5. Posloupnosti, geometrická řada a kombinatorika.

5.1. Posloupnosti. Posloupnost je funkce, jejímž definičním oborem je množina všech přirozených čísel. Funkční hodnota této funkce přiřazená číslu $n \in \mathbf{N}$ se nazývá n-tý člen posloupnosti a značí se nejčastěji a_n , b_n apod. Posloupnost s n-tým členem a_n se značí $\{a_n\}$. Grafem posloupnosti je množina izolovaných bodů $[n,a_n]$ roviny, kde $n \in \mathbf{N}$.

Posloupnost je nejčastěji zadána jedním z těchto dvou způsobů:

- vzorcem, vyjadřujícím n-tý člen posloupnosti pomocí n,
- \bullet rekurentně udáním prvního členu posloupnosti a rekurentního vzorce, který vyjadřuje (n+1)-ní člen posloupnosti pomocí členů předchozích.

Říkáme, že posloupnost $\{a_n\}$ je

- rostoucí, jestliže $a_{n+1} > a_n$ pro všechna $n \in \mathbb{N}$;
- klesající, jestliže $a_{n+1} < a_n$ pro všechna $n \in \mathbb{N}$;
- neklesající, jestliže $a_{n+1} \ge a_n$ pro všechna $n \in \mathbb{N}$;
- **nerostoucí**, jestliže $a_{n+1} \le a_n$ pro všechna $n \in \mathbb{N}$;
- konstantní, jestliže $a_{n+1} = a_n$ pro všechna $n \in \mathbb{N}$;
- omezená (ohraničená), jestliže existuje K>0 tak, že $|a_n| \leq K$ pro všechna $n \in \mathbb{N}$.
- **5.2.** Aritmetická posloupnost. Aritmetickou se nazývá posloupnost, ve které rozdíl dvou sousedních členů je konstantní.

Posloupnost
$$\{a_n\}$$
 je aritmetická $\iff \{a_{n+1} - a_n\}$ je konstantní.

Konstantní rozdíl $d = a_{n+1} - a_n$ se nazývá diference aritmetické posloupnosti.

V aritmetické posloupnosti $\{a_n\}$ s diferencí d platí tyto vztahy $(n, m \in \mathbf{N})$:

$$a_n = a_1 + (n-1)d$$
, $a_n = \frac{1}{2}(a_{n-1} + a_{n+1})$ pro $n > 1$,
 $a_n = a_m + (n-m)d$, $s_n = a_1 + \dots + a_n = \frac{n}{2}(a_1 + a_n)$

Dále platí:

$$\{a_n\}$$
 je rostoucí $\iff d > 0$, $\{a_n\}$ je klesající $\iff d < 0$, $\{a_n\}$ je konstantní $\iff d = 0$

Grafem aritmetické posloupnosti je množina izolovaných bodů ležících na přímce (důsledek vzorce pro n-tý člen).

5.3. Geometrická posloupnost. Geometrickou se nazývá posloupnost, ve které podíl dvou sousedních členů je konstantní.

Posloupnost
$$\{a_n\}$$
 je geometrická $\iff \left\{\frac{a_{n+1}}{a_n}\right\}$ je konstantní.

42

Konstantní podíl $q=\frac{a_{n+1}}{a_n}$ se nazývá **kvocient geometrické posloupnosti**. Z definice geometrické posloupnosti plyne, že všechny její členy jsou nenulové.

V geometrické posloupnosti $\{a_n\}$ s kvocientem q platí tyto vztahy $(n, m \in \mathbf{N})$:

$$a_n = a_1 \cdot q^{n-1}$$
, $a_n = a_m \cdot q^{n-m}$, $|a_n| = \sqrt{a_{n-1}a_{n+1}}$ pro $n > 1$, $s_n = a_1 + \dots + a_n = a_1 \frac{q^n - 1}{q - 1}$ pro $q \neq 1$, $s_n = n \cdot a_1$ pro $q = 1$.

Dále platí:

$$\{a_n\}$$
 je rostoucí $\iff q > 1$, $\{a_n\}$ je klesající $\iff 1 > q > 0$, $\{a_n\}$ je konstantní $\iff q = 1$.

