Presley Pizzo

Introduction

Cumulativity of Violations

Background Experiment 1 Method

Experimer Method

Conclusion

Investigating Properties of Phonotactic Knowledge Through Web-Based Experimentation

Presley Pizzo

July 31, 2015

Presley Pizzo

Introduction

of Violations
Background
Experiment 1

Method Results

Method

Conclusion

Section 1

Introduction

Introduction

of Violations
Background
Experiment 1
Method
Results
Experiment 2
Method

Conclusio

Overview

Speriment A software package to make experiments easier to express, inspired by SurveyMan (Tosch and Berger, 2014) and built to work with psiTurk (McDonnell et al. 2012).

Cumulativity of Violations Experiments investigating how the presence of one violation affects the impact of another violation on acceptability.

Effect of Alternations on Phonotactics Experiments investigating whether learning an alternation affects phonotactic judgments.

Introduction

Cumulativity of Violations Background Experiment 1 Method Results Experiment 2 Method

Conclusion

Is Speriment For You?

Intended for linguists especially, social scientists generally

Requires simple programming

Feature requests welcome

Introduction

Cumulativity of Violations Background Experiment 1 Method Results Experiment 2 Method

Conclusion

How Speriment Works

- Write your materials.
- 2 Describe your experiment in Python with Speriment's classes.
- 3 Run the Python script to generate a JavaScript file.
- Start psiTurk to launch the JavaScript online and manage your participants.
- **5** Use Speriment to download and format your data for R.

Presley Pizzo

Introduction

Cumulativity of Violations Background

Method Results Experiment 2 Method

Results

For More Information

https://github.com/presleyp/Speriment

Presley Pizzo

Introduction

Cumulativity of Violations Background

Background Experiment 1 Method Results Experiment 2 Method

Method Results

Conclusion

Section 2

Cumulativity of Violations

Presley Pizzo

Introductio

of Violation

Background

Experiment 1
Method
Results
Experiment 2

Method Results

Conclusion

Subsection 1

Background

Introduction

Cumulativity of Violations

Background
Experiment 1
Method
Results
Experiment 2
Method

Conclusion

Cumulativity

"penalty": constraint weight * number of times it's violated

Constraint penalties \rightarrow score assigned by grammar to entire word

Introduction

Cumulativity of Violations

Background
Experiment 1
Method
Results
Experiment 2

Method Results

Conclusion

OT Cumulativity

Optimality Theory doesn't define scores for words, but we want them for comparison.

Albright (2008) argues:

 $Grammaticality\ of\ word=maximum\ constraint\ penalty$

Words eliminated by the same constraint have the same score, regardless of their milder violations

Mild violations can't gang up on one severe violation

Introduction

Cumulativity

of Violations Background Experiment 1

Method Results Experiment Method

Conclusion

Testing the Prediction

Ohala and Ohala (1986): 1 violation better than same violation + lesser violation

Introduction

Cumulativity of Violations

Background
Experiment 1
Method
Results
Experiment 2

Results Experiment 2 Method Results

Conclusion

Testing the Prediction

Ohala and Ohala (1986): 1 violation better than same violation + lesser violation

Coleman and Pierrehumbert (1997): mrupation better than spleitisak

Introduction

of Violations

Background
Experiment 1
Method
Results
Experiment 2

Experiment 2 Method Results

Conclusio

Testing the Prediction

Ohala and Ohala (1986): 1 violation better than same violation + lesser violation

