TIME SERIES GROUP ASSIGNMENT

Souvenir Shop

Abstract

Time Series Analysis on Sales of Souvenir for a Fancy Store at a beach resort town in Queensland, Australia from January 1987 to December 1993.

Group #8

Vinod Kumar / Jithesh / Tarique / Shivkumar

Contents

1. (a) Visualizing the whole data, dividing the time series data into different components and plotting the diffe	
components individually	2
1.b) Time series stationarity check	5
2.Splitting data into Test/Train or Dev/hold-out	6
3.a) Holt Winter Model creation	6
3.b) Predicting the values for test dataset using HW model	7
3.c) validation against actual values using MAPE	10
4.a) ARIMA Model creation	11
4.b) Predicting the values for test dataset using ARIMA model	13
4a.1) Seasonal – ARIMA Model Creation	14
4.c) Predicting the values for test dataset using SARIMA model	15
5.a) Use both the models to predict the values for next 5 years using HW model	16
5.b) Use both the models to predict the values for next 5 years using ARIMA model	18
6.Summary	20

1. (a) Visualizing the whole data, dividing the time series data into different components and plotting the different components individually

Monthly Sales Data related to Sales of Souvenir for a souvenir shop at a beach resort town in Queensland, Australia has been provided from January 1987 to December 1993.

A time series object has been created for the monthly sales data and following is the output: -

									05	~
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	
1987	1664.81	2397.53	2840.71	3547.29	3752.96	3714.74	4349.61	3566.34	5021.82	
1988	2499.81	5198.24	7225.14	4806.03	5900.88	4951.34	6179.12	4752.15	5496.43	
1989	4717.02	5702.63	9957.58	5304.78	6492.43	6630.80	7349.62	8176.62	8573.17	
1990	5921.10	5814.58	12421.25	6369.77	7609.12	7224.75	8121.22	7979.25	8093.06	
1991	4826.64	6470.23	9638.77	8821.17	8722.37	10209.48	11276.55	12552.22	11637.39	
1992	7615.03	9849.69	14558.40	11587.33	9332.56	13082.09	16732.78	19888.61	23933.38	
1993	10243.24	11266.88	21826.84	17357.33	15997.79	18601.53	26155.15	28586.52	30505.41	
	0ct	Nov	Dec							
1987	6423.48	7600.60	19756.21							
1988	5835.10	12600.08	28541.72							
1989	9690.50	15151.84	34061.01							
1990	8476.70	17914.66	30114.41							
1991	13606.89	21822.11	45060.69							
1992	25391.35	36024.80	80721.71							
1993	30821.33	46634.38	104660.67							

Following is the plot of the time series: -

Note - Sales Figures in '000

- The overall sales pattern is similar until December 1990, and gradually increases (trend) from 1991 1993.
- The highest sales have been recorded in December 1993.
- There is Seasonality present in the data, Nov Dec has peaks in sales every year

Following is the monthly plot across years: -

The month of December records the highest average Sales across years.

Following is the seasonal plot: -

The highest Sales has been recorded in the Year 1993, across months.

Decomposition

Following is the decomposition plots of the time series: -

- There are two spikes towards the end of the series (STL plot) which is influenced by randomness. More information about data is required for conclusion on the spike.
- The random errors are normally distributed in the multiplicative time series as compared to the additive time series as shown by the below histograms: -

1.b) Time series stationarity check

The original time series is not stationary. Augmented Dickey Fuller Test on the original time series gives a p-value of greater than 0.5 to justify non-stationarity.


```
Augmented Dickey-Fuller Test

data: Fancy.ts
Dickey-Fuller = -2.0809, Lag order = 4, p-value = 0.5427
alternative hypothesis: stationary
```

The first order difference of the time series is represented by the below plot: -

Augmented Dickey Fuller Test on the first order difference gives a p-value of less than 0.5 to justify stationarity.

```
Augmented Dickey-Fuller Test
data: diff(Fancy.ts)
Dickey-Fuller = -3.7374, Lag order = 4, p-value = 0.02655
alternative hypothesis: stationary
```

