Лабораторная работа №9

Модель «Накорми студентов»

Астраханцева А. А.

Содержание

1	Цель работы	4	
2	Теоретическое введение	5	
3	Реализация модели в xcos 3.1 Выполнение упражнения	6 8	
4	Выводы	13	
Сп	Список литературы		

Список иллюстраций

3.1	Граф сети модели «Накорми студентов»
3.2	Декларации модели «Накорми студентов»
3.3	Модель «Накорми студентов»
	Запуск модели «Накорми студентов»
3.5	Пространство состояний для модели «Накорми студентов» 12

1 Цель работы

Реализовать модель «Накорми студентов» с помощью CPN Tools.

2 Теоретическое введение

CPN Tools — специальное программное средство, предназначенное для моделирования иерархических временных раскрашенных сетей Петри. Такие сети эквивалентны машине Тьюринга и составляют универсальную алгоритмическую систему, позволяющую описать произвольный объект. CPN Tools позволяет визуализировать модель с помощью графа сети Петри и применить язык программирования CPN ML (Colored Petri Net Markup Language) для формализованного описания модели.

Назначение CPN Tools:

- разработка сложных объектов и моделирование процессов в различных прикладных областях, в том числе:
- моделирование производственных и бизнес-процессов;
- моделирование систем управления производственными системами и роботами;
- спецификация и верификация протоколов, оценка пропускной способности сетей и качества обслуживания, проектирование телекоммуникационных устройств и сетей.

Основные функции CPN Tools:

- создание (редактирование) моделей;
- анализ поведения моделей с помощью имитации динамики сети Петри;
- построение и анализ пространства состояний модели

3 Реализация модели в хсоѕ

Рассмотрим пример студентов, обедающих пирогами. Голодный студент становится сытым после того, как съедает пирог.

Таким образом, имеем:

- два типа фишек: «пироги» и «студенты»;
- три позиции: «голодный студент», «пирожки», «сытый студент»;
- один переход: «съесть пирожок».

Для запуска CPN Tools в терминале нужно прописать команду cpntools &. Рисуем граф сети. Для этого с помощью контекстного меню создаём новую сеть, добавляем позиции, переход и дуги (рис. 3.1).

Рис. 3.1: Граф сети модели «Накорми студентов»

2. В меню задаём новые декларации модели: типы фишек, начальные значения позиций, выражения для дуг. Для этого наведя мышку на меню Standart declarations, правой кнопкой вызываем контекстное меню и выбираем New Decl. После этого задаем тип s фишкам, относящимся к студентам, тип р — фишкам, относящимся к пирогам, задаём значения переменных х и у для дуг и начальные значения мультимножеств init_stud и init_food (рис. 3.2):

```
colset s=unit with student;
colset p=unit with pasty;
var x:s;
var y:p;
val init_stud = 3`student;
val init_food = 5`pasty;
```

```
    ► History
    ▼ Declarations
    ▼ colset s=unit with student; colset p=unit with pasty; var x:s; var y:p; val init_stud = 3` student; val init_food = 5` pasty;
    ► Standard declarations
    ► Monitors nakormi studenta
```

Рис. 3.2: Декларации модели «Накорми студентов»

В результате получаем работающую модель (рис. 3.3).

Рис. 3.3: Модель «Накорми студентов»

После запуска фишки типа «пирожки» из позиции «еда» и фишки типа «студенты» из позиции «голодный студент», пройдя через переход «кушать», попадают в позицию «сытый студент» и преобразуются в тип «студенты» (рис. 3.4).

Рис. 3.4: Запуск модели «Накорми студентов»

3.1 Выполнение упражнения

Прежде чем приступить к вычислению пространства состояний, необходимо сформировать код для этого пространства. Это делается с помощью инструмента "Войти в пространство состояний", который может занять некоторое время. Если ожидается небольшое пространство состояний, можно напрямую применить инструмент "Вычислить пространство состояний" к странице сети.

После вычисления пространства состояний формируем отчёт. Чтобы сохранить отчёт, используем инструмент "Сохранить отчет о пространстве состояний" и указываем имя файла. Получим такой отчет:

CPN Tools state space report for:

<unsaved net>

Report generated: Thu Apr 3 22:23:04 2025

Statistics

State Space

Nodes: 4

Arcs: 3

Secs: 0

Status: Full

Scc Graph

Nodes: 4

Arcs: 3

Secs: 0

Boundedness Properties

Best Integer Bounds

Upper Lower

New_Page'food 1 5 2

New_Page'hungry_student 1					
	3	0			
New_Page'satisfied_	student 1				
	3	0			
Best Upper Multi-set Bounds					
New_Page'food 1	5`pasty				
New_Page'hungry_stu	New_Page'hungry_student 1				
	3`student				
New_Page'satisfied_	student 1				
	3`student				
Best Lower Multi-set B	ounds				
New_Page'food 1	2`pasty				
New_Page'hungry_stu	ident 1				
	empty				
New_Page'satisfied_	student 1				
	empty				
Home Properties					
Home Markings					
[4]					
Liveness Properties					

Dead Markings

[4]

Dead Transition Instances

None

Live Transition Instances

None

Fairness Properties

No infinite occurrence sequences.

Из отчёта можно получить следующие сведения:

- 1. Структура пространства состояний: Пространство состояний состоит из 4 состояний и 3 переходов между ними. Модель построена быстро, за 0 секунд, что указывает на её небольшой размер.
- 2. Граф сильно связных компонентов (SCC): Все состояния образуют единый граф SCC.
- 3. Ограниченность ресурсов:
 - Еда (food): Максимальное количество 5 порций, минимальное 2 порции. Пища расходуется, но не восполняется.
- 4. Гарантированное завершение:
 - Существует терминальное состояние, достижимое из любой маркировки.
- В финальном состоянии все студенты сыты, остаётся 2 порции еды.
- 5. Отсутствие циклов:

- Нет бесконечных последовательностей переходов.
- Вывод: Модель описывает одноразовый процесс обслуживания без возможности повторения.

Построенный граф пространства состояний (рис. 3.5).

Рис. 3.5: Пространство состояний для модели «Накорми студентов»

4 Выводы

В ходе выполнения лабораторной работы я реализовала модель «Накорми студентов» с помощью CPN Tools.

Список литературы

- Королькова А.В., Кулябов Д.С. Руководство к лабораторной работе №9. Моделирование информационных процессов. Модель «Накорми студентов» -2025. — 4 с.
- 2. Modeling with Coloured Petri Nets [Электронный ресурс] // URL: https://cpntools.org/2018/01/started.
- Jensen K., Kristensen L.M., Wells L. Coloured Petri Nets and CPN Tools for Modelling and Validation of Concurrent Systems // Software Tools for Technology Transfer. 2007. — URL: https://cs.au.dk/fileadmin/site_files/cs/research_areas/centers_and_projections.
- 4. Ratzer A.V., Wells L., Lassen H.M., et al. CPN Tools for Editing, Simulating, and Analysing Coloured Petri Nets // ICATPN Proceedings, 2003 URL: https://api.semanticscholar.org/CorpusID:12059006.
- 5. Beaudouin-Lafon M., Mackay W.E., Andersen P., et al. Editing and Simulating Coloured Petri Nets // CPNTools.doc, University of Aarhus, 2000 URL: https://www.lri.fr/~mbl/papers/PN2000/paper.pdf.