Distributed Nash Equilibrium Seeking On a Consensus based Gaming

Ryan J. Kung

ryankung@ieee.org

April 28, 2018

Introduction

- Game
- Nash Equilibrium
- Distributed Game

Game

Consider a game with N players. The set of players is denoted by $\mathbb{N}=1,2,...,N$. The payoff function of player i is $f_i(x)$, where $x=[x_1,x_2,...,x_N]^T\in R^N$ is the vector of players' actions and $x_i\in R$ is the action of player i, then player i has no direct access to player j's action.

Nash Equilibrium

Nash equilibrium is an action profile on which no player can gain more payoff by unilaterally changing its own action.

$$\forall i, x_i \in S_i : f_i(x_i^*, x_{-i}^*) \ge f_i(x_i, x_{-i}^*)$$

Cournot's duopoly Model

- the players are the firms
- the actions of each firm are the set of possible outputs (any nonnegative amount)
- the payoff of each firm is its profit.

where:

```
P:= Price, Inverse demand function
```

```
f_i:= Profit of player i
```

$$TC_i$$
:= Total Cost Function

Cournot's duopoly Model

P:= Price, Inverse demand function

 f_i := Profit of player i

 TC_i := Total Cost Function

We have:

$$f_i = x_i(x_i + x_{-1}) - TC_i(x_i)$$

Thus:

$$\dot{q}_1=\dot{q}_2=\frac{1-c}{3}$$

Distributed Game

We defined Distributed Gaming as a series of Game Behaviors and Strategis which is Distributed. With Lamport's defination on 1978, A Gaming is Distributed if the message transaction delay is not negligible compared to the time between event in classic gaming behavior.

Distributed

Figure: Lamport Timestamp

Formalize

Consider a game with N players. The set of players is denoted by $\mathbb{N}=1,2,...,N$. The payoff function of player i is $f_i(x)$, where $x=[x_1,x_2,...,x_N]^T\in R^N$ is the vector of players' actions and $x_i\in R$ is the action of player i, then player i has no direct access to player j's action.

Suppose that if player j is not a neighbor of player i, then player i has no direct access to player i's action

- Sensitive Game
- Distributed Network

Example A

	L	R
U	(1,3)	(-3,0)
М	(-2,0)	(1,3)
D	(0,1)	(0,1)

With Repeated Advantage Solution:

Example B

Prisoner's Dilemma

	W	А
W	(1,1)	(-1, 2)
Α	(2,-1)	(0,0)

If players are sensitive on the uncertainty of s_{-1} , they may not choose the rational strategy.

Figure: Communication graph for the players in the numerical example

The action of player i is updated according to

$$\dot{x} = k_i \frac{\partial f_i}{\partial x_i}(y_i), i \in \mathbb{N}$$
 (-1)

where

$$\dot{y}_i = [y_{i1}, y_{i2}, ..., y_{iN}]^T \in R$$

$$k_i = \delta \bar{k}$$

 δ as a small positive parameter, \bar{k}_i is a fixed positive parameter. $y_{ij}, \forall i,j \in \mathbb{N}$ is player i's estimate on player j's action, which are generated by:

$$\dot{y_{ij}} = -\left(\sum_{k=1}^{N} a_{ik}(y_{ik} - y_{kj}) + a_{ij}(y_{ij} - x_{y})\right)$$

Let $\tau = \delta t$, at the τ -time scale:

$$\frac{dx_i}{d_{\tau}} = \bar{k}_i \frac{\partial f_i}{\partial x_i} (y_i)$$

$$\delta \frac{dy_{ij}}{d\tau} = -\left(\sum_{k=1}^{N} a_{ik} (y_{ik} - y_{kj}) + a_{ij} (y_{ij} - x_y) \right) \tag{0}$$

Easy to know, by setting δ to zero, The reduced system is:

$$\frac{dx_i}{d\tau} = \bar{k}_i \frac{\partial f_i}{\partial x_i}(x) \quad \forall i \in \mathbb{N}$$
 (1)

Conclusions

- Pure Strategis Game and Mixed Strategis Game
- Distributed Network May Changed Nash-eq
- Distributed Nash equilibrium have single value

Thanks

Repository of this Slides:

 $-\ https://github.com/RyanKung/dneq4eos$

