OPENSOURCE WEATHER STATION 'ZEWS'

Harry Fultz Institute Open Source Club *HFI-OS*

Presentation prepared by Rei Prezja on behalf of the HFI-OS

Introducing Weather Station System

- Monitors the atmospheric conditions to provide weather forecast
- Estimates the average value of every data gathered
- Transfers the data into files that are compressed
- Stores the compressed files in DB Servers
- Forms a plot with the estimated values (in a days, weeks, months, years) for every atmospheric detail.
- Broadcasts the plot.

Introducing Weather Station System

- Monitors the atmospheric conditions to provide weather forecast
- Estimates the average value of every data gathered
- Transfers the data into files that are compressed
- Stores the compressed files in DB Servers
- Forms a plot with the estimated values (in a days, weeks, months, years) for every atmospheric detail.
- Broadcasts the plot.

Introduction

Main Components:

- Sensors (with Control Unit)
- Sensor HUB
- O Arduino I2C Master
- Raspberry Pi Data Collector
- IP Network (LAN)

Weather Station concept

Sensors

Anemometer

Lux-meter

Barometer

Pyranometer

Hygrometer

Thermometer

7

• Measures:

Wind Speed (in m/s)
Wind Direction (in deg rel to N)

8

Module >> Mechanic :: Wind Speed and Direction

Wind Cups

Joint

Wind Direction Arrow

Low Friction Rotor

Module >> Electronic :: Hall Effect Sensor

10

Module >> Electronic :: 8 to 3 Encoder

8 to 3 Encoder for Wind Direction

11

Module >> Programming :: Wind Speed

- Wind Speed in [m/s] (meter per second)
 V=2πrf (where f-frequency in Hz)
- Wind Thrust
 F= m*v+(P-p)*A (where F Force in N)
- Terminal Velocity
 v=(2*P)/(ρ*μ*A)

Barometer

• Measures:

Atmospheric Pressure

Unit: hPa

(in Pa)

Unit: mmHg

Barometer

13

Module >> Electronic :: Sensor

Barometer

Module >> Program :: Static Pressure

$$P(z) = P(z + dz) + \rho_a g dz \implies \frac{dP}{dz} = -\rho_a g$$

Module >> Program :: Barometric Law

$$P(z) = P(0)e^{-z/H}$$
 with scale height $H = \frac{RT}{M_a g} \approx 7.4 \text{ km} (T = 250 \text{ K})$

Hygrometer

• Measures:

Moisture

(in kg/m³ or kg/m³/°C or %)

HFI-OS

Hygrometer

Module >> Electronic :: Sensor

Hygrometer

Module >> Program :: Density (Specific Density)

•
$$\rho_{\rm m}$$
 = P/RT (1 - 0.378 e /P)

$$q_v = \frac{\rho_v}{\rho_{_m}}$$

Pyranometer & Luxmeter

<u>16</u>

Measures:Solar LuminanceSolar Radiation

(in lx/m²) (in W/m²)

Pyranometer

Lux-meter

Pyranometer & Luxmeter

17

Module >> Mechanic :: Temperature Controller

Pyranometer

Container with Hatch

Heat Sink

Module >> Mechanic :: Light Diffusion

Lux meter

Translucent Glass

Light Diffusing Effect

Pyranometer & Luxmeter

18

- Modules >> Electronic :: Solar Irradiation
- Modules >> Electronic :: Temperature Recalibration

LM35

Fan

LDR

Servo

Pyranometer

19

Module >> Program :: <u>Linear Data</u>

Linear Conversion

Nonlinear Conversion

Sensor HUB & Master Shield

• Module >> Electronic :: Sensor HUB and Master Shield

Sensor HUB

Master Shield

Arduino & RaspberryPi

21

- Module >> Electronics :: Control Unit
- Module >> Electronics :: Processor Unit

Arduino

Convert and Transfer Data

RaspberryPi Processing Unit Data Collection

Thank You!

HFI-OS ZEWS R