JPL D-2802

Army Technology Development

IBIS Query

Software to Support the Image Based Information System (IBIS) Expansion for Mapping, Charting, and Geodesy

Prepared for

U.S. ARMY CORPS OF ENGINEERS ENGINEER TOPOGRAPHIC LABORATORIES FORT BELVOIR, VIRGINIA 22060 – 5546

Approved for public release; distribution is unlimited.

June 1986

National Aeronautics and Space Administration

JPL

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

REPORT I	DOCUMENTATIO	N PAGE			Form Approved OMB No 0704-0188 Exp Date Jun 30, 1986
1a REPORT SECURITY CLASSIFICATION		16. RESTRICTIVE	MARKINGS		
Unclassified 2a SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION	/AVAILABILITY OF	PERMIT	
28 SECURITY CLASSIFICATION AUTHORITY					
26 DECLASSIFICATION / DOWNGRADING SCHEDU	ILE	is unlimi		release	e; distribution
4. PERFORMING ORGANIZATION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION RE	PORT NU	MBER(S)
JPL D-2802		ETL-0422			
6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL		ONITORING ORGAN		
Jet Propulsion Laboratory	(If applicable) JPL	National Administi	Aeronautics ration	and Sp	oace
6c. ADDRESS (City, State, and ZIP Code)		7b. ADDRESS (Ci	ty, State, and ZIP C	ode)	
California Institute of Techno	ology	ł			
4800 Oak Grove Drive		}			
Pasadena, California 91109 Ba. NAME OF FUNDING/SPONSORING	86 OFFICE SYMBOL	O DEOCHESMEN	T INSTRUMENT IDE	NITIEICAT	ION NUMBER
ORGANIZATION U.S. Army Engineer	(If applicable)	9. PROCUREIVIEN	I HAZIKONIENI IDE	MITFICAL	ION NOWBER
Topographic Laboratories	USAETL				
8c. ADDRESS (City, State, and ZIP Code)	COMBIE	10. SOURCE OF	FUNDING NUMBER	s	
		PROGRAM	PROJECT	TASK	WORK UNIT
Fort Belvoir, Virginia 22060-	-5546	ELEMENT NO.	NO.	NO.	ACCESSION NO
11 TITLE (Include Security Classification)		.			
IBIS Query - Software to Suppo	ort the Image Ba	sed Informat	ion System ((IBIS)	Expansion
for Mapping, Charting, and Geo					·
12. PERSONAL AUTHOR(S)					
Friedman, Steven Z.; Walker, I	Richard E.; and	Aitken, Robe	ert B. DRT (Year, Month, I	0\	PAGE COUNT
13a TYPE OF REPORT 13b TIME C Final FROM	TO	June 1986		Jay) II3	126
16 SUPPLEMENTARY NOTATION		Julie 1900	<u></u>		120
Prepared for the U.S. Army Eng the National Aeronautics and S			ies through	an agr	ceement with
17 COSATI CODES	18 SUBJECT TERMS (Continue on revers	se if necessary and	identify	by block number)
FIELD GROUP SUB-GROUP	Geographic	•			
	Spatial dat				
	Polygon ove				
19 ABSTRACT (Continue on reverse if necessary The Image Based Information Sy			dovolonment	at the	lot Propulation
Laboratory (IPL) since 1975.					
processing of image, graphical				•	
utilized to create comprehens:					
study various attribu 🤧 desci					
combinations of disparate data	i types can be s	ynthesized t	o obtain a m	iew per	spective on
spatial phenomena.					
In 1984, new query software w.	is developed ena	hline direct	. Boolean due	riae n	of IRIS data bacae
through the submission of eas:					
data dictionary, and display s					
ing, executing, and subsequent					
this report is to describe the	e features and c	apabilit i es	of the new q	uery s	software. A proje
20 DISTRIBUTION AVAILABILITY OF ABSTRACT		21 ABSTRACT SE	CURITY CLASSIFICA	ATION	
UNCLASSIFIED UNLIMITED SAME AS	APT DTIC USERS	Unclassi	fied		
228 NAME OF RESPONSIBLE NOIVIDUAL			(Include Area Code	· J	FFICE SYMBOL
Carl S. Huzzen		(202) 35	5-2685	I ET	L-CS-I

19. secondary purpose of this report is to compare this new query software to the query software developed previously (Friedman, 1982). With respect to this topic, the relative merits and drawbacks of both approaches are covered.

JPL D-2802

Army Technology Development

IBIS Query

Software to Support the Image Based Information System (IBIS) Expansion for Mapping, Charting, and Geodesy

Steven Z. Friedman Richard E. Walker Robert B. Aitken

Prepared for

U.S. Army Engineer Topographic Laboratories Information Sciences Division Fort Belvoir, Virginia

Prepared by

Jet Propulsion Laboratory

California Institute of Technology

Through an agreement with National Aeronautics and Space Administration

June 1986

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

CONCURRENCE

Steven Z. Friedman Task Manager	Date: 18 April 1986
E. Kane Casani Manager, Observational Systems Division	Date: 2 Mzy 86

Yukio Nakamura
Manager, Research and Technology
Development
Army Program Office

Date: 5-1-86

Acces	sion For	
DTIC Unani	CRA&I TAB Tounced Ication	
By Distrit	 oution/	
A	ivailability C	Codes
Dist	Avail and Special	l or
A-I		

CONTENTS

1.	INTRO	DDUCTION	-1
	1.1	BACKGROUND	-1
	1.2	IBIS QUERY DEVELOPMENT	-3
	1.3	ADVANCED IMAGE QUERY	-3
	1.4	DEMONSTRATION DATA BASE	-3
	1.5	APPROACH	-4
2.	DEVEI	OPMENT OF THE DEMONSTRATION DATA BASE	-1
	2.1	PREPROCESSING	-1
		2.1.1 Coordinate Digitization 2-	-2
		2.1.2 Reformatting	-2
		2.1.3 Spatial Rectification 2-	-6
		2.1.4 Vector to Image Conversion	-7
		2.1.5 Region Coding	-7
		2.1.6 Region Labeling	-9
	2.2	IMAGE PLANE OVERLAY AND AREA CALCULATION	-14
	2.3	SPECIAL PROCESSING REQUIRED TO SUPPORT THE INITIAL QUERY PROCEDURE	-15
		2.3.1 Development of a Composite-Feature Data Plane 2-	-15
		2.3.2 Development of the Master Attribute File 2-	-16
		2.3.3 Generation of Tabulations from the MA File 2-	-17
	2.4	CONCEPTUALIZATION OF THE HEALDSBURG DATA BASE 2-	-20
3.	ВАТСН	I-ENTRY QUERY	-1
	3.1	THE IBIS QUERY PROCEDURE	-1
		3.1.1 Calling Sequence	-1
		3.1.2 Query Expression Composition	-3

CONTENTS (Cont'd)

		3.1.3 Query Expression Evaluation
		3.1.4 Development of a Complex Query Expression 3-4
	3.2	EXAMPLE OPERATIONS OF THE QUERY PROCEDURE
		3.2.1 Evaluation of a Simple Operation
		3.2.2 Other Query Examples
	3.3	EVALUATION OF THE BATCH QUERY PROCEDURE
4.	INTERA	ACTIVE QUERY OF IBIS DATA BASES
	4.1	INTERACTIVE QUERY SOFTWARE
		4.1.1 Query Expression Components
		4.1.2 Query Statement Structure
		4.1.3 Query Statement Processing
		4.1.4 Display Capabilities
	4.2	EXAMPLE OPERATIONS OF THE NEW INTERACTIVE QUERY SOFTWARE
		4.2.1 Initiation of the QUERY Program
		4.2.2 Displaying Reference Information
		4.2.3 Development of QUERY Statements
		4.2.4 QUERY Processing
	4.3	EVALUATION OF THE INTERACTIVE QUERY PROGRAM
REFE	RENCES	5-1
APPE	NDIXES	
	Α.	SAMPLE QUERY PRODUCTS FROM INTERACTIVE QUERY
	R	DETAILED DATA PLANE DESCRIPTIONS R-

Figures

1-1.	Land Use Base Map Used in the MC&G Application	1-5
1-2.	Topographic Base Map Used in the MC&G Application	1-6
1-3.	Two Themes, the 100-year Floodplain and Land Use Revisions, Provided on the Same Base Map for MC&G	1-7
2-1.	Check Plot of Land Use Overlay as Digitized by the Vendor	2-3
2-2.	Check Plot of Contour Overlay as Produced by the Vendor	2-4
2-3.	Check Plot of Floodplain and Land Use Revision Overlays as Produced by the Vendor	2-5
2-4.	Composite Feature Data Plane Prepared by Combining the Four Thematic Data Planes	2-8
2-5.	Region-Coded Data Plane Representing Land Use	2-10
2-6.	Four-Color Representation of the Land Use Region-Coded Data Plane	2-11
2-7.	Four-Color Representation of the Contour, Floodplain, Land Use Revision, and Composite Feature Data Planes	2-12
2-8.	Schematic Diagram Depicting the MC&G Data Base	2-23
3-1.	Thematic Map Depicting Regions Encoded ACC	3-7
3-2.	Map Depicting ACC Regions with a Land Use Outline Map as Overlay for Better Georeferencing	3-9
3-3.	Map Depicting All Areas Greater Than 200 and Less Than 400 Feet in Elevation	3-11
3-4.	Map Depicting All Areas Within the Floodplain and Below 100 Feet, an Example of a More Complex Query	3-14
4-1.	Venn Diagrams Depicting the Logical Associations Between Two Sets, A and B	4-5
4-2.	Result of Query: Land Use Equals Code ACC	4-14
4-3.	Result of Query: FLD=BELO AND ELEV<100	4-15
4-4.	Result of a Query by the Composite Query Process	4-16

Figures (Cont'd)

A-1.	Result of Query:	LU=ACP AND FLD=BELO	A-3
A-2.	Result of Query:	LU=ACP AND FLD=ABOVE	A-3
A-3.	Result of Query:	LU=ACP AND ELEV.CODE GE 3	A-4
A-4.		LU=ACP AND (ELEV.CODE>=3 AND	A-4
A-5.	Result of Query: ELEV.CODE GT 5)	LU=ACP AND (ELEV.CODE<=2 OR	A -5
A-6.	Result of Query:	LU=ACP AND ELEV.CODE<>5	A- 5
A-7.	Result of Query:	FLD=BELO OR LU<>AVV	A-6
A-8.	Result of Query:	LU<>AVV AND LU<>ACP	A-6
A-9.	Result of Query:	LU=ACC OR LU=ACP	A-7
A-10.	Result of Query:	FLD=BELO OR (LU NE AVV AND ELEV.CODE=1) .	A-7
A-11.	Result of Query:	(FLD=ABOV)*ELEV.CODE*20	A-8
A-12.	Result of Query:	FLD=BELO OR EL=500	A-8
A-13.	Result of Query:	FLD=BELO AND ELEV.CODE GE 100	A-9
A-14.	Result of Query:	ELEV.CODE GE 3 AND ELEV.CODE LE 4	A-9
A-15.	Result of Query:	LUREV<>0	A-10
A-16.	Result of Query:	FLD=BELO AND ELEV.CODE <=1	A-10
A-17.	Result of Query:	ELEV.CODE=3	A-11
A-18.	Result of Query:	LUREV>1	A-11
A-19.	Result of Query:	LU=R	A-12
A-20.	Result of Query:	LU<>R	A-12
A-21.	Result of Query:	LU=R AND ELEV.CODE>=1	A-13
A-22.	Result of Query:	LU=R AND ELEV.CODE>=2	A-13
A-23.	Result of Query:	LU=R AND ELEV.CODE>=3	A-14
A-24.	Result of Query:	LU=R AND ELEV.CODE>=4	A-14
A-25.	Result of Ouerv:	LU=R AND ELEV.CODE>=5	A-15

Figures (Cont'd)

	A-26.	Result of Query: LU=R AND ELEV.CODE>=6	A-15
	A-27.	Result of Query: LU=R AND ELEV.CODE>=7	A-16
	A-28.	Result of Query: LU=R AND ELEV.CODE>=8	A-16
	A-29.	Result of Query: LU=R AND ELEV.CODE>=9	A-17
	A-30.	Result of Query: LU=R AND ELEV.CODE>=10	A-17
	B-1.	Numerical Identification Codes Assigned to Geographic Regions Comprising the Land Use Data Plane	B-3
	B-2.	Numerical Identification Codes Assigned to Regions Comprising the Contour Data Plane	B-4
	B-3.	Numerical Identification Codes Assigned to Regions Comprising the Floodplain Data Plane	B-5
	B-4.	Numerical Identification Codes Assigned to Regions Comprising the Land Use Revision Data Plane	В-6
<u>Table</u>	e <u>s</u>		
	2-1.	Number of Regions per Region-Coded Data Plane	2-13
	2-2.	Interface File Representing Land Use Revisions	2-14
	2-3.	Final Attribute File for land Use Revisions	2-15
	2-4.	Structure of the CF Attribute File	2-16
	2-5.	Partial Listing of the CF Attribute File	2-17
	2-6.	Composition of the Master Attribute File	2-18
	2-7.	Listing of Several Columns of the Master Attribute File	2-19
	2-8.	MA File Report Generated by Reporting All CF Components Forming a Land Use Region	2-21
	2-9.	All Unique Data Base Combinations	2-22
	3-1.	MA File Columns Used in Query Processing	3-2
	3-2.	Tabular Report of All Land Use Areas Encoded with Land Use Label ACC	3-6

Tables (Cont'd)

POST BOOK OF THE PROPERTY OF T

と、これにはないなどとなっている。

3-3.	Tabular Report of All Areas Greater Than 200 and Less Than 400 Feet in Elevation	3-10
3-4.	Tabular Report of All Areas Within the Floodplain and Below 100 Feet	3-12
4-1.	QUERY Statement Components	4-3
4-2.	Query Commands Available to the Analyst Are Listed by the QHELP Command	4-10
4-3.	A List of Available Attributes is Produced by the QLA Command	4-11
4-4.	List of All Expressions To Be Processed	4-12
4-5.	Results of Query Processing	4-13
4-6.	List of All Processed Queries Obtained from Issuing the QLP Command	4-13
A-1.	CPU Timings for Selected Queries	A-18
B-1.	Numerical Keys Assigned to Land Use and Land Use Revision Codes	B-7
B-2.	Numerical Keys Assigned to 100-Foot Contour Elevation Zones	B-8
B-3.	Numerical Keys Assigned to Floodplain Zones	B-8
B-4.	Healdsburg Quadrangle Land Use Data Plane	B-9
B-5.	Healdsburg Quadrangle Contour Data Plane	B-15
B-6.	Healdsburg Quadrangle Floodplain Data Plane	B-17
B-7.	Healdsburg Quadrangle Land Use Revision Data Plane	B-17
B-8.	Healdsburg Ouadrangle Summary of Georeference Base	B-18

SECTION 1

INTRODUCTION

The Image Based Information System (IBIS) has been under development at the Jet Propulsion Laboratory (JPL) since 1975. It is a collection of more than 90 programs that enable processing of image, graphical, and tabular data for spatial analysis. IBIS can be utilized to create comprehensive geographic data bases. From these data, an analyst can study various attributes describing characteristics of a given study area. Even complex combinations of disparate data types can be synthesized to obtain a new perspective on spatial phenomena.

In 1981, a methodology was developed for using IBIS to construct data bases that could be subsequently queried through direct submission of Boolean expressions (Friedman, 1982). The process of building a data base that could be queried was not complicated; and no new IBIS software had to be developed. However, the process of creating Boolean statements and executing queries was not simple. The query software, although functional, was not very sophisticated or user-friendly. The analyst was required to remember the entire complex structure of the data base in order to build any query. This requirement usually resulted in the production of detailed lists that mapped out the complex relationships between the various data objects contained in the data base. Despite this drawback, the query software proved to be an effective tool for spatial analysis. As a result of these developments, a new endeavor was begun to develop more sophisticated and user-friendly query software.

In 1984, new query software was developed enabling direct Boolean queries of IBIS data bases through the submission of easily understood expressions. An improved syntax methodology, a data dictionary, and display software simplified the analysts tasks associated with building, executing, and subsequently displaying the results of a query. The primary purpose of this report is to describe the features and capabilities of the new query software. A secondary purpose of this report is to compare this new query software to the query software developed previously (Friedman, 1982). With respect to this topic, the relative merits and drawbacks of both approaches are covered.

1.1 BACKGROUND

CANADAN TORONOM TORONOM BOSCOTO CONTROL

IBIS has been developed out of the need to merge digital imagery data, such as that obtained from airborne and satellite scanners, with the more traditional geographic data such as thematic maps and tables. Due to differences in methodology for automated storage of these disparate data types, the imagery and geographical data cannot be directly used in computerized integrated analysis. With IBIS, however, these data types can be transformed into a standardized group of data formats that can be easily interfaced for spatial analysis.

The primary data storage medium for IBIS is the data plane, or digital image (raster); however, vector-graphics and tabular data sets are handled as well. In order to compare vector-graphics files with image data, the vector data are first converted into image format. To perform this function, a

complete set of software is provided to enable (1) the initial reformatting of input data from outside sources, (2) the correction of both global and local spatial distortions, and (3) the conversion of vector-graphics formatted data into the raster format. A large number of IBIS programs have also been developed to process data stored in tabular form. These data are stored in files referred to as attribute files (previously referred to in other documents as interface files). The variety of software for processing attribute files is quite diverse, including programs that enable processing of complex mathematical expressions and models as well as basic programs for file maintenance and listing. Depending on the application, these attribute files may be processed independently; but they are most commonly linked to one or more specialized data planes referred to as region-coded data planes. Region-coded data planes are used to represent geographical areas, or regions, in an image context. When used in the latter mode, these attribute files usually provide spatial context to their associated region-coded data plane.

