Trabalho Final: Batalha Naval

Alunos: João Vítor Klein John e Ruan Pablo Vitkoski de Souza

Matrícula: 2221101018 e 2221101033

Curso: Ciência da Computação - Noturno - 2º Fase

1. Apresentação:

No presente trabalho utilizamos o software Logisim para a criação do circuito da batalha naval simulando o "mar" com a Codificação 17, criando Cl's para o Alvo, Navios e o Resultado, apresentando o acerto e o erro através de dois LED' s. Na simulação do Tinkercad montamos o circuito feito no Logisim utilizando os 4 bits de saída do jogo da Batalha Naval, disponibilizando o link para o teste. Na implementação montamos cada circuito gerado no Logisim apresentando as mesmas funcionalidades. Para a implementação da montagem, durante a representação de um bit foi utilizada a saída S1 do alvo e apresentado nos itens abaixo.

2. Descrição da Solução:

Iniciamos a implementação criando um codificador através do mapa de Karnaugh da Codificação 17 para geração do circuito do Alvo. Para o navio, comparamos a saída do codificador e a entrada do jogador com um circuito comparador, simulando os navios, que caso sejam iguais o led de acerto acende, ou caso contrário, o led de erro acende.

2.1. Estratégia Aplicada:

Utilizamos comparações de entrada, sendo que primeiro a entrada do Alvo deveria ser decodificada, para assim ocorrer a comparação. O Alvo é um circuito codificador que possui entradas para escolher a posição do disparo. Os dois circuitos de Navio são comparadores, que possuem entradas para escolher a posição de cada navio. Já no bloco de Resultado é aplicado um circuito simples utilizando portas AND e NOT que quando a entrada de disparada é acionada o resultado é mostrado através de dois LED's, um verde para acerto e um vermelho para erro.

2.2. Codificação de Campo:

Codificação 17:

0001	0010	0100	1000					
1001	1010	1100	1110					
1011	0101	0111	0110					
1111	0000	1101	0011					

2.3. Tabela-verdade:

A	В	C	D	S1	S2	S3	S4
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	1	0	0
0	0	1	1	1	0	0	0
0	1	0	0	1	0	0	1
0	1	0	1	1	0	1	0
0	1	1	0	1	1	0	0
0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1
1	0	0	1	0	1	0	1
1	0	1	0	0	1	1	1
1	0	1	1	0	1	1	0
1	1	0	0	1	1	1	1
1	1	0	1	0	0	0	0
1	1	1	0	1	1	0	1
1	1	1	1	0	0	1	1

2.4. Simplificações:

2.5. Circuito - Logisim:

Main:

navio_1 e navio_2:

Linha e Coluna:

Comparador:

Codificador:

Resultado:

2.6. Circuito - Tinkercad: Link do Tinkercad:

https://www.tinkercad.com/things/6m435VHtqDv-surprising-jarv/editel?sharecode=8kxMXoNv 09Hy_LYShrsaet4aA-u6M15-aZbvesTY3bs

2.6.1. Circuito Completo:

2.6.2. Circuito de codificação bit mais segnificativo:

2.7. Montagem do bit de saída:

https://drive.google.com/file/d/1dxTygqEAKL2nwmN2o10l2lBa8Asamixe/view

2.8. Demonstração:

https://drive.google.com/file/d/1CllkuUabWCTslZOmHyP5Olxb_-mU9FY7/view

3. Conclusão:

Tendo em vista os aspectos observados utilizamos os conteúdos lecionados durante as aulas teóricas para o desenvolvimento do trabalho prático. Efetuamos a produção de um codificador através dos circuitos montados para o alvo e comparadores para os navios, respectivamente, demonstrando resultados satisfatórios e cumprindo suas funções. Para que o tiro de canhão fosse simulado implementamos um circuito simples capaz de

demonstrar as saídas de disparada através de dois LED 's, sendo um para o acerto, e outro para o erro, que expõem o resultado de forma coesa e intuitiva.