Quantum Computing and Cryptography

Damien, Théo, Matthieu

February 12, 2025

Outline

- Intro
- 2 RSA
- Quantum computing
 - Introduction to the quantum world
 - Quantum algorithms
- 4 Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptography
 - Limits of PQ cryptography
- Conclusion

Outline

- Intro
- 2 RSA
- Quantum computing
 - Introduction to the quantum world
 - Quantum algorithms
- 4 Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptography
 - Limits of PQ cryptography
- Conclusion

Introduction

- Cryptography=TODO
- TODO: secret

Introduction

- Cryptography=TODO
- TODO: secret
- → Science of secret

Outline

- Intro
- 2 RSA
- Quantum computing
 - Introduction to the quantum world
 - Quantum algorithms
- 4 Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptography
 - Limits of PQ cryptography
- 5 Conclusion

RSA

Outline

- Intro
- 2 RSA
- Quantum computing
 - Introduction to the quantum world
 - Quantum algorithms
- Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptography
 - Limits of PQ cryptography
- Conclusion

Quantum computing

Outline

- Intro
- 2 RSA
- Quantum computing
 - Introduction to the quantum world
 - Quantum algorithms
- 4 Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptography
 - Limits of PQ cryptography
- 5 Conclusion

Classical bit

 $b \in \{0,1\}$

Classical bit

 $b \in \{0,1\}$

• 0

Classical bit

 $b \in \{0,1\}$

- 0
- 1

Classical bit

 $b \in \{0,1\}$

- 0
- 1

Quantum bit

 $|\psi\rangle \in \mathbb{C}^2$

Classical bit

 $b \in \{0,1\}$

- 0
- 1

$$|\psi\rangle\in\mathbb{C}^2$$

$$\bullet |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Classical bit

 $b \in \{0, 1\}$

- 0
- 1

$$|\psi\rangle\in\mathbb{C}^2$$

- $\bullet \ |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ $\bullet \ |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

Classical bit

 $b \in \{0, 1\}$

- 0
- 1

$$|\psi\rangle\in\mathbb{C}^2$$

$$\bullet |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$ullet$$
 $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

$$ullet$$
 $|+\rangle=rac{1}{\sqrt{2}}egin{bmatrix}1\\1\end{bmatrix}$

Classical bit

 $b \in \{0, 1\}$

- 0
- 1

$$|\psi\rangle\in\mathbb{C}^2$$

$$\bullet |0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$ullet$$
 $|1
angle=egin{bmatrix}0\\1\end{bmatrix}$

$$\bullet \ |+\rangle = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$ullet |-
angle = rac{1}{\sqrt{2}} egin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Why measuring?

We cannot read superposition. When we look at a qubit, it collapses to a classical bit.

Why measuring?

We cannot read superposition. When we look at a qubit, it collapses to a classical bit.

What do we get ?

Why measuring?

We cannot read superposition. When we look at a qubit, it collapses to a classical bit.

What do we get ?

We measure 0 or 1 with a probability that depends on the state of the qubit.

ullet |0
angle
ightarrow 0 (100%)

Why measuring?

We cannot read superposition. When we look at a qubit, it collapses to a classical bit.

What do we get?

- ullet |0
 angle
 ightarrow 0 (100%)
- ullet |1
 angle
 ightarrow 1 (100%)

Why measuring?

We cannot read superposition. When we look at a qubit, it collapses to a classical bit.

What do we get ?

- ullet |0
 angle
 ightarrow 0 (100%)
- ullet |1
 angle
 ightarrow 1 (100%)
- ullet |+
 angle
 ightarrow 0 (50%), 1 (50%)

Why measuring?

We cannot read superposition. When we look at a qubit, it collapses to a classical bit.

What do we get?

