C12 - A - Limites de fonctions

I. Intro

I un intervalle non trivial de $\mathbb R$

$$f:I o\mathbb{R}$$

 $a\in\overline{\mathbb{R}}$ tel que ($a\in I$ ou a est une borne de I) On s'intéresse au comportment de f(x) lorsque $x\in I$ est "proche" de a

Définition (Non universelle)

Pour $w \in \overline{\mathbb{R}}$,

On a 3 cas:

- Si $w \in \mathbb{R}$ les voisinages spécifiques de w sont les $[w-\epsilon,w+\epsilon]$ Ou $\epsilon>0$
- Si $w=-\infty$ les voisinages spécifiques de w sont les $]-\infty,B]$ ou $B\in\mathbb{R}$
- Si $w=+\infty$ les voisinages spécifiques de w sont les $[a,+\infty[$, ou $A\in\mathbb{R}$

Notation

On notera $\mathcal{V}(w)$ l'ensemble des voisinages spécifiques de w (Ensemble de parties de \mathbb{R})

Définition

Une propriété est dite vérifiée au voisinage de $w\in\overline{\mathbb{R}}$ ssi il existe un voisinage spécifique de w que lequel la propriété soit vérifiée.

• Exemple :

La fonction \exp est bornée au voisinage de $-\infty$ il existe $B\in\mathbb{R}$ tel que $\exp|_{]-\infty,B]}$ soit bornée

• Exemple :

La fonction \ln est strictement positive au voisinage de 2

Mais il est faux de dire que la fonction est positive ou nulle au voisinage de 1.

Définition de la limite

Soit $l \in \overline{\mathbb{R}}$

$$f(x) \underset{x
ightarrow a}{\longrightarrow} l \Leftrightarrow orall V \in \mathcal{V}(l), \exists U \in \mathcal{V}(a), orall x \in I, (x \in U \Rightarrow f(x) \in V)$$

Remarque

La définition est équivalente a cela :

$$orall V \in \mathcal{V}(l), \exists U \in \mathcal{V}(a), f(U \cap I) \subset V$$
 $orall V \in \mathcal{V}(l), \exists U \in \mathcal{V}(a), U \cap I \subset f^{-1}(V)$

Remarque

Quand $a \in \mathbb{R}$ il est pratique de faire un "changement de var." :

$$f(x) \stackrel{}{\underset{x
ightarrow a}{\longrightarrow}} l \Leftrightarrow f(a+h) \stackrel{}{\underset{h
ightarrow 0}{\longrightarrow}} l$$

ou encore:

$$f(x) \overset{}{\underset{x
ightarrow a}{\longrightarrow}} l \Leftrightarrow f(x) - l \overset{}{\underset{x
ightarrow a}{\longrightarrow}} 0 \Leftrightarrow |f(x) - l| \overset{}{\underset{x
ightarrow a}{\longrightarrow}} 0$$

Ce qu'on note souvent en majorant |f(x)-l| par une quantité qui tend vers 0

II. Suite du cours

Théorème : unicité de la limite

Si $l,l'\in\overline{\mathbb{R}}$ vérifient

$$f(x) \overset{}{\underset{x o a}{\longrightarrow}} l ext{ et } f(x) \overset{}{\underset{x o a}{\longrightarrow}} l' ext{ alors } l = l'$$

Démonstration identique à celle des suites

On introduit la notation :

$$f(x) \underset{x
ightarrow a}{\longrightarrow} l = \lim_{x
ightarrow a} f(x) = l$$

Propriété

Si $a \in I$ et $\lim_a f = l$ Alors

$$l = f(a)$$

Démonstration:

Cas ou $l \in \mathbb{R}$:

Supposons $a \in I$ et $\lim_a f = l \in \mathbb{R}$

Par def de la limite

$$orall \epsilon > 0, \exists lpha > 0, orall x \in I, |x-a| \leq lpha \Rightarrow |f(x)-l| \leq \epsilon$$