2. Splitting data into Test/Train or Dev/hold-out

The train data is considered from January 1987 to December 1991.

```
Feb
                           Mar
                                                                Jul
                                                                                  Sep
                                                                                           0ct
         Jan
                                    Apr
                                             Mav
                                                       Jun
                                                                         Aug
                                                           4349.61
1987
     1664.81
               2397.53
                       2840.71
                                 3547.29
                                         3752.96
                                                  3714.74
                                                                     3566.34
                                                                              5021.82
                                                                                       6423.48
1988 2499.81
               5198.24
                                4806.03
                                         5900.88 4951.34
                                                            6179.12
                       7225.14
                                                                     4752.15
                                                                              5496.43
                                                                                       5835.10
1989 4717.02
              5702.63 9957.58
                                5304.78
                                         6492.43 6630.80
                                                           7349.62
                                                                     8176.62
                                                                             8573.17
                                                                                       9690.50
                                                                             8093.06
1990 5921.10
               5814.58 12421.25
                                 6369.77
                                         7609.12 7224.75 8121.22
                                                                   7979.25
                                                                                      8476.70
                                8821.17 8722.37 10209.48 11276.55 12552.22 11637.39 13606.89
              6470.23 9638.77
1991 4826.64
         Nov
                  Dec
     7600.60 19756.21
1987
1988 12600.08 28541.72
1989 15151.84 34061.01
1990 17914.66 30114.41
1991 21822.11 45060.69
```

The test data is considered from January 1992 to December 1993

```
Feb
                              Mar
                                                             Jun
                                                                       Jul
                                                                                           Sep
           Jan
                                        Apr
                                                  Mav
                                                                                 Aua
      7615.03
                9849.69
                                   11587.33
1992
                                                                           19888.61
                                                                                      23933.38
                         14558.40
                                              9332.56 13082.09
                                                                 16732.78
1993 10243.24
               11266.88
                          21826.84
                                   17357.33 15997.79 18601.53 26155.15
                                                                           28586.52
          0ct
                    Nov
                              Dec
1992
     25391.35
               36024.80
                         80721.71
1993 30821.33 46634.38 104660.67
```

3.a) Holt Winter Model creation

Applying Holt-Winters model on the Train data using <u>additive method</u>. Following output gives the default smoothing parameters and the error measures: -

```
Forecast method: Holt-Winters' additive method
Model Information:
Holt-Winters' additive method
 hw(y = Fancy_Train, h = 24, seasonal = "a")
  Smoothing parameters:
alpha = 0.4644
    beta = 1e-04
    qamma = 2e-04
  Initial states:
    1 = 4913.2629
    b = 151.2208
    s = 20258.77 4484.072 -1118.708 -1803.284 -2367.86 -1908.666
            -2944.362 -2605.234 -3235.492 392.5435 -3462.8 -5688.984
  sigma: 2487.174
              AICc
AIC AICC BIC
1199.320 1213.891 1234.924
Error measures:
                    ME
                           RMSE
                                                MPF
                                      MAE
                                                         MAPE
                                                                   MASE
Training set 217.7606 2129.889 1391.689 3.617414 21.86565 0.5538379 0.072869
```

3.b) Predicting the values for test dataset using HW model

Following output gives the forecast for 24 months of Test Data using the Additive method for different confidence levels: -

	Point Forecast <dbl></dbl>	Lo 80 <dbl></dbl>	Hi 80 <dbl></dbl>	Lo 95 <dbl></dbl>	Hi 95 <dbl></dbl>
Jan 1992	14515.45	11328.01	17702.90	9640.682	19390.23
Feb 1992	16892.79	13378.30	20407.28	11517.837	22267.74
Mar 1992	20900.40	17086.66	24714.14	15067.789	26733.01
Apr 1992	17426.08	13334.79	21517.36	11168.991	23683.16
May 1992	18208.88	13857.58	22560.17	11554.148	24863.61
Jun 1992	18022.62	13425.88	22619.35	10992.516	25052.72
Jul 1992	19210.70	14380.87	24040.53	11824.109	26597.29
Aug 1992	18904.48	13852.19	23956.78	11177.663	26631.30
Sep 1992	19621.42	14355.95	24886.89	11568.584	27674.27
Oct 1992	20458.99	14988.54	25929.43	12092.666	28825.31
Nov 1992	26214.84	20546.73	31882.94	17546.217	34883.46
Dec 1992	42142.53	36283.34	48001.73	33181.665	51103.40
Jan 1993	16348.19	10303.72	22392.65	7103.978	25592.40
Feb 1993	18725.52	12501.34	24949.71	9206.451	28244.59
Mar 1993	22733.13	16334.19	29132.08	12946.787	32519.48
Apr 1993	19258.81	12689.67	25827.96	9212.171	29305.45
May 1993	20041.61	13306.49	26776.74	9741.132	30342.10
Jun 1993	19855.35	12958.16	26752.54	9307.014	30403.69
Jul 1993	21043.44	13987.83	28099.04	10252.815	31834.06
Aug 1993	20737.22	13526.59	27947.84	9709.519	31764.92
Sep 1993	21454.16	14091.71	28816.61	10194.261	32714.06
Oct 1993	22291.72	14780.44	29803.01	10804.205	33779.24
Nov 1993	28047.57	20390.28	35704.87	16336.749	39758.39
Dec 1993	43975.27	36174.62	51775.91	32045.212	55905.32

