assignment-4

NAME: Shuvam Jena(21BAI1131) MAIL:shuvam.jena2021@vitstudent.ac.in

[1]:

#Grapes to Greatness: Machine Learning in Wine Quality Prediction

• Task 1: Load the Dataset

[2]:

[2]:		fixed_acidity	vola	tile_acidity	citric_acid	resid	ual_sugar	chlorides	\
L-3.	0	7.4		0.70	0.00		1.9	0.076	\
	1	7.8		0.88	0.00		2.6	0.098	
	2	7.8		0.76	0.04		2.3	0.092	
	3	11.2		0.28	0.56		1.9	0.075	
	4	7.4		0.70	0.00		1.9	0.076	
		free_sulfur_di	oxide	total_sulfu	r_dioxide	densi	ty pH	sulphates	\
	0		11.0		34.0		3.51	0.56	
						0.997			
					8				
	1		25.0		67.0		3.20	0.68	

			0.9	996	
			8		
2		15.0	54.0	3.26	0.65
			0.9	997	
			0		
3		17.0	60.0	3.16	0.58
			0.9	998	
			0		
4		11.0	34.0	3.51	0.56
			0.9	997	
			8		
	alcohol qua	lity			
0	9.4	5			
1	9.8	5			
2	9.8	5			
3	9.8	6			
4	9.4	5			

• Task 2: Data preprocessing including visualization

[3]:

[3]: (1599, 12)

[4]:

<class

'pandas.core.frame.DataFram e'>RangeIndex: 1599 entries, 0 to 1598 Data columns

(total 12 columns):

Column

Non-Null Count Dtype

0	fixed_acidity	1599	non-null	float64
1	volatile_acidity	1599	non-null	float64
2	citric_acid	1599	non-null	float64
3	residual_sugar	1599	non-null	float64

4	chlorides	1599	non-null	float64
5	free_sulfur_dioxide	1599	non-null	float64
6	total_sulfur_dioxide	1599	non-null	float64
7	density	1599	non-null	float64
8	рН	1599	non-null	float64
9	sulphates	1599	non-null	float64
10	alcohol	1599	non-null	float64
11	quality	1599	non-null	int64

[5]:

dtypes: float64(11), int64(1) memory usage: 150.0 KB

fixed_acidity	0
volatile_acidity	0
citric_acid	0
residual_sugar	0
chlorides	0
free_sulfur_dioxide	0
total_sulfur_dioxide	0
density	0
рН	0
sulphates	0
alcohol	0
quality	0
dtype: int64	
	citric_acid residual_sugar chlorides free_sulfur_dioxide total_sulfur_dioxide density pH sulphates alcohol quality

[6]:

[[6]:		fixed_acidity	volatile_acidity	citric_acid	residual_sugar \
		count	1599.000000	1599.00000	1599.00000	1599.000000
				0	0	

mean	8.319637	0.5	527821 0.27097 2 6		2.	538806		
std 1.741096		0.1	79060			409928		
min	4.600000	0.1	20000	-	00000	0.	900000	
25%	7.100000	0.3	90000	0.0	9000	1.9	1.900000	
50%	7.900000	0.5	20000	0.2 0	26000	2.:	200000	
75%	9.200000	0.6	540000	0.4 0	2000	2.	600000	
max	15.900000	1.5	80000	1.0 0	00000	15.	500000	
	chlorides	free_sulfur_di	oxide	total_	_sulfur_	_dioxide	density	\
cou	1599.00000	1599.0000		1599.0000		1599.00000	П	
nt	0	00			00)	0	
mea	0.08746	15.	15.87492			46.46779	0.996747	
n	7	2				2		
std	0.04706	10.46015				32.89532	0.001887	
	5	7				4		
min	0.01200	1.00000		6.00000		0.990070		
	0	0	0			0		
25%	0.07000		00000	22.00000		0.995600		
	0	0		0				
50%	0.07900		.00000	38.00000		0.996750		
750/	0	0	00000	0		0.007035		
75%	0.09000 0	21. 0	.00000	62.00000		0.997835		
max	0.61100		.00000	0 289.0000		1.003690	Н	
Παλ	0.01100	0	.00000			0	1.003030	
							<u> </u>	
	рН	sulphates		cohol		uality		
cou		1599.00000		.00000 1599.000000				
nt 0 0 0								

