určující kmitočet napěti pilovitého průběhu (jeden kondenzátor, připojený na přepínač) se nabíjí proudem emitoru T_2 . S nabíjením tohoto kondenzátoru se zmenší proud kolektoru T_2 a blíží se nule.

Spouštěcí impuls pak otevře tranzistor T_1 , címž se zmenší napětí na odporníku v jeho kolektoru (8,2 kΩ) a tranzistor T_2 se uzavře. V tomtéž okamžiku se začne vybijet kondenzátor, zařazený do obvodu přepínačem, kondenzátory 0,1 μF a 10 μF se znova nabíjejí, to vyvolá přerušení proudu tekoúčtu tranzistorem T_1 a otevření tranzistoru T_2 . Zařízení dokončilo jeden pracovní cyklus a následuje další.

Potenciometr P_2 slouží k nastavení linearity napěti pilovitého průběhu. Nastavuje se při uvádění zařízení do chodu. Je-li jeho odpór malý, je nelinearity napěti pilovitého průběhu velká, je-li velký, vysadí generátor napěti pilovitého průběhu. Tento potenciometr (proměnný odpór) má vliv i na amplitudu a kmitočet „pily“, proto se musí nastavovat velmi pečlivě.

Tranzistory AF117 lze nahradit běžnými vF tranzistory (např. 0C170), dioda může být jakýkoli germaniový hrotový typ.

Toute l'Électronique (Fr.), č. 3/67 —Mi—

Obr. 1. Zapojení generátoru
napětí pilovitého průběhu pro
osciloskop

MALÝ TELEVIZOR

Július Puskajler

Popisovaný televízor vznikol ako skúšobný vzorok pre skúšanie obvodov pri stavbe celo-tranzistorového prenosného televízora, ale je možné ho použiť aj ako druhý televízny príjímač do domácnosti alebo kancelárie. Je to superhet s medzinošným odberom zvuku, umožňujúci príjem v I. a III. televíznom pásmu. Je napájaný zo siete 220 V/50 Hz a je osadený 11 elektronkami, 7 tranzistormi, 14 diódami a 1 Zenerovou diodou.

Technické údaje

Rozmery obrazu: 195 × 155 mm.

Anténny vstup: symetrický 300Ω .

Priemerná citlivosť: v I. TV pásmu lepšia ako 120 μ V, v III. TV pásmu lepšia ako 200 μ V.

Medzifrekvenčný kmitočet: obrazu 38,0 MHz, zvuku 31,5 MHz.

Riadenie zosilnenia: kľúčované riadenie kladnými riadkovými impulzmi z vn transformátora, mf zosilňovač riadený ncspozdeným a kanálový volič spozdeným predpäťím.

Vychylovanie: elektromagnetické – vychylovacími cievkami, vychylovací úhol 90°.

Ostrenie lúča: elektrostatické, plynule nastaviteľné.

Riadková synchronizácia: nepriama, fázový porovnávací obvod a katódove viaza-

porovňávací obvod a
ný multivibrátor.

Vn pre obrazovku: 10 kV.

Napájanie: zo siete 220 V $\pm 10\%$,

50 Hz.

Celkový príkon: asi 90 W.
Rozmery: 860 x 860 x 250

Rozmery: 260

Basis zaanleiding

Blokové schéma televízora je na obr. 1. Kanálkový volič je z televízora Mánes bez akéjkoľvek elektrickej úpravy. Rovnako aj obrazové medzifrekvencie sú z televízora Mánes. Zapojenie medzifrekvenčného zosilňovača je na obr. 2. V dvojstupňovom zosilňovači sú strmé pen-

tôdy s napínanou mriežkou (E_3 , EF183, E_4 , EF184) a tým je zisk mf zosilňovača približne rovnaký ako u trojstupňového zosilňovača s EF80. Pri uvádzaní do chodu ale hrozí nebezpečie samovoľného rozkmitania zosilňovača, preto je treba pri zláďovaní postupovať veľmi opatrné. Zlăďovanie celej vf časti je rovnaké ako u TVP Mánes a je možné použiť rozmietač BM419 a osciloskop BM370.

Zosilnenie prvého stupňa (E_3 , EF183) je riadené nespozdeným prednáším z ob-

vodu AVC (triódová časť E_5 , PCL84). Neblokovaná časť katódového odporu R_2 kompenzuje zmenu vstupnej kapacity elektrónky E_3 . Druhý stupeň OMF (E_4) je v bežnom zapojení. Na obrazovom detektore je dióda typu 7NN41 (D_2) s pracovným odporom R_9 . Filter Tl_1 (60 μH) a kondenzátor C_9 (5,6 pF) potláčujú harmonické zložky zmiešavania a získáva sa ním medzinosný kmito-

Obr. 1. Blokové schéma televízora.

čet 6,5 MHz – medzifrekvenčný kmitočet zvuku.

Obrazový zosilňovač (obr. 3) je osadený pentódovou časťou E_{5a} (PCL84). V katódovom obvode je zapojené tlačítko I (vyjasňovač), stlačením ktorého sa zvýraznia vyššie knmitočty obrazového signálu, čím sa zaostrujú obrys obrazu. V druhej mriežke obrazového zosilňovača E_{5a} je zapojený fotoodpor R_1 (WK 650 35, lk5), ktorý sa vypina tlačítkom II . Vážba obrazového zosilňovača E_{5a}

Obr. 2. Zapojenie obrazového zosilňovača, detektora, obvodu spozdeného AVC a obvodu pre odstránenie šumenia pri zapnutí

s obrazovkou E_{12} (251QQ44) je galvanická (priama), čím je zachovaný prenos jednosmernej zložky obrazového signálu. V prívode ku katóde obrazovky je zaradený paralelný odladovač medzi nosného kmítocu 6,5 MHz (L_1 a C_{17}).

Člen R_{18} , C_{16} v katódovom privode obmedzuje katódový prúd na dovolenú velikosť. Jas obrazu sa nastavuje potenciometrom P_2 ($0,25 \text{ M}\Omega$) v riadiacej mriežke obrazovky, kde sa súčasne privádzajú snímkové a riadkové zatemňovacie pulzy zápornej polarity. Dióda D_7 (5NN41) orezáva kladné zákmity riadkových zatemňovacích pulzov a súčasne prepúšťa snímkové zatemňovacie pulzy zápornej polarity, čím sa vylučuje nebezpečie parazitnej jasovej modulácie. Zaostrovanie lúča v použitej obrazovke je elektrostatické a je plynule nastaviteľné prvkom P_3 (trimer $3,3 \text{ M}\Omega$).

Triodová časť E_{5b} (PCL84) pracuje ako klúčovaný usmerňovač; na anódu sa privádzajú kladné napäťové pulzy z vn transformátora 6PN 350 00 (vývod 8) a na katóde je úplný televízny signál zápornej polarity. Pri konštantnom predpätí triódy E_{5b} je veľkosť usmerneného napäťia závislá len na veľkosti synchronizačných pulzov. Takto získaným predpäťím sa po filtrejácii R_{11} a C_{11} priamo riadi zosilnenie prvého stupňa OMF (E_3) a napäťom spozdneným diódou D_1 (5NN41) sa riadi kanálový volič (E_1).

Kontrast sa reguluje zmenou predpätia klúčovacej triódy E_{5b} potenciometrom P_1 ($1 \text{ M}\Omega$). Aby nedochádzalo ke zmene úrovne čiernej, je obvod riadenia

Obr. 3. Zapojenie obrazového zosilňovača a obvodu obrazovky

Obr. 4. Zapojenie oddelovača a snímkového rozkladu (T_{r1} – z televízora Mánes; T_{r2} – z televízora Dajána, 9WN 67609)

Obr. 5. Zapojenie riadkových rozkladov a vn (vn transformátor je typu 6PN 35000)

Obr. 6. Zapojenie zdrojovej časti

kontrastu viazaný s obrazovým zosilňovačom (tzv. jasová automatica). Jasová automatica pracuje takto: ak je bežec P_1 u zmeneného konca, klúčovaný usmerňovač je uzavretý veľkým záporným predpäťím, napätie AVC je malé a obrazový zosilňovač pracuje s maximálnym zosilnením. Detektovaným obrazovým signálom sa užavráva elektrónka obrazového zosilňovača E_{5a} , čím sa na jej anóde zväčší napätie. Aby sa nezväčšilo aj predpätie obrazovky a tým neklesol jas obrazu, je bežec potenciometra kontrastu P_1 pripojený cez odpor R_{19} na katodu obrazovky, pričom odpory R_{18} a R_{19} tvoria vhodný delič napäcia pre obrazovku. Tento delič udržuje približne konštantný jas pri zmene kontrastu.

Pri ubcianí kontrastu (bežec P_1 sa pohybuje smärom k napájacemu napätiu) sa pokles napäcia na anóde E_{5a} kompenzuje napätim na spodnom konci odporového deliča.

Úplný obrazový signál z anódy E_{5a} sa privádza cez bežný protiporuchový člen RC na vstup oddelovača synchronizačných pulzov (E_{6a}). Podľa veľkosti privádzaného signálu sa vytvorí na mriežkovom odpore R_{30} potrebné predpätie a pracovný bód oddelovača sa tým samocinne nastaví tak, aby oddelovač ore-

C_{26} , R_{37} , C_{27}) a synchronizujú budiaci stupeň snímkového rozkladu – blokovací oscilátor (E_{7a}). Kmitočet oscilátora je hrubo nastaviteľný trimrom P_5 a jemne potenciometrom P_6 , ktorým sa mení časová konštantá mriežkového obvodu. Napätie pilovitého priebehu vzniká na kondenzátoru C_{33} a budí koncový stupeň, tvorený pentódou E_{7b} . Vychylovacie cievky 4PN05018 sú pripojené cez výstupný transformátor Tr_2 , ktorý spôsobuje impedanciu elektrónky impedance vychylovacích cievok. Vhodného tvaru vychylovacieho prúdu sa dosahuje kmitočtovo závislou spätnou väzbou z anódy do mriežky, v obvode ktorého sú zapojené regulačné prvky (linearita hore P_8 a linearita dole P_9). Rozmer obrazu sa nastavuje veľkosťou anódového napäcia blokovacieho oscilátora (trimrom P_7), ktoré sa stabilizuje napäťovo závislým odporom NZD (varistorom). K obmedzenie napäťových špičiek na anóde elektrónky koncového stupňa E_{7b} a tým k vylúčeniu možnosti prerazenia výstupného transformátora je primárne vinutie Tr_2 preklenuté odporom R_{45} .

Riadkové synchronizačné pulzy z oddelovača prichádzajú cez deriváčny člen C_{36} , R_{47} na fázový porovnávací obvod osadený diódami D_5 a D_6 (5NN41). Na tomto porovnávacom obvode (obr. 5)

sa porovnáva fáza synchronizačných pulzov a kmitočtový pilovitý priebeh, privádzaných z vn transformátora (vývod 10) cez tvarovací obvod C_{40} , C_{41} , R_{50} . Výsledné napätie z fázového porovnávacieho obvodu riadi potom kmitočet budiaceho stupňa riadkového rozkladu, ktorý je osadený elektrónkou E_8 (PCC84) a je zapojený ako katódové viazaný multivibrátor. Riadkový kmitočet sa hrubo nastavuje trimrom P_{10} a jemne potenciometrom P_{11} .

Koncový stupeň riadkového rozkladu je bežnej konštrukcie a je osadený elektrónkami E_9 (PL81), E_{10} (PY88) a E_{11} (DY86). Rozmer obrazu v horizontálnom smere sa nastavuje trimrom P_{12} a je stabilizovaný napäťovo závislým odporom NZD_2 (Sv 1300 10–9, $\pm 10\%$).

Napájacia časť televízora je na obr. 6.

Medzifrekvenčný kmitočet zvuku (obr. 7) sa odoberá z elektrónky E_5 (kolík 6) a je spracovaný dvojstupňovým tranzistorovým zosilňovačom osadeným tranzistormi T_1 (OC170), T_2 (OC170) a diódami D_3 , D_4 (GA206). Použité medzifrekvenčné transformátory sú z TVP Dajána. Nízkofrekvenčný zosilňovač je osadený tranzistormi T_3 (OC76), T_4 (OC76) a $2 \times$ GC500 (T_5 a T_6). Je bežnej konštrukcie a jeho výkon plne postačuje pre dostatočnú hlasitosť v menšej miestnosti. Reproduktor je typ AR381. Napájacia časť je bežnej konštrukcie, ale zvláštnosťou je použitie kremíkovej diódy miesto zrážacieho odporu v žeraviacom obvode, čím sa značne zmenšuje spotreba televízora a odpadne zdroj tepla. K odstráneniu šumenia pri nažeravaní slúži obvod R_{12} , C_{12} , C_{12} a D_{10} , ktorý tento nedostatok odstraňuje.

Poznámky ku stavbe

Praktické riešenie popisovaného televízora je zrejmé z fotografií na IV. str. obálky a záleží na individuálnom riešení každého, kto sa rozhodne pre stavbu. Pri rozmiestňovaní súčiastok je treba dodržiavať všeobecne zásady platné pre stavbu zariadení na VKV a dbať bezpečnostných predpisov, lebo hrozí zvýšené nebezpečie úrazu elektrickým prúdom.

Všetky použité súčiastky sú dostupné a sú použité bez akýchkoľvek úprav.

BOOSTER ke KYTAŘE

Martin Koval

Jako bývalý člen ostravské beatové skupiny The Monsters Group jsem asi před dvěma lety zaslechl skladbu „Satisfaction“ skupiny The Rolling Stones. Upoutal mne nezvyklý zvuk kytary, blížící se téměř saxofonu. Snažil jsem se proti vyrobit nějaký obvod, který by zvuk kytary podobně změnil. Po sérii pokusů se mi to víceméně podařilo. V zahraničí se přístrojům těká „Fuzz Sound“ a v inzerátech se říká: „...make your guitar produce the harmony of wind instruments...“, což znamená asi: „...dodá Vaši kytáře zvuk dechových nástrojů“. U nás je více rozšířený název „booster“. Sluchově připomíná kytara ve spojení s tímto přístrojem skutečně některé dechové nástroje, hlavně saxofon.

Zpočátku jsem používal tranzistorový jednostupňový zesilovač s pracovním bodem nastaveným do nelineární části charakteristiky. Tón však kolísal a byl nestejnomořný, a proto jsem experimentoval dále. Jako nejvhodnější se ukázal diodový omezovač.

Princip přístroje

Sinusové kmity neobsahují žádné harmonické kmitočty. Zesilíme-li je však a omezíme, vzniknou kmity obdélníkového průběhu, které se pomocí Fourierovy harmonické analýzy dají rozložit na celé spektrum harmonických kmitů. Ty způsobují charakteristický zvuk a dají se snadno upravovat korekci na zcela nové tvary, takže pak vzniká nový, neobvyklý zvuk. Dosahuje se vlastně jevu u kvalitních zesilovačů zcela nežádoucího, tzv. harmonického zkreslení, které je velmi silné.

V přístroji jsou celkem tři tranzistory a jedna germaniová dioda. Tranzistory T_1 a T_2 zesilují původní signál na velikost potřebnou k dokonalému omezení. Tím se současně mění náběh tónu, který zůstává dosud dlouho na stejně úrovni, čehož lze při hře s výhodou využít. V obvodu tranzistoru T_3 dochází k omezení signálu a pak následuje regulace hlasitosti a korekce. Korekci lze dávat zvuku různé zabarvení od ostře řezavého, kdy korekce působí prakticky jako derivativní článek, až po jakoby zahalené. Přepínač P_1 slouží k přepínání na „hru“, „fuzz“, a normální. Zdroj se zapojuje „spínačem“ na potenciometr regulace hlasitosti. Při hře postupujeme tak, že nastavíme žádanou barvu zvuku a pak regulátorem hlasitosti nastavíme přibližně stojnou úroveň, jakou má kytara bez přístroje. Většina kytar má korekce vestavěny již přímo z továrny, ty však na výsledný zvuk nemají podstatný vliv, pokud je „fuzz“ zapojen. Platí však, že při zapnutí basového rejstříku je zvuk nejvřivější, při zapojení na tzv. „plechový zvuk“ je zvuk podobný tomu, jaký používá například kytarista Pete Townshend ze skupiny Who.

(hlavně pokud jde o kmitočtový rozsah). O reproduktoriích soustavách platí totéž, nevýhodné jsou zde však tlakové reproduktory. Proč, to si řekneme později. Reproduktory Tesla nejsou bohužel příliš kvalitní a v vlastnostech, jako je povolený výkon 30 W při kmitočtovém rozsahu 25 až 20 000 Hz a průměru asi 33 cm, se nám ještě dlouho bude jenom zdát.

Ještě je třeba se zmínit o jedné ne-ctnosti přístroje, totiž o zesilování mikrofoničnosti snímače. Hluk ze snímače se totiž nezesilí tak, aby došlo k omezení a tím k jeho zeslabení – proto je jeho hladina vzhledem k signálu vyšší než normálně. Tím vzniká akustická zpětná vazba, která na rozdíl od zpětné vazby přes struny (která je dokonce v některých případech žádoucí a řada kytaristů jí vytváří zajímavé efekty) má vysoký pisklavý nepříjemný zvuk. Podle mých zkušeností se dá odstranit tím, že nepoužijeme tlakové reproduktory, které zvětšují náhylnost k této vazbě. Dále tím, že snímače měkce uložíme a odpružíme a jejich vinutí fixujeme impregnací parafinem nebo Epoxy 1200. Možnost vazby se také zmenší se zvětšováním odstupu od zdroje zvuku. Opět je třeba podotknout, že tyto neectnosti se u snímače západních výrobců vyskytují v mnohem menší míře než u výrobků našich.

K napájení přístroje používám čtyři tužkové články (6 V), které vydrží až půl roku.

Rozpis součástek

Odpory

R_1	12 k Ω	R_4	3,3 k Ω
R_2	47 k Ω	R_5	39 k Ω
R_3	1,2 k Ω	R_6	22 k Ω
R_7	560 Ω	R_8	39 k Ω

(všechny odpory jsou miniaturní).

Kondenzátory

C_1	5 μ F, elektrolytický	C_4	5 μ F, elektrolytický
C_2	50 μ F, elektrolytický	C_5	600 pF, síkatrop nebo keramický
C_3	10 μ F, elektrolytický	C_6	47 nF svítkový, zališovaný
C_7	25 k Ω log	C_8	

Potenciometry

P_1 25 k Ω logaritmický se spínačem,

P_2 100 k Ω lineární.

Potenciometry běžné, miniaturní.

Tranzistory, diody

T_1 106 až 107NU70 (BC107 až 109, KC507 až 509),
 T_2 107NU70,
 T_3 105NU70,

D GA203.

Všechnem materiál (podle druhu) stojí méně než 150,- Kčs.

Obr. 1. Zapojení tranzistorového „boosteru“

Obr. 2. Destička s plošnými spoji

B 43, cena 9 Kčs

HI-FI přenoskové vložky náš test

Ing. Jiří Krátky

Protože redakce dostává mnoho žádostí o posudky na jakost různých vložek do přenosek a důležitost jejich jednotlivých vlastností, rozhodli jsme se požádat naše spolučerovníky o popis několika nejjakostnějších přenoskových vložek. Popis je zpracován ve formě testu – všechny podstatné a rozhodující vlastnosti byly změřeny a sestaveny do tabulek, které umožňují snadné srovnání a dávají současné možnost posoudit i jakost jiných vložek srovnáním s těmito špičkovými výrobky.

Výrobce Shure (USA), jehož špičková vložka V15 II je jednou z testovaných, vyrábí celou řadu přenoskových vložek, mikrofonů atd. Výrobce Elac (NSR) patří mezi nejznámější evropské firmy a v poslední době překvapil novou stereofonnou přenoskovou vložkou typu STS444. V testu se tedy budeme zabývat srovnáním vložek Shure V15 (obr. 1) a Elac STS444 12 (obr. 2) a STS-444 E.

Kritéria hodnocení a měření

Během poslední doby se v měření a hodnocení přenoskových vložek objevily a jistě stále budou objevovat nová hlediska a požadavky, které se před nedávnem zdaly neuskutečnitelné nebo nezajímavé. Snad největší pozornost věnují přední výrobci přenoskových vložek schopnosti vložky bezpečně (tj. bez zkreslení nebo dokonce běz vyskočení z drážky) snímat záznam při co nejméně svislé síle na hrot. Konstrukční vyřešení tohoto problému není jednoduché, neboť vyžaduje zvážit mnoho hledisek, která se navzájem ovlivňují. Zatím nejlepší řešení celého snímacího systému z hlediska jeho poddajnosti a co největší snímací schopnosti našlo několik předních světových výrobců, mezi než patří obě uvedené firmy.

Snímací vlastnosti vložky lze vyjádřit jako poddajnost snímacího systému. Poddajnost (compliance, Nadelnachgiebigkeit) udávaná výrobci je ve většině případů statická. Dynamickou poddajnost lze měřit a vyjádřit jako poddajnost chvějky přímo v definovaném záznamu na měřicí desce nebo na základě reciprocity vložky. Poddajnost se obvykle

Obr. 1. Přenosková vložka Shure V15 II

udává v jednotkách 10^{-6} cm/dyn. Pojem snímací schopnosti (trackability, Abtaastfähigkeit) obvykle vyjadřuje, jak velkou stranovou rychlosť (neboli modulaci drážky) je vložka schopna snímat bez zkreslení při určitém zaznamenaném kmitočtu a při určité svislé síle na hrot. Technicky je důležitější údaj o poddajnosti, z hlediska zákazníka je důležité, jakou snímací schopnost má vložka při nahrávce.

Další vlastnost, která si zaslouží pozor-

nost, je zkreslení přenoskových vložek. Zkreslení lze v zásadě rozdělit na harmonická a intermodulační. Oba druhy jsou značně závislé na svislé síle na hrot a na modulační úrovni.

Při subjektivním hodnocení se projevuje intermodulační zkreslení mnohem rušivěji než zkreslení harmonickými kmitočty. Vznik intermodulačního zkreslení odpovídá podmírkám, které se vyskytují při skutečném provozu, proto je také jeho měření důležitější než měření harmonického zkreslení. Intermodulační zkreslení se mimo jiné zvětšuje se zvyšující se stranovou rychlostí a se zmenšující se svislou silou na hrot. Sni-

Obr. 2. Přenosková vložka Elac STS444-12 (vložka STS444 E je tvarově shodná)

mat záznam s větší stranovou rychlosťí bez velkého intermodulačního zkreslení je schopna jen vložka s velkou poddajností. Udává se, že 1 % intermodulačního zkreslení je slyšitelné v reprodukcii.

Novým způsobem hodnocení přenoskových vložek je snímání kmitů obdélníkového průběhu z měřicí desky. Tato zkouška informativně ukáže, jak je vložka schopna snímat kmitočtový průběh. Důležitější je však zhodnocení tvaru snímaného signálu z hlediska základní, které odhalí rezonance vložky a jejich zatlumení. Kromě této hledisek jsou vložky posuzovány podle dosud obvyklých a známých měření (kmitočtový průběh, přeslech, citlivost, rozdíl citlivosti).

