

CIRCUITOS DIGITAIS MÁQUINA DE ESTADOS

Marco A. Zanata Alves Rodrigo M. Sokulski

MÁQUINA DE MOORE

As entradas não interferem diretamente na saída, somente nos estados futuros;

As saídas dependem apenas do estado atual

MÁQUINA DE MEALY

As entradas interferem nos estados futuros e também na saída;

As saídas dependem da entrada e do Estado Presente

DIAGRAMA DE ESTADOS - MOORE

A saída depende exclusivamente do estado (Máquina de Moore); A entrada só interfere no próximo estado.

DIAGRAMA DE ESTADOS - MEALY

A saída depende do estado presente e da entrada (Máquina de Mealy);

A entrada interfere no próximo estado e na saída.

CODIFICAÇÃO DE ESTADOS

CODIFICAÇÃO BINÁRIA / GRAY CODING

Na codificação binária cada estado é representado como um número binário.

Dessa maneira, k estados podem ser representado com $\log_2 K$ bits.

Tentamos numerar os estados em ordem crescente binária.

Podemos também utilizar a codificação gray, onde apenas um bit muda por transição.

A codificação gray no fundo pode se resumir em uma forma diferente de organizar a codificação binária.

CODIFICAÇÃO ONE-HOT

Recebe esse nome pois apenas um bit estará TRUE ("hot") em cada instante.

Por exemplo, a codificação one-hot para três estados seria:

001, 010, 100.

Essa codificação requer mais flip-flops para armazenar os estados.

Entretanto, com a codificação one-hot, a lógica para definir o próximo estado costuma ser mais simples, com menos portas lógicas.

SÍNTESE DE CIRCUITOS CONTADOR UP/DOWN

- ☐ Contador binário síncrono UP/DOWN
- Módulo 4
- ☐ Entradas: 1 {UP=0, DOWN=1}
- ☐ Saídas: 2
- 🛮 Sequência deve ser a binária
- Número de estados: 4
- FF: Tipo D
- FSM: Moore

- ☐ Contador binário síncrono UP/DOWN
- Módulo 4
- ☐ Entradas: 1 {UP=0, DOWN=1}
- ☐ Saídas: 2
- 🛮 Sequência deve ser a binária
- Número de estados: 4
- FF: Tipo D
- FSM: Moore

- ☐ Contador binário síncrono UP/DOWN
- Módulo 4
- ☐ Entradas: 1 {UP=0, DOWN=1}
- ☐ Saídas: 2
- 🛮 Sequência deve ser a binária
- Número de estados: 4
- FF: Tipo D
- FSM: Moore

- ☐ Contador binário síncrono UP/DOWN
- Módulo 4
- ☐ Entradas: 1 {UP=0, DOWN=1}
- ☐ Saídas: 2
- 🛮 Sequência deve ser a binária
- Número de estados: 4
- FF: Tipo D
- FSM: Moore

- ☐ Contador binário síncrono UP/DOWN
- Módulo 4
- ☐ Entradas: 1 {UP=0, DOWN=1}
- ☐ Saídas: 2
- 🛮 Sequência deve ser a binária
- Número de estados: 4
- FF: Tipo D
- FSM: Moore

- ☐ Contador binário síncrono UP/DOWN
- Módulo 4
- ☐ Entradas: 1 {UP=0, DOWN=1}
- ☐ Saídas: 2
- 🛮 Sequência deve ser a binária
- Número de estados: 4
- FF: Tipo D
- FSM: Moore

Descrição:

- ☐ Contador binário síncrono UP/DOWN
- Módulo 4
- ☐ Entradas: 1 {UP=0, DOWN=1}
- ☐ Saídas: 2
- 🛮 Sequência deve ser a binária
- □ Número de estados: 4
- FF: Tipo D
- FSM: Moore

- ☐ Contador binário síncrono UP/DOWN
- Módulo 4
- ☐ Entradas: 1 {UP=0, DOWN=1}
- ☐ Saídas: 2
- 🛮 Sequência deve ser a binária
- Número de estados: 4
- FF: Tipo D
- FSM: Moore

