Outpatient Tracking to Reduce Cross Infection Progress Report

Karthik Jayaraman

University of New South Wales

29th October, 2015

Outline

Introduction

Literature Review

Method

Results

Conclusion

▶ 200,000 hospital acquired infections (HAIs) occur annually in Australia.

- ➤ 200,000 hospital acquired infections (HAIs) occur annually in Australia.
- ► In-patient care vs out-patient care

- ➤ 200,000 hospital acquired infections (HAIs) occur annually in Australia.
- ▶ In-patient care vs out-patient care
- ► Cystic Fibrosis (CF) is a genetic condition that primarily affects the lungs.

- ➤ 200,000 hospital acquired infections (HAIs) occur annually in Australia.
- ▶ In-patient care vs out-patient care
- ▶ Cystic Fibrosis (CF) is a genetic condition that primarily affects the lungs.
- ► CF health care delivery has moved to out-patient environments.

Research Outline

Research Outline

Hypothesis

Our hypothesis is that patient encounters can be tracked using lightweight indoor localisation technologies allowing for interventions to improve patient flow, reduce patient contact, and reduce HAIs.

Research Outline

Hypothesis

Our hypothesis is that patient encounters can be tracked using lightweight indoor localisation technologies allowing for interventions to improve patient flow, reduce patient contact, and reduce HAIs.

Aim

Identify areas of potential cross infection in the hospital out-patient environment.

► Android smart-phone

- ► Android smart-phone
 - \blacktriangleright presence of low cost embedded sensors in smart-phones

- ► Android smart-phone
 - \blacktriangleright presence of low cost embedded sensors in smart-phones
 - \blacktriangleright ubiquity and support available for and roid development

- ► Android smart-phone
 - $\,\blacktriangleright\,$ presence of low cost embedded sensors in smart-phones
 - ▶ ubiquity and support available for android development
 - ▶ ease and simplicity involved in implementation

- ► Android smart-phone
 - ▶ presence of low cost embedded sensors in smart-phones
 - ▶ ubiquity and support available for android development
 - ease and simplicity involved in implementation
- ► Air-borne infection transmission among CF patients

- ► Android smart-phone
 - ▶ presence of low cost embedded sensors in smart-phones
 - ubiquity and support available for android development
 - ease and simplicity involved in implementation
- ▶ Air-borne infection transmission among CF patients
- ► SNA focused on disease transmission and control

► Investigation into an accurate and scalable indoor RTLS approach for tracking patient movements.

- ▶ Investigation into an accurate and scalable indoor RTLS approach for tracking patient movements.
- ▶ Development of a smart-phone application to accurately track the position of the CF patient indoors.

- ▶ Investigation into an accurate and scalable indoor RTLS approach for tracking patient movements.
- ▶ Development of a smart-phone application to accurately track the position of the CF patient indoors.
- ▶ Development of algorithms to identify high risk areas for CF patients in the hospital out-patient environment.

- ▶ Investigation into an accurate and scalable indoor RTLS approach for tracking patient movements.
- ▶ Development of a smart-phone application to accurately track the position of the CF patient indoors.
- ▶ Development of algorithms to identify high risk areas for CF patients in the hospital out-patient environment.
- ► Implementation and testing of the software system to identify areas of improvement and practicality of system.

Outline

Introduction

Literature Review

Method

Results

Conclusion

► conduct a study of current technology and systems

- conduct a study of current technology and systems
- ► Main components of thesis:

- conduct a study of current technology and systems
- ▶ Main components of thesis:
 - ▶ real time indoor positioning to track patients

- conduct a study of current technology and systems
- ▶ Main components of thesis:
 - ▶ real time indoor positioning to track patients
 - ▶ social network analysis (SNA) to identify high risk areas

- conduct a study of current technology and systems
- ► Main components of thesis:
 - ▶ real time indoor positioning to track patients
 - ▶ social network analysis (SNA) to identify high risk areas
- ► RTLS systems in hospitals

