## Act-3000 Théorie du risque

#### Méthodes d'agrégation récursives

#### Étienne Marceau

École d'actuariat Université Laval, Québec, Canada

A2019: Série no4



Faculté des sciences et de génie École d'actuariat

#### Table des matières I

- 1 Introduction
- 2 Motivations
- 3 Méthodes de discrétisation
- 4 Fgp et magie
  - Introduction
  - Rappels
  - En coulisses
- 5 Relations récursives
- 6 Algorithme de DePril
- Somme de aléatoire de v.a. iid
- 8 Famille (a,b,0) des lois de fréquence
- 9 Algorithme de Panjer
- Nombres complexes
- Transformée de Fourier Rapide (FFT)
- 12 Illustrations
- Méthodes de discrétisation



#### Table des matières II

- Méthode upper
- Méthode lower
- Convergence en distribution et sandwich
- Exemple Loi lognormale
- Exemple Loi Pareto
- 14 Produit de convolution
  - Exemple Loi lognormale
  - Exemple Loi Pareto
- 15 Somme aléatoire
  - Exemple Loi lognormale
  - Exemple Loi Pareto
- 16 Conclusion
- 17 Algorithmes récursifs
  - Algorithme de DePril
  - Algorithme de Panjer





#### Table des matières III

- Illustration no1
- Illustration no2
- Illustration no3

- 18 Études de cas
  - Rappel de la procédure
  - Données no1

19 Références



# Introduction



#### Introduction

L'objectif du présent chapitre est de familiariser avec les méthodes récursives d'agrégation de base en actuariat.

L'actuariat a contribué de façon majeure aux développements de ces méthodes.



Soit les v.a. indépendantes continues positives  $X_1$  et  $X_2$ .

On définit  $S = X_1 + X_2$ .

On sait que

$$f_S(x) = \int_0^x f_{X_1}(y) f_{X_2}(x - y) dy = f_{X_1} * f_{X_2}(x).$$
 (1)

L'opération en (1) est appelée "produit de convolution".

#### Exemple:

- $X_1 \sim Gamma(2,0.2)$
- $X_2 \sim Gamma(3,0.2)$
- $\blacksquare \implies S \sim Gamma(5,0.2)$







Illustration: Courbe de  $f_{X_1}(x)$ .





Illustration: Courbe de  $f_{X_2}(x)$ .





Illustration: Courbe de  $f_S(x)$ .



#### Observations:

- En général, on n'identifie pas de forme fermée pour  $f_S$ .
- Le degré de difficulté augmente avec le nombre de v.a.
- La situation se complique davantage pour une somme aléatoire de v.a. indépendantes.

Solution proposée dans ce chapitre : utiliser des méthodes numériques récursives.

La solution repose sur la discrétisation de la distribution de v.a. continues.

Soit les v.a. indépendantes discrètes positives  $X_1$  et  $X_2$  définies sur le support arithmétique 0h,1h,2h,... où h>0 est un pas de discrétisation.

Fonction de masse de probabilité :

$$f_{X_i}(kh) = \Pr(X_i = kh),$$

pour i = 1,2.

On définit  $S = X_1 + X_2$ .

On sait que

$$f_S(kh) = \sum_{j=0}^k f_{X_1}(jh) f_{X_2}((k-j)h) = f_{X_1} * f_{X_2}(kh),$$
 (2)

pour  $k \in \mathbb{N}$ .

L'opération en (2) est aussi appelée "produit de convolution".



#### Exemple:

- $\blacksquare X_1 \sim NBinom(2,1/6)$
- $X_2 \sim NBinom(3,1/6)$
- $\blacksquare$   $\Longrightarrow$   $S \sim NBinom(5,1/6)$



Illustration: Valeurs de la fonction de masse de probabilité de  $X_1$ .





Illustration: Valeurs de la fonction de masse de probabilité de  $X_2$ .





Illustration: Valeurs de la fonction de masse de probabilité de S.



#### Exemple:

- $\blacksquare X_1 \sim NBinom(2,1/6)$
- $\blacksquare X_2 \sim Poisson(10)$
- $\blacksquare$   $\Longrightarrow$   $S \sim LoiDiscrète$  (sans nom)



Illustration: Valeurs de la fonction de masse de probabilité de  $X_1$ .





Illustration: Valeurs de la fonction de masse de probabilité de  $X_2$ .





Illustration: Valeurs de la fonction de masse de probabilité de S.



## Observations : [en classe]

- **.**.
- **...**



On présente les méthodes lower et upper de discrétisation.

Objectif : Approximer une v.a. définie (généralement continue) positive X par une v.a.  $\widetilde{X}$  définie sur le support

$$A_h = \{0,1h,2h,3h,...\},$$

où h > 0 est appelé le pas de discrétisation.

La fonction de masse de probabilité est  $f_{\widetilde{X}}\left(kh\right) = \Pr\left(\widetilde{X} = kh\right)$ ,  $k \in \mathbb{N}$ .

#### Méthode upper:

■ valeur de la fonction de masse de probabilité à 0 :

$$f_{\widetilde{X}}(0) = F_X(h)$$

lacktriangle valeurs de la fonction de masse de probabilité à 1h,2h,3h,... :

$$f_{\widetilde{X}}(kh) = F_X((k+1)h) - F_X(kh)$$

pour  $k \in \mathbb{N}^+$ .

#### Méthode lower:

■ valeur de la fonction de masse de probabilité à 0 :

$$f_{\widetilde{X}}(0) = 0$$

lacktriangle valeurs de la fonction de masse de probabilité à 1h,2h,3h,... :

$$f_{\widetilde{X}}(kh) = F_X(kh) - F_X((k-1)h)$$

pour  $k \in \mathbb{N}^+$ .

Illustration des deux méthodes : [en classe]



## Observations : [en classe]

- ...
- **...**

# Fgp et magie



## Fgp et magie

#### Introduction

On présente un bref rappel.

On poursuit avec un peu de magie.

Soit une v.a. discrète positive X dont le support est  $\mathbb{N} = \{0,1,2,\ldots\}$ .

La fonction de masse de probabilité (f.m.p.) est notée par

$$f_X(k) = \Pr(X = k), k \in \mathbb{N}.$$

On introduit la notion de fonction génératrice de probabilité (fgp) pour une v.a. discrète positive.

La fgp est à la fois une espérance d'une fonction de la v.a. X et une série de puissances.

La fgp est utile dans les aspects de la modélisation et des différents calculs à effectuer en actuariat.

#### Définition 1

La fonction génératrice de probabilités (fgp) de la  $v.a.\ X$  est définie par

$$\mathcal{P}_X(r) = E[r^X] = \sum_{k=0}^{\infty} f_X(k) r^k,$$

pour tout nombre complexe r tel que  $|r| \le 1$  (en particulier pour des nombres réels  $r \in [0,1]$ ).

La fonction de génératice de probabilité (f.g.p.) de la v.a. X permet de représenter la f.m.p. de la v.a. M sous la forme d'une série de puissances.

Les coéfficients de cette série de puissances correspondent aux valeurs de la fonction de masse de probabilité.

#### Propriétés :

- $\blacksquare \mathcal{P}_X(0) = f_X(0)$
- $P_X(1) = 1.$

On retrouve les coefficients (i.e., les valeurs de la fonction de masse de probabilité de la v.a. X) de la fgp en utilisant le théorème suivant.

#### Théorème 1

**Fonction de masse de probabilité.** La valeur de  $f_X(k)$  est calculée à partir de  $\mathcal{P}_X(t)$  avec

$$f_X(k) = \frac{1}{k!} \frac{\mathrm{d}^k}{\mathrm{d}r^k} \mathcal{P}_X(r) \bigg|_{r=0}.$$
 (3)

La fgp d'une v.a. discrète positive X définit la distribution de cette v.a. :

- Soit deux v.a. discrètes positives X et Y dont  $\mathcal{P}_X$  et  $\mathcal{P}_Y$  sont identiques.
- Alors, selon le Théorème 1, les v.a. X et Y ont la même distribution.



## Fgp et magie

#### Rappels

Le résultat suivant permet d'identifier la fgp d'une somme de v.a. discrètes indépendantes.

Il est aussi utile pour l'évaluation numérique de  $F_S$ .

#### Proposition 1

Soit les v.a. discrètes positives (avec support  $\mathbb N$ ) indépendantes  $X_1,...,X_n$  dont les fgp sont  $\mathcal P_{X_i}(r)$ , pour i=1,...,n. On définit la v.a.  $S=X_1+...+X_n$ . Alors, la fgp de la v.a. S est donnée par  $\mathcal P_S(r)=\mathcal P_{X_1}(r)\times...\times\mathcal P_{X_n}(r),$  (4)

pour  $r \in [0,1]$ .



