TRƯỜNG ĐẠI HỌC PHENIKAA

KHOA KHOA HỌC CƠ BẨN BỘ MÔN TOÁN

ĐỀ THI HỌC PHẦN Học kỳ 1, Năm học 2022–2023

Hệ đào tạo: Chính quy Bậc học: Đại học

Tên học phần: Đại số tuyến tính Số TC: 3

Ngày thi: 02/02/2023 Thời gian làm bài: 90 phút

Đề số 1

Câu 1 (2,0 điểm; chuẩn đầu ra 1.1) Cho θ là một số thực. Xét ma trận sau

$$A(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

- (a) Tính định thức của $A(\theta)$. Vì sao ma trận $A(\theta)$ có nghịch đảo với mọi θ ?
- (b) Tính $A(\theta)A(-\theta)$. Từ đó, tìm ma trận nghịch đảo của $A(\theta)$.

Câu 2 (2,0 điểm; chuẩn đầu ra 1.1) Cho hệ phương trình tuyến tính với các ẩn số x_1, x_2, x_3, x_4 và tham số m như sau

$$\begin{cases} 6x_1 - 6x_2 + 5x_3 + 7x_4 = -2\\ x_1 - x_2 + x_3 + 2x_4 = 3m + 4\\ 32x_1 - 32x_2 + 27x_3 + 39x_4 = 0. \end{cases}$$

- (a) Tìm tất cả các giá trị của m để hệ phương trình trên có nghiệm.
- (b) Với giá trị m tìm được ở câu (a), hãy giải hệ phương trình.

Câu 3 (2,0 điểm; chuẩn đầu ra 1.1) Gọi X là tập hợp các véctơ $\mathbf{u} = (x_1, x_2, x_3)$ trong \mathbb{R}^3 xác định bởi phương trình

$$2x_1 - 2x_2 - 23x_3 = 0.$$

- (a) Chứng minh X là một không gian véctơ con của \mathbb{R}^3 .
- (b) Tìm một cơ sở U của X. Chứng tỏ $\mathbf{v}=(3,-20,2)$ thuộc X và tìm tọa độ của \mathbf{v} trong cơ sở U.

Câu 4 (2,0 điểm; chuẩn đầu ra 1.1) Cho ma trân

$$A = \begin{bmatrix} -1 & 4 & -10 \\ -2 & 5 & -10 \\ 0 & 0 & 1 \end{bmatrix}.$$

1

- (a) Tìm các giá trị riêng của ma trận A.
- (b) Tìm một ma trận P khả nghịch sao cho $P^{-1}AP$ là ma trận chéo và viết ma trận chéo đó.

Câu 5 (2,0 điểm; chuẩn đầu ra 1.1) Trong không gian ba chiều cho hai điểm A(1,2,3) và B(3,2,1) và xét hàm số f(x,y,z)=xyz. Tính đạo hàm của hàm f theo hướng vécto \overrightarrow{AB} tại điểm A.

- Thí sinh **không** được sử dụng tài liệu.
- Cán bộ coi thi không cần giải thích gì.

TRƯỜNG ĐẠI HỌC PHENIKAA KHOA KHOA HOC CƠ BẨN

KHOA KHOA HỌC CƠ BẢN BÔ MÔN TOÁN

ĐỀ THI HỌC PHẦN Học kỳ 1, Năm học 2022–2023 Hê đào tao: Chính quy Bâc học: Đai học

Tên học phần: Đại số tuyến tính Số TC: 3

Ngày thi: 02/02/2023 Thời gian làm bài: 90 phút

Đề số 2

Câu 1 (2,0 điểm; chuẩn đầu ra 1.1) Cho các ma trân

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 4 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 \\ -2 & 3 \\ 1 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}.$$

(a) Trong các phép tính sau, cái nào thực hiện được? Nếu được, hãy thực hiện phép tính đó.

$$2A + B^T$$
, AB , CA , BC .

(b) Tính định thức sau

$$\begin{vmatrix} 1 & 0 & 0 & 0 & 0 \\ 2 & -1 & 3 & -6 & 7 \\ -1 & 0 & 4 & 1 & 8 \\ 3 & 0 & 0 & 2 & 0 \\ -4 & 0 & 5 & 0 & 0 \end{vmatrix}.$$

Câu 2 (2,0 điểm; chuẩn đầu ra 1.1) Cho hệ phương trình tuyến tính với các ẩn số x_1, x_2, x_3, x_4 và tham số m như sau

$$\begin{cases}
-2x_1 - 6x_2 - 3x_3 - 7x_4 = -4 \\
x_1 + 3x_2 + x_3 = 3m + 2 \\
-8x_1 - 24x_2 - 13x_3 - 35x_4 = -2.
\end{cases}$$

- (a) Tìm tất cả các giá trị của m để hệ phương trình trên có nghiệm.
- (b) Với giá trị *m* tìm được ở câu (a), hãy giải hệ phương trình.

