1.7 Обработка информации

Множество сообщений N представляет интерес только тогда, когда ему соответствует (по крайней мере одно) множество сведений I и определено соответствующее правило интерпретации $\varphi:N\to I$ (см.п. 1.2). Так как множеству сообщений N' тоже соответствует некоторое множество сведений I' (и правило интерпретации φ'), то любоу правило обработки сообщений $\nu:N\to N'$ (см. п. 1.6) приводит к следующей диаграмме:

$$\begin{array}{ccc} \mathbf{N} \stackrel{\varphi}{\to} I \\ \nu \downarrow & \Downarrow \sigma \\ \mathbf{N} \stackrel{\varphi'}{\to} I' \end{array} \tag{*}$$

Эта диаграмма определяет соответствие между множествами I и I'. Так как согласно диаграмме (*) каждому сообщению $n \in N$ соответствует пара сведений $i = \varphi(n) \in I$ и $i' = \varphi(\nu(n)) \in I'$, построенное соответствие между I и I' (обозначим его через σ), вообще говоря, не является отображением. В самом деле, если правило интерпретации φ не является однозначным (инъективным, когда разные переходят в разные), т.е. если существуют два разлинчых сообщения $n_1, n_2 \in N, n_1 \neq n_2$, передающих одинаковую информацию $i = \varphi(n1) = \varphi(n2)$, то может оказаться, что $\varphi'(\nu(n1)) \neq \varphi'(\nu(n2))$ и, следовательно, одной информации $i \in I$ будут соответствовать (по крайней мере) две различных информации $i'_1 = \varphi'(\nu(\varphi^{-1}(i)))$.

Во всех случаях, когда соответствие σ является отображением, правило обработки сообщений ν называется **сохраняющим информацию**. Если правило обработки сообщений ν сохраняет информацию, то диаграмма

$$\begin{array}{ccc} \mathbf{N} \stackrel{\varphi}{\rightarrow} I \\ \nu \downarrow & \downarrow \sigma \\ \mathbf{N} \stackrel{\varphi'}{\rightarrow} I' \end{array} \tag{**}$$

коммутативна: $\nu\bigcirc\varphi'=\varphi\bigcirc\sigma$. Отображение σ называется в этом случае **правилом обработки информации**.

Обычно обработку информации сводят к обработке сообщений, т. е., исходя из требуемого правила обработки информации σ , пытаются определить отображения ν , φ и φ' таким образом, чтобы диаграмма (**) была коммутативной.

Если σ - обратимое (взаимно однозначное) отображение, т. е. если информация при обработке по правилу σ не теряется, то соответствующую обратку сообщений ν называют **перешифровкой**.

Пусть ν - обратимая перешифровка. Тогда по сообщению $n'=\nu(n)$ можно восстановить не только исходную информацию, но и само исходное сообщение n. Иными словами, в этом случае n' кодирует n (см. п. 1.4). Обратимая перешифровка ν называется перекодировкой.

Пусть перешифровка ν не является обратимой, т. е. пусть несколько сообщений из N копируются одним и тем же сообщением из N'. Но так как при перешифровке

информация не теряется, это означает, что исходное множество сообщений N является избыточным: некотоые сообщения из N содержат одну и ту же информацию (дублируют друг друга). В N' таких дублирующих сообщений меньше, чем в N, так как при обработке по правилу ν некоторые из дублирующих друг друга сообщений «сливаются» в одно сообщение. Перешифровка ν , которая не является обратимой, называется **сжимающей**. Сжатию подвергается множество сообщений. То есть в результате необратимой перешифровки сообщений их количество уменьшается, а информация может либо сохраняться, либо теряться.

Пример 1.7.1 Пусть сообщения (a,b), составленные из пар целых чисел (например, в десятичной позиционной записи), передают информацию «рациональное число r, представленное дробью $\frac{a}{b}$ ». Тогда $N=\mathbb{Z}\times\mathbb{N}$ (где \mathbb{Z} - множество целых чисел, \mathbb{N} - множество, натуральных чисел), $I=\mathbb{Q}$ (\mathbb{Q} - множество рациональных чисел). Отображение $\varphi: N \to I$ не является обратимым, так как при любом целом n парам (a,b) и (na,nb) соответствует одно и то же рациональное число r. Пусть N' - множество пар (p,q) взаимно простых целых чисел и пусть $\nu: N \to N'$ переводит все (np,nq) в (p,q). Тогда ν - сжимающее отображение, а $\varphi': N' \to I$ - обратимое отображение (мы считаем I'=I). Такое отображение ν называется вполне сжимающей перешифровкой, поскольку после обработки сообщений соответствие между сообщениями и информацией биективно. Здесь информация не теряется.

Если σ - необратимое отображение, т. е. если разные сведения из I отображаются в одну и ту же информацию $i' \in I'$. В этом случае производится выбор из данного множества сведений.

Таким образом, «обработка информации» - это,как правило, сокращение количества информации. Во всяком случае, верно утверждение: обработка информации никогда не добавляет информацию, она состоит в том, что извлекает интересную информацию из той, которая содержится в сообщении.

Лекция 4

1.8 Автоматизация обработки информации

Вернёмся к рассмотрению диаграммы (**). Если заменить на ней отображение φ обратным отображение $\psi = \varphi^{-1}$, получим новую диаграмму:

$$\begin{array}{c}
N \xrightarrow{\psi} I \\
\nu \downarrow \qquad \downarrow \sigma \\
N' \xrightarrow{\varphi'} I'
\end{array}$$

Автоматизация обработки информации заключается в выполнении σ или $\varphi^{-1} \bigcirc \nu \bigcirc \varphi'$ при помощи физических устройств. Однако в программировании изучаются методы автоматического выполнениия только отображения ν , т. е. обработки сообщений. Программно-аппаратная реализация отображений ψ, φ' изучается в другом разделе информатики, который называется «Искусственный интеллект» - и потому выходят за рамки нашего курса.