Double complex and its spectral sequences 1

Now we give a brief sketch on the topic how to apply spectral sequences technique for calculations of cohomology of double complexes. (See for the details for example [16].)

Let $E^{**} = \{E^{p\cdot q}\}\ (p, q = 0, 1, 2, ...)$ be a family of abelian groups (modules, vector spaces) on which are defined two differentials ∂_1 and ∂_2 which define complexes in rows and in columns of E^{***} and which commute with each other:

$$\partial_1: E^{p,q} \to E^{p,q+1}, \partial_1^2 = 0, \partial_2: E^{p,q} \to E^{p+1,q}, \partial_2^2 = 0, \partial_1\partial_2 = \partial_2\partial_1.$$
 (A2.1)

 $\{E^{**}, \partial_1, \partial_2\}$ is called double complex.

(It is convenient to consider $E^{p,q}$ for all integers p and q fixing that $E^{p,q} = 0$ if p < 0 or q < 0.)

One can consider "antidiagonals": $\mathcal{D}^m = \{E^{p.m-p}\}\ (p=0,1,...,m)$ which form complex with differential

$$Q = (-1)^q \partial_2 + \partial_1 \tag{A2.2}$$

which evidently obeys to condition $Q^2 = 0$.

$$0 \to \mathcal{D}^0 \xrightarrow{Q} \mathcal{D}^1 \xrightarrow{Q} \mathcal{D}^2 \to \dots$$
 (A2.3)

The cohomologies $H^m(Q)$ of this complex are called the cohomologies of double complex $(E^{**}, \partial_1, \partial_2)$.

The rows and the columns complexes define the cohomologies $H(\partial_1)$ and $H(\partial_2)$ of E^{**} .

One can consider the filtration corresponding to the double complex $\{E^{*,*}, \partial_1, \partial_2\}$

$$\dots \subseteq X^m \subseteq X^{m+1} \subseteq \dots \subseteq X^1 \subseteq X^0 \tag{A2.4}$$

where
$$X^k = \bigoplus_{q \ge 0, p \ge k} E^{p,q} \tag{A2.5}$$

and sequence of the spaces $\{E_r^{p,q}\}\ (r=0,1,2,\dots$ corresponding to this filtration

$$E_r^{p,q} = Z_r^{p,q}/B_r^{p,q} \quad (E_0^{p,q} = E^{p,q}).$$
 (A2.6)

In (A2.6) $Z_r^{p,q}$ ("r-th order cocycles") is the space of the elements in $E^{p,q}$ which are leader terms of cocycles of the differential Q up to r-th order w.r.t. the filtration (A2.4), i.e.

$$\{Z_r^{p,q}\} = \{E_r^{p,q} \ni c: \quad \exists \tilde{c} = c \pmod{X_{p+1}} \text{ such that } Q\tilde{c} = 0 \pmod{X_{p+r}}\}. \tag{A2.7}$$

It means that there exists $\tilde{c}=(c,c_1,c_2,\ldots,c_{r-1})$ where $c_i\in E^{p+i.q-i}$ such that $Q(c,c_1,c_2,\ldots,c_{r-1})\subseteq X_{p+r}$:

$$\partial_1 c = 0, \partial_2 c = \partial_1 c_1, \partial_2 c_1 = \partial_1 c_2, \dots, \partial_2 c_{r-2} = \partial_1 c_{r-1}, \text{ so } Q\tilde{c} = \partial_2 c_{r-1} \in X_{p+r}.$$

Correspondingly $B_r^{p,q}$ is the space of up to r-th order borders:

$$\{B_r^{p,q}\} = \{E_r^{p,q} \ni c: \exists \tilde{b} \in X_{p-r+1} \text{ such that } Q\tilde{b} = c.$$
 (A2.8)

It means that there exist $\tilde{c} = (b_0, b_1, b_2, \dots, b_{r-1})$ where $b_i \in E^{p-i,q+i}$ and $Q(b_0, b_1, b_2, \dots, b_{r-1}) = c$:

$$\partial_1 b_0 + \partial_2 b_1 = c, \partial_1 b_1 + \partial_2 b_2 = 0, \partial_1 b_2 + \partial_2 b_3 = 0, \dots, \partial_1 b_{r-1} = 0.$$
 (A2.9)

For example $E_1^{p,q} = H(\partial_1, E^{p,q}).$

We denote by $[c]_r$ the equivalence class of the element c in the $E_r^{p,q}$ if $c \in \mathbb{Z}_r^{p,q}$.

