Supervised Learning

without Scikit Learn

by Prof. Seungchul Lee Industrial AI Lab http://isystems.unist.ac.kr/ POSTECH

Table of Contents

- I. 1. Optimization
- II. 2. Linear Regression
- III. 3. Classification (Linear)
 - <u>I. 3.1. Distance</u>
 - II. 3.2. Illustrative Example
 - I. 3.2.1. Optimization Formulation 1
 - o II. 3.2.2. Outlier
 - III. 3.2.3. Optimization Formulation 2
 - III. 3.3. Maximize Margin (Finally, it is Support Vector Machine)
 - IV. 3.4. Logistic Regression

1. Optimization

- an important tool in 1) engineering problem solving and 2) decision science
- · peolple optimize
- · nature optimizes

(source: http://nautil.us/blog/to-save-drowning-people-ask-yourself-what-would-light-do (http://nautil.us/blog/to-save-drowning-people-ask-yourself-what-would-light-do))

3 key components

- 1. objective
- 2. decision variable or unknown
- 3. constraints

Procedures

- 1. The process of identifying objective, variables, and constraints for a given problem is known as "modeling"
- 2. Once the model has been formulated, optimization algorithm can be used to find its solutions.

In mathematical expression

$$egin{array}{ll} \min_x & f(x) \ & ext{subject to} & g_i(x) \leq 0, & i = 1, \cdots, m \end{array}$$

Remarks) equivalent

$$egin{array}{lll} \min_x f(x) & \leftrightarrow & \max_x - f(x) \ g_i(x) \leq 0 & \leftrightarrow & -g_i(x) \geq 0 \ h(x) = 0 & \leftrightarrow & egin{cases} h(x) \leq 0 & ext{and} \ h(x) \geq 0 \end{cases} \end{array}$$

The good news: for many classes of optimization problems, people have already done all the "hardwork" of developing numerical algorithms

2. Linear Regression

Begin by considering linear regression (easy to extend to more comlex predictions later on)

Given
$$\left\{ egin{array}{l} x_i : ext{inputs} \\ y_i : ext{outputs} \end{array}
ight.$$
 , find $heta_1$ and $heta_2$

$$x = egin{bmatrix} x_1 \ x_2 \ dots \ x_m \end{bmatrix}, \qquad y = egin{bmatrix} y_1 \ y_2 \ dots \ y_m \end{bmatrix} pprox \hat{y}_i = heta_1 x_i + heta_2$$

• \hat{y}_i : predicted output

•
$$heta = \left[egin{array}{c} heta_1 \ heta_2 \end{array}
ight]$$
 : Model parameters

$${\hat y}_i = f(x_i, heta) \ ext{ in general}$$

- In many cases, a linear model to predict y_i can be used

$${\hat y}_i = heta_1 x_i + heta_2 \quad ext{ such that } \quad \min_{ heta_1, heta_2} \sum_{i=1}^m ({\hat y}_i - y_i)^2$$


```
In [2]: import numpy as np
import matplotlib.pyplot as plt

# data points in column vector [input, output]
x = np.array([0.1, 0.4, 0.7, 1.2, 1.3, 1.7, 2.2, 2.8, 3.0, 4.0, 4.3, 4.4, 4.
9]).reshape(-1, 1)
y = np.array([0.5, 0.9, 1.1, 1.5, 1.5, 2.0, 2.2, 2.8, 2.7, 3.0, 3.5, 3.7, 3.
9]).reshape(-1, 1)

# to plot
plt.figure(figsize=(10, 6))
plt.plot(x, y, 'ko', label="data")
plt.xlabel('X', fontsize=15)
plt.ylabel('Y', fontsize=15)
plt.axis('scaled')
plt.grid(alpha=0.3)
plt.xlim([0, 5])
plt.show()
```


Use CVXPY optimization (least squared)

For convenience, we define a function that maps inputs to feature vectors, ϕ

$$egin{aligned} \hat{y}_i &= \left[egin{aligned} x_i & 1
ight] egin{aligned} heta_1 \ heta \end{aligned} &= \left[egin{aligned} x_i \ 1 \end{matrix}
ight]^T egin{bmatrix} heta_1 \ heta_2 \end{matrix} \end{aligned} &, \qquad ext{feature vector } \phi(x_i) = egin{bmatrix} x_i \ 1 \end{matrix} \end{bmatrix} \ &= \phi^T(x_i) heta \end{aligned}$$

$$\Phi = egin{bmatrix} x_1 & 1 \ x_2 & 1 \ dots \ x_m & 1 \end{bmatrix} = egin{bmatrix} \phi^T(x_1) \ \phi^T(x_2) \ dots \ \phi^T(x_m) \end{bmatrix} \quad \Longrightarrow \quad \hat{y} = egin{bmatrix} \hat{y}_1 \ \hat{y}_2 \ dots \ \hat{y}_m \end{bmatrix} = \Phi heta$$