- conduct a study of current technology and systems
- ► Main components of thesis:
 - ▶ real time indoor positioning to track patients
 - ▶ social network analysis (SNA) to identify high risk areas
- ▶ RTLS systems in hospitals
- ► Indoor positioning technologies

- conduct a study of current technology and systems
- ► Main components of thesis:
 - ▶ real time indoor positioning to track patients
 - ▶ social network analysis (SNA) to identify high risk areas
- ▶ RTLS systems in hospitals
- ► Indoor positioning technologies
- ► SNA in disease transmission and control

▶ RTLS is an integral part of the health care industry

- ▶ RTLS is an integral part of the health care industry
- ► RTLS components

- ▶ RTLS is an integral part of the health care industry
- ▶ RTLS components
- ▶ Used in monitoring and workflow improvements

- ▶ RTLS is an integral part of the health care industry
- ► RTLS components
- ▶ Used in monitoring and workflow improvements
- ► No consistent RTLS system

Indoor Localisation

▶ Pedestrian Dead Reckoning (PDR)

Indoor Localisation

- ▶ Pedestrian Dead Reckoning (PDR)
- ► Direct Sensing

Indoor Localisation

- ▶ Pedestrian Dead Reckoning (PDR)
- ► Direct Sensing
- ► Triangulation

Indoor Localisation

- ▶ Pedestrian Dead Reckoning (PDR)
- ▶ Direct Sensing
- ► Triangulation
- ▶ Pattern Recognition

▶ Dead reckoning systems specific to pedestrians

- ▶ Dead reckoning systems specific to pedestrians
- ► Generally consists of a step-heading cycle:

- ▶ Dead reckoning systems specific to pedestrians
- ▶ Generally consists of a step-heading cycle:
 - ► Sample sensor recordings for specific timeframe

- ▶ Dead reckoning systems specific to pedestrians
- ► Generally consists of a step-heading cycle:
 - Sample sensor recordings for specific timeframe
 - ► Detect Step and estimate step size

- ▶ Dead reckoning systems specific to pedestrians
- ► Generally consists of a step-heading cycle:
 - ► Sample sensor recordings for specific timeframe
 - ▶ Detect Step and estimate step size
 - ► Estimate step heading

- ▶ Dead reckoning systems specific to pedestrians
- ► Generally consists of a step-heading cycle:
 - ▶ Sample sensor recordings for specific timeframe
 - ▶ Detect Step and estimate step size
 - ► Estimate step heading
- ► Infrastructure free

- ▶ Dead reckoning systems specific to pedestrians
- ▶ Generally consists of a step-heading cycle:
 - ▶ Sample sensor recordings for specific timeframe
 - ▶ Detect Step and estimate step size
 - ► Estimate step heading
- ► Infrastructure free
- ▶ Error accumulation

► Infrared (IR)

- ▶ Infrared (IR)
- ► Radio Frequency Identifier Description (RFID)

- ► Infrared (IR)
- ▶ Radio Frequency Identifier Description (RFID)
- ► Ultrasound Identification (USID)

- ► Infrared (IR)
- ▶ Radio Frequency Identifier Description (RFID)
- ▶ Ultrasound Identification (USID)
- ► Wireless Networks (WLAN)

► Triangulation

- ► Triangulation
 - ► Tags are installed using direct sensing technologies.

- ► Triangulation
 - ► Tags are installed using direct sensing technologies.
 - Position of the tags are known and used in the triangulation method

- ► Triangulation
 - ▶ Tags are installed using direct sensing technologies.
 - Position of the tags are known and used in the triangulation method
- ► Computer Vision

- ► Triangulation
 - ▶ Tags are installed using direct sensing technologies.
 - Position of the tags are known and used in the triangulation method
- ► Computer Vision
 - ► Offline Stage capture images of various location / physical landmarks

- ► Triangulation
 - ► Tags are installed using direct sensing technologies.
 - Position of the tags are known and used in the triangulation method
- ► Computer Vision
 - Offline Stage capture images of various location / physical landmarks
 - ► Online Stage compare current captured image to image database

