

Chapter -AC Analysis

PRODUCTION OF AC →

when a conductor coil is notated in a magnetic field, a current is produced through it

· né rotate the coil with w angular velocity

where w = 271/ = 271/

Eur can write this wave as

V=Vm sin(wt)

· nouvre find soot mean square voltage

	Page
YOTE:	The voltage displayed in electical circuits is 250V is actually Verns.
	REPRESENT ATION OF AC ->
•	nte represent voltage vectors as a notation phasor vector.
•	vie take anti-clockwise as +ve direction and clockwise as -ve direction by convention
•	
• (Alan yelasson weaton lass in
•	récassime this phasor vector to lie in complex plane for ease of calculations
	19- 120- wherefresent this as $V_{-}=V_{-}/0$
	V_ = V_m 49
	-

=) V= Vm cos 0 + j Vm &m 0

· Impedance is defined as For resistor, Z = Vm sin wt =) $Z_R = R$ • Impedance can even be complen; what we used to calculate in class 12 was |Z| ie its magnitude. INDUCTOR IN AC VIRCUITS V = Ldi across inductor =) Lde = Vm sinut =) Ide = Vm sin wt dt =) Li = - V www t $=) L^2 = \frac{V_m}{\omega} \sin(\omega t - \pi/2) =)$ · Now, i= In Sur(wt-17/2) V = Vm sin wt I (Vm/w) sin(wt-17/2) =) Z = wkinut -jinut · Here, we also define

[X_ = we] ie reactance of inductor

CAPACITOR	IN	AC	CIRCUITS

$$i = c dV$$

$$= c dV$$

of represented as a phasor, we get

$$l' = I_m \sin(\omega t + \pi/2) = I_m j \sin \omega t$$

wehave

*	SECOND ORDER GROWITS ->
•	First order circuits are characterised by first order diff eq and similarly second order diff eq represents second
	liest order diff. egn and similarly
	second order diff eg represents second
	order circuits.
	tut a du circuite bout one enver et et
	sust order circuits have one energy storage element (capacitor or inductor) but second order circuits have 2 storage
	second order circuits have 2 storage
	elements.
	R
•	eg- Henry I sk
	$\begin{array}{c c} & & & \\ & & & \\ \hline \end{array}$
	R
	ORTEL OFFI
_	DOURCE FREE LCR Circuits →
	P
	m. m.
	√
	Let $i(0) = i$. And we convite
	And we convite
	$V_0 = \int dt$

.. writing KVL now

Differentiating & dividing by L

$$\frac{i}{LC} + \frac{d^2i}{dt^2} + \frac{Rdi}{Ldt} = 0$$

$$\frac{d^2 \hat{v}}{dt^2} + \frac{R}{L} \frac{di}{dt} + \frac{1}{L} \hat{v} = 0 - \hat{u}$$

ne have an initial condition of form

$$=) \frac{di(0)}{dt} = -\frac{1}{L} \left(Ri_0 + V_0(0) \right)$$

Now to solve-(i) we take and assumption (like Ansatz in Physics)

· Substituting in-(a)

$$Ae^{St}\left(S^2 + \frac{R}{L}S + \frac{1}{LC}\right) = 0$$

$$=$$
 $L^2 + R + L = 0$

$$=) S = -R/L \pm \sqrt{\frac{R^2 - 4}{L^2}}$$

$$\Rightarrow s = -\frac{R}{2L} + \frac{1}{2L} + \frac{1}{2L}$$

$$\therefore S_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

$$\mathcal{L}_{2} = -\frac{R}{2L} - \sqrt{\frac{R}{2L}^{2}} - \frac{1}{Lc}$$

: We have two solutions of i ie

in we have a combined solution for i

$$\hat{z} = A_1 e^{\delta_1 t} + A_2 e^{\delta_2 t}$$

nte write

$$S_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$
 where $\alpha = R_{/21} = \text{downhin}$

$$S_2 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}$$
 where $\alpha = R_{/21} = \text{downhin}$

$$\Delta = -\chi = -\sqrt{\alpha^2 - \omega_0^2}$$

$$\omega_0 = \frac{1}{\sqrt{16}} = \text{Mindam}_{\text{frequency}}$$
frequency

Analysing values of x and us, we could has
stypes of solutions of eq. (i)

1. X>Wo is R > 1 (OVERDAMPED SYSTEM)

 $i(t) = A_1 e^{sit} + A_2 e^{sit}$

 $A_{1}e^{A_{1}t}$ $A_{2}e^{A_{2}t}$

{ Limilar to overdamping in Prosics}

2. $N = W_0$, if $S_1 = S_2 = -\alpha$ (CRITICAL DAMPING)

· recould write

N= A,e-xt +Aze-xt = Aze-xt

But note carefully that any second order ight has 2 initial conditions. (Dury there would by some i(o) = const. and bli) = const.

But from above egn, we can see that we can get only one initial condition. this solution is somehow invalid

follow the following procedure

$$= \frac{1}{1} \left\{ \frac{d^2}{dt} + \kappa^2 \right\} + \kappa \left\{ \frac{d^2}{dt} + \kappa^2 \right\} = 0 \qquad \left(\frac{1}{2} \kappa^2 + \omega^2 \right)$$

$$\Rightarrow \int = A_1 e^{-\alpha t}$$

$$\Rightarrow \frac{di}{dt} + \alpha \hat{i} = A_1 e^{-\kappa t}$$

=)
$$A_1 = e^{\alpha t} di + e^{\alpha t} xi$$

$$= A_1 = \frac{d}{dt} \left(\frac{2e^{\alpha t}}{dt} \right)$$

$$=) \qquad \stackrel{\circ}{\mathcal{L}} = \left(A_1 t + A_2 \right) e^{-\kappa t}$$

3.	x 4(1)	0	R	< 1	(UNDER DAMPED	SYCTEM
	7	76	26	JLC		513.611

weccon see

$$S_1 = -x + \sqrt{(w_0^2 - x^2)}$$

$$S_2 = -\kappa - \sqrt{-(\omega_0^2 - \kappa^2)}$$

=)
$$\hat{i} = \left[(A_1 + A_2) \cos \omega_1 + i (A_1 - A_2) \sin \omega_1 \right] e^{-\alpha}$$

$$=) i = [B_1 \cos w_1 + jB_2 \sin w_1] e^{-x}$$

where
$$B_1 = A_1 + A_2$$
; $B_2 = A_1 - A_2$