PARCIAL DE MÉTODOS NUMÉRICOS (12/11/15) TEMA 1

Ejercicio 1

a) Halle *T>0* de modo que la solución numérica del problema de valores iniciales:

$$\begin{cases} x'(t) \cdot (t^2 + 1)^2 = 2 \cdot t \cdot x^2(t) \\ x(0) = 0.2 \end{cases}$$
 cumpla $x(T) * T = 2$. Grafique $x(t)$ en [0,T]. (Use RK4 y paso h=0.1).

- b) Para los arreglos de t y de x hallados (puestos en columna) encuentre g(t), una función racional (cociente de polinomios), que ajuste esos datos con error relativo menor a 0.001, y halle una función polinómica p(t) del menor grado posible que ajuste a los datos con error menor al propuesto para g(t).
- c) Para las funciones g(t) y p(t) del ítem anterior estime el valor en t=10, en t=100, el $\lim_{t\to +\infty} g(t)$ y el $\lim_{t\to +\infty} p(t)$. Decida que ajuste le parece preferible y justifique su elección.

Ejercicio 2:

Considere la tabla siguiente, que corresponde a un muestreo donde se registraron las alturas de 1107 individuos de una población

1107	indiv	⁄iduo	s de	e una	pob	lació	n.
A 14							

Altura																						
(mts)	1,56	1,58	1,6	1,62	1,64	1,66	1,68	1,7	1,72	1,74	1,76	1,78	1,8	1,82	1,84	1,86	1,88	1,9	1,92	1,94	1,96	1,98
Indivi-																						
duos																						
	2	7	16	26	31	29	30	50	97	154	180	154	96	46	23	24	35	40	34	21	9	3

a) Encuentre los parámetros que mejor ajusten la tabla según un modelo de la

forma:
$$y = a \cdot e^{\frac{-(x-1.64)^2}{0.2}} + b \cdot e^{\frac{-(x-1.76)^2}{0.2}} + c \cdot e^{\frac{-(x-1.90)^2}{0.2}} + d$$

b) Con la función y(x) del modelo propuesto en el ítem anterior halle a y b tales que

$$\int_{a}^{b} y(x)dx = 10 \text{ y } a^{2} - b = 1$$

Ejercicio 3

Dado el problema de contorno:
$$\begin{cases} x'''(t) - x'(t) = t \cdot x(t) + 1 \\ x(0) = 0.8 \qquad x(2) = 3.6 \quad y \quad x''(2) = -0.8 \end{cases}$$

- a) Halle una solución aproximada en el intervalo [0,2], y grafique x(t). (Use RK4 y paso 0.05)
- b) Para los valores de t y x obtenidos halle $\tilde{x}(t) = at^3 + bt^2 + ct + d + e\sqrt{t+1}$ que aproxime a x en función de t y halle el error relativo del ajuste.
- c) Para la matriz Z de 3x41 obtenida en a) para $t \in [0,2]$ con paso 0.05: $Z = \begin{pmatrix} x(t) \\ x'(t) \\ x''(t) \end{pmatrix}$, ¿Cuál es el máximo valor

que puede tomar ||Z*V|| si V es un vector de norma 5?

La resolución se entrega en un archivo de texto donde consten las funciones que se usen y las que sean creadas, y las instrucciones que hagan falta para que se resuelvan los problemas. En los casos en que corresponda copie los gráficos que se pidan, y/o los datos numéricos que se hayan solicitado.

PARCIAL DE MÉTODOS NUMÉRICOS (12/11/15) TEMA 2

Ejercicio 1

- a) Halle T>0 de modo que la solución numérica del problema de valores iniciales: $\begin{cases} \frac{t \cdot x^2(t)}{(t^2+1)^2} = \frac{x'(t)}{2} \end{cases}$
 - cumpla x(T) * T = 1. Grafique x(t) en [0,T]. (Use RK4 y paso h=0.1).
- b) Para los arreglos de t y de x hallados (puestos en columna) encuentre g(t), una función racional (cociente de polinomios), que ajuste esos datos con error relativo menor a 0.001, y halle una función polinómica p(t) del menor grado posible que ajuste a los datos con error menor al propuesto para g(t).
- c) Para las funciones g(t) y p(t) del ítem anterior estime el valor en t=10, en t=100, el lim g(t) y el $\lim p(t)$. Decida que ajuste le parece preferible y justifique su elección.

Ejercicio 2:

Considere la tabla siguiente, que corresponde a un muestreo donde se registraron las alturas de 987 individuos de una población.

Altura (mts)	1,56	1,58	1,6	1,62	1,64	1,66	1,68	1,7	1,72	1,74	1,76	1,78	1,8	1,82	1,84	1,86	1,88	1,9	1,92	1,94	1,96	1,98
Indivi- duos																						
44.00	3	7	16	27	27	22	27	44	86	137	160	137	85	41	20	21	31	36	30	19	8	3

a) Encuentre los parámetros que mejor ajusten la tabla según un modelo de la

forma:
$$y = a \cdot e^{\frac{-(x-1.63)^2}{0.2}} + b \cdot e^{\frac{-(x-1.76)^2}{0.2}} + c \cdot e^{\frac{-(x-1.90)^2}{0.2}} + d$$

b) Con la función y(x) del modelo propuesto en el ítem anterior halle a y b tales que $\int_{a}^{b} y(x)dx = 12 \text{ y } a^2 - b = 2$

$$\int_{a}^{b} y(x)dx = 12 \text{ y } a^{2} - b = 2$$

Ejercicio 3

Dado el problema de contorno:
$$\begin{cases} x'''(t) - x'(t) = t \cdot x(t) + 1 \\ x(0) = 0.9 \qquad x(2) = 3.8 \quad y \quad x''(2) = -0.9 \end{cases}$$

- a) Halle una solución aproximada en el intervalo [0,2], y grafique x(t). (Use RK4 y paso 0.05)
- b) Para los valores de t y x obtenidos halle $\tilde{x}(t) = at^3 + bt^2 + ct + d + e\sqrt{t+2}$ que aproxime a x en función de t y halle el error relativo del ajuste.
- c) Para la matriz Z de 3x41 obtenida en a) para $t \in [0,2]$ con paso 0.05: $Z = \begin{pmatrix} x(t) \\ x'(t) \\ y''(t) \end{pmatrix}$, ¿Cuál es el máximo valor

que puede tomar ||Z*V|| si V es un vector de norma 8?

La resolución se entrega en un archivo de texto donde consten las funciones que se usen y las que sean creadas, y las instrucciones que hagan falta para que se resuelvan los problemas. En los casos en que corresponda copie los gráficos que se pidan, y/o los datos numéricos que se hayan solicitado.