基礎マクロ:AD-ASモデル

日野将志

一橋大学

2021

AD-AS

日野将志

インフレーション と経済学史

AS 曲線

AD-AS モデル

名目賃金の硬直性

独占と価格の決定

粘着価格による A: 曲線

ケインズ的な考え方

AD-AS

日野将志

インフレーション と経済学史

AS 曲線

AD-AS モデル

日日貝並の映画性

車上給布数)ァトス A

粘着価格による A 曲線

前回のケインズ型のモデル (IS-LM)

▶ 物価は完全に硬直的:物価 p が固定

今回学ぶこと

- ▶ ゴール:賃金が硬直的 &物価が粘着的な経済の分析
- ▶ AD-ASモデル:
 - ▶ 既に AD 曲線は学んだ. ここでは AS 曲線を学ぶ
 - ▶ AS 曲線の3種類の導入方法を紹介する
 - (1) 経済 (学) 史的経緯 ⇒ AD-AS までまず議論する
 - (2) 簡単なモデル: "硬直" 賃金
 - (3) 難しいモデル:独占と粘着価格

ケインズ的な考え方

AD-AS

日野将志

インフレーション と経済学史

AS 曲線

AD-AS モデル

ロロ貝並の疾厄口

上流気(調査) テレフ A(

粘着価格による AS 曲線

前回のケインズ型のモデル (IS-LM)

▶ 物価は完全に硬直的:物価 p が固定

今回学ぶこと

▶ ゴール:賃金が**硬直的 &**物価が**粘着的**な経済の分析

▶ AD-AS モデル:

▶ 既に AD 曲線は学んだ. ここでは AS 曲線を学ぶ

▶ AS 曲線の3種類の導入方法を紹介する

(1) 経済 (学) 史的経緯 ⇒ AD-AS までまず議論する

(2) 簡単なモデル: "硬直" 賃金

(3) 難しいモデル:独占と粘着価格

導出したいもの:AD-AS

AD-AS

日野将志

インフレーション と経済学史

AS 曲線

AD-AS モデル

名目賃金の硬直性

占と価格の決定

粘着価格による A 曲線

この AS 曲線 AS(p,Y) を導出するのが目標

ロードマップ: それぞれの関係

AD-AS

日野将志

インフレーション と経済学史

AS 田線

AD-AS モテル

Yels In 1. Artikly on Mari

占着価格による A

均衡の理論

家計のみの均衡

2. 家計と企業の均衡

資産価格理論入門

7/21/11/11/11

経済成長入門

物価・景気循環

- ・マクロ経済政策
- 1. 貨幣と物価
- 2. IS-LM モデル
- 3. AD-AS モデル

家計の選択

1.消費と貯蓄

2. 消費と労働

企業の選択

1. 生産と投資

教科書:

ケインジアン的なマクロ経済学:概要

AD-AS

日野将志

AD-AS モデル

「(p, Y, r) の決定」

これから 2,3 週間はこの内容

実物的な側面

- ・家計の消費 (需要)
- ・企業の投資 (需要)
- ⇒IS 曲線

貨幣的な側面

- ・貨幣の供給
- ・貨幣の需要
- ⇒LM 曲線

IS-LM モデル 「物価ρが所与の下で、 (Y,r)の決定」 ⇒AD 曲線へ

AS 曲線

このスライドの内容

AD-AS 日野将志

1. インフレーションと経済学史

2. AS 曲線

3. AD-AS モデル

4. 名目賃金の硬直性

5. 独占と価格の決定 独占的行動と価格の粘着性

6. 粘着価格による AS 曲線

インフレーション と経済学史

AS 曲線

AD-AS モデル

名目賃金の硬直性

占と価格の決定

沾着価格による AS 曲線

▶ 1,2 節:歴史的経緯から AS 曲線の導入

▶ 3節:AD-AS

▶ 4,5,6 節:AS 曲線の理論的導出

▶ 4節:硬直賃金

▶ 5,6 節:粘着価格 (ニューケインジアン的な導出)

AD-AS

日野将志

インフレーション と経済学史

AS 曲線

AD-AS モデル

名目賃金の硬直性

独占と価格の決定

白有1111行による Ai 由線

インフレーションと経済学史

インフレーション と経済学史

AS 曲線

AD-AS モデル

粘着価格による A

第1節のゴール:この節では、次のフィリップス曲線と呼ばれる方程式を、アメリカ経済と経済学史に則りながら導入する

$$\pi$$
 = π^e $-\kappa(\underline{u} - \underline{u}^N)$) インフレ率 期待インフレ率 失業率 自然失業率 where $\pi \equiv \frac{p_{+1} - p}{p}$

次頁以降,このフィリップス曲線を,歴史的経緯を踏まえて導出する

AD-AS

日野将志

インフレーション と経済学史

AS 曲線

AD-AS モデル

コロ貝並の坂田圧

北美価枚)ァトス A

粘着価格による A 曲線

第1節のゴール:この節では、次のフィリップス曲線と呼ばれる方程式を、アメリカ経済と経済学史に則りながら導入する

次頁以降、このフィリップス曲線を、歴史的経緯を踏まえて導出する

1950年代:インフレと失業の関係の発見

AD-AS

日野将志

インフレーション と経済学史

AS 曲線

.

夕日賃全の研責州

占と価格の決定

占着価格による A h線

58年にフィリップス (Phillips) が、名目賃金と失業率に負の相関があることを発見 (※ 27年に Irvin Fisher が既に指摘していたことが後に分かる)

(後の整理を経て) フィリップス曲線はインフレ率と失業に負の相関と再解釈される

- ▶ インフレ率が上がると、失業率が下がる
- ▶ インフレ率が下がると、失業率が上がる

この関係はフィリップス曲線と呼ばれる.

$$\pi$$
 = $f(u)$, $f'(u) < 0$
インフレ率 失業率

粘着価格による A

粘着価格による A 曲線

58年にフィリップス (Phillips) が、名目賃金と失業率に負の相関があることを発見 (※ 27年に Irvin Fisher が既に指摘していたことが後に分かる)

(後の整理を経て) フィリップス曲線はインフレ率と失業に負の相関と再解釈される.

