

CLAIMS

What is claimed is:

- 1 1. An electronic device comprising:
 - 2 a housing having a plurality of housing segments;
 - 3 a plurality of modules, each module being encased in one of the housing segments;
 - 4 a sensor to detect an orientation of the electronic device; and
 - 5 a selection mechanism to automatically select at least one, but not all, of the plurality of
 - 6 modules to be active, based on the detected orientation of the electronic device.
- 1 2. The electronic device of claim 1, wherein each of the plurality of
- 2 modules has a set of user-interface features that can be at least partially
- 3 controlled by the selection mechanism, and wherein the selection mechanism
- 4 enables the set of user-interface features of the at least one selected module to
- 5 be operational.
- 1 3. The electronic device of claim 1, wherein the housing has a first housing
- 2 segment and a second housing segment, the first housing segment having a first
- 3 exterior panel that provides a first set of user-interface features, the second
- 4 housing segment having a second exterior panel that provides a second set of
- 5 user-interface features, and wherein the selection mechanism selects one of the
- 6 first and second set of user-interface features to be operational.
- 1 4. The electronic device of claim 3, wherein the first exterior panel opposes
- 2 the second exterior panel.

1 5. The electronic device of claim 3, wherein the sensor determines whether
2 the first exterior panel or the second exterior panel is positioned downward.

1 6. The electronic device of claim 5, wherein the sensor detects a direction
2 of gravity.

1 7. The electronic device of claim 6, wherein the sensor is an accelerometer.

1 8. The electronic device of claim 3, wherein the first housing segment is
2 detachably coupled to the second housing segment.

1 9. The electronic device of claim 1, wherein the selection mechanism is a
2 processor configured to enable each of the modules individually.

1 10. The electronic device of claim 3, wherein the first set of user-interface
2 features includes a display and a plurality of actuatable surfaces .

1 11. The electronic device of claim 10, wherein the second set of user-
2 interface features includes a display and a plurality of actuatable surfaces .

1 12. The electronic device of claim 1, wherein the selection mechanism
2 maintains one or more non-selected modules in an inactive state in response to
3 the detected orientation.

1 13. The electronic device of claim 1, wherein the selection mechanism
2 detects a new orientation, and selects a different module in response to the
3 detected new orientation.

1 14. A method for configuring an electronic device for use, the method
2 comprising:

3 detecting an orientation of the electronic device; and

4 selecting a first module from a plurality of modules to be operational based on
5 the detected orientation of the electronic device.

1 15. The method of claim 14, wherein detecting an orientation of the
2 electronic device includes detecting a direction of gravity.

1 16. The method of claim 14, wherein detecting an orientation of the
2 electronic device is automatically in response to activating the electronic device.

1 17. The method of claim 14, wherein detecting an orientation of the
2 electronic device includes detecting a downward facing module, and selecting
3 one module from a plurality of modules includes selecting an upward facing
4 module that opposes the downward facing module.

1 18. The method of claim 14, further comprising maintaining a non-selected
2 module in a non-active state until a new orientation is selected.

1 19. The method of claim 14, further comprising detecting a change in the
2 orientation of the electronic device to a new orientation.

1 20. The method of claim 19, further comprising selecting a second module different than
2 the first module in response to detecting a change in the orientation of the electronic device.

1 21. The method of claim 19, further comprising making the first module non-active in
2 response to detecting a change in the orientation of the electronic device.

1 22. An electronic device comprising:

2 a first module;

3 a second module coupled to the first module; and

4 an orientation detection mechanism to select one of the first module and second modules
5 over the other of the first and second modules based on an orientation of the
6 electronic device.

1 23. The electronic device of claim 22, wherein the orientation detection mechanism
2 includes a sensor that detects the orientation.

1 24. The electronic device of claim 23, wherein the orientation detection mechanism
2 includes a processor that activates the selected module.

1 25. The electronic device of claim 23, wherein the orientation detection mechanism
2 includes a processor that deactivates the selected module.

1 26. An electronic device comprising:

2 a first set of user-interface features;

3 a second set of user-interface features;

4 a detection mechanism to detect an orientation of the electronic device; and

5 a selection mechanism to automatically select one of the first or second set of user-interface
6 features, based on the detected orientation of the electronic device.

1 27. The electronic device of claim 26, wherein the first set of user-interface features and
2 the second set of user-interface features each include user-interface features selected from the
3 group consisting of a display, a button, a contact-sensitive display, pre-programmed input
4 mechanisms appearing on the contact sensitive display, a speaker, and a microphone.

1 28. The electronic device of claim 26, wherein the selection mechanism is a component
2 selected from a group of components consisting of a processor, a display driver, and a switch.

1 29. The electronic device of claim 26, wherein the detection mechanism is a sensor
2 capable of detecting gravity.

1 30. The electronic device of claim 26, wherein the first set of user-interface features is
2 made available on a first panel, and wherein the second set of user-interface features is made
3 available on a second panel that opposes the first panel.