

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی بهار ۱۴۰۳

پردازشهای مورفولوژی

Morphological Image Processing

عملگر گسترش

• عملگر گسترش (dilate) برای گسترش مجموعه A توسط B به صورت زیر تعریف می شود:

$$A \oplus B = \left\{ z \left| \left(\widehat{B} \right)_z \cap A \neq \emptyset \right\} \right\}$$

• این رابطه به مفهوم بدست آوردن انعکاس B حول مرکز (لنگر) خودش و جابجایی آن به اندازه Z است که اگر این نسخه از B دارای اشتراک با A بود، Z جزء مجموعه جدید خواهد بود

عنصر ساختاری

• به مجموعه B در عملگر گسترش (و عملگرهای بعدی) عنصر ساختاری (Structuring Element) گفته می شود که انتخاب مناسب آن نتیجه مستقیم در عملکرد عملگرها دارد

عملگر سایش

• عملگر سایش (erode) برای فرسایش مجموعه A توسط B به صورت زیر تعریف می شود:

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

A بنابراین سایش مجموعه A توسط B شامل مجموعه نقاطی است که به ازای آنها B به طور کامل درون B قرار می گیرد

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

Input image 0 1 0 0 1 1 0 1 1 1 0 Structuring Element 1 1 1 1 0 OUtput Image 0 0 0 0 OUTput Image 0 0 0 0 OUTput Image 0 0 OUTput Image 0 0 OUTput Image 0

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

Input image 0 1 0 0 1 1 0 1 1 1 0

Structuring Element 1 1 1

Output Image 0 0 0 0 0 0 0 0 0

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

Input image 0 1 0 0 1 1 0 1 1 1 0 0 Structuring Element 1 1 1 1 1 1 1 0

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

Input image

1

Structuring Element

1 1 1

0 0	0	0	0	0	0			
-----	---	---	---	---	---	--	--	--

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

Input image

1

Structuring Element

1 1 1

0 0 0 0 0	0 0	1	
-----------	-----	---	--

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

Input image

Structuring Element

1 1 1

0 0 0 0 0 0 1 1	
-----------------	--

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

Input image

Structuring Element

1 1 1

0 0 0 0 0 0 0 1 1 0

مثال: شمارش سكهها

- چگونه میشود تعداد سکههایی را شمرد که با یکدیگر در تماس هستند؟
 - مىتوان تصوير را دوسطحى كرد
 - سپس، توسط عملگر سایش آنها را جدا نمود

حذف جزئیات غیرضروری

• یکی از ساده ترین کاربردهای سایش حذف جزئیات غیرضروری است

• عملگر باز (opening) برای حذف جزئیات کوچک و هموار کردن محیط نواحی تعریف شده است

$$A \circ B = (A \ominus B) \oplus B$$

• این عملگر ناحیههای سفید که در احاطه پیکسلهای سیاه هستند را حذف می کند

• عملگر باز (opening) برای حذف جزئیات کوچک و هموار کردن محیط نواحی تعریف شده است

$$A \circ B = (A \ominus B) \oplus B$$

• این عملگر ناحیههای سفید که در احاطه پیکسلهای سیاه هستند را حذف میکند

عملگر بسته

• عملگر بسته (closing) برای حذف حفرههای کوچک و هموار کردن محیط نواحی تعریف شده است

$$A \cdot B = (A \oplus B) \ominus B$$

• این عملگر ناحیههای سیاه که در احاطه پیکسلهای سفید هستند را حذف می کند

عملگر بسته

1	1	1	
1	1	1	
1	1	1	

عملگر بسته

عملگرهای باز و بسته

عملگرهای باز و بسته

$$((A \circ B) \oplus B) \ominus B = (A \circ B) \cdot B$$

$$(A \circ B) \oplus B$$

$$(A \ominus B) \oplus B = A \circ B$$

