Hammerhead-PCI

Quad ADSP-21160 64-bit, 66 MHz PCI Board **User's Guide**

BittWare, Inc. 33 N Main St. Concord, NH 03301 USA 603.226.0404

If you have comments or suggestions about this manual or find any errors in it, please contact us via e-mail at techpubs@bittware.com.

For technical support, contact us using any of the following methods:

Phone: 603.226.0404 FAX: 603.226.6667

E-mail: support@bittware.com

BittWare also maintains the following Internet sites:

http://www.bittware.com Contains product information, technical notes, support

files available for download, and answers to frequently

asked questions (FAQ).

ftp://ftp.bittware.com Contains technical notes and support files. Login as

"anonymous" and use your e-mail address for the

password.

Hammerhead-PCI User's Guide

Hardware Revision 2

© 2001, BittWare, Inc. All Rights Reserved

The information in this manual has been carefully checked and is believed to be accurate and reliable. However, BittWare assumes no responsibility for any inaccuracies, errors, or omissions that may be contained in this manual. In no event will BittWare be liable for direct, indirect, special, incidental, or consequential damages resulting from any defect or omission in this manual. BittWare reserves the right to revise this document and to make changes from time to time in the content hereof without obligation of BittWare to notify any person or persons of such revision or changes.

SHARC is a registered trademark of Analog Devices, Inc. Microsoft, Windows, and Windows NT are registered trademarks of Microsoft Corporation. All other products are the trademarks or registered trademarks of their respective holders.

Printed in the USA

Contents

	1.1 Overview of the Hammerhead-PCI System	2 2
	1.2 About this User's Guide	7 7
	Other Helpful Documents and Tools	9
Chapter 2	Preparing the Hammerhead-PCI for Operation	
	2.1 Unpacking the Hammerhead-PCI	14
	2.2 Configuring the Hammerhead-PCI	15 20
	2.3 Installing the Board and Its Software 2.3.1 Installing the Code Development Tools 2.3.2 Installing the BittWare DSP21k-SF Toolkit 2.3.3 Installing the Hammerhead-PCI in a PC 2.3.4 Verifying Board Configuration	27 27 29
	2.4 Testing the Installation	30
	2.5 Resetting the Board	36 37 38

Contents

Chapter 3 Overview of the Hardware Components

	3.1 Layout and Function of the Major Components	40
	3.1.1 ADSP-21160 SHARC Processors	
	3.1.2 Memory	42
	3.1.3 SharcFIN ASIC	42
	3.1.4 PCI Interface	43
	3.1.5 On-Board Oscillators	43
	3.1.6 Dual RS-232 UART	44
	3.1.7 PCI-to-PCI Bridge Chip	44
	3.1.8 LEDs	44
	3.2 Layout and Function of the External Connectors	45
	3.2.1 External Power Connector	
	3.2.2 External Link Ports	
	3.2.3 External Reset Connector	
	3.2.4 External Serial Ports	51
	3.2.5 Flag I/O Connector	
	3.2.6 RS-232 Connectors	
	3.2.7 Expansion Connector	55
	3.2.8 PMC Interfaces	56
	3.2.9 SODIMM Connector	62
	3.2.10 JTAG Header	62
	3.3 Layout and Function of the Configuration Jumpers and Switches	63
	9	
Chapter 4	Hammerhead-PCI Board Architecture	
Chapter 4	Hammerhead-PCI Board Architecture	
Chapter 4	Hammerhead-PCI Board Architecture 4.1 Overview of the Board Architecture	68
Chapter 4	Hammerhead-PCI Board Architecture 4.1 Overview of the Board Architecture	68
Chapter 4	Hammerhead-PCI Board Architecture 4.1 Overview of the Board Architecture	68 69
Chapter 4	Hammerhead-PCI Board Architecture 4.1 Overview of the Board Architecture	68 69 69
Chapter 4	Hammerhead-PCI Board Architecture 4.1 Overview of the Board Architecture	68 69 69 69
Chapter 4	Hammerhead-PCI Board Architecture 4.1 Overview of the Board Architecture	68 69 69 69 70
Chapter 4	Hammerhead-PCI Board Architecture 4.1 Overview of the Board Architecture	68 69 69 70 70
Chapter 4	Hammerhead-PCI Board Architecture 4.1 Overview of the Board Architecture	6869697072
Chapter 4	Hammerhead-PCI Board Architecture 4.1 Overview of the Board Architecture	6869707273
Chapter 4	Hammerhead-PCI Board Architecture 4.1 Overview of the Board Architecture	6869707273
Chapter 4	Hammerhead-PCI Board Architecture 4.1 Overview of the Board Architecture	686970727375
Chapter 4	Hammerhead-PCI Board Architecture 4.1 Overview of the Board Architecture	686970727375
Chapter 4	Hammerhead-PCI Board Architecture 4.1 Overview of the Board Architecture	6869707375758081
Chapter 4	Hammerhead-PCI Board Architecture 4.1 Overview of the Board Architecture	6869707275758181

Chapter 5 Programming Details for the ADSP-21160s

	5.1 Accessing the DSPs Memory	
	5.1.1 Accessing Internal Memory	
	5.1.2 Accessing the DSPs' Multiprocessor Memory	
	5.1.3 Accessing External Memory Banks	
	5.1.4 Accessing Unbanked Memory Space	89
	5.2 Booting the DSPs	90
	5.2.1 Booting the Board via Link Port	90
	5.2.2 Booting the Board From the Host	91
	5.2.3 Booting the Board via the Flash	92
Chapter 6	Programming Details for the SharcFIN ASIC	
	6.1 Overview of the SharcFIN	
	6.1.1 The Two Sections of the SharcFIN	
	6.1.2 How the SharcFIN Maps to the PCI and ADSP-21160 Buses .	94
	6.2 Function of the SharcFIN PCI Interface	95
	6.2.1 Performing PCI Side DMAs	95
	6.2.2 Performing a PCI Side Single Access	96
	6.2.3 Performing PCI Side Interrupts	96
	6.3 Function of the SharcFIN SHARC Interface	97
	6.3.1 ADSP-21160 Bus Interface	97
	6.3.2 SDRAM Interface and Control	
	6.3.3 Peripheral Bus Interface (Flash and Dual UART)	98
	6.3.4 I ² C Interface	
	6.3.5 Interrupt Multiplexer	99
	6.4 Overview of the SharcFIN Memory Map	100
	6.4.1 Accessing System Settings and Configuration Registers	101
	6.4.2 Accessing the Flash, UART, and Peripheral Bus	102
	6.4.3 Accessing Multiprocessor Memory Space	
	6.4.4 Accessing SDRAM	104
	6.5 Setting the SharcFIN User-Configurable Registers	106
	6.5.1 Address Override Register	108
	6.5.2 Status Register	109
	6.5.3 Peripheral Bus Configuration Register	110
	6.5.4 Watchdog Configuration Register	
	6.5.5 PMC+ Configuration Register	
	6.5.6 SDRAM Configuration Registers	
	6.5.7 Onboard I ² C Control Register	115

Contents

	6.5.8 Setting the PMC I ² C Control Register	
	6.5.9 DMA Address Register	
	6.5.10 DMA Configuration Register	
	6.5.11 Interrupt Configuration Registers	
	6.5.12 Flag and Interrupt Status Registers	126
Appendix A	Debugging Your DSP Programs	
		100
	A.1 Debugging with a Hardware (In-Circuit) Emulator	
	A.1.2 Attaching the ICE to the Hammerhead-PCI	
	A.1.3 Installing the ICE and Hammerhead-PCI in a PC	
	A.1.4 Operating the ICE	
	A.2 Debugging with a Software Emulator	131
	A.2.1 About the VisualDSP Target	
	A.2.2 Installing the VisualDSP Target	131
Appendix B	Setting Up for Standalone Operation	
	B.1 Developing and Loading a Boot Program	134
	B.1.1 Developing the Boot Program	
	B.1.2 Loading a Boot Program into the Flash Memory	134
	B.1.3 Loading a Link Boot Program	134
	B.2 Setting the Boot Mode Jumpers	134
	B.3 Setting the Standalone Mode Jumpers	135
	B.4 Booting the Board via Link Port	135
	B.5 Mounting Standoffs on the Hammerhead-PCI	135
	B.6 Supplying Power to the Hammerhead-PCI	137
Appendix C	Troubleshooting Tips	
	C.1 Before You Call Technical Support	139
	C.2 Contacting Technical Support	
Appendix D	Glossary of Terms	

Figures

Figure 1-1	Block Diagram of the Hammerhead-PCI System	3
Figure 1–2	Block Diagram of the Hammerhead-PCI and its Software	
Figure 2–1	Layout of the Hammerhead-PCI Configuration Jumpers	
Figure 2–2	Location of Pin 1 on the Serial Port Jumper Blocks	
Figure 2–3	Standard Serial Configuration Switch Pinout (S1–S4)	21
Figure 2–4	TDM Serial Port Switch Pinout (S5)	
Figure 2–5	Cable Details for the Hammerhead-PCI's External Reset Connector	37
Figure 3–1	Location of the Hammerhead-PCI's Major Components (Top)	40
Figure 3–2	Location of the Hammerhead-PCI's Major Components (Bottom)	41
Figure 3–3	Location of the External Connectors	
Figure 3–4	Location of the External Power Connector Pins	47
Figure 3–5	Location of the External Link Port Connector Pins	48
Figure 3–6	Location of the External Reset Connector Pins	50
Figure 3–7	Location of Serial Port Connector Pins	52
Figure 3–8	Location of the Flag I/O Connector Pins	53
Figure 3–9	Location of the RS-232 Connector Pins	54
igure 3–10	Location of the Expansion Connector Pins	56
igure 3–11	Location of the JTAG Header Pins	62
igure 3–12	Layout of the Hammerhead-PCI Configuration Jumpers	63
Figure 4–1	Block Diagram of the Hammerhead-PCI System	
Figure 4–2	Block Diagram of Serial Port Connections: Quad Processor Board	73
Figure 4–3	Block Diagram of Serial Port Connections: Dual Processor Board	74
Figure 4–4	Block Diagram of Serial Port Connections: Single Processor Board	
Figure 4–5	Block Diagram of Link Port Connections: Quad Processor Board	75
Figure 4–6	Block Diagram of Link Port Connections: Dual Processor Board	76
Figure 4–7	Block Diagram of Link Port Connections: Single Processor Board	76
Figure 4–8	Block Diagram of Flag and Interrupt Connections	77
Figure 4–9	Block Diagram of the PCI Interface	
igure 4–10	Simplified Block Diagram of the SharcFIN Architecture as Implemented	
-	Hammerhead-PCI Board	
Figure A-1	JTAG Connector	130
Figure B-1	Location of the Standoff Mounting Holes	136

Figures v

Tables

Table 2–1	Settings for the Boot Mode Selection Jumpers	
Table 2–2	Selecting the Rotating Priority Bus Mode for the ADSP-21160s (JP3)	18
Table 2–3	Settings for the PCI Bus Jumpers (JP4 and JP5)	
Table 2–4	Settings for the Secondary PCI Signal Level Jumper (JP6)	19
Table 2–5	Settings for the Link Port Connector Power Jumper (JP7-10)	19
Table 2–6	Settings for the Standalone Mode Jumpers (JP11, JP12, JP13)	20
Table 2–7	External Serial Port and Configuration Switch Connections and Usage	20
Table 2–8	Settings for the Standard Serial Port Configuration Switches	22
Table 2–9	Settings for the TDM Configuration Switch	
Table 2–10	Link Port Cables Compatible with the Hammerhead-PCI Link Ports	
Table 2–11	Serial Port Cable Compatible with the Hammerhead-PCI Serial Ports	25
Table 3–1	Overview of the External Connectors	45
Table 3–2	External Power Connector Pinout (J1)	
Table 3–3	Link Port Connector Pinout (J2–J5)	49
Table 3–4	External Reset Connector Pinout (J6)	
Table 3–5	Serial Port Connections and Usage	
Table 3–6	Serial Port Connector Pinout (J7–J11)	
Table 3– <i>7</i>	Flag I/O Connector Pinout (J16)	
Table 3–8	RS-232 Connector Pinout (J17, J18)	
Table 3–9	Expansion Connector Pinout (J19)	
Table 3–10	PMC Interface Pinout	
Table 3–11	PMC+ Connector Pinout	
Table 3–12	JTAG Header Pinout (J30)	
Table 3–13	Overview of the Configuration Jumpers	
Table 3–14	Overview of the Serial Port Configuration Switches	
Table 4–1	Resources for 21160-1	
Table 4–2	Resources for 21160-2	
Table 4–3	Resources for 21160-3	
Table 4–4	Resources for 21160-4	
Table 4–5	ADSP-21160 Flag Connections	
Table 4–6	ADSP-21160 Interrupt Connections	
Table 5–1	Multiprocessor Memory Allocation for DSPs	
Table <i>5</i> –2	External Memory Bank Allocation	
Table <i>5</i> –3	Recommended MSIZE Settings for the Hammerhead-PCI	
Table 6–1	Overview of How the SharcFIN Maps to the PCI and ADSP-21160 Buses	
Table 6–2	Accessing BARO-BAR4 From the PCI Side	
Table 6–3	PCI and ADSP-21160 Addresses for System Settings and Configuration R	
- 11	ters	
Table 6–4	PCI and ADSP-21160 Addresses for Flash, UART, and Peripheral Bus	
Table 6–5	PCI and ADSP-21160 Addresses for Multiprocessor Memory Space	. 103

User's Guide **Hammerhead-PCI**

Table 6–6	PCI and ADSP-21160 Addresses for 64 MB SDRAM104
Table 6–7	PCI and ADSP-21160 Addresses for 128 MB SDRAM105
Table 6–8	Memory Map for the SharcFIN User-Configurable Registers
Table 6–9	Address Override Register Description
Table 6–10	Contents of the Status Register
Table 6–11	Contents of the Peripheral Bus Configuration Register
Table 6–12	Contents of the Watchdog Configuration Register111
Table 6–13	Contents of the PMC+ Configuration Register
Table 6–14	Contents of the SDRAM Size Configuration Register
Table 6–15	Contents of the SDRAM Window Register
Table 6–16	Contents of the I ² C Control Register
Table 6–1 <i>7</i>	Effects of Values Written to the Clock and Data Bits (BO, B1)115
Table 6–18	Contents of the DMA Address Register
Table 6–19	Contents of the DMA Configuration Register (Continues on next page) 117
Table 6–20	SharcFIN Interrupt Configuration Registers
Table 6–21	Contents of the ADSP-21160 Interrupt Configuration Registers (0x50, 0x52, 0x54, 0x56) (Continues on next page)
Table 6–22	Contents of the PCI Interrupt Configuration Register (0x58) (Continues on next page)
Table 6–23	Contents of the PMC+ Interrupt Configuration Register (0x5A) (Continues on next page)
Table 6–24	Contents of the Flag Status Register
Table 6–25	Contents of the Interrupt Status Register

Tables vii

viii User's Guide Hammerhead-PCI

Chapter 1 Introduction

The Hammerhead-PCI is a PCI-format DSP board combining the power of four ADSP-21160 SHARC® processors from Analog Devices with the speed of a 64-bit, 66 MHz PCI interface. The board supports up to 512 MB of SDRAM, a bank of Flash memory, and two PMC mezzanine sites. The board's PCI interface features BittWare's Sharc®FIN™ ASIC. The SharcFIN flexibly interfaces the ADSP-21160s to the 64-bit, 66 MHz PCI interface, the SDRAM, the Flash memory, and a general-purpose expansion bus.

This chapter:

- Overviews the basic architecture of the Hammerhead-PCI system
- Gives an overview of each chapter in this user's guide
- Lists documents that provide more information about the Hammerhead-PCI's components and software

1.1 Overview of the Hammerhead-PCI System

This section gives a brief overview of the architecture of the board and describes the necessary software packages.

1.1.1 Hammerhead-PCI Features

The Hammerhead-PCI supports the following features:

- four 80 MHz ADSP-21160 SHARC processors (2400 MFLOPS)
- · 64-bit, 66 MHz PCI interface
- up to 512 MB SDRAM (standard 144-pin SODIMM)
- two PMC sites, one with PMC+ extensions for BittWare's PMC+ I/O modules
- four link ports and one serial TDM bus for integrating PMC+ I/O with on-board SHARCs
- four 80 MB/s external link ports
- four 40 Mb/s external serial ports; one 40 Mb/s external serial TDM bus
- · BittWare's SharcFIN ASIC
- dual RS-232 UART
- 2 MB Flash memory
- · standalone operation

1.1.2 Hammerhead-PCI System Architecture

This section gives a basic overview of the Hammerhead-PCI system. Figure 1–1 is a detailed block diagram of the Hammerhead-PCI board and its features.

BittWare's Hammerhead-PCI board features four Analog Devices' ADSP-21160 processors, 64-512 MB of SDRAM, 2 MB of Flash memory, and two PMC mezzanine sites.

Figure 1-1 Block Diagram of the Hammerhead-PCI System

SharcFIN ASIC

The Hammerhead-PCI incorporates BittWare's SharcFIN ASIC, which flexibly interfaces the ADSP-21160 DSPs to the 64-bit, 66 MHz PCI bus, the SDRAM, the Flash memory, and a peripheral bus. It also provides a feature-rich set of DMA functions and interrupt options to support very high-speed, real-time data flow with minimum processor overhead.

ADSP-21160 DSPs

The Hammerhead-PCI board is configured with four 80 MHz ADSP-21160 processors. The ADSP-21160 processors are code-compatible with the ADSP-2106x SHARC DSPs, making it easier to integrate existing code. The four ADSP-21160 processors share a common 40 MHz, 64-bit cluster bus, which gives them access to the board's SDRAM, the PCI bus interface, and the other three SHARC DSPs. For additional I/O, each processor also has four flags, three interrupts, six link ports, and two serial ports.

I/O Support

The Hammerhead-PCI offers a variety of user I/O options in addition to the 64-bit, 66 MHz PCI interface. It features a PMC+ site, external serial ports, an RS-232 interface, and external link ports.

The Hammerhead-PCI board is configured with two PMC (PCI Mezzanine Card) sites. One PMC site has back-panel access and allows you to attach a standard PMC module to the board, adding I/O or additional processors and memory. The other PMC site has front panel access and functions as both a standard PMC and a proprietary interface for BittWare's PMC+ I/O modules. It features PMC+ extensions that allow you to attach PMC+ modules for low-latency, high-performance I/O via four 80 MB/s link ports and one 40 Mb/s serial port.

One serial port on each SHARC processor is dedicated as an external serial port. The remaining serial port on each SHARC DSP connects to a TDM serial bus.

The board's dual UART allows the ADSP-21160 processors to communicate with external serial devices via RS-232 ports, facilitating remote debugging, command, and control.

The Hammerhead-PCI features four 80 MB/s external link ports. One link port on each DSP connects to the external connectors, four links per DSP are dedicated for interprocessor communication, and one link per DSP connects to the PMC+ interface.

4 User's Guide Hammerhead-PCI

1.1.3 Hammerhead-PCI Software Architecture

You will need three types of software development tools for the Hammerhead-PCI: code development tools, debugging tools, and host interface tools. Figure 1–2 is a general block diagram of how the software development tools work together with the Hammerhead-PCI.

To begin developing code for the Hammerhead-PCI, use Analog Devices' VisualDSP++® Integrated Development Environment (IDE). VisualDSP++ is an easy-to-use project management environment comprised of an integrated development environment (IDE) and software debugger.

Once you have developed your code, you can debug it using BittWare's VisualDSP Target, which is a software plug in for VisualDSP++ that allows the VisualDSP++ debugger to communicate directly with your BittWare board. You can also use a hardware in-circuit emulator, such as the ICE emulators from Analog Devices, to debug your code.

BittWare's DSP21k-SF Toolkit provides your host interface tools. The DSP21k-SF Toolkit is a complete software development kit that allows you to easily develop application code and integrate the Hammerhead-PCI into your system. The software tools include a comprehensive host interface library (HIL), a standard I/O library, and diagnostic utilities.

Figure 1-2 Block Diagram of the Hammerhead-PCI and its Software

6 User's Guide Hammerhead-PCI

1.2 About this User's Guide

This section provides an overview of each chapter's content, and it describes certain variations in text and naming conventions we have used throughout the manual.

1.2.1 Purpose of this Document

This user's guide covers hardware revision 2 of the Hammerhead-PCI board, which supports four ADSP-21160 SHARC processors operating at 80 MHz. The purpose of this document is to provide details about the Hammerhead-PCI's major hardware components, to describe how to install and properly operate the Hammerhead-PCI, and to discuss important issues that relate to programming the board.

We assume that you are already familiar with the ADSP-21160 architecture, operation, and programming as described in the *ADSP-21160 User's Manual* from Analog Devices, Inc.

1.2.2 Conventions

We have used the following conventions throughout this user's guide.

- Since the Hammerhead-PCI has four processors, we refer to them as 21160-1, 21160-2, etc.
- All signal names appear in small capitals (RESET).
- Active low signals appear in small capitals with an overline (RESET).
- A "0x" prefix designates a number as a hexadecimal number (0x01).
- Commands that the user enters (for programs such as Diag21k or DspBad in the DSP21k-SF Toolkit) appear in the Courier bold font.
- Filenames and directories appear in the Courier font.

1.2.3 Chapter Overviews

Chapter 2: Preparing the Hammerhead-PCI for Operation

This chapter describes the tasks that you must perform to prepare your board for installation, install the software for the board, install the board, and test the installation.

Chapter 3: Overview of the Hardware Components

This chapter shows the location of the Hammerhead-PCI's major components and connectors and briefly discusses their function.

Chapter 4: Hammerhead-PCI Board Architecture

This chapter discusses the board's architecture, including the architecture of the ADSP-21160 DSPs, the SharcFIN ASIC, and the PCI interface. It also discusses the board's serial ports, link ports, flags and interrupts.

Chapter 5: Programming Details for the ADSP-21160s

This chapter provides programming details for the ADSP-21160 SHARC DSPs, describing how to access memory and boot the DSPs.

Chapter 6: Programming Details for the SharcFIN ASIC

This chapter provides a brief functional overview of the SharcFIN ASIC and describes how to configure its SHARC interface control registers.

Appendix A: Debugging Your DSP Programs

This appendix gives information on debugging DSP programs with a hardware or software emulator.

Appendix B: Setting up for Standalone Operation

This appendix describes how to set the board up to operate in standalone mode.

Appendix C: Troubleshooting Tips

This appendix discusses common operating problems and provides solutions to those problems. It also discusses how to contact technical support at BittWare.

Appendix D: Glossary of Terms

This appendix defines terms used throughout this manual.

8 User's Guide Hammerhead-PCI

1.3 Other Helpful Documents and Tools

This section gives sources for additional information that applies to the Hammerhead-PCI or its components. It also lists several third party software development tools that you may find useful.

1.3.1 Documents for Further Reference

- ADSP-21160 SHARC Data Sheet Analog Devices, Inc.
- ADSP-21160 SHARC User's Guide Analog Devices, Inc.
- Intel 21154 Chip Data Sheet Intel Corporation
- SharcFIN ASIC User's Guide BittWare, Inc.
- DSP21k-SF Toolkit User's Guide (Version 6.0 and up) BittWare, Inc.

1.3.2 Software DevelopmentTools

VisualDSP++® and BittWare VisualDSP Target

The Hammerhead-PCI is compatible with the VisualDSP++ development tools from Analog Devices. VisualDSP++ is an easy-to-use project management environment comprised of an integrated development environment (IDE) and software debugger. The IDE provides access to Analog Devices' 4.0 SHARC C compiler, C runtime library, assembler, linker, loader, simulator, and splitter. The debugger has an easy-to-use interface and many features that reduce debugging time by enabling you to set breakpoints, single step through code, and perform many other debugging operations.

BittWare offers the VisualDSP Target, a plug-in to the VisualDSP++ IDE that allows the VisualDSP++ debugger to communicate directly with BittWare's DSP boards. The VisualDSP Target lets you debug your DSP application without a hardware emulator, allowing you to set breakpoints, single-step through your code, view memory, and run code on multiple processors.

Analog Devices' In-Circuit Emulators

The ICE in-circuit emulators from Analog Devices provide real-time hardware emulation and debugging. Analog Devices offers emulators in ISA bus, PCI bus, USB, and Ethernet formats that are compatible with

VisualDSP. With ICE emulators, you can load programs, start and stop program execution, observe and alter registers and memory, and perform other debugging operations. If you plan to use an in-circuit emulator with the Hammerhead-PCI, refer to the documentation that comes with the emulator and to the information in Appendix A of this manual.

