Assignment 1

Part 1. Clustering: the baseline

Prepare data

Original data set is 1 million. The following code is used to extract 100K from the total sample.

```
with open('data/tweets_1M.json','r') as f:
    tweets = json.load(f)

X = np.array([[tweets[x]['lat'],tweets[x]['lng']] for x in range(0, len(tweets))])
sample = 100000
total = len(X)
X = X[0::int(total/sample)]
```

Reference time of clustering of 100K samples into k=100 clusters with k-means

```
n = 100
k_means = KMeans(init='k-means++', n_clusters=n, n_init=10)
t_km = time.time()
k_means.fit(X)
t_fin_km = time.time() - t_km
print (t_fin_km)
```

Reference time is 141 seconds

Reference time of clustering of 100K samples into k=100 clusters with mini-batch k-means.

To select a propropriate batch_size, the following code is used to roughly look at the relationship between batch_size and processing time.

```
t_mini_batch = time.time() - t0
```

Simplified results follow:

Percentage	batch_size	Seconds to run 100 clusters
1%	1000	0.60
5%	5000	1.65
10%	10000	3.04

Maximum number of clusters k_max that the implementation of k-means can handle

Via some tests, n=370 seems to be a reasonable starting number. The following code is implemented to get k_{max} . Processing time threshold is set to approximately 60 seconds.

```
n = 370
t_fin_km = 0
while t_fin_km <= 60:
    print ('testing n equal to ' + str(n))
    ## initialize with K-means++, a good way of speeding up convergence
    k_means = KMeans(init='k-means++', n_clusters=n, n_init=10)
    ## record the current time
    t_km = time.time()
    # start clustering!
    k_means.fit(X)
    ## get the time to finish clustering
    t_fin_km = time.time() - t_km
    print (t_fin_km)
    n += 5
k_max = 380</pre>
```

Maximum number of clusters k_max that the implementation of minibatch k-means can handle

Three batch_size (1000, 5000, 10000) were run to see how k_max changes. perc and n in the following code can vary as needed.

```
perc = 0.01
batch_size=int(len(X)*perc)
n = 2500
t_mini_batch = 0
while t_mini_batch <= 60:
    print ('testing n equal to ' + str(n))</pre>
```

Results follow:

Percentage	batch_size	k_max
1%	1000	3950
5%	5000	365
10%	10000	175

Find eps_100 that resultes in 100 clusters with MinPts =100 as well as the corresponding processing time.

```
eps = 0.05
n_clusters_ = 0
while n_clusters_ <= 100:

    print (eps)

    t_db = time.time()
    db = DBSCAN(eps=eps, min_samples=100).fit(X)
    t_fin_db = time.time() - t_db

#array of numbers, one number represents one cluster
    db_labels = db.labels_
    # minus if there are unclustered noises
    n_clusters_ = len(set(db_labels)) - (1 if -1 in db_labels else 0)
    eps += 0.01
    print (t_fin_db, n_clusters_)

eps_100 = 0.001 (0.002 and 0.003 also produces 100 clusters)</pre>
```

Part 2. Clustering: scalability

2.1.a

The figure shows the relationship between processing time and sample size using ${\bf k}$ means

Figure 1: Computational time as a function of sample size for a fixed k=100 with k_means

Computational time as a function of sample size for a fixed $k{=}100$ with MiniBatchKMeans

2.1.

Computational time as a function of n_clusters (consider the range of 2 to the k_max) with k_means

Computational time as a function of n_clusters (consider the range of 2 to the k_max) with MiniBatchKMeans

Part 3. Clustering: 1 million samples problem

Figure 2: Computational time as a function of sample size for a fixed k=100 with MiniBatchKMeans

Figure 3: Computational time as a function of <code>n_clusters</code> (consider the range of 2 to the <code>k_max</code>) with <code>k_means</code>