ENGSCI YEAR 2 WINTER 2022 NOTES

FOR CLASS CONTENT AFTER READING WEEK

Brian Chen

 $\label{lem:contomodel} \textit{Division of Engineering Science, University of Toronto} \ \textit{Website}$

brianchen.chen@mail.utoronto.ca

Contents

I P	PHY294	
	ntum & Thermal Physics	1
1 St	tatistical Mechanics	1
	.1 Lecture 1: Ideal Gas Law	1
1.	.2 Lecture 2: Temperature & Ideal Gases & Solids	2
	1.2.1 Idealized Solids	3
1.	.3 Lecture 3: Two State Systems	4
1.	4 Lecture 4: Einstein Solids	(
1.	.5 Lecture 5: Large Numbers	8
	1.5.1 Entropy	g
1.	.6 Lecture 6: Multiplicity of an Ideal Gas	g
	1.6.1 Ideal Gas	10
1.	.7 Lecture 7: What is temperature? (Revisited)	12
II]	ECE259	
	etromagnetism	14
2 D	Dielectrics	14
2.	.1 Lecture 15: Boundary Conditions for Dielectrics	14
2.		15
2.	.3 Lecture 17: More on energy and capacitors	15
2.	4 Lecture 19: Poisson's Equation	17
2.	.5 Lecture 20: Method of Images	17
	2.5.1 Currents	18
2.	.6 Lecture 21: Joule's Law and Resistance	19
	ECE286 bability and Statistics	21
3 P	robability Distributions	21
3.		21
3.	.2 Lecture 15: More on moment generating functions	21
	3.2.1 Linear combinations of random variables	22
3.	.3 Lecture 16: Sampling	23
IV	TEP327	
	ineering and Law	26

4 Property		26	
	4.1	Intellectual Property	27

Ι

PHY294

Quantum & Thermal Physics

Section 1

Statistical Mechanics

Subsection 1.1

Lecture 1: Ideal Gas Law

We begin our discussion on statistical mechanics with the guiding question, "What is temperature". We will first derive the ideal gas law PV=nRT, which most should be familiar with.

Imagining a single particle bouncing around elastically in 2D box with speed v_x . If we were to look at the sides of the box we will see intermittent spikes of force experienced [by the box walls],

$$F_x = m \frac{2v_x}{\Delta t_c} \tag{1.1}$$

Over time can get the average force

$$F_x = m \frac{2_x}{\Delta t} \tag{1.2}$$

which allows us to derive an expression for pressure, which is just force over area

$$P = \frac{F_x}{A} = \frac{mv_x^2}{V} \tag{1.3}$$

For n particles it then becomes

$$P = \sum_{i=1}^{N} \frac{mv_{x,i}^2}{V} = \frac{m}{V} \sum_{i=1}^{N} v_{x,i}^2$$
(1.4)

Assuming that that $v_x = v_y = v_z^{-1}$, we may extend this to 3 dimensions

¹This is reasonable, is it not?

$$P = \frac{mv^2}{3} \frac{N}{V} \tag{1.5}$$

Now, compare this expression and that of the ideal gas law to find that temperature is a measure of the average kinetic energy per particle

Note that
$$\frac{mv^2}{3} = kT \rightarrow \frac{mv^2}{3k} = 2\frac{\overline{E}}{3k}$$

$$T = \frac{mv^2}{3k} = \frac{2\overline{E}}{3k} \tag{1.6}$$

Subsection 1.2

Lecture 2: Temperature & Ideal Gases & Solids

Recall, $PV = kT\frac{N}{V}$ where $T = \frac{mv^2}{3k} = \frac{2\overline{E}}{3k}$, $\overline{E} = \frac{3kT}{2}$ Where T is the experimentally measured temperature

We are still, however, left with a few questions:

- 1. But how does this apply to things that aren't gasses?
- 2. And this only describes average speed what about the distribution?
- 3. And how can we describe thermal equilibrium?

Definition 1

Heat capacity: the energy required for a unit change in temperature.

Lemma 1

The total energy of an ideal gas at temperature *T* is given by

$$U = NE = 3\frac{NkT}{2} \tag{1.7}$$

So, increasing ${\cal U}$ increases ${\cal T}$

therefore can define heat capacity:

$$C_v \equiv \frac{\partial U}{\partial T} \bigg|_{VN} \tag{1.8}$$

This brings us to the expression for 1 mole of an ideal gas,

$$C_V = \frac{3R}{2}$$
 $R = 8.314J/(K \cdot mol)$ (1.9)

And this is experiemntally designed by heating an known insulated mass of gas. This estimation works best for lighter gasses, especially for more massive & diatomic molecules.

Theorem 1

Equipartition Theorem

$$U = N\overline{E} = \frac{3}{2}Nmv^2 = 3N\frac{kT}{2} \tag{1.10}$$

So the total energy is the total quadratic degrees of freedom D multiplied by $\frac{kT}{2}$. For a gas, D = dN, where d is the dof [] per particle Therefore,

$$U = d\frac{nRT}{2} \tag{1.11}$$

Given that

- $\overline{E} = \frac{3}{2}kT$
- There are three degrees of freedom, each of which having kinetic energy $\frac{1}{2}mv_a^2$, where $a \in \{x, y, z\}$

Now, armed with $C_V=rac{dR}{2}$ we notice that for Helium, Argon, and Neon this works well (and they have $dof \approx 3$). Also notice that the ones for which it breaks on are primarily diatomic or massive molecules, e.g. O_2

Degrees of freedom

Recall Nk = nR, because

chemistry/physics notation

This is exactly what we said earlier, however, the expression changes depending on the number of degrees of freedom the particle has

But there are actually 3 translational degrees of freedom and 3 rotational degrees of freedom. So why don't all gases have d=6? But our prior analysis indicates d=3 for monoatomic and d = 5 for diatomic