mea	3.31111	0.658149	10.42298	5.636023
	3	0.0501.15	3	3.030023
n	3		3	
std	0.15438	0.169507	1.06566	0.807569
	6		8	
min	2.74000	0.330000	8.40000	3.000000
	0		0	
25%	3.21000	0.550000	9.50000	5.000000
	0		0	
50%	3.31000	0.620000	10.20000	6.000000
	0		0	
75%	3.40000	0.730000	11.10000	6.000000
	0		0	
max	4.01000	2.000000	14.90000	8.000000
	0		0	

[7]:

[7]:	fixed_acidity	volatile_acidity	citric_acid	\
fixed_acidity	1.000000	-0.256131	0.671703	
volatile_acidity	-0.256131	1.000000	-0.552496	
citric_acid	0.671703	-0.552496	1.000000	
residual_sugar	0.114777	0.001918	0.143577	
chlorides	0.093705	0.061298	0.203823	
free_sulfur_dioxide	-0.153794	-0.010504	-0.060978	
total_sulfur_dioxide	-0.113181	0.076470	0.035533	
density	0.668047	0.022026	0.364947	
рН	-0.682978	0.234937	-0.541904	
sulphates	0.183006	-0.260987	0.312770	
alcohol	-0.061668	-0.202288	0.109903	
quality	0.124052	-0.390558	0.226373	

residual_sugar chlorides free_sulfur_dioxide \

fixed_acidity	0.114777	0.093705	-0.153794
volatile_acidity	0.001918	0.061298	-0.010504
citric_acid	0.143577	0.203823	-0.060978
residual_sugar	1.000000	0.055610	0.187049

11 11	0.055610	-	22222		205562	
chlorides			.000000	0.005562		
free_sulfur_dioxide	0.187049		.005562	1.000000		
total_sulfur_dioxide	0.203028	0.	.047400	0.667666		
density	0.355283	0.	200632	-0.	021946	
pH	-0.085652	-0.	.265026	0.0	070377	
sulphates	0.005527	0.	.371260	0.0	051658	
alcohol	0.042075	-0.	.221141	-0.	069408	
quality	0.013732	-0.	.128907	-0.	050656	
	total_sulfur_dioxid	e	density	pН	sulphates	\
fixed_acidity	_		0.668047	_	0.183006	
_ ,	0.1131	81		0.682978		
volatile_acidity			0.022026		_	
					0.260987	
citric_acid	0.035	533	0.364947	_	0.312770	
	0.000			0.541904		
residual_sugar	0 203	028	0.355283		0.005527	
residuai_sugai	0.203	020		0.085652	0.003327	
chlorides	0.047	400	0.200632		0.371260	
cinoriaes	0.047	700	0.200032	0.265026	0.571200	
free_sulfur_dioxide	0.667	666	_	0.070377	0.051658	
iree_suirur_dioxide	0.007	000	0.021946	0.070377	0.031036	
total_sulfur_dioxide	1 000	000	0.021940		0.042947	
total_sulful_uloxide	1.000	000	0.071209		0.042947	
al a sa a i ta s	0.071	200	1 000000	0.066495	0.140506	
density	0.071	269	1.000000		0.148506	
				0.341699		
pH	-	٥-		1.000000	-	
			0.341699		0.196648	
sulphates	0.042	947	0.148506	_	1.000000	
				0.196648		
alcohol	-			0.205633	0.093595	
	0.2056	54	0.496180			
quality	-		_	_	0.251397	
	0.1851	00	0.174919	0.057731		
	alcohol qual	itv				
	aiconoi quai	ıty				

fixed_acidity	-0.061668	0.124052
volatile_acidity	-0.202288	-0.390558
citric_acid	0.109903	0.226373
residual_sugar	0.042075	0.013732
chlorides	-0.221141	-0.128907
free_sulfur_dioxide	-0.069408	-0.050656
total_sulfur_dioxide	-0.205654	-0.185100
density	-0.496180	-0.174919
рН	0.205633	-0.057731
sulphates	0.093595	0.251397
alcohol	1.000000	0.476166
quality	0.476166	1.000000

