

PRODUCT USER MANUAL

Global Ocean Reanalysis Product

GLOBAL-MULTIYEAR-PHY-ENS-001-031 Issue: 1.2

Contributors: Amanda Gounou, Marie Drévillon, Mathieu Clavier

Approval Date: November 2024

MERCATOR OCEAN

INTERNATIONAL

2 avenue de l'Aérodrome de Montaudran, 31400 Toulouse, FRANCE Tél : +33 5 61 39 38 02 - Fax : +33 5 61 39 38 99

marine.copernicus.eu mercator-ocean.eu

RECORD TABLE

Issue	Date	§	Description of Change	Author	Validated By
1.0	21/01/2019	all	Creation of the document	A.Gounou	C. Derval
1.1	02/12/2019	All	Dataset names update	A. Gounou	C. Derval
1.1	22/06/2020	V.I	Example of file header	A Gounou	C. Derval
1.1	22/11/2022	all	New template	A Biardeau	Copernicus Marine Service Management
1.1	09/01/2023	II.C	Correction table Production System Description	R. Bourdallé- Badie	Copernicus Marine Service Management
1.2	16/06/2023	all	Change product name Add new ice variables	R. Bourdallé- Badie	Copernicus Marine Service Management

TABLE OF CONTENTS

ORD TABLE	2
SSARY AND ABBREVIATIONS	4
A ACCESS	5
INTRODUCTION	6
Summary	6
DESCRIPTION OF THE PRODUCT SPECIFICATION	8
General Information	8
Production System Description	10
Details of datasets	11
Additional Information on parameters	15
FILE FORMAT	16
FILES NOMENCLATURE	17
Nomenclature of files when downloaded through I Subset Service	17
Nomenclature of original files	17
Other information: land mask value, compression	17
Structure of files	17
REFERENCES	18
IEX	19
	INTRODUCTION Summary DESCRIPTION OF THE PRODUCT SPECIFICATION General Information Production System Description Details of datasets Additional Information on parameters FILE FORMAT FILES NOMENCLATURE Nomenclature of files when downloaded through I Subset Service Nomenclature of original files Other information: land mask value, compression Structure of files REFERENCES

GLOSSARY AND ABBREVIATIONS

CMEMS	Copernicus Monitoring Environment Marine Service
MFC	Monitoring and Forecasting Centre
Med	Mediterranean
NetCDF	Network Common Data Form
CF	Climate Forecast (convention for NetCDF)
SSS	Sea surface salinity.
SSC	Sea surface currents
SSH	Sea surface height
RMS	Root mean square
SDN	SeaDataNet (climatology)
CHL	Chlorophyll
SLA	Sea Level Anomalies
PC	Production Center
PU	Production Unit
Meridional Velocity	West to East component of the horizontal velocity vector
Zonal Velocity	South to North component of the horizontal velocity vector

DATA ACCESS

After registration, you will be able to download our data. To assist you, our <u>HelpCenter</u> is available, and more specifically its <u>section about download</u>.

Information on operational issues on products and services can be found on our <u>User Notification Service</u>. If you have any questions, please <u>contact us</u>.

1) INTRODUCTION

a) Summary

This document describes the global ocean reanalysis produced by the Copernicus Marine Service Global Monitoring and Forecasting Centre, the data services that are available to access them and how to use the files and services. The products assessed in this document are referenced as:

GLOBAL-MULTIYEAR-PHY-ENS-001-031 for Global Reanalysis Multi-Model Ensemble Product GREP.

Global ocean reanalyses are homogeneous 3D gridded descriptions of the physical state of the ocean spanning several decades, produced with a numerical ocean model constrained with data assimilation of satellite and in situ observations. The multimodel ensemble approach allows uncertainties or error bars in the ocean state to be estimated. The ensemble mean may even provide, for certain regions and/or periods, a more reliable estimate than any individual reanalysis product.

Three reanalyses start on 1993 during which altimeter altimetry data observations are available; GLORYS2V4 from Mercator Ocean (Fr), ORAS5 from ECMWF and C-GLORS05 from CMCC (It) provided three different time series of global ocean simulations **3D daily estimates**, which were post-processed to create the new product called GREP (Global Reanalysis Ensemble Product), and for which the following variables are available:

- * sea water potential temperature
- * sea water salinity
- * eastward_sea_water_velocity
- * northward sea water velocity
- * sea_surface_height
- * ocean_mixed_layer_thickness
- * sea_ice_thickness
- * sea_ice_area_fraction

These reanalyses are built to be as close as possible to the observations (i.e. realistic) and in agreement with the model physics. It covers the "altimetric era" since 1st of January 1993. The numerical products available for users are monthly mean averages describing the ocean from surface to bottom (5900 m).

