Notater

Fredrik Meyer

25. januar 2016

0.1 Tautologisk linjebunt på \mathbb{P}^n

Vi kan definere en tautologisk linjebunt på \mathbb{P}^n . Dette er en bunt hvis fiber over et punkt p er linjen i \mathbb{A}^{n+1} utspent av (de homogene koordinatene til) p. La $q \in \langle p \rangle$ bety at q er med i spennet av p. Da er

$$\mathscr{T} := \{ (q, p) \in \mathbb{A}^{n+1} \times \mathbb{P}^n \mid q \in \langle p \rangle \}.$$

Ved å regne overgangsfunksjoner kan en se at $\mathscr{T} \simeq \mathscr{O}_{\mathbb{P}^n}(-1)$.

Det finnes også andre måter å se dette på, eksempelvis slik Mike Eastwood forklarte det på siste forelesning, men det har jeg glemt av nå (!!).

0.2 Embedding Grassmannian

Grassmannian har en tautologisk linjebunt \mathcal{E} , hvis seksjoner kan skrives som matriser. Fiberen over et punkt [V] i Grassmannian er nettopp det lineære underrommet punktet representerer.

Da vil $\wedge^k \mathscr{E}$ være en linjebunt på Grassmannian, og seksjonene vil være utspent av alle minorene. Så dette er linjebunten Plücker-embeddingen svarer til.

0.3 Topologien til SR-skjemaer

La $X = \mathbb{P}(\Delta)$ være et Stanley-Reisner-skjema. La $f = (f_0, \ldots, f_n)$ være f-vektoren, det vil si, antall f_i er antall i-dimensjonale fasetter i Δ . Da er $h^i(\mathbb{P}_{\mathbb{C}}(\Delta), \mathbb{C}) = f_i$ om i er jevn, og 0 ellers. Dette er fordi X har strukturen til et CW-kompleks med bare celler i jevne grader.

0.4 Kotangentkohomologi på en oppblåsning

La $\pi:\widetilde{X}\to X$ være oppblåsningen av en glatt flate X i et punkt P. La $E\simeq \mathbb{P}^1$ være den eksepsjonelle divisoren. Vi ønsker å beregne kohomologien $H^i(\Omega^1_{\widetilde{X}/k})$ gitt kjennskap til kohomologien til X.

Et standard teorem sier at vi har en eksakt sekvens

$$\pi^*\Omega^1_{X/k} \to \Omega^1_{\widetilde{X}/k} \to \Omega^1_{\widetilde{X}/X} \to 0.$$

Påstanden er at denne er venstre-eksakt også. Siden $\widetilde{X}\backslash E\simeq X\backslash P$ er den første pilen en isomorfi utenfor E (og dermed er høyre-leddet også null). Om vi er på $Q\in E$, har vi at $\mathscr{G}=\pi^*\Omega^1_{X/k}$ er null langs E, siden stilken $\mathscr{G}_Q=\Omega^1_{f(x)/k}$, og kotangentknippet over et punkt er null.

Legg også merke til at $\Omega^1_{\widetilde{X}/X}=i_*\,\mathscr{O}_{\mathbb{P}^1}(-2)$ siden $E\simeq\mathbb{P}^1$ og knippet er null utenfor E (her er $i:\mathbb{P}^1\to\widetilde{X}$ inklusjonen). Dermed har vi sekvensen

$$0 \to \pi^*\Omega^1_{X/k} \to \Omega^1_{\widetilde{X}/k} \to i_*\mathscr{O}_{\mathbb{P}^1}(-2) \to 0.$$

Vi har også at $H^i(\pi^*\Omega^1_{X/k})=H^i(\Omega^1_{X/k})$ (se beviset for Zariskis hovedteorem i Hartshorne).

