CEFET-RJ

Programa de Pós-Gradução em Ciência da Computação - PPCIC

Mestrado em Ciência da Computação

Disciplina: Aprendizado de Máquina - 2021/1

Trabalho 01

Professor: Eduardo BezerraAluno: Janio de Souza Lima

Preparação do ambiente

Importação de bibliotecas

```
In [ ]:
```

```
#Importação de bibliotecas
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
import scipy.optimize as opt
```

Carga de arquivos para ambiente (apenas para uso deste notebook no Google Colab)

```
In [ ]:
```

```
from google.colab import drive
```

```
In [ ]:
```

```
#Conecta o Google Colab ao Google Drive
drive.mount('/content/drive')
```

```
Drive already mounted at /content/drive; to attempt to forcibly remount, c all drive.mount("/content/drive", force_remount=True).
```

A etapa anterior apenas conecta ao seu Google Drive, após rodá-la e autenticar a sessão usando o link da API da Google, o código abaixo deve ser executado para apontar para o diretório de trabalho no qual estão gravados os códigos e bibliotecas personalziadas que serão usados na análise.

Os códigos* em questão estão disponíveis em: https://github.com/MLRG-CEFET-RJ/ml-class/tree/master/ml-t1/code)

* Em alguns casos foi necessário adaptar partes das funções originais disponíveis no repositório citado ou substituí-las por versões que estão escritas nas próprias células deste notebook

A pasta com os dados deve ser gravada neste mesmo diretório com o nome *data*, assim os trechos nos quais os conjuntos de dados são carregados rodarão sem problemas.

```
#Define o path dos códigos e dados como diretório de trabalho atual
import os
dir = '/content/drive/My Drive/Mestrado PPCIC/03. Curso/3. Aprendizado/code'
os.chdir(dir)
```

1 Regressão Linear com uma variável

Análise preliminar dos dados

In []:

Out[]:

	Population	Profit
0	6.1101	17.5920
1	5.5277	9.1302
2	8.5186	13.6620
3	7.0032	11.8540
4	5.8598	6.8233

In []:

```
#Informações gerais do dataset carregado dados.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 97 entries, 0 to 96
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- 0 Population 97 non-null float64
1 Profit 97 non-null float64
dtypes: float64(2)
memory usage: 1.6 KB
```

```
#Sumário estatístico dos dados
dados.describe()
```

Out[]:

	Population	Profit
count	97.000000	97.000000
mean	8.159800	5.839135
std	3.869884	5.510262
min	5.026900	-2.680700
25%	5.707700	1.986900
50%	6.589400	4.562300
75%	8.578100	7.046700
max	22.203000	24.147000

In []:

```
#Correlação entre as variáveis do conjunto de dados print(f'Correlação entre a característica (População) e o alvo (Lucro): {dados.Population.corr(dados.Profit, method="pearson"):.3f}')
```

Correlação entre a característica (População) e o alvo (Lucro): 0.838

1.1 Visualização dos dados

Checagem: Carga dos dados e geração do gráfico de dispersão com a função plot da biblioteca personalizada fornecida no exercício.

```
In [ ]:
```

```
import plot_ex1data1
```

```
In [ ]:
```

```
plot_ex1data1.plot()
```


Tanto a visualização da dispersão dos dados quanto a correlação calculada na análise preliminar demonstram que as variáveis "População" e "Lucro" apresentam uma correlação positiva entre si. Indicando um crescimento do lucro à medida que são observadas populações maiores.

1.2 Gradiente Descendente

Carga do conjunto de dados, organizando os valores dos dados de População e Lucro em X e y, respectivamente.

A carga dos dados da forma acima gera uma matriz X com 97 linhas e 1 coluna. Como a função de custos precisa que esta matriz seja composta por uma coluna de valores 1 relativa ao θ_0 e outra com os valores das características de X, usamos o código a seguir para gerar a matriz no formato necessário. Isto se faz necessário para multiplicação do vetor de exemplos pelo vetor *theta*.

```
In [ ]:
```

```
X = np.c_[np.ones((X.shape[0], 1)), x]
X.shape
Out[ ]:
(97, 2)
```

Aplicação da função de custo

Como pode ser observado na saída abaixo, obtemos um valor de 32,07 ao aplicarmos a função de custo para o conjunto de dados com os valores de θ = 0.

Neste ponto, criamos uma matriz de duas dimensões com os valores de θ zerados, para permitir realizar o teste da função de custos e posteriormente aplicar o Gradiente Descendente para calcular os valores de θ otimizados.

```
In [ ]:
```

Neste ponto aplicamos a função de custo com os parâmetros zerados para testar a implementação. Obtemos como resultado o valor previsto no exercício (32,07), confirmando a correção da implementação da função de custo.

```
In [ ]:
```

```
from custo_reglin_uni import custo_reglin_uni
custo_reglin_uni(X, y, theta)
Out[]:
```

32.072733877455676

Com a função de custo já testada, os valores de theta iniciados com valor 0 e a matriz X já devidamente complementada com uma coluna de valores 1, aplicamos a função do gradiente descendente para encontrar os valores de theta.

```
In [ ]:
```

```
from gd_reglin_uni import gd_reglin_uni

In [ ]:
alpha=0.01
epochs=5000
```

```
history, theta = gd_reglin_uni(X, y, alpha, epochs, theta)
```

In []:

```
#print(custo, theta)
print(f'Custo: {history[-1]}\nTheta0: {theta[0][0]}\nTheta1: {theta[1][0]}')
```

Custo: 4.476971396982805 Theta0: -3.8953005106571683 Theta1: 1.1929853860482196

Considerando a aplicação do Gradiente Descendente com o valor de alpha = 0.01, 5000 épocas e os valores de theta começando em 0, obtemos $\theta_0=-3.895$ e $\theta_1=1.193$. Além disso, obtemos o valor de custo de 4.47 a partir da função $J(\theta)$.