[8]:

[8]:	quality	1.000000		
	alcohol	0.476166		

sulphates	0.251397			
citric_acid	0.226373			
fixed_acidity	0.124052			
residual_sugar	0.013732			
free_sulfur_dioxide	-0.050656			
рН	-0.057731			
chlorides	-0.128907			
density	-0.174919			
total_sulfur_dioxide	-0.185100			
volatile_acidity	-0.390558			
Name: quality, dtype:	float64			

[9]:

Univariate Analysis

<ipython-input-9-8b271c44c149>:1: UserWarning:

'distplot' is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see

 $\frac{https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5}{751}$

sns.distplot(df.sulphates)

: <Axes: xlabel='sulphates', ylabel='Density'>

[10]:

: <seaborn.axisgrid.FacetGrid at 0x7ddd8a543160>

Bivariate Analysis

[11]:

: <Axes: xlabel='sulphates', ylabel='pH'>

[12]:

: <Axes: xlabel='alcohol', ylabel='pH'>

Multivariate Analysis

[13]:

: <seaborn.axisgrid.PairGrid at 0x7ddd4f583280>

[14]:

• : <Axes: >

Outlier Detection and removal by percentile method & IQR MEthod

[16]:

[16]:	fixed_acidity	volatile_acidity citric_acid		residual_sugar	chlorides
					\
0	7.4	0.70	0.00	1.9	0.076
1	7.8	0.88	0.00	2.6	0.098

3 11.2 0.28 0.56 1.9 0.	092 075 076 es \
4 7.4 0.70 0.00 1.9 0.	076
free sulfur dioxide total sulfur dioxide density pH sulphat	es \
	- (
co_caar_aromae cotal_carrant_aromae acrisity pri sarpinat	
0 11.0 34.0 3.51 0.56	
0.997	
8	
1 25.0 67.0 3.20 0.68	
0.996	
8	
2 15.0 54.0 3.26 0.65	
0.997	
0	
3 17.0 60.0 3.16 0.58	
0.998	
0	
4 11.0 34.0 3.51 0.56	
0.997	
8	

0	9.4	5
1	9.8	5
2	9.8	5
3	9.8	6
4	9.4	5

alcohol quality

```
f1 = df.fixed_acidity.quantile(0.25) #Q1
f3 = df.fixed_acidity.quantile(0.75) #Q3
IQR_f = f3 - f1
upper_limit_f = f3+(1.5)*(IQR_f)
lower_limit_f = f1-(1.5)*(IQR_f)
print(f1)
print(f3) print(IQR_f)
print(upper_limit_f)
print(lower_limit_f)
[49]:
```

```
7.1
8.9
1.80000000000000000007
11.60000000000000001
4.3999999999999999
```

[51]:

```
[51]: <Axes: >
```


[47]:

5.6

11.6

[48]:

[48]: <Axes: >

Removing outliers from volatile_acidity column

```
v1 = df.volatile_acidity.quantile(0.25) #Q1
v3 = df.volatile_acidity.quantile(0.75) #Q3
IQR_v = v3 - v1
upper_limit_v = v3+(1.5)*(IQR_v)
lower_limit_v = v1-(1.5)*(IQR_v)
print(v1)
print(v3) print(IQR_v)
print(upper_limit_v)
print(lower_limit_v)
[22]:
```

```
[23]:

0.3925

0.64

0.2475

1.01125

0.021250000000000047
```

