Федеральное государственное образовательное бюджетное учреждение высшего образования «ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» (Финансовый университет)

Департамент анализа данных и машинного обучения Факультета информационных технологий и анализа больших данных

Макрушин С.В.

ТЕХНОЛОГИИ ОБРАБОТКИ БОЛЬШИХ ДАННЫХ

Рабочая программа дисциплины

для студентов, обучающихся по направлению подготовки 01.03.02 Прикладная математика и информатика, ОП «Прикладная математика и информатика (Анализ данных и принятие решений в экономике и финансах)

Москва 2021

Федеральное государственное образовательное бюджетное учреждение высшего образования «ФИНАНСОВЫЙ УНИВЕРСИТЕТ ПРИ ПРАВИТЕЛЬСТВЕ РОССИЙСКОЙ ФЕДЕРАЦИИ» (Финансовый университет)

Департамент анализа данных и машинного обучения Факультета информационных технологий и анализа больших данных

УТВЕРЖДАЮ
Проректор по учебной и
методической работе
Е.А. Каменева
29 12 2021 г

Макрушин С.В.

ТЕХНОЛОГИИ ОБРАБОТКИ БОЛЬШИХ ДАННЫХ

Рабочая программа дисциплины

для студентов, обучающихся по направлению подготовки 01.03.02 Прикладная математика и информатика, ОП «Прикладная математика и информатика (Анализ данных и принятие решений в экономике и финансах)

Рекомендовано Ученым советом Факультета информационных технологий и анализа больших данных (протокол № 15 от 22.12.2021 г.)

Одобрено Советом учебно-научного Департамента анализа данных и машинного обучения (протокол № 5 от 21.12.2021 г.)

Москва 2021

УДК 004.9 ББК 32.973.202

Рецензент: Феклин В.Г., кандидат физико-математических наук,

доцент Департамента анализа данных и машинного

обучения.

Макрушин С.В.

«Технологии обработки больших данных». Рабочая программа дисциплины для студентов, обучающихся по направлению подготовки 01.03.02 Прикладная математика и информатика, ОП «Прикладная математика и информатика» (Анализ данных и принятие решений в экономике и финансах) — М.: Финансовый университет, Департамент анализа данных и машинного обучения, 2021 г. – 26. с.

Дисциплина «Технологии обработки больших данных» относится к Общепрофессиональному циклу дисциплин по направлению подготовки 01.03.02 Прикладная математика и информатика, ОП «Прикладная математика и информатика» (Анализ данных и принятие решений в экономике и финансах).

Рабочая программа дисциплины содержит цели и задачи дисциплины, требования к результатам освоения дисциплины, содержание дисциплины, тематику практических занятий и технологии их проведения, формы самостоятельной работы, систему оценивания, учебно-методическое и информационное обеспечение дисциплины

> УДК 004.9 ББК 32.973.202

Учебное издание

Макрушин Сергей Вячеславович

Технологии обработки больших данных

Рабочая программа дисциплины

Компьютерный набор, верстка: С. В. Макрушин

Формат 60х90/16. Гарнитура *Times New Roman* Усл. п.л. 1,1. Изд. № 28.2 - 2021. Тираж - 36 экз.

Заказ №

Отпечатано в Финансовом университете

- © С. В. Макрушин, 2021
- © Финансовый университет, 2021

Оглавление

1. Наименование дисциплины
2. Перечень планируемых результатов освоения образовательной
программы (перечень компетенций) с указанием индикаторов их
достижения и планируемых результатов обучения по дисциплине4
3. Место дисциплины в структуре образовательной программы 5
4. Объем дисциплины(модуля) в зачетных единицах и в академических
часах с выделением объема аудиторной (лекции, семинары) и
самостоятельной работы обучающихся5
5. Содержание дисциплины, структурированное по темам (разделам)
дисциплины с указанием их объемов (в академических часах) и видов
учебных занятий6
5.1. Содержание дисциплины
5.2. Учебно-тематический план
5.3. Содержание семинаров, практических занятий
6. Перечень учебно-методического обеспечения для самостоятельной
работы обучающихся по дисциплине12
6.1. Перечень вопросов, отводимых на самостоятельное освоение
дисциплины, формы внеаудиторной самостоятельной работы12
6.2. Перечень вопросов, заданий, тем для подготовки к текущему
контролю14
7. Фонд оценочных средств для проведения промежуточной аттестации
обучающихся по дисциплине
8. Перечень основной и дополнительной учебной литературы, необходимой
для освоения дисциплины
9. Перечень ресурсов информационно-телекоммуникационной сети
«Интернет», необходимых для освоения дисциплины24
10. Методические указания для обучающихся по освоению дисциплины. 25
11. Перечень информационных технологий, используемых при
осуществлении образовательного процесса по дисциплине, включая
перечень необходимого программного обеспечения и информационных
справочных систем
12. Описание материально-технической базы, необходимой для
осуществления образовательного процесса по дисциплине26

1. Наименование дисциплины

«Технологии обработки больших данных».