Câu 3 (2,0 điểm; chuẩn đầu ra 1.1) Gọi X là tập hợp các véctơ $\mathbf{u} = (x_1, x_2, x_3)$ trong \mathbb{R}^3 xác định bởi phương trình

$$23x_1 - 2x_2 - 2x_3 = 0.$$

1

- (a) Chứng minh X là một không gian véctơ con của \mathbb{R}^3 .
- (b) Tìm một cơ sở U của X. Chứng tỏ $\mathbf{v}=(4,45,1)$ thuộc X và tìm tọa độ của \mathbf{v} trong cơ sở U.

Câu 4 (2,0 điểm; chuẩn đầu ra 1.1) Cho ma trận

$$A = \begin{bmatrix} -3 & 4 & -10 \\ -2 & 3 & -10 \\ 0 & 0 & -1 \end{bmatrix}.$$

- (a) Tìm các giá trị riêng của ma trận A.
- (b) Tìm một ma trận P khả nghịch sao cho $P^{-1}AP$ là ma trận chéo và viết ma trận chéo đó.

Câu 5 (2,0 điểm; chuẩn đầu ra 1.1) Trong không gian ba chiều cho hai điểm A(1,2,3) và B(3,2,1) và xét hàm số f(x,y,z) = xyz. Tính đạo hàm của hàm f theo hướng vécto \overrightarrow{AB} tại điểm B.

- Thí sinh **không** được sử dụng tài liệu.
- Cán bộ coi thi không cần giải thích gì.

TRƯỜNG ĐẠI HỌC PHENIKAA

KHOA KHOA HỌC CƠ BẢN BỘ MÔN TOÁN

ĐỀ THI HỌC PHẦN

Học kỳ 1, Năm học 2022-2023

Hệ đào tạo: Chính quy Bậc học: Đại học

Tên học phần: Đại số tuyến tính Số TC: 3

Ngày thi: 02/02/2023 Thời gian làm bài: 90 phút

Đề số 3

Câu 1 (2,0 điểm; chuẩn đầu ra 1.1) Cho ma trận

$$A = \begin{bmatrix} -2 & 3 & 0 \\ -1 & 4 & x \\ 5 & -5 & 1 \end{bmatrix}.$$

- (a) Tính định thức của A. Tìm x để A có nghịch đảo.
- (b) Với x = 2, tìm hàng thứ ba của ma trận A^{-1} .

Câu 2 (2,0 điểm; chuẩn đầu ra 1.1) Cho hệ phương trình tuyến tính với các ẩn số x_1, x_2, x_3, x_4 và tham số m như sau

$$\begin{cases} x_1 + 3x_2 - 5x_4 = -4 \\ x_1 + 3x_2 + x_3 + x_4 = 4m + 5 \\ 7x_1 + 21x_2 + 5x_3 - 5x_4 = 5. \end{cases}$$

- (a) Tìm tất cả các giá trị của *m* để hệ phương trình trên có nghiệm.
- (b) Với giá trị *m* tìm được ở câu (a), hãy giải hệ phương trình.

Câu 3 (2,0 điểm; chuẩn đầu ra 1.1) Gọi X là tập hợp các véctơ $\mathbf{u} = (x_1, x_2, x_3)$ trong \mathbb{R}^3 xác định bởi phương trình

$$2x_1 - 4x_2 - 9x_3 = 0.$$

- (a) Chứng minh X là một không gian véctơ con của \mathbb{R}^3 .
- (b) Tìm một cơ sở U của X. Chứng tỏ $\mathbf{v}=(1,-4,2)$ thuộc X và tìm tọa độ của \mathbf{v} trong cơ sở U.

Câu 4 (2,0 điểm; chuẩn đầu ra 1.1) Cho ma trận

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 1 & -2 & -2 \\ 0 & 0 & -2 \end{bmatrix}.$$

- (a) Tìm các giá trị riêng của ma trận A.
- (b) Tìm một ma trận P khả nghịch sao cho $P^{-1}AP$ là ma trận chéo và viết ma trận chéo đó.

Câu 5 (2,0 điểm; chuẩn đầu ra 1.1) Trong không gian ba chiều cho hai điểm A(1,2,3) và B(3,2,1) và xét hàm số f(x,y,z)=xyz. Tính đạo hàm của hàm f theo hướng vécto \overrightarrow{BA} tại điểm B.

- Thí sinh **không** được sử dụng tài liệu.
- Cán bộ coi thi không cần giải thích gì.