A seguir apresentamos a visualização da dispersão dos dados originais, marcados em vermelho, e a reta de ajustamento da **Regressão Linear**, marcada em azul.

In []:

```
import visualizar_reta
```

In []:

<Figure size 432x288 with 0 Axes>

Uso da equação da regressão linear para previsão de valores

Modelo de Regressão Linear: $h\theta(x)= heta_0+ heta_1x=-3.895+1.193 imes x$ (1)

```
In [ ]:
```

```
def predicao(x, theta):
    """
    Função recebe um valor (escalar) x e retorna o valor previsto de y
    usando a equação da regressão linear construída nas etapas anteriores
    """
    pred = theta[0] + theta[1] * x
    return pred
```

```
population = 35000
lucro = predicao(population, theta)
print(f'{lucro[0]:.2f}')
```

41750.59

In []:

```
population = 70000
lucro = predicao(population, theta)
print(f'{lucro[0]:.2f}')
```

83505.08

De acordo com a Equação 1 da regressão linear encontrada:

- Para uma população de 35.000 habitantes o lucro previsto é de \$41.750,59;
- Para 70.000 habitantes o lucro previsto é de \$83.505,08.

```
h	heta(x)=	heta_0+	heta_1x=-3.895+1.193	imes x (1) Então, para x=35000,\,y=41750,59 e para x=70000,\,y=83505,08.
```

1.3 Visualização de $J(\theta)$

```
In [ ]:
```

```
import visualizar_J_surface
import visualizar_J_contour
```

Gráfico das curvas de nível da função de custo

```
J = visualizar_J_contour.plot(X, y, theta)
```

/content/drive/My Drive/Mestrado PPCIC/03. Curso/3. Aprendizado/code/visua lizar_J_contour.py:27: UserWarning: The following kwargs were not used by contour: 'color'

ax.contour(theta0, theta1, J, levels=np.logspace(-1, 4, 20), color='blu
e')

<Figure size 432x288 with 0 Axes>

<Figure size 432x288 with 0 Axes>

Gráfico com recorte da superfície da função de custo

In []:

visualizar_J_surface.plot(J)

Out[]:

<mpl_toolkits.mplot3d.art3d.Poly3DCollection at 0x7fc1be1ee950>

<Figure size 432x288 with 0 Axes>

ANÁLISE DO RESULTADO DA ETAPA: Nas visualizações desta subseção, primeiro apresentamos a visualização na qual o valor do mínimo global da função é exibido como um ponto vermelho nas coordenadas equivalentes aos valores de theta.

A segunda visualização, por sua vez, exibe um recorte da superfície da função $J(\theta)$ da **Regressão Linear**.

2 Regressão Linear com Múltiplas Variáveis

Análise preliminar dos dados

In []:

Out[]:

	Tamanho	Dormitorios	Preco
0	2104	3	399900
1	1600	3	329900
2	2400	3	369000
3	1416	2	232000
4	3000	4	539900

In []:

```
dados.describe()
```

Out[]:

	Tamanho	Dormitorios	Preco
count	47.000000	47.000000	47.000000
mean	2000.680851	3.170213	340412.659574
std	794.702354	0.760982	125039.899586
min	852.000000	1.000000	169900.000000
25%	1432.000000	3.000000	249900.000000
50%	1888.000000	3.000000	299900.000000
75%	2269.000000	4.000000	384450.000000
max	4478.000000	5.000000	699900.000000

```
In [ ]:
dados.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 47 entries, 0 to 46
Data columns (total 3 columns):
    Column
                  Non-Null Count Dtype
 0
    Tamanho
                  47 non-null
                                  int64
 1
    Dormitorios 47 non-null
                                  int64
                  47 non-null
    Preco
                                  int64
dtypes: int64(3)
memory usage: 1.2 KB
In [ ]:
dados.corr()
```

Out[]:

	Tamanho	Dormitorios	Preco
Tamanho	1.000000	0.559967	0.854988
Dormitorios	0.559967	1.000000	0.442261
Preco	0.854988	0.442261	1.000000

2.1 Normalização das características

Carga dos dados, armazenando as características na Matriz X e o alvo no vetor y. Conferência das dimensões da matriz X e de seu conteúdo.

```
In [ ]:
```

```
In [ ]:
```

```
X. shape
```

Out[]:

(47, 2)

```
In [ ]:
X[:10]
Out[ ]:
array([[2104,
                   3],
        [1600,
                   3],
        [2400,
                   3],
        [1416,
                   2],
        [3000,
                   4],
                   4],
        [1985,
        [1534,
                   3],
        [1427,
                   3],
        [1380,
                   3],
        [1494,
                   3]])
```

Aplicação da função normalizar_caracteristica para normalização das características armazenadas na matriz X e adição da coluna de 1 para representar o θ_0 .

```
In [ ]:
from normalizacao import normalizar_caracteristica
In [ ]:
X_norm, mean_X, std_X = normalizar_caracteristica(X)
```

Conferência dos dados normalizados. A função realizada a normalização usando Z-Score, gerando valores em uma escala similar.

