

Sistemas Inteligentes Híbridos

Eduardo José M. V. dos Santos – <u>ejmvs@cin.ufpe.br</u>
Renato Moura Dantas – <u>rmd2@cin.ufpe.br</u>
Karina Mota Silva – <u>kms3@cin.ufpe.br</u>

Professor: Cleber Zanchettin

Apresentação

- Introdução
 - Arquitetura básica da Rede MLP
 - Objetivo
 - Definições
 - Backpropagation
 - Inteligência de enxames
 - PSO (Particle Swarm Optimization)
 - FSS (Fish School Search)
- Experimentos
- Resultados
- Gráficos
- Conclusão

Introdução (Objetivo)

- Algoritmos utilizados para treinamento
 - Backpropagation
 - Particle Swarm Optimization
 - Fish School Search
- Treinamento da Rede MLP
- Análise comparativa dos processos de treinamento

Introdução (Definições - backpropagation)

- Modo de treinamento supervisionado;
- A rede aprende um conjunto pré-definido de pares de exemplos de entrada/saída em ciclos de propagação/adaptação;

Introdução (Definições - backpropagation)

Inicialização

→ Inicializa a rede com pesos randômicos e pequenos

Treinamento (Para cada padrão do conjunto de treinamento)

- → Loop até que o erro de cada neurônio de saída seja ≤ tolerância, para todos os padrões do conjunto de treinamento ou quantidade de loops seja alcançada. (Mean Squared Error);
- 1. Calculam-se as saídas dos neurônios, começando da primeira camada escondida até a camada de saída;
- 2. Calcula-se o erro para cada neurônio da camada de saída. Se erro ≤ tolerância, para todos os neurônios, volta ao passo 1;
- 3. Atualizam-se os pesos de cada neurônio, começando pela camada de saída, até a primeira camada escondida;
- 4. Volta-se ao passo 1 caso a diferença entre a saída da rede e a resposta desejada seja maior que um determinado limite especificado pelo usuário

- Designa sistemas de inteligência artificial onde o comportamento coletivo dos indivíduos em uma população causa simples soluções coerentes ou padrões a surgir.
- Tentativa de projetar algoritmos ou dispositivos distribuídos de solução de problemas sem ter um controle centralizado, inspirado no comportamento coletivo de agentes sociais e outras sociedades animais.

Introdução (Definições - PSO)

- Inspirado no comportamento de bandos de pássaros.
- Busca por alimentos e a interação entre aves ao longo do voo são modeladas como um mecanismo de otimização;
- Área sobrevoada é equivalente ao espaço de busca e encontrar o local com comida corresponde a encontrar a solução ótima;
- O algoritmo é modelado por pássaros (chamados de partículas) que fazem uso de sua experiência e da experiência do próprio bando para encontrar a melhor região do espaço de busca.

Introdução (Definições - PSO)

Inicialização

→ Inicialmente gera-se n partículas com posições e velocidades aleatórias;

Treinamento

- → Loop até que o erro de cada partícula solução seja ≤ tolerância, para todos os padrões do conjunto de treinamento ou quantidade de loops seja alcançada. (Mean Squared Error);
- 1. Ajuste do Pbest de cada partícula: compara-se a melhor posição encontrada pela respectiva partícula:
- 2. Ajuste do Gbest: compara-se a melhor posição encontrada na população;
- 3. Atualiza-se a velocidade e posição a partir das equações:

 $vi = wvi + \eta 1.rand().(pbest - xi) + \eta 2.rand().(gbest - xi)$

xi = xi + vi

nas quais:

- η1 (confia em si) e η2 (confia no enxame) são taxas de cognição, ou de aprendizagem social;
- pbest é a melhor posição em que a partícula ai já esteve
- gbest é a melhor posição em que algum vizinho de ai já esteve.
- rand() é um número aleatório não inteiro que varia de 0 a 1.
- 4. Volte para o Passo 1, repetir enquanto um critério pré-estabelecido não é alcançado.

PSO

- Vantagens
 - Insensível a mudança de escala das variáveis;
 - Implementação simples;
 - Adaptável a computadores paralelos;
 - Não requer cálculo de derivadas;
 - Poucos parâmetros para serem definidos pelo usuário;
 - Bom para encontrar o mínimo global;
- Desvantagens
 - Lento no ajuste fino da solução.

