Repetition

Definition

The stochastic process $\{X(t): t \geq 0\}$ with state space \mathbb{R} is called a **Gaussian process** on $[0, \infty)$ if for all $m \geq 1$, for all $0 \leq t_1 < t_2 < \cdots < t_m$,

$$(X(t_1), X(t_2), \dots, X(t_m))$$

has an *m*-dimensional multivariate Gaussian distribution.

Theorem

A Gaussian process $\{X(t): t \in T\}$ is fully determined by two functions:

1) a **mean function** $m: T \to \mathbb{R}$ so that

$$E[X(t)] = m(t), \quad t \in T.$$

2) a covariance function $C: T \times T \to \mathbb{R}$ so that

$$Cov[X(t_1), X(t_2)] = C(t_1, t_2), \quad t_1, t_2 \in T.$$

Definition

Let $\{X(t): t \in T\}$ be a stochastic process. The **correlation function** $r: T \times T \to [-1, 1]$ is defined by

$$r(t_1, t_2) = \text{Corr}[X(t_1), X(t_2)]$$

$$= \frac{\text{Cov}[X(t_1), X(t_2)]}{\sqrt{\text{Var}[X(t_1)]\text{Var}[X(t_2)]}}$$

$$= \frac{C(t_1, t_2)}{\sqrt{C(t_1, t_1)C(t_2, t_2)}},$$

where $C: T \times T \to \mathbb{R}$ is the covariance function.

Definition

A stochastic process on $[0, \infty)$ is **stationary** if

- 1) $m(t) = \mu_0 \text{ for } t \in [0, \infty)$
- 2) $C(t_1, t_2) = \sigma^2 r(|t_1 t_2|)$ for $t_1, t_2 \in [0, \infty)$

Here $\sigma^2 > 0$ is called the **marginal variance**, and $r : [0, \infty) \to [-1, 1]$ is called a **stationary correlation function** and satisfies r(0) = 1.

Common stationary covariance functions

• Exponential:

$$C(t_1, t_2) = \sigma^2 \exp(-\phi_E |t_1 - t_2|), \quad t_1, t_2 \in \mathbb{R}.$$

• Gaussian:

$$C(t_1, t_2) = \sigma^2 \exp(-\phi_G(t_1 - t_2)^2), \quad t_1, t_2 \in \mathbb{R}.$$

• Matérn-type:

$$C(t_1, t_2) = \sigma^2(1 + \phi_{\mathbf{M}}|t_1 - t_2|) \exp(-\phi_{\mathbf{M}}|t_1 - t_2|), \quad t_1, t_2 \in \mathbb{R}.$$

The properties of the realizations are controlled through:

- Marginal variance (σ^2): how much can the process deviate from the mean.
- Range (ϕ_E , ϕ_M and ϕ_G): how far away are things dependent.
- Smoothness: Realizations are 0 times differentiable for Exponential, 1 times differentiable for Matérn-type, and infinitely many times differentiable for Gaussian.

Simulation of a Gaussian process

Input:

- [a, b]: interval of interest
- m: mean function
- C: covariance function

Algorithm:

- 1. make grid $a = t_1 < t_2 < \cdots < t_n = b$
- 2. set $\mu = (m(t_1), m(t_2), \dots, m(t_n))$
- 3. set $\Sigma_{ij} = C(t_i, t_j)$ for i, j = 1, 2, ..., n
- 4. draw $\boldsymbol{x} \sim \mathcal{N}_n(\boldsymbol{\mu}, \Sigma)$

Output:

We have simulated values $\mathbf{x} = (x(t_1), x(t_2), \dots, x(t_n)).$

Conditional Gaussian process

Let $\{X(t) : t \ge 0\}$ be a Gaussian process. Assume that the process has been observed at locations $B = \{s_1 < s_2 < \dots < s_m\}$ and let $\mathbf{X}_B = (X(s_1), X(s_2), \dots, X(s_m))$.

Then for any set of locations $A = \{t_1 < t_2 < \cdots < t_n\}$, let $\mathbf{X}_A = (X(t_1), X(t_2), \dots, X(t_n))$. We have

$$\boldsymbol{X}_A | \boldsymbol{X}_B = \boldsymbol{x}_B \sim \mathcal{N}_n(\boldsymbol{\mu}_{\mathrm{C}}, \Sigma_{\mathrm{C}}),$$

where

$$\boldsymbol{\mu}_{\mathrm{C}} = \boldsymbol{\mu}_{A} + \Sigma_{\mathrm{AB}} \Sigma_{\mathrm{BB}}^{-1} (\boldsymbol{x}_{B} - \boldsymbol{\mu}_{B})$$
$$\Sigma_{\mathrm{C}} = \Sigma_{\mathrm{AA}} - \Sigma_{\mathrm{AB}} \Sigma_{\mathrm{BB}}^{-1} \Sigma_{\mathrm{BA}}.$$