Prenons pour tout $n\in\mathbb{N}$, " $\epsilon=rac{1}{n+1}$ ". Cela fournit un lpha>0 tel que

$$orall x \in I, (|x-a| \leq lpha \Rightarrow |f(x)-l| \leq \epsilon)$$

En particulier comme $a\in I$ et |a-a|=0On obtiens

$$|f(x)-l|\leq \frac{1}{n+1}$$

En faisant tendre n vers $+\infty$

$$|f(a) - l| \le 0$$

Ainsi f(x) = l

Cas ou f(x) = l:

On aurait alors

$$orall A \geq 0, \exists lpha > 0, dora \ll x \in I, |x-a| \leq lpha \Rightarrow f(x) \geq A$$

Avec x = a on obtiens :

$$orall A \geq 0, f(a) \geq A$$

Ce qui est impossible

Cas $l=-\infty$:

Impossible de même.

Propriété

Si $\lim_a f = l \in \mathbb{R}$

alors f est bornée au voisinage de a

Démonstration : Comme les suites

Cas $a \in \mathbb{R}$:

Soit $\epsilon = 1 > 0$

Donc il existe $\alpha > 0$ tel que

$$orall x \in I \cap [a-lpha,a+lpha], f(x) \in [l-1,l+1]$$

Ainsi $f|_{I\cap [a-lpha,a+lpha]}$ est bornée

Cas $a = +\infty$:

Soit $\epsilon = 1 > 0$

Alors il existe $A \in \mathbb{R}$ tel que

$$orall x \in I \cap [A, +\infty[, f(x) \in [l-1, l+1]$$

Donc $f|_{I\cap [A,+\infty[}$ est bornée

Cas $a=-\infty$: De même

Propriété

La notion de limite est locale

Si $l \in \overline{\mathbb{R}}$ Pour tout $V \in \mathcal{V}(a)$

$$f(x) \overset{}{\underset{x
ightarrow a}{\longrightarrow}} l \Leftrightarrow (f|_V)(x) \overset{}{\underset{x
ightarrow a}{\longrightarrow}} l$$

Extension

Soit $f:D_f o\mathbb{R}$ et $a\in\overline{\mathbb{R}}$

S'il existe $W \in \mathcal{V}(a)$ tel que

 $D_f\cap W$ soit un intervalle non trivial dont a soit un élément ou une autre borne

On peut définir pour $l\in\overline{\mathbb{R}}$, le fait que

$$f(x) \overset{}{\underset{x
ightarrow a}{\longrightarrow}} l$$

Par la propriété :

Propriété

$$orall V \in \mathcal{V}(l), \exists U \in \mathcal{V}(a), orall x \in D_f \cap W, (x \in U \Rightarrow f(x) \in V)$$

Définition de la limite a droite et a gauche

On considère $g=f|_{I\cap]a,+\infty [}$ resp ($g=f|_{I\cap]-\infty ,a[}$) et on dit que f admet une limite a droite (resp gauche) en a ssi

$$g(x) \overset{}{\underset{x
ightarrow a}{\longrightarrow}} l$$

On note alors

Limite a droite:

$$g(x) \mathop{\longrightarrow}\limits_{x o a^+} l$$

$$g(x) \stackrel{\longrightarrow}{\underset{>}{\longrightarrow}} l$$

Limite a gauche:

$$g(x) \underset{x
ightarrow a^-}{\longrightarrow} l$$

$$g(x) \stackrel{}{\underset{x
ightarrow a}{\longrightarrow}} l$$

Définitions formelles de la limite a droite et a gauche

Cas $l \in \mathbb{R}$:

$$\lim_{a^+} f = l \Leftrightarrow orall \epsilon > 0, \exists lpha > 0, orall x \in I, (a < x \leq a + lpha \Rightarrow |f(x) - l| \leq \epsilon)$$

$$\lim_{a^-} f = l \Leftrightarrow orall \epsilon > 0, orall lpha > 0, orall x \in I, (a - lpha \leq x < a \Rightarrow |f(x) - l| \leq \epsilon)$$

Cas $l \in \overline{\mathbb{R}}$:

A faire

Extension

On suppose que I est un intervalle non trivial, $a \in I$ et f définies "au moins" sur $I \setminus \{a\}$ (elle peut ou non être définie en a)

Définition: Limite par valeurs différentes

Soit $l \in \overline{\mathbb{R}}$

On dit que f(x) tends par valeurs différentes lorsque :

$$orall V \in \mathcal{V}(l), \exists U \in \mathcal{V}(a), orall x \in I ackslash \{a\}, (x \in U \Rightarrow f(x) \in V)$$

On note alors

$$f(x) \stackrel{}{\underset{
olimits}{\longrightarrow}} l$$

ou

$$\lim_{\substack{x o a \
eq}} f(x) = l$$

• Exemple :

Soit $f:\mathbb{R}^* o \mathbb{R}$ tel que

$$f(x) = x \sin\left(\frac{1}{x}\right)$$

Soit $\epsilon > 0$,

On pose $\alpha = \epsilon > 0$

Soit $x \in \mathbb{R}^*$

On a alors $|f(x)| = |x| |\sin\left(\frac{1}{x}\right)| \leq \alpha = \epsilon$

Donc

$$\lim_{x o 0} f(x) = 0$$

Propriété

Caractérisation séquencielle des limites Avec les notations précédentes

$$\lim_a f = l \Leftrightarrow (orall (u_n) \in I^\mathbb{N}, (\lim_{n o \infty} u_n = a \Rightarrow \lim_{n o \infty} f(u_n) = l))$$

Théorème: Opération sur les limites

CL, produit, quotient

Enoncer les résultats et les démontrer (Même que les suites)

Théorème : Composition de limites

Soit I,J des intervalles non-triviaux, $a,b,l\in\overline{\mathbb{R}}$

Soit $f:I
ightarrow \mathbb{R}$ et $g:J
ightarrow \mathbb{R}$

Telles que $f(I)\subset J$ et $\lim_a f=b$ et $\lim_b g=l$

Alors

$$\lim_a (g\circ f)=l$$

Théorème : Stabilité des inégalités larges par passage a la limite

Soient $f,g:I o\mathbb{R}$ admettant des limites en $a\in\overline{\mathbb{R}}$ et vérifiant :

$$orall x \in I, f(x) \leq g(x)$$

Alors

$$\lim_a f \leq \lim_a g$$

Théorème : Limite par encadrement (gendarmes)

Soit $f,g,h:I
ightarrow \mathbb{R}$

tq f et h admettent la même limite l en $a\in\overline{\mathbb{R}}$ et

$$orall x \in \mathbb{R}, f(x) \leq g(x) \leq h(x)$$

Alors g admet une limite en a et

$$\lim_a g = l$$

Théorème de minoration ou majoration

Soient $f,g:I o\mathbb{R}$ tq

$$\forall x \in I, f(x) \leq g(x)$$

et a un point ou une borne de I.

Si $\lim_a f = +\infty$, alors g(x) tend aussi vers $+\infty$ lorsque x tend vers a.

(Même pour la minoration en $-\infty$)

Théorème de la limite monotone

Soit $f:I o \mathbb{R}$,

Soit a une borne de I tel que $a \notin I$

Si f est monotone alors elle admet une limite $l \in \overline{\mathbb{R}}$ en a

Corollaire du th de la limite monotone

Une fonction monotone admet une limite à droite et une limite à gauche en tout point de son intervalle de définition qui n'en est pas une borne.

Démonstration:

En notant $f:I o\mathbb{R}$ monotone et a le point. On applique le TH précédent a $f|_{]-\infty,a[}$ et $f|_{]a,+\infty[}$

Remarque:

Si $f \uparrow$

$$\lim_{\substack{x o a \ <}} f(x) \leq f(x) \leq \lim_{\substack{x o a \ <}}$$

Si $f\downarrow$,

$$\lim_{x o a}f(x)\geq f(x)\geq \lim_{x o a}f(x)$$

(preuve par stabilité de \leq par passage a la limite.)

III. Preuves

Théorème : Composition de limite

Excalibur 1.