Previous lecture: Chernoff bound.

Remark: For Chernoff bound, X is a sum of independent Poisson trals.

Question: What about dependent rivs?

Let us revisit Balls and Bins problem. Recall that the r.vs related to bin loads are dependent.

3.2 Martingales.

A sequence of random vaniables $X_0, X_1, ..., is$ said to be a martingale sequence if for all i > 0,

$$E[X_i \mid X_0, ..., X_{i-1}] = X_{i-1}$$
. $E[X_i \mid Y_0, Y_1, ..., Y_{i-1}] = X_{i-1}$.
 $E[X_i \mid X_0, ..., X_{i-1}] = X_{i-1}$. $E[X_i \mid X_{i-1}] = X_{i-1}$.
 $E[X_i \mid X_0, ..., X_{i-1}] = X_{i-1}$. $E[X_i \mid X_0, Y_1, ..., Y_{i-1}] = X_{i-1}$.
 $E[X_i \mid X_0, ..., X_{i-1}] = X_{i-1}$. $E[X_i \mid Y_0, Y_1, ..., Y_{i-1}] = X_{i-1}$.
 $E[X_i \mid X_0, ..., X_{i-1}] = X_{i-1}$. $E[X_i \mid Y_0, Y_1, ..., Y_{i-1}] = X_{i-1}$.
 $E[X_i \mid X_0, ..., X_{i-1}] = X_{i-1}$. $E[X_i \mid Y_0, Y_1, ..., Y_{i-1}] = X_{i-1}$.
 $E[X_i \mid X_0, ..., X_{i-1}] = X_{i-1}$. $E[X_i \mid Y_0, Y_1, ..., Y_{i-1}] = X_{i-1}$.
 $E[X_i \mid X_0, ..., X_{i-1}] = X_{i-1}$. $E[X_i \mid Y_0, Y_1, ..., Y_{i-1}] = X_{i-1}$.
 $E[X_i \mid X_0, ..., X_{i-1}] = X_{i-1}$. $E[X_i \mid Y_0, Y_1, ..., Y_{i-1}] = X_{i-1}$.
 $E[X_i \mid X_0, ..., X_{i-1}] = X_{i-1}$. $E[X_i \mid Y_0, Y_1, ..., Y_{i-1}] = X_{i-1}$.
 $E[X_i \mid X_0, ..., X_{i-1}] = X_{i-1}$. $E[X_i \mid Y_0, Y_1, ..., Y_{i-1}] = X_{i-1}$.
 $E[X_i \mid X_0, ..., X_{i-1}] = X_{i-1}$. $E[X_i \mid Y_0, Y_1, ..., Y_{i-1}] = X_{i-1}$.
 $E[X_i \mid X_0, ..., X_{i-1}] = X_{i-1}$. $E[X_i \mid Y_0, Y_1, ..., Y_{i-1}] = X_{i-1}$.
 $E[X_i \mid X_0, ..., X_{i-1}] = X_{i-1}$. $E[X_i \mid Y_0, Y_1, ..., Y_{i-1}] = X_{i-1}$.
 $E[X_i \mid X_0, ..., X_{i-1}] = X_{i-1}$. $E[X_i \mid Y_0, Y_1, ..., Y_{i-1}] = X_{i-1}$.
 $E[X_i \mid X_0, ..., X_{i-1}] = X_{i-1}$. $E[X_i \mid Y_0, Y_1, ..., Y_{i-1}] = X_{i-1}$.
 $E[X_i \mid X_0, ..., X_{i-1}] = X_{i-1}$. $E[X_i \mid Y_0, Y_1, ..., Y_{i-1}] = X_{i-1}$.
 $E[X_i \mid X_0, ..., X_{i-1}] = X_{i-1}$. $E[X_i \mid Y_0, Y_1, ..., Y_{i-1}] = X_{i-1}$.
 $E[X_i \mid X_0, ..., X_i] = X_{i-1}$. $E[X_i \mid Y_0, Y_1, ..., Y_i] = X_{i-1}$.
 $E[X_i \mid X_0, ..., X_i] = X_{i-1}$. $E[X_i \mid Y_0, X_i] = X_{i-1}$. $E[X_i \mid X$

Example: A gambler with initial capital x_0 and capital after i^{th} bet x_i play a fair game s.t expected gain/loss from each bet is zuo. Then $x_0, x_1, ...$ is a martingale.

