```
clc; clear;
dsFolder = "p_dataset_26";
subFolder = ["0", "4", "7", "8", "A", "D", "H"];
categories = ["0", "4", "7", "8", "A", "D", "H"];
```

```
allData = table('Size', [0, 2], 'VariableTypes', {'cell', 'cell'}, 'VariableNames',
{'Image', 'Label'});
desiredSize = [224, 224]; % Set your desired image size
for i = 1:length(subFolder)
    folderPath = fullfile(dsFolder, subFolder(i));
    pngFiles = dir(fullfile(folderPath, "*.png"));
    for j = 1:length(pngFiles)
        pngFilePath = fullfile(folderPath, pngFiles(j).name);
        image = imread(pngFilePath);
        % Resize or pad the image to the desired size
        % resizedImage = imresize(image, desiredSize);
        % Alternatively, use padarray to add padding
        % paddedImage = padarray(image, [desiredSize(1)-size(image,1),
desiredSize(2)-size(image,2)], 0, 'post');
        % Store the resized/padded image and label
        allData = [allData; {image, categories(i)}];
%
          allData = [allData; {image, categories(i)}];
    end
end
```

```
% define images & labels
numImages = size(allData, 1);
imageSize = size(allData.Image{1});
images = zeros(imageSize(1), imageSize(2), 1, numImages);

for i = 1:numImages
    images(:, :, 1, i) = allData.Image{i};
end

labels = categorical(allData.Label);
```

```
% split data into train and test set
cv = cvpartition(labels, 'HoldOut', 0.25);
trainIdx = training(cv);
testIdx = test(cv);
trainImages = images(:, :, :, trainIdx);
trainLabels = labels(trainIdx);
```

```
testImages = images(:, :, :, testIdx);
testLabels = labels(testIdx);
```

```
% Define the layers of the CNN
layers = [
   imageInputLayer([imageSize 1])

   convolution2dLayer(3, 8, 'Padding', 'same')
   batchNormalizationLayer
   reluLayer

maxPooling2dLayer(2, 'Stride', 2)

convolution2dLayer(3, 16, 'Padding', 'same')
   batchNormalizationLayer
   reluLayer

maxPooling2dLayer(2, 'Stride', 2)

fullyConnectedLayer(numel(categories))
   softmaxLayer
   classificationLayer
];
```

```
% Training options
options = trainingOptions( ...
    'sgdm', ... % Stochastic Gradient Descent with Momentum
    'InitialLearnRate', 0.01, ...
    'MaxEpochs', 10, ...
    'Shuffle', 'every-epoch', ...
    'ValidationData', {testImages, testLabels}, ...
    'ValidationFrequency', 30, ...
    'Verbose', true, ...
    'Plots', 'training-progress' ...
);
```

```
% Train the CNN

trainingStartTime = tic;

% Train the neural network
net = trainNetwork(trainImages, trainLabels, layers, options);
```

Training on single CPU.

Initializing input data normalization.

Ī	l		,												
	l Enoch	 I	Iteration		Time Elapsed		Mini-hatch		Validation		Mini-hatch		Validation		Rase Learni
i		i	1001 001011	i	(hh:mm:ss)	- :		- :		- :	Loss	i	Loss	i	Rate
i														. <u>.</u>	

6 60 00:00:41 96.88% 93.47% 0.1193 0.1956	0.01
9 90 00:00:58 100.00% 95.72% 0.0296 0.1304	0.01
10 100 00:01:03 99.22% 96.85% 0.0337 0.1285	0.01


```
% Stop the timer
trainingTime = toc(trainingStartTime);

% Display the training time
fprintf('Training time: %.2f seconds\n', trainingTime);
```

Training time: 78.36 seconds

```
% save CNN model
save('trainedCNN.mat', 'net');
```

```
% Classify Test Images
predictedLabels = classify(net, testImages);

% Calculate the Accuracy
accuracy = sum(predictedLabels == testLabels) / numel(testLabels);
fprintf('Test Accuracy: %.2f%%\n', accuracy * 100);
```

```
% Calculate precision, recall, and F1-score
confusionMatrix = confusionmat(testLabels, predictedLabels)
confusionMatrix = 7 \times 7
   62
        0
                  0
                       0
                            1
                                 0
             0
                       2
    0
        61
             0
                  0
                            0
                                 0
           64
                      0
    0
        0
                 0
                            a
                                 0
        0
           0 62
                      0 0
                                 0
    1
        0
           0 0 60 3
                              0
    0
        0
           0
                                0
                 1
                      0 63
                           3
                                58
truePositive = confusionMatrix(1, 1);
falsePositive = confusionMatrix(2, 1);
falseNegative = confusionMatrix(1, 2);
precision = truePositive / (truePositive + falsePositive);
recall = truePositive / (truePositive + falseNegative);
f1Score = 2 * (precision * recall) / (precision + recall);
fprintf('Precision: %.2f\n', precision);
Precision: 1.00
fprintf('Recall: %.2f\n', recall);
Recall: 1.00
fprintf('F1-Score: %.2f\n', f1Score);
F1-Score: 1.00
% Visualize the confusion matrix using imagesc and annotate precision
figure;
imagesc(confusionMatrix);
colorbar;
colormap('jet'); % You can change the colormap as needed
title('Confusion Matrix');
xlabel('Predicted');
ylabel('Actual');
xticks(1:numel(categories));
xticklabels(categories);
yticks(1:numel(categories));
yticklabels(categories);
% Calculate and annotate precision for each class
for i = 1:numel(categories)
    for j = 1:numel(categories)
```

