

哈爾濱工業大學

第六章 数理统计的基本概念

 χ^2 分布、t分布和 F分布

数理统计的三大分布

一、 χ^2 分布

 χ^2 分布是由正态分布派生出来的一种分布. 定义 设 X_1, X_2, \dots, X_n 相互独立,都服从标准正态分布N(0,1),则称随机变量

$$Y = \sum_{i=1}^{n} X_i^2$$

服从自由度为n的 χ^2 分布,记为 $Y \sim \chi^2(n)$. 自由度是指Y右端包含独立变量的个数.

χ^2 分布的概率密度函数

$$f(x;n) = \begin{cases} \frac{1}{2^{n/2}\Gamma(n/2)} x^{\frac{n}{2}-1} e^{-\frac{x}{2}}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

其中

$$\Gamma(s) = \int_0^\infty e^{-t} t^{s-1} dt, \quad (s > 0).$$

由阿贝(Abbe)于1863年首先给出,后来由海尔墨特(Hermert)和皮尔逊(Pearson)分别于1875年和1900年推导出来.

χ^2 分布的概率密度曲线

χ^2 分布的性质

证设 X_1, X_2, \dots, X_n 独立,都服从N(0,1).则

$$Y = \sum_{i=1}^{n} X_i^2 \sim \chi^2(n)$$
, 故 $X = Y$ 同分布,可得

$$E(X) = E(Y) = \sum_{i=1}^{n} E(X_i^2) = \sum_{i=1}^{n} D(X_i) = n,$$

$$D(X) = D(Y) = \sum_{i=1}^{n} D(X_i^2) = \sum_{i=1}^{n} \{E(X_i^4) - [E(X_i^2)]^2\}$$
$$= n[\int_{-\infty}^{+\infty} x^4 \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx - 1] = 2n.$$

χ^2 分布的可加性

2. 设 $X \sim \chi^{2}(m), Y \sim \chi^{2}(n), 且X与Y独立, 则X + Y \sim \chi^{2}(m+n).$

推广

设
$$X_1, X_2, \dots, X_n$$
独立,且 $X_i \sim \chi^2(n_i)$,则 $\sum_{i=1}^n X_i \sim \chi^2(\sum_{i=1}^n n_i)$.

χ^2 分布的上侧 α 分位数或临界值

设 $\alpha(0<\alpha<1)$,称满足等式 $P(X \geq \chi_{\alpha}^{2}(n)) = \alpha$ 的点 $\chi_{\alpha}^{2}(n)$ 为 $\chi^{2}(n)$ 分布的上侧 α 分位数或 临界值.

 $\chi^2_{\alpha}(n)$ 的值可查 χ^2 分布表获得.

$P(X^2(n) \Rightarrow X_a^2(n))$) =	a
----------------------------------	-----	---

n	$\alpha = 0.995$	0. 99	0. 975	0. 95	0. 90	0.75
1	_	_	0.001	0.004	0.016	0. 102
2	0.010	0.020	0.051	0. 103	0. 211	0. 575
3	0.072	0. 115	0. 216	0.352	0. 584	1. 213
4	0. 207	0. 297	0.484	0.711	1.064	1. 923
5	0.412	0. 554	0.831	1. 145	1.610	2. 675
6	0. 676	0.872	1. 237	1. 635	2. 204	3. 455
7	0. 989	1. 239	1. 690	2. 167	2. 833	4. 255
8	1. 344	1. 646	2. 180	2. 733	3.490	5.071
9	1. 735	2.088	2. 700	3. 325	4. 168	5. 899
10	2. 156	2. 558	3. 247	3.940	4. 865	6. 737
11	2. 603	3. 053	3. 816	4. 575	5. 578	7. 584
12	3. 074	3. 571	4. 404	5. 226	6. 304	8. 438

例1设 X_1, X_2, \dots, X_n 相互独立, 都服从正态分布 $N(\mu, \sigma^2)$,则

$$\chi^{2} = \frac{1}{\sigma^{2}} \sum_{i=1}^{n} (X_{i} - \mu)^{2} \sim \chi^{2}(n).$$

证由 $X_i \sim N(\mu, \sigma^2)(i=1,\dots,n)$,则

$$Y_i = \frac{X_i - \mu}{\sigma} \sim N(0,1), 且Y_1, Y_2, \cdots Y_n$$
独立,从而

$$\chi^{2} = \sum_{i=1}^{n} \left(\frac{X_{i} - \mu}{\sigma}\right)^{2} = \frac{1}{\sigma^{2}} \sum_{i=1}^{n} (X_{i} - \mu)^{2} = \sum_{i=1}^{n} Y_{i}^{2} \sim \chi^{2}(n).$$

t 分布

定义 设X,Y相互独立,且 $X \sim N(0,1), Y \sim \chi^2(n),$ 则称随机变量

$$T = \frac{X}{\sqrt{Y/n}}$$

服从自由度为n的t分布,记为 $T\sim t(n)$. 也称为学生氏分布.

