HW 12

5.4.14

We show that $G = D \times U$ as an internal direct product. D and U are both contained in G, and every element of d commutes with every element of u. Given $g \in G$ whose diagonal elements are g_0 we can divide by $d = g_0 I \in D$ to write g = du where $d \in D, u \in U$.

Claim: this decomposition is unique. Suppose $g = d_1u_1 = d_2u_2$; taking determinants, $|d_1| = |d_2|$ hence they have equal diagonal elements, hence $d_1 = d_2$, hence $u_1 = u_2$.

The map $\phi: H \times K \to G$ given by $(h,k) \mapsto hk$ is a homomorphism. It maps (e,e) to e, it maps $(h,k)^{-1} = (h^{-1},k^{-1})$ to to $(hk)^{-1} = h^{-1}k^{-1}$, and it maps (h,k)(h',k') = (hh',kk') to hh'kk' = (hk)(h'k'). There is a map $G \to H \times K$ given by the unique decomposition. This is an inverse map since the composed map maps $hk \to (h,k) \to hk$, hence ϕ is an isomorphism.

5.5.5a

By definition, $G = H \rtimes K$ where $H = Z_2 \times Z_2$ and $K = \operatorname{Aut}(H)$. Let $Z_2 = \{e, x, y, xy\}$. Any automorphism of H fixes e, hence K is a subgroup of $S_{\{x,y,xy\}}$. In fact, since Z_2 is generated by x,y with $x^2 = y^2 = (xy)^2 = e$ which is symmetric in x, y, xy, any permutation of x, y, xy is an automorphism of H (e.g. the permutation $(x \ y)$ gives the homomorphism $e \mapsto e, x \mapsto y, y \mapsto x, xy \mapsto xy$). Hence $K = S_{\{x,y,xy\}}$.

$$|G| = |H||K| = 4 \times 6 = 24.$$

5.5.5b

Notation: given $v \in H$, $\sigma \in K$ let the action of K on v that defines the semidirect product be written v^{σ} , and let elements of K be written as $v\sigma$ where $v \in H$, $\sigma \in K$. Then the multiplication rule for G can be written as $v\sigma_1 w\sigma_2 = vw^{\sigma_1}\sigma_1\sigma_2$.

Consider H as a subgroup of K. There are 4 left-cosets which are $C = \{K, xK, yK, xyK\}$. G acts on C by left multiplication; denote this action by $g \cdot wK$ where $g \in G, w \in H$. This action has a permutation representation $\pi: G \to S_C$. Write $g = v\sigma$. Then $g \cdot wK = v\sigma \cdot wK = vw^\sigma \sigma K = vw^\sigma K$.

Notation: when writing elements of im π as permutations, we shall replace vK with v.

Considering the elements g for which v = e, we see that $g \cdot wK = w^{\sigma}K$. Hence $\text{im}\pi$ contains $S_{\{x,y,xy\}}$.

Considering the elements of g for which σ is the identity automorphism, we see that $g \cdot wK = vwK$. Hence $\operatorname{im} \pi$ contains $(e\ x)(y\ xy)$ as the image of x, $(e\ y)(x\ xy)$ as the image of y, and $(e\ xy)(x\ y)$ as the image of xy (these are the permutations that correspond to the left regular representation of the action of H on itself by left multiplication) We know $\operatorname{im}\pi$ contains $(x\ y)$. Conjugating this by $(e\ x)(y\ xy)$ we see that it contains $(e\ xy)$. Conjugating this by elements of $S_{\{x,y,xy\}}$ we see that it contains $(e\ x)$ and $(e\ y)$. Hence $\operatorname{im}\pi$ contains all the transpositions of S_C , hence $\operatorname{im}\pi = S_C$, which means there is a surjective homomorphism $G \to S_4$; since $|G| = |S_4|$, this is an isomorphism.

5.5.16

I will use C_k for the cyclic group of order k.

Considering C_8 as the additive group of $\mathbb{Z}/8\mathbb{Z}$, every automorphism of C_8 is multiplication by a unit of $\mathbb{Z}/8\mathbb{Z}$, i.e. the automorphisms are precisely multiplication by 1, 3, 5, or 7. Every homomorphism $C_2 \to C_8$ is determined by the image of the nonidentity element of C_2 , and an automorphism of C_8 is a valid target if it is self-inverse. It is easy to check that each of those four automorphisms is self-inverse (since -1, 3, -3 all square to 1 modulo 8).

Multiplication by one: this is the semidirect product $C_2 \rtimes C_8$ where the action of C_2 on C_8 is trivial, hence it is the direct product $C_2 \times C_8$.

Multiplication by 7 = -1: this is the semidirect product $C_2 \rtimes C_8$ where the action of C_2 on C_8 is inversion, hence it is the dihedral group.

Multiplication by 3: use exponential notation for the action. The multiplication rule is $\sigma_1 \tau_1 \sigma_2 \tau_2 = \sigma_1 \sigma_2 \tau_1^{\sigma_2} \tau_2$. Let $\sigma_1 = e, \tau_2 = e$ and let τ, σ be generators of C_8 and C_2 . The multiplication rule simplifies to $\tau \sigma = \sigma^{\tau} \tau = \sigma^3 \tau$. Hence $\tau \sigma^3 = \sigma^3 \tau \sigma^2 = \sigma^6 \tau \sigma = \sigma^9 \tau = \sigma \tau$, hence this group has the presentation $\langle \sigma, \tau \mid \sigma^8 = \tau^2 = e, \sigma \tau = \tau \sigma^3 \rangle$ which is the same presentation as 2.5.11.

Multiplication by 5: let u, v be generators of C_2 and C_8 ; similar to the above, we have $uv = v^5u$. Hence $uv^5 = v^5uv^4 = v^{10}uv^3 = \ldots = v^{25}u = vu$ which is the same presentation in 2.5.14.

5.5.18

Let H be a group; by Cayley's theorem it is a subgroup of S_H , namely the subgroup of permutations $P = \{\pi_h : h' \mapsto hh' \mid h \in H\}$. Take $G = N_{S_H}(H)$; then H is a normal subgroup of G by construction. Let σ be an automorphism of H; in particular σ is a permutation of H so we can treat σ as an element of S_H . The conjugation π_h^{σ} is the map $\sigma \circ \pi_h \circ \sigma^{-1}$ which maps h' to $\sigma(h\sigma^{-1}(h')) = \sigma(h)h'$ hence it is the map $\pi_{\sigma(h)}$. Hence conjugation by σ is an automorphism of P (this also shows $\sigma \in G$).