precision = confusionMatrix(i, i) / sum(confusionMatrix(:, i));

```
text(j, i, sprintf('%.2f', precision), 'HorizontalAlignment', 'center',
'VerticalAlignment', 'middle', 'Color', 'k', 'FontWeight', 'bold');
  end
end
```



```
% Hyperparameter tuning for the number of epochs
numEpochsList = [5, 10, 15, 20]; % You can modify this list according to your
requirements

% Initialize a matrix to store accuracy for each number of epochs
EpochsAccuracyMatrix = zeros(length(numEpochsList), 1);

% Initialize a matrix to store training for each number of epochs
EpochsTime = zeros(length(numEpochsList), 1);

for idx = 1:length(numEpochsList)
    currentNumEpochs = numEpochsList(idx);

% Update the MaxEpochs parameter in trainingOptions
    options.MaxEpochs = currentNumEpochs;

trainingStartTime = tic;

% Train the CNN
    net = trainNetwork(trainImages, trainLabels, layers, options);

trainingTime = toc(trainingStartTime);
```

```
% Classify Test Images
predictedLabels = classify(net, testImages);

% Calculate the Accuracy
accuracy = sum(predictedLabels == testLabels) / numel(testLabels);
EpochsAccuracyMatrix(idx) = accuracy;
EpochsTime(idx) = trainingTime;

fprintf('Test Accuracy for %d Epochs: %.2f%%\n', currentNumEpochs, accuracy *
100);
end
```

Training on single CPU.

Initializing input data normalization.

l	·						
Epoch	Iteration	Time Elapsed (hh:mm:ss)	Mini-batch Accuracy	Validation Accuracy	Mini-batch Loss	Validation Loss	Base Learnin Rate
 1	1	 00:00:02	 13.28%	21.85%	2.5653	4.9162	 l 0.01
3	30	00:00:18	96.09%	90.99%	0.1231	0.2368	0.03
5	50	00:00:28	96.09%	97.07%	0.1541	0.1341	0.01

Training finished: Max epochs completed.

Test Accuracy for 5 Epochs: 97.30%

Training on single CPU.

Initializing input data normalization.

=======	==	========	===	<i>_</i>	===	:========	==:	=========	==========	===	-=========	===	
Epoch		Iteration		Time Elapsed		Mini-batch		Validation	Mini-batch		Validation		Base Learnin
				(hh:mm:ss)		Accuracy		Accuracy	Loss		Loss		Rate
=======	==	========	===	.=========	===	:=======	==:		=========	==	:	===	

١	1	1	00:00:02	10.16%	38.51%	2.5570	3.8204	0.01
ĺ	3	30	00:00:16	96.88%	94.59%	0.1199	0.1750	0.01
	5	50	00:00:26	96.88%		0.1212		0.01
	6	60	00:00:31	100.00%	95.95%	0.0264	0.1167	0.01
	9	90	00:00:45	100.00%	98.20%	0.0046	0.0624	0.01
	10	100	00:00:50	100.00%	97.75%	0.0090	0.0599	0.01
i	•	•	•	•	•	•	•	

Test Accuracy for 10 Epochs: 97.75%

Training on single CPU.

Initializing input data normalization.

					.========	.========		
İ	Epoch	Iteration	Time Elapsed	Mini-batch	Validation	Mini-batch	Validation	Base Learnin
		l	(hh:mm:ss)	Accuracy	Accuracy	Loss	Loss	Rate
	=======	=========	:=========		:=========		=========	
	1	1	00:00:02	13.28%	23.20%	2.9228	5.1634	0.01
	3	30	00:00:16	96.09%	92.79%	0.1380	0.2214	0.01
	5	50	00:00:26	99.22%		0.0356		0.01
	6	60	00:00:31	100.00%	96.40%	0.0211	0.0879	0.03
	9	90	00:00:47	100.00%	98.65%	0.0035	0.0544	0.01
	10	100	00:00:52	100.00%		0.0045		0.03
	12	120	00:01:02	100.00%	98.42%	0.0021	0.0500	0.03
	15	150	00:01:16	100.00%	98.65%	0.0024	0.0463	0.01
	=======	=========	.=========		.=========	.========		=========

Test Accuracy for 15 Epochs: 98.87% Training on single CPU.

Initializing input data normalization.

	Epoch	Iteration	Time Elapsed	Mini-batch	Validation	Mini-batch	Validation	Base Learni
ļ	-	I	(hh:mm:ss)	Accuracy	Accuracy	Loss	Loss	Rate
ļ	========					=======================================	=======================================	========
	1	1	00:00:02	21.09%	28.38%	2.3195	3.8634	0.0
	3	30	00:00:16	94.53%	91.22%	0.2595	0.3194	0.0
	5	50	00:00:25	96.88%	[0.1023		0.0
	6	60	00:00:31	96.88%	96.17%	0.0839	0.1556	0.0
	9	90	00:00:45	100.00%	97.30%	0.0135	0.1099	0.6
ĺ	10	100	00:00:50	100.00%	1	0.0122		0.6
Ì	12	120	00:01:00	100.00%	98.65%	0.0081	0.0860	0.6
ĺ	15	150	00:01:14	100.00%	98.65%	0.0038	0.0809	0.0
Ì	18	180	00:01:29	100.00%	98.42%	0.0043	0.0801	0.0
Ì	20 İ	200 İ	00:01:38 İ	100.00% İ	97 . 97%	0.0023	0.0791 İ	0.

