Theorem (Galois Thm)

Let char F=0.

Then $f(x) \in f(x)$ is soluble by radicals \iff Gal(f) is a soluble group.

Let $f(x) = x^5 - 8x + 2 \in Q[x]$ — has exactly two mots.

Gal $(f) \cong S_S$ — insoluble.

As - simple.

<u>Lemma</u> Let G be a transitive permutation group on $\Omega = \{1, 2, ..., p\}$.

Assume that G contains a transposition and $|\Omega| = p$ is a prime.

Then $G = Sym(\Omega) \cong Sp.$

 \underline{Prof} : Since G is trans. on Ω , $|\Omega|$ |G|, so p |G| and G contains an elt of order p.

i.e. $g = (12 \cdots p)$, without loss of generality. Then $-(12 \cdots p)$, (ij) = Sp. \square

Rmk: <(12...p), (123)>= Ap. (P>5)

 $\underline{\text{Prop.}}$ let $f(x) \in F(x)$ with char F=0. F=Q.

Assume that fix) is irreducible of deg p with p prime.

Assume further that fox) has exactly two complex roots. Then $Gal(f) = S_{P}$.

<u>Proof</u>: The complex conjugation is a transposition of Gallf) acting on $\Omega = f$ roots of $f\alpha, f$.

By Lemma, Galf) \sim Sp.

 $f(x) = x^{p} - a \in \mathbb{Q}[x]$, where p prime, $a^{\frac{1}{p}} \notin \mathbb{Q}$. f(x) irreducible.

 $Gal(f) \cong \mathbb{Z}_{p} : \mathbb{Z}_{p-1} = Hol(\mathbb{Z}_{p}) \stackrel{?}{=} Aut(\mathbb{D}_{2p})$

Let $w = e^{2\pi i/p}$ not of $\chi^{p-1} + \chi^{p-2} + \dots + \chi + 1$. $(\chi^{p} - 1)$

Then α , αw , αw^2 , ... αw^{p-1} are the noots of $x^p - a$. # = p.

Galf) is transitive on the noors of f.

⇒ Galf) primitive of prime deg P.

blocks: n= a, Va2 U. Vam.

St Sa, ..., ant. di=aj.

Let $E = Q(\alpha, \alpha w, \dots, \alpha w^{p-1})$. Then E is a splitting field of x^p-a . splitting extension.

Let L=Q(w)<E, then Q<L<E, and L is a splitting extension of Q, a splitting field of χ^P_- 1 over Q.

Thus, $Gal(E/L) \triangleleft Gal(E/Q)$ and $Gal(E/Q)/Gal(E/L) \cong Gal(L/Q)$.

Consider Gal (E/L) and Gal (L/D).

Gal (L/Q) is a splitting field of irr. poly $\chi^{P1}_+\chi^{P2}_+ + \chi + 1$. So Gal (L/Q) is transitive on the poots: W, W2, ", W 1-1 рH

The group Gal(E/L), where $E=L(\alpha)$. Contains an elt. $\rho: \alpha \mapsto \alpha w \mapsto \alpha w^2 \mapsto \cdots \mapsto \alpha w^{P_1} < \rho > \cong \mathbb{Z}_p$

<u>Claim</u>: $Gal(E/Q) = Gal(E/1) \cdot Gal(L/Q)$. $= Z_p \cdot Z_{p-1}$

> ① Gal(E/L) = < ρ >. Otherwise, $\exists \tau \in Gal(E/L)$ s.t. $\alpha^{T} = \alpha$ $(\alpha w^{i})^{T} = \alpha w^{i}$ with $i \neq j$.

T: V - V. TE Gal (E/L), i.e. t fixes l pointwise, so $w^t = w$. awi → ~wj. $\Rightarrow w^i \mapsto w^j$. $i \neq j$. a contradiction. So Gal(E/L) = < ρ >.

② Gal $\lfloor 1/\Omega \rfloor = <6>$, where $6: W \mapsto W^r$, with r being a primitive root in \mathbb{Z}_{p-1} , i.e. $W, W^r, W^r^3, \dots, W^{rP1}$ distinct, or $r \not\equiv r$ if i < p, or $O_p(r) = p - 1$. If p=5, then r=2.

P=7, then r=3. i.e. $6: W \mapsto W^3$.

Note that $Z_{pq} \cong \langle 6 \rangle \leq Gal(4/Q) = :G$. So $G = \langle 6 \rangle G_{pq}$.

Suppose TE Gw. s.t. will with j+k.

wj-wj not possible.

Therefore, $G = Gal(E/Q) = Gal(E/L) \cdot Gal(L/Q)$ = <ρ>, < 6> $\cong \mathbb{Z}_p \cdot \mathbb{Z}_{p-1}$ G = N: H. Let C= CG(N). = $\{g \in G \mid [g,N] \in J\}$. = $\mathbb{Z}_p : \mathbb{Z}_{p-1} = Aut(D_{\geq p})$. = AGL(1.p) AGL,(p) Then $N \in C$, and C is trans. $\Rightarrow N = C$.

 $\underline{Ex.}$ A transitive abelian permutation group is <u>regular.</u> $(G \text{ is trans. on } \Omega. \text{ and } |G| = |\Omega| \text{ or } G_w = 1)$

Thus <6> acts on faithfully. so 6 e Aut(p).

Let $6_0 = 6^{\frac{p-1}{2}}$. then $|6_0| = 2$. Now $p^{6_0} = p^{j}$ for some integer j with |cj| = p.

Since $6^{\circ}_{\circ} = 1$, we have $\rho^{6^{\circ}_{\circ}} = (\rho^{j})^{6^{\circ}_{\circ}} = \rho^{j^{2}} = \rho$. So $\rho^{j^{2}_{-1}} = 1$ and $j^{2}_{-1} = 0$ (mod ρ) $\Rightarrow j = -1$. $< \rho_{-1} = 0$. $< \rho_{-1} = 0$. $< \rho_{-1} = 0$.

Ex. Prove fur=x5-6x+3 or x5-4x+2 are not soluble by radicals, i.e. Galf) is not soluble.

faithful: G=N:H, $o:H \rightarrow Aut(N)$ ker $\alpha=1$.

faithful for group action: $G \land \Omega$, $g \in G$, g fix Ω pointwise $\Leftrightarrow g = e$.

primitive: GND has no non-trivial blocks

regular: $G \cap \Omega$, $G_{\alpha} = 1$, $\forall \alpha \in \Omega$.

Thm if GAA tran. N=G, NA, A tran.

Then $G = N G_{\omega}$ for arbitrary $\omega \in \Omega$.

eg. w. ∈ G, G ≠N Gw.

geG, wig= ws

] neN, w, n = w2.

 $N_1 = W_2^{-1} = W_1^{gn4} \quad gn^4 \in G_{N_1}$

 $\exists h \in G_{w_1}, g_1^{-1} = h, g_2 = hn$ $G = G_{w_1} N.$