Deep Learning for NLP

When Big Data hits Machine Learning

Nils Reimers

Course-Website: www.deeplearning4nlp.com

Organization of this Course

- This course will not give a long motivation on deep learning
- This course will focus on *hands-on exercise*, less on theory
 - There are tons of good introductions and lectures that cover all the math
 - We approach this topic more like an engineer:
 - Use the things that work
 - Deep knowledge only needed when something doesn't work
- Weekly meeting, Monday at 11am
 - Please read the *preparation for class* papers— it will be assumed that you know the content
 - Theoretical input, clarification of questions for the papers etc.
 - Practice tasks (programming)
 - For a given task (NER, Genre Classification, Sentiment Classification) we develop a deep neural network using Python / Theano / Lasagne

Recommended Readings

- Recommended Readings for this lecture:
 - From the <u>2009 Yoshua Bengio Book</u>:
 - 1 Introduction Good introduction into the terminology and the basic concept of deep learning
 - 2 Theoretical Advantages of Deep Architectures In case you are interested why deep architectures are better than shallow
 - Chapter 1 Using neural nets to recognize handwritten digits
 - Chapter 2 How the backpropagation algorithm works
 - From the 2015 Yoshua Bengio Book:
 - 1 Introduction if you are interested in the historical development of neural networks
 - Part I: Applied Math and Machine Learning Basics As a refresher for linear algebra and machine learning basics (if needed)
 - 6 Feedforward Deep Networks Read on feedforward networks, the most simple type of neural networks

What is Deep Learning?

- Deep Learning is a subfield of Machine Learning
- Most machine learning methods work well because of human-designed features
 - Recasens et al. (2009) lists >30 features for event coreference resolution
 - Most time spent on engineering features
- Machine learning becomes optimizing weights to make a final prediction given the features

Feature	Definition	
PRON_m ₁	m ₁ is a pronoun	
$PRON_{m_2}$	m ₂ is a pronoun	
HEAD_MATCH	Head match	
WORDNET_MATCH	EuroWordNet match	
NP_{-m_1}	m ₁ NP type	
$\mathrm{NP}_{-\mathrm{m}_2}$	m_2 NP type	
NE_m ₁	m ₁ NE type	
NE_m ₂	m ₂ NE type	
NE_MATCH	NE match	
SUPERTYPE_MATCH	Supertype match	
GENDER_AGR	Gender agreement	
NUMBER_AGR	Number agreement	
ACRONYM	m2 is an acronym of m1	
QUOTES	m ₂ is in quotes	
FUNCTION_m ₁	m ₁ function	
FUNCTION_m ₂	m ₂ function	
COUNT_m ₁	m ₁ count	
$COUNT_m_2$	m ₂ count	
SENT_DIST	Sentence distance	
MENTION_DIST	Mention distance	
IIIODD DIOM		

Mention distance

Machine Learning vs. Deep Learning

Traditional Machine Learning

Feature Engineering:
Describe your data with features a computer can
understand

Machine Learning: Some hyperparameter tuning

- Task, language and text-domain specific
- Requires high domain expertise (Ph.D.-level)
- Often requires other tools and resources (POS-tagger, Wordnet ...)

Deep Learning Approach

Getting Domain Expertise

Design / select a suitable network architecture

Optimize architecture & fine-tune parameters

Deep Learning

Deep Learning

 Representation Learning attempts to automatically learn good features or representations

- Deep Learning attempts to learn multiple levels of representation from raw input
- Instead of modeling the problem by the design of features, deep learning attempts to learn by itself a good representation (i.e. features).
- Large amounts of data are typically needed
 - They must not necessarily be labeled (see autoencoders, word embeddings)
 - For small datasets: Hand-designed features can still be included

The Deep Learning Dream

- Input the pure characters and output the desired label (sentiment, genre, translated version, QA)
- No hassle with preprocessing:
 - No error propagation
 - No inconsistencies between pipeline components (different segmentations, tagsets etc.)
 - No 'component not available in your language'
- This makes models easily adaptable to new text domains and languages
 - Just take existent network architecture and train on new dataset
- Dream not yet achieved, but we are on a good way
 - See: Zang et al., 2015, *Text Understanding from Scratch*
 - Zang et al., 2015, Character-level Convolutional Networks for Text Classification will be published on NIPS 2015

What is New?

