

Transformação de modelos (Conceitual – Relacional)

TIAGO G MORAES

Roteiro

- Modelo relacional (lógico)
 - oconceitos básicos
 - ochave
 - Restrições de integridade
 - Representação modelo
- ■Transformação entre modelos (conceitual lógico)
 - Implementação entidades
 - Implementação relacionamentos
 - Implementação generalização/especialização e entidade associativa

Modelo Relacional

□Revisando:

- Os dados são armazenados em tabelas (relações)
- Cada tabela é formada por:
 - Conjunto não ordenado de linhas (tuplas)
 - Colunas (atributos, campos)
 - Valores atômicos (campo sem subdivisões) e
 - Monovalorados (apenas um valor)

Nome	ldade	Sexo
João Carlos	25	Masculino
Júlio	20	Femino

- Chave: conceito para identificar linhas
- □Chave primária (PK)
 - Coluna (ou combinação de colunas) que possui valores que não se repetem (únicos)
 - A combinação de linhas deve ser mínima (mínimo necessário para identificar unicamente uma linha na tabela
 - Uma por tabela
- □Chave candidata (ou alternativa):
 - Caso exista outra possibilidade de escolha de uma chave primária, essa é uma chave alternativa ou candidata
 - Pode ter mais de uma por tabela

- Chave: conceito para identificar linhas
- □Chave estrangeira (FK)
 - oldentifica unicamente uma linha de outra tabela
 - oFaz referência a PK de outra tabela

- Chave: conceito para identificar linhas
- ■Chave estrangeira (FK)
 - oldentifica unicamente uma linha de outra tabela
 - o Faz referência a PK de outra tabela

Fu	nci	Or	ar	
			I CI I	IV

CPF	Nome	Idade	Sexo	RG	CodDepto
009.287.323-09	João Carlos	25	Masculino	548759641	01
286.254.390-87	Júlio	20	Femino	207732202	05

Chave Estrangeira (FK)

Chave primária composta

- ○PK → (CodMedico, Data/Hora) ou (CodPaciente, Data/Hora)
 - Apenas os 2 campos juntos para identificar uma linha unicamente

Ca	nsu	I40N		00
LU	nsu	Itaiv	1ea	

CodMedico	Data/Hora	CodPaciente	Duração
0011	12/05/2015 – 13:00:00	002	30 min
0011	18/05/2015 – 13:00:00	002	25 min
0011	18/05/2015 – 13:50:00	003	30 min
0007	12/05/2015 – 13:00:00	003	45 min

Chave Primária (PK)

→ Qualquer tabela que referencie ConsultaMedica, terá uma FK de 2 colunas!!!

Modelo Relacional - Restrições

- Restrições de integridade
 - Existem para manter a integridade dos dados de um BD
 - Dados que condizem com a realidade
 - Dados consistentes
 - Mecanismo oferecido pelo próprio SGBD

□Tipos:

- Integridade de domínio
- Integridade de vazio
- OIntegridade de chave
- •Integridade referencial

Modelo Relacional - Restrições

- □Integridade de domínio
 - Diz respeito aos possíveis valores associados a um campo
 - Exemplo:
 - Coluna idade → inteiros positivos
 - Coluna sexo → caractere 'F' ou 'M'
- □Integridade de vazio
 - Especifica se os campos podem ou não ser vazios (ou nulos)
 - Trata se o campo é opcional ou obrigatório

Modelo Relacional - Restrições

□Integridade de chave

- ODiz que os valores chave para a tabela (chave primária e candidata) devem ser únicos
- Não poderá existir duas linhas com o mesmo valor para determinado campo

Integridade referencial

- Define que o valor em FK deve existir correspondência em PK da tabela que se refere
- Quando um valor de PK referenciada por FK é alterado ou excluído o SGBD deve saber como lidar com a situação

Modelo Relacional - representação

Textual

- Representa tabelas, colunas e chaves primária e estrangeira
- Não representa domínio das colunas
- Notação

```
NomeTab (colPK1,..., colPKN, col1,..., colN, colFK1,..., colFKN) (colFK1,..., colFKN) refercia nomeTabReferenciada
```

• Exemplo

```
Departamento(codDepto, nome)
Empregado(codEmp, codDepto, nome, RG, salario)
(codDepto) refencia Departamento
```

Modelo Relacional - representação

- Diagramática
 - Possui mais informações:
 - Cardinalidade
 - Domínio campo
 - Exemplo:

Modelo Relacional - representação

■Textual (complementada)

```
Departamento (codDepto, nome)

Empregado (codEmp, codDepto, nome, RG, salario)

(codDepto) refencia Departamento
```


- □Um modelo **conceitual** pode ser transformado para um modelo **lógico**, e **vice-versa**
 - ○Lógico → Conceitual: engenharia reversa
 - ○Conceitual → Lógico: projeto lógico
- ■Projeto lógico:
 - OPrimeiro se mapeia o ER em modelo relacional
 - Depois se refina o modelo a partir dos dados do domínio do problema

■Projeto lógico:

Objetivos:

- Performance (desempenho → poucas operações de I/O)
- Simplicidade (para uso, desenvolvimento e manutenção)

• Princípios:

- 1. Evitar junções: quando uma consulta lê dados de mais de uma tabela
- Evitar chaves: chaves geram complexidade no que se refere a estrutura de dados.
 - São criados índices para fácil acesso.
 - Deve-se utilizá-las na medida certa.
 - Exemplo: endereço como coluna (string) ou outra tabela com colunas?
- 3. Evitar campos opcionais: só se necessário o campo será opcional.
 - Não deve-se terceirizar tal responsabilidade (a um programa cliente)
 - Consultas com campos que possuem valor NULL podem ser complicadas

