Decision Trees and Random Forests

Lecture 7 - DAMLF | ML1

PARAMETRIC MODELS

Have a **fixed** number of parameters.

- + Simple
- + Fast
- Makes strong assumptions about data
- Prone to underfit*
 *except high-capacity variants that depend on regularization

Linear Regression: $h(x; \theta) = \theta^T x$

PARAMETRIC MODELS

Have a **fixed** number of parameters.

- + Simple
- + Fast
- Makes strong assumptions about data
- Prone to underfit*
 *except high-capacity variants that depend on regularization

Logistic Regression: $h(x; \theta) = g(\theta^T x)$

PARAMETRIC MODELS

Have a **fixed** number of parameters.

- + Simple
- + Fast
- Makes strong assumptions about data
- Prone to underfit*

*except high-capacity variants that depend on regularization

PARAMETRIC MODELS

Have a **fixed** number of parameters.

- + Simple
- + Fast
- Makes strong assumptions about data
- Prone to underfit*
 *except high-capacity variants that depend on regularization

Nonparametric Models

The number of parameters **grows** with the amount of training data.

- + Makes few if any assumptions about data
- + Can fit a larger class of functional forms
- Slow
- Prone to overfit

PARAMETRIC MODELS

Have a **fixed** number of parameters.

- + Simple
- + Fast
- Makes strong assumptions about data
- Prone to underfit*
 *except high-capacity variants that depend on regularization

TWO NONPARAMETRIC MODELS

- Support Vector Machines kernel method
- **Decision Trees** adaptive basis function model

NONPARAMETRIC MODELS

The number of parameters **grows** with the amount of training data.

- + Makes few if any assumptions about data
- + Can fit a larger class of functional forms
- Slow
- Prone to overfit

Kernels and Adaptive Basis Functions

Review: Polynomial Regression

Review: Polynomial Regression

POLYNOMIAL REGRESSION

The degree 7 polynomial

$$h(x; \theta) = \theta_0 + \theta_1 x_1 + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4 + \theta_5 x^5 + \theta_6 x^6 + \theta_7 x^7$$

may be rewritten as

$$h(\mathbf{x}; \boldsymbol{\theta}) = \boldsymbol{\theta}^{\mathsf{T}} \mathbf{z}$$

= $\theta_0 + \theta_1 \mathbf{z}_1, \theta_2 \mathbf{z}_2 + \theta_3 \mathbf{z}_3 + \theta_4 \mathbf{z} + \theta_5 \mathbf{z}_5 + \theta_6 \mathbf{z}_6 + \theta_7 \mathbf{z}_7$

where
$$\mathbf{z} = [1, x, x^2, x^3, x^4, x^5, x^6, x^7].$$

Review: Polynomial Regression

POLYNOMIAL REGRESSION

The degree 7 polynomial

$$h(x; \theta) = \theta_0 + \theta_1 x_1 + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4 + \theta_5 x^5 + \theta_6 x^6 + \theta_7 x^7$$

may be rewritten as

$$h(\mathbf{x}; \boldsymbol{\theta}) = \boldsymbol{\theta}^{\mathsf{T}} \mathbf{z}$$
$$= \theta_0 + \theta_1 \mathbf{z}_1, \theta_2 \mathbf{z}_2 + \theta_3 \mathbf{z}_3 + \theta_4 \mathbf{z} + \theta_5 \mathbf{z}_5 + \theta_6 \mathbf{z}_6 + \theta_7 \mathbf{z}_7$$

where
$$\mathbf{z} = [1, x, x^2, x^3, x^4, x^5, x^6, x^7].$$

Suppose $f_j(x) = \mathbf{z}$ is a polynomial **basis function** of x whose range is $\mathbf{z}_j = x^j$. Then, we may rewrite $h(x; \theta)$ again as:

$$h(x; \theta) = \theta^{\mathsf{T}} f_i(x)$$
 for $j = 1, \dots, 7$

Review: Polynomial Logistic Regression

Non-Linear Decision Boundaries

Review: Polynomial Logistic Regression

Problem: High Dimensionality. Introducing non-linearity by explicitly engineering and computing a vector of new features for each input is impractical for multi-dimensional input.

Problem: Choosing f.
In addition to the **curse of dimensionality**, you have to
engineer the basis function, f.