Grafem geometrické posloupnosti s kvocientem q > 0 je množina izolovaných bodů ležících na exponenciální křivce (důsledek vzorce pro n-tý člen).

5.4. Limita posloupnosti. Říkáme, že posloupnost $\{a_n\}$ má limitu $L \in \mathbf{R}$ a píšeme

$$L = \lim_{n \to \infty} a_n \,,$$

právě když ke každému číslu $\varepsilon>0$ existuje takové číslo $n_0\in {\bf N}$, že pro všechna přirozená $n\geq n_0$ platí $|a_n-L|<\varepsilon$.

Právě vyslovenou definici ilustruje obr. 5.1:

Obr. 5.1

Ať si předepíšeme $\varepsilon > 0$ jakkoliv malé, vždy se najde n_0 tak, že všechny body $[n, a_n]$, kde $n \ge n_0$, budou ležet v pásu vymezeném rovnoběžkami $y = L + \varepsilon$, $y = L - \varepsilon$.

Posloupnost, která má limitu, se nazývá konvergentní.

5.5. Věty o limitách posloupností.

- Každá posloupnost má nejvýše jednu limitu (snadný důsledek definice).
- Konvergentní posloupnost je omezená (ohraničená).
- Jestliže posloupnost $\,\{a_n\}\,$ konverguje a $\,c\in{\bf R}\,,$ potom konverguje i posloupnost $\,\{ca_n\}\,$ a platí

$$\lim_{n \to \infty} (c \cdot a_n) = c \cdot \lim_{n \to \infty} a_n$$

• Jestliže posloupnosti $\{a_n\}$, $\{b_n\}$ konvergují, potom konvergují i posloupnosti $\{a_n \pm b_n\}$, $\{a_n \cdot b_n\}$ a platí:

$$\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n, \quad \lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

• Jestliže posloupnosti $\{a_n\}$, $\{b_n\}$ konvergují, $\lim_{n\to\infty}b_n\neq 0$ a $b_n\neq 0$ pro všechna $n\in \mathbb{N}$, potom konverguje i posloupnost $\left\{\frac{a_n}{b_n}\right\}$ a platí:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}$$

Poznámka. V úlohách se omezíme pouze na aritmetické a geometrické posloupnosti.

5.6. Nekonečné řady. Je-li $\{a_n\}$ posloupnost, pak symbol

$$a_1 + a_2 + \ldots + a_n + \ldots$$
, resp. $\sum_{n=1}^{\infty} a_n$

nazýváme nekonečnou řadou. Říkáme, že tato **řada konverguje**, jestliže konverguje posloupnost $\{s_n\}$, kde

$$s_n = a_1 + \dots + a_n$$

je tzv. n-tý částečný součet dané řady. **Součtem konvergentní nekonečné řady** $\sum_{n=1}^{\infty} a_n$ nazýváme limitu s posloupnosti jejích částečných součtů a píšeme

$$\sum_{n=1}^{\infty} a_n = s.$$

Pro nás je důležitá nekonečná geometrická řada

$$a_1 + a_1 q + a_1 q^2 + \dots$$

Tato řada je konvergentní, právě když |q| < 1, a má potom součet

$$s = \lim_{n \to \infty} a_1 \cdot \frac{1 - q^n}{1 - q} = \frac{a_1}{1 - q}.$$

Jinými slovy,

$$a_1 + a_1 q + a_1 q^2 + \dots = \frac{a_1}{1 - q}$$
 pro $|q| < 1$

- **5.7. Kombinatorika.** V kombinatorice potřebujeme tyto pojmy:
 - \bullet Funkci "n-faktoriál" označovanou n! a definovanou pro všechna přirozená čísla n a 0 vztahy

$$n! = n(n-1)(n-2)\dots 3\cdot 2\cdot 1, \quad 0! = 1.$$

Pro tuto funkci platí rekurentní vyjádření

$$(n+1)! = (n+1) \cdot n!$$

• Kombinační číslo " n nad k", označované $\binom{n}{k}$, je definováno pro všechna $n,k=0,1,2,\ldots,$ $n\geq k$ výrazem

