Math 342: Project 1 **Connor Emmons** Documentation: I used ChatGPT solely for looking up Latex commands. The main Project 1 MatLab script and all required dependencies are located in the Project 1 folder found here: https://github.com/Connor-Lemons/Emmons-Math-342. No other resources used.

Project 1:

Part 1: Aitken's delta-squared process

Problem 1: Consider the problem of approximating the root p of f(x) = x + ln(x) using Fixed-Point iteration.

Part A: Show that the root p of f(x) is also a fixed point of the function $g(x) = e^{-x}$.

Begin with the function f(x) = x + ln(x). Finding the root p is equivalent to finding the value of x which satisfies the equation:

$$f(x) = 0 = x + ln(x) \tag{1}$$

Rewriting equation (1) gives:

$$-x = ln(x) \tag{2}$$

$$x = e^{-x} \tag{3}$$

Defining $g(x) = e^{-x}$ gives:

$$g(x) = x = e^{-x} \tag{4}$$

Finding the value of x which satisfies g(x) = x is equivalent to finding the fixed point of g(x). Because this is the same value of x that gives p, the root p of f(x) is the same as the fixed point of g(x).

Part B: Use the Fixed-Point Theorem to show that Fixed-Point Iteration with $g(x) = e^{-x}$ will converge to p for any $p_0 \neq p$ in the interval $\left[\frac{1}{e}, 1\right]$.

Theorem 2.4 states that if $g \in C[a,b]$ (i.e., $g(x) \in [a,b]$ for all $x \in [a,b]$), g' exists on (a,b), and there exists some constant 0 < k < 1 such that $(\forall x \in (a,b))(|g'(x)| \le k)$, then for any $p_0 \in [a,b]$ the sequence $p_n = g(p_{n-1})$ converges to a unique fixed point $p \in [a,b]$.

Because g(x) is a decreasing monotone function (i.e., $(\forall x \in R)(y \in R \ge x \Rightarrow g(y) \le g(x))$, if $g(a) \in [a,b]$ and $g(b) \in [a,b]$, then $g \in C[a,b]$.

$$a = \frac{1}{e} = 0.3679 \tag{1}$$

$$b = 1 \tag{2}$$

$$g(a) = 0.6922 \Rightarrow g(a) \in [a, b]$$
 (3)

$$g(b) = \frac{1}{e} = 0.3679 \Rightarrow g(b) \in [a, b]$$
 (4)

Thus, both g(a) and g(b) are in the interval [a, b].

Consider $g(x) = e^{-x}$ and its derivative $g'(x) = -e^{-x}$. Both of these functions are defined for all $x \in R$, and are continuous functions for real number inputs. Notably, this means that g'(x) exists on the interval (a,b) because $(a,b) \subseteq R$. Because g'(x) is a monotone increasing function, g'(x) will have the largest value on the interval [a,b] at a. This gives:

$$|g'(a)| = 0.6922 \tag{1}$$

Thus, k = 0.7 satisfies the condition

$$0 < 0.7 < 1: (\forall x \in (a, b))(|g'(x)| \le k)$$
 (2)

because

$$(\forall x \in (a,b))(max(|g'(x)|) = g'(a) = 0.6922 < 0.7)$$
(3)

Therefore, because g(x) has been shown to satisfy all the conditions of Theorem 2.4 on the interval [a,b], where $a=\frac{1}{e}$ and b=1, g(x) will converge to a unique fixed point p for any $p_0\neq p\in \left[\frac{1}{e},1\right]$.

