Agriculture sector: Rice Cultivation Emissions Estimates using Sentinel-1A and -2A/B

Rudiyanto^{1,3} and Budiman Minasny²

1) Universiti Malaysia Terengganu, 2) The University of Sydney, 3) Climate TRACE

Sector Overview

The Climate TRACE coalition provides rice cultivation emission estimates using three different methods. A summary of these approaches is described in the <u>Climate TRACE GitHub methodology repository</u>.

- First, our highest resolution modeling is conducted using Sentinel-1A/B synthetic aperture radar (SAR) and -2A/B 10m spatial resolution time-series data. The data from these satellites were applied to estimate rice cultivation emissions in the largest rice producing countries for 2022 and, in some cases, 2021. This highest resolution approach is documented in detail in the publications, "Automated near-real-time mapping and monitoring of rice extent, cropping patterns, and growth stages in Southeast Asia using Sentinel-1 time series on a Google Earth Engine platform" (Rudiyanto et al. 2019) and "High-Resolution Mapping of Paddy Rice Extent and Growth Stages across Peninsular Malaysia Using a Fusion of Sentinel-1 and 2 Time Series Data in Google Earth Engine" (Fatchurrachman et al. 2022).
- Second, a model was developed that used 500m data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites (https://modis.gsfc.nasa.gov/about/). Rice cultivation emissions were estimated for years 2015 to 2022. A detailed explanation of these methods can be found in the "Agriculture sector- Rice Cultivation Emission Estimates using MODIS" methodology.
- Third, for countries not modeled using the first two approaches, appropriate emission factors derived from literature review were applied to country-level data provided by The Food and Agriculture Organization (FAO) FAOSTAT.

Here, this document describes the first approach, estimating rice cultivation emissions using Sentinel-1A and-2 A/B data.

1. Overview

The Climate TRACE coalition provides rice cultivation emissions estimates using three different methods. For the approach described here, rice cultivation emission estimates were produced using Sentinel-1A/B synthetic aperture radar (SAR) and Sentinel-2A/B time-series data and

applied to map rice field extents, rice growth patterns, and number of plantings in rice producing regions globally for years 2021 to 2022 at a 10m spatial resolution. Using regional, sub-regional, and seasonal emission factors (EFs), rice emissions estimates were derived which reflect rice growing practices at the country and sub-national level (see Tables S1 to S4).

The application of these satellite measurements to map rice fields and growth was piloted in Malaysia and is documented in detail in the publication in Rudiyanto et al. (2019) and Fatchurrachman et al. (2022). The Universiti Malaysia Terengganu, in partnership with Climate TRACE, have expanded these modeling approaches to include eight additional countries in 2021 and 25 countries in 2022, shown in Table S5. These countries represent the majority of rice producing regions globally. To estimate rice cultivation emissions, the rice field and number of plantings were used with IPCC (1997) approaches to estimate emissions at the 10m spatial resolution, then aggregated to produce total country-level emissions for years 2021 to 2022.

2. Supplementary materials

Table S1 documents the EFs used to estimate each country's rice cultivation emissions. Included are the mean emissions and standard deviation associated with each EF.

Tables S1 Seasonally integrated methane emission factors (EFs) in various conditions and locations of the world that were used in this study. Mean emission factors and standard deviation (SD) are provided.

