Mecânica e Campo Eletromagnético

DEPARTAMENTO DE FÍSICA TURMAS: TP1, TP2, TP3, TP4 Aula 3

Exercício 3.1

Sobre uma partícula de massa 5,0 kg atua uma única força, descrita pela equação

$$\vec{F} = (-2y+4)\hat{e}_x + (-2x-2)\hat{e}_y$$
 N que é conservativa.

a) Usando a definição geral de trabalho, calcule o trabalho realizado pela força quando a partícula se move da posição x = 1,0 m para x = 5,0 m ao longo da trajetória $y = \frac{x}{2}$.

R:
$$W(\vec{F}) = -12 \text{ J}$$

- b) Calcule a variação na energia potencial do sistema. **R:** $\Delta E_p = 12 \text{ J}$
- c) Determine a energia cinética da partícula na posição x = 5,0m, sabendo que em x = 1,0 m a velocidade era de 4,0 m/s. **R:** $Ec_f \cong 27,8 \text{ J}$

Exercício 3.2

Um corpo de massa 3 kg é lançado com uma velocidade de 5 m/s, em x= 0 m, sobre uma pista retilínea, num plano horizontal, onde sofre a ação de uma força de atrito cujo coeficiente de atrito depende da posição segundo $\mu = 0.6 e^x$.

- a) Escreva a expressão que traduz a força de atrito. **R**: $\vec{f_a} = -18 \ e^x \ \hat{e}_x \ \text{N}$.
- b) Calcule o trabalho realizado pela força de atrito até atingir x = 1 m. **R**: $W(\vec{f_a}) = -30.9 \, \text{J}$
- c) Calcule a velocidade do corpo em x= 1 m. **R**: $v_f \cong 2.1$ m/s

Exercício 3.3

Uma partícula de massa m_1 viaja com velocidade $\overrightarrow{v_{1l}}$ segundo +x e colide com uma outra partícula de massa m₂ que se encontra em repouso antes da colisão. Após a colisão, as partículas

ângulo θ_1 e θ_2 com o eixo x.

- a) Qual a razão entre os valores das velocidades $(\frac{v_{1f}}{v_{2f}})$, após o choque?
- b) Considere $m_1 = m_2$, $\theta_1 = 45^\circ$ e $\theta_2 = 30^\circ$. O choque entre as partículas é elástico? Justifique.