

A-378CIP2C3.ST25.txt SEQUENCE LISTING

TECH CENTER 1600/2900

<110> Boyle, William J.

Lacey, David L.

Calzone, Frank J.

Chang, Ming-shi

<120> Osteoprotegerin

<130> A-378CIP2C3

<140> 09/718,725

<141> 2000-11-22

<150> 09/132,985

<151> 1998-08-12

<150> 08/577,788

<151> 1995-12-22

<160> 179

<170> PatentIn version 3.1

<210> 1

<211> 36

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide

<220>

<221> misc_feature

<222> (28)..(35)

A-378CIP2C3.ST25.txt <223> n could be any one of A, G, C or T <400> 1 aaaggaagga aaaaagcggc cgctacannn nnnnnt 36 <210> 2 <211> 16 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 2 tcgacccacg cgtccg 16 <210> 3 <211> 12 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 3 gggtgcgcag gc 12 <210> 4 <211> 18 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> tgtaaaacga cggccagt 18 <210> 5 <211> 18

<212> DNA

<213	A-378CIP2C3.ST25.txt > Artificial sequence	
<220:	>	
<223>	> Synthetic oligonucleotide	
<400> cagga	> 5 aaacag ctatgacc	18
<210>	- 6	
<211>	- 20	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> caatt	6 aaccc tcactaaagg	20
<210>	7	
<211>	23	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> gcatta	7 utgac ccagaaaccg gac	23
<210>	8	
<211>	23	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> aggtage	8 cgcc cttcctcaca ttc	23
<210>	9	

<211>	30 A-378CIP2C3.ST25.txt
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	Synthetic oligonucleotide
<400> gacta	9 gtccc acaatgaaca agtggctgtg
<210>	10
<211>	45
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	Synthetic oligonucleotide
<400> ataaga	10 natgc ggccgctaaa ctatgaaaca gcccagtgac cattc
<210>	11
<211>	21
<212>	DNA
<213>	Artificial sequence
<220>	
<223>	Synthetic oligonucleotide
<400> gcctct	11 agaa agagctggga c
<210>	12
<211>	21
<212>	DNA
<213>	Artificial sequence
.220	
<220>	
<223>	Synthetic oligonucleotide
<400>	12

cgccgtgttc catttatgag c

<210>	13	
<211>	24	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> atcaaa	13 ggca gggcatactt cctg	24
<210>	14	
<211>	24	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
	14 ctcc tgtttcacgg tctg	24
<210>	15	
<211>	24	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
	15 cct tgaagggcct gatg	24
<210> 1	16	
<211> 2	24	
<212> D	DNA	
<213> A	Artificial sequence	
<220>		

Page 5

<223>	A-378CIP2C3.ST25.txt > Synthetic oligonucleotide	
<400> taact		24
<210>	· 17	
<211>	· 33	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> agcgc	17 ggccg catgaacaag tggctgtgct gcg	33
<210>	18	
<211>	31	
<212>	DNA	
<213>	Artificial sequence	
<220>		
	Synthetic oligonucleotide	
<400> agctct	18 tagag aaacagccca gtgaccattc c	31
<210>	19	
<211>	24	
<212>	DNA	
<213>	Artificial sequence	
220		
<220>		
<223>	Synthetic oligonucleotide	
<400> gtgaag	19 ctgt gcaagaacct gatg	24
<210>	20	
<211>	24	
<212>	DNA	
<213>	Artificial sequence	

<220>		
<223>	Synthetic oligonucleotide	
<400> atcaa	20 aggca gggcatactt cctg	24
<210>	21	
<211>	24	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> cagato	21 Ectga agctgctcag tttg	24
<210>	22	
<211>	33	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> agcgcg	22 gccg cggggaccac aatgaacaag ttg	33
<210>	23	
<211>	33	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> agctcta	23 Igaa ttgtgaggaa acagctcaat ggc	33
<210>	24	
:211>	39	

A-378CIP2C3.ST25.txt <212> DNA <213> Artificial sequence <220> Synthetic oligonucleotide <223> <400> atagcggccg ctgagcccaa atcttgtgac aaaactcac 39 <210> 25 <211> 45 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> tctagagtcg acttatcatt tacccggaga cagggagagg ctctt 45 <210> 26 <211> 38 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 26 cctctgagct caagcttccg aggaccacaa tgaacaag 38 <210> 27 <211> 43 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide

Page 8

43

cctctgcggc cgctaagcag cttatttca cggattgaac ctg

<400>

<210	> 28 A-378CIP2C3.ST25.txt	
<211	> 38	
<212	> DNA	
<213	> Artificial sequence	
<220:		
<400>	Synthetic oligonucleotide28	
cctct	gagct caagcttccg aggaccacaa tgaacaag	38
<210>	29	
<211>	24	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> tccat	29 aagaa acagcccagt gacc	
	augua acageccage gace	24
<210>	30	
<211>	31	
<212>	DNA	
<213>	Artificial sequence	
<220>		
	Synthetic oligonucleotide	
<400> cctctg	30 cggc cgctgttgca tttcctttct g	
		31
<210>	31	
<211>	19	
<212>		
<213>	Artificial sequence	
<220>		
<223>	Synthetic	

A-378CIP2C3.ST25.txt <400> 31 Glu Thr Leu Pro Pro Lys Tyr Leu His Tyr Asp Pro Glu Thr Gly His
10 15 Gln Leu Leu <210> 32 <211> 21 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 32 tcccttgccc tgaccactct t 21 <210> 33 <211> 34 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 33 cctctgcggc cgcacacacg ttgtcatgtg ttgc 34 <210> 34 <211> 21 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 34 tcccttgccc tgaccactct t 21

<210> 35

<211> 34

A-378CIP2C3.ST25.txt <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> cctctgcggc cgccttttgc gtggcttctc tgtt <210> 36 <211> 37 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide

<400> cctctgagct caagcttggt ttccggggac cacaatg 37 <210> 37

34

<211> 38 <212> DNA <213> Artificial sequence

<223>

<220> <223> Synthetic oligonucleotide

<400> 37 cctctgcggc cgctaagcag cttatttta ctgaatgg 38

<210> 38 <211> 37 <212> DNA

<213> Artificial sequence <220>

Synthetic oligonucleotide cctctgagct caagcttggt ttccggggac cacaatg 37

A-378CIP2C3.ST25.txt <210> 39 <211> 33 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 39 cctctgcggc cgccagggta acatctattc cac 33 <210> 40 <211> 35 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 40 ccgaagcttc caccatgaac aagtggctgt gctgc 35 <210> 41 <211> 40 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide cctctgtcga ctattataag cagcttattt tcacggattg 40 <210> 42 <211> 21 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide

Page 12

<400>	A-378CIP2C3.ST25.txt	
tccct	tgccc tgaccactct t	21
<210>	43	
<211>	35	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> cctctq	43 gtcga cttaacacac gttgtcatgt gttgc	35
<210>	44	
<211>	21	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> tccctt	44 gccc tgaccactct t	21
<210>	45	
<211>	35	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> cctctg1	45 tcga cttacttttg cgtggcttct ctgtt	35
210>	46	
:211>	1537	
.212	DAIA	

<213> Escherichia coli

<400> 46		A٠	-378CIP2C3.s	ST25.txt		
	tgaagagcgg	ttcctccttt	cagcaaaaaa	cccctcaaga	cccgtttaga	60
ggccccaagg	ggttatgcta	gttattgctc	agcggtggca	gcagccaact	cagcttcctt	120
tcgggctttc	ttcttcttct	tcttctttcc	gcggatcctc	gagtaagctt	ccatggtacc	180
ctgcaggtcg	acactagtga	gctcgaattc	caacgcgtta	accatatgtt	attcctcctt	240
taattagtta	aaacaaatct	agaatcaaat	cgattaatcg	actataacaa	accattttct	300
tgcgtaaacc	tgtacgatcc	tacaggtact	tatgttaaac	aattgtattt	caagcgatat	360
aatagtgtga	caaaaatcca	atttattaga	atcaaatgtc	aatctattac	cgttttaatg	420
atatataaca	cgcaaaactt	gcgacaaaca	ataggtaagg	ataaagagat	gggtatgaaa	480
gacataaatg	ccgacgacac	ttacagaata	attaataaaa	ttaaagcctg	tagaagcaat	540
aatgatatta	atcaatgctt	atctgatatg	actaaaatgg	tacattgtga	atattattta	600
ctcgcgatca	tttatcctca	ttctatggtt	aaatctgata	tttcaattct	ggataattac	660
cctaaaaaat	ggaggcaata	ttatgatgac	gctaatttaa	taaaatatga	tcctatagta	720
gattattcta	actccaatca	ttcaccgatt	aattggaata	tatttgaaaa	caatgctgta	780
aataaaaaat	ctccaaatgt	aattaaagaa	gcgaaatcat	caggtcttat	cactgggttt	840
agtttcccta	ttcatactgc	taataatggc	ttcggaatgc	ttagttttgc	acattcagag	900
aaagacaact	atatagatag	tttattttta	catgcgtgta	tgaacatacc	attaattgtt	960
ccttctctag	ttgataatta	tcgaaaaata	aatatagcaa	ataataaatc	aaacaacgat	1020
ttaaccaaaa	gagaaaaaga	atgtttagcg	tgggcatgcg	aaggaaaaag	ctcttgggat	1080
atttcaaaaa	tattaggctg	tagtaagcgc	acggtcactt	tccatttaac	caatgcgcaa	1140
atgaaactca	atacaacaaa	ccgctgccaa	agtatttcta	aagcaatttt	aacaggagca	1200
attgattgcc	catactttaa	aagttaagta	cgacgtccat	atttgaatgt	atttagaaaa	1260
ataaacaaaa	gagtttgtag	aaacgcaaaa	aggccatccg	tcaggatggc	cttctgctta	1320
atttgatgcc	tggcagttta	tggcgggcgt	cctgcccgcc	accctccggg	ccgttgcttc	1380
gcaacgttca	aatccgctcc	cggcggattt	gtcctactca	ggagagcgtt	caccgacaaa	1440
caacagataa	aacgaaaggc	ccagtctttc	gactgagcct	ttcgttttat	ttgatgcctg	1500
gcagttccct	actctcgcat	ggggagacca	tgcatac			1537

