Europäisch s Patentamt

European Pat nt Office

Offic uropéen des br v t



EP 0 624 161 B1

(12)

# **EUROPÄISCHE PATENTSCHRIFT**

- (45) Veröffentlichungstag und Bekanntmachung des Hinweises auf die Patenterteilung: 24.02.1999 Patentblatt 1999/08
- (51) Int CI.<sup>6</sup>: **C07H 21/00**, C07H 19/04, C12Q 1/68

(21) Anmeldenummer: 92924697.3

(86) Internationale Anmeldenummer: PCT/EP92/02843

(11)

(22) Anmeldetag: 09.12.1992

- (87) Internationale Veröffentlichungsnummer. WO 93/12130 (24.06.1993 Gazette 1993/15)
- (54) 2'-DESOXY-ISOGUANOSINE, ISOSTERE ANALOGE UND ISOGUANOSINDERIVATE SOWIE DEREN ANWENDUNG

2'-DESOXY-ISOGUANOSINES, ISOSTER ANALOGUES AND ISOGUANOSINE DERIVATES AND THEIR USE

2'-DESOXY-ISOGUANOSINES, ANALOGUES ISOSTERES ET DERIVES D'ISOGUANOSINE, AINSI QUE LEUR UTILISATION

- (84) Benannte Vertragsstaaten:
  AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT
  SE
- (30) Priorität: 09.12.1991 DE 4140463
- (43) Veröffentlichungstag der Anmeldung: 17.11.1994 Patentblatt 1994/46
- (73) Patentinhaber: BOEHRINGER MANNHEIM GMBH 68298 Mannheim (DE)
- (72) Erfinder:
  - SEELA, Frank
     D-4500 Osnabrück (DE)
  - KASIMIERCZUK, Zigmunt 02-776 Warszawa (PL)
  - MÜHLEGGER, Klaus D-8121 Polling (DE)
  - VON DER ELTZ, Herbert D-8120 Weilheim (DE)

- (74) Vertreter: Fouquet, Herbert, Dr. et al c/o Boehringer Mannheim GmbH, Patentabteilung, Sandhoferstrasse 116 68298 Mannheim (DE)
- (56) Entgegenhaltungen:

EP-A- 0 219 838 EP-A- 0 286 028 EP-A- 0 269 445 WO-A-90/03370

WO-A-90/06312

- NUCLEIC ACIDS RESEARCH. Bd. 11, Nr. 3, 11.
  Februar 1983, ARLINGTON, VIRGINIA US Seiten 871 882 H.B.COTTAM ET AL. 'A Convenient Synthesis of 6-Amino-1-B-D-ribofuranosylpyrazolo(3,4-d)pyrimidin-4-one and Related 4,6-Disubstituted Pyrazolopyrimidine Nucleosides.'
- HELVETICA CHIMICA ACTA. Bd. 74, Nr. 8, 11.
   Dezember 1991, BASEL CH Seiten 1742 1748
   Z.KAZIMIERCZUK ET AL. '168.
   2'-Deoxyguanosine and Base-Modified Analogues: Chemical and Photochemical Synthesis.'

O 624 161 B1

Anmerkung: Innerhalb von neun Monaten nach d rB kanntmachung des Hinweises auf di Erteilung des uropäischen Patents kann jedermann beim Europäischen Pat ntamt gegen das erteilt europäisch Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu b gründen. Er gilt erst als ingelegt, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).

# Bes hreibung

[0001] Nucleosid sind als Baustein der Nucleinsäur in der belebten Natur weit verbreitet. Sie kommen als Ribonucleosid in den Ribonucleinsäur n (RNS), als Desoxyribonucleoside in den Desoxyribonucleinsäuren (DNS) vor.

[0002] Natürlich vorkommend Nucleoside sind in der Regel aus inem Zuckerteil (Ribose bzw. Desoxyribose) und einem aglykonischen heterozyklischen Teil aufgebaut. Diese sogenannten Nucleobasen sind in der Regel Adenin, Guanin, Cytosin und Thymin, bzw. Uracil.

[0003] Darüber hinaus wurden in Naturstoffen Nucleoside gefunden, die nicht Bestandteile von Nucleinsäuren sind, wie z.B. Isoguanosin oder 1-Methyl-isoguanosin. Sie besitzen häufig interessante pharmakologische Eigenschaften.

[0004] Aufgrund dessen wurde Isoguanosinverbindungen und deren Herstellung Interesse entgegengebracht. So beschrieben Kazimierczuk et al. (1973, Acta Biochimica Polonica 20, 395-402) Isoguanin-ribo- und -2'desoxyribonukleoside sowie deren 5'-phosphate. Didesoxy-Isoguanosin wurde im Zusammenhang mit der Herstellung von Didesoxynukleosiden erwähnt, die über einen enzymatisch katalysierten Ribose-Transfer hergestellt werden (WO 90/06312). Der Einfluß der Nukleobase und der Zuckerstruktur auf die protonenkatalysierte Furanosid-Pyranosid-Isomerisation

von Tubercidin und dessen 2'-Desoxyderivaten wurde untersucht (Seela et al., 1986, J. Chem. Soc. Perkin Trans. II 1986). Bekannt sind auch Pyrazolo[3,4-d]Pyrimidinverbindungen (WO 90/03370) sowie Desaza-purin-nukleosidderivate (EPA 0 286 028) sowie Verfahren zu deren Herstellung.

[0005] Bei der Untersuchung von Poly(isoG) zeigte sich, daß die Poly(isoG) thermisch stabilere Sekundärstrukturen ausbildet als das Poly(G)(1976, Eur. J. Biochem. 65, 183-192).