- ☐ Contador binário síncrono UP/DOWN
- ☐ Módulo 4
- ☐ Entradas: 1 {UP=0, DOWN=1}
- ☐ Saídas: 2
- 🛮 Sequência deve ser a binária
- Número de estados: 4
- FF: Tipo D
- FSM: Moore

Diagrama de Estados

Tabela de Transição de Estados

Entrada		Atual	Próx. Estado	
0	A		В	
0	В		C	
0	C		D	
0	D		A	
1	A		D	
1	В		A	
1	C		В	
1	D		C	

Diagrama de Estados

Tabela de Transição de Estados

Entrada	Estado	Atual	Próx. Estado	
0	A		В	
0	В		C	
0	C		D	
0	D		A	
1	A		D	
1	В		A	
1	C		В	
1	D		C	

Codificação de estados

Estado	Codificação	
A	00	
В	01	
С	10	
D	11	

Tabela de Transição de Estados

Entrada	Estado Atual		Próx. Estado	
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

Tabela de Transição de Estados

Entrada	Estado	Atual	Próx. 1	Estado	F	F	Saí	das
0	0	0	0	1	0	1	0	0
0	0	1	1	0	1	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	0	0	0	0	1	1
1	0	0	1	1	1	1	0	0
1	0	1	0	0	0	0	0	1
1	1	0	0	1	0	1	1	0
1	1	1	1	0	1	0	1	1

Tabela de Transição de Estados

Salva estado/Memória

Entrada	Estado	Atual	Próx.	Estado	F	F	Saí	das
0	0	0	0	1	0	1	0	0
0	0	1	1	0	1	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	0	0	0	0	1	1
1	0	0	1	1	1	1	0	0
1	0	1	0	0	0	0	0	1
1	1	0	0	1	0	1	1	0
1	1	1	1	0	1	0	1	1

Tabela de Transição de Estados

Entrada	Estado	Atual	Próx.	Estado	F	F	Saí	das
0	0	0	0	1	0	1	0	0
0	0	1	1	0	1	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	0	0	0	0	1	1
1	0	0	1	1	1	1	0	0
1	0	1	0	0	0	0	0	1
1	1	0	0	1	0	1	1	0
1	1	1	1	0	1	0	1	1

Tabela de Saídas

Estado	Atual	Saídas		
Q_1	Q_0	Z_1	Z_0	
0	0	0	0	
0	1	0	1	
1	0	1	0	
1	1	1	1	
0	0	0	0	
0	1	0	1	
1	0	1	0	
1	1	1	1	

Tabela de Saídas

	Estad	lo Atual	Saídas		
($Q_{\mathbf{M}}$	Q_0	Z_1	Z_0	
	0	0	0	0	
	0	1	0	1	
	1	0	1	0	
	1	1	1	1	
	0	0	0	0	
	0	1	0	1	
	1	0	1	0	
	1	1	1	1	

Tabela de Saídas

Estado	Atual	Saídas			
Q_1	Q	Z_1	Z_0		
0	0	0	0		
0	1	0	1		
1	0	1	0		
1	1	1	1		
0	0	0	0		
0	1	0	1		
1	0	1	0		
1	1	1	1		

Tabela de Saídas

Estado	Atual	Saídas		
Q_1	Q_0	Z_1	Z_0	
0	0	0	0	
0	1	0	1	
1	0	1	0	
1	1	1	1	
0	0	0	0	
0	1	0	1	
1	0	1	0	
1	1	1	1	

Saídas ficam idênticas ao estado atual. Ou seja:

$$Z_1 = Q_1$$

$$Z_0 = Q_0$$

Entrada	Estado Atual		F	F
Е	Q_1	Q_0	D ₁	D_0
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

Entrada	Estado Atual		F	F
Е	Q_1	Q_0	D ₁	D
0	0	0	0	/1
0	0	1	1	0
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

E\Q ₁ Q ₀	00	01	11	10
0	1			1
1	1			1

E\Q ₁ Q ₀	00	01	11	10
0		1		1
1	1		1	

Entrada	Estado Atual		F	F
Е	Q_1	Q_0	D	D_0
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

