Quick how-to using Leicester:

- 1. Get raw or processed data from the Leicester page: https://www.swift.ac.uk/swift portal/
- 2. Utilize xrtpipeline to clean raw data: https://www.swift.ac.uk/analysis/xrt/xrtpipeline.php
 - Or use xrtpipe.py
- 3. Put all processed data (event and exposure images) either into 1 source folder or one of your choice
- 4. Merge event files in a directory using xselect via evt merger.py (Leicester tutorial)
- Merge exposure maps via img_merge.py
 (https://www.swift.ac.uk/analysis/xrt/exposuremaps.php)
- 6. Only for my analysis, run obs time.py to get exposure time of observations
- 7. Detect sources using ximage (https://www.swift.ac.uk/analysis/xrt/xrtcentroid.php)
 - Follow ximage detect.py -> detect analysis.py -> find sig dets.py
- 8. Extracting the spectrum of the source and background (xselect_step.py):
 - Follow up to grppha: https://www.swift.ac.uk/analysis/xrt/spectra.php
 - Acquire the ARF and RMF files: https://www.swift.ac.uk/analysis/xrt/arfs.php
 - Merge the spectra (src bck). Continue from grppha: https://www.swift.ac.uk/analysis/xrt/spectra.php
 - "group min 1" for faint sources, group min 10, 15, or 20 for brighter sources
- 9. Use Xspec to fit the spectrum (if group min 1, use "statistic cstat"): https://heasarc.gsfc.nasa.gov/xanadu/xspec/manual/
 - xspec_step.py and xspec_reader.py follow these steps

Light curves and time filtering:

- 1) Utilize xselect to filter time: https://www.swift.ac.uk/analysis/xrt/timing.php
 - a) Read events of relevance
 - b) "Extract curve bin size t = {x}"
 - c) "filter time" and choose your mechanism
 - d) "extract event copyall=yes" -> "save event" to save your slice
 - i) copyall is very important for the exposure map
- 2) Need to now generate a new exposure map for filtered time: https://www.swift.ac.uk/analysis/xrt/exposuremaps.php
 - a) Will require ancillary files and hk xrt files from raw data
 - b) Use xrtexpomap to generate this time filtered exposure map

Big how-to in manual: https://www.swift.ac.uk/analysis/xrt/files/xrt_swguide_v1_2.pdf