It is easy to see that the sequence $\{E_r^{p,q}\}$ $r=0,1,2,\ldots$ is stabilized after finite number of the steps: $(E_{r_0}^{p,q} = E_{r_0+1}^{p,q} = \dots = E_{\infty}^{p,q}, \text{ where } r_0 = \max\{p+1, q+1\}.$

Let $H^m(Q, X_p)$ be cohomologies groups of double complex truncated by filtration (A2.4) (we come to $H^m(Q, X_p)$ considering $\{\mathcal{D} \cap X^p, Q\}$ as subcomplex of (A2.3), $H^m(Q) = H^m(Q, X^0)$. We denote by $_{(p)}H^m(Q)$ the image of $H^m(Q,X_p)$ in H(Q) under the homomorphism induced by the embedding $\mathcal{D}\cup X_p\to$ \mathcal{D} . The spaces $_{(p)}H^m(Q)$ are embedded in each other

$$0 \subseteq {}_{(m)}H^{m}(Q) \subseteq {}_{(m-1)}H^{m}(Q) \subseteq \dots {}_{(1)}H^{m}(Q) \subseteq {}_{(0)}H^{m}(Q) = H^{m}(Q). \tag{A2.10}$$

The spaces $E_{\infty}^{p,q}$ considered above are related with (A2.10) by the following relations:

$$E_{\infty}^{p.m-p} =_{(p)} H^m(Q) /_{(p+1)} H^m(Q). \tag{A2.11}$$

In particular $E_{\infty}^{0.m}$ is canonically embedded in $H^m(Q)$. The formula (A2.11) is the basic formula which expresses the cohomology H(Q) of the double complex $\{E^{p,q}, \partial_1, \partial_2\}$ in terms of $\{E^{p,q}_{\infty}\}$. From (A2.10, A2.11) it follows that

$$H^{m}(Q) \simeq \bigoplus_{i=0}^{m} E^{p-i.i}. \tag{A2.12}$$

The essential difference of (A2.12) from (A2.11) is that in (A2.12) the isomorphism of l.h.s. and of r.h.s. is

The importance of the sequence $\{E_r^{***}\}$ (r=0,1,2,...) is explained by the fact that its terms (and so $\{E_{\infty}^{*,*}\}\$) can be calculated in a recurrent way. Namely one can consider differentials (See for details [16.]) $d_r: E_r^{p,q} \to E_r^{p+r,q+1-r}$ such that $\{E_r^{*,*}, d_r\}$ form spectral sequence, i.e.

$$E_{r+1}^{*,*} = H(d_r, E_r^{*,*}). (A2.13)$$

The differentials d_r are constructed in the following way: $d_0 = \partial_1 \colon E^{p,q} = E_0^{p,q} \to E^{p,q+1} = E_0^{p,q+1}$. If $c \in E^{p,q}$ and $\partial_1 c = 0 \leftrightarrow [c]_1 \in E_1^{p,q}$ then $d_1[c] = [\partial_2 c], d_1 \colon E_1^{p,q} \to E_1^{p+1,q}$. In general case for $[c]_r \in E_r^{p,q} d_r[c]_r = [Q\tilde{c}]_r d_r \colon E_r^{p,q} \to E_1^{p+r,q+1-r}$, where $\tilde{c} \colon c - \tilde{c} \in X^{p+r}$ (see the definition (A2.7) of $Z_r^{p,q}$).

One can show that definition of d_r is correct, $d_r^2 = 0$ and (A2.13) is obeyed [16].

Using (A2.13) one come after finite number of steps to $E_{\infty}^{p,q}$ calculating each $E_r^{p,q}$ as the cohomology group of the $E_{r-1}^{p,q}$: $E_1^{p,q} = H(d_0, E^{p,q})$, $E_2^{p,q} = H(d_1, E_1^{p,q})$ and so on.

The spaces $E_r^{p,q}$ can be considered intuitively as r-th order (with respect to differential ∂_2) cohomologies of differential Q. The operator ∂_1 is zeroth order approximation for differential Q. The calculations of $E_{\infty}^{p,q}$ via (A2.13) can be considered as perturbational calculations.