ANÁLISE DO RESULTADO DA ETAPA: Como a normalização é feita como uma operação vetorizada e com uso de estruturas de dados e funções das bibliotecas pandas e numpy que permitem a entrada de dados tanto de valores individuais quanto de matrizes completas sem necessidade de declaração explícita das características que serão analisadas, além de otimizar o desempenho do cálculo em comparação com operações tradicionais de loop, em função da operação conhecida como *broadcasting* que percorre todos os exemplos (linhas) de cada característica percorrida. Portanto, a função normalizar_característica consegue funcionar corretamente independentemente do número de características ou exemplos do conjunto de dados recebido como parâmetro.

Guardando valores da média e desvio padrão utilizados, para uso posterior.

Para armazenamento destas medidas estatísticas, alterei a função normalizar_caracteristica do código normalizacao.py, apenas acrescentado no retorno as variáveis equivalentes a estas medidas que já eram calculadas na função devido à sua necessidade para o cálculo dos valores normalizados das características do conjunto de dados em análise.

Na linha abaixo são aprsentados os valores da média e desvio padrão, respectivamente, para cada característica.

2.2 Gradiente descendente

Implementação da função de custos e do gradiente descendente para regressão linear com múltiplas variáveis

```
In [ ]:
```

```
print(f'Custo: {history[-1]}\nTheta:\n{theta}')

Custo: 2063782403.6748846
Theta:
[[ 3.38175984e+05]
  [ 1.03032124e+05]
  [ -2.02325233e+02]]
```

Com a execução do gradiente descendente considerando taxa de aprendizado de $\alpha=0.01$, 500 épocas e θ iniciando em (0,0,0), encontramos os valores ótimos de θ e custo apresentados na última célula.

A visualização abaixo apresenta a curva de aprendizado ao longo das iterações do gradiente descedente.

In []:

```
plt.figure(figsize=(10,6))
plt.plot(history)
plt.savefig('target/plot2.2.png')
```


3 Regressão Logística

Análise preliminar dos dados

Out[]:

	Prova 1	Prova 2	Aprovado
0	34.623660	78.024693	0
1	30.286711	43.894998	0
2	35.847409	72.902198	0
3	60.182599	86.308552	1
4	79.032736	75.344376	1

In []:

```
dados.describe()
```

Out[]:

	Prova 1	Prova 2	Aprovado
count	100.000000	100.000000	100.000000
mean	65.644274	66.221998	0.600000
std	19.458222	18.582783	0.492366
min	30.058822	30.603263	0.000000
25%	50.919511	48.179205	0.000000
50%	67.032988	67.682381	1.000000
75%	80.212529	79.360605	1.000000
max	99.827858	98.869436	1.000000

In []:

```
dados.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 3 columns):
    Column
              Non-Null Count Dtype
 #
              -----
    -----
0
    Prova 1
              100 non-null
                              float64
                              float64
 1
    Prova 2
              100 non-null
 2
    Aprovado 100 non-null
                              int64
dtypes: float64(2), int64(1)
memory usage: 2.5 KB
```

3.1 Visualização dos dados

In []:

```
import plot_ex2data1
```

A visualização a seguir apresenta a dispersão dos resultados de aprovação ou reprovação em função das notas das provas 1 e 2.

In []:

```
plot_ex2data1.plot(dados)
plt.savefig('target/plot3.1.png')
```


<Figure size 432x288 with 0 Axes>

3.2 Implementação

3.2.1 Função Sigmoide

```
In [ ]:
```

```
from sigmoide import sigmoide
```

```
In [ ]:
```

```
sigmoide(0)
```

Out[]:

0.5

Para teste da função sigmoide implementada, esta foi executada com parâmetro z=0 . O resultado esperado como retorno para este caso é um valor de 0.5.

3.2.2 Função de custo e gradiente descendente

Uso da função importarDados para carregar as estruturas de dados necessárias para computação das funções de custo e do gradiente descendente.

```
In [ ]:
from custo_reglog import custo_reglog
In [ ]:
dados, X, y = plot_ex2data1.importarDados(insertOnes=False)
In [ ]:
X.shape
Out[]:
(100, 2)
In [ ]:
examData_norm, mean_examData, std_examData = normalizar_caracteristica(X)
In [ ]:
examData_norm.shape
Out[]:
(100, 3)
In [ ]:
y.shape
Out[]:
(100, 1)
Inicialização dos valores de \theta como zero, para submissão à função de custos.
In [ ]:
theta = np.array([0,0,0], ndmin=2)
theta
Out[ ]:
array([[0, 0, 0]])
```

```
In [ ]:
theta.shape
Out[ ]:
(1, 3)
In [ ]:
X = np.c_[np.ones((X.shape[0], 1)), X]
In [ ]:
J = custo_reglog(theta, X, y)
J
Out[ ]:
```

Ao executar a função de custo com os valores de θ zerados, tando com os valores originais quanto com os valores normalizados, obtemos o custo de 0.693, o que corresponde ao valor esperado para o teste da

Comentários sobre a normalização dos conjunto de dados

- O código proposto no exercício, **seção 3.2.2 Listagem 2**, indica a normalização dos atributos, por isso na etapa anterior realizamos os testes tanto com os dados originais quanto com estes normalizados.
- Contudo, a listagem dos dados originais (reproduzida a seguir) indica que os atributos estão em uma ordem de grandeza similar. Portanto, será averiguada na continuidade da análise se há necessidade de normalização ou não, mas a princípio esta normalização aparenta ser desnecessária para este conjunto de dados.
- Apesar destas considerações, a normalização para garantir que as características tenham escalas similares é importante para que o gradiente descedente não demore muito para convergir para o mínimo global da função em modelos que não tenham um único mínimo da função de custo.

```
In [ ]:
```

função.