Plotting a comparison plot between the Test Data and the Forecasted Data using Holt-Winters

Applying Holt-Winters model on the Train data using <u>multiplicative method</u>. Following output gives the default smoothing parameters and the error measures: -

```
Forecast method: Holt-Winters' multiplicative method
Model Information:
Holt-Winters' multiplicative method
hw(y = Fancy_Train, h = 24, seasonal = "m")
  Smoothing parameters:
alpha = 0.2178
    beta = 0.0198
    gamma = 1e-04
  Initial states:
    1 = 4208.3295
    b = 195.0312
    s = 3.0591 1.5073 0.8884 0.7983 0.7929 0.7956
           0.7177 0.7055 0.6299 1.0177 0.6002 0.4875
  sigma: 0.1746
AIC AICc BIC
1124.164 1138.735 1159.767
Error measures:
                           RMSE
                   ME
                                     MAE
                                            MPE
                                                        MAPE
                                                                   MASE
                                                                              ACF1
Training set 59.63395 1206.105 934.3848 -1.783939 12.38556 0.3718488 0.05860524
```

Forecasting the Sales for January 1992 – December 1993 leveraging HW Multiplicative Model and validating against Test Data available for the same period

Following output gives the forecast for 24 months of Test Data using the multiplicative method for different confidence levels: -

	Point Forecast <dbl></dbl>	Lo 80 <dbl></dbl>	Hi 80 <dbl></dbl>	Lo 95 <dbl></dbl>	Hi 95 <dbl></dbl>
Jan 1992	7398.234	5743.181	9053.286	4867.049	9929.418
Feb 1992	9270.708	7139.314	11402.103	6011.022	12530.395
Mar 1992	15993.626	12207.158	19780.095	10202.723	21784.530
Apr 1992	10070.057	7610.864	12529.249	6309.046	13831.067
May 1992	11468.651	8575.632	14361.670	7044.161	15893.141
Jun 1992	11860.745	8766.828	14954.662	7129.008	16592.482
Jul 1992	13363.384	9755.654	16971.115	7845.837	18880.932
Aug 1992	13532.931	9749.475	17316.386	7746.634	19319.227
Sep 1992	13840.576	9831.948	17849.203	7709.909	19971.243
Oct 1992	15642.251	10947.952	20336.550	8462.941	22821.56
Nov 1992	26945.902	18566.544	35325.260	14130.779	39761.02
Dec 1992	55516.695	37629.287	73404.102	28160.266	82873.12
Jan 1993	8978.435	5981.692	11975.178	4395.312	13561.55
Feb 1993	11216.226	7339.318	15093.134	5287.007	17145.44
Mar 1993	19292.305	12389.036	26195.574	8734.666	29849.94
Apr 1993	12111.908	7627.214	16596.603	5253.160	18970.65
May 1993	13755.448	8487.473	19023.423	5698.776	21812.12
Jun 1993	14187.070	8570.187	19803.952	5596.789	22777.35
Jul 1993	15942.281	9420.563	22463.998	5968.175	25916.38
Aug 1993	16103.212	9300.198	22906.226	5698.900	26507.52
Sep 1993	16428.331	9264.850	23591.812	5472.732	27383.93
Oct 1993	18521.995	10190.497	26853.494	5780.068	31263.92
Nov 1993	31831.697	17069.103	46594.291	9254.258	54409.13
Dec 1993	65433.075	34162.769	96703.382	17609.268	113256.88

Plotting a comparison plot between the Test Data and the Forecasted Data using Holt-Winters (multiplicative) for the period January 1992 to December 1993: -

Following is the prediction on Test Data with smoothing parameters taken as alpha = 0.8, beta = 0.02, gamma = 0.0001: -

Comparison of the Additive and Multiplicative output based on the forecasting model arrived on the basis of the Train data: -

3.c) validation against actual values using MAPE

Following table summarizes the error measures for the additive and multiplicative model and the related smoothing parameters: -

Smoothing Parameters	Additive	Multiplicative	Multiplicative (M1)
Alpha	0.4644	0.2178	0.8
Beta	0.0001	0.0198	0.02
Gamma	0.0002	0.0001	0.0001
Error Measures – Train Data	Additive	Multiplicative	Multiplicative (M1)
RMSE	2129	1206	1421.397
MAPE	21.87	12.38	11.95364
Error Measures – Test Data	Additive	Multiplicative	Multiplicative (M1)
MAPE	37.34	24.31	27.63

The multiplicative models give the best results, with error measures being lesser than the additive model.

