Repeatedly applying the same trick from right to left we obtain that

$$Y_1 \vee (\cdots (Y_{n-1} \vee Y_n)) = q_2^n(x, y_1[1], \dots, y_n[1]).$$

Proceeding similarly for every component of (\star) , we get that

$$q_m^n(\varphi(x), \varphi(y_1), \dots, \varphi(y_n)) = (q_2^n(x, y_1[1], \dots, y_n[1]), \dots, q_2^n(x, y_1[m], \dots, y_n[m]))$$

$$= (q_m^n(x, y_1, \dots, y_n)[1], \dots, q_m^n(x, y_1, \dots, y_n)[m])$$

$$= \varphi(q_m^n(x, y_1, \dots, y_n))$$

as desired.

As a consequence the following representation theorem holds.

Corollary 3.12. Every partition clone T is isomorphic to the partition-of-unity clone of the Boolean algebra T(2).

4. Hypervarieties

We recall the following definitions for an algebra **A**:

- A is *directly indecomposable* if it cannot be expressed as an isomorphic product of two nontrivial algebras;
- A is subdirectly ireeducible if its lattice of congruences possesses a unique nontrivial minimal element;
- A is *simple* if its lattice of congruences is isomorphic of the two-element chain $\{\Delta < \nabla\}$.

Stone famously proved that $2 = \{0,1\}$ is the unique nontrivial directly indecomposable Boolean algebra. Consequently, 2 is also the only subdirectly irreducible Boolean algebra (and, incidentally, the only simple Boolean algebra). By Theorem 2.1, this implies that every Boolean algebra is isomorphic to a subdirect power of 2. As a consequence, the variety of Boolean algebras is generated by 2.

The first purpose of this section is to lift these considerations to the theory of partition clones. Here the role of the Boolean algebra 2 is played by the clone of projections, which corresponds to 2 in the equivalence of Theorem 3.11.

Lemma 4.1. Let T be a partition clone. The following are equivalent:

- (1) \mathbf{T} is simple;
- (2) **T** is subdirectly irreducible;
- (3) **T** is directly indecomposable;
- (4) $\mathbf{T} \simeq \mathbf{N}$.

Proof. The implications $(1) \Longrightarrow (2)$ and $(2) \Longrightarrow (3)$ are standard. (It is easy to see that the argument for single-sorted algebras lifts to the many-sorted case; at any rate, cf. [25, Proposition 4.8]). We now prove that $\neg(4) \Longrightarrow \neg(3)$ Up to passing to coordinates, we can assume that the clone **T** is the partition-of-unity clone of a Boolean algebra B. Let $a := (b_1, \ldots, b_n) \in T(n)$, with a different from e_1^n, \ldots, e_n^n . This implies that there exists i such that $b_i \notin \{0,1\}$. Letting $c := b_i$, and consequently having $\neg c = \bigvee \{a_k : k \neq i\}$, it is a standard fact regarding Boolean algebras that $B \simeq B/\theta(c,1) \times B/\theta(c,0)$, where $\theta(c,1)$ (resp. $\theta(c,0)$) is the smallest congruence identifying c and 1 (resp. c and 0). To conclude the argument, observe that if $(b_1, \ldots, b_n) \in T(n)$, then, $(b_1, \ldots, b_n, 0, \ldots, 0) \in T(m)$ for all m > n. Therefore, for each n we have a decomposition of T(n) in (at least) two factors and **T** is not directly indecomposable. To prove that $(4) \Longrightarrow (1)$, assume that $T \simeq \mathbf{N}$, and let θ be a congruence of **T** different than Δ . Then there is $n \geq 2$ and $1 \leq i \neq j \leq n$ such that $(e_i^n, e_j^n) \in \theta$. But then for all $m \in \omega$ and all $x, y \in T(m)$

$$(q_m^n(e_i^n, z_1, \dots, z_n), q_m^n(e_j^n, z_1, \dots, z_n)) \in \theta$$

where z_1, \ldots, z_n are any elements of T(m) such that $z_i = x$ and $z_j = y$, so that, in light of (C2), $(x, y) \in \theta$, i.e. $\theta = \nabla$.