Feuille d'exercices 3 : séries de fonctions

Exercice 1. Déterminer le domaine de convergence simple des séries de fonctions $(\sum_{n\geq 0} u_n)$ de terme général défini comme suit, puis étudier la convergence normale et uniforme sur ce domaine :

1.
$$u_n(x) = e^{-nx}, x \in \mathbb{R}_+.$$

2.
$$u_n(x) = x^n, x \in [0, 1].$$

3.
$$u_n(x) = \frac{1}{2^n} \sin(3^n x), x \in \mathbb{R}.$$

4.
$$u_n(x) = \frac{1}{1 + (n-x)^2}, x \in \mathbb{R}.$$

Exercice 2. Mêmes questions pour les séries de terme général défini par :

1.
$$u_n(x) = n^x, x \in \mathbb{R}$$
.

2.
$$u_n(x) = (-1)^n n^x, x \in \mathbb{R}$$
.

3.
$$u_n(x) = e^{-n(x^2+1)}, x \in \mathbb{R}$$
.

4.
$$u_n(x) = \frac{1}{n} \arctan(\frac{x}{n}), x \in \mathbb{R}$$

Exercice 3. Mêmes questions pour les séries de terme général défini par :

1.
$$u_n(x) = ne^{-nx}, x \in \mathbb{R}_+^*$$
.

2.
$$u_n(x) = \begin{cases} n^2 x (1 - nx) & \text{si } x \in [0, \frac{1}{n}], \\ 0 & \text{si } x \in [\frac{1}{n}, 1]. \end{cases}$$

3.
$$u_n(x) = e^{-nx} \sin x, x \in \mathbb{R}_+$$
.

4.
$$u_n(x) = \frac{\sin(nx)}{1 + n^2 x^2}, x \in \mathbb{R}.$$

Exercice 4. On considère la suite $(u_n)_{n\geq 1}$ de fonctions $u_n: \mathbb{R}_+ \to \mathbb{R}$ définies par

$$u_n(x) = \frac{1}{n + xn^2} \quad (n \ge 1, x \in \mathbb{R}_+).$$

- 1. Déterminer le domaine de convergence simple $D \subset \mathbb{R}$ de la série de fonctions $(\sum_{n>1} u_n)$.
- 2. Étudier la convergence normale de la série de fonctions $(\sum_{n\geq 1} u_n)$ sur D, puis sur $[a, +\infty[$ pour tout réel a>0.
- 3. La série de fonctions $\left(\sum_{n\geq 1}u_n\right)$ converge-t-elle uniformément sur D ?
- 4. La fonction $f = \sum_{n=1}^{+\infty} u_n$ est-elle dérivable sur \mathbb{R}_+^* ?
- 5. Montrer que f est intégrable sur [1,2] et exprimer $\int_1^2 f(t) dt$ comme la somme d'une série numérique.

Exercice 5. Etudier la série de fonctions de terme général u_n défini pour $n \ge 1$ par :

$$u_n(x) = \frac{1}{n^3 + n^4 x^2}, \quad x \in \mathbb{R}.$$

La somme est-elle continue sur \mathbb{R} ? dérivable sur \mathbb{R} ?

Exercice 6. Mêmes questions pour la série de terme général v_n défini pour $n \ge 1$ par :

$$v_n(x) = \frac{1}{n^2 + n^4 x^2}, \quad x \in \mathbb{R}.$$

Exercice 7. Pour tout $n \in \mathbb{N}^*$, on définit la fonction $u_n : \mathbb{R} \to \mathbb{R}$ par

$$u_n(x) = \frac{(-1)^n}{2\sqrt{n} + \cos x}, \quad x \in \mathbb{R},$$

Montrer que la série $\sum_n u_n$ converge uniformément sur \mathbb{R} . Étudier la convergence normale.

Exercice 8. Pour tout $n \in \mathbb{N}^*$, on définit la fonction $v_n : \mathbb{R}_+ \to \mathbb{R}$ par

$$v_n(x) = \frac{\cos(nx)}{\sqrt{n+x}}.$$

On fixe $\alpha \in]0, \pi[$. On veut montrer que la série $\sum_n v_n$ converge uniformément sur l'intervalle $I = [\alpha, 2\pi - \alpha]$. Pour tous $q \geq p$ entiers naturels et $x \in \mathbb{R}$, on note $S_{p,q}(x) = \sum_{k=p+1}^q \cos(kx)$. Par convention, $S_{p,p}(x) = 0$.

- 1. Lorsque $x \in \mathbb{R} \setminus 2\pi\mathbb{Z}$, calculer $S_{p,q}(x)$ et montrer que $|S_{p,q}(x)| \leq \frac{1}{|\sin(x/2)|}$. On utilisera les formules d'Euler $e^{i\theta} + e^{-i\theta} = 2\cos\theta$ et $e^{i\theta} e^{-i\theta} = 2i\sin\theta$.
- 2. En écrivant $v_n(x) = (S_{p,n}(x) S_{p,n-1}(x))/\sqrt{n+x}$, montrer que

$$\sum_{n=p+1}^{q} v_n(x) = \sum_{n=p+1}^{q-1} S_{p,n}(x) \left[\frac{1}{\sqrt{n+x}} - \frac{1}{\sqrt{n+1+x}} \right] + \frac{S_{p,q}(x)}{\sqrt{q+x}}.$$

3. En déduire que $\left|\sum_{n=p+1}^q v_n(x)\right| \leq \frac{1}{\sqrt{p+x}} \frac{1}{|\sin(\frac{x}{2})|}$ et conclure.

