BLG 336E Analysis of Algorithms II

Lecture 6:

The Minimum Spanning Tree
Prim's Algorithm, Kruskal's Algorithm

RECAP OF PREVIOUS LECTURES

Stable Matching

- Gale-Shapley Algorithm

. Big-O Notation

- Asymptotically Tight Bounds
- Big Theta and Omega
- A Survey of runtimes

Graphs

- Breadth First Search
- Depth First Search
- Testing Bi-partite
- Topological Ordering

Greedy Algorithms

- Interval Scheduling
- Interval Partitioning
- Shortest Paths in a Graph(Dijkstra)

Week	Date	Topics
1	22 Feb	Introduction. Some representative problems
2	1 March	Stable Matching
3	8 March	Basics of algorithm analysis.
4	15 March	Graphs (Project 1 announced)
5	22 March	Greedy algorithms I
6	29 March	Greedy algorithms II (Project 2 announced)
7	5 April	Divide and conquer
8	12 April	Midterm
9	19 April	Dynamic Programming I
10	26 April	Dynamic Programming II (Project 3 announced)
11	3 May	BREAK
12	10 May	Network Flow-I
13	17 May	Network Flow II
14	24 May	NP and computational intractability I
15	31 May	NP and computational intractability II

Greedy algorithms for Minimum Spanning Tree.

Agenda:

- 1. What is a Minimum Spanning Tree?
- 2. Short break to introduce some graph theory tools
- 3. Prim's algorithm
- 4. Kruskal's algorithm

Outline for Today

Minimum Spanning Trees

- What's the cheapest way to connect a graph

Prim's Algorithm

- simple and efficient algorithm for finding minimum spanning trees.

Minimum spanning tree. Given a connected graph G = (V, E) with real-valued edge weights c_e , an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree whose sum of edge weights is minimized.

Greedy Algorithms

Kruskal's algorithm. Start with $T = \phi$. Consider edges in ascending order of cost. Insert edge e in T unless doing so would create a cycle.

Prim's algorithm. Start with some root node s and greedily grow a tree T from s outward. At each step, add the cheapest edge e to T that has exactly one endpoint in T.

Reverse-Delete algorithm. Start with T = E. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.

Remark. All three algorithms produce an MST.

Say we have an undirected weighted graph

A spanning tree is a tree that connects all of the vertices.

Say we have an undirected weighted graph

A spanning tree is a tree that connects all of the vertices.

Say we have an undirected weighted graph

A **spanning tree** is a **tree** that connects all of the vertices.

Say we have an undirected weighted graph

Aspanning tree is a tree that connects all of the vertices.

Say we have an undirected weighted graph

12

Why MSTs?

- Network design
 - Connecting cities with roads/electricity/telephone/...
- cluster analysis
 - eg, genetic distance
- image processing
 - eg, image segmentation
- Useful primitive
 - for other graph algs

Figure 2: Fully parsimonious minimal spanning tree of 933 SNPs for 282 isolates of *Y. pestis* colored by location. Morelli et al. Nature genetics 2010

13

How to find an MST?

- Today we'll see two greedy algorithms.
- In order to prove that these greedy algorithms work, we'll need to show something like:

Suppose that our choices so far haven't ruled out success.

Then the next greedy choice that we make also won't rule out success.

Here, success means finding an MST.

Let's brainstorm some greedy algorithms!

Brief aside

for a discussion of cuts in graphs!

Cuts in graphs

A cut is a partition of the vertices into two parts:

This is the cut "{A,B,D,E} and {C,I,H,G,F}"

Cuts in graphs

One or both of the two parts might be disconnected.

This is the cut "{B,C,E,G,H} and {A,D,I,F}"

Let S be a set of edges in G

- We say a cut respects S if no edges in S cross the cut.
- An edge crossing a cut is called light if it has the smallest weight of any edge crossing the cut.

Let S be a set of edges in G

- We say a cut respects S if no edges in S cross the cut.
- An edge crossing a cut is called light if it has the smallest weight of any edge crossing the cut.

