Introduction

Darshan's DL Lectures

101/0 theory + Pracs

• Deep learning is an extended field of machine learning that has proven to be highly useful in the domains of text, image, and speech, primarily.

Pythm Tetris Puzzk

• The collection of algorithms implemented under deep learning have similarities with the relationship between stimuli and neurons in the human brain.

DL-> initates human brain to some extent

• Deep learning has extensive applications in computer vision, language translation, speech recognition, image generation, and so forth. These sets of algorithms are simple enough to learn in both a supervised and unsupervised fashion.

Scaling data science techniques to amount of data

Introduction

Why deep learning?

Scaling data science techniques to amount of data

Introduction

 The term deep in deep learning refers to the depth of the artificial neural network architecture, and learning stands for learning through the artificial neural network itself.

 $h(\theta, \mathbf{x})$

Deep Network

Introduction

Discover latent structures (Feature learning) from

unlabeled & unstructured data, such as Images (Pid

data), Documents (Text) or files (audio,

· How Deep Is "Deep"? If the # Hidden layers > 1, then we call it as Deep.

 A deep neural network is simply a feed forward neural network with multiple hidden layers.

Basic Structure of NN - History

Basic Structure of NN - History

 Artificial neuron or perceptron, first developed in the 1950s by Frank Rosenblatt.

Basic Structure of NN - History

What is Neural Network. I

First Understand, a type of Artificial Neuron i.e. PERCEPTRON.

$$x_1$$
 w_1 w_2 w_3 w_3 w_4 w_5 w_6 w_7 w_7 w_8 w_8

What is
$$= \frac{3}{1} \omega_1 \cdot x_1$$
 $= \frac{3}{1} \omega_1 \cdot x_1 + \omega_2 \cdot x_2 + \omega_3 \cdot x_3$