[0006] Die Aufgabe der vorliegenden Erfindung bestand darin 2'-Desoxy-isoguanosine. isostere Derivate und Isoguanosinderivate sowie deren Phosphorverbindungen zur Verfügung zu stellen. Besondere Aufmerksamkeit wurde den oben genannten Verbindungen entgegengebracht, die zur Synthese von Oligodesoxynucleotiden oder DNA-Fragmenten auf chemischen oder enzymatischen Wege geeignet sind. Oligodesoxynucleotide oder DNA-Fragmente, welche die erfindungsgemäßen Verbindungen enthalten, sind in biologischen Systemen zur Hemmung der Expression

[0007] Gegenstand der Erfindung sind Verbindungen der allgemeinen Formeln II bis IV (Formelbilder siehe Fig. 1),

Wasserstoff oder eine Schutzgruppe,  $PO_3H_2$ ,  $P_2O_6H_3$ ,  $P_3O_9H_4$  oder die entsprechenden alpha-, beta- und gamma-Thiophosphate, mit der Maßgabe, daß für Formel III  $R_1$  nicht  $P_3O_9H_4$  bedeutet,

Wasserstoff, Hydroxy, Phosphoramidit, Methylphosphonat, H-Phosphonat, eine Reporter- oder In- $R_2 =$ 

Wasserstoff oder eine Schutzgruppe,

W oder/und Z = Wasserstoff, Halogen, NH-(CH<sub>2</sub>)<sub>n</sub>NH<sub>2</sub> (n=2-12), R-CH<sub>2</sub>COOH (R=Alkylen-C 1-8), eine Reporter-

#### 40 bedeuten.

45

50

30

[0008] Die erfindungsgemäßen Verbindungen der Formeln II - IV werden hergestellt, indem man entweder Verbindungen der allgemeinen Formeln a oder b, worin

R' = R" ist und eine Acyl-Schutzgruppe wie z.B. p-Toluoyl- oder Benzoyl-darstellt, ausgeht, diese mit Aroylisocyanaten, z. B. Benzoylisocyanat umsetzt und das gewünschte Isoguanosin isoliert,

oder Verbindungen der allgemeinen Formeln VII bis IX, worin W, Z, R1, R2 und R3 die oben angegebene Bedeu-

# und Hal Chlor, Brom oder Jod darstellt

durch Bestrahlung photochemisch in die erfindungsgemäßen 2'-Desoxyisoguanosine umwandelt.

[0009] Ein besonders bevorzugtes Verfahren zur Herstellung der erfindungsgemäßen Verbindungen besteht darin, daß Desoxyguanosin bzw. Guanosin und deren Derivate mit Hexamethyldisilazan und Trimethylchlorsilazan persilyliert werden. Anschließend wird mit Ammoniak Tris(trimethyl)silyltriflat das 2,6-Diaminonucleosid hergestellt und s lektiv 55 in d r 2-Position mit Nitrit zum Isoguanosin oder Desoxyguanosin desaminiert.

[0010] Die weitere Derivatisierung geschieht nach den dem Fachmann bekannt in Methoden.

[0011] In den erfindungsgemäßen 2'-Desoxy-isoguanosinen kann der heterozyklische Teil vorzugsweise durch die

entsprechenden Isostere 7-Desaza-isoguanin und ersetzt sein, wobei diese Basen zusätzlich noch Substituenten an C-7 des 7-Desaza- und an C-8 des Isoguanins tragen können. Solche Substituenten können z. B. Reportergruppen sein, wie unten beschrieben.

Besonders bevorzugt sind Wasserstoff, Halogen, NH-(CH<sub>2</sub>)<sub>n</sub>NH<sub>2</sub>, R-CH<sub>2</sub>COOH, ein Reporter- oder Interkalatorgruppe.

[0012] Ein Diaminogruppe in der Position W und/oder Z kann eingeführt werden, indem ein Verbindung, in der W und/oder Z Wasserstoff ist, halogeniert wird (beispielsweise mit Bromwasser) und aus dem Bromid durch nukleophilen Austausch die Diaminogruppe eingeführt wird. Besonders bevorzugt wird eine Diaminopentyl- oder Diaminohexylgruppe eingeführt. Die gewünschte Verbindung kann aus dem Gemisch der Aminoverbindungen durch chromatographische Reinigung hergestellt werden.

[0013] Eine Carboxylfunktion kann eingesführt werden, indem die entsprechende halogenierte Verbindung mit Methyllithium umgesetzt und mit Halogen das Methylbromid hergestellt wird. Diese Verbindung wird mit Aminocarbonsäuren (z. B. Aminocarponsäure) zum Endprodukt umgesetzt.

[0014] Die Reporter- oder Interkalatorgruppen werden vorzugsweise in ihrer aktivierten Form (z. B. Hydroxysuccinimidester) an die Amino- oder Carboxylfunktion der erfindungsgemäßen Verbindungen gekoppelt.

[0015] Am 3'- und 5'-Ende des Zuckerteils können die erfindungsgemäßen Verbindungen alle dem Fachmann bekannten geeigneten Endgruppen enthalten. Bevorzugt sind für das 3'-Ende und für das 5'-Ende Wasserstoff, Mono-, Di- oder Triphosphat, eine Reportergruppe oder Interkalatorgruppe. Unter einer Reportergruppe im Sinne der Erfindung ist ein Hapten wie z.B. Biotin oder Digoxigenin oder ein Fluoreszenzfarbstoffrest zu verstehen. Geeignete Interkalatorgruppen sind bei Hélène, C. in "Antisense RNA and DNA, Curr. Commun. Mol. Biol.; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1987" beschrieben und sind vorzugsweise Phenanthrolin, Acridin, Aktinomycin bzw. dessen Chromophor oder Schwermetallkomplexbildner wie EDTA. Ebenso vorteilhaft sind solche Gruppen, die zur Vermetzung von Nucleinsäuren führen, wie z.B. Psoralen.

[0016] Aus den erfindungsgemäßen Verbindungen können durch Wasseraustritt zwischen 3'-OH und 5'-OH des Zuckerteils cyclische Phosphorsäurediester (3', 5'-Cyclophosphate) herstellt werden.

[0017] Die Herstellung der Phosphoamidite, H-Phosphonate und P-methylphosphoamidite von Isoguanosinen erfolgt analog der Herstellung der entsprechenden Desoxyisoguanosinderivate, wobei die 2'-OH-Funktion vorzugsweise.
über eine Triisopropylsilylgruppe geschützt wird.

[0018] Ein weiterer Gegenstand der Erfindung sind Basen- und Zucker-geschützte 2'-Desoxy-isoguanosine, -3'-H-phosphonate und -P-methyl-phosphoramidite. Diese Verbindungen sind als Nucleotidbausteine zur Herstellung von Oligonucleotiden geeignet.