- ► Triangulation
 - ► Tags are installed using direct sensing technologies.
 - Position of the tags are known and used in the triangulation method
- ► Computer Vision
 - Offline Stage capture images of various location / physical landmarks
 - Online Stage compare current captured image to image database
- ► Fingerprinting

- ► Triangulation
 - ► Tags are installed using direct sensing technologies.
 - Position of the tags are known and used in the triangulation method
- ► Computer Vision
 - Offline Stage capture images of various location / physical landmarks
 - Online Stage compare current captured image to image database
- Fingerprinting
 - ▶ Offline Stage sampling locations to build a radio map

- ► Triangulation
 - ▶ Tags are installed using direct sensing technologies.
 - Position of the tags are known and used in the triangulation method
- ► Computer Vision
 - Offline Stage capture images of various location / physical landmarks
 - Online Stage compare current captured image to image database
- Fingerprinting
 - ▶ Offline Stage sampling locations to build a radio map
 - ▶ Online Stage compare current recorded RSSI to radio map.

Outline

Introduction

Literature Review

Method

Results

Conclusion

► Step detection

- ▶ Step detection
 - \blacktriangleright Combine acceleration along all three axes

- ► Step detection
 - ► Combine acceleration along all three axes
 - \blacktriangleright Step detection based on peak length, zero-crossing

- ▶ Step detection
 - ► Combine acceleration along all three axes
 - ▶ Step detection based on peak length, zero-crossing
- ► Step length estimation

- ▶ Step detection
 - ▶ Combine acceleration along all three axes
 - ▶ Step detection based on peak length, zero-crossing
- ► Step length estimation
 - ► Constant value

- ▶ Step detection
 - ► Combine acceleration along all three axes
 - ▶ Step detection based on peak length, zero-crossing
- ► Step length estimation
 - ► Constant value
 - Weinberg approach: $\sqrt[4]{A_{max} A_{min}} \times n \times k$

- ▶ Step detection
 - ► Combine acceleration along all three axes
 - ▶ Step detection based on peak length, zero-crossing
- ► Step length estimation
 - ► Constant value
 - Weinberg approach: $\sqrt[4]{A_{max} A_{min}} \times n \times k$
 - Scarlet approach: $k \times \sqrt[3]{\frac{\sum_{k=1}^{N} |a_k|}{N}}$

- ▶ Step detection
 - ► Combine acceleration along all three axes
 - ▶ Step detection based on peak length, zero-crossing
- ► Step length estimation
 - ► Constant value
 - Weinberg approach: $\sqrt[4]{A_{max} A_{min}} \times n \times k$
 - Scarlet approach: $k \times \sqrt[3]{\frac{\sum_{k=1}^{N} |a_k|}{N}}$
- ► Heading estimation

$$\omega_{compass} = \frac{\psi_{compass}(t_k + \Delta t) - \psi_{compass}(t_k)}{\Delta t}$$

► Bayesian Filtering

- ▶ Bayesian Filtering
 - ► Kalman Filter

- ► Bayesian Filtering
 - ▶ Kalman Filter
 - ► Particle Filter:

$$\boldsymbol{x}_t^i = \begin{bmatrix} x_t^i \\ y_t^i \end{bmatrix} = \begin{bmatrix} x_{t-1}^i + s_t^i \sin(\theta_t^i) \\ y_{t-1}^i + s_t^i \cos(\theta_t^i) \end{bmatrix}$$

- ► Bayesian Filtering
 - ▶ Kalman Filter
 - ▶ Particle Filter:

$$\boldsymbol{x}_t^i = \begin{bmatrix} x_t^i \\ y_t^i \end{bmatrix} = \begin{bmatrix} x_{t-1}^i + s_t^i \sin(\theta_t^i) \\ y_{t-1}^i + s_t^i \cos(\theta_t^i) \end{bmatrix}$$

