ALGO QCM

- 1. Quelles méthodes sont des méthodes indirectes de gestion des collisions primaires?
 - (a) Le hachage linéaire
 - (b) Le double hachage
 - (c) Le hachage Coalescent
 - (d) Le hachage avec chaînage séparé
- 2. La modularisation est une méthode de hachage de base?
 - (a) Oui
 - (b) Non
 - (c) Parfois
- 3. La gestion des collisions primaires peut se gérer?
 - (a) par calcul
 - (b) par chaînage
 - (c) aléatoirement
 - (d) universellement

4. La COMPLETION?

- (a) utilise tous les bits de la représentation de la clé
- (b) n'utilise pas tous les bits de la représentation de la clé
- (c) tronçonnent la séquence de bits en sous-mots
- (d) s'applique uniquement à une clé numérique
- (e) n'est pas une méthode de hachage

5. La COMPRESSION?

- (a) utilise tous les bits de la représentation de la clé
- (b) n'utilise pas tous les bits de la représentation de la clé
- (c) tronçonnent la séquence de bits en sous-mots
- (d) s'applique uniquement à une clé numérique
- (e) n'est pas une méthode de hachage

6. La MULTIPLICATION?

- (a) utilise tous les bits de la représentation de la clé
- (b) n'utilise pas tous les bits de la représentation de la clé
- (c) tronçonnent la séquence de bits en sous-mots
- (d) s'applique uniquement à une clé numérique
- (e) n'est pas une méthode de hachage

7. La DIVISION?

- (a) utilise tous les bits de la représentation de la clé
- (b) n'utilise pas tous les bits de la représentation de la clé
- (c) tronçonnent la séquence de bits en sous-mots
- (d) s'applique uniquement à une clé numérique
- (e) n'est pas une méthode de hachage

8. Le handicap majeur de la compression est?

- (a) de hacher les anagrammes d'une clé de la même façon
- (b) de nécessiter un m premier majorant le nombre de clés
- (c) de n'utiliser q'une partie de représentation de la clé
- (d) de n'être efficace que sur une petite collection de données

9. Une collision primaire représente une collision?

- (a) avec coincïdence de valeur de hachage entre un x égal à un y
- (b) sans coincidence de valeur de hachage entre un x égal à un y
- (c) sans coincïdence de valeur de hachage entre un x différent d'un y
- (d) avec coincidence de valeur de hachage entre un x différent d'un y

10. Le hachage coalescent utilise une fonction d'essais successifs?

- (a) Jamais
- (b) Parfois
- (c) Toujours

QCM N°2

Lundi 2 octobre 2023

Question 11

Au voisinage de $+\infty$, on a :

a.
$$\sin\left(\frac{1}{n}\right) = \frac{1}{n} + \frac{1}{6n^3} + o\left(\frac{1}{n^3}\right)$$

b.
$$\sin\left(\frac{1}{n}\right) = \frac{1}{n} - \frac{1}{6n^3} + o\left(\frac{1}{n^3}\right)$$

c.
$$\frac{1}{\sqrt{1+\frac{1}{n}}} = 1 + \frac{1}{2n} + \frac{3}{8n^2} + o\left(\frac{1}{n^2}\right)$$

d.
$$\frac{1}{\sqrt{1+\frac{1}{n}}} = 1 - \frac{1}{2n} + \frac{3}{8n^2} + o\left(\frac{1}{n^2}\right)$$

e. Aucun des autres choix.

Question 12

Soient (u_n) et (v_n) deux suites réelles telles que, au voisinage de $+\infty$, $\begin{cases} u_n &= \frac{1}{n^2} + o\left(\frac{1}{n^2}\right) \\ v_n &= \frac{1}{n} + \frac{1}{n^2} + o\left(\frac{1}{n^2}\right) \end{cases}$

a.
$$v_n - nu_n \sim \frac{1}{n^2}$$

b.
$$v_n - nu_n = o\left(\frac{1}{n^2}\right)$$

c.
$$v_n - nu_n = o\left(\frac{1}{n}\right)$$

d. Aucun des autres choix.

Question 13

Soient deux suite positives (u_n) et (v_n) telles que, au voisinage de $+\infty$, $u_n=o(v_n)$.

- a. Si $\sum v_n$ converge, alors $\sum u_n$ converge
- b. Si $\sum v_n$ diverge, alors $\sum u_n$ diverge
- c. Aucun des autres choix.