One can develop this scheme considering in perturbative calculations not the operator ∂_1 , but ∂_2 as zeroth order approximation.

Instead filtration (A2.4) one has consider the "transposed" filtration

$$\dots \subseteq {}^t X^m \subseteq {}^t X^{m+1} \subseteq \dots \subseteq {}^t X^1 \subseteq X^0$$
 where
$${}^t X^k = \bigoplus_{p \ge 0, q \ge k} E^{p,q}$$

and corresponding transposed spaces $\{{}^tE_r^{p,q}\}$. For example

$$E_1^{p,q} = H(\partial_1, E^{p,q}), \quad {}^tE_r^{p,q} = H(\partial_2, E^{p,q}).$$

Instead spectral sequence $\{E_r^{***}, d_r\}$ one has to consider transposed spectral sequence $\{tE_r^{***}, t_d\}$:

$$d_0 = \partial_1, \rightarrow {}^t d_0 = \partial_2; d_1[c]_1 = [\partial_2 c]_1, \rightarrow {}^t d_1[c]_1 = [\partial_1 c]_1,$$

and so on.

The relations between spaces $\{E^{p,q}_{\infty}\}$ and $\{{}^tE^{p,q}_{\infty}\}$ which express in different ways the cohomology H(Q) is one of the applications of the method described here.

Example. Let $\mathbf{c} = (c_0, c_1.c_2)$ where $c_0 \in E^{0.2}, c_1 \in E^{1.1}, c_2 \in E^{2.0}$ be cocycle of the differential Q: $Q(c_0, c_1.c_2) = 0$ i.e. $\partial_1 c_0 = 0, \partial_2 c_0 = -\partial_1 c_1, \partial_2 c_1 = \partial_1 c_2$. To the leading term c_0 of this cocycle w.r.t. the filtration (A2.4) corresponds the element $[c_0]_{\infty}$ in $E_{\infty}^{0.2}$ which represents the cohomology class of the cocycle \mathbf{c} in $E_{\infty}^{0.2}$.

In the case if the equation $(c_0, c_1.c_2) + Q(b_0, b_1) = (0, c'_1, c'_2)$ has a solution, i.e. the leading term c_0 of the cocycle **c** can be cancelled by changing of this cocycle on a coboundary, then the element $[c'_1]_{\infty} \in E_{\infty}^{1.1}$ represents the cohomology class of the cocycle **c** in $E_{\infty}^{1.1}$.

In the case if the equation $(c_0, c_1.c_2) + Q(b_0, b_1) = (0, 0, \tilde{c}_2)$ have a solution, i.e. the leading term and next one both can be cancelled, by redefinition on a coboundary, then $[\tilde{c}_2]_{\infty} \in E_{\infty}^{2.0}$ represents the cohomology class of the cocycle \mathbf{c} in $E_{\infty}^{2.0}$.

To put correspondences between the cohomology class of the cocycle **c** and corresponding elements from transposed spaces ${}^tE_{\infty}^{0.2}$, ${}^tE_{\infty}^{1.1}{}^tE_{\infty}^{1.1}$ we have to do the same, changing only the definition of leading terms, which we have to consider now w.r.t. the filtration (A2.14).

To the leading term c_2 of this cocycle w.r.t. the filtration (A2.14) corresponds the element $[c_2]_{\infty}$ in ${}^tE_{\infty}^{2.0}$ which represents the cohomology class of the cocycle \mathbf{c} in ${}^tE_{\infty}^{2.0}$. In the case if the equation $(c_0, c_1.c_2) + Q(b_0, b_1) = (c'_0, c'_1, 0)$ has a solution, i.e. the leading term c_0 of the cocycle \mathbf{c} can be cancelled by changing of on a coboundary, then the element $[c'_1]_{\infty}$ represents the cohomology class of the cocycle \mathbf{c} in ${}^tE_{\infty}^{1.1}$. In the case if the equation $(c_0, c_1.c_2) + Q(b_0, b_1) = (\tilde{c}_0, 0, 0)$ has a solution, then $[\tilde{c}_0]$ represents the cohomology class of the cocycle \mathbf{c} in ${}^tE_{\infty}^{0.2}$.

[16] Postnikov,M.M.: Lectures on Geometry, Semestre III, Lecture #19, Semestre V, Lecture #23 Moscow, Nauka, (1987).