Álge	bra	Linear	В
	DIA		L)

COM+MEC

Exame da Época de Recurso -2006/2007 - 13 de Fevereiro de 2007

Departamento de Matemática para a Ciência e Tecnologia – Universidade do Minho

Curso: Nome: Número: Classificação:

A prova tem a duração de 120 minutos, é sem consulta e não é permitida a utilização de máquina de calcular. Durante a realização da prova os telemóveis devem estar desligados e só se pode abandonar a sala passados 20 minutos do seu início. A prova é constituído por três grupos e termina com a palavra "Fim". No início de cada grupo indicam-se as cotações na escala de 0 a 200.

Grupo I — Indique, na folha do enunciado da prova sem apresentar cálculos nem justificações, se as seguintes proposições são verdadeiras ou falsas usando para tal os caracteres "V" ou "F", respectivamente. Cotações — resposta certa: 5; resposta em branco: 0; resposta errada: -5, sendo 0 a cotação mínima neste grupo.

- I.1 \square Sejam $p = 2x^2 x 1 \in \mathbb{R}_2[x]$ e $\mathcal{S} = (x+1, x^2+1, x^2+x)$ uma base ordenada de $\mathbb{R}_2[x]$. Então, $[p]_{\mathcal{S}} = (-2, 1, 1)$.
- I.2 \square -3 é um valor próprio simples da matriz $A = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix}$.
- I.4 \square O sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix}$ e cujo vector dos termos independentes é $b = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ não tem variáveis livres.

II.3 Seja $T \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2), T(x, y, z) = (x - z, 0).$

(a)
$$A_T =$$
(b) $\mathcal{N}_T =$

(c)
$$c_T = \boxed{}$$
(d) $n_T = \boxed{}$

(b)
$$\mathcal{N}_T =$$

(d)
$$n_T =$$

II.4 Seja a matriz $A = \begin{bmatrix} a & 0 & b \\ 0 & 1 & 0 \\ c & 0 & d \end{bmatrix}$, $a, b, c, d \in \mathbb{R}$, tal que |A| = 3.

$$(a) \mid {a \atop b} {c \atop d} \mid = \boxed{ }.$$

(c)
$$|\operatorname{adj}(A)| = \boxed{}$$
.

II.5 Sejam as matrizes $X = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$, $Y = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $W = YY^T$ e $Z = Y^TY$.

(a)
$$X^{-1} = \boxed{ }$$
 . (b) $X^2 = \boxed{ }$. (c) $W = \boxed{ }$. (d) $Z = \boxed{ }$

(c)
$$W = \boxed{ }$$
 . (d) $Z = \boxed{ }$

Grupo III — Responda, nas folhas que lhe foram distribuídas e por qualquer ordem, às seguintes questões, indicando todos os cálculos que tiver de efectuar, bem como as respectivas justificações. Cotações: 20+10+20+(5+5)+20+20.

III.1 Seja $x \in \mathcal{M}_{n \times 1}(\mathbb{R})$ tal que $x^T x = [1]$. Mostre que a $I_n - 2xx^T$ é uma matriz simétrica e ortogonal.

III.2 Defina conjunto gerador e base de um espaço vectorial.

- III.3 Sejam $X = \{A \in \mathcal{M}_{n \times n}(\mathbb{R}) | A = A^T \}$ e $Y = \{A \in \mathcal{M}_{n \times n}(\mathbb{R}) | \det(A) = 0 \}$. Mostre que X é um subespaço de $\mathcal{M}_{n \times n}(\mathbb{R})$ e que Y não é um subespaço de $\mathcal{M}_{n \times n}(\mathbb{R})$.
- III.4 Considere o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 3 & -7 \\ -5 & 1 \end{bmatrix}$ e cujo vector dos termos independentes é $b = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.
 - (a) Mostre, sem o resolver, que o sistema de equações lineares dado é possível e determinado.
 - (b) Resolva o sistema de equações lineares dado através da Regra de Cramer.
- III.5 Considere o sistema de equações lineares cuja matriz dos coeficientes é $A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 4 & -3 \\ 3 & 6 & -5 \end{bmatrix}$ e o vector dos termos independentes é $b = \begin{bmatrix} 9 \\ 1 \\ 0 \end{bmatrix}$. Resolva-o através do método de Gauss e do método de Gauss-Jordan.
- III.6 Determine o espectro da matriz $A = \begin{bmatrix} 4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$, bem como o espaço próprio do valor próprio de maior módulo.

Fim.