The table below synthesizes the data set of the global ocean physical reanalysis product:

Product Name	Product origin	Production Unit	Data set	Kind of data set	
GLOBAL- MULTIYEAR- PHY-ENS- 001-031	CGLORS, ORAS5,			cmems_mod_glo_phy- all_my_0.25deg_P1D-m	reanalysis variables: temperature, salinity, velocities, sea surface height, ocean mixed layer thickness, sea ice thickness, sea ice area fraction
		GLO- MERCATOR-	cmems_mod_glo_phy- mnstd_my_0.25deg_P1D- m	reanalysis variables: temperature, salinity, velocities, sea surface height, ocean mixed layer thickness, sea ice thickness, sea ice area fraction	
	GLORYS2V4	TOULOUSE- FR	cmems_mod_glo_phy- all_my_0.25deg_P1M-m	height, ocean mixed layer thickness, sea ice thickness, sea ice area fraction	
			cmems_mod_glo_phy- mnstd_my_0.25deg_P1M -m	reanalysis variables: temperature, salinity, velocities, sea surface height, ocean mixed layer thickness, sea ice thickness, sea ice area fraction	

2) DESCRIPTION OF THE PRODUCT SPECIFICATION

a) General Information

The main features of the global reanalysis product are summarized in the table below:

Product line	GLOBAL-REANALYSIS-PHY-001-031		
Geographical coverage	-180°E □ 180°E ; 89°S □ 90°N		
Variables	Temperature, Salinity, Eastward velocity, Northward velocity, sea surface height, ocean mixed layer depth		
Reanalysis	GLOBAL-MULTIYEAR-PHY-ENS-001-031		
Available time series	From January 1993 and regularly updated (see product improvements pages http://marine.copernicus.eu/services-portfolio/product-improvements/)		
Temporal resolution	3D daily average fields		
Target delivery time	n.a.		
Delivery mechanism	Marine Data Store		
Horizontal resolution Grid size Projection	Regular 0.25° grid 1440*681 Regular projection is plane chart - Longitude and latitude step is constant - Longitude step is equal to latitude step - Longitude and latitude coordinates are 1D array		

Number of vertical levels	The vertical grid consists of 75 levels : the thickness of the surface layer is about 1 meter, is close to 10 m at 100 m depth and increases up to 200 meters at the bottom (near 6000m): 0.50, 1.55, 2.66, 3.85, 5.14, 6.54, 8.09, 9.82, 11.77, 13.99, 16.52, 19.42, 22.75, 26.55, 30.87, 35.74, 41.18, 47.21, 53.85, 61.11, 69.02, 77.61, 86.92, 97.04, 108.0, 120.00, 133.07, 147.40, 163.16, 180.54, 199.79, 221.14, 244.89, 271.35, 300.88, 333.86, 370.68, 411.79, 457.62, 508.63, 565.29, 628.02, 697.25, 773.36, 856.67, 947.44, 1045.85, 1151.99, 1265.86, 1387.37, 1516.36, 1652.56, 1795.67, 1945.29, 2101.02, 2262.42, 2429.02, 2600.38, 2776.03, 2955.57, 3138.56, 3324.64, 3513.44, 3704.65, 3897.98, 4093.15, 4289.95, 4488.15, 4687.58, 4888.07, 5089.47, 5291.68, 5494.57, 5698.06, 5902.05
Assimilated observations	altimetric sea level anomaly, temperature and salinity in situ profiles, sea-surface temperature observations, sea ice concentration
Format	Netcdf CF1.6

GLOBAL-MULTIYEAR-PHYS-ENS-001-031 product

b) Production System Description

1. GLOBAL_MULTIYEAR_PHY_ENS_001_031

Global ocean reanalyses are homogeneous 3D gridded descriptions of the physical state of the ocean spanning several decades, produced with a numerical ocean model constrained with data assimilation of satellite and in situ observations. The three reanalyses used here are based on the NEMO model, on the ORCA025 grid (1/4° horizontal resolution), with 75 vertical levels, all are forced at the surface by ERA interim, and all assimilate sea surface temperature SST, sea level anomalies SLA, sea ice concentrations SIC and in situ temperature and salinity profiles T/S (z) The main differences in between the four individual products are summarized in the table below.

