

SagPhrase: Phrase Mining with Tiny Training Sets

A small set of training data may enhance the quality of phrase mining

J. Liu et al., Mining Quality Phrases from Massive Text Corpora. In SIGMOD'15

Integrating phrase mining with phrasal segmentation and classification

SegPhrase+: The Overall Framework

- ClassPhrase: Frequent pattern mining, feature extraction, classification
- SegPhrase: Phrasal segmentation and phrase quality estimation
- SegPhrase+: One more round to enhance mined phrase quality

SegPhrase (a classifier is used)

Small labeled dataset provided by experts or a distant supervised KB (e.g., Wikipedia / DBPedia)

SegPhrase: Pattern Mining and Feature Extraction

Pattern Mining for Candidate Set

- Build a candidate phrases set by frequent pattern mining
 - \square Mining frequent k-grams (k is typically small, e.g., 6 in the experiments)
 - Popularity measured by raw frequent words and phrases mined from the corpus

Feature Extraction: Concordance

 Partition a phrase into two parts to check whether the co-occurrence is significantly higher than pure random

Feature Extraction: Informativeness

- Quality phrases typically start and end with a non-stopword
- "machine learning is" vs. "machine learning"
- Use average IDF over words in the phrase to measure the semantics
- Usually, the probabilities of a quality phrase in quotes, brackets, or connected by hyphen should be higher (punctuations information)
 - e.g., "state-of-the-art"

SegPhrase: Classification Using Tiny Training Sets

- Use tiny training sets (300 labels for 1GB corpus; can also use phrases extracted from KBs)
 Label: indicating whether a phrase is a high quality one
 E.g., "support vector machine": 1; "the experiment shows": 0
 Classification: Construct models to distinguish quality phrases from poor ones
 Use Random Forest algorithm to bootstrap different datasets with limited labels
 Phrasal segmentation can tell which phrase is more appropriate
 Ex: "A standard [feature vector] [machine learning] setup is used to describe"

 Not counted towards the rectified frequency
 - Partition a sequence of words by maximizing the likelihood
 - Consider length penalty and filter out phrases with low rectified frequency
- □ Process: Classification → Phrasal segmentation // SegPhrase
 - → Classification → Phrasal segmentation // SegPhrase+

_

Performance: Precision Recall Curves on DBLP

Datasets:

- Evaluation
 - Wiki Phrases (based on internal links, ~7K high quality phrases)
 - Sampled 500*7 Wikiuncovered phrases: Results evaluated by 3 reviewers
- Compared with other phrasemining methods
 - TF-IDF, C-Value, ConExtr, KEA, and ToPMine
- Also, Segphrase+ is efficient, linearly scalable

Dataset	#docs	#words	#labels
DBLP	2.77M	91.6M	300
Yelp	4.75M	145.1M	300

Experimental Results: Interesting Phrases Generated (From Titles & Abstracts of SIGKDD)

Query	SIGKDD			
Method	SegPhrase+		Chunking (TF-IDF & C-Valu	ie)
1	data mining		data mining	
2	data set		association rule	
3	association rule		knowledge discovery	
4	knowledge discovery		frequent itemset	
5	time series		decision tree	
		1		Only in Chunking
51	association rule r	mining	search space	M
52	rule set	Only in SegPhrase+	domain knowledge	
53	concept drift	711	important problem	
54	knowledge acqui	sition	concurrency control	
55	gene expression	data	conceptual graph	

201	web content		optimal solution	
202	frequent subgraph		semantic relationship	
203	intrusion detection	on 🧳	effective way	A l
204	categorical attribute		space complexity	
205	user preference		small set	

Mining Quality Phrases in Multiple Languages

- Both ToPMine and SegPhrase+ are extensible to mining quality phrases in multiple languages
- SegPhrase+ on Chinese (From Chinese Wikipedia)

- ToPMine on Arabic (From Quran (Fus7a Arabic)(no preprocessing)
 - Experimental results of Arabic phrases:

Those who disbelieve → كفروا In the name من الرحيم of God the Gracious and Merciful

1	Rank	Phrase	In English	
		•••	•••	
6	52	首席_执行官	CEO	
(53	中间_偏右	Middle-right	
			16.3	
8	34	百度_百科	Baidu Pedia	
8	85	热带_气旋	Tropical cyclone	
8	36	中国科学院_院士	Fellow of Chinese Academy of Sciences	
		•••	•••	
1	1001	十大_中文_金曲	Top-10 Chinese Songs	
1	1002	全球_资讯网	Global News Website	
1	1003	天一阁_藏_明代_科举_录_选刊	A Chinese book name	
			•••	
9	9934	国家_戏剧_院	National Theater	
9	9935	谢谢_你	Thank you	

Summary: Pattern Mining Applications: Mining Quality Phrases from Text Data

- From Frequent Pattern Mining to Phrase Mining
- Previous Phrase Mining Methods
- New Methods that Integrate Pattern Mining with Phrase Mining
 - ToPMine: Phrase Mining without Training Data
 - SegPhrase: Phrase Mining with Tiny Training Sets

Recommended Readings

- □ S. Bergsma, E. Pitler, D. Lin, Creating robust supervised classifiers via web-scale n-gram data, ACL'2010
- D. M. Blei and J. D. Lafferty. Visualizing Topics with Multi-Word Expressions. arXiv:0907.1013, 2009
- D.M. Blei, A. Y. Ng, M. I. Jordan, J. D. Lafferty, Latent Dirichlet allocation. JMLR 2003
- K. Church, W. Gale, P. Hanks, D. Hindle. Using Statistics in Lexical Analysis. In U. Zernik (ed.), Lexical Acquisition: Exploiting On-Line Resources to Build a Lexicon. Lawrence Erlbaum, 1991
- M. Danilevsky, C. Wang, N. Desai, X. Ren, J. Guo, J. Han. Automatic Construction and Ranking of Topical Keyphrases on Collections of Short Documents. SDM'14
- A. El-Kishky, Y. Song, C. Wang, C. R. Voss, and J. Han. Scalable Topical Phrase Mining from Text Corpora. VLDB'15
- R. V. Lindsey, W. P. Headden, III, M. J. Stipicevic. A Phrase-Discovering Topic Model Using Hierarchical Pitman-Yor Processes. EMNLP-CoNLL'12.
- J. Liu, J. Shang, C. Wang, X. Ren, J. Han, Mining Quality Phrases from Massive Text Corpora. SIGMOD'15
- A. Parameswaran, H. Garcia-Molina, and A. Rajaraman. Towards the Web of Concepts: Extracting Concepts from Large Datasets. VLDB'10
- X. Wang, A. McCallum, X. Wei. Topical n-grams: Phrase and topic discovery, with an application to information retrieval. ICDM'07

11