■Projeto lógico:

- Passos:
- 1. Implementação entidades e respectivos atributos
- Implementação de relacionamentos binários e seus atributos
- Implementar demais relacionamentos, generalizações/especializações e entidades associativas

□ Implementação entidades

- oCada entidade → uma tabela
- Cada atributo monovalorado -> uma coluna
- ○Atributo identificador → chave primária
- ONomes devem ser: curtos, sem hífens e espaços
- Caso não exista atributo identificador se cria uma PK:
 - Padrão:
 - "Id" ou "Cod"+"nome tabela" → CodPessoa, IdAluno, IdFoto ...

□ Implementação entidades

- Atributo multivalorado:
 - Cria-se uma tabela para tal atributo (relacionamento 1:n) com a entidade que possuía o atributo
 - Cria-se uma coluna a mais (FK) referente ao relacionamento identificador
 - Exemplo:

Implementação relacionamentos binários

• Fator principal: cardinalidades min e max

Opções:

- Relacionamento mapeado para nova tabela
- Relacionamento mapeado por coluna (FK)
- Relacionamento mapeado para fusão de tabelas

□ Implementação **relacionamentos** binários

- Fator principal: cardinalidades min e max
- Opções:
 - Relacionamento mapeado para tabela
 - N:N
 - Relacionamento mapeado por coluna (FK)
 - 1:N
 - Relacionamento mapeado para fusão de tabelas
 - · 1:1

□ Implementação **relacionamentos** binários

- Fator principal: cardinalidades min e max
- Opções:
 - Relacionamento mapeado para tabela
 - N:N
 - Relacionamento mapeado por coluna (FK)
 - 1:N
 - Relacionamento mapeado para fusão de tabelas
 - · 1:1

□Implementação relacionamentos binários 1:1

Programador (CPF, nome, telefone, EndNum, EndCEP, EndRua)

□Implementação relacionamentos binários 1:1

Pessoa(<u>CPF</u>, nome, Sexo)
Casamento(CPFMarido, CPFEsposa)
CPFMarido referencia Pessoa
CPFEsposa referencia Pessoa

OU

Pessoa (<u>CPF</u>, nome, Sexo, <u>CPFConjuge</u>) <u>CPFConjuge referencia Pessoa</u>

□Implementação relacionamentos binários 1:N

Empregado (<u>CPF</u>, nome, telefone, <u>codDepto</u>)

<u>CodDepto referencia Depto</u>

Depto (<u>codDepto</u>, nome)

Implementação relacionamentos binários N:N

Programador (<u>CPF</u>, nome, telefone)
Projeto (<u>codProjeto</u>, nome, preco)
ProgramadorProjeto (<u>CPF</u>, <u>CodProjeto</u>)
CodProjeto referencia Projeto
CPF referencia Programador

□ Resumo Relacionamento binários

Relacionamento	Nova tabela	Nova Coluna (FK)	Fusão tabelas
(0,1) (0,1)	+-	OK	×
(0,1) (1,1)	+	+-	OK
(1,1) (1,1)	+	+	OK
(0,1) (0,n)	+-	ОК	×
(0 <u>,1)</u> (1,n)	+-	ОК	×
(1 <u>,1)</u> (0,n)	+	ОК	×
(1 <u>,1)</u> (1,n)	+	ОК	×
(0,n) (0,n)	ОК	×	×
(0,n) (1,n)	ОК	×	×
(0,n) (1,n)	ОК	×	×

Legenda:

OK:melhor opção

+-: outra opção menos usada

+--: opção raramente usada

X: não utilizar

□ Implementação relacionamentos não binários

- Um relacionamento não binário pode ser entendido como um conjunto de relacionamentos binários
- Um relacionamento binário tem implementação já conhecida

□ Implementação relacionamentos não binários

Exemplo: relacionamento ternário

□ Implementação Generalização/Especialização

- Opção 1: Implementar uma tabela apenas para a entidade genérica
- Opção 2: Implementar uma tabela para cada entidade (genérica e especialista)
- Opção 3: Implementar uma tabela pra cada entidade especialista

- □ Implementação **Generalização/Especialização**
 - Opção 1: Implementar uma tabela para a entidade genérica
 - Colunas das tabelas especializadas (referentes aos atributos e relacionamentos das entidades especialistas)
 - Virão colunas opcionais da tabela genérica
 - Tabela referente a entidade genérica terá coluna "tipo" para diferenciar

□ Implementação Generalização/Especialização

- Opção 2: Implementar uma tabela para cada entidade (genérica e especialista)
 - Tabelas das entidades especialistas terão chave para tabela referente a entidade genérica
 - Tabela referente a entidade genérica poderá ter coluna "tipo" para diferenciar

□ Implementação **Generalização/Especialização**

- Opção 3: Implementar uma tabela para a cada entidade especialista
 - Todos atributos herdados aparecem na tabela especialista
 - Chaves primárias espalhadas em mais de uma tabela
 - Como garantir unicidade de chaves primárias?

Implementação Entidade Associativa

- OUma entidade associativa é um relacionamento que também se comporta como entidade
- Esse tipo de relacionamento possui uma implementação alternativa com um entidade e dois relacionamentos binários

 Um relacionamento binário tem implementação já conhecida