1. Choose $b \stackrel{\$}{\leftarrow} \{0, 1\}$ and two random polynomials f_1, f_2 of degree 1 from $\mathbb{Z}_N[x]$, and calculate $g_1(x) = f_1(x)^2 \mod (x^2 - w) = a_1 x + a_0$ and $g_2(x) = f_2(x)^2 \mod (x^2 - uw) = b_1 x + b_0$. The corresponding ciphertext is

$$C_b = \begin{cases} \left\{ a_{\mathbf{0}}, a_{\mathbf{1}}, N - b_{\mathbf{0}}, N - b_{\mathbf{1}} \right\}, & \text{if } b = \mathbf{0}; \\ \left\{ N - a_{\mathbf{0}}, N - a_{\mathbf{1}}, b_{\mathbf{0}}, b_{\mathbf{1}} \right\}, & \text{otherwise}. \end{cases}$$

- 2. Give C_b to $A_2 \longrightarrow A_2$ may issue more hash queries and extraction queries except that the query identity subset ID_2 cannot contain id^* . Finally, A_2 returns a bit b'.
- 3. If b = b' return 1; otherwise return 0.

We shall only analyze the success probability of \mathcal{B} solving the MER₂⁰ assumption in the case $w = \mathcal{H}(id^*)$ as the analyse of the case $w \neq \mathcal{H}(id^*)$ is the same as that in the proof of Proposition 1 in [25]. If $w \in \mathcal{ER}_{N,2}$, according to the fact that $uw \in \mathcal{J}_{N,2}^0 \setminus \mathcal{ER}_{N,2}$ and Theorem 2, we conclude that C_b is a valid ciphertext for $(-1)^b$. For the same reason, if $w \in \mathcal{J}_{N,2}^0 \setminus \mathcal{ER}_{N,2}$, we conclude that C_b is a valid ciphertext for $(-1)^{1-b}$. Hence, \mathcal{B} returns 1 if and only if \mathcal{A} loses the game. Let ϵ be the probability that \mathcal{A} can break the IND-ID-CPA security of Π_2 , thus we have

$$\Pr\left[\mathcal{B}\left(N, w, u\right) = \mathbf{1} \mid w \in \mathcal{ER}_{N, \mathbf{2}}\right] = \Pr\left[w = \mathcal{H}(id^*)\right] \cdot \Pr\left[\mathcal{B}\left(N, w, u\right) = \mathbf{1} \mid w \in \mathcal{ER}_{N, \mathbf{2}} \land w = \mathcal{H}(id^*)\right] + \Pr\left[w \neq \mathcal{H}(id^*)\right] \cdot \Pr\left[\mathcal{B}\left(N, w, u\right) = \mathbf{1} \mid w \in \mathcal{ER}_{N, \mathbf{2}} \land w \neq \mathcal{H}(id^*)\right]$$

$$\Pr\left[\mathcal{B}\left(N,w,u\right)=\mathbf{1}\mid w\in\mathcal{J}_{N,2}^{\mathbf{0}}\setminus\mathcal{ER}_{N,2}\right]=\\\Pr\left[w=\mathcal{H}(id^{*})\right]\cdot\Pr\left[\mathcal{B}\left(N,w,u\right)=\mathbf{1}\mid w\in\mathcal{J}_{N,2}^{\mathbf{0}}\setminus\mathcal{ER}_{N,2}\wedge w=\mathcal{H}(id^{*})\right]+\\\Pr\left[w\neq\mathcal{H}(id^{*})\right]\cdot\Pr\left[\mathcal{B}\left(N,w,u\right)=\mathbf{1}\mid w\in\mathcal{J}_{N,2}^{\mathbf{0}}\setminus\mathcal{ER}_{N,2}\wedge w\neq\mathcal{H}(id^{*})\right]$$

$$\mathsf{Adv}^{\mathsf{MER}^{9}_{\mathcal{B},\mathsf{RSAgen}}}_{\mathcal{B},\mathsf{RSAgen}}(\lambda) = \left| \Pr \left[\mathcal{B} \left(N, w, u \right) = \mathbf{1} \; \middle| \; w \in \mathcal{ER}_{N,2} \right] - \Pr \left[\mathcal{B} \left(N, w, u \right) = \mathbf{1} \; \middle| \; w \in \mathcal{J}^{9}_{N,2} \setminus \mathcal{ER}_{N,2} \right] \right| = \\ \left| \frac{\epsilon}{q_{\mathscr{H}}} + \left(\mathbf{1} - \frac{\mathbf{1}}{q_{\mathscr{H}}} \right) \cdot \frac{\mathbf{1}}{\mathbf{2}} - \left(\frac{\mathbf{1} - \epsilon}{q_{\mathscr{H}}} + \frac{\mathbf{1} - \frac{\mathbf{1}}{q_{\mathscr{H}}}}{\mathbf{2}} \right) \right| = \\ \frac{2}{q_{\mathscr{H}}} \cdot \mathsf{Adv}^{\mathsf{IND-ID-CPA}}_{\mathcal{A}, \Pi_{2}}(\lambda)$$

