Optimization in Application: Green Epichlorohydrin Plant Production

Tanner Street and Zack Horton December 5th, 2023

- 1. Problem & Motivation
- 2. Data for Problem
- 3. Method to Solve
- 4. Key Findings
- 5. Conclusion

Problem & Motivation

Network representation of chemical plant

5 total materials2 reactants1 final product

ECH is a primary intermediate in epoxy resin production

- ECH traditionally produced using propylene
- Glycerol sustainable alternative (biodiesel byproduct)

Plant centered around dehydrochlorination reaction:

Motivation is to create a more sustainable, efficient solution that maximizes profit, adheres to chemical engineering principles, and environmental standards

Block Flow Diagram

Data for Problem

Suppliers

- Unit cost of purchasing
- Varying levels of impurity
- Supply of a specific raw material

Dath five

Separators

- Both fixed and unit cost
- 100% recovery for raw materials
- Varying recoveries for product streams

Reactors

- Both fixed and unit cost
- Different conversion rates
- Capacity of vessels

Customers

- Unit revenue
- Storage capacity
- Purity requirement

Method to Solve

1,138 constraints470 continuous and40 binary variables

Flow and Mass Conservation:

$$\sum_{m=1}^{M}\sum_{p=1}^{2}b_{mr}^{p}=\sum_{s=1}^{S}\sum_{p=1}^{P}d_{rs}^{p}\;,\quadorall r\in R$$

Costs:

$$UC_r = \sum_{p=1}^P \sum_{m=1}^M \sum_{r=1}^R c_r imes b_{mr}^p \ \ FC_r = \sum_{r=1}^R f_r imes \sigma_r \ \ egin{equation} egin{equation} eta_{mr}^p \leq \mathbf{M} imes \sigma_r \ egin{equation} egin{equation$$

Separator Recovery:

$$\sum_{r=1}^R I_s imes d_{rs}^p = \sum_{l=1}^L \Delta e_{sl}^p \;, \quad orall s \in S, orall p \in \{1,2,3,4\}$$

DCH Limiting Reactant:

$$rac{\sum_{m=1}^{M}b_{mr}^{1}}{MW_{p=1}} \leq rac{\sum_{m=1}^{M}b_{mr}^{2}}{MW_{p=2}}$$

Method to Solve

1,138 constraints470 continuous and40 binary variables

NaOH Conversion:

$$\sum_{m=1}^{M} MW_{p=2} imes (rac{b_{mr}^{p=2}}{MW_{p=2}} - \gamma_r imes rac{b_{mr}^{p=1}}{MW_{p=1}}) = \sum_{s=1}^{S} d_{rs}^{p=2}$$

Organic Waste Disposal:

$$\sum_{s=1}^{S} \Delta e^1_{sl} \leq 0.05 imes \sum_{s=1}^{S} \sum_{p=1}^{P} \Delta e^p_{sl} \ , \quad orall l \in L$$

Customer Demand:

$$\sum_{k=1}^{S}\sum_{k=1}^{P}e_{sk}^{p}\leq g_{k}\,,\quad orall k\in K \quad oldsymbol{e}_{sk}^{p}\leq \mathbf{M} imes e_{sk}^{5}$$

$$(1-
u_k) imes\sum_{s=1}^S\sum_{p=1}^Pe^p_{sk}\leq\sum_{s=1}^Se^5_{sk}\ ,\quad orall k\in K$$

Key Findings

Financial Success

\$7.5M in Net Profit

\$12.7M in Operating Cost

\$20.2M in Sales Revenue

Option Utilization

4 separators and 2 reactors used

1 customer at storage capacity

4 distinct suppliers

Environmental Waste

\$774K in aqueous waste

\$143K in organic waste

8K MT waste

Impact & Conclusion

Optimization helps create sustainable and profitable solution

7.5M USD net profit

Maximize profit while maintaining sustainability

Future Plant Improvement: Recycle more material instead of sending to wastewater

Explore changes that allow scaling up to use all available capital

Conclusion: With optimization driven strategy, the plant is an environmentally and financially lucrative investment.

Thank you!

Questions?