2. Перечень планируемых результатов освоения образовательной программы (перечень компетенций) с указанием индикаторов их достижения и планируемых результатов обучения по дисциплине

Код компе- тен-	Наименование компетенции	Индикаторы достижения компетенции	Результаты обучения (умения и знания), соотнесенные с индикаторами достижения ком-
ОПК-2	Способен использовать и адаптировать существующие математические методы и системы программи-	1. Системно подходит к выбору математических методов и систем программирования для решения приклад-	петенции Знать основные ИТ работы с большими данными и современные технологии обработки больших данных Уметь загружать, преобразовывать и
	рования для разработки и реализации алгоритмов решения прикладных за-	ных задач. 2. Разрабатывает	обрабатывать большие данные с помощью современных технологий Знать методы решения задач
	дач	алгоритмы решения прикладных задач с использованием математических методов.	прикладных математических моделей с помощью инструментов обработки больших данных. Уметь применять методы обработки больших данных данных данных для решения прикладных задач.
		3. Реализует алгоритмы с использованием современных систем программирования.	Знать современные ИТ и инструменты обработки больших данных, применимые для использования в реализации математических моделей. Уметь использовать современные ИТ и инструменты для обработки больших данных в решении прикладных математических задач.
ОПК-4	Способен пони- мать принципы ра- боты современных информационных технологий и ис- пользовать их для	1. Использует информационно-коммуникационные технологии при поиске необходимой информации, сбора,	Знать современные инструменты обработки больших данных. Уметь обрабатывать данные с помощью специализированных

решения задач про-	визуализации и об-	инструментов,
фессиональной де-	работки данных.	предназначенных для работы с
ятельности		данными соответствующего
		размера.
	2. Осуществляет ра-	Знать рынок современных
	циональный выбор	решений для обработки данных
	программного про-	разного размера.
	дукта в зависимо-	Уметь определять критерии
	сти от поставлен-	выбора ИТ систем для
	ной задачи.	обработки данных и
		осуществлять выбор систем
		исходя из этих критериев.
	3. Владеет навы-	Знать ограничения
	ками обеспечения	безопасности, связанные с
	информационной	использованием систем
	безопасности авто-	обработки больших данных.
	матизированных	Уметь выбирать ИТ-решения
	систем.	для обработки больших данных
		исходя из требований
		безопасности.

3. Место дисциплины в структуре образовательной программы

Дисциплина «Технологии обработки больших данных» относится к Общепрофессиональному циклу дисциплин по направлению подготовки 01.03.02 Прикладная математика и информатика, ОП «Прикладная математика и информатика (Анализ данных и принятие решений в экономике и финансах).

Изучение дисциплины «Технологии обработки больших данных» основывается на сумме знаний, полученных при изучении дисциплины «Алгоритмы и структуры данных в языке Python». Для изучения данной дисциплины студент должен обладать базовыми знаниями в области информационных технологий и программирования, навыками программирования на языке Python.

4. Объем дисциплины (модуля) в зачетных единицах и в академических часах с выделением объема аудиторной (лекции, семинары) и самостоятельной работы обучающихся

Вид учебной работы по	Всего	Семестр 3	Семестр 4
дисциплине	(в з.е. и часах)	(в часах)	(в часах)
Общая трудоёмкость	7/252	108	144
дисциплины			
Контактная работа-	100	50	50
Аудиторные занятия			
Лекции	32	16	16
Семинары, практические занятия	68	34	34
Самостоятельная работа	152	58	94
Вид текущего контроля	контрольные	контрольная	контрольная
	работы	работа	работа
Вид промежуточной аттестации	Зачет, экзамен	зачет	экзамен

5. Содержание дисциплины, структурированное по темам (разделам) дисциплины с указанием их объемов (в академических часах) и видов учебных занятий

5.1. Содержание дисциплины

Тема 1. Библиотека NumPy и Pandas.

В рамках темы рассматривается технологический стек Python для обработки и анализа данных, возможности Python как glue language, специфика библиотеки NumPy и ее роль в экосистеме Python. Организация массивов в NumPy: хранение данных, создание массивов, принципы реализации операций с едиными исходными данными. Универсальные функции и применение функций по осям в NumPy. Принцип распространения значений при выполнении операций в NumPy: общий алгоритм и примеры Маскирование и прихотливое индексирование в NumPy.

В рамках темы рассматриваются возможности библиотеки Pandas. Организация Pandas DataFrame и организация индексации для DataFrame и Series; применение универсальных функций и работа с пустыми значениями в Pandas. Объединение данных из нескольких Pandas DataFrame: общая логика и примеры. Рассматривается операция GroupBy в Pandas DataFrame и реализация в ней подхода «разбиение, применение и объединение».

Тема 2. Профилирование процессов обработки данных, библиотека Numba и векторизация в Numpy и Numba.

В рамках темы рассматривается профилирование реализации алгоритмов на Python, принципы решения задачи оптимизации производительности алгоритма. Библиотека Numba: принципы работы, базовые примеры использования. Векторизация в numpy: ключевые параметры функции, примеры применения, использование обобщенной сигнатуры функции.

Тема 3. Использование различных форматов файлов в задачах обработки данных.

Принципы работы с файлами, файлы и операционные системы. Специфика текстовых и бинарных файлов, форматы файлов CSV и Pickle, представление данных в этих форматах и взаимодействие с ними в Python.

Задача сериализации и десериализации данных и использование различных форматов файлов для ее решения. Описание формата файла JSON и пример описания данных в этом формате и взаимодействия с ним в Python.

Формат XML и модель DOM: общая характеристика, пример описания данных в XML и DOM, работа с ними с помощью библиотеки BeautifulSoup.

Проблематика форматов файлов для хранения и обработки больших данных. Форматы файлов NPY и HDF общая характеристика, пример взаимодействие с данными этих форматов в Python

Тема 4. Взаимодействие с базой данных и Excel в приложениях обработки данных.

Взаимодействие из Python с базой данных на примере API SQLite. Базовые возможности работы с транзакциями. Возможности использования Excel для внешних приложений обработки данных. Взаимодействие с Excel из Python с помощью библиотеки XLWings: принципы работы и примеры использования.

Тема 5. Работа со строками в приложениях обработки данных.

Основы работы с регулярными выражениями: базовый синтаксис, примеры. Модуль re в Python. Примеры использования регулярных выражений. Использования хэширования при работе со строками. Строки в библиотеке numpy.