From quantum mechanics the rotational energy levels for a rigid object are

$$E_J = \frac{\hbar}{2I}J(J+1) \tag{1.12}$$

where

- \hbar is the reduced planck's constant
- J is the quantum number
- $I = \frac{2}{5}mr^2$ is the moment of inertia, in this case we assume a solid sphere

So if we take the Equipartition theorem (Eq. 1.10) to heart, we see that the energy in the rotational modes is entirely irrelevant; it requires temperature at the order of a billion Kelvin to reach the first excited state. At room temperature the modes are "frozen out"

Applying Eq. 1.12 to a diatomic molecule e.g. N_2 we note that the nuclei are separated by a much greater distance. If we were to imagine the diatomic molecule it becomes apparent that I is much larger along two axes than one, \Rightarrow only 2 of these modes matter at room temperature and therefore diatomic molecules have 3+2 degrees of freedom [at room temperature]. This also has the implication that C_V is temperature-dependent

1.2.1 Idealized Solids

Assuming a solid is modelled as a bunch of atoms attached with springs, we arrive at E = $\frac{1}{2}mv^2$. But when we look at solids (Fig. 1) we note that they have this plateau effect.

Figure 1. Heat capacity of selected solids

This is explained by there being 3 potential degrees of freedom in the spring². Bu basically what the Equipartition thereom tells us is the energy stored in each quadratic degree of freedom. But we don't always know what the degrees of freedom are. For example how do we know what should we count or not?

Heat capacity at a constant volume is really easy to calculate, but is difficult to measure since solids tend to thermally expand. Heat capacity at a constant press is really easy to measure, but difficult to calculate.

So, to recap:

- The Equipartition thereom seems pretty powerful; it can predict energy per mode as a function of temperature and calculate a bunch of things
- BUT:
 - We didn't really prove it
 - Doesn't really work when quantum levvels matter
 - 'Degrees of freedom' is not well-defined
 - Works only in average energy
 - Doesn't explain equilibrium
 - Still don't know what entropy is

Let's try to address all of these shortcomings by applying quantum statistical mechanics.

Subsection 1.3

Lecture 3: Two State Systems

Begin with coins; heads/tails with equal likelihood, independent flips.

Definition 2

To describe this better we will define a few terms:

Microstate: a specific configuration; all of which are equally likely, i.e. individual head/tails outcomes

Macrostate: Defined by some combined quantity, possibly containing multiple microstates, i.e. a state w/2/3 heads

Multiplicity (Ω): The number of microstates in a macrostate

For example, if we were to flip 100 coins.

- Multiplicity of 0 heads: $\Omega(0) = 1$
- Multiplicity of 1 heads: $\Omega(1) = 100$
- Multiplicity of 2 heads: $\Omega(2) = \frac{100.99}{2}$
- Multiplicity of n heads: $\Sigma(N,n) = {N \choose n} = \frac{N!}{n! \cdot (N-n)!}$
 - The probability of n heads after N flips: $\frac{\Sigma(N,n)}{\Sigma_{\mathrm{tot}}} = \frac{\Sigma(N,n)}{2^N}$

STATISTICAL MECHANICS Lecture 3: Two State Systems 5

Figure 2. Probability distribution for 50 coin flips

Now, imagine a system of little independent magnetic dipoles that can point up or down in an external magnetic field (Fig. 3) The multiplicity is given by the expression we found before:

As there are more flips the distribution will become *relatively* more narrow

$$\Sigma(N,n) = \binom{N}{n} = \frac{N!}{n! \cdot (N-n)!}$$
(1.13)

Figure 3. Independent dipoles in field

Equal numbers of dipoles pointed up and down has a far higher multiplicity and therefore is the most probable state although it is not the lowest energy state. On the other hand, the lowest energy state would be all of the dipoles being aligned with the magnetic field, and highest being all anti-aligned. How can resolve this problem?

Subsection 1.4

Lecture 4: Einstein Solids

STATISTICAL MECHANICS

Lecture 4: Einstein Solids 6

Figure 4. Einstein solid

Moving away from the contrived dipole example we move to the Einstein solid which is basically a bunch of harmonic oscillators as a means to finding out what temperature is.

Comment

Recall: the quantum energy levels of a harmonic oscillator is

$$E = (q + \frac{1}{2})\hbar\sqrt{k/m} \tag{1.14}$$

Where

- $w = 2\pi f$
- $\hbar = \frac{h}{2\pi}$
- $\hbar w = hf$

By inspection we see that each oscillator has evenly spaced energy levels.

$$E - E_o = q\hbar\sqrt{k/m} \longrightarrow q\hbar\sqrt{k/m} \tag{1.15}$$

Each identical independent oscillator has an integer quanta of energy. This means that for a 3-oscillator system there are 6 ways 2 quanta can be distributed is (2,0,0),(0,2,0),(0,0,2),(1,1,0),(0,1,1),(1,0,1) and so on³. The **macrostate** is the total energy in the system, $q_{tot}=2$. The **microstate** is the configuration, i.e. (1,1,0). So, the **multiplicity** of the macrostate $q_{tot}=2$ is $\Omega(2)=6$. Going onwards $\Omega(3)=10$ and so forth.

Ground state is a constant so we ignore it

³The nice thing about statistical mechanics is that each step is fairly trivial

Theorem 2

The multiplicity for q quanta of energy distributed between N oscillators is

$$\Omega(N,q) = \binom{q+N-1}{q} = \frac{q+N-1}{q!(N-1)!}$$
(1.16)

STATISTICAL MECHANICS

Lecture 4: Einstein Solids 7

Proof

Imagine N=4 oscillators and q=8 quanta. Consider the configuration (1,3,0,4). We can draw it like this:

where * is a quanta of energy and | separates the oscillators. Any combination of 8 of * and 3 of | is a valid microstate.

So: There are q+N-1 symbols, q of which are a \ast

TLDR: cute proof!

By inspection we find that the multiplicity grows *very* rapidly with increasing N or q.

Figure 5. Multiplicity Ω of Einstein solid given N,q

Now, can we understand temperature by making Einstein solids interact with each other? Imagine two Einstein solids with N=4 oscillators each and $q_{tot}=q_1+q_2$ quanta of energy between them. How do the macrostates and multiplicity look?

