Лата: 19.01.2022

Клас: 11

Тема заняття. Об'єм піраміди.

Мета заняття: <u>навчальна</u>: засвоєння формули для обчислення об'єму піраміди; формування умінь розв'язувати задачі на застосування формули для обчислення об'єму піраміди;

<u>розвиваюча:</u> розвивати просторове уявлення, пізнавальні здібності, логічне мислення:

виховна: виховувати охайність у записах, цілеспрямованість.

Об'єм будь-якої піраміди дорівнює третині добутку площі $\ddot{\mathbf{u}}$ основи на висоту, тобто $V=\frac{1}{3}$ SH , де S — площа основи піраміди, H — $\ddot{\mathbf{u}}$ висота.

1. Розв'язування задач

1. Сторона основи правильної трикутної піраміди дорівнює a, а бічне ребро утворює з площиною основи кут α . Знайдіть об'єм піраміди.

Нехай SABC — правильна піраміда (рис. 154), в якій AB = BC = AC = a; $SO \perp (ABC)$;

$$<\!SBO=a$$
. Площа основи $S_1=rac{AB^2\sqrt{3}}{4}=rac{a^2\sqrt{3}}{4}$, OB — радіус кола,

описаного навколо трикутника ABC, тому $0B = \frac{AB}{\sqrt{3}} = \frac{a}{\sqrt{3}}$. Далі із

Відповідь.
$$\frac{a^3 tg \alpha}{12}$$
.

Нехай SABCD — правильна чотирикутна піраміда (рис. 155), в якій $SO \perp (ABC)$, SO = H. Проведемо $OK \perp DC$, за теоремою протри перпендикуляри маємо: $SK \perp CD$; отже, $<SKO = \alpha$.

Is
$$\triangle SKO \ OK = OS \ ctg < SKO = H \ ctg \ \alpha$$
.

Оскільки $AD = 2 \cdot OK$, то одержуємо: $AD = 2Hctg\alpha$. Тоді площа основи $S_1 = AD^2 = 4H^2 \ ctg^2\alpha$. Отже, шуканий об'єм

$$V = \frac{1}{3} S_1 \cdot OS = \frac{1}{3} H^2 ctg^2 \alpha \cdot H = \frac{4}{3} H^3 ctg^2 \alpha.$$

$$Bi\partial noвi\partial b. \frac{4}{3}H^3 \operatorname{ctg}^2 \alpha.$$

Puc. 154

Перегляньте відео за посиланням https://www.youtube.com/watch?v=wGPnvy47a8Y

Виконайте домашнє завдання

П.9 – опрацювати №9.21, 9.23