MSDS 7333 Quantifying the World

Locally Weighted Regression Smoothers

Curve Fitting

- Two Applications
 - Estimating a PDF
 - Regression
- No previous knowledge of functional form
 - Assume f(x) is continuous
 - Assume observations are an i.i.d. random sample

• Now regression

Simple Linear Regression

- Fit the model $Y = \beta_0 + \beta_1 X + \varepsilon$ to the data
 - β_0 is the intercept
 - β_1 is the slope
 - ε is the residual, and $\varepsilon \sim N(0, \sigma^2)$
- Uses
 - Assess the significance and strength of the relationship between Y and X
 - Predict future values of the mean response Y a given hypothetical value of X

OLR Review

- Musclemass Data
 - Age and Musclemass for 60 women ages 40 85

```
site <- "http://www.users.muohio.edu/hughesmr/sta333/musclemass.txt"</li>
musclemass <-read.table(site,header=TRUE)</li>
attach(musclemass)
plot(mass~age,data=musclemass)
fit <- lm(mass~age, data=musclemass)</li>
summary(fit)
predict(fit, newdata=data.frame(age=65), int="conf")
abline(fit)
```

- Par(mfrow=c(1,2))
- plot(age,residuals(fit))
- qqnorm(residuals(fit))

Assumptions

- Error Assumptions $\varepsilon_i \sim iid N(0, \sigma^2)$
- Normally distributed
- Constant variance
- Independent
- Linearity assumption
- A linear model correctly describes the relationship between x and y
- Unusual, isolated observations have the potential to dramatically alter the fit, or even the choice of model used.
- There is no error associated with X

Nonparametric Curve Smoothing

- We wish to investigate the relationship between variables X and Y
- We have n pairs of data (X_i, Y_i) , i = 1, 2, ..., n
- Assume relationship has the form $Y = \phi(x) + \varepsilon$, where $E(\varepsilon) = 0$
- Various methods to estimate φ(x)
 - Splines: piece together lower-order polynomials
 - LOESS (local regression smoother): weighted linear regression applied to the pairs for a local window of x's
 - Kernel method: analogous to density estimation
- How do we know we have a "good" $\phi(x)$?

Locally Weighted Regression Smoother

- Goal: Estimate $y = \phi(x)$ at $x = x_0$
- $\phi(x)$ can be approximated by a linear function $I(x) = \beta_0 + \beta_1(x x_0)$ when x is near x_0 .
- To fit I(x) locally
 - Determine the k values of the X_i's that are nearest to x₀
 - k/n is a specified fraction (the span) of the total number of points
 - Let $N_k(x_0)$ denote this set of k points
 - Let W(u), $0 \le u \le 1$ be a nonnegative weighting function with mode at u = 0
- Loess approximation finds the I(x) that minimizes

$$\sum_{X_i \in N_k(x_0)} [Y_i - l(X_i)]^2 w \left(\frac{|x_0 - X_i|}{\Delta_{x_0}} \right) \qquad \Delta_{X_0} = \max_{X_i \in N_k(x)} |X_i - x|$$

Loess Example

- Degree of local polynomial
- Smoothing parameter (span): defines the size of the neighborhood of a particular X value
- Weight function
 - Determines how large a role each observation plays in fitting the LOESS curve at a particular point.
 - Gives most weight to points closest to the point of estimation

Pros and Cons

Pros

- Does not require the specification of a function describing the relationship.
- Very flexible, making it ideal for modeling complex processes for which no theoretical models exist.
- Can verify if a simpler model is reasonable

Cons

- Requires fairly large, densely sampled data sets in order to produce good models.
- Does not produce a regression function that is represented by a mathematical formula.
- Somewhat prone to the effects of outliers in the data set, like other methods.

Exercise: Respiratory Rates in Children

- A high respiratory rate is a potential diagnostic indicator of respiratory infection in children. To judge whether a respiratory rate is truly "high," however, a physician must have a clear picture of the distribution of normal respiratory rates.
- To this end, Italian researchers measured the respiratory rates of n = 618 children between the ages of 15 days and 3 years (given in months). The data appear in the R workspace respiratory.RData.

Draw a LOESS curve using different values of the smoothing parameter on the fitted curve.
 Plot each curve on the same plot.

DataScience@SMU