Country	ISO3 country	Mean CH ₄ Emission (kg CH ₄ /ha/season)	SD CH ₄ Emission (kg CH ₄ /ha/season)	References
Bangladesh	BGD	168.2	80.4	(Islam et al., 2020)
Brazil	BRA	430.1	149.6	(Camargo et al., 2018; Zschornack et al., 2018)
Egypt	EGY	183.6	51.04	(Mboyerwa, 2022)
Ethiopia	ETH	183.6	51.04	(Mboyerwa, 2022)
Spain	ESP	405.7	202.9	(Moreno-García, Guillén and Quílez, 2020; Martínez-Eixarch <i>et al.</i> , 2021)
Indonesia	IDN	339.8	102.1	(Setyanto et al., 2018)
India	IND	81.0	42.5	(Bhatia <i>et al.</i> , 2005; Kritee <i>et al.</i> , 2018; Oo <i>et al.</i> , 2018)
Iran (Islamic Republic of)	IRN	81.0	42.5	India EF
Italy	ITA	292.0	116.0	(Lagomarsino et al., 2016; Mazza et al., 2016; Meijide et al., 2017)
Japan	JPN	469.8	302.4	(Camargo et al., 2018; Toma et al., 2019)
Cambodia	KHM	145.3	31.0	(Vibol and Towprayoon, 2010)

Korea (the Republic of)	KOR	349.4	93.0	(Gutierrez, Kim and Kim, 2013; Lim et al., 2021)
Lao People's Democratic Republic (the)	LAO	78.3	31.6	Thailand EF
Sri Lanka	LKA	81.0	42.5	India EF
Myanmar	MMR	30.1	12.5	(Win et al., 2020)
Malaysia	MYS	178.3	118.5	(Fazli and Man, 2014)
Nepal	NPL	81.0	42.5	India EF
Pakistan	PAK	81.0	42.5	India EF
Philippines (the)	PHL	258.0	192.7	(Alberto et al., 2014; Sander, Samson and Buresh, 2014; Sibayan et al., 2018)
Korea (the Democratic People's Republic of)	PRK	349.4	93.0	Korea (the Republic of) EF
Taiwan (Province of China)	TWN	112.0	91.4	(Chang, 2001)
United States of America (the)	USA	202.0	121.9	(Hatala et al., 2012; Humphreys et al., 2019; Della Lunga et al., 2021; Karki et al., 2021)

EFs at the subnational level and or higher temporal frequencies were applied to three countries where more detailed information was available. Those countries include China (Sun 2020), Vietnam (Thoung Vo 2020), and Thailand (Katoh 1999). These subnational EFs were applied to these countries for years 2022. Table S2 to Table S4 summarize the EFs used.

Table S2 summarizes emissions factors and their standard deviation for five regions in China (Sun 2020). For regions where it is common to have multiple rice harvests, unique emissions factors were provided to help illustrate seasonal variation. These emissions factors were applied to modeled harvested area estimates to characterize annual methane emissions.

Table S2 China subnational EFs reported in Sun (2020)

Region	Season	Mean (kg CH4/ha)	Standard Deviation
	Early Season	50.5	83.41
South China	Late-rice	182.3	156.65
	All Rice	116.4	146.14
	Single Rice	244	220.36
Southwest China	All Rice	244	220.36
	Early Season	99.2	140.68
	Late-rice	224.8	224.03
Yangtze River	Single Rice	188.5	173.32
	All Rice	174	188.75
Northeast	Single Rice	74.4	133.62
Huang-Huai-Hai	Single Rice	43.2	15.41

Table S3 Thailand subnational estimated seasonal rice field methane rates. Major and second refers to "wet season rice cropping" and "dry season rice cropping", respectively (Katoh, 1999). Table modified from Katoh (1999). Blank cells indicate no value given. Asterisk with numbers refer to citations- *1 = Yagi et al. (1994), *2 = Katoh et al. (1999a), and *3 = Katoh et al. (1999b).