[0019] Die erfindungsgemäßen Nucleotidbausteine enthalten vorzugsweise Schutzgruppen an den heterozyklischen Basen, sowie an den 5'-OH- und/oder 2'-OH-Funktionen der Ribose.

[0020] Als Schutzgruppe an den heterozyklischen Basen werden vorzugsweise Aminoschutzgruppen verwendet, wie z.B. Benzoyl-, Formamidin-, Isobutyryl- oder Diphenoxyacetyl-Gruppen.

[0021] Als 5'bzw. 2'-OH-Schutzgruppe des Zuckerteils werden vorzugsweise eine Triphenylmethyl-, Monomethoxytrityl-, Dimethoxytrityl-, t-Butyl-dimethylsilyl-, t-Butyl-diphenylsilyl-, t-Butyl-methoxyphenylsilyl- oder die Pixyl-Gruppe verwendet.

[0022] Als Phosphoramidite sind 3'-O-(2-cyanoethyl)-N,N-diisopropyl-aminophosphane und die 3'-O-methyl-N,N-di-isopropylamino-phosphane bevorzugt. Die H-Phosphonate werden vorzugsweise als Salze eingesetzt.

[0023] Die Herstellung der monomeren Nucleotidbausteine erfolgt nach den dem Fachmann geläufigen Methoden, beispielsweise wie sie in Gait, M.J. in "Oligonucleotide Synthesis, A Practical Approach", IRL Press, Ltd. (1984) beschrieben sind.

[0024] Die erfindungsgemäßen Verbindungen nach den allgemeinen Formeln II-IV und VII-IX können in Form ihrer jeweiligen 5'-Triphosphate bzw. α, β oder γ-Thiotriphosphate von DNA-Polymerasen in Oligonucleotide oder neusynthetisierte DNA eingebaut werden.

[0025] In einer besonders bevorzugten Ausführungsform sind diese erfindungsgemäßen Nucleotidbausteine <sup>32</sup>P-oder <sup>35</sup>S-markiert.

[0026] Ein weiterer Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung von Oligo- und Polynucleotiden, die die erfindungsgemäßen Verbindungen als Bausteine enthalten. Solche Verfahren können sowohl chemischer als auch enzymatischer Natur sein.

[0027] Die chemische Synthese von Oligonucleotiden erfolgt nach den dem Fachmann geläufigen Methoden, beispielsweise wie sie in Gait, M.J., loc. cit. oder in Narang, S.A., "Synthesis and Application of DNA and RNA", Academic Press, 1987, beschrieben sind.

[0028] Die H rstellung der erfindungsgemäßen Oligonucleotide rfolgt in an sich bekannter Weise, beispielsweise nach der Phosphat-triest r-, der Phosphittriester- oder H-phosphonat-Methode in homogener Phase oder an einem Träger. Bevorzugt werden die b iden letzteren Verfahren eingesetzt, wobei die Synthese üblicherweise mit automatisch arbeitenden Synthesegeräten erfolgt. Das Trägermaterial besteht dabei aus dem Fachmann bekannten anorganischen

(controlled pore glass, Fractosil) oder organisch-polymeren Materialien (z.B. Polystyrol).

[0029] Ein weit r r Gegenstand der Erfindung ist deshalb in Verfahr n zur Herstellung von Oligonucleotiden, in denen je nach Sequenzdesign entsprech nd erfindungsg mäße 2'-Desoxy-isoguanosine oder Isoguanosin eingesetzt werden und die aus 6 bis 100 Nucleotidbausteinen b stehen, nach dem Verfahren der Oligonucleotidsynthese, wobei ein Startnucl osid an einen fest n Träg r gebunden wird und anschließend durch schrittweise Kupplung mit entsprechend aktivierten monomeren Nucleotidbausteinen das gewünschte Oligonucleotid auf- gebaut wird, gegebenenfalls während und nach der Synthese dreiwertiger Phosphor zu fünfwertigem Phosphor oxidiert wird, das Oligonucleotid vom Träger mit einer ersten Base, heterocyclische Schutzgruppen mit einer zweiten Base, die 5'-Schutzgruppe mit einer Säure abgespalten und das Oligo nucleotid ggf. aufgereinigt wird. Die Auf reinigung geschieht vorzugsweise durch Reversed Phase- oder Anionenaustausch-HPLC. Danach schließt sich in der Regel eine Entsalzung, beispielsweise durch Dialyse an.

[0030] Weiterhin können die erfindungsgemäßen Oligonucleotide auch enzymatisch, unter Verwendung von Polymerasen, hergestellt werden. Solche Verfahren sind dem Fachmann unter den Begriffen "in vitro Transkription", "nick translation" [Rigby et al., J. Mol. Biol. 113, 237 (1977)] und "random priming" [Feinberg, A.P. und Vogelstein, B., Anal.

Biochem. 137, 266 (1984)] bekannt.

[0031] Dabei werden prinzipiell 2'-Desoxynucleosid-5'-triphosphate oder Isoguanosin-5'-triphosphate von Polymerasen auf der Basis einer einzelsträngigen Template-Nucleinsäure mit Hilfe eines Startermoleküls (Primer/Promotor) in einen neusynthetisierten, dem ersten Strang basenkomplementären, zweiten Strang eingebaut. Durch die Verwendung der erfindungsgemäßen Nucleosid-5'-triphosphate und ihrer entsprechend substituierten Derivate können auf diese Weise z. B. geeignete Signal- oder Reportergruppen, wie Haptene oder Fluorophore in Nucleinsäuren eingebaut werden. Solche Techniken werden heute z. B. in Form der nichtradioaktiven Markierung von Biomolekülen breit angewendet.

[0032] Ein weiterer Gegenstand der Erfindung ist die Verwendung von Oligonucleotiden, in denen Guanosin bzw. Desoxyguanosin Bausteine ganz oder teilweise durch die erfindungsgemäßen Desoxy-isoguanosin oder Isoguanosin Bausteine ersetzt sind und die aus 6 bis 100 Nucleotidbausteinen bestehen, zur Herstellung eines Arzneimittels mit

antiviraler Wirksamkeit.