TRƯỜNG ĐẠI HỌC PHENIKAA KHOA KHOA HỌC CƠ BẢN BÔ MÔN TOÁN

ĐỀ THI HỌC PHẦN Học kỳ 1, Năm học 2022–2023 Hê đào tao: Chính quy Bâc học: Đai học

Tên học phần: Đại số tuyến tính Số TC: 3

Ngày thi: 02/02/2023 Thời gian làm bài: 90 phút

Đề số 4

Câu 1 (2,0 điểm; chuẩn đầu ra 1.1) Cho các ma trận

$$A = \begin{bmatrix} 3 & 2 \\ 3 & 9 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

- (a) Tìm ma trận X sao cho AX = 2X + B.
- (b) Tính đinh thức sau

$$\begin{vmatrix}
1 & 3 & 1 & 5 & 3 \\
-2 & -7 & 0 & -4 & 2 \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0
\end{vmatrix}.$$

Câu 2 (2,0 điểm; chuẩn đầu ra 1.1) Cho hệ phương trình tuyến tính với các ẩn số x_1, x_2, x_3, x_4 và tham số m như sau

$$\begin{cases} 4x_1 - 24x_2 + 3x_3 = 1\\ x_1 - 6x_2 + x_3 - 4x_4 = 5m + 1\\ 9x_1 - 54x_2 + 7x_3 - 4x_4 = -2. \end{cases}$$

- (a) Tìm tất cả các giá trị của m để hệ phương trình trên có nghiệm.
- (b) Với giá trị m tìm được ở câu (a), hãy giải hệ phương trình.

Câu 3 (2,0 điểm; chuẩn đầu ra 1.1) Gọi X là tập hợp các véctơ $\mathbf{u} = (x_1, x_2, x_3)$ trong \mathbb{R}^3 xác định bởi phương trình

$$19x_1 - 8x_2 - 2x_3 = 0.$$

(a) Chứng minh X là một không gian véctơ con của \mathbb{R}^3 .

(b) Tìm một cơ sở U của X. Chứng tỏ $\mathbf{v}=(2,4,3)$ thuộc X và tìm tọa độ của \mathbf{v} trong cơ sở U. Câu $\mathbf{4}$ (2,0 điểm; chuẩn đầu ra 1.1) Cho ma trận

$$A = \begin{bmatrix} 5 & -4 & 10 \\ 2 & -1 & 10 \\ 0 & 0 & 3 \end{bmatrix}.$$

- (a) Tìm các giá trị riêng của ma trận A.
- (b) Tìm một ma trận P khả nghịch sao cho $P^{-1}AP$ là ma trận chéo và viết ma trận chéo đó.

Câu 5 (2,0 điểm; chuẩn đầu ra 1.1) Trong không gian ba chiều cho hai điểm A(1,2,3) và B(3,2,1) và xét hàm số f(x,y,z) = xyz. Tính đạo hàm của hàm f theo hướng vécto \overrightarrow{BA} tại điểm A.

- Thí sinh **không** được sử dụng tài liệu.
- Cán bộ coi thi không cần giải thích gì.

ĐÁP ÁN ĐỀ THI KẾT THÚC HỌC PHẦN

Học phần: Đại số tuyến tính Mã học phần: FFS703007

ĐỀ SỐ: 1 Đáp án gồm có.....trang

<u>Câu 1</u>		2,00 điểm	CĐR 1.1
	Khai triển theo hàng thứ ba hoặc cột thứ ba, ta có $\det(A) = \begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} = \cos^2 \theta + \sin^2 \theta = 1.$	0,5	
	Ma trận $A(\theta)$ có nghịch đảo vì $\det(A(\theta)) = 1 \neq 0$ với mọi θ	0.5	
	Tính $A(oldsymbol{ heta})A(-oldsymbol{ heta})=I$	0.5	
	Suy ra $A(\theta)^{-1} = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$	0.5	

<u>Câu 2</u> (a)		2,00 điểm 1,25	CĐR 1.1
	Ma trận hệ số bổ sung của hệ phương trình $A^{bs} = \begin{bmatrix} 6 & -6 & 5 & 7 & -2 \\ 1 & -1 & 1 & 2 & 3m+4 \\ 32 & -32 & 27 & 39 & 0 \end{bmatrix}.$	0,25	

	Dùng phương pháp khử Gauss (hoặc Gauss-Jordan) đưa A^{bs} về dạng bậc thang $A^{bs} \longrightarrow \begin{bmatrix} 1 & -1 & 1 & 2 & 3m+4 \\ 6 & -6 & 5 & 7 & -2 \\ 32 & -32 & 27 & 39 & 0 \end{bmatrix}$	
	$ \longrightarrow \begin{bmatrix} 1 & -1 & 1 & 2 & 3m+4 \\ 0 & 0 & -1 & -5 & -18m-26 \\ 0 & 0 & -5 & -25 & -96m-128 \end{bmatrix} $ $ \longrightarrow \begin{bmatrix} 1 & -1 & 1 & 2 & 3m+4 \\ 0 & 0 & -1 & -5 & -26-18m \\ 0 & 0 & 0 & 0 & 2-6m \end{bmatrix} = E. $	0,5
	Hệ phương trình có nghiệm khi và chỉ khi $r(A) = r(A^{bs}) = 2$.	0,25
	$\Leftrightarrow 2-6m=0 \Leftrightarrow m=\frac{1}{3}.$	0,25
(b)	<u>-</u>	0,75
	Thay $m=\frac{1}{3}$ vào ma trận bậc thang E , thu được hệ phương trình $\begin{cases} x_1-x_2+x_3+2x_4=5\\ -x_3-5x_4=-32. \end{cases}$	0,25
	Đặt $x_2=s\in\mathbb{R}, x_4=t\in\mathbb{R}$ và thay thế ngược, thu được hệ phương trình tương đương $\begin{cases} x_1=s+3t-27\\ x_2=s\\ x_3=-5t+32\\ x_4=t. \end{cases}$ Vậy tập nghiệm của hệ phương trình là $\{(s+3t-27,s,-5t+32,t)\mid s,t\in\mathbb{R}\}.$ (Lưu ý: SV có thể có cách chọn biến tự do khác và tìm ra công thức nghiệm khác với đáp án)	0,5

