FSA's FUTURE ROLE

JET PROPULSION LABORATORY

W.T. Callaghan

Future Role

• OBJECTIVES

- TO PURSUE ADVANCED CRYSTALLINE SILICON PV TECHNOLOGIES FOR POTENTIAL USE LATE IN THE 1980s AND IN THE 1990s
- TO CONTINUE SPONSORSHIP OF RESEARCH AND TECHNOLOGY EVOLUTION ON ADVANCED THICK-MATERIAL FLAT-PLATE PHOTOVOLTAIC MODULES AND ARRAYS
- TO COMMENCE THE ACTIVITIES REQUIRED TO MOVE THIN-FILM TECHNOLOGIES INTO MODULE DEVELOPMENT
- TO CONTINUE TO STIMULATE TRANSFER OF KNOWLEDGE THROUGHOUT THE PHOTOVOLTAIC COMMUNITY

Project Plans

- TO SPONSOR TECHNOLOGY ACTIVITIES THAT HAVE THE POTENTIAL FL "MAKING MODULES/ARRAYS YIABLE FOR LARGE-SCALE APPLICATIONS, SUCH AS STATIONS AND MOOF-TOPS
 - TO STRIVE FOR HIGH EFFICIENCY COUPLED WITH SIGNIFICANT COST REDUCTION FOR LOWEST PGCYER GENERATION COSTS
 - TO REDUCE TECHNICAL BARRIERS TO HIGH-PERFORMANCE, LONG-LIFE, RELIABLE MODULES AND ARRAYS
- TO CONTINUE TO FUND UNIVERSITIES, INDUSTRY, AND OTHER ORGANIZATIONS FOR PERFORMANCE OF MOST OF THE WORK
- TO CONTINUE ECONOMIC ANALYSIS TECHNIQUES For COMPARISON OF ALTERNATIVE RESEARCH OPTIONS

FLAT-PLATE SOLAR ARRAY PROJECT

PLENARY SESSION: W.T. CALLAGHAN

New Task Objectives

TO EXTEND OUR KNOWLEDGE AND CAPABILITIES TO USE THE FOLLOWING TECHNOLOGIES FOR PHOTOVOLTAIC COMPONENTS:

- ADVANCED MATERIALS (A.D. MORRISON)

 SILICON AND NON-SILICON MATERIAL SYNTHESIS,

 PREPARATION AND SHEET GROWTH FOR PHOTOVOLTAIC

 DEVICES
- DEVICE AND MEASUREMENTS (A.H. KACHARE)
 DEVICE STRUCTURE, MATERIAL-DEVICE PROPERTY
 INTERACTION, SILICON AND NON-SILICON DEVICE
 PHYSICS, MEASUREMENT TECHNIQUES FOR PHYSICAL,
 CHEMICAL AND ELECTRICAL EVALUATION, AND
 MATERIAL CHARACTERIZATION
- ENVIRONMENTAL ISOLATION (C.D. COULBERT)
 ENCAPSULATION MATERIAL FORMULATION, PROPERTIES,
 LIFE-LIMITING DEGRADATION MECHANISMS, MODULE
 DURABILITY, PERFORMANCE PREDICTABILITY,
 ASSESSMENT METHODOLOGIES AND ADVANCED
 PACKAGING CUNCEPTS FOR SILICON AND NON-SILICON
 DEVICES
- PROCESS RESEARCH (D.B. BICXLER)
 RESEARCH IN SILICON AND NON-SILICON PROCESS
 ELEMENTS SUCH AS SURFACE PREPARATION, JUNCTION
 FORMATION, METALLIZATION, ANTI-REFLECTION
 COATING, AND SYNERGISTIC EFFECTS OF THESE STEPS
 ON CELL AND MODULE FABRICATION

Objectives and Plans

SILICON MATERIAL

OBJECTIVE

SPONSUR THEORETICAL AND EXPERIMENTAL RESEARCH ON SILICON MATERIAL REPMEMENT TECHNOLOGY SUITABLE FOR FLAT PLATE SOLAR ARRAYS

PLANS

- CONDUCT RESEARCH IN NEW REACTOR CONCEPTS THAT ENABLE SIGNIFICANT INCREASES IN SELECIN DEPOSITION RATES USING CHLOROSILANE AND SILANE PRECURSING.
- CONDUCT RESEARCH IN INSW. CONCEPTS FOR FLUIDIZED BED REACTOR.