Coleman and Pierrehumbert (1997): mrupation better than spleitisak

Albright (2008): models that take all violations into account fit data better

Background

Cumulativity Effects

Cumulativity effects are observed experimentally

Let's look at models that define how they should work

Example

Presley Pizzo

IIILIOGUCLIOI

of Violations

Background

Experiment : Method Results Experiment : Method

Conclusion

Imagine four words: rone, roasp, mrone, mroasp

And two constraints: *[mr], weight -2; *[osp], weight -1

Background

Method

Results

Linear HG Cumulativity

Harmony of word = sum of all constraint penalties

Presley Pizzo

Introduction

Cumulativity of Violations

Background Experiment 1 Method Results Experiment 2 Method

Conclusion

Harmonic Grammar Violation Cumulativity

Introduction

Cumulativity of Violation

of Violations
Background
Experiment 1

Method Results Experiment Method Results

Conclusion

MaxEnt Cumulativity

Probability of word = normalized exponentiated sum of constraint penalties

Differences:

Introduction

of Violation

Background Experiment 1 Method Results

Results Experiment Method Results

Conclusion

MaxEnt Cumulativity

Probability of word = normalized exponentiated sum of constraint penalties

Differences:

Scores are positive

Introduction

Cumulativity of Violations

of Violation
Background
Experiment 1

Method
Results
Experiment 2
Method
Results

Conclusion

MaxEnt Cumulativity

Probability of word = normalized exponentiated sum of constraint penalties

Differences:

Scores are positive

Scores are between 0 and 1

Introduction

of Violation

of Violation

Background

Experiment 1

Method Results Experiment 2 Method Results

Conclusio

MaxEnt Cumulativity

Probability of word = normalized exponentiated sum of constraint penalties

Differences:

Scores are positive

Scores are between 0 and 1

Decreasing marginal "returns" on penalties

Presley Pizzo

Introduction

Cumulativity of Violations

of Violations Background Experiment 1

Method Results Experiment 2 Method

Conclusion

Maximum Entropy Violation Cumulativity

Presley Pizzo

Background

Experiment 1

Method Results

Subsection 2

Experiment 1

Introduction

Cumulativity of Violations Background

Experiment 1
Method
Results

Results
Experiment 2
Method
Results

Conclusion

Harmonic Grammar or Maximum Entropy?

HG: violations accumulate linearly

MaxEnt: violations accumulate sublinearly

Introduction

Cumulativity of Violations

Background

Experiment 1 Method

Results Experiment Method Results

Conclusion

Hypothesis

Two factors of interest, OnsetViolation and CodaViolation.

Introduction

Cumulativity of Violations

of Violation: Background

Experiment 1 Method Results

Experimen Method Results

Conclusion

Hypothesis

Two factors of interest, OnsetViolation and CodaViolation.

Binary, crossed

Background Experiment 1

Hypothesis

Two factors of interest. OnsetViolation and CodaViolation.

Binary, crossed

Linking hypothesis: linear transformation from grammaticality to acceptability

Introduction

Cumulativity of Violations

Background Experiment 1 Method Results

Experiment 2 Method Results

Conclusio

Hypothesis

Two factors of interest, OnsetViolation and CodaViolation.

Binary, crossed

Linking hypothesis: linear transformation from grammaticality to acceptability

HG: no interaction

Introductio

Cumulativity of Violations Background

Experiment 1 Method Results Experiment 2 Method

Conclusio

Hypothesis

Two factors of interest, OnsetViolation and CodaViolation.

Binary, crossed

Linking hypothesis: linear transformation from grammaticality to acceptability

HG: no interaction

Maximum Entropy: subadditive interaction

Presley Pizzo

Introduction

Cumulativity of Violations

of Violation: Background

Experiment

Method

Results Experiment

Method Results

Conclusion

Subsection 3

Method

Introduction

Cumulativity of Violations Background Experiment 1

Method

Experiment : Method Results

Conclusio

Participants

100 participants paid \$0.75 each for five minute-ish experiment.

Excluded if:

- not a native speaker of English
- choose whichever answer was on one side
- answered too quickly
- didn't prefer good fillers to bad fillers.

94 participants used in the analysis.

Background

Method

Method Results

Nonce words in four conditions:

	Good Onset	Bad Onset
Good Coda	GG	BG
Bad Coda	GB	BB

Results Experiment 2 Method Results

Conclusio

Materials

24 item sets

For each item set, there is one good onset, bad onset, good coda, bad coda, and vowel.

