Logic - Reviewed Notes

Dom Hutchinson

March 21, 2020

Contents

T	Syn	tax 2
	1.1	General
	1.2	First Order Languages
	1.3	Induction
	1.4	Free Variables
	1.5	Consistency
	1.6	Alphabetic Variants
2	Sen	nantics 7
	2.1	Satisfaction Relation
	2.2	Substitution
	2.3	Homomorphism
	2.4	Definable
3	Dec	luctive Reasoning 13
	3.1	Hilbert Calculus
	3.2	Deduction Theorem
		3.2.1 Facts
	3.3	Soundness Theorem
0	App	pendix 18
	0.1	Standard Models
	0.2	Notation
	0.3	Definitions
	0.4	Indentities
	0.5	Techniques 90

NOTES

- Not included any proofs.
- Not included any examples.

1 Syntax

1.1 General

Definition 1.1 - Alphabet, A

An Alphabet is a set of characters, A. These characters do not have any assigned values (yet).

Definition 1.2 - String

A String, $a := \langle a_1, \dots, a_n \rangle$, over an alphabet \mathcal{A} is an element of \mathcal{A}^n for $n \in \mathbb{N}$. Here a is said to have length n.

Remark 1.1 -
$$\langle a, b \rangle = \langle \langle a_1, \dots, a_n \rangle, \langle b_1, \dots, b_m \rangle \neq \langle a_1, \dots, a_n, b_1, \dots, b_m \rangle$$

Definition 1.3 - Set of all Strings, A^*

Let \mathcal{A} be an *Alphabet*.

We define the set of all strings, \mathcal{A}^* , over the alphabet as

$$\mathcal{A}^* := \{ \langle a_1, \dots, a_n \rangle : n \in \mathbb{N} \text{ and } a_1, \dots, a_n \in \mathcal{A} \} \equiv \bigcup_{n \in \mathbb{N}} \mathcal{A}^n$$

Remark 1.2 - If an alphabet, \mathcal{A} , is countable then \mathcal{A}^* is countable Further \mathcal{A}^* is countably infinite if $\mathcal{A} \neq \emptyset$.

Definition 1.4 - Declarative Sentence

A Declarative Sentence is a sentence which is either true or false.

N.B. These are the focus of mathematical logic.

1.2 First Order Languages

Definition 1.5 - Common Components of Alphabets

Below are some common classes of characters used in mathematical alphabets

- i) Propositional Connectives (Describe locagical relations between predicates). 'not', 'and', 'or', 'if...then...'.
- ii) Quantifiers 'for all', 'there is'.
- iii) Variables x', y', z', \dots
- iv) Punctuation (','), ,', ...
- v) Equality '='.
- vi) Constants $^{\prime}1,^{\prime}2,^{\prime}3,^{\prime}e,^{\prime},...$
- vii) Predicates $' \prec '$.
- viii) Functions 'o'.

Definition 1.6 - Alphabet of First-Order Language

The Alphabet of a First-Order Language comprises the following elements

i) Propositional Connectives

 \neg , \rightarrow

ii) Quantifiers

iii) Variables v_1, v_2, \dots (Infinetly many).

iv) Punctuation

() and,

v) Equality

 \equiv (This is a 2-arity logical predicate)

vi) Constants

 c_1, c_2, \dots (Countable many since we use countable alphabets).

vii) Predicates

 P_i^n is an *n*-arity predicate for $n \in \mathbb{N}$.

viii) Functions

 f_i^n is an *n*-arity function for $n \in \mathbb{N}$.

i) - v) are $Logical\ Symbols\ \&\ vi)$ - viii) are $Non-Logical\ Symbols$ of $First-Order\ Languages.$

The Non-Logical Symbols will vary depending on the subject matter of the language.

Remark 1.3 - \equiv is the only logical predicate symbol in FOLs

Definition 1.7 - Negation, \neg , and Implication, \rightarrow

Let P, Q be Predicates.

$$\begin{array}{c|ccccc} P & \neg P & \hline T & \mathbf{F} & \mathbf{T} & \mathbf{T} \\ \hline T & \mathbf{T} & \mathbf{F} & T & \mathbf{F} & \mathbf{F} \\ T & \mathbf{T} & \mathbf{F} & \mathbf{F} & \mathbf{T} & \mathbf{T} \\ \end{array}$$

Proposition 1.1 - Extension to Alphabet of First-Order Language

For concisness of notation we usually allow the following extra propositional connectives & quantifiers to be used.

- Propositional Connectives

 \wedge , \vee

- Quantifiers

Definition 1.8 - And, \wedge , and Or, \vee

Let P, Q be Predicates.

P	Q	$P \wedge Q$	P	Q	$P \lor Q$
Т	T	\mathbf{T}	Τ	Т	\mathbf{T}
${ m T}$	F	\mathbf{F}	\mathbf{T}	F	\mathbf{T}
T T F F	Γ	\mathbf{F}	F	Γ	\mathbf{T}
\mathbf{F}	F	\mathbf{F}	F	F	\mathbf{F}

Remark 1.4 - $P \wedge Q \Leftrightarrow \neg(P \rightarrow \neg Q)$ and $P \vee Q \Leftrightarrow (\neg P) \rightarrow Q$

Definition 1.9 - *L-Term (and L-Term Complexity)*

Let \mathcal{L} be a FOL.

We define \mathcal{L} -Terms & \mathcal{L} -Term Complexity recursively.

- T1 Let s be a variable or constant symbol. s is an \mathcal{L} -Term with cp(s) = 0.
- T2 Let f be a k-arity function symbol and t_1, \ldots, t_k be \mathcal{L} -Terms. $f(t_1, \ldots, t_k)$ is an \mathcal{L} -Term with $cp(f) = \max\{cp(t_1), \ldots, cp(t_k)\} + 1 \ge 1$.

N.B. By this definition we cannot have infinitely long \mathcal{L} -Terms.

Definition 1.10 - Atomic L-Term

Let \mathcal{L} be a FOL and $t \in Tm_{\mathcal{L}}$.

t is an Atomic \mathcal{L} -Term iff cp(t) = 0.

i.e. An Atomic \mathcal{L} -Term is either a constant or variable symbol.

Definition 1.11 - Compound L-Term

Let $t \in Tm_{\mathcal{L}}$.

t is a Compound \mathcal{L} -Term iff $cp(t) \geq 1$.

i.e. An Atomic \mathcal{L} -Term is function symbol.

Definition 1.12 - Atomic Formulae

Let \mathcal{L} be a FOL, P be a k-arity predicate symbol of \mathcal{L} and $t_1, \ldots, t_k \in Tm_{\mathcal{L}}$.

An Atomic Formulae has the form

$$P(t_1,\ldots,t_k)$$

i.e. Atomic Formulae are predicates on \mathcal{L} -Terms.

Definition 1.13 - \mathcal{L} -Formula (and \mathcal{L} -Formulae Complexity)

Let \mathcal{L} be a FOL.

We define \mathcal{L} -Formulae & \mathcal{L} -Formulae Complexity recursively

- F1 Let ϕ be an Atomic \mathcal{L} -Formula. ϕ is an \mathcal{L} -Formula with $cp(\phi) = 0$.
- F2 Let ϕ be an \mathcal{L} -Formula. $\neg \phi$ is an \mathcal{L} -Formula with $cp(\neg \phi) = cp(\phi) + 1$.
- F3 Let ϕ, ψ be a \mathcal{L} -Formulae. $\phi \to \psi$ is an \mathcal{L} -Formula with $cp(\phi \to \psi) = \max\{cp(\phi), cp(\psi)\} + 1$.
- F4 Let ϕ be an \mathcal{L} -Formula & x be any variable. $\forall x \phi$ is an \mathcal{L} -Formula with $cp(\forall x \phi) = cp(\phi) + 1$.

N.B. By this definition we cannot have infinitely long \mathcal{L} -Formulae.

Remark 1.5 - \mathcal{L} -Term & \mathcal{L} -Formulae complexity is a measure of syntactic complexity and is unrelated to any semantic meaning.

 \mathcal{L} -Formulae complexity is unrelated from the complexity of any terms in it.