Model parameter estimation

$$\min_{ heta} \ \|\hat{y} - y\|_2 = \min_{ heta} \ \|\Phi heta - y\|_2$$

```
In [3]: import cvxpy as cvx

m = y.shape[0]
#A = np.hstack([x, np.ones([m, 1])])
A = np.hstack([x, x**0])
A = np.asmatrix(A)

theta2 = cvx.Variable(2, 1)
obj = cvx.Minimize(cvx.norm(A*theta2-y, 2))
cvx.Problem(obj,[]).solve()

print('theta:\n', theta2.value)
```

theta:

[[0.67129519] [0.65306531]]

```
In [4]:
        # to plot
        plt.figure(figsize=(10, 6))
        plt.title('$L_2$ Regression', fontsize=15)
        plt.xlabel('X', fontsize=15)
        plt.ylabel('Y', fontsize=15)
        plt.plot(x, y, 'ko', label="data")
        # to plot a straight line (fitted line)
        xp = np.arange(0, 5, 0.01).reshape(-1, 1)
        theta2 = theta2.value
        yp = theta2[0,0]*xp + theta2[1,0]
        plt.plot(xp, yp, 'r', linewidth=2, label="$L_2$")
        plt.legend(fontsize=15)
        plt.axis('scaled')
        plt.grid(alpha=0.3)
        plt.xlim([0, 5])
        plt.show()
```


3. Classification (Linear)

- · Figure out, autonomously, which category (or class) an unknown item should be categorized into
- Number of categories / classes
 - Binary: 2 different classes
 - Multiclass: more than 2 classes
- Feature
 - The measurable parts that make up the unknown item (or the information you have available to categorize)

- · Perceptron: make use of sign of data
 - Discuss it later
- · Logistic regression is a classification algorithm
 - don't be confused
- To find a classification boundary

Sign

• Sign with respect to a line

$$\omega = \left[egin{array}{c} \omega_1 \ \omega_2 \end{array}
ight], \qquad x = \left[egin{array}{c} x_1 \ x_2 \end{array}
ight] \implies g(x) = \omega_1 x_1 + \omega_2 x_2 + \omega_0 = \omega^T x + \omega_0$$

$$\omega = egin{bmatrix} \omega_0 \ \omega_1 \ \omega_2 \end{bmatrix}, \qquad x = egin{bmatrix} 1 \ x_1 \ x_2 \end{bmatrix} \implies g(x) = \omega_0 + \omega_1 x_1 + \omega_2 x_2 = \omega^T x$$

Perceptron

- Hyperplane
 - Separates a D-dimensional space into two half-spaces
 - Defined by an outward pointing normal vector
 - ω is orthogonal to any vector lying on the hyperplane

How to find ω

- All data in class 1
 - $g(\omega^T x) > 0$
- All data in class 0
 - $g(\omega^T x) < 0$

Perceptron Algorithm

The perceptron implements

$$h(x) = ext{sign}\left(\omega^T x
ight)$$

Given the training set

$$(x_1,y_1),(x_2,y_2),\cdots,(x_N,y_N) \quad ext{where } y_i \in \{-1,1\}$$

1) pick a misclassified point

$$\mathrm{sign}\left(\omega^T x_n
ight)
eq y_n$$

2) and update the weight vector

$$\omega \leftarrow \omega + y_n x_n$$

- Why perceptron updates work?
- Let's look at a misclassified positive example ($y_n=+1$) perceptron (wrongly) thinks $\omega_{old}^T x_n < 0$
- · updates would be

$$\omega_{new} = \omega_{old} + y_n x_n = \omega_{old} + x_n$$

$$\omega_{new}^T x_n = (\omega_{old} + x_n)^T x_n = \omega_{old}^T x_n + x_n^T x_n$$