Závěrem je třeba zdůraznit, že všechny vložky nejvyšší jakostní třídy je třeba měřit na velmi dokonalém měřicím gramofonu, který má vhodné přenoskové raménko. Přenoskové raménko musí mít asi desetkrát větší poddajnost, než jakou lze předpokládat u měřené vložky. Hmota přenoskového raménka musí být malá, aby neměla zpětný vliv na měřenou vložku (především při měření dynamické poddajnosti). Přenoskové raménko musí umožnit práci s jakostní vložkou při svislé síle na hrot kolem 0,2 p při běžné nahrávce. Jen měření na takovém raménku, které má rezonance mimo uvažovaný průběh, dává objektivní výsledky. Přenoskové vložky nelze tedy měřit zcela univerzálně, neboť závěry by pak byly nesprávné; např. hodnocení zkreslení přenoskových vložek nejvyšší jakostní třídy (magnetodynamické) v raménku, které stačí pro vložky krystalové

Tab. 1. Základní údaje vložek

	ELAC STS444-12	ELAC STS444 E	Shure V15 II
Princip	magnetodynamický	magnetodynamický	magnetodynamický
Snímací hrot	sférický 12 µm	biradiální 6/20 µm	biradiální 5/17 µm
Materiál hrotu	diamant	diamant	diamant
Typ chvějky	ELAC D444 12	ELAC 444 B	VN15 E
Výměnná chvějka	ano	ano	ano
Svislá síla na hrot	0,75 až 1,5 p	0,75 až 1,5 p	0,75 až 1,5 p
Kmitočtový rozsah ± 2 dB	10 až 24 000 Hz	10 až 24 000 Hz	10 až 25 000 Hz
Citlivost na 1 kHz	10 mV/10 cm/s	10 mV/10 cm/s	3,5 mV/5 cm/s
Rozdíl citlivosti	max. 1,5 dB	max. 1,5 dB	2 dB
Přeslech na 1 000 Hz	26 dB	26 dB	25 dB
Přeslech na 10 000 Hz	17 dB	17 dB	17 dB
Snímací úhel	15°	15°	15°
Indukčnost	320 mH	320 mH	720 mH
Zatěžovací odpór	47 kΩ	47 kΩ	47 kΩ
Statická poddajnost	$33 \cdot 10^{-6}$ cm/dyn	$33 \cdot 10^{-6}$ cm/dyn	—

Tab. 2. Změřené údaje

Obr. 3. Kmitočtové charakteristiky a přeslechy měřených vložek

vé, vede k nesprávnému závěru, že magnetodynamické mají větší zkreslení než krystalové.

Měření

Technické údaje, které uvádí výrobce, jsou přehledně v tab. 1. K měření byla použita měřicí souprava B & K (voltmetr, skříňka s filtry, třetinočkový analyzátor, zapisovač, měřicí desky QR 2008, QR 2009), měřicí deska CBS STR 110, Shure TTR - 101 a Supraphon KV 9a, osciloskop D581, dynamometr Correx, přípravek k měření stranové tuhosti. Deska QR 2008 slouží mimo jiné k měření stranové i hloubkové dynamické poddajnosti. Obsahuje záznam signálu 100 Hz o špičkové amplitudě 10, 20, 30, 40, 50 μm . Deska QR 2009 slouží k měření kmitočtové charakteristiky a přeslechů v pásmu 20 až 20 000 Hz. Měřicí deska STR 110 má na straně A signál obdélníkového průběhu 1 000 Hz, stranový a hloubkový záznam o rychlosti 5 cm/s a kanály jednotlivě o stranové rychlosti 3,54 cm/s. Zkušební deska Shure TTR 101 slouží k ověření snímací schopnosti přenoskové vložky přímo v nahrávce. Obsahuje záznam různých hudebních nástrojů se vztahující stranovou rychlostí (orchestrální zvonky rychlosť 25 cm/s při 10 000 Hz, basový kotel pro hodnocení snímací schopnosti na nízkých kmitočtech, elektrické varhany, piano, harmonika, harfa). Deska KV 9a sloužila k měření citlivosti při rychlosti 5 cm/s. Dynamometr Correx s přípravkem pro měření stranové tuhosti slouží k určení statické poddajnosti.

Zhodnocení vložek

Naměřené údaje jsou přehledně v tab. 2, průběhy kmitočtové charakteristiky a signálu obdélníkového průběhu jsou na obr. 3 a 4.

	ELAC STS444 12	ELAC STS444 E	SHURE V15 II
Citlivost na 1 kHz při rychlosti 5 cm/s	P 4,9 mV L 4,7 mV	P 5,7 mV L 5,2 mV	P 5,9 mV L 6,6 mV
Rozdíl citlivosti na 1 kHz	0,5 dB	0,85 dB	1,1 dB
Přeslech na 1 kHz	P -21,5 dB L -22,3 dB	P -22 dB L -21 dB	P -21 dB L -21 dB
Přeslech na 10 kHz	P -15 dB L -16,5 dB	P -16 dB L -16,4 dB	P -15,5 dB L -17 dB
Poddajnost statická dynamická	$30,5 \cdot 10^{-6} \text{ cm/dyn}$ $28,5 \cdot 10^{-6} \text{ cm/dyn}$	$31 \cdot 10^{-6} \text{ cm/dyn}$ $29 \cdot 10^{-6} \text{ cm/dyn}$	$35,5 \cdot 10^{-6} \text{ cm/dyn}$ $33 \cdot 10^{-6} \text{ cm/dyn}$

Kmitočtová charakteristika testovaných vložek je v uvedených tolerancích ± 2 dB. Vložky Elac mají mírné převýšení v oblasti 15 kHz. Vložka Shure V15II, snad jako jediná magnetodynamická vložka, toto převýšení nemá. Sluchový vjem tohoto převýšení je nezjistitelný. Převýšení v této kmitočtové oblasti je určeno konstrukcí hrotu a chvějky. Citlivost při 1 kHz, 5 cm/s má Shure lepší, rozdíl citlivosti mají vložky v celém kmitočtovém pásmu minimální, Elac o něco lepší. Také přeslechy jsou srovnatelné; podle testu vychází lépe

vložky Elac. Z hlediska poddajnosti však vložky Elac nedosahují vlastnosti vložky V15 II. Vložka Shure je lepší na nízkých kmitočtech; sledovala drážku nahrávky basového kotole s nejvyšší úrovni, i když ne zcela čistě. Vložky Elac právě tuto nahrávku při stejně svíslé síle na hrot nestačily sledovat a vyskočily z drážky. Vložky Elac jsou na nízkých kmitočtech srovnatelné, na vysokých je lepší STS444 E, protože dojem při přehrávání orchestrálních zvonků z desky Shure byl mnohem čistší a zřetelnější (zvláště při nejvyšší úrovni modulace). Lepší snímací schopnost na vysokých kmitočtech lze vysvětlit vlivem elliptického hrotu. Obecně se dá očekávat, že při extrémní modulaci bude V15 II přece jen lépe sledovat nahrávku. Normálně modulované desky (vyrobené u nás) vložky bezvadně přehrávaly při svíslé síle 0,25 p (Shure) až 0,3 p (Elac) – samozřejmě v kvalitním přenoskovém raménku.

Intermodulační zkreslení je u obou vložek velmi malé a jeho velikost je pod hodnotou, která je sluchem slyšitelná (obr. 5).

Poslechově lze testované vložky hodnotit jako srovnatelné. Umožňují přijemný, vyrovnaný poslech s plnými hloubkami a zřetelnými a zcela čistými výskami s výborným prostorovým dojmem. Snad jen reprodukce hloubek u vložek Elac je o něco horší a u STS444 12 je reprodukce výšek méně zřetelná.

Závěr: testované vložky lze hodnotit jako srovnatelné s výjimkou poddajnosti. Představují dokonalé výrobky, které zajistí nejkalitnější snímání a při použití kvalitních částí reprodukčního řetězce se stává poslech dobré hudby opravdu požitkem.

Obr. 4. Měření vložek napětím obdélníkového průběhu (shora STS444-12, STS444 E, Shure V15 II)

Obr. 5. Intermodulační zkreslení vložky Elac STS444 v závislosti na modulační úrovni při různé svíslé síle na hrot (0 dB odpovídá 8 cm/s)

PLOŠNÉ SPOJE V AMATÉRSKÉ PRAXI

I když dnes máme několik výrobců plošných spojů na zakázku, přece je někdy třeba zhotovit desku s plošnými spoji amatérskými prostředky doma. V článku je proto popsán rychlý způsob zhotovení desky s plošnými spoji při použití systému jednotlivých spojů.

Obvykle máme k dispozici schéma a úkolem je zkonstruovat desku s plošnými spoji, která má mít určité rozměry, dané rozměry skříňky. Jedenodušší však je, necháme-li výběr nebo zhotovení skříňky až po výrobě desky s plošnými spoji.

Abychom mohli desku účelně navrhnutou, je třeba si ji nakreslit, nejlépe na milimetrový papír. Musíme však počítat s tím, že některý milimetrový papír je nepřesný a proto si jej nejprve zkontrolujeme např. posuvným měřítkem.

Obr. 1

kem (i na milimetrovém papíře je vhodné a někdy i rychlejší používat pro větší rozteče přesné měřítko).

Při návrhu je výhodné dodržovat pro všechny otvory rozteč základní síťce 2,5 mm nebo její násobky, protože pro toto síť jsou konstruovány součástky určené pro plošné spoje. U subminiaturních součástek bývá rozteč poloviční (1,25 mm). Bylo by tedy nejvhodnější sehnat pápr s touto roztečí, což se však asi vždycky nepovede.

Pro techniku plošných spojů budeme používat tzv. modulové otvory o $\phi 1,3 \pm 0,1$ mm. Jsme-li dostatečně přesní, volíme raději zápornou toleranci. V amatérské praxi je možné použít i otvory o $\phi 1,1$ mm pro vodiče, i když k upevnění součástek je vhodnější $\phi 1,3$ mm (za předpokladu, že otvory budeme vrátit, nikoli razit).

Nejprve zvolíme základní koncepci (rozmístění velkých součástek) při respektování elektrických i mechanických požadavků na zařízení. Máme-li již součástky pohromadě, je nejlepší rozmístit je přímo na papír, abychom viděli také prostorové usporádání.

U papíru necháme dostatečně velké okraje, abychom návrh mohli přiložit na určitou desku, okraje zahnout a použít náčrtk přímo při výrobě desky s plošnými spoji. Tím odpadne orýsování roztečí.

Obr. 2

Po rozestavění součástek na papír kreslíme tužkou jejich obrys a dbáme, aby vývody byly umístěny v základní síti (2,5 mm). Je třeba si uvědomit, že kreslíme obrazec plošných spojů tak, jak bude vypadat při pohledu ze strany fólie a že tedy součástky budou upevněny z druhé strany.

Součástky (zejména odpory a kondenzátory) orientujeme pokud možno ve dvou vzájemně kolmých osách. Jednotlivé pájecí body propojujeme podle schématu co nejkratší cestou a současně dbáme, aby rozmístění vyhovovalo po elektrické straně. Choustotivé spoje nebo spoje s větším napětím navrhujeme co nejkratší, zemnicí pláty rozšiřujeme, popřípadě jimi stíníme jiné spoje.

Abychom měli alespoň nějakou směrnici, budeme při kreslení dodržovat některá doporučení Tesly Přelouč (pokud nám to konstrukce dovolí).

Plocha pro běžný pájecí bod je na obr. 1. Pro připojení konce drátového vývodu bez otvoru (na plochu fólie) je průměr pájecího bodu 5 mm. Počítáme s tím, že vodič bude částečně také mechanicky namáhan.

Obr. 3.

Rozteče otvorů s pájecími body pro součástky s drátovými vývody, popřípadě pro propojení se sousedním otvorem jsou na obr. 2.

Dva pájecí body, které nemají být navzájem vodivě spojeny, mohou vedle sebe ležet na nejmenší rozteči 5 mm (obr. 3).

Sousedící izolované pájecí body s jedním spojem mezi nimi můžeme udělat podle obr. 4, přičemž se snažíme dodržet mezeru 1,25 mm mezi pájecími body, a to i když tam prochází více vodičů.

Mezeru mezi dvěma pájecími body je možné zvětšit způsobem podle obr. 5.

Při použití objímek pro tranzistory se usporádá skupina otvorů podle obr. 6.

Okrayové spoje vedeme minimálně 1,25 mm od obrysové hrany desky. Při vedení spoje až k hraně je nebezpečí mechanického poškození (odtržení fólie od základního materiálu). Vodiče odbočujeme pod úhlem 90° (obr. 7).

U odporů, kondenzátorů a zvláště polovodičů musíme dbát na dostatečnou délku vývodů vzhledem k nebezpečí poškození součástky teplem při pájení. Minimální vzdálenost ohýbu vývodu od součástky je 2,5 mm (pokud je to z tepelných a mechanických důvodů možné) – obr. 8.

Vyzbrojeni alespoň těmito základními směrnicemi, vytvoříme na milimetrovém papíře obrazec plošných spojů se slabě předkresleným rozmístěním sou-

cátek. Zakreslime také všechny otvory pro připevnění součástek apod. U otvorů označujeme i jejich středy.

Zhotovený návrh důkladně překontrolujeme! Je rozhodně jednodušší celý návrh třeba i překreslit, než vyrábět novou desku s plošnými spoji.

Jeli návrh v pořádku, přistoupíme k výrobě desky. Vyříznerne desku stanovených rozměrů (nejlépe luppenkovou pilkou) a připevníme na ni svůj návrh tak, aby se okraj desky kryl s okrajem nakresleným na návrhu. Přehneme okraj papíru a zajistíme kancelářskými sponkami. Ostrým důlčíkem pak všechny středy otvorů označíme přes šablony na fólii a nejtenčím vrtáčkem vyvrátíme všechny otvory. Otvory, které nemají

Obr. 4.

souvislost s plošnými spoji, hned vyvrátíme na potřebný průměr. Současně vyřežeme i ostatní otvory. Větší otvory, které mají být propojeny plošnými spoji (pro nýtky, pájecí očka apod.), zatím nevrátíme – špatně by se nám kresily spoje.

K nakreslení obrazce na fólii budeme potřebovat trubičkové pero č. 10 (má průměr trubičky 1,25 mm), trochu nitrobarvy (rychleschnoucí), nitroředidlo, nulátko (kružítko) a trojúhelník nebo pravítko. Odstín barvy volíme tak, aby byl na fólii dobrě viditelný (např. modrý). Barvu rozředíme, aby byla řídká asi jako tuš. Je možné ji skutečně hodně zredit – ještě stále dostatečně kryje. O tom se nejlépe přesvědčíme, uděláme-li rozředěnou barvou, kterou máme připravenou ke kreslení, na nějakém odřezku cuprexitu nebo cuprexkartu zkušební čáru a dáme jej odlepdat. Po dobu leptání máme barvu v uzavřené nádobce, aby se ředidlo neodparovalo.

Když jsme se přesvědčili, že barva vyhovuje, tj. dobrě spouští a dostatečně kryje, můžeme začít kreslit na desku, kterou nejdříve odmástíme trichloretylenem nebo nitroředidlem.

Nejdříve si nulátkem nakreslime kroužky. Pod desku si dáme nějakou podložku s otvorem, aby jehla nulátky mohla zapadnout do otvoru. Je to výhodnější než dělat kroužky před vrtáním. Nulátko před každým naplněním rádně vyčistíme (např. oškrábeme žiletkou), neboť rychleschnoucí barva schně

Obr. 5.

Obr. 6

i na péru. Když jsme zakreslili všechny kroužky – i ty větší – můžeme vyvrtat větší otvory na požadovaný průměr a tím budeme mít desku po straně mechanické upravenou.

Nyní naplníme trubičkové pero č. 10 barvou a podle pravítka budeme propojovat jednotlivé pájccí body podle nákresu. Někdy je vhodné povytáhnout drátek z pera a použít jej teprve tehdy, když barva trochu zaschně.

Jednotlivá propojení je však třeba dělat tímto postupem: čáru kreslíme asi po 20 mm tak, že se vždy vrátíme, takže tétoho 20 mm projedeme vlastně třikrát (tam, zpět, tam). Tato délka je závislá na hustotě barvy a pohybuje se v rozmezí 20 až 40 mm. Barva totiž při opravě čáry nesmí zaschnout, jinak se trhá a čára je nevhledná. Pokud se první spoje nepovedou, nic se nestalo; hadříkem namočeným v nitroředitidle spoje „smažeme“ a uděláme hezčí.

Nakonec ještě vybarvíme kolečka, popřípadě plošky, které jsme si jen orámovali. Šablónkou můžeme zhotovit také nápis. Při přerušení práce nebo po jejím skončení musíme pero rádně vyčistit a propláchnout nitroředitidlem, aby v něm nezatvrďla barva.

Po rádném zkontrolování můžeme začít leptat. Leptáme v roztoku chloridu železitého a vody. Hustota tohoto roztoku při amatérské práci není kritická. Vhodnou nádobkou je novodurová miska, kterou dostaneme koupit v potřebné velikosti v prodejnách Fotokino. Leptání se značně zrychlí, bude me-li roztok míchat.

Po odlepání setřeme nitroředitidlem barvu ze spojů a spoje natřeme roztokem kalašůny v lihu.

Obr. 7

Při trošce trpělivosti (a nemusí ji ani být mnoho) je možné tímto postupem vytvořit plošné spoje, které se vyrovnají plošným spojům vyrobených sítiskem.

-Gala-

Literatura:

Tesla Přelouč: Směrnice pro konstrukci plošných spojů.

Obr. 8.

STABILIZÁTOR SS NAPĚTI

Miroslav Kéry

V radioamatérské praxi často potrebujeme zdroj stabilizovaného napájania, ktoré nie je závislé na premenlivom odbere prúdu (napr. pre napájanie tranzistorových koncových zosilňovačov prácujúcich v triede B). Pri väčších zatažovacích prúdoch je použitie baterií nehospodárne. Preto je výhodné postaviť si kvalitný napájač, ktorý sa dá použiť pri najrôznejších pokusných zapojeniach s tranzistormi, alebo ho možno vstať do holičového prístroja (zaberte asi toľko miesta, ako dve ploché batérie).

Technické vlastnosti

Výstupné stabilizované napätie U_s : 9 V.

Zatažovací prúd I_s : 0 až 130 mA.

Priprustná zmena sieťového napäťa: +20 %, -15 %.

Cinutie stabilizácie: $K_{st} = 500$.

Výstupný odpor: 0,7 Ω.

Amplitúda zvlnenia: 3 mV.

Rozmery: 113 × 75 × 34 mm.

Váha: 360 g.

Popis zapojenia

Popísané zariadenie (obr. 1) je v podstate degenerativný sériový stabilizátor s regulačným členom (T_2 , T_3), porovnávacím členom (ZD_1 , R_5 , R_6 , R_7) a zosilňovačom odchýlky (T_4). Tranzistor T_1 pracuje ako násobič kapacity vo filtri usmerňovača. Usmerňovač tvoria štyri kremikové diódy (D_1 až D_4) v môstkovom zapojení. Usmernené a vyfiltrované napätie sa z cmitora T_1 privádzza na kolektor regulačného tranzistoru T_2 , zapojeného ako emitorový sledovač. Pretože tranzistor T_2 v takomto zapojení má malé prúdové zosilnenie, je k nemu paralelne pripojený ešte jeden prispôsobovací tranzistor (T_3). Tako zapojený kaskódový zosilňovač má prúdový zosilňovací činitel β približne rovný súčinu zosilňovacích činitiel obuých tranzistorov: $\beta = \beta_1\beta_2$. Odpor R_4 udržuje stály prúd báze T_2 a zabranuje tak uzavretiu tranzistora pri zmenení záťaže alebo zvýšení teploty. Na emitoru T_2 je už plné výstupné napätie U_s . Dióda ZD_1 je zdrojom referenčného napäťa. Časť výstupného napäťa určená deličom R_6 , R_7 je porovávaná s referenčným napäťom na Zenerovej dióde. Stabilizované napätie sa z pomocného zdroja privádzza na kolektor T_4 odporom R_8 .

tranzistorom T_4 v zapojení so spoločným emitorom a v odpovedajúcej polarie je privádzaný na regulačný člen. Ak napr. napätie U_s na výstupce vzráste, pretože sa zväčší U_{vst} (U_{vst} vzráste napr. pri kolísaní sieťového napäťa alebo pri zmenení prúdu do záťaže), zväčší sa odpovedajúcou miernou aj jeho časť odoberanou z deliča. Tým sa zväčší záporný potenciál báze tranzistora T_4 (vzhľadom k pôvodnému stavu) a tranzistor T_4 sa otvára. Tým sa začne užívať regulačný tranzistor T_2 a zväčšuje sa jeho vnútorný odpor. Úbytok napäťa na prechode kolектор-emitor regulačného tranzistora sa zväčšuje a kompenzuje tak vzrast vstupného napäťa U_{vst} . Napätie U_s na výstupce sa pritom podstatne nemení. Stabilizačia pracuje aj opačne. K napájeniu kolektorového obvodu T_4 slúži pomocný zdroj napäťa s diódou D_5 , elektrolytickým kondenzátorom C_5 a Zenerovou diódou ZD_2 , ktorá napätie stabilizuje. Stabilizované napätie sa z pomocného zdroja privádzza na kolektor T_4 odporom R_8 .

Obr. 1. Schéma zapojenia stabilizátora

Obr. 2. Negativ plošných spojov (B44-16,50 Kčs) a rozmiestnenie súčiastok stabilizátora

Kondenzátor C_3 zabráňuje vzniku parazitných oscilácií.

Konštrukcia

Nepopisujem tu podrobne kompletnú mechanickú konceptiu stabilizátora, lebo tú si iste každý prispôsobí pre vlastnú potrebu. Uvádzam len obrazec plošných spojov s rozmiestnením súčiastok (obr. 2). Rozmery stabilizátora sú prakticky určené veľkosťou sieťového transformátora. Možno použiť akýkoľvek transformátor s prierezom jadra minimálne $1,5 \text{ cm}^2$. Sám som použil transformátor o priereze jadra $1,8 \text{ cm}^2$ (plechy M42). Údaje transformátora sú v tabuľke 1. Pretože celková konštrukcia je pomerne stesnená, je dobre na elektrolytické kondenzátory nalyieť bužírku z PVC. Tranzistory T_1 a T_2 sú zasunuté do chladiča z hliníkového plechu o hrúbke 7 mm. Chladič je k základnej doštičke pripojený troma dištančnými stípkami. Celá konštrukcia je dostatočne jasná z fotografic. Pripevňovacie skrutky všetkých diód sú skrátené na 4 mm. Vývody tranzistorov sú skrátené na 14 mm, preto treba opatrné spájkovať! Výhodnejšie je použiť pre tranzistory miniatúrne objímky. Tranzistory T_3 a T_4 nesmú prijímať teplo z chladiča, preto je v chladiči pre ne väčší otvor a je na nich navlečená bužírka.

