MAR 0 6 2007

Application No.: 10/660,089 BEJI AVAILABLE COPY

Docket No.: JCLA11934

AMEDMENTS

In The Claims:

Please amend the claims as follows:

Claim 1 (currently amended) An image interpolating method, wherein low resolution pixels $Y_{i,j}$ of an image are zoomed to high resolution pixels $Y_{2i,2j}$, comprising:

receiving the low resolution pixels Yij;

determining a homogenous area and an edge area of the image based on pixel differences of the pixels $Y_{2i, 2j}$ in comparing with a threshold, wherein three variables of

$$\Delta Y_1 = |Y_{2i,2j} - Y_{2i+2p,2j+2q}|, p,q \in \{(0,1),(1,0)\}.$$

$$\Delta Y_2 = |Y_{2i+2,2j} - Y_{2i,2j+2}|$$
, and

$$\Delta Y_3 = |Y_{2i,2j} - Y_{2i+2,2j+2}|$$

if ΔY_1 < the threshold then

are used to determine whether the homogenous area or the edge area by a condition set of:

the pixel $Y_{2i+p,2j+q}$ is in the homogenous area else

the pixel Y_{2i+p,2j+q} is in the edge area as one of edge pixels;

if ΔY_2 < the threshold and ΔY_3 < the threshold then

the pixel Y_{2i+1,2j+1} is in the homogenous area

else if ΔY_2 < the threshold then

the pixel Y_{2i+1,2i+1} is in the homogenous area

Page 2 of 9

Application No.: 10/660,089

Docket No.: JCLA11934

else if $\triangle Y_3$ < the threshold then

the pixel Y_{2i+1,2i+1} is in the homogenous area

<u>else</u>

the pixel Y_{2i+1,2i+1} is in the edge area as one of edge pixels;

interpolating the low resolution pixels belonging to the homogenous area into the high resolution pixels by a first interpolating algorithm; and

interpolating the low resolution pixels belonging to the edge area into the high resolution pixels by a second interpolating algorithm.

Claim 2 (canceled)

Claim 3. (currently amended) The image interpolating method of claim 12, wherein the first interpolating algorithm includes obtaining the pixel $Y_{2i+p,2j+q}$ by calculating $(Y_{2i,2j} + Y_{2i+2p,2j+2q})/2$.

Claim 4 (currently amended) The image interpolating method of claim 12, wherein the first interpolating algorithm includes:

when ΔY_2 < the threshold and ΔY_3 < the threshold,

the pixel $Y_{2i+1,2j+1}$ is obtained by calculating $Y_{2i+1,2j+1} = (Y_{2i+2,2j} + Y_{2i,2j+2}) / 2$ if the ΔY_2 less than ΔY_3 ; and

Application No.: 10/660,089

Docket No.: JCLA11934

the pixel $Y_{2i+1,2j+1}$ is obtained by calculating $Y_{2i+1,2j+1} = (Y_{2i,2j} + Y_{2i+2,2j+2})/2$ if the ΔY_3 is less than ΔY_2 .

Claim 5 (currently amended) The image interpolating method of claim 12, wherein the first interpolating algorithm includes:

when only ΔY_2 < the threshold for the ΔY_2 and the ΔY_3 , the pixel $Y_{2i+1,2j+1}$ is obtained by calculating $(Y_{2i+2,2j} + Y_{2i,2j+2})/2$.

Claim 6 (currently amended) The image interpolating method of claim 12, wherein the first interpolating algorithm includes:

when only $\triangle Y_3$ < the threshold for the $\triangle Y_2$ and the $\triangle Y_3$, the pixel $Y_{2i+1,2j+1}$ is obtained by calculating $(Y_{2i,2j} + Y_{2i+2,2j+2})/2$.

Claim 7 (currently amended) The image interpolating method of claim 1, An image interpolating method, wherein low resolution pixels $Y_{i,j}$ of an image are zoomed to high resolution pixels $Y_{2i,2j}$, the method comprising:

receiving the low resolution pixels Yij;

determining a homogenous area and an edge area of the image based on pixel differences of the pixels Y_{2i, 2i} in comparing with a threshold;

Application No.: 10/660,089 Docket No.: JCLA11934

interpolating the low resolution pixels belonging to the homogenous area into the high resolution pixels by a first interpolating algorithm; and

interpolating the low resolution pixels belonging to the edge area into the high resolution pixels by a second interpolating algorithm, wherein the first interpolating algorithm includes:

when the pixels $Y_{2i, 2j}$ in the homogenous area, the pixels $Y_{2i, 2j}$ are interpolated by a linear interpolation algorithm.