Construction for Prime Number e Inspired by the approach used in CM scheme to avoid such a hash in BLS scheme, our IBE scheme Π_e for a prime e is defined as follows:

Setup($\mathbf{1}^{\lambda}$) Given a security parameter λ , Setup generates an RSA modulus N=pq a product of two distinct large primes p and q, and selects a prime number e such that $e\mid p-1, e\mid q-1$ and $\gcd(\frac{p+q-2}{e},e)=1$. Setup also selects an element $u\in\mathcal{J}_{N,e}^1\setminus\mathcal{ER}_{N,e}$. The settings of μ is the same as in BLS scheme. The public parameter is $\mathsf{mpk}=\{N,e,u,\mu,\mathcal{J}_{N,e}(\mu),\mathcal{H}\}$ where \mathcal{H} is a publicly available cryptographic hash function mapping an arbitrary binary string to $\mathcal{J}_{N,e}^1$. The master secret key is $\mathsf{msk}=\{p,q\}$.

KeyGen(mpk, msk, id) Using mpk and msk, KeyGen sets $R_{id} = \mathcal{H}(id)$, then computes $\left(\frac{R_{id}}{\mathfrak{p}_1}\right)_e = \zeta_e^{j_1}$ and $r_{id} = (R_{id}u^{-j_1j_2^{-1} \mod e})^{\frac{1}{e}} \mod N$ where $\left(\frac{u}{\mathfrak{p}_1}\right)_e = \zeta_e^{j_2}$. Finally, KeyGen returns

$$\mathsf{sk}_{id} = \{o = -j_1 j_2^{-1} \mod e, \, r_{id} \}$$

as user's private key.

To encrypt a message $m \in \mathbb{Z}_e$ for a user with identity id, Enc first derives the hash value $R_{id} = \mathscr{H}(id)$. Then, it generates $t = \mu^k$ where $k \stackrel{\$}{\hookleftarrow} \mathbb{Z}_e$. We define the sub-algorithm \mathcal{E} which takes as inputs a prime number \mathcal{P} and two integers \mathcal{N} and k as Algorithm 1.

Algorithm 1 \mathcal{E}

Input: a prime number \mathcal{P} , two integers \mathcal{N} and kOutput: a polynomial

- 1: Generate a uniform random polynomial $f(x) \stackrel{\$}{\hookleftarrow} \mathbb{Z}_N^*[x]$ of degree $\mathcal{P}-\mathbf{1}$ 2: Compute $g(x) \leftarrow f(x)^{\mathcal{P}} \mod x^{\mathcal{P}} \mathcal{N}$
- 3: Output the polynomial $c(x) = \frac{g(x)}{u^{k \mod P}}$

The returned ciphertext is

$$C = \left\{ \begin{cases} \left\{ \mathcal{E}\left(e, u^{i} R_{id}, k\right) \mid \mathbf{0} \leq i < e \right\} \\ \left(m + \mathcal{J}_{N, e}\left(t\right)\right) \mod e \end{cases} \right\}$$

When a user with $\mathsf{sk}_{id} = \{o, r_{id}\}$ receives a ciphertext set C, it parses C as $\mathsf{Dec}(\mathsf{mpk},\mathsf{sk}_{id},C)$

$$C = \{c_{0}(x), \ldots, c_{e-1}(x), c\}.$$

Dec recovers the plaintext m as

$$m = (\mathcal{J}_{N,e}(c_o(r_{id})) + c) \mod e$$

Remark 3. The condition $\gcd(\frac{p+q-2}{e},e)=1$ ensures that $\mathcal{J}_{N,e}(\mu)$ is relatively prime to e through the proof of Proposition 1. In the Enc algorithm, computing $\mathscr{J}_{N,e}(t) = k \mathscr{J}_{N,e}(\mu) \mod e$ can be very convenient. In the KeyGen algorithm, the secret key can be successfully derived since $\left(\frac{x}{\mathfrak{p}_1}\right)_e = \left(\frac{x}{\mathfrak{q}_1}\right)_e = 1$ where $x = u^o R_{id} \mod N$. According to Theorem 1, there must exist $y \in \mathbb{Z}_p^*$ and $z \in \mathbb{Z}_q^*$ for which $y^e \equiv x \mod p \text{ and } z^e \equiv x \mod q.$

Correctness Correctness can be verified directly as follows.

$$\begin{split} \mathsf{Dec}(\mathsf{mpk},\mathsf{sk}_{id},(\mathsf{Enc}(id,m))) &\equiv \mathscr{J}_{N,e}\left(c_o(r_{id})\right) + m + \mathscr{J}_{N,e}(\mu^k) \\ &\equiv \mathscr{J}_{N,e}\left(\frac{\mathbf{1}}{\mu^k}\right) + m + \mathscr{J}_{N,e}(\mu^k) \quad (\text{ because } r_{id}^e \equiv u^o R_{id} \bmod N) \\ &\equiv m \pmod e \end{split}$$

