

Veebiteenuste ja hajussüsteemide arendus

Loeng 3: Teadete edastus hajussüsteemides

Pelle Jakovits, jakovits@ut.ee

Kevad 2025

Loengu sisukord

- Hajussüsteemide komponentide suhtlus
 - Protsessidevaheline side
- Andmete edastamise viisid
- MQTT
- AMQP

Hajussüsteemide komponentide suhtlus

- Kuidas on hajusad komponendid on omavahel ühendatud?
- Kuidas toimub komponentide vaheline andmevahetus ja sünkroniseerimine?
- Kuidas need komponendid ja nende vahelised liidesed on konfigureeritud ühiseks (hajus)süsteemiks?
- Kas (asendatavad) komponendid on selgelt määratletud liidestega?

Definitstioon: Protsessidevaheline side

- Inglise keeles: Inter-process communication (IPC)
- Tüübid
 - Läbi jagatud mälu
 - Otseühendus sokklite kaudu
 - Läbi teadete edastuse
 - Läbi kaugprotseduuride ja hajusobjektide
 - O Muud:
 - Torud (ühe suunalised), Failid

SOKKLID

Definitstioon: Sokkel

- Sokkel on side otspunkt
- Sokli aadresskoosneb IP aadressist ja pordist:
 - IP-aadress: 172.17.68.56
 - pordi number: 8080
 - Lisaks on tähtis protokoll: TCP, UDP
- Näited:
- Linuksis on Sokkel spetsiaalset tüüpi failipide
 - Kirjutame binaarsed andmed sokkli failipide kaudu
 - Loeme binaarseid andmeid sokkli failipidest

Sokliühendused

- Võimaldab protsessidel omavahe suhelda sarnaselt nagu andmeid kirjutatakse või loetakse failidest
- Loome side kahe sokkli vahel, samas või erinevas arvutis
- Standardiseeritud liides (BSD socket API)
- Pakettside: UDP, SCTP, DCCP
- Voogside: TCP
- Saatjal ja vastuvõtjal on kohalikud puhvrid
- Nõuab madala taseme programmeerimist

Sokliliides

- **socket** sokli loomine
- bind sokli sidumine kohaliku aadressiga (Liides ja port)
- listen ühenduste vastuvõtuks ressursi eraldamine
- accept uue ühenduse ootamine ja vastuvõtt
- connect teise osapoolega ühenduse algatamine
- send soklisse andmete saatmine
- receive soklist andmete lugemine
- close sokli sulgemine

TCP Server

socket()

TEADETE EDASTUS

Teadete edastus

- Sõnumite vahetamine protsesside vahel
- Olukorras kus jagatud mälu ei ole kasutusel
- Sokklipõhine ühendus liiga madalatasemeline
- Tüübid:
 - Sõnumi edastuse abstraktsioon (Message passing)
 - MPI
 - o RPC
 - o SOAP, REST
 - Sõnumite järjekorrad (Message queue)
 - AMQP
 - MQTT

Sõnumite-põhine ühendus

- Inglise keeles: Message-oriented
- Kaks peamist tüüpi
 - Sõnumite edastamine otse protsesside vahel
 - Võib olla nii sünkroonne kui asünkroonne
 - Sõnumite edastamine postkastide/järjekordade kaudu
 - Eesmärk on kõrgema-taseme püsiv asünkroonne suhtlus:
 - Protsessid saadavad üksteisele sõnumeid, mis pannakse järjekorda
 - Saatja ei pea ootama kohest vastust, vaid võib teha muid asju
 - Sõnumite järjekordade vahevara vastutab sageli tõrketaluvuse eest, et sõnumid kaduma ei läheks

MPI

- Message Passing Interface (MPI)
- Kõrgema abstraktsioonitaseme teadeteedastus-API
- Tootjast sõltumatu (tootjaspetsiifilised madalamad kihid)
- Paralleelrakendustele grupi sees suhtlemiseks
- Veakäsitluse eeldus: retry pole väga pikalt vajalik, kui läheb tuksi, on kõik tuksis

Sõnum / Teade

- Võib olla ükeskõik, mis:
 - Int väärtus
 - Int Array
 - JSON objekt
 - o XML objekt
- Klient ja Server epavad kokku leppima, mis andmetüüpi saadetakse
- Madalamal tasemel sadetakse objektna

