# Formal versus statistical enrichment of grammars

#### Andreas van Cranenburgh

Huygens ING Royal Netherlands Academy of Arts and Sciences Institute for Logic, Language and Computation University of Amsterdam

November 1, 2016

## Computational linguistics

...driven by empirical evaluation, benchmarks

Progress means ...

- Improve on benchmark
- Challenge benchmark

## Statistical Parsing

Many 'inconvenient' aspects of treebank annotation typically ignored:

- non-local relations
- function tags
- morphology
- multiple parents

## Statistical Parsing

Many 'inconvenient' aspects of treebank annotation typically ignored:

- non-local relations
- function tags
- morphology
- multiple parents

#### Goal

given a treebank, fully reproduce its annotations with an automatically-induced statistical parser

## Treebank annotation

#### PTB:

```
(S (NP-SBJ-1 (DT A) (NN record) (NN date) )
  (VP (VBZ has) (RB n't) (VP (VBN been)
        (VP (VBN set) (NP (-NONE- *-1) )))) (. .) )
```

## Treebank annotation

#### PTB:

```
(S (NP-SBJ-1 (DT A) (NN record) (NN date) )
  (VP (VBZ has) (RB n't) (VP (VBN been)
        (VP (VBN set) (NP (-NONE- *-1) )))) (. .) )
```

#### Negra:

| %% word     | cat   | morph         | func | parent |
|-------------|-------|---------------|------|--------|
| Darüber     | PROAV |               | MO   | 500    |
| muß         | VMFIN | 3.Sg.Pres.Ind | HD   | 502    |
| nachgedacht | VVPP  |               | HD   | 500    |
| werden      | VAINF |               | HD   | 501    |
|             | \$.   |               |      | 0      |
| #500        | VP    |               | OC   | 501    |
| #501        | VP    |               | OC   | 502    |
| #502        | S     |               |      | 0      |
|             |       |               |      |        |

## Treebank annotation



## Grammar enrichment

#### **Formal**

A grammar formalism that

- precisely matches the generative capacity of natural language
- is specifically designed to produce the desired linguistic analyses

## Grammar enrichment

#### **Formal**

#### A grammar formalism that

- precisely matches the generative capacity of natural language
- is specifically designed to produce the desired linguistic analyses

#### Statistical

#### Heuristic approach:

- add extra information by augmenting labels
- apply pre- and postprocessing steps
- exploit regularities in corpus, e.g.
   co-occurrence of elements, automatic state splits, &c.

Chomsky (1965):

Competence system of rules describing idealized knowledge of language

Performance language behavior affected by ambiguity, errors, reaction times, frequency effects

## Chomsky (1965):

Competence system of rules describing idealized knowledge of language

Performance language behavior affected by ambiguity, errors, reaction times, frequency effects

#### Scha (1990):

- Difficult to write descriptively adequate grammar by hand.
- Problem of ambiguity;
   need to know relative plausibility of analyses.

Ergo, we need

"performance-models of language (...), which take into account statistical properties of actual language use."

## Traditional parsing approach

- Pick a grammar with the right linguistic & computational properties (competence)
- 2. Apply pruning if necessary (performance)
- Add a probabilistic disambiguation component (performance)
- 4. Evaluate quality of model (performance)

## Formal language theory

#### Definition

A formal grammar characterizes a language as a set of sentences and their structures.

Chomsky hierarchy:

Type 0: Unrestricted: Model-Theoretic Syntax, e.g., HPSG

Type 1: Context-Sensitive: Mildly Context-Sensitive, e.g., TAG, CCG, LCFRS

Type 2: Context-Free: PCFG, proj. dependency grammar

Type 3: Regular: finite-state technology

## Domain of locality



Fig. 1.1. Yields of non-terminals in different formalisms

Figure: Kallmeyer (2010): Parsing beyond CFG, p. 3

## Long-Distance Dependencies



"Jan saw that Karel lets him teach her to swim."

