Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text

By: Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhutdinov, and William W. Cohen

Presented by: Jennifer Fang [Week 03]

Department of Computer Science: University of Virginia

Open Domain Question Answering Using Early Fusion of Knowledge Bases and Text

Goal: Develop a new model, called GRAFT-Net (Graphs of Relations Among Facts and Text Networks), for extracting answers from a question-specific subgraph containing text and KB entities and relations.

Key Terms

- Question Answering (QA): finding answers to questions posed in natural language
 - Current QA Approaches: before, it required a pipeline of multiple ML modules
 - Now, the shift is toward training end-end deep NN models
 - These models only use a single info source; either KB or text
- Late fusion: take each source separately and aggregate their predictions after they're finished
- **Early fusion:** use 1 single model to extract answers from a question subgraph with both KB facts and text sentences

KB vs. Text Corpus

- Criteria: coverage of info and difficulty of extracting answers
- Knowledge Base (KB): store of information; low coverage but are easier to extract answers from since they're constructed to be queried
 - \circ K = (V, E, R)
 - V = set of entities
 - E = triplet of edges (s, r, o) to denote relation $r \in R$ that holds between s, o $\in V$
- Text Corpus: large text corpus' have high coverage, but the information is represented in many different text patterns; hard for models to generalize and extract information easily
 - \circ Text corpus D = {d₁, . . , d_{|D|}} set of documents
 - \circ Each $d_i = (w_1, \dots, w_{|di|})$ sequence of words

Entities, links, and questions

Entity linking system

- L = set of links (v, d_p) connecting an entity $v \in V$ with dp (a word @ position p)
- Ld = set of all entity links in document d

Natural language question

- \circ q = $(w_1, \dots, w_{|a|})$ set of words
- Extract its answers {a}_a
- \circ From G = (K, D, L)

Process

- 1. Extract subgraph G_q from G which contains the answer w/high probability
- 2. Use GRAFT-Net to learn node representations in $\mathbf{G}_{\mathbf{q}}$ conditioned on \mathbf{q} to classify each node as answer or not answer

Process 1 - question subgraph (G_q) retrieval

- Use 2 parallel pipelines
 - One over KB: returns a set of entities
 - One over text corpus D: returns set of documents
- The 2 are combined with entity links to produce a full-connected graph

1 - KB Retrieval

- 1. Entity linking on question q to produce a set of seed entities = S_a
- 2. Run PPR (Personalized PageRank) to identify other possible answer entities
- 3. Average word vectors to compute a relation vector v(r) from the surface form of the relation, question vector v(q) from the question's words; cosine similarity between these edge weights
- 4. Retain top E entities v_1 through v_E by PPR score + edges between them to add to G_a

2 - Text Retrieval

Used Wikipedia as dataset + retrieved text @ sentence level

- 1. Retrieve top 5 most relevant Wikipedia articles: using weighted bag-of-words model from DrQA
- 2. Populate a Lucene index with sentences from the articles
- 3. Retrieve top ranking sentences d_1 , ..., d_D based on the question words
- 4. Add retrieved documents + any entities linked to them to G_q

^{*} Lucene is a full-text search library in Java

Final composition of \mathbf{G}_a

$$G_q = (V_q, E_q, R^+)$$

 $\mathbf{E}_{\mathbf{q}}$ = relations from K among these entities + entity-links between documents and entities

 V_a = retrieved entities + documents = $\{v_1, \ldots, v_E\}$ U $\{d_1, \ldots, d_D\}$

$$\mathbf{E}_{q} = \{(s, o, r) \in E : s, o \in V_{q}, r \in R\} \cup \{(v, d_{p}, r_{L}) : (v, d_{p}) \in L_{d}, d \in V\}$$

* \mathbf{r}_{l} = special "linking" relation with R^{+} = R U $\{r_{l}\}$

GRAFT-Nets

- 1. Label nodes in V_a : question q and answers $\{a_a\}$
 - $y_v = 1 \text{ if } v \in \{a_a\}$
 - $y_v = 0$ otherwise for all $v \in V_q$
- 2. The task of QA becomes to:
 - Perform binary classification over the nodes of graph G_a
 - Use graph-propagation based models that learn node representations then perform classification of the nodes
 - Those models follow standard gather-apply-scatter paradigm to learn the node representation with homogeneous updates, i.e. treating all neighbors equally.

