Overview of Machine Learning: Algorithms and Assignmentications

Nathalie Japkowicz
Add WeChat powcoder
School of Information Technology and
Engineering
University of Ottawa

Overview I

• Machine Learning and Data Mining include a large number of are general-purpose methods that have been applied with great success to a many domains, including mechanical diagnosis, satellite imagescreening, credit-card fraud detection, medical diagnosis, marketing, loan application screening, electric load forecasting, and so on.

Overview II

- These approaches rely on different technologies including:
 - Decision Trees, Neural Networks, Bayesian Learning
 - Instance-BasedheartingjetgExk-nNetwest Neighbours)
 - Rule Induction
 - https://powcoder.com
 Clustering / Unsupervised Learning
 - Support Vector Machines, etc. wcoder
- The more advanced approaches combine the above techniques using sophisticated combination schemes such as:
 - Bagging, Boosting, Stacking
 - Random Forests, etc.

Overview III

- In addition to designing algorithms, researchers in the field have been concerned with issues surrounding these algorithms, such as:
 - Feature Selection / Feature Construction
 - Missing / Unreliable Attributes
 - Cost-Sensitive learning
 - Distributional & Kewnesst (the Class Imbalance Problem)
 - Learning from massive Data Sets
 - Data Visualization
 - Evaluation in Machine learning
 - Incorporating Domain Knowledge, etc.

Purpose of the Lecture

- To present an overview of some of these techniques. Assignment Project Exam Help
- To demonstrate; througher few examples, their applicability to a large range of security domains.
- To illustrate what research in Machine Learning tries to achieve and how it does so.

Assignment Project Exam Help Preliminaries https://powcoder.com

Add WeChat powcoder

Useful Reference – Demo

 For a quick introduction to the field and a quick assessment of its usefulness to you, you can download a free software toolbox that implements the major machine learning algorithms.

https://pww.com

- http://www.cs.waikato.ac.nz/ml/weka/ Add WeChat powcoder
- Accompanying text book:

Data Mining: Practical Machine Learning Tools and Techniques, by Ian Witten and Eibe Frank, Morgan Kaufmann, 2005.

Organization of the Talk

- Definition of Machine Learning: Supervised/Unsupervised Learning
- Why Machine Learning?
- A Taxonomy iof Machine dearning Methods
- Two Instances of Machine Learning Algorithms: Decision Trees Theurs Networks on
- Two instances of Combination Schemes: Bagging, Boosting
- Three Applications:
 - Event Characterization for Radioxenon Monitoring
 - Detection of Helicopter Gearbox failures
 - Discrimination between Earthquakes and Nuclear Explosions.
 - Network Security

Supervised Learning: Definition

Given a sequence of input/output pairs of the form <xi, yi>, where xi is a possible input, and yi is the output associated with xi:

Learn a function recent Project Exam Help

- f(xi)=yi for all i's/powcoder.com
- f makes a good guess for the outputs of inputs that it has not previously seemoder

[If f has only 2 possible outputs, f is called a concept and learning is called concept-learning.]

Supervised Learning: Example

Patieni	Attributes					
	Temperature		Sore Throat			
	Assigni	nent Pr	oject Exam I	Help		
1	37	yes	no	no	no flu	
2	39 http	os://pov	vcoderesom	yes	flu	
3	38.4	no	no not poviso do	no	no flu	
4	36.8 Au	no no	nat powcode yes	no	no flu	
5	38.5	yes	no	yes	flu	
6	39.2	no	no	yes	flu	

Goal: Learn how to predict whether a new patient with a given set of symptoms does or does not have the flu.

Unsupervised Learning: Definition

- While Supervised Learning considers the input/output pairs of the form <xi, yi>,
 Unsupervised Learning focuses on the input only: xi. It has no knowledge of the output, yi.
 https://powcoder.com
- Unsupervised Learning attempts to group together (or cluster) similar xis.
- Different similarity measures can be used as well as different strategies for building the clusters.

Unsupervised Learning: An Example Fitting a Mixture of Gaussians

Why Machine Learning?

- Machine Learning Systems learn from data samples of solved cases.
- They do not require any expert knowledge, since they infer such knowledge directly from the data.
- They are assigning not essional fields in which expertise is scarce and the codification of knowledge is limited.
- They are usefulting domains where good tests and measurements are available, but methods of applying this information delinitely understood or systematized.
- They are useful in domains in which the information needs to be constantly updated, in order to maintain the system in routine use at high levels of performance

[From Computer Systems that Learn, Weiss & Kulikowski, Morgan Kaufmann, 1990]

A Taxonomy of Machine Learning Techniques: Highlight on Important Approaches

Assignment Project Exam Help

https://pcw.conf Two Common Classifiers:

- Decision Trees
- Neural Networks

Decision Trees: A transparent Approach

A Decision Tree for the Flu Concept

Construction of Decision Trees I

Construction of Decision Trees II

Construction of Decision Trees III

- The informativeness of an attribute is an informationtheoretic measure that corresponds to the attribute that produces the purest children nodes.
- This is done by minimizing the measure of entropy in the trees that the attribute split generates.
- The entropy and information are linked in the following way: The more there is entropy in a set S, the more information is necessary in order to guess correctly an element of this set.
- Info[x,y] = Entropy[x,y] = x/(x+y) log x/(x+y)- y/(x+y) log y/(x+y)

