```
In [ ]: import pandas as pd
        from sklearn.model_selection import train_test_split
        from sklearn.metrics import classification report, accuracy score
        from sklearn.tree import DecisionTreeClassifier, export graphviz
        import graphviz
        import warnings
In [ ]: warnings.filterwarnings("ignore")
        data = pd.read csv('features.csv')
        data.head()
           label FaceRectX FaceRectY FaceRectWidth FaceRectHeight FaceScore
Out[ ]:
                                                                           Pitch
                                                                                     Roll
                                                                                              Yaw
                                                                                                    AUs1 ...
                                                                                                                x 63
                                                                                                                         y 63
                                                                                                                                 x 64
                  -0.31715
                            -0.29662
                                         36.38660
                                                       47.85770
                                                                 0.99359
                                                                         -9.59011
                                                                                  12.72161
                                                                                          -28.42508 0.29705 ... 51.34946 49.90415 47.72598 47.
        0 Angry
                                                                          6.27818
                                                                                           1 Angry
                   3.02009
                            -1.33738
                                         42.36711
                                                       50.01836
                                                                 0.95564
                                                                                   1.67929
```

2 Angry 0.98461 -1.29084 35.94039 47.50459 0.73074 -64.88136 -61.70474 -8.59568 -12.81338 **3** Angry 5.36803 -0.93098 32.32775 44.01271 0.98712 -4.51140 0.36227 ... 47.19149 46.04761 44.87098 44. **4** Angry 2.61129 -0.59984 42.42387 48.76449 0.98044 6.68759 7.24873

5 rows × 165 columns

Out[

1: X = data.drop("label", axis=1) y = data["label"] X.head()

]:	FaceRectX	FaceRectY	FaceRectWidth	FaceRectHeight	FaceScore	Pitch	Roll	Yaw	AUs1	AUs2	•••	x_63	y_63	x_64	
(-0.31715	-0.29662	36.38660	47.85770	0.99359	-9.59011	12.72161	-28.42508	0.29705	0.11408		51.34946	49.90415	47.72598	4
1	3.02009	-1.33738	42.36711	50.01836	0.95564	6.27818	1.67929	-0.37270	0.31780	0.21831		57.55396	54.86165	50.38312	4
2	0.98461	-1.29084	35.94039	47.50459	0.73074	-64.88136	-61.70474	70.54467	0.77023	0.41684		48.56225	47.52279	46.07655	4
3	5.36803	-0.93098	32.32775	44.01271	0.98712	-8.59568	-12.81338	0.20218	0.33113	0.47253		45.59402	43.52846	39.25653	3
4	2.61129	-0.59984	42.42387	48.76449	0.98044	6.68759	7.24873	-4.51140	0.36227	0.28799		47.19149	46.04761	44.87098	4

5 rows × 164 columns

```
In [ ]: y.head()
             Angry
Out[]:
             Angry
             Angry
        3
             Angry
             Angry
        Name: label, dtype: object
In [ ]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, stratify=y, random_state=42)
        print(f"X train shape: {X train.shape}")
        print(f"X_test shape: {X_test.shape}")
        print(f"y_train shape: {y_train.shape}")
        print(f"y_test shape: {y_test.shape}")
        X_train shape: (122, 164)
        X_test shape: (53, 164)
        y_train shape: (122,)
        y_test shape: (53,)
In [ ]: classify = DecisionTreeClassifier(criterion='gini',max_leaf_nodes=8).fit(X train,y train)
         data = export_graphviz(classify, out_file=None,
                                   feature names=X.columns,
                                    class_names=classify.classes_,
                                   filled=True, rounded=True,
                                    special characters=True)
         graph=graphviz.Source(data)
        graph.render(filename='graph', format='png', cleanup=True)
         'graph.png'
Out[ ]:
In [ ]: y_pred = classify.predict(X_test)
In [ ]: print("Decision Tree Classifier")
        print(classification_report(y_test, y_pred))
         print("Accuracy:", accuracy_score(y_test, y_pred))
```

Decision Tree	Classifier			
	precision	recall	f1-score	support
Angry	0.20	0.14	0.17	7
Disgusted	0.00	0.00	0.00	7
Fear	0.23	0.38	0.29	8
Нарру	0.80	0.50	0.62	8
Neutral	0.30	0.38	0.33	8
Sad	0.12	0.14	0.13	7
Surprised	0.67	0.50	0.57	8
accuracy			0.30	53
macro avg	0.33	0.29	0.30	53
weighted avg	0.34	0.30	0.31	53

Accuracy: 0.3018867924528302