

AUSTRALIA

Course Notes for STAT3001 Mathematical Statistics

Contributors:

MICHAEL CICCOTOSTO-CAMP NAME₂

The University of Queensland SCHOOL OF MATHEMATICS AND PHYSICS

Contents

Symbols and Notation	iii
Review	
Useful Formulae and Theorems	1
Common Distributions	2
Common Probabilistic Properties and Identities	3
Probabilistic Properties	3
Probabilistic Identities	
Point Estimation	5
Methods of Finding Estimates Introduction	5
Method of Moments	
Maximum Likelihood Estimates	11
Methods of Evaluating Estimators	13
Sufficiency and Unbiasedness	15
Consistency	16
Large-Sample Comparisons of Estimators	17
References	19

Symbols and Notation

 $Matrices \ are \ capitalized \ bold \ face \ letters \ while \ vectors \ are \ lowercase \ bold \ face \ letters.$

Syntax	Meaning		
<u></u>	An equality which acts as a statement		
A	The determinate of a matrix.		
$oldsymbol{x}^\intercal, oldsymbol{X}^\intercal$	The transpose operator.		
$oldsymbol{x}^*, oldsymbol{X}^*$	The hermitian operator.		
a.*b or $A.*B$	Element-wise vector (matrix) multiplication, similar to Matlab.		
\propto	Proportional to.		
$ abla$ or $ abla_f$	The partial derivative (with respect to f).		
$\nabla \nabla$ or $H(f)$	The Hessian.		
~	Distributed according to, example $X \sim \mathcal{N}\left(0,1\right)$		
iid ∼	Identically and independently distributed according to, example $X_1, X_2, \dots X_n \overset{\text{iid}}{\sim} \mathcal{N}\left(0,1\right)$		
0 or 0_n or $0_{n\times m}$	The zero vector (matrix) of appropriate length (size) or the zero vector of length n or the zero matrix with dimensions $n \times m$.		
1 or 1_n or $1_{n\times m}$	The one vector (matrix) of appropriate length (size) or the one vector of length n or the one matrix with dimensions $n \times m$.		
$\mathbb{1}_A(x)$	The indicator function. $\mathbb{1}_A(x) = 1$ if $x \in A$, 0 otherwise.		

 $oldsymbol{A}_{(\cdot,\cdot)}$

Index slicing to extract a submatrix from the elements of $A \in \mathbb{R}^{n \times m}$, similar to indexing slicing from the python and Matlab programming languages. Each parameter can receive a single value or a 'slice' consisting of a start and an end value separated by a semicolon. The first and second parameter describe what row and columns should be selected, respectively. A single value means that only values from the single specified row/column should be selected. A slice tells us that all rows/columns between the provided range should be selected. Additionally if now start and end values are specified in the slice then all rows/columns should be selected. For example, the slice $A_{(1:3,j:j')}$ is the submatrix $\mathbb{R}^{3\times(j'-j+1)}$ matrix containing the first three rows of A and columns j to j'. As another example, $A_{(:,j)}$ is the j^{th} column of A.

 $oldsymbol{A}^\dagger$

Denotes the unique psuedo inverse or Moore-Penore inverse of *A*.

 \mathbb{C}

The complex numbers.

 $\operatorname{diag}\left(\boldsymbol{w}\right)$

Vector argument, a diagonal matrix containing the elements of vector w.

 $\operatorname{diag}\left(\boldsymbol{W}\right)$

Matrix argument, a vector containing the diagonal elements of the matrix \mathbf{W} .

 \mathbb{E} or $\mathbb{E}_{q(x)}[z(x)]$

Expectation, or expectation of z(x) where $x \sim q(x)$.

 \mathbb{R}

The real numbers.

 $\mathrm{tr}\left(oldsymbol{A}\right)$

The trace of a matrix.

 \mathbb{V} or $\mathbb{V}_{q(x)}[z(x)]$

Variance, the variance of z(x) when $x \sim q(x)$.

 \mathbb{Z}

The integers, $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}.$

 Ω

The sample space.

Review

Theorems and defintions here are mostly concepts seen before from other courses.

Useful Formulae and Theorems.

(Geometric Series)
$$\sum_{k=0}^{n-1} r^k = \left(\frac{1-r^n}{1-r}\right)$$
 or

$$\sum_{i=0}^{\infty} r^i = \frac{1}{1-r} \quad \text{with} \quad |r| < 1$$

(Euler's formula)
$$e^{ix} = \cos x + i \sin x$$

(Newton's Binomial formula)
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Theorem 1 (Young's inequality for products). If $a \ge 0$ and $b \ge 0$ are nonnegative real numbers and if p > 1 and q > 1 are real numbers such that $\frac{1}{p} + \frac{1}{p} = 1$, then

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Equality holds iff $a^p = b^q$.

Common Distributions. Common distributions seen from prior courses. Notations mostly borrowed from STAT2003.

Name	Notation	Support	pf	Expectation	Variance
Bernoulli	Ber(p)	{0,1}	$p^k(1-p)^{1-k}$	p	p(1-p)
Binomial	Bin(n,p)	$\{0,\ldots,n\}$	$\binom{n}{k}p^k(1-p)^{n-k}$	np	np(1-p)
Negative-Binomial	NB(r,p)	\mathbb{N}_0	$\binom{x+r-1}{x}p^x(1-p)^r$	$\frac{rp}{1-p}$	$\frac{rp}{(1-p)^2}$
Geometric	Geo(n,p)	\mathbb{N}_0	$(1-p)^k p$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$
Poisson	$Poi(\lambda)$	\mathbb{N}_0	$rac{\lambda^x}{x!}e^{-\lambda}$	λ	λ
Uniform	U[a,b]	[a,b]	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(a-b)^2}{12}$
Exponential	$Exp(\lambda)$	\mathbb{R}^+	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda}$
Normal	$N(\mu,\sigma^2)$	\mathbb{R}	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$	μ	σ^2
Gamma	$Gam(\alpha,\lambda)$	\mathbb{R}^+	$\frac{\lambda^{\alpha} x^{\alpha - 1} \exp(-\lambda x)}{\Gamma(\alpha)}$	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$
Chi-Squared	χ^2_n	\mathbb{R}^+	$\frac{x^{\frac{n}{2}-1}\exp(-\frac{1}{2}x)}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}$	n	2n
White-Noise	$WN(\mu,\sigma^2)$	NA	NA	μ	σ^2

Common Probabilistic Properties and Identities. Common probabilistic properties seen from prior courses.

Probabilistic Properties. For any random variables, the following hold.

