Protocolos de Rede - I

Laboratório de Redes de Computadores LUIS CLAUDIO DOS SANTOS Versão 2.0 – 01/02/2012

Roteiro

- * Ethernet (não faz parte da pilha TCP/IP)
- ► ARP/RARP
- ▶ IP
- **ICMP**
- ▶ TCP/UDP

A Pilha TCP/IP

Padrão pela **Xerox** (R. Metcalfe) no início da década de 70.

A primeira versão padronizada do *Ethernet* pertencia ao consórcio *Digital*, *Intel* e *Xerox* (*DIX Ethernet*).

Em 1985 Institute of Electrical and Electronics Engineers entregou à comunidade um padrão aberto: **IEEE 802.3**.

No início, o *Ethernet* sofreu concorrência de padrões para rede local: o **IEEE 802.4** (da GM) e o **IEEE 802.5** (da IBM).

DIX Ethernet

PRE (8)	END DEST (6)	END ORIG (6)	T Y P E (2)	DATA (de 46 a 1500)	CRC (4)
---------	--------------------	--------------------	-------------------------	---------------------	---------

				_		
_	_	_				•
_	_	_	_		_	-
 _	_	_		u	_	

PRE (7)	END DEST (6)	END ORIG (6)	C O M P (2)	DATA (de 46 a 1500)	CRC (4)
S	of				

Um quadro Ethernet tem entre 46 e 1500 bytes de dados.

DIX Ethernet

PRE (8)	END DEST (6)	END ORIG (6)	T Y P E (2)	DATA (de 46 a 1500)	CRC (4)
			(4)		

IEEE 802.3

PRE (7)	END DEST (6)	END ORIG (6)	C O M P (2)	DATA (de 46 a 1500)	CRC (4)
S	of				

No 802.3, **Comp** indica o tamanho do campo de dados (< 1500).

No Ethernet, **Type** indica que protocolo superior (0x0800 para IP; 0x0806 para ARP; 0x86dd para IPv6; etc.).

IEEE 802.3

END DEST e END ORIG são os **endereços físicos** (*Media Access Control*) normalmente representados na forma HEXADECIMAL.

00 E0 7D 99 65 3D

Organizationally Unique Identifiers (OUIs)

As primeiras redes *Ethernet* ofereciam ambientes onde havia apenas **um domínio de colisão no meio**.

Em ambientes de **difusão**, o método de arbitragem utilizado pelo *Ethernet* era o CSMA/CD (*Carrier Sense Multiple Access/Colision Detection*).

Nestes ambientes, a distância máxima de cada segmento é dada por:

Tx = Tiv = > 46 bytes / 10Mbps = 2d / (300.000 km/s)

CSMA/CD

Hoje em dia o CSMA/CD **não é** muito utilizado nas redes cabeadas, pois os equipamentos de interconexão geralmente oferecem um domínio de colisão por porta.

A Pilha TCP/IP

ARP (Address Resolution Protocol)

Arp

- De protocolo ARP é usado para descobrir o endereço MAC de um sistema cujo endereço IP já conhecemos.
- ▶ RCF 826.

▶ 1. A máquina "A" precisa transmitir para o endereço IP 10.0.0.4. Porém, "A" não conhece o endereço MAC do endereço da máquina destino 10.0.0.4.

2. O computador "A" precisa descobrir o endereço MAC da interface que está configurada com o endereço IP 10.0.0.4. Para isto, envia um pacote MAC para "broadcast" contendo a seguinte mensagem ARP request: "Quem possuir o endereço MAC associado ao endereço IP 10.0.0.4 enviar a resposta para "00:C0:80:23: 45:11".

> 3. O pacote MAC envidado por A irá para todas as máquinas da rede local.