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\dots(n-k+1)}{k(k-1)\dots 2\cdot 1}$$

Vlastnosti kombinačních čísel jsou:

•
$$\binom{n}{k} = \binom{n}{n-k}$$
 pro $0 \le k \le n$,

$$\bullet \qquad \binom{n}{0} = \binom{n}{n} = 1,$$

$$\bullet \qquad \binom{n}{1} = n = \binom{n}{n-1},$$

•
$$\binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1}$$
, je-li $0 \le k \le n-1$.

5.8. Permutace. Nechť M je neprázdná množina, která má $n \in N$ navzájem různých prvků, tedy $M = \{a_1, a_2, \ldots, a_n\}$, $a_i \neq a_j$ pro $i \neq j$. Uspořádanou n-tici z n různých prvků (a_1, a_2, \ldots, a_n) nazýváme permutací. Zaměníme-li pořadí prvků v této n-tici, např. $(a_2, a_1, a_3, \ldots, a_n)$, vytvoříme jinou permutaci prvků množiny M. Zjišťujeme-li, kolik různých permutací z n prvků množiny M můžeme vytvořit, zjišťujeme vlastně, kolik je různých pořadí prvků množiny M. Na prvním místě se vystřídá všech n prvků. Je-li na prvním místě určitý prvek, na druhém místě se vystřídá již jen (n-1) zbývajících prvků množiny M atd., až na poslední místo zbude jediný prvek. Počet permutací z n prvků množiny M označíme P(n) a je

$$P(n) = n \cdot (n-1) \cdot (n-2) \dots 2 \cdot 1 = n!$$

Jestliže se mezi prvky množiny M vyskytne a_1 k-krát, a_2 ℓ -krát, a_3 m-krát, ..., pak počet všech různých uspořádaných n-tic je

$$P_{k,\ell,m,\dots}(n) = \frac{n!}{k! \; \ell! \; m! \; \dots}$$

5.9. Variace. Nechť je dána množina M z 5.8 a přirozené číslo $k \leq n$. Uspořádanou k-tici navzájem různých prvků z množiny $M:(a_1,a_2,\ldots,a_k)$ nazveme variací k-té třídy z n prvků množiny M. Počet variací z n prvků k-té třídy označíme $V_k(n)$. Je roven

$$V_k(n) = \frac{n!}{(n-k)!}$$

Je-li např. $M = \{a, b, c\}$, všechny možné variace druhé třídy ze 3 prvků množiny M jsou (a, b), (b, a), (a, c), (c, a), (b, c), (c, b).

5.10. Kombinace. Nechť je dána množina M z 5.8 a přirozené číslo $k \leq n$. Vytvořme množinu $P \subset M$, která má k navzájem různých prvků: $P = \{a_1, a_2, \ldots, a_k\}$. Neuspořádanou k-tici navzájem různých prvků množiny M nazýváme kombinací k-té třídy z n prvků množiny M. Počet všech různých podmnožin s k prvky, které lze získat z n prvků množiny M, tzn. počet kombinací k-té třídy z n prvků je

$$C_k(n) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Je-li např. $M = \{a, b, c\}$, potom (a, b), (a, c) a (b, c) jsou všechny různé kombinace druhé třídy z prvků množiny M. Jejich počet je $C_2(3) = \binom{3}{2} = 3$.