(1)
$$\mathbb{E}(X) = \int_0^\infty (1 - F(X)) \ dx$$

(2)
$$\mathbb{E}(aX+b) = a\mathbb{E}X + b$$

(3)
$$\mathbb{E}(g(X) + h(X)) = \mathbb{E}g(X) + \mathbb{E}h(X)$$

(4)
$$\operatorname{Var}(X) = \mathbb{E}X^2 - (\mathbb{E}X)^2$$

(5)
$$\operatorname{Var}(aX + b) = a^{2}\operatorname{Var}(X)$$

(6)
$$\operatorname{Cov}(X,Y) = \mathbb{E}XY - \mathbb{E}X\mathbb{E}Y$$

(7)
$$\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y) + 2\operatorname{Cov}(X,Y)$$

(8)
$$\mathbb{E}[X] = \mathbb{E}[\mathbb{E}[X \mid Y]]$$

(9)
$$\operatorname{Var}(Y) = \mathbb{E}[\operatorname{Var}(Y|X)] + \operatorname{Var}(\mathbb{E}[Y|X])$$

$$(11) |Cov(XY)|^2 \le Var(X)Var(Y)$$

(12)
$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

(Bayes' Theorem)
$$\mathbb{P}(A \mid B) = \frac{\mathbb{P}(B \mid A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

(13)
$$\mathbb{P}(A_1, \dots, A_n) = \mathbb{P}(A_1) \mathbb{P}(A_2 \mid A_1) \mathbb{P}(A_3 \mid A_1, A_2) \cdots \mathbb{P}(A_n \mid A_1, A_2, \dots, A_{n-1})$$

(14)

Let $\Omega = \bigcup_{i=1}^{n} B_i$ (that is B_i partitions the sample space) then

(TLoP)
$$\mathbb{P}(A) = \sum_{i=1}^{n} \mathbb{P}(A \mid B_i) \mathbb{P}(B_i)$$

(TLoE)
$$\mathbb{E}(A) = \sum_{i=1}^{n} \mathbb{E}(A \mid B_i) \mathbb{P}(B_i)$$

which, when TLoP used in conjunction with Bayes' Rule gives

(15)
$$\mathbb{P}(B_i \mid A) = \frac{\mathbb{P}(A \mid B_i)\mathbb{P}(B_i)}{\sum_{j=1}^n \mathbb{P}(A \mid B_j)\mathbb{P}(B_j)}.$$

If
$$X_1, X_2, \dots, X_n \stackrel{\text{iid}}{\sim} \mathsf{WN}(\mu, \sigma^2)$$
 and $S_n = \sum_{i=1}^n X_i$, then for all $\varepsilon > 0$ (Weak Law of Large Numbers)
$$\mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| \ge \epsilon\right) = 0.$$

If
$$X_1, X_2, \dots, X_n \stackrel{\text{iid}}{\sim} \mathsf{WN}(\mu, \sigma^2)$$
 and $S_n = \sum_{i=1}^n X_i$, then for all $x \in \mathbb{R}$ (CLT)
$$\mathbb{P}\left(\frac{S_n - n\mu}{\sigma\sqrt{n}}\right) \leq x = \Phi(x).$$

If X is a random variable and h is a convex function then

(Jensens Inequality)
$$h(\mathbb{E}(X)) \leq \mathbb{E}(h(X)).$$

Probabilistic Identities. If $X_1, \ldots, X_n \overset{\text{iid}}{\sim} \mathsf{Ber}(p)$ then

(16)
$$\sum_{i=1}^{n} X_i \sim \text{Bin}(n, p).$$

If $X \sim \text{Bin}(n, p)$ and $Y \sim \text{Bin}(m, p)$, then $X + Y \sim \text{Bin}(n + m, p)$.

If
$$X \sim \mathsf{N}(\mu_X, \sigma_X^2)$$
 and $Y \sim \mathsf{N}(\mu_Y, \sigma_Y^2)$, then $X + Y \sim \mathsf{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$.

If
$$X_1, X_2, \dots X_n \overset{\text{iid}}{\sim} \mathcal{N}(0, 1)$$
 then

(17)
$$\sum_{i=1}^{n} X_i^2 = \chi_n^2.$$

POINT ESTIMATION

Methods of Finding Estimates Introduction.

Definition 2 (Statistic). Let X_1, \ldots, X_n be a random sample of size n from a population and let $T(x_1, \ldots, x_n)$ be a real-valued or vector-valued function whose domain includes the sample space of (X_1, \ldots, X_n) . The the random variable or random vector $Y = T(X_1, \ldots, X_n)$ is called a **statistic**. The probability distribution of a statistic Y is called the **sampling distribution** of Y [Cas01, page 211].

Definition 3 (Sample Mean). *The* **sample mean** *is the arthicmetic average of the values in a random sample. It is usually denoted by*

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

[Cas01, page 212].

Definition 4 (Sample Variance and Standard Deviation). The sample variance is the statistic defined by

(19)
$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}.$$

The sample standard deviation is the statistic defined by $S = \sqrt{S^2}$ [Cas01, page 212].

Definition 5 (Sufficient Statistic). A statistic T(X) is a **sufficient statistic** for θ if the conditional distribution of the sample X given the value of T(X) does not depend on θ [Cas01, page 272].

Theorem 6. If $p(x \mid \theta)$ is the joint pdf or pmf of X and $q(\theta \mid \theta)$ is the pdf or pmf of T(X), then T(X) is a sufficient statistic for θ if, for every x in the sample space, the ratio $p(x \mid \theta)/q(T(x) \mid \theta)$ is a constant function of θ [Cas01, page 274].

Theorem 7 (Factorization Theorem). Let $f(x \mid \theta)$ denote the joint pdf or pmf of a sample X. A statistic T(X) is a sufficient statistic for θ , if and only if there exist function $g(t \mid \theta)$ and h(x) such that, for all sample points x and all parameter points θ ,

$$f(\boldsymbol{x} \mid \boldsymbol{\theta}) = g(T(\boldsymbol{x}) \mid \boldsymbol{\theta}) h(\boldsymbol{x})$$

[Cas01, page 276].

Example 8 (Uniform Sufficient Statistic). Example taken from [Cas01, page 277] and can also be found on tutorial sheet 3. Let X_1, \ldots, X_n be iid observations from the discrete uniform distribution on $1, \ldots, \theta$. That is, the unknown parameter, θ , is a positive integer and the pmf of X_i is

$$f(x \mid \theta) = \begin{cases} \frac{1}{\theta}, & x = 1, 2, \dots \theta \\ 0, & \text{otherwise} \end{cases}$$
.

