Pokemon

September 20, 2022

0.1 Introduction

Pokémon is a series of video games and animated TV shows that first aired in 1996, created by Nintendo and Game Freak. The show and games have been highly successful and have received many Game Of The Year awards. The first game of the year award came in 2000, with the release of a their first ever game named 'Pokémon Yellow'. The Pokémon games have since been highly rated amongst the gaming community.

The world of Pokémon is a fantasy world based on monsters that people, known as **Pokémon Trainers**, catch with special devices called **Pokeballs**. Till this date they have been eight generation of Pokémon games and a total of 905 unique Pokémon's across all generations. The first generation introduced 150 Pokémon's with 4 special Pokémon's called **Legendary Pokémon**. Now we have a total of 82 Legendary Pokémon.

0.2 What makes a Pokemon Legendary?

A Legendary Pokémon is a special type of Pokémon that is very rare and extremely powerful. In the world of Pokémon, they are considered as myths or legends. The stats of a Legendary Pokémon differ vastly from a normal Pokémon, as they have Higher Attack, Defense, Speed, Special Attack and Special Defense then normal Pokémon.

So, in this pipeline we will looking at all these stats and using them to predict if a Pokémon is Legendary or Not.

The Legendary Dataset This dataset contains information on all 802 Pokémon from all Seven Generations of Pokémon. The information contained in this dataset include Base Stats, Performance against Other Types, Height, Weight, Classification, Egg Steps, Experience Points, Abilities, etc. The information was scraped from http://serebii.net/

Contents of the Dataset

- 1 Name: The English name of the Pokemon
- 2 Japanese Name: The Original Japanese name of the Pokemon

- 3 Pokedex Number: The entry number of the Pokemon in the National Pokedex
- 4 Percentage male: The percentage of the species that are male. Blank if the Pokemon is genderless.
- 5 Type1: The Primary Type of the Pokemon
- 6 Type2: The Secondary Type of the Pokemon
- 7 Classification: The Classification of the Pokemon as described by the Sun and Moon Pokedex
- 8 Height (m): Height of the Pokemon in metres
- 9 Weight (kg): The Weight of the Pokemon in kilograms
- 10 Capture Rate: Capture Rate of the Pokemon
- 11 Base Egg Steps: The number of steps required to hatch an egg of the Pokemon
- 12 Abilities: A stringified list of abilities that the Pokemon is capable of having
- 13 Experience Growth: The Experience Growth of the Pokemon
- 14 Base Happiness: Base Happiness of the Pokemon
- 15 Against: Eighteen features that denote the amount of damage taken against an attack of a particular type
- 16 HP: The Base HP (Health) of the Pokemon
- 17 Attack: The Base Attack of the Pokemon
- 18 Defense: The Base Defense of the Pokemon
- 19 SP Attack: The Base Special Attack of the Pokemon

- 20 SP Defense: The Base Special Defense of the Pokemon
- 21 Speed: The Base Speed of the Pokemon
- 22 Generation: The numbered generation which the Pokemon was first introduced
- 21 Is Legendary: Denotes if the Pokemon is legendary.

0.2.1 Overview of the Pipeline

In this pipeline we will be going through many different Machine Learning stages, starting from Data Collection, then we will move on to the Data Exploration stage. After Data Exploration we will seeing the Data Preprocessing stage, where we will clean our datasets of any missing values, outliers or any other value that might alter the efficiency of our Machine Learning Model. Then we will move onto the Feature Engineering and then Training and Testing the model, for this pipeline we are using three Machine Learning Models, namely, *Support Vector Machine*, *Decision Tree Classifier and K Nearest Neighbors*. Then we will conclude this pipeline by analyzing the results by these three models and pick out the best model based on metric score.

But the most crucial stage for any pipeline is the importing libraries stage, as without them there is no code. So, for this pipeline we will be working with, *Pandas, Scikit-Learn, Matplotlib* and *Seaborn* libraries. So, let's start by,

0.3 Importing libraries

```
[1]: import pandas
                                  as pd
     from sklearn.model_selection import train_test_split, GridSearchCV
     from sklearn.preprocessing
                                  import OneHotEncoder, StandardScaler
     from sklearn.decomposition
                                  import PCA
     from imblearn.over_sampling
                                  import SMOTE
     from sklearn.tree
                                  import DecisionTreeClassifier, plot_tree
     from sklearn.neighbors
                                  import KNeighborsClassifier
     from sklearn.svm
                                  import SVC
     from sklearn.metrics
                                  import accuracy score, f1 score, recall score,
      →precision_score
     from sklearn.metrics
                                  import confusion_matrix, ConfusionMatrixDisplay
     import seaborn
                                  as sns
     import matplotlib.pyplot
                                  as plt
```

Now that libraries have been imported, now we can use Panda's library to import the Dataset we will be working on,

0.4 Loading Dataset

```
[2]: df = pd.read_csv('pokemon.csv')
     dfpop = df.pop('name')
     df.insert(0,'name', value = dfpop)
     df = df.set_index('pokedex_number')
     df.head()
[2]:
                            name
                                                     abilities against_bug \
    pokedex_number
     1
                       Bulbasaur
                                  ['Overgrow', 'Chlorophyll']
                                                                          1.0
     2
                                  ['Overgrow', 'Chlorophyll']
                                                                          1.0
                         Ivysaur
     3
                        Venusaur
                                   ['Overgrow', 'Chlorophyll']
                                                                          1.0
                                      ['Blaze', 'Solar Power']
     4
                      Charmander
                                                                          0.5
     5
                      Charmeleon
                                      ['Blaze', 'Solar Power']
                                                                          0.5
                      against_dark against_dragon against_electric against_fairy \
     pokedex_number
                               1.0
                                                                   0.5
                                                                                   0.5
     1
                                                1.0
     2
                               1.0
                                                1.0
                                                                   0.5
                                                                                   0.5
     3
                               1.0
                                                1.0
                                                                   0.5
                                                                                   0.5
     4
                               1.0
                                                1.0
                                                                   1.0
                                                                                   0.5
     5
                               1.0
                                                                   1.0
                                                                                   0.5
                                                1.0
                      against_fight
                                     against_fire against_flying ...
     pokedex_number
                                0.5
                                               2.0
     1
                                                                2.0
     2
                                0.5
                                               2.0
                                                                2.0 ...
     3
                                0.5
                                               2.0
                                                                2.0
     4
                                1.0
                                               0.5
                                                                1.0
     5
                                1.0
                                               0.5
                                                                1.0
                         japanese_name percentage_male sp_attack sp_defense \
     pokedex_number
                      Fushigidane
                                                  88.1
                                                                65
                                                                             65
     1
     2
                       Fushigisou
                                                  88.1
                                                                             80
                                                                80
     3
                      Fushigibana
                                                  88.1
                                                               122
                                                                           120
     4
                                                  88.1
                                                                             50
                          Hitokage
                                                                60
                                                  88.1
     5
                           Lizardo
                                                                80
                                                                             65
                                      type2 weight_kg generation
                                                                     is_legendary
                      speed type1
     pokedex_number
                                                   6.9
                                                                                 0
     1
                                                                  1
                         45
                             grass
                                    poison
     2
                                                                                 0
                         60
                             grass
                                    poison
                                                  13.0
                                                                  1
     3
                         80
                             grass
                                    poison
                                                 100.0
                                                                  1
                                                                                 0
     4
                         65
                              fire
                                        NaN
                                                   8.5
                                                                  1
                                                                                 0
     5
                         80
                              fire
                                        NaN
                                                  19.0
                                                                  1
                                                                                 0
```

1 Data Exploration

Now that we have uploaded the Dataset, let's have some fun with it. Let's use it to find some interesting insights.

```
[3]: sns.set_style('darkgrid');
sns.set_context(context='paper', font_scale=1.2);
```

Listing the names of all Legendary Pokemon and their stats:

```
[4]: pd.options.display.max_rows = 70
df[(df['is_legendary'] == 1)]
```

```
[4]:
                                                                       abilities \
                            name
     pokedex_number
                                                     ['Pressure', 'Snow Cloak']
     144
                        Articuno
                                                          ['Pressure', 'Static']
     145
                          Zapdos
     146
                         Moltres
                                                     ['Pressure', 'Flame Body']
     150
                          Mewtwo
                                                         ['Pressure', 'Unnerve']
                                                                 ['Synchronize']
     151
                             Mew
     243
                                                    ['Pressure', 'Inner Focus']
                          Raikou
                           Entei
                                                    ['Pressure', 'Inner Focus']
     244
                                                    ['Pressure', 'Inner Focus']
     245
                         Suicune
     249
                                                     ['Pressure', 'Multiscale']
                           Lugia
                                                    ['Pressure', 'Regenerator']
     250
                           Ho-Oh
     251
                                                                ['Natural Cure']
                          Celebi
                                                       ['Clear Body', 'Sturdy']
     377
                        Regirock
                                                     ['Clear Body', 'Ice Body']
     378
                          Regice
                                                  ['Clear Body', 'Light Metal']
     379
                       Registeel
     380
                          Latias
                                                                    ['Levitate']
     381
                                                                    ['Levitate']
                          Latios
     382
                          Kyogre
                                                                     ['Drizzle']
     383
                                                                     ['Drought']
                         Groudon
     384
                                                                    ['Air Lock']
                        Rayquaza
                                                                ['Serene Grace']
     385
                         Jirachi
     386
                          Deoxys
                                                                    ['Pressure']
     480
                            Uxie
                                                                    ['Levitate']
     481
                         Mesprit
                                                                    ['Levitate']
                                                                    ['Levitate']
     482
                           Azelf
     483
                          Dialga
                                                       ['Pressure', 'Telepathy']
     484
                                                       ['Pressure', 'Telepathy']
                          Palkia
     485
                         Heatran
                                                   ['Flash Fire', 'Flame Body']
```

```
486
                                                             ['Slow Start']
                  Regigigas
487
                                    ['Pressure', 'Telepathy', 'Levitate']
                   Giratina
488
                  Cresselia
                                                               ['Levitate']
490
                    Manaphy
                                                              ['Hydration']
491
                    Darkrai
                                                             ['Bad Dreams']
                                         ['Natural Cure', 'Serene Grace']
492
                    Shaymin
493
                                                              ['Multitype']
                     Arceus
494
                    Victini
                                                           ['Victory Star']
638
                   Cobalion
                                                              ['Justified']
639
                  Terrakion
                                                              ['Justified']
640
                   Virizion
                                                              ['Justified']
641
                   Tornadus
                                  ['Prankster', 'Defiant', 'Regenerator']
642
                  Thundurus
                                  ['Prankster', 'Defiant', 'Volt Absorb']
                   Reshiram
643
                                                             ['Turboblaze']
644
                                                               ['Teravolt']
                     Zekrom
645
                   Landorus
                              ['Sand Force', 'Sheer Force', 'Intimidate']
                                   ['Pressure', 'Teravolt', 'Turboblaze']
646
                     Kyurem
647
                                                              ['Justified']
                     Keldeo
                                                           ['Serene Grace']
648
                   Meloetta
649
                   Genesect
                                                               ['Download']
716
                    Xerneas
                                                             ['Fairy Aura']
                    Yveltal
                                                              ['Dark Aura']
717
718
                    Zygarde
                                         ['Aura Break', 'Power Construct']
                    Diancie
                                                             ['Clear Body']
719
720
                      Hoopa
                                                               ['Magician']
721
                  Volcanion
                                                           ['Water Absorb']
                                           ['Electric Surge', 'Telepathy']
785
                  Tapu Koko
786
                                            ['Psychic Surge', 'Telepathy']
                  Tapu Lele
                                             ['Grassy Surge', 'Telepathy']
787
                  Tapu Bulu
788
                                              ['Misty Surge', 'Telepathy']
                  Tapu Fini
789
                                                                ['Unaware']
                     Cosmog
790
                    Cosmoem
                                                                 ['Sturdy']
                                                       ['Full Metal Body']
791
                   Solgaleo
792
                                                          ['Shadow Shield']
                     Lunala
793
                                                            ['Beast Boost']
                   Nihilego
794
                   Buzzwole
                                                            ['Beast Boost']
795
                  Pheromosa
                                                            ['Beast Boost']
796
                  Xurkitree
                                                            ['Beast Boost']
797
                 Celesteela
                                                            ['Beast Boost']
                                                            ['Beast Boost']
798
                    Kartana
799
                   Guzzlord
                                                            ['Beast Boost']
800
                   Necrozma
                                                            ['Prism Armor']
801
                                                             ['Soul-Heart']
                   Magearna
                               against_dark against_dragon against_electric
                 against_bug
pokedex_number
                        0.50
                                                                            2.00
144
                                        1.0
                                                         1.0
```