<u>Câu 3</u>	2,00 điểm	CĐR 1.1
--------------	--------------	---------

(a)		0,75
	Chứng minh X đóng kín với phép cộng.	0,25
	Chứng minh X đóng kín với phép nhân vô hướng.	0,25
	Nhận xét rằng $X \neq \emptyset$ và đóng kín với các phép toán nên nó là	0,25
	không gian con.	0,23
(b)		1,25
	X là được tham số hóa bởi s và t như sau:	
	$(s,t) \mapsto (s + (23/2)t, s, t).$	0,25
	Chọn $s = 1, t = 0$, thu được $\mathbf{u}_1 = (1, 1, 0)$; Chọn $s = 0, t = 1$, thu được $\mathbf{u}_2 = (23/2, 0, 1)$.	0,25
	Chứng minh $U = \{\mathbf{u}_1, \mathbf{u}_2\}$ là một cơ sở của X và suy ra số chiều của X bằng 2 .	0,50
	Tọa độ của \mathbf{v} là $(-20,2)$.	0,25
Ghi chú	Cơ sở U không duy nhất. Do đó, thí sinh có thể chọn cơ sở khác. Khi đó, tọa độ của ${\bf v}$ cũng sẽ khác.	

<u>Câu 4</u>		2,00 điểm	CĐR 1.1
a)		0,5	
	Ma trận $A = \begin{bmatrix} -1 & 4 & -10 \\ -2 & 5 & -10 \\ 0 & 0 & 1 \end{bmatrix}.$ Đa thức đặc trưng $P(\lambda) = \det(A - \lambda I) = -\lambda^3 + 5\lambda^2 - 7\lambda + 3 = -(\lambda - 3)(\lambda - 1)^2.$	0,25	
	Giá trị riêng $\lambda = 3$ (nghiệm đơn), $\lambda = 1$ (nghiệm kép)	0,25	
b)		1,5	
	Với $\lambda = 3$, các vector riêng là $(k, k, 0)$. Cho $k = -1$, ta có $u_1 = (-1, -1, 0)$.	0,25	
	Với $\lambda = 1$, các vector riêng là $(2s - 5t, s, t)$.	0,25	
	Cho $s = 3$, $t = 1$, ta có $u_2 = (1, 3, 1)$.	0,25	
	Cho $s = 2$, $t = 1$, ta có $u_3 = (-1, 2, 1)$.	0,25	

Ma trận làm chéo hóa $P = \begin{bmatrix} u_1 & u_2 \end{bmatrix}$	$u_3 \bigg] = \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}$	$ \begin{array}{cccc} 1 & -1 \\ 3 & 2 \\ 1 & 1 \end{array} $	0,25	
	3 0 0		0,25	
Ma trận chéo cần tìm là $P^{-1}AP =$	$ 0 \ 1 \ 0 $.		0,20	
	$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$			

<u>Câu 5</u>		2,00 điểm	CĐR 1.1
	Tính được gradient của f tại điểm A : $\overrightarrow{grad} \ f(A) = \nabla f(A) = (6,3,2)$ Tính được: $\overrightarrow{AB} = (2,0,-2)$	0,5	
	Tính được: $\overrightarrow{AB} = (2,0,-2)$	0,5	
	Tính được vector \vec{v} (vector đơn vị của \overrightarrow{AB}): $\vec{v} = \frac{\overrightarrow{AB}}{ \overrightarrow{AB} } = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)$	0,5	
	Tính được đạo hàm theo hướng \overrightarrow{AB} của f tại A : $D_{v}f(A) \equiv \frac{\partial f}{\partial \overrightarrow{v}}(A) = \overrightarrow{grad} \ f(A) \cdot \overrightarrow{v} = 2\sqrt{2}$	0,5	

ĐÁP ÁN ĐỀ THI KẾT THÚC HỌC PHẦN

Học phần: Đại số tuyến tính Mã học phần: FFS703007

ĐỀ SỐ: 2 Đáp án gồm có.....trang

<u>Câu 1</u>		2,00 điểm	CĐR 1.1
	$2A + B^T = \begin{bmatrix} 2 & 2 & -1 \\ 7 & 3 & 8 \end{bmatrix}$	0,5	
	$AB = \begin{bmatrix} -5 & 7 \\ 4 & 3 \end{bmatrix}$	0.5	
	Khai triển theo cột thứ hai		
	$D = - \begin{vmatrix} 1 & 0 & 0 & 0 \\ -1 & 4 & 1 & 8 \\ 3 & 0 & 2 & 0 \\ -4 & 5 & 0 & 0 \end{vmatrix}$	0,25	
	Khai triển theo hàng thứ nhất		
	$D = - \begin{vmatrix} 4 & 1 & 8 \\ 0 & 2 & 0 \\ 5 & 0 & 0 \end{vmatrix}$	0,25	
	Khai triển theo cột thứ ba		
	$D = -8 \begin{vmatrix} 0 & 2 \\ 5 & 0 \end{vmatrix}$	0,25	
	D = 80	0,25	

