31. 3. 2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 4月10日

RECEIVED 2.7 MAY 2004

PCT

WIPO.

出 願 番 号
Application Number:

特願2003-106277

[ST. 10/C]:

[JP2003-106277]

出 願 人
Applicant(s):

独立行政法人 科学技術振興機構

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 5月14日

【書類名】

特許願

【整理番号】

PS03-1275

【あて先】

特許庁長官殿

【発明者】

【住所又は居所】 東京都府中市美好町3-40-8

【氏名】

澁谷 憲悟

【発明者】

【住所又は居所】 千葉県松戸市西馬橋2-40-21-105

【氏名】

村上 英利

【発明者】

【住所又は居所】

東京都品川区東品川2-5-6-905

【氏名】

斎藤 晴雄

【発明者】

【住所又は居所】

東京都目黒区目黒1-9-12

【氏名】

浅井 圭介

【特許出願人】

【識別番号】

396020800

【氏名又は名称】

科学技術振興事業団

【代理人】

【識別番号】

100087631

【弁理士】

【氏名又は名称】

滝田 清暉

【選任した代理人】

【識別番号】

100110249

【弁理士】

【氏名又は名称】 下田 昭

【手数料の表示】

【予納台帳番号】

011017

【納付金額】

21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 放射線検出装置

【特許請求の範囲】

【請求項1】 シンチレータとしてCsBr結晶を用い、シンチレータからの受光に光電子増倍管を用いた放射線検出装置であって、該光電子増倍管が、300~500nmの光を検出し、シングルフォトンが検出可能な感度と、シングルフォトンに対して30ps以下の半値幅と、 $10mm^2$ 以上の受光面積とを有することを特徴とする放射線検出装置。

【請求項2】 ガンマ線検出のための請求項1に記載の放射線検出装置。

【請求項3】 前記CsBr結晶が、CsCl型の結晶構造を有し、そのCsBrの原子比が1:1である請求項1又は2に記載の放射線検出装置。

【請求項4】 前記光電子増倍管が、MCP内蔵光電子増倍管である請求項 1~3のいずれか一項に記載の放射線検出装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

この発明は、放射線、特にガンマ線の検出装置に関し、更に詳細には時間分解 能の極めて早いガンマ線検出装置に関する。

[0002]

【従来の技術】

放射線検出器は、固体の輻射緩和現象を利用して、電離放射線を光学的に検出・測定するものである。近年、物理、化学、生物及び医療などの分野において、短パルス放射線の利用が進められており、短パルス放射線を簡易に測定する方法が求められている。例えば、医療機器であるPET(ポジトロン・エミッション・トモグラフィー)では、放射線検出器の時間分解性能を測定系の位置検出に利用することが可能であり、その場合時間分解能が高ければ高いほど、より短時間でより精密な診断を行うことが出来る。従って、高時間分解能放射線検出器に対する要請は極めて大きい。

[0003]

従来の放射線検出器のうち、特にガンマ線検出器の時間分解能は満足がゆくも のではなかった。

例えば、今までのところ最も良い時間分解能として、プラスチックシンチレーターとダイノード増幅型光電子増倍管を用いてアナログ回路で時間処理する方法で測定したものは124ps(非特許文献 1)、 BaF_2 シンチレーターとダイノード増幅型光電子増倍管とデジタルオシロスコープを用いる方法で測定したものは155ps(非特許文献 2)、プラスチックシンチレーターとダイノード増幅型光電子増倍管とデジタルオシロスコープを用いる方法で測定したものは120ps(斎藤晴雄 2003年出版予定)を示していた。

[0004]

一方、CsBr (臭化セシウム) 結晶からの高速発光は、1990年ごろから 光物性の研究者の間では知られており(非特許文献 3)、その発光量、発光の減 衰時間、その温度依存性が測定されている(非特許文献 4)。表1に示すように 、室温において、発光量がBaF2の高速成分の1%(NaI(T1)の0.0 4%)、減衰時間が30ピコ秒であった。室温での発光量が非常に少ないが、減 衰時間が非常に高速なことが知られていた。

【表1】

	発光量(NaI(TI)比)	減衰時間
CsBr(室温)	0.04%	30ps
BaF2	4%	800ps

しかしCsBr結晶をガンマ線計測に応用する発想はなかった。

[0005]

