Arbres Algorithmique 1 - 2019-2020

Stéphane Grandcolas

Aix-Marseille Université

2019-2020

- définitions, vocabulaire,
- arbres binaires,
- ▶ abres binaires de recherche,

Arbre syntaxique représentant l'exp. arith. $\frac{x}{(x-1)} \times (78+y)$

Un arbre généalogique descendant

Un arbre lexicographique, ou arbre en parties communes

main male mie mite pic pile pis port porte

Arbres: définition 1

Un arbre est un ensemble organisé de noeuds :

- chaque noeud a un père et un seul,
- excepté un noeud, la racine, qui n'a pas de père.

Les fils d'un noeud p sont les noeuds dont le père est p

Les feuilles d'un arbre sont les noeuds qui n'ont pas de fils

Arbres: définition 2 (récursive)

Un arbre est constitué

- ▶ d'un noeud p, sa racine,
- ▶ d'une suite de sous-arbres $(a_1, a_2, ..., a_k)$.

Les racines des arbres a_1, a_2, \ldots, a_k sont les fils de p

Un arbre est un graphe connexe et sans cycle.

Un graphe avec des cycles

Un graphe non connexe

Un graphe non connexe

Graphe connexe et sans cycle : nb arêtes = nb sommets-1

Arbres: vocabulaire

Arbres binaires

Chaque noeud a au plus 2 fils : le fils gauche et le fils droit

nombre de noeuds

Arbre binaire complet:

- ightharpoonup à la profondeur $p:2^p$ noeuds
- ▶ nombre total de noeuds : $\sum_{i=0}^{n-1} 2^i = 2^h 1$

Un arbre binaire de hauteur h contient au plus $2^h - 1$ noeuds

(hauteur = nombre de niveaux)

Arbres binaires : représentation

Arbre vide : □

Arbre non vide : $p = \langle x, G, D \rangle$

- x : information, étiquette,
- G = filsG(p): sous-arbre gauche de p,
- ▶ D = filsD(p) : sous-arbre droit de p,

$$\langle \times, \langle 78, \square, \square \rangle, \langle +, \langle x, \square, \square \rangle, \langle 6, \square, \square \rangle \rangle \rangle$$

```
public class Node <T> {
   T val;
   Node filsG;
   Node filsD;

// constructeurs, getters, setters
...
}
```

On utilisera null pour indiquer qu'il n'y a aucun noeud

```
public class Arbre <T> {
   private Node racine;
  public Arbre() {
     this.racine = null;
  boolean estVide() {
     return (this.racine == null):
```

Encapsulation: Arbre connaît sa racine

Arbres binaires : parcours en profondeur

Principe : parcourir récursivement le fils gauche puis le fils droit

```
static public void parcours (Node node) {
  if (node != null) {
     // traitement avant
     parcours(node.filsG);
     // traitement entre les deux
         parcours
     parcours(node.filsD);
     // traitement apres
```

Arbres binaires : parcours préfixe

```
static public void parcours(Node
    node) {
    if (node != null) {
        node.printNode();
        parcours(node.filsG);
        parcours(node.filsD);
    }
}
```

```
1
1
1
2
1
1
1
7
6
6
82
```

12 1 91 67 7 82 61

Soit a un arbre de n noeuds : $hauteur(a) \ge \log_2 n$

Soit a un arbre de n noeuds : $hauteur(a) \ge \log_2 n$

Preuve. Par récurrence en utilisant la propriété

$$h(a) = 1 + \max(h(a_1),h(a_2))$$

Soit a un arbre de n noeuds : hauteur(a) $> \log_2 n$

Preuve. Par récurrence en utilisant la propriété

$$h(a) = 1 + \max(h(a_1), h(a_2))$$

Supposons $n_1 \ge n_2$, et donc $n_1 \ge n/2$.

Hypothèse : $h(a_1) \ge \log_2 n_1$

Soit a un arbre de n noeuds : $hauteur(a) \ge \log_2 n$

Preuve. Par récurrence en utilisant la propriété

$$h(a) = 1 + \max(h(a_1), h(a_2))$$

Supposons $n_1 \ge n_2$, et donc $n_1 \ge n/2$.