These were combined into the four types of words.

Orthographic presentation to avoid perceptual repairs.

Introduction

Cumulativity of Violations Background

Method

Results Experiment

Method Results

Conclusion

Good onset, good coda (GG): plag

Bad onset, good coda (BG): tlag

Good onset, bad coda (GB): plavb

Bad onset, bad coda (BB): tlavb

Procedure

Presley Pizzo

Introduction

of Violation

Background Experiment 1

Method

Experiment :

Conclusion

Run with Speriment on Mechanical Turk.

Latin square over the conditions.

Yes/no questions.

Presley Pizzo

Background

Method

Method

Results

Example Item

Based on how it sounds, do you think this could be a word of English?

tlavb

Yes No

Presley Pizzo

Introductio

Cumulativity of Violations

Background

Experiment

Results

I/GSUILS

Method Results

Conclusion

Subsection 4

Results

Introduction

Cumulativity of Violations Background

Experiment :

Results Experiment :

Method Results

Conclusion

Acceptance Rates

Condition	Mean Percent 'Yes'	SD
GG	83	37.6
BG	30.9	46.2
GB	17	37.6
BB	6.6	24.8

Presley Pizzo

Introduction

Cumulativity of Violations Background

Results

Experiment Method

Conclusion

Interaction of Onset and Coda Violations

Presley Pizzo

Introductio

Cumulativity of Violations Background Experiment 1 Method

Results Experiment : Method

Conclusio

Acceptance of Test Words By Participant

Presley Pizzo

Introduction

Cumulativity of Violations Background

Experiment 1 Method Results

Experiment Method

Conclusion

Acceptance of Test Words By Item

Introduction

of Violations

Background

Experiment 1 Method Results

Experiment :

Results

Conclusion

Analysis

Logistic mixed effects model:

Response \sim OnsetViolation * CodaViolation

random slopes and intercepts for main effects and interaction by participant and item

Analysis

Presley Pizzo

Introduction

Cumulativity of Violations Background

Experiment Method Results

Experiment Method Results

Conclusion

Factor	Estimate	<i>p</i> -value
Intercept	-0.87	< 0.001
OnsetViolation	-0.84	< 0.001
CodaViolation	-1.34	< 0.001
On set Violation: Coda Violation	0.82	< 0.001

Introductio

of Violation
Background
Experiment 1

Results Experiment

Experiment : Method Results

Conclusio

Discussion

Hypothesis supported:

OnsetViolation adds penalty (significant main effect)

CodaViolation adds even bigger penalty (significant main effect)

Both at the same time add a penalty lower than the sum of the main effects (significant subadditive interaction)

Background

Results

Problem

Floor effect:

What if the penalty for both "should" be lower, but we couldn't measure that because they can't go below zero?

Presley Pizzo

Introductio

Cumulativity of Violations

Background Experiment 1

Method

Results Experiment 2

Method Results

Conclusion

Subsection 5

Experiment 2

Presley Pizzo

Introductio

Cumulativity of Violations Background

Experiment 1
Method
Results

Experiment 2 Method

Conclusion

Same idea with tweaks to avoid the floor effect problem.

Presley Pizzo

Introductio

Cumulativity of Violations

Background Experiment 1

Method Results

Experiment

Results

Conclusion

Subsection 6

Method

Introductio

of Violation
Background

Experiment 1 Method Results

Method Results

Conclusio

Participants

101 participants were run

96 were included

Filler words were not an exclusion criterion

Materials

Presley Pizzo

Introduction

of Violations

Background

Experiment 1 Method Results

Method Results

Conclusion

New nonce words

Half of bad onsets and bad codas removed

The other half used twice each

Fillers

Presley Pizzo

Introduction

of Violations
Background
Experiment 1

Experiment 1 Method Results Experiment 2

Method Results

Conclusio

Good fillers: no known violations plus real English suffixes

bressic

Bad fillers: bisyllabic with 3 violation sites

Ibafthrizk

Background

Method

Procedure

Extra instruction page:

Before we start, here are examples of the kind of words you'll see.

blickity is the kind of word you might want to say "yes" to. It's not an English word, but it sounds like it could be.

rzbesgathv is the kind of word you might want to say "no" to. It's not an English word, and it doesn't sound like it could ever be one.