<210> 47

<211> 48

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide

<400>				A-378CIP2C3			
ccggcg	ggac	a tttatcaca	c agcagctga	t gagaagttt	c ttcatcca		48
<210>	48						
<211>	55						
<212>	DNA	4					
<213>	Art	ificial sec	quence				
<220>							
<223>	Syr	thetic oli	gonucleotide	9			
<400> cgattt	48 gatt	ctagaaggag	g gaataacata	ı tggttaacgo	gttggaatto	ggtac	55
<210>	49						
<211>	49						
<212>	DNA						
<213>	Art	ificial sec	luence				
<220>							
	Syn	thetic olig	onucleotide				
<400> cgaatto	49 ccaa	cgcgttaacc	atatgttatt	cctccttcta	gaatcaaat		49
<210>	50						
<211>	154	6					
<212>	DNA						
<213>	Esci	nerichia co	li				
<400> gcgtaac	50 gta	tgcatggtct	ccccatacaa	gagtaggaa	ctaccaaaca	tcaaataaaa	60
			ctgggccttt				60 120
			gccgggagcg				180
			gccataaact				240
			gtttctacaa				300
			acttttaaag				360
			gcggtttgtt				420
			actacagcct				480
			acattcttt		ttaaatcgtt		540

	tgcta tatttattt					600
	acacg catgtaaaa					660
	cattc cgaagccat					720
cctga	tgatt tcgcttctt	t aattacattt	ggagatttt	tatttacagc	attgttttca	780
aatat	attcc aattaatcg	g tgaatgattg	gagttagaat	aatctactat	aggatcatat	840
tttat	taaat tagcgtcat	c ataatattgc	ctccattttt	tagggtaatt	atccagaatt	900
gaaat	atcag atttaacca	t agaatgagga	taaatgatcg	cgagtaaata	atattcacaa	960
tgtac	cattt tagtcatate	c agataagcat	tgattaatat	cattattgct	tctacaggct	1020
ttaat	tttat taattattc	t gtaagtgtcg	tcggcattta	tgtctttcat	acccatctct	1080
ttatc	cttac ctattgttt	g tcgcaagttt	tgcgtgttat	atatcattaa	aacggtaata	1140
gattg	acatt tgattctaa1	t aaattggatt	tttgtcacac	tattatatcg	cttgaaatac	1200
aattg	tttaa cataagtaco	tgtaggatcg	tacaggttta	cgcaagaaaa	tggtttgtta	1260
tagtc	gatta atcgatttga	ttctagattt	gttttaacta	attaaaggag	gaataacata	1320
tggtta	aacgc gttggaatto	gagctcacta	gtgtcgacct	gcagggtacc	atggaagctt	1380
actcga	aggat ccgcggaaag	aagaagaaga	agaagaaagc	ccgaaaggaa	gctgagttgg	1440
ctgctg	gccac cgctgagcaa	taactagcat	aaccccttgg	ggcctctaaa	cgggtcttga	1500
ggggtt	tttt gctgaaagga	ggaaccgctc	ttcacgctct	tcacgc		1546
<210>	51					
<211>	47					
<212>	DNA					
<213>	Artificial seq	uence				
	·	-				
<220>						
<223>	Synthetic olig	onucleotide				
<400>	51					
tatgaa	acat catcaccatc	accatcatgc ·	tagcgttaac (gcgttgg		47
<210>	52					
<211>	49					
<212>	DNA					
<213>	Artificial sequ	uence				

<220>

<223> Synthetic oligonucleotide

<400> 52 A-378CIP2C3.ST25.txt	
aattccaacg cgttaacgct agcatgatgg tgatggtgat gatgtttca	49
<210> 53	
<211> 141	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide	
<400> 53	
ctaattccgc tctcacctac caaacaatgc ccccctgcaa aaaataaatt catataa	
acatacagat aaccatctgc ggtgataaat tatctctggc ggtgttgaca taaatac tggcggtgat actgagcaca t	
- 35-35-34- accedageaca (141
<210> 54	
<211> 147	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide	
<400> 54 cgatgtgctc agtatcaccg ccagtggtat ttatgtcaac accgccagag ataattta	atc 60
accgcagatg gttatctgta tgtttttat atgaatttat tttttgcagg ggggcatt	
ttggtaggtg agagcggaat tagacgt	147
<210> 55	
<211> 55	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide	
<400> 55 :gatttgatt ctagaaggag gaataacata tggttaacgc gttggaattc ggtac	55
210. 56	

<211> 49	A-378CIP2C3.ST25.txt	
<212> DN	NA	
<213> Ar	rtificial sequence	
<220>		
<223> Sy	nthetic oligonucleotide	
<400> 56 cgaattcca	a cgcgttaacc atatgttatt cctccttcta gaatcaaat	49
<210> 57		
<211> 66	8	
<212> DN	A	
<213> Es	cherichia coli	
<400> 57		
	g tgaagagcgg ttcctccttt cagcaaaaaa cccctcaaga cccgtttaga	60
	g ggttatgcta gttattgctc agcggtggca gcagccaact cagcttcctt	120
	c ttcttcttct tcttcttcc gcggatcctc gagtaagctt ccatggtacc	180
	g acactagtga gctcgaattc caacgcgtta accatatgtt attcctcctt	240
	a actcaaatct agaatcaaat cgataaattg tgagcgctca caattgagaa	300
	a gaattttagc atttgtcaaa tgaattttt aaaaattatg agacgtccat	360
	t atttagaaaa ataaacaaaa gagtttgtag aaacgcaaaa aggccatccg	420
	cttctgctta atttgatgcc tggcagttta tggcgggcgt cctgcccgcc	480
	cogttgcttc gcaacgttca aatccgctcc cggcggattt gtcctactca	540
	caccgacaaa caacagataa aacgaaaggc ccagtctttc gactgagcct	600
acgcacgt	ttgatgcctg gcagttccct actctcgcat ggggagacca tgcatacgtt	660
acgeaege		668
<210> 58		
<211> 726		
<212> DNA		
<213> Esc	herichia coli	
<400> 58 gcgtaacgta	tgcatggtct ccccatgcga gagtagggaa ctgccaggca tcaaataaaa	60
	antique and changesttt continue of the continu	120
	UU3C333tcc uccadaaaca matta	180

gggtggcggg caggacgccc gccataaact gccaggcatc aaattaagca gaaggggcct	240
cccaccgccc gtcctgcggg cggtatttga cggtccgtag tttaattcgt cttcgccatc	300
ctgacggatg gcctttttgc gtttctacaa actcttttgt ttatttttct aaatacattc	360
aaatatggac gtctcataat ttttaaaaaa ttcatttgac aaatgctaaa attcttgatt	420
aatattctca attgtgagcg ctcacaattt atcgatttga ttctagattt gttttaacta	480
attaaaggag gaataacata tggttaacgc gttggaattc gagctcacta gtgtcgacct	540
gcagggtacc atggaagctt actcgaggat ccgcggaaag aagaagaaga agaagaaagc	600
ccgaaaggaa gctgagttgg ctgctgccac cgctgagcaa taactagcat aaccccttgg	660
ggcctctaaa cgggtcttga ggggtttttt gctgaaagga ggaaccgctc ttcacgctct	720
tcacgc	726
<210> 59	
<211> 44	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> Synthetic oligonucleotide	
<400> 59	
Tacqcactqq atccttataa qcaqcttatt tttactqatt ass	
tacgcactgg atccttataa gcagcttatt tttactgatt ggac	44
<210> 60	44
	44
<210> 60	44
<210> 60 <211> 27	44
<210> 60 <211> 27 <212> DNA	44
<210> 60 <211> 27 <212> DNA	44
<210> 60 <211> 27 <212> DNA <213> Artificial sequence	44
<210> 60 <211> 27 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 60	44
<210> 60 <211> 27 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide	27
<210> 60 <211> 27 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 60	
<210> 60 <211> 27 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 60 gtcctcctgg tacctaccta aaacaac	
<210> 60 <211> 27 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 60 gtcctcctgg tacctaccta aaacaac <210> 61	

<220>	A STATE STAT	
<223>	Synthetic oligonucleotide	
<400> tatgg	· 61 patgaa gaaacttctc atcagctgct gtgtgataaa tgtccgccgg gtacccggcg	60
	ttatc acacagcagc tgatgagaag tttcttcatc ca	102
<210>	62	
<211>	19	
<212>	PRT	
<213>	Artificial sequence	
<220>		
<223>	Synthetic	
<400>	62	
Met As	sp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro 5 10 15	
Gly Th	nr Tyr	
<210>	63	
<211>	84	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> tatgga	63 aact tttcctccaa aatatcttca ttatgatgaa gaaacttctc atcagctgct	60
	taaa tgtccgccgg gtac	84
<210>	64	
<211>	78	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	

A-378CIP2C3.ST25.txt <400> 64 ccggcggaca tttatcacac agcagctgat gagaagtttc ttcatcataa tgaagatatt 60 ttggaggaaa agtttcca 78 <210> 65 <211> 44 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> tacgcactgg atccttataa gcagcttatt ttcacggatt gaac 44 <210> 66 <211> 38 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 66 gtgctcctgg tacctaccta aaacagcact gcacagtg 38 <210> 67 <211> 84 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> tatggaaact ctgcctccaa aatacctgca ttacgatccg gaaactggtc atcagctgct 60 gtgtgataaa tgtgctccgg gtac 84 <210> 68 <211> 78

<212> DNA

<213>	Artificial sequence A-3/8CIP2C3.ST25.txt	
<220>		
<223>	Synthetic oligonucleotide	
<400> ccgga	68 gcaca tttatcacac agcagctgat gaccagtttc cggatcgtaa tgcaggtatt	60
	ggcag agtttcca	78
<210>	69	
<211>	54	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> tatgga	69 Iccca gaaactggtc atcagctgct gtgtgataaa tgtgctccgg gtac	54
<210>	70	
<211>	48	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400>	70 caca tttatcacac agcagctgat gaccagtttc tgggtcca	
55-5	each treated ageagetgat gactagitic igggteca	48
<210>	71	
<211>	87	
<212>	DNA	
<213>	Artificial sequence	
<220>		
	Synthetic oligonucleotide	
<400> tatgaaa	71 agaa actctgcctc caaaatacct gcattacgat ccggaaactg gtcatcagct	60
	gat aaatgtgctc cgggtac	87
	Page 22	٠,

<210	> 72	
<211	> 81	
<212	> DNA	
<213	> Artificial sequence	
<220:	>	
<223>	> Synthetic oligonucleotide	
<400> ccgga	 72 agcaca tttatcacac agcagctgat gaccagtttc cggatcgtaa tgcaggtatt 	60
	aggcag agtttctttc a	81
<210>	73	
<211>	71	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> gttct	73 cctca tatgaaacat catcaccatc accatcatga aactctgcct ccaaaatacc	60
	tacga t	71
<210>	74	
<211>	43	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> gttctc	74 ctca tatgaaagaa actctgcctc caaaatacct gca	43
<210>	75	
<211>	76	
<212>	DNA	
<213>	Artificial sequence	

<220>		
<223>	Synthetic oligonucleotide	
<400> tacgc	75 actgg atccttaatg atggtgatgg tgatgatgta agcagcttat tttcacggat	60
	ctgat tcccta	76
<210>	76	
<211>	47	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> gttctc	76 Ectca tatgaaatac ctgcattacg atccggaaac tggtcat	47
<210>	77	
<211>	43	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> gttctc	77 ctat taatgaaata tcttcattat gatgaagaaa ctt	43
<210>	78	
<211>	40	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
:400>	78 Etgg atccttataa gcagcttatt tttactgatt	40
210>	79	

A-378CIP2C3.ST25.txt <211> 40 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> gttctcctca tatggaaact ctgcctccaa aatacctgca 40 <210> 80 <211> 43 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 80 tacgcactgg atccttatgt tgcatttcct ttctgaatta gca 43 <210> 81 <211> 18 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> ccggaaacag ataatgag 18 <210> 82 <211> 18 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 82 gatcctcatt atctgttt

<210>	83	
<211>	- 30	
<212>	- DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> ccgga	83 aacag agaagccacg caaaagtaag	30
<210>	84	
<211>	30	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> gatcct	84 ttact tttgcgtggc ttctctgttt	30
<210>	85	
<211>	12	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> tatgtt	85 aatg ag	12
<210>	86	
<211>	14	
<212>	DNA	
<213>	Artificial sequence	
<220>		

<223	A-378CIP2C3.ST25.txt > Synthetic oligonucleotide	
<400 gatc		14
<210:	> 87	1,
<211:	> 21	
<212	> DNA	
<213>	Artificial sequence	
<220>	•	
<223>	Synthetic oligonucleotide	
<400> tatgt	e 87 Etccgg aaacagttaa g	21
<210>	88	
<211>	23	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> gatcc	88 ttaac tgtttccgga aca	23
<210>	89	
<211>	36	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> tatgtt	89 ccgg aaacagtgaa tcaactcaaa aataag	36
<210>	90	
<211>	38	
<212>	DNA	
<213>	Artificial sequence	

