## Unidad 3



## Inteligencia artificial: Optimización Multiobjetivo NSGA II

Dra. Soledad Espezua <a href="mailto:sespezua@pucp.edu.pe">sespezua@pucp.edu.pe</a>







# Optimización

El objetivo de un problema de optimización global, es encontrar un conjunto de variables  $x^*$  que maximice o minimice una determinada función f(x).

## Optimización Multiobjetivo (MOO)

Cuando un problema de optimización tiene varias funciones objetivo, la tarea de encontrar una o más soluciones óptimas se denominada optimización multiobjetivo.

#### Problema de la mochila

Colocar en una mochila objetos de diferente peso y variada importancia, sin exceder el espacio.

Objetivo: Minimizar el peso de los objetos y maximizar su utilidad sujetos a la capacidad de la mochila



## Optimización Multiobjetivo (MOO)



En este escenario diferentes soluciones pueden generar situaciones conflictivas entre sus objetivos.

Una solución que es óptima con respecto a un objetivo puede no serlo para el resto.

#### Dilema del prisionero

 Dos sospechosos de un crimen son colocados en ambientes separados para obtener pruebas para condenarlos.

 Objetivo: salir de la carcel, delatando a su compañero o cooperando alegando inocencia (no delatar)

|            | 11101011010 1 |         |
|------------|---------------|---------|
|            | No delatar    | Delatar |
| No delatar | (1,1)         | (7,0)   |
| Delatar    | (0.7)         | (3.3)   |

Prisionero 1

https://economipedia.com/definiciones/dilema-del-prisionero.html

Prisionero 2

MOO busca crear una solución de consenso entre los objetivos.

# PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

## MOO - Dominancia

- Se dice que una solución  $x_1$  domina a otra solución  $x_2$ , si se cumplen las siguientes condiciones:
- 1. La solución  $x_1$  no es peor que  $x_2$  en todos los objetivos.
- 2. La solución  $x_1$  es estrictamente mejor que  $x_2$  en por lo menos un objetivo.
- $\blacktriangleright$  Si alguna de las condiciones es violada, la solución  $x_1$  no domina la solución  $x_2$







A y C son no dominadas entre sí (ninguna domina ala otra)
Las dos dominan a B



## MOO - Frontera de Pareto

El conjunto de soluciones no dominado se denomina Frontera de Pareto.

Ejm. Conjunto de frontera de Pareto optima para un Problema bi-objetivo





## MOO - Frontera de Pareto

- ▶ Una solución  $x^* \in \mathfrak{I}$  es Pareto-óptima, cuando es no dominada por ninguna otra solución.
- Una solución es no dominada, cuando al menos es tan buena como las otras en todos sus objetivos y es mejor en al menos uno de ellos.



## **NSGA II**



### Nondominated Sorting Genetic Algorithm (NSGA-II)

NSGA-II <sup>1</sup>, es un AG elitista propuesto para solucionar problemas MOO.

NSGA II fue propuesto por Kalyanmoy Deb y es una versión mejorada de NSGA.

#### Características:

- Combina la población de padres y hijos, conservando las mejores soluciones de ambos.
- Usa elitismo, que lo hace mucho más eficiente (computacionalmente) que NSGA (descarta soluciones no-dominadas en la iteración actual).
- Utiliza un operador de distancia (crowding distance) que no requiere parámetros.

1. Deb, k.; Agrawal, s.; Pratab, a.; Meyarivan, t. A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. KanGAL report 200001, Indian Institute of Technology, Kanpur, India, 2000.







# PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ

## NSGA II - Procedimiento

- 1. Generar aleatoriamente una población P<sub>t</sub> de tamaño N.
- Evaluar la población según las funciones objetivo según el concepto de dominancia
- 3. Ordenar la población P₁ por ranking de no dominancia (frontera de Pareto).
  - Objetivo: Ordenar población según el nivel de no dominancia, en los diferentes frentes  $(F_1, F_2, F_3, ..., etc, donde 1 es el mejor nivel, luego 2 y así sucesivamente).$





#### Pasos para ordenar la población según el ranking de no dominancia:

- Identificar los individuos no dominados de una población y colocarles el mismo fitness.
  - □ Esto implica que todas las soluciones en dicha categoría tienen la misma probabilidad de reproducirse.
- Retirar los individuos ya asignados a un categoría (rank) e identificar un nuevo conjunto de soluciones no dominadas.
  - ☐ A este nuevo grupo se le asigna el mismo *fitness* pero mayor que el rank anterior.
- El proceso continua hasta que todos los individuos de la población son asignados a una categoria.



