Лабораторная работа №17

Дисциплина: Имитационное моделирование

Ганина Т. С.

4 мая 2025

Группа НФИбд-01-22

Российский университет дружбы народов, Москва, Россия

Докладчик

- Ганина Таисия Сергеевна
- Студентка Зго курса, группа НФИбд-01-22
- Фундаментальная информатика и информационные технологии
- Российский университет дружбы народов
- · Ссылка на репозиторий гитхаба tsganina

Вводная часть

Реализовать с помощью gpss задания для самостоятельной работы.

Задание

Реализовать с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.

Модель работы вычислительного центра

```
evm STORAGE 2
; class A
GENERATE 20.5
QUEUE class a
ENTER evm.1
DEPART class a
ADVANCE 20.5
LEAVE evm. 1
TERMINATE O
; class B
GENERATE 20,10
OUEUE class b
ENTER evm. 1
DEPART class b
ADVANCE 21.3
LEAVE evm. 1
TERMINATE O
: class C
GENERATE 28.5
QUEUE class c
ENTER evm. 2
DEPART class c
ADVANCE 28.5
LEAVE evm. 2
TERMINATE O
:timer
GENERATE 4800
TERMINATE 1
START 1
```

Рис. 1: Модель работы вычислительного центра

Модель работы вычислительного центра

lab17_1.1.1	- REPORT										
	GPSS						labl7_				
		2002	ресен	be, Mas	04,	2025	14:01:	47			
				2312	TIME	BL	CK5 Y	ACILITIE			
	0.	000		480	0.000		23	0		1	
	NAME					VALU					
	MARL					001.0					
	CLASS_A										
	CLASS_A CLASS_B CLASS_C					003.0					
	EVM										
					-						
LABEL		100	BLO	CK TYPE		ENTR	COUNT	CURRENT	COUNT	RETRY	
		2	OEN	EKAIE UE			140		4	0	
		3	ENT				36			0	
		- 1	DED	ADT			36		ŏ	ŏ	
		5	5 ADVANCE				36		ĭ	0	
		6					35		ô	ŏ	
		7	7 TERMINATE						ō	ö	
		8					36		0	ō	
		9	9 QUEUE				36		5	0	
		10	O ENTER			231			0	0	
		11				231			0	0	
		12				231			1	0	
			LEAVE			230			0	0	
		14		MINATE			30		0	0	
		1.5	GEN		172			0	0		
			QUE		172		1	72	0		
		18	ENTER DEPART ADVANCE LEAVE			0			0	0	
		19	DEP.		0			0	0		
		20	1.531		, a			ŏ	ŏ		
			TER		o o			o	ō		
		22			i			ò	ò		
		23	TERMINATE			1			ō	ō	
DEUE		way	COMT	FUTEV	FUTBY	(0)	ATT CON		***	NUT (-O)	BETEV
CLASS A		7	4	240	neriRi	3	3.288	65.	765	66,597	0 0
CLASS B		- 7	- 1	236		1	3,280	66.	703	66,987	
CLASS C		172	172	172		ō	85.786	2394.	038	2394.038	0
-											
TORAGE		CAR	DEM.	MTM. N	av.	ENTE	TEG AVE	. AVE.C	DITT	. REIRY	DELAY
TORAGE		2	0	0	2	4	17 1	1.088	0.91	4 0	181
					-			,,			
EC XN	227			10071			MENT	PARAMET	FD.	III THE	
650	PR4	4803		ASSER	2090	NANT.	MAKE	PARAMET	E.F.	VALUE	
636	0	4905	704	650 636		ě	-				
	0	4907	0.69	651			15				
651	o o	4810	.369	651 637 652 653	1	2	13				
652	ō	4813	.506	652		0	8				
653	ō	9600	.000	653		0	22				

Рис. 2: Отчёт по модели работы вычислительного центра

Модель работы аэропорта

```
2 1ab17_2.gps
 : прибытие
 GENERATE 10 5 ... 1
 ASSIGN num. 0 : установка атрибута num (счётчик кругов) в 0 для нового самолёта
 land GATE NU runway, wait ; попытка вайти на посадку на полосу
 · ects notoca naugna nepeyon v wente "vait
 : ИИ - устройство, заданное в поле А. свободно
 SEIZE runway
 DEPART arrive
 ADVANCE 2
 RELEASE runway
 TERMINATE O
 wait TEST L p$num,5,other
 ; проверка: если значение атрибута pl (номер 1) < 5, переход к other
  Получение значения Р- параметра возможно с помощью конструкции
 : Риомер или Р$имя.
 ADVANCE 5 : Ожидание 5 минут в воздухе (круг над аэродромом)
 ASSIGN num+,1
 TRANSFER 0, land
 other SEIZE OtherRun : если больже 5 кругов — захват резервной полоси (вля ухода)
DEPART arrive
 ADVANCE 2
 RELEASE OtherRun
 TERMINATE O
 ; волёт
 GENERATE 10.2...2
 OUEUE leave q
 SEIZE FURNAY
 DEPART leave q
 ADVANCE 2
 RELEASE runway
 TERMINATE O
 chimar
 GENERATE 1440
 TERMINATE 1
 START 1
```

Рис. 3: Модель работы аэропорта

Модель работы аэропорта

8/14

Модель работы морского порта (1 вариант)

```
prichal STORAGE 10
GENERATE 20, 5
QUEUE ochered
ENTER prichal, 3
DEPART ochered
ADVANCE 10, 3
LEAVE prichal, 3
TERMINATE 0
; time
GENERATE 24
TERMINATE 1
START 182
```

Рис. 5: Модель работы морского порта (1 вариант)

Модель работы морского порта (1 вариант)

Рис. 6: Отчёт по модели работы морского порта (1 вариант)

Оптимизированная модель работы морского порта (1 вариант)

Рис. 7: Оптимизированная модель работы морского порта (1 вариант) и отчёт

Модель работы морского порта (2 вариант)

Рис. 8: Модель работы морского порта (2 вариант) и отчёт

Оптимизированная модель работы морского порта (2 вариант)

Рис. 9: Оптимизированная модель работы морского порта (2 вариант) и отчёт

Результаты

Результаты

В результате выполнения данной лабораторной работы я реализовала с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.