Übung 10 zur Vorlesung Analysis für Informatiker, WS 2018/2019

Abgabe bis Mittwoch, 19.12.2018, 12 Uhr

Präsenzaufgaben

Die folgenden Aufgaben werden in der Globalübung am 13.12.2018 bearbeitet und besprochen.

Präsenzaufgabe 3

Es sei $f: \mathbb{R} \longrightarrow \mathbb{R}$ differenzierbar und es gebe ein $a \in \mathbb{R}$ mit f(a) = a. Weiterhin gelte $|f'(x)| < \frac{1}{2}$ für alle $x \in \mathbb{R}$. Wir definieren die Folge $(x_n)_{n \in \mathbb{N}_0}$ mit

$$x_0 \in \mathbb{R}$$
 beliebig, $x_{n+1} = f(x_n)$.

Zeigen Sie, dass $\lim_{n\to\infty} x_n = a$ ist.

Niclas Kruff, Dr.

Hinweis: Zeigen Sie, dass $|x_{n+1} - x_n| \leq \frac{1}{2} \cdot |x_n - x_{n-1}|$ gilt.

Lösung

Mit dem Mittelwertsatz der Differentialrechung existiert für x < y ein $\xi \in (x, y)$ mit

$$f(x) - f(y) = f'(\xi) \cdot (x - y).$$

Mit der Abschätzung |f'(x)| < 1/2 folgt somit:

$$|f(x) - f(y)| < \frac{1}{2} \cdot |x - y|.$$

Damit lässt sich zeigen:

$$|x_{n+1} - x_n| = |f(x_n) - f(x_{n-1})| < 1/2 \cdot |x_n - x_{n-1}|.$$

Sei nun $x_0 \in \mathbb{R}$ beliebig. Per Induktion gilt dann für alle $n \in \mathbb{N}$

$$|x_{n+1} - x_n| < \left(\frac{1}{2}\right)^n \cdot |x_1 - x_0|.$$
 (1)

Der Induktionsanfang für n=1 ist klar mit der bereits gezeigten Ungleichung. Für den Induktionsschluss gelte die Behauptung für ein $n\in\mathbb{N}$, beliebig aber fest. Dann folgt:

$$|x_{n+2} - x_{n+1}| = |f(x_{n+1}) - f(x_n)| < 1/2 \cdot |x_{n+1} - x_n| < 1/2 \cdot (1/2)^n \cdot |x_1 - x_0|$$

= $(1/2)^{n+1} \cdot |x_1 - x_0|$.

Damit erhalten wir allgemeriner für alle $k, m \in \mathbb{N}$:

$$|x_{m+k} - x_k| = |x_{m+k} - x_{m+k-1} + x_{m+k-1} + \dots + x_{k+1} - x_k|$$

$$= \left| \sum_{j=0}^{m-1} x_{m+k-j} - x_{m+k-j-1} \right| \stackrel{(1)}{\leqslant} |x_{m+k} - x_{m+k-1}| + \dots + |x_{k+1} - x_k|$$

$$= \sum_{j=0}^{m-1} |x_{m+k-j} - x_{m+k-j-1}| \leqslant \left((1/2)^{m+k-1} + \dots + (1/2)^k \right) \cdot |x_1 - x_0|$$
Geom. Summenformel
$$(1/2)^k \cdot \frac{1 - (1/2)^m}{1 - (1/2)} \cdot |x_1 - x_0| \stackrel{1/2 < 1}{\leqslant} \frac{(1/2)^k}{1/2} \cdot |x_1 - x_0|.$$

Da $\frac{(1/2)^k}{1/2}=(1/2)^{k-1}\to 0$ gilt für $k\to\infty$, folgt, dass $(x_k)_{k\in\mathbb{N}}$ eine Cauchy-Folge ist und damit nach der Vorlesung auch konvergent ist. Somit existiert der Grenzwert

$$\lim_{n\to\infty}x_n=:b\in\mathbb{R}.$$

Für den Grenzwert gilt dann (Teilfolgenprinzip und Stetigkeit von *f*):

$$b = \lim_{n \to \infty} x_n = \lim_{n \to \infty} f(x_{n-1}) = f\left(\lim_{n \to \infty} x_{n-1}\right) = f(b).$$

Damit ist $b \in \mathbb{R}$ ein Fixpunkt von f. Angenommen es gelte $b \neq a$. Dann folgt:

$$|a - b| = |f(a) - f(b)| \le 1/2 \cdot |a - b| < |a - b|$$

was ein Widerspruch ist.