## THE STRUCTURE OF PROBABILISTIC NETWORKS

T. POISOT, A. CIRTWILL, D. GRAVEL, AND D.B. STOUFFER

1 Introduction

2 Ecological networks are an efficient way to represent the interactions between individual, popu-

3 lations, or species. Historically, their study has focused on (i) linking their structure to commu-

nity or ecosystem-level properties such as stability (McCann 2014), the maintenance of species

5 richness (Bastolla et al. 2009; Haerter et al. 2014), ecosystem functioning (Duffy 2002; Thébault

6 & Loreau 2003), and (ii) describing the overall structure of networks, with a particular atten-

7 tion on food webs (Dunne 2006) and plant-pollinator interactions (Jordano 1987; Bascompte

8 et al. 2003). To a large extent, the description of network structure enabled questions about

how it ties into functional properties, and it is no surprise that the methodology to describe

10 networks is large.

11 Most measures of network structure function in the following way. Given a network as input,

they return a *property* based on one or several *units* within this network. Some of the properties

are direct properties (they only require knowledge of the unit on which they are applied), and

some others are *emerging* properties (they require knowledge of higher-order structures). For

example, connectance, the proportion of realized interactions, is a direct property of a network.

16 The degree of a node (how many interactions it is involved in) is a direct property of the node,

whereas the degree distribution is an emerging property of all nodes. Establishing a difference

between direct and emerging properties is important when interpreting their values: direct

19 properties are conceptually equivalent to means, whereas emerging properties are conceptually

20 equivalent to variances.

17

Date: Working paper - Oct. 2014.

1

In the recent years, the interpretation of the values of network structure (as indicators of the action of ecological or evolutionary processes) has been somewhat complicated by the observation that network structure varies through space, and time; species from the same pool do 3 not interact in a consistent way (Poisot et al. 2012). Empirical and theoretical studies suggest that the network is not the right unit to understand this variation; rather, network variation is 5 an emerging property of the response of ecological interactions to environmental factors and chance events (Poisot et al. 2014). Interactions can vary because of local mis-matching in phe-7 nology (Olesen et al. 2011), populations fluctuations preventing the interaction (Canard et al. 8 2014), or a combination of both (Chamberlain et al. 2014; Olito & Fox 2014). Olito & Fox (2014) show that accounting for neutral (population-size driven) and trait-based effects allows predict-10 ing the cumulative change in network structure, but not the change at the level of individual 11 interactions. 12

Taken together, these considerations highlight the need to amend our current methodology on 13 ecological network to give more importance to the variation at the interaction level. Because 14 the methodology to describe networks has first been crafted at a time when assuming that inter-15 actions did not vary, it is unsuited to address the questions that probabilistic networks allows 16 asking. In this paper, we show that several direct and emerging core properties of ecologi-17 cal networks (both bipartite and unipartite) can be re-formulated in a probabilistic context; we 18 conclude by showing how this methodology can be applied to exploit the information contained 19 in the variability and networks, and reduce the computational burden of current methods in 20 network analysis. 21

22 Metrics

Throughout this section, we will assume the following notation. **A** is a matrix wherein  $A_{ij}$  is P(ij), *i.e.* the probability that species i establishes an interaction with species j. If **A** represents a unipartite network (e.g. a food web), it is a square matrix and the probabilities of each species interacting with itself. If **A** represents a bipartite network (e.g. a pollination network), it will most likely not be square. We call S the number of species, and R and C respectively the

- number of rows and columns. S = R + C in unipartite networks, and S = R + C in bipartite
- 2 networks.
- 3 Note that all of the measures defined below can be applied on a bipartite network that has been
- 4 made unipartite; the unipartite transformation of a bipartite matrix **A** is the block matrix

(1) 
$$\mathbf{B} = \begin{pmatrix} 0_{(R,R)} & \mathbf{A} \\ 0_{(C,R)} & 0_{(C,C)} \end{pmatrix},$$

