MATH 416 Abstract Linear Algebra

Homework 3

Assigned: Fri. Sept. 12, 2025 **Due:** Fri. Sept. 19, 2025 (by 1pm)

Reminder: I encourage you to work together and use resources as needed. Please remember to state who you collaborated with and what resources you used.

Exercise 1 (3 points): Linear independence and span

- (i) (2 points) Let $z_1 = 1 + i$ and $z_2 = 1 i$. First consider the complex numbers \mathbb{C} as a vector space over the field \mathbb{R} , and show that $\{z_1, z_2\}$ is linearly independent over \mathbb{R} . Then consider \mathbb{C} as a vector space over itself (i.e., $\mathbb{F} = \mathbb{C}$), and show that now $\{z_1, z_2\}$ is linearly dependent.
- (ii) (1 point) Let $\{v_1, \ldots, v_m\}$ be a set of linearly independent vectors in V, and let $w \in V$. Show that, if $\{v_1 + w, \ldots, v_m + w\}$ are linearly dependent, then $w \in \langle v_1, \ldots, v_m \rangle$.

Proof. (i) To show linear independence over \mathbb{R} we must show that the only way to write 0 in terms of z_1, z_2 is to choose real numbers a = b = 0. We write

$$0 = az_1 + bz_2, \tag{1}$$

$$0 + 0i = a + ai + b - bi, (2)$$

$$0 + 0i = a + b + (a - b)i. (3)$$

Equating real and imaginary parts, this forces a = -b and a = b, which has only one solution in the reals: a = b = 0.

If instead a = b + di and b = e + fi for real numbers b, d, e, f, then we have

$$0 = (b+di)(1+i) + (e+fi)(1-i), \tag{4}$$

$$0 + 0i = (b + bi + di - d) + (e - ei + fi + f),$$
(5)

$$0 + 0i = (b - d + e + f) + (b + d - e + f)i,$$
(6)

which forces 0 = (b - d + e + f) and 0 = (b + d - e + f). This implies

$$b - d + e + f = b + d - e + f \implies d = e. \tag{7}$$

Thus, any such scalars in the field will allow us to write 0 in terms of z_1 , z_2 , implying they are linearly dependent.

(ii) Suppose $\{v_1 + w, ..., v_m + w\}$ is linearly dependent. Then there exist scalars c_j , not all zero, such that

$$\sum_{j=1}^{m} c_j(v_j + w) = 0$$

$$\sum_{j=1}^{m} c_{j} v_{j} + \left(\sum_{j=1}^{m} c_{j}\right) w = 0.$$

If $\sum c_j = 0$, then $\sum c_j v_j = 0$, contradicting independence of $\{v_j\}$. Hence $\sum c_j \neq 0$, and

$$w = -\frac{1}{\sum c_j} \sum_{j=1}^m c_j v_j \in \langle v_1, \dots, v_m \rangle.$$

Exercise 2 (3 points): Bases I

(i) Let $\{u_1, u_2, u_3\}$ be the following vectors in \mathbb{R}^2 :

$$u_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \qquad u_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad \qquad u_3 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}.$$

Show that $\{u_1, u_2, u_3\}$ is not a basis of \mathbb{R}^2 , but $\{u_i, u_j\}$ is a basis for any $1 \le i < j \le 3$.

(ii) Prove that the following set of vectors $\{v_1, v_2, v_3\}$ forms a basis of \mathbb{R}^3 :

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad \qquad v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad \qquad v_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

(iii) Prove that the following set of vectors $\{w_1, w_2, w_3\}$ does not form a basis of \mathbb{R}^3 :

$$w_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad \qquad w_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad \qquad w_3 = \begin{pmatrix} 4 \\ 2 \\ 2 \end{pmatrix}$$

(i) To see that this set is linearly dependent, simply note that $u_3 = u_2 + u_1$. We can verify

pairwise independence in the following manner. Consider writing $0 = au_1 + bu_2$ for

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ 0 \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}, \tag{8}$$

which implies a = b = 0. The same thing can be checked for the remaining combinations.

