Sistema de carga modular y aterrizaje de precisión para enjambre de drones

José Alberto Castro Villasana, José Eduardo Castro Villasana, Ana Bárbara Quintero García

Una Tesis presentada a la Facultad de Ingeniería en Conformidad con los Requisitos para el Grado de Ingeniero en Tecnologías Electrónicas y Robótica, Ingeniero en Mecatrónica

Universidad de Monterrey

Departamento de Ingeniería y Tecnologías San Pedro Garza García, México

Diciembre 2024

Asesor:

Fermín Castro

Contents

1	Inti	oducción	2
	1.1	Contexto General y Motivación	2
		1.1.1 Contexto del Problema	2
		1.1.2 Importancia del Problema	2
	1.2	Estado del Arte	2
		1.2.1 Revisión Breve del Estado del Arte	2
		1.2.2 Limitaciones de las Soluciones Actuales	2
	1.3	Planteamiento del Problema	3
		1.3.1 Definición Clara del Problema	3
		1.3.2 Preguntas de Investigación	3
	1.4		3
		1.4.1 Objetivo General	3
		1.4.2 Objetivos Específicos	3
	1.5	Justificación	4
		1.5.1 Relevancia del Proyecto	4
		1.5.2 Impacto Potencial	4
	1.6	Alcance y Limitaciones	4
		1.6.1 Alcance del Trabajo	4
		1.6.2 Limitaciones del Estudio	4
	1.7		4
			4
			4
	1.8	Estructura de la Tesis	5
2	Des	arrollo	6
3	Cor	nclusiones	7

Chapter 1

Introducción

1.1 Contexto General y Motivación

1.1.1 Contexto del Problema

Los enjambres de drones enfrentan desafíos significativos en términos de eficiencia de carga y aterrizaje automático preciso. Actualmente, las estaciones de carga existentes no permiten la carga de múltiples drones y no pueden asegurar un aterrizaje en una posición exacta, lo cual limita su autonomía y funcionalidad.

1.1.2 Importancia del Problema

Este problema es relevante debido a la creciente adopción de drones en diversas industrias, como la vigilancia, la entrega de mercancías, y la agricultura de precisión. La falta de estaciones de carga eficientes y precisas limita su uso continuo y autónomo, requiriendo intervención humana constante, lo cual reduce la eficiencia operativa y aumenta los costos.

1.2 Estado del Arte

1.2.1 Revisión Breve del Estado del Arte

Investigaciones recientes han propuesto el uso de transferencia inalámbrica de energía y métodos avanzados de carga, como los basados en visión e infrarrojos, para abordar los desafíos de la carga eficiente y el aterrizaje preciso de drones [?]. Estos avances buscan mejorar la autonomía de los drones y reducir la necesidad de intervención humana.

1.2.2 Limitaciones de las Soluciones Actuales

Las soluciones actuales presentan limitaciones significativas, como la falta de modularidad y la incapacidad de cargar múltiples drones de manera simultánea. Además, la precisión durante el aterrizaje sigue siendo un reto, especialmente en entornos dinámicos o poco estructurados [?].

1.3 Planteamiento del Problema

1.3.1 Definición Clara del Problema

El problema principal radica en la falta de estaciones de carga modulares y autónomas que aseguren un aterrizaje preciso y la carga eficiente de múltiples drones. Este trabajo busca desarrollar una solución que permita la carga simultánea y segura de múltiples drones sin intervención humana.

1.3.2 Preguntas de Investigación

- ¿Cómo se puede desarrollar una estación de carga modular que permita la carga simultánea de múltiples drones? - ¿Qué tecnologías de localización y visión pueden ser implementadas para asegurar un aterrizaje preciso?

1.4 Objetivos

1.4.1 Objetivo General

Diseñar, manufacturar e instrumentar una base de carga inalámbrica para cuadricópteros de arquitectura abierta, y desarrollar un sistema de aterrizaje mediante el uso de sensores de localización y un sistema de visión, para asegurar una integración eficaz y segura entre el cuadricóptero y su sistema de carga.

1.4.2 Objetivos Específicos

- Realizar un diseño CAD para la base de carga inalámbrica, asegurando que sea compatible con cuadricópteros de arquitectura abierta y que cumpla con los requisitos de eficiencia y seguridad para la carga de baterías.
- Manufacturar la base de carga para el enjambre de drones.
- Adaptar el diseño actual del dron de arquitectura abierta a la base de carga.
- Manufacturar un cuadricóptero e instrumentarlo con una cámara de visión y sensores de localización.
- Programar un sistema de aterrizaje que permita una buena estabilización y posicionamiento del cuadricóptero durante el aterrizaje, asegurando una interacción segura con la base de carga.

1.5 Justificación

1.5.1 Relevancia del Proyecto

Este proyecto es importante porque busca resolver un problema crucial en la operación continua y autónoma de enjambres de drones. Al mejorar la eficiencia de la carga y la precisión del aterrizaje, se contribuye al desarrollo de aplicaciones autónomas más seguras y eficientes en diversas industrias.

1.5.2 Impacto Potencial

Los resultados de este proyecto podrían tener un impacto significativo en la industria de la logística, la vigilancia y la agricultura de precisión, permitiendo la operación autónoma y segura de drones sin necesidad de intervención humana constante, lo cual aumentaría la eficiencia operativa y reduciría costos.

1.6 Alcance y Limitaciones

1.6.1 Alcance del Trabajo

Este trabajo se centrará en el diseño, manufactura e instrumentación de una base de carga inalámbrica para cuadricópteros, y en el desarrollo de un sistema de aterrizaje preciso utilizando sensores y visión por computadora. Las pruebas se llevarán a cabo en un entorno controlado.

1.6.2 Limitaciones del Estudio

El proyecto no considerará la escalabilidad a entornos exteriores con condiciones climáticas adversas ni la integración con otros tipos de drones que no sean de arquitectura abierta. Además, se limitará a la evaluación de prototipos en un entorno de prueba específico.

1.7 Metodología General

1.7.1 Enfoque Metodológico

Se utilizará un enfoque de diseño iterativo para construir el prototipo de la estación de carga. Las fases incluirán diseño CAD, manufactura, instrumentación de sensores, y pruebas experimentales para validar el aterrizaje y la carga de los drones.

1.7.2 Herramientas y Tecnologías

Las principales herramientas y tecnologías incluyen software CAD para el diseño, impresión 3D para la manufactura de componentes, sensores de visión por computadora para la localización, y algoritmos de control para la estabilización durante el aterrizaje.

1.8 Estructura de la Tesis

El capítulo 2 presentará una revisión detallada del estado del arte en sistemas de carga para drones. El capítulo 3 describirá la metodología empleada para el desarrollo del prototipo. El capítulo 4 discutirá los resultados obtenidos durante las pruebas, y el capítulo 5 incluirá las conclusiones y recomendaciones para futuros trabajos.

Chapter 2

Desarrollo

Chapter 3

Conclusiones

Bibliography

[1] Autor, "Título del artículo o libro", Año.