Алгебра. Задачи 3

Арунова Анастасия

Содержание

бстрактная алгебра	3
Теория	 3
Задача 1	 5
Задача 2	 5
Задача 3	 6
Задача 4	 7
Задача 5	 7
Задача 6	 8
Задача 7	 9
Задача 8	 10
Задача 9	 11
Задача 10	 12
Задача 11	 16
Задача 12	 17
Задача 13	 19
Задача 14	 20
Задача 15	 21
Задача 16	 23
Задача 17	 24
инейные пространства	25
Теория	 25
Задача 18	 26
Задача 19	 27
Задача 20	 28

Задача 21				•								 			 •							30
Задача 22												 										31
Задача 23												 										32
Задача 24												 										33
Задача 25												 										34
Задача 26				•								 	 •									35
Задача 27				•								 	 •									35
Задача 28				•								 	 •								 	36
Билинойнги) II	VD?	пт	νэπ	TATE	TIT	το.	do	m	ATT. 1	г											. ર દ્ર
Билинейны Теория								-	-													38
Теория .				•																		38
				•																		38
Теория .												 			 •						 	38 40
Теория . Задача 29												 		 •			 •				 	38 40 40
Теория . Задача 29 Задача 30							· ·					 	 	 	 	 	 				 	38 40 40 41
Теория . Задача 29 Задача 30 Задача 31												 	 	 	 	 	 	· ·	 	 	 	38 40 40 41 42
Теория . Задача 29 Задача 30 Задача 31 Задача 32		· · · · · · · · · · · · · · · · · · ·										 	 	 	 	 	 •		 	 	 	38 40 40 41 42 43

Абстрактная алгебра

Теория

Определение. Бинарной операцией на X называется отображение $\tau: X \times X \to X$.

Определение. Множество с корректно заданной на нём бинарной операцией называется группоидом (магмой).

Определение. Множество X с заданной на нём бинарной ассоциативной операцией называется полугруппой.

Определение. Элемент полугруппы M называется нейтральным, если $\forall x \in M \ e * x = x * e = x$.

Определение. Полугруппа, в которой есть нейтральный элемент – моноид.

Определение. Элемент a моноида (M, e, \cdot) называется обратимым, если $\exists b : a * b = b * a = e$.

Определение. Моноид G все элементы которого обратимы, называется группой.

Определение (эквивалентное). Множество G с корректно определённой на нём бинарной операцией * называется группой, если:

- 1) операция ассоциативна: $\forall x, y, z \in G \ x * (y * z) = (x * y) * z$
- $2) \ \exists e \in G \ \forall x \in G : x * e = e * x = x$
- 3) $\forall x \in G \exists x^{-1} \in G : x * x^{-1} = x^{-1} * x = e$

Определение. Группа с коммутативной операцией называется абелевой.

Определение. Пусть q – наименьшее натуральное ($\neq 0$) число, для которого $a^q = e$, где $a \in G$, оно называется порядком элемента. Если такого числа не существует, то говорят об элементе бесконечного порядка.

Определение. Пусть даны две группы: $(G_1, *)$ и (G_2, \circ) . Тогда отображение $f: G_1 \to G_2$ называется гомоморфизмом, если выполняется следующее условие: $\forall a, b \in G_1 \ f(a * b) = f(a) \circ f(b)$.

Определение. Биективный гомоморфизм называется изоморфизмом.

Определение. Подмножество $H \subseteq G$ называется подгруппой в G, если:

- 1) $e \in H$
- 2) Если $h_1, h_2 \in H \Rightarrow h_1 \cdot h_2 \in H$, т.е. множество H замкнуто относительно умножения.
- 3) Если $h \in H \Rightarrow h^{-1} \in H$, т.е. H замкнуто относительно взятия обратного.

Определение. Пусть g – элемент G. Если любой элемент $g \in G$ имеет вид $g = a^n$, где $a \in G$, то G называют циклической группой.

Обозначение. $G = \langle a \rangle$

Определение. Пусть q — наименьшее натуральное ($\neq 0$) число, для которого $a^q = e$, где $a \in G$, оно называется порядком элемента. Если такого числа не существует, то говорят об элементе бесконечного порядка.

Обозначение. ord(a) = q – порядок элемента.

Определение. Порядок группы – это число элементов в ней.

Теорема (Лагранжа). Пусть G – конечная группа и $H \subseteq G$ – её подгруппа. Тогда $|G| = |H| \cdot [G:H]$.

Определение. Пусть $K \neq \emptyset$ – множество на котором заданы две бинарные операции: + и ·, что:

- 1) (K, +) абелева группа.
- 2) (K, \cdot) полугруппа.
- 3) Умножение дистрибутивно по сложению: $\forall a, b, c \ (a+b)c = ac+bc, \ c(a+b) = ca+cb.$

Обозначение. $(K, +, \cdot)$ – кольцо.

Определение. Подмножество I кольца K называется (двусторонним) идеалом, если оно:

- 1) является подгруппой (K,+) по сложению
- 2) $\forall a \in I \ \forall r \in K \ ra \in I$ и $ar \in I$

Определение. Идеал I называется главным, если $\exists a \in K : I = \{ra \mid r \in K\}$. Говорят, что идеал I порождён a.

Определение. Поле P – это коммутативное кольцо с единицей $(1 \neq 0)$, в котором каждый элемент $a \neq 0$ обратим.

Замечание. Пусть K – целостное кольцо, g – многочлен из K[x] (K[x] это кольцо многочленов с коэффициентами из кольца K и от переменной x) со старшим коэффициентом обратимым. Тогда $\forall f \in K[x] \; \exists ! \; \text{пара} \; q(x), r(x) \in K[x] : f(x) = g(x)q(x) + r(x), \; \deg r(x) < \deg q(x).$

Утверждение. В кольце многочленов a(x) и b(x) являются взаимно простыми, если $\exists u(x), v(x):$ a(x)u(x)+b(x)v(x)=1

Задача 1

Является ли отображение $\phi: X \to Y$, где

$$X = \left\{ \begin{pmatrix} a & b & c \\ 0 & 0 & 0 \end{pmatrix}, a, b, c \in \mathbb{Z} \right\}, \ Y = \mathbb{Z}, \ \phi \left(\begin{pmatrix} a & b & c \\ 0 & 0 & 0 \end{pmatrix} \right) = a + b + c$$

инъективным, сюръективным, биективным?

Решение:

1) Интективность: $\phi(x_1) = \phi(x_2) \Rightarrow x_1 = x_2$.

Результат отображения — целое число, равное сумме трёх чисел из первой строки матрицы из множества X. Так как любое целое число можно представить в виде суммы трёх слагаемых бесконечным количеством способов, отображение не инъективно. Контрпример:

$$\phi\left(\begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \end{pmatrix}\right) = 1 + 2 + 3 = \phi\left(\begin{pmatrix} 3 & 2 & 1 \\ 0 & 0 & 0 \end{pmatrix}\right)$$

2) Сюръективность: $\forall y \in Y \exists x \in X : \phi(x) = y$.

Любое целое число y можно разложить в сумму трёх слагаемых, т.е. y=a+b+c. Тогда всегда есть такая матрица $x\in X$, что

$$x = \begin{pmatrix} a & b & c \\ 0 & 0 & 0 \end{pmatrix}, \ \phi \begin{pmatrix} \begin{pmatrix} a & b & c \\ 0 & 0 & 0 \end{pmatrix} \end{pmatrix} = a + b + c = y$$

Сюръективность выполнена.

3) *Биективность*. Выполняется, когда отображение и инъективно, и сюръективно. Отображение не биективно, так как оно не инъективно.

Ответ: только сюръективно.

Задача 2

Является ли (a) группоидом, (b) полугруппой, (c) моноидом, (d) группой множество целых чисел \mathbb{Z} относительно операции $a \circ b = a + b - 5$? Ответ обосновать.

Решение:

а) Проверим корректна ли задана операция на множестве \mathbb{Z} . Если $a,b\in\mathbb{Z}$, то $a\circ b=a+b-5\in\mathbb{Z}$. Операция не выводит из множества, значит, она корректно задана. Таким образом, (\mathbb{Z},\circ) – группоид.

b) Проверим ассоциативность операции:

$$\forall a, b, c \in \mathbb{Z} \ a \circ (b \circ c) = a + (b + c - 5) - 5 = (a + b - 5) + c - 5 = (a \circ b) \circ c$$

Операция ассоциативна, значит, группоид (\mathbb{Z}, \circ) – полугруппа.

с) Попробуем найти нейтральный элемент в (\mathbb{Z}, \circ) .

$$e \circ a = e + a - 5 = a \Leftrightarrow e = 5$$

$$a \circ e = a \circ 5 = a + 5 - 5 = a$$

Значит, e=5 – нейтральный элемент, и (\mathbb{Z}, \circ) – моноид.

d) Проверим, есть ли у любого $a \in \mathbb{Z}$ обратный элемент $a^{-1}: a^{-1} \circ a = a \circ a^{-1} = e$.

$$a^{-1} \circ a = a^{-1} + a - 5 = 5 \Leftrightarrow a^{-1} = 10 - a$$

$$a \circ a^{-1} = a \circ (10 - a) = a + 10 - a - 5 = 5 = e$$

У каждого элемента есть обратный, значит, (\mathbb{Z}, \circ) – группа.

Ответ: а)-d) – является.

Задача 3

Является ли отображение

$$\phi(7^a) = \begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix}$$

гомоморфизмом групп, если первая группа — это множество $G = \{7^a, a \in \mathbb{Z}\}$ с операцией умножения, а вторая группа — $H = \left\{ \begin{pmatrix} b_1 & 0 \\ 0 & b_2 \end{pmatrix}, b_1, b_2 \in \mathbb{Z} \right\}$ множество с операцией сложения? Является ли это отображение изоморфизмом?

Решение:

Проверим, для произвольных $7^a, 7^b \in G$:

$$\phi(7^a \cdot 7^b) = \phi(7^{a+b}) \begin{pmatrix} 0 & 0 \\ 0 & a+b \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix} = \phi(7^a) + \phi(7^b)$$

Таким образом, это гомоморфизм.

Отображение инъективно, так как

$$\forall 7^a, 7^b \in G \quad \phi(7^a) = \phi(7^b) \iff \begin{pmatrix} 0 & 0 \\ 0 & a \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & b \end{pmatrix} \iff a = b \implies 7^a = 7^b$$

Отображение не сюръективно, так как в H входят матрицы в левом углу которых может стоять не 0, а отображение не переводит в такие матрицы. Контрпример:

$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

Отображение не сюръективно, значит, не биективно. Тогда ϕ – не изоморфизм.

Ответ: гомоморфизм, не изоморфизм.

Задача 4

Ассоциативна ли операция * на множествах, если

$$G = \mathbb{N}, \ x * y = x^y$$

$$H = \mathbb{N}, \ x * y = \mathrm{HOД}(x, y)$$

Решение:

Проверим ассоциативность каждой из операций:

1) Для произвольных $a, b, c \in G$:

$$a * (b * c) = a^{b^c}$$
$$(a * b) * c = (a^b)^c = a^{bc}$$
$$a * (b * c) \neq (a * b) * c$$

Операция не ассоциативна.

2) Для произвольных $a, b, c \in H$:

$$a*(b*c) = HOД(a, HOД(b, c)) = HOД(a, b, c)$$

 $(a*b)*c = HOД(HOД(a, b), c) = HOД(a, b, c)$
 $a*(b*c) = (a*b)*c$

Ответ: 1) нет; 2) да.

Задача 5

Пусть G – множество всех вещественных чисел, отличных от -1. Доказать, что G является группой относительно операции

$$x \cdot y = x + y + xy$$

Решение:

Докажем по определению.

1) Замкнутость операции.

Операция не должна выводить из $G = \mathbb{R} \setminus \{-1\}$.

$$\forall x, y \in G \ x \cdot y = x + y + xy \in \mathbb{R}$$

Проверим, может ли получиться x + y + xy = -1.

$$x + y + xy = -1 \Leftrightarrow x(1+y) + y + 1 = 0 \Leftrightarrow (x+1)(y+1) = 0 \Leftrightarrow \begin{cases} x = -1 \\ y = -1 \end{cases}$$

Но, так как $x,y\in G$, они не могут быть равны -1. Значит, случай, когда x+y+xy=-1, невозможен. Таким образом, $x+y+xy\in G$.

2) Ассоциативность операции.

$$\forall x, y, z \in G \ x \cdot (y \cdot z) = x + (y + z + yz) + x(y + z + yz) = x + y + xy + z + yz + xz + xyz =$$

$$= (x + y + xy) + z + z(x + y + xy) = (x \cdot y) \cdot z$$

Операция ассоциативна.

3) Нейтральный элемент.

$$x \cdot e = e \cdot x = x$$

$$x + e + xe = x \Leftrightarrow e = 0$$

4) Обратный элемент.

$$x \cdot x^{-1} = x^{-1} \cdot x = e$$

$$x + x^{-1} + xx^{-1} = 0 \iff (x+1)(x^{-1}+1) = 1 \iff x^{-1} = \frac{1}{x+1} - 1$$

Обратный существует для всех x, так как $x \neq -1$.

Таким образом, (G, \cdot) – группа.

Задача 6

Какие из отображений групп $f:\mathbb{C}^* \to \mathbb{R}^*$ являются гомоморфизмами:

$$f(z) = |z|$$

$$g(z) = 2|z|$$

Решение:

Группа \mathbb{C}^* – множество комплексных чисел с операцией умножения, \mathbb{R}^* – множество вещественных чисел с операцией умножения.

