

Nanotechnology

Electrostatic Control of Ions and Molecules in Nanofluidic Transistors

Duarte Miguel de Aguiar Pinto e Morais Marques | 96523

Master's Degree in Electrical and Computer Engineering (MEEC)

Professor João Pedro Conde

Lisbon, Portugal October 20th 2022

Summary

Nanofluidic transistor

- Based on metal-oxide-solution (MOSol) system;
- similar to metal-oxide-semiconductor field-effect transistor (MOSFET);
- integrated nanofluidic circuits → manipulation of ions and biomolecules in sub-femtoliter volumes.

Electrostatic Control of lons and Molecules in Nanofluidic Transistors

2005 Vol. 5, No. 5 943–948

NANO

Rohit Karnik,†,!! Rong Fan,‡,!! Min Yue,† Deyu Li,† Peidong Yang,*,‡,§ and Arun Majumdar*,†,§

Department of Mechanical Engineering and Department of Chemistry, University of California, Berkeley, California 94720, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

Received March 14, 2005

► This work uses fluorescence and electrical measurements to demonstrate that gate voltage modulates the concentration of ions and molecules in the channel and controls the ionic conductance.

Surface charge effects

• Similarly to MOSFETs, field effect modulation for higher level of controllability and logic operation → could advance the development of large-scale nanofluidic circuits.

- → **Debye length:** $l_D \propto n^{-1/2}$ (*n*-ion concentration)
 - Due to counterion shield, electric potential decays to its bulk value over l_D ;
 - typically 1-100nm for aqueous solutions.

- \rightarrow **Microchannels:** l_D much smaller than channel \rightarrow bulk of the solution shielded from surface charge (most of the solution **neutral**); direct electrostatic manipulation is not possible;
- \rightarrow **Nanochannels** with at least one dimension $\lesssim l_D$: electrostatic fields can penetrate throughout the channel, enabling **manipulation** using surface charge or field-effect.

Nanochannel

 Counterion concentration (orange), coion concentration (blue), electric potential and ionic concentration

Nanofluidic transistor devices

2-dimensional nanochannel transistor

Two types of fluid confinement:

1-dimensional nanotube transistor

- → 30 **nanochannels** (120μm long, 1μm thick) connected by two microchannels, ran across by 3 gate electrodes;
- → **etching** 35nm thick and patterned poly-silicon layer;
- → made completely by **optical lithography**.
 - **Ag/AgCl electrodes** in the microfluidic channels/chambers for applying electrical bias and generating ionic current.

- → Metallic gate electrode covered by a silicon dioxide patterned film, bonding with PDMS cover;
- → tubes (internal diameters 10-100nm) connected on both ends to microfluidic channels;
- → partial oxidation of silicon nanowires and etching of the remaining silicon core to obtain the silica nanotubes (separate synthesis and subsequent integration with microfabricated channels and gate electrodes).

Electrostatic effects in nanochanels

- Surface charge increases with KCl concentration;
- (a) nanochannel: surface charge densities between 0.002 and 0.1C/m²;
- **(b) nanotube devices**: surface charge densities between 0.01 and 0.02C/m².

Fluorescence images

(dots outline three nanochannels, each 1 µm wide)

- **Negatively charged dye** in the nanochannels while **KCl** concentration varied;
- deionized water → most dye molecules excluded; 0.9M KCl → dye molecules can enter the nanochannel (surface charge is shielded);
- dye concentration in 0.9M KCl with **bulk value** of 100μM (1.0 fluorescence intensity);
- **fluorescence** intensity represents the actual amount of dye in the nanochannels;
- as ionic strength decreases from 0.9M to $100\mu\text{M}$, l_D increases to $\approx 30 \,\text{nm}$ and effect of surface charge extends throughout the nanochannel fluorescence decreases.

Field-effect modulation of ionic concentration

► **Gate voltage to control ionic concentration in nanochannels** (← carrier density modulation in MOS systems via capacitive coupling between the gate electrode and the semiconductor)

- Low salt concentrations \rightarrow external charges (e.g., generated by **applied gate voltage**) can affect electric potential in nanochannel when $l_D \sim l$;
- **negatively charged dye** (100µM bulk value), fluorescence intensity below the gate electrode as a function of the gate voltage;
- <u>negative gate voltage</u> → dye repelled;
- **positive gate voltage** \rightarrow dye concentration enhanced by a factor of 2 when 50V applied, change in surface charge of $\approx 3 \text{mC/m}^2$;
- better control over ionic concentrations \rightarrow low surface charge (determines the inherent ionic concentration in the nanochannels).

