O(10) $S(D)$ $O(10)$ $O(10)$
$Q(.) R(B,D) R_2(A,BC,E)$
$R_{1}(\{B,D\})$ $R_{2}(\{A,E\})$ $R_{3}(\{A,B,C\})$
For R, computex ^t (B,F)={B,D}=R, by theorem B is a superkey. Since computex ^t (D,F)={D}, so D->B&F ^t . So R, is BCNF
Fince amputer (DF) = {U}, so DOSEF 1. SO R, IS BUTE
For R_{\perp} compareX(E, E)= {A, E}=R_{1}, by theorem E is a superbey.
Since computex+(A, F) = {A}, SO A \rightarrow E $\not\in$ F+, SO R ₂ is BWF
For R_3 , compute $X^+(A, F_3) = \{A,B,C\}$, by theorem A is a superbey
Since complete $X^{+}(B,F) = \{B\}$, and complete $X^{+}(C,F_3) = \{c\}$, $\{B \rightarrow A, B \rightarrow C, C \rightarrow A, C \rightarrow B\}$ are not in $I = f$
SORS is BCNF?
Q1.2 W Replace A > BCD with A > B. A > C, A > D, replace BL > DE with BL > D, BC > E
{A→B,A→C,A→D, BC→E,B→D, D→A}
Remove A->D, BC->D
{A→B,A→C,BC→E,B→D, D→A}
Remore BC->E
$\{A \rightarrow B, A \rightarrow C, B \rightarrow O, D \rightarrow A\}$
(b) candidate keys are AF, BF, DF
There is no candidate bey in result = {AB, A(,BD, DA}
he add AF to result
The decomposition is R, (AB), R, (AL), R, (BD), R, (DA), R, (AF)
clearly AF is in decomposition, and its a candidate key,
$Q_{2.1} \times \rightarrow Y \Rightarrow \times Z \rightarrow YZ$ (augmentation)
X->Z => XX ->XZ (Quymentation)
$XX=X\subseteq X \Rightarrow X \rightarrow X \times (reflexivity)$
$\chi \rightarrow \chi \chi \chi \chi \rightarrow \chi Z \Rightarrow \chi \rightarrow \chi Z$ (fransitivity)
X-XZ, XZ-2YZ => X->YZ (transitivity-)
YCYZ >> YZ >> Y (reflexivity) X>YZ, YZ >> X->Y (transitivity)
X->YZ, YZ->Y => X->Y L transitivity)
a = a = a = a = a = a = a = a = a = a =
Q3.1. elim $T_{\#2}(0_{\#1}=\#_4(book\times publication))$
2dim TI#2 (O#)=#4(wrotexwrote))- T#2 (O#1=#3 (wrotexwore)))
S. Wrote — $\Pi_{\#1},\#_2(\sigma_{\#2=\#_3}(wrote \times book))$ — $\Pi_{\#1},\#_2(\sigma_{\#2=\#_2}(wrote \times journal))$