

Exam 1 : Electronique (Polytech Nancy PEIP 2)

Aucun document n'est autorisé excepté une feuille A4 recto verso manuscrite et non photocopiée

Questions à choix multiples : Bonne réponse (+1) ; Mauvaise réponse (-0,5) ; absence de réponse (0)

Pour chacune des questions ci-dessous, entourer l'affirmation ou la réponse juste.

- 1- Dans un amplificateur non inverseur à Ampli. Op. :
 - a- le signal d'entrée est relié à l'entrée (+) et le signal de sortie à l'entrée (+).
 - b- le signal d'entrée est relié à l'entrée (-) et le signal de sortie à l'entrée (+).
 - c- le signal d'entrée est relié à l'entrée (+) et le signal de sortie à l'entrée (-).
 - d- le signal d'entrée est relié à l'entrée (-) et le signal de sortie à l'entrée (-).
- 2- Dans un montage suiveur :
 - a- le signal d'entrée est relié à l'entrée (+) et le signal de sortie à l'entrée (+).
 - b- le signal d'entrée est relié à l'entrée (-) et le signal de sortie à l'entrée (+).
 - c- le signal d'entrée est relié à l'entrée (+) et le signal de sortie à l'entrée (-).
 - d- le signal d'entrée est relié à l'entrée (-) et le signal de sortie à l'entrée (-).
- 3- A partir d'un circuit électrique à N nœuds on peut écrire en utilisant la lois de nœuds,:
 - a- N+1 équations indépendantes.
 - b- N équations indépendantes.
 - c- N-1 équations indépendantes.
- 4- Pour un amplificateur opérationnel idéal :
 - a- L'impédance d'entrée est infinie,
 - b- L'impédance de sortie est infinie,
 - c- L'impédance d'entrée est nulle.

Exercice 1

On considère le circuit ci-contre en supposant l'amplificateur opérationnel idéal.

- 1- Exprimez V_{S} en fonction de V_{1} , V_{2} et les résistances du circuit.
- 2- On pose maintenant R₁=R₂=R₃=R₄. Quelle est la fonction réalisée ?
- 3- On pose V_1 = 3V. Tracer la fonction de transfert V_s = $f(V_2)$ pour V_2 variant entre -10V et 10V.
- 4- En considérant deux périodes, tracer sur le même graphe $V_1(t)$, $V_2(t)$ et $V_3(t)$ sachant que f = 10kHz, $V_1(t) = 5.\sin(2\pi f.t)$ et $V_2(t) = 8.\sin(2\pi f.t)$.
- 5- Refaire la question 4 en considérant V₂ comme signal carré tel que :

$$V_2=+5V$$
 pour $0 < t < T/2$, et $V_2=-5V$ pour $T/2 < t < T$.

Figure 1

Exercice 2

- 1- Exprimez Vs en fonction de Ve.
- 2- Quelle est la fonction réalisée?
- 3- On pose $Ve(t)=5.sin(2\pi f.t)$, f=500kHz, R=1k Ω et C=1nF. Tracer sur le même graphe et sur deux périodes Ve(t) et Vs(t).

Figure 2

Exercice 3 (Structure de Rauche)

On considère un amplificateur opérationnel, supposé parfait, et cinq admittances (Figure 3).

1- Montrer que la fonction de transfert, $T = \frac{V_S}{V_e}$, peut se mettre sous la forme: $T = \frac{-Y_1 Y_3}{Y_3 Y_4 + Y_5 (Y_1 + Y_2 + Y_3 + Y_4)}$

$$T = \frac{-Y_1 Y_3}{Y_3 Y_4 + Y_5 (Y_1 + Y_2 + Y_3 + Y_4)}$$

Figure 3

2- Les admittances seront réalisées par des résistances ou par des condensateurs. Comment faut-il choisir les admittances Y1, Y2, Y3, Y4 et Y5 pour réaliser, à l'aide du circuit précédent un filtre passe haut de

transmittance:
$$T = \frac{-k(j\frac{\omega}{\omega_0})^2}{1 + 2jm\frac{\omega}{\omega_0} + (j\frac{\omega}{\omega_0})^2}$$

3- On prendra toutes les résistances égales à R et tous les condensateurs égales à C, avec $R = 1k\Omega$ et C=1nF. Calculer la fréquence de coupure du filtre f₀, le facteur d'amortissement m et le coefficient k.