Metodi Algebrici per l'Informatica

Appunti Universitari

1° Semestre, 2° A.A. 2024-25 27 Feb 2025

Università degli Studi di Milano - Bicocca CdL Informatica Prof. Marina Avitabile

AUTORE

Federico Zotti

Indice

1.	Principio di buon ordinamento	. 1
2.	Principio di induzione	. 1
	2.1. 1° forma	. 1
	2.2. 2° forma	
	Algoritmo della divisione	
	Massimo Comun Divisore e Algoritmo di Euclide	
	4.1. Algoritmo di Euclide	

1. Principio di buon ordinamento

Sia
$$n_0 \in \mathbb{Z}$$
 e $\mathbb{Z}_{n_0} = \{n \in \mathbb{Z} \mid n \geq n_0\}$

$$\forall \emptyset \neq X \subseteq \mathbb{Z}_{n_0}$$

Ovvero ogni sottoinsieme non vuoto di \mathbb{Z}_{n_o} ammette un minimo.

2. Principio di induzione

2.1. **1º forma**

Siano $n_0 \in \mathbb{Z}$, p(n) un enunciato che ha senso $\forall n \geq n_0$.

Se

- $p(n_0)$ è vera
- $\forall n > n_0, p(n-1) \text{ vera} \Rightarrow p(n) \text{ vera}$

Allora p(n) è vera per ogni $n \ge n_0$.

2.2. **2º forma**

Siano $n_0 \in \mathbb{Z}$, p(n) un enunciato che ha senso $\forall n \geq n_0$.

Se

- $p(n_0)$ è vera
- $\forall n > n_0, p(m)$ vera $\forall n_0 \leq m < n \Rightarrow p(n)$ vera

Allora p(n) è vera per ogni $n \geq n_0$.

Esempio:

$$p(n) \to \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Dimostrare per induzione che p(n) è vera $\forall n \geq 1$.

- Passo base: $n_0 = 1 \, p(n)$ è vera.
- Passo induttivo: $\forall n>1, p(n-1) \text{ vera} \Rightarrow p(n) \text{ vera}.$

$$p(n-1) \rightarrow \sum_{k=1}^{n-1} k = \frac{(n-1)n}{2}$$

$$n + \sum_{k=1}^{n-1} k = \frac{(n-1)n}{2} + n$$
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Dimostrato $p(n) \forall n \geq 1$.

Esempio:

$$p(n) \to |X| = n \Leftrightarrow |\mathcal{P}(X)| = 2^n$$

• Passo base: $n_0=0$

$$|X| = 0 \Leftrightarrow X = \emptyset \Leftrightarrow \mathcal{P}(\emptyset) = \{\emptyset\} \Leftrightarrow |\mathcal{P}(\emptyset)| = 1 = 2^n$$

• Passo induttivo: $\forall n>0$, assumo vera p(n-1) e mostro che p(n) è vera.

 $X \text{ insieme con } |X| = n > 0 \text{ posso scegliere } x_0 \in X.$

$$\begin{split} \mathcal{P}(X) &= A \cup B \\ A &= \{Y \subseteq X \mid x_0 \in Y\} \\ B &= \{Z \subseteq X \mid x_0 \neg \in Z\} \\ A \cap B &=? \rightarrow = \emptyset \end{split}$$

Quindi

$$\begin{aligned} |\mathcal{P}(X)| &= |A \cup B| = |A| + |B| \\ B &= \mathcal{P}(X \smallsetminus \{x_0\}) = 2^{n-1} \\ |A| &= |B| \end{aligned}$$

perchè esiste la funzione f t.c.

$$f:A\to B \text{ (bilettiva)}$$

$$Y\to Y\smallsetminus \{x_0\}$$

$$f^{-1}:Z\to Z\cup \{x_0\}$$

Dunque

$$|\mathcal{P}(X)| = |A| + |B|$$

$$|A| = |B| = 2^{n-1}$$

$$|\mathcal{P}(X)| = 2^{n-1} + 2^{n-1} = 2^n$$

3. Algoritmo della divisione

Esempio:

23 diviso $3 \rightarrow 23 = 3 \cdot 7 + 2 \rightarrow 7$ quoziente; 2 resto

Teorema:

Siano n, m interi $\in \mathbb{Z}$ con $m \neq 0$. Allora esistono e sono unici $q, r \in \mathbb{Z}$ t.c.

- 1. n = mq + r
- 2. $0 \le r < |m|$

Osservazione:

- $0 \le r < |m| \Rightarrow r \ne |m|$
- La seconda condizione garantisce l'unicità di quoziente e resto.

Dimostrazione:

Utilizziamo l'induzione nella seconda forma. Dimostriamo prima l'esistenza di quoziente e resto.

• 1° caso: $n \geq 0$

Fissiamo arbitrariamente m, procediamo per induzione su n.

• Base induzione: n = 0 vero con q = 0; r = 0.

Se
$$n < |m|$$
 vero con $q = 0$; $r = m$.

