Du macroscopique au microscopique dans les synthèses organiques

Agrégation 2020

Estérification étudiée du point de vue macroscopique

Montage à reflux pendant 45 minutes

Estérification étudiée du point de vue macroscopique

Traitements du brut réactionnel

1) Récupération et lavage de la phase organique

- 2) Lavage de la phase organique (NaHCO₃) dans un erlenmeyer
- 3) Récupération de la phase organique
- 4) Séchage (sulfate de sodium anhydre)
- 5) Filtrer par gravité
- 5) Evaporation du cyclohexane

Caractérisation du composé synthétisé

Equation de la réaciton (= échelle macroscopique)

Composé avec odeur de banane

Synthèse de l'indigo :

Poudre blanche

Indigo obtenu après filtration et séchage

Synthèse du benzène (valorisation du pétrôle par reformage) :

 $\theta = 500$ °C p = 15 à 30 bars catalyseur : platine (Pt)

Raffinage du pétrôle

Modification de la chaine carbonée

André DURUPTHY, Thierry DULAURANS et al. Physique Chimie, Terminale S enseignement spécifique. Hachette Education, 2012

Modification de la chaine carbonée

André DURUPTHY, Thierry DULAURANS et al. Physique Chimie, Terminale S enseignement spécifique. Hachette Education, 2012

Obtention d'un polyamide : le nylon 6-6

Solution 1 : chlorure de sébacoyle et cyclohexane

Solution 2 : hexan-1,6-diamine ; hydroxyde de sodium ; eau et phénolphtaléine (couleur rose)

Allongement de chaine par polymérisation

Polyéthylène

$$n H_2C \longrightarrow CH_2 \longrightarrow \begin{bmatrix} CH_2 - CH_2 - \end{bmatrix}$$

chlorure de l'acide décandioï que

Nylon

Oxydation du menthol en menthone

Solide blanc

Liquide incolore

Oxydation du menthol en menthone au laboratoire

magnétique

Oxydation du menthol en menthone au laboratoire

<u>Test au KI</u>: HClO + H⁺ + 2l⁻ → $Cl^- + l_2 + H2O$

Couleur Brune

=

Test Positif (HCIO en excès)

On détruit cet excès par **ajout de sulfite de de sodium** à température ambiante.

$$HCIO + HSO_3^- \rightarrow Cl^- + SO_3^{2-} + H^+$$

Étapes de lavage

- Ajout de 20mL d'eau glacée dans le ballon où a eu lieu la réaction
- Introduction du mélange dans une ampoule de coulée
- Elimination de la phase aqueuse
- Lavage de la phase aqueuse avec 10mL de soude à 1 mol.L⁻¹ puis avec 10mL d'eau

Identification du produit synthétisé

Lien vidéo: https://www.youtube.com/watch?v=yo1ygeTUbO8

Catégories de réactions

• Substitution:

atome ou groupe d'atomes *remplacé* par un autre atome ou groupe d'atomes.

• Addition :

atomes ou groupes d'atomes ajoutés aux atomes d'une liaison multiple.

• Élimination :

atome ou groupe d'atomes portés par des atomes adjacents éliminés pour former une liaison multiple.

Sites donneurs ou accepteurs

- Site donneur de doublets d'électrons :
 - atome porteur d'une charge négative (éventuellement partielle)
 - atome porteur de doublet non liant
 - Liaisons multiples

- Site accepteur de doublets d'électrons :
 - atome porteur d'une charge positive (éventuellement partielle)

Du microscopique au macroscopique

Equation de la réaciton (= échelle macroscopique)

Equation de la réaction (= échelle macroscopique)

Mécanisme de la réaction (= échelle microscopique)

La chimie expérimentale. Chimie Organique et Minérale, Lemaréchal, Dunod

Mécanisme de synthèse du nylon