5.11. Binomická věta. Pro libovolná reálná i komplexní čísla $a\,,\,\,b\,$ a pro libovolné přirozené číslo n platí vztah

$$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b + \dots + \binom{n}{n-1}ab^{n-1} + \binom{n}{n}b^n.$$

Symbolicky zapsáno

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Binomické koeficienty $\binom{n}{k}$ lze přehledně zapsat do tzv. **Pascalova trojúhelníku** a z něho je vyhledávat.

n	$\binom{n}{k}$ je k -tý prvek v řádku n																			
0											1									
1										1		1								
2									1		2		1							
3								1		3		3		1						
4							1		4		6		4		1					
5						1		5		10		10		5		1				
6					1		6		15		20		15		6		1			
7				1		7		21		35		35		21		7		1		
8			1		8		28		56		70		56		28		8		1	
9	1																			1

Známe-li v tomto nekonečném trojúhelníku r-tý řádek, potom snadno určíme i řádek (r+1). Protože platí

$$\binom{n}{k} = \binom{n}{n-k}\,, \quad \binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1},$$

je Pascalův trojúhelník symetrický a k-tý prvek v (r+1)-tém řádku je součtem (k-1)-tého a k-tého prvku v r-tém řádku, tj. součtem dvou prvků v r-tém řádku, které jsou mu nejblíže.

5.12. Řešené příklady.

1. Zjistěte, zda je posloupnost rostoucí nebo klesající:

a)
$$\{1 - n^2\}$$
, b) $\{\frac{n^3}{10}\}$.

Řešení:

a) Určíme několik prvních členů posloupnosti:

$$0, -3, -7, -15, \dots$$

Vidíme, že daná posloupnost bude asi klesající. Dokážeme tedy, že pro všechna $n \in \mathbb{N}$ platí $a_n > a_{n+1}$, tj. jinými slovy, že nerovnici

$$1 - n^2 > 1 - (n+1)^2$$

vyhovují všechna přirozená čísla. Poslední nerovnice je však ekvivalentní nerovnici $(n+1)^2>n^2$, která je zřejmě splněna pro všechna $n\in \mathbf{N}$.

b) Z několika počátečních členů

$$\frac{1}{10}, \frac{8}{10}, \frac{27}{10}, \frac{64}{10}, \dots$$

usoudíme, že posloupnost bude asi rostoucí. Dokážeme tedy , že pro všechna přirozená čísla n platí $a_{n+1} > a_n$, tj.

$$\frac{(n+1)^3}{10} > \frac{n^3}{10} \,.$$

Poslední nerovnost je však ekvivalentní nerovnosti $(n+1)^3>n^3$, která zřejmě platí pro všechna $n\in {\bf N}$.

2. Dokažte, že posloupnost $\left\{\frac{2n-1}{3}\right\}$ je aritmetická.

Řešení: Vyšetříme rozdíl dvou po sobě jdoucích členů posloupnosti:

$$a_{n+1} - a_n = \frac{2(n+1) - 1}{3} - \frac{2n - 1}{3} = \frac{2n + 2 - 1 - 2n + 1}{3} = \frac{2}{3}$$

Vidíme, že tento rozdíl je konstantní a roven $\frac{2}{3}$. Posloupnost je tedy aritmetická, $a_1=\frac{1}{3}$ a diference $d=\frac{2}{3}$.

3. Členy aritmetické posloupnosti $\{a_n\}$ vyhovují rovnicím

$$a_2 + a_4 + a_7 = 56$$
, $7(a_1 + a_3) = 6a_6$.

Určete a_5

Řešení: Použijeme vztah $a_n = a_1 + (n-1)d$ a všechny členy posloupnosti, které se vyskytují v uvedených rovnicích, vyjádříme pomocí a_1 a d. Dostaneme rovnice

$$3a_1 + 10d = 56$$
, $8a_1 - 16d = 0$.

Z druhé rovnice vypočteme $a_1=2d$ a po dosazení do první rovnice dostaneme rovnici 16d=56, z níž plyne $d=\frac{7}{2}$. Tedy $a_1=7$ a $a_5=a_1+4d=7+4\cdot\frac{7}{2}=7+14=21$.

Výsledek: $a_5 = 21$.

4. V aritmetické posloupnosti $\{a_n\}$ je $a_3=2$ a $s_3=-3$. Určete s_5 .

Řešení: Protože $s_5 = \frac{5}{2}(a_1 + a_5)$, vyjádříme a_1, a_2, s_3 pomocí a_3 a d:

$$a_1 = a_3 - 2d$$
, $a_2 = a_3 - d$, $s_3 = (a_3 - 2d) + (a_3 - d) + a_3$.

