Lecture 2: Introduction to Hilbert space

- In Classical mechanics, a particle's motion is governed by Newton's Laws.
- The equations of motion dictated by Newton's laws are second order ordinary differential equations.
- The state of the motion is given by the position $\hat{x}(t)$ and momentum $\hat{P}(t)$, where "t" is time which comes as a parameter.
- At any given time instant "t", if we know the pair $(\hat{x}(t), \hat{P}(t))$, we know everything about the particle in consideration.
- The co-ordinate space consisting all the position and momentum components is called the phase space.
- In general, for a N particle system, the phase space is 6 dimensional, with 3N position and 3N momentum co-ordinates.
- So the bottom line in classical mechanics is to know the instantaneous position $(\hat{x}(t), \hat{P}(t))$ in phase space, which determines the state of motion.
- The trajectory in the phase space is governed by the equation of motion.

Quantum Mechanics

- In Quantum mechanics, the basic question remains the same: What is the state of motion?
- The state of motion cannot be determined by the point in phase space.
- We have to consider uncertainty principle.
- Position and momentum cannot be determined with perfect accuracy simultaneously.
- Also the entity obeying quantum mechanics do not obey Newton's Laws.
- Therefore we need a new "space" and a new "Principles of motion"

Why do we need Hilbert space

- In Quantum mechanics, everything we know about a particle is encoded in a vector ψ in a space called Hilbert space
- This vector is called the State vector.
- The state vector evolves in time according to the "Schrödinger equation"
- The observables are represented by certain operators, acting on the Hilbert space.
- The operators are linear maps $O: H \to H$, which means they map a vector ψ into another vector ϕ in the same Hilbert space.

Metric Space

A metric space is a space X together with a distance function $d: X \times X \to \mathbf{R}$ such that:

$$1) \ d(x,y) \ge 0$$

II)
$$d(x, y) = 0$$
 if $f(x) = y$

III)
$$d(x, y) = d(y, x)$$
 (Symmetric property)

IV)
$$d(x,z) \le d(x,y) + d(y,z)$$
 (triangle inequality)

Hilbert Space

- Hilbert space is a vector space H over C (complex vector space), equipped with a complete inner product.
- Saying that Hilbert space is a vector space means that it is a set on which we have an operation `+` of addition obeying
 - Commutativity: $\psi + \phi = \phi + \psi$.
 - Associativity: $\psi + (\phi + \chi) = (\psi + \phi) + \chi$.
 - Identity: There exists $o \in \mathbf{H}$ such that $\psi + o = \psi$.
 - Here, $o \to Null\ vector\ For\ all\ \psi, \phi, \chi \in \boldsymbol{H}$.
- Multiplication by a complex scaler:

The multiplication operation is

- i. Distributive over \mathbf{H} : $c(\psi + \phi) = c\psi + c\phi$.
- ii. Distributive over $C: (a+b)\psi = a\psi + b\psi$.

Hilbert Space-Inner Product

- Any Hilbert Space H is equipped with an inner product (,).
- This is a map $(,): H \times H \rightarrow C$ that obeys
 - Conjugate symmetry: $(\psi, \phi) = (\phi, \psi)^*$.
 - Linearity: $(\phi, a\psi) = a(\phi, \psi)$.
 - Additivity: $(\phi, \psi + \chi) = (\phi, \psi) + (\phi, \chi)$.
- Points to remember:
 - Inner product is anti linear in first argument: $(a\phi, \psi) = a^*(\phi, \psi)$.
 - $(\psi, \psi) = (\psi, \psi)^*$ This property gives a norm.

Norm

• Whenever we have an inner product, we can define a norm of the form:

$$|\psi| = \sqrt{\psi, \psi}$$

• These properties ensure that the Cauchy-Schwarz inequality holds true $|\phi,\psi|^2 \leq (\phi,\phi)(\psi,\psi)$

• As a consequence of this, the triangle inequality also holds.

Linear Independence and more...

- Linear independence: A set of vectors $\{\phi_1,\phi_2,\dots,\phi_n\}$ are linearly independent, if and only if the only solution to $c_1\phi_1+c_2\phi_2+\dots+c+c_n\phi_n=0$ for $c_i\in \mathbf{C}$ is $c_1=c_2=\dots=c_n=0$.
- The dimension of the vector space is the largest possible number of linearly independent vectors we can find.
- If there is no such number, the vector space is infinite dimensional.
- Orthogonality: An orthogonal set of vectors $\{\phi_1, \phi_{2,\dots,\phi_n}\}$ is defined by $(\phi_i, \phi_j) = 0$ for $i \neq j$ and $(\phi_i, \phi_j) = constant$ for $i = j \forall i, j$.
- Normalized vectors: $(\phi_i, \phi_i) = 1$
- An orthonormal set of vectors $\{\phi_1,\phi_{2,\dots},\phi_n\}$ forms a basis of n dimensional Hilbert space if every vector ψ can be uniquely expressed as $\psi=\sum_{\alpha}c_{\alpha}\phi_{\alpha}$ with some complex coefficients c_{α} .

$$(\phi_{\alpha}, \psi) = (\phi_{\alpha}, \sum_{a} c_{a} \phi_{a}) = \sum_{a} c_{a} (\phi_{\alpha}, \phi_{a}) = c_{\alpha}$$

Cauchy-Schwarz inequality $|(x,y)|^2 \le (x,x)(y,y)$

- Suppose x is not a scaler multiple of y and they are both non-zero.
- Because for the previous case, the equality always holds.
- $x \alpha y$ is then always non zero for any complex α .
- Consider $|x \alpha y|^2 > 0$
- Expanding we get $|x|^2 \alpha(x, y) \alpha^*(y, x) + \alpha \alpha^*|y|^2 > 0$.
- Let $\alpha = \mu t$ with $t \ real \ and \ |\mu| = 1$ and $\mu = |\mu| \exp(i\theta)$, where $(x, y) = |(x, y)| \exp(-i\theta)$
- Therefore $\mu(x, y) = |(x, y)|$.
- Then $|x|^2 2t|(x,y)| + t^2|y|^2 > 0$.
- The minimum of LHS occurs when $-2|(x,y)| + 2t|y|^2 = 0$ giving $t = \frac{|(x,y)|}{|y|^2}$.
- Putting this value of t in the inequality, we get the desired result.

Triangle inequality: $|v + w| \le |v| + |w|$

$$(|v| + |w|)^2 - |v + w|^2 = |v|^2 + |w|^2 + 2|v||w| - |v|^2 - |w|^2 - (v, w) - (w, v)$$

$$\Rightarrow 2|v||w| - 2Re(v,w) \ge 2|v||w| - 2(v,w) \ge 0.$$

Thoughts to take home...

• Consider Cartesian Co-ordinate system in three dimension.

Verify all the properties of a vector space

What will be the inner product ?

Verify the Cauchy-Schwarz inequality and Triangle inequality.