Initial applications with IBIS pertained to merging thematically classified Landsat data with some form of georeference material for the purpose of reporting land cover distributions within commonly understood boundary regions such as census tracts (Angelici and Bryant, 1976; Bryant, 1976). Subsequent advancements in IBIS enabled the construction of large digital image mosaics and data bases with precise planimetric qualities (Zobrist, 1979). Cartographic applications based solely on the digital analysis of thematic maps and other nonimage source materials have also been completed with IBIS. One application dealt with modeling subsurface coal resources in Illinois (Farrell and Wherry, 1978). Another application (Logan, 1981) dealt with the analysis and modeling of the potential for debris slides occurring in mountainous terrain.

Multilayered data bases, containing several independent region-coded data planes and their associated attribute files, were constructed in order to perform the last two referenced IBIS applications. Analysts subsequently developed complex batch-entry computer programs to perform the needed modeling on those data bases. The results of those applications were quite effective, and proved that IBIS could be used to merge disparate cartographic data for modeling applications.

An offshoot of those applications was the realization that IBIS data bases could be constructed to facilitate data base queries by submission of Boolean query expressions. The first application of a query procedure involved the analysis of a vegetation map containing four levels of detail. The map itself was quite complicated, as it depicted four layers of vegetation information on a single map sheet. Human interpretation of the map was nearly impossible. However, once an IBIS data base was constructed, it became quite easy to analyze the map data by submitting Boolean query statements. The data base for that operation was quite simple, containing only one region-coded data plane and its associated attribute file. The capability to query a data base containing a single data plane and attribute file had been proved. That work paved the way towards the development of query software that could be utilized to analyze complex data bases.

1.2 IBIS QUERY DEVELOPMENT

というとうとと としてくびん

The first IBIS data base query software (Friedman, 1982) involved the execution of a previously stored sequence of batch-entry job steps and operated on a data base derived from four independent map sources. The four source maps were converted into IBIS data sets through previously developed and tested methodology. Then the four region-coded data planes were combined to create a higher level region-coded data plane referred to as a composite feature (CF) data plane. Rather than processing and querying the four independent region-coded data planes, the CF data plane and its associated attribute file was actually queried. The query statements themselves were produced by the analyst at run-time, and consisted of a Boolean expression similar to those used in FORTRAN for logical Boolean operations. This process proved to be quite effective and provided the first capability to query large IBIS data bases.

Although the first batch query procedure was an effective tool, several aspects of that procedure made it unwieldly to utilize. Creating the CF data plane and its associated attribute file was a complicated process. Furthermore, the methodology employed prohibited the addition of new region-coded data planes to the data base without complete reconstruction of the CF data plane. Even after the data base was constructed, the actual development of query statements was complicated by the fact that the user had to remember all aspects of data base organization. Additionally, the syntax for developing query expressions was not considered to be user-friendly. Finally, the query process in itself could be simply improved by making it an interactive process.

1.3 ADVANCED IMAGE QUERY

Some improvements to the batch query procedure were obtained through a simple modification making it a semi-interactive procedure. The actual software involved in query processing was unchanged, but the action of placing the procedure within an interactive context was a significant improvement in itself. However, removal of the obstacles previously described necessitated a complete redevelopment of the query concept. A new query procedure was developed that operated directly on the individual region-coded data planes comprising a data base instead of querying the CF data plane. Part of the improvement was the development of a new query language and the introduction of a data dictionary. Finally, the query software was merged with existing interactive image display software to provide more versatility for the user.

1.4 DEMONSTRATION DATA BASE

A demonstration data base was built to test both the batch and interactive query software. Source materials for the data base consisted of four sets of thematic information on three film transparencies. The four themes

included were: (1) land use (Figure 1-1), (2) elevation (Figure 1-2), (3) 100-year floodplain, and (4) land use revisions (both on Figure 1-3). The source maps were digitized, producing four IBIS vector-graphics files. Vector-graphics files are used to store coordinate data within IBIS. Those files were subsequently processed in order to create four IBIS region-coded data planes and four attendant attribute files. Additional processing steps were also required to prepare the data base for the batch query procedure in order to develop the CF data plane.

1.5 APPROACH

2001 ROSSONSS ANDRONNE MANAGEMENT RESERVED TOURISMON

In order to provide perspective on the differences between this new approach and the earlier IBIS effort, both the original and the new query processes are described. The original query procedure is covered in Section 3, and the new method is described in Section 4. Preceding those two sections, a brief description of the test data base, including the method of its construction, is covered. A more detailed description of the development of the test data base can be found in Section 2 of Image Based Approach to Mapping, Charting, and Geodesy (Friedman, 1982). Finally, several sample query results can be found in Appendix A, and a detailed listing of the contents of the data base can be found in Appendix B.

Figure 1-1. Land Use Base Map Used in the MC&G Application

Figure 1-2. Topographic Base Map Used in the MC&G Application

Figure 1-3. Two Themes, the 100-year Floodplain and Land Use Revisions, Provided on the Same Base Map for MC&G

SECTION 2

DEVELOPMENT OF THE DEMONSTRATION DATA BASE

An IBIS data base was constructed for the purpose of demonstrating the query software. The data base represented aspects of the physical and cultural environments in and around Healdsburg, a small city in the wine country of northern California. Source materials used in the construction of the data base were three film transparencies containing four categories of thematic information: (1) land use, (2) zones of elevation, (3) the 100-year flood-plain, and (4) land use revisions. The film transparencies were originally hand-drawn and registered to the Healdsburg topographic map (1:24,000 scale) produced by the US Geological Survey. The source data cover about 14.5 square miles of the northeast corner of that quadrangle.

The query data base itself includes four IBIS paired-data sets (PDS). Each IBIS PDS is composed of two files, a region-coded data plane and its subordinate attribute file. The region-coded data plane embodies the spatial component of a PDS. Within that data plane, individual regions are uniquely identified by assigning all pixels within each region a unique gray tone (DN value, an eight-bit binary value). Each attribute file is subordinate to a region-coded data plane and contains specific tabular information describing attributes of the regions in the associated region-coded data plane. Several categories of information, such as each region's DN code, attribute label, and areal coverage, are possible attributes that can be stored in an attribute The logical association between each region-coded data plane and its associated attribute file is derived from the fact that region codes are represented in both data sets, either as a DN value in the case of the regioncoded data plane or as an attribute representing a DN code in the case of the attribute file. Since region codes are represented in both companion files, data can be freely exchanged between them. For example, attribute data can be mapped onto a region-coded data plane (Friedman, 1980), or pixel counts can be tabulated by region and entered into an attribute file (Angelici and Bryant, 1976).

2.1 PREPROCESSING

reserved accepted

The creation of the Healdsburg data base involved the execution of a series of preprocessing steps. In this context, preprocessing refers to all procedures necessary for the preparation of the data base, but it does not include any processing directly associated with data base queries. When raw data are made available in the form of map transparencies, as was the case in this application, preprocessing can be divided into six distinct phases: (1) coordinate digitization, (2) reformatting, (3) spatial rectification, (4) vector-to-image conversion, (5) region coding, and (6) region labeling. The end result of completing these processing steps is the creation of an IBIS PDS composed of one region-coded data plane and one attribute file. Several of

these data sets were created in building the Healdsburg data base. Data processing steps listed above are briefly described in the following portion of this report.*

2.1.1 Coordinate Digitization

When source data are provided in the form of thematic maps or other two-dimensional hard copy, the data must undergo several processing steps before they can be used for IBIS query operations. The first step in this process is to convert map data into an electronic, computer-readable form. This process, referred to as digitizing, basically involves tracing map features with an electronic device that records their coordinate positions.

Coordinate digitization of the Healdsburg data base involved the production of two separate files for each of the four thematic overlays. First, line segments were traced to define the boundaries between geographic regions. A series of Cartesian coordinates (x,y) were recorded to represent each line segment. A separate line segment file was prepared for each map. Then, a second set of files containing region attribute (label) and positional reference information was digitized. One label was recorded for each region followed by a digitized coordinate that provides the physical mapping of the label to a specific region. These data provide the spatial component for the data base, eventually becoming region-coded data planes. These data provide the basis for the development of attribute files. Check plots were prepared to verify the quality of the digitization and to determine where corrections were required. Several iterations of preparing test plots and subsequent editing of the digitized files were completed before error-free products were produced (Figures 2-1, 2-2, and 2-3).

2.1.2 Reformatting

The final products obtained from the digitizing effort were eight files recorded on magnetic tape--four files containing boundary information and four files containing attribute data. Before those files could be used in IBIS query applications, they had to be reformatted to conform to the Video Image Communication and Retrieval (VICAR) system, and hence IBIS, standards for data set configuration. Two modifications were made on all input digitizer files. First, various system labels that describe data set attributes to VICAR (and IBIS) programs were added to each file. Then, the internal data format of the coordinate data was modified to conform to IBIS vector-graphics file specifications. Basically, all this step involved was the simple conversion of the data from the integer storage format of the digitizer to the real-data storage format used within IBIS. After these two steps were completed, the data sets were ready for the next data processing phase, spatial rectification.

^{*}A more detailed description of the steps for data base preparation can be found in Image Based Approach to Mapping, Charting, and Geodesy (Friedman, 1982). An overview of IBIS, including a detailed description of the relationship between region-coded data planes and attribute files, is covered there.

Figure 2-1. Check Plot of Land Use Overlay as Digitized by the Vendor

Figure 2-2. Check Plot of Contour Overlay as Produced by the Vendor

Figure 2-3. Check Plot of Floodplain and Land Use Revision Overlays as Produced by the Vendor

2.1.3 Spatial Rectification

SECOND PROPERT SECOND SECOND

When a geographic data base is being constructed for query, spatial continuity between all layers of the data base is essential. Misregistration or improper spatial alignment between the region-coded data planes would cause misrepresentation of the test area when the data base is queried. In order to maintain registration, all data planes are registered to a planimetric base known to have good spatial continuity. This process serves two purposes. First, data that were originally digitized from maps of differing scales and possibly different origins can all be referenced to the same absolute scale of the planimetric base. Second, local registration anomalies frequently occur as a result of map projection, digitizer operator error, or interpretation. Frequently, they can be easily corrected through invoking IBIS spatial rectification software.

Usually, two types of spatial transformations, affine and piecewise geometric, are employed to bring data into proper alignment with the planimetric base. Two IBIS programs, POLYREG and POLYGEOM, provide these capabilities. POLYREG, an affine transformation program, is first employed to obtain a close spatial fit to the planimetric base. A test lot or test image (Section 2.1.4 describes that process) is usually produced to verify the closeness of fit. Then small local aberrations in alignment are identified and tiepoints are selected to define local deformation patterns. These tiepoints are input to POLYGEOM, a piecewise processing program, for finer adjustments or corrections. Again, test plots or images are produced to check for registration accuracy. Usually, several iterations of adjusting registration tiepoints and running POLYGEOM are required when a precise fit is needed. However, when only close spatial alignment is needed, use of POLYREG alone produces acceptable results.

All source materials used for the Healdsburg data base were obtained directly from a US Geological Survey topographic map and from overlays that were registered to that topographic map. Since the polyconic projection used for the Healdsburg quadrangle is an acceptable source of spatial continuity for small geographic regions such as the Healdsburg area, the topographic map itself was selected to be the planimetric base.* All but one of the data files were transformed to the coordinate reference of the planimetric base by using POLYREG alone, as the simple two-dimensional affine transformation (scale, offset, and rotation) proved to be sufficient for registration among the images. Additional, minor local-area adjustments were required to bring the land use revision map into spatial alignment. The IBIS program POLYGEOM was utilized for that purpose.

^{*}The actual topographic map was never converted to image form. However, the geometry as defined by the topographic map was used to provide the planimetric base for the data base. The relative scale of the image data base was set at 1:240,000. At that scale one pixel represents 400 square feet and is 20 feet on a side.

2.1.4 Vector to Image Conversion

The IBIS data plane, or raster image, is the primary data structure for much IBIS processing. Once the digitized map data are converted into the IBIS vector-graphics format and are transformed to register with the planimetric base, the next processing step is the transformation of the vector data into data planes using the IBIS program POLYSCRB. The operation of POLYSCRB is analogous to the way in which a plotter converts vector data into a hard-copy plot, with the exception that the output medium is a digital image instead of a piece of paper. The program reads IBIS vector-graphics data one line at a time, scribing each line onto the raster image. For each line segment processed, a one-pixel-wide line joins all vertices defining that line. When the process is completed, a data plane containing a scribed representation of all line segments as defined by the input vector-graphics data file is obtained.

Each of the four independent vector-graphics files was processed, yielding four data planes representing the four basic themes. An additional data plane was created by combining those four data planes into one image. This data plane contained the composite boundary information contained in the four data planes previously developed (Figure 2-4). It has a special functionality, the topic of which will be described in Section 2.3.1.

2.1.5 Region Coding

Region-coded data planes are one of the two end products of preprocessing that are directly usable in query operations. These data planes are used to represent the spatial component of the data. The region-coded data plane is a uniquely designed data plane because pixel DN values are used to distinguish regions from each other. In contrast, data planes produced by program POLYSCRB contain region boundary information where the boundaries of the regions are represented by DN code but are not distinguishable from each other. This process of converting the data planes created by POLYSCRB into region-coded data planes that can be used for data base queries is referred to as region coding and is accomplished through IBIS program PAINT. Although the specific details of the operation are complex, PAINT basically processes an input image line-by-line, pixel-by-pixel. The first pixel of an image is assigned an initial DN value. All subsequent pixels along the line are assigned the same DN value until a boundary pixel is encountered. When such a condition arises, the DN value is incremented by a value of one, and the next group of pixels are assigned that DN value until the next boundary pixel is processed. The process continues until the entire line is processed in that manner. For subsequent lines, the same process of pixel assignment is repeated, with the additional construct that the previous line is used to seed the DN value for all regions that are continued from it.

The four data planes representing the original thematic overlays produced by program POLYSCRB and the combined boundary data plane produced by combining the four overlays were input individually to program PAINT for region coding.

Figure 2-4. Composite Feature Data Plane Prepared by Combining the Four Thematic Data Planes

The result of that process was the creation of five region-coded data planes (Figure 2-5 shows one example). The number of unique geographic regions comprising each region-coded data plane was reported by IBIS program PAINT (Table 2-1).*

Since visual discrimination of each nominally encoded geographic region is nearly impossible, a four-color mapping program, COLOR, is frequently utilized to enable visualization of the regional morphology (Figures 2-6 and 2-7). The COLOR product is primarily used as an aid in editing operations, its main function being the determination of whether all regions have been properly identified through program PAINT. Frequently, line segment digitizing errors go undetected until this point, where COLOR makes such errors stand out. When such an error is detected, the digitizer files must be corrected and the data must be reprocessed by using POLYREG, POLYGEOM, POLYSCRB, PAINT, and finally COLOR.

2.1.6 Region Labeling

Region-coded images are useful in geographic analysis because they provide the spatial context for studying various phenomena. Because of their coding structure, region-coded images can be used to discriminate between neighboring administrative districts, such as state, county, or municipal regions, as well as for unique identification of land use or land cover polygons. However, these region-coded images do not provide the full context needed for geographic analysis. What is missing are label references describing the specific attributes that provided the basis for the identification of the specific regions in the first place. For example, if a census tract map was digitized, the identification code numbers for each census tract must also be recorded for the region-coded image to be useful in geographic analysis.

In Section 2.1.1 of this document it was stated that two types of information were digitized from each of the four thematic map sheets: (1) line segments, and (2) region attribute labels. Each region attribute label data file contained geographic reference points recorded in Cartesian space via digitization and associated region (polygon) identification labels for all regions contained therein. As with the digitized line segment data, those region attribute label files had to be processed before they could be useful in subsequent query analysis. Those processing steps are described below.

^{*}The actual number of regions comprising each data plane slightly exceeded manual tabulation of geographic areas from the source maps; this discrepancy was attributed to artifacts induced by scale reduction and vector-to-raster conversion. The results of these circumstances caused some regions to become pinched. This condition is frequently encountered but presented no major problem for this specific application.

Province cocces sympassi basi

Figure 2-5. Region-Coded Data Plane Representing Land Use.
Four other region-coded data planes were prepared
for elevation zones, floodplain, land use revisions,
and the composite feature data plane.

Figure 2-6. Four-Color Representation of the Land Use Region-Coded Data Plane

Figure 2-7. Four-Color Representation of the Contour, Floodplain, Land Use Revision, and Composite Feature Data Planes (left to right, top to bottom)

Table 2-1. Number of Regions per Region-Coded Data Plane

Data	Plane	Number of Polygons	
Land Use		229	
100-Foot	Contours	77	
100-Year	Floodplain	4	
Land Use		5	

property and property and the second

The region attribute data were processed with the same set of procedures used for the line segment files through the first three processing steps: coordinate digitization, (2) reformatting, and (3) spatial rectification. However, these data files were never converted to images. Instead, the data were eventually converted into IBIS attribute files (attribute files are used within IBIS to store attribute and tabular data). An IBIS program, CTRMATCH (center-match), has been developed to produce a link list between each digitized region label and each region code assigned during the region-coding process. CTRMATCH processes each region label sequentially in the following manner: The pixel value within the region-coded image defined by a label's reference coordinate is read to determine the region code (DN value) assigned to that region. (Since all pixels within a region are coded with the same unique value, that reference pixel is always representative of the value assigned to all pixels in that region.) After the region code is identified, both the region label from the region label attribute file and the region code obtained by CTRMATCH are recorded in the IBIS attribute file.

