ساختمانهای گسسته

گراف

Dr. Aref Karimiafshar A.karimiafshar@ec.iut.ac.ir

مسير

- دنبالهای از یالها که از یک راس مشخص شروع و پس از گذشت از رئوس مختلفی به یک راس مشخصی ختم می شود.
 - اگر n عدد صحیح نامنفی و G گرافی غیرجهتدار باشد
 - مسیری به طول n از یک راس مانند u به راسی مانند ∨،
 - $(e_1, ..., e_n$ است (مانند n یال گراف G
 - \mathbf{e}_{i} هرگاه دنبالهای از رئوس مانند $\mathbf{v} = \mathbf{v}$ باشد که $\mathbf{x}_0 = u, x_1, \dots, x_{n-1}, x_n = v$ وجود داشته باشد که \mathbf{x}_{i} یالی بین دو راس متوالی \mathbf{x}_{i} و \mathbf{x}_{i} باشد
 - اگر ابتدا و انتهای مسیر یک راس باشد به آن مدار یا مسیر بسته گوییم (u=v)
 - یک مسیر یا مدار ساده است اگر دارای یال تکراری نباشد

مسير

• مثال

$$a, d, c, f, e \longrightarrow$$

$$d, e, c, a \longrightarrow \mathcal{A}$$

$$b, c, f, e, b \longrightarrow$$

$$a, b, e, d, a, b \longrightarrow$$
 مسیر ساده

گشت

 $v_0, e_1, v_1, e_2, \dots, v_{n-1}, e_n, v_n$ دنبالهای از یالها و رئوس در یک گراف

- گشت بسته (closed walk): اگر ابتدا و انتهای گشت یکسان باشد (u=v) - معادل مدار
 - گذر (trail): گشتی که دارای یال تکراری نباشد
 - مسیر (path): گذری که دارای راس تکراری نباشد.

مسیر در گراف جهت دار

- اگر n عدد صحیح نامنفی و G گرافی جهت دار باشد
 - از یک راس مانند u به راسی مانند v از یک راس مانند v
 - $(e_1, e_2 ..., e_n$ است (مانند n یال گراف G
- که e_n یالی بین دو راس e_1 (x_1 , x_2) یالی بین دو راس e_2 ، $(x_0$, x_1) یالی بین دو راس x_n =v یالی بین دو راس $(x_{n-1}$, x_n
- اگر راس ابتدایی و انتهایی مسیر، یکسان باشد به آن مسیر بسته گوییم (u=v)
 - یک مسیر یا مدار ساده است اگر دارای یال تکراری نباشد

گراف همبند

• یک گراف را همبند گوییم هر گاه حداقل یک مسیر بین هر دو راس مختلف آن وجود داشته باشد.

همبند

 G_2

همبند

مولفههای همبندی

 یک زیرگراف همبند از گراف G که زیرگراف سره از هیچ زیرگراف همبند دیگری از G نباشد.

میزان همبندی

- همبندی ← همه رئوس به هم متصل هستند
 - مثال:
- گراف ارتباطی کامپیوترها بر روی یک شبکه
- همبندی \rightarrow از هر کامپیوتری به همه کامپیوترهای دیگر می توانید پیام ارسال کنید
 - قابلیت اطمینان ارتباط بین دو کامپیوتر
 - اگر لینک دچار مشکل شود آیا پیام به درستی دریافت خواهد شد؟
 - میزان همبندی مفهومی است که به این سوال پاسخ خواهد داد!!

راس برشی

• راسی که با حذف کردن آن و تمام یالهای واقع بر آن مولفههای همبندی بیشتری به وجود آید.

Discrete Mathematics

یال برشی

• یالی که با حذف کردن آن مولفههای همبندی بیشتری به وجود آید.