Рассмотрим произвольные $z_1, z_2 \in \mathbb{C}^*$. Пусть

$$z_1 = r_1(\cos\varphi_1 + i\sin\varphi_1)$$

$$z_2 = r_2(\cos\varphi_2 + i\sin\varphi_2)$$

Проверим, являются ли f и g гомоморфизмом:

$$f(z_1 \cdot z_2) = f\left(r_1 r_2 \left(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)\right)\right) = r_1 r_2 = f(z_1) \cdot f(z_2)$$

$$g(z_1 \cdot z_2) = g\left(r_1 r_2 \left(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)\right)\right) = 2r_1 r_2$$

$$g(z_1) \cdot g(z_2) = 2r_1 \cdot 2r_2 = 4r_1 r_2$$

$$\Rightarrow g(z_1) \cdot g(z_2) \neq g(z_1) \cdot g(z_2)$$

Таким образом, f – гомоморфизм, g – не гомоморфизм.

Ответ: f – гомоморфизм, g – не гомоморфизм.

Задача 7

Найти порядок элемента группы

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix} \in S_5$$

$$-\frac{\sqrt{3}}{2} + \frac{1}{2}i \in \mathbb{C}^*$$

Решение:

1) Разложим подстановку в произведение независимых циклов:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix} = (123)(45)$$

Так как подстановка в степени, равной НОКу длин её циклов, будет равна e, порядок этой подстановки будет НОК(3,2)=6 (меньшая степень не подойдёт).

2) Перепишем комплексное число в тригонометрической форме:

$$z = -\frac{\sqrt{3}}{2} + \frac{1}{2}i = \cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}$$

Надо возвести z в такую минимальную степень $n \in \mathbb{N}$, что $z^n = 1$ – нейтральный элемент в \mathbb{C}^* .

$$z^n = \cos\frac{5\pi n}{6} + i\sin\frac{5\pi n}{6} = 1$$

$$\begin{cases} \cos\frac{5\pi n}{6} = 1\\ \sin\frac{5\pi n}{6} = 0 \end{cases} \Leftrightarrow \begin{cases} \frac{5\pi n}{6} = 2\pi k, \ k \in \mathbb{Z}\\ \frac{5\pi n}{6} = \pi l, \ l \in \mathbb{Z} \end{cases} \Rightarrow \frac{5\pi n}{6} = 2\pi k, \ k \in \mathbb{Z} \Leftrightarrow n = \frac{12k}{5}$$

Так как $n \in \mathbb{N}, k \neq 0$ должно быть кратно 5. Минимальное такое k = 5. Значит, n = 12.

Ответ: 1) 6; 2) 12.

Задача 8

Найдите количество подгрупп группы \mathbb{Z}_{225} . Выпишите все элементы подгруппы, которая имеет порядок 9.

Решение:

Обозначим $\mathbb{Z}_{225} = \langle a \rangle = \{e, a, \dots, a^{224}\}, a = \overline{1}, a^{225} = e$. Порядок группы равен $|\mathbb{Z}_{225}| = 225$.

Пусть a^n ($0 \le n \le 225$) — порождающий элемент подгруппы $H \subseteq \mathbb{Z}_{225}$. Тогда a^n обязательно должен быть в какой-то степени k равен e (в подгруппе всегда должен лежать e). То есть

$$(a^n)^k = a^{kn} = e = a^{225}$$

Таким образом, количество подгрупп циклической группы равно количеству натуральных делителей порядка этой группы. Всего делителей у $225 = 3^2 \cdot 5^2$:

$$(2+1)(2+1) = 9$$

Делители: 1, 3, 5, 9, 15, 25, 45, 75, 225 (все возможные k).

Так как $a^{kn}=a^{225}$, образующий элемент $a^n=a^{\frac{50}{k}}$.

Данные подгруппы выглядят так:

- k = 1, n = 225: $H = \{e\}$
- k = 3, n = 75: $H = \{e, a^{75}, a^{150}\}$
- k = 5, n = 45: $H = \{e, a^{45}, a^{90}, a^{135}, a^{180}\}$
- k = 9, n = 25: $H = \{e, a^{25}, a^{50}, a^{75}, a^{100}, a^{125}, a^{150}, a^{175}, a^{200}\}$
- k = 15, n = 15: $H = \{e, a^{15}, a^{30}, a^{45}, a^{60}, a^{75}, a^{90}, a^{105}, a^{120}, a^{135}, a^{150}, \dots, a^{210}\}$
- k = 25, n = 9: $H = \{e, a^9, a^{18}, a^{27}, a^{36}, a^{45}, a^{54}, a^{63}, a^{72}, a^{81}, a^{90}, a^{99}, \dots, a^{216}\}$
- k = 45, n = 5: $H = \{e, a^5, a^{10}, a^{15}, a^{20}, a^{25}, a^{30}, a^{35}, a^{40}, a^{45}, a^{50}, a^{55}, \dots, a^{220}\}$
- $\bullet \ k=75, \ n=3 \colon H=\{e,a^3,a^6,a^9,a^{12},a^{15},a^{18},a^{21},a^{24},a^{27},a^{30},a^{33},\dots,a^{222}\}$

•
$$k = 225, n = 1$$
: $H = \{e, a, a^2, a^3, a^4, a^5, a^6, a^7, a^8, a^9, a^{10}, a^{11}, a^{12}, \dots, a^{224}\} = \mathbb{Z}_{225}$

Подгруппа будет иметь порядок 9, если её порождающий элемент имеет порядок 9. Из всех подгрупп порядок 9 имеет только $H = \{e, a^{25}, a^{50}, a^{75}, a^{100}, a^{125}, a^{150}, a^{175}, a^{200}\}$, так как $\operatorname{ord}(a^{25}) = 9$. Её элементы:

$$\{\overline{0},\overline{25},\overline{50},\overline{75},\overline{100},\overline{125},\overline{150},\overline{175},\overline{200}\}$$

Ответ: 9 подгрупп; $\{\overline{0}, \overline{25}, \overline{50}, \overline{75}, \overline{100}, \overline{125}, \overline{150}, \overline{175}, \overline{200}\}.$

Задача 9

Подгруппа G симметрической группы S_n порождена степенями следующей подстановки:

$$\sigma = (1\ 2\ 3\ 4\ 5\ 6\ 7)(8\ 9\ 10\ 11\ 12\ 13\ 14\ 15)$$

Найти

- а) все элементы $g \in G$ такие, что $g^7 = id$
- b) элементы q порядка 7

В каждом случае подсчитать их количество.

Решение:

а) Любой элемент $g \in G$ можно записать как $g = \sigma^n$, $n \in \mathbb{Z}$, так как группа G циклическая, порождённая σ . Необходимо найти такие g, что $g^7 = (\sigma^n)^7 = \sigma^{7n} = id$.

Найдём порядок подстановки. Он равен НОКу длин её независимых циклов:

$$\operatorname{ord} \sigma = \operatorname{HOK}(7,8) = 56$$

Значит, в $G = \{id, \sigma, \sigma^2, \dots, \sigma^{55}\}$ и в степени, кратной 56, подстановка будет равна id. Тогда

$$g^7 = \sigma^{7n} = id \iff \sigma^{7n} = \sigma^{56k} \iff n = 8k$$

Степень n может принимать значения в диапазоне от 0 до 55 и должна быть кратна 8. Получаем все возможные варианты

$$n = 0, 8, 16, 24, 32, 40, 48$$

Множество всех таких $g \in G$, что $g^7 = id$:

$$\{1, \sigma^8, \sigma^{16}, \sigma^{24}, \sigma^{32}, \sigma^{40}, \sigma^{48}\}$$

Всего их 7.

b) Аналогично пункту a) представим элемент g в виде σ^n , $n \in [0, 56]$, n – целое. По определению порядок элемента $g \in G$ – это минимальная степень q, в которой $g^q = 1$.

Найдём все такие g, что q=7. Т.к. ord $\sigma=56$ и ord $\sigma^n=q=7$, можем составить уравнение:

$$\operatorname{ord} \sigma^n = \frac{\operatorname{ord} \sigma}{\operatorname{HOД}(n, \operatorname{ord} \sigma)} \Leftrightarrow 7 = \frac{56}{\operatorname{HOД}(n, 56)} \Leftrightarrow \operatorname{HOД}(n, 56) = 8$$

Таким образом, n = 8, 16, 24, 32, 40, 48 (0 не подходит, иначе HOД(n, 56) = 56). И искомое множество состоит из 6 элементов:

$$\{\sigma^{8},\sigma^{16},\sigma^{24},\sigma^{32},\sigma^{40},\sigma^{48}\}$$

Ответ: а) Всего 7 элементов: $\{1, \sigma^8, \sigma^{16}, \sigma^{24}, \sigma^{32}, \sigma^{40}, \sigma^{48}\}$

b) Всего 6 элементов: $\{\sigma^8, \sigma^{16}, \sigma^{24}, \sigma^{32}, \sigma^{40}, \sigma^{48}\}$.

Задача 10

Рассмотрим поле $F = \mathbb{F}_5[x]/\langle x^3 + 3x^2 + 2x + 3 \rangle$. Через \overline{f} будем обозначать смежный класс

$$f + \langle x^3 + 3x^2 + 2x + 3 \rangle \in F$$

Представить в виде \overline{f} , где $\deg \overline{f} < 3$ выражение

$$\frac{2x^4 + 4x^2 + 3}{2x^3 + 2x^2} + \left(4x^6 + 3x^4 + 2x^3 + 2x^2 + 4x + 2\right)\left(3x^4 + 4x^3 + x^2 + 2x + 2\right) - \frac{x^3 + 3x^2 + 3x + 2}{4x + 1}$$

Решение:

Пусть $f(x) = x^3 + 3x^2 + 2x + 3$. Найдём многочлены из F, обратные к $g(x) = 2x^3 + 2x^2$ и h(x) = 4x + 1. Операции с коэффициентами многочлена будут производится по модулю 5.

1) Существуют какие-то $u_1(x)$, $v_1(x)$, что:

$$HOД(f,g) = u_1(x)f(x) + v_1(x)g(x)$$

Найдём $u_1(x)$ и $v_1(x)$ с помощью расширенного алгоритма Евклида:

• Многочлен f(x) представим в виде $f(x) = g(x) \cdot q_{g_1}(x) + r_{g_1}(x)$, где $\deg r_{g_1}(x) < \deg g(x)$. Для этого поделим f(x) с остатком на g(x).

$$-\begin{array}{c|c} x^3 + 3x^2 + 2x + 3 & 2x^3 + 2x^2 \\ \hline x^3 + x^2 & 3 \\ \hline 2x^2 + 2x + 3 & 3 \\ \hline\end{array}$$

$$f(x) = g(x) \cdot q_{g_1}(x) + r_{g_1}(x) = g(x) \cdot 2 + (2x^2 + 2x + 3)$$
$$q_{g_1}(x) = 3, \ r_{g_1}(x) = 2x^2 + 2x + 3$$

• Аналогично продолжим представлять многочлены в виде произведения на неполное частное и остаток: $g(x) = r_{g_1}(x) \cdot q_{g_2}(x) + r_{g_2}(x)$.

$$-\frac{2x^3 + 2x^2}{2x^3 + 2x^2 + 3x} \begin{vmatrix} 2x^2 + 2x + 3 \\ x \end{vmatrix}$$

$$g(x) = r_{g_1}(x) \cdot q_{g_2}(x) + r_{g_2}(x) = r_{g_1}(x) \cdot x + 2x$$

$$q_{g_2}(x) = x, \ r_{g_2}(x) = 2x$$

• $r_{q_1}(x) = r_{q_2}(x) \cdot q_{g_3}(x) + r_{g_3}(x)$.

$$g(x) = r_{g_1}(x) \cdot q_{g_2}(x) + r_{g_2}(x) = r_{g_1}(x) \cdot (x+1) + 3$$
$$q_{g_3}(x) = x+1, \ r_{g_3}(x) = 3$$

• $r_{g_2}(x) = r_{g_3}(x) \cdot q_{g_4}(x) + r_{g_4}(x) = 2x = 3 \cdot 4x + 0.$

$$q_{g_4}(x) = 4x, \ r_{g_4}(x) = 0$$

Т.к. остаток $r_{g_4}(x) = 0$, $HOД(f, g) = r_{g_3}(x) = 3$.

НОД
$$(f,g) = r_{g_3}(x) = r_{g_1} - r_{g_2}(x) \cdot q_{g_3}(x) =$$

$$= (f(x) - g(x) \cdot q_{g_1}(x)) - (g(x) - r_{g_1}(x) \cdot q_{g_2}(x)) \cdot q_{g_3}(x) =$$

$$= (f(x) - g(x) \cdot q_{g_1}(x)) - (g(x) - (f(x) - g(x) \cdot q_{g_1}(x)) \cdot q_{g_2}(x)) \cdot q_{g_3}(x) =$$

$$= f(x) \cdot (1 + q_{g_2}(x)q_{g_3}(x)) - g(x) \cdot (q_{g_1}(x) + q_{g_3}(x) + q_{g_1}(x)q_{g_2}(x)q_{g_3}(x)) =$$

$$= f(x)(x^2 + x + 1) - g(x)(3x^2 + 4x + 4) =$$

$$= f(x)(x^2 + x + 1) + g(x)(2x^2 + x + 1)$$

Домножим $HOД(f,g) = 3 = f(x)(x^2 + x + 1) + g(x)(2x^2 + x + 1)$ на $2 = 3^{-1}$:

$$1 = f(x)(2x^2 + 2x + 2) + g(x)(4x^2 + 2x + 2) \Rightarrow \overline{1} = \overline{g(x)} \cdot \overline{4x^2 + 2x + 2}$$

Значит, $(4x^2 + 2x + 2)$ – обратный к g(x).