- ▶ インフレ率が上がると、失業率が下がる
- ▶ インフレ率が下がると、失業率が上がる

この関係はフィリップス曲線と呼ばれる.

$$\pi$$
 = $f(u)$, $f'(u) < 0$

58年にフィリップス (Phillips) が、名目賃金と失業率に負の相関があることを発見 (※27年に Irvin Fisher が既に指摘していたことが後に分かる)

(後の整理を経て) フィリップス曲線はインフレ率と失業に負の相関と再解釈さ れる.

- ▶ インフレ率が上がると、失業率が下がる
- ▶ インフレ率が下がると、失業率が上がる

この関係はフィリップス曲線と呼ばれる.

$$_{_{_{_{_{_{_{_{_{_{_{_}}}}}}}}}}$$
 $=f(\underbrace{u}), \quad f'(u)<0$

インフレーション と経済学史

AS 曲線

D-AS モデル

呂目賃金の硬直性

出占と価格の状定

粘着価格による A 曲線

Q. フィリップス曲線がなぜ重要か?

A. (アメリカの) 中央銀行にとっては、とても困難な課題!

- ▶ アメリカの中央銀行の目的:雇用と物価の安定
 - ▶ 平たく言うと、中銀は「インフレを抑えつつ、失業も下げたい」
 - "dual mandate"
- ▶ フィリップス曲線の含意:
 - ▶ 両方同時に達成するのは無理っぽい...
 - ▶ でも、片方を犠牲にすれば、もう片方は達成できる

インフレーション と経済学中

日野将志

O. フィリップス曲線がなぜ重要か?

A. (アメリカの) 中央銀行にとっては、とても困難な課題!

- ▶ アメリカの中央銀行の目的:雇用と物価の安定
 - ▶ 平たく言うと、中銀は「インフレを抑えつつ、失業も下げたい」
 - "dual mandate"
- ▶ フィリップス曲線の含意:
 - ▶ 両方同時に達成するのは無理っぽい...
 - ▶ でも、片方を犠牲にすれば、もう片方は達成できる

AD-AS

日野将志

AS 曲線

AD-AS +

名目真金の便直性

粘着価格による A

日野将志

インフレーション と経済学史

AS 曲線

D-AS モデル

目賃金の硬直性

占着価格による A

Smith (2008) "Japan's Phillips curve looks like Japan"

失業の分類と自然失業率

AD-AS

日野将志

インフレーション と経済学史

曲線

AS モデル

目賃金の硬直性

占着価格による A

虫占と価格の決定

岩着価格による A B線

- フィリップス曲線を見ると、失業率は一定の基準以下になってなさそう
- ▶ 現実的に、(どれほど好景気でも) 失業率がゼロになることはない

失業の分類

- ▶ (景気) 循環的失業:不景気に伴う失業
- ▶ 構造的失業:求職者が持っている技術・能力と企業が求めている技術・能力 が思なることによって生じる失業
 - ▶ 例:教師、美容師、弁護士、医師
- ▶ 地理的な失業:求職者と企業の位置が遠いことによって生じる失業
- ▶ 摩擦的失業:賃金や待遇面での交渉の決裂によって生じる失業
- \Rightarrow 経済に仮に物価の粘着性がなくても生じる失業を**自然失業率** u^N と呼ぶ

以降、フィリップス曲線は、以下のように書く

$$\pi = f(u - u^N)$$

失業の分類と自然失業率

AD-AS 日野将志

インフレーション と経済学中

フィリップス曲線を見ると、失業率は一定の基準以下になってなさそう

▶ 現実的に、(どれほど好景気でも) 失業率がゼロになることはない

失業の分類:

▶ (景気) 循環的失業:不景気に伴う失業

▶ 構造的失業:求職者が持っている技術・能力と企業が求めている技術・能力 が異なることによって生じる失業

▶ 例:教師,美容師,弁護士,医師

▶ 地理的な失業:求職者と企業の位置が遠いことによって生じる失業

▶ 摩擦的失業:賃金や待遇面での交渉の決裂によって生じる失業

 \Rightarrow 経済に仮に物価の粘着性がなくても生じる失業を自然失業率 u^N と呼ぶ

$$\pi = f(u - u^N)$$

失業の分類と自然失業率

AD-AS 日野将志

と経済学中

インフレーション

- フィリップス曲線を見ると、失業率は一定の基準以下になってなさそう
- ▶ 現実的に、(どれほど好景気でも) 失業率がゼロになることはない

失業の分類:

- ▶ (景気) 循環的失業:不景気に伴う失業
- ▶ 構造的失業:求職者が持っている技術・能力と企業が求めている技術・能力
 - が異なることによって生じる失業 ▶ 例:教師,美容師,弁護士,医師
- ▶ 地理的な失業:求職者と企業の位置が遠いことによって生じる失業
- ▶ 摩擦的失業:賃金や待遇面での交渉の決裂によって生じる失業
- \Rightarrow 経済に仮に物価の粘着性がなくても生じる失業を自然失業率 u^N と呼ぶ

以降、フィリップス曲線は、以下のように書く

$$\pi = f(u-u^N)$$

アメリカ経済と70年代の高インフレ

AD-AS

日野将志

AS 曲縞

AD-AS モデル

粘着価格による A

粘着価格による A: 曲線

73年:第一次オイルショック ⇒ 物価高騰

アメリカの中央銀行:「インフレを抑えたいけれど、金融引き締めを行うと、失業も上がってしまう」

⇒ ボルカー議長の強硬な金融引き締めでインフレの抑制に成功. その後も低調なインフレ.

アメリカ経済と失業率

AD-AS

日野将志

インフレーション と経済学史

AS 曲線

DASエデ

目賃金の硬直性

触占と価格の決定

粘着価格による A 曲線

ボルカー議長の時代 (79-86) に失業率は大きく上昇 しかし、その後、前頁で見たようにインフレが低調なのに、失業率は上がったり している.

⇒ 議論:フィリップス曲線は本当?

AD-AS

日野将志

インフレーション と経済学史

AS 曲線

AD-AS モ

名目賃金の硬直性

粘着価格による A

5看価格による A 日線

安定的な関係は見て取れない... なぜ?