William Gosset 1908提出了t分布.

t 分布的概率密度函数

$$f(x;n) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\Gamma\left(\frac{n}{2}\right)} \left(1 + \frac{x^2}{n}\right)^{-\frac{n+1}{2}} (-\infty < x < +\infty).$$

$$n = 1 \text{ iff}, \quad f(x;1) = \frac{1}{\pi(1+x^2)}, (-\infty < x < +\infty).$$

t 分布就是柯西分布.

当n→∞时,t分布的极限分布是N(0,1).

t分布的概率密度曲线

t分布的上侧α分位数或临界值

设 $\alpha(0 < \alpha < 1)$,称满足等式

$$P(T \ge t_{\alpha}(n)) = \alpha$$

的点 $t_{\alpha}(n)$ 为t(n)分布的上侧 α 分位数或临界值. $t_{\alpha}(n)$ 的值可查t分布表获得.

$$P(T \ge t_{\alpha}(n)) = \int_{t_{\alpha}(n)}^{+\infty} f(x,n) dx = \alpha.$$

$$t_{0.025}(12) = 2.1788$$

附表4 t分布表

$$P \mid t(n) > t_a(n) \mid = \alpha$$

n	$\alpha = 0.25$	0. 10	0. 05	0. 025	0. 01	0.005
1	1.000 0	3. 077 7	6. 313 8	12. 706 2	31. 820 7	63. 657 4
2	0.8165	1. 885 6	2. 920 0	4. 302 7	6. 964 6	9. 924 8
3	0.7649	1. 637 7	2. 353 4	3. 182 4	4. 540 7	5. 840 9
4	0. 740 7	1. 533 2	2. 131 8	2. 776 4	3. 746 9	4. 604 1
5	0. 726 7	1. 475 9	2.015 0	2. 570 6	3. 364 9	4. 032 2
6	0.717 6	1. 439 8	1. 943 2	2. 446 9	3. 142 7	3. 707 4
7	0.711 1	1. 414 9	1.8946	2. 364 6	2. 998 0	3. 499 5
8	0.7064	1. 396 8	1. 859 5	2. 306 0	2. 896 5	3. 355 4
9	0. 702 7	1. 383 0	1.833 1	2. 262 2	2. 821 4	3. 249 8
10	0. 699 8	1. 372 2	1.812 5	2. 228 1	2. 763 8	3. 169 3
11	0. 697 4	1. 363 4	1. 795 9	2. 201 0	2. 718 1	3. 105 8
12	0. 695 5	1. 356 2	1. 782 3	2. 178 8	2. 681 0	3. 054 5
13	0. 693 8	1. 350 2	1. 770 9	2. 160 4	2. 650 3	3. 012 3

F分布

■ 定义 设X,Y相互独立,且

$$X \sim \chi^2(n_1), Y \sim \chi^2(n_2),$$
则称随机变量

$$F = \frac{X / n_1}{Y / n_2} = \frac{n_2}{n_1} \frac{X}{Y}$$

服从第一自由度为 n_1 ,第二自由度为 n_2 的 F分布,记为 $F\sim F(n_1,n_2)$.

■ 若 $F\sim F(n_1, n_2)$,则

$$\frac{1}{F} = \frac{Y/n_2}{X/n_1} \sim F(n_2, n_1).$$

Ronald Fisher 1924提出了F分布.

F分布的概率密度函数

$$f(x;n_1,n_2) = \begin{cases} \frac{\Gamma(\frac{n_1+n_2}{2})}{\Gamma(\frac{n_1}{2})\Gamma(\frac{n_2}{2})} n_1^{\frac{n_1}{2}} n_2^{\frac{n_2}{2}} x^{\frac{n_1}{2}-1} (n_1 x + n_2)^{-\frac{n_1+n_2}{2}}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

F分布的上侧 α 分位数或临界值

设 $\alpha(0 < \alpha < 1)$, 称满足等式

$$P(F \ge F_{\alpha}(n_1, n_2)) = \alpha$$

的点 $F_{\alpha}(n_1,n_2)$ 为 $F(n_1,n_2)$ 分布的上侧 α 分位

数或临界值. $F_{\alpha}(n_1,n_2)$ 的值可查F分布表获得.

$$P(F \ge F_{\alpha}(n_1, n_2)) = \int_{F_{\alpha}(n_1, n_2)}^{+\infty} f(x, n) dx = \alpha.$$

