Meccano octagons

https://github.com/heptagons/meccano/octa

1 Meccano octagons

Figure 1 is the meccano octagon plan which joins two triangles to form an angle of $45^{\circ} + 90^{\circ}$.

1.1 Finding octagons rods

Next golang program find first cases:

```
func octagons_2() {
 1
 2
     for i := 1; i < 60; i++ \{
 3
        for j := 1; j < i; j ++ {
          test := i*i - j*j
 4
          if test \% 2 == 0 {
 5
            f := math.Sqrt(float64(test / 2))
 6
            k := int(f)
 7
            if f = float64(k) {
 8
 9
               if gcd(k, gcd(j, i)) = 1 {
                  fmt.Printf("CD=\%2d\_BC=\%2d\_AB=AD=\%2d n", i, j, k)
10
11
12
13
14
15
16
   func gcd(a, b int) int {
     if b = 0  {
17
18
        return a
```


Figure 1: Meccano octagon plan. Isosceles right triangle ABD has side equals to 4 and hypothenuse BD equals $4\sqrt{2}$. Next to this triangle we form another right triangle BCD with sides 2, 6 and $4\sqrt{2}$. ABC is the internal regular octagon angle since angle $ABC = 45^{\circ}$ and $DBC = 90^{\circ}$.

```
19 | } else {
20 | return gcd(b, a % b)
21 | }
22 |}
```

The program iterates on i and j which corresponds to segments \overline{CD} and \overline{BC} . Then the hipothenuse \overline{DB} is checked to be $\sqrt{2} \times \overline{AB}$ being \overline{AB} and integer.

1.2 Rods results

Program's first results are:

```
CD=3 BC=1 AB=AD=2
1
2
   CD=9 BC=7 AB=AD=4
   CD=11 BC=7 AB=AD=6
3
   CD=17 BC= 1 AB=AD=12
4
   CD=19 BC=17 AB=AD= 6
   CD=27 BC=23 AB=AD=10
   CD=33 BC=17 AB=AD=20
7
8
   CD=33 BC=31 AB=AD= 8
9
   CD=41 BC=23 AB=AD=24
  |CD=43|BC=7|AB=AD=30|
10
11
   CD=51 BC=47 AB=AD=14
   CD=51 BC=49 AB=AD=10
12
   CD=57 BC= 7 AB=AD=40
13
   CD=57 BC=41 AB=AD=28
14
15
   CD=59 BC=41 AB=AD=30
```


Figure 2: Smallest octagon. From first result CD = 3, BC = 1, AB = AD = 2, we scale by 2 to get CD = 6, BC = 2, AB = AD = 4 to have a buildable octagon.

Figure 3: Meccano octagon of size 5 with layout of octagon of size 4. Maximum rod size is $\overline{CD} = 6$. Octagon sizes are $\overline{OB} = \overline{BF} = 5$. $\overline{BE} = 1$, $\overline{DE} = 5$ and $\overline{AD} = 4$.

1.3 Octagon of side 4

At figure 2 we have the smallest octagon of length side 4. For this octagon we take the first result scaled by a factor of 2 in order we can have a right triangle large enough to be fixed by a 3-4-5 triangle (hypothenuse in color green).

1.4 Octagons of sides 5 and 6

At figure 3 we have an octagon of size 5 using the layout of octagon of size 4. At figure 4 we have an octagon of size 6 using the layout of octagon of size 4.

1.5 Octagons of side 7

At figure 5 we have an octagon of size 7 using the program's second result CD = 9BC = 7AB = AD = 4. At figure 6 we have an octagon of size 7 using the program's third result CD = 11BC = 7AB = AD = 6.

Figure 4: Meccano octagon of size 6 with layout of octagon of size 4. Maximum rods sizes are $\overline{OB} = \overline{BF} = \overline{CD} = 6$. $\overline{BE} = 1$, $\overline{DE} = 5$ and $\overline{AD} = 4$.

Figure 5: First meccano octagon of size 7. Size is $\overline{OB} = \overline{BC} = 7$. Largest rod is $\overline{CD} = 9$. Support bars are $\overline{AD} = 4$ and $\overline{DE} = 5$ so distance $\overline{AE} = 3$ while distance $\overline{AB} = \overline{AE} = 4$.

Figure 6: Second meccano octagon of size 7. Size is $\overline{OB} = \overline{BC} = 7$. Largest rod is $\overline{CD} = 11$. Support bars are $\overline{AF} = 4$ and $\overline{FE} = 5$ so distance $\overline{AE} = 3$ while distance $\overline{AB} = \overline{AD} = 6$.