- $|0\rangle \rightarrow 0 (100\%)$
- ullet |1
 angle
 ightarrow 1 (100%)
- $ullet \ |+
 angle o 0$ (50%), 1 (50%)
- $ullet \ |angle
 ightarrow 0$ (50%), 1 (50%)

NOT gate

X gate

- ullet X |0
 angle
 ightarrow |1
 angle
- ullet X |1
 angle
 ightarrow |0
 angle

NOT gate

X gate

- ullet $X\ket{0}
 ightarrow \ket{1}$
- $X|1\rangle \rightarrow |0\rangle$

Circuit representation

Hadamard gate

H gate

- ullet $H\left|0\right>
 ightarrow\left|+\right>$
- ullet $H\ket{1}
 ightarrow \ket{-}$

Hadamard gate

H gate

- $H|0\rangle \rightarrow |+\rangle$
- ullet $H\ket{1}
 ightarrow \ket{-}$

Circuit representation

Outline

- Intro
- 2 RSA
- Quantum computing
 - Introduction to the quantum world
 - Quantum algorithms
- 4 Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptography
 - Limits of PQ cryptography
- Conclusion

Problème B.V

Given the oracle of a function f: $f: \{0,1\}^n \to \{0,1\}$ $f(x) = x \cdot s$ Find s in the few request possible.

Algo classique - Slide 1

with
$$n = 2$$
 try:

•
$$f(10) = s_0$$

2 requests.

Algo classique - Slide 1

with n = 2 try:

- $f(10) = s_0$
- $f(01) = s_1$

2 requests.

Algo classique - Slide 2

in general : $\mathcal{O}(n) \to \text{Try}$ every x that contains one bit to 1. At each query, we get the value of that bit in s

Algo Quantique - Slide 1

 $\mathcal{O}(1) o$ Just try every x at the same time. Not only the x with only one bit at one but every possible x.

Algo Quantique - Slide 2

Shor

ullet Gain de complexité : $\mathcal{O}(e^b)
ightarrow \mathcal{O}(b)$

Shor

- ullet Gain de complexité : $\mathcal{O}(e^b) o \mathcal{O}(b)$
- combien de qubit il faut

Shor

- ullet Gain de complexité : $\mathcal{O}(e^b) o \mathcal{O}(b)$
- combien de qubit il faut
- combien de cubit on as

- Intro
- 2 RSA
- Quantum computing
 - Introduction to the quantum world
 - Quantum algorithms
- Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptography
 - Limits of PQ cryptography
- Conclusion

- Intro
- 2 RSA
- Quantum computing
 - Introduction to the quantum world
 - Quantum algorithms
- Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptography
 - Limits of PQ cryptography
- 5 Conclusion

What is PQ cryptography

- Based on (other) mathematical problems
- Considered unsolvable by a quantum computer

What it is not:

Cryptography using quantum technologies

The problems

- Codes
- Hash functions
- Multivariates polynomials systems
- Isogenies
- Lattices

The problems

- Codes
- Hash functions
- Multivariates polynomials systems
- Isogenies
- Lattices

Why lattices ?

- Well spread
- Good results

Encryption/Key encapsulation	
Crystals-Kyber	Lattices
Signatures	
Crystals-Dilithium	Lattices
Falcon	Lattices
Sphincs+	Hash

- Intro
- 2 RSA
- Quantum computing
 - Introduction to the quantum world
 - Quantum algorithms
- Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptography
 - Limits of PQ cryptography
- Conclusion

What is a lattice?

- ullet A discret subgroup of RR^n abc akpqzsfkeokf akozckdp kpzqkfs pkzapqfkpkde pzkpkd czqks qkp kfsdkvoesd, okpze kswkw k Like vector spaces, we have :
 - Vectors and matrices
 - Linear combination

What is a lattice ? (cont'd)

Learning with error problem

TODO

(Fully) homomorphic encryption

TODO

- Intro
- 2 RSA
- Quantum computing
 - Introduction to the quantum world
 - Quantum algorithms
- Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptography
 - Limits of PQ cryptography
- Conclusion

Size TODO

32 / 35

Not necessarly robust to classical computer

• Example : Supersingular isogenies Diffie-Hellman key exchange

- Intro
- 2 RSA
- Quantum computing
 - Introduction to the quantum world
 - Quantum algorithms
- 4 Post-Quantum cryptography
 - Intro to PQ cryptography
 - Lattice cryptography
 - Limits of PQ cryptography
- Conclusion

Conclusion