Claim 8 (currently amended) The image interpolating method of claim 12, wherein the second interpolating algorithm includes interpolating the pixels $Y_{2i,2j}$ along a direction having a minimum difference in the neighboring pixels.

Claim 9 (original) The image interpolating method of claim 8, wherein the neighboring pixels of one of the pixels $Y_{2i,2j}$ does not include a determined edge pixel.

Claim 10 (original) The image interpolating method of claim 8, wherein when the minimum difference diff_{min} is determined by taking a minimum of four differences of

$$diff_1 = |Y_{2i-1,2j} - Y_{2i+1,2j}|,$$

$$diff_2 = |Y_{2i-1,2j-1} - Y_{2i+1,2j+1}|,$$

$$diff_3 = |Y_{2i,2j-1} - Y_{2i,2j+1}|$$
, and

$$diff_4 = |Y_{2i+1,2j-1} - Y_{2i-1,2j+1}|,$$

Docket No.: JCLA11934

Application No.: 10/660,089

wherein the differences including one of the edge pixels is skipped.

Claim 11 (original) The image interpolating method of claim 8, wherein the pixel $Y_{i,j}$ is obtained by calculating $(Y_{2i-1,2j} + Y_{2i+1,2j})/2$ at a direction with the minimum pixel difference.

Claim 12 (original) An image interpolating algorithm for an image, wherein low resolution pixels $Y_{i, j}$ of the image are zoomed to high resolution pixels $Y_{2i, 2j}$, wherein three variables of $\Delta Y_1 = |Y_{2i,2j} - Y_{2i+2p,2j+2q}|$, $\Delta Y_2 = |Y_{2i+2,2j} - Y_{2i,2j+2}|$, and $\Delta Y_3 = |Y_{2i,2j} - Y_{2i+2,2j+2}|$, $P_{2i+2,2j+2}$, $P_{2i+2,2j+2}$, are used, the image interpolating algorithm comprising:

determining at least one of edge pixel and interpolating the pixels Y2i, 2j if the pixel to be interpolated is not the edge pixel by a first algorithm as follows:

if $\Delta Y1 < a$ threshold then

$$Y_{2i+p,2j+q} = (Y_{2i,2j} + Y_{2i+2p,2j+2q})/2$$

else

Y_{2i+p,2j+q} are the edge pixel

if ΔY_2 < the threshold and ΔY_3 < the threshold then

$$\Delta Y_{\min} = \min \{ \Delta Y_2, \Delta Y_3 \}$$

if
$$\triangle Y_{min} = \triangle Y_2$$

$$Y_{2i+1,2j+1} = (Y_{2i+2,2j} + Y_{2i,2j+2}) / 2$$

else

Application No.: 10/660,089

Docket No.: JCLA11934

$$Y_{2i+1,2j+1} = (Y_{2i,2j} + Y_{2i+2,2j+2}) / 2$$

else if ΔY_2 < the threshold then

$$Y_{2i+1,2j+1} = (Y_{2i+2,2j} + Y_{2i,2j+2}) / 2$$

else if ΔY_3 < the threshold then

$$Y_{2i+1,2j+1} = (Y_{2i,2j} + Y_{2i+2,2j+2}) / 2$$

else

 $Y_{2i+1,2j+1}$ is one of the edge pixel.

Claim 13 (original) The image interpolating algorithm of claim 1, further comprising interpolating the edge pixels according to a second algorithm as follows:

calculating a plurality of pixel differences of

$$diff_1 = |Y_{2i-1,2j} - Y_{2i+1,2j}|,$$

$$diff_2 = |Y_{2i-1,2j-1} - Y_{2i+1,2j+1}|,$$

$$diff_3 = |Y_{2i,2j-1} - Y_{2i,2j+1}|$$
, and

$$diff_4 = |Y_{2i+1,2j-1} - Y_{2i-1,2j+1}|,$$

wherein the differences including one of the edge pixels is skipped;

finding a minimum of the pixel differences; and

interpolating the pixel $Y_{2i, 2j} = (Y_{2i-1, 2j} + Y_{2i+1, 2j}) / 2$ at a direction with the minimum pixel difference.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.