SPRAWOZDANIE NUM1

Jakub Kręcisz

1. Treść zadania

Napisz program wyliczający przybliżenie pochodnej ze wzorów:

a)
$$D_h f(x) = \frac{f(x+h) - f(x)}{h}$$

b)
$$D_h f(x) = \frac{f(x+h) - f(x-h)}{2h}$$

Przeanalizuj, jak zachowuje się błąd $|D_hf(x)-f'(x)|$ dla funkcji f(x)=sin(x) oraz punktu x=0.2 przy zmianie parametru h dla różnych typów zmiennoprzecinkowych (float, double). Wykreśl $|D_hf(x)-f'(x)|$ w funkcji h w skali logarytmicznej. Poeksperymentuj również używając innych funkcji (np. exp, cos).

2. Implementacia

Program zaczyna działanie od wyznaczenia tablicy z wartościami dla zmiennej \mathbf{h} , ilość zależna od podanej ilości w config.py. Następnie program wyznacza tablicę na podstawie wartości \mathbf{h} , gdzie dla każdej wartości \mathbf{h} wyznacza różnicę wartości w punkcie x=0.2 dla pochodnej dyskretnej (jej dwóch typów wymaganych w tym zadaniu) a wartości w tym samym punkcie z pochodnej dokładnej liczonej wzorem.

3. <u>Uruchomienie programu</u>

Do uruchomienia programu wykorzystamy Makefile:

Aby wygenerować wykresy dla typów float i double, wystarczy użyć polecenia:

make plot

Aby wypisać wartości błędów pomiędzy pochodnymi dyskretnymi a pochodną właściwą użyjemy odpowiednio dla float i double polecenia:

make table float

Oraz.

make table_double

4. Wyniki

a) Wykres dla obu typów danych:

Mismatch between discrete derivative and exact derivative Function: sin(x) Mismatch in point x=0.2

b) Tabelka z wartościami błędów:

FLOAT

Н	Central Derivative difference	Right Derivative difference
0.0000001	0.0000000	0.0000000
0.0000002	0.0000000	0.0000000
0.0000005	0.0000000	0.0000000
0.0000011	0.0000000	0.0000001
0.0000025	0.0000000	0.0000002
0.0000056	0.0000000	0.0000006
0.0000126	0.0000000	0.0000013
0.0000282	0.0000000	0.0000028
0.0000631	0.0000000	0.0000063
0.0001413	0.0000000	0.0000140
0.0003162	0.0000000	0.0000314
0.0007079	0.0000001	0.0000704
0.0015849	0.0000004	0.0001578
0.0035481	0.0000021	0.0003545
0.0079433	0.0000103	0.0007993
0.0177828	0.0000517	0.0018181
0.0398107	0.0002589	0.0042129
0.0891251	0.0012970	0.0101443
0.1995262	0.0064899	0.0262441
0.4466836	0.0322679	0.0759062

DOUBLE

Н	Central Derivative difference	Right Derivative difference
0.0000000000000001	0.1301564467839149	0.1301564467839149
0.0000000000000006	0.0096999361948805	0.0316947476179055
0.0000000000000040	0.0005166821249490	0.0029692605644328
0.0000000000000251	0.0000412511686596	0.0000412511686596
0.000000000001585	0.0000252016663462	0.0001127645877711
0.000000000010000	0.0000033250655769	0.0000105527222309
0.000000000063096	0.0000019751238157	0.0000002243573265
0.000000000398107	0.0000004140126556	0.0000000654183867
0.000000002511886	0.0000000358112504	0.0000000358112504
0.000000015848932	0.0000000076987320	0.000000010575602
0.000000100000000	0.000000000523819	0.0000000000523819
0.000000630957344	0.000000000102500	0.0000000061482972
0.0000003981071706	0.000000000127617	0.0000000394829690
0.0000025118864315	0.0000000000008069	0.0000002495139398
0.0000158489319246	0.000000000413586	0.0000015743885362
0.0001000000000000	0.000000016336306	0.0000099351000411
0.0006309573444802	0.0000000650286054	0.0000627409631997
0.0039810717055350	0.0000025888326928	0.0003980467361847
0.0251188643150958	0.0001030601161804	0.0025981029051492
0.1584893192461117	0.0040978764772523	0.0198084326854204

5. Wnioski

Jak widzimy, wybranie odpowiedniej wartości zmiennej **h** pozwala nam na dokładniejsze wyliczenie pochodnej.

Nieodpowiednie wybranie wartości dla zmiennej **h** powoduje, że błąd pomiędzy pochodną dyskretną a pochodną dokładną się zwiększa, co skutkuje niedokładnym wyliczeniem pochodnej w danym punkcie.

Jak widzimy na wynikach programu najmniejszy błąd względem pochodnej dokładnej dostaniemy dla typu danych double i wzoru na pochodną dyskretną centralną.