

Communication Theory (5ETB0) Module 10.1

Alex Alvarado a.alvarado@tue.nl

Information and Communication Theory Lab Signal Processing Systems Group Department of Electrical Engineering Eindhoven University of Technology, The Netherlands

www.tue.nl/ictlab/

Module 10.1

Presentation Outline

Part I Motivation and Problem Description

Part II Model: Binary and Nonbinary PAM

Problem Description: Serial Transmission

Motivation

- \blacksquare A channel with a bandwidth of W Hz can accommodate roughly 2WT dimensions each T seconds (dimensionality theorem)
- lacksquare Obtained for building-block waveforms that are zero outside [0,T]
- \blacksquare Can we get 2WT extra dimensions every new T seconds (2W extra dimensions per second)?
 - Answer is yes, using building-blocks waveforms with nonfinite duration

Consequences

- Building blocks that are not time-limited:
 - Finite bandwidth, but
 - inter-symbol interference is created

In this module we will show that time-shifted versions of the original pulse can be used, and that some properties of the pulse make the interference disappear (with the right receiver).

Motivation: Who Cares about the Spectrum?

Module 10.1

Presentation Outline

Part I Motivation and Problem Description

Part II Model: Binary and Nonbinary PAM

A Question Before Getting Started...

A linear filter fed with a train of impulses

- Suppose we have a linear filter
- Impulse response p(t) and fed with a train of weighted impulses

$$x_{\underline{a}}(t) = \sum_{k=0}^{K-1} a_k \delta(t - kT)$$

 $\xrightarrow{x_{\underline{a}}(t)} p(t) \xrightarrow{s_{\underline{a}}(t)}$

where
$$\underline{a} = (a_0, a_1, \dots, a_{K-1})$$

■ What is the output of the filter $s_a(t)$?

Answer:

$$s_{\underline{a}}(t) = \sum_{k=0}^{K-1} a_k p(t - kT)$$

Model: Binary PAM

Serial pulse-amplitude modulation (PAM)

Transmitted signal is: $s_{\underline{a}}(t) = \sum_{k=0}^{K-1} a_k p(t-kT)$. Vector of amplitudes $\underline{a} = (a_0, a_1, \dots, a_{K-1})$ consists of symbols $a_k, k = 0, \dots, K-1$ taking values in the alphabet $A = \{-1, +1\}$

Model: Nonbinary PAM

Non-binary PAM Example

To double the transmission rate, we can double the number of bits per symbol. This can be obtained using an alphabet with 4 messages: $A = \{-3, -1, 1, 3\}$.

Two Comments

- lacksquare Serial PAM is similar to bit-by-bit signaling with K=1. Differences: not using time-limited pulses and nonbinary alphabets $\mathcal{A}.$
- Geometrical representations of binary and nonbinary PAM are:

Summary Module 10.1

Take Home Messages

- Pulses that are not time-limited can be used for transmission
- Serial pulse amplitude modulation (binary and nonbinary)
- Inter-symbol interference is generated

Communication Theory (5ETB0) Module 10.1

Alex Alvarado a.alvarado@tue.nl

Information and Communication Theory Lab Signal Processing Systems Group Department of Electrical Engineering Eindhoven University of Technology, The Netherlands

www.tue.nl/ictlab/