

最优化概述

Liu Zheng

最优化方法概述

经典极值问题 无约束极值问题 有约束最优化 有约束最优化问题的 数学建雄

最优化方法主要内容

线性规划与整

数规划 整数规划

单纯形法 多目标规划

非线性规划

凸函数 下降迭代法

智能优化方法

Overview

变分法与动态 抑彻

Overview

最优化概述

Liu Zheng

同济大学电信学院

April 22, 2014

概述

最优化概述

Liu Zheng

最优化方法概

经典极值问题 无约束极值问题 有约束最优化 有约束最优化问题的 数学建模

最优化方法主要内容

线性规划与整 数规划

整数规划 单纯形法 多目标规划

4F5定1主7%以

凸函数 下降迭代法

智能优化方法

Overview

变分法与动态 规划

- 最优化理论和方法是近二十多年来发展十分迅速的一个 数学分支
- 在数学上,最优化是一种求极值的方法
- 最优化已经广泛的渗透到工程、经济、电子技术等领域

概述

最优化概述

Liu Zheng

最优化方法概

经典极值问题 无约束极值问题 有约束最优化 有约束最优化问题的

最优化方法主要内容

数规划

整数规划 单纯形法 多目标规划

IF线性规划

凸函数 下降迭代法

智能优化方法

Overview 变分法与动态

规划

- 在实际生活中,人们做任何事情,不管是分析问题,还 是进行决策,都要用一种标准衡量以下是否达到来最 优。(比如基金人投资)
- 在各种科学问题、工程问题、生产管理、社会经济问题中,人们总是希望在有限的资源条件下,用尽可能小的代价,获得最大的收益。(比如保险)

几个概念

最优化概述

Liu Zheng

最优化方法概

经典极值问题 无约束极值问题 有约束最优化 有约束最优化问题的 数学速模

最优化方法主要内容

线性规划与整 数规划

整数规划 单纯形法

非维性

凸函数 下降迭代法

智能优化方法

Overview

变分法与动态

- 最优化是从所有可能方案中选择最合理的一种,以达到 最优目标的学科
- 最优方案是达到最优目标的方案
- 最优化方法是搜寻最优方案的方法
- 最优化理论就是最优化方法的理论

经典极值问题

最优化概述

Liu Zheng

最优化方法概法

经典权

无约束极值问题 有约束最优化 有约束最优化问题的 数学速模

数字建模 最优化方法主要内容

维性抑制与棘

数规划 整数规划

> 单纯形法 多目标规划

非线性

凸函数 下降迭代法

智能优化方法 Overview

变分法与动态

Overview

包括

• 无约束极值问题

$$\min_{x} f(x)$$

• 约束条件下的极值问题

$$\min_{x} f(x)$$
s.t. $g_i(x) \leq 0, i = 1, 2, \dots, m$

$$h_i(x) = 0, i = 1, 2, \dots, n$$

其中,极大值问题可以转换为极小值问题来进行求解。

如求: $\max_{x} f(x)$ 可以转换为: $\min_{x} - f(x)$

无约束极值问题

最优化概述

Liu Zheng

最优化方法概

经典极值问题

无约束极值问题 有约束最优化

有约束最优化问题的

最优化方法主要内容

线性规划与整

数规划 整数规划 单纯形法

单纯形法 多目标规划

非线性规划

凸函数 下降迭代法

智能优化方法 Overview

Overvie

受力法 规划

有约束最优化

最优化概述

Liu Zheng

最优化方法概法

无约束极值问题 有约束最优化 有约束最优化问题的

经典极值问题

数学建模最优化方法主要内容

线性规划与整

数规划

整数规划 单纯形法 多目标规划

非线性规划

凸函数 下降迭代法

智能优化方法 Overvie

变分法与动态

Overvie

最优化方法分类

(1) <mark>线性最优化</mark>:目标函数和约束条件都是线性的则称为线性最优化。

非线性最优化:目标函数和约束条件如果含有非线性的,则称为非线性最优化。

(2) 静态最优化:如果可能的方案与时间无关,则是静态最优化问题。

动态最优化:如果可能的方案与时间有关,则是动态最优化问题

有约束最优化问题的数学建模

最优化概述

Liu Zheng

最优化方法概

经典极值问题 无约束极值问题 有约束最优化

有约束最优化问题的 数学建模

最优化方法主要内容

线性规划与整

数规划

单纯形法

非线性规划

凸函数 下降迭代法

智能优化万法 Overview

变分法与动态 抑制

Overvie

有约束最优化模型一般具有以下形式:

