

Low Power, 3.6 MHz, Low Noise, Rail-to-Rail Output, Operational Amplifiers

ADA4691-2/ADA4691-4/ADA4692-2/ADA4692-4

FEATURES

Low power: 180 µA typical

Very low input bias currents: 0.5 pA typical

Low noise: 16 nV/√Hz typical

3.6 MHz bandwidth

Offset voltage: 500 µV typical

Low offset voltage drift: 4 µV/°C maximum

Low distortion: 0.003% THD + N

2.7 V to 5 V single supply or ±1.35 V to ±2.5 V dual supply Available in very small 2 mm × 2 mm LFCSP packages

APPLICATIONS

Photodiode amplifiers Sensor amplifiers

Portable medical and instrumentation

Portable audio: MP3s, PDAs, and smartphones

Communications
Low-side current sense

ADC drivers
Active filters
Sample-and-hold

GENERAL DESCRIPTION

The ADA4691-2/ADA4692-2 are dual and the ADA4691-4/ ADA4692-4 are the quad rail-to-rail output, single-supply amplifiers featuring low power, wide bandwidth, and low noise. The ADA4691-2 has two independent shutdown pins, allowing further reduction in supply current. The ADA4691-4 is a quad with dual shutdown pins each controlling a pair of amplifiers and is available in the 16-lead LFCSP. The ADA4692-4 is a quad version without shutdown.

These amplifiers are ideal for a wide variety of applications. Audio, filters, photodiode amplifiers, and charge amplifiers, all benefit from this combination of performance and features. Additional applications for these amplifiers include portable consumer audio players with low noise and low distortion that provide high gain and slew rate response over the audio band at low power. Industrial applications with high impedance sensors, such as pyroelectric and IR sensors, benefit from the high impedance and low 0.5 pA input bias, low offset drift, and enough bandwidth and response for low gain applications.

The ADA4691/ADA4692 family is fully specified over the extended industrial temperature range (-40°C to +125°C). The ADA4691-2 is available in a 10-lead LFCSP and a 9-ball WLCSP. The ADA4692-2 is available in an 8-lead SOIC and 8-lead LFCSP. The ADA4691-4 is available in a 16-lead LFCSP. The ADA4692-4 is available in a 14-lead TSSOP. For pin configurations, see the Pin Configurations section.

Figure 1. THD + Noise vs. Frequency

Figure 2. Channel Separation vs. Frequency

Table 1.

	Micropower	Low Power	Low Power with Shutdown	Standard Op Amp With Shutdown	High Bandwidth
Single	AD8613			AD8591	AD8691
Dual	AD8617	ADA4692-2	ADA4691-2	AD8592	AD8692
Quad	AD8619	ADA4692-4	ADA4691-4	AD8594	AD8694

TABLE OF CONTENTS

Features
Applications1
General Description1
Revision History2
Specifications
Electrical Characteristics—2.7 V Operation3
Electrical Characteristics—5 V Operation4
Absolute Maximum Ratings6
Thermal Resistance
REVISION HISTORY
11/10—Rev. C to Rev. D
Changed 5 V to 6 V in Endnote 2, Table 4
12/09—Rev. B to Rev. C
Added ADA4691-4, 16-Lead LFCSPThroughout
Added Figure 1, Figure 2, and Table 1; Renumbered
Sequentially 1
Changes to Applications Section and General Description
Section
Changes to Table 1
Changes to Table 2
Changes to Table 4
Updated Outline Dimensions
Changes to Ordering Guide
9/09—Rev. A to Rev. B
Added ADA4691-2, 9-Ball WLCSP; ADA4692-2, 8-Lead
LFCSP; and ADA4692-4, 14-Lead TSSOPThroughout
Changes to General Description
Updated Outline Dimensions
Changes to Ordering Guide

ESD Caution6
Pin Configurations
Typical Performance Characteristics8
Shutdown Operation
Input Pin Characteristics
Input Threshold16
Outline Dimensions
Ordering Guide
6/09—Rev. 0 to Rev. A
Added ADA4691-2, 10 Lead LFCSP Throughout
Changes to Table 13
Changes to Table 24
Changes to Captions for Figure 40, Figure 41, Figure 43, and
Figure 44
Added Shutdown Operations Section
Undated Outline Dimensions 16

3/09—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—2.7 V OPERATION

 V_{SY} = 2.7 V, V_{CM} = $V_{\text{SY}}/2$, T_{A} = 25°C, unless otherwise specified.

