COSC 311: Introduction to Data Visualization and Interpretation

Principal component analysis (PCA)

Dr. Shuangquan (Peter) Wang (spwang@salisbury.edu)

Department of Computer Science
Salisbury University

About this note

- The contents of this note refer to:
 - Book "Python Machine Learning"
 - Textbook "Data Science from Scratch"
 - Teaching materials at Department of Computer Science, William & Mary
 - Python tutorial: https://docs.python.org/3/tutorial/

Dissemination or sale of any part of this note is NOT permitted!

Dimension reduction

■ The process of reducing the number of random variables (features) under consideration by obtaining a set of principal variables (features) [4]

Feature transformation

- Derive information from the feature set to construct a new feature subspace
- Example:

Feature transformation from 3D space to 2D space

- Remember kernel SVM? We deal with nonlinear separable problems by projecting features onto a higher dimensional space via a mapping function.
- Q: Why do we need to reduce feature dimension here?

Why do we need dimension reduction?

- Eliminate the noise features and redundant features
 - ➤ Q: what is the difference between noise features and redundant features?
- Avoid overfitting
- Reduce the complexity of the model
- Decrease the training time and (possibly)
 the testing time

Why not extract fewer features at the beginning?

- We do not have enough domain knowledge
 - ➤ Do not know which features are more representative
 - ➤ Do not know how many features are enough
 - Normally, we extract much more features than needed, which leads to "curse of dimensionality" problem
 - when the dimensionality increases, the volume of the space increases so fast that the available data become sparse [6] (the more features, the much more samples we need)

Cont'd

• Example:

1st feature set:

Use each pixel in the picture as one feature (1000 pixel * 1000 pixel = 1Million features)

2nd feature set [7]:

- Length
- Lightness
- Width
- Position of mouth

Domain knowledge: A sea bass is generally longer than a salmon [7]

- What can we learn?
 - Domain knowledge is very important during we transform a realworld problem into a machine learning model!

Where do we use dimension reduction?

Data collection from sensors (physical, virtual, etc.) Data preprocessing (missing value, outliers, etc.) Feature extraction (time & freq. domain, etc.) **Dimension reduction** (selection or transformation) Dataset generation (label, train & test dataset) Model construction (classification, clustering, etc.) **Model evaluation** (accuracy, time & energy cost, etc.)

Salisbury

Principal component analysis (PCA)

PCA is a feature transformation method

Basic rationale

An example dataset in 2D space

Observation:

- 1. Variable x and y are highly correlated
- 2. Correlation indicates information redundancy (Q: How to minimize it?)
- 3. We can rotate the coordinates so that:
 - The rotated axes are orthogonal
 - Data points are decentralized as much as possible[8]

$$Cov(x,y) = 0 \text{ if } x \text{ and } y \text{ are orthogonal}$$

$$cov(X,Y) = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{(n-1)}$$

Cont'd

An example dataset in 2D space

- How to quantify the "decentralization" of data?
 - Map data on the axis, and maximize the variance

$$s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}{(n-1)}$$

- For rotated axes (principal components), which is more important?
 - The 1st PC have the largest variance (order in variance)
 - For unimportant axes, we can drop them (dimension reduction)

Cont'd

• How to rotate the coordinates?

• Rotated axis V1 or V2 could be formulated as a linear combination of x axis and y axis

$$V1 = w_1^{(1)} \cdot x + w_2^{(1)} \cdot y$$

$$V2 = w_1^{(2)} \cdot x + w_2^{(2)} \cdot y$$

$$(V1 \ V2) = (x \ y) \cdot \begin{pmatrix} w_1^{(1)} \ w_1^{(2)} \\ w_2^{(1)} \ w_2^{(2)} \end{pmatrix}$$

Salisbury

Problem statement

- Given a feature dataset $X = \{x_1, x_2, \dots, x_n\}, x_i$ is a d-dimensional feature vector
- We try to construct a $d \times k$ -dimensional transformation matrix W that allows us to map a feature vector x_i onto a new k-dimensional feature subspace $(k \leq d)$
 - ➤ All axes are orthogonal
 - The variances of principal components (PC) are in descending order (1st axis/PC has the biggest variance)