Test Accuracy for 20 Epochs: 98.65%

```
% Plot the accuracy performance
figure;

bar(numEpochsList, EpochsAccuracyMatrix);

ylim([0.9, 1]);
xlabel('Number of Epochs');
ylabel('Accuracy');
title('Accuracy Performance vs Number of Epochs');
grid on;

% Save the plot as an EPS file
eps_filename = 'results/epochs.eps'

eps_filename =
'results/epochs.eps'
saveas(gcf, eps_filename, 'epsc');
```



```
fprintf('Saved %s\n', eps_filename);
```

Saved results/epochs.eps

```
% Plot the training time
figure;

bar(numEpochsList, EpochsTime);

xlabel('Number of Epochs');
ylabel('Training Time');
ylim([1, 500]);

title('Training Time vs Number of Epochs');
grid on;

% Save the plot as an EPS file
eps_filename = 'results/epochs_trainingtime.eps'

eps_filename = 'results/epochs_trainingtime.eps'
```

```
saveas(gcf, eps_filename, 'epsc');
```



```
fprintf('Saved %s\n', eps_filename);
```

Saved results/epochs_trainingtime.eps

```
% Hyperparameter tuning for the number of learning rates
learningRates = [0.01, 0.001, 0.0001]; % You can modify this list according to your
requirements

% Initialize a matrix to store accuracy for each number of epochs
LRaccuracyMatrix = zeros(length(learningRates), 1);
LRTrainingTime = zeros(length(learningRates), 1);

for idx = 1:length(learningRates)
    currentlearningRate = learningRates(idx);

% Update the MaxEpochs parameter in trainingOptions
    options.InitialLearnRate = currentlearningRate;
    options.MaxEpochs = 15;

    trainingStartTime = tic;

% Train the CNN
    net = trainNetwork(trainImages, trainLabels, layers, options);

trainingTime = toc(trainingStartTime);
```

```
% Classify Test Images
predictedLabels = classify(net, testImages);

% Calculate the Accuracy
accuracy = sum(predictedLabels == testLabels) / numel(testLabels);
LRaccuracyMatrix(idx) = accuracy;
LRTrainingTime(idx) = trainingTime;

fprintf('Test Accuracy for %d Learning Rate: %.2f%\\n', currentlearningRate,
accuracy * 100);
end
```

Training on single CPU.

Initializing input data normalization.

		=======================================					
Epoch 	Iteration 	Time Elapsed (hh:mm:ss)	Mini-batch Accuracy	Validation Accuracy	Mini-batch Loss	Validation Loss	Base Learnin Rate
======= 1	 1		======================================	========= 35.14%	2.7204	3.9127	
3	30	00:00:17	94.53%	93.69%	0.1843	0.2265	0.01
5	50	00:00:26	99.22%	į	0.0151		0.01
6	60	00:00:31	100.00%	97.52%	0.0144	0.0916	0.01
9	90	00:00:46	100.00%	98.42%	0.0037	0.0682	0.03
10	100	00:00:50	100.00%		0.0023		0.03
12	120	00:01:00	100.00%	98.87%	0.0012	0.0648	0.01
15	150	00:01:14	100.00%	98.87%	0.0011	0.0645	0.01
ı							

Test Accuracy for 1.000000e-02 Learning Rate: 98.87%

Training on single CPU.
Initializing input data normalization.

l = = = = = = = = :	=========				=========		.=========
Epoch	Iteration	Time Elapsed (hh:mm:ss)	Mini-batch Accuracy	Validation Accuracy	Mini-batch Loss	Validation Loss	Base Learni Rate
======== 1	 1	 00:00:02	14.06%	23.42%	2.7943	 2.3296	0.0
3	30	00:00:18	96.88%	92.79%	0.1328	0.2186	0.00
5	50	00:00:27	99.22%	j	0.0538	j	0.00
6	60	00:00:33	100.00%	97.30%	0.0349	0.1119	0.00
9	90	00:00:48	100.00%	98.42%	0.0194	0.0830	0.00
10	100	00:00:53	100.00%		0.0154		0.00
12	120	00:01:03	100.00%	98.65%	0.0167	0.0734	0.00
15	150	00:01:18	100.00%	98.87%	0.0151	0.0678	0.00
=======	=========	==========	=========	==========	==========	==========	

Test Accuracy for 1.000000e-03 Learning Rate: 98.87% Training on single CPU.

Initializing input data normalization.

========	============	=======================================	=========	=========			=========
Epoch	Iteration	Time Elapsed (hh:mm:ss)	Mini-batch Accuracy	Validation Accuracy	Mini-batch Loss	Validation Loss	Base Learnin Rate
' ' ========	ا :=========		===========	=========	==========	=======================================	
1	1	00:00:02	10.94%	14.41%	2.5042	2.4422	1.0000e
3	30	00:00:16	84.38%	81.76%	0.6292	0.7046	1.0000e
5	50	00:00:26	88.28%		0.4736		1.0000e
6	60	00:00:31	88.28%	86.49%	0.3918	0.4739	1.0000e
9	90	00:00:45	93.75%	88.74%	0.2836	0.3995	1.0000e
10	100	00:00:50	92.97%		0.2103		1.0000e
12	120	00:01:00	92.19%	89.64%	0.2906	0.3502	1.0000e
15	150	00:01:14	96.09%	90.32%	0.1974	0.3169	1.0000e
=======							

Test Accuracy for 1.000000e-04 Learning Rate: 90.32%

```
% Plot the accuracy performance
learningRates = {'0.01', '0.001','0.0001'};
learningRateValues = [1, 2, 3];
figure;
% bar(learningRates, LRaccuracyMatrix);
bar(learningRateValues, LRaccuracyMatrix);
xticks(learningRateValues);
xticklabels(learningRates);
xlabel('Learning Rates');
ylabel('Accuracy');
ylim([0.9, 1]);
title('Accuracy Performance vs Learning Rates');
grid on;
% Save the plot as an EPS file
eps_filename = 'results/learning_rate_accuracy.eps'
eps_filename =
'results/learning_rate_accuracy.eps'
saveas(gcf, eps_filename, 'epsc');
```



```
fprintf('Saved %s\n', eps_filename);
```

