Chapter 7, Solution 53.

(a) Before
$$t = 0$$
, $i = \frac{25}{3+2} = 5 A$
After $t = 0$, $i(t) = i(0) e^{-t/\tau}$
 $\tau = \frac{L}{R} = \frac{4}{2} = 2$, $i(0) = 5$
 $i(t) = 5 e^{-t/2} u(t) A$

(b) Before t = 0, the inductor acts as a short circuit so that the 2 Ω and 4 Ω resistors are short-circuited.

$$i(t) = 6 A$$

After t = 0, we have an RL circuit.

$$i(t) = i(0) e^{-t/\tau},$$
 $\tau = \frac{L}{R} = \frac{3}{2}$

$$i(t) = 6e^{-2t/3} u(t)A$$