Uvádzanie do chodu a použitie súčiastky

Uvádzanie do chodu uľahčia údaje napäti uvedené v schéme, ktoré zodpovedajú výstupnému napätiu $U_s = 9 \text{ V}$ pri zatažovacom odpore 72Ω (zatažovaci prúd 125 mA). Údaje v závitkách boli namerané pri odpojenej záťaži. Postupujeme takto: najskôr osadíme doštičku všetkými súčiastkami, okrem tranzistorov. Transformátor pripojíme na sieť a zmeriame stejnosmerné napätie na C_1 (28 V). Zmeriame aj napätie na C_5 . Nameraná hodnota musí zodpovedať Zenerovmu napätiu použitej Zenerovej diódy ZD_2 . Pre $3NZ70$ je toto napätie 7 až 8 V. Miesto typu $3NZ70$ možno použiť ktorýkoľvek iný typ z rady 1 až $8NZ70$. Lepšie sú však diódy s menším Zenerovým napätiom, lebo ich teplotný činitel je menší (pre $1NZ70$ dokonca záporný). Súčasne však treba upraviť aj striedavé napätie na vinutí L_3 a vhodne dimenzovať elektrólyt C_5 a diód D_5 . Do obvodu zaradíme

potom aj odpor R_0 (v schéme je vyznačený čiarkované) a nastavíme ním prúd Zenerovou diódou ZD_2 na 25 až 30 mA. Odpor R_0 potom zmeriame a nahradíme ho pevným odporom najbližšej hodnoty z rady E12.

Ak usmerňovač a pomocný zdroj pracujú normálne, osadíme tranzistor T_1 . Medzi jeho emitor a kladný pól zdroja pripojíme zatažovací odpor 95Ω a zmeriame prúd pretekajúci týmto odporom. Musí byť 130 mA . Ak sa namenaný prúd liší o viac ako $\pm 30 \text{ mA}$, treba

Obr. 3. Závislosť výstupného napäcia na zatažovacom prúde

upraviť pracovný bod T_1 . Odporu R_1 a R_2 nahradíme potenciometrom $15 \text{ k}\Omega$ (bežne pripojíme na spoj báze a C_2) a nastavíme pracovný bod tak, aby prúd cez zatažovací odpor bol 130 mA . Potom zmeriame čiastkové odporu potenciometra a nahradíme ich pevnými odporami. Každý tranzistor typu GC500 až GC502 by mal s odporom uvedeným v schéme pracovať správne na prvé zapojenie. Ak tomu tak nie, má pravdepodobne abnormálne malý odpor prechodu kolektor – emitor. Ak stabilizátor nebude zatažovať väčším prúdom ako 100 mA , možno miesto T_1 GC500 použiť akýkoľvek tranzistor p-n-p s kolektorovou stratou 125 mW . Vyberieme však tranzistor s čo najväčším zosilňovacím činiteľom β .

Ked aj filter pracuje správne, odpojíme zatažovací odpor a osadíme tranzistory T_2 , T_3 a T_4 . Na výstupné svorky pripojíme voltmeter a transformátor zapojíme na sieť. Výstupné napätie sa musí dať regulovať odporom R_6 v rozmedzí asi 7,8 až $10,6 \text{ V}$. Napätie nastavíme na požadovanú hodnotu a trimer zaistíme

Tab. 1.

Plechy M42	Vinutie	Napätie [V]	Prúd [mA]	Počet závitov	Ø drôu [mm]
Primárne L_1	220	15	4 900	0,1	
Sekundárne L_2	24	280	622	0,4	
Sekundárne L_3	7,5	35	226	0,15	

(napr. zaliatím voškom) proti pootočeniu. Miesto tranzistorov T_3 a T_4 GC518 možno použiť akékoľvek tranzistory p-n-p z rady GC500 až 519, či 0C70 až 77. V takom prípade však odopy R_3 a R_4 nahradíme trimery a nastavíme prúd kolektoru T_4 na $1,5 \text{ mA}$ a prúd báze na 1 až 2 mA . Odpor R_4 má vliv aj na skratový prúd na výstupe. V popísanom zapojení je skratový prúd maximálne 270 mA , čo tranzistory T_1 a T_2 znesú bez poškodenia. Výstup stabilizátora preto stačí chrániť tavnou pojatkou $0,13 \text{ A}$. O správnej činnosti sa presvedčíme pripojením zatažovacieho odporu 72Ω (pri $U_s = 9 \text{ V}$ tento odpor zodpovedá zatažovaciemu prúdu 125 mA). Výstupné napätie pritom musí zostať bez zmeny. Vlastnosti stabilizátora sú zrejmé z charakteristiky (obr. 3). Popísany stabilizátor nie je citlivý na kolísanie napäcia v sieti ani na premenlivý odber prúdu. Vysokou stabilitou a dokonalou filtráciou výstupného napäcia vyhovuje aj pre nejnáročnejšie požiadavky (ako napr. napájanie kvalitného tranzistorového generátora so širokopásmovým zosilňovačom).

Najčastejšie závady

Počas prevádzky stabilizátora alebo pri uvádzaní do chodu sa môžu vyskytnúť tieto závady:

1. Po pripojení zataže napäcie U_s klesne a opäť pomaly stúpa a naopak, po odpojení zataže stúpne a pomaly klesá; nesprávne nastavený pracovný bod T_1 . Treba zmeniť odpor R_1 .
2. Napätie na výstupe i pri odpojenej záťaži je menšie ako 7 V : nefunguje pomocný zdroj. Chyba môže byť len v súčiastkach D_5 , C_5 , ZD_2 , alebo je prerušený odpor R_3 ; prípadne R_4 .
3. Výstupné napätie i pri odpojenej záťaži kolíše; nepracuje T_4 . Vadný bude tranzistor alebo ZD_1 , R_5 , R_6 , R_7 .
4. Napätie na výstupe je väčšie ako 14 V : vadný T_2 .
5. Na výstupe nie je žiadne napätie: v takom prípade môže byť viac príčin; vadný tranzistor T_1 , zablokovaný T_1 – treba zmeniť R_1 , vadný tranzistor T_2 , na výstupe je skrat.

Súčiastky

Tranzistory a diódy

- T_1 – GC500
- T_2 – GC500
- T_3 – GC518
- T_4 – GC518
- D_1 , D_2 , D_3 , D_4 , D_5 – 32NP75
- ZD_1 , ZD_2 – 3NZ70

Odopy (0,05 W)

- R_1 – 18Ω
- R_2 – $10 \text{ k}\Omega$
- R_3 – $2,7 \text{ k}\Omega$
- R_4 – $6,8 \text{ k}\Omega$
- R_5 – $1,2 \text{ k}\Omega$

Kondenzátory

- C_1 – TE 986 20M/35 V
- C_2 – TE 986 20M/35 V
- C_3 – TC 281 10k ($\varnothing 7 \times 15 \text{ mm}$)
- C_4 – TE 984 50M/15 V
- C_5 – TE 984 50M/15 V

Literatúra

- [1] Karlov, V. I.: Polovodičové stabilizátory napäti. SNTL: Praha 1965.
- [2] Čermák, J. a Navrátil, J.: Tranzistorová technika. SNTL: Praha 1967.

MĚŘIČ REZONANCE

Bohuslav Slovák

Popisovaný měřič rezonance je velmi dobrým pomocníkem všech zájemců o televizní techniku. Má některé vlastnosti, které jsem u dosud publikovaných měřičů rezonance nenašel. Jde o běžné zapojení grid-dip oscilátoru, jehož signál je modulován kmitočtem 400 Hz až 7 kHz z multivibrátoru (pulsy pravoúhlého průběhu). Rozsah je 27 MHz až 230 MHz, překrývající se v pěti dílčích rozsazích (obr. 1).

Přístroj lze používat jako:
absorpční vlnoměr,
záznějový vlnoměr,
grid-dip oscilátor,
signální generátor s modulačí pravo-
úhlými pulsy pro výrobu vodorovných
pruhů k opravám TV.

Kromě toho je možné přístroj použít
jako nízkofrekvenční generátor pravo-

úhlých pulsů pro kontrolu nf části ze-
silovače. Nf signál lze řídit od 400 Hz
do 7 kHz.

Dále je možné v poloze přepínače
„Signální generátor“ vyvést vf signál
souosým kabelem.

Přístroj je vestavěn do skřínky o roz-
měrech 22×8×4 cm. Rozmístění sou-
částek je zřejmé z obr. 2. Ke stavbě jen

několik poznámek. Při zapojování ladi-
cího kondenzátoru musíme zapojit živý
konec cívky a anodu oscilátoru na stator
otočného kondenzátoru. V opačném
případě se uplatní kapacita rotoru pro-
cházejícího kostrou skřínky a dochází
ke zmenšení kmitočtového rozsahu a ne-
stabilitě oscilátoru. Přístroj pracuje
s mřížkovou modulací. Potenciometr
25 kΩ plní několik funkcí. V poloze
„Signální generátor“ řídí amplitudu
modulace a amplitudu nízkofrekvenč-
ního signálu vyvedeného na zdírku.
V poloze GDO, Z.V., A.V. řídí citlivost
měřidla. Pro použití přístroje jako
„Signální generátor“ je vf signál vy-
veden smyčkou, která je umístěna v blíz-
kosti ladičího kondenzátoru. Příhýbá-
ním smyčky je možné měnit amplitudu
vf signálu. V této poloze se nasouvá na
cívku hliníkový kryt, aby nedocházelo
k vyzařování vf signálu mimo výstup
pro připojení sousošího kabelu. Při po-
užití hliníkového krytu se posouvá
kmitočtový rozsah asi o 6 MHz nahoru
a proto je nutná dvojí stupnice pro kaž-
dý rozsah. Potenciometrem 200 kΩ se
řídí kmitočet multivibrátoru. Přepínač
funkcí je pětipolohový! V prvních třech
polohách pracuje přístroj jako vlnoměr
a GDO. Čtvrtá poloha je pro připojení
měřidla pro vnější měření. V páté po-
loze pracuje přístroj jako signální gene-
rátor. Celkový popis mechanické kon-
strukce neuvedlím – ta bude záviset pře-
devším na použitých součástkách (cel-
kový vzhled je na obr. 3, stupnice pro
přístroj s uvedenými součástmi na
obr. 4).

Cíalky

Kmitočet [MHz]	Počet závitů na ø 20 mm
230 až 154	0,5
155 až 105	1,5
98 až 66	3
43 až 64	9
27 až 39	12

Odbočka je uprostřed vinutí; drát má
ø 1,5 mm CuAg.

Síťový transformátor má průřez okén-
ka 3,5 cm, počet závitů na 1 V = 13.

Vinutí pro 220 V má 2 860 z drátu
ø 0,15 mm CuP, pro 200 V 2 500
z drátu ø 0,07 mm CuP, sekundární
vinutí 6,3 V má 82 z drátu ø 0,5 mm
CuP.

Obr. 1. Zapojení měřiče rezonance a přidavných obvodů

Obr. 2.
Vnitřní uspořádání
přístroje

Obr. 3. Vnější vzhled
přístroje

Obr. 4. Stupnice přístroje

1132. tečka (telegr.), bod	849	1190. sweep oscillator 695	1166. Trägerstromtelephone f 1138
1133. technik	426	1191. swinging choke 1175	1167. Tränkung f 258
1134. technika	1137	1192. switch 1328, 1047, 865	1168. Transistoratorenkopplung f 1265
1135. telefon	1136	1193. switch on 1350	1169. Transistor m 1200
1136. telefónie	1213	1194. switch over 875	1170. transportabel 862
1137. drátová	1214	1195. switching circuit 624	1171. Treiberöhre f 155
1138. nosný (nosnými proudy)	1351	1196. switching network 641	1172. Trennen n 951
1139. telefonovati	163	1197. switching transistor 1213	1173. Trennkreis m 635
1140. telegraf	156	1198. symmetrical 1043	1174. Trennschärfe f 980
1141. telegrafie drátová	1212	1199. synchronodevice 981	1175. Trennung der Synchronisationszeichen 656
1142. jiskrová	132	1200. synchronisation 1110	1176. Triggerschaltung f 643
1143. mnohorázobná	765	1201. synchronous operation 247	1177. Trimmer 1217
1144. nosnými proudy	162	1202. sync signal 998	1178. Trimmerkondensator m 367
1145. telegram	153	1203. system 1111	1179. Triode f 1218
1146. teleso	123	T	1180. Tunneldiode f 116
1147. televize	1216	1204. table 1130	U
1148. barevná	216	1205. tag 352	1181. überbrücken 848
1149. černobílá	756	1206. tantalum capacitor 383	1182. Überregung f 834
1150. plastická	972	1207. tap (ping) 653	1183. Übergang m 837
1151. průmyslová	1084	1208. tap joint 1336	1184. übergangbar 842
1152. televizor	592	1209. tape recorder 442	1185. Übergangscharakteristik f 241
1153. terapív	1218	1210. tapped transformer 1194	1186. Überlagerer m 206
1154. teplo	913	1211. tearing 1216	1187. Überlastung f 883
1155. teplomér	551, 1832	1212. telegraph 1140	1188. Überbrücktkopplungsempfänger
1156. teplofa	1230	1213. telephone 1135	m 893
1157. termistor	129	1214. telephony 1136	1189. Überschall-, Ultraschall- 523
1158. perličkový	1228	1215. teleprinter 90	1190. Überschlag m 880
1159. tyčinkový	102	1216. television 1147	1191. Übersetzungverhältnis n 786
1160. termočlánek	1023	1217. television relay 854	1192. Überspannung f 864
1161. těsnění	1229	1218. television set 894, 1152	1193. Überströmen 522
1162. test	829	1219. temperature 1156	1194. Überträger m 849
1163. tkanina	189	1220. temperature compensation 363	1195. Übertragung f 850
1164. sklerna	455	1221. terminal 365, 1105	1196. Übertragungscharakteristik f 242,
1165. tvrzena	522	1222. test frequency 322	243
1166. vřivená	544	1223. test pattern 613	1197. Übertragungskanal m 287
1167. tláčítko	650	1224. test signal 1001	1198. undrehen 571
1168. hukomér	935	1225. test voltage 563	1199. Umdrehung f 700
1169. tloušťka	923	1226. testler 1373	1200. Urdformer m 396, 458
1170. tlumený	44	1227. thermistor 1157	1201. Umkehrschalter m 870
1171. tlumivka	1231	1228. thermometer 1155	1202. Umlauf m 589
1172. tlumivka	184	1229. thickness 1169	1203. Umliegung f 844
1173. bez jádra	304	1230. three-phase 1219	1204. umpolen 876
1174. filtráční	172	1232. threshold of sensitivity 806	1205. umschalten 875
1175. nárazová	23	1233. thrust bearing 435	1206. Umschalter m 865
1176. se železným jádrem	323	1234. thyatron 1229	1207. Umsetzung f 885, 846
1177. síťová	191	1235. time (switching) 122	1208. unispiinner Draht 135
1178. vyhlazovací	229	1236. time base 1342, 73	1209. unisponnener Leiter 1300
1179. vý	20	1237. time base 1342, 73	1210. ungedämpfte Schwingungen 309
1180. tmel	265	1238. time-base circuit 622	1211. ungeradzahlige Harmonische 346
1181. tok	1004	1239. tip 225	1212. unmittelbare Steuerung 713
1182. tolerance	282	1240. tolerance 1182	1213. unmittelbare Steuerung 713
1183. tónový	1191	1241. toll (bill) condenser 382	1214. Unterbrecher m 878
1184. transformátor	632	1242. summa 987	
	459	1243. schema ograniczenia 636	
	457	1244. schema oklona 647	
	458	1245. schema perelokuchnia 641	
	459	1246. schema formowania impulsów	
	458	1247. schéma 892	
	459	1248. schéma energetického příjemníku	
	460	1249. schéma 893	
	461	1250. schéma 987	
	462	1251. schéma 987	
	463	1252. schéma 987	
	464	1253. schéma 987	
	465	1254. schéma 987	
	466	1255. schéma 987	
	467	1256. schéma 987	
	468	1257. schéma 987	
	469	1258. schéma 987	
	470	1259. schéma 987	
	471	1260. schéma 987	
	472	1261. schéma 987	
	473	1262. schéma 987	
	474	1263. schéma 987	
	475	1264. schéma 987	
	476	1265. schéma 987	
	477	1266. schéma 987	
	478	1267. schéma 987	
	479	1268. schéma 987	
	480	1269. schéma 987	
	481	1270. schéma 987	
	482	1271. schéma 987	
	483	1272. schéma 987	
	484	1273. schéma 987	
	485	1274. schéma 987	
	486	1275. schéma 987	
	487	1276. schéma 987	
	488	1277. schéma 987	
	489	1278. schéma 987	
	490	1279. schéma 987	
	491	1280. schéma 987	
	492	1281. schéma 987	
	493	1282. schéma 987	
	494	1283. schéma 987	
	495	1284. schéma 987	
	496	1285. schéma 987	
	497	1286. schéma 987	
	498	1287. schéma 987	
	499	1288. schéma 987	
	500	1289. schéma 987	
	501	1290. schéma 987	
	502	1291. schéma 987	
	503	1292. schéma 987	
	504	1293. schéma 987	
	505	1294. schéma 987	
	506	1295. schéma 987	
	507	1296. schéma 987	
	508	1297. schéma 987	
	509	1298. schéma 987	
	510	1299. schéma 987	
	511	1300. schéma 987	
	512	1301. schéma 987	
	513	1302. schéma 987	
	514	1303. schéma 987	
	515	1304. schéma 987	
	516	1305. schéma 987	
	517	1306. schéma 987	
	518	1307. schéma 987	
	519	1308. schéma 987	
	520	1309. schéma 987	
	521	1310. schéma 987	
	522	1311. schéma 987	
	523	1312. schéma 987	
	524	1313. schéma 987	
	525	1314. schéma 987	
	526	1315. schéma 987	
	527	1316. schéma 987	
	528	1317. schéma 987	
	529	1318. schéma 987	
	530	1319. schéma 987	
	531	1320. schéma 987	
	532	1321. schéma 987	
	533	1322. schéma 987	
	534	1323. schéma 987	
	535	1324. schéma 987	
	536	1325. schéma 987	
	537	1326. schéma 987	
	538	1327. schéma 987	
	539	1328. schéma 987	
	540	1329. schéma 987	
	541	1330. schéma 987	
	542	1331. schéma 987	
	543	1332. schéma 987	
	544	1333. schéma 987	
	545	1334. schéma 987	
	546	1335. schéma 987	
	547	1336. schéma 987	
	548	1337. schéma 987	
	549	1338. schéma 987	
	550	1339. schéma 987	
	551	1340. schéma 987	
	552	1341. schéma 987	
	553	1342. schéma 987	
	554	1343. schéma 987	
	555	1344. schéma 987	
	556	1345. schéma 987	
	557	1346. schéma 987	
	558	1347. schéma 987	
	559	1348. schéma 987	
	560	1349. schéma 987	
	561	1350. schéma 987	
	562	1351. schéma 987	
	563	1352. schéma 987	
	564	1353. schéma 987	
	565	1354. schéma 987	
	566	1355. schéma 987	
	567	1356. schéma 987	
	568	1357. schéma 987	
	569	1358. schéma 987	
	570	1359. schéma 987	
	571	1360. schéma 987	
	572	1361. schéma 987	
	573	1362. schéma 987	
	574	1363. schéma 987	
	575	1364. schéma 987	
	576	1365. schéma 987	
	577	1366. schéma 987	
	578	1367. schéma 987	
	579	1368. schéma 987	
	580	1369. schéma 987	
	581	1370. schéma 987	
	582	1371. schéma 987	
	583	1372. schéma 987	
	584	1373. schéma 987	
	585	1374. schéma 987	
	586	1375. schéma 987	
	587	1376. schéma 987	
	588	1377. schéma 987	
	589	1378. schéma 987	
	590	1379. schéma 987	
	591	1380. schéma 987	
	592	1381. schéma 987	
	593	1382. schéma 987	
	594	1383. schéma 987	
	595	1384. schéma 987	
	596	1385. schéma 987	
	597	1386. schéma 987	
	598	1387. schéma 987	
	599	1388. schéma 987	
	600	1389. schéma 987	
	601	1390. schéma 987	
	602	1391. schéma 987	
	603	1392. schéma 987	
	604	1393. schéma 987	
	605	1394. schéma 987	
	606	1395. schéma 987	
	607	1396. schéma 987	
	608	1397. schéma 987	
	609	1398. schéma 987	
	610	1399. schéma 987	
	611	1400. schéma 987	
	612	1401. schéma 987	
	613	1402. schéma 987	
	614	1403. schéma 987	
	615	1404. schéma 987	
	616	1405. schéma 987	
	617	1406. schéma 987	
	618	1407. schéma 987	
	619	1408. schéma 987	
	620	1409. schéma 987	
	621	1410. schéma 987	
	622	1411. schéma 987	
	623	1412. schéma 987	
	624	1413. schéma 987	
	625	1414. schéma 987	
	626	1415. schéma 987	
	627	1416. schéma 987	
	628	1417. schéma 987	
	629	1418. schéma 987	
	630	1419. schéma 987	
	631	1420. schéma 987	
	632	1421. schéma 987	
	633	1422. schéma 987	
	634	1423. schéma 987	
	635	1424. schéma 987	
	636	1425. schéma 987	
	637	1426. schéma 987	
	638	1427. schéma 987	
	639	1428. schéma 987	
	640	1429. schéma 987	
	641	1430. schéma 987	
	642	1431. schéma 987	
	643	1432. schéma 987	
	644	1433. schéma 987	
	645	1434. schéma 987	
	646	1435. schéma 987	
	647	1436. schéma 987	
	648	1437. schéma 987	
	649	1438. schéma 987	
	650	1439. schéma 987	
	651	1440. schéma 987	
	652	144	

