

Sec 2.2 Reading

Scalings

For any positive constant K, the matrix [k o] defines a scaling by K, since

$$\begin{bmatrix} k & 0 \\ 0 & K \end{bmatrix} \vec{x} = \begin{bmatrix} k & 0 \\ 0 & K \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} K x_1 \\ K x_2 \end{bmatrix} = K \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = K \vec{x}$$

There is a dilation if K>1 and a contraction if 0< K<1.

Orthogonal Projections

Consider a line L in the plane, running through the origin. Any vector & in R2 can be written uniquely as

where z" is parallel to line L, and z' is perpendicular to L.

 $T(\vec{x}) = \vec{x}^{\parallel}$ from \mathbb{R}^2 to \mathbb{R}^2 is called the orthogonal projection of \vec{x} onto L, often denoted by $\text{proj}_L(\vec{x})$.

To find a formula for *11:

Let $\vec{\omega}$ be a nonzero vector parallel to \vec{L} . Since \vec{x}^{\parallel} is parallel to $\vec{\omega}$, we can write

Since $\vec{x}^{\perp} = \vec{x} - \vec{x}^{\parallel} = \vec{x} - K\vec{\omega}$ is perpendicular to line L, we have:

$$(\cancel{x} - \cancel{K} \cancel{a}) \cdot \cancel{a} = 0$$

It follows that

$$\text{Proj}_{L}(\vec{x}) = \vec{x}^{\parallel} = K \vec{\omega} = \left(\frac{\vec{x} \cdot \vec{\omega}}{\vec{\omega} \cdot \vec{\omega}}\right) \vec{\omega}$$

Is the transformation T(文) = projl(文) linear?

Let
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 and $\vec{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$.

unit vector \vec{u}

Then

$$proj_{L}(\vec{X}) = (\vec{X} \cdot \vec{u}) \vec{u} = \left(\begin{bmatrix} x_{1} \\ X_{2} \end{bmatrix} \cdot \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix}\right) \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix}$$

$$= \left(x_{1} u_{1} + x_{2} u_{2} \right) \begin{bmatrix} u_{1} \\ u_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1}^{2} x_{1} + u_{1} u_{2} x_{2} \\ u_{1} u_{2} x_{1} + u_{2}^{2} x_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1}^{2} & u_{1} u_{2} \\ u_{1} u_{2} & u_{1}^{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1}^{2} & u_{1} u_{2} \\ u_{1} u_{2} & u_{2}^{2} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

$$= \begin{bmatrix} u_{1}^{2} & u_{1} u_{2} \\ u_{1} u_{2} & u_{2}^{2} \end{bmatrix} \vec{x}$$

Therefore $T(\vec{x}) = \text{Proj}_{L}(\vec{x})$ is a linear transformation with matrix $\begin{bmatrix} u_1^2 & u_1 u_2 \\ u_1 u_2 & u_2^2 \end{bmatrix}$.

Ex

Find the matrix P of the orthogonal projection onto the line L spanned by $\vec{w} = \begin{bmatrix} 3\\4 \end{bmatrix}$.

$$P = \frac{1}{w_1^2 + w_2^2} \begin{bmatrix} w_1^2 & w_1 w_2 \\ w_1 w_2 & w_2^2 \end{bmatrix} = \frac{1}{25} \begin{bmatrix} q & 12 \\ 12 & 16 \end{bmatrix}$$

Def 2.2.1 Orthogonal Projections

Consider a line L in the coordinate plane, running through the origin. Any vector \vec{x} in \mathbb{R}^2 can be written uniquely as

where \dot{x}^{\parallel} is parallel to line L, and \dot{x}^{\perp} is perpendicular to L.

