Московский государственный технический университет им. Н.Э. Баумана

Кафедра «Системы обработки информации и управления»

Домашнее задание по дисциплине «Методы машинного обучения»

Выполнил: Хотин П.Ю. ИУ5-24М

Задача

В ходе выполнения проекта необходимо решить задачу регрессии, обучив алгоритм предсказывать данные на существующем датасете.

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
```

В качестве набора данных будем использовать датасет с платформы Kaggle. Будем использовать регрессию для прогноза цена на недвижимость. Датасет содержит данные о широте и долготе местоположения дома, площадь комнат и дома в целом, близость к океану и др.

Будем решать задачу регрессии, предсказывая стоимость дома.

Посмотрим, что представлено в данных

```
data_path = "./housing.csv"
data = pd.read_csv(data_path)
data.describe()
```

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000	20640.000000	20640.000000	20640.000000	20640.000000
mean	-119.569704	35.631861	28.639486	2635.763081	537.870553	1425.476744	499.539680	3.870671	206855.816909
std	2.003532	2.135952	12.585558	2181.615252	421.385070	1132.462122	382.329753	1.899822	115395.615874
min	-124.350000	32.540000	1.000000	2.000000	1.000000	3.000000	1.000000	0.499900	14999.000000
25%	-121.800000	33.930000	18.000000	1447.750000	296.000000	787.000000	280.000000	2.563400	119600.000000
50%	-118.490000	34.260000	29.000000	2127.000000	435.000000	1166.000000	409.000000	3.534800	179700.000000
75%	-118.010000	37.710000	37.000000	3148.000000	647.000000	1725.000000	605.000000	4.743250	264725.000000
max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	35682.000000	6082.000000	15.000100	500001.000000

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	longitude	20640 non-null	float64
1	latitude	20640 non-null	float64
2	housing_median_age	20640 non-null	float64
3	total_rooms	20640 non-null	float64
4	total_bedrooms	20433 non-null	float64
5	population	20640 non-null	float64
6	households	20640 non-null	float64
7	median_income	20640 non-null	float64
8	median_house_value	20640 non-null	float64
9	ocean_proximity	20640 non-null	object

dtypes: float64(9), object(1)

memory usage: 1.6+ MB

Видно, что столбец ocean_proximity имеет тип object. Преобразуем его:

new_val = pd.get_dummies(data.ocean_proximity)
data[new_val.columns] = new_val

data.describe()

ooms	total_bedrooms	population	households	median_income	median_house_value	<1H OCEAN	INLAND	ISLAND	NEAR BAY	NEAR OCEAN
00000	20433.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000	20640.000000
33081	537.870553	1425.476744	499.539680	3.870671	206855.816909	0.442636	0.317393	0.000242	0.110950	0.128779
15252	421.385070	1132.462122	382.329753	1.899822	115395.615874	0.496710	0.465473	0.015563	0.314077	0.334963
00000	1.000000	3.000000	1.000000	0.499900	14999.000000	0.000000	0.000000	0.000000	0.000000	0.000000
50000	296.000000	787.000000	280.000000	2.563400	119600.000000	0.000000	0.000000	0.000000	0.000000	0.000000
00000	435.000000	1166.000000	409.000000	3.534800	179700.000000	0.000000	0.000000	0.000000	0.000000	0.000000
00000	647.000000	1725.000000	605.000000	4.743250	264725.000000	1.000000	1.000000	0.000000	0.000000	0.000000
00000	6445.000000	35682.000000	6082.000000	15.000100	500001.000000	1.000000	1.000000	1.000000	1.000000	1.000000

