AMENDMENTS TO THE CLAIMS:

The following listing of claims will replace all prior versions of claims in the application.

Claims 1-10 (canceled)

-- Claim 11 (new): A process for preparing compounds of formulas (I) and (II)

Het
$$\mathbb{I}$$
 \mathbb{F} \mathbb{I} \mathbb{F} \mathbb{I} \mathbb{F} \mathbb{I} \mathbb{F} \mathbb{F} \mathbb{I} \mathbb{F} $\mathbb{F$

where

R¹ is hydrogen or fluorine, and

Het is a heterocycle selected from the group consisting of

$$R^{2}$$
 R^{3}
 S
 (A)
 R^{3}
 (B)
 R^{3}
 (C)
 R^{3}
 (C)
 R^{3}
 (C)
 R^{3}
 (C)
 R^{3}
 (C)
 R^{3}
 (C)
 R^{2}
 (C)
 (C)

where

R² is hydrogen, halogen, C₁-C₄-alkyl, or C₁-C₄-haloalkyl,

R³ is hydrogen or halogen; or is optionally halogen-, methyl-, ethyl-, n- or i-propyl-, n-, i-, s-, or t-butyl-, methoxy-, ethoxy-, n- or i-propoxy-, or n-,

CS8440

i-, s-, or t-butoxy-substituted C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -alkoxycarbonyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_1 - C_4 -alkylthio- C_1 - C_4 -alkyl, carboxyl, C_1 - C_4 -alkylaminocarbonyl, C_3 - C_6 -cycloalkylaminocarbonyl, C_1 - C_4 -dialkyl-aminocarbonyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkenylthio, C_2 - C_4 -alkenylsulfinyl, or C_2 - C_4 -alkenylsulfonyl,

is C_1 - C_8 -alkyl, C_2 - C_6 -alkenyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, or C_3 - C_8 -cycloalkyl; or is optionally halogen-, C_1 - C_4 -alkyl-, C_1 - C_4 -alkoxy-, C_1 - C_4 -alkyl-substituted phenyl or benzyl,

p is 1, 2, or 3,

X is oxygen or sulfur, and

is methylene that is optionally singly or doubly, identically or differently, substituted with optionally halogen-, C₁-C₄-alkoxy-, C₁-C₄-alkylthio-, C₁-C₄-haloalkoxy-, or C₁-C₄-haloalkylthio-substituted C₁-C₄-alkyl, C₂-C₄-alkenyl, or C₂-C₄-alkynyl; or is phenyl that is optionally singly to triply, identically or differently, substituted with halogen, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkyl, C₁-C₄-haloalkylthio,

comprising allowing a compound of formula (III)

Het
$$S$$
 F
 F
 F
 F
 F

where R¹ and Het are each as defined for formula (I), to react with a salt of peroxomonosulfuric acid (H₂SO₅), optionally in the presence of a reaction assistant and optionally in the presence of a diluent.

Claim 12 (new): A process for preparing compounds of formula (I) according to Claim 11 wherein a compound of formula (II) according to Claim 11 is allowed to react with a salt of peroxomonosulfuric acid (H_2SO_5), optionally in the presence of a reaction assistant and optionally in the presence of a diluent.

CS8440

Claim 13 (new): A process according to Claim 12 carried out at a pH of from 6 to 10.

Claim 14 (new): A process for preparing compounds of formula (II) according to Claim 11 wherein a compound of formula (III) according to Claim 11 is allowed to react with a salt of peroxomonosulfuric acid (H₂SO₅), optionally in the presence of a reaction assistant and optionally in the presence of a diluent.

Claim 15 (new): A process according to Claim 14 carried out at a pH of from 1 to 3.

Claim 16 (new): A process according to Claim 11 in which the salt of peroxomonosulfuric acid is potassium hydrogenperoxomonosulfate (2 KHSO₅ · KHSO₄ · K₂SO₄ (5:3:2:2)).

Claim 17 (new): A process according to Claim 11 carried out at a temperature of from –20°C to 150°C.

Claim 18 (new): A process according to Claim 11 in which

R¹ is fluorine,

Het is a heterocycle selected from the group consisting of

$$R^{2}$$
 R^{3}
 S
 (A) , R^{3}
 O
 (B) , R^{3}
 N
 (C) , R^{3}
 (C) , R^{3}

R² is hydrogen, fluorine, or chlorine,

R³ is hydrogen, fluorine, or chlorine; or is optionally fluorine-, chlorine-, methyl-, ethyl-, n- or i-propyl-, n-, i-, s-, or t-butyl-, methoxy-, ethoxy-, n- or i-propoxy-, n-, i-, s-, or t-butoxy-substituted methyl, ethyl, n- or i-propyl, n-, i-, s-, or t-butyl,

CS8440

methoxy, ethoxy, n- or i-propoxy, n-, i-, s-, or t-butoxy, methylthio, ethylthio, n- or i-propylthio, n-, i-, s-, or t-butylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, methoxycarbonyl, ethoxycarbonyl, n- or i-propoxycarbonyl, n-, i-, s-, or t-butoxycarbonyl, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, methylthiomethyl, methylthioethyl, ethylthiomethyl, ethylthioethyl, carboxyl, methylaminocarbonyl, ethylaminocarbonyl, n- or i-propylaminocarbonyl, cyclopropylaminocarbonyl, cyclobutylaminocarbonyl, cyclopentylaminocarbonyl, cyclohexylaminocarbonyl, dimethylaminocarbonyl, diethylaminocarbonyl, ethenyl, propenyl, or butenyl,

R⁴ is methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, cyclopropyl, cyclopentyl, cyclohexyl, 2-chloroethyl, 2,2,3,3,3-pentafluoro-propyl, 2,2,2-trifluoroethyl, 3-bromopropyl, 2-methoxyethyl, 2-ethoxyethyl, 2-methylthioethyl, allyl, or 2-butenyl; or is optionally singly or doubly, identically or differently, fluorine-, chlorine-, bromine-, methyl-, ethyl-, isopropyl-, trifluoromethyl-, methoxy-, or methylthio-substituted phenyl or benzyl,

p is 1 or 2,

X is oxygen, and

Y is methylene that is optionally singly or doubly, identically or differently, substituted with methyl or ethyl; or is phenyl that is optionally singly to triply, identically or differently, substituted with fluorine, chlorine, methyl, methoxy, trifluoromethyl, cyano, or nitro.

Claim 19 (new): A process according to Claim 11 in which

Het is a heterocycle selected from the group consisting of

R² is hydrogen, and

R³ is hydrogen, fluorine, or chlorine.

Claim 20 (new): A process according to Claim 11 in which

Het is the heterocycle

$$\mathbb{R}^2$$
 \mathbb{R}^3
 \mathbb{S}
 \mathbb{S}
 \mathbb{A}

R² is hydrogen, and

R³ is chlorine. --

CS8440

- 7 -