其中 f(x) 为目标函数,省略号表示约束式子,可以是等式约束,也可以是不等式约束。

最优化方法主要内容

最优化概述

Liu Zheng

最优化方法概

经典极值问题 无约束极值问题 有约束最优化 有约束最优化问题的

最优化方法主要内容

线性规划与整 数规划

整数规划 单纯形法

非线性切

凸函数 下降迭代法

智能优化方法

Overview 变分法与动态

Over Court

Overview

根据目标函数,约束条件的特点将最优化方法包含的主要内容大致如下划分:

- 线性规划
- 整数规划
- 非线性规划
- 智能优化方法
- 变分法与动态规划

线性规划与整数规划

最优化概述

Liu Zheng

最优化方法概述

无约束极值问题 有约束最优化 有约束最优化问题的 数学建模 最优化方法主要内容

经典极值问题

线性规划与整 数规划

整数规划 单纯形法 多目标规划

||线性规划

凸函数 下降迭代法

当能优化万法 Overview

变分法与动态 规划

Overvie

在许多线性规划问题中,要求最优解必须取整数.例如 所求的解是机器的台数、人数车辆船只数等.如果所得的解 中决策变量为分数或小数则不符合实际问题的要求.

对于一个规划问题,如果要求全部决策变量都取整数,称为纯(或全)整数规划;如果仅要求部分决策变量取整数,称为混合整数规划问题.有的问题要求决策变量仅取0或1两个值,称为0-1规划问题.

整数规划简称为IP问题(Integer Programming,IP)或ILP问题(Integer Linear Programming).这里主要讨论的是整数线性规划。

最优化概述

Liu Zheng

最优化方法概

经典极值问题 无约束极值问题 有约束最优化 有约束最优化问题的 数学建模

最优化方法主要内容 线性规划与整

数规划 整数规划

> 单纯形法 多目标规划

非线性规

凸函数 下降迭代法

智能优化方法 Overview

变分法与动态

Overvie

整数规划

- 最优化问题中的所有变量均为整数时,这类问题称为整数规划问题。
- 如果线性规划中的所有变量均为整数时,称这类问题为 线性整数规划问题。
- 整数规划可分为线性整数规划和非线性整数规划,以及 混合整数规划等。
- 如果决策变量的取值要么为0,要么为1,则这样的规划 问题称为0-1规划。

列子

最优化概述

Liu Zheng

最优化方法概

经典极值问题 无约束极值问题 有约束最优化 有约束最优化问题的

最优化方法主要内容

维性抓制与敕

数规划

单纯形法

非线性规

凸函数 下降迭代法

智能优化万法

Overview

变分法与动态 规划

Overview

某钢厂两个炼钢炉同时各用一种方法炼钢。第一种炼法每炉用 a 小时,第二种用 b 小时(包括清炉时间)。假定这两种炼法,每炉出钢都是 k 公斤,而炼 1 公斤钢的平均燃料费第一法为 m 元,第二法为 n 元。若要求在 c 小时内炼钢公斤数不少于 d ,试列出燃料费最省的两种方法的分配方案的数学模型。

解法

最优化概述

Liu Zheng

最优化方法概

经典极值问题 无约束极值问题 有约束最优化 有约束最优化问题的 数学建模

最优化方法主要内容

线性规划与整 数规划

整数规划

多目标规划

凸函数 下降迭代法

智能优化方法 Overview

变分法与动态 抑制

Overview

设用第一种炼法炼钢 x1 炉,第二种炼钢 x2 炉

$$\max z = k(mx + ny)$$

$$s.t. \left\{ egin{array}{lll} ax_1 & \leq & c \\ bx_2 & \leq & c \\ k(x_1+x_2) & \geq & d \\ x_1,x_2 & \geq & 0$$
且为整数

