Ćwiczenie 3.

Celem ćwiczenia jest obserwacja widma sygnału EKG.

- 1. Wczytać sygnał ecg100.txt i ocenić go wizualnie na wykresie
- 2. Wyznaczyć jego dyskretną transformatę Fouriera i przedstawić widmo amplitudowe sygnału w funkcji częstotliwości w zakresie [0, fs/2], gdzie fs oznacza częstotliwość próbkowania.
- 3. Wyznaczyć odwrotną dyskretną transformatę Fouriera ciągu wyznaczonego w punkcie 2 i porównać otrzymany ciąg próbek z pierwotnym sygnałem ecg100 (można wyznaczyć różnicę sygnałów).

```
In [20]: import pandas as pd
         import matplotlib.pyplot as plt
         import numpy as np
In []: file name = "./src/"+input("Podaj nazwe pliku z danymi: ")
         data_frame = pd.read_csv(file_name,sep="\s+",header=None,engine="python")
        <>:2: SyntaxWarning: invalid escape sequence '\s'
        <>:2: SyntaxWarning: invalid escape sequence '\s'
        /tmp/ipykernel_24246/4076881288.py:2: SyntaxWarning: invalid escape sequence '\s'
        data_frame = pd.read_csv(file_name,sep="\s+",header=None,engine="python")
        0
               -0.145
        1
               -0.145
        2
               -0.145
        3
               -0.145
        4
               -0.145
        649995 -0.075
        649996 -0.445
        649997 -0.675
        649998 -0.765
        649999 -1.280
        [650000 rows x 1 columns]
```

Zadanie nr1

Wczytano plik ekg100.txt zgodnie z treścią ćwiczenia.

W celu oceny wizualnej wykorzystano bibliotekę matplotlib w celu wizualizacji funkcji wynikajacej z treści pliku tekstowego.

```
In [22]: #Wykres EKG (Na podstawie pobranych danych) w zakresie start : end
def displayEKG(start,end):
    data_frame.columns = ['data']
    new_data = data_frame.iloc[ start :end ].copy()
    plt.figure(figsize=(20,5))
    plt.plot(new_data['data']) #rysowanie wykresu
    plt.grid(True)
    plt.title("EKG")
    plt.show()
```

```
In [23]: displayEKG(0,len(data_frame))
```


Przy próbie wyświetlenia całego sygnału widać że jest on mało czytelny. Można więc ograniczyć wyświetlany sygnał do 1000 próbek

Po ograniczeniu zakresu widać że pobrany sygnał wyświetla się poprawnie i jest czytelny.

Zadanie nr2

Wyznaczono transformantę Fouriera korzystając z biblioteki numpy oraz funkcji fft. Na podstawie transformanty przedstawiono widmo amplitudowe w funkcji częstotliwości.

Korzystając z zewnętrznych źródeł wykonano dodatkowe kroki w celu prawidłowego wyznaczenia widma amplitudowego:

- Wyprowadzono amplitudę transformanty Fouriera,
- Znormalizowano zakres amplitudy aby maksymalną wartością było 1,
- Wygenerowało prawidłowe częstotliwości dla zadanego zakresu,
- Wyznaczono widmo w dodatnim zakresie częstotliwości,

```
In [25]: #Generacja i wyświetlenie widma sygnału
         fs = 360
         t = len(data_frame)
         fourier1 = np.fft.fft(data_frame['data']) #transformata fouriera
         #dodatkowe kroki
         widmo = np.abs(fourier1)
         abs widmo = widmo / np.max(widmo)
         freq = np.fft.fftfreq(t,1/fs)
         pos_freq = freq[:len(freq)//2] #częstotliwości w zakresie [0,fs/2]
         pos_widmo = abs_widmo[:len(abs_widmo)//2] #widmo amplitudowe (część dodatnia)
         #koniec dodatkowych kroków
         plt.figure(figsize=(20,5))
         plt.plot(pos_freq,pos_widmo)
         plt.xlim(right = fs/2)
         plt.grid(True)
         plt.title("Widmo amplitudowe")
         plt.xlabel('Częstotliwość (Hz)')
         plt.ylabel('Amplituda')
         plt.show()
```


Wyznaczono odwrotną tranformantę Fouriera oraz porównano otrzymany ciąg z pierwotnym sygnałem.

Wyznaczoną różnicę zaznaczono pomarańczową linią przerywaną.

```
In [29]: #Wizualizacja różnicy odwrotnej transformaty(Utworzonej na podstawie widma) i sygnału

def displayFourier(start,end):
    inv_fourier = np.fft.ifft(fourier1).real
    inv_fourier = data_frame['data'] - inv_fourier
    inv_fourier = inv_fourier.values[start:end]
    plt.figure(figsize=(20,5))
```

```
plt.plot(data_frame['data'][start:end], label="Oryginalny sygnał")
plt.plot(inv_fourier, linestyle="dashed", alpha=0.7, label="Różnica między oryginałem a odzyskanym sygnałem
plt.grid(True)
plt.legend()
plt.title("EKG")
plt.show()
```

In [27]: displayFourier(0,len(data_frame))

Podobnie jak w poprzednim wypadku cały sygnał jest nie czytelny więc ograniczamy go do 1000 próbek.

Można łatwo zauważyć że różnica sygnałów nieistnieje lub jest bardzo znikoma i wręcz nieodczytywalna.