2) Аналогично найдём обратный к h(x). Пусть для каких-то $u_2(x)$ и $v_2(x)$ выполняется.

$$HOД(f,h) = u_2(x)f(x) + v_2(x)h(x)$$

Найдём $u_2(x)$ и $v_2(x)$ с помощью расширенного алгоритма Евклида:

• $f(x) = h(x) \cdot q_{h_1}(x) + r_{h_1}(x)$.

$$f(x) = h(x) \cdot q_{h_1}(x) + r_{h_1}(x) = h(x) \cdot (4x^2 + x + 4) + 4$$
$$q_{h_1}(x) = 4x^2 + x + 4, \ r_{h_1}(x) = 4$$

• $h(x) = r_{h_1} \cdot q_{h_1}(x) + r_{h_2}(x) = 4x + 1 = 4(x+4) + 0$

$$q_{h_2}(x) = x + 4, \ r_{h_2}(x) = 0$$

Т.к. остаток $r_{h_2}(x) = 0$, $HOД(f, h) = r_{h_1}(x) = 4$.

$$HOД(f,h) = r_{h_1}(x) = f(x) - h(x) \cdot q_{h_1}(x) = f(x) - h(x)(4x^2 + x + 4) = f(x) + h(x)(x^2 + 4x + 1)$$

Домножим НОД $(f,g)=4=f(x)+h(x)(x^2+4x+1)$ на $4=4^{-1}$:

$$1 = 4 \cdot f(x)(x^2 + 3) + h(x)(4x^2 + x + 4) \Rightarrow \overline{1} = \overline{h(x)} \cdot \overline{4x^2 + x + 4}$$

Значит, $(4x^2 + x + 4)$ – обратный к h(x).

Найдены обратные к многочленам, поэтому можем упростить выражение, домножив и поделив дроби в выражении на соответствующие знаменателям обратные:

$$\frac{2x^4 + 4x^2 + 3}{2x^3 + 2x^2} = (2x^4 + 4x^2 + 3)(4x^2 + 2x + 2) = 3x^6 + 4x^5 + 3x^3 + x + 1$$
$$\frac{x^3 + 3x^2 + 3x + 2}{4x + 1} = (x^3 + 3x^2 + 3x + 2)(4x^2 + x + 4) = 4x^5 + 3x^4 + 4x^3 + 3x^2 + 4x + 3$$

Найдём произведение двух многочленов из исходного выражения:

$$(4x^{6} + 3x^{4} + 2x^{3} + 2x^{2} + 4x + 2)(3x^{4} + 4x^{3} + x^{2} + 2x + 2) =$$

$$= 12x^{10} + 9x^{8} + 6x^{7} + 6x^{6} + 12x^{5} + 6x^{4} + 16x^{9} + 12x^{7} + 8x^{6} + 8x^{5} + 16x^{4} + 8x^{3} +$$

$$+ 4x^{8} + 3x^{6} + 2x^{5} + 2x^{4} + 4x^{3} + 2x^{2} + 8x^{7} + 6x^{5} + 4x^{4} + 4x^{3} + 8x^{2} + 4x +$$

$$+ 8x^{6} + 6x^{4} + 4x^{3} + 4x^{2} + 8x + 4 =$$

$$= 12x^{10} + 16x^{9} + 13x^{8} + 26x^{7} + 25x^{6} + 28x^{5} + 34x^{4} + 20x^{3} + 14x^{2} + 12x + 4 =$$

$$= 2x^{10} + x^{9} + 3x^{8} + x^{7} + 3x^{5} + 4x^{4} + 4x^{2} + 2x + 4$$

Найдём, чему равно выражение:

$$A = (3x^{6} + 4x^{5} + 3x^{3} + x + 1) + (2x^{10} + x^{9} + 3x^{8} + x^{7} + 3x^{5} + 4x^{4} + 4x^{2} + 2x + 4) - (4x^{5} + 3x^{4} + 4x^{3} + 3x^{2} + 4x + 3) =$$

$$= 2x^{10} + x^{9} + 3x^{8} + x^{7} + 3x^{6} + 3x^{5} + x^{4} + 4x^{3} + x^{2} + 4x + 2$$

Пусть A = f(x)q(x) + r(x). Найдём r(x) – остаток от деления A на f(x).

Ответ: $2x^2 + 2x + 2$.

 $A = f(x)(2x^7 + 4x^5 + 3x^4 + x^3 + 2x^2 + 4x) + (2x^2 + 2x + 2) = \overline{2x^2 + 2x + 2}$

Задача 11

Пусть $f(x) = x^4 + 3x^3 + 6x^2 + 7x$, $g(x) = x^4 + 5x^3 + 7x^2 + 3x$ — многочлены над полем \mathbb{Z}_{11} . Найти НОД(f,g) и многочлены $u(x), v(x) \in \mathbb{Z}_{11}[x]$ такие, что

$$u(x)f(x) + v(x)g(x) = HOД(f,g)$$

Решение:

Операции с коэффициентами многочлена будут производится по модулю 11. Для нахождения HOД(f,g) и u(x), v(x) воспользуемся расширенным алгоритмом Евклида.

• $f(x) = g(x) \cdot q_1(x) + r_1(x)$.

$$-\begin{array}{c|c} x^4 + 3x^3 + 6x^2 + 7x & x^4 + 5x^3 + 7x^2 + 3x \\ \hline x^4 + 5x^3 + 7x^2 + 3x & 1 \\ \hline 9x^3 + 10x^2 + 4x & 1 \\ \end{array}$$

$$f(x) = g(x) \cdot q_1(x) + r_1(x) = g(x) \cdot 1 + (9x^3 + 10x^2 + 4x)$$
$$q_1(x) = 1, \ r_1(x) = 9x^3 + 10x^2 + 4x$$

• $g(x) = r_1(x) \cdot q_2(x) + r_2(x)$.

$$g(x) = r_1(x) \cdot q_2(x) + r_2(x) = r_1(x) \cdot (5x + 6) + (4x^2 + x)$$
$$q_2(x) = 5x + 6, \ r_2(x) = 4x^2 + x$$

•
$$r_1(x) = r_2(x) \cdot q_3(x) + r_3(x)$$
.

$$r_1(x) = r_2(x) \cdot q_3(x) + r_3(x) = r_2(x) \cdot (5x^2 + 4) + 0$$

 $q_3(x) = 5x^2 + 4, \ r_3(x) = 0$

Т.к. остаток $r_3(x) = 0$, $HOД(f,g) = r_2(x) = 4x^2 + x$. Теперь найдём u(x) и v(x):

$$HOД(f,g) = r_2(x) = g(x) - r_1(x) \cdot q_2(x) = g(x) - (f(x) - g(x) \cdot q_1(x)) \cdot q_2(x) =$$

$$= -f(x)q_2(x) + g(x)(1 + q_1(x)q_2(x)) = -f(x)(5x + 6) + g(x)(1 + 1 \cdot (5x + 6)) =$$

$$= f(x)(6x + 5) + g(x)(5x + 7)$$

Получаем u(x) = 6x + 5 и v(x) = 5x + 7.

Ответ: $HOД(f,g) = 4x^2 + x; \ u(x) = 6x + 5; \ v(x) = 5x + 7.$

Задача 12

Сколько элементов порядка 2 в группе $D_3 \times S_3 \times \mathbb{Z}_4$?

Решение:

Рассмотрим элемент $(d, s, z) \in D_3 \times S_3 \times \mathbb{Z}_4$.

Найдём наименьшее n, для которого выполняется $(d, s, z)^n = e$, т.е. найдём, чему равен порядок элемента (d, s, z).

$$(d, s, z)^{n} = e \Leftrightarrow \begin{cases} d^{n} = e \\ s^{n} = e \end{cases} \Leftrightarrow \begin{cases} n : \text{ ord } d \\ n : \text{ ord } s \end{cases}$$
$$z^{n} = e \end{cases} \Leftrightarrow \begin{cases} n : \text{ ord } d \end{cases}$$

Тогда наименьшее $n = HOK(\operatorname{ord} d, \operatorname{ord} s, \operatorname{ord} z)$.

Нужно найти все такие (d, s, z), что n = 2, т.е. $HOK(\operatorname{ord} d, \operatorname{ord} s, \operatorname{ord} z) = 2$. По определению HOK числа $\operatorname{ord} d$, $\operatorname{ord} s$ и $\operatorname{ord} z$ – его делители \Rightarrow они могут быть только 1 или 2 – все делители числа 2.

Рассмотрим элементы групп и найдём элементы порядков 1 и 2 и их количество:

1) $\Gamma pynna S_3$

Порядок подстановки определяется НОКом длин её циклов. Он должен быть равен 1 или 2. В S_3 всего 3! = 6 подстановок. Из них нам подойдут только те, которые раскладываются в произведение независимых циклов длин 1 и 2:

- е тривиальная подстановка с длинами циклов равными 1. Её порядок равен 1.
- (12), (13), (23) подстановки из произведения циклов длины 1 и 2. Их порядок равен 2.
- (123), (213) подстановки из циклов длины 3. Их порядок равен 3.

Таким образом, в группе всего 4 элемента порядка 1 или 2: e, (12), (13), (23).

2) $\Gamma pynna\ D_3$. Всего в ней $2k = 2 \cdot 3 = 6$ элементов.

Группа состоит из следующих элементов:

- Три осевые симметрии: u_1, u_2, u_3 . Их порядки равны 2.
- Три поворота: $R_{0^{\circ}}$, $R_{120^{\circ}}$, $R_{240^{\circ}}$. Порядок $R_{0^{\circ}}$ равен 1, порядок $R_{120^{\circ}}$ равен 3, порядок $R_{240^{\circ}}$ равен 3.

Таким образом, в группе всего 3 элемента порядка 1 или 2: u_1 , u_2 , u_3 , $R_{0^{\circ}}$.

3) $\Gamma pynna \mathbb{Z}_4$

Перебором найдём элементы порядков 1 и 2:

- $\overline{0}$ порядок равен 1.
- $\overline{1}$ порядок равен 4 ($\overline{1}^4 = \overline{0}$).
- $\overline{2}$ порядок равен 2 ($\overline{2}^2 = \overline{0}$).
- $\overline{3}$ порядок равен 4 ($\overline{3}^4 = \overline{0}$).

Таким образом, в группе всего 2 элемента порядка 1 или 2: $\overline{0}$ и $\overline{2}$.

Переберём все случаи порядков элементов d, s, z, при которых $HOK(\operatorname{ord} d, \operatorname{ord} s, \operatorname{ord} z) = 2$ (по доказанному порядки d, s, z могут быть только 1 или 2).

Случай, когда у всех элементов порядок 1 не подходит, т.к. $HOK(1,1,1) = 1 \neq 2$. Для остальных случаев составим таблицу.

Количество способов получить элемент (d, s, z) с порядком 2 будем рассчитывать следующим образом. В HOK(ord*, ord**, ord***)

- 1) На позицию * можно поставить l элементов из группы D_3 :
 - ord d = 1, l = 1, элемент $R_{0^{\circ}}$
 - ord d=2, l=3, элементы u_1, u_2, u_3
- 2) На позицию **-m элементов из S_3 :
 - ord s = 1, m = 1, элемент e
 - ord s=2, m=3, элементы (12), (13), (23)
- 3) На позицию *** только 1 элемент из \mathbb{Z}_4 (либо $\overline{0}$ порядка 1, либо $\overline{2}$ порядка 2). Тогда количество способов получить (d, s, z) будет равно: $l \cdot m \cdot 1$.

$\operatorname{ord} d$	$\operatorname{ord} s$	$\operatorname{ord} z$	$\operatorname{ord}(d, s, z)$	Количество способов получить
1	1	2	2	$1 \cdot 1 \cdot 1 = 1$
1	2	1	2	$1 \cdot 3 \cdot 1 = 3$
1	2	2	2	$1 \cdot 3 \cdot 1 = 3$
2	1	1	2	$3 \cdot 1 \cdot 1 = 3$
2	1	2	2	$3 \cdot 1 \cdot 1 = 3$
2	2	1	2	$3 \cdot 3 \cdot 1 = 9$
2	2	2	2	$3 \cdot 3 \cdot 1 = 9$

Всего элементов порядка 2 в группе $D_3 \times S_3 \times \mathbb{Z}_4$: 1+3+3+3+3+9+9=31.

Ответ: 31.

Задача 13

Докажите, что любая подгруппа циклической группы, порожденной элементом a, порождена элементом a^d для d — натурального делителя n. Опишите все подгруппы в \mathbb{Z}_{220} .

Решение:

Рассмотрим циклическую группу $G = \langle a \rangle$ порядка n. Пусть H – подгруппа в G, и $H = \langle g \rangle$, где $g \in G$.

Порядки каждой из групп равны $|G|=|\langle a\rangle|=\operatorname{ord} a=n,\, |H|=|\langle g\rangle|=\operatorname{ord} g.$

По теореме Лагранжа порядок подгруппы делит порядок подгруппы.

$$|G|$$
: $|H| \Rightarrow \operatorname{ord} a$: $\operatorname{ord} g \Rightarrow n$: $\operatorname{ord} g$

Значит, ord g – делитель n. Тогда $g=a^d$, где d – натуральный делитель числа n. Действительно, пусть $n=d\cdot m$, тогда $g^m=(a^d)^m=a^{dm}=a^n=e$, и порядок g будет равен d.