- Deep Neural Networks are nothing new (started ~1960)
- Until 2006 training of deep neural networks wasn't successful
 - Hinton et al. (2006) presented a new, stacked training method which applies the concept of pre-training
- Successful training of deep networks (from scratch) requires large amounts of data
- Training requires lots of computation power
 - GPUs are perfect to train deep neural networks
 - Training is complex, but at inference time deep neural networks are often superior

Neural Network Basics

Neural Network Basics

• Given several **inputs**: $x_1, x_2, x_3, ... \in \mathbb{R}$ and several **weights**: $w_1, w_2, w_3, ... \in \mathbb{R}$ and a **bias** value: $b \in \mathbb{R}$

A neuron produces a single output:

$$o_1 = s(\sum_i w_i x_i + b)$$

- This sum $\sum_i w_i x_i + b$ is called the **activation** of the neuron
- The function s is called the activation function for the neuron
- The weights and bias values are typically initialized randomly and learned during training

Activation Function & Non-linearity

- The critical part is the non-linearity
- Example: Create a classifier, that learns the XOR function
- No linear classifier can solve this problem

"not bad" != "not" + "bad"

Activation Function

- The non-linearity is a crucial concept that gives neural networks more representational power compared to some other techniques (linear SVM, logistic regression)
- Without the non-linearity, it is impossible to model certain combinations of features (like Boolean XOR function), unless we do manual feature engineering
- Typical non-linear activation functions for neural nets are the sigmoid function, the hyperbolic tangent or a step function

Typical Activation Function

Sigmoid Function scales between 0 and 1

Img-Source: Wikipedia

Typical Activation Function

hyperbolic tangent scales between -1 and 1

Img-Source: Wikipedia

Typical Activation Function

Rectifier (blue):

$$f(x) = \max(0, x)$$

Smooth approximation (green):

$$f(x) = \ln(1 + e^x)$$

 A unit using the rectifier function is called rectified linear unit (ReLU)

Img-Source: Wikipedia

Which Activation Function to use?

- Most papers use the tanh or a mathematically easier to compute version of it (due to performance increases)
- For certain problems the rectifier can be useful, especially for convolutional neural networks
 - Be careful with your input data, the activation can become arbitrarily large
 - -> "one input dimension could rule them all"

Rule of Thumb

- Use tanh for all your hidden layers
- Changing the activation function has only minor effect

Feed Forward Neural Networks

Feed Forward Networks

- The most simple network architecture
- Information flows only in one direction
- Input Layer: Represents my data
- Output layer: Represents possible labels

Hidden-Layer

- The hidden layer (L₂, L₃) represent learned non-linear combination of input data
- For solving the XOR problem, we need a hidden layer
 - some neurons in the hidden layer will activate only for some combination of input features
 - the output layer can represent combination of the activations of the hidden neurons
- Neural network with one hidden layer is a universal approximator
 - Every function can be modeled as a shallow feed forward network
 - Not all functions can be represented *efficiently* with a single hidden layer ⇒ we still need deep neural networks

Matrix Notation

Given 3-dimensional input

 $x \in \mathbb{R}^3$

Given first weight matrix:

 $W_1 \in \mathbb{R}^{3 \times 3}$

Given first bias vector:

 $b_1 \in \mathbb{R}^3$

Given second weight matrix:

 $W_2 \in \mathbb{R}^{3 \times 2}$

Given second bias vector:

 $b_2 \in \mathbb{R}^2$

Given third weight matrix:

 $W_3 \in \mathbb{R}^{2 \times 2}$

Given third bias vector:

 $b_3 \in \mathbb{R}^2$

- Computation L₂: $l_2 = \tanh(W_1x + b_1)$
- Computation L₃: $l_3 = \tanh(W_2l_2 + b_2)$
- Computation L₄: $l_4 = \operatorname{softmax}(W_3 l_3 + b_3)$

Img-Source: http://ufldl.stanford.edu/wiki/

Softmax-Classifier

- For classification, most networks apply a softmax-classifier as final layer
- Softmax regression is a generalization of logistic regression to the case of multiple classes
- Given we have K classes (K = number of output units). Compute the activation z for the last layer:

$$z = W_3 l_3 + b_3 \in \mathbb{R}^K$$

Compute the final output y:

$$y_j = \operatorname{softmax}(z)_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$

- y_i can have values between 0 and 1
- y_i sums up to 1 -> It can be interpreted as probability distribution

Feed-Forward Network for Handwritten Digit Recognition

Hidden Layers

Rule of Thumb

 The number and the size of the hidden layers can have a large impact on the performance

- More hidden layers ⇒ more parameters to learn ⇒ more data needed
- Start with a small number of hidden layers, i.e. with 1
- Increase number of hidden layers stepwise until you find an optimum
- Typically decreasing sizes for the hidden layers, for example 2000 dim \Rightarrow 1500 dim \Rightarrow 750 dim \Rightarrow 100 dim \Rightarrow 10 dim

Initialization of Weights and Bias

- The weights and bias vectors are the parameters that we learn during training
- The bias is typically initialized to 0
- The weights are randomly initialized Use Glorot-style uniform initialization
 - Xavier Glorot & Yoshua Bengio, Understanding the difficulty of training deep feedforward neural networks (http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf)
 - Explanation of the algorithm:
 http://andyljones.tumblr.com/post/110998971763/an-explanation-of-xavier-initialization
 - Implementation / Usage in Theano & Lasagne is straight forward
 - Be careful: The maximal size of the weights is different for the *tanh* and the *sigmoid* activation function.

Training Neural Networks

Img-Source: https://www.flickr.com/photos/jakerust/

Back Propagation

Defining an Error Function

- First we need an error function which computes the difference between the output of the network and the expected output (true label)
- In case of single label classification, we can use the negative log-likelihood:

$$E(x, W, b) = -\log(o_y)$$

with y denoting the expected label and o the output vector.

In case of a distributional classification, we can use the mean squared error:

$$E(x, W, b) = \frac{1}{2} \sum (y_i - o_i)^2$$

with y_i denoting the expected value for node i

- We then want to minimize the error function
- Defining the error function is an important aspect in designing a deep neural network
 - Changing the error function changes what our network learns

Back Propagation – Gradient Descent

Source: mathworks.de

Gradient Descent

- We want to minimize the error function by tuning the trainable parameters (weights and biases)
- The gradient (the derivative of a multi dim. function) points us torwards a local minima
- We follow the gradient by a certain step length. This length is called *learning rate*

Computation of Gradients in Theano

- Computation of the gradient (the derivative of a multi dimensional function) can be cumbersome
 - Especially as the computation must be computationally efficient, as we will perform billions of such computations
- Theano is great, as it provides us automatic gradient computation
 - We don't need to compute the derivative
 - And we don't need to implement it into our program code
 - -> Awesome!
- Next slides look a bit complicated, but doing back propagation via stochastic gradient descent (SGD) is quite simple in Theano

Back Propagation – Gradient Descent

Training with back propagation:

- 1. Given the input data, we compute the values for the output neurons
- 2. Compare the output to the gold labels compute error function
- 3. Compute the derivative for all tunable parameters (weights and parameters)
- 4. Update the parameters:

$$W^{(i)} := W^{(i)} - \lambda \frac{\partial}{\partial W^{(i)}} E(x, W, b)$$

$$b^{(i)} := b^{(i)} - \lambda \frac{\partial}{\partial b^{(i)}} E(x, W, b)$$

 λ is denoting the learning rate

5. Each iteration is called an *epoch*. With each epoch, the error function decreases, converging to a local minima

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

Source: Mikolov, 2014

Motivation for Deep Learning

- Feed forward networks with a single hidden layer can compute any function ⇒ in theory, no need for deep architectures
- However, learning shallow architectures is not always efficient
- To learn the parity function (N bits at input, output is 1 if the number of active input bits is odd) requires an exponential number of hidden units ⇒ requires exponentially more training data
- See the 2009 Yoshua Bengio Book Chapter 2 Theoretical Advantages of Deep Architectures for more information
 - http://www.iro.umontreal.ca/%7Ebengioy/papers/ftml_book.pdf

Going from Shallow to Deep Neural Networks

- Neural Networks can have several hidden layers
- Initializing the weights randomly and training all layers at once does hardly work
- Instead we train layerwise on unannotated data (a.k.a. pre-training):
 - Train the first hidden layer
 - Fix the parameters for the first layer and train the second layer.
 - Fix the parameters for the first & second layer, train the third layer
 - ...
- After the pre-training, train all layers using your annotated data
- The pre-training on your unannotated data creates a high-level abstractions of the input data
- The final training with annotated data fine tunes all parameters in the network

Everything is a Vector

Beautiful Dance Moves

Source: https://www.flickr.com/photos/dylanng/

Vectors in Deep Learning

- Deep Learning loves dense vectors
- Everything is represented and understood as a vector
- Vectors allows an end-to-end-training
- No more in-between mapping to tag sets etc.
 - No problem with modeling hard cases and ambiguities
 - No problem with error propagation between pipeline components

Dense Vector

In a dense vector most values are non-zero

Representations at NLP Levels: Morphology

Traditional: Morphemes

prefix stem suffix un interest ed

- DL:
 - every morpheme is a vector
 - a neural network combines two vectors into one vector
 - Thang et al. 2013

Source: Richard Socher, CS224d, http://cs224d.stanford.edu/syllabus.html
Lecture 1, Slide 21 Richard Socher 3/30/15

Neural word vectors - visualization

Source: Richard Socher, CS224d, http://cs224d.stanford.edu/syllabus.html

Representations at NLP Levels: Syntax

Traditional: Phrases
 Discrete categories like NP, VP

- DL:
 - Every word and every phrase is a vector
 - a neural network combines two vectors into one vector
 - Socher et al. 2011

Lecture 1, Slide 23 Richard Socher 3/30/15

Question Answering

 Common: A lot of feature engineering to capture world and other knowledge, e.g. regular expressions, Berant et al. (2014)

In marin and this are 0

Is main verb trigger?					
Yes			No		
Condition	Regular Exp.		Condition	Regular Exp.	
Wh- word subjective?	AGENT		default	(ENABLE SUPER) ⁺	
Wh- word object?	Тнеме		DIRECT	(ENABLE SUPER)	
			PREVENT	(Enable Super)* Prevent(Enable Super)*	

- DL: Same deep learning model that was used for morphology, syntax, logical semantics and sentiment can be used!
- Facts are stored in vectors

Learning Multiple Levels of Representation

- Biologically inspired: The brain has a deep architecture
- Instead of solving a task directly, we learn intermediate representations
- Highly non-linear properties can be captured this way
- Insufficient model depth can be exponentially inefficient

Deep Autoencoder

Source: Hinton et al., 2006

Next Lecture

Preparation before class:

- Install Python (2.7), NumPy, SciPy and Theano (Installing Theano for Ubuntu)
- Install <u>Lasagne</u>
- Refresh your knowledge on Python and Numpy:
 - Python and Numpy Tutorial
 - Python-Tutorial and Numpy refresher from the Theano website
- Hint: You can install Python, Theano etc. on you local desktop machine and log into it via SSH or via IPython Notebook during class

