Exercise - 4: DS203-2023-Sem2

Submissions due by: Feb 19, 2024, 11:55pm

This exercise is aimed at:

- Getting introduced to and running various **Classification** algorithms on a given data set and understanding their relative characteristics, performance, and advantages.
- Calculating, effectively documenting, and understanding various Classification metrics and developing an approach towards effectively using them.
- Creating and consolidating multiple plots with the aim to compare and contrast the results of the algorithms
- Get introduced to the relevant functions of the Python library: sklearn
- Using LLM tools like ChatGPT to generate code

In this Exercise you will be processing datasets:

- Clusters-4-v0.csv
- Clusters-4-v1.csv
- Clusters-4-v2.csv

Processing steps:

- 1. Divide the data set into 'train' and 'test' datasets, once, and use them for all subsequent processing.
- 2. Review the data using appropriate plots and understand the overall structure of the data.
- 3. Use the following algorithms / variants to process the datasets:
 - a. Logistic Regression
 - b. SVC with 'linear' kernel (what is 'linear'?)
 - c. SVC with 'rbf' kernel (what is 'rbf'?)
 - d. Random Forest Classifier with min_samples_leaf=1
 - e. Random Forest Classifier with min_samples_leaf=3
 - f. Random Forest Classifier with min_samples_leaf=5
 - g. Neural Network Classifier with hidden_layer_sizes=(5)
 - h. Neural Network Classifier with hidden layer sizes=(5,5)
 - i. Neural Network Classifier with hidden_layer_sizes=(5,5,5)
 - j. Neural Network Classifier with hidden_layer_sizes=(10)
- 4. Generate, capture, and save into a csv file, the following metrics in (for train and test data, for all the algorithms): For example, see the following image:
 - Accuracy, Precision (per class), Precision (average), Recall (per class), Recall (average), F1-score (per class), F1-score (average), AUC (per class), AUC (average).
 - (Hint: The following functions may be used: accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve)

