Chess Al improvement through an evolutionary approach

Cédric Guillot

CPSC 565

April 9, 2013

<u>CHESS</u>

To win: don't play

Plan

- Introduction
- Implementation / Strategy
 - Tools
 - Architecture
 - Board evaluation / parameters evaluation
- Results
 - Set-up
 - Evolved AI
- Future work

Chess AI history

- 1951 Alan Turing develops on paper the first program capable of playing a full game of chess
- 1956 John McCarthy invents the alpha-beta search algorithm
- 1957 First practical chess program, Alex Bernstein and a team of Russian programmers
- 1981 Cray Blitz becomes the first computer to gain a master rating (2200 ELO)
- 1997 Deep Blue wins a six-game match against Garry Kasparov
- Today Computers have reached 3250 ELO ratings

- Introduction
- Implementation / Strategy
 - Tools
 - Architecture
 - Board evaluation / parameters evaluation
- Results
 - Set-up
 - Evolved AI
- 4 Future work

Tom Kerrigan's Simple Chess Program (TSCP)

- Chess engine used for playing all the games
- Written in 1997
- Negamax algorithm for the Al

GUI: GNU Xboard

Architecture

Figure: TSCP and evolution algorithm plugin architecture

Board evaluation / parameters evaluation

- Board evaluated at each move during the game, using the pieces values
- Individuals of the same generation compete against each other
 - $\frac{n(n-1)}{2}$ games per generation
 - one game as white, one as black
- Point system: 0 for loss, 3 for win, 1 for stalemate or draw

- Introduction
- 2 Implementation / Strategy
 - Tools
 - Architecture
 - Board evaluation / parameters evaluation
- Results
 - Set-up
 - Evolved AI
- 4 Future work

Set-up

- Search depth: n = 1
- One day and a half running on a standard laptop
- Optimized parameters: pawn(100), knight(300), bishop(300), rook(500) and queen(900) values
- Evolution strategy parameters: $\mu = \frac{1}{2}\lambda = 4$
- Static strategy parameters: RAND(-15, 15)

Evolved AI

- Initial AI human
- Evolved AI VS human
- Evolved AI VS initial AI

- Introduction
- 2 Implementation / Strategy
 - Tools
 - Architecture
 - Board evaluation / parameters evaluation
- Results
 - Set-up
 - Evolved AI
- Future work

Future work

- Stabilize the algorithm
 - Boundaries for values
- Evolving strategy parameters

References

- Hallam Nasreddine, Hendra Suhanto Poh and Graham Kendall:
 Using an Evolutionary Algorithm for the Tuning of a Chess Evaluation
 Function Based on a Dynamic Boundary Strategy
 http://red.cs.nott.ac.uk/ gxk/papers/ieeecis2006.pdf
- DAVID B. FOGEL, FELLOW, IEEE, TIMOTHY J. HAYS, SARAH L. HAHN, AND JAMES QUON: A Self-Learning Evolutionary Chess Program http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1360168
- Graham Kendall, Glenn Whitwell: An Evolutionary Approach for the Tuning of a Chess Evaluation Function using Population Dynamics http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=934299

Questions

Any questions or suggestions?