Figure 6. $N_1 = N_2 = 4, q_1 + q_2 = 60, \Omega_{tot} = \Omega(q_1) \times \Omega(60 - q_1)$

Since they share energy, it follows that the total multiplicity of the system is $\Omega_{tot}=\Omega_1\times\Omega_2$. Plotting this we find that the multiplicity will tend to follow something that looks a bit like a normal distribution, the spread of which depends on the N and q. As this gets larger and larger we gain more and more certainty as to the system's energy – that the system with the greatest multiplicity (most likely) has an energy level which is in-between the energies of the interacting bodies.

Note: if solid 1 has $q_1 = 10$, then solid 2 has $q_2 = 60 - 10 = 50$

STATISTICAL MECHANICS Lecture 5: Large Numbers 8

Comment

This begins to look like a plausible explanation for thermal equilibrium!

Subsection 1.5

Lecture 5: Large Numbers

Let's consider a mole of einstein solid 1.8×10^{24} at normal temperatures $q=10^{26}$. If one were to try to calculate what we did in the previous section it would just not work, especially computationally. So let's apply a few methods to model this

Types of numbers

- 1. Small numbers: e.g. 42 which we can use arithmetic as normal
- 2. Large numbers: can ignore adding a small number $10^{24} \approx 10^{24} + 24$
- 3. Very large numbers: can ignore multiplying a very large number by a large number, i.e. $10^{10^{23}}\times10^{23}\approx10^{10^{23}}$

Theorem 3

Stirling's approximation

$$N! \approx \sqrt{2\pi N} \left(\frac{N}{e}\right)^N \qquad N \gg 1 \tag{1.17}$$

which also gives us the result (for large N)

$$ln(N!) = Nln(N) - N \tag{1.18}$$

Can use this to find $\Omega(N,q)$

$$ln(\Omega) \approx Nln(\frac{q}{N}) + N \qquad q \gg N, N \gg 1$$

$$\Omega \approx \exp\left\{\frac{eq}{N}\right\}^{N} \tag{1.19}$$

More formally,

$$\begin{split} \Omega(N,q) &= \binom{q+N-1}{q} \approx \frac{(q+N)!}{q!N!} \\ ln(\Omega) &\approx ln((q+N)!) - ln(q!) - ln(N!) \\ &\approx (q+N)ln(q+N) - (q+N) - qln(q) + q - Nln(N) + N \\ &= (q+N)ln(q+N) - qln(q) - Nln(N) \\ &= (q+N)(ln(q) + \frac{N}{q}) - qln(q) - Nln(N) \end{split} \tag{1.20} \quad \text{assume } q \gg N \\ \Rightarrow ln(\Omega) &= Nln(\frac{q}{N}) + N + \frac{N^2}{q} \\ &\Rightarrow \Omega = (\frac{eq}{N})^N \end{split}$$

From our intuition we expect that when we combine two multiplicities that the peak will be at $q_1 = q_2 = q_{tot}/2...$

Let
$$x = q_1 - \frac{q}{2} = \frac{q}{2} - q_2$$

$$\Omega_{tot} = (\frac{e}{N})^{2N} [(\frac{q}{2})^2 - x^2]^N$$
(1.21)

And then we do some math [textbook 2.26, 2.27] and find that it is a gaussian

Definition 3

Large N multiplicity of Einstein solids

$$\Omega_{tot} \approx \Omega_{max} e^{-N(2x/q)^2}$$

$$\Omega_{max} = \left(\frac{e}{N}\right)^{2N} \left(\frac{q}{2}\right)^{2N}$$
(1.22)

And with Stirling approximation we arrive at

$$\Omega \approx \left(\frac{eq_1}{N}^N\right) \tag{1.23}$$

And the variance can be found for large N, which becomes increasingly thin for large N.

if
$$N = 10^{24}$$
, $\sigma = \frac{q}{2 \times 10^{12}}$

$$\sigma = \frac{q}{2\sqrt{N}}\tag{1.24}$$

1.5.1 Entropy

Definition 4

$$S \equiv k \ln(\Omega) \tag{1.25}$$

And we find that systems in thermal contact will tend to be found with the highest entropy; Entropy increases.

This is the second law of thermodynamics!

Subsection 1.6

Lecture 6: Multiplicity of an Ideal Gas

Recall the expression for large N multiplicity is given by Eq. 1.23 and for a combination of Einstein solids it is simply $\Omega_{tot} = \Omega_1 \times \Omega_2$

Substituting $x = q_1 - \frac{q}{2}$ we can arrive at the following approximation

$$\approx \Omega_{max} \cdot e^{-x^2/a^2} \tag{1.26}$$

and $a=\frac{q}{\sqrt{2\sqrt{N}}}$ describes the width of the peak (which can be thought of as describing the accuracy).

1.6.1 Ideal Gas

Comment

Recall from the quantum mechanics section of this course that particles in a cubic box have quantized energy

$$E = \frac{h^2}{8m} \left(\frac{n_1^2 + n_2^2 + n_3^2}{V^{2/3}} \right) \tag{1.27}$$

In the textbook it gives us a massive formula for the multiplicity of an ideal gas

$$\Omega_N \approx \frac{1}{N!} \frac{V^{2/3}}{h^{3/N}} \frac{\pi^{3N/2}}{(3N/2)!} (\sqrt{2mU})^3 N = f(m, N) V^N U^{3N/2}$$
(1.28)

This is not very satisfying and we will get back to this later. For now let's assume it is correct.

