Total Pages: 06

008303

December 2024 B. Tech. (ECE) (Third Semester) Network Theory (EC-304)

Time: 3 Hours]

[Maximum Marks: 75

Note: It is compulsory to answer all the questions
(1.5 marks each) of Part A in short. Answer
any four questions from Part B in detail.

Different sub-parts of a question are to be
attempted adjacent to each other.

Part A

(a) Synthesize the following wave in terms of standard signals.

- (b) In a series combination of R and L, the inductor is having initial current of 1 A. Derive and expression for current through inductor for time t > 0.
 1.5
- (c) Find the Laplace transform of M * (t-a) * u(t).
- (d) Find out the transfer admittance $Y_{21}(s)$ of the following network where $R_1 = R_2 = R_3 = 1$ ohm.

- (e) Find out the voltage transfer ration $V_{21}(s)$ of the network in Fig. 2 where $R_1=R_2=R_3=1$ ohm.
- (f) Calculate the Z_{11} parameter for network in Fig. 2.

(g) State with reasons whether the following function suitable as current transfer function or not?

1.5

$$F(s) = \frac{s^2 + 1}{s^2 (s+2)}$$

- (h) Calculate the value of characteristics impedance, Z of T section of high pass filter having $R_0 = 500$ Ohm, f = 1000 Hz, $f_c = 800$ Hz.
- (i) Calculate Fourier Transform F(w) for waveform in Fig. 3.

(j) Find the Norton current for the following circuit between point AB with $R_1=R_2=R_3=1$ ohm and $V_1=10$ V.

Part B

2. (a) Find Laplace transform of exp(-at) * cosh (bt) * u(t).

(b) Obtain the value of current i(t) in the circuit given below to $v(t)=20 \sin(1000t + 45)$ for R = 1 ohm, L = 1 mH.

3. (a) Verify the Tellegen Theorem for the following network:

corners C

(b) Solve for currents in all the branches using nodal analysis.

7.5

- 4. (a) Calculate Fourier transform of waveform in Fig. 3.
 - (b) Find Fourier series of the following waveforms. 7.5

(2-D24-02/3) C-008303

osh

7.5

uit

for

7.5

5.	(a)	Express Z	parameter	in	terme	-0	-	
V		parameters.		18.5%	- Linis	OI	Y	
		Parties and a second				75		

(b) State necessary condition for driving point function. 7.5

6. (a) Find the voltage transfer function $V_2(s)/V_1(s)$ with output open circuited. 7.5

- (b) Design low pass filter with $R_0 = 600$ ohm, $f_c = 600$ Hz. 7.5
- 7. (a) Design a high pass filter with $F_{0} = 600$ ohm, $f_{c} = 600$ Hz. 7.5
 - (b) Find convolution of two pulses. 7.5

u