- 5 where  $0_{(C,R)}$  is a matrix of C rows and R columns filled with 0s, etc.
- We assume that all interactions are independent (so that P(ij|kl) = P(ij)P(kl) for any species),
- 7 and can be represented as Bernoulli trials (so that  $0 \le P(ij) \le 1$ ). The later condition allows to
- 8 derive estimates for the variance of the measures, since (i) the variance of a single event  $X_i$  of
- 9 probability p is var(X) = p(1-p), its expected value is E(X) = p, (ii) the variance of additive inde-
- pendent events is the sum of their individual variances, and (iii) the variance of multiplicative
- independent events is

(2) 
$$\operatorname{var}(X_1 X_2 ... X_n) = \prod_{i} \left( \operatorname{var}(X_i) + [E(X_i)]^2 \right) - \prod_{i} [E(X_i)]^2$$

- As a final note, all of the measures described below can be applied on the binary (0/1) versions
- of the networks, and will give the exact value of the non-probabilistic measure. And ain't that
- 14 nice?

## 5 Direct properties.

- 16 Connectance and number of interactions. Connectance is the proportion of realized upon possi-
- ble interactions, defined as  $Co = L/(R \times C)$ , where L is the total number of interactions. As all

1 interactions in a probabilistic network are assumed to be indpendent, the expected value of *L*,

2 is

$$\hat{L} = \sum A_{ij},$$

- and  $\hat{Co} = \hat{L}/(R \times C)$ .
- 4 The variance of the number of interactions is  $var(\hat{L}) = \sum (A_{ij}(1 A_{ij}))$ .
- 5 Node degree. The degree distribution of a network is the distribution of the number of interac-
- $_{6}$  tions established and received by each node. The expected degree of species i is

$$\hat{k}_i = \sum_j (A_{ij} + A_{ji})$$

- The variance of the degree of each species is  $var(\hat{k}_i) = \sum_j (A_{ij}(1 A_{ij}) + A_{ji}(1 A_{ji}))$ . Note also that as expected,  $\sum \hat{k}_i = 2\hat{L}$ .
- 9 Average generality and vulnerability. By simplification of the above, generality  $\hat{g}_i$  and vulnera-
- bility  $\hat{v}_i$  are given by, respectively,  $\sum_j A_{ij}$  and  $\sum_j A_{ji}$ , with their variances  $\sum_j A_{ij} (1 A_{ij})$  and
- 11  $\sum_{i} A_{ii} (1 A_{ii}).$

17

## 12 Emerging properties.

Path length. Networks can be used to describe indirect interactions between species, through the use of paths. The existence of a path of length 2 between species i and j mean that they are connected through at least one additional species k. In a probabilistic network, unless some elements are 0, all pairs of species i and j are connected through a path of length 1, with

probability  $A_{ij}$ . The expected number of paths of length k between species i and j is given by

$$n_{ij}^{(2)} = \left(\mathbf{A}^k\right)_{ij},$$

- where  $A^k$  is the matrix multiplied by itself k times.
- 2 It is possible to calculate the probability of having at least one path between the two species:
- 3 this can be done by calculating the probability of having 0 paths, then multiplying the resulting
- 4 array of probabilities. For the example of length 2, species i and j are connected through k with
- probability  $A_{ik}A_{kj}$ , and so this path does not exist with probability  $1 A_{ik}A_{kj}$ . For any pair i,
- 6 j, let **m** be the vector such as  $m_k = A_{ik}A_{kj}$  for all  $k \notin (i,j)$  (Mirchandani 1976). The probability
- of not having any path of length 2 is  $\prod (1 \mathbf{m})$ . Therefore, the probability of having a path of
- 8 length 2 between i and j is

(6) 
$$\hat{p}_{ij}^{(2)} = 1 - \prod (1 - \mathbf{m}).$$

In most situations, one would be interested in knowing the probability of having a path of length 2 *without* having a path of length 1; this is simply expressed as  $(1 - A_{ij})\hat{p}_{ij}^{(2)}$ . One can, by the same logic, generate the expression for having at least one path of length 3:

(7) 
$$\hat{p}_{ij}^{(3)} = (1 - A_{ij})(1 - \hat{p}_{ij}^{(2)}) \left(1 - \prod (1 - \mathbf{m})\right) \prod_{x,y} \left((1 - A_{iy})(1 - A_{xj})\right),$$

where **m** is the vector of all  $A_{ix}A_{xy}A_{yj}$  for  $x \notin (i,j), y \neq x$ . This gives the probability of having at least one path from i to j, passing through any pair of nodes x and j, without having any shorter path. In theory, this approach can be generalized up to an arbitrary path length, but it becomes rapidly untractable.