T

1185.	jednofázový	1106	682	1242. tone 1183	1215. Unterbrechung f 877
1186.	mf	620	1349	1243. tone arm 920	1216. unterdrückte Welle 1284
1187.	náplæcí	1181	1041	1244. tone control 70	1217. unterdrückter Träger 331
1188.	napětí	893	1035	1245. tong 303	1218. Unterdrückung f 803
1189.	napázdno	795	649	1246. top 1310	1219. Unterlage f 764
1190.	pásťový	1079	698	1247. top antenna 33	1220. Unterspannung f 768
1191.	priprísovovaci	711	55	1248. top cap 75	1221. unverzögert 518
1192.	regulační	261	1083	1249. total 1040	
1193.	rádiového rozkladu	675	1324	1250. total voltage 539	
1194.	s odbockami	1210	66	1251. touch 1093	1222. variable Frequenz 333
1195.	se železným jádrem	633	266	1252. touch (accidental) 128	1223. Varicap m 110
1196.	vazební	624	599	1253. trace 1069	1224. Ventil n 1270
1197.	výstupní	822	90	1254. transfer 885, 844	1225. veränderlich 814
1198.	zvorkový	110	563	1255. transfer (transmission) characteristic 242	1226. Verbindung f 1048
1199.	žhavící	549	487	1256. transformation 846	1227. Verbindung f 1052
1200.	tranzistor	1262	1169	1257. transformer 1184	1228. Verbindungsstasche f 738, 1050
1201.	difúzní	335	193	1258. transformer sheet 757	1229. Verbrauch m 390
1202.	epitaxní	428	303	1259. transformer sheet 757	1230. Verbraucher m 1036
1203.	křemenný	885	1016	1260. transient 842	1231. Verdoppler m 1369
1204.	mesa	1103	491	1261. transient curve (response) 241	1232. Verdrahten n 815
1205.	microslitinnový	725	716	1262. transistor 1200	1233. Verdreifacher m 1382
1206.	microstriplinnový	733	729	1263. transmission 850	1234. Verfahren n 795
1207.	difúzni	699	192	1264. transmission channel 287	1235. Vergleichskreis n 638
1208.	planární	874	829	1265. transmission spannung f 548	1236. Vergleichsspannung f 548
1209.	plôšný	641	357	1266. transient 842	1237. Verhältnis m 782
1210.	prudlicový	378	221	1267. transmit 1332	1238. verhältnismässig 788
1211.	řízený polem	456	332	1268. transmitter 1331	1239. Verkehr m 824
1212.	slitinnový	29	652	1269. transmitter 1331	1240. Verlauf m 825
1213.	spinaci	1197	924	1270. travelling wave 1283	1241. vernessen 847
1214.	výkonový	897	656	1271. triangle 1220	1242. Verschiebung f 797
1215.	tranzistory doplňkové	227	579	1272. trigger 843	1243. Verschleis m 704
1216.	trhání obrazu	1211	144	1273. trimmer 1217	1244. verschwinden 1347
1217.	trinár	1272	1177	1273. trimmer capacitor 367	1245. Versetzen n 879
1218.	trioda	1274	1179	1274. triode 1218	1246. verspiegelte Glühlampe 1390
1219.	trojofázový	1232	220	1275. tripping circuit 643	1247. Verstärker m 1371
1220.	trojuhelník	1270	219	1276. trouble 792	1248. Verstärkerrohre f 172
1221.	trubice	1277	890	1277. tube 154, 1221	1249. Verstärkung f 1370
1222.	trvalý	844	174	1278. tube base 746	1250. Verstärkung f 948, 526
1223.	tryska	538	235	1279. tubular condenser 385	1251. Verteiler m 94
1224.	ření	501	876	1280. tubular lamp holder 597	1252. verteilt abgestimmte Kreise 649
1225.	trida	199	557	1281. tunable filter 183	1253. Verteilungskasten m 1013
1226.	trídlo	545	483	1282. tune 527	1254. Verteilungskästen m 1013
1227.	ivarovací impulsů	919	506	1283. tuned circuit 630	1255. Vervielfachung f 568
1228.	tyl impulsů	649	512	1284. tuned line 534	1256. Verzerrung f 1375
1229.	tyratron	1235	1149	1285. tuned radio-frequency receiver	1257. Verzögerung f 1381
1230.	tyristor	487	831	1178	1258. Vibration f 253
					1259. Videosignal n 990
					1260. Videomenüantenne f 19
					1261. Vielfachwechselstromtelegraphie
					f 1143
					1262. vielpoliger Umschalter 873
					f 1263. Vierpol m 88
					1264. Vierwellenantenne f 15
					1265. Volumen n 593
					1266. Vor-Rückverhältnis n 783
					1267. Vorgabewert m 220
					1268. Vorrichtung f 1358
					1269. tweter 941
					1270. tweter 941
					1271. tweter 941
					1272. tweter 941
					1273. tweter 941
					1274. tweter 941
					1275. tweter 941
					1276. tweter 941
					1277. tweter 941
					1278. tweter 941
					1279. tweter 941
					1280. tweter 941
					1281. tweter 941
					1282. tweter 941
					1283. tweter 941
					1284. tweter 941
					1285. tweter 941
					1286. tweter 941
					1287. tweter 941
					1288. tweter 941
					1289. tweter 941
					1290. tweter 941
					1291. tweter 941
					1292. tweter 941
					1293. tweter 941
					1294. tweter 941
					1295. tweter 941
					1296. tweter 941
					1297. tweter 941
					1298. tweter 941
					1299. tweter 941
					1300. tweter 941
					1301. tweter 941
					1302. tweter 941
					1303. tweter 941
					1304. tweter 941
					1305. tweter 941
					1306. tweter 941
					1307. tweter 941
					1308. tweter 941
					1309. tweter 941
					1310. tweter 941
					1311. tweter 941
					1312. tweter 941
					1313. tweter 941
					1314. tweter 941
					1315. tweter 941
					1316. tweter 941
					1317. tweter 941
					1318. tweter 941
					1319. tweter 941
					1320. tweter 941
					1321. tweter 941
					1322. tweter 941
					1323. tweter 941
					1324. tweter 941
					1325. tweter 941
					1326. tweter 941
					1327. tweter 941
					1328. tweter 941
					1329. tweter 941
					1330. tweter 941
					1331. tweter 941
					1332. tweter 941
					1333. tweter 941
					1334. tweter 941
					1335. tweter 941
					1336. tweter 941
					1337. tweter 941
					1338. tweter 941
					1339. tweter 941
					1340. tweter 941
					1341. tweter 941
					1342. tweter 941
					1343. tweter 941
					1344. tweter 941
					1345. tweter 941
					1346. tweter 941
					1347. tweter 941
					1348. tweter 941
					1349. tweter 941
					1350. tweter 941
					1351. tweter 941
					1352. tweter 941
					1353. tweter 941
					1354. tweter 941
					1355. tweter 941
					1356. tweter 941
					1357. tweter 941
					1358. tweter 941
					1359. tweter 941
					1360. tweter 941
					1361. tweter 941
					1362. tweter 941
					1363. tweter 941
					1364. tweter 941
					1365. tweter 941
					1366. tweter 941
					1367. tweter 941
					1368. tweter 941
					1369. tweter 941
					1370. tweter 941
					1371. tweter 941
					1372. tweter 941
					1373. tweter 941
					1374. tweter 941
					1375. tweter 941
					1376. tweter 941
					1377. tweter 941
					1378. tweter 941
					1379. tweter 941
					1380. tweter 941
					1381. tweter 941
					1382. tweter 941
					1383. tweter 941
					1384. tweter 941
					1385. tweter 941
					1386. tweter 941
					1387. tweter 941
					1388. tweter 941
					1389. tweter 941
					1390. tweter 941
					1391. tweter 941
					1392. tweter 941
					1393. tweter 941
					1394. tweter 941
					1395. tweter 941
					1396. tweter 941
					1397. tweter 941
					1398. tweter 941
					1399. tweter 941
					1400. tweter 941
					1401. tweter 941
					1402. tweter 941
					1403. tweter 941
					1404. tweter 941
					1405. tweter 941
					1406. tweter 941
					1407. tweter 941
					1408. tweter 941
					1409. tweter 941
					1410. tweter 941
					1411. tweter 941
					1412. tweter 941
					1413. tweter 941
					1414. tweter 941
					1415. tweter 941
					1416. tweter 941
					1417. tweter 941
					1418. tweter 941
					1419. tweter 941
					1420. tweter 941
					1421. tweter 941
					1422. tweter 941
					1423. tweter 941
					1424. tweter 941
					1425. tweter 941
					1426. tweter 941
					1427. tweter 941
					1428. tweter 941
					1429. tweter 941
					1430. tweter 941
					1431. tweter 941
					1432. tweter 941
					1433. tweter 941
					1434. tweter 941
					1435. tweter 941
					1436. tweter 941
					1437. tweter 941
					1438. tweter 941
					1439. tweter 941
					1440. tweter 941
					1441. tweter 941
					1442. tweter 941
					1443. tweter 941

ELEKTRONICKÉ zapalování

Ing. Miloš Hlávka

Až do nedávne doby se u automobilů téměř výhradně používal tzv. dynamobateriový systém zapalování. Tento druh zapalování je sice velmi jednoduchý, má však určité nevýhody, které až do rozvoje tranzistorové techniky nebylo možné odstranit.

Na obr. 1 je nejjednodušší zapojení dynamobatériového zapalování. Proud z baterie B do primárního vinutí zapalovací cívky ZC je ve vhodném okamžiku přerušován přerušovačem P . Přerušením proudu v primárním vinutí zapalovací cívky vzniká v tomto vinutí vlastní indukcí napěťový impuls (200 až 400 V), který se transformuje do sekundárního vinutí zapalovací cívky. Transformační pomér vinutí zapalovacích cívek se pohybuje kolem 1 : 60 až 1 : 80 pro rozvod 12 V a kolem 1 : 100 pro rozvod 6 V. Z toho vyplývá, že indukované napětí v sekundáru je až asi 20 kV. To stačí k vytvoření kvalitní jiskry mezi kontakty zapalovacích svíček. V obvodu vysokého napětí je většinou zapojen jen

Obr. 1. Dynamobateriové zapalování

rozdělovač, který připojuje sekundární vinutí zapalovači cívky na tu svíčku, která má právě zapálit.

Nejdůležitější a také nejnamáhanejší součástí dynamobateriové soustavy zapalování je přerušovač. Na tuto součást jsou v provozu kladený velké požadavky, které jsou ještě ke všemu protichůdné. Přerušovač musí svými kontakty přenášet poměrně velký proud (klidový proud primárním vinutím při sepnutých kontaktech je 3 až 5 A podle druhu cívky; při běžícím motoru se střední proud zmenšuje asi na 1,5 A). Tento požadavek by mohl být splněn při velké ploše kontaktů. To ovšem odporuje požadavku malé váhy pohyblivého raménka přerušovače. Toto raménko je namáháno velkým zrychlením (od vačky) a proto musí být co nejlehčí, aby kontakty při velkých rychlostech otáčení motoru nedskakovaly. Dalším nepříznivým vlivem, který působí na kontakty, je proud, který jimi protéká, ncož ten má z větší

Obr. 2. Zapalování s jedním tranzistorem

části indukční charakter – to způsobuje značné opalování kontaktů v provozu a tím nejen zvětšení přechodového odporu přerušovače, ale také změnu předstihu u motoru.

Výsledek téhoto nepříznivých vlivů je nepravidelnost chodu motoru při velkých rychlostech otáčení, větší spotřeba paliva, nedokonalé 'spalování', zmenšení akcelerace, výkonu motoru atd.

Působení velkých zrychlení na raménko přerušovače lze těžko odstranit. Proto se snaha o vylepšení zapalovacího systému zaměřila na odlehčení od velkého proudu a jeho indukční složky.

Významným mezníkem ve vývoji zapalování je použití polovodičů.

Zapalovací systémy s polovodiči lze rozdělit do dvou velkých skupin:

2. tyristorové zapalovač systémy:

Název těchto zapojení je nepřesný, neboť tranzistory jen nahrazují v klasickém zapalovacím systému přerušovač. Kontakty přerušovače pak protéká jen proud potřebný k ovládání spínacího tranzistoru. Tento proud je minimálně desetkrát menší než proud primárním vinutím zapalovací cívky a kromě toho má ryze činný charakter. Kontakty přerušovače jsou pak namáhaný a opotřebovávány jen mechanicky. Jejich životnost je nesrovnatelně delší než u klasického zařízení. Kondenzátor přerušovače ztrácí své opodstatnění a lze jej odpojit. Při řešení tranzistorového zapalování narázíme na určité problémy. Hlavním problémem je špičkové napětí, které se při vypnutí obvodu indukuje v primárním vinutí zapalovací cívky a dostává se tedy na tranzistor. Z hlediska řešení tohoto problému můžeme rozdělit tranzistorové zapalovací systémy na tři skupiny:

- a) zapalovací systém s jedním tranzistorem a původní zapalovací cívkou,
- b) zapalovací systém s jedním tranzistorem a speciální zapalovací cívkou,
- c) zapalovací systém s několika tranzistory v sérii a původní zapalovací cívkou.

Obr. 3. Zapalování s jedním tranzistorem
a ochranou

Zapalovací systém s jedním tranzistorem a původní zapalovací cívkou

V tomto systému se používá tranzistor s velkým dovoleným napětím mezi kolektorem a emitem (min. 200 V). Tranzistor v tomto případě, indukční špičku napětí vydrží. Základní schéma takového systému je na obr. 2. Zapojení je velmi jednoduché: odpor R_1 upravuje proud báze na potřebnou vclikost, kondenzátor C_1 propouští vf kmity, vznikající při vypnutí obvodu primárního vinutí cívky. Obvod složený z odporu R_2 , R_3 a diody D_1 je pro funkci zapojení velmi důležitý. Při uzavření tranzistoru

Obr. 4. Zapalování se třemi tranzistory

(rozpojení kontaktů přerušovače P). vzniká totiž na katodě diody D_1 (průtokem proudu odporem R_3 a diodou D_1) záporné napětí (vůči emitoru tranzistoru). Toto napětí se přivádí přes odpor R_2 na bázi tranzistoru a způsobuje jeho ještě dokonalejší zavření. To má vliv jednak na zvětšení napěťového impulu indukovaného v primárním vinutí, jednak zůstává tranzistor i při zvýšené teplotě spolehlivě uzavřen.

Zapalovací systém s jedním tranzistorem a speciální zapalovací cívkou

V tomto systému se používá tranzistor s poměrně malým dovoleným napětím mezi kolektorem a emitorem (asi 60 až 90 V). Schéma zapojení tohoto systému je na obr. 3. Tranzistor by v tomto obvodu ovšem nevydržel napěťovou špičku z primárního vinutí cívky. Proto je chráněný řetězcem Zenerových diod. Součet Zenerových napětí těchto diod musí být o něco menší než dovolené napětí mezi

Obr. 5. Tyristorové zapalování

Obr. 6. Zapalování s tranzistorem pro auta s kladným pólem baterie na kostře (12 V)

Obr. 7. Kontrola napětí U_{CB}

Obr. 8. Graf pro zjištění závěrného napětí

Obr. 9. Zlepšené zapojení podle obr. 6

Obr. 10. Pájecí destička pro zapojení z obr. 6

kolektorem a emitorom použitého tranzistoru. Tím se ovšem zmenšuje i napětí indukované v primárním i sekundárním vinutí zapalovací cívky a jiskra na svíčce by byla nedostatečná. Proto je třeba použít speciální zapalovací cívku pro tranzistorová zapalování (na obr. 3 označena TZC) s malou indukčností primárního vinutí (ke zmenšení časové konstanty, která zmenšuje jiskru při velkých rychlostech otáčení motoru) a zvětšeným převodovým poměrem (1 : 200 až 1 : 300), aby se dosáhlo dostatečného napětí na sekundárním vinutí. Tyto zapalovací cívky se u nás nevyrábějí a amatérská výroba se protáhločností na izolaci nedoporučuje. Nevýhodou tohoto zapojení však je, že proud spínací skříňkou a tedy i tranzistorem je značný (8 až 10 A).

Zapalovací systém s několika tranzistory v sérii a původní zapalovací cívkou

Schéma zapojení je na obr. 4. K záchrance napěťové špičky se využívá obvykle zapojení tří tranzistorů v sérii, takže na každý tranzistor připadá třetina celkového napětí indukovaného v primárném vinutí zapalovací cívky. Odopyry R_1 , R_2 , R_3 a R_7 slouží k nastavení potřebných proudů na bázích tranzistorů a odpory R_4 , R_5 a R_6 k nastavení stejného rozložení napětí na jednotlivé tranzistory. Diody D_1 , D_2 a D_3 oddělují jednotlivé tranzistory a slouží k zachycení nežádoucích pulsních pronikajících z elektrické instalace motorového vozidla. Nevýhodou tohoto zapojení je nutnost počítání výběru tranzistorů a složité uvádění do chodu. Ani změnění proudu přerušovačem není příliš výrazné (proud přerušovačem je zde asi $0,7$ A, což představuje asi pětinásobné zmenšení oproti klasickému zapojení).

Tyristorové zapalovací systémy

Tyristorové zapalovací systémy představují kvalitativně odlišné řešení než systémy klasické a tranzistorové. Princip spočívá v tom, že napětí z baterie se tranzistorovým měničem (transvertorem) přeměňuje na napětí větší (300 až 400 V). Tímto napětím se nabíjí kondenzátor, který se pak ve vhodný okamžik pomocí tyristoru vybijí přes primární vinutí zapalovací čívky. Schéma zapojení tohoto systému je na obr. 5. Tranzistory T_1 a T_2 , transformátor T_T , diody D_1 , D_2 , D_3 a D_4 a odpory R_1 , R_2 , R_3 , R_4 tvoří měnič napětí 12 V z baterie na asi 300 V stejnosměrného napětí. Na výstupu usměrňovacího můstku je zapojen (přes primární obvod zapalovací čívky) kondenzátor, který se při provozu transvertoru nabíjí na těchto 300 V. Předpokládajme nyní, že kondenzátor C_N je nabit. Při rozpojení kontaktů přerušovače P se dostane kladný impuls na řídicí elektrodu tyristoru RD .

(řízená dioda) a otevře jej. V tom okamžiku se kondenzátor C_N začne vybijet přes primární vinutí cívky a současně se v sekundárním vinutí indukuje vysoké napětí, dané převodem cívky. Tyristor $\tilde{R}\tilde{D}$ však současně zkratuje výstup transvertoru. To ovšem nevadí, neboť oscilátor měnič přestane kmitat a zapojení neodebirá z baterie téměř žádný proud. Jakmile zmizí „otevřací“ impuls na řídící elektrodě tyristoru a kondenzátor C_N se úplně vybije do primárního vinutí zapalovací cívky, tyristor se samočinně uzavře a oscilátor transvertoru opět nasadí oscilace. Kondenzátor C_N se nabíjí a pochop se opakuje.

Význam ostatních součástek ve schématu: odpory R_6 , R_8 , R_9 , diody D_6 , D_7 , D_8 a kondenzátor C_2 mají za úkol úpravu řídicího impulsu pro tyristor. Dioda D_5 a kondenzátor C_1 slouží jako filtr protivnikání nezádoucích kmitů z elektrické instalace vozidla. Odpor R_7 a dioda D_8 propouštějí záporný impuls proudu od zapalovací cívky, který nabije kondenzátor C_2 na opačnou polaritu v době, kdy se tyristor zavírá. C_2 současně brání vícenásobnému otevření tyristoru během rozepnutí kontaktů přerušovače P .

Nevýhodou týistorového zapalování je jeho značná složitost. Velkou výhodou je ovšem velmi malá spotřeba energie z baterie a jednoduchá možnost úpravy jíksry. Potřebná energie k odpálcí jískry je asi 30 mWs (zjištěno experimentálně). Pro napětí 300 V a kapacitu kondenzátoru $C_N = 1 \mu\text{F}$ je energie nahromaděná v kondenzátoru $W = 1/2 C_N U^2 = 45 \text{ mWs}$, což je dostatečná energie. Pro zvětšení jísky stačí buďto zvětšit napětí transvertoru, nebo zvětšit kapacitu kondenzátoru. Zvětšování kapacity je však nevhodné, neboť se tím zvětší časová konstanta primárního obvodu zapalovací cívky (její velikost je $R C_N$, kde C_N je kapacita kondenzátoru a R činný odpor primárního vinutí zapalovací cívky). Časová konstanta nepříznivě ovlivňuje činnost zapalování při velkých rychlostech otáčení motoru.

Obr. 11. Zapojení tranzistorů a diody (a)

a nosný díl zapalovačího zařízení (b)

Porovnání jednotlivých systémů

Porovnáme-li popsané zapalovací systémy, zjištujeme, že nejlepší je zapalování tyristorové. Můžeme říci, že je to dosud vrchol, kterého bylo ve vývoji zapalovacích systémů dosaženo. Soutěžním vrcholem je ovšem zapojení, které úplně vypouští přerušovač a zapalování je řízeno indukčním snímačem umístěným u hřidele motoru. Tyto systémy však již přesahují rámec amatérských možností a proto je nebudu popisovat.

Na druhé místo by bylo možné postavit (pokud jde o srovnání s klasickým systémem – rozhodující je délka a mohutnost jiskry) zapalovací systém s jedním tranzistorem a speciální zapalovací cívkou. Tento systém nemá pro naše amatéry zatím význam, protože speciální zapalovací cívky pro tranzistorové systémy se u nás dosud nevyrobují.

Je tedy třeba zvolit systém s jedním tranzistorem a původní zapalovací cívkou. Toto zapojení je velmi jednoduché a v provozu dává uspokojivé výsledky (i když při malých rychlostech otáčení motoru je jiskra o něco kratší než u zapalování klasického). Pro obrácenou polaritu elektrické instalace je třeba použít tranzistor p-n-p (není u nás k dostání), nebo předfádat před výkonovým tranzistor ještě jeden pomocný s opačnou polaritou.

Tranzistorový zapalovací systém pro napětí baterie 6 V a 12 V pro motorová vozidla s kladným polem baterie na kostře

Schéma zapojení pro napětí baterie 12 V je na obr. 6. Jako výkonový spínač se používá křemíkový tranzistor KU605 s velkým dovoleným napětím mezi kolektorem a bází. Toto napětí musí být minimálně 200 V. Většina tranzistorů KU605 tomuto požadavku vyhovuje, vzhledem k jejich vysoké ceně se však přesto vyplatí tento údaj překontrolovat. Kontrola je možná podle schématu na obr. 7. Měříme napětí U_{CE} a proud I_C (napětí U_{CE} je třeba měřit voltmetrem s malou spotřebou, např. AVOMETER II). Z naměřených údajů nakreslíme graf závislosti závěrného napětí U_{CE} na kolektorovém proudu I_C . Dovolené napětí, které můžeme na tranzistor v provozu připojit, je definováno jako napětí, jehož vzrůst o 20 % způsobí vzrůst kolektorového proudu o 100 %. Na obr. 8 je ukázka tohoto grafu a zjištění závěrného napětí. Měřený tranzistor měl toto napětí asi 220 V.

Popsaný zapalovací systém dává na kontrolním jiskřišti při atmosférickém

tlaku jiskru asi 120 mm, což zcela stačí.

Určité vylepšení systému je na obr. 9. Schéma se od předcházejícího liší jen zapojením odporu R_S mezi zapalovací cívku a kladný pól baterie (kostru). Princip zařízení spočívá v tom, že místo zapalovací cívky pro 12 V (s převodovým poměrem asi 1 : 80) se použije cívka pro 6 V (převodový poměr asi 1 : 100). Toto zapojení má dve výhody: dává o několik mm delší jiskru a zapalovací cívka se méně zahřívá, neboť větší část činného odporu primárního obvodu tvoří odpor R_S .

Zkoušky byly uskutečněny u zapalování pro vůz ŠKODA Spartak. Původní zapalovací cívky pro tento vůz mají tyto vlastnosti:

Typ: PAL-MAGNETON 12 V, ČSN 304121-02-9215-01.

Odpór primárního vinutí: 3,57 Ω.

Odpór sekundárního vinutí: 7,5 kΩ.

Převod: $p = 80$.

Tato cívka byla zaměněna cívkou BOSCH s těmito vlastnostmi:

Typ: TE 6/3 6 V.

Odpór primárního vinutí: 1,46 Ω.

Odpór sekundárního vinutí: 3,2 kΩ.

Převod: $p = 100$.

Pro zmenšení primárního proudu je zapojen odpor $R_S = 2 \Omega$, min. na 10 W. Tento zapalovací systém dává na kontrolním jiskřišti jiskru kolem 15 mm. V mechanické konstrukci ani v elektrickém zapojení nejsou žádné úpravy.

Elektrické součásti

Tranzistor KU605 lze nahradit typem KU607, který má ještě o něco větší dovolené závěrné napětí mezi kolektorem a bází. Dioda KY708 lze zaměnit ktroukoli z této řady 10 A (KY708 až KY712) nebo z řady 20 A (KY715 až KY719). Starší germaniové typy na 5 A nebo 10 A (iž se nevyrobují) nejsou pro tranzistorové zapalovací systémy vhodné, neboť mají malý odpor v propustném směru a tedy i malý úbytek napětí.

Pro napětí baterie 6 V se zapalovací systém liší jen cívka a odporem R_1 , který pak má velikost asi 22 Ω na 3 W.