Remark 1.6 - F4 necessitates the use of parentheses

Otherwise $\phi \to \psi \to \theta$ is ambiguous as it could be read as either $(\phi \to \psi) \to \theta$ or $\phi \to (\psi \to \theta)$

which don't necessarily have the same semantic meaning.

Definition 1.14 - Compound \mathcal{L} -Formula

Let $\phi \in Fml_{\mathcal{L}}$.

 ϕ is a Compound \mathcal{L} -Formula iff $cp(\phi) \geq 1$.

1.3 Induction

Theorem 1.1 - Induction on Terms

Let $\mathcal L$ be a FOL and P be a property that $\mathcal L$ -Terms may have. If

- i) All Atomic \mathcal{L} -terms have P; And,
- ii) For all k-arity function symbols f of \mathcal{L} and $t_1, \ldots, t_k \in Tm_{\mathcal{L}}$ which have property P, $f(t_1, \ldots, t_k)$ has P.

Then all $t \in Tm_{\mathcal{L}}$ have property P.

Theorem 1.2 - Induction on Formulae

Let \mathcal{L} be a FOL and P be a property that \mathcal{L} -Formulae may have. If

- i) All Atomic \mathcal{L} -Formulae have P; And,
- ii) ϕ, ψ have P then $\neg \phi, \phi \rightarrow \psi$ and $\forall x \phi$ (for all variables x) have property P.

Then all $\phi \in Fm_{\mathcal{L}}$ have property P.

1.4 Free Variables

Definition 1.15 - Set of Variables, $Var(\cdot)$

 $\operatorname{Var}: \mathcal{A}_{\mathcal{L}}^* \to 2^{\operatorname{Var}}$ is a function which maps from a string to the set of variables in it. Variables are defined by the *Alphabet* of the language being used.

Definition 1.16 - Closed L-Term

Let $t \in Tm_{\mathcal{L}}$ for some FOL, \mathcal{L} .

If $Var(t) = \emptyset$ then t is said to be a Closed \mathcal{L} -Term.

Definition 1.17 - Free Variables, $FV(\cdot)$

Let \mathcal{L} be a FOL.

Free Variables are unbounded variables in an \mathcal{L} -Formula.

We define the Set of Free Variables of an \mathcal{L} -Formula inductively

FV1 Let
$$P$$
 be a k -arity $Predicate \& t_1, \ldots, t_k \in Tml_{\mathcal{L}}$.

$$FV(P(t_1, \ldots, t_k)) := Var(P(t_1, \ldots, t_k)).$$

FV2 Let
$$\phi \in Fml_{\mathcal{L}}$$
.
 $FV(\neg \phi) := FV(\phi)$.

FV3 Let
$$\phi, \psi \in Fml_{\mathcal{L}}$$
.
 $FV(\phi \to \psi) := FV(\phi) \cup FC(\psi)$.

FV4 Let
$$\phi \in Fml_{\mathcal{L}}$$
 and x be any variable.
 $FV(\forall x\phi) := FV(\phi) \setminus \{x\}.$

FV-EXT1 Let $\phi, \psi \in Fml_{\mathcal{L}}$.

 $FV(\phi \wedge \psi) := FV(\phi) \cup FV(\psi).$

FV-EXT2 Let $\phi, \psi \in Fml_{\mathcal{L}}$. $FV(\phi \lor \psi) := FV(\phi) \cup FV(\psi)$.

FV-EXT3 Let $\phi \in Fml_{\mathcal{L}}$ and x be any variable.

 $FV(\exists x\phi) := FV(\phi) \setminus \{x\}.$

N.B. $FV(\cdot): \mathcal{A}_{\mathcal{L}}^* \to 2^{\text{Var}}$.

Definition 1.18 - \mathcal{L} -Sentence

Let $\phi \in Fml_{\mathcal{L}}$ for some FOL, \mathcal{L} .

If $FV(\phi) = \emptyset$ then ϕ is said to be a \mathcal{L} -Sentence.

Remark 1.7 - The meaning anthonof formulae depends on how we interpret their free variables

1.5 Consistency

Definition 1.19 - Consistent

Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}}$ and $\Phi \subset Fml_{\mathcal{L}}$.

- ϕ is Consistent iff $\not\equiv \phi \in Fml_{\mathcal{L}}$ st $\phi \vdash \psi$ and $\phi \vdash \neg \psi$.
- Φ is Consistent iff $\not\equiv \phi \in Fml_{\mathcal{L}}$ st $\Phi \vdash \psi$ and $\Phi \vdash \neg \psi$.

Proposition 1.2 - Φ is Consistent iff $\exists \phi \in Fml_{\mathcal{L}}$ st $\Phi \nvdash \psi$

Proposition 1.3 - Φ is Consistent iff $\forall \ \Sigma \subset \Phi, \ \Sigma$ is Consistent

Proposition 1.4 - If $\Gamma \vdash \phi$ then $\exists \ \Sigma \subset \Gamma$ st $\Sigma \vdash \phi$.

Theorem 1.3 - Inconsistency

Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}}$ and $\Phi \subset Fml_{\mathcal{L}}$.

- i) $\Phi \vdash \phi$ iff $\Phi \cup \{\neg \phi\}$ is *Inconsistent*.
- ii) $\Phi \cup \{\phi\}$ is Inconsistent iff $\Phi \cup \{\neg \neg \phi\}$ is Inconsistent.
- iii) $\Phi \vdash \neg \phi$ iff $\Phi \cup \{\phi\}$ is *Inconsistent*.

Theorem 1.4 - If $\Gamma \cup \{\neg \phi\}$ is Satisfiable then $\Gamma \nvdash \phi$.

Theorem 1.5 - Chain of Consistency

Let \mathcal{L} be a FOL and $\Gamma_0 \subset \cdots \subset \Gamma_n \subset \cdots \subset Fml_{\mathcal{L}}$.

If $\forall i, \Gamma_i$ is Consistent, then $\Gamma := \bigcup_i \Gamma_i$ is Consistent.

1.6 Alphabetic Variants

Theorem 1.6 - Alphabetic Variants

 $\forall \phi \in Fml_{\mathcal{L}}, \ t \in Tm_{\mathcal{L}}, \ z \in Var, \ \exists \psi \in Fml_{\mathcal{L}} \ with \ cp(\psi) = cp(\phi) \ st$

$$\vdash (\phi \leftrightarrow \psi)$$
 and $SubSt(t, z, \psi)$

N.B. This ψ is called an Alphabetic Variant of ϕ .

2 Semantics

Definition 2.1 - L-Structure

Let \mathcal{L} be a FOL.

An \mathcal{L} -Structure assigns meaning to the Non-Logical symbols of \mathcal{L} .

An \mathcal{L} -Structure is an ordered pair $\mathfrak{M} := (D, \mathfrak{I})$ where

Domain D is a non-empty set.

Often \mathbb{R} or similar.

Interpretation \Im is a function over the non-logical symbols of \mathcal{L} .

 $\mathfrak{I}(c) \in D$ where c is a constant symbol of \mathcal{L}

 $\mathfrak{I}(P) \subset D^n$ where P is a k-arity predicate symbol of \mathcal{L}

 $\mathfrak{I}(f)$: $D^n \to D$ where f is a k-arity function symbol of \mathcal{L}

Remark 2.1 - Interpretation, 3

The *Interpretation* is a function which assigns meaning to non-logical symbols.

 $\mathfrak{I}(P)$ gives the property or relation on D by which P is interpreted.

 $\mathfrak{I}(f)$ gives the function on D^n by which f is interpreted.

 $\mathfrak{I}(P)$ gives the object in D which c denotes.

Definition 2.2 - Variable Assignment, s

Let \mathcal{L} be a FOL and $\mathfrak{M} := (|\mathfrak{M}|, \mathfrak{I})$ be an \mathcal{L} -Structure.

A Variable Assignment maps variables to a value in the domain of \mathfrak{M} .

$$s: \mathrm{Var} \to |\mathfrak{M}|$$

Definition 2.3 - Variable Assignment for \mathcal{L} -Terms, \bar{s}

Let \mathcal{L} be a FOL and $\mathfrak{M} := (|\mathfrak{M}|, \mathfrak{I})$ be an \mathcal{L} -Structure.