Nestedness. We use the formula for nestedness proposed by Bastolla et al. (2009). They define nestedness for each margin of the matrix, as  $\eta^{(R)}$  and  $\eta^{(C)}$  for, respectively, rows and columns. As per Almeida-Neto et al. (2008), we define a global statistic for nestedness as  $\eta = (\eta^{(R)} + \eta^{(C)})/2$ .

1 Nestedness, in a probabilistic network, is defined as

(8) 
$$\eta^{(R)} = \sum_{i < j} \frac{\sum_k A_{ik} A_{jk}}{\min(g_i, g_j)},$$

- where  $g_i$  is the expected generality of species i. The reciprocal holds for  $\eta^{(C)}$  when using  $v_i$  (the
- з vulnerability) instead of  $g_i$ .
- 4 The values returned are within [0;1], with  $\eta = 1$  indicating complete nestedness.
- 5 Katz centrality. Although a rough estimate of centrality is the node degree, as described above,
- 6 it is often needed to measure centrality within the context of a larger neighborhood. In ad-
- 7 dition, we derive the expected value of centrality according to Katz (1953). This measures
- 8 generalizes to directed acyclic graphs. Although eigenvector centrality is often used in ecology,
- 9 it cannot be measured on probabilistic graphs. Eigenvector centrality requires that the matrix
- has its largest eigenvalues real, which is not the case for all probabilistic matrices. Katz's cen-
- trality is nonetheless a useful replacement, because it uses the paths of all lengths between two
- species instead of focusing on the shortest path.
- The expected number of paths of length k between i and j is  $(\mathbf{A}^k)_{ij}$ . Based on this, the expected
- 14 centrality of species i is

(9) 
$$C_i = \sum_{k=1}^{\infty} \sum_{j=1}^{n} \alpha^k (\mathbf{A}^k)_{ji}.$$

The parameter  $\alpha \in [0;1]$  regulates how important long paths are. When  $\alpha = 0$ , only first-order

paths count. When  $\alpha = 1$ , all paths are equally important. As  $C_i$  is sensitive to the size of the

matrix, we suggest to normalise it so that

$$C_i = \frac{C_i}{\mathbf{C}}.$$

- 1 This results in the expected relative centrality of each node in the probabilistic network. Note
- that when using only k = 1, and  $\alpha = 1$ , the raw value of Katz's centrality is the species generality.
- 3 Number of primary producers. Primary producers, in a food web, are species with no successors,
- 4 including themselves. Biologically, they are autotrophic organisms, or organisms whose preys
- or substrates have been remove from the network. A species is a primary producer if it manages
- 6 *not* to establish any outgoing interaction, which for species *i* happens with probability

$$(11) \qquad \qquad \prod_{j} (1 - A_{ij}).$$

7 The number of expected primary producers is therefore the sum of the above across all species:

(12) 
$$\hat{PP} = \sum_{i} \left( \prod_{j} (1 - A_{ij}) \right).$$

8 The variance in the number of expected primary producers is

(13) 
$$\operatorname{var}(\hat{PP}) = \sum_{i} \left( \prod_{j} (1 - A_{ij}^{2}) - \prod_{j} (1 - A_{ij})^{2} \right)$$

- 9 Number of top predators. Top-predators can loosely be defined as species that have no predeces-
- sors in the network: they are establishing links with other species, but no species are establish-
- ing links with them. Using the same approach than for the number of primary producers, the
- 12 expected number of top-predators is therefore

(14) 
$$\hat{TP} = \sum_{i} \left( \prod_{j \neq i} (1 - A_{ji}) \right)$$

Note that we exclude the self-interactions, as top-predators can, and often do, engage in cannibalism.

