Rapidly Exploring Random Trees

- Idea: aggressively probe and explore the C-space by expanding incrementally from an initial configuration q_0
- The explored territory is marked by a tree rooted at q_0

• The algorithm: Given C and q_{θ}

```
Algorithm 1: RRT

1 G.init(q_0) in take a tree structure with configuration q_0

2 repeat

3 q_{rand} \rightarrow RANDOM\_CONFIG(C) \blacksquare Sample from a bounded

4 q_{near} \leftarrow NEAREST(G, q_{rand}) region centered around q_0

5 G.add\_edge(q_{near}, q_{rand}) E.g. an axis-aligned relative random translation
```


(but recall sampling over rotation spaces problem)

or random rotation

The algorithm

Algorithm 1: RRT

```
1 G.init(q_0)
2 repeat
3 q_{rand} 	o RANDOM\_CONFIG(C)
4 q_{near} \leftarrow NEAREST(G, q_{rand})
5 G.add\_edge(q_{near}, q_{rand})
6 until condition
```


Finds closest vertex in G using a **distance function** $\rho: \mathcal{C} \times \mathcal{C} \rightarrow [0, \infty)$

formally a *metric* defined on *C*

The algorithm

Algorithm 1: RRT

```
1 G.init(q_0)
2 repeat
3 q_{rand} 	o RANDOM\_CONFIG(C)
4 q_{near} \leftarrow NEAREST(G, q_{rand})
```

 $G.add_edge(q_{near}, q_{rand})$

6 until condition

Several stategies to find q_{near} given the closest vertex on G:

- Take closest vertex
- Check intermediate points at regular intervals and split edge at q_{near}

The algorithm

Algorithm 1: RRT

```
1 G.init(q_0)
2 repeat
3 q_{rand} 	o RANDOM\_CONFIG(C)
4 q_{near} \leftarrow NEAREST(G, q_{rand})
5 G.add\_edge(q_{near}, q_{rand})
6 until condition
```


- Connect nearest point with random point using a **local planner** that travels from q_{near} to q_{rand}
 - No collision: add edge
 - Collision: new vertex is q_i , as close as possible to C_{obs}

RRTS

The algorithm

```
Algorithm 1: RRT
```

```
1 G.init(q_0)
2 repeat
3 q_{rand} \rightarrow RANDOM\_CONFIG(C)
4 q_{near} \leftarrow NEAREST(G, q_{rand})
5 G.add\_edge(q_{near}, q_{rand})
6 until condition (query 3 close for goal)
```

 q_{rand}

- Connect nearest point with random point using a **local planner** that travels from q_{near} to q_{rand}
- No collision: add edge
- Collision: new vertex is q_i , as close as possible to C_{obs}

- How to perform path planning with RRTs?
 - 1. Start RRT at q_I
 - 2. At every, say, 100th iteration, force $q_{rand} = q_G$
 - 3. If q_G is reached, problem is solved
- Why not picking q_G every time?
- This will fail and waste much effort in running into C_{Obs} instead of exploring the space

- However, some problems require more effective methods: bidirectional search
- Grow **two** RRTs, one from q_I , one from q_G
- In every other step, try to extend each tree towards the newest vertex of the other tree

RRTS

 RRTs are popular, many extensions exist: real-time RRTs, anytime RRTs, for dynamic environments etc.

Pros:

- Balance between greedy search and exploration
- Easy to implement

Cons:

- Metric sensivity
- Unknown rate of convergence

Alpha 1.0 puzzle.
Solved with
bidirectional RRT

From Road Maps to Paths

- All methods discussed so far **construct a** road map (without considering the query pair q_I and q_G)
- Once the investment is made, the same road map can be reused for all queries (provided world and robot do not change)
 - **1. Find** the cell/vertex that contain/is close to q_I and q_G (not needed for visibility graphs)
 - **2.** Connect q_I and q_G to the road map
 - **3. Search** the road map for a path from q_I to q_G

Sampling-Based Planning

Wrap Up

- Sampling-based planners are more efficient in most practical problems but offer weaker guarantees
- They are probabilistically complete: the probability tends to 1 that a solution is found if one exists (otherwise it may still run forever)
- Performance degrades in problems with narrow passages. Subject of active research
- Widely used. Problems with high-dimensional and complex C-spaces are still computationally hard