フィリップス曲線

AD-AS

日野将志

インフレーション と経済学史

AS 曲線

AD-AS モデル

る目質金の便直性

虫占と価格の決定

粘着価格による AS 曲線

前ページまでのまとめ:

▶ フィリップス曲線は、インフレ率と失業率の負の関係を表す曲線

$$\pi=f(u-u^N), \qquad f'(u)<0$$

▶ 60年代の米国や日本では綺麗に確認できるが、70年以降の米国では確認で きない

Q. フィリップス曲線という考え方自体が間違っている?

暫定的 A. フィリップス曲線という考え方自体は正しい (?) ただし,失業率 u 以外にも依存している.そしてその要素が動いているのでは?

フィリップス曲線

AD-AS

日野将志

インフレーション と経済学史

AS 曲線

AD-AS モデル

占目買金の便<u></u>但性

出古と1回俗の沃正

粘着価格による AS 曲線

前ページまでのまとめ:

▶ フィリップス曲線は、インフレ率と失業率の負の関係を表す曲線

$$\pi=f(u-u^N), \qquad f'(u)<0$$

▶ 60 年代の米国や日本では綺麗に確認できるが、70 年以降の米国では確認で きない

Q. フィリップス曲線という考え方自体が間違っている?

暫定的 A. フィリップス曲線という考え方自体は正しい (?) ただし,失業率 u 以外にも依存している.そしてその要素が動いているのでは?

フィリップス曲線

AD-AS

日野将志

インフレーション と経済学史

AS 曲線

AD-AS モデル

名目賃金の硬直性

虫占と価格の決定

钻着価格による AS 曲線

前ページまでのまとめ:

▶ フィリップス曲線は、インフレ率と失業率の負の関係を表す曲線

$$\pi = f(u - u^N), \qquad f'(u) < 0$$

▶ 60 年代の米国や日本では綺麗に確認できるが、70 年以降の米国では確認で きない

Q. フィリップス曲線という考え方自体が間違っている?

暫定的 A. フィリップス曲線という考え方自体は正しい (?) ただし,失業率 u 以外にも依存している.そしてその要素が動いているのでは?

インフレーション と経済学史

AS 田線

AD-AS モデル

da los 3 s. Protable en Sola el-

沾着価格による AS

Friedman (1968)「インフレーションと失業のトレードオフはいつも一時的であって、永遠には続かない. また、一時的なトレードオフはインフレそのものではなく、**予想外のインフレ**から生じる」

前提:家計や企業は実質賃金 w/p を重視するはず

- ・ 予想されたインフレ (p↑) の場合
 - ⇒ 然るべき行動 (例. 労働組合の行動) によって名目賃金を上昇させるはず
 - $\Rightarrow w/p$ は一定のまま
 - ⇒ 予想されたインフレと失業は無関係になる
- ▶ 予想外にインフレ (p↑) が起きた場合
 - ⇒ 名目賃金 w の上昇が起きない
 - ⇒ 実質賃金 w/p は下がり、企業は増産 $(u\downarrow)$ ← 予想外のインフレと失業率の相関
 - ⇒ 時間が経つと企業や家計はインフレを理解し、名目賃金を上昇させる

Friedman (1968)「インフレーションと失業のトレードオフはいつも一時的であって、永遠には続かない。また、一時的なトレードオフはインフレそのものではなく、予想外のインフレから生じる」

前提:家計や企業は実質賃金 w/p を重視するはず

- ▶ 予想されたインフレ (p↑) の場合
 - ⇒ 然るべき行動 (例. 労働組合の行動) によって名目賃金を上昇させるはず
 - $\Rightarrow w/p$ は一定のまま
 - ⇒ 予想されたインフレと失業は無関係になる
- ▶ 予想外にインフレ (p↑) が起きた場合
 - ⇒ 名目賃金 w の上昇が起きない
 - ⇒ 実質賃金 w/p は下がり、企業は増産 $(u\downarrow)$ ← 予想外のインフレと失業率の相関
 - ⇒ 時間が経つと企業や家計はインフレを理解し、名目賃金を上昇させる

Friedman (1968)「インフレーションと失業のトレードオフはいつも一時的であっ て、永遠には続かない、また、一時的なトレードオフはインフレそのものではな く、予想外のインフレから生じる」

前提:家計や企業は実質賃金 w/p を重視するはず

- ▶ 予想されたインフレ (p↑) の場合
 - ⇒ 然るべき行動 (例. 労働組合の行動) によって名目賃金を上昇させるはず
 - $\Rightarrow w/p$ は一定のまま
 - ⇒ 予想されたインフレと失業は無関係になる
- ▶ 予想外にインフレ (p↑) が起きた場合
 - ⇒ 名目賃金 w の上昇が起きない
 - ⇒ 実質賃金 w/p は下がり、企業は増産 (u ↓)← 予想外のインフレと失業率の相関
 - ⇒ 時間が経つと企業や家計はインフレを理解し、名目賃金を上昇させる

フリードマンの理論の図解: 予想外のインフレ

日野将志

インフレーション と経済学史

AS 曲線

AD-AS モデノ

5日貝金の使担性

粘着価格による A

粘着価格による A 曲線

フリードマンの理論:

- $lackbox{A}
 ightarrow B$: 予想外のインフレ 実質賃金 $w/p \downarrow \Rightarrow$ 企業はより雇用をする $\Rightarrow u \downarrow$
- ▶ B→C: インフレを理解 時間をかけて,名目賃金を上昇,実質賃金も上昇.もとの水準へ

日野将志

インフレーション と経済学史

AS 曲線

AD-AS モデル

钻着価格による AS

- ▶ 上述したように、フィリップス曲線は常に安定的な関係ではないことが、70 年代以降、歴史的に明らかになった
 - ⇒ フリードマンが正しかった
- ▶ 重要な示唆:長期的にはインフレと失業率にトレードオフはない, という 主張
 - ▶ 貨幣の中立性:貨幣量 (金融政策) は失業率 (ひいては実物経済) に長期的には 影響を与えない

▶ 上述したように、フィリップス曲線は常に安定的な関係ではないことが、70 年代以降、歴史的に明らかになった

- ⇒ フリードマンが正しかった
- ▶ 重要な示唆:長期的にはインフレと失業率にトレードオフはない、という 主張
 - ▶ 貨幣の中立性:貨幣量 (金融政策) は失業率 (ひいては実物経済) に長期的には 影響を与えない

と経済学中

予想されたインフレ率 (expected inflation rate) を π^e と書く. すると, 予想外の インフレは.