また、高速性に特徴のあるMCP内蔵光電子増倍管は、1980年ごろから市販されている。MCP内蔵光電子増倍管と通常の光電子増倍管との比較を表2に示す。MCP内蔵光電子増倍管は、波形の立ち上がり時間(rise time)と走行時間のばらつき (T.T.S., Transit time spread) が小さい点に特徴がある。

【表2】

	立ち上がり時間	半値幅
MCP内蔵光電子増倍管 (浜松ホトニクスR3809U)	150ps	25 ps
普通の光電子増倍管で最 も高速なもの (浜松ホトニクスH3378)	700ps	370ps

普通の光電子増倍管と普通のガンマ線高速測定用シンチレーター(BaF2又はプラスチックシンチレーター)を用いたときの時間分解能は、光電面における光電子数の統計的ばらつきで決定され、立ち上がり時間や走行時間のばらつきはあまり効かない。しかし、MCP内蔵光電子増倍管と普通のガンマ線高速測定用シンチレーターを用いて、ガンマ線の時間測定を行うと、使用できる光電子の数が少ないため、統計的ばらつきが大きく、普通の光電子増倍管より悪い時間分解能しか得られないため、ガンマ線の時間計測には使用されていなかった。

[0006]

【非特許文献1】

M. Moszynski, 1993年 Nuclear Instruments and Methods in Physics Research A 337 (1993) 154

【非特許文献2】

斎藤晴雄 2002年 Nuclear Instruments and Methods in Physics Research A 487 (2002) 612-617

【非特許文献3】

J PHYS SOC JPN 62: (8) 2904-2914 AUG 1993

【非特許文献4】

J PHYS SOC JPN 66: (8) 2502-2512 AUG 1997

[0007]

【発明が解決しようとする課題】

従来のガンマ線検出器は、時間分解能が不十分であった。そのため、以下の応 用の際の制約となっていた。

(1) 医療におけるPET (Positron Emission Tomography, 陽電子断層撮影)

時間分解能が向上すれば、時間情報から、陽電子の位置を検出可能になり、測 定時間の短縮、線源強度の低減など、被験者の負担低減につながる。

(2) 陽電子寿命測定法

材料科学において、陽電子の寿命測定は格子欠陥の検出に利用されている。時間分解能が向上すれば検出感度が向上する。

本発明は、このような制約を解消するため、ガンマ線検出の時間分解能を向上させることを目的とする。

[0008]

【課題を解決するための手段】

本発明者らは、ガンマ線を光に変換するシンチレーター結晶としてCsBr(臭化セシウム)を用い、光を電気信号に変換する光電子増倍管としてMCP内蔵 タイプを用いることにより、ガンマ線検出において従来の値を大きく上回る時間 分解能を得られることを見出し、本発明を完成させた。

即ち、本発明は、シンチレータとしてCsBr結晶を用い、シンチレータからの受光に光電子増倍管を用いた放射線検出装置であって、該光電子増倍管が、 $300\sim500$ nmの光を検出し、シングルフォトンが検出可能な感度と、シングルフォトンに対して30ps以下の半値幅と、10mm2以上の受光面積とを有することを特徴とする放射線検出装置である。

[0009]

【発明の実施の形態】

本発明の放射線検出装置は、シンチレータとして C s B r 結晶を用い、シンチレータからの受光に光電子増倍管を用いる。

本発明で用いるCsBr結晶は、そのように分類される如何なる結晶を用いてもよいが、CsBrを含むアルカリハライド結晶は、1960年代から高純度のものが光学用に商業的に提供されており、本発明においてはこのようなものを用いることができる。

その成分はCs(セシウム)とBr(臭素)の原子比が1:1であり、結晶構造がCsCl型ものが好ましく用いられる。

[0010]

CsBr結晶は放射線、特にガンマ線を照射すると300~500nmの光を 放射するため、この放射光を受光するために光電子増倍管を用いる。

光電子増倍管は、光を電子に変換するための光電面と、その電子を増幅する増 幅部から構成される。一方、MCP(マイクロチャンネルプレート)は、ガラス に微細な穴(チャンネル)が空いている素子であり、この両面に電圧(数kV)を かけると、負電位の側から入射した電子がチャンネルの壁にぶつかりながら2次 電子を出して増幅される。MCP内蔵光電子増倍管は、このような素子を内蔵す ることにより、シングルフォトンの検出を可能とし、応答時間を高速にした光電 子増倍管である。このようなMCP内蔵光電子増倍管は市販されており、例えば 、浜松ホトニクス株式会社からR3809UシリーズやR5916Uシリーズとして入手可能 である。これらのスペックを図1に示す。