145	0.50	1.0	1.0	1.00
146	0.25	1.0	1.0	2.00
150	2.00	2.0	1.0	1.00
151	2.00	2.0	1.0	1.00
243	1.00	1.0	1.0	0.50
244	0.50	1.0	1.0	1.00
245	1.00	1.0	1.0	2.00
249	1.00	2.0	1.0	2.00
250	0.25	1.0	1.0	2.00
251	4.00	2.0	1.0	0.50
377	1.00	1.0	1.0	1.00
378	1.00	1.0	1.0	1.00
379	0.50	1.0	0.5	1.00
380	2.00	2.0	2.0	0.50
381	2.00	2.0	2.0	0.50
382	1.00	1.0	1.0	2.00
383	1.00	1.0	1.0	0.00
384	0.50	1.0	2.0	1.00
385	1.00	2.0	0.5	1.00
386	2.00	2.0	1.0	1.00
480	2.00	2.0	1.0	1.00
481	2.00	2.0	1.0	1.00
482	2.00	2.0	1.0	1.00
483	0.50	1.0	1.0	0.50
484	1.00	1.0	2.0	1.00
485	0.25	1.0	0.5	1.00
486	1.00	1.0	1.0	1.00
487	0.50	2.0	2.0	0.50
488	2.00	2.0	1.0	1.00
490	1.00	1.0	1.0	2.00
491	2.00	0.5	1.0	1.00
492	2.00	1.0	1.0	0.50
493	1.00	1.0	1.0	1.00
494	1.00	2.0	1.0	1.00
638	0.25	0.5	0.5	1.00
639	0.50	0.5	1.0	1.00
640	1.00	0.5	1.0	0.50
641	0.50	1.0	1.0	2.00
642	0.50	1.0	1.0	1.00
643	0.50	1.0	2.0	0.50
644	1.00	1.0	2.0	0.25
645	0.50	1.0	1.0	0.00
646	1.00	1.0	2.0	0.50
647	0.50	0.5	1.0	2.00
648	2.00	2.0	1.0	1.00
649	0.50	1.0	0.5	1.00
716	0.50	0.5	0.0	1.00

717	1.00	0.5	1.0	2.00
718	1.00	1.0	2.0	0.00
719	0.50	0.5	0.0	1.00
720	1.00	4.0	1.0	1.00
721	0.50	1.0	1.0	2.00
785	0.50	0.5	0.0	0.50
786	1.00	1.0	0.0	1.00
787	1.00	0.5	0.0	0.50
788	0.50	0.5	0.0	2.00
789	2.00	2.0	1.0	1.00
790	2.00	2.0	1.0	1.00
791	1.00	2.0	0.5	1.00
792	1.00	4.0	1.0	1.00
793	0.50	1.0	1.0	1.00
794	0.50	0.5	1.0	1.00
795	0.50	0.5	1.0	1.00
796	1.00	1.0	1.0	0.50
797	0.25	1.0	0.5	2.00
798	1.00	1.0	0.5	0.50
799	2.00	0.5	2.0	0.50
800	2.00	2.0	1.0	1.00
801	0.25	0.5	0.0	1.00
	against_fairy	against_fight	against_fire	against_flying \
	agains - rairy	againbo_116mo	agains -iiic	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
pokedex_number	against_rairy	agains o_right	against_iiic	a8a1m20_11/1m8 (
pokedex_number 144	1.00	1.00	2.00	1.0
•				
144	1.00	1.00	2.00	1.0
144 145	1.00	1.00	2.00	1.0 0.5
144 145 146	1.00 1.00 0.50	1.00 0.50 0.50	2.00 1.00 0.50	1.0 0.5 1.0
144 145 146 150	1.00 1.00 0.50 1.00	1.00 0.50 0.50 0.50	2.00 1.00 0.50 1.00	1.0 0.5 1.0
144 145 146 150	1.00 1.00 0.50 1.00	1.00 0.50 0.50 0.50 0.50	2.00 1.00 0.50 1.00	1.0 0.5 1.0 1.0
144 145 146 150 151 243	1.00 1.00 0.50 1.00 1.00	1.00 0.50 0.50 0.50 0.50	2.00 1.00 0.50 1.00 1.00	1.0 0.5 1.0 1.0 1.0
144 145 146 150 151 243 244	1.00 1.00 0.50 1.00 1.00 1.00 0.50	1.00 0.50 0.50 0.50 0.50 1.00	2.00 1.00 0.50 1.00 1.00 1.00 0.50	1.0 0.5 1.0 1.0 1.0 0.5
144 145 146 150 151 243 244 245	1.00 1.00 0.50 1.00 1.00 0.50 1.00	1.00 0.50 0.50 0.50 0.50 1.00 1.00	2.00 1.00 0.50 1.00 1.00 1.00 0.50	1.0 0.5 1.0 1.0 1.0 0.5 1.0
144 145 146 150 151 243 244 245 249	1.00 1.00 0.50 1.00 1.00 1.00 0.50 1.00	1.00 0.50 0.50 0.50 0.50 1.00 1.00 1.00	2.00 1.00 0.50 1.00 1.00 0.50 0.50	1.0 0.5 1.0 1.0 1.0 0.5 1.0 1.0
144 145 146 150 151 243 244 245 249 250	1.00 1.00 0.50 1.00 1.00 0.50 1.00 1.00	1.00 0.50 0.50 0.50 0.50 1.00 1.00 1.00	2.00 1.00 0.50 1.00 1.00 0.50 0.50 1.00	1.0 0.5 1.0 1.0 1.0 0.5 1.0 1.0
144 145 146 150 151 243 244 245 249 250 251	1.00 1.00 0.50 1.00 1.00 1.00 0.50 1.00 0.50	1.00 0.50 0.50 0.50 1.00 1.00 1.00 0.25 0.50	2.00 1.00 0.50 1.00 1.00 0.50 0.50 1.00 0.50 2.00	1.0 0.5 1.0 1.0 0.5 1.0 1.0 1.0
144 145 146 150 151 243 244 245 249 250 251	1.00 1.00 0.50 1.00 1.00 1.00 0.50 1.00 0.50 1.00	1.00 0.50 0.50 0.50 0.50 1.00 1.00 1.00	2.00 1.00 0.50 1.00 1.00 0.50 0.50 1.00 0.50 2.00 0.50	1.0 0.5 1.0 1.0 1.0 0.5 1.0 1.0 1.0 2.0
144 145 146 150 151 243 244 245 249 250 251 377 378	1.00 1.00 0.50 1.00 1.00 0.50 1.00 0.50 1.00 0.50	1.00 0.50 0.50 0.50 1.00 1.00 1.00 0.25 0.50 0.50 2.00	2.00 1.00 0.50 1.00 1.00 0.50 0.50 1.00 0.50 2.00	1.0 0.5 1.0 1.0 1.0 0.5 1.0 1.0 1.0 2.0 0.5
144 145 146 150 151 243 244 245 249 250 251 377 378 379	1.00 1.00 0.50 1.00 1.00 1.00 0.50 1.00 0.50 1.00 1.0	1.00 0.50 0.50 0.50 1.00 1.00 1.00 0.25 0.50 0.50 2.00 2.00	2.00 1.00 0.50 1.00 1.00 0.50 0.50 1.00 0.50 2.00 0.50 2.00	1.0 0.5 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0
144 145 146 150 151 243 244 245 249 250 251 377 378 379 380	1.00 1.00 0.50 1.00 1.00 1.00 0.50 1.00 0.50 1.00 1.0	1.00 0.50 0.50 0.50 1.00 1.00 1.00 0.25 0.50 0.50 2.00 2.00 2.00 0.50	2.00 1.00 0.50 1.00 1.00 0.50 0.50 2.00 0.50 2.00 2.00 0.50	1.0 0.5 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0
144 145 146 150 151 243 244 245 249 250 251 377 378 379 380 381	1.00 1.00 0.50 1.00 1.00 0.50 1.00 0.50 1.00 1.0	1.00 0.50 0.50 0.50 0.50 1.00 1.00 1.00 0.25 0.50 0.50 2.00 2.00 2.00 0.50	2.00 1.00 0.50 1.00 1.00 0.50 0.50 2.00 0.50 2.00 2.00 0.50	1.0 0.5 1.0 1.0 1.0 0.5 1.0 1.0 1.0 2.0 0.5 1.0 1.0
144 145 146 150 151 243 244 245 249 250 251 377 378 379 380 381 382	1.00 1.00 0.50 1.00 1.00 1.00 0.50 1.00 1.0	1.00 0.50 0.50 0.50 1.00 1.00 1.00 0.25 0.50 0.50 2.00 2.00 2.00 0.50 0.50	2.00 1.00 0.50 1.00 1.00 0.50 0.50 2.00 0.50 2.00 0.50 2.00 0.50 0.5	1.0 0.5 1.0 1.0 1.0 0.5 1.0 1.0 1.0 2.0 0.5 1.0 1.0
144 145 146 150 151 243 244 245 249 250 251 377 378 379 380 381 382 383	1.00 1.00 0.50 1.00 1.00 1.00 0.50 1.00 0.50 1.00 1.0	1.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 0.25 0.50 0.50 2.00 2.00 2.00 0.50 0.50 1.00	2.00 1.00 0.50 1.00 1.00 0.50 0.50 2.00 0.50 2.00 0.50 2.00 0.50 0.5	1.0 0.5 1.0 1.0 1.0 0.5 1.0 1.0 1.0 2.0 0.5 1.0 0.5 1.0
144 145 146 150 151 243 244 245 249 250 251 377 378 379 380 381 382 383 384	1.00 1.00 0.50 1.00 1.00 1.00 0.50 1.00 0.50 1.00 1.0	1.00 0.50 0.50 0.50 0.50 1.00 1.00 1.00 0.25 0.50 0.50 2.00 2.00 2.00 2.00 0.50 1.00 1.00	2.00 1.00 0.50 1.00 1.00 0.50 0.50 2.00 0.50 2.00 0.50 2.00 0.50 0.5	1.0 0.5 1.0 1.0 1.0 0.5 1.0 1.0 1.0 2.0 0.5 1.0 0.5 1.0 1.0
144 145 146 150 151 243 244 245 249 250 251 377 378 379 380 381 382 383 384 385	1.00 1.00 0.50 1.00 1.00 1.00 0.50 1.00 1.0	1.00 0.50 0.50 0.50 1.00 1.00 1.00 0.25 0.50 0.50 2.00 2.00 2.00 0.50 1.00 1.00 0.50	2.00 1.00 0.50 1.00 1.00 1.00 0.50 0.50 2.00 0.50 2.00 0.50 2.00 0.50 0.5	1.0 0.5 1.0 1.0 1.0 0.5 1.0 1.0 1.0 2.0 0.5 1.0 1.0 1.0 1.0

101	4 00	0 50	1 00	4 0
481	1.00	0.50	1.00	1.0
482	1.00	0.50	1.00	1.0
483	1.00	2.00	1.00	0.5
484	2.00	1.00	0.25	1.0
485	0.25	2.00	1.00	0.5
486	1.00	2.00	1.00	1.0
487	2.00	0.00	0.50	
				1.0
488	1.00	0.50	1.00	1.0
490	1.00	1.00	0.50	1.0
491	2.00	2.00	1.00	1.0
492	1.00	1.00	2.00	2.0
493	1.00	2.00	1.00	1.0
494	0.50	0.50	0.50	1.0
638	1.00	2.00	2.00	1.0
639	2.00	2.00	0.50	1.0
640	2.00	1.00	2.00	4.0
641	1.00	0.50		1.0
			1.00	
642	1.00	0.50	1.00	0.5
643	1.00	1.00	0.25	1.0
644	2.00	1.00	0.50	0.5
645	1.00	0.50	1.00	1.0
646	2.00	2.00	1.00	1.0
647	2.00	1.00	0.50	2.0
648	1.00	1.00	1.00	1.0
649	0.50	1.00	4.00	1.0
716	1.00	0.50	1.00	1.0
717	2.00	1.00	1.00	1.0
718	2.00	1.00	0.50	1.0
719	1.00	1.00	0.50	0.5
720	1.00	0.00	1.00	1.0
721	0.50	1.00	0.25	1.0
785	1.00	0.50	1.00	0.5
786	1.00	0.25	1.00	1.0
787	1.00	0.50	2.00	2.0
788	1.00	0.50	0.50	1.0
789	1.00	0.50	1.00	1.0
790	1.00	0.50	1.00	1.0
791	0.50	1.00	2.00	0.5
792	1.00	0.00	1.00	1.0
793	0.50	1.00	0.50	0.5
794	2.00	0.50	2.00	4.0
795	2.00	0.50	2.00	4.0
796	1.00	1.00	1.00	0.5
797	0.50	1.00	2.00	0.5
798	0.50	2.00	4.00	1.0
799	4.00	2.00	0.50	1.0
800	1.00	0.50	1.00	1.0

