

Régime stationnaire permanent ou continue

0.0.1

GOKPEYA Nessemou Eric @ INGENIEUR UVCI

Septembre 2017

Légende

Entrée du glossaire

★ Abréviation

Référence Bibliographique

Référence générale

Table des matières

Objectifs	5
Introduction	7
I - Partie I : Dipôles électriques Passifs	9
A. 1. Dipôle linéaire passif : La résistance	g
B. 2. Association de Résistances	10
C. 3. Les théorèmes résultants	11
D. 4. Théorème de Millman	13
E. Exercice	13
F. Exercice	1 4
G. Exercice	14
II - Partie II : Dipôle électrique actif	17
A. 1. Dipôle actif non linéaire	
B. 2. Dipôle actif linéaire	18
III - Exercice	19
Solution des exercices	21

Savoir modéliser les dipôles électriques et faire les calculs en régime continu stationnaire ;

Savoir modéliser les circuits électriques en continu.

Introduction

En régime continu, les courants et les tensions sont constants dans le temps.

Il existe deux types de dipôles : les dipôles actifs et les Dipôles passifs.

Un dipôle passif est un dipôle qui consomme de l'énergie électrique et qui transforme toute cette énergie en chaleur.

Exemple : résistance, ampoule ... Autrement, on parle de **dipôle actif**.

Exemple: pile, moteur électrique à courant continu ...

Classification des dipôles en régime continu par le Schéma suivant :

Résumé

Partie I : Dipôles électriques Passifs

1. Dipôle linéaire passif : La résistance	9
2. Association de Résistances	10
3. Les théorèmes résultants	11
4. Théorème de Millman	13
Exercice	13
Exercice	14
Exercice	14

Objectifs

Savoir modéliser les dipôles électriques et faire les calculs en régime continu stationnaire ;

Un dipôle passif est un dipôle récepteur de puissance. La caractéristique tension - courant U(I) passe par l'origine : U = 0 V , I = 0 A.

A. 1. Dipôle linéaire passif : La résistance

Définition

Un dipôle passif linéaire a sa caractéristique courant - tension qui est une droite linéaire passant par l'origine.

C'est le cas de la résistance.

U(I) est une droite qui passe par l'origine :

Symbole

U(I)

Une droite est caractérisée par sa pente. On retrouve la résistance :

Relation

La résistance s'exprime en Ohm (Ω) .

Les dipôles passifs linéaires sont donc les résistances et les conducteurs ohmiques :

R réglable

R:

R de P variable

Remarque:

La **conductance** est l'inverse de la résistance.

G= 1/R, s'exprime en Ω -1 ou siemens (S).

B. 2. Association de Résistances

Une association de dipôles passifs linéaires se comporte comme un dipôle passif linéaire de résistance équivalente $R_{\rm \acute{e}q}$

a- Association en série

Les résistance en série sont traversées par le même courant.

En série Réq

Loi des branches : $U = U_1 + U_2 + U_3$

Loi d'Ohm : $U_1 = R_1I$, $U_2 = R_2I$ et $U_3 = R_3I$

II vient : $U = (R_1 + R_2 + R_3)I = R_{\acute{e}q}I$

En série, les résistances s'additionnent.

 $R_{\acute{e}a}$

b. Association en parallèles

Les résistances en parallèles sont alimentées par la même tension.

R parallèle:

En parallèle, les conductances s'additionnent :

Formule:

Cas particulier de deux résistances :

Équation :

A.N. R1 = 1 k Ω , R2 = 2,2 k Ω et R3 = 10 k Ω .

Calculer R_{AB}:

Schéma:

Solution

C. 3. Les théorèmes résultants

a. Diviseur de tension

Le montage diviseur de tension permet de diviser une tension U en autant de tensions U_i qu'il y a de résistances en série R_i :

schéma:

 $U_1 = R_1I$

 $U_2 = R_2I$

Or, $U = U_1 + U_2 = (R_1 + R_2)I$

La tension est proportionnelle à la résistance.

d'où:

Formule générale :

Lorsque plusieurs résistances sont en série, la tension aux bornes de l'une d'entre

elle peut être déterminée par la relation

:

b. Diviseur de courant

Le diviseur de courant divise un courant I en autant de courants I_i qu'il y a de résistances en parallèle R_i :

Schéma:

Formule:

Cas particulier de deux résistances :

Calcul:

Exemple : Application 1 :Résistance équivalente à un réseau

Dans le montage schématisé ci-contre, on a R_1 = 2,0 $K\Omega$; R_2 = 2,0 $K\Omega$ et R_3 = 500 Ω .

Déterminé la résistance R_{éq} équivalente au montage entre les points A et B.

Montage 1

Solution

Les résistances R₂ et R₃ sont en parallèles entre A' et B'.

La résistance équivalente R_{A'B'} entre ces deux points vaut :

La résistance $R_{A'B'}$ est en série avec R_1 entre A et B, elles (les deux résistances) sont traversées par le même courant).