Question 14

Considérons la série $\sum \frac{1}{n}$ et la suite (S_n) de ses sommes partielles.

- a. La suite (S_n) est croissante
- b. La suite (S_n) est décroissante
- c. $S_n \xrightarrow[n \to +\infty]{} +\infty$
- d. $\sum \frac{1}{n}$ diverge
- e. Aucun des autres choix.

Question 15

Soit une suite (u_n) strictement positive telle que $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=2$.

- a. $\sum u_n$ converge
- b. $\sum u_n$ diverge
- c. On ne peut rien dire de la nature de $\sum u_n$

Question 16

Soit une suite (u_n) strictement positive telle que pour tout $n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n} < 1$.

- a. $\sum u_n$ converge
- b. $\sum u_n$ diverge
- c. On ne peut rien dire de la nature de $\sum u_n$

Question 17

Soit une suite (u_n) strictement positive telle que $\lim_{n\to+\infty} \sqrt[n]{u_n} = \frac{3}{4}$.

- a. $\sum u_n$ converge
- b. $\sum u_n$ diverge
- c. On ne peut rien dire de la nature de $\sum u_n$

Question 18

Considérons une suite (u_n) telle que, au voisinage de $+\infty$, $|u_n| \sim \frac{1}{n^2}$.

- a. $\sum |u_n|$ converge
- b. $\sum u_n$ converge
- c. $\sum u_n$ diverge
- d. On ne peut rien dire de la nature de $\sum u_n$

Question 19

Considérons une suite (u_n) telle que, au voisinage de $+\infty$, $|u_n| \sim \frac{1}{n}$.

- a. $\sum |u_n|$ converge
- b. $\sum u_n$ converge
- c. $\sum u_n$ diverge
- d. On ne peut rien dire de la nature de $\sum u_n$

Question 20

La série $\sum \frac{(-1)^n}{n}$:

- a. converge absolument
- b. converge, mais pas absolument
- c. diverge

QCM 2 Azar new Chap13 (Adjec ob-verb ob-prep pp. 276–278ex8-14) Sept 23

In 21 - 24, the two sentences have been combined for you, with the second sentence as an adjective clause. Choose the correct logical combination(s). More than one answer possible for 21-24.

- 21. The meeting was too long. I had to attend it.
- a. The meeting was too long had to attend it.
- b. The meeting I had to attend was too long.
- c. The meeting that I had to attend was too long.
- d. The meeting who I had to attend was too long.
- 22. Ron can still visualize the woman. He met her at a party two years ago.
- a. Ron can still visualize the woman he met her at a party two years ago.
- b. Ron can still visualize the woman he met at a party two years ago.
- c. Ron can still visualize the woman that he met at a party two years ago.
- d. Ron can still visualize the woman which he met her at a party two years ago.
- 23. I played the song. My manager has just published it.
- a. I played the song my manager has just published.
- b. I played the song which my manager has just published.
- c. My manager has just publish song that I played.
- d. I played the song that my manager has just published.
- 24. The new servers were very nice. We trained them yesterday.
- a. The new servers whom we trained yesterday were very nice;
- b. We trained the new servers whom were very nice yesterday.
- c. The new servers which we trained yesterday were very nice.
- d. The new servers we trained yesterday were very nice.

Choose the one adjective clause that is NOT correct for sentences 25 and 26.

- 25. The telephone ____ was in my car.
- a. that I was looking for
- b. I was looking for
- c. which I was looking for
- d. whom I was looking for
- 26. The secretary ___ at the university was able to answer most of my questions.
- a. who I spoke to
- b. to who I spoke
- c. to whom I spoke
- d. I spoke to

Identify the one adjective clause in these sentences 27 - 30.

- 27. I found my passport which I had lost in the metro.
- a. I found my passport
- b. in the metro
- c. which I had lost in the metro
- d. in the metro

- 28. Yesterday at the Taylor Swift concert I ran into a woman my mom had shared a room with at college.
- a. at the Taylor Swift concert
- b. I ran into a woman
- c. my mom had shared a room with at college
- d. I ran into a woman my mom had shared a room
- 29. Alan explained in detail a plan that he was developing.
- a. that he was developing
- b. Alan explained in detail a plan
- c. a plan
- d. a plan that he was developing
- 30. Did you read about the candidate who is accused of tax evasion?
- a. the candidate who is accused
- b. Did you read about
- c. who is accused of tax evasion
- d. Did you read about the candidate

QCM 2 - OC S3 2023/24 (Week 02 October)

