Санкт-Петербургский государственный электротехнический университет им. В.И. Ульянова (Ленина)

Разработка распределенной отказоустойчивой системы мониторинга доступности веб-сайтов и сетевых сервисов

Выполнил:

Руководитель:

Гаськов М. В., гр. 5381 Лавров А. А., к.т.н., ассистент

Цель и задачи

Актуальность: любая компания с обширной инфраструктурой нуждается в постоянном надзоре за узлами, входящими в ее состав.

Проблема: обеспечение отказоустойчивости существующих систем мониторинга (Zabbix, Nagios и др.) зачастую представляет собой нетривиальную задачу.

Цель: реализовать отказоустойчивую распределенную систему мониторинга доступности сетевых сервисов и веб-сайтов на удаленных узлах.

Задачи:

- 1. Формализовать требования к реализуемой системе.
- 2. Разработать архитектуру распределенной системы.
- 3. Обеспечить возможность масштабирования системы до более развернутой архитектуры.
- 4. Реализовать алгоритмы, обеспечивающие отказоустойчивость системы.

Требования к реализуемой системе

- Отказоустойчивость;
- Масштабируемость;
- Внутренний мониторинг состояния системы;
- Мониторинг широко распространенных сетевых сервисов (HTTP, SMTP, POP3, SSH, FTP);
- Возможность задания частоты опроса целевых узлов от одной минуты;
- Потенциально неограниченное число целевых узлов.

Развернутая архитектура распределенной системы мониторинга

Упрощенная архитектура распределенной системы мониторинга

Масштабируемость системы до развернутой архитектуры

Простота масштабирования упрощенной архитектуры до развернутой достигается выделения счет логики мониторинга, оповещения пользовательского интерфейса В отдельные Ha программные модули. изображена рисунке справа структура узла кластера мониторинга в упрощенной архитектуре.

Алгоритм внутреннего мониторинга системы

Алгоритм внутреннего мониторинга системы

Представим узел кластера мониторинга в виде структуры данных:

Удаление/(выход из строя) узла:

```
N_k - удаляемый узел for N_i in Cluster: if N_i.a == N_k.s: N_i.a \leftarrow N_k.a; \text{Перераспр-е ц.у.} break; continue;
```

Добавление/(возвращение к работе) узла:

```
N_k — добавляемый узел N_m \leftarrow Cluster.any(); N_k.a \leftarrow N_m.a; N_m.a \leftarrow N_k.s; Перераспр-е ц.у.
```

Заключение

- Были формализованы требования к реализуемой системе;
- Разработана архитектура распределенной системы мониторинга и ее упрощенная схема;
- Обеспечена возможность масштабирования системы для распределенной архитектуры с помощью реализации системы в виде отдельных программных модулей;
- Реализованы алгоритмы, обеспечивающие отказоустойчивость системы при выходе из строя отдельных узлов;

В дальнейшей перспективе реализованная система может быть улучшена путем расширения функциональности мониторинга (замер времени ответа сервисов, добавление возможности мониторинга сервисов, работающих по другим сетевым протоколам и пр.)

Апробация работы

- А.А. Лавров, М.В. Гаськов. Архитектура отказоустойчивой распределенной системы мониторинга информационных ресурсов // Управление в современных системах: сборник трудов VIII Всероссийской научно-практической конференции научных, научно-педагогических работников и аспирантов, 2018. с. 277–283.
- Репозиторий проекта:
 https://github.com/MaximGaskov/distributed_monitoring_system.
- Релиз для установки системы:
 https://github.com/MaximGaskov/distributed_monitoring_sy stem/releases

Дополнительный слайд: пользовательский интерфейс системы