- Thus $\omega_{new}^T x_n$ is less negative than $\omega_{old}^T x_n$

In [5]: import numpy as np import matplotlib.pyplot as plt

% matplotlib inline

```
In [6]: #training data gerneration
        m = 100
        x1 = 8*np.random.rand(m, 1)
        x2 = 7*np.random.rand(m, 1) - 4
        g0 = 0.8*x1 + x2 - 3
       g1 = g0 - 1
       g2 = g0 + 1
In [7]: C1 = np.where(g1 >= 0)
        C2 = np.where(g2 < 0)
        print(C1)
        (array([ 0, 2, 4, 5, 6, 7, 10, 17, 22, 24, 25, 27, 28, 30, 31, 38, 51,
              52, 53, 56, 57, 61, 62, 64, 70, 78, 85, 86, 89, 98], dtype=int64), a
       0, 0, 0, 0, 0, 0, 0], dtype=int64))
In [8]: C1 = np.where(g1 >= 0)[0]
        C2 = np.where(g2 < 0)[0]
        print(C1.shape)
        print(C2.shape)
        (30,)
        (41,)
In [9]: plt.figure(figsize=(10, 6))
        plt.plot(x1[C1], x2[C1], 'ro', label='C1')
       plt.plot(x1[C2], x2[C2], 'bo', label='C2')
        plt.title('Linearly seperable classes', fontsize=15)
        plt.legend(loc='upper left', fontsize=15)
```


$$x = egin{bmatrix} \left(x^{(1)}
ight)^T \ \left(x^{(2)}
ight)^T \ \left(x^{(3)}
ight)^T \ dots \ \left(x^{(3)}
ight)^T \end{bmatrix} = egin{bmatrix} 1 & x_1^{(1)} & x_2^{(1)} \ 1 & x_1^{(2)} & x_2^{(2)} \ 1 & x_1^{(3)} & x_2^{(3)} \ dots \ \ dots \ \ dots \ \ dots \ dots \ \ \ \ \ \ \ \$$

```
In [10]: X1 = np.hstack([np.ones([C1.shape[0],1]), x1[C1], x2[C1]])
    X2 = np.hstack([np.ones([C2.shape[0],1]), x1[C2], x2[C2]])
    X = np.vstack([X1, X2])

y = np.vstack([np.ones([C1.shape[0],1]), -np.ones([C2.shape[0],1])])

X = np.asmatrix(X)
    y = np.asmatrix(y)
```

$$\omega = egin{bmatrix} \omega_1 \ \omega_2 \ \omega_3 \end{bmatrix} \ \omega \leftarrow \omega + yx$$

where (x, y) is a misclassified training point

 $egin{aligned} g(x) &= \omega^T x + \omega_0 = \omega_1 x_1 + \omega_2 x_2 + \omega_0 = 0 \ \Longrightarrow \ x_2 &= -rac{\omega_1}{\omega_2} x_1 - rac{\omega_0}{\omega_2} \end{aligned}$

Not a unique solution

```
In [12]: x1p = np.linspace(0,8,100).reshape(-1,1)
x2p = - w[1,0]/w[2,0]*x1p - w[0,0]/w[2,0]

plt.figure(figsize=(10, 6))
plt.scatter(x1[C1], x2[C1], c='r', s=50, label='C1')
plt.scatter(x1[C2], x2[C2], c='b', s=50, label='C2')
plt.plot(x1p, x2p, c='k', label='perceptron')
plt.xlim([0,8])
plt.xlabel('$x_1$', fontsize = 20)
plt.ylabel('$x_2$', fontsize = 20)
plt.legend(loc = 4, fontsize = 15)
plt.show()
```


Perceptron

3.1. Distance

$$\omega = \left[egin{array}{c} \omega_1 \ \omega_2 \end{array}
ight], \ x = \left[egin{array}{c} x_1 \ x_2 \end{array}
ight] \ \implies g(x) = \omega^T x + \omega_0 = \omega_1 x_1 + \omega_2 x_2 + \omega_0$$

ullet Find a distance between g(x)=-1 and g(x)=1

$$egin{aligned} ext{suppose} \ g(x_1) = -1, \ g(x_2) = 1 \ & \omega^T x_1 + \omega_0 = -1 \ & \omega^T x_2 + \omega_0 = 1 \end{aligned} \implies egin{aligned} \omega^T (x_2 - x_1) = 2 \end{aligned}$$

$$s = \left\langle rac{\omega}{\|\omega\|}, x_2 - x_1
ight
angle = rac{1}{\|\omega\|} \omega^T (x_2 - x_1) = rac{2}{\|\omega\|}$$

