

Introduction to CROCO_TOOLS

Outline

- Review
- Crocotools for preprocessing
- Crocotools for postprocessing

STEP1: Prepare input files for CROCO Model

I Pre-processing phase:

Input files creation:

- Grid file: containing grid, mask, bathymetry all metrics needed by CROCO
 =>croco_grd.nc
- Initialisation file: containing initial stratification (T,S), initial current and elevation values => croco_ini.nc
- Boundary file : containing all needed variables on OB => croco_bry.nc
- Forcing file: containing atmospheric forcing, tides...=> croco_frc.nc (croco_blk.nc if bulk formula for atmospheric forcing)
- and eventually a climatological file => croco_clm.nc

TO GENERATE THESE FILES WE NEED

Global datasets for:

Bathymetry: GEBCO 1', Etopo2, SRTM30,

Atmospheric fields: COADS, QuikSCAT, CFSR, WRF...

"Realistic" stratification data: MEDAR

Ocean general circulation models (OGCM)to set on OBC's : :

WOA_2009, SODA, ECCO, Mercator, ...

Outputs of Tidal models: FES2020, TUGO, MOG2D, TPXO...

You have to edit at first

crocotools_param.m

```
(base) moncef@Z640:~/CROCO/croco tools-v2.0.0$ ls
Aforc CFSR
                Coupling tools
                                               Nesting tools
                                                                          README.md
                                                                                      UTILITIES
Aforc ECMWF
               crocotools param.m
                                               oct start.m
                                                                                      Visualization tools
                                                                          Rivers
Aforc ERA5
                Diagnostic tools
                                               Oforc OGCM
                                                                          RUNOFF DAI
                example_job_prepro_matlab.pbs
Aforc NCEP
                                               Opendap tools
                                                                          start.m
Aforc QuikSCAT Forecast tools
                                               Opendap tools no loaddap
                                                                          Tides
CHANGELOG.md
                                               Preprocessing tools
                job prepro matlab.pbs
                                                                          Town
```

"BENGULA_LR" TEST CASE

CONFIGURATION NAME

Limits of the model domain

horizontal resolution

Number of vertical levels

sigma coordinates coefficients, transformation type.

smoothing topography option

```
<u></u>
isoctave=exist('octave config info');
   CROCO title names and directories
CROCO title = 'Benguela Model';
CROCO config = 'Benguela LR';
% Grid dimensions:
               % Minimum longitude [degree east]
               % Maximum longitude [degree east]
lonmax = 22;
               % Minimum latitude [degree north]
latmin = -38:
latmax = -26; % Maximum latitude [degree north]
% Grid resolution [degree]
dl = 1/3;
% Number of vertical Levels (! should be the same in param.h !)
 = 32;
  Vertical grid parameters (! should be the same in croco.in !)
theta s
          = 7.;
theta b
vtransform = 2.; % s-coordinate type (1: old- ; 2: new- coordinates)
                 % ! take care to define NEW S COORD cpp-key in cppdefs.h
% Topography: choice of filter
topo smooth = 1; % 1: old ; 2: new filter (better but slower)
% Minimum depth at the shore [m] (depends on the resolution,
% rule of thumb: dl=1, hmin=300, dl=1/4, hmin=150, ...)
% This affect the filtering since it works on grad(h)/h.
hmin = 75:
% Maximum depth at the shore [m] (to prevent the generation
% of too big walls along the coast)
hmax coast = 500;
% Maximum depth [m] (cut the topography to prevent
% extrapolations below WOA data)
hmax = 6000;
```

STEP1: Prepare the input files

smoothing bathymetry coeff

Two ways of interpolation of data set onto horizontal grid

Process plots if any

```
% Slope parameter (r=grad(h)/h) maximum value for topography smoothing
rtarget = 0.25;
% Number of pass of a selective filter to reduce the isolated
% seamounts on the deep ocean.
n filter deep topo=4;
% Number of pass of a single hanning filter at the end of the
% smooting procedure to ensure that there is no 2DX noise in the
% topography.
n filter final=2;
% GSHSS user defined coastline (see m map)
% XXX f.mat
               Full resolution data
% XXX h.mat
               High resolution data
% XXX i.mat
               Intermediate resolution data
% XXX I.mat
                Low resolution data
% XXX c.mat
               Crude resolution data
coastfileplot = 'coastline l.mat';
coastfilemask = 'coastline | mask.mat';
% Objective analysis decorrelation scale [m]
% (if Roa=0: nearest extrapolation method; crude but much cheaper)
%Roa=300e3;
Roa=0;
interp method = 'spline'; % Interpolation method: 'linear' or 'spline'
               = 0; % 1: create graphics after each preprocessing step
makeplot
%
```