The restriction $x_i \in \{1, ..., \theta\}$ for i = 1, ..., n can be re-expressed as $x_i \in \{1, 2, ...\}$ for i = 1, ..., n (note that there is no θ in this restriction) and $\max_i x_i \leq \theta$. If we define $T(\mathbf{x}) = \max_i x_i = x_{(n)}$,

$$h(x) = \begin{cases} 1, & x_i \in \{1, \dots, \theta\} \text{ for } i = 1, \dots, n \\ 0, & \text{otherwise} \end{cases}$$

and

$$g(t \mid \theta) = \begin{cases} \theta^{-n} & t \le \theta \\ 0, & \text{otherwise} \end{cases}.$$

It is easily verified that $f(x \mid \theta) = g(T(x) \mid \theta)$ for all x and θ . Thus, according to Theorem 7, the largest order statistic, $T(X) = X_{(n)}$, is a sufficient statistic in this problem. This type of analysis can sometimes be carried out more clearly and concisely using indicator function. Let \mathbb{N} be the set of natural numbers (discluding 0) and \mathbb{N}_{θ} be the natural numbers up to and including θ . Then the joint pmf of X_1, \ldots, X_n is

$$f(x \mid \theta) = \prod_{i=1}^{n} \theta^{-1} \mathbb{1}_{N_{\theta}}(x_i) = \theta^{-n} \prod_{i=1}^{n} \mathbb{1}_{N_{\theta}}(x_i).$$

Defining $T(\mathbf{x}) = x_{(n)}$, we see that

$$\prod_{i=1}^{n} \mathbb{1}_{N_{\theta}}(x_i) = \left(\prod_{i=1}^{n} \mathbb{1}_{N}(x_i)\right) \mathbb{1}_{N_{\theta}}(T(x))$$

thus providing the factorization

$$f(\boldsymbol{x} \mid \theta) = \theta^{-n} \mathbb{1}_{N_{\theta}}(T(x)) \left(\prod_{i=1}^{n} \mathbb{1}_{N}(x_{i}) \right).$$

The first factor depends on x_1, \ldots, x_n only through the value of $T(x) = x_{(n)}$, and the second factor does not depend on θ . Again, according to Theorem 7, $T(X) = X_{(n)}$, is a sufficient statistic in this problem.

Definition 9 (Likelihood, Log-Likelihood and Score Function). Let $f(x \mid \theta)$ denote the joint pdf or pmf of the sample $X = (X_1, \dots, X_2)$. Then, given that X = x is observed, the function of θ defined by

$$L(\theta \mid \boldsymbol{x}) = f(\boldsymbol{x} \mid \theta)$$

is called the **likelihood function** [Cas01, page 290]. For a given outcome x of X, the **log-likelihood function**, denoted l, is the natural logarithm of the likelihood function

$$l(\theta \mid \boldsymbol{x}) = \ln L(\theta \mid \boldsymbol{x}) = \ln f(\boldsymbol{x} \mid \theta).$$

It's gradient with respect to θ , denoted S, is called the **score function**

$$S(\theta \mid \boldsymbol{x}) = \nabla_{\theta} l(\theta \mid \boldsymbol{x}) \frac{\nabla_{\theta} f(\boldsymbol{x} \mid \theta)}{f(\boldsymbol{x} \mid \theta)}$$

[Kro13, page 165].

Theorem 10. *Under regularity conditions*

$$\mathbb{E}\left[S(\theta \mid \boldsymbol{x})\right] = 0$$

[Background Notes, page 10].

Proof. Since $L(\theta)$ is a density when viewed as a function of the observed data x_1, \ldots, x_n we have the following identity in θ ,

$$\int \cdots \int L(\theta) \ dx_1 \ \ldots \ dx_n = 1.$$

On differentiating both sides of the above with respect to θ gives

$$\int \cdots \int \left[\frac{\partial L(\theta)}{\partial \theta} \right] dx_1 \ldots dx_n = 0.$$

Apply the chain rule to $\frac{\partial \ln L(\theta)}{\partial \theta}$ we find

$$\frac{\partial \ln L(\theta)}{\partial \theta} = \frac{\partial \ln L(\theta)}{\partial L(\theta)} \cdot \frac{\partial L(\theta)}{\partial \theta} = \frac{1}{L(\theta)} \frac{\partial L(\theta)}{\partial \theta}$$

meaning

$$\frac{\partial \ln L(\theta)}{\partial \theta} L(\theta) = \frac{\partial L(\theta)}{\partial \theta}$$

so that

$$\int \cdots \int \left[\frac{\partial L(\theta)}{\partial \theta} \right] dx_1 \dots dx_n = 0$$

$$\int \cdots \int \left[\frac{\partial \ln L(\theta)}{\partial \theta} \right] L(\theta) dx_1 \dots dx_n = 0$$

$$\mathbb{E} [S(\theta)] = 0$$

as wanted.

Definition 11 (Expotential Family). In the case of p-dimensional observation $x_1, x_2, \ldots, x_n \in \mathbb{C}^p$, a d-dimensional parameter vector $\boldsymbol{\theta} \in \mathbb{C}^d$, and a q-dimensional sufficient statistic $T(x_1, \ldots, x_n) \in \mathbb{C}^q$, the likelihood function $L(\boldsymbol{\theta})$ for the d-parameter vector $\boldsymbol{\theta}$ has the following form if it belongs to the d-parameter **exponential family**

$$L(\boldsymbol{\theta}) = b(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n) \exp \left\{ c(\boldsymbol{\theta})^{\mathsf{T}} T(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n) \right\} / a(\boldsymbol{\theta})$$

where $c(\theta) \in \mathbb{C}^q$ and $b(x_1, \dots, x_n)$ and $a(\theta)$ are scalar functions [Cas01, page 279].

Theorem 12. Let $X_1, X_2, ..., X_n$ be iid observations from a pdf or pmf $f(x \mid \theta)$ that belongs to an exponential family as seen in Definition 11, then

$$T(\boldsymbol{X}_1,\ldots,\boldsymbol{X}_n) = \left(\sum_{j=1}^n t_1(\boldsymbol{X}_j),\ldots,\sum_{j=1}^n t_k(\boldsymbol{X}_j)\right)$$

is a sufficient statistic for θ [Cas01, page 279].

Definition 13 (Minimal Sufficient Statistic). A sufficient statistic T(X) is called a **minimal sufficient statis**tic if, for any other sufficient statistic T'(X), T(x) is a function of T'(x) [Cas01, page 280].

Theorem 14. Let $f(x \mid \theta)$ be the pd of a sample X. Suppose there exists a function T(x) such that, for every two sample points x and y, the ratio $f(x \mid \theta)/f(y \mid \theta)$ is constant as a function of θ if and only if T(x) = T(y). Then T(X) is a minimal sufficient statistic [Cas01, page 281].