Mechanická konstrukce

Zapojení součástí na pájecí destičku je zřejmé z obr. 10. Destička je uložena v nosném dílu, který je vidět na obr. 11. Z tohoto obrázku je zřejmě i celkové mechanické uspořádání zapalování. Pohled na prototyp je na obr. 12 (pohled zezadu) a na obr. 13 (pohled shora). Tranzistor T je umístěn v chladiči z hliníkového plechu. Chladič je připevněn k nosnému dílu izolovaně, neboť kolektor tranzistoru je spojen s pouzdrem. Lze ovšem také izolovat tranzistor

Obr. 20. Zapojení zařízení do elektrické instalace ve vozidle

od chladicího plchu tenkou slídovou fólií. Také dioda D_1 musí být montovala izolovaně od kostry (slídou a textilní bužírkou navlečenou na šroub diody). Ke zlepšení chlazení je pod diodou umístěn pásek hliníkového plechu, mezi nímž a krytem je opět slídová fólie. Na vzorku (obr. 13) je vidět ještě provizorně použité přístrojové svorky pro vývody zapalování. Na obr. 11 je již svorkovnice (tzv. „čokoláda“ – větší typ).

Zapojení ve vozidle

Na obr. 14 je původní zapojení zapalovacího systému ve vozidle s kladným pólem baterie na kostře. Na obr. 15 je zapojení s tranzistorovým systémem, kde svorkovnice ABCD, představuje vývody tranzistorového zapalování. Čtyři svorky jsou zde proto, že mechanická část je stejná i pro systém se záporným pólem na kostře (tentotým potřebuje čtyři svorky). Pro systém s kladným pólem na kostře je možné svorku D vypustit, neboť je spojena s vývodem C . Z obou obrázků jsou zřejmě úpravy v zapojení. Za zmínu ještě stojí to, že u tranzistorového systému je odpojen kondenzátor u přerušovače, protože zde ztrácí své opodstatnění.

Uvádění do chodu je velmi jednoduché. Po počítivé prohlídce podle schématu se zařízení zapojí do instalace vozidla podle obr. 15. Pak zapojíme stejnosměrný voltmetr mezi kolektor a emitor tranzistoru (rozsah voltmetu alespoň 15 V).. Při zapnutí spinacího klíčku a sepnutých kontaktech přerušovače musí být toto napětí max. 0,3 V (je-li větší, zmenšíme odpor R_1); při rozpojených kontaktech a zapnutém klíčku se toto napětí musí zvětšit téměř na napětí baterie. Jsou-li tyto předpoklady splněny, zapalování funguje a je možné nastartovat motor. Při běžícím motoru nemá být pokud možno žádný kabel od svíčky vytažen (nebezpečí pro tranzistor).

Tranzistorový zapalovací systém pro napětí baterie 12 V pro motorová vozidla se záporným pólem baterie na kostře

Pro tyto vozidla bylo možné zapojit tranzistorový systém podle obr. 16, kde jsou i hodnoty součástí. Problém tkví v tom, že v klasickém zapojení je jedcn

pól přerušovače uzemněn (obr. 17), což nvyhovující naznačenému zapojení. Izolování přerušovače by bylo velmi obtížné; problém vyřešíme předzrazením pomocného ovládacího tranzistoru před tranzistor výkonový. Pomocný tranzistor má opačnou polaritu a umožňuje ponechat jeden pól přerušovače uzemněný. Schéma zapojení je na obr. 18. Systém pracuje stejně jako zapojení na obr. 6 jen s tím rozdílem, že přerušovač neřídí přímo napětí báze výkonového spínače, ale báze budicího tranzistoru. Dioda D_1 a odpory R_3 , R_5 a R_6 vytvářejí záporné napětí na bázi tranzistoru T_2 (vůči emitoru) – to slouží k dokonalému uzavření tranzistoru po vypnutí kontaktu, zvláště při vzniku teploty. Ostatními odpory se nastavují potřebné klidové proudy v zapojení. Kondenzátor C_1 tvorí zkrat pro vysoké kmitočty a uzemňuje vlastně spodní konec sekundárního vinutí zapalovací cívky při vzniku jiskry na svíčce.

Elektrické součásti

O tranzistoru T_2 a diodě D_1 platí totéž jako u předcházejícího systému. Tranzistor T_1 (GC500) je možné zaměnit typem GC502, který je lepší (má větší proudový zesilovací činitel).

U tohoto zapojení lze také použít zapalovací cívku pro 6 V s tím, že do série s jejím primárním vinutím a přívodem od skřínky zapojíme navíc odpor $R_s = 2 \Omega$, min. 10 W. Zapojení má v tom případě výhody popsané u předcházejícího zapalovacího systému.

Mechanická konstrukce

Zapojení součástí na destičce je na obr. 19. Na tomto obrázku je vidět i umístění tranzistoru na hliníkovém chladicím plechu. Čerchované čáry představují jednak vývody (ABCD), jednak propojení na diodu, která je stejně jako u předcházejícího systému umístěna na nosném dílu. Dioda i tranzistor T_2 musí být opět upevněny izolovaně. Společně s diodou je pak veden k kontaktu P . Celkové uspořádání (až na pájecí destičku)

je stejně jako na obr. 12 a 13. Hlavní nosný díl je na obr. 11.

Zapojení ve vozidle

Na obr. 17 je zapojení klasického zapalovacího systému ve vozidle se záporným pólem baterie na kostře. Na obr. 20 je zapojení s tranzistorovým zapalováním, kde svorkovnice ABCD opět představuje vývody tranzistorového systému. Stejně jako u předcházejícího systému odpojíme kondenzátor u přerušovače.

Uvádění do chodu je stejně jako u předcházejícího zapalování. Zapalovací systém zapojíme do elektrické instalace vozidla podle obr. 20 (po důkladné kontrole zapojení podle schématu). Voltmetr mezi kolektorem a emitem tranzistoru T_2 musí při sepnutých kontaktech přerušovače a zapnutém spínačem klíčku ukazovat opět max. 0,3 V. Při zapnutém klíčku a rozpojených kontaktech přerušovače musí se toto napětí zvětšit téměř na napětí baterie. Při splnění těchto podmínek můžeme nastartovat motor.

Uložení zapalovacích systémů ve vozidle je individuální podle značky vozidla. Doporučuje se umístit systém blízko přerušovače a zapalovací cívky a na místě, kde není příliš vysoká teplota a možnost znečištění.

Celé zařízení lze doplnit přepínačem, který umožňuje při případné poruše tranzistorového systému přepnout zapojení na původní (klasickou) soustavu. Úprava je velmi jednoduchá (obr. 21). Kontakty přepínače P musí být dimenzovány alespoň na 4 A. Kondenzátor C je původní kondenzátor u přerušovače. Přepínač je na obrázku přepnut v poloze „původní systém“.

Závěr

Zapalovací systém pro kladný pól baterie na kostře byl zkoušen ve voze Škoda Felicia a bylo s ním najeto 5 000 km bez závad a bez známky opotřebení přerušovače.

Zapalovací systém pro záporný pól baterie byl zkoušen ve voze Škoda 1000 MB a bylo s ním najeto 10 000 km se stejně dobrými výsledky.

MĚŘENÍ vlastnosti FET

Ing. Václav Žalud

Má-li být návrh libovolného obvodu s tranzistory řízenými elektrickým polem postaven na solidním základě, je třeba znát jejich základní vlastnosti. Tento článek uvádí některé měřicí metody, vhodné ke stanovení stejnosměrných, nízkofrekvenčních a vysokofrekvenčních vlastností tranzistorů FET určených pro lineární aplikace. Metody byly zvoleny tak, aby byly pokud možno přesné a současně v amatérských podmírkách snadno realizovatelné.

Snímání stejnosměrných charakteristik

Ve většině běžných použití můžeme předpokládat, že tranzistor řízený elektrickým polem, pracující v nejčastějším zapojení se společnou elektrodou S, má pro stejnosměrné signály téměř nekonečně velký vstupní odpor (rádu 10^9 až $10^{15} \Omega$). Jeho základní stejnosměrné vlastnosti lze tedy určit – podobně jako u elektronek – jedinou soustavou stejnosměrných charakteristik, a to výstupních podle obr. 1a, nebo převodních podle obr. 1b (charakteristiky podle obr. 1 odpovídají tranzistoru MOS s vodivým kanálem typu n [1]).

Charakteristiky lze snímat v zapojení podle obr. 2. Stejnosměrné napětí U_G elektrody G, jíž neprotéká stejnosměrný proud, se reguluje potenciometry R_1 a R_2 a měří stejnosměrný elektronický voltmetr EV_1 . Pokud nemáme elektronický voltmetr k dispozici, je možné měřit napětí U_G např. běžným volmitem s deprezským měřidlem; v tomto případě je však třeba (vzhledem k relativně malému vstupnímu odporu voltmetu) zmenšit potenciometry R_1 , R_2 a odpor R_3 na hodnotu rádu jednotek nebo nejvýše desítek kilohmů. Napětí U_D elektrody D se řídí potenciometry R_4 , R_5 a měří voltmetrem EV_2 (opět

Obr. 21. Úprava zapojení s přepínačem

nejlépe elektronickým), průvod této elektrody se měří stejnosměrným miliampermetrem (mA).

Polarita stejnosměrných napájecích napětí na obr. 2 odpovídá tranzistoru MOS s vodivým kanálem typu n, pracujícímu v modu ochuzení: pro činnost v modu obobacení je třeba změnit polaritu napětí U_G . U tranzistoru s kanálem typu p je třeba změnit polaritu napětí U_D [1].

Měření nízkofrekvenčních vlastností

Vlastnosti tranzistoru FET jako lineárního nízkofrekvenčního zesilovače je možné vyjádřit pomocí strmosti g_m , vnitřního odporu r_d a zesilovacího činitele μ . Tyto veličiny jsou definovány vztahy

$$g_m = \left(\frac{i_d}{u_g} \right) u_d = 0 \quad r_d = \left(\frac{u_d}{i_d} \right) u_g = 0$$

$$\mu = \left(\frac{u_d}{u_g} \right) i_d = 0 \quad (1a, b, c),$$

kde u_g je amplituda (popř. efektivní hodnota) signálového napětí elek-

u_d amplituda (popř. efektivní hodnota) signálového napětí elektronky G,

i_a amplituda (popř. efektivní hodnota) signálového proudu elektrydy D.

(V rovnici se setkáváte s nyní nejpoužívanějším označováním charakteristických veličin, odlišným od lit. [1]). Všechny tři veličiny definované vztahy (1) mají smysl jen tehdy, pracuje-li zesklovač v lineárním nebo téměř lineárním („kvazilineárním“) režimu, tj. pracuje-li s tak malým signálem, že všechny druhy nelineárního zkreslení (amplitudové, harmonické, intermodulační) jsou zanedbatelné.

Veličiny jsou vázány známým vzta-
hcm (Barkhausenova rovnice):

$$g_m r_d = \mu. \quad (1d)$$

Měření strmosti

Strmost lze přibližně určit z charakteristik podle obr. 1 jako poměr přírůstku ΔI_D proudu elektrody D k přírůstku ΔU_G napětí elektrody G při konstantním napětí U_B elektrody D. Přesněji se strmost určí pomocí střídavých signálů v zapojení podle obr. 3.

Na vstup tranzistoru se přivádí z tónového generátoru signálové napětí u_g . Výstupní signálový proud i_d se určí nepřímo - měřením výstupního signálu.

Obr. 2. Zapojení přípravku ke snímání stejnosměrných charakteristik

Obr. 3. Zapojení přípravku k měření strmosti: a) princip měření,
b) zapojení vhodné pro praxi

potenciometr, při přesném měření je vhodnější odporová dekáda.

Při relativně velkých odporech r_d by se mohla již při měřicím kmitočtu 1 kHz rušivě projevovat výstupní kapacita tranzistoru. Jejím doplněním pro měnnou kapacitou C_1 na hodnotu pevné kapacity C_2 v kompenzační větvi ji lze snadno neutralizovat.

Aby bylo možné měřit přesně i velké odpory r_d , musí být nulový indikátor dostatečně citlivý (citlivý milivoltmetr, popřípadě s předřazeným zesilovačem).

Měření vysokofrekvenčních vlastností

Vlastnosti tranzistoru FET určeného pro použití ve vysokofrekvenčních obvodech je možné popsat pomocí komplexních parametrů y , které se nejsnadněji měří vhodným vysokofrekvenčním můstkem. Pro kmitočtové pásmo 100 kHz až 20 MHz, které budeme dále předpokládat, je to např. admitanční můstek Tesla BM432, doplněný příslušnými měřicími přípravky. Tento můstek však bude pravděpodobně pro většinu amatérských pracovišť těžko dostupný, proto uvedu i náhradní měřicí metody, využívající k měření parametrů y_{11} a y_{22} snadněji dosažitelného Q-metru a k měření parametrů y_{12} a y_{21} jednoduchých měřicích přípravky.

Obr. 4. Můstek k měření vnitřního odporu. Jako transformátory lze použít libovolné výstupní transformátory tranzistorového přijímače (T_1 a T_2 mají mít železná jádra)

Obr. 5. Zapojení přípravku k měření parametrů y_{11} a y_{22} Q-metrem (Tesla BM 211a): a) měření y_{11} , b) měření y_{22}

Měření parametrů y_{11} a y_{22} lze měřit u běžných typů FET (např. u čs. typu MOSFET KF520) v pásmu 100 kHz až 20 MHz měřicím činitelem jakosti, tj. Q-metrem (vhodný typ je např. Tesla BM211a). Schéma zapojení měřicího přípravku je na obr. 5. Jak je z obrázku zřejmé, měří se neznámá admitance $y = g + jb$ (v obr. 5a je to y_{11} a v obr. 5b y_{22}) obvyklou metodou „měření velkých odporů“ [3]. Princip této metody spočívá v tom, že se neznámá admitance připojí paralelně k rezonančnímu obvodu, skládajícímu se z vnitřní cejchované kapacity C Q-metru a vnější pomočné indukčnosti L , připojené na jeho vnější svorky 1, 2. Činná složka g měřené admitance různoční obvod zatlumí a jalová složka b jej rozloží; na základě těchto jevů je potom možné obě složky snadno vypočítat.

Při měření postupujeme takto: na Q-metru zvolíme žádaný kmitočet f a proměnnou kapacitou nastavíme rezonanci obvodu LC ; příslušný činitel jakosti označíme Q_1 a kapacitu C_1 .

Pak připojíme neznámou admitanci na svorky 2, 3 Q-metru a změnou proměnné kapacity z C_1 na C_2 obvod opět vyladíme do rezonance; změněnou ve-

likost činitel jakosti označíme Q_2 . Neznámá konduktance g je potom určena vzorcem

$$g = \frac{2\pi f C_1 (Q_1 - Q_2)}{Q_1 Q_2} \quad (3)$$

a neznámá susceptance b

$$b = \omega C = \omega (C_1 - C_2).$$

Pokud je $C_1 > C_2$, je zřejmé $b > 0$; susceptance má tedy kapacitní charakter, pro $C_1 < C_2$ je susceptance indukční.

Tímto způsobem lze měřit konduktance g zhruba v rozmezí $1 \mu S$ až $1 mS$; téměř odpovídá paralelní odpor R_p $1 M\Omega$ až $1 k\Omega$. Při R_p větším než $1 M\Omega$ je zmenšení jakosti Q téměř neznatelné a pro R_p menší než $1 k\Omega$ napak již tak velké, že je nelze s vyhovující přesností přečíst.

Jak vyplývá z obr. 5, je vstupní elektroda stejnosměrně napájena přes vf tlumivku Tl a měřicí cívkou L Q-metru. Tlumivka Tl je připojena na svorku 1 Q-metru (vstup s malou impedancí), která je zatištěna směrem vpravo rezonančním odporem R_o sériového laděného obvodu LC rádu jednotek nebo nejvýše desítek ohmů. Proto paralelní tlumivka s reaktancí o několik rádu větší než R_o nemůže znatelně ovlivnit impedanční poměry měřicího obvodu LC .

Konstrukční uspořádání přípravku zapojeného podle obr. 5 je na obr. 6. Přípravek je zhotoven technikou plošných spojů. Ze strany spojů jsou do něho v bodech 1, 2, 3 vpájeny tři banánky k zasunutí do vnějších svorek Q-metru. Tlumivka Tl je společná pro celý kmitočtový rozsah 100 kHz až 20 MHz. Měřicí cívka L je výmenná, přičemž její jednotlivé indukčnosti jsou voleny tak, aby se s proměnnou kapacitou $C = 50$ až 500 pF překryl celý požadovaný kmitočtový rozsah. Měřený tranzistor se upveřuje do typizované objímky tak, aby bylo podle potřeby možné měřit parametry y_{11} nebo y_{22} .

Měření parametrů y_{12} a y_{21}

Parametr y_{12} lze měřit přípravkem podle obr. 7a, převzatým s menšími změnami z lit. [4]. Princip měření: vysokofrekvenční napětí u_2 se přivádí ze signálního generátoru na elektrodu D tranzistoru. Odporem $R_o = 1 k\Omega$, zařazeným v přívodu k elektrode G, protéká proto vf proud $i_1 = y_{12} u_2$. Tímto odporem však protéká současně

Obr. 7: a) Zapojení přípravku k měření parametru y_{12} , b) parametr y_{21}

proud $i_k = -u_2 \frac{n_1}{n_2} \left(\frac{1}{R} + j\omega C \right)$ kompenzační větve RC . Bude-li vhodným nastavením proměnných prvků RC dosaženo nulového napěti na odporu R_o , bude zřejmě $i_1 + i_k = 0$ a tedy

$$g_{12} = \frac{1}{R} \frac{n_1}{n_2} \text{ a } b_{12} = \omega C_{12} = \omega C \frac{n_1}{n_2} \quad (5a), (5b).$$

Kapacita C_{12} tranzistoru FET se pochybuje v rozmezí deseti nebo nejvýše jednotek pikofaradů. Realizace tak malé kompenzační kapacity je obtížná, avšak jak vyplývá ze vztahu (5a), je možné vhodnou volbou převodu n_2/n_1 měřicího transformátoru převést kapacity potřebných kondenzátorů do vhodnější oblasti. Bude-li např. $n_2 : n_1 = 10 : 1$, bude kapacita tranzistoru $C_{12} = 1 \text{ pF}$ odpovídat kapacitě $C = 10C_{12} = 10 \text{ pF}$, jejíž přesná realizace již nepůsobí potíže. Aby však bylo možné kapacitu C_{12} kompenzovat rovněž kapacitou (což je snadnější než kompenzace proměnnou indukčností), musíme zapojit transformátor Tr tak, aby současně otáčel fázi napětí u_2 o 180° . Při volbě převodu $n_2 : n_1$ transformátoru Tr se kromě toho zmenší odpor R na jednu desetinu odporu $1/g_{12}$, což je výhodné zejména při vysokých kmitočtech.

Parametr y_{21} se měří přípravkem podle obr. 7b. Princip měření je podobný jako u zapojení z obr. 7a. Konduktance $-g_{21}$ se kompenzuje odporem $R = 1/g_{21}$ připojeným přímo na vstupní napětí u_1 tranzistoru. Kapacitní susceptance $b_{21} = \omega C_{21}$ se kompenzuje kapacitou C , napájenou napětím u_1 , fázově otočeným vůči napětí u_1 .

Jako nulový indikátor v obvodech podle obr. 7 může sloužit až do kmitočtu asi 10 MHz např. milivoltmetr Tesla BM384. S výhodou lze k tomuto účelu použít vhodný komunikační přijímač, popřípadě i běžný rozhlasový přijímač, pokud má příslušné kmitočtové rozsahy. Přijímač je ovšem selektivní indikátor, proto je třeba jej přeřadovat souběžně

Obr. 6. Spojový obrazec přípravku k měření parametrů y_{11} a y_{22} (ze strany součástek).

y_{12}

Obr. 8. a) Spojový obrazec přípravku k měření parametru y_{12} , (destička B 46, 22,—Kčs)

s generátorem. Pokud přijímač není vybaven záznamovým oscilátorem, je třeba pracovat s modulovaným signálem.

Přípravky k měření parametrů y_{12} a y_{21} byly realizovány technikou plošných spojů (spojové obrazce jsou na obr. 8; držák přívodu tranzistoru na obr. 9). S vestavěním destičky s plošnými spoji do vhodné kovové skříně si jistě zkušenější amatér poradí sám. Při občasném použití lze zařízení provozovat ve formě zkušebního vzorku, zhodného ovšem podle zásad v měřicí technice.

Stejně jako strmost, vnitřní odpor a zesilovací činitel je třeba i všechny parametry y měřit „malým signálem“. Signál lze považovat za malý tehdy, zůstávají-li při jeho mírném zvětšení výsledky měření nezměněny. V případě

Obr. 8 b) Spojový obrazec B 47 (22,—Kčs)
přípravku k měření parametru y_{11} (ze strany součástek)

Obr. 9. Držák přívodu tranzistoru; držák lze upevnit přímo do destičky s plošnými spoji, do níž se v tom případě vyvrátí v příslušném místě otvor o $\varnothing 3\text{ mm}$

parametrů y_{12} a y_{21} lze úroveň měřicího signálu volit celkem libovolně, naproti tomu při měření parametrů y_{11} a y_{22} Q -metrem je úroveň signálu jednoznačně dán principem činnosti tohoto přístroje. Amplituda signálu rádu desetin až jednotek voltů nemusí – zejména při měření parametru y_{11} – splňovat tento požadavek. V tom případě je třeba zmenšit úroveň měřicího signálu Q -metru a činitel jakosti Q zjišťovat interpolací.

OTOCNE KONDENZATORY PRO VYSILACI TECHNIKU

Jednou ze základních součástek, kterou potřebuje každý radioamatér, je bezesporu otočný vzduchový kondenzátor. Ty kondenzátory, které nám nabízí prodejny Tesla ve velmi úzkém sortimentu, se málo hodí pro stavbu vysílačních zařízení. Proto se v jedné základní organizaci v Gottwaldově rozhodli vyrábět pro sebe a pro ostatní radioamatéry několik typů ladících otočných kondenzátorů, které by vyhovovaly všem požadavkům vysílační techniky.

Předkládáme vám ukázky a popis našich výrobků, které vyrábíme, nebo chceme vyrábět a tím zaplnit mezeru v sortimentu této marně požadované součástky. Tyto kondenzátory jsou určeny pro koncové stupně, násobiče a oscilátory v amatérských vysílačích zařízeních. Celá konstrukce vychází z našich možností a je určitým kompromisem, kterým se snažíme sestavit ze standardních dílů co nejširší rozsah typů a provedení. Naši ověřovací sérii je typ 100 a typ 200. Tyto základní typy chceme dále rozšířit, takže řada těchto součástí by vypadala takto:

typ 50	typ 50-D	typ 50-O
typ 100	typ 100-D	typ 100-O
typ 150	typ 150-D	
typ 200		
typ 250		
typ 300		
typ 500		

Cílo u typu znamená rozdíl $C_{\max} - C_{\min}$. Základními typy jsou kondenzátory 50, 100, 150, 200, 500, které jsou určeny pro vysílače.

Typ 50-O a 100-O jsou určeny pro oscilátory amatérských vysílačů. Konstrukčně jsou upraveny tak, aby bylo zamezeno chvění rotorových plechů (propájením a cekovým dokonalem mechanickým spojením).

