Definition

An infinite (even uncountable) collection of sets is independent if every finite subcollection satisfies the above definition of independence.

Note. Pairwise independence \Rightarrow independence.

Example. Roll a fair 6-sided die twice. Let A= the sum of outcomes is 7. B= the first roll is 2. C= the second roll is 5. $P(A)=\frac{6}{36}, P(B)=\frac{1}{6}, P(C)=\frac{1}{6}, P(A\cap B)=\frac{1}{36}$. Same for the other two pairs. However, $P(A\cap B\cap C)=P(B\cap C)=\frac{1}{36}\neq\frac{1}{6^3}$.

Definition

Let A_1, A_2, \ldots, A_n be classes/collections of sets from \mathcal{F} . These classes are independent if A_1, A_2, \ldots, A_n are independent for all choices of $A_i \in \mathcal{A}_i$. Or

 A_1, \ldots, A_n are independent if $P(A_1 \cap A_2 \cap \ldots \cap A_n) = P(A_1)P(A_2) \cdots P(A_n)$ for $A_i \in A_i$ OR $A_i = \Omega$.

Does the independence of classes imply the independence of their sigma fields? No! They need to be π -systems.

Let Ω be a non-empty set.

Definition

A π -system

Definition: lambda-system

A λ -system is a collection of subsets of Ω such that

- (i) contains Ω .
- (ii) closed under complements.
- (iii) closed under countable disjoint unions.

Notation.

Example. $\Omega = \{a, b, c, d\}$. Define $\mathcal{L} = \{\{a, b\}, \{a, c\}, \{c, d\}, \{b, d\}, \Omega, \emptyset\}$. Note

 $\{a,b\} \cup \{a,c\} = \{a,b,c\} \not\in \mathcal{L} \Rightarrow \mathcal{L} \text{ is not a field.}$

In the definition of a λ -system, (ii) can be replaced by (ii') $A, B \in \mathcal{L}$ with $A \subseteq B$ then $B \setminus A \in \mathcal{L}$.

Proof

(i) and (ii') \Rightarrow (ii). Take $B = \Omega$. Then $B \setminus A = A^c \in \mathcal{L}$.

(ii) and (iii) $\Rightarrow A \subseteq B \Rightarrow B \setminus A = B \cap A^c = (A \cup B^c)^c \in \mathcal{L}$ since disjoint union and its complement is in \mathcal{L} .

Lemma: 1

If \mathcal{A} is a π -system and a λ -system, then \mathcal{A} is a σ -field.

Proof

(i) and (ii) for σ -field are satisfied from (i) and (ii) from the λ -system. We want to show (iii) from σ -field definition.

Take $A_1,A_2,\ldots\in\mathcal{A}$. Let $B_1=A_1,B_2=A_2\setminus A_1=A_2\cap A_1^c,B_3=A_3\cap A_2^c\cap A_1^c,\ldots$ The B_n are disjoint. \mathcal{A} is a π -system and λ -system implies that the B_n are in \mathcal{A} . So

$$\bigcup_{n} A_n = \bigcup_{n} B_n \in \mathcal{A}.$$

Lemma: 2

Suppose that \mathcal{L}_0 is a λ -system. Define, for any $C \subseteq \Omega$, $\mathcal{L}_C := \{D \subseteq \Omega : D \cap C \in \mathcal{L}_0\}$. If $C \in \mathcal{L}_0$ then \mathcal{L}_C is a λ -system.

Proof

- (i) $C \in \mathcal{L}_0 \Rightarrow \Omega \cap C = C \in \mathcal{L}_0 \Rightarrow \Omega \in \mathcal{L}_C$
- (ii) Suppose $A \in \mathcal{L}_C$, want to show $A^c \in \mathcal{L}_C$. Write $C = (A \cap C) \cup (A^c \cap C)$. Then $A^c \cap C = C \setminus (A \cap C) \in \mathcal{L}_0$ since \mathcal{L}_0 is a λ -system, and $A \cap C \subseteq C \Rightarrow A^c \in \mathcal{L}_C$.

(iii) Take A_1, A_2, \ldots disjoint in \mathcal{L}_C . Then $A_1 \cap C, A_2 \cap C, \ldots$ are in \mathcal{L}_0 . Since \mathcal{L}_0 is a λ -system, we have

$$\bigcup_{n=1}^{\infty} (A_n \cap C) \in \mathcal{L}_0$$

$$\left(\bigcup_{n=1}^{\infty} A_n\right) \cap C \in \mathcal{L}_0$$

Theorem: Dynkin's pi-lambda Theorem

Let \mathcal{P} be a π -system and \mathcal{L} be a λ -system. If $\mathcal{P} \subseteq \mathcal{L}$ then $\sigma(\mathcal{P}) \subseteq \mathcal{L}$.