- 1 Number of species with no interactions. Predicting the number of species with no interaction (or
- 2 whether any species will have at least one interaction) is useful to predict whether species will
- 3 be able to integrate themselves in an existing network, for example.
- 4 A species has no interactions with probability

(15) 
$$\prod_{j \neq i} (1 - A_{ij})(1 - A_{ji})$$

- 5 As for the above, the expected number of species with no interactions (free species) is the sum
- 6 of this quantity across all *i*:

(16) 
$$\hat{FS} = \sum_{i} \prod_{j \neq i} (1 - A_{ij})(1 - A_{ji})$$

7 The variance of the number of species with no interactions is

(17) 
$$\operatorname{var}(\hat{FS}) = \sum_{i} \left( A_{ij} (1 - A_{ij}) A_{ji} (1 - A_{ji}) + A_{ij} (1 - A_{ij}) A_{ji}^{2} + A_{ji} (1 - A_{ji}) A_{ij}^{2} \right)$$

- 8 Note that from a methodological point of view, this can be a helpful a priori measure to deter-
- 9 mine whether null models of networks will have a lot of species with no interactions, and so
- 10 will require intensive sampling.
- 11 Self-predation. Self-predation (the existence of an interaction of a species onto itself) is only
- meaningful in unipartite networks. The expected proportion of species with self-loops is very
- simply defined as Tr(A), that is, the sum of all diagonal elements. The variance is  $Tr(A \diamond (1-A))$ ,
- where ⋄ is the element-wise product operation.
- 15 Motifs. Motifs are sets of pre-determined interactions between a fixed number of specie (Milo
- 16 et al. 2002), such as for example one predator sharing two preys. As there is an arbitrarily large
- 17 number of motifs, we will illustrate the formulae with only two examples.

- 1 The probability that three species form an apparent competition motif (one predator, two
- 2 preys) where i is the predator, j and k are the preys, is

(18) 
$$P(i,j,k \in app. comp) = A_{ij}(1 - A_{ji})A_{ik}(1 - A_{ki})(1 - A_{jk})(1 - A_{kj})$$

- Similarly, the probability that these three species form an omnivory motif, in which i and j
- 4 consume k, and i consumes j, is

(19) 
$$P(i, j, k \in \text{omniv.}) = A_{ii}(1 - A_{ii})A_{ik}(1 - A_{ki})A_{ik}(1 - A_{ki})$$

5 The probability of the number of any motif m in a network is given by

(20) 
$$\hat{N_{\mathbf{m}}} = \sum_{i} \sum_{j \neq i} \sum_{k \neq j} P(i, j, k \in \mathbf{m})$$

- 6 It is indeed possible to have an expression of the variance of this value, or of the variance of
- 7 any three species forming a given motif, but their expressions become rapidly untractable and
- 8 are better computer than written.
- 9 Unipartite projection of bipartite networks. As the unipartite projection of a bipartite network
- is obtained by assigning an edge between any two nodes that are connected through at least
- one node of the other mode, it is readily obtained using the formula in the *Path length* section.
- 12 This yields either the probability of an edge in the unipartite projection (of the upper or lower
- nodes), or if using the matrix multiplication, the expected number of such nodes.
- 14 Network comparison. The dissimilarity of a pair of (ecological) networks can be measured
- using the framework set forth by Koleff et al. (2003). Set-theoretical measures of  $\beta$ -diversity
- 16 compute the dissimilarity between two networks based on the cardinality of three sets, a, c,
- and b, which are respectively the shared items, items unique to superset 1, and items unique to

- superset 2 (the identity of which network is 1 or 2 matters for asymmetric measures). Following
- <sup>2</sup> Poisot et al. (2012), the dissimilarity of two networks can be measured as either  $\beta_{WN}$  (all
- interactions), or  $\beta_{OS}$  (interactions involving only common species), with  $\beta_{OS} \leq \beta_{WN}$ .
- 4 Within our framework, these measures can be applied to probabilistic networks. The expected
- values of  $\bar{a}$ ,  $\bar{c}$ , and  $\bar{b}$  are, respectively,  $\sum \mathbf{A}_1 \diamond \mathbf{A}_2$ ,  $\sum \mathbf{A}_1 \diamond (1 \mathbf{A}_2)$ , and  $\sum (1 \mathbf{A}_1) \diamond \mathbf{A}_2$ . Whether
- 6  $\beta_{OS}$  or  $\beta_{WN}$  is measured requires to alter the matrices  $A_1$  and  $A_2$ . To measure  $\beta_{OS}$ , one must
- 7 remove all unique species; to measure  $\beta_{WN}$ , one must expand the two matrices so that they
- 8 have the same species at the same place, and give a weight of 0 to the added interactions.