Тема 6. Введение в обработку текста на естественном языке в задачах обработки данных.

Сегментация и токенезация текста на естественном языке, стеммминг и лемматизация, примеры на Python. Использование мемоизации на примере работы со строками. Расстояние Левеншнтейна: определение, алгоритм эффективного поиска оптимального редакционного предписания, пример поиска на Python. Векторное представление текста на естественном языке: общий алгоритм подходов ТF; TF-IDF.

Тема 7. Параллельная обработка данных.

В рамках темы рассматривается специфика современного аппаратного обеспечения для обработки больших данных и проблема масштабируемости параллельных вычислений. Многопроцессорные архитектуры с общей и разделяемой памятью — специфика и сравнение.

Подходы к декомпозиции крупных вычислительных задач на подзадачи для параллельного исполнения. Модели параллельного программирования и их сочетаемость с архитектурами параллельных вычислительных систем. Специфика различия между потоками и процессами.

Проблема Global Interpreter Lock в Python и способы обхода ее ограничений. Модуль Python multiprocessing – назначение и основные возможности, API multiprocessing. Pool.

Тема 8. Библиотека Dask.

В рамках темы рассматривается библиотека для анализа больших объемов данных Python Dask, различные предлагаемые ей подходы к обработке данных. В частности, три ключевых структуры данных Dask: Dask.Array, Dask.DataFrame и Dask.Bag их специфика и принцип выбора структур данных при решении задач. Рассматривается граф зависимостей задач, как ключевая структура для организации параллельной обработки данных в Python Dask. Рассматривается принцип и примеры использования распараллеливание алгоритмов с помощью dask.delayed.

Рассматривается структура данных Dask.Array, специфика ее реализации и применения, процедура создания, поддерживаемые Dask.Array операции и ее отличия от NumPy ndarray. Рассматривается структура данных Dask.DataFrame, специфика ее реализации и применения, процедура создания, ограничения использования Dask.DataFrame. Рассматриваются операции мэппинга в Dask.DataFrame и операции Dask.DataFrame работающие со

скользящим окном. Рассматривается структура данных Dask.Bag, специфика ее реализации и применения, процедура создания, поддерживаемые Dask.Bag операции. Организация вычислений с помощью Map / Filter / Reduce: общий принцип и специфика параллельной реализации обработки данных с помощью Dask.Bag.

Тема 9. Обзор проблем обработки больших данных и вычисления общего назначения на **GPU**

Большие данные – определение и причины возникновения задач обработки больших данных. Вызовы «Больших данных»: объем данных, слабая структурированность данных, связность данных, обработка данных с помощью независимых сервисов. Специфика аппаратного обеспечения для решения задач обработки больших данных. Проблема выбора типичных средств обработки данных, адекватных различным объемам данных. Принцип обработки данных на базе операций map / filter / reduce, принципы архитектуры hadoop. Источники больших данных и прикладные задачи обработки больших данных.

История развития и общая характеристика GPU. Архитектура Nvidia CUDA. Принципы организации вычислений в архитектуре Nvidia CUDA. Знакомство с библиотекой PyTorch. Понятие тензора в PyTorch. Базовые операции с тензорами в PyTorch.

5.2. Учебно-тематический план

		Трудоемкость в часах				Формил	
№	Наименование		Контактная работа- Аудиторная работа			Само-	Формы текущего
п/п	темы (раздела) дисциплины	Всего	Общая, в т.ч.:	Лекции	Семинары, практические занятия	стоя- тельная работа	контроля успевае- мости
1	Библиотека NumPy и Pandas	24	12	4	8	12	Участие в
2	Профилирование процессов обра- ботки данных, библиотека Numba и вектори- зация в Numpy и Numba	18	8	2	6	10	решении задач на практических занятиях. Обсуждения по резуль-

3	Использование различных форматов файлов в задачах обработки данных	24	12	4	8	12	татам са- мостоя- тельной работы
4	Взаимодействие с базой данных и Ехсеl в приложениях обработки данных	24	12	4	8	12	Участие в решении задач на
5	Работа со стро- ками в приложе- ниях обработки данных	18	6	2	4	12	практиче- ских заня- тиях. Об- суждения по резуль-
6	Введение в обра- ботку текста на естественном языке в задачах обработки данных	26	6	2	4	20	татам са- мостоя- тельной работы
7	Параллельная обработка данных	26	6	2	4	20	
8	Библиотека Dask	60	26	8	18	34	
9	Обзор проблем обработки боль- ших данных и вычисления общего назначения на GPU	32	12	4	8	20	
	В целом по дисциплине	252	100	32	68	152	Согласно учебному плану: контрольные работы
	Итого в %	100	40	32	68	60	