The reader will find more detailed descriptions in the following documents:

- GLORYS2V4: QUID document (see in <u>REFERENCES</u>), and description of Mercator Ocean's ocean analysis system: Lellouche et al (2013)
- C-GLORS: Storto et al (2016)
- ORAS5: Zuo et al (2017), is an upgrade of ORAP5 (Zuo et al 2015)

Reanalysis	Production centre	COMMON	Model version	Surface Forcing	ASSIMILATION
GLORYS2V4	Mercator Océan	NEMO, ORCA1/4° 75 vertical levels TKE Altimetry ERA: 1993-2015 ERAinterim and bulk formulae Observations: SST, SLA, T/S	NEMO3.1 LIM2	No surface nudging precipitation, flux correction Climatological runoff + ice shelf and iceberg melting	SAM2 (SEEK) Large scale bias correction 7-day assimilation window Merge MDT (obs+model) Reynolds SST, CORA
C-GLORS	CMCC		NEMO3.4 LIM2	SST, SSS, SIC surface nudging	OceanVar (3Dvar) Large scale bias correction 7-day assimilation window Model MDT Reynolds SST, EN4
ORAS5	ECMWF	profiles, SIC Multivariate assimilation, monovariate for the SIC	NEMO3.4.1 LIM2	Surface waves SST, SSS surface nudging	NEMOVAR (3Dvar) 5-day assimilation window HadlSSTv2 SST, EN4

Synthetic view of the four reanalyses subsystems components

For all the bibliographic references cited in text, refer to the Quid document (see in **REFERENCES**).

c) Details of datasets

GLOBAL	MULTIYEAR_PHY_ENS_001_031
DATASETS	Variables name in the NetCDF file and Unit
3D monthly average fields	Long name
,	Standard name
cmems_mod_glo_phy-	thetao_cglo [degC]
all_my_0.25deg_P1D-m -	C-GLORS Potential Temperature
dii_iiiy_0.25deg_F1D-iii -	sea_water_potential_temperature
	thetao_glor [degC]
	GLORYS2V4 Potential Temperature
	sea_water_potential_temperature
	thetao_oras[degC]
	ORAS5 Potential Temperature
	sea_water_potential_temperature
	so_cglo [PSU]
	C-GLORS Salinity
	sea_water_salinity
	so_glor [PSU]
	GLORYS2V4 Salinity
	sea_water_salinity
	so_oras [PSU]
	ORAS5 Salinity
	sea_water_salinity
	u0_cglo [m.s-1]
	C-GLORS Eastward Velocity
	eastward_sea_water_velocity
	uo_glor [m.s-1]
	GLORYS2V4 Eastward Velocity
	eastward_sea_water_velocity
	uo_oras [m.s-1]
	ORAS5 Eastward Velocity
	eastward_sea_water_velocity
	vo_cglo [m.s-1]
	C-GLORS Northward Velocity northward_sea_water_velocity
	vo_glor [m.s-1]
	GLORYS2V4 Northward Velocity
	northward_sea_water_velocity
	vo_oras [m.s-1]
	ORAS5 Northward Velocity
	northward_sea_water_velocity
	zos_cglo[m]
	C-GLORS seas surface height
	sea_surface_height_above_geoid
	zos_glor[m]
	GLORYS2V4 seas surface height
	sea_surface_height_above_geoid
	zos_oras[m]
	ORAS5 seas surface height
	sea_surface_height_above_geoid
	mlotst_cglo[m]
	C-GLORS ocean mixed layer

 $ocean_mixed_layer_thickness_defined_by_sigma_theta$

mlotst_glor[m]

GLORYS2V4 ocean mixed layer

ocean_mixed_layer_thickness_defined_by_sigma_theta

mlotst_oras[m]

ORAS5 ocean mixed layer

ocean_mixed_layer_thickness_defined_by_sigma_theta

siconc_cglo [%]

C-GLORS sea ice area fraction

sea_ice_area fraction

siconc_glor [%]

GLORYS2V4 sea ice area fraction

sea ice area fraction

siconc_oras [%]

ORAS5 sea ice area fraction

sea ice area fraction

sithick_cglo [%]

C-GLORS Sea ice thickness

Sea ice thickness

sithick_glo [%]

GLORYS2V4 Sea ice thickness

Sea ice thickness

sithick_oras [%]

ORAS5 Sea ice thickness

Sea ice thickness

thetao_mean [degC]

Mean of Input Analyses Potential Temperatures

sea_water_potential_temperature

thetao_std [degC]

Standard Deviation of Input Analyses Potential Temperatures sea_water_potential_temperature

so_mean [PSU]

Mean of Input Analyses Salinities

sea_water_salinity

so_std[PSU]

Standard Deviation of Input Analyses Salinities

sea_water_salinity

uo_mean [m.s-1]

Mean of Input Analyses Eastward Velocities

eastward_sea_water_velocity

uo std [m.s-1]

Standard Deviation of Input Analyses Eastward Velocities

eastward_sea_water_velocity

vo_mean [m.s-1]

Mean of Input Analyses Northward Velocities

northward sea water velocity

vo_std [m.s-1]

Standard Deviation of Input Analyses Northward Velocities

northward_sea_water_velocity

zos_mean[m]

Mean of Input Analyses seas surface height

sea_surface_height_above_geoid

cmems_mod_glo_phymnstd_my_0.25deg_P1D-m

zos_std[m]

