2024/11/22

2200012917 徐靖

1

(1)

XY 表示在自己国家军队强时选择 $X \in \{A, N\}$, 弱时选择 $Y \in \{A, N\}$ 不同路径下最终收益为:

国家 2

		攻击-强	攻击-弱	不攻击-强	不攻击-弱
国家 1	攻击-强	- c_h, -c_h	v - c_h, -c_l	v, 0	v, 0
	攻击-弱	- c_l,v -c_h	- c_l, -c_l	v, 0	v, 0
	不攻击-强	0, v	0, v	0, 0	0, 0
	不攻击-弱	0, v	0, v	0, 0	0, 0

双变量矩阵形式的博弈表述:

国家1\国家2	AA	AF	FA	FF
AA	$rac{v-2c_l-2c_h}{4}, rac{v-2c_l-2c_h}{4}$	$rac{2v-c_l-c_h}{4},rac{v-2c_h}{4}$	$rac{3v-c_h-c_l}{4}, -rac{c_l}{2}$	v,0
AF	$rac{v-2c_h}{4}, rac{2v-c_l-c_h}{4}$	$rac{v-c_h}{4},rac{v-c_h}{4}$	$rac{2v-c_h}{4},rac{v-c_l}{4}$	$\frac{v}{2},0$
FA	$-rac{c_l}{2},rac{3v-c_h-c_l}{4}$	$rac{v-c_l}{4},rac{2v-c_h}{4}$	$rac{v-c_l}{4},rac{v-c_l}{4}$	$\frac{v}{2}$, 0
FF	0, v	$0, rac{v}{2}$	$0, \frac{v}{2}$	0,0

(2)

对于 $v=12, c_l=4, c_h=8$, 我们有

国家1\国家2	AA	AF	FA	FF
AA	-3,-3	3,-1	6,-2	12,0
AF	-1,3	1,1	4,2	6,0
FA	-2,6	2,4	2,2	6,0
FF	0,12	0,6	0,6	0,0

纯策略贝叶斯纳什均衡只有 (FF, AA) 和 (AA, FF)

(3)

对于 $v = 12, c_l = 8, c_h = 16$, 我们有

国家1\国家2	AA	AF	FA	FF
AA	-9,-9	0,-5	3,-8	12,0
AF	-5,0	1,1	4,1	6,0
FA	-8,3	1,4	-1,-1	6,0
FF	0,12	0,6	0,6	0,0

纯策略贝叶斯纳什均衡只有 (FF,AA) , (AA,FF), (AF,AF)

2

(1)

$$T_1 = \{\{\alpha\}, \{\beta, \gamma\}, \{\delta\}\}\$$

 $T_2 = \{\{\alpha, \beta\}, \{\gamma, \delta\}\}\$

(2)

$$K_{1}A = \{\beta, \gamma, \delta\}$$

 $K_{2}K_{1}A = \{\gamma, \delta\}$
 $K_{1}K_{2}K_{1}A = \{\delta\}$
 $K_{2}K_{1}K_{2}K_{1}A = \emptyset$

设进入为E, 不进入为 N, 对于给定的 c_1, c_2 , 收益矩阵为:

企业2

		E	N
企业1	E	3-c_1,3-c_2	10-c_1, 0
	N	0, 10-c_2	0, 0

规定 $s_i(\theta_i)=1$ 表示在私人信息为 θ_1 的情形下选 E, 反之 $s_i(\theta_i)=0$ 表示选 N 假如参与者 2 的最优反应是 E, 当且仅当

$$egin{aligned} \mathbb{E}(v_2(1,s_j(heta_j))|c_2) &\geq E(v_2(0,s_j(heta_j))|c_2) \ \Leftrightarrow &rac{1}{5}\int_0^5 10 - c_2 - 7s_1(heta_1)\mathrm{d} heta_1 \geq 0 \ \Leftrightarrow &c_2 \leq 10 - rac{7}{5}\int_0^5 s_1(heta_1)\mathrm{d} heta_1 \end{aligned}$$

由于两方是对称的,因此双方都执行阈值策略,不妨设阈值分别为 $\hat{ heta_1},\hat{ heta_2}$,则有

$$\hat{ heta_i} = 10 - rac{7}{5} \int_0^5 s_j(heta_j) \mathrm{d} heta_j = 10 - rac{7}{5} \int_0^{\min\{\hat{ heta_j}, 5\}} \mathrm{d} heta_j = 10 - rac{7}{5} \min\{\hat{ heta_j}, 5\}$$

解得
$$\hat{ heta_1}=\hat{ heta_2}=rac{25}{6}<5$$

综上,唯一的nash均衡为
$$s_i=egin{cases} E, & c_i\leq rac{25}{6}, \ N, & c_i>rac{25}{6} \end{cases}, i\in\{1,2\}$$

4

不妨设该对称策略为 s(v). 对玩家1 我们记除他之外的最高私人价值为 b

首先 s 是单调增的,假如存在 $s(v_1) < s(v_2), v_1 > v_2$. 对 s(b) 情形,若 $s(b) \leq s(v_1)$ or $b \geq s(v_2)$,玩家1 在私人价值为 v_1, v_2 时 $s(v_1), s(v_2)$ 均无差异.若 $s(v_1) < s(b) < s(v_2)$,由 s 无可获利一次偏离知玩家1 在私人价值为 v_2 时有 $v_2 \geq s(b)$. 从而 $v_1 > v_2 \geq s(b) \geq s(v_1)$,此时 s 略微提价即为可获利偏离,矛盾.

考虑玩家1 私人价格为v, 出价为s', 其他人出价遵循s 时的期望收益:

$$\mathbb{E}(u(v)) = rac{\int_0^{s^{-1}(s')} rac{1}{2} (2v - s(b) - s') b^{n-2} \mathrm{d}b}{\int_0^1 b^{n-2} \mathrm{d}b}$$

解一阶条件 $\left. \frac{\partial \mathbb{E}(u(v))}{\partial s'} \right|_{s(v)} = 0$ 得,

$$(2v-2s'^*)rac{\partial s^{-1}(s'^*)}{\partial s'}=rac{s^{-1}(s'^*)}{n-1}$$

假如所有人出价遵循 s 是nash均衡,则 $s'^*=s(v)$,从而得到 s 满足的常微分方程

$$s(v) + \frac{v}{2n-2}s'(v) - v = 0$$

解得 $s(v)=rac{2n-2}{2n-1}v$