Teoria kolejek, zadania rachunkowe:

Zadanie 1.

W sieci komórkowej, dokonane pomiary pozwoliły wyznaczyć przeciętną stopę zgłoszeń do sieci (stopę przybyć) λ =29 oraz przeciętną stopę realizacji rozmowy (stopę obsługi) μ =7 w ciągu minuty. Dokonać diagnozy sieci komórkowej, w zależności od liczby kanałów obsługi abonenta w sieci:

- a. wyznaczyć wartość parametru określającego intensywność ruchu,
- b. przy jakich założeniach sieć utrzyma stan równowagi.

Zadanie 2.

W sieci udostępniono jednakowe dane na 5 serwerach. Obserwacje częstotliwości ruchu w sieci pozwoliły wyznaczyć średnią stopę logowań do sieci λ =254 oraz średnią stopę realizacji pobrań danych μ =51 w ciągu minuty.

- a. Czy system usług jest stabilny?
- b. Czy sensowne jest zmniejszenie liczby serwerów, a może należy system rozbudować o nowe serwery, aby utrzymać stabilna realizacje usług?
- c. Ile wynosi prawdopodobieństwo, że nie będzie kolejki?
- d. Ile wynosi prawdopodobieństwo, że klient będzie musiał oczekiwać?
- e. Ile wynosi prawdopodobieństwo, że w kolejce znajdują się więcej niż dwie osoby?
- f. lle wynosi prawdopodobieństwo, że klient będzie musiał oczekiwać w kolejce dłużej niż 15 minut?
- g. Ile przeciętnie klientów oczekuje w kolejce na realizację połączenia?
- h. Jaki jest przeciętny czas oczekiwania klientów na wykonanie usługi?

Zadanie 3.

Właściciel przychodni stomatologicznej sprowadził nowe oprzyrządowanie gabinetów. Inwestycja ta przyczyniła się do zwiększenia wydajności wszystkich stanowisk. W związku z tym każdy z gabinetów jest w stanie przyjąć trzech pacjentów, ale w ciągu 40 minut. Przyjmując, że przybycia pacjentów zawarte są w tabeli, rozstrzygnąć następujące kwestie:

- a. Czy ma sens zlikwidowanie jednego z gabinetów?
- b. W przypadku redukcji jednego stanowiska obsługi, jakie jest prawdopodobieństwo tego, że pacjent przychodząc do przychodni nie napotka kolejki?
- c. Jaka jest przecietna liczba oczekujących w kolejce?

Kolejny numer pacjenta	Czas przybycia liczony od przybycia	Kolejny numer pacjenta	Czas przybycia liczony od przybycia	
	poprzednika (w min.)		poprzednika (w min.)	
1	0	11	5	
2	8	12	8	
3	17	13	7	
4	9	14	5	
5	11	15	8	
6	12	16	7	
7	13	17	5	
8	5	18	4	
9	4	19	16	
10	11	20	5	

Zadanie 4.

W studenckim barze samoobsługowym z jednym stanowiskiem obsługi studenci wybierają danie płacąc od razu należność. Do czasu obsługi liczą się czasy podania wybranych dań oraz zainkasowania należności. Pomiary czasów przybycia 32 studentów do baru w porze obiadowej i ich obsługi podano w tablicy. Pomiary te wykonano za pomocą stopera, rejestrując pory przybycia oraz czasy obsługi (w s).

- a. Oszacować przeciętną stopę przybyć oraz przeciętną stopę obsługi baru w porze obiadowej.
- b. Postawić diagnozę działania systemu obsługi baru w tej samej porze.

Numer	Czas przybycia	Czas	Numer	Czas przybycia	Czas
przybywając	liczony od	obsługi	przybywając	liczony od	obsługi
ego	przyjścia	(w s)	ego	przyjścia	(w s)
	poprzednika			poprzednika	
1	0	40	17	50	65
2	6	60	18	55	65
3	40	65	19	45	65
4	30	60	20	55	75
5	50	40	21	55	70
6	30	55	22	50	60
7	25	65	23	45	65
8	5	60	24	45	62
9	15	60	25	50	60
10	15	70	26	10	40
11	10	65	27	25	55
12	30	70	28	25	75
13	40	65	29	55	60
14	40	75	30	55	40
15	40	60	31	40	70
16	50	50	32	50	60