3.2. Illustrative Example

- Binary classification: C_1 and C_2
- Features: the coordinate of ith data

$$x = \left[egin{array}{c} x_1 \ x_2 \end{array}
ight]$$

- Is it possible to distinguish between C_1 and C_2 by its coordinates?
- We need to find a separating hyperplane (or a line in 2D)

$$egin{aligned} \omega_1 x_1 + \omega_2 x_2 + \omega_0 &= 0 \ \left[egin{aligned} \omega_1 & \omega_2
ight] \left[egin{aligned} x_1 \ x_2 \end{array}
ight] + \omega_0 &= 0 \ \omega^T x + \omega_0 &= 0 \end{aligned}$$

```
In [13]: import numpy as np
import matplotlib.pyplot as plt

#training data gerneration
x1 = 8*np.random.rand(100, 1)
x2 = 7*np.random.rand(100, 1) - 4

g0 = 0.8*x1 + x2 - 3
g1 = g0 - 1
g2 = g0 + 1

C1 = np.where(g1 >= 0)[0]
C2 = np.where(g2 < 0)[0]</pre>
```

```
In [14]: xp = np.linspace(0,8,100).reshape(-1,1)
    ypt = -0.8*xp + 3

    plt.figure(figsize=(10, 6))
    plt.plot(x1[C1], x2[C1], 'ro', label='C1')
    plt.plot(x1[C2], x2[C2], 'bo', label='C2')
    plt.plot(xp, ypt, '--k', label='True')
    plt.title('linearly and strictly separable classes', fontweight = 'bold', fontsize = 15)
    plt.xlabel('$x_1$', fontsize = 20)
    plt.ylabel('$x_2$', fontsize = 20)
    plt.legend(loc = 4)
    plt.xlim([0, 8])
    plt.ylim([-4, 3])
    plt.show()
```


- · Given:
 - Hyperplane defined by ω and ω_0
 - ullet Animals coordinates (or features) x
- · Decision making:

$$egin{aligned} \omega^T x + \omega_0 &> 0 &\Longrightarrow x ext{ belongs to } C_1 \ \omega^T x + \omega_0 &< 0 &\Longrightarrow x ext{ belongs to } C_2 \end{aligned}$$

ullet Find ω and ω_0 such that x given $\omega^T x + \omega_0 = 0$

or

• Find ω and ω_0 such that $x\in C_1$ given $\omega^Tx+\omega_0>1$ and $x\in C_2$ given $\omega^Tx+\omega_0<-1$

$$egin{aligned} \omega^T x + \omega_0 &> b \ \iff rac{\omega^T}{b} x + rac{\omega_0}{b} &> 1 \ \iff \omega'^T x + \omega'_0 &> 1 \end{aligned}$$

• Same problem if strictly separable

```
In [15]: # see how data are generated
          xp = np.linspace(0,8,100).reshape(-1,1)
          ypt = -0.8*xp + 3
          plt.figure(figsize=(10, 6))
          plt.plot(x1[C1], x2[C1], 'ro', label='C1')
          plt.plot(x1[C2], x2[C2], 'bo', label='C2')
          plt.plot(xp, ypt, '--k', label='true')
plt.plot(xp, ypt-1, '-k')
          plt.plot(xp, ypt+1, '-k')
          plt.title('linearly and strictly separable classes', fontweight = 'bold', fo
          ntsize = 15)
          plt.xlabel('$x_1$', fontsize = 20)
          plt.ylabel('$x_2$', fontsize = 20)
          plt.legend(loc = 4)
          plt.xlim([0, 8])
          plt.ylim([-4, 3])
          plt.show()
```


3.2.1. Optimization Formulation 1

- $n \ (=2)$ features
- $\bullet \ \ m = N + M \ {\rm data \ points \ in \ training \ set}$

$$x^{(i)} = egin{bmatrix} x_1^{(i)} \ x_2^{(i)} \end{bmatrix} ext{ with } \omega = egin{bmatrix} \omega_1 \ \omega_2 \end{bmatrix} ext{ or } x^{(i)} = egin{bmatrix} 1 \ x_1^{(i)} \ x_2^{(i)} \end{bmatrix} ext{ with } \omega = egin{bmatrix} \omega_0 \ \omega_1 \ \omega_2 \end{bmatrix}$$