[0033] 2'-Desoxyisoguanosin-haltige Oligonucleotide bilden sowohl mit sich selbst als auch mit anderen herkömmlichen und modifizierten Oligonucleotiden Duplex- und Triplexstrukturen sowie auch Aggregate aus. Für 2'-Desoxyisoguanosin ergeben sich vielfältige Basenpaarungsmuster, die sich von denen von 2'-Desoxyguanosin unterscheiden und bei denen die Oligonucleotidstränge entweder parallel oder antiparallel angeordnet sein können.

#### a) Aggregatstrukturen

[0034] Bei der Darstellung von 2'-Desoxyisoguanosin fällt auf, daß es wie 2'-Desoxyguanosin Gele bildet und extrem schwierig kristallisiert. Für guaninhaltige Oligonucleotide sind gelelektrophoretisch Aggregate nachgewiesen worden [66], die dem Strukturvorschlag von Zimmerman [67] folgen.

[0035] In dieser Struktur sind alle N<sup>7</sup>-Atome in einer Hoogsteen-Basenpaarung eingebunden. Die (iG<sub>d</sub>)<sub>4</sub>-Struktur unterscheidet sich deutlich von der (G<sub>d</sub>)<sub>4</sub>-Anordnung, da hier neben den O-Atomen zwei N<sup>7</sup>-Atome und zwei N<sup>3</sup>-Atome als Protonenakzeptoren fungieren. Deswegen kann sich beim 2'-Desoxy-isoguanosin eine Dimerstruktur bilden, bei der ein Molekül als 1H- und das andere als 3H-Tautomer vorliegt.

[0036] Die Wechselwirkung über N-7 ist bei 7-Desazapurinderivaten, wie 7-Desaza-2'-desoxyisoguanosin nicht möglich. Deshalb wird bei diesen Verbindungen keine Aggregatbildung beobachtet.

# b) Watson-Crick Duplex-Strukturen

FOORT In Highligh out die Kome

[0037] Im Hinblick auf die Komplexierung von einzelsträngiger DNA oder RNA können iG<sub>d</sub>-haltige Oligonucleotide Duplexstrukturen ausbilden. Hierbei sind parallele und antiparallele Anordnungen der Stränge möglich. Durch das veränderte Substituentenmuster an der Base und die möglichen parallelen Duplexstrukturen kann eine erhöhte Stabilität gegenüber Nucleasen erwartet werden.

c) Triplexstrukturen von DNA-Duplexen mit iG<sub>d</sub>-haltigen Oligonucleotiden

[0038] Oligonucleotide, die 2'-Desoxyisoguanosin als Monomerbausteine enthalten, können sowohl mit d(AT)- als auch mit d(GC)-Duplexen Triplexstrukturen ausbilden. In beiden Fällen können diese Strukturen im neutralen Medium entstehen; eine Protonierung ist nicht erforderlich. Damit kann die Komplexierung unter physiologischen Bedingungen erfolgen.

[0039] Die hier diskutierten Strukturen gelten prinzipiell für Oligoribo- und Oligodesoxyribonucleotide.

[0040] [66] J. Kim, Ch. Cheong und P.B. Moore, Tetramerization of an RNA oligonucleotide containing a GGGG

dampft und der Rest kristallisiert aus EtOAc. Es werden farblose Kristalle (290 mg, 64%) erhalten. M.p. 141-142°. TLC (CH<sub>2</sub>Cl<sub>2</sub>-MeOH, 9:1): Rf = 0.54. UV (water): 258 (12300).  $^1$ H-NMR ((D<sub>6</sub>)DMSO): 2.35 and 2.70 (2m, H-C(2')), 3.56 (m, H-C(5')), 3.85 (q, H-C(4')), 4.10 (s, H-C(6-OCH<sub>3</sub>)), 4.42 (bs, H-C(3')), 4.94 (t, J = 5.5 Hz, OH-C(5')), 5.36 (d, J = 4.3 Hz, OH-C(3')), 6.35 ( $^1$ t\*, J = 6.6 Hz, H-C(1')), 8.60 (s, H-C(8)). Anal. calc. for C<sub>11</sub>H<sub>13</sub>ClN<sub>4</sub>O (300.7): C 43.94, H 4.36, N 18.63; found: C 44.08, H 4.45, N 18.63.

#### Beispiel 27

10

20

## 6-Amino-2-chlor-9-(2'-deoxy-3',5'-di-O-acetyl-β-D-erythro-pentofuranosyl)-9H-purin.

[0079] Die gerührte Suspension von 2-Chlor-2'-desoxyadenosin (850 mg, 3 mmol) in Pyridin (10 ml) wird mit Essigsäureanhydrid (10 ml) behandelt, wobei sich das Ausgangsmaterial innerhalb von 30 Minuten löst. Nach 3 Stunden wird die Mischung im Vakuum eingedampft (Öl), dreimal mit Toluol/EtOH aufgenommen und eingedampft. Der ölige Rest wird im Hochvakuum getrocknet und aus EtOH kristallisiert. (1.03 g, 92%). M.p. 173-175°. TLC (CH<sub>2</sub>Cl<sub>2</sub>-MeOH, 95:5): Rf = 0.52. UV (MeOH/H<sub>2</sub>O): 264 (15300).  $^{1}$ H-NMR ((D<sub>6</sub>)DMSO): 1.82 and 2.01 (2s, H-(CH<sub>2</sub>CO)), 2.55 and 3.00 (2m, H-C(2')), 4.25 (m, H-C(4') and H-C(5')), 5.37 (m, H-C(3')), 6.29 ( $^{1}$ t", J = 6.5 Hz, H-C(1')), 7.85 (s, NH<sub>2</sub>), 8.37 (s, H-C(8)). Anal. calc. for C<sub>14</sub>H<sub>16</sub>ClN<sub>5</sub>O<sub>5</sub> (369.8): C 45.48, H 4.06, N 18.94; found: C 45.61, H 4.12, N 18.90.

