Multiple Random Variables

What Are We Missing?

The world is full of interesting probability problems...

...and many of them involve multiple random variables, being random together

How Do We Model Multiple Random Variables Together?

Often, all the random variables involved are not independent of each other.

How Do We Model Multiple Random Variables Together?

Often, all the random variables involved are not independent of each other.

So we can't just have a single distribution for each random variable — we need a way to talk about all the random variables at the same time.

The "Joint" Distribution of Multiple Random Variables

For discrete random variables X and Y, we have a joint probability mass function:

$$P(X = x, Y = y)$$

The joint is the "and" between an assignment to X, and an assignment to Y

The same as P(A and B) for events A and B!

The "Joint" Distribution of Multiple Random Variables

For discrete random variables X and Y, we have a joint probability mass function:

$$P(X = x, Y = y)$$

$$P(X = x, Y = y)$$

$$P(X = x, Y = y)$$
The inint is the "and" between an assignment to Y and an assignment to Y

The joint is the "and" between an assignment to X, and an assignment to Y

The same as P(A and B) for events A and B!

The "Joint" Distribution of Multiple Random Variables

For discrete random variables X and Y, we have a joint probability mass function:

$$P(X = x, Y = y)$$

For continuous random variables, we have a joint probability density function:

$$f(X = x) Y = y) \qquad P\{(X,Y) \in C\} = \iint_{(x,y) \in C} f(x,y) dx dy$$

Roll two 6-sided dice, yielding values X and Y.

random variable

$$P(X=1)$$

probability of an event

$$P(X = k)$$

probability mass function

Roll two 6-sided dice, yielding values X and Y.

X

random variable

$$P(X = 1)$$

probability of an event

$$P(X = k)$$

probability mass function

X, Y

random variables

$$P(X=1,Y=6)$$

probability of the intersection of two events

$$P(X=x,Y=y)$$

joint probability mass function

Roll two 6-sided dice, yielding values X and Y.

What is
$$P(X = x, Y = y)$$
?

Roll two 6-sided dice, yielding values X and Y.

What is
$$P(X = x, Y = y)$$
?

$$P(X = x, Y = y) = \frac{1}{36}$$
$$(x, y) \in \{(1,1), ..., (6,6)\}$$

Roll two 6-sided dice, yielding values X and Y.

What is
$$P(X = x, Y = y)$$
?

$$P(X=x,Y=y)=\frac{1}{36}$$

$$(x, y) \in \{(1,1), \dots, (6,6)\}$$

Roll two 6-sided dice, yielding values X and Y.

What is
$$P(X = x, Y = y)$$
?

$$P(X = x, Y = y) = \frac{1}{36}$$

$$(x, y) \in \{(1,1), \dots, (6,6)\}$$

This is a **joint probability table**:

it contains the probabilities of all possible outcomes for a set of discrete random variables

Another Example

Example 4.3.a. Suppose that 3 batteries are randomly chosen from a group of 3 new, 4 used but still working, and 5 defective batteries. If we let X and Y denote, respectively, the number of new and used but still working batteries that are chosen, then the joint probability mass function of X and Y, p(i, j) = X

Example with continuous density

Example 4.3.c. The joint density function of *X* and *Y* is given by

$$f(x,y) = \begin{cases} 2e^{-x}e^{-2y} & 0 < x < \infty, 0 < y < \infty \\ 0 & \text{otherwise} \end{cases}$$

$$P\{X > 1, Y < 1\} = \int_{0}^{1} \int_{1}^{\infty} 2e^{-x}e^{-2y} dx dy$$

$$= \int_{0}^{1} 2e^{-2y}(-e^{-x}|_{1}^{\infty}) dy$$

$$P(X < Y) = \int_{0}^{1} \int_{1}^{\infty} 2e^{-x}e^{-2y} dx dy$$

iven by
$$P\{X < Y\} = \iint_{(x,y):x < y} 2e^{-x}e^{-2y} dx dy$$

$$= \int_{0}^{\infty} \int_{0}^{y} 2e^{-x}e^{-2y} dx dy$$

$$= \int_{0}^{\infty} 2e^{-2y} (1 - e^{-y}) dy$$

$$= \int_{0}^{\infty} 2e^{-2y} dy - \int_{0}^{\infty} 2e^{-3y} dy$$

$$= 1 - \frac{2}{3}$$

$$= \frac{1}{2}$$

Marginals

$$P\{X < a\} = \int_{0}^{\pi} \int_{0}^{\infty} 2e^{-2y}e^{-x} \, dy \, dx$$

$$= \int_{0}^{a} e^{-x} \, dx$$

$$= 1 - e^{-a} \quad \blacksquare$$

$$P(X < a) \sim exp(X = 1)$$

Law of total probability

Joint table expresses the complete information about the random variables

$$P(X = x) = \sum_{y} P(X = x, Y = y)$$

P(X = x) is called the marginal of the joint distribution P(X, Y)

$$f(x-x) = \int f(x,y) dy$$

Independent Random Variables

The random variables *X* and *Y* are said to be independent if for any two sets of real numbers *A* and *B*

$$P\{X \in A, Y \in B\} = P\{X \in A\}P\{Y \in B\}$$
(4.3.7)

This also implies that

$$P(X \le a, Y \le b) = P(X \le a)P(Y \le b)$$

Or
$$F_{X,Y}(a,b) = F_X(a)F_Y(b)$$

In the jointly continuous case, the condition of independence is equivalent to

$$f(x, y) = f_X(x) f_Y(y)$$
 for all x, y

Example 4.3.d. Suppose that X and Y are independent random variables having the common density function

$$f(x) = \begin{cases} e^{-x} & x > 0\\ 0 & \text{otherwise} \end{cases}$$

$$f(y) = \begin{cases} e^{-y} & y > 0 \\ 0 & other. \end{cases}$$

Find the density function of the random variable X/Y.