The previous paragraph describes a complicated subject. To illustrate the process of matching region labels and region codes, the following example is provided. Suppose a region label for a land use polygon coded "ACC" had a reference coordinate after spatial rectification of line 92, sample 57. The CTRMATCH program would read the pixel value at that position within the region-coded image and determine that the region code for that region was 117, thereby establishing a link between the attribute label ACC and the region coded 117. Now that the link is identified, the region label and region code are recorded in two columns of an attribute file, completing the process. Then, the next region label is processed to obtain the linking information for that region. That linking information is also stored in the attribute file. Eventually, all region labels are processed, yielding an attribute file where two columns describe the region label and region code for each region contained in the region-coded data plane.

Four such attribute files were produced for the Healdsburg data base. The land use revision region-coded data have the fewest number of members.

The associated attribute file is extremely simple, having just four entries, and can be used to illustrate the structure of all the Healdsburg data base attribute files (Table 2-2).

When the attribute files were combined with their associated region-coded data planes, four IBIS PDS were formed. Complete geographic identification, both spatial and topical, was achieved.

2.2 IMAGE PLANE OVERLAY AND AREA CALCULATION

Image plane overlay (frequently referred to as polygon overlay in vector-based mapping systems) is a process that enables the computation of the frequency of occurrence of pixel codes representing specific thematic features in one image within the context of recognized regions (e.g., census tracts) defined by a region-coded image. (The IBIS program POLYOVLY is used for image plane overlay.) The most frequent application of image plane overlay is for the computation of the frequency distribution of land cover features identified through multispectral classification of Landsat imagery within geographic regions such as census tracts. The image plane overlay program can also be used to obtain a simple frequency distribution (pixel counts per DN code) of the regions comprising a region-coded data plane. From that information, areal computations can be made. This latter mode of operation was utilized for the query effort.

Typically, the results of image plane overlay are added to preexisting attribute files. In the case of building the Healdsburg data base, frequency distributions derived from image plane overlay were added to the attribute files produced from program CTRMATCH. Once the number of pixels comprising each region was known, a simple mathematical calculation (IBIS program MF, for mathematical formula) could yield areal coverage in any measurement system. Acres and square miles were computed for all regions within each region-coded data plane of the Healdsburg data base. At this point in processing, each attribute file (Appendix B, Tables B-4 through B-7) contained five columns of information: (1) region code, (2) region label, (3) pixel count, (4) areal coverage in acres, and (5) areal coverage in square miles. The land use revision attribute file is reproduced here (Table 2-3) to demonstrate the structure of all the Healdsburg data base attribute files.

Table 2-2. Interface File Representing Land Use Revisions

Region Code	Region Label	
1	(blank)	(non-change areas)
2	UIS	
3	ACC	
4	AVV	
5	URS	

Table 2-3. Final Attribute File for Land Use Revisions

Re	Region		Areal Coverage		
Code	Label	Pixels	Acres	Sq Miles	
 1		975334	8995.5	13.99	
2	UIS	4390	40.3	0.06	
3	ACC	5606	1.5	0.08	
4	AVV	6200	56.9	0.09	
5	URS	16470	151.2	0.24	

2.3 SPECIAL PROCESSING REQUIRED TO SUPPORT THE INITIAL QUERY PROCEDURE

The first IBIS query procedure required some additional data processing to prepare the data sets for query. As previously mentioned, although these processing steps were required, they were not advantageous when considering the long-term use of the data base. Consequently, the elimination of this processing requirement was a major design goal with the new query software.

2.3.1 Development of a Composite Feature Data Plane

ANNANY KAKSISI LINING AN GISINGG TOOL

The initial IBIS query procedure developed by JPL could be used to query only one region-coded data plane and its associated attribute file. Since the Healdsburg data base was comprised of four data planes, a method had to be devised to enable a single query to operate simultaneously on any or all of the data planes comprising the data base. To do this, the development of a composite feature (CF) data plane was devised. The CF data plane's function is similar in concept to the use of least common geographic units (LCGU) in ODYSSEY (Sharpley et al., 1978, pp. 3-4) and other vector-based mapping systems. The CF data plane would contain all the spatial attributes of the four region-coded data planes previously developed.

The CF data plane was created by first combining the four POLYSCRB data planes (refer to Figure 2-4) representing the four themes and then region-coding that composite image as described in Sections 2.1.4 and 2.1.5 of this report. A total of 764 regions were identified by PAINT and represent the total number of unique region combinations for the four input data planes. The four-color mapping algorithm was implemented to depict the complexity of that image (refer to Figure 2-7).

An attribute file was produced for the CF data plane. As with the other attribute files associated with a region-coded data plane, it contained a column for region code references. However, it did not include physical label references for each region, since labels were never digitized for features formed in the composite image. However, a linkage between the CF attribute file and the other attribute files was necessary if a query was to be performed on the CF data plane. The following method was used to create the attribute

file for the CF data plane. Instead of developing region labels and region code associations through program CTRMATCH, a more complex process was initiated. First, a multi-image plane overlay program (MULTOVLY) enabled the simultaneous overlay of the CF data plane and the four region-coded data planes comprising the data base. (The operation of MULTOVLY is similar to the operation of POLYOVLY, described previously.) The product of that operation was an attribute file containing six columns of descriptive information about region codes for each region underlying a CF region (Table 2-4). This CF attribute file enabled contextual references to be made between the CF data plane and any of the four attribute files representing the four region-coded data planes in the data base.

Since the CF data plane was derived through the combination of the four thematic data planes, the resultant CF attribute file was simply structured (Table 2-5). For example, the characteristics recorded for CF region 25 are associated region codes 13, 11, 4, and 1 for the land use, elevation, floodplain, and land use revision region-coded data planes, respectively. The number of pixels comprising that CF region totaled 1302. All other regions comprising the CF attribute file (Appendix B, Table B-8) can be interpreted in a similar manner.

2.3.2 Development of the Master Attribute File

AT MANAGER STREET, STR

After processing by MULTOVLY, sufficient information is not available to determine the actual composition of a CF region. Without the addition of identifiable attribute labels for the four subordinate region-coded data planes, the CF data plane and attribute file would be of little utility for query or geographic analysis. However, with the addition of attribute label information from the attribute files associated with the four region-coded data planes, the CF attribute file can contain sufficient information to facilitate analysis and query. The IBIS program MERGE was used to combine the attribute features of the subordinate attribute files with the CF attribute file. The end result of the process was the development of a master attribute file (MA file). (Again, the development of this file was necessary only for the initial query procedure and was not used after the new query software was developed.) After the attribute codes were added to the MA file, areal calculations for all CF regions were completed as done before for the four other attribute files using IBIS program MF.

Table 2-4. Structure of the CF Attribute File

Column	Contents
1	Region Codes for the CF Data Plane
2	Region Codes for the Land Use Region-Coded Data Plane
3	Region Codes for the Elevation Zones Region-Coded Data Plane
4	Region Codes for the 100-Year Floodplain Region-Coded Data Plane
5	Region Codes for the Land Use Revision Region-Coded Data Plane
6	Pixel Counts for the CF Data Plane

Table 2-5. Partial Listing of the CF Attribute File

Contents:	(1) CF	(2) Land Use	(3) Contour	(4) Flood	(5) Revision	(6) Pixel	(Pixel
Contents:	Code	Code	Code	Code	Code	Counts	Counts)
	1	1	1	1	1	109	
	2	2	1	1	1	209	
	3	3	1	1	1	52030	
	•	•	•	•	•	• • •	
	•	•	•	•	•	• • •	
	•	•	•	•	•	• • •	
	25	13	11	4	1	1302	
	•	•	•	•	•	• • •	
	•	•	•	•	•	• • •	
	•	•	•	•	•	• • •	
	763	229	73	1	1	359	
	764	229	5	1	1	82	

One final augmentation was performed to enable direct querying of the MA file by the initial query procedure. That operation required the use of numerical attribute labels instead of the character codes originally produced at digitization. Consequently, all character labels were given numerical reference codes for query purposes. That information was also stored in the MA file. (Tables defining the relationship between attribute labels and numerical equivalents are contained in Appendix B, Tables B-1 through B-3).

The final MA file used to demonstrate the first query procedure contained tabular information describing (1) region codes for the CF data plane as well as the four other data planes, (2) pixel counts, (3) areal calculations, and (4) character and associated numerical attribute labels. When combined, the attribute file contained twenty columns of information (Table 2-6).

2.3.3 Generation of Tabulations from the MA File

The MA file contains much descriptive information about the Healdsburg area. That information can be formatted and listed in tabular form through the use of the IBIS software programs AGCRG, AGGRG2, COPYFILE, MERGE, TRANSCOL, MF, and REPORT. The specific IBIS procedures involved are not described in this document, as they are adequately explained in other reports (Friedman, 1980; Angelici and Bryant, 1976). However, a brief description of the basic IBIS reporting capability is important to gain perspective on the improvements brought to IBIS with the query software. A very detailed listing of the MA file can be produced, describing the areal coverage for each region in the CF data plane (Table 2-7).

Table 2-6. Composition of the Master Attribute File

Colu	mn Contents	
1	CF Region Code	
2	_	s per CF Region
3		ber or well-on
4		
5		Corresponding Region Codes Derived
6		
7	•	
8	Number of Acres	per CF Region (computed value)
9		e Miles per CF Region (computed value)
10	-	
11	Land Use	
12	Elevation	Alphabetic Labels for Region
13	Floodplain	Described in Columns 4-7
14	•	
15	Land Use	
16	Elevation	Numeric Labels for Region
17	Floodplain	Described in Columns 4-7
18	Revisions /	
19	-unused-	
20	-reserved for qu	uery result-

Table 2-7. Listing of Several Columns of the Master Attribute File (Partial Listing)

HEALDSBURG QUADRANGLE: NW QUARTER SECTION EFFECTIVE PIXEL SCALE: 1:240.000 1 PIXEL = 400 SQ FT

US ARMY. ENGINEER TOPOGRAPHIC LABORATOPIES

LAND	CLOSEE	AR	EAL COVER	AGE
LAND USE POLYGIN GIDE	GEOREF FEGION CODE	PIXELS	ACRES	SO MILES
12345566678888890009111236889190456869670866117	1234567890123456789012345678901234567890123456	10997 10997	1.028334420 0.928334420 1.77632639180 1.77632631746787621799999999999999999999999999999999999	6024267221971612851186306897965457671212365629200460555494949091161285118630689796545767121236562920000000000000000000000000000000000

The process of obtaining a tabular report of areal coverage by a specific topical theme involves some reordering and aggregation of data components within the MA file. For example, utilizing the MA file to generate a report describing land use regions as they are represented in the land use data plane requires merging information from several adjacent CF regions. Since regions within the CF data plane were formed by the intersection of all regions from all input image planes, the attributes of those smaller regions have to be reaggregated within the MA file to represent the original spatial context of the land use data plane before a tabular report can be produced (Table 2-8). This can be accomplished, since attribute information is maintained for all input data planes within the MA file.

Several other themes can be represented through simple manipulation of the MA file. For example, one useful report that can be derived from the MA file is a listing of all unique thematic combinations among the four map base overlays (Table 2-9). Greatly detailed information about the study area as a whole can be gleaned from such a listing. However, little if any information about the spatial distribution of that information is available in this form.

2.4 CONCEPTUALIZATION OF THE HEALDSBURG DATA BASE

21 CACACA STRUCTS WAS STRUCT

With completion of the data base preparation phase, the Healdsburg data base was ready for query. The data base consisted of several representational files derived from the four original thematic data planes (land use, contours, land use revisions, and floodplain) and the newly established CF data plane with its associated MA file. For each of the thematic overlays, a line segment image, a region-coded image, and an attribute file were produced. The relationship between the various data planes and attribute files can be pictorially depicted (Figure 2-8). The only paired data set used for the first query procedure is the composite feature-master attribute PDS, depicted at the center of the diagram. For the later version of IBIS QUERY, the four original themes are used in query operations. Those data sets are depicted as the smaller data sets at the edges of the diagram. In addition to the PDS files, other files registered to the data base, such as the region outline data planes, have been used to provide a spatial context to the results of the query.

Table 2-8. MA File Report Generated by Reporting All CF Components Forming a Land Use Region (Partial Listing)

HEALDSBURG QUADRANGLE: NW QUARTER SECTION EFFECTIVE PIXEL SCALE: 1:240.000 1 PIXEL = 400 SQ FT

US ARMY. ENGINEER TOPOGRAPHIC LABORATORIES

- POLY	rgon -	AR	EAL COVER	AGE
CODE	LABEL	PIXELS	ACRES	SQ MILES
1	UIS	109	1.00	0.00156 0.00156
2	UCR	209	1.92	0.00300
๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚๚	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	52030 156 20 67 9 13 10 757 21 13 64 11 2081 24 61 38 26 155 35 46 93	477.78 1.438 0.162 0.082 0.095 0.129 0.19.11 0.59 0.112 0.59 0.129 0.14 1.422 0.485 	0.74652 0.0029 0.00029 0.00013 0.00019 0.00014 0.01086 0.00019 0.00019 0.00092 0.00037 0.00037 0.00037 0.00033 0.000133
4	ВТ	700 700	6.43	0.01004 0.01004
5 5	U0V	385 318 703	3.54 2.92 	0.00552 0.00456 0.01009
6 6 6 6	URS URS URS URS	14 35 797 56 70	0.13 0.32 7.32 0.51 0.64	0.00020 0.00050 0.01144 0.00080 0.00100

Table 2-9. All Unique Data Base Combinations (Partial Listing)

HEALDSBURG QUADRANGLE: NW QUARTER SECTION EFFECTIVE PIXEL SCALE: 1:240,000 1 PIXEL = 400 SQ FT

IBIS TEST DATA BASE FOR US ARMY. ENGINEER TOPCGRAPHIC LABORATORIES

AGGREGATION BY ALL UNIQUE THEMATIC COMBINATIONS

	- DATA	PLANE	ATTRIE	SUTES -	AREAL COVERAGE
X 3CMI	LAND USE	ME AN ELEV	FLOOD PLAIN	L USE CHANGE	PIXELS ACRES SO MILES
123456789012345678901234567890123		555551555511223456751265555511122335555555511		ACC UIS AVV AVV URS URS URS URS URS	9279

processing designation appropriate assessment processing the processing

Schematic Diagram Depicting the MC&G Data Base (Several sets of image planes and attribute files are all interrelated in the MC&G data base.) Figure 2-8.

SECTION 3

BATCH-ENTRY QUERY

Through analysis of tabular listings such as those described in the previous section, a great deal of information can be learned about the Healdsburg region. The proportional coverage of specific types of land use or topographic features can be determined. Even the sizes and types of regions that could be subjected to severe flooding during a 100-year flood could be determined with some effort. However, the actual utility of those reports is limited due to the cumbersome nature of the reporting structure and the complexity of the data sets involved. The missing features needed to make such data base information really useful are (1) simple methods to develop queries, and (2) the capability to represent such information in a spatial context. With the reporting procedure previously described in Section 2, there is no way to easily determine what conditions specifically exist, and it is impossible to determine where those features exist within the Healdsburg area.

Two files are used in batch-entry query processing described in this section. The spatial component of the data base is represented by the CF data plane, while attribute data are stored in the MA file. Specific columns of interest to query development are listed in Table 3-1. The complete MA file was described in Section 2 of this document.

3.1 THE IBIS QUERY PROCEDURE

The first query software was developed to address the problems of selection and identification of specific desired themes, leading to their subsequent spatial representation. Since four disparate data sources were integrated in the Healdsburg data base, topical inquiries could be constructed to learn about the nature and distribution of any of those features represented in the data base. Inquiries could be so complex in structure that they could not be easily perceived through traditional map interpretation, and their analysis was made possible only through the query software.

3.1.1 Calling Sequence

The first query software was actually a sequence of batch-entry job steps that were linked to form what is referred to as a <u>procedure</u>. It was developed in the following manner: First, a sequence of IBIS programs were constructed to query the IBIS data base as a batch job. This job sequence was tested and retested until it was determined that the batch job consistently produced accurate results when applied to the data base. Once verified, a parameter processing sequence was placed in front of this job stream, forming a complete query procedure. The procedure was then tested, and once it was determined to operate without error, the query procedure was stored in a run-time program library.

Table 3-1. MA File Columns Used in Query Processing

Colum	n Contents	Function
1	CF Region Code	Provides context link to CF data plane.
15	Land Use	Codes representing the four themes
16	Elevation \	are stored in columns 15 through
17	Floodplain /	18.
18	Revisions /	
20	Query Evaluation Result	Results from the query are stored here. If value equals 1, then the query is evaluated true. If zero, then the query is evaluated false.

