ОСНОВЫ ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ

1. Понятие имитационного моделирования

Имитационное моделирование - метод исследования сложных систем, основанный на описании процессов функционирования отдельных элементов в их взаимосвязи с целью получения множества частных результатов, подлежащих обработке методами математической статистики для получения конечных результатов.

Имитационная модель - универсальное средство исследования сложных систем, представляющее собой логико-алгоритмическое описание поведения отдельных элементов системы и правил их взаимодействия, отображающих последовательность событий, возникающих в моделируемой системе.

Наиболее широкое применение имитационное моделирование получило при исследовании сложных систем с дискретным характером функционирования, в том числе моделей массового обслуживания. Для описания процессов функционирования таких систем обычно используются временные диаграммы.

Временная диаграмма - графическое представление последовательности событий, происходящих в системе. Для построения временных диаграмм необходимо достаточно четко представлять взаимосвязь событий внутри системы. Степень детализации при составлении диаграмм зависит от свойств моделируемой системы и от целей моделирования.

Поскольку функционирование любой системы достаточно полно отображается в виде временной диаграммы, имитационное моделирование можно рассматривать как процесс реализации диаграммы функционирования исследуемой системы на основе сведений о характере функционирования отдельных элементов и их взаимосвязи.

Имитационное моделирование обычно проводится на ЭВМ в соответствии с программой, реализующей заданное конкретное логико-алгоритмическое описание. При этом несколько часов, недель или лет работы исследуемой системы могут быть промоделированы на ЭВМ за несколько минут. В большинстве случаев модель является не точным аналогом системы, а скорее ее символическим отображением. Однако такая модель позволяет производить измерения, которые невозможно произвести каким-либо другим способом.

Имитационное моделирование обеспечивает возможность испытания, оценки и проведения экспериментов с исследуемой системой без каких-либо непосредственных воздействий на нее.

Первым шагом при анализе любой конкретной системы является выделение элементов системы и формулирование логических правил, управляющих взаимодействием этих элементов. Полученное в результате этого описание называется *моделью системы*. Модель обычно включает в себя те аспекты системы, которые представляют интерес или нуждаются в исследовании.

Поскольку целью построения любой модели является исследование характеристик моделируемой системы, в имитационную модель должны быть включены средства сбора и обработки статистической информации по всем интересующим характеристикам, основанные на методах математической статистики.

2. Модельное время

Для того чтобы обеспечить правильную временную последовательность событий в имитационной модели, используются системные часы, хранящие значение текущего модельного времени. Изменение значения модельного времени осуществляется в соответствии с принципом «пересчета времени до ближайшего события». Например, если текущее значение модельного времени равно 25, а очередные события должны наступить в моменты времени 31, 44 и 56, то значение модельного времени увеличивается сразу на 6

единиц и «продвигается» до значения равного 31. Отметим, что единицы времени в модели не обязательно должны быть конкретными единицами времени, такими как секунда или час. Основной единицей времени в модели можно выбрать любую единицу, которая позволит получить необходимую точность моделирования. Важно помнить, единицы времени выбираются исходя из требований пользователя к точности моделирования. Какая бы единица ни была выбрана, например, миллисекунда или одна десятая часа, она должна неизменно использоваться во всей модели.

3. Типовые процедуры имитационного моделирования

- 1. Выработка случайных величин:
 - равномерно распределенных;
 - с заданным законом распределения.
- 2. Формирование потоков заявок и имитация обслуживания.
- 3. Организация очередей заявок.
- 4. Организация службы времени.
- 5. Сбор и статистическая обработка результатов моделирования.

3.1. Генерирование равномерно распределенных случайных величин

Функционирование элементов системы, подверженных случайным воздействиям, задается генератором (датчиком) случайных чисел: *аппаратными* или *программными*.

Генераторы случайных чисел в ЭВМ обычно реализуются программными методами, вырабатывающими псевдослучайные последовательности.

Псевдослучайными последовательностями называются вполне детерминированные числа, обладающие:

- статистическими свойствами случайных чисел, определяемых путем их поверки специальными тестами,
- периодичностью, т.е. повторяемостью через определенные промежутки времени.

Количество случайных величин, вырабатываемых между двумя одинаковыми значениями, называется *длиной периода генератора* случайных величин.

При моделировании используются интервалы последовательностей псевдослучайных чисел, в которых нет ни одного числа, встречающегося более одного раза.

3.1.1. Методы генерирования случайных чисел

При генерировании случайных чисел, распределенных по любым законам, в качестве исходных используют генераторы равномерно распределенных случайных чисел в интервале (0,1). Наибольшее распространение получили следующие методы генерирования:

- метод квадратов;
- метод произведений;
- мультипликативный конгруэнтный метод;
- прочие методы.

