Feasibility of Learning

Starfly starfly3119@gmail.com

Beihang University — February 14, 2020

Introduction

We have four sections. The first section tells us **absolutely no free lunch outside** D; the second section tells us **probably approximately correct outside** D; the third section tells us **verification possible if** $E_{in}(h)$ **for fixed** h; and the fourth section tells us **learning possible if** |H| **finite and** $E_{in}(g)$ **small**

1 Learning is impossible?

Learning from D (to infer something outside D) is doomed if any 'unknown' f can happen.

2 Probability to the Rescue

2.1 Inferring Something Unknown

Hoeffding's Inequality

• In big sample (N large), v is probably close to μ (within ϵ)

$$P[|v - \mu| > \epsilon] \le 2\exp(-2\epsilon^2 N) \tag{1}$$

where $\mu = \text{orange}$ probability in bin, v = orange fraction in sample, N is the sample of size.

The statement ' $v = \mu$ ' is probably approximately correct (PAC)

- valid for all N and ϵ
- does no depend on μ , no need to 'know' μ
- larger sample size N or looser gap $\epsilon \Rightarrow$ higher probability for $v \approx \mu'$

If large N, can probably infer unknown μ by knwon v

3 Connection to Learning

3.1 Learning?

bin

- unknown orange prob. μ
- marble \in bin

- orange •
- green •
- size-N sample from bin of i.i.d marbles

learning

- fixed hypothesis h(x) =? target f(x)
- $x \in X$
- h is wrong $\Leftrightarrow h(x) \neq f(x)$
- h is right $\Leftrightarrow h(x) = f(x)$
- check h on $D = \{(x_n, y_n)\}$ with i.d.d x_n

If large N & orange i.d.d. x_n , can probably infer unknown $[h(x) \neq f(x)]$ probability by knwon $[h(x_n) \neq y_n]$ fraction

For any fixed h, can probably infer unknown

$$\underline{E_{out}(h)} = \epsilon_{x \sim P}[h(x) \neq f(x)] \tag{2}$$

by colororange known

$$E_{in}(h) = \frac{1}{N} \sum_{n=1}^{N} [h(x_n) \neq y_n]$$
 (3)

For any fixed h, in 'big' data (N) large, in-sample error $E_{in}(h)$ is probably close to out-of-sample error $E_{out}(h)$ (within ϵ)

$$P[|E_{in}(h) - E_{out}(h)| > \epsilon] \le 2\exp(-2\epsilon^2 N) \tag{4}$$

- valid for all N and ϵ
- does not depend on $E_{out}(h)$, no need to 'know' $E_{out}(h)$ -f and P can stay unknown
- ${}^{\prime}E_{in}(h) = E_{out}(h)$ is probably approximatedly correct (PAC)

For any fixed h, when data large enough,

$$E_{in}(h) \approx E_{out}(h)$$
 (5)

Question 1 Can we claim 'good learning' $(g \approx f)$

- Yes! if $E_{in}(h)$ small for the fixed h and A pick the h as g $\Rightarrow' g = f'$ PAC
- No! if A forced to pick THE h as g $\Rightarrow E_{in}(h)$ almost always not small $\Rightarrow' g \neq f'$ PAC

real learning: A shall make choices $\in H$ (like PLA), rather that being forced to pick one h

3.2 Verification Flow

Can now use 'historical records' (data) to verify 'one candidate formula' h

4 Connection to Real Learning

Let's consider other coin game:

Q: if everyone in size-150 NTU ML class flips a coin 5 times, and one of the students gets 5 heads for her coin 'g'. Is 'g' really magical?

A: No. Even if all coins are fair, the probability that one of the coins results in 5 heads is $1-\left(\frac{31}{32}\right)^{150}>99\%$.

- Bad sample: E_{in} and E_{out} far away can get worse when involving 'choice' e.g., $E_{out}=\frac{1}{2}$, but getting all heads $(E_{in}=0)$
- Bad data for one h: $E_{out}(h)$ and $E_{in}(h)$ far away e.g., E_out big (far from f), but E_{in} small(correct on most examples)

4.1 Bad data

 D_i is different sample sets with size N

	\mathcal{D}_1	\mathcal{D}_2	 \mathcal{D}_{1126}	 D_{5678}	 Hoeffding
h	BAD			BAD	$\mathbb{P}_{\mathcal{D}}\left[BAD\;\mathcal{D}\;for\;h\right]\leq\ldots$

Hoeffding: small

$$\mathbb{P}_{\mathcal{D}} \left[\mathbf{BAD} \; \mathcal{D} \right] = \sum_{\mathsf{all} \; \mathsf{possible} \mathcal{D}} \mathbb{P}(\mathcal{D}) \cdot \left[\!\!\left[\mathbf{BAD} \; \mathcal{D} \right] \!\!\right]$$

BAD Data for Many h

BAD data for many h

 \iff no 'freedom of choice' by ${\mathcal A}$

 \iff there exists some h such that $E_{out}(h)$ and $E_{in}(h)$ far away

	\mathcal{D}_1	\mathcal{D}_2	 D_{1126}	 \mathcal{D}_{5678}	Hoeffding
h_1	BAD			BAD	$\mathbb{P}_{\mathcal{D}}\left[BAD\;\mathcal{D}\;for\;h_1\right]\leq\ldots$
h ₂		BAD			$\mathbb{P}_{\mathcal{D}}\left[BAD\;\mathcal{D}\;for\;h_2\right]\leq\ldots$
h ₃	BAD	BAD		BAD	$\mathbb{P}_{\mathcal{D}}\left[BAD\;\mathcal{D}\;for\;h_3\right]\leq\ldots$
h_{M}	BAD			BAD	$\mathbb{P}_{\mathcal{D}}\left[BAD\;\mathcal{D}\;for\;h_{M}\right]\leq\ldots$
all	BAD	BAD		BAD	?

for M hypotheses, bound of $\mathbb{P}_{\mathcal{D}}[\mathsf{BAD}\ \mathcal{D}]$?

Bound of Bad Data

$$P_{D}[BAD \ D] = P_{D}[BAD \ D \ for \ h_{1} \ or \ BAD \ D \ for \ h_{2} \ or \dots or \ BAD \ D \ for \ h_{M}]$$

$$\leq P_{D}[BAD \ D \ for \ h_{1}] + P_{D}[BAD \ D \ for \ h_{2}] + \dots + P_{D}[BAD \ D \ for \ h_{M}]$$

$$\leq 2 \exp(-2\epsilon^{2}N) + 2 \exp(-2\epsilon^{2}N) + \dots + 2 \exp(-2\epsilon^{2}N)$$

$$= 2M \exp(-2\epsilon^{2}N)$$
(6)

- finite-bin version of Hoeffding, valid for all M, N and ϵ
- does not depend on any $E_{out}(h_m)$, no need to 'know' $E_{out}(h_m)$ f and P can stay unknown
- $E_{in}(g) = E_{out}(g)$ is PAC, regardless of A

'most reasonable' A (like PLA/pocket): pick the h_m with lowest $E_{in}(h_m)$ as g

4.2 The 'Statistical' Learning Flow

• if |H| = M finite, N large enough, for whatever g picked by A, $E_{out}(g) \approx E_{in}(g)$

• if A finds one g with $E_{in}(g)\approx 0$, PAC guarantee for $E_{out}(g)\approx 0\Rightarrow$ learning possible!