Non-Linear Decision Boundaries

Kernel Methods

KERNEL FUNCTION

A kernel method has the form

$$h(x) = \boldsymbol{\theta}^{\mathsf{T}} \phi(\mathbf{x})$$

where $\phi(x)$ is a list of **kernel functions** κ :

$$\phi(\mathbf{X}) = [\kappa(\mathbf{X}, \mu_1), \kappa(\mathbf{X}, \mu_2), \dots, \kappa(\mathbf{X}, \mu_m)]$$

A MEASURE OF SIMILARITY

$$\phi(\mathbf{x}) = [\kappa(\mathbf{x}, \mu_1), \kappa(\mathbf{x}, \mu_2), \dots, \kappa(\mathbf{x}, \mu_m)]$$

The **kernel function** $\kappa(x, \mu_k)$ is a real-valued function that is typically:

(non-negative): $\kappa(x, \mu_k) \geqslant 0$

(symmetric): $\kappa(x, \mu_k) = \kappa(\mu_k, x)$

A MEASURE OF SIMILARITY

$$\phi(\mathbf{X}) = [\kappa(\mathbf{X}, \mu_1), \kappa(\mathbf{X}, \mu_2), \dots, \kappa(\mathbf{X}, \mu_m)]$$

The **kernel function** $\kappa(x, \mu_k)$ is a real-valued function that is typically:

(non-negative):
$$\kappa(x, \mu_k) \geqslant 0$$

(symmetric): $\kappa(x, \mu_k) = \kappa(\mu_k, x)$

Kernel functions are interpreted as **measures of similarity** between training example x and sample μ_k , where μ_k is either all m training examples or some (proper) subset of training examples.

SOME KERNEL FUNCTIONS

- Radial Basis (RBF)

Gaussian kernel ARD kernel

- **Cosine similarity** to compare documents

- **Mercer kernels** aka, positive definite kernels
- **Linear kernels** for linearly separable features
- Matern kernel Gaussian process regression
- **String kernels** num. of strings in common
- **Pyramid match kernels** Mercer ker. for bag-of-words representation of images
- Probability product probability generative model
- **Fisher kernels**cf. string kernels for Markov
 chains

A MEASURE OF SIMILARITY

$$\phi(\mathbf{x}) = [\kappa(\mathbf{x}, \mu_1), \kappa(\mathbf{x}, \mu_2), \dots, \kappa(\mathbf{x}, \mu_m)]$$

The **kernel function** $\kappa(x, \mu_k)$ is a real-valued function that is typically:

(non-negative):
$$\kappa(x, \mu_k) \geqslant 0$$
 (symmetric): $\kappa(x, \mu_k) = \kappa(\mu_k, x)$

Kernel functions are interpreted as **measures of similarity** between training example x and sample μ_k , where μ_k is either all m training examples or some (proper) subset of training examples.

SOME KERNEL FUNCTIONS

Radial Basis (RBF)

Gaussian kernel ARD kernel

- Cosine similarity to compare documents

- Mercer kernels aka, positive definite kernels
- **Linear kernels** for linearly separable features
- Matern kernel Gaussian process regression
- **String kernels** num. of strings in common
- **Pyramid match kernels**
- Mercer ker. for bag-of-words representation of images
- **Probability product** probability generative model
- **Fisher kernels**cf. string kernels for Markov
 chains

TEMPLATE MATCHING

Kernel methods perform a type of **template matching**.

They compare the input x to **saved prototypes** μ_k .

SOME KERNEL FUNCTIONS

Radial Basis (RBF)

Gaussian kernel ARD kernel

Cosine similarity to compare documents

- Mercer kernels aka, positive definite kernels
- **Linear kernels** for linearly separable features
- Matern kernel Gaussian process regression
- **String kernels** num. of strings in common
- Pyramid match kernels
 Mercer ker. for bag-of-words
 representation of images
- **Probability product** probability generative model
- **Fisher kernels**cf. string kernels for Markov
 chains

TEMPLATE MATCHING

One way to **learn** the parameters of a kernel is to try the **ARD kernel**:

$$\kappa(\mathbf{x}, \mathbf{x}') = \theta_0 \exp\left(-\frac{1}{2} \sum_{j=1}^n \theta_j (x_j - x_j')^2\right)$$

where *n* is the total number of features, to estimate θ_j .

Kernel Methods

REQUIRE GOOD KERNELS

Kernel methods depend on having **good base kernels** and are **computationally expensive**.

Kernel Methods

REQUIRE GOOD KERNELS

Kernel methods depend on having **good base kernels** and are **computationally expensive**.

These limitations of kernel methods motivate other techniques that learn useful features from data.

Adaptive Basis Function Models

GET RID OF KERNELS

Instead, learn useful features $\phi(\mathbf{x})$ directly from the input data.

Adaptive Basis Function Models

GET RID OF KERNELS

Instead, **learn** useful **features** $\phi(\mathbf{x})$ directly from the input data.

