BG MATH

高斯积分 $\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$

傅里叶级数 $f(t) = \sum_{n=-\infty}^{\infty} c(n) e^{j\frac{2\pi n}{T}t} c(n) = \frac{1}{T} \int_{-T/2}^{T/2} f(t) e^{-j\frac{2\pi n}{T}t} dt$

傅里叶变换 $f(t) = \int_{-\infty}^{\infty} F(\mu)e^{j2\pi\mu t}d\mu$ $F(\mu) = \int_{-\infty}^{\infty} f(t)e^{-j2\pi\mu t}dt$

CHAPTER 2

视觉感知要素

人视觉是由眼睛中锥状体和杆状体组成的。低照明级别杆状体起作用。在背景照明增强时锥状体 起作用。

光和电磁波谱

 $\lambda = \frac{c}{\nu} E = hv$ 可见光的波长范围: 约 400 700nm

 $\Delta I_{.}/I$ 称为韦伯比

辐射强度:光源流出能量总量;光通量给出观察者从光源感受到的能量,用流明数度量;亮度是光感 受的主观描绘,不能测量,描述彩色感觉参数之一; 灰度级用来描述单色光图像的亮度

图像感知与获取

传感器:CCD,CMOS

簡单的成像模型

f(x,y)=i(x,y)r(x,y),其中i(x,y)为入射分量(低频),r(x,y)为反射分量(高频)

其中 $0 \le f(x,y), i(x,y) < \infty \ 0 \le r(x,y) \le 1$

r=0 全吸收,1 全反射

图像取样和量化

对坐标值进行数字化称为取样,对幅度值进行数字化称为量化,原点位于图像的左上角, x 轴向下, y 轴向右

坐标索引: 像二维坐标(x, y);线性索引通过计算到坐标(0, 0)的偏移量得到的,行/列扫描

空间分辨率: 图像中可辨别的最小细节 灰度分辨率: 灰度级中可分辨的最小变化:打印机单位距离 可以分辨的最小线对数 DPI;数字图像:图像大小, 即行数 x 列数 PPI

图像对比度:一幅图像中最高和最低灰度级间的灰度差为对比度。

基本的图像重取样方法:图像内插。有最近邻内插;常选用双线性(v(x, y) = ax + by + cxy + d 四个 系数可用 4 个最近邻点的 4 个未知方程求出)和双三次内插。

像素间的一些基本关系

 $N_4(p)$ 上下左右, $N_{D(p)}$ 四个对角, $N_8(p) = N_4(p) \cup N_{D(p)}$

值域 V, V 是 0 到 255 中的任一个子集

4 邻接:点 q 在 $N_4(p)$ 中,并 q 和 p 具有 V 中的数值

8 邻接:点 q 在 $N_8(p)$ 中,并 q 和 p 具有 V 中的数值

m 邻接(混合邻接): 1.q 在 p 的 $N_4(p)$ 或者 2.q 在 p 的 $N_{D(p)}$ 中, $N_4(P)\cap N_4(Q)$ 中没有 V 值的像素

欧氏距离(De): $D_e(p,q) = \sqrt{(x-s)^2 + (y-t)^2}$ 街区距离(D4): $D_4(p,q) = |x-s| + |y-t|$

棋盘距离(D8): $D_8(p,q) = \max(|x-s|, |y-t|)$

对应元素运算和矩阵运算

图像相加:取平均降噪。相减:增强差别。相乘和相除:校正阴影。

三个基本量用于描绘彩色光源的质量: 发光强度、光通量和亮度。

一幅数字图像占用的空间: M×N×k。

CHAPTER 3

基本的灰度变换

反转变换S = L - 1 - r

对数变换 $S = c \log(1+r)$

幂律(伽马)变换 $s=cr^{\gamma}\,\gamma<1$ 变亮,加强暗细节;反之变暗,加强亮细节

分段线性变换: 1.对比度拉伸,2.灰度级分层,3.比特平面分层

非归一化 $h(r_k)=n_k,\quad k=0,1,2,\cdots,L-1$ n_k 是 f 中灰度为 r_k 的像素的数量 k 越大越白

归一化 $p(r_k) = \frac{h(r_k)}{MN} = \frac{n_k}{MN}$

无空间信息,不同图像可能直方图相似,同一图像切片的直方图有可加性

产生灰度级丰富且动态范围大的图像灰度

a) 在 $0 \le r \le L - 1$ 区间内,T(r)是严格单调递增

b) 当 $0 \le r \le L - 1$ 时, $0 \le T(r) \le L - 1$ 。

变换前后的 pdf 为 $p_{r(r)}, p_{s(s)}$

 $s = T(r) = (L-1) \int_0^r p_r(w) dw$

 $s_k = T(r_k) = (L-1) \sum_{i=0}^k p_r \big(r_j\big)$

映射前后的像素相对位置不变,然后部分会合并

若T(r)严格单增且可微,有 $p_s(s) = p_r(r) \left| \frac{dr}{ds} \right|$

匹配(规定化)

输入原始图 $p_{r(r)}$,目标图像 $p_{z(z)}$,求输入r到输出z的变换公式

因为知道均衡化,把原始图像和目标图像都用均衡化的作为桥梁

 $T(r) = (L-1) \int_0^r p_r(w) dw$

 $G(z) = (L-1) \int_{0}^{z} p_{z}(\nu) d\nu$

 $z = G^{-1}(s) = G^{-1}[T(r)]$

离散:

$$T(\boldsymbol{r}_k) = (L-1) \sum_{j=0}^k p_r \big(\boldsymbol{r}_j \big), \quad k = 0, 1, 2, \cdots, L-1$$

$$G\!\left(z_q\right) = (L-1) \sum_{i=0}^q p_z(z_i)$$

 $z_q = G^{-1}(s_k)$

局部外理

图像/图像块(全局/局部)的统计距计算

设 $p(r_i) = \frac{n_i}{n}$, i = 0, 1, 2, ..., L - 1, 则灰度级r相对于均值 m 的n阶中心矩为:

 $\mu_n(r) = \sum_{i=0}^{L-1} \left(r_i - m\right)^n \! p(r_i)$

其中, m 是 r 的均值。

 $m = \sum_{i=0}^{L-1} r_i p(r_i)$

当 n=2 为方差:

$$\sigma^2 = \mu_2(r) = \sum_{i=0}^{L-1}{(r_i - m)^2 p(r_i)}$$

空间滤波

线性空间滤波

对于大小为 $m \times n$ (行 x 列)的核,m = 2a + 1 和 n = 2b + 1 ,其中 a 和 b 是非负整数。

$$g(x,y) = \sum_{s=-a}^a \sum_{t=-b}^b w(s,t) f(x+s,y+t)$$

新像素是旧像素线性组合;w是权重;核中心和原图左上角开始对齐运算,行填充 2a,列补 2b

空间相关与卷积

一维核旋转 180°相当于这个核绕相对于其轴进行翻转。 二维旋转 180°等效于核关于其一个轴翻 转, 然后关于另一个轴翻转。

相关 $(w \star f)(x,y) = \sum_{s=-a}^{a} \sum_{t=-b}^{b} w(s,t) f(x+s,y+t)$

大小为 $m \times n$ 的核w与图像f(x,y)的卷积 $(w \star f)(x,y)$ 定义为

 $(w\star f)(x,y)=\sum_{s=-a}^{a}\sum_{t=-b}^{b}w(s,t)f(x-s,y-t)$ 等同于将核旋转 180 度后再做相关

卷积满足交换,结合,分配律;相关只满足分配律

N 输出大小, W 输入大小, P 填充大小, S 步长 F 卷积核大小

 $N = \frac{(W-F+2P)}{c} + 1$

两个滤波器大小为 MxM 和 NxN, 卷积后的大小是(M+N-1)x(M+N-1)

可分离滤波器核

大小为 $m \times n$ 的滤波核可表示为两个向量的积 $w = w_1 w_2^T = w_1 \star w_2$

一个列向量和一个行向量的积等于这两个向量的二维卷积

用可分离核执行卷积运算相对于使用不可分离核执行卷积运算的计算优势定义为 $C = \frac{MNmn}{MN(m+n)}$

可分离核条件: rank(w) = 1

分离方法: 在核中找到任何一个非零元素a,值为E;提取a所在的列与行,形成列向量c和r;; $w_1=c$, $w_2^T=\frac{r}{E}$

平滑(低通)空间滤波器

降低相邻灰度的急剧过度,以减少无关细节(噪声);核越大越模糊;平滑通过对相邻像素求和 (积分) 实现. 归一化确保亮度不变

$$g(x,y) = \frac{\sum_{s=-at=-b}^{a} \sum_{-b}^{b} w(s,t) f(x+s,y+t)}{\sum_{s=-at=-b}^{a} \sum_{-b}^{b} w(s,t)}$$

盒式滤波器:每个元素相同;核越大,对越多像素做平均

高斯核函数 $w(s,t)=G(s,t)=Ke^{-\frac{s^2+t^2}{2\sigma^2}}$ 一般选核大小奇数接近 6σ 方差大就变宽,平滑效果更剧烈

锐化(高通)空间滤波器

凸显灰度的过渡部分, 以增强图像中的细节。锐化则用相邻像素差分(导数)来实现.

一维差分
$$\frac{\partial f}{\partial x} = f(x+1) - f(x)$$
 $\frac{\partial^2 f}{\partial x^2} = f(x+1) + f(x-1) - 2f(x)$

拉普拉斯算子

连续: $\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$

离散: $\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1)] - 4f(x,y)$

1. 中心对称; 2. 中间值的绝对值大; 3. 和为零。 $g(x,y)=rac{f(x,y)abla^2f(x,y),}{f(x,y)+
abla^2f(x,y),}$ 当拉普拉斯滤波中心系数为负

低通、高通、带阻和带通滤波器

单位冲激中心和滤波器核中心重合

低通 lp(x,y), 高通 $hp(x,y) = \delta(x,y) - lp(x,y)$

 $br(x,y) = \delta(x,y) - \left[lp_1(x,y) + \left[\delta(x,y) - lp_2(x,y)\right]\right]$

CHAPTER 4

冲激串采样 $s_{\Delta T}(t) = \sum_{n=-\infty}^{\infty} \sigma(\text{x-n }\Delta T)$

$\tilde{f}(t) = f(t) s_{\Delta T}(t) = \sum_{n=-\infty}^{\infty} f(t) \delta(t - n \Delta T)$ 单变量的离散傅里叶变换

DFT: $F(u) = \sum_{x=0}^{M-1} f(x) e^{-j2\pi ux/M} \quad u=0,1,\cdots,M-1$ IDFT: $f(x) = \frac{1}{M} \sum_{x=0}^{M-1} F(u) e^{j2\pi ux/M} \quad x=0,1,\cdots,M-1$

二变量函数的傅里叶变换 二维傅里叶变换是一维情形向两个方向的简单扩展

 $F(u,v)=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(t,z)e^{-j2\pi(ut+vz)}dtdz$

$$f(t,z)=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}F(u,v)e^{j2\pi(\mu t+vz)}dudv$$

采样: $\tilde{f}(t,z)=f(t,z)s_{\Delta T\Delta Z}(t,z)=\sum_{m=-\infty}^{m=\infty}\sum_{n=-\infty}^{n=\infty}f(t,z)\sigma(t-m\Delta T,z-n\Delta Z)$

 $\begin{array}{l} \text{DTF: } F(u,v) = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M+vy/N)} \\ \text{IDFT: } f(x,y) = \frac{1}{MN} \sum_{u=0}^{M-1N-1} F(u,v) e^{j2\pi(ux/M+vy/N)} \end{array}$

二维 DFT 和 IDFT 性质

谱 $|F(u,\nu)| = [R^2(u,\nu) + I^2(u,\nu)]^{1/2}$, R = Real(F), I = Imag(F) 相 角 $\phi(u,v) = \arctan\left[\frac{I(u,v)}{R(u,v)}\right]$

极坐标 $F(u, \nu) = |F(u, \nu)|e^{j\phi(u, v)}$

周期性(k 为整数) $F(u,v) = F(u + k_1, v + k_2N)$

 $f(x,y) = f(x+k_1M,y+k_2N)$

巻积 $(f \star h)(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f(m,n)h(x-m,y-n)$ 相关 $(f \star h)(x,y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f^*(m,n)h(x+m,y+n)$