5.3. Содержание семинаров, практических занятий

Наименование тем (разделов) дисциплины	Перечень вопросов для обсуждения на семинарских, практических занятиях, рекомендуемые источники из разделов 8,9 (указывается раздел и порядковый номер источника)	Формы проведения занятий
Библиотека NumPy и Pandas	 Технологический стек Python для обработки и анализа данных Возможности Python как glue language Организация массивов в NumPy: хранение данных, создание массивов Принципы реализации операций с едиными исходными данными. Универсальные функции и применение функций по осям в NumPy. Организация Pandas DataFrame и организация индексации для DataFrame и Series. Применение универсальных функций и работа с пустыми значениями в Pandas. Объединение данных из нескольких Pandas DataFrame: общая логика и примеры. 8[1], 9[9], 9[10] 	Интерактивная форма, работа на компьютере
Профилирование процессов обра- ботки данных, библиотека Numba и векторизация в Numpy и Numba	 профилирование реализации алгоритмов на Python принципы решения задачи оптимизации производительности алгоритма Библиотека Numba: принципы работы, базовые примеры использования. 8[1], 8[2], 9[1], 9[2], 9[3] 	Интерактивная форма, работа на компьютере
Использование различных форматов файлов в задачах обработки данных	 Формат файлов CSV, представление данных в этом формате и взаимодействие с ним в Python. Формат файлов Pickle, представление данных в этом формате и взаимодействие с ним в Python. Формат файлов JSON, представление данных в этом формате и взаимодействие с ним в Python. Формат XML и модель DOM: общая характеристика, пример описания данных в XML и DOM Работа с XML с помощью библиотеки BeautifulSoup. 8[1], 8[2], 9[3], 9[4] 	Интерактивная форма, работа на компьютере
Взаимодействие с базой данных и Excel в приложениях обработки данных	 Взаимодействие из Python с базой данных с помощью API SQLite. Взаимодействие с Excel из Python с помощью библиотеки XLWings. 8[1], 8[2]. 	Интерактивная форма, работа на компьютере
Работа со стро- ками в приложе- ниях обработки данных	 Основы работы с регулярными выражениями: базовый синтаксис, примеры. Модуль ге в Python. 8[1], 8[2], 9[4] 	Интерактивная форма, работа на компьютере

Введение в обра-	• Сегментация и токенезация текста на естествен-	Интерактивная
ботку текста на	ном языке, стеммминг и лемматизация, примеры	форма, работа
естественном	на Python.	на компьютере
языке в задачах об-	• Расстояние Левеншнтейна: определение, алго-	
работки данных.	ритм эффективного поиска оптимального редак-	
	ционного предписания, пример поиска на Python.	
	8[1], 8[2], 9[4], 9[5], 9[6]	
Параллельная об-	• специфика современного аппаратного обеспече-	Интерактивная
работка данных	ния для обработки больших данных и проблема	форма, работа
	масштабируемости параллельных вычислений.	на компьютере
	• Подходы к декомпозиции крупных вычислитель-	
	ных задач на подзадачи для параллельного ис-	
	полнения.	
	• Проблема Global Interpreter Lock в Руthоп и спо-	
	собы обхода ее ограничений.	
	• Модуль Python multiprocessing – назначение и ос-	
	новные возможности, API multiprocessing.Pool.	
F 6 D 1	8[1], 8[2], 9[5], 9[7]	11
Библиотека Dask	 Подход к обработке данных с помощью библио- теки Dask. 	Интерактивная форма, работа
		на компьютере
	• Структура данных Dask.Array – принцип работы,	на компьютере
	API, примеры использования.	
	• Структура данных Dask.DataFrame – принцип ра- боты, API, примеры использования.	
	 Структура данных Dask.Bag – принцип работы, 	
	АРІ, примеры использования.	
	8[1], 8[2], 9[8], 9[10], 9[11]	
Обзор проблем об-	• Вызовы «Больших данных»: объем данных, сла-	Интерактивная
работки больших	бая структурированность данных, связность дан-	форма, работа
данных и вычисле-	ных, обработка данных с помощью независимых	на компьютере
ния общего назна-	сервисов.	1
чения на GPU	• Источники больших данных и прикладные за-	
	дачи обработки больших данных.	
	• Архитектура Nvidia CUDA. Принципы организа-	
	ции вычислений в архитектуре Nvidia CUDA.	
	8[1], 8[2], 9[8]	

6. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Перечень вопросов, отводимых на самостоятельное освоение дисциплины, формы внеаудиторной самостоятельной работы

	Перечень вопросов, отводимых на самостоятельное освоение	Формы внеаудитор- ной самостоятельной
плины		работы
Библиотека NumPy	• Принцип распространения значений при	Обзор литературы и

		T
и Pandas	 выполнении операций в NumPy: общий алгоритм и примеры. Маскирование и прихотливое индексирование в NumPy. Операция GroupBy в Pandas DataFrame и реализация в ней подхода «разбиение, применение и объединение». 8[1], 9[9], 9[10] 	веб-источников. Само- стоятельное освоение инструментов анали- тической обработки. Решение задач.
Профилирование процессов обра- ботки данных, биб- лиотека Numba и векторизация в Numpy и Numba Использование раз- личных форматов файлов в задачах обработки данных	 Векторизация в numpy: ключевые параметры функции, примеры применения Использование обобщенной сигнатуры функции в numpy и numba. 8[1], 8[2], 9[1], 9[2], 9[3] Формат файлов NPY, представление данных в этом формате и взаимодействие с ним в Python. Формат файлов HDF, представление дан- 	Обзор литературы и веб-источников. Самостоятельное освоение инструментов аналитической обработки. Решение задач. Обзор литературы и веб-источников. Самостоятельное освоение инструментов анали-
	ных в этом формате и взаимодействие с ним в Python. 8[1], 8[2], 9[3], 9[4]	тической обработки. Решение задач.
Взаимодействие с базой данных и Ех- cel в приложениях обработки данных	 Базовые возможности работы с транзакциями с помощью API SQLite. Продвинутые операции с Excel из Python с помощью библиотеки XLWings. 8[1], 8[2], 9[5] 	Обзор литературы и веб-источников. Само- стоятельное освоение инструментов аналитической обработки. Решение задач.
Работа со строками в приложениях обработки данных	 Использования хэширования при работе со строками. Строки в библиотеке питру. 8[1], 8[2], 9[4] 	Обзор литературы и веб-источников. Самостоятельное освоение инструментов аналитической обработки. Решение задач.
Введение в обработку текста на естественном языке в задачах обработки данных.	 Использование мемоизации на примере работы со строками. Векторное представление текста на естественном языке: общий алгоритм подходов ТF; TF-IDF. 8[1], 8[2], 9[4], 9[5], 9[6] 	Обзор литературы и веб-источников. Самостоятельное освоение инструментов аналитической обработки. Решение задач.
Параллельная обра- ботка данных	 Модели параллельного программирования и их сочетаемость с архитектурами параллельных вычислительных систем. Специфика различия между потоками и процессами. Многопроцессорные архитектуры с общей и разделяемой памятью – специфика и сравнение. 	Обзор литературы и веб-источников. Само-стоятельное освоение инструментов аналитической обработки. Решение задач.
Библиотека Dask	 Организация вычислений с помощью Мар / Filter / Reduce: общий принцип и 	Обзор литературы и