Adaptive Basis Function models are of the form

$$h(\mathbf{x}) = \theta_0 + \sum_{k=1}^K \theta_k \phi_k(\mathbf{x})$$

where $\phi_k(\mathbf{x})$ is the k-th basis function learned from data.

ABMS ARE NOT LINEAR IN PARAMETERS

$$h(\mathbf{x}) = \theta_0 + \sum_{k=1}^K \theta_k \phi_k(\mathbf{x})$$

Each basis function $\phi_k = \phi(\mathbf{x}, \boldsymbol{\omega}_k)$ is **parametric**.

ABMS ARE NOT LINEAR IN PARAMETERS

$$h(\mathbf{x}) = \theta_0 + \sum_{k=1}^K \theta_k \phi_k(\mathbf{x})$$

Each basis function $\phi_k = \phi(\mathbf{x}, \boldsymbol{\omega}_k)$ is **parametric**.

Vector ω_k parameterizes the basis function ϕ_k , and the full parameter set then is:

$$\boldsymbol{\theta} = [\theta_0, \theta_1, \dots, \theta_n, \{\boldsymbol{\omega}_1, \dots, \boldsymbol{\omega}_n\}]$$

ABMS ARE NOT LINEAR IN PARAMETERS

$$h(\mathbf{x}) = \theta_0 + \sum_{k=1}^K \theta_k \phi_k(\mathbf{x})$$

Each basis function $\phi_k = \phi(\mathbf{x}, \boldsymbol{\omega}_k)$ is **parametric**.

Vector ω_k parameterizes the basis function ϕ_k , and the full parameter set then is:

$$\boldsymbol{\theta} = [\theta_0, \theta_1, \dots, \theta_n, \{\omega_1, \dots, \omega_n\}]$$

But, the resulting model is **not linear** in θ .

Thus, ABMs are nonparametric models.

SOME ADAPTIVE BASIS MODELS

Classification and Regression Trees (CART)

aka, decision trees; random forests

Generalized Additive Models (GAM)

multivariate adaptive regression splines (MARS)

- Feed Forward Neural Networks aka, multi-layer perceptrons
- Ensemble Learning

ABMS ARE NOT LINEAR IN PARAMETERS

$$h(\mathbf{x}) = \theta_0 + \sum_{k=1}^K \theta_k \phi_k(\mathbf{x})$$

Each basis function $\phi_k = \phi(\mathbf{x}, \boldsymbol{\omega}_k)$ is **parametric**.

Vector ω_k parameterizes the basis function ϕ_k , and the full parameter set then is:

$$\boldsymbol{\theta} = [\theta_0, \theta_1, \dots, \theta_n, \{\boldsymbol{\omega}_1, \dots, \boldsymbol{\omega}_n\}]$$

But, the resulting model is **not linear** in θ .

Thus, ABMs are **nonparametric models**.

CART Models

Classification and Regression Trees (CART) are adaptive basis function models.

CART models **recursively partition** the input, with each cell of the partition covering a region of the input.

Then, a **local model** is constructed for each of the resulting regions.

CART MODELS

A CART model can be represented by a **tree**, where leaves correspond to the partitioned regions of the input space.

CART MODELS

A CART model can be represented by a **tree**, where leaves correspond to the partitioned regions of the input space.

Example: two inputs, x_1 and x_2 .

Based on Murphy (2012, Figure 16.1)

CART MODELS

A CART model can be represented by a **tree**, where leaves correspond to the partitioned regions of the input space.

Example: two inputs, x_1 and x_2 .

Based on Murphy (2012, Figure 16.1)

CART MODELS

In this example, the **2d space** is partitioned into 5 regions: R_1 , R_2 , R_3 , R_4 , R_5 .

Partitions splits are **parallel to the axes** x_1, x_2 .

MEAN RESPONSE IN EACH REGION

Define $\mathbf{1}_R(x) = 1$ if $x \in R$ and 0 otherwise.

Then, the equation

$$h(\mathbf{x}) = \mathbb{E}\left[\mathbf{y} \mid \mathbf{x}\right] = \sum_{k=1}^{K} \theta_{k} \mathbf{1}_{R_{k}}(\mathbf{x}) = \sum_{k=1}^{K} \theta_{k} \phi\left(\mathbf{x}, \boldsymbol{\omega}_{k}\right)$$

specifies a CART model.

Where:

- R_k is the Kth region,
- θ_k is the **mean response** in R_k
- ω_k encodes both the **choice of variables to split** and the **threshold values** for splitting each variable along the path from the root to the k'th leaf.

