Section 2.2 – Function Operations

The **Domain** of a Function

1. Rational function: $\frac{f(x)}{h(x)}$ \Rightarrow Domain: $h(x) \neq 0$

Example: $f(x) = \frac{1}{x-3}$

Domain: $x \neq 3$ $\{x \mid x \neq 3\}$

Or $(-\infty,3) \cup (3,\infty)$ *Interval Notation*

Or $\mathbb{R}-\{3\}$

2. Irrational function: $\sqrt{g(x)}$ \Rightarrow Domain: $g(x) \ge 0$

Example: $g(x) = \sqrt{3-x} + 5$

 $3 - x \ge 0$ $- x \ge -3$

Domain: $\underline{x < 3}$ \quad $(-\infty, 3]$

3. *Otherwise*: Domain all real numbers $(-\infty, \infty)$

Example: $f(x) = x^3 + |x|$

Domain: All real numbers $(-\infty, \infty)$

(1) & (2) \rightarrow Find the domain: $f(x) = \frac{x+1}{\sqrt{x-3}}$

x > 3

Domain: $(3, \infty)$

Example

Find the domain

a) $f(x) = x^2 + 3x - 17$

Domain: R

 $b) \quad g(x) = \frac{5x}{x^2 - 49}$

$$x^2 \neq 49$$

$$x \neq \pm 7$$

- **Domain:** $\begin{cases} \{x \mid x \neq \pm 7\} & \text{or} \\ (-\infty, -7) \cup (-7, 7) \cup (7, \infty) \end{cases}$
- $c) \quad h(x) = \sqrt{9x 27}$

$$9x - 27 \ge 0$$

$$9x \ge 27$$

Domain: $\underline{x \ge 3}$ $[3, \infty)$

The Algebra of Functions

$$(f+g)(x) = f(x) + g(x)$$
$$(f-g)(x) = f(x) - g(x)$$
$$(f \cdot g)(x) = f(x) \cdot g(x)$$
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Example

Let $f(x) = x^2 + 1$ and g(x) = 3x + 5. Find each of the following (f + g)(1), (f - g)(-3), (fg)(5), and $(\frac{f}{g})(0)$

Solution

$$(f+g)(1) = f(1) + g(1)$$

= $1^2 + 1 + 3(1) + 5$
= $1 + 1 + 3 + 5$
= 10

$$(f-g)(-3) = f(-3) - g(-3)$$

= $(-3)^2 + 1 - (3(-3) + 5)$
= 14

$$(fg)(5) = f(5) \cdot g(5)$$
$$= (5^2 + 1) \cdot (3(5) + 5)$$
$$= (26) \cdot (20)$$
$$= 520$$

$$\left(\frac{f}{g}\right)(0) = \frac{f(0)}{g(0)}$$
$$= \frac{0^2 + 1}{3(0) + 5}$$
$$= \frac{1}{5}$$

Example

Let f(x) = 8x - 9 and $g(x) = \sqrt{2x - 1}$. Find each of the following and give the domain

$$(f+g)(x), (f-g)(x), (fg)(x), (\frac{f}{g})(x)$$

Solution

Domain of f: $(-\infty, \infty)$

Domain of g: $\left[\frac{1}{2},\infty\right)$

$$\sqrt{2x-1 \ge 0} \rightarrow 2x \ge 1 \implies x \ge \frac{1}{2}$$

a) $(f+g)(x)=8x-9+\sqrt{2x-1}$

Domain: $x \ge \frac{1}{2}$ $\left[\frac{1}{2}, \infty\right)$

b) $(f-g)(x) = 8x-9-\sqrt{2x-1}$

Domain: $x \ge \frac{1}{2}$ $\left[\frac{1}{2}, \infty\right)$

c) $(fg)(x) = (8x-9)\sqrt{2x-1}$

Domain: $x \ge \frac{1}{2}$ $\left[\frac{1}{2}, \infty\right)$

d) $\left(\frac{f}{g}\right)(x) = \frac{8x-9}{\sqrt{2x-1}}$

Domain: $x > \frac{1}{2}$ $\left(\frac{1}{2}, \infty\right)$

Example

Let $f(x) = \sqrt{x-3}$ and $g(x) = \sqrt{x+1}$

Find (f+g)(x) and its domain, $\left(\frac{f}{g}\right)(x)$ and its domain

Solution

Domain f(x): $x \ge 3$ and **Domain** g(x): $x \ge -1$

a) $(f+g)(x) = \sqrt{x-3} + \sqrt{x+1}$

b) $x \ge 3$ and $x \ge -1 \Rightarrow \textbf{Domain}: x \ge 3$

c) $\left(\frac{f}{g}\right)(x) = \frac{\sqrt{x-3}}{\sqrt{x+1}}$

$$\rightarrow \begin{cases} x - 3 \ge 0 \implies \underline{x \ge 3} \\ x + 1 > 0 \implies \underline{x > -1} \end{cases}$$