[23]: <Axes: >

Removing outliers from citric_acid column

```
c1 = df.citric_acid.quantile(0.25) #Q1
c3 = df.citric_acid.quantile(0.75) #Q3
IQR_c = c3 - c1
upper_limit_c = c3+(1.5)*(IQR_c)
lower_limit_c = c1-(1.5)*(IQR_c)
print(c1)
print(c3) print(IQR_c)
print(upper_limit_c)
print(lower_limit_c)
[24]:
```

0.09

0.41

0.3199999999999995

0.889999999999999

-0.389999999999999

[25]:

Removing outliers from residual_sugar column

```
r1 = df.residual_sugar.quantile(0.25) #Q1
r3 = df.residual_sugar.quantile(0.75) #Q3
IQR_r = r3 - r1
upper_limit_r = r3+(1.5)*(IQR_r)
lower_limit_r = r1-(1.5)*(IQR_r)
print(r1)
print(r3) print(IQR_r)
print(upper_limit_r)
print(lower_limit_r)
[26]:
```


[34]:

1.43.0159999999999854

[35]:

[35]: <Axes: >

Removing outliers from chlorides column

```
ch1 = df.chlorides.quantile(0.25) #Q1
ch3 = df.chlorides.quantile(0.75) #Q3
IQR_ch = ch3 - ch1
upper_limit_ch = ch3+(1.5)*(IQR_ch)
lower_limit_ch = ch1-(1.5)*(IQR_ch)
print(ch1)
print(ch3)
print(IQR_ch)
print(lower_limit_ch)
print(lower_limit_ch)
[36]:
```

[37]:

0.07

0.089

0.0189999999999999

0.11749999999999998

0.041500000000000002

[37]: <Axes: >

[44]:

0.049890000000000004

0.106

[45]:

[45]: <Axes: >

Removing outliers from free_sulfur_dioxide column

```
fs1 = df.free_sulfur_dioxide.quantile(0.25) #Q1
fs3 = df.free_sulfur_dioxide.quantile(0.75) #Q3
IQR_fs = fs3 - fs1
upper_limit_fs = fs3+(1.5)*(IQR_fs)
lower_limit_fs = fs1-(1.5)*(IQR_fs)
print(fs1)
print(fs3) print(IQR_fs)
print(upper_limit_fs)
print(lower_limit_fs)
[52]:
```

[53]:

8.0

21.0

13.0

40.5

-11.5

[53]: <Axes: >

Removing outliers from total_sulfur_dioxide column

```
ts1 = df.total_sulfur_dioxide.quantile(0.25) #Q1 ts3
= df.total_sulfur_dioxide.quantile(0.75) #Q3 IQR_ts
= ts3 - ts1
upper_limit_ts = ts3+(1.5)*(IQR_ts)
lower_limit_ts = ts1-(1.5)*(IQR_ts)
print(ts1)
print(ts3) print(IQR_ts)
print(upper_limit_ts)
print(lower_limit_ts)
[54]:
```

23.0 57.0 34.0 108.0 -28.0

[55]:

[60]:

9.0

89.0

[61]:

[61]: <Axes: >

Removing outliers from density column

```
d1 = df.density.quantile(0.25) #Q1
d3 = df.density.quantile(0.75) #Q3
IQR_d = d3 - d1
upper_limit_d = d3+(1.5)*(IQR_d)
lower_limit_d = d1-(1.5)*(IQR_d)
print(d1)
print(d3) print(IQR_d)
print(upper_limit_d)
print(lower_limit_d)
[62]:
```

[63]:

```
0.99550.997450.0019499999999989631.00037499999999980.99257500000000002
```

```
[63]: <Axes: >
```


[64]:

0.9933132

1.0

[65]:

[65]: <Axes: >

Removing outliers from pH column

```
pH1 = df.pH.quantile(0.25) #Q1
pH3 = df.pH.quantile(0.75) #Q3
IQR_pH = pH3 - pH1
upper_limit_pH = pH3 + (1.5)*(IQR_pH) \quad lower_limit_pH = pH1 - (1.5)*(IQR_pH) \quad print(pH1)
print(pH3)
print(IQR_pH)
print(upper_limit_pH)
print(lower_limit_pH)
[66]:
```