RESERVANT RESERVATED TOPONOMIA

Once the query procedure as stored in the library, an analyst could simply run a query by calling the procedure with the proper sequence of parameters. The analyst could provide three parameters: (1) the query statement, (2) whether or not a map product was to be produced, and (3) whether or not a special title was to be provided to accompany the map product. Instead of submitting a complex batch job, the stored query procedure was invoked by a call to the query procedure:

CALL QUERY, -- function --, -- special title --, -- hard copy --

The only parameter required was the query statement itself. The request for production of a hard-copy map product and a descriptive title were optional parameters. Invocation of the query procedure always produced a tabular report describing the results of the query in a format similar to those reports produced for Section 2 of this document.

Restrictions in the formation of procedures dictated by VICAR system design conventions required that each actual query statement be provided within a standard VICAR parameter field. Consequently, the function parameter was only a reference to a VICAR parameter field where the actual query statement was located. In operation, invocation of the query procedure appeared as a series of card images:

CALL QUERY, FUN1, DEMONSTRATION OF A QUERY STATEMENT, HARDCOPY P, FUN1

--query expression--

Several calls to the query procedure could be made within the same job submission. For every query, the same three card image sequence was required.

3.1.2 Query Expression Composition

A query is submitted to learn some fact or facts about the study area. The query expression itself is the vehicle by which a question can be posed to the data base. For example, consider the following question: Which areas are encoded with land use code ACC? It would be nice if an analyst could submit such a simply structured sentence to the query procedure. However, at the time that the first query procedure was being utilized, IBIS query statement interpretation capabilities were not sufficiently developed to enable the interpretation of a question posed in grammatical English or even a pseudo-text language. Instead, the development of the actual IBIS query expression was based on Boolean logic operation syntax supported through IBIS program MF. The most basic query expression was derived from the following statement form:

(COLn {LO} CODE)

where <u>COLn</u> referred to a column in the MA file that contained values representing thematic categories of information. For the Healdsburg MA file, valid values for <u>n</u> were 15 for Land Use, 16 for Elevation Zones, 17 for Floodplain, and 18 for Land Use Revisions. <u>CODE</u> was the actual numeric code used to represent the specific theme to be identified in the expression. Valid values for CODE depended on the specific theme or themes of interest. (They are documented in Appendix B, Tables B-1 through B-3). Finally, {<u>LO</u>} was a logical operator that identified how values in COLn were compared to the value represented by CODE. Valid logical operators were limited to the standard Boolean operators supported in FORTRAN and included <u>EQ.</u>, <u>LT.</u>, <u>.GT.</u>, <u>.LE.</u>, and <u>.GE.</u>

The logical expression used to identify all land use areas coded ACC was constructed as follows:

(COL15 .EQ. 1)

simply stating that the expression will be evaluated to determine whether values in column 15 representing land use attribute codes in the MA file are equal to 1, the value 1 being a specific numeric attribute code that is identified with the attribute ACC.

3.1.3 Query Expression Evaluation

SANCON CARACAN BOOMS OF SOME SANCON INSPECT AND SOME INSPECT OF SANCON SANCON INSPECT OF SANCON DESCRIPTION

Once the query statement is interpreted, the MA file is evaluated row-by-row based on the query expression. At each row the actual value stored at COLn is compared to the value represented by CODE. In the example query statement described above, every member in column 15 of the MA file would be checked row-by-row to determine if it equaled the value 1, the numeric code for land use attribute ACC. When the value in column 15 equaled the value 1, the expression was evaluated to be true. Whenever the value in column 15 did not equal 1, the expression was evaluated to be false. The results of the expression evaluation were stored in column 20 of the MA file, which was previously left empty, being reserved for storage of query results. When the query expression was evaluated true, a value 1 was placed in column 20. When the expression was evaluated false, a value of 0 was placed in column 20.

Consequently, after every row was evaluated by the expression, column 20 of the MA file would contain ones and zeros, the value at each row being set depending on whether the expression was evaluated true or false.

Once the expression was evaluated for every row in the MA file, other IBIS programs (not described in this document) were called by the query procedure to develop a tabular report and product map based on the result of the query.

3.1.4 Development of a Complex Query Expression

Receded Stabback Villabababa Vicebbaba Villabababa

Complex query expressions could be made by bridging together two or more simple expressions with the logical operators .AND., .OR., and .NOT. to form statement structures such as:

```
( (COLn {LO} CODE) {LO} (COLn {LO} CODE) )
```

Each component of the complex expression was developed based on the description covered in Section 3.1.2. They were evaluated based on standard FORTRAN conventions for evaluation of logical and arithmetic expressions. As with evaluation of the simple expression, the complex logical expression is evaluated row-by-row for the entire MA file; and for each row, the result of the query was placed in column 20 of the MA file.

Complex expressions could be used for many purposes. They could be formulated to identify several attributes within the same column. For example, the expression

```
((COL15 .EQ. 1) .OR. (COL15 .EQ. 6))
```

was interpreted to be true if values in column 15 equaled either 1 or 6, the codes for ACC and AVV, respectively. Complex expressions could also be developed to enable evaluation of two or more MA file columns:

```
((COL15 .EQ. 1) .AND. (COL16 .LT. 1))
```

In this example, the first expression is interpreted to determine whether values in column 15 equal 1, or Land Use equal to ACC, and the second expression is evaluated to determine whether values in column 16 are less than 1, or Elevation is less than 100 feet. When both expressions are evaluated true, the entire complex expression is evaluated true and a value of 1 is placed in column 20. Whenever either (or both) of the two expressions are evaluated false, the entire complex expression is evaluated false and a value of 0 is placed in column 20 of the MA file.

3.2 EXAMPLE OPERATIONS OF THE QUERY PROCEDURE

The batch query procedure was tested to verify its operation. From the very simple operation to the complex query, the procedure proved to be quite effective in providing desired information.

3.2.1 Evaluation of a Simple Operation

CONTRACT SUSPENSION STRUCKS STRUCKS STRUCKS

A group of simple queries were tested first. An example of such a query would be: "Which areas contain land use regions coded ACC?" As previously stated, the query procedure required that a query be posed with a specialized syntax. The complete query statement for the query is listed below:

CALL QUERY, FUN1, ALL LAND COVER UNITS CODED ACC, MAP P, FUN1
'(C15 .EQ. 1)'

As described previously, the first line identifies the basic call to the query procedure, followed by the function statement reference FUN1, the user-supplied title ALL LAND COVER UNITS CODED ACC, and a request to produce a hard-copy map MAP. The query expression is contained within a standard VICAR parameter statement. The parameter is identified by the statement P,FUN1, with FUN1 representing the parameter name. The expression (C15 .EQ. 1) is enclosed in single quotes to identify to the VICAR system that the expression is a text string instead of a numeric value. As described in Section 3.1.2, the expression (C15 .EQ. 1) is evaluated to determine whether values in column 15 of the MA file are equal to 1, the numeric code to signify the land use feature known as ACC.

The query statement was evaluated for every row in the MA file, until all regions represented in the MA file were checked to determine whether they contained the land use code in column 15. After all rows were evaluated, a tabular report was generated (Table 3-2). It listed all rows within the MA file that met the query specification with an affirmative response. Since the MA file in itself is a tabular representation of the CF data plane, the tabular listing is actually a summary of which CF regions met the query criteria.

After the tabular report was produced, the query procedure was directed to produce a map product to describe the result of the inquiry in a spatial context (Figure 3-1). IBIS program MAPGEN is used to map results of the query back onto the CF data plane. Briefly, the MAPGEN program operates in the following manner. MAPGEN checks the query attribute code stored in column 20 of the MA file for every CF data value coded in column 1 of the MA file. When MAPGEN finds a value 1 (true) in column 20, it would code all pixels contained in that region within the CF data plane a value of 1; and when false, a value of 0 would be coded for each pixel. Then, the resulting image would be contrast enhanced to enable visual discrimination between an affirmative or negative response. All regions meeting the query criteria were represented by a dark gray tone, while all other regions remained white.

In addition to the information depicted in the tabular report generated from the query, the mapped result of the query depicted in Figure 3-1 provides a spatial context for analysis as well.

Table 3-2. Tabular Report of All Land Use Areas Encoded with Land Use Label $\underline{\mathsf{ACC}}$

HEALDSBURG QUADRANGLE: NW QUARTER SECTION FFFECTIVE PIXEL SCALE: 1:240.000 1 PIXEL = 400 SQ FT

IBIS TEST DATA BASE FOR US ARMY. ENGINEER TOPGGRAPHIC LABORATORIES

QUERY: ALL LAND COVER UNITS CODED ACC

LAND	- DATA	PLANE	ATTRI	SUTES -		AREAL COVER	RAGE
9=310N 	LAND	ME AN ELEV	FLGCD PLAIN	L USE CHANGE	PIXFL	S ACFES	SQ MILES
4767081588070133334077705		55555551515515511155511 000000000000000		UIS	11 21 36 21 16 1 14 61	97 1.81 10.91 10.96 10.96 10.97 10.97 10.97 13.11 13.14 13.14 13.14 13.14 13.14 13.14 13.14 13.14 13.14 13.12 90.98 13.18	0.01753 0.01753 0.01769 0.03076 0.031423 0.02153 0.02153 0.02153 0.02153 0.02153 0.02153 0.02164 0.00214 0.00214 0.00214 0.00214 0.002456 0.002457 0.01877 0.01877 0.01928 0.01947 0.01947
					390	30 358.40	0.56000

Figure 3-1. Thematic Map Depicting Regions Encoded ACC (produced by query of the data base)

The distribution of features meeting the query criteria are easily seen. However, even that map is hard to interpret because no reference is provided to identify the relationship between regions meeting the query criteria and those that did not. This problem was alleviated by adding a linear feature data plane, in this case land use region boundaries, on top of the query result (Figure 3-2). Now the analyst can gain a better perspective on exactly where the regions meeting the query criteria were actually located.

3.2.2 Other Query Examples

Services designation appropriate the services

THE PROPERTY OF THE PROPERTY O

Queries can be formulated to check for attribute inclusion within a range of values instead of matching a single value. This type of expression would not be useful for processing nominal data; but when ordinal data are present, such an expression could be very useful. Consider the following question: Which areas are greater than 200 and less than 400 feet? The question is represented by the following query expression:

The query statement is interpreted to mean "all regions where the elevation attribute code is greater than 2 and less than 4." The mathematical formulation of the query statement would be:

When values in column 16 fall between 2 and 4, the expression is evaluated true; and when values in column 16 fall outside of that range, the expression is evaluated false. The complete call to the query procedure is listed below:

CALL QUERY, FUN2, ALL AREAS BETWEEN 200 AND 400 FEET, MAP P, FUN2

'(C16 .GT. 2 .AND. C16 .LT. 4)'

As in the previous example, the a tabular listing (Table 3-3) and map (Figure 3-3) were derived from the execution of the query procedure.

Queries are not limited to posing questions based on data contained in a single column within the MA file. Queries can be formulated to involve multiple columns as well. For example, to map all areas within the floodplain but below 100 feet, the associated query statement could be formulated:

where <u>C17 .EQ. 0</u> and <u>C16 .LT. 1</u> are two sub-expressions. The query statement is processed row-by-row as in the previous examples described. However, the internal processing is more complicated, actually requiring three evaluations for each row. Each of the two sub-expressions is evaluated independently, and then the composite expression is processed. The query expression is considered to true only when both sub-expressions are evaluated true. Luckily, the complexity of operation is invisible to the user. The results of the query were reported (Table 3-4) and mapped (Figure 3-4) as in the previous examples.

Figure 3-2. Map Depicting ACC Regions with a Land Use Outline Map as Overlay for Better Georeferencing

Table 3-3. Tabular Report of All Areas Greater Than 200 and Less Than 400 Feet in Elevation

HEALDSBURG QUADRANGLE: NW QUARTER SECTION FFFECTIVE PIXEL SCALE: 1:240,000 1 PIXEL = 400 SQ FT

PROCESSES SECRETES BASES

US ARMY. ENGINEER TOPOGRAPHIC LABORATORIES

QUERY: ALL AREAS BETWEEN 300 AND 400 FT

LAND USE	- DATA	PLANE	ATTRIBUTES -	4P	EAL COVER	AGE
REĞĬŌN	LAND	ME AN ELEV	FLOOD L USI	PIXELS	ACFES	SO MILES
6669 100 110 119 2209 301 110 110 124		00000000000000000000000000000000000000		13894 13894 500 1203 124 366 573 3349 206 8222 504 6093 2126 7725 9777 3737 301 9204	127.59 127.58 01.05 10.07 1.36 30.18 55.26 30.89 7.69 55.95 19.99 34.76 84.53 7.86 84.53 7.86 84.53 7.86 84.53 7.86 84.53 7.86 84.53 7.86 84.53 7.86 84.53 7.86 84.53 7.86 84.53 7.86 84.53 7.86 84.53 7.86 84.53 7.86 84.53 7.86 84.53 7.86 84.53 7.86 84.53 85 85 85 85 85 85 85 85 85 85 85 85 85	0.00935 0.00935 0.00726 0.01726 0.00178 0.00522 0.04805 0.00522 0.04805 0.01173 0.08742 0.03050 0.01173 0.03050 0.01198 0.03043 0.03043 0.03043 0.03043 0.03043 0.03043
124 127 137	BT R	350 350 350	ABOV ABOV	94 761 1593	0.86 6.99 14.63	0.01092
				54644	501 78	0 78403

Figure 3-3. Map Depicting All Areas Greater Than 200 and Less Than 400 Feet in Elevation (land use line segments added for increased spatial understanding)

Table 3-4. Tabular Report of All Areas Within the Floodplain and Below 100 Feet (1 of 2)

HEALDSBURG QUADRANGLE: NW QUARTER SECTION EFFECTIVE PIXEL SCALE: 1:240.000 1 PIXEL = 400 SQ FT

IBIS TEST DATA BASE FOR US ARMY. ENGINEER TOPOGRAPHIC LABORATORIES

QUERY: ALL LANDS WITHIN FLOODPLAIN AND BELOW 100 FT

- DATA	PLANE	ATTRIBU	JTES -		AR	EAL COVER	AGE
LAND	MEAN	FLOOD PLAIN (L USE		PIXELS	ACFES	SQ MILES
TUUNERUEUERAAAABAULUUAAUUUUBUUVLAWALAUUUUTRRSO RORO VVVVYT VURERVVOIRERRVRVSSRVRUO	 00000000000000000000000000000000000		AVV ACC ACC		-1219352354326349615341796339523543219274961534179681280953204564061131113113143218682809532045640612809526379837983124	101.940.05551.835.29599.649.800.239.8931.174.3685.685.685.685.685.685.685.685.685.685.	0.01709 0.0481050 0.0481050 0.005620 0.005620 0.005620 0.0055020 0.0055020 0.001755447 0.001755447 0.0022830 0.001755447 0.0055830 0.001755447 0.0050 0.001755447 0.00172220 0.001755447 0.00172220 0.001755447 0.00172220 0.001755447 0.00172220 0.001755447 0.00172220 0.001755447 0.00172220 0.001755447 0.00172220 0.00175547 0.00175547
AVF AVV AVF	50 50 50	BELO BELO	AVV		3544 117 2719	32.54 1.07 24.97	0.05639 0.05085 0.00168 0.03901
	L TUUWER DEDERAAAAABADLUUDAADUUDBDUVLAWWLADUUDLAANDE S S FEVE ET SSEERSHOSS V FSTO EVINSISS S S FEVE ET SSEERSHOSS V FSTO EVINSISS	AV		LANDE FLET	URS	LAND MEAN FLOOD L USE USE ELEV PLAIN CHANGE PIXELS	LAND USE ELEV PLAIN CHANGE URS 50 BELO URS 50 BELO 1191 10.94 3412 31.33 3412 31.33 3412 31.33 3412 31.33 3412 31.33 3412 31.33 3412 31.33 3412 31.33 3412 31.33 3412 31.33 3412 31.33 3412 31.33 3412 31.33 3412 31.33 3412 31.33 3412 31.33 3412 31.33 3412 31.33 3412 31.33 31.34 31.33 31.33 31.33 31.33 31.34 31.33 31.33 31.33 31.33 31.34 31.33 31.33 31.33 31.33 31.34 31.33 31.33 31.33 31.33 31.33 31.34 31.33

Table 3-4. Tabular Report of All Areas Within the Floodplain and Below 100 Feet (2 of 2)

HEALDSBURG QUADRANGLE: NW QUARTER SECTION EFFECTIVE PIXEL SCALE: 1:240.000 1 PIXEL = 400 SQ FT

IBIS TEST DATA BASE FOR US ARMY. ENGINEER TOPOGRAPHIC LABORATORIES

QUERY: ALL LANDS WITHIN FLOODPLAIN AND BELOW 100 FT

LAND USE	- DATA	PLANE	ATTRIB	SUTES -	-		AREAL	. COVER.	AGE
REGION	LAND	MEAN ELEV	FLOOD PLAIN	L USE CHANGE		PIXEL	S A	CRES	SO MILES
1000091350250804678126623736979016829 1111111111111111111111111222 22222222	AAAAUWAAABAUAABAUAWAAAUAAAABAULABWAAAAAAAUWAAAAUWAAABAULABWAUAABAUAWAAAAAAAABAULABWAAAAAAAAAA	00000000000000000000000000000000000000	00000000000000000000000000000000000000	AVV		1367823519041485 2497 359328286478 4 6 11 3 3 4 122 1173	781801723565352194779442249	1.51523522251883572451882109228597699333318 433772864561351882916597699333318 5536484648210922882916597437437	0.00235 0.00179 0.09301 0.093270 0.01133 0.0131829 0.002317 0.008263 0.001386749 0.0087699 0.01386749 0.0087699 0.0162275 0.0046646 0.004595 0.004595 0.004035 0.00131838 0.00131838 0.00131838 0.00131838 0.0013183
						1761	33 16	17.37	2.52713

Figure 3-4. Map Depicting All Areas Within the Floodplain and Below $100\,$ Feet, an Example of a More Complex Query

3.3 EVALUATION OF THE BATCH QUERY PROCEDURE

assess seeded seeded received received

The IBIS data base query procedure described in this section involved the execution of a stored sequence of batch-entry job steps that operated on a specific data base defined by the CF data plane and the MA file. It proved to be an effective means to pose queries to a complex data base. The results of the query, a tabular report and an optional map, were quite useful for geographic analysis. The procedure represented a major increase in the capability to analyze the relationships between the distributions of different data types.