data.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 20640 entries, 0 to 20639 Data columns (total 15 columns): # Column Non-Null Count Dtype _____ _____ ___ ____ 0 longitude 20640 non-null float64 1 latitude 20640 non-null float64 2 housing median age 20640 non-null float.64 3 total rooms 20640 non-null float64 4 total bedrooms 20433 non-null float64 5 population 20640 non-null float64 households 20640 non-null float64 7 median income 20640 non-null float64 8 median house value 20640 non-null float64 ocean proximity 20640 non-null object 20640 non-null 10 <1H OCEAN uint8 20640 non-null uint8 11 INLAND 12 ISLAND 20640 non-null uint8 20640 non-null 13 NEAR BAY uint8 uint8 14 NEAR OCEAN 20640 non-null dtypes: float64(9), object(1), uint8(5) memory usage: 1.7+ MB data = data[['longitude', 'latitude', 'housing median age',

'total bedrooms', 'population', 'households', 'median income'

'ISLAND', 'NEAR BAY', 'NEAR OCEAN', 'median house value']]

'total rooms',

, '<1H OCEAN', 'INLAND',

Корреляционный анализ, выбор подходящих признаков

corr = data.corr()

corr

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	<1H OCEAN	INLAND	-1
longitude	1.000000	-0.924664	-0.108197	0.044568	0.069608	0.099773	0.055310	-0.015176	0.321121	-0.055575	0
latitude	-0.924664	1.000000	0.011173	-0.036100	-0.066983	-0.108785	-0.071035	-0.079809	-0.446969	0.351166	-0
housing_median_age	-0.108197	0.011173	1.000000	-0.361262	-0.320451	-0.296244	-0.302916	-0.119034	0.045300	-0.236645	0
total_rooms	0.044568	-0.036100	-0.361262	1.000000	0.930380	0.857126	0.918484	0.198050	-0.003031	0.025624	-0
total_bedrooms	0.069608	-0.066983	-0.320451	0.930380	1.000000	0.877747	0.979728	-0.007723	0.018314	-0.006463	-0
population	0.099773	-0.108785	-0.296244	0.857126	0.877747	1.000000	0.907222	0.004834	0.074613	-0.020732	-0
households	0.055310	-0.071035	-0.302916	0.918484	0.979728	0.907222	1.000000	0.013033	0.042435	-0.039402	-0
median_income	-0.015176	-0.079809	-0.119034	0.198050	-0.007723	0.004834	0.013033	1.000000	0.168876	-0.237496	-0
<1H OCEAN	0.321121	-0.446969	0.045300	-0.003031	0.018314	0.074613	0.042435	0.168876	1.000000	-0.607669	-0
INLAND	-0.055575	0.351166	-0.236645	0.025624	-0.006463	-0.020732	-0.039402	-0.237496	-0.607669	1.000000	-0
ISLAND	0.009446	-0.016572	0.017020	-0.007572	-0.004361	-0.010412	-0.009077	-0.009228	-0.013872	-0.010614	1
NEAR BAY	-0.474489	0.358771	0.255172	-0.023022	-0.019873	-0.060880	-0.010093	0.056197	-0.314813	-0.240887	-0
NEAR OCEAN	0.045509	-0.160818	0.021622	-0.009175	0.000679	-0.024264	0.001714	0.027344	-0.342620	-0.262163	-0
median house value	-0.045967	-0.144160	0.105623	0.134153	0.049686	-0.024650	0.065843	0.688075	0.256617	-0.484859	0

plt.figure(figsize=(15,12))
sns.heatmap(corr, annot=True)

<matplotlib.axes. subplots.AxesSubplot at 0x108731e10>


```
data.hist(figsize=(15,12))
array([[<matplotlib.axes. subplots.AxesSubplot object at 0x124983150>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x10878f790>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x1087c5e10>,
        <matplotlib.axes. subplots.AxesSubplot object at</pre>
0x123fc14d0>1,
       [<matplotlib.axes. subplots.AxesSubplot object at 0x123ff6b50>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x124c84210>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x125082910>,
        <matplotlib.axes. subplots.AxesSubplot object at</pre>
0x1250b8ed0>1,
       [<matplotlib.axes. subplots.AxesSubplot object at 0x1250b8f10>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x1250fb6d0>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x125173310>,
        <matplotlib.axes. subplots.AxesSubplot object at</pre>
0x1251aa990>1,
       [<matplotlib.axes. subplots.AxesSubplot object at 0x1251dffd0>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x1252206d0>,
        <matplotlib.axes. subplots.AxesSubplot object at 0x125257d50>,
        <matplotlib.axes. subplots.AxesSubplot object at</pre>
0x12529b410>11,
      dtype=object)
```