可分离性 使用 DFT 算法求 IDFT $MNf^*(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F^*(u,v) e^{-j2\pi(ux/M+\nu y/N)}$ 结果取 复 共轭并除以 MN 就可得到反变换

离散单位冲激 $\delta(x, y) \Leftrightarrow 1.1 \Leftrightarrow MN\delta(y, y)$

卷积定理 $(f\star h)(x,y)\Leftrightarrow (F\cdot H)(u,v)\parallel (f\cdot h)(x,y)\Leftrightarrow \frac{1}{MN}(F\star H)(u,v)$

平移性 f(x,y)e $\mathrm{j}^{2\pi(u_0x/M+v_0y/N)}\Leftrightarrow F(u-u_0,v-v_0)\,||\,f(x-x_0,y-y_0)\Leftrightarrow F(u-u_0,v-v_0)\,||\,f(x-x_0,y-y_0)\Leftrightarrow F(u-u_0,v-v_0)\,||\,f(x-x_0,y-y_0)\Leftrightarrow F(u-u_0,v-v_0)\,||\,f(x-x_0,y-v_0)\otimes F(u-u_0,v-v_0)\,||\,f(x-x_0,y-v_0)\otimes F(u-u_0,v-v_0)\otimes F(u-u_0,v-v_0)$ $F(u,v)\mathrm{e}^{-\mathrm{j}2\pi\overset{\circ}{(}ux_0/M+\nu y_0/N)}$

 $\delta(x-a,y-b) \Leftrightarrow e^{-j2\pi(ua+vb)}$

频率域滤波

- (1)对图像 f(x,y)进行零填充(长宽均变为两倍,变为 $P \times Q$
- (2) 频谱中心化: $用(-1)^x + y$ 乘以填充后的图像;
- (3) 计算(2)结果的 DFT, 即F(u, v);
- (4) 用滤波器函数H(u,v)乘以 $F(u,v): \mathcal{G}(u,v) = H(u,v)F(u,v)$
- (5)计算(4)中结果的 IDFT, $g(x,y) = \mathfrak{J}^{-1}G(u,v)$
- --理论值为实数, 计算误差会导致寄生复成分;
- (6)得到(5)结果中的实部:
- (7) $\Pi(-1)^x + y$ 乘以(6)中的结果;
- (8)提取(7)中的左上角(与输入图像同大小)。

低通频率域滤波器

理想低通滤波器 D_0 为截止频率 $D(u,v) = [(u-M/2)^2 + (v-N/2)^2]$

 $H(u,v)=_{0, D(u,v)>D_0}^{1, D(u,v)\leq D_0}$

总功率 $P_T = \sum_{u=0}^{P-1} \sum_{v=0}^{Q-1} P(u,v) = \sum_{u=0}^{P-1} \sum_{v=0}^{Q-1} |F(u,v)|^2$

在 D(u,v)内的功率占比 $\alpha = 100\sum_{v}\sum_{v}\dot{P(u,v)}/P_T$ where $D(u,v) \leq D_0$

巴特沃斯 $H(u,v) = \frac{1}{1+[D(u,v)/D_0]^{2n}} D(u,v) = \left[(u-M/2)^2 + (v-N/2)^2\right]^{1/2}$

高斯 $H(u,v)=e^{-D^2(u,v)/2D_0^2}$

高通滤波器

普通锐化: $H_{hp}(u,v)=1-H_{ip}(u,v)$

理想: $H(u,v) = {0, D(u,v) \le D_0 \atop 1, D(u,v) > D_0}$

巴特沃斯: $H(u,v) = \frac{1}{1+[D_0/D(u,v)]^{2n}}$

高斯: $H(u,v) = 1 - e^{-D^2(u,v)/2D_0^2}$

频率域的拉普拉斯算子: $H(u,v) = -\left(u^2 + v^2\right) = -\left[\left(u - \frac{M}{2}\right)^2 + \left(v - \frac{N}{2}\right)^2\right]$

高提升滤波: $H_{hb}(u,v) = (A-1) + H_{hp}(u,v)$

高频加强滤波: $H_{hfe}(u,v)=a+bH_{hp}(u,v)$ a 控制原始贡献,b 控制高通贡献

同态滤波器 $H(u,v)=(\gamma_H-\gamma_L)\big[1-e^{-c(D^2(u,v)/D_0^2)}\big]+\gamma_L$

其中 $\gamma_L < 1$ 且 $\gamma_H > 1$, c用于控制滤波器函数斜面的锐化

快速傅里叶变换

基本思想:利用傅里叶变换基底性质,将M个数据的傅里叶变换转为 2 组 $\frac{M}{2}$ 个数据的傅里叶变换, 此时计算量从 M2 降低为 45°

 $F(u) = \sum_{x=0}^{K-1} f(2x) W_{2K}^{u(2x)} + \sum_{x=0}^{K-1} f(2x+1) W_{2K}^{u(2x+1)}$ 偶数部分+奇数部分

 $W_{M} = e^{-j2\pi/{\rm M}}, \quad W_{2K}{}^{2ux} = W_{k}{}^{ux}$

 $F_{even}(u) = \sum_{x=0}^{K-1} f(2x) W_K^{ux} \quad F_{odd}(u) = \sum_{x=0}^{K-1} f(2x+1) W_K^{ux}$

 $F(u) = \bar{F_{even}(u)} + \bar{F_{odd}(u)} W^u_{2K}$

 $F(u+K) = F_{even}(u) - F_{odd}(u)W^u_{2K}$

CHAPTER 5

图像退化/复原模型

空域: $g(x,y) = (h \star f)(x,y) + \eta(x,y)$

频域: G(u,v) = H(u,v)F(u,v) + N(u,v)

噪声模型

高斯 $p(z)=\frac{1}{\sqrt{2\pi}\sigma}e^{-(z-\bar{z})^2/2\sigma^2}$

瑞利 $p(z) = \frac{2}{b} \frac{(z-a)e^{-(z-a)^2-b}}{0}, z \ge a \parallel \bar{z} = a + \sqrt{\pi b/4}, \sigma^2 = \frac{b(4-\pi)}{4}$

伽马 $p(z) = \frac{1}{2}z^{\{\gamma-1\}}e^{-z-\gamma}$

指数 $p(z)=rac{a^bz^{b-1}}{(b-1)!}e^{-az}$, $z\geq 0$ || $\bar{z}=rac{1}{a},\sigma^2=rac{1}{a^2}$