	специфика параллельной реализации обработки данных с помощью Dask.Bag. • Организация вычислений с помощью API Dask Delayed. 8[1], 8[2], 9[8], 9[10], 9[11]	веб-источников. Само- стоятельное освоение инструментов анали- тической обработки. Решение задач.
Обзор проблем обработки больших данных и вычисления общего назначения на GPU	 Специфика аппаратного обеспечения для решения задач обработки больших данных. Проблема выбора типичных средств обработки данных, адекватных различным объемам данных. Знакомство с библиотекой РуТогсh. Понятие тензора в РуТогсh. Базовые операции с тензорами в РуТогсh. 8[1], 8[2], 9[8] 	Обзор литературы и веб-источников. Само- стоятельное освоение инструментов анали- тической обработки. Решение задач.

6.2. Перечень вопросов, заданий, тем для подготовки к текущему контролю

Примерные вопросы к контрольной работе № 1

- 1. Большие данные определение и причины возникновения задач обработки больших данных
- 2. Специфика современного аппаратного обеспечения для обработки больших данных и проблема масштабируемости параллельных вычислений
- 3. Выбор типичных средств обработки данных, адекватных различным объемам данных; принцип обработки данных на базе операций map / filter / reduce
- 4. Многопроцессорные архитектуры с общей и разделяемой памятью специфика и сравнение
- 5. Подходы к декомпозиции крупных вычислительных задач на подзадачи для параллельного исполнения
- 6. Модели параллельного программирования и их сочетаемость с архитектурами параллельных вычислительных систем

Примеры заданий для контрольной работы № 1

Задание 1

1. В массиве чисел, хранящихся в файле finance.hdf5, найти строку (вывести ее индекс и содержащиеся значения), в которой более всего

- значений превышающих среднее значение по всему массиву. Для расчётов использовать dask.array
- 2. В массиве чисел, хранящихся в файле finance.hdf5, подсчитать количество строк, в которых более 600 значений больше среднего значения по всему массиву. Для расчётов использовать dask.array.
- 3. В массиве чисел, хранящихся в файле finance.hdf5, подсчитать количество значений, не отклоняющихся от среднего значения более чем на 3 стандартных отклонения. Для рассчетов исползовать dask.array

Задание 2

- 1. В accounts.*.csv найти id, для которого в столбце amount встречается наибольшее количество значений кратных трем. Выполнить задание с использованием Dask, распараллелив процесс обработки данных
- 2. В accounts.*.csv найти id, для которого сумма положительных значений в столбце amount наибольшая. Выполнить задание с использованием Dask, распараллелив процесс обработки данных
- 3. В accounts.*.csv найти id, для которого в столбце amount встречается наибольшее количество значений между 1000 и 1500. Выполнить задание с использованием Dask, распараллелив процесс обработки данных

Примерные вопросы к контрольной работе № 2

- 1. Различия между потоками и процессами, различие между различными планировщиками в Dask
- 2. Граф зависимостей задач суть структуры данных, ее построение и использование в Dask
- 3. Три ключевых структуры данных Dask: их специфика и принцип выбора структуры данных при решении задач
- 4. Dask.Array структура данных, специфика реализации и применения, процедура создания
- 5. Dask.Array поддерживаемые операции и отличия от NumPy ndarray
- 6. Распараллеливание алгоритмов с помощью dask.delayed принцип и примеры использования
- 7. Дополнительные параметры декоратора dask.delayed назначение и примеры использования

- 8. Использование dask.delayed для объектов и операции над объектами dask.delayed, включая ограничения их использования
- 9. Dask.DataFrame структура данных, специфика реализации и применения, процедура создания Dask.DataFrame
- 10.Ограничения использования Dask.DataFrame и операции мэппинга в Dask.DataFrame
- 11.Поддержка Dask.DataFrame операций работающих со скользящим окном
- 12. Совместное использование промежуточных результатов в Dask: принцип работы и примеры использования
- 13. Dask. Bag структура данных, специфика реализации и применения, процедура создания Dask Bag
- 14. Организация вычислений с помощью Map / Filter / Reduce : общий принцип и специфика параллельной реализации обработки данных в Dask. Bag
- 15.API Dask.Bag функции мэппинга, фильтрации и преобразования

Примеры заданий для контрольной работы № 2

Задание 1

1. В (20 баллов) Датасет: all_k.zip

Подсчитать, сколько раз в текстовых файлах, лежащих в all_k.zip, встречаются предложения трех видов: вопросительные (в окончании имеют вопросительный знак), побудительные (в окончании имеют восклицательный знак и не имеют вопросительного) и повествовательные (в окончании имеют точку или троеточие, при этом нужно исключить учет точек, встречающихся в сокращениях, таких как "т.к.").

Выполнить задание с использованием Dask (корректным!), распараллелив процесс обработки данных (использование Dask должно приводить к истинной параллельной обработке данных).

Задание 2

1. Датасет: all k.zip

Подсчитать, сколько раз встречается каждое из личных местоимений в именительном падеже (полный список: я, ты, он, она, оно, мы, вы, они) в текстовых файлах, лежащих в папке: all k.zip.

