CSCI 447: Project 1

George Engel GeoEngel.z@gmail.com

Department of Engineering Montana State University Bozemane, MT 59715, USA

Troy Oster Toster1011@gmail.com

Department of Engineering Montana State University Bozeman, MT 59715, USA

Dana Parker Danaharmonparker@gmail.com

Department of Engineering Montana State University Bozeman, MT 59715, USA

Henry Soule HSOULE427@GMAIL.COM

Department of Engineering Montana State University Bozeman, MT 59715, USA

Editor: Engel et al.

Abstract

A brief, one paragraph abstract summarizing the results of the experiments **Keywords:** Keywords, Go, Here

1. Introduction

Problem statement, including hypothesis

2. Problem Statement

3. Algorithm

Per the instructions of the assignment, we implemented the naive Bayes algorithm on the five provided datasets. Given some example $x \in X$, where X is our dataset, naive Bayes predicts the correct class c of x by computing the probabilities of each possible classification for x. For class c, the probability is denoted as $P(c|a_1, a_2, ..., a_d)$ where a_k denotes one of d attribute values in x. To compute this probability for each class c, the probabilities of each attribute value are computed. For each attribute value a_k , we compute $P(c) * \prod_{i=0}^d P(a_i|c)$, where P(c) is the probability of an attribute being classified as class c.

Acknowledgments

©2019 George Engel, Troy Oster, Dana Parker, Henry Soule.

Acknowledgements go here.

Appendix A.

In this appendix we prove the following theorem from Section 6.2:

Theorem Let u, v, w be discrete variables such that v, w do not co-occur with u (i.e., $u \neq 0 \Rightarrow v = w = 0$ in a given dataset \mathcal{D}). Let N_{v0}, N_{w0} be the number of data points for which v = 0, w = 0 respectively, and let I_{uv}, I_{uw} be the respective empirical mutual information values based on the sample \mathcal{D} . Then

$$N_{v0} > N_{w0} \Rightarrow I_{uv} \leq I_{uw}$$

with equality only if u is identically 0.

Proof. We use the notation:

$$P_v(i) = \frac{N_v^i}{N}, \quad i \neq 0; \quad P_{v0} \equiv P_v(0) = 1 - \sum_{i \neq 0} P_v(i).$$

These values represent the (empirical) probabilities of v taking value $i \neq 0$ and 0 respectively. Entropies will be denoted by H. We aim to show that $\frac{\partial I_{uv}}{\partial P_{v0}} < 0...$

Remainder omitted in this sample. See http://www.jmlr.org/papers/ for full paper.