

# 数据集工具 - [数据集] 热图



网址: <a href="https://www.xiantao.love">https://www.xiantao.love</a>



更新时间: 2023.03.13



#### 目录

| 基本概念               | 3  |
|--------------------|----|
| 应用场景               | 3  |
| 分析流程               | 5  |
| 主要结果               | 6  |
| 云端数据               | 8  |
| 参数说明               | 9  |
| 数据设置               | 9  |
| 标注                 | 10 |
| 数据处理               | 11 |
| 聚类(顺序)/分割          | 11 |
| 主图                 | 13 |
| 上注释                | 13 |
| 文字                 | 14 |
| 图注                 | 14 |
| 图片                 | 15 |
| 结果说 <mark>明</mark> | 16 |
| 主要结果               | 16 |
| 方法学                | 17 |
| 如何引用               | 18 |
| 常见问题               | 19 |



### 基本概念

- ➤ 数据集差异分析: 从数据集检索模块中,针对特定 GEO 数据集的数据,进 行芯片差异分析的过程,类似 GEO2R。
- 热图:主要用于可视化矩阵数据的结果,每个小正方形表示行(基因)列(样本)所对应的数值情况。

### 应用场景

本模块为数据集检索 - 差异分析后结果的可视化展示。用于展示数据集差异分析后样本中一些(差异表达)基因的表达情况和样本信息。

注意:模块需要<mark>先进行数据集检索 - 差异分析后</mark>,此处的云端数据才会有结果记录,然后才能进行可视化的操作。











### 分析流程





#### 主要结果



- ➤ 主要部分:每一个小方块代表第 j 列样本对应第 i 行基因的表达值经过行 zscore 转换后的值对应的颜色大小。其中红色代表相对表达高,蓝色代表相 对表达低。
  - zscore 转换是绘制热图中常用的一种对数据进行转换的方法(每个基因的表达值减去其在所有样本中的表达均值后,再除以标准差),可以减少不同分子表达值差异过大而影响整个热图的可视化效果,并且 zscore 转换保留了单个分子在样本间的差异情况(如果有一个分子表达值在样本间很大,另外一个在样本间很小,可以想象到前一个的热图基本都是红色,另外一个基本都是蓝色,单个基因样本间的差异就很小,很难看出单个基因的效果)。
  - 如果不想要进行 zscore 转换,仅使用原始的值,可以在参数【数据处理】 中选择【不归一化】。
- 主要部分的左侧:包含行的聚类树状图。
  - 聚类树状图:根据每一行的具体情况进行聚类,不同的聚类方法会影响 这部分的顺序。如果选择了行聚类,则最终行的顺序不同于设定的分子 顺序。
- ▶ 主要部分的上方:包含列的注释,可以添加聚类树状图。
  - 注释条:根据云端记录中样本所属的分组信息,即在差异分析阶段,自 定义的参考组(默认 ref)和实验组(默认 test)。



加入参考组 加入实验组

o ref组6个 o test组6个 o 未分组2个

■ 聚类树状图:根据每一列样本的具体情况进行聚类,不同的聚类方法会影响这部分的顺序。如果选择了列聚类,则最终列的顺序不同于默认分组的顺序。





### 云端数据

#### 云端数据

| 记录名称 | 来源模块         | 时间                  | 补充说明           |  |
|------|--------------|---------------------|----------------|--|
|      | 芯片-差异分析 @1.0 | 2023-03-12 20:35:56 | 数据记录可以在历史记录中找到 |  |

这里的<mark>云端数据与历史记录汇总 数据集检索工具样本库中【差异分析】 的数据记录是保持一致的,可以在历史记录中找到相应的数据记录</mark>。

根据需要可视化的项目 选择好对应的云端数据记录。默认使用<mark>最近生成的分析</mark>记录。





### 参数说明

(说明:标注了颜色的为常用参数。)

#### 数据设置



➤ 可视化分子: 输入想要可视化的 ID, 默认为对应云端记录<数据集检索-差异分析>中选取"adj.P.Val"前 50 个分子,可以根据需要进行输入修改。注意: 输入的 ID 来自所选云端数据记录的结果,需要先在历史记录中找到对应的记录,下载 差异分析 excel 结果,复制想要展示的 ID 到这个输入框中,一行代表一个。最多支持 1 张图同时绘制 500 个分子。



# 标注



▶ 分子标注:可以填入想要标注在图中的对应行名(分子名),一行一个分子,如果为空,默认就标注数据中所有行名(分子)。



▶ 标注的字体:标注的字体类型,可选择 正体、斜体。



#### 数据处理



 ▶ 归一化:可以选择对行或列进行归一化的方式,可选择 对行归一化、对列 归一化、对行归一化(处理极值: 归一化后大于 3 的值固定为 3,小于-3 固定为 -3)、对列归一化(处理极值: 归一化后大于 3 的值固定为 3,小于-3 固定为-3)、 不归一化。一般是 对行归一化。

### 聚类(顺序)/分割



▶ 列聚类:可以选择是否对列进行聚类分析,可以选择不同距离计算方法,不 聚类、欧式距离(euclidean)、切比雪夫距离(maximum)、曼哈顿距离(manhattan)、 堪培拉距离(canberra)、闵可夫斯基距离(minkowski)。



- ➤ 行聚类:可以选择是否对行进行聚类分析,可以选择不同距离计算方法,不 聚类、欧式距离(euclidean)、切比雪夫距离(maximum)、曼哈顿距离(manhattan)、 堪培拉距离(canberra)、闵可夫斯基距离(minkowski)。
- 列分割:可以对列进行分割展示,需要对列聚类才能进行列分割,如下,【列聚类】->【列分割】:



行分割:可以对行进行分割展示,需要对行聚类才能进行行分割,如下,【行聚类】->【行分割】:



▶ 左右颠倒:可以对热图中的列的顺序进行颠倒。

▶ 上下颠倒:可以对热图中的行的顺序进行颠倒。



### 主图



▶ 色阶: 热图块的颜色,色卡的顺序是从低到高的渐变。受配色方案全局性修改。

▶ 色块描边: 色块是否展示描边

▶ 外框:是否展示主图的外边框

# 上注释



➤ 注释颜色: 可以对图上方的注释内容进行颜色调节,本模块第一色卡控制参考组(默认 ref)分组,第二色卡控制实验组(默认 test)分组,最多支持修改2个颜色。不受配色方案全局性修改。



# 文字



▶ 标题:图形的标题文本

▶ 标题大小:标题的文字大小

▶ 列名大小:图中列名(下方样本)的字体大小,默认不显示

▶ 行名大小:图中行名(右侧基因)的字体大小

### 图注





▶ 是否展示: 是否展示图注

▶ 图注标题:可以添加图注标题,色阶的标题

▶ 图注标签: 可以添加图注标签信息, 如:



▶ 图注位置:可选择 默认、右、上。

》 字体大小:控制图注的文字大小,默认为 6pt

### 图片



▶ 宽度:图片横向长度,单位为 cm

▶ 高度: 图片纵向长度,单位为 cm

▶ 字体:可以选择图片中文字的字体



# 结果说明

### 主要结果



主要结果格式为图片格式,提供 PDF、TIFF 格式下载,结果报告可以下载包括 pdf 以及说明文本的内容。



# 方法学

所有分析和可视化均在 R 4.2.1 中进行

涉及的 R 包: ComplexHeatmap 包 (用于可视化)

处理过程:利用 ComplexHeatmap 包进行热图的可视化。





### 如何引用

生信工具分析和可视化用的是 R 语言,可以直接写自己用 R 来进行分析和可视化即可,可以无需引用仙桃,如果想要引用仙桃,可以在致谢部分 (Acknowledge) 致谢仙桃学术(www.xiantao.love)。

方法学部分可以参考对应说明文本中的内容以及一些文献中的描述。





### 常见问题

#### 1. 如何修改上注释的颜色?

答:

可以在【上注释】参数中修改【注释颜色】:



#### 2. 如何修改绘图数据:

答:

本模块为 数据集检索 - 差异分析 后结果的可视化展示,默认为对应云端记录 <数据集检索-差异分析>中选取"adj.P.Val"前 50 个分子,可以根据需要进行输入 修改。

输入的 ID 来自所选云端数据记录的结果,需要先在**历史记录**中找到对应的记录,下载 差异分析 excel 结果,复制想要展示的 ID 到这个输入框中,一行代表一个。最多支持 1 张图同时绘制 500 个分子。





| A  | Α            | В          | С          | D          | E          | F          | G           | Н        |
|----|--------------|------------|------------|------------|------------|------------|-------------|----------|
| 1  | id           | logFC      | AveExpr    | t          | P.Value    | adj.P.Val  | В           | anno     |
| 2  | 202718_at    | 5.7281172  | 4.80658994 | 6.64835371 | 2.5555E-05 | 0.00905302 | 2.94843022  | IGFBP2   |
| 3  | 205440_s_at  | 5.60802162 | 3.05377225 | 6.42716187 | 3.5165E-05 | 0.01050627 | 2.64915668  | NPY1R    |
| 4  | 206190_at    | 5.34344492 | 3.52105515 | 11.656637  | 7.8072E-08 | 0.00026679 | 7.99647107  | GPR17    |
| 5  | 205858_at    | 5.21931466 | 4.8924156  | 7.08049219 | 1.3953E-05 | 0.00605454 | 3.51138783  | NGFR     |
| 6  | 236218_at    | 5.186296   | 4.95628659 | 8.45121823 | 2.3782E-06 | 0.0020004  | 5.1179919   | PHOSPHO1 |
| 7  | 238258_at    | 5.14528665 | 2.44629715 | 16.1199523 | 2.0986E-09 | 3.6202E-05 | 10.603214   | WBSCR28  |
| 8  | 204818_at    | 4.55371322 | 4.83227605 | 4.77628425 | 0.00047146 | 0.04836215 | 0.17163268  | HSD17B2  |
| 9  | 1554012_at   | 4.4825641  | 3.85713918 | 4.00715746 | 0.00179278 | 0.10242454 | -1.11950474 | RSPO2    |
| 10 | 1556168_s_at | 3.98026514 | 4.58300691 | 4.95452663 | 0.00034976 | 0.04148177 | 0.45950646  | MROH2A   |
| 11 | 222549_at    | 3.8999545  | 6.94312616 | 15.7921463 | 2.6485E-09 | 3.6202E-05 | 10.4515444  | CLDN1    |
| 12 | 205051_s_at  | 3.86970788 | 5.82163002 | 4.72922739 | 0.0005105  | 0.05038147 | 0.09486319  | KIT      |
| 13 | 213880 at    | 3.79042516 | 1.50477889 | 4.21404039 | 0.00124284 | 0.08307113 | -0.76515703 | LGR5     |
| 7  | LILLEL       |            |            | 24222      |            |            |             |          |