#### Preuve

La fgp de la v.a. S est donnée par

$$\mathcal{P}_{S}(r) = E[r^{S}] = E[r^{X_{1}+...+X_{n}}]$$

$$= E[r^{X_{1}} \times ... \times r^{X_{n}}]$$

$$= E[r^{X_{1}}] \times ... \times E[r^{X_{n}}] \text{[v.a. indépendantes]}$$

$$= \mathcal{P}_{X_{1}}(r) \times ... \times \mathcal{P}_{X_{n}}(r),$$

*pour* r ∈ [0,1].



#### Exemple 1

Soit les v.a. indépendantes  $X_1,...,X_n$ , avec  $X_i \sim Pois(\lambda_i)$ , pour i=1,...,n. On définit la v.a.  $S=X_1+...+X_n$ .

Alors, la fgp de la v.a. S est donnée par

$$\mathcal{P}_{S}(r) = \mathcal{P}_{X_{1}}(r) \times ... \times \mathcal{P}_{X_{n}}(r)$$

$$= e^{\lambda_{1}(r-1)} \times ... \times e^{\lambda_{n}(r-1)}$$

$$= e^{\lambda_{1}(r-1)+...+\lambda_{n}(r-1)} = e^{(\lambda_{1}+...+\lambda_{n})(r-1)},$$

pour  $r \in [0,1]$ .

On déduit que  $S \sim Pois(\lambda_1 + ... + \lambda_n)$ .



#### Observations:

- On se contente d'apprendre par coeur la relation en (4)
- On l'utilise pour développer des expressions fermées pour les lois discrètes connues
- Toutefois, on oublie ce qui se passe en coulisses en multipliant les séries convergentes de puissances.

#### Questions:

- Quand la v.a.  $X_i$  est définie sur un support fini, à quoi correspond  $\mathcal{P}_{X_i}(t)$   $(i \in \{1,2,...,n\})$  ?
- En appliquant la relation en (4), que représente  $\mathcal{P}_S(t)$  ?
- Que représentent les coefficients de  $\mathcal{P}_S(t)$  ?



## Fgp et magie

En coulisses

Exemples : [en classe]



## Relations récursives



#### Relations récursives

On examine en classe les récursives de base.



Soit les v.a.  $X_1,...,X_n$  discrètes i.i.d. définies sur  $\mathbb N$  avec

$$f_{X_i} = f_X$$
 et  $\mathcal{P}_{X_i} = \mathcal{P}_X$ ,  $i = 1, 2, ..., n$ .

On définit  $S_n = X_1 + ... + X_n$  avec

$$f_{S_n}(k) = f_{X_1 + \dots + X_n}(k) = f_X^{*n}(k)$$

où  $f_X^{\star n}$  est le n-ième produit de convolution de  $f_X$  avec elle-même.

La fgp de la v.a.  $S_n$  est

$$\mathcal{P}_{S_n}(t) = E\left[t^{S_n}\right] = \mathcal{P}_X(t)^n = \sum_{k=0}^{\infty} f_{S_n}(k) \times t^k.$$

L'algorithme de DePril est une relation récursive permettant de calculer systématiquement les valeurs des coefficients de  $\mathcal{P}_{S_n}(t)$ .

#### Proposition 1

**Algorithme de De Pril.** L'algorithme pour calculer  $f_X^{*n}(k)$  est fourni par la relation récursive suivante :

$$f_{S_n}(k) = \frac{1}{f_X(0)} \sum_{j=1}^k \left( (n+1) \frac{j}{k} - 1 \right) f_X(j) f_{S_n}((k-j))$$
 (5)

dont le point de départ est

$$f_{S_n}\left(0\right) = f_X\left(0\right)^n.$$



Exemple: en classe.



Preuve: en classe.





Soit une v.a. X définie par

$$X = \begin{cases} \sum_{k=1}^{M} B_i & , M > 0 \\ 0, & , M = 0 \end{cases}$$
 (6)

οù

- *M* est une v.a. discrète de fréquence ;
- $\underline{B} = \{B_k, k \in \mathbb{N}^+\}$  est une suite de v.a. positives i.i.d. définies sur  $\mathbb{N}$ , avec  $B_k \sim B$ ; et
- $\blacksquare$  <u>B</u> est indépendante de M.

Conséquence : la v.a. X prend des valeurs dans  $\mathbb N$  avec

$$f_X(k) = \Pr(X = k), k \in \mathbb{N}.$$



La fgp de la v.a. X est

$$\mathcal{P}_{X}\left(t\right) = \mathcal{P}_{M}\left(\mathcal{P}_{B}\left(t\right)\right).$$

L'objectif est de calculer les valeurs de  $f_X$ .

On considère tout d'abord deux approches "générales" pour y parvenir.

Approche no1: On procède comme suit :

$$f_X(0) = f_M(0) + \sum_{j=1}^{\infty} f_M(j) f_{B_1 + \dots + B_j}(0)$$

$$= f_M(0) + \sum_{j=1}^{\infty} f_M(j) f_B^{*j}(0)$$

$$= \sum_{j=0}^{\infty} f_M(j) (f_B(0))^j = \mathcal{P}_M(f_B(0))$$
(7)

et

$$f_X(kh) = \sum_{j=1}^{\infty} f_M(j) f_{B_1 + \dots + B_j}(kh) = \sum_{j=1}^{\infty} f_M(j) f_B^{*j}(kh),$$
 (8)

pour  $k \in \mathbb{N}^+$ .



#### Remarques sur l'Approche no1 :

- Bien que (7) soit aisée à évaluer, (8) demande plus de temps de calcul.
- On doit recourir à la Proposition 1 pour évaluer les valeurs de  $f_B^{*j}(kh)$  pour chaque  $j \in \mathbb{N}^+$  et chaque  $k \in \mathbb{N}^+$ .
- On doit tronquer une somme infinie par une somme finie.

#### Une solution ? Oui: algorithme de Panjer

- [Panjer, 1981] a proposé un algorithme récursif.
- Cet algorithme est appelé désormais algorithme de Panjer.
- Il permet le calcul des valeurs de  $f_X$ .
- Condition : la distribution de la v.a. M doit faire partie de la famille (a,b,0) (voir un peu plus loin).



La deuxième approche utilise la Propriété 1.

elle permet de présenter l'intuition derrière l'algorithme de Panjer.

On illustre la deuxième approche par le biais de 2 exemples.

Exemple No1 : en classe. ...



Exemple No2 : en classe. ...



. . .





Il s'agit d'une classe de distributions de fréquence.

#### Définition 2

Une distribution de fréquence pour une v.a. M appartient à la famille de distributions de fréquence (a,b,0) si  $f_M$  satisfait la relation récursive suivante :

$$f_M(k) = \left(a + \frac{b}{k}\right) f_M(k-1),$$

pour  $k \in \mathbb{N}^+$ .

Le point de départ est  $f_M(0) > 0$  (d'où le nom).

Seules les lois de Poisson, binomiale et binomiale négative sont membres de cette famille.



Valeurs de a et b:

- loi de Poisson : a = 0 et  $b = \lambda$  ;
- loi binomiale négative (avec r, q):

$$a = 1 - q$$

$$b = (1-q)(r-1)$$
;

- loi binomiale négative (avec r,  $\beta$ ) :  $a = \frac{\beta}{1+\beta}$  et  $b = \frac{\beta}{1+\beta}$  (r-1) ;
- loi binomiale :  $a = -\frac{q}{1-q}$  et  $b = (n+1)\frac{q}{1-q}$ .

Détails pour la loi de Poisson :

$$f_M(k) = \frac{\lambda^k e^{-\lambda}}{k!} = \frac{\lambda}{k} \times \frac{\lambda^{k-1} e^{-\lambda}}{(k-1)!} = \frac{\lambda}{k} \times f_M(k-1),$$

pour  $k \in \mathbb{N}^+$ .



Détails pour la loi de Poisson :

$$f_{M}(k) = \frac{\lambda^{k} e^{-\lambda}}{k!} = \frac{\lambda}{k} \times \frac{\lambda^{k-1} e^{-\lambda}}{(k-1)!} = \frac{\lambda}{k} \times f_{M}(k-1),$$

pour  $k \in \mathbb{N}^+$ .

#### **Proposition 2**

**Relation récursive.** Pour le distribution de la famille (a,b,0), on a  $\mathcal{P}'_{M}(t) = a \times t \times \mathcal{P}'_{M}(t) + (a+b)\mathcal{P}_{M}(t)$ , (9)

$$o\grave{u} \, \mathcal{P}_M'(t) = \frac{\mathrm{d} \, \mathcal{P}_M(t)}{\mathrm{d}t}.$$

Preuve: en classe





L'algorithme de Panjer est fourni dans la proposition suivante.