Typy 50-D, 100-D a 150-D jsou vlastně dvojnásobné kondenzátory (duální), umožňující použití jako splistatory. Při jejich sériovém zapojení lze dosáhnout zmenšení výsledních kapacit, při paralelním zapojení je lze použít pro články Π koncových stupňů vysílačů.

Ze základních součástí lze vyrobit podle požadavků i jiné typy kondenzátorů, např. diferenciální apod. Protože všechny typy budou sestaveny ze stejných

Literatura

- [1] Žalud, V.: Tranzistory řízené elektrickým polem. AR 3, 4 a 7/68.
- [2] Büttner, L.: Schaltungen zum Messen der Gleich- und Wechselstromparameter von Feldefekttransistoren. Funktechnik 4/67, str. 115.
- [3] Q-metr Tesla BM211a. Technický popis a návod k obsluze.
- [4] Radiotechnická příručka. SVTL: Bratislava 1965, díl III, str. 282-285.

k šasi šrouby v otvorech ohnute části čel.

Povrchová úprava. Pro povrchovou úpravu je použito kadmiování, zinkování nebo niklování podle přání nebo podle našich okamžitých možností. Povrchová úprava i celková konstrukce zajišťuje spolehlivost v provozu.

Elektrické parametry. Tvar rotoru udává průběh kapacity, který je lineární. Vzdálenost mezi rotorovými a statorovými plechy je 2,2 mm, což zaručuje možnost připojení na vysoké napětí, použité v koncovém stupni. Naměřené údaje podle protokolu o zkoušec:

izolační odpor $> 400 \text{ M}\Omega$ (stator - klec),

průrazné napětí při $f = 50 \text{ Hz}$ 2,5 kV ($t = 5 \text{ s}$),

provozní napětí při $f = 30 \text{ MHz}$ 1,6 kV (CW, SSB),

přechodový odpor 0,0025 Ω

(rotor - klcc),

izolace - steatit $\epsilon = 6$

(keramika-steatit),

kapacita: typ 100 $C_{\min} = 24 \text{ pF}$,

$C_{\max} = 122 \text{ pF}$,

typ 200 $C_{\min} = 37 \text{ pF}$,

$C_{\max} = 240 \text{ pF}$.

Kondenzátor typu 100 je na obr. 1. Na obr. 2 je rozložený kondenzátor typu 200.

Předpokládané ceny

Typ	Kčs	Typ	Kčs
50	53,-	50-O	58,-
100	69,-	100-O	72,-
150	75,-	50-D	95,-
200	86,-	100-D	121,-
250	98,-		
300	115,-		
500	154,-	150-D	143,-

Císla typů určují přibližné kapacity; ke každému kusu bude přiložen list s udáním všech parametrů včetně minimální a maximální kapacity. Všechny druhy těchto kondenzátorů můžete objednat nebo přímo zakoupit v prodejně Ustředního radioklubu Praha 4-Braník, Vlnitá č. 33, nebo poštou přes poštovní schránku 69, Praha 1.

Zvláštní požadavky jak vzhledem k typům, tak i ke kapacitám je možno uplatnit přímo u ZO RADIO, poštovní příhrádka 99, pošta 1, Gottwaldov. Dodaci lhůta 4 až 6 týdnů po potvrzení Vaší objednávky. Minimální série 5 ks, proto využijte hromadných objednávek pro celou odbóčku nebo ZO. Současně prosíme o sdělení zkušeností z použití těchto součástek.

S parametry všech typů se můžete seznámit v letáčcích, které obdržíte přes QSL-službu nebo si o ně můžete napsat na naši adresu do Gottwaldova.

Všechny uvedené typy kondenzátorů jsou určeny pro vysílače, proto je jejich počáteční kapacita poměrně značná. ZO RADIO má však v plánu i výrobu kondenzátorů pro přijímače, u nichž bude respektován požadavek minimální počáteční kapacity. Ing. Karel Gregor

Obr. 1

Obr. 2

BTV v Anglii

V Anglii je v provozu 35 000 barevných televizních přijímačů. Pravidelný přírůstek nových přijímačů je asi kolem 5 000 měsíčně. Od začátku letošního roku byl v Anglii zaveden společný licenční poplatek za televizi a rozhlas – 6 lib. št. ročně, majitel barevného televizoru musí však platit ještě 5 lib. št. navíc. Celkový počet společných koncesí je v současné době téměř 15 200 000.

-chá-

TV ve Francii

Ve Francii je v současné době v provozu asi 9 500 000 televizních přijímačů. Zajímavý je značně velký počet vlastníků gramofonů – téměř šest milionů, což znamená, že prakticky 40 % všech francouzských domácností vlastní gramofon.

-chá-

Nový vysílač

V sousedním Rakousku byl uveden do provozu nový vysílač pro III. TV pásmo. Vysílá na kmitočtu 203,25 / 208,75 MHz s výkonem 3/0,6 kW. Je umístěn v nadmořské výšce 1554 m na Dünserberg u města Bludenz.

-chá-

* * *

Televizor pro barevnou televizi, který je osazen pouze integrovanými obvody a polovodičovými prvky, začala vyrábět britská firma Thorn. Použité výkonové tranzistory v koncových stupních vychylovacích obvodů jsou však amerického původu firmy Texas Instruments. Přijímač přijali příznivě i opraváři, neboť jeho konstrukce je velmi účelně a přístupně vyřešena.

Funkamatér 8/1968

Sč

* * *

Téměř 100 000 posluchačů rozhlasu oděklo v Rakousku své koncese za poslední rok. Přičítá se to jednak tomu, že byl zvýšen licenční poplatek a jednak některým programovým reformám.

K 1. 9. mělo Rakousko 2 100 000 rozhlasových koncesionářů a 1 072 000 televizních koncesionářů.

-chá-

* * *

K 1. 8. 1968 bylo ve Švýcarsku uděleno celkem 961 521 televizních koncesí. Koncesí na rozhlasové přijímače bylo k témuž datu 1 739 917. Značné obliby dosel ve Švýcarsku rozhlas po dráte – má celkem téměř 500 000 účastníků.

-chá-

PŘIPRAVUJEME PRO VÁS

Přijímač do auta

Stavebnice mladého radioamatora (moduly)

Základní zapojení s tranzistory

FET

DETEKTOR AM, CW, SSB

Nejrozšířenější typy detektorů a AVC v přijímačích pro CW, SSB a AM používají jednu nebo dve diody. Přitom se AVC zapíná jen při AM, při CW nebo SSB se zesilční přijímače neřídí.

Popisované patentované zapojení detektoru je velmi vhodné pro všechny tři druhy provozu. Jeho předností je značná jednoduchost a možnost vybavit tímto detektorem stávající přijímače.

Je-li přepínač P_1 v poloze AM, je vypnut BFO, mezinrekvenční signál se detekuje mezi první mřížkou a katodou elektronky 6AS6 (ekvivalentem je sovětská 6Z2P) a zesílené napětí se odebírá z anody této elektronky.

K získání napětí pro AVC slouží dioda. Její připojení ke katodě má za následek zpoždění AVC. Přepínačem P_2 je možné měnit časovou konstantu filtru v AVC.

Po přepnutí přepínače P_1 do polohy SSB-CW se dostává napětí BFO na třetí mřížku E_1 . Elektronka nyní pracuje jako směsovač a v jejím anodovém obvodu se objeví nízkofrekvenční signál.

Výbornou vlastností tohoto detektoru je dokonalé oddělení signálu BFO a mezinrekvenčního signálu. Napětí z AVC zde nemá vliv na kmitočet BFO.

S-metr je zápojen mezi katodu E_1 a katodu poslední mezinrekvenční elektronky. Nula se nastavuje potenciometrem P_1 (2 k Ω). Pro odstranění vysokofrekvenčního a mezinrekvenčního zbytku z nízkofrekvenčního signálu je v anodě E_1 zapojen filtr. Jako L_1 může být použita libovolná vf tlumivka.

Ing. Neckář, OKIANS

Literatura

Radio – Electronics č. 11/64

vertikální anténa pro 80m

Jaroslav Chochola, OK2BHB

Tato anténa vznikla jako důsledek nedostatku místa pro konstrukci horizontálního dipolu až již klasického, nebo antény typu W3DZZ, G5RV apod. Proto jsem přemýšlel o vertikální anténě, která by byla jen pro pásmo 3,5 MHz a byla i konstrukčně jednoduchá a z dostupného materiálu.

Anténa je v podstatě upravná čtvrtvlnná anténa, u níž se zemní rovina nahrazuje dráty délky $\lambda/4$, radiálně se sbíhajícími k patě antény. Od antény Ground-Planc se liší tím, že není umětina nad zemí alespoň ve výši $\lambda/4$ a nemá jen čtyři paprsky, které obvykle tvoří zemní rovinu.

Anténa v mé případě je umístěna na zemi. Proto je třeba zemní rovinu provést tak, že se do země do hloubky 5 až 10 cm uloží 8 paprsků dlouhých asi $\lambda/4$ (podle rozložení pozemku) tvořených měděnými vodiči o $\varnothing 1,6$ mm (není kritické). Paprsky jsou uzemněny na koncích kovovými tyčkami. Paprsky se radiálně sbíhají k patě antény. Vlastní zářič je vertikální čtvrtvlnný a skládaný. Zářič je zhotoven z běžné televizní dvoulinky 285 Ω . Výpočet správné délky zářiče je velmi jednoduchý:

pro zvolený kmitočet vypočítáme čtvrtvlnnou elektrickou délku zářiče:

V mé případě jsem volil kmitočet $f = 3,650$ MHz

$$l_e = \frac{75}{3,65} = 20,5 \text{ m.}$$

Protože je zářič zhotoven z televizní dvoulinky 285 Ω , její rychlostní koeficient V je 0,82, stanovíme skutčnou geometrickou délku podle vztahu

$$l_g = l_e V$$

$$l_g = 20,5 \cdot 0,82 = 16,8 \text{ m.}$$

Obr. 1.

$$l_e = \frac{75}{f [\text{MHz}]} .$$

Obr. 2.

Tato výška antény je většinou realizovatelná. Po odměření vypočítané délky l_g dvoulinkel odstříhneme a na jednom konci oba vodiče spojíme do krátka. Spoj zalijeme do Dentakrylu, aby se vytvořil kvádr o rozměrech $80 \times 80 \times 30$ mm. Kvádr nahore provrátme (obr. 1).

Takto vzniklý záříč má u paty impedanci asi 146Ω . Napájecí vedení je libovolně dlouhé a je zhotovené ze stejné televizní dvoulinky. Protože televizní dvoulinka má impedanci 285Ω , je nutno provést správné přizpůsobení. V tomto případě je to jednoduché. Napájecí linku o impedanci 146Ω vyrábíme tak, že dva kusy televizní dvoulinky 285Ω potřebné délky od vysílače k záříci spojíme paralelně, a to tak, že spojíme vždy dva protilehlé dráty (obr. 2).

Obě dvoulinky k sobě přitiskneme a v této poloze je omotáme „Izolepou“. Toto mechanické spojení uděláme po každém 1 m dvoulinky.

Paprsků, které tvoří zemní rovinu, je celkem 8.

Praktické provedení antény je na obr. 3.

Anténa se velmi dobře hodí i pro provoz v terénu, protože se dá jednoduše složit. Paprsky pro provoz v terénu se nemusí zakopávat do země, stačí je na zem položit a uzemnit kolíky. Při provozu na pásmu 3,5 MHz jsem na tuto anténu udělal spojení se stanicemi W a VE s reporty 57 SSB. Po celé Evropě je slyšitelnost v nočních hodinách 58 až 59 SSB. Při uvádění antény do provozu (podle sdělení OK1AAE z České Třebové) jsem byl u OK1AAE o 2 S silněji než s doposud používanou náhražkovou anténu LW.

Podobně jako anténa GP má tato anténa tyto výhody: všechnovost, nízký úhel vyzařování, zisk asi 3 dB v porovnání s horizontální anténou a mnohem menší pravděpodobnost rušení televize. Poměr stojatých vln je lepší než 1,2.

Obr. 3.

Zajímavé zapojení měřiče síly pole

Autor tohoto zapojení, W2JTJ, se snažil o odstranění nestability nastavení nuly u běžného zapojení s jednostupňovým tranzistorovým zesilovačem. Podařilo se mu to použitím souměrného zapojení s doplňkovou dvojicí tranzistorů. Zesilovač je osazen dvěma tranzistory, jedním n-p-n a jedním p-n-p, vybranými tak, aby měly stejný prourový zesilovací činitel β a zbytkový

proud. Ekvivalentní typy k původně použitým tranzistorům 2N2706 a 2N2430 neuvádíme, lze se ale domnívat, že vyhoví běžné nízkofrekvenční tranzistory. Měřicí přístroj v původním zapojení má citlivost $25 \mu\text{A}$. Indukčnosti a kapacity laděného obvodu vypočítáme podle kmitočtu měřeného signálu. Použitá anténa – jakýsi dipól – je podle autora kompromisem mezi citlivostí a přesnosti přístroje.

QST 1/68

-ra

NAVRH ŠPIČKOVÉHO PRÍJIMAČE PRO KV

Gusta Novotný, OK2BDH

Každý amatér jistě chce mít dobrý přijímač. Slovo „dobrý“ si však možno vyložit různě. I jednoduchý přijímač s málo elektronkami bude dobrý, ale jen v optimálních příjemových podmínkách. Opravdu dobrý přijímač je však takový, který umožní spolehlivý poslech protistanice i v těch nejhorších podmínkách – slabá protistanice, špatné podmínky šíření elektromagnetických vln směrem k protistanici, všechna možná rušení: průmyslové, atmosférické, silnými rozhlasovými a televizními i amatérskými vysílači ve stejném kmitočtovém pásmu, na zrcadlovém i mezinárodním kmitočtu i vysílání blízko umístění. Pro zdárné dokončení spojení má být přijímač proti této nežádoucímu vlivům odolný co nejvíce. S rozšířením provozu v celém pásmu radiových kmitočtů budou se stále více zvětšovat požadavky na tyto vlastnosti. Současné jsou zde i další požadavky – jednoduchost a pohodlnost obsluhy, stabilita, přesné ocejchování (omezení vysílání mimo pásmo) a ještě by měl přijímač mít další běžné doplňující obvody: kalibrátor 100 kHz, S-metr, potlačení rušitelského signálu, omezovač poruch apod. K tomu ještě přistupují pěkný vzhled, malá váha a spořečba proudu a hlavně – pro amatérskou konstrukci – dostupnost součástek ve využívající ceně.

V kapitalistických státech si lze vybrat z několika desítek druhů a typů různých výrobčů; cena poměrně dobře určuje jakost přijímače (od \$ 39,95 za Star Roamer až po nejdražší SS1-R firmy Squires-Sandcrs v ceně \$ 950,-). U nás v OK, kde můžeme koupit jen součástky (a to ještě v omezeném výběru) nastává zajímavá situace: z kvalitních součástí ve stejné ceně můžeme zhotovit přijímač jak velmi kvalitní, tak i podprůměrný. Vše záleží na tom, jakou koncepci přijímače si kdo zvolí. K volbě optimální koncepce slouží celý následující článek s bohatými odkazy na literaturu domácí i zahraniční, která není u nás příliš známa.

vané továrn přijímače různých typů s jejich ctnostmi a neuctnostmi, upravené podle materiálových a výrobních možností konstruktéra.

Podle koncepce můžeme přijímače (superhet) rozdělit na tři hlavní skupiny:

- Přijímače s jedním směšováním* (obr. 1a), které mají jeden nebo více vysokofrekvenčních zesilovačů, mezinárodní kmitočty až 460 kHz, jednoknoflikové ladění většinou širokého rozsahu $f_{max} - f_{min} = 2$ až 3. Představiteli jsou např. HRO, AR88, R1155, E52 a M.W.E.C. (E52 má mf 1 MHz, M.W.E.C. 353 kHz).
- Přijímače s dvojím směšováním* (obr. 1b) s jedním vf zesilovačem, první oscilátor laděný v souběhu se vstupními obvody (jednoknoflikové ladění) zase v širokém rozsahu jako u typu A; 1. mezinárodní kmitočty je pevná mezi 1,7 až 3,0 MHz s jedním zesilovacím stupniem; druhý oscilátor je pevný, většinou řízený krystalem, druhá mezinárodní kmitočty je mezi 100 až 460 kHz. Zde je představitel, hlavně nás přijímač „Lambda“ a amatérské konstrukce z AR [1].
- Přijímače s dvojím směšováním* (obr. 1c), u kterých jsou proti typu B zaměněny oscilátory – první je pevný (řízený krystalem), druhý je proměnný v souběhu s první mezinárodní kmitočty.

Dosavadní stav přijímačové techniky u nás

Průměrné stáří našich přijímačů bude jistě okolo 20 let – hodně amatérů používá staré inkurantní přijímače německé výroby, vyvinuté již před rokem 1940 a vyrobené do roku 1945 – M.W.E.C., E52, EZ6, EL10, EK10, ovšem pořád ještě dost ceněné a s přidavnými zařízeními (konvertovery) lepší než další přijímače, už naši poválečné výroby – typy „Lambda“ až do populární „peťky“, které již mají také těch nejméně 10 let za sebou. Jiné zahraniční přijímače tvoří nepatrnu menšinu (HRO, R1155 apod.). Přijímače amatérské konstrukce jsou většinou kopíro-

Obr. 1a. Přijímač typu A

Obr. 1c. Přijímač typu C

Obr. 1b. Přijímač typu B

(300 až 3 000 kHz); druhá mezinárodní frekvence je většinou 100 až 460 kHz. Jsou to vlastně přijímače typu A, jimž je předřazen konvertor. Továrním přijímačem vyráběným u nás byl ZVP2; sném amatérů je nejnovější přijímač tohoto typu; 75S-3B firmy Collins.

V době konstrukce starých přijímačů byly požadavky na elektrické vlastnosti jejich posuzování mimořádné. Aby přijímač měl dostatečné zesílení, přidaly se všechny mf elektronky, pro selektivitu pařížní počet dvouobvodových pásmo-mech propustí samozřejmě s elektronkami, pro vylepšení zrcadlového počtu se přidaly vf obvody zasílání elektronkami. Získala se poměrně dobrá lektivita (na -6 dB) i dobré potlačení cadlových kmitočtů, ale nebylo možno užít maximálního zesílení všech elektronek, které byly v zesilovací cestě signálu. Při provozu takového přijímače nynějších přeplňovaných pásmecch se ráže, že proti některým rušením je přijímač bezmocný – nebyl proti nim instruován.

požadavky na dobrý moderní přijímač

Proti dřívějším přijímačům velmi výrazně požadavky na čtyři základní vlastnosti:

Mezní citlivost – schopnost zpracovávat i ty nejslabší signály při dostatečném odstupu signálů od sumu.

Selektivita – co nejužší šířku přijímačeho pásmá v závislosti na druhu provozu; propustnou křivku blížící se obdélníku, aby přijímač opravdu přijímal jen žádaný signál.

Potlačení nežádajících kmitočtů – malý (lépe žádný) příjem na zrcadlových a mezinárodních kmitočtcích s omezením výskytu parazitních kombinačních kmitočtů.

Maximální odolnost proti křížové modulaci a zahlcení silným signálem.

Všechny tyto vlastnosti přijímače se skávají ve vysokofrekvenční části pouze signálové cestě od antény přes různé mf zesilovače a směšovače, kdežto zkofrekvenční část a oscilátory na ni nemají (čestná výjimka – nf CW tr.). Záleží jen na vhodném seskupení

výše pracuje stanice OK1YYY (s kroužkem SSB stanic) a silně ji ruší i přes jejich vzdálenost (QRB) 70 km (při místních stanicích by to bylo ještě horší). Potom se 1XXX naladí na kmitočet 1YYY a tam mu před mnoha svědky zvýšeným hlasem vycílí, že má v nepořádku vysílač, strašně širokou modulaci. OK1YYY požádá o prominutí s ubezpečením, že se na svůj vysílač podívá. Jenže zde vstoupila v platnost stará pravda – nejdřív hledej chybu u sebe, potom u druhého. OK1YYY měl vysílač v pořádku, jedinou jeho „závadou“ byl příliš velký signál jeho vysílače na vstupu přijímače OK1XXX, kde způsobil krásnou křížovou modulaci, snad i mírně zahlcení.

Theoretické vysvětlení příčin křížové modulace je poměrně jednoduché. Čitujte OK1VEX [4]: „Všimněme si nyní výstup přicházejí dva signály, žádoucí f_1 a nežádoucí f_n . Oba signály jsou amplitudově modulovány. Obvod LC je naladěn na žádoucí kmitočet f_n , nežádoucí kmitočet f_1 je od žádoucího tak kmitočtově vzdálen, že jej obvod LC spolehlivě odfiltruje. Žádoucí kmitočet má malou úroveň, např. 1 mV. Sledujme nyní, co se bude dít, jestliže úroveň nežádoucího kmitočtu pronikajícího na mřížku roste. Můžeme rozlišit tři případy:

- Urovnění nežádoucího signálu je menší než 0,2 až 0,5 V. Do této hranice se zesilovač chová jako lineární a v činnosti zesilovače nenastane žádná závada, tj. nežádoucí signál se na výstupu zesilovače prakticky neprojeví.
- Urovnění nežádoucího signálu je v rozmezí 0,5 až 3 V. V tomto případě nežádoucí signál bude měnit pracovní bod elektronky a tím i její strmost v rytmu své modulace a tato bude vtisknuta žádoucímu signálu přesto, že jak nežádoucí signál, tak i směšovací produkty jsou obvodem LC spolehlivě odfiltrovány. Tomuto jevu říkáme **křížová modulace**.
- Urovnění nežádoucího signálu přesahuje hodnotu 3 až 5 V. V takovém případě začíná elektronka pracovat jako omězovač, a protože užitečný signál se stává jen slabou superpozicí na nežádoucím, dojde k jeho zeslabení a při dalším zvýšení úrovni nežádoucího signálu zmizí vůbec – říkáme, že přijímač je **zahlcen**.

