The k clique community finding algorithm

Alexis Gallèpe Ignace Agbogba Marina Leão Lucena

What are k-cliques?

What is a k-clique community?
Union of k-cliques reached by adjacent k-cliques

What is a k-clique community?
Union of k-cliques reached by adjacent k-cliques

From cliques to k-cliques

From cliques to k-cliques

From cliques to k-cliques

Applying the algorithm

1 - get the cliques

2 - get the overlap matrix

2 - get the overlap matrix

3 - get the communities matrix

Delete diagonal elements that are smaller than k Delete off-diagonal elements that are smaller than k-1

Important to notice:

Not all vertices will necessarily be selected to a community

Important to notice:

Not all vertices will necessarily be selected to a community

Communities might overlap

Description of the code

```
get_k_clique(k,graph):
clique = []

for node in graph:
    B = get_neighbours(node,graph)
    for subset in itertools.permutations(B, k-1):
        clique += get_clique(node,k,list(subset),graph)
```


Description of the code

```
get_clique(node,k,B,graph):
A = set()
A.add(node)
while len(B) > 0 and len(A) < k:
    n = B.pop(0)
    A.add(n)
    B = list(set(B).intersection(get_neighbours(n, graph)))
    if k == len(A):
        return {" ".join(sorted(A))}</pre>
```



```
init: A = [1] B = [2, 3] node = 1

it 1: A = [1,2] B = [2, 3] (B = [3] \cap [1,3,4])

it 2: A = [1,2,3] B = [2,3] (B = [] \cap [])

size_of(A) == K \rightarrow return "1 2 3"
```

Complexity of the algorithm

Finding the full set of cliques on a graph:
Non-polynomial problem

Getting the overlap matrix:

Compare each clique (c) = $O(c^2)$

Getting the k-cliques community:

Check half of the elements in the matrix = $O(c^2)$

- First example

- Value of K: 4
- final result

Let's consider the following graph:

- k = 4 : No clique
- K = 3

- final result:

2 communities

Optimization score

Modularity

$$Q = \frac{1}{m} \sum_{s=1}^{K} \left(m_s - \frac{d_s^2}{4m} \right)$$

$$m = 24$$
 $k = 2$

$$m1 = 7$$
 $d1 = 15$

$$m2 = 17$$
 $d2 = 36$

Optimization score

Modularity

Q = 0.34

The stronger the community, the higher the modularity

Influenced by the number of "single" vertices in our final result

Features of the communities

- The size of the created community is strongly (totally) related to the value of K
- There is no established method to select the best value of K
- The community size depends on which kind of community we want

Computation times

After a computation on a very large graph, we remark that:

- the algorithm take a very long time to end
- the longest part of the algorithm is to get all the cliques

Comparison to Louvain

Let's consider the following graph:

Comparison to Louvain

Community obtained with Louvain algorithm:

Comparison to Louvain

Community obtained with K-cliques algorithm:

Upgrades

When we check for the cliques:

```
{2,3} <- get_clique
{3,2} <- get_clique
{2,4} ...
{4,2}
{3,4}
{4,3}
```

```
We could remove every similar subsets, then keep only: \rightarrow {2,3} {2,4} {3,4}
```

Upgrades

Add the nodes which are not in any community based on the number of neighbors they have in the communities.

Questions?