- ullet N belongs to C_1 in training set
- M belongs to C_2 in training set
- ω and ω_0 are the unknown variables

minimize something

minimize something

$$\begin{array}{lll} \text{subject to} & \left\{ \begin{array}{l} \omega^T x^{(1)} + \omega_0 \geq 1 \\ \omega^T x^{(2)} + \omega_0 \geq 1 \\ \vdots \\ \omega^T x^{(N)} + \omega_0 \geq 1 \end{array} \right. & \text{subject to} & \left\{ \begin{array}{l} \omega^T x^{(1)} \geq 1 \\ \omega^T x^{(2)} \geq 1 \\ \vdots \\ \omega^T x^{(N)} \geq 1 \end{array} \right. \\ \left\{ \begin{array}{l} \omega^T x^{(N+1)} + \omega_0 \leq -1 \\ \omega^T x^{(N+2)} + \omega_0 \leq -1 \\ \vdots \\ \omega^T x^{(N+M)} + \omega_0 \leq -1 \end{array} \right. & \left\{ \begin{array}{l} \omega^T x^{(N+1)} \leq -1 \\ \omega^T x^{(N+2)} \leq -1 \\ \vdots \\ \omega^T x^{(N+M)} < -1 \end{array} \right. \end{array}$$

Code (CVXPY)

$$X_1 = egin{bmatrix} egin{pmatrix} egin{pmatrix$$

$$X_2 = egin{bmatrix} egin{pmatrix} ig(x^{(N+1)}ig)^T \ ig(x^{(N+2)}ig)^T \ dots \ ig(x^{(N+M)}ig)^T \end{bmatrix} = egin{bmatrix} 1 & x_1^{(N+1)} & x_2^{(N+1)} \ 1 & x_1^{(N+2)} & x_2^{(N+2)} \ dots & dots \ 1 & x_1^{(N+M)} & x_2^{(N+M)} \end{bmatrix}$$

 $egin{array}{ll} ext{minimize} & ext{something} \ ext{subject to} & X_1 \omega \geq 1 \ & X_2 \omega < -1 \end{array}$

 $egin{array}{ll} ext{minimize} & ext{something} \ ext{subject to} & X_1\omega \geq 1 \ & X_2\omega \leq -1 \ \end{array}$

```
In [16]: # CVXPY using simple classification
    import cvxpy as cvx

N = C1.shape[0]
M = C2.shape[0]

X1 = np.hstack([np.ones([N,1]), x1[C1], x2[C1]])
X2 = np.hstack([np.ones([M,1]), x1[C2], x2[C2]])

X1 = np.asmatrix(X1)
X2 = np.asmatrix(X2)
```

```
In [17]: w = cvx.Variable(3,1)
  obj = cvx.Minimize(1)
  const = [X1*w >= 1, X2*w <= -1]
  prob = cvx.Problem(obj, const).solve()
  w = w.value</pre>
```

```
In [18]: xp = np.linspace(0,8,100).reshape(-1,1)
    yp = - w[1,0]/w[2,0]*xp - w[0,0]/w[2,0]

plt.figure(figsize=(10, 6))
    plt.plot(X1[:,1], X1[:,2], 'ro', label='C1')
    plt.plot(X2[:,1], X2[:,2], 'bo', label='C2')
    plt.plot(xp, yp, 'k', label='SVM')
    plt.plot(xp, ypt, '--k', label='true')
    plt.xlim([0,8])
    plt.xlabel('$x_1$', fontsize = 20)
    plt.ylabel('$x_2$', fontsize = 20)
    plt.legend(loc = 4, fontsize = 15)
    plt.show()
```


3.2.2. Outlier

- Note that in the real world, you may have noise, errors, or outliers that do not accurately represent the actual phenomena
- Non-separable case
- No solutions (hyperplane) exist
 - We will allow some training examples to be misclassified!
 - but we want their number to be minimized

 $egin{array}{ll} ext{minimize} & ext{something} \ ext{subject to} & X_1 \omega \geq 1 \ & X_2 \omega \leq -1 \ \end{array}$

```
In [20]: w = cvx.Variable(3,1)
  obj = cvx.Minimize(1)
  const = [X1*w >= 1, X2*w <= -1]
  prob = cvx.Problem(obj, const).solve()
  print(w.value)</pre>
```

• No solutions (hyperplane) exist

None

- · We will allow some training examples to be misclassified!
- but we want their number to be minimized

