2007 Higher School Certificate Trial Examination

Chemistry

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Board approved calculators may be used
- Write using black or blue pen
- Draw diagrams using pencil
- A data sheet and a Periodic Table are provided
- Write your student number and/or name at the top of every page

Total marks - 100

Section I – Pages 2 – 15 Total marks (75) This section has two parts, Part A and Part B

Part A
Total marks (15)
Attempt Questions 1 – 15
Allow about 30 minutes for this part

Part B
Total marks (60)
Attempt Questions 16 – 23
Allow about 1 hour 45 minutes for this part

Section II – Pages 16 – 35 Total marks (25) Attempt ONE question from Questions 24 – 28 Allow about 45 minutes for this section

This paper MUST NOT be removed from the examination room

STUDENT NUMBER/NAME:	
----------------------	--

STUDENT NUMBER/NAME:

Section I Total marks (75)

Part A
Total marks (15)
Attempt Questions 1 – 15
Allow about 30 minutes for this part

Select the alternative A, B, C or D that best answers the question and indicate your choice with a cross (X) in the appropriate space on the grid below.

	A	В	C	D
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				

e ^r	STUDENT NUMBER/NAME:
teritie ranifization	Which of the following cations exhibits an intense yellow flame when subjected to a flame test?
	(A) Cr^{3+} (B) Na^{+} (C) Ba^{2+} (D) Sr^{2+}
2.	A compound is a colourless <i>liquid</i> that rapidly decolourises bromine water.
	Which of the following is a possible formula for the compound?
	(A) C ₂ H ₄ (B) C ₂ H ₅ OH (C) C ₈ H ₁₈ (D) C ₆ H ₁₂
3.	A student measures the voltage between pairs of metal strips when placed in sodium sulfate solution.
	Which metal gives the highest positive voltage in combination with copper?
	(A) Silver(B) Tin(C) Zinc(D) Magnesium
4.	Butanoic acid and ethyl ethanoate have the same molecular formula, C ₄ H ₈ O ₂ .
	Which of the following is the best chemical test to distinguish between these compounds?
	(A) Dilute sodium carbonate(B) Bromine water(C) Solubility in water(D) Smell
5.	What is the systematic name for $CHCl = CCl_2$?
	 (A) 1,2 - dichloroethane (B) 1,2,3 - trichlorethene (C) 1,1,2 - trichloroethene (D) 1,2 - dichloropropene

- 6. Which chemist first defined an acid as a substance which releases hydrogen ions in dilute solution?
 - (A) Lavoisier
 - (B) Davy
 - (C) Arrhenius
 - (D) Bronsted
- 7. When food passes from the mouth to the stomach the pH changes from 7 to 2.

What is the hydrogen ion concentration in the stomach compared with the mouth?

- (A) 5 times less
- (B) 5000 times less
- (C) 50 times greater
- (D) 100 000 times greater
- 8. Which reaction involves the formation of a coordinate covalent bond?
 - (A) $H^+ + OH^- \rightarrow H_2O$
 - (B) $Mg(s) + 2H^+ \rightarrow Mg^2 + H_2(g)$
 - (C) $C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$
 - (D) $CH_4(g) + Br_2(g) \rightarrow CH_3Br(g) + HBr(g)$
- 9. Which compound results in a lower pH when dissolved in water?
 - (A) Sodium hydroxide
 - (B) Sulfur (IV) oxide
 - (C) Ammonia
 - (D) Potassium carbonate
- 10. Heavy metals such as mercury and lead are toxic in waterways, even at very low concentrations.

Which of the following is the most suitable method for analysing a water sample for these metals?

- (A) Displacement by a more active metal
- (B) Precipitation
- (C) Flame test
- (D) Atomic absorption spectroscopy

11. A paint solvent is a colourless liquid with a fruity odour and is insoluble in water.

To which group does the solvent most likely belong?

- (A) Alkanoic acids
- (B) Alkanols
- (C) Esters
- (D) Alkenes
- 12. One possible source of hydrogen for use as a fuel is through the 'reforming' of natural gas. The key reaction is:

$$CH_4(g) + H_2O(g) \rightarrow CO(g) + 3H_2(g) \Delta H = +172 \text{ kJ}$$

A catalyst is used for this reaction.

