AE6114 - Fundamentals of Solid Mechanics - Fall 2020

Test 1 - Thurs, Sep 24th 2020

Notes: (i) Solve the exam on your own sheets of paper; (ii) write your name on the top-right corner of this page and in the same place for every solution page; and (iii) attach the formula sheet used during the exam.

Problem 1 [50 Points]

- 1. Let \underline{a} , \underline{b} , and \underline{c} be rank one tensors and let \cdot and \times represent the dot and cross product operators respectively. Show that:
 - (a) $\underline{a} \cdot (\underline{b} \times \underline{c}) = \underline{b} \cdot (\underline{c} \times \underline{a}) = \underline{c} \cdot (\underline{a} \times \underline{b})$
 - (b) $\underline{a} \times (\underline{b} \times \underline{c}) = \underline{b}(\underline{a} \cdot \underline{c}) \underline{c}(\underline{a} \cdot \underline{b})$
- 2. Show that the change in length of an infinitesimal fiber in a given direction is frame indifferent, that is, that the operation $\underline{N} \cdot \underline{\underline{C}} \cdot \underline{N}$ gives the same result independently of the frame adopted to represent the Cauchy-Green strain tensor \underline{C} and the fiber direction \underline{N} .

Problem 2 [50 Points]

Let the material and spatial coordinates be measured in the same rectangular Cartesian coordinate system with basis vectors $\{e_1, e_2, e_3\}$. Consider the following deformation:

$$x_1 = X_1$$

 $x_2 = X_2$
 $x_3 = X_3 + \alpha(X_1 + X_2)$

- 1. Find the matrices of the deformation gradient tensor ${\bf F}$ and the Lagrangian strain tensor ${\bf E}$. Does the deformation gradient change with position? Does this deformation change volume?
- 2. Without any further assumptions, find:
 - (a) Stretch of the element that is in the direction e_2 in the reference configuration
 - (b) Change of angle between the elements that are in the directions ${\bf e}_2$ and ${\bf e}_3$ in the reference configuration.
- 3. Find the displacement field and components of the infinitesimal strain tensor ϵ . For this specific case, under what conditions is ϵ a good description of the strain? Show that the Lagrangian strain tensor \mathbf{E} reduces to ϵ under those conditions.
- 4. For the infinitesimal strain tensor ϵ find:
 - (a) The maximum value of extensional strain and its direction.
 - (b) The maximum value of shear strain and its directions.