Задача 1. Найти уравнения касательных плоскостей к поверхности $x^2 + y^2 - z^2 + 1 = 0$ в точках пересечения её с прямой x = y = 2.

Задача 2. Написать уравнение нормали к винтовой поверхности $x=u\cos v,\quad y=u\sin v,\quad z=v$ в точке с параметрами $u=u_0,\quad v=v_0.$

Задача 3. Исследовать особые точки кривой, заданной уравнением $ax^2 + x^3 - y^2 = 0$.

Задача 4. Доказать, что все плоскости, касательные к поверхности $z=xf\left(y/x\right)$, где $f\left(u\right)$ – дифференцируемая функция, имеют общую точку.

Задача 5. К эллипсоиду $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, a > 0, b > 0, c > 0, провести какую-либо касательную плоскость так, чтобы сумма длин отрезков, отсекаемых ею на координатных осях, была наименьшей.

Задача 6. Найти огибающую семейства кривых $(y-C)^2 = (x-C)^3$.