Cognome:	Nome:	Matricola:
Tipologia d'esame: □ 12 CFU	□ 15 CFU	

Prova scritta di ASM 12CFU e 15CFU - Modulo Analisi Esplorativa del 11.07.2017

La durata della prova è di 60 minuti.

Si svolgano gli esercizi 1, 2 e 3 riportando il risultato dove indicato.

Esercizio 1 (Punti: 8)

1.a) Siano date due unità statistiche $u_1' = (1,1)$ e $u_2' = (2,3)$. Calcolare

Distanza Euclidea $d_2(u_1, u_2) = \dots$

Distanza di Manhattan $d_1(u_1, u_2) = \dots$

Distanza di Lagrange $d_{\infty}(u_1, u_2) = \dots$

Distanza di Canberra $d_C(u_1, u_2) = \dots$

1.b) Si consideri la seguente matrice di distanze relativa a tre unità statistiche u_1, u_2 e u_3 :

$$D_{3\times3} =$$

	u_1	u_2	u_3
u_1	0		
u_2	7	0	
u_3	6	5	0

Se utilizziamo un algoritmo gerarchico agglomerativo, le unità u_1 e u_2 vengono messe assieme nel gruppo (u_1, u_2) . Aggiornare la matrice delle distanze utilizzando il metodo del legame singolo:

$$\begin{array}{c|cc} & (u_1, u_2) & (u_3) \\ \hline (u_1, u_2) & 0 \\ (u_3) & \dots & 0 \\ \end{array}$$

Aggiornare la matrice delle distanze utilizzando il metodo del legame medio:

$$\begin{array}{c|cc} & (u_1, u_2) & (u_3) \\ \hline (u_1, u_2) & 0 \\ (u_3) & \dots & 0 \\ \end{array}$$

1.c) Si consideri la seguente decomposizione della distanza totale T in distanza entro i gruppi W e tra i gruppi B per tre unità statistiche u_1 , u_2 e u_3 raggruppate in due gruppi G_1 e G_2 :

G_1, G_2	W	В	T
$(u_1), (u_2, u_3)$	2		12
$(u_1,u_2), (u_3)$		10.5	12
$(u_1,u_3), (u_2)$		8.5	

Completare la tabella con le informazioni mancanti.

Qual è il raggruppamento ottimale? $G_1 = \dots, G_2 = \dots$

Esercizio 2 (Punti: 8)

Data la matrice di varianze/covarianze $S = \left[\begin{array}{ccc} 4 & 3 & 1 \\ 3 & 9 & 2 \\ 1 & 2 & 1 \end{array} \right]$

2.a) Riportare

 $Varianza\ totale = \dots \dots e\ generalizzata = \dots \dots$

L'indice di variabilità relativo (arrotondare al secondo decimale) =

- **2.b)** Determinare la matrice di correlazione $R = \begin{bmatrix} \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \end{bmatrix}$.
- **2.d)** Calcolare la correlazione tra la seconda colonna \tilde{x}_2 di $\tilde{X}_n = 0$ i punteggi u_2 della seconda componente principale, arrotondando al secondo decimale.

 $= \dots \dots$

```
## [1] 14
## [1] 14
## [1] 0.39
        [,1]
##
                  [,2]
                            [,3]
## [1,] 1.0 0.5000000 0.5000000
## [2,] 0.5 1.0000000 0.6666667
## [3,]
        0.5 0.6666667 1.0000000
        [,1] [,2] [,3]
## [1,] 1.89 0.6 0.26
## [2,] 0.60 2.9 0.50
## [3,] 0.26 0.5 0.83
## [1] -0.23
```

Esercizio 3 (Punti: 9)

Importare il logo di R
 nella matrice $\tilde{X}_{n\times p}$ con n=100e
 p=76tramite i comandi

```
rm(list=ls())
library(png)
logo <- readPNG(system.file("img", "Rlogo.png", package="png"))
X <- t(logo[,,1])
n = nrow(X)
p = ncol(X)
# visualizza immagine
image(X, col=gray(0:255/255), asp=p/n)</pre>
```


3.a) Effettuare l'analisi delle componenti principali dei dati centrati $\tilde{X}_{n \times p}$ (utilizzare il comando princomp), riportando il numero delle componenti necessarie per spiegare almeno 85% della variabilità:

NUMERO DI COMPONENTI = PROPORZIONE DI VARIABILITA' SPIEGATA =

Comp.8 ## 8

Comp.8 ## 0.8636509

3.b) Dopo aver calcolato la matrice dei punteggi $\underset{n \times p}{Y} = \underset{n \times pp \times p}{\tilde{X}} V$ e la matrice dei pesi $\underset{p \times p}{V}$, ottenere la migliore approssimazione per $\underset{n \times p}{\tilde{X}}$ di rango q, $\underset{n \times p}{A_q} = \underset{n \times qq \times p}{Y_q} V_q'$, con q determinato al punto precedente (q = numero delle componenti necessarie per spiegare almeno 85% della variabilità). Costruire l'immagine compressa $\underset{n \times p}{C} = \underset{n \times p}{A_q} + \underset{n \times 1}{\bar{x}}$, assicurandosi che tutti gli elementi di $\underset{n \times p}{C}$ siano compresi tra 0 e 1. Riportare infine i 5 numeri di sintesi per l'immagine compressa:

 $\mathrm{MEDIA} = \dots$

 $MEDIANA = \dots$

 $1 \text{ QUARTILE} = \dots$

 $3 \text{ QUARTILE} = \dots$

 $Min = \dots$

 $Max = \dots$

Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.00000 0.03987 0.31959 0.30156 0.50744 0.98670

3.c) Confrontare l'immagine compressa con l'immagine originale calcolando il fattore di riduzione in termini di pixels e bytes (utilizzando il comando object.size)

FATTORE DI RIDUZIONE (PIXELS) $= \dots$

FATTORE DI RIDUZIONE (BYTES) = \dots

[1] 5.12

4.4 bytes