Nyní dosadíme do rovnice $s_3 = -3$ a postupně dostaneme:

$$2-2d+2-d+2=-3$$
, $3d=9$, $d=3$.

Tedy

$$s_5 = \frac{5}{2}(a_1 + a_5) = \frac{5}{2}(2 - 2 \cdot 3 + 2 + 2 \cdot 3) = \frac{5}{2} \cdot 4 = 10.$$

Výsledek: $s_5 = 10$.

5. Součin tří po sobě jdoucích členů aritmetické posloupnosti se rovná jejich součtu. Určete tyto členy, víte-li, že $d=\frac{13}{3}$.

Řešení: Označíme-li si hledané členy a_{k-1} , a_k , a_{k+1} , potom platí rovnice

$$a_{k-1}a_ka_{k+1} = a_{k-1} + a_k + a_{k+1}$$
.

Vyjádříme a_{k-1} , a_{k+1} pomocí a_k a d, dosadíme a postupně upravíme:

$$(a_k - d)a_k(a_k + d) = a_k - d + a_k + a_k + d$$

$$a_k(a_k^2 - d^2) = 3a_k$$

$$a_k(a_k^2 - d^2 - 3) = 0 \Longrightarrow \begin{cases} a_k = 0 \\ a_k^2 = d^2 + 3, \ a_k = \pm \sqrt{\frac{169}{9} + 3} = \pm \frac{14}{3}. \end{cases}$$

Úloze tedy vyhovují všechny aritmetické posloupnosti, které obsahují jednu z těchto tří trojic po sobě jdoucích členů:

$$-\frac{13}{3}$$
, 0, $\frac{13}{3}$; $\frac{1}{3}$, $\frac{14}{3}$, 9; -9 , $-\frac{14}{3}$, $-\frac{1}{3}$.

6. V geometrické posloupnosti je součet prvních dvou členů 4, součet jejich druhých mocnin 10. Určete součet prvních pěti členů.

Řešení: Nejprve určíme a_1 a q. Ze zadání úlohy vyplývají vztahy

$$a_1 + a_2 = 4$$
 $a_1^2 + a_2^2 = 10$.

Vyjádříme a_2 pomocí a_1 a q a dosadíme; dostaneme rovnice

$$a_1 + a_1 q = 4$$
, $a_1^2 + a_1^2 q^2 = 10$.

Z první rovnice vypočteme $a_1 = \frac{4}{1+q}$ a po dosazení do druhé rovnice postupně dostaneme:

$$\frac{16}{(1+q)^2} (1+q^2) = 10, \quad 3q^2 - 10q + 3 = 0$$
$$q_1 = 3, \ q_2 = \frac{1}{3}.$$

To znamená, že úloze vyhovují dvě geometrické posloupnosti $\{a_n\}$. U jedné z nich je $q=3\,,$ $a_1=1\,,$ a tedy

$$s_5 = 1 \cdot \frac{3^5 - 1}{3 - 1} = 121$$
.

V druhé posloupnosti je $q = \frac{1}{3}$, $a_1 = 3$, a tedy

$$s_5 = 3 \frac{\left(\frac{1}{3}\right)^5 - 1}{\frac{1}{3} - 1} = \frac{121}{27} \,.$$

Součet prvních pěti členů je buď 121 nebo $\frac{121}{27}$.

7. V geometrické posloupnosti je $a_7-a_5=96$, $a_5+a_6=96$, $s_n=2046$. Určete a_1 , q, n.

Řešení: Dosadíme do těchto vztahů $a_6 = a_5 q$, $a_7 = a_5 q^2$ a dostaneme rovnice

$$a_5q^2 - a_5 = 96$$
, $a_5 + a_5q = 96$,

z nichž okamžitě plyne nerovnost $q \neq \pm 1$. První rovnici vydělíme druhou a postupně dostaneme:

$$\frac{q^2 - 1}{q + 1} = 1, \quad q - 1 = 1, \quad q = 2,$$

$$a_1 = a_5 q^{-4} = \frac{96}{1 + a} q^{-4} = \frac{96}{3} \cdot \frac{1}{16} = 2.$$

Zbývá určit n, pro které $s_n=2046$. K tomu použijeme vzorec pro s_n , do kterého dosadíme $s_n=2046$, $a_1=2$, q=2, a postupně dostaneme:

$$2046 = 2 \cdot \frac{2^n - 1}{2 - 1} \,, \quad 2^n = 1024 \,, \quad 2^n = 2^{10} \,, \quad n = 10 \,.$$

Výsledek: $a_1 = 2$, q = 2, n = 10.