We define Variable Assignment over \mathcal{L} -Terms recursively

V1 Let x be a variable symbol of \mathcal{L} .

$$\bar{s}(x) := s(x)$$

V2 Let c be a constant symbol of \mathcal{L} .

$$\bar{s}(c) := c^{\mathfrak{M}}$$

V3 Let f be a k-arity function symbol of \mathcal{L} and t_1, \ldots, t_k be \mathcal{L} -Terms.

$$\bar{s}(f(t_1,\ldots,t_k)):=f^M(\bar{s}(t_1),\ldots,\bar{s}(t_k))$$

 $N.B.\ \bar{s}:Tm_{\mathcal{L}}\to |\mathfrak{M}|.$

Remark 2.2 - $\bar{s}(t)$ is the <u>Semantic Value</u> of term t in struture \mathfrak{M} under assignement s.

 $\bar{s}(t)$ gives a description of what t designates in \mathfrak{M} under the assignment s.

2.1 Satisfaction Relation

Definition 2.4 - Satisfaction Relation, \vDash

Let \mathcal{L} be a FOL, \mathfrak{M} be an \mathcal{L} -Structure and s a Variable Assignment over \mathfrak{M} .

The Satisfaction Relation (states whether a given formula is true under a given model)?? We define the Satisfaction Relation, \vDash , recursively

S1 Let
$$t_1, t_2 \in Tm_{\mathcal{L}}$$
.
 $\mathfrak{M}, s, \models (t_1 \equiv t_2) :\Leftrightarrow \bar{s}(t_1) = \bar{s}(t_2)$.

- S2 Let P be a k-arity predicate symbol of \mathcal{L} and $t_1, \ldots, t_k \in Tm_{\mathcal{L}}$. $\mathfrak{M}, s, \models P(t_1, \ldots, t_k) : \Leftrightarrow \langle \bar{s}(t_1), \ldots, \bar{s}(t_k) \rangle \in P^{\mathfrak{M}}$.
- S3 Let $\phi \in Fml_{\mathcal{L}}$. $\mathfrak{M}, s, \models \neg \phi : \Leftrightarrow \mathfrak{M}, s \not\models \phi$.
- S4 Let $\phi, \psi \in Fml_{\mathcal{L}}$. $\mathfrak{M}, s, \models (\phi \to \psi) :\Leftrightarrow \text{if } \mathfrak{M}, s \models \phi \text{ then } \mathfrak{M}, s \models \psi$.
- S5 Let $\phi \in Fml_{\mathcal{L}}$ and x be any variable. $\mathfrak{M}, s, \vDash \forall x\phi : \Leftrightarrow \mathfrak{M}, s\frac{d}{x} \vDash \phi$ for all $d \in |\mathfrak{M}|$.
- S-EXT1 Let $\phi, \psi \in Fml_{\mathcal{L}}$. $\mathfrak{M}, s \vDash (\phi \land \psi) :\Leftrightarrow \mathfrak{M}, s \vDash \phi \text{ and } \mathfrak{M}, s \vDash \psi$.
- S-EXT2 Let $\phi, \psi \in Fml_{\mathcal{L}}$. $\mathfrak{M}, s \vDash (\phi \lor \psi) :\Leftrightarrow \mathfrak{M}, s \vDash \phi \text{ or } \mathfrak{M}, s \vDash \psi$.
- S-EXT3 Let $\phi \in Fml_{\mathcal{L}}$ and x be any variable. $\mathfrak{M}, s \vDash \exists x \phi : \Leftrightarrow \mathfrak{M}, s \frac{d}{x} \vDash \phi$ for at least one $d \in |\mathfrak{M}|$.
- S-EXT2 Let $\phi, \psi \in Fml_{\mathcal{L}}$. $\mathfrak{M}, s \vDash (\phi \leftrightarrow \psi) : \Leftrightarrow \mathfrak{M}, s \vDash \phi \text{ iff } \mathfrak{M}, s \vDash \psi$.

Remark 2.3 - When $\mathfrak{M}, s \vDash \phi$ holds we say " ϕ is true in \mathfrak{M} under s" Or, " ϕ is satisfied by \mathfrak{M} under s". Or, " \mathfrak{M}, s models ϕ ".

Definition 2.5 - *Model*

Let \mathcal{L} be a FOL, $\Phi \subseteq Fml_{\mathcal{L}}$, \mathfrak{M} be an L-Structure and s a Variable Assignment. \mathfrak{M}, s is a Model of Φ if $\mathfrak{M}, s \models \Phi$.

Remark 2.4 - Semantic Value of a Term

Let $t \in Tm_{\mathcal{L}}$ for some FOL, \mathcal{L} , and s be a Variable Assignment.

The semantic value of t, $\bar{s}(t)$, only depends on

- i) The Interpretation of the constant & function symbols that occur in t. And,
- ii) The Assignment of values to variables in t, given by s.

Remark 2.5 - Truth of a Formula

Let $\phi \in Fml_{\mathcal{L}}$ for some FOL, \mathcal{L} .

The truth of ϕ only depends on

- i) The domain of discourse, $|\mathfrak{M}|$, over which the quantifiers range
- ii) The Interpretation of the constants, functions & predicate symbols in ϕ .
- iii) The Assignment of values to Free Variables in ϕ , given by s.

Theorem 2.1 - Coincidence Lemma

Let $\mathcal{L}_1, \mathcal{L}_2$ be unique FOLs, $\mathfrak{M}_1 := (D, \mathfrak{I}_1)$ be an \mathcal{L}_1 -Structure and $\mathfrak{M}_2 := (D, \mathfrak{I}_2)$ be an \mathcal{L}_2 -Structure.

Note that both structures have the same domain.

Let $\mathcal{L} := \mathcal{L}_1 \cap \mathcal{L}_2$. Then the following are true

i) $\forall t \in Tm_{\mathcal{L}}, \forall \text{ variable assignments } s_1 \text{ over } \mathfrak{M}_2 \text{ and } s_2 \text{ over } \mathfrak{M}_2$

If
$$\begin{cases} c^{\mathfrak{M}_1} = c^{\mathfrak{M}_2} \ \forall \ c \text{ that occur in } t \\ f^{\mathfrak{M}_1} = f^{\mathfrak{M}_2} \ \forall \ f \text{ that occur in } t \\ s_1(x) = s_2(x) \ \forall \ x \text{ that occur in } t \end{cases}$$
then $\overline{s_1}(t) = \overline{s_2}(t)$.

i.e. If these conditions hold then t has the same semantic value under both variable assignments.

ii) $\forall \phi \in Fml_{\mathcal{L}}, \forall \text{ variable assignments } s_1 \text{ over } \mathfrak{M}_2 \text{ and } s_2 \text{ over } \mathfrak{M}_2$

$$\text{If} \left\{ \begin{array}{l} c^{\mathfrak{M}_1} = c^{\mathfrak{M}_2} \ \forall \ c \ \text{that occur in} \ \phi \\ f^{\mathfrak{M}_1} = f^{\mathfrak{M}_2} \ \forall \ f \ \text{that occur in} \ \phi \\ P^{\mathfrak{M}_1} = P^{\mathfrak{M}_2} \ \forall \ P \ \text{that occur in} \ \phi \\ s_1(x) = s_2(x) \ \forall \ x \ \text{that occur in} \ \phi \end{array} \right\} \ \text{then} \ \mathfrak{M}_1, s_2 \vDash \phi \ \text{iff} \ \mathfrak{M}_2, s_2 \vDash \phi.$$

i.e. If these conditions hold ϕ is equivalent truth values under both \mathcal{L} -structures & variable assignemnts.

N.B. AKA Reduct Property of First-Order Logic.