Standard Deviation of Input Analyses seas surface height sea_surface_height_above_geoid

mlotst mean[m]

Mean of Input Analyses ocean mixed layer ocean_mixed_layer_thickness_defined_by_sigma_theta

mlotst_std[m]

Standard Deviation of Input Analyses ocean mixed layer ocean_mixed_layer_thickness_defined_by_sigma_theta

siconc_mean[%]

Mean of sea ice area fraction

sea ice area fraction

siconc_std[%]

Standard Deviation of sea ice area fraction

sea ice area fraction

sithick_mean[%]

Mean of Sea ice thickness

Sea ice thickness

sithick_std[%]

Standard Deviation of Sea ice thickness

Sea ice thickness

cmems_mod_glo_phy-all_my_0.25deg_P1M-m

thetao cglo [degC]

C-GLORS Potential Temperature

 $sea_water_potential_temperature$

thetao_glor [degC]

GLORYS2V4 Potential Temperature sea_water_potential_temperature

thetao_oras[degC]

ORAS5 Potential Temperature sea_water_potential_temperature

so_cglo [PSU]

C-GLORS Salinity

sea_water_salinity

so_glor [PSU]

GLORYS2V4 Salinity

sea_water_salinity

so oras [PSU]

ORAS5 Salinity

sea_water_salinity

u0_cglo [m.s-1]

C-GLORS Eastward Velocity eastward_sea_water_velocity

uo_glor [m.s-1]

GLORYS2V4 Eastward Velocity eastward_sea_water_velocity

uo_oras [m.s-1]

ORAS5 Eastward Velocity

eastward_sea_water_velocity

vo_cglo [m.s-1]

C-GLORS Northward Velocity northward_sea_water_velocity

vo glor [m.s-1]

GLORYS2V4 Northward Velocity

northward_sea_water_velocity

vo_oras [m.s-1]

ORAS5 Northward Velocity northward_sea_water_velocity

zos_cglo[m]

C-GLORS seas surface height sea_surface_height_above_geoid

zos glor[m]

GLORYS2V4 seas surface height sea_surface_height_above_geoid

zos oras[m]

ORAS5 seas surface height sea_surface_height_above_geoid

mlotst_cglo[m]

C-GLORS ocean mixed layer

ocean_mixed_layer_thickness_defined_by_sigma_theta

mlotst glor[m]

GLORYS2V4 ocean mixed layer

ocean_mixed_layer_thickness_defined_by_sigma_theta

mlotst oras[m]

ORAS5 ocean mixed layer

ocean_mixed_layer_thickness_defined_by_sigma_theta

siconc_cglo [%]

C-GLORS sea ice area fraction

sea ice area fraction

siconc_glor [%]

GLORYS2V4 sea ice area fraction

sea ice area fraction

siconc_oras [%]

ORAS5 sea ice area fraction

sea ice area fraction

sithick cglo [%]

C-GLORS Sea ice thickness

Sea ice thickness

sithick_glo [%]

GLORYS2V4 Sea ice thickness

Sea ice thickness

sithick_oras [%]

ORAS5 Sea ice thickness

Sea ice thickness

thetao mean [degC]

Mean of Input Analyses Potential Temperatures

sea_water_potential_temperature

thetao_std [degC]

Standard Deviation of Input Analyses Potential Temperatures sea water potential temperature

so_mean [PSU]

Mean of Input Analyses Salinities sea_water_salinity

so_std[PSU]

Standard Deviation of Input Analyses Salinities sea_water_salinity

cmems mod glo phymnstd my 0.25deg P1M-m

uo_mean [m.s-1] Mean of Input Analyses Eastward Velocities eastward_sea_water_velocity

uo_std [m.s-1]

Standard Deviation of Input Analyses Eastward Velocities eastward_sea_water_velocity

vo_mean [m.s-1]

Mean of Input Analyses Northward Velocities northward_sea_water_velocity

vo_std [m.s-1]

Standard Deviation of Input Analyses Northward Velocities northward_sea_water_velocity

zos_mean[m]

Mean of Input Analyses seas surface height sea_surface_height_above_geoid

zos_std[m]

Standard Deviation of Input Analyses seas surface height sea_surface_height_above_geoid

mlotst mean[m]

Mean of Input Analyses ocean mixed layer ocean_mixed_layer_thickness_defined_by_sigma_theta mlotst_std[m]

Standard Deviatin of Input Analyses ocean mixed layer ocean_mixed_layer_thickness_defined_by_sigma_theta

siconc_mean[%]

Mean of sea_ice_area_fraction sea_ice_area_fraction

siconc_std[%]

Standard Deviation of sea_ice_area_fraction sea ice area fraction

sithick_mean[%]

Mean of Sea ice thickness

Sea ice thickness

sithick_std[%]

Standard Deviation of Sea ice thickness

Sea ice thickness

d) Additional Information on parameters

	ocean_mixed_layer_thickness_defined_by_sigma_theta. It is the depth
mlotst	where the density increase compared to density at 10 m depth
[m]	corresponds to a temperature decrease of 0.2°C in local surface
	conditions (θ10m, S10m, P0= 0 db, surface pressure)
	sea_surface_height_above_geoid. The geoid is a surface of constant
	geopotential with which mean sea level would coincide if the ocean
zos [m]	were at rest. The parameter "zos" is the difference between the actual
	sea surface height at any given time and place, and that which it would
	have if the ocean were at rest.