0.6931471805599453

```
dados.describe()
```

Out[]:

	Prova 1	Prova 2	Aprovado
count	100.000000	100.000000	100.000000
mean	65.644274	66.221998	0.600000
std	19.458222	18.582783	0.492366
min	30.058822	30.603263	0.000000
25%	50.919511	48.179205	0.000000
50%	67.032988	67.682381	1.000000
75%	80.212529	79.360605	1.000000
max	99.827858	98.869436	1.000000

3.2.3 Aprendizado dos parâmetros

Neste ponto usamos a função fmin_tnc da biblioteca scipy.optimize e a implmentação do gradiente descendente para encontrar o vetor de θ que minimiza a função de custo.

```
In [ ]:
import scipy.optimize as opt
In [ ]:
from custo_reglog import custo_reglog
In [ ]:
#from gd_reglog import gd_reglog
def gd_reglog(theta, X, y):
    theta = np.matrix(theta)
    X = np.matrix(X)
    y = np.matrix(y)
    parametros = int(theta.ravel().shape[1])
    grad = np.zeros(parametros)
    erro = sigmoide(X * theta.T) - y
    for i in range(parametros):
        term = np.multiply(erro, X[:,i])
        grad[i] = np.sum(term) / len(X)
    return grad
In [ ]:
result = opt.fmin_tnc(func=custo_reglog, x0=theta, fprime=gd_reglog, args=(examData_nor
m, y))
theta_ = result[0]
J = custo_reglog(theta_, examData_norm, y)
In [ ]:
theta_
Out[ ]:
array([1.71787865, 3.99150585, 3.72363973])
In [ ]:
print('Custo = ', J)
Custo = 0.20349771564631666
```

Com a aplicação do gradiente descendente encontramos (1.718, 3.992, 3.724) com vetor de valores ótimos de θ .

Usamos este vetor para calcular a função de custo e encontramos um valor de 0.203, conforme código a seguir.

3.2.4 Avaliação do modelo

As funções a seguir realizam a predição e a probabilidade desta predição usando os parâmetros (vetor *theta*) calculados na etapa anterior.

Aplicando os valores de θ para prever a aprovação de uma luno com notas 45 e 85 para provas 1 e 2, respectivamente, encontramos o seguinte resultado:

- Previsão: Aprovação;
- Probabilidade: 0,78.

In []:

```
new_x = np.array([45,85])
new_x_norm = (new_x - mean_examData) / std_examData
new_x_norm = np.insert(new_x_norm, 0, 1)
theta = np.matrix(theta_)
h = sigmoide(new_x_norm.dot(theta.T)) * 100
print('Probabilidade de aprovação: {0:.0f}%'.format(h[0,0]))
```

Probabilidade de aprovação: 78%

In []:

```
#from predizer_aprovacao import predizer, acuracia
"""
Funções do exercício substituídas pelas versões abaixo devido necessidades de
ajuste na forma como os dados são recebidos, tratados ou calculados.
"""

def pred_log(theta, x):
    """
    Função realizada predição da classe para x de acordo com os valores de theta.
    """
    y_prob = prob_log(theta,x)
    return np.round(y_prob).astype(np.int)

def prob_log(theta, x):
    """
    Função calcula a probabilidade de x pertencer a classe 1
    """
    return sigmoide(np.dot(x, theta))
```

Aplicando os valores de θ para prever a aprovação em relação aos dados da matriz X que contém os valores origiais do conjunto de treinamento.

- Previsão: Os valores 1 no vetor resultante equivalem à aprovação do aluno, enguanto os valores 0 equivalem à reprovação;
- Acurácia: apresenta a percentagem de acertos.

```
In [ ]:
```

```
def predizer(theta, X):
    probabilidade = sigmoide(X * theta.T)
    return [1 if x \ge 0.5 else 0 for x in probabilidade]
def acuracia(X, y, result):
    theta_min = np.matrix(result[0])
    predicoes = predizer(theta_min, X)
    corretas = [1 \text{ if } ((a == 1 \text{ and } b == 1) \text{ or } (a == 0 \text{ and } b == 0)) \text{ else } 0 \text{ for } (a, b) \text{ in }
zip(predicoes, y)]
    return (sum(map(int, corretas)) % len(corretas))
```

```
In [ ]:
pred_log(theta_, examData_norm)
Out[ ]:
array([0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1,
      0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1,
      0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0,
      1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1,
      1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1])
In [ ]:
acc = acuracia(examData_norm, y, result)
print('Acurácia sobre o conjunto de treinamento: {0:.0f}%.'.format(acc))
```

Acurácia sobre o conjunto de treinamento: 89%.

