### Correction du TD

#### \*\*

# Fibre optique à saut d'indice



FIGURE 2.1 – Schéma d'une fibre optique à saut d'indice.

Eh)O : 
$$\sin(\theta) = n_1 \sin(r) \Leftrightarrow \boxed{\sin(r) = \frac{\sin(\theta)}{n_1}};$$
  $\cos(r) \to \sin(r) : \cos^2(r) = 1 - \sin^2(r);$  OIH :  $\alpha = \frac{\pi}{2} - r;$   $r \to \theta : \sin^2(r) = \frac{\sin^2(\theta)}{n_1^2};$  Combinaison :  $n_1^2 - \sin^2(\theta) \ge n_2^2;$   $\alpha \to r : \sin(\alpha) = \sin(\pi/2 - r) = \cos(r)$  Conclusion :  $\boxed{\theta \le \arcsin(\sqrt{n_1^2 - n_2^2})}$  C'est ce qu'on appelle le **cône d'acceptance**.

2) Soit L la longueur de la fibre optique. Un rayon entre dans la fibre avec un angle d'incidence  $\theta$  variable, compris entre 0 et  $\theta_{\text{lim}}$ .

Le rayon le plus rapide parcourt la distance L à la vitesse  $c/n_1$ , soit

$$T_1 = \frac{n_1 L}{c}$$

Le rayon le plus lent arrive avec l'incidence  $\theta_{\lim}$ . Il parcourt l'hypoténuse du triangle, soit  $L/\sin(\alpha_{\lim})$ , au lieu de parcourir L. Ainsi,

$$T_2 = \frac{n_1 L}{c \sin(\alpha_{\lim})}$$

Or, d'après la question 1,  $\sin(\alpha_{\lim}) = \frac{n_2}{n_1}$ . Ainsi,

$$T_2 = \frac{n_1^2 L}{c n_2}$$

L'écart de temps à la réception est  $\Delta T = T_1 - T_2$ , soit

$$\Delta T = \frac{n_1 L}{c} \left( 1 - \frac{n_1}{n_2} \right)$$

C'est ce qu'on appelle la dispersion intermodale.

3) Les impulsions en entrée vont être étalées de la durée  $\Delta T$ . En les supposant très courtes, il faudra quand même  $\Delta T$  pour pouvoir les séparer, donc le débit sera inférieur à  $1/\Delta T$ . Pour  $L=100\,\mathrm{km}$ ,  $n_1=1,500$  et  $n_2=1,498$ , on obtient  $\Delta T\approx 1\,\mathrm{\mu s}$ , soit un débit maximal de  $1\,\mathrm{Mb/s}$ , ce qui est bien inférieur à ce que proposent les fournisseurs d'accès à internet. Ainsi, en pratique on n'utilise pas de fibre optique à saut d'indice pour cette raison.

# \*\*\*

#### ${ m II}\ |\ { m Mirages}$

- 1) a À chaque interface,  $n_k \sin(i_k) = n_{k-1} \sin(i_{k-1})$ ; notamment, avec k = 2, on a  $n_2 \sin(i_2) = n_1 \sin(i_1)$ . Ainsi, tous les  $n_k \sin(i_k)$  sont égaux.
  - b Voir figure ci-après.

À chaque « dioptre », on a  $\sin(i_{\text{lim,k}}) = \frac{n_{k-1}}{n_k}$ . Sa valeur maximale est à k=2:  $\sin(i_{\text{lim,2}}) = \frac{n_1}{n_2}$ . Comme  $n_k \sin(i_k)$  est constant et que  $n_k$  diminue, on sait que  $i_k$  augmente : ainsi, si l'angle d'incidence  $i_N$  est suffisamment grand, il y aura un  $i_k$  supérieur à  $i_{\text{lim,2}}$  et donc réflexion totale.



FIGURE 2.2 – Rayons d'un mirage chaud. La trajectoire est courbée perpendiculairement vers le haut.

- d Alors qu'on devrait voir le sable, les rayons venant du haut des collines sont déviés vers le haut : on a l'impression de voir à travers la dune.
- 2) Cette fois ce sont les rayons dirigés vers le haut d'un objet lointain qui sont déviés vers le bas : on a l'impression de voir des objets au-dessus du niveau de la mer. Schéma non fourni.



#### $|\mathrm{III}|$ Réfractomètre de PULRICH

1)  $\sin(i_{\lim,N\to n}) = \frac{n}{N}$  d'une part. D'autre part,  $N\sin(\theta) = \sin\alpha$ , mais on a aussi  $\theta = \pi/2 - i_{\lim}$ : on a donc  $\sin\theta = \cos i_{\lim} = \sqrt{1 - \left(\frac{n}{N}\right)^2}$ . Ainsi,  $\sin^2\alpha = N^2\left(1 - \frac{n^2}{N^2}\right)$ ; autrement dit,



$$\boxed{n = \sqrt{N^2 - \sin^2 \alpha}} \quad \text{avec} \quad \begin{cases} N = 1,622 \\ \alpha = 60^{\circ} \end{cases}$$

2) Application numérique :

$$n = 1,376$$



# ${ m IV}^{ig|}$ Réfraction et dispersion

1) La lumière blanche est constituée d'une superposition de longueurs d'onde dans le vide entre [400 ; 800] nm. Quand ce faisceau arrive sur le dioptre et passe dans le milieu, l'indice de réfraction, qu'on utilise dans la relation de SNELL-DESCARTES, change selon la longueur d'onde dans le vide. Pour une même valeur de i incident on aura donc deux valeurs extrêmes de r réfracté, que l'on nomme  $r_b$  et  $r_r$  pour « bleu » et « rouge », selon :

$$\begin{array}{c}
n_{\text{air}}\sin(i) = n_b\sin(r_b) \\
n_{\text{air}}\sin(i) = n_r\sin(r_r)
\end{array}
\iff
\begin{array}{c}
r_b = \arcsin\left(\frac{n_{\text{air}}\sin(i)}{n_b}\right) \\
r_r = \arcsin\left(\frac{n_{\text{air}}\sin(i)}{n_r}\right)
\end{array}$$

Comme  $\lambda_{0,b} < \lambda_{0,r}, \underbrace{n(\lambda_{0,b})}_{n_b} > \underbrace{n(\lambda_{0,r})}_{n_r}$  et forcément  $r_b < r_r$ . On calcule :

$$\begin{array}{c}
n_b = 1.53 \\
n_r = 1.51
\end{array}
\iff
\begin{array}{c}
r_b = 24.8^{\circ} \\
r_r = 25.2^{\circ}
\end{array}$$

L'écart angulaire est donc

$$\theta = r_r - r_b = 0.35^{\circ}$$



FIGURE 2.3 – Exemple (exagéré) de dispersion (aberration chromatique).