Let's consider a system of two ideal gases in contact. In this case if we allow for energy transfer, i.e. $X_i = U_i$...

$$\Omega_{tot} = \Omega_1 \times \Omega_2$$

$$\Omega_{tot} = f()^2 (U_1 U_2)^N (U_1 U_2)^{3N/2}$$

$$\approx \Omega_{\text{max}} \cdot \exp\left(\frac{-x^2}{a^2}\right)$$
where $x = U_1 - \frac{U_{\text{tot}}}{2}$

$$\rightarrow a = \frac{U}{2\sqrt{3N/2}}$$
(1.29)

And so we get the result that the multiplicity is again a Gaussian with a peak at $x=U_1-\frac{U}{2}$ and a spread on the order of $\frac{1}{\sqrt{N}}$ as well , which indicates that thermal equilibrium works for ideal gases with energy transfer as well!

Considering a system where we allow for volume transfer, i.e. $X_i = V_i$...

$$\Omega_{tot} = \Omega_1 \times \Omega_2$$

$$\Omega_{tot} = f()^2 (V_1 V_2)^N (U_1 U_2)^{3N/2}$$

$$\approx \Omega_{\text{max}} \cdot \exp\left(\frac{-x^2}{a^2}\right)$$
where $x = V_1 - \frac{V_{\text{tot}}}{2}$

$$\rightarrow a = \frac{V}{2\sqrt{N}}$$
(1.30)

we arrive at much the same result as before with the Gaussian and spread.

Considering a system where we allow for particle transfer, i.e. $X_i = N_i$, we get a really ugly expression. I do not want to write this out so here is the screen-shotted lecture slide:

The point of all this is that this brings us to the second law of thermodynamics and the concept of entropy which enables us to work with these really big numbers in a much easier way.

Before we do that let's convert our multiplicity expressions to entropy

$$\Omega \approx (\frac{eq^N}{N})$$
 $N = 10^2 2 \Leftrightarrow S = Nk[ln(\frac{q}{N}) + 1]$ (1.31)

And derive the following property from just log laws

$$\Omega_{tot} = \Omega_1 \times \Omega_2
S_{tot} = S_1 + S_2$$
(1.32)

Which, coupled by the 2nd law of thermodynamics (entropy increases and system will be most stable maximum entropy), we now have a really good way of describing temperature and thermodynamic equilibrium.

Applying this to an ideal gas we can do some ugly math from Eq. 1.28 and Eq. 1.25, use Stirling's approximation and drop some large factors to arrive at the following expression for entropy of an ideal gas

Theorem 4

Entropy of an ideal gas

$$S = Nk \left[ln \left(\frac{V}{N} \left(\frac{4\pi mU}{3Nh^2} \right)^{\frac{3}{2}} + \frac{5}{2} \right]$$
 (1.33)

This is also known as the Sackur-Tetrode equation

Inspecting the equation entropy increases with N, V, m, U, which makes intuitive sense. Note that there is a subtlety in using entropy. For example mixing two different gases; i.e. a gases with different masses, or gases with a different energy; this would cause a positive ΔS . However mixing two *identical* gases would cause no entropy change; $\Delta S = 0$. What to note is that thermal equilibrium is the tendency of a system to enter a more likely state. If they are in the same state; mixing them will not cause any further change in state and therefore positive ΔS .

Subsection 1.7

Lecture 7: What is temperature? (Revisited)

This was a short lecture with lots of review. The key takeaway is that thermal equilibrium is found when

$$\frac{\partial S_1}{\partial q_1} = \frac{\partial S_2}{\partial q_2} \tag{1.34}$$

But $U = qE_o$, so

$$\frac{\partial S_1}{\partial U_1} = \frac{\partial S_2}{\partial U_2} \tag{1.35}$$

The peak is when the derivative of the entropy with respect to energy is the same in both systems.

And so we arrive at the conditions for thermal equilibrium:

- 1. Temperatures are equal
- 2. Entropy is maximized (S_{max} is at $\frac{\partial S_1}{\partial U_1}=\frac{\partial S_2}{\partial U_2}$)

Entropy is not anything mysterious anymore!

Intuitively the peak is where taking energy from one system and putting it in the other does not cause a change in total entropy

Perhaps this could be temperature? Since they are equal at thermal equilibrium...

But! $\frac{\partial S}{\partial U}$ decreases with increasing U but temperature increases with increasing U. So

$$T \equiv \frac{\partial U}{\partial S} \tag{1.36}$$

We can test it for an ideal gas

$$S = Nk \left[ln \left(\frac{V}{N} \left(\frac{4\pi mU}{3Nh^2} \right)^{\frac{3}{2}} + \frac{5}{2} \right] = Nk ln \left(U^{\frac{3}{2}} \right) + f(N, V) \right]$$

$$T = \left(\frac{\partial S}{\partial U}^{-1} \right) = \left(\frac{2Nk}{2U} \right)^{-1} = \frac{2U}{3Nk}$$
(1.37)

Which brings us to the very satisfying result that

$$\Rightarrow U = 2N\frac{kT}{2} \tag{1.38}$$

... which is $\it exactly$ what the equipartition theorem says for an ideal gas! This $\it T$ is what an ideal gas law thermometer measures – but is applicable to any system.

Definition 5

We can therefore define temperature as the partial derivative of energy with respect to en-

$$T \equiv \frac{\partial U}{\partial S} \text{ or } \frac{1}{T} = \frac{\partial S}{\partial U}$$
 (1.39)

 T^{-1} is how much $S=ln(\Omega)$ increases when energy is added to a system. This means that at a low temperature putting in a little energy will increase S a lot, and vice-versa for high temperatures.

 Π

ECE259 Electromagnetism

Section 2

Dielectrics

Subsection 2.1

Lecture 15: Boundary Conditions for Dielectrics

Remark Recall, at a conductor/free-space interface, $E_+=0, E_n=rac{
ho_s}{arepsilon_o}$

Consider an interface between two generic dielectrics (Fig. 7).

Theorem 5

$$\oint_{c} \vec{E} \cdot d\vec{l} = 0 \tag{2.1}$$

Figure 7. Dielectric interface

Intuition The two integrals parallel to the dielectrics will cancel out, and so will those perpendicular.

This implies that the tangential component of the \vec{E} field is continuous across the boundary,

$$E_{1t} = E_{2t} (2.2)$$

However we get a bit of a different result when working in 3 dimensions where the interface is a surface instead of a line.