Introdução (FSS)

- Inspirado no comportamento de cardumes de peixes.
- Busca por alimento e a interação entre os peixes são modelados como um mecanismo de otimização;
- Área coberta pelo cardume é equivalente ao espaço de busca e encontrar o local com mais comida disponível corresponde a encontrar a solução ótima;
- O algoritmo é modelado por peixes que fazem uso de sua experiência e da experiência do próprio bando para encontrar a melhor região do espaço de busca.
- O fator evolutivo no algoritmo é caracterizado pelo peso de cada peixe.

Introdução (FSS)

Feeding operator

$$W_{i}(t+1) = W_{i}(t) + \frac{f[x_{i}(t+1)] - f[x_{i}(t)]}{\max\{|f[x_{i}(t+1)] - f[x_{i}(t)]|\}}$$

Collective-instintic operator

$$\sum_{x_{i}(t+1)=}^{\rho} \sum_{x_{i}(t)}^{\rho} \frac{\sum_{i=1}^{N} \Delta x_{ind i}^{\rho} \{f[x_{i}(t+1)] - f[x_{i}(t)]\}}{\sum_{i=1}^{N} \{f[x_{i}(t+1)] - f[x_{i}(t)]\}}$$

Introdução (FSS)

Collective-volitive operator

$$Bari(t) = \frac{\sum_{i=1}^{N} x_i(t) W_i(t)}{\sum_{i=1}^{N} x_i(t)}$$

$$\dot{x}_{i}(t+1) = \dot{x}_{i}(t) - step_{vol}.rand.[\dot{x}_{i}(t) - Bari(t)]$$

$$\dot{x}_{i}(t+1) = \dot{x}_{i}(t) + step_{vol}.rand. \left[\dot{x}_{i}(t) - Bari(t)\right]$$

Introdução (Definições - FSS)

Inicialização

→ Inicializa do cardume de peixes;

Treinamento

- → Loop até que o erro de cada peixe(solução) ≤ tolerância, para todos os padrões do conjunto de treinamento ou a quantidade de loops máxima seja alcançada. (Mean Squared Error);
- 1. Calcula-se o passo individual de cada peixe. Executa operador individual, onde cada peixe vai andar no espaço de busca para achar um lugar com comida abundante.
- 2. Executa operador de alimentação, onde o peso de cada peixe é atualizado de acordo com sua posição atual no espaço de busca.
- 3. Realiza operador coletivo de instinto. Atualiza a posição de todos os peixes de acordo com o movimento dos peixes que foram bem sucedidos no passo individual.
- 4. Realiza operador coletivo de controle do cardume. O cardume é dilatado ou comprimido de acordo com o peso total do mesmo. Caso o cardume esteja perdendo peso, vai ser dilatado para buscar de forma mais ampla. Caso contrário, contrai para focar a busca de forma mais local.
- 5. Caso não cumpra os requisitos de saída do loop, volta ao ponto 1.

Experimentos

- Experimentos executados sobre o dataset íris UCI
 - Número de instancias: 150
 - Atributos
 - sepal length in cm
 - sepal width in cm
 - petal length in cm
 - petal width in cm
 - Classe
 - Iris Setosa (1,0,0)
 - Iris Versicolour (0,1,0)
 - Iris Virginica (0,0,1)
 - Numero de Neurônios na Camada Entrada: 4
 - Numero de Neuronios na Camada Escondida: 4
 - Numero de Neurônios na Camada Saída: 3
 - Função de ativação: sigmoide

Experimentos

- Algoritmos realizam critério de parada para que meansquarederror < 0.003 ou quantidade de iterações sejam realizadas;
- Projeto desenvolvido em Java
- Disponível em:
 - https://github.com/edumarcelino/br.ufpe.cin.mlp.fss.pso/

Experimentos (configurações e cenários)

- Os algoritmos foram executados 30 vezes, com o método 10cross-fold validation;
- Para todos os algoritmos foram utilizados os mesmos folds nas mesmas execuções;