[0011]

本発明の放射線検出装置は、上記のCsBr結晶と光電子増倍管以外に、これ ら部品を結合して、放射線を検出するために適宜必要なスペックを有する装置を 組合わせて用いてもよい。例えば、CsBr結晶とMCP内蔵光電子増倍管にデ ジタルオシロスコープを組み合わせたり、このデジタルオシロスコープを外部ト リガ回路で動作させるよう構成してもよい。更に、検出された波形の処理のため に適宜公知の装置を用いることができる。

[0012]

この放射線検出装置の測定対象は、陽電子消滅ガンマ線が好ましく、線源はP ETに使用されるものとして、C-11、N-13、O-15、F-18、陽電 子寿命測定に使用されるものとしてNa-22、Ge-68などが挙げられる。

[0013]

【実施例】

以下、実施例にて本発明を例証するが、本発明を限定することを意図するもの ではない。

測定装置

まず、シンチレータとして、CsBr結晶(Korth Kristalle GMBH社)を用い た。その成分はCsとBrが1:1 (原子比)であり、結晶構造はCsCl型で ある。サイズは8mmφ×8mmであり、全面研磨品である。

光電子増倍管として、MCP内蔵光電子増倍管(浜松ホトニクスR3809U)を用いた。その立ち上がり時間は150ps、走行時間のばらつきは25psである。その構造を図2に示す。図2において、CATHODEが光電面で、ここで光が電子に変換され、その電子がMCPに入射し、増幅され、ANODEから出力される。

このCsBr結晶にシリコングリスを全面に塗布したのち、光電子増倍管への 貼り付け面以外を遮光テープで覆ってから、直接光電子増倍管の受光面に貼り付け、放射線検出装置とした。

線源として、22Na (入手先:日本アイソトープ協会、製造元:PerkinElme r lifescience社)を用いた。強度は1MBqであった。22Naからは、1.27MeVのガンマ線と陽電子が同時に放出され、陽電子はすぐに2本の0.51MeVのガンマ線になる。今回のセットアップでは1.27MeVのガンマ線の効果は無視できる。この線源のサイズは約2mmである。

[0014]

これら各装置を、図3に示すように配置した。放射線検出装置を2つ用意し、そのCsBr結晶が対向するように配置し、光電子増倍管、CsBr結晶及び線源を同一軸上に並べた。2つの放射線検出装置のCsBr結晶の面間距離を50mmとした。

これらに、デジタルオシロスコープ(LeCroy社製 WaveMaster9600、アナログ 帯域6GHz、サンプリング周波数20GS/s (2ch同時))、波高弁別器(E G&G O R T E C 社製 モデル 5 8 4)、コインシデンス回路(林栄精器製 RPN-130)を図3に示すように配置し、2 つの光電子増倍管が受光した時間の差を測定した。このように装置を配置した結果、時間分解能は8 0 p s 以下、距離分解能は 1 2 m m 程度であった。

[0015]

測定操作

まず、線源(サイズ:約2mm)を一方の放射線検出装置のCsBr結晶から20mmの位置に置いて、線源からの放射線を測定した。各点間の時間が5ps

であるので、縦軸(カウント)が頂点から半分の位置の幅は、16点以下であった。即ち、2本の陽電子消滅ガンマ線(0.511MeV,同時に出る)の時間 差測定の時間分解能(半値幅)として80ps以下の値が得られた。

次に、線源を他方の放射線検出装置のCsBr結晶の方向へ10mm移動させて、同様に測定した。

[0016]

測定結果

測定結果を図4に示す。10mmの移動により、右検出器に10mm近づき、 左検出器から10mm離れる。図4からこの移動前後で、ピークが13.3チャンネル(即ち、66.6ps)移動していることが分かる。

