Lesson 245. Functions of a Complex Variable. Examples and application

In the whole document, Ω will denote an open set of \mathbb{C} .

1. Analytic and holomorphic functions

1.1. Power series

1. Definition. Power series

A power series is a function series of the form $\sum a_n z^n$ where z is a complex variable.

2. Definition. Convergence radius

Let $(a_n)_{n\in\mathbb{N}}$ be a complex sequence, and r>0. The following statements are equivalent

- $\forall s \in \mathring{\mathcal{D}}(0,r)$, the sequence $(a_n s^n)_{n \in \mathbb{N}}$ is bounded.
- $\forall s \in \mathring{\mathcal{D}}(0,r)$, the sequence $(a_n s^n)_{n \in \mathbb{N}}$ converges.
- $\forall s \in \mathcal{D}(0,r)$, the sequence $(|a_n s^n|)_{n \in \mathbb{N}}$ converges.
- $\forall s \in \mathcal{D}(0,r)$, the series $\sum a_n s^n$ converges.
- $\forall s \in \mathcal{D}(0,r)$, the series $\sum a_n s^n$ converges absolutely.
- $\forall s \in \mathcal{D}(0,r)$, the series $\sum a_n t^n$ converges uniformly over $\overline{\mathcal{D}(0,s)}$.

The convergence radius of the power series $\sum a_n z^n$ is the supremum of the $r \in \mathbb{R}_+^*$ verifying those statements. It is denoted by $R(\sum a_n z^n)$ or simply by R if there is no ambiguity.

3. COROLLARY. A power series and its formal derivative have the same convergence radius R. Hence over $\mathring{\mathcal{D}}(0,r)$, the formal derivative is the derivative of the power series.

4. Example.
$$e^z = \sum_{n \in \mathbb{N}} \frac{z^n}{n!}, R = +\infty, \quad \log(1-z) = -\sum_{n \in \mathbb{N}^*} \frac{z^n}{n}, \frac{1}{1-z} \sum_{n \in \mathbb{N}} z^n, R = 1$$

5. Theorem. Abel's radial convergence

Let $(a_n)_{n\in\mathbb{N}}\in\mathbb{C}^{\mathbb{N}}$, $z\in\mathbb{C}$ so that $\sum a_nz_n$ converges, then $\sum a_ns^n$ converges uniformly over [0,z]

6. COROLLARY. Let $\sum a_n$, $\sum b_n$ be two convergent complex series of respective limits A and B, the Cauchy's product $\sum c_n$ of the two is convergent and its limit id AB.

7. Example.
$$\sum_{n>0} \frac{(-1)^n}{n} = -\log(2), \quad \sum_{n\geq 0} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$$

1.2. Holomorphic functions

8. DEFINITION. Let $a \in \Omega$, $f: \Omega \longrightarrow \mathbb{C}$. f is said to be \mathbb{C} -differentiable in a if $\lim_{Z \to a} \frac{f(z) - f(a)}{z - a}$ exists. We denote this limit by f'(a).

9. Example.

- Id_C is differentiable in every point of \mathbb{C} , and its derivative is $z \mapsto 1$.
- $z \mapsto |z|$ is not differentiable in any given point of \mathbb{C} .

10. Proposition. Cauchy-Riemann

Let $f: \Omega \longrightarrow \mathbb{C}$ be a continuous function. We define $u,v:\Omega \longrightarrow \mathbb{C}$ by f(x+iy)=u(x+iy)+iv(x+iy).

f is differentiable in a + ib if and only if (u,v) is differentiable in (a,b) and

$$\begin{cases} \frac{\partial u}{\partial x}(a,b) &= \frac{\partial v}{\partial y}(a,b) \\ \frac{\partial u}{\partial y}(a,b) &= -\frac{\partial y}{\partial x}(a,b) \end{cases}$$

11. Remark. This relation is the consequence of the Jacobian being a similarity matrix.

12. Definition. Holomorphic functions

A continuous function $f: \Omega \longrightarrow \mathbb{C}$ is said to be holomorphic over Ω if it is \mathbb{C} -differentiable in any given point of Ω . We denote by $\mathcal{H}(\Omega)$ the set of holomorphic functions over Ω .

1.3. Analytic functions

13. Definition. Analytic function

A function $f: \Omega \longrightarrow \mathbb{C}$ is said to be analytic over Ω if it can be expressed as a power series on the neighbourhood of any given point of Ω . We denote by $\mathcal{A}(\Omega)$ the set of analytic functions over Ω . Consequently, $\mathcal{A}(\Omega) \subset \mathcal{H}(\Omega)$.

14. PROPOSITION. If $\sum a_n z^n$ has R for convergence radius, $z \mapsto \sum_{n \in \mathbb{N}} a_n z^n \in \mathcal{A}(\mathring{\mathcal{D}}(0,R))$

15. Theorem. Principle of isolated zeroes

Let $f \in \mathcal{A}(\Omega)$, if the set $\{z \in \Omega | f(z) = 0\}$ contains a limit point and Ω is connected, f = O.