- Cross-serial dependencies are beyond context-free
- Can be captured by mildly context-sensitive grammars

## CFG approximation



 Alternatively, long-distance dependencies can be encoded in the labels

## Non-locality w/DOP fragments



 With DOP tree fragments, complex linguistic phenomena can be captured statistically instead of formally

## Grammar induction: 2DOP



- Induce a Tree-Substitution Grammar from treebank
- Heuristic: recurring tree fragments are building blocks
- Compare pairs of trees and extract common fragments

## Function labels

Syntactic categories (form): NP, VP, S, ...

Function labels (function): SBJ, OBJ, TMP, LOC, ...

- Classifier:
  - Blaheta & Charniak (2000), Assigning Function Tags to Parsed Text
- Integrate in grammar:
  - ► Gabbard et al. (2006), Fully parsing the Penn treebank
  - Fraser et al. (2013), Knowledge sources for constituent parsing of German

Evaluation: function tag accuracy over correctly parsed labeled bracketings.

## Can DOP handle discontinuity without LCFRS?

Negra dev set, gold tags:

Split-PCFG

↓
PLCFRS
↓
PLCFRS Double-DOP
77.7 % F1
41.5 % EX

## Can DOP handle discontinuity without LCFRS?

Negra dev set, gold tags:

Answer: Yes!

Fragments can capture discontinuous contexts

## Importance of probabilities

What happens when probabilities of fragments are randomly shuffled?

| F1   |
|------|
| 65.9 |
| 77.7 |
| 74.1 |
|      |

## Importance of probabilities

What happens when probabilities of fragments are randomly shuffled?

| Negra parsing                | F1   |
|------------------------------|------|
| PLCFRS treebank grammar      | 65.9 |
| 2DOP                         | 77.7 |
| 2DOP, shuffled probabilities | 74.1 |

## Conclusion

co-occurrence of productions more important than frequency effects.

## Parsing results

| Parser                   | Fl   | EX   | func |
|--------------------------|------|------|------|
| GERMAN: Tiger            |      |      |      |
| Dep: HaNi2008            | 75.3 | 32.6 |      |
| 2DOP: Cr et al           | 78.2 | 40.0 | 93.5 |
| Dep: FeMa2015            | 82.6 | 45.9 |      |
| ENGLISH: wsj             |      |      |      |
| PLCFRS: EvKa2011         | 79.0 |      |      |
| 2DOP: Cr et al, wsj      | 87.0 | 34.4 | 86.3 |
| 2DOP: SaZu2011, no disc. | 87.9 | 33.7 |      |
| DUTCH: Lassy             |      |      |      |
| 2DOP: Cr et al           | 76.6 | 34.0 | 92.8 |

HaNi: Hall & Nivre (2008); SaZu: Sangati & Zuidema (EMNLP 2011); EvKa: Evang & Kallmeyer (IWPT 2011);

> FeMa: Fernández-González & Martins (ACL 2015); Cr et al: van Cranenburgh, Scha, Bod (JLM 2016).

## Conclusion

Linguistically rich: non-local relations, function tags

Efficiency: CFG base grammar, tree fragment extraction

Competence: idealized rules

Performance: actual language use

Tree fragments increase the abilities of a performance model w.r.t. discontinuous constituents, without increasing formal complexity.



## KEEP CALM because

# THIS TOO SHALL PARSE

## **DEMO**

https://lang.science.uva.nl/parser/

## References

- Remko Scha (1990). Language theory and language technology; competence and performance, in Q.A.M. de Kort and G.L.J. Leerdam, editors, Computertoepassingen in de Neerlandistiek, pp. 7–22. English translation: http://iaaa.nl/rs/LeerdamE.html
- van Cranenburgh, Scha, Bod (2016) Data-Oriented Parsing with Discontinuous Constituents and Function Tags. Journal of Language Modelling, vol. 4, no. 1, pp. 57-111. http://dx.doi.org/10.15398/jlm.v4i1.100