Teoria da Computação FCT-UNL 2023-2024 Problem Set 8

Gramáticas Livres de Contexto

- 1. Descreva GLCs que geram as seguintes linguagens:
 - (a) $L = \{0^k 1^{2k} 0^n \mid k, n \in \mathbb{N}\}$
 - (b) $L = \{(01)^k 0^n \mid k, n \in \mathbb{N} \land n > k\}$
 - (c) $L = \{0^k 10^n \mid k, n \in \mathbb{N} \land k \text{ \'e par } \land n \text{ \'e impar}\}$
 - (d) $L = \{w \in \{0,1\}^* \mid w \text{ contém pelo menos três 1s}\}$
 - (e) $L = \{w \in \{0,1\}^* \mid w \text{ começa e acaba com o mesmo símbolo}\}$
 - (f) $L = \{u0w1 \mid u, w \in \{0, 1\}^* \land |u| = |w|\}.$
 - (g) $L = \emptyset$
 - (h) $L = \{\varepsilon\}$
 - (i) $L = \{w \in \{0,1\}^* \mid w = \text{rev}(w)\}$, onde $\text{rev}(w_1 w_2 \dots w_n) = w_n w_{n-1} \dots w_1$. Isto é, L é a linguagem de todos os palíndromos.
- 2. Seja $L \subseteq \{push, pop\}^*$ a linguagem das strings com o mesmo número de ocorrências de push e pop.
 - (a) Defina uma GLC para L.
 - (b) Usando a GLC da alínea (a), mostre que as palavras pushpushpoppop, pushpoppoppush, e pushpoppushpop pertencem à linguagem.
- 3. Mostre que se L_1 e L_2 são LLCs, então $L_1 \cup L_2$ também é LLC.
- 4. Considere a seguinte estratégia para mostrar que se L é LLC, então L^* também é LLC: Seja G uma GLC tal que L = L(G). Considere-se a GLC G' obtida a partir de G ao adicionarmos a regra $S \to SS$. Então $L(G') = L^*$. Esta afirmação é verdadeira? Justifique.
- 5. Mostre que se L é LLC, então L^* também é LLC.
- 6. Sejam $L_1 = \{a^n b^n c^m \mid m, n \in \mathbb{N}\} \text{ e } L_2 = \{a^m b^n c^n \mid m, n \in \mathbb{N}\}.$
 - (a) Mostre que L_1 e L_2 são LLCs.

- (b) Use o facto (não demonstrado em aula) de que a linguagem $L = \{a^nb^nc^n \mid n \in \mathbb{N}\}$ não é LLC juntamente com a alínea (a) para concluir que a classe de linguagens livres de contexto não é fechada para a intersecção (i.e., existem L_1 e L_2 LLCs tal que $L_1 \cap L_2$ não é LLC).
- (c) Usando as alíneas acima, mostre que a classe de linguagens livres de contexto não é fechada para o complemento (i.e., existe L LLC tal que \overline{L} não é LLC).
- 7. Seja G uma GLC qualquer. Denotamos por $L_k(G)$ o conjunto das palavras $w \in L(G)$ que têm derivações segundo G com k ou menos passos. Mostre que $L_k(G)$ é finito para qualquer $k \in \mathbb{N}^+$.
- 8. Considere a GLC $G=(V,\Sigma,R,S)$ com $V=\{S,A,N,V,P\},$ $\Sigma=\{\text{Jim, big, green, cheese, ate}\},$ e regras

$$(R_1)$$
 $S \to PVP$

$$(R_2)$$
 $P \to N$

$$(R_3)$$
 $P \to AN$

$$(R_4)$$
 $A \to \text{big}$

$$(R_5)$$
 $A \to \text{green}$

$$(R_6)$$
 $N \to \text{cheese}$

$$(R_7)$$
 $N \to \text{Jim}$

$$(R_8)$$
 $V \to \text{ate}$.

Desenhe árvores de parsing segundo G para as seguintes palavras:

- (a) Jim ate cheese
- (b) cheese ate big Jim
- (c) big Jim at green cheese
- 9. Considere a GLC $G = (V, \Sigma, R, S)$ com $V = \{T, F, E\}, \Sigma = \{+, \times, (,), \mathsf{id}\}, S = E$, e regras

$$(R_1)$$
 $E \rightarrow E + T$

$$(R_2)$$
 $E \to T$

$$(R_3)$$
 $T \to T \times F$

$$(R_4)$$
 $T \to F$

$$(R_5)$$
 $F \rightarrow (E)$

$$(R_6)$$
 $F \rightarrow id$.

Desenhe árvores de parsing segundo G para as seguintes palavras:

(a)
$$id + id + id$$

(b)
$$id \times (id + id)$$

- 10. Considere a GLC $G=(V,\Sigma,R,S)$ com $V=\{S\},\,\Sigma=\{a,b\},$ e regras
 - (R_1) $S \rightarrow aS$
 - (R_2) $S \to Sb$
 - (R_3) $S \to \varepsilon$.

Mostre que G é ambígua.

- 11. Considere a GLC $G = (V, \Sigma, R, S)$ com $V = \{E\}, \Sigma = \{+, \times, (,), \mathsf{id}\}, S = E$, e regras
 - (R_1) $E \rightarrow E + E$
 - (R_2) $E \to E \times E$
 - (R_3) $E \rightarrow (E)$
 - (R_4) $E \rightarrow id$.

Mostre que G é ambígua.

12. Seja G uma GLC que contém (possivelmente entre outras) regras de substituição

$$X \to XX$$

$$X \to a$$

para alguma variável $X \in V$ e símbolo terminal $a \in \Sigma$. Mostre que G é ambígua.

13. Considere a GLC $G = (V, \Sigma, R, S)$ com $V = \{S, T, U\}, \Sigma = \{0, 1\},$ e regras

$$(R_1)$$
 $S \to T \mid U$

$$(R_2)$$
 $U \to T0$

$$(R_3)$$
 $T \to U1$

$$(R_4)$$
 $U \to \varepsilon$.

Mostre que G tem recursividade à esquerda.

14. Considere a GLC $G = (V, \Sigma, R, S)$ com $V = \{S, T, U\}, \Sigma = \{0, 1\},$ e regras

$$(R_1)$$
 $S \to T \mid U$

$$(R_2)$$
 $U \to 0T$

$$(R_3)$$
 $T \to U1$

$$(R_4)$$
 $U \to \varepsilon$.

Mostre que G não tem recursividade à esquerda.