光速が3 cm/100 p sなので、66 p sだけピーク位置が移動することが予想される。この予想は上記の測定結果とよく一致した。

即ち、陽電子消滅ガンマ線(0.511MeV)及びそれとエネルギーが近いガンマ線の時間測定において、従来になかった高い時間分解能を実現する装置が実現した。

【図面の簡単な説明】

【図1】

本発明に用いることのできるMCP内蔵光電子増倍管とそのスペックを示す図である(浜松ホトニクス株式会社のパンフレット)。

図2】

MCP内蔵光電子増倍管(浜松ホトニクスR3809U)の構造を示す図である(浜松ホトニクス株式会社のパンフレットから)。

【図3】

実施例で用いた測定装置の配置を示す図である。

【図4】

測定結果を示す図である。横軸はチャンネル数(時間)を表し、縦軸はカウント数を表す。Position Aは移動前、Position Bは移動後の測定値を示す。

(Am) Peak Anode Current Max. Ratings Signal to Confine to C Photo-Peak Wave-length (EE) Sode Spectral Response 100 200 300 400 500 600 700 800 900 1000 1100 1200 --- Wavelength (nm) Effective Area (mm)

Type No.

【書類名】

【図1】

図面

						ļ						
B380911-50	611	5005	S 430	MA	o	•	2	SHV-R	SHV-R SMA-R	-3400	100	320
R380911-51	911	5015	009 S	EMA	ø	•	2	SHV-R	SHV-R SMA-R	-3400	100	350
	011	403K	¥ 64	BA	a	•	2	SHV-R	SHV-R SMA-R	-3400	2	350
911		201M	M 230	Cs-Te	Ā	•	2	SHV-R	SHV-R SMA-R	-3400	100	320
	0.1	500M	M 430	MA	MF	•	2	SHV-R	SHV-R SMA-R	-3400	100	350
P280011.59	911	700M	+	A	노	•	2	SHV-R	SHV-R SMA-R	-3400	100	320
Cotod Tunes			┥	4	1							
B591611-50	010	2008	30 430	MA	O	•	2	SHV-R	SHV-R SMA-R	-3400	100	320
R5916U-51	010	5018	900	EMA	ø	•	2	SHV-R	SHV-R SMA-R	-3400	100	320

The R5916 series can be gated by input of a +15 V gate signal. Standard types are normally OFF, but normally ON types are also available. Gate operation is 5 ns, though this depends on the gate signal Irput pulse.

SHV-R SMA-R -3400

N

O

æ

8

\$

R5916U-52

【図2】

【図3】

【図4】

【書類名】 要約書

【要約】

【課題】 時間分解能の極めて早いガンマ線検出装置を提供する。

【解決手段】 シンチレーター結晶としてCsBr(臭化セシウム)を用い、光電子増倍管としてMCP内蔵タイプを用いることにより、ガンマ線検出において従来の値を大きく上回る時間分解能を得られる。

【選択図】 なし

ページ: 1/E

認定・付加情報

特許出願の番号

特願2003-106277

受付番号

5 0 3 0 0 5 9 4 2 0 7

書類名

特許願

担当官

第六担当上席

0095

作成日

平成15年 4月11日

<認定情報・付加情報>

【提出日】

平成15年 4月10日

【書類名】

出願人名義変更届(一般承継)

【提出日】

平成15年10月31日

【あて先】

特許庁長官 殿

【事件の表示】 【出願番号】

特願2003-106277

【承継人】

【識別番号】

503360115

【住所又は居所】 【氏名又は名称】

埼玉県川口市本町四丁目1番8号 独立行政法人科学技術振興機構

【代表者】 【連絡先】

沖村 憲樹

東京都千代田区四番町 5-3 独立行政法 **〒102-8666** 人科学技術振興機構 知的財産戦略室 佐々木吉正 TEL 0 3-5214-8486 FAX 03-5214-8417

【提出物件の目録】

【物件名】

【援用の表示】

権利の承継を証明する書面 1

平成15年10月31日付提出の特第許3469156号にかか る一般承継による移転登録申請書に添付のものを援用する。

【物件名】

【援用の表示】

登記簿謄本 1 平成15年10月31日付提出の特第許3469156号にかか る一般承継による移転登録申請書に添付のものを援用する。

特願2003-106277

出願人履歴情報

識別番号

[396020800]

1. 変更年月日 [変更理由] 1998年 2月24日

名称変更

住 所 氏 名 埼玉県川口市本町4丁目1番8号 科学技術振興事業団

特願2003-106277

出願人履歴情報

識別番号

[503360115]

1. 変更年月日 [変更理由] 住 所 2003年10月 1日

新規登録

住 所 埼玉県川口市本町4丁目1番8号 氏 名 独立行政法人 科学技術振興機構