Опишем все подгруппы \mathbb{Z}_{220} . Разложим 220 на множители:

$$220 = 2^2 \cdot 5 \cdot 11$$

Всего делителей у 220 будет:

$$(2+1)(1+1)(1+1) = 12$$

Перечислим их: 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220. Соответственно будут следующие подгруппы:

$$H = G = \langle a \rangle = \{e, a, a^2, \dots, a^{219}\}$$

$$H = \langle a^2 \rangle = \{e, a^2, a^4, \dots, a^{218}\}$$

$$H = \langle a^4 \rangle = \{e, a^4, a^8, \dots, a^{216}\}$$

$$H = \langle a^5 \rangle = \{e, a^5, a^{10}, \dots, a^{215}\}$$

$$H = \langle a^{10} \rangle = \{e, a^{10}, a^{20}, \dots, a^{210}\}$$

$$H = \langle a^{11} \rangle = \{e, a^{11}, a^{22}, \dots, a^{209}\}$$

$$H = \langle a^{20} \rangle = \{e, a^{20}, a^{40}, \dots, a^{200}\}$$

$$H = \langle a^{22} \rangle = \{e, a^{22}, a^{44}, \dots, a^{198}\}$$

$$H = \langle a^{44} \rangle = \{e, a^{44}, a^{88}, \dots, a^{176}\}$$

$$H = \langle a^{55} \rangle = \{e, a^{55}, a^{110}, a^{165}\}$$

$$H = \langle a^{110} \rangle = \{e, a^{110}\}$$

$$H = \langle a^{220} \rangle = \{e\}$$

Ответ: $H = \langle a^d \rangle, d = 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220.$

Задача 14

Доказать, что $\mathbb{R}[x]/\langle x^2+x+1\rangle \cong \mathbb{C}$.

Решение:

Многочлен $x^2 + x + 1$ неприводим над \mathbb{R} , найдём его корни в \mathbb{C} .

$$D = 1^2 - 4 = -3 \implies \begin{bmatrix} x_1 = \frac{-1 + \sqrt{3}i}{2} \\ x_2 = \frac{-1 - \sqrt{3}i}{2} \end{bmatrix}$$

Рассмотрим отображение $\varphi: \mathbb{R}[x] \to \mathbb{C}$, который многочлену f(x) из $\mathbb{R}[x]$ сопоставляет его значение в точке $f\left(\frac{-1+\sqrt{3}i}{2}\right)$.

Это гомоморфизм по определению:

$$\varphi(f_1 + f_2) = (f_1 + f_2) \left(\frac{-1 + \sqrt{3}i}{2}\right) = f_1 \left(\frac{-1 + \sqrt{3}i}{2}\right) + f_2 \left(\frac{-1 + \sqrt{3}i}{2}\right)$$
$$\varphi(f_1 \cdot f_2) = (f_1 \cdot f_2) \left(\frac{-1 + \sqrt{3}i}{2}\right) = f_1 \left(\frac{-1 + \sqrt{3}i}{2}\right) \cdot f_2 \left(\frac{-1 + \sqrt{3}i}{2}\right)$$
$$\varphi(1) = 1 \left(\frac{-1 + \sqrt{3}i}{2}\right) = 1$$

Он сюръективный, так как любому числу z=a+bi из $\mathbb{C},$ где $a,b\in\mathbb{R},$ можно сопоставить многочлен

$$f(x) = \frac{2b}{\sqrt{3}}x + a + \frac{b}{\sqrt{3}} \in \mathbb{R}[x]$$

$$f\left(\frac{-1 + \sqrt{3}i}{2}\right) = \frac{2b}{\sqrt{3}} \cdot \frac{-1 + \sqrt{3}i}{2} + a + \frac{b}{\sqrt{3}} = -\frac{b}{\sqrt{3}} + bi + a + \frac{b}{\sqrt{3}} = a + bi = z$$

Значит, $\operatorname{Im} \varphi = \mathbb{C}$.

Найдём ядро гомоморфизма. Если $f\left(\frac{-1+\sqrt{3}i}{2}\right)=0$, то $z=\frac{-1+\sqrt{3}i}{2}$ — корень многочлена. Тогда многочлен должен иметь и сопряжённый к z корень, иначе он не будет с вещественными коэффициентами. Таким образом, многочлен

$$f(x) = \left(x - \frac{-1 + \sqrt{3}i}{2}\right) \left(x - \frac{-1 - \sqrt{3}i}{2}\right) = x^2 + x + 1$$

является ядром гомоморфизма.

По теореме о гомоморфизме:

$$\mathbb{R}[x]/\operatorname{Ker}\varphi\cong\operatorname{Im}\varphi$$

$$\mathbb{R}[x]/\langle x^2 + x + 1 \rangle \cong \mathbb{C}$$

Задача 15

При каких a и b факторкольца $\mathbb{Z}_2[x]/\langle x^2+ax+b\rangle$

- а) изоморфны между собой
- b) являются полями

Решение:

Все возможные варианты многочленов: x^2 , $x^2 + 1$, $x^2 + x$, $x^2 + x + 1$.

Полем $\mathbb{Z}_2[x]/\langle x^2+ax+b\rangle$ является тогда и только тогда, когда x^2+ax+b неприводим над $\mathbb{Z}_2[x]$. Многочлен неприводим, если у него нет корней из $\mathbb{Z}_2[x]$.

- Многочлен $x^2 = x \cdot x$ приводимый.
- Многочлен $x^2 + 1 = (x+1)(x+1)$ приводимый.
- Многочлен $x^2 + x = x(x+1)$ приводимый.
- Многочлен x^2+x+1 неприводимый, т.к. не имеет корней $0^2+0+1=1\neq 0$ и $1^2+1+1=1\neq 0$. Значит, только в случае a=b=1 факторкольцо будет полем.

В случае когда a=b=0 и a=0,b=1 фактор кольца будут изоморфны. То есть

$$\mathbb{Z}_2[x]/\langle x^2 \rangle \cong \mathbb{Z}_2[x]/\langle x^2 + 1 \rangle$$

Докажем это. Перепишем $\mathbb{Z}_2[x]/\langle x^2+1\rangle$ в виде $\mathbb{Z}_2[x]/\langle (x+1)^2\rangle$. Рассмотрим отображение φ , где многочлен $f(x) \in \mathbb{Z}_2[x]/\langle x^2\rangle$ сопоставляется многочлену $f(x+1) \in \mathbb{Z}_2[x]/\langle (x+1)^2\rangle$. Проверим, что φ – гомоморфизм.

Рассмотрим многочлены $f_1(x), f_2(x) \in \mathbb{Z}_2[x]/\langle x^2 \rangle$. И рассмотрим многочлен $P(x) = f_1(x) + f_2(x)$. Сначала вычислим его по модулю x^2 .

$$P(x) = f_1(x) + f_2(x) = x^2 q(x) + r(x) \implies \overline{P(x)} = r(x) \in \mathbb{Z}_2[x]/\langle x^2 \rangle$$

Беря многочлен P от x+1 вместо x, вычислим его по модулю $(x+1)^2$:

$$P(x+1) = f_1(x+1) + f_2(x+1) = (x+1)^2 q(x+1) + r(x+1) \Rightarrow \overline{P(x+1)} = r(x+1) \in \mathbb{Z}_2[x] / \langle (x+1)^2 \rangle$$

Аналогично с многочленом $Q(x) = f_1(x) \cdot f_2(x)$.

$$Q(x) = f_1(x) \cdot f_2(x) = x^2 q(x) + r(x) \Rightarrow \overline{Q(x)} = r(x) \in \mathbb{Z}_2[x]/\langle x^2 \rangle$$

$$Q(x+1) = f_1(x+1) \cdot f_2(x+1) = (x+1)^2 q(x+1) + r(x+1) \Rightarrow \overline{Q(x+1)} = r(x+1) \in \mathbb{Z}_2[x] / \langle (x+1)^2 \rangle$$

Теперь проверим, что φ уважает операции сложения и умножения:

$$\varphi(\overline{f_1(x) + f_2(x)}) = \varphi(r(x)) = r(x+1) = \overline{f_1(x+1) + f_2(x+1)}$$

$$\varphi(\overline{f_1(x)\cdot f_2(x)}) = \varphi(r(x)) = r(x+1) = \overline{f_1(x+1)\cdot f_2(x+1)}$$

Значит, φ – гомоморфизм колец.

Докажем, что φ – биекция:

• Инвективность. Пусть для произвольных многочленов $f_1(x), f_2(x) \in \mathbb{Z}_2[x]/\langle x^2 \rangle$ выполнено $\varphi(\overline{f_1(x)}) = \varphi(\overline{f_2(x)})$. Применяя отображение, получаем, что $\overline{f_1(x+1)} = \overline{f_2(x+1)}$, а значит, и $\overline{f_1(x)} = \overline{f_2(x)}$.

• Сюръективность. Рассмотрим произвольный многочлен $\overline{f(x)} = r(x) \in \mathbb{Z}_2[x]/\langle (x+1)^2 \rangle$. Для него существует многочлен $r(x-1) \in \mathbb{Z}_2[x]/\langle x^2 \rangle$, такой что $\varphi(r(x-1)) = r(x)$.

Таким образом, φ – изоморфизм. Доказано $\mathbb{Z}_2[x]/\langle x^2\rangle\cong\mathbb{Z}_2[x]/\langle x^2+1\rangle$.

Теперь докажем, что оставшаяся факторгруппа при a=1,b=0 не будет изоморфна эти двум. В этой факторгруппе нет ненулевого элемента, который бы во второй степени был равен нулю, в то время как в $\mathbb{Z}_2[x]/\langle x^2 \rangle$ и $\mathbb{Z}_2[x]/\langle x^2+1 \rangle$ они есть – x,x+1 соответственно. То есть в $\mathbb{Z}_2[x]/\langle x^2+x \rangle$:

$$\overline{1}^2 = \overline{1} \neq \overline{0}$$

$$\overline{x}^2 = \overline{x} \neq \overline{0}$$

$$\overline{(x+1)}^2 = \overline{x+1} \neq \overline{0}$$

Ответ: a)
$$a = b = 0$$
 и $a = 0, b = 1$.
b) $a = b = 1$.

Задача 16

Изоморфны ли факторкольца

$$\mathbb{Z}_3[x]/\langle x^3+1\rangle$$
, $\mathbb{Z}_3[x]/\langle x^3+2x^2+x+1\rangle$

Решение:

Попробуем разложить многочлены у каждого фактор кольца.

Заметим, что у x^3+1 есть корень – $\overline{2}$ ($\overline{2}^3+1=9=\overline{0}$). Тогда методом неопределённых коэффициентов найдём разложение многочлена:

$$(x-2)(ax^{2}+bx+c) = x^{3}+1 \iff (x+1)(ax^{2}+bx+c) = x^{3}+1$$

$$ax^{3}+bx^{2}+cx+ax^{2}+bx+c = x^{3}+1 \iff \begin{cases} a=1\\ a+b=0\\ b+c=0\\ c=1 \end{cases} \iff \begin{cases} a=1\\ b=2\\ c=1 \end{cases}$$

$$\overline{(x+1)}\cdot\overline{(x^{2}+2x+1)} = \overline{x^{3}+1} = \overline{0}$$

Получается, что в $\mathbb{Z}_3[x]/\langle x^3+1\rangle$ есть делители нуля.

Многочлен $x^3 + 2x^2 + x + 1$ неприводим над $\mathbb{Z}_3[x]$, так как при подстановке в него $\overline{0}$, $\overline{1}$, $\overline{2}$ будет получать соответственно: $\overline{1}$, $\overline{2}$, $\overline{1}$, что не равно $\overline{0}$. Тогда $\mathbb{Z}_3[x]/\langle x^3 + 2x^2 + x + 1 \rangle$ – поле, и в нём нет делителей нуля.

Значит, факторкольца не изоморфны.

Ответ: не изоморфны.

Задача 17

Найти порядок элемента x^k , если порядок элемента x равен n.

Ответ:
$$\frac{n}{\text{НОД}(n,k)}$$
.

Линейные пространства

Теория

Пусть F – поле, пусть V – произвольное множество, на котором задано 2 операции: сложение и умножение на число (т.е. элемент из F). Это означает, что $\forall x,y \in V$ существует элемент $x+y \in V$ и $\forall \lambda \in F \,\exists \lambda \cdot x \in V$. Множество V называется линейным пространством, если выполнены следующие 8 свойств:

 $\forall x, y, z \in V$ и $\forall \lambda, \mu \in F$:

- 1) (x + y) + z = x + (y + z) ассоциативность сложения.
- 2) Найдется нейтральный элемент по сложению: $\exists 0 \in V : \forall x \in V : x + 0 = 0 + x = x$
- 3) Существует противоположный элемент по сложению: $\forall x \in V \; \exists (-x) \in V : x + (-x) = 0$
- 4) x + y = y + x коммутативность сложения
- 5) $\forall x \in V : 1 \cdot x = x$, нейтральный $1 \in F_1$
- 6) Ассоциативность умножения на число: $\mu(\lambda x) = (\mu \lambda)x$
- 7) Дистрибутивность относительно сложения чисел: $(\lambda + \mu)x = \lambda x + \mu x$
- 8) Дистрибутивность относительно сложения векторов: $\lambda(x+y) = \lambda x + \lambda y$

Определение. Базисом линейного пространства V называется упорядоченный набор векторов b_1, \ldots, b_n такой, что:

- 1) b_1, \ldots, b_n л.н.з.
- 2) Любой вектор из V представляется линейной комбинацией векторов b_1, \ldots, b_n , то есть $\forall x \in V$ $x = x_1b_1 + \ldots x_nb_n$. При этом x_1, \ldots, x_n называется координатами вектора в базисе b_1, \ldots, b_n .

Утверждение. Если b_1, \ldots, b_n — базис, то любой $x \in V$ представляется в виде линейной комбинации базисных векторов единственным образом (т.е. координаты вектора в базисе определены однозначно).

Определение. Максимальное количество л.н.з. векторов в данном линейном пространстве V называется размерностью этого линейного пространства.