Appendix Slides

Flow of Chemicals in Plant

Network Representation of Chemical Plant

Solution

Solution

Streams	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
DCH Flow [MT]	1713	7000	3000	0	0	5600	0	2033	1995	0	76	239	0	1	76	0	29	211
NaOH Flow [MT]	0	0	0	206	3000	0	0	2367	619	0	24	74	0	1	23	0	9	65
NaCl Flow [MT]	0	0	0	0	0	0	0	0	0	0	3424	795	0	34	3390	77	18	700
H ₂ O Flow [MT]	0	0	0	0	0	0	0	0	0	0	1055	245	0	11	1044	29	0	216
ECH Flow [MT]	0	0	0	0	0	0	0	0	0	0	5421	1259	1000	4421	0	781	478	0
Impure Flow [MT]	0	0	0	0	0	0	1400	0	0	906	0	0	0	0	0	0	0	0
Total Flow [MT]	1713	7000	3000	206	3000	5600	1400	4400	2614	906	10000	2612	1000	4468	4533	887	534	1192
Unit Cost [USD/MT]	45	35	45	45	45	200	100	200	85	100	50	50	-	Ŧ.	Varies	=	-	Varies

Solution

Cost Breakdown of Optimal Solution

_				
So		~	_	\sim
				_
	-		•	•

6,502,257
2,222,124
1,400,000
774,383
630,600
601,363
325,000
143,102
125,000

Sets and Ranges for Problem


```
Sets of Values:
                                                                Supplier (n) \in [1, N]
                                                                Material (p) \in [1, P]
           p=1 for DCH, p=2 for NaOH, p=3 for NaCl, p=4 for H2O, and p=5 ECH
                                                       Separator (Left) (m) \in [1, M]
                   Waste Water Treatment Plant (for initial separators) (j) \in [J]
                                                                Reactors (r) \in [1, R]
                                                       Separator (Right) (s) \in [1, S]
                                                              Customers (k) \in [1, K]
                  Waste Water Treatment Plant (for second separators) (l) \in [L]
                                         Aqueous Materials (p \in \{2, 3, 4, 5\})
                                                  Organic Materials (p = 1)
                                   Fixed Cost for using separator (left) (m) = f_m
                                             Fixed Cost for using reactor (r) = f_r
                                   Fixed Cost for using separator (right) (s) = f_s
                      Unit Cost for sending material to separator (left) (m) = c_m
          Unit Cost for sending material to waste water treatment plant (j) = c_j
                              Unit Cost for sending material to reaction (r) = c_r
                      Unit Cost for sending material to separator (right) (s) = c_s
Unit Cost for sending material to waste water treatment plant (aqueous) (l) = c_l^A
Unit Cost for sending material to waste water treatment plant (organic) (l) = c_l^O
```

Unit Profit for sending material to customer $k = p_k$

Variables in Model

```
a_{nm}^p \in \mathbb{R}_+ = 	ext{amount of material } p \in \{1,2\} purchased from supplier n and sent to separator m
           I_n = \% impurity in material p \in \{1, 2\} purchased from supplier n
  b^p_{mr} \in \mathbb{R}_+ = 	ext{amount of separated (pure)} material p \in \{1,2\} to send from separator m to reactor r
\Delta b_{mj}^p \in \mathbb{R}_+ = 	ext{amount of separated (impure) material } p \in \{1,2\} 	ext{ to send from separator } m 	ext{ to waste plant } j
   d^p_{rs} \in \mathbb{R}_+ = 	ext{amount of reacted material } p 	ext{ (with impurities) to ship from reactor } r 	ext{ to separator } s
           \gamma_r = \% yield during reaction from reactor r
  e^p_{sk} \in \mathbb{R}_+ = 	ext{amount of separated material } p 	ext{ (pure) to ship from separator } s 	ext{ to customer } k
 \Delta e_{\circ l}^A \in \mathbb{R}_+ = amount of separated (impure) aqueous material to ship from separator s to waste plant l
 \Delta e^O_{\cdot l} \in \mathbb{R}_+ = amount of separated (impure) organic material to ship from separator s to waste plant l
            I_s = \% recovery of materials from separator s
    g_k \in \mathbb{R}_+ = 	ext{units of demand from customer k}
           \nu_k = \text{maximum } \% of non-ECH product that customer k willing to except, relative to amount of ECH shipped
\rho_m \in \{0,1\} = \text{binary indicator if separator (left) } m \text{ used}
\sigma_r \in \{0,1\} = \text{binary indicator if reactor } r \text{ used}
\mu_s \in \{0,1\} = \text{binary indicator if separator (right) } s \text{ used}
z_{rs} \in \{0,1\} = \text{binary indicator if reactor } r \text{ ships material to separator (right) } s
```