Table 2.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$V_{CM} = -0.3 \text{ V to } +1.6 \text{ V}$		0.5	2.5	mV
Dual (ADA469x-2)		$V_{CM} = -0.1 \text{ V to } +1.6 \text{ V}; -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$			3.5	mV
Quad (ADA469x-4)		$V_{CM} = -0.1 \text{ V to } +1.6 \text{ V}; -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$			4.0	mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	-40°C < T _A < +125°C		1	4	μV/°C
Input Bias Current	I _B			0.5	5	рА
		-40°C < T _A < +125°C			360	pА
Input Offset Current	los			1	8	рΑ
		-40°C < T _A < +125°C			225	рΑ
Input Voltage Range		-40°C < T _A < +125°C	-0.3		+1.6	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -0.3 \text{ V to } +1.6 \text{ V}$	70	90		dB
-		$V_{CM} = -0.1 \text{ V to } +1.6 \text{ V}; -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$	62			dB
Large Signal Voltage Gain	Avo	$R_L = 2 \text{ k}\Omega$, $V_{OUT} = 0.5 \text{ V}$ to 2.2 V	90	100		dB
3 3 3		-40°C < T _A < +85°C	80			dB
		-40°C < T _A < +125°C	63			dB
		$R_L = 600 \Omega$, $V_{OUT} = 0.5 V$ to 2.2 V	85	95		dB
Input Capacitance	C _{IN}					
Differential Mode	CINDM			2.5		рF
Common Mode	CINCM			7		pF
Logic High Voltage (Enabled)	V _{IH}	-40°C < T _A < +125°C	1.6			v
Logic Low Voltage (Power-Down)	V _{IL}	-40°C < T _A < +125°C			0.5	V
Logic Input Current (Per Pin)	I _{IN}	$-40^{\circ}\text{C} < \text{T}_{A} < +125^{\circ}\text{C}, 0 \text{ V} \le \text{V}_{SD} \le 2.7 \text{ V}$			1	μΑ
OUTPUT CHARACTERISTICS						·
Output Voltage High	V _{OH}	$R_L = 2 k\Omega$ to GND	2.65	2.67		V
3		-40°C < T _A < +125°C	2.6			V
		$R_L = 600 \Omega$ to GND	2.55	2.59		V
		-40°C < T _A < +125°C	2.5			V
Output Voltage Low	VoL	$R_L = 2 k\Omega \text{ to } V_{SY}$		24	30	mV
	- 02	-40°C < T _A < +125°C			40	mV
		$R_L = 600 \Omega$ to V_{SY}		78	95	mV
		-40°C < T _A < +125°C			130	mV
Short-Circuit Current	Isc	V _{OUT} = V _{SY} or GND		±15		mA
Closed-Loop Output Impedance	Zout	$f = 1 \text{ MHz}, A_V = -100$		372		Ω
Output Pin Leakage Current		$-40^{\circ}\text{C} < \text{T}_{A} < +125^{\circ}\text{C}$, shutdown active, $V_{SD} = V_{SS}$		10		nA
POWER SUPPLY						1
Power Supply Rejection Ratio	PSRR	$V_S = 2.7 \text{ V to } 5.5 \text{ V}$	80	90		dB
. over supply rejection natio	1 31111	-40°C < T _A < +125°C	75	70		dB
Supply Current Per Amplifier	I _{SY}	$V_{OUT} = V_{SY}/2$	'	165	200	μA
Supply Culterit i et Amplinei	151	$-40^{\circ}\text{C} < \text{T}_{A} < +125^{\circ}\text{C}$		105	240	μΑ
	1	10 C \ 1A \ 1125 C	Ī		Z-TU	μ/1
Supply Current Shutdown Mode	I _{SD}	All amplifiers shut down, $V_{SD} = V_{SS}$		10		nA