801 0.50 1.00 2.00 0.5

Pokedex_number 144			japanese_name	percentage_male \	
145	<pre>pokedex_number</pre>	•••			
146	144	•••	Freezer	NaN	
150	145	•••	Thunder	NaN	
151	146	•••	Fire	NaN	
243 Raikou NaN 244 Entei NaN 245 Suicune NaN 249 Lugia NaN 250 Houou NaN 251 Celebi NaN 377 Regirock NaN 378 Regirock NaN 379 Registeel NaN 380 Latias 0.0 381 Latios 100.0 382 Kyogre NaN 383 Groudon NaN 384 Rayquaza NaN 385 Jirachi NaN 386 Deoxys NaN 480 Yuxie NaN 481 Emrit NaN 482 Agnome NaN	150	•••	Mewtwo	NaN	
244 Entei NaN 245 Suicune NaN 249 Lugia NaN 250 Houou NaN 250 Houou NaN 251 Celebi NaN 377 Regirock NaN 378 Regice NaN 379 Registeel NaN 380 Latias 0.0 381 Latias 100.0 382 Kyogre NaN 383 Groudon NaN 384 Rayquaza NaN 386 Jirachi NaN 480 Yuxie NaN 481 Emrit NaN 482 Agnome NaN 483 Dala NaN 485<	151	•••	Mew	NaN	
245 Suicune NaN 249 Lugia NaN 250 Houou NaN 251 Celebi NaN 377 Regirock NaN 378 Registeel NaN 379 Registeel NaN 380 Latias 0.0 381 Latias 100.0 382 Kyogre NaN 383 Groudon NaN 384 Rayquaza NaN 385 Jirachi NaN 480 Peoxys NaN 481 Emrit NaN 482 Agnome NaN 483 Dialga NaN 484 Palkia NaN 485 Heatran 50.0	243	•••	Raikou	NaN	
249 Lugia NaN 250 Houou NaN 251 Celebi NaN 3777 Regirock NaN 378 Registeel NaN 379 Registeel NaN 380 Latias 0.0 381 Latios 100.0 382 Kyogre NaN 383 Groudon NaN 384 Rayquaza NaN 385 Jirachi NaN 386 Deoxys NaN 480 Yuxie NaN 481 Emrit NaN 482 Agnome NaN 483 Dialga NaN 484 Palkia NaN 485 Heatran 50.0	244	•••	Entei	NaN	
Houon	245	•••	Suicune	NaN	
251 Regirock NaN 377 Regirock NaN 378 Regice NaN 379 Registeel NaN 380 Latias 0.0 381 Latios 100.0 382 Kyogre NaN 383 Groudon NaN 384 Rayquaza NaN 385 Jirachi NaN 386 Deoxys NaN 480 Poexys NaN 481 Emrit NaN 482 Agnome NaN 483 Dialga NaN 484 Palkia NaN 485 Regigigas NaN 487 Giratina (another Forne) NaN 488 Cresselia 0.0	249	•••	Lugia	NaN	
377 Regirock NaN 378 Regice NaN 379 Registeel NaN 380 Latias 0.0 381 Latios 100.0 382 Kyogre NaN 383 Groudon NaN 384 Rayquaza NaN 385 Jirachi NaN 386 Deoxys NaN 480 Yuxie NaN 481 Emrit NaN 482 Agnome NaN 483 Dialga NaN 484 Palkia NaN 485 Regigigas NaN 486 Regigigas NaN 487 Giratina (another Forme) NaN 490 Manaphy NaN </td <td>250</td> <td>•••</td> <td>Houou</td> <td>NaN</td> <td></td>	250	•••	Houou	NaN	
378 Regice NaN 379 Registeel NaN 380 Latias 0.0 381 Latios 100.0 382 Kyogre NaN 383 Groudon NaN 384 Rayquaza NaN 385 Jirachi NaN 386 Deoxys NaN 480 Puxie NaN 481 Emrit NaN 482 Agnome NaN 483 Dialga NaN 484 Palkia NaN 485 Heatran 50.0 486 Regigigas NaN 487 Giratina (another Forme) NaN 488 Cresselia 0.0 490 Manaphy NaN </td <td>251</td> <td>•••</td> <td>Celebi</td> <td>NaN</td> <td></td>	251	•••	Celebi	NaN	
379 Registeel NaN 380 Latias 0.0 381 Latios 100.0 382 Kyogre NaN 383 Groudon NaN 384 Rayquaza NaN 385 Jirachi NaN 386 Deoxys NaN 480 Pusta NaN 481 Emrit NaN 482 Agnome NaN 483 Dialga NaN 484 Palkia NaN 485 Regigigas NaN 486 Regigigas NaN 487 Giratina (another Forme) NaN 488 Cresselia 0.0 490 Manaphy NaN 491 Darkrai NaN	377	•••	Regirock	NaN	
380 Latias 0.0 381 Latios 100.0 382 Kyogre NaN 383 Groudon NaN 384 Rayquaza NaN 385 Jirachi NaN 386 Deoxys NaN 480 Peoxys NaN 481 Emrit NaN 482 Agnome NaN 483 Dialga NaN 484 Palkia NaN 485 Heatran 50.0 486 Regigigas NaN 487 Giratina (another Forme) NaN 488 Cresselia 0.0 490 Manaphy NaN 491 Darkrai NaN 492 Shaymin (sky Forme) NaN	378	•••	Regice	NaN	
381 Kyogre NaN 382 Kyogre NaN 383 Groudon NaN 384 Rayquaza NaN 385 Jirachi NaN 386 Deoxys NaN 480 Yuxie NaN 481 Emrit NaN 482 Agnome NaN 483 Dialga NaN 484 Palkia NaN 485 Regigigas NaN 486 Regigigas NaN 487 Giratina (another Forme) NaN 488 Cresselia 0.0 490 Manaphy NaN 491 Shaymin (sky Forme) NaN 492 Shaymin (sky Forme) NaN 493 Arceus	379	•••	Registeel	NaN	
382 Kyogre NaN 383 Groudon NaN 384 Rayquaza NaN 385 Jirachi NaN 386 Deoxys NaN 480 Yuxie NaN 481 Emrit NaN 482 Agnome NaN 483 Dialga NaN 484 Palkia NaN 485 Heatran 50.0 486 Regigigas NaN 487 Giratina (another Forme) NaN 488 Cresselia 0.0 490 Manaphy NaN 491 Darkrai NaN 492 Shaymin (sky Forme) NaN 493 Arceus NaN 494 Cobalon NaN </td <td>380</td> <td>•••</td> <td>Latias</td> <td>0.0</td> <td></td>	380	•••	Latias	0.0	
383 Groudon NaN 384 Rayquaza NaN 385 Jirachi NaN 386 Deoxys NaN 480 Yuxie NaN 481 Emrit NaN 482 Agnome NaN 483 Dialga NaN 484 Palkia NaN 485 Heatran 50.0 486 Regigigas NaN 487 Giratina (another Forme) NaN 488 Cresselia 0.0 490 Manaphy NaN 491 Darkrai NaN 492 Shaymin (sky Forme) NaN 493 Arceus NaN 494 Victini NaN 638 Cobalon NaN<	381	•••	Latios	100.0	
384 Rayquaza NaN 385 Jirachi NaN 386 Deoxys NaN 480 Yuxie NaN 481 Emrit NaN 482 Agnome NaN 483 Agnome NaN 484 Palkia NaN 485 Heatran 50.0 486 Regigigas NaN 487 Giratina (another Forme) NaN 488 Cresselia 0.0 490 Manaphy NaN 491 Darkrai NaN 492 Shaymin (sky Forme) NaN 493 Arceus NaN 494 Victini NaN 638 Cobalon NaN 640 Victini NaN<	382	•••	Kyogre	NaN	
385 Jirachi NaN 386 Deoxys NaN 480 Yuxie NaN 481 Emrit NaN 482 Agnome NaN 483 Dialga NaN 484 Palkia NaN 485 Heatran 50.0 486 Regigigas NaN 487 Giratina (another Forme) NaN 488 Cresselia 0.0 490 Manaphy NaN 491 Darkrai NaN 492 Shaymin (sky Forme) NaN 493 Arceus NaN 494 Victini NaN 638 Cobalon NaN 640 Virizion NaN 641 Tornelos (keshin Forme)	383	•••	Groudon	NaN	
386 Deoxys NaN 480 Yuxie NaN 481 Emrit NaN 482 Agnome NaN 483 Dialga NaN 484 Palkia NaN 485 Heatran 50.0 486 Regigigas NaN 487 Giratina (another Forme) NaN 488 Cresselia 0.0 490 Manaphy NaN 491 Darkrai NaN 492 Shaymin (sky Forme) NaN 493 Arceus NaN 494 Victini NaN 638 Cobalon NaN 639 Terrakion NaN 640 Virizion NaN 641 Tornelos (keshin Forme) <td>384</td> <td>•••</td> <td>Rayquaza</td> <td>NaN</td> <td></td>	384	•••	Rayquaza	NaN	
480 Yuxie NaN 481 Emrit NaN 482 Agnome NaN 483 Dialga NaN 484 Palkia NaN 485 Heatran 50.0 486 Regigigas NaN 487 Giratina (another Forme) NaN 488 Cresselia 0.0 490 Manaphy NaN 491 Darkrai NaN 492 Shaymin (sky Forme) NaN 493 Arceus NaN 494 Victini NaN 638 Cobalon NaN 639 Terrakion NaN 640 Virizion NaN 641 Tornelos (keshin Forme) 100.0 642 Voltolos	385	•••	Jirachi	NaN	
481 Emrit NaN 482 Agnome NaN 483 Dialga NaN 484 Palkia NaN 485 Heatran 50.0 486 Regigigas NaN 487 Giratina (another Forme) NaN 488 Cresselia 0.0 490 Manaphy NaN 491 Darkrai NaN 492 Shaymin (sky Forme) NaN 493 Arceus NaN 494 Victini NaN 638 Cobalon NaN 639 Terrakion NaN 640 Virizion NaN 641 Tornelos (keshin Forme) 100.0 642 Voltolos (keshin Forme) 100.0 643 Reshiram NaN 644 Zekrom NaN <td>386</td> <td>•••</td> <td>Deoxys</td> <td>NaN</td> <td></td>	386	•••	Deoxys	NaN	
482 Agnome NaN 483 Dialga NaN 484 Palkia NaN 485 Heatran 50.0 486 Regigigas NaN 487 Giratina (another Forme) NaN 488 Cresselia 0.0 490 Manaphy NaN 491 Darkrai NaN 492 Shaymin (sky Forme) NaN 493 Arceus NaN 494 Victini NaN 638 Cobalon NaN 639 Terrakion NaN 640 Virizion NaN 641 Tornelos (keshin Forme) 100.0 642 Voltolos (keshin Forme) 100.0 643 Reshiram NaN 644 Zekrom NaN	480	•••	Yuxie	NaN	
483 Dialga NaN 484 Palkia NaN 485 Heatran 50.0 486 Regigigas NaN 487 Giratina (another Forme) NaN 488 Cresselia 0.0 490 Manaphy NaN 491 Darkrai NaN 492 Shaymin (sky Forme) NaN 493 Arceus NaN 494 Victini NaN 638 Cobalon NaN 639 Terrakion NaN 640 Virizion NaN 641 Tornelos (keshin Forme) 100.0 642 Voltolos (keshin Forme) 100.0 643 Reshiram NaN 644 Zekrom NaN	481	•••	Emrit	NaN	
484 Palkia NaN 485 Heatran 50.0 486 Regigigas NaN 487 Giratina (another Forme) NaN 488 Cresselia 0.0 490 Manaphy NaN 491 Darkrai NaN 492 Shaymin (sky Forme) NaN 493 Arceus NaN 494 Victini NaN 638 Cobalon NaN 639 Terrakion NaN 640 Virizion NaN 641 Tornelos (keshin Forme) 100.0 642 Voltolos (keshin Forme) 100.0 643 Reshiram NaN 644 Zekrom NaN	482	•••	Agnome	NaN	
485 Heatran 50.0 486 Regigigas NaN 487 Giratina (another Forme) NaN 488 Cresselia 0.0 490 Manaphy NaN 491 Darkrai NaN 492 Shaymin (sky Forme) NaN 493 Arceus NaN 494 Victini NaN 638 Cobalon NaN 639 Terrakion NaN 640 Virizion NaN 641 Tornelos (keshin Forme) 100.0 642 Voltolos (keshin Forme) 100.0 643 Reshiram NaN 644 Zekrom NaN	483	•••	Dialga	NaN	
486 Regigigas NaN 487 Giratina (another Forme) NaN 488 Cresselia 0.0 490 Manaphy NaN 491 Darkrai NaN 492 Shaymin (sky Forme) NaN 493 Arceus NaN 494 Victini NaN 638 Cobalon NaN 639 Terrakion NaN 640 Virizion NaN 641 Tornelos (keshin Forme) 100.0 642 Voltolos (keshin Forme) 100.0 643 Reshiram NaN 644 Zekrom NaN	484	•••	Palkia	NaN	
487 Giratina (another Forme) NaN 488 Cresselia 0.0 490 Manaphy NaN 491 Darkrai NaN 492 Shaymin (sky Forme) NaN 493 Arceus NaN 494 Victini NaN 638 Cobalon NaN 639 Terrakion NaN 640 Virizion NaN 641 Tornelos (keshin Forme) 100.0 642 Voltolos (keshin Forme) 100.0 643 Reshiram NaN 644 Zekrom NaN	485	•••	Heatran	50.0	
488 Cresselia 0.0 490 Manaphy NaN 491 Darkrai NaN 492 Shaymin (sky Forme) NaN 493 Arceus NaN 494 Victini NaN 638 Cobalon NaN 639 Terrakion NaN 640 Virizion NaN 641 Tornelos (keshin Forme) 100.0 642 Voltolos (keshin Forme) 100.0 643 Reshiram NaN 644 Zekrom NaN	486	•••	Regigigas	NaN	
490 Manaphy NaN 491 Darkrai NaN 492 Shaymin (sky Forme) NaN 493 Arceus NaN 494 Victini NaN 638 Cobalon NaN 639 Terrakion NaN 640 Virizion NaN 641 Tornelos (keshin Forme) 100.0 642 Voltolos (keshin Forme) 100.0 643 Reshiram NaN 644 Zekrom NaN	487	•••	Giratina (another Forme)	NaN	
491 Darkrai NaN 492 Shaymin (sky Forme) NaN 493 Arceus NaN 494 Victini NaN 638 Cobalon NaN 639 Terrakion NaN 640 Virizion NaN 641 Tornelos (keshin Forme) 100.0 642 Voltolos (keshin Forme) 100.0 643 Reshiram NaN 644 Zekrom NaN	488	•••	Cresselia	0.0	
492 Shaymin (sky Forme) NaN 493 Arceus NaN 494 Victini NaN 638 Cobalon NaN 639 Terrakion NaN 640 Virizion NaN 641 Tornelos (keshin Forme) 100.0 642 Voltolos (keshin Forme) 100.0 643 Reshiram NaN 644 Zekrom NaN	490	•••	Manaphy	NaN	
493 Arceus NaN 494 Victini NaN 638 Cobalon NaN 639 Terrakion NaN 640 Virizion NaN 641 Tornelos (keshin Forme) 100.0 642 Voltolos (keshin Forme) 100.0 643 Reshiram NaN 644 Zekrom NaN	491	•••	Darkrai	NaN	
494 Victini NaN 638 Cobalon NaN 639 Terrakion NaN 640 Virizion NaN 641 Tornelos (keshin Forme) 100.0 642 Voltolos (keshin Forme) 100.0 643 Reshiram NaN 644 Zekrom NaN	492	•••	Shaymin (sky Forme)	NaN	
638 Cobalon NaN 639 Terrakion NaN 640 Virizion NaN 641 Tornelos (keshin Forme) 100.0 642 Voltolos (keshin Forme) 100.0 643 Reshiram NaN 644 Zekrom NaN	493	•••	Arceus	NaN	
639 Terrakion NaN 640 Virizion NaN 641 Tornelos (keshin Forme) 100.0 642 Voltolos (keshin Forme) 100.0 643 Reshiram NaN 644 Zekrom NaN	494	•••	Victini	NaN	
640 Virizion NaN 641 Tornelos (keshin Forme) 100.0 642 Voltolos (keshin Forme) 100.0 643 Reshiram NaN 644 Zekrom NaN	638	•••	Cobalon	NaN	
641 Tornelos (keshin Forme) 100.0 642 Voltolos (keshin Forme) 100.0 643 Reshiram NaN 644 Zekrom NaN	639	•••	Terrakion	NaN	
642 Voltolos (keshin Forme) 100.0 643 Reshiram NaN 644 Zekrom NaN	640		Virizion	NaN	
643 Reshiram NaN 644 Zekrom NaN	641		Tornelos (keshin Forme)	100.0	
644 Zekrom NaN	642		Voltolos (keshin Forme)	100.0	
	643	•••	Reshiram	NaN	
645 Landlos (keshin Forme) 100.0	644	•••	Zekrom	NaN	
	645		Landlos (keshin Forme)	100.0	