- 8. Do kružnice o poloměru R je vepsán čtverec a do něho kružnice, do této kružnice opět čtverec atd. Vypočtěte
 - a) stranu pátého čtverce,
 - b) součet obvodů všech nekonečně mnoha takto vzniklých čtverců.

Řešení: Označme R_n poloměr n-té takto vzniklé kružnice, takže

 $R=R_1$. Dále označme a_n délku strany čtverce vepsaného do n-té kružnice. Ukážeme nejprve, že posloupnost $\{a_n\}$ je geometrická. Jak je patrné z obrázku, pro každé n platí vztahy

$$a_n = R_n \sqrt{2}$$

$$R_{n+1} = \frac{1}{2} a_n ,$$
 a tedy
$$a_{n+1} = R_{n+1} \sqrt{2} =$$

$$\frac{1}{2} a_n \sqrt{2} = a_n \frac{\sqrt{2}}{2} .$$

Posloupnost je tedy opravdu geometrická, přičemž její první člen a kvocient jsou dány vztahy

$$a_1 = R\sqrt{2}$$
, $q = \frac{\sqrt{2}}{2}$.

Nyní už lehce zodpovíme obě otázky:

a) Strana pátého čtverce je dána vztahem

$$a_5 = a_1 q^4 = R\sqrt{2} \left(\frac{\sqrt{2}}{2}\right)^4 = R\frac{\sqrt{2}}{4}.$$

b) Součet s obvodů všech čtverců je součtem geometrické řady $4a_1+4a_2+4a_3\dots$ s prvním členem $4R\sqrt{2}$ a kvocientem $\frac{\sqrt{2}}{2}$, a tedy

$$s = \frac{4R\sqrt{2}}{1 - \frac{\sqrt{2}}{2}} = \frac{8R\sqrt{2}}{2 - \sqrt{2}} = \frac{8R}{\sqrt{2} - 1} = 8R(\sqrt{2} + 1).$$

Výsledek: $a_5 = R \frac{\sqrt{2}}{4}$, součet obvodů všech čtverců $s = 8R(\sqrt{2} + 1)$.

9. Řešte v R rovnici

$$\frac{8}{x+10} = 1 - \frac{3}{x} + \frac{9}{x^2} - \frac{27}{x^3} + \cdots$$

Řešení: Řešení musí splňovat podmínky $x \neq 0$ a $x \neq -10$, aby zlomky v rovnici měly smysl. Pravá strana rovnice je součtem s geometrické řady, kde $a_1 = 1$ a $q = -\frac{3}{x}$. Aby tato řada konvergovala, musí platit |q| < 1, což je ekvivalentní podmínce |x| > 3. Je-li tato podmínka splněna, je

$$s = \frac{a_1}{1 - q} = \frac{1}{1 + \frac{3}{x}} = \frac{x}{x + 3}.$$

Dosadíme tento výsledek do zadané rovnice a postupnými úpravami dostaneme

$$\frac{8}{x+10} = \frac{x}{x+3}, \quad 8x+24 = x^2+10x, \quad x^2+2x-24 = 0$$
$$x_1 = -6, \ x_2 = 4.$$

Oba kořeny splňují všechny tři výše uvedené podmínky, a proto jsou oba řešením zadané rovnice. Rovnice má dvě řešení $x_1=-6$, $x_2=4$.

10. Kolika způsoby můžeme rozestavit na šachovnici (o osmi sloupcích a osmi řadách) 8 věží tak, aby se žádné dvě z nich vzájemně neohrožovaly?

