

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Информационная безопасность» (ИУ8)

Отчёт

по лабораторной работе № 2 по дисциплине «Теория систем и системный анализ»

Тема: «Исследование метода случайного поиска экстремума функции одного переменного»

Вариант 7

Выполнила: Кидинова Д.Д., студент группы ИУ8-31

Проверила: Коннова Н.С., доцент каф. ИУ8

Цель работы

Изучение метода случайного поиска экстремума на примере унимодальной и мультимодальнойфункций одного переменного.

Условие задачи

1. На интервале [1,4] задана унимодальная функция одного переменного

$$f(x) = -\sqrt{x}\sin(x) + 2$$

Используя метод случайного поиска осуществить поиск минимума f(x) с заданной вероятностью попадания в окрестность экстремума P при допустимой длине интервала неопределенности ϵ . Определить необходимое число испытаний N. Численный эксперимент выполнить для значений P=0,90,0,91,...,0,99 и значений $\epsilon=(b-a)q$, где q=0,005,0,010,...,0,100.

Последовательность действий:

- определить вероятность P_1 непопадания в ϵ -окрестность экстремума за одной испытание;
- записать выражение для вероятности $P_{\scriptscriptstyle N}$ непопадания в ϵ -окрестность экстремума за N испытаний;
- из выражения для P_N определить необходимое число испытаний N в зависимости от заданных $P_N = P$ и ϵ .
- 2. При аналогичных исходных условиях осуществить поиск минимума f(x), модулированной сигналом $\sin(5x)$, т.е. мультимодальной функции $f(x)\sin(5x)$.

Графики заданных функций

Рисунок 1 - График унимодальной функции y=-sqrt(x)*sin(x)+2 на [1;4]

Рисунок 2 - График мультимодальной функции $y = (-\operatorname{sqrt}(x) * \sin(x) + 2) * \sin(5x) \text{ на } [1, 4]$

				_				
Dart	1	Dependence	N	Λf	D	and	a	
rait	т.	Dependence	11	υı	г	anu	ч	

+		-+-		-+		-+-		-+-		-+-		-+-		-+-		-+-		-+-	+	+
I	q\P	I	0.9	I	0.91	1	0.92	I	0.93	I	0.94	I	0.95	I	0.96	I	0.97	I	0.98	0.99
+		-+-		-+		-+-		-+-		-+-		-+-		-+-		-+-		-+-	+	+
I	0.005	I	460	I	481	I	504	I	531		562	I	598	I	643	I	700	I	781	919
I	0.01	I	230		240	I	252	1	265	I	280	I	299		321	I	349	I	390	459
I	0.015	I	153	I	160	I	168		176		187		199	I	213	I	233	I	259	305
I	0.02		114	I	120	I	126	I	132		140		149	I	160	I	174	I	194	228
I	0.025	I	91	I	96	I	100	I	106		112		119	I	128	I	139	I	155	182
I	0.03	I	76	I	80	I	83	I	88		93		99	I	106	I	116	I	129	152
I	0.035	I	65	I	68	I	71	I	75		79		85	I	91	I	99	I	110	130
I	0.04	I	57	I	59	I	62	I	66		69		74	I	79	I	86	I	96	113
I	0.045	I	51	I	53	I	55	I	58		62		66	I	70	I	77	I	85	101
I	0.05		45	I	47	I	50	I	52		55		59	I	63	I	69	I	77	90
- 1	0 055	ı	41	1	43	1	45	ı	48	ı	50	ı	53	1	57	ı	62	1	70 I	82 I

| 0.06 | 57 | 75 | 38 | 39 | 41 | 43 | 46 | 49 | 53 | 64 | | 0.065 | 35 I 36 I 38 I 40 I 42 I 45 I 48 I 53 I 59 | 69 I | 0.07 | 37 | 32 | 34 | 35 | 39 | 42 | 45 | 49 | 54 | 64 I 42 | | 0.075 | 30 I 37 | 39 I 31 I 33 I 35 I 45 I 51 I 60 I | 0.08 | 28 | 29 | 31 | 32 | 34 | 36 | 39 | 43 | 47 | 56 | | 0.085 | 26 | 28 I 29 | 30 | 32 | 34 I 37 | 40 I 45 I 52 I | 0.09 | 25 | 27 | 29 | 30 | 35 | 49 | 26 I 32 I 38 I 42 | 1 0.095 1 24 | 25 I 26 | 27 | 29 | 31 | 33 I 36 I 40 I 47 I +-----

Part 2. Search for the extremum of a unimodal function f(x):

+-----+ 0.9 | 0.91 | 0.92 | 0.93 | 0.94 | 0.95 | 0.96 | 0.97 | 0.98 | 0.99 | | q\P | | 0.692381 | 0.692381 | 0.692381 | 0.692381 | 0.692381 | 0.692381 | 0.692381 | 0.692381 | 0.692381 | 0.692381 1 0.005 | 0.692381 | 0.692381 | 0.692381 | 0.692381 | 0.692381 | 0.692381 | 0.692381 | 0.692381 | 0.692381 | 0.692381 1 0.01 | 0.692395 | 0.692395 | 0.692381 | 0.692381 | 0.692381 | 0.692381 | 0.692381 | 0.692381 | 0.692381 | 0.692381 | I 0.015 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692381 | 0.692381 | 0.692381 | 0.02 0.025 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 1 0.03 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.035 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.04 | 0.693252 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.045 0.05 | 0.693252 | 0.693252 | 0.693252 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.055 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.692395 | 0.692395 | 0.692395 | 0.692395 | 0.06 0.065 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.692395 | 0.692395 | 0.692395 0.07 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.692395 | | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 0.075 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.08 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 0.085 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 1 0.09 0.095 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 | 0.693252 |