Lemma

- Let S be a set of edges, and consider a cut that respects S.
- Suppose there is an MST containing S.
- Let {u,v} be a light edge.
- Then there is an MST containing S ∪ {{u,v}}

Lemma

- Let S be a set of edges, and consider a cut that respects S.
- Suppose there is an MST containing S.
- Let {u,v} be a light edge.
- Then there is an MST containing S U {{u,v}}

Aka:

If we haven't ruled out the possibility of success so far, then adding a light edge still won't rule it out.

- Assume that we have:
 - a cut that respects \$

Assume that we have:

24

Assume that we have:

a cut that respects S

• **S** is part of some **MST T**.

Say that {u,v} is light.

lowest cost crossing the cut

But say {u,v} is not in T.

So adding {u,v} to T
 will make a cycle.

Claim: Adding any additional edge to a spanning tree will create a cycle.

Proof: Both endpoints are already in the tree and connected to each other.

- Assume that we have:
 - a cut that respects S
 - **S** is part of some **MST T**.
- Say that {u,v} is light.
 - lowest cost crossing the cut
- But say {u,v} is not in T.
 - So adding {u,v} to T will make a cycle.
- So there is at least one other edge in this cycle crossing the cut.
 - call it {x,y}

Claim: Adding any additional edge to a spanning tree will create a cycle.

Proof: Both endpoints are already in the tree and connected to each other.

Proof of Lemma ctd.

Consider swapping {u,v} for {x,y} in T.

Proof of Lemma ctd.

Consider swapping {u,v} for {x,y} in T.

Call the resulting tree T'.

- Claim: T is still an MST.
 - It is still a tree:
 - we deleted {x,y}
 - It has cost at most that of T
 - because {u,v} was light.
 - T had minimal cost.
 - So T' does too.
- So T' is an MST containing S and {u,v}.
 - This is what we wanted.

Lemma

- Let S be a set of edges, and consider a cut that respects S.
- Suppose there is an MST containing S.
- Let {u,v} be a light edge.
- Then there is an MST containing S ∪ {{u,v}}

End aside

Back to MSTs!

Back to MSTs

- How do we find one?
- Today we'll see two greedy algorithms.

- The strategy:
 - Make a series of choices, adding edges to the tree.
 - Show that each edge we add is safe to add:
 - we do not rule out the possibility of success
 - we will choose light edges crossing cuts and use the Lemma.
 - Keep going until we have an MST.

We've discovered

Prim's algorithm!

- slowPrim(G = (V,E), starting vertex s):
 - Let (s,u) be the lightest edge coming out of s.
 - MST = { (s,u) }
 - verticesVisited = { s, u }
 - while |verticesVisited| < |V|:
 - find the lightest edge {x,v} in E so that:
 - x is in verticesVisited
 - v is not in verticesVisited
 - add {x,v} to MST
 - add v to verticesVisited
 - return MST

n iterations of this while loop.

Time at most m to go through all the edges and find the lightest.

41

Naively, the running time is O(nm):

- For each of n-1 iterations of the while loop:
 - Go through all the edges.

Two questions

- 1. Does it work?
 - That is, does it actually return a MST?

- 2. How do we actually implement this?
 - the pseudocode above says "slowPrim"...

Does it work?

- We need to show that our greedy choices don't rule out success.
- That is, at every step:
 - If there exists an MST that contains all of the edges S we have added so far...
 - ...then when we make our next choice {u,v}, there is still an MST containing S and {u,v}.
- Now it is time to use our lemma!

Lemma

- Let S be a set of edges, and consider a cut that respects S.
- Suppose there is an MST containing S.
- Let {u,v} be a light edge.
- Then there is an MST containing S ∪ {{u,v}}

Partway through Prim

- Assume that our choices S so far don't rule out success
 - There is an MST extending them

How can we use our lemma to show that our next choice also does not rule out success?

Partway through Prim

- Assume that our choices S so far don't rule out success
 - There is an MST extending them
- Consider the cut {visited, unvisited}
 - This cut respects S.

Partway through Prim

- Assume that our choices S so far don't rule out success
 - There is an MST extending them
- Consider the cut {visited, unvisited}
 - This cut respects S.
- The edge we add next is a light edge.

