

AULA 1 - ELEMENTOS / CLASSIFICAÇÃO / SECÇÃO

Definição

Sejam α um plano, C um círculo de centro O e raio r pertencente a α e V um ponto não pertencente a α . Traçam-se todos os segmentos possíveis que possuem uma extremidade em V e a outra em C.

Elementos do cone

- Vértice: ponto V
- Geratriz (g): Segmento com extremidades em V e em um ponto da circunferência.
- Altura (h): Distância do vértice ao plano da base.
- · Raio da base (r)

Fonte: http://www.infoescola.com/wp-content/uploads/2009/08/full-6-b04c59cf0b.jpg

Classificação

- Reto: Quando o segmento \overline{VO} é perpendicular à base.
- Oblíquo: Quando o segmento \(\overline{VO} \) n\(\tilde{a} \) \(\epsilon \) \(\tilde{v} \) n\(\tilde{a} \) \(\epsilon \) \(\tilde{v} \) \(

Fonte:

http://soumaisenem.com.br/sites/default/files/captura_de_t ela_2012-10-31_as_16.23.16.png

Cone de Revolução

O cone de revolução é gerado a partir de um triangulo retângulo que gira em torno de um dos seus catetos.

Por ser um triângulo retângulo, temos que:

$$g^2 = r^2 + h^2$$

Fonte:

http://soumaisenem.com.br/sites/default/files/captura_de_t ela_2012-10-31_as_16.41.44.png

<u>Secção</u>

Transversal

É a intersecção paralela à base que não contém o vértice.

Fonte:

http://www.mundoeducacao.com/upload/conteudo/Cone_th umb[15].jpg

Meridiana

É a intersecção que passa pelo centro da base e pelo vértice, sendo perpendicular à base.

Forma um triângulo de área:

$$A = r.h$$

OBS: A secção meridiana do cone **reto** é um triângulo **isósceles**.

Fonte:

http://www.objetivo.br/conteudoonline/imagens/conteudo_6 69/24..jpg

<u>Cone equilátero</u>: A secção meridiana é um **triângulo equilátero** cuja geratriz mede 2r.

AULA 2 – ÂNGULO CENTRAL / ÁREAS E VOLUME

Ângulo central

Ao abrir e colocar em um plano a superfície lateral do cone, obtemos um setor circular.

O ângulo central do cone é o mesmo do setor circular.

Fonte: http://www.infoescola.com/wp-content/uploads/2009/08/full-6-e9af0919d1.jpg

Ângulo central em graus

$$\hat{\mathbf{a}} = \frac{360.\,r}{g}$$

Ângulo central em radianos

$$\hat{a} = \frac{2\pi \cdot r}{a}$$

<u>Áreas</u>

Área da base (A_h)

$$A_b = \pi r^2$$

Área lateral (A_l)

$$A_l = \pi r g$$

Área total (A_t):

$$A_t = A_b + A_l$$

$$A_t = \pi r(r+g)$$

Volume

$$V = \frac{1}{3}A_b.h$$

$$V = \frac{1}{3}\pi r^2.h$$