Final Team Report for HC System: Designing and Implementating A GWAPs Disaster Monitoring System

Team: Hotpot

Changkun Ou : <11406972> Yifei Zhan : <Matrikelnummer> Zhe Li : <Matrikelnummer>

June 21, 2017

CONTENTS

1	Intr	roduction	2
2	Rela	ated Work	2
	2.1	Human Computation	2
	2.2	Human-Computer Interaction	2
	2.3	Network Analysis	2
3	The	e Disaster Monitoring System	2
	3.1	Game Design	2
		3.1.1 User Motivation	2
		3.1.2 User Work-flow	3
	3.2	Aggregation Model and System Design	3
		3.2.1 Task Generator	
		3.2.2 Player Rating Model	3
		3.2.3 Disaster Level Evaluation Model	4

	3.2.4 Data Persistence	
	3.2.5 TL; DR	6
4	Prototype	6
	4.1 Requirements Selection	6
	4.2 Front End	6
	4.3 Back End	6
5	Discussion	6
	5.1 Model Evaluation	6
	5.2 Issues on Social Aspects	
	5.3 Issues on Ethical Aspects	7
6	Conclutions	7

ABSTRACT Abstract test

1 Introduction

Introduction cite test [1]

2 RELATED WORK

2.1 Human Computation

2.2 Human-Computer Interaction

2.3 Network Analysis

3 THE DISASTER MONITORING SYSTEM

3.1 GAME DESIGN

3.1.1 USER MOTIVATION

A player can finish infinity Round tasks, a Round task contains N tagging tasks, the player tagging task is to:

- Select a Region Of Interests(ROI) upon the presented satellite image;
- Tag the ROI from a provided tag list or input their own tag, the provided tag list contains: T_1, T_2, T_n , other(input needed)

Note that:

• A ROI is a sub-rectangle-window of a image;

- Multiple selections;
- Anyone can directly participant without registration, but system records an ID

3.1.2 USER WORK-FLOW

3.2 AGGREGATION MODEL AND SYSTEM DESIGN

Figure 3.1: System Design Overview

3.2.1 TASK GENERATOR

A task generator combines images from satellite and Result DB:

- Split a certain monitoring area image to pieces of images;
- Mix images from Result DB and pack as a Tagging Task which to be assigned to player.

3.2.2 Player Rating Model

Players input vector:

(anonymous_id, image, event_time, ROI, tag_list)

Model output:

(anonymous_id, trust_value)

Note that:

- (anonymous_id,image,event_time,ROI) is the primary key of the input vector;
- A player can generate multiple vectors to rating system even for same image;
- The event_time is the capture time of the satellite image.

Figure 3.2: Weight Definition Visualization

For a certain image img at time t, Rating: player $i \rightarrow$ player j:

$$w_{ij} = \sum_{\text{ROI} \in \text{ROIs}} \frac{\text{ROI}(i, j)}{\text{ROI}(i)} \times \frac{Cov(\text{tags}(i), \text{tags}(j))}{\text{var}(\text{tags}(i)) \text{var}(\text{tags}(j))} \ge 0$$

Normalized Adjacency Matrix:

$$A = (\frac{w_{ij}}{\sum_j w_{ij}})$$

Obviously, A is **irreducible**, **real**, **non-negative**, **column-stochastic**, **and diagonal element being positive**, then eigenvalue of A is the player trust value.

When a new player tagging task need to be rated,

- which means we need introduce a new node to the graph
- need calculate the trust value of new graph
- let *t* is the trust value of new player
- if $t \ge mean(old_eigenvalues)$, then it is a reliable player, otherwise drop it.

3.2.3 DISASTER LEVEL EVALUATION MODEL

Query input:

(time) *or* (area_id) / (area_id, time)

Model output:

(area_id, time, disaster_level)

Note that:

- All results are evaluated from reliable tasks
- Evaluation Model generated by all reliable history

Now we have trusted results, each area has its tagging history. For an area at time t, define disaster level as follows:

$$v_{area} = \frac{\sum_{\text{tag} \in \text{tags}} w_{tag} \times \#(\text{tag})}{\sum_{area \in areas} \sum_{\text{tag} \in \text{tags}} w_{tag} \times \#(\text{tag})}$$

where w_{tag} is pre-defined weight by system, #(tag) is the occur number of a tag. Return value:

- disaster region: $\cup_{ROI \in ROIs} ROI$
- disaster level: v_{area}

3.2.4 DATA PERSISTENCE

Trusted DB Fields:

```
Г
                 "anonymous_id": number,
3
                 "tasks": [
                      {
                           "image": image_path,
                           "at_time": time,
                           "ROI": [
                               {
9
                                    "latitude": number,
                                    "longitude": number,
11
                                    "tags": [tag1, tag2, ...]
12
                               }
13
                          ]
14
15
16
                 "trust_value": number
17
            }
18
       ]
19
20
```

Listing 1: Trusted Database Field

Result DB Fields:

```
{
                          at_time: time,
6
                          "image": image_path,
                           "ROI": [
                               {
                                    "latitude": number,
10
                                    longitude": number,
11
                                    "tags": [tag1, tag2, ...]
12
                               }
13
                          ],
14
                           "disaster_level": number
15
                      }
                 ]
17
            }
18
       ]
19
```

Listing 2: Results Database Field

3.2.5 TL; DR

- Task Generator combines trusted results assign to players;
- Always treat player as new player, but integrated as old player if exists;
- Use ROI matching rate as graph edge weight, eigenvalue as trust value of player;
- Disaster Evaluation use pre-defined weight, then defined the disaster level

4 PROTOTYPE

4.1 REQUIREMENTS SELECTION

For a prototype, we decided to use the following framework to implement everthing:

- Polymer
- Node.js
- MongoDB

- 4.2 FRONT END
- 4.3 BACK END
- 5 DISCUSSION
- 5.1 MODEL EVALUATION

5.2 ISSUES ON SOCIAL ASPECTS

5.3 ISSUES ON ETHICAL ASPECTS

6 CONCLUTIONS

In this report, we present a disaster monitoring system, which aggregate human tagging input based on Network Analysis.

REFERENCES

[1] François Bry. Human Computation-Enabled Network Analysis for a Systemic Credit Risk Rating. *Handbook of Human Computation*, pages 1–31, 2013.