





# Binding Energies of Interstellar Complex Organic Molecules on Crystalline Water Ice Surface

Harjasnoor Kakkar, Berta Martínez-Bachs, and Albert Rimola Universitat Autònoma de Barcelona, Departament de Química, 08193, Bellaterra, Spain

Objective: A robust yet cheap hybrid methodology to obtain accurate energies for large systems

### MOLECULAR CLOUDS

- Cold and dense star-forming regions or "stellar nurseries"
- Composed of gaseous molecules and submicron dust grains
- Carbonaceous or silicate dust grains are covered with water-dominant ice mantles



Figure 2. The structure of an interstellar dust grain

(Credits: Hunarpreet Kaur)

GRAIN SURFACE CHEMISTRY

- Molecules accrete, diffuse, and react on the icy mantles
- <u>Astrochemical models require</u> accurate binding energies as input parameters



Figure 1. "Cosmic Cliffs", the edge of a young star-forming region in the Carina Nebula. Image taken by JWST (Credits: NASA, ESA, CSA, and STScI)

## INTERSTELLAR COMPLEX ORGANIC MOLECULES (iCOMs)

- Molecules containing more than 6 atoms and at least one C
- Out of approximately 270 observed interstellar molecules, nearly 40% are iCOMs
- Potential link between interstellar chemistry and the emergence of life on Earth

# METHODS FOR BE CALCULATION

Density Functional Theory: B3LYP-D3(BJ)/Ahlrichs-TVZ

Refinement using CCSD(T) with an ONIOM2-like approximation

Cost-effective methodology: DFT//HF-3c

HF-3c optimization followed by single-point energy calculation using DFT



Figure 3. Proton-ordered crystalline (010) water ice and amorphous water ice







Figure 4. Correlation among the BEs obtained using B3LYP-D3 (DFT), CCSD(T), and the hybrid DFT//HF-3c methods



CONCLUSIONS











Figure 5. Adsorption of  $CH_3NCO$ ,  $CH_3CH_2OH$ ,  $CH_3CHO$ , HCOOH,  $HOCH_2CHO$ , and  $CH_3COOH$  on crystalline water ice surface

### Strong H-bond cooperativity (non-dispersive interactions) leads to higher BE values

in iCOMs with higher BEs

### PERSPECTIVES

The ices in the ISM are predominantly present in the amorphous state. To account for variable binding sites and the lack of long-range order, we require a larger unit cell.

The hybrid DFT//HF-3c methodology allows for cost-effective calculations without compromising on the accuracy.

#### REFERENCES

- 1. E. Herbst, E. F. van Dishoeck, *Annu. Rev.* Astron. Astrophys. 2009, 47, 427-480
- 2. P. Caselli, C. Ceccarelli, Astron. Astrophys. Rev. 2012, 20, 56
- 3. S. Ferrero, L. Zamirri, C. Ceccarelli, A. Witzel, A. Rimola, P. Ugliengo, ApJ. 2020, 904, 11-30





Dispersion contribution is lower