crocotools_param.m

STEP1: Prepare the input files


```
CROCO input files names
and location
```

bathymetry data base path

```
% 2 - Generic file and directory names
% CROCOTOOLS directory
CROCOTOOLS dir = '.../';
% Run directory
RUN dir=[pwd,'/'];
% CROCO input netcdf files directory
CROCO files dir=[RUN dir, 'CROCO FILES/'];
% Global data directory (etopo, coads, datasets download from ftp, etc..)
DATADIR='../../croco tools/';
% Forcing data directory (ncep, quikscat, datasets download with opendap,
FORC DATA DIR = [RUN dir, 'DATA/'];
if (isoctave == 0)
       eval(['!mkdir',CROCO_files_dir])
else
       system(['mkdir',CROCO files dir])
end
% CROCO file names (grid, forcing, bulk, climatology, initial)
grdname = [CROCO files dir,'croco grd.nc'];
frcname = [CROCO_files_dir,'croco_frc.nc'];
blkname = [CROCO files dir,'croco blk.nc'];
clmname = [CROCO_files_dir,'croco_clm.nc'];
bryname = [CROCO files dir,'croco bry.nc'];
ininame = [CROCO_files_dir,'croco_ini.nc'];
bioname = [CROCO_files_dir,'croco_frcbio.nc']; % Iron Dust forcing for PISCES
rivname = [CROCO files dir,'croco runoff.nc'];
% Topography netcdf file name (ETOPO 2 or any other netcdf file
% in the same format)
%
topofile = [DATADIR, 'Topo/etopo2.nc'];
%
%
```

COADS atmospheric data directory

monthly atmospheric forcing data with repetition of a typical year of 360 days

monthly SST data

OBC's definition must be identical with that you will precise in your cppdefs.h. 0= closed

create initial file, climatology file and boundary file

must be identical to dstart in croco.in

```
coads dir=[DATADIR,'COADS05/'];
                                              crocotools_param.m
% COADS time (for climatology runs)
coads time=(15:30:345); % days: middle of each month
coads cycle=360;
                           % repetition of a typical year of 360 days
%coads time=(15.2188:30.4375:350.0313); % year of 365.25 days in case
%coads cvcle=365.25:
                                  % interannual QSCAT winds
% Pathfinder SST data used by pathfinder sst.m
pathfinder_sst_name=[DATADIR,'SST pathfinder/climato pathfinder.nc'];
% 4 - Open boundaries and initial conditions parameters
      used by make clim.m, make biol.m, make bry.m
      make OGCM *.m and make OGCM frcst.m
% Open boundaries switches (! should be consistent with cppdefs.h!)
obc = [1 1 1 1]; % open boundaries (1=open , [S E N W])
% Level of reference for geostrophy calculation
zref = -1000;
% initial/boundary data options (1 = process)
% (used in make clim, make biol, make bry,
% make OGCM *.m and make OGCM *frcst.m)
makeini
             = 1; % initial data
makeclim = 1; % climatological data (for boundaries and nudging layers)
makebry
             = 1; % lateral boundary data
makenpzd = 0; % initial and boundary data for NChIPZD and N2ChIPZD2 models
makebioebus= 0; % initial and boundary data for BioEBUS model
makepisces = 0; % initial and boundary data for PISCES model
makeguota = 0; % initial and boundary data for guota version of PISCES model
%
             = 1; % oa data (intermediate file)
makeZbry = 1; % boundary data in Z coordinate (intermediate file)
insitu2pot = 1; % transform in-situ temperature to potential temperature
%
% Day of initialisation for climatology experiments (=0: 1st january 0h)
%
tini=0:
```

monthly climatological data directory, time and cycle

if tide forcing is activated ,you must indicate this number in param.h

```
% Select Climatology Atlas (temp, salt and biological variables) from:
      - World Ocean Atlas directory (WOA2009) OR ...
      - CARS2009 climatology directory (CARS2009)
%
woa_dir
             = [DATADIR,'WOA2009/'];
cars2009 dir = [DATADIR, 'CARS2009/'];
climato dir = woa dir;
% Pisces biogeochemical seasonal climatology
woapisces dir = [DATADIR, 'WOAPISCES/']; % only compatible with
woa dir
% Surface chlorophyll seasonal climatology (SeaWifs)
chla dir=[DATADIR,'SeaWifs/'];
% Runoff monthly seasonal climatology (Dai and Trenberth)
global clim riverdir=[DATADIR,'RUNOFF DAI/'];
global clim rivername=[global clim riverdir, 'Dai Trenberth runoff global
clim.nc'l:
% Set times and cycles for the boundary conditions: monthly climatology
woa time=(15:30:345); % days: middle of each month
woa cycle=360; % repetition of a typical year of 360 days
% For rivers setup: go in the routine Rivers/make runoff.m to
% setup your options
% 5 - Parameters for tidal forcing
tidename=[DATADIR, 'TPXO7/TPXO7.nc']; %% TPXO file name (TPXO6 or
TPXO7)
% Self-Attraction and Loading GOT99.2 file name
sal tides=1;
salname=[DATADIR,'GOT99.2/GOT99 SAL.nc'];
% Number of tides component to process
Ntides=10:
% Chose order from the rank in the TPXO file:
% "M2 S2 N2 K2 K1 O1 P1 Q1 Mf Mm"
%"12345678910"
tidalrank=[1 2 3 4 5 6 7 8 9 10];
```

