Week 02 - Duke Tickets Example

This example loads the Duke Tickets A data example and performs regression in Python.

Author: Chris Kennedy

To Do (Future Versions):

Use machine-learning pipeline functionality for training to illustrate a production process

```
In [1]: import pandas as pd
        from sklearn.linear_model import LinearRegression, Ridge
        from sklearn import metrics
        import datetime
```

Prepare the Data

```
In [2]: dfDuke = pd.read excel(r'W2 - DukeTixA.xlsx')
In [3]: | dfDuke.head(5)
Out[3]:
             Observation Price
                                  Date Quantity Row Deck UNC rank Duke rank
          0
                     1 1400 2011-11-01
                                                                           6
          1
                     2
                         665 2011-11-01
                                             4
                                                        U
                                                                 1
                                                                           6
                     3
                                             2
                                                                 1
                         565 2011-11-03
                                                        U
          3
                         590 2011-11-03
                                             2
                                                        U
                                                                 1
                                                                           6
```

```
In [4]: | dfDuke.describe()
```

U

1

6

q

2

Out[4]:

4

5

750 2011-11-06

	Observation	Price	Quantity	UNC rank	Duke rank	
count	203.000000	203.000000	203.000000	203.000000	203.000000	
mean	102.000000	649.492611	2.275862	4.753695	7.546798	
std	58.745213	557.724509	0.753052	1.658588	1.760830	
min	1.000000	55.000000	1.000000	1.000000	3.000000	
25%	51.500000	300.000000	2.000000	5.000000	7.000000	
50%	102.000000	495.000000	2.000000	5.000000	7.000000	
75%	152.500000	750.000000	2.000000	5.000000	9.000000	
max	203.000000	4785.000000	4.000000	8.000000	10.000000	

Check for missing/null values

Check datatypes for regression

```
In [6]: dfDuke.dtypes
Out[6]: Observation
                           int64
       Price
                            int64
       Date
Quantity
                  datetime64[ns]
                   int64
       Row
                         object
       Deck
                          object
       UNC rank
                           int64
       Duke rank
                           int64
       dtype: object
```

Clean Data

- 1. Fix Dates
- 2. One-Hot-Encode the Quantity
- 3. Apply lambda to "Row"
- 4. One-Hot-Encode "Deck"
- 5. Prepare Calculated Fields from UNC and Duke Rank

Drop extra columns and split the data into X and y:

	Days to Game	Quantity_2	Quantity_3	Quantity_4	Row Number	Upper Deck	RankSum	RankDif
0	99.0	1	0	0	20	0	7	5
1	99.0	0	0	1	7	1	7	5
2	97.0	1	0	0	23	1	7	5
3	97.0	1	0	0	17	1	7	5
4	94.0	1	0	0	15	1	7	5

Prepare the Regressions

Specify Hyperparameters

Normally we would calibrate the regularization parameter using a grid-search or cross-validation; however, for simplicity we are just using $\lambda = 10.0$.

```
In [14]: regLambda = 10.0 # Note that lambda is a protected word in python
```

Given hyperparameters, initialize the models - no hyperparameters for classical linear regression.

```
In [15]: classicLR = LinearRegression()
    ridgeLR = Ridge(alpha = regLambda)
```

Fit the models

```
In [16]: model_CLR = classicLR.fit(X, y)
In [17]: model_RLR = ridgeLR.fit(X, y)
```

Build predictions (in-sample)

```
In [18]: yp = model_CLR.predict(X)
    ypr = model_RLR.predict(X)
```

Simple performance metrics

We are not using a validation/holdout set this week. Typically cross-validation or train/validate/test splits would apply when evaluating machine learning models.

```
In [19]: print("Classical: ")
         print("R2: %10.3f" % metrics.r2 score(y, yp))
         print("RMSE: %10.4f" % metrics.mean_squared_error(y, yp) ** 0.5)
         print("")
         print("Ridge:")
         print("R2: %10.3f" % metrics.r2 score(y, ypr))
         print("RMSE: %10.4f" % metrics.mean_squared_error(y, ypr) ** 0.5)
         Classical:
                   0.429
         R2:
         RMSE:
               420.2544
         Ridge:
         R2:
                  0.418
         RMSE: 424.4176
```

Output intercepts and coefficients for comparison

```
In [20]: # Simple vs. Regularized (Ridge)
          cols= len(X.columns)
          coeffs = [model CLR.coef , model RLR.coef ]
          print ("%14s" % "VAR", "%11s" % "SIMPLE", "%11s" % "RIDGE", "%11s" % "Delta")
          print ("%14s" % "Intecept", "%11.4f" % model_CLR.intercept_, "%11.4f" % model_RLR.i
          ntercept , "%11.4f" % (model_CLR.intercept_ - model_RLR.intercept_))
          for i in range(0,cols):
              print("%14s" % X.columns[i], "%11.4f" % coeffs[0][i], "%11.4f" % coeffs[1][i],
          "%11.4f" % (coeffs[0][i] - coeffs[1][i]))
                              SIMPLE
                                             RIDGE
                                                           Delta
                Intecept 1250.7322 1268.4101 -17.6779
            Days to Game 5.9223 5.6874 0.2350
Quantity_2 109.4939 58.3309 51.1630
Quantity_3 -165.9811 -56.6931 -109.2879
Quantity_4 40.9764 -2.2518 43.2282
Row Number -15.8415 -15.9277 0.0862
              Upper Deck -641.0195 -521.1882 -119.8313
                  RankSum -1.2886 -3.9505 2.6619
                  RankDif -62.5887 -64.7643
                                                          2.1756
```

Plots and visualizations

```
In [21]: %matplotlib inline
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    mpl.rc('axes', labelsize=14)
    mpl.rc('xtick', labelsize=12)
    mpl.rc('ytick', labelsize=12)
```

Plot Y vs. Prediction using Classical and Ridge

```
In [22]: plt.plot(yp, y, "b.", label="Classical")
    plt.scatter(ypr, y, s=80, facecolors='none', edgecolors='r', label="Ridge")
    plt.xlabel("$y_{predicted}$")
    plt.ylabel("$y$")
    plt.legend(loc="upper left", fontsize=14)
    plt.show()
```


Plot residuals for classical and ridge

```
In [23]: plt.plot(y, (yp - y), "b.")
    plt.xlabel("$y$")
    plt.ylabel("residuals")
    plt.show()
```


End of Notebook!

6 of 6