Presley Pizzo

Introductio

Cumulativity of Violations

Background

Experiment Method

Results Experiment

Method Results

Conclusion

Subsection 7

Results

Introduction

Cumulativity of Violations Background Experiment 1 Method Results Experiment 2 Method Results

Conclusion

Acceptance Rate

Condition	Mean Percent 'Yes'	SD
Good Filler	91.7	27.7
GG	88.7	31.7
BG	46.9	49.9
GB	29	45.4
BB	14.6	35.3
Bad Filler	6.8	25.1

Presley Pizzo

Introduction

Cumulativity of Violations Background Experiment 1 Method Results Experiment 2

Method Results

Interaction of Onset and Coda Violations

Presley Pizzo

Introductio

Cumulativity of Violations Background Experiment 1 Method Results Experiment 2 Method Results

Conclusion

Acceptance of Test Words by Participant

Presley Pizzo

Introduction

Cumulativity of Violations Background Experiment 1 Method Results Experiment 2 Method Results

Conclusion

Acceptance of Test Words by Item

Analysis

Presley Pizzo

Background Method Method

Results

Factor	Estimate	<i>p</i> -value
Intercept	-0.29	0.09
OnsetViolation	-1.07	< 0.001
CodaViolation	-1.68	< 0.001
On set Violation: Coda Violation	0.46	< 0.001

Introduction

of Violations
Background
Experiment 1
Method
Results
Experiment 2

Method Results

Conclusio

One-tailed, paired t-test of BB and Bad Fillers

$$t = 4.463$$

Significant with Bonferroni correction

Introduction

Cumulativity of Violations Background Experiment 1 Method Results Experiment 2 Method Results

Conclusio

Discussion

Subadditive interaction found as predicted

BB words have not hit a floor because Bad Fillers have a measurably lower acceptance rate

We can interpret the interaction as support for the hypothesis

Discussion

Presley Pizzo

Introductio

Cumulativity of Violations Background Experiment 1 Method Results Experiment 2

Results
Conclusion

Results consistent with Maximum Entropy

HG is not supported

Any other frameworks with sublinear (but nonzero) cumulativity are also consistent

Introduction

Cumulativity of Violations Background Experiment 1 Method Results Experiment 2 Method

Results

Conclusion

Future Research

Replication with auditory stimuli

Cross-linguistic work

Investigation into linking hypotheses:

What effect do other words in the experiment have on a yes/no judgment?

How do grammaticalities transform into acceptance/choice rates? Ratings? Reaction times?

Introduction

Cumulativity of Violations Background Experiment 1 Method Results Experiment 2 Method

Results Conclusion

Jumping Off Points

Are Good Fillers significantly better than GG words, or could even better Good Fillers be?

Could suggest positive constraints or analogical processes

Maybe judgments seem categorical to some because the distinctions among less acceptable words are smaller

Presley Pizzo

Introductio

Cumulativity of Violations

Background Experiment 1 Method Results

Method Results

Conclusion

Section 3

Conclusion

Introductio

Cumulativity of Violations Background Experiment 1 Method Results Experiment 2 Method Results

Conclusion

Summary

- More help writing experiments! Good for efficiency, transparency, replicability.
- Violations seem to accumulate sublinearly
- Stay tuned, but alternations seem to affect phonotactics

Introductio

Cumulativity of Violations Background Experiment 1 Method Results Experiment 2 Method

Conclusion

Bigger Picture

- Maximum Entropy seems like a better fit than Harmonic Grammar
- Phonology may have modules for phonotactics and alternations, but if so, they can probably communicate
- Experiments can help us answer architectural questions about phonological knowledge

Presley Pizzo

Introduction

Cumulativity of Violations Background Experiment 1 Method Results Experiment 2 Method

Conclusion

Albright, A. (2008). From clusters to words: Grammatical models of nonce word acceptability. Handout of talk presented at 82nd LSA, Chicago.

