Université de Mons-Hainaut Faculté des Sciences Institut d'Informatique

Année Préparatoire au Master en Sciences Informatiques à horaire décalé à Charleroi

Principes Fondamentaux des systèmes d'exploitation

Enseignants: Mr O. DELGRANGE

Travail réalisé par : Bastien BOUKO

Année académique 2014-2015

Table des matières

1	Intr	oduction
	1.1	Rappel
	1.2	Principales fonctions d'un SE
		1.2.1 Partager les ressources
		1.2.2 Présenter une machine virtuelle à l'utilisateur
	1.3	Différents types de SE
		1.3.1 Système mobo-utilisateur
		1.3.2 Process control
		1.3.3 Systemes d'interrogation de fichiers
		1.3.4 Systèmes transactionnels
		1.3.5 Systèmes généralistes
		1.3.6 Systèmes Distribués
		1.3.7 Systèmes embarqués
	2.1	historique
	2.1	historique
	2.2	Elimination des dépendances d'E/S
	2.3	Multiprogrammation
	2.4	Fonction du SE
	2.5	Caractéristiques d'un SE
		2.5.1 La simultanéité
		2.5.2 Le partage
		2.5.3 les mémoires de masse
		2.5.4 LE non-déterminisme des évènements
	2.6	Qualité d'un SE
		2.6.1 Efficacité
		2.6.2 Sécurité
		2.6.3 Facilité de maintenance
		264 faible encombrement

1 Introduction

1.1 Rappel

L'unité centrale de traitement (UCT) contient :

Unité de commande : Détermine les opérations à réaliser par l'UCT
 Exécute indéfiniment le cycle "Fetch, Decode, Execute" (Von Neuman) :

Algorithm 1 Cycle de Von Neuman

- 1: procedure Von-Neuman
- 2: $\mathbf{while} \text{ true } \mathbf{do}$
- 3: Chercher instruction désignée par le compteur d'instruction
- 4: Incrémenter le compteur d'insctruction
- 5: Décoder l'insctruction
- 6: Executer l'insctruction
- 7: end while
- 8: end procedure
 - **de registres** : mémoires rapides
 - Unité artihmétique et logique : réalise des opérations logiques et arithmétiques
 - un compteur d'instruction : contient prochaine instruction à réaliser
 - un registre d'état : info sur l'état actuel du programme en cours d'execution
 - voies de transfert : transfert d'infos entre mémoire centrale / périphériques

1.2 Principales fonctions d'un SE

1.2.1 Partager les ressources

le SE doit optimiser le partage des ressources (proco, mémoires, E/S) entre plusieurs users simultanés

1.2.2 Présenter une machine virtuelle à l'utilisateur

Le SE doit présenter une VM plus facilement utilisable que la machine de base. Qui réduit la compléxité d'utilisation des E/S, la gestion de la mémoire, des fichiers gestion des erreurs, l'intéraction des programmes, et le contrôle des programme.

La nature de la VM dépend de la nature des applications

1.3 Différents types de SE

1.3.1 Système mobo-utilisateur

une VM / un user, Ordinateur dédié à une fonction (PC,Mac,PDA,...) gestion fichier et E/S simple. multi-tâche , protection entre users non nécéssaire.

1.3.2 Process control

contrôle process industriels, Prend rapidement des décisions, sécurité optimale / moins d'interventions possibles. rester opérationelle en cas de prob hardware

1.3.3 Systemes d'interrogation de fichiers

E/S perfomramt, reponses rapides grandes BDD, modif possible de la BDD

1.3.4 Systèmes transactionnels

Modifications très fréquentes BDD(systeme bancaire). Contrainte : transactions simultanées sur la même donnée

1.3.5 Systèmes généralistes

Grand nombre d'users, grande variété de tâches, flot continu de jobs, grande variété de périphériques. équipe la plupart des ordinateurs actuels. Deux catégories :

- batch : impossibel d'agir sur le job une fois dans le système (tâches routinières non interactives)
 Multiaccès (interactifs) : L'utilisateur dirige l'exec du job

1.3.6 Systèmes Distribués

SE sur plusieurs ordinateurs interconnectés (chareg entre les machines)

1.3.7 Systèmes embarqués

traivail autonome dans un environnement minimaliste

2 Fonctions et caractéristiques d'un SE

2.1 historique

Historiquement le machine était nue, un opérateur devait assuer plusieurs opération pour permetter le travail de la machine (introduire,compiler executer le programme) => la rapidité du système est liée à celle de l'opérateur. Amélioration :

— réduction du rôle de l'opérateur : programme enchaines différents Jobs ==> début SE

2.2 Elimination des dépendances d'E/S

On utilise des techniques de simultanéités entre E/S grâce à deux dispositifs matériels :

- Canal : Dispoditif matériel qui contrôle un ou pleusieurs périphériques et transferts les infos entre le périphérique et la mémoire centrale
- **Interruption :** signal qui tranfère le contrôle de ccentrale à une adresse précise, émis par le canal une fois le transfert de données achevé

A ce stade le système est à flot unique, juste les E/S sont simultanés

2.3 Multiprogrammation

Contient plusieurs programmes en mémoire et réparti le temps d'exécution entre les différents programmes en fonction de leurs besoins ==> optimisation des ressources

Le système actuel est un moniteur batch à flots multiples (pas d'interactions entre homme / jobs) ==> Evolution (Entrées à partir de terminaux eloignées, communication TCP/IP)

2.4 Fonction du SE

l'ES doit être capable d'assurer :

- Jobs
- interprétation d'n language
- gestion des erreurs
- gestions des E/S
- gestion des Interruptions
- Ordonnancement des tâches
- Partage des ressources
- protection mémoires (entre différents taches ou users)
- accès multiples aux mêmes ressources
- bon interface avec l'utilsiateur

2.5 Caractéristiques d'un SE

2.5.1 La simultanéité

plusieurs activités en parallèle, problématique : switch, protection, synchroniquer les activités ???

2.5.2 Le partage

Des ressources et des infos. problématique : accès simultané?

2.5.3 les mémoires de masse

stockage des infos de manière interne. problématique : facilité d'accès, défaillances systèmes,...

2.5.4 LE non-déterminisme des évènements

Mais l'SE soit rester déterministe

2.6 Qualité d'un SE

2.6.1 Efficacité

utilisation des ressources / temps minimal UC, temp réponde,...

2.6.2 Sécurité

Un SE ne devrait pas comporter d'erreurs, + erreur dans un module ne devrait pas en avoir des effets sur les autres.

2.6.3 Facilité de maintenance

COnstructin modulaire et documentée

2.6.4 faible encombrement

Place limitée en mémoire (mémoire perdue)