Find more information about Sea Surface Height in this article:

<u>What are the differences between the SSH and SLA? | Copernicus Marine Help Center</u>

3) FILE FORMAT

The products are stored using the NetCDF format.

To know more about the NetCDF format, please follow this link: What is the format of Copernicus Marine products? NetCDF

To understand the differences between netCDF and Zarr, please consult this article: how-to-choose-between-netcdf-and-zarr-format-using-the-toolbox

4) FILES NOMENCLATURE

Information about nomenclature of files when downloaded can be found in this articles "
How is defined the nomenclature of Copernicus Marine data? | Copernicus Marine Help
Center"

a) Nomenclature of files when downloaded through I Subset Service

The scheme is:

datasetname-nnnnnnnnnnnnnn.nc

where:

- .datasetname is a character string within one of the dataset from Table 2.
- . nnnnnnnnnnn: 13 digit integer linked to the request date.
- .nc: standard NetCDF filename extension.

Example:

cmems_mod_glo_phy-all_my_0.25deg_P1D-m-1453914297200.nc

b) Nomenclature of original files

These two nomenclatures are described below with an example for GLOBAL_MULTIYEAR_PHY_ENS_001_031:

Daily datasets

cmems_mod_glo_phy-{type}_0.25deg_P1D-m_{yyyymmdd.nc

Monthly datasets

Cmems_mod_glo_phy-{type}_my_0.25deg_P1D-m_{yyyymm}.nc

Where:

- yyyymmdd and yyyymm: daily and monthly mean field dates
- type: the dataset type

- .nc: standard NetCDF filename extension.

c) Other information: land mask value, compression

The product is daily mean fields and is only available as monthly mean fields.

d) Structure of files

See in ANNEX.

5) REFERENCES

Quality Information Document (QUID): https://catalogue.marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001-031.pdf

