

Soutenance de thèse de doctorat

Atomes de Rydberg en interaction : des nuages denses d'atomes de Rydberg à la simulation quantique avec des atomes circulaires

Tigrane Cantat-Moltrecht Laboratoire Kastler Brossel, Collège de France

11 janvier 2018

Sous la direction de Michel Brune

Qu'est-ce que la simulation quantique?

- Systèmes quantiques individuels bien compris (Nobel 2012)
- *N* corps en interaction ?

Explorer des phénomènes tels que

- transitions de phase quantiques
- supraconductivité haute Tc
- localisation
- marches aléatoires quantiques
- etc.

- Obstacle pour calculer : taille de mémoire nécessaire (2^N nombres pour N spins 1 / 2!)
- Obstacle expérimental : difficulté d'accès des systèmes

Qu'est-ce que la simulation quantique?

Idée de Feynman (1982) : un système quantique en simule un autre

- contrôle expérimental complet
- conserve les propriétés importantes du système original

Simulation Quantique avec des atomes de Rydberg

Atomes de Rydberg :

- ✓ Interactions dipolaires fortes (MHz à quelques µm)
- ✓ Interactions contrôlables
- ✓ Systèmes avec de longues durées de vie

Atomes dans l'état fondamental piégés individuellement (pinces optiques) + excitation Rydberg

M. Lukin (Harvard)

A.Browaeys (Paris Saclay)

Du mouvement des atomes de Rydberg en interaction ...

Interactions répulsives \Rightarrow mouvement!

Expériences menées à l'ENS [1] : 10 µs max. avant désordre

[1] R. Teixeira et al, PRL 115, 013001 (2015)

... aux atomes de Rydberg circulaires

Pour remédier à « l'explosion » du nuage : piéger les atomes de Rydberg.

Problème : photo-ionisation à bas-l

- ⇒ niveaux de Rydberg circulaires (moment cin. max.) :
- photo-ionisation négligeable
- plus longues durées de vie

Atomes de Rydberg circulaires piégés pour la simulation quantique

Proposition de simulateur quantique [2]:

- atomes de Rydberg circulaires
- piégés par faisceau laser
- durée de vie préservée (minutes)
- hamiltonien contrôlé
- chaîne 1D de 40 atomes, régulière et sans défaut

[2] T.L Nguyen et al, arXiv 1707.04397

Plan de l'exposé

1. Proposition pour un simulateur quantique

2. Exciter des atomes de Rydberg circulaires sur puce

I. Atomes de Rydberg en interaction : vers un simulateur quantique

Qu'est-ce qu'un atome de Rydberg?

Atome de Rydberg : grand n

 \Rightarrow électron de valence très éloigné : $\langle r \rangle \sim a_0 \times n^2$

⇒ très grand moment dipolaire de transition :

$$d \sim ea_0 \times n^2$$

- Très bonnes antennes microonde (sensibilité au champ EM)
- Fortes interactions dipôle-dipôle
- Longue durée de vie naturelle (très sensible au corps noir)

Niveau n = 50 (bas l):

Interaction dipolaire : ~ 1 MHz à 5 μm

Durée de vie : $\tau \sim 100 \, \mu s$

Qu'est-ce qu'un atome de Rydberg circulaire?

Atome de Rydberg circulaire : l et m maximaux

 \Rightarrow orbite électronique toroïdale semi-classique $r \sim a_0 n^2$

- Seul canal de désexcitation (à T = 0): transition σ^+ vers le circulaire d'en-dessous
- Circulaire 50C : durée de vie $\tau \simeq 29$ ms à T = 0
- Transition peut être inhibée ![3]

Inhiber l'émission spontanée

Mieux que la durée de vie naturelle ?

- ~ 29 ms pour le 50C
- Un seul canal de désexcitation : transition σ^+ vers le niveau 49C
- Inhibition de l'émission spontanée \Rightarrow 2500 s avant une émission σ^+ !

Préserver les Rydberg circulaires

Effet	Durée de vie (s)
Émission spontanée	2500
Processus dus au corps noir	630
Collisions gaz résiduel (10 ⁻¹⁴ mbar)	400
Photo-ionisation	∞
Diffusion élastique des photons du piège	> 180
Relaxation dipolaire	∞
Mélange des niveaux de paire	88
Total (1 atome) Total (chaîne de 40 atomes)	~ 50 > 1

Durée de vie d'une seconde $\Rightarrow 10^4 - 10^5$ temps caractéristiques d'échange!

