Математический анализ, ИУ9, 1-й семестр Теоретические вопросы из билетов экзамена

- 1. Сформулировать свойство полноты и геометрическую интерпретацию вещественных чисел. Дать определение точной верхней и нижней грани числового множества. Доказать теоремы о точной грани и о вложенных отрезках. (6 баллов)
- 2. Дать определение мощности множества, счетного множества и мощности континуум. Доказать теоремы о мощности множества всех рациональных чисел и множества действительных чисел отрезка [0, 1]. Дать определение сравнения мощностей множеств. Сформулировать теорему Кантора Бернштейна и теорему о сравнении мощности множества и мощности множества всех его подмножеств. Сформулировать следствие из последней теоремы.

 (6 баллов)
- 3. Дать определения числовой последовательности и ее предела. Доказать теорему о сходимости ограниченной монотонной последовательности. Привести пример ее применения. Дать определение частичного предела последовательности. Сформулировать отличие этого понятия от понятия предела последовательности. Сформулировать теорему Больцано Вейерштрасса. Дать определения верхнего и нижнего пределов последовательности. Сформулировать теорему о их существовании для ограниченной последовательности.

 (6 баллов)
- 4. Сформулировать критерий Коши сходимости последовательности. Привести пример его применения. (1 балл)
- 5. Дать определение открытого покрытия подмножеств прямой и компакта на прямой. Сформулировать теорему о конечном покрытии. Дать определение предельной точки подмножества прямой. Доказать теорему о предельной точке. (6 баллов)
- 6. Дать определения внутренних и предельных точек множества, внутренности и замыкании числового множества. Сформулировать теоремы о внутренности открытых множеств и о замыкании замкнутых множеств. (1 балл)
- 7. Сформулировать определение по Коши конечного предела функции в точке. Привести примеры. (1 балл)
- 8. Доказать теоремы о единственности предела функции в точке и о сохранении знака. $(6\ баллов)$
- 9. Доказать теоремы о предельном переходе в неравенстве и о пределе промежуточной функции. (6 баллов)
- 10. Сформулировать критерий Коши существования предела функции в точке. Дать определение предела функции в точке по Гейне. Доказать теорему об эквивалентности понятий предела по Коши и по Гейне. (6 баллов)
- 11. Доказать теоремы о локальной ограниченности функции, имеющей предел, и о связи односторонних и двустороннего пределов. (6 баллов)
- 12. Дать определения базы и предела функции по базе. Сформулировать наиболее употребительные базы. (1 балл)
- 13. Доказать теорему о пределе сложной функции. Сформулировать следствия из нее. Привести примеры ее применения. (6 баллов)
- 14. Дать определения бесконечно малых функций и бесконечно больших функций. (1 балл)
- 15. Доказать теоремы о связи функции, ее предела и бесконечно малой и о связи бесконечно больших с бесконечно малыми. (6 баллов)

- 16. Сформулировать теорему о о пределе промежуточной функции. Вывести первый замечательный предел и его следствия. (6 баллов)
- 17. Сформулировать теорему о пределе сложной функции. Вывести второй замечательный предел и его следствия. (6 баллов)
- 18. Сформулировать определение непрерывности функции в точке. (1 балл)
- 19. Сформулировать определение точки разрыва функции и типов разрыва (классификацию точек разрыва). (1 балл)
- 20. Сформулировать теорему о переходе к пределу под знаком непрерывной функции. (1 балл)
- 21. Сформулировать определения непрерывности функции в точке и на множестве. (1 балл)
- 22. Доказать теоремы о непрерывности сложной функции и о непрерывности арифметических операций. Доказать непрерывность многочлена. (6 баллов)
- 23. Дать определение элементарных функций и сформулировать теорему о их непрерывности. (1 балл)
- 24. Сформулировать определение и свойства функций, непрерывных на отрезке. (1 балл)
- 25. Сформулировать определения непрерывности функции на множестве. Доказать теоремы о нуле непрерывной на отрезке функции и о промежуточном значении. (6 баллов)
- 26. Доказать теоремы Вейерштрасса об ограниченности функции и о достижимости наибольшего и наименьшего значений функции, непрерывной на отрезке. (6 баллов)
- 27. Доказать теорему о точках разрыва монотонной функции и критерий непрерывности монотонной функции. (6 баллов)
- 28. Дать определения монотонных и строго монотонных функций. (1 балл)
- 29. Доказать теорему о существовании и непрерывности обратной функции. (6 баллов)
- 30. Дать определение равномерной непрерывности. Привести примеры. (1 балл)
- 31. Доказать теорему о равномерной непрерывности функции, непрерывной на компакте. (6 баллов)
- 32. Дать определение понятий, используемых для сравнения функций. Сформулировать свойства O и o. Привести таблицу эквивалентных бесконечно малых. (1 балл)
- 33. Сформулировать критерий эквивалентности функций и теорему о замене эквивалентных при вычислении пределов. (1 балл)
- 34. Дать определение производной функции. Сформулировать ее механический и геометрический смысл. (1 балл)
- 35. Дать определения касательной и нормали к графику функции. Вывести их уравнения. (1 балл)
- 36. Дать определения односторонних и бесконечных производных. Сформулировать их геометрический смысл. (1 балл)
- 37. Дать определения точки заострения и угловой точки графика функции. (1 балл)
- 38. Доказать необходимое и достаточное условие дифференцируемости функции в точке. Вывести формулу для производной произведения и частного от деления двух функций. (6 баллов)