Good news

Our greedy choices don't rule out success.

 This is enough (along with an argument by induction) to guarantee correctness of Prim's algorithm.

Formally(ish)

Inductive hypothesis:

 After adding the t'th edge, there exists an MST with the edges added so far.

Base case:

• After adding the 0'th edge, there exists an MST with the edges added so far. **YEP.**

• Inductive step:

- If the inductive hypothesis holds for t (aka, the choices so far are safe), then it holds for t+1 (aka, the next edge we add is safe).
- That's what we just showed.

Conclusion:

- After adding the n-1'st edge, there exists an MST with the edges added so far.
- At this point we have a spanning tree, so it better be minimal.

Two questions

- 1. Does it work?
 - That is, does it actually return a MST?
 - Yes!
- 2. How do we actually implement this?
 - the pseudocode above says "slowPrim"...

- Each vertex keeps:
 - the distance from itself to the growing spanning tree

if you can get there in one edge.

how to get there.

I'm 7 away. C is the closest. 11 14 10 I can't get to the tree in one edge

- Each vertex keeps:
 - the distance from itself to the growing spanning tree
 - how to get there.

if you can get there in one edge.

- Each vertex keeps:
 - the distance from itself to the growing spanning tree
 - how to get there.

if you can get there in one edge.

- Each vertex keeps:
 - the distance from itself to the growing spanning tree
 - how to get there.

if you can get there in one edge.

Every vertex has a key and a parent

Until all the vertices are reached:

Can't reach x yet x is "active"

Can reach x

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are reached:

Activate the unreached vertex u with the smallest key.

Can't reach x yet x is "active"

Can reach x

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- for each of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u

Can't reach x yet x is "active"

Can reach x

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- for each of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

Can't reach x yet x is "active"

Can reach x

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- for each of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

Can't reach x yet x is "active"

Can reach x

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- for each of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

Can't reach x yet x is "active"

Can reach x

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- for each of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

Can't reach x yet x is "active"

Can reach x

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- for each of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

Can't reach x yet x is "active"

Can reach x

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- for each of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

Can't reach x yet x is "active"

Can reach x

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- for each of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

Can't reach x yet x is "active"

Can reach x

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- for each of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

Can't reach x yet x is "active"

Can reach x

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- for each of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

Can't reach x yet x is "active"

Can reach x

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- for each of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

Can't reach x yet x is "active"
Can reach x

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- for each of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

Can't reach x yet x is "active"
Can reach x

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- for each of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

Can't reach x yet x is "active"

Can reach x

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- for each of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

Can't reach x yet x is "active"

Can reach x

k[x] is the distance of x from the growing tree

Every vertex has a key and a parent

Until all the vertices are **reached**:

- Activate the unreached vertex u with the smallest key.
- for each of u's neighbors v:
 - k[v] = min(k[v], weight(u,v))
 - if k[v] updated, p[v] = u
- Mark u as reached, and add (p[u],u) to MST.

Can't reach x yet x is "active"

Can reach x

k[x] is the distance of x from the growing tree

This should look pretty familiar

- Very similar to Dijkstra's algorithm!
- Differences:
 - 1. Keep track of p[v] in order to return a tree at the end
 - But Dijkstra's can do that too, that's not a big difference.
 - 2. Instead of d[v] which we update by
 - d[v] = min(d[v], d[u] + w(u,v))
 we keep k[v] which we update by

k[v] = min(k[v], w(u,v))

• To see the difference, consider:

Thing 2 is the big difference.

One thing that is similar:

Running time

- Exactly the same as Dijkstra:
 - O(mlog(n)) using a Red-Black tree as a priority queue.
 - O(m + nlog(n)) amortized time if we use a Fibonacci Heap.

Two questions

- 1. Does it work?
 - That is, does it actually return a MST?
 - Yes!
- 2. How do we actually implement this?
 - the pseudocode above says "slowPrim"...
 - Implement it basically the same way we'd implement Dijkstra!

What have we learned?