Mathematical expression [9]

- Suppose W is the projection matrix, the mapping of x_i in new (sub)space is $W^T x_i$
- The variance of all vectors in new space is $\sum_{i} W^{T} x_{i} x_{i}^{T} W$
- PCA will **maximize the variance**, i.e. $\max_{W} tr(W^T X X^T W)$, s.t. $W^T W = I$

$$\mathrm{tr}(A) = \sum_{i=1}^n a_{ii} = a_{11} + a_{22} + \cdots + a_{nn}$$

Trace of an n-by-n square matrix A is defined to be the sum of the elements on the main diagonal -- Wiki

Mathematical expression [9]

- According to "Lagrange Multiplier", we have $XX^TW = \lambda W$, XX^T is the covariance matrix
- Compute the eigenvectors and eigenvalues of XX^T

A scalar λ is called an eigenvalue of the $n \times n$ matrix A if there is a nontrivial solution x of $Ax = \lambda x$. Such an x is called an eigenvector corresponding to the eigenvalue λ [3].

■ Take the k largest eigenvalues, $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k$, and use corresponding k eigenvectors to construct $W = (w_1, \dots, w_k)$

PCA transformation steps [1]

- Standardize the d -dimensional dataset.
- Construct the covariance matrix.
- 3. Decompose the covariance matrix into its eigenvectors and eigenvalues.
- 4. Select k eigenvectors that correspond to the k largest eigenvalues, where k is the dimensionality of the new feature subspace ($k \le d$).
- 5. Construct a projection matrix W from the "top" k eigenvectors.
- 6. Transform the d -dimensional input dataset X using the projection matrix W to obtain the new k -dimensional feature subspace.

Data preparation

Raw data

		_
	X	y
-	2.5	2.4
	0.5	0.7
	2.2	2.9
	1.9	2.2
Data =	3.1	3.0
	2.3	2.7
	2	1.6
	1	1.1
	1.5	1.6
	1.1	0.9
	l	I

This example and the data refer to [2]

- Step 1: standardize the data
 - > Subtract the mean VS z-score normalization

X	Y	${f X}$	\mathbf{Y}
0.6900	0.4900	0.8787	0.5789
-1.3100	-1.2100	-1.6683	-1.4294
0.3900	0.9900	0.4967	1.1695
0.0900	0.2900	0.1146	0.3426
1.2900	1.0900	1.6429	1.2877
0.4900	0.7900	0.6240	0.9333
0.1900	-0.3100	0.2420	-0.3662
-0.8100	-0.8100	-1.0316	-0.9569
-0.3100	-0.3100	-0.3948	-0.3662
-0.7100	-1.0100	-0.9042	-1.1932

Subtract the mean

Mean = 0

z-score normalization

Mean = 0

Variance = 1

- Step 2: construct the covariance matrix
 - \triangleright covariance matrix is a $d \times d$ symmetric matrix (d is the number of dimensions/features in the dataset)
 - Cov(x,x) = var(x); Cov(y,y) = var(y); ...
 - Cov(x,y) = 0, x and y are independent
 - Cov(x,y) > 0, x and y move in same direction
 - Cov(x,y) < 0, x and y move in opposite direction

$$\begin{pmatrix} cov(x,x) & cov(x,y) \\ cov(y,x) & cov(y,y) \end{pmatrix}$$

$$\begin{pmatrix} cov(x,x) & cov(x,y) \\ cov(y,x) & cov(y,y) \end{pmatrix} \qquad \begin{pmatrix} cov(x,x) & cov(x,y) & cov(x,z) \\ cov(y,x) & cov(y,y) & cov(y,z) \\ cov(z,x) & cov(z,y) & cov(z,z) \end{pmatrix}$$