Example 15 (Normal Minimal Sufficient Statistic). Example taken from [Cas01, page 281]. Let $X_1, \ldots, X_n \overset{\text{iid}}{\sim} \mathsf{N}(\mu, \sigma^2)$, where both μ and σ^2 unknown. Let \boldsymbol{x} and \boldsymbol{y} denote two sample points, and let $(\overline{x}, s_{\boldsymbol{x}}^2)$ and $(\overline{y}, s_{\boldsymbol{y}}^2)$ be the sample means and variances corresponding to the \boldsymbol{x} and \boldsymbol{y} samples, respectively. Then, the ratio of the densities becomes

$$\frac{f(\mathbf{x} \mid \mu, \sigma^{2})}{f(\mathbf{y} \mid \mu, \sigma^{2})} = \frac{(2\pi\sigma^{2})^{-n/2} \exp\left(-\left[n(\bar{x} - \mu)^{2} + (n - 1)s_{\mathbf{x}}^{2}\right] / (2\sigma^{2})\right)}{(2\pi\sigma^{2})^{-n/2} \exp\left(-\left[n(\bar{y} - \mu)^{2} + (n - 1)s_{\mathbf{y}}^{2}\right] / (2\sigma^{2})\right)}$$

$$= \exp\left(\left[-n\left(\bar{x}^{2} - \bar{y}^{2}\right) + 2n\mu(\bar{x} - \bar{y}) - (n - 1)\left(s_{\mathbf{x}}^{2} - s_{\mathbf{y}}^{2}\right)\right] / (2\sigma^{2})\right).$$

This ratio will be constant as a function of μ and σ^2 if and only if $\overline{x} = \overline{y}$ and $s_x^2 = s_y^2$. Thus by Theorem 14, (\overline{X}, S^2) is a minimal sufficient statistic for (μ, σ^2) .

Definition 16 (Ancillary Statistic). A statistic S(X) whose distribution does not depend on the parameter θ is called an ancillary statistic [Cas01, page 282].

Definition 17 (Complete Distributions and Statistics). Let $f(t \mid \theta)$ be a family of pdfs or pmfs for a statistic T(X). The family of probability distributions is called **complete** if $\mathbb{E}_{\theta}g(T) = 0$ for all θ implies $\mathbb{P}(g(T) = 0) = 1$ for all θ . Equivalently, T(X) is called a **complete statistic** [Cas01, page 285].

Example 18 (Binomial Complete Statistic). Example taken from [Cas01, page 285]. Suppose that T has a Bin(n, p) distribution, 0 . Let <math>g be a function such that $\mathbb{E}_p g(T) = 0$. Then

$$0 = \mathbb{E}_p g(T) = \sum_{t=0}^n g(t) \binom{n}{t} p^t (1-p)^{n-1}$$
$$= (1-p)^n \sum_{t=0}^n g(t) \binom{n}{t} \left(\frac{p}{1-p}\right)^t$$

for all p, $0 . The factor <math>(1 - p)^n$ is not 0 for any p in this range. Thus it must be that

$$0 = \sum_{t=0}^{n} g(t) \binom{n}{t} \left(\frac{p}{1-p}\right)^t = \sum_{t=0}^{n} g(t) \binom{n}{t} r^t$$

for all, $0 < r < \infty$. But the last expression is a polynomial of degree n in r, where the coefficient of r^t is $g(t)\binom{n}{t}$. For the polynomial to be 0 for all r, each coefficient must be 0. Since none of the $\binom{n}{t}$ terms is 0, this implies that g(t) = 0 for $t = 0, 1, \ldots n$. Since T takes on the values $0, 1, \ldots n$ with probability 1, this means that $\mathbb{P}_p(g(T) = 0) = 1$ for all p, the desired conclusion. Hence, T is a complete statistic.

Definition 19 (Point Estimator). A **point estimator** is any function $W(X_1, ..., X_n)$ of a sample; that is, any statistic (see Definition 2) is a point estimator [Cas01, page 311].

Definition 20 (Fisher Information Matrix). For the model $X \sim f(\cdot; \theta)$, let $S(\theta)$ be the score function (see Definition 9) of θ . The covariance matrix of the random vector $S(\theta)$, denoted by $\mathcal{J}(\theta)$, is called the **Fisher Information Matrix** where

$$\mathcal{J}(\boldsymbol{\theta}) = \mathbb{E}_{\boldsymbol{\theta}} \left[S(\boldsymbol{\theta}) S(\boldsymbol{\theta})^\intercal \right]$$

in the multivariate case and

$$\mathcal{J}(\theta) = \mathbb{E}_{\theta} \left(\frac{d}{d\theta} \ln f(\boldsymbol{X}; \theta) \right)^{2}$$

in the one-dimensional case. Note that under regularity conditions $\mathbb{E}[S(\theta)] = 0$ (see Theorem 10) so that

$$\mathcal{J}(\theta) = \mathbb{E}_{\theta} \left[\frac{d}{d\theta} \ln f(\boldsymbol{X}; \theta) \right]^{2}$$

$$= \operatorname{Var}_{\theta} \left(\frac{d}{d\theta} \ln f(\boldsymbol{X}; \theta) \right) + \left(\mathbb{E}_{\theta} \left[\frac{d}{d\theta} \ln f(\boldsymbol{X}; \theta) \right] \right)^{2}$$

$$= \operatorname{Var}_{\theta} (S(\theta)) + (\mathbb{E}_{\theta} [S(\theta)])^{2}$$

$$= \operatorname{Var}_{\theta} (S(\theta))$$

[Kro13, page 168].

Definition 21 (Observed Information). For the model $X \sim f(\cdot; \theta)$, let $S(\theta)$ be the score function (see Definition 9) of θ . The negative of the Hessian of the random vector $S(\theta)$, denoted by $I(\theta)$, is called the **Observed Information** where

$$I(\boldsymbol{\theta}) = -\nabla \nabla S(\boldsymbol{\theta})$$

in the multivariate case and

$$I(\boldsymbol{\theta}) = -\frac{\partial^2}{\partial \theta^2} \ln f(\boldsymbol{X}; \boldsymbol{\theta})$$

in the one-dimensional case [Background Notes, page 8].

Theorem 22. *Under regularity conditions, the following equality holds*

$$\mathcal{J}(\boldsymbol{\theta}) = \mathbb{E}\left[I(\boldsymbol{\theta})\right]$$

[Kro13, page 169].

Theorem 23 (Fisher Information Matrix for iid Data). Let $\mathbf{X} = (X_1, \dots, X_n) \stackrel{iid}{\sim} \mathring{f}(x; \boldsymbol{\theta})$, and let $\mathring{\mathcal{J}}(\boldsymbol{\theta})$ be the information matrix corresponding to $X \sim \mathring{f}(x; \boldsymbol{\theta})$. Then the information matrix for \mathbf{X} is given by

$$\mathcal{J}(\boldsymbol{\theta}) = n\mathring{\mathcal{J}}(\boldsymbol{\theta})$$

[Kro13, page 170].

Theorem 24. *If the* $L(\theta)$ *belongs to the regular exponential family, then the likelihood equation*

$$\frac{d}{d\boldsymbol{\theta}}\ln L(\boldsymbol{\theta}) = \mathbf{0},$$

can be expressed as

$$T(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n) = \mathbb{E}\left[T(\boldsymbol{X}_1,\ldots,\boldsymbol{X}_n)\right]$$

[Lecture Notes 1, page 8].

Method of Moments.