#### **Proposition 3**

Le point de départ de l'algorithme est

$$f_X(0) = \mathcal{P}_M \left\{ f_B(0) \right\}$$

et la relation récursive est donnée par

$$f_X(k) = \frac{\sum_{j=1}^k \left(a + b_{\overline{k}}^j\right) f_B(j) f_X(k-j)}{1 - a f_B(0)},\tag{10}$$

pour  $k \in \mathbb{N}^+$ .



Preuve: en classe.



#### Remarque:

- Soit la v.a.  $B \in \{0,1h,2h,...\}$
- Alors,  $X \in \{0,1h,2h,...\}$
- La relation résursive en (10) devient

$$f_X(kh) = \frac{1}{1 - af_B(0)} \sum_{j=1}^{k} \left( a + b \frac{jh}{kh} \right) f_B(jh) \times f_X((k-j)h)$$

■ Le point de départ demeure inchangé, c.-à-d.,

$$f_X\left(0\right) = \mathcal{P}_M\left(f_X\left(0\right)\right)$$

.



#### Algorithme 4

**Poisson composée**. Soit  $M \sim Pois(\lambda)$ . Le point de départ est  $f_X(0) = e^{\lambda(f_B(0)-1)}$  et la relation récursive est donnée par

$$f_X(kh) = \frac{\lambda}{k} \sum_{j=1}^k j f_B(jh) f_X((k-j)h),$$

pour  $k \in \mathbb{N}^+$ .  $\square$ 

#### Algorithme 5

**Binomiale négative composée** (avec r et q). On suppose que  $M \sim BN(r,q)$ . Le point de départ est

$$f_X(0) = \left(\frac{q}{1 - (1 - q) f_B(0)}\right)^r$$

et la relation récursive est donnée par

$$f_X(kh) = \frac{\sum_{j=1}^k \left(1 - q + \frac{(1-q)(r-1)j}{k}\right) f_B(jh) f_X((x-j)h)}{1 - (1-q) f_B(0)}$$

pour  $k \in \mathbb{N}^+$ .  $\square$ 



#### Algorithme 6

**Binomiale composée**. On suppose que  $M \sim Bin(n,q)$ . Le point de départ est

$$f_X(0) = (1 - q + qf_B(0))^n$$

et la relation récursive est donnée par

$$f_X(kh) = \frac{\sum_{j=1}^k \left(-q + \frac{(n+1)q_j}{k}\right) f_B(j) f_X((k-j)h)}{1 - q + q f_B(0)}$$

pour  $k \in \mathbb{N}^+$ .  $\square$ 



Exemple No1: en classe.

Exemple No2: en classe.

Remarques : en classe.



## Nombres complexes



## Nombres complexes

Les notions sur ce thème seront traitées plus tard pendant le semestre.

# Transformée de Fourier Rapide (FFT)



## Transformée de Fourier Rapide (FFT)

Les notions sur ce thème seront traitées plus tard pendant le semestre.

## Illustrations



#### Illustrations

Les sections suivantes sont des illustrations sur la théorie présentée dans ce chapitre.

Les illustrations sont discutées pendant les ateliers.

Les calculs numériques et les graphiques ont été réalisés par Madame Ihsan Chaoubi et Monsieur Christopher Blier-Wong au semestre A2018.



Soit une v.a. continue positive Y, avec fonction de répartition  $F_Y$ . Pour simplifier la présentation,  $F_Y(0) = 0$ .

Un certain nombre de méthodes de discrétisation existent afin de définir la v.a.  $\widetilde{Y}$  qui approxime la v.a. Y.

On présente les principales méthodes dans les prochaines sous-sections.

#### Méthode upper

Selon la méthode *upper*, la valeur de la fonction de masse de probabilité à 0 est

$$f_{\widetilde{Y}(u,h)}(0) = \Pr(Y \le h) = F_Y(h)$$

et les valeurs de la fonction de masse de probabilité à 1h,2h,3h,... sont

$$f_{\widetilde{Y}(u,h)}\left(kh\right) = \Pr\left(kh \le Y < \left(k+1\right)h\right) = F_Y\left(\left(k+1\right)h\right) - F_Y\left(kh\right)$$

pour  $k \in \mathbb{N}^+$ .

La fonction de répartition  $F_{\widetilde{Y}(u,h)}\left(x\right)$  est une fonction en escalier dont les sauts sont à 0h, 1h, 2h, ... et dont la première marche à 0 est d'une hauteur  $F_{\widetilde{Y}(u,h)}\left(0\right)$  =  $F_{Y}\left(h\right)$ .

#### Méthode upper

On a

$$F_{\widetilde{Y}(u,h)}(x) = \begin{cases} F_{Y}(h), & 0 \le x < h \\ F_{Y}(2h), & h \le x < 2h \\ F_{Y}(3h), & 2h \le x < 3h \end{cases}$$
...

Selon cette méthode, on a la relation  $F_{Y}\left(x\right) \leq F_{\widetilde{Y}\left(u,h\right)}\left(x\right),\; x \geq 0.$ 

#### Méthode lower

Pour la méthode *lower*, la valeur de la fonction de masse de probabilité à 0 est  $f_{\widetilde{Y}(l,h)}(0) = 0$  et les valeurs de la fonction de masse de probabilité à 1h,2h,3h,... sont

$$f_{\widetilde{Y}^{(l,h)}}\left(kh\right) = \Pr\left(\left(k-1\right)h \le Y < kh\right) = F_Y\left(kh\right) - F_Y\left(\left(k-1\right)h\right),$$
 pour  $k \in \mathbb{N}^+$ .

La fonction de répartition  $F_{\widetilde{Y}(l,h)}(x)$  est une fonction en escalier dont les sauts sont à 1h, 2h, ..., soit

$$F_{\widetilde{Y}^{(l,h)}}\left(x\right) = \begin{cases} 0, & 0 \le x < h \\ F_{Y}\left(h\right), & h \le x < 2h \\ F_{Y}\left(2h\right), & 2h \le x < 3h \end{cases}$$
...

On observe la relation  $F_Y(x) \ge F_{\widetilde{Y}^{(l,h)}}(x), x \ge 0$ .



#### Convergence en distribution et sandwich

#### Convergence en distribution :

$$Y^{(u,h)} \stackrel{D}{\to} Y, \text{ i.e.,}$$

$$\lim_{h\to 0} F_{Y^{(u,h)}}\left(x\right) = F_{Y}\left(x\right), \text{ pour } x\geq 0.$$

$$Y^{(l,h)} \stackrel{D}{\rightarrow} Y$$
, i.e.,

$$\lim_{h\to 0} F_{Y^{(l,h)}}(x) = F_Y(x), \text{ pour } x \ge 0.$$

#### Convergence en distribution et sandwich

Inégalités : Soit  $h_2 \le h_1$ . On a

$$F_{Y^{\left(l,h_{1}\right)}}\left(x\right)\leq F_{Y^{\left(l,h_{2}\right)}}\left(x\right)\leq F_{Y}\left(x\right)\leq F_{Y^{\left(u,h_{2}\right)}}\left(x\right)\leq F_{Y^{\left(u,h_{1}\right)}}\left(x\right)$$

 $\text{pour } x \geq 0.$ 

#### Exemple - Loi lognormale

Soit  $Y \sim LNorm(\mu, \sigma)$  avec  $\mu = \ln(10) - 0.32$  et  $\sigma = 0.8$ .

|        | $VaR_{\kappa}\left(Y^{(u,h)}\right)$ |         |          |               | $VaR_{\kappa}(Y)$ | $VaR_{\kappa}\left(Y^{(l,h)}\right)$ |          |         |       |
|--------|--------------------------------------|---------|----------|---------------|-------------------|--------------------------------------|----------|---------|-------|
| κ      | h = 1                                | h = 0.1 | h = 0.01 | $h = 10^{-3}$ |                   | $h = 10^{-3}$                        | h = 0.01 | h = 0.1 | h = 1 |
| 0.9    | 20                                   | 20.2    | 20.24    | 20.243        | 20.24335          | 20.244                               | 20.25    | 20.3    | 21    |
| 0.99   | 46                                   | 46.6    | 46.69    | 46.696        | 46.69623          | 46.697                               | 46.70    | 46.7    | 47    |
| 0.999  | 86                                   | 86.0    | 86.03    | 86.036        | 86.03644          | 86.037                               | 86.04    | 86.1    | 87    |
| 0.9999 | 142                                  | 142.2   | 142.28   | 142.280       | 142.28019         | 142.281                              | 142.29   | 142.3   | 143   |

Les calculs s'effectuent très rapidement.