		Rice	Flooding period	CH4 flux (mg m-2	Estimated seasonal emission (g m-2 season-1)		
Site	Year	cultivation	(day)	hr-1)	Second	Major	
Khon kaen	1991	Major *1	97	16.4		50.8	
Knon kach	1991	Second *1	109	19.4	38.2		
Khlong Lugang	1991	Second *1	83	3.1	6.1		
Chai Net	1991	Major *1	94	1.1		2.5	
	1002	Major *2	106	21.8		55.5	
Bang Khen	Bang Khen 1992	Second *2	120	4.3	12.4		
	1994	Second	118	6.7	19		
DI:4 1.1	1992	Major *3	98	7.4		17.4	
Phitsanulok	1993	Second *3	113	6.6	17.9		
C D TI	1993	Major *3	103	16.1		39.8	
San Pa Thong	1994	Second *3	101	8.8	21.3		
Dl. 4	1993	Major *3	128	22.2		68.2	
Phtae	1994	Second *3	127	15.9	48.5		
Khon Kaen	1994	Major *3	129	19.8		61.3	
Knon Kaen	on Kaen 1995 Second		96	15.1	34.8		
Surin	1994	Major *3	123	13.3		39.3	
Suilli	Surin 1995 Second*3 120 15.4		15.4	44.4			
	Mean 26.9 41.8						

Table S4 Vietnam subnational emission factors reported in Thoung Vo (2020). In each of these regions, rice production involved multiple harvests. Unique emissions factors were provided to help illustrate seasonal variation in emissions across successive harvests. These emissions factors were applied to modeled harvested area estimates to characterize annual methane emissions.

Region of Vietnam	Season	Average emissions (kg CH4 ha-1 d-1)	Standard Deviation		
North	Early	2.213	1.22		
North	Late	3.894	1.664		
Central	Early	3.097	2.218		
Central	Middle	3.097	2.218		
	Early	1.718	0.8807		
South	Middle	2.797	1.168		
	Late	3.583	4.838		

Table S5 provides a summary of the modeled spatial resolution applied to each country for each year. N/A values represent years where harvested area estimates relied on FAOSTAT data rather than modeling.

Table S5 The different spatial resolutions of modeled countries by year. 500m = MODIS modeling approach. 10m = Sentinel-1A/B and -2A/B modeling approach. A country with a "N/A" for a specific year, or for any country not shown, used FAOSTAT to estimate rice emissions for that specific country and year.

Country	2015	2016	2017	2018	2019	2020	2021	2022
Bangladesh	500m	10m						
Brazil	500m	10m						
China	500m	10m						
Spain	500m	10m						
Egypt	N/A	10m						
Ethiopia	N/A	10m						
Indonesia	500m	500m	500m	500m	500m	500m	10m	10m
India	500m	10m						
Iran (Islamic Republic of)	500m	10m						
Italy	500m	10m						
Japan	500m	10m						
Cambodia	500m	500m	500m	500m	500m	500m	10m	10m
Korea (the Republic of)	500m	10m						
Lao People's Democratic Republic (the)	500m	500m	500m	500m	500m	500m	10m	10m
Sri Lanka	500m	10m						
Myanmar	500m	500m	500m	500m	500m	500m	10m	10m

Malaysia	500m	500m	500m	500m	500m	500m	10m	10m
Nepal	500m	10m						
Pakistan	500m	10m						
Philippines (the)	500m	500m	500m	500m	500m	500m	10m	10m
Korea (the Democratic People's Republic of)	500m	10m						
Thailand	500m	500m	500m	500m	500m	500m	10m	10m
Taiwan (Province of China)	500m	10m						
United States of America (the)	500m	10m						
Viet Nam	500m	500m	500m	500m	500m	500m	10m	10m

The Agriculture sector: Rice Cultivation Emissions Estimates using FAOSTAT reports the following data on the Climate TRACE website:

• Country-level CH₄, and 20 and 100 year GWPs emissions from rice cultivation.

Emissions estimates were reported for years 2021 to 2022, with previous years combined with MODIS-generated and/or FAOSTAT generated emissions data. The data generated here has been combined with the other approaches to estimate rice cultivation emissions globally. All data is freely available on the Climate TRACE website (https://climatetrace.org/). A detailed description of what is available is described in Table S6.

Table S6 Metadata for Rice Cultivation Emissions Estimates.

