```
<110> Fallon, J.
      McKechnie, B.
       Raffi, M.
       Creely, H.
       Bowe, M.
       Ferri, R.
<120> BIGLYCAN AND RELATED THERAPEUTICS AND METHODS OF USE
<130> BURF-P02-006
<140> 09/715,836
<141> 2000-11-17
<150> 60/166,253
<151> 1999-11-18
<160> 10
<170> PatentIn version 3.1
<210> 1
<211> 9
<212> PRT
<213> Torpedo sp.
<400> 1
Ile Gln Ala Ile Glu Phe Glu Asp Leu
<210> 2
<211> 9
<212> PRT
<213> Torpedo sp.
<400> 2
Leu Gly Leu Gly Phe Asn Glu Ile Arg
<210> 3
<211> 19
<212> PRT
<213> Torpedo sp.
<400> 3
Thr Ser Tyr His Gly Ile Ser Leu Phe Asn Asn Pro Val Asn Tyr Trp
                                   10
```

```
Asp Val Leu
<210> 4
<211> 9
<212> PRT
<213> Homo sapiens
<400> 4
Ile Gln Ala Ile Glu Leu Glu Asp Leu
<210>
      5
<211>
<212> PRT
<213> Homo sapiens
<400> 5
Leu Gly Leu Gly His Asn Gln Ile Arg
<210>
      6
<211> 19
<212> PRT
<213> Homo sapiens
<400> 6
Ala Tyr Tyr Asn Gly Ile Ser Leu Phe Asn Asn Pro Val Pro Tyr Trp
                                   10
Glu Val Gln
<210> 7
<211> 1685
<212> DNA
<213> Homo sapiens
<400> 7
gagtagetge ttteggteeg eeggacacae eggacagata gaegtgegga eggeceaeca
                                                                      60
ccccagcccg ccaactagtc agcctgcgcc tggcgcctcc cctctccagg tccatccgcc
                                                                    120
atgtggcccc tgtggcgcct cgtgtctctg ctggccctga gccaggccct gccctttgag
                                                                     180
cagagagget tetgggaett caecetggae gatgggeeat teatgatgaa egatgaggaa
                                                                     240
gettegggeg etgacacete aggegteetg gaceeggaet etgteacace cacetacage
                                                                    300
gccatgtgtc ctttcggctg ccactgccac ctgcgggtgg ttcagtgctc cgacctgggt
```

360

ctgaagtctg	tgcccaaaga	gatctcccct	gacaccacgc	tgctggacct	gcagaacaac	420
gacatctccg	agctccgcaa	ggatgacttc	aagggtctcc	agcacctcta	egecetegte	480
ctggtgaaca	acaagatctc	caagatccat	gagaaggcct	tcagcccact	gcggaagctg	540
cagaagctct	acatctccaa	gaaccacctg	gtggagatcc	cgcccaacct	acccagctcc	600
ctggtggagc	tccgcatcca	cgacaaccgc	atccgcaagg	tgcccaaggg	agtgttcagc	660
gggctccgga	acatgaactg	catcgagatg	ggcgggaacc	cactggagaa	cagtggcttt	720
gaacctggag	ccttcgatgg	cctgaagctc	aactacctgc	gcatctcaga	ggccaagctg	780
actggcatcc	ccaaagacct	ccctgagacc	ctgaatgaac	tccacctaga	ccacaacaaa	840
atccaggcca	tcgaactgga	ggacctgctt	cgctactcca	agctgtacag	gctgggccta	900
ggccacaacc	agatcaggat	gatcgagaac	gggagcctga	gcttcctgcc	caccctccgg	960
gagctccact	tggacaacaa	caagttggcc	agggtgccct	cagggctccc	agacctcaag	1020
ctcctccagg	tggtctatct	gcactccaac	aacatcacca	aagtgggtgt	caacgacttc	1080
tgtcccatgg	gcttcggggt	gaagegggee	tactacaacg	gcatcagcct	cttcaacaac	1140
cccgtgccct	actgggaggt	gcagccggcc	actttccgct	gcgtcactga	ccgcctggcc	1200
atccagtttg	gcaactacaa	aaagtagagg	cagctgcagc	caccgcgggg	cctcagtggg	1260
ggtctctggg	gaacacagcc	agacatcctg	atggggaggc	agagccagga	agctaagcca	1320
gggcccagct	gcgtccaacc	cagcccccca	cctcaggtcc	ctgaccccag	ctcgatgccc	1380
catcaccgcc	tetecetgge	tcccaagggt	gcaggtgggc	gcaaggcccg	gcccccatca	1440
catgttccct	tggcctcaga	gctgcccctg	ctctcccacc	acagccaccc	agaggcaccc	1500
catgaagctt	ttttctcgtt	cactcccaaa	cccaagtgtc	caaagctcca	gtcctaggag	1560
aacagtccct	gggtcagcag	ccaggaggcg	gtccataaga	atggggacag	tgggctctgc	1620
cagggctgcc	gcacctgtcc	agaacaacat	gttctgttcc	tcctcctcat	gcatttccag	1680
ccttg						1685

