

Calculus & Optimization

Module 1.3

Example:

Let's suppose we are ask to build the following function:

Create a function that given two parameters ${\pmb a}$ and ${\pmb b}$, calculates the probability $P(x=a)={a\over b}$

Example:

Let's suppose we are ask to build the following function:

Create a function that given two parameters \boldsymbol{a} and \boldsymbol{b} , calculates the probability $P(x=a)=\frac{a}{b}$

```
input: a,b

if b = 0

return 'Error, b has to be non-zero'

else

if a > b

return 'Error, a cannot be greater than b'

else

p = a/b

output p
```


Example:

Let's suppose we are ask to build the following function:

Create a function that given two parameters \boldsymbol{a} and \boldsymbol{b} , calculates the probability $P(x=a)=\frac{a}{b}$

```
input: a,b

if b = 0
return 'Error, b has to be non-zero'
else
if a > b
return 'Error, a cannot be greater than b'
else
p = a/b
output p
```


Function Program

Calculus

Calculus

$$x \in \mathbb{R}^+ (a \in \mathbb{R}^+)$$
$$b \in \mathbb{R}^+ - \{0\}$$
$$(a < b)$$

Function

$$f(x) = \frac{x}{b}$$

Output

Rango

$$0 \le f(x) \le 1$$

Functions

We can define a function as a relation between variables. This relationship associates each element of a set (**input / domain**) to a single element of another set (**output / range**)

$$f(x) = 3x + 2$$

$$f(x) = 5x^2 + 15$$

Functions

More examples:

$$f(x) = x^2 \sin(3x)$$

$$f(x,y) = 2y^3 + 20x^2 + 8$$

Functions

More examples:

Slopes

The slope of a function tells how much the variable y changes in comparison to the variable x.

Slopes

The slope of a function tells how much the variable y changes in comparison to the variable x.

Slopes

The slope of a function tells how much the variable y changes in comparison to the variable x.

Non linear equations:

Mathematical definition: The derivative at a point of any function is the rate of change of this function at this point. When Δx approaches 0, the rate of change corresponds to the slope of the tangent at this point

Mathematical definition: The derivative at a point of any function is the rate of change of this function at this point. When Δx approaches 0, the rate of change corresponds to the slope of the tangent at this point

Mathematical definition: The derivative at a point of any function is the rate of change of this function at this point. When Δx approaches 0, the rate of change corresponds to the slope of the tangent at this point

$$slope = \frac{\Delta y}{\Delta x}$$

$$f'(x) = \frac{df(x)}{dx} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

Mathematical definition: The derivative at a point of any function is the rate of change of this function at this point. When Δx approaches 0, the rate of change corresponds to the slope of the tangent at this point

Derivatives Applications

- Optimization problems: Search for the maximums or minimums of a function.

Derivatives Applications

- Optimization problems: Search for the maximums or minimums of a function.

Find $x \in [-2, 2]$ to maximize or minimize $f(x) = x^2 - 4x + 3$

Find $x \in [-2,2]$ to maximize or minimize $f(x) = x^2 - 4x + 3$

$$f'(x) = 2x - 4$$

Find $x \in [-2, 2]$ to maximize or minimize $f(x) = x^2 - 4x + 3$

$$f'(x) = 2x - 4$$

$$f'(x) = 2x - 4 = 0$$

Find $x \in [-2, 2]$ to maximize or minimize $f(x) = x^2 - 4x + 3$

$$f'(x) = 2x - 4$$

$$f'(x) = 2x - 4 = 0$$

$$x = \frac{4}{2} = 2$$

Gradient

Definition: It is define as the vector compose by the derivatives of a function. This vector points in the direction of greatest increase of a function.

$$\nabla f(\vec{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix} \longrightarrow \text{ partial derivate in } x_1$$

Gradient

Definition: It is define as the vector compose by the derivatives of a function. This vector points in the direction of greatest increase of a function.

$$\nabla f(\vec{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix} \longrightarrow \text{ partial derivate in } x_1$$

$$f(x,y) = 20x^{2} + 2y^{3} + 8$$

$$\nabla f(x,y) = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right] = [40x, 6y^{2}]$$

Gradient Descent

It is an optimization algorithm used to minimize a function by iteratively moving in the direction of steepest descent as defined by the negative of the gradient.

It is widely used on almost every ML algorithm.

Gradient Descent

It is an optimization algorithm used to minimize a function by iteratively moving in the direction of steepest descent as defined by the negative of the gradient.

It is widely used on almost every ML algorithm.

Main Idea

Gradient Descent

It is an optimization algorithm used to minimize a function by iteratively moving in the direction of steepest descent as defined by the negative of the gradient.

It is widely used on almost every ML algorithm.

Main Idea

Gradient Descent Algorithm

Procedure

Gradient Descent Algorithm

Procedure

Learning rate α (Hyperparameter)

Gradient Descent Algorithm

Procedure

Example:

Learning rate $\,\alpha\,$ (Hyperparameter)

