

GROUP MEMBERS

Aji Thomas
Shubham Ajitkumar Sutar
Manohar Kumar Sinha
Jagadeesh Korukonda
Manali Vijay Mane
Sachin Biradar
Margam Navya

Mentor: Mr. R P Adhvaith

CONTENT

- > Abstract
- > Introduction
 - Objective
 - Project Architecture
 - Challenges Faced
- > Data Collection
- > EDA
- > Data Visualization
- **▶** Feature Engineering/Data Pre-processing
- > Model Building
- **➤ Model Deployment**
- > Result

ABSTRACT

Natural Language Processing (NLP) is a subfield of machine learning that makes it possible for computers to understand, analyse, manipulate and generate human language.

NLTK is a popular open-source suite of Python libraries. Rather than building all of your NLP tools from scratch, NLTK provides all common NLP tasks so you can jump right in.

The two key techniques in Text Summarization are extraction and abstraction.

Extraction is a process that assesses large amounts of textual data to 'extract' short and definitive summaries.

Abstraction programs create summaries by creating new text based on the assessment of the original source text.

INTRODUCTION

- This is a sample dataset which consists of 161297 drug name, condition reviews and ratings from different patients.
- Our goal is to examine how patients are feeling using the drugs their positive and negative experiences so that we can recommend him a suitable drug.
- By analysing the reviews, we can understand the drug effectiveness and its side effects.

Architecture

Project

- Data Collection
- EDA and Data Cleaning
- Data Visualization
- Model building
- Model Deployment

- Limited Time
- We solved the issues raised during this period by sharing work load equally among us.

DATA COLLECTION

THE DATASET PROVIDES PATIENT REVIEWS ON SPECIFIC DRUGS ALONG WITH RELATED CONDITIONS

In this dataset, we can see many patients conditions but we have focused only on the below conditions from the patients reviews

- a. Depression
- c. High Blood Pressure
- d. Diabetes, Type 2

EDA

[] df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 13944 entries, 0 to 13943
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype				
0	drugName	13944 non-null	object				
1	condition	13944 non-null	object				
2	review	13944 non-null	object				
3	rating	13944 non-null	floate				
4	date	13944 non-null	object				
5	usefulCount	13944 non-null	int64				
<pre>dtypes: float64(1), int64(1), object(4)</pre>							
memory usage: 653.8+ KB							

drugs u

Different types of drugs used for different conditions

Drug Name

Useful Count

Number of users who found review useful

Condition

Patients Conditions from which they are suffering through

[] df.describe()

	rating	usefulCount
count	13944.000000	13944.000000
mean	6.862952	45.737880
std	3.207061	51.782627
min	1.000000	0.000000
25%	4.000000	16.000000
50%	8.000000	31.000000
75%	10.000000	59.000000
max	10.000000	1291.000000

DATASET INFO

<u>Date</u>

Date of an review and rating

Review

Feedback of each drug(medicine) based on patients health improvement or either way

Rating

Ranking the drugs from 1 to 10 basing on their effectiveness

DATA VISUALIZATION

Bar Plot: Top 20 most popular drug based on counts

A bar plot shows the relationship between a numeric and a categoric variable.

The bar plot illustrated the top 20 most popular drugs based on the counts.

And the result follows
Bupropion, sertraline and
venlafaxine are mostly used
drugs based on useful count.

The following illustrated plot shows the top 20 most popular ratings basing on counts and the output states most rated one are 10, 9,1 and 8.

Bar Plot: Top 20 most popular ratings

Pie Chart: Distribution of Ratings

Pie Chart is a circular statistical graphic, which divides into slices to illustrate numerical proportion.

The chat define that distribution of ratings over dividing into percentage.

LINE CHART: Trend in the number of reviews over time

Line chart is a simple, twodimensional chart with an X and Y axis, each point representing a single value.

The chart represents about trend in reviews over time by the patients.

Word Cloud - Drug Names

Word cloud is basically a visualization technique to represent the frequency of words in a text where the size of the word represents its frequency.

And the picture represent about Drug name that are mostly commonly used.

Word Cloud : Drug Names

FEATURE ENGINEERING/DATA PRE-PROCESSING

- Converting into lowercase
- Remove punctuation
- Tokenize the review
- Remove stop words
- Join the cleaned tokens back together

```
med prescribed wellbutrin as prescribed week without the prescribed week without the prescribed week without the prescribed week without the prescribed week without taken as prescribed to week without taken as prescribed week without taken as prescribed to week with taken as prescribed to week with the prescrib
```

Word cloud of reviews

MODEL BUILDING

LOGISTIC REGRESSION

Logistic regression is a statistical model that uses Logistic function to model the conditional probability.

Logistic regression is a classification algorithm used to assign observations to a discrete set of classes.

Accuracy: 0.94

Prediction Condition: Depression

Test size = 0.25

RANDOM FOREST

Random forest is a commonly-used machine learning algorithm.

Which combines the output of multiple decision trees to reach a single result.

Accuracy: 0.95

Prediction Condition: Depression

Test size = 0.25

SUPPORT VECTOR MACHINE

SVM is a supervised machine learning algorithm used for both classification and regression.

The objective of SVM algorithm is to find a hyperplane in an N-dimensional space that distinctly classifies the data points.

It is more effective in high dimensional spaces and is relatively memory efficient.

Accuracy: 0.96

Prediction Condition : Depression

Test size = 0.25

GRADIENT BOOSTING

Gradient boosting is a type of machine learning boosting.

It relies on the intuition that the best possible next model, when combined with previous models, minimizes the overall prediction error.

The key idea is to set the target outcomes for this next model in order to minimize the error.

Accuracy: 0.92

Prediction Condition : Depression

Test size = 0.25

DECISION TREE

A decision tree is a non-parametric supervised learning algorithm, which is utilized for both classification and regression tasks.

It has a hierarchical, tree structure, which consists of a root node, branches, internal nodes and leaf nodes

Accuracy: 0.94

Prediction Condition : Depression

Test size = 0.25

MODEL DEPLOYMENT

Streamlit is an open-source app framework in python language. It helps us create beautiful web apps for data science and machine learning in a little time.

It is compatible with major python libraries such as scikit-learn, keras, PyTorch, latex, numpy, pandas, matplotlib, etc.

RESULT

■ From above all the algorithms we can say that the best result showing algorithm is SVM (support vector machine) with the highest accuracy of 0.96 among rest of the algorithms.

Evaluate the model
y_pred = model3.predict(X_test)
print(classification_report(y_test, y_pred))

•	precision	recall	f1-score	support	
Depression Diabetes, Type 2 High Blood Pressure	0.95 0.98 0.97	0.99 0.93 0.85	0.97 0.96 0.90	2257 627 602	
accuracy macro avg	0.97	0.92	0.96 0.94	3486 3486	
weighted avg	0.96	0.96	0.96	3486	

Patient's Condition Classification Using Drug Reviews

Enter a patient review:

I have been back on the Metformin with Trulicity for about a week now, so we will see what this does. It

Predict Condition

Predicted Condition: Diabetes, Type 2

Recommend Drugs

Made with Stream!

Predicting the condition based on patients review

Recommending the drugs for the patients basing on patient review to predicted condition