10 1 1
_
1
10
1

Entrada	Estado Atual		F	F
E	Q_1	Q_0	D_1	D_0
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

D_0				
EQ_1Q_0	00	01	11	10
0	1			1
1	1			1
D_1				
E\Q ₁ Q ₀	00	01	11	10
0		1		1
1	1		1	

D_0	Q ₀

Entrada	Estado Atual		F	F
Е	Q_1	Q_0	D_1	D_0
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

D_0				
E\Q ₁ Q ₀	00	01	11	10
0	1			1
1	1			1
D_1				
E\Q ₁ Q ₀	00	01	11	10
0		1		1
1	1		1	

Entrada	Estado	Atual	F	F
Е	Q_1	Q_0	D_1	D_0
0	0	0	0	1
0	0	1	1	0
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	1
1	1	1	1	0

$$D_0 = Q'_0$$

D_0				
E\Q ₁ Q ₀	00	01	11	10
0	1			1
1	1			1
D_1				
E\Q ₁ Q ₀	00	01	11	10
0		1		1
1	$\overline{1}$		1	
D - FC	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		I F	\bigcirc

$$D_1 = EQ'_1Q'_0 + E'Q'_1Q_0 + EQ_1Q_0 + E'Q_1Q'_0$$

$$Z_0 = Q_0$$
 $Z_1 = Q_0$
 $D_0 = Q_0$
 $D_1 = EQ_1'Q_0' + E'Q_1'Q_0 + EQ_1Q_0 + E'Q_1Q_0'$

SÍNTESE DE CIRCUITOS GRAY CODING

- ☐ Gerador de código gray de 3 bits.
- Entradas: 0
- ☐ Saídas: 3
- FF: Tipo T (toggle)
- ☐ FSM: Moore

- ☐ Gerador de código gray de 3 bits.
- ☐ Entradas: 0
- Saídas: 3
- ☐ FF: Tipo T (toggle)
- FSM: Moore

T	Q	Q _{Novo}
0	0	0
0	1	1
1	0	1
1	1	0

Para criar uma codificação gray, começamos com 1 dígito (0 ou 1)

Para cada novo dígito a ser adicionado uma função de espelho é aplicada

E em cada parte do espelho adiciona-se Os ou 1s

Para criar uma codificação gray, começamos com 1 dígito (0 ou 1)

Para cada novo dígito a ser adicionado uma função de espelho é aplicada

E em cada parte do espelho adiciona-se Os ou 1s

Espelho

	Es	tado Atu	ıal	Pr	óx. Esta	do
0 0 0						
0 0 1	0	0	0	0	0	1
0 1 1	0	0	1	0	1	1
0 1 0	0	1	1	0	1	0
1 1 0	0	1	0	1	1	0
1 0 1	1	1	0	1	1	1
1 0 0	1	1	1	1	0	1
	1	0	1	1	0	0
	1	0	0	0	0	0

SOLUÇÃO: GRAY CODING

Es	stado Atu	ıal	Pr	óx. Esta	do		FF-T	
0	0	0	0	0	1	0	0	1
0	0	1	0	1	1	0	1	0
0	1	1	0	1	0	0	0	1
0	1	0	1	1	0	1	0	0
1	1	0	1	1	1	0	0	1
1	1	1	1	0	1	0	1	0
1	0	1	1	0	0	0	0	1
1	0	0	0	0	0	1	0	0

SOLUÇÃO: GRAY CODING

E	stado Atı	ıal		FF-T	
Q_2	Q_1	Q_0	T_2	T_0	T_0
0	0	0	0	0	1
0	0	1	0	1	0
0	1	1	0	0	1
0	1	0	1	0	0
1	1	0	0	0	1
1	1	1	0	1	0
1	0	1	0	0	1
1	0	0	1	0	0

SÍNTESE DE CIRCUITOS ALARME 111

PROJETO: ALARME 111

- Um alarme soa quando houver 3 ou mais peças consecutivas na esteira;
- A esteira não é desligada;
- O alarme é desligado quando não houver um conjunto de 3 peças consecutivas.
- \square Entrada: 1 {Não há peça = 0, Há nova peça = 1}
- ☐ Saída: 1 {Não soa alarme = 0, Soa alarme = 1}
- FF: Tipo D
- FSM: Mealy