均匀 $p(z)=\frac{1}{b-a}$, $a\leq z\leq b$, $a\leq z\leq b$

椒盐 $p(z) = {P_s \atop P_p} {,z=2^{k-1} \atop ,z=0} \atop 1-(P_s+P_p) ,z=V$

参数估计 $\mu = \sum_{z_i \in S} z_i p(z_i)$ $\sigma^2 = \sum_{z_i \in S} (z_i - \mu)^2 p(z_i)$

只存在噪声的复原——空间滤波

加性噪声退化后: $g(x,y)=f(x,y)+\eta(x,y)$ G(u,v)=F(u,v)+N(u,v) (噪声未知)

算术平均滤波 $\hat{f}(x,y) = \frac{1}{mn} \sum_{(r,c) \in S_{xy}} g(r,c)$

S表示中心在(x,y), 尺寸为mxn 的图像;平滑了一幅图像的局部变化;在模糊了结果的同时减少了噪

几何平均滤波 $\hat{f}(x,y) = \left[\prod_{(r,c) \in S_{nu}} g(r,c)\right]^{\frac{1}{mn}}$

平滑度可以与算术均值滤波器相比;图像细节丢失更少

谐波平均滤波 $\hat{f}(x,y)=rac{mn}{\sum_{(r,c)\in S_{xy}}rac{1}{g(r,c)}}$ 对于"盐粒"效果好,不适用于"胡椒"; 善于处理像高斯噪声的

反谐波平均 $\hat{f}(x,y) = \frac{\sum_{(r,c) \in S_{xy}} g(r,c)^{Q+1}}{\sum_{(r,c) \in S_{xy}} g(r,c)^{Q}}$ Q 称为滤波器的阶数,>6 用于胡椒, <6 用于盐粒,=0 变为算数 亚拉克,亦是是1975年 平均,=-1 变为谐波平均

统计排序

中值 $\hat{f}(x,y) = median((r,c) \in S_{xy})\{g(r,c)\}$ 与大小相同的线性平滑滤波(均值滤波)相比,有效 地降低某些随机噪声,且模糊度要小得多

最大值 $\hat{f}(x,y) = \max_{(r,c) \in S_{xy}} g(r,c)$ 发现最亮点,过滤胡椒

最小值 $\hat{f}(x,y) = \min_{(r,c) \in S_{xy}} g(r,c)$ 发现最暗点,过滤盐粒

中点 $\hat{f}(x,y) = \frac{1}{2} \left[\max_{(r,c) \in S_{xy}} \{g(r,c)\} + \min_{(r,c) \in S_{xy}} \{g(r,c)\} \right]$ 适合处理随机分布的噪声,如高斯噪 声和均匀噪声

修正后的阿尔法均值滤波 $\hat{f}(x,y) = \frac{1}{mn-d} \sum_{(r,c) \in S_{xy}} g_R(r,c)$

在S邻域内去掉 $g(\mathbf{r},\mathbf{c})$ 最高灰度值的d/2 和最低灰度值的d/2。 代表剩余的mn-d个像素 d=0 变为 算数平均.=mn-1 变为中值

g(x,y)表示噪声图像在点(x,y)上的值

 σ^2 噪声方差

 $\overline{z}_{S_{xy}}$ 在 S_{xy} 上像素点的局部平均灰度

 $\sigma_{S_{xy}}^2$ 在 S_{xy} 上像素点的局部方差

局部降噪

$$\hat{f}(x,y) = g(x,y) - \frac{\sigma_{\eta}^2}{\sigma_{S_{--}}^2} \Big[g(x,y) - \overline{z}_{S_{xy}} \Big]$$

 z_{min} 是 $S_{\{xy\}}$ 中的最小灰度值; z_{max} 是 $S_{\{xy\}}$ 中的最大灰度值; z_{med} 是 $S_{\{xy\}}$ 中的灰度值的中值; $z_{\{xy\}}$ 是 坐标(x,y)处的灰度值; S_{max} 是 $S_{\{xy\}}$ 允许的最大尺寸。

层次 A: 若 $z_{min} < z_{med} < z_{max}$,则转到层次B

否则,增 $S_{\{xy\}}$ 的尺寸,

若 $S_{\{xy\}}l = S_{max}$,则重复层次 A

否则,输出 z_{med}

层次 B: 若 $z_{min} < z_{\{xy\}} < z_{max}$,则输出 $z_{\{xy\}}$

否则,输出 z_{med}

陷波滤波器

 $H_{\mathrm{NR}}(u,\nu) = \prod_{k=1}^Q H_k(u,\nu) H_{-k}(u,\nu)$

陷波带通滤波器 $H_{NP}(u, \nu) = 1 - H_{NR}(u, \nu)$

 $N(u,\nu) = H_{\rm NP}(u,\nu)G(u,\nu) \ \eta(x,y) = \mathfrak{T}^{-1}\{H_{\rm NP}(u,\nu)G(u,\nu)\} \ \hat{f}(x,y) = g(x,y) - w(x,y)\eta(x,y)$ $w(x,y) = \frac{\overline{g}\overline{\eta} - \overline{g}\overline{\eta}}{\overline{n^2} - -\overline{n}^2}$

线性位置不变退化

如果退化模型为线性和位置不变的

$$g(x,y) = (h \star f)(x,y) + \eta(x,y)$$

$$G(u,v) = H(u,v)F(u,v) + N(u,v)$$

估计退化函数

观察法收集图像自身的信息

试验法 使用与获取退化图像的设备相似的装置

数学建模法 建立退化模型,模型要把引起退化的环境因素考虑在内

 $\hat{F}(u, v) = \frac{G(u, v)}{H(u, v)} = F(u, v) + \frac{N(u, v)}{H(u, v)}$

最小均方误差(维纳)滤波

 $\hat{F}(u,v) = \left[\frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + S_{\eta}(u,v)/S_f(u,v)}\right] G(u,v)$

 $\hat{F}(u,v) = \left[\frac{1}{H(u,v)} \frac{|H(u,v)|^2}{|H(u,v)|^2 + K}\right] G(u,v)$ (假设两个功率谱之比为常数 K)

 $S_{f(u,v)}=|F(u,v)|^2$ 为未退化函数功率; $S_{\eta}(u,v)=|N(u,v)|^2$ 为噪声功率谱;