Covariance matrix of 2D feature space

Covariance matrix of 3D feature space

Step 2: construct the covariance matrix

$$CovMatrix = \begin{bmatrix} 0.6166 & 0.6154 \\ 0.6154 & 0.7166 \end{bmatrix}$$

- Step 3: obtain the eigenvalues and eigenvectors of the covariance matrix
 - The eigenvectors represent the principal components (the directions of maximum variance)
 - The corresponding eigenvalues define their magnitude

$$D = \begin{bmatrix} 0.0491 & 0.0000 \\ 0.0000 & 1.2840 \end{bmatrix} \quad V = \begin{bmatrix} -0.7352 & 0.6779 \\ 0.6779 & 0.7352 \end{bmatrix}$$

Eigenvalues of covariance matrix

Eigenvectors of covariance matrix

- Step 4: sort the eigenvalues by decreasing order to rank the eigenvectors
 - \geq 1.2840 > 0.0491, so after sorting, the eigenvectors are:

$$V = \begin{bmatrix} 0.6779 & -0.7352 \\ 0.7352 & 0.6779 \end{bmatrix}$$

Eigenvectors after sorting

V is the rotation matrix which rotates X-Y coordinates to V1-V2 coordinates

The feature space before and after rotation

- Step 5: construct a projection matrix from the selected eigenvectors
 - > Q: how many eigenvectors should we select?

$$\frac{\sum_{i=1}^{k} \lambda_i}{\sum_{i=1}^{d} \lambda_i} \ge 1 - \eta$$

(η is the ratio of variance loss)

The 1st PC contains more than 95% variances (information)

- Step 6: transform the data onto the lower-dimensional subspace
 - ➤ We only keep the 1st PC
 - > Transform the data to 1D using projection matrix W

	X	Y			
	0.6900	0.4900			0.8280
	-1.3100	-1.2100		-1.7776	
	0.3900	0.9900	-0.6550-	0.9922	
	0.0900	0.2900		0.2742	
A =	1.2900	1.0900	W = [0.6779]	$A \times W = 1.6758$	
	0.4900	0.7900	$^{\prime\prime}$ $^{-}$ [0.7352]	0.9129	
	0.1900	-0.3100		-0.0991	
	-0.8100	-0.8100		-1.1446	
	-0.3100	-0.3100		-0.4380	
	-0.7100	-1.0100		-1.2238	

Salisbury

Data points in 1st PC space

Example

PCA on "iris" dataset

- 150 samples
- 4 features
 - sepal length
 - sepal width
 - petal length
 - petal width
- 3 classes
 - Iris Setosa
 - Iris Versicolour
 - Iris Virginica

The picture refers to [10] and the dataset is from [11]

An example of failure [12]

Thanks

References

- [1] Randal S. Olson, Python Machine Learning, 2015.
- [2] http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
- [3] http://www.math.harvard.edu/archive/20_spring_05/handouts/ch05_notes.pdf
- [4] https://en.wikipedia.org/wiki/Dimensionality_reduction
- [5] https://www.cs.waikato.ac.nz/ml/weka/
- [6] https://en.wikipedia.org/wiki/Curse_of_dimensionality
- [7] https://www.utdallas.edu/~bxt043000/Teaching/CS-4398/F2011/Lecture2.ppt
- [8] http://matlabdatamining.blogspot.com/2010/02/principal-components-analysis.html
- [9] http://blog.csdn.net/shizhixin/article/details/51181379
- [10] http://terpconnect.umd.edu/~petersd/666/html/iris_pca.html
- [11] http://archive.ics.uci.edu/ml/datasets/Iris
- [12] https://www.projectrhea.org/rhea/index.php/PCA_Theory_Examples
- [13] Isa Kemal Pakatci et al., Gene Set Analysis Using Principal Components, BCB '10.
- [14] Guan-Chun Luh and Ching-Chou Hsieh, Face recognition using immune network based on principal component analysis. GEC '09.
- [15] David T. Nguyen et al., A reconfigurable architecture for network intrusion detection using principal component analysis. FPGA '06.
- [16] Xiaoxu Han. Nonnegative Principal Component Analysis for Cancer Molecular Pattern Discovery. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB). 2010.