<u>Câu 2</u>		2,00 điểm	CĐR 1.1
(a)		1,25	
	Ma trận hệ số bổ sung của hệ phương trình		
	$A^{bs} = \begin{bmatrix} -2 & -6 & -3 & -7 & & -4 \\ 1 & 3 & 1 & 0 & & 3m+2 \\ -8 & -24 & -13 & -35 & & -2 \end{bmatrix}.$	0,25	
	Dùng phương pháp khử Gauss (hoặc Gauss-Jordan) đưa A^{bs} về dạng bậc thang		
	$A^{bs} \longrightarrow \begin{bmatrix} 1 & 3 & 1 & 0 & & 3m+2 \\ -2 & -6 & -3 & -7 & & -4 \\ -8 & -24 & -13 & -35 & & -2 \end{bmatrix}$ $\longrightarrow \begin{bmatrix} 1 & 3 & 1 & 0 & & 3m+2 \\ 0 & 0 & -1 & -7 & & 6m \\ 0 & 0 & -5 & -35 & & 24m+14 \end{bmatrix}$ $\begin{bmatrix} 1 & 3 & 1 & 0 & & 3m+2 \end{bmatrix}$	0,5	
		0,25	
	$\Leftrightarrow 14 - 6m = 0 \Leftrightarrow m = \frac{7}{3}.$	0,25	
(b)		0,75	
	Thay $m = \frac{7}{3}$ vào ma trận bậc thang E , thu được hệ phương trình $\begin{cases} x_1 + 3x_2 + x_3 = 9 \\ -x_3 - 7x_4 = 14. \end{cases}$	0,25	

Đặt $x_2=s\in\mathbb{R}, x_4=t\in\mathbb{R}$ và thay thế ngược, thu được hệ phương		
trình tương đương		
$\begin{cases} x_1 = -3s + 7t + 23 \\ x_2 = s \\ x_3 = -7t - 14 \\ x_4 = t. \end{cases}$	0.5	
$(x_4 = t.$	0,5	
Vậy tập nghiệm của hệ phương trình là		
$\{(-3s+7t+23,s,-7t-14,t) \mid s,t \in \mathbb{R}\}.$		
(Lưu ý: SV có thể có cách chọn biến tự do khác và tìm ra công thức nghiệm khác với đáp án)		

Câu 3		2,00	CĐR 1.1
<u>Cau 3</u>		điểm	
(a)		0,75	
	Chứng minh X đóng kín với phép cộng.	0,25	
	Chứng minh X đóng kín với phép nhân vô hướng.	0,25	
	Nhận xét rằng $X \neq \emptyset$ và đóng kín với các phép toán nên nó là	0,25	
(b)	không gian con.	1,25	
	X là được tham số hóa bởi s và t như sau: $(s,t) \mapsto ((2/23)s + (2/23)t, s, t).$	0,25	
	Chọn $s = 1, t = 0$, thu được $\mathbf{u}_1 = (2/23, 1, 0)$; Chọn $s = 0, t = 1$, thu được $\mathbf{u}_2 = (2/23, 0, 1)$.	0,25	
	Chứng minh $U = \{\mathbf{u}_1, \mathbf{u}_2\}$ là một cơ sở của X và suy ra số chiều của X bằng 2 .	0,50	
	Tọa độ của v là (45,1).	0,25	
Ghi chú	Cơ sở U không duy nhất. Do đó, thí sinh có thể chọn cơ sở khác. Khi đó, tọa độ của ${\bf v}$ cũng sẽ khác.		

<u>Câu 4</u>	2,00 điểm	CĐR 1.1
a)	0,5	

	Ma trận $A = \begin{bmatrix} -3 & 4 & -10 \\ -2 & 3 & -10 \\ 0 & 0 & -1 \end{bmatrix}.$ Đa thức đặc trưng $P(\lambda) = \det(A - \lambda I) = -\lambda^3 - \lambda^2 + \lambda + 1 = -(\lambda - 1)(\lambda + 1)^2.$	0,25
	Giá trị riêng $\lambda = 1$ (nghiệm đơn), $\lambda = -1$ (nghiệm kép)	0,25
b)		1,5
	Với $\lambda = 1$, các vector riêng là $(k, k, 0)$. Cho $k = -1$, ta có $u_1 = (-1, -1, 0)$.	0,25
	Với $\lambda = -1$, các vector riêng là $(2s - 5t, s, t)$.	0,25
	Cho $s = 3$, $t = 1$, ta có $u_2 = (1, 3, 1)$.	0,25
	Cho $s = 2$, $t = 1$, ta có $u_3 = (-1, 2, 1)$.	0,25
	Ma trận làm chéo hóa $P = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} = \begin{bmatrix} -1 & 1 & -1 \\ -1 & 3 & 2 \\ 0 & 1 & 1 \end{bmatrix}$.	0,25
	Ma trận chéo cần tìm là $P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.	0,25

