Problema 3.13 (características não-ideais)

Considerar o circuito representado na Fig. P3.13.

(a) Calcular a tensão de saída com as tensões de entrada nulas, se o amplificador operacional tiver as seguintes características:

> tensão residual de entrada $V_{OS} = 1 \text{ mV}$ corrente de polarização de entrada $I_B = 100 \text{ nA}$ corrente de desvio de entrada $I_{OS} = -20 \text{ nA}.$

- (b) Determinar os valores de R_3 e R_4 de modo a compensar conjuntamente o efeito da tensão residual de entrada e das correntes nas entradas, sem alterar a relação entre a tensão de saída e as tensões de entrada.
- (c) Calcular a tensão de saída com as tensões de entrada nulas, no caso mais desfavorável, se $|V_{OS}| \le 2 \text{ mV}$ e $|I_{OS}| \le 50 \text{ nA}$

Fig. P3.13.

SOLUÇÕES:

(a)
$$v_0 = -1.8 \text{ mV}$$

(a)
$$v_0 = -1.8 \text{ mV}$$
 (b) $R_3 = R_4 = 26.4 \text{ k}\Omega$ (c) $|v_0| \le 4.5 \text{ mV}$

(c)
$$|v_0| \le 4.5 \text{ mV}$$

| IB = IB + IOS IB = IB - IOS Z Teorema da someposições U0 =- (1+ Ry) Vos Vo= (1+ Ry VR,//Rz) IB pois Rz não podo la consensorente esta unha massa e massavirte - TOTAL VO =- (1+ Ry) VOS + Ry IB - (1+ Ry) (R1/1R2) IB (1)

=-2 Vos+lokIB - 10KIB == 2Vos-RIOS

substituendo pelo valor das fontes enesistencias

$$T_{B}^{\dagger} = T_{B} + T_{OS}^{\dagger} = 90 \text{ mA} \qquad V_{OS} = 4 \text{ mV}$$

$$T_{B}^{\dagger} = T_{B} - T_{OJ}^{\dagger} = 410 \text{ mA}$$

. de (1) · Vo=(1+ Ry) vos + Ru IB - (1+ Ry) (R1//R2) IB

= 26,36 KSZ

c) de (1)

No coso mais desfavorable ha reforço de erros.

1 VO / 2 | VOS | + 10 K | IOS | MAX => 100 | < 4 m + 0,5 m => 1 VO | < 9,5