AA203 Optimal and Learning-based Control Lecture 6

Stochastic Dynamic Programming

Autonomous Systems Laboratory

Daniele Gammelli

Roadmap

Outline

Stochastic Optimal Control: Markov Decision Process (MDP)

The dynamic programming algorithm (stochastic case)

Stochastic LQR

Infinite-Horizon MDPs:

- Exact Methods:
 - (Policy Evaluation)
 - Value Iteration
 - Policy Iteration

Stochastic Optimal Control Problem: Markov Decision Problem (MDP)

- System: $x_{k+1} = f_k(x_k, u_k, w_k), k = 0, ..., N-1$
- Probability distribution: $w_k \sim P_k \left(\cdot \mid x_k, u_k \right)$
- Control constraints: $u_k \in U(x_k)$
- Policies: $\pi = \{\pi_0..., \pi_{N-1}\}$, where $\boldsymbol{u}_k = \pi_k\left(\boldsymbol{x}_k\right)$
- Expected Cost:

$$J_{\pi}\left(\mathbf{x}_{0}\right) = \mathbb{E}_{\mathbf{w}_{k}, k=0,...,N-1} \left[g_{N}\left(\mathbf{x}_{N}\right) + \sum_{k=0}^{N-1} g_{k}\left(\mathbf{x}_{k}, \pi_{k}\left(\mathbf{x}_{k}\right), \mathbf{w}_{k}\right) \right]$$

Stochastic Optimal Control Problem:

$$J^*\left(x_0\right) = \min_{\pi} J_{\pi}\left(x_0\right)$$

Key points

- Discrete-time model
- Markovian model
- Objective: find optimal closed-loop policy
- Additive cost (central assumption in DP)
- Risk-neutral formulation

Other communities use different notation:

[Powell, W. B. *AI, OR and control theory: A Rosetta Stone for stochastic optimization.* Princeton University, 2012.]

The DP algorithm (stochastic case)

Principle of optimality:

- . Let $\pi^* := \left\{\pi_0^*, \pi_1^*, ..., \pi_{N-1}^*\right\}$ be an optimal policy
- Consider the tail subproblem

$$\mathbb{E}_{w_k} \left[g_N\left(\mathbf{x}_N\right) + \sum_{k=i}^{N-1} g_k\left(\mathbf{x}_k, \pi_k\left(\mathbf{x}_k\right), \mathbf{w}_k\right) \right]$$

the tail policy $\left\{\pi_i^*, \ldots, \pi_{N-1}^*\right\}$ is optimal for the tail subproblem

Intuition:

- DP first solves ALL tail subproblems at the final stage
- At the generic step, it solves ALL tail subproblems of a given time length, using solution of tail subproblems of shorter length

DP Algorithm (stochastic case)

Like in the deterministic case, start with:

$$J_N^*\left(x_N\right) = g_N\left(x_N\right)$$

and iterate backwards in time using

$$J_k^*\left(\boldsymbol{x}_k\right) = \min_{\boldsymbol{u}_k \in U\left(\boldsymbol{x}_k\right)} \mathbb{E}_{w_k} \left[g_k\left(\boldsymbol{x}_k, \boldsymbol{u}_k, \boldsymbol{w}_k\right) + J_{k+1}^*\left(f\left(\boldsymbol{x}_k, \boldsymbol{u}_k, \boldsymbol{w}_k\right)\right) \right], \quad k = 0, \dots, N-1$$

for which the optimal cost $J^*(\mathbf{x}_0)$ is equal to $J_0(\mathbf{x}_0)$ and the optimal policy is constructed by setting

$$\pi_k^* \left(\mathbf{x}_k \right) = \underset{\mathbf{u}_k \in U(\mathbf{x}_k)}{\operatorname{argmin}} \mathbb{E}_{w_k} \left[g_k \left(\mathbf{x}_k, \mathbf{u}_k, \mathbf{w}_k \right) + J_{k+1}^* \left(f \left(\mathbf{x}_k, \mathbf{u}_k, \mathbf{w}_k \right) \right) \right]$$