16. Example.

- The Fourier transform of $f: x \mapsto e^{-\pi x^2}$ is f.
- $\forall z \text{ s. t. } \operatorname{Re}(z) > 0, \quad \Gamma(z+1) = z\Gamma(z)$

17. Theorem. Maximum principle

Let $f \in \mathcal{A}(\Omega)$ and continuous on $\overline{\Omega}$, if Ω is bounded, for all $z \in \Omega$,

$$|f(z)| \leqslant \sup_{z \in \partial \Omega} |f(z)|$$

18. Example. If $f \in \mathcal{A}(\Omega)$ and $\exists a \in \Omega$ s.t. $\forall z \in \Omega, |f(z)| \leq |f(a)|$, then f is constant.

2. Cauchy's theory

2.1. Line integrals

19. DEFINITION. A curve of \mathbb{C} is a function $\gamma:[0,1] \longrightarrow \mathbb{C}$ which is continuous and piecewise-smooth. A curve γ is said to be a loop if $\gamma(0) = \gamma(1)$. Hence any loop can be seen as a piecewise-smooth function of \mathbb{S} to \mathbb{C} . We denote by γ^* the range of the curve.

20. Example. Let r > 0, $\gamma_r : t \in [0,1] \mapsto r e^{2i\pi t}$ is a loop.

21. Definition. Line integral

Let $f: \Omega \longrightarrow \mathbb{C}$ be a mesurable function and $\gamma: [0,1] \longrightarrow \Omega$ be a curve, the line integral of f along γ is defined by

$$\int_{\gamma}^{f(z)} z \, d\lambda = \int_{0}^{1} f \circ \gamma(t) \cdot \gamma'(t) dt$$

- 22. Example. The Fourier transform of $f: x \mapsto e^{-\pi x^2}$ is f.
- 23. Definition. Winding number

Let γ be a loop, and $a \in \mathbb{C} \setminus \gamma^*$, the winding number of γ around a is the number

$$\operatorname{Ind}(\gamma, a) := \frac{1}{2i\pi} \int_{\gamma} \frac{\mathrm{d}z}{z - a}$$

24. REMARK. Intuitively the winding number of a loop around a point is the number of times the loop travels counterclockwise around the point, i.e., the curve's number of turns, e.g. the winding number of $z \mapsto e^{2ik\pi z}$ around zero is k.

2.2. Cauchy's formula around a convex set

In this subsection, we consider Ω as convex, and A be a finite subset of Ω .

25. Lemma. Goursat

Let $\Delta \subset \Omega$ be a triangle and $f:\Omega \longrightarrow \mathbb{C}$ be a continuous fonction, holomorphic over $\Omega \setminus A$, then $\int_{\Lambda} f = 0$.

- 26. PROPOSITION. Let $f: \Omega \longrightarrow \mathbb{C}$ be a continuous function, holomorphic over $\Omega \setminus A$ and γ be a curve in Ω , then
 - there exists $F \in \mathcal{H}(\Omega)$ s. t. F' = f.
 - if γ is a loop, $\int_{\gamma} f = 0$
- 27. Theorem. Cauchy's formula

Let γ be a loop in Ω and $f \in \mathcal{H}(\Omega)$, $\forall z \in \Omega \setminus \gamma^*$,

$$\operatorname{Ind}(\gamma, z) f(z) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(s)}{s - z} ds$$

furthermore,

$$\operatorname{Ind}(\gamma,z)f^{(n)}(z) = \frac{n!}{2i\pi} \int_{\gamma} \frac{f(s)}{(s-z)^n} ds$$

28. EXAMPLE. The Fourier transforms of $f: x \mapsto e^{-\pi x^2}$ and $f: z \mapsto \frac{1}{1+x^2}$ are f and $\xi \mapsto \pi \varepsilon^{-2\pi|\xi|}$.

2.3. Consequences

- 29. Proposition. $\mathcal{A}(\Omega) = \mathcal{H}(\Omega)$
- 30. Theorem. Weierstraß

Let $(f_n)_{n\in\mathbb{N}}$ be an uniformly convergent sequence of holomorphic functions over Ω , which limit is denoted by f, then $f \in \mathcal{H}(\Omega)$ and $f'_n \xrightarrow{uc} f'$.

31. Theorem. Morera

Let $f: \Omega \longrightarrow \mathbb{C}$, if for every triangle $\Delta, \int_{\Delta} f = 0$, then $f \in H(\Omega)$.

3. Dirichlet series

3.1. Definition and basic properties

32. Definition. Dirichlet series

Let $(\lambda_n)_{n\in\mathbb{N}}\in\mathbb{R}^n$ be an unbound growing sequence and $(a_n)_{n\in\mathbb{N}^*}\in\mathbb{C}^n$. The associated Dirichlet series is the function series $\sum a_n e^{-\lambda_n z}$.

- 33. Remark. By Dirichlet series, we commonly mean a Dirichlet series where $\lambda_n = \log(n)$, which gives a function of the form $\sum \frac{a_n}{n^z}$.
- 34. EXAMPLE. The zeta function defined by $\zeta(s) = \sum_{n \in \mathbb{N}^*} \frac{1}{n^s}$ is the classic example for a

Dirichlet series. A less classic one is the eta function $\eta(s) = \sum_{n \in \mathbb{N}^*} \frac{(-1)^{n+1}}{n^s}$ which, thanks

to the radial convergence of Abel, converges uniformly on the neighbourhood of 1^+ .