Метод квадратов. В квадрат возведено текущее случайное число и из результатов средних разрядов выделяется следующее случайное число.

Исх.число	Квадрат	Сл.число
1357	01 8414 49	0,8414
8414	70 7953 96	0,7953
7953	63 2502 09	0,2502

2502	06 2600 04	0,2600
2600	06 7600 00	0,7600
7600	05 7600 00	0,7600

Метод произведений. Два следующих друг за другом случайных числа умножают и из произведения средних разрядов выделяют следующее случайное число.

Пример. Ядро = 5167

Множитель	Произведение Сл.число	
3729		0,2677
	19 26 77 43	
7743	40 0080 81	0,0080
8081	41 7545 27	0,7545
4527	23 3910 09	0,3910
1009	05 2135 03	0,2135
3501	18 1000 01	0,1000
0001	00 0051 67	0,0051
5167	26 6978 89	0,6978
7889		

Мультипликативный конгруэнтный метод. На каждом шаге полученное случайное число (множимое) умножается на некоторое постоянное число (множитель) и затем делится на другое постоянное число (делитель). В качестве нового случайного числа принимается остаток от деления.

Пример. Первое постоянное число (множитель) = 1357; второе постоянное число (делитель)=5689.

Исходное	Произведение	Частное,	Остаток	Случайное
число		целая часть		число
1357	1 8414 49	323	3902	0,3902
3902	5 2950 14	930	4244	0,4244
4244	5 7591 08	1012	1840	0,1840
1840	2 4968 80	438	5098	0,5098

3.1.2. Проверка генераторов равномерно распределенных псевдослучайных чисел

Различают три вида проверки генераторов равномерно распределенных псевдослучайных чисел:

- 1) на периодичность;
- 2) на случайность;
- 3) на равномерность.

Проверка на периодичность. Проверка требует обязательного определения длины периода.

Проверка на случайность. При проверке на случайность рекомендуется использовать совокупность тестов проверки:

- 1) частот;
- пар;

- 3) комбинаций;
- 4) серий;
- 5) корреляции.

Тест проверки частот предполагает разбиение диапазона распределения на несколько интервалов и подсчет количества (частот или вероятностей) попаданий случайных чисел в выделенные интервалы.

Тест проверки пар заключается в подсчете количества "1" для каждого *разряда* случайного числа.

Тест проверки комбинаций сводится к подсчету количества "1" в случайных числах.

Тест проверки серий заключается в подсчете количества различных длин последовательностей одинаковых значений (1 или 0) случайных чисел.

Тест проверки корреляции заключается в определении коэффициента корреляции между последовательностями случайных чисел, вырабатываемых двумя разными генераторами.

Проверка на равномерность. При проверке на равномерность можно использовать тест проверки частот, так как гистограмма частот хорошо отражает равномерность распределения случайных чисел по всему диапазону изменения.

3.1.3. Методы генерирования псевдослучайных чисел с заданным законом распределения

Для генерирования псевдослучайных чисел, распределенных по заданному закону, наиболее распространены следующие методы:

- аналитический (метод обратной функции);
- табличный;
- метод композиций, основанный на функциональных особенностях генерируемых распределений.

Аналитический метод заключается в построении математической зависимости, связывающей значения случайной величины со значениями соответствующей функции распределения.

Достоинства аналитического метода:

- точность метода;
- не требуется составления и хранения в памяти таблиц.

Недостатки:

- метод распространяется только на те функции, которые позволяют вычислить интеграл от функции плотности аналитически;
- использование численных методов вычисления интегралов приводит к ошибкам и большим затратам машинного времени;
- выражение, используемое для вычислений, содержит в себе функции вычисления логарифмов, возведения в степень, вычисления радикалов, что требует значительных затрат машинного времени.

Табличный метод. Формируется таблица, содержащая пары чисел: значение функции распределения и соответствующее ему значение случайной величины. Таким образом, в качестве аргумента используется равномерно распределенное случайное число, а в качестве функции - последовательность случайных чисел с соответствующим законом распределения.

Значение случайного числа, находящегося между узлами табулирования, находится методом линейной интерполяции.

Достоинства табличного метода:

- имеется возможность генерировать случайные последовательности с любым заданным законом;
- любую заданную точность можно получить при увеличении количества интервалов;
- требуется только один генератор равномерно распределенных случайных чисел и выполнение несложных операций, занимающих мало времени.

Метод композиций основан на функциональных особенностях распределений, таких как Эрланга и гиперэкспоненциального. Метод используется, как правило, в тех случаях, когда аналитически не удается вычислить интеграл от функции плотности.

Для оценки качества случайных последовательностей с заданным законом распределения наиболее часто используют тест проверки частот и метод доверительного интервала для математического ожидания.