220>	
223> Synthetic oligonucleotide	
400> 90	
atccttatt tttgagttga ttcactgttt ccggaaca	38
210> 91	
211> 100	
212> DNA	
213> Artificial sequence	
220>	
223> Synthetic oligonucleotide	
400> 91 cagcgacga cgacgacaaa gaaactctgc ctccaaaata cctgcattac gatccggaaa	60
ggtcatca gctgctgtgt gataaatgtg ctccgggtac	100
210> 92	
211> 92	
212> DNA	
13> Artificial sequence	
20>	
23> Synthetic oligonucleotide	
00> 92 ggagcaca tttatcacac agcagctgat gaccagtttc cggatcgtaa tgcaggtatt	60
ggaggcag agtttctttg tcgtcgtcgt cg	92
10> 93	
11> 26	
12> DNA	
13> Artificial sequence	
20>	
23> Synthetic oligonucleotide	
00> 93 aaacacaa tcgatttgat actaga	26

A-378CIP2C3.ST25.txt <210> 94 <211> 50 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 94 tttgttttaa ctaattaaag gaggaataaa atatgagagg atcgcatcac 50 <210> 95 <211> 50 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 95 catcaccatc acgaaacctt cccgccgaaa tacctgcact acgacgaaga 50 <210> 96 <211> 49 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> aacctcccac cagctgctgt gcgacaaatg cccgccgggt acccaaaca 49 <210> 97 <211> 26 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide

Page 29

A-378CIP2C3.ST25.txt <400> 97 tgtttgggta cccggcgggc atttgt 26 <210> 98 <211> 50 <212> DNA <213> Artificial sequence <220> Synthetic oligonucleotide <223> <400> cgcacagcag ctggtgggag gtttcttcgt cgtagtgcag gtatttcggc 50 <210> 99 <211> 49 <212> DNA <213> Artificial sequence <220> Synthetic oligonucleotide <223> <400> 99 gggaaggttt cgtgatggtg atggtgatgc gatcctctca tattttatt 49 <210> 100 <211> 50 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 100 cctcctttaa ttagttaaaa caaatctagt atcaaatcga ttgtgtttgt 50 <210> 101 <211> 59 <212> DNA

<213> Artificial sequence

A-378CIP2C3.ST25.txt <220> <223> Synthetic oligonucleotide <400> acaaacacaa tcgatttgat actagatttg ttttaactaa ttaaaggagg aataaaatg 59 <210> 102 <211> 48 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide ctaattaaag gaggaataaa atgaaagaaa cttttcctcc aaaatatc 48 <210> 103 <211> 31 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 103 tgtttgggta cccggcggac atttatcaca c 31 <210> 104 <211> 59 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> acaaacacaa tcgatttgat actagatttg ttttaactaa ttaaaggagg aataaaatg 59 <210> 105

<211>

<212> DNA

54

<213>	A-378CIP2C3.ST25.txt Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> ctaatt	105 caaag gaggaataaa atgaaaaaaa aagaaacttt tcctccaaaa tatc	54
<210>	106	
<211>	31	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> tgtttg	106 ggta cccggcggac atttatcaca c	31
<210>	107	
<211>	44	
<212>	DNA	
<213>	Artificial sequence	
<220>		
	Synthetic oligonucleotide	
<400> cagccci	107 gggt aaaatggaaa cgtttcctcc aaaatatctt catt	44
<210>	108	
<211>	44	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> cgtttco	108 catt ttacccgggc tgagcgagag gctcttctgc gtgt	44
<210>	109	

A-378CIP2C3.ST25.txt <211> 45 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 109 cgctcagccc gggtaaaatg gaaacgttgc ctccaaaata cctgc 45 <210> 110 <211> 39 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 110 ccattttacc cgggctgagc gagaggctct tctgcgtgt 39 <210> 111 <211> 36 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> gaaaataagc tgcttagctg cagctgaacc aaaatc 36 <210> 112 <211> 34 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide cagctgcagc taagcagctt attttcacgg attg 34 Page 33

<210>	113	
<211>	36	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> aaaaa	113 taagc tgcttagctg cagctgaacc aaaatc	36
<210>	114	
<211>	35	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> cagcto	114 gcagc taagcagctt atttttactg attgg	35
<210>	115	
<211>	102	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> ctagaa	115 ggag gaataacata tggaaacttt tgctccaaaa tatcttcatt atgatgaaga	60
aactag	tcat cagctgctgt gtgataaatg tccgccgggt ac	102
<210>	116	
<211>	94	
<212>	DNA	
<213>	Artificial sequence	

<220>		
<223>	Synthetic oligonucleotide	
<400> ccggcg	116 gaca tttatcacac agcagctgat gactagtttc ttcatcataa tgaagatatt	60
ttggag	caaa agtttccata tgttattcct cctt	94
<210>	117	
<211>	62	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> ctagaa	117 ggag gaataacata tggaaacttt tcctgctaaa tatcttcatt atgatgaaga	60
aa		62
<210>	118	
<211>	62	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> ctagtt	118 tctt catcataatg aagatattta gcaggaaaag tttccatatg ttattcctcc	60
tt		62
<210>	119	
<211>	51	
<212>	PRT	
<213>	Artificial sequence	
<220>		
<223>	Synthetic	
<400>	119	
Tyr His 1	Tyr Tyr Asp Gln Asn Gly Arg Met Cys Glu Glu Cys His Met 5 10 15 Page 35	

Cvc Cln Dno								
Cys Gill Pio	Gly His 20	Phe Leu	Val Lys 25	His Cys	Lys Gln	Pro l 30	Lys Arg	
Asp Thr Val 35	Cys His	Lys Pro	Cys Glu 40	Pro Gly	Val Thr 45	Tyr 1	Thr Asp	
Asp Trp His 50								
<210> 120								
<211> 2432								
<212> DNA								
<213> Rattu	ıs rattus							
<220>								
<221> CDS								
	(1326)							
<223>								
<400> 120								
atcaaaggca g	ggcatact [.]	t cctgtt	gccc ag	accttata	taaaacg	tca tç	gttcgcctg	60
		_	_		_			60 120
atcaaaggca g ggcagcagag a aca atg aac	agcaccta	g cactgg ctg tgc	ccca gc tgt gca	ggctgccg ctc ctg	cctgagg gtg ttc	ttt co ttg g	cagaggacc gac atc	
atcaaaggca g ggcagcagag a aca atg aac Met Asn	agcaccta aag tgg Lys Trp d	g cactgo ctg tgc Leu Cys 5 cag gaa	gccca gcg tgt gca Cys Ala	ggctgccg ctc ctg Leu Leu 10 cct cca	cctgagg gtg ttc val Phe	ttt co ttg c Leu A	cagaggacc gac atc Asp Ile 15	120
atcaaaggca g ggcagcagag a aca atg aac Met Asn 1 att gaa tgg	aag tgg (Lys Trp) aca acc (Thr Thr (20	g cactgg ctg tgc Leu Cys 5 cag gaa Gln Glu	tgt gca tgt gca Cys Ala acc ttt Thr Phe	ctc ctg Leu Leu 10 cct cca Pro Pro 25	cctgagg gtg ttc val Phe aaa tac Lys Tyr	ttt co ttg c Leu A ttg c Leu H	cagaggacc gac atc asp Ile 15 cat tat dis Tyr 80	120 168
atcaaaggca g ggcagcagag a aca atg aac Met Asn 1 att gaa tgg Ile Glu Trp gac cca gaa	aag tgg (Lys Trp) aca acc (Thr Thr (20) acc gga (Thr Gly) 35	g cactgo ctg tgc Leu Cys cag gaa Gln Glu cgt cag Arg Gln cac tgc	tgt gca Cys Ala acc ttt Thr Phe ctc ttg Leu Leu 40 aca gtc	ctc ctg Leu Leu 10 cct cca Pro Pro 25 tgt gac Cys Asp	cctgagg gtg ttc val Phe aaa tac Lys Tyr aaa tgt Lys Cys aag aca	ttt co ttg c Leu A ttg c Leu H gct c Ala F 45	cagaggacc gac atc asp Ile 15 cat tat dis Tyr 80 cct ggc Pro Gly	120 168 216
atcaaaggca g ggcagcagag a aca atg aac Met Asn 1 att gaa tgg Ile Glu Trp gac cca gaa Asp Pro Glu acc tac cta Thr Tyr Leu	aag tgg (Lys Trp 1 20 20 20 20 25 20 20 20	g cactgo ctg tgc Leu Cys cag gaa Gln Glu cgt cag Arg Gln cac tgc His Cys	tgt gca Cys Ala acc ttt Thr Phe ctc ttg Leu Leu 40 aca gtc Thr Val 55	ctc ctg Leu Leu 10 cct cca Pro Pro 25 tgt gac Cys Asp agg agg Arg Arg	cctgagg gtg ttc val Phe aaa tac Lys Tyr aaa tgt Lys Cys aag aca Lys Thr 60 cac acg	ttg c Leu A gct c Ala F 45 ctg t	cagaggacc gac atc asp Ile 15 cat tat dis Tyr 30 cct ggc cro Gly cgt gtc cys Val	120 168 216 264
atcaaaggca g ggcagcagag a aca atg aac Met Asn 1 att gaa tgg Ile Glu Trp gac cca gaa Asp Pro Glu acc tac cta Thr Tyr Leu 50 cct tgc cct Pro Cys Pro	aag tgg (Lys Trp) aca acc (Thr Thr 20) acc gga (Thr Gly / 35) aaa cag (Lys Gln) gac tac (Asp Tyr S	g cactgo	tgt gca Cys Ala acc ttt Thr Phe ctc ttg Leu 40 aca gtc Thr Val 55 aca gac Thr Asp	ctc ctg Leu Leu 10 cct cca Pro Pro 25 tgt gac Cys Asp agg agg Arg Arg	cctgagg gtg ttc val Phe aaa tac Lys Tyr aaa tgt Lys Cys aag aca Lys Thr 60 cac acg His Thr 75 cag acc	ttg c Leu A gct c Ala F 45 ctg t Leu C	cagaggacc gac atc asp Ile 15 cat tat dis Tyr 80 cct ggc Pro Gly cgt gtc cys Val gat gaa asp Glu	120 168 216 264 312
atcaaaggca g ggcagcagag a aca atg aac Met Asn 1 att gaa tgg Ile Glu Trp gac cca gaa Asp Pro Glu acc tac cta Thr Tyr Leu 50 cct tgc cct Pro Cys Pro 65 tgc gtg tac Cys Val Tyr	aag tgg (Lys Trp) aca acc (Thr Thr 20) acc gga (Thr Gly) 35 aaa cag (Lys Gln) gac tac (Asp Tyr S	g cactgo ctg tgc Leu Cys cag gaa Gln Glu cgt cag Arg Gln cac tgc His Cys tct tat Ser Tyr 70 ccc gtg Pro Val 85 cac aac	tgt gca Cys Ala acc ttt Thr Phe ctc ttg Leu 40 aca gtc Thr Val 55 aca gac Thr Asp tgc aag Cys Lys	ctc ctg Leu Leu 10 cct cca Pro 25 tgt gac Cys Asp agg agg Arg Arg agc tgg ser Trp gaa ctg Glu Leu 90	cctgagg gtg ttc val Phe aaa tac Lys Tyr aaa tgt Lys Cys aag aca Lys Thr 60 cac acg His Thr 75 cag acc Gln Thr	ttt co ttg c Leu A gct a gct a 45 ctg t Leu G agt A gaa g Glu G	cagaggacc gac atc sp Ile 15 cat tat dis Tyr 80 cct ggc Pro Gly cgt gtc cys val gat gaa asp Glu daa cag cys Gln 95	120 168 216 264 312