信噪比频域 $\text{SNR} = \frac{\sum_{u=0}^{M-1}\sum_{v=0}^{N-1}|F(u,\nu)|^2}{\sum_{u=0}^{M-1}\sum_{v=0}^{M-1}|h(u,\nu)|^2}$ 空域 $\text{SNR} = \frac{\sum_{x=0}^{M-1}\sum_{y=0}^{N-1}|f(x,y)-\hat{f}(x,y)|^2/\sum_{x=0}^{M-1}}{\sum_{u=0}^{N-1}|f(x,y)-\hat{f}(x,y)|^2}$

均方误差 $\text{MSE} = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left[f(x,y) - \hat{f}(x,y) \right]^2$

约束最小二乘方滤波

约束 $|g-H\hat{f}|^2=|\eta|^2$

准则函数最小化 $C = \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} [\nabla^2 f(x,y)]^2$

最佳问题的解 $\hat{F}(u,v) = \left[\frac{H^*(u,v)}{|H(u,v)|^2 + \gamma |P(u,v)|^2}\right] G(u,v)$ 当 $\gamma = 0$ 时,退变成逆滤波

P(u, v)为 p(x, y)的傅里叶变换 p(x,y)为拉普拉斯空间卷积核

几何均值滤波

$$\hat{F}(u,v) = \left[\frac{H^*(u,v)}{|H(u,v)|^2}\right]^a \left[\frac{H^*(u,v)}{|H(u,v)|^2 + \beta \left[\frac{S_0(u,v)}{S_f(u,v)}\right]}\right]^1$$

当 $\alpha=0$ 时,滤波器退化为逆滤波器。当 $\alpha=0$ 时,滤波器退化为参数维纳滤波器。当 $\alpha=0,\beta=1$ 时,滤波器退化为标准维纳滤波器。当 $\alpha = \frac{1}{5}$ 时,滤波器为几何均值滤波器。当 $\beta = 1, \alpha$ 减到 $\frac{1}{5}$ 以

上,它接近逆滤波器,当 $\beta=1,\alpha$ 减到 $\frac{1}{2}$ 以下,它接近维纳滤波器。当 $\beta=1,\alpha=\frac{1}{2}$ 时,它被称为谱均 衡滤波器。

CHAPTER 6

彩色基础

红,绿,蓝量用 X,Y,Z 表示,叫三色值

三色系数定义: $x = \frac{X}{X+Y+Z}; ...; x + y + z = 1$

彩色模型

RGB

显示器显示,一个颜色有8比特,2^8=256种颜色,全彩色则是24比特图像

CMVK

颜料颜色;CMY(青色、深红、黄色)是 RGB 的补色;K 是黑色,用于调节色彩

RGB->CMY:
$$\begin{pmatrix} C \\ M \\ Y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

RGB->CMYK:

$$\begin{split} K &= 1 - \max(R, G, B) \\ C &= \frac{1 - R - K}{1 - K} \\ M &= \frac{1 - G - K}{1 - K} \\ Y &= \frac{1 - B - K}{1 - K} \end{split}$$

CMY->CMYK: $K = \min(C, M, Y)$ K=1,其他=0

k!=1,其他为C=(C-K)/(1-K); M=(M-K)/(1-K); Y=(Y-K)/(1-K)

CMYK->CMY: C = C(1 - K) + K; M = M(1 - K) + K; Y = Y(1 - Y) + K

h 色调(角度),s 饱和度(鲜艳程度),i 强度(颜色的明暗程度)

RGB->HSI

$$H = 360 - \arccos\left(\frac{(R-G) + (R-B)}{2\sqrt{(R-G)^2 + (R-B)(G-B)}}\right)(G < B)$$

$$H = \arccos\Bigl(\tfrac{(R-G)+(R-B)}{2\sqrt{(R-G)^2+(R-B)(G-B)}}\Bigr)(G \geq B)$$

$$S = 1 - \frac{3}{R + G + B} \cdot \min(R, G, B)$$

 $I = \frac{R+G+B}{3}$

HSI->RGB

 $1.0^{\circ} \leq H < 120^{\circ}$

$$R = I \cdot \left(1 + \frac{S \cdot \cos(H)}{\cos(60^\circ - H)}\right); G = I \cdot (1 + S \cdot (1 - \cos(H)/\cos(60^\circ - H))); B = I \cdot (1 - S)$$

 $2.120^\circ \leq H < 240^\circ$

 $H'=H-120^\circ$

$$G = I \cdot \left(1 + \frac{S \cdot \cos(H')}{\cos(60^\circ - H')}\right); B = I \cdot (1 + S \cdot (1 - \cos(H')/\cos(60^\circ - H'))); R = I \cdot (1 - S)$$

 $3.240^{\circ} \leq H < 360^{\circ}$

 $H' = H - 240^{\circ}$

$$B = I \cdot \left(1 + \frac{S \cdot \cos(H')}{\cos(60^\circ - H')}\right); R = I \cdot (1 + S \cdot (1 - \cos(H')/\cos(60^\circ - H'))); G = I \cdot (1 - S)$$

CIELAB

$$L_{\star} = 116 * h\left(\frac{Y}{Y_{W}}\right) - 16$$

$$a_{\star} = 500 * \left[h \left(\frac{X}{X_{W}} \right) - h \left(\frac{Y}{Y_{W}} \right) \right]$$

$$b_{\star} = 200*\left[h\!\left(\frac{Y}{Y_W}\right) - h\!\left(\frac{Z}{Z_W}\right)\right]$$

$$h(q) = \begin{cases} q > 0.008856 \Rightarrow (\frac{3}{2}) * q^{\frac{1}{3}} \\ q \le 0.008856 \Rightarrow 7.787 * q + \frac{16}{116} \end{cases}$$

L 表示亮度,范围从 0(黑色)到 100(白色)。a 表示从绿色到红色的轴。 b 表示从蓝色到黄色的轴。h(q)是一个辅助函数,用于处理非线性变换。

假彩色

[0,L-1]灰度级别,分为 P+1 个区间, I_1,I_2,\cdots,I_{P+1} ,属于某个区间就赋值一个彩色

若 $f(x,y) \in I_k$, 则令 $f(x,y) = c_k$

也可以设置 f_R, f_G, f_B 把灰度映射为不同通道的颜色

彩色变换

 $s_i = T_i(r_i), \quad i = 1, 2, \cdots, n$

提高亮度:RGB 三个分量乘以常数 k;CMY 求线性变化 $s_i=kr_i+(1-k), \quad i=1,2,3$;CMYK 只需改变第四个分量(K) $s_i=kr_i+(1-k), \quad i=4$