General Description	Definition			
Sector definition	Country-level rice cultivation emissions			
UNFCCC sector equivalent	3.C Rice Cultivation			
Temporal Coverage	2015 – 2022			
Temporal Resolution	Annual			
Data format	CSV			
Coordinate Reference System	None. ISO3 country code provided			
Number of assets/countries	250 countries			
available for download				
Ownership	Country			
What emission factors were used?	IPCC CH. 10 and 11 EFs			
What is the difference between a	"0" values are for true non-existent emissions. If we know that the			
"0" versus "NULL/none/nan" data	sector has emissions for that specific gas, but the gas was no			
field?	modeled, this is represented by "NULL/none/nan"			
	Climate TRACE uses IPCC AR6 CO ₂ e GWPs. CO ₂ e conversion			
total_CO2e_100yrGWP and	guidelines are here:			
total_CO2e_20yrGWP conversions	https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_W			
	GI FullReport small.pdf			

Permissions and Use: All Climate TRACE data is freely available under the Creative Commons Attribution 4.0 International Public License, unless otherwise noted below.

Citation format: Rudiyanto and Minasny, B. (2023). *Rice Cultivation Emissions Estimates using Sentinel-1A and -2A/B*. Universiti Malaysia Terengganu, Malaysia, Climate TRACE

Emissions Inventory. https://climatetrace.org [Accessed date]

Geographic boundaries and names (iso3_country data attribute): The depiction and use of boundaries, geographic names and related data shown on maps and included in lists, tables, documents, and databases on Climate TRACE are generated from the Global Administrative Areas (GADM) project (Version 4.1 released on 16 July 2022) along with their corresponding ISO3 codes, and with the following adaptations:

- HKG (China, Hong Kong Special Administrative Region) and MAC (China, Macao Special Administrative Region) are reported at GADM level 0 (country/national);
- Kosovo has been assigned the ISO3 code 'XKX';
- XCA (Caspian Sea) has been removed from GADM level 0 and the area assigned to countries based on the extent of their territorial waters;
- XAD (Akrotiri and Dhekelia), XCL (Clipperton Island), XPI (Paracel Islands) and XSP (Spratly Islands) are not included in the Climate TRACE dataset;
- ZNC name changed to 'Turkish Republic of Northern Cyprus' at GADM level 0;
- The borders between India, Pakistan and China have been assigned to these countries based on GADM codes Z01 to Z09.

The above usage is not warranted to be error free and does not imply the expression of any opinion whatsoever on the part of Climate TRACE Coalition and its partners concerning the legal status of any country, area or territory or of its authorities, or concerning the delimitation of its borders.

Disclaimer: The emissions provided for this sector are our current best estimates of emissions, and we are committed to continually increasing the accuracy of the models on all levels. Please review our terms of use and the sector-specific methodology documentation before using the data. If you identify an error or would like to participate in our data validation process, please contact us.

References

- 1. Alberto, M.C.R., Wassmann, R., Buresh, R.J., Quilty, J.R., Correa, T.Q., Sandro, J.M., Centeno, C.A.R., 2014. Measuring methane flux from irrigated rice fields by eddy covariance method using open-path gas analyzer. Field Crops Research 160, 12–21. https://doi.org/10.1016/j.fcr.2014.02.008
- 2. Bhatia, A., Pathak, H., Jain, N., Singh, P.K., Singh, A.K., 2005. Global warming potential of manure amended soils under rice-wheat system in the Indo-Gangetic plains. Atmospheric Environment 39, 6976–6984. https://doi.org/10.1016/j.atmosenv.2005.07.052
- 3. Camargo, E.S., Pedroso, G.M., Minamikawa, K., Shiratori, Y., Bayer, C., 2018. Intercontinental comparison of greenhouse gas emissions from irrigated rice fields under feasible water management practices: Brazil and Japan. Soil Science and Plant Nutrition 64, 59–67. https://doi.org/10.1080/00380768.2017.1415660

