Nom et prénom, lisibles :

+184/1/12+

Identifiant (de haut en bas):

QCM THLR 4

	PEGORIER -LACUMANN DO DI 1 1 2 DO DA DE
	PEGORIER - LACHMANN 10 1 1 10 2 3 4 5 6 7 8 9 11 2001 10 2 3 4 5 6 7 8 9
	Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « 🗸 ». Noircir les cases
	plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « X » peuvent avoir plu-
	sieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est <i>nul</i> , <i>non nul</i> , <i>positif</i> , ou <i>négatif</i> , cocher <i>nul</i>). Il n'est
	pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les
2/0	incorrectes pénalisent; les blanches et réponses multiples valent 0.
2/2	\blacksquare J'ai lu les instructions et mon sujet est complet: les 2 entêtes sont $+184/1/xx+\cdots+184/2/xx+$.
	Q.2 Le langage $\{0^n 1^n \mid \forall n \in \mathbb{N}\}$ est
2/2	☐ vide ☐ rationnel 📓 non reconnaissable par automate fini ☐ fini
	Q.3 Le langage $\{ \Box^n \Box^n \cap a \mid \forall n \in \mathbb{N} : 42! \le n \le 51! \}$ est
1/2	non reconnaissable par automate fini 🔃 fini 🔲 vide 🔲 rationnel
	Q.4 Un langage quelconque
	 □ n'est pas nécessairement dénombrable □ peut avoir une intersection non vide avec son complémentaire
2/2	est toujours inclus (⊆) dans un langage rationnel
	peut n'être inclus dans aucun langage dénoté par une expression rationnelle
	Q.5 Quels langages ne vérifient pas le lemme de pompage?
2/2	☐ Tous les langages reconnus par DFA ☐ Certains langages reconnus par DFA
	☐ Tous les langages non reconnus par DFA ☐ Certains langages non reconnus par DFA
	Q.6 Si $L_1 \subseteq L \subseteq L_2$, alors L est rationnel si:
2/2	\square L_1, L_2 sont rationnels \square L_1, L_2 sont rationnels et $L_2 \subseteq L_1$ \square L_1 est rationnel
	\square L_2 est rationnel
	Q.7 Si un automate de n états accepte a^n , alors il accepte
)/2	$\square a^{n+1} \qquad \square a^n a^m \text{ avec } m \in \mathbb{N}^* \qquad \boxtimes a^p (a^q)^* \text{ avec } p \in \mathbb{N}, q \in \mathbb{N}^* : p+q \le n$
	$\square (a^n)^m \text{ avec } m \in \mathbb{N}^*$
	Q.8 Combien d'états au moins a un automate déterministe émondé qui accepte les mots sur $\Sigma = \{a, b, c, d\}$ dont la n -ième lettre avant la fin est un a (i.e., $(a+b+c+d)^*a(a+b+c+d)^{n-1}$):
)/2	$\frac{n(n+1)(n+2)(n+3)}{4}$ 4^n Il n'existe pas. \times 2^n
	a,b a,b a,b
	0.0
	Q.9 Déterminiser cet automate : \xrightarrow{a} \xrightarrow{a} \xrightarrow{a}

2/2

Q.10 Comment marche la minimisation de Brzozowski d'un automate A?

2/2

- \Box $T(Det(T(Det(T(\mathcal{A})))))$
- \square $Det(T(Det(T(\mathcal{A}))))$

Fin de l'épreuve.