Operating System

Dr. GuoJun LIU

Harbin Institute of Technology

http://guojunos.hit.edu.cn

Outline

- Locality and Virtual Memory
- - Page table structure
 - > Translation lookaside buffer
 - Page size
- Segmentation
- Combined Paging and Segmentation
- Protection and Sharing

Dr. GuoJun LIU

Operating System

Chapter 08

Virtual Memory

虚拟内存

You're gonna need a bigger boat.

-- Steven Spielberg, JAWS, 1975

Learning Objectives

- Define virtual memory
- Describe the hardware and control structures that support virtual memory

Terminology

- Virtual memory
 - > secondary memory can be
 - The addresses a program may use to reference memory are distinguished from the addresses the memory system uses to identify physical storage sites
 - The size of virtual storage is limited
 - · by the addressing scheme of the
 - by the amount of secondary memory available
 not by the actual number of main
 - storage locations

- Virtual address
 - > The address assigned to a location in virtual memory to allow that location to be accessed as though it were part of main memory
- Virtual address space
 - virtual storage assigned to a process
- Address space
 - > The range of memory addresses available to a process
- Real address
 - > The address of a storage location in main memory

Dr. GuoJun LIU Dr. GuoJun LIU

Hardware and Control Structures

- Two characteristics fundamental to memory management:
 - all memory references are logical addresses that are dynamically translated into physical addresses at run time
 - a process may be broken up into a number of pieces that don't need to be contiguously located in main memory during execution
- If these two characteristics are present
 - it is not necessary that all of the pages or segments of a process be in main memory during execution

Dr. GuoJun LIU Operating System

Two Implications

- More processes may be maintained in main memory
 - > only load in some of the pieces of each process
 - with so many processes in main memory, it is very likely a process will be in the Ready state at any particular time
- A process may be larger than all of main memory
 - Without the scheme a programmer must be acutely aware of how much memory is available
 - If the program being written is too large, the programmer must devise ways to structure the program into pieces that can be loaded separately in some sort of overlay strategy
 - > OS automatically loads pieces of a process into main memory as required

Jun LIU Operating System

Execution of a Process 1/2

- OS brings into main memory a few pieces of the program
 - > the term piece to refer to either page or segment
- Resident set
 - > portion of process that is in main memory
- An interrupt is generated when an address is needed that is not in main memory
- OS places the process in a blocking state

Dr. GuoJun LIU Operating System Slides-8

Real and Virtual Memory

- Real memory
 - > main memory
 - > the actual RAM
- Virtual memory
 - > memory on disk
- allows for effective multiprogramming
- relieves the user of tight constraints of main memory

Dr. GuoJun LIU Operating System Slides-11

Execution of a Process 2/2

- Piece of process that contains the logical address is brought into main memory
 - ➤ OS issues a disk I/O Read request
 - > another process is dispatched to run while the disk I/O takes place
 - an interrupt is issued when disk I/O is complete, which causes the OS to place the affected process in the Ready state

Dr. GuoJun LIU Operating System Slides-9

Simple Paging	Virtual Memory Paging	Simple Segmentation	Virtual Memory Segmentation
Main memory partitioned into small fixed-size chunks called frames	Main memory partitioned into small fixed-size chunks called frames	Main memory not partitioned	Main memory not partitioned
Program broken into pages by the compiler or memory management system	Program broken into pages by the compiler or memory management system	Program segments specified by the programmer to the compiler (i.e., the decision is made by the programmer)	Program segments specified by the programmer to the compiler (i.e., the decision is made by the programmer)
Internal fragmentation within frames	Internal fragmentation within frames	No internal fragmentation	No internal fragmentation
No external fragmentation	No external fragmentation	External fragmentation	External fragmentation
Operating system must maintain a page table for each process showing which frame each page occupies	Operating system must maintain a page table for each process showing which frame each page occupies	Operating system must maintain a segment table for each process showing the load address and length of each segment	Operating system must maintain a segment table for each process showing the load address and length of each segment
Operating system must maintain a free frame list	Operating system must maintain a free frame list	Operating system must maintain a list of free holes in main memory	Operating system must maintain a list of free holes in main memory
Processor uses page number, offset to calculate absolute address	Processor uses page number, offset to calculate absolute address	Processor uses segment number, offset to calculate absolute address	Processor uses segment number, offset to calculate absolute address
All the pages of a process must be in main memory for process to run, unless overlays are used	Not all pages of a process need be in main memory frames for the process to run. Pages may be read in as needed	All the segments of a process must be in main memory for process to run, unless overlays are used	Not all segments of a process need be in main memory for the process to run. Segments may be read in as needed
	Reading a page into main memory may require writing a page out to disk		Reading a segment into main memory may require writing one or more segments out to disk Slides-12

Principle of Locality Program and data references within a process tend to cluster Only a few pieces of a process will be needed over a short period of time Therefore it is possible to make intelligent guesses about which pieces will be needed in the future Avoids thrashing

Operating System

Slides-15

Dr. GuoJun LIU

Translation Lookaside Buffer (TLB) ■ Each virtual memory ■ To overcome the effect of doubling the memory reference can cause two physical memory access time, most accesses: virtual memory schemes make use of a > one to fetch the page table special high-speed cache called a > one to fetch the data translation lookaside buffer Dr. GuoJun LIU Operating System Slides-23

Associative Mapping

- The TLB only contains some of the page table entries so we cannot simply index into the TLB based on page number
 - each TLB entry must include the page number as well as the complete page table entry
- The processor is equipped with hardware that allows it to interrogate simultaneously a number of TLB entries to determine if there is a match on page number

Dr. GuoJun LIU Operating System Slides-26

Page Size

- The smaller the page size, the lesser the amount of internal fragmentation
 - > however, more pages are required per process
 - > more pages per process means larger page tables
 - for large programs in a heavily multiprogrammed environment some portion of the page tables of active processes must be in virtual memory instead of main memory
 - the physical characteristics of most secondary-memory devices favor a larger page size for more efficient block transfer of data

Dr. GuoJun LIU Operating System Slides-29

Computer	Page Size	
Atlas	512 48-bit words	_
Honeywell-Multics	1024 36-bit words	
IBM 370/XA and 370/ESA	4 Kbytes	
VAX family	512 bytes	
IBM AS/400	512 bytes	
DEC Alpha	8 Kbytes	
MIPS	4 Kbytes to 16 Mbytes	
UltraSPARC	8 Kbytes to 4 Mbytes	
Pentium	4 Kbytes or 4 Mbytes	
IBM POWER	4 Kbytes	
Itanium	4 Kbytes to 256 Mbytes	
n LIU Opera	ating System	Slides-

Segmentation lends itself to the implementation of protection and sharing policies Each entry has a base address and length so inadvertent memory access can be controlled Sharing can be achieved by segments referencing multiple processes

Operating System

Dr. GuoJun LIU

Summary Desirable to: maintain as many processes in main memory as possible free programmers from size restrictions in program development With virtual memory: all address references are logical references that are translated at run time to real addresses a process can be broken up into pieces two approaches are paging and segmentation management scheme requires both hardware and software support