Saved results/learning_rate_accuracy.eps

```
% Plot the accuracy performance
learningRates = {'0.01', '0.001','0.0001'};
learningRateValues = [1, 2, 3];
figure;

% bar(learningRates, LRaccuracyMatrix);
bar(learningRateValues, LRTrainingTime);
xticks(learningRateValues);
xticklabels(learningRates);

xlabel('Learning Rates');
ylabel('Training Time');
ylim([1, 500]);

title('Training Time vs Learning Rates');
grid on;

% Save the plot as an EPS file
eps_filename = 'results/learning_rate_trainingtime.eps'
```

eps_filename =
'results/learning_rate_trainingtime.eps'


```
fprintf('Saved %s\n', eps_filename);
```

Saved results/learning_rate_trainingtime.eps

```
% Hyperparameter tuning for the number of epochs
optimizers = {'sgdm', 'adam', 'rmsprop'}; % You can modify this list according to
your requirements
% Initialize a matrix to store accuracy for each number of epochs
OaccuracyMatrix = zeros(length(optimizers), 1);
OTrainingTime = zeros(length(optimizers), 1);
for idx = 1:length(optimizers)
    currentoptimizer = optimizers(idx);
    options = trainingOptions( ...
    currentoptimizer, ... % Stochastic Gradient Descent with Momentum
    'InitialLearnRate', 0.01, ...
    'MaxEpochs', 15, ...
    'Shuffle', 'every-epoch', ...
    'ValidationData', {testImages, testLabels}, ...
    'ValidationFrequency', 30, ...
    'Verbose', true, ...
    'Plots', 'training-progress' ...
```

```
);
   % Update the MaxEpochs parameter in trainingOptions
    % options.InitialLearnRate = currentlearningRate;
   % options.MaxEpochs = 15;
   % options.InitialLearnRate = 0.01;
   trainingStartTime = tic;
   % Train the CNN
    net = trainNetwork(trainImages, trainLabels, layers, options);
   trainingTime = toc(trainingStartTime);
   % Classify Test Images
    predictedLabels = classify(net, testImages);
   % Calculate the Accuracy
    accuracy = sum(predictedLabels == testLabels) / numel(testLabels);
    OaccuracyMatrix(idx) = accuracy;
    OTrainingTime(idx) = trainingTime;
   % fprintf('Test Accuracy for %s Learning Rate: %.2f%\n', currentoptimizer,
accuracy * 100);
end
```

Training on single CPU.

Initializing input data normalization.

l ========							
	Iteration 	Time Elapsed (hh:mm:ss)	Mini-batch Accuracy	Validation Accuracy	Mini-batch Loss	Validation Loss	Base Learnin Rate
======== 1	 1	00:00:02	16.41%	 48.87%	2.5717	3.7912	0.01
j 3 j	30	00:00:16	91.41%	91.89%	0.3008	0.2554	0.03
5	50	00:00:26	96.09%	į	0.1272		0.03
6	60	00:00:31	100.00%	98.42%	0.0192	0.0862	0.03
9	90	00:00:45	100.00%	98.20%	0.0057	0.0566	0.03
10	100	00:00:50	100.00%	į	0.0040		0.03
12	120	00:01:00	100.00%	98.42%	0.0019	0.0596	0.03
15	150	00:01:14	100.00%	98.42%	0.0022	0.0590	0.03
l =======	=========						

Training on single CPU. Initializing input data normalization.

	`======:	==========	=======================================	=========				=========
	 Epoch	Iteration 	Time Elapsed (hh:mm:ss)	Mini-batch Accuracy	Validation Accuracy	Mini-batch Loss	Validation Loss	Base Learni Rate
	1	 1	00:00:02	 17.19%	68.92%	2.6595	 20.9126	0.01
	' 3	30	00:00:16	85.94%	90.99%	2.7117	1.1174	0.0
	5	50	00:00:25	96.09%	į	0.3663	ĺ	0.0
	6	60	00:00:30	98.44%	97.30%	0.0345	0.1154	0.03
	9	90	00:00:46	100.00%	97.52%	0.0032	0.1385	0.01
	10	100	00:00:51	100.00%	į	0.0010	ĺ	0.01
	12	120	00:01:01	100.00%	97.52%	0.0001	0.0996	0.01
ļ	15	150	00:01:15	100.00%	97.75%	0.0003	0.0959	0.03
	'=======	=========	=======================================	=========		:========:		==========

Training on single CPU.
Initializing input data normalization.

=======		============		==========	==========		=========
Epoch 	Iteration 	Time Elapsed (hh:mm:ss)	Mini-batch Accuracy	Validation Accuracy	Mini-batch Loss	Validation Loss	Base Learnin Rate
====== 1	 1		 22.66%	 29.95%	2.6184	 136.2048	
3	30	00:00:16	83.59%	91.67%	2.2580	0.9953	0.01
5	50	00:00:26	100.00%	į	0.0037	į	0.03
6	60	00:00:31	92.97%	93.69%	1.2950	0.9489	0.03
9	90	00:00:45	97.66%	94.14%	0.2456	0.6065	0.01
10	100	00:00:50	98.44%	j	0.0765	j	0.03
12	120	00:00:59	99.22%	93.47%	0.0608	0.7252	0.01
15	150	00:01:14	100.00%	97.75%	0.0006	0.2003	0.03
							==========


```
% Plot the accuracy performance
figure;
bar(OaccuracyMatrix);
xticks([1 2 3]);
xticklabels(optimizers);
xlabel('Optimizers');
ylabel('Accuracy');
ylim([0.9, 1]);
title('Accuracy Performance vs Optimizers');
grid on;

% Save the plot as an EPS file
eps_filename = 'results/optimiser.eps'

eps_filename = 'results/optimiser.eps'

saveas(gcf, eps_filename, 'epsc');
```



```
fprintf('Saved %s\n', eps_filename);
```