Tyr	Leu	Glu	Leu 115	Glu	Phe	Cys	Leu	-378 Lys 120	KCIP2 His	C3.S Arg	ST25. Ser	txt Cys	Pro 125	Pro	Gly		
ttg Leu	ggt Gly	gtg Val 130	ctg Leu	cag Gln	gct Ala	ggg Gly	acc Thr 135	cca Pro	gag Glu	cga Arg	aac Asn	acg Thr 140	gtt Val	tgc Cys	aaa Lys	552	
aga Arg	tgt Cys 145	ccg Pro	gat Asp	ggg Gly	ttc Phe	ttc Phe 150	tca Ser	ggt Gly	gag Glu	acg Thr	tca Ser 155	tcg Ser	aaa Lys	gca Ala	ccc Pro	600	
tgt Cys 160	agg Arg	aaa Lys	cac His	acc Thr	aac Asn 165	tgc Cys	agc Ser	tca Ser	ctt Leu	ggc Gly 170	ctc Leu	ctg Leu	cta Leu	att Ile	cag Gln 175	648	
aaa Lys	gga Gly	aat Asn	gca Ala	aca Thr 180	cat His	gac Asp	aat Asn	gta Val	tgt Cys 185	tcc Ser	gga Gly	aac Asn	aga Arg	gaa Glu 190	gca Ala	696	
act Thr	caa Gln	aat Asn	tgt Cys 195	gga Gly	ata Ile	gat Asp	gtc Val	acc Thr 200	ctg Leu	tgc Cys	gaa Glu	gag Glu	gca Ala 205	ttc Phe	ttc Phe	744	
agg Arg	ttt Phe	gct Ala 210	gtg Val	cct Pro	acc Thr	aag Lys	att Ile 215	ata Ile	ccg Pro	aat Asn	tgg Trp	ctg Leu 220	agt Ser	gtt Val	ctg Leu	792	
gtg Val	gac Asp 225	agt Ser	ttg Leu	cct Pro	ggg Gly	acc Thr 230	aaa Lys	gtg Val	aat Asn	gca Ala	gag Glu 235	agt Ser	gta Val	gag Glu	agg Arg	840	
ata Ile 240	aaa Lys	cgg Arg	aga Arg	cac His	agc Ser 245	tcg Ser	caa Gln	gag Glu	caa Gln	act Thr 250	ttc Phe	cag Gln	cta Leu	ctt Leu	aag Lys 255	888	
ctg Leu	tgg Trp	aag Lys	cat His	caa Gln 260	aac Asn	aga Arg	gac Asp	cag Gln	gaa Glu 265	atg Met	gtg Val	aag Lys	aag Lys	atc Ile 270	atc Ile	936	
caa Gln	gac Asp	att Ile	gac Asp 275	ctc Leu	tgt Cys	gaa Glu	agc Ser	agt Ser 280	gtg Val	caa Gln	cgg Arg	cat His	atc Ile 285	ggc Gly	cac His	984	
gcg Ala	Asn	ctc Leu 290	Thr	Thr	gag Glu	Gln	Leu	Arg	Ile	Leu	Met	Glu	Ser	ttg Leu	cct Pro	1032	
ggg Gly	aag Lys 305	aag Lys	atc Ile	agc Ser	cca Pro	gac Asp 310	gag Glu	att Ile	gag Glu	aga Arg	acg Thr 315	aga Arg	aag Lys	acc Thr	tgc Cys	1080	
aaa Lys 320	ccc Pro	agc Ser	gag Glu	cag Gln	ctc Leu 325	ctg Leu	aag Lys	cta Leu	ctg Leu	agc Ser 330	ttg Leu	tgg Trp	agg Arg	atc Ile	aaa Lys 335	1128	
aat Asn	gga Gly	gac Asp	caa Gln	gac Asp 340	acc Thr	ttg Leu	aag Lys	ggc Gly	ctg Leu 345	atg Met	tac Tyr	gca Ala	ctc Leu	aag Lys 350	cac His	1176	
ttg Leu	aaa Lys	gca Ala	tac Tyr 355	cac His	ttt Phe	ccc Pro	aaa Lys	acc Thr 360	gtc Val	acc Thr	cac His	agt Ser	ctg Leu 365	agg Arg	aag Lys	1224	
acc Thr	atc Ile	agg Arg 370	ttc Phe	ttg Leu	cac His	agc Ser	ttc Phe 375	acc Thr	atg Met	tac Tyr	cga Arg	ttg Leu 380	tat Tyr	cag Gln	aaa Lys	1272	
ctc	ttt	cta	gaa	atg	ata	ggg	aat	cag		caa je 37		gtg	aag	ata	agc	1320	

A-378CIP2C3.ST25.txt Leu Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser 385 390 395	
tgc tta tagttaggaa tggtcactgg gctgtttctt caggatgggc caacactgat Cys Leu 400	1376
ggagcagatg gctgcttctc cggctcttga aatggcagtt gattcctttc tcatcagttg	1436
gtgggaatga agatcctcca gcccaacaca cacactgggg agtctgagtc aggagagtga	1496
ggcaggctat ttgataattg tgcaaagctg ccaggtgtac acctagaaag tcaagcaccc	1556
tgagaaagag gatattttta taacctcaaa cataggccct ttccttcctc tccttatgga	1616
tgagtactca gaaggcttct actatcttct gtgtcatccc tagatgaagg cctctttat	1676
ttatttttt attcttttt tcggagctgg ggaccgaacc cagggccttg cgcttgcgag	1736
gcaagtgctc taccactgag ctaaatctcc aacccctgaa ggcctctttc tttctgcctc	1796
tgatagtcta tgacattctt ttttctacaa ttcgtatcag gtgcacgagc cttatcccat	1856
ttgtaggttt ctaggcaagt tgaccgttag ctatttttcc ctctgaagat ttgattcgag	1916
ttgcagactt ggctagacaa gcaggggtag gttatggtag tttatttaac agactgccac	1976
caggagtcca gtgtttcttg ttcctctgta gttgtaccta agctgactcc aagtacattt	2036
agtatgaaaa ataatcaaca aattttattc cttctatcaa cattggctag ctttgtttca	2096
gggcactaaa agaaactact atatggagaa agaattgata ttgcccccaa cgttcaacaa	2156
cccaatagtt tatccagctg tcatgcctgg ttcagtgtct actgactatg cgccctctta	2216
ttactgcatg cagtaattca actggaaata gtaataataa taatagaaat aaaatctaga	2276
ctccattgga tctctctgaa tatgggaata tctaacttaa gaagctttga gatttcagtt	2336
gtgttaaagg cttttattaa aaagctgatg ctcttctgta aaagttacta atatatctgt	2396
aagactatta cagtattgct atttatatcc atccag	2432
<210> 121	
<211> 401	
<212> PRT	
<213> Rattus rattus	
<400> 121	
Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Phe Leu Asp Ile Ile 1 10 15	
Glu Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30	

Pro Glu Thr Gly Arg Gln Leu Leu Cys Asp Lys Cys Ala Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Val Arg Arg Lys Thr Leu Cys Val Pro 50 55 60 Cys Pro Asp Tyr Ser Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 75 80 Val Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Thr Val Lys Gln Glu 85 90 95 Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Glu Glu Gly Arg Tyr 100 105 110 Leu Glu Leu Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Leu 115 120 125Gly Val Leu Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140 Cys Pro Asp Gly Phe Phe Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160 Arg Lys His Thr Asn Cys Ser Ser Leu Gly Leu Leu Leu Ile Gln Lys 165 170 175Gly Asn Ala Thr His Asp Asn Val Cys Ser Gly Asn Arg Glu Ala Thr 180 185 190 Gln Asn Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 205 Phe Ala Val Pro Thr Lys Ile Ile Pro Asn Trp Leu Ser Val Leu Val 210 215 220 Asp Ser Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 235 240 Lys Arg Arg His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 255 Trp Lys His Gln Asn Arg Asp Gln Glu Met Val Lys Lys Ile Ile Gln 260 265 270 Asp Ile Asp Leu Cys Glu Ser Ser Val Gln Arg His Ile Gly His Ala 275 280 285 Asn Leu Thr Thr Glu Gln Leu Arg Ile Leu Met Glu Ser Leu Pro Gly 290 295 300 Lys Lys Ile Ser Pro Asp Glu Ile Glu Arg Thr Arg Lys Thr Cys Lys 310 315 320

A-378CIP2C3.ST25.txt Pro Ser Glu Gln Leu Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 325 330 335	
Gly Asp Gln Asp Thr Leu Lys Gly Leu Met Tyr Ala Leu Lys His Leu 340 345 350	
Lys Ala Tyr His Phe Pro Lys Thr Val Thr His Ser Leu Arg Lys Thr 355 360 365	
Ile Arg Phe Leu His Ser Phe Thr Met Tyr Arg Leu Tyr Gln Lys Leu 370 375 380	
Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 385 390 395 400	
Leu	
<210> 122	
<211> 1324	
<212> DNA	
<213> Mus musculus	
<220>	
<221> CDS	
<222> (90)(1292)	
<223>	
400 122	
<400> 122 ccttatataa acgtcatgat tgcctgggct gcagagacgc acctagcact gacccagcgg	60
ctgcctcctg aggtttcccg aggaccaca atg aac aag tgg ctg tgc tgc gca Met Asn Lys Trp Leu Cys Cys Ala 1	113
ctc ctg gtg ctc ctg gac atc att gaa tgg aca acc cag gaa acc ctt Leu Leu Val Leu Leu Asp Ile Ile Glu Trp Thr Thr Gln Glu Thr Leu 10 15 20	161
cct cca aag tac ttg cat tat gac cca gaa act ggt cat cag ctc ctg Pro Pro Lys Tyr Leu His Tyr Asp Pro Glu Thr Gly His Gln Leu Leu 30 35 40	209
tgt gac aaa tgt gct cct ggc acc tac cta aaa cag cac tgc aca gtg Cys Asp Lys Cys Ala Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Val 45 50 55	257
agg agg aag aca ttg tgt gtc cct tgc cct gac cac tct tat acg gac Arg Arg Lys Thr Leu Cys Val Pro Cys Pro Asp His Ser Tyr Thr Asp 60 65 70	305
agc tgg cac acc agt gat gag tgt gtg tat tgc agc cca gtg tgc aag Page 40	353

