DS 3

Exercice 1. On s'intéresse dans cet exercice aux sommes

$$C_n(x) = \sum_{k=0}^n \cos(kx)$$
 et $S_n(x) = \sum_{k=0}^n \sin(kx)$

- 1. Soit S l'ensemble des $x \in \mathbb{R}$ tel que $e^{ix} = 1$. Déterminer S.
- 2. Déterminer $C_n(x)$ en fonction de $n \in \mathbb{N}$ pour $x \in S$.
- 3. Rappeler la valeur de $\sum_{k=0}^{n} q^k$ en fonction de $n \in \mathbb{N}$ pour $q \neq 1$ et en déduire la valeur de $\sum_{k=0}^{n} e^{ikx}$ en fonction de n pour $x \notin S$.
- 4. On considère $Z_n(x) = C_n(x) + iS_n(x)$. Montrer pour $x \notin S$:

$$Z_n(x) = e^{i\frac{nx}{2}} \frac{\sin\left(\frac{(n+1)x}{2}\right)}{\sin\left(\frac{x}{2}\right)}$$

5. En déduire la valeur de $C_n(x)$ en fonction de x, pour $x \notin S$.

Exercice 2. On s'intéresse dans cet exercice à la suite $(u_n)_{n\in\mathbb{N}}$ qui vérifie les relations suivantes :

$$(R): u_{n+1} = 2u_n + n^2$$
 et $(CI)u_0 = 1$

On pose : $\forall n \in \mathbb{N}, v_n = an^2 + bn + c$ où (a, b, c) sont trois réels.

1. Déterminer les triplets $(a, b, c) \in \mathbb{R}^3$ tel que :

$$\forall n \in \mathbb{N}, \, v_{n+1} = 2v_n + n^2$$

- 2. Soit $(v_n)_{n\in\mathbb{N}}$ une des suites précédentes et $(x_n)_{n\in\mathbb{N}}$ la suite définie par $x_n=u_n-v_n$. Montrer que $(x_n)_{n\in\mathbb{N}}$ est géométrique.
- 3. En déduire l'expression de x_n en fonction de n puis de u_n .

Exercice 3. 1. Donner en fonction du paramétre $\lambda \in \mathbb{R}$ le rang du système :

$$(S_{\lambda}): \begin{cases} 8x + 5y = \lambda x \\ -10x - 7y = \lambda y \end{cases}$$

- 2. On appelle Σ l'ensemble des valeurs telles que le système (S_{λ}) n'est pas de Cramer. Déterminer Σ .
- 3. Résoudre (S_{λ}) pour $\lambda \in \Sigma$.
- 4. Résoudre (S_{λ}) pour $\lambda \notin \Sigma$.

Exercice 4. On s'intéresse dans cet exercice aux suites $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ qui vérifient les relations suivantes 1 :

$$(R): \begin{cases} u_{n+1} = 8u_n + 5v_n \\ v_{n+1} = -10u_n - 7v_n \end{cases}$$
 et $u_0 = 1, v_0 = 1.$

On propose deux solutions distinctes.

^{1.} Bien que les coéfficients soient les mêmes que dans l'exercice précédent les deux exercices sont indépendants.

Méthode 1

- 1. On considère $X_n = 2u_n + v_n$ et $Y_n = u_n + v_n$. Montrer que $(X_n)_{n \in \mathbb{N}}$ et $(Y_n)_{n \in \mathbb{N}}$ sont géométriques.
- 2. En déduire la valeur de X_n et Y_n en fonction de n.
- 3. Résoudre le système d'inconnue $(U,V) \in \mathbb{R}^2$ et de paramètres $(X,Y) \in \mathbb{R}^2$

$$(P): \left\{ \begin{array}{ll} 2U+V & =X \\ U+V & =Y \end{array} \right.$$

- 4. En déduire l'expression de u_n et v_n en fonction de X_n et Y_n .
- 5. Conclure en donnant l'expression de X_n en fonction de n.

Méthode 2

1. A l'aide 2 de la relation (R), montrer que pour tout $n \in \mathbb{N}$

$$u_{n+2} = u_{n+1} + 6u_n$$

2. En déduire l'expression de $(u_n)_{n\in\mathbb{N}}$ en fonction de $n\in\mathbb{N}$.

Exercice 5. Pour chaque script, dire ce qu'affiche la console :

- Script1.py
- $_{1} a=0$
- $_{2}$ n=10
- 3 for i in range(n):
- $a=a+i^3$
- 5 print(a/25)
- 2. Script2.py
- $_{1} a=0$
- 2 x=3.1415926
- 3 while a<x:
- a = a + 1
- 5 print(a)

- 3. Script3.py On rappelle que floor calcule la partie entière d'un nombre
- 1 from math import floor
 2 x=12
 3 a=0
 4 b=100
 5 c=50
 6 for i in range(4):
 7 if c>x:
 8 b=c
 9 c=floor((a+b)/2)
 10 else:
 11 a=c
 12 c=floor((a+b)/2)
 13 print(a,b,c)
- 4. Script4.py
- 1 a=78
- 2 for i in range(1,79):
- if a%i==0:
- 4 print(i)
- 5. Ecrire un script Python qui permet d'afficher les termes de 0 à 100 de la suite $(u_n)_{n\in\mathbb{N}}$, définie par

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+1} = u_n^2 - u_n + 1.$

6. Ecrire un script Python qui permet d'afficher le terme u_{100} de la suite $(u_n)_{n\in\mathbb{N}}$, définie par

$$u_0 = 1, u_1 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+2} = u_{n+1} - u_n^2$.

On pourra ici considérer deux variables u, v qui correspondent respectivement à u_n et u_{n+1}

^{2.} Au cours des calculs il est judicieux de garder des formules factorisées $(5 \times 7 = 7 \times 5)...$