crocotools_param.m

reference model time 01/01/2000 0h Omin 0sec

forcing on OBC's with OGCM SODA from 01/2005 to \ 03/2005

As OGCM =SODA you will lunch make_OGCM_SODA to generate the bry file

```
% 6 - Reference date and simulation times.
      (used for make tides, make CFSR (or make NCEP), make OGCM *)
%
             = 2000;
Yorig
                          % reference time for vector time
                          % in croco initial and forcing files
Ymin
             = 2005:
                          % first forcing year
Ymax
             = 2005;
                          % last forcing year
             = 1:
                          % first forcing month
Mmin
Mmax
             = 3:
                          % last forcing month
Dmin
             = 1:
                          % Day of initialization
                          % Hour of initialization
             = 0:
Hmin
Min min
             = 0;
                          % Minute of initialization
             = 0;
                          % Second of initialization
Smin
SPIN Long
             = 0;
                          % SPIN-UP duration in Years
Mth format = \frac{902}{100}
                          % Number of digit for month on input files
                                                                     NO TIDES NO
%7 - Parameters for Interannual forcing (SODA, mercator, CFSR, ERA5 ...)
                                                                     WAVE
                   % 1: create forcing files
makefrc
             = 0:
                                                                      FORCING
makeblk
                   % 1: create bulk files
             = 1:
QSCAT blk
                   % 1: a) correct NCEP frc/bulk files with
             = 0;
             %
                    u,v,wspd fields from daily QSCAT data
                    b) download u,v,wspd in QSCAT frc file
add tides
                   % 1: add tides
             = 0:
add waves = 0; % 1: add waves
Options for make OGCM SODA or make OGCM mercator
bgсм
             = 'SODA':
                          % Select OGCM: SODA or mercator
OGCM dir
             = [FORC DATA DIR,OGCM,' ',CROCO config,'/']; % OGCM data dir. [croco format]
bry prefix = [CROCO_files_dir,'croco_bry_',OGCM,'_'];
                                                     % generic boundary file name
clm prefix = [CROCO files dir,'croco clm ',OGCM,' '];
                                                     % generic climatology file name
ini prefix = [CROCO files dir, 'croco ini ',OGCM,' '];
                                                     % generic initial file name
OGCM prefix = [OGCM,' '];
                                        % generic OGCM file name
```

crocotools_param.m

TP: Prepare the input files for BENGULA LR https://croco-ocean.gitlabpages.inria.fr/croco_doc/tutos/tutos.06.prepro.matlab.clim

TP: Prepare the input files for BENGULA_LR


```
make_forcing
make_bulk
make_bry # or make_clim
make_ini
```

https://croco-ocean.gitlabpages.inria.fr/croco doc/tutos/tutos.06.prepro.matlab.clim.html

STP3: Visualise croco outputs (BENGUELA_LR)


```
matlab
start
crocotools_param
croco_gui
```

https://croco-ocean.gitlabpages.inria.fr/croco doc/tutos/tutos.15.visu.matlab.html

On Seolane server

ssh -X userX@172.20.254.3

mkdir TRAINING cd TRAINING

alias of the dataset directory

In -sf /home/COMMONDATA/data_tutos/DATASETS_CROCOTOOLS ~/TRAINING/CROCO/croco_tools/.

CROCO architecture

DATA

bathy, initial and boundary conditions, surface forcing, tides, rivers...

CROCO_DATASETS
(climatology)
Interannual datasets (e.g.
Mercator, ERA5...)

croco_tools

Tools for pre-processing, post-processing, diagnoses, visualisation

Matlab tools Python tools

croco

Model, libraries (e.g. AGRIF) interfaces with other models, and scripts for running simulations

Model sources
Libraries
Scripts for run

CONFIGS

Where you will design and run your configurations

CROCO architecture

DATA

bathy, initial and boundary conditions, surface forcing, tides, rivers...

CROCO_DATASETS (climatology)

CARS2009
COADS05
GOT99.2
GSHHS
m_map1.4f
QuikSCAT_clim
RUNOFF_DAI
SeaWifs
SST_pathfinder
Topo
TPX06
TPX07
W0A2009

VOAPISCES

croco_tools

Tools for pre-processing, post-processing, diagnoses, visualisation

Aforc CFSR Aforc ECMWF Aforc ERA5 Aforc NCEP Aforc QuikSCAT Coupling_tools croco pyvisu crocotools param.m Diagnostic tools example_job_prepro_matlab.pbs Forecast tools job_prepro_matlab.pbs Nesting tools oct start.m Oforc OGCM Opendap tools Opendap_tools_no_loaddap Preprocessing tools readme_version_croco_tools.txt Rivers RUNOFF_DAI start.m Tides Town UTILITIES Visualization_tools

croco

Model, libraries (e.g. AGRIF) interfaces with other models, and scripts for running simulations

AGRIF
create_config.bash
CVTK
DOC_SPHINX
MPI_NOLAND_preprocessing
MUSTANG
OCEAN
PISCES
README.md
SCRIPTS
TEST_CASES
XIOS