31.	Who led the original Stanford Marshmallow study?
b) c)	Bill Mitchell Walter Mischel Mica Mischel Warren Michaels
32.	The purpose of the <i>Stanford Marshmallow</i> experiment was to?
b) c)	understand sugar dependency in children understand development of delayed gratification in children get insight into childrens' snacking habits understand infant obesity
33.	How long were the participants left alone in the room?
b) c)	25 minutes 5 minutes 15 minutes 30 minutes
34.	Over 50% of the participants were followed up for 40 years after the experiment. True or False?
•	True False
35.	What were some of the criticisms of the original marshmallow test? Choose all that apply
b) c)	The limited demographic of the participants The age difference between the participants The waiting time frame was too long Not enough participants were followed up
36.	In the article 'How culture affects the marshmallow test' according to Yuko Munakata, who performed better in the 'gift unwrapping' experiment?
	The Japanese participants The American participants

- **37.** In the article, Munakata stated the American participants performed better in the 'marshmallow' experiment because marshmallows had no special appeal as it is something prevalent in their culture?
- a) True
- b) False
- **38.** In the article, Munakata stated the Japanese participants had a habit of waiting till everyone was ready before starting to eat. True or False ?
- a) True
- b) False
- **39.** In the class audio, 'Want to Teach Your Kids Self-Control? Ask A Cameroonian Farmer' according to the researcher Bettina Lamm, which participants showed more emotion during the test?
- a) African participants
- b) Western participants
- **40.** In the class audio, **'Want to Teach Your Kids Self-Control? Ask A Cameroonian Farmer'** what other factor was considered to have affected the results apart from self control?
- a) Level of hunger among participants
- b) Level of comprehension of the task
- c) Level of trust in adults
- d) Need to please adults

QCM Physique - InfoS3 - 02.10

Pensez à bien lire les questions ET les réponses proposées (attention à la numérotation des réponses)

Q41. La notation $\|\overrightarrow{E(M)}\|$ désigne :

- a. Le champ électrique créé par une charge située au point M.
- b. La norme du champ électrique créé par une charge située au point M.
- c. Une composante du champ électrique en un point M
- d. La norme du champ électrique en M.

Q42. La notation $E_z(M)$ désigne :

- a. Une composante d'un champ électrique.
- b. La norme d'un champ électrique.
- c. Le champ électrique créé en M par une distribution de charges.
- d. Le champ électrique créé par une charge située au point M.

Q43. Si une charge q crée en un point M un champ de norme $\|\vec{E}\|$, alors une charge $\frac{q}{2}$ crée en M un champ de norme :

- a. $2\|\vec{E}\|$
- b. $4\|\vec{E}\|$
- C. $\frac{\|\vec{E}\|}{2}$
- d. $\|\vec{E}\|$

Q44. La notation $||\overrightarrow{Fe}||$ désigne :

- a. Un champ électrique.
- b. La norme d'un champ électrique.
- c. Une force électrique.
- d. La norme d'une force électrique.

Q45. Le champ \vec{E} créé autour d'elle par une particule chargée q > 0 est un champ :

- a. Entrant.
- b. Sortant.

Q46. Quelle(s) est(sont) la(les) bonne(s) affirmation(s)?

- a. Un champ électrique est un champ scalaire.
- b. Un champ électrique est un champ vectoriel.
- c. Un champ électrique peut se créer autour d'une particule chargée positivement.
- d. Un champ électrique peut se créer autour d'une particule chargée négativement.

Q47. Quelle est l'expression de la force exercée par une particule chargée q_1 sur une autre particule chargée q_2 à la distance d (attractive ou répulsive selon le signe des charges) ? (k désigne la constante de Coulomb)

a.
$$\overline{F_{q_{1/q_2}}} = k \frac{q_1 q_2}{d^2}$$

b.
$$\overline{F_{q_{1/q_2}}}=k\frac{q_1q_2}{d^2}\overline{u_{12}}$$

c.
$$\overline{F_{q_1/q_2}} = -k \frac{q_1 q_2}{d^2} \overline{u_{12}}$$

$$\begin{split} \text{c.} \ \overline{F_{q_{1/q_{2}}}} &= -k \frac{q_{1}q_{2}}{d^{2}} \overline{u_{12}} \\ \text{d.} \ \overline{F_{q_{1/q_{2}}}} &= k \frac{q_{1}}{q_{2}} d^{2} \overline{u_{12}} \end{split}$$