BittWare Host Interface Support

BittWare supplies host interface support for the Hammerhead-PCI with the DSP21k-SF Toolkit. Using the Toolkit's C-callable library of routines for DOS and Windows programs, you can download and start programs, read from and write to the Hammerhead-PCI memory, and control other board functions. Another library gives your DSP programs standard I/O routines such as screen display, keyboard input, and disk file access. The DSP21k-SF Toolkit User's Guide (Version 6.0 and up) from BittWare, Inc. contains complete information about the DSP21k-SFToolkit.

SpeedDSP Optimized Libraries for SHARC DSPs

SpeedDSP is a collection of highly optimized routines for the ADSP-21xxx family of SHARC DSP chips that includes SIMD optimizations for the ADSP-2116x family of DSPs. The functions are written in ADSP-21xxx assembly language and are callable from high-level languages such as C. SpeedDSP includes functions for manipulating large arrays of floating-point numbers and for performing Fast Fourier Transforms (FFTs), windowing, statistics, sorting, histogramming, trigonometry, and timing. Since the functions in the library are coded in ADSP-21xxx assembly language and take full advantage of the ADSP-21xxx architecture, they are much faster than high-level language implementations, delivering optimum speed and performance. SpeedDSP integrates easily with the Analog Devices C compiler and is completely compatible with the program/data memory specifiers and the complex data type.

User's Guide 10

BittWare's SharcLAB MATLAB Interface

SharcLAB, developed exclusively for BittWare by SDL, works with The MathWorks MATLAB, Simulink, Stateflow, and Real-Time Workshop to allow you to prototype and test DSP applications on your BittWare SHARC DSP boards. SharcLAB integrates seamlessly with the standard MATLAB environment, allowing a nearly automatic transition from MATLAB-based algorithm development to executable DSP code.

You can develop your applications in the Simulink graphical flow-chart-based simulation environment and use SharcLAB to automatically compile, download, and run the algorithms on your BittWare SHARC DSP hardware in real-time. SharcLAB allows you to change application parameters interactively and view data streams in real time in the native Simulink environment for debugging and verification without interrupting the DSP application.

Chapter 2

Preparing the Hammerhead-PCI for Operation

This chapter describes how to prepare your board for installation, install the software for the board, install the board, and run diagnostic tests on the board to make sure it is working properly. This chapter does not provide comprehensive instructions for all of the tasks; instead, it provides a sequence of steps for you to follow. In addition to the information in this chapter, you will also need to refer to the documentation for the Analog Devices software, the BittWare DSP21k-SF Toolkit, and the host PC.

Warning!

You must install the DSP21k-SF Toolkit and run the BittWare Configuration Manager **before** you install the Hammerhead-PCI board

To prepare your Hammerhead-PCI board for operation

- 1. Unpack the Hammerhead-PCI (section 2.1).
- 2. Set the board's configuration jumpers (section 2.2.1).
- 3. Configure the board's serial ports (section 2.2.2).
- 4. If you are using I/O module(s) on the board's PMC or PMC+ sites, attach the module(s) to the board (section 2.2.3).
- 5. Install the VisualDSP software tools (section 2.3.1).
- 6. Install BittWare's DSP21k-SF Toolkit (section 2.3.2).
- 7. Connect any desired external signals or devices to the board (section 2.2.3).
- 8. Install the board in a 32- or 64-bit PCI slot in the PC (section 2.3.3).
- 9. Run diagnostic tests on the board to ensure it is operating properly (section 2.4.1).
- 10. Run the example software included with the Hammerhead-PCI (section 2.4.2).

2.1 Unpacking the Hammerhead-PCI

Warning!

The Hammerhead-PCI contains electro-static discharge (ESD) sensitive devices. Be sure to follow the standard handling procedures for ESD sensitive devices, taking proper precautions to ground yourself and the work area before removing the board from its anti-static bag. If you fail to follow proper handling procedures, you could damage the board.

To unpack the Hammerhead-PCI board,

- 1. Carefully remove the board from the shipping box. Save the box and packing materials in case you need to reship the board.
- 2. Remove the board from the plastic bag. Observe all precautions described in the warning above to prevent damage from electro-static discharge (ESD).
- 3. Carefully examine the board, checking for damage. If the board is damaged, *do not* install it. Call BittWare technical support.

2.2 Configuring the Hammerhead-PCI

This section explains how to set up the physical features of the board to get it ready for installation. It includes instructions for the following tasks:

- setting the configuration jumpers
- · configuring the serial ports
- · connecting external devices to the board

2.2.1 Setting the Hammerhead-PCI Configuration Jumpers

The Hammerhead-PCI has thirteen configuration jumpers that allow you to control and enable certain features on the board. Before installing the Hammerhead-PCI in the PC, make sure you have properly set all of the configuration jumpers. Figure 2–1 shows where each of the jumpers is located.

Chapter 2 15

Figure 2–1 Layout of the Hammerhead-PCI Configuration Jumpers.

Setting the Boot Mode for the DSPs

JP1 and JP2 configure the boot mode for the ADSP-21160 processors. The processors can boot in three boot modes:

- link booting
- · host booting
- · Flash booting

JP1 configures the boot mode for 21160-1, and JP2 configures the boot mode for 21160-2–4. Table 2–1 below shows their settings.

Table 2-1 Settings for the Boot Mode Selection Jumpers

Jumper	Jumper Position	Setting	Default
JP1	No Jumper Pins 1–2 Pins 2–3	21160-1 will boot from host computer 21160-1 will boot from on-board Flash 21160-1 will boot via link booting	V
JP2	No Jumper Pins 1–2 Pins 2–3	21160-2–4 will boot from host computer 21160-2–4 will boot from on-board Flash 21160-2–4 will boot via link booting	✓

Setting the ADSP-21160 Bus Arbitration

JP3 configures the rotating priority bus arbitration (RPBA) mode for the 64-bit ADSP-21160 cluster bus. The ADSP-21160 bus has two RPBA modes: fixed priority scheme and rotating priority scheme. The *ADSP-21160 User's Guide* (Analog Devices) explains the RPBA modes in more detail.

The fixed priority scheme for bus arbitration gives priority to the ADSP-21160 processor with the lowest multiprocessor ID. With the fixed priority scheme, 21160-1 would always have priority.

The rotating priority scheme for bus arbitration gives priority to the ADSP-21160 processors on a rotating schedule. For example, 21160-1 would have priority, then 21160-2 would have priority, and so on.

Chapter 2 17

Table 2-2 Selecting the Rotating Priority Bus Mode for the ADSP-21160s (JP3)

Jumper Position	Setting	Default
IN	Fixed priority scheme	
OUT	Rotating priority scheme	✓

Selecting 33 MHz or 66 MHz Operation for the PCI Bus

JP4 configures the primary PCI bus to run at either 33 MHz or 66 MHz, and JP5 configures the secondary PCI bus. If the primary PCI bus is set to 33 MHz, then the secondary PCI bus must also operate at 33 MHz. However, if the primary PCI bus is set to 66 MHz, the secondary bus can operate at either 33 or 66 MHz. The settings for the jumpers are in Table 2–3.

Table 2-3 Settings for the PCI Bus Jumpers (JP4 and JP5)

Jumper	Jumper Position	Setting	Default
JP4 (Primary PCI)	IN	33 MHz	
	OUT	66 MHz	✓
JP5 (Secondary PCI)	IN	33 MHz	
	OUT	66 MHz	✓

Selecting the Signal Level of the Secondary PCI Bus

JP6 is a 3-pin jumper that configures the signal level of the secondary PCI bus to either 3.3 volts or 5 volts. Table 2–4 below gives the jumper's settings.

Warning!

Be sure to set jumper JP6 correctly. If you set it incorrectly, some power supplies could short together and damage the board.

Table 2-4 Settings for the Secondary PCI Signal Level Jumper (JP6)

Jumper Position	Setting	Default
No Jumper	Board non-functional*	
Pins 1-2	3.3 Volts	
Pins 2–3	5 Volts	•

A jumper must be installed on JP6 or the board will not function properly.

Setting the Link Port Connector Power Jumpers

JP7–JP10 are link port connector power jumpers. These jumpers gate power to the external link port connectors. Leave these jumpers off unless you have specific requirements for the connectors. Table 2–5 shows their settings.

Table 2-5 Settings for the Link Port Connector Power Jumper (JP7–10)

Jumper Position	Setting	Default
IN	5 Volts	
OUT	Unpowered	✓

Setting the Standalone Operation Jumpers

The Hammerhead-PCI has three jumpers for configuring the board to operate in standalone mode:

JP11 Standalone primary PCI voltage

JP12 Standalone mode clock

IP13 Standalone mode reset

Table 2-6 Settings for the Standalone Mode Jumpers (JP11, JP12, JP13)

Jumper	Jumper Position	Setting	Default
JP11 (PCI voltage)	IN	Standalone	
	OUT	Normal Operation	✓
JP12 (Clock)	IN	Standalone	
	OUT	Normal Operation	✓
JP13 (Reset)	IN	Standalone	
	OUT	Normal Operation	✓

2.2.2 Configuring the External Serial Ports

The Hammerhead-PCI has five 20-pin right-angle IDC external serial port connectors to provide a communication route between the ADSP-21160s and synchronous serial devices. Each connector has a corresponding switch that you can use to configure the signal connections of the connector and the serial port of the ADSP-21160 it is connected to (see Table 2–7). Figure 2–2 shows where the switches are located on the Hammerhead-PCI board, and Figure 3–3 shows where each connector is located.

 Table 2-7
 External Serial Port and Configuration Switch Connections and Usage

Serial Port	Switch	Connections
J7 (SPORT1)	S1	Connected to 21160-1 as a standard serial port
J8 (SPORT2)	S2	Connected to 21160-2 as a standard serial port
J9 (SPORT3)	S3	Connected to 21160-3 as a standard serial port
J10 (SPORT4)	S4	Connected to 21160-4 as a standard serial port
J11 (SPORT5)	\$5	Connects to all four processors as a TDM serial port

Figure 2-2 Location of Pin 1 on the Serial Port Jumper Blocks

Setting the Standard Serial Port Configuration Switches

Table 2–4 gives the pinout of the switches that configure the standard serial ports, and Table 2–8 shows their settings.

Figure 2–3 Standard Serial Configuration Switch Pinout (S1–S4)

 Table 2-8
 Settings for the Standard Serial Port Configuration Switches

Switch	Signal	Settings	
1/16	P33V	ON: Connects P33V signal to pin 1 of external serial port connector. Use this setting if usin active external adapter that needs power. OFF: Otherwise	g
2/15	TCK/RCK	ON: Connects TCK and RCK signals together on external connector, which is required for TC mode. Also connects TCK and RCK signals ADSP-21160. OFF: Standard mode	MC
3/14	TD/RD	ON: Connects TD and RD signals together on external connector for TDM 1-wire mode. A connects TD and RD signals on ADSP-2116 OFF: TDM 2-wire, standard mode	
4/13	TFS	ON: Connects TFS signal on external connector v TFS signal on ADSP-21160. Required for u as a standard serial port with a null-modem cable. OFF: Otherwise	se
5/12	FI1	ON: Connects FL1 signal (pin 9) on external seri port with FLAG1 on ADSP-21160.	al
6/11	FI2	ON: Connects FL2 signal (pin 12) on external se port with FLAG2 on ADSP-21160.	rial
<i>7/</i> 10	NC	Not connected	
8/9	NC	Not connected	

Setting the TDM Serial Port Configuration Switch

Table 2–4 gives the pinout of the switches that configure the standard serial ports, and Table 2–9 shows their settings.

Figure 2–4 TDM Serial Port Switch Pinout (S5)

Table 2–9 Settings for the TDM Configuration Switch

Switch	Signal	Settings
1/8	TD/RD	ON: Connects TD and RD signals together on external connector for TDM 1-wire mode. Also connects TD and RD signals on ADSP-21160. OFF: TDM 2-wire, standard mode
2/7	TFS	ON: Connects TFS signal on external connector with TFS signal on ADSP-21160. Required for use as a standard serial port with a null-modem cable. OFF: Otherwise
3/6	P33V	ON: Connects P33V signal to pin 1 of external serial port connector. Use this setting if using active external adapter that needs power. OFF: Otherwise
4/5	NC	Not connected

2.2.3 Connecting External Devices to the Board

After you have set the configuration jumpers and installed the board and its software, the next step is to attach any desired external devices to the board.

Connecting a PMC or PMC+ Module to the Board

The Hammerhead-PCI board features two PMC interfaces. One PMC interface allows you to attach standard PMC (PCI Mezzanine Card) modules to the board. The second PMC interface allows you to attach standard PMC modules or BittWare's PMC+ I/O modules. The second PMC interface features three standard PMC connectors, which provide the 64-bit, 66 MHz

23

Chapter 2

PCI interface, and an additional connector that provides a TDM serial connection, four link ports, and flags and interrupts directly from the PMC card to the DSPs on the Hammerhead-PCI.

Warning!

BittWare uses J27 (J4) of the PMC+ interface (see section 3.2.8) for our PMC+ extensions. If you are not mounting a BittWare PMC+ card on the PMC+ interface, the PMC board may have incompatibilities with the PMC+ (J4) connector. Call BittWare technical support for assistance.

To attach a PMC or PMC+ module to the Hammerhead-PCI,

- Plug the PMC module onto either of the Hammerhead-PCI's PMC interfaces.
- 2. Secure the PMC module to the mounting holes.
- 3. Check the required PCI signalling and width.
- 4. Set the secondary PCI bus configuration jumpers (JP5 and JP6) appropriately (see section 2.2.1).

Connecting Link Port Cables

The Hammerhead-PCI board has four external link port connectors (J2–J5), which allow the processors on the Hammerhead-PCI board to communicate directly with processors on other boards. Section 3.2.2 shows the location and pinout of the connectors. Table 2–10 below gives the part numbers of the link port cables that are compatible with the Hammerhead-PCI's link port connectors.

 Table 2-10
 Link Port Cables Compatible with the Hammerhead-PCI Link Ports

Location	Туре	Manufacturer	Part Number
Hammerhead-PCI (J2–J5)	Honda connector; 26-pin link port cable; 12" or 36"	BittWare	CAHC-L26-12 CAHC-L26-36

Connecting Serial Port Cables

The Hammerhead-PCI has five external serial port connectors (J7–J11), which provide a communication route between the ADSP-21160 processors and other synchronous serial devices. Section 3.2.4 shows the location and

pinout of the connectors. Table 2–11 below gives the part numbers of the serial port cables that are compatible with the Hammerhead-PCI's serial ports.

 Table 2-11
 Serial Port Cable Compatible with the Hammerhead-PCI Serial Ports

Location	Туре	Manufacturer	Part Number
Hammerhead-PCI (J7–J10)	Ribbon high density; Null 20-pin standard serial port; 8" or 16"	BittWare	CARH-N20-08 CARH-N20-16
Hammerhead-PCI (J11)	Ribbon high density; Straight thru 20-pin TDM serial port; 8" or 16"	BittWare	CARH-S20-08 CARH-S20-16

Connecting RS-232 Cables

To connect the Hammerhead-PCI to your PC via the RS-232 interface, attach a ribbon cable connected to a mass-terminated DB-9 connector. The cable provides a straight-through connection from the Hammerhead-PCI's dual UART to the PC. Since the connector's pinout (see Table 3–8) is data communication equipment (DCE), you can connect it directly to equipment configured as data terminal equipment (DTE), such as a PC without a null-modem cable.

BittWare offers a host serial interface cable that connects the RS-232 connectors directly to a standard PC's DB-9 RS-232 Com port. To connect the Hammerhead-PCI to a PC with a host serial interface cable, follow the steps below.

- 1. Plug a serial port adapter into a 9-pin host serial interface cable, such as the cable described above.
- 2. Connect the other end of the serial port adapter to the RS-232 port (J17 or J18). One side of the adapter is marked with a red line. Be sure to line up the marked side with pin 1 on the RS-232 connector (Figure 3–9 shows where pin 1 is located).
- 3. Making sure that the PC's power is off, connect the serial interface cable to the PC.

25

Connecting an External Power Supply

The Hammerhead-PCI requires a +3.3 and +5V power supply for normal operation; when operating with a PMC module, it requires +12V and -12V. The external power connector (J1) supplies +3.3V, +5V, -12V, and +12V to the Hammerhead-PCI. Figure 3–4 gives the pinout of the connector and shows where it is located.

To connect an external power source to the Hammerhead-PCI,

- 1. Plug a power adapter cable into the Hammerhead-PCI's external power connector (J1). Be sure to align pin 1 (GND) on J1 with the GND pin on the cable.
- 2. Connect the remaining end of the cable to an external power source, such as a switching standalone power supply or the PC's power supply.
- 3. Apply power to the system.
- 4. Reset the Hammerhead-PCI. Section 2.5 explains in more detail how to reset the board.

User's Guide

2.3 Installing the Board and Its Software

2.3.1 Installing the Code Development Tools

The Hammerhead-PCI is compatible with the VisualDSP++® software development toolset from Analog Devices. VisualDSP++ is an easy-to-use project management environment comprised of an integrated development environment (IDE) and debugger. The VisualDSP++ IDE includes access to Analog Devices' 4.0 SHARC C compiler, C runtime library, assembler, linker, loader, simulator, and splitter.

BittWare's VisualDSP Target is a plug-in for VisualDSP++ that allows you to use the VisualDSP++ debugger with your BittWare board. The Target works with the VisualDSP++ debugger to allow direct communication with the DSPs on the Hammerhead-PCI. This section describes where to find installation instructions for the VisualDSP++ IDE and the BittWare VisualDSP Target.

Installing the VisualDSP++® IDE

To install the Analog Devices development tools, refer to the *VisualDSP++IDE User's Manual* (Analog Devices, Inc.).

Installing the BittWare VisualDSP Target

If you will be using the VisualDSP Target debugger with the Hammerhead-PCI, you will need to install BittWare's VisualDSP Target after installing the VisualDSP++ IDE. The VisualDSP Target allows the VisualDSP++ debugger to communicate directly with the ADSP-21160 processors on the Hammerhead-PCI. The *VisualDSP Target User's Guide* gives detailed installation instructions.

2.3.2 Installing the BittWare DSP21k-SFToolkit

This section gives a basic overview of installing the BittWare DSP21k-SF Toolkit. For detailed installation instructions, refer to the *DSP21k-SF Toolkit Installation Guide*.

Chapter 2 27

Overview of the DSP21k-SF Toolkit

BittWare's DSP21k-SF Toolkit is a set of libraries and utilities that enable you to develop DSP applications for the Hammerhead-PCI more quickly and easily. It contains a host interface library of C-callable functions for PC-based programs, diagnostic utilities, demo programs, and a DSP library that provides standard I/O extensions to DSP programs.

Libraries. The primary component of the DSP21k-SF Toolkit is the *Host Interface Library* (HIL). The HIL is a library of C-callable functions for DSP programs that allows you to download and start programs on the DSP, read from and write to the DSP's memory, and control other board functions.

The DSP21k-SF Toolkit also contains the *DspHost Library*, which gives your DSP programs standard I/O routines such as screen display, keyboard input, and disk file access. It consists of a library of standard I/O routines that you link into your DSP program and a program that runs on the PC to act as an I/O server. DspHost is an excellent tool for porting existing C applications to the DSP.

Diagnostic Utilities. *Diag21k* is a character-based diagnostic utility that lets you interactively download DSP programs, start and stop their operation, and access DSP memory.

The *DSP Board Automated Diagnostic* (DspBad) is a command-line operated utility that verifies the ability to communicate with the DSP from the host, tests the memory of the board, and confirms the DSPs' ability to load and run a program.

Installing the DSP21k-SF Toolkit Libraries and Utilities

Run the DSP21k-SF Toolkit setup program to install the DSP21k-SF Toolkit libraries and utilities. The *DSP21k-SF Toolkit User's Guide* explains the procedure in more detail.

28 User's Guide Hammerhead-PCI

2.3.3 Installing the Hammerhead-PCI in a PC

After installing the DSP21k-SF Toolkit, install the Hammerhead-PCI in a full-length 32- or 64-bit slot in your PC.

Note

Before installing the Hammerhead-PCI in your PC, be sure to follow the instructions in sections 2.1–2.3.2.

Warning!

The Hammerhead-PCI requires 3.3V from the PCI backplane. If the PCI backplane does not supply 3.3V, the board will not function properly. If in question, use a multi-meter on an external power connector and check the 3.3V signal.

- 1. Open the computer chassis and access the expansion slots. (Refer to your computer's documentation for instructions.)
- 2. Select a 32- or 64-bit slot and remove the slot cover bracket.
- 3. Plug the Hammerhead-PCI into the slot you selected.
- 4. Secure the Hammerhead-PCI's mounting bracket to the chassis with the screw that you removed from the slot cover bracket (see step 2 above).
- 5. Reassemble the computer chassis.
- 6. Power up the system.

2.3.4 Verifying Board Configuration

After installing the board and powering up the system, run the BittWare Configuration Manager to ensure that the board is properly configured. The BittWare Configuration Manager is a utility included with the DSP21k-SF Toolkit that allows you to install, uninstall, or get and set properties for the Hammerhead-PCI board. The DSP21k-SF Toolkit User's Guide explains how to run the BittWare Configuration Manager.

Chapter 2 29

2.4 Testing the Installation

This section discusses running diagnostic tests on the board after installation to make sure it is operating properly. It runs you through a Diag21k example and discusses the contents of the example files included with the Hammerhead-PCI.

2.4.1 Testing the Board with the DSP21k-SFToolkit Utilities

The DSP21k-SF Toolkit contains two utilities for testing a DSP board to make sure it is operating properly: the DSP Board Automated Diagnostic (DspBad) and Diag21k.

- DspBad is a command-line-operated utility that verifies the ability to communicate with the DSP board from the PC, tests the memory of the board, and confirms the DSP's ability to load and run a program.
- *Diag21k* is a character-based diagnostic utility that you start from the MS-DOS command prompt. Diag21k lets you interactively download DSP programs, start and stop their operation, and access DSP memory.

Testing the Board with DspBad

To test a processor with DspBad, enter the following command at a command prompt:

```
C:>dspbad -b<N> <enter>
or
C:>dspbad -d<N> -i<N> <enter>
```

The <n> in -b<n> represents the processor number¹. The <n> in -d<n> represents the device number. The <n> in -i<n> represents the processor ID number of the processor you want to open on the specified device. The DSP21k-SF Toolkit Installation Guide explains DspBad commands in more detail.

30 User's Guide Hammerhead-PCI

^{1.} The processor number is the *device number* * 10 + id *number*. See Chapter 3 of the *DSP21k-SF User's Manual* for further explanation.

Testing the Board with Diag21k

The example below shows you basic Diag21k commands to test the Hammerhead-PCI's memory and load and run a DSP program. Be sure to follow the example steps below in the order in which they appear. The DSP21k-SF Toolkit User's Manual describes the Diag21k commands in more detail.

