

1. Consider the polynomial $f(x)=2024x^{2024}-2023x+1=0$. Let the roots of the f(x) be $r_1,r_2,...,r_{2024}$. Compute $(2023r_1-1)(2023r_2-1)\cdots(2023r_{2024}-1)$.

Answer: 1

Solution: We know that $2023r - 1 = 2024r^{2024}$ for any root r, so plugging that in we have

$$2024^{2024}(r_1\cdots r_{2024})^{2024}$$

as the desired product. By Vieta's, we have $r_1 \cdots r_{2024} = \frac{1}{2024}$, and the answer is $\boxed{1}$

2. Compute

$$\arcsin\left(\frac{2}{\sum_{k=0}^{\infty}\sin^{2k}(\frac{1}{2024})}-1\right).$$

Answer: $\frac{\pi}{2} - \frac{1}{1012}$

Solution: Let $x=\frac{1}{2024}$. Since $\sin^{2k}(x)<1$ for all k, then we can convert the problem to $\arcsin\left(\frac{2}{\frac{1}{1-\sin^2(x)}}-1\right)=\arcsin(1-2\sin^2(x))=\arcsin(\cos(2x))$. We need to find the angle $-\frac{\pi}{2}\leq\theta\leq\frac{\pi}{2}$ such that $\sin(\theta)=\cos(1/1012)$. Since $\sin(\frac{\pi}{2}-x)=\cos(x)$, we get $\theta=\boxed{\frac{\pi}{2}-\frac{1}{1012}}$.

3. A polynomial f with real coefficients satisfies the functional equation

$$f(f(x) + y^2) = f(x+y)f(x-y) + 4f(xy)$$

for all real x, y. What is the sum of all possible values of |f(1)|?

Answer: 4

Solution: Via comparison of (x, y) and (x, -y), one sees that 4(xy) = 4(-xy) for any x, y, so f is even. Checking degrees on both sides, f's degree must be less than or equal to 2. Therefore, we can write $f(x) = ax^2 + b$.

Plug in y=0, we see that $f(f(x))=f(x)^2+4f(0)$. Plug in x=0, we get $f(f(0)+y^2)=f(y)f(-y)+4f(0)$. Since f is even, we get $f(f(x))=f(f(0)+x^2)$. Comparing leading terms forces $a^3=a$, so $a=\pm 1,0$. The x^2 terms on each side are $2a^2bx^2$ and $2abx^2$, so a=-1 is impossible. Therefore, a=1 or a=0.

If a=0, b=0 or -3. If a=1, b=0 from the equation $f(f(x))=(f(x))^2+4f(0)$. Therefore the possible solutions for f are f=0, f=-3 and $f(x)=x^2$, and the sum of the absolute values at 1 is 0+3+1=4.