Optimalizácia variačných kvantových eigensolverov

Michal Švec

doc. RNDr. Martin Plesch, PhD.

Ansatz & Hamiltonian

- Ansatz
 - parametrizovaný kvantový obvod
 - zaoberáme sa len triedou hardvérovo efektívnych ansatzov (HEA)
 - dajú sa použiť aj na dnešných kvantových počítačoch
 - sú všeobecné, nie sú viazané na žiadny špecifický problém

- Hamiltonian
 - reprezentuje celkovú energiu systému
 - vybrali sme si molekulu jednu vodíka (H₂) reprezentovanú pomocou 4 qubitov
 - pre nás to je len **matica** (16 \times 16, máme 4 qubity a 2⁴ = 16)

Zakladný stav energie

- stav, kedy sú elektróny najbližšie k jadru
- základný stav molekuly vodíka = -1.8671050114542505 Ha
- presná hodnota nie je podstatná, sústredíme sa na chemickú presnosť ±0.0016 Ha

zdroj:https://mmerevise.co.uk/app/uploads/2022/10/Atomic-Structure-alevel-1536x779.png.webp

Variačný kvantový eigensolver (VQE)

- hybridný algoritmus
 - časť práce odovzdáme klasickému počítaču
 - na klasickom počítači beží optimalizačný algoritmus

 $\label{lem:reconstruction} zdroj: https://images.ctfassets.net/hqm865gc1xfs/7ADhfqvgY0EesM5oSFHCiL/eb70f8716e2831015253e1eedced6320/2022-01-06-vqe.jpeg$

Variačný kvantový eigensolver (VQE)

- rôzne možnosti použitia
- zaoberáme sa nájdením základného stavu molekuly vodíka
- eigensolver
 - nájde najmenšie vlastné číslo = základný stav
- cieľovú funkciu tvorí ansatz a Hamiltonian

Ciel'

- zamerali sme sa na výkonnosť VQE
- zisťovali sme, ako jednotlivé ansatze a optimalizačné algoritmy ovplyvňujú výsledok

Linear ansatz

- vrstva sa skladá z rotačných hradiel a previazania
- každý qubit je previazaný s nasledujúcim

Reverse linear ansatz

• taký istý ako linear ansatz, ale qubity sú previazané v opačnom poradí

Circular ansatz

linear ansatz, ale navyše je posledný qubit previazaný s prvým

Full ansatz

• každý qubit je previazaný s každým

Porovnávanie výkonnosti VQE

- porovnávali sme, ako jednotlivé kvantové obvody fungujú spolu s optimalizačnými algoritmami
- 15 optimalizačných algoritmov
 - v našom prípade optimalizujú parametre pre rotačné hradla ansatzu
 - algoritmy majú veľa parametrov
 - zvolili predvolené parametre
 - nastavili sme len maximum iterácií na 100

Optimalizačné algoritmy	
negradientové	gradientové
AQGD	Gradient Descent
NFT	CG
QNSPSA	ADAM
SPSA	AMSGRAD
COBYLA	L_BFGS_B
Nelder Mead	SLSQP
Powell	TNC
UMDA	

Porovnávanie výkonnosti VQE

- 18 rôznych ansatzov
 - 6 typov
 - z každého typu sme zobrali 1, 2 a 3 vrstvové varianty
- každú kombináciu ansatzu a optimalizačného algoritmu sme spustili 50-krát
- vyprodukovali sme dáta a následne sme ich analyzovali

Ansatze	
linear	
reverse linear	
pairwise	
circular	
SCA	
full	
pairwise circular SCA	

Implementácia

- Qiskit (Quantum Information Science Kit)
 - knižnica na prácu s kvantovými počítačmi a kvantovými algoritmami
 - simulátor
 - ideálne podmienky, žiadny šum a rušenie
 - Python
 - multiprocessing
- analýza dát
 - veľa dát
 - celkovo 13500 behov VQE
 - 15 optimalizačných algoritmov × 18 ansatzov × 50-krát
 - hľadali sme rôzne súvislosti a vhodnú reprezentáciu výsledkov
 - používali sme knižnice ako Pandas, Plotly, Matplotlib, Seaborn

Vplyv vrstiev ansatzu

Výkonnosť rôznych typov ansatzov

Počet evaluácií cieľovej funkcie & chemická presnosť

Priemerný počet dosiahnutí chemickej presnosti za hodinu

Zhrnutie

Ansatze

- akýkoľvek ansatz s jednou vrstvou nevedie k riešeniu
- pri gradientových algoritmoch na voľbe ansatzu až tak nezáleží
- negradientové algoritmy sú citlivejšie na voľbu ansatzu

Optimalizačné algoritmy

- gradientové fungujú lepšie pre ansatze s troma vrstvami
- negradientové dosahujú lepšie výsledky s ansatzmi, ktoré majú dve vrstvy
- voľba optimalizačného algoritmu je dôležitejšia ako voľba ansatzu