Step 1: Start Diag21k

a. The Diag21k program is located in the dsp21ksf\bin directory. Start the program from the DOS prompt. The -b switch tells Diag21k which processor you will access. If you do not specify a processor number with -b (or both -d and -i), Diag21k will use all processors that are installed in your PC.

```
C:\DSP21KSF\BIN>diag21k -b1
```

```
C:\DSP21KSF\BIN>diag21k -d0 -i1
```

Both of the command line options above tell Diag21k to open the first processor on device 0.

b. Diag21k will start and display a copyright banner. The command prompt shows the active board number in square brackets.

```
DSP21K Interactive Diagnostic Utility
32-bit version for SharcFIN boards under Windows 95/98 and
Windows NT/2000. Release 6.30 [ DSP21K-SF, Aug 7 2001
08:24:36 ], Version 4.30 Copyright (c) 1992-2001 BittWare,
Inc. All rights reserved.

Type "?" for a list of commands.

Available DSP numbers: 1 2 3 4

Opened 4 DSPs.

Current DSP: #1, processor 1 on Hammerhead (device 0)
```

Step 2: Display Board Information

a. Use the board information command to display information about the Hammerhead-PCI's DSPs.

diag21k[1]>bi

Chapter 2 31

```
Board/Processor Information for DSP #1 (Not Started)
  Board Type: (38) Hammerhead
                                          DSP Type: (7) ADSP-21160
  Multi-proc ID: 1
                                  Interrupt Number: 11
  BAR0: 0x0c800000 Size: 0x00000200
                                       BAR3: 0x0c800200 Size: 0x00000100
  BAR1: 0x0c400000 Size: 0x00400000
                                       BAR4: 0x0a000000 Size: 0x01000000
  BAR2: 0x80000000 Size: 0x02000000
                                       BAR5:
                                                        Size: 0x0
Int. Mem: 4 Mbit IMDW0: 32-bit data
                                         IMDW1: 32-bit data
  MMS WS: 0 Ext Bank Size: 32768 KW (MSIZE = 12) DRAM PqSz: 256 W
Bank 0: Start = 0x00800000 Width = 32 bits Depth = 32768 KW WS/WM = 1/2
Bank 1: Start = 0x02800000 Width = 8 bits Depth = 2048 KW WS/WM = 7/0
Bank 2: Start = 0x04800000 WS/WM = 1/2
Bank 3: Start = 0x06800000 WS/WM = 7/0
Unbnkd: Start = 0x08800000 WS/WM = 7/0
  Program loaded: (none)
  Labels: *not defined*
```

Notice the memory size information for the external memory banks 0 and 1. The memory test command (mt) uses these values when it performs various tests on different regions of the ADSP-21160's memory.

Step 3: Test the Hammerhead-PCI's Memory

Now that you have found the memory bank settings, you can test all of the Hammerhead-PCI's memory with the following commands.

a. To ensure that neither of the processors is executing programs that might change memory while you are testing it, use the following command to reset the board:

diag21k[1]>br

Board reset

b. Next, use the following command to configure the processor you selected to access external memory (MSIZE and WAIT settings from the environment variable):

diag21k[1]>pc

processor configured

c. Now use the following command to test all memory banks:

diag21k[1]>mt aa

```
Program Memory Test at 0x040000, Size: 0xa000 48-bit Words
      Self-Address..... ok
      Self-Address Complement... ok
      Checkerboard A..... ok
      Checkerboard 5..... ok
      All Bits Clear..... ok
      All Bits Set..... ok
      Random Numbers..... ok
Data Memory Test at 0x050000, Size: 0x10000 32-bit Words
      Self-Address..... ok
      Self-Address Complement... ok
      Checkerboard A..... ok
      Checkerboard 5..... ok
      All Bits Clear..... ok
      All Bits Set..... ok
      Random Numbers..... ok
External Bank 0 Test at 0x800000, Size: 0x2000000 32-bit
Words
      Self-Address..... ok
      Self-Address Complement... ok
      Checkerboard A..... ok
      Checkerboard 5..... ok
      All Bits Clear..... ok
      All Bits Set..... ok
      Random Numbers..... ok
```

Step 4: Load and Execute a Program

Now that you have tested the memory, you know that Diag21k can successfully communicate with the Hammerhead-PCI board. Next, load a program and execute it.

a. The dsp21ksf\etc directory contains an example program that calculates the first twenty prime numbers. The source code is in the examples\21160\prime160 directory. Load the pre-compiled executable file with the file load (f1) command.

diag21k[1]>f1\dsp21ksf\etc\prm21160

```
"\dsp21ksf\etc\prm21160.dxe" loaded
```

b. Now that Diag21k has downloaded the executable file into the ADSP-21160's memory and holds the processor in reset, start the processor with the processor start command.

diag21k[1]>ps

processor running

c. To see the results of the primes program, examine the variable that contains the calculated prime numbers. The C program primes.c defines a global array called primes, which is stored in data memory. The memory read command can use global labels to locate variables and functions. Notice that the C compiler adds an underscore to global labels.

diag21k[0]>mr li _primes 20

```
DATA_SRAM [00050040] =
                             2
DATA_SRAM [00050041] =
                             3
DATA SRAM [00050042] =
                             5
                             7
DATA_SRAM [00050043] =
DATA_SRAM [00050044] =
                            11
DATA SRAM [00050045] =
                            13
DATA_SRAM [00050046] =
                            17
DATA_SRAM [00050047] =
                            19
DATA_SRAM [00050048] =
                            23
                            29
DATA_SRAM [00050049] =
DATA SRAM [0005004A] =
                            31
DATA_SRAM [0005004B] =
                            37
DATA_SRAM [0005004C] =
                            41
DATA SRAM [0005004D] =
                            43
DATA_SRAM [0005004E] =
                            47
DATA SRAM [0005004F] =
                            53
                            59
DATA_SRAM [00050050] =
DATA_SRAM [00050051] =
                            61
DATA_SRAM [00050052] =
                            67
DATA_SRAM [00050053] =
                            71
```

Step 5: Test the Remaining Processors

a. To test the remaining ADSP-21160 processors, select one of them with the board select command.

```
diag21k[1]>ds 2
    Current DSP: #2, processor 2 on Hammerhead (device 0)
```

b. With another processor selected, you can use the same commands as before to load a program and start the processor.

```
diag21k[2]>f1 ..\etc\prm21160

"..\etc\prm21160.dxe" loaded

diag21k[2]>ps

processor running
```

34 User's Guide Hammerhead-PCI

diag21k[2]>mr li _primes 20

```
DATA SRAM [00050040] =
                             2
DATA SRAM [00050041] =
                             3
                             5
DATA_SRAM [00050042] =
DATA_SRAM [00050043] =
                             7
DATA_SRAM [00050044] =
                            11
DATA_SRAM [00050045] =
                            13
DATA SRAM [00050046] =
                            17
DATA_SRAM [00050047] =
                            19
DATA_SRAM [00050048] =
                            23
DATA_SRAM [00050049] =
                            29
DATA_SRAM [0005004A] =
                            31
DATA_SRAM [0005004B] =
                            37
DATA SRAM [0005004C] =
                            41
DATA_SRAM [0005004D] =
                            43
DATA_SRAM [0005004E] =
                            47
                            53
DATA_SRAM [0005004F] =
DATA_SRAM [00050050] =
                            59
DATA SRAM [00050051] =
                            61
DATA_SRAM [00050052] =
                            67
DATA_SRAM [00050053] =
                            71
```

Step 6: Exit Diag21k

To exit Diag21k and reset the processor you have selected, use the quit command.

diag21k[0]>q

```
exiting...resetting processor(s)
C:\DSP21KSF\BIN>
```

2.4.2 Testing the Board with the Hammerhead-PCI Example Files

The example software provided with the Hammerhead-PCI contains examples that demonstrate how to use the various features of your board and software. The examples are located in the examples directory of the Hammerhead-PCI CD-ROM.

Chapter 2 35

2.5 Resetting the Board

You can use three methods to reset the Hammerhead-PCI.

- · Enable the Hammerhead-PCI's watchdog timer
- · Reset the Hammerhead-PCI via the host interface
- Send a reset pulse to the Hammerhead-PCI via the external reset connector

2.5.1 Resetting the Board with the Watchdog Timer

The Hammerhead-PCI's watchdog timer helps to ensure that the Hammerhead-PCI is operating properly. It is also useful for standalone applications that need to restart when certain errors occur or a program crashes.

The Watchdog Configuration register, which is located in the SharcFIN ASIC, enables and disables the watchdog timer. The register is located at offset 0x43 from the base of the ADSP-21160s' memory select line MS2.

How the Watchdog Timer Functions when Disabled

The watchdog is disabled after a reset occurs. When the watchdog is disabled, the SharcFIN chip constantly strobes the timer to keep it from elapsing. Since it is constantly being strobed, the watchdog timer will not time-out regardless of whether the program fails.

How the Watchdog Timer Functions when Enabled

When enabled, the watchdog timer must be reset before it expires to prevent a board reset from occurring. The watchdog timer is reset every time FLAG1 from a configured processor toggles from 0 to 1 or from 1 to 0. The FLAG1 signals are flags that are under program control and can strobe the watchdog timer to prevent it from elapsing.

Six bits in the Watchdog Configuration register control the watchdog timer. The first two bits enable it and select its time-out time, and the next four bits determine which flag the watchdog will respond to (see section 6.5.4). The Watchdog Configuration register is a write once register; therefore, once the watchdog is enabled it cannot be disabled except by a board reset.

If the watchdog timer is enabled, the DSP program must toggle FLAG1 within the given time frame. The Watchdog Configuration register allows you to

36 User's Guide Hammerhead-PCI

select the watchdog's time-out time (see section 6.5.4). If the watchdog timer elapses, it will generate a system reset and the normal boot process will begin.

2.5.2 Resetting the Board with the External Reset Connector

The external reset connector (J6) allows the Hammerhead-PCI board to reset or be reset by other system boards. The connector supports an input reset line to allow the Hammerhead-PCI to receive reset signals from other boards; it also supports an output reset line to allow the Hammerhead-PCI to reset other boards.

To reset the Hammerhead-PCI with the external reset connector,

- 1. Connect a cable (see Figure 2–5 below) from the external reset connector (J6) on the Hammerhead-PCI board to another system board.
- 2. Any reset that occurs on the Hammerhead-PCI reset source causes a reset on all Hammerhead-PCI reset targets.

Figure 2–5 Cable Details for the Hammerhead-PCI's External Reset Connector

2.5.3 Resetting the Board from the Host Interface

A register bit in the SharcFIN ASIC allows the board to reset from the host PC. This bit is B0 of the register located at byte offset 0x58 from the base of Base Address Register 0 (BAR0). When the register is written, all components on the board will be reset. Complete this reset procedure regardless of other reset methods to ensure hardware and software initialization.

2.5.4 Resetting An Attached PMC+ Card

The PMC+ interface on the Hammerhead-PCI features a reset line that allows the Hammerhead-PCI to reset a PMC+ card that is attached to it.

Chapter 3

Overview of the Hardware Components

This chapter shows where the Hammerhead-PCI's major components and connectors are located and briefly describes their function. Section 3.1 describes the layout and function of the major components, section 3.2 describes the external connectors, and section 3.3 describes the configuration jumpers. This chapter covers the following components and connectors:

- · ADSP-21160 SHARC processors
- Flash memory
- SDRAM
- · SharcFIN ASIC
- · on-board oscillators
- · dual UART
- PCI-to-PCI bridge chip
- LEDs
- · watchdog timer
- · PMC and PMC+ interfaces
- · JTAG header
- external power connector
- · external link ports
- external serial ports
- · external reset connector
- · RS-232 ports
- peripheral bus expansion connectors
- · flag test points

3.1 Layout and Function of the Major Components

Figure 3–1 highlights the major components on the Hammerhead-PCI. The sections that follow describe the features highlighted in the diagram.

40 MHz DSP Oscillator PCI-to-PCI Bridge 18.432 MHz UART Oscillator Flash Memory

Figure 3-1 Location of the Hammerhead-PCI's Major Components (Top)

Figure 3–2 Location of the Hammerhead-PCI's Major Components (Bottom)

3.1.1 ADSP-21160 SHARC Processors

The Hammerhead-PCI features up to four ADSP-21160 SHARC processors from Analog Devices, Inc. The Hammerhead-PCI's processors have a total of 2400 MFLOPs of processing power and operate at 80 MHz. Each processor supports two I²S serial ports, 14 DMA channels, four flags, three interrupts, and six link ports. Each processor also features 4 Mbits of dual-ported on-chip SRAM.

3.1.2 Memory

Flash Memory

A 2 MB bank of Flash memory stores boot programs that the processor can load, enabling the Hammerhead-PCI to boot without a host computer (see Appendix B). The ADSP-21160s can also read, write, and erase the Flash, which allows them to use the Flash as non-volatile storage space.

SDRAM

A bank of up to 512 MB of SDRAM is available to the ADSP-21160s for banked external memory.

3.1.3 SharcFIN ASIC

BittWare's SharcFIN ASIC flexibly interfaces Analog Devices' SHARC DSPs to a wide range of the Hammerhead-PCI's interfaces, including 64/66 MHz PCI bus (rev. 2.2 compliant), SDRAM, UART, I^2C^{TM} serial ports, Flash, and a general-purpose expansion bus (the 8-bit peripheral bus). The SharcFIN also provides a feature-rich set of DMA functions and interrupt options to support very high-speed, real-time data flow with a minimum of processor overhead. The following is a list of the SharcFIN's features:

- 64-bit, 66 MHz PCI rev. 2.2 compliant interface (528 MB/s burst)
- Connected to 64-bit, 40 MHz ADSP-21160 cluster bus
- Connected to the Hammerhead-PCI's peripheral bus
 - 8 bits wide @ 20 MHz
 - Accessible from the ADSP-21160 cluster bus and the PCI bus
 - Flash interface for SHARC boot and non-volatile data storage
- Six independent FIFOs (2.4 KB total)

- Four DMA buffers, 64×64 each (two transmit, two receive)
- Two target buffers, 32×64 write, 16×64 read
- Direct, single PCI access from the ADSP-21160 cluster bus
- 16-byte configurable PCI mailbox registers
- I₂O[™] V1.5 compliant
- Programmable interrupt multiplexer: 10 inputs, 7 outputs (one of each dedicated to PCI)
- SDRAM controller on ADSP-21160 cluster bus; supports up to 512 MB
- Standard UART and I²C interface

3.1.4 PCI Interface

The Hammerhead-PCI features a rev. 2.2 compliant 66 MHz, 64-bit, bus-mastering-capable PCI bus interface. This interface gives host computers direct access to the ADSP-21160 processors, the external SDRAM, the Flash RAM, the dual UART, and the expansion connector. The PCI interface also gives access to PMC and PMC+ modules on the PMC and PMC+ sites.

The PCI bus can operate at either 64 bits, 66 MHz or 32 bits, 33 MHz. You can configure the speed of the PCI bus with jumper settings (see section 2.2.1).

3.1.5 On-Board Oscillators

SHARC Oscillator

A 40 MHz system oscillator chip (Y2) provides the 1× clock for the four onboard SHARC processors. Figure 3–1 shows its location.

UART Oscillator

An 18.432 MHz oscillator chip (Y1) provides the clock for the dual UART. Figure 3–1 shows its location.

Chapter 3 43

3.1.6 Dual RS-232 UART

The dual RS-232 UART interfaces serial data from the RS-232 ports to the 64-bit ADSP-21160 cluster bus. The dual UART acts as two independent 16550 standard UARTs. Section 3.2.6 describes the RS-232 ports.

3.1.7 PCI-to-PCI Bridge Chip

The PCI-to-PCI bridge chip (Intel 21154-BC from Intel Corporation) provides the bridge between the primary and secondary PCI bus.

3.1.8 LEDs

The Hammerhead-PCI has eight user LEDs, which you can use to indicate certain conditions in the software or to provide feedback. Two LEDs are connected to each ADSP-21160. Section 4.2.5 shows the LEDs' connections to the ADSP-21160 flags.

3.2 Layout and Function of the External Connectors

Table 3–1 gives an overview of the external connectors, and Figure 3–3 shows where the Hammerhead-PCI's external connectors are located.

Table 3–1 Overview of the External Connectors

Connector	Ref Des	Туре	Description
External Power	J1	8-pin	Connection for $+3.3V$, $+5V$, and $\pm12V$ external power supply
External Link Ports	J2–J5	26-pin	80 MB/s communication route between external devices and ADSP-21160s
External Reset	J6	6-pin	Connection for a panel-mounted reset switch
External Serial Ports	J <i>7</i> –J11	20-pin	Communication route between ADSP-21160s and synchronous serial devices
Flag I/O	J16	16-pin	Access to FLAG2 and FLAG3 on each processor
RS-232 Ports	J17, J18	10-pin	External RS-232 serial interface to ADSP-21160s via dual UART
Expansion Connector	J19	50-pin	Connection for adding expansion module onto 8-bit peripheral bus
PMC Interface	J20, J25, J26	64-pin	Connection for standard PMC module
PMC+ Interface	J21, J22, J27, J28	64-pin	Connection for BittWare PMC+ I/O module or for standard PMC module
SDRAM (SODIMM)	J24	144-pin	Connection for standard 144-pin SODIMM SDRAM modules
Test Points	J23	22-pin	Manufacturer use only
JTAG Boundary Scan	J29	10-pin	Manufacturer use only
JTAG	J30	14-pin	Connection for ICE in-circuit emulator

Chapter 3 45

Location of the External Connectors Test_ Points_ External Power Connector External Reset Connector SO-DIMM External Link Ports PMC Interface PMC+ Interface SINO-8 PINOUS T External Serial Ports, E48888888 Expansion Connector Hammerhead - PCI RS-232 V Connectors

Figure 3-3

Flag I/O Connector

3.2.1 External Power Connector

The Hammerhead-PCI has an external power connector (J1) to provide power to the board when it is operating in standalone mode. The external power connector is an 8-pin connector that supplies +3.3V, +5V, +12V, and -12V to the Hammerhead-PCI. Figure 3–4 shows the location of the pins on the external power connector (J1), and Table 3–2 gives the connector pinout. The section entitled "Connecting an External Power Supply" on page 26 provides more information on the connector.

Figure 3-4 Location of the External Power Connector Pins

Table 3–2 External Power Connector Pinout (J1)

Pi	n Signal
1	GND
2	+12V
3	GND
4	VDD
5	GND
6	+3.3V
7	GND
8	-12V

Chapter 3 47

3.2.2 External Link Ports

The Hammerhead-PCI has four 26-pin external link port connectors: J2–J5. The external link ports allow you to connect the ADSP-21160s directly to other boards at rates up to 80 MHz. Figure 3–5 shows the location of the external link port connector pins, and Table 3–3 gives the connector pinout.

Figure 3-5 Location of the External Link Port Connector Pins

 Table 3-3
 Link Port Connector Pinout (J2–J5)

J2		J3		J4		J5	
Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	NC	1	NC	1	NC	1	NC
2	EA_L1CLK	2	EA_L2CLK	2	EA_L3CLK	2	EA_L4CLK
3	EA_L1ACK	3	EA_L2ACK	3	EA_L3ACK	3	EA_L4ACK
4	EA_L1DAT0	4	EA_L2DAT0	4	EA_L3DAT0	4	EA_L4DAT0
5	EA_L1DAT1	5	EA_L2DAT1	5	EA_L3DAT1	5	EA_L4DAT1
6	EA_L1DAT2	6	EA_L2DAT2	6	EA_L3DAT2	6	EA_L4DAT2
7	EA_L1DAT3	7	EA_L2DAT3	7	EA_L3DAT3	7	EA_L4DAT3
8	EA_L1DAT4	8	EA_L2DAT4	8	EA_L3DAT4	8	EA_L4DAT4
9	EA_L1DAT5	9	EA_L2DAT5	9	EA_L3DAT5	9	EA_L4DAT5
10	EA_L1DAT6	10	EA_L2DAT6	10	EA_L3DAT6	10	EA_L4DAT6
11	EA_L1DAT7	11	EA_L2DAT7	11	EA_L3DAT7	11	EA_L4DAT7
12	NC	12	NC	12	NC	12	NC
13	NC	13	NC	13	NC	13	NC
14	GND	14	GND	14	GND	14	GND
15	GND	15	GND	15	GND	15	GND
16	GND	16	GND	16	GND	16	GND
1 <i>7</i>	GND						
18	GND	18	GND	18	GND	18	GND
19	GND	19	GND	19	GND	19	GND
20	GND	20	GND	20	GND	20	GND
21	GND	21	GND	21	GND	21	GND
22	GND	22	GND	22	GND	22	GND
23	GND	23	GND	23	GND	23	GND
24	GND	24	GND	24	GND	24	GND
25	GND	25	GND	25	GND	25	GND
26	JP12	26	JP13	26	JP14	26	JP15

Chapter 3Overview of the Hardware Components

3.2.3 External Reset Connector

The Hammerhead-PCI has an external reset connector (J6) to allow one Hammerhead-PCI board to reset other Hammerhead-PCI boards in the same system. The external reset connector is a 6-pin connector.

The connector supports an output reset line, which allows the board to reset other boards. It also supports an input reset line, which allows it to accept a reset signal from another board. If the input signal is driven low, the board will perform a hardware reset on all four SHARCs. The input signal is pulled up with a 10K resistor.

If the output signal is driven low, the board will output a reset signal to other boards. When the output is connected to group reset, it can drive a reset signal to up to 250 boards. If the output signal is tied to the board's hardware reset line, it is driven low by either a host board reset or by a watchdog reset.

Section 2.5 explains the Hammerhead's reset events. Figure 3–6 shows where the pins are located, and Table 3–4 gives the connector pinout.

Figure 3–6 Location of the External Reset Connector Pins

Table 3-4 External Reset Connector Pinout (J6)

Pin	Signal	Pin	Signal
1	NC	2	HA_EXTGRPRSTIN
3	NC	4	GND
5	GND	6	HA_EXTGRPRSTOUT

3.2.4 External Serial Ports

Five 20-pin, 50mm, right-angle IDC external serial port connectors (J7–J11) provide a communication route between the ADSP-21160 DSPs and synchronous serial devices at rates up to 40 Mbits/sec. The serial ports on the Hammerhead-PCI conform to BittWare's "*Universal Serial Port Specification*" (available from BittWare upon request). Each connector has a dip switch that configures it (see section 2.2.2 and Table 3–5 below).

External Serial Port Connections and Usage

Table 3–5 below explains how each serial port is connected to the DSPs, which switch configures it, and whether it is connected as a standard or TDM serial port. Section 2.2.2 explains the switches in detail.

Table 3-5 Serial Port Connections and Usage

Serial Port	Switch	Connection
J <i>7</i>	S1	Standard connection to 21160-1
J8	S2	Standard connection to 21160-2
J9	S3	Standard connection to 21160-3
J10	S4	Standard connection to 21160-4
J11	S5	TDM connection to all four 21160 DSPs

Serial Port Connector Pinout

The Hammerhead-PCI's five external serial ports are labeled as J7–J11. Figure 3–7 shows the location of the pins on the connectors, and Table 3–6 gives the pinout for the connectors. The signals come directly from the ADSP-21160 pins they are associated with, and they exhibit the same timing characteristics described in the *ADSP-21160 User's Manual* (Analog Devices, Inc.). The signals are series terminated with 82Ω .

Chapter 3 51

Figure 3-7 Location of Serial Port Connector Pins

 Table 3-6
 Serial Port Connector Pinout (J7–J11)

Pin	Signal	Pin	Signal
1	+3.3V	2	GND
3	RCLK	4	GND
5	RFS	6	GND
7	RD	8	GND
9	RD2/FI1	10	GND
11	GND	12	TD2/FI2
13	GND	14	TD
15	GND	16	TFS
1 <i>7</i>	GND	18	TCLK
19	GND	20	GIO

3.2.5 Flag I/O Connector

The flag I/O connector (J16) allows access to the FLAG2 and FLAG3 signals on each ADSP-21160 DSP. This access to the ADSP-21160s' flags allows you to input and output signals directly to the processors. Because the connector is directly routed to the ADSP-21160s, the circuit is diode protected to GND and 3.3V to shield the processors from voltage overload. Figure 3–8 shows where the pins are located on the connector, and Table 3–7 gives the connector pinout.

Figure 3-8 Location of the Flag I/O Connector Pins

Table 3–7 Flag I/O Connector Pinout (J16)

Pin	Signal	Description	Pin	Signal
1	HA1_F2	21160-1 FLAG2	2	GND
3	HA1_F3 HA2_I2	21160-1 FLAG3 21160-2 IRQ2	4	GND
5	HA2_F2	21160-2 FLAG2	6	GND
7	HA2_F3 HA1_I2	21160-2 FLAG3 21160-1 IRQ2	8	GND
9	HA3_F2	21160-3 FLAG2	10	GND
11	HA3_F3 HA4_I2	21160-3 FLAG3 21160-4 IRQ2	12	GND
13	HA4_F2	21160-4 FLAG2	14	GND
15	HA4_F3 HA3_I2	21160-4 FLAG3 21160-3 IRQ2	16	GND

Chapter 3Overview of the Hardware Components

The RS-232 ports (J17, J18) connect with the Hammerhead-PCI's dual UART to transmit data to the SHARC processor bus. Figure 3–9 shows where the pins are located on the RS-232 connectors, and Table 3–8 gives the pinout for the connectors.