- 35. Definition. Abscissæ of convergence
 - The abscissa of convergence of f is $\sigma_c := \inf \{ \sigma \in \mathbb{R} | \forall s, \text{Re}(s) > \sigma, \sum a_n e^{-\lambda_n s} \text{ converges } \}$.
 - If $\sum a_n$ is convergent, then $\sigma_c = \limsup_{n \to \infty} \frac{\log \left| \sum_{\lambda_n} a_n \right|}{\lambda_n}$
 - If $\sum a_n$ is divergent, then $\sigma_c = \limsup_{n \to \infty} \frac{\log |a_1 + \dots + a_n|}{\lambda_n}$
 - The abscissa of absolute convergence of f is $\sigma_a := \inf \{ \sigma \in \mathbb{R} | \forall s, \text{Re}(s) > \sigma, \sum a_n e^{-\lambda_n s} \text{ abs} \}$
 - If $\sum a_n$ is convergent, then $\sigma_a = \limsup_{n \to \infty} \frac{\log(\sum |a_n|)}{\lambda_n}$
 - If $\sum a_n$ is divergent, then $\sigma_a = \limsup_{n \to \infty} \frac{\log(|a_1| + \cdots + |a_n|)}{\lambda_n}$
 - The abscissa of holomorphy of f is $\sigma_h := \inf \{ \sigma \in \mathbb{R} | f \in \mathcal{H}(\{s | \operatorname{Re}(s) > \sigma\}) \}.$

We have by definition $\sigma_h \leqslant \sigma_c \leqslant \sigma_a$, the width of the strip L verifies

$$0 \leqslant \sigma_a - \sigma_c \leqslant L = \limsup \frac{\log n}{\lambda_n}$$

36. Theorem. Landau

If $\forall n \in \mathbb{N}^*$, $a_n \geq 0$, then σ_c is a singular point of f, hence $\sigma_h = \sigma_c$

3.2. Analytic extension of Dirichlet series

37. Theorem. Unicity of Dirichlet's development

Let f and g be two Dirichlet series that coincide on an open set of \mathbb{C} , then the sequences defining them are the same.

- 38. EXAMPLE. The vector space induced by the sequences $(e_n^k)_n = (n^{-1-\frac{i}{k}})_n$ for $k \in \mathbb{N}^*$ is dense in the Hilbert space $l_2(\mathbb{N}^*)$.
- 39. PROPOSITION. If $\sigma_c(f) < \infty$, $F(z) = \sum a_n e^{-\mu_n z}$ where $\mu_n = e^{\lambda_n}$ verifies $\sigma_c(F) \le 0$, and $f(s) = \frac{1}{\Gamma(s)} \int_0^\infty f(x) x^{s-1} dx$.
- 40. Remark. F is in fact the reverse Mellin transform of f.
- 41. Theorem. Hardy-Fekete

If $\sigma_c < \infty$ and F can be prolonged into a meromorphic function in zero, if we set q to be the order of the pole in 0, then f can be prolonged into a meromorphic functions with only simple poles included in $\{1, \ldots, q\}$.

42. Example. ζ can be prolonged by a meromorphic function with a simple pole in 1.

3.3. Application on prime numbers theory

43. Definition. Let us define some useful functions for the following properties and theorems.

- The prime-counting function $\pi: x \in \mathbb{R}_+ \mapsto |\mathscr{P} \cap [0,x]|$. The lambda function $\Lambda: n \in \mathbb{N}^* \mapsto \log p$ if $n = p^k$ else 0.
- 44. Proposition. $\forall x \ge 0, 1 < \sigma \le 2$,

$$\sum_{n>0} \Lambda(n)e^{-nx} = -\frac{1}{2\pi} \int_{-\infty}^{\infty} \Gamma(\sigma+it) \frac{\zeta'(\sigma+it)}{\zeta(\sigma+it)} x^{-(\sigma+it)} dt$$

45. Proposition. If $\sigma_c \leqslant 0$, $(a_n)_{n \in \mathbb{N}^*} \in \mathbb{R}_+^{\mathbb{N}^*}$, and $\forall p \in \mathbb{N}^*$, $l_p = \lim_{n \to \infty} \frac{f(p\sigma)}{f(\sigma)}$ so that $l_2 \neq 0$, then $\exists ! \alpha \geqslant 0$ so that $\forall p \in \mathbb{N}^*, \, l_p = p^{-\alpha}$ and

$$\lim_{n \to \infty} \frac{1}{f(\lambda_n^{-1})} \sum_{0 < k \le n} a_k = \frac{1}{\Gamma(\alpha + 1)}$$

- 46. Lemma. $\lim_{n \to \infty} \frac{1}{n} \sum_{0 < k \leqslant n} \Lambda(k) = 1$
- 47. Theorem. Prime numbers

$$\pi(x) \underset{x \to \infty}{\sim} \frac{x}{\log x}$$