(ii) As above, we can check linear independence by showing the only way to make $0 = a_1v_1 + a_2v_2 + a_3v_3$ is by choosing $a_1 = a_2 = a_3 = 0$.

$$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} a_1 + a_2 \\ a_2 + a_3 \\ a_2 \end{pmatrix}. \tag{9}$$

Clearly, the last entry forces $a_2 = 0$ which, in turn, forces the other two coefficients to be zero. By (Axler 2.38) we know that a linearly independent list of the right length is a basis and we are done.

(iii) Observe that $w_3 = 2w_2 + 2w_1$. Constructing any such example suffices to show the list is linearly dependent.

Exercise 3 (3 points): Bases II

Let U be the subspace of \mathbb{R}^5 defined by \mathbb{R}^1

$$U = \left\{ (x_1, x_2, x_3, x_4, x_5)^T \in \mathbb{R}^5 \colon x_1 = 3x_2 \text{ and } x_3 = 7x_4 \right\}$$

- (i) Find a basis for *U*.
- (ii) Extend the basis you found in (i) to a basis of \mathbb{R}^5 .
- (iii) Find a subspace $W \leq \mathbb{R}^5$ such that $\mathbb{R}^5 = U \oplus W$.

Solution.

(i) First, note that we can write this subspace as

$$U = \{ (3x_2, x_2, 7x_4, x_4, x_5)^T \in \mathbb{R}^5 : x_2, x_4, x_5 \in \mathbb{R} \}.$$
 (10)

Then, we can simply read off the basis by writing the general vector in the column picture. Let $u \in U$, then u is of the form

$$u = x_2 \begin{pmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 0 \\ 0 \\ 7 \\ 1 \\ 0 \end{pmatrix} + +x_5 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}. \tag{11}$$

Thus, the set $\{(3,1,0,0,0)^T, (0,0,7,1,0)^T, (0,0,0,0,1)^T\}$ is a basis for U. This is a basis of U, but is not unique.

- (ii) We need to choose two vectors that do not lie in the span of the three vectors given above. In this case, we can do this easily by inspection. Consider adding $(1,0,0,0,0)^T$ and $(0,0,1,0,0)^T$ to the list. By inspection, we see that there is no way to write either of these in terms of the other three. Again, this is not unique.
- (iii) Inspired by our choice of basis above, we consider

$$W = \{(x_1, 0, x_3, 0, 0) : x_1, x_3 \in \mathbb{R}\}.$$
 (12)

¹Here, ^T denotes transposition, and
$$x = (x_1, x_2, x_3, x_4, x_5)^T = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}$$
.

Via Lemma in Axler, we know that U + W is a direct sum decomposition of V iff $U \cap W = \{0\}$. This can be verified simply by setting

$$(3x_2, x_2, 7x_4, x_4, x_5)^T = (x_1, 0, x_3, 0, 0)^T.$$
(13)

It is then clear that the only vector satisfying this equality is the zero vector, and we are done.

Exercise 4 (3 points): Dimension I

Show that the subspaces of \mathbb{R}^3 are precisely $\{0\}$, all lines in \mathbb{R}^3 containing the origin, and \mathbb{R}^3 .

Proof. We know that dim \mathbb{R}^3 has dimension 3, thus by (Axler 2.37) any subspace of \mathbb{R}^3 must have dimension 0,1,2, or 3. We have

- 0. There is only one vector space with dimension 0: the trivial vector space $\{0\}$.
- 1. If $\dim U = 1$, we know by (Axler 2.31) there exists a basis and it must contain one vector. Such a vector space must go through the origin, thus it can only be a line through the origin.
- 2. If dim U = 2, we know that there exists a basis with two linearly independent vectors u_1, u_2 . Thus, $U = \text{span}u_1, u_2$ which is a plane through the origin.
- 3. If dim U = 3, U = V by (Axler 2.39).

