

Gestaffeite Gleichungssysteme

obere Dreiecksform

Ein Gleichungssystem Ux = b mit $U \in \mathbb{R}^{N \times N}$ und $b, x \in \mathbb{R}^{N}$ hat die obere Dreiecksform (upper triangular form), wenn es folgendermaßen aussieht:

$$u_{11}x_1 + u_{12}x_2 + \dots + u_{1N}x_N = b_1$$

 $u_{22}x_2 + \dots + u_{2N}x_N = b_2$
 \vdots
 $u_{NN}x_N = b_N$

Die Lösung erfolgt durch Rückwärtseinsetzen, falls alle Elemente auf der Hauptdiagonalen ungleich Null sind $(\forall i \in \{1, ..., N\}: u_{ii} \neq 0)$.

$$x_i = \frac{1}{u_{ii}} \left(b_i - \sum_{k=i+1}^N u_{ik} x_k \right)$$

Ausgeschrieben ergibt die Formel folgendes Bild:

$$x_N = \frac{1}{u_{NN}} b_N$$

$$x_{N-1} = \frac{1}{u_{N-1,N-1}} (b_{N-1} - u_{N-1,N} x_N)$$

$$\vdots \qquad \vdots$$

$$x_1 = \frac{1}{u_{11}} (b_1 - (u_{12} x_2 + u_{13} x_3 + \dots + u_{1N} x_N))$$

Die Determinante der oberen Dreiecksmatrix ist das Produkte der Elemente der Hauptdiagonalen:

$$\det(\boldsymbol{U}) = \prod_{i=1}^{N} u_{ii}.$$

untere Drejecksform

Ein Gleichungssystem Lx = b besitzt die untere Dreiecksform (lower triangular form), wenn es wie folgt aussieht:

Die Lösung erfolgt durch Vorwärtseinsetzen, falls alle Elemente auf der Hauptdiagonalen ungleich Null sind $(\forall i \in \{1, \dots, N\}: l_{ii} \neq 0)$:

$$x_i = \frac{1}{l_{ii}} \left(b_i - \sum_{k=1}^{i-1} l_{ik} x_k \right) .$$

Die Determinante der unteren Dreiecksmatrix ist das Produkte der Elemente der Hauptdiagonalen:

$$\det(\boldsymbol{L}) = \prod_{i=1}^{N} l_{ii}.$$

Gauß- Jordan - Verfahren

Ziel:

Hier eliminiert man auch die Elemente oberhalb der Hauptdiagonale und rechnet solange, bis die Koeffizientenmatrix in die Einheitsmatrix übergegangen ist.

Gleichungssystem

Koeffizienten | rechte Seite | Kontrollspalte

Ziel	×1	χر	۲,	\d
	1	0	0	2
	0	1	0	2
	O	0	1	2
				'

$$\Rightarrow x = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$$

$$\int = \xi (1, -2, 3) \cdot 3$$

$$\begin{pmatrix} 3 & 1 & 2 \\ 2 & 1 & 1 \\ 3 & -2 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix}$$

r_1	x_{α}	x_3	b	7	
	x_2				
3	1	2	2	8	$ 1 \cdot (-\frac{2}{3})$ $1 \cdot (-1)$
(2)	1	1	1	5	← +
3	-2	5	-1	5	+
3	1	2	2	8	
	$\frac{1}{3}$	$-\frac{1}{3}$	$-\frac{1}{3}$	$-\frac{1}{3}$	9
	$\overrightarrow{-3}$	3	-3	-3	← +
3	1	2	2	8	la
	$\frac{1}{3}$	$-\frac{1}{3}$	$-\frac{1}{3}$	$-\frac{1}{3}$.7
l	3	0	-6	-6	

Wiedes Sperch ?

$$3x_1 + x_2 + 2x_3 = 2$$

$$\frac{1}{3}x_2 - \frac{1}{3}x_3 = -\frac{1}{3}$$

$$0x_3 = -6$$

Lösbarkeitskriterien

Für eine Koeffizientenmatrix $\pmb{A} \in \mathbb{R}^{M \times N}$ und die rechte Seite $\pmb{b} \in \mathbb{R}^M$ nennen wir die Zusammenfassung

die erweiterte Koeffizientenmatrix.

Satz 11.3 (Lösbarkeit linearer Gleichungsysteme)

Ein lineares Gleichungssystem $\mathbf{A}\mathbf{x} = \mathbf{b}$ mit Koeffizientenmatrix $\mathbf{A} \in \mathbb{R}^{M \times N}$, rechter Seite $\mathbf{b} \in \mathbb{R}^M$ und unbekanntem Vektor $\mathbf{x} \in \mathbb{R}^N$ ist genau dann $\mathbf{l\ddot{o}sbar}$, wenn der Rang der Koeffizientenmatrix \mathbf{A} mit dem Rang der erweiterten Koeffizientenmatrix (\mathbf{A}, \mathbf{b}) übereinstimmt, also

$$rg(\mathbf{A}) = rg(\mathbf{A}, \mathbf{b})$$
.

Das Gleichungssystem hat eine *eindeutig bestimmte Lösung*, wenn zusätzlich der Rang gleich der Anzahl der Unbekannten ist, also

$$rg(\mathbf{A}) = N$$
.

Im Fall $rg(\mathbf{A}) < N$ müssen $N - rg(\mathbf{A})$ Parameter t_j eingeführt werden. Die Lösung des Gleichungssystems hat die Form

$$x = x_s + \sum_{j=1}^{N-rg(A)} t_j v_j$$
 Specielle

Es existieren also *unendlich viele Lösungen*. (11.1)

mit geeigneten Vektoren x_s, v_j . Es existieren also unendlich viele Lösungen.

Bemerkung

- Falls $\operatorname{rg}(\boldsymbol{A}) < \operatorname{rg}(\boldsymbol{A}, \boldsymbol{b})$, heißt dies, dass auf der rechten Seite nach dem Gauß-Algorithmus ein b'_j (j>M) übrig geblieben ist, das Gleichungssystem also widersprüchlich ist.
- Falls $rg(\mathbf{A}) = rg(\mathbf{A}, \mathbf{b})$, heißt dies, dass wir nach dem Gauß-Algorithmus die gewünschte Trapezform erhalten haben, nichts übrig geblieben ist und wir durch Rückwärtseinsetzen (evtl. mit Parametern) das LGS lösen können.
- Falls $rg(\mathbf{A}) = rg(\mathbf{A}, \mathbf{b}) = N$, haben wir eine Dreiecksform erhalten und genau so viele Gleichungen wie Unbekannte, erhalten also genau eine Lösung.
- Ein LGS mit quadratischer Koeffizientenmatrix $\mathbf{A} \in \mathbb{R}^{N \times N}$ besitzt genau dann eine eindeutige Lösung, wenn \mathbf{A} regulär ist, wenn also $\det(\mathbf{A}) \neq 0$.