3.2.3. Optimization Formulation 2

- n (= 2) features
- ullet m=N+M data points in a training set

$$x^i = egin{bmatrix} 1 \ x_1^{(i)} \ x_2^{(i)} \end{bmatrix} \quad ext{with } \omega = egin{bmatrix} \omega_0 \ \omega_1 \ \omega_2 \end{bmatrix} \qquad ext{minimize something subject to} \quad X_1\omega \geq 1 \ X_2\omega \leq -1 \end{cases}$$

- ullet N belongs to C_1 in training set
- M belongs to C_2 in training set
- ω and ω_0 are the variables (unknown)
- · For the non-separable case, we relex the above constraints
- ullet Need slack variables u and v where all are positive

The optimization problem for the non-separable case

$$egin{aligned} ext{minimize} & \sum_{i=1}^N u_i + \sum_{i=1}^M v_i \ & \sup_{i=1}^N u_i + \sum_{i=1}^M v_i \ & \sup_{i=1}^T x^{(1)} \geq 1 - u_1 \ & \omega^T x^{(2)} \geq 1 - u_2 \ & dots \ & \omega^T x^{(N)} \geq 1 - u_N \ & \int_{\omega^T x^{(N+1)}}^{\omega^T x^{(N+1)}} \leq -(1-v_1) \ & \omega^T x^{(N+2)} \leq -(1-v_2) \ & dots \ & \omega^T x^{(N+M)} \leq -(1-v_M) \ & \begin{cases} u \geq 0 \ v \geq 0 \end{cases} \end{aligned}$$

· Expressed in a matrix form

$$X_1 = egin{bmatrix} egin{pmatrix} egin{pmatrix$$

$$X_2 = egin{bmatrix} egin{pmatrix} egin{pmatrix$$

$$u = \left[egin{array}{c} u_1 \ dots \ u_N \end{array}
ight]$$

$$v = \left[egin{array}{c} v_1 \ dots \ v_M \end{array}
ight]$$

$$egin{array}{ll} ext{minimize} & \mathbb{1}^T u + \mathbb{1}^T v \ ext{subject to} & X_1 \omega \geq 1 - u \ & X_2 \omega \leq -(1 - v) \ & u \geq 0 \ & v > 0 \end{array}$$

```
In [21]: X1 = np.hstack([np.ones([C1.shape[0],1]), x1[C1], x2[C1]])
    X2 = np.hstack([np.ones([C2.shape[0],1]), x1[C2], x2[C2]])

    outlier = np.array([1, 2, 2]).reshape(-1,1)
    X2 = np.vstack([X2, outlier.T])

    X1 = np.asmatrix(X1)
    X2 = np.asmatrix(X2)

    N = X1.shape[0]
    M = X2.shape[0]

    w = cvx.Variable(3,1)
    u = cvx.Variable(N,1)
    v = cvx.Variable(M,1)
    obj = cvx.Minimize(np.ones((1,N))*u + np.ones((1,M))*v)
    const = [X1*w >= 1-u, X2*w <= -(1-v), u >= 0, v >= 0]
    prob = cvx.Problem(obj, const).solve()

    w = w.value
```

```
In [22]: xp = np.linspace(0,8,100).reshape(-1,1)
    yp = - w[1,0]/w[2,0]*xp - w[0,0]/w[2,0]

    plt.figure(figsize=(10, 6))
    plt.plot(X1[:,1], X1[:,2], 'ro', label='C1')
    plt.plot(X2[:,1], X2[:,2], 'bo', label='C2')
    plt.plot(xp, yp, '--k', label='SVM')
    plt.plot(xp, yp-1/w[2,0], '-k')
    plt.plot(xp, yp+1/w[2,0], '-k')
    plt.xlim([0,8])
    plt.xlabel('$x_1$', fontsize = 20)
    plt.ylabel('$x_2$', fontsize = 20)
    plt.legend(loc = 4, fontsize = 15)
    plt.show()
```


Further improvement

- · Notice that hyperplane is not as accurately represent the division due to the outlier
- · Can we do better when there are noise data or outliers?
- · Yes, but we need to look beyond LP
- · Idea: large margin leads to good generalization on the test data

