EE160 Lab Assignment-3

Lab section 1A

Power Measurement in 3-Phase Electric Circuit

Karan Acharya

202251064

Objectives:

On Simulink, design a circuit with Y-connected 3-phase AC sources (220V, 50 Hz) and Y-connected 3-phase RLC branch.

Parameters:

Input voltage = 220V

Frequency = 50Hz

Phase of A= 0

Phase of B = -120

Phase of C = -240

R=1 Ω L=10⁻³ H C=10⁻⁶ F

Circuit:

Scope 1: Three Phase Current And Voltage

Result:

At any point the sum of current of phase A, B and C is equal to Zero.

Scope 2 : Total Power (Reactive + Real)

Result:

The total power in a three-phase power system is constant with respect to time(after steady state), which can be verified through this graph.

Scope 3: V_line and V_phase Graph

Result:

• ΔT between the peaks of V_phase andV_linecomes out to be 1.666 ms As Phase Difference = $\omega \Delta t$

```
= 2\pi f \times \Delta t
= 2\pi f \times 1.666 \times 0.001 = 0.523
```

Which is in radians, when we convert it into degrees, it comes out to be 29.998 degrees which is approximately equal to 30 degrees.

Therefore, V_phase leads V_line by 30 degrees.

Also through Display, V_line = 269.4 V

V_phase = 155.6 V And their ratio comes out to be 1.732 .

 Reactive Power from 3 phase power measurement is -22.81 VAR, and from Single Phase Power reactive power is -7.603 VAR their ratio is 3. Same is the case with Real power.

For other values of R,L and C:

For R=100 Ω ,L=10 $^{\text{--}4}$ H,C=10 $^{\text{--}5}$ F

For R=200 Ω ,L=2×10 $^{\text{--}4}$ H,C=2×10 $^{\text{--}5}$ F

All the properties of Graphs and circuit remain the same, just value differs in these two cases.

Conclusions:

- 1. V_line is 3 times the V_phase voltage , I_line = I_phase.
- 2. 3-Phase Power is 3 times the Single phase power.
- 3. V_line leads V_phase by 30 Degrees.
- 4. Total power of the system is constant.
- 5. At any point the sum of current of phase A, B and C is equal to Zero, that's why current through the neutral line is zero.