646	•••		Kyur	em	Na	.N	
647	Kelde	Keldeo (itsumo No Sugata)				N	
648	M	eloetta (ste	p Forme)	Nal	N	
649	•••		Genesec	t	Nal	N	
716	•••		Xernea	s	Nal	N	
717	•••		Yvelta	1	Nal	N	
718	•••	Zygarde (1	.0% Form	e)	Na	.N	
719	•••		Diancie		NaN	Ī	
720	Hoopa (imashimerare	shi Hoo	pa)	Na	aN	
721	•••	Vo	lcanion		NaN	Ī	
785	•••	Kapu	-kokeko		NaN	Ī	
786	•••	Kapu	-tetefu		NaN	Ī	
787	•••	Kap	u-bulul		NaN	Ī	
788	•••	Kapu	-rehire		NaN	Ī	
789	•••		Cosmo	g	Nal	N	
790	•••		Cosmovu	m	Nal	N	
791	•••		Solgale	0	Nal	N	
792	•••		Lunal	a	Nal	N	
793	•••		Uturoi	d	Nal	N	
794	•••	Ma	ssivoon		NaN	Ī	
795	•••	Ph	eroache		NaN	Ī	
796	•••	Den	jyumoku		NaN	Ī	
797	•••	Т	'ekkaguy	a	Nal	И	
798	•••	Ка	miturug	i	Nal	N	
799	•••	Ak	uziking		NaN	Ī	
800			Necrozm	a	Nal	N	
801	***		Magear	na	Na	.N	
	_		_				
	sp_attack	sp_defense	speed	type1	type2	weight_kg	\
pokedex_number	0.5	405	0.5		63 .	FF 4	
144	95 105	125	85	ice	flying	55.4	
145	125	90	100	electric	flying	52.6	
146	125	85	90	fire	flying	60.0	
150	194	120	140	psychic	NaN NaN	122.0	
151 243	100 115	100	100	psychic	NaN NaN	4.0	
	90	100	115	electric	NaN NaN	178.0	
244	90	75 115	100 85	fire	NaN NaN	198.0	
245	90	115		water	NaN fluing	187.0	
249250	110	154 154	110 90	psychic	flying	216.0	
251	100	100	100	fire	flying	199.0 5.0	
				psychic	grass		
377	50 100	100 200	50 50	rock	NaN NaN	230.0	
378 379	100 75		50 50	ice	NaN NaN	175.0 205.0	
		150 150		steel	NaN		
380	140 160	150	110	dragon	psychic	40.0	
381 382	160	120	110	dragon	psychic	60.0	
307	180	160	90	water	NaN	352.0	

383	150	90	90	ground	NaN	950.0
384	180	100	115	dragon	flying	206.5
385	100	100	100	steel	psychic	1.1
386	95	90	180	psychic	NaN	60.8
480	75	130	95	psychic	NaN	0.3
481	105	105	80	psychic	NaN	0.3
482	125	70	115	psychic	NaN	0.3
483	150	100	90	steel	dragon	683.0
484	150	120	100	water	dragon	336.0
485	130	106	77	fire	steel	430.0
486	80	110	100	normal	NaN	420.0
487	120	100	90	ghost	dragon	750.0
488	75	130	85	psychic	NaN	85.6
490	100	100	100	water	NaN	1.4
491	135	90	125	dark	NaN	50.5
492	120	75	127	grass	grass	2.1
493	120	120	120	normal	NaN	320.0
494	100 90	100	100	psychic	fire	4.0
638 639	90 72	72 90	108 108	steel rock	fighting	250.0 260.0
640	90	129	108		fighting fighting	200.0
641	110	90	121	grass flying	NaN	63.0
642	145	80	101	electric	flying	61.0
643	150	120	90	dragon	fire	330.0
644	120	100	90	dragon	electric	345.0
645	105	80	91	ground	flying	68.0
646	170	100	95	dragon	ice	325.0
647	129	90	108	water	fighting	48.5
648	77	77	128	normal	psychic	6.5
649	120	95	99	bug	steel	82.5
716	131	98	99	fairy	NaN	215.0
717	131	98	99	dark	flying	203.0
718	91	95	85	dragon	ground	284.6
719	160	110	110	rock	fairy	8.8
720	170	130	80	psychic	ghost	NaN
721	130	90	70	fire	water	195.0
785	95	75	130	electric	fairy	20.5
786	130	115	95	psychic	fairy	18.6
787	85	95	75	grass	fairy	45.5
788	95	130	85	water	fairy	21.2
789	29	31	37	psychic	NaN	0.1
790	29	131	37	psychic	NaN	999.9
791	113	89	97	psychic	steel	230.0
792	137	107	97	psychic	ghost	120.0
793	127	131	103	rock	poison	55.5
794	53	53	79	bug -	fighting	333.6
795	137	37	151	bug	fighting	25.0

796 797 798 799 800 801	173 107 59 97 127 130	71 101 31 53 89 115	83 61 109 43 79 65	electric steel grass dark psychic steel	NaN flying steel dragon NaN fairy	100.0 999.9 0.1 888.0 230.0 80.5
pokedex_number 144 145	generation 1 1		1			
146 150 151 243 244	1 1 1 2 2		1 1 1 1 1			
245 249 250 251 377	2 2 2 2 3		1 1 1 1 1			
378 379 380 381	3 3 3 3		1 1 1 1			
382 383 384 385 386	3 3 3 3 3		1 1 1 1 1			
480 481 482 483 484	4 4 4 4		1 1 1 1			
485 486 487 488	4 4 4 4		1 1 1 1			
490 491 492 493 494	4 4 4 4 5		1 1 1 1 1			
638 639 640	5 5 5		1 1 1			

641	5	1
642	5	1
643	5	1
644	5	1
645	5	1
646	5	1
647	5	1
648	5	1
649	5	1
716	6	1
717	6	1
718	6	1
719	6	1
720	6	1
721	6	1
785	7	1
786	7	1
787	7	1
788	7	1
789	7	1
790	7	1
791	7	1
792	7	1
793	7	1
794	7	1
795	7	1
796	7	1
797	7	1
798	7	1
799	7	1
800	7	1
801	7	1

[70 rows x 40 columns]

Proving the rarity of Legendary Pokemon

```
[5]: sns.countplot(x= df.generation, hue= df.is_legendary)
```

[5]: <AxesSubplot:xlabel='generation', ylabel='count'>

The plot shows the generation on x-axis and the number of Pokemon in each Generation. From this we can see for ourselves the rarity of Legendary Pokémon.