Which of the following is the most suitable set of conditions for this reaction?

- (A) Low pressure and low temperature
- (B) Low pressure and high temperature
- (C) High pressure and high temperature
- (D) High pressure and low temperature
- 13. The first passenger-carrying balloons were made in the late 18th century using hydrogen from the reaction of iron with sulfuric acid.

What is the mass of iron required to produce 10 kL of hydrogen at 25°C and 100kpa?

- (A) 280 g
- (B) 560 g
- (C) 11 kg
- (D) 22 kg
- 14. Identify the structural group that is present in all esters?

(A)
$$-\frac{1}{C} - O - O - \frac{1}{C} -$$

(C)
$$-\overset{|}{\overset{|}{\text{C}}}$$
 - COOH

ST	CILI'	EN	IT	NUN	/BER/	NAME:	 		

- 15. What is the purpose of using reflux in the production of an ester?
 - (A) To accelerate the reaction
 - (B) To increase the equilibrium yield of ester
 - (C) To remove the water by vaporisation
 - (D) All of the above

	STUDENT NUMBER/NAME:	
Sec	tion I (continued)	
Atte	B Il marks (60) mpt Questions 16 – 23 w about 1 hour 45 minutes for this part	
Ans	wer the questions in the spaces provided.	
Sho	w all relevant working in questions involving calculations.	
Que	stion 16 (12 marks) Mar	ks
	nol is described as a "water-like" compound but also has properties like those of ocarbons.	
(a)	Referring to ethanol's molecular structure, explain why it has similarities to both water and hydrocarbons.	3
(b)	Describe ONE "water-like" property of ethanol.	1

Question 16 continues on the next page

	STUDENT NUMBER/NAME:	•••
Que	estion 16 (continued)	Marks
(c)	Describe ONE "hydrocarbon-like" property of ethanol.	1
•		
* *		
<i>(</i> 1)		
(d)	Construct chemical equations to demonstrate ONE renewable and ONE non-renewable method of ethanol production.	3
	· · · · · · · · · · · · · · · · · · ·	
(e)	The NSW Government intends to make 10% ethanol compulsory in all petrol.	
	Discuss the benefits and costs of using ethanol as a motor fuel.	4
,		

Question 17 (8 marks)

Marks

The diagram shows a silver oxide button cell, used in calculators, watches and hearing aids.

Half-Reactions

$$Zn(OH)_{2(s)} + 2e^{s} \rightarrow Zn_{(s)} + 2OH_{(aq)}$$
 $E^{s} = -1.25 \text{ V}$
 $Ag_{2}O_{(s)} + H_{2}O_{(l)} + 2e^{s} \rightarrow 2Ag_{(s)} + 2OH_{(aq)}$ $E^{s} = +0.34 \text{ V}$

(a)	Construct the equation for the net cell reaction.	2
(b)	Calculate the voltage of the cell, stating the polarity of the steel cathode.	2
(c)	Explain the function of the porous barrier.	2
(d)	Consider this cell when 90% of the silver oxide has reacted.	
	Predict the effect on the cell voltage, giving reasons for your answer.	2

CTI	IDENT	NIIMPED	NIAME.	
211	HJEN L	NUMBER	/NAME:	

Que	estion 18 (6 marks)	Marks
	tonium 238, an intensely radioactive alpha emitter.	
(a)	Identify the products of decay of Pu ²³⁸ .	2
		•
(b)	Describe TWO advantages of using an alpha-emitting source, rather than a beta or gamma emitter.	2
(c)	Assess the risks associated with this use of plutonium.	2
		•
		•
		•

	STUDENT NUMBER/NAME:	
Q u	estion 19 (11 marks)	rk
A v	white crystalline solid dissolves easily in water to form a solution of pH 2.8. A chemist estigating the substance makes the following observations:	
	• The empirical formula is CHO;	
	• A few crystals rapidly decolourise bromine water;	
	• The pH curve for its neutralisation with sodium hydroxide shows that it is a diprotic acid;	
	• By titration using phenolphthalein as an indicator, a solution of 0.29 g of the compound in water is neutralised by 20.9 mL of standard 0.24 mol L ⁻¹ sodium hydroxide solution.	
(a)	Identify the structural unit in the molecule which reacts with bromine water.	1
(b)	Sketch the titration curve for a weak diprotic acid reacting with sodium hydroxide solution.	2
(c)	Justify the selection of phenolphthalein as an indicator in this instance.	2

