Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο:	Αναστάσιος Χανδρινός	AM:	1047171	Έτος:	50
--------	-------------------------	-----	---------	-------	----

Ασκηση 1

Ερώτηση 1 Υπολογίστε την στοχαστική μέση τιμή της διαδικασίας.

Απάντηση:
$$E\{x\} = m_x = \sum_k a_k \Pr\{x=a_k\} = \frac{1}{2} * (a+b) = \frac{1}{2} * (\frac{1}{2} - \frac{1}{2}) = 0$$

Ερώτηση 2 Χρησιμοποιώντας τη συνάρτηση $rand(\cdot)$ της MATLAB δημιουργήστε Κ υλοποιήσεις της διαδικασίας και εκτιμήστε, υπολογίζοντας την αριθμητική μέση τιμή κάθε χρονική στιγμή, την στοχαστική μέση τιμή της. Τι παρατηρείτε καθώς αυξάνει ο αριθμός των υλοποιήσεων της διαδικασίας που χρησιμοποιούνται στην εκτίμηση της στοχαστικής μέσης τιμής; Απεικονίστε την μέση υλοποίηση στον παρακάτω πίνακα.

Απάντηση: Παρατηρούμε ότι όσο αυξάνεται το Κ, τόσο η αριθμητική μέση τιμή τείνει να πλησιάσει τη στοχαστική.

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο: Αναστάσιος Χανδρινός	AM:	1047171	Έτος:	50
--------------------------------	-----	---------	-------	----

Ερώτηση 3 Υπολογίστε και απεικονίστε την ακολουθία αυτοσυσχέτισης της διαδικασίας. Είναι η παραπάνω διαδικασία "λευκή"; Αιτιολογείστε την απάντησή σας.

Απάντηση: Παρατηρούμε ότι το σήμα δεν είναι ασθενώς στάσιμο 2ης τάξης, καθώς η αυτοσυσχέτιση δεν μπορεί να διατυπωθεί μόνο από τις διαφορές των χρονικών στιγμών. Συνεπώς η παρακάνω διαδικασία δεν μπορεί να είναι λευκή.

Ερώτηση 4 Χρησιμοποιώντας τα δεδομένα του Ερωτήματος 2, εκτιμήστε την ακολουθία αυτοσυσχέτισης. Τι παρατηρήτε καθώς αυξάνει ο αριθμός Κ των υλοποιήσεων της διαδικασίας που χρησιμοποιούνται στην εκτίμηση της ακολουθίας αυτοσυσχέτισης;

Απάντηση: Η εκτίμηση παραμένει ίδια για μεγαλύτερες τιμές του Κ.

Ερώτηση 5 Υπολογίστε και απεικονίστε την Πυκνότητα Φάσματος (Spectral Density) της διαδικασίας. Πόσο κοντά στην ιδανική πυκνότητα είναι η εκτίμησή της από την ακολουθία αυτοσυσχέτισης του Ερωτήματος 4 και πως επηρεάζεται από το K;

Απάντηση:

Παρατηρούμε ότι για μεγαλύτερες τιμές του Κ, η απεικόνιση της πυκνότητας φάσματος γίνεται όλο και πιο ευδιάκριτη και μεταφέρεται στο κέντρο, προσεγγίζοντας την ιδανική.

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο:	αστάσιος ανδοινός ΑΜ:	1047171	Έτος:	50
--------	--------------------------	---------	-------	----

Ασκηση 2

Ερώτηση 1 Υπολογίστε την στοχαστική μέση τιμή της διαδικασίας.

Απάντηση: Γνωρίζουμε από την υπόθεση ότι η στοχαστική μέση τιμή είναι 0.

