

Selection (Order Statistics)

일을 시작하기 위해 기분이 내킬 때까지 기다리는 따위의 짓을 하지 않으려면 시험 제도는 좋은 훈련이 된다.

-아놀드 토인비

Selection: ith Order Statistic

- i^{th} order statistic = i^{th} smallest element
- Want to find i^{th} order statistic out of A[$p \dots r$]
- We learn two algorithms
 - Average-case $\Theta(n)$ algorithm
 - Worst-case $\Theta(n)$ algorithm

$\Theta(n^2)$ Algorithm

Naïve approach

```
select (A, p, r, i):

◀ Find i^{th} smallest in A[p ... r]

Find the smallest element A[k] in A[p ... r]

if (i = 1)

return A[k]

else

A[k ... r-1] \leftarrow A[k+1 ... r] \blacktriangleleft \text{ shift left}
\text{select } (A, p, r-1, i-1)
```

✓ Running time: $\Theta(n^2)$

Average-Case $\Theta(n)$ Algorithm

- ✓ Average-case running time: $\Theta(n)$
- ✓ Worst-case running time: $\Theta(n^2)$

```
select(A, p, r, i):
 ◄ Find i^{th} smallest in A[p \dots r]
    if (p = r) return A[p] \triangleleft One-element array; i must be 1
    q \leftarrow \text{partition}(A, p, r)
    k \leftarrow q - p + 1 | pivot is the k^{\text{th}} smallest
    if (i \le k)
           return select(A, p, q-1, i)

■ narrow down to the left part

    else if (i = k)
           return A[q]
                                                   \blacksquare pivot is the i^{\text{th}} smallest
    else
           return select(A, q+1, r, i-k) \triangleleft narrow down to the right part
                                                   사이즈만 다르고 똑같은 문제
                select +
```

selec

Example 1

Finding 2nd smallest

partition

	8	11	3	15	31	48	20	29	65	73
--	---	----	---	----	----	----	----	----	----	----

Find 2nd smallest in the left part

Example 2

Finding 7th smallest

partition

8 11 3 15	31 48	20 29 65	73
-----------	-------	----------	----

Find 3rd smallest in the right part

Average Running Time

$$T(n) \leq \frac{1}{n} \sum_{k=1}^{n} \max[T(k-1), T(n-k)] + \Theta(n)$$
Cost for handling the larger part Overhead (mostly partition) 평균보다 조금 크지만 이래도 $O(n)$ 이 증명되면 okay

We can prove $T(n) \le cn$ by guess&verification (next page)

$$T(n) = O(n)$$

Since it is obvious that $T(n) = \Omega(n)$, $T(n) = \Theta(n)$

$$T(n) = \frac{1}{n} \sum_{k=1}^{n} T(\max(k-1, n-k)) + \Theta(n)$$

$$= \frac{2}{n} \sum_{k=|\frac{n}{2}|}^{n-1} T(k) + \Theta(n)$$

Guess $T(n) \le cn$ for some c > 0, $n_0 \ge 0$ and $\forall n \ge n_0$

$$\leq \frac{2}{n} \sum_{k=\left|\frac{n}{2}\right|}^{n-1} ck + \Theta(n)$$

$$= \frac{2c}{n} \left(\sum_{k=1}^{n-1} k - \sum_{k=1}^{\left\lfloor \frac{n}{2} \right\rfloor - 1} k \right) + \Theta(n)$$

$$= \frac{2c}{n} \left(\frac{(n-1)n}{2} - \frac{\left(\left\lfloor \frac{n}{2} \right\rfloor - 1 \right) \left\lfloor \frac{n}{2} \right\rfloor}{2} \right) + \Theta(n)$$

$$\leq \frac{2c}{n} \left(\frac{(n-1)n}{2} - \frac{\left(\frac{n}{2} - 2 \right) \left(\frac{n}{2} - 1 \right)}{2} \right) + \Theta(n)$$

$$\leq c(n-1) - \frac{c}{n} \left(\frac{n^2}{4} - \frac{3n}{2} + 2 \right) + \Theta(n)$$

$$\leq cn + -\frac{cn}{4} + \frac{c}{2} - \frac{2c}{n} + \Theta(n)$$
a linear function
$$\leq cn + -\frac{cn}{4} + \Theta(n)$$

$$\leq cn$$
We can choose $c > 0$ s.t. $-\frac{cn}{4}$ dominates $\Theta(n)$

Worst-Case Running Time

$$T(n) = T(n-1) + \Theta(n)$$
Overhead (mostly partition)

Partition 0: n-1, and take the larger part

$$T(n) = \Theta(n^2)$$

Worst-Case $\Theta(n)$ Algorithm

- We noticed from the previous algorithms that
 - the running time is affected by the balance of partition
- If always partitioned 1:1

$$- T(n) = T\left(\frac{n}{2}\right) + \Theta(n) \to T(n) = \Theta(n)$$

• If always partitioned 3:1

$$- T(n) \le T\left(\frac{3n}{4}\right) + \Theta(n) \to T(n) = O(n) \to T(n) = \Theta(n)$$

- Idea
 - Restrict the worst-case partition to some extent
 - Cost for maintaining the balance should not be overly high

Worst-Case $\Theta(n)$ Algorithm

linearSelect(A, p, r, i):

- **◄** Find i^{th} smallest in A[$p \dots r$]
 - ① If #elements ≤ 5 , find i^{th} smallest naively and finish
 - ② Divide the whole set into $\lceil n/5 \rceil$ groups each having 5 elements (If #elements is not an exact multiple of 5, one group has fewer than 5 elements)
 - ③ Find median in each group (3rd if #elements is 5) Let these medians be $m_1, m_2, ..., m_{\lceil n/5 \rceil}$
 - ④ Find the median M of medians $m_1, m_2, ..., m_{\lceil n/5 \rceil}$, recursively. (If #elements is even, choose any of the two medians) ◀ call linearSelect()
 - ⑤ Using M as the pivot, partition the set A[p...r]
 - 6 Choose the appropriate part and recursively repeat steps 1~6

Relation w.r.t. the Pivot

The Worst Case

열이 흘수 개이면

Worst-Case Running Time

Overhead for balancing

We can prove $T(n) \le cn$ by guess & verification (next page)

$$T(n) = O(n)$$

Since it is obvious that $T(n) = \Omega(n)$, $T(n) = \Theta(n)$

$$T(n) \le T\left(\left\lceil\frac{n}{5}\right\rceil\right) + T\left(\frac{7n}{10} + 2\right) + \Theta(n)$$

$$\le T\left(\frac{n}{5} + 1\right) + T\left(\frac{7n}{10} + 2\right) + \Theta(n)$$
Assume $T(k) \le ck \ \forall k$ (inductive assumption)

Assume $T(k) \le ck \ \forall k, n_0 \le k < n$ (inductive assumption)

$$\leq c\left(\frac{n}{5}+1\right)+c\left(\frac{7n}{10}+2\right)+\Theta(n)$$

$$= c\left(\frac{9n}{10}+3\right)+\Theta(n)$$

$$\frac{n}{5}+1 < n \otimes \frac{7n}{10}+2 < n$$

$$\to 7 \le n$$

$$= cn - \frac{cn}{10} + 3c + \Theta(n)$$

$$\leq cn$$

We can choose c>0 s.t. $-\frac{cn}{10}$ dominates $3c + \Theta(n)$