Notes on extracting polarization observables

- 11-14-13
 - Formalism

11-14-13

Formalism

$$\left(\frac{d\sigma}{dX^{ij}d\phi^j}\right)^h \doteq f^h(X^{ij},\phi^j) = A^{ij} + B^{ij}\cos\phi^j + C^{ij}\cos2\phi^j + hPD^{ij}\sin\phi^j$$
 where

- ij = index over Varset, Variable (3x5 matrix)
- $R2_{\alpha}^{ij} \doteq [A^{ij}, B^{ij}, C^{ij}, D^{ij}] \equiv [R_T + \epsilon_L R_L, R_{LT}, R_{TT}, R_{LT'}]$ - $R2_{\alpha}^{ij} = f(Q^2, W, X^{ij})$

Event Selection

- 1. eid
- 2. efid
- 3. momcorr
- 4. MM cut

R2 Extraction Method

Of the methods listed earlier:

- 1. Fit $f^h(X^{ij}, \phi^j)$ to extract R2
- 2. Calculate Asymmetry $\doteq f^{h=+} f^{h=-}$ and then extract D^{ij}
- 3. $\int f^h(X^{ij},\phi^j) * (\cos\phi/\cos2\phi/\sin\phi)d\phi$ to extract $B^{ij}/C^{ij}/D^{ij}$

Method 3. is used, which even at the level of algorithmic detail is listed below. NOTE that when multiplying by $\sin \phi$, the sign of the polarization is explicity used For every q2wbin:

- 1. h5[pol] where pol $\in \{POS, NEG, UNP, AVG\}; pol \neq AVG$
- 2. $h5m[pol,pob] = h5[pol] \cdot h5f[pob]$
 - $pob \in \{A,B,C,D\}; pol \neq AVG$

```
• h5f[pob]:
```

- For every bin i, h5f[pob](i) = f[pob](i)
- $f[pob] \in \{N.A., \cos \phi, \cos 2\phi, \frac{sign(pol)}{sin \phi}\}$
- 3. hR2_Xij[pol,pob] = h5m[pol,pob] Project on to X^{ij} ; pol \neq AVG
- $4. \ \ \mathtt{hR2_Xij[pol=AVG,pob]} = (\mathtt{hR2_Xij[pol=POS,pob]} + \mathtt{hR2_Xij[pol=NEG,pob]})/2$

Notes on current Observations

- 1. R2_Xij[UNP,D] $\neq 0$ for Simulation. Why?
- 2. R2_Xij[UNP,D] $\neq 0$ for Experiment.

This is a normal paragraph:

This is also

This is a code block

Use printf