Example: Inventory Control Problem

 $x_k \in \mathbb{N}$: stock available

 $u_k \in \mathbb{N}$: inventory

 $w_k \in \mathbb{N}$: demand

Dynamics: $x_{k+1} = \max(0, x_k + u_k - w_k)$

Constraints: $x_k + u_k \le 2$

Probabilistic structure: $p(w_k = 0) = 0.1$

 $p(w_k = 1) = 0.7$

 $p(w_k = 2) = 0.2$

Objective:
$$\mathbb{E}_{w_k} \left[0 + \sum_{k=0}^{2} \left(u_k + \left(x_k + u_k - w_k \right)^2 \right) \right]$$

 $g_3(x_3)$ $g_k(x_k, u_k, w_k)$

More generally, could imagine costs:

 $H(x_k)$: holding inventory

 $B(u_k)$: buying inventory

 $S(x_k, u_k, w_k)$: selling (matching stock with demand)

Example: Inventory Control Problem

Algorithm takes the form

$$J_k^* (x_k) = \min_{0 \le u_k \le 2 - x_k} \mathbb{E}_{w_k} \left[u_k + (x_k + u_k - w_k)^2 + J_{k+1}^* \left(\max (0, x_k + u_k - w_k) \right) \right]$$

for k = 0,1,2

For example

$$J_{2}^{*}(0) = \min_{u_{2}=0,1,2} \mathbb{E}_{w_{2}} \left[u_{2} + \left(u_{2} - w_{2} \right)^{2} \right] =$$

$$\min_{u_{2}=0,1,2} u_{2} + 0.1 \left(u_{2} \right)^{2} + 0.7 \left(u_{2} - 1 \right)^{2} + 0.2 \left(u_{2} - 2 \right)^{2}$$

Which yields $J_2^*(0)=1.3$ and $\pi_2^*(0)=1$

Example: Inventory Control Problem

Final solution:

$$J_0^*(0) = 3.7$$

$$J_0^*(1) = 2.7$$

$$J_0^*(2) = 2.818$$

(See this spreadsheet)

Stochastic LQR

Find control policy that minimizes

$$\mathbb{E}_{w_k} \left[\frac{1}{2} \mathbf{x}_N^T Q \mathbf{x}_N + \frac{1}{2} \sum_{k=0}^{N-1} \left(\mathbf{x}_k^T Q_k \mathbf{x}_k + \mathbf{u}_k^T R_k \mathbf{u}_k \right) \right]$$

Subject to

• Dynamics $\mathbf{x}_{k+1} = A_k \mathbf{x}_k + B_k \mathbf{u}_k + \mathbf{w}_k$, $k \in \{0, 1, ..., N-1\}$

with
$$\pmb{x}_0 \sim \mathcal{N}\left(\overline{\pmb{x}_0}, \pmb{\Sigma}_{\pmb{x}_0}\right), \left\{\pmb{w}_k \sim \mathcal{N}\left(\pmb{0}, \pmb{\Sigma}_{\pmb{w}_k}\right)\right\}$$
 independent and Gaussian vectors

11

Stochastic LQR

As in the deterministic case, with $J_{k+1}^*\left(\mathbf{x}_{k+1}\right) = \frac{1}{2}\mathbf{x}_{k+1}^TP_{k+1}\mathbf{x}_{k+1}$

- The optimal cost to go is increased by some constant related to the magnitude of the noise (on which we have no control on)
- The optimal policy is the same as in the deterministic case

Infinite Horizon MDPs

State: $x \in \mathcal{X}$

Action: $u \in \mathcal{U}$

Transition function / Dynamics: $T\left(x_{t} \mid x_{t-1}, u_{t-1}\right) = p\left(x_{t} \mid x_{t-1}, u_{t-1}\right)$

Reward function: $r_t = R(x_t, u_t) : \mathcal{X} \times \mathcal{U} \to \mathbb{R}$

Discount factor: $\gamma \in (0,1)$

Stationary policy: $u_t = \pi(x_t)$

Typically represented as a tuple

$$\mathscr{M} = (\mathscr{X}, \mathscr{U}, T, R, \gamma)$$

13

Goal: choose a policy that maximizes cumulative (discounted) reward

$$\pi^* = \arg\max_{\pi} \mathbb{E}_p \left[\sum_{t \ge 0} \gamma^t R\left(x_t, \pi\left(x_t\right)\right) \right]$$

