

Instituto Politécnico Nacional Escuela Superior de Cómputo

Proyecto final

"Sistema de instrumentación virtual"

M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com

Contenido

- Introducción
- Objetivos
- Actividades
- Observaciones
- Reporte
- Fecha de Entrega

Introducción

- Un sistema de medición virtual involucra un equipo de computo que participa, muestra y/o registra magnitudes medidas.
- En este proyecto censaremos al menos cuatro variables externas y serán reflejadas sus mediciones en un sistema de instrumentación virtual capaz de realizar la adquisición, análisis y presentación de datos.
- En este proyecto utilizaremos el modulo de conversión analógico digital del PIC18F2550 y enviaremos de este a la PC por medio del bus USB, los valores de conversión de una señal introducida. La aplicación de la PC nos mostrará de manera grafica la señal de entrada en el microcontrolador.

- La necesidad de tener interfaces con el mundo analógico es muy común en cualquier tipo de sistema de medición y otros.
- Los convertidores analógico digital (ADC) y digital analógico (DAC), son empleados para comunicar elementos analógicos como sensores, transductores, actuadores y otros con equipos digitales de cómputo
 - Señales analógicas: Están definidas sobre un rango continuo de tiempo y un rango continuo de amplitud.
 - Señal digital: Es una señal definida sobre instantes discretos en tiempo y amplitud. Este tipo de señales puede ser representada por una secuencia de números, por ejemplo números binarios.
 - Un convertidor digital analógico es un dispositivo capaz de generar un voltaje o corriente a su salida, proporcional a un valor digital dado.

Objetivos

- Realizar el hardware de acondicionamiento de señal y adquisición de datos, utilizar el convertidor analógico digital del PIC18F2550 y el modulo USB para enviar los valores de conversión digitales de una señal de entrada analógica a un equipo de computo.
- Construir una aplicación de software que sea capaz de analizar, almacenar y mostrar los valores digitales de conversión de una señal analógica de manera grafica en la PC.

Actividades

1. Construir el circuito de adquisición de datos USB

Diseño sobre PCB

- Colocar en el diseño expansión para la conexión a circuitos externos (sensores).
- Pensar en la alimentación externa que proporcionará hacia otros circuitos.
- Construir los conectores y circuitos adicionales que se consideren necesarios.


```
//Configurar el ADC
  setup_adc_ports(AN0);
  setup_adc(ADC_CLOCK_INTERNAL);
  set_adc_channel(0);
```

3. Adecuar el código del programa en el microcontrolador para que este sea capaz de tomar un grupo de muestras grande y enviarlas por el USB según necesidad y el tipo de sensor y variable a medir.

```
if (modo == 10) // Modo_ADC 01 (CAMBIAR ESTE FUNCIONAMIENTO)
{
          resultado = read_adc(); //Leer el valor de la ultima conversión del ADC
          usb_put_packet(1, envia, 1, USB_DTS_TOGGLE); //enviamos el paquete de
tamaño 1byte del EP1 al PC
     }
}
```


- Acondicionar una fotorresistencia con base en un divisor de voltaje, calibrar la salida y encontrar una función capaz de relacionar el voltaje vs luxes. (Por software en el equipo de computo para la presentación y almacenamiento de la información)
- Acondicionar un sensor de temperatura LM35 y encontrar la relación necesaria para su presentación en °C y °K. (Por software en el equipo de computo para la presentación y almacenamiento de la información)
- Investigar el funcionamiento de los dos sensores proporcionados por equipo para una correcta presentación y almacenamiento de la variable y su presentación en las unidades adecuadas.

5. Construir una aplicación virtual bajo Visual C# .NET que

muestre de manera grafica las señal digitalizadas de la más adecuada y bajo las unidades manera correspondientes, la aplicación virtual deberá de ser capaz de realizar un almacenamiento de la información en una base de datos y permitirá exportar ciertas mediciones según indique el usuario a una aplicación de hoja de calculo.

Observaciones

- Realizar la programación necesaria en la PC para mostrar mediciones estandarizadas, de cada medición deberá mostrar su error probable (Se realiza una estadística de las mediciones y se muestra la medición media no se muestran las mediciones únicas para mostrar en el sistema virtual).
- Justificar los tiempos de conversión y solicitud de la PC hacia el circuito de las conversiones analógicas y digitales.
- Justificar los algoritmos y/o funciones de conversión de señales a unidades de variables físicas como °C, °K, Luxes, %HR, etc.
- De los dos sensores que se proporcionaron explicar su funcionamiento y verificar si eran sensores analógicos (Pin AO) y/o digitales (Pin DO), si el sensor trabaja analógicamente de este pin debe tomarse la medición.

Observaciones

 Si deseas leer una entrada digital en el Microcontrolador el código básico es el siguiente:

- Documente los 4 diseños de circuitos adicionales para el acoplamiento de las variables físicas a medir.
- Explique los posibles errores en la visualización y medición de las variables físicas a medir.

Reporte

- Portada
- Introducción (Marco teórico "Instrumentación virtual, USB, sensores, etc")
- Desarrollo de proyecto (Diseño y explicación de cada configuración de circuito conectado al modulo de adquisición de datos USB, de cada sensor o transductor, teoría de las variables medibles que es cada una y como se consigue realizar a medición, cálculos y estadísticas, ecuaciones y aproximaciones realizadas para establecer las mediciones de las diferentes variables físicas)
- Funcionalidad (Explicación de la interfaz, pantallazos de las pruebas y fotografías de estas).
- Conclusiones (Por cada integrante del equipo)
- Anexo (Diagramas, especificaciones técnicas de los dispositivos)
- Bibliografía (En formato IEEE)

Fecha de entrega

*La demostración del proyecto final se realizará el **miércoles 14 de Junio de 2017** en el laboratorio.

*El reporte se entregará a más tardar al siguiente día **Jueves 15 de Junio de 2017** (23:59:59 hora limite)

*Se revisará redacción (coherencia y ortografía)

*No olvidar cumplir con las observaciones

*Deberán de entregar sus circuitos de adquisición y sensores el miércoles 14 de junio a resguardo, no se permitirá compartir circuitos o dispositivos para la entrega.