Question 19 continues on the next page

Que	estion 19 (continued)	Aarks
(d)	For the titration, explain why the volume of sodium hydroxide solution must be measured accurately, but not the volume of water used to dissolve the acid.	2
and and a		
(e)	Determine the mole mass and molecular formula of the compound.	3
(f)	Propose a structural formula for the compound.	1

STUDENT NUMBER/NAME:

End of Question 19

	STUDENT NUMBER/NAME:	• • • • •
Que	estion 20 (7 marks)	Marks
	as been suggested that increasing levels of atmospheric carbon dioxide will result in eased acidity in the oceans as additional carbon dioxide dissolves in the surface layers.	
(a)	With the aid of an equation, demonstrate the effect of more carbon dioxide on the pH oceans.	of 2
(b)	Outline problems that could arise from these oceanic changes.	3
(c)	Supporting your answer with an equation, describe ONE process which might offset these effects by removing carbon dioxide from the oceans.	2
		•••

,a	STUDENT NUMBER/NAME:	•
Que	stion 21 (7 marks)	Iarks
In so	oils, phosphate ions exist in equilibrium as follows:	
•	H_2PO_4 \Rightarrow $HPO_4^{2-} + H^+$	
(a)	Assess the importance of monitoring phosphate concentrations in soils and waterways.	3
ê		
(b)	Compare the nature of the phosphate ions in acid soil of pH 5.5 with that in alkaline soil of pH 7.5.	2

Demonstrate that EACH of these phosphate ions is amphiprotic.

Que	Question 22 (6 marks)	
The	product of ozone from oxygen is strongly endothermic with $\Delta H = 142 \text{ kJ mol}^{-1}$.	
(a)	Draw a structural formula for the ozone molecule.	1
		••
(b)	Compare the production of ozone in the upper and lower atmospheres.	3
		•
(c)	Explain why ozone is both a pollutant and essential to our environment.	2
		·•
•		
	estion 23 (3 marks)	
sucl	ently, biopolymer carry bags are often used in place of bags made from addition polymers has polyethylene.	
Dis	cuss the benefits and problems associated with the use of biopolymer carry bags.	3
		••
••••		
•••••		

Page 15

End of Section I

STUDENT NUMBER/NAME:	
----------------------	--

- Section II

Total marks (25)
Attempt ONE question from Questions 24 – 28
Allow about 45 minutes for this section

Answer the question on your own paper or writing booklet, if provided.

Show all relevant working in questions involving calculations.

	F	ages
Question 24	Industrial Chemistry	- 20
Question 25	Shipwrecks, Corrosion and Conservation21 -	- 24
Question 26	The Biochemistry of Movement25 -	- 27
Question 27	The Chemistry of Art28 -	- 31
Question 28	Forensic Chemistry	- 35

Que	Question 24 – Industrial Chemistry (25 marks)		
(a)	Outline the production process for the manufacture of sulfuric acid, identifying reaction conditions which must be monitored.	7	
• • • • • • • • • • • • • • • • • • • •	·		
		•	
		•	
		•	
		•	
		•	
		•	
		•	
(b)	The following 'water gas' reaction is used to produce hydrogen from carbon monoxide:		
	$CO(g) + H_2O(g) \rightarrow CO_2(g) + H_2(g) \Delta H = -42 \text{ kJ}$		
	Equal volumes of carbon monoxide and steam are mixed and brought to equilibrium at 986°C. The equilibrium mixture is found to contain 22% by volume of hydrogen.		
	(i) Calculate the equilibrium constant at 986°C.	2	
		•	

STUDENT NUMBER/NAME:

Question 24 continues on the next page

<u> </u>		STUDENT NUMBER/NAME:	••••
Que	estion 2	24 (continued)	Marks
	(ii)	Identify methods to increase the equilibrium yield of hydrogen.	2
(c)	Com cond	pare the chemistry of saponification with esterification and justify the different litions in which these reactions are carried out.	5
			••

Question 24 continues on the next page

Question 24 (continued)

Marks

3

3

(d) Study the flow chart of the Solvay Process shown below.

