Algoritmo Genético para o Problema do Trabalho Balanceado

Apresentação do Problema

Dados um conjunto de n tarefas que precisam ser executadas em sequência, um conjunto de m operadores e uma matriz p, onde p_{ij} representa o tempo necessário para o operador j executar a tarefa i, ...

... encontre uma partição das n tarefas em m intervalos $[b_k, e_k]$ e uma permutação dos operadores π de forma que

$$T=max_{j\in[m]}T_{j}$$

é minimizado, sendo que

$$T_j = \sum_{t \in [b_t,e_t]} p_{t\pi_j}$$

... encontre uma atribuição de tarefas a operadores de tal modo que operadores executem tarefas sequenciais e o tempo gasto pelo operador que gasta mais tempo trabalhando é minimizado.

Formulação como Programa Inteiro

Variáveis:

• $x_{ij} \in \{0,1\}, \forall i, j \mid i \in [n] \land j \in [m], \text{ onde}$

$$x_{ij} = \begin{cases} 1, & \text{Caso tarefa i e executada pelo operador j} \\ 0, & \text{Caso contrario} \end{cases}$$

• $w_{ijk} \in \{0, 1\}, \quad \forall i, j, k \mid i, j \in [n] \land k \in [m] \land i \neq j$, onde

$$w_{ijk} = \begin{cases} 1, & \text{Caso } x_{ik} \land x_{jk} \text{ \'e verdade} \\ 0, & \text{Caso contrario} \end{cases}$$

• $y \in \mathbb{R}$, onde

$$y = \max \left(\sum_{i \in [n]} p_{ij} \cdot x_{ij}, \forall j \in [m] \right)$$

Função Objetivo:

Min. y

$$\sum_{j \in [m]} x_{ij} = 1, \quad \forall i \in [n]$$

 $w_{ijk} \le x_{j-1k}, \quad \forall i, j, k \mid i, j \in [n] \land k \in [m] \land i < j$

 $\sum_{i \in [n]} x_{ij} \ge 1, \quad \forall j \in [m]$

 $w_{ijk} \le (x_{ik} + x_{jk})/2, \quad \forall i, j, k \mid i, j \in [n] \land k \in [m] \land i < j$

 $w_{ijk} \ge x_{ik} + x_{jk} - 1$, $\forall i, j, k \mid i, j \in [n] \land k \in [m] \land i < j$

(5)

(1)

(2)

(3)

(4)

 $y \geq \sum_{i \in [n]} p_{ij} \cdot x_{ij}, \quad \forall j \in [m]$

(6)

Restrições:

Algoritmo Genético

- Parâmetros
- Codificação de uma solução
- Seleção da população inicial
- Seleção de indivíduos para crossover
- Crossover
- Mutação
- Seleção da nova população
- Critério de parada

Parâmetros

μ	Tamanho da população inicial
Ž	Número de indivíduos gerados usando crossover
ф	Probabilidade de indivíduo sofrer mutação
ω	Número máximo de gerações que não melhoram o valor objetivo

Codificação de uma solução

Operador	Tarefas
0	4, 5
1	3
2	0, 1
3	2

2 3 1 0 [[0,1],[2],[3],[4,5]]

Seleção da população inicial

• μ permutações e partições são criadas aleatoriamente e depois são associadas, criando assim μ indivíduos

Seleção de indivíduos para crossover

- São realizados λ k-torneios aleatórios
- O melhor entre os vencedores do torneio é selecionado
- O valor de k foi fixado em 3

Crossover

$$(013245) \rightarrow (x132xx) \rightarrow (x13254) \rightarrow (013254)$$

$$(315240) \rightarrow (x152xx) \rightarrow (x15203) \rightarrow (415203)$$

Crossover

$$[[0, 1, 2], [3, 4], [5]]$$
 $[[0, 1], [2], [3, 4, 5]]$

$$U = \{3,5\} \cup \{2, 3\} = \{2, 3, 5\}$$

$$[[0, 1], [2], [3, 4, 5]]$$
 $[[0, 1], [2, 3, 4], [5]]$

Mutação

Seleção da nova população

 Os ň piores indivíduos entre todos os indivíduos (geração atual e nova geração) são eliminados

Critério de parada

- ω gerações consecutivas são criadas e o valor da função objetivo não melhora
- Nenhuma restrição de tempo foi imposta

Resultados Numéricos

- Testes de parâmetros
- Testes de instâncias

Crossover e mutação desligados

Crossover ligado

Impacto do crossover

Instância	Soluções Aleatórias (SA)	Crossover (C)	Desvio de C em relação a SA
tba1	1.39	1.23	11.5%
tba2	1.11	1.04	6.3%
tba3	0.93	0.90	3.2%

Crossover e mutação ligados

Impacto de crossover e mutação

Instância	Soluções Aleatórias (SA)	Crossover (C)	Mutação (M)	Desvio de M em relação a SA	Valor de ϕ
tba1	1.39	1.23	1.17	15.8%	0.3
tba2	1.11	1.04	1.05	5.4%	0.1
tba3	0.93	0.90	0.85	8.6%	0.3

λ - Tamanho da prole

ω - Critério de parada

Algoritmo Genético Calibrado

Instância	Tempo de execução (segundos)	Número de gerações	Valor da Solução Inicial (SI)	Valor da Solução Final (SF)	Desvio da SF em Relação à SI (%)	Desvio da SF em Relação ao BKV (%)
tba1	213.32	1038.80	1.84	1.17	36.41	-108.93
tba2	178.95	1493.00	1.50	1.02	32.00	-96.15
tba3	132.10	1209.40	1.31	0.91	30.53	-89.5
tba4	124.92	1060.80	0.90	0.49	45.55	-58.06
tba5	117.68	1194.80	2.66	1.86	30.07	-24.83
tba6	123.28	1154.60	1.67	0.95	43.11	-66.67
tba7	121.75	1153.60	1.50	0.94	37.33	-59.32
tba8	105.37	1013.40	1.75	1.12	36.00	-31.76
tba9	96.50	1057.80	1.42	0.70	50.70	-20.69
tba10	154.98	1503.20	2.66	1.85	30.45	-39.10

Resolução via solver

Instância	Tempo de Execução (segundos)	Valor Obtido	Desvio para BKV (%)
tba1	41.53	0.56	0
tba2	11.23	0.52	0
tba3	3.40	0.48	0
tba4	1.47	0.31	0
tba5	108.17	1.49	0
tba6	15.99	0.57	0
tba7	16.18	0.59	0
tba8	4.57	0.85	0
tba9	1.86	0.58	0
tba10	175.04	1.33	0

Conclusão

- Os operadores de crossover e mutação têm impacto positivo na qualidade da solução
- Para o conjunto de instâncias usado, a resolução via programação inteira é mais proveitosa