Laboratorium Podstaw Elektroniki				
Kierunek	Specjalność	Rok studiów	Symbol grupy lab.	
Informatyka	_	I	i	1
Temat Laboratorium				Numer lab.
Twierdzenie Thevenina			2	
Skład grupy ćwiczeniowej oraz numery indeksów				
Ewa Fengler(132219), Sebastian Maciejewski(132275), Jan Techner(132332)				
Uwagi			Ocena	

Cel

Celem przeprowadzanych doświadczeń jest zaznajomienie się z twierdzeniem Thevenina oraz jego zastosowaniem do obliczania i pomiarów prądów w gałęziach.

1 Zadanie 1.

Rozpatrywany obwód wraz z wybranymi wartościami elementów.

Rysunek 1: Badany obwód

Wartości elementów obwodu : $V_1=5V$, $R_1=360\Omega$, $R_2=220\Omega$, $R_3=510\Omega$, $R_4=100\Omega$

2 Zadanie 2.

Wartości rezystorów użytych do zbudowania obwodu przedstawionego na rysunku 1.

Lp.	R	Kod paskowy(KP)	Wartość odczytana z KP	Wartość zmierzona
1.	R_1	pomarańczowy, niebieski, brązowy, złoty	$360\Omega \pm 5\%$	$354,9\Omega$
2.	R_2	czerwony, czerwony, czarny, złoty	$220\Omega \pm 5\%$	218Ω
3.	R_3	zielony, brązowy, brązowy, złoty	$510\Omega \pm 5\%$	$499,9\Omega$
4.	R_4	brązowy, czarny, brązowy, złoty	$100\Omega \pm 5\%$	$97,5\Omega$

3 Zadanie 3.

Wyniki pomiarów dla twierdzenia Thevenina, gdzie:

 U_{th} - napięcie panujące od strony zacisków AB R_{th} - rezystencja zastępcza widziana od strony zacisków AB

Lp.	U_{th}	R_{th}
1.	1,35V	$159,99\Omega$
2.	1.88V	$222,91\Omega$

4 Zadanie 4.

Obliczenie prądów dla badanego obwodu w gałęzi z rezystorem R_x w oparciu o twierdzenie Thevenina [1].

Rysunek 2: Schematyczny obwód

$$I_{R1} = \frac{U_{th1}}{R_{th1} + R_1} = \frac{1,35V}{159,99\Omega + 354,9\Omega} = 2,62mA$$

$$I_{R2} = \frac{U_{th2}}{R_{th2} + R_2} = \frac{1,88V}{222,91\Omega + 218\Omega} = 4,26mA$$

5 Zadanie 5.

Zestawienie wyników z poprzednich zadań.

Lp.	U_{th}	R_{th}	I_{Rx}
1.	1,35V	$159,99\Omega$	2,62mA
2.	1,88V	$222,91\Omega$	4,26mA

6 Zadanie 6.

Analityczne obliczenie wartości szukanych prądów.

Rysunek 3: Badany obwód

Korzystając z II prawa Kirchoffa [1] otrzymujemy dla obwodu przedstawionego na rysunku 3 następujące równania :

$$V_1 = IR_4 + I_2R_2 + IR_3$$

$$V_1 = IR_4 + I_1R_1 + IR_3$$

Następnie korzystając ze wzoru na rezystancję zastępczą obwodu oraz zależności rezystancji od napięcia źródła obwodu i natężenia prądu w nim płynącego [1] otrzymujemy :

$$R_Z = R_4 + \frac{R_2 \cdot R_1}{R_1 + R_2} + R_3 = 610\Omega + \frac{220\Omega \cdot 360\Omega}{220\Omega + 360\Omega} \approx 747\Omega$$

$$R_Z = \frac{V_1}{I}$$
 \Rightarrow $I = \frac{V_1}{R_Z} = \frac{5V}{747\Omega} \approx 6,69 \text{mA} = \mathbf{0},\mathbf{00669A}$

 $Po\ przekształceniu\ dwóch\ pierwszych\ wzorów\ i\ podstawieniu\ wszystkich\ wymaganych\ wartości\ dostajemy:$

$$I_2 = \frac{V_1 - I \cdot (R_4 + R_3)}{R_2} = \frac{5V - 0.00669A \cdot (100\Omega + 510\Omega)}{220\Omega} \approx 4,177mA$$

$$I_1 = rac{V_1 - I \cdot (R_4 + R_3)}{R_1} = rac{5V - 0,00669A \cdot (100\Omega + 510\Omega)}{360\Omega} pprox 2,55 mA$$

7 Zadanie 7.

Zestawienie danych otrzymanych w wyniku obliczeń z danymi pomiarowymi.

	Lp.	$I_{Rx}(\mathbf{z} \mathbf{tw. Thevenina})$	$I_{Rx}(\mathbf{z} \text{ obliczeń})$
ĺ	1.	2,62 <i>mA</i>	2,55mA
ĺ	2.	4,26 <i>mA</i>	4,177 <i>mA</i>

8 Wnioski

Wartości natężenia prądów otrzymane w wyniku pomiarów i zastosowania twierdzenia Thevenina nieznacznie różnią się od wartości obliczonych analitycznie, co jest najpewniej skutkiem:

- błędów pomiarowych używanej aparatury;
- ograniczonej precyzji wykonania rezystorów;
- niezerowego oporu płytki prototypowej i kabli użytych do pomiaru.

Mimo tych różnic, otrzymane doświadczalnie wyniki dobrze odpowiadają wyliczonym wartościom (błąd nie przekracza 3%), co stanowi o zasadności twierdzenia Thevenina.

Literatura

[1] W trakcie przeprowadzania doświadczeń i pisania sprawozdania zespół korzystał głównie z materiałów ze strony http://mariusznaumowicz.ddns.net/materialy.html oraz z wiedzy własnej.