Определение. Матрицей перехода от базиса $\mathcal A$ к базису $\mathcal B$ называется матрица:

$$T_{\mathcal{A}\to\mathcal{B}} = \begin{pmatrix} t_{11} & \cdots & t_{1n} \\ \vdots & & \vdots \\ t_{n1} & \cdots & t_{nn} \end{pmatrix}$$

$$\begin{cases} b_1 = t_{11}a_1 + t_{21}a_2 + \dots + t_{n1}a_n \\ \vdots \\ b_n = t_{1n}a_1 + t_{2n}a_2 + \dots + t_{nn}a_n \end{cases} \Leftrightarrow (b_1, \dots, b_n)_{1 \times n} = (a_1, \dots, a_n) \cdot T_{\mathcal{A} \to \mathcal{B}}$$

Утверждение. Пусть $x \in L$, \mathcal{A} и \mathcal{B} – базисы в L; $x^a = (x_1^a, \dots, x_n^a)^T$ – столбец координат вектора x в базисе \mathcal{A} ; $x^b = (x_1^b, \dots, x_n^b)^T$ – столбец координат вектора x в базисе \mathcal{B} .

Тогда $x^b = T_{\mathcal{A} \to \mathcal{B}}^{-1} \, x^a \Leftrightarrow X' = T^{-1} X$, где X' – координаты в новом базисе.

Определение. Подмножество W векторного пространства V называется подпространством, если оно само является пространством относительно операций в V.

Определение. Множество $L(a_1, \ldots, a_k) = \{\lambda_1 a_1 + \ldots \lambda_k a_k \mid \lambda_i \in F\}$ – множество всех линейных комбинаций векторов a_1, \ldots, a_k называется линейной оболочкой набора a_1, \ldots, a_k .

Определение. Рангом системы векторов a_1, \ldots, a_k в линейном пространстве называется размерность их линейной оболочки.

$$Rg(a_1,\ldots,a_k)=\dim(L(a_1,\ldots,a_k))$$

Утверждение. Ранг системы векторов a_1, \ldots, a_k линейного пространства V равен рангу матрицы, составленной по столбцам из координат векторов a_1, \ldots, a_k в некотором базисе.

Утверждение. Пусть H_1 и H_2 – линейные подпространства в векторном пространстве L. Множество $H_1 \cap H_2$ (пересечение) является подпространством в L.

Определение. Множество $H_1 + H_2 = \{x_1 + x_2 \mid x_1 \in H_1, x_2 \in H_2\}$ называется суммой подпространств H_1 и H_2 .

Утверждение. $H_1 + H_2$ является подпространством.

Утверждение. Пусть H_1 и H_2 – подпространства в L. Тогда:

$$\dim(H_1 + H_2) = \dim(H_1) + \dim(H_2) - \dim(H_1 \cap H_2)$$

Определение. Сумма подпространств $H_1 + H_2$ называется прямой и обозначается $H_1 \oplus H_2$, где $H_1 \cap H_2 = \{0\}$, т.е. тривиально.

Следствие. $\dim(H_1 \oplus H_2) = \dim H_1 + \dim H_2$

Задача 18

Найти базис и размерность линейного подпространства L в \mathbb{R}^4 , заданного системой уравнений:

$$\begin{cases} x_1 - 4x_2 + 2x_3 + 3x_5 = 0 \\ 2x_1 - 7x_2 + 4x_3 + x_4 = 0 \\ x_1 - 3x_2 + 2x_3 + x_4 - 3x_5 = 0 \end{cases}$$

Решение:

Векторы, лежащие в L, должны удовлетворять системе, то есть должны быть её решением. Любое решение является линейной комбинацией Φ CP этой системы. Значит, Φ CP и есть базис L. Найдём её.

$$\begin{pmatrix} 1 & -4 & 2 & 0 & 3 & 0 \\ 2 & -7 & 4 & 1 & 0 & 0 \\ 1 & -3 & 2 & 1 & -3 & 0 \end{pmatrix} \xrightarrow{\text{II}-2I \to \text{II}} \begin{pmatrix} 1 & -4 & 2 & 0 & 3 & 0 \\ 0 & 1 & 0 & 1 & -6 & 0 \\ 0 & 1 & 0 & 1 & -6 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \Leftrightarrow \begin{cases} x_1 = -2x_3 - 4x_4 + 21x_5 \\ x_2 = -x_4 + 6x_5 \\ x_3, x_4, x_5 \in \mathbb{R} \end{cases}$$

Найдём ФСР, подставляя в зависимые переменные одновременно ненулевые значения:

x_1	x_2	x_3	x_4	x_5
-2	0	1	0	0
-4	-1	0	1	0
21	6	0	0	1

Получаем столбцы Φ CP, они же являются базисом подпространства L.

$$\begin{pmatrix} -2 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -4 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 21 \\ 6 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Ответ:
$$\begin{pmatrix} -2 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
, $\begin{pmatrix} -4 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 21 \\ 6 \\ 0 \\ 0 \\ 1 \end{pmatrix}$.

Задача 19

Найти размерность и базис (выбрав его из множества исходных векторов) линейной оболочки $L(a_1,a_2,a_3,a_4,a_5)$, где $a_1=(1,-1,2,1)^T$, $a_2=(1,2,1,-1)^T$, $a_3=(0,3,-1,-2)^T$, $a_4=(3,3,4,-1)^T$, $a_5=(1,-4,3,3)^T$ в \mathbb{R}^4 , выразить небазисные векторы через базисные.

Решение:

Найдём базисные векторы, записав их в столбцы матрицы и приведя эту матрицу к улучшенному ступенчатому виду:

$$\begin{pmatrix}
1 & 1 & 0 & 3 & 1 \\
-1 & 2 & 3 & 3 & -4 \\
2 & 1 & -1 & 4 & 3 \\
1 & -1 & -2 & -1 & 3
\end{pmatrix}
\xrightarrow{\text{III}+I \to \text{II} \atop \text{IV}-I \to \text{IV}}
\begin{pmatrix}
1 & 1 & 0 & 3 & 1 \\
0 & 3 & 3 & 6 & -3 \\
0 & -1 & -1 & -2 & 1 \\
0 & -2 & -2 & -4 & 2
\end{pmatrix}
\xrightarrow{\text{III}+I \to \text{II} \atop \text{IV}-1 \to \text{IV}}
\begin{pmatrix}
1 & 1 & 0 & 3 & 1 \\
0 & 3 & 3 & 6 & -3 \\
0 & -1 & -1 & -2 & 1 \\
0 & -2 & -2 & -4 & 2
\end{pmatrix}
\xrightarrow{\text{III}+I \to \text{III} \atop \text{IV}+I \to \text{IV}}
\begin{pmatrix}
1 & 1 & 0 & 3 & 1 \\
0 & 1 & 1 & 2 & -1 \\
0 & -1 & -1 & 2 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Ведущие столбцы – a_1 и a_2 , значит, их можно выбрать как базисные векторы линейной оболочки. Остальные векторы (небазичные) можно выразить через a_1 и a_2 следующим способом:

$$a_i = c_{1i}a_1 + c_{2i}a_2$$

где $i = \overline{3,5}$, а c_{ji} – элементы в приведённой к ступенчатому виду матрице, стоящие в j-й строке и i-м столбце.

$$a_3 = c_{13}a_1 + c_{23}a_2 = -a_1 + a_2$$

$$a_4 = c_{14}a_1 + c_{24}a_2 = a_1 + 2a_2$$

$$a_5 = c_{15}a_1 + c_{25}a_2 = 2a_1 - a_2$$

Ответ: базисные векторы: a_1 и a_2 ; небазисные: $a_3 = -a_1 + a_2$, $a_4 = a_1 + 2a_2$, $a_5 = 2a_1 - a_2$.

Задача 20

Составить систему линейных уравнений, задающую линейную оболочку следующих векторов $a_1=(1,1,2,1,2)^T,\ a_2=(0,-1,-2,1,-1)^T,\ a_3=(3,1,2,5,4)^T$ в $\mathbb{R}^5.$

Решение:

Так как векторы состоят из пяти координат, система линейных уравнений будет состоять из пяти неизвестных. Пусть вектор неизвестных $x = (x_1, x_2, x_3, x_4, x_5)^T$. Нужно найти такую систему Ax = 0, что при подстановке любого вектора из линейной оболочки L равенство нулю выполняется. Векторы a_1, a_2, a_3 лежат в линейной оболочке, значит, должно одновременно выполняться $a_1^T x =$

 $a_2^T x = a_3^T x = 0$ (тогда для любого вектора из L $a = c_1 a_1 + c_2 a_2 + c_3 a_3$ тоже выполняется $a^T x = 0$). Данные выражения можно записать в матричной форме:

$$\begin{pmatrix} a_1^T \\ a_2^T \\ a_3^T \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Приведём к ступенчатому виду матрицу, строки которой являются векторами a_1, a_2, a_3 .

$$\begin{pmatrix}
1 & 1 & 2 & 1 & 2 \\
0 & -1 & -2 & 1 & -1 \\
3 & 1 & 2 & 5 & 4
\end{pmatrix}
\xrightarrow{\text{III}-3I\to\text{III}}
\begin{pmatrix}
1 & 1 & 2 & 1 & 2 \\
0 & -1 & -2 & 1 & -1 \\
0 & -2 & -4 & 2 & -2
\end{pmatrix}
\xrightarrow{\text{III}-2II\to\text{III}}
\begin{pmatrix}
1 & 1 & 2 & 1 & 2 \\
0 & -1 & -2 & 1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\xrightarrow{\text{III}-2II\to\text{III}}
\begin{pmatrix}
1 & 1 & 2 & 1 & 2 \\
0 & -1 & -2 & 1 & -1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\xrightarrow{\text{III}-2II\to\text{III}}$$

Найдём ФСР, подставляя в зависимые переменные одновременно ненулевые значения:

x_1	x_2	x_3	x_4	x_5
0	-2	1	0	0
-2	1	0	1	0
-1	-1	0	0	1

Тогда система, задающая линейную оболочку будет равна:

$$\begin{cases}
-2x_2 + x_3 = 0 \\
-2x_1 + x_2 + x_4 = 0 \\
-x_1 - x_2 + x_5 = 0
\end{cases}$$

Otbet:
$$\begin{cases} -2x_2 + x_3 = 0 \\ -2x_1 + x_2 + x_4 = 0 \\ -x_1 - x_2 + x_5 = 0 \end{cases}$$

Задача 21

Найти размерности и базисы суммы и пересечения подпространств V_1 , V_2 в \mathbb{R}^4 , $V_1 = \langle a_1, a_2, a_3 \rangle$, $V_2 = \langle b_1, b_2 \rangle$, где $a_1 = (1, 0, -3, -2)^T$, $a_2 = (7, 1, 9, 14)^T$, $a_3 = (-4, 1, 2, -9)^T$, $b_1 = (10, 1, 0, 8)^T$, $b_2 = (-3, 0, 1, -3)^T$.

Решение:

Найдём базис суммы подпространств $V_1 + V_2 = \langle a_1, a_2, a_3, b_1, b_2 \rangle$. Запишем векторы в столбцы и приведём матрицу к ступенчатому виду: $a_1 \quad a_2 \quad a_3 \quad b_2 \quad b_2$

Векторы a_1, a_2, a_3 – базис $V_1 + V_2$, $\dim(V_1 + V_2) = 3$.

Чтобы найти базис пересечения подпространств, найдём базисы каждого из подпространств (и дополнительно посчитаем размерности каждого из пространств).

$$V_1: \begin{pmatrix} 1 & 0 & -3 & -2 \\ 7 & 1 & 9 & 14 \\ -4 & 1 & 2 & -9 \end{pmatrix} \leadsto \begin{pmatrix} 1 & 0 & 0 & \frac{11}{8} \\ 0 & 1 & 0 & -\frac{23}{4} \\ 0 & 0 & 1 & \frac{9}{8} \end{pmatrix} \to \begin{pmatrix} x_1 & x_2 & x_3 & x_4 \\ -11 & 46 & -9 & 8 \end{pmatrix}$$

Размерность dim $V_1 = 3$ (три л.н.з. вектора).

$$V_2: \begin{pmatrix} 10 & 1 & 0 & 8 \\ -3 & 0 & 1 & -3 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & -\frac{1}{3} & 1 \\ 0 & 1 & \frac{10}{3} & -2 \end{pmatrix} \rightarrow \begin{pmatrix} y_1 & y_2 & y_3 & y_4 \\ \hline 1 & -10 & 3 & 0 \\ \hline -1 & 2 & 0 & 1 \end{pmatrix}$$

Размерность $\dim V_2 = 2$ (два л.н.з. вектора).

Теперь составим матрицу, строки которой – найденные базисы:

$$\begin{pmatrix} -11 & 46 & -9 & 8 \\ 1 & -10 & 3 & 0 \\ -1 & 2 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & -\frac{6}{8} & -\frac{10}{8} \\ 0 & 1 & -\frac{3}{8} & -\frac{1}{8} \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} z_1 & z_2 & z_3 & z_4 \\ 6 & 3 & 8 & 0 \\ 10 & 1 & 0 & 8 \end{pmatrix}$$

Система векторов $z = \langle (6,3,8,0)^T, (10,1,0,8)^T \rangle$ является базисом подпространства $V_1 \cap V_2$. Значит, $\dim(V_1 \cap V_2) = 2$.

По формуле проверим, правильно ли нашли размерности:

$$\dim V_1 + \dim V_2 = \dim(V_1 + V_2) + \dim(V_1 \cap V_2) \implies 3 + 2 = 3 + 2$$

Ответ: базис V_1+V_2 : a_1,a_2,a_3 ; базис $V_1\cap V_2$: $(6,3,8,0)^T,(10,1,0,8)^T$; $\dim(V_1+V_2)=3$; $\dim(V_1\cap V_2)=2$

Задача 22

Вычислить матрицу перехода $C_{e\to\hat{e}}$ от базиса $e_1=(-2,1,-1)^T, e_2=(1,-1,3)^T, e_3=(1,2,-1)^T$ к базису $\hat{e_1}=(-1,2,3)^T, \hat{e_2}=(2,1,2)^T, \hat{e_3}=(0,2,1)^T,$ в линейном пространстве R^3 и определить координаты вектора $x=-\hat{e_1}+3\hat{e_2}-\hat{e_3}$ в базисе e_1,e_2,e_3 .