Figure 3-9 Location of the RS-232 Connector Pins

Table 3-8RS-232 Connector Pinout (J17, J18)

Signal	Pin	Signal
	2	
TXD	4	CTS
RXD	6	RTS
	8	NC
GND	10	NC
	TXD RXD	2 TXD 4 RXD 6 8

3.2.7 Expansion Connector

J19 is a 50-pin expansion connector. The expansion connector allows you to add another device onto the 8-bit peripheral bus via a ribbon cable. Table 3–9 gives the pinout, and Figure 3–10 shows where the pins are located.

 Table 3-9
 Expansion Connector Pinout (J19)

Pin	Signal	Pin	Signal
1	PRA_INT	2	GND
3	PRA_RST	4	GND
5	PRA_WR	6	GND
7	PRA_RD	8	GND
9	PRA_ACK	10	GND
11	PRA_D00	12	GND
13	PRA_D01	14	GND
15	PRA_D02	16	GND
17	PRA_D03	18	GND
19	PRA_D04	20	GND
21	PRA_D05	22	GND
23	PRA_D06	24	GND
25	PRA_D07	26	GND
27	PRA_UBSEL	28	GND
29	PRA_A00	30	GND
31	PRA_A01	32	GND
33	PRA_A02	34	GND
35	PRA_A03	36	GND
37	PRA_A04	38	GND
39	PRA_A05	40	GND
41	PRA_A06	42	GND
43	PRA_A07	44	GND
45	PRA_A08	46	GND
47	PRA_A09	48	GND
49	PRA_A10	50	GND

Chapter 3

55

Figure 3–10 Location of the Expansion Connector Pins

3.2.8 PMC Interfaces

The Hammerhead-PCI features two PMC sites: a standard PMC interface and a PMC+ interface. The PMC interface allows you to connect a standard PMC module to the board. The PMC+ interface has back panel access and allows you to attach either a standard PMC module or one of BittWare's PMC+ I/O modules.

Standard PMC Site

The standard PMC site consists of three 64-pin connectors that connect standard PMC modules directly to the 64-bit, 66 MHz PCI interface. Table 3–10 gives the connector pinout.

Table 3–10 PMC Interface Pinout

J26 (PMC-J1)

J25 (PMC-J2)

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	TCK	2	N12V	65	P12V	66	TRST
3	GND	4	ĪNTĀ	67	TMS	68	TDO
5	ĪNTB	6	INTC	69	TDI	70	GND
7	BUSMODE 1	8	VDD	<i>7</i> 1	GND	72	PCI-RSVD
9	ĪNTD	10	PCI-RSVD	73	PCI-RSVD	74	PCI-RSVD
11	GND	12	PCI-RSVD	<i>7</i> 5	BUSMODE2	76	P33V
13	CLK	14	GND	77	RST	78	BUSMODE3
15	GND	16	GNT	79	P33V	80	BUSMODE4
1 <i>7</i>	REQ	18	VDD	81	PCI-RSVD	82	GND
19	V(I/O)	20	AD[31]	83	AD[30]	84	AD[29]
21	AD[28]	22	AD[27]	85	GND	86	AD[26]
23	AD[25]	24	GND	87	AD[24]	88	P33V
25	GND	26	C/BE[03]	89	IDSEL	90	AD[23]
27	AD[22]	28	AD[21]	91	P33V	92	AD[20]
29	AD[19]	30	VDD	93	AD[18]	94	GND
31	V(I/O)	32	AD[17]	95	AD[16]	96	C/BE[2]
33	FRAME	34	GND	97	GND	98	PMC-RSVD
35	GND	36	ĪRDY	99	TRDY	100	P33V
37	DEVSEL	38	VDD	101	GND	102	STOP
39	GND	40	IOCK	103	PERR	104	GND
41	SDONE	42	SBO	105	P33V	106	SERR
43	PAR	44	GND	107	C/BE[1]	108	GND
45	V(I/O)	46	AD[15]	109	AD[14]	110	AD[13]
47	AD[12]	48	AD[11]	111	GND	112	AD[10]
49	AD[09]	50	VDD	113	AD[08]	114	P33V
51	GND	52	C/BE[0]	115	AD[07]	116	PMC-RSVD
53	AD[06]	54	AD[05]	11 <i>7</i>	P33V	118	PMC-RSVD
55	AD[04]	56	GND	119	PMC-RSVD	120	GND
57	V(I/O)	58	AD[03]	121	PMC-RSVD	122	PMC-RSVD
59	AD[02]	60	AD[01]	123	GND	124	PMC-RSVD
61	AD[00]	62	VDD	125	ACK64	126	P33V
63	GND	64	REQ64	127	GND	128	PMC-RSVD

J20 (PMC-J3)

Pin	Signal	Pin	Signal
129	PCI-RSVD	130	GND
131	GND	132	<u>C/BE[7]</u>
133	C/BE[6]	134	C/BE[5]
135	C/BE[4]	136	GND
137	V(I/O)	138	PAR64
139	AD[63]	140	AD[62]
141	AD[61]	142	GND
143	GND	144	AD[60]
145	AD[59]	146	AD[58]
147	AD[57]	148	GND
149	V(I/O)	150	AD[56]
151	AD[55]	152	AD[54]
153	AD[53]	154	GND
155	GND	156	AD[52]
157	AD[51]	158	AD[50]
159	AD[49]	160	GND
161	GND	162	AD[48]
163	AD[47]	164	AD[46]
165	AD[45]	166	GND
167	V(I/O)	168	AD[44]
169	AD[43]	170	AD[42]
1 <i>7</i> 1	AD[41]	172	GND
173	GND	174	AD[40]
1 <i>7</i> 5	AD[39]	176	AD[38]
1 <i>77</i>	AD[37]	178	GND
179	GND	180	AD[36]
181	AD[35]	182	AD[34]
183	AD[33]	184	GND
185	V(I/O)	186	AD[32]
187	PCI-RSVD	188	PCI-RSVD
189	PCI-RSVD	190	GND
191	GND	192	PCI-RSVD

PMC+ Site

The PMC+ site consists of four 64-pin connectors. Three connectors are standard 64-pin PMC connectors (J21, J22, J28) that provide the 64-bit, 66 MHz PCI interface. The fourth connector (J27) is a 64-pin PMC+ connector that connects BittWare's PMC+ I/O modules directly to the ADSP-21160 processors via four link ports, a serial TDM bus, two PMC-to-host interrupts, two host-to-PMC interrupts, and a reset line. The PMC+ connector has back panel access. Table 3–11 gives the connector pinout.

Warning!

BittWare uses J27 (J4)* of the PMC connectors (see section 3.2.8) for our PMC+ extensions. If you are not mounting a BittWare PMC+ card on the Hammerhead-PCI board, the PMC board may have incompatibilities with the PMC+ (J4) connector. Call BittWare technical support for assistance.

* J4 is the connector number assigned to the fourth (user-definable) PMC connector in the *IEEE P1386.1 Standard Physical and Environmental Layers for PCI Mezzanine Cards: PMC* (PMC Specification).

Chapter 3 59

 Table 3-11
 PMC+ Connector Pinout

J21 (PMC J1)

J22 (PMC J2)

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	TCK	2	N12V	1	P12V	2	TRST
3	GND	4	ĪNTĀ	3	TMS	4	TDO
5	ĪNTB	6	INTC	5	TDI	6	GND
7	BUSMODE1	8	VDD	7	GND	8	PCI-RSVD
9	ĪNTD	10	PCI-RSVD	9	PCI-RSVD	10	PCI-RSVD
11	GND	12	PCI-RSVD	11	BUSMODE2	12	P33V
13	CLK	14	GND	13	RST	14	BUSMODE3
15	GND	16	GNT	15	P33V	16	BUSMODE4
1 <i>7</i>	REQ	18	VDD	1 <i>7</i>	PCI-RSVD	18	GND
19	V(I/O)	20	AD[31]	19	AD[30]	20	AD[29]
21	AD[28]	22	AD[27]	21	GND	22	AD[26]
23	AD[25]	24	GND	23	AD[24]	24	P33V
25	GND	26	C/BE[03]	25	IDSEL	26	AD[23]
27	AD[22]	28	AD[21]	27	P33V	28	AD[20]
29	AD[19]	30	VDD	29	AD[18]	30	GND
31	V(I/O)	32	AD[17]	31	AD[16]	32	C/BE[2]
33	FRAME	34	GND	33	GND	34	PMC-RSVD
35	GND	36	ĪRDY	35	TRDY	36	P33V
37	DEVSEL	38	VDD	37	GND	38	STOP
39	GND	40	IOCK	39	PERR	40	GND
41	SDONE	42	SBO	41	P33V	42	SERR
43	PAR	44	GND	43	C/BE[1]	44	GND
45	V(I/O)	46	AD[15]	45	AD[14]	46	AD[13]
47	AD[12]	48	AD[11]	47	GND	48	AD[10]
49	AD[09]	50	VDD	49	AD[08]	50	P33V
51	GND	52	C/BE[0]	51	AD[07]	52	PMC-RSVD
53	AD[06]	54	AD[05]	53	P33V	54	PMC-RSVD
55	AD[04]	56	GND	55	PMC-RSVD	56	GND
57	V(I/O)	58	AD[03]	57	PMC-RSVD	58	PMC-RSVD
59	AD[02]	60	AD[01]	59	GND	60	PMC-RSVD
61	AD[00]	62	VDD	61	ACK64	62	P33V
63	GND	64	REQ64	63	GND	64	PMC-RSVD

J28 (PMC J3)

J27 (PMC+ J4)

Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal
1	PCI-RSVD	2	GND	1	TDMTD	2	TDMRFS
3	GND	4	C/BE[7]	3	TDMRD	4	TDMTRC
5	C/BE[6]	6	C/BE[5]	5	GND	6	GND
7	C/BE[4]	8	GND	7	L1CLK/L1TXCLK	8	L1ACK/L1RXCLK
9	V(I/O)	10	PAR64	9	GND	10	GND/L1FSYNC
11	AD[63]	12	AD[62]	11	L1DAT0	12	L1DAT1
13	AD[61]	14	GND	13	L1DAT2	14	L1DAT3
15	GND	16	AD[60]	15	L1DAT4	16	L1DAT5
1 <i>7</i>	AD[59]	18	AD[58]	17	L1DAT6	18	L1DAT7
19	AD[57]	20	GND	19	GND	20	GND
21	V(I/O)	22	AD[56]	21	L2CLK/L2TXCLK	22	L2ACK/L2RXCLK
23	AD[55]	24	AD[54]	23	GND	24	GND/L2FSYNC
25	AD[53]	26	GND	25	L2DAT0	26	L2DAT1
27	GND	28	AD[52]	27	L2DAT2	28	L2DAT3
29	AD[51]	30	AD[50]	29	L2DAT4	30	L2DAT5
31	AD[49]	32	GND	31	L2DAT6	32	L2DAT7
33	GND	34	AD[48]	33	GND	34	GND
35	AD[47]	36	AD[46]	35	L3CLK/L3TXCLK	36	L3ACK/L3RXCLK
37	AD[45]	38	GND	37	GND	38	GND/L3FSYNC
39	V(I/O)	40	AD[44]	39	L3DAT0	40	L3DAT1
41	AD[43]	42	AD[42]	41	L3DAT2	42	L3DAT3
43	AD[41]	44	GND	43	L3DAT4	44	L3DAT5
45	GND	46	AD[40]	45	L3DAT6	46	L3DAT7
47	AD[39]	48	AD[38]	47	GND	48	GND
49	AD[37]	50	GND	49	L4CLK/L4TXCLK	50	L4ACK/L4RXCLK
51	GND	52	AD[36]	51	GND	52	GND/L4FSYNC
53	AD[35]	54	AD[34]	53	L4DAT0	54	L4DAT1
55	AD[33]	56	GND	55	L4DAT2	56	L4DAT3
57	V(I/O)	58	AD[32]	57	L4DAT4	58	L4DAT5
59	PCI-RSVD	60	PCI-RSVD	59	L4DAT6	60	L4DAT7
61	PCI-RSVD	62	GND	61	GND	62	RST
63	GND	64	PCI-RSVD	63	SCL	64	SDA

3.2.9 SODIMM Connector

The Hammerhead-PCI has an industry-standard 144-pin connection (J24) for a standard SODIMM module. The SODIMM modules are available in 64, 128, 256, and 512 MB modules.

3.2.10 JTAG Header

The JTAG header (J30) allows in-circuit emulation with an optional ICE emulator (available from Analog Devices). All four ADSP-21160 DSPs are connected to the JTAG connector. Figure 3–11 shows where the pins are located on the JTAG header, and Table 3–12 gives the connector pinout.

Figure 3-11 Location of the JTAG Header Pins

Table 3–12 JTAG Header Pinout (J30)

Pin	Signal	Pin	Signal
1	GND	2	EMU
3	KEY	4	CLK
5	BTMS	6	TMS
7	BTCK	8	TCK
9	BTRST	10	TRST
11	BTDI	12	TDI
13	GND	14	TDO

3.3 Layout and Function of the Configuration Jumpers and Switches

The Hammerhead-PCI has thirteen configuration jumpers, which allow you to control and enable certain features on the board. Figure 3-12 shows where the Hammerhead-PCI's configuration jumpers are located on the board.

JP1: 21160-1 Boot Mode JP2: 21160 2-4 Boot Mode JP3: 21160 Bus Priority ---JP4: PCI Bus Speed (primary) JP5: PCI Bus Speed (secondary) JP6: Secondary PCI Signal Level JP7-10: Link Port Power :: SPORT2 Config F: SPORT3 Config. F: SPORT4 Config. S1: SPORT1 Config. S2: SPORT2 Config S3: SPORT3 Config. S4: SPORT4 Config S5: TDM SPORT Conf JP1 1: Standalone Primary PCI Voltage JP1 2: Standalone Mode Clack JP1 3: Standalone Mode Reset Hammerhead - PCI 0

Layout of the Hammerhead-PCI Configuration Jumpers Figure 3-12

Table 3–13 below gives an overview of the jumpers, and section 2.2 describes their settings in more detail.

 Table 3-13
 Overview of the Configuration Jumpers

Jumper	Name	Description
JP1	21160-1 Boot Mode Select	Sets 21160-1 to boot from host computer, on-board Flash, or remote processor via link port
JP2	21160-2–4 Boot Mode Select	Sets 21160-2–4 to boot from host computer, on-board Flash, or remote processor via link port
JP3	21160 Bus Priority	Selects "fixed" or "rotating" bus priority scheme for ADSP-21160 processors
JP4	Primary PCI Bus Speed	Sets the speed of the primary PCI bus to either 33 MHz or 66 MHz
J5	Secondary PCI Bus Speed	Sets the speed of the secondary PCI bus to either 33 MHz or 66 MHz
J6	Secondary PCI Signal Level	Sets the signal level of the secondary PCI bus to 3.3 or 5 Volts
J7-10	External Link Port Connector Power	Gate power to the external link port connectors
J11	Standalone Primary PCI Voltage	Jumper must be on to operate board in standalone mode
J12	Standalone Mode Clock	Jumper must be on to operate board in standalone mode
J13	Standalone Mode Reset	Jumper must be on to operate board in standalone mode

The Hammerhead-PCI also has five configuration switches that configure the connections of the external serial port signals. Table 3–14 gives an overview of the switches, and section 2.2.2 explains how to configure them.

 Table 3-14
 Overview of the Serial Port Configuration Switches

Switch	Name	Description
S 1	Standard Serial Port 1	Configures the connections for standard external serial port J7 and 21160-1 SP1
S2	Standard Serial Port 2	Configures the connections for standard external serial port J8 and 211602 SP1
\$3	Standard Serial Port 3	Configures the connections for standard external serial port J9 and 21160-3 SP1
\$4	Standard Serial Port 4	Configures the connections for standard external serial port J10 and 21160-4 SP1
S5	TDM Serial Port	Configures the external serial port connections for external TDM serial port J11 and 21160s 1–4 SPO (TDM bus)

User's Guide
Hammerhead-PCI

Chapter 4

Hammerhead-PCI Board Architecture

This chapter discusses the architecture of the board, describing how the ADSP-21160 DSPs communicate with other DSPs, with the host, and with other I/O peripherals on and off the board. This chapter covers the following topics:

- the DSPs' memory structure
- the connections of the DSPs' serial ports
- the connections of the DSPs' link ports
- the connections of the DSPs' flags and interrupts
- the connections to the DSPs' 64-bit cluster bus
- the structure of the PCI interface (including the SharcFIN ASIC, primary and secondary PCI buses, and peripheral bus)
- the connections available via the PMC+ interface

4.1 Overview of the Board Architecture

This section gives a brief overview of the entire board and discusses how the DSPs communicate with all of the components on the board.

Figure 4-1 Block Diagram of the Hammerhead-PCI System

4.1.1 ADSP-21160 Architecture Overview

The Hammerhead-PCI's DSPs can communicate with memory and processors on the board and on other boards via serial ports, link ports, flags and interrupts, and data buses. Each ADSP-21160 DSP has six 80 Mbyte/sec link ports, two 40 Mbit/sec serial ports, four flags, and three interrupts. Each processor also connects to the JTAG emulator port for in-circuit emulation.

4.1.2 PCI Interface Overview

Each processor is connected to a common 40 MHz, 64-bit *ADSP-21160 cluster bus*, which gives it access to the other three processors and to up to 512 MB of SDRAM. The ADSP-21160 cluster bus is connected to the SharcFIN ASIC, which allows devices on the ADSP-21160 cluster bus to communicate with devices on the *PCI bus*.

The 66 MHz, 64-bit PCI bus is broken into two separate buses – a primary and a secondary PCI bus. A PCI-to-PCI "bridge chip" (Intel 21154) connects the primary and secondary PCI buses. The PCI bus connects the host with devices on the ADSP-21160 cluster bus, devices on the *peripheral bus*, and the PMC and PMC+ interfaces.

The 20 MHz, 8-bit peripheral bus extends off the SharcFIN and gives the host and the ADSP-21160 DSPs access to the Hammerhead-PCI's Flash memory, dual UART, and expansion connector.

4.1.3 PMC+ Interface Architecture Overview

The Hammerhead-PCI's PMC+ interface is connected to the 64-bit, 66 MHz secondary PCI bus, which allows it to access the Flash memory, the UART, the PCI interface, and all four ADSP-21160 DSPs. The PMC+ interface connector also connects directly to the ADSP-21160 DSPs via four link ports, two PMC-to-DSP interrupts, two DSP-to-PMC interrupts, a TDM serial bus, and a reset line.

Chapter 4 69

4.2.1 Resources Available to the ADSP-21160s

This section discusses the resources available to each processor: memory banks, flags and interrupts, serial ports, and link ports. The following tables summarize how the DSPs' resources are used on the Hammerhead-PCI. The row labeled "MS" refers to the DSPs' external memory select lines (MS0–MS3).

Table 4–1 Resources for 21160-1

	MS	Serial Port	Interrupt	Flag	Link Port
0	SDRAM	TDM Bus	SharcFIN	SharcFIN	PMC+ L1
1	Flash, UART	External J7	21160-3 F1 21160-4 F1*	SharcFIN	21160-4 L2
2	SharcFIN		21160-2 F3 Flag I/O J16	LED D1-4 Flag I/O J16	21160-2 L4
3				21160-2 I2 LED D1-3 Flag I/O J16	21160-2 L5
4					External J2
5					21160-4 L3

^{*} IRQ1 on each DSP is hardwired within the SharcFIN.

Table 4–2 Resources for 21160-2

	MS	Serial Port	Interrupt	Flag	Link Port
0	SDRAM	TDM Bus	SharcFIN	SharcFIN	PMC+ L2
1	Flash, UART	External J8	21160-3 F1 21160-4 F1	SharcFIN	External J3
2	SharcFIN		21160-1 F3 Flag I/O J16	LED D1-2 Flag I/O J16	21160-3 L4
3				21160-1 I2 LED D1-1 Flag I/O J16	21160-3 L5
4					21160-1 L2
5					21160-1 L3

70 User's Guide Hammerhead-PCI

Table 4–3 Resources for 21160-3

	MS	Serial Port	Interrupt	Flag	Link Port
0	SDRAM	TDM Bus	SharcFIN	SharcFIN	PMC+ L3
1	Flash, UART	External J9	21160-1 F1 21160-2 F1	SharcFIN	External J4
2	SharcFIN		21160-4 F3 Flag I/O J16	LED D2-4 Flag I/O J16	21160-4 L4
3				21160-4 I2 LED D2-3 Flag I/O J16	21160-4 L5
4					21160-2 L2
5					21160-2 L3

Table 4-4 Resources for 21160-4

	MS	Serial Port	Interrupt	Flag	Link Port
0	SDRAM	TDM Bus	SharcFIN	SharcFIN	PMC+ L4
1	Flash, UART	External J10	21160-1 F1 21160-2 F1	SharcFIN	External J5
2	SharcFIN		21160-3 F3 Flag I/O J16	LED D2-2 Flag I/O J16	21160-1 L1
3				21160-3 I2 LED D2-1 Flag I/O J16	21160-1 L5
4					21160-3 L2
5					21160-3 L3

71

4.2.2 ADSP-21160 Memory Structure

This section describes the memory structure of the ADSP-21160 DSPs. The processors can access their own internal memory, the internal memory of other processors in the same cluster, and external memory devices. The sections below describe each type of memory.

Internal Memory

Internal memory addresses an ADSP-21160 DSP's on-chip, dual-ported SRAM. Each ADSP-21160 DSP has 4 Mbits of on-chip SRAM. The *ADSP-21160 SHARC User's Manual* gives details about the on-chip SRAM's limitations and how to configure it.

Multiprocessor Memory

Multiprocessor memory space (MMS) is the on-chip SRAM of the other ADSP-21160 DSPs in the same cluster. A cluster is up to six ADSP-21160 DSPs that share a common processor bus, and any DSP that is connected to the processor bus shares the MMS. The Hammerhead-PCI has four DSPs on board that share a common bus (the ADSP-21160 cluster bus); each processor can view the other three DSPs' on-chip SRAM.

External Memory

External memory space consists of other devices that share the ADSP-21160's 64-bit cluster bus. The external memory space is divided into four banked sections of memory. Each ADSP-21160 DSP has four memory select lines, MS0–MS3, which allow it to access the external memory banks located on the 64-bit ADSP-21160 cluster bus and on the 8-bit peripheral bus. For information on accessing these memory banks, refer to chapters 5 and 6.

4.2.3 Serial Port Connections

Each ADSP-21160 DSP has two 40 Mbit/sec serial ports. One serial port from each processor is connected to a TDM serial bus, which interconnects all four DSPs, the PMC+ interface, and the RS-232 interface. The remaining serial port on each processor is connected to one of the board's four external serial ports. Figure 4–2 to Figure 4–4 show the serial port connections on the quad, dual, and single-processor versions of the Hammerhead-PCI board.

Figure 4-2 Block Diagram of Serial Port Connections: Quad Processor Board

Chapter 4 73

Figure 4-3 Block Diagram of Serial Port Connections: Dual Processor Board

Figure 4-4 Block Diagram of Serial Port Connections: Single Processor Board

Each ADSP-21160 DSP has four 80 Mbyte/sec link ports, which allow the DSPs to communicate with the other DSPs on the Hammerhead-PCI board, DSPs on a PMC module, and DSPs on other boards. Figure 4–5 below shows how the link ports on the four DSPs are connected.

- Four link ports on each processor are dedicated for interprocessor communication.
- One link port from each processor extends to the PMC+ interface.
- One link port from each DSP extends to an external link port connector; the processors can boot from a remote processor via these link ports (see section 5.2.1).

Figure 4-5 Block Diagram of Link Port Connections: Quad Processor Board

Figure 4-6 Block Diagram of Link Port Connections: Dual Processor Board

Figure 4-7 Block Diagram of Link Port Connections: Single Processor Board

4.2.5 Flag and Interrupt Connections

This section covers the DSPs' flag and interrupt connections. It discusses generating DSP-to-DSP interrupts via flags, interrupts to and from the PCI interface, interrupts to and from ADSP-21160 DMA channels, interrupts to and from ADSP-21160 mailbox registers, interrupts to and from the host, and interrupts to and from the PMC interface.

Two flags and one interrupt from each DSP connect to the SharcFIN ASIC. Using registers in the SharcFIN, you can change the routing of those flags and interrupts (see section 6.5.11).

SharcFIN Interrupt Multiplexer

| SharcFIN |

Figure 4-8 Block Diagram of Flag and Interrupt Connections

Flag Connections

Figure 4–8 and Table 4–5 illustrate the flag connections on the Hammerhead-PCI. Each ADSP-21160 DSP has four flag signals. Two flags from each DSP connect to the SharcFIN ASIC, where you can configure their routing. The remaining two flags from each DSP connect to LEDs and to the other ADSP-21160 DSPs for interprocessor communication.