Exemple - Loi lognormale

## Graphique #1 Convergence en distribution - Méthode lower





Exemple - Loi lognormale

## Graphique #2 Convergence en distribution - Méthode upper





#### Exemple - Loi lognormale

## Graphique #3 - Sandwich





#### Exemple - Loi Pareto

Soit  $Y \sim Pareto(\alpha, \lambda)$  avec  $\alpha = 1.5$  et  $\lambda = 5$  (variance infini)

|       |    | $VaR_{\kappa}\left(Y^{(u,h)}\right)$ |         |          | $VaR_{\kappa}(Y)$ | $VaR_{\kappa}\left(Y^{(l,h)}\right)$ |               |          |         |       |
|-------|----|--------------------------------------|---------|----------|-------------------|--------------------------------------|---------------|----------|---------|-------|
| κ     |    | h = 1                                | h = 0.1 | h = 0.01 | $h = 10^{-3}$     |                                      | $h = 10^{-3}$ | h = 0.01 | h = 0.1 | h = 1 |
| 0.9   |    | 18                                   | 18.2    | 18.20    | 18.207            | 18.20794                             | 18.208        | 18.21    | 18.3    | 19    |
| 0.99  | 9  | 102                                  | 102.7   | 102.72   | 102.721           | 102.722                              | 102.722       | 102.73   | 102.8   | 103   |
| 0.99  | 9  | 495                                  | 495.0   | 495.00   | 495.000           | 495.000                              | 495.001       | 495.01   | 495.1   | 496   |
| 0.999 | 99 | 2315                                 | 2315.7  | 2315.79  | 2315.794          | 2315.794                             | 2315.795      | 2315.80  | 2315.8  | 2316  |

#### Exemple - Loi Pareto

## Graphique #1 Convergence en distribution - Méthode upper



#### Exemple - Loi Pareto

## Graphique #2 Convergence en distribution - Méthode lower



#### Exemple - Loi Pareto

## Graphique #3 - Sandwich





Soit les variables aléatoires indépendantes continues positives  $X_1$  et  $X_2$  avec les fonctions de répartition  $F_{X_i}$  et les fonctions de densité  $f_{X_i}$ , pour i=1,2.

On définit la v.a. S par

$$S = X_1 + X_2$$

avec une fonction de répartition  $F_S$  et une fonction de densité  $f_S$ .

On définit les versions discrétisées des v.a.  $X_1$ ,  $X_2$  et S par les v.a.  $\widetilde{X}_1^{(m\acute{e}t,h)}$ ,  $\widetilde{X}_2^{(m\acute{e}t,h)}$ , et  $\widetilde{S}^{(m\acute{e}t,h)}$ , où  $m\acute{e}t$  = "u" ou "l", définies sur le support

$$A_h = \{0,1h,2h,...\}$$
 .



La fonction de densité  $f_S$  est définie par le produit de convolution de  $f_{X_1}$  et  $f_{X_2}$  où

$$f_{S}(x) = f_{X_{1}+X_{2}}(x) = f_{X_{1}} * f_{X_{2}}(x)$$

$$= \int_{0}^{x} f_{X_{1}}(y) f_{X_{2}}(x-y) dy, \qquad (11)$$

pour  $x \ge 0$ .

La fonction de répartition  $F_S$  est définie par

$$F_S(x) = \int_0^x f_S(s) \, \mathrm{d}s,$$

pour  $x \ge 0$ .

Très souvent, il n'y a pas d'expression fermée à (11).



La fonction de masse de probabilité  $f_{\widetilde{S}(m\acute{e}t,h)}$  est définie par le produit de convolution de  $f_{\widetilde{X}_1^{(m\acute{e}t,h)}}$  et  $f_{\widetilde{X}_2^{(m\acute{e}t,h)}}$  où

$$f_{\widetilde{S}(m\acute{e}t,h)}(kh) = f_{\widetilde{X}_{1}^{(m\acute{e}t,h)} + \widetilde{X}_{2}^{(m\acute{e}t,h)}}(kh) = f_{\widetilde{X}_{1}^{(m\acute{e}t,h)}} * f_{\widetilde{X}_{2}^{(m\acute{e}t,h)}}(kh)$$

$$= \sum_{j=0}^{k} f_{\widetilde{X}_{1}^{(m\acute{e}t,h)}}(jh) f_{\widetilde{X}_{2}^{(m\acute{e}t,h)}}((k-j)h), \qquad (12)$$

pour  $k \in \mathbb{N}$ .

La fonction de répartition  $F_{\widetilde{S}^{(m\acute{e}t,h)}}$  est définie par

$$F_{\widetilde{S}(m\acute{e}t,h)}\left(kh\right) = \sum_{l=0}^{k} f_{\widetilde{S}(m\acute{e}t,h)}\left(lh\right), (k \in \mathbb{N}).$$



La relation en (12) se programme aisément en R.  $\square$ 

#### Exemple - Loi lognormale

Soit  $X_1 \sim X_2 \sim X \sim LNorm(\mu, \sigma)$  avec  $\mu = \ln(10) - 0.32$  et  $\sigma = 0.8$ .

On a

|          | ı     | $VaR_{\kappa}(Y^{(i)})$ | (a,h)    | $VaR_{\kappa}\left(Y^{(l,h)}\right)$ |         |       |  |
|----------|-------|-------------------------|----------|--------------------------------------|---------|-------|--|
| $\kappa$ | h = 1 | h = 0.1                 | h = 0.01 | h = 0.01                             | h = 0.1 | h = 1 |  |
| 0.9      | 35    | 35.7                    | 35.83    | 35.85                                | 35.9    | 37    |  |
| 0.99     | 68    | 68.7                    | 68.75    | 68.77                                | 68.9    | 70    |  |
| 0.999    | 113   | 113.5                   | 113.59   | 113.61                               | 113.7   | 115   |  |
| 0.9999   | 175   | 175.5                   | 175.57   | 175.59                               | 175.7   | 177   |  |

Les temps de calculs sont longs pour des pas plus petits (h < 0.01).



#### Exemple - Loi lognormale

## Graphique #1 Convergence en distribution - Méthode upper





## Graphique #2 Convergence en distribution - Méthode lower



## Graphique #3 - Sandwich



#### Exemple - Loi Pareto

Soit 
$$X_1 \sim X_2 \sim X \sim Pareto(\alpha, \lambda)$$
 avec  $\alpha = 1.5$  et  $\lambda = 5$ .

#### On a

|        | ı     | $VaR_{\kappa}(Y^{(i)})$ | (a,h)    | $VaR_{\kappa}\left(Y^{(l,h)}\right)$ |         |       |  |
|--------|-------|-------------------------|----------|--------------------------------------|---------|-------|--|
| κ      | h = 1 | h = 0.1                 | h = 0.01 | h = 0.01                             | h = 0.1 | h = 1 |  |
| 0.9    | 35    | 36.4                    | 36.45    | 36.47                                | 36.6    | 37    |  |
| 0.99   | 173   | 174.1                   | 174.18   | 174.20                               | 174.3   | 175   |  |
| 0.999  | 797   | 798.2                   | 798.24   | 798.26                               | 798.4   | 799   |  |
| 0.9999 | 3688  | 3688.8                  | 3688.92  | 3688.94                              | 3689.0  | 3690  |  |

Les temps de calculs sont plus longs en comparaison à ceux de l'exemple précédent.

## Graphique #1 Convergence en distribution - Méthode upper



## Graphique #2 Convergence en distribution - Méthode lower



#### Exemple - Loi Pareto

## Graphique #3 - Sandwich



## Somme aléatoire



## Somme aléatoire

Soit la v.a. de comptage M (forcément discrète), avec une fonction de masse de probabilité  $f_M$ .

Soit la variable aléatoire continue positive X avec la fonction de répartition  $F_X$  et la fonction de densité  $f_X$ .

Soit une suite de v.a. i.i.d.  $\underline{X}=\{X_i,i\in\mathbb{N}^+\}$ , qui est indépendante de X, où  $X_i\sim X$ ,  $i\in\mathbb{N}^+$ .

On définit la v.a. S par

$$S = \sum_{i=1}^{M} X_i$$

avec la convention  $\sum_{i=1}^{0} a_i = 0$ .



## Somme aléatoire

On définit les versions discrétisées des v.a. X et S par les v.a.  $\widetilde{X}^{(m\acute{e}t,h)}$  et  $\widetilde{S}^{(m\acute{e}t,h)}$ , où  $m\acute{e}t$  = "u" ou "l", définies sur le support

$$A_h = \{0,1h,2h,...\}$$
.

La fonction de répartition  $F_S$  est définie par

$$F_S(x) = f_M(0) + \sum_{i=1}^{\infty} f_M(i) F_{B_1 + \dots + B_i}(x),$$
 (13)

pour  $x \ge 0$ .

Très souvent, il n'y a pas d'expression fermée à (13).



### Somme aléatoire

La fonction de masse de probabilité  $f_{\widetilde{S}(m\acute{e}t,h)}$  est définie par

$$f_{\widetilde{S}(m\acute{e}t,h)}(kh) = f_M(0) \times 1_{\{k=0\}} + \sum_{i=1}^{\infty} f_M(i) f_{B_1 + \dots + B_i}(kh), k \in \mathbb{N}.$$
 (14)

Les valeurs de  $f_{\widetilde{S}(m\acute{e}t,h)}$  peuvent être calculées directement avec (14).

