CBSE Class–10 Mathematics NCERT solution Chapter - 10

Circles - Exercise 10.1

1.	How	many	tangents	can a	circle	have?
┸.	110 44	ILLUILLY	turiscrito	cuii u	CILCIC	HUVC

Ans. A circle can have infinitely many tangents since there are infinitely many points on the circumference of the circle and at each point of it, it has a unique tangent.

circulmerence of the circle and at each point of it, it has a unique tangent.						
2. Fill in the blanks:						
(i) A tangent to a circle intersects it in point(s).						
(ii) A line intersecting a circle in two points is called a						
(iii) A circle can have parallel tangents at the most.						
(iv) The common point of a tangent to a circle and the circle is called						
Ans. (i) A tangent to a circle intersects it in <u>exactly one</u> point.						
ii) A line intersecting a circle in two points is called a <u>secant</u> .						
(iii) A circle can have <u>two</u> parallel tangents at the most.						
(iv) The common point of a tangent to a circle and the circle is called <u>point of contact</u> .						
3. A tangent PQ at a point P of a circle of radius 5 cm meets a line through the centre O						
at a point Q so that OQ = 12 cm. Length PQ is:						
(A) 12 cm (B) 13 cm (C) 8.5 cm (D) $\sqrt{119}$ cm						
Ans. (D) : PQ is the tangent and OP is the radius through the point of contact.						
\angle OPQ = 90° [The tangent at any point of a circle is \bot to the radius through the point of contact]						
. In right triangle OPQ,						

 $OQ^2 = OP^2 + PQ^2$ [By Pythagoras theorem]

$$\Rightarrow (12)^2 = (5)^2 + PQ^2$$

$$\Rightarrow 144 = 25 + PQ^2$$

$$\Rightarrow PQ^2 = 144 - 25 = 119$$

$$\Rightarrow$$
 PQ = $\sqrt{119}$ cm

4. Draw a circle and two lines parallel to a given line such that one is a tangent and the other, a secant to the circle.

CBSE Class-10 Mathematics

NCERT solution

Chapter - 10

Circles - Exercise 10.2

In Q 1 to 3, choose the correct option and give justification.

1. From a point Q, the length of the tangent to a circle is 24 cm and the distance of Q from the centre is 25 cm. The radius of the circle is:

(A) 7 cm (B) 12 cm (C) 15 cm (D) 24.5 cm

Ans. (A)

[The tangent at any point of a circle is \perp to the radius

through the point of contact]

... In right triangle OPQ,

$$OQ^2 = OP^2 + PQ^2$$

[By Pythagoras theorem]

$$\Rightarrow (25)^2 = OP^2 + (24)^2$$

$$\Rightarrow$$
 625 = $OP^2 + 576$

$$\Rightarrow OP^2 = 625 - 576 = 49$$

$$\Rightarrow$$
 OP = 7 cm

2. In figure, if TP and TQ are the two tangents to a circle with centre O so that \angle POQ = 110° , then \angle PTQ is equal to:

(A)
$$60^{\circ}$$
 (B) 70° (C) 80° (D) 90°

Ans. (B)

$$\angle$$
 POQ = 110°, \angle OPT = 90° and \angle OQT = 90°

[The tangent at any point of a circle is \perp to the radius through the point of contact]

In quadrilateral OPTQ,

$$\angle$$
 POQ + \angle OPT + \angle OQT + \angle PTQ = 360°

[Angle sum property of quadrilateral]

$$\Rightarrow$$
 110° +90° +90° + \angle PTQ = 360°

$$\Rightarrow$$
 $\angle PTQ = 360^{\circ} - 290^{\circ}$

$$\Rightarrow$$
 \angle PTQ = 70°

3. If tangents PA and PB from a point P to a circle with centre O are inclined to each other at angle of 80° , then \angle POA is equal to:

(A)
$$50^{\circ}$$
 (B) 60° (C) 70° (D) 80°

Ans. (A)

$$\therefore$$
 \angle OAP = 90°

[The tangent at any point of a circle is \perp to the radius

through the point of contact]

$$\angle$$
 opa = $\frac{1}{2} \angle$ bpa = $\frac{1}{2} \times 80^{\circ} = 40^{\circ}$

[Centre lies on the bisector of the

angle between the two tangents]

In \triangle OPA,

$$\angle$$
 OAP + \angle OPA + \angle POA = 180°

[Angle sum property of a triangle]

$$\Rightarrow$$
 90° + 40° + \angle POA = 180°

$$\Rightarrow$$
 130° + \angle POA = 180°

$$\Rightarrow$$
 \angle POA = 50°

4. Prove that the tangents drawn at the ends of a diameter of a circle are parallel.

Ans. Given: PQ is a diameter of a circle with centre O.

The lines AB and CD are the tangents at P and Q respectively.

To Prove: AB | CD

Proof: Since AB is a tangent to the circle at P and OP is the radius through the point of contact.

$$\therefore$$
 \(\text{OPA} = 90\)°.....(i)

[The tangent at any point of a circle is \bot to the radius through the point of contact]

CD is a tangent to the circle at Q and OQ is the radius through the point of contact.

$$... \angle OQD = 90^{\circ}....(ii)$$

[The tangent at any point of a circle is \perp to the radius through the point of contact]

From eq. (i) and (ii),
$$\angle$$
 OPA = \angle OQD

But these form a pair of equal alternate angles also,

5. Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

Ans. Let AB be the tangent drawn at the point P on the circle with O.

If possible, let PQ be perpendicular to AB, not passing through O.

Join OP.

Since tangnet at a point to a circle is perpendicular to the radius through the point.

Therefore, AB
$$\perp$$
 OP \Rightarrow \angle OPB = 90°

Also,
$$\angle QPB = 90^{\circ}$$
 [By construction]

Therefore, $\angle QPB = \angle OPB$, which is not possible as a part cannot be equal to whole.

Thus, it contradicts our supposition.

Hence, the perpendicular at the point of contact to the tangent to a circle passes through the centre.

6. The length of a tangent from a point A at distance 5 cm from the centre of the circle is 4 cm. Find the radius of the circle.

Ans. We know that the tangent at any point of a circle is \bot to the radius through the point of contact.

$$OA^2 = OP^2 + AP^2$$

[By Pythagoras theorem]

$$\Rightarrow (5)^2 = (OP)^2 + (4)^2$$

$$\Rightarrow$$
 25 = $(OP)^2 + 16$

$$\Rightarrow OP^2 = 9$$

$$\Rightarrow$$
 OP = 3 cm

7. Two concentric circles are of radii 5 cm and 3 cm. Find the length of the chord of the larger circle which touches the smaller circle.

Ans. Let O be the common centre of the two concentric circles.

Let AB be a chord of the larger circle which touches the smaller circle at P.

Join OP and OA.

Then,
$$\angle$$
 OPA = 90°

[The tangent at any point of a circle is \bot to the radius through the point of contact]

$$OA^2 = OP^2 + AP^2$$

[By Pythagoras theorem]

$$\Rightarrow (5)^2 = (3)^2 + AP^2$$

$$\Rightarrow$$
 25 = 9 + AP^2

$$\Rightarrow AP^2 = 16$$

$$\Rightarrow$$
 AP = 4 cm

Since the perpendicular from the centre of a circle to a chord bisects the chord, therefore

$$AP = BP = 4 cm$$

$$\Rightarrow$$
 AB = AP + BP

$$= AP + AP = 2AP$$

$$= 2 \times 4 = 8 \text{ cm}$$

8. A quadrilateral ABCD is drawn to circumscribe a circle (see figure). Prove that:

$$AB + CD = AD + BC$$

Ans. We know that the tangents from an external point to a circle are equal.