- 4. Chang, S.Y.H., 2001. Methane emission from paddy fields in Taiwan 157–165.
- 5. Della Lunga, D., Brye, K.R., Slayden, J.M., Henry, C.G., Wood, L.S., 2021. Relationships among soil factors and greenhouse gas emissions from furrow-irrigated Rice in the mid-southern, USA. Geoderma Regional 24, e00365. https://doi.org/10.1016/j.geodrs.2021.e00365
- 6. Fatchurrachman, Rudiyanto, Soh, N.C., Shah, R.M., Giap, S.G.E., Setiawan, B.I., Minasny, B., 2022. High-Resolution Mapping of Paddy Rice Extent and Growth Stages across Peninsular Malaysia Using a Fusion of Sentinel-1 and 2 Time Series Data in Google Earth Engine. Remote Sensing 14. https://doi.org/10.3390/rs14081875
- 7. Fazli, P., Man, H.C., 2014. Comparison of Methane Emission from Conventional and Modified Paddy Cultivation in Malaysia. Agriculture and Agricultural Science Procedia 2, 272–279. https://doi.org/10.1016/j.aaspro.2014.11.039
- 8. Gutierrez, J., Kim, S.Y., Kim, P.J., 2013. Effect of rice cultivar on CH4 emissions and productivity in Korean paddy soil. Field Crops Research 146, 16–24. https://doi.org/10.1016/j.fcr.2013.03.003
- 9. Hatala, J.A., Detto, M., Sonnentag, O., Deverel, S.J., Verfaillie, J., Baldocchi, D.D., 2012. Greenhouse gas (CO₂, CH₄, H₂O) fluxes from drained and flooded agricultural peatlands in the Sacramento-San Joaquin Delta. Agriculture, Ecosystems and Environment 150, 1–18. https://doi.org/10.1016/j.agee.2012.01.009
- 10. Humphreys, J., Brye, K.R., Rector, C., Gbur, E.E., 2019. Methane emissions from rice across a soil organic matter gradient in Alfisols of Arkansas, USA. Geoderma Regional 16, e00200. https://doi.org/10.1016/j.geodrs.2018.e00200
- 11. IPCC, 1997. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. Paris.
- 12. Islam, S.M.M., Gaihre, Y.K., Islam, M.R., Akter, M., Al Mahmud, A., Singh, U., Sander, B.O., 2020. Effects of water management on greenhouse gas emissions from farmers' rice fields in Bangladesh. Science of the Total Environment 734. https://doi.org/10.1016/j.scitotenv.2020.139382
- 13. Karki, S., Adviento-Borbe, M.A.A., Massey, J.H., Reba, M.L., 2021. Assessing seasonal methane and nitrous oxide emissions from furrow-irrigated rice with cover crops. Agriculture (Switzerland) 11, 1–15. https://doi.org/10.3390/agriculture11030261
- 14. Katoh, K., Chairoj, P., Yagi, K., Tsuruta, H., Minami, K., and Cholitkul, W. (1999a). Diel and Seasonal Variations of Methane Flux from Bang Khen Paddy Field in Thailand. *JIRCAS*J. 7: 69-75.
- 15. Katoh, K., Chairoj, P., Yagi, K., Tsuruta, H., Minami, K., and Cholitkul, W. (1999b). Methane emission from paddy field in Northern *Thailand.JIRCASJ*. 7: 77-85.
- 16. Kritee, K., Nair, D., Zavala-Araiza, D., Proville, J., Rudek, J., Adhya, T.K., Loecke, T., Esteves, T., Balireddygari, S., Dava, O., Ram, K., Abhilash, S.R., Madasamy, M., Dokka, R. V., Anandaraj, D., Athiyaman, D., Reddy, M., Ahuja, R., Hamburg, S.P., 2018. High nitrous oxide fluxes from rice indicate the need to manage water for both long- and

