# Pseudopotentials/effective core potentials

## Lubos Mitas, Gani Annaberdiyev

**North Carolina State University** 

**QMC Workshop 2021** 

Funding: U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program and Center for Predictive Simulation of Functional Materials.







## pseudopotentials ... difficult subject

- highly technical, complicated constructions
- often the most complicated parts of the codes
- typical example of well-defined, controlable, effective Hamiltonian and
- they save (b)millions of hours of computer time
- allow calculations/predictions which are otherwise impossible



#### outline

- one-particle self-consistent methods
- core vs valence: length and energy scales, dependence on Z (atomic num.)
- (pseudo)ion: effective potential in the core + valence electrons
- QMC: impact on total energies and fluctuations → efficiency gains
- evaluation in VMC/DMC, localization approx., T-moves

#### **Gani Annaberdiyev's presentation:**

- how do they look like
- how it is done: norm-conserving and ccECP constructions
- forms, existing tables, accuracy, errors to watch
- examples

### reminder: one-particle self-consistent methods, **DFT and HF**

### **Density Functional Theory:**

$$E_{tot} = \int F_{tot}[\rho(\mathbf{r})] d\mathbf{r}$$

self-consistent loop 
$$\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

Hartree-Fock: 
$$\psi_{HF}(\boldsymbol{r_1}, \boldsymbol{r_2}, ...) = det[\{\phi_i(\boldsymbol{r_j})\}]$$
  $E_{HF} = \langle \psi_{HF} | H | \psi_{HF} \rangle = min$ 

self-consistent loop 
$$\begin{bmatrix} T_{kin} + V_{ext} + V_{eff}^{HF}(\{\phi_j\})]\phi_i = \epsilon_i \phi_i \\ V_{eff}^{HF} = V_{Coul + Exch}[\{\phi_i\}] \end{bmatrix}$$

### core vs valence states

#### two fundamental differences:

- spatial distribution
- energy scales

# spatial range of core vs valence electrons: carbon atom





# core vs valence one-particle orbitals: copper atom, semicore states 3s,3p



# core vs valence in bonds: isosurfaces of molecular orbitals of C\_2 dimer



1s core states (unchanged)



# atom with nuclear charge Z: energies of one-particle states

core states qualitatively:  $\epsilon_n = -Z^2/(2n^2)$ , n is the principal q. number

~ 100 - 10^6 eV

semicore states ~ 30 - 100 eV

valence states  $\sim 0.001 - 30 \text{ eV}$ 

## crucial for efficiency of QMC → energy fluctuations

energy of core states scales as Z^2, and energy variance is determined by the largest scale present!

$$\sigma^2 = \langle \psi_{VMC} | (H - E_{VMC})^2 | \psi_{VMC} \rangle \approx Z^4$$

efficiency of sampling of valence properties (bond energies, gaps etc) for heavy atoms is therefore very low

in reality: for He atom  $\sigma^2 \approx 0.2$  for Cu atom  $\sigma^2 \approx 100$ 

slowdown by a factor of  $\sim 500$  (heavier atoms: impractical  $\rightarrow$  impossible)

while we are interested in valence properties almost all the time would be spent on sampling irrelevant fluctuations in the core!!!

### core – valence partitioning

- core states/electrons are rigid and affect valence electronic structure (bonds, excitations, band gaps, conductivity) only marginally
  - → different energy and length scales

Strategy: eliminate the core states/electrons and keep only the valence!

- represent the core by an effective operator (cannot be a simple potential, must be angular momentum dependent because of different number of core states in s, p, d, ... channels)
- valence electrons feel a pseudopotential operator (instead of core e-)

$$W = \sum_{l} v_{l}(r) \sum_{m} |lm\rangle \langle lm| + v_{loc}(r)$$

## dictionary and notations

in condensed matter physics: pseudopotentials or PPs

in quantum chemistry : effective core potentials or ECPs

$$W = \sum_{l} v_{l}(r) \sum_{m}^{l_{max}} |lm\rangle \langle lm| + v_{loc}(r)$$

 $v_{\scriptscriptstyle I}(r)$  - radial pseudopotential function for a given I-symmetry channel

 $v_{loc}(r)$  - outside the core will be just - Z\_eff/r = - (Z-Z\_core)/r

|lm> < lm| - projection operator on Im ang. mom. state  $\rightarrow$  nonlocal!!!