Definition 25 (Method of Moments). Let X_1, \ldots, X_n be a random sample of size n from a population with $pf(x \mid \theta_1, \ldots, \theta_k)$. Method of moments estimators are found by equation the first k sample moments to the corresponding k population moments, and solving the resulting system of simultaneous equations. More precisely, define

$$m_{1} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{1}, \quad \mu'_{1} = \mathbb{E}X^{1}$$

$$m_{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}, \quad \mu'_{2} = \mathbb{E}X^{2}$$

$$\vdots$$

$$m_{k} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}, \quad \mu'_{k} = \mathbb{E}X^{k}.$$

The population moment μ'_j will typically be a function of $\theta_1, \ldots, \theta_k$, say $\mu'_j(\theta_1, \ldots, \theta_k)$. The method of moments estimator $(\tilde{\theta}_1, \ldots, \tilde{\theta}_k)$ of $(\theta_1, \ldots, \theta_k)$ is obtained by solving the following system of equations for $(\theta_1, \ldots, \theta_k)$ in terms of (m_1, \ldots, m_k)

$$m_1 = \mu'_1(\theta_1, \dots, \theta_k)$$

$$m_2 = \mu'_2(\theta_1, \dots, \theta_k)$$

$$\vdots$$

$$m_k = \mu'_k(\theta_1, \dots, \theta_k)$$

[Cas01, page 312].

Example 26 (Normal Methods of Moments). Example taken from [Cas01, page 313]. Suppose $X_1, \ldots, X_n^{\text{iid}} \mathsf{N}(\theta, \sigma^2)$. In the preceding notation, $\theta_1 = \theta$ and $\theta_2 = \sigma^2$. We have $m_1 = \overline{X}, \ m_s = (1/n) \sum X_i^2, \ \mu_1' = \theta, \ \mu_2' = \theta^2 + \sigma^2$, and hence we must solve

$$\overline{X} = \theta$$
, $\frac{1}{n} \sum X_i^2 = \theta^2 + \sigma^2$.

Solving for θ and σ^2 yields the methods of moments estimators

$$\tilde{\theta} = \overline{X}$$
 and $\tilde{\sigma}^2 = \frac{1}{n} \sum X_i^2 - \overline{X}^2 = \frac{1}{n} \sum (X_i^2 - \overline{X}^2).$

Maximum Likelihood Estimates.

Definition 27 (Maximum Likelihood Estimator). For each sample point x, let $\hat{\theta}(x)$ be a parameter value at which $L(\theta \mid x)$ attains its maximum as a function of θ , with x held fixed. A maximum likelihood estimator (MLE) of the parameter θ based on a sample X is $\hat{\theta}(X)$ [Cas01, page 316].

Example 28 (Normal Likelihood). Example taken from [Cas01, page 316]. Suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathsf{N}(\theta, 1)$, and let $L(\theta \mid x)$ denote the likelihood function. Then

$$L(\theta \mid \boldsymbol{x}) = \prod_{i=1}^{n} \frac{1}{(2\pi)^{1/2}} \exp\left(-(1/2)(x_i - \theta)^2\right) = \frac{1}{(2\pi)^{1/2}} \exp\left(-(1/2)\sum_{i=1}^{n} (x_i - \theta)^2\right).$$

The equation $(d/d\theta)L(\theta \mid \boldsymbol{x}) = 0$ reduces to

$$\sum_{i=1}^{n} (x_i - \theta) = 0,$$

which has the solution $\hat{\theta} = \overline{x}$. Hence, \overline{x} is a candidate for the MLE. To verify that \overline{x} is, in fact, a global maximim of the likelihood function, we can use the following argument. First, note that $\hat{\theta} = \overline{x}$ is the only solution to $\sum_{i=1}^{n} (x_i - \theta) = 0$; hence \overline{x} is the only zero of the first derivative. Second, verify that

$$\frac{d^2}{d\theta^2} L(\theta \mid \boldsymbol{x})|_{\theta = \overline{x}} < 0.$$

Thus, \overline{x} is the only extreme point in the interior and it is a maximum. To finally verify that \overline{x} is a global maximum, we must check the boundaries at $\pm \infty$. So $\tilde{\theta} = \overline{x}$ is a global maximum and hence \overline{X} is the MLE.

Theorem 29. *If* $\hat{\theta}$ *is the MLE of* θ *, the for any function* $\tau(\theta)$ *, the MLE of* $\tau(\theta)$ *is* $\tau(\hat{\theta})$ [Cas01, page 320].

Example 30 (Normal MLE, μ and σ unknown). Example taken from [Cas01, page 321]. Suppose $X_1, \ldots, X_n \overset{\text{iid}}{\sim} \mathsf{N}(\theta, \sigma^2)$ with both μ and σ^2 unknown. Then

$$L(\theta \mid \boldsymbol{x}) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-(1/2)\sum_{i=1}^{n} (x_i - \theta)^2 / \sigma^2\right)$$

and

$$\ln L(\theta \mid \mathbf{x}) = -\frac{n}{2} \ln 2\pi - \frac{n}{2} \ln \sigma^2 - \frac{1}{2} \sum_{i=1}^{n} (x_i - \theta)^2 / \sigma^2.$$

The partial derivatives, with respect to θ and σ^2 are

$$\frac{\partial}{\partial \theta} \ln L(\theta \mid \boldsymbol{x}) = \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \theta)$$

and

$$\frac{\partial}{\partial \sigma^2} \ln L(\sigma^2 \mid \boldsymbol{x}) = -\frac{1}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \theta).$$

Setting the partial derivatives equal to 0 and solving for the solution $\hat{\theta} = \overline{x}$, $\hat{\sigma}^2 = n^{-1} \sum_{i=1}^n (x_i - \overline{x})$. To verify that this solution is, in fact, a global maximum, recall first that if $\theta \neq \overline{x}$, then $\sum (x_i - \theta)^2 > 1$

 $\sum (x_i - \overline{x})^2$. Hence, for any value of σ^2 ,

$$\frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-(1/2)\sum_{i=1}^n (x_i - \overline{x})^2/\sigma^2\right) \ge \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left(-(1/2)\sum_{i=1}^n (x_i - \theta)^2/\sigma^2\right).$$

Therefore, verifying that we have found the maximum likelihood estimators is reduced to a one-dimensional problem, verifying that $(\sigma^2)^{-n/2} \exp\left(-\frac{1}{2}\sum(x_i-\overline{x})^2/\sigma^2\right)$ achieves its global maximum at $\sigma^2=n^{-1}\sum(x_i-\overline{x})^2$. This is straightforward to do using univariate calculus and, in fact, the estimators $\left(\overline{X},n^{-1}\sum\left(X_i-\overline{X}\right)^2\right)$ are the MLEs.

Methods of Evaluating Estimators.

Definition 31 (Mean Square Error). *The* **mean square error** (*MSE*) *of an estimator* W *of a parameter* θ *is the function* θ *defined by* $\mathbb{E}_{\theta}(W - \theta)^2$ [Cas01, page 330].