- 39. Сформулировать определения дифференцируемости функции в точке и дифференциала. Сформулировать геометрический смысл дифференциала. (1 балл)
- 40. Сформулировать определения непрерывности и дифференцируемости функции в точке. (1 балл)
- 41. Доказать теорему о связи дифференцируемости и непрерывности функции. Доказать инвариантность формы записи дифференциала первого порядка. Сформулировать геометрическую интерпретацию этого утверждения. (6 баллов)
- 42. Сформулировать определения производных и дифференциалов высших порядков. (1 балл)
- 43. Доказать теоремы о производных сложных и обратных функций. (6 баллов)
- 44. Доказать теоремы о производных обратных и параметрически заданных функций. (6 баллов)
- 45. Сформулировать теорему о неинвариантности формы записи дифференциала второго порядка. (1 балл)
- 46. Доказать теоремы Ферма и Ролля. Сформулировать их геометрический смысл. (*6 баллов*)
- 47. Сформулировать теорему Лагранжа и ее геометрический смысл. Вывести критерий постоянства функции. (1 балл)
- 48. Доказать теорему Лагранжа. Сформулировать ее геометрический смысл. Доказать теорему Коши. (6 баллов)
- 49. Доказать теорему Бернулли Лопиталя для предела отношения двух бесконечно малых функций. (6 баллов)
- 50. Сформулировать теорему Бернулли Лопиталя для предела отношения двух бесконечно больших функций. Доказать теорему о сравнение на бесконечности роста показательной, степенной и логарифмической функций. (6 баллов)
- 51. Вывести формулу Тейлора с остаточным членом в форме Пеано. Сформулировать теорему Тейлора с остаточным членом в форме Лагранжа. (6 баллов)
- 52. Вывести формулу Тейлора с остаточным членом в общей форме. (6 баллов)
- 53. Сформулировать теорему о разложении элементарных функций по формуле Маклорена. Вывести формулу Маклорена и получить оценку остаточного члена для функции $y = \sin x$. (6 баллов)
- 54. Сформулировать определение асимптоты графика функции. (1 балл)
- 55. Доказать необходимые и достаточные условия существования вертикальных и наклонных асимптот. Доказать достаточное условие возрастания (убывания) дифференцируемой функции. Сформулировать геометрический смысл этого условия. (6 баллов)
- 56. Дать определение точки локального экстремума и строгого локального экстремума функции. (1 балл)
- 57. Доказать необходимое и первое достаточное условия экстремума дифференцируемой функции. (6 баллов)
- 58. Доказать второе и третье достаточные условия экстремума функции. (6 баллов)
- 59. Дать определение выпуклых и вогнутых функций. Сформулировать геометрическую интерпретацию этого определения. (1 балл)

- 60. Сформулировать различные условия выпуклости функции и их геометрический смысл. Доказать достаточное условие строгой выпуклости графика дважды дифференцируемой функции.

 (6 баллов)
- 61. Дать определение точки перегиба графика функции. Сформулировать теорему о поведении графика функции в окрестности точки перегиба. (1 балл)
- 62. Доказать необходимое и достаточное условия существования точки перегиба графика функции. (6 баллов)

Задачи для подготовки к экзамену

При подготовке к экзамену рекомендуется прорешать следующие задачи.