Based on Murphy (2012, Figure 16.1)

MEAN RESPONSE IN EACH REGION

Define $\mathbf{1}_R(x) = 1$ if $x \in R$ and 0 otherwise.

Then, the equation

$$h(\mathbf{x}) = \mathbb{E}\left[y \mid \mathbf{x}\right] = \sum_{k=1}^{K} \theta_k \mathbf{1}_{R_k}(\mathbf{x}) = \sum_{k=1}^{K} \theta_k \phi\left(\mathbf{x}, \boldsymbol{\omega}_k\right)$$

specifies a **CART model**.

CART is an adaptive basis-function model, where

- basis functions define regions;
- parameters specify the response value in each region.

CART Classification

CLASSIFICATION

Instead of storing the mean response at each leaf, store the **distribution over class labels** at each leaf.

CART Classification

CLASSIFICATION

Instead of storing the mean response at each leaf, store the **distribution over class labels** at each leaf.

Example:

- Suppose *x* matches the color criterion **blue**.
- What is the probability that y = 1?

CLASSIFICATION

Instead of storing the mean response at each leaf, store the **distribution over class labels** at each leaf.

Example:

 \circ Suppose x matches the color criterion **blue**. What is the probability that y = 1?

$$p(y = 1 \mid x \in \mathbf{blue}) = 1$$

CLASSIFICATION

Instead of storing the mean response at each leaf, store the **distribution over class labels** at each leaf.

Example:

 \circ Suppose *x* matches the color criterion **blue**. What is the probability that y = 1?

$$p(y = 1 | x \in \mathbf{blue}) = 1$$

 \circ Suppose x matches the color criterion **red** and the shape criterion **ellipse**. What is the probability that y = 1?

CLASSIFICATION

Instead of storing the mean response at each leaf, store the **distribution over class labels** at each leaf.

Example:

 \circ Suppose x matches the color criterion **blue**. What is the probability that y = 1?

$$p(y = 1 \mid x \in \mathbf{blue}) = 1$$

 \circ Suppose x matches the color criterion **red** and the shape criterion **ellipse**. What is the probability that y = 1?

$$p(y = 1 \mid x \in \text{red} \cap \text{ellipse}) = \frac{1}{2}$$

CLASSIFICATION

Instead of storing the mean response at each leaf, store the **distribution over class labels** at each leaf.

CLASSIFICATION

Instead of storing the mean response at each leaf, store the **distribution over class labels** at each leaf.

Each leaf (n_1, n_0) says there are n_1 positive examples in that path that match and n_0 negative examples that do not match.

Hypothesis Representation

CART:

Hypothesis *h* computes the **expectation** of *y* given features *x*:

$$h(\mathbf{x}) = \mathbb{E}\left[\mathbf{y} \mid \mathbf{x}\right] = \sum_{k=1}^{K} \theta_k \mathbf{1}_{R_k}(\mathbf{x}) = \sum_{k=1}^{K} \theta_k \phi\left(\mathbf{x}, \boldsymbol{\omega}_k\right)$$

Hypothesis Representation

CART:

Hypothesis *h* computes the **expectation** of *y* given features *x*:

$$h(\mathbf{x}) = \mathbb{E}\left[\mathbf{y} \mid \mathbf{x}\right] = \sum_{k=1}^{K} \theta_k \mathbf{1}_{R_k}(\mathbf{x}) = \sum_{k=1}^{K} \theta_k \phi\left(\mathbf{x}, \boldsymbol{\omega_k}\right)$$

The form of the hypothesis depends on what variables are **split** at which **threshold**, which is encoded in ω_k for each $k \in K$ leaf.

Hypothesis Representation

CART:

Hypothesis *h* computes the **expectation** of *y* given features *x*:

$$h(\mathbf{x}) = \mathbb{E}\left[\mathbf{y} \mid \mathbf{x}\right] = \sum_{k=1}^{K} \theta_k \mathbf{1}_{R_k}(\mathbf{x}) = \sum_{k=1}^{K} \theta_k \phi\left(\mathbf{x}, \boldsymbol{\omega_k}\right)$$

The form of the hypothesis depends on what variables are **split** at which **threshold**, which is encoded in ω_k for each $k \in K$ leaf.

Each ω_k is selected by a **split function**.