Several aspects of the original query procedure made it unwieldy to utilize. A significant amount of detailed preprocessing of all input-coded data planes was required to produce the CF data plane. This process, involving the combination of those data planes into a single data plane, represented a major investment in time. Once the CF data plane was completed, it could not be modified. If the user of the data base wanted to incorporate other data planes in addition to, or as replacements for, those previously included, an entirely new CF data plane would have to be generated. Consequently, when considering the need to maintain data bases with current information, maintenance of the CF data base represents a costly as well as a time-consuming effort. Also, the inevitable complexity of the CF data base had to be considered, since IBIS has a limit on the number of geographic regions (currently 100,000) that can be included in any one coded data plane. This ceiling on the number of regions would be rapidly approached whenever the number of data planes to be included in the data base would increase or the spatial extent of the study area would be expanded. In retrospect, it would seem more advantageous not to build the CF data plane at all and maintain the individual coded data planes for query. Again, this could not be easily accomplished without writing new software.

In addition to building a CF data plane, an MA file had to be constructed from the various source attribute files associated with each of the input data planes. This was also a complex process and involved the execution of many computer programs. Additionally, another major drawback of the batch query approach was the requirement levied upon the analyst for maintaining detailed ancillary notes about the MA file contents. Before any query could be executed, a written directory of the MA file had to be prepared by the analyst. Detailed lists would also have to be prepared by the analyst to describe the types of attributes that would be found in the MA file. No automated method was available to store and access such reference information. Such a feature was needed. To further compound problems with the use of the MA file, only those columns that contained numeric data could be utilized in a query. This meant that all alphabetic labels and descriptors had to be assigned a unique numeric code in an additional column before the information could be queried. Not only was a file directory required in such cases, a complete table depicting the association between all alphabetic labels and their respective numeric code equivalents had to be prepared for each column of alphabetic data. The capability to process textual information would be considered a great improvement.

The development of the actual query processing statement was also complicated. The rules of syntax were simple, but nonetheless, they were often violated. Diagnostic messages did not indicate the source of or solution to the error. The program would just end with an abnormal termination statement. The consequence of this condition, added to the other aforementioned characteristics, was that the original batch-version query was not easily used. Use of the procedure required extensive data base preparation time, necessitated a detailed understanding of the MA file contents, and was based on an unfriendly query statement syntax.

Still, the original query procedure did represent a major improvement in the capability to understand the distribution of spatial data. The procedure was later modified to operate as an interactive procedure. This basically allowed the analyst to run queries in a near-real-time mode and obtain results of the query on a display monitor. The capability to run VICAR procedures interactively was quite limited, though, and plans were made to develop a completely new approach to query processing. In conclusion, the query procedure was an effective learning tool. It was used to point out what features should be included in the new query program.

SSS DESCRIPTION CONTROLS PROBLEM CONTROLS CONTROLS

SECTION 4

INTERACTIVE QUERY OF IBIS DATA BASES

A Geographic Information System (GIS), like any data base management system, should include user-friendly features for data entry, data base maintenance, and data base query. Historically, IBIS has included methods to enter, maintain, and manipulate IBIS data bases (Friedman, 1980). However, as alluded to in the last chapter, those methods have not necessarily been user-friendly, especially with reference to processing data base queries. Additionally, IBIS data base queries could not even be run until an extremely cumbersome data base preparation procedure was completed. Submitting queries also required the development of syntactically complex query statements. In order to be truly effective and to facilitate its utilization, a completely restructured data base query methodology had to be developed. This new procedure is described in this section.

In developing the new upgraded version of QUERY, most of the disadvantages described at the end of Section 3 have been addressed. No longer are composite feature data planes necessary for the process, as the new version allows simultaneous processing of a number of independent data planes. Also, the development of the MA file is not required, as the new program can process an independent attribute file for each data plane input. The analyst is not required to produce an MA file directory, since the software displays a table of contents for all tabular files input. Alphabetic data can be used to formulate more readily understood query expressions. Additionally, in the process of its amelioration, the earlier, strictly batch-entry query has been transformed into an interactive program. All of these changes have made the query process much less laborious and detailed to use and has provided for significant improvements in the capability to employ the software for straightforward GIS processing.

The initial steps in the new interactive query process dealing with data base preparation are in general identical to the procedures described in Section 2 of this document. However, there is no need to develop either the CF data plane or the MA file, as queries can be posed directly to IBIS PDS (paired-data sets) with the new software. Each PDS is composed of a Coded Data Plane and its attendant attribute file. Once the PDS are prepared, they can be input as discrete data set pairs into the query program. The analyst can then manipulate those files in a number of different ways through the issuance of query statements. With the new query software, the inquiry can be processed quickly and displayed on a video monitor.

The Healdsburg data base, developed to demonstrate the first batch query proc dure, was utilized to test and demonstrate the new query software. As covered previously, the CF data plane and MA file were not included in the data base, as they are no longer needed for the new software. Only the four original IBIS PDS were used. Again, the four themes available for analysis are: (1) land use, (2) 100-foot elevation zones, (3) 100-year floodplain, and (4) land use revisions. The organization of the four original attribute files was modified slightly to facilitate the new application. After reorganization,

each of the four files contained four columns. The first column contained region codes representing the encoding structure of the data plane. The second column contained labels in textual form used to describe attributes of those regions, while column three contained numeric attribute codes used during the previous application of the batch query procedure. Finally, column four contained pixel counts that could be used to determine the sizes of the various geographic regions included in each data plane.

4.1 INTERACTIVE QUERY SOFTWARE

Once all input data sets for a given study area have been prepared, the data base can be readily queried by an analyst. As a first step in analysis, it is a good idea to formulate the specific objectives of the query session. It may be useful to prepare a statement in English describing the information to be extracted from the data base. Similar to query statement processing for the batch query, this statement cannot be directly interpreted by the interactive query processor. But its formulation is still useful, since the specific objectives of the query session will have been defined. To undergo query processing, the statement must be translated into one or more expressions that can be efficiently interpreted and processed by the computer software.

The task of translating statements from English into a language interpretable to the query software involves a knowledge of query statement construction conventions. One of the main purposes of developing this new query software was the reformulation of standards to govern expression syntax. In its redesign, an attempt was made to balance the user's need for simplicity with the requirements of minimal and straightforward computer processing time. To this end, a formal yet flexible query grammar, or syntax, was created. A detailed description of the syntax and query expression development is covered in the following two portions of this section.

4.1.1 Query Expression Components

Syntactically, a query expression is similar in construction to a mathematical formula or to an arithmetic statement used in FORTRAN (Table 4-1). However, more flexibility has been provided for query statement development than is generally available from FORTRAN. The components of a query expression are operators and operands, which are combined logically into a sequence to yield the desired results. An operator indicates what action is to be performed in the expression. The operator is analogous to a verb in the query grammar. Operands can be likened to nouns, and as such are the objects to be acted upon in the query statement.

At the most basic level, operators are placed between two operands and indicate what action is to take place. In the expression A+B, the operator symbol + indicates that the contents of operand A are to be added to those of operand B. In the context of query, the addition operator is referred to as an <u>algebraic</u> operator. Other operators of this class include those standard to FORTRAN, -, /, and *, which indicate subtraction, division, and multiplication, respectively. In all cases, the algebraic operators yield numeric output from their operands when evaluated in an expression. When there is more

Table 4-1. Query Statement Components

Basic Structure:

(VO {OP} CO)

or

Compound Structure:

(VO {OP} CO) LO (VO {OP} CO)

where:

VO = Variable Operand: Represents operands stored in an attribute file.

They are considered variables, since their values change with each evaluation of the query expression.

- CO = Constant Operand: Represents operands provided at the time of query to compare to variable operands contained in an attribute file. They are referred to as constant operands because they remain a constant value for all evaluations of a query expression.
- OP = Operator: Represents operators that define how VO's (variable operands) and CO's (constant operands) are to be compared or processed. Operators may be selected from the following list:

Algebraic Operators:

(FORTRAN form)

Relational Operators:

 $\langle \rangle = \langle = \rangle = \langle \rangle$ LT GT EQ LE GE NE (symbolic form)
(FORTRAN form)

Math-Library Operators:

SQRT ALOG ALOG1O AINT ATAN2 ABS SIN COS TAN ASIN ACOS ATAN MIN MAX AMNI AM AXI MOD AMOD

LO = Logical Operators: Represent operators used to link two or more simple query expressions. Valid logical operators include:

Logical Operators:
AND OR XOR NOT

(FORTRAN form)

than one operator in an expression, the FORTRAN standard order of operator execution is followed. As in FORTRAN, this order can be changed with the addition of hierarchy-establishing parentheses "()." Thus the expressions A + B * C and (A + B) * C are not equivalent, since without parentheses the multiplication of B and C has priority and is executed first, then A is added to their product. In these respects, as in others previously mentioned, the query syntax conforms to normal FORTRAN conventions.

Another group of operators, the <u>relational</u> operators, are used to make comparisons between two operands. The operator <u>LT</u> in the expression <u>A LT B</u> is equivalent to the mathematical symbol < and tells the computer to identify all situations where operand A is less than operand B. In addition to LT, the relational operators available to formulate query expressions are: <u>LE</u> (less than or equal to); <u>GT</u> (greater than); <u>GE</u> (greater than or equal to); <u>EQ</u> (equal to); and <u>NE</u> (not equal to). As with the algebraic operators, the use of relational operators follows the conventions of FORTRAN. However, as an added feature, conventional mathematical symbols may be used in place of text operators. The following symbols, <, >, <=, >=, =, and <>, are equivalent to, respectively: <u>LT</u>, <u>GT</u>, <u>LE</u>, <u>GE</u>, <u>EQ</u>, and <u>NE</u> in query statement construction. The products of relational expressions are binary (either 0 or 1) based on conditional evaluation of the expression. When the expression "A<B" is evaluated to be true, the resultant product is 1; and when false, the resultant product is 0.

Logical operators, the last remaining group of query operators, are used for Boolean-type queries. AND is a logical operator, and in the expression "A AND B" it is used to check for the condition in which both A and B are found to be true. A AND B is equivalent in mathematics to $(A \cap B)$. Other logical operators, OR, OR, and OR are also accepted in query expressions. As with relational operators, these operators yield binary results. Their effects are best portrayed in Venn diagrams (Figure 4-1).

During the course of executing a data base query, the user actually accesses and queries the input data sets through the issuance of query statements. Thus, the specific coded data planes, the columns of attribute files with various attributes, must be readily identifiable to the user. To facilitate this, symbolic names or labels are assigned to each data plane, attribute file column, and attribute. Usually, the symbolic names indicate the contents of the file or attribute column. The symbolic name RES, for example, would be a logical choice for the attribute residential contained within a column labeled LU for Land Use.

The reserve the second of the

These symbolic names are considered operands when used in a query expression. Those operands representing a data plane or an attribute file column can be thought of as variables whose values change with each evaluation of the expression. The values of attributes, however, do not change and thus they are considered constants for any given query operation. Operands must be divided into two categories, variables and constants, because query expression syntax has certain rules about variable-operand and constant-operand positioning in a statement. In addition to the operands just described, integers and real numbers that are considered as constants are also valid query operands.

COCI PROBLEM PROBLEM VALORIGIE GOVERNS CONTROLLED

Figure 4-1. Venn Diagrams Depicting the Logical Associations Between Two Sets, A and B $\,$

4.1.2 Query Statement Structure

A query expression is a logical sequence of operators and operands that is interpreted and processed by the computer to yield an output data set. This output is itself a coded data plane that can be composed of either a binary or numeric response. For binary responses, eight bit planes are available for output. When a numeric response is specified by the query expression, the same bit planes are all combined in constructing a product image. An entire query statement consists of (in sequential order): (1) the data plane to receive the output; (2) a colon ":", and (3) the expression to be evaluated.

The output plane is represented by the symbolic name \underline{L} or \underline{Ln} , where \underline{n} is a value between one and eight. When \underline{L} is used without a subscript designator, all eight-bit planes are combined to form a single eight-bit image to receive a numerical product. If one of the symbolic names \underline{Ln} is specified, for example, L6, it indicates which one of the eight possible bit planes is to be used for the binary output.

The main part of the query statement consists of the operators and operands to the right of the colon. Although a wide range of valid operator/operand strings can be constructed, many possible combinations are esoteric and very unlikely to be used for applications. In the interest of brevity and simplicity, only the more commonly used structures are described. It should be noted, however, that the syntax-governing rules given apply to any valid query expression.

The most commonly used basic expression form is an algebraic or relational operator linking two operands. With an algebraic operator, such an expression yields numerical output, whereas a relational operator results in binary data. At this level, one rule must be adhered to: The first operand must be of the variable type, and the second operand must be of the constant variety. At the outset, this may appear to be complex, and the distinction between constant and variable operands may appear to be reversed. But in actuality, the development of query statements is not very complicated. As an example, if LU is a symbolic name for a tabular file column of land use, and RES is the name for LU's residential attribute, then the statement

L1:LU EQ RES

would be a typical query statement. In this example, the column name <u>LU</u> is considered the variable operand and attribute name <u>RES</u> is the constant operand. Execution of this particular expression would yield binary results in the first bit plane <u>Ll</u> of the output data set. All areas of residential land use would be flagged, with the value one (1) representing a true condition, and those of a different land use as zero (0), for a false condition.

The generalized basic query expression structure can be characterized by

(VO {OP} CO)

where $\underline{V0}$ is the variable operand, \underline{OP} is either an algebraic or a relational operator, and $\underline{C0}$ is a constant operand. Quite often, two or more of these basic structures are linked together by logical operators to form more complex expressions. Expanding on the previous example, the expression

might be used to find the areas in the data base that are both residential in their land use component and are identified as being 150 feet in their elevation component. Compound expressions such as this formed with logical operators yield binary output. Thus query expressions often take the form

where LO is a logical operator. Note that the logical operators link two or more of the basic expressional structures but are never used to link operands found at the sub-expression level.

Two special cases of implicit operands are worth noting. They were developed to shorten and streamline query statement development. First, the expression

(ELEV>=50) AND (ELEV
$$< = 250$$
)

could be shortened to

personal expenses accepted magnetic personal

$$(ELEV>=50 AND <=250)$$

and still yield the same results. In such a case the variable operand $\overline{\text{ELEV}}$ is inferred a second time by the computer without having to be stated explicitly. Second, the expression

can be shortened to the phrase:

and still yield the same result. The semicolon (;) will be replaced logically by an OR, the variable operand, and the operator forming <u>OR LU EQ</u> during query statement evaluation. These added features make query statement formation an easier task when long, repetitious phrases are to be evaluated.

By comparison, the same expression could have been developed with the batch query procedure, but it would have been more complicated:

Certainly the new query syntax is simpler to use and is less prone to analyst error.

4.1.3 Query Statement Processing

いると言ないないなど言ないないなど言いできない。

The new query software is a large interactive program designed to interpret, process, and display queries. The program is partitioned into three central processors: the <u>command processor</u>, the <u>evaluator</u>, and the <u>display processor</u>. The query program accepts instructions from the user via the command processor. The command processor decodes and validates commands and then passes control to the appropriate command-invoking subroutine. The commands currently available are:

QLA = List attributes

QE = Enter query expression

QP = Process all query expressions

QLE = List unprocessed query expressions QLP = List processed query expressions

QHELP = List available query commands (Help)

EXIT = Exit query program

These commands are explained in detail below:

QLA = List attributes

This command causes a list of available data sets and associated attributes to be displayed. The module is entered automatically when the query program is first invoked. During the first execution c this command, all the data sets are opened and the label records are scanned for attribute names. During subsequent executions of this command only, the attributes are displayed on the user screen.

QEn = Enter query expression

To enter a query, the user enters the command QEn, where n is an integer from 1 to 8, representing a query buffer. Then the user is prompted to enter a query expression. The expression is stored in a QE buffer n named in the QE request. Up to eight statements can be stored in QE buffers one through eight. First, the expression is checked for proper syntax; then it is scanned and translated into a form suitable for repeated evaluation by the QP module described below. During the scan, operators are located by comparing the expression components to a table of valid operators. Variable operands are located by comparing remaining components to a table of variables. Any remaining operands are assumed to be constants.

QP = Process all query expressions

This command designates that the query evaluator processor is to be invoked. This command causes all expressions currently entered with the QE command to be evaluated. Each expression is evaluated at each pixel location using the variables associated with that pixel location. When multiple expressions are processed, the expressions are executed in sequential order, starting with expression one and ending with expression 8. As each expression is evaluated, the

results are placed in the output image, at the same corresponding pixel locations. The output bit planes are selected <u>Ll</u> through <u>L8</u> to match the bit planes identified in the query expression. After the processing is completed, the number of output pixel locations where the query statement was evaluated to be true is reported for each output image. Finally, the <u>QE</u> buffers are cleared, after all expressions just processed are transferred into the <u>QP</u> buffers for subsequent reference.

