

Open Science and Open Innovation for Medical Imaging Al

Stephen R. Aylward, Ph.D.
Chair of MONAI External Advisory Board
Senior Directory of Strategic Initiatives, Kitware

Why is Open Science Important?

"DOUBT EVERYTHING and only believe in those things that are evidently true (reproducible)."

-- Descartes 1637
Discourse on the (Scientific) Method

Failure of Open Science

Nature (March 2012)

- -- Glenn Begley: Head of cancer research at pharma giant Amgen
- -- Lee M. Ellis: Cancer researcher at the University of Texas
 - Identified 53 'landmark' publications.
 - Sought to double-check the findings before building on them for drug development.
 - Result: 47 of the 53 could not be replicated.

What is open science?

"Reproducible Science"

Write open-source code, share data, and publish so that others can fully replicate your work.

Why is deep learning succeeding?

Performance

Open Science

-- Forbes.com

Deep Learning Success: Performance

< Left as an exercise for the audience >

Deep Learning Success: Open Science

- Open science is pervasive in deep learning
 - Open access publications: arXiv
 - Open access data: TCIA/IDC, ImageNet, DICOM, FIHR
 - Open access algorithms: Open source: PyTorch, MONAI

MONAl's open-source code

- "Code for others": commented, well organized, ...
 - Readable code
 - Keep it simple
- OSF-approved license: Apache 2.0
 - Free for academic and commercial use
- Maximize impact

Project MONAI

Open Science + Open Innovation

... IS NOT ...

... IS ...

MONA WKitware

... IS ...

 "a distributed innovation process based on purposively managed knowledge flows across organizational boundaries, using pecuniary and non-pecuniary mechanisms in line with the organization's business model"

-- Chesbrough, H., & Bogers, M. 2014

pecuniary = monetary = money

Project MONAI

Goal: Accelerate the pace of research and development by providing a common <u>software</u> foundation and a vibrant <u>community</u> for medical imaging deep learning.

- Began as a collaboration between Nvidia and King's College London
 - Prerna Dogra (Nvidia) and Jorge Cardoso (KCL)
- Freely available (Open-source code)
- Provides easy access to key public datasets (Open-access data)
- Community-supported (Open innovation)
- Optimized for medical imaging and reproducibility
- Reference implementation of best practices

Project MONAI

Open-Source Software

- MONAI Label
- MONAl Deploy
- MONAI Stream
- OMONAI <insert your idea here>

Open-Access Data

- dataset(...)
- MedNIST, Decathlon, ...
- NIH TCIA / IDC
- <insert your data here>

Open Science + Open Innovation

NiftyNet (KCL)

DeepNeuro (Harvard) DLTK (ICL)

Clara Train (NVIDIA)

- Incompatible interfaces and formats
- Extended learning curves

Why is MONAl Needed?

- Biomedical applications have specific requirements
- Image modalities require specific processing methods: MRI, CT, etc.
- Image formats require special support: DICOM, NIfTI, etc.
- Image meta-data must be considered: voxel spacing, HU, etc.
- Certain network architectures are designed for, or are highly suitable for,
 biomedical applications
- Problem prioritization is domain specific: sample size limitations, annotation uncertainties, etc.

Why is MONAl Needed?

Reproducibility is vital to clinical decision support

- Reduce re-implementation
- Provide baseline implementations
- Demonstrate best practices
- Facilitates open innovation

How Does MONAL Address These Needs?

- MONAI provides flexible yet <u>reproducible</u> Pytorch-compatible methods
 - Deterministic and validated modules
 - Medical data I/O
 - Data transforms to process, regularize, and augment image data
 - Metrics, Loss Functions
 - Checkpointing
 - Standardized networks and training paradigms
 - Support for multi-GPU and multi-node multi-GPU training
 - Tutorials and documentation: Jupyter Notebooks and Ignite Workflows

MONAI Advisory Board

Stephen Aylward Chair of Advisory Board

Sebastien Ourselin

Klaus Maier-Hein

Jayashree Kalpathy-Cramer

Jorge Cardoso

Daniel Rubin

Kevin Zhou

Nassir Navab

Andrew Feng

Nasir Rajpoot

Justin Kirby

Keyvan Farahani

Working Groups of MONAI

Liaison with the community:

Recommend policies and priorities to development team

- 1. IMAGING I/O Stephen Aylward (Kitware)
- 2. DATA DIVERSITY Brad Genereaux (Nvidia)
- 3. CHALLENGES Lena Maier-Hein (DKFZ)
- 4. TRANSFORMATIONS Jorge Cordoso (KCL)
- 5. FEDERATED LEARNING Jayashree Kalapathy (MGH) and Daniel Rubin (Stanford)
- 6. ADVANCED RESEARCH Paul Jaeger (DKFZ)
- 7. INTEGRATION AND DEPLOYMENT David Bericat (Nvidia)
- 8. PATHOLOGY Nasir Rajpoot (Warwick)
- 9. COMMUNITY ADOPTION Prerna Dogra (Nvidia)

MONAI is Open Source

Open Innovation

Novograd optimizer

LearningRateFinder

Unet

DynUNet

DenseNet

GAN

AHNet

Vnet

SENet / SEResNet, SEResNeXt

SegResNet

EfficientNet

Attention-based networks

Sliding window inference

Mean Dice

AUC

Confusion Matrices

Hasudorff Distance

Surface Distance

Occlusion Sensitivity

DICOM

NIFTI

NRRD

PNG

JPEG

20+ other file formats

Checkpointing for Transfer Learning

Multi-GPU, Multi-Node support

CUDA Optimized

MONAI Research Repository

* COPLE-Net, LAMP, ...

MONAI Data Portal

* MedNIST, Decathlon, TCIA

Pre- and Post-processing filters

DeepGrow

Nvidia = First Commercial Adopter: Nvidia CLARA

Encapsulating a COVID-19 Algorithm into an Integrated AI Application

Nvidia CLARA PRE-TRAINED MODELS

Packaged as Medical Models ARchive (MMARs)

Liver Tumor Segmentation

Lung Segmentation

Chest CT Classification

Brain Tumor Segmentation

Model	Medical Task	Data	Network
Brain tumor segmentation	3D Segmentation	MR (BraTS 2018)	Res-UNet
Liver and tumor segmentation	3D Segmentation	CT (medical Decath)	Anisotropic Hybrid Network (AH-Net)
COVID-19 Lung segmentation	3D Segmentation	CT NIH + global	Network (All-Net)
COVID-19 Chest CT classification	3D Classification	NIH dataset	DenseNet121
Chest X-ray classification	2D Classification	PLCO MONA	₩ Kitware

Conclusion

Stephen R. Aylward, Ph.D.

Chair of MONAI External Advisory Board

Senior Directory of Strategic Initiatives, Kitware