4.a) ARIMA Model creation

Stationarity of Train Data

```
Augmented Dickey-Fuller Test

data: Fancy_Train
Dickey-Fuller = -3.1882, Lag order = 3, p-value = 0.09786
alternative hypothesis: stationary
```

The p-value is greater than 5%, hence the Train Data is not stationary

Taking the first difference in the train data and carrying out an ADF test gave the following output: -

```
p-value smaller than printed p-value
    Augmented Dickey-Fuller Test

data: diff(Fancy_Train)
Dickey-Fuller = -4.5431, Lag order = 3, p-value = 0.01
alternative hypothesis: stationary
```

Thus, the first difference of Train data, is stationary as the p-values are low.

Following are the ACF & PACF plots related to Autocorrelation based on the First-Difference Train Data (d=1): -

- Based on above ACF plot it looks like MA(q) order of 1 is significant (almost touching the significance dotted line)
- From PACF plot AR (p)order of 2 is significant

The ARIMA[p,d,q] model for Fancy Train Data is ARIMA[2,1,1]. Following are the coefficients and the error measures: -

```
arima(x = salesTrain, order = c(2, 1, 1))
Coefficients:
         ar1
                 ar2
                          ma1
      0.2771
              -0.1206
                      -0.8617
      0.1723
              0.1607
                       0.1033
sigma^2 estimated as 54.66: log likelihood = -202.31, aic = 412.62
Training set error measures:
                         RMSE
                                   MAF
                                              MPF
                                                     MAPE
                                                               MASE
                                                                           ACF1
Training set 1.531089 7.331218 4.016114 -8.602968 41.15481 0.8776473 -0.03115535
```

Coefficients	Ar1	Ar2	Ma1
t-Score	1.61	0.75	8.33

Moving Average part of the equation carries more weightage as compared to the rest, because of the high t-score Equation based on the ARIMA (2,1,1):

$$X_t = 0.2771X_{(t-1)} - 0.1206X_{(t-2)} - E_t - 0.8617E_{(t-1)}$$

The fitted values are one period ahead of the actual data (blue line), as the ARIMA model does NOT account for SEASONALITY aspect, as exhibited by the decomposition plot

Box-Ljung test to check if autocorrelation exist for residuals on the ARIMA(2,1,1) model:

```
Box-Ljung test
data: arima.fit$residuals
X-squared = 1.377, df = 5, p-value = 0.9268
```

The p-value is high, which endorses Null Hypothesis that no auto-correlation exist in residuals and model can be used.

4.b) Predicting the values for test dataset using ARIMA model

Following is the forecast on the test data using ARIMA [2,1,1]

Arima Model applied on Test Data

- The fitted values are one period ahead of the actual data (blue line), as the model does not account for Seasonality aspect, as exhibited by the decomposition plot

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug
1992	7.607385	7.976262	9.854930	12.004836	10.468568	10.102637	12.030959	13.452804
1993	43.043819	13.480987	21.953093	24.726864	21.180416	20.619598	21.227355	23.692279
	Sep	0ct	Nov	Dec				
1992		Oct 17.136860						

*Values are in '000

4a.1) Seasonal – ARIMA Model Creation

Following ARIMA models of different orders were created. ARIMA (2,1,2) (1,1,2) [12] gives the best results in terms of having least values of error measures compared to the rest.

Model	MAPE	RMSE
ARIMA(1,1,1)(1,1,1)[12]	15.12	2231
	14.80	2349
ARIMA(2,1,1)(0,1,0)[12]		
	11.10	1661
ARIMA(2,1,1)(1,1,2)[12]		
	11.21	1653
ARIMA(2,1,2)(1,1,2)[12]		

ARIMA Model (2,1,2) (1,1,2) [12] Output: -

```
Call:
arima(x = salesTrain, order = c(2, 1, 2), seasonal = list(order = c(1, 1, 2),
   period = 12))
Coefficients:
                  ar2
                          ma1
                                   ma2
                                          sar1
                                                    sma1
                                                            sma2
         ar1
      -0.6347
               -0.2046 0.0572
                               -0.2911
                                        0.4473
                                                         0.9996
                                                -1.1381
      0.5406
              0.3242 0.5427
                                0.4968 0.6812
                                                0.8358
                                                         0.7334
sigma^2 estimated as 3.491: log likelihood = -108.85, aic = 233.71
Training set error measures:
                   ME
                          RMSE
                                     MAE
                                               MPE
                                                       MAPE
                                                                 MASE
Training set 0.1502816 1.653725 1.066512 -2.223948 11.21494 0.2330664 -0.01925558
```

