

Client/Server - Introduction

Contents:

- Origins
- Open Systems
- Client/Server: Definition & Characteristics
- Why C/S?
- Infrastructure
- Architectures
- The Block Model
- Clients, Servers and the Operating Systems

Mariano Cilia - mcilia@gmail.com

1

Origins

- Only big companies had computers (mainframes)
- Choosing the right vendor/provider
 - Only few providers:
 - IBM, NCR, UNISYS, DIGITAL, ...
- Absolute everything depending on the provider
 - hardware
 - communications
 - software
 - people!!!!
- Known as the Closed Systems Era

,

Open Systems

- Freedom to choose/select components
 - Every component can be bought to different providers
- Flexibility
- Extensibility
- Scalability
- But, now many open issues (menú à la carte)
 - Which platform?
 - Which communication protocols?
 - Which DBMS?
 - Which middleware?
 - Which technology? (db servers, TP monitors, groupware, distributed objects, intranets)

3

Open Systems (cont.)

- Still other issues
 - Now everything depends on the IT Manager
 - Each component of a system (possibly coming from different providers) need to be integrated
 - The integration of those components needs to be done
- There is no recipe!

Why Client/Server?

- The main reasons:
 - Share (expensive) resources
 - print servers, file servers, ...
 - Specialization
 - compute servers, data servers, ...
 - Scalability
 - Extensibility

5

What is Client/Server?

- Clients and Servers are logical entities that cooperate in order to carry out a determined task
- Loosely coupling between Client and Server
 - Logically separated

C/S - Characteristics

- Service
 - The server provides services
 - The client uses them
- Operations are based on messages
 - Interaction by using the message passing mechanism (request/reply)
- Encapsulation of services
 - The server is an specialist on carrying out a determined task
 - The message specifies the service
 - As long as the protocol (interface) is maintained its implementation can be replaced
 - This without affecting clients

7

C/S – Characteristics (cont.)

- Asymmetric Protocols
 - 1:N relationship between server and clients
 - Clients initiate the dialog by requesting a service
 - Servers are passive
- Shared Resources
 - Server can manage several requests of clients concurrently
 - Access to shared resources is controlled/administered
- Scalability
 - Incorporation of additional servers (transparently) imply more computing power

C/S – Characteristics (cont.)

- Location Transparency
 - The server is a process that can run in a local machine or in any computer of the network
- "Mix & match"
 - The ideal C/S software should be independent of hardware and OSs

9

Different Viewpoints

- PCs defenders
 - Wanted to migrate applications from the mainframe to PCs (in a LAN) braking with centralization

Different Viewpoints

- PCs defenders
 - Wanted to migrate applications from the mainframe to PCs (in a LAN) braking with centralization
- Mainframe defenders
 - Tight PCs to the mainframe (as terminals) without breaking with centralization

11

Different Viewpoints

- PCs defenders
 - Wanted to migrate applications from the mainframe to PCs (in a LAN) braking with centralization
- Mainframe defenders
 - Tight PCs to the mainframe (as terminals) without breaking with centralization
- Intermediate position
 - Open systems
 - Coexistence of PCs as clients (and possibly also as servers) and the mainframes as servers
 - Effort is necessary to standardize protocols and platforms

New Roles

- New IT Managers
 - Wider spectrum of knowledge
 - Transaction processing, databases, communications, user interfaces, etc.
 - Know how to delegate functions/tasks
 - Two-sides strategy
 - Development and administration of departmental applications
 - Administration of company/corporate interoperability
 - Definition of standards within the company

17

New Roles (cont.)

- Competition among Providers
 - Equality of opportunities (open architecture)
 - Benefits customers, avoiding to be captive of a unique provider
 - See Hardware (open architecture)
 - (PCs, network cards, graphic cards, etc.)
 - Software tending to be open
 - DBMSs, CORBA, Web Servers, Web Services, App Servers, ...

Different Technologies

- According to the nature of the provided service
 - File Servers
 - Database Servers
 - Transaction Servers
 - Object Servers
 - Web Servers

4

One Model Fits All Sizes

- For small or nomadic users
- For middle-size or departmental users
- For big companies
- For the future ...

C, S and the OS

- Anatomy of a Server program
 - wait for incoming requests initiated by clients
 - manage many requests at the same time
 - First those with priority (reports vs online requests)
 - initiate and run tasks in background (e.g. backup)
 - always running
 - growth (scalability)

37

C, S and the OS (cont)

- Anatomy of a Client program
 - simply requests services
- Different kinds of clients based on the UI
 - clients without GUI (Graphical User Interface)
 - GUI Clients
 - OOUI Clients (Object Oriented User Interface)

What does a C require from the OS?

- Request/Reply Mechanism
- Facility to transfer files
- Preemptive multitasking
- Tasks with priorities
- Inter-process communication
- Thread support to enable background communication with the server

39

What does a S require from the OS?

Basic Services

- Preemptive multitasking
- Threads
- Tasks w/priorities
- Semaphores
- Inter-Process communication (IPC)
- Memory protection (task level)
- High performance multi-user file systems
- Efficient management of main memory
- Dynamic extension of services at run-time

What does a S require from the OS?

Extended Services

- Diversity of communication platform
- Extensions at NOS level (transparency)
- Yellow pages (to search for services)
- Authentication and authorization services
- Tools to monitor and manage (performance, install, update, pay-per-use, etc)
- Network Time (NTP)
- Transaction service
- DBMS
- Support for Object-Orientation

S - Some considerations

- Scalability
- Superserver con Multiprocesamiento (SMP)
- Massive Parallel Processing (MPP)
- RISC vs. INTEL

Which one for the Client?

Which one for the Server?