Theorem 6

$$\oint_{S} \vec{D} \cdot d\vec{s} = \rho_{S} \Delta \rightarrow (\vec{D_{1}} - \vec{D_{2}}) \cdot \vec{a_{n2}} = \rho_{S}$$
(2.3)

 a_n denotes normal component

Note:
$$\vec{D} = \varepsilon_o \vec{E} + \vec{p} = \dots \varepsilon \vec{E}$$

Proof

As $\Delta h \to 0$

$$\oint_{S} \vec{D} \cdot d\vec{s} = \int_{top} \vec{D_{1}} \cdot d\vec{s} + \int_{bottom} + \vec{D_{2}} \cdot d\vec{s}$$

$$= \vec{D_{1}} \cdot \vec{a_{n2}} \Delta S + \vec{D} \cdot \vec{a_{n1}} \Delta S$$

$$= \vec{D_{1}} \cdot \vec{a_{n2}} \Delta S - \vec{D} \cdot \vec{a_{n2}} \Delta S$$

$$= \rho_{S} \Delta S$$
(2.4)

Solving these problems usually involves finding the tangential and normal components through Eq. 2.2 and 2.3 then applying Pythagoras.

Subsection 2.2

Lecture 16: Capacitors

Definition 6

A capacitor is a device consisting of two isolated conductors for storing energy in the form of electrostatic potential energy. An isolated conductor can also have "capacitance" if the other conductor is far away. The charge of a capacitance refers to the charge on one conductor. The energy stored in a capacitor is equal to the energy it takes to charge a capacitor from a discharged state to a charged state.

A capacitor's capacitance⁴ is defined as

$$C = \frac{Q}{V} \tag{2.5}$$

and has units $[C] = \frac{C}{V}F$ [Farads]

Capacitance is calculated as follows

- 1. choose a coordinate system
- 2. Assume +Q/-Q on the conductors
- 3. Find \vec{E} from Q distribution
- 4. Find $V_{AB}=\int_A^B \vec{E}\cdot d\vec{l}$ where A carries the negative charge and B carries positive.
- 5. Apply $C = \frac{Q}{V}$

Subsection 2.3

Lecture 17: More on energy and capacitors

Remark Recall, the potential energy stored in the system is given by

$$W_e = \frac{1}{2} \int_{v'} \rho_v V(\vec{R}) dv'$$
 (2.6) Can extend v' to entire space

Applying generalized gauss's law and performing an integral across the space we find that

⁴Capacitance is actually independent of Q and V and is dependent only on the physical attributes of [the capaci-

$$\begin{split} W_e &= \frac{1}{2} \int_{v'} \rho_v V(\vec{R}) dv' \\ &= \frac{1}{2} \int_{v'} (\vec{\nabla} \cdot \vec{D}) V(\vec{R}) dv' \\ &= \frac{1}{2} \int_{v'} \vec{\nabla} \cdot (\vec{D}V) dv' - \frac{1}{2} \int_{v'} \vec{\nabla} \cdot \vec{D}V dv' \\ &= \frac{1}{2} \oint_{S'} \vec{D}V \cdot d\vec{s} + \frac{1}{2} \int_{V'} \vec{D} \cdot \vec{E} dv' \end{split} \tag{2.7} \quad \text{Apply divergence thereom} \\ &= \frac{1}{2} \oint_{S'} \vec{D}V \cdot d\vec{s} + \frac{1}{2} \int_{V'} \vec{D} \cdot \vec{E} dv' \\ \Rightarrow W_e &= \frac{1}{2} \int_{v} \vec{D} \cdot \vec{E} dv \qquad \qquad \text{The first term} \to 0 \text{ as } R \to \infty \end{split}$$

Therefore the energy density can be defined as

Definition 7

Given energy density w_e with units $[J/m^3]$

$$W_e = \int_v w_e dv \qquad w_e = \frac{1}{2} \vec{D} \cdot \vec{E}$$
 (2.8)

Things to know about capacitors Remark

• Stacking them puts them in series. This looks like the inverse of resistors, i.e.

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} \dots {2.9}$$

• Putting them besides each other puts them in parallel.

$$C = C_1 + C_2 \dots \tag{2.10}$$

Subsection 2.4

Lecture 19: Poisson's Equation

Definition 8

Poisson's Equation

$$\nabla \cdot (\varepsilon \nabla V) = \rho_v \tag{2.11}$$

And for no charge or $\rho_v = 0$, we have a special case: the 'laplace equation'

$$\nabla \cdot (\varepsilon \nabla V) = 0 \tag{2.12}$$

Using this we can solve for potential as a boundary value problem. For a surface S enclosing a volume v with ρ_v , solving the following gives us the potential difference V inside v

$$\begin{cases} \nabla \cdot (\varepsilon \nabla V) = \rho_v & \text{in } v \\ V_s = V_o \end{cases}$$
 (2.13)

Subsection 2.5

Lecture 20: Method of Images

Remark

TLDR: Add imaginary charges such that the field lines meet perpendicular to the planes/lines of interest

And for the upper-half space (y > 0) the two cases have the same source distribution and the same boundary condition on the conducting surface.

A charge Q is at (d1, d2) relative to two conductor walls. Find force on charge Q due to induced caharges on conductor surfaces.

We have to be careful about where to put these virtual charges. They are arranged this way so that there is a right angle at the conductors; that's why we don't just put a single charge in the bottom left quadrant.