algorithm_name	train_or_test_data	accuracy	precision_1	precision_2	precision_3	precision_4	precision_avg	recall_1	recall_2	recall_3	recall_4	recall_avg	F1_1	F1_2	F1_3	F1_4	F1_avg	AUC_1	AUC_2	AUC_3	AUC_4	AUC_avg
Logistic Regression	train	0.9514	0.9521	0.9470	0.9373	0.9690	0.9513	0.9521	0.9404	0.9406	0.9723	0.9513	0.9521	0.9437	0.9389	0.9706	0.9513	0.9960	0.9955	0.9923	0.9972	0.995
Logistic Regression	test	0.9549	0.9710	0.9722	0.9333	0.9444	0.9553	0.9853	0.9333	0.9459	0.9577	0.9556	0.9781	0.9524	0.9396	0.9510	0.9553	0.9996	0.9976	0.9978	0.9984	0.998
SVC Classifier 1	train	0.9540	0.9556	0.9505	0.9406	0.9690	0.9539	0.9589	0.9439	0.9406	0.9723	0.9539	0.9573	0.9472	0.9406	0.9706	0.9539	0.9956	0.9954	0.9924	0.9973	0.9952
SVC Classifier 1	test	0.9549	0.9710	0.9722	0.9333	0.9444	0.9553	0.9853	0.9333	0.9459	0.9577	0.9556	0.9781	0.9524	0.9396	0.9510	0.9553	0.9995	0.9976	0.9974	0.9983	0.998
SVC Classifier 2	train	0.9497	0.9583	0.9443	0.9247	0.9719	0.9498	0.9452	0.9509	0.9441	0.9585	0.9497	0.9517	0.9476	0.9343	0.9652	0.9497	0.9967	0.9955	0.9920	0.9970	0.995
SVC Classifier 2	test	0.9583	0.9571	0.9595	0.9351	0.9851	0.9592	0.9853	0.9467	0.9730	0.9296	0.9586	0.9710	0.9530	0.9536	0.9565	0.9585	0.9995	0.9969	0.9975	0.9982	0.9981
Random Forest Classifier 1	train	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Random Forest Classifier 1	test	0.9410	0.9054	0.9571	0.9583	0.9444	0.9413	0.9853	0.8933	0.9324	0.9577	0.9422	0.9437	0.9241	0.9452	0.9510	0.9410	0.9989	0.9903	0.9939	0.9982	0.9953
Random Forest Classifier 2	train	0.9627	0.9723	0.9514	0.9512	0.9757	0.9627	0.9623	0.9614	0.9545	0.9723	0.9626	0.9673	0.9564	0.9529	0.9740	0.9626	0.9993	0.9987	0.9983	0.9996	0.9990
Random Forest Classifier 2	test	0.9479	0.9437	0.9577	0.9467	0.9437	0.9479	0.9853	0.9067	0.9595	0.9437	0.9488	0.9640	0.9315	0.9530	0.9437	0.9481	0.9989	0.9926	0.9969	0.9984	0.9967
Random Forest Classifier 3	train	0.9583	0.9655	0.9507	0.9446	0.9723	0.9583	0.9589	0.9474	0.9545	0.9723	0.9583	0.9622	0.9490	0.9496	0.9723	0.9583	0.9988	0.9980	0.9972	0.9991	0.9983
Random Forest Classifier 3	test	0.9583	0.9710	0.9595	0.9467	0.9571	0.9586	0.9853	0.9467	0.9595	0.9437	0.9588	0.9781	0.9530	0.9530	0.9504	0.9586	0.9989	0.9936	0.9972	0.9985	0.9970
Neural Network Classifier 1	train	0.9071	0.9422	0.9485	0.9508	0.8129	0.9136	0.9486	0.9053	0.8112	0.9619	0.9068	0.9454	0.9264	0.8755	0.8811	0.9071	0.9937	0.9915	0.9710	0.9802	0.9841
Neural Network Classifier 1	test	0.9028	0.9577	0.9710	0.9375	0.7738	0.9100	1.0000	0.8933	0.8108	0.9155	0.9049	0.9784	0.9306	0.8696	0.8387	0.9043	0.9999	0.9942	0.9829	0.9736	0.9876
Neural Network Classifier 2	train	0.9219	0.9507	0.8856	0.9598	0.9010	0.9243	0.9247	0.9509	0.8357	0.9758	0.9217	0.9375	0.9171	0.8935	0.9369	0.9212	0.9878	0.9833	0.9693	0.9896	0.9825
Neural Network Classifier 2	test	0.9236	0.9714	0.9452	0.9538	0.8375	0.9270	1.0000	0.9200	0.8378	0.9437	0.9254	0.9855	0.9324	0.8921	0.8874	0.9244	1.0000	0.9965	0.9873	0.9833	0.991
Neural Network Classifier 3	train	0.9453	0.9589	0.9462	0.9301	0.9458	0.9452	0.9589	0.9263	0.9301	0.9654	0.9452	0.9589	0.9362	0.9301	0.9555	0.9452	0.9932	0.9916	0.9886	0.9962	0.992
Neural Network Classifier 3	test	0.9514	0.9706	0.9722	0.9221	0.9437	0.9521	0.9706	0.9333	0.9595	0.9437	0.9518	0.9706	0.9524	0.9404	0.9437	0.9518	0.9994	0.9971	0.9970	0.9969	0.9976

5. Generate plots like the ones below - to understand the classification boundaries and the overall performance of the classifiers:

- 6. As in the case of E3, compare the metrics within and across the datasets (train and test) and algorithms. In addition to the variations in metrics, include in your report aspects related to classification boundaries, overfitting, etc.
- 7. List your major learnings from this exercise.
- 8. Your submissions should be as follows:
 - a. A PDF document with all the above analyses and comments. Ensure that you include the required figures and Tables (ie. metrics data) in your report, along with the explanations and analysis.
 - b. A functional Python source file (.py file) as part of your submission. Please DO NOT upload Jupyter Notebooks they get bulky!
 - c. Name of the PDF should be **E4-your-roll-number.pdf** and the name of the Python source file should be **E4-your-roll-number.py**
 - d. Upload the PDF and the source file to the assignment submission point E4.

00000000