Comparision of Stats of Legendary and Non-Legendary Pokemon Let's start the comparsion by seperating Legendary and Non-Legendary Pokemon,

```
[6]: legend = pd.DataFrame(df[(df['is_legendary']==1)])
nonleg = pd.DataFrame(df[(df['is_legendary']==0)])
```

Once seperated, we can now select the stats columns of both dataframes, take each of their mean values and save it in a varible.

```
[7]: legmean = pd.DataFrame(legend[['hp', 'attack', 'defense', 'sp_attack', \square 'sp_defense', 'speed']].mean(axis=0))

nlegmean = pd.DataFrame(nonleg[['hp', 'attack', 'defense', 'sp_attack', \square 'sp_defense', 'speed']].mean(axis=0))

legmean = legmean.T

nlegmean = nlegmean.T
```

Now we concatenate both the dataframes into one dataframe, with a new column that denotes which row is legendary,

```
[8]: df4 = pd.concat([legmean, nlegmean], axis=0, ignore_index=False)
df4['col'] = (len(legmean)*(0,) + len(nlegmean)*(1,))
species = ['Legendary', 'Non-Legendary']
```

```
df4['species'] = species
```

Now we can start plotting the stats,

Difference in Health stats of both species,

```
[]:
```

[9]: <AxesSubplot:xlabel='species', ylabel='hp'>

Difference in Attack stats of both species,

```
[10]: sns.barplot(x='species', y='attack', hue='col', data=df4)
```

[10]: <AxesSubplot:xlabel='species', ylabel='attack'>

Difference in Defense stats of both species,

```
[11]: sns.barplot(x='species', y='defense', hue='col', data=df4)
```

[11]: <AxesSubplot:xlabel='species', ylabel='defense'>

Difference in Special Attack stats of both species,

```
[12]: sns.barplot(x='species', y='sp_attack', hue='col', data=df4)
```

[12]: <AxesSubplot:xlabel='species', ylabel='sp_attack'>

Difference in Special Defense stat of both species,

```
[13]: sns.barplot(x='species', y='sp_defense', hue='col', data=df4)
```

[13]: <AxesSubplot:xlabel='species', ylabel='sp_defense'>

Difference in Speed stat of both species,

```
[14]: sns.barplot(x='species', y='speed', hue='col', data=df4)
```

[14]: <AxesSubplot:xlabel='species', ylabel='speed'>

Looking at all these stats, we can prove the vast difference in Offense, Defense and Speed statistics of both types of Pokemon. With the Legendary Pokemon being in the league of their own.

2 Data Preprocessing

2.1 Data Cleaning

To remove unwanted column, viewing all column names:

Dropping the unwanted columns such as all the against columns, height, weight and percentage

male columns as they do not contribute towards a Pokémon being Legendary.

Now we will split the dataset into two sub datasets, namely, **df_train** and **df_test**. This done before the data cleaning stage to make sure that during the cleaning phase, the test data is not exposed to the training set, to avoid over fitting of the model.

```
[17]: df_train, df_test = train_test_split(df)
print(df_train.shape, df_test.shape)
```

```
(600, 18) (201, 18)
```

Now we will look for the missing data in the **df_train** and **df_test** and see if we can make do with removing them or should we apply a different approach to clean data.

```
[18]: print('Null values in Training Set: \n', df_train.isna().sum())
print('\n')
print('Null values in the Testing Set: \n', df_test.isna().sum())
```

```
Null values in Training Set:
```

```
name
                       0
abilities
                       0
attack
                       0
base_egg_steps
base_happiness
                       0
base_total
                       0
capture_rate
                       0
classfication
                       0
defense
                       0
                       0
experience_growth
                       0
                       0
japanese_name
sp attack
                       0
sp_defense
                       0
speed
                       0
                       0
type1
generation
                       0
                       0
is_legendary
dtype: int64
```

```
Null values in the Testing Set: name 0
```

0 abilities attack base_egg_steps 0 base_happiness 0 base_total 0 capture_rate 0 classfication 0 defense 0 experience_growth 0 hp 0 japanese_name 0 sp_attack 0 sp_defense 0 speed 0 type1 0 0 generation is_legendary 0 dtype: int64

From above we can see that there are no null values in both the sub datasets. So now we will move on to look at the data types of the features.

[19]: df_train.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 600 entries, 255 to 643
Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	name	600 non-null	object
1	abilities	600 non-null	object
2	attack	600 non-null	int64
3	base_egg_steps	600 non-null	int64
4	base_happiness	600 non-null	int64
5	base_total	600 non-null	int64
6	capture_rate	600 non-null	object
7	classfication	600 non-null	object
8	defense	600 non-null	int64
9	experience_growth	600 non-null	int64
10	hp	600 non-null	int64
11	japanese_name	600 non-null	object
12	sp_attack	600 non-null	int64
13	sp_defense	600 non-null	int64
14	speed	600 non-null	int64
15	type1	600 non-null	object
16	generation	600 non-null	int64
17	is_legendary	600 non-null	int64
dtvn	es: int64(12) obje	c+(6)	

dtypes: int64(12), object(6)

```
memory usage: 89.1+ KB
```

Looking at the data types we can see that we have two types, **int64** and **object**, we can work with int64 but we need to tranform the object because the Machine Learning model can not read strings as attributes. So we will enocde categorical attributes, to make it readable, in the feature engineering phase of this pipeline.

3 Feature Engineering

The first step into feature engineering is to select your features and target label. Since, we are wroking to find the Legendary status of Pokemon's based on their stats, we will select the column is_Legendary as our target variable and the other columns will the features that will be used to predict that.

3.0.1 Seperating Features and Target Variable

```
[20]: x_train = df_train.drop(['is_legendary'], axis = 1)
y_train = df_train['is_legendary']

x_test = df_test.drop(['is_legendary'], axis = 1)
y_test = df_test['is_legendary']

print('x_test:', x_test.shape)
print('y_test:', y_test.shape)
print('x_train:', x_train.shape)
print('y_train:', y_train.shape)
```

x_test: (201, 17)
y_test: (201,)
x_train: (600, 17)
y_train: (600,)

Now that we are done with seperating Target Variable from the Features, we can move on to assigning categorical attributes to the features. For this we will use **OneHotEncoder()** from the *preprocessing* library of Scikit-Learn and transfrom both the sub datasets.

3.0.2 Encoding categorical attributes

```
[21]: ohe = OneHotEncoder(handle_unknown = 'ignore')
  ohe.fit(x_train)
  x_train = ohe.transform(x_train)
  x_test = ohe.transform(x_test)
  print('x_test:', x_test.shape)
  print('x_train:', x_train.shape)
```

```
x_test: (201, 2919)
x_train: (600, 2919)
```

The next step in feature engineering is to standardize the sub datasets. For this we will use **StandardScaler()** from the *preprocessing* library of Scikit-Learn.

3.0.3 Standardizing the sub datasets

```
[22]: stand = StandardScaler(with_mean = False)
stand.fit(x_train)
x_train = stand.transform(x_train)
x_test = stand.transform(x_test)
print('x_train:', x_train.shape)
print('x_test:', x_test.shape)
```

```
x_train: (600, 2919)
x_test: (201, 2919)
```

The third step in feature engineering phase of this pipeline we will look at the domensionality reduction to remove the less important variable from the data, this will reduce the complexity of the model and also curb any overfitting of the model.

For this we will use **PCA** from the *decomposition* library of Scikit-Learn.

3.0.4 Dimensionality Reduction

```
[23]: dimred = PCA(n_components = 100)
    dimred.fit(x_train.toarray())
    x_train = dimred.transform(x_train.toarray())
    x_test = dimred.transform(x_test.toarray())
    print('x_train:', x_train.shape)
    print('x_test:', x_test.shape)
```

```
x_train: (600, 100)
x_test: (201, 100)
```

The last step in the feature engineering phase is to balance the datasets. Balancing is done to make sure that we do not have any imbalance classes that can lead to underfitting or over fitting of the model.

Balancing the data

```
[24]: osam = SMOTE()
x_train, y_train = osam.fit_resample(x_train, y_train)
print(x_train.shape, y_train.shape)
```

```
(1092, 100) (1092,)
```

Once we are done with balancing the data, we can move on from feature engineering to training Machine Learning Models.

4 Model Training & Testing

Looking at the dataset, we can see that it consists of discrete variable, so we will be going with classification models. The 3 models we have choosen are for training are *Support Vector Machine*, *Decision Tree Classifier and KN Neighbors Models*.

Through out this pipeline we will be using **GridSearchCV()** library from Scikit-Learn to find the best barameters for the said model and then find the *F1 Score*, *Confusion Matrix*, *Precision*, *Recall and Accuracy* to interpret the efficiency of the models.

4.0.1 Support Vector Machine Model

Training an Support Vector Machine Model and fiding the best hyper-parameters using Grid-SearchCV from Scikit-Learn. Here, we will be defining a dictionary of parameters for the SVM Model, the two main hyper-parameters for sym are *C* and *Kernel*.

```
[25]: svm = SVC()
param = {
        'C': [1, 10, 100, 1000],
        'kernel': ['linear', 'rbf']
}
gs_svm = GridSearchCV(svm, param_grid = param, cv =5)
gs_svm.fit(x_train, y_train)
gs_svm.cv_results_
gsdf_svm = pd.DataFrame(gs_svm.cv_results_)
gsdf_svm
```

```
[25]:
                                                          std_score_time param_C
         mean_fit_time
                         std_fit_time
                                        mean_score_time
      0
              0.014823
                             0.008004
                                                0.004363
                                                                 0.004858
                                                                                 1
      1
                                                                 0.000200
              0.016098
                             0.000378
                                                0.005195
                                                                                 1
      2
              0.007009
                             0.000702
                                                0.000812
                                                                 0.000036
                                                                                10
      3
              0.014485
                             0.000495
                                                0.004360
                                                                 0.000220
                                                                                10
                             0.000709
                                                                 0.000044
      4
              0.007004
                                                0.000804
                                                                               100
      5
              0.014463
                             0.000643
                                                0.004252
                                                                 0.000127
                                                                               100
      6
              0.007054
                             0.000702
                                                0.000804
                                                                 0.000041
                                                                              1000
      7
              0.014465
                             0.000652
                                                0.004282
                                                                 0.000179
                                                                              1000
        param_kernel
                                                  params
                                                           split0_test_score
                          {'C': 1, 'kernel': 'linear'}
      0
              linear
                                                                    0.990868
      1
                  rbf
                              {'C': 1, 'kernel': 'rbf'}
                                                                    0.990868
                         {'C': 10, 'kernel': 'linear'}
      2
              linear
                                                                    0.990868
      3
                             {'C': 10, 'kernel': 'rbf'}
                                                                    0.990868
                  rbf
      4
                        {'C': 100, 'kernel': 'linear'}
              linear
                                                                    0.990868
```

```
5
           rbf
                     {'C': 100, 'kernel': 'rbf'}
                                                             0.990868
6
                {'C': 1000, 'kernel': 'linear'}
        linear
                                                             0.990868
                    {'C': 1000, 'kernel': 'rbf'}
7
           rbf
                                                             0.990868
                       split2_test_score
                                           split3_test_score split4_test_score \
   split1_test_score
0
            0.986301
                                0.995413
                                                     0.958716
                                                                         0.986239
            0.995434
                                0.995413
                                                    0.990826
                                                                         1.000000
1
2
            0.986301
                                0.995413
                                                    0.958716
                                                                         0.986239
3
            0.995434
                                1.000000
                                                    0.990826
                                                                         1.000000
4
            0.986301
                                0.995413
                                                    0.958716
                                                                         0.986239
5
            0.990868
                                1.000000
                                                    0.990826
                                                                         1.000000
6
            0.986301
                                0.995413
                                                    0.958716
                                                                         0.986239
            0.990868
                                1.000000
                                                     0.990826
                                                                         1.000000
   mean_test_score
                    std_test_score
                                    rank_test_score
0
          0.983507
                           0.012852
                                                     4
1
          0.994508
                           0.003425
2
                           0.012852
                                                    5
          0.983507
3
          0.995425
                           0.004094
                                                     1
4
          0.983507
                           0.012852
                                                    5
5
          0.994512
                           0.004481
                                                    2
6
          0.983507
                           0.012852
                                                    5
          0.994512
                           0.004481
```

After training the model, we find the best parameters and the score of that parameters. In this case,

```
[26]: print("\n The best score across ALL searched params:\n",gs_svm.best_score_)
print("\n The best parameters across ALL searched params:\n",gs_svm.

$\text{\text{best_params_}}$
```

The best score across ALL searched params: 0.9954254115872816

```
The best parameters across ALL searched params: {'C': 10, 'kernel': 'rbf'}
```

Now that we have the best parameters for SVM Model, we can test it find the scores.