Domain: $x \ge 3$ $[3, \infty)$

Difference Quotients

$$\frac{f(x+h)-f(x)}{(x+h)-x}$$

The difference quotient is given by: $\frac{f(x+h)-f(x)}{h}$

Example

For the function f given by f(x) = 2x - 3, find the difference quotient $\frac{f(x+h) - f(x)}{h}$

Solution

$$f(x+h) = 2(--) - 3$$

$$= 2(x+h) - 3$$

$$= 2x + 2h - 3$$

$$\frac{f(x+h) - f(x)}{h} = \frac{2x + 2h - 3 - (2x - 3)}{h}$$

$$= \frac{2x + 2h - 3 - 2x + 3}{h}$$

$$= \frac{2h}{h}$$

$$= 2|$$

Example

For the function f given by $f(x) = -2x^2 + x + 5$, find the difference quotient $\frac{f(x+h) - f(x)}{h}$

Solution

$$f(x+h) = -2(--)^{2} + (--) + 5$$

$$f(x+h) = -2(x+h)^{2} + (x+h) + 5 \qquad (a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$f(x+h) = -2\left(x^{2} + 2hx + h^{2}\right) + x + h + 5$$

$$f(x+h) = -2x^{2} - 4hx - 2h^{2} + x + h + 5$$

$$\frac{f(x+h) - f(x)}{h} = \frac{-2x^{2} - 4hx - 2h^{2} + x + h + 5 - (-2x^{2} + x + 5)}{h}$$

$$= \frac{-2x^{2} - 4hx - 2h^{2} + x + h + 5 + 2x^{2} - x - 5}{h}$$

$$= \frac{-4hx - 2h^{2} + h}{h}$$

$$= \frac{-4hx - 2h^{2} + h}{h}$$

$$= -4x - 2h + 1$$

Example

Tracy and Graham drive away from a camp-ground at right angles to each other. Tracy's speed is 65 mph and Graham's is 55 *mph*.

- a) Express the distance between the cars as a function of time.
- b) Find the domain of the function.

Solution

a) Distance = velocity * time

Use Pythagorean Theorem:

$$d^{2}(t) = (65t)^{2} + (55t)^{2}$$

$$d^{2} = 4225t^{2} + 3025t^{2}$$

$$= 7250t^{2}$$

$$d(t) = \sqrt{7250t^{2}}$$

$$= \sqrt{7250}\sqrt{t^{2}}$$

$$\approx 85.15|t|$$

$$= 85.15 t$$

b) **Domain**: $t \ge 0$

Example: (storage area)

The sound Shop has 20 *feet*. of dividers with which to set off a rectangular area for the storage of overstock. If a corner of the store is used for the storage area, the partition need only form two sides of a rectangle.

- a) Express the floor area of the storage space as a function of the length of the partition.
- b) Find the domain of the function.

