

Theorem

The linear multistep method is convergent if and only if it is consistent and stable.

Remark

This theorem states that it can be determined whether or not a linear multistep method is convergent simply by checking some algebraic conditions concerning its characteristic polynomials.

Proof. (sketch)

Convergence ⇒ *Consistency*

Apply the method to y' = 0, y(0) = 1 and y' = 1, y(0) = 0 for verifying satisfiability of the consistency conditions.

 $Convergence \Rightarrow Stability$

Consistency and Stability \Rightarrow Convergence

Theorem

The linear multistep method is convergent if and only if it is consistent and stable.

Remark

This theorem states that it can be determined whether or not a linear multistep method is convergent simply by checking some algebraic conditions concerning its characteristic polynomials.

Proof. (sketch)

Convergence ⇒ *Consistency*

Apply the method to y' = 0, y(0) = 1 and y' = 1, y(0) = 0 for verifying satisfiability of the consistency conditions.

 $Convergence \Rightarrow Stability$

Apply the method to y' = 0, y(0) = 0 for verifying satisfiability of the root condition.

Consistency and Stability \Rightarrow Convergence

Theorem

The linear multistep method is convergent if and only if it is consistent and stable.

Remark

This theorem states that it can be determined whether or not a linear multistep method is convergent simply by checking some algebraic conditions concerning its characteristic polynomials.

Proof. (sketch)

Convergence ⇒ *Consistency*

Apply the method to y' = 0, y(0) = 1 and y' = 1, y(0) = 0 for verifying satisfiability of the consistency conditions.

$Convergence \Rightarrow Stability$

Apply the method to y' = 0, y(0) = 0 for verifying satisfiability of the root condition.

Consistency and Stability \Rightarrow Convergence

$$\begin{bmatrix} y_{n-k+1} \\ y_{n-k+2} \\ \vdots \\ y_n \\ y_{n+1} \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_k & -a_{k-1} & -a_{k-2} & \cdots & -a_0 \end{bmatrix} \begin{bmatrix} y_{n-k} \\ y_{n-k+1} \\ \vdots \\ y_{n-1} \\ y_n \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ h(b_{-1}f_{n+1} + b_0f_n + \cdots + b_nf_0) \end{bmatrix}$$

We define

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_k & -a_{k-1} & -a_{k-2} & \cdots & -a_0 \end{bmatrix}, \qquad E_n = \begin{bmatrix} y_{n-k} - y(t_{n-k}) \\ y_{n-k+1} - y(t_{n-k+1}) \\ \vdots \\ y_{n-1} - y(t_{n-1}) \\ y_n - y(t_n) \end{bmatrix},$$

where y(t) is the exact solution that satisfies a similar difference equation

$$\begin{bmatrix} y(t_{n-k+1}) \\ y(t_{n-k+2}) \\ \vdots \\ y(t_n) \\ y(t_{n+1}) \end{bmatrix} = A \begin{bmatrix} y(t_{n-k}) \\ y(t_{n-k+1}) \\ \vdots \\ y(t_{n-1}) \\ y(t_n) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ h(b_{-1}f(t_{n+1}, y(t_{n+1})) + b_0 f(t_n, y(t_n)) + \dots + b_n f(t_0, y(t_0))) - \ell_{n+1}(y, h) \end{bmatrix}.$$

We define

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_k & -a_{k-1} & -a_{k-2} & \cdots & -a_0 \end{bmatrix}, \qquad E_n = \begin{bmatrix} y_{n-k} - y(t_{n-k}) \\ y_{n-k+1} - y(t_{n-k+1}) \\ \vdots \\ y_{n-1} - y(t_{n-1}) \\ y_n - y(t_n) \end{bmatrix},$$

where y(t) is the exact solution that satisfies a similar difference equation

$$\begin{bmatrix} y(t_{n-k+1}) \\ y(t_{n-k+2}) \\ \vdots \\ y(t_n) \\ y(t_{n+1}) \end{bmatrix} = A \begin{bmatrix} y(t_{n-k}) \\ y(t_{n-k+1}) \\ \vdots \\ y(t_{n-1}) \\ y(t_n) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ h(b_{-1}f(t_{n+1},y(t_{n+1})) + b_0 f(t_n,y(t_n)) + \dots + b_n f(t_0,y(t_0))) - \ell_{n+1}(y,h) \end{bmatrix}.$$