Выполнить задание с корректным использованием Dask, распараллелив процесс обработки данных (использование Dask должно приводить к истинной параллельной обработке данных).

Критерии балльной оценки различных форм текущего контроля успеваемости

Критерии балльной оценки различных форм текущего контроля успеваемости содержатся в соответствующих методических рекомендациях Департамента анализа данных и машинного обучения.

7. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Перечень компетенций с указанием индикаторов их достижения в процессе освоения образовательной программы содержится в разделе 2. «Перечень планируемых результатов освоения образовательной программы (перечень компетенций) с указанием индикаторов их достижения и планируемых результатов обучения по дисциплине».

Типовые контрольные задания или иные материалы, необходимые для оценки индикаторов достижения компетенций, умений и знаний

Наименование	Наименование ин-	Результаты обуче-	Типовые контроль-
компетенции	дикаторов достиже-	ния (умения и зна-	ные задания
	ния компетенции	ния), соотнесенные с	
		индикаторами до-	
		стижения компетен-	
		ции	
ОПК-2	1. Системно подхо-	Знать основные ИТ	Перечислить основ-
Способен ис-	дит к выбору мате-	работы с большими	ные технологии обра-
пользовать и	матических мето-	данными и	ботки больших дан-
адаптировать су-	дов и систем про-	современные	ных.
ществующие ма-	граммирования для	технологии	
тематические	решения приклад-	обработки больших	
методы и си-	ных задач.	данных	
стемы програм-			
мирования для		Уметь загружать,	Выполните загрузку
разработки и ре-		преобразовывать и	датасета формата
			hdf5 для обработки в

апиранни опро		ofnafari mari	библиотока Dagle
ализации алго-		обрабатывать большие данные с помо-	библиотеке Dask.
ритмов решения прикладных за-			
-		щью современных технологий	
дач	2. Разрабатывает		Пороннолито тоуно
	1	Знать методы	Перечислите техно-
	алгоритмы решения	решения задач	логии позволяющие
	прикладных задач с	прикладных	выполнять математи-
	использованием ма-	математических	ческие вычисления с
	тематических мето-	моделей с помощью	помощью параллель-
	дов.	инструментов	ной обработки боль-
		обработки больших	ших массивов дан-
		данных.	ных.
		Уметь применять	Выполните задачу
		методы обработки	матричного умноже-
		больших данных для	ния для двух боль-
		решения приклад-	ших массивов дан-
		ных задач.	ных массивов дан-
	3. Реализует алго-	Знать современные	Перечислите техно-
	ритмы с использо-	ИТ и инструменты	логии позволяющие
	ванием современ-	обработки больших	выполнять математи-
	ных систем про-	данных,	ческие вычисления и
	граммирования.	применимые для	математическое мо-
	1 pwilling o zwilling	использования в	делирование с помо-
		реализации	щью параллельной
		математических	обработки больших
		моделей.	массивов данных.
			, ,
		Уметь использовать	Выполните нормали-
		современные ИТ и	зации большого чис-
		инструменты для об-	лового массива.
		работки больших	
		данных в решении	
		прикладных матема-	
		тических задач.	
ОПК-4	1. Использует ин-	Знать современные	Перечислить основ-
Способен пони-	формационно-ком-	инструменты	ные технологии обра-
мать принципы	муникационные	обработки больших	ботки больших дан-
работы совре-	технологии при по-	данных.	ных на базе языка Ру-
менных инфор-	иске необходимой		thon.
мационных тех-	информации, сбора,		
нологий и ис-	визуализации и об-	Уметь обрабатывать	Выполните загрузку
пользовать их	работки данных.	данные с помощью	датасета формата csv
для решения за-		специализирован-	для обработки в биб-
дач профессио-		ных инструментов,	лиотеке Dask.
нальной деятель-		предназначенных	
ности		для работы с дан-	
		ными соответствую-	
		щего размера.	

2. Осуществляет ра-	Знать рынок	Перечислить основ-
циональный выбор	современных	ные технологии обра-
программного про-	решений для	ботки больших дан-
дукта в зависимо-	обработки данных	ных на базе языка
сти от поставлен-	разного размера.	Python.
ной задачи.		
	Уметь определять	Уметь выбирать тех-
	критерии выбора ИТ	нологии обработки
	систем для обра-	больших с открытым
	ботки данных и осу-	исходным кодом.
	ществлять выбор си-	
	стем исходя из этих	
	критериев.	
3. Владеет навы-	Знать ограничения	Перечислить фор-
ками обеспечения	безопасности,	маты хранения ин-
информационной	связанные с	формации, распро-
безопасности авто-	использованием	страненные при ре-
матизированных	систем обработки	шении задач обра-
систем.	больших данных.	ботки больших дан-
		ных.
	Уметь выбирать ИТ-	Уметь выбирать тех-
	решения для обра-	нологии обработки
	ботки больших дан-	больших с открытым
	ных исходя из требо-	исходным кодом.
	ваний безопасности.	