Piéger des Rydberg circulaires : potentiel pondéro-moteur

Piéger l'électron de valence dans un potentiel pondéro-moteur :

$$V = \frac{h\alpha}{m_e \omega_L^2} \cdot I$$

- atomes cherchent le champ faible
- piège profond grâce à la grande polarisabilité
- quasi-indépendant du nombre quantique principal n
 ⇒ faible décohérence due au piégeage
- photo-ionisation quasi-nulle pour les circulaires! (handicapante à bas l)

Piéger des Rydberg circulaires : géométrie des faisceaux

- Laser à 1064 nm
- Piégeage radial dans un faisceau Laguerre-Gauss (0,5 W sur $w_{v,z} = 7 \mu m$)
- Piégeage longitudinal dans un réseau ajustable $d \sim 5 \ \mu \text{m}$ (1,45 W sur $w_x = 200 \ \mu \text{m}$, $w_z = 7 \ \mu \text{m}$)

- fréquence longitudinale : $\omega_x \simeq 2\pi$. 24 kHz
- fréquence radiale : $\omega_{y,z} \simeq 2\pi$. 12 kHz
- profondeur : $U_0 \simeq h.5 \text{ MHz} \simeq k_T.250 \mu\text{K}$

Préparer une chaîne régulière : « évaporation van der Waals »

- 1. Exciter les atomes circulaires
- 2. Piéger selon l'axe *x*
- 3. Boucher les extrémités du piège selon *x*
- 4. Comprimer
 - → "refroidissement évaporatif VdW"
- 5. Allumer le réseau

Préparer la chaîne : simulation du processus

Simulation du mouvement des atomes pendant cette "évaporation" :

- ⇒ Préparation déterministe d'une chaîne régulière 1D de 40 atomes de Rydberg circulaires !
- Robustesse par rapport aux conditions initiales
- Technique utile pour la détection des atomes un par un

Deux atomes de Rydberg en interaction

Interaction dipôle-dipôle entre 2 atomes de Rydberg :

$$V_{dd} = \frac{e^2}{4\pi\epsilon_0 r^3} \left[\overrightarrow{r_1} \cdot \overrightarrow{r_2} - 3\left(\overrightarrow{r_1} \cdot \frac{\overrightarrow{r}}{r} \right) \left(\overrightarrow{r_2} \cdot \frac{\overrightarrow{r}}{r} \right) \right]$$

• Deux atomes dans le même état : interaction de type van der Waals

$$V_{\rm eff}(r) = hC_6/r^6$$

Deux atomes dans des états différents a et b
 ⇒ interaction d'échange en plus :

$$|ab\rangle$$
 $\frac{a}{b}$ $\frac{b}{a}$ $|ba\rangle$

Deux atomes de Rydberg en interaction : équivalence avec deux spins 1/2

Correspond à un système de 2 spins-1/2 :

- terme d'énergie $\rightarrow J_Z \sigma_1^Z \sigma_2^Z$
- terme d'échange $\rightarrow J(\sigma_1^X \sigma_2^X + \sigma_1^Y \sigma_2^Y)$
- couplage microonde externe $\rightarrow \frac{\Delta}{2}(\sigma_1^Z + \sigma_2^Z) + \frac{\Omega}{2}(\sigma_1^X + \sigma_2^X)$

- J_z ∝ 1/r⁶
 J ∝ 1/r⁶ ou 1/r³
- champ élec. ou magn. \rightarrow contrôle de *J*

Choix des niveaux :

- n' = n + 2 ⇒ J ~ J_Z ∝ 1/r⁶
 n plus grand ⇒ temps de vie limité (corps noir)
- *n* plus petit ⇒ interaction plus faible

⇒ Niveaux choisis : 48C et 50C

Hamiltonien XXZ d'une chaîne de Rydberg circulaires

Extension à une chaîne de *N* atomes

→ hamiltonien XXZ d'une chaîne de *N* spins 1/2

- *J* quasi-constant : 17 kHz à 5 μm
- temps caractéristique : $1/4I \sim 15 \mu s$
- J_Z contrôlé par F et B
- J_Z , Ω , $\Delta \rightarrow$ exploration du diag. de phase

Un bon simulateur

- Nouvelle proposition de simulateur quantique avec des atomes de Rydberg circulaires piégés par laser :
 - interactions fortes et hamiltonien contrôlé
 - très longues durées de vie: $> 1s \sim 10^{4-5}$ temps d'échange
 - préparation déterministe et détection de chaque atome (single site)

⇒ promet un très bon simulateur quantique!

Avec un simulateur en état de marche :

- Validation (benchmarking) sur des phases connues
- Trempes et processus hors-équilibre
- Désordre : transport et localisation
- O Deux chaînes côte-à-côte : phase de Haldane pour des spins 1
- O Extension de la géométrie à deux ou trois dimensions

II. Des atomes de Rydberg circulaires sur puce