The force can be found as follows:

$$\vec{F} = \frac{Q}{4\pi\varepsilon} \left[\frac{-Q}{2d_1^2} \hat{x} + \frac{-Q}{2d_2^2} \hat{y} + \frac{Q(2d_x \hat{x} + 2d_2 \hat{y})}{[(2d_1)^2 + (2d_2)^2]^{3/2}} \right]$$
(2.15)

2.5.1 Currents

There are a few types of currents:

- Conduction current: In conductors and semiconductors due to the motion of e^- and holes h^5

⁵ We will primarily focus on conduction currents

- Electrolytic current: motion of ions in solutions
- Convection current: motion of e^- or ions in vacuum

In conductors and semiconductors the free charge is

$$e = 1.6 \times 10^{-19} C \tag{2.16}$$

In the presence of an external field E,

$$\begin{cases} \vec{E} = 0 & \text{random motion of free charges, current} = 0 \\ \vec{E} > 0 & \vec{\mu}_e = -\mu_o \vec{E}^6 \end{cases}$$
 (2.17)

 $^6ec{\mu}$ = average drift velocity, μ = mobility

Typical $\vec{\mu}_e$ is very slow: $\approx 10^{-5} 10^{-4} \frac{m}{s}$

Definition 9

General integral form for current

$$I = \int_{S} \rho_e \vec{\mu_e} \cdot d\vec{s} \tag{2.18}$$

PROOF

Current is the amount of charge through a surface S per unit time

$$d\vec{S} = \vec{a_m} dS$$

The free charge in the volume of

$$\vec{\mu} \cdot \vec{a_n} dt dS \tag{2.19}$$

will pass S in dt time

$$dq = -N_e e \vec{\mu}_e \cdot \vec{a_n} dt ds \tag{2.20}$$

Apply definition of current

The change in current volume is the no. of electrons per unit volume times volume

$$dI = \frac{dq}{dt} = -N_e e \vec{\mu}_e \cdot d\vec{s} = \rho_e \vec{\mu}_e \cdot d\vec{s}$$
 (2.21)

and integrate!

$$I = \int_{S} \rho_e \vec{\mu_e} \cdot d\vec{s} \tag{2.22}$$

This integral form can be a little awkward to work with so we define current density J

Definition 10

Define current density to be \vec{J} such that

$$I = \int_{S} \vec{J} \cdot d\vec{s} \tag{2.23}$$

and therefore the volume current density \vec{J} with units $\frac{A}{m^2}$

$$\vec{J} = \rho_e \vec{\mu}_e \tag{2.24}$$

- \vec{J} is a vector and direction is the same as $\vec{\mu}_e$ and \mathbf{is} a point function
- *I* is a scalar and **is not** a point function

Now ohm's law can be defined more rigourously in point/microscopic form

$$\vec{J} = \rho_e \vec{\mu}_e = -\rho_o \mu_e \vec{E}$$

$$\Rightarrow J = \sigma \vec{E}$$
(2.25)

 σ denotes conductivity

Subsection 2.6

Lecture 21: Joule's Law and Resistance

Comment

Previously we discussed perfect conductors. But what if that was not the case?

Theorem 7

Joule's Law

$$P = \int_{v} dp = \int_{v} \vec{E} \cdot \vec{J} dv \tag{2.26}$$

Intuition: Work done by E-field is turned into kinetic energy of e^- and produces heat

PROOF

Work done by E field on one e^- : $\Delta W = -e \vec{E} \Delta l$ Power per unit time: $p = \frac{\Delta W}{\Delta t} = -e \vec{E} \frac{\Delta l}{\Delta t} = -e \vec{E} \cdot \vec{\mu_e}$

$$dp = N_e(-e)\vec{E} \cdot \vec{\mu_e} dv = \rho_v \vec{E} \cdot dv \Rightarrow dp = \vec{E} \cdot \vec{J} dv$$
 (2.27)

Therefore the dissapated power density $\frac{dp}{dv} = \vec{E} \cdot \vec{J}$ And then one can integrate over the volume to find the total dissapated power; joule's

$$P = \int_{v} dp = \int_{v} \vec{E} \cdot \vec{J} dv \tag{2.28}$$

Noting that we can take the volume integral with respect to a surface and a length, i.e. dv = dlds, we can write this integral as

$$P = \underbrace{\left(\int_{l} \vec{E} \cdot d\vec{l}\right)}_{\text{voltage drop}} \underbrace{\left(\int_{S} \vec{J} \cdot d\vec{s}\right)}_{\text{current}}$$
(2.29)

This enables us to define resistance R.

Definition 11

Resistance

$$R = \frac{V}{I} = \frac{\int_{l} \vec{E} \cdot d\vec{l}}{\int_{S} \vec{J} \cdot d\vec{s}} = \frac{\int_{l} \vec{E} \cdot d\vec{l}}{\int_{S} \sigma \vec{E} \cdot d\vec{s}}$$
(2.30)

Resistance is independent of the voltage and current that passes through it and instead is dependent on the physical properties of the resistor

Example

For example, assuming uniform \vec{E} , \vec{J} ,

$$R = \frac{\int_{l} \vec{E} \cdot d\vec{l}}{\int_{S} \vec{J} \cdot d\vec{s}} = \frac{El}{\sigma E \cdot S} = \frac{l}{\sigma S}$$
 (2.31)

observe that resistance is proportional to the resistor length and dimensions l, S as well as the material properties σ .

The steps to calculate resistance are as follows:

- 1. Choose coordinate system
- 2. Assume V_s : potential drop between terminals
- 3. Find \vec{E} from V. This can get complicated; need to start with the laplace equation $\nabla^2 V =$ 0 and solve for \vec{E} everywhere using the fact that $\vec{E} = -\nabla V$
- 4. Find current: $I=\int_S \vec{J}\cdot d\vec{s}=\int_S \sigma \vec{E}\cdot d\vec{s}$
- 5. Apply definition $R = \frac{V}{I}$

Recall: μ is the average drift velocity

Recall: $\rho_v \vec{\mu_e} = \vec{J}$

This makes intuitive sense, no?

