# Alignements Multiples

Anne Lopes

Analyse de Séquences Génomiques



#### Quelle est la similarité entre ces deux séquences?

#### Needleman & Wunsch (global) Smith & Waterman (local



Quelles sont les séquences les plus similaires à la mienne?

FASTA, BLAST



Quelles sont les points communs entre toutes les séquences?



Quelle est la similarité entre ces deux séquences?

Needleman & Wunsch (global) Smith & Waterman (local



Quelles sont les séquences les plus similaires à la mienne?

FASTA, BLAST



Quelles sont les points communs entre toutes les séquences?

#### Ce qu' on sait faire

#### Ce qu' on veut faire



alignement de paires



alignement simultané

#### intérêt?

- identification des régions conservées et spécifiques :
  - rôle structural et/ou fonctionnel : (site actif, signature, sites covariants, certains aa ont été conservés

pendant des millions d'années, pourquoi ?)

- prédiction de structure (protéine, ARN) :
  - zones conservées correspondent souvent aux structures secondaires
  - covariation => structure des ARN

- phylogénie :
  - retrouver l'histoire évolutive du jeu de séquences considérées

- alignement 2 à 2 => chemin dans une matrice de dimension 2



alignement de paire

- alignement 2 à 2 => chemin dans une matrice de dimension 2





alignement de paire

alignement de 3 séquences

- alignement multiple inutilisable en pratique, combinatoire trop grande de n séquences => chemin dans une matrice de dimension n



La programmation dynamique peut s'étendre à l'alignement de k séquences de longueur n mais mais reste inefficace à cause du temps de calcul qui augmente de façon exponentielle (7nk)



#### Utilisation d'algorithmes heuristiques :

Algorithmes approximatifs n' explorant pas tout l' espace des solutions mais permettant de donner des solutions approchant la solution optimale

On aligne donc les séquences de façon progressive

#### Nombreux programmes développés :

- clustal
- Muscle
- Mafft
- DiAlign
- Tcoffee

Autant de solutions différentes!

Définition d'un score pour rendre compte de la qualité d'un alignement :

- indépendant du nombre de séquences
- indépendant de l'ordre des séquences
- reflétant la similarité

#### Score d'entropie:

$$\Sigma_{\text{sur toutes les colonnes}} \Sigma_{X=A,T,G,C} p_X \log p_X$$

#### entropie d'alignement d'une colonne:

$$-(p_A \log p_A + p_C \log p_C + p_G \log p_G + p_T \log p_T)$$

•Colonne 2 = -[
$$(\frac{1}{4})*\log(\frac{1}{4}) + (\frac{3}{4})*\log(\frac{3}{4}) + 0*\log0 + 0*\log0$$
]  
= -[ $(\frac{1}{4})*(-2) + (\frac{3}{4})*(-.415)$ ] = +0.811

•Colonne 3 = 
$$-[(1/_4)*log(1/_4)+(1/_4)*log(1/_4)+(1/_4)*log(1/_4)+(1/_4)*log(1/_4)+(1/_4)*log(1/_4)]$$
  
=  $4*-[(1/_4)*(-2)] = +2.0$ 

•Entropie d'alignement = 0 + 0.811 + 2.0 = +2.811

#### Somme des paires

- les colonnes sont considérées comme indépendantes
- le score correspond à la somme des scores de tous les couples non ordonnés appartenant à une même colonne

Identité : +1 Substitution: -1 Indel : -2

#### Approches heuristiques

- alignements progressifs : exemple CLUSTAL
  - calcul d'une matrice de similarité (programmation dynamique)
  - construction de l'arbre guide (Neighbor-Joining)
  - alignement progressif des nœuds de l'arbre par ordre décroissant de similarité