PSO

- PROB DEATH = 0.005;
- ERRO PARADA = 0.003;
- w = 0.729 (peso de inercia)
- c1 = 1.49445; (confia na partícula individual)
- c2 = 1.49445 (confia no social enxame)
- r1, r2 (randômico entre 0 e 1)

FSS

- ERRO PARADA = 0.003;
- WEIGHT MAX = 2500;
- WEIGHT MIN = 100:
- STEP IND INCIAL = 10.0;
- STEP COLECTIVE INCIAL = 0.1;
- STEP IND FINAL = 1.0;
- STEP COLECTIVE_FINAL = 1.0;

Experimentos (distribuição das classes)

MLP (BackPropagation) - RESULTADOS

Camada escondida: 4 neurônios Taxa de aprendizagem: 0.1

Camada escondida: 4 neurônios Taxa de aprendizagem: 1.0

Época	Acertos médios com intervalo de confiança 95%	Execução(ms)
1	[0.8901497±0.001916482]	1280
2	[0.8977941±0.001256433]	1332
3	[0.9046496±0.001510149]	1399
4	[0.9097195±0.0004997302]	1449
5	[0.9118233±0.0007238652]	1587
10	[0.9309946±0.0004073444]	1921
20	[0.9494725±0.000569533]	2593
50	[0.9502167±0.0004239025]	5426
100	[0.9520389 ±0.001410334]	15110

Época	Acertos médios com intervalo de confiança 95%	Execução(ms)
1	[0.7056305±0.00153062]	730
2	[0.8239816±0.001116979]	755
3	[0.8897426±0.002350013]	877
4	[0.9111501±0.001739251]	868
5	[0.9155942±0.001462063]	962
10	[0.9277734±0.0008893731]	1331
20	[0.924929 ± 0.001828787]	2031
50	[0.9276526±0.002409297]	4276
100	[0.939955±0.002678906]	8108

MLP (BackPropagation) - RESULTADOS

Camada escondida: 4 neurônios Taxa de aprendizagem: 0.001

Época	Acertos médios com intervalo de confiança 95%	Execução(ms)
1	[0.9317719±0.0033382]	88747
2	[0.9357378±0.0031015]	85512
3	[0.9317719±0.0033382]	118647
4	[0.9396237±0,0026409]	93434
5	[0.9383288±0.0029379]	87471
10	[0.9382478±0.0022178]	96930
20	[0.9400964±0.002554]	86822
50	[0.9396549±0.0021157]	95875
100	[0.9437902 ± 0,0023357]	93597

Camada escondida: 4 neurônios Taxa de aprendizagem: 0.01

Época	Acertos médios com intervalo de confiança 95%	Execução(ms)
1	[0.9422698±0.002481]	10555
2	[0.9393003±0.0028468]	9130
3	[0.9452869±0.0025806]	9137
4	[0.939676 ± 0.0023803]	11630
5	[0.939676 ± 0.0025119]	9201
10	[0.9478994±0.0028932]	9444
20	[0.9509932±0.0015956]	10432
50	[0.970392 ± 0.001039785]	12221
100	[0.9774542 ± 0.000607109]	16040

(Backpropagation – tamanho tx_aprendizagem, época e acertos medios)

MLP (FSS) - RESULTADOS

Camada escondida: 4 neurônios NUM_MAX_ITERACOES = 2000 ERRO_PARADA = 0.003

# Peixes	Acertos médios com intervalo de
NUM_MAX_ITERACOES = 1 ERRO_PARADA = 0.00	

# Peixes	Acertos médios com intervalo de confiança 95%	Execução(ms)
10	[0.7400622±0.002618108]	2079332
20	[0.75131±0.00327451]	4065272
50	[0.8263686±0.007612596]	8997304
100	[0.8651397 ± 0.003826757]	18071344

# Peixes	Acertos médios com intervalo de confiança 95%	Execução(ms)
10	[0.6976257±0.004254434]	949967
20	[0.7384432±0.01146071]	2047036
50	[0.7694533±0.00412913]	5065341
100	[0.8148551 ± 0.004396531]	10081589

Camada escondida: 4 neurônios

Camada escondida: 4 neurônios NUM_MAX_ITERACOES = 500 ERRO PARADA = 0.003 Camada escondida: 4 neurônios NUM_MAX_ITERACOES = 100 ERRO PARADA = 0.003

