Primitive Roots of GF(p) and Quadratic Residues

Hiroshi IMAI

(for the class on April 19)

The order of each element of Z_{13}^{st}

Multiplicative group $Z_n^* = \{x | \gcd(x, n) = 1, 1 \le x < n\}$ Euler totient function $\phi(n) = |Z_n^*|$

$$(Z_p^*,\times),Z_p^*=\{1,2,3,\cdots,p-1\},p$$
: prime Fermat's Theorem: $x^{p-1}\equiv 1\ (\mathrm{mod}\ p),\ \ p$: prime, $x\in Z_p^*$ Order of $x\in Z_p^*$: $\mathrm{ord}(x)=\min\{k>0|x^k=1\}$

E.g.,
$$Z_{13}^*$$
, $O_i = \{x | \text{ord}(x) = i\}$
 $O_1 = \{1\}, O_2 = \{12\}, O_3 = \{3,9\}, O_4 = \{5,8\}, O_6 = \{4,10\}, O_{12} = \{2,6,7,11\}$
 $\phi(1) = \phi(2) = 1, \phi(4) = \phi(6) = 2, \phi(12) = 4$

Proposition 1: $|O_k| = \phi(k)$ for k which divides p-1.

$$\Rightarrow \phi(p-1)$$
 generators, i.e., $g \in O_{p-1}$: $\{g^i \big| i=1,\cdots,p-1\} = Z_p^*$

Randomized Algorithm / Problem

Proposition 2:
$$\forall n > 1$$
: $\frac{\phi(n)}{n} = \Omega(\frac{1}{\log n})$. (in fact, $\Omega(\frac{1}{\log \log n})$)

 \Rightarrow random sampling from Z_p^* works efficiently

Propositions 3: Given the factorization of p-1, it can be tested whether a given $x \in \mathbb{Z}_p^*$ is a generator in polynomial time in $\log n$.

PROBLEM 1 (April 19):

- 1. Find all generators of Z_{17}^* . (mandatory)
- 2. Prove Propositions 1,2,3. (option)
- 3. Devise a polynomial-time algorithm to find a generator of Z_p^* , given the factorization of p-1 by using Propositions 1,2,3. (mandatory)

Quadratic Residues

 $a \in \mathbb{Z}_n^*$: quadratic residue $\Leftrightarrow \exists x : x^2 \equiv a \pmod{n}$

Proposition 4: p: odd prime, g: generator of Z_p^* Then, g^k : quadratic residue $\Leftrightarrow k$: even

Proposition 5: For prime p, $a \in \mathbb{Z}_n^*$: quadratic residue $\Leftrightarrow a^{\frac{p-1}{2}} \equiv 1 \pmod{p}$

Problem 2: For prime p and a quadratic residue $a \in \mathbb{Z}_p^*$,

- 4. Devise a randomized algorithm for finding a non-quadratic of Z_p^* (mandatory)
- 5. Using a nonquadratic residue b and prime $p \equiv 3.5.7 \pmod{8}$, devise an algorithm to find $x \in Z_p^*$ such that $x^2 \equiv a \pmod{p}$ (option)
- 6. Discuss computational relation between square roots module any n and factoring n (option)

Reports

- Submit your report via ITC-LMS.
- Deadline: July 31, 22:00
- At least submit two reports for obtaining the credits, preferably solving option parts or at least three reports for A