Řešení. V každém sloupci a v každé řadě musí stát jediná věž. Uvažujme jednu z těchto poloh

$$a_1, a_2, \ldots, a_8$$

kde a_1 je číslo obsazeného pole v 1. řadě, a_2 je číslo obsazeného pole ve druhé řadě atd. Pak je (a_1, a_2, \ldots, a_8) jistá permutace čísel $1, 2, \ldots, 8$. Odtud plyne, že počet hledaných poloh je roven počtu permutací čísel $1, 2, \ldots, 8$, tj. číslu

$$P(8) = 8! = 8 \cdot 7 \cdot \cdot \cdot 2 \cdot 1 = 40320.$$

Věže můžeme na šachovnici rozestavit 40 320 způsoby.

11. Angličané obvykle dávají svým dětem několik jmen. Kolika způsoby lze pojmenovat ne více než třemi jmény novorozeně, je-li k dispozici 300 různých jmen?

Řešení. Je jasné, že

Ve druhém případě se totiž jedná o variace druhé třídy ze 300 prvků a ve třetím případě o variace třetí třídy ze 300 prvků, neboť zde zřejmě záleží na pořadí. Novorozeněti tedy můžeme vybrat nejvýše 3 jména

$$300 + 300 \cdot 299 + 300 \cdot 299 \cdot 298 = 26820600$$

způsoby.

12. Z 52 účastníků zasedání má být vybrána 5-tičlenná delegace. Kolika způsoby to lze provést?

Řešení. Máme vybrat 5ti-člennou skupinu z 52 prvků, přičemž nezáleží na pořadí. Jedná se tedy o kombinaci 5. třídy z 52 prvků. Všech kombinací 5. třídy z 52 prvků je

$$C_5(52) = \binom{52}{5} = \frac{52!}{5! \, 47!} = \frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 2 \, 598 \, 960 \, .$$

Výběr pěti delegátů lze tedy provést 2598960 způsoby.

13. Pro přípustné hodnoty upravte $V = \frac{n!}{(n-2)!} - 2\binom{n}{2}$.

Řešení. Za předpokladu $n \geq 2$ je

$$V = \frac{n(n-1)(n-2)\cdots 2\cdot 1}{(n-2)(n-3)\cdots 2\cdot 1} - 2\frac{n(n-1)}{2\cdot 1} = n(n-1) - n(n-1) = 0.$$

14. V množině přirozených čísel řešte rovnici $\binom{n-1}{n-3}-n=8$.

Řešení. Musí platit nerovnosti $n \geq 1$, $n \geq 3$, což je ekvivalentní jedné nerovnosti $n \geq 3$. Použijeme vztahu $\binom{m}{k} = \binom{m}{m-k}$ pro m=n-1 a k=n-3 a upravíme naši rovnici na tvar

$$\binom{n-1}{2} - n = 8.$$

Odtud postupně dostáváme

$$\frac{(n-1)(n-2)}{2} - n = 8, \quad n^2 - n - 2n + 2 - 2n = 16$$

$$n^2 - 5n - 14 = 0$$
, $n_{1,2} = \frac{5 \pm \sqrt{25 + 56}}{2} = \begin{cases} 7 \\ -2 \end{cases}$.

Vzhledem k podmínce $n \geq 3$ rovnici vyhovuje pouze n = 7.

15. Určete $x \in \mathbf{R}^+$ tak, aby pátý člen v binomickém rozvoji mocniny $\left(\frac{1}{2\sqrt{x}} - \frac{1}{2}\right)^{10}$ byl 105.

Řešení. Pátý člen rozvoje podle uvedeného tvaru binomické věty je $A_5 = \binom{10}{4} a^6 b^4$, takže máme určit x tak, aby platila rovnice

$$\binom{10}{4} \left(\frac{1}{2\sqrt{x}}\right)^6 \left(-\frac{1}{2}\right)^4 = 105 \, .$$

Odtud postupně dostáváme

$$\frac{10 \cdot 9 \cdot 8 \cdot 7}{4 \cdot 3 \cdot 2 \cdot 1} \cdot \frac{1}{2^6 x^3} \cdot \frac{1}{2^4} = 105 \,, \quad x^3 = \frac{6 \cdot 7}{21 \cdot 2^{10}} = \frac{1}{2^9} \,, \quad x = \frac{1}{2^3} = \frac{1}{8} \,.$$

Výsledek: $x = \frac{1}{8}$.