- Prim's algorithm greedily grows a tree
 - smells a lot like Dijkstra's algorithm
- It finds a Minimum Spanning Tree!
 - in time O(mlog(n)) if we implement it with a Red-Black Tree.
 - In amortized time O(m + nlog(n)) with a Fibonacci heap.
- To prove it worked, we followed the same recipe for greedy algorithms we saw last time.
 - Show that, at every step, we don't rule out success.

That's not the only greedy algorithm for MST!

We've discovered Kruskal's algorithm!

- slowKruskal(G = (V,E)):
 - Sort the edges in E by non-decreasing weight.
 - MST = {}
 - **for** e in E (in sorted order):

 m iterations through this loop
 - if adding e to MST won't cause a cycle:
 - add e to MST.

How do we check this?

return MST

How **would** you figure out if added e would make a cycle in this algorithm?

Naively, the running time is ???:

- For each of m iterations of the for loop:
 - Check if adding e would cause a cycle...

Two questions

- 1. Does it work?
 - That is, does it actually return a MST?

- 2. How do we actually implement this?
 - the pseudocode above says "slowKruskal"...

At each step of Kruskal's, we are maintaining a forest.

At each step of Kruskal's, we are maintaining a forest.

A **forest** is a collection of disjoint trees

At each step of Kruskal's, we are maintaining a forest.

When we add an edge, we merge two trees:

A **forest** is a collection of disjoint trees

At each step of Kruskal's, we are maintaining a forest.

When we add an edge, we merge two trees:

A **forest** is a collection of disjoint trees

When we add an edge, we merge two trees:

We never add an edge within a tree since that would create a cycle.

Keep the trees in a special data structure

Union-find data structure also called disjoint-set data structure

- Used for storing collections of sets
- Supports:
 - makeSet(u): create a set {u}
 - find(u): return the set that u is in
 - union(u,v): merge the set that u is in with the set that v is in.

```
makeSet(x)
makeSet(y)
makeSet(z)
union(x,y)
```


Union-find data structure also called disjoint-set data structure

- Used for storing collections of sets
- Supports:
 - makeSet(u): create a set {u}
 - find(u): return the set that u is in
 - union(u,v): merge the set that u is in with the set that v is in.

```
makeSet(x)
makeSet(y)
makeSet(z)
union(x,y)
```


Union-find data structure also called disjoint-set data structure

- Used for storing collections of sets
- Supports:
 - makeSet(u): create a set {u}
 - find(u): return the set that u is in
 - union(u,v): merge the set that u is in with the set that v is in.

```
makeSet(x)
makeSet(y)
makeSet(z)

union(x,y)

find(x)
```


Kruskal pseudo-code

return MST

```
kruskal(G = (V,E)):
Sort E by weight in non-decreasing order
MST = {} // initialize an empty tree
for v in V:

makeSet(v) // put each vertex in its own tree in the forest

for (u,v) in E: // go through the edges in sorted order
if find(u)!= find(v): // if u and v are not in the same tree
add (u,v) to MST
union(u,v) // merge u's tree with v's tree
```

To start, every vertex is in its own tree.

Running time

- Sorting the edges takes O(m log(n))
 - In practice, if the weights are small integers we can use radixSort and take time O(m)
- For the rest:
 - n calls to makeSet
 - put each vertex in its own set
 - 2m calls to find
 - for each edge, **find** its endpoints
 - n calls to union
 - we will never add more than n-1 edges to the tree,
 - so we will never call union more than n-1 times.
- Total running time:
 - Worst-case O(mlog(n)), just like Prim with an RBtree.
 - Closer to O(m) if you can do radixSort

In practice, each of makeSet, find, and union run in constant time*

*technically, they run in *amortized time* $O(\alpha(n))$, where $\alpha(n)$ is the *inverse Ackerman function*. $\alpha(n) \leq 4$ provided that n is smaller than the number of atoms in the universe.

Two questions

1. Does it work?

That is, does it actually return a MST?

- 2. How do we actually implement this?
 - the pseudocode above says "slowKruskal"...
 - Worst-case running time O(mlog(n)) using a union-find data structure.

Does it work?