Toutefois, il est préférable de recourir à des méthodes récursives ou à la FFT.

La fonction de répartition  $F_{\widetilde{S}(m\acute{e}t,h)}$  est définie par

$$F_{\widetilde{S}(m\acute{e}t,h)}(kh) = \sum_{l=0}^{k} f_{\widetilde{S}(m\acute{e}t,h)}(lh), k \in \mathbb{N}.$$



### Somme aléatoire

#### Exemple - Loi lognormale

Soit  $X \sim LNorm(\mu, \sigma)$  avec  $\mu = \ln(10) - 0.32$  et  $\sigma = 0.8$ .

Soit  $M \sim Pois(\lambda)$ ,  $\lambda = 2$  ou  $\lambda = 10$ .

Pour  $\lambda = 2$ , on a

|          | $VaR_{\kappa}\left(Y^{(u,h)}\right)$ |         |         | $VaR_{\kappa}\left(Y^{(l,h)}\right)$ |         |       |
|----------|--------------------------------------|---------|---------|--------------------------------------|---------|-------|
| $\kappa$ | h = 1                                | h = 0.5 | h = 0.1 | h = 0.1                              | h = 0.5 | h = 1 |
| 0.9      | 43                                   | 44.5    | 45.0    | 45.4                                 | 46.0    | 47    |
| 0.99     | 85                                   | 85.5    | 86.5    | 87.0                                 | 88.0    | 89    |
| 0.999    | 132                                  | 133.0   | 134.0   | 134.4                                | 135.5   | 136   |
| 0.9999   | 193                                  | 193.5   | 194.4   | 194.8                                | 195.5   | 197   |

■ Pour  $\lambda$  = 10, les calculs prennent plus de temps.



Graphique #1 Convergence en distribution - Méthode upper avec  $\lambda$  = 2



Graphique #2 Convergence en distribution - Méthode lower avec  $\lambda$  = 2



### Graphique #3 - Sandwich $\lambda$ = 2



## Somme aléatoire

#### Exemple - Loi Pareto

Soit 
$$X \sim Pareto(\alpha, \lambda)$$
 avec  $\alpha = 1.5$  et  $\lambda = 5$ .  
Soit  $M \sim Pois(\lambda)$ ,  $\lambda = 2$  ou  $\lambda = 10$ .

- Les calculs sont plus longs comparer à l'exemple précédent.
- Pour  $\lambda = 2$ , on obtient

|        | Va.   | $R_{\kappa}(Y^{(u)})$ | ,h))  | $VaR_{\kappa}\left(Y^{(l,h)}\right)$ |       |       |
|--------|-------|-----------------------|-------|--------------------------------------|-------|-------|
| κ      | h = 4 | h = 2                 | h = 1 | h = 1                                | h = 2 | h = 4 |
| 0.9    | 36    | 38                    | 39    | 42                                   | 44    | 48    |
| 0.99   | 176   | 180                   | 182   | 185                                  | 186   | 192   |
| 0.999  | 804   | 806                   | 807   | 810                                  | 812   | 816   |
| 0.9999 | 3692  | 3696                  | 3697  | 3700                                 | 3702  | 3704  |

- Pour  $\lambda$  = 10, les calculs prennent beaucoup plus de temps.
- Si on prend des pas plus petits que h = 1, les calculs prennent plus de temps.



## Somme aléatoire

### Exemple - Loi Pareto

Graphique #1 Convergence en distribution - Méthode upper avec  $\lambda$  = 2



Graphique #2 Convergence en distribution - Méthode lower avec  $\lambda$  = 2



### Somme aléatoire

### Exemple - Loi Pareto

### Graphique #3 Sandwich avec $\lambda$ = 2





# Conclusion



### Conclusion

Le choix du pas de discrétisation dépend du degré de précision souhaité et du temps de calculs.

Les paramètres des lois lognormale et Pareto ont été fixés de telle sorte que les espérances soient égales à 10. Toutefois, les valeurs de VaR diffèrent considérablement pour  $\kappa > 0.99$ 



#### Algorithme de DePril

On considère une v.a. X discrète où  $X \in \{0,1h,2h,...\}$  avec

$$f_X(kh) = \Pr(X = kh),$$

pour  $k \in \mathbb{N}$ .

On définit

$$S_n = X_1 + \dots + X_n,$$

où les v.a.  $X_1,...,X_n$  sont i.i.d. et se comportent comme la v.a. X ( $X_i \sim X$ , i = 1,2,...,n).

### Algorithme de DePril

### Algorithme de DePril:

■ Point de départ:

$$f_{S_n}\left(0\right)=f_X\left(0\right)^n.$$

Relation récursive:

$$f_{S_n}(kh) = \frac{1}{f_X(0)} \sum_{j=1}^k \left( (n+1) \frac{j}{k} - 1 \right) f_X(jh) f_{S_n}((k-j)h)$$



### Algorithme de Panjer

Soit la v.a. X définie selon l'approche fréquence sévérité

$$X = \begin{cases} \sum_{i=1}^{M} B_i &, M > 0 \\ 0, &, M = 0 \end{cases}$$

avec les hypothèses suivantes :

- $\blacksquare \underline{B} = \{B_i, i \in \mathbb{N}^+\} ;$
- $\blacksquare B_i \sim B \in A_h = \{0,1h,2h,...\}$ ;
- $\underline{B}$  et M sont indépendantes ;
- fonction de masse de probabilité de *B* :

$$\Pr(B = hj) = f_B(hj),$$

pour  $j \in \mathbb{N}$  avec un pas de discrétisation h > 0;



#### Algorithme de Panjer

L'algorithme de Panjer s'applique à la condition que la loi de M fasse partie de la classe (a,b,0) dont la fonction de masse de probabilité satisfait la relation récursive suivante :

$$f_M(k) = \left(a + \frac{b}{k}\right) f_M(k-1),$$

pour  $k \in \mathbb{N}^+$ 

Seules les lois Poisson, Binomiale et Binomiale Négative sont membres de cette famille.

### Algorithme de Panjer

Les valeurs de a et b pour les membres de la famille (a,b,0) sont les suivantes :

- loi de Poisson: a = 0 et  $b = \lambda$ ;
- loi binomiale négative (1ère paramétrisation): a = 1 q et b = (1 q)(r 1);
- loi binomiale:  $a = -\frac{q}{1-q}$  et  $b = (n+1)\frac{q}{1-q}$ .

### Algorithme de Panjer - Forme générale

■ Point de départ:

$$f_X(0) = \Pr(X = 0) = \mathcal{P}_M(f_B(0)).$$

Relation récursive:

$$f_X(hk) = \frac{\sum_{j=1}^k \left( a + \frac{bj}{k} \right) f_B(hj) f_X(h(k-j))}{1 - a f_B(0)},$$



### Algorithme de Panjer

### Loi Poisson:

$$N \sim Pois(\lambda)$$
.

■ Point de départ :

$$f_X(0) = \Pr(X = 0) = e^{-\lambda(1 - f_B(0))}.$$

Relation récursive:

$$f_X(hk) = \frac{\lambda}{k} \sum_{j=1}^k (j) f_B(hj) f_X(h(k-j)),$$



### Algorithme de Panjer

# Loi Binomiale Négative (1ère paramétrisation):

$$N \sim BNeg(r,q)$$
.

■ Point de départ:

$$f_X(0) = \left(\frac{q}{1 - (1 - q) f_B(0)}\right)^r,$$

Relation récursive:

$$f_X(kh) = \frac{\sum_{j=1}^k \left(1 - q + \frac{(1-q)(r-1)j}{k}\right) f_B(jh) f_X((k-j)h)}{1 - (1-q) f_B(0)},$$



### Algorithme de Panjer

### Loi Binomiale :

$$N \sim Binom(n,q)$$
.

