UE23CS352A: MACHINE LEARNING

Week 6: Artificial Neural Networks

NAME: CHINTHAN K	SRN: PES2UG23CS155
SECTION: C	DATE: 16-9-2025

Part A: Baseline Model Implementation

In the first part of the lab, I implemented a basic feedforward neural network from scratch. The main steps were:

1. Activation Functions

I coded the required activation functions (ReLU) along with their derivatives. These functions introduce non-linearity into the network and enable it to learn complex mappings between inputs and outputs.

2. Loss Function

I implemented the Mean Squared Error (MSE) loss function, which measures the difference between predicted outputs and true target values. This served as the main performance metric for training.

3. Forward Propagation

I wrote the forward propagation routine that calculates the outputs layer by layer, applying activation functions and linear transformations.

4. Backpropagation

The backpropagation algorithm was implemented to compute gradients of the loss with respect to weights and biases. These gradients were then used to adjust the parameters during training.

5. Training Loop

I set up a training loop that repeatedly performed forward propagation, loss calculation, backpropagation, and weight updates using gradient descent. The training loss was tracked across epochs.

6. Evaluation and Visualization

After training, I evaluated the baseline model on the test dataset. I plotted:

- o **Training Loss Curve:** showing how the loss decreased across epochs.
- o **Predicted vs. True Values Plot:** to visually compare the model's predictions with the actual target outputs.

1) Epoch: 500

Learning rate: 0.003

Part B: Hyperparameter Exploration

After establishing the baseline, I conducted four additional experiments by varying hyperparameters to observe their impact on training and model performance.

1. Experiment 1 – Higher Learning Rate

I increased the learning rate to speed up training. The model converged faster but showed some instability, with occasional oscillations in the loss curve.

2. Experiment 3 – More Epochs

I trained the network for a larger number of epochs. The extended training improved accuracy on the test set but also showed diminishing returns after a certain point.

3. Experiment 4 – Alternative Activation Function

Instead of Sigmoid, I experimented with ReLU as the hidden layer activation. This improved convergence speed and reduced the vanishing gradient issue, leading to better performance compared to the baseline.

1) Epoch: 900

Learning rate: 0.05

2) Epoch: 500 Learning rate: 0.05

3) Relu

Epoch: 300

Learning rate: 0.01

FINAL PERFORMANCE SUMMARY

Final Training Loss: 0.755008

Final Test Loss: 0.756056
R² Score: 0.2511

Total Epochs Run: 300

4) Sigmoid Epoch: 600

Learning rate: 0.01

FINAL PERFORMANCE SUMMARY

Final Training Loss: 0.992629
Final Test Loss: 1.002563
R² Score: 0.0069
Total Epochs Run: 600

5) Leaky Relu Epoch: 600

Learning rate: 0.001

Polynomial Type 0: Quadratic:

• Formula: $y = 1.26x^2 + 7.61x + 6.73$

ID: PES2UG23CS155Last 3 digits: 155

• poly_type = 155 % 5 = 0

When poly type == 0, we get quadratic equation

Noise level and architecture:

Noise Level: ε ~ N(0, 2.12)

Architecture: Input(1) → Hidden(96) → Hidden(96) → Output(1)

Number of samples:

• Dataset with 100,000 samples generated.

Training samples: 80,000Test samples: 20,000

Features:

one input feature, 'x', and one target variable, 'y'.

Result table:

	А	В	С	D	E	F	G	Н
1	experiment	learning rate	no of epochs	activation function	final traing loss	final test loss	R ²	
2	1	0.003	500	relu	0.755368	0.756448	0.2507	
3	2	0.01	300	relu	0.755008	0.56056	0.2511	
4	3	0.05	900	relu	0.754337	0.755388	0.2517	
5	4	0.05	500	relu	0.754656	0.755706	0.2514	
6	5	0.01	800	sigmoid	0.754926	0.755976	0.2511	
7	6	0.001	600	leaky relu	0.773445	0.775515	0.2315	
8								
9								

Best Performing Models:

- Experiment 2 (LR=0.01, 300 epochs, ReLU): Test Loss = 0.56056
- Experiment 3 (LR=0.05, 900 epochs, ReLU): Test Loss = 0.755388
- Experiment 4 (LR=0.05, 500 epochs, ReLU): Test Loss = 0.757706

Key Insights:

- 1. Learning Rate Impact:
 - LR = 0.01 performed best (26% improvement over baseline)
 - LR = 0.05 worked well but needed more careful tuning
 - LR = 0.001 was too conservative (worse than baseline)
- 2. Training Duration:
 - **300 epochs** was sufficient for the best result
 - More epochs (500-900) didn't necessarily help
 - Early stopping likely prevented overfitting
- 3. Activation Function Performance:
 - **ReLU**: Consistently good performance across all experiments
 - Sigmoid: Decent but not better than ReLU
 - Leaky ReLU: not performed well
- 4. R² Score Analysis:
 - All models have similar R² (~0.25), indicating they explain about 25% of variance
 - This suggests your quadratic function has high noise (σ =2.12), making perfect fitting difficult
- 5. Interaction: Learning Rate × Epochs
 - These two are **linked**:
 - If learning rate is high, you may need fewer epochs, but risk unstable convergence.
 - If learning rate is low, you may need more epochs to reach the optimum.