(i)	Identify the raw materials 1 & 2 and the natural resources from which they are produced.
(ii)	Construct an equation for the equilibrium in which sodium hydrogen carbonate is formed, and outline the conditions employed to maximise the yield.

-	STUDENT NUMBER/NAME:	• • • •
stion 2	stion 24 (continued)	
(iii)	Identify the main component of the waste discharge and discuss its importance in deciding on a suitable location for this industry.	3
		-

End of Question 24

STUDENT NUMBER/NAME:		STUDENT NUMBER/NAME:		
Que	estion	25 – Shipwrecks, Corrosion and Conservation (25 marks)	Marks	
(a)	**	ocean is a strong electrolyte solution, meaning that it readily conducts an electric cur to the movement of ions.	rent	
· · · · · · · · · · · · · · · · · · ·	Iden	ntify and describe the origins of the minerals in the world's oceans.	4	
	••••			
		· · · · · · · · · · · · · · · · · · ·		
(L)	The	following information was contained in an electrochemist's not sheet.		
(b)	1 ne	following information was contained in an electrochemist's notebook: $Sn(s) / Sn^{2+}(aq) / / Mn(s)$		
	(i)	Predict, using a list of standard potentials, which metal will corrode.	1	
	(ii)	Write the net ionic equation for the above electrochemical cell and calculate the expected voltage of the cell under standard conditions.	2	

Question 25 continues on the next page

	STUDENT NUMBER/NAME:	•••
Que	estion 25 (continued)	Marks
(c)	Steel is an alloy of various metals and non-metals. The properties of steel depend on the elements used and the percentage of each element in the steel.	
* * *	(i) Contrast the composition and properties of THREE types of steel.	3
	······································	
	(ii) The most common and economically destructive form of corrosion is the rusting of iron and steel.Describe the conditions under which rusting occurs and explain the process of rusting.	4

Page 22

Question 25 continues on the next page

Question 25 (continued)

Marks

2

2

(d) (i) Observe the electrochemical cell shown below.

	dentity which is the anode and justify your choice.	
•••••		•••••
•••••		•••••
		• • • • • • • • • • • • • • • • • • • •

(ii) Observe the electrolytic cell shown below.

Outline TWO observations, ONE at the ANODE and ONE at the CATHODE, that you would see as electrolysis occurred over a period of time.	t

Question 25 continues on the next page

	STUDENT NUMBER/NAME:	• • • •
stio	n 25 (continued)	Marks
	any scientists have contributed to our current theories on electrochemistry; none ore so than Galvani, Volta, Davy and Faraday.	
	utline and analyse the impact of these FOUR scientists on our understanding of ectron transfer reactions.	,
•••		
•••		
•••	······································	••
•••		
•••		
		·•
		· •
•••		· ·
•••		
		••
•••		·•
		· .
		·•
		••

End of Question 25

Question 26 - The Biochemistry of Movement (25 marks)

Marks

(a) Identify the chemical above. 1 (b) (i) Identify the anaerobic process of metabolism whereby carbohydrates are broken down to produce energy. 1 (ii) Identify the main chemical that is broken down in this process. 1 (iii) Identify the part of the cell where this process takes place. 1 (iv) Identify the end product of this metabolic process. 1 Identify the net yield of ATP from this metabolic process. (v) 1

Question 26 continues on the next page

STUDENT NUMBER/NAME:

Que	estion 26 (continued)	Marks
	р "	
(c)	Account for the process of protein denaturation.	3
+		
(d)	Outline the decomposition of fatty acids.	2
(e)	Construct an equation that summarises the regeneration of ATP.	2
(f)	Describe the rele of everyon in requiretion	•
(f)	Describe the role of oxygen in respiration.	3
	•••••••••••••••••••••••••••••••••••••••	
	•••••••••••••••••••••••••••••••••••••••	

Question 26 continues on the next page

STODENT NOWIDERNAME,	STUDENT NUMBER/NAM	E:
----------------------	--------------------	----

Que	estion 26 (continued)	Marks
(g)	Describe the formation of peptide bonds.	3
	-	
A.		
(h)	Define the term oxidative phosphorylation.	3
(i)	Outline why ATP is consumed in the process of muscle contraction.	3

