Controle de concorrência

Notas de Aula - referentes a textos do livro do autor: Silberschatz (veja referencias)

UTFPR

Curso: Engenharia de Computação

Disciplina: Banco de Dados

Protocolos com Base em Bloqueio(Lock)

Um meio de garantir a serialização é obrigar que os acessos aos itens de dados seja feito de maneira mutuamente exclusiva; isto é enquanto uma transação acessa a um item de dados, nenhuma outra transação pode modifica-lo. O método mais usado para sua implementação é permitir o acesso a um item de dados somente se ele estiver bloqueado.

Protocolos baseados em bloqueio

- Um bloqueio é um mecanismo para controlar o acesso simultâneo a um item de dados
- Os itens de dados podem ser bloqueados em dois modos:
 - 1. Modo *exclusivo* (X). O item de dados <u>pode ser lido e</u> também escrito. O bloqueio X é solicitado pela instrução lock-X.
 - 2. Modo compartilhado (S). O item de dados <u>só pode ser</u> <u>lido</u>. O bloqueio S é solicitado pela instrução lock-S.
- As solicitações de bloqueio são feitas ao gerenciador de controle de concorrência. A transação só pode prosseguir após a concessão da solicitação.

Protocolos baseados em bloqueio

Matriz de compatibilidade de bloqueio

	S	X
S	true	false
X	false	false

- Uma transação pode receber um bloqueio sobre um item se o bloqueio solicitado for compatível com os bloqueios já mantidos sobre o item por outras transações
- Qualquer quantidade de transações pode manter bloqueios compartilhados sobre um item, mas se qualquer transação mantiver um bloqueio exclusivo sobre um item, nenhuma outra pode manter qualquer bloqueio sobre o item.
- Se um bloqueio não puder ser concedido, a transação solicitante deve esperar até que todos os bloqueios incompatíveis mantidos por outras transações tenham sido liberados. O bloqueio é então 4 concedido.

TRANSAÇÃO 1	ТЕМРО	TRANSAÇÃO 2
<pre>UPDATE LIVR0 SET preco = 60 WHERE id_livro = 1;</pre>	09:00	<pre>UPDATE LIVR0 SET preco = 80 WHERE id_livro = 2;</pre>
1 row updated.		1 row updated.
UPDATE LIVRO SET preco = 55 WHERE id_livro = 2; Nenhuma linha atualizada no momento, pois a transação 1 entra em lock conflict com a transação 2.	09:10	Transação continua normal, utilizando selects, inserts, updates e até mesmo deletes na mesma ou em outras tabelas.
Sessão ainda aguardando	09:20	Transação continua normal, utilizando selects, inserts, updates e até mesmo deletes na mesma ou em outras tabelas.
1 row updated. Liberado o lock, a sessão continua normalmente.	09:35	commit;

Protocolos baseados em bloqueio

Exemplo de uma transação realizando bloqueio:

- O bloqueio acima não é suficiente para garantir a serialização se A e B fossem atualizados entre a leftura de A e B, a soma exibida estaria errada.
- Um protocolo de bloqueio é um conjunto de regras seguidas por todas as transações enquanto solicita e libera bloqueios. Os protocolos de bloqueio restringem o conjunto de schedules possíveis.

ີວ

Sejam A e B duas contas que são acessadas pelas transações T_1 e T_2 . A transação T1 transfere 50 reais da conta A para a conta B e tem forma: Onde

i cais a	a conta A para	a conta b c	tem format onac
T1	Passo-a-Passo	T2	Passo-a-Passo
lock-X(B);	Bloqueia exclusivamente(B);	lock-S(A)	Bloqueia de maneira compartilhada (A);
read(B);	Lê(B);	read(A);	Lê(A);
B:=B-50;	Retira R\$ 50,00 de (B)	unlock(A);	Desbloqueia (A)
write(B);	Escreve o valor atual de (B)	lock-S(B);	Bloqueia de maneira compartilhada (B);
unlock(B);	Desbloqueia (B)	read(B);	Lê(B);
lock-X(A);	Bloqueia exclusivamente(A);	unlock(B);	Desbloqueia (B);
read(A);	Lê(A);		Evibo o como dos voleros do A o D
A:=A+50;	Adiciona R\$ 50,00 a (A)	Se essas	,
write(A);	Escreve o valor atual de (A)		serialmente, na ordem T ₁ , a transação T ₂ mostrará o
unlock(A);	Desbloqueia (A)	valor de 300	

Armadilhas dos protocolos baseados em bloqueio Considere o schedule parcial

T_3	T_4
lock-X(B)	
read(B)	
B := B - 50	
write(B)	
	lock-S(A)
	read(A)
	lock-S(B)
$lock ext{-}X(A)$	

- Nem T_a nem T_a podem ter progresso a execução de lock-S(B) faz com que T_4 espere que T_3 libere seu bloqueio sobre B, enquanto a execução de lock-X(A) faz com que T_3 espere que T_4 libere seu bloqueio sobre A.
- Essa situação é chamada de impasse.
 - Para lidar com um impasse, um dentre T_3 ou T_4 precisa ser revertido e seus bloqueios liberados.