MPI primitiivid

- MPI_Send saatmine, oodates kopeerimist kohalikku või kaugpuhvrisse
- MPI_Recv teate lugemine, vajadusel oodates
- MPI_Sendrecv saatmine vastuse ootamisega
- MPI_Isend Mitteblokeeriv sõnumi saatmine saadetava teate viida edasiandmine
- MPI_Irecv Mitteblokeeriv sõnumi vastuvõtmine
- MPI_Wait konkreetse asünkroonse teate taga ootamine
- MPI_Waitany hulgast suvalise asünkroonse teate taga ootamine
- MPI_Test konkreetse pideme valmisoleku kontroll
- Kollektiivsed operatioonid paralleelarvutuste jaoks:
 - MPI_Bcast Saadame sõnumi kõigile protsessidele
 - MPI_Gather kogume sõnumi(d) kõigilt kokku ühele
 - MPI_Scatter Jagame sõnumite listi kõigi osalejate vahel

Teatejärjekordadega suhtlus

- Teatejärjekord annab võimaluse, et saatja ja vastuvõtja pole samal ajal aktiivsed
- Vahendajaks on teateid mõnda aega säilitav järjekord
- Järjekordi võib mitu olla
- Lisaks on igal saatjal ja vastuvõtjal oma kohalik järjekord
- Kohalejõudmise garantiid ei ole, vahevara toimetab millagi teate kohale ja kas/millal seda loetakse, on vastuvõtja asi

Teatejärjekordade primitiivid

- put teate järjekorda lisamine
- get blokeerub kuni järjekorras on mõni teade, tagastab esimese teate
- poll tagastab esimese teate kui sellist on, ei blokeeru
- notify seab tegevuse teadete tuleku peale automaatselt käivitamiseks
 - Notify jaoks erinevaid tehnilisi mehhanisme, sh "äratamine"

Süsteemi arhitektuur

- Lähtejärjekord
- Sihtjärjekord
- Järjekordade nimed, nende asukohtade andmebaas
- Järjekorra haldurid
- Releed (vahendajad)
- Tekib järjekordade võrk tegeliku võrgu peale uueks kihiks
 - Marsruutimise probleemid
 - Ruutingutabelid
 - Marsruutimise haldamine valdavalt käsitsi

Järjekordade maaklerid, haldurid (brokers)

- Teate formaatidega on põhimõtteline probleem teated võivad sisaldada mida iganes
- Formaati ette kokku leppida on enamasti võimatu ⇒ lepime ja arvestame eri formaadis teadetega
- Spetsiaalsed sõlmed tõlgivad neid läbivaid sõnumeid
- Süsteemi arhitektuuri mõistes on need tavalised rakendused järjekordade otsas

- Avaldamise-tellimise (publish-subscribe) mudeli võrguprotokoll, mis edastab sõnumeid seadmete vahel
- Üldjuhul seatakse üles eraldi sõlmena/serverina
- Selle kaudu vahetatakse andmeid hajussüsteemide komponentide, sõlmede vahel
- Sobib hästi asünkroonseks suhtluseks ning süsteemi skaleerimiseks
 - N sõnumite tootjat
 - M sõnumite kuulajat
 - Sõnumid jagatakse M kuulaja vahel ei vaja keerulist sünkroniseerimist

Lihtsustatud illustratsioon kuidas MQTT töötab:

MQTT

- Reaalselt ei ole eraldi järjekordi!
 - Teemade põhine marsruutimine

MQTT teenuse kvaliteet

- Teenuse kvaliteet Quality of Service (QoS)
 - Kõige rohkem üks kord (0) sõnum edastatakse kõige rohkem üks kord või ei edastata seda üldse
 - Vähemalt üks kord (1) sõnum edastatakse alati vähemalt ühe korra
 - Täpselt üks kord (2) sõnum edastatakse alati täpselt üks kord

MQTT näide

https://randomnerdtutorials.com/what-is-mqtt-and-how-it-works/

AMQP

- Algatatud 2006, V1.0 2011 aastal.
- Advancd Message Queing Protocol
- Avatud standard rakenduskihi protokoll sõnumitele orienteeritud vahevara jaoks
- Asünkroone, järjekordade põhine
- Sõnumid jäävad järjekorda, kuni neid sealt võetakse
- SASL-il või TLS-il põhinev autentimine ja krüptimine
- Implementatsioonid:
 - RabbitMQ, Apache ActiveMQ, Azure Service Bus
 - Amazon MQ (ActiveMQ, RabbitMQ hallatud teenus)