Решение:

По формуле:

$$\hat{e} = e \cdot C_{e \to \hat{e}}$$

$$(\hat{e}_{1}, \hat{e}_{2}, \hat{e}_{3}) = (e_{1}, e_{2}, e_{3}) \cdot \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix} \Rightarrow \begin{cases} \hat{e}_{1} = e_{1}c_{11} + e_{2}c_{21} + e_{3}c_{31} \\ \hat{e}_{2} = e_{1}c_{12} + e_{2}c_{22} + e_{3}c_{32} \\ \hat{e}_{3} = e_{1}c_{13} + e_{2}c_{23} + e_{3}c_{33} \end{cases}$$

$$\begin{cases} (-1, 2, 3)^{T} = (-2c_{11}, c_{11}, -c_{11})^{T} + (c_{21}, -c_{21}, 3c_{21})^{T} + (c_{31}, 2c_{31}, -c_{31})^{T} \\ (2, 1, 2)^{T} = (-2c_{12}, c_{12}, -c_{12})^{T} + (c_{22}, -c_{22}, 3c_{22})^{T} + (c_{32}, 2c_{32}, -c_{32})^{T} \\ (0, 2, 1)^{T} = (-2c_{13}, c_{13}, -c_{13})^{T} + (c_{23}, -c_{23}, 3c_{23})^{T} + (c_{33}, 2c_{33}, -c_{33})^{T} \end{cases}$$

$$\begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -2c_{11} + c_{21} + c_{31} \\ c_{11} - c_{21} + 2c_{31} \\ -c_{11} + 3c_{21} - c_{31} \end{pmatrix} \Rightarrow c_{11} = 2, c_{21} = 2, c_{31} = 1$$

$$\begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -2c_{12} + c_{22} + c_{32} \\ c_{12} - c_{22} + 2c_{32} \\ -c_{12} + 3c_{22} - c_{32} \end{pmatrix} \Rightarrow c_{12} = 0, c_{22} = 1, c_{32} = 1$$

$$\begin{pmatrix} 0 \\ 2 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -2c_{13} + c_{23} + c_{33} \\ c_{13} - c_{23} + 2c_{33} \\ -c_{12} + 3c_{22} - c_{22} \end{pmatrix} \Rightarrow c_{13} = 1, c_{23} = 1, c_{33} = 1$$

Таким образом, получаем матрицу перехода:

$$C_{e \to \hat{e}} = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

По формуле $x^e = C_{e \to \hat{e}} \cdot x^{\hat{e}}$. Вектор x в базисе \hat{e} имеет координаты $(-1, 3, -1)^T$. Тогда в базисе e координаты будут:

$$x^{e} = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 3 \\ -1 \end{pmatrix} = \begin{pmatrix} -3 \\ 0 \\ 1 \end{pmatrix} = -3e_{1} + e_{3}$$

Замечание. Матрицу $C_{e \to \hat{e}}$ можно было найти по формуле $C_{e \to \hat{e}} = e^{-1} \cdot \hat{e}$.

Ответ:
$$C_{e \to \hat{e}} = \begin{pmatrix} 2 & 0 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
; $x = (-3, 0, 1)^T$

Задача 23

Доказать, что пространство является прямой суммой подпространства $L_1 = \langle a_1, a_2 \rangle$, и подпространства $L_2 = \langle b_1, b_2 \rangle$ и разложить вектор $x = (0, -2, 2, 0)^T$ на сумму проекций на эти подпространства, где $a_1 = (1, 1, 1, 0)^T$, $a_2 = (1, 1, 0, 1)^T$, $b_1 = (1, 0, 1, 1)^T$, $b_2 = (1, 1, -1, -1)^T$.

Решение:

Найдём, чему равно $\dim(L_1 + L_2)$. Найдём базис суммы подпространств $L_1 + L_2 = \langle a_1, a_2, b_1, b_2 \rangle$. Запишем векторы в столбцы и приведём матрицу к ступенчатому виду:

$$\begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & -1 & -1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} \boxed{1} & 0 & 0 & 0 \\ 0 & \boxed{1} & 0 & 0 \\ 0 & 0 & \boxed{1} & 0 \\ 0 & 0 & 0 & \boxed{1} \end{pmatrix} \Rightarrow \dim(L_1 + L_2) = 4$$

Теперь найдём размерность каждого из подпространств. Векторы a_1 и a_2 – л.н.з., значит, $\dim L_1=2$. Векторы b_1 и b_2 – л.н.з., значит, $\dim L_2=2$. Выполняется равенство:

$$\dim(L_1 + L_2) = \dim L_1 + \dim L_2$$

Значит, $L_1+L_2=L_1\oplus L_2$ (является прямой суммой). Тогда вектор $x=x_1+x_2$, где $x_1\in L_1$, $x_2\in L_2$ (причём такое представление единственно). Так как $x_1\in L_1$, $x_1=\alpha_1a_1+\alpha_2a_2$. Аналогично $x_2=\beta_1b_1+\beta_2b_2$. Тогда

$$\begin{pmatrix} 0 \\ -2 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} \alpha_1 + \alpha_2 + \beta_1 + \beta_2 \\ \alpha_1 + \alpha_2 + \beta_2 \\ \alpha_1 + \beta_1 - \beta_2 \\ \alpha_2 + \beta_1 - \beta_2 \end{pmatrix} \xrightarrow{\text{pemaem cucremy}}_{\text{cucremy}} \begin{cases} \alpha_1 = 0 \\ \alpha_2 = -2 \\ \beta_1 = 2 \\ \beta_2 = 0 \end{cases}$$

Значит, $x=0\cdot a_1-2a_2+2b_1+0\cdot b_2$. Тогда пр $_{L_1}x=-2a_2$, пр $_{L_2}x=2b_1$.

Задача 24

Доказать линейную независимость над \mathbb{R} систем функций:

$$1, \sin x, \cos x$$

Решение:

Рассмотрим линейную комбинацию функций:

$$\lambda_1 \cdot 1 + \lambda_2 \sin x + \lambda_3 \cos x = 0$$

Подставим x = 0:

$$\lambda_1 \cdot 1 + \lambda_2 \sin 0 + \lambda_3 \cos 0 = 0$$
$$\lambda_1 + \lambda_3 = 0 \Rightarrow \lambda_3 = -\lambda_1$$

Подставим $x = \frac{\pi}{2}$:

$$\lambda_1 \cdot 1 + \lambda_2 \sin \frac{\pi}{2} + \lambda_3 \cos \frac{\pi}{2} = 0$$
$$\lambda_1 + \lambda_2 = 0 \Rightarrow \lambda_2 = -\lambda_1$$

Тогда исходную линейную комбинацию можно переписать как

$$\lambda_1 \cdot 1 - \lambda_1 \sin x - \lambda_1 \cos x = 0$$
$$\lambda_1 (1 - \sin x - \cos x) = 0$$

Подставим $x = \frac{\pi}{6}$:

$$\lambda_1 \left(1 - \sin \frac{\pi}{6} - \cos \frac{\pi}{6} \right) = 0$$
$$\lambda_1 \left(\frac{1}{2} - \frac{\sqrt{3}}{2} \right) = 0 \Rightarrow \lambda_1 = 0$$

Найдём λ_2 и λ_3 :

$$\lambda_2 = \lambda_3 = -\lambda_1 = 0$$

Таким образом, линейная комбинация рана нулю только при всех $\lambda_1 = \lambda_2 = \lambda_3 = 0$, значит, по определению система функций л.н.з.

Задача 25

Доказать линейную независимость над \mathbb{R} систем функций:

$$1, \cos x, \cos 2x, \ldots, \cos nx.$$

Решение:

Докажем по индукции по n:

- *База индукции.* При n=1: $\lambda_0\cdot 1=0 \Rightarrow \lambda_0=0 \Rightarrow$ система л.н.з. по определению.
- Предположение индукции. Пусть для n-1 членов система л.н.з., то есть

$$\lambda_0 \cdot 1 + \lambda_1 \cos x + \lambda_2 \cos 2x + \ldots + \lambda_{n-1} \cos(n-1)x = 0, \quad \lambda_0 = \ldots = \lambda_{n-1} = 0$$

• Шаг индукции. Проверим, будет ли система, состоящая из n членов, л.н.з. Предположим, что система функций $1, \cos x, \cos 2x, \ldots, \cos nx$ л.з. Тогда $\cos nx$ можно выразить через оставшиеся члены (которые по предположению индукции образуют л.н.з. систему).

$$\cos nx = \alpha_0 \cdot 1 + \alpha_1 \cos x + \alpha_2 \cos 2x + \ldots + \alpha_{n-1} \cos(n-1)x, \quad \alpha_1^2 + \ldots + \alpha_{n-1}^2 > 0$$
 (1)

Продифференцируем дважды данное равенство:

$$n^{2}\cos nx = \alpha_{1}\cos x + 4\alpha_{2}\cos 2x + \dots + (n-1)^{2}\alpha_{n-1}\cos(n-1)x$$
 (2)

Домножим (1) на n^2 :

$$n^{2}\cos nx = n^{2}\alpha_{0} + n^{2}\alpha_{1}\cos x + n^{2}\alpha_{2}\cos 2x + \dots + n^{2}\alpha_{n-1}\cos(n-1)x$$
(3)

Вычтем из (3) выражение (2):

$$0 = n^{2}\alpha_{0} + (n^{2} - 1)\alpha_{1}\cos x + (n^{2} - 4)\alpha_{2}\cos 2x + \dots + (n^{2} - (n - 1)^{2})\alpha_{n-1}\cos(n - 1)x$$

Но по предположению индукции равенство данной комбинации нулю возможно только при всех $n^2\alpha_0=\ldots=(n^2-(n-1)^2)\alpha_{n-1}=0$. Так как $n^2,\ldots,(n^2-(n-1)^2)>0$, должно выполняться $\alpha_0=\ldots=\alpha_{n-1}=0$. Противоречие с допущением $(\alpha_1^2+\ldots+\alpha_{n-1}^2>0)$.

Значит, система $1, \cos x, \cos 2x, \ldots, \cos nx$ л.н.з.

Задача 26

Доказать линейную независимость над \mathbb{R} систем функций:

$$e^{\alpha_1 x}, e^{\alpha_2 x}, \ldots, e^{\alpha_n x}.$$

Решение:

Рассмотрим линейную комбинацию:

$$\lambda_1 e^{\alpha_1 x} + \lambda_2 e^{\alpha_2 x} + \ldots + \lambda_n e^{\alpha_n x} = 0$$

Подставим в неё $x = 1, \dots, n$:

$$\begin{cases} \lambda_1 e^{\alpha_1} + \lambda_2 e^{\alpha_2} + \dots + \lambda_n e^{\alpha_n} = 0 \\ \lambda_1 e^{2\alpha_1} + \lambda_2 e^{2\alpha_2} + \dots + \lambda_n e^{2\alpha_n} = 0 \\ \dots \\ \lambda_1 e^{n\alpha_1} + \lambda_2 e^{n\alpha_2} + \dots + \lambda_n e^{n\alpha_n} = 0 \end{cases}$$

Чтобы определить, является ли комбинация л.н.з., надо найти λ_i . Решим данную систему. Посчитаем определитель:

$$\begin{vmatrix} e^{\alpha_1} & e^{\alpha_2} & \dots & e^{\alpha_n} \\ e^{2\alpha_1} & e^{2\alpha_2} & \dots & e^{2\alpha_n} \\ \vdots & \vdots & \dots & \vdots \\ e^{n\alpha_1} & e^{n\alpha_2} & \dots & e^{n\alpha_n} \end{vmatrix} \xrightarrow{\text{транспонир.}} \begin{vmatrix} e^{\alpha_1} & e^{2\alpha_1} & \dots & e^{n\alpha_1} \\ e^{\alpha_2} & e^{2\alpha_2} & \dots & e^{n\alpha_2} \\ \vdots & \vdots & \dots & \vdots \\ e^{\alpha_n} & e^{2\alpha_n} & \dots & e^{n\alpha_n} \end{vmatrix} = e^{\alpha_1 + \alpha_2 + \dots + \alpha_n} \begin{vmatrix} 1 & e^{\alpha_1} & \dots & e^{(n-1)\alpha_1} \\ 1 & e^{\alpha_2} & \dots & e^{(n-1)\alpha_2} \\ \vdots & \vdots & \dots & \vdots \\ 1 & e^{\alpha_n} & \dots & e^{(n-1)\alpha_n} = \end{vmatrix} = e^{\alpha_1 + \alpha_2 + \dots + \alpha_n} \begin{vmatrix} 1 & e^{\alpha_1} & \dots & e^{(n-1)\alpha_1} \\ 1 & e^{\alpha_2} & \dots & e^{(n-1)\alpha_2} \\ \vdots & \vdots & \dots & \vdots \\ 1 & e^{\alpha_n} & \dots & e^{(n-1)\alpha_n} = \end{vmatrix} = e^{\alpha_1 + \alpha_2 + \dots + \alpha_n} \begin{vmatrix} 1 & e^{\alpha_1} & \dots & e^{(n-1)\alpha_1} \\ 1 & e^{\alpha_2} & \dots & e^{(n-1)\alpha_2} \\ \vdots & \vdots & \dots & \vdots \\ 1 & e^{\alpha_n} & \dots & e^{(n-1)\alpha_n} = \end{vmatrix}$$

Определитель не равен 0, значит, ранг матрицы равен n, а значит, что данная система имеет единственное решение. Это решение $\lambda_1 = \ldots = \lambda_n = 0$ (можно получить по методу Крамера, где все $\Delta_i = 0$).