Ser		ніs 75	Thr	Ser	Asp	Glu	A- Cys 80	-3780 Val	IP20 Tyr	[3.S] Cys	Γ25. Ser	txt Pro 85	Val	Cys	Lys	
Glu	ctg Leu 90	cag Gln	tcc ser	gtg Val	aag Lys	cag Gln 95	gag Glu	tgc Cys	aac Asn	cgc Arg	acc Thr 100	cac His	aac Asn	cga Arg	gtg Val	401
tgt Cys 105	gag Glu	tgt Cys	gag Glu	gaa Glu	ggg Gly 110	cgt Arg	tac Tyr	ctg Leu	gag Glu	atc Ile 115	gaa Glu	ttc Phe	tgc Cys	ttg Leu	aag Lys 120	449
cac His	cgg Arg	agc Ser	tgt Cys	ccc Pro 125	ccg Pro	ggc Gly	tcc Ser	ggc Gly	gtg Val 130	gtg Val	caa Gln	gct Ala	gga Gly	acc Thr 135	cca Pro	497
gag Glu	cga Arg	aac Asn	aca Thr 140	gtt Val	tgc Cys	aaa Lys	aaa Lys	tgt Cys 145	cca Pro	gat Asp	ggg Gly	ttc Phe	ttc Phe 150	tca Ser	ggt Gly	545
gag Glu	act Thr	tca Ser 155	tcg Ser	aaa Lys	gca Ala	ccc Pro	tgt Cys 160	ata Ile	aaa Lys	cac His	acg Thr	aac Asn 165	tgc Cys	agc Ser	aca Thr	593
ttt Phe	ggc Gly 170	ctc Leu	ctg Leu	cta Leu	att Ile	cag Gln 175	aaa Lys	gga Gly	aat Asn	gca Ala	aca Thr 180	cat His	gac Asp	aac Asn	gtg Val	641
tgt Cys 185	tcc Ser	gga Gly	aac Asn	aga Arg	gaa Glu 190	gcc Ala	acg Thr	caa Gln	aag Lys	tgt Cys 195	gga Gly	ata Ile	gat Asp	gtc Val	acc Thr 200	689
ctg Leu	tgt Cys	gaa Glu	gag Glu	gcc Ala 205	ttc Phe	ttc Phe	agg Arg	ttt Phe	gct Ala 210	gtt Val	cct Pro	acc Thr	aag Lys	att Ile 215	ata Ile	737
cca Pro	aat Asn	tgg Trp	ctg Leu 220	Ser	gtt Val	ttg Leu	gtg Val	gac Asp 225	agt Ser	ttg Leu	cct Pro	ggg Gly	acc Thr 230		gtg Val	785
aat Asn	gcc Ala	gag Glu 235	Ser	gta Val	gag Glu	agg Arg	ata Ile 240	Lys	cgg Arg	aga Arg	сас	agc ser 245	50.	caa Gln	gag Glu	833
caa Gln	acc Thr 250	Phe	cag Gln	ctg Leu	ctg Leu	aag Lys 255	Leu	tgg Trp	aaa Lys	cat His	caa Glr 260	a aac n Asn)	aga Arg	gac Asp	cag Gln	881
gaa Glu 265	Met	gtg Val	aag Lys	aag Lys	ato 11e 270	TIE	caa Glr	gac Asp	att	gac Asp 275	Let	tgt u Cys	gaa Glu	ago Ser	agc Ser 280	929
gtg Val	cag Glr	cgg Arg	g cat g His	cto Leu 285	iGly	cac His	tcg Ser	aac Asn	cto Leu 290	1 1111	aca Th	a gag r Glu	ıcag ıGlr	ctt Lei 295	ctt Leu	977
gco Ala	ttg Lei	g ato Me	g gag E Gli 300	ı Ser	ctg Lei	g cct u Pro	ggg Gly	aag Lys 305	Lys	ato Ile	ag e Se	c cca r Pro	gaa Glu 310		g att i Ile	1025
gag Glu	aga ı Arg	a acq 7 Th 31	r Arg	a aag g Lys	g aco	tge Cy:	aaa 5 Lys 320	s Ser	ago Sei	gaç Gli	g ca u Gl	g cto n Lei 32!	ı Let	g aaq u Ly:	g cta s Leu	1073
cto Lei	agt u Sei 330	r Le	a tgg u Tr	g ago	g ato	c aaa e Ly: 33	s Asi	t ggt n Gly	ga Ası	c caa o Gli	a ga n As 34	Ď im	c ttg r Lei	g aag u Ly:	g ggc s Gly	1121
ct	g at	g ta	t gc	c ct	c aa	g ca	c tt	g aaa	a ac	a tc age	с са 41	c tt	t cc	c aa	a act	1169

A-378CIP2C3.ST25.txt Leu Met Tyr Ala Leu Lys His Leu Lys Thr Ser His Phe Pro Lys Thr 345 350 355 360	
gtc acc cac agt ctg agg aag acc atg agg ttc ctg cac agc ttc aca Val Thr His Ser Leu Arg Lys Thr Met Arg Phe Leu His Ser Phe Thr 365 370 375	1217
atg tac aga ctg tat cag aag ctc ttt tta gaa atg ata ggg aat cag Met Tyr Arg Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly Asn Gln 380 385 390	1265
gtt caa tcc gtg aaa ata agc tgc tta taactaggaa tggtcactgg Val Gln Ser Val Lys Ile Ser Cys Leu 395 400	1312
gctgtttctt ca	1324
<210> 123	
<211> 401	
<212> PRT	
<213> Mus musculus	
<400> 123	
Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Leu Leu Asp Ile Ile 1 5 10 15	
Glu Trp Thr Thr Gln Glu Thr Leu Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30	
Pro Glu Thr Gly His Gln Leu Leu Cys Asp Lys Cys Ala Pro Gly Thr 35 40 45	
Tyr Leu Lys Gln His Cys Thr Val Arg Arg Lys Thr Leu Cys Val Pro 50 55 60	
Cys Pro Asp His Ser Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 65 70 75 80	
Val Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Ser Val Lys Gln Glu 85 90 95	
Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Glu Glu Gly Arg Tyr 100 105 110	
Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Ser 115 120 125	
Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Lys 130 135 140	
Cys Pro Asp Gly Phe Phe Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160 Page 42	

Ile Lys His Thr Asn Cys Ser Thr Phe Gly Leu Leu Ile Gln Lys 165 170 175 Gly Asn Ala Thr His Asp Asn Val Cys Ser Gly Asn Arg Glu Ala Thr 180 185 190 Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 205 Phe Ala Val Pro Thr Lys Ile Ile Pro Asn Trp Leu Ser Val Leu Val 210 215 220 Asp Ser Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 230 235 240 Lys Arg Arg His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 255 Trp Lys His Gln Asn Arg Asp Gln Glu Met Val Lys Lys Ile Ile Gln 260 270 Asp Ile Asp Leu Cys Glu Ser Ser Val Gln Arg His Leu Gly His Ser 275 280 285 Asn Leu Thr Thr Glu Gln Leu Leu Ala Leu Met Glu Ser Leu Pro Gly 290 295 300 Lys Lys Ile Ser Pro Glu Glu Ile Glu Arg Thr Arg Lys Thr Cys Lys 305 310 315 320Ser Ser Glu Gln Leu Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 325 330 335 Gly Asp Gln Asp Thr Leu Lys Gly Leu Met Tyr Ala Leu Lys His Leu 340 345 350 Lys Thr Ser His Phe Pro Lys Thr Val Thr His Ser Leu Arg Lys Thr 355 360 365 Met Arg Phe Leu His Ser Phe Thr Met Tyr Arg Leu Tyr Gln Lys Leu 370 380 Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 385 390 395 400 Leu

<210> 124

<211> 1355

\L_II/		,,,														
<212>	- DI	NA														
<213>	- Но	omo	sap	iens												
<220>	-															
<221>	· C[os														
<222>	. (9	94).	. (1	296)												
<223>																
<400>																
															agccgc	60
cgctc	caag	gc c	cct	gagg [.]	tt t	ccgg	ggac	c ac	ме	g aa t As	c aa n Ly	g tt s Le	g ct u Le	g tg u Cy	c tgc s Cys	114
aca c	+0 0	nt a	+++	cta	926	2+5	•		1	.			5			
gcg c Ala L	eu v	/al LO	Phe	Leu	Asp	Ile	Ser 15	Ile	Lys	Trp	Thr	Thr	cag Gln	gaa Glu	acg Thr	162
ttt c			220	tac	c++	ca+		a a.c		~~~	266	20				210
ttt c Phe P 2	ro P	ro	Lys	Tyr	Leu	His 30	Tyr	Asp	Glu	Glu	Thr	ser	His	Gln	Leu	210
ttg t	gt q	jac	aaa	tgt	cct	cct	gat	acc	tac	cta		caa	cac	tat	aca	258
Leu C	ys Ā	Sp	Lys	Cys	Pro 45	Pro	ĞÎy	Thr	Tyr	Leu 50	Lys	Gln	His	Cys	Thr 55	
gca a	ag <u>t</u>	gg	aag	acc	gtg	tgc	gcc	cct	tgc	cct	gac	cạc	tac	tac	aca	306
Āla L	ys i	rp	Lys	60	vaı	Cys	АІа	Pro	Cys 65	Pro	Asp	His	Tyr	Tyr 70	Thr	
gac a	gc t	gg	cac	acc	agt	gac	gag	tgt	cta	tac	tgc	agc	CCC	gtg	tgc	354
Asp S	Ci i	ıρ	75	1111	361	ASP	Giu	80 80	Leu	ı yı	Cys	ser.	85	vai	Cys	
aag g	ag c	tg eu	cag Gln	tac Tvr	gtc Val	aag	cag	gag	tgc	aat	cgc	acc	cac	aac	cgc	402
_, _	9	0	• • • • • • • • • • • • • • • • • • • •	. , .	, ,	_,,	95	Giu	CyJ	7311	A1 9	100	1113	ASII	Alg	
gtg to	gc g ys G	aa llu	tgc Cys	aag Lys	gaa Glu	ggg Gly	cgc Ara	tac Tvr	ctt Leu	gag Glu	ata Ile	gag Glu	ttc Phe	tgc Cvs	ttg Leu	450
10	Ó5		,	,		110	9				115	٠.۵		c, s	LCu	
aaa ca Lys H	at a is A	gg .rg	agc Ser	tgc Cys	cct Pro	cct Pro	gga Gly	ttt Phe	gga Glv	gtg Val	gtg Val	caa Gln	gct Ala	gga Glv	acc Thr	498
120				•	125				,	130	-			,	135	
cca ga	ag c lu A	ga .rg .	aat Asn	aca Thr	gtt Val	tgc Cys	aaa Lys	aga Arg	tgt Cys	cca Pro	gat Asp	ggg Gly	ttc Phe	ttc Phe	tca Ser	546
				140					145					150		
aat ga Asn G	ag a lu T	cg hr	tca Ser	tct Ser	aaa Lys	gca Ala	ccc Pro	tgt Cys	aga Arg	aaa Lys	cac His	aca Thr	aat Asn	tgc Cys	agt Ser	594
			155					160		_			165	•		
gtc tt Val Ph	ne G	ly I	ctc Leu	ctg Leu	cta Leu	act Thr	GIn	aaa Lys	gga Gly	aat Asn	gca Ala	aca Thr	cac His	gac Asp	aac Asn	642
	1	70					175			je 44		180		•		
									_							

ata Ile	tgt Cys 185	Sei	gga Gly	aac Asn	agt Ser	gaa Glu 190	tca Ser	act Thr	caa Gln	aaa Lys	tgt Cys 195	gga Gly	ata Ile	gat Asp	gtt Val	690
acc Thr 200	Leu	tgt Cys	gag Glu	gag Glu	gca Ala 205	ttc Phe	ttc Phe	agg Arg	ttt Phe	gct Ala 210	gtt Val	cct Pro	aca Thr	aag Lys	ttt Phe 215	738
acg Thr	cct Pro	aac Asn	tgg Trp	ctt Leu 220	agt Ser	gtc Val	ttg Leu	gta Val	gac Asp 225	aat Asn	ttg Leu	cct Pro	ggc Gly	acc Thr 230	aaa Lys	786
gta Val	aac Asn	gca Ala	gag Glu 235	agt Ser	gta Val	gag Glu	agg Arg	ata Ile 240	aaa Lys	cgg Arg	caa Gln	cac His	agc Ser 245	tca Ser	caa Gln	834
gaa Glu	cag Gln	act Thr 250	ttc Phe	cag Gln	ctg Leu	ctg Leu	aag Lys 255	tta Leu	tgg Trp	aaa Lys	cat His	caa Gln 260	aac Asn	aaa Lys	gcc Ala	882
caa Gln	gat Asp 265	ata Ile	gtc Val	aag Lys	aag Lys	atc Ile 270	atc Ile	caa Gln	gat Asp	att Ile	gac Asp 275	ctc Leu	tgt Cys	gaa Glu	aac Asn	930
agc Ser 280	gtg Val	cag Gln	cgg Arg	cac His	att Ile 285	gga Gly	cat His	gct Ala	aac Asn	ctc Leu 290	acc Thr	ttc Phe	gag Glu	cag Gln	ctt Leu 295	978
cgt Arg	agc Ser	ttg Leu	atg Met	gaa Glu 300	agc Ser	tta Leu	ccg Pro	gga Gly	aag Lys 305	aaa Lys	gtg Val	gga Gly	gca Ala	gaa Glu 310	gac Asp	1026
att Ile	gaa Glu	aaa Lys	aca Thr 315	ata Ile	aag Lys	gca Ala	tgc Cys	aaa Lys 320	ccc Pro	agt Ser	gac Asp	cag Gln	atc Ile 325	ctg Leu	aag Lys	1074
ctg Leu	ctc Leu	agt Ser 330	ttg Leu	tgg Trp	cga Arg	ata Ile	aaa Lys 335	aat Asn	ggc Gly	gac Asp	caa Gln	gac Asp 340	acc Thr	ttg Leu	aag Lys	1122
ggc Gly	cta Leu 345	atg Met	cac His	gca Ala	cta Leu	aag Lys 350	cac His	tca Ser	aag Lys	acg Thr	tac Tyr 355	cac His	ttt Phe	ccc Pro	aaa Lys	1170
act Thr 360	gtc Val	act Thr	cag Gln	agt Ser	cta Leu 365	aag Lys	aag Lys	acc Thr	atc Ile	agg Arg 370	ttc Phe	ctt Leu	cac His	agc Ser	ttc Phe 375	1218
aca Thr	atg Met	tac Tyr	aaa Lys	ttg Leu 380	tat Tyr	cag Gln	aag Lys	tta Leu	ttt Phe 385	tta Leu	gaa Glu	atg Met	ata Ile	ggt Gly 390	aac Asn	1266
cag Gln	gtc Val	caa Gln	tca Ser 395	gta Val	aaa Lys	ata Ile	agc Ser	tgc Cys 400	tta Leu	taac	tgga	aa t	ggcc	attg	ıa	1316
gctg	tttc	ct c	acaa	ttgg	ıc ga	gatc	ccat	gga	tgat	aa						1355
<210	> 1	25														
<211	> 4	01														