X	0	1	1	0	1	0	1	1	1	0	1	0	1	1	1	1	1	0	0	1
\mathbf{Z}	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1	0	0	0

X																				
Z	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1	0	0	0

X	0	1	1	0	1	0	1	1	1	0	1	0	1	1	1	1	1	0	0	1
\mathbf{Z}	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1	0	0	0

X																				
Z	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1	0	0	0

X	0	1	1	0	1	0	1	1	1	0	1	0	1	1	1	1	1	0	0	1
Z	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	1	0	0	0

Tabela de Transição de Estados

Entrada	Estado	Atual	Próx.	Estado	Saída
0	0	0	0	0	0
0	0	1	0	0	0
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	1	0
1	1	1	1	1	1

Tabela de Saída

Entrada	Estado	Atual	Saída
X	Q_1	Q_0	Z
0	0	0	0
0	0	1	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	1	1

A saída nesse caso é uma simples função AND da entrada com estado atual.

$$Z = XQ_1Q_0$$

Entrada	Estado	Atual	Próx.	Estado
X	Q_1	Q_0	D_1	D_0
0	0	0	0	0
0	0	1	0	0
0	1	1	0	0
1	0	0	0	1
1	0	1	1	1
1	1	1	1	1

D_0				
$X \setminus Q_1 Q_0$	00	01	11	10
0				X
1	1	1	1	X
D_1				
$X \setminus Q_1 Q_0$	00	01	11	10
0				X
1		1	1	X

$$D_0 = X$$
$$D_1 = XQ_0$$

SÍNTESE DE CIRCUITOS CONTADOR SIMPLES/DUPLO

- ☐ Um contador módulo 3;
- 🛘 Caso a entrada estiver ligada o contador incrementa duas posições.
- \square Entrada: 1 {Incremento de um = 0, Incremento de dois = 1}
- ☐ Saída: 2 {valor do contador}
- ☐ FF: Tipo JK
- ☐ FSM: Mealy

- ☐ Um contador módulo 3;
- 🛘 Caso a entrada estiver ligada o contador incrementa duas posições.
- \square Entrada: 1 {Incremento de um = 0, Incremento de dois = 1}
- ☐ Saída: 2 {valor do contador}
- ☐ FF: Tipo JK
- ☐ FSM: Mealy

- ☐ Um contador módulo 3;
- 🛘 Caso a entrada estiver ligada o contador incrementa duas posições.
- \square Entrada: 1 {Incremento de um = 0, Incremento de dois = 1}
- ☐ Saída: 2 {valor do contador}
- ☐ FF: Tipo JK
- ☐ FSM: Mealy

- ☐ Um contador módulo 3;
- 🛘 Caso a entrada estiver ligada o contador incrementa duas posições.
- \square Entrada: 1 {Incremento de um = 0, Incremento de dois = 1}
- ☐ Saída: 2 {valor do contador}
- ☐ FF: Tipo JK
- ☐ FSM: Mealy

J	K	Q
0	0	Q
0	1	0 (Reset)
1	0	1 (Set)
1	1	Q'

Tabela de Saídas

Entrada	Estado Anterior		Saíd	as
0	0	0	0	1
0	0	1	1	0
0	1	0	0	0
0	1	1	X	X
1	0	0	1	0
1	0	1	0	0
1	1	0	0	1
1	1	1	X	X

Tabela de Saídas

Entrada	Estado Anterior		Saídas	
Е	Q_1	Q_0	D_1	D_0
0	0	0	0	1
0	0	1	1	0
0	1	0	0	0
0	1	1	X	X
1	0	0	1	0
1	0	1	0	0
1	1	0	0	1
1	1	1	X	X

