Fundamentals of Neural Networks

Mathias Jackermeier

June 5, 2018

Technische Universität München

Introduction

Figure 1: A self-driving car. Credit: Marc van der Chijs / CC BY-ND 2.0

Introduction

Figure 2: A digital assistant. Credit: Kārlis Dambrāns / CC BY 2.0

Introduction

Figure 3: Object detection in images. Credit: Lu et. al¹

 $^{^{1}}$ '1-HKUST: Object Detection in ILSVRC 2014" , $\it CoRR$, vol. abs/1409.6155, 2014

Outline

Outline

- 1. The Perceptron
- 2. Feedforward Neural Networks

Architecture

Mathematical formulation

3. Training Feedforward Neural Networks

Cost functions

Stochastic Gradient Descent

Back-propagation

4. Extensions

The Perceptron

 Predict whether an input image of a handwritten digit shows a zero or another digit

MNIST Data Sample

Figure 4: Examples from the MNIST database. Credit: Josef Steppan / CC BY-SA 4.0

 Predict whether an input image of a handwritten digit shows a zero or another digit

- Predict whether an input image of a handwritten digit shows a zero or another digit
- \bullet The image is represented as a flattened vector of pixel intensities $\textbf{x} \in \mathbb{R}^{784}$

- Predict whether an input image of a handwritten digit shows a zero or another digit
- \bullet The image is represented as a flattened vector of pixel intensities $\textbf{x} \in \mathbb{R}^{784}$
- ullet The output should be 1 if the image shows a zero, otherwise it should be -1

Model Specification

The perceptron accepts n input values and computes an output value \hat{y} :

$$\hat{y} = \operatorname{sign}\left(\sum_{i=1}^{n} w_i x_i\right)$$

$$\equiv \hat{y} = \operatorname{sign}(\mathbf{w}^{\top} \mathbf{x})$$
(1)

Feedforward Neural Networks

Training Feedforward Neural

Networks

Extensions