QLE = List unprocessed query expressions

This command is entered to display the current expressions in the QE queue for processing.

QLP = List processed query expressions

This command will cause the display of the most recently processed expressions for each output bit plane or image.

QHELP = List available query commands

Enter QHELP will yield a display of all the commands that the query software currently supports.

EXIT = Exit query program

This command is used to terminate the query processing. EXIT closes all data sets and exits the program.

4.1.4 Display Capabilities

PARTICULAR CONTRACTOR SERVICES SERVICES SERVICES

Consider sections associate become

In addition to the commands described in the previous section, the upgraded query software also enables interactive examination of both input and output data planes on a display screen. This display-oriented component of the query software was implemented with features to accommodate the user. It enables the user to specify the positioning of the desired data planes on the screen as well as the scale at which each image is to be displayed. These data planes can also be contrast stretched to enhance areas of particular interest to the user. All of these capabilities facilitate the viewing of multiple data planes at a single instance. The specific display commands are not essential to describing query functionality. They are described in documentation for VICAR program IDISPLAY, which is the interactive display workhorse for VICAR. The reference is made here only for purposes of providing a complete picture of query capability.

Peripherals to the display screen, such as the Dunn camera, can be attached to the display device and used to make quick-developing photographic prints of the screen. For a higher quality, though slower turnaround-time product, the data sets can easily be copied to a magnetic tape or disk and played back on a film recorder. Both the on-line camera and the off-line film recorders offer the user uncomplicated means of obtaining hard-copy outputs from the query session.

4.2 EXAMPLE OPERATIONS OF THE NEW INTERACTIVE QUERY SOFTWARE

A list of data base query objectives was conceived to test the query software by simulating a real query session. The queries included:

- (1) Find all land use regions labeled ACC.
- (2) Find the regions within the floodplain that are also below 100 feet.
- (3) Using the results of the two previous queries, find all land use regions coded ACC that lie within the floodplain and are also below 100 feet in elevation.

The following paragraphs provide an account of the interactive processing steps used to determine the results for those queries.

4.2.1 Initiation of the QUERY Program

BESSEED CONTRACT CONTRACT CONTRACT SOCIETY

The four IBIS PDS associated with the Healdsburg data base were opened and made available for processing with the following command statement:

EXEC, QUERY, (LU, LUATT, EL, ELATT, FLD, FLDATT, LUR, LURATT), PRODUCT

The command identified the operation of program QUERY, the eight data sets available for analysis, and the name of the data set where query products can be saved. The four region-coded data planes LU, EL, FLD, and LUR represent land use, elevation, floodplain, and land use revision, respectively. Each associated attribute file is represented by LUATT, ELATT, FLDATT, and LURATT in the same order.

4.2.2 Displaying Reference Information

Once the data sets are opened for processing, the analyst is prompted to enter the next command. The analyst entered <u>QHELP</u> to review query processing options. The query program responded by providing a list of available query commands with short descriptions (Table 4-2).

Table 4-2. Query Commands Available to the Analyst Are Listed by QHELP Command

OTTEDY COMMANDS

	QUEKI COMMANDS
QLA	LIST ATTRIBUTES
QE,NO.	ENTER EXPRESSION(1-10)
QLE	LIST EXPRESSIONS
QP	PROCESS EXPRESSIONS
QHELP	LIST QUERY COMMANDS
EXIT	EXIT PROGRAM

Then the user decided to see a list of data sets and attributes available for expression analysis. The QLA command was entered, and a list of available attributes was produced (Table 4-3). The column labeled DATASET NAME lists the logical names of the four coded data planes available for processing. The column labeled ATTRIBUTE NAME lists the logical names of attribute file columns that can be used to develop query expressions. (The names found in these two columns become the variable operands in the query expression.) The final column, labeled DATA TYPE, is used to define the type of data, either textual (TEXT) or numeric (NUM), contained in each corresponding data set or attribute reference. That information is provided to enable the analyst to formulate meaningful statements.

4.2.3 Development of QUERY Statements

The analyst now decides to develop query expressions to satisfy the three topics listed previously. The analyst enters $\underline{QE1}$, which identifies the first expression to be input. The computer responds with the prompt "ENTER EXPRESSION." The analyst enters the expression to find all land use regions coded with the attribute ACC:

L7:LU=ACC

Table 4-3. A List of Available Attributes is Produced by the QLA Command

DATASET	ATTRIBUTE	DATA	
NAME	NAME	TYPE	
LANDUSE		NUM	
	LU	TEXT	
	CODE	NUM	
	COUNT	NUM	
FLOOD		NUM	
	FLD	TEXT	
	CODE	NUM	
	COUNT	NUM	
ELEV		NUM	
	EL	TEXT	
	CODE	NUM	
	COUNT	NUM	
LUREV		NUM	
	LUR	TEXT	
	CODE	NUM	
	COUNT	NUM	

The expression results will be placed in bit plane number 7. After the expression is entered, the query program evaluates the statement for syntax. If an error is found, a diagnostic statement is provided and the analyst is again prompted to enter an expression. When no errors are found, the user is prompted for the next command.

The same sequence is followed to generate the next two query statements, after which the analyst wishes to review all three of the expressions entered (Table 4-4) by entering the QLE command. The second query,

L6:FLD=BELO AND ELEV.CODE<100,

is a complex query involving two evaluations. The first condition, $\underline{\text{FLD=BELO}}$, and the second condition, $\underline{\text{ELEV.CODE} < 100}$, must both be evaluated true in order for the complex expression to be true. Also note that since the attribute designation $\underline{\text{CODE}}$ is not a unique attribute name, the variable operand must be designated by a more complete reference $\underline{\text{ELEV.CODE}}$. The final query expression

L8:L7 AND L6

designates that the results of the two previously evaluated query expressions are to be compared. Since queries are processed in order of occurrence of the list, values for bit planes 6 and 7 are compared. Whenever both bit planes contain a true response, L8 is evaluated true as well.

4.2.4 QUERY Processing

Now the analyst directs the QUERY program to process the three queries by issuing the \overline{QP} command. The program responds with the reply "QP IN PROGRESS," and then it processes the query expressions in order, QE1, QE2, and then QE3, for each pixel in the data base. After completion of the final evaluation, the program lists the number of pixels that were evaluated true for each query followed by a summary of central processing unit (CPU) time used for all evaluations. (Table 4-5). The analyst then decides to list all processed queries by entering the \overline{QLP} command, causing the final list to be produced (Table 4-6).

Table 4-4. List of All Expressions To Be Processed

	EXPRESSIONS TO BE PROCESSED
QE1 QE2 QE3 QE4 QE5 QE6 QE7 QE8	L7:LU=ACC L6:FLD=BELO AND ELEV.CODE<100 L8:L7 AND L6

Table 4-5. Results of Query Processing

OP FINISHED

L7 38950 L6 175725 L8 9205 CPU TIME = 7 MIN 04 SEC

Table 4-6. List of All Processed Queries Obtained from Issuing the QLP Command

PROCESSED EXPRESSIONS

L
L1
L2
L3
L4
L5
L6:FLD=BELO AND ELEV.CODE<100
L7:LU=ACC
L8:L7 AND L6

The analyst can display the results of any of these queries by using either the display processor or a hard-copy generation device. The results of the three queries are included here (Figures 4-2 to 4-4).

For purposes of verifying the accuracy of the query software, those output data planes were checked at every stage in the process against hard-copy versions of the data planes comprising the Healdsburg data base. Thus the performance of the query software was evaluated independently of the computer data base.

No problems were encountered while each individual query was being processed. All of the output data sets had the correct areas flagged to reflect the query. Through the use of the display capabilities, the output data planes appeared on the screen in a matter of a few seconds. Hard-copy products used in this report were made directly off of the screen with a Dunn camera, or data were transferred to magnetic tape and subsequently processed on a film recorder.

Figure 4-2. Result of Query: Land Use Equals Code ACC

Figure 4-3. Result of Query: FLD=BELO and ELEV<100

SEAL COCCOUNT ASSESSMENT AND THE TANK OF THE PARTY OF THE

Figure 4-4. Result of a Query by the Composite Query Process
All land areas coded ACC, within the floodplain, and below
100 feet. The first query, LU=ACC, is depicted in the
lightest tone. The second query, FLD=BELO and ELEV<100,
is depicted by the medium gray tone. Finally, the composite
of the two queries is depicted in black.

4.3 EVALUATION OF THE INTERACTIVE QUERY PROGRAM

Control of the second s

に対するとなっていまったということとのできないのできる

The new query software represents a major improvement over the original batch-entry process and the first interactive version. However, one feature of the original query program was not included in the software redesign. While the batch version of the software provided a tabular report covering the results of the query, the new interactive version does not. The batch method relied on several IBIS programs, including AGGRG, AGGRG2, TRANSCOL, REPORT, and ROWOP, to produce the report. The features of those programs could not be implemented with the new software during the period available for the query redesign. However, the features offered by the tabular report were always considered to be quite useful and beneficial, and it would be hoped that a similar report function could be eventually added to the new query program.

Several other features could be added to the query software to promote its wider application and versatility. The current data structure convention limits attribute file columns that contain character information to be formed by a field of exactly four characters. This convention restricts the use of attribute labels in QUERY to labels of four characters or less. Since many attributes cannot be properly identified by only four characters and still maintain some form of understandability, IBIS attribute file conventions must be modified to accomodate variable dimensioned column fields. This software improvement was not undertaken at this time, because more than forty other IBIS programs that utilize IBIS attribute files would need to be modified as a result. It is important to note that some improvements to the attribute file structure were made to support the QUERY software, with the inclusion of both column name and column data-type blocks within the attribute file label. This improvement was made without affecting the operation of other IBIS programs that process interface files.

A timing analysis on the performance of the new query processor was made (Appendix A, Table A-1). The timings for queries involving single, double, or even more data planes seems to be a fairly constant function. Each data plane for the Healdsburg data set measured 900 x 1120 pixels for a total of 1,008,000 pixels. For a query involving just one image plane, execution time ran about 2.3 CPU minutes. For queries involving analysis of multiple image planes the processing time in minutes has been estimated to conform to the equation

1.38n + .58

where "n" is the number of data planes analyzed. Thus, for a query involving two data planes, the processing time usually ran about 3.25 minutes. A query involving five image planes ran in just over 7 minutes. At the data processing rate of 1,008,000 pixels in 2.2 minutes, more than 7,600 pixels were processed each second. Some software optimization routines were developed during the course of this program development, but additional modifications could greatly improve processing time. Since the query program is an interactive procedure, any improvement in processing time would be beneficial to the user, who must wait for the process to be concluded. (Since QUERY is operated in a time-share environment, it is not unlikely that the analyst will have to wait more than three times the CPU execution time for the completion of the process.) Perhaps a new data structure involving the representation of the data in a more compressed form would also increase efficiency and hence improve processing time.

REFERENCES

- Angelici, G. L., and N. A. Bryant, 1976, "Techniques for the Creation of Land Use Maps and Tabulation from Landsat Imagery," <u>Proceedings, Second Annual William T. Pecora Memorial Symposium</u>, Sioux Falls, South Dakota.
- Bryant, N. A., 1976, "Integration of Socioeconomic Data and Remotely Sensed Imagery for Land Use Application," <u>Proceedings, Caltech/JPL Conference on Image Processing</u>, Pasadena, California, pp. 9-1/9-8.
- Farrell, K. W., and D. B. Wherry, 1978, <u>A Synoptic Description of Coal Basins Via Image Processing</u>, Publication 78-82, Jet Propulsion Laboratory, Pasadena, California.
- Friedman, S. Z., 1980, Mapping Urbanized Area Expansion Through Digital Image Processing of Landsat and Conventional Data, Publication 79-113, Jet Propulsion Laboratory, Pasadena, California.
- Friedman, S. Z., 1982, <u>Image Based Approach to Mapping, Charting, and Geodesy</u>, Publication 715-158 (D-1689), Jet Propulsion Laboratory, Pasadena, California.
- Logan, T. L., 1981, "A Data Base Approach for Prediction of Deforestation—Induced Mass Wasting Events," <u>Proceedings, 47th Annual Meeting of the American Society of Photogrammetry</u>, pp. 197-211.
- Seidman, J. B., and A. Y. Smith, 1979, <u>VICAR Image Processing System: Guide to System Use</u>, Publication 77-37, Revision 1, Jet Propulsion Laboratory, Pasadena, California.
- Sharpley, W. K., J. F. Leiserson, and A. H. Schmidt, 1978, <u>A Unified Approach</u> to Mapping, Charting, and Geodesy (MC&G) Data Base Structure Design, Report ETL-0144, US Army Engineer Topographic Laboratories.
- Zobrist, A. L., 1979, "Data Structures and Algorithms for Raster Data Processing," <u>Auto Carto IV</u>, Vol. 1, Reston, Virginia, pp. 127-137.

APPENDIX A

Sample Query Products From Interactive Query

 $(T_{n+1}, T_{n+1}, \dots, T_{n+1$

Figure A-2. Result of Query: LU=ACP AND FLD=ABOVE

83531 C022227 WWSSWS WWW.

Figure A-3. Result of Query:

LU=ACP AND ELEV.CODE GE 3

Figure A-4. Result of Query: LU=ACP AND (ELEV.CODE>=3 AND ELEV.CODE<=5)

Figure A-5. Result of Query: LU=ACP AND (ELEV.CODE<= 2 OR ELEV.CODE GT 5)

Figure A-6. Result of Query: LU=ACP AND ELEV.CODE<>5

Figure A-7. Result of Query: FLD=BELO OR LUC>AVV

V Figure A-8. Result of Query: LU<>AVV AND LU<>ACP

Figure A-9. Result of Query: LU=ACC OR LU=ACP

Figure A-10. Result of Query: FLD=BELO OR (LU NE AVV AND ELEV.CODE=1)

Figure A-ll. ..esult of Query:
 (FLD=ABOV)*ELEV.CODE*20

Figure A-12. Result of Query: FLD=BELO OR EL=500

Figure A-13. Result of Query: FLD=BELO AND ELEV.CODE GE 1

Figure A-14. Result of Query: ELEV.CODE GE 3 AND ELEV.CODE LE 4

Figure A-15. Result of Query: LUREV<>0

Figure A-16. Result of Query: FLD=BELO AND ELEV.CODE<=1

Result of Query: ELEV.CODE=3 (Elevation zones between 300 and 400 feet) Figure A-17.

Result of Query: LUREV>1 (Land areas affected by revision) Figure A-18.

Figure A-20. Result of Query: LU<>R

Figure A-19. Result of Query: LU=R

Figure A-22. Result of Query: LU=R AND ELEV.CODE>=2

Figure A-21. Result of Query: LU=R AND ELEV.CODE>=1

Figure A-23. Result of Query: LU=R AND ELEV.CODE>=3

Figure A-24. Result of Query: LU=R AND ELEV.CODE>=4 いたなる。国際の名のはなると、国際ののなどのなど

Figure A-25. Result of Query: LU=R AND ELEV.CODE>=5

Figure A-26. Result of Query: LU=R AND ELEV.CODE>=6 STATE OF THE STATE

Figure A-27. Result of Query:

LU=R AND ELEV.CODE>=7

Figure A-28. Result of Query: LU=R AND ELEV.CODE>=8

Figure A-29. Result of Query: LU=R AND ELEV.CODE>=9

Figure A-30. Result of Query: LU=R AND ELEV.CODE>=10

Table A-1. CPU Timings for Selected Queries (1 of 2)

Fig. No.	Expression	Pixels Alarmed	Acres	CPU Time*
A-1	LU=ACP AND FLD=BELO	886	8.14	3.14
A-2	LU=ACP AND FLD=ABOV	160,565	1,474.43	3.13
A-3	LU=ACP AND ELEV.CODE GE 3	35,955	330.17	3.16
A-4	LU=ACP AND (ELEV.CODE>3 AND ELEV.CODE <5)	25,790	236.89	4.03
A-5	LU=ACP AND (ELEV.CODE < 2 OR ELEV.CODE > 5)	135,661	1,245.74	4.01
A-6	LU=ACP AND ELEV.CODE<>5	155,918	1,431.75	3.14
A-7	FLD=BELO OR LU<>AVV	897,137	8,238.17	3.13
A-8	LU<>AVV AND LU<>ACP	665,116	6,107.58	3.08
A-9	LU=ACC OR LU=ACP (LU=ACC; ACP)	200,401	1,840.23	3.04
A-10	FLD=BELO OR (LU<>AVV AND ELEV.CODE=1)	465,238	4,272.16	4.08
A-11	(FLD=ABOV)*ELEV.CODE*20	637,931	5,857.95	3.06
A-12	FLD=BELO OR ELEV.CODE=500	218,373	2,005.26	3.03
A-13	FLD=BELO AND ELEV.CODE=1	8,431	77.42	3.09
4-2	LU=ACC	38,950	357.67	2.27
A-14	ELEV.CODE GE 3 AND ELEV.CODE LE 4	95,455	876.54	3.01
A-15	LUREV<>0	1,008,000	9,256.20	2.28
A-16	FLD=BELO AND ELEV.CODE LE 1	184,156	1,691.06	3.04
A-17	ELEV.CODE=3	54,622	501.58	2.28
A-18	LUREV>1	32,766	300.88	2.25
4-3	FLD=BELO AND ELEV.CODE<1	175,725	1,613.64	3.05
A-19	LU=R	100,411	922.05	2.26
A-20	LU<>R	907,589	8,334.15	2.29