Solution

Let
$$x =$$
 the length

$$width + length = 20$$

$$width = 20 - length$$

$$a) Area = length * width$$

$$= x(20 - x)$$

$$= 20x - x^2$$

b) Domain: x value varies from 0 to $20 \Rightarrow (0, 20)$

Exercises Section 2.2 – Function Operations

(1-80) Find the Domain

1.
$$f(x) = 7x + 4$$

2.
$$f(x) = |3x-2|$$

3.
$$f(x) = 3x + \pi$$

4.
$$f(x) = \sqrt{7}x + \frac{1}{2}$$

5.
$$f(x) = -2x^2 + 3x - 5$$

6.
$$f(x) = x^3 - 2x^2 + x - 3$$

7.
$$f(x) = x^2 - 2x - 15$$

8.
$$f(x) = 4 - \frac{2}{x}$$

9.
$$f(x) = \frac{1}{x^4}$$

10.
$$g(x) = \frac{3}{x-4}$$

11.
$$y = \frac{2}{x-3}$$

12.
$$y = \frac{-7}{x-5}$$

13.
$$f(x) = \frac{x+5}{2-x}$$

14.
$$f(x) = \frac{8}{x+4}$$

15.
$$f(x) = \frac{1}{x+4}$$

16.
$$f(x) = \frac{1}{x-4}$$

17.
$$f(x) = \frac{3x}{x+2}$$

18.
$$f(x) = x - \frac{2}{x-3}$$

19.
$$f(x) = x + \frac{3}{x-5}$$

20.
$$f(x) = \frac{1}{2}x - \frac{8}{x+7}$$

21.
$$f(x) = \frac{1}{x-3} - \frac{8}{x+7}$$

22.
$$f(x) = \frac{1}{x+4} - \frac{2x}{x-4}$$

23.
$$f(x) = \frac{3x^2}{x+3} - \frac{4x}{x-2}$$

24.
$$f(x) = \frac{1}{x^2 - 2x + 1}$$

25.
$$f(x) = \frac{x}{x^2 + 3x + 2}$$

26.
$$f(x) = \frac{x^2}{x^2 - 5x + 4}$$

27.
$$f(x) = \frac{1}{x^2 - 4x - 5}$$

28.
$$g(x) = \frac{2}{x^2 + x - 12}$$

29.
$$h(x) = \frac{5}{\frac{4}{x} - 1}$$

30.
$$y = \sqrt{x}$$

31.
$$f(x) = \sqrt{8-3x}$$

32.
$$y = \sqrt{4x+1}$$

33.
$$y = \sqrt{7 - 2x}$$

34.
$$f(x) = \sqrt{8-x}$$

35.
$$f(x) = \sqrt{3-2x}$$

36.
$$f(x) = \sqrt{3+2x}$$

37.
$$f(x) = \sqrt{5-x}$$

38.
$$f(x) = \sqrt{x-5}$$

39.
$$f(x) = \sqrt{6-3x}$$

40.
$$f(x) = \sqrt{3x-6}$$

41.
$$f(x) = \sqrt{2x+7}$$

42.
$$f(x) = \sqrt{x^2 - 16}$$

43.
$$f(x) = \sqrt{16 - x^2}$$

44.
$$f(x) = \sqrt{9 - x^2}$$

45.
$$f(x) = \sqrt{x^2 - 25}$$

46.
$$f(x) = \sqrt{x^2 - 5x + 4}$$

47.
$$f(x) = \sqrt{x^2 + 5x + 4}$$

48.
$$f(x) = \sqrt{x^2 + 3x + 2}$$

49.
$$f(x) = \sqrt{x^2 - 3x + 2}$$

50.
$$f(x) = \sqrt{x-4} + \sqrt{x+1}$$

51.
$$f(x) = \sqrt{3-x} + \sqrt{x-2}$$

52.
$$f(x) = \sqrt{1-x} + \sqrt{4-x}$$

53.
$$f(x) = \sqrt{1-x} - \sqrt{x-3}$$

54.
$$f(x) = \sqrt{x+4} - \sqrt{x-1}$$

$$55. \quad f(x) = \frac{\sqrt{x+1}}{x}$$

56.
$$g(x) = \frac{\sqrt{x-3}}{x-6}$$

57.
$$f(x) = \frac{\sqrt{x+4}}{\sqrt{x-1}}$$

$$58. \quad f(x) = \frac{\sqrt{5-x}}{x}$$

$$59. \quad f(x) = \frac{x}{\sqrt{5-x}}$$

60.
$$f(x) = \frac{1}{x\sqrt{5-x}}$$

67.
$$f(x) = \frac{\sqrt{x-2}}{\sqrt{x+2}}$$

75.
$$f(x) = \frac{4x}{6x^2 + 13x - 5}$$

61.
$$f(x) = \frac{x+1}{x^3 - 4x}$$

68.
$$f(x) = \frac{\sqrt{2-x}}{\sqrt{x+2}}$$

76.
$$f(x) = \frac{\sqrt{2x-3}}{x^2 - 5x + 4}$$

$$62. \quad f(x) = \frac{\sqrt{x+5}}{x}$$

69.
$$f(x) = \frac{x-4}{\sqrt{x-2}}$$

77.
$$f(x) = \frac{x^2}{\sqrt{x^2 - 5x + 4}}$$

$$63. \quad f(x) = \frac{x}{\sqrt{x+5}}$$

70.
$$f(x) = \frac{1}{(x-3)\sqrt{x+3}}$$

78.
$$f(x) = \frac{x+2}{\sqrt{x^2+5x+4}}$$

64.
$$f(x) = \frac{1}{x\sqrt{x+5}}$$

71.
$$f(x) = \sqrt{x+2} + \sqrt{2-x}$$

79.
$$f(x) = \frac{\sqrt{x+2}}{\sqrt{x^2+3x+2}}$$

65.
$$f(x) = \frac{x+3}{\sqrt{x-3}}$$

72.
$$f(x) = \sqrt{(x-2)(x-6)}$$

73. $f(x) = \sqrt{x+3} - \sqrt{4-x}$

80.
$$f(x) = \frac{\sqrt{2x+3}}{x^2-6x+5}$$

66.
$$f(x) = \frac{\sqrt{x+3}}{\sqrt{x-3}}$$

74.
$$f(x) = \frac{\sqrt{4x-3}}{x^2}$$

81. Let f(x) = 4x - 3 and g(x) = 5x + 7. Find each of the following and give the domain

a)
$$(f+g)(x)$$

b)
$$(f-g)(x)$$

c)
$$(fg)(x)$$

- d) $\left(\frac{f}{g}\right)(x)$
- Let $f(x) = 2x^2 + 3$ and g(x) = 3x 4. Find each of the following and give the domain