- We need to show that our greedy choices don't rule out success.
- That is, at every step:
 - There exists an MST that contains all of the edges we have added so far.
- Now it is time to use our lemma!

again!

Lemma

- Let S be a set of edges, and consider a cut that respects S.
- Suppose there is an MST containing S.
- Let {u,v} be a light edge.
- Then there is an MST containing S ∪ {{u,v}}

- Assume that our choices S so far don't rule out success.
 - There is an MST extending them
- The next edge we add will merge two trees, T1, T2

- Assume that our choices S so far don't rule out success.
 - There is an MST extending them
- The next edge we add will merge two trees, T1, T2

- Assume that our choices S so far don't rule out success.
 - There is an MST extending them
- The next edge we add will merge two trees, T1, T2
- Consider the cut {T1, V T1}.

- Assume that our choices **S** so far don't rule out success.
 - There is an MST extending them
- The next edge we add will merge two trees, T1, T2
- Consider the cut {T1, V T1}. This cut respects S This is the Our new edge is light for the cut next edge By the Lemma, that edge is safe to add There is still an MST extending 14 the new set S is the set of 116 edges selected so far.

Good news

• Our greedy choices don't rule out success.

 This is enough (along with an argument by induction) to guarantee correctness of Kruskal's algorithm.

Two questions

- 1. Does it work?
 - That is, does it actually return a MST?
 - Yes
- 2. How do we actually implement this?
 - the pseudocode above says "slowKruskal"...
 - Using a union-find data structure!

What have we learned?

- Kruskal's algorithm greedily grows a forest
- It finds a Minimum Spanning Tree in time O(mlog(n))
 - if we implement it with a Union-Find data structure
 - if the edge weights are reasonably-sized integers and we ignore the inverse Ackerman function, basically O(m) in practice.

- To prove it worked, we followed the same recipe for greedy algorithms we saw last time.
 - Show that, at every step, we don't rule out success.

Compare and contrast

• Prim:

- Grows a tree.
- Time O(mlog(n)) with a red-black tree
- Time O(m + nlog(n)) with a Fibonacci heap

Kruskal:

- · Grows a forest.
- Time O(mlog(n)) with a union-find data structure
- If you can do radixSort on the edge weights, morally O(m)

age weights, morally O(m)

Kruskal might be a better idea on sparse graphs if you can Sort edge weights

Prim might be a better idea on dense graphs if you can't Sort edge weights

Both Prim and Kruskal

- Greedy algorithms for MST.
- Similar reasoning:
 - Optimal substructure: subgraphs generated by cuts.
 - The way to make safe choices is to choose light edges crossing the cut.

Can we do better?

State-of-the-art MST on connected undirected graphs

- Karger-Klein-Tarjan 1995:
 - O(m) time randomized algorithm
- Chazelle 2000:
 - O(m· $\alpha(n)$) time deterministic algorithm
- Pettie-Ramachandran 2002:

• O The optimal number of comparisons $N^*(n,m)$ you need to solve the problem, whatever that is...

What is this number? Do we need that silly $\alpha(n)$? Open questions!

Recap

- Two algorithms for Minimum Spanning Tree
 - Prim's algorithm
 - Kruskal's algorithm
- Both are (more) examples of greedy algorithms!
 - Make a series of choices.
 - Show that at each step, your choice does not rule out success.
 - At the end of the day, you haven't ruled out success, so you must be successful.

NEXT LECTURE

- Divide and Conquer
- Mergesort
- Counting Inversions
- · Closest pair of points
- KaratsubaMultiplication

Week	Date	Topics
1	22 Feb	Introduction. Some representative problems
2	1 March	Stable Matching
3	8 March	Basics of algorithm analysis.
4	15 March	Graphs (Project 1 announced)
5	22 March	Greedy algorithms I
6	29 March	Greedy algorithms II (Project 2 announced)
7	5 April	Divide and conquer
8	12 April	Midterm
9	19 April	Dynamic Programming I
10	26 April	Dynamic Programming II (Project 3 announced)
11	3 May	BREAK
12	10 May	Network Flow-I
13	17 May	Network Flow II
14	24 May	NP and computational intractability I
15	31 May	NP and computational intractability II