4 Regressão Logística com Regularização

Análise preliminar dos dados

```
In [ ]:
```

```
data = pd.read_csv('data/ex2data2.txt',
                   header = None,
                   names = ['Teste 1', 'Teste 2', 'Status'])
```

```
In [ ]:
```

```
data.head()
```

Out[]:

	Teste 1	Teste 2	Status
0	0.051267	0.69956	1
1	-0.092742	0.68494	1
2	-0.213710	0.69225	1
3	-0.375000	0.50219	1
4	-0.513250	0.46564	1

In []:

```
data.describe()
```

Out[]:

	Teste 1	Teste 2	Status
count	118.000000	118.000000	118.000000
mean	0.054779	0.183102	0.491525
std	0.496654	0.519743	0.502060
min	-0.830070	-0.769740	0.000000
25%	-0.372120	-0.254385	0.000000
50%	-0.006336	0.213455	0.000000
75%	0.478970	0.646562	1.000000
max	1.070900	1.108900	1.000000

In []:

```
data.Status.value_counts()
```

Out[]:

60158

Name: Status, dtype: int64

4.1 Visualização gráfica

A função criada abaixo analisa a coluna Resultado do conjunto de dados (classe y), e gera a dispersão de acordo com sua aceitação ou rejeição. Sendo aceito quando y=1 e rejeitado quando y=0.

```
In [ ]:
```

```
Xplot = data.iloc[:, :2]
yplot = data.iloc[:, 2]
```

In []:

```
# Visualização dos dados - Pontos de dados do conjunto (fig 4)
plot_(np.array(Xplot), np.array(yplot))

# Rótulos e Legenda
plt.xlabel('Microchip Test 1')
plt.ylabel('Microchip Test 2')
plt.legend(['y = 1: Aceito', 'y = 0: Rejeitado'])

plt.savefig('target/plot4.1.png')
plt.show()
```


O gráfico da dispersão gerada apresentada os testes aceitos marcados em azul e os rejeitados marcados em vermelho.

4.2 Mapeamento de características

Nesta seção realizamos o mapeamento de características usando as características originais, notas dos Testes 1 e 2 (tratados como x_1 e x_2), para gerar novas características correspondendentes a seus termos polinomiais até o expoente de grau 6.

Para este objetivo, é usada a função mapFeature que recebe os valores de x_1 e x_2 , o grau polinomial e retorna um vetor com os termos polinomiais de x_1 e x_2 até o grau definido, neste caso um vetor 28 colunas, equivalentes aos termos, e 118 linhas, equivalentes à aplicação do polinômio aos valores originais da linha correspondente.

In []:

In []:

```
%run mapFeature.py

feature_1 = np.array(X[:,0])
feature_2 = np.array(X[:,1])

X = mapFeature(feature_1, feature_2)
print(X.shape)
```

(118, 28)

A listagem a seguir confere os valores do vetor gerado no mapeamento de características e as dimensões deste vetor.

```
In [ ]:
Χ
Out[ ]:
array([[ 1.00000000e+00, 5.12670000e-02, 6.99560000e-01, ...,
         6.29470940e-04, 8.58939846e-03,
                                         1.17205992e-01],
       [ 1.00000000e+00, -9.27420000e-02, 6.84940000e-01, ...,
         1.89305413e-03, -1.39810280e-02, 1.03255971e-01],
       [ 1.00000000e+00, -2.13710000e-01, 6.92250000e-01, ...,
         1.04882142e-02, -3.39734512e-02, 1.10046893e-01],
       [ 1.00000000e+00, -4.84450000e-01, 9.99270000e-01, ...,
         2.34007252e-01, -4.82684337e-01, 9.95627986e-01],
       [ 1.00000000e+00, -6.33640000e-03, 9.99270000e-01, ...,
         4.00328554e-05, -6.31330588e-03, 9.95627986e-01],
       [ 1.00000000e+00, 6.32650000e-01, -3.06120000e-02, ...,
         3.51474517e-07, -1.70067777e-08, 8.22905998e-10]])
In [ ]:
X.shape
Out[]:
(118, 28)
4.3 Função de Custo e Gradiente Descendente
In [ ]:
from sigmoide import sigmoide
Para \lambda=1
In [ ]:
%run custo reglog reg.py
_{lambda} = 1
```

```
Custo = 0.6931471805599451
```

print('Custo = ', J)