میزان همبندی

میزان همبندی

عدد همبندی راسی

 $\kappa(G) \leftarrow$ اندازه کوچکترین مجموعه ناهمبندساز راسی

• گراف کامل قابل ناهمبندسازی نیست!

$$\kappa(K_n) = n - 1,$$

• اصلاح تعریف ← حداقل تعداد رئوسی که می توان از یک گراف حذف کرد تا ناهمبند یا تبدیل به گرافی با فقط یک راس شود.

$$0 \le \kappa(G) \le n-1$$

عدد همبندی راسی

هرچه عدد همبندی راسی بزرگتر باشد → گراف همبندتر است!!!

$$\kappa(G) = 0 \leftarrow گراف ناهمبند •$$

$$\kappa(G) = 0 \qquad \leftarrow \mathsf{K}_1$$
 گراف •

$$\kappa(G) = 1$$
 $\leftarrow \mathsf{K}_2$ گراف •

$$\kappa(G) = 2$$
 $\leftarrow \mathsf{K}_3$ گراف •

k-connected $\leftarrow \kappa(G) \ge k$

عدد همبندی راسی

IUT

عدد همبندی یالی

 $\lambda(G) \leftarrow$ اندازه کوچکترین مجموعه ناهمبندساز یالی •

• اگر گراف همبند نباشد:

 $\lambda(G) = 0$

• اگر گراف کامل باشد:

$$\lambda(G) = n - 1$$

$$0 \le \lambda(G) \le n - 1$$

عدد همبندی یالی

عدد همبندی

• رابطه بین عدد همبندی راسی و یالی

$$\kappa(G) \le \lambda(G) \le \min_{v \in V} \deg(v)$$

• در گراف کامل:

$$\kappa(K_n) = \lambda(K_n) = \min_{v \in V} \deg(v) = n - 1$$

• در گراف ناهمبند G:

$$\kappa(G) = \lambda(G) = 0$$

همبندی در گراف جهت دار

- یک گراف جهت دار را قویا همبند گوییم اگر a و b دو راس باشند - مسیری از a به b وجود داشته باشد
 - مسیری از b به a وجود داشته باشد
 - دنباله ای از یالهای جهت دار بین هر دو راس گراف وجود داشته باشد
 - یک گراف جهت دار را ضعیفا همبند گوییم:
 - اگر مسیری بین هر دو راس در گراف زمینه آن وجود داشته باشد
 - گراف زمینه: اگر جهت یالهای گراف را در نظر نگیریم

همبندی در گراف جهت دار

• مثال:

قویا همبند

ضعيفا همبند

یکریختی و مسیر

F

• استفاده از مسیر برای ارزیابی یکریختی

یکریخت

شمارش مسيرها

 v_1, v_2, \dots, v_n اگر G یک گراف باشد که ماتریس مجاورت آن A باشد G– تعداد مسیرهای مختلف با طول r از راس $arphi_i$ به $arphi_i$ درایه (i,j) در \mathbf{A}^r است.

a, b, c, d

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

مثال:

گراف اویلری

- گذر اویلری
- گذری از یک گراف که شامل همه یالهای آن باشد.
 - تور اویلری (گذر اویلری بسته)
 - گذر اویلری که بسته باشد!
 - گراف اویلری
 - گرافی که یک تور اویلری داشته باشد.

گراف اویلری

مثال

 G_1

a, e, c, d, e, b, a

تور اویلری

 G_2

گذر اویلری

 G_3

گراف اویلری (قضیه)

یک گراف همبند دارای تور اویلری است اگر وفقط اگر درجه هر راس آن زوج باشد.

- گذر هامیلتونی (مسیر ساده هامیلتونی) - گذری از یک گراف که شامل همه رئوس آن باشد.
 - دور هامیلتونی
- اگر مسیر هامیلتونی ابتدا و انتهای یکسانی داشته باشد.
 - گراف هامیلتونی
 - گرافی که یک دور هامیلتونی داشته باشد.

a, b, c, d, e, a دور هامیلتونی a, b, c, dمسیر هامیلتونی

فاقد دور هامیلتونی

DIRAC'S THEOREM •

اگر G یک گراف ساده با حداقل سه راس باشد، آنگاه اگر درجه هر راس G
حداقل n/2 باشد، G دارای دور هامیلتونی است.

ORE'S THEOREM •

اگر G یک گراف ساده با حداقل سه راس باشد، آنگاه اگر مجموع درجه هر
دو راس غیر مجاور G حداقل n باشد، G دارای دور هامیلتونی است.

$$\deg(u) + \deg(v) \ge n$$

پایان

موفق و پیروز باشید