Remark 2.6 - Semantic Interpretations Closed \mathcal{L} -Terms & \mathcal{L} -Sentences Let \mathcal{L} be a FOL, t be a Closed \mathcal{L} -Term, ϕ be an \mathcal{L} -Sentence, \mathfrak{M} be an \mathcal{L} -Structure. Let s_1, s_2 be arbitrary Variable Assignments over \mathfrak{M} . Then

$$\overline{s_1}(t) = \overline{s_2}(t)$$
 and $\mathfrak{M}, s_1 \models \phi$ iff $\mathfrak{M}, s_2 \models \phi$

i.e. Choice of variable assignment does not affect semantic value of closed \mathcal{L} -Terms & \mathcal{L} -Sentences.

Definition 2.6 - Logical Consequence, $\Phi \models \phi$ Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}}$ and $\Phi \subseteq Fml_{\mathcal{L}}$. ϕ is a Logical Consequence of Φ iff

 $\forall \mathcal{L}$ -Structures $\mathfrak{M}, \forall \text{ variable assignments } s \text{ over } \mathfrak{M} \text{ it holds that } (\mathfrak{M}, s \models \Phi) \rightarrow (\mathfrak{M}, s \models \phi).$

N.B. When this is the case, it is denoted $\Phi \vDash \phi$.

N.B. AKA " ϕ logically follows from Φ " or " Φ logically implies ϕ ".

Proposition 2.1 - For unary predicates $P, P(x) \models P(x) \lor P(y)$

Proposition 2.2 - $\forall \phi, \psi \in Fml_{\mathcal{L}} \& \Phi \subseteq Fml_{\mathcal{L}}, \Phi, \phi \vDash \psi \text{ iff } \Phi \vDash \phi \rightarrow \psi$

Definition 2.7 - Logically Valid, $\vDash \phi$

Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}}$.

 ϕ is Logically Valid iff $\mathfrak{M}, s \vDash \phi$ for all \mathcal{L} -Structures \mathfrak{M} and variable assignemnts s over \mathfrak{M} . N.B. This is denoted $\vDash \phi$.

Definition 2.8 - Satisfiable

Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}}$ and $\Phi \subseteq Fml_{\mathcal{L}}$.

 ϕ is Satisfiable iff \exists an \mathcal{L} -Structure \mathfrak{M} and variable assignment s over \mathfrak{M} , st $\mathfrak{M}, s \models \phi$. Φ is Satisfiable iff \exists an \mathcal{L} -Structure \mathfrak{M} and variable assignment s over \mathfrak{M} , st $\mathfrak{M}, s \models \Phi$.

Theorem 2.2 -

Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}}$ and $\Phi \subseteq Fml_{\mathcal{L}}$. Then

- i) ϕ is Logically Valid iff $\emptyset \vDash \phi$.
- ii) ϕ is Logically Valid iff $\neg \phi$ is not Satisfiable.
- iii) $\Phi \models \phi$ iff $\Phi \cup \{\neg \phi\}$ is <u>not</u> Satisfiable.

Definition 2.9 - Logical Equivalence

Let \mathcal{L} be a FOL and $\phi, \psi \in Fml_{\mathcal{L}}$.

 ϕ is Logically Equivalent to ψ iff $\phi \models \psi$ and $\psi \models \phi$.

i.e. ϕ is Logically Equivalent to ψ iff $\models \phi \leftrightarrow \psi$.

Proposition 2.3 - Logical Equivalences

The following are Logically Equivalent

- i) $((\phi \wedge \psi) \wedge \theta)$ is logically equivalent to $(\phi \wedge (\psi \wedge \theta))$.
- ii) $((\phi \lor \psi) \lor \theta)$ is logically equivalent to $(\phi \lor (\psi \lor \theta))$.
- iii) $\neg \neg \phi$ is logically equivalent to ϕ .
- iv) $\phi \wedge \psi$ is logically equivalent to $\neg((\neg \phi) \vee (\neg \psi))$.

Definition 2.10 - True of, $\mathfrak{M} \models \phi \llbracket a_1, \dots, a_n \rrbracket$

Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}}$ with $FV(\phi) \subset \{x_1, \dots, x_n\}$.

Let \mathfrak{M} be an \mathcal{L} -Structure, s_1, s_2 be variable assignments over \mathfrak{M} and $a_1, \ldots, a_n \in |\mathfrak{M}|$.

By the Conincidence Lemma, Theorem 2.1

if
$$s_1(x_i) = s_2(x_2) \ \forall \ i \in [1, n] \ \text{then } \mathfrak{M}, s_1 \vDash \phi \Leftrightarrow \mathfrak{M}, s_2 \vDash \phi$$

Equivalently

 $\mathfrak{M}, s \models \phi$ for all variable assignments s over \mathfrak{M} st $s(x_1) = a_1, \ldots, s(x_n) = a_n$ $\Leftrightarrow \mathfrak{M}, s \models \phi$ for some variable assignments s over \mathfrak{M} st $s(x_1) = a_1, \ldots, s(x_n) = a_n$

We denote these holding by $\mathfrak{M} \vDash \phi \llbracket a_1, \ldots, a_n \rrbracket$.

N.B. $\mathfrak{M} \models \phi \llbracket a_1, \ldots, a_n \rrbracket$ means " ϕ is true of the objects $a_1, \ldots, a_n \in \mathfrak{M}$ ".

2.2 Substitution

Definition 2.11 - Substitution

Substitution is the process of replacing one expression with another.

Substituting t for x in a is denoted by $[a] \frac{t}{x}$.

N.B. Usually t is an \mathcal{L} -term, x is a variable & a is an \mathcal{L} -term or \mathcal{L} -Formula.

Definition 2.12 - Substitution of a Term for a Variable in a Term

Let \mathcal{L} be a FOL, $a, t \in Tm_{\mathcal{L}}$ and x be a variable.

We define the Substitution $[a] \frac{t}{x}$ recursively

Sub-T1 If a is an Atomic \mathcal{L} -Term then

$$[a]\frac{t}{x} := \begin{cases} t & \text{if } a = x \\ a & \text{if } a \neq x \end{cases}$$

Sub-T2 If a is a Compound \mathcal{L} -Term of the form $a := f(a_1, \ldots, a_k)$ where $a_1, \ldots, a_k \in Tm_{\mathcal{L}}$

$$[a]_{\frac{t}{x}} := f\left([a_1]_{\frac{t}{x}}, \dots, [a_k]_{\frac{t}{x}}\right)$$

Remark 2.7 - $[a]\frac{t}{x} = a$ for all constant symbols in a

Definition 2.13 - Substitution of a Term for a Variable in a Formula

Let \mathcal{L} be a FOL, $\phi, \psi \in Fml_{\mathcal{L}}$, $t \in Tm_{\mathcal{L}}$ and x, z be variables.

We define the Substitution $[\phi]_{\overline{x}}^{\underline{t}}$ recursively

SUB1 If ϕ is an Atomic \mathcal{L} -Formula of the form $P(a_1, \ldots, a_k)$ where $a_1, \ldots, a_k \in Tm_{\mathcal{L}}$. $[\phi] \frac{t}{x} := P\left([a_1] \frac{t}{x}, \ldots, [a_k] \frac{t}{x}\right)$

SUB-F2 $[\neg \phi] \frac{t}{x} := \neg [\phi] \frac{t}{x}$.

SUB-F3 $[(\phi \to \psi)] \frac{t}{x} := [\phi] \frac{t}{x} \to [\psi] \frac{t}{x}$.

 $\text{SUB-F4} \ [\forall z\phi] \frac{t}{x} := \begin{cases} \forall z[\phi] \frac{t}{x} & \text{if } x \neq z \\ \forall z\phi & \text{if } x = z \end{cases}.$

SUB-F-EXT1 $[\phi \wedge \psi] \frac{t}{x} := [\phi] \frac{t}{x} \wedge [\psi] \frac{t}{x}$.

SUB-F-EXT2 $[\phi \lor \psi] \frac{t}{x} := [\phi] \frac{t}{x} \lor [\psi] \frac{t}{x}$.

SUB-F-EXT3 $[\exists x\phi]\frac{t}{x} := \begin{cases} \exists x[\phi]\frac{t}{x} & \text{if } x \neq z \\ \exists x\phi & \text{otherwise} \end{cases}$

N.B. We never substitute bound variables (only Free Variables).