^{*}CPU Minutes

Paradotto bashawa distribution

Table A-1. CPU Timings for Selected Queries (2 of 2)

Fig. No.	Expression	Pixels Alarmed	Acres	CPU Time*
	QUERY SERIES, SEQUENCED O	N ELEVATION		
A-21	LU=R AND ELEV.CODE>1	100,154	919.69	3.12
A-22	LU=R AND ELEV.CODE≥2	86,332	792.76	3.11
A-23	LU=R AND ELEV.CODE≥3	70,197	644.60	3.12
A-24	LU=R AND ELEV.CODE>4	54,986	504.92	3.10
A-25	LU=R AND ELEV.CODE≥5	42,430	389.62	3.15
A-26	LU=R AND ELEV.CODE≥6	32,094	294.71	3.17
A-27	LU=R AND ELEV.CODE≥7	21,836	200.51	3.16
A-28	LU=R AND ELEV.CODE≥8	10,373	95.25	3.16
A-29	LU=R AND ELEV.CODE≥9	3,232	29.68	3.16
A-30	LU=R AND ELEV.CODE>10	37	0.34	3.15
	COMPOSITE QUERI	ES		
4-2 4-3 4-4	LU=ACC QUERY 1 FLD=BELO AND CODE<1 QUERY 2 QUERY 1 AND QUERY 2	38,950 175,725 9,205	357.67 1,613.64 84.53	7.04

^{*}CPU Minutes

APPENDIX B DETAILED DATA PLANE DESCRIPTIONS

Figure B-1. Numerical Identification Codes Assigned to Geographic Regions Comprising the Land Use Data Plane

Figure B-2. Numerical Identification Codes Assigned to Regions Comprising the Contour Data Plane

Figure B-3. Numerical Identification Codes Assigned to Regions Comprising the Floodplain Data Plane

Figure B-4. Numerical Identification Codes Assigned to Regions Comprising the Land Use Revision Data Plane

Table B-1. Numerical Keys Assigned to Land Use and Land Use Revision Codes

ASSAL ACCACCA: BARRARES CONSTRUCT CONTROL OF

Numerical	Label
Key	Code
1	ACC
1 2 3 4	ACP
3	AR
4	AVF
5 6 7 8	AVV
6	BBR
7	BEQ
8	BES
9	BT
10	FO
11	LR
12	R
13	UCB
14	UCC
15	UCR
16	UCW
17	UES
18	UIL
19	UIS
20	UIW
21	UOC
22	UOG
23	UOO
24	UOP
25	UO V
26	URH
27	URS
28	UUS
29	UUT
30	VV
31	WO
32	WS
33	WWP

Table B-2. Numerical Keys Assigned to 100-Foot Contour Elevation Zones

SOUTH PARKAGE CONSISSION SOUNDS TO

Numerical	Contour Zone
Key	(min - max)
0	0 - 100
1	101 - 200
2	201 - 300
3	301 - 400
4	401 - 500
5	501 - 600
6	601 - 700
7	701 - 800
8	801 - 900
9	901 - 1000
10	1001 - 1100

Table B-3. Numerical Keys Assigned to Floodplain Zones

Numerical Ke y	Floodplain Zone	
0	Below	
1	Above	

Table B-4. Healdsburg Quadrangle Land Use Data Plane (1 of 6)

US ARMY. ENGINEER TOPOGRAPHIC LABORATORIES

SUMMARY REPORT LAND USE DATA PLANE

- POLYGON -	APEAL COVERAGE	
NUMBER LABEL	PIXELS ACRES SQ MILES	
SPS VS VF FCBVSV FR GSS CCSPCVFVC CWO FF ICRTCRSO VVSVCCVFCC VV UUUBUUWERAAWAUUAUUFAUFUUUPUUUDUUUAAAUFUURAAA	109 1.00 0.00156 209 1.92 0.00300 55730 511.75 0.79961 700 6.43 0.01004 703 6.46 0.01009 64012 587.80 0.28250 3399 31.21 0.04877 6191 56.85 0.08883 952 8.74 0.01366 659 61.15 0.09554 443 4.07 0.03827 799 7.34 0.01146 233 2.14 0.00334 1800 16.53 0.02583 1800 16.53 0.02583 16122 148.04 0.23132 2.91 0.004552 16122 148.04 0.23132 6911 63.46 0.05916 82 0.75 0.00118 1759 16.15 0.02583 1759 16.15 0.02583 1759 16.15 0.02583 1759 16.15 0.02583 1759 16.15 0.02583 1759 16.15 0.02583 1759 16.15 0.00118 1759 16.15 0.02524 13821 126.91 0.19830 776 7.13 0.01113 1759 16.15 0.02524 13821 126.91 0.19830 176 7.13 0.01113 1759 16.15 0.02584 13821 126.91 0.19830 1788 66.01 0.00580 404 3.71 0.00580 413 3.79 0.005937 1884 18.22 0.00981 659 6.05 0.00946 52040 477.87 0.74667 784 7.20 0.001791 1688 15.50 0.007422 7188 66.01 0.10313 257 2.36 0.00369 3864 35.48 0.05544	

Table B-4. Healdsburg Quadrangle Land Use Data Plane (2 of 6)

IBIS TEST DATA BASE FOR US ARMY. ENGINEER TOPOGRAPHIC LABORATOFIES

SUMMARY REPORT LAND USE DATA PLANE

- PELYGON -	tsc	LL COVERA	G= -
NUMBER LABEL	PIXELS	ACRES	SO MILES
VF WPBSF TS FW TLSSFCPPCRSSVVHVSSCSVVSW VVT CCCRV URR VC RUHER VCCCCCCCTTVVHVSSCSVVSW VAABUUUAACUAAURLJUUUAAAUUUUAAUUUUAAUAUBAUAAUUVAA4444444444	222861 15796614466231131169066562421444124606131653792711690665624214441246061316537420574205742057420574205742057420574205	21421397544905695996953782023301013446453067304959969537820233010134464530673049599695378202330175476988268842249	75603526713164947926603383232555589339943095305050505050505050505050505050505050

Table B-4. Healdsburg Quadrangle Land Use Data Plane (3 of 6)

US ARMY. ENGINEER TOPOGRAPHIC LABORATORIES

SUMMARY REPORT LAND USE DATA PLANE

- POLYGON -	AF 5	AL COVERA	GE
NUMBER LABEL	PIXELS	ACRES	Salim cs
CCVLC FSTC C FCVFPCVVVSPVFVPWFVCPV FV RCCVVLC FSTC C FCVFPCVVVSPVFVPWFVCPV FV RCCVVLC VVSPVFVPWFVCPV FV VX AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	337831247 11831247 11831247 12846205777087070887 11831247 12847751468477 12981289 1167730298135129 1115 28123130 1213121 128123130 1292131310 1292131310	3.08190 10.8813109.660218858466151119.66031.6603	835 b 5 6 2 5 1 6 2 5 0 0 1 2 5 2 7 8 1 2 7 8 2

Table B-4. Healdsburg Quadrangle Land Use Data Plane (4 of 6)

IBIS TEST DATA BASE FOR US ARMY. ENGINEER TOPOGRAPHIC LABORATORIES

SUMMARY REPORT LAND USE DATA PLANE

SEEM TOTAL PROPERTY OF THE PRO

- POLY	30N -		AREAL COVE	RAGE
NUMBER	LABEL	PIXELS	ACRES	SQ MILES
7890123456789012345 6789012345678 2223333333334444444444555555555666666666 11111111111	ROYNATON FROODS RIVERSO TO THE PRISSYNTERS ROYNATON FROODS RIVERSO TO THE PRISSYNTERS	20418873193988073078333392652873355694658873 1 41191384257593624362918596627248573 21 213 32 321 6 1 21 213 32 321 6 1	8357307818175976335706599716123533214022	0.103138 0.103139 0.10314846 0.0014876 0

Table B-4. Healdsburg Quadrangle Land Use Data Plane (5 of 6)

IBIS TEST DATA BASE FOR US ARMY. ENGINEER TOPOGRAPHIC LABORATORIES

SUMMARY REPORT LAND USE DATA PLANE

- POLYGON	 	AREAL	COVERA	3E
NUMBER LAB	EL PI	XELS A	CRES	SQ MILES
VW UCCWCVC CTVVVVRVCV8VCVVCFVCRRCVVPAAAAUAAUAAAUAAAUAAAUAAAUAAAUAAAAAAAAA	♥ ﻯ०००४४,०० ० ш >> ०५० ००००००००००००००००००००००००००००००००	23169031607435092518c 57457888378768889675907 476903292255553536701967571888378768889675907 2346721334298757888378768889675907 11 234672186 57457888378768889675907	23108523782391576155501629350277450 2310852379451052745080038121555042463689615 231085237907820622231877854780129350277497	9.003445 003445 000013087 000013087 000013087 000013087 1000013087 1000013087 1000010308 10000010308 100000000000000000000000000000000000

Table B-4. Healdsburg Quadrangle Land Use Data Plane (6 of 6)

IBIS TEST DATA BASE FOR US ARMY. ENGINEER TOPOGRAPHIC LABORATORIES

SUMMARY REPORT LAND USE DATA PLANE

- POLYGON -	AR	EAL COVER	AGE
NUMBER LABEL	PIXELS	ACRES	SO MILES
211 AVV 212 AVP 213 AUTS 214 AUTS 215 BEQ 217 AR 219 ACT 218 AVF 219 AVV 222 A	3263 230 1955 472 1143 1441 1256 782 671 888 6782 2054 4501 257 1310	29.96 21.95 10.95 10.23 11.53 11.53 11.53 11.53 11.53 11.53 11.53 11.53 11.53 11.53 11.53 11.53 11.53 11.55 11	7.04682 0.003305 0.028677 0.01640 0.01680 0.01802 0.01145 0.011263 0.019674 0.02977 0.02977 0.02977 0.00551 0.00367 0.00367 0.01880

Table B-5. Healdsburg Quadrangle Countour Data Plane (1 of 2)

US ARMY. ENGINEER TOPOGRAPHIC LAPORATORIES

SUMMARY REPORT CONTOUR DATA PLANE

- POLYGON -	AR6	EAL COVERA	G =
NUMBER LABEL	PIXELS	ACRES	SJMILES
12345 6789012345 6789012345 6789012345 6789012311111111122222222223333333333333333	101144 21204 1600 3615999 217978 12779 1278 3855741 3855741 3855741 129432525 1803 1803 1803 1803 1803 1803 1803 1803	924.771 190.5483 190.5483 190.1338 191.044256883 191.044256883 191.044256883 191.044256883 191.044256883 191.044256883 191.044256883 191.04426883 191.04426883 191.04426883 191.04426883 191.04426883 191.04426883 191.04426883 191.04426883 191.04426883 191.04426883 191.04426883 191.04426883 191.04426883 191.04426883 191.04428883 191.044883 191.04488 191.0448	1.45123 2012

Table B-5. Healdsburg Quadrangle Countour Data Plane (2 of 2)

US ARMY. ENGINEER TOPOGRAPHIC LABORATORIES

SUMMARY REPORT CONTOUR DATA PLANE

- POLYGON -	AR	EAL COVERAGE	
NUMBER LABEL	PIXELS	ACRES SQ MI	LES
00000000000000000000000000000000000000	28 21 2693 397 333 234 1169 1672 138 1525 1478 1478 1478 1478 1478 1478 1478 1478	0.49 0.00 10.71 0.08 10.55 0.00 1.55 0.00 0.12 0.12 0.12 0.12 0.12 0.12 0.00 0.12 0.00 0.12 0.00 0.12 0.00	0857573671464119821471252248757725224872

Table B-6. Healdsburg Quadrangle Floodplain Data Plane

IBIS TEST DATA BASE FOR US ARMY. ENGINEER TOPOGRAPHIC LABORATORIES

SUMMARY REPORT FLOODPLAIN DATA PLANE

- POLYGON -	7 b	EAL COVER	AGE
NUMBER LABEL	PIXELS	ACRES	SQ MILES
4 8 8 0 V 2 8 8 8 0 V 2 4 8 8 0 V 4 4 8 0 V	286819 184201 20 536960	2633.75 1691.45 0.18 4930.52	4.11518 2.64284 3.00029 7.70410

Table B-7. Healdsburg Quadrangle Land Use Revision Data Plane

HEALDSBURG QUADRANGLE: NW QUARTER SECTION EFFECTIVE FIXEL SCALE: 1:240.000 1 PIXEL = 400 SQ FT

US ARMY. ENGINEER TOPOGRAPHIC LABORATORIES

SUMMARY REPORT LAND USE REVISION DATA PLANE

- POLYGON -	¿R	EAL COVER	4G=
NUMBER LABEL	PIXELS	ACRES	SQ MILES
1 2 UIS 3 ACC 4 AVV 5 UFS	975334 4390 5606 6200 16470	8955.50 40.31 51.48 56.93 151.24	13.99371 0.06299 0.08043 0.08896 0.23631

Table B-8. Healdsburg Quadrangle Summary of Georeference Base (1 of 18)

IBIS TEST DATA BASE FOR US ARMY, ENGINEER TOPOGRAPHIC LABORATORIES

050055	- DATA	PLANE	ATTRIBUTES	·	APEAL	CCVERA	G =
GEOREE REGION CODE	LAND	ME AN ELEV	FLCOD L I	JSE NGE P!	XELS A	CRES	SO MILES
12345 07890123456789012345678901234567890123	SRS >>SSS S SRS S	11111122331551112222332211115513313111152211255 5555555555	VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV		700 385 19199 1 13690 1 121591 1 131501 13111 13111 13111 13921 476 376 4773 4773 4773 4773 4773 4773 4	1.00283442099180004 0.9783442099180001042987467876057666947735044956 763260101046409111957666947735044956	0.03556 0.03566 0.03556 0.035666 0.03566 0.03566 0.03566 0.03566 0.03566 0.03566 0.035666 0.03566 0.03566 0.03566 0.03566 0.03566 0.03566 0.035666 0.03566 0.03566 0.03566 0.03566 0.03566 0.03566 0.035666 0.03566 0.03566 0.03566 0.03566 0.03566 0.03566 0.035666 0.03566 0.03566 0.03566 0.03566 0.03566 0.03566 0.035666 0.03566 0.03566 0.03566 0.03566 0.03566 0.03566 0.0356

Table B-8. Healdsburg Quadrangle Summary of Georeference Base (2 of 18)

IBIS TEST DATA BASE FOR US ARMY. ENGINEER TOPOGRAPHIC LABORATOFIES

GEDREF	- DATA PLANE ATTRIBUTES -				AREAL COVERAGE			
REGIUN CODE	LAND JSE	MF AN FLEV	FLOOD L USE PLAIN CHANGE		PIXELS	ACFES	SO MILES	
4544445555555555566666665777777777778888888888	AAUURUJJEHHUUUUAAJHUUUAAJJUURHHHUJJUHUUDHUUUUSUNAAN VARAAAJHUUAAJJUURKKA DOORKAAKKA DOORKAAKKA DOORKAAKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	12551312121445215325325554124441434313453333	>>O>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		16135477 16135477 161368277 161368277 161368277 161368277 16136827 16	1.000.000.000.000.000.000.000.000.000.0	2921122921371666822203113292925666601700011333 0001227711371666822203113292925666601700001000000000000000000000000000	

Table B-8. Healdsburg Quadrangle Summary of Georeference Base (3 of 18)

IBIS TEST DATA BASE FOR US ARMY. ENGINEER TOPOGRAPHIC LABORATOFIES

	- DATA	FLANF	ATTRIBUTE	s -	ARE	AL COVER	AGE
GERREF GERLEN CODE	L AND USE	MF AN	FLOOD L PLAIN CHA	USE ANGE	PIXELS	ACRES	SO MILES
787012345578901234567890123456789 1100000011111111111111111111111111111	######################################	4342361255754134246851514169751165156514761	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		1533148981930655458742531422125513374990+27+ 14359338 14359338 5 78 112 36 1451315 7 35 1 341312	9864770693514114367227351657757297806443730259 000313325226000507700012026000351314070340	0.00553 0.00553 0.000553 0.000550 0.0020570 0.0020570 0.0020570 0.0020570 0.0020570 0.0020570 0.0020570 0.0020570 0.0020572 0.