<u>Câu 5</u>		2,00 điểm	CĐR 1.1
	Tính được gradient của f tại điểm B : $\overrightarrow{grad} \ f(B) = \nabla f(B) = (2,3,6)$	0,5	
	Tính được: $\overrightarrow{AB} = (2,0,-2)$	0,5	
	Tính được vector \vec{v} (vector đơn vị của \overrightarrow{AB}): $\vec{l} = \frac{\overrightarrow{AB}}{\left \overrightarrow{AB}\right } = \left(\frac{1}{\sqrt{2}}, 0, -\frac{1}{\sqrt{2}}\right)$	0,5	
	Tính được đạo hàm theo hướng \overrightarrow{AB} của f tại B : $D_{v}f(B) \equiv \frac{\partial f}{\partial \overrightarrow{v}}(B) = \overrightarrow{grad} \ f(B) \cdot \overrightarrow{v} = -2\sqrt{2}$	0,5	

ĐÁP ÁN ĐỀ THI KẾT THÚC HỌC PHẦN

Học phần: Đại số tuyến tính Mã học phần: FFS703007

<u>ĐỀ SỐ:</u> 3

Đáp án gồm có.....trang

<u>Câu 1</u>		2,0 điểm	CĐR 1.1
	Định thức của A $\det(A) = 5x - 5$	0,5	
	Ma trận A có nghịch đảo khi và chỉ khi $\det(A) \neq 0$	0,25	
	$\det(A) \neq 0 \iff x \neq 1.$	0,25	
	$c_{13} = \begin{vmatrix} -1 & 4 \\ 5 & -5 \end{vmatrix} = -15$	0,25	
	$c_{23} = - \begin{vmatrix} -2 & 3 \\ 5 & -5 \end{vmatrix} = 5$	0,25	
	$c_{33} = \begin{vmatrix} -2 & 3 \\ -1 & 4 \end{vmatrix} = -5$	0,25	
	Hàng thứ ba cần tìm $\frac{1}{\det(A)}\begin{bmatrix}c_{13}&c_{23}&c_{33}\end{bmatrix}=\begin{bmatrix}-3&1&-1\end{bmatrix}$	0,25	

<u>Câu 2</u>	2,0 điể	00 ểm	CĐR 1.1
(a)	1,2	25	

	Ma trận hệ số bổ sung của hệ phương trình	
	$A^{bs} = \begin{bmatrix} 1 & 3 & 0 & -5 & & -4 \\ 1 & 3 & 1 & 1 & & 4m+5 \\ 7 & 21 & 5 & -5 & & 5 \end{bmatrix}.$	0,25
	Dùng phương pháp khử Gauss (hoặc Gauss-Jordan) đưa A^{bs} về	
	dạng bậc thang	
	$A^{bs} \longrightarrow \begin{bmatrix} 1 & 3 & 1 & 1 & & 4m+5 \\ 1 & 3 & 0 & -5 & & -4 \\ 7 & 21 & 5 & -5 & & 5 \end{bmatrix}$ $\longrightarrow \begin{bmatrix} 1 & 3 & 1 & 1 & & 4m+5 \\ 0 & 0 & -1 & -6 & & -9-4m \\ 0 & 0 & -1 & -6 & & -9-4m \\ 0 & 0 & 0 & 0 & & -12-20m \end{bmatrix} = E.$	0,5
	Hệ phương trình có nghiệm khi và chỉ khi $r(A) = r(A^{bs}) = 2$.	0,25
	$\Leftrightarrow -12 - 20m = 0 \Leftrightarrow m = -\frac{3}{5}.$	0,25
(b)		0,75
	Thay $m = -\frac{3}{5}$ vào ma trận bậc thang E , thu được hệ phương trình $\begin{cases} x_1 + 3x_2 + x_3 + x_4 = \frac{13}{5} \\ -x_3 - 6x_4 = -\frac{33}{5}. \end{cases}$	0,25

Đặt $x_2 = s \in \mathbb{R}, x_4 = t \in \mathbb{R}$ và thay thế ngược, thu được hệ phương		
trình tương đương		
$\begin{cases} x_1 = -3s + 5t - 4 \\ x_2 = s \\ x_3 = -6t + \frac{33}{5} \\ x_4 = t. \end{cases}$	0.5	
$(x_4 = t.$	0,3	
Vậy tập nghiệm của hệ phương trình là		
$\left\{ \left(-3s+5t-4,s,-6t+\frac{33}{5},t\right) \mid s,t\in\mathbb{R} \right\}.$		
(Lưu ý: SV có thể có cách chọn biến tự do khác và tìm ra công thức nghiệm khác với đáp án)		