• 4. O computador "D" ao receber este pacote percebe que alguém está requisitando o endereço MAC associado à interface que está configurada com o endereço IP "10.0.0.4". O computador "D" envia um pacote MAC para 00:C0:80:23:45:11 contendo o seguinte pacote "ARP reply": "O endereço Ethernet associado ao endereço IP 10.0.0.4 é 00:C0:80:23:45:44".

▶ 5. O computador "A" recebe o pacote "ARP reply" e descobre que o endereço Ethernet associado ao endereço IP 10.0.0.4 é "00:C0:80:23:45:44".

▶ 6. O computador "A" envia um pacote Ethernet com endereço Ethernet destino "00:C0:80:23:45:44" contendo o pacote IP.

7. O computador "D" recebe o pacote MAC enviado por A. Após o recebimento do pacote, é retirado o conteúdo transportado: um pacote IP.

Formato do cabeçalho ARP

Tamanho	Função
2 bytes	Espaço de endereçamento físico.
2 bytes	Espaço de endereçamento do lógico.
1 byte	Comprimento do endereço físico (n).
1 byte	Comprimento do endereço lógico (m).
2 bytes	Código da operação
N bytes	Endereço físico de origem.
M bytes	Endereço físico de destino.
N bytes	Endereço lógico de origem.
M bytes	Endereço lógico de destino.

Formato do cabeçalho ARP

23

O ARP não possui um cabeçalho de tamanho fixo. O ARP pode ser otimizado utilizando *caches*, *timers*, etc. No ARP request, qual campo segue não preenchido?

23

Utilitário arp

Utilitário arp:

• -a: mostra a tabela ARP corrente.

-a host: mostra somente a tradução de "host".

-n: não resolve endereços DNS.

• -i: interface seleciona interface.

-s host MAC: adiciona uma entrada permanente à tabela.

-d host delete: remove entrada.

-f: zera a tabela ARP.

Protocolo RARP (Reverse ARP)

Protocolo RARP

- Quando a máquina não possui um disco para inicialização do sistema (estação diskless) para carregar o seu endereço IP, a imagem de memória daquela estação fica armazenada no servidor.
- ▶ Cada máquina com uma placa de rede possui uma identificação única e que não se repete. Esta identificação é uma seqüência de bits, gravado no chip da placa, que é utilizada como endereço físico na rede (MAC address). A estação diskless utiliza um protocolo que permite a obtenção do endereço IP fazendo uso do endereço físico da placa. Este protocolo é o RARP.

Formato do cabeçalho ARP

O ARP não possui um cabeçalho de tamanho fixo. O ARP pode ser otimizado utilizando *caches*, *timers*, etc. No ARP request, qual campo segue não preenchido?

27

Protocolo IP (Internet Protocol)

Time to Live!

0	07	08 15	16	31			
Ver (4)	HLen (4)	Type of Service		Total Lenght (16)			
	Identifica	ntion (16)	Flag (3)	Offset (13)			
Time	Time to Live Protocol Header Checksu						
	<u></u>	Source A	ddress (3	2) †			
	Destination Address (32)						
	Options						
		Ор	tions				
		Ор	tions				
	Padding (to 32)						
		Da	ta				

29

Só do cabeçalho!

Campo Type of Service.

BIT	Significado
Precedence (3)	Precedência do serviço entre 0 (normal) e 7 (controle).
D (1)	Retardo (<i>Delay</i>).
T (1)	Vazão (<i>Througput</i>).
R (1)	Confiabilidade (<i>Reliability</i>).
unused (2)	Bits não usados.

Campos prec, D, T e R viraram o Differentiated Services CodePoint

Os campos *Identification*, *Flags* e *Offset*, do cabeçalho IP são utilizados para fragmentação de datagramas.

Uma vez fragmentado, a junção dos diversos pacotes ocorrerá apenas no *host* de destino.