Testing the model and checking metric score:

```
[27]: y_pred_svm = gs_svm.best_estimator_.predict(x_test)
    cfx_svm = confusion_matrix(y_test, y_pred_svm)
    f1_svm = f1_score(y_test, y_pred_svm)
    accu_svm = accuracy_score(y_test, y_pred_svm)
    prec_svm = precision_score(y_test, y_pred_svm)
    rec_svm = recall_score(y_test, y_pred_svm)
```

 Model
 Support Vector Machines

 F1 Score
 0.896552

 Accuracy
 0.985075

 Precision
 1.0

 Recall
 0.8125

[27]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7fb5cf9f6dc0>

From the above values we can tell that our model has been trained with a F1 score of 89.65%, Accuracy of 98.51%, Precision of 100% and Recall of 81.13%. Now we will move to another model:

4.0.2 Decision Tree Classifier

Training a Decision Tree Classifier Model and fiding the best hyper-parameters using GridSearchCV from Scikit-Learn. Here, we will be defining a dictionary of parameters for the DTC Model, the hyper-parameters for DTC are *Criterion*, *splitter and max_depth*.

```
[28]: dtc = DecisionTreeClassifier()
  params = {
        'criterion': ['gini', 'entropy'],
        'splitter': ['best', 'random'],
        'max_depth': [10, 100, 1000, 2000, 5000, 10000, 20000]
}
  gs_dtc = GridSearchCV(dtc, param_grid = params ,cv = 5)
  fit = gs_dtc.fit(x_train, y_train)
  gsdf_dtc = pd.DataFrame(gs_dtc.cv_results_)
  gsdf_dtc
```

```
[28]:
                                                            std_score_time
          mean_fit_time
                          std_fit_time
                                         mean_score_time
      0
                0.033703
                               0.004935
                                                 0.000352
                                                                  0.000023
      1
                0.002894
                               0.000363
                                                 0.000341
                                                                  0.00003
      2
                0.033522
                               0.004951
                                                 0.000343
                                                                  0.000004
      3
                                                                  0.000002
                0.003265
                               0.000485
                                                 0.000335
      4
                0.033519
                               0.004968
                                                 0.000336
                                                                  0.000002
      5
                0.002947
                               0.000464
                                                 0.000335
                                                                  0.00003
      6
                0.033551
                               0.004952
                                                 0.000338
                                                                  0.000002
      7
                0.002466
                               0.000285
                                                 0.000332
                                                                  0.000002
      8
                0.033539
                               0.004942
                                                 0.000338
                                                                  0.000003
      9
                               0.000289
                0.002988
                                                 0.000335
                                                                  0.000001
      10
                0.033522
                               0.004960
                                                 0.000337
                                                                  0.00004
      11
                0.003156
                               0.000126
                                                 0.000335
                                                                  0.000001
      12
                0.033509
                               0.004926
                                                 0.000336
                                                                  0.00003
                                                                  0.000005
      13
                0.002901
                               0.000320
                                                 0.000335
      14
                0.036927
                               0.002831
                                                 0.000332
                                                                  0.00003
      15
                0.003001
                               0.000496
                                                 0.000332
                                                                  0.00007
      16
                0.036927
                               0.002852
                                                 0.000335
                                                                  0.000007
      17
                                                                  0.000004
                0.002936
                               0.000581
                                                 0.000336
      18
                0.036908
                               0.002820
                                                 0.000335
                                                                  0.000005
      19
                0.002786
                               0.000452
                                                 0.000330
                                                                  0.00004
      20
                0.036887
                               0.002824
                                                 0.000330
                                                                  0.000004
      21
                0.002840
                               0.000229
                                                 0.000332
                                                                  0.000005
      22
                0.036872
                               0.002819
                                                 0.000331
                                                                  0.000004
      23
                0.002805
                               0.000381
                                                 0.000327
                                                                  0.000002
      24
                               0.002821
                                                 0.000329
                                                                  0.00003
                0.036867
                0.003500
                                                 0.000330
      25
                               0.000362
                                                                  0.000002
      26
                0.036881
                               0.002799
                                                 0.000331
                                                                  0.000005
      27
                0.003100
                               0.000386
                                                 0.000331
                                                                  0.000002
```

```
param_criterion param_max_depth param_splitter
0
                                  10
                                                 best
               gini
1
               gini
                                  10
                                              random
2
                                 100
               gini
                                                 best
3
                                 100
                                              random
               gini
4
               gini
                                1000
                                                 best
                                              random
5
                                1000
               gini
6
               gini
                                2000
                                                 best
7
               gini
                                2000
                                              random
8
               gini
                                5000
                                                 best
9
               gini
                                5000
                                              random
10
               gini
                               10000
                                                 best
11
               gini
                               10000
                                              random
12
               gini
                               20000
                                                 best
13
                               20000
                                              random
               gini
14
            entropy
                                   10
                                                 best
15
                                   10
                                              random
            entropy
16
                                 100
                                                 best
            entropy
17
                                 100
                                              random
            entropy
18
                                1000
                                                 best
            entropy
19
            entropy
                                1000
                                              random
20
                                2000
                                                 best
            entropy
21
                                2000
                                              random
            entropy
22
                                                 best
            entropy
                                5000
23
                                5000
                                              random
            entropy
24
            entropy
                               10000
                                                 best
25
            entropy
                               10000
                                              random
26
                                                 best
            entropy
                               20000
27
            entropy
                               20000
                                              random
                                                   params
                                                            split0_test_score \
    {'criterion': 'gini', 'max_depth': 10, 'splitt...
0
                                                                   0.972603
1
    {'criterion': 'gini', 'max_depth': 10, 'splitt...
                                                                   0.990868
    {'criterion': 'gini', 'max_depth': 100, 'split...
2
                                                                   0.968037
3
    {'criterion': 'gini', 'max_depth': 100, 'split...
                                                                   0.977169
4
    {'criterion': 'gini', 'max_depth': 1000, 'spli...
                                                                   0.968037
5
    {'criterion': 'gini', 'max_depth': 1000, 'spli...
                                                                   0.990868
6
    {'criterion': 'gini', 'max_depth': 2000, 'spli...
                                                                   0.963470
7
    {'criterion': 'gini', 'max depth': 2000, 'spli...
                                                                   0.990868
8
    {'criterion': 'gini', 'max_depth': 5000, 'spli...
                                                                   0.977169
    {'criterion': 'gini', 'max_depth': 5000, 'spli...
9
                                                                   0.958904
    {'criterion': 'gini', 'max_depth': 10000, 'spl...
                                                                   0.968037
    {'criterion': 'gini', 'max_depth': 10000, 'spl...
                                                                   0.986301
12
    {'criterion': 'gini', 'max_depth': 20000, 'spl...
                                                                   0.972603
    {'criterion': 'gini', 'max_depth': 20000, 'spl...
13
                                                                   0.977169
14
    {'criterion': 'entropy', 'max_depth': 10, 'spl...
                                                                   0.977169
    {'criterion': 'entropy', 'max_depth': 10, 'spl...
                                                                   0.995434
```

```
16 {'criterion': 'entropy', 'max_depth': 100, 'sp...
                                                                  0.981735
17
   {'criterion': 'entropy', 'max_depth': 100, 'sp...
                                                                  0.990868
   {'criterion': 'entropy', 'max_depth': 1000, 's...
18
                                                                  0.981735
19
    {'criterion': 'entropy', 'max_depth': 1000, 's...
                                                                  0.977169
20
   {'criterion': 'entropy', 'max_depth': 2000, 's...
                                                                  0.977169
21
    {'criterion': 'entropy', 'max_depth': 2000, 's...
                                                                  0.986301
22
   {'criterion': 'entropy', 'max_depth': 5000, 's...
                                                                  0.977169
    {'criterion': 'entropy', 'max_depth': 5000, 's...
23
                                                                  0.986301
24 {'criterion': 'entropy', 'max_depth': 10000, '...
                                                                  0.977169
   {'criterion': 'entropy', 'max_depth': 10000, '...
25
                                                                  0.977169
    {'criterion': 'entropy', 'max_depth': 20000, '...
26
                                                                  0.977169
    {'criterion': 'entropy', 'max_depth': 20000, '...
                                                                  0.954338
                        split2_test_score
    split1_test_score
                                            split3_test_score
0
             0.995434
                                  0.986239
                                                      0.977064
1
             0.986301
                                  0.986239
                                                      0.972477
2
              1.000000
                                  0.986239
                                                      0.972477
3
             0.990868
                                  0.977064
                                                      0.990826
4
             1.000000
                                  0.986239
                                                      0.977064
5
             0.990868
                                  0.981651
                                                      0.981651
6
             0.995434
                                  0.986239
                                                      0.972477
7
             0.981735
                                  0.986239
                                                      0.963303
8
             0.995434
                                  0.986239
                                                      0.972477
9
             0.986301
                                  1.000000
                                                      0.986239
10
              1.000000
                                  0.986239
                                                      0.977064
11
             0.986301
                                  0.986239
                                                      0.986239
12
             0.995434
                                  0.986239
                                                      0.977064
13
             0.995434
                                  1.000000
                                                      0.967890
14
             1.000000
                                  0.986239
                                                      0.986239
15
             0.986301
                                                      0.977064
                                  0.995413
16
             1.000000
                                  0.990826
                                                      0.986239
17
             0.995434
                                  0.958716
                                                      0.977064
18
             1.000000
                                  0.981651
                                                      0.995413
19
             0.977169
                                  0.990826
                                                      0.977064
20
             1.000000
                                  0.986239
                                                      0.995413
21
             0.986301
                                  0.995413
                                                      0.981651
22
             1.000000
                                  0.995413
                                                      0.995413
23
             0.995434
                                  0.990826
                                                      0.977064
24
              1.000000
                                  0.990826
                                                      0.995413
25
             0.990868
                                  0.995413
                                                      0.977064
26
              1.000000
                                  0.995413
                                                      0.986239
27
             0.995434
                                  0.977064
                                                      0.977064
                        mean_test_score std_test_score rank_test_score
    split4_test_score
0
             0.986239
                                0.983516
                                                 0.007970
                                                                         23
                                                 0.006235
                                                                         20
1
             0.986239
                                0.984425
2
             0.995413
                                0.984433
                                                 0.012473
                                                                         17
```

3	0.995413	0.986268	0.007656	13
4	1.000000	0.986268	0.012603	13
5	0.995413	0.988090	0.005513	11
6	0.995413	0.982607	0.012732	25
7	0.986239	0.981677	0.009630	27
8	1.000000	0.986264	0.010446	15
9	0.986239	0.983537	0.013417	21
10	0.990826	0.984433	0.011042	17
11	0.990826	0.987181	0.001823	12
12	0.990826	0.984433	0.008478	17
13	0.977064	0.983511	0.012164	24
14	0.990826	0.988094	0.007422	9
15	0.990826	0.989008	0.006864	8
16	0.990826	0.989925	0.006063	5
17	0.990826	0.982581	0.013430	26
18	0.995413	0.990842	0.007656	3
19	0.995413	0.983528	0.007964	22
20	0.981651	0.988094	0.008481	9
21	0.995413	0.989016	0.005492	7
22	0.986239	0.990847	0.008171	2
23	1.000000	0.989925	0.007889	6
24	0.995413	0.991764	0.007853	1
25	0.986239	0.985350	0.007322	16
26	0.990826	0.989929	0.007858	4
27	0.995413	0.979863	0.015175	28

After training the model, we find the best parameters and the score of that parameters. In this case,

```
[29]: print("\n The best score across ALL searched params:\n",gs_dtc.best_score_)
print("\n The best parameters across ALL searched params:\n",gs_dtc.

$\text{\text{obst_params_}}$
```

The best score across ALL searched params: 0.9917640651836959

```
The best parameters across ALL searched params: {'criterion': 'entropy', 'max_depth': 10000, 'splitter': 'best'}
```

Now that we have the best parameters we can move on to train the model and check the efficiency of it,

Testing the model and checking metric score:

```
[30]: y_pred_dtc = gs_dtc.best_estimator_.predict(x_test)
    cfx_dtc = confusion_matrix(y_test, y_pred_dtc)
    f1_dtc = f1_score(y_test, y_pred_dtc)
```

 Model
 Decision Tree Classifer

 F1 Score
 0.903226

 Accuracy
 0.985075

 Precision
 0.933333

 Recall
 0.875

[30]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7fb5cf9d82e0>

From the above values we can tell that our model has been trained with a F1 score of 90.32%, Accuracy of 98.50%, Precision of 93.33% and Recall of 87.5%. Now we will move onto our last model:

