Towards Infinity and Beyond: The Geometric and Convergent Properties of Recursive Pinwheel Triangles

By Shen Zhou Hong UWC Changshu China

February 1, 2018

Contents

1 Introduction		2	
	1.1	Rationale	2
2 Constructions		astructions	3
	2.1	Pinwheel tile	3
	2.2	Recursive pinwheel tiling	4
3	Properties of the recursive pinwheel tiling		5
	3.1	Angles	5
	3.2	Area and dilation factor	5
	3.3	Geometric series, and limit of the area	6
4 Properties of the pinwheel spiral		7	
5	5 Bibliography		8

1 Introduction

1.1 Rationale

2 Constructions

2.1 Pinwheel tile

1. Draw $\triangle A_0 B_0 C_0$ where:

$$\angle A_0 B_0 C_0 = 90^{\circ}$$

$$B_0 C_0 = 2A_0 B_0$$

$$A_0 C_0 = \sqrt{(A_0 B_0)^2 + (B_0 C_0)^2}$$
(1)

- 2. Draw line B_0A_1 , where $B_0A_1 \perp A_0C_0$.
- 3. Draw point C_1 at the midpoint of B_0C_0 .
- 4. Draw line C_1H_0 , where $C_0H_0 \perp A_0C_0$.
- 5. Draw line B_1C_1 , where $B_1C_1 \perp B_0A_1$.

6. Draw line A_1C_1 .

2.2 Recursive pinwheel tiling

Repeat steps 2 through 6, operating on each subsequent $\triangle A_n B_n C_n$.

3 Properties of the recursive pinwheel tiling

3.1 Angles

For each angle in $\triangle A_n B_n C_n$, where the vertices are of the same level n (e.g. $\angle A_6 B_6 C_6$). This property is apparent becasue each subsequent triangle is similar, therefore all angles are equal.

$$\angle A_n B_n C_n = 90^{\circ}$$

$$\angle B_n C_n A_n = \tan^{-1} \frac{1}{2}$$

$$\angle B_n A_n C_n = \tan^{-1} 2$$
(2)

3.2 Area and dilation factor

Let length $A_0B_0=x$. Therefore, the area of $\triangle A_0B_0C_0=x$. Because $\triangle A_0B_0C_0$ contains five isometric subtriangles of the order $\triangle A_1B_1C_1$, the area of each n=1 triangle equals $\frac{x}{5}$. Recall that length $A_1C_1=A_0C_0$, where: $A_1C_1=\sqrt{(A_1B_1)^2+(B_1C_1)^2}$. As a result, it is shown that each shape is shrunk by an dilation factor of $\frac{1}{\sqrt{5}}$, for $\sqrt{5}\times\frac{1}{\sqrt{5}}=1$:

$$A_{n-1}B_{n-1} = \frac{A_n B_n}{\sqrt{5}}$$

$$B_{n-1}C_{n-1} = \frac{B_n C_n}{\sqrt{5}}$$

$$A_{n-1}C_{n-1} = \frac{A_n C_n}{\sqrt{5}}$$
(3)

Likewise, the area of each subsequent triangle $\triangle A_n B_n C_n$ is shrunk by the same factor.

3.3 Geometric series, and limit of the area

Define $[\triangle A_n B_n C_n]$ as the notation for the area of $\triangle A_n B_n C_n$. Recall how the area of each triangle decreases by an dilation factor of $\frac{1}{\sqrt{5}}$:

$$[\triangle A_0 B_0 C_0] = 1,$$

$$[\triangle A_1 B_1 C_1] = \frac{1}{5},$$

$$[\triangle A_2 B_2 C_2] = \frac{1}{25},$$

$$[\triangle A_3 B_3 C_3] = \frac{1}{125},$$
(4)

. . .

It is apparent that the decreasing area of the pinwheel triangle follow the following geometric series:

$$1 + \frac{1}{5} + \frac{1}{25} + \frac{1}{125} + \frac{1}{625} + \dots$$
 (5)

$$1 + 1\left(\frac{1}{5}\right)^{1} + 1\left(\frac{1}{5}\right)^{2} + 1\left(\frac{1}{5}\right)^{3} + 1\left(\frac{1}{5}\right)^{4} + \dots$$
 (6)

Which generalizes to the form $a + ar^1 + ar^2 + \dots$, with $a = 1, r = \frac{1}{5}$.

4 Properties of the pinwheel spiral

Note how each self-similar segment in subsequent subtriangles form a spiral with their parent segments. This 'spiral' shall be referred to as the pinwheel spiral:

5 Bibliography

Timm, F. Annette. "Sex with a Purpose: Prostitution, Venereal Disease, and Militarized Masculinity in the Third Reich". *Journal of the History of Sexuality* 11.1/2 (Special Issue: Sexuality and German Fascism Jan. 2002–Apr. 2002): 223–225. Web.