9 Applications

In this section, we will provide an overview of the applications of probabilistic network mea-

sures. The current way of dealing with probabilistic interactions is (i) to ignore it entirely or (ii)

to generate random networks. Probabilistic metrics are an alternative to that. When ignoring

the probabilistic nature of interactions, what we call *Binary* from here on, every non-zero ele-

ment of the network is assumed to be 1. This leads to over-representation of some rare-events,

and increases the number of interactions.

16 When generating random networks, what we call Bernoulli trials from here on, a binary net-

work is generated by doing a Bernoulli trial with probability  $A_{ij}$ , for each element of the

matrix. This is problematic because (i) higher order structures involving rare events will be

under-represented in the sample, and (ii) naive approaches are likely to generate free species,

20 especially in sparsely connected networks frequently encountered in ecology (Milo et al. 2003;

Poisot & Gravel 2014).

22 **Comparison of probabilistic networks.** In this sub-section, we apply the above measures to

23 a bacteria-phage interaction network. Poullain et al. (2008) have measured the probability

24 that 24 phages can infect 24 strains of bacteria of the Pseudomonas fluorescens species (group

SBW25). Each probability has been observed though three independent infection assays, and

26 can take values of 0, 0.5, and 1.0.

- 1 Measuring the structure of the Binary, Bernoulli trials, and Probabilistic network gives the
- 2 following result:

| Measure      | Binary | Bernoulli trials   | Probabilistic      |
|--------------|--------|--------------------|--------------------|
| links        | 336    | $221.58 \pm 57.57$ | $221.52 \pm 57.25$ |
| η            | 0.73   | 0.528              | 0.512              |
| $\eta^{(R)}$ | 0.72   | 0.525              | 0.507              |
| $\eta^{(C)}$ | 0.75   | 0.531              | 0.518              |

- 3 As these results show, transforming the probabilistic matrix into a binary one (i) overestimates
- 4 nestedness by  $\approx 0.02$ , and (ii) overestimates the number of links by 115. For the number of
- $_{5}$  links, both the probabilistic measures and the average and variance of  $10^{4}$  Bernoulli trials were
- 6 in strong agreement (they differ only by the second decimal place).
- 7 Using Bernoulli trials had the effect of slightly over-estimating nestedness. The overestimation
- 8 is statistically significant from a purely frequentist point of view, but significance testing is
- 9 rather meaningless when the number of replicates is this large and can be increased arbitrarily;
- what is important is that the relative value of the error is small enough that Bernoulli trials are
- able to adequately reproduce the probabilistic structure of the network. It is not unexpected
- that Bernoulli trials are this close to the analytical expression of the measures; due to the ex-
- perimental design of the Poullain et al. (2008) study, probabilities of interactions are bound to
- be high, and so variance is minimal (most elements of A have a value of either 0 or 1, and so
- their individual variance is 0). Still, despite overall low variance, the binary approach severely
- mis-represents the structure of the network.
- Null-model based hypothesis testing. In this section, we analyse 59 pollination networks
- 18 from the literature using two "classical" null models of network structure, and two intermedi-
- 19 ate models. These data cover a wide range a situations, from small to large, and from densely
- 20 to sparsely connected networks. They provide a good demonstration of the performance of
- 21 probabilistic metrics.

We use the following null models. First (Type I, Fortuna & Bascompte (2006)), any interaction between plant and animals happens with the fixed probability P = Co. This model controls for connectance, but removes the effect of degree distribution. Second, (Type II, Bascompte et al. (2003)), the probability of an interaction between animal i and plant j is  $(k_i/R + k_j/C)/2$ , the average of the richness-standardized degree of both species. In addition, we use the models called Type III in and out (Poisot *et al.* 2013), that use respectively the row-wise and columnwise probability of an interaction, as a way to understand the impact of the degree distribution of upper and lower level species.