Table 4-5ADSP-21160 Flag Connections

	21160-1	21160-2	21160-3	21160-4
FLAG0	SharcFIN*	SharcFIN	SharcFIN	SharcFIN
FLAG1	SharcFIN	SharcFIN	SharcFIN	SharcFIN
FLAG2	LED D1-4 Flag I/O J16	LED D1-2 Flag I/O J16	LED D2-4 Flag I/O J16	LED D2-2 Flag I/O J16
FLAG3	21160-212 LED D1-3 Flag I/O J16	21160-1 2 LED D1-1 Flag I/O J16	211604 2 LED D2-3 Flag I/O J16	21160-3 2 LED D2-1 Flag I/O J16

FLAGO and FLAG1 on each DSP connect to the SharcFIN ASIC interrupt multiplexer. From the SharcFIN, you can route them to different locations on the board.

Interrupt Connections

Figure 4–8 and Table 4–6 illustrate the interrupt connections on the Hammerhead-PCI. Each ADSP-21160 DSP has three interrupts. One interrupt from each DSP is dedicated for interprocessor communication. One interrupt from each DSP connects to the SharcFIN, where you can configure its routing in the SharcFIN's configuration space. You can program the DSPs and host interface to generate and receive interrupts from the following sources:

- Flags from other ADSP-21160 DSPs
- Local interrupt from the SharcFIN ASIC, which is also programmable and has many sources (for example, the DMA channels)
- SharcFIN Mailbox registers
- · Peripheral bus
- RS-232 port

Table 4-6ADSP-21160 Interrupt Connections

	21160-1	21160-2	21160-3	21160-4
	SharcFIN*	SharcFIN	SharcFIN	SharcFIN
IRQ1	21160-3 F1 [†]	21160-3 F1	21160-1 F1	21160-1 F1
	21160-4 F1	21160-4 F1	21160-1 F2	21160-1 F2
IRQ2	21160-2 F3	21160-1 F3	21160-4 F3	21160-3 F3
	Flag I/O J16	Flag I/O J16	Flag I/O J16	Flag I/O J16

^{*} IRQO on each DSP connects to the SharcFIN ASIC interrupt multiplexer. From the SharcFIN, you can route it to different locations on the board.

DSP-to-DSP Interrupts. Each DSP can generate and receive interrupts to and from the other three DSPs. One interrupt (IRQ2) on each processor receives interrupts from a flag (FLAG3) on another processor. IRQ2 and FLAG3 on 21160-1 and 21160-2 are interconnected, and IRQ2 and FLAG3 on 21160-3 and 21160-4 are interconnected.

One interrupt from each DSP is hardwired (non-configurable) within the SharcFIN with the following connections:

- 21160-1 IRQ1 is hardwired to 21160-3 FLAG1 and 21160-4 FLAG1
- 21160-2 IRQ1 is hardwired to 21160-3 FLAG1 and 21160-4 FLAG1
- 21160-3 IRQ1 is hardwired to 21160-1 FLAG1 and 21160-4 FLAG1
- 21160-4 IRQ1 is hardwired to 21160-1 FLAG1 and 21160-4 FLAG1

DSP-to-Host and Host-to-DSP Interrupts. Registers in the SharcFIN's configuration space allow the host and the ADSP-21160 DSPs to generate and receive interrupts from several sources. Depending on how you configure the interrupts in the SharcFIN, each ADSP-21160 DSP will be able to receive an interrupt from the host, and the host will be able to receive an interrupt from the DSPs. Two flags on each DSP are available to generate interrupts to the host.

DSP-to-PMC+ and PMC+-to-DSP Interrupts. You can configure the interrupt connections between the PMC+ interface and the DSPs with registers in the SharcFIN. Section 6.5.11 explains the register settings in detail.

[†] IRQ1 on each DSP is hardwired within the SharcFIN.

The Hammerhead-PCI's PCI interface consists of three buses: the primary and the secondary PCI buses and the ADSP-21160 cluster bus. A PCI-to-PCI bridge chip connects the primary and secondary PCI buses. The SharcFIN ASIC connects the secondary PCI bus with the ADSP-21160 cluster bus. An 8-bit peripheral bus is also connected to the SharcFIN, providing access to the Flash memory, the dual UART, and the expansion connector. Figure 4–9 below is a diagram of the PCI interface; sections 4.3.1 and 4.3.2 explain it in more detail.

Figure 4-9 Block Diagram of the PCI Interface

4.3.1 PCI-to-PCI Interface

The PCI-to-PCI interface consists of the primary PCI bus and the PCI-to-PCI bridge chip (Intel 21154), which connect the host to the SharcFIN (see section 4.3.2). The PCI-to-PCI bridge chip is a bridge between the primary and secondary PCI buses.

The primary PCI bus is a 66 MHz, 64-bit bus but will operate as a 32-bit bus when it is communicating with 32-bit peripherals. It can run from 0 to 75 MHz, and its maximum data rate is 600 MB/s at 75 MHz and 528 MB/s at 66 MHz.

4.3.2 PCI-to-DSP Interface

The PCI-to-DSP interface allows the ADSP-21160 processors to communicate with the PCI bus, and vice-versa. It consists of the SharcFIN ASIC (PCI-to-PCI bridge) and two buses: the secondary PCI bus and the ADSP-21160 cluster bus.

Secondary PCI Bus

The SharcFIN ASIC connects the secondary PCI bus to the ADSP-21160 cluster bus. The 66 MHz, 64-bit secondary PCI bus operates at 5 volts, but is jumper-configurable to run at 3.3 volts. By default, this bus operates at the same speed as the primary PCI bus, but a jumper setting will allow you to use the bus at half the speed of the primary PCI bus. However, this bus cannot run at 66 MHz when the primary bus is running at 33 MHz. For jumper settings, refer to section 2.2.1.

Note

The secondary bus will operate as a 64-bit bus even when the primary bus is connected to a 32-bit bus. Refer to the Intel 21154 manual (Intel Corporation) for more details.

Chapter 4 81

ADSP-21160 Cluster Bus

The ADSP-21160 cluster bus is a 40 MHz, 64-bit bus that connects the four ADSP-21160 processors and a bank of up to 512 MB SDRAM. It is connected to the PCI interface through the SharcFIN. The ADSP-21160 cluster bus is a 64-bit data, 32-bit address bus and uses 3.3 volt signaling. It allows transactions between the ADSP-21160s, the SDRAM, and the PCI-to-DSP bridge.

The ADSP-21160 cluster bus has access to the secondary PCI bus via a single PCI access channel capable of reading or writing single words from the PCI bus. The reads or writes may be memory mapped, I/O mapped, or configuration operations.

The ADSP-21160 cluster bus has access to the peripheral bus via

- BMS
- MS1

4.3.3 Overview of the SharcFIN Architecture

The Hammerhead-PCI features a BittWare SharcFIN ASIC. The SharcFIN interfaces the ADSP-21160 DSPs to the PCI bus, SDRAM, and devices on the peripheral bus. It also provides an interrupt multiplexer to allow you to configure the interrupt connections on the board. This section provides an overview of the SharcFIN architecture. Figure 4–10 below is a simplified block diagram of the SharcFIN architecture as it is implemented on the Hammerhead-PCI board.

82 User's Guide Hammerhead-PCI

Figure 4–10 Simplified Block Diagram of the SharcFIN Architecture as Implemented on the Hammerhead-PCI Board

Interface to ADSP-21160 Cluster Bus

The first function of the SharcFIN is to interface to the ADSP-21160 cluster bus. The SharcFIN provides a 64-bit interface to the ADSP-21160 cluster bus; it also integrates a full-featured SDRAM controller, which allows the ADSP-21160s to access SDRAM using burst mode access at sustained data rates of 400MB/sec.

Interface to PCI

The second function of the SharcFIN is to interface to PCI. The SharcFIN implements a full 64-bit/66MHz master PCI interface. The PCI interface is PCI rev 2.2 compliant and provides 16 Bytes of configurable PCI mailbox registers.

Interface to Peripheral Bus

The SharcFIN's peripheral bus provides a third bus interface. The peripheral bus is a general-purpose utility bus that allows easy interface to standard microprocessor peripherals such as UARTs and Flash memory. It provides a simple, glueless way to add additional functionality to the Hammerhead-PCI.

I²C Serial Controller

The SharcFIN's I²C/Serial controller integrates some of the most common peripheral requirements right into the SharcFIN. Uses include UART control, data communications, SharcFIN interconnection, and hardware configuration and identification.

Interrupt Multiplexer

The SharcFIN integrates an extensive interrupt and flag multiplexer to facilitate system-level control and coordination of multiprocessors. This programmable resource allows each ADSP-21160 to select the sources of its hardware interrupts; sources include other processors, PCI, peripherals, and the internal DMA engines.

4.3.4 Peripheral Bus

The 20 MHz, 8-bit peripheral bus connects to low-speed peripherals such as the Flash memory, the dual UART, and the expansion connector. The purpose of the peripheral bus is to allow additional components to communicate with the ADSP-21160s without affecting the signal quality of the ADSP-21160 cluster bus. It connects to the SharcFIN, which connects it to the ADSP-21160 DSPs and the PCI interface. The peripheral bus operates at either 3.3 volts or 5 volts.

84 User's Guide Hammerhead-PCI

Chapter 5

Programming Details for the ADSP-21160s

This chapter provides programming details for the ADSP-21160 DSPs, discussing how to access the DSPs' memory and how to boot the DSPs. In addition to the information in this chapter, you will also need to refer to the *ADSP-21160 User's Manual* (Analog Devices, Inc).

5.1 Accessing the DSPs Memory

5.1.1 Accessing Internal Memory

The DSPs' internal memory space ranges from address 0x0000 0000 through 0x0007 FFFF. Internal memory space refers to the DSPs' on-chip SRAM and memory-mapped registers.

5.1.2 Accessing the DSPs' Multiprocessor Memory

Multiprocessor memory space (MMS) is the on-chip SRAM of other ADSP-21160 DSPs in the same cluster. A cluster is up to six ADSP-21160 DSPs that share a common processor bus, and any DSP that is connected to the processor bus shares the MMS. The Hammerhead-PCI has four DSPs on board that share a common bus (the ADSP-21160 cluster bus); each processor can view the other three DSPs' on-chip SRAM. Table 5–1 below provides the address region and processor ID variable for each DSP.

Table 5-1 Multiprocessor Memory Allocation for DSPs

DSP	Address Region	Processor ID
21160-1	0x0010 0000 – 0x0017 FFFF	001
21160-2	0x0020 0000 – 0x0027 FFFF	010
21160-3	0x0030 0000 – 0x0037 FFFF	011
21160-4	0x0040 0000 – 0x0047 FFFF	100

5.1.3 Accessing External Memory Banks

External memory space refers to the off-chip memory or memory-mapped peripherals that are attached to the ADSP-21160 cluster buses. On the Hammerhead-PCI, these devices include the SDRAM, the Flash, the SharcFIN ASICs, and the UARTs.

The external memory space for each ADSP-21160 DSP has five regions: four banks (bank 0–3) and an unbanked region. The four external memory banks are of equal, programmable size. The remaining area of memory that is not assigned to a bank is the unbanked memory. Mapping peripherals into different banks lets systems accommodate I/O devices with different timing requirements because the banked and unbanked regions have associated waitstate and access mode settings.

The address range for the external memory spans from 0x0080 0000 through 0xFFFF FFFF. The DSP controls access to the four banked regions both with memory select lines (MS0–MS3) and with the memory address; it controls access to the unbanked region with only the memory address. Whenever the DSP generates an address that is located within one of the four banks, the DSP asserts the corresponding memory select line (MS0–MS3).

Table 5-2 External Memory Bank Allocation

External Memory Bank	Memory Select Line	Description	Wait State	Wait Mode
0	MS0	SDRAM	1	2
1	MS1	Flash, UART, peripheral bus	7	0
2	MS2	SharcFIN configuration registers	1	2
3	MS3	Unused		

Setting the Size of the External Memory Banks

The MSIZE (Memory Bank Size) bits of the ADSP-21160's SYSCON (System Configuration) register define the size of the four external memory banks (bank 0–3). Bank 0 starts at 0x0080 0000, and banks 1, 2, 3 and unbanked follow. The size of bank 0 determines the starting address of each of the other banks. (Refer to the *ADSP-21160 SHARC User's Manual* for more details.)

You can use the BittWare Configuration Manager (see section 2.3.4) to set the MSIZE bits. The default setting for the MSIZE should be equal to the size of the largest external memory device, which is the SDRAM. Table 5–3 lists the recommended settings for MSIZE and shows how MSIZE affects the bank addresses. Note that programming the MSIZE bits may affect where other resources available to the ADSP-21160 processor are located.

 Table 5-3
 Recommended MSIZE Settings for the Hammerhead-PCI

MSIZE	Size	SDRAM Size
0	8 KWords	
1	16 KWords	
2	32 KWords	
3	64 KWords	
4	128 KWords	
5	256 KWords	
6	512 KWords	
7	1024 KWords	4 MBytes
8	2048 KWords	8 MBytes
9	4096 KWords	16 MBytes
Α	8 MWords	32 MBytes
В	16 MWords	64 MBytes
С	32 MWords	128 MBytes
D	64 MWords	256 MBytes
Е	128 MWords	512 MBytes
F	256 MWords	

Accessing the SDRAM

The Hammerhead-PCI supports a bank of up to 512 MB of SDRAM, which is located on the 64-bit ADSP-21160 cluster bus. The SDRAM is accessible via MS0.

Accessing the Flash, UART, and Peripheral Bus

MS1 allows the Hammerhead-PCI to access the peripheral bus and all devices located on it, which include the 2 MB bank of Flash memory, the dual UART, and the expansion connector.

Accessing the SharcFIN ASIC Chip Control Registers

The DSPs access the SharcFIN ASIC's chip control registers via MS2. The SharcFIN's chip control registers begin at offset 0x00 from the base address of MS2 and control both the PCI interface and the SHARC interface of the SharcFIN (see also section 6.4.1). The SharcFIN's user-configurable registers begin at offset 0x40 from the base address of MS2. For additional information on accessing these registers, refer to Chapter 6 of this user's manual and to the *SharcFIN ASIC User's Manual*.

5.1.4 Accessing Unbanked Memory Space

The region of memory above banks 0–3 is called unbanked external memory space. The unbanked memory space begins after external memory bank 3 and covers the remainder of the external memory space up to 0xFFFF FFFF. No MSx memory select line is asserted for accesses in this address space. On the Hammerhead-PCI board, the unbanked memory space is unused.

Chapter 5 89

5.2 Booting the DSPs

This section explains the three booting options for the Hammerhead-PCI: link port, Flash, and PCI.

5.2.1 Booting the Board via Link Port

In link port booting, the DSP gets boot data from another DSP's link port or from a four- or 8-bit wide external device¹ after system power-up. 21160-1 is connected to external link ports from which it can boot. External link J2 is the external link port for 21160-1 (refer to section 3.2.2 for more information on the external link connectors). After booting via link port, 21160-1 will boot the remaining DSPs in the cluster.

To boot the Hammerhead-PCI via link port,

- 1. Develop a boot program using Analog Devices VisualDSP.
- 2. Using the external link ports, load the boot program onto the DSPs. Analog Devices supplies loading routines (loader kernels) that load an entire program through the selected port. These routines come with the Analog Devices development tools. For more information on loader kernels, refer to the development tools documentation.
- 3. Link port booting uses DMA channel 8 of the I/O processor to transfer the instructions to internal memory. In this boot mode, the DSP receives 8-bit wide data.
- 4. After the boot process loads 256 words into memory locations 0x40000 through 0x400FF, the DSP begins executing instructions. Because most DSP programs require more than 256 words of instructions and initialization data, the 256 words typically serve as a loading routine for the application.

For additional information on link booting, refer to the *ADSP-21160 SHARC DSP Hardware Reference Manual* (Analog Devices).

90 User's Guide Hammerhead-PCI

^{1.} The external device must provide a clock signal to the link port. The clock can be any frequency, up to a maximum of the DSP clock frequency. The clock's falling edges strobe the data into the link port. The most significant 4-bit nibble of the 48-bit instruction must be downloaded first.

5.2.2 Booting the Board From the Host

For host booting, the DSP accepts data from a host processor via the PCI interface. If you are using the DSP21k-SF Toolkit with the Hammerhead-PCI, the Host Interface Library (HIL) and Diag21k contain functions that will perform the boot process.

To boot the Hammerhead-PCI from the host using HIL functions or Diag21k commands.

- 1. Develop a DSP executable program using Analog Devices VisualDSP.
- 2. Use HIL functions or Diag21k commands to reset the board and load the program onto the DSPs.
- 3. Use the HIL's *dsp21k_start* function or Diag21k's Processor Start (ps) command to start executing the program.

For additional information on these DSP21k-SF Toolkit functions and commands, refer to the DSP21k-SF Toolkit documentation (BittWare).

To boot the DSPs from the host without using functions from the HIL,

- 1. Develop the boot program using Analog Devices VisualDSP.
- 2. Load the boot program onto the DSPs via the DSPs' external port. Analog Devices supplies loading routines (loader kernels) that load an entire program through the selected port. These routines come with the Analog Devices development tools. For more information on loader kernels, refer to the development tools documentation.
- 3. The host boot mode uses DMA channel 10 of the DSPs' I/O processor to transfer the instructions to internal memory. In this boot mode, the DSP receives the boot data in 48-bit instructions.
- 4. After the boot process loads 256 words into memory locations 0x40000 through 0x400FF, the DSP begins executing instructions. Because most DSP programs require more than 256 words of instructions and initialization data, the 256 words typically serve as a loading routine for the application.

For additional information on booting the DSPs from the host without the HIL, refer to the *ADSP-21160 SHARC DSP Hardware Reference Manual* (Analog Devices).

Chapter 5 91

5.2.3 Booting the Board via the Flash

The Flash memory allows you to boot the Hammerhead-PCI in standalone mode, without a host PC.

Developing the Boot Program

Use the Analog Devices software development tools and BittWare's host interface tools (DSP21k-SF Toolkit) to develop a boot program for the ADSP-21160 processors. The example software included with the Hammerhead-PCI includes example programs that demonstrate how to create a DSP program in the proper form and then load it into Flash memory so that it automatically boots and begins executing after the board is powered on or the DSPs are reset.

Loading a Boot Program into the Flash Memory

Use programs provided with the Hammerhead-PCI to load the Flash memory with a boot program.

Chapter 6

Programming Details for the SharcFIN ASIC

This chapter provides a brief functional description of the SharcFIN ASIC and describes its SHARC-related control registers. For complete information on the SharcFIN, you will also need to refer to the *SharcFIN ASIC User's Guide* (available from BittWare).

6.1 Overview of the SharcFIN

The SharcFIN is the glue that holds the Hammerhead-PCI board together. It flexibly interfaces the ADSP-21160 cluster to the PCI bus, SDRAM, Flash, dual UART, and I²C; provides interrupt multiplexers for the ADSP-21160s and PCI; controls the SDRAM; and provides DMA engines for moving data between interfaces.

6.1.1 The Two Sections of the SharcFIN

The SharcFIN consists of two main sections: the PCI interface and the SHARC interface. The PCI interface consists of a full 64-bit, 66 MHz bus mastering PCI interface and includes two DMA transmit channels, two DMA receive channels, and a single PCI read/write channel. Also included in the PCI interface is full I_2O support with the associated mailboxes.

The SHARC interface provides the SHARC specific functionality, which includes the SDRAM interface and control, the Flash and dual UART, the interrupt multiplexers, and the I²C interface.

6.1.2 How the SharcFIN Maps to the PCI and ADSP-21160 Buses

The SharcFIN maps into PCI and the ADSP-21160 cluster bus. It uses PCI Base Address Registers (BARs) to map its various parts onto the PCI bus. BAR0 maps to the SharcFIN's control registers, BAR1 maps to the peripheral bus (Flash and dual UART), BAR2 maps to the ADSP-21160's MMS space, BAR3 is unused in a 32-bit environment and used for the upper 32 bits of address in a 64-bit addressable system, and BAR4 maps to the SDRAM.

The SharcFIN maps into the ADSP-21160 cluster bus space using the MS (memory select) lines of the ADSP-21160s. MS0 maps to the SDRAM, MS1 maps to the Flash, dual UART, and peripheral bus, and MS2 maps to the SharcFIN control registers.

6.2 Function of the SharcFIN PCI Interface

The PCI side of the SharcFIN provides the complete PCI interface. It interfaces the PCI bus and the SHARC interface of the SharcFIN and moves data between them. The SHARC side of the SharcFIN completes the interface, whether it be to SDRAM or to the ADSP-21160s.

The PCI side provides four DMA channels for performing PCI bus mastering DMAs: two are receive (for reads), and two are transmit (for writes). These channels can be run independently and will self-arbitrate for bus access. Along with the DMA channels, the PCI side provides a single PCI access channel for doing single PCI reads and writes and supports interrupts both to and from the PCI bus.

All control registers for the PCI interface are in Base Address Register 0 (BAR0) and occupy byte addresses from 0x00 to 0x100 off of BAR0. For complete details on these registers, refer to the *SharcFIN ASIC User's Manual*. From the ADSP-21160, these control registers are at MS2 and are 32-bit addressable, so that they occupy word addresses 0x00 to 0x40 off of MS2. Section 6.4.1 gives an overview of how to access these registers.

6.2.1 Performing PCI Side DMAs

To perform a PCI bus mastering DMA, program a DMA channel in the PCI side of the SharcFIN. Next, program a DMA on the SHARC side to work in conjunction with the PCI side DMA. The PCI side DMA will move the data between the PCI bus and an internal FIFO, and the SHARC side DMA will move data between the internal FIFO and the actual source or destination on the board. If the source or destination is the ADSP-21160's internal memory, the SHARC side DMA used is actually an ADSP-21160 IOP DMA. If the source or destination is the SDRAM, use the internal SharcFIN DMA engine to move the data to/from the SDRAM.

The PCI side DMAs are designed for 64-bit based transfers and expect 64-bit aligned data, regardless of the actual width of the PCI bus. The PCI address used in the transfer is a standard PCI byte based address. For complete details on how to perform PCI side and SHARC side DMAs, refer to the section on "Bus Mastering and DMAs" in the *SharcFIN ASIC User's Manual*.

Chapter 6 95

6.2.2 Performing a PCI Side Single Access

The SharcFIN supports a single PCI access channel for performing single PCI reads and writes. To perform PCI reads and writes, tell the SharcFIN which address to read or write, provide the data (for a write), and then request the transfer. On a read completion, the data is available in a buffer to be read. As with the DMAs, the SharcFIN is designed for 64-bit transfers and alignment. You can make it perform any number of byte width transfers by specifying which of the 8 bytes of the 64-bit access are to be enabled. However, you will need to align the data in the 64-bit word and use the 64-bit aligned address. For complete details on single PCI accesses, refer to the section on "Bus Mastering and DMAs" in the *SharcFIN ASIC User's Manual*.

6.2.3 Performing PCI Side Interrupts

The SharcFIN provides full $\rm I_2O$ support with the associated mailboxes. To generate PCI side interrupts, either write to PCI outgoing mailboxes or use the SHARC side PCI interrupt multiplexer, which generates the PCI side user interrupt bit.

The PCI side can interrupt the ADSP-21160s by writing into mailboxes. Writing into mailboxes will cause the PCI interrupt bit to be set in the SHARC side interrupt multiplexers, which will generate an ADSP-21160 interrupt if the mask is open. For details on the SharcFIN's interrupt capabilities, refer to the *SharcFIN ASIC User's Manual*.

Note

When reading the PCI side documentation of these registers, take careful note of whether you are looking at them from a PCI side or the "user" side. Phrases such as "PCI outgoing" have different meaning depending on your viewpoint, and several mailboxes and registers are duplicated – one for each direction.

6.3 Function of the SharcFIN SHARC Interface

The SHARC interface of the SharcFIN consists of the ADSP-21160 bus interface, the SDRAM controller, the peripheral bus (with Flash and dual UART), the I²C interface, and the interrupt multiplexers. The SharcFIN control registers for the SHARC interface are mapped into PCI in BAR0, starting at byte offset 0x100. On the ADSP-21160 side, they are mapped into MS2, starting at word offset 0x40.

