Presentation Template

Pothukuchi Siddhartha Dept. of Electrical Engg., IIT Bhilai.

May 21, 2020

Question

Exercise 8.1(Q no.28)

In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B. Show that:

```
a) \triangle AMC \cong \triangle BMD
b) \triangle DBC is a right angle.
c) \triangle DBC \cong \triangle ABC
d) CM = \frac{1}{2}AB
```

Construction method

The tables below are the values used for constructing the triangles in both Python and Latex-Tikz.

Initial Input Values.	
a	4
b	3
$\angle(ACB)$	90°

Table: To construct $\triangle ACB$

The steps for constructing $\triangle ACB$ are

$$C = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \tag{2.1}$$

$$A = \begin{pmatrix} 0 \\ b \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \end{pmatrix} \tag{2.2}$$

$$B = \begin{pmatrix} a \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix} \tag{2.3}$$

Since, M is the midpoint of AB and CD

$$M = \frac{A+B}{2} = \frac{1}{2} \begin{pmatrix} a \\ b \end{pmatrix} M = \begin{pmatrix} 2 \\ 1.5 \end{pmatrix}$$

$$M = \frac{C + D}{2}$$

$$\implies D = 2M - C = \begin{pmatrix} a \\ b \end{pmatrix}$$
(2.4)

$$\implies D = 2M - C = \begin{pmatrix} a \\ b \end{pmatrix} \qquad (2.5)$$

Derived Values for triangleDCB.	
М	$\begin{pmatrix} 2\\1.5 \end{pmatrix}$
D	(4 ₃)

Table: To construct $\triangle DCB$

Codes and Figures

The python code for the figure is

./code/traingle.py

The latex- tikz code is

 $./\mathsf{figs}/\mathsf{triangle}.\mathsf{tex}$

The above latex code can be compiled as standalone document

 $./figs/triangle_fig.tex$

.

Solution

Sol a)
$$\triangle AMC \cong \triangle DMB$$
 by SAS congruency \therefore $AM = BM$ $CM = DM$ $\angle AMC = \angle DMB$ (Vertically Opposite Angles)

Sol c)

$$\|\mathsf{A} - \mathsf{B}\| = \| \begin{pmatrix} -a \\ b \end{pmatrix} \| \tag{3.1}$$

$$\|\mathsf{C} - \mathsf{D}\| = \| \begin{pmatrix} -\mathsf{a} \\ -\mathsf{b} \end{pmatrix} \| \tag{3.2}$$

$$\Rightarrow \|A - B\| = \|C - D\| \tag{3.3}$$

or,
$$AB = CD$$
 (3.4)

From RHS congruence, $\triangle ACB \cong \triangle DCB$

Sol b) From (2.3), (2.1), (2.5)

$$(D - B)^T (B - C) = \begin{pmatrix} 0 & b \end{pmatrix} \begin{pmatrix} a \\ 0 \end{pmatrix} = 0$$
(3.5)

$$\implies BD \perp BC$$
 (3.6)

Sol d) From (3.4), noting that M is the mid point of both AB and CD,

$$\|\mathsf{A} - \mathsf{B}\| = \|\binom{-a}{b}\| \tag{3.7}$$

$$\|\mathsf{C} - \mathsf{D}\| = \| \begin{pmatrix} -\mathsf{a} \\ -\mathsf{b} \end{pmatrix} \| \tag{3.8}$$

$$\implies \|\mathsf{A} - \mathsf{B}\| = \|\mathsf{C} - \mathsf{D}\| \tag{3.9}$$

or,
$$AB = CD$$
 (3.10)