Задание онлайн-хакатона «Оптимальный маршрут»

Формулировка

Реализовать программу решения транспортной задачи с применением технологий параллельного программирования на языке С#.

Определение транспортной задачи

Транспортная задача — это математическая задача по нахождению оптимального распределения поставок товара между пунктами отправления и назначения при заданных, численно выраженных затратах на перевозку. Транспортная задача может быть представлена в виде прямоугольной таблицы. Пример такой записи для конкретной транспортной задачи:

	Потребитель В ₁ , потребность 20 кг	Потребитель В ₂ , потребность 30 кг	Потребитель В ₃ , потребность 30 кг	Потребитель В ₄ , потребность 10 кг
Поставщик А ₁ , запас 30 кг	С ₁₁ =2 руб./кг	C ₁₂ =3 руб./кг	C ₁₃ =2 руб./кг	С ₁₄ =4 руб./кг
Поставщик А ₂ , запас 40 кг	С ₂₁ =3 руб./кг	C ₂₂ =2 руб./кг	С ₂₃ =5 руб./кг	С ₂₄ =1 руб./кг
Поставщик А ₃ , запас 20 кг	С ₃₁ =4 руб./кг	С ₃₂ =3 руб./кг	С ₃₃ =2 руб./кг	С ₃₄ =6 руб./кг

Цена перевозки (например, в рублях за 1 килограмм груза) C_{ij} записывается в ячейки таблицы на пересечении соответствующего потребителя и поставщика. Искомой величиной в задаче являются такие объемы перевозки X_{ij} от поставщиков к потребителям, чтобы минимизировать общие затраты на транспортировку ($i=\overline{1,N}; j=\overline{1,M}; N$ — число поставщиков, M — число потребителей).

Входные данные

Исходные данные для программы представлены в текстовом файле (*in.txt*) в виде *N*+3 строк целочисленных значений, разделенных пробелом, где:

- первая строка содержит *N* и *M*;
- вторая строка содержит запасы поставщиков $A_1, A_2, ..., A_N$;
- третья строка содержит потребности потребителей $B_1, B_2, ..., B_M$;
- оставшиеся строки представляют цены перевозок в формате:

$$C_{11} \ C_{12} \dots C_{1M}$$
 $C_{21} \ C_{22} \dots C_{2M}$
...
 $C_{N1} \ C_{N2} \dots C_{NM}$

Входной файл для вышеуказанной таблицы см. по ссылке.

Выходные данные

Выходные данные программы должны быть представлены в текстовом файле (*out.txt*) в виде *N*+1 строк целочисленных значений, разделенных пробелом, где:

- первая строка содержит суммарные затраты на перевозки товаров;
- остальные строки представляют объемы перевозок в формате:

$$X_{11} \ X_{12} \dots X_{1M}$$
 $X_{21} \ X_{22} \dots X_{2M}$
...
 $X_{N1} \ X_{N2} \dots X_{NM}$

Пример такого выходного файла для вышеуказанной таблицы см. по ссылке.

Тестирование программ

Для тестирования будет применяться библиотека BenchmarkDotNet и целевая платформа с характеристиками:

- 2 × Intel Xeon CPU E5-2640 0 2.50GHz, 24 логических, 12 физических ядра;
- ОП: DDR3 128 GBytes с 4-х канальным режимом работы;
- OC: Windows 10 (10.0.14393.2248/1607/AnniversaryUpdate/Redstone1),
- Runtime=.NET 9.0.0, X64 RyuJIT AVX.

Более подробные характеристики узла см. тут.

Критерии оценивания

- Скорость достижения результата;
- Минимальные затраты на перевозки товаров.