

## Guía de contenidos Primero Medio NM

| Printero iviedio Nivi                                                                                                                                                                     |                                             |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--|--|--|--|
| Nombre:                                                                                                                                                                                   |                                             |  |  |  |  |
| Productos n                                                                                                                                                                               | otables                                     |  |  |  |  |
| 1. Cuadrado de binomio                                                                                                                                                                    |                                             |  |  |  |  |
| El cuadrado de binomio es un producto notable<br>en el plano, que se basa en el cálculo de área de<br>Consiste en considerar el área de cuadrados de l<br>medidas generan en el cuadrado. | cuadrados.                                  |  |  |  |  |
| Consideremos dos trazos "a" y "b"  a                                                                                                                                                      | b                                           |  |  |  |  |
| Con ellos construyamos un trazo de longitud " $a$ juntándolos, de la siguiente manera                                                                                                     | + $b$ ", esto se consigue simplemente $a+b$ |  |  |  |  |
| a                                                                                                                                                                                         | b                                           |  |  |  |  |
| Con éste nuevo segmento, construyamos un cua $a$                                                                                                                                          | adrado:<br>+ <i>b</i>                       |  |  |  |  |
| a + b                                                                                                                                                                                     |                                             |  |  |  |  |



b

а

| 1. | Escriba la expresión que representa el área del cuadrado: = | ( | $)^{2}$ |
|----|-------------------------------------------------------------|---|---------|

Esta expresión es conocida como "cuadrado de binomio", ¿Qué características observas en la expresión?

Si extendemos los extremos de los trazos "a" y "b", éstos dividen al cuadrado en cuatro áreas menores: dos cuadrados, uno de lado "a" y otro de lado "b", y dos rectángulos de ancho "a" y largo "b"



2. **Calcula** el área de los sectores parciales formados dentro del cuadrado.

ÁREA:

a



ÁREA:

3. Por lo que si sumamos la áreas parciales del cuadrado, su área total sería:

Por lo tanto, considerando la respuesta obtenida en la pregunta 1 y 3 podemos decir que:

( ) 2 = \_\_\_\_ + \_\_\_\_ + \_\_\_\_

ÁREA:



Algebraicamente, ¿Se cumple esta igualdad?

Prueba multiplicando las siguientes expresiones como aprendiste el año pasado, termino a termino del binomio por binomio, y luego responde las preguntas:

| $(x+5)^2 =$               | $(x+9)^2 = $ |              |  |
|---------------------------|--------------|--------------|--|
| Desarrollo:               | Desarrollo:  | Desarrollo:  |  |
| (x+5)(x+5) = (x+9)(x+9) = |              | (x+y)(x+y) = |  |
| +=                        | ++=          | ++=          |  |
| + 2·=                     | + 2·=        | + 2·=        |  |
| +=                        | +=           | +=           |  |
|                           |              |              |  |

## Responde:

- a. ¿Cuántos términos tiene la expresión final?
- b. ¿Cuál la clasificación de una expresión algebraica con esta cantidad de términos?
- c. ¿De qué grado es el polinomio obtenido en el desarrollo?
- d. ¿Qué relación tiene el primer término con el ejercicio inicial?
- e. ¿Qué relación tiene el **tercer término** con el ejercicio inicial?
- f. ¿Qué relación tiene el **termino central** con el ejercicio inicial?
- g. Escribe una **expresión algebraica** que generalice estas relaciones presentes en el **cuadrado de binomio**.
- h. Aplica la expresión algebraica hallada en el ejercicio **anterior** para resolver los siguientes cuadrados de binomio:

i. 
$$(5x + 3)^2 =$$

ii. 
$$(7x^9 + 5y)^2 =$$

iii. 
$$(3x^9 + 2x^4)^2 =$$

- i. ¿Es **correcto** afirmar que  $(x + y)^2 = x^2 + y^2$ ? En el caso de ser falso, **justifique** utilizando un **contraejemplo**.
- j. ¿Es posible escribir una expresión algebraica que generalice un cuadrado de binomio de la forma  $(a b)^2$ ? ¿Qué diferencias y similitudes tiene con  $(a + b)^2$ ?