# Peixes	Acertos médios com intervalo de confiança 95%	Execução(ms)
10	[0.6952826±0.004176539]	502502
20	[0.7061519±0.006418387]	972441
50	[0.7257538±0.01153941]	2377666
100	[0.7840414 ± 0.002221195]	4477020

# Peixes	Acertos médios com intervalo de confiança 95%	Execução(ms)
10	[0.6425877±0.006925593]	102616
20	[0.6576215±0.002606142]	200753
50	[0.6804142±0.003423674]	462885
100	[0.7044392 ± 0.003033821]	982380

MLP (PSO) - RESULTADOS

Camada escondida: 4 neurônios MAX_EPOCHS = 2000 ERRO_PARADA = 0.003

Camada escondida: 4 neurônios		
$MAX_EPOCH = 1000$		
$ERRO_PARADA = 0.003$		

Partículas	Acertos médios com intervalo de confiança 95%	Execução(ms)
10	[0.8878762±0.002414567]	672780
20	[0.9353343±0.003125277]	1343399
50	[0.9497194±0.002405381]	3331224
100	[0.9556076 ± 0.001786972]	6666725

Partículas	Acertos médios com intervalo de confiança 95%	Execução(ms)
10	[0.8628827±0.005976809]	342155
20	[0.8672212±0.007283481]	665051
50	[0.9215726±0.003783147]	1727129
100	[0.9441913 ± 0.008684131]	3322209

Camada escondida: 4 neurônios MAX_EPOCH = 500 ERRO_PARADA = 0.003 Camada escondida: 4 neurônios MAX_EPOCH = 100 ERRO_PARADA = 0.003

Partículas	Acertos médios com intervalo de confiança 95%	Execução(ms)
10	[0.8341746±0.003803305]	169333
20	[0.8570031±0.008358022]	343497
50	[0.9290368±0.003925289]	852360
100	0.9295367 ± 0.007094071	1701115

Partículas	Acertos médios com intervalo de confiança 95%	Execução(ms)
10	[0.7597782±0.005690167]	34683
20	[0.8135762±0.004045527]	69089
50	[0.8945273±0.007808492]	174336
100	[0.9068747 ±0.003727385]	346631

Gráficos (acertos médios vs quantidade de execuções)

Gráficos (acertos médios vs tamanho do enxame)

Gráficos (acertos médios vs tempo de execução (ms))

Gráficos (tamanho do enxame vs tempo vs acertos_medios)

Gráficos (tamanho do enxame vs quantidade_execucoes vs acertos_medios)

Gráficos (acertos_médios_tempo_algoritmos)

Conclusões

- Algoritmo backpropagation apresentou melhor tempo de treinamento e melhores resultados, nos cenários;
- Entre as abordagens de enxame, o algoritmo PSO apresentou menor tempo de treinamento e melhores resultados;
- O algoritmo baseado em cardumes de peixes (FSS), possui alto grau de paralelização, sendo assim, seria interessante rodar em ambiente paralelizado e com alto números de peixes;
- Da mesma forma, interessante rodar o PSO em ambiente paralelizado com alto numero de partícula;

Conclusões (trabalhos futuros)

- Realizar os experimentos em outros datasets;
- Incorporar novas técnicas de treinamento baseadas em enxame;
- Executar as versões dos algoritmos paralelizados em GPU e analisar os resultados;

Referências

- MADEIRO, Salomão S.; BASTOS-FILHO, Carmelo J. A.; LIMA NETO, Fernando B. de. "Multimodal Optimization based on Fish School Behavior" to appear in Swarm Intelligence Journal, 2012, Springer. [SUBMITTED]
- BASTOS-FILHO, Carmelo J. A.; LIMA NETO, Fernando B. de. "Fish School Search - Intelligent Algorithms for Optimization", 2011, Short-Course in XI School of Computational Intelligence (X Brazilian Congress on Computational Intelligence), Fortaleza-CE, Brazil.
- KENNEDY, James. Particle swarm optimization. In: Encyclopedia of machine learning. Springer US, 2011. p. 760-766.
- Leung, Henry, and Simon Haykin. "The complex backpropagation algorithm." IEEE Transactions on signal processing 39.9 (1991): 2101-2104.