Ερώτηση 2 Χρησιμοποιώντας τη συνάρτηση $rand(\cdot)$ της MATLAB δημιουργήστε Κ υλοποιήσεις της διαδικασίας και εκτιμήστε, υπολογίζοντας την αριθμητική μέση τιμή κάθε χρονική στιγμή, την στοχαστική μέση τιμή της. Τι παρατηρήτε καθώς αυξάνει ο αριθμός των υλοποιήσεων της διαδικασίας που χρησιμοποιούνται στην εκτίμηση της στοχαστικής μέσης τιμής; Απεικονίστε την μέση υλοποίηση στον παρακάτω πίνακα.

Απάντηση: Παρατηρούμε και πάλι ότι όσο αυξάνεται το Κ, τόσο η αριθμητική μέση τιμή τείνει να πλησιάσει τη στοχαστική.

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο:	Αναστάσιος Χανδρινός	AM:	1047171	Έτος:	50
--------	-------------------------	-----	---------	-------	----

Ερώτηση 3 Υπολογίστε και απεικονίστε την ακολουθία αυτοσυσχέτισης της διαδικασίας. Είναι η παραπάνω διαδικασία "λευκή"; Αιτιολογείστε την απάντησή σας.

Απάντηση: Παρατηρούμε ότι και εδώ, το σήμα δεν είναι ασθενώς στάσιμο 2ης τάξης, καθώς η αυτοσυσχέτιση δεν μπορεί να διατυπωθεί μόνο από τις διαφορές των χρονικών στιγμών. Συνεπώς η παρακάνω διαδικασία δεν μπορεί να είναι λευκή.

Ερώτηση 4 Χρησιμοποιώντας τα δεδομένα του Ερωτήματος 2, εκτιμήστε την ακολουθία αυτοσυσχέτισης. Τι παρατηρήτε καθώς αυξάνει ο αριθμός Κ των υλοποιήσεων της διαδικασίας που χρησιμοποιούνται στην εκτίμηση της ακολουθίας αυτοσυσχέτισης;

Απάντηση: Η εκτίμηση παραμένει ίδια και πάλι για μεγαλύτερες τιμές του Κ.

Ερώτηση 5 Υπολογίστε και απεικονίστε την Πυκνότητα Φάσματος (Spectral Density) της διαδικασίας. Πόσο κοντά στην ιδανική πυκνότητα είναι η εκτίμησή της από την ακολουθία αυτοσυσχέτισης του Ερωτήματος 4 και πως επηρεάζεται από το K;

Απάντηση: Παρατηρούμε ότι για μεγαλύτερες τιμές του Κ, η απεικόνιση της πυκνότητας φάσματος γίνεται όλο και πιο ευδιάκριτη και μεταφέρεται στο κέντρο, προσεγγίζοντας και πάλι την ιδανική.

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

	Ον/μο:	Αναστάσιος Χανδρινός	AM:	1047171	Έτος:	50	
--	--------	-------------------------	-----	---------	-------	----	--

Ασκηση 3

Ερώτηση 1 Χρησιμοποιήστε αποδοτικά τον Νόμο των Μεγάλων Αριθμών και αποκαλύψτε την εικόνα που κρύβεται στην ακολουθία. Εκτιμήστε την διασπορά του θορύβου καθώς και την κατανομή του.

Απάντηση: Με τη χρήση αυτού του script, μπορούμε να προσεγγίσουμε σύμφωνα με το Νόμο των Μεγάλων Αριθμών την εικόνα.

$$X = 0;$$

 $for i=1:100$
 $X = I(:,:,i) + X;$
 end
 $X = X/100;$
 $imshow(X)$

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο: Αναστάσιος Χανδοινός	AM:	1047171	Έτος:	50	
--------------------------------	-----	---------	-------	----	--

Με τη χρήση αυτού του script υπολογίσαμε τη διασπορά(4.0414) και την κατανομή του θορύβου και παρατηρήσαμε ότι προσεγγίζει κανονική κατανομή:

k=1; for j=1:100 for i=1:100 for u=1:100 X(k) = I(u,j,i); k=k+1; end end end end

figure
histfit(X)

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο:	αστάσιος ανδοινός ΑΜ:	1047171	Έτος:	50
--------	--------------------------	---------	-------	----

Ερώτηση 2 Χρησιμοποιώντας την εικόνα που αποκαλύψατε, επιβεβαιώστε το Κεντρικό Οριακό Θεώρημα.