Coefficients	Ar1	Ar2	Ma1	Ma2	Sar1	Sma1	Sma2
t-score	1.174	0.6310	0.105	0.586	0.657	1.362	1.363

Seasonality related moving average parameters have higher weightage compared to the rest of the coefficients based on the t-score

Based on the ARIMA model, monthly order of difference is 1 (d) and seasonal order of difference is 1 (D). Hence: -

$$X_t = (Y_t - Y_{(t-1)}) - (Y_{(t-12)} - Y_{(t-13)})$$

Equation for ARIMA(2,1,2)(1,1,2)[12] is: -

 $X_t = -0.6347X_{(t-1)} - 0.2046X_{(t-2)} + E_t + 0.0572E_{(t-1)} - 0.2911E_{(t-2)} + 0.4473X_{(t-12)} + F_t + 0.4473F_{(t-1)} - 1.1381F_{(t-2)} + 0.4473X_{(t-1)} + F_t + 0.4473F_{(t-1)} + 0.$

Box-Ljung test to check if autocorrelation exist for residuals on the

```
Box-Ljung test
data: arima.fit.s$residuals
X-squared = 0.49122, df = 5, p-value = 0.9924
```

The p-value is high, which endorses Null Hypothesis that no autocorrelation exist in residuals and model can be used.

4.c) Predicting the values for test dataset using SARIMA model

We are using a One-step forecast on test data method which leads to decrease the RMSE and MAPE.

Code:

```
library(forecast)
ntest = Arima(Fancy_Test, model=Fancy_Train_ArimaSeasonal)
Fancy_ntest = cbind(Fancy_Test, ntest$fitted)
ts.plot(Fancy_ntest, col = c("blue", "red"), main = "ARIMA(2,1,2)(1,1,2)[12] Model Test Data Validation
using Arima func.")
```

Based on various parameter tuning of pdq, PDQ, the model with the least MAPE value is ARIMA (2,1,2)(1,1,2)[12]

Model	MAPE	RMSE
ARIMA(1,1,1)(1,1,1)[12]	4.02	3234
ARIMA(2,1,1)(0,1,0)[12]	4.6	3639
ARIMA(2,1,1)(1,1,2)[12]	3.26	2580

ARIMA(2,1,2)(1,1,2)[12]	<mark>3.22</mark>	<mark>2553</mark>
-------------------------	-------------------	-------------------

Forecast on the test data using ARIMA Model (2,1,2) (1,1,2) period 12

ARIMA(2,1,2)(1,1,2)[12] Test Vs Fitted Values

5.a) Use both the models to predict the values for next 5 years using HW model

Error Measures and Smoothing Parameters using Multiplicative Method

```
Model Information:
Holt-Winters' multiplicative method
 hw(y = Fancy.ts, h = 60, seasonal = "m")
  Smoothing parameters:
alpha = 0.4165
beta = 0.0243
    gamma = 6e-04
  sigma: 0.1946
AIC AICc BIC
1661.938 1671.211 1703.262
Error measures:
                   ME
                                                                 MASE
                          RMSE
                                    MAE
                                              MPF
                                                       MAPE
Training set 111.4845 1573.73 1264.728 -1.223233 13.64245 0.2857896 0.1985004
Forecasts:
```