6.3.1 ADSP-21160 Bus Interface

The SharcFIN interfaces to the ADSP-21160 cluster bus as a synchronous host. It sits on the ADSP-21160 bus and will request the bus to complete a PCI side initiated transfer. It also monitors the bus for any accesses to memory spaces it controls, including SDRAM, Flash, dual UART, and the SharcFIN registers.

6.3.2 SDRAM Interface and Control

The SharcFIN's SDRAM controller supports up to 512 Mbytes of SDRAM. It refreshes the SDRAM and controls all of the interfacing from the ADSP-21160s to the SDRAM. In the ADSP-21160 memory space, the SDRAM is mapped into MSO, and the ADSP-21160s have full access to all of the SDRAM.

Accessing SDRAM from the PCI Side

From the PCI side, the SDRAM is mapped into BAR4 with a 16 Mbyte window viewable at a time. Because the SDRAM is so large, this window exists to keep the entire SDRAM from being mapped into PCI memory. A SharcFIN control register (the SD Size Config register at word offset 0x45), which provides the upper address bits for a PCI initiated SDRAM access, sets the window location.

The SDRAM window has the following two limitations:

- 1. Window boundaries must be crossed carefully.
- 2. The window register is a shared resource.

The Host Interface Library (in BittWare's DSP21k-SF Toolkit) takes care of the first limitation. The second limitation is a system issue that you must consider. Because the SharcFIN uses the window register for every PCI access to SDRAM, be careful to coordinate SDRAM accesses from PCI if you have multiple threads on the host or multiple PCI bus masters accessing the SDRAM.

Chapter 6 97

SDRAM Timing from the ADSP-21160

SDRAM timing from the ADSP-21160 is synchronous, 1 wait state. A single write access takes two bus cycles. Since each additional write is single cycle, using the ADSP-21160's burst mode, you can achieve a four word burst write in five bus cycles. Reads require additional setup in the SDRAM, resulting in four bus cycles for the first access and a four word burst read in seven cycles. Because the SDRAM is page based, you will encounter additional latencies when page boundaries are crossed.

Using DMA-Based SDRAM Accesses

To achieve optimal system performance, use the power of the ADSP-21160's IOP DMA engines and its dual ported internal RAM. Using these features, you can perform DMA-based SDRAM accesses at the same time that the ADSP-21160 core is performing processing on its internal data space, which is full core speed, 0 wait state memory.

6.3.3 Peripheral Bus Interface (Flash and Dual UART)

The peripheral bus is an 8-bit wide bus containing the Flash and dual UART. On the Hammerhead-PCI board, an optional connector for custom applications is also located on the peripheral bus. The peripheral bus is mapped into the ADSP-21160 space as MS1 and into PCI space as BAR1. From the ADSP-21160, the Flash and UART are at MS1. From PCI, the Flash occupies the first 2 Mbytes of BAR1, and the UART is located at a 2 Mbyte offset from BAR1.

6.3.4 I²C Interface

The SDRAM and configuration EEPROM are located on an I²C bus that is connected to the SharcFIN. The SDRAM is interrogated over the I²C to determine its size and type so that the SDRAM configuration registers can be written. The Host Interface Library (included with BittWare's DSP21k-SF Toolkit) sets up the SDRAM on a board reset command.

The EEPROM contains factory programmed board information, including a serial number and factory build date. You can use the BittWare Configuration Manger (bwcfg) to view this information. Space for the user is also reserved in the EEPROM. The I²C interface in the SharcFIN is the low level clock and data lines for the I²C available in a control register. Perform all bit manipulation

98 User's Guide Hammerhead-PCI through software. Along with the on-board I²C, the SharcFIN supports a second I²C bus called the PMC I²C, which is pinned out to the PMC+ connector.

6.3.5 Interrupt Multiplexer

The SharcFIN contains a flexible interrupt multiplexer that you can use to create complex interrupt schemes on the Hammerhead-PCI board. The interrupt multiplexer contains an interrupt multiplexer for each ADSP-21160, the PCI, and the PMC. Inputs to the multiplexer include flags from each ADSP-21160, a PCI side flag, a PMC flag, two UART flags, and a DMA interrupt. Outputs from the multiplexer are an interrupt line to each ADSP-21160, the PCI side, and the PMC site.

How the Interrupt Multiplexer Functions

The interrupt multiplexer for each output is completely independent and can handle multiple sources. Each interrupt multiplexer consists of a 32-bit configuration register that selects the desired interrupt sources and then masks the results (see section 6.5.11 for a description of the registers). To generate an interrupt, both the flag input from the desired source and its corresponding bit in the configuration register must be high. Any other flag input and its corresponding bit in the register can also be high to generate an interrupt. The interrupt multiplexer ANDs each flag input and its corresponding bit; it then ORs the results of the inputs together to create the output.

Note

The interrupt multiplexer is level sensitive and does not latch interrupt sources. Therefore, the interrupt is active as long as the source is driven.

Creating PCI Side Interrupts

To create PCI side interrupts, configure the multiplexer, which will generate the "user side" flag into the PCI side interrupt mechanism. The PCI side must then "open" the interrupt.

PCI side interrupts into the SharcFIN via the I²O mailbox registers show up as PCI flags into the SHARC side interrupt muxes. Therefore, you can program the ADSP-21160s to respond to PCI interrupts as desired.

Chapter 6 99

6.4 Overview of the SharcFIN Memory Map

The SharcFIN maps into PCI and the ADSP-21160 cluster bus. The following section provides an overview of the PCI and ADSP-21160 memory mapping of the SharcFIN. All addresses are shown as offsets from the appropriate BAR or MS. Table 6–1 gives an overview of how the SharcFIN maps to the PCI and ADSP-21160 cluster buses.

Note

The SharcFIN ASIC User's Manual contains descriptions of the registers listed in this section. Refer to it for specifics. If you cannot find sufficient information, contact BittWare for more detail.

Table 6-1 Overview of How the SharcFIN Maps to the PCI and ADSP-21160 Buses

PCI Base Address Register	Description	21160 Memory Select	Description
BARO	SharcFIN control registers	MS0	SDRAM
BAR1	Peripheral bus (Flash, UART)	MS1	Peripheral bus (Flash, UART)
BAR2	ADSP-21160 MMS	MS2	SharcFIN control registers
BAR4	SDRAM		

Even though the following sections list both 32-bit (word) and byte addresses, some BARs should be accessed in specific ways from the PCI side. Table 6–2 shows how to access those BARs.

 Table 6-2
 Accessing BAR0-BAR4 From the PCI Side

BAR	Access	Description
BARO	Read/Write	Byte or 32-bit word accesses for all registers
BAR1	Read/Write	Byte accesses for all registers*
BAR2	Read Only Write Only	Byte or word accesses Word accesses only [†]
BAR4	Read Only Write Only	Byte or word accesses Word accesses only [†]

^{*} Word accesses will produce erroneous data.

6.4.1 Accessing System Settings and Configuration Registers

BAR0 = MS2 = system settings and configuration registers

BAR0 from the PCI interface and MS2 from the ADSP-21160 cluster bus map to system settings and configuration registers in the SharcFIN. Table 6-3 gives the PCI and ADSP-21160 offset addresses for accessing system settings and configuration registers.

 Table 6-3
 PCI and ADSP-21160 Addresses for System Settings and Configuration Registers

PCI 32-bit	PCI byte	ADSP-21160	Description
offset from	offset from	offset from	
BARO	BARO	MS2	
0x00 – 0x5F	0x000 – 0x17F	0x00 – 0x5F	Chip control registers (PCI and ADSP-21160)

[†] Byte writes will corrupt the rest of the word.

6.4.2 Accessing the Flash, UART, and Peripheral Bus

BAR1 = MS1 = Flash/UART/Peripheral bus

BAR1 from the PCI interface maps to the Flash, dual UART, and peripheral bus. MS1 from the ADSP-21160 cluster bus also maps to the Flash, dual UART, and peripheral bus. Table 6–4 gives the PCI and ADSP-21160 offset addresses for accessing them.

Warning

BAR1 **must** be accessed a byte at a time from the PCI side. Word accesses will produce erroneous data.

Table 6-4 PCI and ADSP-21160 Addresses for Flash, UART, and Peripheral Bus

PCI byte offset from BAR2	ADSP-21160 offset from MS1	Description
0x000000 – 0x1FFFFF	0x000000 – 0x1FFFFF	Flash
0x200000 – 0x20000F	0x200000 – 0x20000F	UART
0x200010 – 0x2FFFFF	0x200010 – 0x3FFFFF	Reserved
0x300000 – 0x3FFFFF	0x400000 – 0x5FFFFF	Peripheral Bus

6.4.3 Accessing Multiprocessor Memory Space

 $BAR\ 2 = MMS = flat\ map\ of\ Multiprocessor\ Memory\ Space$

BAR2 from the PCI and MMS from the ADSP-21160 cluster bus allow access to the ADSP-21160 multiprocessor memory space. Table 6–5 gives the PCI and ADSP-21160 offset addresses for accessing the MMS.

 Table 6-5
 PCI and ADSP-21160 Addresses for Multiprocessor Memory Space

PCI 32-bit	PCI byte	ADSP-	Description
offset from	offset from	21160	
BAR2	BAR2	address	
0x00000 –	0x0000000 –	0x000000 –	Reserved
0x0FFFFF	0x03FFFFF	0x0FFFFF	
0×10000 –	0x0400000 –	0x100000 –	21160-1 MMS space
0×1FFFFF	0x07FFFFF	0x1FFFFF	(ADSP-21160 ID 1)
0x20000 –	0x0800000 –	0x200000 –	21160-2 MMS space
0x2FFFFF	0x0BFFFFF	0x2FFFFF	(ADSP-21160 ID 2)
0x30000 –	0x0C00000 –	0x300000 –	21160-3 MMS space
0x3FFFFF	0x0FFFFFF	0x3FFFFF	(ADSP-21160 ID 3)
0x40000 –	0x1000000 -	0x400000 –	21160-4 MMS space
0x4FFFF	0x13FFFFF	0x4FFFFF	(ADSP-21160 ID 4)
0x50000 –	0x1000000 –	0x500000 –	Reserved
0x7FFFFF	0x1FFFFFF	0x7FFFFF	

Chapter 6 103

6.4.4 Accessing SDRAM

 $BAR 4 = MS0 = SDRAM^{1}$

You can see a window of 16 MBytes of SDRAM from the PCI bus. The SD Window register allows you to select which 16 MB window is currently visible. The register is located at word/ADSP-21160 offset 0x4A in BAR0/MS2. Table 6–6 gives the PCI and ADSP-21160 offset addresses for accessing a 64 MB bank of SDRAM, and Table 6–7 gives addresses for a 128 MB bank.

Note

The addresses listed in Table 6–6 only apply to the given 64 MB SDRAM case. Different memory sizes change the mapping.

Table 6-6 PCI and ADSP-21160 Addresses for 64 MB SDRAM

SD Window Register value*	PCI 32-bit offset from BAR4	PCI byte offset from BAR4	ADSP-21160 address	Description
0x02	0x00000 – 0x3FFFFF	0x000000 – 0xFFFFFF	0x800000 – 0xBFFFFF	First 16 MB block of SDRAM
0x03	0x00000 – 0x3FFFFF	0x000000 – 0xFFFFFF	0xC00000 – 0xFFFFFF	Second 16 MB block of SDRAM
0x00	0x00000 – 0x3FFFFF	0x000000 – 0xFFFFFF	0x1000000 - 0x10FFFFF	Third 16 MB block of SDRAM
0x01	0x00000 – 0x3FFFFF	0x000000 – 0xFFFFFF	0x1400000 – 0x17FFFFF	Fourth 16 MB block of SDRAM

^{*} Window register values of 0x00 and 0x01 always access the last two 16 MB windows of SDRAM. Refer to the SharcFIN ASIC User's Manual for details.

^{1.} Some caveats apply.

Table 6-7 PCI and ADSP-21160 Addresses for 128 MB SDRAM

SD Window	PCI 32-bit	PCI byte	ADSP-21160	Description
Register	offset from	offset from	offset from	
value*	BAR4	BAR4	MS0	
0x02	0x00000 –	0x000000 –	0x800000 –	First 16 MB block of
	0x3FFFFF	0xFFFFFF	0xBFFFFF	SDRAM
0x03	0x00000 –	0x000000 –	0xC00000 –	Second 16 MB
	0x3FFFFF	0xFFFFFF	0xFFFFFF	block of SDRAM
0x04	0x00000 – 0x3FFFFF	0x000000 – 0xFFFFFF	0x1000000 - 0x13FFFFF	Third 16 MB block of SDRAM
0x05	0x00000 – 0x3FFFFF	0x000000 – 0xFFFFFF	0x1400000 – 0x17FFFFF	Fourth 16 MB block of SDRAM
0x06	0x00000 –	0x000000 –	0x1800000 -	Fifth 16 MB block
	0x3FFFFF	0xFFFFFF	0x1BFFFFF	of SDRAM
0x07	0x00000 –	0x000000 –	0x1C00000 -	Sixth 16 MB block
	0x3FFFFF	0xFFFFFF	0x1FFFFF	of SDRAM
0x00	0x00000 –	0x000000 –	0x2000000 –	Seventh 16 MB
	0x3FFFFF	0xFFFFFF	0x23FFFFF	block of SDRAM
0x01	0x00000 –	0x000000 –	0x2400000 –	Eighth 16 MB block
	0x3FFFFF	0xFFFFFF	0x27FFFFF	of SDRAM

^{*} Window register values of 0x00 and 0x01 always access the last two 16 MB windows of SDRAM. Refer to the *SharcFIN ASIC User's Manual* for details.

Chapter 6 105

6.5 Setting the SharcFIN User-Configurable Registers

The SharcFIN has two sets of registers. One set, the PCI configuration registers, configures the PCI interface. The other set, the chip control registers, configures both the PCI and SHARC interfaces. The PCI configuration registers are only accessible by PCI (configuration access) and are documented in the *SharcFIN ASIC User's Manual*. The chip control registers are broken into two groups: the PCI control registers (which are documented in the *SharcFIN ASIC User's Manual*) and the SHARC interface control registers; both groups are accessible by PCI (BAR0) and the ADSP-21160 cluster bus (MS2).

This section describes the memory locations and settings for the SharcFIN's SHARC interface control registers. All addresses described in this section are 32-bit addresses and are accessible from the ADSP-21160 DSPs (via MS2) and from the PCI interface (via BAR0). Table 6–8 gives the memory mapping for the SHARC interface control registers in the SharcFIN.

Note

Most of the user configurable registers are already set and do not require you to program them. You will only need to set them if you are writing your own host interface programs.

 Table 6-8
 Memory Map for the SharcFIN User-Configurable Registers

Address	Register	Туре	Description
0x40	Address Override	R/W	Allows addressing of IOP registers when ADSP-21160 is using a host packing mode
0x41	Status	R/O	General set of status registers. Indicates ADSP-21160 cluster bus status and last reset source
0x42	Peripheral Bus Configuration	R/W	Configures and shows status of wait cycles of the 8-bit peripheral bus
0x43	Watchdog Configuration	$WORM^*$	Enables and disables the watchdog timer
0x44	PMC+ Configuration	R/W	Configures the PMC+ interface
0x45	SD Size Config	R/W	Resets and reinitializes the SDRAM controller
0x46	Onboard I ² C Control	R/W	Controls the I ² C interface
0x47	PMC I ² C Control	R/W	Controls the I ² C interface to the PMC+ interface
0x48	DMA Address	R/W	Sets the address of DMA to be performed
0x49	DMA Configuration	R/W	Controls various features of the SharcFIN DMA engine: size of DMA, increment size of DMA, other various configuration bits
0x4A	SD Window	R/W	Selects which 16 MB of SDRAM the PCI interface will view
0x4B-4F	Unused		
0x50,52, 54,56	H110, H210, H310, H410	R/W	Configure ADSP-21160 DSPs' interrupts; show status of interrupts
0x51,53, 55,57	Reserved		
0x58	PCInt	R/W	Configures PCI interrupts
0x5A	PMCI0	R/W	Configures PMC interrupt
0x59, 0x5B–5D	Unused		
0x5E	Flag Status	R/O	Shows state of all flags
0x5F	IRQ Status	R/O	Shows state of all interrupts

^{*} Write Once Read Many

Chapter 6 107

6.5.1 Address Override Register

The Address Override register (offset 0x40) configures how the ADSP-21160 DSPs access the least significant 32 bits on the ADSP-21160 cluster bus. It allows access to the DSPs' IOP space before the SYSCON register has been configured.

Note

Only use this register if you are writing your own host interface programs.

 Table 6-9
 Address Override Register Description

Bit	Name	Туре	Reset Value	Function
0	A0 Override En*	R/W	0	Address override enable for booting across the PCI bus
1	Overridden A0	W/O	0	Overridden address
2	BusLockReq	W/O	0	Bus Lock Request. Requests the SharcFIN to acquire the ADSP-21160 cluster bus and locks access to the bus so that only the SharcFIN can access it. O = Disabled 1 = Requests that the SharcFIN acquire the ADSP-21160 cluster bus and not give it up
3	Destructive FIFO Read Enable	W/O	1	Determines whether a read to the DMA FIFOs will cause the FIFOs to advance 0 = A read to the DMA FIFOs does not cause the FIFOs to advance 1 = A read to the DMA FIFOs causes the FIFOs to advance
4	Host Clock Disable	R/W	0	Disables the clock to the ADSP-21160 DSPs. This is used to address powerup anomalies on current editions of ADSP-21160 processors. 1 = Disables clock 0 = Clock enabled

^{*} Do not use the Address Override bits (B0 and B1) under normal setup conditions. If you are running the Hammerhead-PCI in standalone mode and are booting across the PCI bus, you can change these bits. However, exercise extreme caution since data loss or corruption will occur if you set the bits improperly.

108 User's Guide Hammerhead-PCI

6.5.2 Status Register

The Status register (offset 0x41) is a 16-bit read only register that gives information about various features on the board.

Table 6-10Contents of the Status Register

Bit	Name	Туре	Reset Value	Function
0	PMCHostCfg	R/O	Set in hardware	Indicates whether SharcFIN is configured for a PMC host site or a PMC daughter card. 1 = On baseboard 0 = On PMC
1	StandAlone	R/O	Set by jumper	Determines whether PCI side resets are accepted by the SharcFIN 1 = PCI resets ignored 0 = PCI resets accepted
2	Bus Locked	R/O	0	Indicates whether the SharcFIN has locked and acquired the ADSP-21160 cluster bus 0 = Cluster bus is not locked 1 = Cluster bus is locked
3	Last Reset Source	R/O	0	Indicates whether the PCI interface or the watchdog was the source of the last board reset 0 = PCI reset 1 = Watchdog/external reset
4	SpareInput Pin	R/O	1	Spare external input signal

Chapter 6 109

6.5.3 Peripheral Bus Configuration Register

The Peripheral Bus Configuration register (offset 0x42) allows you to configure the wait cycles of the Hammerhead-PCI's 8-bit peripheral bus.

Table 6–11 Contents of the Peripheral Bus Configuration Register

Bit	Name	Туре	Reset Value	Function
3:0	PCI to Pbus Wait	R/W	0101 B0: 1 B1: 0 B2: 1 B3: 0	Select the number of wait cycles the SharcFIN will wait before completing a transaction on the peripheral bus. The actual value of wait cycles is one greater than the value in the register (for example, if the register value = 0, the number of wait cycles = 1). O101 =Default setting (6 wait cycles)
4	Pbus Ack Enable	R/W	0	Selects whether the SharcFIN will monitor the peripheral bus Ack line after the peripheral bus wait time has expired. O = SharcFIN will wait the selected number of wait cycles and consider the transaction complete* 1 = SharcFIN will wait the selected number of wait cycles and then monitor the Ack line
5	Pbus Reset	R/W	0	Resets the peripheral bus reset line, the Flash, and the UART. The reset stays active until cleared by another write to the register. O = No reset 1 = Resets Flash, UART, and all devices on the peripheral bus

^{*} Five wait cycles is the minimum amount of wait cycles required to talk to the Flash memory.

[†] You can also reset the Flash, the UART, and all devices on the peripheral bus via a board reset.

6.5.4 Watchdog Configuration Register

The Watchdog Configuration register (offset 0x43) is a WORM (Write Once Read Many) register that allows you to enable or disable the watchdog timer, set its time-out time, and select which processor will reset its timer. Once the watchdog is enabled, it can not be disabled except by a board reset, which can be from the PCI interface, the watchdog, or an external source.

Table 6-12 Contents of the Watchdog Configuration Register

Bit	Name	Туре	Reset Value	Function
1:0	WDEn1, WDEn0	WORM	00	Enable the watchdog timer and select its ttime-out time. 00 = Disabled 10 = Enabled; short time-out (200 ms) 01 = Enabled; medium time-out (600 ms) 11 = Enabled; long time-out (1.2 s)
3:2	Unused			
7:4	H1F1 En, H2F1 En, H3F1 En, H4F1 En	WORM	0000	Selects which processor will strobe the watchdog timer.* 0001 = 21160-1 FLAG1 will strobe the watchdog timer 0010 = 21160-2 FLAG1 will strobe the watchdog timer 0100 = 21160-3 FLAG1 will strobe the watchdog timer 1000 = 21160-4 FLAG1 will strobe the watchdog timer

^{*} You can select more than one processor, but it is not recommended.

Chapter 6

6.5.5 PMC+ Configuration Register

The PMC+ Configuration register (offset 0x44) is a read/write register that configures the bus mode lines of the PMC+ interface and allows you to read their status. Table 6–13 below shows the contents of the PMC+ Configuration register.

Table 6–13 Contents of the PMC+ Configuration Register

Bit	Name	Туре	Reset Value	Function
0	PMC Flg/Int En	R/W	0	Configures the PMC+ interface's bus mode lines to be used as flag interrupts.* 1 = The PMC+ interface's bus mode lines will be used as flag interrupts 0 = The PMC+ interface's bus mode lines will be used as bus mode lines
3: 1	BusMode2, BusMode3, BusMode4	R/W	BusMode2: 1 BusMode1: 0 BusMode3: 0	Indicates to the PMC site whether or not it should drive BusMode1 to indicate its presence. When the flag interrupts are disabled (by PMC Flg/Int En bit), the BusMode lines work according to the PMC specification. Bits 1–3 are Bus Mode lines 2–4. B1 = 1 Bus Mode line 2 B2 = 0 Bus Mode line 3 B3 = 0 Bus Mode line 4
4	BusMode 1	R/O		Bus Mode line 1 is an input [†] . It indicates that a PMC card is present on the board. [‡] 0 = PMC board is present
5	BusMode2	R/O		Current status of BusMode2 line
6	BusMode3	R/O		Current status of BusMode3 line
7	BusMode4	R/O		Current status of BusMode4 line

^{*} The option of using the bus mode lines as flag interrupts is a feature of BittWare's PMC+ form factor; to work properly, it must be enabled on both the PMC+ card and the host board.

[†] Bits 3:1 are outputs. Bit 4 is an input.

Refer to the IEEE P138.1 Standard Physical and Environmental Layers for PCI Mezzanine Cards: PMC (PMC Specification) for details on the operation of these lines.

6.5.6 SDRAM Configuration Registers

The SharcFIN contains two registers that configure the SDRAM:

- SDRAM Size Configuration register (offset 0x45)
- SDRAM Window register (offset 0x4A)

SDRAM Size Configuration Register

The SDRAM Size Configuration register (offset 0x45) sets the size of the SDRAM. The settings for this register depend on the type of SDRAM modules used on the board. Table 6–14 below shows the contents of the register.