Parameter	Symbol	Test Conditions/Comments	Min Typ Max	Unit
DYNAMIC PERFORMANCE				
Slew Rate	SR	$R_L = 600 \Omega$, $C_L = 20 pF$, $A_V = +1$	1.1	V/µs
		$R_L = 2 \text{ k}\Omega$, $C_L = 20 \text{ pF}$, $A_V = +1$	1.4	V/µs
Settling Time to 0.1%	ts	Step = 0.5 V, $R_L = 2 k\Omega$, 600 Ω	1	μs
Gain Bandwidth Product	GBP	$R_L = 1 \text{ M}\Omega$, $C_L = 35 \text{ pF}$, $A_V = +1$	3.6	MHz
Phase Margin	Фм	$R_L = 1 \text{ M}\Omega$, $C_L = 35 \text{ pF}$, $A_V = +1$	49	Degrees
Turn-On/Turn-Off Time		$R_L = 600 \Omega$	1	μs
NOISE PERFORMANCE				
Distortion	THD + N	$A_V = -1$, $R_L = 2 \text{ k}\Omega$, $f = 1 \text{ kHz}$, $V_{IN} \text{ rms} = 0.15 \text{ V rms}$	0.009	%
		$A_V = -1$, $R_L = 600 \Omega$, $f = 1 \text{ kHz}$, $V_{IN} \text{ rms} = 0.15 \text{ V rms}$	0.01	%
		$A_V = +1$, $R_L = 2 k\Omega$, $f = 1 kHz$, V_{IN} rms = 0.15 V rms	0.006	%
		$A_V = +1$, $R_L = 600 \Omega$, $f = 1 \text{ kHz}$, $V_{IN} \text{ rms} = 0.15 \text{ V rms}$	0.009	%
Voltage Noise	e _n p-p	f = 0.1 Hz to 10 Hz	3.1	μV p-p
Voltage Noise Density	en	f = 1 kHz	16	nV/√Hz
		f = 10 kHz	13	nV/√Hz

ELECTRICAL CHARACTERISTICS—5 V OPERATION

 $V_{SY} = 5$ V, $V_{CM} = V_{SY}/2$, $T_A = 25$ °C, unless otherwise specified.

Table 3.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$V_{CM} = -0.3 \text{ V to } +3.9 \text{ V}$		0.5	2.5	mV
Dual (ADA469x-2)		$V_{CM} = -0.1 \text{ V to } +3.9 \text{ V}; -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$			3.5	mV
Quad (ADA469x-4)		$V_{CM} = -0.1 \text{ V to } +3.9 \text{ V; } -40^{\circ}\text{C} < T_{A} < +125^{\circ}\text{C}$			4.0	mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	-40°C < T _A < +125°C		1	4	μV/°C
Input Bias Current	I _B			0.5	5	рА
		-40°C < T _A < +125°C			360	рА
Input Offset Current	los			1	8	рА
		-40°C < T _A < +125°C			260	рА
Input Voltage Range		-40°C < T _A < +125°C	-0.3		+3.9	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -0.3 \text{ V to } +3.9 \text{ V}$	75	98		dB
		$V_{CM} = -0.1 \text{ V to } +3.9 \text{ V}; -40^{\circ}\text{C} < T_A < +125^{\circ}\text{C}$	68			dB
Large Signal Voltage Gain	A_{VO}	$R_L = 2 \text{ k}\Omega$, $V_O = 0.5 \text{ V}$ to 4.5 V, $V_{CM} = 0 \text{ V}$	95	110		dB
		$-40^{\circ}\text{C} < \text{T}_{A} < +85^{\circ}\text{C}$	80			dB
		-40°C < T _A < +125°C	70			dB
		$R_L = 600 \Omega$, $V_O = 0.5 V$ to $4.5 V$, $V_{CM} = 0 V$	90	100		dB
Input Capacitance						
Differential Mode	CINDM			2.5		рF
Common Mode	C _{INCM}			7		рF
Logic High Voltage (Enabled)	V _{IH}	-40°C < T _A < +125°C	2.0			٧
Logic Low Voltage (Power-Down)	V_{IL}	-40°C < T _A < +125°C			8.0	٧
Logic Input Current (Per Pin)	I _{IN}	$-40^{\circ}\text{C} < \text{T}_{\text{A}} < +125^{\circ}\text{C}, 0 \text{ V} \le \text{V}_{\text{SD}} \le 2.7 \text{ V}$			1	μΑ