Plot of the forecasted data for the next 5 Years

Hi 95	Lo 95 <dbl></dbl>	Hi 80 <dbl></dbl>	Lo 80 <dbl></dbl>	Point Forecast <dbl></dbl>	
19383.43	8680.7577	17531.14	10533.0425	14032.09	Jan 1994
24928.86	10261.3060	22390.38	12799.7838	17595.08	Feb 1994
46155.35	17417.6456	41181.78	22391.2096	31786.50	Mar 1994
34984.65	12064.1678	31017.86	16030.9603	23524.41	Apr 1994
31611.41	9921,2771	27857.55	13675.1365	20766.35	May 1994
36580.25	10397.8691	32048.93	14929.1900	23489.06	Jun 1994
47810.37	12235.1382	41653.45	18392.0569	30022.75	Jul 1994
54193.25	12395.7408	46959.45	19629.5334	33294.49	Aug 1994
60783.28	12316.3359	52395.22	20704.3917	36549.81	Sep 1994
65128.29	11561,3954	55857.60	20832.0876	38344.84	Oct 1994
101733.18	15599.2703	86826.19	30506.2568	58666.22	Nov 1994
226612.62	29464.2738	192492.64	63584.2598	128038.45	Dec 1994
30903.85	3321.3881	26130.22	8095.0184	17112.62	Jan 1995
39398.74	3378.1050	33164.74	9612.1094	21388.42	Feb 1995
72353.60	4683.2996	60642.07	16394.8349	38518.45	Mar 1995
54424.25	2416.1041	45423.32	11417.0270	28420.18	Apr 1995
48822.88	1206.0295	40581.95	9446.9627	25014.46	May 1995
56111.98	315.2615	46455.37	9971.8636	28213.62	Jun 1995
72863.04	-939.1213	60090.28	11833.6395	35961.96	Jul 1995
82080.35	-2532.1020	67436.68	12111.5701	39774.13	Aug 1995
91518.31	-4419.3672	74914.61	12184.3343	43549.47	Sep 1995
97506.77	-6360.8855	79530.65	11615.2375	45572.94	Oct 1995
151485.89	-12377.9720	123126.37	15981.5482	69553.96	Nov 1995
335686.90	-32808.9517	271912.22	30965,7317	151438.98	Dec 1995
45550.12	-5163.5213	36773.23	3613.3648	20193.30	Jan 1996
57793.05	-7429.1535	46505.20	3858.6956	25181.95	Feb 1996
105645.26	-15143.7781	84740.59	5760.8867	45250.74	Mar 1996
79114.25	-12481.8806	63261.93	3370.4391	33316.18	Apr 1996
70669.21	-12143.6458	56336.99	2188.5734	29262.78	May 1996
80886.39	-15009.5453	64289.91	1586.9306	32938.42	Jun 1996
104617.79	-20814.8472	82909.47	893.4745	41901.47	Jul 1996
117402.74	-20814.8472	92775.69	-267.5017	41901.47	
130420.96	-24894.5472	102774.64	-1675.6249	50549.51	Aug 1996 Sep 1996
130420.96	-29321.9402	102/74.64	-1675.6249	50549.51 52801.43	Sep 1996 Oct 1996
214378.39					
214378.39 473486.60	-53493.8430 -123805.0525	168018.40 370114.79	-7133.8453	80442.27 174840.78	Nov 1996 Dec 1996
4/3486.60 64043.55	-123805.0525 -17495.2657	3/0114./9 49931.83	-20433.2352		
			-3383.5404	23274.14	Jan 1997
81007.42	-23056.0480	62997.41	-5046.0361	28975.69	Feb 1997

	Point Forecast <dbl></dbl>	Lo 80 <dbl></dbl>	Hi 80 <dbl></dbl>	Lo 95 <dbl></dbl>	Hi 95 <dbl></dbl>	
Mar 1997	51983.40	-10564.1452	114530.95	-43674.8170	147641.62	
Apr 1997	38212.47	-8888.5477	85313.49	-33822.3202	110247.26	
May 1997	33511.35	-8790.5867	75813.28	-31183.8778	98206.57	
Jun 1997	37663.49	-11011.0879	86338.07	-36777.8548	112104.84	
Jul 1997	47841.33	-15439.8387	111122.49	-48938.8649	144621.52	
Aug 1997	52734.45	-18639.1306	124108.02	-56422.0194	161890.91	
Sep 1997	57549.96	-22129.7329	137229.65	-64309.6140	179409.53	
Oct 1997	60030.35	-24971.0383	145031.73	-69968.0527	190028.74	
Nov 1997	91331.25	-40897.2335	223559.74	-110894.7658	293557.27	
Dec 1997	198244.01	-95155.0899	491643.10	-250471.1901	646959.20	
Jan 1998	26355.18	-13510.1086	66220.47	-34613.5173	87323.88	
Feb 1998	32769.66	-17879.4730	83418.79	-44691.5040	110230.82	
Mar 1998	58716.49	-33997.8052	151430.79	-83077.7886	200510.77	
Apr 1998	43109.07	-26419.1298	112637.26	-63225.1336	149443.27	
May 1998	37760.19	-24434.7526	99955.12	-57358.7644	132879.14	
Jun 1998	42388.87	-28900.9714	113678.72	-66639.5350	151417.28	
Jul 1998	53781.57	-38559.2607	146122.41	-87441.5453	195004.69	
Aug 1998	59215.22	-44564.1182	162994.56	-99501.5828	217932.03	
Sep 1998	64550.87	-50909.4267	180011.18	-112030.4181	241132.17	
Oct 1998	67259.75	-55506.0625	190025.56	-120494.3567	255013.85	
Nov 1998	102220.97	-88147.5809	292589.51	-188922.6018	393364.53	
Dec 1008	221649.92	.100462 2147	642760.99	.422296.4662	96569412	

