Mapping of vibrations in graphene nanostructures Momentum-Resolved Electron Energy-Loss Spectroscopy

Jeroen Sangers

AP3252 - Electron Microscopy - TU Delft

June 2022

Content

- ► Goal of the paper
- ► Microscope modifications
- Sample
- ► Results

Goal of the paper

Shows:

- ▶ different bands → different modes
- ▶ dispersion, set energy-momentum relation
- crystallographic direction

Microscope set-up, Monochromator

Microscope set-up, Spectrometer

Entrance aperture of $q = 0.2\text{\AA}^{-1}$ for beam size of 10nm

Momentum-Resolved EELS

MR Electron energy-loss Spectroscopy

Scattering:

- Dissimilarity in mass
 - ightarrow elastic scattering
- Similar mass
 - ightarrow inelastic scattering

EELS use cases:

- sample thickness measurement
- 2. electron properties
- 3. elemental analysis

Graphene

a Raj, Anant & Eapen, Jacob. (2019). Phonon dispersion using the ratio of zero-time correlations among conjugate variables: Computing full phonon dispersion surface of graphene. Computer Physics Communications. 238. 10.1016/j.cpc.2018.12.008.

Sample preparation

Graphene easy sample

- 1. Mechanically exfoliated from bulk graphite
- 2. Transferred onto TEM grids
- 3. Baked at 500°C for 12 h in the transmission electron microscope
 - \rightarrow remove contaminants

Setup / Results

Results

- 1. many EELS spectra recorded per q
 - d. ordered side-by-side
 - peaks in spectra were tracked across q

appendix