Proposition 2.4 - $\forall t \in Tm_{\mathcal{L}}, [t] \frac{x}{x} = t$

Proposition 2.5 - $\forall \phi \in Fml_{\mathcal{L}}, \ [\phi]_{\frac{x}{x}} = \phi$

Proposition 2.6 - If $x \not\in var(t)$ then $[a] \frac{a}{x} = t$

Proposition 2.7 - If $x \notin FV(\phi)$ then $[\phi] \frac{a}{x} = \phi$

Proposition 2.8 - Let $x \notin var(a)$ then $x \notin var([t]\frac{a}{x})$ and $x \notin FV([\phi]\frac{a}{x})$

Definition 2.14 - Substitutable

Let \mathcal{L} be a FOL, $t \in Tm_{\mathcal{L}}$ and x be a variable.

Let $\phi, \psi \in Fml_{\mathcal{L}}$.

We define whether t is Substitutable for a variable x in a formula ϕ recursively

SU1 If ϕ is an Atomic \mathcal{L} -Formula. Then $SubSt(t, x, \phi)$ always.

SU2 SubSt $(t, x, \neg \phi)$ iff SubSt (t, x, ϕ) .

SU3 SubSt $(t, x, \phi \to \psi)$ iff SubSt (t, x, ϕ) and SubSt (t, x, ψ) .

SU4 SubSt $(t, x, \forall z\phi)$ if $\begin{cases} z \not\in var(t) \text{ and } mathttSubSt(t, x, \phi) \\ \text{or } x \not\in FV(\phi) \end{cases}$

SU-EXT1 SubSt $(t, x, \phi \land \psi)$ iff SubSt (t, x, ϕ) and SubSt (t, x, ψ) .

 ${\tt SU-EXT2~SubSt}(t,x,\phi\vee\psi)~\underline{\tt iff}~{\tt SubSt}(t,x,\phi)~\underline{\tt and}~{\tt SubSt}(t,x,\psi).$

SU-EXT3 SubSt $(t, x, \exists z\phi)$ if $\begin{cases} z \in var(t) \text{ and } SubSt(\phi) \\ \text{or } x \notin FV(\exists z\phi) \end{cases}$

N.B. If SubSt (t, x, ϕ) , t is said to be Free for x in ϕ .

Proposition 2.9 - Every variable is Substitutable for itself, in all formulae

Proposition 2.10 - If $x \notin FV(\phi)$ all $t \in Tm_{\mathcal{L}}$ are Substitutable for x in Φ

Proposition 2.11 - If $var(t) \cap var(\phi) = \emptyset$ then t is substitutable for any variable in ϕ . Notably, every closed \mathcal{L} -term is substitutable for any variable in any formula.

Proposition 2.12 - Substitution order doesn't matter

Let \mathcal{L} be a FOL, \mathfrak{M} be an \mathcal{L} -structure, s be a variable assignment and $d_1, \ldots, d_k \in |\mathfrak{M}|$. Let x_1, \ldots, x_k be distinct variables and π be a permutation over k. Then

$$\left(\left(\dots\left(s\frac{d_1}{x_1}\right)\dots\right)\frac{d_{k-1}}{x_{k-1}}\right)\frac{d_k}{x_k} = \left(\left(\dots\left(s\frac{d_{\pi(1)}}{x_{\pi(1)}}\right)\dots\right)\frac{d_{\pi(k-1)}}{x_{\pi(k-1)}}\right)\frac{d_{\pi(k)}}{x_{\pi(k)}}$$

Theorem 2.3 - Substitution Lemma

Let \mathcal{L} be a FOL, \mathfrak{M} be an \mathcal{L} -Structure, $t \in Tm_{\mathcal{L}}$, $\phi \in Fml_{\mathcal{L}}$ and x be a variable.

i) For every variable assignment s over $\mathfrak{M}, \forall a \in Tm_{\mathcal{C}}$

$$\overline{s}\left([a]\frac{t}{x}\right) = \overline{s\frac{\overline{s}(t)}{x}}(a)$$

ii) For every variable assignment s over $\mathfrak{M}, \forall a \in Tm_{\mathcal{L}}$ where a is Substitutable for x in ϕ

$$\mathfrak{M}, s \vDash \phi \frac{t}{x}$$
 iff $\mathfrak{M}, s \frac{\overline{s}(t)}{x} \vDash \phi$

Proposition 2.13 - $\forall t \in Tm_{\mathcal{L}} \text{ if } t \text{ is substitutable for } x \text{ then } \vDash \left(\forall x \phi \to [\phi] \frac{t}{x}\right) \text{ for all } t \in Tm_{\mathcal{L}}$

Proposition 2.14 - $\forall \phi \in Fml_{\mathcal{L}} \text{ if } t \text{ is substitutable for } x \text{ then } \vDash ([\phi]\frac{t}{x} \to \exists x\phi) \text{ for all } t \in Tm_{\mathcal{L}}$

2.3 Homomorphism

Definition 2.15 - Homomorphism

Let \mathcal{L} be a FOL and $\mathfrak{M}_1, \mathfrak{M}_2$ be \mathcal{L} -Structures.

A function $H: \mathfrak{M}_1 \to \mathfrak{M}_2$ is a *Homomorphism* if it fulfils the following

- $H(c^{\mathfrak{M}_1}) = c^{\mathfrak{M}_2}$ for all constant symbols, c, of \mathcal{L} .
- $H(f^{\mathfrak{M}_1}(t_1,\ldots,t_k)=f^{\mathfrak{M}_2}(H(t_1),\ldots,H(t_k))$ for all k-arity function symbols f of \mathcal{L} and $t_1,\ldots,t_k\in |\mathfrak{M}_1|$.
- $\langle t_1, \ldots, t_k \rangle \in P^{\mathfrak{M}_1} \Leftrightarrow \langle H(t_1), \ldots, H(t_k) \rangle \in P^{\mathfrak{M}_2}$ for all k-arity predicates symbols P of \mathcal{L} and $t_1, \ldots, t_k \in |\mathfrak{M}_1|$. i.e. $\langle t_1, \ldots, t_k \rangle$ has property $P^{\mathfrak{M}_1}$ iff $\langle H(t_1), \ldots, H(t_k) \rangle$ has property $P^{\mathfrak{M}_2}$.

Theorem 2.4 - Semantic Value of a Homomorphism

Let \mathcal{L} be a FOL, $\mathfrak{M}_1, \mathfrak{M}_2$ be \mathcal{L} -Structures and s be a variable assignment over \mathfrak{M}_1 . Let H be a *Homomorphism* from \mathfrak{M}_1 to \mathfrak{M}_2 .

The a Homomorphism from 220

Then, $\forall t \in Tm_{\mathcal{L}}$ $H \circ \overline{s}(t) = \overline{H} \circ s(t)$

Definition 2.16 - *Isomorphism*

Let H be a Homomorphism.

H is an Isomorhpism if it is Bijective.

N.B. If there exists an Isomorphism between \mathfrak{M}_1 and \mathfrak{M}_2 they are said to be Isomorphic.

Definition 2.17 - Substructure

Let \mathcal{L} be a FOL and $\mathfrak{M}_1, \mathfrak{M}_2$ be \mathcal{L} -Structures.

 \mathfrak{M}_1 is a Substructure of \mathfrak{M}_2 if

- $|\mathfrak{M}_1| \subset |\mathfrak{M}_2|$. And,
- The function $i(d) = d \, \forall \, d \in |\mathfrak{M}_1|$ is a Homomorphism

 $N.B. \mathfrak{M}_2$ is called an *Extension* of \mathfrak{M}_1 .

Definition 2.18 - Elementary Equivalence

Let \mathcal{L} be a FOL and $\mathfrak{M}_1, \mathfrak{M}_2$ be \mathcal{L} -Structures.

 \mathfrak{M}_1 and \mathfrak{M}_2 are Elementary Equivalent if

$$\mathfrak{M}_1 \vDash \sigma \Leftrightarrow \mathfrak{M}_2 \vDash \sigma \quad \forall \ \sigma \in Sent_{\mathcal{L}}$$

Proposition 2.15 - Isomorphic \mathcal{L} -Structures are Elementary Equivalence

Definition 2.19 - Elementary Embedding

Let \mathcal{L} be a FOL and $\mathfrak{M}_1, \mathfrak{M}_2$ be \mathcal{L} -Structures.