La résistance équivalente du montage est donc :

 $R_{\acute{e}q} = R_1 + R_{A'B'}$

 $R_{\text{éq}} = 2000 + 400 = 2400 \,\Omega$, soit $R_{\text{éq}} = 2.4 \,\text{K}\Omega$

Exemple : Résistance équivalente

Considérons le circuit ci-dessous :

schéma

- 1 ; Déterminez la résistance équivalente entre le bornes A et
- 2. Déterminez la tension v au bornes de R3 et l'intensité du courant i qui circule dans $R_{\scriptscriptstyle 2}$.

Application numérique pour E = 6 V, R_1 = 100 Ω , R_2 = R_3 = R_4 = 50 Ω Solution

1. les Résistances R2 et R4 sont en série, ils sont remplacés par une résistance équivalente qui est la somme des deux (Re1 = R2 + R4).

Partie I : Dipôles électriques Passifs

Ensuite Re1 est en parallèle avec R3, alors $R_{AB} = (R3.Re1)/(R3 + Re1)$.

2. En Appliquant le pont diviseur de tension, on arrive à déterminer la tension ν qui est aussi aux bornes de la résistance équivalente R_{AB} .

Pour déterminer le courant i, on détermine premièrement le courant i_1 qui circule dans la résistance R_1 .

on applique ensuite le pont diviseur de courant pour déterminer i.

D. 4. Théorème de Millman

Millmann

Le théorème de Millman est une traduction de la loi des noeuds.

V1, V2, V3 et VA désignent les potentiels électriques aux points considérés.

Schéma :

Loi des noeuds au point A :

On peut aussi utiliser des tensions, à condition de les référencer par rapport au même potentiel (généralement la masse) :

Schéma :

Formule

Exemple : Application

A.N. calculer la tension U:

Figure:

Calcule

E. Exercice

[Solution n°1 p 21]

Quelle est la résistance équivalente R1 entre les points A et B?

Figure:

0	R1	=	10	*	100	=	1000	Ω
---	----	---	----	---	-----	---	------	---

$$\bigcirc$$
 R1 = 10 - 100 = -90 Ω

$$R1 = 10 + 100 = 110 \Omega$$

F. Exercice

[Solution n°2 p 21]

Déduire de l'exercice 1 la résistance R2 équivalente entre les points A et B?

figure:

$R2 = (10 + 100)/100 = 1,1 \Omega$
R2 = $[(110 \times 100) / (110 + 100)] + 10 = 62,38 \Omega$
$R2 = (110 \times 100) / (110 + 100) = 65 \Omega$
R2 = $[(110 \times 100) / (110 + 100 + 10)] + 10 = 42 \Omega$

G. Exercice

[Solution n°3 p 21]

Le bouton poussoir « Marche » se ferme lorsqu'on appuie dessus. Quand on relâche, un ressort de rappel le ramène dans sa position de repos (ouvert). Même chose pour le bouton poussoir « Arrêt » :

figure:

Calculer la tension uE dans les cas possibles :

Cas:

a-

b-

C-

	Partie I : Dipôles électriques Passifs
a-	
b-	
C-	

0 %

Partie II : Dipôle électrique actif

1. Dipôle actif non linéaire	17
2. Dipôle actif linéaire	18

Objectifs

Savoir calculer les énergies et puissance consommées en régime stationnaire ;

Savoir modéliser les circuits électriques complexes en continu.

La caractéristique U(I) ne passe pas par l'origine.

Un dipôle actif n'est pas symétrique et il faut distinguer ses deux bornes : il y a une polarité.

Exemples:

- pile, photopile, dynamo (dipôles générateurs)
- batterie en phase de recharge, moteur à courant continu (dipôles récepteurs)

A. 1. Dipôle actif non linéaire

La caractéristique U(I) n'est pas une droite.

image

Graphe:

A vide

A vide (I = 0 A) : U = E (différent de 0 V)

E est appelée tension à vide ou fem (force électromotrice).

Figure

En court-circuit

Figure:

B. 2. Dipôle actif linéaire

La caractéristique U(I) est une droite qui ne passe pas par l'origine.

En convention générateur : Résistance « interne » L'équation de la droite est :

Figure:

[Solution n°4 p 22]

Que vaut la tension U aux bornes de la batterie lorsqu'elle débite un courant de 4A ?

2V
4V
8V

Solution des exercices

> Solution n°1 (exercice p. 13)

$$\bigcirc$$
 R1 = 10 * 100 = 1000 Ω

$$\bigcirc$$
 R1 = 10 - 100 = -90 Ω

$$\bigcirc$$
 R1 = 10 + 100 = 110 Ω

on fait la somme des deux résistances

> Solution n°2 (exercice p. 14)

$$R2 = (10 + 100)/100 = 1,1 \Omega$$

$$\bigcirc$$
 R2 = [(110 X 100) / (110 + 100)] + 10 = 62,38 Ω

$$R2 = (110 \times 100) / (110 + 100) = 65 \Omega$$

$$R2 = [(110 \times 100) / (110 + 100 + 10)] + 10 = 42 \Omega$$

R1 est en parallèle avec la résistance de 100 Ohm.

Le résultat des deux résistance en parallèles est mis en série avec la résistance de 10 Ohm ;

> Solution n°3 (exercice p. 14)

a-
b-
C-

Explication

> Solution n°4 (exercice p. 19)

2V
4V
8V