#### Beispiel 28

#### 6-Amino-8-brom-2-chlor-9-(2'-deoxy-3',5'-di-O-acetyl-β-D-erythro-pentofuranosyl)-9H-purin.

[0080] Eine Lösung von 3,5-Diacetyl-2-chlor-2-Desoxyadenosin (400 mg, 1.08 mmol) in dioxan (16 ml) und aq. Natrium acetat (pH 4.7, 0.5 M, 4 ml) wird gerührt und eine Lösung von  $Br_2$  (240 mg, 1.5 mmol) in Dioxan innerhalb 15 Minuten zugegeben. Es wird für 15 Minuten weitergerührt (TLC-Kontrolle). Die Mischung wird mit CHCl<sub>3</sub> (50 ml) verdünnt und mit Wasser (50 ml), Natriumbicarbonat (50 ml, sat.), 1 %  $Na_2S_2O_4$  (50 ml), und Wasser (2 x 50 ml). Die organische Phase wird über  $Na_2SO_4$  getrocknet und zur Trockenen eingedampft. Der Rest wird aus EtOH kristallisiert. Es ergeben sich farblose Kristalle von (8). (370 mg, 76%). M.p. 163-164°. TLC ( $CH_2CI_2$ -MeOH, 95:5): Rf = 0.65. UV ( $MeOH/H_2O_1$ , 1:1): 269 (17500).  $^1B$ -NMR (( $^1D_6$ )DMSO): 1.95 and 2.09 (2s, H-C( $^1D_6$ ), 2.55 and 3.45 (2m, H-C( $^1D_6$ ), 4.34 (m, H-C( $^1D_6$ ), 5.33 (q, H-C( $^1D_6$ ), 6.29 ( $^1D_6$ ), 15.61; found:  $^1D_6$ 0 (448.7):  $^1D_6$ 1 (448.7):  $^1D_6$ 1 (51), 15.61; found:  $^1D_6$ 2 (75.3), 15.66.

# Beispiel 29

#### 35 6-Amino-8-brom-2-chlor-9-(2'-deozy-β-D-erythro-pentofuranosyl)- 9H-purin. (8-Brom-2-chlor-2'-deoxyadenosin.)

[0081] Zu einer Lösung der Verbindung aus Beispiel 28 (300 mg, 0.67 mmol) in in MeOH (10 ml) wird Ammoniak in Methanol (10 ml, gesättigt bei 0°C) zugegeben. Die Reaktionsmischung wird über Nacht bei 4°C gerührt. Es bilden sich hellgelbe chromatographische reine Kristalle (192 mg, 79 %). Eine analytische Probe wird aus Ethanol kristallisiert. 190° (decomp.). TLC (CH<sub>2</sub>Cl<sub>2</sub>-MeOH, 9:1): Rf = 0.57. UV (water): 269 (16300).  $^{1}$ H-NNR (( $^{1}$ Cl) (DMSO): 2.20 and 3.15 (2m, H-C(2')), 3.45 and 3.62 (2m, H-C(5')), 3.82 (q, H-C(4')), 4.45 (bs, H-C(3')), 4.85 (t, J = 6.2 Hz, OH-C(5')), 5.35 (d, J - 4.2 Hz,OH-C(3')), 6.23 ( $^{1}$ t", J = 7.1 Hz, H-C(1')), 7.99 (s, NH<sub>2</sub>). Anal. calc. for C<sub>10</sub>H<sub>11</sub>BrClN<sub>5</sub>O<sub>3</sub> (364.6): C 32.94, H 3.04, N 19.21; found: C 33.12, H 3.11, N 19.22.

#### 45 Beispiel 32

50

#### 2-Amino-(2'-desoxy-β-D-erythropentofuranosyl)adenin

[0082] 5.0 g (18.6 mmol) Desoxyguanosin werden mit 200 ml Hexamethyldisilazan (HMDS) und 0.5 ml Trimethylchlorsilan (TCS), wie die entsprechende Riboverbindung [2][3], 10 h bei 145°C silyliert. Anschließend wird der Überschuß an HMDS unter Normaldruck abdestilliert. Der zurückgebliebene trübe Sirup ([2]) wird in einem Gemisch von 30 ml abs. Toluol und 2 ml HMDS aufgenommen. Diese Mischung wird in einen 300 ml Autoklaven überführt. Nach Zusatz von 4 ml einer 0.5 M Lösung (2 mmol) von Tris(trimethyl)silyltriflat im abs. Toluol wird bei 0°C 0.5 h NH<sub>3</sub> (5 bar) aufgepreßt; dann wird bei 145°C (externe Temperaturregelung), 48 h erhitzt. Nach Abkühlen auf Raumtemperatur wird das NH<sub>3</sub> vorsichtig abgeblasen. Der fest Rückstand wird in 150 ml Methanol suspendiert (Ultraschallbad), mit 150 ml Wasser versetzt und 4 h bei 100°C transsilyliert. Nach Abdestillieren des Methanols werden 250 ml Wasser zugegeben, die Lösung mit Aktivkohle versetzt, heiß filtriert und mit 100 ml heißem Wasser nachgewaschen. Das gelbe Filtrat wird auf eine Dowex-lx2 Säule (20 x 2 cm, OH<sup>-</sup>) aufgetragen. Elution mit 500 ml Wasser liefert eine Hauptzone, aus der

man nach dem Abdampfen das Produkt (1.2 g, 24.2 %) als gelbes Pulver erhält. Das Produkt ist identisch mit einer authentischen Probe [1][4-6]. DC(Kieselg I, CH<sub>2</sub>Cl<sub>2</sub>/MeOH 4:1):  $H_1$  = 0.4. UV (MeOH): =  $\lambda_{max}$ 217 (23500), 256 (8900), 282 (9900). <sup>13</sup>C-NMR in ((D6)DMSO): 160.2 C(6); 156.3 C(2); 151.3 C(4); 135.9 C(8); 113.5 C(5); 87.8 C(4'); 83.2 C (1'); 71.1 C (3'); 62.1 C(5').