Then, we have $E_{n+1} = AE_n + Q_n$ where

$$Q_{n} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ h(b_{-1}(f_{n+1} - f(t_{n+1}, y(t_{n+1}))) + b_{0}(f_{n} - f(t_{n}, y(t_{n}))) + \dots + b_{n}(f_{0} - f(t_{0}, y(t_{0})))) + \ell_{n+1}(y, h) \end{bmatrix}.$$

We define

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_k & -a_{k-1} & -a_{k-2} & \cdots & -a_0 \end{bmatrix}, \qquad E_n = \begin{bmatrix} y_{n-k} - y(t_{n-k}) \\ y_{n-k+1} - y(t_{n-k+1}) \\ \vdots \\ y_{n-1} - y(t_{n-1}) \\ y_n - y(t_n) \end{bmatrix},$$

where y(t) is the exact solution that satisfies a similar difference equation

Then, we have $E_{n+1} = AE_n + Q_n$ where

$$Q_{n} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ h(b_{-1}(f_{n+1} - f(t_{n+1}, y(t_{n+1}))) + b_{0}(f_{n} - f(t_{n}, y(t_{n}))) + \dots + b_{n}(f_{0} - f(t_{0}, y(t_{0})))) + \ell_{n+1}(y, h) \end{bmatrix}$$

So, there is a constant
$$C$$
 such that, for $h \le (2C\|b\|_1 L)^{-1}$, we have
$$\|E_{k+n}\| \le C\|E_k\| + C\sum_{j=0}^{n-1} \|Q_{k+j}\| \le 2C\|E_k\| + 4hC\|b\|_1 L\sum_{j=0}^{n-1} \|E_{k+j}\| + 2nC\max_{0 \le j < n} |\ell_{k+j+1}(y,h)|.$$

We define

$$A = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ -a_k & -a_{k-1} & -a_{k-2} & \cdots & -a_0 \end{bmatrix}, \qquad E_n = \begin{bmatrix} y_{n-k} - y(t_{n-k}) \\ y_{n-k+1} - y(t_{n-k+1}) \\ \vdots \\ y_{n-1} - y(t_{n-1}) \\ y_n - y(t_n) \end{bmatrix},$$

where y(t) is the exact solution that satisfies a similar difference equation

Then, we have $E_{n+1} = AE_n + Q_n$ where

$$Q_{n} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ h(b_{-1}(f_{n+1} - f(t_{n+1}, y(t_{n+1}))) + b_{0}(f_{n} - f(t_{n}, y(t_{n}))) + \dots + b_{n}(f_{0} - f(t_{0}, y(t_{0})))) + \ell_{n+1}(y, h) \end{bmatrix}$$

So, there is a constant
$$C$$
 such that, for $h \le (2C\|b\|_1 L)^{-1}$, we have $\|E_{k+n}\| \le C\|E_k\| + C\sum_{j=0}^{n-1} \|Q_{k+j}\| \le 2C\|E_k\| + 4hC\|b\|_1 L\sum_{j=0}^{n-1} \|E_{k+j}\| + 2nC\max_{0 \le j < n} |\ell_{k+j+1}(y,h)|.$

Therefore,

$$||E_{k+n}|| \le 2C \left(||E_k|| + (T - t_0) \max_{0 \le j < N} \left| \frac{\ell_j(y, h)}{h} \right| \right) e^{4(T - t_0)C||b||_1 L} \dots$$

Remark

The highest order attainable by a k-step method is 2k.

Remark

The highest order attainable by a k-step method is 2k. However, such a method is not stable for any k > 1.

Remark

The highest order attainable by a k-step method is 2k. However, such a method is not stable for any k > 1.

Theorem

The highest order of a stable k-step method is k + 1 if k is odd and k + 2 if k is even.

Remark

The highest order attainable by a k-step method is 2k. However, such a method is not stable for any k > 1.

Theorem

The highest order of a stable k-step method is k + 1 if k is odd and k + 2 if k is even.

Remark

The Adams method are linear multistep methods with best possible stability properties, namely, the first characteristic polynomial $\rho(t) = t^{k+1} - t^k$ has all its roots at the origin except for the mandatory root at 1.