Growing a Tree

OPTIMAL PARTITIONS

The **split function** chooses the best feature j^* and the best threshold value t^* for that feature, as follows:

$$(j^*, t^*) = \arg\min_{\substack{j \in \{1, \dots, n\} \\ t \in \mathcal{T}_j}} \min \mathbf{Cost} \left(\{ \mathbf{x}_i, y_i : x_{i,j} \leqslant t \} \right) + \mathbf{Cost} \left(\{ \mathbf{x}_i, y_i : x_{i,j} > t \} \right)$$

where:

- *n* is the dimension of the features
- \mathfrak{T}_j is the set of possible thresholds for feature j
- Cost is a cost function, to be defined
- *j** is the best feature from the *n* features
- t* is the best threshold value for feature j*

$$(j^*, t^*) = \arg\min_{\substack{j \in \{1, \dots, n\} \\ t \in \mathcal{T}_i}} \min \mathbf{Cost} \left(\{\mathbf{x}_i, y_i : x_{i,j} \leqslant t\} \right) + \mathbf{Cost} \left(\{\mathbf{x}_i, y_i : x_{i,j} > t\} \right)$$

Regression Cost Function:

$$Cost(\mathcal{D}) = \sum_{i=1}^{|\mathcal{D}|} (\bar{y} - y_i)^2$$

where \mathcal{D} is the specified data set, $|\mathcal{D}| = m$, and \bar{y} is the **mean** of the target y within the set of data \mathcal{D} :

$$\bar{y} = \frac{1}{m} \sum_{i=1}^{m} y_i$$

$$(j^*,t^*) = \arg\min_{\substack{j \in \{1,\dots,n\} \\ t \in \mathcal{T}_i}} \min \mathbf{Cost}\left(\{\mathbf{x}_i,y_i: x_{i,j} \leqslant t\}\right) + \mathbf{Cost}\left(\{\mathbf{x}_i,y_i: x_{i,j} > t\}\right)$$

Regression Cost Function:

$$Cost(\mathcal{D}) = \sum_{i=1}^{|\mathcal{D}|} (\bar{y} - y_i)^2$$

where \mathcal{D} is the specified data set, $|\mathcal{D}| = m$, and \bar{y} is the **mean** of the target y within the set of data \mathcal{D} :

$$\bar{y} = \frac{1}{m} \sum_{i=1}^{m} y_i$$

Alternatively, a linear regression model can be **fit to each leaf** using the features selected for that path as input, then residual error can be measured.

$$(j^*,t^*) = \arg\min_{\substack{j \in \{1,\ldots,n\} \\ t \in \mathcal{I}_j}} \min \mathbf{Cost} \left(\{\mathbf{x}_i,y_i : x_{i,j} \leqslant t\} \right) + \mathbf{Cost} \left(\{\mathbf{x}_i,y_i : x_{i,j} > t\} \right)$$

Classification:

Step 1.

Compute the proportion of class c observations in leaf j passing test $X_j < t$, written $\hat{\pi}_{c,j}$, by

$$\hat{\boldsymbol{\pi}}_{c,j} = \frac{1}{|\mathcal{D}_j|} \sum_{i=1}^{|\mathcal{D}_j|} \mathbf{1}(y_i = c)$$

where \mathcal{D}_j is the data in leaf j and the indicator $\mathbf{1}(y_i = c) = 1$, if y_i has class label c, 0 otherwise.

$$(j^*,t^*) = \arg\min_{\substack{j \in \{1,\ldots,n\} \\ t \in \mathcal{I}_j}} \min \mathbf{Cost} \left(\{\mathbf{x}_i,y_i : x_{i,j} \leqslant t\} \right) + \mathbf{Cost} \left(\{\mathbf{x}_i,y_i : x_{i,j} > t\} \right)$$

Classification:

Step 1.

Compute the **proportion** of class *c* observations in leaf *j* passing test $X_j < t$, written $\hat{\pi}_{c,j}$, by

$$\hat{\pi}_{c,j} = \frac{1}{|\mathcal{D}_j|} \sum_{i=1}^{|\mathcal{D}_j|} \mathbf{1}(y_i = c)$$

where \mathcal{D}_j is the data in leaf j and the **indicator 1**($y_i = c$) = 1, if y_i has class label c, 0 otherwise.

 $\hat{\pi}_{c,j}$ is a **Maximum Likelihood Estimator** for the distribution $p(c \mid X_j < t)$

$$(j^*,t^*) = \arg\min_{\substack{j \in \{1,\dots,n\} \\ t \in \mathcal{T}_j}} \min \mathbf{Cost} \left(\{ \mathbf{x}_i, y_i : x_{i,j} \leqslant t \} \right) + \mathbf{Cost} \left(\{ \mathbf{x}_i, y_i : x_{i,j} > t \} \right)$$

Classification:

Step 2.

