

IIT School of Applied Technology

ILLINOIS INSTITUTE OF TECHNOLOGY

information technology & management

526 Data Warehousing

March 2, 2016

Week 7 Presentation

Week 07 Topic: Dimensional Modeling: More Dimension Patterns and Considerations

- > We will cover
 - Design Workshop #2: Enterprise Data Warehouse Bus Matrix
 - Fact Attributes or Dimension Attributes?
 - Dealing with Rapidly Changing Monster Dimensions: Mini Dimensions
 - Outriggers
 - Resolving Multivalued Relationships using Bridge Tables
 - Design Workshop #3: Design Review Exercise

Design Workshop #2:

Enterprise Data Warehouse Bus Matrix

Handouts

(also available on BB)

Content > Week 06 Introduction to Assignment 01 > Class Excercise

Fact Attributes or Dimension Attributes?

- Fact Attributes
 - Numerical measurements
 - Pertain implicit time series of observations
 - Participate in numerical computations (sum, averages, etc.)
- Dimension Attributes
 - Textual descriptors
 - Targets of constraints
 - Provide the content of "row headers" (grouping columns)

Fact Attributes or Dimension Attributes? (cont'd)

- > The unit price varies over time and over location
- ➤ It is a rather rapidly changing, not a good fit for a SCD Type 2 dimension attribute
- It is not a good row header item as it is a continuous (not discrete) value
- > Thus, it is a fact attribute

Fact Attributes or Dimension Attributes? (cont'd)

Coverage Limit Amount

- The coverage limit participates as a query constrain
- ➤ It is generally a discrete value (\$300k, \$400k,)
- It slowly changes over time
- ➤ It participates in computations such as sum, average on policies and coverage

Fact Attributes or Dimension Attributes? (cont'd)

- For a truly continuous numeric dimension attribute, a value band can be an excellent alternative
 - unit price, GRE score, credit score, etc.

Dealing with Rapidly Changing Monster Dimensions: SCD Type 2 Revisited

- > Changes in dimensions arrive
 - Far less frequently than fact table measurements → Slow changing
 - Type 2: Insert a new dimension row with the new data and new effective date

Customer_Key	Customer_ID	Customer_Birth	Supplier_State	Start_Date	End_Date
332	C01	1977-08-01	CA	2000-01-01	2004-12-21
		Type 1	Type 2		
Customer_Key	Customer_ID	Customer_Birth	Supplier_State		End_Date
332	C01	1977-09-01	CA	2000-01-01	2004-12-21
333	C01	1977-09-01	IL	2004-12-22	2999-12-31

Dealing with Rapidly Changing Monster Dimensions: Monster Dimensions

Imagine an insurance company with a big customer dimension (e.g. 30 million) with rapidly changing demographics (in green)

The dimension table size can be easily doubled within a short period making this a rapidly changing monster dimension

Dealing with Rapidly Changing Monster Dimensions: Monster Dimensions (cont'd)

The solution is to break off the hot attributes into their own separate mini dimension

- > The mini dimension contains one row for each possible combination of the attributes
- ➤ Value bands are used in the mini-dimension to reduce the number of rows overall

Dealing with Rapidly Changing Monster Dimensions: Monster Dimensions (cont'd)

Customer dimension sample row:

Customer Key	Customer Name	Date of Birth
123456	John Smith	1984-02-10

Demographics mini-dimension sample row:

Demographics Key	Age Group	Income Band
1	25-29	\$50,000 - \$59,999
2	30-34	\$50,000 - \$59,999
3	30-34	\$60,000 - \$69,999

Fact table sample row:

Transaction Date Key	Customer Key	Demographics Key
20140131	123456	1
20140228	123456	2
20140331	123456	2
20140430	123456	3

Outriggers

- > Dimension tables joined to other dimension tables
- ➤ In this case, a date dimension serves as an outrigger to the employee dimension via role-playing
- > Outriggers are acceptable in moderation but should be viewed as the exception rather than the rule

Resolving Multivalued Relationships Using Bridge Tables

- In a classic dimensional schema, each dimension attached to a fact table has a single value consistent with the fact table's grain
- ➤ But there are a number of situations in which a dimension is legitimately *multivalued*

Resolving Multivalued Relationships Using Bridge Tables Multivalued Dimension Examples

- ➤ Many sales reasons on a single transaction
- > Many customers in a bank account
- ➤ Many diagnoses at the time of a treatment
- > Many witnesses to an accident
- > Many options on a car

2 Promotion

3 Convenient Location

Resolving Multivalued Relationships Using Bridge Tables Multivalued Sales Reasons Bridge

The Sales Reason Group table may be required by your modeling tool to relationships. It provides no useful information at query time and is often omitted 15

Resolving Multivalued Relationships Using Bridge Tables Multivalued Diagnosis Bridge

- > The weighting factor is an explicit allocation
- Records in the Diagnosis Group Dimension can be made for each patient, but in this case it seems reasonable to re-use diagnosis groups, especially for out patient treatments where many groups would be repeated

Resolving Multivalued Relationships Using Bridge Tables Bank Account to Customer Bridge

Monthly Account Snapshot Fact	▼		
Month End Date Key (FK)	Account Dimension	Account to Customer Bridge	Customer Dimension
Account Key (FK)	Account Key (PK)	Account Key (FK)	Customer Key (PK)
Branch Key (FK)	Primary Holder	Customer Key (FK)	Customer Name
Household Key (FK)	Primary Address	Weighting Factor	Customer Address
Month Ending Balance	Account Type	Begin Date	Customer Date of Birth
Average Daily Balance	Open Date	End Date	
Number of Transactions			
Interest Paid			
Fees Charged			

- Associate customers to accounts where these have a many-to-many relationship
- Query account balances by individual customer or groups of customers
- Show account balances correctly weighted (prorated) by individual customers to avoid double counting
- > Show account balances by customer "impact" (unweighted)

Design Workshop #3: Design Review Exercise

Identify Potential Design Flaws

Business Process: Student/Course snapshot

Grain: 1 row per course registered by student for on each term

Sample fact rows:

											Course	Student
Academic	Term	Student	Student	Student	Course	Course	Instructor	Instructor	Instructor	Couse	Credit	Cum Grade
Year	Code	ID	Gender	Ethnicity	Code	Format	1 Eml ID	2 Eml ID	3 Eml ID	Count	Hours	Point
2014-2015	FALL	1234	F	Н	ECON101	LECT	SR123			1	4	3.50
2014-2015	FALL	1234	F	Н	GOVT201	LECT	PW456	BB789		1	4	3.50
2014-2015	FALL	1234	F	Н	CHEM103	LAB	KS246	NR468		1	6	3.50
2014-2015	FALL	1234	F	Н	YOGA101	SEM	KV680			1	2	3.50
2014-2015	SPRING	1234	F	Н	GOVT102	LECT	SR123	PW456		1	4	3.55

Week 07 Topic: Dimensional Modeling: More Dimension Patterns and Considerations

Questions?