```
data.isna().sum()
longitude
                         0
latitude
                         0
housing median age
                         0
total rooms
                         0
total bedrooms
                       207
population
                         0
households
                         0
median income
                         0
<1H OCEAN
                         0
TNTAND
                         O
ISLAND
                         0
NEAR BAY
                         0
NEAR OCEAN
                         0
median house value
                         0
dtype: int64
Видны нулевые строки, их нужно удалить.
data = data.fillna(data.mean())
data.isna().sum()
longitude
                       0
latitude
housing median_age
total rooms
total bedrooms
                       0
population
households
                       0
median income
<1H OCEAN
INLAND
ISLAND
                       0
NEAR BAY
                       0
```

NEAR OCEAN

```
median house value
                      0
dtvpe: int64
from sklearn import preprocessing
convert = preprocessing.StandardScaler()
label = data['median house value']
label
0
         452600.0
1
         358500.0
         352100.0
3
         341300.0
4
         342200.0
           . . .
20635
         78100.0
20636
         77100.0
20637
          92300.0
20638
          84700.0
20639
          89400.0
Name: median house value, Length: 20640, dtype: float64
Выделим целевой признак.
data = data.drop(['median house value'], axis=1)
from sklearn.metrics import mean absolute error, mean squared error,
r2 score
from sklearn.linear model import LassoCV, Lasso
from sklearn.model selection import GridSearchCV
from sklearn.ensemble import RandomForestRegressor, BaggingRegressor
from sklearn.model selection import train test split
X train, X test, y train, y test = train test split(
    data, label, test size=0.2, random state=1)
X train.shape, y train.shape
((16512, 13), (16512,))
X test.shape, y test.shape
```

```
((4128, 13), (4128,))

def quality(test, predicted):
    print(" Метрики качества:")
    print(" Средняя квадратичная ошибка: "+

str(mean_squared_error(test, predicted)))
    print(" Средняя абсолютная ошибка: "+

str(mean_absolute_error(test, predicted)))
    print(" Коэффициент детерминации: "+str(r2_score(test, predicted)))
```

Выбор моделей П

В качестве моделей регрессии выберем модель Lasso, а также две ансамблевые модели: BaggingRegressor и RandomForestRegressor

```
models = [Lasso(), BaggingRegressor(), RandomForestRegressor()]
models
[Lasso(), BaggingRegressor(), RandomForestRegressor()]
Базовое решение для всех моделей
for model in models:
    print("Обучение модели "+type(model). name )
    model.fit(X train, y train)
    predicted = model.predict(X test)
    plt.figure(figsize=(4, 4))
    plt.scatter(y test,predicted)
    plt.title(type(model). name )
    plt.xlabel('Real value of median house value')
    plt.ylabel('Predicted values of median house value')
    plt.tight layout()
    quality(y test, predicted)
Обучение модели Lasso
```

Метрики качества:

Средняя квадратичная ошибка: 4754024388.947851 Средняя абсолютная ошибка: 49767.04192499784 Коэффициент детерминации: 0.637565176864489

Обучение модели BaggingRegressor

Метрики качества:

Средняя квадратичная ошибка: 2643311868.994971 Средняя абсолютная ошибка: 33295.50794573643 Коэффициент детерминации: 0.7984805732258311

Обучение модели RandomForestRegressor

Метрики качества:

Средняя квадратичная ошибка: 2392491194.1802464 Средняя абсолютная ошибка: 31714.124677810076 Коэффициент детерминации: 0.8176025085542538

Подбор гиперпараметров моделей

Подбор гиперпараметров для модели BaggingRegressor

