Facultad de Ciencia y Tecnología – UADER – Sede Oro Verde. Licenciatura en Sistemas Informáticos MATEMÁTICA DISCRETA – Examen Final 16/12/2020

Ejercicio 1.

El sistema de numeración telefónica. El formato de los números de teléfonos se determina mediante el sistema de numeración decimal y vienen dado en algunos países por la secuencia NYX – NNX – XXXX; NYX es el código de área, NNX es el código de zona y XXXX es la terminal. Se sabe además que X denota un dígito que puede ser cualquier valor de 0 a 9; N está formado por un dígito cualquiera de 2 a 9 e Y denota un dígito que puede ser 0 o 1.

- a) ¿Cuántos números de teléfonos distintos se pueden armar de esta manera?
- b) Es posible encontrar en la secuencia NYXNNXXXXX que el número que se forma sea capicúa y sea un número par, escribir algunos que cumplan con la condición planteada y luego contar cuántos son en total.

Ejercicio 2.

- a) Plantear una ecuación diofántica, que permita calcular, si existen, enteros x e y tales que $(28)_x$ $(77)_y = 14$. **Ayuda**: recuerde, por ejemplo, que $(abcd)_w = d + cw + bw^2 + aw^3$.
- b) Efectuar la siguiente operación en \mathbb{Z}_{234} : $[35]^{-1}$. $[2] + [13]^{5}$. (Los corchetes indican clases residuales).

Ejercicio 3.

- a) Utilizar el Teorema Chino del Resto para establecer un isomorfismo entre los anillos: Z_{24} y $Z_8 \times Z_3$. Calcular f(18), f(-20). Calcular la pre-imagen del elemento (2, 2).
- b) Dado el grupo multiplicativo (U24, *), de las unidades del anillo (\mathbb{Z}_{24} , +, *), se pide:
 - b.1) Hallar el orden del grupo, o la cantidad de elementos que tiene U_{24.}
 - b.2) Escribir todos los elementos del grupo de las unidades.
 - b.3) Hallar un subgrupo no trivial.

Ejercicio 4.

En la tabla se muestras tres funciones booleanas de $B^3 \rightarrow B$, se pide:

\boldsymbol{x}	\boldsymbol{y}	z	f(x,y,z)	g(x,y,z)	h(x,y,z)
0	0	0	1	0	1
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	0	1
1	0	1	0	1	1
1	1	0	1	0	0
1	1	1	0	1	0

- a) Expresar f en su forma norma disyuntiva.
- b) Expresar g en su forma normal conjuntiva.
- c) Construir la función booleana $k = f.\overline{g} + h$.

Ejercicio 5.

Dada la matriz generadora $G = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$ de una función de codificación $E \colon \mathbb{Z}_2^2 \to \mathbb{Z}_2^5$, se pide:

- a) Hallar el conjunto de palabras codificadas y la distancia mínima entre ellas.
- b) Hallar la capacidad del código para detectar y corregir errores.
- c) Hallar la matriz de verificación de paridad asociada.

Ejercicio 6.

Probar que $2+6+18+...+2.3^{n-1}=3^n-1$ para todo *n* natural.