

Sumary

- · Stereo Vision
 - Frontal parallel arrangement
 - Epipolar geometry
 - Essential and Fundamental Matrix
 - Image rectification
 - Stereo Correspondences

Introduction

What is stereo? Where is it coming from? Where can you see it or use it?

Human Visual System

- · Many of the perceptual cues we use to visualize 3D structure are available in 2D projections
- Such cues include:
 - occlusion (one object partially covering another)
 - perspective (point of view)
 - familiar size (we know the real-world sizes of many objects)
 - atmospheric haze (objects further away look more washed out)
- · Four cues are missing from single 2D views:
 - stereo parallax-seeing a different image with each eye
 - movement parallax-seeing different images when we move the
 - accommodation-the eyes' lenses focus on the object of interest
 - convergence-both eyes converge on the object of interest

Stereopsis

Stereo = "solid" or "three-dimensional" opsis = appearance or sight

Also: "binocular vision", "binocular depth perception" "stereoscopic depth perception"

- · Stereopsis is the impression of depth that is perceived when a scene is viewed with both eyes by someone with normal binocular vision
- Binocular disparity is due to the different position of our two eyes

Stereopsis

- Depth perception in stereo is based on stereopsis:
 - · when the brain registers and fuses two
 - · Image parallax means that the two eyes register different images (horizontal shift)
 - · The amount of shift depends on the "interpupillary distance" (IPD) (varies for each person in the range of 53-73 mm)
 - · Works in the near field (to a few meters from the eye)

Common ways to produce 3D sensation

Anaglyphs: two colored images and color coded glasses (red/cyan(green))

- Two images with different light polarization and polarizing glasses
 Linear and circular
- Double frame-rate displays combined with LCD shutter glasses
- Autostereoscopic displays
- Parallax barrier and lenticular lens
- · Head Mounted Displays (HMDs)
- · and "exotic displays"

Camera model

· pinhole camera model

We get

$$x = f \frac{x}{z} \qquad \qquad y = f \frac{y}{z}$$

OpenCV Camera model

- · OpenCV Camera model:
 - 4 intrinsic parameters:
 - Focal distance: f_x , f_y
 - Optical centre: c_x , c_y
 - 5 distortion parameters
 - Lens distortion: k_1 , k_2 , k_3 , p_1 , p_2
 - 6 extrinsic parameters:
 - Rotation: r_x , r_y , r_z
 - Translation: t_x , t_y , t_z

Total: 15 parameters

· Other models: Tsai, Heikkila, Zhang

StereoVision

- · Capability to define depth from 2 images
- Possible by computing correspondences between two images

Frontal parallel arrangement

pha .

 Tow perfectly aligned, coplanar cameras with same focal distance:

Frontal parallel arrangement

14

• Z=?

4.4

Frontal parallel arrangement

ı.

•
$$\frac{T}{Z} = \frac{T - (x^l - x^r)}{(Z - f)}$$
 then $Z = \frac{T(Z - f)}{T - (x^l - x^r)}$,

•
$$TZ - Z(x^l - x^r) = TZ - fT$$

• So:
$$Z = \frac{fT}{d}$$

=>Stereo system have good depth resolution for close objects since depth is inversely proportional to disparity.

Frontal parallel arrangement

H

- Easy to relate correspondence to depth in frontal parallel arrangement
- Problem: how to Map real configuration to frontal parallel arrangement.

16

Epipolar geometry

 An epipole is a projection of the optical centre of a camera on the other image plane

• http://www.ai.sri.com/~luong/research/Meta3 DViewer/Epipolar Geo.html

Epipolar geometry

1

- What is it useful for?:
 - Given a point in an image, its corresponding point in the other image lie on the corresponding epipolar line
 - Order is preserved (given 2 points A e B in a given order in one images, order will be the same in the other image)
 - =>Epipolar geometry transform a 2D search (in image) into a 1D search (along epipolar lines) saving resources and avoiding errors.