Table 6–14 Contents of the SDRAM Size Configuration Register

Bit	Name	Туре	Reset Value	Function
1:0	SD Bank Size 1:0	R/W	0	Determine how the SDRAM controller uses the SharcFIN's CSO and CS1 (chip select 0 and 1) pins. The chip select pins allow the SharcFIN to seamlessly connect to two banks of SDRAM. CSO selects SDRAM bank 0, and CS1 selects SDRAM bank 1. BO B1 Result 0 0 CSO always active 0 1 CS1 active when 32-bit word address bit 24 is high; otherwise CSO is active 1 0 CS1 active when 32-bit word address bit 25 is high; otherwise CSO is active 1 1 CS1 active when 32-bit word address bit 26 is high; otherwise CSO is active
2	SD RF Size	R/W	1	Sets the refresh rate of the SDRAM 0 = 4K refreshes every 64 milliseconds 1 = 8K refreshes every 64 milliseconds
3	SD Reset	W/O	0	Writing a 1 resets the SDRAM controller and reinitializes the SDRAM

Chapter 6

SDRAM Window Register

The SDRAM Window register (offset 0x4A) is a 5-bit register that lets you select which 16 MB section of memory in the SDRAM to view from the host over the PCI interface. From the PCI side, the SDRAM is mapped into BAR4 with a 4 Mword (16 Mbyte) window viewable at a time. The offset into BAR4 provides bits 0 through 21 of the address of the SDRAM word to be accessed. The contents of the 5-bit SD Window register are appended to bits 22 through 26 of the address to complete the address and thereby select the 4 Mword window to be accessed. Table 6–15 lists the bits included in this register. For more information, refer to section 2.3.

Note

You will not need to configure this register since the Diag21k utility, which is included with the DSP21k-SF Toolkit, will set these bits.

Table 6–15 Contents of the SDRAM Window Register

Bit	Name	Туре	Reset Value	Description
0	Window A0	W/O	0	Selects window A0 of the SDRAM
1	Window A1	W/O	1	Selects window A1 of the SDRAM
2	Window A2	W/O	0	Selects window A2 of the SDRAM
3	Window A3	W/O	0	Selects window A3 of the SDRAM
4	Window A4	W/O	0	Selects window A4 of the SDRAM

6.5.7 Onboard I²C Control Register

The Onboard I^2C Control register (offset 0x46) controls the I^2C interface. The I^2C interface is a two-wire bus; one wire is a clock signal and the other is a data signal. Both the clock and the data lines are pulled up. Table 6-16 below shows the contents of the register.

As per standard I^2C , both the clock and data lines are pulled high. Devices on the I^2C bus either do not drive the bus or they drive it low. Any device on the I^2C bus can drive either the clock or data line low when required. You can also read the actual status of the lines.

Table 6–16 Contents of the I²C Control Register

Bit	Name	Туре	Reset Value	Function
0	Clock	R/W	1	On write, drives the clock line. On read, shows the state of the clock line
1	Data	R/W	1	On write, drives the data line. On read, shows the state of the data line
2	Clock Drive	R/O	1	
3	Data Drive	R/O	1	

When you write a 1 to either the clock or data line in this register, the SharcFIN does not drive the corresponding line. When you write a 0 to either the clock or the data line, the SharcFIN drives the corresponding line to 0. When you read either line, you read the actual state of the line rather than what you have written to it. If you are not driving the line, it will be 0 if another device is driving it and 1 if nothing is driving it. Table 6–17 below shows the effect of the values written to the Clock and Data bits.

Table 6–17 Effects of Values Written to the Clock and Data Bits (BO, B1)

Value Written	Description
0	Drives the line low; when read back, shows 0
1	When read back, shows the actual state of the I ² C line

Chapter 6

6.5.8 Setting the PMC I²C Control Register

The PMC I²C Control register (offset 0x47) controls the I²C interface to the PMC+ interface. The settings for this register are the same as the settings for the Onboard I²C Register, except that all settings apply to the PMC+ interface I²C instead of the on-board I²C.

6.5.9 DMA Address Register

The DMA Address register (offset 0x48) configures the address of the current DMA location. This register is incremented as the DMA progresses, allowing you to monitor the DMA engine's current address. You must reset this register each time if you wish to repeat a DMA on the same address range as last time. This register cannot be written to while the DMA start bit is set, but it can be read from at any time.

Table 6-18 Contents of the DMA Address Register

Bit	Name	Туре	Reset Value	Function
0	Unused	R/O	0	
27:1	A[27:1]	R/W	0	Indicates the current DMA location
31:28	Unused	R/O	0	

6.5.10 DMA Configuration Register

The DMA Configuration register (offset 0x49) controls various features of the SharcFIN DMA engine, including starting a DMA, size of the DMA, increment size of the DMA, and other various configuration bits. Table 6–19 describes the contents of the register. The *SharcFIN ASIC User's Manual* explains this register in more detail. This register can not be written while the DMA start bit is set, but it can be read from at any time.

116 User's Guide Hammerhead-PCI

Contents of the DMA Configuration Register (Continues on next page) Table 6-19

Bit	Name	Туре	Reset Value	Description
15:0	DMACntB[15:0]	R/W	Χ*	DMA transfer count (in 64-bit words) bits. All are settable.
22:16	DMA Stride B[6:0]	R/W	Х	Stride or address increment bits. These bits will typically be set to 0x01.
23	Unused			Unwritable; fixed at 0.
24	DMAStart	R/W	0	Setting the bit to 1 starts the DMA; it resets to 0 when the DMA is complete.
25	DMA Channel Select	R/W	0	Selects the PCI channel being operated on (0 or 1)
26	DMA Direction	R/W	0	Selects whether a PCI transmit or receive DMA is being performed. 0 = PCI receive DMA (PCI to 21160/SDRAM) 1 = PCI transmit DMA (21160/SDRAM to PCI)
27	DMA Interrupt	R/W	0	If this bit is set at the start of the DMA, the SharcFIN generates an interrupt in the interrupt multiplexer on completion of the DMA. Any write to this register clears the interrupt.
28	Burst Disable	R/W	0	1 = Disable bursting on the ADSP-21160 side. Must be set to 1 when the address increment > 0x01. If it is set when the address increment <= 0x01, it functions but will slow things down. 0 = Bursting enabled
29	DMA Buslock		0	SharcFIN requests the ADSP-21160 cluster bus when the start bit is set, and once it obtains the bus, keeps it until the DMA completes.
(Sheet	1 of 2)		•	

Bit	Name	Туре	Reset Value	Description	
31:30	DMA Xfer Length B[1:0]		00	Set the DMA transfer length. These bits must be set along with the bits in the PC control register at 0x1A and 0x1B (0x6) byte address).	
				B30 B31 Result 0 0 Data transferred during eac access of the bus = eight 64- words	
				1 0 Data transferred during eac access of the bus = sixteen 6 bit words	
				0 1 Data transferred during eac access of the bus = thirty-two 64-bit words	
				1 Data transferred during eac access of the bus = sixty-fou 64-bit words	
				Corresponding Receive FIFO almost empor Transmit FIFO almost full flags must be set with corresponding value (length –1, for B30, B31 must be set to 7).	e
(Sheet 2	? of 2)				

^{*} X = Unknown

6.5.11 Interrupt Configuration Registers

The SharcFIN features an interrupt multiplexer for each ADSP-21160, the PCI interface, and the PMC+ interface. Inputs to the multiplexers are flags from each ADSP-21160, a PCI side flag, PMC flags, UART flags, a DMA flag, and a peripheral bus flag. The registers at offsets 0x50 to 0x5A (see Table 6–20) provide the interrupt multiplexers (see the *SharcFIN ASIC User's Manual* for additional details on the interrupt multiplexer). Table 6–21 lists the settings for the ADSP-21160 interrupt multiplexers, Table 6–22 lists the settings for the PCI interrupt multiplexer, and Table 6–23 lists the settings for the PMC+ interrupt multiplexer.

The interrupt multiplexer registers are 32-bit registers that allow you to select the desired input sources. The first 16 bits (15:0) are read/write and select the source that will generate an interrupt to the processor; each of the bits corresponds to one of the flag inputs to the multiplexer. The second 16 bits (31:16) are read only and show which of the enabled interrupts are generating an interrupt, each bit corresponding to one of the flag inputs. Bits 31:16 are masked interrupt lines; when one of the flag inputs and its corresponding bit in bits 15:0 of the configuration register is high, the corresponding bit in bits 31:16 is also set to indicate the source of the input. Bits 31:16 are masked by 21160-1 IRQO's interrupt mask.

Table 6–20 SharcFIN Interrupt Configuration Registers

Address	Register	Description
0x50	H1I0	Configures the direction of 21160-1 IRQ0
0x51, 53, 55, 57	Unused	
0x52	H2I0	Configures the direction of 21160-2 IRQ0
0x54	H3I0	Configures the direction of 21160-3 IRQO
0x56	H4I0	Configures the direction of 21160-4 IRQ0
0x58	PCInt	Configures the direction of the PCI interrupt
0x59	Unused	
0x5A	PMCI0	Configures the direction of PMC+ IRQ0

Chapter 6

Table 6–21 Contents of the ADSP-21160 Interrupt Configuration Registers (0x50, 0x52, 0x54, 0x56) (Continues on next page)

Bit	Name	Туре	Reset Value	Description*
0	H1F0	R/W	0	Enables 21160-1 FLAGO to cause an interrupt
1	H1F1	R/W	0	Enables 21160-1 FLAG1 to cause an interrupt
2	H2F0	R/W	0	Enables 21160-2 FLAGO to cause an interrupt
3	H2F1	R/W	0	Enables 21160-2 FLAG1 to cause an interrupt
4	H3F0	R/W	0	Enables 21160-3 FLAGO to cause an interrupt
5	H3F1	R/W	0	Enables 21160-3 FLAG1 to cause an interrupt
6	H4F0	R/W	0	Enables 21160-4 FLAGO to cause an interrupt
7	H4F1	R/W	0	Enables 21160-4 FLAG1 to cause an interrupt
8	PCFlg	R/W	1	Enables the PCI interface to cause an interrupt
9	PMCFlg0	R/W	0	Enables FLAGO from the PMC interface to cause an interrupt
10	Unused		0	
11	PRFlg	R/W	0	Enables a flag from the peripheral bus to cause an interrupt
12	UARTO	R/W	0	Enables a flag from UARTO to cause an interrupt
13	UART1	R/W	0	Enables a flag from UART1 to cause an interrupt
14	DMAInterrupt	R/W	0	Enables a DMA interrupt
15	Unused		0	
16	H1F0	R/O	0	Indicates that 21160-1 FLAGO is generating an interrupt
17	H1F1	R/O	0	Indicates that 21160-1 FLAG1 is generating an interrupt
18	H2F0	R/O	0	Indicates that 21160-2 FLAGO is generating an interrupt
19	H2F1	R/O	0	Indicates that 21160-2 FLAG1 is generating an interrupt
(Sheet	1 of 2)			

120

Bit	Name	Туре	Reset Value	Description*
20	H3F0	R/O	0	Indicates that 21160-3 FLAGO is generating an interrupt
21	H3F1	R/O	0	Indicates that 21160-3 FLAG1 is generating an interrupt
22	H4F0	R/O	0	Indicates that 21160-4 FLAGO is generating an interrupt
23	H4F1	R/O	0	Indicates that 21160-4 FLAG1 is generating an interrupt
24	PCFlg	R/O	0	Indicates that PCI flag is generating an interrupt
25	PMCFlg0	R/O	0	Indicates that PMC+ FLAGO is generating an interrupt
26	Unused		0	
27	PRFlg	R/O	0	Indicates that Peripheral bus flag is generating an interrupt
28	UARTO	R/O	0	Indicates that UARTO flag is generating an interrupt
29	UART1	R/O	0	Indicates that UART1 flag is generating an interrupt
30	DMAInterrupt	R/O	0	Indicates that DMA interrupt is generating an interrupt
31	Unused		0	
(Shee	1 2 of 2)		•	

All descriptions in this column apply when bits are set to 1.

Chapter 6Programming Details for the SharcFIN ASIC 121

Table 6–22 Contents of the PCI Interrupt Configuration Register (0x58) (Continues on next page)

Bit	Name	Туре	Reset Value	Description*
0	H1F0	R/W	1	Enables 21160-1 FLAGO to cause an interrupt
1, 3, 5, 7	Unused		0	
2	H2F0	R/W	1	Enables 21160-2 FLAGO to cause an interrupt
4	H3F0	R/W	1	Enables 21160-3 FLAGO to cause an interrupt
6	H4F0	R/W	1	Enables 21160-4 FLAGO to cause an interrupt
8	PCFlg	R/W	0	Enables the PCI interface to cause an interrupt
9	PMCFlg0	R/W	0	Enables FLAGO from the PMC interface to cause an interrupt
10	Unused		0	
11	PRFlg	R/W	0	Enables a flag from the peripheral bus to cause an interrupt
12	UARTO	R/W	0	Enables a flag from UARTO to cause an interrupt
13	UART1	R/W	0	Enables a flag from UART1 to cause an interrupt
14	DMAInterrupt	R/W	0	Enables a DMA interrupt
15, 17, 19, 21, 23	Unused		0	
16	H1F0	R/O	0	Indicates that 21160-1 FLAGO is generating an interrupt
18	H2F0	R/O	0	Indicates that 21160-2 FLAGO is generating an interrupt
20	НЗГО	R/O	0	Indicates that 21160-3 FLAGO is generating an interrupt
22	H4F0	R/O	0	Indicates that 21160-4 FLAGO is generating an interrupt
24	PCFlg	R/O	0	Indicates that PCI flag is generating an interrupt
(Sheet	1 of 2)			

Bit	Name	Туре	Reset Value	Description*
25	PMCFlg0	R/O	0	Indicates that PMC+ FLAGO is generating an interrupt
26	Unused		0	
27	PRFlg	R/O	0	Indicates that Peripheral bus flag is generating an interrupt
28	UARTO	R/O	0	Indicates that UARTO flag is generating an interrupt
29	UART1	R/O	0	Indicates that UART1 flag is generating an interrupt
30	DMAInterrupt	R/O	0	Indicates that DMA interrupt is generating an interrupt
31	Unused		0	
(Sheet 2 of 2)				

All descriptions in this column apply when bits are set to 1.

Chapter 6Programming Details for the SharcFIN ASIC 123

Table 6–23 Contents of the PMC+ Interrupt Configuration Register (0x5A) (Continues on next page)

Bit	Name	Туре	Reset Value	Description*
0	H1F0	R/W	0	Enables 21160-1 FLAGO to cause an interrupt
1, 3, 5, 7	Unused		0	
2	H2F0	R/W	0	Enables 21160-2 FLAGO to cause an interrupt
4	H3F0	R/W	0	Enables 21160-3 FLAGO to cause an interrupt
6	H4F0	R/W	0	Enables 21160-4 FLAGO to cause an interrupt
8	PCFlg	R/W	0	Enables the PCI interface to cause an interrupt
9	PMCFlg0	R/W	0	Enables FLAGO from the PMC interface to cause an interrupt
10	Unused		0	
11	PRFlg	R/W	0	Enables a flag from the peripheral bus to cause an interrupt
12	UARTO	R/W	0	Enables a flag from UARTO to cause an interrupt
13	UART1	R/W	0	Enables a flag from UART1 to cause an interrupt
14	DMAInterrupt	R/W	0	Enables a DMA interrupt
15, 17, 19, 21, 23	Unused		0	
16	H1F0	R/O	0	Indicates that 21160-1 FLAGO is generating an interrupt
18	H2F0	R/O	0	Indicates that 21160-2 FLAGO is generating an interrupt
20	НЗГО	R/O	0	Indicates that 21160-3 FLAGO is generating an interrupt
22	H4F0	R/O	0	Indicates that 21160-4 FLAGO is generating an interrupt
24	PCFlg	R/O	0	Indicates that PCI flag is generating an interrupt
(Sheet 1 of 2)				

Bit	Name	Туре	Reset Value	Description*
25	PMCFlg0	R/O	0	Indicates that PMC+ FLAGO is generating an interrupt
26	Unused		0	
27	PRFlg	R/O	0	Indicates that Peripheral bus flag is generating an interrupt
28	UARTO	R/O	0	Indicates that UARTO flag is generating an interrupt
29	UART1	R/O	0	Indicates that UART1 flag is generating an interrupt
30	DMAInterrupt	R/O	0	Indicates that DMA interrupt is generating an interrupt
31	Unused		0	
(Sheet 2 of 2)				

All descriptions in this column apply when bits are set to 1.

Chapter 6Programming Details for the SharcFIN ASIC 125

6.5.12 Flag and Interrupt Status Registers

The registers at offsets 0x5E and 0x5F are 16-bit unmasked registers that show the status of all flags and interrupts. The register at 0x5E shows the status of the flags, and 0x5F shows the status of the interrupts. Table 6–24 and Table 6–25 describe the bits in the registers. For additional explanation of these registers, refer to the *SharcFIN ASIC User's Manual*.

Table 6-24 Contents of the Flag Status Register

Bit	Name	Туре	Description
0	H1F0	R/O	Status of 21160-1 FLAGO
1	H1F1	R/O	Status of 21160-1 FLAG1
2	H2F0	R/O	Status of 21160-2 FLAGO
3	H2F1	R/O	Status of 21160-2 FLAG1
4	H3F0	R/O	Status of 21160-3 FLAGO
5	H3F1	R/O	Status of 21160-3 FLAG1
6	H4F0	R/O	Status of 21160-4 FLAGO
7	H4F1	R/O	Status of 21160-4 FLAG1
8	PCFlg	R/O	Status of PCI flag
9	PMCFlg0	R/O	Status of PMC+ FLAGO
10	Unused		
11	PRFlg	R/O	Status of peripheral bus flag
12	UARTO	R/O	Status of UARTO flag
13	UART1	R/O	Status of UART1 flag
14	DMAInterrupt	R/O	Status of DMA interrupt
15	Unused		

 Table 6-25
 Contents of the Interrupt Status Register

Bit	Name	Туре	Description
0	H110	R/O	Status of 21160-1 IRQO
1	H111	R/O	Status of 21160-1 IRQ1
2	H2I0	R/O	Status of 21160-2 IRQO
3	H2I1	R/O	Status of 21160-2 IRQ1
4	H3I0	R/O	Status of 21160-3 IRQO
5	H3I1	R/O	Status of 21160-3 IRQ1
6	H4I0	R/O	Status of 21160-4 IRQO
7	H4I1	R/O	Status of 21160-4 IRQ1
8	PCInt	R/O	Status of PCI interrupt
9	PMCI0	R/O	Status of PMC+ IRQO
15:10	Unused		

User's Guide

Appendix A **Debugging Your DSP Programs**

This appendix provides information on debugging DSP programs with either a hardware or a software emulator.

A.1 Debugging with a Hardware (In-Circuit) Emulator

This section discusses attaching an in-circuit emulator (ICE) from Analog Devices to the Hammerhead-PCI board. To attach an ICE to the Hammerhead-PCI, follow the steps below:

- 1. Connect the probe on the ICE card to the Hammerhead-PCI's JTAG connector.
- 2. Depending on the type of ICE card you are using, either install it in or connect it to your PC.
- 3. Install the Hammerhead-PCI in a 32- or 64-bit slot in your PC.
- 4. Apply power to the Hammerhead-PCI.
- 5. Start the emulator software on the PC.

A.1.1 Overview of the ICE Emulator

The Hammerhead-PCI is compatible with Analog Devices' ICE emulators, which are separate ISA bus, PCI bus, ethernet, or USB cards that connect to the Hammerhead-PCI's JTAG connector and install in or connect to a PC. The emulator provides a controlled environment for observing, debugging, and testing real-time activities in a target hardware environment by connecting directly to the target processor through its JTAG interface.

When the ICE is attached to the Hammerhead-PCI, the Hammerhead-PCI becomes the target system for the emulator, allowing you to operate it completely from the emulator's user interface. A powerful tool for debugging programs running on the ADSP-21160 processors, the emulator monitors system behavior while running at full

speed, and you can use it to download programs, start and stop program execution, set breakpoints, and observe and change the contents of the registers and memory.

A.1.2 Attaching the ICE to the Hammerhead-PCI

To attach the ICE to the Hammerhead-PCI, follow the instructions below.

- Locate the JTAG connector (J30) on the Hammerhead-PCI (see Figure 3–3).
- 2. A cable extends from the ICE card to a probe that connects to the JTAG connector on the Hammerhead-PCI. Connect the ICE probe to the JTAG connector. Figure A–1 shows the location of the pins on the connector.

Figure A-1 JTAG Connector

Pin 3 on the JTAG connector is missing (see Figure A–1) to prevent you from installing the emulator incorrectly. One of the sockets in the ICE probe has a plug inserted in place of the pin. Table 3–12 in Chapter 3 shows the connector pinout.

A.1.3 Installing the ICE and Hammerhead-PCI in a PC

Once you have connected the ICE to the Hammerhead-PCI, install the boards in your PC. The Hammerhead-PCI requires a 32- or 64-bit slot in your PC. How you install the ICE card depends on the form factor of the ICE card you are using. Section 2.3.3 explains how to install the Hammerhead-PCI, and the ICE Hardware User's Guide (from Analog Devices) explains how to install the ICE.

130 User's Guide Hammerhead-PCI

A.1.4 Operating the ICE

To start operating the ICE with the Hammerhead-PCI,

1. Apply power to the Hammerhead-PCI.

Note

As long as the emulator software is not running, you can safely attach and remove the ICE probe while the Hammerhead-PCI is running.

Start the emulator software on your PC. To download and run programs, follow the instructions in the ICE documentation.

A.2 Debugging with a Software Emulator

BittWare's VisualDSP Target is a fully functional software emulator, which allows you to debug your DSP projects right on your BittWare board without installing a hardware (in-circuit) emulator.

A.2.1 About the VisualDSPTarget

If you have installed Analog Devices' VisualDSP++ integrated development environment (IDE), you can use BittWare's VisualDSP Target to debug your DSP programs. BittWare's VisualDSP Target is a plug-in to Analog Devices' VisualDSP++ that allows the VisualDSP++ debugger to communicate directly with your BittWare DSP board.

Since the BittWare VisualDSP Target is integrated right into the VisualDSP++ debugger, you can compile and link your code in the VisualDSP++ integrated development environment and immediately debug your code directly on the BittWare board. A full-featured software debugger, the VisualDSP Target allows you to set breakpoints, single-step through your code, view memory, and run code on multiple processors.

A.2.2 Installing the VisualDSPTarget

To install the VisualDSP Target, insert the VisualDSP Target CD-ROM into your computer's CD-ROM drive, and follow the installation instructions on the screen. Once you have installed the Target, follow the instructions in the *VisualDSP Target User's Guide* to prepare your DSP program for debugging.

Appendix B

Setting Up for Standalone Operation

The Hammerhead-PCI can boot via link ports or from a boot program stored in its Flash memory (see section 5.2), which allows it to operate in standalone mode, free from a host computer. This section lists the steps necessary to prepare your Hammerhead-PCI to operate in standalone mode.

Note

If you are not planning to operate the Hammerhead-PCI in standalone mode, follow the instructions in Chapter 2.

- 1. While in development mode, develop a boot loader and a standalone operating program for the DSPs (see section B.1.1).
- 2. Program the boot Flash with the boot loader (see section B.1.2).
- 3. Power down and set the boot mode jumpers to "Flash Boot" or "Link Boot" (see "Setting the Boot Mode for the DSPs" on page 17).
- 4. Set the Standalone Mode jumpers (see "Setting the Standalone Operation Jumpers" on page 19).
- 5. Mount standoffs on the board (see section B.5).
- 6. Apply power to the Hammerhead-PCI (see section B.6).
- 7. Boot the board in Flash or Link boot mode (see section 5.2).

B.1 Developing and Loading a Boot Program

B.1.1 Developing the Boot Program

Use the Analog Devices software development tools and BittWare's host interface tools (DSP21k-SF Toolkit) to develop a boot program for the ADSP-21160 processors. The example software included with the Hammerhead-PCI includes example programs that demonstrate how to create a DSP program in the proper form and then load it into Flash memory so that it automatically boots and begins executing after the board is powered on or the DSPs are reset.

B.1.2 Loading a Boot Program into the Flash Memory

Use programs provided with the Hammerhead-PCI to load the Flash memory with a boot program. The flash directory contains utilities and a test program that uses the utilities. These programs provide easy access to the Flash memory on the Hammerhead-PCI board.

B.1.3 Loading a Link Boot Program

Using the external link ports, load the boot program onto the DSPs. Analog Devices supplies loading routines (loader kernels) that load an entire program through the selected port. These routines come with the Analog Devices development tools. For more information on loader kernels, refer to the development tools documentation.

B.2 Setting the Boot Mode Jumpers

The Hammerhead-PCI has two configuration jumpers (JP1 and JP2) that configure its boot mode. See "Setting the Boot Mode for the DSPs" on page 17 for instructions on setting the jumpers.