Definition 32 (Bias). The **bias** of an estimator W of a parameter θ is the difference between the expected value of W and θ ; that is $\text{Bias}_{\theta}W = \mathbb{E}_{\theta}W - \theta$. An estimator whose bias is identically (in θ) equal to 0 is called an **unbiased estimator** and satisfies $\mathbb{E}_{\theta}W = \theta$ for all θ [Cas01, page 330].

It is important to note that

$$\mathbb{E}_{\theta} (W - \theta)^{2} = \operatorname{Var}_{\theta} + (\mathbb{E}_{\theta} W - \theta)^{2} = \operatorname{Var}_{\theta} W + (\operatorname{Bias}_{\theta} W)^{2}.$$

Example 33 (Normal MSE). Example taken from [Cas01, page 331]. Let $X_1, \ldots, X_n \overset{\text{iid}}{\sim} \mathsf{N}(\mu, \sigma^2)$. The statistics \overline{X} and S^2 are both unbiased estimators since

$$\mathbb{E}\overline{X} = \mu$$
, $\mathbb{E}S^2 = \sigma^2$, for all μ and σ^2 .

The MSEs of these estimators are given by

$$\mathbb{E}(\overline{X} - \mu)^2 = \operatorname{Var}\overline{X} = \frac{\sigma^2}{n}$$
$$\mathbb{E}(S^2 - \sigma^2)^2 = \operatorname{Var}S^2 = \frac{2\sigma^4}{n - 1}.$$

The MSE of \overline{X} remains σ^2/n even if the normality assumption is dropped. However, the above expression for the MSE of S^2 does not remain the same if the normality assumption is relaxed. An alternative estimator for σ^2 is the MLE $\hat{\sigma} = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2 = \frac{n-1}{n} S^2$. It is straightforward to calculate

$$\mathbb{E}\hat{\sigma}^2 = \mathbb{E}\left(\frac{n-1}{n}S^2\right) = \frac{n-1}{n}\sigma^2,$$

so that $\hat{\sigma}^2$ is a biased estimator of σ^2 . The variance of $\hat{\sigma}^2$ can also be calculated as

$$\operatorname{Var} \hat{\sigma}^2 = \operatorname{Var} \left(\frac{n-1}{n} S^2 \right) = \left(\frac{n-1}{n} \right)^2 \operatorname{Var} S^2 = \frac{2(n-1)\sigma^4}{n^2},$$

and hence, its MSE is given by

$$\mathbb{E}\left(\hat{\sigma}^2 - \sigma^2\right) = \frac{2(n-1)\sigma^4}{n^2} + \left(\frac{n-1}{n}\sigma^2 - \sigma^2\right)^2 = \left(\frac{2n-1}{n^2}\right)\sigma^4.$$

Thus we have

$$\mathbb{E}\left(\hat{\sigma}^2 - \sigma^2\right)^2 = \left(\frac{2n-1}{n^2}\right)\sigma^4 < \left(\frac{2}{n-1}\right)\sigma^4 = \mathbb{E}\left(\hat{\sigma}^2 - \sigma^2\right)^2,$$

showing that $\hat{\sigma}^2$ has a smaller MSE than S^2 . Thus, by trading off variance for bias, the MSE is improved.

Definition 34 (Best Unbiased Estimator). *An estimator* W^* *is a* **best unbiased estimator** *of* $\tau(\theta)$ *if it satisfies* $EE_{\theta}W^* = \tau(\theta)$ *for all* θ *and, for any other estimator* W *with* $\mathbb{E}_{\theta}W = \tau(\theta)$, *we have* $\operatorname{Var}_{\theta}W^* \leq \operatorname{Var}_{\theta}W$ *for all* θ . W^* *is also called a* **uniform minimum variance unbiased estimator** (UMVUE) *of* $\tau(\theta)$ [Cas01, page 334].

Theorem 35 (Cramer-Rao Inequality). Let X_1, \ldots, X_n be a sample with pdf $f(\mathbf{x} \mid \theta)$, and let $W(\mathbf{X}) = W(X_1, \ldots, X_n)$ be any estimator satisfying

$$\frac{d}{d\theta} \mathbb{E}_{\theta} W(\boldsymbol{X}) = \int_{\mathcal{X}} \frac{\partial}{\partial \theta} \left[W(\boldsymbol{x}) f(\boldsymbol{x} \mid \theta) \right]$$

and

$$\operatorname{Var}_{\theta}W(\boldsymbol{X}) < \infty.$$

Then

$$\operatorname{Var}_{\theta}(W(\boldsymbol{X})) \geq \frac{\left(\frac{d}{d\theta} \mathbb{E}_{\theta} W(\boldsymbol{X})\right)^{2}}{\mathbb{E}_{\theta}\left(\left(\frac{\partial}{\partial \theta} \ln f(\boldsymbol{X} \mid \theta)\right)^{2}\right)} = \frac{\left(\frac{d}{d\theta} \mathbb{E}_{\theta} W(\boldsymbol{X})\right)^{2}}{\mathcal{J}(\theta)}$$

[Cas01, page 335].

Corollary 36 (Cramer-Rao Inequality, iid Case). *If the assumptions of Theorem* 35 *are satisfied and, additionally, if* X_1, \ldots, X_n *are iid with pdf* $f(x \mid \theta)$ *, then*

$$\operatorname{Var}_{\theta}(W(\boldsymbol{X})) \ge \frac{\left(\frac{d}{d\theta} \mathbb{E}_{\theta} W(\boldsymbol{X})\right)^{2}}{n \mathbb{E}_{\theta} \left(\left(\frac{\partial}{\partial \theta} \ln f(X \mid \theta)\right)^{2}\right)}$$

[Cas01, page 337].

Lemma 37. *If* $f(x \mid \theta)$ *satisfies*

$$\frac{d}{d\theta} \mathbb{E}_{\theta} \left(\frac{\partial}{\partial \theta} \ln f \left(X \mid \theta \right) \right) = \int \frac{\partial}{\partial \theta} \left[\left(\frac{\partial}{\partial \theta} \ln f \left(x \mid \theta \right) \right) f(x \mid \theta) \right] dx$$

(true for the exponential family), then

$$\mathbb{E}_{\theta} \left(\left(\frac{\partial}{\partial \theta} \ln f(X \mid \theta) \right)^{2} \right) = -\mathbb{E}_{\theta} \left(\frac{\partial^{2}}{\partial \theta^{2}} \ln f(X \mid \theta) \right)$$

[Cas01, page 338].

