

Managing Dependencies Between Software Modules Using DSM

johan.van.den.muijsenberg@alten.nl

Managing Dependencies

- Why you should care
- Reasons we fail
- How design structure matrix can help
 - Method
 - Tooling
 - VanDerLande Experiences

Business Case

Why you should care about managing dependencies

ALTEN October 28, 2012

Business Needs and Obstacles

- Development Speed → Rigidity
 - Extra effort cascading changes due to chain of dependencies
- Software Platform ←→ Immobility
 - Can not isolate reusable parts due to excessive dependencies
- - Frequent unexpected failures in other parts due to complex or implicit dependencies
- Early/continuous integration Testability
 - Can not unit test due to excessive dependencies

Dependencies are Essential

- Modularity in software needed
 - Manage complexity
 - Allow parallel work
 - Provide design flexibility through encapsulation
- Decisions on modularization affect dependencies
 - Well known design principles
 - Coupling and cohesion
 - Single responsibility principle
 - Avoid dependency cycles
 - Depend towards interfaces

Reasons We Fail

- Lack of awareness in some cases
- Lack of precision principles
- Architecture documentation intended for understanding
 - Partial description Not complete/formal Gaps
- Developers can easily violate defined architecture
 - At source code level

UML Limitations

- UML not suitable for managing dependencies
 - Easily overwhelmed by dependencies
 - Dependencies in model not in any view

Dependency Structure Matrix

A overview of the method

ALTEN October 28, 2012

DSM Overview

- Created in 1970s
- Used to manage dependencies in very complex systems

Example

NxN matrix
Same rows and columns

DSM Definition

\$root		н	2	ω	4	и	0	7	œ	9	10	11	12	13	14	15	16	17	
	U3	1		1				2						13				11	6
Utili	U2	2				13	13		3	4						2			9
Ą	U1	3				10	10	2		2	2	9	4	13		3	2	5	2
	P5	4																	
Preg	P4	5																	
sent	P3	6															1		
atior	P2	7																	
Ď	P1	8																	
	D3	9				4													
Data	D2	10															Ide	enti	ty lin
מט	D1	11																	
Utility Presentation Data Application	A6		Val	ue															
App	—A5	in	dic	ate	S			P5	s us	es	D3					1			
licat	A4	S	trer	ngth) 										5			2	
Ö	—A3	15																	1
	A2	16					1		1									1	
	—A1	17								1									

Initial DSM

Key Strength - Concise

\$roo	ot		н	2	ω	4	5	9	7	œ	9	10	11	12	13	14	15	16	17
	U3	1		1				2						13				11	6
Utili	U2	2				13	13		3	4						2			9
₹	U1	3			-	10	10	2		2	2	9	4	13		3	2	5	2
Utility Presentation Data Application	P5	4																	
Preg	P4	5																	
sent	P3	6															1		
atior	P2	7							•										
	P1	8	1 . 1 2 2 . 13 13 3 4 3 . 10 10 2 2 4 5 6 7 																
	D3	9				4													
Dat	D2	10																7	
മ	D1	11																	4
ļ	A 6	12																	
App	A5	13														1			
licat	A4	14													5			2	
ion	A3	15																	1
	A2	16					1		1										
	—A1	17								1									

Initial DSM

Key Strength - Concise

\$r	oot			ㅡ	2	ω	4	5	σ	7	∞	9
	L	Jtility	1		59	15	26		5	2	16	17
	P	resentation	2							1		
	— С	Data	3		4						7	4
		A6	4									
App	•	A5	5						1			
Application		A4	6					5			2	
Ö		A3	7									1
		—A2	8		2							
		A1	9		1							

External dependencies aggregated

Partially collapsed DSM

Key Strength - Concise

\$root		н	2	ω	4
Utility	1		59	15	66
Presentation	2				1
Data	3		4		11
Application	4		3		. `

Fully collapsed DSM

External dependencies further aggregated

Internal dependencies hidden

Can be used to represent very large systems with thousands of elements

Key Strength - Analysis

- Find layering by partitioning
- Cycles easily visible

\$root		ш	2	ω	4
Utility	1		59	15	66
Presentation	2				1
Data	3		4		11
Application	4		3		