 $l_{\it max}$  - number of different occupied channels  $\rightarrow$  number of nonlocal projection operators

## nonlocality: effective potential is *lm*-dependent

### remember the self-consistent loop/one-particle eigenfunction eq. ?

$$[T_{kin} + (V_{ext=ion}) + V_{eff}^{HF}(\{\phi_j\})]\phi_i = \epsilon_i \phi_i$$

in the simplest atomic case the nonlocality implies that each symmetry channel has different ionic (pseudo)potential

s-channel

$$[T_{kin} + (v_s + v_{loc}) + V_{eff}^{HF}(\{\phi_j\})]\phi_s = \epsilon_s \phi_s$$

p-channel

$$[T_{kin} + (v_p + v_{loc}) + V_{eff}^{HF}(\{\phi_j\})]\phi_p = \epsilon_p \phi_p$$

etc

## PPs in VMC: straightforward but numerically involved

|lm> < lm| projectors are nonlocal, ie, have off-diagonal matrix elements

- action on a many-body trial wave function

$$W \psi = \sum_{electrons \ i, \ ions \ I} \langle \mathbf{R} | W(iI) | \mathbf{R}' \rangle \psi(\mathbf{R}') d \mathbf{R}'$$

$$W(iI)\psi = \sum_{lm} v_{l}(r_{iI}) Y_{lm}(\omega_{iI}) \int_{4\pi} Y *_{lm}(\omega'_{iI}) \psi(r_{1}, ..., r'_{iI}, ..., r_{N}) d\omega'_{iI} =$$

$$= \sum_{l} \frac{2l+1}{4\pi} v_{l}(r_{iI}) \int_{4\pi} P_{l}[\cos(\theta'_{iI})] \psi(r_{1}, ..., r'_{iI}, ..., r_{N}) d\omega'_{iI}$$

spherical surface integral → numerical quadratures → N\_quad points



## effciency gain from pseudopotential vs accuracy Fe atom example

Fe atom 
$$\rightarrow$$
 [Ne] 3s^23p^63d^64s^2 [Ar] 3d^64s^2 all-electron [Ne]-core [Ar]-core E\_HF [au] -1262.444 -123.114 -21.387 E\_VMC[au] -1263.20(2) -123.708(2) -21.660(1)  $\sigma_{VMC}^2$  [au]  $\sim$  50 1.5 0.16 efficiency =  $\frac{1}{\sigma^2 T_{decorr}}$  0.02 2.1 125 valence errors "0" < 0.1 eV  $\sim$  0.5 eV !!!

additional important gain: scalar relativistic effects built-in pseudopots.

→ differences are more accurate than using nonrel. all-electrons !!!

# in DMC PPs/ECPs are more involved: localization approximation

- off-diagonal matrix elements imply non-local moves → could violate the fixed-node condition
- localization approximation by projection onto accurate trial function

$$W \rightarrow \frac{[W \psi_T]}{\psi_T} = W_{\psi_T, localized}(\mathbf{R})$$

- the result is a many-body effective operator, depends on the trial wf, its properties:
  - bias quadratic in trial function error, ie, converges quickly
     → zero variance property (psi\_T → psi\_exact)
  - not necessarily un upper bound, however, small biases tend to cancel out in differences (burried in fixed-node bias)

## alternative to localization approximation: T-moves → they restore the upper bound property

- either the DMC move breaks the fixed-node condition or it does not:

$$\psi_T(\mathbf{R})\langle \mathbf{R}|W|\mathbf{R}'\rangle\psi_T(\mathbf{R}')>0$$

or 
$$\psi_T(\mathbf{R})\langle \mathbf{R}|W|\mathbf{R}'\rangle\psi_T(\mathbf{R}')$$
 <0

ightharpoonup - sample the config. that same signin DMC process or - weight the config. by localization effective potential if the sign flips

**T-moves properties:** 

- total energy is an upper bound
- but no zero variance → some increase in computational effort

complementary properties: localization approximation ← T-moves

## **PP/ECP** advantages

- smaller energy fluctuations (crucial)
- smaller/smoother bases (plane waves in particular)
- reduced # of degrees of freedom
- scalar relativity included
- straightforward generalization to spin-orbit

## additional

\_

#### PPs in VMC: elimination of the numerical bias

- quadratures are such that they integrate products of spherical harmonics up to a given I\_max exactly, eg, N\_k=12 I\_max=5
- quadratures by V. I. Lebedev from a russian math journal
- numerical bias from the integration: to the leading order eliminated by random rotations of the quadrature points on the sphere (Fahy et al, '88)