具体求解运算在此不作过多叙述,都是矩阵运算,相信大家 对纯公式推导演算没多大兴趣。

单纯形法

最优化概述

Liu Zheng

最优化方法概

经典极值问题 无约束极值问题 有约束最优化 有约束最优化问题的

数学建模 最优化方法主要内容

线性规划与整

数规划 整数规划

单纯形法 多目标规划

凸函数

非线性规

下降迭代法

質能**汎化力法** Overview

变分法与动态 抑制

Overview

单纯形法是优美国数学家G.B.Dantzig提出的,该方法的基本出发点就是在可行域(凸集)的定点中搜索最优点。搜索的过程是一个迭代的过程。首先找到一个基本可行解,判别它是否为最优解,如不是就找一个更好的基本可行解,再进行判别。如此迭代,直至找到最优解,或者判定该问题无界。

凸集

最优化概述

Liu Zheng

最优化方法概

经典极值问题 无约束极值问题 有约束最优化 有约束最优化问题的

数学建模 晶优化方法主要内容

最优化万法王要囚犯

线性规划与整 数规划

整数规划 **单纯形法**

315公共/仕却

凸函数 下降迭代法

多目标抑制

智能优化方法

Overview 变分法与动态

规划

Overview

定义: $X \in \mathbb{E}^n$ 空间的点集 , x_1 和 $x_2 \in X$ 上任意两点 , 若对任意 $0 < \lambda < 1$ 使得

$$\lambda x_1 + (1 - \lambda)x_2 \in \mathbf{X}$$

则称 X 为凸集。

Figure: 凸集

Figure: 非凸集

单纯形法基本形式

最优化概述

Liu Zheng

最优化方法概

经典极值问题 无约束极值问题 有约束最优化 有约束最优化问题的 数学建模

最优化方法主要内容

线性规划与整

数规划 整数规划

单纯形法 多目标规划

非线性规

凸函数 下降迭代法

智能优化方法

Overview

变分法与动态 规划

Overview

用单纯法求解时,常将标准形式化为:

这里

$$A = (a_{ij})_{m,n} x = (x_1, x_2, \dots, x_n)^T b = (b_1, b_2, \dots, b_n)^T c = (c_1, c_2, \dots, c_n)$$

解法

最优化概述

Liu Zheng

最优化方法概述

经典极值问题 无约束极值问题 有约束最优化 有约束最优化问题的

最优化方法主要内容

线性规划与整

整数规划

单纯形法 多目标抑制

非线性规

凸函数 下降迭代法

智能优化方法 Overview

Overvie 変分法与动态

规划

Overvie

一般步骤如下:

- (1)寻找一个初始的基本可行解。
- (2)检查现行的基本可行解是否最优,如果为最优,则停止迭代,已找到最优解,否则下一步。
- (3)移至目标函数值有所改善的另一个基本可行解,然后转回到步骤(2)。

算法思路如上,具体迭代、矩阵运算过于数学化,在此 不作展开。

多目标规划

最优化概述

Liu Zheng

最优化方法概

经典极值问题 无约束极值问题 有约束最优化 有约束最优化问题的

数学建模 最优化方法丰栗内容

数规划

整数规划 单纯形法

多目标规划

4F3定1生为

凸函数 下降迭代法

智能优化方法

Overview 变分法与动态

规划

Overview

多目标规划法也是运筹学中的一个重要分支,它是在线性规划的基础上,为解决多目标决策问题而发展起来的一种科学管理的数学方法

多目标规划的概念是 1961年由美国数学家查尔斯和库柏 首先提出的。

多目标规划标准型

最优化概述

Liu Zheng

最优化方法概

经典极值问题 无约束极值问题 有约束最优化 有约束最优化问题的

品优化方法主要内容

35/1生规2 类/10/6/1

> 整数规划 单纯形法

多目标规划

非线性规划

凸函数 下降迭代法

智能优化方法

Overview

变分法与动态 规划

Overview

求 $\mathbf{x} = x_1, x_2, \cdots, x_n \in D \subset E^n$,使

$$\min \mathbf{f}(x) = \{ f_1(x), f_2(x), \dots, f_N(x) \}$$
s.t.
$$h_l(\mathbf{x}) = 0, l = 1, 2, \dots, L$$