予想外のインフレ =
$$\pi$$
 - π^e
実際のインフレ 予想されたインフレ

$$\pi - \pi^e = f(u - u^N)$$

 $\Rightarrow \pi = \pi^e - \kappa(u - u^N)$

予想されたインフレ率 (expected inflation rate) を π^e と書く. すると, 予想外の インフレは.

予想外のインフレ =
$$\pi$$
 - π^e 実際のインフレ 予想されたインフレ

フリードマンが予想したフィリップス曲線 (※簡単化のために線形化):

$$\pi-\pi^e=f(u-u^N) \ \Rightarrow \ \pi=\pi^e-\kappa(u-u^N)$$

元々導出したかったフィリップス曲線になった

AD-AS

日野将志

インフレーション と経済学史

AS 曲線

AD-AS モデル

占目賃金の硬直性

虫占と価格の決定

占有1111俗による A: 由線

AS 曲線:フィリップス曲線から AS 曲線へ

日野将志

インフレーション と経済学史

AS 曲線

AD-AS モデル

名目賃金の硬直性

独占と価格の決定

粘着価格による AS 曲線

AD-AS

オークンの法則:GDP と失業率には負の相関

理論的な背景

- ▶ 全人口を 1 として、労働している割合を $L \in [0,1]$ とする. 失業率 u = 1 L.
- ▶ 生産関数を Y = F(L) とする. かつ F'(L) > 0

$$egin{aligned} Y &= F(1-u) \ \Rightarrow rac{\mathrm{d}Y}{\mathrm{d}u} &= -F'(1-u) < 0 \end{aligned}$$

このようにYとuに負の理論的関係(因果関係)が簡単に表れる.

フィリップス曲線の書き換え

AD-AS

日野将志

インフレーション と経済学史

AS 曲線

AD-AS モデノ

名目賃金の硬直性

法着価格による AS

粘着価格による AS 曲線

オークンの法則 (Y と u の負の関係) を使うと、フィリップス曲線は $\pi=\pi^e+\hat{\kappa}(Y-Y^N)$

と書き換えられる. ここ 20 年のモデル分析上は, こちらのフィリップス曲線の方がメジャー.

ここで Y^N は自然産出量.

▶ 自然産出量:経済に摩擦が無い (特に例えば,物価が柔軟に変更できる)ときに達成できる産出量

フィリップス曲線とAS曲線

AD-AS

日野将志

AS 曲線

ことを使うと、フィリップス曲線の両辺の p を消して次のように書き換えられる.

$$p=p^e+\bar{\kappa}(Y-Y^N)$$

今期の p_t は決まっている. さらに, $\pi = (p_{+1} - p)/p$ かつ $\pi^e = (p_{+1}^e - p)/p$ という

このpとYの関係式がAS曲線.

(時間の添え字 t は脱落)

AD-AS

日野将志

AD-AS モデル

AD 曲線 $\left\{ egin{array}{ll} ext{IS 曲線}: & C(Y)+I(r)+G=Y \ ext{LM 曲線}: & m^D(Y,r)=M/p \end{array}
ight.$

AS 曲線 (フィリップス曲線): $p = p^e + \bar{\kappa}(Y - Y^N)$

3 個の内生変数 (Y, r, p)

AD-AS

日野将志

インフレーション と経済学史

AS 曲線

AD-AS モデル

呂目賃金の硬直性

独占と価格の決定

钻着価格による AS 曲線

AD 曲線 $\left\{ egin{array}{ll} ext{IS 曲線}: & C(Y)+I(r)+G=Y \ ext{LM 曲線}: & m^D(Y,r)=M/p \end{array}
ight.$

AS 曲線 (フィリップス曲線): $p=p^e+ar{\kappa}(Y-Y^N)$

まず,ここでは p^e を外生変数として扱う.

3 個の内生変数 (Y, r, p)

 \blacktriangleright そのあとに p^e の決まり方について議論する

AD-AS 曲線

p ↑
AS 曲線

AD 曲線

名目賃金の硬直性 独占と価格の決定

AD-AS モデル

AD-AS 日野将志

占着価格による A

有凹竹による A. 線

- 縦軸 p、横軸 Y に対して
 - ▶ AD 曲線は右下がり
 - ▶ AS 曲線は右上がり
- ミクロの需要と供給曲線と同じ!

IS-LM と AD-AS

AD-AS

日野将志

インフレーション と経済学史

AS 曲網

AD-AS モデル

名目賃金の硬直性

出口 と 間付の 次化

粘着価格による A 曲線

AD-AS で 均衡の (Y, p)が決まる

IS-LM で

均衡の(Y,r)が決まる

IS-LM と AD-AS

AD-AS

日野将志

AS 曲線

AD-AS モデル

与日真金の映画性

: 終価数)ァトス A

占着価格による A: 由線

AD-ASモデルと金融政策

日野将志

インフレーションと経済学史

AS 曲絲

AD-AS モデル

名目真金の便直性

占着価格による A

(1:上図)

金融政策によって

LM 曲線が下にシフト

(2:下図)

金融政策によって

AD 曲線が右シフト

(3:上図)

物価 p↑によって

LM 曲線 $m^D(Y,r) = M^S/p$ が上にシフト

AD-ASモデルと金融政策

AD-AS

日野将志

インフレーション と経済学史

AS 曲線

AD-AS モデル

粘着価格による A

(1:上図)金融政策によってLM 曲線が下にシフト

(2:下図) 金融政策によって AD 曲線が右シフト

(3: 上図)物価 $p \uparrow$ によって ${
m LM}$ 曲線 $m^D(Y,r) = M^S/p$ が上にシフ

AD-ASモデルと金融政策

AD-AS

日野将志

インフレーション と経済学史

AS 曲線

AD-AS モデル

名目賃金の硬直性

粘着価格による A

钻着価格による AS 曲線

(1:上図)金融政策によってLM 曲線が下にシフト

(2:下図)金融政策によってAD 曲線が右シフト

(3:上図)

物価 $p \uparrow$ によって

LM 曲線 $m^D(Y,r)=M^S/p$ が上にシフト

AD-ASモデルによる財政政策

AD-AS

日野将志

AD-AS モデル

(1:上図)

財政政策によって IS 曲線が右シフト

AD-ASモデルによる財政政策

AD-AS

日野将志

AD-AS モデル

(1:上図) 財政政策によって IS 曲線が右シフト (2:下図) 財政政策によって AD 曲線が右シフト

AD-ASモデルによる財政政策

AD-AS

日野将志

インフレーション と経済学中

AS 曲線

AD-AS モデル

名目賃金の硬直性

黒白と1回俗の沃定

粘着価格による A 曲線

(1:上図) 財政政策によって IS 曲線が右シフト (2:下図) 財政政策によって AD 曲線が右シフト

(3:下図) 物価 p 上昇

(4:上図) 物価 *p* ↑ によって LM 曲線左シフト

p^e はどうやって決まる?

