少ないデータによる識別モデルの訓練

MAML (メタ学習)

MAMLが解決したい課題

深層学習モデルの開発に必要なデータ量を削減したい

深層学習モデル開発に必要なデータ量

データセット名	画像の枚数		
MNIST	7万枚		
ImageNet (ILSVRC2012)	約120万枚		
Open Image Dataset V6	約900万枚		
MegaFace	約570万枚		

● 訓練に必要なデータ量が多い

- 人手のアノテーションコスト
- データ自体を準備できるかどうか

● 少ないデータの問題点

・ 過学習が発生しやすい

→ 少ないデータで学習させたい

MAMLのコンセプト

タスクに共通する重みを学習し、新しいモデルの学習に活用

事前学習

- オートエンコーダー(教師なし学習)
- ImageNetを使った事前学習モデル(教師あり学習)

タスクAのためのモデル

モデル全体の重みを学習

転移学習

タスクBのためのモデル

タスクAの重みを使用

この部分のみ学習

ファインチューニング

タスクBのためのモデル

モデルAの重みを初期値として学習

MAML (メタ学習)

タスク共通の重みを学習

タスクAのためのモデル

______ 共通重みからファインチューニング

タスクBのためのモデル

共通重みからファインチューニング

タスクCのためのモデル

共通重みからファインチューニング

タスクDのためのモデル

共通重みからファインチューニング

MAMLの学習手順

タスクごとの学習を行った結果を共通重みに反映させ学習

MAMLの効果

Few-Shot learningで既存手法を上回る精度を実現

Omniglotデータセット(50種類の文字)を使ったクラス分類

C. Finn+, arXiv:1703.03400

5クラス		20クラス	
5-way Accuracy		20-way Accuracy	
1-shot	5-shot	1-shot	5-shot
82.8%	94.9%	_	_
$89.7 \pm 1.1\%$	$97.5 \pm 0.6\%$	_	_
97.3%	98.4%	88.2%	97.0%
98.1%	98.9%	93.8%	98.5%
98.1%	99.5%	93.2%	98.1%
98.4%	99.6%	95.0%	98.6%
$98.7 \pm 0.4\%$	$99.9 \pm 0.1\%$	$95.8 \pm 0.3\%$	$98.9 \pm 0.2\%$
	$\begin{array}{c} \text{5-way A} \\ \text{1-shot} \\ 82.8\% \\ \hline \textbf{89.7} \pm \textbf{1.1}\% \\ \hline 97.3\% \\ 98.1\% \\ 98.1\% \\ 98.4\% \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5-way Accuracy 20-way A 1-shot 5-shot 1-shot 82.8% 94.9% - $89.7 \pm 1.1\%$ $97.5 \pm 0.6\%$ - 97.3% 98.4% 88.2% 98.1% 98.9% 93.8% 98.1% 99.5% 93.2% 98.4% 99.6% 95.0%

サンプル1枚 サンプル5枚 サンプル1枚 サンプル5枚

この他にも、回帰問題、強化学習などでも効果が確認された

MAMLの課題と対処

タスクごとの学習と共通パラメータの学習で計算量が多い

● MAMLは計算量が多い

- ・ タスクごとの勾配計算と共通パラメータの勾配計算の2回が必要
- 実用的にはInner loopのステップ数を大きくできない

● 計算コストを削減する改良案 (近似方法)

- First-order MAML: 2次以上の勾配を無視し計算コストを大幅低減
- Reptile: Inner loopの逆伝搬を行わず、学習前後のパラメータの差を利用