■ Point de départ:

$$f_X(0) = \Pr(X = 0) = (1 - q + qf_B(0))^n$$

Relation récursive:

$$f_X(hk) = \frac{\sum_{j=1}^k \left(\frac{q}{q-1} + \frac{(n+1)qj}{(1-q)k}\right) f_B(j) f_X(k-j)}{1 + \frac{q}{1-q} f_B(0)}$$

$$= \frac{\sum_{j=1}^k \left(-q + \frac{(n+1)qj}{k}\right) f_B(hj) f_X(h(k-j))}{1 - q + q f_B(0)}$$



Soit la v.a. X avec

$$\mathcal{L}_{X}\left(t\right) = \mathcal{P}_{M}\left(\mathcal{L}_{B}\left(t\right)\right), \ t \geq 0,$$

avec

- $B \sim LNorm(\mu, \sigma)$ ,  $\mu = \ln(10) 0.32$  et  $\sigma = 0.8$ ;
- $\mathcal{P}_M(r) = \alpha \exp(\lambda_1(r-1)) + (1-\alpha) \exp(\lambda_2(r-1)), r \in [0,1],$  $\alpha = 0.8, \lambda_1 = 1, \alpha = 0.8, \lambda_2 = 6.$

On déduit :

 $\blacksquare$  Espérance de X :

$$E[X] = 20$$

 $\blacksquare$  Variance de X:

$$Var(X) = 267.269$$





Soit les v.a. indépendantes  $K_i \sim Pois(\lambda_i)$ , i = 1,2, avec

$$P_{K_{i}}(r) = \exp(\lambda_{i}(r-1)), r \in [0,1], i = 1,2.$$

Soit les v.a. indépendantes  $Y_i \sim PoisComp(\lambda_i, F_B)$ , i = 1, 2, avec

$$\mathcal{L}_{Y_i}(t) = \mathcal{P}_{K_i}(\mathcal{L}_B(t)), t \ge 0, i = 1,2.$$

On déduit :

 $\blacksquare$  fgp de M:

$$\mathcal{P}_{M}\left(r\right) = \alpha \mathcal{P}_{K_{1}}\left(r\right) + \left(1 - \alpha\right) \mathcal{P}_{K_{2}}\left(r\right), \ r \in \left[0, 1\right] ;$$

 $\blacksquare$  TLS de X :

$$\mathcal{L}_{X}(t) = \alpha \mathcal{P}_{K_{1}}(\mathcal{L}_{B}(t)) + (1 - \alpha) \mathcal{P}_{K_{2}}(\mathcal{L}_{B}(t))$$
$$= \alpha \mathcal{L}_{Y_{1}}(t) + (1 - \alpha) \mathcal{L}_{Y_{2}}(t), t \geq 0;$$

 $\blacksquare F_X$ :





#### Illustration no1

On applique les outils suivants pour évaluer approximativement  $F_{X}\left(x\right)$  :

- discrétisation upper et lower (h = 1, 0.1);
- algorithme de Panjer.

#### Illustration no1

Soit les v.a. discrètes  $\widetilde{B}^{(up,h)}$  et  $\widetilde{B}^{(low,h)}$  résultant de l'approximation par discrétisation de la distribution de la v.a. continue B

Soit les v.a. correspondantes  $\widetilde{Y}_1^{(up,h)}$ ,  $\widetilde{Y}_1^{(low,h)}$ ,  $\widetilde{Y}_2^{(up,h)}$ ,  $\widetilde{Y}_2^{(low,h)}$ ,  $\widetilde{X}^{(low,h)}$  et  $\widetilde{X}^{(low,h)}$ .

## Étapes pour l'évaluation des approximations de $F_X$ :

- 1 Discrétisation de la v.a.  $B\Rightarrow f_{\widetilde{B}(up,h)}$  et  $f_{\widetilde{B}(low,h)}$  ;
- 2 Algo de Panjer : calcul des valeurs de  $f_{\widetilde{Y}_{i}^{(up,h)}}\left(kh\right)$  et  $f_{\widetilde{Y}_{i}^{(low,h)}}\left(kh\right)$ ,  $k\in\{0,1,...,k_{0}\}$ , i=1,2;
- 3 Calcul des valeurs de  $f_{\widetilde{X}(up,h)}\left(kh\right)$  et  $f_{\widetilde{X}(low,h)}\left(kh\right)$ ,  $k \in \{0,1,...,k_0\}$ , avec

$$f_{\widetilde{X}^{(up,h)}}(kh) = \alpha \times f_{\widetilde{Y}_1^{(up,h)}}(kh) + (1-\alpha) f_{\widetilde{Y}_2^{(up,h)}}(kh),$$

et

$$f_{\widetilde{X}^{(low,h)}}\left(kh\right) = \alpha \times f_{\widetilde{Y}_{1}^{(low,h)}}\left(kh\right) + \left(1 - \alpha\right) f_{\widetilde{Y}_{2}^{(low,h)}}\left(kh\right),$$

pour  $k \in \{0,1,...,k_0\}$ ,



### Illustration no1

Valeurs des fonctions de masse de probabilité  $f_{K_1}$ ,  $f_{K_2}$ , et  $f_M$ :







#### Illustration no1

Valeurs de  $F_{\widetilde{Y_1}^{(up,h)}}$  et  $F_{\widetilde{Y_1}^{(low,h)}}$ , h = 1,0.1 :



### Illustration no1

Valeurs de 
$$F_{\widetilde{Y_2}^{(up,h)}}$$
 et  $F_{\widetilde{Y_2}^{(low,h)}}$ ,  $h$  = 1,0.1 :



Valeurs de  $F_{\widetilde{X}(up,h)}$  et  $F_{\widetilde{X}(low,h)}$ , h = 1,0.1 :



Soit les v.a. indépendantes  $X_1$  et  $X_2$  avec

$$\mathcal{L}_{X_{i}}\left(t\right)$$
 =  $\mathcal{P}_{M_{i}}\left(\mathcal{L}_{B_{i}}\left(t\right)\right),\ t\geq0$ ,

avec

- $B_i \sim Exp(\beta_i)$ , i = 1, 2,  $\beta_1 = \frac{1}{10}$  et  $\beta_2 = \frac{1}{2}$  (note :  $\beta_2 > \beta_1$ );
- $\mathcal{P}_{M_i}(r) = \exp(\lambda_i(r-1)), r \in [0,1], \lambda_1 = 2, \lambda_2 = 10.$

On définit

$$S = X_1 + X_2.$$

On déduit :

- Espérance de  $X_1$  et  $X_2$ :  $E[X_1] = 20$ ,  $E[X_2] = 20$ .
- Variance de  $X_1$  et  $X_2$ :  $Var(X_1) = 600$ ,  $Var(X_2) = 120$ .
- **E**spérance de S: E[S] = 40.
- Variance de S: Var(S) = 720.



Objectif : Évaluer  $F_S$  (et les mesures de risque associée à S) Stratégie :

1 Étape 1: Démontrer que

$$F_S(x) = \gamma_0 + \sum_{k=1}^{\infty} \gamma_k H(x; k, \beta_2), x \ge 0$$
;

- **2** Étape 2: Utiliser l'algorithme de Panjer pour évaluer  $\gamma_k$ ,  $k \in \{0,1,2,...,k_0\}$ , où  $k_0$  est fixé de telle sorte que  $1 \sum_{k=1}^{\infty} \gamma_k \le \varepsilon$  pour un  $\varepsilon$  fixé très petit (e.g.,  $\varepsilon = 10^{-10}$ ).
- **Solution** Étape 3: On évalue  $F_S(x)$ , avec  $\gamma_k$ ,  $k \in \{0,1,2,...,k_0\}$ , où  $k_0$  est fixé de telle sorte que  $1 \sum_{k=1}^{\infty} \gamma_k \le \varepsilon$  pour un  $\varepsilon$  fixé très petit (e.g.,  $\varepsilon = 10^{-10}$ ).

## Étape 1.

La TLS de S est donnée par

$$\mathcal{L}_{S}\left(t\right) = \mathcal{L}_{X_{1}}\left(t\right) \times \mathcal{L}_{X_{2}}\left(t\right) = \mathcal{P}_{N}\left(\mathcal{L}_{C}\left(t\right)\right), t \geq 0,$$

οù

 $\blacksquare$  fgp de N :

$$\mathcal{P}_{N} = \exp(\lambda_{N}(r-1)), r \in [0,1]$$
;

- $\blacksquare$  TLS de C

$$\mathcal{L}_{C}(t) = p_{1}\mathcal{L}_{B_{1}}(t) + p_{2}\mathcal{L}_{B_{2}}(t)$$

$$= p_{1}\left(\frac{\beta_{1}}{\beta_{1}+t}\right) + p_{2}\left(\frac{\beta_{2}}{\beta_{2}+t}\right), t \geq 0;$$



On rérrange les termes de  $\mathcal{L}_{C}\left(t\right)$ .

La TLS de la v.a. C est

$$\mathcal{L}_{C}(t) = \alpha \left(\frac{\beta_{1}}{\beta_{1} + t}\right) + (1 - \alpha) \left(\frac{\beta_{2}}{\beta_{2} + t}\right). \tag{15}$$

Dans (15), on a

$$\left(\frac{\beta_1}{\beta_1+t}\right)=q\left(\frac{\beta_2}{\beta_2+t}\right)\frac{1}{1-\left(1-q\right)\left(\frac{\beta_2}{\beta_2+t}\right)}$$

où  $q = \frac{\beta_1}{\beta_2}$ .