AD-AS

日野将志

AD-AS モデル

 p^e :物価の期待

様々な仮定・考え方:

▶ 家計や企業は、価格を正しく理解する

▶ 全ての物価の変化は予想されている

▶ 摩擦の無い期待形成

▶ 家計や企業は、前期の価格を今期の価格と予想する

▶ $\pi^e = \pi_{-1}$: 家計や企業は、前期のインフレ率を今期のインフレ率と予想する

独占と価格の決定

粘着価格による A

p^e:物価の期待

様々な仮定・考え方:

- ▶ $p^e = p$: 合理的期待 (rational expectation)
 - ▶ 家計や企業は、価格を正しく理解する
 - ▶ 全ての物価の変化は予想されている
 - ▶ 摩擦の無い期待形成
- ▶ $p^e = p_{-1}$:適応型期待
 - ▶ 家計や企業は、前期の価格を今期の価格と予想する
- ▶ その他
 - ightharpoonup $\pi^e = \pi_{-1}$:家計や企業は、前期のインフレ率を今期のインフレ率と予想する

AD-AS モデル

合理的期待 $p = p^e$ の場合

$$p=p^e+ar{\kappa}(Y-Y^N) \ \Rightarrow Y=Y^N$$

このように、生産量Yは自然生産量 Y^N と一致する

合理的期待と財政政策

AD-AS

日野将志

インフレーション と経済学史

AS 曲条

AD-AS モデル

名目賃金の硬直性

独占と価格の決定

粘着価格による A 曲線

(1:上図)

財政政策によって IS 曲線が右シフト

(2:下図) 財政政策によって AD 曲線が右シフト

(3:上図) 物価 *p* ↑ によって

LM 曲線が上にシフト

財政 (金融) 政策は Y を 増やさない!

AD-AS

日野将志

AS 曲線の理論

- (1) 名目賃金の硬直性
- 価格の粘着性

名目賃金の硬直性

フィリップス曲線 \Rightarrow AS 曲線と導出した. しかし、フィリップス曲線はあくまで観察された相関として説明した

- ⇒ そのような観察を説明できるような理論が多数構築された
- ✓ 硬直的な名目賃金モデル
- ✓ 粘着価格 or/and 粘着名目賃金モデル
- ▶ 不完全情報モデル (学部の教科書では割とよく使われる, 例マンキュー)
- ▶ その他
 - ▶ 構造的失業 (c.f. 三野『マクロ経済学』)
 - ▶ 貨幣錯覚 (かつてよく使われた) やラグ (c.f. 齋藤他『マクロ経済学』)
- ここでは√をつけた2つの理論を紹介する.
 - ▶ (粘着価格モデルは特に難しいので気持ちの準備をして欲しい)

- フィリップス曲線 \Rightarrow AS 曲線と導出した. しかし、フィリップス曲線はあくまで観察された相関として説明した
- ⇒ そのような観察を説明できるような理論が多数構築された
- ✓ 硬直的な名目賃金モデル
- ✓ 粘着価格 or/and 粘着名目賃金モデル
- ▶ 不完全情報モデル (学部の教科書では割とよく使われる, 例マンキュー)
- ▶ その他
 - ▶ 構造的失業 (c.f. 三野『マクロ経済学』)
 - ▶ 貨幣錯覚 (かつてよく使われた) やラグ (c.f. 齋藤他『マクロ経済学』)

ここでは ✓ をつけた 2 つの理論を紹介する.

▶ (粘着価格モデルは特に難しいので気持ちの準備をして欲しい)

名目賃金の硬直性

AD-AS

日野将志

インフレーション と経済学史

S 曲線

AD-AS モデル

名目賃金の硬直性

独占と価格の決定

占着価格による AS 由線

名目賃金wが \bar{w} で固定されているとする. 生産は $Y=H^{\alpha},\ \alpha\in(0,1)$ と行われる. 企業の最適化は

 $\max_{H} pH^{\alpha} - \bar{w}H$

これを解くと(途中計算はスキップ)

AS 曲線

$$Y=\left(lpharac{oldsymbol{p}}{oldsymbol{ar{u}}}
ight)^{rac{lpha}{1-lpha}}$$

- ightharpoonup 賃金が硬直的な時: $w=\bar{w}$ と固定してp に対して増加関数
- ightharpoonup 賃金が柔軟な時:w が p と同じだけ同じ方向に動くとき、Y は不変
 - ▶ 例えばw とp が二倍になっても,w/p は不変

名目賃金の硬直性

AD-AS

日野将志

インフレーション と経済学史

AS 曲線

AD-AS モデル

名目賃金の硬直性

独占と価格の決定

占着価格による A: 由線

名目賃金wが \bar{w} で固定されているとする. 生産は $Y=H^{\alpha},\ \alpha\in(0,1)$ と行われる. 企業の最適化は

$$\max_{H} pH^{\alpha} - \bar{w}H$$

これを解くと(途中計算はスキップ)

AS 曲線
$$Y = \left(lpha rac{p}{ar{w}}
ight)^{rac{lpha}{1-lpha}}$$

- ightharpoonup 賃金が硬直的な時: $w=\bar{w}$ と固定して p に対して増加関数
- ightharpoonup 賃金が柔軟な時:w が p と同じだけ同じ方向に動くとき,Y は不変
 - ▶ 例えばwとpが二倍になっても,w/pは不変