Tyto napěťové úrovně platí pro elektronky a podle jejich konstrukce se budou měrně lišit. Pro moderní elektronky s velkou strmostí budou spíše menší a ještě větší rozdíl se projeví u tranzistorů. Příslušné hraniční hodnoty pro tranzistory budou v případě a) 5 až 15 mV, v případě b) 15 až 100 mV a konečně v případě c) 100 až 250 mV.“ Tolik OK1VEX. (Pokračování)

Literatura

- [1] Kraus, J.: Superhet pro amatérská pásmá. AR 4/55, str. 105.
Dále: Poznámky k stavbě amatérského komunikačního superhetu. AR 12/61, str. 349.
- [2] Doležal, I.: Řešení směšovačů s nízkou úrovní parazitních kmitočtů. AR 3/65, str. 15.
- [3] Hoffner, V.: Směšovače a oscilátory. Praha: SNTL 1964.
- [4] Navrátil, J.: Soustředěná selektivita. AR 5/62, str. 138.

na ledn 1969

Rubriku vede
Jiří Mrázek,
OK1GM

Co nás čeká v roce 1969

Slnecní činnost měla jedenáctileté maximu v roce 1968 a třebaže jeho vývoj a průběh nebyl přesně podle teoretického očekávání a ani nedosáhl takové intenzity jako před jedenácti lety, jedno lze očekávat určitě: začátek velmi pozvolného slabnutí sluneční činnosti, které v prvním roce po maximu bude sotva pozorovatelné a na podmírkách se téměř vůbec neprojeví. Vyskytují se dokonce i hlasy, že teprve rok 1969 bude rokem opravdového maxima. Jsme prostě někde na vrcholu jedenáctileté periodické křivky, která mívá vždy ostrý vršek, zato však velmi pozvolný spád. V tomto dost nepravidelném maximu, v němž jsme často zaznamenali místo vzrůstu sluneční činnosti její pokles a podružná maxima byla zretelně nižší než jaká jsme registrovali před jedenácti lety, dojdě jistě ještě k dalším podobným překvapením. Proto jsem v předpověďích vycházel ze stejněho stupně alunecní činnosti, jaký byl v roce 1968, což poznáte na první pohled, budete-li je srovnávat s předpověďmi na rok 1959. Hodnoty nejvyšších použitelných kmitočtů se téměř nezměnily a poměry na blízké vzdálenosti nezmenily vůbec. Změnily se však v některých směrech hodnoty nejnlžších použitelných kmitočtů; praxe totiž ukázala, že jsme

je v roce 1968 poněkud podcenili, zvláště ve amrech vedoucích přes tropické pásmo. Také v noční době ve směru na Indii zaznamenané určité změny ve slyšitelnosti tamějších atanic. Rovněž celoroční chod podmínek bude téměř stejný jako v roce 1968: hodnotime-li je podle DX možnosti, budou nejvhodnějším obdobím zimní měsíce, zatímco v dubnu se bude situace zřetelně zhoršovat, v létě bude nejhorší, v září se začne rychle zlepšovat a v říjnu bude mít celoroční optimum, které se udrží v poněkud zhoršené formě až do konce roku. Nejhodnějšími DX-pásmy budou na začátku roku ve dne „desítka“ a v noci 7 MHz, na jaře a v létě spíše 14 MHz, na podzim opět 21 a 23 MHz ve dne a 7 i 14 v noci. Mimořádná vrstva E se začne výrazněji projevovat shortskepovými podmínkami koncem května, v polovině června nastane maximum, které potrvá asi do konce července; pak zaznamenáme ústup s podružným maximumm před polovinou srpna a rychlý návrat k normálnímu poměru bez mimořádných dálkových podmínek shortskepového charakteru na kmitočtech 20 až 50 MHz.

Celkově se tedy máme i v roce 1969 načítat; podmínky budou téměř po celý rok dobré až velmi dobré a v období od podzimu do jara bude často otevřeno desetimetrové pásmo.

... a co nás čeká již v lednu

Kritický kmitočet v rty F2 má ostré maximum kolem poledne a podobně je tomu i s hodnotami nejvyšších použitelných kmitočtů. Odpoledne je pokles tak rychlý, že někdy ani nedokončíme spojení se stanici a už se dostane vzhledem k nám do pásmu ticha. Toto pásmo se výrazně objeví kolem 18 a 19 hodiny večer i na osmdesátmetrovém pásmu; brzy však vlivem termodynamických poměrů v ionosféře opět vymizí (kolem půlnoci obvykle docela). Znovu a ještě výrazněji se objeví ráno a bude mít maximum asi hodinu před východem Slunce. V té době budou v klidných dnech i na pásmech 80 a 160 m DX-podmínky ve směru neosvetleném Sluncem. Je možné očekávat, že podmínky tohoto druhu se budou během ledna zlepšovat a v zářně mohou někdy zasáhnout dokonce i střední vlny v jejich kmitočtově nejvyšší třetině, pokud jde o Střední a Jižní Ameriku. Začátkem ledna se krátce objeví výrazná špička mimořádné vrstvy a proto pozor na krátké, ale zřetelné shortskepové podmínky v pásmu 20 až 50 MHz ve dnech 2. až 5. ledna: mohou přinést na naše odběrovky i signály vzdálených evropských televizních vysílačů.

* * *

Další zdokonalení dlouhovlnných předpovědí šíření dekametrových vln

V článku „Radioamatérů pomáhají UIT“ v AR 7/68 se hovořilo o práci Mezinárodního radiokomunikačního poradního sboru (CCIR) v oboru ionosférického šíření. V roce 1968 byl vydán atlas, zobrazující ionosférické charakteristiky v celosvětovém měřítku jednak grafickou formou, jednak pomocí štítků se součiniteli Fourierových řad, které umožňují výpočet ionosférických charakteristik na moderních počítacích strojích.

Na zasedání studijní komise pro ionosférické šíření, které skončilo v srpnu v Boulderu ve státě Colorado, bylo rozhodnuto vypracovat další zdokonalení atlasu tak, aby byla brána v úvahu nonlinearita korelace mezi ionosférickými a slunečními daty.

Podobná výpočetní metoda (grafická i numerická) se připravuje pro výpočet intenzity pole na dekametrových vlnách.

SSB-liga - VIII. kolo

Klubové stanice 1. OK1KUH 18 bodů

Jednotlivci 1.-3. OK1BOM 18 bodů

1.-3. OK1WGW 18 bodů

1.-3. OK2BKB 18 bodů

SSB-liga - IX. kolo

Jednotlivci 1.-2. OK1AAE 171 bodů

1.-2. OK1WGW 171 bodů

3.-4. OK2ABU 162 bodů

3.-4. OK2BKB 162 bodů

5. OK1TJ 136 bodů

6. OK1APB 91 bodů

7. OK2VP 78 bodů

Celkové výsledky SSB-ligy 1968

stav po IX. kole

Klubové stanice umístění 8 1. OK1KUH

Jednotlivci 1. OK1WGW umístění 15

2. OK2BKB 36

3. OK2VP 42

SSB-liga - VII. kolo

Klubové stanice

1. OK1KUH 65 bodů

Jednotlivci

1.-2. OK1HAP 65 bodů

1.-2. OK2BKB 65 bodů

3.-4. OK2BEN 60 bodů

3.-4. OK2KE 60 bodů

Deníky nezaslaly stanice: OK1AIL, OK1APB, OK1AGQ, OK2BFK.

Závod třídy C

Závod se koná za obdobných podmínek jako v letech 1967 a 1968. Pravidla jsou uvedena v Amatérském radiu str. 29, čís. 12/1966. V roce 1969 se koná závod opět drahou neděli v lednu, tj. 12. ledna. První část závodu je od 05.00 do 07.00, druhá od 07.00 do 09.00 hodin SEČ. Kategorie: jednotlivci, RO kolektivních stanic, OL, posluchači. Pásma 3,5 a 1,8 MHz s povoleným příkonem podle povolovacích podmínek a jen CW. V pásmu 3,5 MHz je povoleno pracovat v závodě jen v kmitočtovém rozsahu 3 540 až 3 600 kHz. Výzva do závodu „CQ C“. Předává se čestním kódem z RST a pořad. čísla spojení, např. 579005. Bodování: 3 body za úplné spojení, za cobyby zacíbený kód 1 bod. Násobitelem je každá nová známka stanice, s níž bylo během závodu pracováno, přičemž pásmo nerohoduje. V každé části závodu lze s toutéž stanici na tomtéž pásmu pracovat jen jednou. Konečný výsledek tvorí součin součtu bodů z obou pásem (u OL jen za 160 m) a součtu násobitele. Deník se piše za každé pásmo zvlášť, musí obsahovat čestné ohlášení, musí být podepsán plným jménem a odeslan do 26. ledna 1969 na Ústřední radio klub, Praha Braník, Vlnitá 33. V ostatním platí Všeobecné podmínky. Jakékoli porušení podmínek a povolovacích nebo závodnických znamená diskvalifikaci.

Výsledky ligových soutěží za září 1968

OK LIGA

Jednotlivci			
1. OK2BWI	834	8. OK2BPE	305
2. OK1AWQ	825	9. OK1NR	292
3. OK2BHV	781	10. OK3ALE	266
4. OK2BMF	712	11. OK1APV	257
5. OK2QX	666	12. OK2BEW	248
6. OK1TA	483	13. OK2BOL	212
7. OK2LN	343		

Kolektivity			
1. OKIKYS	401	2. OK1KPR	319

OL LIGA

RP LIGA			
1. OK3-4667	2 966	7. OK1-14189	481
2. OK1-15688	2 529	8. OK1-1783	402
3. OK3-17768	1 240	9. OK2-17762	303
4. OK1-17194	1 019	10. OK1-15615	220
5. OK2-25293	931	11. OK1-15641	213
6. OK3-17769	780	12. OK1-17301	111

První tří ligové atace od počátku roku do konce září 1968

OK stanice - jednotlivci

- OK2BWI 10 bodů (2+1+2+2+2+1),
- OK2BHV 16 bodů (2+4+1+5+1+3),
- OK1AWQ 23 bodů (3+3+4+6+5+2),
- následují: 4. OK1TA - 26, 5. OK2BMF - 27,
6. OK2QX - 28, 7. OK2BOL - 53, 8. OK3CIU - 55, 9. OK2BNZ - 59, 10. OKIALE - 95,
11. OK1KZ - 102 bodů.

OK stanice - kolektivity

- OK1KFP 12 bodů (2+3+2+2+1+2),
- O1KZB 20 bodů (3+2+5+3+2+5),
- OK2KZR 22 bodů (7+3+4+3+1+4),
- následují: 4. OK1KV - 27, 5. OK1KTL - 28,
6. OK1KLU - 39 bodů.

OL stanice

- OL2AIO 7 bodů (1+1+2+1+1+1),
- OL1AKG 26 bodů (7+3+8+2+3+3)
- OL9AJK 30 bodů (4+6+5+5+5+5),
- následují: 4. OL7AJB - 34, 5. OL7AKH - 36,
- OL3AHI - 47 bodů.

RP stanice

- OK3-4667 18 bodů (4+5+6+1+1+1),
- OK1-15688 22 bodů (3+3+10+2+2+2),
- OK3-17768 25 bodů (8+6+3+3+2+3),
- následují: 4. OK2-25293 - 34, 5. OK1-17194 - 40,
6. OK1-15641 - 59, 7. OK2-17762 - 63, 8./9. OK1-15835 a OK1-17301 - 66, 10. OK1-7041 - 69 bodů.

Všechny uvedené stanice zaslaly do počátku roku nejméně 6 hlášení pro ligové soutěže.

Jak to bude v roce 1969 s dlouhodobými soutěžemi?

Stručně řečeno, obdobně jako v r. 1968. Pravidla ligy OK, OL a RP se nemění, jejich přesné znění najdete na str. 28 v Amatérském radiu č. 12/1966. Soutěž je celoroční a započítává se do ni každé spojení (u posluchače odposlechy) na krátkých vlnách, a to tak, že každý nový přípon (podle WPX) se hodnotí třemi body, opakován jedním bodem a to bez ohledu na způsob provozu (fone, CW, SSB) a pásmo (u OL stanice jen za 160 m). Soutěž jednak kolektivky a jednak jednotlivci, a to ve zvláštních skupinách.

Měsíční hlášení, pokud je součet bodů alespoň 100, se posílají vždy nejdřívejšího měsíce výhradně na adresu pořadatele, která je uvedena na zvláštních tiskopisech. Tiskopisy si je nutno vyžádat pouze na adresu: Ústřední radio klub, Praha-Braník, Vlnitá 33. Tiskopisy jsou zdarma, žádost se vyřizuje obratem.

Koncem roku budou hodnoceny jen ty stanice, které zašly během roku 1969 nejméně 6 měsíčních hlášení. Pořadí se stanovi ke konci roku tak, že se sečte čísla označující pořadí (tj. umístění) stanice za nejlepších 6 měsíců v roce. Vítězí ta stanice, která bude mít nejméně počet bodů. Protože se dělá průběžně měsíční vyhodnocení, není možné, aby stanice poslala svá hlášení za dva nebo více měsíců najednou. Hlášení doslá po 10. v každém měsíci nebudou hodnocena a budou vrácena odesílateli.

OK1CX

Změny v soutěžích od 10. září do 10. října 1968

S6S*

V tomto období bylo uděleno 26 diplomů S6S za telegrafická spojení č. 3689 až 3714 a 3 za spojení telefonická č. 818 až 820. V závorce za známkou je uvedeno pásmo doplňovací známky v MHz.

Pořadí CW: SP9AOA (14, 21 a 28), SP9AJT (14), SP3KEW (14), DM2BJD (7, 14, 21 a 28), DM2CJM (14), DM3OML, DM2CDH (14), SM7ABL (21), HA5KD (14), PY4AYO (21), SL5CX (14 a 21), OK2BFI (28), DM4WEE (14), DM3VYH (14), OK1INW (14), UJ8AJ (14), UB5DUO (28), UA9HV (21), UA1ZL (3,5; 7; 14 a 21), UG6LR (14), UY5FF (14), UA9CT (14), UA2DP (7), DJ6BN (21), HG0HS (28) a LZ2RZ (14).

Pořadí fone: OK2QR, UY5HB (28 - 2 x SSB), SM7DRQ (2 x SSB).

Doplňovací známky byly uděleny těmto stanicím za spojení telegrafická: za 14 MHz DM4RA k základnímu diplomu č. 3650; za 21 MHz OK2BPF k č. 3639 a za 28 MHz OK2RQ k č. 693, DM3WCJ k č. 2603 a OK1AWQ k č. 3688; za spojení telefonická na 14 MHz - 2 x SSB stanici OK2DB k základnímu diplomu č. 794.

ZMT*

Byla vydáno dalších 26 diplomů ZMT č. 2422 až 2447 v tomto pořadí:

SP9AOA, DM3VDM, DM4HG, UA9GE, UA4KWP, UG6LR, UP2AV, SP9CV, UB5KUJ, UA1IA, UL7YR, UY5FF, UT5BJ, DM2CDH, DM2BNI, HA7LP, HA5KD, DM3UFJ, Y05ALH, Y07VJ, DJ7UO, OK2BWI, OK2BHV, DM3XI, HA5AX a LZ2GW.

ZMT 24"

Další diplomy ZMT za 24 hodin získaly stanice HA6VE č. 25, HA3KNA č. 26 a HA6VL č. 27 za spojení navázané při „Závodě míru“ dne 5. května 1968.

„100 OK“

Dalších 22 stanic, z toho 3 v Československu, získalo diplom 100 OK č. 2070 až 2091 v tomto pořadí:

HA1PY, LZ1SS, SP5YQ, OK2BMR (510. diplom v OK), HA8UF, HA3GJ, OK2YJ (511.), DM3VUH, DM2BJB, Y07KAJ, Y07VJ, OL5AHS (512.), UY5FF, UA2DP, UB5QJ, UT5NG, UA1ZL, OK2PAB (513.), DM3OC, HA5KCC a DJ9OK.

„200 OK“

Doplňovací známku za 200 předložených různých listků z Československa obdržely:

č. 171 LZ1BK z základnímu diplomu č. 1606, č. 172 DM3YFH k č. 1371, č. 173 HA1PY k č. 2070, č. 174 UA1ZL k č. 2087, č. 175 OK2BMR k č. 1944 a č. 176 OK2PO k č. 407.

„300 OK“

Za předložených 300 různých listků z OK dostaňte doplňovací známku č. 80 OK2BMH z základnímu diplomu č. 1944, dále č. 81 OK2PO k č. 407 a č. 82 LZ1KAA k č. 1087.

„400 OK“

Další doplňovací známky za 400 různých QSL listků od čs. stanic dostanou: č. 370 OK2OU z základnímu diplomu č. 318, DM4ZL č. 38 k č. 1502 a č. 39 DM2BNL k č. 930.

„P75P“

3. třída

Diplom č. 253 byl přidělen stanici UC2KAG z Minsku, č. 254 UA1DI, VI. Tarabrinov, Lenin-

grad, č. 255 DM2CCM, Peter E. Sasse, Leipzig a č. 256 VK3YD, R. W. Ross, West Essendon, Victoria.

2. třída

Diplom č. 94 byl zaslán stanici UA1ZL, Anatolu Rodionovi, Zapolský, č. 95 UA1DI z Leningradu, č. 96 UJ8AB 1. G. Livšicovi z Dušanbe, č. 97 OK1KOK, Tesla Jablonné nad Orlicí a č. 98 VK3YD.

1. třída

Dva v amatérském světě známí DX-mani UT5HP, A. Kučerenko z Lugansk a VK3YD, R. W. Ross z West Essendonu, Victoria (tento s 95 W) získali 1. třídu P75P. Gratuluji!

„P-ZMT“

Diplom č. 1227 byl zaslán posluchačské stanici OK2-6294, Františku Vaňkovi, Stařec, a č. 1228 LZ2-K49, Kostovi Vasiliu Popovovi, Razgrad. „RP OK-DX KROUŽEK“

3. třída

Diplom č. 569 jsme odesílali stanici OK1-8188, Rudolfa Kadefákovi z Prahy 10, č. 570 OK1-15641, Oldřicha Liškovi, rovněž z Prahy a č. 571 OK2-5266, Pavlu Soukupovi z Třebíče.

2. třída

Diplom č. 211 byl přidělen rovněž stanici OK1-8188 z Prahy 10.

1. třída

Diplom 1. třídy získal opět OK1-8188, R. Kadefák, který tak dostal všechny třídy najednou. Zatímco diplom Popiolká má číslo 61 (bylo vynecháno), má tento č. 62. A hned nato přišla žádost od OK1-15561, Jiřího Doležala z Ústí nad Labem, který dostal č. 63. Všem naše upřímná gratulace!

Byly vyřízeny žádosti doslé od 11. října 1968 včetně této, zejména ze zahraničí, jejichž dodání se na poště vinoty správných událostí zdířelo.

Podle rozhodnutí vedení naší organizace byly z technických důvodů zrušeny diplomy ZMT, ZMT 24, P-ZMT a P-ZMT 24 dnem 31. 12. 1968. Budou tedy vyřízeny ty žádosti, které dojdou do ÚRK do tohoto dne.

Colombian Independence Contest 1968

Deníky, které došly na ÚRK, byly prohlédnuty, výsledky přepočítány a opraveny. Ve víc než položných případů se projevila chyba, způsobená zvěřejněním nesprávných podmínek. Oprava výsledku však byla nutná téměř u všech deníků. Některé stanice nevyužily ve výpočtu kritéria, které stanoví, že spojení např. s HK3 stanici se počítá pro násobit jí HK země a kromě toho jako HK3 prefix, tedy dva násobitky za jediné spojení.

Předběžné výsledky čs. účasti

OK2RZ	50 635	OK2BBJ	1 660
OK1ARN	23 430	OK2ZU	1 608
OK1WC	21 239	OK2LN	1 596
OK1AI	14 348	OK2BFX	1 312
OKITA	12 099	OK2BBQ	1 200
OK1AOX	10 027	OK2BCH	1 121
OK3CGP	9 798	OK1CJ	720
OK2BME	9 296	OK2ABA	21
OK1AOV	7 755	OK1AKW	9
OK2BHV	6 028		
OK2BWI	2 990	OK2KZR	3 348
OK2BPE	2 450	OK1-15558	1 012
		OK1AMC	

Rubriku vede ing. Vladimír Srdíčko, OK1SV

DX-expedice

Expedice VE6 do Pacifiku byla zahájena podle plánu. Prvním velmi vzácným ostrovem, odkud expedice pracovala, byl British Phönix Island. Výprava zde začala vyslat 12. 10. 68 pod známkou VR1P a byla většinou SSB na kmitočtu 10.200 kHz. Pro nepříznivé podmínky na Pacifiku však v době uzávěry naši rubriky neuskutečnila ani jediné spojení s Evropou. Podle zpráv z VK se měli pokusit do CQ-WW-DX-Contestu vybudovat nějakou provizornou směrovku, takže snad přece někdo z OK ještě udělal QSL požadují via VE6AO. Další trasa uváděná v zahraničních časopisech by měla vést na ZM7, ZK2 a další vzácné země v Pacifiku, dále plánuji ještě navštívit Indonésii, Filipíny a Novou Kaledonii.

Nepal atd., případně i západní pobřeží Afriky a to až po EA0. Celkem tato expedice hodlá navštivit asi 60 vzácných a polovázných zemí DXCC. To je velmi povzbudivá perspektiva, jen to jejich zařízení by snad mělo být silnější a podmínky lepší.

Dosud nezaznamenané zprávy oznamují, že se přeče jen má uskutečnit expedice na vzácný ostrov Malpelo ještě na podzim roku 1968 – snad okolo CQ-WW-Contestu. Nejistota kolem termínu, trvající řadu měsíců, je dána potížemi s dopravou na tento nepřístupný ostrov. Značka expedice je HK0LR a vedoucím výpravy je HK2AVK.

Veliká naděje je i na expedici, plánovanou již od jara na St. Felix Island. CE3ZN oznamoval, že se expedice může uskutečnit již koncem listopadu, nebo v prosinci t. r. Značka bude zase CE0X nebo CE3ZN/CE0X.

Rovněž na Chatham Island se plánuje zaútočit ještě do konce letošního roku a vypravují se tam současně 3 různé expedice, např. ZL3FM s partou ZL tam chce být koncem listopadu či počátkem prosince (ale pouze na 2 dny!). Další expedice má vést známý ZL1TU s několika W's (značka bude ZL1TU/C) a třetí expedice povede ZL2AGT.

Expedice, které byly plánovány letos na Campbell Isl. a na Kermadec Island se do konce roku 1968 již neuskuteční.

Potvrzena je veiká expedice Brazilec na Fernandez Noronha Island, a to pod značkou PY0SS a PY0FF, která probíhne pravděpodobně již v listopadu. Expedice též skupiny na St. Peter and Paul Rocks pod značkou PY0SP je však odsunuta na později termin.

TU2BA byla značka americké expedice ve dnech 18. až 24. 11. 1968 do Abidžanu v příležitosti konání „Amerického týdne“ v Ivory Coast.

Zprávy ze světa

Změna prefixů nastala v Bečuánsku, kde místo ZS9 začali od října 1968 používat kombinovaný prefix A2CA a další písmeno. Tak např. známý ZS9Q se nyní hlásí jako A2CAQ. Bečuánsko je nyní nezávislé, ale jeho oficiální název se mi dosud nepodařilo zjistit.

K další změně prefixu dojde zřejmě co nejdříve v EA0, neboť v Santa Isabel byla dne 12. 10. 1968 vyhlášena samostatnost nového státu, který se jmenuje Rovníková Guine a zahrnuje Rio Muni a Fernando Poo.

SU1IM - Ibrahim z Egypta se konečně a po dlouhé době opět objevil CW na kmotru 14 050 kHz a přidívá se tak o to, že SU je konečně opět dosažitelný. Jen by měl ještě pracovat i na SSB, kde je SU prakticky nedosažitelný.

Značka EA6AR, pod kterou v létě pracoval expedičně DL7FT, je nyní i nadále na 21 MHz, a to téměř denně, čímž je EA6 rovněž prakticky stále dostupná. QSL via DL7FT.

VR4EL je druhá stabilní stanice na Solomon Islands a pracuje na 14 160 kHz pouze telefonicky, tj. AM. Je slyšitelná kolem 07.00 GMT. Používá 250 W a dipól. Jako první OK ji objevil a udělal Vašek, OK1ADM (dovolal se jí SSB). Současně se dozvěděl, že tamní VR4EK má do konce roku dostat vybavení pro SSB.

