

数字媒体技术基础

Meng Yang

www.smartllv.com

SUN YAT-SEN University

机器智能与先进计算教育部重点实验室

智能视觉语言 学习研究组

Course Outline

- □ 第11章 智能新媒体信息表示基础
- □ 11.1 深度神经网络基础
 - o 11.1.1 全连接神经网络
 - o 11.1.2 卷积神经网络
 - o 11.1.3 自编码网络
 - o 11.1.4 生成对抗网络
- □ 11.2 智能新媒体的信息表示学习
 - o 11.2.1 图像预训练学习
 - 11.2.2 自然语言预训练学习

第一部分

11.1 深度神经网络基础

人脑神经网络

□ 一些在童年时期因癫痫接受了大脑半球切除术的病人,只剩一半的大脑是否能正常发挥功能?

11.1 深度神经网络基础

引言

2019年,加州理工学院开展的一项新研究发现,一些在童年时期因癫痫接受了大脑半球切除术的病人,只剩一半的大脑仍然能正常发挥功能

对实验组和对照组分别进行脑功能磁共振成像(fMRI)测试,并考察了大脑中负责视觉、运动、情绪和认知能力等日常功能的神经网络

大脑的"弹性"很强,会不断生成新的神经网络、在脑细胞之间建立起新的联系

切除了一半大脑的受试者的脑功能与正常 人无异,且这些患者大脑中各神经网络之 间的联系和交流甚至比普通人更强,表明 大脑似乎能够自行弥补缺失部分的功能

实验结论

Neural Network

Neuron

$$z = a_1 w_1 + \dots + a_k w_k + \dots + a_K w_K + b$$

Neural Network

Neural Network

Different connections lead to different network structures

Weights and biases are network parameters θ

Presynaptic

Fully Connect Feedforward Network

Deep means many hidden layers

Fully Connect Feedforward Network

Output Layer

Softmax layer as the output layer

$\frac{Probability}{\blacksquare 1 > y_i > 0}$

 $\blacksquare \sum_{i} y_{i} = 1$

Softmax Layer

人机大战

□ 举例: 一些人工智能机器与人类竞赛的例子?

11.1 深度神经网络基础

AlphaGo 人工智能发展史上的里程碑事件

AlphaGo Google DeepMind团队 人工智能围棋程序

4:1

李世石 人类围棋顶尖高手 生涯14次世界冠军 2016年3月 18次国际赛冠军

荣登《Nature》封面

Example

Why Deep?

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer

(given enough hidden neurons)

Reference for the reason:

http://neuralnetworksanddeeplearning.com/chap4.html

Why Deep?

Logic circuits

- Logic circuits consists of gates
- A two layers of logic gates can represent any Boolean function.
- Using multiple layers of logic gates to build some functions are much simpler

Neural network

- Neural network consists of neurons
- A hidden layer network can represent any continuous function.
- Using multiple layers of neurons to represent some functions are much simpler

less parameters

less gates needed

More reason:

https://www.youtube.com/watch?v=XsC9byQkUH8&list =PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49&index=13

Training Data

Preparing training data: images and their labels

The learning target is defined on the training data.

Learning Target

Ink \rightarrow 1 No ink \rightarrow 0

The learning target is

Input: y_1 has the maximum value Input: y_2 has the maximum value

Loss

Given a set of parameters, a good function should make the loss of all examples as small as possible

Loss can be square error or cross entropy between the network output and target

Total Loss

For all training data ...

Total Loss:

As small as possible

Find *a function* that minimizes total loss L

Find the network parameters θ^* that minimize total loss L

How to pick the best function

Find $\underline{network\ parameters\ heta^*}$ that minimize total loss L

Enumerate all possible values

Network parameters $\theta = \{w_1, w_2, w_3, \cdots, b_1, b_2, b_3, \cdots\}$

Millions of parameters

问题?

Gradient Descent

Network parameters
$$\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$$

Find *network parameters* $\boldsymbol{\theta}^*$ that minimize total loss L

Gradient Descent

Network parameters
$$\theta = \{w_1, w_2, \dots, b_1, b_2, \dots\}$$

Find *network parameters* $\boldsymbol{\theta}^*$ that minimize total loss L

We do not really minimize total loss!

Mini-batch

Mini-batch

Mini-batch

 Randomly initialize network parameters

- Pick the 1st batch $L' = l^1 + l^{31} + \cdots$
 - Update parameters once
- Pick the 2nd batch $L'' = l^2 + l^{16} + \cdots$ Update parameters once

:

Until all mini-batches have been picked

one epoch

Repeat the above process

为什么使用mini-batch?

- □ 使用 batch 梯度下降法时,每次迭代你都需要历遍整个训练集
- □ 每看一个数据就算一下损失函数,然后求梯度 更新参数,这个称为随机梯度下降
- □ 使用 mini-batch 梯度下降法,如果你作出成本函数在整个过程中的图,则并不是每次迭代都是下降的 Mini-batch gradient de

Why CNN?

Some patterns are much smaller than the whole image

A neuron does not have to see the whole image to discover the pattern.

Connecting to small region with less parameters

Why CNN?

• The same patterns appear in different regions.

Why CNN?

Subsampling the pixels will not change the object

Cristiano Ronaldo

We can subsample the pixels to make image smaller

SIN UNIVERSITY

The whole CNN

Messi? Cristiano Ronaldo?

Flatten

Can repeat many times

SON VITTE OF VITTE

The whole CNN

Property 1

Some patterns are much smaller than the whole image

Property 2

The same patterns appear in different regions.

Property 3

Subsampling the pixels will not change the object

Can repeat many times

Flatten

Convolution

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Those are the network parameters to be learned.

1	-1	-1	
-1	1	-1	
-1	-1	1	

Filter 1 Matrix

Filter 2 Matrix

: :

Each filter detects a small pattern (3×3) .

Property 1

Convolution

stride=1

1	1	0	0	0	0	1
	0	Y	0	0	1	0
	0	0	7	1	0	0
	Y	0	0	0	1	0
	0	X	0	0	1	0
	0	0		0	1	0

6 x 6 image

Filter 1

Property 2

Convolution

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Do the same process for every filter

Colorful image

6 x 6 image

Less parameters!

Pooling (Max)

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

3 (-1)	-3 -1
-3 1	0 -3
-3 -3	0 1
3 (-2)	-2 -1

Pooling (Max)

New image but smaller

channe l

3

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Encoder & Decoder

Usually <784

Compact representation of the input object

Can reconstruct the original object

Auto-encoder

Deep Auto-encoder

NN encoder + NN decoder = a deep network

Reference: Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural networks." *Science* 313.5786 (2006): 504-507

Deep Auto-encoder

De-noising auto-encoder

Vincent, Pascal, et al. "Extracting and composing robust features with denoising autoencoders." *ICML*, 2008.

De-noising auto-encoder

Vincent, Pascal, et al. "Extracting and composing robust features with denoising autoencoders." *ICML*, 2008.