```
params bag GS = \{"n estimators": [1,10,20],
              "max features":[1,2,4,6,8],
              "max samples": [0.5,0.1],
            "bootstrap": [True, False],
         "bootstrap features": [True, False]
Bag model GS = GridSearchCV(estimator=BaggingRegressor(),
param grid=params bag GS)
Bag model GS.fit(X train, v train)
print(Bag model GS)
print(Bag model GS.best score )
print(Bag model GS.best estimator )
GridSearchCV(estimator=BaggingRegressor(),
             param grid={'bootstrap': [True, False],
                          'bootstrap features': [True, False],
                          'max features': [1, 2, 4, 6, 8],
                          'max samples': [0.5, 0.1],
                          'n estimators': [1, 10, 20]})
0.7861684015117929
BaggingRegressor(max features=8, max samples=0.5, n estimators=20)
Подбор гиперпараметров для модели RandomForestRegressor
params RF = \{\text{max depth}^{"}: [3,5,8,9],
              "max features":['auto', 'sqrt', 'log2'],
              "min samples split": [2, 3,5,7],
              "min samples leaf": [1, 3,5,6]}
model RF GS = GridSearchCV(RandomForestRegressor(),
param grid=params RF)
model RF GS.fit(X train,y train)
print(model RF GS)
print(model RF GS.best score )
print(model RF GS.best estimator )
```

```
GridSearchCV(estimator=RandomForestRegressor(),
             param grid={'max depth': [3, 5, 8, 9],
                          'max features': ['auto', 'sgrt', 'log2'],
                          'min samples leaf': [1, 3, 5, 6],
                          'min samples split': [2, 3, 5, 7]})
0.7718500187637947
RandomForestRegressor(max depth=9, min samples leaf=3,
min samples split=7)
Подбор гиперпараметров для модели Lasso
param grid = { 'alpha': [i/100 \text{ for } i \text{ in } range(1,5)]}
model lasso = GridSearchCV(estimator=Lasso(), param grid=param grid,
n iobs=-1)
model lasso.fit(X train, y train)
print(model lasso)
print(model lasso.best score )
print(model lasso.best estimator )
GridSearchCV(estimator=Lasso(), n jobs=-1,
             param grid={'alpha': [0.01, 0.02, 0.03, 0.04]})
0.6447618177420328
Lasso(alpha=0.04)
models = [Lasso(alpha=0.04),
    BaggingRegressor(max features=8, max samples=0.5,
n estimators=20),
          RandomForestRegressor(max depth=9, min samples leaf=3,
min samples split=7)
         1
for model in models:
    print("Обучение модели "+type(model). name )
    model.fit(X train, y train)
    predicted = model.predict(X test)
    plt.figure(figsize=(4, 4))
```

```
plt.scatter(y_test,predicted)
plt.title(type(model).__name__)
plt.xlabel('Real value of median_house_value')
plt.ylabel('Predicted values of median_house_value')
plt.tight_layout()
quality(y test, predicted)
```

Обучение модели Lasso

Метрики качества:

Средняя квадратичная ошибка: 4754049665.262504 Средняя абсолютная ошибка: 49766.777312948994 Коэффициент детерминации: 0.637563249862042

Обучение модели BaggingRegressor

Метрики качества:

Средняя квадратичная ошибка: 2475750508.079202 Средняя абсолютная ошибка: 33846.92794331395 Коэффициент детерминации: 0.8112550285586724

Обучение модели RandomForestRegressor

Метрики качества:

Средняя квадратичная ошибка: 3000890094.411342 Средняя абсолютная ошибка: 37451.83523656864 Коэффициент детерминации: 0.77121971163093

Вывод

В результате работы с моделями ансамблевые модели показали лучший результат как с гиперпаметрами, так и без них.