Forecasts from Holt-Winters' multiplicative method

5.b) Use both the models to predict the values for next 5 years using ARIMA model

```
arima(x = sales, order = c(2, 1, 2), seasonal = list(order = c(1, 1, 2), period = 12))
Coefficients:
NaNs produced
                     ar1
                             ar2
                                      ma1
                                              ma2
                                                     sar1
                                                               sma1
                                                                        sma2
      0.749 0.0060
                     -1.4269 0.4440
                                      0.9832
                                              -0.2523
                                                       -0.6214
        NaN 0.0013
                      0.0727
                             0.0695
                                         NaN
                                               0.1036
                                                        0.1080
sigma^2 estimated as 14.45: log likelihood = -201.95,
Training set error measures:
                           RMSE
                                               MPE
                                                       MAPE
                    ME
                                     MAE
                                                                  MASE
                                                                              ACF1
Training set 0.3533508 3.494717 2.176887 -1.845148 15.91193 0.3183582 -0.01129329
```

Forecast for 5 Years using ARIMA(2,1,2)(1,1,2)[12]

	Point Forecast	Lo 80	Hi 80	Lo 95	Hi 95
lan 1994	13.33797	8.392986	18.28296	5.7752673	20.90068
Feb 1994	13.80360	8.607111	19.00009	5.8562562	21.75094
Mar 1994	26.98418	21.624423	32.34394	18.7871378	35.18123
Apr 1994	23.93854	18.471123	29.40596	15.5768455	32.30024
May 1994	23.72341	18.181871	29.26495	15.2483565	32.19847
Jun 1994	25.39677	19.801994	30.99155	16.8402966	33.95325
Jul 1994	34.80157	29.166899	40.43625	26.1840837	43.41906
Aug 1994	36.84803	31.182187	42.51387	28.1828716	45.51318
Sep 1994	34.73545 35.15651	29.044262	40.42663	26.0315318	43.43936
Oct 1994		29.443959	40.86906	26.4199190	43.89310
Nov 1994 Dec 1994	52.81881 117.22639	47.087703 111.478808	58.54992 122.97397	44.0538368 108.4362229	61.58379 126.01655
Jan 1995	18.53216	7.787606	29.27671	2.0997831	34.96454
Feb 1995	19,09951	7.888383	30.31065	1,9535689	36.24546
Mar 1995	33.34079	21.811249	44.87034	15.7078762	50.97371
Apr 1995	29.90234	18.150822	41.65385	11.9299450	47.87473
May 1995	29.70881	17.795392	41.62222	11.4888106	47.92880
Jun 1995	31.42442	19.387672	43.46116	13.0158045	49.83303
Jul 1995	41.56623	29.431527	53.70093	23.0078053	60.12465
Aug 1995	43.70616	31.490528	55.92179	25.0239629	62.38836
Sep 1995	41.34028	29.055319	53.62525	22.5520519	60.12851
Oct 1995	41.59676	29.250475	53.94305	22.7147462	60.47878
Nov 1995	60.84527	48.443286	73.24725	41.8780735	79.81246
Dec 1995	129.14929	116.695726	141.60285	110.1032089	148.19537
Jan 1996	24.15364	7.915183	40.39210	-0.6809372	48.98822
Feb 1996	24.79200	8.049696	41.53430	-0.8131440	50.39714
Mar 1996	40.06012	22.952273	57.16797	13.8959256	66.22431
Apr 1996	36.22328	18.843901	53.60266	9.6438117	62.80275
May 1996	36.04177	18.451708	53.63184	9.1400891	62.94346
Jun 1996	37.79194	20.031598	55.55229	10.6298384	64.95405
Jul 1996	48.65309	30.749813	66.55637	21.2723903	76.03379
Aug 1996	50.88093	32.853490	68.90838	23.3103383	78.45153
Sep 1996 Oct 1996	48.26299 48.35536	30.124364 30.114541	66.40163 66.59619	20.5223524 20.4584327	76.00364 76.25230
Nov 1996	48.35536 69.16166	50.824900	87.49842	20.4584327 41.1180064	97.20531
Dec 1996	141.29527	122.867092	159.72344	113.1118065	169.47873
Jan 1997	30.10321	8.235313	51.97110	-3.3408498	63.54726
Feb 1997	30.81062	8.385742	53.23550	-3.4852722	65.10652
Mar 1997	47.08774	24.241820	69.93366	12.1479212	82.02756
Apr 1997	42.85879	19.686782	66.03080	7.4202610	78.29732
May 1997	42.68878	19.253619	66.12393	6.8477965	78.52975
Jun 1997	44.47268	20.817017	68.12834	8.2944657	80.65089
Jul 1997	56.04087	32.194029	79.88772	19.5702717	92.51148
Aug 1997	58.35500	34.337308	82.37270	21.6231078	95.08690
Sep 1997	55.48914	31.314692	79.66358	18.5175127	92.46076
Oct 1997	55.42008	31.098579	79.74158	18.2235547	92.61661
Nov 1997	77.75789	53.295916	102.21987	40.3465276	115.16926
Dec 1997	153.65662	129.058760	178.25449	116.0374371	191.27581
Jan 1998	36.37235	8.469419	64.27528	-6.3014988	79.04619
Feb 1998	37.14763	8.628335	65.66693	-6.4688698	80.76414
Mar 1998	54.41676	25.417502	83.41601	10.0662247	98.76729
	Point Forecast	Lo 80	Hi 80	Lo 95 ⊲dbl>	Hi 95
Apr 1998	49.80228	20.420167	79.18439	4.8662177	94.73834
May 1998	49.64355	19.944016	79.34308	4.2220329	95.06507
Jun 1998	51.46061	21.488572	81.43265	5.6223345	97.29888
Jul 1998	63.72395	33.510596	93.93731	17.5166114	109.93129
Aug 1998	66.12291	35.689963	96.55587	19.5797312	112.66610
Sep 1998	63.01329	32.375768	93.65081	16.1572451	109.86933
Oct 1998	62.78551	31.953613	93.61741	15.6321907	109.93884
Nov 1998	86.62908	55.609466	117.64870	39.1886734	134.06949
Dec 1998	166.22960	135.026673	197.43252	118.5088414	213.95036