Απάντηση:

Ασκηση 4

Ερώτηση 1 Χρησιμοποιήστε τις συναρτήσεις $plot(\cdot)$, $abs(\cdot)$ και $angle(\cdot)$ για να σχεδιάσετε το μέτρο και τη φάση της διατεθείσας υλοποίησης του στοχαστικού σήματος, χρησιμοποιώντας τα M=100 πρώτα δείγματα του σήματος. Καταγράψτε τις παρατηρήσεις σας.

Απάντηση: Είναι λογική η απεικόνιση του abs, καθώς λόγω του σήματος που έχουμε, περιμένουμε ο FFT να εμφανίζει πλάτος σε μία συγκεκριμένη συχνότητα. Επίσης, φαίνεται λογική η απεικόνιση της angle, καθώς επηρεάζεται από το λευκό γκαουσιανό θόρυβο.

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο:	αστάσιος ανδοινός ΑΜ:	1047171	Έτος:	50
--------	--------------------------	---------	-------	----

Ερώτηση 2 Εκτελέστε την εντολή $plot(y(n, \theta_0))$ και προσπαθήστε να κατανοήσετε αυτό που βλέπετε. Καταγράψτε τις παρατηρήσεις σας.

Απάντηση: Αυτό που περιμένουμε ως απεικόνιση είναι ένας τέλειος κύκλος, καθώς έχουμε μιγαδικό εκθετικό σήμα. Όμως, λόγω της ύπαρξης θορύβου παρατηρούμε ανισορροπίες στην απεικόνιση και απόκλιση του σχήματος από το αναμενόμενο.

Ερώτηση 3 Εκτελέστε την εντολή $stem(angle(y(n, \theta_0)))$ και προσπαθήστε να κατανοήσετε αυτό που βλέπετε. Καταγράψτε τις παρατηρήσεις σας.

Απάντηση: Παρατηρούμε ότι προκύπτει μια διακριτή απεικόνιση της angle($y(n, \theta_0)$)).

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

	Ον/μο:	Αναστάσιος Χανδρινός	AM:	1047171	Έτος:	50	
--	--------	-------------------------	-----	---------	-------	----	--

Ερώτηση 4 Σχολιάστε, την διαδικασία η οποία ονομάζεται Περιοδόγραμμα:

Απάντηση: Το περιοδόγραμμα είναι ένας εκτιμητής του φάσματος ισχύος. Για τον υπολογισμό του χρησιμοποιούμε μια εκτίμηση της ακολουθίας της αυτοσυσχέτισης. Αποδεικνύεται ότι αποτελεί διακριτό μετασχηματισμό Fourier της εκτιμήτριας της αυτοσυσχέτισης.

Ερώτηση 5 Σε ποιά ντετερμινιστική συνάρτηση τείνει η αναμενόμενη τιμή του περιοδογράμματος $P_M(e^{j\omega},\theta)$ όταν το M τείνει στο ∞ ;

Απάντηση: Στο φάσμα ισχύος.

Ερώτηση 6 Χρησιμοποιώντας τις συναρτήσεις $abs(\cdot)$ και $fftshift(\cdot)$ της MATLAB σχεδιάστε το περιοδόγραμμα του στοχαστικού σήματος, για $M=100,\,500,\,1000,\,10000$ και:

Απάντηση: Προφανώς για όσο μεγαλύτερο Μ έχουμε, τόσο καλύτερη προσέγγιση πετυχαίνουμε.

Ερώτηση 7 Εντοπίστε πιθανές συχνότητες στις οποίες κατανέμεται η ενέργεια του ντετερμινιστικού σήματος

Απάντηση: Περίπου στις συχνότητες κοντά στην $5.7 * 10^4$.

