RSNA-MICCAI Brain Tumor Radiogenomic Classification

Deep Learning for Medical Image Analysis - UB - UPC Mario Lozano Cortés

Clinical background

Glioblastoma

(malignant tumor in the brain)

Most common form of brain cancer

Median survival < 1 year

The presence of the specific MGMT genetic sequence is an important prognostic factor and a strong predictor of responsiveness to chemotherapy.

Problem: Genetic analysis of cancer **requires surgery** to extract a tissue sample.

Challenge: Develop an accurate method to predict the genetics of the cancer through imaging such as radiogenomics, thus, minimizing the number of surgeries and refining the type of therapy required.

Result summarization

Evaluation metrics: **Area under the ROC curve (AUC)**, accuracy, FScore and Matthew's Correlation Coefficient.

The AUC is a metric that measures the overall discriminatory capacity of a model.

Winning approach - AUC: 0.6217

Approach	3D CNN
Architecture	ResNet10
Loss	Binary Cross Entropy
Optimizer	Adam
Epochs	15
Learning Rate	lr = 0.0001 (epochs: 1->10) lr=0.00005 (epochs: 10->15)
Batch Size	8
General Information	 Small trick: The best central image trick One epoch -> 1 minute and 20 seconds using an RTX 3090.

Approach	2D CNN - LSTM - DICOM images to PNG
Architecture	CNN: EfficientNet B0 - LSTM: From scratch.
Loss	Binary Cross Entropy
Optimizer	Adam
Epochs	15
Learning Rate	0.0001
Batch Size	8
General Information	 Cross Validation 2D convolution to map the 4-channel image into a 3-channel feature map Data augmentation

Some thoughts

- Simpler models obtained in general better results
- The lack of straightforward clinical meaning is concerning (AI Explainability problem)