Impasse-Deadlock

Infelizmente o uso do bloqueio pode causar situações indesejáveis. Considere a escala parcial abaixo. Já que T3 mantém um bloqueio exclusivo sobre B, e T4 solicita um bloqueio compartilhado em B, T4 espera que T3 libere B. Analogamente, como T4 mantém um bloqueio compartilhado em A, e T3 está solicitando um bloqueio exclusivo em A, T3 está esperando que T4 libere A. Assim, chegamos a um situação em que nenhuma dessas transações pode processar em sua forma normal. Essa situação é chamada de **DEADLOCK**(impasse). Quando um deadlock ocorre, o sistema precisa desfazer uma das duas transações.

DEADLOCK

O protocolo de bloqueio em duas fases

- Esse é um protocolo que garante schedules seriáveis por conflito.
- Fase 1: Fase de crescimento (expansão)
 - transação pode obter bloqueios
 - transação não pode liberar bloqueios
- Fase 2: Fase de encurtamento (encolhimento)
 - transação pode liberar bloqueios
 - transação não pode obter bloqueios
- O protocolo garante a serialização. Pode ser provado que as transações podem ser seriadas na ordem de seus pontos de bloqueio (ou seja, o ponto onde uma transação adquiriu seu bloqueio final).

Protocolo de bloqueio em Duas Fases

Inicialmente uma transação está em fase de expansão. A transação adquire os bloqueios de que precisa. Tão logo a transação libera um bloqueio, ela entra em fase de encolhimento e não poderá solicitar novos bloqueios.

Protocolo de bloqueio em Duas Fases

- Por exemplo, as transações T3 e T4 (slide 8) têm duas fases. Por outro lado, as transações T1 e T2 (slide 7)não tem duas fases. Note que as instruções de desbloqueios não precisam aparecer no final da transação.
- Por exemplo, no caso da transação T3, podemos colocar a instrução <u>unlock(B)</u> logo após a instrução <u>lock-X(A)</u>, e ainda assim manter a propriedade do bloqueio em duas fases.

Gerenciador do Controle de Concorrência

Protocolo
com base em
bloqueio
duas-fases
garante a
serialização.

T1	T2	Gerenciador de Controle de Concorrência
lock-X(A)		grant lock-X(A), T1
read(A)		
write(A)		
	lock-X(A)	blocked (wait), T2
	read(A)	
	write(A)	
lock-X(B)		grant lock-X(B), T1
read(B)		
write(B)		
unlock(A,B)		revoke lock-X(A), T1 revoke lock-X(B), T1
	lock-X(B)	grant lock-X(A), T2 grant lock-X(B), T2
	read(B)	
	write(B)	14

Protocolo de bloqueio em 2 fases

T1	T2
Lock-X(Aplic); Read(Aplic); Aplic.Saldo = Aplic.Saldo – 500; Write(Aplic); Lock-X(Conta); Unlock(Aplic); // Inicia 2º fase Read(Conta);	
	Lock-S(Conta);
Conta.Saldo = Conta.Saldo + 500; Write(Conta); Unlock(Conta);	Bloqueada
	Read (Conta); Lock-S(Aplic); Unlock(Conta); //Inicia 2º fase Read(Aplic); Print(Conta.Saldo+Aplic.Saldo); Unlock(Aplic);

Bloqueio em duas fases pode causar deadlock:

T1	T2
Lock-X(Aplic); Read(Aplic); Aplic.Saldo = Aplic.Saldo – 500;	
	Lock-S(Conta); Read(Conta); Lock-S(Aplic);
Write(Aplic); Lock-X(Conta);	Bloqueada
Bloqueada	Bloqueada
Não executa: Unlock (Aplic); Read(Conta); Conta.Saldo = Conta.Saldo + 500; Write(Conta); Unlock(Conta);	Não executa: Unlock(Conta); Read(Aplic); Print(Conta.Saldo + Aplic.Saldo); Unlock(Aplic);
	TO

Protocolo de Bloqueio em duas fases severo

- Todos os bloqueios exclusivos devem ser mantidos até o final da transação.

- Evita que outras transacoes leiam dados em transição

Referencias

SILBERSCHATZ, Abraham; KORTH, Henry F; SUDARSHAM, S. Sistema de Banco de Dados. 3ª ed. São Paulo, MAKRON Books, 1999.