Saved results/optimiser.eps

saveas(gcf, eps_filename, 'epsc');

```
% Plot the training time
figure;

bar(OTrainingTime);
xticks([1 2 3]);
xticklabels(optimizers);

xlabel('Optimizers');
ylabel('Training Time');
ylim([1, 500]);

title('Training Time vs Optimizers');
grid on;

% Save the plot as an EPS file
eps_filename = 'results/optimiser_trainingtime.eps'
eps_filename =
'results/optimiser_trainingtime.eps'
```



```
fprintf('Saved %s\n', eps_filename);
```

Saved results/optimiser_trainingtime.eps

```
% Hyperparameter tuning for the number of epochs
batch_size = [8,16,32]; % You can modify this list according to your requirements
% Initialize a matrix to store accuracy for each number of epochs
batchaccuracyMatrix = zeros(length(batch_size), 1);
batchTrainingTime = zeros(length(batch_size), 1);
for idx = 1:length(batch_size)
    currentbatch_size = batch_size(idx);
    options = trainingOptions( ...
    'sgdm', ... % Stochastic Gradient Descent with Momentum
    'MiniBatchSize', currentbatch_size, ...
    'InitialLearnRate', 0.01, ...
    'MaxEpochs', 15, ...
    'Shuffle', 'every-epoch', ...
    'ValidationData', {testImages, testLabels}, ...
    'ValidationFrequency', 30, ...
    'Verbose', true, ...
    'Plots', 'training-progress' ...
```

```
);
   % Update the MaxEpochs parameter in trainingOptions
   % options.InitialLearnRate = currentlearningRate;
   % options.MaxEpochs = 15;
   % options.InitialLearnRate = 0.01;
   trainingStartTime = tic;
   % Train the CNN
    net = trainNetwork(trainImages, trainLabels, layers, options);
   trainingTime = toc(trainingStartTime);
   % Classify Test Images
    predictedLabels = classify(net, testImages);
   % Calculate the Accuracy
    accuracy = sum(predictedLabels == testLabels) / numel(testLabels);
    batchaccuracyMatrix(idx) = accuracy;
    batchTrainingTime(idx) = trainingTime;
   % fprintf('Test Accuracy for %s Learning Rate: %.2f%\n', currentoptimizer,
accuracy * 100);
end
```

Training on single CPU.
Initializing input data normalization.

Epoch	Iteration	Time Elapsed	Mini-batch	Validation	Mini-batch	Validation	Base Learnin
		(hh:mm:ss)	Accuracy	Accuracy	Loss	Loss	Rate
1	1	00:00:02	12.50%	26.35%	2.4753	7.2069	0.01
1	30	00:00:05	12.50%	14.19%	1.9501	1.9469	0.01
1	50	00:00:06	12.50%		1.9639		0.01
1	60	00:00:07	0.00%	14.19%	1.9655	1.9464	0.01
1	90	00:00:09	0.00%	14.19%	1.9779	1.9475	0.01
1	100	00:00:10	12.50%		1.9556		0.01
1	120	00:00:11	12.50%	14.19%	1.9555	1.9472	0.01
1	150	00:00:13	0.00%	14.41%	1.9696	1.9463	0.01
2	180	00:00:15	25.00%	14.19%	1.9227	1.9473	0.01
2	200	00:00:16	12.50%		1.9468		0.01
2	210	00:00:17	37.50%	14.19%	1.9500	1.9465	0.01
2	240	00:00:19	12.50%	14.41%	1.9585	1.9476	0.01
2	250	00:00:20	0.00%		1.9256		0.01
2	270	00:00:21	0.00%	14.19%	1.9577	1.9465	0.01
2	300	00:00:23	12.50%	14.19%	1.9568	1.9475	0.01
2	330	00:00:25	0.00%	14.19%	1.9534	1.9476	0.01
3	350	00:00:26	25.00%		1.9256		0.01
3	360	00:00:27	12.50%	14.19%	1.9202	1.9475	0.01
3	390	00:00:29	37.50%	14.19%	1.9254	1.9470	0.01
3	400	00:00:30	12.50%		1.9659		0.01
3	420	00:00:31	0.00%	14.19%	1.9708	1.9493	0.01
3	450	00:00:33	0.00%	14.41%	1.9872	1.9476	0.01
3	480	00:00:35	12.50%	14.19%	1.9368	1.9467	0.01
4	500	00:00:36	0.00%		1.9676		0.01
4	510	00:00:37	25.00%	14.19%	1.9614	1.9471	0.01