ANNEX

```
ncdump -h grepv2_daily_20181201.nc
netcdf grepv2_daily_20181201 {
dimensions:
    lonaitude = 1440;
    latitude = 681;
    depth = 75;
    time = UNLIMITED; // (1 currently)
variables:
    float longitude (longitude);
         longitude:valid_min = -180.f;
         longitude:valid_max = 179.75f;
         longitude:step = 0.25f;
         longitude:units = "degrees_east";
         longitude:unit_long = "Degrees East";
         longitude:long_name = "Longitude";
         longitude:standard_name = "longitude";
         longitude:axis = "X";
    float latitude(latitude);
         latitude:valid_min = -80.f;
         latitude:valid max = 90.f;
         latitude:step = 0.25f;
         latitude:units = "degrees_north";
         latitude:unit_long = "Degrees North";
         latitude:long name = "Latitude";
         latitude:standard name = "latitude";
         latitude:axis = "Y";
    float depth(depth);
         depth:valid\_min = 0.50576f;
         depth:valid max = 5902.058f;
         depth:units = "m";
         depth:positive = "down";
         depth:unit_long = "Meters";
         depth:long_name = "Depth";
         depth:standard_name = "depth";
         depth:axis = "Z";
    float time(time);
         time:axis = "T";
         time:long_name = "Time";
         time:standard name = "time";
         time:calendar = "gregorian";
         time:units = "days since 1950-01-01 00:00:00";
    float thetao_cglo(time, depth, latitude, longitude);
         thetao_cglo:long_name = "Temperature";
         thetao_cglo:standard_name = "sea_water_potential_temperature";
         thetao_cglo:units = "degrees_C";
         thetao_cglo:unit_long = "Degrees Celsius";
```



```
thetao cglo: FillValue = 9.96921e+36f;
    thetao calo:add offset = 0.f;
    thetao_cglo:scale_factor = 1.f;
    thetao_cglo:valid_min = -3.397529f;
    thetao_cglo:valid_max = 33.59927f;
    thetao cglo:cell methods = "area: mean";
float so_cglo(time, depth, latitude, longitude);
    so_cglo:long_name = "Salinity";
    so cglo:standard name = "sea water salinity";
    so_cglo:units = "1e-3";
    so_cglo:unit_long = "Practical Salinity Unit";
    so_cglo:_FillValue = 9.96921e+36f;
    so cglo:add offset = 0.f;
    so cglo:scale factor = 1.f;
    so_cglo:valid_min = 1.439236f;
    so\_cglo:valid\_max = 42.48916f;
    so_cglo:cell_methods = "area: mean";
float up cglo(time, depth, latitude, longitude);
    uo_cglo:long_name = "Eastward velocity";
    uo_cglo:standard_name = "eastward_sea_water_velocity";
    uo_cglo:units = "m s-1";
    uo cglo:unit long = "Meters per second";
    uo cglo: FillValue = 9.96921e+36f;
    uo_cglo:add_offset = 0.f;
    uo_cglo:scale_factor = 1.f;
    uo cglo:valid min = -1.608764f;
    uo_cglo:valid_max = 1.550244f;
    uo_cglo:cell_methods = "area: mean";
float vo_cglo(time, depth, latitude, longitude);
    vo_cglo:long_name = "Northward velocity";
    vo cglo:standard name = "northward sea water velocity";
    vo\_cglo:units = "m s-1";
    vo_cglo:unit_long = "Meters per second";
    vo_cglo:_FillValue = 9.96921e+36f;
    vo_cglo:add_offset = 0.f;
    vo cglo:scale factor = 1.f;
    vo_cglo:valid_min = -1.721899f;
    vo cglo:valid max = 1.67572f;
    vo_cglo:cell_methods = "area: mean";
float zos_cglo(time, latitude, longitude);
    zos_cglo:long_name = "Sea surface height";
    zos_cglo:standard_name = "sea_surface_height_above_geoid";
    zos_cglo:units = "m";
    zos_cglo:unit_long = "Meters";
    zos_cglo:add_offset = 0.f;
    zos_cglo:scale_factor = 1.f;
    zos_cglo:_FillValue = 9.96921e+36f;
    zos\_cglo:valid\_min = -1.918399f;
    zos\_cglo:valid\_max = 1.672392f;
```



```
zos cglo:cell methods = "area: mean";
    float mlotst cglo(time, latitude, longitude);
         mlotst_cglo:long_name = "Density ocean mixed layer thickness";
         mlotst_cglo:standard_name =
"ocean_mixed_layer_thickness_defined_by_sigma_theta";
         mlotst_cglo:units = "m";
         mlotst_cglo:unit_long = "Meters";
         mlotst_cglo:add_offset = 0.f;
         mlotst cglo:scale factor = 1.f;
         mlotst_cglo:_FillValue = 9.96921e+36f;
         mlotst\_cglo:valid\_min = -21.21623f;
         mlotst\_cglo:valid\_max = 894.7832f;
         mlotst cglo:cell methods = "area: mean";
    float siconc_cglo(time, latitude, longitude);
        siconc_cglo:long_name = "Ice concentration";
        siconc_cglo:standard_name = "sea_ice_area_fraction";
        siconc_cglo:units = "1";
        siconc cglo:unit long = "Fraction";
        siconc_cglo:add_offset = -3.81481368094683e-05;
        siconc_cglo:scale_factor = 3.81481368094683e-05;
        siconc_cglo:_FillValue = -32767s;
        siconc cglo:valid min = 1s;
        siconc cglo:valid max = 27313s;
        siconc_cglo:cell_methods = "area: mean where sea_ice";
    float sithick_cglo (time, latitude, longitude);