Essential and Fundamental Matrices

- Epipolar Geometry is defined by:
 - Information about relative position between the cameras (rotation and translation)
 [extrinsic] – Essential Matrix(E)
 - Intrinsic parameters of the cameras (focal length, lens distortion, optical centre, etc...) – Fundamental Matrix(F)

Essential matrix

pha .

- Matrix that maps a 3D point in one image with its corresponding 3D point on the other image considering translation and rotation between cameras:
- $p_I^T E p_r = 0$
- p_l and p_r are in camera 3D coordinate system

19

20

Fundamental matrices

- nha.
- Matrix that maps a pixel in one image with its corresponding pixel on the other image considering rotation, translation and intrinsic parameters of the cameras:
- $u_l^T F u_r = 0$
- u_1 e u_r are in image 2D coordinate system

Fundamental and essential matrices

- Fundamental and Essential matrices represent the transformation between the stereo pair images. Fundamental matrix operates in image coordinates (pixels) and Essential matrix operates in physical coordinates.
- Possible to evaluate with 8 point correspondences (eight point algorithm: http://www.cs.unc.edu/~marc/tutorial/node
 54.html)

2

21

Image rectification

H

 Given the fundamental matrix, it is possible to rectify an image by aligning epipolar lines in rows on the two rectified images getting a frontal parallel arrangement.

Image rectification

Original images

From Visual 3D Modeling from Images (http://www.cs.unc.edu/~marc/tutorial/)

Disparity map

· In rectified images, disparity is simply

difference between pixel coordinates xI

Tsukuba head and lamp stereo dataset

Stereo Matching algorithm

· Match Pixels in Conjugate Epipolar Lines

- This is a tough problem
- Numerous approaches
 - A good survey and evaluation: http://vision.middlebury.edu/stereo/

Basic stereo algorithm

For each epipolar line

For each pixel in the left image

- compare with every pixel on same epipolar line in right image
- · pick pixel with minimum match cost

Block Matching algorithm

- · Block Matching:
 - Divides an image into macroblocks and compare each with a corresponding block and its neighbours in a another image
- · Several Metrics

- Mean difference or Mean Absolute Difference (MAD) - Mean Squared Error (MSE)

(10.30) Post frame Current frame

Window size

W = 3

- Larger window
- Effect of window size Better results with adaptive window
 - T. Kanade and M. Okutomi, 4
 - Experiment, Proc. International Conference on Robotics and Automation, 1991.

 D. Scharstein and R. Szeliski. Stereo matching, nonlinear diffusion. International Journal of Computer Vision, 28(2):155-174, July 1998

Stereo results

- Data from University of Tsukuba
- Similar results on other images without ground truth

Scene

Ground truth

Stereo Vision - Steps

- Calibrate cameras
- · Rectify images
- · Compute disparity
- · Estimate depth

Stereo Vision - Errors

H

- · Camera calibration errors
- Poor image resolution
- Occlusions
- Violations of brightness constancy (specular reflections)
- · Large motions
- · Low-contrast image regions

31

32

Stereo Vision in OpenCV

- cvFindChessboardCorners: detect chessboard corner in stereo images
- cvStereoCalibrate: calibrates stereo rig
- cvStereoRectify: computes rotations that make both camera planes the same.
- cvInitUndistortRectifyMap and cvRemap: use to compute undistortion map and rectified images
- Stereo correspondence (ex: cvFindStereoCorrespondenceBM): computes the disparity map.
- cvReprojectImageTo3D: disparity map to 3D with calibrated cameras

OPENCV STEREO VISION DEMO

34

Some references

- Gary Bradski and Adrian Kaehler. Learning OpenCV: Computer Vision with the OpenCV Library. O'Reilly, Cambridge, MA, 2008.
- Olivier Faugeras Three-dimensional computer vision: a geometric viewpoint. MIT Press Cambridge, MA, USA @1993
- Szeliski, R. (2010).. Computer Vision: Algorithms and Applications, Springer
- Quang-Tuan Luong. "Learning Epipolar Geometry". Retrieved 2007-03-04.