► Error Correction with Direct Sensing Technology

Hybrid PDR

- ▶ Bayesian Filtering
 - ▶ Kalman Filter
 - ▶ Particle Filter:

$$\boldsymbol{x}_t^i = \begin{bmatrix} x_t^i \\ y_t^i \end{bmatrix} = \begin{bmatrix} x_{t-1}^i + s_t^i \sin(\theta_t^i) \\ y_{t-1}^i + s_t^i \cos(\theta_t^i) \end{bmatrix}$$

- ► Error Correction with Direct Sensing Technology
 - ► Bluetooth Beacons with known positions scattered through the map

Outline

Introduction

Literature Review

Method

Results

Conclusion

Step Detection

Heading Estimation

Map Matching

Outline

Introduction

Literature Review

Method

Results

Conclusion

► Identified Research Aims

- ▶ Identified Research Aims
- ► Conducted literature Review

- ▶ Identified Research Aims
- ▶ Conducted literature Review
- ► PDR Implementation

- ▶ Identified Research Aims
- ▶ Conducted literature Review
- ▶ PDR Implementation
- ▶ Preliminary experimentation

▶ PDR Modifications and Improvements

- ▶ PDR Modifications and Improvements
 - \blacktriangleright Testing other algorithms for Step-Heading Cycle

- ▶ PDR Modifications and Improvements
 - ▶ Testing other algorithms for Step-Heading Cycle
 - ► Modifications to the particle filter more particles, backtracking particle filter

- ▶ PDR Modifications and Improvements
 - ▶ Testing other algorithms for Step-Heading Cycle
 - Modifications to the particle filter more particles, backtracking particle filter
 - ► Further experimentation and Testing

- ▶ PDR Modifications and Improvements
 - ▶ Testing other algorithms for Step-Heading Cycle
 - Modifications to the particle filter more particles, backtracking particle filter
 - ► Further experimentation and Testing
- ► Software Design Approach

- ▶ PDR Modifications and Improvements
 - ► Testing other algorithms for Step-Heading Cycle
 - Modifications to the particle filter more particles, backtracking particle filter
 - ► Further experimentation and Testing
- ► Software Design Approach
 - ► Waterfall Model to Agile Model

- ▶ PDR Modifications and Improvements
 - ▶ Testing other algorithms for Step-Heading Cycle
 - Modifications to the particle filter more particles, backtracking particle filter
 - ► Further experimentation and Testing
- Software Design Approach
 - ► Waterfall Model to Agile Model
 - ► User Interface creation

- ▶ PDR Modifications and Improvements
 - ▶ Testing other algorithms for Step-Heading Cycle
 - Modifications to the particle filter more particles, backtracking particle filter
 - ► Further experimentation and Testing
- Software Design Approach
 - ▶ Waterfall Model to Agile Model
 - User Interface creation
- ► Social Network Analysis

- ▶ PDR Modifications and Improvements
 - ▶ Testing other algorithms for Step-Heading Cycle
 - Modifications to the particle filter more particles, backtracking particle filter
 - ► Further experimentation and Testing
- ► Software Design Approach
 - ► Waterfall Model to Agile Model
 - ▶ User Interface creation
- Social Network Analysis
 - ► Literature Review

- ▶ PDR Modifications and Improvements
 - ▶ Testing other algorithms for Step-Heading Cycle
 - Modifications to the particle filter more particles, backtracking particle filter
 - ► Further experimentation and Testing
- ► Software Design Approach
 - ► Waterfall Model to Agile Model
 - ▶ User Interface creation
- Social Network Analysis
 - ▶ Literature Review
 - ► Implementation approach

- ▶ PDR Modifications and Improvements
 - ▶ Testing other algorithms for Step-Heading Cycle
 - Modifications to the particle filter more particles, backtracking particle filter
 - ► Further experimentation and Testing
- ► Software Design Approach
 - ▶ Waterfall Model to Agile Model
 - ▶ User Interface creation
- Social Network Analysis
 - ► Literature Review
 - ► Implementation approach
- ► Field Testing