Theorem 4. Let $A = (A_1, A_2)$ be an adversary against the IND-ID-CPA security of our scheme Π_e , making at most $q_{\mathscr{H}}$ queries to the random oracle \mathscr{H} and a single query to the Challenge phase. Then, there exists an adversary \mathcal{B} against the MER_e^1 assumption such that

$$\mathsf{Adv}^{\mathsf{IND}\text{-}\mathsf{ID}\text{-}\mathsf{CPA}}_{\mathcal{A},\Pi_e}(\lambda) = \frac{q_{\mathscr{H}}}{2} \cdot \mathsf{Adv}^{\mathsf{MER}^1_e}_{\mathcal{B},RSAgen}(\lambda)$$

Proof. We have already proved that this theorem holds when e = 2. For a general prime e, we need to modify what will the challenger \mathcal{B} do after receiving two different plaintexts m_{θ} and m_{1} , especially the process 1 $(\mathcal{H}(id^*) = w \in \mathcal{J}_{N,e}^1)$ in previous proof as:

1. Choose $b \stackrel{\$}{\hookleftarrow} \{0,1\}$ and $k \stackrel{\$}{\hookleftarrow} \mathbb{Z}_e$. Let $j = \mathcal{J}_{N,e}(\mu)^{-1} \mod e$. The corresponding ciphertext is

$$C_{b} = \begin{cases} \mathcal{E}(e, w, k) \\ \mathcal{E}(e, u^{1}w, k + (m_{0} - m_{1})j) \\ \vdots \\ \mathcal{E}(e, u^{e-1}w, k + (m_{0} - m_{1})j) \\ (m_{0} + \mathcal{J}_{N,e}(\mu^{k})) \mod e \end{cases} \text{ if } b = \mathbf{0};$$

$$C_{b} = \begin{cases} \mathcal{E}(e, w, k) \\ \mathcal{E}(e, u^{1}w, k + (m_{1} - m_{0})j) \\ \vdots \\ \mathcal{E}(e, u^{e-1}w, k + (m_{1} - m_{0})j) \\ (m_{1} + \mathcal{J}_{N,e}(\mu^{k})) \mod e \end{cases} \text{ otherwise.}$$

If $w \in \mathcal{ER}_{N,e}$, then $\left(\frac{u^i w}{\mathfrak{p}_1}\right)_e$ and $\left(\frac{u^i w}{\mathfrak{q}_1}\right)_e$ are both primitive for all $\mathbf{0} < i < e$. From Theorem 2, C_b is computationally equivalent to C_b' where

$$C'_{b} = \begin{cases} \begin{cases} \mathcal{E}(e, w, k) \\ \mathcal{E}(e, u^{1}w, k) \\ \vdots \\ \mathcal{E}(e, u^{e-1}w, k) \\ (m_{0} + \mathcal{J}_{N,e}(\mu^{k})) \mod e \end{cases} & \text{if } b = \mathbf{0}; \\ \begin{cases} \mathcal{E}(e, u^{e-1}w, k) \\ \mathcal{E}(e, u^{1}w, k) \\ \vdots \\ \mathcal{E}(e, u^{e-1}w, k) \\ (m_{1} + \mathcal{J}_{N,e}(\mu^{k})) \mod e \end{cases} & \text{otherwise.} \end{cases}$$

Thus, C_b is a valid ciphertext for m_b . If $w \in \mathcal{J}_{N,e}^1 \setminus \mathcal{ER}_{N,e}$, for the same reason, C_b is computationally equivalent to $\overline{C_b}$ where

$$\overline{C_b} = \begin{cases}
\mathcal{E}(e, w, k + (m_{\theta} - m_1)j) \\
\mathcal{E}(e, u^1 w, k + (m_{\theta} - m_1)j) \\
\vdots \\
\mathcal{E}(e, u^{e-1} w, k + (m_{\theta} - m_1)j) \\
(m_1 + \mathcal{J}_{N,e} (\mu^{k+(m_{\theta} - m_1)j})) \mod e
\end{cases} \text{ if } b = 0;$$

$$\overline{C_b} = \begin{cases}
\mathcal{E}(e, w^{e-1} w, k + (m_1 - m_{\theta})j) \\
\mathcal{E}(e, u^1 w, k + (m_1 - m_{\theta})j) \\
\vdots \\
\mathcal{E}(e, u^{e-1} w, k + (m_1 - m_{\theta})j) \\
(m_{\theta} + \mathcal{J}_{N,e} (\mu^{k+(m_1 - m_{\theta})j})) \mod e
\end{cases} \text{ otherwise.}$$

In this case, C_b is a valid ciphertext for m_{1-b} .

The reader can easily fill in the remaining details of the proof from the proof of Theorem 3.