1. Вычислить предел:

1)
$$\lim_{x \to \infty} \left(\frac{\cos x}{2x} + \frac{5x}{3x+7} \right)$$
2)
$$\lim_{x \to \infty} \left(\frac{x^3}{2x^2 - 1} - \frac{x^2}{2x+1} \right)$$
3)
$$\lim_{x \to 0} \frac{\sqrt{2+x} - \sqrt{2-x}}{\sqrt[3]{2+x} - \sqrt[3]{2-x}}$$
4)
$$\lim_{x \to 1} \frac{\sqrt{x} + \sqrt{x-1} - 1}{\sqrt{x^2 - 1}}$$
5)
$$\lim_{x \to \alpha} \operatorname{tg} \frac{\pi x}{2\alpha} \sin \frac{x - \alpha}{2}$$
6)
$$\lim_{x \to 0} \frac{\sin 2x - \operatorname{tg} 2x}{x^3}$$
7)
$$\lim_{x \to \frac{\pi}{2}} \left(\sin x \right)^{\frac{1}{\cos x}}$$
8)
$$\lim_{x \to 0} \frac{1}{x} \ln \sqrt{\frac{1+x}{1-x}}$$
9)
$$\lim_{x \to +\infty} (2x-7) \left(\ln(3x+5) - \ln(3x-1) \right)$$
10)
$$\lim_{x \to 0} \left(\frac{2}{\pi} \arccos x \right)^{\frac{1}{e^{3x}-1}}$$
11)
$$\lim_{x \to +\infty} \frac{\ln^{2020} x}{x^{2020}}$$
12)
$$\lim_{x \to \infty} \frac{7x^7 + 4x^4 + 1}{(x-2)^3(4x+5)^2(3x-1)^2}$$
13)
$$\lim_{x \to 0} \frac{\operatorname{tg}(4x^4 + x^2) + e^{x^2} - \cos 2x}{\ln(1+2x^2)}$$
14)
$$\lim_{x \to \infty} \frac{3x + 7x^2 + \cos 5x + \operatorname{arctg} x^5 + e^{-x^2}}{\sqrt{x^4 + 8x^3}}$$

2. Выделить главную часть бесконечно малой или бесконечно большой функции:

1)
$$f(x) = \sin(\sqrt{x+2} - \sqrt{2})$$
 при $x \to 0$ 2) $f(x) = \operatorname{tg} x - \sin x$ при $x \to 0$ 3) $f(x) = \sqrt{\operatorname{Ig} x}$ при $x \to 1$ 4) $f(x) = (2x+1) \operatorname{arctg} \frac{1}{\sqrt{x+3}}$ при $x \to \infty$

- **3.** Определить порядок малости $\alpha(x) = \sqrt[3]{1 + \sqrt[3]{x}} 1$ относительно $\beta(x) = x$ при $x \to 0$.
- 4. Найти точки разрыва функции, исследовать их характер:

1)
$$f(x) = 2^{\frac{x}{9-x^2}}$$
 2) $f(x) = \frac{5^{1/x} - 1}{5^{1/x} + 1}$ 3) $f(x) = (2+x) \cdot \arctan \frac{x}{(2-x)(1-x^2)}$
4) $f(x) = \begin{cases} \cos \frac{1}{x}, & x < 0; \\ \arctan \frac{\pi}{\pi - x}, & x \geqslant 0. \end{cases}$ 5) $f(x) = \begin{cases} \frac{\sqrt{x^2 + x^3}}{x}, & x < 1; \\ 2^{1/x}, & 1 \leqslant x < 2; \\ \sqrt{2}, & x \geqslant 2. \end{cases}$

5. Найти y'', если функция y=f(x) задана

1) неявно:
$$\arctan \frac{y}{x} = \ln \sqrt{x^2 + y^2}$$
 2) параметрически: $\begin{cases} x = \sec t, \\ y = \operatorname{tg} t, \end{cases}$ $t \in \left(0; \frac{\pi}{2}\right)$

- **6.** Составить уравнение касательной к линии $y = x^2 + 4x$, которая параллельна прямой y 2x = 0.
- 7. Найти точки, в которых нормаль к кривой $x^2 2x + y^2 = 0$ параллельна оси OY.

