[CSED233-01] Data Structure Tree (1)

Jaesik Park

Tree

- A collection of nodes and edges
 - with one node distinguished as a "root"
 - along with "parenthood" relation
 - One edge connects two nodes ©
 - Tree is a type of graph, which we will learn later

• Each node in the tree can be connected to many children, but must be connected

to exactly one parent, except for the root node

• No cycles or "loops"

Trees in Computer Science

Dual Octree Graph Networks for Learning Adaptive Volumetric Shape Representations

PENG-SHUAI WANG, Microsoft Research Asia, China YANG LIU, Microsoft Research Asia, China XIN TONG, Microsoft Research Asia, China

Tree: Recursive Definition

• Starts with a single node

 We can build a new tree by making other trees as subtrees of the single node

Parenthood Relations

- Parent/child: A is the parent of C, C is the child of A
- Ancestor/descendant: A is the ancestor of G, G is the descendant of A
- Siblings: B,C,D are siblings
- Path $< n_1, n_2,, n_k >$
 - n_i is the parent of n_{i+1} $(1 \le i < k)$
 - length = k-1
 - Number of edges connecting the path
- Terminal (leaf, external) ↔ Non-terminal (internal)
 - Whether the node has any child nodes
 - E,F,C,H,I → leaf
 - B,A,D,G → Non-terminal

Path from A to H (length = 3)

Depth, Height, Level

- Depth/Height
 - Depth of node M
 - the length of the path from the root to M
 - the # of ancestors of M (excluding Mitself)
 - Height of node M
 - the length of a longest path from M to a leaf
 - Height of tree
 - the height of the root
- Level
 - Root is at level 0
 - Its children are at level 1
 - Their children are level 2, and so on

Depth, Height, Level

- Examples
 - *Depth* (node G) = $\frac{2}{3}$
 - Height (node G) = 1
 - Height (node F) = 0
 - Height (tree T) = 3

- Different definition of height & depth
- Level number could start at 1 (rather than 0)
 - Again, no rule here

Degree, Ordered, Forest

- Degree of node
 - # of children
 - Degree (leaf) = 0
- Degree of tree
 - maximum of its node degrees
- Ordered tree
 - If there exists a linear ordering between siblings
- Forest
 - A collection/set of trees ©

Binary Trees

- Binary tree
 - Every node has at most two children
 - Each child is designated as a left child or a right child

• Examples:

Proper, Full Binary Trees

- Proper
 - if each node has either zero or two children
- Full
 - If it has a maximum # of nodes at each level
 - A full binary tree of height h has $(2^{h+1} 1)$ nodes

- Caution: different definitions in some texts
 - In our text, proper binary trees are also known as full binary trees

Node Numbering

- How to assign numbers to nodes (in a full binary tree)
 - Number the nodes 1 through 2^{h+1} 1
 - Number by levels from top to bottom
 - Within a level, number from left to right

Height = 2

Node Numbering

- Properties of node numbers
 - Node 1 is the root
 - *Parent* (node *k*)
 - node $\lfloor k/2 \rfloor$ (if $k \neq 1$)
 - Left child (node k)
 - node 2k (if 2k < n)
 - Right_child (node k)
 - node 2k + 1 (if 2i + 1 < n)
 - *Left sibling* (node *k*)
 - node *k* 1 (if *k* is odd)
 - Right sibling (node k)
 - node k + 1 (if k is even and k+1 < n)

Complete Binary Tree

- Relaxed definition of a full binary tree
- A binary tree of height h is complete, if
 - All levels (possibly except h) are completely full
 - Level h (leaf level) is filled from left to right

full binary tree with 7 nodes

Complete binary tree with 6 nodes

Binary Tree Implementations

- Array implementation
 - Elements for a complete binary tree
 - Space waste when many nodes are missing
 - char binary tree[123];
- Linked implementation
 - The most popular way
 - Each node has two pointer fields

```
struct elem{char val;elem* left;elem* right;
```

Array Implementation: Binary

- Using the numbering scheme for a full binary tree
- The node numbered k is stored in an array tree[k]

Linked Implementation: Binary

- Each binary tree node has
 - Value field
 - Two pointer fields (for left & right children)

Tree Traversal

- Passing through the tree & visit each of its nodes
 - *Visiting* each tree node *exactly once* in a systematic way
 - During the visit, actions are taken
 - Update, check, evaluate,
 - Linearization of tree
- Traversal: F B A D C E G I H (visiting once)
 - This is called depth-first search
- Recursive function call can implement the tree traversal Func traverse (node){

```
if the node have a left child
  call traverse for the left child;
if the node have a right child
  call traverse for the right child;
}
Call stack!
```


Tree Traversal

Types of traversals

Func traverse (node){

- Preorder(T) = < n, Preorder(T_1), ..., Preorder(T_k)>
- Postorder(T) = < Postorder(T₁), ..., Postorder(T_k), n>
- Inorder(T_1) = < Inorder(T_2), n, Inorder(T_2), ..., Inorder(T_k)>
 - No natural definition of *Inorder*

Tree Traversals: Examples

- Preorder(T)= 1,2,4,5,6,3,7,9,8
- *Postorder(T)* = 4,5,6,2,9,7,8,3,1
- *Inorder*(7) =

- Preorder(T_1) = <n, Preorder(T_2), ..., Preorder(T_k)>
- Postorder(T_1) = < Postorder(T_2), ..., Postorder(T_k), n > 1
- Inorder(T_1) = < Inorder(T_2), n, Inorder(T_2), ..., Inorder(T_k)>
 - No natural definition of *Inorder*

References

- Further reading list and references
 - https://en.wikipedia.org/wiki/Tree (data structure)
 - https://www.geeksforgeeks.org/binary-tree-data-structure/
 - Silver et al., Mastering the game of Go with deep neural networks and tree search
 - Wang et al., Dual Octree Graph Networks for Learning Adaptive Volumetric Shape Representations
 - Takikawa et al., Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes
- Slide credit
 - Jaesik Park
 - Seung-Hwan Baek
 - Jong-Hyeok Lee