

Introductions

Our Team

Kirsten Shyu Hunter College

Mariam FondongColumbia University

Ada Maldonado Brooklyn College

Seoeun Hong New York University

Our Al Studio TA and Challenge Advisor

Ananya GaneshAl Studio TA

Olivia Koski Advisor

Presentation Agenda

- 1. Introduction
- 2. Al Studio Project Overview
- 3. Data Preprocessing
- 4. Model Selection and Evaluation
- 5. Final Thoughts
- 6. Questions

Al Studio Project Overview

66

To build and test a model that will accurately predict dwell times of ships heading to Shanghai during and outside of typhoon season

Business Impact

- Why we chose this goal:
 - Merchants and businesses need to know when shipments arrive
 - Shanghai is one of the busiest ports in the world
 - Delays here impact the global supply chain, making this important to understand
 - Ship dwell times are difficult to predict in typhoon-affected waters
 - See the effect that worsening typhoons (caused by climate change) could have on shipping
- Utilizes geo-spatial data rather than your typical dataset, AOI (drawing polygons, QGIS)
- Important economic impact, provides insight to businesses that can only be derived from Al

Our Approach

Gather AIS data on the Shanghai Port

Dataset begins 2 months prior and 1 month following the typhoon

Use calculations to predict dwell times before and after the typhoon

Use dwell time predictions to make a general hypothesis of how storms will affect a port's average dwell time

Calculate the dwell time (how long a ship remains anchored at a port) of each ship

Break the time period down into hours and days

Subtract the hour of a ship's final ping at the port from first ping

Model, visualize, and evaluate our predicted results

See what we could do to improve our models/feature selections

Resources We Leveraged

Data Preprocessing

Data Snapshot/Overview

- Polygon was manually drawn through QGIS
 - Demonstrates ship pings detected at Shanghai ports
 - Between June 1st to Sept 30th
- These pings are represented by dots
 - Each row in our AIS dataset represents one ping
- Color represents all the ships in this dataset
 - Assigned to each ping's unique device ID

Data Transformation

- Converting Unix Time
- Adding Tonnage
 - (Height x Width x Drought)
- Calculating of Dwell Time

Ship ID's: [Dwell Times]

```
413816771: [62, 60, 5, 25],
413816801: [4, 11],
413817000: [52, 60],
413817288: [1, 1, 2, 3, 4, 3, 23, 22, 18, 37],
413817319: [1, 5],
413817368: [12],
413817675: [14, 22, 6, 61],
413817739: [10],
413817968: [8],
413818000: [45, 21],
413818939: [34, 8],
413818983: [22, 25, 64],
```

```
sorted arr = sorted anchored['device id'].unique() #unique device id
dwell times = {}
for i in sorted arr:
 current_time = sorted_anchored.loc[sorted_anchored['device_id'] == i][['hour']]
 array hour = current time.values.tolist()
 hour len = len(array hour)
 biggest dif = 0
 trip change = [0]
 list hours = []
 for x in array hour:
   list_hours.append(x[0])
 for j in list_hours:
   next index = list hours.index(j) + 1
   if(next index < hour len):</pre>
     biggest dif = list hours[next index] - j
   if(biggest dif > 12):
      trip change.append(next index)
 dwell = []
 for h in range(len(trip change)):
    if((len(array hour) != trip change[h])):
     if(len(trip change) == 2 and h == 1):
        dwell.append((list hours[trip change[h]-1] - list hours[trip change[h-1]]) + 1) #trip 1
       dwell.append(list hours[-1] - list hours[trip change[h]] + 1) #trip 2
     elif(h + 1 == len(trip change)):
       dwell.append(list hours[-1] - list hours[trip change[h]] + 1)
      elif (h != 0):
       dwell.append((list hours[trip change[h]-1] - list hours[trip change[h-1]]) + 1)
 dwell times[i] = dwell
print(dwell times)
```


Dwell Time

What is the Dwell time?

"Time spent in same position, area, stage of process"

How to Calculate It: (not that simple!)

Last ping - First ping (for every trip)

What we learned + things to consider:

- Some ships had multiple trips
 - Differentiate between end of a first trip and start of another trip
- Creating a dictionary to store trip number and trip duration
- Nav status codes (anchored)

Correlation Analysis

Model Selection and Evaluation

Model Selection Process

Features:

- Vessel type code
- Latitude & longitude
- Typhoon Occurrence
- Number of ships anchored
- **Label:** Dwell Time
- **Problem:** Regression
 - Supervised learning problem where the label is any real number
- Our chosen models:
 - linear regression
 - random forest
 - gradient boosting

Model Comparison

Model Name	Description	Results	Pros	Cons
Linear regression	Model where straight line represents the data and proximity of points to line shows relationship between feature and label	Mean absolute error: 26.36< R^2: 0.01	 Faster, more efficient, and simple Overfitting can be reduced 	 Prone to underfitting Sensitive to outliers Assumes data is independent
Random forest regressor	Regression model that involves multiple decision trees contained within one set and combined into an ensemble method	Mean absolute error: 29.55 R^2: -0.34	 High accuracy Easy data preparation Can handle larger data 	 Biased towards more complex variables Little control over the model
Gradient boosting regressor	Iterative model that progressively refines its predictions by combining multiple decision trees	Mean absolute error: 26.34 R^2: 0.00	 Generally more accurate compare to other models Lots of flexibility 	 Prone to overfitting Hard to interpret the final models

Model Visualization

Linear Regression

Random Forest Regressor

Gradient Boosting Regressor

Insights and Key Findings

- Final Model Selection -
 - Gradient Boosting Regressor
 - Lowest mean absolute error (only by a negligible amount)
- Mean Absolute Error is very high
 - Overfitted model
 - Features may not lead to accurate predictions
- Potential Solutions:
 - Spend more tinkering with features
 - Try using different/more datasets
 - Potentially look at approaching as classification problem

Final Thoughts

Trial and Error

Lessons Learned:

- How to decide our reasonable thesis and scale of our project
- How to deal with AIS data
- Deeper understanding of python libraries (Numpy, Pandas, Scikit-Learn) & ML tools (Google Colab)
- How important the data preparation process is
- How to format the data to be suitable for our Machine Learning model
- Why correct understanding of input and output feature is important.
- How to work as a team
- Importance of understanding the business/economic impact of our project.

Takeaways:

- Exposure to a new side of machine learning
- Gaining hands on experience for Python in a quick-paced learning environment
- To not be afraid to ask questions!

Obstacles & Potential Next Steps

- Scheduling a time when we are all available
- Limited in-person meetings
- Beginner knowledge in Python
- New exposure to machine learning and data science
- Never done any industrial scale project before
- Geospatial data vs clean data

Next Steps:

- Scale up to different region or different typhoon
- Apply this model to other natural disaster
- Apply this model to different transportation such as truck, airplane, train, and so on
- Focus on a specific company? (Amazon, Ebay, etc)