Hypothèse: $h(a_1) \ge \log_2 n_1$

donc $h(a_1) \ge \log_2 (n/2) = \log_2 n - 1$

Soit a un arbre de n noeuds : hauteur(a) $> \log_2 n$

Preuve. Par récurrence en utilisant la propriété

$$h(a) = 1 + \max(h(a_1), h(a_2))$$

Supposons $n_1 \ge n_2$, et donc $n_1 \ge n/2$.

Hypothèse : $h(a_1) \ge \log_2 n_1$

donc $h(a_1) \ge \log_2 (n/2) = \log_2 n - 1$

donc $h(a) > 1 + h(a_1) > 1 + \log_2 n - 1$,

Soit a un arbre de n noeuds : hauteur(a) $> \log_2 n$

Preuve. Par récurrence en utilisant la propriété

$$h(a) = 1 + \max(h(a_1), h(a_2))$$

Supposons $n_1 \ge n_2$, et donc $n_1 \ge n/2$.

Hypothèse : $h(a_1) \ge \log_2 n_1$

donc $h(a_1) \ge \log_2 (n/2) = \log_2 n - 1$

donc $h(a) > 1 + h(a_1) > 1 + \log_2 n - 1$,

Conclusion: $h(a) \ge \log_2 n$

Soit a un arbre de n noeuds : $hauteur(a) \ge \log_2 n$

Preuve. Par récurrence en utilisant la propriété

$$h(a) = 1 + \max(h(a_1), h(a_2))$$

Supposons $n_1 \ge n_2$, et donc $n_1 \ge n/2$.

Hypothèse : $h(a_1) \ge \log_2 n_1$

donc $h(a_1) \ge \log_2 (n/2) = \log_2 n - 1$

donc $h(a) \ge 1 + h(a_1) \ge 1 + \log_2 n - 1$,

Conclusion: $h(a) \ge \log_2 n$

C'est aussi vrai si on considère *n* le nombre de feuilles.

Arbres binaires de recherche

Un dictionnaire est un ensemble dynamique d'objets comparables qui supporte les opérations suivantes :

insérer : ajout d'une nouvelle valeur

rechercher: recherche d'une valeur

supprimer : suppression d'une valeur donnée

Exemples: liste, tableau, arbre binaire de recherche,...

Objectifs: être efficace, utiliser peu d'espace

Arbres binaires de recherche

Soit E un ensemble muni d'une relation d'ordre total

Un arbre binaire étiqueté avec des éléments de *E* est un arbre binaire de recherche s'il satisfait l'ordre infixe,

i.e. pour tout noeud $p = \langle x, G, D \rangle$

- ▶ pour tout noeud $q \in G$, val(q) < x,
- ▶ pour tout noeud $q \in D$, val(q) > x.

Les éléments figurant dans l'arbre sont donc tous différents

Arbres binaires de recherche

Arbres binaires de recherche : parcours infixé

Le parcours infixé de l'arbre produit la suite ordonnée des éléments

7 8 9 16 17 21 22 23 25 26 27 28 29 30 32 34 35 36 37 ...

ABR: Recherche d'un élément

Supposons $v \in a$:

- ▶ si e < val(a) alors $e \in filsG(a)$
- ▶ $si e > val(a) alors e \in filsD(a)$

recherche de la valeur 27

ABR: Recherche d'un élément

```
public static <T extends Comparable<T>> boolean
    contains(Node<T> node, T element) {
   if (node == null)
      return false:
   if (element.equals(node.getVal()))
      return true;
   if (element.compareTo(node.getVal()) < 0)
     return contains (node. filsG, element);
   return contains (node. filsD, element);
```

ABR : ajout d'un élément (insertion)

Insertion de la valeur 31

ABR : ajout d'un élément (insertion)

Insertion de la valeur 31

ABR : ajout d'un élément (insertion)

```
public static <T extends Comparable<T>> Node add(T e,
    Node<T> node) {
        if (node == null)
            return new Node<T>(e, null, null);
        if (node.val.compareTo(e) > 0) {
            node. filsG = add(e, node. filsG);
        else {
            node. filsD = add(e, node. filsD);
        return node;
```