Ejercicios: Resuelve los siguientes cuadrados de binomio utilizando la fórmula.

a. 
$$(x+y)^2 =$$
b.  $(p-q)^2 =$ 
c.  $(2p+q)^2 =$ 
d.  $(3a+b)^2 =$ 
e.  $(2a-3b)^2 =$ 
f.  $(x+1)^2 =$ 
g.  $(a-6)^2 =$ 
h.  $(x+9)^2 =$ 
i.  $(3p-1)^2 =$ 
j.  $(x+5)^2 =$ 
l.  $(2m-1)^2 =$ 
m.  $(6x^2y+2x)^2 =$ 
n.  $(4pq-3q)^2 =$ 
o.  $(9x^2-7y^2)^2 =$ 
p.  $(8a^2b+7ab^6)^2 =$ 
g.  $(15x^2y-3xy^2z^6)^2 =$ 
r.  $(2a-3b)^2+(3a-5b)^2 =$ 
s.  $(11x-5y)^2-(13x+3y)^2+$ 
 $(x-2y)^2 =$ 
t.  $(\frac{a}{2}+2b)^2+(2a-\frac{b}{2})^2 =$ 
u.  $(3a-\frac{b}{5})^2 =$ 
v.  $(0,1a^2-0,2abc)^2 =$ 
w.  $(0,1a^2-0,2abc)^2 =$ 
v.  $(1,5xy^2+2,5x^2y)^2 =$ 
v.  $(1,5xy^2+2,5x^2y)^2 =$ 
v.  $(1,5xy^2+2,5x^2y)^2 =$ 
v.  $(0,1a^2-0,2abc)^2 =$ 
v.  $(1,5xy^2+2,5x^2y)^2 =$ 
v.  $(x-5)^2 =$ 
aa.  $(x+7)^2 =$ 
bb.  $(x-7)^2 =$ 
v.  $(2x+7)^2 =$ 
v.

## Pauta:

| a. $x^2 + 2xy + y^2$                           | b. $p^2 - 2pq + q^2$                                               | c. $4p^2 + 4pq + q^2$            | d. $9a^2 + 6ab + b^2$                 |
|------------------------------------------------|--------------------------------------------------------------------|----------------------------------|---------------------------------------|
| e. $4a^2 - 12ab + 9b^2$                        | f. $x^2 + 2x + 1$                                                  | g. $a^2 - 12a + 36$              | h. $x^2 + 18x + 81$                   |
| i. $9p^2 - 6p + 1$                             | j. $x^2 + 10x + 25$                                                | k. $36x^260xy + 25y^2$           | 1. $4m^2 - 4m + 1$                    |
| m. $36x^4y^2 + 24x^3y + 4x^2$                  | $n.16p^2q^2 - 24pq^2 + 9q^2$                                       | o. $81x^4 - 126x^2y^2 + 49y^4$   | p. $64a^4b^2 + 112a^3b^7 +$           |
|                                                |                                                                    |                                  | $49a^2b^{12}$                         |
| q. $225x^4y^2 - 90x^3y^3z^6 +$                 | $r. 13a^2 - 42ab + 34b^2$                                          | $s47x^2 - 192xy + 20y^2$         | $t.\frac{17}{4}a^2 + \frac{17}{4}b^2$ |
| $9x^2y^4z^{12}$                                |                                                                    |                                  | 4 4                                   |
| u. $9a^2 - \frac{6ab}{5} + \frac{b^2}{25}$     | $v \cdot \frac{4}{9}x^4 - \frac{12}{15}x^2yz + \frac{9}{25}y^2z^2$ | w. $0.01a^4 - 0.04a^3bc +$       | $x. 	 2,25x^2y^4 + 7,5x^3y^3 +$       |
| 5 25                                           | ) 15 25                                                            | $0.04a^2b^2c^2$                  | $6,25x^4y^2$                          |
| y. $\frac{9}{16}a^4b^6 - \frac{9}{10}a^3b^9 +$ | $z. x^2 - 10x + 25$                                                | aa. $x^2 + 14x + 49$             | bb. $x^2 - 14x + 49$                  |
| $\frac{9}{25}a^2b^{12}$                        |                                                                    |                                  |                                       |
| cc. $81x^{10} + 90x^5y^7z^9 +$                 | dd. $144x^2 - 168xy +$                                             | ee. $4x^2 + 28x^{16} + 49x^{30}$ | ff. $x^2 + 20x + 100$                 |
| $25y^{14}z^{18}$                               | $49y^2$                                                            |                                  |                                       |
| $gg. a^2 + 18ab + 81b^2$                       | hh. $a^2b^2c^2 - 2abcxyz +$                                        | ii. $9y^2 - 24x^2y^{13} +$       | $jj. x^2 - 18x^6 + 81x^{10}$          |
|                                                | $x^2y^2z^2$                                                        | $16x^4y^{24}$                    |                                       |
| $kk. \ 4x^6 + 36x^{11} + 81x^{16}$             | 11. $10 + 2\sqrt{21}$                                              | mm. $187 - 20\sqrt{21}$          | nn. $172 + 70\sqrt{3}$                |
| oo. $13 + 4\sqrt{3}$                           | pp. $49m^3n^2\sqrt[3]{mn^2}$ –                                     |                                  |                                       |
|                                                | $28m^4n^2 + 4m^4n\sqrt[3]{m^2n}$                                   |                                  |                                       |