- short-term climate impacts. Proc Natl Acad Sci U S A 115, 9720–9725. https://doi.org/10.1073/pnas.1809276115
- 17. Lagomarsino, A., Agnelli, A.E., Linquist, B., Adviento-Borbe, M.A., Agnelli, A., Gavina, G., Ravaglia, S., Ferrara, R.M., 2016. Alternate Wetting and Drying of Rice Reduced CH4 Emissions but Triggered N2O Peaks in a Clayey Soil of Central Italy. Pedosphere 26, 533–548. https://doi.org/10.1016/S1002-0160(15)60063-7
- 18. Lim, J.Y., Cho, S.R., Kim, G.W., Kim, P.J., Jeong, S.T., 2021. Uncertainty of methane emissions coming from the physical volume of plant biomass inside the closed chamber was negligible during cropping period. PLoS ONE 16, 1–14. https://doi.org/10.1371/journal.pone.0256796
- 19. Maneepitak, S., Ullah, H., Datta, A., Shrestha, R.P., Shrestha, S., Kachenchart, B., 2019. Effects of water and rice straw management practices on water savings and greenhouse gas emissions from a double-rice paddy field in the Central Plain of Thailand. European Journal of Agronomy 107, 18–29. https://doi.org/10.1016/j.eja.2019.04.002
- 20. Martínez-Eixarch, M., Alcaraz, C., Viñas, M., Noguerol, J., Aranda, X., Prenafeta-Boldú, F.X., Català-Forner, M., Fennessy, M.S., Ibáñez, C., 2021. The main drivers of methane emissions differ in the growing and flooded fallow seasons in Mediterranean rice fields. Plant and Soil 460, 211–227. https://doi.org/10.1007/s11104-020-04809-5
- 21. Mazza, G., Agnelli, A.E., Orasen, G., Gennaro, M., Valè, G., Lagomarsino, A., 2016. Reduction of Global Warming Potential from rice under alternate wetting and drying practice in a sandy soil of northern Italy. Italian Journal of Agrometeorology 21, 35–44. https://doi.org/10.19199/2016.2.2038-5625.035
- 22. Mboyerwa, P.A., Kibret, K., Mtakwa, P. and Aschalew, A., 2022. Greenhouse gas emissions in irrigated paddy rice as influenced by crop management practices and nitrogen fertilization rates in eastern Tanzania. *Frontiers in Sustainable Food Systems*, 6, p.868479.
- 23. Meijide, A., Gruening, C., Goded, I., Seufert, G., Cescatti, A., 2017. Water management reduces greenhouse gas emissions in a Mediterranean rice paddy field. Agriculture, Ecosystems and Environment 238, 168–178. https://doi.org/10.1016/j.agee.2016.08.017
- 24. Moreno-García, B., Guillén, M., Quílez, D., 2020. Greenhouse gas emissions as affected by fertilization type (Pig Slurry vs. Mineral) and soil management in mediterranean rice systems. Agronomy 10. https://doi.org/10.3390/agronomy10040493
- 25. Oo, A.Z., Sudo, S., Inubushi, K., Mano, M., Yamamoto, A., Ono, K., Osawa, T., Hayashida, S., Patra, P.K., Terao, Y., Elayakumar, P., Vanitha, K., Umamageswari, C., Jothimani, P., Ravi, V., 2018. Methane and nitrous oxide emissions from conventional and modified rice cultivation systems in South India. Agriculture, Ecosystems and Environment 252, 148–158. https://doi.org/10.1016/j.agee.2017.10.014
- 26. Rudiyanto, Minasny, B., Shah, R.M., Che Soh, N., Arif, C., Indra Setiawan, B., 2019. Automated Near-Real-Time Mapping and Monitoring of Rice Extent, Cropping Patterns,