Campo Options

Opção	Significado
Strict Source Routing	Mostra o caminho completo a ser seguido (roteador a roteador).
Loose Source Routing	Mostra alguns roteadores por onde o datagrama deve passar. Pode haver intermediários, mas sem alterar a sequência.
Record Route	Cada roteador que trata o datagrama acrescenta o seu endereço IP ao cabeçalho (<i>options</i>).
Timestamp	Cada roteador que trata o datagrama acrescenta, além do seu endereço IP, o seu timbre de hora.

Time to Live!

0	07	08 1:	5 16	31			
Ver (4)	HLen (4)	Type of Service		Total Lenght (16)			
	Identifica	ntion (16)	Flag (3)	Offset (13)			
Time	to Live	Protocol	Header Checksum				
	<u></u>	Source A	ddress (32	<u>†</u>			
		Destination	Address	(32)			
	Options						
		Ор	tions				
		Ор	tions				
		Options		Padding (to 32)			
		Da	nta				
,							

33

Só do cabeçalho!

IP (RFC 791) - Endereços

Cada endereço IP é composto por 4 octetos.

10011011	10110101	10110001	00111011

Geralmente o endereço IP é escrito como um conjunto de 04 números decimais separados por um "ponto".

O endereço lógico, acompanhado da máscara, fornece duas informações: o endereço da rede e o endereço do host.

IP (RFC 791) - Endereços

Conversão decimal-binário: Dividir por **dois** o número decimal sucessivas vezes até que o resto seja **zero**. O número, em formato binário, será a seqüência - de baixo para cima - de todos os restos (**zeros** ou **uns**) obtidos.

IP (RFC 791) - Endereços

Os endereços IPv4 são divididos em 05 classes:

IP – Redes e Endereços Válidos

Intervalo de Redes

CLASSE	INTERVALO
Α	1.0.0.0 a 127.0.0.0
В	128.0.0.0 a 191.255.0.0
С	192.0.0.0 a 223.255.255.0

Intervalo de Endereços

CLASSE	INTERVALO
Α	1.0.0.0 a 127.255.255.255
В	128.0.0.0 a 191.255.255.255
С	192.0.0.0 a 223.255.255.255

IP – Redes e Endereços Válidos

Intervalo de Endereços

CLASSE	INTERVALO
Α	1.0.0.0 a 127.255.255.255
В	128.0.0.0 a 191.255.255.255
С	192.0.0.0 a 223.255.255.255

Algumas das excesões:

```
127.*.*.*

10.*.*.*

10.*.*.*

Inválido (usado em redes privadas);

172.16.*.* a 172.31.*.*

Idem;

192.168.*.*
```

IP – Redes e Endereços Válidos

Intervalo de Endereços

CLASSE	INTERVALO
Α	1.0.0.0 a 127.255.255.255
В	128.0.0.0 a 191.255.255.255
C	192.0.0.0 a 223.255.255.255

HostID "1...1" identifica broadcast.

HostID "0...0" identifica a rede.

Endereço de Rede Endereço de *Host*10011011 10011011 0000000 00000000

Protocolo ICMP (Internet Control Message Protocol)

Protocolo ICMP

- Avisa aos participantes da rede quando determinada atitude foi ou vai ser tomada.
- Definido na RCF 1885 e RFC 1970.
- Utilizado em várias aplicações, como o ping, o tracert (ou traceroute).

Camada 4 TCP

TCP

- OTCP é um protocolo que possui diversas características implementadas a partir da interpretação, pelas máquinas, dos campos de seu cabeçalho. OTCP:
 - É orientado a conexão;
 - É confiável;
 - Garante a entrega em sequência;
 - Possui controle de fluxo;
 - Implementa multiplexação (portas);
 - É interpretado fim-a-fim.