名目賃金の硬直性

名目賃金 w は一時的に完全に硬直的なとき (粘着的でも議論は成り立つ):

- ▶ 中銀が金融緩和をする. インフレ圧力 p↑
- \Rightarrow 名目賃金 w は硬直しているので、実質賃金 $w/p \downarrow$
- \Rightarrow 企業はコストw/pが下がったので、増産する $Y \uparrow, L \uparrow, u \downarrow$

AD-AS

日野将志

独占と価格の決定

AS 曲線の理論2:価格の粘着性

準備:独占と価格の決定

AD-AS

日野将志

独占と価格の決定

▶ 上述までが通常の学部レベルの AS 曲線の一例

▶ 先の理論だと「なんで賃金は硬直的なのか」という答えは全くない

▶ 学部中級や研究レベルでは独占(的競争)と粘着価格を導入するのが一般的

目的:このように学部と大学院の AS 曲線は違うので、単純化して橋渡しを行う

ここでやること:独占+粘着価格の単純化 ver

Figure: 話の流れ

準備の準備:独占に入る前に

準備の準備: 生産要素が1つのときの限界費用の求め方

以降, 生産関数を

$$q = F(H)$$

とし、労働のみを使って生産を行うとする.このとき、費用関数は、

$$C(q) = w \underbrace{F^{-1}(q)}_{H(q)} \tag{1}$$

と求まる. 限界費用は、

$$mc(q) = w(F^{-1})'(q) = \frac{w}{F'(H(q))}$$
 (2)

独占と価格の決定

完全競争:

- ▶ 家計も企業も価格を決めない (価格受容者)
- 価格は市場 (需要と供給) で決まる
- ⇒ 問題点:完全競争だと企業による価格決定をうまく議論できない…

独占:

- ▶ 独占してる企業が価格支配力を持つ
 - ▶ 例:Apple が MacBook の価格支配力を持つ
- ⇒ 価格決定を分析しやすい

AD-AS

日野将志

独占と価格の決定

- - $ightharpoonup q_i$ を生産するための実質費用関数を $c(q_i)$ とする
 - ▶ \mathcal{P} を物価とすると、名目費用関数は $\mathcal{P}c(q_i)$

企業iが自身の製品を独占している場合を考える.

- $\triangleright \mathcal{P} \neq p_i$
- ▶ (費用関数は生産関数と裏表の関係(正確には双対性という)、ミクロ経済学参照)
- - ▶ 「価格 p_i にすれば $q_i(p_i)$ だけ売れる」という需要関数を正しく理解してる、と
 - ▶ したがって、価格 p_i を選ぶことは、販売量 $q_i(p_i)$ を選ぶことにもなる

$$\max_{p_i} p_i q_i(p_i) - \mathcal{P}c(q_i(p_i))$$

AD-AS

日野将志

インフレーション

AS 曲線

D-AS モデル

自日貝並の便但性

独占と価格の決定
独占的行動と価格の粘着性

粘着価格による AS 曲線

企業iが自身の製品を独占している場合を考える.

- ▶ 企業は生産量 q_i(=販売量) と自身の財価格 p_i を決定できる
 - $ightharpoonup q_i$ を生産するための実質費用関数を $c(q_i)$ とする
 - ▶ p を物価とすると、名目費用関数は $\mathcal{P}c(q_i)$
 - $ightharpoons \mathcal{P}
 eq p_i$
 - ▶ (費用関数は生産関数と裏表の関係 (正確には双対性という). ミクロ経済学参照)
- ▶ 企業は自身の製品の需要を知っている
 - ▶ 「価格 p_i にすれば $q_i(p_i)$ だけ売れる」という需要関数を正しく理解してる,という意味
 - ightharpoonup したがって,価格 p_i を選ぶことは,販売量 $q_i(p_i)$ を選ぶことにもなる

企業の最大化問題は以下のようになる.

$$\max_{p_i} p_i q_i(p_i) - \mathcal{P}c(q_i(p_i))$$

AD-AS

日野将志

独占と価格の決定

- 企業iが自身の製品を独占している場合を考える.
 - ▶ 企業は生産量 q_i (=販売量) と自身の財価格 p_i を決定できる
 - ▶ q_i を生産するための実質費用関数を $c(q_i)$ とする
 - ▶ \mathcal{P} を物価とすると、名目費用関数は $\mathcal{P}c(q_i)$
 - $\triangleright \mathcal{P} \neq p_i$
 - ▶ (費用関数は生産関数と裏表の関係(正確には双対性という)、ミクロ経済学参照)
 - ▶ 企業は自身の製品の需要を知っている
 - 「価格 p_i にすれば $q_i(p_i)$ だけ売れる」という需要関数を正しく理解してる、と いう意味
 - ▶ したがって、価格 p_i を選ぶことは、販売量 $q_i(p_i)$ を選ぶことにもなる

$$\max_{p_i} p_i q_i(p_i) - \mathcal{P}c(q_i(p_i))$$

AD-AS

日野将志

独占と価格の決定

企業iが自身の製品を独占している場合を考える.

- ▶ 企業は生産量 q_i (=販売量) と自身の財価格 p_i を決定できる
 - ▶ q_i を生産するための実質費用関数を $c(q_i)$ とする
 - ▶ \mathcal{P} を物価とすると、名目費用関数は $\mathcal{P}c(q_i)$
 - $\triangleright \mathcal{P} \neq p_i$
 - ▶ (費用関数は生産関数と裏表の関係(正確には双対性という)、ミクロ経済学参照)
- ▶ 企業は自身の製品の需要を知っている
 - 「価格 p_i にすれば $g_i(p_i)$ だけ売れる」という需要関数を正しく理解してる、と いう意味
 - ▶ したがって、価格 p_i を選ぶことは、販売量 $q_i(p_i)$ を選ぶことにもなる

企業の最大化問題は以下のようになる.

$$\max_{p_i} p_i q_i(p_i) - \mathcal{P}c(q_i(p_i))$$

独占企業の最大化問題と解

AD-AS

日野将志

インフレーション と経済学史

AS 曲線

AD-AS モデル

独占と価格の決定

独占的行動と価格の粘着性

粘着価格による A: 曲線

110110

(再掲)企業の最大化問題 (i は省略).