彩色分层

突出图像中某个特定的彩色范围,有助于将目标从周围分离出来

感兴趣的颜色被宽度为 W、中心在原型(即平均)颜色并具有分量 a_j 的立方体($\mathbf{n}>3$ 时为超立方体)包围.

$$s_i = \begin{cases} {}_{0.5,,} & \left[|r_j - a_j| > W/2 \right]_{1 \le j \le n} & i = 1, 2, \cdots, n \\ r_i,, & \text{iff} \end{cases}$$

用一个球体来规定感兴趣的颜色时

$$s_i = \begin{cases} 0.5,, & \sum_{j=1}^n \left(r_j - a_j \right)^2 > R_0^2 \\ r_i,, & \text{iff} \end{cases} \quad i = 1, 2, \cdots, n$$

平滑和锐化

平滑

$$\overline{c}(x,y) = \begin{pmatrix} \frac{1}{K} \sum_{(s,t) \in S_{sy}} R(s,t) \\ \frac{1}{K} \sum_{(s,t) \in S_{sy}} G(s,t) \\ \frac{1}{K} \sum_{(s,t) \in S_{sy}} B(s,t) \end{pmatrix}$$

锐化

$$\nabla^2 c(x,y) = \begin{pmatrix} \nabla^2 R(x,y) \\ \nabla^2 G(x,y) \\ \nabla^2 B(x,y) \end{pmatrix}$$

分割图像

欧氏距离为

HSI:用饱和度(S),大于某个阈值分割

RGB: 令 z 表示 RGB 空间中的任意一点,RGB 向量 a 来表示平均颜色

$$\begin{split} D(z,a) &= |z-a| \\ &= \left[(z-a)^{\mathrm{T}} (z-a) \right]^{\frac{1}{2}} \\ &= \left[(z_R - a_R)^2 + (z_G - a_G)^2 + (z_B - a_B)^2 \right]^{\frac{1}{2}} \end{split}$$

 $D(z,a) \leq D_0$ 的点的轨迹是半径为 D_0 的一个实心球体

马哈拉诺比斯距离 $D(z,a) = [(z-a)^{\mathrm{T}}C^{-1}(z-a)]^{\frac{1}{2}}$

 $D(z,a) \leq D_0$ 的点的轨迹是半径为 D_0 的一个实心三维椭球体

两个方法都计算代价也很高昂,一般用边界盒关于 a 居中,它沿各坐标轴的长度与样本沿坐标轴的标准差成比例

CHAPTER 9

运算	公式	注释				
平移	$(B)_z = \{c \mid c=b+z, b \in B\}$	将B的原点平移到点z				
反射	$\hat{B} = \{w \mid w = -b, b \in B\}$	相对于B的原点反射				
补集	$A^c = \{w \mid w \not\in A\}$	不属于A的点集				
差集	$A-B=\{w\mid w\in A, w\notin B\}=\\A\bigcap B^\circ$	属于 A 但不属于 B 的点集				
腐蚀 $A \in$	$B = \{z \mid (B)_z \subseteq A\} = \{z \mid (B)_z \cap A^c = \{z \mid (B)$					
膨胀	$A \oplus B = \left\{z \mid \left(\hat{B}\right)_z \cap A \neq \varnothing\right\}$	膨胀A的边界(I)				
开运算	$A\circ B=(A\ominus B)\oplus B$	平滑轮廓,断开狭窄区域,删除 小孤岛和尖刺(I)				
闭运算	$A \bullet B = (A \oplus B) \ominus B$	平滑轮廓,弥合狭窄断裂和细长 沟道,删除小孔洞(I)				
击中与击不中	$\begin{array}{c} I \circledast B_{1,2} = \left\{z \mid (B_1) \atop A \not \text{ fil } (B_2)_z \subseteq A^c\right\} \end{array}$	在图像I中寻找结构元B的实例				
边界提取	$\beta(A) = A - (A \ominus B)$	提取集合A的边界上的点集(I)				
孔洞填充	$X_k = (X_{k-1} \oplus B) \bigcap I^c, k = \\ 1, 2, 3, \cdots$	填充 A 中的孔洞, X_0 初始化为 I 边框(I)				
连通分量	$X_k = (X_{k-1} \oplus B) \cap I, k = \\ 1, 2, 3, \cdots$	寻找I中的连通分量(I)				
凸壳	$X_k^i = \left(X_{k-1}^i \otimes B^i\right) \bigcup X_{k-1}^i, i = 1, 2, 3, 4$	计算I中前景像素的凸壳(I)				
细化	$A\otimes B=A-(A\circledast B)$	细化集合 A ,移除多余分支(I)				
粗化	$A\odot B=A\bigcup (A\circledast B)$	使用结构元粗化集合 $A(I)$				
骨架	$\begin{array}{c} S(A) = \bigcup_{k=0}^K S_{k(A)}, S_{k(A)} = \\ (A \ominus k_B) - (A \ominus k_B) \circ B \end{array}$	寻找集合A的骨架(I)				
裁剪	$\begin{split} X_1 &= A \otimes \{B\} X_2 = \bigcup_{k=1}^8 \left(X_1 \otimes B^k\right) \\ X_3 &= \left(X_2 \oplus H\right) \cap A X_4 = X_1 \cup X_3 \end{split}$	X_4 是裁剪集合 A 后的结果。结构元(\mathbf{V})用于前两个公式, H 用于第三个公式(\mathbf{I})				
大小为1的测地膨胀	$D^1_G(F) = (F \oplus B) \cap G$	F和G分别称为标记图像和模板 图像(I)				
大小为1的测地腐蚀	$E^1_{\{G\}}(F) = (F \odot B) \cup G$	F和G分别称为标记图像和模板 图像(I)				
大小为 n 的测地腐蚀	$E^n_{\{G\}}(F) = E^1_{\{G\}} \Big(E^{n-1}_{\{G\}}(F) \Big)$	n表示重复迭代次数(I)				
膨胀形态学重建	$\begin{split} R^D_G(F) &= D^k_G(F), ks.t. \\ D^k_G(F) &= D^{k+1}_G(F) \end{split}$	通过迭代膨胀完成形态学重建(I)				
腐蚀形态学重建	$\begin{split} R_G^{E(F)} &= E_G^k(F), ks.t. \\ E_G^k(F) &= E_G^{k+1}(F) \end{split}$	通过迭代腐蚀完成形态学重建(I)				
重建开运算	$O_R^n(F) = R_F^{D(F \ominus n_B)}$	$(F\odot n_B)$ 表示 B 对 F 的 n 次腐蚀, B 的形式依赖于应用(I)				
重建闭运算	$C^n_R(F) = R_F^{E(F \oplus n_B)}$	$(F \oplus n_B)$ 表示 B 对 F 的 n 次膨胀, B的形式依赖于应用(I)				