AMQP olemid

- Exchange Ühendussõlm, kuhu saab sõnumeid saata
 - Ajutine või pidev
- Queue järjekord, kust saab sõnumeid kuulata, küsida
- Routing Key Võti, mis kirjeldab sõnumi tüüpi, ja mida kasutatakse sõnumite filtreerimiseks ja marsruutimiseks
 - Näiteks: "myfloor.livingroom.temperature"
- Binding Seos, mis määrab millise võtmega sõnumid suunata ühendusõlmest X järjekorda Y.
- Message Sõnum mida saadetakse
 - Header: Võti-Väärtus stiilis metainfo, näiteks routing key
 - Body: binaarne objekt

AMQP ja MQTT erinevused

- Ühendussõlmed Andmeid ei saadeta otse järjekorda, vaid ühendussõlme
- Ühendussõlmede ning järjekordade vahel toimub marsruutimine
- Järjekorrad ei ole samad, mis MQTT teemad, vaid pigem postkastid, kuhu teatud teemaga sõnumid kohale jõuavad

AMQP liidese operatsioonid

- AMQP Declare Exchange loob ühendussõlme
- AMQP Declare Queue loob järjekorra
- AMQP Bind Queue seob järjekorra ühendussõlmega
- AQMP Publish saadab sõnumi ühendussõlme
- AMQP Receive võtab järjekorrast sõnumi

AMQP

- Sõnumite avaldamise ja tarbimise muster
 - Publish-subscribe (consume)

Sõnumite marsruutimine

- Nii seosed (binding) kui ka sõnumid sisaldavad **marsruutimisvõtit** (routing key), mida maakler kasutab sõnumi suunamiseks. Näited:
 - tartu.delta.välisvalgustase
 - tartu.delta.korrus3.ruum3040.temp
- Ühendussõlmede tüübid:
 - Direct Ühendussõlm suunab sõnumid järjekordadesse, mille marsruutimisvõti on identne sõnumi võtmega.
 - Fanout Saadab sõnumid kõikidesse seotud järjekordadesse. Sõnumi suunamise võtit ignoreeritakse.
 - Topic suunab sõnumeid seotud järjekordadesse, kui sõnumi marsruutimisvõti ühtib sidumismarsruutimisvõtmes määratud mustriga.
 - Toetab metamärke * ja #.
 - * üks sõna
 - # mitu sõna
 - tartu.delta.korrus3.*.temp

RabbitMQ

- AMQP protokolli implementatsioon
- Avatud lähtekoodiga (https://github.com/rabbitmq).
- Saadaval on palju pistikprogramme (mqtt, ajastatud kohaletoimetamine, e-posti teel saatmine, prioriteetsed järjekorrad)
- Lisa funktsioonid:
 - Klasterdamine
 - Veebihaldusliides
 - Kasutajataseme juurdepääsukontroll

Pelle Jakovits 30/43

AMQP

Sõnumite saatmise mustrid: Asünkroonne päring-vastus koos järjekorraga

Pelle Jakovits 32/43

Järgmine loeng

- Jätkame andmete vahenduse ja nende liideste teemal
 - Remote Procedure Call (RPC)
 - Hajusobjektid
- Ülejärgmisel loengul
 - REST
 - SOAP
 - Veebi API'd

Kaugprotseduurid

- Remote Procedure Call (RPC)
- Programmeerijad tunnevad lihtsat protseduurimudelit: Kutsume välja protseduuri/meetodi teises arvutis.
- Kohaliku protseduuri väljakutse laiendus protseduuri välja kutsumiseks ka ugarvutist
- Hästi kavandatud protseduurid toimivad isoleeritult (must kast).
- Helistaja ja kutsutava vahelise suhtluse saab peita, kasutades protseduuriväljakutse mehhanismi
- Jäik klient-server mudel
- Sünkroonne suhtlus
- Vähene transparentsus

Kaugprotseduurid

- Kliendil on kood protseduuri/meetodi välja kutsumiseks, aga implementatsiooni ei ole
- Meetodi väljakutsumise asemel, edastatakse sõnum meetodi väljakutsumiseks serverile
- Serveris on sama meetod koos implementatsiooniga
 - Lisaks ka viis tulemuse edastamiseks kliendile

Selle nädala praktikum

- Sõnumite edastus hajusüssüsteemides Teatejärjekordade kaudu
 - Python hajusrakenduse loomine
 - RabbitMQ andmehaldur

Praktikumi ülesanded

Praktikumi ülesanded

Allikad ja viited

- Van Steen, Maarten, Tanenbaum, Andrew. Distributed Systems: Principles and Paradigms (Third edition). Published by Maarten van Steen, 2017.
 - Tasuta versioon: https://www.distributed-systems.net/
- Hajussüsteemide aine materjalid, Meelis Roos, Tartu Ülikool