### Beispiel 33

# 6-Amino-9-(2'-desxoxy-β-D-erythropentofuranosyl)-1,9-dihydro-2H-purin-2-on (2'-Desoxyisoquanosin).

[0083] Analog zum Ribonucleosid [7] wird eine Lösung von 300 mg (4.3 mmol) Natriumnitrit in 5 ml heißem H<sub>2</sub>O wird bei 50°C mit 300 mg (1.1 mmol) der Verbindung aus Beispiel 32 versetzt und langsam insgesamt 0.45 ml (7.8 mmol) Eisessig zügetropft (Schäumenl). Nach 5 min wird mit 10 ml H<sub>2</sub>O verdünnt und mit verd. Ammoniak auf pH 8 eingestellt und dann weitere 300 ml H<sub>2</sub>O zugegeben. Man adsorbiert an Serdolit AD-4 lonentauscher (Serva-Deutschland, 4 x 22 cm) und wäscht mit 500 ml H<sub>2</sub>O. Eine Mischung von H<sub>2</sub>O/i-PrOH (95:5) etwa 500 ml, eluiert eine Hauptzone, aus der nach Abdampfen die Verbindung als gelbliches Pulver (120 mg, 40.8 %) erhalten wird. DC (Kieselgel, mit H<sub>2</sub>O gesättigtes n-Butanol): R<sub>f</sub> 0.25. UV (MeOH): λ<sub>max</sub>248 (8100), 297 (9900). <sup>13</sup>C-NMR in ((D6)DMSO): 156.4 C(6); 137.7 C(8); 153.0 C(2); 109.8 C(5); 88.1 C(4'); 83.9 C(1'); 71.2 C(3'); 62.0 C(5')[8].

#### Beispiel 35

# 6-Amino-2-chlor-7-(2'-deoxy-β-D-erythropentofuranosyl)purin

[0084] Eine Lösung von 2,6-dichlor-7-(2'-deoxy-3',5'-di(O-(p-toluoyl)-β-D-erythropentofuranosyl)-purin (600 mg, 1.11 mmol) in methanolischem Ammoniak (60 ml, gesättigt bei 0°C) wird bei 80°C für 24 Stunden gerührt. Die Mischung wird im Vakuum eingedampft und der Rest auf Silicagel 60H (Säule 15 x 4 cm) chromatographiert. Kristallisation aus MeOH/iso-PrOH ergibt farblose Kristalle (210 mg, 66.5 %) mit einem Schmelzpunkt >250°C: UV (MeOH):  $\lambda_{max}$ 276 nm (E = 7200). <sup>1</sup>H NMR ([D<sub>6</sub>]DMSO)  $\delta$  = 2.30 und 2.40 (m, 2'-H). 3.56 (m, 5'-H), 3.92 (m, 4'-H), 4.40 (m, 3'-H), 5.18 (t, J = 5.0 Hz, 5'-OH), 5.42 (d, J = 4.5 Hz, 3'-OH), 6.31 (pt, J = 6.5 Hz, 1'-H), 7.48 (s, NH<sub>2</sub>), 8.56 (s, 8-H).

| C <sub>10</sub> H <sub>12</sub> N <sub>5</sub> O <sub>3</sub> CI (285.67) | Calcd. | C 42.05 | H 4.23 | N 24.51 |
|---------------------------------------------------------------------------|--------|---------|--------|---------|
|                                                                           | Found  | C 42.08 | H 4.25 | N 24.58 |

#### Beispiel 36

# 7-(2'-Deoxy-β-D-erythro-pentofuranosyl)-7H-isoquanin

[0085] Eine Lösung der Verbindung aus Beispiel 35 (44 mg, 0.16 mmol) in Wasser (75 ml) wird 1 ml wäßrige Ammoniaklösung zugegeben. Die Mischung wird acht Stunden mit UV-Licht in einem Quarzbehälter bestrahlt. Die Lösung wird in Vakuum eingedampft und der Rest in Wasser (50 ml) gelöst und auf einer XAD-4-Säule (3 x 20 cm) chromatographiert. Die Säule wird mit Wasser (500 ml) gewaschen und das Produkt mit Wasser/Isopropanol 1:1) eluiert. Die nukleotidenthaltenden Fraktionen werden gesammelt in Vakuum eingedampft und aus Ethanol kristallisiert.

- [1] Sigma Chemie GmbH, 8024 Deisenhofen, Deutschland.
- [2] H. Vorbrüggen, K. Krolikiewicz, Liebigs Ann. Chem. 1976, 745
- [3] M. J. Robins, F. Hansske, S. E. Bernier, Can. J. Chem. 1981, 59
- [4] R. H. Iwamoto, E.M. Acton, L. Goodman, J. Med. Chem. 1963, 6, 684.
- [5] J. A. Montgomery, K. Hewson, J. Med. Chem. 1969, 12, 498.
- [6] R. Fathi, B. Goswami, Pei-Pei Kung, B. L. Gaffney, R. A. Jones, Tetrahedron Lett. 1990, 31, 319.
- [7] J. Davoll, J. Am. Chem. Soc. 1951, 73, 3174.
- [8] Z. Kazimierczuk, R. Mertens, W. Kawozynski, F. Seela, Helv. Chim. Acta 1991, 74, 1742.

#### Patentansprüche

50

Oligonukleotid , die eine oder mehrer der in den Verbindungen der allgemeinen Formeln II - IV genannten heterocyclischen Basen enthalten

worin

5

15

20

25

30

35

40

45

50

55

 $R_3$  = Wasserstoff oder eine Schutzgruppe, W und Z können unabhängig voneinander bedeuten = Wasserstoff, Halogen, NH-(CH<sub>2</sub>)nNH<sub>2</sub> (n = 2-12), R-CH<sub>2</sub>COOH (R = Alkylen-C 1-8),

eine Reporter- oder Interkalatorgruppe bedeuten und

worin

 $R_3$  = Wasserstoff oder eine Schutzgruppe, Z bedeutet = Wasserstoff, Halogen, NH-(CH<sub>2</sub>)<sub>n</sub>NH<sub>2</sub> (n = 2-12), R-CH2COOH (R = Alkylen-C 1-8),

eine Reporter- oder Interkalatorgruppe bedeuten und die zur Ausbildung paralleler Nukleinsäur komplexe befähigt sind.

