

CSCI 544 Applied Natural Language Processing

Mohammad Rostami

USC Computer Science Department

Logistical Notes

- Project Group Formation Deadline: 09/12 (next week!)
- Do NOT form more than 50 groups
- Meet weekly, helpful for both HW and project
- Paper Selection Deadline: 09/19 (in two weeks)
- Check and then enter your paper:

 https://docs.google.com/spreadsheets/d/1
 vafG77ijmETCnuVZvKpT35k- 5op5wn71GZXgAY700
- Project Proposal Deadline: 10/03
- HW2:
- No libraries are allowed, except for common libraries such as Pandas or NumPy

Natural Language Representation

Language processing hierarchy levels:

- Sparsity in the NLP training datasets: natural language has a very huge space
 - Example: Average Wikipedia page size is 580 words and English has ~1M word roots, yet the actual number of possibilities is far more.
- We need interpretable representations or embeddings to represent natural language data for model training
- One-hot representation: too large (15M words) and meaningless

Hotel: [0,0,0,0,1,0,0,0,0,0,0,...,0,0,0]

Motel:[0,0,0,0,0,0,0,0,1,0,...,0,0,0]

Similarity of Vectors

- Euclidean distance, i.e., geometric closeness:
- Curse of dimensionality
- Dot product:

$$a \cdot b = ||a|| ||b|| \cos(\theta_{ab})$$

= $a_1b_1 + a_2b_2 + ... + a_nb_n$

Cosine similarity (scale invariant)

$$\cos \theta_{ab} = a \cdot b / ||a|| ||b|| \rightarrow 1 - \cos \theta_{ab}$$
 is a metric

- Invariant with respect to the vector starting point
- EX: Hotel: [0,0,0,0,1,0,0,0,0,0,0,0,0], Motel:[0,0,0,0,0,0,0,0,0,0,0,0,0]
 Hotel'*Motel = 0

The Distributional Hypothesis

Zellig Harris, 1954

- Words that occur in the same contexts tend to have similar meanings
- Example: nice, good

Budanitsky and Hirst, 2006

- Word relatedness association: related words co-occur in different contexts
- Example: cup, coffee

- If semantic similarity and association of words can be encoded into their representations, we may be able to address the challenge of sparsity
- In the absence of a particular word during training, we can rely
 on its synonyms that exist in the training dataset: Motel vs Hotel
- We can draw conclusions:
 Lecturers teach in the university-> Professors ____ in the university.

Vector Embedding of Words

- Represent words using dense vectors:
 - Latent Semantic Analysis/Indexing (SC Deerwester et al, 1988)
 - Word2Vec (Mikolov et al, 2013)
 - GloVe (Pennington et al, 2014)

LSA

- Term weightingbased model
- Consider
 occurrences of
 terms at
 document level

Word2Vec

- Predictionbased model
- Consider
 occurrences of
 terms at
 context level

GloVe

- Count-based model
- Consider
 occurrences of
 terms at
 context level

Word Embedding

- Each word is represented by a vector:
- The same size is used for all words
- Relatively low dimensional (~300)
- Vectors for similar words are similar (measured in dot product)
- Vector operations can be used for

semantic and syntactic deductions, e.g., Queen – Woman + Man = King

 The key idea is to derive the embeddings from the distributions of word context as they appear in a large corpus.

Singular Value Decomposition

- Every matrix $A \in \mathbb{R}^{m \times n}$ can be factorized as $A = U\Sigma V^T$ where $U \in \mathbb{R}^{m \times m}$ and $V \in \mathbb{R}^{n \times n}$ are orthogonal matrices and $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix
 - The diagonal entries of A are called the singular values of the matrix A
- Singular value $\sigma_i = \sqrt{\lambda_i}$ $U = AV\Sigma^{-1}$ $U\Sigma = AV$ $U\Sigma V^T = A$

Matrix Factorization

 We can form a matrix of M using the idea of Bag of Words: the word representations are highly sparse

		Words												
		1 This	2 movie	3 is	4 very	5 scary	6 and	7 long	8 not	9 slow	10 spooky	11 good	Length of the review(in words)	
Contexts	Review 1	1	1	1	1	1	1	1	0	0	0	0	7	
	Review 2	1	1	2	0	0	1	1	0	1	0	0	8	
	Review 3	1	1	1	0	0	0	1	0	0	1	1	6	

Singular value decomposition (U, V are orthonormal)

Decrease in $\sigma_{\rm m}$

$$oldsymbol{M} = oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^T$$
 $oldsymbol{\Sigma} = egin{bmatrix} \sigma_1 & 0 & 0 & ... & 0 & ... & 0 \ 0 & \sigma_2 & 0 & ... & 0 & ... & 0 \ ... & ... & ... \ 0 & 0 & 0 & ... & \sigma_m & ... & 0 \end{bmatrix}$ $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq ... \geq \sigma_m$

- What can we do with this information?
 - We can set any sigma after k to be equal to 0
 - Therefore we effectively have a square diagonal matrix of shape K x K for the new sigma matrix.
 - Because of the 0s in sigma matrix, we can now ignore chunks of U and V matrix as they will result in 0s when we matrix multiply them.

Matrix Factorization

Many singular values are going to be zero or negligible

- We can use rows of U as word embeddings
- An old idea for dimensionality reduction (it is possible to use other matrix factorization methods, e.g., non-negative matrix factorization)
- Determining context is heuristic
- computational expensive with $O(mn^2)$ cost for an n^*m matrix
- Hard to incorporate new words

Matrix Factorization

Many singular values are going to be zero or negligible

- An old idea for dimensionality reduction (it is possible to use other matrix factorization methods, e.g., non-negative matrix factorization)
- Determining context is heuristic
- computational expensive with $O(mn^2)$ cost for an n*m matrix $\int 5 V$
- Hard to incorporate new words

Word2Vec

Core idea: find embeddings using a prediction task involving **neighboring words** in a huge real-world corpus.

Concept

Example

Input data: sets of

successive word-patterns

from meaningful

sentences in the corpus

We build a **synthetic** prediction task using these patterns

We train a model to solve this prediction task

Embeddings will be the byproduct of this task

"One of the most important"

Given an input predict the dash word Input: [One, of, ____, most, important] Target: the

Loss(Model(["One", "of", ____, "most", "important"]), "the")

Word2Vec

Concept

Input data: sets of successive word-patterns from meaningful sentences in the corpus

We build a **synthetic** prediction task using these patterns

We train a model to solve this prediction task

Embeddings will be the **byproduct** of this task

Specifics

consider a window with the center word w_t and "context words" $w_{t'}$ with a window fixed size, e.g., (t'=t-5, ... t-1, t+1, ..., t+5)

predict all w_t given $w_{t'}$ such that $p(w_t|w_{t'})$ is maximized

A Two Layer Neural Network

We learn embeddings such that the prediction loss is minimized, i.e., if two words occur in close proximity, their representations become similar.