Mid-term Exam (Graph Mining – Spring 2024)

Full Name: Student ID:

- The formula and solution process should be presented with the answer.
- Answers must be written in English.
- 1. Consider an undirected graph G of four nodes given in the following figure, calculate betweenness and closeness centrality of node 1 (5pt)

Equation betweenness centrality: $B(v_i) = \sum_{s,t \in V} \frac{\sigma(s,t|v_i)}{\sigma(s,t)}$, where $\sigma(s,t)$ is the number of shortest paths from node s to node t, $\sigma(s,t|v_i)$ is the number of shortest paths from node s to node t that passing through node v_i .

Normalized betweenness centrality: $\bar{B}(v_i) = \frac{B(v_i)}{(n-1)(n-2)/2}$ where n is number of nodes.

Equation closeness centrality: $C(v_i) = \frac{N-1}{\sum_{j=1}^{N-1} d(v_j v_i)}$, where $d(v_j v_i)$ is number of nodes in the shortest path between node v_i and node v_i , and N-1 is the number of nodes reachable from v_i .

- 2. Calculate Eigenvector, Katz and PageRank centrality(10pt)
 - a. Consider an undirected graph G of three nodes given in the following figure, calculate Eigenvector, Katz centrality of node 2 with $\alpha = 0.1$, $\beta = 1$, t = 1 (6pt)

Equation Eigenvector: x_i (t) = $\sum_{v_j \in N(v_i)} A_{ij} x_j (t-1)$, where A is adjacency matrix, t is time, with the centrality at time t = 0 being $x_i(0) = 1 \ \forall j$

Equation Katz: $Katz(G) = \beta(I - \alpha A^T)^{-1}$. **1**, where α is damping factor, β is bias constant, I refers to the identity matrix, and **1** is a column vectors of ones. From Katz(G) results, write down the Katz centrality of node 2.

b. Consider a directed graph G of four nodes given in the following figure, calculate PageRank centrality of all nodes, with $\beta = 0.85$ (4pt) Equation PageRank centrality of node i: $x_i = \sum_{(j,i) \in E} x_j + \beta$, where x_j is PageRank score of all pages j that point to page i

3. Consider an undirected graph G of nine nodes given in the following figure. There are two communities in the graph: $A = \{0, 1, 2, 3, 4\}$ and $B = \{5, 6, 7, 8\}$. (10pt).

- a. Calculate Min-cut and Normalized cut measurements of A and B.
- b. Calculate conductance of A and B using the equation (1).

$$conductance(A, B) = \frac{cut(A, B)}{\min(assoc(A, V), assoc(B, V))}(1)$$

where assoc(A, V) and assoc(B, V) is the total connection from nodes in A and B to all nodes in the graph, respectively. cut(A, B) is the number of cut between 2 communities A and B.

4. Consider an undirected graph G of six nodes given in the following figure. Apply the Equation (1) to calculate the clustering coefficient C_i of each node i and Equation (2) to calculate the average clustering coefficient (C) in the graph G. (10pt)

Equation (1):
$$C_i = \frac{2L_i}{d_i(d_i-1)}$$
 (1)

where d_i is the degree of node i and L_i is number of edges between neighbors of node i.

Equation (2):
$$\langle C \rangle = \frac{1}{N} \sum_{i=0}^{N} C_i$$
 (2)

5. Consider an undirected graph G of eight nodes given in the following figure with two communities: $A = \{0, 1, 2, 3\}$ and $B = \{4, 5, 6, 7\}$. Apply the Equation (1) to calculate the modularity Q of the two communities. (10pt)

$$Q = \frac{1}{2m} \sum_{i,j} \left(A_{ij} - \frac{d_i d_j}{2m} \right) \cdot \delta(v_i, v_j)$$
 (1)

 $\delta \big(v_i,v_j\big) = \begin{cases} 1 & \text{if } v_i \text{ and } v_j \text{ are in the same community} \\ 0 & \text{otherwise.} \end{cases}$

where m is the number of edges, A is the adjacency matrix of G, d_i is the degree of node v_i

6. Consider an undirected graph G of eight nodes given in the following figure, calculate Jaccard's coefficient (JC), Adamic-Adar (AA) index of node 2 and node 6 (10pt)

Equation JC: score $(x, y) = \frac{|N(x) \cap N(y)|}{|N(x) \cup N(y)|}$, where N(x), N(y) are neighbor nodes of node x, y respectively

Equation AA: score
$$(x, y) = \sum_{u \in N(x) \cap N(y)} \frac{1}{\log |N(u)|}$$
, with $\log(4) \approx 0.6$

7. Consider an undirected graph G of four nodes given in the following figure, calculate Katz Index with $L=2,\,\beta=0.5$ (5pt)

Equation: score $(x, y) = \sum_{l=1}^{L} \beta^l |paths_{xy}^{(l)}| = \beta A_{xy} + \beta^2 A_{xy}^2 + \dots + \beta^L A_{xy}^L$, where $A^2 = A * A$, which A is adjacency matrix

8. Consider an undirected graph G of three nodes given in the following figure, calculate Hitting time of node 1 and node 2 (5pt).

Equation Hitting time: score (x, y) = $-H_{k,y} = -\frac{1}{|N(x)|} \sum_{k} (1 + H_{k,y})$,

where $H(k, y) = 1 + \sum_{m} p_{mj} H(m, y)$ when $k \neq y$, otherwise H(k, y) = 0, p_{mj} is the element in the row m-th and column j-th of the matrix, $P = AD^{-1}$, which P is a transition matrix, A is adjacency matrix and D is degree matrix.

9. Consider two undirected graphs G_1 and G_2 below, calculate the graph edit distances from G_1 to G_2 . The set of elementary operations: vertex insertion, vertex deletion, edge insertion, and edge deletion. In addition, the cost of insertion and deletion is 2 and 1, respectively. (5pt)

10. Consider an undirected graph G of eight nodes in the left side and four graphlets g_1 , g_2 , g_3 , g_4 in the right side of following figure. Answer two question below: (10pt)

- a. Count the number of the graphlets of size 3.
- b. Make a feature vector for graph G based on the graphlet kernel with the 3-graphlets.

- 11. Consider two undirected graphs in the following figure: G_1 on the left and G_2 on the right. (10pt)
 - a. Conduct Weisfeiler-Lehman (WL) relabeling process with the maximum degree 3.
 - b. Make feature vectors for the graphs based on frequency of the WL subgraphs. Then calculate the similarity of graph G_1 and G_2 using Cosine Similarity equation (1).

Cosine Similarity Equation (1): $cosine(WL_{G_1}, WL_{G_2}) = \frac{WL_{G_1}.WL_{G_2}}{\|WL_{G_1}\| \|WL_{G_2}\|}$.

where WL_{G_1} and WL_{G_2} is feature vectors of WL subgraph G_1 and G_2 . "." denotes the dot product and "|| ||" denotes the Euclidean norm.

12. Consider an undirected graph G_1 and G_2 in the following figure. Make feature vectors of graphs G_1 and G_2 using the shortest path kernel and calculate similarity of graphs using the cosine similarity. (10pt)

