ARITHMÉTIQUE DES POLYNÔMES

Plan

1. L'anneau $\mathbb{F}_2[X]$

2. Anneau quotient

3. Corps finis

Cadre

Toutes les constructions présentées ci-dessous fonctionnent pour K[X], où K est un corps, mais on s'intéresse principalement au cas $K = \mathbb{F}_2$.

- La définition et les propriétés élémentaires de l'anneau F₂[X] sont détaillées sur le support
- En résumé : $(\mathbb{F}_2[X], +, \times)$ est un anneau commutatif, **et** un $\mathbb{F}_2[X]$ -espace vectoriel
- La « taille » d'un polynôme est mesurée par la fonction degré deg : $\mathbb{F}_2[X] \setminus \{0\} \longrightarrow \mathbb{N}$ qui donne le plus grand exposant apparaissant dans l'écriture d'un polynôme
- on définit aussi $deg(0) = -\infty$ (symbole « complétant » la relation d'ordre sur les entiers et signifiant ici plus petit que tout entier relatif)

Exemple

$$(1+X^2)(1+X+X^3) = 1+X+X^3+X^2+X^3+X^5$$
$$= 1+X+X^2+X^5$$

Division Euclidienne

Soit *A* et *B* des polynômes de $\mathbb{F}_2[X]$, $B \neq 0$.

Il existe deux polynômes Q et R, **uniquement déterminés**, appelés *quotient* et *reste* de la division euclidienne de A par B, tels que :

$$\begin{cases} A = BQ + R \\ \deg(R) < \deg(B) \end{cases}$$

Exemple

Division euclidienne de $X^2 + X^5$ par $(1 + X + X^3)$:

$$X^2 + X^5 = (1 + X + X^3)(1 + X^2) + 1 + X$$

Remarques.

- L'algorithme d'Euclide (étendu, coefficients de Bézout, ...) fonctionne encore dans l'anneau (euclidien) $\mathbb{F}_2[X]$
- Les polynômes à coefficients dans F₂ se représentent de manière évidente par des mots binaires (et « réciproquement »)
- Les codes détecteurs/correcteurs d'erreurs modernes s'appuient sur cette identification (voir exemple du CRC en TD)

'anneau $\mathbb{F}_2[X]$ Corps finis

Plan

1. L'anneau $\mathbb{F}_2[X]$

2. Anneau quotient

3. Corps finis

anneau $\mathbb{F}_2[X]$ Corps finis

Congruences sur $\mathbb{F}_2[X]$

Soit $G \in \mathbb{F}_2[X]$.

On définit une relation d'équivalence sur $\mathbb{F}_2[X]$ par

$$P \equiv Q \mod G$$
 si $P - Q$ est un multiple de G

Exemple

$$1 + X \equiv 1 + X + X^2 \equiv 1 + X + X^2 + X^4 \mod X^2$$

Proposition

- Deux polynômes sont congrus modulo G si, et seulement si, ils ont le même reste modulo G
- ② Un système de représentants des classes modulo G est donné par les restes possibles de la division euclidienne par G
- Si deg(G) = n, il y a donc 2^n classes d'équivalences

'anneau $\mathbb{F}_2[X]$ Corps finis

On note $\mathbb{F}_2[X]/(G)$ l'ensemble des classes d'équivalence modulo G (ou quotient de $\mathbb{F}_2[X]$ par la relation de congruence modulo G). Exemple

$$\mathbb{F}_2[X]/(X^2)=\{\overline{0},\overline{1},\overline{X},\overline{1+X}\}$$

Comme dans le cas de $\mathbb{Z}/n\mathbb{Z}$, le quotient « hérite » de $\mathbb{F}_2[X]$ une **structure d'anneau** (loi de groupe additive avec $\overline{0}$ pour neutre, loi multiplicative avec $\overline{1}$ pour neutre, distributivité).

Addition modulo X^2 :

+	0	1	X	1+X
0	0	1	X	1+X
1	1	0	1+X	X
X	X	1+X	0	1
1+X	1+X	X	1	0

Multiplication modulo X^2 :

>	<	0	1	X	1+X
()	0	0	0	0
1		0	1	X	1+X
7	(0	X	0	X
1 +	- X	0	1+X	X	1

Plan

1. L'anneau $\mathbb{F}_2[X]$

2. Anneau quotient

3. Corps finis

On se place sur un anneau quotient $A = \mathbb{F}_2[X]/(G)$

Définition

Soit $f \in A$. On dit que f est un (élément) inversible de A s'il existe $g \in A$ tel que $fg = 1 \in A$.

Exemples

- Pour $G = X^2$, 1 + X est inversible, mais pas X.
- ② Considérons la multiplication dans $\mathbb{F}_2[X]/(1+X+X^2)$

×	0	1	X	1+X
0	0	0	0	0
1	0	1	X	1+X
X	0	X	1+X	1
1+X	0	1+X	1	X

Tous les élements non nuls sont inversibles!

Définition

Soit $P \in \mathbb{F}_2[X]$. On dit que P est irréductible s'il n'a pas de diviseur « non triviaux », c'est-à-dire autre que les constantes et lui-même.

Théorème

On a équivalence entre

- **1** P est irréductible dans $\mathbb{F}_2[X]$

Démonstration.

On peut recopier *mutatis mutandis* la démonstration de $\mathbb{Z}/n\mathbb{Z}$ est un corps si et seulement si n est premier »

Corollaire

Pour tout premier p, et tout entier n, il existe un corps de cardinal p^n .

Exemple

Le corps de Rijndael/AES:

- $P = X^8 + X^4 + X^3 + X + 1$ est un polynôme irréductible
- ② Par suite $\mathbb{F}_2[X]/(P)$ est un corps à $2^8 = 256$ élements
- 3 Ses éléments s'identifient à des octets ...