There are many **cost functions** to measure the **quality of a split** in a CART classification model.

$$(j^*,t^*) = \arg\min_{\substack{j \in \{1,\dots,n\} \\ t \in \mathcal{T}_j}} \min \mathbf{Cost} \left(\{ \mathbf{x}_i, y_i : x_{i,j} \leqslant t \} \right) + \mathbf{Cost} \left(\{ \mathbf{x}_i, y_i : x_{i,j} > t \} \right)$$

Classification:

Step 2.

There are many **cost functions** to measure the **quality of a split** in a CART classification model.

Three common error measures for evaluating a proposed partition:

- 1. Misclassification rate
- 2. Entropy
- 3. Gini index

Misclassification Rate

1. MISCLASSIFICATION ERROR

Let $\hat{y}_c = \arg \max_c \hat{\pi}_c$ denote the **most probable class** label *c* for some (index omitted) region.

The misclassification rate error measure is then

$$\frac{1}{|\mathcal{D}_j|}\sum_{i=1}^{|\mathcal{D}_j|}\mathbf{1}\left(y_i\neq\hat{y}_{c,j}\right)=1-\hat{\pi}_{\hat{y},j}$$

2. ENTROPY

The **entropy** measure is

$$-\sum_{c=1}^C \hat{\pi}_c \log \hat{\pi}_c$$

2. ENTROPY

The **entropy** measure is

$$\mathbb{H}(\boldsymbol{\hat{\pi}}) = -\sum_{c=1}^{C} \boldsymbol{\hat{\pi}}_c \log \boldsymbol{\hat{\pi}}_c$$

2. ENTROPY

The **entropy** measure is

$$\mathbb{H}(\boldsymbol{\hat{\pi}}) = -\sum_{c=1}^{C} \hat{\pi}_c \log \hat{\pi}_c$$

Minimizing entropy is equivalent to **maximizing information gain** between the test $X_j < t$ and the class label Y = y

2. ENTROPY

The **entropy** measure is

$$\mathbb{H}(\boldsymbol{\hat{\pi}}) = -\sum_{c=1}^{C} \hat{\pi}_c \log \hat{\pi}_c$$

Minimizing entropy is equivalent to **maximizing information gain** between the test $X_j < t$ and the class label Y = y

INFORMATION GAIN

The **info gain** of test $X_j < t$ wrt to label Y:

$$\mathsf{InfoGain}(X_j < t, Y) := \mathbb{H}(Y) - \mathbb{H}(Y|X_j < t)$$

2. ENTROPY

The **entropy** measure is

$$\mathbb{H}(\mathbf{\hat{\pi}}) = -\sum_{c=1}^{C} \hat{\pi}_c \log \hat{\pi}_c$$

Minimizing entropy is equivalent to **maximizing information gain** between the test $X_j < t$ and the class label Y = y

Information Gain

The **info gain** of test $X_i < t$ wrt to label Y:

$$InfoGain(X_j < t, Y) := \mathbb{H}(Y) - \mathbb{H}(Y|X_j < t)$$

where:

InfoGain(
$$X_j < t, Y$$
) = $\left(-\sum_c p(y=c) \log p(y=c) \right)$
+ $\left(-\sum_c p(y=c|X_j < t) \log p(y=c|X_j < t) \right)$

since $\hat{\pi}$ is an $\mathbf{maximum}$ likelihood estimate for the conditional distribution

$$p(c|X_j < t)$$
.

Gini index

3. GINI INDEX

The **Gini index**

$$\sum_{c=1}^{C} \hat{\pi}_{c} (1 - \hat{\pi}_{c}) = 1 - \sum_{c=1}^{C} \hat{\pi}_{c}^{2}$$

is the **expected error rate**, where

- $\hat{\pi}_c$ is the probability a random entry in a leaf belongs to class c
- $(1-\hat{\pi}_c)$ is the probability of being misclassified to class c

TWO-CLASS EXAMPLE

Suppose c = 0 or c = 1 and $p = \hat{\pi}_{c=1}$. Then,

Misclassification Rate: $1 - \max(p, 1 - p)$

Entropy: $-p \log p - (1 - p) \log(1 - p)$

- range is 0 to 1.

Gini index: p(1-p)

- range is 0 to 1/2.

¹Entropy is scaled in the graph to pass through 0.5

TWO-CLASS EXAMPLE

Suppose c = 0 or c = 1 and $p = \hat{\pi}_{c=1}$. Then,

Misclassification Rate: $1 - \max(p, 1 - p)$

Entropy: $-p \log p - (1 - p) \log(1 - p)$

- range is 0 to 1.

Gini index: p(1-p)

- range is 0 to 1/2.

Gini and Entropy¹ are very similar. Both are more sensitive to changes in class probability than misclassification.

