

Bitcoin, Blockchain and Cryptoassets Asymmetric Cryptography

Prof. Dr. Fabian Schär University of Basel

Release Ver.: (Local Release)

Version Hash: (None) Version Date: (None)

License: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International

Diffie-Hellman-Merkle Key Exchange

- Whitfield Diffie, Martin Hellman and Ralph Merkle find a solution for the *key distribution* problem (1976)
- They still use symmetric encryption. However, the key can be generated securely on a potentially compromised channel.
- Alice and Bob define ex-ante
 - One-way function: G^{\times} (mod P)
 - Parameters: G = 7 and P = 11

Diffie-Hellman-Merkle Key Exchange

	Alice	Bob
Step 1	chooses $A = 3$	chooses $B=6$
Step 2	$\alpha = G^A \pmod{P}$ $\alpha = 7^3 \pmod{11} = 2$	$eta = G^B \pmod{P}$ $eta = 7^6 \pmod{11} = 4$
Step 3	Alice sends her result $\alpha=2$ to Bob	Bob sends his result $\beta=4$ to Alice
Exchange	They exchange $lpha$ and eta (not A and B !)	
Step 4	Alice computes $k = \beta^{A} \pmod{P}$ $k = 4^{3} \pmod{11} = 64 \pmod{11} = 9$	Bob computes $k = \alpha^B \pmod{P}$ $k = 2^6 \pmod{11} = 64 \pmod{11} = 9$
Key	Alice and Bob have agreed on key $k=9$, because: $\alpha^B \pmod{P} = G^{AB} \pmod{P} = G^{BA} \pmod{P} = \beta^A \pmod{P}$	

Table: Diffie-Hellman-Merkle-Key-Exchange. Based on [2]

Issues

Interactive process may be cumbersome.

- Synchronous communication to establish key
- Separate setup for each peer

Asymmetric Cryptography

- So far: Symmetric cryptography
 - Decryption is inverse algorithm of encryption
- Diffie's Idea (1975): Asymmetric encryption
 - Key to encrypt and key to decrypt a message are not identical
- ...but how?

Asymmetric Cryptography

- Ronald Rivest, Adi Shamir and Leonard Adleman
- Inspired by Diffie's idea of asymmetric cryptography
- Develop first asymmetric encryption algorithm (RSA) [1]

A Method for Obtaining Digital Signatures and Public-Key Cryptosystems

R.L. Rivest, A. Shamir, and L. Adleman*

RSA

Properties of asymmetric cryptography:

RSA 1/4: Find Public Key

Alice chooses two primes p and q (e.g., p=17 and q=11) and computes

$$N = p \cdot q$$

In our example:

$$N = 17 \cdot 11 = 187$$

and choose an additional integer e (e.g., e = 7).¹

 \Rightarrow N and e together make up the public key which Alice can make publicly available.

 $^{^{1}}$ e and $(p-1)\cdot(q-1)$ must be relatively prime, i.e. not share any factors other than 1.

RSA 2/4: Encrypt Message

Bob encodes message M as an integer (e.g., letter X in ASCII = 88) and computes the encrypted message C using Alice's public key and the message:

$$C = M^e \pmod{N}$$

In our example:

$$C = 88^7 \pmod{187}$$

 $C = 11$

RSA 3/4: Derive Private Key

Alice computes private key k_p using:

$$e \cdot k_p = 1 \pmod{\phi(N)}$$
 , where $\phi(N) = (p-1)(q-1)$

In our example:

$$7 \cdot k_p = 1 \pmod{16 \cdot 10} = 1 \pmod{160}$$

 $k_p = 23$

Note: Extended Euclidean algorithm is needed for this step

RSA 4/4: Decrypt Message

Alice decrypts Bob's message with:

$$M = C^{k_p} \pmod{N}$$

and computes

$$M = 11^{23} \ (mod \ 187)$$

 $M = 88 = X \ in \ ASCII$

RSA: Requirements

Crucial:

- *N* has to be sufficiently large
- It has to be impossible to find p and q by using prime factorization of N.

References

- [1] R. L. Rivest, A. Shamir, and L. Adleman, *A method for obtaining digital signatures and public-key cryptosystems*, Commun. ACM **21** (1978), no. 2, 120–126.
- [2] Simon Singh, *The Code Book: The Secret History of Codes and Codebreaking*, Fourth Estate London, 1999.