TA3AR je dobrý novým prefixem. QTH je Izmyr (Smryna) a je zde výborně slyšitelný – má 1 kW. Je to příslušník USA a QSL žádá via WA7GQA.

Nás starý dobrý známý VE1ASJ (manažer ET3RB, VP8JT, HRIKAS, HR2GK a 4Z4VL) prosí o pomoc k dosažení diplomu 300 OK (SSB i CW). Pracuje na 14 020 kHz po 21 SEC a volá CQ OK/OM. Pomozte mu k dokončení tohoto našeho těžkého diplomu!

AP2MI - West Pakistan, koná nyní v zimě testy na 3 780 kHz SSB a prosí o závolání, připadně i o poslechové zprávy. QSL žádá via VE3ACO.

ZD5V je vejmí aktivní na 28 MHz SSB kolem 15 až 16 GMT. Jeho QTH je Manzini, Swaziland a QSL požaduje direct. Používá 800 W a beam.

4UOTIC byla značka stanice ITU, pracující 5. 10. 68 z Torino, Italy. Plati však pouze do WPX.

SV0WY, který pracová 9. 8. 68 večer na 3,5 MHz a udával QTH Rhodes, byl pirát! Skutečný SV0WY to oznamil písemně Petrovi, OK1ALT s tím, že pracuje výhradně na 14, 21 a 28 MHz. Dále oznamil, že pochopitejně nebudete na QSL na 80 m vůbec odpovídat.

TN8BG se objevil počátkem září na 14 MHz CW. Zdá se být nováčkem a QSL požaduje na P. O. Box 712, Brazzaville, Congo.

Poměrně vzácný TG4VH pracuje CW na 14 MHz a požaduje QSL zaslat na WA5PQK. Tom, VR6TC, je stále poměrně aktivní a udává, že udržuje nyní skedy s W6HS na kmotru 14 220 kHz. Obdržel již nové QSL, ale upozornil, že požaduje zaslat nejméně 2 IRC, jinak vůbec neodpovídá na QSL.

Značky KZ5BBN a KZ5BB nejsou stanice pevné, ale jsou umístěny na lodi (MM) a neplatí proto pro DXCC za Canal Zone.

9M2DQ oznamuje pokusy na 3,5 MHz a 1,8 MHz letos v zimě. Podívejte se po něm, uvitá i poslechové zprávy.

CR3KD pracuje hlavně CW bud na 21 034 kHz, nebo na 14 060 kHz. V poslední

době dostal i zařízení pro SSB, takže se ozval i na SSB pásmech. QSL via W2CTN.

Několik zpráv z oblasti VK9: Za Bismarckovo souostroví platí VK9HR, KS, NM a VM. Christmas Island zastupuje stálý VK9XI, Nauru Island je VK9RJ, New Guinea VK9GN a Papua VK9DJ.

FB8ZZ na Amsterdam Island je po delší době slyšitelný CW na kmotru 14 005 kHz.

Situace ve VP8-zemích: VP8JX má QTH v Antarktidě (Halley Station) a používá tyto CW a SSB kmotry: 14 020, 21 086, 21 300 a 28 530 kHz. QSL žádá via GD3HQR. Na Falklandech je t. č. VP8KF (skok s jednadvaceti, G3SJ), dale VP8KE (QSL via W4NJF) a VP8KD (QSL via K2JXV). Ze South Orkney pracuje VP8JH s krystalem 21 056 kHz.

ZS2MI na ostrově Marlon pracuje pravidelně v pondělí, ve středu v pátek na 21 MHz pouze fone (AM) a to mezi 21 240 až 21 250 kHz v době mezi 15.00 a 17.00 GMT.

HK0BIS - QTH St. Andres Isl. žádá QSL direct na adresu: P. O. Box 81, St. Andres Island, Colombia.

Diplomy - soutěže

UDXA - Award je diplom, vydávaný Utah DX Association. Diplom lze získat za předložení QSL, potvrzujících spojení s deseti různými stanicemi v Utahu, avšak z toho musí být 5 spojení se členy UDXA. Spojení platí od 1. 4. 1967 CW nebo SSB. Diplom se uděluje "zdarma a žádá se vla ÚRK na adresu: W7HS, Alvin Phillips, Ogden, Route 2, Box 112-Utah, Zip 84404, USA.

WAWA - Worked All Westfalia Award je diplom vydávaný westfálskou odbøckou DARC; platí do něho spojení s německými DOK ve Westfálsku-Sever a Westfálsku-Jih. Je nutno předložit QSL za spojení s třiceti různými westfálskými DOK, a to tisla N 01 až N 21 + Z 14, a dale O 01 až O 32 + Z 03. Diplom stojí 12 IRC a manažerem je DJ8SCR.

WJDX-Award je nový diplom, vydávaný WJDX-klubem, a to pod heslem „Nikdy více Hiroshima“. Je nutné předložit QSL za spojení s deseti stanicemi z JA4, z toho nejméně po jednom QSL z těchto prefektur: Jamagatači, Okajama, Simono, Tottori a Hirošima. Záhost, QSL a 6 IRC via ÚRK na manažera JA4BJO.

QSL-manažeri:

CE0AJ via DL9KRA, CR3KD-W2CTN, CR9AK-CT1WB, FK8AU-VE3ACD, HS3MT, K3LT, TT8AN-W5LEF, VK9RJ-W6UJW, VP1LL-VE3DLC, VP8JX-GD3HQR, VQ8CC-VQ8AZ, VR1L-K6UJW, VR2DI-VE6KT, VR2FF-WA6NGI, VS5MHM-VK6EZ, XW8BQ-WA4ZTW, YA2HWI-W9FJL, ZD8CC-VP5RS, ZD8W-6UCF, 5R8AF-K7HCD, 5U7AN-W4WHF, 7XOAH-VE3DLC, 8P6AH-VE3DLC, 8P6AY-W4OPM, 9Y4ZZ-WA5MYR.

Do dnešní rubriky přispěl titolo naší amatérské vysílači: OK1ADM, OK1ADP, OK3BG, OK3BU, OK2QR, OK1ATB, OK2BOB, OK1ALT a OK1ARZ. Dále titolo posluchači: OK2-20601 a OK2-25293. Všem patří srdečné díky, stále však máme značný nedostatek dopisovatelů a proto znovu prosíme všechny, kteří mají o DX-sport zájem, aby zaslali pravidelně co nejvíce zajímavých DX-zpráv, a to vždy do osmého v měsíci na adresu: Ing. Vladimír Srdík, P. O. Box 46, Hlinsko v Čechách.

přečieme

Si

Svoboda, L. - Štefan, M.: REPRODUKTORY A REPRODUKTOROVÉ SOUSTAVY. Malá radiotechnická knihovna, svazek 22. Praha: SNTL 1968. 257 str., 235 obr., 22 tab. Váz. Kčs 18,-.

Po delší odmlce zavíráme nejen známými událostmi využití – jak je v módě hikat – volného prostoru k malému zamýšlení nad literaturou pro amatéry a přípojme k jedné ukázce z této tvorby několik postřehů, které sice nestojí za samostatný článek nebo úvodník, ale přesto chtejí mit své místo.

Na trhu přichází velmi zajímavá kniha z oboru radioamatérům, fotamatérům atd. nejbližšího: z elektroakustiky. Poslední kniha o reproduktorech a ozvučnicích ing. Dr. Aleše Boleslavu, která vyšla v r. 1959, je již téměř zapomenuta a tak hlad po této literatuře byl deseti lety jen znásoben. Je pravda, že pokrok techniky a vedy v této oblasti je tak rychlý, že mu nestojí žádána tiskárna, tím méně těžkopádné nakladatelství technické literatury SNTL. Tak jako na každém obalu výrobku (např. másla) má být nebo je datum výroby, tak i na obálce každé knihy SNTL by mělo před názvem knihy být upozorněno: Toto dílo bylo napsáno před dvěma (popř. třemi) lety. Zádný z autorů pracující s tímto nakladatelstvím není této dvojleté (či delší)

doby učten a proto je nuten takovou nepřijemnost částečně kompenzovat tim, že „píše dva roky dopředu“ – což v praxi znamená, že je zpravidla zaměstnán v nějakém výzkumném ústavě, nebo s ním spolupracuje. Také kniha autorů Svobody a Štefana nese všechny tyto znaky. Přesto nelze tvrdit, že kniha byla zastarálá, rozhodně na ní celé dva roky zpět nejsou vidět. Autori se snažili poskytnout podrobnou pomůcku, všež zájemcům, kteří si potřebují vlastními silami postavit reproduktoru soustavu podle svých výrobních, finančních a materiálových možností a představ. V knize je ovšem kromě návodů na stavbu ještě dostatek informací s tím souvisejících. A tak dostáváme knihu s bohatým obsahem:

V první kapitole jsou probrány teoretické otázky: podstatu zvuku a jeho šíření, základní akustické veličiny a psychofyziologie slyšení, což vše je velmi důležité. Tato kapitola je místy dosti obrubná, ale to nikaj nemusi vadit čtenářům, kteří nemají rádi rovnice. Ostatně, těch je tu jako šafránu, a lze uznat, že bez nich by kniha nebyla úplná. Další obsah vše vynahradí.

Druhá kapitola se zabývá reproduktory a osvětuje fyzikální základy jejich funkce. Popisuje magnetický obvod, kmitající čivku, membránu, kohu a sférický prvek, tedy celý soubor částí reproduktoru, dale různé typy ozvučnic: deskovou, skříňovou otevřenou, skříňovou uzavřenou a ozvučnicí typu bass-reflex. Samostatnou stafí tvorí zevrubby popis reproduktoru se zvukovodem.

Třetí kapitola je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Doplňk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonančního kmotru, kmotového rozsahu a kmotové charakteristiky, citlivosti, magnetické indukce v mezeře, směrové charakteristiky, akustického výkonu, účinnosti, harmonického a intermodulačního zkreslení a jiných. Není zapomenuto na měření přístroje a prostředí, v němž se měření má konat. Dopljněk kapitoly tvorí normalizační tabulka je věnována měření elektroakustických vlastností reproduktoru: impedance, příkonu, rezonan

V LEDNU

Nevárameňte, že

... 4. 1. jako první závod roku 1969 proběhne pravidelný závod OL.

... 12. 1. pro nováčky obvyklý závod třídy C.

... 14. 1. a 28. 1. ožije 160 m telegrafními pondělky.

... 19. 1. dopoledne je SSB liga a provozní aktiv na 145 MHz.

... 25. a 26. 1. se uskuteční největší světový závod na 160 m CQ WW 160 m a zároveň CW část REF Contest.

četli jsme

Radio, Fernsehen, Elektronik (NDR), č. 17/68

Analogový spinač, pracující na principu výběru - Číslicové počítací při vývoji elektronických přístrojů (3) - Zkuška těsností planárních vrstev pro polovodičové prvky - Stabilizace pracovního bodu tranzistoru lineárními odpory - Informace o polovodičovém (44), křemíkové planární tranzistory SF121, SF122, SF123 - Dvojicový zesilovač pracující jako klíčovací obvod - Výkonový zesilovač KV a VKV se sovětskými tranzistory - Kmitočtové a fazové zkreslení v zesilovacích stupních způsobené kapacitou v obvodu emitoru - Ztrátový výkon při smíšeném zatištění - Trippaprsková obrazová elektronika s mřížkou (1) - Elektroakustické přístroje s měniči a piezoelektrické keramiky - Eliptický reproduktor s extrémním poměrem délky ro - Napětí řízený generátor obdélníkových kmitů.

Radio, Fernsehen, Elektronik (NDR), č. 18/68

Možnosti použití polem řízených tranzistorů v číslicové počítací technice - Přesný analogový číslicový vazební prvek - Číslicový panelový měřič pístoří - Trippaprsková obrazovka s mřížkou (2) - Sovětský televizor Turist - Informace o polovodičích (45), křemíkové epitaxné-planární tranzistory SF126 až SF128 - Tranzistor s lavinovým jevem - Stabilizovaný síťový zdroj s omezením výstupního proudu - Hluk pozadí u gramofonových desek - Ozvěny u gramofonových desek - Elektronický hudební nástroj, Subharchord 2 - Přístroj pro kontrolu transparente a teploty barvy.

Rádiotechnika (MLR), č. 9/68

Zajímavá zapojení s elektronikami a tranzistory - Násobíce kmitočtu a konvertovery s kapacitními diodami - Generátor SSB s tranzistory - Program STRAPA - VFO 5 až 5,5 MHz pro tranzistorové vysílače SSB - DX - Elektronkový voltmetr k měření napětí nízkých kmitočt - Moderní televizní přijímače - Zajímavý návod k obnově starých televizních přijímačů - Obrazovka pro barevnou televizi - Magnetofonové pásky (3) - Relé pro stejnosměrný proud - Stavíme dvoubodový přijímač - Jednoduchý rezonátor - Čtenáři mají slovo.

Rádiotechnika (MLR), č. 10/68

Zajímavá zapojení s tranzistory a elektronikami - Charakteristiky napětí-proud doutnavk - Generátor SSB s tranzistory a s filtrem LC pro čtyři pásmá - Předzesilovač a konvertor pro pásmo 145 MHz - DX - Od lineárního koncového stupně k anténě - Moderní televizní přijímače - Obrazovka píso barevnou televizi - Radiotelefonní přístroj Titán - Magnetofonové pásky (4) - Samočinný blesk se síťovým i bateriovým napájením - Přestavba přijímače Selga na krátké vlny - Všestranný zkoušec tranzistorů - Pro začátečníky: nf zesilovač - Kapesní přijímač Strand (B3100) - Hádanku.

Radioamatér (Jug.), č. 9/68

Tranzistorový konvertor pro pásmo 20, 15 a 10 m - Vicepásmový dipól - Elektronický klíč - Elektronické varhany (2) - Darlingtonovo zapojení s tranzistory (1) - Jednoduché omezení brumu ze žhavení

- Varaktory (1) - Přijímač Piknik - Diplomu - DX - Tranzistory v laboratoři radioamatéra (8) - Základy techniky měřicích přístrojů - Jednoduchý nf zesilovač - Nové knihy.

Radioamatér (Jug.), č. 10/68

Vysílač KV se stabilním VFO - Tranzistorový „selektoděžek“ - Zapojení s FET - Lineární QRO - Tranzistorový nf zesilovač bez výstupního transformátoru - Darlingtonovo zapojení s tranzistory (2) - Vše o SSB (9) - Varaktory (2) - Stabilní tranzistorový voltmetr - Tranzistory v laboratoři radioamatéra (9) - Základy techniky měřicích přístrojů (3) - Nejdénušší zesilovač pro gramofon - Zprávy IARU.

Radio i televizija (BLR), č. 8/68

Jednoduché měřicí přípravky - Antenní zesilovač pro první TV pásmo - Rádkový rozklad v televizních přijímačích - Imploze obrazovek - Nastavování nf stupňů televizních přijímačů Elektron, Ogoněk, Rubin 105 - Gramofonové stereofonní zesilovače - Elektronická kytara - Bezdrátový mikrofon - Zesilovač pro dynamická sluchátka - Stabilizovaný síťový zdroj pro tranzistorové přijímače - Ionosféra - KV - KV.

Funktechnik (NSR), č. 15/68

Programované učení a vyučovací automaty mění způsob vyučování - Příklady jednoduchých vyučovacích automatů - Meteorologické družice - Stálý milivoltmetr s křemíkovými tranzistory - Výroba integrovaných obvodů - Napájení dvou televizorů z jedné antenní zásuvky - Síťové zdroje pro televizory s polovodiči - 7. setkání amatérů na Bodensee - Antenní aoustavy - Stereofonní zesilovač na sluchátka - Řízený síťový zdroj - Elektronika pro let k Měsici - Technika moderních servisních osciloskopů - Nové knihy.

Funktechnik (NSR), č. 16/68

Přijímací zařízení pro údaje meteorologických dřužic - Fotelektrický prvek BPX28 a jeho použití - Integrovaný obvod μA726 s teplotně stabilizovanou dvojicí tranzistorů - Opravy barevných televizních přijímačů - Technické předpisy pro rozhlasové přijímače - Emitorový odpór v koncovém nf zesilovači kufříkových přijímačů - Tranzistorový nf zesilovač s vysokým napájecím napětím - Tranzistorová občanská radiostanice pro pásmo 10 m - Elektronický hledač automobilu - Antenní soustavy (2) - Elektronika pro let k Měsici - Technika moderních servisních osciloskopů - Nové knihy.

Funktechnik (NSR), č. 17/68

Hi-Fi v NSR - Hi-Fi a jak dál? - Problemy použití i konstrukce reproduktoru v Hi-Fi technice - Moderní mikrofony a sluchátka pro Hi-Fi - Pozoruhodné obvody v tuneru a nf zesilovači Acusta Hi-Fi (Telefunken) - Jakostní stereofonní zesilovač SV140 (Grundig) - Tuner 3106 Hi-Fi (Wega) - Vlastnosti lidéského slyšení - Stereofonní magnetofon TG550 (Braun) - Odstup brumu při poslechu na sluchátka - Praxe věrné reprodukce zvuku.

Radioschau (Rak.), č. 8/68

Test: Stereofonní sluchátka - Zahraníční aktuosity - Dva nové špičkové monofonní přijímače na síť, Philips Premiere a Premiere Automatic - Klopné obvody a multivibrátory s digitálními integrovanými obvodami - Nové součástky a přístroje - Střídavý milivoltmetr s tranzistory FET - Tak pracuje „otevřená“ sluchátka - Hi-Fi v obyvaciém pokoji? - Drobnosti z dilenské praxe.

REVUE 6

Již začátkem ledna 1969 vyjde 1. číslo měsíčníku

STŘELECKÁ REVUE

v novém formátu A4, s novým obsahem, s novou graf. úpravou. Bude přinášet zajímavosti, techniku i taktilku, historii i současnost sportovní střelby na všech 32 stranách textu. Objednávky přijímá každá PNS nebo poštovní doručovatel. Cena Kčs. 3,- Vydává VČ MNO

INZERCE

První tučný rádec Kčs 20,40, další Kčs 10,20. Příslušnou částku poukážte na účet č. 300-036 SBCS Praha, správa 611, pro Vydavatelství časopisu MNO, inzerce, Praha 1, Vladislavova 26. Uzávěrka 6 týdnů před uveřejněním tj. 14. v měsíci. Neopomeňte uvést prodejní cenu. Pište laskavě čitelně, nejlépe hůlkovým písmem.

PRODEJ

UHF konvertor tranz. IV-V. pásmo Nogoton (1 100), osciloskop BM 370 nový (1 700), Aku 12 V NiFe (200), Emil 80 m (300), „cihla“ (100), zdroj (250), DU10 (700), Icomet (400). Z. Sýkora, Nová Role 228, o. Karlín Vary.

VKV díl Kvátero (90), civk. soupr. Echo (150), zesilovač 10 W Transiwell (800), duál 2x450 pF (30), obrazovka 7QR20 (90), 3L31 (à 15), EF80, 6B32 (à 5), ECH21, EF22, 6CC42, 6Z1P, 6F32, 1L33, 34NP75 (à 10), OC30 (35), 2NU73 (à 30). V. Farták, Unhošť-Ceperek 504, o. Kladno.

Nové EIMAC 4-125 A, 2 ks (4 550), díto žhav. trafo (100), ferit GG žhav. tlumivka 15 A (35), neutr. kond. VIKING 3 kV AM (à 80), stupnice Miller s mikro a osvetl. (150), 866A (à 60), 6Y50 (à 15), krystaly 16 (80), 6,5; 10; 17; 31 MHz (à 100) a iné. Pište + SASE: Ján Horský, Vážská 3050, Piešťany.

Nabízíme k odprodeji v zúst. hodnotách:

1 generátor pruhů FSK 1, výrobek NDR, 1 generátor BG 255-6055, zdroj, tel. signál, 2 zkoušecí antén 5002a, indikátor síly tel. signálu, 1 měřicí generátor VF typ 159, 30 kHz až 30 MHz, výrobek NDR, 1 měřicí generátor UKV typ 2006, 10 až 240 MHz, výrobek NDR, 1 rozmitá, jednoúčelový, výrobek Tesla Orava. KOVOVÝROBA PMP, Česká Třebová, odděl. OTZ, tel. 3411.

KOUPĚ

K magnetofonu regulátor otáček Start, motor AYN 550, komb. hlava ANP-908. V. Růžička, Kožidlo, Bezdružová 479.

Transceiver CW, SSB, 80, 40, 20 m typu KWM, RT2 apod., bez stav. Cena, popis. P. Cunderla, J. Fučík IV. 3594, Gottwaldov.

Přijímač EZ6 v původním stavu, v chodu. VI. Mareš, Fučíkova 1198, Nejdek.

RM 31 se všemi krystaly i bez příslušenství. A. Bura, Havířov 10, č. 718.

Krystaly 40,5 nebo 20,25 MHz, VKV výk. křemík. tranz., tov. adaptér pro IV. pásmo. M. Soukup, Přibram 168.

AR roč. 1960-64 a AR č. 8 r. 1958, přip. celý ročník. L. Kokoška ml., Ludvíkovice 129, o. Děčín.

VÝMĚNA

6 ks krystalů 8 050 kHz za 6 ks krystalů 1 MHz z RM31 i jednotlivě. Zdeněk Habala, Tábor 2, Brno 16.

RŮZNÉ

Pro atožárové meteorologické stanice u Jirkova a Tušimic přijmeme meteorologické pozorovatele. Vyhodn. Zn.: Pro radioamatéry - 257.

Kdo navine 2 spec. sít. a 1 modul. trafo? Zd. Erben, W. Piecka 17, Cheb.

ZBOŽÍ ZA VÝHODNÉ CENY

Souprava desek s plošnými spoji pro televizní přijímače:

LOTOS	deska kanálového voliče deska obrazové mezifrekvence deska rozkladů deska obrazu a zvuku	4 kusy za Kčs 12,—
MIMOSA	deska kanálového voliče deska zesilovače deska rozkladů	3 kusy za Kčs 9,—
CAMPING	deska zesilovače deska rozkladů	2 kusy za Kčs 6,—

RADIOAMATÉR

DOMÁCÍ POTŘEBY PRAHA, PRODEJNA č. 211-01
V PRAZE 1, ŽITNÁ 7, telefon č. 22 86 31

TECHNICKÉ INFORMAČNÍ STŘEDISKO TESLA PRO AKTIVNÍ A PASIVNÍ SOUČÁSTKY

najdete v Praze 1, Soukenická 18, tel. 629 94. Je otevřeno denně kromě soboty od 8 do 14 hod. Informace si můžete vyžádat i písemně.

Technicko-ekonomické informace z oblasti aktivních a pasivních prvků poskytuje středisko zejména odborníkům, výzkumným a konstrukčním pracovníkům podniku, které používají součástky TESLA ve svých zařízeních – bezplatně.

Odborníci mají se střediskem ty nejlepší zkušenosti. Středisko totiž zaměstnává pracovníky s velkými zkušenostmi z výzkumu a vývoje součástek, kteří mají přímé spojení s výzkumnými ústavy a podniky. Dále je zde soustředěna základní technická dokumentace. Počítá se též se stálou výstavkou součástek i perspektivních.

TESLA

DOBRÉ VÝROBKY
DOBRÉ SLUŽBY