 TECHNOLOGY FOR CHILDROSPANE OR SHANE CHEFFICAL SYSTEMS.
- COMPLETE DNG JING EFFORTS 1-7 RESIDIVE THE KEY CRITICAL TECHNICAL PROBLEMS REMARKING IN THE SHAME TO SKICON AND THE DICHLORSHAME TO SKICON PROCESSES.

SILICON SHEET

OBJECTIVE

CONDUCT RESEARCH ON THE CRITICAL ELEMENTS OF SHICON SHEET GROWTH TO ACHIEVE THE TARGETS OF A SHICON SHEET TECH HOLOGY COMPATIBLE WITH FUTURE SOLAR CELL REQUIREMENTS

PLANS

- PERFORM RESEARCH ON THE LIMITS TO CRYSTALLIZATION RATES IN SILICON GROWTH
- PERFORM THEORETICAL AND EXPERIMENTAL RESEARCH ON THERMAL STRESSES GENERATED IN THE GROWTH OF WIDE AND THIN SILICON RIBSONS
- PERFORM RESEARCH TO FURTHER UNDERSTANDING OF THE INFLUENCE OF GROWTH AMBIENT ATMOSPHERE CHEMISTRY ON THE CRYSTALIZATION PROCESS AND SILICON MATERIAL QUALITY
- CONTINUE RESEARCH ON THE BASIC MECHANISMS OF CUTTING BILLOON AND THE INTERACTION OF SHICON SURFACES WITH EXPERIMENTAL PARAMETERS
- CONTINUE CHARACTERIZATION OF SILICUN SHEET MATERIAL WITH INNOVATIVE TECHNIQUES

CELL AND MODULE FORMATION

OBJECTIVE

SPONSOR RESEARCH ON ADVANCED CELL AND MODULE FORMATION TECHNIQUES

PLANS

- CONDUCT RESEARCH IN THE FORMATION AND CHARACTERIZATION OF ELECTRICALLY CONDUCTIVE BILICIDES
- CONDUCT RESEARCH ON THE INFLUENCE OF POLYCRYSTALLINE GRAIN BOXINDARIES UPON JUNCTION FORMATION AND METALLIZA TOM:
- PERFORM RESEARCH ON THE PHYSICS OF SURFACE FIELD FORMATION
- PERFORM RESEARCH ON THE PHYSICS OF CORROSION REACTIONS AT METALLIC INTERFACES
- CONTINUE RESEARCH ON NON MASS ANALYZED ION IMPLANTATION TECHNIQUES. METALIZATION AND CELL INTERCONNECTION SYSTEMS. AND MODULE ASSEMBLY TECHNIQUES.

ENVIRONMENTAL ISOLATION

OBJECTIVE

SPONSON RESEARCH 0.4 AGING DEGRADATION CHARACTERISTICS AND THEIR INFLUENCE UPON MODULE DURABILITY AND RELIABILITY

PLAN

- CONDUCT RESEARCH IN LONG TERM PHOTOTHERMAL DEGRADATION MECHANISMS IN POLYMERS, ESTABLISH MOD'LS AND VALIDATE
- INVESTA' ATE ENCAPSULANT INTERFACE STABILITY CRITERIA AS AFFE. TED BY BUMDING TECHNIQUES: DISSIMILAR MATERIALS: AND OPERATION. \ ENVIRONMENTS
- CONDUCT RESEARCH IN CORROSION MECHANISMS IN MODULE INTERNAL CIRCUIT ELEMENTS, VERIFY DEGRADATION RATES AND CONTROL CRITERIA
- INVESTIGATE OPERATING TEMPERATURE LIMITATIONS IMPOSED BY MODULE DESIGN AND MOUNTING AND HOT SPOT SENSITIVITY
- . INVESTIGATE AND APPLY ACCELERATED AND DURABILITY TESTING TECHNIQUES AND LIFE PREDICTION METHODS

