Analisi II

Serie numeriche

Data una successione $\{a_n\}n\in\mathbb{N}$ chiamiamo SERIE di termine generale a_n la successione

$$S_n = \sum_{k=0}^n a_n$$

 S_n viene detta SOMMA PARZIALE N-ESIMA della serie e diciamo che la serie converge , diverge, è irregolare se $\{S_n\}$ converge, diverge, è irregolare.

Se la serie converge, chiamiamo SOMMA della serie il limite a infinito di S_n , quindi decidiamo che s è il limite per infinito è uguale alla somma.

Serie di Fourier

Esistono funzioni definite su $\mathbb R$ che possono essere scritte come somma di serie del tipo

$$S(x) = \sum_{k=0}^{\infty} lpha_k \cos(kx) + eta \sin(kx) \ lpha_k, eta_k \in \mathbb{R}$$

Polinomio Trigonometrico

Definiamo polinomio trigonometrico di grado n(di periodo 2π) ogni funzione del tipo

$$P_n(x) = \sum_{k=0}^{\infty} lpha_k \cos(kx) + eta_k \sin(kx)$$

- Tutti i polinomi trigonometrici di grado 0: f(x)=k
- Tutti i polinomi trigonometrici di primo grado: $P_1(k) = lpha_0 + lpha_1\cos(k) + eta_1\sin(k)$
- Tutti i polinomi trigonometrici di secondo grado

Serie trigonometrica

Chiamiamo serie trigonometrica di periodo 2π ogni espressione formale del tipo

$$S(x) = \sum_{k=0}^{\infty} lpha_k \cos(kx) + eta_k \sin(kx)$$

- 1. Dati $lpha_k$ e eta_k non è detto che esista $x \in \mathbb{R}$ tale che S(x) converga
- 2. Se anche esiste un sottoinsieme $J \leq \mathbb{R}$ in cui la serie trigonometrica converge, e quindi definisce una funzione

$$S:J \leq \mathbb{R}
ightarrow \mathbb{R}$$

non si può stabilire a priori la regolarità di questa funzione, nonostante il limite di polinomi trigonometrici che siano tutti funzioni di classe $C^{\infty}(\mathbb{R})$

3. Se la serie converge $\forall x \in \mathbb{R}$ e quindi

$$S:\mathbb{R}
ightarrow \mathbb{R}$$

$$S(x) = \sum_{k=0}^{\infty} lpha_k \cos(kx) + eta_k \sin(kx)$$

allora S è periodica di periodo 2π poiché è limite di polinomi trigonometrici che sono periodici di periodi 2π (la periodicità passa al limite).

Quindi data una funzione periodica di periodo 2π ci chiediamo quali condizioni in f permettano di scrivere f come somma di una serie trigonometrica

Consideriamo dapprima $f:\mathbb{R} o\mathbb{R}$ periodica in 2π e continua in \mathbb{R}

Data una funzione f di r in r, periodica in 2π e continua in r, i coefficienti di Fourier sono definiti quanto segue:

$$a_k = rac{1}{\pi} \int_0^{2\pi} f(x) \cos(kx) dx : k \in \mathbb{N}, k \geq 0$$

$$a_k = rac{1}{\pi} \int_0^{2\pi} f(x) \sin(kx) dx : k \in \mathbb{N}, k \geq 1$$

la serie di Fourier associata ad f è la serie trigonometrica seguente

$$Sf(k) = rac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx) + b_k \sin(kx)$$

1. Poiché $f(x)\cos(x)$ e $f(x)\sin(kx)$ sono periodiche in $2\pi \forall k$ i coefficienti di Fourier si possono scrivere come:

$$a_k = rac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) =$$

2. se f(x) è pari su $\mathbb R$ allora $f(x)\cos(kx)$ e pari $f(x)\sin(kx)$ è dispari

Curve

$$r=I \leq \mathbb{R} o \mathbb{R}^n$$

Sono delle funzioni che hanno una variabile e tante componenti ma ciascuna delle componenti è una funzione di analisi 1.

Richiamo di notazioni vettoriali

Un vettore in $\underline{v} \in \mathbb{R}^n$ ha tante componenti $\underline{v} = \{v_1, v_2, \dots, v_n\}$

$$\underline{v} \in \mathbb{R}^2 \ \underline{v} = (v_x, v_y)$$

$$|\underline{x}| = \sqrt{x_1^2 + x_2^2 + \dots, x_n^2}$$

Prodotto scalare

$$\underline{x} \cdot \underline{w} : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

$$\underline{x} \cdot \underline{w} = v_1 \cdot w_1 + w_2 \cdot w_2 + \dots$$

Funzioni di una variabile reale a valori vettoriali: le curve

$$\underline{r} = I \leq \mathbb{R} o \mathbb{R}^m \qquad m \geq 2$$

$$\underline{r}(t=(x_1(t),x_2(t),\ldots,x_m(t))$$

Esempio: la legge oraria di una particella puntiforme nel piano o nello spazio:

$$\underline{r} = (x(t, y(t)))$$

$$\underline{r}(t) = (x(t), y(t), z(t))$$

Grafo di una curva

$$\Gamma = \{(t, \underline{r}(t), t \in I\} \le I \in \mathbb{R}^m$$

Se $m \geq 3$ non si può disegnare

Immagine di una curva (sostegno, supporto, traiettoria)

$$\gamma = \{\underline{r}(t), t \in I\}$$

Osservazione: conoscere il sostegno di una curva non equivale a conoscere la <u>funzione</u>, curve diverse possono avere lo stesso sostegno

$$\left\{egin{aligned} x = r\cos heta \ y = r\sin heta \end{aligned}
ight. \qquad heta\in[0,2\pi]$$