Part C: Write a MatLab script to implement Fixed-Point Iteration $p_n=g(p_{n-1})$ with $g(x)=e^{-x}$ and $p_0=0.4$. Use $TOL=|p_n-p_{n-1}|\leq 10^{-6}$ as the stopping criterion.

n	p_n	$ p_{n} - p_{n-1} $
1	0.67032	0.27032
2	0.51154	0.15878
3	0.59957	0.088024
4	0.54905	0.05052
5	0.5775	0.028451
6	0.5613	0.016199
7	0.57047	0.0091664
8	0.56526	0.0052052
9	0.56821	0.00295
10	0.56654	0.0016737
11	0.56749	0.00094903
12	0.56695	0.00053831
13	0.56725	0.00030528
14	0.56708	0.00017314
15	0.56718	9.8194e-05
16	0.56712	5.5691e-05
17	0.56715	3.1584e-05
18	0.56714	1.7913e-05
19	0.56715	1.0159e-05
20	0.56714	5.7617e-06
21	0.56714	3.2677e-06
22	0.56714	1.8533e-06
23	0.56714	1.0511e-06

2.4	0.5674.4	E 0044 - 07
24	0.56/14	5.9611e-07
<u> </u>	0.30714	3.50116-07

Code can be found in Appendix A.

Part D: Show that the solution obtained using Fixed-Point Iteration converges linearly to \boldsymbol{p} by showing that

$$\frac{|p_{n+1}-p|}{|p_n-p|} \approx c \text{onstant} \tag{0}$$

for the 4 largest values of n.

For the iteration above, use n = 21,22,23.

For n = 21:

$$\frac{|p_{n+1}-p|}{|p_n-p|} = 0.32537\tag{1}$$

For n = 22:

$$\frac{|p_{n+1}-p|}{|p_n-p|} = 1.3102 \tag{2}$$

For n = 23:

$$\frac{|p_{n+1}-p|}{|p_n-p|} = 0 \tag{3}$$

Note that this quotient equals zero for n=23 because the value of p is taken to be the value of p_{24} , which was the first p_n that satisfied the error requirement. It is difficult to determine from these points alone whether $\frac{|p_{n+1}-p|}{|p_n-p|} \approx c$ onstant holds. Calculating this quotient for all $n \in [1,23]$ gives a more accurate picture. When accounting for all $n \in [1,23]$, it is clearer that the quotient is approximately constant, and thus this iteration converges linearly.

n	$ p_{n+1}-p $
	$\overline{ p_n-p }$
1	0.53886
2	0.58321
3	0.55804
4	0.57232
5	0.56418
6	0.56886
7	0.5661
8	0.56786
9	0.56652
10	0.56787
11	0.56606
12	0.56894
13	0.56406
14	0.57258

15	0.55768
16	0.58411
17	0.53811
18	0.62109
19	0.48028
20	0.74799
21	0.32537
22	1.3102
23	0

Code can be found in Appendix A.

Problem 2: Consider the problem of approximating the root p of f(x) = x + ln(x) using Steffensen's Method.

Part A: Write a MatLab script to implement Steffensen's Method with $g(x)=e^{-x}$ and $p_0=0.4$. Use $TOL=|p_n-p_{n-1}|\leq 10^{-6}$ as the stopping criterion.

n	p_n	$ p_n - p_{n-1} $
1	0.5703	0.1703
2	0.56714	0.003151
3	0.56714	1.0178e-06
4	0.56714	1.0633e-13

Code can be found in Appendix A.

Part B: Show that the solution obtained using Fixed-Point Iteration converges linearly to p by showing that

$$\frac{|p_{n+1}-p|}{|p_n-p|^2} \approx c \text{ onstant} \tag{0}$$

for the 4 largest values of n.

For the iteration above, use n = 1,2,3.

For n = 1:

$$\frac{|p_{n+1}-p|}{|p_n-p|^2} = 0.10244 \tag{1}$$

For n = 2:

$$\frac{|p_{n+1}-p|}{|p_n-p|^2} = 0.10262 \tag{2}$$

For n = 3:

$$\frac{|p_{n+1}-p|}{|p_n-p|^2} = 0 \tag{3}$$

Note that this quotient equals zero for n=3 because the value of p is taken to be the value of p_4 , which was the first p_n that satisfied the error requirement. This quotient is relatively constant across all iterations of Steffensen's Method, and thus this iteration converges quadratically.

n	$\frac{ p_{n+1}-p }{ p_n-p ^2}$
1	0.10244
2	0.10262
3	0

Code can be found in Appendix A.