Graph-propagation based model

- Initialize node representations $\mathbf{h}_{\mathbf{v}}^{(0)}$ $h_v^{(l)} = \phi \left(h_v^{(l-1)}, \sum_{v' \in N_r(v)} h_{v'}^{(l-1)} \right)$

- For l = 1, ..., L update $h_{v}^{(0)}$
- $N_r(v)$ = neighbors of v along incoming edges of type r
- Φ is a NN layer
- L = number of layers in the model; corresponds to the max length of the paths along which info should be propagated in the graph
- Once propagation is complete: use final layer representations h_v(L) to perform the desired task
- Desired task could be: link prediction in KB

Key differences in GRAFT-Net

- G_q contains heterogeneous nodes: some correspond to KB entities (symbolic objects) and others represent textual documents (variable-length sequences of words)
- 2. Want to condition the representation of nodes on the natural language question q

Node Initialization

Nodes corresponding to entities initialized using fixed-size vectors $h_{\nu}^{(0)} = x_{\nu} \in \mathbf{R}^n$

 X_v can be pre-trained or random KB embeddings; n = embedding size

<u>Document</u> is represented with variable length $H_{d}^{(1)} \in \mathbf{R}^{|d| \times n}$

<u>Words</u> = $(w_1, w_2, ..., w_{|d|})$ then its hidden representation $H_d^{(0)} = LSTM(w_1, w_2, ...)$ LSTM = long short-term memory unit

p-th row of H_d(1)

Embedding of p-th word in document d @ layer 1 as $H_{d,p}^{(1)}$

Heterogeneous Updates

Entities: $M(v) = \{(d,p)\} = set of positions p in documents d that correspond to a mention of entity v$

- Update for entity nodes = single-layer feed-forward network (FFN) over concatenation of 4 states

$$h_{v}^{(l)} = \text{FFN} \left(\begin{bmatrix} h_{v}^{(l-1)} \\ h_{q}^{(l-1)} \\ \sum_{r} \sum_{v' \in N_{r}(v)} \alpha_{r}^{v'} \psi_{r}(h_{v'}^{(l-1)}) \\ \sum_{(d,p) \in M(v)} H_{d,p}^{(l-1)} \end{bmatrix} \right)$$

$$h_v^{(l)} = \text{FFN} \left(\begin{bmatrix} h_v^{(l-1)} \\ h_q^{(l-1)} \\ \sum_r \sum_{v' \in N_r(v)} \alpha_r^{v'} \psi_r(h_{v'}^{(l-1)}) \\ \sum_{(d,p) \in M(v)} H_{d,p}^{(l-1)} \end{bmatrix} \right)$$

1st 2 terms = entity and question representation from previous layer

3rd term = aggregation of states from entity neighbors of the current node $N_r(v)$

- After scaling with attention weight $\alpha_{r}^{v'}$
- After applying relation specific transformations $\psi_{\mbox{\tiny r}}$

4th term = aggregation of all the states of all tokens that correspond to mentions of the entity v among the documents in subgraph

Variables

 $\alpha_r^{\ \ v'}$ = attention weight, calculated using question + relation embeddings

 Ψ_r = relation specific transformation

 x_r = relation vector for $r \in Rq$; update along an edge is

$$\psi_r(h_{v'}^{(l-1)}) = pr_{v'}^{(l-1)} \text{FFN}\left(x_r, h_{v'}^{(l-1)}\right).$$

 pr_v , $^{(1-1)}$ = PageRank score used to control propagation of embeddings along paths starting @ seed nodes

Heterogeneous Updates

Documents: L(d,p) = set of all entities linked to word @ position p in document d

Update in 2 steps

1. Aggregate over the entity states $ilde{H}_d^($ coming in @ each position separately $ilde{h}_{_{_{\!\!\!\!V}}}^{(1-1)}$ normalized by # outgoing edges @ v

2. Aggregate states within the document using an LSTM

$$ilde{H}_{d,p}^{(l)} = ext{FFN}\left(H_{d,p}^{(l-1)}, \sum_{v \in L(d,p)} h_v^{(l-1)}
ight)$$

$$H_d^{(l)} = \text{LSTM}(\tilde{H}_d^{(l)}).$$

Conditioning on the Question

Dependence on the question in 2 ways: attention over relations + personalized propagation

$$q = w_1^q$$
, . . , $w_{|q|}^q = words$ of the question

$$h_q^{(0)} = \text{LSTM}(w_1^q, \dots, w_{|q|}^q)_{|q|} \in \mathbb{R}^n,$$

In subsequent layers,
$$h_q^{(1)} = FFN\left(\sum_{v \in S_q} h_v^{(l)}\right)$$

Attention over Relations

Attention weight computed using question + relation embeddings

$$\alpha_r^{v'} = \operatorname{softmax}(x_r^T h_q^{(l-1)}),$$

- Embeddings are propagated more along the edges that are relevant to the question

Directed Propagation

Many questions require multi-hop reasoning

Follows a path from seed node from question to the target answer node

Propagation starts @ seed entities S_a mentioned in question

PageRank scores pr_v⁽¹⁾; measure total weight of paths from seed entity to the current node