Conditional distribution and expectations.

Let X be a r.v and E be any event that occurs we nonzuro probability. The conditional density function of X given E is given by Pr[X=2|E]. Further E can be an event that another r.v Y takes a particular value.

We denote the joint density function of X and Y by p(x,y) and

$$Pr[X=2|Y=y] = \frac{p(x,y)}{Pr[Y=y]} = \frac{p(x,y)}{\sum_{x} p(x,y)}$$

Conditional expectation of X given Y=y is

$$E[X|Y=y] = \frac{\sum_{x} x \cdot p(x,y)}{\sum_{x} p(x,y)} = \frac{E[X|Y=y]}{\sum_{x} p(x,y)} = \sum_{x} x \cdot P[X=x|Y=y]$$

Remark: $\mathbb{E}[X|Y]$ is a $Y \cdot Y$ that is defined to be equal to f(Y) and $f(Y) = \mathbb{E}[X|Y \cdot Y]$.

Lemma: E[E[x|y]] = E[x]. = E[xi] = E[xi] = ... = E[xi].

Azuma's inequality:

Let $X_0, X_1, ...$ be a martingale sequence s.t for every k, $|X_k - X_{k-1}| \le C_k$ where C_k may depend on k. Then for all t > 0 and any $\lambda > 0$,

$$\Pr[|X_t - X_0| \geqslant \lambda] \leq 2 \cdot \exp\left(-\frac{\lambda^2}{2 \sum_{k=0}^{t} c_k^2}\right).$$

If all c_k are equal and are independent of k, $\Pr[1\times_{t}-\times_{0}1>\lambda \subset Jt] \leq 2 \cdot \exp(-\frac{\lambda^{2}}{2})$.

Concentration bound for the no. of empty bins:

Let Z be the no of empty bins after m balls are thrown into n bins. Let $x_1, x_2, ...$ denote the random choices made by balls 1, 2, ...

Let $Z_t = E[Z \mid x_1,...,x_t]$ denote the conditional expectation of r.v Z at time t. $E[Z] = n(1-\frac{1}{n})^m$ Observation: $Z_s = E[Z]$ and $Z_m = Z$. $\sim n.e^{m/n}$

Claim: Zo, Z,... form a martingale.

That is $\mathbb{E}[Z_t|x_1,...,x_t] = Z_{t-1}$ for all t>0.

Let Z(Y,t) be defined as the expectation of Z given that Y bins are empty at time t. $(X_1,...,X_t)$ give the value of Y at time t. Let us denote it by Y_t).

 $Z(Y,t) = \mathbb{E}[Z|Y \text{ bins are empty at }t]$ = $Y(1-\frac{1}{n})^{m-t}$.

 $Z_{t-1} = Z(Y_{t-1}, t-1) = Y_{t-1} \cdot \left(1 - \frac{1}{n}\right)^{m-t+1}$

Let us look at how Z_t can be computed. Firstly $Y_t = Y_{t-1}$ with a prob of $1 - \frac{Y_{t-1}}{n}$ and $Y_t = Y_{t-1} - 1$ w/p

Claim: $|Z_t - Z_{t-1}| \leq \left(1 - \frac{1}{n}\right)^{m-t}$

From this, we get that $C_t = (1 - \frac{1}{h})^n$. Using Azuma's ineq. we get the following:

$$P_{r}\left[\left|Z-\mathbb{E}[Z]\right|_{\geqslant\lambda}\right] = P_{r}\left[\left|Z_{m}-Z_{o}\right|_{\geqslant\lambda}\right]$$

$$\leq 2 \cdot \exp\left(-\frac{\lambda^{2}}{2\sum_{t=1}^{\infty}C_{t}^{2}}\right) \cdot \right\} *$$

W.P (1-*) r.V Z is concentrated in the >- radius of E[Z].

Reference:

- 1. Kamath, Moturniu, Palem Spirakis "Tail Bounds for Occupancy and Sat. Horeshold cony". 1994.
- 2. Section 4.3 of Motorani-Raghavan.