<212> PRT

<213> Homo sapiens

<400> 125

Met Asn Lys Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 10 15 Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30 Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45 Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 60 Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 75 75 80 Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95 Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110 Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe 115 120 125 Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140 Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160 Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys 165 170 175 Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr 180 185 190 Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 205 Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val 210 215 220 Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 230 235 240 Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 255

Page 46

A-378CIP2C3.ST25.txt

Trp Lys His Gln Asn Lys Ala Gln Asp Ile Val Lys Lys Ile Ile Gln
260 265 270 Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala 275 280 285 Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly 290 295 300 Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys 305 310 315 320 Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 325 330 335 Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser 340 345 350 Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr 355 360 365 Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu 370 380 Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 385 390 395 400 Leu <210> 126 <211> 139 <212> PRT <213> Homo sapiens <400> Cys Pro Gln Gly Lys Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys $1 \hspace{1cm} 15$ Thr Lys Cys His Lys Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro 20 25 30 Gly Gln Asp Thr Asp Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala 45

Page 47

Ser Glu Asn His Leu Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys 50 60

A-378CIP2C3.ST25.txt
Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr
65 70 75 Val Cys Gly Cys Arg Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn 85 90 95 Leu Phe Gln Cys Phe Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His $100 \hspace{1cm} 105 \hspace{1cm} 110$ Leu Ser Cys Gln Glu Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly 115 120 125 Phe Phe Leu Arg Glu Asn Glu Cys Val Ser Cys 130 135 <210> 127 <211> 48 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 127 ccggcggaca tttatcacac agcagctgat gagaagtttc ttcatcca 48 <210> 128 <211> 219 <212> **PRT** <213> Homo sapiens <400> 128 Met Leu Gly Ile Trp Thr Leu Leu Pro Leu Val Leu Thr Ser Val Ala 1 5 10 15 Arg Leu Ser Ser Lys Ser Val Asn Ala Gln Val Thr Asp Ile Asn Ser 20 25 30 Lys Gly Leu Glu Leu Arg Lys Thr Val Thr Thr Val Glu Thr Gln Asn 35 40 45 Leu Glu Gly Leu His His Asp Gly Gln Phe Cys His Lys Pro Cys Pro 50 60 Pro Gly Glu Arg Lys Ala Arg Asp Cys Thr Val Asn Gly Asp Glu Pro 65 70 75 80 Page 48

Asp Cys Val Pro Cys Gln Glu Gly Lys Glu Tyr Thr Asp Lys Ala His 85 90 95

Phe Ser Ser Lys Cys Arg Arg Cys Arg Leu Cys Asp Glu Gly His Gly 100 105 110

Leu Glu Val Glu Ile Asn Cys Thr Arg Thr Gln Asn Thr Lys Cys Arg 115 120 125

Cys Lys Pro Asn Phe Phe Cys Asn Ser Thr Val Cys Glu His Cys Asp 130 135 140

Pro Cys Thr Lys Cys Glu His Gly Ile Ile Lys Glu Cys Thr Leu Thr 145 150 155 160

Ser Asn Thr Lys Cys Lys Glu Glu Gly Ser Arg Ser Asn Leu Gly Trp 165 170 175

Leu Cys Leu Leu Leu Pro Ile Pro Leu Ile Val Trp Val Lys Arg 180 185 190

Lys Glu Val Gln Lys Thr Cys Arg Lys His Arg Lys Glu Asn Gln Gly 195 200 205

Ser His Glu Ser Pro Thr Leu Asn Pro Glu Thr 210 215

<210> 129

<211> 280

<212> PRT

<213> Homo sapiens

<400> 129

Met Gly Leu Ser Thr Val Pro Asp Leu Leu Leu Pro Leu Val Leu Leu 1 5 10 15

Glu Leu Leu Val Gly Ile Tyr Pro Ser Gly Val Ile Gly Leu Val Pro 20 25 30

His Leu Gly Asp Arg Glu Lys Arg Asp Ser Val Cys Pro Gln Gly Lys 35 40 45

Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys Thr Lys Cys His Lys 50 60

Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro Gly Gln Asp Thr Asp 65 70 75 80
Page 49

Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala Ser Glu Asn His Leu 85 90 95

Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys Glu Met Gly Gln Val 100 105 110

Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr Val Cys Gly Cys Arg 115 120 125

Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn Leu Phe Gln Cys Phe 130 140

Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His Leu Ser Cys Gln Glu 145 150 155 160

Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly Phe Phe Leu Arg Glu 165 170 175

Asn Glu Cys Val Ser Cys Ser Asn Cys Lys Lys Ser Leu Glu Cys Thr 180 185 190

Lys Leu Cys Leu Pro Gln Ile Glu Asn Val Lys Gly Thr Glu Asp Ser 195 200 205

Gly Thr Thr Val Leu Leu Pro Leu Val Ile Phe Phe Gly Leu Cys Leu 210 215 220

Leu Ser Leu Leu Phe Ile Gly Leu Met Tyr Arg Tyr Gln Arg Trp Lys 235 230 235

Ser Lys Leu Tyr Ser Ile Val Cys Gly Lys Ser Thr Pro Glu Lys Glu 245 250 255

Gly Glu Leu Glu Gly Thr Thr Lys Pro Leu Ala Pro Asn Pro Ser 260 265 270

Phe Ser Pro Thr Pro Gly Phe Thr 275 280

<210> 130

<211> 207

<212> PRT

<213> Shope fibroma virus

<400> 130

Met Leu Arg Leu Ile Ala Leu Leu Val Cys Val Val Tyr Val Tyr Gly
5 10 15
Page 50

Asp Asp Val Pro Tyr Ser Ser Asn Gln Gly Lys Cys Gly Gly His Asp 20 25 30

Tyr Glu Lys Asp Gly Leu Cys Cys Ala Ser Cys His Pro Gly Phe Tyr 35 40 45

Ala Ser Arg Leu Cys Gly Pro Gly Ser Asn Thr Val Cys Ser Pro Cys 50 60

Glu Asp Gly Thr Phe Thr Ala Ser Thr Asn His Ala Pro Ala Cys Val 65 70 75 80

Ser Cys Arg Gly Pro Cys Thr Gly His Leu Ser Glu Ser Gln Pro Cys 85 90 95

Asp Arg Thr His Asp Arg Val Cys Asn Cys Ser Thr Gly Asn Tyr Cys 100 105 110

Leu Leu Lys Gly Gln Asn Gly Cys Arg Ile Cys Ala Pro Gln Thr Lys 115 120 125

Cys Pro Ala Gly Tyr Gly Val Ser Gly His Thr Arg Ala Gly Asp Thr 130 135 140

Leu Cys Glu Lys Cys Pro Pro His Thr Tyr Ser Asp Ser Leu Ser Pro 145 150 155 160

Thr Glu Arg Cys Gly Thr Ser Phe Asn Tyr Ile Ser Val Gly Phe Asn 165 170 175

Leu Tyr Pro Val Asn Glu Thr Ser Cys Thr Thr Thr Ala Gly His Asn 180 185 190

Glu Val Ile Lys Thr Lys Glu Phe Thr Val Thr Leu Asn Tyr Thr 195 200 205

<210> 131

<211> 227

<212> PRT

<213> Homo sapiens

<400> 131

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu Leu 1 5 10 15

Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr 20 25 30

Page 51

Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln 35 40 45

Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys 50 60

Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp 65 70 75 80

Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys 85 90 95

Gly Ser Arg Cys Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg 100 105 110

Glu Gln Asn Arg Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu 115 120 125

Ser Lys Gln Glu Gly Cys Arg Leu Cys Ala Pro Leu Arg Lys Cys Arg 130 135 140

Pro Gly Phe Gly Val Ala Arg Pro Gly Thr Glu Thr Ser Asp Val Val 145 150 155 160

Cys Lys Pro Cys Ala Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr 165 170 175

Asp Ile Cys Arg Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly 180 185 190

Asn Ala Ser Arg Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser 195 200 205

Met Ala Pro Gly Ala Val His Leu Pro Gln Pro Val Ser Thr Arg Ser 210 220

Gln His Thr 225

<210> 132

<211> 197

<212> PRT

<213> Mus musculus

<400> 132

Met Val Ser Leu Pro Arg Leu Cys Ala Leu Trp Gly Cys Leu Leu Thr 1 5 10 15 Page 52

Ala Val His Leu Gly Gln Cys Val Thr Cys Ser Asp Lys Gln Tyr Leu 20 25 30

His Asp Gly Gln Cys Cys Asp Leu Cys Gln Pro Gly Ser Arg Leu Thr 35 40 45

Ser His Cys Thr Ala Leu Glu Lys Thr Gln Cys His Pro Cys Asp Ser 50 60

Gly Glu Phe Ser Ala Gln Trp Asn Arg Glu Ile Arg Cys His Gln His 65 70 75 80

Arg His Cys Glu Pro Asn Gln Gly Leu Arg Val Lys Lys Glu Gly Thr 85 90 95

Ala Glu Ser Asp Thr Val Cys Thr Cys Lys Glu Gly Gln His Cys Thr 100 105 110

Ser Lys Asp Cys Glu Ala Cys Ala Gln His Thr Pro Cys Ile Pro Gly 115 120 125

Phe Gly Val Met Glu Met Ala Thr Glu Thr Thr Asp Thr Val Cys His 130 135 140

Pro Cys Pro Val Gly Phe Phe Ser Asn Gln Ser Ser Leu Phe Glu Lys 145 150 155 160

Cys Tyr Pro Trp Thr Ser Cys Glu Asp Lys Asn Leu Glu Val Leu Gln 165 170 175

Lys Gly Thr Ser Gln Thr Asn Val Ile Cys Gly Leu Lys Ser Arg Met 180 185 190

Arg Ala Leu Leu Val 195

<210> 133

<211> 208

<212> PRT

<213> Rattus rattus

<400> 133

Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Phe Leu Asp Ile Ile $10 \ 10 \ 15$

Glu Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Pro Glu Thr Gly Arg Gln Leu Leu Cys Asp Lys Cys Ala Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Val Arg Arg Lys Thr Leu Cys Val Pro 50 60

Cys Pro Asp Tyr Ser Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 75 75 80

Val Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Thr Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Glu Glu Gly Arg Tyr 100 105 110