$$\max_{p} pq(p) - \mathcal{P}c(q(p))$$

この一階の条件は,次の通り.

$$q(p) + pq'(p) - \mathcal{P}c'(q)q'(p) = 0$$
 $\Rightarrow p + \frac{q(p)}{q'(p)} = \mathcal{P} \underbrace{mc(q)}_{=(
otag)}$
 $= (
otag)$
 $= (
otag)$
 $= (
otag)$
 $= (
otag)$

独占企業は、限界収入と限界費用が一致する点で生産量々を決める

独占と価格の決定

(再掲)企業の最大化問題(i は省略).

$$\max_{p} pq(p) - \mathcal{P}c(q(p))$$

この一階の条件は、次の通り、

独占企業は、限界収入と限界費用が一致する点で生産量 q を決める

独占企業の最大化問題と解 (cont'd)

AD-AS 日野将志

先ほどの式を書き換えると…

$$egin{aligned} p + rac{q(p)}{q'(p)p}p &= \mathcal{P} imes mc(q) \ \Rightarrow &p \left(1 - rac{1}{\mu}
ight) &= \mathcal{P} imes mc(q) \ \Rightarrow &p &= \underbrace{rac{\mu}{1 - \mu}}_{= imes - 2 \, imes \, y \, \mathcal{T}^{egin{aligned} egin{aligned} &= rac{w}{F'(H)} & dots \ \end{matrix}}_{= rac{w}{F'(H)} & dots \ \end{matrix}} \mathcal{D} imes rac{mc(q)}{\mathbb{R}^{T}}$$

独占と価格の決定

(3)

と書き換えることができる。これは、

$$\mu \equiv -rac{\mathrm{d}q(p)}{\mathrm{d}p}$$

久部力性である

独占企業の最大化問題と解 (cont'd)

AD-AS 日野将志

独占と価格の決定

(3)

先ほどの式を書き換えると…

$$egin{aligned} p + rac{q(p)}{q'(p)p}p &= \mathcal{P} imes mc(q) \ &\Rightarrow p \left(1 - rac{1}{\mu}
ight) &= \mathcal{P} imes mc(q) \ &\Rightarrow p &= rac{\mu}{1 - \mu} imes \mathcal{P} imes rac{mc(q)}{\mathbb{F}^{I}(H)} orall c(2)$$
 式

と書き換えることができる. これは.

価格 = マークアップ率×限界費用

を意味している。なお、ここで

 $\mu \equiv -\frac{\mathrm{d}q(p)}{\mathrm{d}p}\frac{p}{q}$

と定義している. μ は需要の価格弾力性である.

独占と価格の決定

直観的に、独占と需要の価格弾力性は、次のように関係しあっている

- ▶ 弾力性が高い:「価格が変化すると需要が大きく変わる」
 - ▶ 必要性が低い財や他の財で代替できるような財
 - ▶ 独占をしても、他の財で代替されてしまいやすいから、独占力は低い
- ▶ 弾力性が低い:「価格が変わっても需要は大して変わらない」
 - ▶ 必要性が高い財や替えがきかない財
 - ▶ 替えがきかないため、独占をして価格を吊り上げると儲けが上がる

独占企業の行動の図解

日野将志

インフレーション と経済学史

AS 曲線

AD-AS モデル

名目賃金の硬直性

独占と価格の決定独占的行動と価格の粘着性

粘着価格による AS ^{曲線}

- ▶ 生産量 *q** は、限界収入と限界費用の交点
- ▶ 価格 p* は q* の需要関数上で決まる

独占と価格の決定

- ▶ 企業が設定するもの
 - ▶ 完全競争: 生産量のみ、価格は所与、
 - ▶ 独占: 生産量と価格
- ▶ 企業の最大化条件の特徴
 - ▶ 完全競争:価格=限界費用
 - ▶ 独占:価格 = マークアップ率 × 限界費用

AD-AS

日野将志

インフレーション と経済学史

AS 曲線

D-AS モデル

目賃金の硬直性

独占的行動と価格の粘着性

钻着価格による AS

独占的行動と価格の硬直性:その効果

名目賃金の硬直性

独占と価格の決定

钻着価格による AS ^{出線}

まずイメージを持ってもらうために次の二つのケースを比較する.

- ▶ 価格が柔軟的に調整できる場合
- ▶ 価格が完全に硬直的な場合
 - ▶ $p = p^*$ で固定されているケース

それぞれの場合に,独占企業の生産する財の需要が拡大したら,どう違いが生まれるか?

独占企業と需要拡大:柔軟価格

日野将志

独占的行動と価格の粘着性

再度

- ▶ 生産量 q* は、限界収入と限界費用の交点
- 価格 p^* は q^* の需要関数上で決まる

硬直価格の時:

インフレーション と経済学史

曲線

D-AS モデノ

目賃金の硬直性

独占的行動と価格の粘着性

占着価格による A 由線

価格では調整できない (p は p^* のままな) ので、数量で大きく調整する! 価格が調整できないので、MR = MC とはならない

触占と価格の決定

独占的行動と価格の粘着性

钻着価格による AS 曲線

独占企業の財の需要が増加した場合,

- ▶ 柔軟に価格を調整できるケース
 - ▶ 価格と数量両方で調整される
- ▶ 価格が硬直的なケース
 - ▶ 数量のみで調整される. より大きく数量が動く
 - ▶ 教訓:モデルに価格の硬直性(粘着性)を導入すると生産量が大きく動くようになる.