        sithick_cglo:long_name = "Sea ice thickness";
        sithick cglo:standard name = "sea ice thickness";
        sithick cglo:units = "m";
        sithick_cglo:unit_long = "Meters";
        sithick_cglo:add_offset = -0.000762962736189365;
        sithick cglo:scale factor = 0.000762962736189365;
        sithick_cglo:_FillValue = -32767s;
         sithick cglo:valid min = 1s;
        sithick_cglo:valid_max = 5945s;
        sithick_cglo:cell_methods = "area: mean where sea_ice";
    float thetao_glor(time, depth, latitude, longitude);
         thetao_glor:long_name = "Temperature";
         thetao_glor:standard_name = "sea_water_potential_temperature";
         thetao_glor:units = "degrees_C";
         thetao_glor:unit_long = "Degrees Celsius";
         thetao_glor:_FillValue = 9.96921e+36f;
         thetao_glor:add_offset = 0.f;
         thetao_glor:scale_factor = 1.f;
         thetao_glor:valid_min = -4.707836f;
         thetao_glor:valid_max = 33.68146f;
         thetao_glor:cell_methods = "area: mean";
    float so_glor(time, depth, latitude, longitude);
         so_glor:long_name = "Salinity";
         so_glor:standard_name = "sea_water_salinity";
```



```
so glor:units = "1e-3";
         so glor:unit long = "Practical Salinity Unit";
         so_glor:_FillValue = 9.96921e+36f;
         so_glor:add_offset = 0.f;
         so_glor:scale_factor = 1.f;
         so_glor:valid_min = 0.002998352f;
         so glor:valid max = 41.962f;
         so_glor:cell_methods = "area: mean";
    float up glor(time, depth, latitude, longitude);
         uo_glor:long_name = "Eastward velocity";
         uo_glor:standard_name = "eastward_sea_water_velocity";
         uo_glor:units = "m s-1";
         uo_glor:unit_long = "Meters per second";
         uo glor: FillValue = 9.96921e+36f;
         uo_glor:add_offset = 0.f;
         uo_glor:scale_factor = 1.f;
         uo_glor:valid_min = -1.71077f;
         uo glor:valid max = 2.178272f;
         uo_glor:cell_methods = "area: mean";
    float vo_glor(time, depth, latitude, longitude);
         vo_glor:long_name = "Northward velocity";
         vo glor:standard name = "northward sea water velocity";
         vo_glor:units = "m s-1";
         vo_glor:unit_long = "Meters per second";
         vo_glor:_FillValue = 9.96921e+36f;
         vo glor:add offset = 0.f;
         vo_glor:scale_factor = 1.f;
         vo glor:valid min = -1.811957f;
         vo_glor:valid_max = 2.335733f;
         vo_glor:cell_methods = "area: mean";
    float zos_glor(time, latitude, longitude);
         zos_glor:long_name = "Sea surface height";
         zos_glor:standard_name = "sea_surface_height_above_geoid";
         zos_glor:units = "m";
         zos_glor:unit_long = "Meters";
         zos glor:add offset = 0.f;
         zos_glor:scale_factor = 1.f;
         zos glor: FillValue = 9.96921e+36f;
         zos\_glor:valid\_min = -1.95654f;
         zos\_glor:valid\_max = 1.757171f;
         zos_glor:cell_methods = "area: mean";
    float mlotst_glor(time, latitude, longitude);
         mlotst_glor:long_name = "Density ocean mixed layer thickness";
         mlotst_glor:standard_name =
"ocean_mixed_layer_thickness_defined_by_sigma_theta";
         mlotst_glor:units = "m";
         mlotst_glor:unit_long = "Meters";
         mlotst_glor:add_offset = 0.f;
         mlotst_glor:scale_factor = 1.f;
```



```
mlotst glor: FillValue = 9.96921e+36f;
    mlotst glor:valid min = -22.12102f;
    mlotst\_glor:valid\_max = 913.6866f;
    mlotst_glor:cell_methods = "area: mean";
float siconc_glor (time, latitude, longitude);
    siconc_glor:long_name = "Ice concentration";
    siconc_glor:standard_name = "sea_ice_area_fraction";
    siconc_glor:units = "1";
    siconc glor:unit long = "Fraction";
    siconc_glor:add_offset = -3.81481368094683e-05;
    siconc_glor:scale_factor = 3.81481368094683e-05;
    siconc_glor:_FillValue = -32767s;
    siconc glor:valid min = 1s;
    siconc_glor:valid_max = 27313s;
    siconc_glor:cell_methods = "area: mean where sea_ice";
float sithick_glor (time, latitude, longitude);
    sithick_glor:long_name = "Sea ice thickness";
    sithick_glor:standard_name = "sea_ice_thickness";
    sithick_glor:units = "m";
    sithick_glor:unit_long = "Meters";
    sithick_glor:add_offset = -0.000762962736189365;
    sithick glor:scale factor = 0.000762962736189365;
    sithick glor: FillValue = -32767s;
    sithick_glor:valid_min = 1s;
    sithick_glor:valid_max = 5945s;
    sithick glor:cell methods = "area: mean where sea ice";
float thetao_oras(time, depth, latitude, longitude);
    thetao_oras:long_name = "Temperature";
    thetao_oras:standard_name = "sea_water_potential_temperature";
    thetao_oras:units = "degrees_C";
    thetao_oras:unit_long = "Degrees Celsius";
    thetao_oras:_FillValue = 9.96921e+36f;
    thetao oras:add offset = 0.f;