Exercise 5 (4 points): Dimension II

Suppose that V_1, \ldots, V_m are finite-dimensional subspaces of V. Prove that $V_1 + \cdots + V_m$ is finite dimensional and

$$\dim (V_1 + \cdots + V_m) < \dim V_1 + \cdots + \dim V_m$$
.

Let us first prove this by induction on m. Crucial will be the use of (Axler 2.43):

$$\dim (V_1 + V_2) = \dim V_1 + \dim V_2 - \dim (V_1 \cap V_2)$$
(14)

for subspaces $V_1, V_2 \leq V$.

Proof. Consider the base case m = 1, we have dim $V_1 = \dim V_1$. Our induction hypothesis is that, for some m > 1,

$$\dim (V_1 + \dots + V_{m-1}) \le \dim V_1 + \dots + \dim V_{m-1}. \tag{15}$$

We must then show that the case with *m* subspaces holds. To make this rigorous, recall from Axler 1.40 that the sum of subspaces is itself a subspace. Then, we have

$$\dim (V_1 + \dots + V_{m-1} + V_m) = \dim ((V_1 + \dots + V_{m-1}) + V_m),$$

$$\leq \dim (V_1 + \dots + V_{m-1}) + \dim V_m - \dim ((V_1 + \dots + V_{m-1})) \cap V_m),$$

$$\leq \dim (V_1 + \dots + V_{m-1}) + \dim V_m,$$

$$\leq \dim V_1 + \dots + \dim V_{m-1} + \dim V_m,$$

where the first inequality is by 2.43 in Axler; the second is that the dimension of the intersection is non-negative, so dropping it cannot decrease the sum; and the final inequality follows by the induction hypothesis. This completes the proof.

For fun (we are having fun, right?) let us also prove this directly.

Proof. For each $i \in [m]$, let B_i be a basis for V_i , which we know exists because V_i is finite dimensional (Axler 2.31). Then, consider the union of these bases

$$S := B_1 \cup \dots \cup B_m. \tag{16}$$

This set of vectors spans $V_1 + \cdots + V_m$ because every vector in this sum can be expressed as a linear combination of vectors from each of the subspaces (not necessarily uniquely, thus it need not be a basis). Because each B_i is finite, their union is also finite, thus $V_1 + \cdots + V_m$ is finite dimensional. We know that the length of basis is at most the length of a spanning set, thus

$$\dim\left(V_1 + \dots + V_m\right) \le |S|,\tag{17}$$

$$= |B_1 \cup \dots \cup B_m|, \tag{18}$$

$$\leq \sum_{i=1}^{m} |B_i|,\tag{19}$$

$$= \dim V_1 + \dots + \dim V_m, \tag{20}$$

as desired. Note that the second inequality holds because the size of a union of finite sets is at most the sum of their sizes. \Box

Remark. In probability theory, this second inequality is called the *union bound* or *Boole's inequality* after the famous Irish mathematician George Boole. He was largely self-taught and yet developed a great deal of original mathematics including Boolean algebra, which now underlies all of our modern technology.

Exercise 6 (4 points): Dimension III

Suppose V is finite dimensional, with dim $V = n \ge 1$. Prove that there exists one-dimensional subspaces V_1, \ldots, V_m of V such that

$$V = V_1 \oplus \cdots \oplus V_m$$
.

Proof. Let $v_1, ..., v_m$ be a basis for V. Then, to construct such one-dimensional subspaces, just take $V_k = \text{span}(v_k)$ for all $k \in [m]$. Because $v_1, ..., v_m$ is a basis for V, every $v \in V$ can be expressed *uniquely* as

$$v = \sum_{k=1}^{m} a_k v_k, \tag{21}$$

where each $v_i \in V_k$. By the definition of a direct sum (Axler 1.41), this implies that $V = V_1 \oplus \cdots \oplus V_m$, as desired.