$$F_{0.05}(9,12) = 2.8.$$

 $\alpha = 0.05$

		n_1										
n_2	1	2	3	4	5	6	7	8	9	10	12	15
1	161. 4	199. 5	215.7	224. 6	230. 2	234. 0	236. 8	238. 9	240. 5	241. 9	243. 9	245. 9
2	18. 51	19.00	19. 16	19. 25	19. 30	19. 33	19. 35	19. 37	19. 38	19.40	19.41	19.43
3	10. 13	9. 55	9. 28	9. 12	9.01	8. 94	8. 89	8. 85	8.81	8. 79	8.74	8.70
4	7. 71	6. 94	6. 59	6. 39	6. 26	6. 16	6.09	6.04	6.00	5. 96	5. 91	5. 86
5	6. 61	5. 79	5. 41	5. 19	5.05	4. 95	4. 88	4. 82	4. 77	4. 74	4. 68	4. 62
6	5. 99	5. 14	4. 76	4. 53	4. 39	4. 28	4. 21	4. 15	4. 10	4.06	4.00	3.94
7	5. 59	4. 74	4. 35	4. 12	3. 97	3. 87	3. 79	3. 73	3. 68	3. 64	3. 57	3.51
8	5. 32	4.46	4. 07	3. 84	3. 69	3. 58	3.50	3. 44	3. 39	3. 35	3. 28	3. 22
9	5. 12	4. 26	3. 86	3.63	3.48	3. 37	3. 29	3. 23	3. 18	3. 14	3.07	3.01
10	4. 96	4. 10	3. 71	3.48	3. 33	3. 22	3. 14	3. 07	3. 02	2. 98	2. 91	2. 85
11	4. 84	3. 98	3. 59	3. 36	3. 20	3.09	3.01	2. 95	2. 90	2. 85	2. 79	2.72
12	4. 75	3.89	3. 49	3. 26	3.11	3.00	2. 91	2. 85	2. 80	2. 75	2. 69	2.62
13	4. 67	3. 81	3. 41	3. 18	3. 03	2. 92	2. 83	2. 77	2. 71	2. 67	2. 60	2.53
14	4. 60	3.74	3. 34	3. 11	2. 96	2. 85	2.76	2. 70	2. 65	2.60	2. 53	2.46
15	4. 54	3.68	3. 29	3.06	2. 90	2. 79	2.71	2. 64	2. 59	2. 54	2.48	2.40
16	4. 49	3. 63	3. 24	3. 01	2. 85	2. 74	2. 66	2. 59	2. 54	2. 49	2. 42	2. 35
17	4. 45	3. 59	3. 20	2. 96	2. 81	2. 70	2.61	2. 55	2. 49	2. 45	2. 38	2. 31

附表5 F 分 布 表

$$P\{F(n_1, n_2) > F_\alpha(n_1, n_2)\} = \alpha$$

 $\alpha = 0.10$

$$F_{0.05}(9,12) = 2.8.$$

$$F_{0.95}(12,9) = ?$$

F分布的上侧 α 分位数或临界值

◆ 性质

$$F_{1-\alpha}(n_1,n_2) = \frac{1}{F_{\alpha}(n_2,n_1)}.$$

$$F_{0.05}(9,12) = 2.8.$$

$$F_{0.95}(12,9) = \frac{1}{F_{0.05}(9,12)}$$

$$=\frac{1}{2.8}.$$

t分布与F分布的关系

例2 若随机变量 $X \sim t(n)$,则 $X^2 \sim F(1, n)$.

解

因为
$$X \sim t(n)$$
, 所有 $X = U / \sqrt{\frac{V}{n}}$,

这里 $U \sim N(0,1), V \sim \chi^2(n)$, 且 U与V独立,

故
$$X^2 = \left(\frac{U}{\sqrt{V/n}}\right)^2 = \frac{U^2/1}{V/n} \sim F(1,n).$$

同理,若 $X\sim t(n)$,则 $1/X^2\sim F(n,1)$.

例1 设总体 $X\sim N(0,4)$,而 X_1,X_2,X_3,X_4 是总体X的样本,求下列随机变量的分布

随机受重的分析
(1)
$$T_1 = (X_1^2 + X_2^2)/4$$
; (2) $T_2 = \frac{\sqrt{2}X_3}{\sqrt{X_1^2 + X_2^2}}$;
(3) $T_3 = \frac{2X_3^2}{X_1^2 + X_2^2}$;

解(1)
$$X_1 \sim N(0,4) \Rightarrow \frac{X_1}{2} \sim N(0,1)$$
,同理 $\frac{X_2}{2} \sim N(0,1)$,且二者相互独立,

故
$$T_1 = \left(\frac{X_1}{2}\right)^2 + \left(\frac{X_2}{2}\right)^2 = \frac{X_1^2 + X_2^2}{4} \sim \chi^2(2).$$

(2)
$$\frac{X_3}{2} \sim N(0,1), \frac{X_1^2 + X_2^2}{4} \sim \chi^2(2)$$

且二者相互独立,故

$$T_2 = \frac{X_3/2}{\sqrt{\frac{X_1^2 + X_2^2}{4}/2}} = \frac{\sqrt{2}X_3}{\sqrt{X_1^2 + X_2^2}} \sim t(2).$$

(3) $\frac{X_3}{2} \sim N(0,1) \Rightarrow \left(\frac{X_3}{2}\right)^2 \sim \chi^2(1), \frac{X_1^2 + X_2^2}{4} \sim \chi^2(2)$ 二者相互独立,故

$$T_{3} = \frac{\left(\frac{X_{3}}{2}\right)^{2}/1}{\frac{X_{1}^{2} + X_{2}^{2}}{4}/2} = \frac{2X_{3}^{2}}{X_{1}^{2} + X_{2}^{2}} \sim F(1,2).$$

谢 谢!