4.0.3 K Nearest Neighbors

Training a K Nearest Neighbors Model and fiding the best hyper-parameters using GridSearchCV from Scikit-Learn. Here, we will be defining a dictionary of parameters for the KNN Model, the hyper-parameters for KNN are *N Neighbors, Weights and Metrics*

```
[31]: KNN = KNeighborsClassifier()
  params_knn= {
        'n_neighbors': [1,3,5,7,9,11,13,15,17,19,21],
        'weights': ['uniform', 'distance'],
        'metric': ['manhattan', 'euclidean', 'minkowski']
  }
  gs_knn = GridSearchCV(KNN, param_grid = params_knn, cv=5)
  gs_knn.fit(x_train, y_train)
  gsdf_knn = pd.DataFrame(gs_knn.cv_results_)
  gsdf_knn
```

```
[31]:
                                                            std_score_time param_metric
          mean_fit_time
                           std_fit_time
                                          mean_score_time
                                                                                manhattan
      0
                0.000764
                               0.000128
                                                 0.023483
                                                                   0.000244
      1
                0.000677
                               0.000002
                                                                   0.000056
                                                 0.017655
                                                                                manhattan
      2
                0.000674
                               0.000002
                                                                   0.000022
                                                                                manhattan
                                                 0.024378
      3
                                                                   0.000362
                                                                                manhattan
                0.000665
                               0.000002
                                                 0.018741
      4
                0.000675
                               0.000009
                                                 0.024721
                                                                   0.000598
                                                                                manhattan
      5
                0.000670
                               0.000003
                                                 0.019041
                                                                   0.000530
                                                                                manhattan
      6
                0.000679
                               0.00008
                                                 0.024895
                                                                   0.000674
                                                                                manhattan
      7
                0.000677
                                                 0.019120
                                                                   0.000501
                                                                                manhattan
                               0.000004
      8
                0.000672
                               0.000005
                                                 0.024862
                                                                   0.000583
                                                                                manhattan
      9
                                                                                manhattan
                0.000671
                               0.000004
                                                 0.019171
                                                                   0.000758
      10
                0.000678
                               0.000009
                                                                   0.000532
                                                                                manhattan
                                                 0.024987
                                                                                manhattan
      11
                0.000679
                               0.00008
                                                 0.019067
                                                                   0.000558
      12
                0.000676
                               0.000009
                                                                   0.000578
                                                                                manhattan
                                                 0.024954
      13
                0.000674
                               0.000003
                                                 0.019108
                                                                   0.000558
                                                                                manhattan
      14
                0.000673
                               0.000009
                                                 0.024986
                                                                   0.000553
                                                                                manhattan
      15
                0.000668
                               0.000002
                                                 0.019150
                                                                   0.000545
                                                                                manhattan
      16
                               0.000009
                                                                   0.000570
                                                                                manhattan
                0.000670
                                                 0.024977
      17
                0.000671
                               0.000009
                                                 0.019177
                                                                   0.000575
                                                                                manhattan
      18
                0.000674
                               0.000005
                                                 0.025165
                                                                   0.000778
                                                                                manhattan
      19
                0.000668
                               0.000006
                                                 0.019210
                                                                   0.000562
                                                                                manhattan
      20
                0.000671
                               0.00006
                                                 0.025105
                                                                   0.000572
                                                                                manhattan
      21
                0.000669
                               0.00006
                                                 0.019250
                                                                   0.000571
                                                                                manhattan
      22
                0.000964
                               0.000153
                                                 0.040531
                                                                   0.014663
                                                                                euclidean
      23
                0.001030
                               0.000012
                                                 0.030346
                                                                   0.002601
                                                                                euclidean
      24
                                                                                euclidean
                0.001033
                               0.000010
                                                 0.039940
                                                                   0.009029
                                                 0.030308
      25
                               0.000006
                                                                                euclidean
                0.001030
                                                                   0.002629
      26
                                                                                euclidean
                0.001032
                               0.00006
                                                 0.038406
                                                                   0.007632
      27
                0.002631
                               0.001966
                                                 0.033523
                                                                   0.001680
                                                                                euclidean
      28
                0.001030
                               0.000009
                                                 0.042161
                                                                   0.004582
                                                                                euclidean
```

29	0.001839	0.001592	0.032736	0.005820	euclidean
30	0.001022	0.000008	0.046159	0.003800	euclidean
31	0.002629	0.001961	0.035172	0.003089	euclidean
32	0.001028	0.000013	0.042969	0.002082	euclidean
33	0.001834	0.001595	0.027939	0.003374	euclidean
34	0.001026	0.000013	0.038179	0.006177	euclidean
35	0.001797	0.001519	0.027939	0.003556	euclidean
36	0.001030	0.000008	0.038225	0.003771	euclidean
37	0.001040	0.000010	0.031081	0.003230	euclidean
38	0.001043	0.000020	0.041363	0.004383	euclidean
39	0.001041	0.000009	0.029472	0.004055	euclidean
40	0.001024	0.000006	0.035022	0.003661	euclidean
41	0.002602	0.001935	0.032708	0.003959	euclidean
42	0.001021	0.000002	0.046250	0.007519	euclidean
43	0.001021	0.002985	0.040230	0.007313	euclidean
44	0.001030	0.002903	0.033914	0.001771	minkowski
	0.001030				
45		0.000003	0.027130	0.003350	minkowski
46	0.001027	0.000010	0.038349	0.005299	minkowski
47	0.001028	0.000006	0.034311	0.004826	minkowski
48	0.001026	0.000004	0.036022	0.004221	minkowski
49	0.001039	0.000013	0.027914	0.002514	minkowski
50	0.001028	0.000007	0.038979	0.003198	minkowski
51	0.001034	0.000010	0.024715	0.003969	minkowski
52	0.001024	0.000010	0.040591	0.006409	minkowski
53	0.002613	0.001956	0.028732	0.002469	minkowski
54	0.001019	0.000004	0.039025	0.005100	minkowski
55	0.002622	0.001958	0.027121	0.002471	minkowski
56	0.001019	0.000010	0.038191	0.005540	minkowski
57	0.001841	0.001591	0.032704	0.003506	minkowski
58	0.001018	0.000005	0.040621	0.005032	minkowski
59	0.001033	0.000002	0.034304	0.004906	minkowski
60	0.001020	0.000009	0.039745	0.004891	minkowski
61	0.001033	0.000011	0.034367	0.008794	minkowski
62	0.001029	0.000010	0.040555	0.004832	minkowski
63	0.001029	0.000011	0.033544	0.003519	minkowski
64	0.001024	0.000009	0.041400	0.002054	minkowski
65	0.001024	0.000002	0.031913	0.004371	minkowski
00	0.001024	0.000002	0.031913	0.004371	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
pa	ram_n_neighbors	param_weights \			
0	1	uniform			
1	1	distance			
2	3	uniform			
3	3	distance			
4	5	uniform			
5	5	distance			
6	7				
7	7				
	•				

8	9	uniform
9	9	distance
10	11	uniform
11	11	distance
12	13	uniform
13	13	distance
14	15	uniform
15	15	distance
16	17	uniform
17	17	distance
18	19	uniform
19	19	distance
20	21	uniform
21	21	distance
22	1	uniform
23	1	distance
24	3	uniform
25	3	distance
26	5	uniform
27	5	distance
28	7	uniform
29	7	distance
30	9	uniform
31	9	distance
32	11	uniform
33	11	distance
34	13	uniform
35	13	distance
36	15	uniform
37	15	distance
38	17	uniform
39	17	distance
40	19	uniform
41	19	distance
42	21	uniform
43	21	distance
44	1	uniform
45	1	distance
46	3	uniform
47	3	distance
48	5	uniform
49	5	distance
50	7	uniform
51	7	distance
52	9	uniform
53	9	distance
54	11	uniform

```
56
                   13
                            uniform
57
                  13
                           distance
58
                   15
                            uniform
59
                  15
                           distance
60
                  17
                            uniform
                  17
61
                           distance
62
                  19
                            uniform
                   19
63
                           distance
64
                  21
                            uniform
                   21
65
                           distance
                                                 params
                                                         split0_test_score \
0
    {'metric': 'manhattan', 'n_neighbors': 1, 'wei...
                                                                 0.986301
    {'metric': 'manhattan', 'n_neighbors': 1, 'wei...
1
                                                                 0.986301
    {'metric': 'manhattan', 'n_neighbors': 3, 'wei...
2
                                                                 0.986301
    {'metric': 'manhattan', 'n_neighbors': 3, 'wei...
3
                                                                 0.986301
    {'metric': 'manhattan', 'n_neighbors': 5, 'wei...
4
                                                                 0.981735
    {'metric': 'manhattan', 'n_neighbors': 5, 'wei...
                                                                 0.981735
    {'metric': 'manhattan', 'n_neighbors': 7, 'wei...
6
                                                                 0.972603
7
    {'metric': 'manhattan', 'n_neighbors': 7, 'wei...
                                                                 0.972603
8
    {'metric': 'manhattan', 'n_neighbors': 9, 'wei...
                                                                 0.972603
    {'metric': 'manhattan', 'n_neighbors': 9, 'wei...
                                                                 0.972603
   {'metric': 'manhattan', 'n neighbors': 11, 'we...
10
                                                                 0.977169
    {'metric': 'manhattan', 'n_neighbors': 11, 'we...
11
                                                                 0.977169
    {'metric': 'manhattan', 'n neighbors': 13, 'we...
                                                                 0.968037
   {'metric': 'manhattan', 'n_neighbors': 13,
                                                                 0.968037
   {'metric': 'manhattan', 'n_neighbors': 15, 'we...
                                                                 0.972603
    {'metric': 'manhattan', 'n_neighbors': 15, 'we...
15
                                                                 0.972603
16 {'metric': 'manhattan', 'n_neighbors': 17, 'we...
                                                                 0.972603
    {'metric': 'manhattan', 'n_neighbors': 17, 'we...
17
                                                                 0.972603
    {'metric': 'manhattan', 'n_neighbors': 19, 'we...
18
                                                                 0.968037
    {'metric': 'manhattan', 'n_neighbors': 19, 'we...
19
                                                                 0.968037
    {'metric': 'manhattan', 'n_neighbors': 21,
20
                                                                 0.963470
    {'metric': 'manhattan', 'n_neighbors': 21, 'we...
21
                                                                 0.968037
22
    {'metric': 'euclidean', 'n_neighbors': 1, 'wei...
                                                                 0.990868
23
    {'metric': 'euclidean', 'n neighbors': 1, 'wei...
                                                                 0.990868
24
    {'metric': 'euclidean', 'n_neighbors': 3, 'wei...
                                                                 0.990868
    {'metric': 'euclidean', 'n neighbors': 3, 'wei...
25
                                                                 0.990868
    {'metric': 'euclidean', 'n_neighbors': 5, 'wei...
26
                                                                 0.990868
    {'metric': 'euclidean', 'n_neighbors': 5, 'wei...
                                                                 0.990868
    {'metric': 'euclidean', 'n_neighbors': 7, 'wei...
                                                                 0.968037
    {'metric': 'euclidean', 'n_neighbors': 7, 'wei...
29
                                                                 0.968037
30
   {'metric': 'euclidean', 'n_neighbors': 9, 'wei...
                                                                 0.968037
    {'metric': 'euclidean', 'n_neighbors': 9, 'wei...
31
                                                                 0.968037
    {'metric': 'euclidean', 'n_neighbors': 11, 'we...
32
                                                                 0.972603
33
    {'metric': 'euclidean', 'n_neighbors': 11, 'we...
                                                                 0.972603
```