[67]:

3.2425

3.41

0.1674999999999998

3.66125

2.99125

[67]: <Axes: >

[68]:

3.06

3.6066

[69]:

[69]: <Axes: >

[74]:

0.44

0.9

[75]:

[75]: <Axes: >

[76]:

9.0

12.724

[77]:

[77]: <Axes: >

[233]:

Therefore all the outliers are removed

Task - 3: Machine Learning Model Building

[233]:	fixed_acidity	volatile_acidity	citric_acid	residual_sugar		chlorides
						\
0	7.4	0.70	0.00		1.9	0.076
1	7.8	0.88	0.00		2.6	0.098
2	7.8	0.76	0.04		2.3	0.092
3	11.2	0.28	0.56		1.9	0.075
4	7.4	0.70	0.00		1.9	0.076
	free_sulfur_did	oxide total_sulfu	ır_dioxide	densit	у рН	sulphates \
0		11.0	34.0		3.51	0.56
				0.997		
			8			
1		25.0	67.0		3.20	0.68
				0.996		
			8			
2		15.0	54.0		3.26	0.65
				0.997		
			0			
3		17.0	60.0		3.16	0.58
				0.998		
			0			
4		11.0	34.0		3.51	0.56
				0.997		
			8			

9.

9.

9.

9.

9.

[234]:

0 5

Name: quality, dtype: int64

Label Binarisation (Conidering alcohol quality > 7 as good and assigning '1' to it else assigning o')

[235]:

[236]:

[237]:

Name: quality, Length: 866, dtype: int64

```
[238]:
[238]: (692, 11)
[239]:
[239]: (174, 11)
[240]:
[242]:
(866,) (692,) (174,)
    Decision Tree Classifier
[242]: DecisionTreeClassifier(criterion='entropy', max_depth=2)
[243]:
 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
        0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0,
                            0, 0])
```

[245]:

Task - 4: Evaluating the model (Decision tree classifier) [246]: [247]: Testing Accuracy = 0.8793103448275 862 Training Accuracy = 0.8916184971098 265 **Random Forest Classifier** [247]: RandomForestClassifier(criterion='entropy', n_estimators=200) [248]: Task - 4: Evaluating Random Forest Model [249]:

```
[251]:
```

Testing Accuracy = 0.942528735632 1839Training Accuracy = 1.0

Naive Bayesian Classification Model

[251]: GaussianNB() [252]:

Task - 4: Evaluating Naive Bayesian Classification Model

[254]:

[254]: 0.8850574712643678

Accuracies of all the algorithms used in model nuilding phase :

Decision Tree Classification: 87.93 %

Random Forset Classification: 94.25 %

Naive Bayesian Classification: 88.50 %

[262]:

•

- Conclusion: Random Forest Classifier Model is best suited for the wine qualitydataset.
- Task 5: Test with random observation

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439:
UserWarning: X does not have valid feature names, but
DecisionTreeClassifier was fitted with featurenames
warnings.warn(

[262]: array([0])

[263]:

According to "decision tree classifier" model, the above random observation gives prediction "array([o])" i.e., bad quality alcohol

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439:
UserWarning: X does not have valid feature names, but
RandomForestClassifier was fitted with feature names
warnings.warn(

[263]: array([0])

[264]:

According to "Random Forest classifier" model, the above random observation gives prediction "array([0])" i.e., bad quality alcohol

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X doesnot have valid feature names, but GaussianNB was fitted with feature names warnings.warn(

[264]: array([0])

According to "Naive Bayesian classifier" model, the above random observation givesprediction "array([o])" i.e., bad quality alcohol

- CONCLUSION: For the same random observation, all the three modelsgave the "alchohol quality is BAD"
- 1 The End !!!!