Теоретические вопросы для подготовки к зачету

- 1. Профилирование реализации алгоритмов на Python, принципы решения задачи оптимизации производительности алгоритма
- 2. Проблема Global Interpreter Lock в Python и способы обхода ее ограничений
- 3. Технологический стек Python для обработки и анализа данных, Python как glue language, специфика библиотеки NumPy и ее роль в экосистеме Python
- 4. Организация массивов в NumPy: хранение данных, создание массивов, принципы реализации операций с едиными исходными данными
- 5. Универсальные функции и применение функций по осям в NumPy
- 6. Принцип распространения значений при выполнении операций в NumPy: общий алгоритм и примеры
- 7. Маскирование и прихотливое индексирование в NumPy

- 8. Модуль multiprocessing назначение и основные возможности, API multiprocessing. Pool
- 9. Различия между потоками и процессами, различие между различными планировщиками в Dask
- 10. Граф зависимостей задач суть структуры данных, ее построение и использование в Dask
- 11. Выбор типичных средств обработки данных, адекватных различным объемам данных; принцип обработки данных на базе операций map / filter / reduce
- 12. Многопроцессорные архитектуры с общей и разделяемой памятью специфика и сравнение
- 13. Подходы к декомпозиции крупных вычислительных задач на подзадачи для параллельного исполнения
- 14. Модели параллельного программирования и их сочетаемость с архитектурами параллельных вычислительных систем
- 15. Профилирование реализации алгоритмов на Python, принципы решения задачи оптимизации производительности алгоритма
- 16. Проблема Global Interpreter Lock в Python и способы обхода ее ограничений
- 17. Технологический стек Python для обработки и анализа данных, Python как glue language, специфика библиотеки NumPy и ее роль в экосистеме Python
- 18. Организация массивов в NumPy: хранение данных, создание массивов, принципы реализации операций с едиными исходными данными
- 19. Универсальные функции и применение функций по осям в NumPy
- 20. Принцип распространения значений при выполнении операций в NumPy: общий алгоритм и примеры
- 21. Маскирование и прихотливое индексирование в NumPy
- 22. Модуль multiprocessing назначение и основные возможности, API multiprocessing. Pool

Теоретические вопросы для подготовки к экзамену

- 1. Большие данные определение и причины возникновения задач обработки больших данных
- 2. Специфика современного аппаратного обеспечения для обработки больших данных и проблема масштабируемости параллельных вычислений
- 3. Выбор типичных средств обработки данных, адекватных различным объемам данных; принцип обработки данных на базе операций map / filter / reduce
- 4. Многопроцессорные архитектуры с общей и разделяемой памятью специфика и сравнение
- 5. Подходы к декомпозиции крупных вычислительных задач на подзадачи для параллельного исполнения
- 6. Модели параллельного программирования и их сочетаемость с архитектурами параллельных вычислительных систем
- 7. Профилирование реализации алгоритмов на Python, принципы решения задачи оптимизации производительности алгоритма
- 8. Проблема Global Interpreter Lock в Python и способы обхода ее ограничений
- 9. Технологический стек Python для обработки и анализа данных, Python как glue language, специфика библиотеки NumPy и ее роль в экосистеме Python
- 10. Организация массивов в NumPy: хранение данных, создание массивов, принципы реализации операций с едиными исходными данными
- 11. Универсальные функции и применение функций по осям в NumPy
- 12. Принцип распространения значений при выполнении операций в NumPy: общий алгоритм и примеры
- 13. Маскирование и прихотливое индексирование в NumPy
- 14.Векторизация в numpy: ключевые параметры функции, примеры применения, использование обобщенной сигнатуры функции
- 15. Numba: принципы работы, базовые примеры использования
- 16. Организация Pandas DataFrame и организация индексации для Data-Frame и Series
- 17. Применение универсальных функций и работа с пустыми значениями в Pandas
- 18. Объединение данных из нескольких Pandas DataFrame: общая логика и примеры

- 19. Операция GroupBy в Pandas DataFrame и реализация в ней подхода «разбиение, применение и объединение»
- 20. Специфика текстовых и бинарных файлов, форматы файлов CSV и Pickle, представление данных в этих форматах и взаимодействие с ними в Python
- 21.Задача сериализации и десериализации, описание формата файла JSON и пример описания данных в этом формате и взаимодействия с ним в Python
- 22. Формат XML и модель DOM: общая характеристика, пример описания данных в XML и DOM, работа с ними с помощью библиотеки BeautifulSoup
- 23. Форматы файлов NPY и HDF общая характеристика, пример взаимодействие с данными этих форматов в Python
- 24. Взаимодействие из Python с базой данных на примере API SQLite, базовые возможности работы с транзакциями
- 25.Взаимодействие с Excel из Python с помощью XLWings: принципы работы и примеры использования
- 26. Основы работы с регулярными выражениями: базовый синтаксис, примеры использования модуля re в Python
- 27. Сегментация и токенезация текста на естественном языке, стеммминг и лемматизация, примеры на Python
- 28. Расстояние Левеншнтейна: определение, алгоритм эффективного поиска оптимального редакционного предписания, пример поиска на Python
- 29.Векторное представление текста на естественном языке: общий алгоритм подходов ТF; TF-IDF
- 30.Модуль multiprocessing назначение и основные возможности, API multiprocessing.Pool
- 31. Различия между потоками и процессами, различие между различными планировщиками в Dask
- 32. Граф зависимостей задач суть структуры данных, ее построение и использование в Dask
- 33. Три ключевых структуры данных Dask: их специфика и принцип выбора структуры данных при решении задач
- 34. Dask. Array структура данных, специфика реализации и применения, процедура создания
- 35.Dask.Array поддерживаемые операции и отличия от NumPy ndarray

- 36. Распараллеливание алгоритмов с помощью dask.delayed принцип и примеры использования
- 37.Дополнительные параметры декоратора dask.delayed назначение и примеры использования
- 38. Использование dask.delayed для объектов и операции над объектами dask.delayed, включая ограничения их использования
- 39.Dask.DataFrame структура данных, специфика реализации и применения, процедура создания Dask.DataFrame
- 40.Ограничения использования Dask.DataFrame и операции мэппинга в Dask.DataFrame
- 41.Поддержка Dask.DataFrame операций работающих со скользящим окном
- 42. Совместное использование промежуточных результатов в Dask: принцип работы и примеры использования
- 43. Dask. Bag структура данных, специфика реализации и применения, процедура создания Dask Bag
- 44. Организация вычислений с помощью Map / Filter / Reduce : общий принцип и специфика параллельной реализации обработки данных в Dask. Bag
- 45. API Dask. Bag функции мэппинга, фильтрации и преобразования
- 46.API Dask.Bag функции группировки и свертки

Пример экзаменационного билета

1. (20 баллов) Создать двухмерный массив 30 на 4, содержащий случайные целые числа от 0 до 100.

