MATH 601 HOMEWORK (DUE 9/11)

HIDENORI SHINOHARA

Exercise. (1) Show that 2×2 matrices give a functor, M_2 , from the category of rings to itself, $R \mapsto M_2(R)$.

Proof. Let R, R' be rings and $\phi \in \text{Hom}(R, R')$. Let $M_2(\phi) : M_2(R) \to M_2(R')$ be defined such that

$$(M_2(\phi))$$
 $\begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = \begin{bmatrix} \phi(a) & \phi(b) \\ \phi(c) & \phi(d) \end{bmatrix}$.

We claim that M_2 is indeed a functor.

• Claim 1: For any $\phi \in \text{Hom}(R, R')$, $M_2(\phi) \in \text{Hom}(M_2(R), M_2(R'))$. In other words, we want to show that $M_2(\phi)$ is a ring homomorphism for any ϕ .

$$(M_{2}(\phi)) \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} \right) = (M_{2}(\phi)) \left(\begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix} \right)$$

$$= \begin{bmatrix} \phi(a+e) & \phi(b+f) \\ \phi(c+g) & \phi(d+h) \end{bmatrix}$$

$$= \begin{bmatrix} \phi(a) + \phi(e) & \phi(b) + \phi(f) \\ \phi(c) + \phi(g) & \phi(d) + \phi(h) \end{bmatrix}$$

$$= \begin{bmatrix} \phi(a) & \phi(b) \\ \phi(c) & \phi(d) \end{bmatrix} + \begin{bmatrix} \phi(e) & \phi(f) \\ \phi(g) & \phi(h) \end{bmatrix}$$

$$= (M_{2}(\phi)) \begin{bmatrix} a & b \\ c & d \end{bmatrix} + (M_{2}(\phi)) \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$

$$(M_{2}(\phi)) \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \right)$$

$$= (M_{2}(\phi)) \left(\begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix} \right)$$

$$= \begin{bmatrix} \phi(ae + bg) & \phi(af + bh) \\ \phi(ce + dg) & \phi(cf + dh) \end{bmatrix}$$

$$= \begin{bmatrix} \phi(a)\phi(e) + \phi(b)\phi(g) & \phi(a)\phi(f) + \phi(b)\phi(h) \\ \phi(c)\phi(e) + \phi(d)\phi(g) & \phi(c)\phi(f) + \phi(d)\phi(h) \end{bmatrix}$$

$$= \begin{bmatrix} \phi(a) & \phi(b) \\ \phi(c) & \phi(d) \end{bmatrix} \begin{bmatrix} \phi(e) & \phi(f) \\ \phi(g) & \phi(h) \end{bmatrix}$$

$$= (M_{2}(\phi)) \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) (M_{2}(\phi)) \left(\begin{bmatrix} e & f \\ g & h \end{bmatrix} \right)$$

Therefore, $M_2(\phi)$ is indeed a ring homomorphism.

- For any ring R and the identity function Id_R , $M_2(\mathrm{Id}_R)$ is the identity map on $M_2(R)$ because it maps each element in a given matrix to itself.
- Let $f \in \text{Hom}(A, B), g \in \text{Hom}(B, C)$.

$$(M_{2}(f \circ g)) \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = \begin{bmatrix} (f \circ g)(a) & (f \circ g)(b) \\ (f \circ g)(c) & (f \circ g)(d) \end{bmatrix}$$

$$= \begin{bmatrix} f(g(a)) & f(g(b)) \\ f(g(c)) & f(g(d)) \end{bmatrix}$$

$$= M_{2}(f) \begin{pmatrix} \begin{bmatrix} g(a) & g(b) \\ g(c) & g(d) \end{bmatrix} \end{pmatrix}$$

$$= M_{2}(f) \begin{pmatrix} M_{2}(g) \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} \end{pmatrix}$$

$$= (M_{2}(f) \circ M_{2}(g)) \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix}.$$

Therefore, M_2 is indeed a functor.

Exercise. (Problem 8 from More exercises) Consider the subgroup, $D_5 = \langle (12345), (14)(23) \rangle \subset S_5$.

- (1) Set a = (12345) and compute a^{-1} .
- (2) TODO

Proof.

(1) a sends 1 to 2, 2 to 3, \cdots . We want a^{-1} to do the opposite. Thus $a^{-1} = (15432)$. Since (12345)(15432) = (15432)(12345) = (1), (15432) is indeed a^{-1} .

(2) TODO