Exercice 9. Pour x > 0, on pose

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{x(x+1)\dots(x+n)}.$$

- 1. Montrer que la somme ci-dessus définit une application continue $f: \mathbb{R}_+^* \to \mathbb{R}_+^*$.
- 2. Exprimer f(x+1) en fonction de f(x) pour tout x>0.
- 3. Montrer que la fonction f est monotone, et donner un équivalent de f(x) lorsque $x \to 0$, ainsi que lorsque $x \to +\infty$.
- 4. Étudier la dérivabilité de f sur \mathbb{R}_+^* .
- 5. Tracer l'allure du graphe de f.

Exercice 10. Soit $u:[0,1]\to\mathbb{R}$ la fonction définie par u(0)=0 et $u(x)=-x\ln x$ si $x\in[0,1]$.

- 1. Vérifier que u est continue sur [0,1].
- 2. Montrer que la série de fonctions $\left(\sum_{n\in\mathbb{N}}u^n/n!\right)$ converge normalement sur [0,1], et calculer sa somme.
- 3. En intégrant par parties, calculer $\int_0^1 u^n(x) dx$ pour tout $n \in \mathbb{N}$.
- 4. En déduire que

$$\int_0^1 \frac{1}{x^x} \, \mathrm{d}x = \sum_{n=1}^\infty \frac{1}{n^n} \; .$$

Exercice 11. Pour tout $n \geq 1$, on note v_n la fonction de \mathbb{R} dans \mathbb{R} définie par On souhaite étudier la somme S de la série de fonctions de terme général v_n défini pour $n \geq 1$ par :

$$v_n(x) = \frac{1}{n^2 + n^4 x^2} \,.$$

- 1. Montrer que la série de fonctions $(\sum_{n>1} v_n)$ converge normalement sur \mathbb{R} .
- 2. Qu'en déduit-on pour sa somme S?
- 3. Montrer que S est paire, et (strictement) décroissante sur \mathbb{R}_+ .
- 4. Montrer que S tend vers 0 en $+\infty$.
- 5. Montrer que la série $\left(\sum_{n\geq 1} v_n'\right)$ ne converge pas normalement sur \mathbb{R} mais que pour tout a>0, elle converge normalement sur $]-\infty,-a]\cap [a,+\infty[$. Qu'en déduit-on pour S?
- 6. Pour tout $h \in \mathbb{R}_+^*$, on note $w_h : \mathbb{R} \to \mathbb{R}$ la fonction définie par $w_h(t) = (1 + h^2 t^2)^{-1}$. Établir un encadrement du taux d'accroissement (S(h) - S(0))/h à l'aide d'intégrales de la fonction w_h , en montrant que

$$\frac{S(h) - S(0)}{h} = h \sum_{n=1}^{+\infty} w_h(n).$$

- 7. En déduire que S est dérivable à droite en 0. Est-elle dérivable en 0?
- 8. Donner l'allure du graphe de S.

Exercice 12. Escalier du diable ou de Cantor

On définit la suite $(f_n)_{n\in\mathbb{N}}$ de fonctions de [0,1] dans \mathbb{R} par récurrence : $f_0(x) = x$ pour tout $x \in [0,1]$ et, pour $n \geq 0$,

$$f_{n+1}(x) = \begin{cases} \frac{1}{2} f_n(3x) & \text{si } x \in [0, \frac{1}{3}], \\ \frac{1}{2} & \text{si } x \in [\frac{1}{3}, \frac{2}{3}], \\ \frac{1}{2} + \frac{1}{2} f_n(3x - 2) & \text{si } x \in [\frac{2}{3}, 1]. \end{cases}$$

- 1. Tracer sur un même graphique les graphes de f_0, f_1, f_2 .
- 2. Montrer que chaque f_n est continue et croissante.
- 3. Pour tout $n \in \mathbb{N}^*$, on note $u_n = f_n f_{n-1}$. Montrer que $||u_{n+1}||_{\infty} \leq \frac{1}{2}||u_n||_{\infty}$. En déduire que la série de fonctions $(\sum u_n)$ converge normalement.
- 4. En déduire que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers une fonction f continue et croissante.

Exercice 13. Soient $a \in]0,1[$ et b > 0. Pour tout $n \in \mathbb{N}$, on définit la fonction u_n de \mathbb{R} dans \mathbb{R} par

$$u_n(x) = a^n \sin(b^n x)$$
 pour tout $x \in \mathbb{R}$.

- 1. Montrer que la série $(\sum_{n\in\mathbb{N}} u_n)$ converge normalement. On note f sa somme.
- 2. Montrer que f est continue sur \mathbb{R}
- 3. Montrer que si ab < 1, f est de classe C^1 .
- 4. Montrer que pour tout $x \in \mathbb{R}$, $f(x) = af(bx) + \sin(x)$.
- 5. On suppose que ab=1 et que b est un entier ≥ 2 . Montrer que f n'est dérivable en aucun point de la forme

$$x = 2kb^n\pi, (k, n) \in \mathbb{Z}^2.$$

On commencera par le cas x=0 et on montrera que f est 2π -périodique. Que dire de cette famille de points (considérer par exemple le cas b=10)?

Exercice 14.

Pour tout $n \in \mathbb{N}$ et $x \in \mathbb{R}$, on note $u_n(x) = nx^n$.

- 1. Pour tout $n \in \mathbb{N}$ et $x \in \mathbb{R}$, calculer $U_n(x) = \sum_{k=0}^n u_k(x)$. Indication: remarquer que $u_n(x) = xv_n'(x)$, avec $v_n(x) = x^n$.
- 2. Donner le domaine de convergence simple et la somme de la série $(\sum_{n\in\mathbb{N}} u_n)$.
- 3. Y a-t-il convergence uniforme sur ce domaine? Normale?
- 4. Trouver des ensembles aussi gros que possibles sur lesquels la série $(\sum_{n\in\mathbb{N}} u_n)$ converge normalement.