Value functions

State-value function: "the expected total reward if we start in that state and act accordingly to a particular policy"

Action-state value function: "the expected total reward if we start in that state, take an action, and act accordingly to a particular policy"

$$V_{\pi}(x) = \mathbb{E}_{p} \left[\sum_{t \geq 0} \gamma^{t} R\left(x_{t}, \pi\left(x_{t}\right)\right) \right]$$

$$Q_{\pi}(x, u) = \mathbb{E}_{p} \left[\sum_{t \geq 0} \gamma^{t} R\left(x_{t}, u_{t}\right) \right]$$

$$V^*(x) = \max_{\pi} V_{\pi}(x)$$

$$Q^*(x, u) = \max_{\pi} Q_{\pi}(x, u)$$

Bellman Equations

Value functions can be decomposed into immediate reward plus discounted value of successor state

$$\begin{aligned} \mathbf{V}_{\pi}\left(x_{t}\right) &= \mathbb{E}_{\pi}\left[R\left(x_{t}, \pi\left(x_{t}\right)\right) + \gamma \mathbf{V}_{\pi}\left(x_{t+1}\right)\right] & \text{Bellman Expectation Equation} \\ &= R\left(x_{t}, \pi\left(x_{t}\right)\right) + \gamma \sum_{x_{t+1} \in X} T\left(x_{t+1} \mid x_{t}, \pi\left(x_{t}\right)\right) \mathbf{V}_{\pi}\left(x_{t+1}\right) \end{aligned}$$

Similarly, also optimal value function can be decomposed as:

Bellman Optimality Equation

$$V^* (x_t) = \max_{u} \left(R(x_t, u_t) + \gamma \sum_{x_{t+1} \in X} T(x_{t+1} \mid x_t, u_t) V^* (x_{t+1}) \right)$$

Three paradigms that rely on DP

For *prediction*:

• Policy Evaluation: "given a policy π , find the value function $V_{\pi}(x)$, i.e., how good is that policy?"

For *control*:

- Policy Iteration: leverages policy evaluation as an inner loop to find the optimal policy
- Value Iteration: applies Bellman's optimality equation to compute the optimal value function

Policy Evaluation

Problem: evaluate a given policy π

Solution: iterative application of Bellman expectation backup $(V_1 \rightarrow V_2 \rightarrow ... \rightarrow V_{\pi})$

- At each iteration k+1
- For all states x∈X
- Update $V_{k+1}(x)$ from $V_k(x)$ through

Bellman Expectation Equation

$$V_{k+1}(x_t) = R\left(x_t, \pi(x_t)\right) + \gamma \sum_{x_{t+1} \in X} T\left(x_{t+1} \mid x_t, \pi(x_t)\right) V_k(x_{t+1})$$

- This sequence is proven to converge to V_π

Example: Grid World From Sutton and Barto, Reinforcement Learning: An Introduction (Chapter 4)

- Nonterminal states 1, ..., 14. Terminal states as shaded squared
- Reward is -1 until the terminal state is reached
- Controls leading out of the grid leave state unchanged
- Undiscounted MDP ($\gamma = 1$)
- We want to evaluate a uniform random policy

 $V_k(x)$ for the random policy Greedy policy w.r.t. $V_k(x)$

$$k = 0$$

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

$$k = 1$$

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

$$k = 2$$

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

			${\longleftrightarrow}$
†	Ţ	\bigoplus	ţ
†	\leftrightarrow	Ļ	ţ
\longleftrightarrow	\rightarrow	\rightarrow	

 $V_k(x)$ for the random policy Greedy policy w.r.t. $V_k(x)$

$$k = 3$$

$$\begin{vmatrix}
0.0 & -2.4 & -2.9 & -3.0 \\
-2.4 & -2.9 & -3.0 & -2.9 \\
-2.9 & -3.0 & -2.9 & -2.4 \\
-3.0 & -2.9 & -2.4 & 0.0
\end{vmatrix}$$

$$\begin{vmatrix}
0.0 & -6.1 & -8.4 & -9.0
\end{vmatrix}$$

	0.0	-6.1	-8.4	-9.0
k = 10	-6.1	-7.7	-8.4	-8.4
λ – 10	-8.4	-8.4	-7.7	-6.1
	-9.0	-8.4	-6.1	0.0

$$k = \infty$$

$$-14. -18. -20. -20.$$

$$-20. -20. -18. -14.$$

$$-22. -20. -14. 0.0$$

Some technical questions

- How do we know that iterative policy evaluation converges to V^{π} ?
- Is the solution unique?
- How fast does this algorithm converge?