Arbres binaires de recherche : successeur

Arbres binaires de recherche : successeur

32 n'a pas de fils droit : son successeur est 34, premier ascendant de 32 tel que 32 figure dans son sous—arbre gauche

Cas 1 : le noeud n'a pas de fils : décrochage

Cas 1 : le noeud n'a pas de fils : décrochage

Cas 2 : le noeud a un seul fils : décrochage

Cas 2 : le noeud a un seul fils : décrochage

Cas 2 : le noeud a un seul fils : décrochage

Cas 3: le noeud a deux fils

Cas 3 (deux fils): copie du plus petit des plus grands

Cas 3 (deux fils): copie du plus petit des plus grands

Cas 3 (deux fils) : décrochage

Cas 3 (deux fils) : décrochage


```
public static <T extends Comparable<T>>
                      Node remove(T e, Node<T> node) {
    if (node.val.compareTo(e) > 0) // e est dans le filsG
         node.filsG = remove(e, node.filsG);
    else if (node.val.compareTo(e) < 0)
         node.filsD = remove(e, node.filsD);
    else if (node.filsG == null)
         return (node.filsD;
    else if (node.filsD == null)
         return (node.filsG;
    else {
         node.val = node.filsD.getMin();
         node.filsD = removeLeftmostNode(node.filsD);
    return node:
```

```
public static <T extends Comparable<T>>
                      Node remove(T e, Node<T> node) {
    if (node.val.compareTo(e) > 0)
         node.filsG = remove(e, node.filsG);
    else if (node.val.compareTo(e) < 0) // e est dans le filsD
         node.filsD = remove(e, node.filsD);
    else if (node.filsG == null)
         return (node.filsD;
    else if (node.filsD == null)
         return (node.filsG;
    else {
         node.val = node.filsD.getMin();
         node.filsD = removeLeftmostNode(node.filsD);
    return node:
```

```
public static <T extends Comparable<T>>
                      Node remove(T e, Node<T> node) {
    if (node.val.compareTo(e) > 0)
         node.filsG = remove(e, node.filsG);
    else if (node.val.compareTo(e) < 0)
         node.filsD = remove(e, node.filsD);
    else if (node.filsG == null) // node.val = e, pas de filsG
         return node.filsD:
    else if (node.filsD == null)
         return (node.filsG;
    else {
         node.val = node.filsD.getMin();
         node.filsD = removeLeftmostNode(node.filsD);
    return node;
```

```
public static <T extends Comparable<T>>
                      Node remove(T e, Node<T> node) {
    if (node.val.compareTo(e) > 0)
         node.filsG = remove(e, node.filsG);
    else if (node.val.compareTo(e) < 0)
         node.filsD = remove(e, node.filsD);
    else if (node.filsG == null)
         return node.filsD:
    else if (node.filsD == null) // node.val = e, pas de filsD
         return node.filsG;
    else {
         node.val = node.filsD.getMin();
         node.filsD = removeLeftmostNode(node.filsD);
    return node:
```

```
public static <T extends Comparable<T>>
                       Node remove(T e, Node<T> node) {
    if (node.val.compareTo(e) > 0)
         node.filsG = remove(e, node.filsG);
    else if (node.val.compareTo(e) < 0)
         node.filsD = remove(e, node.filsD);
    else if (node.filsG == null)
         return node.filsD:
    else if (node.filsD == null)
         return node.filsG;
     else {
                      // node.val = e, deux fils
         node.val = node.filsD.getMin();
         node.filsD = removeLeftmostNode(node.filsD);
    return node;
```

```
public static Node removeLeftmostNode(Node root) {
   Node pere = null;
   Node p = root:
   while (p. filsG != null) {
       pere = p;
       p = p. filsG;
   if (pere == null)
       return root. filsD;
   pere. filsG = p. filsD;
   return root;
```

Arbres binaires de recherche : coûts

Structure	insertion	recherche	suppression
tableau	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$
tableau trié	$\mathcal{O}(n)$	$\mathcal{O}(\log n)$	$\mathcal{O}(n)$
liste	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$
ABR	$\mathcal{O}(h)$	$\mathcal{O}(\mathit{h})$	$\mathcal{O}(h)$

où h est la hauteur de l'arbre :

 $\log n$ dans le meilleur des cas, n dans le pire des cas