Field-effect control in nanofluidic transistors (1)

(green arrows for concentration gradients, vertical arrows for edges of gate electrodes; dots outline 3 nanochannels, each 1 µm wide)

- Fluorescence intensity while **gate and S-D** (5V) **voltages** in **2-dimensional nanochannel transistors**;
- **controllable concentration gradients** below the gate, direction of gradients switched by changing the gate voltage polarity;
- gate and S-D bias control **magnitude of the concentration enhancement** 50 V and 5 V (resp.) led to 10-fold enhancement.

- As gate voltage changed from -75V to 75V, ionic conductance monotonically decreased;
- **inherent negative** surface charge in the nanochannel → most of the current is carried by the **cations**. Hence:
- → negative gate voltage (increases cation concentration) increases conductance;
- → <u>positive</u> gate voltage (depletes the cations) decreases conductance.

Field-effect control in nanofluidic transistors (2)

(green arrows for concentration gradients, vertical arrows for edges of gate electrodes; dots outline 3 nanochannels, each 1 μm wide)

MOSFET → control electrical conductance

► Nanofluidic transistor to tune the ionic environment, control transport and concentrations of ions or particular charged biomolecular species.

- Fluorescence intensity of labeled single-stranded DNA (ssDNA) in 1mM KCL controlled by factor of 6 with gate voltage → suggests that flow control of charged biomolecules is feasible;
- in <u>deionized water</u>, no fluorescence was observed → DNA molecules excluded due to negative charge; in <u>1mM KCl</u>, surface charge partially shielded, **enables gating control**.

Conclusion

- ✓ This work demonstrated that it is possible to electrostatically control ion transport in 2-dimensional nanochannel transistors and 1-dimensional nanotube transistors;
- ✓ if high dielectric constant materials employed to fabricate nanochannel wall, enhanced field effect due to stronger capacitive coupling is expected;
- ✓ multivalent species (such as biomolecules) \rightarrow gating control enhanced;
- ✓ unique tool for biological and chemical analyses in sub-femtoliter volumes.
- ► Similarly to MOSFETs, the nanofluidic transistor has the potential to be the building block of integrated nanofluidic circuits for manipulating biomolecules with single-molecule precision and control.

Field-effect control of protein transport

Thank you!

References

- ✓ Karnik R.; Fan R.; Yue M.; Li D.; Yang P.; Majumdar A., Electrostatic Control of Ions and Molecules in Nanofluidic Transistors, Nano Letters, **2005**, *5*, 943-948. *DOI: 10.1021/nl050493b*;
- ✓ Kalman E.; Vlassiouk I.; Siwy Z., Nanofluidic Bipolar Transistors, Advanced Materials, 2008, 20, 293-297. DOI: 10.1002/adma.200701867;
- ✓ Hu Y.; Hua Y.; Pan Z.; Qian J.; Yu X.; Bao N.; Huo X.; Wu Z.; Xia X., PNP Nanofluidic Transistor with Actively Tunable Current Response and Ionic Signal Amplification, Nano Letters, **2022**, *22*, 3678-3684. *DOI:* 10.1021/acs.nanolett.2c00312;
- ✓ Karnik R.; Castelino K.; Majumdar A., Field-effect control of protein transport in a nanofluidic transistor circuit, Applied Physics Letters, **2006**, *88*, 123114. *DOI: 10.1063/1.2186967*;
- ✓ Paik K.; Liu Y.; Tabard-Cossa V.; Waugh M.; Huber D.; Provine J.; Howe R.; Dutton R.; Davis R., Control of DNA Capture by Nanofluidic Transistors, ACS Nano, **2012**, *6*, 6767-6775. *DOI: 10.1021/nn3014917*.

Attachment

(green arrows for concentration gradients, vertical arrows for edges of gate electrodes; dots outline 3 nanochannels, each 1 µm wide)

Field-effect control in nanofluidic transistors (3)

- Differential ionic conductance (slope of I/V curves) of the <u>nanotubes</u>;
- insets illustrate electric potential from the gate electrode and across the nanotube when applying gate voltage, which modulates ionic density and conductivity.

- ► Gate voltage shifts **potential** diagram across oxide, changes effective surface charge density and potential on inner wall surface;
- ▶ when nanotube size is comparable to Debye length, ionic conductance depends only on ξ potential and effective surface charge → enables **gate control of ionic conductance**;
- For gate voltage from -20V to +20V, ionic conductance decreases from 105pS to 45pS, due to depletion of cations → p-type transistor behavior.