PART

 \mathbf{III}

This result is derived through

the Leibniz integral rule, $g(y) = \frac{d}{dy} \int_{-\infty}^{u^{-1}(y)} f(t) dt$

ECE286 Probability and Statistics

Section 3

Probability Distributions

Subsection 3.1

Lecture 14: functions of random variables

In the discrete case, given X with PMF f(x), we can define an *invertible* function Y where Y=u(X), therefore can write $X=u^{-1}(Y)$. If g(y) is the distribution of Y

$$g(y) = P(Y = y)$$

$$= P(u^{-1}(Y) = u^{-1}(y))$$

$$= f(u^{-1}(y))$$
(3.1)

In the continuous case we may arrive at

$$g(y) = f(u^{-1}(y)) \left| \frac{du^{-1}(y)}{dy} \right|$$
 (3.2)

Definition 12

The r^{th} moment about the origin of the random variable X is

$$\mu_r' = E[X^r] = \begin{cases} \sum_x x^r f(x) & X \text{discrete} \\ \int_{-\infty}^{\infty} x^r f(x) dx & X \text{continuous} \end{cases}$$
(3.3)

- The mean is the first moment
- For variance, $\sigma^2 = E[X^2] \mu^2 \rightarrow \sigma^2 = \mu_2' \mu^2$

Definition 13

The moment-generating function of X is defined as

$$\mu_r' = E[X^{tX}] = \begin{cases} \sum_x e^{tx} f(x) & X \text{ discrete} \\ \int_{-\infty}^{\infty} e^{tx} f(x) dx & X \text{ continuous} \end{cases}$$
(3.4)

In general

$$\mu_r' = \frac{d^r M_X(t)}{dt^r} \bigg|_{t=0} \tag{3.5}$$

Subsection 3.2

Lecture 15: More on moment generating functions

By definition and completing the square,

PDF and thus integrates to one

$$M_X(T) = \int_{-\infty}^{\infty} e^{tx} \frac{1}{\sqrt{t2\pi\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}dx}$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{t2\pi\sigma}e^{-\frac{x^2-2(x-\mu)^2+\mu^2}{2\sigma^2}}dx}$$

$$= e^{\frac{2\mu t + t^2\sigma^2}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{(x - (\mu + t\sigma^2))^2}{2\sigma^2}\right\} dx$$

$$= e^{\frac{\mu t + t^2\sigma^2}{2}} \quad (3.6) \quad \text{The integrand is just a normal part of the integrand is possible.}$$

3.2.1 Linear combinations of random variables

Given random variable X with distribution f(x) . What is the distribution, h(y), of Y = aX?

Definition 14

Probability distribution of linear combination of random variables **Discrete**:

$$P(X = x) = f(x) \rightarrow h(y) = P(Y = y)$$

$$= P(aX = y)$$

$$= f(\frac{y}{a})$$
(3.7)

Continuous:

$$F(y) = P(Y \le y)$$

$$= P(X \le \frac{y}{a})$$

$$= \int_{-\infty}^{\frac{y}{a}} f(t)dt$$

$$\int_{-\infty}^{\frac{y}{a}} f(t)dt = \int_{-\infty}^{y} \frac{1}{a} f(\frac{s}{a})ds$$

$$\Rightarrow h(y) = \frac{1}{|a|} f(\frac{y}{a})$$
(3.8)

Extending from this, let's assume that X has the MGF 7 $M_X(t)$. Then,

⁷Moment Generating Function

u-sub; let s = at

$$M_{Y}(t) = \int_{-\infty}^{\infty} e^{ty} h(t)$$

$$= \frac{1}{|a|} \int_{-\infty}^{\infty} e^{ty} f(\frac{y}{a}) dy \qquad \text{u-sub } z = \frac{y}{a}$$

$$= \frac{1}{|a|} \int_{-\infty}^{\infty} e^{taz} f(z) a dz$$

$$= \int_{-\infty}^{\infty} e^{taz} f(z) dz$$

$$= M_{X}(at)$$
(3.9)

More generally,

$$M_{aX}(t) = M_X(at) (3.10)$$

Probability Distributions

Lecture 16: Sampling 2.

When working with more than one random variables, i.e. independent RV X, Y with distributions f(x), g(y), the distribution of Z = X + Y, h(z) is given by

$$P(Z = z) = P(X + Y = z) = \sum_{w} P(X = w)(Y = z - w) \Rightarrow h(z) = \sum_{w = -\infty}^{\infty} f(w)g(z - w)$$
(3.11)

And for the continuous case we arrive at the convolution integral,

$$h(z) = \int_{-\infty}^{\infty} f(w)g(z - w)dw \tag{3.12}$$

Subsection 3.3

Lecture 16: Sampling

Given sample data x_1,\dots,x_n , each x_i is the realization of an RV 8 . , $X_i,i=1,\dots,n$

⁸ Say each X_i is a Bernoulli random variable

Definition 15

Given the mean,

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{3.13}$$

the **sample mean** of a random variable X is defined as

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \tag{3.14}$$

Definition 16

The sample median is

$$x_m = \begin{cases} \frac{x_{\frac{n}{2}} + x_{\frac{n}{2}+1}}{2} & \text{if n even} \\ \frac{x_{n+1}}{2} & \text{if n is odd} \end{cases}$$
 (3.15)

and **mode** is familiar as the most frequently occurring value

Figure 8. Median, mode, mean labelled on a skew distribution

Definition 17

Sample variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$
(3.16)

and the corresponding standard deviation 9

⁹Is this correct??

$$s = \sqrt{s^2} \tag{3.17}$$

Consider Lemma 2

$$E[\overline{X}] = E[\frac{1}{n} \sum_{i=1}^{n} X_i] = \frac{1}{n} \sum_{i=1}^{n} E[X_i]$$
(3.18)

Assuming that X_i have the same distribution, $f(x_i)$, and mean μ ,

$$= \frac{1}{n} \sum_{i=1}^{n} \mu$$

$$= \frac{1}{n} n \mu$$

$$= \mu$$
(3.19)

- the X_i are identically distributed
- + \overline{X} is an unbiased estimator of μ