 	4 4 4	540 550	00:00:39 00:00:39	12.50%	14.19%	1.9251	1.9482
	:	550	90.90.39	12 50%	i	1 0002 İ	i
	4		00.00.33	12.50%	I .	1.9883	
		570	00:00:41	0.00%	14.19%	1.9632	1.9469
	4	600	00:00:43	0.00%	14.41%	1.9495	1.9462
 	4	630	00:00:45	25.00%	14.19%	1.9453	1.9463
 	4	650	00:00:46	25.00%		1.9438	
	4	660	00:00:47	12.50%	14.19%	1.9417	1.9462
	5	690	00:00:48	25.00%	14.41%	1.9353	1.9467
	5	700	00:00:49	0.00%		1.9722	
	5	720	00:00:51	0.00%	14.19%	1.9564	1.9467
	5	750	00:00:52	12.50%	14.19%	1.9676	1.9478
	5	780	00:00:55	25.00%	14.41%	1.9270	1.9466
	5	800	00:00:56	25.00%		1.9321	
	5	810	00:00:57	25.00%	14.41%	1.9332	1.9462
	6	840	00:00:59	25.00%	14.19%	1.9434	1.9493
	6	850	00:00:59	37.50%		2.2898	
	6	870	00:01:00	75.00%	58.78%	0.7304	1.2387
	6	900	00:01:02	87.50%	82.66%	0.5822	0.5406
	6	930	00:01:04	87.50%	86.49%	0.4220	0.3655
	6	950	00:01:05	87.50%		0.3591	
	6	960	00:01:06	87.50%	89.64%	0.1335	0.3191
	6	990	00:01:08	100.00%	88.29%	0.1146	0.3555
	7	1000	00:01:09	75.00%		0.6976	
	7	1020	00:01:10	100.00%	87.84%	0.1262	0.3999
	7	1050	00:01:13	75.00%	88.29%	0.8298	0.4097
	7	1080	00:01:15	100.00%	90.54%	0.0558	0.2684
	7	1100	00:01:17	87.50%		0.2942	
	7	1110	00:01:18	100.00%	91.89%	0.0093	0.1997
	7	1140	00:01:20	100.00%	92.79%	0.1100	0.1875
	7	1150	00:01:21	87.50%		0.1808	
	8	1170	00:01:23	87.50%	93.02%	0.2432	0.1868
	8	1200	00:01:25	100.00%	94.59%	0.2964	0.1947
	8	1230	00:01:28	100.00%	90.09%	0.1618	0.2923
	8	1250	00:01:29	100.00%	ļ	0.0030	ļ
ļ	8	1260	00:01:30	100.00%	91.22%	0.2060	0.2388
ļ	8	1290	00:01:32	75.00%	91.67%	0.5371	0.2547
ļ	8	1300	00:01:33	100.00%		0.0309	ļ
ļ	8	1320	00:01:35	75.00%	95.50%	0.6313	0.1345
ļ	9	1350	00:01:37	100.00%	95.05%	0.0858	0.1732
	9	1380	00:01:39	100.00%	94.82%	0.0408	0.1538
	9	1400	00:01:40	87.50%	0.2 4=0/	0.2466	0.0005
-	9	1410	00:01:42	87.50%	93.47%	0.1636	0.2286
-	9	1440	00:01:44	87.50%	94.82%	1.5713	0.1497
-	9	1450	00:01:44	100.00%	05 05%	0.1542	0.4406
1	9	1470	00:01:46	100.00%	95.95%	0.0013	0.1406
I	10	1500	00:01:48	100.00%	92.12%	0.0281	0.2554
	10	1530	00:01:50	100.00%	93.47%	0.0142	0.1967
	10	1550 1560	00:01:51	87.50% 100.00%	 \07 \02	0.2747	A 1002
I	10	1560 1500	00:01:52	•	93.47%	0.0063 0.2071	0.1903
	10 10	1590 1600	00:01:54 00:01:55	87.50% 100.00%	92.79%	0.2971 0.0232	0.2061
I	10	1620	00:01:56	100.00%	95 . 27%	0.0084	0.1154
1	10	1650	00:01:59	100.00%	95.27%	0.0130	0.1500
I	10	1680	00:01:39	100.00%	94.37%	0.0092	0.1797
İ	11	1700	00:02:02	100.00%	J-1.J//0	0.0116	0.1/5/
	11	1710	00:02:03	100.00%	95.72%	0.0066	0.1216
ŀ	11	1740	00:02:05	100.00%	90.54%	0.1149	0.3291
-	11	1750	00:02:05	100.00%	JO:J-70	0.0475	0.0201
1	11	1770	00:02:07	100.00%	94.14%	0.0048	0.1527
-	11	1800	00:02:07	87.50%	94.82%	0.3181	0.1327
l	12	1830	00:02:03	100.00%	95.72%	0.0731	0.1391
l	12	1850	00:02:11	100.00%		0.0003	
i	12	1860	00:02:12	100.00%	96.17%	0.0006	0.1226
	12	1890	00:02:15	100.00%	97.07%	0.0006	0.1056

0.0 0.0

	12	1900	00:02:15	100.00%		0.0146		0.0
	12	1920	00:02:17	100.00%	97.52%	0.0004	0.1076	0.0
	12	1950	00:02:19	100.00%	97.75%	1.2114e-05	0.1121	0.0
	12	1980	00:02:21	100.00%	90.99%	0.0029	0.3241	0.0
	13	2000	00:02:22	100.00%		0.0686		0.0
	13	2010	00:02:23	100.00%	95.72%	0.0132	0.1416	0.0
	13	2040	00:02:25	87.50%	96.40%	0.4183	0.1166	0.0
	13	2050	00:02:26	100.00%		0.0001		0.0
	13	2070	00:02:28	100.00%	96.40%	0.0209	0.0986	0.0
ĺ	13	2100	00:02:30	100.00%	94.14%	0.0018	0.2173	0.0
Ì	13	2130	00:02:32	100.00%	97.07%	0.0017	0.1219	0.0
	13	2150	00:02:33	100.00%		0.0483		0.0
	14	2160	00:02:34	100.00%	96.17%	4.5187e-05	0.1271	0.0
	14	2190	00:02:36	100.00%	97.07%	0.0007	0.1073	0.0
ĺ	14	2200	00:02:37	100.00%	ĺ	0.0061	ĺ	0.0
ĺ	14	2220	00:02:39	100.00%	96.85%	0.0906	0.0937	0.0
	14	2250	00:02:41	100.00%	97.52%	3.3676e-06	0.0969	0.0
	14	2280	00:02:43	100.00%	97.52%	1.3262e-06	0.1035	0.0
	14	2300	00:02:44	100.00%		0.0003		0.0
	14	2310	00:02:45	100.00%	97.30%	0.0162	0.0952	0.0
	15	2340	00:02:47	100.00%	97.75%	0.0001	0.0960	0.0
	15	2350	00:02:48	100.00%		0.0019		0.0
	15	2370	00:02:50	100.00%	97.75%	2.1069e-05	0.0899	0.0
	15	2400	00:02:52	100.00%	97.75%	0.0014	0.0908	0.0
ĺ	15	2430	00:02:54	100.00%	97.75%	0.0007	0.0956	0.0
ĺ	15	2450	00:02:55	100.00%		0.0133		0.0
	15	2460	00:02:56	100.00%	97.30%	0.0007	0.0979	0.0
ĺ	15	2490	00:02:58	100.00%	97.07%	0.0004	0.0997	0.0
İ	=======		===========	=========	=========	========		=========

Training on single CPU.