B.3 Setting the Standalone Mode Jumpers

The Hammerhead-PCI has three jumpers for configuring the board to operate in standalone mode:

- JP11 Standalone primary PCI voltage
- JP12 Standalone mode clock
- IP13 Standalone mode reset

All three jumpers must be "ON" for the board to operate properly in standalone mode. See "Setting the Standalone Operation Jumpers" on page 19 for more detail.

B.4 Booting the Board via Link Port

Connect a cable to external link port connector J2 (see Table 3–3 for pinout). Connector J2 provides a link port connection for booting 21160-1. When booting via link port, 21160-1 will boot and then boot the other three DSPs in the cluster.

B.5 Mounting Standoffs on the Hammerhead-PCI

Mount standoffs on the Hammerhead-PCI to provide adequate clearance between the work surface and the Hammerhead-PCI's components.

- 1. Place ¼" standoffs in the standoff mounting holes on the Hammerhead-PCI. Figure B–1 shows where the mounting holes are located.
- 2. Secure each standoff with a 1/4" screw.

Appendix B 135

Figure B-1 Location of the Standoff Mounting Holes

B.6 Supplying Power to the Hammerhead-PCI

The Hammerhead-PCI requires a +3.3 and +5V power supply for normal operation; when operating with a PMC module, it requires +12V and -12V. The external power connector (J1) supplies +3.3V, +5V, -12V, and +12V to the Hammerhead-PCI. Figure 3–4 gives the pinout of the connector and shows where it is located.

To connect an external power source to the Hammerhead-PCI,

- 1. Plug a power adapter cable into the Hammerhead-PCI's external power connector (J1). Be sure to align pin 1 (GND) on J1 with the GND pin on the cable.
- 2. Connect the remaining end of the cable to an external power source, such as a switching standalone power supply or the PC's power supply.
- 3. Apply power to the system.
- 4. Reset the Hammerhead-PCI. Section 2.5 explains in more detail how to reset the board.

Appendix B 137

User's Guide
Hammerhead-PCI

Appendix C **Troubleshooting Tips**

This section lists the information you should have ready before calling technical support at BittWare. It also provides the phone numbers and e-mail address for technical support.

C.1 Before You Call Technical Support

To allow us to serve you better, please perform the following checks and record any significant results before contacting BittWare for assistance.

- Run DspBad on the board and note the results.
- Run Diag21k on the board; enter **br** at the first prompt, **pc** at the next, and then initiate memory tests by entering **mt aa**.
- Try re-installing the tools and checking your path if you are getting "file not found" or similar errors.
- Try changing the hardware to see if the problem tracks with the board or the PC:
 - If you have access to a different board, please try it.
 - Try the board in a different PC.
 - Try a different operating system.
- Finally, when contacting BittWare please have the results of the tests listed above and the following information ready:
 - Information identifying the hardware and software you purchased. (See the BittWare packing list.)
 - Which operating system you are using: DOS, Windows 3.1, Windows 95, Windows 95B (OSR2), Windows 98, Windows NT Version 3.51, or Windows NT Version 4.0.
 - The release number of your DSP21k-SF Toolkit (Enter diag21k -v at a DOS prompt.)
- If you could be at the PC that is experiencing problems when making the call, we would better be able to start investigating the problem.

C.2 Contacting Technical Support

To reach technical support at BittWare, Inc., use one of the following methods:

• Phone (8:30 am – 5:30 pm ET): (603) 226-0404

• FAX: (603) 226-6667

• E-mail: support@bittware.com

Bittware also maintains the following internet sites:

http://www.bittware.com Contains product information, technical

> notes, support files available for download, and answers to frequently asked questions

(FAQ).

ftp://ftp.bittware.com Contains technical notes and support files.

Login as "anonymous" and use your email

address for the password.

Appendix D **Glossary of Terms**

This appendix defines certain terms used throughout the manual.

ADSP-21160 cluster

The ADSP-21160 cluster bus is a 40 MHz, 64-bit bus that connects the four ADSP-21160 processors and a 512 MB bank of SDRAM. It is connected to the

PCI interface through the SharcFIN ASIC.

DSP21k-SF Toolkit

BittWare's DSP21k-SF Toolkit is a set of libraries and utilities that enable you to develop DSP applications for the Hammerhead-PCI more quickly and easily. It contains a host interface library of C-callable functions for PC-based programs, diagnostic utilities, demo programs, and a DSP library that provides standard I/O extensions to DSP programs.

_

ICE (in-circuit emulator)

The Hammerhead-PCI is compatible with Analog Devices' in-circuit emulators (ICE), which are separate ISA bus, PCI bus, Ethernet, or USB cards that connect to the Hammerhead-PCI's JTAG connector. The ICE emulators provide a controlled environment for observing, debugging, and testing real-time activities in a target hardware environment by connecting directly to the target processor through its JTAG interface.

IOP registers

The IOP registers are control, status, or data buffer registers of the ADSP-21160's on-chip I/O processor.

Mailbox registers

The mailbox registers are registers in the SharcFIN ASIC that cause an interrupt when written to. The processor that was interrupted can read the registers to find out about the interrupt.

MMS

(Multiprocessor Memory Space). Multiprocessor memory space is the memory of other ADSP-21160 processors in the same cluster. A cluster is up to six ADSP-21160 processors that share a common processor bus. Any ADSP-21160 processor that is connected to the bus shares the MMS.

MS0 MS0 (memory select line 0) allows the DSPs to access the Hammerhead-PCI's SDRAM, which is located on the 64-bit ADSP-21160 cluster bus. MS1 MS1 (memory select line 1) allows the DSPs to access the Hammerhead-PCI's 1 MB bank of Flash memory, dual UART, and peripheral bus. MS2 MS2 (memory select line 2) allows the DSPs to access the SharcFIN ASIC. MS3 MS3 (memory select line 3) is unused on the Hammerhead-PCI. **MSIZE** The MSIZE bits of the ADSP-21160's SYSCON register define the size of the Hammerhead-PCI's three banked sections of memory, which are accessible to the DSPs via their memory select lines (MS0-MS2). PCI-to-DSP bridge BittWare's SharcFIN ASIC functions as a bridge (PCI-to-DSP) between the PCI interface and the ADSP-21160 DSPs, connecting the secondary PCI bus, the ADSP-21160 cluster bus, and the peripheral bus to the primary PCI bus. PCI-to-DSP interface The PCI-to-DSP interface allows the ADSP-21160 processors to communicate with the PCI bus, and vice-versa. It consists of the SharcFIN ASIC and three buses: the secondary PCI bus, the ADSP-21160 cluster bus, and the peripheral bus. PCI-to-PCI bridge The PCI-to-PCI bridge is a chip manufactured by Intel (21154) that provides a bridge between the primary and secondary PCI buses. PCI-to-PCI interface The PCI-to-PCI interface consists of the primary PCI bus and the PCIto-PCI bridge chip. Peripheral bus The 20 MHz, 8-bit peripheral bus connects to low-speed peripherals such as the Flash memory, the dual UART, and an expansion connector. The purpose of the peripheral bus is to allow additional components to communicate with the ADSP-21160s without affecting the signal quality of the ADSP-21160 cluster bus. Primary PCI bus The primary PCI bus is a 66 MHz, 64-bit bus between the host and the Intel 21154 PCI-to-PCI bridge. Secondary PCI bus The secondary PCI bus is a 66 MHz, 64-bit bus between the Intel 21154 PCI-to-PCI bridge and the SharcFIN.

SharcFIN ASIC

BittWare's SharcFIN ASIC flexibly interfaces Analog Devices' SHARC DSPs to a wide range of the Hammerhead-PCI's interfaces, including: 64/66 MHz PCI bus (rev. 2.1 compliant), SDRAM, UART, I²S serial ports, Flash, and a general-purpose expansion bus (the 8-bit peripheral bus). The SharcFIN also provides a feature-rich set of DMA functions and interrupt options to support very high-speed, real-time data flow with a minimum of processor overhead.

SPORT

SHARC synchronous serial port

SYSCON register

The SYSCON register is a register in the ADSP-21160 DSPs that contains the MSIZE bits and is used to select the packing mode for synchronous and asynchronous transfers performed by the host

VisualDSP++

Analog Devices' VisualDSP++ is an easy-to-use project management environment comprised of an integrated development environment (IDE) and debugger.

VisualDSP Target

BittWare's VisualDSP Target is a plug-in for VisualDSP that works with the VisualDSP debugger to allow direct communication with the DSPs on the Hammerhead-PCI.

Numerics	В
21160	BAR. see base address registers
see ADSP-21160	base address registers
	See also PCI interface
A	BAR0 94, 95, 97, 100, 101, 104
Ack line 110	BAR1 94, 98, 100, 102
Address Override Register 108	BAR2 94, 100, 103
ADSP-21160	BAR3 94
interrupt connections	BAR4 94, 97, 100, 104
See also <i>interrupts</i>	bits
addresses for 97	A0 Override En 108
architecture 69	Address Override 108
architecture of 70–79	Burst Disable (DMA) 117
booting, see <i>boot mode</i>	Bus Lock Request 108
cluster bus	Bus Locked 109
connections of 82	BusMode14 112
external memory 72	BusMode2, 112
locking access to 108	BusMode3 112
peripheral bus, access to 82	BusMode4 112
selecting RPBA mode for 17	Clock 115
SharcFIN, interface to 83, 97	Data 115
features of 42	Destructive FIFO Read Enable 108
function of 42	DMA Buslock 117
internal memory of 72	DMA Channel Select 117
interrupt connections	DMA Direction 117
see also interrupts	DMA Interrupt 117
configuring with the SharcFIN interrupt multiplexer	DMA Stride B6:0 117
119–125	DMA Xfer Length B1:0 118
lists of 78–79	DMACntB15:0 117
see also interrupts	DMAStart 117
link ports, connections of 75	flag status bits 126 H1F0 En 111
location of 40	H1F0 En 111 H2F0 En 111
memory select lines	H3F0 En 111
See also memory select lines	H4F0 En 111
accessing external memory via 102-104	Host Clock Disable 108
connections of 70–89	interrupt status bits 127
memory structure of 72–89	Last Reset Source 109
multiprocessor memory space 72, 103	Overridden A0 108
SDRAM timing of 98	Pbus Ack Enable 110
serial ports, connections of 73	Phus Reset 110
architecture	PCI to Pbus Wait 110
of ADSP-21160s 70–79	PMC Flg/Int En 112
of board	Processor Selection bits 111
block diagram of 3, 68	SD Bank Size 0 113
description of 2–4, 68–69	SD Bank Size 1 113
of PCI interface 69, 80–84 of SharcFIN ASIC 82–84	SD Reset 113
of Software 5	SD RF Size 113
of software 3	WatchdogEn0 111
	WatchdogEn1 111
	Window A0 to A4 114

BittWare Configuration Manager 13, 29	configuration
block diagrams	registers, SharcFIN
of SharcFIN architecture 83	See also SharcFIN and registers 106
of board 3	configuring
of PCI interface 80	flag connections. see flags
of software tools 6	Hammerhead-PCI 15–26
boot mode, selecting the 17, 64, 134	interrupt connections. see interrupts
boot program 90, 134	connectors, external
booting	link ports. see <i>link ports</i>
via Flash 17, 92, 133	expansion connector, see expansion connector
via host 17, 64	flag I/O. see flag I/O connector
via link ports 17, 133, 134–135	function of 45–56
bridges. see SharcFIN ASIC and PCI-to-PCI bridges	JTAG connector. see JTAG connector
buffered inverted flag outputs	location of 46
flag connections to 53	pinouts for 47–55
location of 46	PMC interface. see PMC
pinout of 53	
1	power connector. see power, connector
Bus Lock Request bit 108	reset connector. see reset connector, external
bus mastering DMA 95	RS-232. see RS-232 connector
bus mode lines, PMC 112	serial ports. see serial ports
buses	SODIMM. see <i>SDRAM</i>
I2C bus 98	controller, SDRAM 83
peripheral bus 55, 80	
See also peripheral bus	D
primary PCI bus 80–81	debugger. see ICE emulator and VisualDSP Target
See also PCI bus	debugging
secondary PCI bus 80–81	with ICE emulator 129–131
See also <i>PCI bus</i>	with VisualDSP Target 131
TDM serial bus. see <i>serial ports</i>	Diag21k
	displaying board information 31
С	exiting 35
cables	loading and executing a program 33
external power 26, 47	starting Diag21k 31
external reset 50	testing additional processors 34
link port 24	testing additional processors 34 testing the board with 31–35
RS-232 25	testing the board's memory 32
serial port 24	diagnostic utilities 28
clocks	See also Diag21k and DspBad
21160 oscillators	DMA
function of 43	access, SDRAM 98
location of 40	channels, SharcFIN 95
standalone mode clock jumper 19	control registers
UART oscillator	DMA Address Register 116
function of 43	DMA Configuration Register 116–118
location of 40	PCI bus mastering 95
cluster bus, ADSP-21160. see ADSP-21160, cluster bus	DSP21k-SF Toolkit 30–35
code development tools, installing 27	BittWare Configuration Manager 29
configuration	diagnostic utilities
board, verifying 29	Diag21k 28
jumpers. see jumpers, configuration	DspBad 28
registers, SharcFIN	installing 27–29
accessing 101	libraries
setting the 106–127	DspHost Library 28
configuration jumpers. see jumpers, configuration 15	Host Interface Library 28
Configuration Manager 29	overview of 5, 10

DspBad (DSP Board Automated Diagnostics) 28	П
testing the board with 30	Hammerhead-PCI 40
DSPs. see ADSP-21160	See also architecture and features
	configuring the 15–26
E	connecting external devices to 23–26
-	installing the 29
EEPROM 98	•
emulator. see ICE emulator and software tools, VisualDSP Target	operation, preparing for 13–92
example files, Hammerhead-PCI 35	power requirements for 26
expansion connector 55, 69	resetting the 36–38
location of 46	testing the 30–35
pinout of 55	unpacking the 14
external	hardware components, overview of 40-64
connectors. see connectors, external	hardware debugger. see ICE emulator
devices, connecting to the board 23-26	HIL. see Host Interface Library
link ports 24, 48–49	host booting 17
See also <i>link ports</i>	See also boot mode
memory. see <i>memory</i>	Host Interface Library 5, 28, 97, 98
power connector 47, 137	See also DSP21k Toolkit
-	host interface tools. see DSP21k-SF Toolkit
power supply 26, 137	host interface, resetting board via 38
See also power	nost interface, resetting board via 50
reset connector 37, 50	
See also reset connector, external	I
serial ports 20–24, 51–52	I2C interface
See also serial ports	bus connections 98
configuring the 20–23	on-board, setting the 115
	PMC 116
F	PMC I2C interface 99
features	I2O support 96, 99
of ADSP-21160 42	ICE 129
	ICE emulator
of Hammerhead-PCI board 2	See also JTAG connector
of SharcFIN ASIC 42–43	connecting to Hammerhead-PCI 130
of PCI interface 43	9
flag I/O connector 53	debugging Hammerhead-PCI with 129–131
flags	description of 5, 9, 129
	installing
ADSP-21160, connections	code development tools 27
to SharcFIN 99	DSP21k-SF Toolkit 27–29
ADSP-21160 connections 78	Hammerhead-PCI 29
ADSP-21160, connections	testing the installation 30–35
configuring the 78	VisualDSP IDE 27
to rear panel I/O 24	VisualDSP Target 27, 131
to SharcFIN 77	internal memory, ADSP-21160 72
block diagram of connections 77	interrupt multiplexer, SharcFIN
status registers 126	function of 99
<u>.</u>	generating PCI interrupts via 96
flags and interrupts. see <i>flags and interrupts</i>	interrupt connections 99
Flash	interrupts
accessing	ADSP-21160 connections
from ADSP-21160s 88, 102	configuring the 78–79, 99
from PCI interface 69, 102	DSP-to-DSP interrupts 79
booting 17, 92, 133	1
See also boot mode	DSP-to-Host/Host-to-DSP interrupts 79
function of 42	DSP-to-PMC+/PMC+-to-DSP interrupts 79
location of 40	lists of 78–79
memory mapping of 94, 98, 102	to rear panel I/O 24
resetting via peripheral bus 110	to SharcFIN 77, 99
~	

ADSP-21160, connections	external
diagram of 77	See also Flash and SDRAM
overview of 77	accessing via MS0-MS3 87-89
block diagram of connections 77	changing MSIZE of memory banks 87
PCI 99	internal memory 72
SharcFIN connections	structure, ADSP-21160 72-89
configuring the 82	memory map, SharcFIN
to ADSP-21160s 119-125	list of 101, 107
status registers 127	overview of 100
IRQs. see interrupts	memory select lines, ADSP-21160
	accessing memory banks via 72-89
J	connections of 70–71
JTAG connector	MS0 88, 94, 97, 100
See also ICE emulator	MS1 88, 94, 98, 100, 102
connecting ICE to 129, 130	MS2 89, 94, 95, 97, 100, 101, 104, 106
location of connector 46	MMS. see multiprocessor memory space
pinout of 62	MS (memory select). see memory select lines, ADSP-21160
jumpers, configuration 15–20, 63–64	MSIZE 87
ADSP-21160 cluster bus priority jumpers 17	multiplexer, interrupt. see interrupt multiplexer, SharcFIN
boot mode jumpers 17, 64, 134	multiprocessor memory space
link port connector power jumpers 19, 64	accessing 103
location of 16, 64	addresses, list of 103
·	definition of 72
primary PCI bus speed jumper 18, 64 rotating priority bus arbitration jumper 17, 64	multiprocessor memory. see multiprocessor memory space
secondary PCI bus signal level jumper 18	0
secondary PCI bus speed jumper 18, 64	_
secondary PCI signal level 64	Onboard I2C Control Register 115
serial port jumper block 21	oscillators, on-board. see <i>clocks</i>
setting the 15–20	_
standalone mode jumpers 19, 64, 135	Р
standalone primary PCI voltage jumper 64	PCI buses
	memory mapping to SharcFIN 100-104
L	primary
LEDs	configuring speed of 18
description of 44	connections of 81
flag connections to 78	speed of 81
location of 40	standalone primary PCI voltage jumper 19
link booting 17, 90, 133, 134–135	secondary
link booting. See also <i>booting 90</i>	configuring signal level of 18, 64
link ports	configuring speed of 18, 64
See also rear panel I/O	connections of 81
ADSP-21160, connections of 75	speed of 81
block diagrams of 75–76	PCI interface
cables, connecting to board 24	architecture of 69, 80-84
external 48–49	base address registers 94
connector, power jumpers 19	See also base address registers
location of 46	block diagram of 80
pinout of 49	function of 43
to rear panel I/O 24	PCI-to-DSP interface 81
10 11m F 11m 17 0 12	PCI-to-PCI interface 80, 81
AA	programming details for 95–96
M	SharcFIN ASIC PCI interface 84
mailbox registers, PCI 96	SharcFIN PCI interface
MATLAB interface 11	See also SharcFIN ASIC
memory	control registers 94, 95, 97, 100
	Control registers 74, 73, 77, 100

mailbox registers 96	Q
PCI side DMA 95	QL5064 9
PCI side interrupts 99	See also SharcFIN ASIC
PCI side single access 96	configuration registers, accessing 101
PCI side DMA 95	control registers 95
PCI-to-PCI bridge 80	control registers 75
connections of 81	n
function of 44	R
location of 40	rear panel I/O
peripheral bus	flag connections 24
accessing	interrupt connections 24
via ADSP-21160s 98, 102	link port connections 24
via PCI interface 98, 102	TDM serial connections 24
Ack line 110	registers
connection to PCI bus, SharcFIN 80	SharcFIN
expansion connector 55	Address Override Register 108
memory mapping of 98, 102	addresses of 106–107
overview of 84	DMA Address Register 116
resetting 110	DMA Configuration Register 116–118
SharcFIN, interface to 84	flag and interrupt status registers 126–127
speed of 84	interrupt configuration registers 119–125
wait cycles, configuring the 110	Onboard I2C Control Register 115
Peripheral Bus Configuration Register 110	Peripheral Bus Configuration Register 110
PMC	PMC I2C Control Register 116
I2C interface 98	PMCA Configuration Register 112
interfaces	SDRAM Size Configuration Register 113
bus mode lines 112	SDRAM Window Register 114
description of 56	Status Register 109
location of 46	Watchdog Configuration Register 111
pinout of 57–58	reset connector, external
module, connecting to board 23	connecting cable to 37
PMC I2C Control Register 116	location of 46
PMC+ extension 56, 59	pinout of 50
See also PMC	resetting board via 37
architecture of 69	reset jumper, standalone mode 19
I2C interface 98	reset line 37, 50, 59
incompatibilities with 59	reset source, determining last 109
link ports 69	resetting
pinout of 60–61	board
reset line 59, 69	via external reset connector 37, 50
PMCA Configuration Register 112	via host interface 38
power	via watchdog timer 36
connector, external 47, 137	peripheral bus, devices on 110
location of 46	RPBA modes, selecting the 17
pinout of 47	RS-232
requirements 26	cable
supply, connecting a 26, 137	connecting to board 25
external	pinout of 54
power connector	connector 54
See also <i>power</i>	location of 46
primary PCI bus. see <i>PCI buses</i>	pinout of 54
processors. see ADSP-21160	UART. see UART, RS-232
programming details, SharcFIN 95–127	
r-op-animing details, officer 111 /3 12/	S
	SDRAM 42, 62
	See also SODIMM
	000 0000111111

accessing	peripheral bus interface 80, 84
from ADSP-21160s 88, 104	registers
from PCI interface 104	base address registers 95
ADSP-21160 memory select lines 88	registers, user-configurable
ADSP-21160 MSIZE bits 87	See also registers, SharcFIN
control registers	accessing from DSPs 89
SDRAM Size Configuration Register 113	accessing from PCI interface 101–104
SDRAM Window Register 114	setting the 106–127
controller, SharcFIN 83	SDRAM controller 97–98
DMA-based access of 98	SHARC side DMA 95
location of 40	single access, PCI 96
memory mapping of 94, 97	SharcLAB 11
size of, configuring the 104	Simulink 11
timing of, from ADSP-21160 98	SODIMM 62
secondary PCI bus. see <i>PCI buses</i>	See also SDRAM
,	
serial ports	software tools
ADSP-21160 connections 73	DSP21k-SF Toolkit 5
block diagrams of 73–74	in-circuit emulator. see ICE emulator
list of 51	VisualDSP 5
cables, connecting to board 24	VisualDSP Target 5, 131
configuration switches 20–23, 65	SpeedDSP 10
configuring 20–23	standalone mode
connectors 20	clock 19
jumper blocks	jumpers, setting the 19–20, 135
connections of 51	operating board in 133–137
location of 21	primary PCI voltage jumper 19
location of 46	reset 19
pinout of connectors 52	standoffs, mounting 135
TDM	Status Register 109
configuring the 51	switches, configuration 65
connections to DSPs 73	SYSCON register 87, 108
TDM	system settings, accessing 101
See also rear panel I/0	system settings, weetssing 101
SHARC. see ADSP-21160	-
SharcFIN ASIC	Т
accessing from ADSP-21160s 89	TDM serial ports. see serial ports
ADSP-21160 bus interface 94, 97–99	test points
	location of 46, 56
ADSP-21160 memory select addresses 100	testing the installation
architecture of 82–84	with Diag21k 31–35
cluster bus, interface to 82, 83	with DspBad 30
control register, memory mapping of 94	with example files 35
DMA access, SDRAM 98	timer, watchdog. see watchdog timer
DMA channels 95	timing, SDRAM. see SDRAM, timing of
documentation for 9	troubleshooting 139
features of 42–43	C
I2C interface 98, 115–116	U
I2O support 96, 99	
interrupt connections	UARTs, RS-232
configuring via registers 119–125	accessing
to ADSP-21160 119-125	from ADSP-21160s 88
interrupt multiplexer 99	from PCI interface 102
See also interrupt multiplexer, SharcFIN	description of 44
generating PCI-side interrupts 96, 99	flag connections 126
location of 40	interrupt connections 120
memory mapping. see memory map, SharcFIN	location of 46
PCI interface 84, 94–96	memory mapping of 94, 98, 102
,	

memory select location 88 resetting via peripheral bus 110 unpacking, Hammerhead-PCI 14

VisualDSP installing 27 overview of 5, 9 VisualDSP Target debugging with 131 installing 27, 131 overview of 5, 9

wait cycles, peripheral bus 110
Watchdog Configuration Register 36, 111
watchdog timer
enabling 111
overview of 36
processor, selecting the 111
resetting the board via 36
timeout of, setting the 111