Construction of Decision Trees IV

Multi-Layer Perceptrons: An Opaque Approach

Representation in a Multi-Layer Perceptron

Learning in a Multi-Layer Perceptron I

- Learning consists of <u>searching through the space of all</u> <u>possible matrices of weight values</u> for a combination of weights that satisfies a database of positive and negative examples (multi-class as well as regression problems are possible). Assignment Project Exam Help
- ♦ It is an optimization problem which tries to minimize the sum of square error:

$$E=1/2 \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \sum_{k=1}^{\infty$$

where N is the total Numbek of training examples and K, the total number of output units (useful for multiclass problems) and fk is the function implemented by the neural net

Learning in a Multi-Layer Perceptron II

- The optimization problem is solved by searching the space of possible solutions by gradient.
- This consists of taking small steps in the direction that minimize the gradient (or derivative) of the error of the function we are trying to learn.
- When the gradient is zero we have reached a local minimum that we hope is also the global minimum.

Description of Two classifier corhination Schemes:

Add WeChat powcoder

- Bagging
- Boosting

Combining Multiple Models

- The idea is the following: In order to make the outcome of automated classification more reliable, it may be a good idea to combine the decisions of several single classifiers through some sort of voting scheme
- Bagging and Roosting care then two most used combination schemes and they usually yield much improved Vesults over the results of single classifiers
- One disadvantage of these multiple model combinations is that, as in the case of neural Networks, the learned model is hard, if not impossible, to interpret.

Bagging: Bootstrap Aggregating

Bagging Algorithm

```
model generation
Let n be the number of instances in the training data.
For each of t iterations:
  Sample n instances with replacement from training data.
  Apply igninenta Project Lexame Help store the resulting model.
classification
For each https://powcoder.com
  Predict class of instance using model.
Return class that has been predicted most offer.
```

Figure 7.7 Algorithm for bagging.

Idea: perturb the composition of the data sets from which the classifier is trained. Learn a classifier from each different data set. Let these classifiers vote.

This procedure reduces the portion of the performance error caused by variance in the training set.

Boosting

Boosting Algorithm

```
model generation
Assign equal weight to each training instance.
For each of t iterations:
 Apply learning algorithm to weighted dataset and store
    resulting model.
  Compute error e of model on weighted dataset and store error.
   SSIGNMENT Project Exam H
  For each instance in dataset:
     If instance classified correctly by model:
        щщрх‰фоwсосет.com <sup>е).</sup>◆
  Normalize weight of all instances.
 classification
 Assign Weight of Chatapowcoder
 For each of the t (or less) models:
   Add -\log(e / (1 - e)) to weight of class predicted by model.
 Return class with highest weight.
```

Figure 7.8 Algorithm for boosting.

Decrease the weight of the right answers \Leftrightarrow Increase the weight of errors

Idea: To build models that complement each other. A first classifier is built. Its errors are given a higher weight than its right answers so that the next classifier being built focuses on these errors, etc..28

Assignment Project Exam Help Machine Learning https://powcoder.com
Add WeChat powcoder

- It has been shown that methods currently used for particulate monitoring to identify anomalous radionuclide observations, possibly indicative of a nuclear explosion, are not suitable for radioxenon monitoring.

 https://nowcoder.com
- monitoring.

 https://powcoder.com

 Unlike particulate monitoring, there is a ubiquitous radioxenon backgroung that powcoder
- Distinguishing radioxenon of a nuclear explosion origin from routine anthropogenic radioxenon releases is problematic.
- The goal of these preliminary experiments is to verify whether machine learning techniques can be useful for such a task.

- We were given three datasets from the Radiation Protection Bureau branch of Health Canada.
- The first data set describes the background concentration of Xenon isotopes, i.e., Xe-131m, Xe-133, Xe-133m, and Xe-135, in Ottawa, under normal conditions.
- The second data set Wiesdribes the concentration levels of these Xenon isotopes that would be seen in Ottawa if a 90mBq/m3 explosion had taken place and 7 days had elapsed.
- The third data set describes the concentration levels of these Xenon isotopes that would be seen in Ottawa if a 1mBq/m3 explosion had taken place and 7 days had elapsed.

