강의	정보처리 필기	강사	조대호
차시 명	[CA-03강] 조합논리회로, 순서논리회로	차시	3차시

학습내용

☞ 조합논리회로, 순서논리회로

학습목표

☞ 조합논리회로의 정의와 종류를 이해 할 수 있다 순서논리회로의 정의와 종류를 이해 할 수 있다

학습내용

1. 조합논리회로

정의 : 이전 입력과 관계없이 현재의 입력조합(0 또는 1)으로부터 결정되는 논리회로

종류: 반가산기, 전가산기, 병렬가산기, 반감산기, 전감산기, 디코더, 인코더, 멀티플렉서, 연산기, 디멀티플렉서, 다수결회로, 비교기

2. 반가산기(Half Adder): 1bit 짜리 2진수 2개를 가산한 합과 올림수를 구하는 조합논리회로

Α	В	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S = A\overline{B} + \overline{A}B = A \oplus B$$

$$C = AB$$

3. 전가산기 : 반가산기의 회로에 뒷자리에서 발생한 자리올림수를 처리할 수 있도록 한 회로

Α	В	Ci	S	C_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$S = (A \oplus B) \oplus C$$

$$C_{i+1} = AB + (A \oplus B)C_{i}$$

4. 병렬 가산기 : : n Bit로 2진수 A, B에 대한 덧셈을 n개의 전가산기를 이용하여 구현한 실질적 가산기 기출문제 예문>

• 예) A: 0 1 0 1 (+5)

B: 1 1 1 1 (-1) C1: 0 0 0 0 (0)

F: 1 0 1 0 0 (+4) ※ F의 최상위 bit 1은 버림

• 정답: F = A - 1

5. 마이크로 오퍼레이션 동작 기출 문제

• 예) A: 0 1 0 1 (+5)

B: 0 0 0 0 (0)

C1: 0 0 0 1 (1)

F: 0 1 1 0 (+6)

• F = A + 1 이므로 병렬가산기가 A값에 Ci값 1을 더함

• 정답: Increment

6. 디코더(Decoder) - 해독기

디코더 : n Bit입력단자를 통해 들어온 2진 신호를 최대 2의 N승 개의 출력단자 중 하나를 선택하는 회로

Х	у	D_0	D_1	D_2	D_3
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

디코더 관련 기출 문제

Х	у	번호	출력선	А
0	0	0	$\overline{X}\overline{Y}$	1
0	1	1	Χ̈Υ	0
1	0	2	XΫ	0
1	1	3	ΧΥ	1

 $: A = XY + \overline{X}\overline{Y}$

7. 인코더, 멀티플렉서, 디멀티플렉서

인코더(Encoder)

- 디코더의 반대 동작
- 2의 N승개의 입력단자에 대해 N개의 출력단자로 코드화 해서 출력하는 회로

멀티플렉서(MUX, Multiplexer)

- N개의 입력 데이터에서 입력선을 선택하여 단일 채널로 송신하는 것 (여러 개의 입력이 하나로…)
- 버스(bus)를 구성하는데 사용할 수 있는 논리회로

디멀티플렉서(DeMUX, DeMultiplexer)

- 멀티플렉서의 반대 동작
- 1개의 입력선으로 들어오는 정보를 2의 N승개의 출력선 중 1개를 선택하여 출력하는 회로

8. 순서논리회로

정의 : 외부로 부터의 입력과 현재상태에 따라 출력이 결정되는 회로

종류: 플립플롭, 카운터, 레지스터, RAM, CPU 등

9. 플립플롭(FF, Flip-Flop)

- 전원이 공급되고 있는 한, 상태의 변화를 위한 신호가 발생 할 때까지 현 상태를 그대로 유지
- 1비트(bit)를 기억하는 메모리 소자
- 어느 한 상태에서 다른 상태로 동작하기 위해서는 외부의 영향이 작용하여야 함
- RS-FF, D-FF, JK-FF, T-FF, RST-FF, 마스터-슬레이브 FF

10. RS 플립플롭(Reset-Set FF)

S와 R선의 입력을 조절하여 임의의 Bit값을 그대로 유지시키거나 무조건 0 또는 1의 값을 기억시키기 위해서 사용되는 플립플롭

특성표(조합논리회로의 기능

S	R	Q _(t+1)	
0	0	Q _(t)	
0	1	0	
1	0	1	
1	1	동작 안 됨	

불변 Reset Set 부정

여기표 (순서회로의 기능)

Q(t)	Q(t+1)	S	R
0	0	0	Χ
0	1	1	0
1	0	0	1
1	1	Χ	0

11. D 플립플롭(Delay FF)

RS FF 의 R선에 인버터를 추가하여 S선과 하나로 묶어서 입력선을 하나만 구성한 플립플롭 입력값이 그대로 저장하는 기능을 수행

D	Q _(t+1)
0	0
1	1

Q(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

12. JK 플립플롭

RS FF에서 S=R=1일 때 동작되지 않는 결점을 보완한 플립플롭 RS FF의 입력선 S와 R을 JK FF의 입력선 J와 K로 사용

J	K	Q _(t+1)
0	0	Q _(t)
0	1	0
1	0	1
1	1	$\overline{Q_{(t)}}$

불변 Reset Set 반전

Q(t)	Q(t+1)	J	K
0	0	0	Χ
0	1	1	Χ
1	0	X	1
1	1	Х	0
		-	

13. T 플립플롭(Toggle FF)

JK FF 의 두 입력선을 묶어서 한 개의 입력선으로 구성한 플립플롭 플립플롭 중 입력단자가 하나이며 "1"이 입력될 때마다 출력 단자의 상태가 바뀜

Т	Q _(t+1)
0	Q _(t)
1	$\overline{Q_{(t)}}$

Q(t)	Q(t+1)	T
0	0	0
0	1	1
1	0	1
1	1	0

14. 정보의 표현 단위

요점정리

- 1. 조합논리회로의 정의와 종류를 정리합니다.
- 2. 순서논리회로의 정의와 종류를 정리합니다.

다음차시예고

수고하셨습니다. 다음 4<u>주차</u>에서는 "[CA-4강] 진법과 보수"에 대해서 학습하도록 하겠습니다.