- 2. Oligonukleotid nach Anspruch 1, die mit inem Isocytidin enthaltenden zweiten Oligonukleotid komplementär Doppelstränge ausbilden können.
- 3. Oligonukleotide nach den Ansprüch n 1 und 2, der n Internukleotidbindung M thylphosphonat- und/oder Phosphothioatgruppen enthalten.
- 4. Oligonukleotide nach Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß sie aus 6 bis 100 Nukleotidbausteinen bestehen.
- 10 5. Verbindungen der allgemeinen Formel II und IV,

worin

15

25

30

35

40

55

H<sub>1</sub>= Wasserstoff oder eine Schutzgruppe, PO<sub>3</sub>H<sub>2</sub>,P<sub>2</sub>O<sub>6</sub>H<sub>3</sub>, P<sub>3</sub>O<sub>9</sub>H<sub>4</sub> oder die entsprechenden alpha-, betaund gamma-Thiophosphate

Hydroxy, Phosphoramidit, Methylphosphonat, H-Phosphonat, eine Reporter- oder Interkalatorgruppe mit der Maßgabe, daß R<sub>2</sub> nicht OH ist, wenn R<sub>1</sub>, R<sub>3</sub>, W und Z jeweils Wasserstoff darstellen

R<sub>3</sub>= Wasserstoff oder eine Schutzgruppe,

W und Z können unabhängig voneinander bedeuten = Wasserstoff, Halogen, NH-(CH<sub>2</sub>)nNH<sub>2</sub> (n = 2-12), R-CH<sub>2</sub>COOH (R = Alkylen-C 1-8),

eine Reporter- oder Interkalatorgruppe bedeuten.

6. Verbindungen der allgemeinen Formel III,

20 worin

15

30

35

R<sub>1</sub>= eine Schutzgruppe

R<sub>2</sub>= Phosphoramidit, H-Phosphonat, Methylphosphonat, eine Reporter- oder Interkalatorgruppe

R<sub>3</sub> = Wasserstoff oder eine Schutzgruppe,

W und Z können unabhängig voneinander bedeuten = Wasserstoff, Halogen, NH-(CH<sub>2</sub>)<sub>n</sub>NH<sub>2</sub> (n = 2-12), R-

CH2COOH (R = Alkylen-C 1-8),

eine Reporter- oder Interkalatorgruppe bedeuten.

bedeuten.

8. Verfahren zur Herstellung der Oligonukleotide gemäß den Ansprüchen 1 - 4, dadurch gekennzeichnet, daß die Kondensation mit Verbindungen gemäß Anspruch 5 - 7 erfolgt.

Verbindungen nach den Ansprüchen 5 und 6, in denen die heterocyclischen Basen Schutzgruppen tragen.

- 9. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, daß bei den Verbindungen der allgemeinen Formeln II -IV R₁ ein Triphosphat oder die α-, beta- oder gamma-Thiophosphatanaloga dieser Phosphorsäureester darstellt und R₂ eine Reportergruppe oder eine Interkalatorgruppe darstellt und die Kondensation durch Polymerasen enzymatisch nach den Verfahren der "nick translation" und des "random priming" erfolgt.
- 10. Verfahren gemäß Anspruch 8, dadurch gekennzeichnet, daß bei den Verbindungen der allgemeinen Formeln II -IV R<sub>2</sub> eine Phosphoramidit-, eine H-phosphonat- oder eine Methylphosphonat-Gruppe, R<sub>1</sub> eine Schutzgruppe darstellt und die Kondensation durch chemische Synthese erfolgt.
- 45 11. Verwendung von Verbindungen nach den Ansprüchen 1 bis 4 zur Herstellung von Arzneimitteln mit antiviraler Wirksamkeit.

#### Claims

50

55

1. Oligonucleotides which contain one or several of the heterocyclic bases mentioned in compounds of the general formulae II - IV

in which

20.

.30

 $R_3$  = hydrogen or a protecting group, W and Z can independently of one another denote = hydrogen, halogen, NH-(CH<sub>2</sub>)<sub>n</sub>NH<sub>2</sub> (n = 2-12), R-CH<sub>2</sub>COOH (R = alkylene-C 1-8), a reporter or intercalator group

and

\_in which

R3 = hydrogen or a protecting group,
Z denotes hydrogen, halogen, NH-(CH<sub>2</sub>)<sub>n</sub>NH<sub>2</sub> (n = 2-12), R-CH<sub>2</sub>COOH (R = alkylene-C 1-8), a reporter or intercalator group

and are capable of forming parall I nucleic acid complexes.

- 2. Oligonucleotides as claimed in claim 1 which can form complementary doublestrands with a second oligonucleotid containing an isocytidine.
- 3. Oligonucleotides as claimed in claims 1 and 2, whose internucleotid bond contains methylphosphonat and/or phosphothicat groups.
- 4. Oligonucleotide as claimed in claims 1 to 3, wherein it is composed of 6 to 100 nucleotide building blocks.
- 5. Compounds of the general formula II and IV

in which

5

10

15

20

25

30

35

40

45

50

55

P<sub>1</sub> = hydrogen or a protecting group, PO<sub>3</sub>H<sub>2</sub>, P<sub>2</sub>O<sub>6</sub>H<sub>3</sub>, P<sub>3</sub>O<sub>9</sub>H<sub>4</sub> or the corresponding alpha, beta and gamma thiophosphates

 $P_2$  = hydroxy, phosphoramidite, methylphosphonate, H-phosphonate, a reporter or intercalator group provided that  $P_2$  is not OH if  $P_1$ ,  $P_3$ , W and Z each represent hydrogen

R<sub>3</sub> = hydrogen or a protecting group

W and Z can independently of one another denote hydrogen, halogen, NH-(CH<sub>2</sub>)<sub>n</sub>NH<sub>2</sub> (n = 2-12), R-CH<sub>2</sub>COOH (R = alkylene-C 1-8),

a reporter group or intercalator group.

6. Compounds of the general formula III,

in which

10

15

25

30

55

 $R_1 =$  is a protecting group,

R<sub>2</sub> = phosphoramidite, H-phosphonate, methylphosphonate, a reporter or intercalator group

R<sub>3</sub> = hydrogen or a protecting group

W and Z can independently of one another denote hydrogen, halogen, NH-(CH<sub>2</sub>)<sub>n</sub>NH<sub>2</sub> (n = 2-12), R-CH<sub>2</sub>COOH (R = alkylene-C 1-8),

a reporter group or intercalator group.