    thetao_oras:scale_factor = 1.f;
    thetao_oras:valid_min = -2.220372f;
    thetao oras:valid max = 42.24278f;
    thetao_oras:cell_methods = "area: mean";
float so_oras(time, depth, latitude, longitude);
    so_oras:long_name = "Salinity";
    so_oras:standard_name = "sea_water_salinity";
    so_oras:units = "1e-3";
    so_oras:unit_long = "Practical Salinity Unit";
    so_oras:_FillValue = 9.96921e+36f;
    so_oras:add_offset = 0.f;
    so_oras:scale_factor = 1.f;
    so_oras:valid_min = 0.01959857f;
    so_oras:valid_max = 41.79379f;
    so_oras:cell_methods = "area: mean";
float uo_oras(time, depth, latitude, longitude);
```



```
uo_oras:long_name = "Eastward velocity";
         uo oras:standard name = "eastward sea water velocity";
         uo_oras:units = "m s-1";
         uo_oras:unit_long = "Meters per second";
         uo oras: FillValue = 9.96921e+36f;
         uo oras:add offset = 0.f;
         uo oras:scale factor = 1.f;
         uo_oras:valid_min = -1.531736f;
         uo oras:valid max = 1.94648f;
         uo_oras:cell_methods = "area: mean";
    float vo_oras(time, depth, latitude, longitude);
         vo_oras:long_name = "Northward velocity";
         vo oras:standard name = "northward sea water velocity";
         vo_oras:units = "m s-1";
         vo_oras:unit_long = "Meters per second";
         vo_oras:_FillValue = 9.96921e+36f;
         vo_oras:add_offset = 0.f;
         vo oras:scale factor = 1.f;
         vo_oras:valid_min = -2.299931f;
         vo_oras:valid_max = 1.73963f;
         vo_oras:cell_methods = "area: mean";
    float zos oras(time, latitude, longitude);
         zos_oras:long_name = "Sea surface height";
         zos_oras:standard_name = "sea_surface_height_above_geoid";
         zos_oras:units = "m";
         zos oras:unit long = "Meters";
         zos_oras:add_offset = 0.f;
         zos_oras:scale_factor = 1.f;
         zos_oras:_FillValue = 9.96921e+36f;
         zos\_oras:valid\_min = -2.036525f;
         zos oras: valid max = 1.444174f;
         zos_oras:cell_methods = "area: mean" ;
    float mlotst_oras(time, latitude, longitude);
         mlotst_oras:long_name = "Density ocean mixed layer thickness";
         mlotst_oras:standard_name =
"ocean_mixed_layer_thickness_defined_by_sigma_theta";
         mlotst_oras:units = "m";
         mlotst_oras:unit_long = "Meters";
         mlotst_oras:add_offset = 0.f;
         mlotst_oras:scale_factor = 1.f;
         mlotst_oras:_FillValue = 9.96921e+36f;
         mlotst_oras:valid_min = -8.293529f;
         mlotst_oras:valid_max = 1033.245f;
         mlotst_oras:cell_methods = "area: mean";
    float siconc_oras (time, latitude, longitude);
        siconc_oras:long_name = "Ice concentration";
        siconc_oras:standard_name = "sea_ice_area_fraction";
        siconc oras:units = "1";
        siconc_oras:unit_long = "Fraction";
```



```
siconc oras:add offset = -3.81481368094683e-05;
        siconc oras:scale factor = 3.81481368094683e-05;
        siconc_oras:_FillValue = -32767s;
        siconc_oras:valid_min = 1s;
        siconc oras:valid max = 27313s;
        siconc oras:cell methods = "area: mean where sea ice";
    float sithick oras (time, latitude, longitude);
        sithick_oras:long_name = "Sea ice thickness";
        sithick oras:standard name = "sea ice thickness";
        sithick oras:units = "m";
        sithick oras:unit long = "Meters";
        sithick oras:add offset = -0.000762962736189365;
        sithick oras:scale factor = 0.000762962736189365;
        sithick oras: FillValue = -32767s;
         sithick_oras:valid_min = 1s;
        sithick_oras:valid_max = 5945s;
        sithick_oras:cell_methods = "area: mean where sea_ice";
// global attributes:
         : NCProperties = "version=1 | netcdflibversion=4.4.1.1 | hdf5libversion=1.8.18";
         :product = "GLOBAL_REANALYSIS_PHY_001_031";
         :producer = "CMEMS - Global Monitoring and Forecasting Centre";
         :area = "Global" :
         :quality information document =
"http://marine.copernicus.eu/documents/QUID/CMEMS-GLO-QUID-001_031.pdf";
         :Conventions = "CF-1.6";
         :credit = "E.U. Copernicus Marine Service Information (CMEMS)";
         :contact = "servicedesk.cmems@mercator-ocean.eu";
         :references = "http://marine.copernicus.eu";
         :licence = "http://marine.copernicus.eu/services-portfolio/service-
commitments-and-licence/";
         :institution = "Mercator Ocean";
         :product_user_manual =
"http://marine.copernicus.eu/documents/PUM/CMEMS-GLO-PUM-001-031.pdf";
         :history = "Creation 2020-May-14 16:03:48 GMT+0200";
         :title = "Daily mean fields for product GLOBAL_REANALYSIS_PHY_001_031";
         :source = "Copernicus Marine Service";
         :dataset = "global-reanalysis-phy-001-031-grepv2-daily";}
```


