Introductory Mathematics: Algebra and Analysis Solutions

Michael Rocke

August 17, 2019

0.1 Chapter 1

0.1.1 Exercises

Notes

 $\mathbb{N} = \text{Set of Natural numbers}, \{1, 2, 3, ..\}$

 $\mathbb{Z} = \text{Set of Integers}, \{..., -2, -1, 0, 1, 2, ..\}$

 $\mathbb{Q}=$ Set of Rational Numbers, $Q=\{\frac{a}{b}|a,b\in\mathbb{Z},b\neq0\}$

 $\mathbb{R} = \mathrm{Set} \ \mathrm{of} \ \mathrm{Real} \ \mathrm{numbers}$

1.1

 $A = \{1,2,3\}, B = \{1,2\}, C = \{1,3\}, D = \{2,3\}, E = \{1\}, F = \{2\}, G = \{3\}, H = \emptyset$

- a) $A \cap B = B$
- b) $A \cup C = A$
- c) $A \cap (B \cap C) = E$
- d) $(C \cup A) \cap B = B$
- e) $A \setminus B = G$
- f) $C \setminus A = H$
- g) $(D \setminus F) \cup (F \setminus D) = G$
- h) $G \setminus A = H$
- $j) A \cup ((B \setminus C) \setminus F) = A$
- k) $H \cup H = H$
- $1) A \cap A = A$
- $m) ((B \cup C) \cap C) \cup H = C$

1.2

- a) i and ii are the same, iii is different
- b) i and ii are the same, iii is different
- c) $i = \{1, 2, 3, 4, 5, 6, 7\}, ii = \{1, 2, 3, 4, 5, 6, 7, -1, -2, -3, -4, -5, -6, -7\}, iii = \{1, 2, 3, 4, 5, 6, 7\},$ so i and iii are the same, ii is different
- d) $i = \{0, 1, 2, 3, ...\}, ii = \{1, 2, 3, ...\}, iii = \{1, 2, 3, ...\}$, ii and iii are the same, i is different
- e) i and iii are the same, ii is different
- f) ii and iii are same, i is different
- g) ii and iii are same, i is different
- h) i and iii are same, ii is different
- j) $i=\emptyset, ii=\emptyset, iii=\{\emptyset\}$ i and ii are same, iii are different
- k) ii and iii are the same, i is different
- 1) ii and iii are the same, i is different
- m) $i=\{\emptyset,\{\emptyset\},0\}, ii=\{\emptyset,\{\emptyset\},0\}, iii=\{\emptyset,0\}$ i and ii are same, iii different

1.3

- a)
- b)

Figure 1: $A \cap B \cap C$

Figure 2: $A \cap B \cap C'$

Figure 3: $A \cap B' \cap C$

Figure 4: $A' \cap B \cap C$

Figure 5: $A \cap B' \cap C'$

Figure 6: $A' \cap B \cap C'$

Figure 7: $A' \cap B' \cap C$

Figure 8: $A' \cap B' \cap C'$

Figure 9: $(A \cup (B' \cup C'))'$

Figure 10: $(A' \cup B \cup C)'$

Figure 11: $(A \cup B' \cup C)'$

Figure 12: $(A \cup B \cup C')'$

Figure 13: $(A \cup B \cup C)'$