- Both the models Holt Winters and S ARIMA model are forecasting the series with very similar plot,
- However, with each forecast year (1996 & beyond) the variation in the confidence interval is increasing significantly for Holt Winter's model compared to ARIMA model
- It is always a good practice of not forecasting too ahead into the future.

6.Summary

Actual Test Data Vs Forecasted Data for all models:

Sr.No:	TestData	HW-M	HW-M1	STL	S-Arima	S-Arima (Arima Method having a Drift term – one step forecast method)
1	7615.03	7398.233712	7338.964	17638.8005	11678.92	7610.633
2	9849.69	9270.708393	9101.909	18813.77781	10948.86	9845.993
3	14558.4	15993.62639	15325.25	23053.28466	19073.84	14552
4	11587.33	10070.05687	9978.898	19705.06507	12712.85	11585.18
5	9332.56	11468.65099	11185.34	20534.75688	13734.92	9332.884
6	13082.09	11860.745	11434.66	20812.76664	14445.93	13078.91
7	16732.78	13363.38434	12905.38	21807.78003	15327.47	16726.66
8	19888.61	13532.93064	13194.97	22157.94248	16604.09	19880.29
9	23933.38	13840.57584	13278.32	22217.23362	15809.2	23922.16
10	25391.35	15642.25103	15076.48	23318.56716	16875.37	25379.87
11	36024.8	26945.90199	25436.67	30791.39045	27428.26	36004.21

12	80721.71	55516.69457	52163.3	48412.0224	46075.23	80654.33
13	10243.24	8978.434944	8472.109	20990.1329	13544.36	10340.27
14	11266.88	11216.22624	10489.4	22165.11021	13411.89	11977.86
15	21826.84	19292.30522	17632.13	26404.61706	20092.49	18396.37
16	17357.33	12111.90817	11462.39	23056.39747	16230.24	16523.26
17	15997.79	13755.44811	12827.84	23886.08929	16487.12	14352.79
18	18601.53	14187.06955	13093.48	24164.09904	17992.28	19068.03
19	26155.15	15942.28055	14755.18	25159.11243	18952.33	23315.21
20	28586.52	16103.21199	15063.96	25509.27488	20664.26	27840.25
21	30505.41	16428.33096	15137.17	25568.56602	19359.3	30943.73
22	30821.33	18521.99527	17162.74	26669.89956	21054.92	32410.79
23	46634.38	31831.69732	28916.42	34142.72285	31802.15	43951.17
24	104660.7	65433.07514	59218.83	51763.3548	52499.43	93610.97

Seasonal Arima Model ARIMA (2,1,2) (1,1,2) [12] is the best performing model for the following reasons: -

- The model validates the test data in the best possible manner, with the forecasted values closely fitting the actual test data
- The Mean absolute percentage error is the lowest amongst all models
- The Root Mean Square error is the lowest for this model

The Arima function having a drift term is predicting the test period more accurately than the forecast function when applied on the train data for a forecasting period of 24 months (test period).