Initializing input data normalization.

| Epoch | Iteration | Time Elapsed | Mini-batch | Validation | Mini-batch | Validation | Base Learni

========		(hh:mm:ss)	Accuracy	Accuracy	Loss	Loss	Rate
1	1	00:00:02	6.25%	14.64%	3.1439	7.5239	0.0
1	30	00:00:07	87.50%	87.39%	0.3432	0.4231	0.0
1	50	00:00:09	87.50%	ļ	0.2728		0.0
1	60	00:00:11	100.00%	88.96%	0.1807	0.3496	0.0
2	90	00:00:15	100.00%	94.14%	0.0819	0.1983	0.0
2	100	00:00:16	100.00%		0.0337		0.0
2	120	00:00:18	87.50%	95.50%	0.3813	0.1387	0.0
2	150	00:00:23	87.50%	94.82%	0.4499	0.1407	0.0
3	180	00:00:27	100.00%	96.40%	0.0105	0.1103	0.0
3	200	00:00:29	100.00%	07 53%	0.0034	0,000	0.0
3	210 240	00:00:31 00:00:34	100.00% 100.00%	97.52% 95.72%	0.0084 0.0063	0.0896 0.1309	0.0 0.0
4	250	00:00:35	100.00%	93.72/0	0.0321	6.1309	0.0
4	270	00:00:37	100.00%	95.72%	0.0017	0.0962	0.0
4	300	00:00:40	100.00%	95.72%	0.0017	0.1198	0.0
4	330	00:00:43	100.00%	96.17%	0.0013	0.0895	0.0
5	350	00:00:44	100.00%	JU: 1/0	0.0013	0.0055	0.0
5	360	00:00:45	93.75%	96.40%	0.0470	0.0838	0.0
5	390	00:00:48	100.00%	97.52%	0.0004	0.0765	0.0
5	400	00:00:49	100.00%		0.0011		0.0
6	420	00:00:51	100.00%	96.85%	4.8148e-05	0.0767	0.0
6	450	00:00:54	100.00%	97.07%	0.0007	0.0786	0.0
6	480	00:00:57	100.00%	97.30%	0.0004	0.0685	0.0
7	500	00:00:58	100.00%		0.0009		0.0
7	510	00:01:00	100.00%	97.07%	0.0003	0.0708	0.0
7	540	00:01:03	100.00%	97.07%	0.0013	0.0694	0.0
7	550	00:01:03	100.00%		0.0005		0.0
7	570	00:01:05	100.00%	97.52%	0.0005	0.0643	0.0
8	600	00:01:08	100.00%	97.07%	0.0006	0.0652	0.0
8	630	00:01:11	100.00%	97.30%	0.0021	0.0665	0.0
8 8	650 660	00:01:13	100.00% 100.00%	07 07%	0.0002 2.5962e-05		0.0 0.0
9	690	00:01:14 00:01:17	100.00%	97.07% 97.75%	0.0012	0.0697 0.0622	0.0
9	700	00:01:17	100.00%	97.75%	0.0012	0.0022 	0.0
9	720	00:01:10	100.00%	96.85%	6.8530e-05	0.0650	0.0
10	750	00:01:23	100.00%	97.52%	0.0001	0.0656	0.0
10	780	00:01:25	100.00%	97.30%	6.3996e-05	0.0660	0.0
10	800	00:01:27	100.00%		8.4134e-05		0.0
10	810	00:01:28	100.00%	97.30%	0.0002	0.0666	0.0
11	840	00:01:31	100.00%	97.30%	0.0001	0.0674	0.0
11	850	00:01:31	100.00%	į	0.0012	l i	0.0
11	870	00:01:34	100.00%	97.30%	0.0002	0.0681	0.0
11	900	00:01:36	100.00%	97.30%	0.0012	0.0638	0.0
12	930	00:01:39	100.00%	97.30%	0.0002	0.0639	0.0
12	950	00:01:40	100.00%	ļ	0.0001		0.0
12	960	00:01:42	100.00%	97.30%	9.9904e-05	0.0677	0.0
12	990	00:01:44	100.00%	97.07%	5.9957e-05	0.0649	0.0
13	1000	00:01:45	100.00%	07 20%	6.7338e-05	0.0050	0.0
13	1020	00:01:47	100.00%	97.30%	0.0004	0.0652	0.0
13	1050	00:01:50	100.00%	97.52% 97.52%	5.5128e-05	0.0644 0.0631	0.0
14 14	1080 1100	00:01:52 00:01:54	100.00% 100.00%	97.52%	0.0003 0.0001	0.0631 	0.0 0.0
14	1110	00:01:55	100.00%	97.52%	9.3230e-05	 0.0666	0.0
14	1140	00:01:58	100.00%	97.32%	0.0003	0.0632	0.0
14	1150	00:01:50	100.00%	J Joh	0.0001	0.0052	0.0
15	1170	00:02:01	100.00%	97.52%	2.5916e-05	0.0640	0.0
15	1200	00:02:03	100.00%	97.52%	0.0002	0.0644	0.0
15	1230	00:02:06	100.00%	97.07%	0.0005	0.0647	0.0
	1245	00:02:08	100.00%	97.52%	2.0451e-05	0.0654	
15	1245	00.02.00	100.00%	3/.32/0	2.04316-03	0.0054	0.0

Training on single CPU.
Initializing input data normalization.

