(a) $P(A, B, C), P(x, y, z)$	{ x/A, y/B, z/C }
(b) $Q(y, G(B, A), D), Q(G(x, x), y, D)$	Not unifiable because x
	cannot bind to both B and A
(c) $R(x,z,A)$, $R(A,z,y)$	{ x/A, y/A }
(d) $Older(Father(y), John), Older(Father(x), x)$	{ y/John }
(e) $Knows(y, y), Knows(Father(x), x)$	Not unifiable

2.

- 1. John likes all kinds of food.
- 2. Apples are food.
- 3. Chicken is food.
- 4. Anything someone eats and isn't killed by is food.
- 5. If you are killed by something, you are not alive.
- 6. Bill eats peanuts and is still alive. *
- 7. Sue eats everything Bill eats.
- (a) First order logic:
- 1. $\forall x Food(x) \Rightarrow Likes(John, x)$
- 2. Food(Apple)
- 3. Food(Chicken)
- 4. $\forall y (\exists x \ Eats(x, y) \land \neg Kills(y, x)) \Rightarrow Food(y)$ = $\forall x \ \forall y \ Eats(x, y) \land \neg Kills(y, x) \Rightarrow Food(y)$
- 5. $\forall x \ \forall y \ Kills(x, y) \Rightarrow \neg Alive(y)$
- 6. $Eats(Bill, Peanuts) \land Alive(Bill)$
- 7. $\forall x \ Eats(Bill, x) \Rightarrow Eats(Sue, x)$

(b) CNF:

- 1. $\forall x \, Food(x) \Rightarrow Likes(John, x)$ = $\neg Food(a) \lor Likes(John, a)$
- 2. Food(Apple)
- 3. Food(Chicken)
- 4. $\forall x \ \forall y \ Eats(x,y) \land \neg Kills(y,x) \Rightarrow Food(y)$ = $\neg (Eats(x,y) \land \neg Kills(y,x)) \lor Food(y)$ = $\neg Eats(d,e) \lor Kills(e,d) \lor Food(e)$
- 5. $\forall x \ \forall y \ Kills(x, y) \Rightarrow \neg Alive(y)$ = $\neg Kills(f, g) \lor \neg Alive(g)$
- 6. Eats(Bill, Peanuts)
- 7. Alive(Bill)
- 8. $\forall x \ Eats(Bill, x) \Rightarrow Eats(Sue, x)$ = $\neg Eats(Bill, h) \lor Eats(Sue, h)$
- (c) Prove $\alpha = Likes(John, Peanuts)$

9. ¬Likes(John, Peanuts)	$\neg \alpha$
10. $\neg Food(Peanuts)$	Resolution of 1, 9 with binding list:
	{ a/Peanuts }
11. $\neg Eats(d, Peanuts) \lor$	Resolution or 4, 10 with binding list:
Kills(Peanuts, d)	{ e/Peanuts }
12. $\neg Eats(d, Peanuts) \lor \neg Alive(d)$	Resolution of 5, 11 with binding list:
	{ f/Peanuts, g/d }
13. $\neg Eats(Bill, Peanuts)$	Resolution of 7, 12 with binding list:
	{ d/Bill }
14. Ø	Resolution of 6, 13

Contradiction! :: Likes(John, Peanuts) is true.

(d) Use resolution to answer the question, "What food does Sue eat?"

9. Eats(Sue, Peanuts)	Unification of 6, 8 with binding list:
	{ h/Peanuts }

[∴] Sue eats peanuts.

- (e) Use resolution to answer (d) if, instead of the axiom marked with an asterisk above, we had:
- 1. $\neg Food(a) \lor Likes(John, a)$
- 2. Food(Apple)
- 3. Food(Chicken)
- 4. $\neg Eats(d, e) \lor Kills(e, d) \lor Food(e)$
- 5. $\neg Kills(f, g) \lor \neg Alive(g)$
- 6. $\neg Eats(Bill, h) \lor Eats(Sue, h)$
- 7. $\forall x (\forall y \neg Eats(x, y)) \Rightarrow Die(x)$ = $Eats(i, j) \lor Die(i)$
- 8. $\forall x \ Die(x) \Rightarrow \neg Alive(x)$ = $\neg Die(k) \lor \neg Alive(k)$
- 9. Alive(Bill)

"What food does Sue eat?"

10. ¬Die(Bill)	Resolution of 8, 9 with binding list:
	{ k/Bill }
11. <i>Eats</i> (<i>Bill</i> , <i>j</i>)	Resolution of 7, 10 with binding list:
	{ i/Bill }
12. $Kills(j, Bill) \lor Food(j)$	Resolution of 4, 11 with binding list:
	{ d/Bill, e/j }
13. $\neg Alive(Bill) \lor Food(j)$	Resolution of 5, 12 with binding list:
	{ f/j, g/Bill }
14. <i>Food(j)</i>	Resolution of 9, 13 with binding list: {}
15. <i>Eats(Sue, j)</i>	Resolution of 6, 11 with binding list:
	{ h/j }

 $[\]therefore$ Sue eats food but we cannot conclude which ones.