The transformation $T(\vec{x}) = \vec{x}^{\parallel}$ from R^2 to R^2 is called the orthogonal projection of \vec{x} onto L, often denoted by $\text{proj}_L(\vec{x})$. If \vec{w} is a nonzero vector parallel to L, then

$$\text{ProjL}(\vec{x}) = \left(\frac{\vec{x} \cdot \vec{\omega}}{\vec{\omega} \cdot \vec{\omega}}\right) \vec{\omega}$$

In particular, if $\vec{n} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ is a unit vector parallel to L, then

The transformation T(x) = proje(x) is linear, with matrix

$$P = \frac{1}{w_1^2 + w_2^2} \begin{bmatrix} w_1^2 & w_1 w_2 \\ w_1 w_2 & w_2^2 \end{bmatrix} = \begin{bmatrix} u_1^2 & u_1 u_2 \\ u_1 u_2 & u_2^2 \end{bmatrix}$$

Reflections

Consider a line L in the coordinate plane, running through the origin. Let \vec{x} be a vector in \mathbb{R}^2 .

We can see that

Adding up $\vec{x} = \vec{x}^{\parallel} + \vec{x}^{\perp}$ and ref_(\vec{x}) = $\vec{x}^{\parallel} - \vec{x}^{\perp}$, we find that \vec{x} + ref_(\vec{x}) = $2\vec{x}^{\parallel}$ = 2 proj_(\vec{x}), so

where Pis the matrix representing the orthogonal projection onto the line L.

Thus the matrix S of the reflection is

$$S = 2P - I_2 = \begin{bmatrix} 2u_1^2 & 2u_1u_2 \\ 2u_1u_2 & 2u_2^2 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2u_1^2 - 1 & 2u_1u_2 \\ 2u_1u_2 & 2u_2^2 - 1 \end{bmatrix}$$

Turns out that matrix S is of the form $\begin{bmatrix} a & b \\ b & -a \end{bmatrix}$, where $a^2 + b^2 = 1$.

Any matrix of the above form represents a reflection about a line.

The column vectors $\begin{bmatrix} a \\ b \end{bmatrix}$ and $\begin{bmatrix} b \\ -a \end{bmatrix}$ of a reflection matrix are unit vectors. They are reflections of the standard vector $\begin{bmatrix} a \\ b \end{bmatrix} = \text{ref}_L(\vec{e_1})$ and $\begin{bmatrix} b \\ -a \end{bmatrix} = \text{ref}_L(\vec{e_2})$ by theorem 2.1.2.

Reflection preserves length. The dot product [a].[b] = ab+b(-a) = 0.

Def 2.2.2 Reflections

Consider a line L in the coordinate plane, running through the origin. Let $\vec{x} = \vec{x}^{\parallel} + \vec{x}^{\perp}$ be a vector in \mathbb{R}^2 .

The linear transformation $T(\vec{x}) = \vec{x}^{\parallel} - \vec{x}^{\perp}$ is called the reflection of \vec{x} about L, of ten denoted by $ref_{L}(\vec{x})$:

We have a formula relating ref () to proj ():

The matrix of T is of the form $\begin{bmatrix} a & b \\ b & -a \end{bmatrix}$, where $a^2 + b^2 = 1$. Conversely, any matrix of this form represents a reflection about a line.

Orthogonal Projections and Reflections in Space

Let L be a line in coordinate space, running through the origin Any vector in \mathbb{R}^3 can be written uniquely as $\vec{x}=\vec{x}^{\parallel}+\vec{x}^{\perp}$, where \vec{x}^{\parallel} is parallel to L, and \vec{x}^{\perp} is perpendicular to L. We define:

and we have the formula

Where is a unit vector parallel to L (By def 2.2.1)

Let L=V be the plane through the origin perpendicular to L

Note that the vector \dot{x}^{\perp} will be parallel to $L^{+} = V$. Then we have the formulas:

Let V be the plane defined by $2x_1 + x_2 - 2x_3 = 0$ and let $\vec{x} = \begin{bmatrix} 5 \\ 4 \\ -2 \end{bmatrix}$. Find refv(\vec{x})

The vector $\vec{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is perpendicular to plane V.