Ερώτηση 8 Σχολιάστε την συμπεριφορά του περιοδογράμματος για τις διαφορετικές τιμές του Μ που χρησιμοποιήσατε

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο: Αναστάσιος Χανδρινός	AM:	1047171	Έτος:	50
--------------------------------	-----	---------	-------	----

Απάντηση: Παρατηρούμε ότι όσο αυξάνεται το M, η εκτίμηση γίνεται καλύτερη και τείνει στην πραγματική τιμή.

Ερώτηση 9 Εκτιμήστε το πλάτος Α του μιγαδικού εκθετικού σήματος

Απάντηση: Το πλάτος θα είναι η ακτίνα του κύκλου που θα βλέπαμε και στο σχήμα, εάν δεν υπήρχε ο θόρυβος.

Ερώτηση 10 Εκτιμήστε, αν μπορείτε, την ισχύ σ^2 του θορύβου.

Απάντηση:

Ερώτηση 11 Χρησιμοποιήστε τις εκτιμήσεις πλάτους και συχνότητας και δημιουργήστε στην MATLAB το μιγαδικό εκθετικό σήμα και επαναλάβετε τις Ερωτήσεις 8 και 9. Καταγράψτε τις παρατηρήσεις σας.

Απάντηση:

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο: Αναστάσιος Χανδρινός	AM:	1047171	Έτος:	50
--------------------------------	-----	---------	-------	----

Ασκηση 5

Ερώτηση 1 Τι είδους διαδικασία περιγράφει η Σχέση (2); Χρησιμοποιώντας $\omega_{\theta}=0.25$ και τη συνάρτηση $randn(\cdot)$, δημιουργήστε μερικές υλοποιήσεις της. Υπολογίστε τα φασματικά χαρακτηριστικά του χρωματισμένου θορύβου. Συμφωνούν με τα θεωρητικά αναμενόμενα;

Απάντηση: Η συνάρτηση περιγράφει μία βηματική ακολουθία ολισθημένη, στην οποία έχει προστεθεί λευκός γκαουσιανός θόρυβος.

Ερώτηση 2 Ποιά η λειτουργία του Συστήματος Λεύκανσης; Καταγράψτε την απάντησή σας.

Απάντηση: Το σύστημα λεύκανσης αποτελείται από ένα φίλτρο Wiener, το οποίο χρησιμοποιείται για την ελαχιστοποίηση του θορύβου.

Ερώτηση 3 Η πηγή του σήματος της Σχέσης (1) είναι ντετερμινιστική ή στοχαστική; Δικαιολογήστε την απάντησή σας. Αν η πηγή του σήματος είναι στοχαστική, είναι ασθενώς ή ισχυρώς στάσιμη πρώτης ή δεύτερης τάξης; Χρησιμοποιώντας τη συνάρτηση rand(·), δημιουργείστε υλοποιήσεις της και προσπαθήστε να επιβεβαιώσετε τις απαντήσεις σας και πειραματικά. Καταγράψτε τα πειράματα που κάνατε και τα αποτελέσματα σας.

Απάντηση:

Απαντήσεις στο τέταρτο σετ εργαστηριακών ασκήσεων

Ον/μο: Αναστάσιος Χανδρινός	AM:	1047171	Έτος:	50
--------------------------------	-----	---------	-------	----

Ερώτηση 4 Εκφράστε την έξοδο του FIR φίλτρου Wiener μήκους Μ συναρτήσει των συντελεστών της κρουστικής του απόκρισης και του χρωματισμένου θορύβου.

Απάντηση:

Ερώτηση 5 Σχεδιάστε το βέλτιστο FIR φίλτρο Wiener μήκους 2 και υπολογίστε το μέσο τετραγωνικό σφάλμα.

Απάντηση:

Ερώτηση 6 Επαναλάβετε την Ερώτηση 5 για φίλτρα μήκους 3, 4, 5, 6, υπολογίστε τα αντίστοιχα μέσα τετραγωνικά σφάλματα. Τι παρατηρείτε;

M = 3	M =4	M = 5	M = 6
		Se The Second	C THE