▶ Passo induttivo: Sia allora $n \ge |m|$. Per induzione suppongo l'esistenza vera per tutti gli interi $t \text{ con } 0 \le t < n$. So che $n \ge |m|$ quindi $n - |m| \ge 0$ e n - |m| < n perchè $|m| \ne 0$.

$$t = n - |m|$$

$$\exists q_1, r_1 \in \mathbb{Z} \operatorname{con}$$

1.
$$n - |m| = mq_1 + r_1$$

2.
$$0 \le r_1 < |m|$$

1. equivale ad
$$n = |m| + mq_1 + r_1$$

- Se
$$m>0$$
: $n=m(q_1+1)+r_1\Rightarrow q=q_1+1; r=r_1$

- Se
$$m < 0$$
: $n = m(q_1 - 1) + r_1 \Rightarrow q = q_1 - 1; r = r_1$

• 2° caso: n < 0

Se $n < 0 \rightarrow -n > 0$, quindi posso utilizzare il primo caso con -n.

$$\exists q_1, r_1 \in \mathbb{Z} \text{ con }$$

1.
$$-n = mq_1 + r_1$$

2.
$$0 \le r_1 < |m|$$

 ${\rm dunque} \ n = -mq_1 - r_1 = -mq_1 - |m| + |m| - r_1.$

• Se
$$m > 0$$
: $n = -mq_1 - m + m - r_1 \Rightarrow q = -q_1 - 1$; $r = |m| - r_1$.

Devo verificare che $0 \le r < m$, so che

$$0 \leq r_1 < m \rightarrow -m \leq -r_1 < 0 \Rightarrow 0 \leq \underbrace{m-r_1}_r < m$$

$$\qquad \qquad \mathbf{Se} \ m < 0 \\ \vdots \\ n = -mq_1 + m - m - r_1 \\ \Rightarrow q = -q_1 + 1 \\ \vdots \\ r = -m - r_1.$$

Devo verificare che $0 \le r \leftarrow m$, so che

$$0 \leq r_1 \leftarrow m \rightarrow m \leq -r_1 < 0 \Rightarrow 0 \leq \underbrace{-m - r_1}_r \leftarrow m$$

Dimostrazione dell'unicità per assurdo:

Supponiamo che sia

$$n = mq + r$$
 $0 \le r < |m|$
 $n = mq_1 + r_1$ $0 \le r_1 < |m|$

Supponiamo che $r \geq r_1$. Risulta $r - r_1 = m(q_1 - q)$.

Passiamo ai moduli: $|r-r_1|=r-r_1=|m|\cdot |q_1-q|$.

So che $0 \leq r - r_1 < |m|$

$$|m||q_1 - q| < |m| \to 0 \le |q_1 - q| < 1 \Rightarrow |q_1 - q| = 0 \Rightarrow q_1 = q \Rightarrow r_1 = r$$

4. Massimo Comun Divisore e Algoritmo di Euclide

Divisibilità:

Siano $a,b\in\mathbb{Z}$ t.c.a=bc. Allora dico che b divide a (a è un multiplo di b) e scrivo $b\mid a$.

Dato $a \in \mathbb{Z}, a \neq 0, \pm 1 \mid a; \pm a \mid a$, ovvero $\pm 1, \pm a$ sono **divisore impropri** di a.

Se esiste $b \in \mathbb{Z}$, $b \mid a \text{ con } b \neq \pm 1$, $b \neq \pm a$ allora b è un **divisore proprio** di a.

• Fatto 1: $a, b \in \mathbb{Z}$.

Se $a \mid b$ e $b \mid a$ allora $a = \pm b$.

Infatti

$$\exists c \in \mathbb{Z} \text{ t.c. } b = ac$$

$$\exists d \in \mathbb{Z} \text{ t.c. } a = bd$$

Sostituisco la seconda nella prima b = bcd

$$b(1-cd) = 0 b \neq 0$$
$$1-cd = 0$$
$$cd = 1 \begin{cases} \Rightarrow c = 1 = d \Rightarrow a = b \\ \Rightarrow c = -1 = d \Rightarrow a = -b \end{cases}$$

• Fatto 2: $a, b, c \in \mathbb{Z}$.

Se $c \mid a$ e $c \mid b$ allora $c \mid ax + by, \forall x, y \in \mathbb{Z}$.

Infatti

$$c|a \Rightarrow \exists h \in \mathbb{Z} \text{ t.c. } a = ch$$

 $c|b \Rightarrow \exists i \in \mathbb{Z} \text{ t.c. } b = ci$

$$\forall x,y \in \mathbb{Z} \quad ax + by = chx + ciy = c\underbrace{(hx + iy)}_{\in \mathbb{Z}}$$

Concludo che $c \mid ax + by$.

Dunque se $c \mid a$ e $c \mid b$ allora c divide ogni combinazione lineare a coefficienti interi di a e b.

MCD:

Siano $a,b\in\mathbb{Z}^*=\mathbb{Z}\setminus\{0\}$.

Si dice **massimo comune divisore tra** a **e** b ogni intero che soddisfa le seguenti proprietà:

- $d \mid a \in d \mid b$
- $\forall c \in \mathbb{Z}$, con $c \mid a, c \mid b$ allora $c \mid d$

d è un MCD tra a e b. Tutti e soli i divisori di d coincidono con i divisori comuni tra a e b.

Teorema esistenza di un MCD:

 $\forall a,b \in \mathbb{Z}$, con a>0 e b>0, esiste un MCD d tra a e b.

Inoltre esistono $s,t\in\mathbb{Z}$ t.c. d=as+bt (Identità di Bézout).

4.1. Algoritmo di Euclide