Para $\lambda=0$

theta = np.zeros((X.shape[1])) #inicialização
J = custo_reglog_reg(theta, X, y, _lambda)

```
%run custo reglog reg.py
%run gd_reglog_reg.py
lambda = 0
theta = np.zeros((X.shape[1])) #inicialização
result = opt.fmin_tnc(func=custo_reglog_reg, x0=theta, fprime=gd_reglog_reg, args=(X, y
, _lambda))
theta = result[0]
J = custo_reglog_reg(theta, X, y, _lambda)
print('Vetor de parâmetros = ', theta)
print('\nCusto = ', J)
Vetor de parâmetros = [
                                          16.49992762
                                                          7.36168342 -14
                          12.77908481
0.0689641
   -82.626573
                 -47.32272413 -134.29479797 -113.6610402
   -56.14324677
                  -4.10861092
                               510.70466523
                                                507.56922885
   566.66305886 258.98915504 56.95402121
                                               247.5193485
   350.83103498 371.75202507 194.13604466
                                                 69.46621389
    15.14801323 -600.92424344 -821.86040683 -1106.80924821
  -848.64036255 -706.48745788 -292.82673998
                                                -50.26186711]
Custo = 0.25308573494688313
Para \lambda = 100
In [ ]:
lambda = 100
theta = np.zeros((X.shape[1])) #inicialização
result = opt.fmin_tnc(func=custo_reglog_reg, x0=theta, fprime=gd_reglog_reg, args=(X, y
, _lambda))
theta = result[0]
J = custo_reglog_reg(theta, X, y, _lambda)
print('Vetor de parâmetros = ', theta)
print('\nCusto = ', J)
Vetor de parâmetros = [ 2.87015383e-04 -2.10544242e-03 1.22391072e-03 -
6.79678110e-03
 -1.74408066e-03 -4.46041042e-03 -2.26497645e-03 -9.37866502e-04
 -1.13248462e-03 -2.62435498e-03 -5.46183984e-03 -3.06831194e-04
 -1.75796213e-03 -4.68279970e-04 -5.03984839e-03 -2.62545344e-03
 -5.89312935e-04 -4.48411790e-04 -7.84188445e-04 -6.48156747e-04
 -3.88185402e-03 -4.31900558e-03 -1.35539797e-04 -8.84096665e-04
 -4.96564783e-05 -9.97763028e-04 -2.09723993e-04 -5.06602296e-03]
Custo = 0.6927650676796886
```

Para teste da função de custos para **Regressão Logística Regularizada**, a mesma foi executada com os valores de θ zerados e o valor de $\lambda=1$, obtendo J com valor esperado (0.693). Em seguida foram realizadas execuções também com com $\lambda=0$ e $\lambda=100$.

A seguir aplicamos a função de custos para obtenção dos valores otimizados de heta.

```
_lambda = 1
theta = np.zeros((X.shape[1]))  #inicialização
result = opt.fmin_tnc(func=custo_reglog_reg, x0=theta, fprime=gd_reglog_reg, args=(X, y
, _lambda))
theta = result[0]
J = custo_reglog_reg(theta, X, y, _lambda)

print('Vetor de parâmetros = ', theta)
print('\nCusto = ', J)

Vetor de parâmetros = [ 0.51126521  0.28141979  0.56732707 -0.89264983 -
0.33269562 -0.50931638
    0.06978521 -0.14679472 -0.15051146 -0.04162217 -0.63602971 -0.03068704
-0.26998237 -0.08940903 -0.47099374 -0.07027425 -0.08868329 -0.0384868
-0.11459476 -0.10674824 -0.18602658 -0.43208855  0.00445043 -0.13397984
```

Custo = 0.651887301156613

4.4 Esboço da Fronteira de Decisão

-0.00181124 -0.14157615 -0.03660799 -0.37996296]

Apresentamos a seguir plotagem da dispersão dos valores e sobre estes é esboçada a **Fronteira de Decisão**, representada pela forma em verde neste gráfico, que separa os valores positivos e negativos do nosso conjunto de dados.

Esta fronteira foi desenhada com a função plotDecisionBoundary, que recebe os valores ótimos de θ , as características mapeadadas a partir dos termos dos polinômios de x1 e x2 e os valores da classe alvo (y).

/content/drive/My Drive/Mestrado PPCIC/03. Curso/3. Aprendizado/code/mapFe ature.py:17: VisibleDeprecationWarning: Creating an ndarray from ragged ne sted sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays wi th different lengths or shapes) is deprecated. If you meant to do this, yo u must specify 'dtype=object' when creating the ndarray return np.array(out)

5 Regressão Linear com Regularização

Análise preliminar dos dados

```
In [ ]:
```

In []:

In []:

In []:

```
treinamento.describe()
```

Out[]:

	X	У
count	12.000000	12.000000
mean	-5.085426	11.217589
std	29.964402	13.048466
min	-48.058829	1.173257
25%	-30.541301	2.494216
50%	-3.776152	3.735931
75%	17.171532	16.720808
max	37.492187	36.837955

```
In [ ]:
```

```
validacao.describe()
```

Out[]:

	Xval	yval
count	21.000000	21.000000
mean	-4.207026	12.906584
std	30.293175	13.028210
min	-50.013244	-0.000044
25%	-31.109554	4.170202
50%	-3.263862	8.348712
75%	25.374099	19.365053
max	46.282369	52.781928

In []:

```
teste.describe()
```

Out[]:

	Xtest	ytest
count	21.000000	21.000000
mean	-4.564866	13.449414
std	30.929739	14.541524
min	-55.940571	0.130430
25%	-33.318004	4.079367
50%	-6.132596	6.566065
75%	21.261183	17.088487
max	44.209886	55.384373

5.1 Visualização dos dados

```
In [ ]:
```


5.2 Função de custo da regressão linear regularizada

Esta seção realizada a aplicação da função de custo, implmentada a função de custo da regressão linear regularizada $J(\theta)$, conforme abaixo, que implementa λ como um hiperparâmetro que controla o grau de regularização impondo uma penalidade sobre o custo total J

$$J(heta) = rac{1}{2m} [\sum_{i=1}^m (h heta(x^i) - (y^i)^2] + rac{\lambda}{2m} \sum_{j=1}^n heta_j^2$$

```
In [ ]:
```

```
X_ = np.array(treinamento['X'], ndmin=2).T
X_.shape
```

Out[]:

(12, 1)

```
In [ ]:
X_{-} = np.c_{np.ones}((X_{-}.shape[0], 1)), X_{-}
X_.shape
Out[ ]:
(12, 2)
In [ ]:
y_ = np.array(treinamento['y'], ndmin=2).T
y_.shape
Out[ ]:
(12, 1)
In [ ]:
from custo reglin regularizada import custo reglin regularizada
In [ ]:
lambda = 1
theta = np.array([[1,1]]) #inicialização
J = custo_reglin_regularizada(theta, X_, y_, _lambda)
print('Custo = ', J)
Custo = 303.9931922202643
```

Usando *theta* inicializado como (1,1) obtemos o valor de custo de 303.993, conforme previsto para confirmar a corretude da função implementada.

