Системы счисления Побитовые операции

Основы языка С, лекция 15

Система счисления

• Система счисления

1 - I

- 10 X
- 100 C 1000 M

– совокупность знаков

- 5 V
- 50 L
 - 500 D

- Римская нумерация
 - XVI означает 10 + 5 + 1 = 16CIX означает 100 + (-1 + 10) = 109

- сложение, умножение столбиком?
- Мы Дарим Сочные **Л**имоны **Х**ватит **В**сем **И** еще останется
 - **MDCLXVI**

Позиционная система счисления

• Десятичная $615_{10} = 6*10^2 + 1*10^1 + 5*10^0$ $10^3 \quad 10^2 \quad 10^1 \quad 10^0$ $0 \quad 6 \quad 1 \quad 5$

- Двоичная $1101_2 = 1*2^3 + 1*2^2 + 0*2^1 + 1*2^0$
 - 2³ 8 2² 4 2¹ 2 2⁰ 1

1 0 1

1 * 8 + 1 * 4 + 0 * 2 + 1 * 1 = 13₁₀

1101₂ = **13**₁₀ Самое большое число?

Часы для IT-шников

novate.ru

4/22

2, 8, 16 и двоично - десятичная

DEC	BIN	ОСТ	HEX	BCD
0	0000	0	0	0000
1	0001	1	1	0001
2	0010	2	2	0010
3	0011	3	3	0011
4 5 6 7	0100	4	4	0100
	0101	5	5	0101
	0110	6	6	0110
	0111	7	7	0111
8	1000	10	8 9 A B	1000
9	1001	11		1001
10	1010	12		0001 0000
11	1011	13		0001 0001
12	1100	14	C	0001 0010
13	1101	15	D	0001 0011
14	1110	16	E	0001 0100
15	1111	17	F	0001 0101

- перевод 2, 8, 16
- 36-ричная система счисления (все буквы + цифры), пример серийный номер программного обеспечения

Представление отрицательных чисел

- x + (-x) = 0 в побитовом сложении
- Знаковый бит
- Прямой код (старший бит стал 1)
 - 3: **0**011
 - -3: **1**011
- Обратный код (~х)
 - 3: **0**011
 - -3: **1**100
- Дополнительный код x + (-x) = 0
 - 3: **0**011
 - -3: **1**101 обратный + 1

• Дополнительный код

$$X + (-X) = 0$$

- 3: **0**011
- -3: **1**101
- Σ: **1**0000

Представление отрицательных чисел

• Дополнительный

$$X + (-X) = 0$$

3: **0**011

-3: **1**101

∑: **1**0000

Диапазон знаковых чисел

- 3 битные числа
- $2^3 = 8$
- -4 ... 3

Что будет выведено на печать и почему?

```
    char x = 0xFF;
    if (x == 0xFF)
    printf("Равны\n");
    else
    printf("Не равны\n");
```

Что будет выведено на печать и почему?

```
    char x = 0xFF;
    if (x == 0xFF)
    printf("Равны\n");
    else
    printf("Не равны\n");
```

```
• char k = -3;
if (k == -3)
```

Побитовые операции

- Применяются только к целочисленным операндам
- & побитовое AND
- I побитвое OR
- ^ побитовый XOR
- ~ отрицание (тильда над ё, под Esc)
- >> сдвиг вправо (на неотрицательное)
- << сдвиг влево (на неотрицательное)

Логические операторы

- && логическое И
- Погическое ИЛИ
- ! отрицание

cup &&	teabag =>	cup	of tea
cookie	chocolate	=>	dessert

•	1	&	?	=	?
	0	&	?	=	0

AND	false	true
false	false	false
true	false	true

OR	false	true
false	false	true
true	true	true

4-битная архитектура

•
$$0110_2 =$$

$$0*2^3 + 1*2^2 + 1*2^1 + 0*2^0 =$$

$$0 + 4 + 2 + 0 = 6_{10}$$

A	1	0	1	0
4	0	1	0	0
E	1	1	1	0

•	x = 0xA;
	y = x & 7;
	if (x & FLAG)

• $x = x \& \sim 07$

Смещение >> и <<

```
• x = 7; 00000111 y = x << 3; 00111000 всегда дополняется нулями
```

• unsinged short
$$x = 7$$
; 00000111 $z = x >> 2$; 00000001

• int
$$x = 7$$
; 00000111 $z = x >> 2$; 00000001

• int
$$x = -7$$
; 111111001 $z = x >> 2$; 111111110 дополняется знаковым битом

Кодирование признаков в битах

Кодирование признаков в битах

- int x = 5; // какие признаки?
- Какой пол? Умный? Носит зимой шапку? Это умная женщина?
- Надеть шапку
- Снять шапку
- Глаза зеленые?
 Глаза голубые

Представление дробных чисел

- fixed-point number
 - считаем деньги
 (тут запятая всегда фиксирована)
 - SQL
 - PlayStation, Sega's Saturn, Nintendo's Game Boy
 Advance (only 2D) and Nintendo DS

Floating point number

• (-1)^{sign}·2^{exponent} - exponent_bias · 1.mantissa

Floating point number

• (-1)sign · 2exponent - exponent_bias · 1.mantissa

$$(-1)^{0} \cdot 2^{124} \cdot 1.25$$

= $2^{-3} \cdot 1.25$
= 0.15625

- bit 23 = 1 (неявно задан)
- bit 22 = 0.5
- bit 21 = 0.25
- bit 20 = 0.125
- bit 19 = 0.0625

41c8 0000₁₆

- •
- bit 0 = 0.00000011920928955078125

hex → десятичное

- $41c8\ 0000_{16} = 0100\ 0001\ 1100\ 1000\ 0000\ 0000\ 0000\ 0000_{2}$
- Sign bit: 0
- Exponent: $1000\ 0011_2 = 83_{16} = 131_{10}$ 131 - 127 = 4
- Significant (с дописанным неявным битом): 1100 1000 0000 0000 0000 0000 $_2$ = c80000 $_{16}$ = 1 + ½ + 1/16 = 1+0.5+0.0625=1.5625
- $(-1)^{0} \cdot 2^{131-127} \cdot (1 + \frac{1}{2} + \frac{1}{16}) = 2^{4} + 2^{3} + 2^{0} = 25$

12.357 dec to bin

- $12.357 = 12 + 0.357 = 1100_{2} + (.011)$ 0.357 * 2 = 0.750 = 0 + 0.7500.750 * 2 = 1.5 = 1 + 0.50.5 * 2 = 1.0 = 1 + 0
- $(12.357)_{10} = (1100.011)_{2} =$ $(1.100011)_2 * 2^3 = (1.100011)_2 * 2^{130-127}$
- Sign bit: 0
- Exponent: $1000\ 0010_2 = 82_{16} = 130_{10}$
- Significant: 1100 0110 0000 0000 0000 0000₃

$$127_{10} = 0111 \ 1111$$

$$-127_{10} = 1000 \ 0001$$

$$? 130_{10} = 1000 \ 0010$$

$$3_{10} = 0000 \ 0011$$

$$0.174 * 10 = 1 + 0.74$$

$$0.74 * 10 = 7 + 0.4$$

$$0.4 * 10 = 4 + 0.4$$

Откуда были взяты изображения

 Icons made by Freepik, monkik, Dave Gandy from flaticon.com