End of Question 26

STI	JDENT	NUMBER/NAME:	,
-----	--------------	--------------	-------

16	estion 27 – Chemistry of Art (25 marks)	Marks
)	Account for the range of colours found in Aboriginal artwork in Australia, referring to the minerals available as pigments, including their chemical composition.	6
((b) Queen Elizabeth I is thought to have started an upper class fashion in facial make-up. She used white lead (lead carbonate), applied as a paste to the skin, to make her face paler.	
	Explain why lead carbonate has the required properties of a pigment, and identify ONE problem in its use.	2

Question 27 continues on the next page

CONTRACTOR TO	ATT TA ATTACKS ON LABATED	
STUDENT	NUMBER/NAME:	

Om	pare the electronic configurations of calcium and chromium, using subshell notation,
	account for the range of oxidation states shown by EACH of these elements.
•••••	
• • • • •	
• • • • • •	
• • • • •	
· • • • • •	
•••••	
•••••	
	r to the diagram of the emission spectrum of gaseous sodium below to answer the wing questions.
	wing questions.
òllo	Na 590 nm
(i)	Na Account for the observed flame test for sodium ions.
i)	Na Account for the observed flame test for sodium ions.

Question 27 continues on the next page

Question 27(d) (continued)

Marks

(iii) Outline the explanation developed by Bohr to explain the emission spectra of elements.

4

......

(e) Refer to the diagram of the absorption spectra of 10^{-2} mol L⁻¹ aqueous copper sulfate (line A) and the same solution after the addition of 10^{-1} mol L⁻¹ ammonia (line C).

(i) Using a diagram demonstrate the complex nature of the aqueous copper ion.

2

STUDENT NUMBER/NAME:	STUDE	NT NUME	BER/NAME:		
----------------------	--------------	---------	-----------	--	--

Qu	estion 2	27 (continued)	Marks
# 73.			
ai :	(ii)	Describe the observed colour change when ammonia is added to the copper sulfate solution.	1
¥			
	(iii)	Explain why ammonia is a suitable ligand to form a complex ion with the copper ion.	1
	(iv)	Account for the variety of colours observed for complex ions of transition metals such as copper.	2

End of Question 27

Question 2	28 – Forensic	Chemistry	(25	marks)
-------------------	---------------	-----------	-----	--------

Marks

(a) A soil sample was subjected to spectroscopic analysis. The emission spectrum of this sample is shown below, along with the emission lines of certain elements.

(i)	Identify the elements present in the soil sample.	1
(ii)	Explain why EACH element has a unique set of spectral lines.	3

Question 28 continues on the next page

	-	STUDENT NUMBER/NAME:	
Que	estion 2	28 (continued)	Marks
(b)		cose is an example of an organic compound that can be classified as a carbohydrate, a cing sugar or a monosaccharide.	
•	(i)	State why glucose is classified as a carbohydrate.	2
	(ii)	Describe the chemical difference between a reducing and a non-reducing sugar.	2
	(iii)	Describe a test that can be used to distinguish between organic and inorganic compounds.	
		Include an outline of a risk assessment for carrying out this test.	4

Question 28 continues on the next page

	STUDENT NUMBER/NAME:	
estion 28 (continued)		Marks
(c) Assess the usefulness of DNA importance of accuracy in solv	analysis for investigating crime and discuss the ring crimes.	7
2 F		
	······································	

Question 28 continues on the next page

STUDENT	NUMBER	/NAME:	
SIUDENI	LINGIVIDEIN	JINZHVIL.	

Que	estion 2	8 (continued)		I	Mark
(d)	The s	structure and isoelecti	ric point for three different amino	acids are given below.	
		H	CH ₃ - CH - CH ₃ I H ₂ N - C - COOH	HOOC - CH ₂ I H ₂ N - C - COOH	
ž	^H 2 ^N	- C - COOH	n2N-C-C00n	n ₂ N - C - COOH	
	gly	cine - 6.0	valine - 6.0	aspartic acid - 3.0	
		a a s e ntit			
	(i)	Identify the major fu	nctional groups present in all an	nino acids.	1
			······································		
	(ii)		ctrophoresis instead of gas chron valine and aspartic acid in a mix		5

