Лабораторная работа 6.

Модель «хищник-жертва»

Акопян Сатеник

Содержание

1	Цель работы	5
2	Теоретическое введение	6
3	Выполнение лабораторной работы	7
4	Выводы	15

Список таблиц

Список иллюстраций

2.1	«хищник-жертва»
3.1	Задать переменные окружения в хсоз для модели
3.2	Модель «хищник-жертва» в хсоз
3.3	Задать начальные значения в блоках интегрирования
3.4	Задать начальные значения в блоках интегрирования
3.5	Результат моделирования
3.6	Результат моделирования
3.7	Параметры блока Modelica
3.8	Параметры блока Modelica
3.9	Готовая модель «хищник-жертва»
3.10	Результаты моделирования
3.11	Результаты моделирования

1 Цель работы

Целью данной лабораторной работы является реализация модели «хищник-жертва» в xcos

2 Теоретическое введение

Модель «хищник-жертва» (модель Лотки— Вольтерры) представляет собой модель межвидовой конкуренции.

$$\begin{cases} \dot{x} = ax - bxy; \\ \dot{y} = cxy - dy, \end{cases}$$

Рис. 2.1: «хищник-жертва»

где x — количество жертв; y — количество хищников; a, b, c, d — коэффициенты, отражающие взаимодействия между видами: a — коэффициент рождаемости жертв; b — коэффициент убыли жертв; c — коэффициент убыли хищников; d — коэффициент убыли хищников.

3 Выполнение лабораторной работы

- 1. Реализация модели в хсоѕ
- 1.2 Зафиксируем начальные данные: a = 2, b = 1, c = 0, 3, d = 1, x(0) = 2, y(0) = 1. В меню Моделирование, Задать переменные окружения зададим значения коэф- фициентов a, b, c, d (рис. 3.1).

Рис. 3.1: Задать переменные окружения в хсоз для модели

1.3 Для реализации модели (6.1) в дополнение к блокам \$CLOCK_c, CSCOPE, TEXT_f, MUX, INTEGRAL_m, GAINBLK_f, SUMMATION, PROD_f \$ потребуется блок \$CSCOPXY \$— регистрирующее устройство для построения фазового портрета. (рис. 3.2)

Рис. 3.2: Модель «хищник-жертва» в хсоѕ

 $1.4\ B$ параметрах блоков интегрирования необходимо задать начальные значения x(0) = 2, y(0) = 1\$ (рис. 3.3, 3.4)

Рис. 3.3: Задать начальные значения в блоках интегрирования

Рис. 3.4: Задать начальные значения в блоках интегрирования

Результат моделирования представлен на (рис. 3.5)

Рис. 3.5: Результат моделирования

Рис. 3.6: Результат моделирования

2. Реализация модели с помощью блока Modelica в xcos

Для реализации модели с помощью языка Modelica потребуются следующие блоки xcos: CLOCK_c, CSCOPE, CSCOPXY, TEXT_f, MUX, CONST_m и MBLOCK (Modelica generic).

Как и ранее, задаём значения коэффициентов a, b, c, d Параметры блока Modelica представлены на (рис. 3.7, 3.8)

Рис. 3.7: Параметры блока Modelica

Рис. 3.8: Параметры блока Modelica

Готовая модель «хищник–жертва» представлена на (рис. 3.9)

Рис. 3.9: Готовая модель «хищник-жертва»

Результаты моделирования представлены на (рис. 3.10, 3.11)

Рис. 3.10: Результаты моделирования

Рис. 3.11: Результаты моделирования

4 Выводы

В результате данной лабораторной работы была реализована модель «хищник-жертва» в xcos.