D_0				
EQ_1Q_0	00	01	11	10
0	1	0	X	0
1	0	0	X	1
D ₁				
EQ_1Q_0	00	01	11	10
0	0	1	X	0
1	1	0	X	0

$$D_0 = EQ_1 + E'Q'_1Q'_0$$

$$D_1 = E'Q_0 + EQ'_1Q'_0$$

00	01	11	10
1	0	X	0
0	0	X	1
00	01	11	10
0	1	X	0
1	0	X	0
	1 0 00 0	1 0 0 0 0 0 0 0 1 0 1	1 0 X 0 0 X 00 01 11 0 1 X

Flip-flop J-K

Transição		Entradas		
Q	Q _{novo}	J	K	
0	0	0	X	
0	1	1	X	
1	0	X	1	
1	1	X	0	

Entrada	Esta Ante		Próx Esta	
E	Q ₁	Q_0		
0	0	0	0	1
0	0	1	1	0
0	1	0	0	0
0	1	1	X	X
1	0	0	1	0
1	0	1	0	0
1	1	0	0	1
1	1	1	X	X

Entrada	Estado Anterior		Próx. Estado		FF-JK 1		FF-JK 2	
Е	Q_1	Q_0			J	K	J	K
0	0	0	0	1	0	X	1	X
0	0	1	1	0	1	X	X	1
0	1	0	0	0	X	1	0	X
0	1	1	X	X	X	X	X	X
1	0	0	1	0	1	X	0	X
1	0	1	0	0	0	X	X	1
1	1	0	0	1	X	1	1	X
1	1	1	X	X	X	X	X	X

Entrada	Esta Ante		Próx. Estado		FF-JK 1		FF-JK 2	
Е	Q_1	Q_0			J	K	J	K
0	0	0	0	1	0	X	1	X
0	0	1	1	0	1	X	X	1
0	1	0	0	0	X	1	0	X
0	1	1	X	X	X	X	X	X
1	0	0	1	0	1	X	0	X
1	0	1	0	0	0	X	X	1
1	1	0	0	1	X	1	1	X
1	1	1	X	X	X	X	X	X

Entrada		Estado Anterior		Próx. Estado		FF-JK 1		-JK 2
Е	Q_1	Q_0			J	K	J	K
0	0	0	0	1	0	X	1	X
0	0	1	1	0	1	X	X	1
0	1	0	0	0	X	1	0	X
0	1	1	X	X	X	X	X	X
1	0	0	1	0	1	X	0	X
1	0	1	0	0	0	X	X	1
1	1	0	0	1	X	1	1	X
1	1	1	X	X	X	X	X	X

ANÁLISE DE CIRCUITOS

ANÁLISE DE CIRCUITOS PROJETO: ANÁLISE DA FSM

Analise a seguinte máquina de estados e responda:

FSM Moore ou Mealy?

Qual a tabela de transições?

Projete o circuito utilizando FF do tipo T

ANÁLISE DE CIRCUITOS SOLUÇÃO: ANÁLISE DA FSM

Tabela de Transição de Estados

Entrada	Estado Atual		Próx. Estado		FF 1	FF 2	Saída
0	0	0	0	0	0	0	0
0	0	1	Ī	1	1	0	0
0	1	1	0	0	1	0	0
1	0	0	0	1	0	0	0
1	0	1	0	1	0	1	0
1	1	1	1	1	0	1	1

ANÁLISE DE CIRCUITOS PROJETO: ANÁLISE DO CIRCUITO

Analise o circuito e responda:

FSM Moore ou Mealy?

Qual o diagrama de estados?

Qual a tabela de transições?

Substituir o FF tipo D pelo tipo JK

ANÁLISE DE CIRCUITOS SOLUÇÃO: ANÁLISE DO CIRCUITO

FSM de Mealy!

ANÁLISE DE CIRCUITOS PROJETO: ANÁLISE DO CIRCUITO

Analise o circuito e responda:

FSM Moore ou Mealy?

Qual o diagrama de estados?

Qual a tabela de transições?

Substituir o FF tipo D pelo tipo JK

ANÁLISE DE CIRCUITOS SOLUÇÃO: ANÁLISE DO CIRCUITO

Entrada	Estado Atual	Próx. Estado	FF-J	FF-K	Saída
0	0	0	0	X	0
0	1	1	X	0	0
1	0	1	1	X	0
1	1	0	X	1	1