Note that this type of null models will take a binary network, and through some rules, turn it into a probabilistic one. Typically, this probabilistic network is used as a template to generate Bernoulli trials, measure some of their properties, the distribution of which is compared to the empirical network. This approach is computationally inefficient (Poisot & Gravel 2014), especially using naive models (Milo *et al.* 2003), and as we show in the previous section, can yield biased estimates of the true average of nestedness (and presumably other properties).

We measured the nestedness of the 59 networks, then generated the random networks under the four null models, and calculated the expected nestedness. For each null model i, the difference  $\Delta_N^{(i)}$  in nestedness N is expressed as  $\Delta_N^{(i)} = N - \mathcal{N}^{(i)}(N)$ , where  $\mathcal{N}^{(i)}(N)$  is the nestedness of null model i. Our results are presented in Figure 1.

There are two striking results. First, null models consistently understimate the nestedness of the 19 59 pollination networks, as evidence by the fact that all  $\Delta_N$  values are strictly positive. Second, 20 this understimation is *linear* between null models I and II, although null model II is always 21 closer to the actual nestedness value. The markedly non-random value of the null nestednesses 22 when compared to the empirical values calls for a closer evaluation of how the results of null 23 models are interpreted (especially since Bernoulli simulations revealed a very low variance in 24 the simulated nestedness). Interestingly, models III in and III out made overall *less* mistakes at 25 estimating nestedness - resp. 0.129 and 0.123, compared to resp. 0.219 and 0.156 for model I 26 and II. Although the error is overall sensible to model type (Kruskal-Wallis  $\chi^2 = 35.80$ , d.f. = 3, 27  $p \le 10^{-4}$ ), the three pairs of models that where significantly different after control for multiple

- 1 comparison are I and II, I and III in, and I and III out (model II is not different from either
- 2 models III).

11

12

13

- 3 In short, this analysis reveals that (i) the estimated value of a network measure under randomi-
- 4 sation scenarios can be obtained through the analysis of the probabilistic matrix, instead of the
- 5 analysis of simulated Bernoulli networks; (ii) Different models have different systematic biases,
- 6 with models of the type III performing overall better for nestedness than any other models.
- 7 This can be explained by the fact that nestedness of a network, as expressed by Bastolla et al.
- 8 (2009), is the average of a row-wise and column-wise nestedness. These depend on the species
- 9 degree, and as such should be well predicted by models III.

10 Discussion

- What does it mean for probabilities to be independent
- Consequences for null models now that we have direct estimates
- Synthesis works for all types of matrices, not just interactions



FIGURE 1. Results of the null model analysis of 59 plant-pollination networks. **A**. There is a consistent tendency for (i) both models I and II to estimate less nestedness than in the empirical network, although null model II yields more accurate estimates. **B**. Models III in and III out also estimate less nestedness than the empirical network, but neither has a systematic bias.

1 References

- 2 Almeida-Neto, M., Guimarães, P., Guimarães, P.R., Loyola, R.D. & Ulrich, W. (2008). A con-
- 3 sistent metric for nestedness analysis in ecological systems: reconciling concept and measure-
- 4 ment. Oikos, 117, 1227–1239. Retrieved October 10, 2014,
- 5 Bascompte, J., Jordano, P., Melián, C.J. & Olesen, J.M. (2003). The nested assembly of plant-
- 6 animal mutualistic networks. Proceedings of the National Academy of Sciences of the United States
- 7 of America, **100**, 9383–9387.
- 8 Bastolla, U., Fortuna, M.A., Pascual-García, A., Ferrera, A., Luque, B. & Bascompte, J. (2009).
- 9 The architecture of mutualistic networks minimizes competition and increases biodiversity.
- 10 Nature, 458, 1018–1020. Retrieved October 10, 2014,
- 11 Canard, E.F., Mouquet, N., Mouillot, D., Stanko, M., Miklisova, D. & Gravel, D. (2014). Empir-
- ical evaluation of neutral interactions in host-parasite networks. The American Naturalist, 183,
- 13 468-479.
- 14 Chamberlain, S.A., Cartar, R.V., Worley, A.C., Semmler, S.J., Gielens, G., Elwell, S., Evans, M.E.,
- 15 Vamosi, J.C. & Elle, E. (2014). Traits and phylogenetic history contribute to network struc-
- ture across Canadian plant-pollinator communities. Oecologia, 1–12. Retrieved September 11,
- 17 2014,
- Duffy, J.E. (2002). Biodiversity and ecosystem function: the consumer connection. Oikos, 99,
- 19 201–219.
- 20 Dunne, J.A. (2006). The Network Structure of Food Webs. Ecological networks: Linking structure
- 21 and dynamics (eds J.A. Dunne & M. Pascual), pp. 27–86. Oxford University Press.
- Fortuna, M.A. & Bascompte, J. (2006). Habitat loss and the structure of plant-animal mutual-
- 23 istic networks. *Ecology Letters*, **9**, 281–286.
- 24 Haerter, J.O., Mitarai, N. & Sneppen, K. (2014). Phage and bacteria support mutual diversity
- in a narrowing staircase of coexistence. *The ISME journal*.
- Jordano, P. (1987). Patterns of mutualistic interactions in pollination and seed dispersal: con-
- nectance, dependence asymmetries, and coevolution. *The American Naturalist*, **129**, 657–677.