End of paper

Chemistry

DATA SHEET

Avogadro constant, N_A		$6.022 \times 10^{23} \text{ mol}^{-1}$
Volume of 1 mole ideal gas: at		
_	at 0°C (273.15 K)	. 22.71 L
	at 25°C (298.15 K)	. 24.79 L
Ionisation constant for water at	25°C (298.15 K), K _w	1.0×10^{-14}
Specific heat capacity of water		$4.18 \times 10^3 \mathrm{J kg^{-1} K^{-1}}$

Some useful formulae

$$pH = -\log_{10}[H^{+}] \qquad \qquad \Delta H = -m \, C \Delta T$$

Some standard potentials

$K^+ + e^-$	/	K(s)	-2.94 V
$Ba^{2+} + 2e^{-}$	~	Ba(s)	-2.91 V
$Ca^{2+} + 2e^{-}$	\rightleftharpoons	Ca(s)	-2.87 V
$Na^+ + e^-$	\rightleftharpoons	Na(s)	−2.71 V
$Mg^{2+} + 2e^{-}$	~	Mg(s)	-2.36 V
$Al^{3+} + 3e^{-}$	\rightleftharpoons	Al(s)	-1.68 V
$Mn^{2+} + 2e^{-}$	~	Mn(s)	-1.18 V
$H_2O + e^-$	(112	$\frac{1}{2}\mathrm{H}_2(g) + \mathrm{OH}^-$	-0.83 V
$Zn^{2+} + 2e^{-}$	~	Zn(s)	-0.76 V
$Fe^{2+} + 2e^{-}$	\rightleftharpoons	Fe(s)	–0.44 V
$Ni^{2+} + 2e^-$	\rightleftharpoons	Ni(s)	–0.24 V
$\mathrm{Sn}^{2+} + 2\mathrm{e}^{-}$	=	Sn(s)	–0.14 V
$Pb^{2+} + 2e^{-}$	\rightleftharpoons	Pb(s)	-0.13 V
$H^+ + e^-$	₹	$\frac{1}{2}\mathbf{H}_{2}(g)$	0.00 V
$SO_4^{2-} + 4H^+ + 2e^-$	\rightleftharpoons	$SO_2(aq) + 2H_2O$	0.16 V
$Cu^{2+} + 2e^{-}$	\rightleftharpoons	Cu(s)	0.34 V
$\frac{1}{2}O_2(g) + H_2O + 2e^{-}$	\rightleftharpoons	2OH-	0.40 V
$Cu^+ + e^-$	<−	Cu(s)	0.52 V
$\frac{1}{2}\mathbf{I}_2(s) + \mathbf{e}^-$	<_	I-	0.54 V
$\frac{1}{2}I_2(aq) + e^-$	\rightleftharpoons	I-	0.62 V
$Fe^{3+} + e^{-}$	\rightleftharpoons	Fe ²⁺	0.77 V
$Ag^+ + e^-$	~ _	Ag(s)	0.80 V
$\frac{1}{2}\mathrm{Br}_2(l) + \mathrm{e}^-$	\rightleftharpoons	Br ⁻	1.08 V
$\frac{1}{2}\mathrm{Br}_2(aq) + \mathrm{e}^{-}$	\rightleftharpoons	Br ⁻	1.10 V
$\frac{1}{2}$ O ₂ (g) + 2H ⁺ + 2e ⁻	\rightleftharpoons	H_2O	1.23 V
$\frac{1}{2}\text{Cl}_2(g) + e^-$	\rightleftharpoons	Cl ⁻	1.36 V
$\frac{1}{2}$ Cr ₂ O ₇ ²⁻ + 7H ⁺ + 3e ⁻	₹	$Cr^{3+} + \frac{7}{2}H_2O$	1.36 V
$\frac{1}{2}\text{Cl}_2(aq) + e^-$	~~	Cl ⁻	1.40 V
$MnO_4^- + 8H^+ + 5e^-$	\rightleftharpoons	$Mn^{2+} + 4H_2O$	1.51 V
$\frac{1}{2}\mathbf{F}_2(g) + \mathbf{e}^-$	\rightleftharpoons	F-	2.89 V

Aylward and Findlay, SI Chemical Data (5th Edition) is the principal source of data for this examination paper. Some data may have been modified for examination purposes.