Table B-8. Healdsburg Quadrangle Summary of Georeference Base (4 of 18)

US ARMY. ENGINEER TOPOGRAPHIC LABORATORIES

GEOREE			ATTRIBUTE			AREAL	COVERA	GE
REGIÕN Choe Total	LAND JSF	MEAN	PLOCO L	USE NGE	PIXELS	AC	RES_	SO MILES
133234567890123456789012345678901234567890123456789012345678901234567890123456789012345678901234567890123456666666666667777	# 3005	1514174574161722452162245346136285151117135 0 00000 000000000000000000 1515555555555	######################################		13 173 12 510 30 49 19 10 20 21 10 21 10 24 44	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	01-51-062-31-31-31-31-31-31-31-31-31-31-31-31-31-	0.000000000000000000000000000000000000

Table B-8. Healdsburg Quadrangle Summary of Georeference Base (5 of 18)

US ARMY. ENGINEER TOPOGRAPHIC LABORATORIES

050055	- DATA	PLANE	ATTRIBUTES	-	4F.6	AL COVER	AGE
GEOREF REGION CODE	LAND USE	ME AN ELEV	FLCOD L U PLAIN CHAN	SE SE	PIXELS	ACFES	SO MILES
177778901224567890123456789012345 1117778901224567890123456789012345 1111111111111111111122222222222222222	KUUUUFFUUURKU KUUTUUFUUTEUTEUTEUTEUTEUUUFETAAAUUARABA ROROOORRO COORRORROGOOROO VYVRV VTV SOS CSS R SS SS W O S FSS FFVSF F F	31115615148545511152537515551151515151555151515 000000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	VOVOVVVOOVVVOOGGOCOVVVVVVVVVOCGOOGOOVVOOVV		3145 101172 1172 1172 1172 1172 1172 1172 1172 1172 1172 1172 1172 1172 1172 1172 1172 1172 1173 1173 1174	31.625588700.46115181668809065042476120279125 31.603.4732321151816688090650424766120279125 31.603.4732321151816688090650424766120279125 31.603.4732321151816688090650424766120279125	0.000000000000000000000000000000000000

Table B-8. Healdsburg Quadrangle Summary of Georeference Base (6 of 18)

US ARMY. ENGINEER TOPCGRAPHIC LABORATORIES

GEORE F	- DATA	PLANE	ATTRIBUTES	- -		AREAL	COVER	4GE
PĒĞÌĞN CODE 	LAND USE	MEAN	FLOOD L US PLAIN CHANG	- -	PIXEL	S	CRES	SQ MILES
0789012345078901234507890123450739012345073901234507390123450735555555555555555555555555555555555		0 0 000 000000 0 000 0 0 000000 0 000000	CCCCVVOVVOVVOVVVVVVVVCVCCCCCCVVCCVVCCVV		7 135 22 2 2 2 3 1 1 1 1 1 1 1 2 1 7 1 4 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	759416806 00111466614763962410777979534724396	20700251200801531111116002240040100964305005	7217214721472147214721472147214721472147

Table B-8. Healdsburg Quadrangle Summary of Georeference Base (7 of 18)

IBIS TEST DATA BASE FOR US ARMY. ENGINEER TOPOGRAPHIC LABORATORIES

GEORE F	- DATA	PLANE	ATTRIBUTE	ES -		ARE AL	CCVERA	GE
REGIUN COOE	L AND USE	ME AN EL EV	PLAIN CH	USE ANGE	PIXEL	.S	ACFES	SO MILES
9012345678901234567890123456789012345678901234567890123456789012345678901234567890123456789012322222222222222222222222222222222222	UX LAFETE KKKKADEDA&DU C KKDOKO T TF TT	881151735111511575111455152421789215811651555 0000 00 05 0 000 0 00000000 0 0 0 0000 00 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0	>>00>>>>>0>>>>0>>>>>0>>>>>>>>>>>>>>>>>		2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	21933331775980603994056769155334570420052++	1021883271540389351709143341022900089002550 2 111 1 1 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3	78838134940249889641168849974667823666079933448889000000000000000000000000000000

Table B-8. Healdsburg Quadrangle Summary of Georeference Base (8 of 18)

IBIS TEST DATA BASE FOR US ARMY. ENGINEER TOFOGRAPHIC LABORATORIES

HENDLE	- DATA	FLANE	ATTRIB:	JTES -	7£	EAL COVER	AGE
GEUREF FEGION COOL	USE	MEAN	FLOOD PLAIN (L USE	PIXELS	ACRES	SO MILES
2345 67 8901 4 5 67 8901 4 5 4 5 6 7 8 5 7 1 4 5 4 5 6 7 8 9 0 1 2 3 4 5 7 8 9 0 1 2 3 4 7 8 7 8 9 0 1 2 3	SCEPTATATOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOTOT	00 00 00000 0 000 00 00 000000 00000000	0>>>>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	UIS	757 197 197 193 482 516774 4037 1207 1208 215 1082 113 1082 113 113 191 191 191 191 191 191 191 191	591172755349929692919670612306605552148246942 9181104753934219241521166123066055521482469422 00100000418008901000100990100030001	000000112850066645347276696483308652922360000000000000000000000000000000000

Table B-8. Healdsburg Quadrangle Summary of Georeference Base (9 of 18)

US ARMY. ENGINEER TOPOGRAPHIC LABORATORIES

	COVERAGE	
GEOREF PEGION LAND MEAN FLOOD L USE CODE USE ELEV PLAIN CHANGE PIXELS AC	CRES SQ	MILES
347 FC 650 ABGV 1067 348 FD 750 ABGV 215 349 UES 150 ABGV 2574 350 ABGV 2574 351 P 950 ABGV 2574 352 JES 150 BELC 3919 3554 ACP 750 ABGV 3196 3559 URS 150 ABGV 3196 3559 URS 150 ABGV 3737 357 AVF 550 ABGV 19796 358 URS 150 BELC 223 350 UCP 570 ABGV 19796 358 URS 150 BELC 223 350 UCP 570 ABGV 19796 358 UCP 570 ABGV 19796 358 UCP 570 ABGV 19796 364 UCR 50 ABGV 621 366 UUS 50 BELC 46 366 UUS 50 ABGV 502 370 URH 50 ABGV 166 371 AVV 50 ABGV 176 375 UIS 50 ABGV 176 376 AVV 50 ABGV 176 377 AVV 50 ABGV 176 378 AVV 50 ABGV 176 379 AB	00000000000000000000000000000000000000	7201013244692307778601100533473244692307778601100662478662478601280249213350017335017336200053340324264921339850701344782334620000000000000000000000000000000000

Table B-8. Healdsburg Quadrangle Summary of Georeference Base (10 of 18)

US ARMY. ENGINEER TOPOGRAPHIC LABORAT DRIES

0.500.55	- DATA	FLANE	ATTRIE	SUTES -		AFEAL	CCVEF	AGF
GEDREF REGION GDDE	LAND	MEAN	FLCOD PLAIN	L USE CHANGE	PIXEL	LS A	CFES	SO MILES
- 870123450789012345678901234567893333333333344444444444444444444444444	TOURTURNUNTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	51155155561215125513555555525275555555552654500000000000000000000000000	UUUUNNAA ABAABAABAAABAAAAAAAAAAAAAAAAAAA			5137 5137	4846116350564499685615174649883191250662911 67349177492100180237889587960232651540789631 410606240801460051541100942110090004086628	583024446039194028262385342345569954396000000000000000000000000000000000000

Table B-8. Healdsburg Quadrangle Summary of Georeference Base (11 of 18)

IBIS TEST DATA BASE FOR US ARMY. ENGINEER TOPCGRAPHIC LABORATORIES

(; 3 2 5	AT46 -	PLANE	ATTRIS	SUTES -		1	AL COVER	AGE
G=08=F = G00= 	LAND	ME AN ELEV	FLOOD PLAIN	L USE CHANGE	P	IXELS	ACFES	SQ MILES
1 234 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 6 6 6 7 8 9 0 1 2 3 6 6 6 7 8 9 0 1 2 3 6 6 6 7 8 9 0 1 2 3 7 0 1 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	######################################	2355251555555256555555655555555555555555	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	202 200 200 200 200 200		78042743760 22439760 2243976 2243976 224396499277 224386499277 2197511369219751136921975126 2552	72.423 00.687 10.687 11.853 20.687 11.853 20.687 12.880 12	0.11316 0.086132 0.000107 0.000107 0.0001085 0.0003388 0.00033297 0.00033297 0.0005996 0.00596 0.00596 0.00596 0
462 404 405 405 405 409 471 471 471 472	AUAG AGA AGA AGA AGA AGA AGA AGA AGA AGA	50 1550 1550 550 5555 5555 550 550	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	Δ V V Δ V V Δ V V		4229 3009 1765 517 1001 953 1689 1689	38.83 27.63 16.25 4.77 9.19 6.77 2.51 1.55 15.58 1.51	0.06068 0.04317 0.02534 0.00742 0.0073 0.01436 0.01370 0.00292 0.00292 0.00293

Table B-8. Healdsburg Quadrangle Summary of Georeference Base (12 of 18)

INIS TEST DATA BASE FOR US ARMY, ENGINEER TOPOGRAPHIC LABORATORIES

	- DATA PLANE ATTRIBUTES -				AREAL COVERAGE			
REGION CODE	LAND	MEAN ELEV	FLCOD PLAIN	L USF CHANGE	PIXELS	ACRES	SU MILES	
+7 + +7 > 47 0 +7 7 +7 8 +7 9	7 V V V V V V V V V V V V V V V V V V V	50 50 50 50 50	48840V 48840V 48840V	4 V V	43 576 117 357 31	0.39 5.29 1.07 5.21 0.28 0.08	0.00062 0.00826 0.00168 0.00502 0.00044 0.00013	
+30 451 452 463 454 455 465	4	555555555555 5555555555555555555555555	3512000 3512000 3512000 3512000 3512000 3512000 3512000 3512000 351200 3	AVV	7367 7367 9384 1820 2221	0.98 0.26 9.81 0.08 57.64 76.99 16.71	0.00013 0.00040 0.00126 0.00013 0.10569 0.12029	
457 438 439 430 431 452 493	14 24 24 24 24 24 24 24 24 24 24 24 24 24	1500 500 500 500 500 150 150	48.0000VVV 48.0000VVV 48.0000VV	V V 4	790 97 24711 410 1232	0.54 20.21 7.25 0.89 220.91 3.76 11.77	0.00085 0.03126 0.01133 0.00139 0.35455 0.00588 0.01839	
494 495 497 498 4901 501 502 502	44444444444444444444444444444444444444	150 2550 3550 1550 150 150	######################################	URS URS ORS	4059 503 451 1683 920+ 2958 3576 829 1965	37.27 4.62 4.14 15.45 84.52 27.76 32.84 7.61 18.04	0.05824 0.00722 0.00647 0.02415 0.13206 0.04214 0.00119 0.05131 0.01189 0.02819	
504 505 507 507 509 510 511 512	7444 J4444 W	150 150 50 50 50 550 2350 2350	44444448844488444844444444444444444444	UR S	17647 1347 15 3673 205 17 36 1721 25 5058	97.77 12.57 0.14 33.73 1.89 0.33 10.33	7.15276 7.01933 0.00022 0.05270 0.00296 7.00014 7.00052 7.02469 0.00036	
513 514 515 516	4 V V 4 V F 4 V F	50 50 250 250	486V 85LC 480V 480V	Ur S	5058 235 462 213	40.45 2.16 4.24 1.96	0.07257 0.00327 0.00663 0.0030	

Table B-8. Healdsburg Quadrangle Summary of Georeference Base (13 of 18)

US ARMY. ENGINEER TOPCGRAPHIC LABORATORIES

050055	- DATA	PLANE	ATTRIE	SUTES -		498	AL COVER	ΔGE
GEOREF REGION CODE	USE	MEAN	FLOOD	CHANGE	P I	XELS	ACRES	SQ MILES
789012345678501234567890123456789012345678901234567850155555555555555555555555555555555555	PVV FVV F COVP FVVXQQQQUUBAKABBAWAXAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	1125155445355115352511122514252535524251521	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	URSSURS URSSUR		247300183254264578387942578387794138779413877941351863 21875874440816590871138775580795771863 21 7315787387794030095771863 21 7315787387794030095771863 21 7315787387794030095771863	793252629547378691180293219221928850088983637338 076612327786911800293121928850088983637338 166410906006553112334128850088983637338 16906006553112334128850088983637338	27311318 0.0111311111111111111111111111111111111

Table B-8. Healdsburg Quadrangle Summary of Georeference Base (14 of 18)

IBIS TEST DATA RASE FOR US ARMY. ENGINEER TOPOGRAPHIC LABORATORIES

GENREE	- DATA	PLANE	ATTRIE	BUTES -		4RE	AL COVER	AGE
GEOREF REGION CODE	L AND JSE	MEAN	FLOUD PLAIN	L USE CHANGE	PIX	ELS	ACRES	SO MILES
012345678Y012345678901234567890123456789012345678Y01234567890124567890100000000000000000000000000000000000	ADADKRABAAAKAAAAAAAADAABDAADAAAAADKIADKAAADDAAAAADKIADKIAAAADAAAAADAAAADAAAADAAAAADAAAAADAAAAADAAAA	55252353115455151551551551555555555315155555555	00>>>>>>00>>>>>00>>>>>00>>>>>00>>>>>00>>>>	URS	1	19422933953382142910207753399533821429102077583322448899233 18942293339533821429102077583322448899233 12173552217 1114382733987213224488992233 12173552217 111438273398213224488992233	05847317085287014227920405117688009168421569 07208465689130009364911768030425028502850285029344350296420511768030304200418529	0.000000000000000000000000000000000000

Table B-8. Healdsburg Quadrangle Summary of Georeference Base (15 of 18)

US ARMY. ENGINEER TOPOGRAPHIC LABORATORIES

GEOREF	- DATA	PLANE	ATTRIBUTES	-	4F	EAL COVER	AGE
REGION CODE	LAND JSE	ME AN ELEV	PLAIN CHAN	E	PIXELS	ACRES	SQ MILES
660000011234567890123456789012345 666666666666666666666666666666666666	PU SV CVS HHU PPVPVPRSSSVSPSTVVSPHHTHPPPPU SV CVS HHU PPVPVPRSSSVSPSTVVSPHHTHPPPPU SV CVS HHU PPVPVPVPRSSSVSPSTVVSPHHTHPPPPU SV CVS HHU PPVPVPVPVSSSVSPSTVVSPHHTHPPP	51225125155135551511512111115525212221512522 0555055055007505505555555555555555055	VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV		333363574998046148024562621119702546344020042 311136344009731758805890674446425172248891527 21144 29 30 852138641 232 15 4427117 2427111	888052447879763037257038613855244159120163948 513111382396851148757166303444105022244489815 09000091103026038065270334002320150000421611	0.000000013545456002118860936000000000000000000000000000000000

Table B-8. Healdsburg Quadrangle Summary of Georeference Base (16 of 18)

IBIS TEST DATA BASE FOR US ARMY. ENGINEER TOPOGRAPHIC LABORATORIES

3.505	ATAC -	PLANE	ATTRIBUTES -	1F	EAL COVER	AGE
GEOREE REGION CODE	LAND	ME AN FLEV	FLOOD L USE PLAIN CHANGE	PIXELS	ACRES	SO MILES
07 8901234507 8901234507 8901234507 89012345078 89012345078 89012345078 89012345078 89012345078	SPV01334 SPE VP SPSCECONCONCONCONTS PEE SEVVSCONCONTS PEE SEVVSCONCONTS PEE SEVV	251252512211225155151112551521115552551111555 0 00 0 000000 0 0000 0 000 0 00 0 000000	VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	122 1045 1035 1035 1375 1254 1254 1254 1254 1254 1254 1254 125	1441432417315712923001154888329022365835875853 0000001100200010202048100007550710600862 10000102020401520048100007550710600862	765250410977055664361150001377970329 00014523341705566436137980737970329 00000000000000000000000000000000000

Table B-8. Healdsburg Quadrangle Summary of Georeference Base (17 of 18)

US ARMY. ENGINEER TOPOGRAPHIC LABORATORIES

GEOREF	- DATA	PLANE	ATTRIE	BUTES -		APE	AL COVERA	GE
REGION CODE	LAND	ME AN ELEV	FLOOD PLAIN	CHANGE	PIX	ELS	ACRES	SO MILES
66912345678901234567890112345678901 777777777777777777777777777777777777	######################################	111515151511111515111115151555155111111	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			1136 1 3 534 4297798704518889771497719588899739 221128 16 622123338 546 5 1235 16 6212323338 546 5 1235	29569087930155576015061663149611540876859187 10350102042305775547602222236053504057775547602222236053504057775547602222236053504057775547602222236053504057775547602222236053504057775547602222236053504057775547602222236053504057775547602222236053504057777554766022222236053504057775547660222222360535040577755476602222223605350405777554766022222236053504057775547660222222360535040577755476602222223605350405768876887688768876887688768876887688768	282425333227567184324779533338668715262467676718432477953333866871567184324779533338668775262467676767676767767775262446767676777752624467676767677775262446767676767677775262446775126246647877752624467676767676767676767677752624467751262446767676767676767676777526244677512624467676767676767676767676767676767676

Table B-8. Healdsburg Quadrangle Summary of Georeference Base (18 of 18)

US ARMY. ENGINEER TOPOGRAPHIC LABORATURIES

SUMMARY OF GEOREFERENCE BASE

REDOTE	- DATA	FLANE	ATTRIBUTES -	1 _B	EAL LOVER	AGE
GEOREE REGION GODE	LAND USE	ME AN ELEV	FLOCO L USE	PIXELS	ACRES	SO MILES
73345 0739 0123 45 67 890123 45 67 77 77 77 77 77 77 77 77 77 77 77 77	> >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	55155511121521555111115115111111515 00500055555500055555555	VÜVLVVVVVVVVVOVÖVVVVVVVVVVVVVVVVVVVVVVVV	3275 8275 1637 1637 1637 1637 1647 1647 1647 1647 1647 1647 1647 164	8913384158832103038650190637855805 952902011339521311650190637855805 1156927447403397776883480324324750	0.0119338350537450824523450571001199338350574508245234505374601199395350574508245234505571000000000000000000000000000000000
				1028003	9255.39	14-46/38