AP = AS(i)

 $BP = BQ \dots (ii)$

CR = CQ(iii)

DR = DS....(iv)

On adding eq. (i), (ii), (iii) and (iv), we get

(AP + BP) + (CR + DR)

= (AS + BQ) + (CQ + DS)

 \Rightarrow AB + CD = (AS + DS) + (BQ + CQ)

 \implies AB + CD = AD + BC

9. In figure, XY and X'Y' are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and X'Y' at B. Prove that \angle AOB = 90°

Ans. Given: In figure, XY and X'Y' are two parallel tangents to a circle with centre O and another tangent AB with point of contact C intersecting XY at A and X'Y' at B.

To Prove: ∠ AOB = 90°

Construction: Join OC

Proof: ∠ OPA = 90°.....(i)

[Tangent at any point of a circle is \perp to

the radius through the point of contact]

In right angled triangles OPA and OCA,

$$\angle$$
 OPA = \angle OCA = 90°

OA = OA [Common]

AP = AC [Tangents from an external

point to a circle are equal]

$$\triangle OPA \cong \triangle OCA$$

[RHS congruence criterion]

 \therefore \angle OAP = \angle OAC [By C.P.C.T.]

$$\Rightarrow \angle OAC = \frac{1}{2} \angle PAB$$
(iii)

Similarly, \angle OBQ = \angle OBC

$$\Rightarrow \angle OBC = \frac{1}{2} \angle QBA \dots (iv)$$

∴ XY || X'Y' and a transversal AB intersects them.

$$\therefore$$
 Z PAB + Z QBA = 180°

[Sum of the consecutive interior angles on the same side of the transversal is 180°]

$$\Rightarrow \frac{1}{2} \angle PAB + \frac{1}{2} \angle QBA$$

$$=\frac{1}{2}\times180^{\circ}$$
....(v)

$$\Rightarrow$$
 \angle OAC + \angle OBC = 90°

[From eq. (iii) & (iv)]

In \triangle AOB,

$$\angle$$
 OAC + \angle OBC + \angle AOB = 180°

[Angel sum property of a triangle]

$$\Rightarrow$$
 90° + \angle AOB = 180° [From eq. (v)]

$$\Rightarrow$$
 \angle AOB = 90°

10. Prove that the angel between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line-segment joining the points of contact at the centre.

Ans.
$$\angle$$
 OAP = 90°.....(i)

[Tangent at any point of a circle is \perp to

the radius through the point of contact]

OAPB is quadrilateral.

$$\triangle$$
 APB + \angle AOB + \angle OAP + \angle OBP = 360°

[Angle sum property of a quadrilateral]

$$\Rightarrow$$
 \angle APB + \angle AOB + 90° + 90° = 360°

[From eq. (i) & (ii)]

$$\Rightarrow$$
 \angle APB + \angle AOB = 180°

 \therefore \angle APB and \angle AOB are supplementary.

11. Prove that the parallelogram circumscribing a circle is a rhombus.

Ans. Given: ABCD is a parallelogram circumscribing a circle.

To Prove: ABCD is a rhombus.

Proof: Since, the tangents from an external point to a circle are equal.

$$AP = AS$$
(i)

$$BP = BQ \dots (ii)$$

$$DR = DS....(iv)$$

On adding eq. (i), (ii), (iii) and (iv), we get

$$(AP + BP) + (CR + DR)$$

$$= (AS + BQ) + (CQ + DS)$$

$$\implies$$
 AB + CD = (AS + DS) + (BQ + CQ)

$$\implies$$
 AB + CD = AD + BC

$$\implies$$
 AB + AB = AD + AD

[Opposite sides of $\|$ gm are equal]

$$\Rightarrow$$
 2AB = 2AD

$$\implies$$
 AB = AD

But AB = CD and AD = BC

[Opposite sides of || gm]

$$\therefore$$
 AB = BC = CD = AD

- ... Parallelogram ABCD is a rhombus.
- 12. A triangle ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC into which BC is divided by the point of contact D are of lengths 8 cm and 6 cm respectively (see figure). Find the sides AB and AC.