Directed Propagation

$$pr_v^{(0)} = \begin{cases} rac{1}{|S_q|} & \text{if} \quad v \in S_q \\ 0 & \text{o.w.} \end{cases},$$
 $pr_v^{(l)} = (1-\lambda)pr_v^{(l-1)} + \lambda \sum_r \sum_{v' \in N_r(v)} \alpha_r^{v'} pr_{v'}^{(l-1)}.$

- Reuse the attention weights to ensure that nodes along relevant paths to the question receive high weight
- PageRank score used as a scaling factor when propagating embeddings along edges

Directed Propagation

- For l = 1, PageRank score =
 0 for all entities except
 seed entities Propagate
 outwards from those nodes

- For l = 2, it's non-zero for seed entities and their 1-hop neightbors -> only propagate along these edges

Figure 3: Directed propagation of embeddings in GRAFT-Net. A scalar PageRank score $pr_v^{(l)}$ is maintained for each node v across layers, which spreads out from the seed node. Embeddings are only propagated from nodes with $pr_v^{(l)} > 0$.

Answer selection

Final representations $h_v^{(L)} \subseteq \mathbf{R}^n$; used for binary classification to select answers

$$\Pr\left(v \in \{a\}_q | \mathcal{G}_q, q\right) = \sigma(w^T h_v^{(L)} + b),$$

 σ is the sigmoid function

Training uses binary cross-entropy loss over these probabilities

Regularization via Fact Dropout

Want: model to learn a robust classifier

How: fact-dropout aka randomly drop edges from the graph during training (with probability p_{α})

Usually easier to extract answers from KB than from documents, so model tends to rely on KB more

Experiment Setup

1. Datasets: WikiMovies-10K and WebQuestionsSP

2. Compared models: KV-KB [Key Value Memory Networks model; only KB], KV-EF [same model with access to text as well], GN-KB [GRAFT-Net model; no text], GN-LF [late fusion version of GRAFT-Net; did 1 with only text and 1 with only KB], GN-EF [main model, early fusion], GN-EF+LF [ensemble over GN-EF and GN-LF models]

Results

- Best performance was GN-EF+LF aka the ensemble of early and late fusion
- 2. Adding text adds a great benefit to performance
- 3. That benefit diminishes as KB completeness reaches 100%

Model	Text Only	KB + Text			
		10 %	30%	50%	100%
WikiMovies	s-10K				
KV-KB	<u> 2004</u> 0	15.8 / 9.8	44.7 / 30.4	63.8 / 46.4	94.3 / 76.1
KV-EF	50.4 / 40.9	53.6 / 44.0	60.6 / 48.1	75.3 / 59.1	93.8 / 81.4
GN-KB	_	19.7 / 17.3	48.4 / 37.1	67.7 / 58.1	97.0 / 97.6
GN-LF	(74.5 / 65.4	78.7 / 68.5	83.3 / 74.2	96.5 / 92.0
GN-EF	73.2 / 64.0	75.4 / 66.3	82.6 / 71.3	87.6 / 76.2	96.9 / 94.1
GN-EF+LF		79.0 / 66.7	84.6 / 74.2	88.4 / 78.6	96.8 / 97.3
WebQuestic	onsSP				
KV-KB	=	12.5 / 4.3	25.8 / 13.8	33.3 / 21.3	46.7 / 38.6
KV-EF	23.2 / 13.0	24.6 / 14.4	27.0 / 17.7	32.5 / 23.6	40.5 / 30.9
GN-KB	_	15.5 / 6.5	34.9 / 20.4	47.7 / 34.3	66.7 / 62.4
GN-LF	(29.8 / 17.0	39.1 / 25.9	46.2 / 35.6	65.4 / 56.8
GN-EF	25.3 / 15.3	31.5 / 17.7	40.7 / 25.2	49.9 / 34.7	67.8 / 60.4
GN-EF+LF		33.3 / 19.3	42.5 / 26.7	52.3 / 37.4	68.7 / 62.3

Effect of Novel Ideas

1. Heterogeneous Updates

- Tested a non-heterogeneous version as well
- Cannot disambiguate different entities mentioned in the same document
- Non-heterogeneous is consistently worse than the heterogeneous

2. Conditioning on the Question

- Both directed propagation method and attention over relations led to better performance

3. Fact Dropout

- Moderate levels improve performance (~0.2)

Conclusion

GRAFT-Net classifies nodes in subgraphs with both KB entities and text documents

Achieves performance competitive to state-of-the-art methods; outperforms baselines when using text + incomplete KB

Future Work

- 1. Extend GRAFT-Nets to pick spans of text as answers, not just entities
- 2. Improve the subgraph retrieval process