5.3 Gradiente da regressão linear regularizada

A seguir aplicamos a função implementada do gradiente descedente para calcular com os mesmos parâmetros usados na seção anterior, ou seja, valores de θ inicializados como (1,1) e $\lambda=1$.

Com estes parâmetros encontramos como resultado (-15.303, 598.250).

5.4 Ajustando os parâmetros da regressão linear

Nessa seção usamos a função de custos regularizada para ajustar os valores ótimos de θ , mas usando $\lambda=0$, ou seja, sem regularização. Em seguida é feita a visualização da curva de regressão com os valores ótimos identificados.

Nesta primeira célula, importamos a ferramenta de otimização de valores da biblioteca scipy e definimos uma função usa esta ferramenta para encontrar os valores ótimos de θ .

In []:

O trecho abaixo aplica a otimização do gradiente descedente, sem regularização ($\lambda=0$), encontrando os valores (13.087, 0.367) com um custo de 22.374.

Em seguida é gerada a curva de ajustamento da regressão linear e realizada sua plotagem em conjunto com a dispersão dos dados originais.

In []:

```
_lambda = 0
result = encontrar_theta_otimo(theta, X_, y_, _lambda)
theta = result[0]
J = custo_reglin_regularizada(theta, X_, y_, _lambda)
```

In []:

```
print('Vetor de parâmetros = ', theta)
print('Custo = ', J)
```

```
Vetor de parâmetros = [13.08790367 0.36777923]
Custo = 22.373906495108923
```

In []:

```
h = X_.dot(theta.T)
```


Como percebemos pela visualização o modelo possui um alto viés, não conseguindo acompanhar o comportamento dos dados e portanto, tendo baixa capacidade preditiva.

6 Viés-Variância

6.1 Curva de aprendizado

Nessa seção é feito o cálculo dos erros usando conjunto de treino e conjunto de validação para permitir a comparação entre as duas situações e gerar a curva de aprendizado que permite essa avaliação de forma gráfica.

```
In [ ]:
```

```
def learningCurve(theta, X, y, X_val, y_val, _lambda):
   m = len(X)
    erros_treino = np.zeros(m)
    erros val = np.zeros(m)
    qtds exemplos = []
    for i in range(1,m+1):
        X_train = X[:i,:]
        y_train = y[:i]
        qtds exemplos.append(len(X train))
        result = encontrar_theta_otimo(theta, X_train, y_train, _lambda)
        theta = result[0]
        J_train = custo_reglin_regularizada(theta, X_train, y_train, _lambda=0)
        J_val = custo_reglin_regularizada(theta, X_val, y_val, _lambda)
        erros_treino[i-1] = J_train
        erros_val[i-1] = J_val
    return qtds_exemplos, erros_treino, erros_val
```

```
X_val = np.array(validacao['Xval'], ndmin=2).T
```

In []:

```
X_val = np.c_[np.ones((X_val.shape[0], 1)), X_val]
```

In []:

```
y_val = np.array(validacao['yval'], ndmin=2).T
```

In []:

```
lamb=0
theta = np.array([[1,1]]).T #inicialização
```

In []:

A visualização gráfica a seguir apresenta a curva de aprendizado da Regressão Linear com os dados de treino e validação, comparando a evolução dos erros para diferentes tamanhos dos conjuntos de treinamento.

É possível perceber que os erros no conjunto de treino começam muito inferiores aos encontrados no conjunto de validação e vão convergindo para o mesmo nível à medida que o número de exemplos aumenta. Contudo, mesmo quando encontram um nível similar a um platô ainda há um *gap* entre as duas curvas, mostrando que o modelo erra menos no conjunto de treino.

```
plt.figure(figsize=(10,6))
plt.plot(erros_treino, alpha=0.7)
plt.plot(erros_val, '--', alpha=0.7)
plt.legend(['Treino', 'Validação'])
plt.xlabel('Número de exemplos de treinamento')
plt.ylabel('Erro')
plt.title('Curva de Aprendizado da Regressão Linear')
plt.savefig('target/plot6.1.png')
sns.despine()
```


