大连理工大学实验预习报告

字阮(糸): 电于信息与电气工程字部 专业: 电于信息工程(央话强化)
姓 名:
实验时间:实验室:实验台:
指导教师签字:
实验二 语音信号的调制解调
一、实验目的和要求
 了解语音信号处理在通信中的应用 理解幅度调制和解调的原理及方法 观察语音信号、载波信号、调制后信号的频谱
二、相关的 Matlab 命令和举例
1. $Y = fft(X,n)$
该函数用快速傅立叶变化(FFT)算法计算 X 的 n 点离散傅立叶变换,当输入 n 缺省时, Y 的大小与 X 相同。下面是该函数的调用方法及结果。 $t=-5:1/2000:5:$
$y = \sin(10*t);$
fy = fft(y);
<pre>N = length(t);</pre>
f = (0:N-1)*2000/N-2000/2;
figure subplot(2, 1, 1)
plot(t, y)
subplot (2, 1, 2)
plot(f*2*pi, fftshift(abs(fy)))
axis([-50 50 -inf inf])

图1. 用fft()函数计算信号频谱

2. 构建巴特沃斯低通滤波器

(1) [n,Wn] = buttord(Wp,Ws,Rp,Rs)

该函数返回数字巴特沃斯滤波器的最低阶 n 和响应截止频率 Wn。输入的变量表示通带 纹波不超过 Rp dB, 阻带衰减至少为 Rs dB。 Wp 和 Ws 分别是滤波器的通带和阻带边缘频率,从 0 到 1 归一化。

(2) [b,a] = butter(n,Wn,ftype)

该函数返回具有归一化截止频率 Wn 的 n 阶低通数字 Butterworth 滤波器的系统函数系数。通过参数 ftype 可修改滤波器的类型为低通、高通、带通和带阻巴特沃斯滤波器。

(3) y = filtfilt(b,a,x)

该函数通过输入上述操作获取的系统函数参数 a 和 b, 对输入信号 x 进行滤波操作。 下面是以构建巴特沃斯低通滤波器为例,图 2 为该滤波器的响应曲线,图三为滤波前后的结果:

```
fs = 1000;
t = -5:1/fs:5;
y = cos(50*t) + cos(200*t);
FL = 50/(2*pi);
FH = 200/(2*pi);
fL = FL+10;
fH = fL+12;
Wp = fL/(fs/2);
Ws = fH/(fs/2);
Rp = 3;
Rs = 20;
[N,Wn] = buttord(Wp,Ws,Rp,Rs);
[B,A] = butter(N,Wn,'low');
figure
freqz(B,A)
m0 = filtfilt(B,A,y);
figure
subplot(2,1,1)
```

plot(t,y) title('50Hz,200Hz mixed signal') subplot(2,1,2) plot(t,m0) title('after lowpass filter')

图 2.低通滤波器响应

图 3.滤波前后信号

三、GUI 界面设计

图 4. GUI 界面