Ans. Join OE and OF. Also join OA, OB and OC.

Since BD = 8 cm

$$\therefore$$
 BE = 8 cm

[Tangents from an external point to a circle are equal]

Since CD = 6 cm

 Γ CF = 6 cm

[Tangents from an external point to a circle are equal]

Let AE = AF = x

Since OD = OE = OF = 4 cm

[Radii of a circle are equal]

$$\therefore \text{ Semi-perimeter of } \Delta ABC = \frac{(x+6)+(x+8)+(6+8)}{2} = (x+14) \text{ cm}$$

... Area of
$$\triangle$$
 ABC = $\sqrt{s(s-a)(s-b)(s-c)}$

$$=\sqrt{(x+14)(x+14-14)(x+14-\overline{x+8})(x+14-\overline{x+6})}$$

$$=\sqrt{(x+14)(x)(6)(8)}$$
 cm²

Now, Area of \triangle ABC = Area of \triangle OBC + Area of \triangle OCA + Area of \triangle OAB

$$\Rightarrow \sqrt{(x+14)(x)(6)(8)}$$

$$=\frac{(6+8)4}{2}+\frac{(x+6)4}{2}+\frac{(x+8)4}{2}$$

$$\Rightarrow \sqrt{(x+14)(x)(6)(8)}$$

$$= 28 + 2x + 12 + 2x + 16$$

$$\Rightarrow \sqrt{(x+14)(x)(6)(8)} = 4x+56$$

$$\Rightarrow \sqrt{(x+14)(x)(6)(8)} = 4(x+14)$$

Squaring both sides,

$$(x+14)(x)(6)(8) = 16(x+14)^{2}$$

$$\Rightarrow 3x = x + 14$$

$$\Rightarrow 2x = 14$$

$$\Rightarrow x = 7$$

$$\therefore$$
 AB = $x + 8 = 7 + 8 = 15 cm$

And AC =
$$x + 6 = 7 + 6 = 13$$
 cm

13. Prove that opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.

Ans. Given: ABCD is a quadrilateral circumscribing a circle whose centre is O.

To prove: (i)
$$\angle$$
 AOB + \angle COD = 180° (ii) \angle BOC + \angle AOD = 180°

Construction: Join OP, OQ, OR and OS.

Proof: Since tangents from an external point to a circle are equal.

$$\triangle AP = AS$$
,

$$BP = BQ(i)$$

$$CQ = CR$$

$$DR = DS$$

In \triangle OBP and \triangle OBQ,

OP = OQ [Radii of the same circle]

OB = OB [Common]

BP = BQ [From eq. (i)]

 \triangle OPB $\cong \triangle$ OBQ [By SSS congruence criterion]

$$\angle 1 = \angle 2$$
 [By C.P.C.T.]

Similarly,
$$\angle 3 = \angle 4$$
, $\angle 5 = \angle 6$, $\angle 7 = \angle 8$

Since, the sum of all the angles round a point is equal to 360°.

$$\angle 1 + \angle 2 + \angle 3 + \angle 4 + \angle 5 + \angle 6 + \angle 7 + \angle 8 = 360^{\circ}$$

$$\Rightarrow \angle 1 + \angle 1 + \angle 4 + \angle 4 + \angle 5 + \angle 5 + \angle 8 + \angle 8 = 360^{\circ}$$

$$\Rightarrow 2(\angle 1 + \angle 4 + \angle 5 + \angle 8) = 360^{\circ}$$

$$\Rightarrow \angle 1 + \angle 4 + \angle 5 + \angle 8 = 180^{\circ}$$

$$\Rightarrow$$
 $(\angle 1 + \angle 5) + (\angle 4 + \angle 8) = 180^{\circ}$

$$\Rightarrow$$
 \angle AOB + \angle COD = 180°

Similarly, we can prove that

$$\angle$$
 BOC + \angle AOD = 180°