

MITx 6.86x

Machine Learning with Python-From Linear Models to Deep Learning

Discussion Course **Progress** Dates Resources

Course / Unit 5. Reinforcement Learning (2 we... / Lecture 17. Reinforcement

6. Bellman Equations

 \square Bookmark this page

Exercises due May 3, 2023 08:59 -03 Completed

Bellman Equations

Video

♣ Download video file

Transcripts

▲ Download SubRip (.srt) file

▲ Download Text (.txt) file

Recall from lecture the **Bellman Equations** are

$$V^{st}\left(s
ight) \ \ = \ \ \max_{a}Q^{st}\left(s,a
ight)$$

$$Q^{st}\left(s,a
ight) \;\;=\;\; \sum_{s^{\prime}}T\left(s,a,s^{\prime}
ight)\left(R\left(s,a,s^{\prime}
ight)+\gamma V^{st}\left(s^{\prime}
ight)
ight)$$

where

- ullet the **value function** $V^{st}\left(s
 ight)$ is the expected reward from starting at state s and acting
- the **Q-function** Q^* (s,a) is the expected reward from starting at state s, then acting acting optimally afterwards.

Submit

You have used 1 of 2 attempts

Bellman Equation for Q Function

1/1 point (graded)

As above, let there be possible actions,

from a given state wth

Let be a state that can be reached from by taking the action . Let

Previous

Next >

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

Sitemap

Cookie Policy

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>