Proof

Suppose $\mathcal{P} \subseteq \mathcal{L}$. Let \mathcal{L}_0 be the smallest π -system containing \mathcal{P} . Then $\mathcal{P} \subseteq \mathcal{L}_0 \subseteq \mathcal{L}$. If we can show that \mathcal{L}_0 is a σ -field then $\sigma(\mathcal{P}) \subseteq \mathcal{L}_0 \subseteq \mathcal{L}$.

By Lemma 1, we need to show that \mathcal{L}_0 is a π -system. Take $A, B \in \mathcal{L}_0$, we want to show that $A \cap B \in \mathcal{L}_0$.

Claim: $\mathcal{P} \subseteq \mathcal{L}_B = \{C \subseteq \Omega : C \cap B \in \mathcal{L}_0\}$. Then, since $B \in \mathcal{L}_0$, by Lemma 2, \mathcal{L}_B is a λ -system, assuming the claim is true. Since $\mathcal{P} \subseteq \mathcal{L}_B$ and \mathcal{L}_B is a λ -system, we have $\mathcal{P} \subseteq \mathcal{L}_0 \subseteq \mathcal{L}_B$ since \mathcal{L}_0 is the smallest λ -system containing \mathcal{P} . So $A \in \mathcal{L}_B \Rightarrow A \cap B \in \mathcal{L}_0$ by the definition of \mathcal{L}_B .

Theorem: 4.2

Given (Ω, \mathcal{F}, P) . If $\mathcal{A}_1, \mathcal{A}_2, \dots, \mathcal{A}_n$ are independent π -systems, then $\sigma(\mathcal{A}_1), \sigma(\mathcal{A}_2), \dots, \sigma(\mathcal{A}_n)$ are independent.

Proof

For $i=1,2,\ldots,n$, define $\mathcal{B}_i=\mathcal{A}_i\cup\{\Omega\}$. Note that \mathcal{B}_i is still a π -system and $\sigma(\mathcal{B}_i)=\sigma(\mathcal{A}_i)$. $\mathcal{A}_1,\ldots,\mathcal{A}_n$ independent $\Leftrightarrow P(A_1\cap\ldots\cap A_n)=P(A_1)\cdots P(A_n)$ for all $A_i\in\mathcal{A}_i$ or $A_i=\Omega\Leftrightarrow P(B_1\cap\ldots\cap B_n)=P(B_1)\cdots P(B_n)$ for any $B_i\in\mathcal{B}_i$.

For $i=2,\ldots,n,$ fix sets $B_i\in\mathcal{B}_i$ and define $\mathcal{L}=\{A\in\mathcal{F}:P(A\cap B_2\cap\ldots\cap A_i)\}$

$$B_n) = P(A)P(B_2)\cdots P(B_n)\}.$$

Claim: \mathcal{L} is a λ -system.

- (i) (i) $\Omega \in \mathcal{L}$ since $P(B_2 \cap \ldots \cap B_n) = P(B_2) \cdots P(B_n)$
- (ii) Take $A \in \mathcal{L}$. Let $B = B_2 \cap ... \cap B_n$. Then $P(B) = P(A \cap B) + P(A^c \cap B) \Rightarrow P(B_2) \cdots P(B_n) = P(A)P(B_2) \cdots P(B_n) + P(A^c \cap B) \Rightarrow P(A^c \cap B) = (1 P(A)P(B_2) \cdots P(B_n) \Rightarrow A^c \in \mathcal{L}$.
- (iii) Take $A_1, \ldots \in \mathcal{L}$ disjoint. Let $A = \bigcup_{m=1}^{\infty} A_m$. Then

$$P(A \cap B_2 \cap \dots \cap B_n) = P(\bigcup_{m=1}^{\infty} A_m \cap B_2 \cap \dots \cap B_n)$$

$$= P\left(\bigcup_{m=1}^{\infty} A_m \cap (B_2 \cap \dots \cap B_n)\right)$$
 by countable additivity
$$= \left(\sum_{m=1}^{\infty} P(A_m)\right) P(B_2) \cdots P(B_n)$$

$$= P\left(\bigcup_{m=1}^{\infty} A_m\right) P(B_2) \cdots P(B_n)$$
 by countable additivity

Hence $\bigcup_{m=1}^{\infty} A_m \in \mathcal{L}$.

Note that $B_1 \subseteq \mathcal{L}$, \mathcal{B}_i is a π -system, \mathcal{L} is a λ -system, by Dynkin we have $\sigma(\mathcal{A}_1)\sigma(\mathcal{B}_1) \subseteq \mathcal{L}$. By definition of \mathcal{L} , we have $\sigma(\mathcal{A}_1)$ is independent of $\mathcal{A}_2, \ldots, \mathcal{A}_n$.