An Elementary Embedding of \mathfrak{M}_1 in \mathfrak{M}_2 is a function $H: |\mathfrak{M}_1| \to |\mathfrak{M}_2|$ st

$$\forall \phi \in Fml_{\mathcal{L}}, \forall \text{ variable assignments } s \text{ over } \mathfrak{M}_1 \quad \mathfrak{M}_1, s \models \phi \Leftrightarrow \mathfrak{M}_2, H \circ s \models \phi$$

N.B. $H \circ s : \text{Var} \to |\mathfrak{M}_2|$.

N.B. If there exists an *Elementary Embedding* of \mathfrak{M}_1 in \mathfrak{M}_2 , then \mathfrak{M}_1 and \mathfrak{M}_2 are *Elementary Equivalent*.

Proposition 2.16 - An Isomorphism is an Elementary Embedding

Proposition 2.17 - An Elemenetary Embedding of \mathfrak{M}_1 in \mathfrak{M}_2 is an Injective Homomorphism from \mathfrak{M}_1 to \mathfrak{M}_2

N.B. The converse may not be true.

2.4 Definable

Definition 2.20 - Definable

Let \mathcal{L} be a FOL, \mathfrak{M} be an \mathcal{L} -Structure and \mathcal{R} be a k-arity relation on $|\mathfrak{M}|$.

 \mathcal{R} is Definable in \mathfrak{M} if $\exists \phi \in Fml_{\mathcal{L}}$ where $FV(\phi) \subset \{x_1, \ldots, x_k\}$ and $\forall a_1, \ldots, a_k \in |\mathfrak{M}|$ it holds that

$$\langle a_1, \dots, a_k \rangle \in \mathcal{R} \quad \text{iff} \quad \mathfrak{M} \models \phi \llbracket a_1, \dots, a_k \rrbracket$$

N.B. \mathcal{R} is **not** a predicate and is **not** related to any symbols in \mathfrak{M} .

N.B. We say \mathcal{R} is defined by ϕ in \mathfrak{M} .

Proposition 2.18 - \mathcal{R} is defined by ϕ in \mathfrak{M} iff $\mathfrak{M}, s \models \phi \Leftrightarrow \langle s(x_1), \ldots, s(x_k) \rangle \in \mathcal{R}$ for all variable assignments s over \mathfrak{M} .

3 Deductive Reasoning

Remark 3.1 - Structure of Deductive Mathematical Proofs

Deductive mathematical proofs take (roughly) the following structure

- i) Assumptions Axioms, definitions & proved theorems. N.B. These depend on the subject matter.
- ii) Deduction Steps.
- iii) Theorem The consequent of the deductions.

Remark 3.2 - Logical Axioms are assumptions in almost all mathematical proofs

Definition 3.1 - Generalisation

Let L be a FOL & $\phi, \psi \in Fml_{\mathcal{L}}$. ϕ is a Generalisation of ψ if

$$\phi = \psi$$
;

Or, $\phi = \forall x_1, \dots, \forall x_n \psi$ for some $x_1, \dots, x_n \in \text{Var.}$

N.B. Every \mathcal{L} -Formula is a Generalisation of itself.

3.1 Hilbert Calculus

Definition 3.2 - Hilbert Calculus

Hilbert Calculus is a formal system of deductive logic, used in mathematical proofs.

Definition 3.3 - Logical Axioms of Hilbert Calculus, $\Lambda_{\mathcal{L}}$

Let \mathcal{L} be a FOL, $\phi, \psi, \theta \in Fml_{\mathcal{L}}, t, t_0, t_1 \in Tm_{\mathcal{L}}$ and x is an arbitrary variable.

The Logical Axioms of Hilbert Calculus over \mathcal{L} comprises all Generalisations of the following forms of an \mathcal{L} -Formula:

H1
$$\phi \to (\psi \to \theta)$$
.

H2
$$(\phi \to (\psi \to \theta)) \to ((\phi \to \psi) \to (\phi \to \theta))$$
.

H3
$$(\neg \phi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \phi)$$
.

H4 $\forall x \phi \rightarrow [\phi] \frac{t}{x}$ where $SubSt(t, x, \phi)$.

H5 $\phi \to \forall x \psi$ for $x \notin FV(\phi)$.

H6 $[\forall x(\phi \to \psi)] \to [\forall x\phi \to \forall x\psi].$

H7 $t \equiv t$.

H8 $t_0 \equiv t_1 \rightarrow \left([\phi] \frac{t_0}{x} \rightarrow [\phi] \frac{t_1}{x} \right)$ where $\mathrm{SubSt}(t_0, x, \phi)$ and $\mathrm{SubSt}(t_1, x, \phi)$.

N.B. This set is denoted as $\Lambda_{\mathcal{L}}$.

Remark 3.3 - Logical Axioms are formulae

Definition 3.4 - Deduction in Hilbert Calculus

Let \mathcal{L} be a FOL & $\Gamma \subset Fml_{\mathcal{L}}$ in Hilbert Calculus.

A Deduction, \mathcal{D} from Γ is a finite sequence, $\langle \phi_1, \ldots, \phi_n \rangle$, of \mathcal{L} -Formulae where $\forall k \in [1, n]$:

$$\phi_k \in \Lambda_{\mathcal{L}} \cup \Gamma$$
.

i.e. ϕ_k is assumed to be true.

or, $\exists i, j, k$ with i, j < k st $\phi_j = \phi_i \rightarrow \phi_k$. *i.e.* ϕ_k is true by implication.

N.B. We say \mathcal{D} is a *Deduction* of ϕ_n since ϕ_n is the last formula.

Proposition 3.1 - Deductions from Deductions

Let \mathcal{L} be a FOL, $\Gamma \subset Fml_{\mathcal{L}} \& \mathcal{D} := \langle \phi_1, \dots, \phi_n \rangle$ be a *Deduction* from Γ .

- $\forall m \leq n, \ \mathcal{D} \upharpoonright_m := \langle \phi_1, \dots, \phi_m \rangle$ is a *Deduction* of θ_m from Γ . *i.e.* All subsequences of a *Deduction* are *Deductions*.
- $\forall \Sigma \supset \Gamma$, \mathcal{D} is a *Deduction* of ϕ_n from Σ .
- For all deductions $\mathcal{D}' := \langle \psi_1, \dots, \phi_m \rangle$ from Γ

 $\mathcal{D} * \mathcal{D} = \langle \phi_1, \dots, \phi_n, \psi_1, \dots, \psi_m \rangle$ is a deduction of θ_m from Γ .

Definition 3.5 - Deducibility in Hilbert Style

Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}} \& \Gamma \subset Fml_{\mathcal{L}}$.

 ϕ is *Deducible* from Γ if \exists a deduction of ϕ from Γ .

N.B. This is denoted $\Gamma \vdash \phi$ (If $\Gamma \equiv \emptyset$ then we write $\vdash \phi$).

Remark 3.4 - If $\Gamma \vdash \phi$ we say ϕ is a <u>Theorem</u> of Γ

Definition 3.6 - *Modus Ponens*

Let \mathcal{L} be a FOL, $\phi, \psi \in Fml_{\mathcal{L}} \& \Gamma, \Sigma \subset Fml_{\mathcal{L}}$.

If $\Gamma \vdash \psi$ is obtained from $\Gamma \vdash (\phi \rightarrow \psi)$ and $\Gamma \vdash \phi$ we say

 $\Gamma \vdash \phi$ is obtained by applying *Modus Ponens* to $\Gamma \vdash (\phi \rightarrow \psi)$ and $\Gamma \vdash \phi$.

N.B. "Modus Ponens" translates to "Putting the limit".

Theorem 3.1 - Monotonicity of Deducibility

Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}} \& \Gamma, \Sigma \subset Fml_{\mathcal{L}}$.

If $\Gamma \vdash \phi$ and $\Sigma \supset \Lambda$ then $\Sigma \vdash \phi$.

Theorem 3.2 - Generalisation Theorem

Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}} \& \Gamma, \Sigma \subset Fml_{\mathcal{L}}$.