<u>Câu 3</u>		2,00 điểm	CĐR 1.1
(a)		0,75	
	Chứng minh X đóng kín với phép cộng.	0,25	
	Chứng minh X đóng kín với phép nhân vô hướng.	0,25	
	Nhận xét rằng $X \neq \emptyset$ và đóng kín với các phép toán nên nó là không gian con.	0,25	
(b)		1,25	
	X là được tham số hóa bởi s và t như sau:		
	$(s,t) \mapsto (2s + (9/2)t, s, t).$	0,25	
	Chọn $s = 1, t = 0$, thu được $\mathbf{u}_1 = (2, 1, 0)$; Chọn $s = 0, t = 1$, thu được $\mathbf{u}_2 = (9/2, 0, 1)$.	0,25	
	Chứng minh $U=\{\mathbf{u}_1,\mathbf{u}_2\}$ là một cơ sở của X và suy ra số chiều của X bằng 2 .	0,50	
	Tọa độ của \mathbf{v} là $(-4,2)$.	0,25	
Ghi chú	Cơ sở U không duy nhất. Do đó, thí sinh có thể chọn cơ sở khác. Khi đó, tọa độ của ${\bf v}$ cũng sẽ khác.		

<u>Câu 4</u>	2,00 điểm	CĐR 1.1
a)	0,5	

	Ma trận	
	$A = \begin{bmatrix} 1 & 0 & -2 \\ 1 & -2 & -2 \\ 0 & 0 & -2 \end{bmatrix}.$ Da thức đặc trưng $P(\lambda) = \det(A - \lambda I) = -\lambda^3 - 5\lambda^2 - 8\lambda - 4 = -(\lambda + 1)(\lambda + 2)^2.$	0,25
	Giá trị riêng $\lambda = -1$ (nghiệm đơn), $\lambda = -2$ (nghiệm kép)	0,25
b)		1,5
	Với $\lambda = -1$, các vector riêng là $(k, k, 0)$. Cho $k = 1$, ta có $u_1 = (1, 1, 0)$.	0,25
	Với $\lambda = -2$, các vector riêng là $(2s, t, s)$.	0,25
	Cho $s = 3$, $t = 7$, ta có $u_2 = (6,7,3)$.	0,25
	Cho $s = 1$, $t = 2$, ta có $u_3 = (2, 2, 1)$.	0,25
	Ma trận làm chéo hóa $P = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} = \begin{bmatrix} 1 & 6 & 2 \\ 1 & 7 & 2 \\ 0 & 3 & 1 \end{bmatrix}$.	0,25
	Ma trận chéo cần tìm là $P^{-1}AP = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$.	0,25

<u>Câu 5</u>		2,00 điểm	CĐR 1.1
	Tính được gradient của f tại điểm B : $\overrightarrow{grad} f(B) = \nabla f(B) = (2,3,6)$	0,5	
	Tính được: $\overrightarrow{BA} = (-2,0,2)$	0,5	
	Tính được vector \vec{v} (vector đơn vị của \overrightarrow{BA}): $\vec{v} = \frac{\overrightarrow{BA}}{ \overrightarrow{BA} } = \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$	0,5	
	Tính được đạo hàm theo hướng \overrightarrow{BA} của f tại B : $D_{v}f(B) \equiv \frac{\partial f}{\partial \vec{v}}(B) = \overrightarrow{grad} \ f(B) \cdot \vec{v} = 2\sqrt{2}$	0,5	

ĐÁP ÁN ĐỀ THI KẾT THÚC HỌC PHẦN

Học phần: Đại số tuyến tính Mã học phần: FFS703007

ĐỀ SỐ: 4

Đáp án gồm có.....trang

<u>Câu 1</u>		2,00 điểm	CĐR 1.1
	Chuyển về $(A-2I)X=B$	0,5	
	Tính nghịch đảo của $A-2I$ $ (A-2I)^{-1} = \begin{bmatrix} 7 & -2 \\ -3 & 1 \end{bmatrix} $	0,25	
	Tính X $X = (A - 2I)^{-1}B = \begin{bmatrix} 7 & -2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 5 \\ -2 & -2 \end{bmatrix}$	0,25	
	Khai triển theo hàng thứ năm $D = \begin{vmatrix} 1 & 3 & 5 & 3 \\ -2 & -7 & -4 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{vmatrix}$	0,25	
	Khai triển theo hàng thứ ba $D = \begin{vmatrix} 1 & 3 & 3 \\ -2 & -7 & 2 \\ 0 & 0 & 1 \end{vmatrix}$	0,25	
	Khai triển theo hàng thứ ba $D = \begin{vmatrix} 1 & 3 \\ -2 & -7 \end{vmatrix}$	0,25	

