

Загадката на Сфинкса

Великият Сфинкс има загадка за Вас. Даден Ви е граф с N върха. Върховете са номерирани от 0 до N-1. Има M ребра в графа, номерирани от 0 до M-1. Всяко ребро свързва два различни върха и е двупосочно. По-конкретно, за всяко j от 0 до M-1, ребро j свързва върхове X[j] и Y[j]. Между всеки два върха има най-много едно ребро, което ги свързва. Два върха свързани с ребро се наричат **съседни**.

Редица от върхове v_0, v_1, \ldots, v_k (за $k \geq 0$) се нарича **път**, ако всяка двойка поредни върхове v_l и v_{l+1} (за всяко $0 \leq l < k$) са съседни. Казваме, че пътя v_0, v_1, \ldots, v_k **свързва** върхове v_0 и v_k . В дадения Ви граф всеки два върха са свързани с някой път.

Има N+1 цвята номерирани от 0 до N. Цвят N е специален и се нарича **цвета на Сфинкса**. Всеки връх има цвят. По-конкретно, връх i ($0 \le i < N$) има цвят C[i]. Множество върхове може да имат един и същи цвят. Също така може да има цветове, за които няма върхове оцветени в тези цветове. Никой връх не е оцветен в цвета на Сфинкса, т.е. $0 \le C[i] < N$ ($0 \le i < N$).

Пътят v_0, v_1, \ldots, v_k (за $k \geq 0$) се нарича **едноцветен**, ако всички върхове в него са в един и същи цвят, т.е. $C[v_l] = C[v_{l+1}]$ (за всяко $0 \leq l < k$). Също така, казваме, че върхове p и q ($0 \leq p < N$, $0 \leq q < N$) са в една и съща **едноцветна компонента**, тогава и само тогава когато са свързани с едноцветен път.

Вие знаете върховете и ребрата, но не знаете цветовете на върховете. Искате да откриете цветовете на върховете като извършвате **експерименти с преоцветяване**.

В един експеримент с преоцветяване Вие можете да смените цвета на произволно много върхове. По-конкретно, за да извършите експеримент с преоцветяване, първо избирате редица E с дължина N, където за всяко $0 \leq i < N$, E[i] е между -1 и N включително. Тогава, цветът на връх i става S[i], където S[i] е равно на:

- ullet C[i], т.е. оригиналния цвят на връх i, ако E[i]=-1, или
- E[i], иначе.

Забележете, че това означава, че можете да използвате цвета на Сфинкса във Вашето преоцветяване.

Великият Сфинкс обявява броя монохроматични компоненти в графа, след като смени цвета на всеки връх i на S[i] ($0 \le i < N$). Новото преоцветяване се прилага само за този

експеримент с преоцветяване, т.е. **цветовете на всички върхове се връщат на оригиналните им такива след края на експеримента**.

Вашата задача е да откриете цветовете на върховете в графа като извършите най-много $2\,750$ експеримента с преоцветяване. Също така, ще получите частични точки, ако успешно откриете, за всяка двойка съседни върхове, дали са в един и същи цвят.

Детайли по имплементацията

Трябва да напишете следната функция:

```
std::vector<int> find_colours(int N,
    std::vector<int> Y)
```

- N: броят върхове в графа.
- X, Y: вектори с дължина M, описващи ребрата.
- ullet Тази функция трябва да върне вектор G с дължина N, който описва цветовете на върховете в графа.
- Тя се вика точно веднъж.

Горната функция може да извиква следната функция, за да прави експерименти с преоцветяване:

```
int perform_experiment(std::vector<int> E)
```

- E: вектор с дължина N, описващ как върховете да бъдат преоцветени.
- Тази функция връща броя на монохроматичните компоненти след преоцветяване на върховете според E.
- Тя може да бъде извикана най-много $2\,750$ пъти.

Грейдърът **не е адаптивен**, т.е. цветовете на върховете са избрани преди извикването на find_colours.

Ограничения

- $2 \le N \le 250$
- $N-1 \le M \le \frac{N \cdot (N-1)}{2}$
- $0 \leq X[j] < Y[j] < N$ за всяко $0 \leq j < M$.
- X[j]
 eq X[k] или Y[j]
 eq Y[k] за всички $0 \le j < k < M$.
- Всяка двойка върхове е свързана с някой път.
- $0 \leq C[i] < N$ за всяко $0 \leq i < N$.

Подзадачи

Подзадача	Точки	Допълнителни ограничения
1	3	N=2
2	7	$N \leq 50$
3	33	Графът е пътека: $M = N-1$ и върхове j и $j+1$ са съседни ($0 \leq j < M$).
4	21	Графът е пълен: $M=rac{N\cdot (N-1)}{2}$ и всеки два върха са съседни.
5	36	Няма.

Във всяка подзадача, ще получите частични точки, ако Вашата програма правилно открие, за всяка двойка свързани върхове, дали имат един и същи цвят.

По-конкретно, получавате пълните точки за дадена подзадача, ако във всички тестове, векторът G върнат от find_colours е точно същият като вектора C (т.е. G[i] = C[i] за всяко $0 \le i < N$). Иначе, получавате 50% от точките за подзадачата, ако следните условия важат за всички тестове:

- ullet $0 \leq G[i] < N$ за всяко $0 \leq i < N$;
- За всяко $0 \le j < M$:
 - $\circ \ \ G[X[j]] = G[Y[j]]$, тогава и само тогава когато C[X[j]] = C[Y[j]].

Пример

Нека разгледаме следното извикване:

В този пример, да приемем, че (скритите) цветове на върховете са: C=[2,0,0,0]. Този случай е показан по-долу. Цветовете са допълнително представени с числа в белите кръгчете до всеки връх.

Функцията може да извика perform_experiment по следния начин:

В това извикване, никой връх не е преоцветен и всички остават в оригиналния си цвят.

Да разгледаме върхове 1 и 2. И двата имат цвят 0 и пътя 1,2 е едноцветен. Следва, че 1 и 2 са в една и съща едноцветна компоеннта.

Да разгледаме върхове 1 и 3. Въпреки че и двата са от цвят 0, те са в различни едноцветни компоненти, защото няма едноцветен път, който да ги свързва.

Общо има 3 едноцветни компоентни, с върхове: $\{0\}$, $\{1,2\}$ и $\{3\}$. Следва, че това извикване ще върне 3.

След това, може да се извика perform_experiment така:

В това извикване, само връх 0 е преоцветен към цвят 0, който води до следното оцветяването:

Това извикване връща 1, защото всички върхове са в една и съща едноцветна компонента. Следва, че можем да заключим, че върхове 1, 2, и 3 имат цвят 0.

После може да бъде извикано perform_experiment по следния начин:

В това извикване връх 3 е преоцветен към цвят 2, което води до следното оцветяване:

Това извикване връща 2, защото има 2 едноцветни компоненти, с върхове $\{0,3\}$ и $\{1,2\}$. Можем да дедуцираме, че връх 0 има цвят 2.

Най-накрая, функцията find_colours връща вектора [2,0,0,0]. Тъй като това съвпада с C=[2,0,0,0], се получават пълните точки.

Забележете, че има много възможни стойности на върнатия вектор, за които биха се получили 50% от точките, например: [1,2,2,2] или [1,2,2,3].

Локален грейдър

Входен формат:

```
N M
C[0] C[1] ... C[N-1]
X[0] Y[0]
X[1] Y[1]
...
X[M-1] Y[M-1]
```

Изходен формат:

```
L Q
G[0] G[1] ... G[L-1]
```

Тук L е дължината на вектора G върнат от find_colours, а Q е броят извиквания на perform_experiment.