Leu Glu Leu Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Leu 115 120 125

Gly Val Leu Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140

Cys Pro Asp Gly Phe Phe Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160

Arg Lys His Thr Asn Cys Ser Ser Leu Gly Leu Leu Ile Gln Lys 165 170 175

Gly Asn Ala Thr His Asp Asn Val Cys Ser Gly Asn Arg Glu Ala Thr 180 185 190

Gln Asn Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 205

<210> 134

<211> 224

<212> PRT

<213> Homo sapiens

<400> 134

Met Gly Ala Gly Ala Thr Gly Arg Ala Met Asp Gly Pro Arg Leu Leu 1 5 10 15

Leu Leu Leu Leu Gly Val Ser Leu Gly Gly Ala Lys Glu Ala Cys 20 25 30

Pro Thr Gly Leu Tyr Thr His Ser Gly Glu Cys Cys Lys Ala Cys Asn
35 40 45

Page 54

Leu Gly Glu Gly Val Ala Gln Pro Cys Gly Ala Asn Gln Thr Val Cys 50 60 Glu Pro Cys Leu Asp Ser Val Thr Phe Ser Asp Val Val Ser Ala Thr 65 70 75 80 Glu Pro Cys Lys Pro Cys Thr Glu Cys Val Gly Leu Gln Ser Met Ser 85 90 95 Ala Pro Cys Val Glu Ala Asp Asp Ala Val Cys Arg Cys Ala Tyr Gly
100 105 110 Tyr Tyr Gln Asp Glu Thr Thr Gly Arg Cys Glu Ala Cys Arg Val Cys 115 120 125 Glu Ala Gly Ser Gly Leu Val Phe Ser Cys Gln Asp Lys Gln Asn Thr 130 135 140 Val Cys Glu Glu Cys Pro Asp Gly Thr Tyr Ser Asp Glu Ala Asn His 145 150 155 160 Val Asp Pro Cys Leu Pro Cys Thr Val Cys Glu Asp Thr Glu Arg Gln 165 170 175 Leu Arg Glu Cys Thr Arg Trp Ala Asp Ala Glu Cys Glu Glu Ile Pro 180 185 190 Gly Arg Trp Ile Thr Arg Ser Thr Pro Pro Glu Gly Ser Asp Ser Thr 195 200 205 Ala Pro Ser Thr Gln Glu Pro Glu Ala Pro Pro Glu Gln Asp Leu Ile 210 215 220 <210> 135 <211> 202 <212> **PRT** <213> Rattus rattus <400> 135 Met Tyr Val Trp Val Gln Gln Pro Thr Ala Phe Leu Leu Gly Leu 10 15Ser Leu Gly Val Thr Val Lys Leu Asn Cys Val Lys Asp Thr Tyr Pro 20 25 30

Ser Gly His Lys Cys Cys Arg Glu Cys Gln Pro Gly His Gly Met Val 35 40 45

Page 55

Ser Arg Cys Asp His Thr Arg Asp Thr Val Cys His Pro Cys Glu Pro 50 60 Gly Phe Tyr Asn Glu Ala Val Asn Tyr Asp Thr Cys Lys Gln Cys Thr 65 70 75 80 Gln Cys Asn His Arg Ser Gly Ser Glu Leu Lys Gln Asn Cys Thr Pro 85 90 95 Thr Glu Asp Thr Val Cys Gln Cys Arg Pro Gly Thr Gln Pro Arg Gln 100 105 110 Asp Ser Ser His Lys Leu Gly Val Asp Cys Val Pro Cys Pro Pro Gly 115 120 125 His Phe Ser Pro Gly Ser Asn Gln Ala Cys Lys Pro Trp Thr Asn Cys 130 140 Thr Leu Ser Gly Lys Gln Ile Arg His Pro Ala Ser Asn Ser Val Cys 145 150 155 160 Glu Asp Arg Ser Leu Leu Ala Thr Leu Leu Trp Glu Thr Gln Arg Thr 165 170 175 Thr Phe Arg Pro Thr Thr Val Pro Ser Thr Thr Val Trp Pro Arg Thr 180 185 190 Ser Gln Leu Pro Ser Thr Pro Thr Leu Val 195 200 <210> 136 <211> 380 <212> PRT <213> Homo sapiens <400> 136 Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His $20 \hspace{1cm} 25 \hspace{1cm} 30$ Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr 35 40 45

Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro 50 55 60 Page 56

Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His 65 70 75 80 Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe 85 90 95 Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala 100 105 110 Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe 115 120 125 Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn 130 140 Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His 145 150 155 160 Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile 165 170 175Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr 180 185 190 Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly 195 200 205 Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser 210 215 220 Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn 225 230 235 240 Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys 245 250 255 Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu 260 265 270 Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala 275 280 285 Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile 290 295 300 Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr 305 310 315 320 Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe 325 330 335 Page 57

Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His 340 345 350 Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile $355 \hspace{1cm} 360 \hspace{1cm} 365$ Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu 370 375 380 137 <210> <211> 54 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 54 tatggatgaa gaaacttctc atcagctgct gtgtgataaa tgtccgccgg gtac <210> 138 <211> 380 <212> PRT <213> Mus musculus <400> 138 Glu Thr Leu Pro Pro Lys Tyr Leu His Tyr Asp Pro Glu Thr Gly His 1 10 15 Gln Leu Leu Cys Asp Lys Cys Ala Pro Gly Thr Tyr Leu Lys Gln His 20 25 30 Cys Thr Val Arg Arg Lys Thr Leu Cys Val Pro Cys Pro Asp His Ser 35 40 45 Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Val Tyr Cys Ser Pro 50 60

Asn Arg Val Cys Glu Cys Glu Glu Gly Arg Tyr Leu Glu Ile Glu Phe 85 90 95

Val Cys Lys Glu Leu Gln Ser Val Lys Gln Glu Cys Asn Arg Thr His 65 70 75 80

Page 58

A-378CIP2C3.ST25.txt
Cys Leu Lys His Arg Ser Cys Pro Pro Gly Ser Gly Val Val Gln Ala
100 105 110 Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Lys Cys Pro Asp Gly Phe 115 120 Phe Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys Ile Lys His Thr Asn 130 135 140 Cys Ser Thr Phe Gly Leu Leu Leu Ile Gln Lys Gly Asn Ala Thr His 145 150 155 160 Asp Asn Val Cys Ser Gly Asn Arg Glu Ala Thr Gln Lys Cys Gly Ile 165 170 175 Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr 180 185 190 Lys Ile Ile Pro Asn Trp Leu Ser Val Leu Val Asp Ser Leu Pro Gly 200 205 Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Arg His Ser 210 220 Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn 225 230 235 240 Arg Asp Gln Glu Met Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys 245 250 255 Glu Ser Ser Val Gln Arg His Leu Gly His Ser Asn Leu Thr Thr Glu 260 265 270 Gln Leu Leu Ala Leu Met Glu Ser Leu Pro Gly Lys Lys Ile Ser Pro 275 280 285 Glu Glu Ile Glu Arg Thr Arg Lys Thr Cys Lys Ser Ser Glu Gln Leu 290 295 300 Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr 305 310 315 320Leu Lys Gly Leu Met Tyr Ala Leu Lys His Leu Lys Thr Ser His Phe 325 330 335 Pro Lys Thr Val Thr His Ser Leu Arg Lys Thr Met Arg Phe Leu His 340 345 350 Ser Phe Thr Met Tyr Arg Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile 355 360 365

A-378CIP2C3.ST25.txt Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu 370 375 380

<210> 139

<211> 380

<212> PRT

<213> Homo sapiens

<400> 139

Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His 1 10 15

Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His 20 25 30

Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr 35 40 45

Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro 50 60

Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His 65 70 75 80

Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe 85 90 95

Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala 100 105 110

Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe 115 120 125

Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn 130 140

Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His 145 150 155 160

Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile 165 170 175

Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr 180 185 190

Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly 195 200

A-378CIP2C3.ST25.txt Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser 210 215 220 Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn 225 230 235 240 Lys Ala Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys 245 250 255 Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu 260 265 270 Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala 275 280 285 Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile 290 295 300 Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr 305 310 315 320 Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe 325 330 335 Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His 340 350 Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile 355 360 365 Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu 370 375 380 <210> 140 <211> 30 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 140 tggaccaccc agaagtacct tcattatgac

<210> 141

<211> 30

<212> DNA

30

<213>	A-378CIP2C3.ST25.txt Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> gtcata	141 atga aggtacttct gggtggtcca	30
<210>	142	
<211>	31	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> ggacca	142 ccca gcttcattat gacgaagaaa c	31
<210>		
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400>	143	21
gtttct	tcgt cataatgaag ctgggtggtc c	31
<210>	144	
<211>	29	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> gtggac	144 cacc caggacgaag aaacctctc	29
<210>	145	

A-378CTP2C3 ST25 txt

<211>	29	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> gagagg	145 tttc ttcgtcctgg gtggtccac	29
<210>	146	
<211>	29	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400>	146 ctcc aaagttcctt cattatgac	29
cgccc	acted unagettett cattatgat	
<210>	147	
<211>	29	
<212>		
<213>	Artificial sequence	
<220>		
	Synthetic oligonucleotide	
<400> gtcata	147 uatga aggaactttg gaggaaacg	29
<210>	148	
<211>		
<212>		
	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400>	148 cgttt cctgcaaagt accttcatta tg	32
yyaad	Page 63	-

<210>	149	
<211>	32	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> cataat	149 gaag gtactttgca ggaaacgttt cc	32
<210>	150	
<211>	27	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> cacgca	150 aaag tcgggaatag atgtcac	27
-		
	151	
	27	
<212>		
<213>	Artificial sequence	
220		
<220>	Complete alignmusleatide	
<223> <400>	Synthetic oligonucleotide 151	
	tcta ttcccgactt ttgcgtg	27
<210>	152	
<211>	25	
<212>	DNA	
	Artificial sequence	
<220>		

<223>	A-378CIP2C3.ST25.txt Synthetic oligonucleotide	
<400>	· ·	
caccct	gtcg gaagaggcct tcttc	25
<210>	153	
<211>	25	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400>	153 ggcc tcttccgaca gggtg	25
<210>		
<211>		
<212>		
<213>	Artificial sequence	
220		
<220>	cumthatic alignmusleatide	
<223> <400>	Synthetic oligonucleotide 154	
	ctcg gaaagcagcg tgca	24
<210>	155	
<211>		
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400>	155	24
tgcacg	gctgc tttccgagag gtca	24
<210>	156	
<211>	24	
<212>	DNA	
<213>	Artificial sequence	

<220>		
<223>	Synthetic oligonucleotide	
<400> cctcga	156 aatc gagcgagcag ctcc	24
<210>	157	
<211>	25	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> cgattt	157 cgag gtctttctcg ttctc	25
<210>	158	
<211>	33	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> ccgtga	158 aaaat aagctcgtta taactaggaa tgg	33
<210>	159	
<211>	33	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> ccatto	159 cctag ttataacgag cttattttca cgg	33
<210>	160	
<211>	38	

<212>	A-378CIP2C3.ST25.txt	
	Artificial sequence	
(22)	A criteral sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> cctctg	160 agct caagcttccg aggaccacaa tgaacaag	38
<210>	161	
<211>	44	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> cctctc	161 tcga gtcaggtgac atctattcca cacttttgcg tggc	44
<210>	162	
<211>	38	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Synthetic oligonucleotide	
<400> cctctg	162 agct caagcttccg aggaccacaa tgaacaag	38
<210>	163	
<211>	38	
<212>	DNA	
<213>	Artificial sequence	
<220>		
	Synthetic oligonucleotide	
<400>	163	38

A-378CIP2C3.ST25.txt <210> 164 <211> 38 <212> DNA <213> Artificial sequence <220> Synthetic oligonucleotide <223> <400> 164 cctctgagct caagcttccg aggaccacaa tgaacaag 38 <210> 165 <211> 38 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 165 38 cctctctcga gtcactctgt ggtgaggttc gagtggcc <210> 166 <211> 38 <212> DNA <213> Artificial sequence <220> <223> Synthetic oligonucleotide <400> 166 38 cctctgagct caagcttccg aggaccacaa tgaacaag <210> 167 <211> 38

<212> DNA

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide

<400> 167 cctctctcga gtcaggatgt tttcaagtgc ttgagggc

38

<210> 168

<211> 16

<212> PRT

<213> Artificial sequence

<220>

<223> Synthetic oligonucleotide

<400> 168

Met Lys His His His His His His Ala Ser Val Asn Ala Leu Glu 1 5 10 15

<210> 169

<211> 70

<212> PRT

<213> Rattus rattus

<400> 169

Ala Leu Leu Val Phe Leu Asp Ile Ile Glu Trp Thr Thr Gln Glu Thr $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Phe Pro Pro Lys Tyr Leu His Tyr Asp Pro Glu Thr Gly Arg Gln Leu 20 25 30