Epoch	Iteration	Time Elapsed	Mini-batch	Validation	Mini-batch	Validation	Base Learn
ا =======	ا ==========	(hh:mm:ss)	Accuracy 	Accuracy	Loss	Loss	Rate
1	1	00:00:02	9.38%	31.08%	2.3488	3.3944	0
1	30	00:00:07	81.25%	87.61%	1.0391	0.6638	0
2	50	00:00:10	87.50%		0.2941		0
2	60	00:00:11	96.88%	90.99%	0.0456	0.2467	0
3	90	00:00:16	100.00%	96.40%	0.0116	0.1339	0
3	100	00:00:17	96.88%		0.0818		0
3	120	00:00:21	100.00%	97.52%	0.0011	0.0885	0.
4	150	00:00:25	100.00%	96.62%	0.0120	0.1052	0
5	180	00:00:30	100.00%	97.97%	0.0074	0.0830	0
5	200	00:00:32	100.00%		0.0011		0
6	210	00:00:34	100.00%	97.97%	0.0062	0.0758	0
6	240	00:00:38	100.00%	98.20%	0.0081	0.0752	0
7	250	00:00:40	100.00%		0.0012		0
7	270	00:00:43	100.00%	98.20%	0.0040	0.0706	0
8	300	00:00:47	100.00%	98.20%	0.0006	0.0785	0
9	330	00:00:51	100.00%	98.20%	8.6674e-05	0.0796	0
9	350	00:00:54	100.00%		0.0010		0
9	360	00:00:56	100.00%	98.20%	0.0002	0.0763	0
10	390	00:01:00	100.00%	98.20%	0.0011	0.0799	0
10	400	00:01:01	100.00%		0.0009	I	0
11	420	00:01:04	100.00%	97.97%	0.0007	0.0843	0
11	450	00:01:08	100.00%	98.20%	0.0006	0.0832	0
12	480	00:01:13	100.00%	98.20%	0.0001	0.0815	0
13	500	00:01:15	100.00%		0.0013		0
13	510	00:01:17	100.00%	98.20%	0.0005	0.0827	0
14	540	00:01:22	100.00%	98.20%	0.0008	0.0823	0
14	550	00:01:23	100.00%	İ	0.0004	ĺ	0
14	570	00:01:27	100.00%	98.20%	0.0009	0.0847	0


```
% Plot the accuracy performance
batch_size = [8,16,32];
figure;
bar(batch_size, batchaccuracyMatrix);
xlabel('Batch Size');
ylabel('Accuracy');
ylim([0.9, 1]);
title('Accuracy Performance vs Batch Size');
grid on;

% Save the plot as an EPS file
eps_filename = 'results/batchsize.eps';
saveas(gcf, eps_filename, 'epsc');
fprintf('Saved %s\n', eps_filename);
```

```
% Plot the training time
figure;
bar(batch_size, batchTrainingTime);

xlabel('Batch Size');
ylabel('Training Time');
```

```
ylim([1, 500]);

title('Training Time vs Batch Size');
grid on;

% Save the plot as an EPS file
eps_filename = 'results/batch_size_trainingtime.eps'
saveas(gcf, eps_filename, 'epsc');
fprintf('Saved %s\n', eps_filename);
```

```
% Constants
numConvLayersList = [2, 3, 4]; % Vary the number of convolution layers
numConfigs = numel(numConvLayersList);
LayersaccuracyResults = zeros(numConfigs, 1);
LayersTrainingTime = zeros(numConfigs, 1);
% Loop through different configurations
for i = 1:numConfigs
   % Define the neural network architecture with varying convolution layers
    layers = [
        imageInputLayer([imageSize 1])
    ];
   for j = 1:numConvLayersList(i)
        layers = [layers
            convolution2dLayer(3, 16, 'Padding', 'same')
            batchNormalizationLayer
            reluLayer
            maxPooling2dLayer(2, 'Stride', 2)
        ];
    end
    layers = [layers
        fullyConnectedLayer(numel(categories))
        softmaxLayer
        classificationLayer
    1;
    % Set training options
    options = trainingOptions( ...
        'sgdm', ... % Stochastic Gradient Descent with Momentum
        'InitialLearnRate', 0.01, ...
        'MaxEpochs', 10, ...
        'Shuffle', 'every-epoch', ...
        'ValidationData', {testImages, testLabels}, ...
        'ValidationFrequency', 30, ...
        'Verbose', true, ...
        'Plots', 'training-progress' ...
        );
```

```
trainingStartTime = tic;

% Train the CNN
net = trainNetwork(trainImages, trainLabels, layers, options);

trainingTime = toc(trainingStartTime);

% Classify Test Images
predictedLabels = classify(net, testImages);

% Calculate the Accuracy
accuracy = sum(predictedLabels == testLabels) / numel(testLabels);

% Store the accuracy for this configuration
LayersaccuracyResults(i) = accuracy;
LayersTrainingTime(i) = trainingTime;
end
```

```
% Plot the results
figure;
bar(numConvLayersList, LayersaccuracyResults)
xlabel('Number of Convolution Layers')
ylabel('Accuracy')
ylim([0.9, 1]);
title('Accuracy Performance vs Number of Convolution Layers')
grid on;

% Save the plot as an EPS file
eps_filename = 'results/layers.eps'
saveas(gcf, eps_filename, 'epsc');
fprintf('Saved %s\n', eps_filename);
```

```
% Plot the training time
figure;
bar(numConvLayersList, LayersTrainingTime);
xticks(learningRateValues);
xticklabels(learningRates);

xlabel('Number of Convolution Layers');
ylabel('Training Time');
ylim([1, 500]);

title('Training Time vs Number of Convolution Layers');
grid on;

% Save the plot as an EPS file
eps_filename = 'results/layers_trainingtime.eps'
```

```
saveas(gcf, eps_filename, 'epsc');
fprintf('Saved %s\n', eps_filename);
```