These questions are resolved by the contraction mapping theorem

Sketch of proof:

- Def: ∞ -norm $\|\mathbf{u} \mathbf{v}\|_{\infty} = \max_{x \in \mathcal{X}} \|\mathbf{u}(x) \mathbf{v}(x)\|$, i.e. the largest difference between state values
- Def: an update operation is a γ -contraction if $\|U_{i+1}-V_{i+1}\|\| \leq \|U_i-V_i\|$, $\forall U_i, V_i$
- Theorem: a γ -contraction converges to a unique fixed point, no matter the initialization, at a linear convergence rate of γ
- Fact: the policy evaluation operator is a γ -contraction in ∞ -norm
- Corollary: policy evaluation converges to a unique fixed point

21

Policy Iteration

Given policy π

Evaluate the policy π

$$V_{k+1}(x_t) = R\left(x_t, \pi(x_t)\right) + \gamma \sum_{x_{t+1} \in X} T\left(x_{t+1} \mid x_t, \pi(x_t)\right) V_k(x_{t+1})$$

Improve the policy π by acting greedily w.r.t. V_π

$$\pi_{k+1}(x) = \arg\max_{u} \left(R(x, u) + \gamma \sum_{x_{t+1} \in \mathcal{X}} T\left(x_{t+1} \mid x_t, u_t\right) V_{k+1}\left(x_{t+1}\right) \right)$$

- In general, policy iteration requires more iterations of evaluation / improvement
- This process always converges to the optimal policy

Value Iteration

Problem: find the optimal policy π^*

Solution: iterative application of Bellman optimality backup $(V_1 \rightarrow V_2 \rightarrow ... \rightarrow V_\pi^*)$

- At each iteration k+1
- For all states x∈X
- Update $V_{k+1}(x)$ from $V_k(x)$ through

Bellman Optimality Equation

$$V_{k+1}^{*}(x_{t}) = \max_{u} \left(R(x_{t}, u_{t}) + \gamma \sum_{x_{t+1} \in X} T(x_{t+1} \mid x_{t}, u_{t}) V_{k}^{*}(x_{t+1}) \right)$$

• This sequence is proven to converge to V^{st}

Exercise from Pieter Abbeel, CS287

- (a) Prefer the close exit (+1), risking the cliff (-10)
- (b) Prefer the close exit (+1), but avoiding the cliff (-10)
- (c) Prefer the distant exit (+10), risking the cliff (-10)
- (d) Prefer the distant exit (+10), avoiding the cliff (-10)

- (1) $\gamma = 0.1$, noise = 0.5
- (2) $\gamma = 0.99$, noise = 0
- (3) $\gamma = 0.99$, noise = 0.5
- (4) $\gamma = 0.1$, noise = 0

Recap

Problem	Bellman Equation	Algorithm	
Prediction	Bellman Expectation Equation	Iterative	
	Dennan Expectation Equation	Policy Evaluation	
Control	Bellman Expectation Equation	Policy Iteration	
Control	+ Greedy Policy Improvement		
Control	Bellman Optimality Equation	Value Iteration	

Recap

Problem	Bellman Equation	Algorithm	
Prediction	Bellman Expectation Equation	Iterative	
	Dennan Expectation Equation	Policy Evaluation	
Control	Bellman Expectation Equation	Policy Iteration	
Control	+ Greedy Policy Improvement		
Control	Bellman Optimality Equation	Value Iteration	

All of these formulations require a model of the MDP!

Outline

Stochastic Optimal Control: Markov Decision Process (MDP)

The dynamic programming algorithm (stochastic case)

Stochastic LQR

Infinite-Horizon MDPs:

- Exact Methods:
 - (Policy Evaluation)
 - Value Iteration
 - Policy Iteration

Next time

- Nonlinear LQR for tracking
- iLQR
- DDP