Example 38 (Poisson Unbiased Estimate). Example taken from [Cas01, page 338]. Let $X_1, \ldots, X_n \overset{\text{iid}}{\sim} \mathsf{Poi}(\lambda)$, and let \overline{X} and S^2 be the sample mean and variance, respectively. Recall that for the Poisson pmf both the mean and variance are equal to λ . We have

$$\mathbb{E}_{\lambda} \overline{X} = \lambda, \quad \text{for all } \lambda,$$

$$\mathbb{E}_{\lambda} S^2 = \lambda \quad \text{for all } \lambda$$

so both \overline{X} and S^2 are unbiased estimators of λ . To determine the better estimator, \overline{X} or S^2 , we should now compare the variances. We have $\mathrm{Var}_{\lambda}\overline{X}=\lambda/n$, but $\mathrm{Var}_{\lambda}S^2$ is quiet a lengthy calculation. Not only this, even if we can establish that \overline{X} is better than S^2 , consider the class of estimators

$$W_a(\overline{X}, S^2) = a\overline{X} + (1 - a)S^2.$$

For every constant a, $\mathbb{E}_{\lambda}W_a=\lambda$, so now we have infinitely many unbiased estimators of λ . Instead, let us show that \overline{X} is the best estimator directly using the Cramer-Rao inequality. Here we are estimating $\tau(\lambda)=\lambda$, so that $\tau'(\lambda)=1$. Also, since we have an exponential family, using Lemma 37 gives us

$$\mathbb{E}_{\lambda} \left(\left(\frac{\partial}{\partial \lambda} \ln f(X \mid \lambda) \right)^{2} \right) = -n \mathbb{E}_{\lambda} \left(\frac{\partial^{2}}{\partial \lambda^{2}} \ln f(X \mid \lambda) \right)$$
$$= -n \mathbb{E}_{\lambda} \left(\frac{\partial^{2}}{\partial \lambda^{2}} \ln \left(\frac{e^{-\lambda} \lambda^{X}}{X!} \right) \right)$$
$$= -n \mathbb{E}_{\lambda} \left(\frac{\partial^{2}}{\partial \lambda^{2}} \left(-\lambda + X \ln \lambda - \ln X! \right) \right)$$

$$= -n\mathbb{E}_{\lambda} \left(-\frac{X}{\lambda^2} \right)$$
$$= \frac{n}{\lambda}.$$

Hence for any unbiased estimator, W, of λ , from Corollary 36 we must have

$$\operatorname{Var}_{\theta}(W(\boldsymbol{X})) \geq \frac{\left(\frac{d}{d\theta}\mathbb{E}_{\theta}W(\boldsymbol{X})\right)^{2}}{n\mathbb{E}_{\theta}\left(\left(\frac{\partial}{\partial\theta}\ln f(X\mid\theta)\right)^{2}\right)}$$
$$= \frac{(1)^{2}}{\left(\frac{n}{\lambda}\right)}$$
$$= \frac{\lambda}{n}.$$

Since $\operatorname{Var}_{\lambda} \overline{X} = \lambda/n$, \overline{X} must be the best unbiased estimator.

Corollary 39 (Attainment). Let X_1, \ldots, X_n be a sample with pdf $f(\boldsymbol{x} \mid \boldsymbol{\theta})$, where $f(\boldsymbol{x} \mid \boldsymbol{\theta})$ satisfies the conditions of the Cramer-Rao Theorem. $L(\boldsymbol{\theta} \mid \boldsymbol{x}) = \prod_{i=1}^n f(x_1 \mid \boldsymbol{\theta})$ denote the likelihood function. If $W(\boldsymbol{X}) = W(X_1, \ldots, X_n)$ is any unbiased estimator of $\tau(\boldsymbol{\theta})$, then $W(\boldsymbol{X})$ attains the Cramer-Rao Lower Bound if and only if

$$a(\theta) [W(\boldsymbol{x}) - \tau(\theta)] = \frac{\partial}{\partial \theta} \ln L(\theta \mid \boldsymbol{x})$$

for some function $a(\theta)$ [Cas01, page 341].

Example 40 (Continuation of Example 30). Example taken from [Cas01, page 341]. Here we know

$$L(\mu, \sigma^2 \mid \boldsymbol{x}) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-(1/2)\sum_{i=1}^n (x_i - \mu)^2 / \sigma^2\right),$$

and hence

$$\frac{\partial}{\partial \sigma^2} \ln L(\mu, \sigma^2 \mid \boldsymbol{x}) = \frac{n}{2\sigma^4} \left(\sum_{i=1}^n \frac{(x_i - \mu)^2}{n} - \sigma^2 \right).$$

Thus, taking $a(\sigma^2) = n/(2\sigma^4)$ shows that the best unbiased estimator of σ^2 is $\frac{(x_i - \mu)^2}{n}$, which is calculable only if μ is known. If μ is not known, the bound *cannot* be attained.

Sufficiency and Unbiasedness.

Theorem 41 (Rao-Blackwell). Let W be any unbiased estimator of $\tau(\theta)$, and let T be a sufficient statistic for θ . Define $\phi(T) = \mathbb{E}(W \mid T)$. Then $\mathbb{E}_{\theta}\phi(T) = \tau(\theta)$ and $\operatorname{Var}_{\theta}\phi(T) \leq \operatorname{Var}_{\theta}W$ for all θ ; that is, $\phi(T)$ is a uniformly better unbiased estimator of $\tau(\theta)$ [Cas01, page 342].

Theorem 42. *If* W *is the best unbiased estimator of* $\tau(\theta)$ *, then* W *is unique* [Cas01, page 343].

Theorem 43. Let T be a complete sufficient statistic for a parameter θ , and let $\phi(T)$ be any estimator based only on T. Then $\phi(T)$ is the best unbiased estimator of its expected value [Cas01, page 347].

Consistency.

Definition 44 (Consistency). A sequence of estimators T_n of $g(\theta)$ is said to be **consistent** if for every $\theta \in \Omega$,

$$T_n \stackrel{\mathbb{P}_{\boldsymbol{\theta}}}{\to} g(\boldsymbol{\theta}), \quad as \ n \to \infty$$

that is, given any $\varepsilon > 0$, then

$$\mathbb{P}\left[|T_n\left(\boldsymbol{X}_1,\ldots,\boldsymbol{X}_n\right)-g(\boldsymbol{\theta})|\geq \varepsilon\right]\to 0, \text{ as } n\to\infty$$

[Kro13, page 176] [Background Notes, page 44].

Theorem 45. If $Var(T_n) \to 0$ and $Bias(T_n) \to 0$, as $n \to \infty$, then the sequence of estimates T_n is consistent for estimating $g(\theta)$ [Background Notes, page 44].