a)
$$(f+g)(x)$$
 b) $(f-g)(x)$ c) $(fg)(x)$

$$b) \quad (f-g)(x)$$

c)
$$(fg)(x)$$

- d) $\left(\frac{f}{g}\right)(x)$
- 83. Let $f(x) = x^2 2x 3$ and $g(x) = x^2 + 3x 2$. Find each of the following and give the domain

a)
$$(f+g)(x)$$

b)
$$(f-g)(x)$$

c)
$$(fg)(x)$$

- d) $\left(\frac{f}{g}\right)(x)$
- **84.** Let $f(x) = \sqrt{4x-1}$ and $g(x) = \frac{1}{x}$. Find each of the following and give the domain

a)
$$(f+g)(x)$$

b)
$$(f-g)(x)$$

c)
$$(fg)(x)$$

d) $\left(\frac{f}{g}\right)(x)$

- Given that f(x) = x+1 and $g(x) = \sqrt{x+3}$
 - a) Find (f+g)(x)
 - b) Find the domain of (f+g)(x)
 - c) Find: (f+g)(6)

- Given that $f(x) = x^2 4$ and g(x) = x + 2
 - a) Find (f+g)(x) and its domain
 - b) Find (f/g)(x) and its domain
- **87.** Let $f(x) = x^2 + 1$ and g(x) = 3x + 5. Find (f + g)(1), (f g)(-3), (fg)(5), and (fg)(0)
- **88.** Find (f+g)(x), (f-g)(x), $(f \cdot g)(x)$, and (f/g)(x) and the domain of $f(x) = \sqrt{3-2x}, \quad g(x) = \sqrt{x+4}$
- Find (f+g)(x), (f-g)(x), $(f \cdot g)(x)$, and (f/g)(x) and the domain of $f(x) = \frac{2x}{x-4}, \quad g(x) = \frac{x}{x+5}$
- **90.** Find (f+g)(x), (f-g)(x), $(f \cdot g)(x)$, and (f/g)(x) of f(x) = x-5 and $g(x) = x^2-1$
- (88 103) Find and simplify the difference quotient $\frac{f(x+h)-f(x)}{h}$ for the given function

91.
$$f(x) = 9x + 5$$

97.
$$f(x) = 3x - 6$$

102.
$$f(x) = 2x^2 - 3x$$

92.
$$f(x) = 6x + 2$$

98.
$$f(x) = -5x - 7$$

103.
$$f(x) = 2x^2 - x - 3$$

93.
$$f(x) = 4x + 11$$

94. $f(x) = 3x - 5$

94.

99.
$$f(x) = 2x^2$$

104.
$$f(x) = x^2 - 2x + 5$$

95.
$$f(x) = -2x - 3$$

100.
$$f(x) = 5x^2$$

105.
$$f(x) = 3x^2 - 2x + 5$$

96.
$$f(x) = -4x + 3$$

101.
$$f(x) = 3x^2 - 4x$$

106.
$$f(x) = -2x^2 - 3x + 7$$

107. An open box is to be made from a square piece of cardboard that measures 40 *inches* on each side, to construct the box, squares that measure x inches on each side are cut from each corner of the cardboard.

- a) Express the volume V of the box as a function of x.
- b) Determine the domain of V.

108. A child 4 *feet* tall is standing near a street lamp that is 12 *feet* high. The light from the lamp casts a shadow.

- a) Find the length l of the shadow as a function of the distance d of the child from the lamppost.
- b) What is the domain of the function?
- c) What is the length of the shadow when the child is 8 feet from the base of the lamppost?

109. An open box is to be made from a square piece of cardboard with the dimensions 30 *inches* by 30 *inches* by cutting out squares of area x^2 from each corner.

- a) Express the volume V of the box as a function of x.
- b) Determine the domain of V.

110. Two guy wires are attached to utility poles that are 40 *feet* apart.

- a) Find the total length of the two guy wires as a function of x.
- b) What is the domain of this function?
- **111.** A rancher has 360 *yards*. of fencing with which to enclose two adjacent rectangular corrals, one for sheep and one for cattle. A river forms one side of the corrals. Suppose the width of each corral is *x yards*.

- a) Express the total area of the two corrals as a function of x.
- b) Find the domain of the function.
- **112.** A rectangle is bounded by the x- and y-axis of $y = -\frac{1}{2}x + 4$

- a) Find the area of the rectangle as a function of x.
- b) What is the domain of this function.