Conservation of Flow & Mass

$$\sum_{n=1}^N a_{nm}^p = \sum_{j=1}^J \Delta b_{mj}^p + \sum_{r=1}^R b_{mr}^p \;, \quad orall p \in \{1,2\}, orall m \in M, orall j \in J$$

$$\sum_{m=1}^{M} \sum_{p=1}^{2} b_{mr}^{p} = \sum_{s=1}^{S} \sum_{p=1}^{P} d_{rs}^{p} \ , \quad orall r \in R$$

$$\sum_{r=1}^{R} d_{rs}^p = \sum_{l=1}^{L} \Delta e_{sl}^p + \sum_{k=1}^{K} e_{sk}^p \;, \quad orall s \in S, orall p \in P$$

Fixed Cost for Primary (Left) Separators

$$egin{aligned} a_{nm}^p & \leq \mathbf{M} imes
ho_m \;, & orall n \in N, orall p \in P, orall m \in M \ b_{mr}^p & \leq \mathbf{M} imes
ho_m \;, & orall p \in P, orall m \in M, orall r \in R \ \Delta b_{mj}^p & \leq \mathbf{M} imes
ho_m \;, & orall p \in P, orall m \in M, orall j \in J \end{aligned}$$

$$FC_m = \sum_{m=1}^M f_m imes
ho_m$$

Fixed Cost for Reactors

$$egin{aligned} b^p_{mr} & \leq \mathbf{M} imes \sigma_r \;, & orall p \in P, orall m \in M, orall r \in R \ d^p_{rs} & \leq \mathbf{M} imes \sigma_r \;, & orall r \in R, orall p \in P, orall s \in S \end{aligned}$$

$$FC_r = \sum_{r=1}^n f_r imes \sigma_r$$

Fixed Cost for Secondary (Right) Separators

$$egin{aligned} d_{rs}^p & \leq \mathbf{M} imes \mu_s \;, & orall r \in R, orall p \in P, orall s \in S \ e_{sk}^p & \leq \mathbf{M} imes \mu_s \;, & orall s \in S, orall p \in P, orall k \in K \ \Delta e_{sl}^p & \leq \mathbf{M} imes \mu_s \;, & orall s \in S, orall p \in P, orall l \in L \ S \end{aligned}$$

$$FC_s = \sum_{s=1}^{5} f_r imes \mu_s$$

Customer Demand Constraints

$$\sum_{s=1}^{S}\sum_{p=1}^{P}e_{sk}^{p}\leq g_{k}\;, \quad orall k\in K$$

$$(1-
u_k) imes \sum_{s=1}^{S} \sum_{p=1}^{P} e^p_{sk} \leq \sum_{s=1}^{S} e^5_{sk} \;, \quad orall k \in K$$

$$e^p_{sk} \leq \mathbf{M} imes e^5_{sk} \;, \quad orall s \in S, orall k \in K, orall p \in \{1,2,3,4\}$$

Unit Cost Calculations

$$egin{aligned} UC_n &= \sum_{p=1}^P \sum_{n=1}^N \sum_{m=1}^M c_n imes a_{nm}^p & UC_r &= \sum_{p=1}^P \sum_{m=1}^M \sum_{r=1}^R c_r imes b_{mr}^p \ UC_m &= \sum_{p=1}^P \sum_{n=1}^N \sum_{m=1}^M c_m imes a_{nm}^p & UC_s &= \sum_{p=1}^P \sum_{r=1}^R \sum_{s=1}^S c_s imes d_{rs}^p \ UC_j &= \sum_{p=1}^P \sum_{m=1}^M \sum_{j=1}^J c_j imes \Delta b_{mj}^p & UC_l &= \sum_{s=1}^S \sum_{l=1}^L (c_l^A imes \Delta e_{sl}^A + c_l^O imes \Delta e_{sl}^O) \end{aligned}$$

Arc Flow Capacities

$$\sum_{m=1}^{M} a^p_{nm} \leq supply_N \;, \quad orall n \in N, orall p \in \{1,2\} \qquad egin{array}{c} \sum_{r=1}^{s=1} \sum_{p=1}^{p=1} d^p_{rs} \leq capacity_S \;, \quad orall s \in S \ L & P & P & K \end{array}$$

$$\sum_{n=1}^{N}\sum_{p=1}^{2}a_{nm}^{p}\leq capacity_{M}\ , \quad orall m\in M$$

$$\sum_{j=1}^{J} \Delta b_{mj}^p + \sum_{r=1}^{R} \sum_{p=1}^{2} b_{mr}^p \leq capacity_M \ , \quad orall m \in M$$

$$\sum_{m=1}^{M}\sum_{m=1}^{2}b_{mr}^{p}\leq capacity_{R}\ , \quad orall r\in R$$

$$\sum_{s=1}^{S}\sum_{r=1}^{2}d_{rs}^{p}\leq capacity_{R}\ , \quad orall r\in R$$

$$\sum_{r=1}^{R}\sum_{p=1}^{P}d_{rs}^{p} \leq capacity_{S} \ , \quad orall s \in S$$

$$\sum_{l=1}^{L}\sum_{m=1}^{P}\Delta e_{sl}^{p} + \sum_{m=1}^{P}\sum_{k=1}^{K}e_{sk}^{p} \leq capacity_{S} \,, \quad orall s \in S$$