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 2 k\Omega$	4.95	4.97		V
		-40°C ≤ T _A ≤ +125°C	4.90			V
		$R_L = 600 \Omega$ to GND	4.85	4.88		V
		-40°C ≤ T _A ≤ +125°C	4.80			V
Output Voltage Low	V_{OL}	$R_L = 2 k\Omega$		30	35	mV
		-40°C ≤ T _A ≤ +125°C			50	mV
		$R_L = 600 \Omega$		100	110	mV
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$			155	mV
Short-Circuit Limit	Isc	$V_{OUT} = V_{SY}$ or GND		±55		mA
Closed-Loop Output Impedance	Z _{out}	ADA4691-2, $f = 1$ MHz, $A_V = -100$		364		Ω
		ADA4691-2, $f = 1$ MHz, $A_V = -100$		246		Ω
Output Pin Leakage Current		-40 °C < T _A < $+125$ °C, shutdown active, $V_{SD} = V_{SS}$		10		nA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_{SY} = 2.7 \text{ V to } 5.5 \text{ V}$	80	90		dB
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	75			dB
Supply Current Per Amplifier	Isy	$V_{OUT} = V_{SY}/2$		180	225	μΑ
		-40°C ≤ T _A ≤ +125°C			275	μΑ
Supply Current Shutdown Mode	I _{SD}	All amplifiers shut down, $V_{SD} = V_{SS}$		10		nA
		-40°C ≤ T _A ≤ +125°C			2	μΑ
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 \text{ k}\Omega$, 600 Ω , $C_L = 20 \text{ pF}$, $A_V = +1$		1.3		V/µs
Settling Time to 0.1%	ts	$V_{IN} = 2 \text{ V step, } R_L = 2 \text{ k}\Omega \text{ or } 600 \Omega$		1.5		μs
Gain Bandwidth Product	GBP	$R_L = 1 \text{ M}\Omega$, $C_L = 35 \text{ pF}$, $A_V = +1$		3.6		MHz
Phase Margin	Фм	$R_L = 1 \text{ M}\Omega$, $C_L = 35 \text{ pF}$, $A_V = +1$		52		Degrees
Turn-On/Turn-Off Time		$R_L = 600 \Omega$		1		μs
NOISE PERFORMANCE						
Distortion	THD + N	$A_V = -1$, $R_L = 2 k\Omega$, $f = 1 kHz$, $V_{IN} rms = 0.8 V rms$		0.006		%
		$A_V = -1$, $R_L = 600 \Omega$, $f = 1 \text{ kHz}$, $V_{IN} \text{ rms} = 0.8 \text{ V rms}$		0.008		%
		$A_V = +1$, $R_L = 2 k\Omega$, $f = 1 kHz$, $V_{IN} rms = 0.8 V rms$		0.001		%
		$A_V = +1$, $R_L = 600 \Omega$, $f = 1 \text{ kHz}$, $V_{IN} \text{ rms} = 0.8 \text{ V rms}$		0.003		%
Voltage Noise	e _n p-p	f = 0.1 Hz to 10 Hz		3.2		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		16		nV/√Hz
·9	e _n	f = 10 kHz		13		nV/√Hz
						1, 42

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Supply Voltage	6 V
Input Voltage	$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$
Input Current ¹	±10 mA
Shutdown Pin Rise/Fall Times	50 μs maximum
Differential Input Voltage ²	$\pm V_{SY}$
Output Short-Circuit Duration to GND	Indefinite
Temperature	
Storage Temperature Range	−65°C to +150°C
Operating Temperature Range	-40°C to +125°C
Junction Temperature Range	−65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

 $^{^1}$ Input pins have clamp diodes to the supply pins. Limit the input current to $10\,\mathrm{mA}$ or less whenever the input signal exceeds the power supply rail by 0.3 V.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages and measured using a standard 4-layer board, unless otherwise specified.