AD-AS

日野将志

インフレーション と経済学史

S曲線

D-AS モデル

目賃金の硬直性

占と価格の決定

粘着価格による AS 曲線

AS 曲線の理論 2: 価格の粘着性

独占と粘着価格による AS 曲線の導出:2期間のニューケインジアン・モデル

AD-AS

日野将志

インフレーション と経済学史

AS 曲線

D-AS モデル

名目賃金の硬直性

独占と価格の決定

粘着価格による AS 曲線

ニュー・ケインジアンモデル (NK, New Keynesian) の特徴

- ▶ RBC モデルの欠点・疑問
 - ▶ 「RBC モデルで景気循環の 2/3 を説明できる」
 - ▶ 残りの 1/3 は?市場の不完全性、調整費用等の役割では?
 - ▶ RBC モデルは競争市場 ⇒ 政策は市場の効率性を改善しない
 - ▶ 不完全市場ならどうなる?
- ▶ NK モデルは、各国の中央銀行で使われている (補論)
- ▶ NK=RBC モデル+独占+価格の粘着性 (-資本)

ここで、教える内容は2期間のNKモデル的な要素(だいぶ単純化している)

モデル化するうえで、粘着性の導入方法は色々な方法がある。ここでは「一部の 企業しか価格を変えられない」という粘着性を導入する。

- - ▶ p^R は常に一定

$$\mathcal{P} = (1 - \theta)p^F + \theta p^R$$

モデル化するうえで、粘着性の導入方法は色々な方法がある.ここでは「一部の企業しか価格を変えられない」という粘着性を導入する.

- ▶ 全企業のうち割合 $\theta \in (0,1)$ の企業は価格を変更できない. p^R (Rigid) ▶ p^R は常に一定
- ightharpoonup 全企業のうち割合 $1-\theta\in(0,1)$ の企業は価格を改定できる. p^F (Flexible)

この結果,物価は以下のようになる.

$$\mathcal{P} = (1- heta)p^F + heta p^R$$

 p^R と価格が硬直的な企業がいるため,経済全体でも物価に粘着性がある.

粘着価格の構成要素

AD-AS 日野将志

(再掲:)物価は次の通り決まる.

$$\mathcal{P} = (1- heta)p^F + heta p^R$$

柔軟に価格を変えられる企業の価格 p^F は、(3) 式より、

$$p^F = \underbrace{rac{\mu}{1-\mu}}_{ec{arphi}-arphiec{arphi}-arphiec{arphi}} \mathcal{P}mc(y)$$

これを一番上に代入すると.

$$egin{aligned} \mathcal{P} &= (1- heta)\underbrace{\mathcal{P}rac{\mu}{1-\mu}mc(y)}_{=p^F} + heta p^R \ &= rac{ heta p^R}{1-(1- heta)rac{\mu}{1-\mu}mc(y)} \end{aligned}$$

粘着価格による AS 曲線

粘着価格による AS

曲線

AD-AS

家計の労働供給で学んだものを導入する

$$\max_{c_1, l_1, c_2, l_2, s} \; \sum_{t=1}^2 eta^{t-1} u(c_t) + v(1-h_t)$$

s.t.
$$c_1 + s = w_1 h_1$$

 $c_2 = (1 + r)s + w_2 h_2$

$$c_2=(1+r)s+w_2h_2$$

このとき、家計の労働供給は

$$\frac{v'(1-h_t)}{u'(c_t)} = w_t \tag{4}$$

と決まる.

均衡

AD-AS

日野将志

インフレーション と経済学中

S曲線

.....

コ賃令の頑責性

占と価格の決定

粘着価格による AS 曲線

y

インフレーション : 経済学史

AS 曲線

AD-AS モデル

石目貝並の便但性

北上 注 (四十夕) マート・フート

粘着価格による AS 曲線

▶ フィリップス曲線:インフレ率と失業に負の相関

- ▶ アメリカの60年代:フィリップス曲線が確認される
- ▶ アメリカそれ以降:フィリップス曲線が確認できない.
 - ▶ フリードマンの予想があたる:「フィリップス曲線は,予想外のインフレと失業の 短期的な負の相関」
- ▶ AD-AS モデル
 - ▶ p^e が固定の時:財政・金融政策はYを増やす
 - ▶ $p^e = p$ の時:財政・金融政策はY に影響を与えない
- ▶ AS 曲線の理論
 - ▶ 硬直的賃金
 - ▶ 粘着価格モデル
 - ▶ 独占 + 粘着価格

占目真金の硬直性

粘着価格による AS 曲線

New Keynesian Model (a.k.a NK or DSGE) は,政策効果を検証するうえで最も基本的なモデル.

The efforts of many researchers to understand the relationship between monetary policy, inflation and the business cycle has led to the development of a framework - the so called New Keynesian model - that is widely used for monetary policy analysis.

Gali (2008) "Monetary Policy, Inflation, and the Business Cycle"

実は、AD-AS モデルは、ニューケインジアンモデルの単純化

- NK モデルの基本 3 要素
- 動学的 IS 曲線
- MP 曲線
- (3) フィリップス曲線 いずれもすでに AD-AS で学んだもの.

「大学のマクロと大学院のマクロは全然ちがう」と良く言うが,(少なくとも私の 授業は) そんなこともない

インフレーション と経済学史

AS 曲線

)-AS モデル

占目真金の硬直性

白と画情の次定

粘着価格による AS 曲線

一部のみ

- ► FRB: The FRB/US Model
- ▶ NY Fed: The FRBNY DSGE Model
- ► ECB: The Global Multi-Country Model (GM): An Estimated DSGE Model for Euro Area Countries
- ▶ IMF: The Global Integrated Monetary and Fiscal Model (GIMF)
- ▶ 日本: Medium-scale Japanese Economic Model (M-JEM)

より包括的なリストは,例えば Yagihashi"DSGE Models Used by Policymakers:

A Survey " 等を参照

back

AD-AS

日野将志

インフレーション と経済学史

S曲線

D-AS モデル

占目賃金の硬直性

虫占と価格の決定

粘着価格による AS 曲線

補足:AS 曲線の教え方

AS 曲線

D-AS モデル

名目賃金の硬直性

は占と価格の決定

粘着価格による AS 曲線

AS 曲線の導入の仕方は、特にマクロ経済学の教科書の中でも多様教員の悩みとして、

- (1) 経済学史的に正しい教え方をするか
 - ▶ フリードマンやルーカス的な AS 曲線
- (2) データから確認できる相関としてフィリップス曲線を導入するか
- (3) 現代のマクロ経済学研究の潮流に繋がる教え方をするか
 - ▶ 粘着価格モデル
- (4) より手軽な理論で教える

と色々な教え方がある. 一般的に (1) の教え方をする教科書が多い. しかし, かつての語法や考え方が今と違うことが多く, 発展的な学習をする人には不向き. 本稿では (2) のような教え方. Kurlat では (3)