Parameter Values For Metabolite Quantification at 9.4T

Contents

1	$T_1 V$	/alues	1
		Summary of T ₁ Values for Metabolites	
		Summary of T ₁ Values for Water	
		/alues	
		Summary of T ₂ Values for Metabolites	
	2.2	Summary of T ₂ Values for Water	4

1 T₁ Values

The T₁ values of metabolites and water in tissue were taken from the following reference:

Reference	ROI	Animal	Sequence
de Graaf, R. A., Brown, P. B., McIntyre, S., Nixon, T. W., Behar, K. L., & Rothman, D. L. (2006). High magnetic field water and metabolite proton T1 and T2 relaxation in rat brain in vivo. Magnetic Resonance in Medicine, 56(2), 386–394. https://doi.org/10.1002/mrm.20946	 Cerebral cortex (60-70%) + corpus callosum and hippocampus (30-40%) 5 x 3 x 5 mm³ voxel 	Sprague- Dawley rats	Nonselective AHP excitation and 3 pairs of AFP for selective refocussing

This reference was chosen because they used a sequence that was similar to ours for their parameter measurement.

The T_1 value of water in CSF was taken from the following reference:

Reference	ROI	Animal	Sequence
Kuo, Y. T., Herlihy, A. H., So, P. W., Bhakoo, K. K., & Bell, J. D. (2005). In vivo measurements of T1 relaxation times in mouse brain associated with different modes of systemic administration of manganese chloride. Journal of Magnetic Resonance Imaging, 21(4), 334–339. https://doi.org/10.1002/jmri.20285	Left Ventricle	C57/BL6 Mice	 Spin-echo sequence TE=18 ms 5 TRs (800 - 6000 ms)

Though CSF in tissue and CSF in a ventricle have different relaxations, there has not been reports in literature of the relaxation rates of CSF within the rat or mouse brain tissue. Thus, a CSF measurement was used.

1.1 Summary of T₁ Values for Metabolites

The T₁ values of metabolites used for metabolite quantification at 9.4T are summarized below:

Metabolite	T ₁ in Tissue [sec]	Notes
NAA	1.6740	
NAAG	1.6740	Assumed to be the same as NAA
Ala	1.3701	Assumed to be the same as Myo, per Marjanska ¹ and Kreis ²
GABA	1.3701	
Asp	1.3701	
Cho	1.3484	Total choline
Cre	1.6792	Total creatine, 3.03 ppm singlet only
Glc	1.3701	Assumed to be the same as Myo, per Marjanska ¹ and Kreis ²
Glu	1.4975	de Graaf measured the Glx complex (glutamate +
Gln	1.4975	glutamine)
GSH	1.3701	Assumed to be the same as Myo, per Marjanska ¹ and Kreis ²
Gly	1.3701	
Муо	1.3701	
Scy	1.3701	Assumed to be the same as Myo, per Marjanska ¹ and Kreis ²
Lac	1.3701	
Eth	1.3701	
Tau	2.3289	

1.2 Summary of T₁ Values for Water

The T_1 values of water used for metabolite quantification at 9.4T are summarized below:

	T ₁ in Tissue [sec]	T ₁ in CSF [sec]
Water	• 2.0597 (hippocampus)	4.2867 (left ventricle)
	 From de Graaf et al, 2006 	 From Kuo et al, 2005

2 T₂ Values

The T₂ values of metabolites and water in tissue were taken from the following reference:

Reference	ROI	Animal	Sequence
Deelchand, D. K., Henry, P. G., &	On the	Sprague-Dawley	• LASER
Marjańska, M. (2015). Effect of Carr-	midline, 2mm	Rats	• 8 TEs
Purcell refocusing pulse trains on	posterior to		between 18
transverse relaxation times of	bregma and 3		ms and 400
metabolites in rat brain at 9.4 Tesla.	mm ventral		ms
Magnetic Resonance in Medicine,	• 5 x 2.5 x 5		
73(1), 13-20.	mm³		
https://doi.org/10.1002/mrm.25088			

¹ Marjańska, M., Auerbach, E. J., Valabrègue, R., Van de Moortele, P.-F., Adriany, G., & Garwood, M. (2012). Localized 1H NMR spectroscopy in different regions of human brain in vivo at 7 T: T2 relaxation times and concentrations of cerebral metabolites. NMR in Biomedicine, 25(2), 332–339. https://doi.org/10.1002/nbm.1754

² Kreis, R., Slotboom, J., Hofmann, L., & Boesch, C. (2005). Integrated data acquisition and processing to determine metabolite contents, relaxation times, and macromolecule baseline in single examinations of individual subjects. Magnetic Resonance in Medicine, 54(4), 761–768. https://doi.org/10.1002/mrm.20673

This reference was used because it employed a LASER sequence, the same as what was used on our 9.4T Varian scanner. The authors were also able to measure T_2 values for glutamate and glutamine separately. There were also able to measure separate T_2 values for

The T₂ value of water in CSF was taken from the following reference:

Reference	ROI	Animal	Sequence
Kuo, Y. T., Herlihy, A. H., So, P. W., Bhakoo, K. K., & Bell, J. D. (2005). In vivo measurements of T1 relaxation times in mouse brain associated with different modes of systemic administration of manganese chloride. Journal of Magnetic Resonance Imaging, 21(4), 334–339. https://doi.org/10.1002/jmri.20285	Left Ventricle	C57/BL6 Mice	 Spin-echo sequence TE=18 ms 5 TRs (800 - 6000 ms)

Though CSF in tissue and CSF in a ventricle have different relaxations, there has not been reports in literature of the relaxation rates of CSF within the rat or mouse brain tissue. Thus, a CSF measurement was used.

2.1 Summary of T₂ Values for Metabolites

The T₂ values use of metabolites used for metabolite quantification at 9.4T are summarized below:

Metabolite	T ₂ in Tissue [ms]	Notes	
NAA	321	CH₃ singlet only	
NAAG	321	Assumed to be the same as NAA	
Ala	161	Assumed to be the same as Myo, per Marjanska ¹ and Kreis ²	
GABA	161		
Asp	161		
Cho	445	Total choline	
Cre	104	Creatine + phosphocreatine, 3.03 ppm singlet only	
Glc	161	Assumed to be the same as Myo, per Marjanska ¹ and Kreis ²	
Glu	70		
Gln	56		
GSH	161	Assumed to be the same as Myo, per Marjanska ¹ and Kreis ²	
Gly	161		
Муо	161		
Scy	161	Assumed to be the same as Myo, per Marjanska ¹ and Kreis ²	
Lac	161		
Eth	161		
Tau	162		

2.2 Summary of T_2 Values for Water The T_2 values of water used for metabolite quantification at 9.4T are summarized below:

	T ₂ in Tissue [ms]	T ₂ in CSF [ms]
Water	• 44	• 111.3
	• From Deelchand et al, 2015	From Kuo et al, 2005