- We applied the following classifiers to this problem:

 Assignment Project Exam Help
 - Decision Trees (J48)
 - Multi-layer Perceptrons (MLP)
 - Naive Bayes No Chat powcoder
 - Support Vector Machine (SVM), and
 - Nearest Neighbours (kNN)

Results in the 90 mBq/m3 case

TO	hl.	1 .	00-	D~	1 2
1 4	UIC	I .	90m	IDU/	

classifiers	Accuracy	TP	FP	Precision	Recall	F-measure	ROC	Classes
J48	96.08845%	क्षिंगिय	161003	TOJEC	t fixal	n histo	0.992	N
	~	0.997	0.075	0.93	0.997	0.962	0.992	A
NB	95.068 %	0.901	c. P/12	owcod	0.901	0.948	0.968	N
		пцр	0.099	DAN PLOO		0.953	0.968	A
MLP	89.6259 %	0.878	0.085	0.912	0.878	0.894	0.945	N
		4945	4 472	h887 r	04.8/150	0.898	0.945	A
SVM	87.415 %	0.949	0.201	0.825	0.949	0.883	0.874	N
		0.799	0.051	0.94	0.799	0.864	0.874	A
kNN	93.7075 %	0.922	0.048	0.951	0.922	0.936	0.989	N
		0.952	0.078	0.924	0.952	0.938	0.989	A

The problem is quite easy:

Simple classifiers: Decision Trees, Naïve Bayes and k-Nearest Neighbours obtain good results

Results in the 1 mBq/m3 case

Table 2. 1 mBq/m3								
classifiers	Accuracy	TP	FP	Precision	Recall	F-measure	ROC	Classes
J48	49.3197 %	0.592	0-605	D9-494	10. 192x	m. 3) e	0.492	N
	1100	395	0.408	0.492	0.395	0.438	0.492	A
NB	49.3197 %	0.395	0.408	0.492	0.395	0.438	0.493	N
3 44 10			0.603	04940	de59200	111) .539	0.493	A
MLP	50.3401 %	0.303	0.296	0.506	0.303	0.379	0.501	N
CITA	10 (70)	0.704	0.697	0.502	0.704	0.586	0.501	A
SVM	49.6599 %	0.444		e@hat	DOWC	oder8	0.497	N
13737	40.47.60.01	0.452	0.459	0.496	0.452	0.473	0.497	A
kNN	40.4762 %	0.551	0.741	0.426	0.551	0.481	0.403	N
		0.259	0.449	0.365	0.259	0.303	0.403	A

The problem does not seem solvable: Further research on Feature Selection techniques, including our own method boosted accuracy only by 4%.

- Machine Learning is useful in this application as its techniques can help us simulate a realistic data set of radioxenon observations arising from nuclear explosions.
- Such a database would be composed of data of real routine anthropogenic radioxenon observations plus information known of radioxenon deteased from past nuclear weapons tests.
- The data thus generated would be used to determine the best path of research into event characterization methods for the Comprehensive Nuclear-Test-Ban Treaty Organization.

Application II: Helicopter Gearbox Monitoring

- Practical Motivation: Detect CH-46
 Helicopter Gearboxes failures on flight, in order to land on time to avoid a crash.
- Approach: Discriminate between the vibration pattern of Healthy and Damaged CH-46 Helicopter Gearboxes, by learning how to recognize healthy gearboxes oder
- The data was provided by the U.S. Navy. It had the particularity of containing many instances of healthy gearboxes and few instances of damaged ones. (The class imbalance problem) → We devised a singleclass classification scheme.

Application II: Helicopter Gearbox Monitoring

Application II: Helicopter Gearbox Monitoring

Results (errors)

Application III: Nuclear Explosions versus Earthquakes

- <u>Practical Motivation:</u> To ensure that the Comprehensive Test Ban Treaty is globally respected.
- Approach: To monitor vibration patterns in the ground. World-wide Earthquakes and Nuclear Explosions can be detected locally. Apply Machine Learning Technique to discriminate between the two different kinds of signals.

Challenge:

- Earthquakes and Nuclear explosions have similar patterns. Very sensitive learning techniques must be designed for the task.
- There are very few instances of nuclear explosions (only very few weapons' tests) → Huge class imbalance

Data Source

- Little Skull Mountain Earthquakes + Large aftershocks (29/06/92)
- Lawrence Livermore Labs Testing site for Nuclear explosions (1978 to 1992)

Application III: Nuclear Explosions versus Earthquakes

Idea (with Todd Eavis): XMLP

Neg

Application III: Nuclear Explosions versus Earthquakes

Results (errors)

Assign	Negative ment Project Ex Samples tps://powcoder.c	MLP am Help	XMLP
1	Samples	-w-11 1101p	
			37.8%
A	del WeChat pow	33.5 %	29.4%
	5	19.9%	17.8%
	10	14.7%	18.8%

Application IV: Network Event Correlation

- **Practical Motivation:** Computer Networks are more and more often attacked. Intrusion Detection Systems are capable of detecting attacks. However, they issue a very large number of false alarms. We want to learn how to correlate similar types of attacks in order to allow a human operator to process groups of alarms together rather than individual alarms one by one.
- **Idea:** (with M. Dondo and R. Smith) Use RMLP as a soft-clustering system in order to suggest potential groupings.

Application IV: Network Event Correlation

Conclusions

- Machine Learning has proven useful in many areas.
- There are free tools available on the Web that are easy to use and that do not require much prior knowledge of Machine Learning. The most notable/used suite of tools is called WEKA, http://www.cs.waikato.ac.nz/ml/weka/
- There is a lot of appoing research in Machine Learning that develops new approaches for different types of data challenges.
 Add WeChat powcoder
- Researchers in Machine learning/Data mining (including myself!) generally welcome the opportunity to try their ideas on new kinds of data sets. Collaborations can benefit both the machine learning and applied communities.