- 7. Compounds as claimed in claims 5 and 6 in which the heterocyclic bases carry protecting groups.
- 8. Process for the production of oligonucleotides as claimed in claims 1 4, wherein the condensation is carried out with compounds as claimed in claims 5 7.
- 9. Process as claimed in claim 8, wherein in the compounds of the general formulae II IV.P<sub>1</sub> represents a triphosphate or alpha, beta or gamma thiophosphate analogues of these phosphoric acid esters and P<sub>2</sub> represents a reporter group or an intercalator group and the condensation is carried out enzymatically by polymerases by the "nick translation" and "random priming" methods.
- 10. Process as claimed in claim 8, wherein in the compounds of the general formulae II IV R<sub>2</sub> represents a phosphoramidite, a H-phosphonate or a methylphosphonate group, R<sub>1</sub> represents a protecting group and the condensation is carried out by chemical synthesis.
- 45 11. Use of compounds as claimed in claims 10 to 13 for the production of pharmaceutical preparations with antiviral activity.

#### Revendications

 Oligonucléotides, qui contiennent une ou plusieurs des bases hétérocycliques contenues dans les composés de formules générales II-IV

dans lesquelles

10

15

20

25

30

35

40

45

50

55

R<sub>3</sub> = un atome d'hydrogène ou un groupe protecteur,

W et Z peuvent représenter, indépendamment l'un de l'autre, un atome d'hydrogène, un atome d'halogène, un groupe NH-(CH<sub>2</sub>)<sub>n</sub>NH<sub>2</sub> (n = 2-12), R-CH<sub>2</sub>COOH (R = un groupe alkylène en C1-8).

un groupe reporter ou un groupe intercalateur, et

dans laquelle

R<sub>3</sub> = un atome d'hydrogène ou un groupe protecteur,

Z représente un atome d'hydrogène, un atome d'halogène, un groupe NH-(CH<sub>2</sub>)<sub>n</sub>NH<sub>2</sub> (n = 2-12), R-CH<sub>2</sub>COOH (R = un group alkylène en C<sub>1-8</sub>),

un groupe reporter ou un group intercalateur, et qui sont appropriés pour la formation de complexes d'acides nucléiques parallèles.

- 2. Oligonucléotides selon la revendication 1, qui p uvent former des doubles brins complémentaires avec un second ligonucléotide contenant de l'isocytidin .
- 3. Oligonucléotides s lon l s revendications 1 t 2, dont les liaisons internucléotidiqu s contiennent d s groupes méthylphosphonat et/ou phosphothioat .
- 4. Oligonucléotides selon les revendications 1 à 3, caractérisés par le fait qu'ils sont constitués par 6 à 100 motifs de base nucléotidiques.
- 10 5. Composés de formules générales II et IV

5

15

# dans lesquelles

 $R_1$  = un atome d'hydrogène ou un groupe protecteur, un groupe  $PO_3H_2$ ,  $P_2O_6H_3$ ,  $P_3O_9H_4$ , ou l'alpha-, béta-ou gamma-thiophosphate correspondant,

 $R_2$  = un groupe hydroxy, phosphoramidite, méthylphosphonate, H-phosphonate, un groupe reporter ou un groupe intercalateur, étant entendu que  $R_2$  n'est pas OH lorsque  $R_1$ ,  $R_3$ , W et Z représentent chacun un atome d'hydrogène,

R<sub>3</sub> = un atome d'hydrogène ou un groupe protecteur,

W et Z peuvent représenter, indépendamment l'un de l'autre, un atome d'hydrogène, un atome d'halogène, un groupe  $NH-(CH_2)_nNH_2$  (n = 2-12),  $R-CH_2COOH$  (R = un groupe alkylène en  $C_{1-8}$ ),

un groupe reporter ou un groupe intercalateur.

6. Composés de formule générale III

20 dans laquelle

10

15

25

30

40

R<sub>1</sub> = un groupe protecteur,

 $R_2$  = un groupe phosphoramidite, H-phosphonate, méthylphosphonate, un groupe reporter ou une groupe intercalateur,

R<sub>3</sub> = un atome d'hydrogène ou un groupe protecteur,

W et Z peuvent représenter, indépendamment l'un de l'autre, un atome d'hydrogène, un atome d'halogène, un groupe  $NH-(CH_2)_nNH_2$  (n = 2-12),  $R-CH_2COOH$  (R = un groupe alkylène en  $C_{1-8}$ ),

un groupe reporter ou un groupe intercalateur.

- Composés selon les revendications 5 et 6, dans lesquels les bases hétérocycliques portent des groupes protecteurs.
- 8. Procédé de préparation des oligonucléotides selon les revendications 1-4, caractérisé par le fait que la condensation est réalisée avec des composés selon les revendications 5-7.
  - 9. Procédé selon la revendication 8, caractérisé par le fait que dans les composés de formules générales II-IV, R<sub>1</sub> représente un triphosphate ou l'analogue α-, béta- ou gamma-thiophosphate de cet ester d'acide phosphorique, et R<sub>2</sub> représente un groupe reporter ou un groupe intercalateur, et que la condensation est réalisée par voie enzymatique, à l'aide de polymérases, selon les procédés par translation de coupure ("nick translation") et d'amorçage aléatoire ("random priming").
  - 10. Procédé selon la revendication 8, caractérisé par le fait que dans les composés de formules générales II-IV, R<sub>2</sub> représente un groupe phosphoramidite, H-phosphonate ou méthylphosphonate, R<sub>1</sub> représente un groupe protecteur et que la condensation est réalisée par synthèse chimique.
  - 11. Utilisation de composés selon les revendications 1 à 4, pour la préparation de médicaments ayant une activité antivirale.

50

$$F_{i,j} = \frac{1}{2}$$

$$F_{i$$

Fig.2

$$\begin{array}{c|c}
R_{1} & R_{2} & R_{3} & R_{4} & R_{4}$$