#### Illustration no2

On introduit la v.a. discrète J (avec support  $\mathbb{N}^+$ ) avec

$$\mathcal{P}_{J}(r) = qr \frac{1}{1 - (1 - q)r}, r \in [0, 1].$$

On observe

$$\mathcal{P}_{J}(r) = qr \frac{1}{1 - (1 - q)r}$$
$$= r \sum_{k=0}^{\infty} q (1 - q)^{k} \times r^{k}$$

avec  $q = \frac{\beta_1}{\beta_2} \in (0,1)$ .



#### Illustration no2

Ainsi, dans (15), on remplace

$$\left(\frac{\beta_1}{\beta_1 + t}\right)$$

par

$$\left(\frac{\beta_1}{\beta_1+t}\right) = \mathcal{P}_J\left(\frac{\beta_2}{\beta_2+t}\right) = \mathcal{P}_J\left(\mathcal{L}_D\left(t\right)\right),\,$$

οù

$$\mathcal{L}_{D}\left(t\right) = \left(\frac{\beta_{2}}{\beta_{2} + t}\right).$$



Alors, (15) devient

$$\mathcal{L}_{C}(t) = \alpha \left(\frac{\beta_{1}}{\beta_{1}+t}\right) + (1-\alpha)\left(\frac{\beta_{2}}{\beta_{2}+t}\right)$$

$$= \alpha \mathcal{P}_{J}\left(\frac{\beta_{2}}{\beta_{2}+t}\right) + (1-\alpha)\left(\frac{\beta_{2}}{\beta_{2}+t}\right). \tag{16}$$

On introduit une v.a. discrète K sur le support  $\mathbb{N}^+$  =  $\{1,2,\ldots\}$  dont la f.g.p. est

$$\mathcal{P}_{K}(r) = \alpha \mathcal{P}_{J}(r) + (1 - \alpha) \times r, \tag{17}$$

pour  $r \in [0,1]$ . [Note : Pr(K = 0) = 0.]



#### Illustration no2

La fgp de la v.a. K est

$$\mathcal{P}_{K}(r) = \sum_{k=0}^{\infty} \eta_{k} \times r^{k}$$

$$= \alpha \mathcal{P}_{J}(r) + (1 - \alpha) \times r$$

$$= \alpha \sum_{k=0}^{\infty} f_{J}(k) \times r^{k} + (1 - \alpha) \times r$$
(18)

οù

$$f_J(k) = \begin{cases} 0 & , & k = 0 \\ q(1-q)^{k-1} & , & k \in \mathbb{N}^+ \end{cases}$$
 (19)

En combinant (18) et (17), on déduit que

$$f_K(k) = \eta_k = \begin{cases} 0 & , & k = 0 \\ \alpha \times q + (1 - \alpha) & , & k = 1 \\ \alpha \times q (1 - q)^{k-1} & , & k = 2,3,... \end{cases}$$

Avec (16) et (17), et puisque  $\left(\frac{\beta_2}{\beta_2+t}\right) \in [0,1]$  pour  $t \ge 0$ , on conclut que

$$\mathcal{L}_{C}\left(t\right) = \mathcal{P}_{K}\left(\frac{\beta_{2}}{\beta_{2} + t}\right)$$

Clairement,

$$\sum_{k=1}^{\infty} \eta_k = \alpha \sum_{k=1}^{\infty} f_J(k) + (1 - \alpha)$$
$$= \alpha \times 1 + (1 - \alpha) = 1.$$



Maintenant, on revient à la TLS de S

$$\mathcal{L}_{S}\left(t\right) = \mathcal{L}_{X_{1}}\left(t\right) \times \mathcal{L}_{X_{2}}\left(t\right) = \mathcal{P}_{N}\left(\mathcal{L}_{C}\left(t\right)\right), t \geq 0,$$

οù

lacksquare fgp de N :

$$\mathcal{P}_N = \exp(\lambda_N (r-1)), r \in [0,1]$$
;

- TLS de C

$$\mathcal{L}_{C}(t) = p_{1}\mathcal{L}_{B_{1}}(t) + p_{2}\mathcal{L}_{B_{2}}(t)$$

$$= p_{1}\left(\frac{\beta_{1}}{\beta_{1}+t}\right) + p_{2}\left(\frac{\beta_{2}}{\beta_{2}+t}\right)$$

$$= \mathcal{P}_{K}\left(\frac{\beta_{2}}{\beta_{2}+t}\right), t \geq 0;$$



Alors, la TLS de S devient

$$\mathcal{L}_{S}(t) = \mathcal{L}_{X_{1}}(t) \times \mathcal{L}_{X_{2}}(t)$$

$$= \mathcal{P}_{N}(\mathcal{L}_{C}(t))$$

$$= \mathcal{P}_{N}\left(\mathcal{P}_{K}\left(\frac{\beta_{2}}{\beta_{2}+t}\right)\right), t \geq 0,$$
(20)

On introduit la v.a. discrète L dont la fonction de masse de probabilité et la fgp sont respectivement

$$\Pr(L = k) = \gamma_k, k \in \mathbb{N},$$

et

$$\mathcal{P}_{L}\left(r\right) = \mathcal{P}_{N}\left(\mathcal{P}_{K}\left(r\right)\right) = \sum_{k=0}^{\infty} \gamma_{k} r^{k}.$$



#### Illustration no2

Puisque  $N \sim Pois\left(\lambda_N\right)$ , on utilise l'algorithme de Panjer pour calculer les valeurs de  $\gamma_k$ ,  $k \in \{0,1,2,...,k_0\}$ , où  $k_0$  est fixé de telle sorte que  $1 - \sum_{k=1}^{\infty} \gamma_k \leq \varepsilon$  pour un  $\varepsilon$  fixé très petit (e.g.,  $\varepsilon = 10^{-10}$ ).

En combinant (20) et (21), on obtient

$$\mathcal{L}_{S}(t) = \mathcal{P}_{N}\left(\mathcal{P}_{K}\left(\frac{\beta_{2}}{\beta_{2}+t}\right)\right)$$

$$= \mathcal{P}_{L}\left(\frac{\beta_{2}}{\beta_{2}+t}\right)$$

$$= \sum_{k=0}^{\infty} \gamma_{k}\left(\frac{\beta_{2}}{\beta_{2}+t}\right)^{k}, t \geq 0.$$
(22)

De la TLS de S en (22), on déduit

$$F_{S}\left(x\right)=\gamma_{0}+\sum_{k=1}^{\infty}\gamma_{k}H\left(x;k,\beta_{2}\right)$$
,  $x\geq0$ .



#### Illustration no2

### Étape 2.

On applique l'algorithme de Panjer pour calculer  $\gamma_k$ ,  $k \in \{0,1,2,...,k_0\}$ , où  $k_0$  est fixé de telle sorte que  $1-\sum_{k=1}^{\infty}\gamma_k \leq \varepsilon$  pour un  $\varepsilon$  fixé très petit (e.g.,  $\varepsilon=10^{-10}$ ).

| k          | 0                         | 1           | 5           | 10          | 20          |
|------------|---------------------------|-------------|-------------|-------------|-------------|
| $\gamma_k$ | $6.144212 \times 10^{-6}$ | 0.000026543 | 0.000348132 | 0.001599818 | 0.007537266 |

#### Illustration no2

### Étape 3.

On évalue  $F_S(x)$ , avec  $\gamma_k$ ,  $k \in \{0,1,2,...,k_0\}$ , où  $k_0$  est fixé de telle sorte que  $1 - \sum_{k=1}^{\infty} \gamma_k \leq \varepsilon$  pour un  $\varepsilon$  fixé très petit (e.g.,  $\varepsilon = 10^{-10}$ ).

|  | x        | 0                         | 5          | 10         | 20         | 50         |
|--|----------|---------------------------|------------|------------|------------|------------|
|  | $F_S(x)$ | $6.144212 \times 10^{-6}$ | 0.00026746 | 0.00125063 | 0.00788859 | 0.10987205 |

### Illustration no2

### Valeurs de $F_S$ :



#### Illustration no3

Soit les v.a. indépendantes  $X_1 \sim Gamma(\alpha_1, \beta_1)$  et  $X_2 \sim Gamma(\alpha_2, \beta_2)$  avec

$$\mathcal{L}_{X_{i}}\left(t\right) = \left(\frac{\beta_{i}}{\beta_{i} + t}\right)^{\alpha_{i}}, t \geq 0,$$

avec  $\beta_2 > \beta_1 > 0$ .

On définit la v.a.  $S = X_1 + X_2$ .

#### Illustration no3

Objectif: Évaluer  $F_S(x)$ ,  $x \ge 0$ .