D = -1 0,25

<u>Câu 2</u>		2,00 điểm	CĐR 1.1
(a)		1,25	
	Ma trận hệ số bổ sung của hệ phương trình $A^{bs} = \begin{bmatrix} 4 & -24 & 3 & 0 & 1 \\ 1 & -6 & 1 & -4 & 5m+1 \\ 9 & -54 & 7 & -4 & -2 \end{bmatrix}.$	0,25	
	Dùng phương pháp khử Gauss (hoặc Gauss-Jordan) đưa A^{bs} về dạng bậc thang $E = \left[\begin{array}{ccc c} 1 & -6 & 1 & -4 & 5m+1 \\ 0 & 0 & -1 & 16 & -3-20m \\ 0 & 0 & 0 & 0 & -5-5m \end{array} \right].$	0,5	
	Hệ phương trình có nghiệm khi và chỉ khi $r(A) = r(A^{bs}) = 2$.	0,25	
	$\Leftrightarrow -5 - 5m = 0 \Leftrightarrow m = -1.$	0,25	
(b)		0,75	
	Thay $m=-1$ vào ma trận bậc thang E , thu được hệ phương trình $\begin{cases} x_1-6x_2+x_3-4x_4=-4\\ -x_3+16x_4=17. \end{cases}$	0,25	

Đặt $x_2=s\in\mathbb{R}, x_4=t\in\mathbb{R}$ và thay thế ngược, thu được hệ phương		
trình tương đương		
$\begin{cases} x_1 = 6s - 12t + 13 \\ x_2 = s \\ x_3 = 16t - 17 \\ x_4 = t. \end{cases}$	0,5	
Vậy tập nghiệm của hệ phương trình là		
$\{(6s-12t+13,s,16t-17,t)\mid s,t\in\mathbb{R}\}.$		
(Lưu ý: SV có thể có cách chọn biến tự do khác và tìm ra công thức nghiệm khác với đáp án)		

<u>Câu 3</u>		2,00 điểm	CĐR 1.1
(a)		0,75	
	Chứng minh X đóng kín với phép cộng.	0,25	
	Chứng minh X đóng kín với phép nhân vô hướng.	0,25	
	Nhận xét rằng $X \neq \emptyset$ và đóng kín với các phép toán nên nó là không gian con.	0,25	
(b)		1,25	
	X là được tham số hóa bởi s và t như sau: $(s,t) \mapsto ((8/19)s + (2/19)t, s, t).$	0,25	
	Chọn $s = 1, t = 0$, thu được $\mathbf{u}_1 = (8/19, 1, 0)$; Chọn $s = 0, t = 1$, thu được $\mathbf{u}_2 = (2/19, 0, 1)$.	0,25	
	Chứng minh $U = \{\mathbf{u}_1, \mathbf{u}_2\}$ là một cơ sở của X và suy ra số chiều của X bằng 2 .	0,50	
	Tọa độ của v là (4,3).	0,25	
Ghi chú	Cơ sở U không duy nhất. Do đó, thí sinh có thể chọn cơ sở khác. Khi đó, tọa độ của ${\bf v}$ cũng sẽ khác.		

<u>Câu 4</u>	2,00 điểm	CĐR 1.1
a)	0,5	

	Ma trận $A = \begin{bmatrix} 5 & -4 & 10 \\ 2 & -1 & 10 \\ 0 & 0 & 3 \end{bmatrix}.$ Đa thức đặc trưng $P(\lambda) = \det(A - \lambda I) = -\lambda^3 + 7\lambda^2 - 15\lambda + 9 = -(\lambda - 1)(\lambda - 3)^2.$	0,25
	Giá trị riêng $\lambda = 1$ (nghiệm đơn), $\lambda = 3$ (nghiệm kép)	0,25
b)		1,5
	Với $\lambda = 1$, các vector riêng là $(k, k, 0)$. Cho $k = -1$, ta có $u_1 = (-1, -1, 0)$.	0,25
	Với $\lambda = 1$, các vector riêng là $(2s - 5t, s, t)$.	0,25
	Cho $s = 3$, $t = 1$, ta có $u_2 = (1, 3, 1)$.	0,25
	Cho $s = 2$, $t = 1$, ta có $u_3 = (-1, 2, 1)$.	0,25
	Ma trận làm chéo hóa $P = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} = \begin{bmatrix} -1 & 1 & -1 \\ -1 & 3 & 2 \\ 0 & 1 & 1 \end{bmatrix}$.	0,25
	Ma trận chéo cần tìm là $P^{-1}AP = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.	0,25

<u>Câu 5</u>		2,00 điểm	CĐR 1.1
	Tính được gradient của f tại điểm A : $\overrightarrow{grad} f(A) = \nabla f(A) = (6,3,2)$	0,5	
	Tính được: $\overrightarrow{BA} = (-2,0,2)$	0,5	
	Tính được vector \vec{v} (vector đơn vị của \overrightarrow{BA}): $\vec{v} = \frac{\overrightarrow{BA}}{ \overrightarrow{BA} } = \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$	0,5	
	Tính được đạo hàm theo hướng \overrightarrow{BA} của f tại A : $D_{v}f(A) \equiv \frac{\partial f}{\partial \vec{v}}(A) = \overrightarrow{grad} \ f(A) \cdot \vec{v} = -2\sqrt{2}$	0,5	