Dirección

Científica

MIT Haystack Observatory - Program Research

USRP implementation of multi static meteor radar transmit and receive applications

Alexander Valdez Portocarrero

July 22 2019

OUTLINE

- Implementation of Multistatic Radar for Meteor Detection
- Documentation.
- Starting
- . Hardware and Software available.
- Acquisition
- Transmission
- Analyze

•

Implementation of Multistatic RadarMeteor Detection

- MIMO
- MISO
- SIMO
- SISO

Starting

- Coded continuous wave meteor radar
 Juha Vierinen 1, Jorge L. Chau 2, Nico Pfeffer 2, Matthias Clahsen 2, and Gunter Stober 2
 1 MIT Haystack Observatory, Route 40 Westford, 01469 MA, USA
 2 IAP, Kühlungsborn, Germany
- Novel specular meteor radar systems using coherent MIMO techniques to study the mesosphere and lower thermosphere
 Jorge Luis Chau 1, Juan Miguel Urco 1, Juha Pekka Vierinen 2, Ryan Andrew Volz 3, Matthias Clahsen
 - 1, Nico Pfeffer 1, and Jörg Trautner 1
 - 1 Leibniz Institute of Atmospheric Physics at the University of Rostock, Germany
 - 2 UiT Arctic University of Norway, Norway
 - 3 MIT Haystack Observatory, USA
- Radio Array of Portable Interferometric Detectors(RAPID): Design and Applications
 Frank D. Lind, Colin J. Lonsdale, Ryan Volz, Anthea Coster, Chris Eckert, Russ McWhirter, Jim Marchese,
 Robert Schaefer, William Rideout, Reggie Wilcox
 Haystack Observatory- Massachusetts Institute of Technology
- Digital RF 2.0
 Juha Vierinen, William Rideout, Frank Lind, Robert Schaefer
- A multistatic HF beacon network for ionospheric specification in the Peruvian sector
 D. L. Hysell M. A. Milla J. Vierinen

Starting

- Hardware available:
 - USR N310
 - O URSP N200 + BASIC RX
 - USRP N200 + UBXN40
- Software available
 - Gnuradio
 - Uhd
 - Digital_rf
 - https://github.com/MITHaystack/digital_rf
 - Programs: thor.py , tx.py , prc_analyce.py, drf_plot.py and create_waveform.py

ACQUISITION

THOR.py

gnuradio-config-info -v

3.7.13.4

Sistema Operativo LSB Version:

core-9.20170808ubuntu1-noarch:security-9.20170808ubun

tu1-noarch

uhd_config_info --v

UHD

3.14.0.HEAD-0-g6875d061

Distributor ID: Ubuntu

Description: Ubuntu 16.04 LTS

Release: 16.04 Codename: xenial Ubicacion: /home/alex/HaystackOP/

-m 192.168.10.2 -d "A:0" -c ch1 -y "TX/RX" -f 20e6 -F 10e3 -g 20 -b 0 -r 1e6 /data/test

ARGUMENTOS DE ENTRADA		ESCRITURA EN METADATA
-m	MBOARD	sequence_num
-d	subdev	num_subchannels
-c	СН	sample_rate_numerator
-f	Frequency	samples_rate_denominator
-F	OFFSET	init_utc_timestamp
-g	Gain	computer_time
-b	Bandwidth	
-r	rate	
DIR	Path	

TRANSMISION

tx.py

gnuradio-config-info -v

3.7.11

Sistema Operativo

LSB Version:

core-9.20170808ubuntu1-noarch:security-9.20170808ubun

tu1-noarch

uhd_config_info --v

UHD

3.14.0.0-269-g11bbc3c0

Distributor ID: Ubuntu

Description: Ubuntu 18.04.1 LTS

Release: 18.04

Codename: bionic

Ubicacion:

/home/soporte/GNURADIO_TX/uhd/host /examples/python/

python tx.py -m 172.16.5.189 -r 1e6 -f 25.0e6 -d "A:0" -y "TX/RX" -G 1 -g 33 -b 40e6 -l 1 --starttime 2019-07-10T13:05:00Z --duration 240 --sync_source "external" /home/alex//sounder/waveforms/code-l10000-b10-000000.bin

ARGUMENTOS DE ENTRADA	
-m	
-f	freq
-r	rate
-d	subdev
-c	channels
-g	gain
sync	external
-I	duration
-File	File

ANALYZE

prc analyze.py

- create_pseudo_random_code(clen=10000, seed=0)
- periodic_convolution_matrix(envelope, rmin=0, rmax=100)
- create_estimation_matrix

Nranges Number of code(code, rmin=0, rmax=1000, cache=True):

Z= Data of our hdf5 file. (10000)

We get res(100,1000), and finally ---> After fft----> SPEC

100 profiles

10000 Nranges

PROCESAMIENTO

PRC_ANALYZE.py

GNURADIO-COMPANION

EXPERIMENT-METEOR CAMPAIGN

Rx: Thor.py

Tx: Gnuradio companion

Processing: prc_analy

Tx_Program-GNURADIO- COMPANION

PARAMETER OF EXPERIMENT

Parameter	SIMO -CW	
Frequency	25.280 MHz (11.859 meters / 38.9074803 feet)	
Transmitter	250 kHz (out of 500 kHz licensed band), target ERP is 1W with antenna. 1 Transmitter	
Pulse Type	Coded CW	
Code length	10000 (Oversample by a factor of 5)	
Code Type	Pseudorandom	
Rx	Digital RF target recording bandwidth is 250 kHz. For N310, sample at 25.0 MHz with 1.25 MHz of bandwidth, use thor to offset tune 25.280 MHz and produce 250 kHz output as sc16 integer data	
Receiver	a. Haystack Array Pad site with LWA-R antenna, MIT LWA-R LNA, and N310 radio (dual polarization) b. Haystack Office Lab site with LWA-R antenna and N310 radio (dual polarization) c. Lind LWA-R site (N200 radio, 30 MHz LPF, dual polarization)	

PROCESSING

CONCLUSIONS AND RECOMMENDATION

- Successfully run a Meteor Campaign with all instrument available.
- SDR and GNURADIO in general are a powerfull tool to rapid prototyping and implementation.
- Test in laboratory with the 25.280 Mhz and repeat the experiment with more Power.
- Lear more about code continuous wave meteor radar.
- Design a program to acelerate and setup the configuration in USRP N310.
- Design a Web Application for Monitoring SDR in general.

Happyness

WONDERFUL INFRASTRUCTURE

Thank you!

Ciencia para protegernos, ciencia para avanzar.

www.igp.gob.pe