We then have

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} X_{i}^{2} + \overline{X}^{2} - 2X_{i}\overline{X}$$

$$= \frac{1}{n-1} (n\overline{X}^{2} - 2n\overline{X}^{2} + \sum_{i=1}^{n} X_{i}^{2})$$

$$= \frac{1}{n-1} (-n\overline{X}^{2} + \sum_{i=1}^{n} X_{i}^{2}) \quad (3.20)$$

We are now ready to take the expectation of S^2 , which is

 $\begin{array}{lllll} \text{Recall:} & \text{if} & Y & \text{has} & \text{mean,} \\ \text{varience} & & \mu,\sigma^2, & \text{then} \\ \sigma^2 = E[Y^2] - \mu^2 & & \end{array}$

$$E[S^{2}] = \frac{1}{n-1}(-nE[\overline{X}^{2}] + \sum_{i=1}^{n} E[X_{i}^{2}])$$

$$= \frac{1}{n-1}(-n(E[\overline{X}^{2}] + var[\overline{X}]) + \sum_{i=1}^{n} \sigma^{2} + \mu^{2})$$

$$= \frac{1}{n-1}(-n(\mu^{2} + var[\frac{1}{n}\sum_{i=1}^{n} X_{i}]) + n(\sigma^{2} + \mu^{2}))$$

$$\vdots$$

$$= \frac{n-1}{n-1}\sigma^{2} = \sigma^{2} \quad (3.21)$$

So we have an unbiased estimator of varience

Probability Distributions Lecture 16: Sampling 25

So we get

$$S^2 = \sum_{i=1}^n (X_i - \overline{X_i})^2$$
 (3.22)

We divide by n-1 because there is a "hidden" uncertainty in \overline{X}

PART

IV

TEP327 Engineering and Law

Torts can be identified by

- · Elements of negligence can be identified
- There exists a duty of care
- · Was the standard of duty of care breached?
- Did that breach of standard cause damage to the plaintiff?

Comment

Must be careful about the standard of care met or not met. E.x. in the in-class bike example one could argue that in designing the gear the engineer should expect that the gear could be commercialized and mass-produced later on for mass-market. On the other hand it is reasonable to argue that having to design the gear to be used by unskilled 16-year-olds is an unreasonable and outside the standard of care.

Trespass is strict liability. Ignorance of the law is no excuse.

Section 4

Property

- There are a number of types of property, i.e. intellectual property, personal (usu. regarding money), etc
- · Real property
 - Usu. owned by default by government (derived from old english law)
 - Gov. transferrs property rights to private owners; sell, lease, etc (fee simple)
 - Gov. retains a few rights on real property, usu. oil and mineral rights
- Joint ownership: death of one partner causes other to own 100%. Tenancy in common/joint tenancy: death of a partner does not cahnge ownership; usu. determined by wills
- Land interest is divisible; different people can own rights to different things on a piece of land. Or many people can own right to lease a property but not necessairly ownernship of the land
- Rights associated with real property:
 - Mortgage: property as security for a debt
 - License: Contractual right to use property in some way
 - Restrictive convenant: conditions of use for that property
 - Easement: right to use property in some way

Property 2 Intellectual Property 2

 Lien: right to register debt against land (must pay off people you owe with money from selling property before taking it for yourself)

- Lease: right to occupy the property
- Profit à prendre; right to extract value from property

Mineral, oil, gas rights:

- Mineral rights are crown or "freehold"
- Crown rights can be provincial or federal and can grant license to third party to extract resources
- Rights to resources generally excluded from fee simple property rights
- Freehold mineral rights were granted with early land grants
- Resource rights usu. include a right to access to the land in order to extract resources
- Land is registered via the registry system/land title system. Registry system is old and
 only about 10% of land is in it, is complicated, and led to a lot of squatters. Land title
 system (ontario) is easy to use.
- **chattels** are tangible personal property called 'goods'. No registry for ownership but is registration of security interests (which demonstrates rights based on order of registration).

Subsection 4.1

Intellectual Property

- · A bundle of right that protect expression of ideas, inventions, symbols, and more
- Governed by federal legislation and international treaties
- · Has a few different types.
- Copyright
 - Must be an original product of skill, permanent, and published
 - Ephemeral works e.g. live works have no copyright
 - Most things are copyrightable.
 - Copyright protection is valid for about 50 years after death, soon to be 70.
 - Protection is not dependent on registration, but copyrights can be registered
 - Copyright can be assigned by contract, but moral rights cannot be [although they can be waived]

· Trade secrets

- What todo if you invent something?
- Keep your mouth shut
- Not everything is patentable and not all things are patentable
- Trade secret is information that is kept secret with an industrial or commercial application
- Once the secret is out it's not possible to make it a secret again
- Reverse engineering is a totally valid way to discover a trade secret

Property 28

· Patent

- A right granted by the crown to a monopoly
- Term of patent in Canada is 20 years, non-renewable
- A balance between the interests of the inventor and that of society
- A few things that cannot be patented; scientific principles, abstract theorems, higher life forms (animals).
- A patent must be new, useful, and non-obvious
- Must pass the obviousness test: 1) Identify a PSITA (Personal skilled in the art) 2) Identify inventive concept 3) Find difference between prior art and inventive concept 4) Ask: Would PSITA find this obvious?
- A patent will have a specification: a description of the procedure/invention, how to reproduce it, etc.
- ... and claims
 - * Clear and explicit definition of the subject matter
 - * Will inform the scope of the rights granted
- Infringement is "Use by someone other than the patent holder which inteferes in whole or in part with the patent holder's monopoly" (Monsanto Canada Inc. v. Schmeiser, 2004 SCC 34)
- Usu. more to do with the right to monopoly than the IP itself.
- Some exceptions: use of the invention for development and submission of information required by law, fair dealing (experimentation without eye to profit or fraudulent purpose), dedication (patent owner can ignore monopoly), exhaustion (once patent is sold, patent holder may no longer control use)

Trademark

- A sign or combiation of signs that is used by a person for sake of distinguishing or so as to distinguish their goods and services from those of others
- A certification mark
- trade name: means the name under which any buisness is carried on, whether or not if it is a corporation, partnership, or individual

This is the case in Canada but not really in other places.

This also implies a patent can only have a single inventive concept