If
$$\Gamma \vdash \phi \text{ and } x \notin FV(\Gamma)$$
 then $\Gamma \vdash \forall x \phi \text{ where } FV(\Gamma) := \bigcup_{\psi \in \Gamma} FV(\psi)$

Proposition 3.2 - Alternative Expressions of prev theorems

Let \mathcal{L} be a FOL, $\phi, \psi \in Fml_{\mathcal{L}} \& \Gamma, \Sigma \subset Fml_{\mathcal{L}}$.

AX $\Gamma \vdash \phi \ \forall \ \phi \in \Gamma \cup \Lambda_{\mathcal{L}}$.

MP If $\Gamma \vdash (\phi \rightarrow \psi)$ and $\Gamma \vdash \phi$ then $\Gamma \vdash \psi$.

GEN If $\Gamma \vdash \phi$ and $x \notin FV(\Gamma)$ then $\Gamma \vdash \forall x \phi$.

3.2 Deduction Theorem

Theorem 3.3 - Law of Excluded Middle - $\forall \phi \in Fml_{\mathcal{L}}, \vdash \phi \lor \neg \phi$ Since $(\phi \lor \neg \phi) \Leftrightarrow (\neg \phi \to \neg \phi)$.

Theorem 3.4 - Deduction Theorem

Let \mathcal{L} be a FOL, $\phi, \psi \in Fml_{\mathcal{L}} \& \Gamma, \Sigma \subset Fml_{\mathcal{L}}$.

$$\Gamma, \phi \vdash \psi \text{ iff } \Gamma \vdash (\phi \rightarrow \psi).$$

Theorem 3.5 - Transitivity of Conditional

Let \mathcal{L} be a FOL, $\phi, \psi, \theta \in Fml_{\mathcal{L}} \& \Gamma, \Sigma \subset Fml_{\mathcal{L}}$.

If
$$\Gamma \vdash (\phi \rightarrow \psi)$$
 and $\Gamma \vdash (\psi \rightarrow \theta)$ then $\Gamma \vdash (\phi \rightarrow \theta)$

Theorem 3.6 - \rightarrow *Exchange*

Let \mathcal{L} be a FOL, $\phi, \psi, \theta \in Fml_{\mathcal{L}} \& \Gamma, \Sigma \subset Fml_{\mathcal{L}}$.

If
$$\Gamma \vdash (\phi \to (\psi \to \theta))$$
 then $\Gamma \vdash (\psi \to (\phi \to \theta))$.

Theorem 3.7 - Ex Falso Quodlibet

Let \mathcal{L} be a FOL, $\phi \in Fml_{\mathcal{L}} \& \Gamma, \Sigma \subset Fml_{\mathcal{L}}$.

If
$$\Gamma \vdash \phi \text{ and } \Gamma \vdash (\neg \phi) \text{ then } \Gamma \vdash \psi \ \forall \ \psi \in Fml_{\mathcal{L}}$$
.

N.B. "Ex Falso Quodlibet" translates to "From a false proposition".

Theorem 3.8 - Double Negation Elimination

Let \mathcal{L} be a FOL.

$$\forall \ \phi \in Fml_{\mathcal{L}}, \ \vdash ((\neg \neg \phi) \rightarrow \phi)$$

Theorem 3.9 - Double Negation Introduction

Let \mathcal{L} be a FOL.

$$\forall \phi \in Fml_{\mathcal{L}}, \vdash (\phi \to (\neg \neg \phi))$$

Theorem 3.10 - Contraposition

Let \mathcal{L} be a FOL and $\Gamma \subset Fml_{\mathcal{L}}$.

$$\forall \phi, \psi \in Fml_{\mathcal{L}}, \ \Gamma \vdash (\phi \to \psi) \text{ iff } \Gamma \vdash (\neg \psi \to \neg \phi).$$

Theorem 3.11 - Reductio ad Absurdum - 1

Let \mathcal{L} be a FOL, $\Gamma \subset Fml_{\mathcal{L}}$ and $\phi \in Fml_{\mathcal{L}}$.

If
$$\exists \ \psi \in Fml_{\mathcal{L}} \text{ st } \Gamma, \neg \phi \vdash \psi \text{ and } \Gamma, \neg \phi \vdash \neg \psi \text{ then } \Gamma \vdash \phi.$$

N.B. "Reductio ad Absurdum" translates to "Reduction to absurdity".

Theorem 3.12 - Reductio ad Absurdum - 2

Let \mathcal{L} be a FOL, $\Gamma \subset Fml_{\mathcal{L}}$ and $\phi \in Fml_{\mathcal{L}}$.

If
$$\exists \ \psi \in Fml_{\mathcal{L}} \text{ st } \Gamma, \phi \vdash \psi \text{ and } \Gamma, \phi \vdash \neg \psi \text{ then } \Gamma \vdash \neg \phi.$$

Theorem 3.13 - Left \forall Introduction

Let \mathcal{L} be a FOL, $\Gamma \subset Fml_{\mathcal{L}}$, $t \in Tm_{\mathcal{L}}$ and $\phi, \psi \in Fml_{\mathcal{L}}$.

If
$$\Gamma$$
, $[\phi] \frac{t}{x} \vdash \psi$ and $SubSt(t, x, \phi)$ then Γ , $\forall x \phi \vdash \psi$.

Theorem 3.14 - $Right \ \forall \ Elimination$

Let \mathcal{L} be a FOL, $\Gamma \subset Fml_{\mathcal{L}}$, $t \in Tm_{\mathcal{L}}$ and $\phi, \psi \in Fml_{\mathcal{L}}$.

If
$$\Gamma \vdash \forall x \phi$$
 and $SubSt(t, x, \phi)$ then $\Gamma \vdash [\phi] \frac{t}{x}$.

3.2.1 Facts

Proposition 3.3 - $\forall \phi, \psi \in Fml_{\mathcal{L}}, \vdash ((\phi \rightarrow \psi) \rightarrow (\neg \psi \rightarrow \neg \phi))$

Proposition 3.4 - $\vdash (\phi \rightarrow \theta) \rightarrow ((\psi \rightarrow \theta) \rightarrow ((\phi \lor \psi) \rightarrow \theta))$

Proposition 3.5 - \vdash $((\phi \land \psi) \rightarrow \phi)$

Proposition 3.6 - \vdash $((\phi \land \psi) \rightarrow \psi)$

Proposition 3.7 - \vdash ($\phi \rightarrow (\psi \rightarrow (\phi \land \psi)))$

Theorem 3.15 - Left \wedge Introduction

Let \mathcal{L} be a FOL, $\Gamma \subset Fml_{\mathcal{L}}$, $t \in Tm_{\mathcal{L}}$ and $\phi, \psi, \theta \in Fml_{\mathcal{L}}$.

- If $\Gamma, \phi \vdash \theta$ then $\Lambda, (\phi \land \psi) \vdash \theta$.
- If $\Gamma, \psi \vdash \theta$ then $\Lambda, (\phi \land \psi) \vdash \theta$.

Theorem 3.16 - $Right \wedge$

Let \mathcal{L} be a FOL, $\Gamma \subset Fml_{\mathcal{L}}$, $t \in Tm_{\mathcal{L}}$ and $\phi, \psi \in Fml_{\mathcal{L}}$.

Introduction If $\Gamma \vdash \phi$ and $\Gamma \vdash \psi$ then $\Gamma \vdash (\phi \land \psi)$.

Elmination If $\Gamma \vdash (\phi \land \psi)$ then $\Gamma \vdash \phi$ and $\Gamma \vdash \psi$.

Proposition 3.8 -

Let \mathcal{L} be a FOL, $\Gamma \subset Fml_{\mathcal{L}}$, $t \in Tm_{\mathcal{L}}$ and $\phi \in Fml_{\mathcal{L}}$.