Таким образом, по определению система л.н.з.

Задача 27

Доказать, что каждая из двух заданных систем векторов S и S' являются базисом. Найти матрицу перехода от S к S':

$$S = ((1,2,1),(2,3,3),(3,8,2)), \ S' = ((3,5,8),(5,14,13),(1,9,2))$$

Решение:

Для того, чтобы доказать, что система векторов – базис в некотором пространстве, надо доказать, что векторы л.н.з. и их количество равно размерности пространства. Размерность \mathbb{R}^3 равна 3, векторов в каждой из систем 3, значит, одно из условий выполнено. Проверим второе. Для этого посчитаем определители матриц, составленных из данных векторов. Если они не равны 0, то системы л.н.з.

$$\begin{vmatrix} 1 & 2 & 1 \\ 2 & 3 & 3 \\ 3 & 8 & 2 \end{vmatrix} = -1 \neq 0$$

$$\begin{vmatrix} 3 & 5 & 8 \\ 5 & 14 & 13 \\ 1 & 9 & 2 \end{vmatrix} = -4 \neq 0$$

Значит, S и S' – базисы.

Матрицу перехода T от S к S' можно найти по формуле $T = S^{-1} \cdot S'$. Найдём обратную к S^{-1} :

$$\begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 2 & 3 & 3 & 0 & 1 & 0 \\ 3 & 8 & 2 & 0 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 0 & 18 & -4 & -3 \\ 0 & 1 & 0 & -5 & 1 & 1 \\ 0 & 0 & 1 & -7 & 2 & 1 \end{pmatrix} \Rightarrow S^{-1} = \begin{pmatrix} 18 & -4 & -3 \\ -5 & 1 & 1 \\ -7 & 2 & 1 \end{pmatrix}$$

Тогда

$$T = \begin{pmatrix} 18 & -4 & -3 \\ -5 & 1 & 1 \\ -7 & 2 & 1 \end{pmatrix} \begin{pmatrix} 3 & 5 & 8 \\ 5 & 14 & 13 \\ 1 & 9 & 2 \end{pmatrix} = \begin{pmatrix} 31 & 7 & 86 \\ -9 & -2 & -25 \\ -10 & 2 & -28 \end{pmatrix}$$

Ответ:
$$\begin{pmatrix} 31 & 7 & 86 \\ -9 & -2 & -25 \\ -10 & 2 & -28 \end{pmatrix}$$

Задача 28

Доказать, что в пространстве $\mathbb{R}[x]_n$ многочленов степени $\leq n$ с вещественными коэффициентами системы

$$\{1, x, x^2, \dots, x^n\}, \{1, x - a, (x - a)^2, \dots, (x - a)^n\}$$

являются базисами, и найти координаты многочлена $f(x) = a_0 + a_1 x + \ldots + a_n x^n$ в этих базисах и матрицу перехода от первого базиса ко второму.

Решение:

Размерности систем базисов и пространства совпадают. Остаётся доказать л.н.з. членов систем. Рассмотрим линейную комбинацию:

$$\lambda_0 \cdot 1 + \lambda_1 x + \lambda_2 x^2 + \ldots + \lambda_n x^n = 0$$

Подставив x=0 получим $\lambda_0=0$. Продифференцируем равенство n раз:

$$(0 \cdot 1 + \lambda_1 x + \lambda_2 x^2 + \dots + \lambda_n x^n)^{(n)} = 0^{(n)}$$
$$\lambda_n n! = 0 \Rightarrow \lambda_n = 0$$

Теперь продифференцируем равенство n-1 раз:

$$(0 \cdot 1 + \lambda_1 x + \lambda_2 x^2 + \dots + 0 \cdot x^n)^{(n-1)} = 0^{(n-1)}$$
$$\lambda_{n-1}(n-1)! + 0 \cdot n! = 0 \Rightarrow \lambda_{n-1} = 0$$

Аналогично, дифференцируя $(n-2), \ldots, 1$ раз, получим $\lambda_{n-2} = \ldots = \lambda_2 = \lambda_1 = 0$. Все коэффициенты равны 0, значит, система л.н.з. и является базисом.

Построим матрицу перехода от $e = \{1, x, x^2, \dots, x^n\}$ к $\hat{e} = \{1, x - a, (x - a)^2, \dots, (x - a)^n\}$.

$$T = \begin{pmatrix} t_{00} & \dots & t_{0n} \\ \vdots & \ddots & \vdots \\ t_{n0} & \dots & t_{nn} \end{pmatrix}$$

$$\hat{e} = eT$$

$$\hat{e} = eT$$

$$\begin{cases}
1 = t_{00} + xt_{10} + x^2t_{20} + \dots + x^nt_{n0} \\
x - a = t_{01} + xt_{11} + x^2t_{21} + \dots + x^nt_{n1} \\
\dots \\
(x - a)^n = t_{0n} + xt_{1n} + x^2t_{2n} + \dots + x^nt_{nn}
\end{cases}$$

Каждый из многочленов можно раскрыть по биному Ньютона. Тогда на t_{ij} будет стоять коэффициент в разложении при x^i , т.е. $C_i^i(-a)^{j-i}$. Таким образом, матрица перехода будет равна:

$$T = \begin{pmatrix} 1 & -a & (-a)^2 & \dots & (-a)^n \\ 0 & 1 & -2a & \dots & n(-a)^{n-1} \\ 0 & 0 & 1 & \dots & n(n-1)(-a)^{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$$

Она невырожденная, так как $\det T = 1 \neq 0$. Значит, \hat{e} – базис.

Координаты многочлена f(x) в e: $x^e = (a_0, \dots, a_n)^T$. Тогда координаты многочлена в базисе \hat{e} будут $x^{\hat{e}} = T^{-1}x^e$.

Билинейные и квадратичные формы

Теория

Определение. Функцию $b: V \times V \to \mathbb{R}$, где V — линейное пространство над \mathbb{R} , называют билинейной формой, если $\forall \alpha, \beta \in \mathbb{R}$:

- 1) $b(\alpha x + \beta y, z) = \alpha b(x, z) + \beta b(y, z)$
- 2) $b(x, \alpha y + \beta z) = \alpha b(x, y) + \beta b(x, z)$

Возьмем в V некоторый базис e_1, \ldots, e_n . Тогда:

$$b(x,y) = b(x_1e_1 + \dots + x_ne_n, y_1x_1 + \dots + y_nx_n) = \sum_{i=1}^n \sum_{j=1}^n x_iy_j \underbrace{b(e_i, e_j)}_{b_{ij}}$$

Определение. Матрица $B(b(e_i,e_j))_{n\times n}$ называется матрицей билинейной формы в базисе e_1,\ldots,e_n

Замечание. Пусть $X = (x_1, \dots, x_n)^T$ – столбец координат вектора $x, Y = (y_1, \dots, y_n)^T$ – столбец координат вектора y. Тогда $b(x,y) = X^T B Y, B$ – матрица билинейной формы.

Утверждение. Пусть U — матрица перехода от базиса e к базису f. Пусть B_e — матрица билинейной формы в базисе e. Тогда:

$$B_f = U^T B_e U$$

Определение. Однородный многочлен от n переменных, то есть:

$$Q(x) = \sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j, \ a_{ij} \in \mathbb{R}$$

называют квадратичной формой.

Утверждение. При переходе от базиса e к базису e' линейного пространства V матрица квадратичной формы меняется следующим образом: $A' = S^T A S$, где S – матрица перехода от базиса e к базису e', а A – матрица квадратичной формы в базисе e.

Определение. Квадратичную форму Q(x) будем называть:

- Положительно определенной, если $\forall x \neq 0 \ \ Q(x) > 0$
- Отрицательно определенной, если $\forall x \neq 0 \ \ Q(x) < 0$
- Знакопеременной, если $\exists x,y \in V \ \ Q(x) < 0 < Q(y)$
- Неотрицательно определенной, если $\forall x \neq 0 \ \ Q(x) \geq 0$

Теорема (критерий Сильвестра). Пусть $Q(x) = x^T \cdot A \cdot x$, т.е. A – матрица квадратичной формы.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{12} & \ddots & & & \\ \vdots & & \ddots & & \\ a_{1n} & & & a_{nn} \end{pmatrix}$$

Тогда $\Delta_1=a_{11},\Delta_2=\begin{vmatrix}a_{11}&a_{12}\\a_{12}&a_{22}\end{vmatrix},\ldots,\Delta_n=\det A$ — последовательность главных угловых миноров.

Квадратичная форма Q(x) от n переменных $x=(x_1,\ldots,x_n)$ положительно определена тогдп и только тогда, когда $\Delta_1>0,\ldots,\Delta_n>0.$

Следствие. Q(x) отрицательно определена $\Rightarrow \Delta_1 < 0, \Delta_2 > 0, \Delta_3 < 0, \dots, (-1)^n \Delta_n > 0$, т.е. знаки главных угловых миноров чередуются, начиная с минуса.

Определение. Квадратичную форму $Q(x) = \alpha_1 x_1^2 + \dots + \alpha_n x_n^2, \alpha_i \in \mathbb{R}, i = \overline{1,n}$ (т.е. не имеющую попарных произвольных элементов) называют квадратичной формой канонического вида. Если $\alpha_i \in \{0,1,-1\}$ то канонический вид называют нормальным.

Метод Лагранжа приведения квадратичной формы к каноническому виду

Метод состоит в последовательном выделении полных квадратов. На каждом шаге "под квадрат" должна полностью уйти одна переменная. Если на каком-то этапе переменных в квадрате не сталось, но есть выражения вида $C \cdot x_i \cdot x_j$, то делают замену переменных:

$$x_i = x'_i - x'_j, \ x_j = x'_i + x'_j \implies x_i x_j = (x'_i)^2 - (x'_j)^2$$

Если нужен нормальный вид, то выражение вида $C \cdot (x_i)^2$ заменяется на $\mathrm{sgn}(C) \cdot (\sqrt{|C|} x_i')^2$.

Теорема (Закон инерции квадратичных форм). Для любых двух канонических видов:

$$Q_1(y_1,\ldots,y_n) = \lambda_1 y_1^2 + \ldots + \lambda_m y_m^2, \ \lambda_i \neq 0, \ i = \overline{1,m}$$

$$Q_2(z_1, \dots, z_n) = \mu_1 z_1^2 + \dots + \mu_k z_k^2, \ \mu_j \neq 0, \ j = \overline{1, k}$$

одной и той же квадратичной формы выполнено:

- 1) m = k = рангу квадратичной формы
- 2) количество положительных $\lambda_i =$ количеству положительных $\mu_i = i_+$
- 3) количество отрицательных $\lambda_i =$ количеству отрицательных $\mu_j = i_-$

Числа i_+ и i_- называют положительными и отрицательными индексами инерции (они являются инвариантами квадратичной формы).

Задача 29

В базисе
$$e_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$
, $e_2 = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$ билинейная форма $B(x,y)$ имеет матрицу $B = \begin{pmatrix} -1 & 1 \\ -3 & 4 \end{pmatrix}$.

Найти матрицу билинейной формы B(x,y) в базисе $\hat{e_1} = \begin{pmatrix} 4 \\ 3 \end{pmatrix}, \hat{e_2} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

Решение:

Найдём матрицу перехода от базиса e к базису \hat{e} по формуле: $U_{e\to\hat{e}}=e^{-1}\cdot\hat{e}$. Для этого необходимо найти e^{-1} :

$$\begin{pmatrix} 3 & 2 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & \frac{1}{5} & \frac{2}{5} \\ 0 & 1 & \frac{1}{5} & -\frac{3}{5} \end{pmatrix} \Rightarrow e^{-1} = \begin{pmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{1}{5} & -\frac{3}{5} \end{pmatrix}$$

Тогда

$$U_{e \to \hat{e}} = e^{-1} \cdot \hat{e} = \begin{pmatrix} \frac{1}{5} & \frac{2}{5} \\ \frac{1}{5} & -\frac{3}{5} \end{pmatrix} \cdot \begin{pmatrix} 4 & 1 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} 2 & \frac{3}{5} \\ -1 & -\frac{2}{5} \end{pmatrix}$$

Теперь можно найти матрицу билинейной формы B(x,y) в базисе \hat{e} по формуле:

$$B_{\hat{e}} = U^T B_e U = \begin{pmatrix} 2 & \frac{3}{5} \\ -1 & -\frac{2}{5} \end{pmatrix}^T \cdot \begin{pmatrix} -1 & 1 \\ -3 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & \frac{3}{5} \\ -1 & -\frac{2}{5} \end{pmatrix} = \begin{pmatrix} 4 & \frac{7}{5} \\ \frac{11}{5} & \frac{19}{25} \end{pmatrix}$$

Ответ: $B_{\hat{e}} = \begin{pmatrix} 4 & \frac{7}{5} \\ \frac{11}{5} & \frac{19}{25} \end{pmatrix}$

Задача 30

Исследовать квадратичную форму k на положительную или отрицательную определенность в зависимости от параметра α :

$$k = (\alpha - 1)x_1^2 + (2\alpha - 2)x_1x_2 - 2\alpha x_1x_3 + 2\alpha x_2^2 - 2\alpha x_2x_3 + (\alpha - 2)x_3^2.$$

Решение:

Составим матрицу квадратичной формы (элементам a_{ii} соответсвуют коэффициенты при x_i^2 , элементам $a_{ij}=a_{ji},\,i\neq j$ соответствуют коэффициенты при x_ix_j , поделённые на 2):

$$A = \begin{pmatrix} \alpha - 1 & \alpha - 1 & -\alpha \\ \alpha - 1 & 2\alpha & -\alpha \\ -\alpha & -\alpha & \alpha - 2 \end{pmatrix}$$

По критерию Сильвестра определим определённость формы:

$$\Delta_{1} = \left| \alpha - 1 \right| = \alpha - 1$$

$$\Delta_{2} = \left| \begin{array}{ccc} \alpha - 1 & \alpha - 1 \\ \alpha - 1 & 2\alpha \end{array} \right| = \alpha^{2} - 1 = (\alpha - 1)(\alpha + 1)$$

$$\Delta_{3} = \left| \begin{array}{ccc} \alpha - 1 & \alpha - 1 & -\alpha \\ \alpha - 1 & 2\alpha & -\alpha \\ -\alpha & -\alpha & \alpha - 2 \end{array} \right| = -3\alpha^{2} - \alpha + 2 = -3\left(\alpha - \frac{2}{3}\right)(\alpha + 1)$$

Квадратичная форма положительно определена, если

$$\begin{cases} \Delta_1 > 0 \\ \Delta_2 > 0 \end{cases} \Rightarrow \begin{cases} \alpha - 1 > 0 \\ (\alpha - 1)(\alpha + 1) > 0 \end{cases} \Rightarrow \begin{cases} \alpha \in (1; +\infty) \\ \alpha \in (-\infty; -1) \cup (1; +\infty) \end{cases} \Rightarrow \emptyset$$

$$\Delta_3 > 0 \Rightarrow \begin{cases} \alpha - 1 > 0 \\ (\alpha - 1)(\alpha + 1) > 0 \end{cases} \Rightarrow \begin{cases} \alpha \in (1; +\infty) \\ \alpha \in (-\infty; -1) \cup (1; +\infty) \end{cases} \Rightarrow \emptyset$$

Квадратичная форма отрицательно определена, если

$$\begin{cases} \Delta_1 < 0 \\ \Delta_2 > 0 \end{cases} \Rightarrow \begin{cases} \alpha - 1 < 0 \\ (\alpha - 1)(\alpha + 1) > 0 \end{cases} \Rightarrow \begin{cases} \alpha \in (-\infty; 1) \\ \alpha \in (-\infty; -1) \cup (1; +\infty) \end{cases} \Rightarrow \alpha \in (-\infty; -1) \\ \alpha \in (-\infty; -1) \cup (\frac{2}{3}; +\infty) \end{cases}$$

Ответ: не может быть положительно определена; отрицательно определена при $\alpha \in (-\infty; -1)$.

Задача 31

Найти матрицу билинейной функции f в новом базисе, если заданы её матрица в старом базисе и формулы перехода:

$$B_e = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, \begin{cases} e'_1 = e_1 - e_2 \\ e'_2 = e_2 + e_3 \\ e'_3 = e_1 + e_2 + e_3 \end{cases}$$

Решение:

Матрица перехода от e к e' будет равна (в j-м столбце на i-м месте стоит коэффициент при e_i в выражении e'_i):

$$U_{e \to e'} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Тогда $B_{e'}$ можно найти по формуле:

$$B_{e'} = U_{e \to e'}^T B_e U_{e \to e'} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}^T \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & -6 & -9 \\ -2 & 28 & 39 \\ -3 & 33 & 45 \end{pmatrix}$$

Ответ:
$$B_{e'} = \begin{pmatrix} 0 & -6 & -9 \\ -2 & 28 & 39 \\ -3 & 33 & 45 \end{pmatrix}$$

Задача 32

Найти нормальный вид и невырожденное линейное преобразование, приводящее к этому виду, для следующей квадратичной формы:

$$4x_1^2 + x_2^2 + x_3^2 - 4x_1x_2 + 4x_1x_3 - 3x_2x_3$$

Решение:

Воспользуемся методом Лагранжа:

$$4x_1^2 + x_2^2 + x_3^2 - 4x_1x_2 + 4x_1x_3 - 3x_2x_3 =$$

$$= 4x_1^2 + 4x_1(x_3 - x_2) + (x_2^2 - 2x_2x_3 + x_3^2) - x_2x_3 =$$

$$= (2x_1)^2 + 2 \cdot 2x_1(x_3 - x_2) + (x_3 - x_2)^2 - x_2x_3 =$$

$$= (2x_1 + x_3 - x_2)^2 - x_2x_3$$

Сделаем невырожденную замену:

$$\begin{cases} y_1 = 2x_1 - x_2 + x_3 \\ x_2 = y_2 - y_3 \\ x_3 = y_2 + y_3 \end{cases} \Rightarrow \begin{cases} y_1 = 2x_1 + x_3 - x_2 \\ y_2 = \frac{1}{2}x_2 + \frac{1}{2}x_3 \\ y_3 = \frac{1}{2}x_3 - \frac{1}{2}x_2 \end{cases}$$

Получаем квадратичную форму $y_1^2 - y_2^2 + y_3^2$. Матрица преобразования от x к y:

$$S^{-1} = \begin{pmatrix} 2 & -1 & 1 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$$
$$y = S^{-1}x$$

Тогда от y к x будет:

$$S = (S^{-1})^{-1} = \begin{pmatrix} \frac{1}{2} & 0 & -1\\ 0 & 1 & -1\\ 0 & 1 & 1 \end{pmatrix}$$
$$x = Sy$$

Ответ:
$$S = \begin{pmatrix} \frac{1}{2} & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

Задача 33

Найти нормальный вид и невырожденное линейное преобразование, приводящее к этому виду, для следующей квадратичной формы:

$$x_1x_2 + x_1x_3 + x_2x_3$$

Решение:

Преобразуем методом Лагранжа:

$$x_1x_2 + x_1x_3 + x_2x_3 = \frac{1}{2}(2x_1x_2 + 2x_1x_3 + 2x_2x_3) =$$

$$= \frac{1}{2}((x_1 + x_2)^2 - x_1^2 + 2x_1x_3 - x_2^2 + 2x_2x_3) =$$

$$= \frac{1}{2}((x_1 + x_2)^2 - (x_1^2 - x_3^2) - x_2^2 + 2x_2x_3 - x_3^2) =$$

$$= \frac{1}{2}((x_1 + x_2)^2 - (x_1 - x_3)^2 - (x_2 - x_3)^2) =$$

$$= \frac{1}{2}(x_1 + x_2)^2 - \frac{1}{2}(x_1 - x_3)^2 - \frac{1}{2}(x_2 - x_3)^2 = \frac{1}{2}y_1^2 - \frac{1}{2}y_2^2 - \frac{1}{2}y_3^2$$

Замена:

$$\begin{cases} y_1 = x_1 + x_2 \\ y_2 = x_1 - x_3 \\ y_3 = x_2 - x_3 \end{cases}$$

Матрица преобразования от $x \, \kappa \, y$:

$$S^{-1} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$$

Найдём матрицу преобразования от $y \kappa x$:

$$S = (S^{-1})^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

Ответ:
$$S = (S^{-1})^{-1} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

Задача 34

Для следующих квадратичных форм найти невырожденное линейное преобразование, переводящие форму f в форму g (искомое преобразование определено не однозначно):

$$f = 5x_1^2 + 5x_2^2 + 2x_3^2 + 8x_1x_2 + 6x_1x_3 + 6x_2x_3$$
$$g = 4y_1^2 + y_2^2 + 9y_3^2 - 12y_1y_3$$

Решение:

Приведём обе формы к каноническому виду методом Лагранжа:

$$f = 5x_1^2 + 5x_2^2 + 2x_3^2 + 8x_1x_2 + 6x_1x_3 + 6x_2x_3 =$$

$$= 5x_1^2 + 5x_2^2 + 8x_1x_2 + \left(\underbrace{(\sqrt{2}x_3)^2}_{2x_3^2} + \underbrace{2x_3(3x_1 + 3x_2)}_{6x_1x_3 + 6x_2x_3} \underbrace{\frac{\sqrt{2}}{\sqrt{2}}}_{\sqrt{2}} + \left(\frac{3x_1 + 3x_2}{\sqrt{2}}\right)^2\right) - \left(\frac{3x_1 + 3x_2}{\sqrt{2}}\right)^2 =$$

$$= \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 - x_1x_2 + \left(\sqrt{2}x_3 + \frac{3}{\sqrt{2}}x_1 + \frac{3}{\sqrt{2}}x_2\right)^2 =$$

$$= \frac{1}{2}(x_1 - x_2)^2 + \left(\sqrt{2}x_3 + \frac{3}{\sqrt{2}}x_1 + \frac{3}{\sqrt{2}}x_2\right)^2 = z_1^2 + z_2^2$$

Замена:

$$\begin{cases} z_1 = \frac{1}{\sqrt{2}}x_1 - \frac{1}{\sqrt{2}}x_2 \\ z_2 = \sqrt{2}x_3 + \frac{3}{\sqrt{2}}x_1 + \frac{3}{\sqrt{2}}x_2 \\ z_3 = x_1 \end{cases}$$

Матрица перехода:

$$S_f^{-1} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0\\ \frac{3}{\sqrt{2}} & \frac{3}{\sqrt{2}} & \sqrt{2}\\ 1 & 0 & 0 \end{pmatrix}$$
$$z = S_f^{-1} x$$

$$g = 4y_1^2 + y_2^2 + 9y_3^2 - 12y_1y_3 = y_2^2 + (3y_3 - 2y_1)^2 = z_1^2 + z_2^2$$

Замена:

$$\begin{cases} z_1 = y_2 \\ z_2 = 3y_3 - 2y_1 \\ z_3 = y_1 \end{cases}$$

Матрица перехода:

$$S_g^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ -2 & 0 & 3 \\ 1 & 0 & 0 \end{pmatrix}$$
$$z = S_g^{-1} y$$

Квадратичные формы совпадают, поэтому можем их приравнять: $S_f^{-1}x = S_g^{-1}y$. Тогда, домножая выражение слева на S_f получим $x = S_f S_g^{-1}y$, что и будет преобразованием, переводящим f в g (сопоставление вектору x вектор y). Найдём S_f :

$$S_f = (S_f^{-1})^{-1} = \begin{pmatrix} 0 & 0 & 1 \\ -\sqrt{2} & 0 & 1 \\ \frac{3\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -3 \end{pmatrix}$$

Тогда

$$x = \begin{pmatrix} 0 & 0 & 1 \\ -\sqrt{2} & 0 & 1 \\ \frac{3\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -3 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ -2 & 0 & 3 \\ 1 & 0 & 0 \end{pmatrix} y = \begin{pmatrix} \sqrt{2} & \frac{\sqrt{2}}{2} & -\frac{3\sqrt{2}}{2} \\ -2\sqrt{2} & \frac{3\sqrt{2}}{2} & \frac{9\sqrt{2}}{2} \\ 0 & 1 & 0 \end{pmatrix} y$$

Otbet:
$$\begin{pmatrix} \sqrt{2} & \frac{\sqrt{2}}{2} & -\frac{3\sqrt{2}}{2} \\ -2\sqrt{2} & \frac{3\sqrt{2}}{2} & \frac{9\sqrt{2}}{2} \\ 0 & 1 & 0 \end{pmatrix}$$

Задача 35

Выяснить, какие из следующих форм эквивалентны между собой в области вещественных чисел:

$$f_1 = x_1^2 - x_2 x_3$$
$$f_2 = y_1 y_2 - y_3^2$$
$$f_3 = z_1 z_2 + z_3^2$$

Решение:

Приведём формы к каноническому виду:

$$\begin{cases}
 f_1 = t_1^2 - (t_2 - t_3)(t_2 + t_3) = t_1^2 - t_2^2 + t_3^2 \\
 t_1 = x_1 \\
 t_2 - t_3 = x_2 \\
 t_2 + t_3 = x_3
\end{cases}
\Rightarrow
\begin{cases}
 t_1 = x_1 \\
 t_2 = \frac{1}{2}x_2 + \frac{1}{2}x_3 \\
 t_3 = \frac{1}{2}x_3 - \frac{1}{2}x_2
\end{cases}$$

Данная квадратичная форма ранга 3, сигнатура равна (2,1) (1 отрицательных и 2 положительных членов).

$$f_2 = (t_2 - t_3)(t_2 + t_3) - t_1^2 = -t_1^2 + t_2^2 - t_3^2$$

$$\begin{cases} t_1 = y_3 \\ t_2 - t_3 = y_1 \\ t_2 + t_3 = y_2 \end{cases} \Rightarrow \begin{cases} t_1 = y_3 \\ t_2 = \frac{1}{2}y_1 + \frac{1}{2}y_2 \\ t_3 = \frac{1}{2}y_2 - \frac{1}{2}y_1 \end{cases}$$

Квадратичная форма f_2 ранга 3, сигнатура равна (1,2) (2 отрицательных и 1 положительный член).

$$\begin{cases}
 f_3 = (t_2 - t_3)(t_2 + t_3) + t_1^2 = t_1^2 + t_2^2 - t_3^2 \\
 t_1 = z_3 \\
 t_2 - t_3 = z_1 \\
 t_2 + t_3 = z_2
\end{cases}
\Rightarrow
\begin{cases}
 t_1 = z_3 \\
 t_2 = \frac{1}{2}z_1 + \frac{1}{2}z_2 \\
 t_3 = \frac{1}{2}z_2 - \frac{1}{2}z_1
\end{cases}$$

Квадратичная форма f_3 ранга 3, сигнатура равна (2,1) (1 отрицательных и 2 положительных членов).

Ранги и сигнатуры f_1 и f_3 совпадают, значит, по закону инерции квадратичных форм, они эквивалентны.

Ответ: f_1 и f_3 .