#### Exemple:

```
s1 cgatgagtcattgtgactg
```

s2 cgagccattgtagctactg

s3 cgaccattgtagctacctg

s4 cgatgagtcactgtgactg

indel : -2, substitution : -1, identitée : 1

- alignements progressifs : exemple CLUSTAL
  - calcul d'une matrice de similarité (programmation dynamique)
  - construction de l'arbre guide (Neighbor-Joining)
  - alignement progressif des nœuds de l'arbre par ordre décroissant de similarité

```
s1 cgatgagtcattgt-g--actg
                             s2 cgagccattgtagcta-ctg
   111 | 111111 | 1111
                                111 111111111111
s2 cga-g--ccattgtagctactg
                             s3 cga-ccattgtagctacctg
s1 cgatgagtcattg-tgactg
                             s2 cga-g--ccattgtagctactg
   s3 cgacca-ttgtagctacctg
                             s4 cgatgagtcactgt-g--actg
s1 cgatgagtcattgtgactg
                             s3 cgaccattgtagctacctg
   1111111111 11111111
s4 cgatgagtcactgtgactg
                             s4 cgatgagtcactgtgactg
```

- alignements progressifs : exemple CLUSTAL
  - calcul d'une matrice de similarité (programmation dynamique)
  - construction de l'arbre guide (Neighbor-Joining)
  - alignement progressif des nœuds de l'arbre par ordre décroissant de similarité



- alignements progressifs : exemple CLUSTAL
  - calcul d'une matrice de similarité (programmation dynamique)
  - construction de l'arbre guide (Neighbor-Joining)
  - alignement progressif des nœuds de l'arbre par ordre décroissant de similarité



- alignements progressifs : exemple CLUSTAL
  - calcul d'une matrice de similarité (programmation dynamique)
  - construction de l'arbre guide (Neighbor-Joining)
  - alignement progressif des nœuds de l'arbre par ordre décroissant de similarité

nouvelle matrice avec les nouveaux groupes :  $[(S_1,S_4),S2,S3]$ 

|       | $s_1$ | <i>s</i> <sub>2</sub> | <i>s</i> 3 | <i>s</i> 4 |             |                   | S <sub>14</sub> | $S_2$ |   |
|-------|-------|-----------------------|------------|------------|-------------|-------------------|-----------------|-------|---|
| $s_1$ |       | 2                     | 0          | 17         |             | S <sub>14</sub>   |                 | 1     | - |
| $s_2$ | 2     |                       | 14         | 0          | <del></del> | C .               | 1               |       |   |
| $s_3$ | 0     | 14                    |            | -1         |             | $\frac{S_2}{S_2}$ | 0.5             | 1/1   | - |
| 84    | 17    | 0                     | -1         |            |             | <b>3</b> 3        | -0,5            | 14    |   |
|       |       |                       |            |            |             |                   |                 |       |   |

Nouveaux groupes :  $[(S_1,S_4),(S2,S3)]$ 

- alignements progressifs : exemple CLUSTAL
  - calcul d'une matrice de similarité (programmation dynamique)
  - construction de l'arbre guide (Neighbor-Joining)
  - alignement progressif des nœuds de l'arbre par ordre décroissant de similarité



l'arbre « reflète » les relations évolutives entre les séquences

- alignements progressifs : exemple CLUSTAL
  - calcul d'une matrice de similarité (programmation dynamique)
  - construction de l'arbre guide (Neighbor-Joining)
  - alignement progressif des nœuds de l'arbre par ordre décroissant de similarité



alignement de paires de séquences, séquence-profils, profils-profils en suivant l'arbre « guide »

- alignements progressifs : exemple CLUSTAL
  - calcul d'une matrice de similarité (programmation dynamique)
  - construction de l'arbre guide (Neighbor-Joining)
  - alignement progressif des nœuds de l'arbre par ordre décroissant de similarité

#### alignement de paires de séquences, séquence-profils, profils-profils

- à chaque étape : programmation dynamique
- matrice de substitution choisie en fonction de la divergence des groupes à aligner
- pénalité d'ouverture de « gap » dépend des séquences et positions à aligner (pénalité/3 dans les régions hydrophiles, gly moins pénalisées que trp, taille de la séquence...)