55

11

distance

```
{'metric': 'euclidean', 'n_neighbors': 13,
   {'metric': 'euclidean', 'n_neighbors': 15, 'we...
                                                                0.968037
    {'metric': 'euclidean', 'n_neighbors': 15,
37
                                                                0.968037
   {'metric': 'euclidean', 'n_neighbors': 17,
                                                                0.963470
   {'metric': 'euclidean', 'n_neighbors': 17, 'we...
39
                                                                0.963470
   {'metric': 'euclidean', 'n_neighbors': 19, 'we...
40
                                                                0.963470
41
    {'metric': 'euclidean', 'n_neighbors': 19, 'we...
                                                                0.963470
   {'metric': 'euclidean', 'n_neighbors': 21, 'we...
42
                                                                0.972603
   {'metric': 'euclidean', 'n_neighbors': 21, 'we...
                                                                0.972603
    {'metric': 'minkowski', 'n_neighbors': 1, 'wei...
44
                                                                0.990868
   {'metric': 'minkowski', 'n_neighbors': 1, 'wei...
                                                                0.990868
46 {'metric': 'minkowski', 'n_neighbors': 3, 'wei...
                                                                0.990868
    {'metric': 'minkowski', 'n_neighbors': 3, 'wei...
47
                                                                0.990868
   {'metric': 'minkowski', 'n_neighbors': 5, 'wei...
48
                                                                0.990868
   {'metric': 'minkowski', 'n_neighbors': 5, 'wei...
49
                                                                0.990868
   {'metric': 'minkowski', 'n_neighbors': 7, 'wei...
50
                                                                0.968037
    {'metric': 'minkowski', 'n_neighbors': 7, 'wei...
51
                                                                0.968037
52 {'metric': 'minkowski', 'n_neighbors': 9, 'wei...
                                                                0.968037
   {'metric': 'minkowski', 'n_neighbors': 9, 'wei...
53
                                                                0.968037
   {'metric': 'minkowski', 'n_neighbors': 11, 'we...
54
                                                                0.972603
    {'metric': 'minkowski', 'n_neighbors': 11, 'we...
55
                                                                0.972603
56
   {'metric': 'minkowski', 'n_neighbors': 13, 'we...
                                                                0.968037
    {'metric': 'minkowski', 'n neighbors': 13, 'we...
57
                                                                0.968037
    {'metric': 'minkowski', 'n_neighbors': 15, 'we...
58
                                                                0.968037
    {'metric': 'minkowski', 'n_neighbors': 15, 'we...
                                                                0.968037
60 {'metric': 'minkowski', 'n_neighbors': 17,
                                                                0.963470
   {'metric': 'minkowski', 'n_neighbors': 17, 'we...
61
                                                                0.963470
   {'metric': 'minkowski', 'n_neighbors': 19, 'we...
62
                                                                0.963470
   {'metric': 'minkowski', 'n_neighbors': 19, 'we...
63
                                                                0.963470
64 {'metric': 'minkowski', 'n_neighbors': 21, 'we...
                                                                0.972603
   {'metric': 'minkowski', 'n_neighbors': 21, 'we...
65
                                                                0.972603
    split1_test_score
                       split2_test_score
                                           split3_test_score
0
             0.995434
                                 0.990826
                                                     0.986239
1
             0.995434
                                 0.990826
                                                     0.986239
2
             0.995434
                                 0.981651
                                                     0.967890
3
             0.995434
                                 0.981651
                                                     0.967890
4
             0.986301
                                 0.981651
                                                     0.963303
5
             0.986301
                                 0.981651
                                                     0.963303
6
             0.986301
                                 0.981651
                                                     0.963303
7
             0.986301
                                 0.981651
                                                     0.963303
8
             0.981735
                                 0.981651
                                                     0.963303
9
             0.981735
                                 0.981651
                                                     0.963303
10
             0.977169
                                 0.986239
                                                     0.963303
11
             0.977169
                                 0.986239
                                                     0.963303
12
             0.977169
                                 0.986239
                                                     0.958716
```

34 {'metric': 'euclidean', 'n_neighbors': 13, 'we...

35

0.968037

0.968037

13	0.977169	0.986239	0.958716
14	0.977169	0.981651	0.954128
15	0.977169	0.986239	0.954128
16	0.977169	0.981651	0.954128
17	0.977169	0.986239	0.954128
18	0.972603	0.972477	0.958716
19	0.977169	0.972477	0.958716
20	0.963470	0.977064	0.954128
21	0.972603	0.977064	0.954128
22	0.995434	0.990826	0.986239
23	0.995434	0.990826	0.986239
24	0.990868	0.977064	0.977064
25	0.990868	0.977064	0.977064
26	0.986301	0.977064	0.967890
27	0.986301	0.977064	0.967890
28	0.981735	0.977064	0.967890
29	0.981735	0.977064	0.967890
30	0.981735	0.972477	0.963303
31	0.981735	0.972477	0.963303
32	0.977169	0.977064	0.963303
33	0.977169	0.977064	0.963303
34	0.972603	0.967890	0.972477
35	0.972603	0.967890	0.972477
36	0.963470	0.967890	0.972477
37	0.963470	0.972477	0.972477
38	0.968037	0.967890	0.963303
39	0.968037	0.967890	0.963303
40	0.968037	0.967890	0.963303
41	0.968037	0.967890	0.963303
42	0.968037	0.967890	0.958716
43	0.968037	0.967890	0.958716
44	0.995434	0.990826	0.986239
45	0.995434	0.990826	0.986239
46	0.990868	0.977064	0.977064
47	0.990868	0.977064	0.977064
48	0.986301	0.977064	0.967890
49	0.986301	0.977064	0.967890
50	0.981735	0.977064	0.967890
51	0.981735	0.977064	0.967890
52	0.981735	0.972477	0.963303
53	0.981735	0.972477	0.963303
	0.977169	0.977064	
54			0.963303
55	0.977169	0.977064	0.963303
56	0.972603	0.967890	0.972477
57	0.972603	0.967890	0.972477
58	0.963470	0.967890	0.972477
59	0.963470	0.972477	0.972477

61
63 0.968037 0.967890 0.963303 64 0.968037 0.967890 0.958716 65 0.968037 0.967890 0.958716 split4_test_score mean_test_score std_test_score rank_test_score 0 0.990826 0.989925 0.003426 5 1 0.990826 0.989925 0.003426 5 2 0.981651 0.982586 0.008906 11 3 0.981651 0.982586 0.008906 11 4 0.981651 0.978928 0.008015 17 5 0.981651 0.978928 0.008015 17 6 0.977064 0.976184 0.007897 19
64 0.968037 0.967890 0.958716 65 0.968037 0.967890 0.958716 split4_test_score mean_test_score std_test_score rank_test_score 0 0.990826 0.989925 0.003426 5 1 0.990826 0.989925 0.003426 5 2 0.981651 0.982586 0.008906 11 3 0.981651 0.982586 0.008906 11 4 0.981651 0.978928 0.008015 17 5 0.981651 0.978928 0.008015 17 6 0.977064 0.976184 0.007897 19
65 0.968037 0.967890 0.958716 split4_test_score mean_test_score std_test_score rank_test_score 0 0.990826 0.989925 0.003426 5 1 0.990826 0.989925 0.003426 5 2 0.981651 0.982586 0.008906 11 3 0.981651 0.978928 0.008015 17 5 0.981651 0.978928 0.008015 17 6 0.977064 0.976184 0.007897 19
split4_test_score mean_test_score std_test_score rank_test_score 0 0.990826 0.989925 0.003426 5 1 0.990826 0.989925 0.003426 5 2 0.981651 0.982586 0.008906 11 3 0.981651 0.982586 0.008906 11 4 0.981651 0.978928 0.008015 17 5 0.981651 0.978928 0.008015 17 6 0.977064 0.976184 0.007897 19
0 0.990826 0.989925 0.003426 5 1 0.990826 0.989925 0.003426 5 2 0.981651 0.982586 0.008906 11 3 0.981651 0.982586 0.008906 11 4 0.981651 0.978928 0.008015 17 5 0.981651 0.978928 0.008015 17 6 0.977064 0.976184 0.007897 19
0 0.990826 0.989925 0.003426 5 1 0.990826 0.989925 0.003426 5 2 0.981651 0.982586 0.008906 11 3 0.981651 0.982586 0.008906 11 4 0.981651 0.978928 0.008015 17 5 0.981651 0.978928 0.008015 17 6 0.977064 0.976184 0.007897 19
1 0.990826 0.989925 0.003426 5 2 0.981651 0.982586 0.008906 11 3 0.981651 0.982586 0.008906 11 4 0.981651 0.978928 0.008015 17 5 0.981651 0.978928 0.008015 17 6 0.977064 0.976184 0.007897 19
2 0.981651 0.982586 0.008906 11 3 0.981651 0.982586 0.008906 11 4 0.981651 0.978928 0.008015 17 5 0.981651 0.978928 0.008015 17 6 0.977064 0.976184 0.007897 19
4 0.981651 0.978928 0.008015 17 5 0.981651 0.978928 0.008015 17 6 0.977064 0.976184 0.007897 19
5 0.981651 0.978928 0.008015 17 6 0.977064 0.976184 0.007897 19
6 0.977064 0.976184 0.007897 19
0.077004 0.070404 0.007007
7 0.977064 0.976184 0.007897 19
8 0.977064 0.975271 0.006871 25
9 0.977064 0.975271 0.006871 25
10 0.967890 0.974354 0.008013 27
11 0.967890 0.974354 0.008013 27
12 0.963303 0.970692 0.009887 45
13 0.963303 0.970692 0.009887 45
14 0.972477 0.971606 0.009371 40
15 0.972477 0.972523 0.010470 38
16 0.977064 0.972523 0.009632 38
17 0.977064 0.973441 0.010625 29
18
19 0.977064 0.970692 0.006874 45
20 0.972477 0.966122 0.007975 66
21 0.972477 0.968862 0.007901 51
22 0.990826 0.990838 0.002908 1 23 0.990826 0.990838 0.002908 1
24 0.981651 0.983503 0.006242 7
25 0.981651 0.983503 0.006242 7
26 0.986239 0.981672 0.008222 13
27 0.986239 0.981672 0.008222 13
28 0.981651 0.975275 0.006205 21
29 0.981651 0.975275 0.006205 21
30 0.981651 0.973441 0.007337 29
31 0.981651 0.973441 0.007337 29
32 0.977064 0.973441 0.005360 29
33 0.977064 0.973441 0.005360 29
34 0.972477 0.970697 0.002233 41
35 0.972477 0.970697 0.002233 41
36 0.967890 0.967953 0.002849 52
37 0.967890 0.968870 0.003371 49
38 0.972477 0.967035 0.003405 54

39	0.972477	0.967035	0.003405	54
40	0.972477	0.967035	0.003405	54
41	0.972477	0.967035	0.003405	54
42	0.967890	0.967027	0.004532	62
43	0.967890	0.967027	0.004532	62
44	0.990826	0.990838	0.002908	1
45	0.990826	0.990838	0.002908	1
46	0.981651	0.983503	0.006242	7
47	0.981651	0.983503	0.006242	7
48	0.986239	0.981672	0.008222	13
49	0.986239	0.981672	0.008222	13
50	0.981651	0.975275	0.006205	21
51	0.981651	0.975275	0.006205	21
52	0.981651	0.973441	0.007337	29
53	0.981651	0.973441	0.007337	29
54	0.977064	0.973441	0.005360	29
55	0.977064	0.973441	0.005360	29
56	0.972477	0.970697	0.002233	41
57	0.972477	0.970697	0.002233	41
58	0.967890	0.967953	0.002849	52
59	0.967890	0.968870	0.003371	49
60	0.972477	0.967035	0.003405	54
61	0.972477	0.967035	0.003405	54
62	0.972477	0.967035	0.003405	54
63	0.972477	0.967035	0.003405	54
64	0.967890	0.967027	0.004532	62
65	0.967890	0.967027	0.004532	62

After training the model, we find the best parameters and the score of that parameters. In this case,

```
[32]: print("\n The best score across ALL searched params:\n",gs_knn.best_score_)
print("\n The best parameters across ALL searched params:\n",gs_knn.

$\text{\text{best_params_}}$
```

```
The best score across ALL searched params:
0.9908382556239788

The best parameters across ALL searched params:
```

{'metric': 'euclidean', 'n_neighbors': 1, 'weights': 'uniform'}

Now that we have the best parameters we can move on to train the model and check the efficiency of it,

Testing the model and checking metric score:

Model K Nearest Neighbors
F1 Score 0.933333
Accuracy 0.99005
Precision 1.0
Recall 0.875

[33]: <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7fb5cdfca310>

From the above values we can tell that our model has been trained with a F1 score of 93.33%, Accuracy of 99.01%, Precision of 100% and Recall of 87.5%.

5 Conclusion

5.0.1 Perfromance Analysis of Models

Now that we have Trained and Tested all of our models and calculated all the necessary metric score for each of them, we can move to analyze the results.

[34]:			0	1	\
	Model	Support	Vector Machines	Decision Tree Classifer	
	F1 Score		0.896552	0.903226	
	Accuracy		0.985075	0.985075	
	Precision		1.0	0.933333	
	Recall		0.8125	0.875	

			2
Model	K	${\tt Nearest}$	Neighbors
F1 Score			0.933333
Accuracy			0.99005
Precision			1.0
Recall			0.875

Combining all the results in a single Data Frame we can see that **K Nearest Neighbors** is, relatively, the more efficient model in predicting the legendary status from the Pokemon Dataset.

6 Reference

https://www.kaggle.com/datasets/rounakbanik/pokemon