Proof. Let $f(x_1, ..., x_n; \theta)$ denote the joint pdf of $X_1, ..., X_n$. Then we have

$$\mathbb{P}\left[|T_n - g(\boldsymbol{\theta})| \ge \varepsilon\right] = \int \dots \int_{|T_n - g(\boldsymbol{\theta})| \ge \varepsilon} f(\boldsymbol{x}_1, \dots, \boldsymbol{x}_n; \boldsymbol{\theta}) \ d\boldsymbol{x}_1 \ \dots \ d\boldsymbol{x}_n.$$

On the region of integration in the above,

$$|T_n - g(\boldsymbol{\theta})| \ge \varepsilon$$
$$(T_n - g(\boldsymbol{\theta}))^2 \ge \varepsilon^2$$
$$\frac{(T_n - g(\boldsymbol{\theta}))^2}{\varepsilon^2} \ge 1,$$

and since $f(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n;\boldsymbol{\theta})$ is non-negative,

$$f(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n;\boldsymbol{\theta}) \leq f(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n;\boldsymbol{\theta}) \frac{(T_n-g(\boldsymbol{\theta}))^2}{\varepsilon^2}.$$

Thus

$$\mathbb{P}\left[|T_{n} - g(\boldsymbol{\theta})| \geq \varepsilon\right] \\
= \int \dots \int_{|T_{n} - g(\boldsymbol{\theta})| \geq \varepsilon} f(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n}; \boldsymbol{\theta}) d\boldsymbol{x}_{1} \dots d\boldsymbol{x}_{n} \\
\leq \int \dots \int_{|T_{n} - g(\boldsymbol{\theta})| \geq \varepsilon} f(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n}; \boldsymbol{\theta}) \frac{(T_{n} - g(\boldsymbol{\theta}))^{2}}{\varepsilon^{2}} d\boldsymbol{x}_{1} \dots d\boldsymbol{x}_{n} \\
\leq \frac{1}{\varepsilon^{2}} \int \dots \int f(\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{n}; \boldsymbol{\theta}) (T_{n} - g(\boldsymbol{\theta}))^{2} d\boldsymbol{x}_{1} \dots d\boldsymbol{x}_{n} \\
\leq \frac{1}{\varepsilon^{2}} \text{MSE}(T_{n}) \\
\leq \frac{1}{\varepsilon^{2}} \left[\text{Var}(T_{n}) + (\text{Bias}(T_{n}))^{2} \right]$$

which tends to 0 as $n \to \infty$, since $Var(T_n)$ and $Bias(T_n)$ both tend to 0.

Example 46 (Continuation of Example 33). Example taken from Background Notes, page 44. The estimators

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}, \quad \hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

are both consistent for σ^2 . This is easily seen with s^2 since

$$\mathbb{E}[s^2] = \sigma$$
 and $\operatorname{Var}(s^2) \to 0$

as $n \to \infty$. To show that $\hat{\sigma}^2$ is also a consistent estimator, note that

(see 17)
$$\frac{\sum_{j=1}^{n} (X_j - \overline{X})^2}{\sigma^2} \sim \chi_{n-1}^2$$

meaning

$$\mathbb{E}\left[\frac{\sum_{j=1}^{n} (X_j - \overline{X})^2}{\sigma^2}\right] = n - 1$$

and

$$\operatorname{Var}\left[\frac{\sum_{j=1}^{n} (X_j - \overline{X})^2}{\sigma^2}\right] = 2(n-1)$$

so that

$$\mathbb{E}\left[\sum_{j=1}^{n} (X_j - \overline{X})^2\right] = (n-1)\sigma^2$$

and

$$\operatorname{Var}\left[\sum_{j=1}^{n} \left(X_{j} - \overline{X}\right)^{2}\right] = 2(n-1)\sigma^{4}.$$

Hence

$$\mathbb{E}(\hat{\sigma}^2) = \frac{n-1}{n}\sigma^2 = \sigma^2 - \frac{\sigma^2}{n}$$
$$\operatorname{Var}(\hat{\sigma}^2) = \frac{2(n-1)\sigma^4}{n^2}$$

meaning $\mathbb{E}\left(\hat{\sigma}^2\right) \to 0$ and $\operatorname{Var}\left(\hat{\sigma}^2\right) \to 0$ as $n \to \infty$. Therefore, by Theorem 45, $\hat{\sigma}^2$ is a consistent estimator of σ^2 .

Large-Sample Comparisons of Estimators.

Theorem 47 (Information Matrix for iid Data). Suppose that $\hat{\theta}_n$ is a sequence of consistent ML estimates for θ . Then $\sqrt{n} \left(\hat{\theta}_n - \theta \right)$ converges in distribution to a N $\left(\theta, \mathring{\mathcal{J}}^{-1}(\theta) \right)$ distributed random vector as $n \to \infty$. In other words,

$$\hat{oldsymbol{ heta}}_n \overset{approx}{\sim} \operatorname{N}\left(oldsymbol{ heta}, \mathring{\mathcal{J}}^{-1}(oldsymbol{ heta})/n
ight).$$

Definition 48 (Asymptotic Relative Efficiency). Suppose that $\hat{\theta}_{n_1}$ and $\hat{\theta}_{n_2}$ are two single variable estimates such that

$$\begin{split} \hat{\theta}_{n_1} & \overset{approx}{\sim} \mathsf{N}\left(\theta, \tau_1^2/n\right) \\ \hat{\theta}_{n_2} & \overset{approx}{\sim} \mathsf{N}\left(\theta, \tau_2^2/n\right). \end{split}$$

The **Asymptotic Relative Efficiency** (ARE) of $\hat{\theta}_{n_2}$ with respect to $\hat{\theta}_{n_1}$ is given by

$$ARE(\hat{\theta}_{n_2}) = \hat{\theta}_{n_1}/\hat{\theta}_{n_2}$$

[Background Notes, page 46].

Example 49 (Asymptotic Distribution of Bernoulli MLE). Example taken from [Kro13, page 177]. For $X_1, \ldots, X_n \overset{\text{iid}}{\sim} \mathsf{Ber}(p)$, the MLE for p is

$$\hat{p}_n = \overline{x} = \frac{1}{n} \sum_i x_i.$$

To compute the information number (see Definition 20) for p, note that regularity conditions hold so that

$$\mathring{\mathcal{J}}(p) = \operatorname{Var}_p(S(p))$$

where

$$S(p) = \frac{d}{dp} \ln \left(p^x (1-p)^{1-x} \right)$$

$$= \frac{d}{dp} \left[x \cdot \ln(p) + (1-x) \ln(1-p) \right]$$

$$= \frac{x}{p} - \frac{(1-x)}{1-p} = \frac{x}{p(1-p)}.$$

This means that

$$\begin{split} \mathring{\mathcal{J}}(p) &= \operatorname{Var}_{p}\left(S(p)\right) \\ &= \operatorname{Var}_{p}\left(\frac{X}{p(1-p)}\right) \\ &= \frac{p(1-p)}{p^{2}(1-p)^{2}} = \frac{1}{p(1-p)}. \end{split}$$

Theorem 47 states that

$$\hat{p}_n \overset{\text{approx}}{\sim} \mathsf{N}\left(p, \frac{p(1-p)}{n}\right).$$

References

[Cas01] George and Berger Casella Roger, Statistical Inference, Cengage, Mason, OH, 2001 (eng).

[Kro13] Dirk P and C.C. Chan Kroese Joshua, *Statistical Modeling and Computation*, Springer New York, New York, NY, 2013 (eng).