Coleman, J. and Pierrehumbert, J. (1997). Stochastic phonological grammars and acceptability. In Computational Phonology: Third meeting of the ACL special interest group in computational phonology, pages 49–56.

McDonnell, J., Martin, J., Markant, D., Coenen, A., Rich, A., and Gureckis, T. (2012). psiTurk (Version 1.02) [Software]. New York, NY. Available at https://github.com/NYUCCL/psiTurk.

Ohala, J. J. and Ohala, M. (1986). Testing hypotheses regarding the psychological manifestation of morpheme structure constraints. In Ohala, J. J. and Jaeger, J. J., editors, Experimental Phonology, pages 239–252. Academic Press. Orlando.

Tosch, E. and Berger, E. D. (2014). Surveyman: Programming and automatically debugging surveys. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications, pages 197–211. ACM.

Presley Pizzo

Introductio

Cumulativity of Violations Background Experiment 1 Method Results Experiment 2 Method

Conclusion

Thank you!

Thanks especially to my committee and the Sound Seminar attendees for help and feedback.

Introductio

Cumulativity of Violations Background Experiment 1 Method Results Experiment 2 Method

Conclusion

Thank you!

Thanks especially to my committee and the Sound Seminar attendees for help and feedback.

So long, and thanks for the fish.

Introduction

Cumulativity of Violations Background Experiment 1 Method Results Experiment 2 Method Results

Conclusion

Exp. 1 Sans Outliers

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	2.0511	0.1919	10.687	< 2e-16 ***
${\sf OnsetViolation}$	-3.1863	0.2669	-11.940	< 2e-16 ***
CodaViolation	-4.0934	0.2471	-16.568	< 2e-16 ***
Interaction	2.6886	0.5710	4.708	2.5e-06 ***

Introduction

Cumulativity of Violations Background Experiment 1 Method Results Experiment 2 Method Results

Conclusion

Exp. 1 Reaction Times

	Estimate	Std. Error	t value
(Intercept)	7.80629	0.04738	164.76
${\sf OnsetViolation}$	0.09621	0.03767	2.55
CodaViolation	0.11089	0.04131	2.68
Interaction	-0.16058	0.04991	-3.22

Introduction

Cumulativity of Violations Background Experiment 1 Method Results Experiment 2 Method Results

Conclusion

Exp. 1 Model Comparison

	AIC	BIC	logLik	deviance	Chisq	Pr
null	5036.4	5110	-2506.2	5012.4		
alt	5028.3	5108	-2501.2	5002.3	10.121	0.001466

Introduction

Cumulativity of Violations Background Experiment 1 Method Results Experiment 2 Method Results

Conclusion

Exp. 2 Reaction Times

	Estimate Std.	Error	t value
(Intercept)	7.74154	0.03412	226.90
${\sf OnsetViolation}$	0.19294	0.03467	5.57
CodaViolation	0.18763	0.03419	5.49
Interaction	-0.30936	0.04631	-6.68

Introduction

Cumulativity of Violations Background Experiment 1 Method Results Experiment 2 Method Results

Conclusion

Exp. 2 Model Comparison

	AIC	BIC	logL	dev	Chisq	Pr
null	5438.6	5512.4	-2707.3	5414.6		
alt	5403.7	5483.6	-2688.8	5377.7	36.891	1.249e-09

In both cases, the main effects' t-values become much smaller without the interaction.