Part 2: Newton's Method

Problem 1: Plot the airfoil described by $y=2.969\sqrt{x}-1.26x-3.516x^2+2.843x^3-1.015x^4$ from x=0 to x=1 where y is the thickness of the airfoil and x is the distance from the leading edge of the airfoil (x=0).

Problem 2: Consider the problem of finding the thickest point of the airfoil using Newton's Method.

Part A: Derive a function f(x) such that the root p of f(x) corresponds to the location of the thickest point of the airfoil.

Note that the thickest point of the airfoil described by y will simply be the maximum value of y. For some function of x, $g(x) = y = 2.969\sqrt{x} - 1.26x - 3.516x^2 + 2.843x^3 - 1.015x^4$, this will occur when the function's derivative is equal to zero. Thus, the function is maximized (i.e., the airfoil achieves its maximum thickness) at some from the leading edge 0 such that <math>f(p) = g'(p) = 0. Taking this derivative gives

$$f(x) = 1.484x^{-\frac{1}{2}} - 1.26 - 7.032x + 8.529x^2 - 4.06x^3$$
 (1)

where the root of f(x) corresponds to the location of the thickest point of the airfoil.

Part B: Write a MatLab script to implement Newton's Method with f(x) and $p_0 = 0.1$. Use $TOL = |p_n - p_{n-1}| \le 10^{-7}$ as the stopping criterion.

n	<i>p_n</i>	$ p_n - p_{n-1} $
1	0.1972486	0.09724864
2	0.2762193	0.0789707
3	0.2986261	0.02240674
4	0.2998248	0.001198702
5	0.2998279	3.103562e-06
6	0.2998279	2.069539e-11

Code can be found in Appendix A.

Problem 3: Now consider the problem of finding the thickest point of the airfoil using Steffensen's Method.

Part A: Derive Steffensen's Method from Newton's Method by replacing f'(x) with the forward difference and applying the substitution h = f(x). Explain why h = f(x) is a valid choice.

Begin with Newton's Method:

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})} \tag{1}$$

The forward difference approximation for the derivative of the function is:

$$f'(x) \approx \frac{f(x+h) - f(x)}{h} \tag{2}$$

This comes from the definition of the derivative, which is:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 (3)

Note that this means that the approximation in (2) gets more accurate the closer to zero h gets. Because of this, letting h = f(x) is a valid choice because Newton's method iterates to find the x such that f(x) = 0, and subsequent x values will drive f(x) to zero. Applying this gives the function g(x):

$$f'(x) \approx g(x) = \frac{f(x+f(x))-f(x)}{f(x)} \tag{4}$$

Substituting into equation (1) gives

$$p_{n} = p_{n-1} - \frac{f(p_{n-1})}{g(p_{n-1})}; g(p_{n-1}) = \frac{f(p_{n-1} + f(p_{n-1})) - f(p_{n-1})}{f(p_{n-1})}$$
(5)

which is Steffensen's Method.

Part B: Write a MatLab script to implement Steffensen's Method with f(x) and $p_0 = 0.1$. Use $TOL = |p_n - p_{n-1}| \le 10^{-7}$ as the stopping criterion.

n	p_n	$ p_n - p_{n-1} $
1	0.25318	0.15318
2	0.33455	0.081362
3	0.31674	0.017805
4	0.30374	0.012996
5	0.30004	0.0037032
6	0.29983	0.00021297
7	0.29983	6.4019e-07
8	0.29983	5.7534e-12

Code can be found in Appendix A.

Note that for Steffensen's Method, the equation f(x) + x was in the iteration used to account for the fact that Steffensen's Method finds p = g(p).

Part C: Show that the solution obtained in Part B converges quadratically to p by calculating $g'(p_n) \approx 0$ for your largest value of n.

For n = 6:

$$g'(p_6) = 0.08628 \approx 0 \tag{1}$$

The rest of the derivative values are as follows:

n	$g'(p_n)$
1	-1.563
2	1.043
3	0.4613

4	0.1087
5	0.005993
6	1.797e-5
7	0.03098
8	0.08628

Code can be found in Appendix A.