Leu Cys Asp Lys Cys Ala Pro Gly Thr Tyr Leu Lys Gln His Cys Thr 35 40 45

Val Arg Arg Lys Thr Leu Cys Val Pro Cys Pro Asp Tyr Ser Tyr Thr 50 60

Asp Ser Trp His Thr Ser 65 70

<210> 170

<211> 120

<212> PRT

<213> Homo sapiens

<400> 170

A-378CIP2C3.ST25.txt

His Ala Leu Pro Ala Gln Val Ala Phe Thr Pro Tyr Ala Pro Glu Pro
1 10 15 Gly Ser Thr Cys Arg Leu Arg Glu Tyr Tyr Asp Gln Thr Ala Gln Met 20 25 30 Cys Cys Ser Lys Cys Ser Pro Gly Gln His Ala Lys Val Phe Cys Thr 35 40 45 Lys Thr Ser Asp Thr Val Cys Asp Ser Cys Glu Asp Ser Thr Tyr Thr 50 60 Gln Leu Trp Asn Trp Val Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys 65 70 75 Ser Ser Asp Gln Val Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg 85 90 95 Ile Cys Thr Cys Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu 100 105 110 Gly Cys Arg Leu Cys Ala Pro Leu 115 171 <210> 48 <211> <212> PRT Rattus rattus <213> <400> 171 Tyr Leu His Tyr Asp Pro Glu Thr Gly Arg Gln Leu Leu Cys Asp Lys
1 10 15 Cys Ala Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Val Arg Arg Lys
20 25 30 Thr Leu Cys Val Pro Cys Pro Asp Tyr Ser Tyr Thr Asp Ser Trp His 45 172 <210> <211> 139

<212> PRT

<213> Homo sapiens

<400> 172

A-378CIP2C3.ST25.txt
Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu
1 5 10 15 Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala 20 25 30 Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp 40 45Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys 50 60 Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val 65 70 75 80 Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys 85 90 95 His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro 100 105 110 Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn 115 120 125 Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His 130 173 <210> <211> 51 <212> PRT Homo sapiens <213> <400> 173 Tyr His Tyr Tyr Asp Gln Asn Gly Arg Met Cys Glu Glu Cys His Met 1 15

Cys Gln Pro Gly His Phe Leu Val Lys His Cys Lys Gln Pro Lys Arg 20 25 30

Asp Thr Val Cys His Lys Pro Cys Glu Pro Gly Val Thr Tyr Thr Asp 35 40 45

Asp Trp His 50

<210> 174

401 <211>

<212> PRT

<213> Mus musculus

<400> 174

Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Leu Leu Asp Ile Ile 1 5 10

Glu Trp Thr Thr Gln Glu Thr Leu Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Pro Glu Thr Gly His Gln Leu Leu Cys Asp Lys Cys Ala Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Val Arg Arg Lys Thr Leu Cys Val Pro 50 60

Cys Pro Asp His Ser Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 65 70 75

Val Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Ser Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Glu Glu Gly Arg Tyr 100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Ser 115 120 125

Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Lys 130

Cys Pro Asp Gly Phe Phe Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys 145 150 150

Ile Lys His Thr Asn Cys Ser Thr Phe Gly Leu Leu Leu Ile Gln Lys 165 170 175

Gly Asn Ala Thr His Asp Asn Val Cys Ser Gly Asn Arg Glu Ala Thr 180 185 190

Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 205

Phe Ala Val Pro Thr Lys Ile Ile Pro Asn Trp Leu Ser Val Leu Val 210 220

Asp Ser Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 230 230 A-378CIP2C3.ST25.txt Lys Arg Arg His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 255

Trp Lys His Gln Asn Arg Asp Gln Glu Met Val Lys Lys Ile Ile Gln 260 265 270

Asp Ile Asp Leu Cys Glu Ser Ser Val Gln Arg His Leu Gly His Ser 275 280 285

Asn Leu Thr Thr Glu Gln Leu Leu Ala Leu Met Glu Ser Leu Pro Gly 290 295 300

Lys Lys Ile Ser Pro Glu Glu Ile Glu Arg Thr Arg Lys Thr Cys Lys 305 310 315 320

Ser Ser Glu Gln Leu Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 325 330 335

Gly Asp Gln Asp Thr Leu Lys Gly Leu Met Tyr Ala Leu Lys His Leu 340 345 350

Lys Thr Ser His Phe Pro Lys Thr Val Thr His Ser Leu Arg Lys Thr 355 360 365

Met Arg Phe Leu His Ser Phe Thr Met Tyr Arg Leu Tyr Gln Lys Leu 370 375 380

Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 385 390 395 400

Leu

<210> 175

<211> 401

<212> PRT

<213> Rattus rattus

<400> 175

Met Asn Lys Trp Leu Cys Cys Ala Leu Leu Val Phe Leu Asp Ile Ile 1 10 15

Glu Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Pro Glu Thr Gly Arg Gln Leu Leu Cys Asp Lys Cys Ala Pro Gly Thr 35 40 45 A-378CIP2C3.ST25.txt

Tyr Leu Lys Gln His Cys Thr Val Arg Arg Lys Thr Leu Cys Val Pro
50 55 60 Cys Pro Asp Tyr Ser Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 65 70 75 80 Val Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Thr Val Lys Gln Glu 85 90 95 Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Glu Glu Gly Arg Tyr 100 105 110 Leu Glu Leu Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Leu 115 120 125 Gly Val Leu Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140 Cys Pro Asp Gly Phe Phe Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160 Arg Lys His Thr Asn Cys Ser Ser Leu Gly Leu Leu Leu Ile Gln Lys 165 170 175 Gly Asn Ala Thr His Asp Asn Val Cys Ser Gly Asn Arg Glu Ala Thr 180 185 190 Gln Asn Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 205 Phe Ala Val Pro Thr Lys Ile Ile Pro Asn Trp Leu Ser Val Leu Val 210 215 220 Asp Ser Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 230 235 240 Lys Arg Arg His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 255 Trp Lys His Gln Asn Arg Asp Gln Glu Met Val Lys Lys Ile Ile Gln 260 265 270 Asp Ile Asp Leu Cys Glu Ser Ser Val Gln Arg His Ile Gly His Ala 275 280 285 Asn Leu Thr Thr Glu Gln Leu Arg Ile Leu Met Glu Ser Leu Pro Gly 290 295 300 Lys Lys Ile Ser Pro Asp Glu Ile Glu Arg Thr Arg Lys Thr Cys Lys 305 310 315 320 Pro Ser Glu Gln Leu Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 335 Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu Met Tyr Ala Leu Lys His Leu Lys Ala Tyr His Phe Pro Lys Thr Val Thr His Ser Leu Arg Lys Thr Ile Arg Phe Leu His Ser Phe Thr Met Tyr Arg Leu Tyr Gln Lys Leu 370

Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 385 390 395 400

Leu

<210> 176

<211> 401

<212> PRT

<213> Homo sapiens

<400> 176

Met Asn Lys Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile 1 5 10

Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp 20 25 30

Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr 35 40 45

Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro 50 60

Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys 65 70 75 80

Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu 85 90 95

Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr 100 105 110

Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Leu 115 120 125 A-378CIP2C3.ST25.txt Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg 130 135 140 Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys 145 150 155 160 Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys 165 170 175 Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr 180 185 190 Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 195 200 205 Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val 210 215 220 Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 225 230 235 240 Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 245 250 255 Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln 260 265 270 Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala 275 280 285 Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly 290 295 300 Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys 305 310 315 Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn 325 330 335 Gly Asp Gln Asp Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser 340 345 350 Lys Thr Tyr His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr 355 360 365 Ile Arg Phe Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu 370 380 Phe Leu Glu Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys 385 390 395 400 Leu

<210> 177

<211> 139

<212> PRT

<213> Homo sapiens

<400> 177

Cys Pro Gln Gly Lys Tyr Ile His Pro Gln Asn Asn Ser Ile Cys Cys $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$

Thr Lys Cys His Lys Gly Thr Tyr Leu Tyr Asn Asp Cys Pro Gly Pro 20 25 30

Gly Gln Asp Thr Asp Cys Arg Glu Cys Glu Ser Gly Ser Phe Thr Ala 35 40 45

Ser Glu Asn His Leu Arg His Cys Leu Ser Cys Ser Lys Cys Arg Lys 50 55 60

Glu Met Gly Gln Val Glu Ile Ser Ser Cys Thr Val Asp Arg Asp Thr 65 70 75 80

Val Cys Gly Cys Arg Lys Asn Gln Tyr Arg His Tyr Trp Ser Glu Asn 85 90 95

Leu Phe Gln Cys Phe Asn Cys Ser Leu Cys Leu Asn Gly Thr Val His 100 105 110

Leu Ser Cys Gln Glu Lys Gln Asn Thr Val Cys Thr Cys His Ala Gly 115 120 125

Phe Phe Leu Arg Glu Asn Glu Cys Val Ser Cys 130 135

<210> 178

<211> 139

<212> PRT

<213> Homo sapiens

<400> 178

Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu 1 5 10 15

Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala

Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp

Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys

Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val

Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys

His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro

Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn

Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His 130 135

<210> 179

<211> 379

<212> PRT

<213> Mus musculus

<400> 179

Glu Thr Leu Pro Pro Lys Tyr Leu His Tyr Asp Pro Glu Thr Gly His 1 10 15

Gln Leu Leu Cys Asp Lys Cys Ala Pro Gly Thr Tyr Leu Lys Gln His 20 25 30

Cys Thr Val Arg Arg Lys Thr Leu Cys Val Pro Cys Pro Asp His Ser 35 40 45

Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Val Tyr Cys Ser Pro 50 60

Val Cys Lys Glu Leu Gln Ser Val Lys Gln Glu Cys Asn Arg Thr His 65 70 75 80

Asn Arg Val Cys Glu Cys Glu Glu Gly Arg Tyr Leu Glu Ile Glu Phe 85 90 95 A-378CIP2C3.ST25.txt
Cys Leu Lys His Arg Ser Cys Pro Pro Gly Ser Gly Val Val Gln Ala
100 105 110 Gly Thr Pro Glu Arg Asn Thr Val Lys Lys Cys Pro Asp Gly Phe Phe 115 120 125 Ser Gly Glu Thr Ser Ser Lys Ala Pro Cys Ile Lys His Thr Asn Cys 130 140 Ser Thr Phe Gly Leu Leu Leu Ile Gln Lys Gly Asn Ala Thr His Asp 145 150 155 160 Asn Val Cys Ser Gly Asn Arg Glu Ala Thr Gln Lys Cys Gly Ile Asp 165 170 175 Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys 180 185 190 Ile Ile Pro Asn Trp Leu Ser Val Leu Val Asp Ser Leu Pro Gly Thr 195 200 205 Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Arg His Ser Ser 210 220 Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Arg 225 230 235 240 Asp Gln Glu Met Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu 245 250 255 Ser Ser Val Gln Arg His Leu Gly His Ser Asn Leu Thr Thr Glu Gln 260 265 270 Leu Leu Ala Leu Met Glu Ser Leu Pro Gly Lys Lys Ile Ser Pro Glu 275 280 285 Glu Ile Glu Arg Thr Arg Lys Thr Cys Lys Ser Ser Glu Gln Leu Leu 290 295 300 Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu 305 310 315 Lys Gly Leu Met Tyr Ala Leu Lys His Leu Lys Thr Ser His Phe Pro 325 330 335 Lys Thr Val Thr His Ser Leu Arg Lys Thr Met Arg Phe Leu His Ser 340 350 Phe Thr Met Tyr Arg Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly 355 360 A-378CIP2C3.ST25.txt
370
A-378CIP2C3.ST25.txt
375