- If $\exists \ \psi \in Fml_{\mathcal{L}} \text{ st } \Gamma, \neg \phi \vdash (\psi \land \neg \psi) \text{ then } \Gamma \vdash \phi.$
- If $\exists \ \psi \in Fml_{\mathcal{L}} \text{ st } \Gamma, \phi \vdash (\psi \land \neg \psi) \text{ then } \Gamma \vdash \neg \phi.$

Proposition 3.9 - If t, x, ϕ then $\vdash ([\psi] \frac{t}{x} \to \exists x \phi)$

Proposition 3.10 - If $x \notin FV(\phi)$ then $\vdash (\exists x \phi \to \phi)$

Proposition 3.11 - $\vdash (\forall x(\phi \to \psi) \to (\exists x\phi \to \exists x\psi))$

Proposition 3.12 - \vdash $(t_0 \equiv t_1) \rightarrow (t_1 \equiv t_0)$

Proposition 3.13 - \vdash $(t_0 \equiv t_1) \leftrightarrow (t_1 \equiv t_0)$

Proposition 3.14 - \vdash $(t_0 \equiv t_1) \to ((t_1 \equiv t_2) \to (t_0 \equiv t_2))$

Proposition 3.15 - $\{\langle t_0, t_1 \rangle \in Tm_{\mathcal{L}} \times Tm_{\mathcal{L}} : \Gamma \vdash (t_0 \equiv t_1) \}$ is an Equivalence Relation.

3.3 Soundness Theorem

Theorem 3.17 - Every Logical Axiom is logically true

$$\forall \lambda \in \Lambda_{\mathcal{L}}, \models \lambda \ (i.e. \emptyset \models \lambda)$$

Theorem 3.18 - Soundess Theorem

$$\forall \Gamma \subset Fml_{\mathcal{L}}, \ \forall \ \phi \in Fml_{\mathcal{L}} \ \text{if} \ \Gamma \vdash \phi \ \text{then} \ \Gamma \vDash \phi.$$

Equivalently

 $\forall \ \Gamma \subset Fml_{\mathcal{L}} \ \text{if} \ \Gamma \ \text{is} \ Satisfiable, then} \ \Gamma \ \text{is} \ Consistent.$

0 Appendix

0.1 Standard Models

Definition 0.1 - Standard Model of Arithmetic Let language of arithmetic is $\mathcal{L}_{\mathbb{N}} := \{\overline{<}, S, \overline{+}, \overline{\cdot}, E, \overline{0}\}$ where

- $\overline{<}$ is a binary relation symbol.
- S is a unary function symbol.
- $\overline{+}, \overline{\cdot}, E$ are binary function symbols.
- $\overline{0}$ is the constant symbol for $0 \in \mathbb{N}$.

Let \mathfrak{M} be a $\mathcal{L}_{\mathbb{N}}$ -Structure with the domain $|\mathfrak{M}| = \mathbb{N}$ defined as

 $\overline{<}$ is interpreted as the usual 'less-than' relation on \mathbb{N} .

i.e.
$$\langle x, y \rangle \in \overline{<}^{\mathfrak{M}} \Leftrightarrow x < y$$

- S is interpreted as the $successor\ function\ `+1'$ on $\mathbb N.$

$$i.e.S^{\mathfrak{M}}(n) = n+1$$

 $\overline{+}$, $\overline{\cdot}$, E are interpreted as the usual 'addition', 'multiplication' and 'exponentitation' on \mathbb{N} respectively.

$$i.e.E^{\mathfrak{M}}(n,m) = n^m$$

- $\overline{0}$ is interpreted as the natural numbers 0.

0.2 Notation

Proposition 0.1 - Formal Notation

Notation	Use
$\langle a_1,\ldots,a_n\rangle$	A string of length n
$\langle a, b \rangle$	Two consecutive strings
a * b	Concatenation of two strings
\mathcal{A}^*	Set of all strings over alphabet \mathcal{A}
$\mathcal{A}_{\mathcal{L}}$	Alphabet of language \mathcal{L}
$Tm_{\mathcal{L}}$	Set of \mathcal{L} -Terms of language \mathcal{L}
$Fml_{\mathcal{L}}$	Set of \mathcal{L} -Formulae of language \mathcal{L}
Var	Set of variables in the alphabet??
$Sent_{\mathcal{L}}$	Set of \mathcal{L} -Sentences of language \mathcal{L}
\rightarrow	Implication
\leftrightarrow	Equivalence
V	Or
\land	And
A	For all
∃	There exists
∃!	There exists a unique
	Syntactic +, has no semantic value.
	signals this for all symbols
:⇔	Defined to have same logical value (true or false)
$\Phi \vDash \phi$	$\phi \in Fml_{\mathcal{L}}$ is a logical consequence of $\Phi \subseteq Fml_{\mathcal{L}}$.
$\models \phi$	$\phi \in Fml_{\mathcal{L}}$ is logically valid.
$\mathfrak{M}_1\cong\mathfrak{M}_2$	Structures \mathfrak{M}_1 and \mathfrak{M}_2 are isomorphic.
$\mathfrak{M} \vDash \phi[\![a_1,\ldots,a_n]\!]$	ϕ is true for the objects $a_1, \ldots, a_n \in \mathfrak{M} $.
$\Lambda_{\mathcal{L}}$	Logical axioms for Hilbert Calculus.
$\Gamma \vdash \phi$	ϕ is deducible from Γ .

Proposition 0.2 - Convential Notation

Notation	Use
\mathcal{A}	Alphabet
\mathcal{L}	Language (First-Order)
t	Term
ϕ, ψ, \dots	Formulae (Lower case greek).
Λ, Γ, \dots	Sets of Formulae (Upper case greek).
$x \circ y$	$\circ(x,y)$ where \circ is a function or predicate
$c \not\prec d$	$\neg \prec (c,d)$
\mathfrak{M}	$\mathcal{L} ext{-Structure}$
3	Interpretaion from an \mathcal{L} -Structure
$D \text{ or } \mathfrak{M} $	Domain of an \mathcal{L} -Structure
$P^{\mathfrak{M}}$	$\mathfrak{I}(P)$
$f^{\mathfrak{M}}$	$\Im(f)$
$c^{\mathfrak{M}}$	$\Im(c)$
$\mathfrak{M} \vDash \phi$	$\mathfrak{M}, s \vDash \phi \ \forall \ s \text{ over } \mathfrak{M} \text{ since } \phi \text{ is an } \mathcal{L}\text{-sentence}.$
$t^{\mathfrak{M}}$	$d \in \mathfrak{M} \text{ st } \bar{s}(t) = d \ \forall \ s \text{ over } \mathfrak{M} \text{ since } t \text{ is a Closed } \mathcal{L}\text{-Term.}$
$\mathtt{SubSt}(t,x,\phi)$	$t \in Tm_{\mathcal{L}}$ is substitutable for $x \in Var$ in $\phi \in Fml_{\mathcal{L}}$.
$\Gamma, \phi \vdash \psi$	$\Gamma \cup \{\phi\} \vdash \psi$.
$\Gamma, \phi \vDash \psi$	$\Gamma \cup \{\phi\} \vDash \psi.$

0.3 Definitions

Definition 0.2 - Arity

The Arity of a function is the number of arguments it takes.

N.B. Unary, Binary, Ternary, Quaternary, . . .

Definition 0.3 - Countable Set

Let X be a set.

X is Countable if

$$\exists \ f: \mathbb{N} \to X \ \text{st} \ f \ \text{is surjective}.$$
 Or
$$\exists \ f: X \to \mathbb{N} \ \text{st} \ f \ \text{is injective}.$$

Definition 0.4 - Predicate

A Predicate is an expression over a set of variables and returns a logical conclustion (i.e. True or False).

N.B. Practically a function from set of variables to true or false.

0.4 Indentities

Theorem 0.1 - Complex Connectives & Quantifiers in terms of FOL

Term	In FOL
$\exists x, \ P(x)$	$\neg(\forall x, \neg P(x))$
$P \lor Q$	$(\neg P) \to Q$
$P \wedge Q$	$\neg(P \to \neg Q)$
$P \leftrightarrow Q$	$(P \to Q) \land (Q \to P)$ $\Leftrightarrow \neg((P \to Q) \to \neg(Q \to P))$

0.5 Techniques

Proposition 0.3 - Induction on Terms

Proposition 0.4 - Induction on Formulae