Layout Hotspot Detection with Feature Tensor Generation and Deep Biased Learning

Haoyu Yang,

The Chinese University of Hong Kong

Lithography Hotspot Detection

RET: OPC, SRAF, MPL

Still hotspot: low fidelity patterns

► Simulations: extremely CPU intensive

Special Issues for Layout Hotspot Detection

Layout image size is large ($\approx 1000 \times 1000$)

- ► Compared to ImageNet ($\approx 200 \times 200$)
- Associated CNN model is large
- Not storage and computational efficient

Hotspot detection accuracy is more important

- Hotspot -> Circuit Failure
- False Alarm –> Runtime Overhead
- Consider methods for better trade-off between accuracy and falsealarm

Layout clip with 1nm precision has resolution 1200 imes 1200

Feature Tensor Generation

- Clip Partition
- Discrete Cosine Transform
- Discarding High Frequency Components
- Feature Tensor

Feature Tensor Generation

- Clip Partition
- Discrete Cosine Transform
- Discarding High Frequency Components
- Feature Tensor

Feature Tensor Generation

- Clip Partition
- Discrete Cosine Transform
- Discarding High Frequency Components
- Feature Tensor

CNN Architecture

Feature Tensor

- k-channel hyper-image
- Compatible with CNN
- Storage and computional efficiency

Layer	Kernel Size	Stride	Output Node #
conv1-1	3	1	$12 \times 12 \times 16$
conv1-2	3	1	$12 \times 12 \times 16$
maxpooling1	2	2	$6 \times 6 \times 16$
conv2-1	3	1	$6 \times 6 \times 32$
conv2-2	3	1	$6 \times 6 \times 32$
maxpooling2	2	2	$3 \times 3 \times 32$
fc1	N/A	N/A	250
fc2	N/A	N/A	2

Recall The Training Procedure

Minimize difference with ground truths

$$\mathbf{y}_n^* = [1, 0], \ \mathbf{y}_h^* = [0, 1].$$
 (1)

$$\mathbf{F} \in \begin{cases} \mathcal{N}, & \text{if } \mathbf{y}(0) > 0.5\\ \mathcal{H}, & \text{if } \mathbf{y}(1) > 0.5 \end{cases}$$
 (2)

Recall The Training Procedure

Minimize difference with ground truths

$$\mathbf{y}_n^* = [1, 0], \ \mathbf{y}_h^* = [0, 1].$$
 (1)

$$\mathbf{F} \in \begin{cases} \mathcal{N}, & \text{if } \mathbf{y}(0) > 0.5\\ \mathcal{H}, & \text{if } \mathbf{y}(1) > 0.5 \end{cases}$$
 (2)

Shifting decision boundary

$$\mathbf{F} \in \begin{cases} \mathcal{N}, & \text{if } \mathbf{y}(0) > 0.5 + \lambda \\ \mathcal{H}, & \text{if } \mathbf{y}(1) > 0.5 - \lambda \end{cases}$$
 (3)

Recall The Training Procedure

Minimize difference with ground truths

$$\mathbf{y}_n^* = [1, 0], \ \mathbf{y}_h^* = [0, 1].$$
 (1)

$$\mathbf{F} \in \left\{ \begin{array}{ll} \mathcal{N}, & \text{if } \mathbf{y}(0) > 0.5 \\ \mathcal{H}, & \text{if } \mathbf{y}(1) > 0.5 \end{array} \right. \tag{2}$$

Shifting decision boundary (X)

$$\mathbf{F} \in \left\{ \begin{array}{l} \mathcal{N}, & \text{if } \mathbf{y}(0) > 0.5 + \lambda \\ \mathcal{H}, & \text{if } \mathbf{y}(1) > 0.5 - \lambda \end{array} \right. \tag{3}$$

Biased ground truth

$$\mathbf{y}_n^* = [1 - \epsilon, \epsilon] \tag{4}$$

The Biased Learning Algorithm

Biased Learning v.s. Shift Boundary

Comparison with Two Hotspot Detectors

▶ Detection accuracy improved from 89.6% to 95.5%

Comparison with Two Hotspot Detectors

Comparable false alarm penalty

Comparison with Two Hotspot Detectors

Comparable testing runtime

Thank You

