THE UNIVERSITY OF NEW ENGLAND

UNIT NAME:	PMTH 213/213A
PAPER TITLE:	Linear Algebra
PAPER NUMBER:	First and Only
DATE:	Monday 20 th November 2006 TIME: 9.30 AM TO 12.30 PM
TIME ALLOWED:	Three (3) hours plus fifteen minutes reading time
NUMBER OF PAGES IN PAPER: THREE (3)	
NUMBER OF QUESTIONS ON PAPER: EIGHT (8)	
NUMBER OF QUESTIONS TO BE ANSWERED: EIGHT (8)	
STATIONERY PER CANDIDATE: 1 X 6 LEAF A4 BOOKS 1 X 12 LEAF A4 BOOKS 0 X ROUGH WORK BOOKS	
GRAPH PAPER:	NIL (NUMBER OF SHEETS)
POCKET CALCULATORS PERMITTED: NO	
OTHER AIDS REQUIRED: NIL	

- - Candidates may make notes of this paper during the fifteen minutes reading time
 - Questions are not of equal value

INSTRUCTIONS FOR CANDIDATES:

• Candidates may retain their copy of this examination question paper

TEXTBOOKS OR NOTES PERMITTED: FIVE (5) A4 sheets (10 pages) of handwritten notes. No photocopies allowed. No printed notes allowed.

THE UNIVERSITY CONSIDERS IMPROPER CONDUCT IN EXAMINATIONS TO BE A SERIOUS OFFENCE. PENALTIES FOR CHEATING ARE EXCLUSION FROM THE UNIVERSITY FOR ONE YEAR AND/OR CANCELLATION OF ANY CREDIT RECEIVED IN THE EXAMINATION FOR THAT UNIT.

Question 1: [10 marks]

Find all linear transformations, $T: \mathbb{R}^3 \to \mathbb{R}^2$, which map the plane determined by the equation x - y - 2z = 0 onto the line determined by the equation u + v = 0.

Question 2: [8 marks]

Determine whether the real quadratic form

$$Q(x, y, z) = x^{2} + 8xy + 4y^{2} + 8yz + 7z^{2} + 6zx$$

is positive or negative definite, positive or negative semi-definite, or indefinite, justifying your answer.

Question 3: [10 marks]

Find all 2×2 complex matrices, $\underline{\mathbf{A}}$, with $\underline{\mathbf{A}}^2 = \underline{\mathbf{0}}_2$, where $\underline{\mathbf{0}}_2$ denotes the 2×2 zero matrix.

Question 4: [10 marks]

The matrix $\underline{\mathbf{A}}$ is skew-symmetric if $\underline{\mathbf{A}}^t = -\underline{\mathbf{A}}$, where $\underline{\mathbf{A}}^t$ denotes the transpose of $\underline{\mathbf{A}}$. Show that the skew-symmetric $n \times n$ matrices form a vector subspace of the real vector space of all $n \times n$ matrices with real coefficients.

Show that if $\underline{\mathbf{A}}$ is a real skew-symmetric $n \times n$ matrix with n odd, then $\det(\underline{\mathbf{A}}) = 0$.

Question 5: [12 marks]

Let $\{e_1, e_2, e_3\}$ be a basis for the vector space V and $T: V \longrightarrow V$ a linear transformation.

- (a) Show that if $\mathbf{f}_1 := \mathbf{e}_1$, $\mathbf{f}_2 := 2\mathbf{e}_1 + \mathbf{e}_2$, $\mathbf{f}_3 := 3\mathbf{e}_1 + 2\mathbf{e}_2 + \mathbf{e}_3$, then $\{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\}$ is also a basis for V.
- (b) Find the matrix, $\underline{\mathbf{B}}$, of T with respect to $\{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\}$, given that its matrix with respect to $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ is

$$\underline{\mathbf{A}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Question 6:

 $[10 \ marks]$

Let V and W be finitely generated vector spaces over the field \mathbb{F} . Prove that the linear transformation, $T:V\to W$, is an isomorphism if and only if $\{T(\mathbf{e}_j)\mid j=1,\ldots,n\}$ is a basis for W whenever $\{\mathbf{e}_j\mid j=1,\ldots,n\}$ is a basis for V.

Question 7:

[15 marks]

Given the symmetric matrix $A = \begin{bmatrix} 5 & 2 \\ 2 & 5 \end{bmatrix}$, find

- (a) its eigenvalues,
- (b) bases for its eigenspaces,
- (c) an orthogonal matrix, P, which diagonalises A, and
- (d) $P^{-1}AP$.

Question 8:

 $[25 \ marks]$

Let \mathcal{P}_2 be the real vector space of all polynomials in t with real coefficients, whose degree is at most 2, so that $V = \{at^2 + bt + c \mid a, b, c \in \mathbb{R} \}$.

(a) Prove that

$$\langle \langle p, q \rangle \rangle := p(-1)q(-1) + p(0)q(0) + p(1)q(1)$$
 $(p, q \in \mathcal{P}_2)$

defines an inner product on \mathcal{P}_2 .

(b) Apply the Gram-Schmidt procedure with respect to this inner product to find an orthonormal basis for the vector subspace of \mathcal{P}_2 generated by

$$\mathbf{v}_1 := t^2 + t, \ \mathbf{v}_2 := t^2 + 1 \ \text{ and } \ \mathbf{v}_3 := t + 1$$