- and Growth Stages in Southeast Asia Using Sentinel-1 Time Series on a Google Earth Engine Platform. Remote Sensing 11. https://doi.org/10.3390/rs11141666
- 27. Sander, B.O., Samson, M., Buresh, R.J., 2014. Methane and nitrous oxide emissions from flooded rice fields as affected by water and straw management between rice crops. Geoderma 235–236, 355–362. https://doi.org/10.1016/j.geoderma.2014.07.020
- 28. Setyanto, P., Pramono, A., Adriany, T.A., Susilawati, H.L., Tokida, T., Padre, A.T., Minamikawa, K., 2018. Alternate wetting and drying reduces methane emission from a rice paddy in Central Java, Indonesia without yield loss. Soil Science and Plant Nutrition 64, 23–30. https://doi.org/10.1080/00380768.2017.1409600
- 29. Sibayan, E.B., Samoy-Pascual, K., Grospe, F.S., Casil, M.E.D., Tokida, T., Padre, A.T., Minamikawa, K., 2018. Effects of alternate wetting and drying technique on greenhouse gas emissions from irrigated rice paddy in Central Luzon, Philippines. Soil Science and Plant Nutrition 64, 39–46. https://doi.org/10.1080/00380768.2017.1401906
- 30. Sun, J., Wang, M., Xu, X., Cheng, K., Yue, Q., Pan, G., 2020. Re-estimating methane emissions from Chinese paddy fields based on a regional empirical model and high-spatial-resolution data. Environmental Pollution 265, Part A. https://doi.org/10.1016/j.envpol.2020.115017
- 31. Toma, Y., Sari, N.N., Akamatsu, K., Oomori, S., Nagata, O., Nishimura, S., Purwanto, B.H., Ueno, H., 2019. Effects of green manure application and prolonging mid-season drainage on greenhouse gas emission from paddy fields in Ehime, Southwestern Japan. Agriculture (Switzerland) 9, 1–17. https://doi.org/10.3390/agriculture9020029
- 32. Vibol, S., Towprayoon, S., 2010. Estimation of methane and nitrous oxide emissions from rice field with rice straw management in Cambodia. Environmental Monitoring and Assessment 161, 301–313. https://doi.org/10.1007/s10661-009-0747-6
- 33. Vo, T.B.T., Wassmann, R., Mai, V.T., Vu, D.Q., Bui, T.P.L., Vu, T.H., Dinh, Q.H., Yen, B.T., Asch, F., Sander, B.O., 2020. Methane emission factors from vietnamese rice production: Pooling data of 36 field sites for meta-analysis. Climate 8. https://doi.org/10.3390/CLI8060074
- 34. Wang, Z., Zhang, X., Liu, L., Wang, S., Zhao, L., Wu, X., Zhang, W., Huang, X., 2021. Estimates of methane emissions from Chinese rice fields using the DNDC model. Agricultural and Forest Meteorology 303, 108368. https://doi.org/10.1016/j.agrformet.2021.108368
- 35. Win, E.P., Win, K.K., Bellingrath-Kimura, S.D., Oo, A.Z., 2020. Greenhouse gas emissions, grain yield and water productivity: a paddy rice field case study based in Myanmar. Greenhouse Gases: Science and Technology 10, 884–897. https://doi.org/10.1002/ghg.2011
- **36**. Yagi, K., Chairoj, P., Tsuruta, H., Cholitkul, W. and Minami, K. (1994). Methane emission from rice paddy fields in the central plain of Thailand. *Soil Sci. Plant Nutr.* 40: 29-37

37. Zschornack, T., da Rosa, C.M., dos Reis, C.E.S., Pedroso, G.M., Camargo, E.S., Dossantos, D.C., Boeni, M., Bayer, C., 2018. Soil CH4 and N2O emissions from rice paddy fields in southern Brazil as affected by crop management levels: A three-year field study. Revista Brasileira de Ciencia do Solo 42, 1–14. https://doi.org/10.1590/18069657rbcs20170306