ENGINEERING SCIENCES

OBJECTIVE

SPONGOR RESEARCH ON ADVANCED MODULE AND ARRAY ENGINEERING SCIENCE ACTIVITIES THAT WILL LEAD TO HIGH PERFORMANCE, SAFE, RELIABLE LONG LIFE ODENGAS

PLANS

- CONTINUF THEORETICAL AND EXPERIMENTAL REBEARCH TO CHARACTERIZE AND DEFINE SAFE. RELIABLE MODULE AND ARRAY DESIGN CONCEPTS AND ASSOCIATED TECHNOLOGY
- CONTINUE TO EVOLVE ANALYTICAL AND E CHEMMENTAL METHODS OF EVALUATING MODULES AND ARRAYS INCOMPORATING EXPENSINCE GAINED BY THE PROJECT AND JOE ACTIVITIES

MODULE PERFORMANCE AND FAILURE ANALYSIS

OBJECTIVE

EVALUATE RELIABILITY AND DURABILITY OF MODULES THAT USE MATERIALS AND TECHNIQUES RESEARCHED IN THE PROJECT THROUGH A STRUCTURED PROGRAM

PLANS

- PROCURE MODULE SAMPLES CONSTRUCTED USING INNOVATIVE CONCEPTS
- . MEASURE PERFORMANCE CHARACTERISTICS
- MPLEMENT MEASUREMENT TECHNIQUES NEEDED TO ASSESS MODULE PER FORMANCE IN RESPONSE TO EVOLVING REQUIREMENTS
- PERFORM A BROAD PROGRAM OF ENVIRONMENTAL TESTING IN THE LABORATORY
- PLACE MODULES IN FIELD SITES FOR ENDURANCE TESTING
- CORRELATE FIELD AND LABORATORY TESTING RESULTS TO EVALUATE THE ENVIRONMENTAL TESTING PROGRAM
- PERFORM DIAGNOSTIC ANALYSES OF MODULE PROBLEMS OR FAILURES

PLENARY SESSION: W.T. CALLAGHAN

FSA Project Meetings

- REDUCE NUMBER OF PIMS PER YEAR
 - TWO IN 1982
 - ONE OR TWO IN 1983
- CONDUCT IN-DEPTH TECHNICAL WORKSHOPS
 - LOW-COST SOLAR ARRAY WAFERING WORKSHOP

JUNE 1981

• SCIENCE OF SILICON MATERIAL PREPARATION

AUGUST 1982

 HIGH-SPEED GROWTH AND CHARACTERIZATION OF CRYSTALS FOR . AR CELLS

NOVEMBER 1982

Possible V orkshops During 1983

- HIGH-EFFICIENCY CRYSTALLINE SILICON SOLAR CELLS
- METALLIZATION FOR HIGH-EFFICIENCY, LONG-LIFE CELLS
- ENCAPSULATION MATERIAL TECHNOLOGY FOR SOLAR CELL MODULES
- TEMPERATURE/HUMIDITY AND ELECTROCHEMICAL CORROSION EFFECTS ON CELL AND MODULE DEGRADATION
- CENTRAL-STATION ARRAY DESIGN CRITICAL PARAMETERS
- ROOF-TOP ARRAY DESIGN CRITICAL PARAMETERS
- ARRAY/POWER CONDITIONER ELECTRICAL INTERFACE DESIGN