Dermed har vi at $H^0(\Omega^1_{\widetilde{X}/k}) = H^0(\Omega^1_{X/k})$. For å regne ut de andre kohomologigruppene trenger vi mer presis informasjon om X. Så anta $X = \mathbb{P}^2$. Da følger det fra Euler-sekvensen at $H^i(\Omega^1_{X/k})$ er null for i=0,2 og 1 for i=1. Dermed følger det at $H^i(\Omega^1_{\widetilde{X}/k})$ er null for i=0,2 og 2 for i=1.

Så å blåse opp i et punkt øker H^1 med én.

0.5 Dobbel overdekning av \mathbb{P}^2 ramifisert i gitt kurve

Gitt et homogent polynom f(x, y, z) i $H^0(\mathbb{P}^2, \mathscr{O}_{\mathbb{P}^2}(2n))$, konstruerer vi en flate som er en dobbel overdekning av \mathbb{P}^2 , ramifisert i kurven definert ved dette polynomet.

Den naive løsningen funker, men virker upraktisk å jobbe med. Betrakt nullpunktsmengden X til $f-u^2$ i $\mathbb{P}(1,1,1,n)$. Dette er en veldefinert varietet, siden polynomet er homogent i denne graderingen. Vi har en avbildning $\pi:X\to\mathbb{P}^2$ gitt ved $(x:y:z:u)\mapsto (x:y:z)$. Dette er i utgangspunktet kun en rasjonal avbildning, men formen på ligningen viser at avbildningen er veldefinert: for anta at vi blir sendt til "punktet" (0:0:0). Da er x=y=z=0, som tvinger u=0. Men dette er absurd, så avbildningen må være en morfi.

Anta at $P \notin V(f) \in \mathbb{P}^2$. Da er $f(P) \neq 0$. Dermed får vi at fiberen $\pi^{-1}(P)$ består av to forskjellige punkter. Om f(P) = 0, får vi kun ett punkt i fiberen.

Det eneste singulære punktet i $\mathbb{P}(1,1,1,3)$ er (0:0:0:1), og dette punktet ligger ikke på X. Det følger at X er glatt. Faktisk er $\mathbb{P}(1,1,1,3)$ isomorf med den projective kjeglen over $\nu_3(\mathbb{P}^2)$ (den tredje Veronese-embeddingen av \mathbb{P}^2).

Legg merke til at avbildnigen $\pi: X \to \mathbb{P}^2$ er en affin avbildning (i betydningen at $\pi^{-1}(U_i)$ er affin for i=0,1,2). Dette impliserer (oppgave III.8.2 i Hartshorne) at $H^i(X,\mathscr{O}_X)=H^i(\mathbb{P}^2,\pi_*\mathscr{O}_X)$ for $i\geq 0$. Derfor ønsker vi å regne ut $\pi_*\mathscr{O}_X$.

Vi har at den homogene koordinatringen til X er gitt ved $S = k[x, y, z, u]/(f-u^2)$, med gradene (1, 1, 1, 3). Denne er generert i grad 3. Betrakt nå $S^{(3)}$, hvor $S_n^{(3)} = S_{3n}$. Vi har at $X = \operatorname{Proj} S = \operatorname{Proj} S^{(3)}$ (Oppgave III.5.13 i Hartshorne). På samme vis, la T = k[x, y, z], og betrakt $T^{(3)}$. Vi har at $\mathbb{P}^2 = \operatorname{Proj} T = \operatorname{Proj} T^{(3)}$. Vi har en inklusjon av homogene ringer:

$$S \hookrightarrow T \oplus T(-3)$$

Men går vi over til $S^{(3)}$ og $T^{(3)}$, får vi en likhet

$$S^{(3)} = T^{(3)} \oplus uT^{(3)}(-1)$$

Ved modul-knippe-korrespondansen følger det dermed at $\pi_* \mathscr{O}_X = \mathscr{O}_{\mathbb{P}^2} \oplus \mathscr{O}_{\mathbb{P}^2}(-3)$.