孔洞填充

 $H = \left\lceil R_{I^c}^{D(F)} \right\rceil^c$

H等于输入图像I,但所有孔洞 均被填充(I)

边界清除

 $X = I - R_I^{D(F)}$

X等于输入图像I. 但删除了所有 接触边界的标记(I)

灰度级形态学

灰度腐蚀 $[f\ominus b](x,y)=\min_{(s,t)\in b}\{f(x+s,y+t)\}$ 非平坦 $[f\ominus b_N](x,y)=\min_{(s,t)\in b_N}\{f(x+s,y+t)\}$ $t) - b_N(s,t)$

灰度膨胀 $[f \oplus b](x,y) = \max_{(s,t) \in \hat{b}} \{f(x-s,y-t)\}$ 非平坦 $[f \oplus b_N](x,y) = \max_{(s,t) \in \hat{b}_N} \{f(x-s,y-t)\}$ $s, y - t) + \hat{b}_N(s, t)$

开运算 $f \circ b = (f \ominus b) \oplus b$ 闭运算 $f \bullet b = (f \oplus b) \ominus b$

形态学梯度 $g = (f \oplus b) - (f \oplus b)$

顶帽变换 $T_{hat}(f) = f - (f \circ b)$ 底帽变换 $B_{hat}(f) = (f \bullet b) - f$

CHAPTER 10

背景知识

是分: 前向 $\frac{\partial f(x)}{\partial x} = f(x+1) - f(x)$ 后向 $\frac{\partial f(x)}{\partial x} = f(x) - f(x-1)$ 中值 $\frac{\partial f(x)}{\partial x} = \frac{f(x+1) - f(x-1)}{2}$ 二阶 $\frac{\partial^2 f(x)}{\partial x^2} = f(x+1) - 2f(x) + f(x-1)$

(1)一阶导产生粗边缘; (2)二阶导对精细细节(如细线、孤立点和噪声)有更强的响应; (3)二阶导在 灰度斜坡和台阶过渡处会产生双边缘响应;(4)二阶导的符号可用于确定边缘的过渡是从亮到暗 (正)还是从暗到亮(负)。

孤立点检测

拉普拉斯
$$\nabla^2 f(x,y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y-1) - 4f(x,y)$$
 超过阈值 T 的标记 $g(x,y) = \begin{cases} 1, |Z(x,y)| > T \\ 0, \text{ if } t \end{cases}$ $\nabla^2 f = Z$

直线检测

-1	-1	-1	. 2	-1	-1	-1	2	-1	-1	-1	2
2	2	2	-1	2	-1	-1	2	-1	-1	2	-1
-1	-1	-1	-1	-1	2	-1	2	-1	2	-1	-1
水平 +45		+45"	条 放		-45"						

边缘检测

梯度
$$\nabla f(x,y) \equiv \operatorname{grad}[f(x,y)] \equiv \begin{bmatrix} g_x(x,y) \\ g_y(x,y) \end{bmatrix} = \begin{bmatrix} \frac{\partial f(x,y)}{\partial y} \\ \frac{\partial f(x,y)}{\partial y} \end{bmatrix}$$

欧几里得向量范数 $M(x,y) = \|\nabla f(x,y)\| = \sqrt{g_x^2(x,y) + g_y^2(x,y)}$ 绝对值来近似梯度幅度:

$$M(x,y) \approx |g_x| + |g_y|$$

梯度方向(垂直边缘) $\alpha(x,y) = \arctan \left[\frac{g_y(x,y)}{g_x(x,y)} \right]$

$$\begin{pmatrix} z_1 & z_2 & z_3 \\ z_4 & z_5 & z_6 \\ z_7 & z_8 & z_9 \end{pmatrix}$$

罗伯算子 $g_x = \frac{\partial f}{\partial x} = (z_9 - z_5) \; g_y = \frac{\partial f}{\partial y} = (z_8 - z_6)$

Prewitt 算子 $g_x = \frac{\partial f}{\partial x} = (z_7 + z_8 + z_9) - (z_1 + z_2 + z_3)$ $g_y = \frac{\partial f}{\partial y} = (z_3 + z_6 + z_9) - (z_1 + z_4 + z_7)$ Sobel 算子 $g_x = \frac{\partial f}{\partial x} = (z_7 + 2z_8 + z_9) - (z_1 + 2z_2 + z_3)$ $g_y = \frac{\partial f}{\partial y} = (z_3 + 2z_6 + z_9) - (z_1 + 2z_4 + z_9)$

二维高斯函数, $G(x,y) = e^{-\frac{x^2+y^2}{2\sigma^2}}$

高斯拉普拉斯(LoG)函数: $\nabla^2 G(x,y) = \left(\frac{x^2 + y^2 - 2\sigma^2}{\sigma^4}\right) e^{-\frac{x^2 + y^2}{2\sigma^2}}$

Marr-Hildreth 算法 $g(x,y) = [\nabla^2 G(x,y)] \star f(x,y) = \nabla^2 [G(x,y) \star f(x,y)]$ 寻找 g(x,y)的过零点来 确定 f(x,y)中边缘的位置

高斯差分(DoG)来近似式的 LoG 函数 $D_G(x,y)=rac{1}{2\pi\sigma_1^2}\mathrm{e}^{-rac{x^2+y^2}{2\sigma_1^2}}-rac{1}{2\pi\sigma_2^2}\mathrm{e}^{-rac{x^2+y^2}{2\sigma_2^2}}$

