软件 2022 级参考答案

一、简答题(本大题共10小题,每小题2分,共20分) 1, 2, 3, 6 1. 是;否 2. 3. 不对 4、{1, 3, 4, 9, 10, 12}, {2, 5, 6, 7, 8, 11} 5, 3, 2 6、Z, p/q (p, q都是奇数) 或 (pq, 2) =1 7, aH 8, {e'} 9、是;不一定 10, 1 二、单项选择题(本大题共10小题,每小题2分,共20分) 11. В 12. В 13. C

14. C

D

С

15.

16.

- 17. D
- 18. D
- 19. B
- 20. D
- 三、解答题(本大题共2小题,每小题10分,共20分)
- 21、(1) 不是
 - (2) 是; c, d, e
 - (3) $H=\{a,d\}$; 陪集: $\{a,d\}$; $\{b,e\}$, $\{c,f\}$
- $22, (1) R, \{0\}$
 - (2) 是; 1,2,3,4
 - $(3) \quad \{\{1,4\}, \{2,3\}\}$

四、证明题(本大题共4小题,每小题10分,共40分)

23、(10分)证明:必要性:

任取 $x \in \mathbb{N}$,则 f(x) = f(e),因 f 是一一映射,故 x = e,即 $\mathbb{N} = \{e\}$ 充分性:

设 K 的单位元为 e'.

若 N={e}, 任取 $g_1, g_2 \in G$, 如果 $f(g_1)=f(g_2)$, 则 $f(g_1g_2^{-1})=f(g_1) f(g_2^{-1})=f(g_1) f(g_2^{-1})=e', 因此 g_1g_2^{-1}\in N, 因 N={e},$

知 $g_1g_2^{-1}=e$, 因此 $g_1=g_2$ 。

24、(10 分)证明: (1)设 e 是 G 的单位元,则 e*H*e⁻¹=H, e∈A, 故 A 非空。

(2) 任取 a, b ∈ A, a*b⁻¹ H* (a*b⁻¹)⁻¹= a*b⁻¹ H*b*a⁻¹= a*H* a⁻¹=H, 因此 a*b⁻¹∈A。综上,A 是 G 的子群。

25、(10分)证明:

- (1) 矩阵 $\begin{pmatrix} a & a \\ a & a \end{pmatrix}$, $a \in \mathbb{R}$, 如 $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \in \mathbb{R}$, 非空;
- (2) 设 $A=\begin{pmatrix} a & a \\ a & a \end{pmatrix}$, $B=\begin{pmatrix} b & b \\ b & b \end{pmatrix} \in G$, 则 $AB=\begin{pmatrix} 2ab & 2ab \\ 2ab & 2ab \end{pmatrix} \in G$, 所以矩阵的乘法是 G 的代数运算;
 - (3) 因为矩阵的乘法满足结合律, 所以 G 的乘法也满足结合律;

(4) 因为
$$\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
 \in G , 且对任意的 $A = \begin{pmatrix} a & a \\ a & a \end{pmatrix}$ \in G , 有
$$\begin{pmatrix} a & a \\ a & a \end{pmatrix}\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} a & a \\ a & a \end{pmatrix} = \begin{pmatrix} a & a \\ a & a \end{pmatrix},$$

所以单位元为 $\begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ 。

(5) 对任意的
$$A=\begin{pmatrix} a & a \\ a & a \end{pmatrix} \in G$$
,有 $B=\begin{pmatrix} \frac{1}{4a} & \frac{1}{4a} \\ \frac{1}{4a} & \frac{1}{4a} \end{pmatrix} \in G$,且

$$\begin{pmatrix} a & a \\ a & a \end{pmatrix} \begin{pmatrix} \frac{1}{4a} & \frac{1}{4a} \\ \frac{1}{4a} & \frac{1}{4a} \end{pmatrix} = \begin{pmatrix} \frac{1}{4a} & \frac{1}{4a} \\ \frac{1}{4a} & \frac{1}{4a} \end{pmatrix} \begin{pmatrix} a & a \\ a & a \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix},$$

即 B= $\begin{pmatrix} \frac{1}{4a} & \frac{1}{4a} \\ \frac{1}{4a} & \frac{1}{4a} \end{pmatrix}$ 为 A 的逆元,所以 G 的每个元素都有逆。

26、(10分)设G是循环群,且G与G'同态。

证明: G'也是循环群。

证明: 设 G=(g), σ: G~G', 则 G'=(σ(g)).

事实上,任意的 $a' \in G'$,有 $a \in G$,使得 $\sigma(a) = a'$.但是 $a = g^m$,则:

 $a' = \sigma(a) = \sigma(g^{m}) = (\sigma(g))^{m}$, 这表明 $G' = (\sigma(g))$.