Q48. Quelle est l'expression du champ électrique en un point M créé par une charge ponctuelle q_p située au point P, à la distance PM de la charge ? (k désigne la constante de Coulomb)

a.
$$\overrightarrow{E_p(M)} = \frac{kq_p}{p_M^2} \overrightarrow{u_{PM}}$$

a.
$$\overrightarrow{E_p(M)} = \frac{kq_p}{pM^2} \overrightarrow{u_{PM}}$$

b. $\overrightarrow{E_p(M)} = \frac{kq_p}{pM^3} \overrightarrow{u_{PM}}$

c.
$$\overrightarrow{E_p(M)} = kq_p \frac{\overrightarrow{PM}}{\overrightarrow{PM}^2}$$

d. $\overrightarrow{E_p(M)} = kq_p \frac{\overrightarrow{PM}}{\overrightarrow{PM}^3}$

d.
$$\overline{E_p(M)} = kq_p \frac{\overline{PM}}{PM^3}$$

Q49. A partir de cette distribution de charges q(q > 0) autour d'un cercle de rayon R, le vecteur champ électrostatique créé en O par la charge placée en A :

- a. A pour norme : $\|\overrightarrow{E_A}(O)\| = k \frac{q}{p}$
- (k désigne la constante de Coulomb)
- b. A le sens de \overline{AO} .
- c. A le même sens que le vecteur champ électrostatique créé en O par la charge placée en C.
- d. Est nul.

Q50. A partir de cette distribution de charges q (q > 0) autour d'un carré de côté 2h:

- a. Les vecteurs champ électrostatique créés en O par les charges placées en A et C sont colinéaires mais de sens différents.
- b. Les vecteurs champ électrostatique créés en O par les charges placées en B et D sont colinéaires et de même sens.
- c. Les vecteurs champ électrostatique créés en O par les charges placées en A, B, C et D ont tous la même direction.
- d. D'après le principe de superposition, le champ créé par l'ensemble des charges et résultant en O est nul

QCM 2 Architecture des ordinateurs

Lundi 2 octobre 2023

Pour toutes les questions, une ou plusieurs réponses sont possibles.

51. Le registre PC

- A. Contient l'adresse de la prochaine instruction à exécuter.
- B. Est le compteur programme.
- C. Aucune de ces réponses.
- D. Contient l'état du microprocesseur.

52. Le registre SR:

- A. Contient le CCR.
- B. Est sur 16 bits.
- C. Aucune de ces réponses.
- D. Est sur 8 bits.

53. Le 68000 possède:

- A. Aucune de ces réponses.
- B. Deux pointeurs de pile : USP et SSP
- C. Un pointeur de pile : PC
- D. Deux pointeurs de pile : CCR et SR

54. Le flag V est positionné à 0 quand :

- A. Aucun dépassement signé n'apparaît.
- B. Un dépassement non signé apparaît.
- C. Aucune de ces réponses.
- D. Un résultat est négatif.

55. Dans l'addition A + B = C, le flag V est positionné à 0 si :

- A. A est positif, B est positif, C est négatif.
- B. A est négatif, B est négatif, C est positif.
- C. A est positif, B est négatif, C est positif.
- D. A est positif, B est positif, C est positif.

56. Le mode d'adressage direct :

- A. Ne spécifie pas d'emplacement mémoire.
- B. Spécifie un emplacement mémoire.
- C. Est uniquement sur 8 bits.
- D. Aucune de ces réponses.

57. Le mode d'adressage immédiat :

- A. Ne spécifie pas d'emplacement mémoire.
- B. Spécifie un emplacement mémoire.
- C. Est uniquement sur 8 bits.
- D. Aucune de ces réponses.

58. Soit l'instruction suivante : MOVE.W -(A0),D0

- A. A0 est décrémenté de 1.
- B. A0 est décrémenté de 2.
- C. A0 est décrémenté de 4.
- D. A0 ne change pas.
- 59. Soit l'instruction suivante: MOVE.L -1(A0), D0
 - A. A0 est décrémenté de 1.
 - B. A0 est décrémenté de 2.
 - C. A0 est décrémenté de 4.
 - D. A0 ne change pas.
- 60. Soit l'instruction suivante : MOVE.W \$5000, DO. Que représente la valeur \$5000 ?
 - A. Une adresse sur 32 bits.
 - B. Une donnée immédiate sur 16 bits.
 - C. Une adresse sur 16 bits.
 - D. Aucune de ces réponses.