3.3. Maximize Margin (Finally, it is Support Vector Machine)

• Distance (= margin)

$$ext{margin} = rac{2}{\|\omega\|_2}$$

• Minimize $\|\omega\|_2$ to maximize the margin (closest samples from the decision line)

maximize {minimum distance}

- Use gamma (γ) as a weighting between the followings:
 - Bigger margin given robustness to outliers
 - Hyperplane that has few (or no) errors

$$egin{aligned} & \min & \|\omega\|_2 + \gamma (1^T u + 1^T v) \ & ext{subject to} & X_1 \omega + \omega_0 \geq 1 - u \ & X_2 \omega + \omega_0 \leq -(1 - v) \ & u \geq 0 \ & v \geq 0 \end{aligned}$$

```
In [23]: g = 1
w = cvx.Variable(3,1)
u = cvx.Variable(N,1)
v = cvx.Variable(M,1)
obj = cvx.Minimize(cvx.norm(w,2) + g*(np.ones((1,N))*u + np.ones((1,M))*v))
const = [X1*w >= 1-u, X2*w <= -(1-v), u >= 0, v >= 0 ]
prob = cvx.Problem(obj, const).solve()
w = w.value
```

```
In [24]: xp = np.linspace(0,8,100).reshape(-1,1)
yp = - w[1,0]/w[2,0]*xp - w[0,0]/w[2,0]

plt.figure(figsize=(10, 6))
plt.plot(X1[:,1], X1[:,2], 'ro', label='C1')
plt.plot(X2[:,1], X2[:,2], 'bo', label='C2')
plt.plot(xp, yp, '--k', label='SVM')
plt.plot(xp, yp-1/w[2,0], '-k')
plt.plot(xp, yp+1/w[2,0], '-k')
plt.xlim([0,8])
plt.xlabel('$x_1$', fontsize = 20)
plt.ylabel('$x_2$', fontsize = 20)
plt.legend(loc = 4, fontsize = 15)
plt.show()
```


3.4. Logistic Regression

- · Logistic regression is a classification algorithm
 - don't be confused
- · Perceptron: make use of sign of data
- SVM: make use of margin (minimum distance)
 - Distance from a single data point
- · We want to use distance information of ALL data points
 - logistic regression

Using Distances

• basic idea: to find the decision boundary (hyperplane) of $g(x)=\omega^T x=0$ such that maximizes $\prod_i |h_i| o$ optimization

· Inequality of arithmetic and geometric means

$$\frac{x_1+x_2+\cdots+x_m}{m}\geq \sqrt[m]{x_1\cdot x_2\dots x_m}$$
 and that equality holds if and only if $x_1=x_2=\cdots=x_m$

• Roughly speaking, this optimization of $\max\prod_i |h_i|$ tends to position a hyperplane in the middle of two classes

$$h = rac{g(x)}{\|\omega\|} = rac{\omega^T x}{\|\omega\|} \sim \omega^T x$$

Using all Distances with Outliers

• SVM vs. Logistic Regression

Sigmoid function

• We link or squeeze $(-\infty, +\infty)$ to (0,1) for several reasons:

- If $\sigma(z)$ is the sigmoid function, or the logistic function

$$\sigma(z) = rac{1}{1 + e^{-z}} \implies \sigma(\omega^T x) = rac{1}{1 + e^{-\omega^T x}}$$

- logistic function always generates a value between 0 and 1
- Crosses 0.5 at the origin, then flattens out

- · Benefit of mapping via the logistic function
 - monotonic: same or similar optimziation solution
 - continuous and differentiable: good for gradient descent optimization
 - probability or confidence: can be considered as probability

$$P\left(y=+1\mid x,\omega
ight)=rac{1}{1+e^{-\omega^{T}x}}~\in~\left[0,1
ight]$$

• Goal: we need to fit ω to our data

$$\max \prod_i |h_i|$$

· Classified based on probability

In [25]: m = 200

In [28]: pred = clf.predict_proba(X_new)

[[0.9407617 0.0592383]]

print(pred)


```
In [29]: plt.figure(figsize=(10, 6))
    plt.plot(X0[:,0], X0[:,1], '.b', label='Class 0')
    plt.plot(X1[:,0], X1[:,1], '.k', label='Class 1')
    plt.plot(X_new[0,0], X_new[0,1], 'o', label='New Data', ms=5, mew=5)

    plt.title('Logistic Regression', fontsize=15)
    plt.legend(loc='lower right', fontsize=15)
    plt.xlabel('X1', fontsize=15)
    plt.ylabel('X2', fontsize=15)
    plt.grid(alpha=0.3)
    plt.axis('equal')
    plt.show()
```