S
4
Ξ
7
ELEMENT
Ħ
-
Ξ
Ξ
THE
-
r_
=
Ö
_
_
_
_
_
ABLE OF
_
_
_
_
_
_
IODIC TABLE
DIC TABLE
IODIC TABLE
IODIC TABLE

He 4.003	10 Ne	20.18	neon	18	39.95	Argon	36	K.	83.80	Krypton	54	Xe	131.3	Хелоп	98 98	[222.0]	Radon		
- 4 1	9 H	19.00	Fluorine	7.5	35.45	Chlorine	35	Br	79.90	Bromine	53	-	126.9	Iodine	85 ^	[210.0]	Astatine		
- -	∞ O	16.00	Oxygen	9 ₀	32.07	Sulfur	34	Se	78.96	Selenium	52	Те	127.6	Tellurium	84 Po	[209.0]	Polonium		
	ΓZ	14.01	Nitrogen		30.97	Phosphorus	33	As	74.92	Arsenic	51	$^{\mathrm{qs}}$	121.8	Antimony	83 Bi	209.0	Bismuth		
	9 0	12.01	Carbon	7: 7:	28.09	Silicon	32	ප	72.64	Germanium	20	$\mathbf{S}\mathbf{n}$	118.7	Tin	82 Ph	207.2	Lead		
	5 B	10.81	Boron	<u> </u>	26.98	Aluminium	31	ğ	69.72	Gallium	49	п	114.8	Indium	81 TT	204.4	Thallium		
							30	Zn	65.41	Zinc	48	Cq	112.4	Cadmium	98 H	200.6	Mercury		
	nent	į	=															111 Rg	
	Symbol of element	Name of element	name or eleme				28	ź	58.69	Nickel	46	Pd	106.4	Palladium	78 Pt	195.1	Platinum	110 Ds	[271] Darmstadtíum
KEY	79 Au	197.0	Cold												77 Ir				[268] Meimerium
	Atomic Number	Atomic Weight					26	Fe	55.85	Iron	44	Ru	101.1	Ruthenium	9/ Os	190.2	Osminm	108 Hs	[277] Hassium
	Αp	∢					25	Mn	54.94	Manganese	43	Tc	[97.91]	Technetium	75 D.	186.2	Rhenium	107 Bh	[264.1] Bohrium
							24	Ċ	52.00	Chromium	42	Mo	95.94	Molybdenum	74 W	183.8	Tungsten	106 Sg	[266.1] Seaborgium
																		1	[262.1] Dubnium
							22	Ξ	47.87	Titanium	40	Zr	91.22	Zirconium	72 Hf	178.5	Hafnium	104 Rf	[261.1] Rutherfordium
							1								57-71			89-103	Actinides
	4 Be	9.012	Derymum	12 M g	24.31	Magnesium	<u>2</u> 0	c _a	40.08	Calcium	38	Sr	87.62	Strontium	56 Ba	137.3	Barium	% Ra	[226.0] Radium
H 1.008 Hydrogen	E.3	6.941	Transmin.		22.99	Sodium	19	¥	39.10	Potassium	37	Rb	85.47	Rubidium	55 Cs	132.9	Caesium	87 Fr	[223.0] Francium

1	3		(,								1
2.	280	56	3	[9	79	63	40	3	99	/.9	89	69	- 0/
La	ಲಿ	Pr	PZ	Pm	Sm	ם	3	T _D	Dy	He	Щ	Tm	Yb
138.9	140.1	140.9	144.2	[144.9]	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0
Lanthanum	Cerium	Praseodyminm	Neodymium	Promethium	Samarium	Europium	Gadolimium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium
•													

71 Lu 175.0 Lutetium

103 Lr [262.1] Lawrencium

102 No [259.1] Nobelium

101 Md [258.1] Mendelevium

100 Fm [257.1] Fermium

99 Es [252.1] Einsteinium

98 Cf [251.1] Californium

97 Bk [247.1] Berkelium

96 Cm [247.1] Curium

95 Am [243.1] Americium

94 Pu [244.1]

92 U 238.0 Uranium

90 Th 232.0 Thorium

Actinides

89
Ac
[227.0]
Actinium