Población ordenada según el valor (fitness) en orden ascendente



Un individuo tiene 2 valores: un ranking  $(F_1, F_2, F_3,...)$  de no dominancia asociado y una distancia crowding.

- 4. Seleccionar los individuos por torneo de dos.
  - Escoger 2 individuos y elegir al mejor con respecto al ranking de no dominancia.
  - Si 2 individuos seleccionados están en la misma frontera de no dominancia, usar la distancia crowding para elegir el mejor.
    - La distancia crowding se calcula como la diferencia normalizada absoluta de los valores fitness de dos soluciones adyacentes.





Pasos para seleccionar los individuos usando la distancia crowding:

- Por cada frontera realizar lo siguiente:
  - Asignar a los primeros y últimos individuos en el rank un valor de distancia infinity:
     Distancia Crowding = infinity
  - Al resto de individuos (soluciones intermedias) asignar un valor usando la distancia *crowding*.
  - Calcular el valor global de la distancia *Crowding* se calcula como la suma de los valores de distancia individuales correspondientes a cada individuo en una frontera.





- Usar los operadores de reproducción (cruzamiento y mutación) de igual forma que en un AG, para crear la siguiente generación  $Q_t$  de tamaño N.
- 6. Evaluar las funciones objetivo de la nueva generación  $Q_t$ .
- 7. Combinar la población de padres  $P_t$  e hijos  $Q_t$  para formar  $R_t$  de tamaño 2N.

$$R_t = P_t \cup Q_t$$

- Para seleccionar los individuos de la siguiente generación  $oldsymbol{Q}_{t+1}$ :
  - Primero ordenar la población  $R_t$  por ranking de no dominancia de Pareto (selección de los mejores individuos)
  - Luego ordenar los individuos resultantes por la distancia crowding.
  - Finalmente seleccionar los N mejores individuos de la población.
- 8. Criterio de parada: El procedimiento termina cuando se alcanza el máximo número de generaciones.



# NSGA II- Generación de hijos



# Algoritmos Evolutivos Multiobjetivo

### Métodos populares en la literatura:

| Sigla               | Nombre del Modelo                                        |  |
|---------------------|----------------------------------------------------------|--|
| VEGA                | Vector Evaluated Genetic Algorithm                       |  |
| WBGA                | Weight Based Genetic Algorithm                           |  |
| MOGA                | Multiple Objective Genetic Algorithm                     |  |
| NSGA                | Non-Dominated Sorting Genetic Algorithm                  |  |
| NPGA                | Niched-Pareto Genetic Algorithm                          |  |
| PPES                | Predator-Prey Evolution Strategy                         |  |
| REMOE               | A Rudoph's Elitist Multi-Objective Evolutionay Algorithm |  |
| NSGA-II             | Elitist Non-Dominated Sorting Genetic Algorithm          |  |
| SPEA, SPEA-2        | Strenght Pareto Evolutionary Algorithm 1 y 2             |  |
| TGA T               | Thermodynamical Genetic Algorithm                        |  |
| PAES                | Pareto-Archived Evolutionary Strategy                    |  |
| MONGA -I,MONGA - II | Multi-Objective Messy Genetic Algorithm                  |  |
| PESA-I, PESA-II     | Pareto Envelope-Base Selection Algorithm                 |  |



## Bibliografia MOO

- Coello, C. A Short Tutorial on Evolutionary Multiobjective Optimization. In: Zitzler, E.; Deb, K.; Thiele, L.; Coello, C. A. C.; Corne, D., eds. First International Conference on Evolutionary Multi-Criterion Optimization, Springer-Verlag., 2001,p. 21–40 (Lecture Notes in Computer Science, v.1993).
- Deb, K. Multi-objective optimization using evolutionary algorithms. New York: John Wiley & Sons, 2001.
- Deb, K.; Agrawal, S.; Pratab, A.; Meyarivan, T. A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. KanGAL report 200001, Indian Institute of Technology, Kanpur, India, 2000.