

Sensitivity improvements with hadronic energy fraction and remid binning

Numu group, Sep. 2016

Luke Vinton, University of Sussex

Version details

Running in S16-09-13

 Using FD and ND numu decafs found here: / pnfs/nova/persistent/production/concat/ R16-03-03-prod2reco.d/

Outline

- All Sensitivities shown made with the SA numu (non max mixing) oscillation parameters
- Review of last talk (DocDB <u>16087</u>)
 - hadronic energy fraction vs. reco. neutrino energy
 - No-extrap stats-only non-max. mixing sensitivity contour
- Sensitivity (no systs, full extrap) with fine remid binning
- Sensitivities (full systs, full extrap) with:
 - hadronic energy fraction binning
 - with 2D combination of remid and hadronic energy binning

Oscillation parameters

```
SetL(810);

SetRho(0); // No matter effects

SetDmsq21(7.59e-5);

SetDmsq32(2.6746e-3);

SetTh12(.601);

SetTh13(.1567);

SetdCP(0);

SetTh23(0.68696); // non max (ssqth23 = 0.4022)
```


Recap

Following slides show the stats. only (and no extrap.) sensitivity with 4 hadronic energy fraction bins

Hadronic energy fraction vs. reco. energy

SA numu result paramters (ssqth23 = 0.4022) sensitivity

SA numu result paramters (ssqth23 = 0.4022) sensitivity

 $\text{sin}^2\theta$

23

Fine ReMId binning

Binning scheme:

- split remid into 2 coarse bins below 0.9
 - 0.4 <= remid < 0.75
 - 0.75 <= remid < 0.9
- split into 8 fine bins above 0.9
 - 72/80 <= remid < 73/80
 - 73/80 <= remid < 74/80
 - etc.
 - 80/80 <= remid

Stats only sensitivity with fine ReMId binning

Stats only sensitivity with fine ReMId binning

Hadronic energy fraction binning

Split events into hadronic energy quantiles

Quantiles made for each bin of reconstructed neutrino energy

Up next, sensitivities with events split into 2,3,4 and 5 hadronic energy fraction quantiles

2D Hadronic energy fraction and remid binning

Split events into 4 hadE frac. quantiles and 2 remid bins (0.4-0.75, 0.75-1.0)

HadE frac. quantiles made for each bin of reconstructed neutrino energy and for each remid bin

Summary

- Stats only sensitivity improves slightly when splitting events using fine remid binning
- Improvement of using hadE frac. binning over standard increases with addition of systematics and extrapolation
 - senstivity improves with the number of hadE frac bins. Sensitivity gain is less with each extra bin
- 2D binning in hadE frac and remid improves rejection of maximal mixing over just hadE frac binning
 - However there is some strange behaviour. The contour becomes larger in some parts. Most notably at sinSqTh_23 ~ 0.35

Backup

Hadronic energy fraction

Max. mixing paremeters sensitivity