Table 5. Thermal Resistance

Package Type	θја	θις	Unit
8-Lead SOIC_N (R-8)	120	45	°C/W
8-Lead LFCSP (CP-8-6)	125	40	°C/W
9-Ball WLCSP (CB-9-3)	77	N/A^1	°C/W
10-Lead LFCSP (CP-10-11)	115	40	°C/W
16-Lead LFCSP (CP-16-22)	75	12	°C/W
14-Lead TSSOP (RU-14)	112	35	°C/W

¹ N/A = not applicable.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

 $^{^{\}rm 2}$ Differential input voltage is limited to 6 V or the supply voltage, whichever is less.

PIN CONFIGURATIONS

Figure 3. 9-Ball Wafer Level Chip Scale WLCSP (CB-9-3)

Figure 4. 10-Lead, $2 \text{ mm} \times 2 \text{ mm LFCSP}$ (CP-10-11)

Figure 5. 16-Lead, 3 mm × 3 mm LFCSP (CP-16-22)

Figure 6. 8-Lead, $2 \text{ mm} \times 2 \text{ mm LFCSP (CP-8-6)}$

Figure 7. 8-Lead SOIC_N (R-8)

Figure 8. 14-Lead TSSOP (RU-14)

TYPICAL PERFORMANCE CHARACTERISTICS

 $T_A = 25$ °C, unless otherwise noted.

Figure 9. Input Offset Voltage Distribution

Figure 10. Input Offset Voltage Drift Distribution

Figure 11. Input Offset Voltage vs. Common-Mode Voltage

Figure 12. Input Offset Voltage Distribution

Figure 13. Input Offset Voltage Drift Distribution

Figure 14. Input Offset Voltage vs. Common-Mode Voltage

Figure 15. Input Bias Current vs. Temperature

Figure 16. Input Bias Current vs. Common-Mode Voltage

Figure 17. Output Voltage (V_{OH}) to Supply Rail vs. Load Current

Figure 18. Input Bias Current vs. Temperature

Figure 19. Input Bias Current vs. Common-Mode Voltage

Figure 20. Output Voltage (V_{OH}) to Supply Rail vs. Load Current

Figure 21. Output Voltage (Vol.) to Supply Rail vs. Load Current

Figure 22. Open-Loop Gain and Phase vs. Frequency

Figure 23. Closed-Loop Gain vs. Frequency

Figure 24. Output Voltage (Vol.) to Supply Rail vs. Load Current

Figure 25. Open-Loop Gain and Phase vs. Frequency

Figure 26. Closed-Loop Gain vs. Frequency

Figure 27. Output Impedance vs. Frequency

Figure 28. CMRR vs. Frequency

Figure 29. PSRR vs. Frequency

Figure 30. Output Impedance vs. Frequency

Figure 31. CMRR vs. Frequency

Figure 32. PSRR vs. Frequency

Figure 33. Voltage Noise Density vs. Frequency

Figure 34. Small Signal Overshoot vs. Load Capacitance

Figure 35. Large Signal Transient Response

Figure 36. Voltage Noise Density vs. Frequency

Figure 37. Small Signal Overshoot vs. Load Capacitance

Figure 38. Large Signal Transient Response

Figure 39. Small Signal Transient Response

Figure 40. 0.1 Hz to 10 Hz Noise

Figure 41. Supply Current per Amplifier vs. Supply Voltage

Figure 42. Small Signal Transient Response

Figure 43. 0.1 Hz to 10 Hz Noise

Figure 44. Supply Current per Channel vs. Temperature

Figure 45. THD + Noise vs. Frequency

Figure 46. Positive Overload Recovery

Figure 47. Negative Overload Recovery

Figure 48. THD + Noise vs. Frequency

Figure 49. Positive Overload Recovery

Figure 50. Negative Overload Recovery

Figure 51. Positive Settling Time to 0.1%

Figure 52. Negative Settling Time to 0.1%

Figure 53. Channel Separation (CS) vs. Frequency

Figure 54. Positive Settling Time to 0.1%

Figure 55. Negative Settling Time to 0.1%

SHUTDOWN OPERATION

INPUT PIN CHARACTERISTICS

The ADA4691-2 has a classic CMOS logic inverter input for each shutdown pin, as shown in Figure 56.