alignements progressifs: exemple CLUSTAL

dernière étape : construction de l'alignement final



# Pondération des branches (ClustalW)



### Pondération des branches (ClustalW)

#### Pondération des branches de l'arbre

- principe : attribuer un poids à chaque branche pour empêcher les groupes de séquences sur-représentées de dominer dans l'alignement
- dépend de la taille de la branche et du nombre de feuilles au bout de la branche (redondance de l'information)
- le poids d'une séquence correspond à la somme des longueurs de branches pondérées allant de la racine à la séquence

# Pondération des branches (ClustalW)

#### Pondération des branches de l'arbre



### Score de l'alignement profil-profil

Score avec pondération des branches de l'arbre

#### ClustalW (W = weight)



### Approches heuristiques - Conclusion

#### alignements progressifs: exemple CLUSTAL // PARAMETRES & LIMITES

cas de clustalW (adapté aux protéines) :

- séquences pondérées en fonction de leur sur/sous représentation
- adaptation des matrices de similarité au fur et à mesure en fonction de la divergence des séquences à aligner (BLOSUM50, BLOSUM62, BLOSUM80)
- pénalité des gaps en fonction du type de résidu (gly plus sujette à être entourée de gaps que trp p. ex.)
- pénalité des gaps réduite dans les régions hydrophyles

#### paramètres principaux :

matrices (BLOSUM/PAM/Gonnet), pénalité ouverture/extension de gaps, qualité des alignements par pairs, qualité des alignements de paire

limites : algorithme qui ne revient pas en arrière et ajoute indel à chaque ajout de nouveau groupe (applicable aux familles proches mais limité pour les autres)

améliorations : méthodes améliorant la définition de l'arbre (A/R entre alignement multiple et l'arbre généré pour optimiser l'ensemble de façon itérative) (DiAlign, Muscle...)

# Et après ? Autres solutions ?

• alignements itératifs : exemple MUSCLE



### Et après ? Autres solutions ?

alignements itératifs : exemple MUSCLE
 même stratégie que CLUSTAL au départ





**Table 3.** Performance of aligners on the PREFAB protein reference alignment benchmark

| Aligner      | Overall (1927) | Time          |
|--------------|----------------|---------------|
| DIALIGN      | 57.2           | 12 h, 25 min  |
| CLUSTALW     | 58.9           | 2 h, 57 min   |
| T-Coffee     | 63.6           | 144 h, 51 min |
| MUSCLE       | 64.8           | 3 h, 11 min   |
| MAFFT        | 64.8           | 2 h, 36 min   |
| ProbCons     | 66.9           | 19 h, 41 min  |
| ProbCons-ext | 68.0           | 37 h, 46 min  |

| Programme       | Avantages                                                                                                                   | Précautions                                                                                                    |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| ClustalW        | Utilise moins de mémoire que les autres                                                                                     | Moins précis que tous les<br>logiciels modernes, difficulté<br>pour les grands jeux de<br>séquences            |
| DIALIGN         | Tente de différencier régions alignables et non alignables                                                                  | Moins précis que Clustal pour les alignements globaux                                                          |
| MAFFT<br>MUSCLE | <ul> <li>Plus rapide et plus précis<br/>que ClustalW</li> <li>Équilibre entre précision et<br/>vitesse de calcul</li> </ul> | Pour les grands jeux de<br>données (>1000 séquences),<br>utiliser les options<br>d'optimisation                |
| T-Coffee        | Bonne précision et capable<br>de mélanger des données<br>hétérogènes                                                        | Forte complexité en temps de calcul et utilisation de l'espace mémoire Inutilisable avec plus de 100 séquences |

Quand les séquences sont peu divergentes (%id > 35), toute les méthodes sont relativement fiables (alignement correct à 90%, SSR essentiellement)

Twilight zone (15-25%): toutes les méthodes sont en difficulté!

Pas de méthode universelle! En essayer plusieurs!

Dépend des attentes de l'utilisateur

Alternative : les HMM et profils HMM => voir Hhalign, HMMER

ajustement manuel : jalview, seaview, swissprot PDB viewer