$$g_m(\mathbf{x}) \le 0, m = 1, 2, \dots, M$$

式中,n为自变量 x 的维数;L 为等式约束的数目;M 为不等式约束的数目

非线性规划问题的一般数学模型

最优化概述

Liu Zheng

最优化方法概

经典极值问题 无约束极值问题 有约束最优化 有约束最优化问题的 数学建模

最优化方法主要内容

线性规划与整

数规划 整数规划 单纯形法

单纯形法 多目标规划

非线性规划

凸函数 下降迭代法

智能优化方法

Overview

变分法与动态 规划

Overview

$\min f(x)$

s.t.
$$g_i(x) \leq 0, i = 1, 2, \dots, m$$

 $h_i(x) = 0, j = 1, 2, \dots, l$

其中, $x \in E^n$, f(x) 为目标函数, $g_i(x), h_j(x)$ 为约束函数, 这些函数中至少有一个是非线性函数。

最优化概述

Liu Zheng

经典极值问题 无约束极值问题 有约束最优化 有约束最优化问题的

最优化方法主要内容

部部計画刊 单纯形法 多目标抑制

凸函数 下降迭代法

变分法与动态

Overview

凸函数

定义:在某个开区间 C 内的凸函数 f 在 C 内连续 , 且在除可 数个点之外的所有点可微。如果 C 是闭区间, 那么 f 有可能 在 C 的端点不连续。

Figure: 凸函数

函数(蓝色)是凸的,当且仅当其上方的区域(绿色) 是一个凸集。 4 D F 4 D F 4 D F 4 D

下降迭代法的基本思想

最优化概述

Liu Zheng

最优化方法概

经典极值问题 无约束极值问题 有约束最优化 有约束最优化问题的

最优化方法主要内容

线性规划与整数规划

整数规划 单纯形法

线性规划

凸函数 **下降迭代法**

智能优化方法

Overview

变分法与动态 规划

Overview

任取一个初始迭代点 $\mathbf{x}^{(0)}$, 在 $\mathbf{x}^{(0)}$ 处找一个下降方向 $\mathbf{p}^{(0)}$, 移动 $\mathbf{x}^{(0)}$ 到 $\mathbf{x}^{(0)}+\lambda_0\mathbf{p}^{(0)}$ 处 , 令 $\mathbf{x}^{(1)}=\mathbf{x}^{(0)}+\lambda_0\mathbf{p}^{(0)}$, 显然 $f(\mathbf{x}^{(1)})< f(\mathbf{x}^{(0)})$ 。然后判断 $\mathbf{x}^{(0)}$ 是否为极小值点 ,若 是 , 则停止迭代;否则 , 再从 $\mathbf{x}^{(1)}$ 出发 , 找比 $\mathbf{x}^{(1)}$ 更好的点 $\mathbf{x}^{(2)},\cdots$,如此继续 ,就产生了一个解点的序列 $\{\mathbf{x}^{(k)}\}$,满足

$$f(\mathbf{x}^{(0)}) > f(\mathbf{x}^{(1)}) > \dots > f(\mathbf{x}^{(k)}) > \dots$$

Overview

最优化概述

Liu Zheng

最优化方法概

经典极值问题 无约束极值问题 有约束最优化 有约束最优化问题的 数学建模

最优化方法主要内容

线性规划与整 数规划

整数规划 单纯形法 多目标规划

^{多目标题} 非线性规划

凸函数 下降迭代法

智能优化方法

Overview

变分法与动态 规划

变分法和动态规划

最优化概述

Liu Zheng

最优化方法概述

经典极值问题 无约束极值问题 有约束最优化 有约束最优化问题的 数学速模

最优化方法主要内容

线性规划与整 数规划

整数规划 单纯形法 多目标规划

非线性规划

凸函数 下降迭代法

首形1亿亿万法 Overvie

变分法与动态 规划

Overview

变分法涉及泛函,泛函又基于实变,以我的数学功底暂时无法完全理解,曾经在为专业课《工程光学》里提到过一次变分

原文为:

费马原理指出,光线从A点传到B点,经过任意多次的折射或反射,其光程为极值(极大值或极小值),可以用光程的一次变分为零来表示,即:

$$\delta \Delta = \delta \int_{A \to B} n(x, y, z) ds = 0$$

动态规划就不用多赘述了,相信大家基本都折腾过。

Overview

最优化概述

Liu Zheng

最优化方法概

经典极值问题 无约束极值问题 有约束最优化 有约束最优化问题的

数学建模最优化方法主要内容

线性规划与整

数规划

单纯形法 多目标规划

凸函数 下降迭代法

智能优化方法

非线性规划

Overview

变分法与动态 规划