Stratégie :

**I** Étape 1 : Transformer  $\left(\frac{\beta_i}{\beta_i+t}\right)^{\alpha_i}$  adéquatement.

Étape 2 : Démontrer

$$F_S(x) = \sum_{k=0}^{\infty} \gamma_k H(x; \alpha_1 + \alpha_2 + k; \beta_2), x \ge 0.$$

**3** Étape 3 : Évaluer  $F_S(x)$ , avec  $\gamma_k$ ,  $k \in \{0,1,2,...,k_0\}$ , où  $k_0$  est fixé de telle sorte que  $1 - \sum_{k=1}^{\infty} \gamma_k \le \varepsilon$  pour un  $\varepsilon$  fixé très petit (e.g.,  $\varepsilon = 10^{-10}$ ).

### Étape 1.

La TLS de S est donnée par

$$\mathcal{L}_{S}(t) = \mathcal{L}_{X_{1}}(t) \times \mathcal{L}_{X_{2}}(t)$$

$$= \left(\frac{\beta_{1}}{\beta_{1} + t}\right)^{\alpha_{1}} \times \left(\frac{\beta_{2}}{\beta_{2} + t}\right)^{\alpha_{2}}, t \geq 0.$$
(23)

Dans (23), on a

$$\mathcal{L}_{X_1}(t) = \left(\frac{\beta_1}{\beta_1 + t}\right)^{\alpha_1} = \left(\frac{\beta_2}{\beta_2 + t}\right)^{\alpha_1} \left(\frac{q}{1 - (1 - q)\left(\frac{\beta_2}{\beta_2 + t}\right)}\right)^{\alpha_1}$$

où 
$$q = \frac{\beta_1}{\beta_2} \in (0,1)$$
.



#### Illustration no3

On introduit la v.a. discrète J (avec support  $\mathbb{N}^+$ ) avec

$$\mathcal{P}_{J}(r) = \left(\frac{q}{1 - (1 - q)r}\right)^{\alpha_{1}}$$
$$= \sum_{\kappa=0}^{\infty} \gamma_{k} r^{k}, r \in [0, 1].$$

On reconnaît la fgp de la loi binomiale négative de paramètres  $\alpha_1$  et  $q=rac{\beta_1}{\beta_2}$ 

$$f_J(k) = \gamma_k = \frac{\Gamma(\alpha_1 + k)}{\Gamma(\alpha_1)k!} q^{\alpha_1} (1 - q)^k$$

pour  $k \in \mathbb{N}$ .



### La TLS de $X_1$ devient

$$\mathcal{L}_{X_{1}}(t) = \left(\frac{\beta_{1}}{\beta_{1}+t}\right)^{\alpha_{1}}$$

$$= \left(\frac{\beta_{2}}{\beta_{2}+t}\right)^{\alpha_{1}} \mathcal{P}_{J}\left(\frac{\beta_{2}}{\beta_{2}+t}\right)$$

$$= \left(\frac{\beta_{2}}{\beta_{2}+t}\right)^{\alpha_{1}} \sum_{\kappa=0}^{\infty} \gamma_{k} \left(\frac{\beta_{2}}{\beta_{2}+t}\right)^{k},$$

où 
$$q = \frac{\beta_1}{\beta_2} \in (0,1)$$
.



#### Illustration no3

### Étape 2.

Alors, l'expression en (23) de la TLS de la v.a. S devient

$$\mathcal{L}_{S}(t) = \left(\frac{\beta_{1}}{\beta_{1}+t}\right)^{\alpha_{1}} \times \left(\frac{\beta_{2}}{\beta_{2}+t}\right)^{\alpha_{2}}$$

$$= \left(\left(\frac{\beta_{2}}{\beta_{2}+t}\right)^{\alpha_{1}} \sum_{\kappa=0}^{\infty} \gamma_{k} \left(\frac{\beta_{2}}{\beta_{2}+t}\right)^{k}\right) \times \left(\frac{\beta_{2}}{\beta_{2}+t}\right)^{\alpha_{2}}.$$

#### Illustration no3

On réarrange les termes

$$\mathcal{L}_{S}(t) = \sum_{\kappa=0}^{\infty} \gamma_{k} \left( \frac{\beta_{2}}{\beta_{2} + t} \right)^{\alpha_{1} + \alpha_{2} + k}.$$

On déduit que

$$F_S(x) = \sum_{\kappa=0}^{\infty} \gamma_k H(x; \alpha_1 + \alpha_2 + k, \beta_2)$$

ou

$$f_S(x) = \sum_{\kappa=0}^{\infty} \gamma_k h(x; \alpha_1 + \alpha_2 + k, \beta_2),$$

pour  $x \ge 0$ .



### Étape 3.

On évalue  $F_S(x)$ , avec  $\gamma_k$ ,  $k \in \{0,1,2,...,k_0\}$ , où  $k_0$  est fixé de telle sorte que  $1 - \sum_{k=1}^{\infty} \gamma_k \leq \varepsilon$  pour un  $\varepsilon$  fixé très petit (e.g.,  $\varepsilon = 10^{-10}$ ).

Hypothèses de calculs :  $\alpha_1$  = 1.2,  $\alpha_2$  = 4.5,  $\beta_1$  =  $\frac{1.2}{10}$  et  $\beta_2$  =  $\frac{4.5}{30}$ .

### Valeurs numériques :

- E[S] = 40, q = 0.8
- $\gamma_k$ , (k = 0,1,2,3): 0.765082000; 0.183619680; 0.040396330; 0.008617884
- $F_S(x)$ , (x = 40.80) : 0.5564092; 0.9767901; 0.9995224 (valeurs calculées en R avec  $k_0 = 1000$ )



Valeurs de 
$$f_{X_1}(x) = h(x; \alpha_1, \beta_1)$$
 et  $f_{X_1} = \sum_{\kappa=0}^{\infty} \gamma_k h(x; \alpha_1 + k, \beta_2)$  :



Comme prévu, les deux courbes se superposent parfaitement.



#### Illustration no3

Valeurs de  $f_{X_1}$ ,  $f_{X_2}$  et  $f_S$  :



#### Illustration no3

Valeurs de  $TVaR_{\kappa}(X_1)$ ,  $TVaR_{\kappa}(X_2)$ ,  $TVaR_{\kappa}(S)$  et  $TVaR_{\kappa}(X_1) + TVaR_{\kappa}(X_2)$ :







### Illustration de la procédure





#### Données no1

#### Contexte:

- Montants complets de sinistres
- Temps d'occurrence
- Période d'observation = (0,30]
- 99 observations :  $(x_i,t_i), i = 1,2,...,99$

#### Données no1

Parcours du processus de comptage vs intentité cumulée pour un processus de Poisson

### Parcours du processus de comptage



Intensité cumulée du processus de Poisson homogène



#### Données no1

Montants de sinistres vs temps d'occurrence



#### Données no1

Fonction de répartition empirique - Sinistres



#### Données no1

Fonction de répartition empirique - Temps inter-inistres



Fonctions d'excès moyen: [Embrechts and Schmidli, 1994]



Fig. 2.1. Mean-residual-life function e(x) for a wide class of distributions: (1) exponential (1), (2) gamma (3), (3) gamma (0.5), (4) Weibull (2), (5) Weibull (0.7), (6) lognormal (-0.2, 1) and (7) Pareto (1.5)

#### Données no1

Fonctions d'excès moyen empirique : temps inter-sinistres



#### Données no1

Fonctions d'excès moyen empirique : montants de sinistres



QQ-plot - Loi exponentielle : temps inter-sinistres

### QQ-plot - Loi Exponentielle



QQ-plot - Loi exponentielle : montants de sinistres

### QQ-plot - Loi Exponentielle



QQ-plot - Loi lognormale : montants de sinistres

### QQ-plot - Loi Lognormale



#### Données no1

#### Estimation MV - montant de sinistre *X*:

- Loi lognormale :  $X \sim LNorm(\mu, \sigma)$
- $\mu = 1.796876, \sigma = 0.8439212$

### Estimation MV - processus de comptage $\underline{N}$ :

- lacksquare Processus de Poisson homogène avec intensité  $\lambda$
- lacktriangle Temps inter-sinistre : loi exponentielle avec paramètre  $\lambda$
- $\lambda = \frac{99}{33} = 3.3$

#### Données no1

On examine le comportement de l'accroissement  $S(30,\!31]$  du processus de Poisson composé  $\underline{S}$ 

On applique les outils suivants pour évaluer approximativement  $F_{S(30,31]}\left(x
ight)$  :

- discrétisation upper et lower (h = 1, 0.1);
- algorithme de Panjer.

Valeurs de  $F_{\widetilde{S(30,31]}^{(up,h)}}$  et  $F_{\widetilde{S(30,31]}^{(low,h)}}$ , h = 1,0.1 :



# Références



### Références |



Embrechts, P. and Schmidli, H. (1994). Modelling of extremal events in insurance and finance. *Zeitschrift für Operations Research*, 39(1):1–34.



Panjer, H. H. (1981).

Recursive evaluation of a family of compound distributions.

ASTIN Bulletin: The Journal of the IAA, 12(1):22–26.