Recovery from Primary (Left) Separators

$$\sum_{n=1}^N (1-I_n) imes a_{nm}^p = \sum_{r=1}^R b_{mr}^p \ , \quad orall m \in M, orall p \in \{1,2\}$$

$$\sum_{n=1}^{N}I_{n} imes a_{nm}^{p}=\sum_{j=1}^{J}\Delta b_{mj}^{p}\ , \quad orall m\in M, orall p\in\{1,2\}$$

Chemical Conversion Calculations for Reactors

$$egin{aligned} \sum_{m=1}^{M} MW_{p=1} imes (rac{b_{mr}^{p=1}}{MW_{p=1}} - \gamma_r imes rac{b_{mr}^{p=1}}{MW_{p=1}}) &= \sum_{s=1}^{S} d_{rs}^{p=1} \;, \quad orall r \in R \ \sum_{m=1}^{M} MW_{p=2} imes (rac{b_{mr}^{p=2}}{MW_{p=2}} - \gamma_r imes rac{b_{mr}^{p=1}}{MW_{p=1}}) &= \sum_{s=1}^{S} d_{rs}^{p=2} \;, \quad orall r \in R \ \sum_{m=1}^{M} (MW_{p=3} imes \gamma_r imes rac{b_{mr}^{p=1}}{MW_{p=1}}) &= \sum_{s=1}^{S} d_{rs}^{p=3} \;, \quad orall r \in R \ \sum_{m=1}^{M} (MW_{p=4} imes \gamma_r imes rac{b_{mr}^{p=1}}{MW_{p=1}}) &= \sum_{s=1}^{S} d_{rs}^{p=4} \;, \quad orall r \in R \ \sum_{m=1}^{M} (MW_{p=5} imes \gamma_r imes rac{b_{mr}^{p=1}}{MW_{p=1}}) &= \sum_{s=1}^{S} d_{rs}^{p=5} \;, \quad orall r \in R \end{aligned}$$

Recovery from Secondary (Right) Separators

$$\sum_{r=1}^R I_s imes d_{rs}^p = \sum_{l=1}^L \Delta e_{sl}^p \;, \quad orall s \in S, orall p \in \{1,2,3,4\}$$

$$\sum_{r=1}^R d_{rs}^5 = \sum_{k=1}^K e_{sk}^5 \ , \quad orall s \in S$$

$$\sum_{r=1}^{R} (1-I_s) imes d_{rs}^p = \sum_{k=1}^{K} e_{sk}^p \;, \quad orall s \in S, orall p \in \{1,2,3,4\}$$

Requirements for Organic Waste Disposal

$$\sum_{s=1}^S \Delta e^1_{sl} \leq 0.05 imes \sum_{s=1}^S \sum_{p=1}^P \Delta e^p_{sl} \;, \quad orall l \in L$$

DCH (p=1) is the Limiting Reactant

$$rac{\sum_{m=1}^{m}b_{mr}^{1}}{MW_{n-1}} \leq rac{\sum_{m=1}^{m}b_{mr}^{2}}{MW_{n-2}} \; , \quad orall r \in R$$

Rector Flow Remains Together

$$egin{aligned} \sum_{s=1}^{S} z_{rs} & \leq 1 \;, \quad orall r \in R \ z_{rs} & \leq \mu_s \;, \quad orall r \in R, orall s \in S \ z_{rs} & \leq \sigma_r \;, \quad orall r \in R, orall s \in S \ d^p_{rs} & \leq \mathbf{M} imes z_{rs} \;, \quad orall r \in R, orall s \in S, orall p \in P \end{aligned}$$

Revenue Calculation & Objective Function

$$R_k = \sum_{s=1}^S \sum_{k=1}^K p_k imes e_{sk}^5$$

$$\max \quad R_k - (UC_n + FC_m + UC_m + FC_r + UC_r + FC_s + UC_s + UC_j + UC_l)$$