TCP - Cabeçalho

TCP - Cabeçalho

- ▶ Porta de origem: indica a aplicação que está enviando o segmento;
- Porta de destino: indica a aplicação que irá receber o segmento;
- Número de sequência: identifica a ordem de cada segmento dentro de uma conexão e garante a entrega na sequência correta para a aplicação.
- Número de confirmação: próximo octeto TCP esperado.
- ▶ HLEN: número de palavras de 32 bits no cabeçalho.
- Reservado: definido como zero.
- Flags: várias funções de controle (sincronização, etc).
- Window: número de octetos que podem ser enviados pela origem antes de receber a primeira confirmação do destino (ACK);
- Checksum: calculado do cabeçalho e dos campos de dados.
- Indicador de urgência: indica o final dos dados urgentes.
- Opções: tamanho máximo do segmento TCP.
- Dados: dados do protocolo da camada superior.

TCP – Cabeçalho (flags)

Campo flags do cabeçalho TCP:

BIT (esq p/ dir)	Significado
URG	Existência de dados urgentes (até <i>Urgent Pointer</i>).
ACK	Acknowledgement é válido.
PSH	Envia os dados o quanto antes à camada IP (push).
RST	Finaliza (ou rejeita) a conexão abruptamente (<i>reset</i>).
SYN	Sincroniza os <i>sequence numbers</i> .
FIN	Fecha a conexão normalmente (nível de aplicação).

TCP – Handshake (flags, ack, syn)

- Para que uma conexão seja estabelecida, as duas estações terminais devem sincronizar os números de seqüência TCP iniciais uma à outra. A seqüência de conexão é usada para recuperar dados perdidos. A sincronização é feita através da troca de segmentos que transportam os ISNs e um bit de controle chamada SYN. A sincronização exige que cada lado envie seu ISN e receba uma confirmação (ACK) e o ISN do outro lado da conexão.
- Um handshake triplo é necessário porque os TCPs podem usar diferentes mecanismos para o ISN.

TCP – Janelamento (window, ack)

- Para controlar o fluxo de dados entre os dispositivos, a camada TCP do host de recebimento relata um tamanho de janela ao host de envio.
- O tamanho da janela refere-se ao número de bytes que podem ser transmitidos em sequência antes que seja recebida uma confirmação.
- O tamanho da janela determina quantos dados a estação receptora pode aceitar de uma só vez.
- A finalidade do janelamento é aperfeiçoar o controle de fluxo e a confiabilidade.

UDP – Cabeçalho

UDP não faz nenhum contato com o destino antes de enviar informações. *Length* é o tamanho do segmento (cabeçalho + dados).

Checksum é o cálculo para todo o segmento (cabeçalho + dados).

${ m UDP}$

- O UDP é um protocolo que não implementa a maior parte das funcionalidades possíveis da camada de transporte.
 - Não é orientado a conexão;
 - Não é confiável;
 - Não garante a entrega em sequência;
 - Não possui controle de fluxo;
 - Implementa multiplexação (portas);
 - É interpretado fim-a-fim.

Portas (TCP e UDP)

- Tanto o TCP quanto o UDP usam números de *porta* para identificar a aplicação que deverá receber os dados na camada superior.
- Os números de porta estão definidos no RFC1700.
- Esses números de portas são usados como endereços de origem e destino no segmento TCP.
- Os números de portas têm os seguintes conjuntos atribuídos:
 - Números abaixo de 255 para aplicações públicas .
 - Números de 255 a 1023 atribuídos às empresas para aplicações comerciais.
 - Números acima de 1023 não são regulamentados.

Portas (TCP e UDP)

Os sistemas terminais usam números de portas para selecionar os aplicativos corretos. Os números de porta de origem, normalmente alguns números maiores que 1023, são dinamicamente atribuídos pelo host de origem.

A conexão TCP

Conexão: A porta e o IP de um lado da conexão determina um socket; as mesmas informações do outro lado (porta e IP), determinam outro socket. A conexão é definida por ambos.

Sessão: A sessão é formada pelo fluxo de todos os segmentos numerados de uma conexão. Note que, no caso do TCP, cada segmento carrega um número de sequência.