¹Entropy is scaled in the graph to pass through 0.5

EXAMPLE WITH FOUR OBSERVATIONS

Entropy: $-p \log p - (1 - p) \log(1 - p)$

Gini index: p(1-p)

EXAMPLE WITH FOUR OBSERVATIONS

Entropy:
$$-p \log p - (1 - p) \log(1 - p)$$

Gini index:
$$p(1-p)$$

PPPP:
$$p = 4/4$$

Entropy:
$$-\frac{4}{4}\log\frac{4}{4} - (1 - \frac{4}{4})\log(1 - \frac{4}{4}) = 0$$

Gini:
$$\frac{4}{4}(1-\frac{4}{4})=0$$

PPNN:
$$p = \frac{2}{4}$$

Entropy: $-\frac{1}{2} \log \frac{1}{2} - (1 - \frac{1}{2}) \log (1 - \frac{1}{2}) = 1.0$
Gini: $2 \cdot \frac{1}{2} (1 - \frac{1}{2}) = 1.0$ # rescaled to [0,1]

EXAMPLE WITH FOUR OBSERVATIONS

Entropy:
$$-p \log p - (1 - p) \log(1 - p)$$

Gini index:
$$p(1-p)$$

PPPP:
$$p = 4/4$$

Entropy:
$$-\frac{4}{4}\log\frac{4}{4} - (1 - \frac{4}{4})\log(1 - \frac{4}{4}) = 0$$

Gini:
$$\frac{4}{4}(1-\frac{4}{4})=0$$

PPPN:
$$p = 3/4$$

Entropy:
$$-\frac{3}{4}\log\frac{3}{4} - (1 - \frac{3}{4})\log(1 - \frac{3}{4}) \approx 0.81$$

Gini:
$$2 \cdot \frac{3}{4}(1 - \frac{3}{4}) = 0.75$$
 # rescaled to [0,1]

PPNN:
$$p = \frac{2}{4}$$

Entropy:
$$-\frac{1}{2}\log\frac{1}{2} - (1 - \frac{1}{2})\log(1 - \frac{1}{2}) = 1.0$$

Gini:
$$2 \cdot \frac{1}{2}(1 - \frac{1}{2}) = 1.0$$
 # rescaled to [0,1]

CART MODELS TEND TO OVERFIT

CART Models tend to Overfit

This CART classification model has **low** training error but **high** CV error.

CART Models tend to Overfit

This CART classification model has **low** training error but **high** CV error.

CART MODELS TEND TO OVERFIT

By reducing the **maximum tree depth**, you can address overfitting.

For example, adjusting the hyperparamter **max_depth** changes the regions as follows.

 \gg max_depth = 5

 $max_depth = 4$

 $max_depth = 3$

 $max_depth = 2$

 $max_depth = 1$

CART MODELS TEND TO OVERFIT

By reducing the **maximum tree depth**, you can address overfitting.

For example, adjusting the hyperparamter **max_depth** changes the regions as follows.

$$max_depth = 5$$

$$\gg$$
 max_depth = 4

$$max_depth = 3$$

$$max_depth = 2$$

$$max_depth = 1$$

CART MODELS TEND TO OVERFIT

By reducing the **maximum tree depth**, you can address overfitting.

For example, adjusting the hyperparamter **max_depth** changes the regions as follows.

$$max_depth = 5$$

$$max_depth = 4$$

$$\gg$$
 max_depth = 3

$$max_depth = 2$$

$$max_depth = 1$$

CART MODELS TEND TO OVERFIT

By reducing the **maximum tree depth**, you can address overfitting.

For example, adjusting the hyperparamter **max_depth** changes the regions as follows.

$$max_depth = 5$$

$$max_depth = 4$$

$$max_depth = 3$$

$$\gg$$
 max_depth = 2

$$max_depth = 1$$

CART MODELS TEND TO OVERFIT

By reducing the **maximum tree depth**, you can address overfitting.

For example, adjusting the hyperparamter **max_depth** changes the regions as follows.