Part 2. Search for the extremum of a multimodal function f(x) * sin(5x):

+-----+ 0.9 | 0.91 | 0.92 | 0.93 | 0.94 | 0.95 | 0.96 | 0.97 | 0.98 | 0.99 | | q\P | +-----+ | 0.005 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | 0.01 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | | -2.60055 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | | 0.015 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | 0.02 0.025 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60055 | -2.60055 | -2.60055 | -2.60055 | | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60055 | -2.60055 | -2.60055 | 0.03 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | 0.035 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | 0.04 0.045 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | 0.05 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | -2.60008 | 0.055

График зависимостей погрешности от числа точек N

Рисунок 3 - График зависимости погрешности от числа точек N для случайного поиска

Выводы

Из полученных таблиц и графиков видно, что метод случайного поиска эффективен как при отыскании экстремума как унимодальной, так и мультимодальной функции одного переменного.

Ответ на контрольный вопрос

В чем состоит сущность метода случайного поиска? Какова область применимости данного метода?

Метод случайного поиска представляет собой нахождение экстремума среди значений заданной функции в случайно сгенерированных точках, принадлежащих некоторому отрезку. Различают направленный и ненаправленный случайный поиск. Первый используют для нахождения локального экстремума, второй — для глобального. Этот метод используется при решении экстремальных задач на областях со сложной геометрией. Обычно вписывают эту область в п-мерный параллелепипед, а далее генерируют в этом п-мерном параллелепипеде случайные точки по равномерному закону, оставляя только те, которые попадают в допустимую область.

Приложение. Исходный код программы

```
#include <iostream>
#include <cmath>
#include <iomanip>
#include <vector>
#include <algorithm>
#include <string>
using std::cin;
using std::cout;
using std::vector;
using std::string;
double FunctionFromTask(double x) {
    return -sqrt(x) * std::sin(x) + 2;
const double LOWER EDGE = 1.;
const double UPPER EDGE = 4.;
void Dependence() {
    cout << "Part 1. Dependence N of P and g :\n+"</pre>
           << std::string(7, '-') << '+';
    for (size t i = 0; i < 10; ++i) {
         cout << std::string(6, '-') << '+';
    cout
              << std::string(7, '-') << "+";
    for (size t i = 0; i < 10; ++i) {
         cout << std::string(6, '-') << '+';
    cout << '\n';
    for (double q = 0.005; q \le 0.1;) {
         cout << "| " << q << "\t|";
         for (double P = 0.9; P < 0.995;) {
              cout \ll std::setw(5) \ll ceil(log(1 - P) / log(1 - q))
              P += 0.01;
         cout << '\n';
         q += 0.005;
    cout << '+' << std::string(7, '-') << '+';
    for (size t i = 0; i < 10; ++i) {
         cout << std::string(6, '-') << '+';
    cout << "\n\n";
double GetMinimum(const size t &N, const string &FunctionType) {
    srand(time(nullptr));
    vector<double> VectorOfY;
    for (size t i = 0; i < N; ++i) {
         double x = LOWER EDGE + (UPPER EDGE - 1) * rand() / (float) RAND MAX;
```

```
if (FunctionType == "unimodal")
              VectorOfY.push back(FunctionFromTask(x));
         else if (FunctionType == "multimodal")
              VectorOfY.push back(FunctionFromTask(x) * std::sin(5 * x));
    return *min element(VectorOfY.begin(), VectorOfY.end());
void SearchMinimumOfFunction(const string &FunctionType) {
    cout << '+' << std::string(7, '-') << '+';
    for (size t i = 0; i < 10; ++i) {
         cout << std::string(10, '-') << '+';
    cout << "\n| q\\P | 0.9 | 0.91 | 0.92 | 0.93 |"
           << std::string(7, '-') << "+";
    for (size t i = 0; i < 10; ++i) {
         cout << std::string(10, '-') << '+';
    cout << '\n';
    for (double q = 0.005; q \le 0.1;) {
         cout << "| " << q << "\t|";
         for (double P = 0.9; P < 0.995;) {
              size t N = ceil(log(1 - P) / log(1 - q));
              cout << std::setw(9) << GetMinimum(N, FunctionType) << " |";</pre>
              P += 0.01;
         cout << '\n';
         q += 0.005;
    cout << '+' << std::string(7, '-') << '+';
    for (size t i = 0; i < 10; ++i) {
         cout << std::string(10, '-') << '+';
    cout << "\n\n";
int main() {
    cout << "Variant 7: \t -sqrt(x) * sin(x) + 2 \t [" << LOWER_EDGE << "; "</pre>
          << UPPER EDGE << "]\n";
    Dependence();
    cout << "Part 2. Search for the extremum of a unimodal function f(x):\n";
    SearchMinimumOfFunction("unimodal");
    cout
              << "Part 2. Search for the extremum of a multimodal function "
    SearchMinimumOfFunction("multimodal");
    return 0;
```