5.13. Neřešené příklady.

1. Zjistěte, zda posloupnost $\left\{\frac{1}{n(n+1)}\right\}$ je rostoucí či klesající. [Klesající]

2. V aritmetické posloupnosti $\{a_n\}$ je $a_2+a_3=9$, $a_2\cdot a_3=14$. Určete a_{10} . $[a_{10}=-33, \text{ je-li } a_1=12, d=-5, \text{ nebo } a_{10}=42, \text{ je-li } a_1=-3, d=5]$

3. V geometrické posloupnosti $\{a_n\}$ určete první člen a_1 a kvocient q je-li:

a)
$$a_1 + a_4 = 195$$
, $a_2 + a_3 = 60$,
$$\left[q = 4, a_1 = 3 \text{ nebo } q = \frac{1}{4}, a_1 = 192 \right]$$
b) $a_1 - a_2 + a_3 = 15$, $a_4 - a_5 + a_6 = 120$.
$$\left[a_1 = 5, \ q = 2 \right]$$

4. Řešte v R rovnice:

a)
$$\frac{5}{3} = x + 3x^2 + x^3 + 3x^4 + \dots$$
,
$$\left[x_1 = -\frac{5}{7}, x_2 = \frac{1}{2}\right]$$
b) $2^x + 4^x + 8^x + 16^x + \dots = 1$,
$$[x = -1]$$
c) $\log x + \log \sqrt{x} + \log \sqrt[4]{x} + \dots = 2$,
$$[x = 10]$$
d) $1 + \frac{2}{x} + \frac{4}{x^2} + \frac{8}{x^3} + \dots = \frac{4x - 3}{3x - 4}$.
$$[x = 6]$$

- 5. Dokažte že pro $\;|q|<1\;$ je součet geometrické řady $\;s=\frac{a_1}{1-q}\;.$
- 6. Dokažte podle definice, že posloupnost $\left\{\frac{3n+4}{n}\right\}$ je rostoucí a má limitu 3 .
- 7. Vypočtěte limity:

a)
$$\lim_{n \to \infty} \left(\frac{1 + 2 + 3 \dots + n}{n + 2} - \frac{n}{2} \right)$$
, $\left[-\frac{1}{2} \right]$

b)
$$\lim_{n\to\infty} \left(\frac{1+\frac{1}{2}+\frac{1}{4}+\cdots\frac{1}{2^n}}{1+\frac{1}{3}+\frac{1}{9}+\cdots+\frac{1}{3^n}} \right),$$
 $\left[\frac{4}{3} \right]$

c)
$$\lim_{n\to\infty} \frac{n!}{(n+1)!-n!}$$
. [0]

8. Upravte výrazy:

a)
$$\frac{(n+1)!}{n!} - \frac{n!}{(n+1)!}$$
, $\left[\frac{n^2 + 2n}{n+1}\right]$
b) $\frac{(n-1)!}{(n+1)!} + \frac{(3n+3)!}{(3n+4)!}$. $\left[\frac{(n+2)^2}{n(n+1)(3n+4)}\right]$

9 Řešte v **N** rovnice:

a)
$$\begin{pmatrix} x \\ 1 \end{pmatrix} + \begin{pmatrix} x \\ x - 2 \end{pmatrix} = 66,$$
 [11]

b)
$$\binom{x-1}{x-3} + \binom{x-2}{x-4} = 9.$$
 [5]

10. Určete desátý člen binomického rozvoje mocniny
$$\left(\frac{\sqrt{x}}{x} + \sqrt[3]{x}\right)^{20}$$
. $\left[\binom{20}{9} \frac{\sqrt{x}}{x^3}\right]$