Thus:

$$\vec{v} = \frac{1}{\|\vec{v}\|} \vec{v} = \frac{1}{3} \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$$

Using the formula for refu (x):

$$\operatorname{ref}_{v}(\vec{x}) = \vec{x} - 2(\vec{x} \cdot \vec{\alpha}) \vec{\alpha} = \begin{bmatrix} 5 \\ 4 \\ -9 \end{bmatrix} - \frac{2}{9} \left(\begin{bmatrix} 5 \\ 4 \\ -2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} \right) \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 5 \\ 4 \\ -9 \end{bmatrix} - \frac{2}{9} \left(10 + 4 + 4 \right) \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$$

$$\begin{bmatrix} 5 \\ 4 \\ -9 \end{bmatrix} - \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix} = \begin{bmatrix} -3 \\ 0 \\ 6 \end{bmatrix}$$

Rotations

Consider the linear transformation T from \mathbb{R}^2 to \mathbb{R}^2 that votates any vector \vec{x} through a fixed angle θ in the counter clock wise direction.

The auxiliary vector \vec{y} is obtained by rotating \vec{x} through $\frac{\pi}{2}$.

If
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
, then $\vec{y} = \begin{bmatrix} -x_2 \\ x_1 \end{bmatrix}$

Then.

$$T(\vec{x}) = (\cos\theta)\vec{x} + (\sin\theta)\vec{y} = (\cos\theta)\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + (\sin\theta)\begin{bmatrix} -x_2 \\ x_1 \end{bmatrix}$$

$$= \begin{bmatrix} (\cos\theta)x_1 - (\sin\theta)x_2 \\ (\sin\theta)x_1 + (\cos\theta)x_2 \end{bmatrix}$$

$$= \begin{bmatrix} \cos\theta - \sin\theta \\ \sin\theta \cos\theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$= \begin{bmatrix} \cos\theta - \sin\theta \\ \sin\theta \cos\theta \end{bmatrix} \vec{x}$$

$$= \begin{bmatrix} \cos\theta - \sin\theta \\ \sin\theta \cos\theta \end{bmatrix} \vec{x}$$

Theorem 2.2.3 Rotations

The matrix of a counter clock wise rotation in \mathbb{R}^2 through an angle θ is

The matrix of T is of the form $\begin{bmatrix} a - b \\ b & a \end{bmatrix}$, where $a^2 + b^2 = 1$. Conversely, any matrix of this form represents a rotation.

Rotations Combined with a Scaling

Ex 5

Examine how the L.T.

$$T(\vec{x}) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \vec{x}$$

affect the diagram below.

In polar coordinates, this is a rotation through the polar angle θ of vector $\begin{bmatrix} a \end{bmatrix}$ with a scaling by the magnitude $r = \sqrt{a^2 + b^2}$. We can write the vector in polar coordinates as:

Then

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} = \begin{bmatrix} r\cos\theta & -r\sin\theta \\ r\sin\theta & r\cos\theta \end{bmatrix}$$

$$= r \left[\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array} \right]$$

Theorem 2.24: Rotations Combined with a Scaling

A matrix of the form $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ represents a rotation combined with a scaling Move precisely, if r and 0 are the polar coordinates of vector $\begin{bmatrix} a & -b \\ b & a \end{bmatrix}$ represents a rotation through 0 combined with a scaling by r.

Shear

Vertical Shear

$$T(\vec{x}) = T\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$= \begin{bmatrix} x_1 \\ kx_1 + x_2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix} \vec{x}$$

Hovizontal Shear

Analogous to above.

Theorem 2.2.5: Horizontal and Vertical Shears

The matrix of a horizontal shear is of the form $\begin{bmatrix} 1 & K \\ 0 & 1 \end{bmatrix}$, and the matrix of a vertical shear is of the form $\begin{bmatrix} 1 & 0 \\ K & 1 \end{bmatrix}$, where K is an arbitrary constant.