

EE 431: COMPUTER-AIDED DESIGN OF VLSI DEVICES

Introduction

Nishith N. Chakraborty

September, 2024

9/23/2024 www.calpoly.edu

OVERVIEW

- Integrated circuits: many transistors on one chip.
- Very Large Scale Integration (VLSI)
- Complementary Metal Oxide Semiconductor
 - Fast, cheap, low power transistors
- Early in course (next few days): How to build your own simple CMOS chip
 - CMOS transistors
 - Building logic gates from transistors
 - Transistor layout and fabrication
- Rest of the course: How to build a good CMOS chip

A BRIEF HISTORY OF IC

- 1958: First integrated circuit
 - Flip-flop using two transistors
 - Built by Jack Kilby at Texas Instruments
- 2003
 - Intel Pentium 4 μprocessor (55 million transistors)
 - 512 Mbit DRAM (> 0.5 billion transistors)
- 53% compound annual growth rate over 45 years
 - No other technology has grown so fast so long
- Driven by miniaturization of transistors
 - Smaller is cheaper, faster, lower in power!
 - Revolutionary effects on society

ANNUAL SALES

10¹⁸ transistors manufactured in 2003

- 100 million for every human on the planet

TRANSISTOR TYPES

- Bipolar Transistor
 - npn or pnp silicon structure
 - Small current into very thin base layer controls large currents between emitter and collector
 - Base currents limit integration density
- Metal Oxide Semiconductor Field Effect Transistors
 - nMOS and pMOS MOSFETS
 - Voltage applied to insulated gate controls current between source and drain Low power allows very high integration
 - The workhorse of CMOS
- FinFETs MOSFET with thin vertical fin has powered sub 20 nm fabrication

MOS INTEGRATED CIRCUIT

- 1970's processes usually had only nMOS transistors
 - Inexpensive, but consume power while idle

Intel 1101 256-bit SRAM Intel 4004 4-bit µProc

• 1980s-present: CMOS processes for low idle power

MODERN PROCESSORS

- CMOS remains the driving technology A lot of chip area is memory (cache)
- Very little is completely custom (datapath)
- Many blocks synthesized from VHDL or Verilog
- Transistor count for Pentium 4 ~50 million
- Currently implemented at 65nm technology node

MODERN PROCESSORS: A QUICK LOOK

Automated: Very irregular "rats' nest" regions

Memory (very regular & dense) is custom but can easily be drawn using SKILL

MOORE'S LAW

- 1965: Gordon Moore plotted transistor on each chip
 - Fit straight line on semilog scale
 - Transistor counts have doubled every 26 months

Integration Levels

SSI: 10 gates

MSI: 1000 gates

LSI: 10,000 gates

VLSI: > 10k gates

FREQUENCY

Lead Microprocessors frequency doubles every 2 years

DIGITAL DESIGN CHALLENGES

"Microscopic Problems"

- Ultra-high speed design
- Interconnect
- Noise, Crosstalk
- Reliability, Manufacturability
- Power Dissipation
- Clock distribution.

"Macroscopic Issues"

- Time-to-Market
- Millions of Gates
- High-Level Abstractions
- Reuse & IP: Portability
- Predictability
- etc.

WHY SCALING?

- Technology shrinks by 0.7/generation
- Every generation can integrate 2x more functions per chip; chip cost does not increase significantly
- Cost of a function decreases by 2x
- But...
 - How to design chips with more and more functions?
 - Design engineering population does not double every two years...
- Hence, a need for more efficient design methods
 - Exploit different levels of abstraction

STRUCTURED DESIGN

<u>Hierarchy</u>: Divide and Conquer

Recursively system into modules

Regularity

- Reuse modules wherever possible
- Ex: Standard cell library

Modularity: well-formed interfaces

Allows modules to be treated as black boxes

Locality

Physical and temporal

DESIGN ABSTRACTION LEVEL

PERFORMANCE METRICS

How do we evaluate performance of a digital circuit (gate, block, ...)?

- Cost
- Reliability
- Scalability
- Speed (delay, operating frequency)
- Power dissipation
- Energy to perform a function

9/23/2024 www.calpoly.edu 15

SUMMARY

- VLSI design occurs at several abstraction layers
- A good designer is expert in one area but knowledgeable of many
- When you do something for the first time, it often looks ugly

Welcome... Let's have fun designing integrated circuits!