Figure 56. CMOS Inverter

With slowly changing inputs, the top transistor and bottom transistor may be slightly on at the same time, increasing the supply current. This can be avoided by driving the input with a digital logic output having fast rise and fall times. Figure 57 through Figure 59 show the supply current for both sections switching simultaneously with rise times of 1 μs , 10 μs , and 1 ms. Clearly, the rise and fall times should be faster than 10 μs . Using an RC time constant to enable/disable shutdown is not recommended.

Figure 57. Shutdown Pin Rise Time = 1 μs

Figure 58. Shutdown Pin Rise Time = $10 \mu s$

Figure 59. Shutdown Pin Rise Time = 1 ms

INPUT THRESHOLD

The input threshold is approximately 1.2~V above the V- pin when operating on ground and 5~V and 0.9~V when operating on 2.7~V (see Figure 60 and Figure 61). The threshold is relatively stable over temperature. For operation on split supplies, the logic swing may have to be level shifted.

Figure 60. Supply Current vs. Temperature, $V_{SY} = 5 V$

Figure 61. Supply Current vs. Temperature, $V_{SY} = 2.7 V$

OUTLINE DIMENSIONS

Figure 62. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ] 3 mm × 3 mm Body, Very Very Thin Quad (CP-16-22) Dimensions shown in millimeters

Figure 63. 9-Ball Wafer Level Chip Scale Package [WLCSP] (CB-9-3) Dimensions shown in millimeters

4 00

Figure 64. 10-Lead Lead Frame Chip Scale Package [LFCSP_UQ] 2 mm × 2 mm Body, Ultra Thin Quad (CP-10-11) Dimensions shown in millimeters

Figure 65. 8-Lead Lead Frame Chip Scale Package [LFCSP_UD] 2 mm × 2 mm Body, Ultra Thin, Dual Lead (CP-8-6) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-AA

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 66. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)

Dimensions shown in millimeters and (inches)

Figure 67. 14-Lead Thin Shrink Small Outline Package [TSSOP] (RU-14) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
ADA4691-2ACBZ-R7	-40°C to +125°C	9-Ball WLCSP	CB-9-3	A2C
ADA4691-2ACBZ-RL	-40°C to +125°C	9-Ball WLCSP	CB-9-3	A2C
ADA4691-2ACPZ-R7	-40°C to +125°C	10-Lead LFCSP_UQ	CP-10-11	A2
ADA4691-2ACPZ-RL	-40°C to +125°C	10-Lead LFCSP_UQ	CP-10-11	A2
ADA4691-4ACPZ-R2	-40°C to +125°C	16-Lead LFCSP_WQ	CP-16-22	A2P
ADA4691-4ACPZ-R7	-40°C to +125°C	16-Lead LFCSP_WQ	CP-16-22	A2P
ADA4691-4ACPZ-RL	-40°C to +125°C	16-Lead LFCSP_WQ	CP-16-22	A2P
ADA4692-2ACPZ-R7	-40°C to +125°C	8-Lead LFCSP_UD	CP-8-6	A3
ADA4692-2ACPZ-RL	-40°C to +125°C	8-Lead LFCSP_UD	CP-8-6	A3
ADA4692-2ARZ	-40°C to +125°C	8-Lead SOIC_N	R-8	
ADA4692-2ARZ-R7	-40°C to +125°C	8-Lead SOIC_N	R-8	
ADA4692-2ARZ-RL	-40°C to +125°C	8-Lead SOIC_N	R-8	
ADA4692-4ARUZ	-40°C to +125°C	14-Lead TSSOP	RU-14	
ADA4692-4ARUZ-RL	-40°C to +125°C	14-Lead TSSOP	RU-14	

 $^{^{1}}$ Z = RoHS Compliant Part.