Initial DSM

Key Strength - Analysis

Find layering by partitioning

Cycles easily visible

Consumers to top

Cycle

\$root	ш	N	Ţ	4
Presentation 1		1		
Application 2	3			
—Data 3	4	11		
Utility 4	59	66	15	

Partitioned DSM

Providers to bottom

Key Strength - Analysis

Discover public, internal and unused code

\$ro	ot		Н	2	ω	4	5	9	7	œ	9	
	Presentation	1					1					
	A6	2										Not used
App	A5	3				1						
Application	—A4	4			5			2				
Ö.	A3	5							1			Internal
	—A2	6	2									
	A1	7	1									
Data 8		4				Public	c inte	erface	9			
	Utility	9	59	26		5	2	16	17	15		

- What if scenarios can be done without changing code
 - Moving elements

A3 uses P3

Hierarchical cycle

Block triangular DSM

- What if scenarios can be done without changing code
 - Moving elements

Lower triangular DSM

- What if scenarios can be done without changing code
 - Grouping elements

Initial DSM

- What if scenarios can be done without changing code
 - Grouping elements

Block triangular DSM after partitioning

- What if scenarios can be done without changing code
 - Grouping elements

Lower triangular DSM

Grouped into A7

- What if scenarios can be done without changing code
 - Grouping elements

\$ro	ot		2	ω	4	5	9	7	œ	
	Presentation				1					
	A6	2								
App	—A1	3	1							
Application	A3	4			1					
JO JO	—A2	5	2							
	A7	6					2			
	Data				4		7			
	Utility 8			26	17	2	16	5	15	

Lower triangular DSM

Grouped into A7

Lattix

Tool to apply DSM technology to software architecture

ALTEN October 28, 2012

Introducing Lattix

- Discover and Identify Issues with Dependencies
 - Analysis using DSM techniques
- Specify/Enforce Architectures
 - Dependency rules
- Re-engineer and Refactor
 - Impact analysis
- Track, Measure and Report on Changes and Trends
 - Metrics and repository
- Wide range of input sources
 - C++, C, Java, Fortran, Ada, UML, .NET, databases, XML, Excel, LDI, etc.....

General Approach

Create Initial DSM

Extract dependencies from codebases, databases, models...

Transform the DSM

Shows "should-be" architecture

Establish and Enforce Rules

Check each build to catch violations early

Improve Structure & Impact Analysis

- Which dependencies to eliminate
- Create Components and Interfaces

Design Rules and Violations

Lattix Toolset

LDM

Snapshots are published to the Repository to build Project Tracks of versions and view deltas and trends over time for your projects

LattixWeb

View Project Tracks with Snapshots for each build over time.

- Key metrics
- Violations
- Interactive DSM
- Trends
- Work list

Van Der Lande Experiences

Quality Improvement

- Important ISO9126 Attributes
 - Maturity Frequency of failure by faults
 - Analyzability Effort for diagnosis of failures or for identification of parts to be modified
 - Testability Effort needed for validating the modified software
 - Stability Risk of unexpected effect of modifications
- Related to dependencies
 - Use DSM approach

Pilot

Problem

 Software related to volume or weight measurement must be certified by NMI and can not be changed easily

Goal

- Minimize amount of certified code
- Initial DSM analysis
 - 12% code base should certified due to indirect dependencies
- After refactoring using DSM
 - Reduced certified to 4% code base

Follow up

- Lattix integrated into build
 - Using Jenkins
- Lattix considered for architecture improvement

ALTEN October 28, 2012

- Lattix/DSM excellent for analysis/refactoring code base
 - Scales much better than UML
 - Analyze refactoring scenarios without code changes
 - Allows reasoning at higher abstraction level

- Lattix/DSM fits well in agile approach
 - Use dependency rules to document architecture
 - Avoid architecture degradation by integrating Lattix in continuous build
- Lattix/DSM used for product line architecture (Ricoh)
 - Support migration
 - Allow evolution
 - Check conformance code

- DSMs can be used for many other purposes
 - For details see book on DSM

More Information

- www.dsmweb.org
 - General information on DSMs
- www.lattix.com
 - Overview
 - Demo tour
 - Knowledge base

Thanks

Any Questions?

Visit our stand for more information

ALTEN October 28, 2012