Unit: Relationships between points, lines and planes (2)

Distance from a Point to a Line (2D & 3D)

Distance from a point to a line or distance between $l_1 // l_2$ (in 2-Space)

The distance from a point $Q(x_1, y_1)$ to a line: Ax + By + C = 0 is given by

$$D = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$$

Ex 1: Distance from a point to a line in plane

Find the distance from the point Q(4, -3) to the line : 5x - 2y + 7 = 0.

Ex 2: Distance between two parallel lines in plane

Show $l_1: 2x - y + 6 = 0$ and $l_2: 4x - 2y - 5 = 0$ are parallel and then find the distance between l_2 and l_2 .

Ex 3: Distance from a point to a line or distance between 2 parallel lines in 3-space

a) Prove that the distance from a point Q in <u>space</u> to a line through a point P with direction vector \vec{d}

is equal to
$$\frac{\left| \vec{d} \times \overrightarrow{PQ} \right|}{\left| \vec{d} \right|}$$
.

- b) Find the distance from the point Q(1, -2, -3) to the line $\vec{r} = (3, 1, 0) + t(1, 1, 2)$.
- c) Find the distance between the parallel lines l_1 : $\vec{r} = (-2, 2, 1) + t(7, 3, -4) & <math>l_2$: $\vec{r} = (2, -1, -2) + u(7, 3, -4)$.

Distance from a Point to a Plane

<u>Distance from a point to a plane OR distance between 2 parallel planes (3-Space)</u> Distance from a point $Q(x_1, y_1, z_1)$ to a plane Ax + By + Cz + D = 0 is:

$$d = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

Ex 4: Distance from a point to a Plane

Find the distance from the point Q(4, -3, 2) to the plane π : 5x - 2y + 4z - 6 = 0.

Ex 5: Distance between two parallel Planes

a) prove that $\pi_1 / / \pi_2$,

$$\pi_1$$
: $2x - y + 3z - 6 = 0$

$$\pi_2: 4x - 2y + 6z + 9 = 0$$

b) Find the distance between π_1 and π_2

Ex 6: Distance between two skew lines

Determine the distance between the skew lines

$$l_1:(x,y,z)=(5,-4,-2)+s(1,2,3)$$

$$l_2:(x,y,z)=(2,0,1)+t(2,-1,1)$$

Recall: Skew lines are lines in two different dimensional planes and therefore the lines never intersect.

Ex 7. Find the distance from the point Q(4,-1,1) to the line

$$l: \begin{cases} x = 1 + 2t \\ y = 3 - t \\ z = -1 + t \end{cases}, t \in \mathbb{R}$$