Cheatsheet

Transformation of Random Variables

To find the PDF of a transformed random variable Y=g(X), where g is a differentiable and strictly monotone function, we use:

$$f_Y(y) = f_X\left(g^{-1}(y)
ight) \cdot \left|rac{d}{dy}g^{-1}(y)
ight|.$$

Here's the process:

- 1. Identify the function Y = g(X).
- 2. Solve for X in terms of Y to get $X = g^{-1}(Y)$.
- 3. Compute $\frac{d}{dy}g^{-1}(y)$.
- 4. Substitute $g^{-1}(y)$ into $f_X(x)$ and multiply by $\left|\frac{d}{dy}g^{-1}(y)\right|$.

Exercise Statement

Let $X \sim N(0,1)$, a standard normal random variable. Find the probability density function (PDF) of Y = |X|.

Step 1: Transformation of a Random Variable

Theory:

To find the PDF of Y=g(X), we use the following steps when g(X) is not strictly monotonic over the entire domain:

- 1. Divide the domain of \boldsymbol{X} into monotonic segments.
- 2. Compute the PDF of Y by summing contributions from all segments.

Here:

$$Y=|X|=egin{cases} X, & X\geq 0, \ -X, & X< 0. \end{cases}$$

The segments are:

- $X \ge 0$, where Y = X.
- X < 0, where Y = -X.

The corresponding inverse transformations are:

- X=Y for $X\geq 0$,
- X = -Y for X < 0.

Step 2: Derive the PDF of \boldsymbol{Y}

The PDF of Y is obtained by summing over both segments:

$$f_Y(y) = f_X(y) \cdot \left| rac{d}{dy} y
ight| + f_X(-y) \cdot \left| rac{d}{dy} (-y)
ight|,$$

where $f_X(x)$ is the standard normal PDF:

$$f_X(x)=rac{1}{\sqrt{2\pi}}e^{-x^2/2}.$$

Since $\frac{d}{dy}y=1$ and $\frac{d}{dy}(-y)=-1$, we have:

$$f_Y(y) = f_X(y) \cdot 1 + f_X(-y) \cdot 1.$$

Substitute $f_X(x)$ into the equation:

$$f_Y(y) = rac{1}{\sqrt{2\pi}} e^{-y^2/2} + rac{1}{\sqrt{2\pi}} e^{-(-y)^2/2}.$$

Since $(-y)^2 = y^2$:

$$f_Y(y) = rac{1}{\sqrt{2\pi}} e^{-y^2/2} + rac{1}{\sqrt{2\pi}} e^{-y^2/2}.$$

Combine the terms:

$$f_Y(y)=rac{2}{\sqrt{2\pi}}e^{-y^2/2},\quad y\geq 0.$$

Step 3: Domain of \boldsymbol{Y}

Since Y=|X|, and $X\sim N(0,1)$, $Y\geq 0$.

The PDF of Y is:

$$f_Y(y) = egin{cases} rac{2}{\sqrt{2\pi}} e^{-y^2/2}, & y \geq 0, \ 0, & y < 0. \end{cases}$$