Γ Ц Φ О. 9 КЛАСС. 2014/15.

39	Легкий жгут жесткости k прикреплен к потолку, а на его конце висят два жука (см. рис.). В таком положении жгут равномерно растянут и его длина от потолка до жуков равна l . Потом один жук начинает карабкаться по жгуту вверх с постоянной сокростью v относительно жгута. Как и с какой скоростью относительно потолка будет двигаться второй жук, который продолжает держаться за конец жгута. Считать, что каждый жук хватается за жгут в одной точке. Масса обоих жуков равна m , их размерами пренебречь. Ускорение свободного падения равно g .
40	Два одинаковых проводящих проволочных кольца радиуса a сварили в противоположных точках О и О' как указано на рисунке. Сопротивление единицы длины проволоки равно λ . Дуги АО и ВО равны, их длина l . Найти зависимость сопротивления между точками А и В от величины l .
41	Поршень массы $M=2$ кг может с трением скользить внутри вертикальной неподвижной трубы. Сначала поршень прикрепили внутри трубы к потолку пружиной жесткостью $k_1=20~{\rm H/m}$, длина которой в нерастянутом состоянии $l_1=60~{\rm cm}$. Поршень расположили на уровне середины трубы, отпустили, и он остался неподвижен. Затем опыт повторили, поменяв пружинужесткость новой пружины стала $k_2=10~{\rm H/m}$, а длина в нерастянутом состоянии $l_2=20~{\rm cm}$. Удивительно, но поршень в середине трубы снова остался неподвижен. При каких значениях силы трения поршня о трубу это возможно? Влиянием воздуха пренебречь, $g=10~{\rm m/c^2}$.
43	Велосипед с колесами, имеющими форму равностороннего треугольника, за время t прошел по дороге достаточно большое расстояние s . Найдите среднее значение модуля скорости точки, расположенной в вершине колеса. Колеса не проскальзывают по дороге, велосипед не отрывается от земли.
44	Экспериментатор взял 4 одинаковых металлических стержня и собрал из них Y-образную фигуру. К концам фигуры экспериментатор присоединил 3 одинаковых больших металлических шара, имеющих температуру $t_1 = 0$ °C, $t_2 = 50$ °C и $t_3 = 100$ °C (см. рис.). Экспериментатор обеспечил хороший тепловой контакт стержней с шарами и другими стержнями. Через некоторое время он обнаружил, что первый шар нагрелся на 0,4°C. Какую температуру имели в этот момент два других шара? Считайте, что теплоемкость стержней пренебрежимо мала, а теплообмен с окружающей средой отсутствует. Мощность теплопередачи по стержню пропорциональна разности температур на его концах.
45	Маленький шарик массы m , закрепленный на вертикальной пружине, расположили под столом с отверстием, в положении равновесия шарик находится посередине отверстия. Обнаружилось, что если шарик отклонить вниз на произвольное расстояние и отпустить, он колеблется вокруг положения равновесия с периодом T_0 . Над отверстием поставили тело массой m (см. рис.) и снова вывели шарик из положения равновесия. Определить период колебаний системы, если известно, что максимальная скорость шарика v_m . Шарик и тело соударяются абсолютно упруго; тело, подскакивая, движется строго вертикально. Сопротивлением воздуха пренебречь, ускорение свободного падения g .