

FIT1013 Digital Futures: IT for Business Week 12: Modularisation, Structure Charts

On completion of your study this week, you should aim to:

- Discuss program design approaches
- Design modules using structure charts

Two Approaches to System Development

- Traditional Approach
 - Also called structured system development
 - Structured analysis and design technique (SADT)
- Structured programming
 - Improves computer program quality
 - Allows other programmers to easily read and modify code
 - Each program module has one beginning and one ending

More details about Systems Development will be covered in FIT2001

Structured Analysis

- Define what system needs to do (processing requirements)
- Define data system needs to store and use (data requirements)
- Define inputs and outputs
- Define how functions work together to accomplish tasks
- Data flow diagrams (DFD) and entity relationship diagrams (ERD) show results of structured analysis

Structured Design

- Technique developed to provide design guidelines
 - What set of programs should be
 - What program should accomplish
 - How programs should be organized into a hierarchy
- Modules are shown with structure chart
- Main principle of program modules
 - Loosely coupled module is independent of other modules
 - Highly cohesive module has one clear task

The Structure Chart

- Describes functions and sub functions of each part of system
- Shows relationships between modules of a computer program
- Simple and direct organization
 - Each module performs a specific function
 - Each layer in a program performs specific activities
- Chart is tree-like with root module and branches

Structure Chart Symbols

High-level Structure Chart for the Customer Order Program

Structure Chart

Evaluating the Quality of a Structure Chart

- Module coupling
 - Measure of how module is connected to other modules in program
 - Goal is to be loosely coupled
- Module cohesion
 - Measure of internal strength of module
 - Module performs one defined task
 - Goal is to be highly cohesive

Examples of Module Cohesion