<210> 8

<211> 1104

<212> DNA

<213> Homo sapiens

<400> 8

atgtggcccc tgtggcgcct cgtgtctctg ctggccctga gccaggccct gccctttgag 60 cagagaggct tctgggactt caccctggac gatgggccat tcatgatgaa cgatgaggaa 120

gcttcgggcg	ctgacacctc	aggcgtcctg	gacccggact	ctgtcacacc	cacctacagc	180
gccatgtgtc	ctttcggctg	ccactgccac	ctgcgggtgg	ttcagtgctc	cgacctgggt	240
ctgaagtctg	tgcccaaaga	gatctcccct	gacaccacgc	tgctggacct	gcagaacaac	300
gacatctccg	agctccgcaa	ggatgacttc	aagggtctcc	agcacctcta	cgccctcgtc	360
ctggtgaaca	acaagatctc	caagatccat	gagaaggcct	tcagcccact	gcggaagctg	420
cagaagctct	acatctccaa	gaaccacctg	gtggagatcc	cgcccaacct	acccagctcc	480
ctggtggagc	tccgcatcca	cgacaaccgc	atccgcaagg	tgcccaaggg	agtgttcagc	540
gggctccgga	acatgaactg	catcgagatg	ggcgggaacc	cactggagaa	cagtggcttt	600
gaacctggag	ccttcgatgg	cctgaagctc	aactacctgc	gcatctcaga	ggccaagctg	660
actggcatcc	ccaaagacct	ccctgagacc	ctgaatgaac	tccacctaga	ccacaacaaa	720
atccaggcca	tcgaactgga	ggacctgctt	cgctactcca	agctgtacag	gctgggccta	780
ggccacaacc	agatcaggat	gatcgagaac	gggagcctga	gcttcctgcc	caccctccgg	840
gagctccact	tggacaacaa	caagttggcc	agggtgccct	cagggctccc	agacctcaag	900
ctcctccagg	tggtctatct	gcactccaac	aacatcacca	aagtgggtgt	caacgacttc	960
tgtcccatgg	gcttcggggt	gaagcgggcc	tactacaacg	gcatcagcct	cttcaacaac	1020
cccgtgccct	actgggaggt	gcagccggcc	actttccgct	gcgtcactga	ccgcctggcc	1080
atccagtttg	gcaactacaa	aaag				1104

<210> 9

<211> 368

<212> PRT

<213> Homo sapiens

<400> 9

Met Trp Pro Leu Trp Arg Leu Val Ser Leu Leu Ala Leu Ser Gln Ala 1 5 10 15

Leu Pro Phe Glu Gln Arg Gly Phe Trp Asp Phe Thr Leu Asp Asp Gly 20 25 30

Pro Phe Met Met Asn Asp Glu Glu Ala Ser Gly Ala Asp Thr Ser Gly 35 4045

Val Leu Asp Pro Asp Ser Val Thr Pro Thr Tyr Ser Ala Met Cys Pro 50 55 60

Phe Gly Cys His Cys His Leu Arg Val Val Gln Cys Ser Asp Leu Gly 65 70 75 80

Leu Lys Ser Val Pro Lys Glu Ile Ser Pro Asp Thr Thr Leu Leu Asp 85 90 95

Leu Gln Asn Asn Asp Ile Ser Glu Leu Arg Lys Asp Asp Phe Lys Gly
100 105 110

Leu Gln His Leu Tyr Ala Leu Val Leu Val Asn Asn Lys Ile Ser Lys 115 120 125

Ile His Glu Lys Ala Phe Ser Pro Leu Arg Lys Leu Gln Lys Leu Tyr 130 135 140

Ile Ser Lys Asn His Leu Val Glu Ile Pro Pro Asn Leu Pro Ser Ser 145 150 155 160

Leu Val Glu Leu Arg Ile His Asp Asn Arg Ile Arg Lys Val Pro Lys 165 170 175

Gly Val Phe Ser Gly Leu Arg Asn Met Asn Cys Ile Glu Met Gly Gly
180 185 190

Asn Pro Leu Glu Asn Ser Gly Phe Glu Pro Gly Ala Phe Asp Gly Leu 195 200 205

Lys Leu Asn Tyr Leu Arg Ile Ser Glu Ala Lys Leu Thr Gly Ile Pro 210 215 220

Lys Asp Leu Pro Glu Thr Leu Asn Glu Leu His Leu Asp His Asn Lys 225 230 235 240

Ile Gln Ala Ile Glu Leu Glu Asp Leu Leu Arg Tyr Ser Lys Leu Tyr 245 250 255

Arg Leu Gly Leu Gly His Asn Gln Ile Arg Met Ile Glu Asn Gly Ser 260 265 270

Leu Ser Phe Leu Pro Thr Leu Arg Glu Leu His Leu Asp Asn Asn Lys 275 280 285

Leu Ala Arg Val Pro Ser Gly Leu Pro Asp Leu Lys Leu Leu Gln Val 290 295 300

Val Tyr Leu His Ser Asn Asn Ile Thr Lys Val Gly Val Asn Asp Phe 305 310 315 320

Cys Pro Met Gly Phe Gly Val Lys Arg Ala Tyr Tyr Asn Gly Ile Ser 325 330 335

Leu Phe Asn Asn Pro Val Pro Tyr Trp Glu Val Gln Pro Ala Thr Phe 340 345 350

Arg Cys Val Thr Asp Arg Leu Ala Ile Gln Phe Gly Asn Tyr Lys Lys 355 360 365

<210> 10

<211> 12

<212> PRT

<213> Plasmid pQE-biglycan

<400> 10

Met Arg Gly Ser His His His His His Gly Ser 1 $$ 5 $$ 10