8. Вычислить пределы с помощью правила Лопиталя — Бернулли:

1)
$$\lim_{x \to 0} \frac{x - \sin x}{x - \log x}$$

2)
$$\lim_{x \to +\infty} (x+2^x)^{1/x}$$

1)
$$\lim_{x \to 0} \frac{x - \sin x}{x - \lg x}$$
 2) $\lim_{x \to +\infty} (x + 2^x)^{1/x}$ 3) $\lim_{x \to 0} \left(\frac{1}{x^2} - \operatorname{ctg}^2 x\right)$

9. Используя разложения функций по формуле Маклорена, вычислить предел:

1)
$$\lim_{x \to 0} \frac{1 - \sqrt{1 + x^2} \cdot \cos x}{\operatorname{tg}^4 x}$$
 2) $\lim_{x \to 0} \frac{\sin(x^2) - 4e^{-x^2/2} + 4}{x^3(e^x - 1)}$ 3) $\lim_{x \to 0} \frac{\sin x - \operatorname{tg} x}{(3^x - 1)^3}$

2)
$$\lim_{x\to 0} \frac{\sin(x^2) - 4e^{-x^2/2} + x^3(e^x - 1)}{x^3(e^x - 1)}$$

3)
$$\lim_{x\to 0} \frac{\sin x - \tan x}{(3^x - 1)^3}$$

10. Функцию f(x) разложить по целым степеням x, ограничиваясь членами до пятого порядка малости относительно x:

1)
$$f(x) = e^{x^2 - 1}$$

$$2) \ f(x) = \sin\left(x + \frac{\pi}{3}\right)$$

1)
$$f(x) = e^{x^2 - 1}$$
 2) $f(x) = \sin\left(x + \frac{\pi}{3}\right)$ 3) $f(x) = \frac{1}{1 + x^2} - \frac{2x}{1 - x}$

4)
$$f(x) = \ln \frac{3+x}{1-x^2}$$

$$5) \ f(x) = x\sqrt[3]{8 - x^2}$$

4)
$$f(x) = \ln \frac{3+x}{1-x^2}$$
 5) $f(x) = x\sqrt[3]{8-x^2}$ 6) $f(x) = x\sqrt{1-x^2} - \cos x \cdot \ln(1+x)$

- **11.** Разложить многочлен $P(x) = x^4 3x^3 + x^2 + 2x + 4$ по степеням x 2.
- **12.** Найти асимптоты графика функции $y = \sqrt[3]{12x 4x^3}$ и интервалы монотонности.
- 13. Найти интервалы выпуклости графика функции $y = x \arctan 5x$ и точки перегиба.
- **14.** Построить график функции $y = \frac{x}{x^2 4}$, определить асимптоты, точки эктремума, интервалы возрастания и убывания, направление выпуклости графика функции и точки перегиба.

Образец билета

Государственное образовательное учреждение высшего профессионального образования "Московский Государственный технический университет им. Н.Э. Баумана"

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ

по курсу Математического анализа, 1-й курс, 1-й сем., ИУ-9 (лектор Четвериков В.Н.)

- 1. (6 баллов). Дать определение мощности множества, счетного множества и мощности континуум. Доказать теоремы о мощности множества всех рациональных чисел и множества действительных чисел отрезка [0, 1]. Дать определение сравнения мощностей множеств. Сформулировать теорему Кантора — Бернштейна и теорему о сравнении мощности множества и мощности множества всех его подмножеств. Сформулировать следствие из последней теоремы.
- (6 баллов). Дать определения сравнения функций. Сформулировать критерий эквивалентности функций и теорему о замене эквивалентных при вычислении пределов. Определить порядок малости $\alpha(x) = \sqrt[3]{1 + \sqrt[3]{x} - 1}$ относительно $\beta(x) = x$ при $x \to 0$.
- 3. (6 баллов). Сформулировать определение непрерывности функции в точке и точки разрыва функции. $_{x}$ Дать классификацию точек разрыва функций. Найти точки разрыва функции $f(x) = 2^{\frac{x}{9-x^2}}$, исследовать их характер.
- 4. (6 баллов). Дать определение производной функции. Сформулировать ее механический и геометрический смысл. Найти точки, в которых нормаль к кривой $x^2 - 2x + y^2 = 0$ параллельна оси OY.
- Используя разложения функций по формуле Маклорена, вычислить предел: $\lim \frac{\sin \overline{x} - \operatorname{tg} \overline{x}}{\sqrt{2}}$

Билеты утверждены на заседании кафедры ФН-12 <u>03.12.2020</u>