7 Regressão Polinomial

7.1 Regressão polinomial - aprendizado

Inicialmente realizamos a geração de novas características equivalantes com base no polinômio de grau 8 do X original.

```
In [ ]:
from poly_features import polyFeatures
In [ ]:
X_ = np.array(data['X'], ndmin=2).T
In [ ]:
grau = 8
X_poli = polyFeatures(X_, grau)
In [ ]:
X_poli.shape
Out[]:
(12, 8)
In [ ]:
Χ_
Out[]:
array([[-15.93675813],
       [-29.15297922],
       [ 36.18954863],
       [ 37.49218733],
       [-48.05882945],
       [-8.94145794],
       [ 15.30779289],
       [-34.70626581],
          1.38915437],
       [-44.38375985],
          7.01350208],
       [ 22.76274892]])
```

```
In [ ]:
X poli[:5]
Out[ ]:
array([[-1.59367581e+01, 2.53980260e+02, -4.04762197e+03,
         6.45059724e+04, -1.02801608e+06,
                                           1.63832436e+07,
        -2.61095791e+08, 4.16102047e+09],
       [-2.91529792e+01, 8.49896197e+02, -2.47770062e+04,
         7.22323546e+05, -2.10578833e+07,
                                           6.13900035e+08,
        -1.78970150e+10, 5.21751305e+11],
       [ 3.61895486e+01, 1.30968343e+03, 4.73968522e+04,
         1.71527069e+06, 6.20748719e+07,
                                           2.24646160e+09,
         8.12984311e+10, 2.94215353e+12],
       [ 3.74921873e+01, 1.40566411e+03, 5.27014222e+04,
         1.97589159e+06, 7.40804977e+07, 2.77743990e+09,
         1.04132297e+11, 3.90414759e+12],
       [-4.80588295e+01, 2.30965109e+03, -1.10999128e+05,
         5.33448815e+06, -2.56369256e+08, 1.23208064e+10,
        -5.92123532e+11, 2.84567638e+13]])
Em seguida normalizamos as características para deixá-las na mesma escala.
In [ ]:
from normalizacao import normalizar_caracteristica
In [ ]:
X_Norm, X_Norm_mean, X_Norm_std = normalizar_caracteristica(X_poli)
In [ ]:
X Norm.shape
Out[ ]:
(12, 9)
In [ ]:
X [0]
Out[ ]:
array([-15.93675813])
In [ ]:
X poli[0]
Out[ ]:
array([-1.59367581e+01, 2.53980260e+02, -4.04762197e+03, 6.45059724e+04,
       -1.02801608e+06, 1.63832436e+07, -2.61095791e+08, 4.16102047e+0
91)
```

```
In [ ]:
```

Nesta parte da análise, serão aprendidos os parâmetros e gerada a visualização com a regressão polinomial.

0.32025197, -0.6171516, 0.35983501, -0.53109126])

```
In [ ]:
```

```
print(X_Norm.shape, y_.shape)

(12, 9) (12, 1)

In []:

from custo_reglin_multi import custo_reglin_multi
import gd_reglin_multi
from plot_ex5data1 import plot_ex5data1
from plot_learning_curve import plot_learning_curve
```

In []:

```
_lambda = 0.003
theta = np.ones((X_Norm.shape[1])) #inicialização
result = encontrar_theta_otimo(theta, X_Norm, y_, _lambda)
theta_ = result[0]
print('Vetor de parâmetros\n',theta_)
```

```
Vetor de parâmetros
```

In []:

```
print(y_.shape, theta_.shape)
```

```
(12, 1) (9,)
```

```
x = np.linspace(-65,60,50)
x = x.reshape((len(x),1))
x_poli = polyFeatures(x, grau)
x_poli = (x_poli - X_Norm_mean) / X_Norm_std
x_poli = np.insert(x_poli, 0, 1, axis=1)

h = x_poli.dot(np.matrix(theta_).T)

plot_ex5data1(X_, y_)
plt.plot(x, h, 'b--')

plt.title('Ajuste polinomial ($\lambda = 0$)')
plt.axis((-70,70,-60,50))

plt.savefig('target/plot7.1.1.png')
```


O modelo gerado pelo ajuste polinomial se adequa bem aos dados, conforme pode ser visto pela curva marcada em azul na visualização. Contudo, o modelo demonstra ter alta variância e com *overfitting*.

Para reforçar esta análise, plotamos a curva de aprendizado que demonstra que o modelo possui erros de treinamento muito baixos, se aproximando de 0, mas elevados níveis de erro de validação.

```
In [ ]:
```

```
X_val = np.array(data['Xval'], ndmin=2).T
```

In []:

```
X_poli_val = polyFeatures(X_val, grau)
```

In []:

```
X_norm_val, _, _ = normalizar_caracteristica(X_poli_val)
```

```
plt.figure(figsize=(10,6))
plt.plot(erros_treino, alpha=0.7)
plt.plot(erros_val, '--', alpha=0.7)
plt.legend(['Treino', 'Validação'])
plt.xlabel('Número de exemplos de treinamento')
plt.ylabel('Erro')
plt.title('Curva de Aprendizado da Regressão Linear')
plt.savefig('target/plot7.1.2.png')
sns.despine()
```


Referências

Referências

McKinney, Wes (2018). **Python para Análise de Dados**: tratamento de dados com pandas, numpy e iPython. Traduzido por Lúcia A. Kinoshita. Novatec.

Géron, Aurélien (2019). **Mãos à Obra Aprendizagem de Máquina com Scikit-Learn & TensorFlow:** Conceitos, ferramentas e técnicas para a construção de sistemas inteligentes. Traduzido por Rafael Contatori. Alta Books.

Grus, Joel (2016). **Data Science do Zero:** Primeiras regras com Python. Traduzido por Welington Nascimento. Alta Books.

Algoritmos e conjuntos de dados:

https://github.com/MLRG-CEFET-RJ/ml-class/tree/master/ml-t1 (https://github.com/MLRG-CEFET-RJ/ml-class/tree/master/ml-t1)