Интерпретируя массив как 30 векторов из 4х компонент, вернуть массив 5 на 4, состоящий из векторов с наибольшей длиной (евклидовой нормой).

Решить задачу средствами numpy и/или pandas. Не использовать циклы и конструкции стандартного Python там, где можно использовать возможности данных библиотек.

2. (20 баллов) Датасет: Chinook_Sqlite.sqlite

С помощью кода на Python с использованием sqlite3 и SQL решить задачу. Реализовать функции на Python:

- 1. Которая возвращает все имеющиеся плейлисты.
- 2. Которая по имени плейлиста возвращает количество треков в нем и их суммарную продолжительность.
- 3. (20 баллов) Датасет: all_k.zip

Подсчитать, сколько раз во всех текстовых файлах, лежащих в

all_k.zip, встречаются реплики прямой речи, оформленные в виде диалога (В этом случае каждая реплика начинается с новой строки, перед репликами ставится тире (перед тире возможны различные пробельные символы)). Выполнить задание с использованием Dask, распараллелив процесс обработки данных.

Выполнить задание с использованием Dask (корректным!), распараллелив процесс обработки данных (использование Dask должно приводить к истинной параллельной обработке данных).

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная литература

1. Колдаев, В. Д. Структуры и алгоритмы обработки данных : учебное пособие / В. Д. Колдаев. - Москва : РИОР : ИНФРА-М, 2020. - 296 с. - ЭБС ZNANIUM.com. - URL: https://znanium.com/catalog/product/1054007 (дата обращения: 07.02.2022). -

https://znanium.com/catalog/product/1054007 (дата обращения: 07.02.2022). — Текст: электронный.

Дополнительная литература

2. Нагаева, И. А. Основы алгоритмизации и программирования: практикум: учебное пособие / И. А. Нагаева, И. А. Кузнецов. – Москва: Берлин: Директ-Медиа, 2021. – 169 с. – ЭБС Университетская библиотека ONLINE. – URL: https://biblioclub.ru/index.php?page=book&id=598404 (дата обращения: 07.02.2022). – Текст: электронный.

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. Электронная библиотека Финансового университета (ЭБ) http://elib.fa.ru/
 - 2. Электронно-библиотечная система BOOK.RU http://www.book.ru
- 3. Электронно-библиотечная система «Университетская библиотека ОНЛАЙН» http://biblioclub.ru/
- 4. Электронно-библиотечная система Znanium http://www.znanium.com
- Pylru 1.0.9 [Электронный ресурс]: сайт. Режим доступа: https://pypi.python.org/pypi/pylru

- 5. Python Data Analysis Library [Электронный ресурс]: сайт. Режим доступа: http://pandas.pydata.org/
- 6. Python Documentation [Электронный ресурс]: сайт. Режим доступа: http://python.org/doc/
 - 7. Python Standard Library [Электронный ресурс]: сайт. Режим доступа: https://docs.python.org/2/library/
- 8. Scikit-learn Machine Learning in Python [Электронный ресурс]: сайт. Режим доступа: http://scikit-learn.org
 - 9. Официальный сайт продукта https://www.python.org/
- 10. Каталог курсов Интернет Университета Информационных Технологий http://www.intuit.ru/
 - 11. The Python Tutorial // https://docs.python.org/3/tutorial/index.html
 - 12. NumPy User Guide // http://docs.scipy.org/doc/numpy/user/index.html
 - 13. Pandas User Guide http://pandas.pydata.org/pandas-docs/stable/
 - 14. Dask User Guide https://docs.dask.org/en/latest/

10. Методические указания для обучающихся по освоению дисциплины

При изучении теоретического материала необходимо опираться на рабочую программу дисциплины, материалы лекций и литературу из основного списка. Кроме этого, необходимо активно работать с Интернет-источниками и пособиями других авторов, помогающими усвоить материал отдельных разделов программы.

Необходимо конспектировать лекции, помечая сложные и непонятные моменты с тем, чтобы задать вопросы лектору в конце лекции или же на консультации.

При подготовке к семинарским занятиям необходимо изучить вопросы, вынесенные на самостоятельное изучение, так как семинарские занятия предполагают их обсуждение и дискуссию по теме; кроме того, задания для самостоятельной работы необходимы для того, чтобы успешно выполнить самостоятельные задания на семинарах.

Индивидуальные задания для работы на компьютере, файлы с выполненными заданиями необходимо хранить в личной сетевой папке в компьютерной сети вуза.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень необходимого программного обеспечения и информационных справочных систем

- 11. 1. Комплект лицензионного программного обеспечения:
 - 1. Windows, Microsoft Office.
 - 2. Антивирус Kaspersky
 - 3. Дистрибутив Python Anaconda
- 11.2. Современные профессиональные базы данных и информационные справочные системы
 - 1. Информационно-правовая система «Гарант»
 - 2. Информационно-правовая система «Консультант Плюс»
 - 3. Электронная энциклопедия: http://ru.wikipedia.org/wiki/Wiki
- 4. Система комплексного раскрытия информации «СКРИН» http://www.skrin.ru/
- 11.3. Сертифицированные программные и аппаратные средства защиты информации
 - не используются

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине.

Для проведения лекций и практических занятий необходима аудитория, оснащенная проектором и компьютерами с постоянным подключением к сети Интернет.