连接边缘点

满足条件则连接 $|M(s,t)-M(x,y)| \le E |\alpha(s,t)-\alpha(x,y)| \le A$

霍夫变换 $x\cos\theta + y\sin\theta = \rho$

阈值处理

多分类
$$g(x,y) = \begin{cases} a, & f(x,y) > T_2 \\ b, T_1 < f(x,y) \le T_2 \\ c, f(x,y) \le T_1 \end{cases}$$

基本的全局阈值化

- 1. 为全局阈值T选择一个初始估计值。 2. 在 $g(x,y) = \begin{cases} 1.f(x,y) > T \\ 0.f(x,y) \leq T \end{cases}$ 中用T分割图像 素组成的 G_1 ,由所有小于等于T的像素组成的 G_2 中用T分割图像。这将产生两组像素:由灰度值大于T的所有像
- 3. 对 G_1 和 G_2 中的像素分别计算平均灰度值(均值) m_1 和 m_2
- 4. 在 m_1 和 m_2 之间计算一个新的阈值: $T = \frac{m_1 + m_2}{2}$
- 5. 重复步骤 2 到步骤 4,直到连续迭代中的两个T值间的差小于某个预定义的值 ΔT 为止。

OSTU 方法 n_i 表示灰度级 i 的像素数, $M*N=\sum_{i=0}^{L-1}n_i; p_i=\frac{n_i}{MN}; \sum_{i=0}^{L-1}p_i=1, \quad p_i\geq 0$

分为两类 c_1,c_2 累计概率 $P_1(k)=\sum_{i=0}^k p_i;P_2(k)=\sum_{i=k+1}^{L-1} p_i=1-P_1(k)$ 平均灰度 $m_1(k)=\frac{1}{P_1(k)}\sum_{i=0}^k ip_i;m_2(k)=\frac{1}{P_2(k)}\sum_{i=k+1}^{L-1} ip_i$ k 级累计灰度 $m(k)=\sum_{i=0}^k ip_i$ 整个图像平均灰度 $m_G=\sum_{i=0}^{L-1} ip_i$ $\sum_{i=0}^{L-1} i p_i$

约束条件 $P_1m_1+P_2m_2=m_G; P_1+P_2=1$

全局方差 $\sigma_G^2 = \sum_{i=0}^{L-1} (i - m_G)^2 p_i$ 类间方差 $\sigma_B^2 = P_1 (m_1 - m_G)^2 + P_2 (m_2 - m_G)^2 = P_1 P_2 (m_1 - m_2)^2 = \frac{(m_G P_1 - m_1)^2}{P_1 (1 - P_1)}$ (选择 k 最大化 σ_B^2)

也可以多个阈值约束 $\sigma_B^2\big(k_1^*,k_2^*,\cdots,k_{K-1}^*\big)=\max_{0< k_1< k_2<\cdots k_K< L-1}\sigma_B^2(k_1,k_2,\cdots,k_{K-1})$

区域生长分离聚合

区域生长

1. 种子选择:选择一组"种子"点,这些种子点通常是具有某些特定属性的像素,如灰度或颜色范 围。种子点的选择可以根据问题的性质或图像的特性来确定。

- 2. 相似性准则: 定义一个相似性准则, 用于判断邻域像素是否应被添加到当前区域。相似性准则 可以基于灰度、颜色、纹理等属性。
- 3. 区域扩展:从种子点开始,将满足相似性准则的邻域像素逐步添加到当前区域中。这个过程会 不断重复, 直到没有更多的像素满足加入准则。
- 4. **连通性考慮**:在区域生长过程中,必须考虑像素的连通性,以确保生成的区域是连通的。通常 使用8连通或4连通来定义邻域。
- 5. 停止规则: 定义一个停止规则, 当没有更多的像素满足加入准则时, 区域生长过程停止。
- 6. 区域标记:使用不同的标记(如整数或字母)来标识每个生成的区域,形成分割后的图像。

1. 初始分割: 将图像初步划分为一组不相交的区域(如基于像素的颜色、灰度值等), 形成初始 区域。这些区域可以用细网格单元表示。

2. 分离规则:

- 根据定义的判别准则(如区域的均值、方差、纹理等特性),对某一特定区域 R 判断其是否 满足某些属性。如果不满足、则将其细分为更小的不相交区域。
- 例如,可以将 $Q(R)={
 m FALSE}$ 的任何区域划分为 4 个子区域。

- 如果满足某些逻辑条件(如两个相邻区域的属性接近,满足 $Q(R_i \cup R_j) = \text{TRUE}$),则将这 些区域进行合并。
- 通过不断聚合区域,减少过度分割的可能性。

4. 停止条件:

- 当区域无法进一步分割或聚合时, 停止操作。
- 最终的分割结果应满足所有区域均符合准则。

• 结合区域的统计特性(如均值 m_R 和标准差 σ_R)和用户定义的阈值范围,可以定义规则 Q(R) (例如: $\sigma_R > a$, AND, $m_R < b$)。

分水岭变换

- 1. 梯度图像:,算法使用图像的梯度图像 g(x,y),其中包含多个区域极小值 $M_{\{1\}}, M_{\{2\}}, M_{\{g\}}$ 。 这 些极小值对应于图像中的局部低谷。
- 2. 汇水盆地:每个区域极小值 $M_{\{i\}}$ 都有一个与之相关联的汇水盆地 $C(M_i)$,这些汇水盆地中的 点形成一个连通分量。
- 3. 淹没过程: 算法通过模拟水位从最小值 min 逐渐上升到最大值 max 的过程来分割图像。在每 个水位 n, 集合 T[n] 包含所有灰度值小于 n 的点。
- 4. 二值图像: 在每个水位 n, T[n] 可以被视为一幅二值图像, 其中黑点表示位于平面 g(x,y)=n下方的点。
- 5. 汇水盆地分割: 随着水位上升,算法通过比较当前水位 n 的连通分量与前一水位 n-1 的汇水 盆地、来确定是否需要构建水坝以防止不同汇水盆地的水流溢出。
- 6. 水坝构建: 当水位上升到某个点时, 如果发现有多个汇水盆地的水流可能溢出, 算法会在这些 汇水盆地之间构建水坝(即分割线),以阻止水流混合。

缺点·受噪声影响大·容易讨度分割