$$f(z = \frac{x}{4})$$

$$P(z \leq a) = P(\frac{x}{4} \leq a) = P(x \leq a) = \int_{0}^{a_{1}} \frac{f(x,y)dxdy}{dxdy}$$

$$= \int_{0}^{a_{2}} \frac{e^{x}}{2} \int_{0}^{a_{1}} \frac{e^{x}}{2} dxdy = \int_{0}^{a_{2}} \frac{f(x,y)dxdy}{a+1}$$

$$f(z) = \int_{0}^{a_{2}} \frac{e^{x}}{2} \int_{0}^{a_{2}} \frac{e^{x}}{2} dxdy = \int_{0}^{a_{2}} \frac{f(x,y)dxdy}{a+1}$$

$$f(z) = \int_{0}^{a_{2}} \frac{e^{x}}{2} \int_{0}^{a_{2}} \frac{e^{x}}{2} dxdy = \int_{0}^{a_{2}} \frac{e^{x}}{2} \int_{0}^{a_{2}} \frac{e^{x}}{2} \int_{0}^{a_{2}} \frac{e^{x}}{2} dxdy = \int_{0}^{a_{2}} \frac{e^{x}}{2} \int_{0}^{a_{2}} \frac{e^{x}}{2} \int_{0}^{a_{2}} \frac{e^{x}}{2} \int_{0}^{a_{2}} \frac{e^{x}}{2} dxdy = \int_{0}^{a_{2}} \frac{e^{x}}{2} \int_{0}^{a_{2}} \frac{e^{x}}{2} \int_{0}^{a_{2}} \frac{e^{x}}{2} dxdy = \int_{0}^{a_{2}} \frac{e^{x}}{2} \int_{0}^{a_{2}} \frac{e^{x}} \frac{e^{x}}{2} \int_{0}^{a_{2}} \frac{e^{x}}{2} \int_{0}^{a_{2}} \frac{e^{x$$

Conditional Probability

Given two discrete random variables X, Y. The conditional probability of X given a specific value of Y is given as:

$$P(X = x | Y = y) = P(X = x, Y = y)/P(Y = y)$$

For continuous variables with joint density of X,Y as f(x,y):

$$f_{X|Y}(x|y) = f(x,y)/f(y)$$

$$f_{X|Y}(x|y) dx = \underbrace{\frac{f(x,y) dx dy}{f_Y(y) dy}}_{P\{y \le X \le x + dx, y \le Y \le y + dy\}}$$

$$= P\{x \le X \le x + dy \mid y \le Y \le y + dy\}$$

$$= P\{x \le X \le x + dy \mid y \le Y \le y + dy\}$$

Example 4.3.h. The joint density of *X* and *Y* is given by

$$f(x,y) = \begin{cases} \frac{12}{5}x(2-x-y) & 0 < x < 1, 0 < y < 1\\ 0 & \text{otherwise} \end{cases}$$

Compute the conditional density of X, given that Y = y, where 0 < y < 1.

Solution. For 0 < x < 1, 0 < y < 1, we have

$$f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)}$$

$$= \frac{f(x,y)}{\int_{-\infty}^{\infty} f(x,y) dx}$$

$$= \frac{x(2-x-y)}{\int_{0}^{1} x(2-x-y) dx}$$

$$= \frac{x(2-x-y)}{\frac{2}{3}-y/2}$$

$$= \frac{6x(2-x-y)}{4-3y}$$

$$f_{\gamma}(y) = \int_{\chi=0}^{\chi=0} f(x,y) d\chi$$

Joint distribution of n random variables

If X_1, X_2, \dots, X_n are n random variables. Their joint distribution is defined for the discrete case as

$$p(x_1, x_2, ..., x_n) = P\{X_1 = x_1, X_2 = x_2, ..., X_n = x_n\}$$

Further, the n random variables are said to be jointly continuous if there exists a function $f(x_1, x_2, ..., x_n)$, called the joint probability density function, such that for any set C in n-space

$$P\{(X_1, X_2, \dots, X_n) \in C\} = \int \int_{(x_1, \dots, x_n) \in C} \dots \int f(x_1, \dots, x_n) \, dx_1 \, dx_2 \cdots dx_n$$

In particular, for any n sets of real numbers A_1, A_2, \ldots, A_n

$$P\{X_1 \in A_1, X_2 \in A_2, \dots, X_n \in A_n\}$$

$$= \int_{A_n} \int_{A_{n-1}} \dots \int_{A_1} f(x_1, \dots, x_n) dx_1 dx_2 \dots dx_n$$

Example 4.3.e. Suppose that the successive daily changes of the price of a given stock are assumed to be independent and identically distributed random variables with probability mass function given by

$$P\{\text{daily change is } i\} = \begin{cases} -3 & \text{with probability .05} \\ -2 & \text{with probability .10} \\ 0 & \text{with probability .20} \\ 0 & \text{with probability .30} \\ 1 & \text{with probability .20} \\ 2 & \text{with probability .10} \\ 3 & \text{with probability .05} \end{cases}$$

Then the probability that the stock's price will increase successively by 1, 2, and 0 points in the next three days is

$$P\{X_1 = 1, X_2 = 2, X_3 = 0\} = (.20)(.10)(.30) = .006$$

where we have let X_i denote the change on the ith day.