 $max_depth = 5$

 $max_depth = 4$

 $max_depth = 3$

 $max_depth = 2$

 \gg max_depth = 1

CART MODELS TEND TO OVERFIT

The same applies to CART regression models.

$$\gg$$
 max_depth = 2

$$max_depth = 3$$

$$max_depth = 5$$

$$max_depth = 10$$

CART MODELS TEND TO OVERFIT

The same applies to CART regression models.

$$max_depth = 2$$

$$\gg$$
 max_depth = 3

$$max_depth = 5$$

$$max_depth = 10$$

CART MODELS TEND TO OVERFIT

The same applies to CART regression models.

$$max_depth = 2$$

$$max_depth = 3$$

$$\gg$$
 max_depth = 5

$$max_depth = 10$$

CART MODELS TEND TO OVERFIT

The same applies to CART regression models.

$$max_depth = 2$$

$$max_depth = 3$$

$$max_depth = 5$$

$$\gg$$
 max_depth = 10

CART MODELS TEND TO OVERFIT

The same applies to CART regression models.

$$max_depth = 2$$

$$max_depth = 3$$

$$max_depth = 5$$

$$\gg$$
 max_depth = 10

Technical note: The standard approach is to grow a full tree, then **prune** the tree back to the maximum depth.

Advantages and Disadvantages

CART Pros

- + Easy to interpret
- + Easily handle discrete and continuous input
- + Insensitive to monotone transformations of input
- + Perform automatic variable selection
- + Scale reasonably well
- + Relatively robust to outliers
- + Can be modified to handle missing inputs by by looking for "backup" variables.

CART CONS

- Poor prediction accuracy
- Instability: small changes to input data can have large effects on structure of tree

BOOTSTRAP AGGREGATING

Trees are **high variance** estimators.

One technique for reducing variance of an estimate is to **average together** several estimates

BOOTSTRAP AGGREGATING

Suppose we train *K* different trees on subsets of data, randomly drawn with replacement, then calculate the **ensemble** *h*:

$$h(\mathbf{x}) = \sum_{t=1}^{K} \frac{1}{K} h_k(\mathbf{x})$$

where $h_k(\mathbf{x})$ is the k'th tree.

BOOTSTRAP AGGREGATING

Suppose we train *K* different trees on subsets of data, randomly drawn with replacement, then calculate the **ensemble** *h*:

$$h(\mathbf{x}) = \sum_{k=1}^{K} \frac{1}{K} h_k(\mathbf{x})$$

where $h_k(\mathbf{x})$ is the k'th tree.

The result h(x):

- combines the results (regression), or
- tallies votes for each class (classification).

BOOTSTRAP AGGREGATING

Suppose we train *K* different trees on subsets of data, randomly drawn with replacement, then calculate the **ensemble** *h*:

$$h(\mathbf{x}) = \sum_{t=1}^{K} \frac{1}{K} h_k(\mathbf{x})$$

where $h_k(\mathbf{x})$ is the k'th tree.

The result h(x):

- combines the results (regression), or
- tallies votes for each class (classification).

This method is called **bagging**, which is short for 'bootstrap aggregating'.

BOOTSTRAP AGGREGATING FOR CLASSIFICATION

Bagging creates a **committee** of trees to vote on a class, and the predicted class is the majority winner.

The idea behind bagging is to average many noisy but approximately unbiased models.

BOOTSTRAP AGGREGATING FOR CLASSIFICATION

Bagging creates a **committee** of trees to vote on a class, and the predicted class is the majority winner.

The idea behind bagging is to average many noisy but approximately unbiased models.

However, one **problem** running the same algorithm on different samples of data is **highly correlated predictors**, which limits the amount of variance reduction.

Random Forests

DE-CORRELATED TREES

Random forests:

- randomly sample a subset of data (like bagging), and
- randomly sample a subset of input variables.

random forests build a large collection of de-correlated trees and averages them.

Random Forests

Random Forests for Regression or Classification

- 1: **for** b = 1 to B **do**:
- 2: Draw a bootstrap sample Z of size N from training data
- 3: Grow a random forest tree T_b to the bootstrapped data:
- 4: repeat
- 5: (i) Select k variables at random from the n variables
- 6: (ii) Pick the best variable/split-thresholds among the *k*
- 7: (iii) Split the node into two daughter nodes.
- 8: **until** the minimum node size n_{\min} is reached.
- 9: end for
- 10: Output the ensemble of trees $\{T_1, T_2, \dots, T_B\}$.

To make a prediction given a new datapoint x:

Regression: $\frac{1}{B} \sum_{b=1}^{B} T_b(x)$

Classification: Let $\hat{\pi}_c(x)$ be the class prediction of the b'th random-forest tree. Then the random forest prediction, $\hat{\pi}_{rf}(x)$, is the **majority vote** of

$$\{\hat{\pi}_1(x), \hat{\pi}_2(x), \dots, \hat{\pi}_b(x), \dots, \hat{\pi}_B(x)\}$$

References

Hastie, T., R. Tibshirani, and J. Friedman (2009). The Elements of Statistical Learning (2nd ed.). Springer Series in Statistics. Springer.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. Cambridge, MA: MIT Press.