7 A battery of e.m.f. 4.50 V and negligible internal resistance is connected in series with a fixed resistor of resistance 1200 Ω and a thermistor, as shown in Fig. 7.1.

For Examiner's Use

Fig. 7.1

(a) At room temperature, the thermistor has a resistance of $1800\,\Omega$. Deduce that the potential difference across the thermistor (across AB) is $2.70\,V$.

[2]

(b) A uniform resistance wire PQ of length 1.00 m is now connected in parallel with the resistor and the thermistor, as shown in Fig. 7.2.

Fig. 7.2

A sensitive voltmeter is connected between point B and a moveable contact M on the

For Examiner's Use

wire	∂.
(i)	Explain why, for constant current in the wire, the potential difference between any two points on the wire is proportional to the distance between the points.
	[2]
(ii)	The contact M is moved along PQ until the voltmeter shows zero reading.
	1. State the potential difference between the contact at M and the point Q.
	potential difference = V [1]
	2. Calculate the length of wire between M and Q.
	length = cm [2]
(iii)	The thermistor is warmed slightly. State and explain the effect on the length of wire between M and Q for the voltmeter to remain at zero deflection.
	[0]

7 (a) Define the *resistance* of a resistor.

For
Examiner's
Use

(b) In the circuit of Fig. 7.1, the battery has an e.m.f. of 3.00 V and an internal resistance *r*. R is a variable resistor. The resistance of the ammeter is negligible and the voltmeter has an infinite resistance.

Fig. 7.1

The resistance of R is varied. Fig. 7.2 shows the variation of the power P dissipated in R with the potential difference V across R.

Fig. 7.2

For Examiner's Use

	(i)	Use Fig. 7.2 to determine
		1. the maximum power dissipation in R,
		maximum power =W
		2. the potential difference across R when the maximum power is dissipated.
		potential difference =V [1]
	(ii)	Hence calculate the resistance of R when the maximum power is dissipated.
		resistance = Ω [2]
((iii)	Use your answers in (i) and (ii) to determine the internal resistance r of the battery.
		$r = \dots \Omega$ [3]
(c)	Bv	r = Ω [3] reference to Fig. 7.2, it can be seen that there are two values of potential difference
(c)	V fc	reference to Fig. 7.2, it can be seen that there are two values of potential difference or which the power dissipation is 1.05 W.
(c)	V fo	reference to Fig. 7.2, it can be seen that there are two values of potential difference
(c)	V fo	reference to Fig. 7.2, it can be seen that there are two values of potential difference or which the power dissipation is 1.05 W. te, with a reason, which value of <i>V</i> will result in less power being dissipated in the
(c)	V fo	reference to Fig. 7.2, it can be seen that there are two values of potential difference or which the power dissipation is 1.05 W. te, with a reason, which value of <i>V</i> will result in less power being dissipated in the
(c)	V fo	reference to Fig. 7.2, it can be seen that there are two values of potential difference or which the power dissipation is 1.05 W. te, with a reason, which value of <i>V</i> will result in less power being dissipated in the