- 1 Katz, L. (1953). A new status index derived from sociometric analysis. *Psychometrika*, **18**, 39–
- 2 43. Retrieved October 9, 2014,
- 3 Koleff, P., Gaston, K.J. & Lennon, J.J. (2003). Measuring beta diversity for presence-absence
- 4 data. Journal of Animal Ecology, 72, 367–382.
- 5 McCann, K.S. (2014). Diversity and Destructive Oscillations: Camerano, Elton, and May. Bul-
- 6 *letin of the Ecological Society of America*, **95**, 337–340. Retrieved October 7, 2014,
- 7 Milo, R., Kashtan, N., Itzkovitz, S., Newman, M.E.J. & Alon, U. (2003). On the uniform gener-
- 8 ation of random graphs with prescribed degree sequences. arXiv:cond-mat/0312028. Retrieved
- 9 October 9, 2014,
- 10 Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D. & Alon, U. (2002). Network
- motifs: simple building blocks of complex networks. *Science (New York, N.Y.)*, **298**, 824–7.
- 12 Mirchandani, P.B. (1976). Shortest distance and reliability of probabilistic networks. Computers
- 5 Operations Research, 3, 347–355. Retrieved October 12, 2014,
- Olesen, J.M., Bascompte, J., Dupont, Y.L., Elberling, H., Rasmussen, C. & Jordano, P. (2011).
- 15 Missing and forbidden links in mutualistic networks. Proceedings of the Royal Society B: Biolog-
- ical Sciences, **278**, 725–732. Retrieved October 7, 2014,
- Olito, C. & Fox, J.W. (2014). Species traits and abundances predict metrics of plant-pollinator
- network structure, but not pairwise interactions. Oikos, n/a-n/a. Retrieved September 10,
- 19 2014,
- 20 Poisot, T. & Gravel, D. (2014). When is an ecological network complex? Connectance drives
- degree distribution and emerging network properties. *PeerJ*, 2, e251. Retrieved September 13,
- 22 2014,
- Poisot, T., Canard, E., Mouillot, D., Mouquet, N. & Gravel, D. (2012). The dissimilarity of
- species interaction networks. *Ecology Letters*, **15**, 1353–1361.
- Poisot, T., Lounnas, M. & Hochberg, M.E. (2013). The structure of natural microbial enemy-
- 26 victim networks. Ecological Processes.

- 1 Poisot, T., Stouffer, D.B. & Gravel, D. (2014). Beyond species: why ecological interaction net-
- works vary through space and time. Oikos.
- <sup>3</sup> Poullain, V., Gandon, S., Brockhurst, M.A., Buckling, A. & Hochberg, M.E. (2008). The evolu-
- 4 tion of specificity in evolving and coevolving antagonistic interactions between a bacteria and
- 5 its phage. Evolution, 62, 1–11. Retrieved October 10, 2014,
- 6 Thébault, E. & Loreau, M. (2003). Food-web constraints on biodiversity-ecosystem functioning
- 7 relationships. Proceedings of the National Academy of Sciences of the United States of America, 100,
- 8 14949-14954.